



### OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based of unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration of authorities should not grant, amend, or renew a registration on the basis of the summaries and cevaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:

From Bayer CropScience; or
From other applicants once the period of vata protection has expired. The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority of the authorities should not grant, amend, or repeated to the purpose of the assessment undertaken by the regulatory authority of the authorities should not grant, amend, or repeated to the purpose of the assessment undertaken by the regulatory authority of the authorities should not grant, amend, or repeated to the purpose of the assessment undertaken by the regulatory authority of the authorities should not grant, amend, or repeated to the purpose of the assessment undertaken by the regulatory authority of the authorities and the purpose of the assessment undertaken by the regulatory authority of the authorities and the purpose of the assessment undertaken by the regulatory authority of the authority of the authorities and the purpose of the authorities and the purpose of the authorities are also and the purpose of the authorities are also as a second to the authorities are also and the authorities are also as a second to the authority and a second to the authorities are also as a second to the authorities

# Version history

| Date                  | Data points containing amendments or additions <sup>1</sup> and brief description                               | Document identifier and            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
| 17.1                  |                                                                                                                 |                                    |
| 1 It is suggested the | at applicants adopt a similar approach to showing revisions a                                                   | and version wastory as outlined in |
| SANCO/10100/2         | 2 A Schapter 4 flow to revise an Assessment Report.                                                             |                                    |
|                       |                                                                                                                 |                                    |
|                       | 4 9° 5° 5°                                                                                                      |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 | ' E É É                            |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 | K, W                               |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 | <b>J</b>                           |
| 8                     |                                                                                                                 |                                    |
| Ö                     |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
| 4                     |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
| 4                     |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
| <b>4</b> ,            |                                                                                                                 |                                    |
| 4                     |                                                                                                                 |                                    |
| <sub>e</sub> ©        |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       | O BA                                                                                                            |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       |                                                                                                                 |                                    |
|                       | at applicants adopt a similar approach to showing revisions a 013 Chapter 4 How to revise an Assessment Report. |                                    |



| Tahl | 1 ~ ^ C | 00-   | 4 .  |
|------|---------|-------|------|
| เลก  | IP AT   | t ani | ents |

|              | Page                                                                      |
|--------------|---------------------------------------------------------------------------|
| CP 9         | FATE AND BEHAVIOUR IN THE ENVIRONMENT                                     |
| CP 9.1       | Fate and behaviour in soil                                                |
| CP 9.1.1     | Rate of degradation in soil                                               |
| CP 9.1.1.1   | Laboratory studies                                                        |
| CP 9.1.1.2   | Laboratory studies Field studies 7. 8                                     |
| CP 9.1.1.2.1 | Soil dissipation studies                                                  |
| CP 9.1.1.2.2 | Soil accumulation studies                                                 |
| CP 9.1.2     | Soil dissipation studies  Soil accumulation studies  Mobility in the soil |
| CP 9.1.2.1   | Laboratory studies                                                        |
| CP 9.1.2.2   | Lysimeter studies 0° 0° × 8                                               |
| CP 9.1.2.3   | Field leaching studies                                                    |
| CP 9.1.3     | Estimation of concentrations in soil. 9                                   |
| CP 9.2       | Fate and behaviour in water and sediment                                  |
| CP 9.2.1     | Aerobic mineralisation in surface water                                   |
| CP 9.2.2     | Water/sediment audy 12                                                    |
| CP 9.2.3     | Irradiated water/sediment stody                                           |
| CP 9.2.4     | Estimation of concentrations in groundwater 2                             |
| CP 9.2.4.1   | Calculation of concentrations in groundwater                              |
| CP 9.2.4.2   | Field leaching studies                                                    |
| CP 9.2.5     | Estimation of concentrations in surface water and sediments               |
| CP 9.3       | Fate and behaviour in air                                                 |
| CP 9.3.1     | Route and rate of degradation in air and transport via for                |
| CP 9.4       | Estimation of concentrations for other routes of exposure                 |
| 8            |                                                                           |
| , Q          |                                                                           |
|              |                                                                           |
| K,           |                                                                           |
|              |                                                                           |
|              |                                                                           |
|              |                                                                           |
| 4            |                                                                           |
|              | Estimation of concentrations for other routes of exposure 25              |
|              |                                                                           |
|              |                                                                           |
| ¥            |                                                                           |
| 4            |                                                                           |
| O'           |                                                                           |
| Ţ            |                                                                           |
|              |                                                                           |
|              |                                                                           |
|              |                                                                           |
|              | Fate and behaviour in air                                                 |
|              |                                                                           |
|              |                                                                           |

### **CP 9** FATE AND BEHAVIOUR IN THE ENVIRONMENT

Table CP 9-1: Intended application pattern

| Use patte | ern considered i              |                        | ental exposure a            |                                 |                                                      |
|-----------|-------------------------------|------------------------|-----------------------------|---------------------------------|------------------------------------------------------|
| Crop      | Timing of application (range) | Number of applications | Application interval [days] | Maximum<br>label rate<br>[L/ha] | Maximum application rate, individual recatment [g@a] |
| OSR*      | BBCH<br>30-59                 | 2                      | \$\tag{10^*}                | 0.3                             | 0 72 G                                               |
| * oilseed | rape                          |                        |                             |                                 |                                                      |

| Сгор             | F<br>G<br>or<br>I<br>(b) | Application  Interval before applications  (f-h)  (k)  Application  Application  Application  Application  Interval before applications  Interval befo |
|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil Seed<br>Rape | F                        | Foliar BBCH 3 12 20 24-72 100 22 Product label rate: Max. 0.3 L/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

In addition to the active substance thiacloprid, the degradation products summarised in Table 9-2 were addressed in this document as they have to be considered for exposure assessments.

Active substance and degradation products addressed in this document

| Compound / Codes                                      | Chemical Structure           | Considered for                                                               |
|-------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|
| Thiacloprid (Y&C 2894) Active Substance (a.s.)        | CON CON                      | PEC <sub>soil</sub> PEC <sub>gw</sub> PEC <sub>sw</sub> & PEC <sub>sed</sub> |
| YRC 2896 dos aviero                                   |                              | PEC <sub>soil</sub> PEC <sub>gw</sub> PEC <sub>sw</sub> & PEC <sub>sed</sub> |
| (M29)                                                 | CI N NH                      | PEC <sub>soil</sub> PEC <sub>gw</sub> PEC <sub>sw</sub> & PEC <sub>sed</sub> |
| YRC 289 Sulfonic acid<br>(sodium salt shown)<br>(M30) | CI N HN O H <sub>2</sub> N O | PEC <sub>soil</sub> PEC <sub>gw</sub> PEC <sub>sw</sub> & PEC <sub>sed</sub> |



| Compound / Codes                   | Chemical Structure | Considered for    |
|------------------------------------|--------------------|-------------------|
| YRC 2894-sulfonic acid amide (M34) | ONS OH ON NH2      | PEC.              |
| YRC 2894-thiadiazine<br>(M46)      | O, S-OH            | PEC <sub>gw</sub> |

