

Tuesday

Formulas for Determinant 11.1.1

We want to use the **3 basic properties** to derive the formula for determinant:

1. The determinant of the n by n identity matrix is 1.

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$
 and $\begin{vmatrix} 1 \\ & \ddots \\ & & 1 \end{vmatrix} = 1$.

2. The determinant changes sign when two rows are exchanged. (sign reversal)

Check:
$$\begin{vmatrix} c & d \\ a & b \end{vmatrix} = - \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
 (both sides equal $bc - ad$).

3. The determinant is a linear function of each row separately. (all other rows stay fixed).

multiply row 1 by any number
$$t$$
 $\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$

Add row 1 of A to row 1 of B:
$$\begin{vmatrix} a_1 + a_2 & b_1 + b_2 \\ c & d \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ c & d \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\ c & d \end{vmatrix}$$

Although we derive the formula for $\det \mathbf{A}$ is $\det \mathbf{A} = \pm \prod_{i} \text{pivots}_{i}$ (product of pivots), it is not explicit. We begin some example to show how to derive the explicit formula for determinant.

■ Example 11.1 To derive the formula for determinant, let's start with
$$n = 2$$
.
Given $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, our goal is to get $ad - bc$.

We can break each row into two simpler rows:

$$\begin{vmatrix} a & b \end{vmatrix} = \begin{vmatrix} a & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \end{vmatrix}$$
 and $\begin{vmatrix} c & d \end{vmatrix} = \begin{vmatrix} c & 0 \end{vmatrix} + \begin{vmatrix} 0 & d \end{vmatrix}$

Now apply property 3, first in row 1(with row 2 fixed) and then in row 2(with row 1 fixed):

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix}$$
$$= \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix}$$

The last line has $2^2 = 4$ determinants. The first and fourth are zero since their rows are **dep.** (one row is a multiple of the other row.) We left two terms to compute:

$$\begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} = ad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + bc \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = ad - bc$$

The permutation matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ have determinant +1 or -1.

Example 11.2 Now we try n = 3. Each row splits into 3 simpler rows such as $\begin{bmatrix} a_{11} & 0 & 0 \end{bmatrix}$. Hence det A will split into $3^3 = 27$ simple determinants. For simple determinant, if one

column has two nonzero entries, (For example, $\begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & 0 & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$), then its determinant will be

Hence we only need to foucus on the matrix that the nonzero terms come from defferent columns:

There are 3! = 6 ways to permutate the three columns, so there leaves six determinants. The six permutations of (1,2,3) is given by:

Column numbers =
$$(1,2,3), (2,3,1), (3,1,2), (1,3,2), (2,1,3), (3,2,1).$$

The last three are *odd permutations* (One exchange from identity permutation (1,2,3).) The first three are even permutations. (zero or two exchange from identity permutation (1,2,3).) When the column number is (α, β, ω) , we get the entries $a_{1\alpha}, a_{2\beta}, a_{3\omega}$. The permutation (α, β, ω) comes with a plus or minus sign. If you don't understand, look at example below:

11.1 Tuesday 83

The first three (even) permutation matrices have $\det \mathbf{P} = +1$, the last three (odd) permutation matrices have $\det \mathbf{P} = -1$. Hence we have:

$$\det \mathbf{A} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22} - a_{33}) + a_{12}(a_{23}a_{31} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

n by n formula

Now we can see n by n formula. There are n! permutations of columns, so we have n! terms for determinant.

Assuming $(\alpha, \beta, ..., \omega)$ is the permutation of (1, 2, ..., n). The coorsponding terms is $a_{1\alpha}a_{2\beta}...a_{n\omega} \det P$, where P is the permutation matrix with column number $\alpha, \beta, ..., \omega$.

The complete determinant of **A** is the sum of these n! simple determinant. $a_{1\alpha}a_{2\beta}\dots a_{n\omega}$ is obtained by choosing **one entry from every row and every column:**

Definition 11.1 — Big formula for determinant.

 $\det \mathbf{A} = \text{sum of all } n! \text{ column permutations}$ = $\sum (\det \mathbf{P}) a_{1\alpha} a_{2\beta} \dots a_{n\omega} = \mathbf{BIG FORMULA}$

where **P** is permutation matrix with column number $(\alpha, \beta, ..., \omega)$. And $\{\alpha, \beta, ..., \omega\}$ is a permutation of $\{1, 2, ..., n\}$.

