中国科学技术大学 2020~2021 学年第二学期考试试卷 ☑A 卷 □B 卷

课程名称:力学 B					课程代码:PHYS1001B.11					
开课院	系:_物	理学院		考试形式:半开卷						
姓名	:		_ 学	_ 学 号:			专业:			
题 号	1	2	3	4	5	6	7	8	总 分	
得 分										

注:共八道大题,请勿漏答。请在首页写上姓名和学号,并在每道题下方空白处答题,答题时要注意写上必要的计算步骤。本次考试允许携带一张写满笔记的 A4 纸,但不允许使用包括计算器在内的所有电子产品。

1. (10分) 古人为了表示生潮的时刻,把发生在早晨的涨潮叫潮,发生在晚上的涨潮叫汐。请利用本课程的知识简要解释为什么一天内出现两次涨潮。

2.(12 分)曲柄 0A=r,绕定轴 o 以匀角速度o转动,连杆 AB 用铰链与曲柄端点 A 连接,并可在具有铰链的滑套 N 内滑动。当 ϕ =0 时,A 端位于滑套 N 处。已知 AB=L>2r,求当 ϕ =0 时,连杆上 B 点的速度,加速度的大小,切向加速度,法向加速度和轨道的曲率半径。

- 3. (10 分)竖直发射一火箭,已知火箭初始质量 m_0 ,燃料相对火箭喷射速率 u,重力加速度为 g。
- (1) 若火箭燃料质量变化率为一常数 m_1 (kg/s), 求火箭速度与时间关系。
- (2) 若火箭以等加速度 a 飞行, 求火箭质量与时间变化关系。

- 4. (12 分)如图所示,初始时刻飞船绕某星球(O 点)作半径为 R_0 ,速率为 v_0 的圆周运动。在运动到 A 点时,飞船开始加速,轨道变成远端过 B 点的椭圆,其中 $BO=3R_0$ 。求:
 - (1) 加速后,飞船在A点的速率变为多少?
 - (2) 新轨道上的运动周期是多少?

- 5.(12 分)两个半径均为 R,质量分别为 3m 和 m 的圆盘 A、B 均在同一轴上,均可绕轴无摩擦地旋转。A 盘的初始角速度为 ω_0 ,B 盘开始时静止,现将上盘放下,使两盘互相接触。若两盘间的摩擦系数为 μ ,试问:
- (1) 经过多少时间两盘以相同角速度旋转?
- (2) 它们共同旋转的角速度为多大?

- 6. (13 分)一半径为 R 的匀质实心圆球从静止开始沿一倾角为 θ 粗糙斜面纯滚动而下,球从上端滚到下端球心高度相差为 h ,求:
- (1) 小球转动角加速度
- (2) 小球滚到下端时质心的速度。

7. $(15\, \mathcal{G})$ 质量为 m 的重物悬挂在弹性系数为 k 的弹簧下端,平衡于 O 点。从 t=0 开始,弹簧端 O '以 x'=a sinot 作上下振动。设系统的阻尼因数 β 小于系统的本征频率 $\omega_0=(k/m)^{1/2}$,求重物在任意 t>0 时刻的位置 x(t)的具体表达式。

8.(16 分)如图所示一拉直绳子左端固定于墙上,绳子的简谐波自 x 轴正方向远处沿 x 轴负方向入射而来。入射波在坐标原点 O 的振动为 $\xi_0 = A\cos\omega t(\mathbf{m})$, O 点与墙相距 $\frac{5}{4}\lambda(\mathbf{m})$,其中 λ 为入射波的波长。入射波遇绳子固定于墙的端点将发生反射,反射波的振幅仍为 $A(\mathbf{m})$,角频率仍为 $\omega(\mathbf{rad}\cdot\mathbf{s}^{-1})$,波长仍为 $\lambda(\mathbf{m})$,但相位有 π 突变,使绳子固定端合振动为 O。求:

- (1) 入射波的波方程;
- (2) 反射波的波方程;
- (3)叠加后的波方程,并画出其波形曲线。