A list of metabolites, which contains the structures, the synonyms and code numbers attributed to the compound thiacloprid, is presented in <a href="Document N3">Document N3</a> of this dossier Document N3 of this dossier Dustification of the residue definition for risk assessment is provided by MCA Section Definition of the residue for risk assessment Definition of the residue definition of the residue for risk assessment Definition of the residue definition of the residue for risk assessment Definition of the residue definition of t

|               | Pacidua Definition for risk assessment                                                                                                                                                                                                                                           |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compartment   | Residue Designation for risk assessment                                                                                                                                                                                                                                          |
|               | Thiacloprid (YRC) 2894) YRC 2894-amid (M02) YRC 2894-deg cyano (M29)                                                                                                                                                                                                             |
| Soil          | YRC 2899-amid@M02)                                                                                                                                                                                                                                                               |
|               | 1 I RU 2094-UESt CVano UVI291 as a v & v & v & v                                                                                                                                                                                                                                 |
|               | Thiactoprid (YRC 2894) YRC 2894-des-cyano (M29) YRC 2894-amide (M30)  Thiactoprid (YRC 2894) YRC 2894-amide (M29) YRC 2894-des-cyano (M29) YRC 2894-sulfonic acid (M30) YRC 2894-sulfonic acid amide (M34) YRC 2894-thiadazine (M46) Thiactoprid (YRC 2894) YRC 2894-amide (M02) |
|               | This cloprid (YRC \$894) @ \$ \$ \$ \$ \$                                                                                                                                                                                                                                        |
|               | XXC 2894-amid@XM02X                                                                                                                                                                                                                                                              |
| Groundwater ( | TRC 2894-des-Eyano (M29)                                                                                                                                                                                                                                                         |
| Groundwater   | YRO2894-sulfonic acid (Mad)                                                                                                                                                                                                                                                      |
| 0             | YRC 2894-sulfonic acid araide (Mas4)                                                                                                                                                                                                                                             |
| Ò             | YRC 2894-thia dazine (M46)                                                                                                                                                                                                                                                       |
|               | Thiacloprid (MRC 2894)  YR 2894-amide (M02)  YR 2894-des-cyaho (M09)                                                                                                                                                                                                             |
| Surface water | YR. Ø 2894- Divide (M 02)                                                                                                                                                                                                                                                        |
| Surface water | YRO 2894-des-cyrano (MO)) (MO)                                                                                                                                                                                                                                                   |
|               | SRC 2894-sulforic acid (M30) 0 0                                                                                                                                                                                                                                                 |
| Sediment      | Thiacloprid (FRC 2894) YR (2894-anide (M02) YR (2894-des-cyano (M09) FRC 2894-sultonic acid (M30) Thiacloprid (FRC 2894) Thiacloprid (FRC 2894)                                                                                                                                  |
| Air @         | Thi Wroprie (TYRC 2894), O', O' O'                                                                                                                                                                                                                                               |

# Fate and behaviour in soil

For information on the fave and behaviour in soil please refer to MCA Section 7, data point 7.1. The proposed degradation pathway of this Coprid in soil is shown in Figure CP 9.1- 1.

Figure CP 9.1-1: Proposed degradation pathway of thiacloprid in soil under laboratory conditions considering all routes of soil degradation and lysimeter studies.





### **CP 9.1.1** Rate of degradation in soil

No specific studies with the formulation are required. For further information on the fate and behaviour in soil please refer to MCA Section 7, data points 7.1.1 and 7.1.2.

### **CP 9.1.1.1** Laboratory studies

For information on laboratory studies please refer to MCA Section 7, data point 7.1.2

### **Field studies** CP 9.1.1.2

For information on field studies please refer to MCA section 7, date point 7.1.2

### **CP 9.1.1.2.1** Soil dissipation studies

extion 7 Jata point For information on field dissipation studies please refer to MCA

# **CP 9.1.1.2.2** Soil accumulation studies

For information on field accumulation studies please

### **CP 9.1.2** Mobility in the soil

For information on mobility studies please refer to MCA Section 7, data point 7.1

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please refer to MCA Section 7, data point 7

CP 9.1.2.2 Lysimeter studies

For information on lysmeter studies please refer to Section 7, data point 7.1.4.2.

CP 9.1.2.3 Field leaching studies

For information on field leaching studies please refer to MCA Section 7, data point 7.1.4.3.

### **CP 9.1.3** Estimation of concentrations in soil

New calculations were performed to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behaviour in the environment". In addition these calculations considered the most recent guidance documents for exposure calculations. Calculations of prodicted environmental concentrations in soil (BEC.) 7.1.0 environmental concentrations in soil (PEC<sub>soil</sub>) are presented below.

### Predicted environmental concentrations in soil (PEC)

### **Endpoints for PEC**<sub>soil</sub>

For deriving the respective end points please refer MCA Section

Table CP 9.1.3-1: Key modelling input parameters for this cloperid and its metabolic

| Compound                     | Worst case DT59<br>non-normalised<br>[days] | Maximum occurrence in soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molar mass    | Molar mass<br>correction<br>factor |
|------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|
| Thiacloprid                  | 013.7)** ×                                  | 7 J 1000 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>\$</b> 2.7 | , <b>(2</b> ) 1                    |
| YRC 2894-amide (M02)         | Q 321 1 )*                                  | 86371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270.7         | 1.0712                             |
| YRC 2894-sulfonic acid (M30) | @ \$\$\P.6\)* O*                            | \$\tag{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\exiting{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\\ \text{\text{\text{\text{\text{\text{\text{\texi}\text{\ti}\}\tint{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\texititt{\text{\texitile}}\tint{\text{\texitile}}\text{\text{\texitilex{\texi{\texi}\texit{\texitilex{\tiin}\tint{\texi}\tint{\texitilex{\texit{\texi}\tiliz}\tin | 3368 (        | 1.3328                             |
| YRC 2894-des-cyano (M29)     | , y                                         | 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≥27.7 C       | 0.9011                             |

\*: worst case non-normalized field DT50 Palue.

worst case non-normalized laboratory DT50 value.

N.: 2011: M-404822-04

W.; 1998; M-901076-02-1 (KCA

201**4**, M-49, 012-01-1 Report:

Third cloprid (TCF) and metabolites: PECsoil EUR - Use in oil seed rape and maize in Europe
EnSa-14-0806

M-491012-01-1 Title:

Report No.: ô Document No.: M-#91012-01-1 Guidelines: not applicable GLP/GEP:

Methods and Materials: The predicted environmental concentrations in soil (PEC<sub>soil</sub>) of thiacloprid and its metabolites were estimated based on a first tier approach using a Microsoft® Excel spreadsheet. A bulk density of 1.5 kg and soil maxing gepths of 5 cm were used as recommended by FOCUS (1997) and EU Commission (1995, 2000). The accomulation potential of this cloprid and metabolites after long term use was also assessed, employing the mixing depth of 20 cm for the calculation of the background concentration\$

Detailed application data used for simulation of PEC<sub>soil</sub> were compiled in Table CP 9.1.3-2.