Complexity Analysis

However, if we want to use big formula to compute matrix, we need to do n!(n-1) multiplications. If we use formula $\det \mathbf{A} = \pm \prod pivots$, we only need to do $O(n^3)$ multiplications. Hence the letter one is quite more efficient.

Verify property

We can use the big formula to verify property 1 to property 3:

- det I = 1: Only when $(\alpha, \beta, ..., \omega) = (1, 2, ..., n)$, there is no zero entries for $a_{1\alpha}a_{2\beta}...a_{n\omega}$. Hence det $A = a_{11}a_{22}...a_{nn} = 1$.
- sign reversal:

If two rows are interchanged, then all determinant of permutation matrix will change its sign, hence the value for determinant \boldsymbol{A} is opposite.

• The determinant is a linear function of each row separately. If we separate out the fator $a_{11}, a_{12}, \ldots, a_{1\alpha}$ that comes from the first row, this property is easy to check. For 3 by 3 matrix, separate the usual 6 terms of the determinant into 3 pairs:

$$\det \mathbf{A} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) + a_{12}(a_{23}a_{31} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}).$$

Those three quantities in parentheses are called **cofactors**. They are 2×2 determinant coming from matrices in row 2 and 3. The first row contributes the factors a_{11}, a_{12}, a_{13} . The lower rows contribute the cofactors $(a_{22}a_{33} - a_{23}a_{32}), (a_{23}a_{31} - a_{21}a_{33}), (a_{21}a_{32} - a_{22}a_{31})$. Certainly det \boldsymbol{A} depends **linearly** on a_{11}, a_{12}, a_{13} , which is property 3.

Determinant by Cofactors 11.1.2

We could write the determinant in this form:

If we define A_{1j} to be the submatrix obtained by removing row 1 and column j, We could compute det A in this way:

The cofactors along row 1 are $C_{1j} = (-1)^{1+j} \det \mathbf{A}_{1j}$ j = 1, 2, ..., n.

The cofactor expansion is $\det A = a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}$.

More generally, we can cross row i to get the determinant:

Definition 11.2 — **Determinant**. The determinant is the **dot product** of any row i of A with its cofactors using other rows:

Cofactor Formula
$$\det \mathbf{A} = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}.$$

Each cofactor
$$C_{ij}$$
 is defined as:
Cofactor $C_{ij} = (-1)^{i+j} \det \mathbf{A}_{ij}$

where A_{ij} is the submatrix obtained by removing row 1 and column 1.

Moreover, we can construct $\det \mathbf{A}$ from its properties. Since we have $\det \mathbf{A} = \det \mathbf{A}^T$, we can expand the determinant in cofactors down a column instead of across a row. Down column j the entries are a_{1j} to a_{nj} , the cofactors are C_{1j} to C_{nj} . The determinant is given by:

Cofactors down column j: $\det \mathbf{A} = a_{1i}C_{1i} + a_{2i}C_{2i} + \cdots + a_{ni}C_{ni}$

11.1.3 **Determinant Applications**

It's easy to check that the inverse of 2 by 2 matrix \mathbf{A} is

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

We could use determinant to compute inverse! Before that let's define cofactor matrix:

Definition 11.3 — **cofactor matrix**. The cofactor matrix of $n \times n$ matrix **A** is given by:

$$\mathbf{C} = \left[C_{ij} \right]_{1 < i, j \le n}$$

Then we try to derive the inverse of matrix **A**: For $n \times n$ matrix **A**, the product of **A** and the **transpose** of *cofactor matrix* is given by:

$$\mathbf{AC}^{\mathrm{T}} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} = \begin{bmatrix} \det \mathbf{A} \\ \det \mathbf{A} \\ \det \mathbf{A} \end{bmatrix}$$
(11.1)

11.1 Tuesday 85

Explain:

• Row 1 of **A** times the column 1 of C^T yields the first det**A** on the right:

$$a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n} = \det \mathbf{A}$$

Similarly, row j of \boldsymbol{A} times column j of $\boldsymbol{C}^{\mathrm{T}}$ yields the determinant.

