# The Battle of the Neighborhoods

## Why Comparing Cities using venues info?

- Moving from one city to another is not an easy decision to make. In the world, there
  is a large number of cities and all of them have something that makes them unique
  and different than the rest. Several factors need to be consider and one of them
  could be how similar is the other city and their people, compared to the place we
  live.
- It can be said that if two cities share same types of most common venues to go then they are similar and therefore their people have similar preferences for certain kind of places and this implies that they have the same habits. Therefore, to have this information in hand will be helpful for a person in this situation because it will be a big contributing factor at the time to make a such important decision.
- For this study case, a family residing in Paris has to decide whether to move to New York or Toronto because the family head has received two very similar job offers from these cities and they will choose where to move based in how similar or dissimilar they are compared to Paris.

## Data Acquisition and Cleaning

Data sources for Toronto, New York & Paris neighborhoods and geolocations from:

- URL: https://en.wikipedia.org/wiki/List\_of\_postal\_codes\_of\_Canada:\_M
- URL: https://cocl.us/Geospatial\_data
- URL: https://cocl.us/new\_york\_dataset
- URL: https://opendata.paris.fr/explore/dataset/arrondissements/download/ ?format=ison&timezone=Asia/Dubai
- Foursquare API credentials.

### Data Cleaning:

Acquired data was in different formats, therefore different workflows were used on each case to obtain dataframes (for each city) to start working with. These, mainly contained the columns 'Neighborhood', 'Latitude' and 'Longitude'

# Exploratory Data Analysis (Toronto example)

From this: (After Foursquare)

To this:

(Top ten most common venues for each neighborhood)

|   | Neighborhood     | Neighborhood Latitude | Neighborhood Longitude | Venue                  | Venue Latitude | Venue Longitude | Venue Category       |
|---|------------------|-----------------------|------------------------|------------------------|----------------|-----------------|----------------------|
| 0 | Parkwoods        | 43.753259             | -79.329656             | Brookbanks Park        | 43.751976      | -79.332140      | Park                 |
| 1 | Parkwoods        | 43.753259             | -79.329656             | KFC                    | 43.754387      | -79.333021      | Fast Food Restaurant |
| 2 | Parkwoods        | 43.753259             | -79.329656             | Variety Store          | 43.751974      | -79.333114      | Food & Drink Shop    |
| 3 | Victoria Village | 43.725882             | -79.315572             | Victoria Village Arena | 43.723481      | -79.315635      | Hockey Arena         |
| 4 | Victoria Village | 43.725882             | -79.315572             | Tim Hortons            | 43.725517      | -79.313103      | Coffee Shop          |

|   | Neighborhood                                         | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue   | 10th Most<br>Common<br>Venue |
|---|------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------|
| 0 | Adelaide, King,<br>Richmond                          | Coffee<br>Shop              | Café                        | Thai<br>Restaurant          | Steakhouse                  | Bar                         | Gym                         | Breakfast<br>Spot           | Asian<br>Restaurant         | American<br>Restaurant        | Restaurant                   |
| 1 | Agincourt                                            | Lounge                      | Clothing<br>Store           | Breakfast<br>Spot           | Skating<br>Rink             | Drugstore                   | Discount<br>Store           | Dive Bar                    | Dog Run                     | Doner<br>Restaurant           | Donut Shop                   |
| 2 | Agincourt North,<br>L'Amoreaux East,<br>Milliken, St | Park                        | Playground                  | Donut Shop                  | Dim Sum<br>Restaurant       | Diner                       | Discount<br>Store           | Dive Bar                    | Dog Run                     | Doner<br>Restaurant           | Drugstore                    |
| 3 | Albion Gardens,<br>Beaumond Heights,<br>Humbergate,  | Grocery<br>Store            | Pizza Place                 | Fast Food<br>Restaurant     | Beer Store                  | Sandwich<br>Place           | Fried<br>Chicken<br>Joint   | Coffee<br>Shop              | Pharmacy                    | Comfort<br>Food<br>Restaurant | Dim Sum<br>Restaurant        |
| 4 | Alderwood, Long Branch                               | Pizza Place                 | Coffee Shop                 | Skating<br>Rink             | Dance<br>Studio             | Pharmacy                    | Pub                         | Sandwich<br>Place           | Gym                         | Airport<br>Service            | Dessert<br>Shop              |

### Neighborhoods Clusterization (New York example)



- 'Most common venue' feature was used to sgment Neighborhoods into 5 clusters using 'k-means' algorithm.
- Geopy library was used to get reference map latitude and longitude. Afterwards, the emerging clusters were mapped on it by using 'Follium' library to visualize them.