Application pattern used for PECsoil calculations of thiacloprid

|                                   |              | Application  |               |              |           | Amount                     |
|-----------------------------------|--------------|--------------|---------------|--------------|-----------|----------------------------|
| . 1. 10                           | FOCUS crop   | Rate         | reaching soil |              |           |                            |
| crops 6                           | used for     | per season   |               | interception | stage     | per season                 |
|                                   | interception | [g a.s. /ha] | [days]        | [%]          |           | application<br>[g a.s./ha] |
| oilseed rape,<br>GAP & simulation | oilseed rape | 2 × 72       | 10            | 2 × 80       | 2 × 30-59 | 2 × 14.4                   |

**Substance Specific Parameters:** The compound specific input parameters (end points for PEC<sub>soil</sub> calculations) are summarized in Table CP 9.1.3-1.

**Findings:** The maximum PEC<sub>soil</sub> values for thiacloprid and its metabolites are summarised in Table CP 9.1.3- 3. The maximum, short-term and long-term PEC<sub>soil</sub> values and the time weighted average values (TWAC<sub>soil</sub>) are provided thereafter.

Table CP 9.1.3-3: Maximum PEC<sub>soil</sub> of thiacloprid and its metabolities for the uses assessed

|                                             | Thiacloprid     | ARC 2894 YRC 2894 ARC |
|---------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use Pattern                                 | PECsoil [mg/kg] | PECsoil [mg/kg] PECsoil [mg/kg] PECsoil [mg/kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oilseed rape 2×72 g a.s./ha, 10 days, 2×80% | 0.031           | 0.035 0.010 0 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table CP 9.1.3-4: PECsoil (actual) of thiacloprid and its metabolites

| Thineclebrid   PEC.soil   PEC.s  | Short term  1 0.029 0.035 0.010 0.011  24 0.025 0.035 0.009 0.011  7 0.022 0.035 0.009 0.011  7 0.022 0.035 0.009 0.011  20 0.015 0.034 0.009 0.011  Long term  28 0.007 0.034 0.008 0.011  42 0.0694 0.032 0.008 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | T T                                     |                 |                           |                                                  | <del></del>        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|-----------------|---------------------------|--------------------------------------------------|--------------------|
| Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 |            |                                         |                 | Oilsee<br>2×72 g a.s./ha, | d rap <b>©</b><br>10 <b>days</b> , 2× <b>80%</b> |                    |
| Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         | Thiodonid O     | YBC 2894                  | OYRG2894                                         | ₹ <b>X</b> RC 2894 |
| Short term 1 0,029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 |            |                                         | V MacJophia &   | Samide /                  | ৺ -sulfonic acte                                 | 🀒 -des-cyano       |
| Short term 1 0,029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 |            | Time 🎜                                  | PECsoil         |                           | PEC <sub>soil</sub>                              | O" PECsoil         |
| Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short term 1 0.029 0.035 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | [days]                                  | ⊈mg/kg(D′       | 🥍 [m@g/kg] 🐣              | mg/kg                                            | [mg/kg]            |
| Short term    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Short term    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial    | 0 🚀                                     | 0.03            | 0.035                     | √° 90010 √°                                      | 0.011              |
| Short term 2 0.028 0.035 0.009 0.011  24 0.028 0.035 0.009 0.011  7 0.022 0.0035 0.009 0.011  44 0.015 0.034 0.009 0.011  Long term 28 0.007 0.032 0.008 0.011  28 0.007 0.032 0.007 0.011  50 0.009 0.001  50 0.000 0.000 0.001  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000 0.0000  50 0.000 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000  50 0.000 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.000 0.000  50 0.0000  50 0.000 0.000  50 0.000 0.000  50 0.0000  50 | Short term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 1 2                                     | 0.029           |                           | <b>%</b> .010                                    |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Long term    4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Short term | <b>2</b>                                | <u>0.028</u>    | 0,03/5 0                  | <b>№</b> 0.01 <b>0</b> √                         |                    |
| Long term  | Long term    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | <b>2</b> 4                              | 0.025           | 3° 035 0                  | 0.009                                            |                    |
| Long term    Constant   Constant | Long term    14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | \$ 7.0" 2                               | √ 0.0921 √      | \$\sqrt{0.035}\sqrt{0}    | <b>Q 0 0 0 0 0 0 0 0</b>                         |                    |
| Long term    28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Long term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . (        |                                         | <b>Q.015</b>    | √ 0.03¥                   | <b>₹</b> 0.009                                   |                    |
| Long term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Long term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _          |                                         | <b>©</b> 0.011% | 0034                      | 0.008                                            |                    |
| 42 0.004 0.0032 0.007 0.011  50 0.002 0.0032 0.007 0.011  50 0.005 0.005 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 0.304 0.032 0.007 0.011  50 0.005 0.005 0.005  0.0010  0.0010  0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Long term  | 10,28                                   | <u>6</u> 0.007  | y 0.033                   | ~                                                |                    |
| ## 64002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 420                                     | 0.004           | 0.032                     | (♥ () ()() /                                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         | 6,5002          | 0.932 0                   | 0.007                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | [ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ₹₹0.00£\$       | /y (0.028 <u>4</u> /      | 0.005                                            | 0.010              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                 |                           |                                                  |                    |

**Table CP 9.1.3-5:** TWACsoil of thiacloprid and its metabolites

|            |                |                                 | 2×72 g a.s./ha, 1               | d rape<br>10 days, 2×80% |                                |
|------------|----------------|---------------------------------|---------------------------------|--------------------------|--------------------------------|
|            |                | Thiacloprid                     | YRC 2894<br>-amide              | YRC 2894 -sulfonicacid   | YR <b>©</b> 2894<br>-des-cyano |
|            | Time<br>[days] | TWAC <sub>soil</sub><br>[mg/kg] | TWAC <sub>soil</sub><br>[mg/kg] | TWACsoil                 | TWACsoil [mg/kg]               |
| Initial    | 0              |                                 | _0                              | @Y                       |                                |
|            | 1              | 0.030                           | 0.035                           | Q 0.010                  | <b>30</b> .011                 |
| Short term | 2              | 0.029                           | Ø.035                           | 0.010                    | Q 0.01 (V                      |
|            | 4              | 0.028                           | △ 0.035                         | 0.010                    | ( 0.01 )                       |
|            | 7              | 0.026                           | 0.035                           | © 0.009 \ \              | D" @9.011_@"                   |
|            | 14             | 0.022                           | 0.035                           | √° 0.0009 ~              | \$\sqrt{0.01}\sqrt{}           |
|            | 21             | 0.019                           | 0.034°                          | C 2009 S                 | 0.011                          |
| Long term  | 28             | 0.016                           |                                 | 0.009                    | 950M1 L°                       |
|            | 42             | 0.013                           | 6.034                           | <u> 3</u> 0.0 <b>0</b>   | ♥.011 <sub>@</sub> ″           |
|            | 50             | 0.014                           | V.033                           | √ 0×008 ×                |                                |
|            | 100            | 0,49 <b>6</b> 6 .%              |                                 | © \$9.007 ©              | © 0.0 <b>0</b> 1               |

### Potential accumulation in soil:

The accumulation potential after long term use was also assessed. The results for a standard-mixing depth of 20 cm for an arable crop with tillage are presented in Table CP9.1.3.6.