• How to explain the zeros off the main diagonal in equation (11.1)? Rows of \mathbf{A} are multiplying \mathbf{C}^T from **different** columns. Why is the answer zero? For example, the (2,1)th entry of the result is given by

Row 2 of A
Row 1 of C
$$a_{21}C_{11} + a_{22}C_{12} + \cdots + a_{2n}C_{1n} = 0.$$

Answer: If the second row of \mathbf{A} is copied into its first row, we define this new matrix as \mathbf{A}^* . Thus the determinant of \mathbf{A}^* is given by:

$$\begin{vmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{21} & & & & & & & & & & & & & & & & & \\ a_{22} & \dots & a_{2n} & & & & & & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & & \\ a_{21} & & \dots & a_{2n} & & & & & & \\ a_{31} & & a_{32} & & a_{3(n-1)} & & & & & & \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & & & \\ a_{n1} & & \dots & a_{nn} & & \dots & a_{nn} \end{vmatrix} + \dots + \begin{vmatrix} a_{2n} & & & & & & & & & \\ a_{21} & & a_{22} & & & & & & \\ a_{31} & & a_{32} & & a_{3(n-1)} & & & & \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots & & \\ a_{n1} & & a_{n2} & & a_{n(n-1)} & & & & \\ \end{vmatrix}$$

Equivalently, we have

$$\det \mathbf{A}^* = \begin{vmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{21}C_{11} + a_{22}C_{12} + \dots + a_{2n}C_{1n}$$

Since A^* has two equal rows, the determinant must be zero.

Hence $a_{21}C_{11} + a_{22}C_{12} + \cdots + a_{2n}C_{1n} = 0$. Similarly, all entries off the main diagonal are zero.

Thus the equation (11.1) is correct:

$$m{A}m{C}^{\mathrm{T}} = egin{bmatrix} \det m{A} & \\ & \det m{A} \end{bmatrix} = \det(m{A})m{I} \implies m{A}^{-1} = \frac{1}{\det m{A}}m{C}^{\mathrm{T}}.$$

Hence we could compute the inverse by computing many determinant of submatrix:

Definition 11.4 — Inverse. The (i, j)th entry of A^{-1} is the cofactor C_{ji} (not C_{ji}) divided by det A:

Formula for
$$A^{-1}$$
 $(A^{-1})_{ij} = \frac{C_{ji}}{\det A}$ and $A^{-1} = \frac{C^{T}}{\det A}$

Cramer's Rule

Cramer's Rule solves Ax = b.

Assume **A** is a $n \times n$ matrix that is **nonsingular**. Then we can use determinant to solve this system:

Let's start with n = 3. We could multiply **A** with a new matrix C_1 to get B_1 :

Key idea:
$$AC_1 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 1 & 0 \\ x_3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix} = \mathbf{B}_1$$

Taking determinants both sides, then we have

$$\det(\mathbf{AC}_1) = \det(\mathbf{A})\det(\mathbf{C}_1) = \det(\mathbf{A})(x_1) = \det\mathbf{B}_1 \implies x_1 = \frac{\det\mathbf{B}_1}{\det\mathbf{A}_1}.$$

The matrix C_1 is obtained by putting $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ into the *first* column of the *identity matrix*. Similarly, we could get all x_i in this way. (i = 1, ..., n).

Definition 11.5 — Cramer's Rule. If $\det A$ is not zero, Ax = b could be solved by determinants:

$$x_1 = \frac{\det \mathbf{B}_1}{\det \mathbf{A}}$$
 $x_2 = \frac{\det \mathbf{B}_2}{\det \mathbf{A}}$ $x_n = \frac{\det \mathbf{B}_n}{\det \mathbf{A}}$

The matrix \boldsymbol{B}_j has the jth column of \boldsymbol{A} replaced by the vector \boldsymbol{b} . In other words,

$$m{B}_{j} = egin{bmatrix} a_{11} & \dots & b_{1} & \dots & a_{1n} \\ a_{21} & \dots & b_{2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & b_{n} & \dots & a_{nn} \end{bmatrix} \qquad j = 1, \dots, n.$$

11.1.4 Orthogonality and Projection

Definition 11.6 — Orthogonal vectors.

Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal when their inner product is zero:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = 0.$$

Note that the inner product of two vectors satisfies the *commutative rule*. In other words, $\langle x,y \rangle = \langle y,x \rangle$ for vectors x and y. Generally, if the result of inner product is a scalar, then inner product satisfies commutative rule.