Representative Clusters Examination,

Paris example

- The clusters with more neighborhoods were identified as the most representatives.
- Paris Cluster #3, with 12 neighborhoods and 120 top-ten 'Most common venues' ('MCV') observations.
- The neighborhood's most common venues were grouped and their occurrence were counted and the relative frequency was computed, resulting in a new dataframe (43 rows).
- Bar charts was produced.

| ı | Most common venue | Frequency |
|---|-------------------|-----------|
| 0 | Art Gallery       | 1         |
| 1 | Art Museum        | 1         |
| 2 | Asian Restaurant  | 1         |
| 3 | Bakery            | 5         |
| 4 | Bar               | 6         |

| N | Most common venue | Frequency |
|---|-------------------|-----------|
| 0 | Art Gallery       | 0.833333  |
| 1 | Art Museum        | 0.833333  |
| 2 | Asian Restaurant  | 0.833333  |
| 3 | Bakery            | 4.166667  |
| 4 | Bar               | 5.000000  |
|   |                   |           |



## Comparative Model

- Minimum frequency cut-off value of 1% was applied resulting in a reduction of the rows data.
- A 'city' column was added for identification and then dataframes were merged
- Further transformations included addition of columns, frequency and normalized frequency allocation and grouping by 'Most common venues' to develop a final dataframe with 48 categories to compare the 03 cities subjected to study.

|                      | Frequency | Toronto  | New_York | Paris    | Toronto_norm | New_York_norm | Paris_norm |
|----------------------|-----------|----------|----------|----------|--------------|---------------|------------|
| Most common venue    |           |          |          |          |              |               |            |
| American Restaurant  | 2.917625  | 1.219512 | 1.698113 | 0.000000 | 2.207506     | 3.195266      | 0.000000   |
| Bakery               | 9.125249  | 2.317073 | 2.641509 | 4.166667 | 4.194260     | 4.970414      | 5.208333   |
| Bar                  | 9.600399  | 1.707317 | 2.893082 | 5.000000 | 3.090508     | 5.443787      | 6.250000   |
| Breakfast Spot       | 1.341463  | 1.341463 | 0.000000 | 0.000000 | 2.428256     | 0.000000      | 0.000000   |
| Café                 | 11.689293 | 3.780488 | 2.075472 | 5.833333 | 6.843267     | 3.905325      | 7.291667   |
| Coffee Shop          | 12.901519 | 5.731707 | 3.836478 | 3.333333 | 10.375276    | 7.218935      | 4.166667   |
| Dim Sum Restaurant   | 1.097561  | 1.097561 | 0.000000 | 0.000000 | 1.986755     | 0.000000      | 0.000000   |
| Diner                | 2.560976  | 2.560976 | 0.000000 | 0.000000 | 4.635762     | 0.000000      | 0.000000   |
| Discount Store       | 3.292683  | 3.292683 | 0.000000 | 0.000000 | 5.960265     | 0.000000      | 0.000000   |
| Dive Bar             | 3.292683  | 3.292683 | 0.000000 | 0.000000 | 5.960265     | 0.000000      | 0.000000   |
| Dog Run              | 2.926829  | 2.926829 | 0.000000 | 0.000000 | 5.298013     | 0.000000      | 0.000000   |
| Doner Restaurant     | 2.560976  | 2.560976 | 0.000000 | 0.000000 | 4.635762     | 0.000000      | 0.000000   |
| Donut Shop           | 3.877895  | 2.682927 | 1.194969 | 0.000000 | 4.856512     | 2.248521      | 0.000000   |
| Drugstore            | 1.463415  | 1.463415 | 0.000000 | 0.000000 | 2.649007     | 0.000000      | 0.000000   |
| Fast Food Restaurant | 3.331032  | 2.073171 | 1.257862 | 0.000000 | 3.752759     | 2.366864      | 0.000000   |
| Grocery Store        | 2.606995  | 1.097561 | 1.509434 | 0.000000 | 1.986755     | 2.840237      | 0.000000   |
| Italian Restaurant   | 14.242982 | 2.073171 | 3.836478 | 8.333333 | 3.752759     | 7.218935      | 10.416667  |
| Japanese Restaurant  | 6.097561  | 1.097561 | 0.000000 | 5.000000 | 1.986755     | 0.000000      | 6.250000   |
| Park                 | 3.232091  | 1.219512 | 2.012579 | 0.000000 | 2.207506     | 3.786982      | 0.000000   |

## Comparison: Toronto & New York vs. Paris



- Paris has 19 'MCV' categories.
- 06/19 'MCV' are shared simultaneously among Toronto, New York and Paris.
- Paris shares 03 'MCV' exclusively with New York and 02 'MCV' exclusively with Toronto.

### Conclusions

- It was possible to compare 03 cities based on the 'Most common venues' (MCV) existing on their neighborhoods.
- The results are very interesting and it is clear that even though there are some similarities among these three multi-cultural cities, there are also differences among them.
- There are 08 categories of 'MCV' (Bistro, Bookstore, French Restaurant, Indian Restaurant, Pastry Shop, Vietnamize Restaurant and Wine Bar) which represents 42%, and makes Paris distinctive from New York and Toronto. However, there are also similarities because Paris shares 09 (47%) common venues with New York and 08 (42%) with Toronto.

## Way Forward

- Moving from one city to another always represents a challenge. In this case, the
  analysis shows that people from New York shares more similarities with Paris than
  Toronto in terms of 'MCV' but the degree similarity is close to Toronto one (47%
  vs. 42%).
- More study including other variables need to be taken account. For instance, French is a language that it is spoken widely in Toronto but not in New York. Similarly, parameters like weather, living cost, etc. need to be considered.
- With regards to the workflow used to compare the cities, this can be improved, specially in the last stage where only visual analysis of the comparative bar chart was used to determine the degree of similarity between the cities. This will be very helpful when analyzing simultaneously more number of cities and larger amount of 'Most common venue' categories.