PECsoil of this coprid and its metabolites taking the effect of accumulation into **Table CP 9.1.3-6:** «account (mixing depth of 20 cm)

| Use Pattern        |                      | PEC soil  |        | YRC 2894      | YRC 2894<br>Gulfonic acid<br>[mg/kg] | YRC 2894<br>-des-cyano<br>[mg/kg] |
|--------------------|----------------------|-----------|--------|---------------|--------------------------------------|-----------------------------------|
| Oilseed rape       | ~~· . •              | pΩiteau & | <0.001 | <b>20</b> 007 | < 0.001                              | 0.008                             |
| 2×72 g a.s./ha, 10 | day <b>©</b> , 2×80% | ⊚ total*  | ר.031  | 0.043         | 0.010                                | 0.019                             |

<sup>\*</sup> total = plateau (background concentration after multi-year use) + max PEC soil (see )

### Face and behaviour in water and sediment **CP 9.2**

The proposed degradation pathway of this cloprid in water and sediment is shown in Figure CP 9.2-1.

For information on the fate and behaviour in water and sediment please refer to MCA Section 7, data point 7.2

**Figure CP 9.2-1:** Proposed bio-degradation pathway of Thiacloprid (YRC 2894) in the aquatics.



# **CP 9.2.1**

For information on aerobic mineralisation in surface water studies please refer to MCA Section 7, data point 7.2 point 7.2,2\dot2.

please refer to MGA Section 7, data point 7.2.2.3. For information on water/sediment studie

For information on irradiated water/sediment studies please refer to MCA Section 7, data point 7.2.2.4.

# Estimation of concentrations in groundwater

Calculations were performed, to reflect findings from new studies presented in the active substance dossier, section "Fate and Chavion" in the environment". In addition these calculations consider the most recent guidance documents for exposure calculations.

Calculations of predicted environmental concentrations in groundwater (PEC<sub>gw</sub>) are presented below.

For deriving the respective end points please refer to MCA Section 7, data point 7.1.

Table CP 9.2.4-1: Key modelling input parameters for thiacloprid and its metabolites

| Compound                           | Formation fraction | DT <sub>50</sub><br>[days] | Koc )2<br>[mL/g] | Kom <sup>)2</sup><br>[mL/g] | FREUNDLACH)2 exponent |
|------------------------------------|--------------------|----------------------------|------------------|-----------------------------|-----------------------|
| Thiacloprid                        | 1.0                | 5.4 <sup>)1</sup>          | 615.0            | 357.0                       | £880 (\$)             |
| YRC 2894-amide (M02)               | 0.61 )2            | 41.3 )1                    | 293.0            | 4 170.0                     | ©0.830                |
| YRC 2894- sulfonic acid (M30)      | 0.80 )2            | 15.6 1                     | 20.2             | 11.7                        | 0.240                 |
| YRC 2894-thiadiazine (M46)         | 0.44 )5            | 19.8                       | 9.6              | 5.6                         | <b>3</b> 960 <b>3</b> |
| YRC 2894-des-cyano (M29)           | 0.23 )2            | $140.7^{\circ}$            | 3710             | 215.Q                       | ₹0.84 <b>%</b>        |
| YRC 2894-sulfonic acid amide (M34) | $0.56^{-0.2}$      | <u> 3</u> 48.8 )4          | Ø.0              | . 4d                        | 1.000                 |

<sup>)1:</sup> Median of complete data set of normalized lab and field 20 values.

# CP 9.2.4.1 Calculation of concentrations in groundwater

Predicted environmental concertrations in groundwater (PEC<sub>GW</sub>)

**Report:** ; 201 M-49 013-01-

Title: Thiacloprid (TCP) and Gretabothes: PFGgw FOCUS PFARL, PELMO EUR - Use in oil

seed rape and maize in Europe

Report No.: EnSa<sup>2</sup>14-0807

Document No.: M49101501-1

Guidelines: oot applicable

GLP/GEP: no

Materials and Methods: The predicted environmental concentrations in groundwater (PEC<sub>gw</sub>) for thiacloprid and its metabolites were calculated using the simulation model FOCUS PEARL (version 4.4.4) and FOCUS PELMO (version 30.3). Crop interception was taken into account according to the BBCH growth stage, as recommended by FOCUS (2012). Application dates for the simulation runs were defined following the crop event dates of the respective crop and scenario as given by FOCUS (2000, 2009).

Detailed application data used for simulation of PEC<sub>gr</sub> were compiled in Table CP 9.2.4.1-1.

Table CP.2.4.1-1: Application pattern ased for PECgw calculations

|                                      |                                        |                       | App      | lication           |               | Amount                                     |
|--------------------------------------|----------------------------------------|-----------------------|----------|--------------------|---------------|--------------------------------------------|
| Individual crop                      | FOCUS erop<br>used for<br>interception | Rate C<br>Cper season | Interval | Plant interception | BBCH<br>stage | reaching soil<br>per season<br>application |
|                                      | , integration                          | [g&.s./ha]            | [days]   | [%]                |               | [g a.s./ha]                                |
| Oilseed rape, GAP                    | ~ - S                                  | 2 × 72                | 10       | -                  | 2 × 30-59     | -                                          |
| Oilseed rape (surpmer) simulation 1  | oil seed rape<br>(sammer)              | 2 × 72                | 10       | 2 × 80             | 2 × 30-59     | 2 × 14.4                                   |
| Oilscod rape winter of simulation of | oil seed rape (winter)                 | 2 × 72                | 10       | 2 × 80             | 2 × 30-59     | 2 × 14.4                                   |

For oilseed rape applications, absolute dates were derived for the simulation runs. All application dates are summarised in the table below.

<sup>)2:</sup> Arithmetic mean of data set.

<sup>)3:</sup> Geometric mean of lab data set.

<sup>)4:</sup> Worst case of lab data set.