An important case is the inner product of a vector with *itself*. The inner product $\langle x, x \rangle$ gives the *length of* v *squared*.

11.1 Tuesday 87

Definition 11.7 — length/norm.

The length(norm) ||x|| of a vector $x \in \mathbb{R}$ is the square root of $\langle x, x \rangle$:

length =
$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$
.

Function space

We can talk about inner product between functions under function space. For example, if we define $V = \{f(t) | \int_0^1 f^2(t) dt < \infty\}$, then we can define inner product and norm under V:

Definition 11.8 — Inner product; norm. The inner product of f(x) and g(x), and the norm are defined as:

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$
 and $||f||^2 = \sqrt{\int_0^1 f^2(x)dx}$

Moreover, when $\langle f, g \rangle = 0$, we say two functions are **orthogonal** and denote it as $f \perp g$.

Cauchy-Schwarz Inequality

In
$$\mathbb{R}^2$$
, suppose $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then we set:

$$x_1 = \|\boldsymbol{x}\| \cos \theta$$
 $x_2 = \|\boldsymbol{x}\| \sin \theta$ $y_1 = \|\boldsymbol{y}\| \cos \varphi$ $y_2 = \|\boldsymbol{y}\| \sin \varphi$

The inner product of x and y is given by:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} \mathbf{y} = x_1 x_2 + y_1 y_2$$

$$= \|\mathbf{x}\| \|\mathbf{y}\| (\cos \theta \cos \varphi + \sin \theta \sin \varphi)$$

$$= \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta - \varphi)$$

Since $|\cos(\theta - \varphi)|$ never exceeds 1, the cosine formula gives great inequality:

Theorem 11.1 — Cauchy Schwarz Inequality. $|\langle x,y \rangle| \le ||x|| ||y||$ for two vectors x and y.

Proof. Firstly, we want to find t^* such that $\min \|\mathbf{x} - t\mathbf{y}\|^2 = \|\mathbf{x} - t^*\mathbf{y}\|^2$.

$$||\mathbf{x} - t\mathbf{y}||^2 = \langle \mathbf{x} - t\mathbf{y}, \mathbf{x} - t\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle -t\mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, -t\mathbf{y} \rangle + \langle -t\mathbf{y}, -t\mathbf{y} \rangle$$

$$= ||\mathbf{x}||^2 - t \langle \mathbf{y}, \mathbf{x} \rangle - t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 ||\mathbf{y}||^2$$

$$= ||\mathbf{x}||^2 - 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 ||\mathbf{y}||^2$$

Hence the minimizer t* must satisfy

$$\Delta = 0 \implies t^* = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2}$$

Hence we have

$$\|\mathbf{x} - t\mathbf{y}\|_{\min}^{2} = \|\mathbf{x} - t^{*}\mathbf{y}\|^{2} = \|\mathbf{x}\|^{2} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^{2}}{\|\mathbf{y}\|^{2}}$$

$$= \frac{\|\mathbf{x}\|^{2} \|\mathbf{y}\|^{2} - \langle \mathbf{x}, \mathbf{y} \rangle^{2}}{\|\mathbf{y}\|^{2}} \ge 0$$

$$\implies \|\mathbf{x}\|^{2} \|\mathbf{y}\|^{2} \ge \langle \mathbf{x}, \mathbf{y} \rangle^{2}$$

Or equivalently,

$$|< x, y > | \le ||x|| ||y||.$$

If we consider functions f,g as vectors, then **Cauchy-Schwarz** inequality also holds:

$$\left[\int_0^1 f(t)g(t)dt\right] \le \int_0^1 f^2 dt \int_0^1 g^2 dt$$

Since $| < x, y > | \le ||x|| ||y||$, we have

$$-1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$$

If we define $\frac{\langle x,y \rangle}{\|x\|\|y\|} = \cos \theta$, then $\langle x,y \rangle = \|x\|\|y\|\cos \theta$.

Orthogonal for spaceAlso, we can discuss orthogonality for space:

Definition 11.9 — Orthogonal subspaces. Two subspaces U and V of a vector space are **orthogonal** if every vector u in U is *perpendicular* to every vector v in V:

Orthogonal subspaces $\mathbf{u}^{\mathrm{T}}\mathbf{v} = 0$ for all \mathbf{u} in \mathbf{U} and all \mathbf{v} in \mathbf{V} .