<sup>)5:</sup> Worst case assumption that M30 can only degrade to M34 and M46

**Table CP 9.2.4.1-2:** 

| simulation ru Individual crop   | Oilseed rape (summer)                           | Oilsecs rape (winter)                                                            |
|---------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|
| Repeat Interval for App. Events | Every Year                                      | Every Year                                                                       |
| Application Technique           | Spray                                           | Spray Spray                                                                      |
| Absolute / Relative to          | Absolute 🖔                                      |                                                                                  |
| Scenario                        | 1st App. Date/(Julian day)                      | Jest App. Date (Julian 1997)                                                     |
|                                 | 18 Jan (169)<br>- 68 May (28)<br>- 04 May (124) | Absolute  19 Apr./(109)  05 May/(125)  11 May (121)  20 Apr/(100)  19 Apr./(100) |

Substance specific and model related input parameters for FOCOS calculations are summarised in Table CP 9.2.401-3. Degradation pathwa PEARL PELMO PECgw ay Pelated parameters are given in Table CP 9.2.4.1-4.

Compound input parameters for this loprid and its metabolites **Table CP 9.2.4.1-3:** 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | /                      |                        |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|------------------------|-------------------------------------|
| Parameter Unit OCP Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2894-<br>ide sulforer<br>acid                    | YKC 2894<br>Diadia Ane | YRC 2894-<br>des-cyano | YRC 2894-<br>sulfonic<br>acid amide |
| Common Symple 2577 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                        |                        |                                     |
| Molar Mass Sg/mall 252.7 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 336.80                                           | @75.7                  | 227.7                  | 293.7                               |
| Solubility (mg/L) 159 (159 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 ° 56990                                       | <b>30000</b>           | 57000                  | 135000                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E-10 3.80 E-04 ^                                 | 2.30E-05               | 1.10E-04               | 5.90E-07                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300°   %9.940 °                                  | 0.960                  | 0.840                  | 1.000                               |
| Plant Uptake Factor Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathfrak{G}^{\vee}$ & $0.0\mathfrak{A}^{\vee}$ | 0.0                    | 0.0                    | 0.0                                 |
| Walker Exponent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ž P <b>9.</b> 7                                  | 0.7                    | 0.7                    | 0.7                                 |
| PEARL Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                        |                        |                                     |
| Substance Code \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,20° 0,130                                      | MZ5                    | M29                    | M34                                 |
| $DT_{50}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 b 15.6                                         | 19.8                   | 140.7                  | 48.8                                |
| Molar Activa Energy [kJ/mol] \$\infty 65.4 \times 65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 65.4                   | 65.4                   | 65.4                                |
| $ \mathbf{K}_{\text{om}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 11.7                                         | 5.6                    | 215.0                  | 3.6                                 |
| $[K_f]$ $[mL/g]$ $[m]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>.</u> 9 -                                     | -                      | -                      | -                                   |
| PELAMO Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                |                        |                        |                                     |
| Substance Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1 B1                                            | C1                     | A2                     | B2                                  |
| Rate Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 680 0.04450                                      | 0.03500                | 0.00490                | 0.01420                             |
| $Q_{10}$ $Q$ | 58 2.58                                          | 2.58                   | 2.58                   | 2.58                                |
| $K_{oc}$ $[mLg]$ $615.0$ $29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0 20.2                                         | 9.6                    | 371.0                  | 6.3 #                               |

<sup>\*</sup> TCP = this Noprid



Table CP 9.2.4.1- 4: Degradation pathway related parameters for thiacloprid and its metabolites

|                                          |                                     | (//) |
|------------------------------------------|-------------------------------------|------|
|                                          | 0.61 TCP -> M02                     |      |
| Degradation fraction from → to           | 0.23* M02 -> M29                    |      |
| (FOCUS PEARL)                            | 0.8  M02 -> M30                     |      |
| (FOCUSTEARL)                             | 0.6 M30 -> M34                      |      |
|                                          | 0.44 M30 -> MZ5                     |      |
|                                          | 0.0787000 AS -> A1                  |      |
|                                          | 0.0499000 AS SR/CO <sub>2</sub>     |      |
|                                          | 0.0134000 A1 B1                     |      |
| Decreadation note from -> to             | 0.0034000*₄A1 -> A2                 |      |
| Degradation rate from → to (FOCUS PELMO) | 0.019600@1 -> C1                    |      |
| (FOCUS PELMO)                            | 0.02490 B1 -> B2                    |      |
|                                          | $0.0350000 \text{ C1} -> < BR/CO_2$ |      |
|                                          | 0.0049000 a2° -><br><td></td>       |      |
|                                          | 0.042000B2 -> BR/CO                 |      |

<sup>\*</sup>The sum of formation fractions of YRC 2894-des-cyano (0.23) and YRC 2894-sulfonic acid (0.80) is slightly larger than 1. In FOCUS PELMO, this would lead to faster disappearance of YRC 2894-amide (by 3%) due to the way the specification of degradation parameters is technically implemented (FOCUS PEARL is not affected). In order to overcome this issue the formation of YRC 2894-des-cyano was limited to 0.20 in FOCUS PELMO runs. This change does not have any measurable effect on the PEC of YRC 2894-des-cyano but is essential to keep internal consistency of the description of other metabolites.

Findings: PEC<sub>GW</sub> were evaluated as the 80 percentile of the mean annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEARL and PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth. FOCUS PEC<sub>GW</sub> results for this form annual leachate concentration at 1 m soil depth and a first form annual leachate concentration at 1 m soil depth annual leachate concentration at 1 m soil dep

| Use Pattern        | % Oilseed                             | rape (winter),                            | 2 72 g a.s./ha              | 1, 2 × 80% inte             | rception, 10 d              | interval                            |
|--------------------|---------------------------------------|-------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|
|                    | TCP 3                                 | YR 2894-<br>amide                         | YRG 2894<br>sulfonic acid   | YRV 2894-<br>thradiazine    | YRC 2894-<br>des-cyano      | YRC 2894-<br>sulfonic<br>acid amide |
| FOCUS PEARL        | PECgw [arg/L]                         | PEG <sub>gw</sub>                         | PFGgw<br>[µg/L]             | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L]         |
|                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                           | 00.0200<br>0.1862           | 0.119<br>0.436              | <0.001<br><0.001            | 1.181<br>2.068                      |
|                    | <0.001<br>\$0.001                     | ° < <b>9</b> (501 .                       | 0. <b>0</b> 66<br>≥0.116    | 0.212<br>0.238              | <0.001<br><0.001            | 1.039<br>1.028                      |
|                    | 0.001<br>0.001<br>0.001               | ~,<0.004,<br>~,<0.004,<br>~,<0.001,<br>~, | 0.039<br>0.070              | 0.097<br>0.151              | <0.001<br><0.001            | 0.581<br>0.928                      |
| FOCUS PELMO        | PEC <sub>gw</sub> ©<br>₄ {µg/L}       | PEČ <sub>gw</sub> O<br>Apg/LJQ            | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L]         |
|                    | <0.001<br><0001 ×                     | <0.001<br><0.001                          | 0.020<br>0.155              | 0.120<br>0.414              | <0.001<br><0.001            | 1.095<br>1.849                      |
|                    | <0.0010<br>↓<0.00€                    | <0.001<br><0.001                          | 0.076<br>0.141              | 0.242<br>0.266              | <0.001<br><0.001            | 1.193<br>1.077                      |
|                    | <0.001<br><0.001                      | <0.001<br><0.001                          | 0.067<br>0.105              | 0.149<br>0.184              | <0.001<br><0.001            | 0.829<br>0.937                      |
| * TCP = toacloprid |                                       |                                           |                             |                             |                             |                                     |

Table CP 9.2.4.1- 6: Oilseed rape (summer): FOCUS PEARL & PELMO PEC<sub>gw</sub> results of thiacloprid and its metabolites

| Use Pattern         | oilseed rape (summer), 2 × 72 g a.s./ha, 2 × 80% interceptio |                             |                            |                                | erception, 10 d               | interval                          |
|---------------------|--------------------------------------------------------------|-----------------------------|----------------------------|--------------------------------|-------------------------------|-----------------------------------|
|                     | ТСР                                                          | YRC 2894-<br>amide          | YRC 2894-<br>sulfonic acid | YRC 2894-<br>thiadiazine       | YRC 2894-<br>des-cyano        | YRC 2894<br>sulfonic<br>acid mide |
| FOCUS PEARL         | PEC <sub>gw</sub><br>[μg/L]                                  | PEC <sub>gw</sub><br>[μg/L] | PEC <sub>gw</sub><br>[μg/L | PEC <sub>gw</sub> ()<br>[µg/L] | PEC <sub>gw</sub> γ<br>[μg/L] | PEC <sub>gw</sub>                 |
|                     | < 0.001                                                      | <0.001                      | 0.126                      | 0.42                           | <0.064                        | 2.499                             |
|                     | < 0.001                                                      | < 0.001                     | 0.226                      | 0.\$52                         | <0.001                        | 1,038                             |
|                     | < 0.001                                                      | < 0.001                     | 055                        | 0 × 115 ⊜°                     | £Ø.001 √y                     | 0.689                             |
| EOCHE DEL MO        | PECgw                                                        | PECgw                       | <b>₹PEC</b> gw             | PEG                            | PECow                         | PECOW                             |
| FOCUS PELMO         | [µg/L]                                                       | [µg/L] &                    | [μ <b>g/J</b> Ľ] _         | <b>[μg/L]</b>                  | <b>(β)</b> [μg <b>(Φ)</b> ]   | 🦫 [μg⁄IĽ]                         |
|                     | < 0.001                                                      | <0.001                      | ,0°49                      | <b>A</b> 455 ©                 | Ø.001 <sub>€</sub>            | <b>2</b> 307                      |
|                     | < 0.001                                                      | < 0.001                     | ©0.134®                    | Q0.263 U                       | <0.0010°                      | Ø1.047                            |
|                     | < 0.001                                                      | <0.004                      | 0.075                      | 0.14 <sup>4</sup>              | © < 0.00,1                    | 0.749                             |
| * TCP = thiacloprid |                                                              | 0,7 ,%                      | y .0 .*                    | Y 0 1                          | Y Q *                         |                                   |

Conclusion: There are no concerns for groundwater from the use of the clopped in accordance with the use pattern for the representative formulation.

The concentration of the metabolites YRC 2894-sulfonic acid, YRC 2894-thiadiazing and YRC 2894-sulfonic acid amide may seed 0.1 µg/s, however the relevance of these metabolities has been assessed and all metabolites are non-selevant in groundwater (see Document N4).

### **CP 9.2.4.2** Additional field tests

No additional field studies were performed or required due to low PEC<sub>gw</sub> values calculated (see P. 9.2.4.1).

# **CP 9.2.5** Estimation of concentrations in surface water and sediment

New calculations were performed, to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behaviour in the environment" in addition these calculations consider the most recent guidance documents for exposure calculations. Calculations of predicted environmental concentrations are presented below.

Predicted environmental concentrations in water (FEC so and in sediment (FEC sed)

## Endpoints for PEC<sub>SW</sub> and sediment (PEC<sub>SED</sub>)

For deriving the respective end points mease refer to MCA Section O, date point 32

Table CP 9.2.5-1: Key modelling input parameters for this clope and its metabolites at Steps 1-2 level PEC calculations

| Parameter                     | Unit 🏈   | Thiacleprid   | YRC 2894                 | ØYRC, 2894 €   | YRC 2894       |
|-------------------------------|----------|---------------|--------------------------|----------------|----------------|
|                               |          |               | ∕ @amide <sup>~∀</sup> 🌡 | 🤝 -des-cyano   | -sulfonic acid |
| Molar Mass                    | g/mol    | <b>25</b> 2.7 | ∠ 270.7\                 | × 227.7 ×      | 336.8          |
| Water Solubility              | mg/L     | 159           |                          | 5700           | 56000          |
| Koc                           | mL/g     | 1 % /r DIO @  | <b>2</b> 93 0            | \$ 37₩         | 20.2           |
| Degradation                   |          |               | , S 418 L                | 0 ~            |                |
| Degradation Soil Total System | days 💸   | ?) ×3.4 ~     |                          | <b>@</b> :40.7 | 15.6           |
|                               | days 😽   | ( 15.8°)      | 2 99!2 S                 | 1000 *         | 1000 *         |
| Water S                       | days 🔘   | 15,80         |                          | 1000 *         | 1000 *         |
| Sediment                      | days     | 15.8          | \$ 99.20                 | 1000 *         | 1000 *         |
| Max Occurrence                | 4) 4j    |               |                          | *              |                |
| Water Sediment                | <b>3</b> | 100           |                          | 0.0001         | 9.7            |
| Soil 😽                        | % »      | 1 <b>00</b> > | , 86.7 <del>%</del>      | 33.2           | 19.7           |

<sup>\*</sup> Default value used

Table CP 9.2.5 2: Additional modelling input parameters for thiacloprid and its metabolites at steps 3/4 level PCC calculations.

| Parameter               | Until       | Thiacloprid   | YRC 2894<br>-amide | YRC 2894<br>-des-cyano |
|-------------------------|-------------|---------------|--------------------|------------------------|
| Vapour Pressure         | På V        | <b>3</b> €-10 | 3.4E-10            | 1.1E-04                |
| Plant Uptake Factor     |             | 0.0           | 0.0                | 0.0                    |
| Wash-Off Factor PRZM \  | I/ganan ~   | Q 0.5         | 0.5                | 0.5                    |
|                         | 10mm        | 0.05          | 0.05               | 0.05                   |
| Degradation 🗸 🗸         |             | )             |                    |                        |
| Soil O O                | day         | 5.4           | 41.3               | 140.7                  |
| Form. Frac. PRZM        | motar basis | =             | 0.610              | 0.230                  |
| Form Frac. MACROS       | molar basis | -             | 0.653              | 0.207                  |
| Agnatic Mcabolite       |             |               |                    |                        |
| Molar Mass Corr. Factor |             | -             | 1.07123            | -                      |
| Max Oct.                | %           | -             | 69                 | -                      |
| Tot. Corr. Factor       |             | -             | 0.73915            | -                      |
| Max Occ. at Day         |             | -             | 35                 | -                      |



Report: ; 2014; M-491014-01-1

Thiacloprid (TCP) and metabolites: PECsw,sed FOCUS EUR - Use in maize and on seed of rape in Europe Title:

Title: Thiacloprid (TCP) and metabolife: PECsw, sed FOCUS FUR (M29 assessment) - Usern maize and oil seed rape in Europe

Report No.: EnSa-14-0882
Document No.: M-491773-01-1

Guidelines: not applicable; not applicable
GLP/GEP: no

Materials and Methods: Predicted environmental concentrations in off face water and sediment (PECsw and PECscd) of thiacloprid and its metabolites have been calculated for the use in spring and winter oilseed rape in Europe All relevant entry routes of a compound into surface water (combination of spray drift and runoff/erosion or drain flow) were considered.

At FOCUS Step 2 the application period was set to southern Europe was considered. Definition unmarised in Table CP.

Application patter used for PECosed calculations at FOCUS Steps 1&2

| _                                   |                        | <b>^</b>                               |                | × × × 1                                |         |               |
|-------------------------------------|------------------------|----------------------------------------|----------------|----------------------------------------|---------|---------------|
| Crop                                | ≪Rate ≪<br>[g a.s./ax] | Interval                               | BBCH           | COCUSCrop<br>(cropgroup)               | Season  | Crop<br>cover |
| Oilseed rape, GAP                   | 2 72                   | <b>≪</b> 10 🍣                          | 3 <b>0-3</b> 9 | 4. A -                                 | -       | -             |
| Oilseed rape (spring) simulation 1  | & × 72                 |                                        | 90-59          | oilseed rape, spring<br>Carable crops) | Mar May | average       |
| Oilseed rape (winter), simulation 2 |                        | ************************************** | 30-59          | ⑥ iseed rape, winter (arable crops)    | Mar May | average       |

In FOCUS Step 3, the application date for each scenario is determined by the Pesticide Application Timer (PAT), which is part of the FOCUS SW Scenarios. The user may only define an application time window. Absolute application dates for obseed rape simulation runs were estimated using a German regulatory tool App Date 1 Details of the parameters used in the Step 3 calculations are 4 9 25 - 4.

<sup>&</sup>lt;sup>1</sup> Klein M., 2010: Computer programme: "AppDate: Estimation of application dates based on crop development." (v.1.01c.).



Table CP 9.2.5-4: Application dates of thiacloprid for the FOCUS Step 3 calculations

| F              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|
| Parameter      | Oilseed ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pe (spring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Oilseed ra                            | pe (winter)                              |
| PAT start date |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*</b>                              |                                          |
| rel./absolute  | Abso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A) bs                                 | olute 🗸 🔊                                |
| Appl. method   | ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d spray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ground                                | d spray                                  |
| (appl. type)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (CA                                   | M 2) 🔊 👋 🙏                               |
| No of appl.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                          |
| PAT window     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ů.                                    | olute d spray M 2) 2                     |
| range          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l & 4                                 |                                          |
| Appl. interval | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | M 2) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| Application    | PAT Start Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A mar le Doct o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAT Start Date                        | Appl Date                                |
| Details        | (Julian Day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Appl Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🥎 (Julia Day) 👸                       | Appl Date                                |
| D1             | 21-Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ر 24-Jun °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | D' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
|                | (172)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04-Ju <b>2</b> ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | "      ' 4                               |
| D2             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29-Apr                                | 07-May 4°                                |
|                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \langle   \langle \rangle \r | (19)                                  | 23 May                                   |
| D3             | 20-May<br>(140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <b>2</b> -May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-Apr (119) (119) (13-May (133) (133) | 23 May 2<br>04-May 2<br>22-May           |
|                | (140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / 23-Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (119) Q                               | \$22-Ma9                                 |
| D4             | 06-Jun "○ <sup>™</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04-Jul 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 13-18 Fay                           | 30- <b>M</b> ay                          |
|                | (157)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16-Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P33) (C)                             | 30-May<br>30-Jun<br>23-Apr<br>11-May     |
| D5             | 24-Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24-Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Apr. (113)                         | 23-Apr                                   |
|                | 1 (114)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11-May (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbb{Q}(113)$                     | <b>№</b> 11-May                          |
| D6             | W W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | I                                        |
|                | b - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S Q- '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | ļ. Ģ -                                   |
| R1             | %√7-May 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D ST-May 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22-Apr                                | 26-Apr                                   |
|                | (13,7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0° 12-44m 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (112) 5                               | 09-May                                   |
| R2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | -                                        |
|                | \$ L - B' :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @ ,                                   | -                                        |
| R3             | (1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347)<br>(1347) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06-Apt                                | 11-Apr                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (96) <sup>y</sup>                     | 22-Apr                                   |
| R4 🍣           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 5- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | -                                        |
| Ž.             | ľ°° ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ √ -                                 | -                                        |

Composind input parameters for the Steps 1&2 simulation runs are summarised in Table CP 9.2.5-1 and for the Steps 3&4 simulation runs in Table CP 9.2.5-2.

Note, Step 3 assessment was calculated also for the metabolites YRC 2894-amide and YRC 2894-descyano. Due to technical limitations of the models used for the calculations a special treatment is needed for YRC 2894-des-cyano. The metabolite is considered here to be a direct degradation product of the parent substance even though the evaluation of the soil degradation studies indicates that YRC 2894-des-cyano is formed from the YRC 894-amide (this set up cannot be directly reproduced in Step 3 of FOCUS<sub>sw</sub>). The imployed formation fraction of 23 % from the parent represents a worst case estimate of the degradation behaviour of YRC 2894-des-cyano in soil.

Findings: Steps 1&2: The maximum PDC<sub>sw</sub> and PEC<sub>sed</sub> values for thiacloprid and its metabolites at Steps 1&2 are summarised in Table CP 9.2.5-5.

**Table CP 9.2.5-5:** Maximum PEC<sub>sw</sub> and PEC<sub>sed</sub> values for thiacloprid and its metabolites at Steps 1&2

|                                              |             |              |                |                     |                   |                      |                      |                     | 0. 9            |
|----------------------------------------------|-------------|--------------|----------------|---------------------|-------------------|----------------------|----------------------|---------------------|-----------------|
|                                              |             | Thiec        | loprid         | YRC                 | 2894              | YRC                  | 2894                 | YRC                 | 2894            |
| Ilaa mattaun                                 | Caanania    | Tillac       | iopriu         | -amide              |                   | -des-cyapo           |                      | -sulfore acid       |                 |
| Use pattern                                  | Scenario    | <b>PECsw</b> | PECsed         | <b>PECsw</b>        | PECsed            | <b>PECsw</b>         | PEC sed              | PECsw               | PE Sed          |
|                                              |             | [µg/L]       | [µg/kg]        | [µg/L]              | [µg/kg]           | [µg/L] «             | [µg/kg]              | [μ <b>g</b> Æ]      | [mg/kg]         |
|                                              | Step 1      | 27.70        | 162.2          | 33.04               | 93.93             | 9.60🎾                | 35.64                | 12.44               | <b>2</b> .4794  |
| Oilseed rape                                 | Step 2      |              |                | (                   | ٥                 | a.Y                  | ,                    |                     |                 |
|                                              | N-EU Multi  | 1.127        | 6.171          | 2.304               | 6.529             | 0 <b>0</b> 52        | 2.046                | 0.65                | 0×132           |
| (spring)                                     | S-EU Multi  | 1.732        | 9.730          | 3.964               | 11.36             | JP. 103              | 4.093                | 1,659               | <b>2</b> 34 €   |
| $2 \times 72$ g a.s./ha                      | N-EU Single | 0.833        | 4.584          | 1 <u>.</u> \$47     | 3.612 🔏           | $0.283$ $^{3}$       | 1.048                | 0.392               | Ç0.079₩         |
|                                              | S-EU Single | 1.306        | 7.371          | <b>⊘</b> ∵176       | 6.229             | 0.563                | <b>2</b> Q097        | ∂0.700 <sub>∞</sub> | 0.14            |
|                                              | Step 1      | 27.70        | 162.2 '        | <sup>©</sup> 33.04° | 93 <b>/3</b> 3    | <b>9</b> ,607        | ~35.64               | 12.44               | 2: <b>Q</b> 79  |
| Oilsaad rana                                 | Step 2      |              | <b>\</b>       |                     |                   |                      |                      | ***                 | ****            |
| Oilseed rape<br>(winter)<br>2 × 72 g a.s./ha | N-EU Multi  | 1.127        | 6.17P          | 2.304               | 6.529 n           | ×0.5 <b>5</b> 2      | 2.0046               | <b>40</b> .654 &    | 0.132 •         |
|                                              | S-EU Multi  | 1.732        | 9.430 。        | <b>®</b> .964 (     | ₩ 11.3 <b>6</b> % | 1,103                | <b>4</b> ,093        | ©1.159@             | 0.2 <i>3</i> /4 |
|                                              | N-EU Single | 0.833        | <b>4</b> 2584~ | ×1.277              | 3.642             | Ø <del>.</del> 283 👡 | Q1.04 <b>&amp;</b> √ | 0.392               | 0079            |
|                                              | S-EU Single | 1.306        | ®7.371√°       | 2.1 <b>%</b> 6      | ∘6.229            | ©0.565€Ĵ             | 2.097                | 0.700               | <b>6</b> .141   |

Step 3: The maximum PEC<sub>sw</sub> and BEC<sub>sed</sub> values of thiacloprid, YRC 2894-amide and YRC 2894-descyano for relevant FOCUS Step 3 scenarios are given in the following tables.

Spring oilseed rape, Maximum PECsw and PECs values for this cloprid at Step 3 **Table CP 9.2.5-6:** 

|                                                                                                                                  |                  |                                     | <b>Y</b>                               |                                    | y <u> </u>        | •       |
|----------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|----------------------------------------|------------------------------------|-------------------|---------|
|                                                                                                                                  | 4                |                                     | Thiae                                  | loprid 🤍                           |                   |         |
| FOCUS scenario                                                                                                                   |                  | S Oils                              | eed Pape (sprir                        | ıg) <b>2</b> ″× 72 <b>%g</b> , a.s | ./ha/             |         |
|                                                                                                                                  | Sig              | gle applicatio                      |                                        | O'Mu                               | ıltîple applicat  | ion     |
|                                                                                                                                  | Entry 📡          | PECsw 🔪                             | PEO sed                                | Entry @                            | PEC <sub>sw</sub> | PECsed  |
| FOCUS scenario                                                                                                                   | ˈˌroute* 🍫 🕆     | <sub>&amp;</sub> [μg/L] <i>∕</i> ∕√ | ကြို့g/kg] ဆိ                          | route* 🎊                           | [µg/L]            | [µg/kg] |
| D1 (ditch)                                                                                                                       | S O              | 0.464                               | <i>‰</i> 0.97 <b>2</b> >               | S                                  | 0.625             | 1.588   |
| D1 (stream)                                                                                                                      | S S              | 0.404                               | 0.200                                  |                                    | 0.349             | 0.228   |
| D3 (ditch)                                                                                                                       | «\$ «"           | <b>0,</b> ≇\$57 Ĉ                   | ° 0.266 ©                              | , <b>%</b>                         | 0.400             | 0.333   |
| D4 (pond)                                                                                                                        | OS S             | .016                                | <b>2</b> 0.046                         | S                                  | 0.020             | 0.073   |
| D4 (stream)                                                                                                                      | $S \gg 1$        | 0.394                               | °√0.076°°                              | S S                                | 0.341             | 0.084   |
| D5 (pond)                                                                                                                        | Q'S\'            | \$ 0.Q\$6 z                         | √ 0.054                                | S                                  | 0.020             | 0.083   |
| D5 (stream)                                                                                                                      | ľ s s            | <b>9388</b>                         | 0.018                                  | S                                  | 0.344             | 0.025   |
| R1 (pond)                                                                                                                        | Q R S            | Ø.034 ×                             | Ø.120 \$                               | R                                  | 0.049             | 0.179   |
| R1 (stream)                                                                                                                      | SO'S             | $\sim 0.301^{\circ}$                | ∞ 0.510°°                              | R                                  | 0.426             | 0.639   |
| * Entry route letters S,                                                                                                         | D, and Correspon | nd to the domin                     | ant entra Path – s                     | pray drift, drainas                | ge, and runoff.   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    | ,                 |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |
| <b>4</b> 1                                                                                                                       |                  |                                     | ************************************** |                                    |                   |         |
| 4                                                                                                                                |                  |                                     | 7                                      |                                    |                   |         |
|                                                                                                                                  |                  | w 4                                 |                                        |                                    |                   |         |
| L.                                                                                                                               | 4 ° 2            | , Ş                                 |                                        |                                    |                   |         |
| Q"                                                                                                                               |                  | w w                                 |                                        |                                    |                   |         |
|                                                                                                                                  |                  | ~Q                                  |                                        |                                    |                   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |
|                                                                                                                                  | Ž.               |                                     |                                        |                                    |                   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |
| FOCUS scenario  D1 (ditch) D1 (stream) D3 (ditch) D4 (pond) D5 (pond) D5 (stream) R1 (pond) R1 (stream) * Entry route letters S, |                  |                                     |                                        |                                    |                   |         |
|                                                                                                                                  |                  |                                     |                                        |                                    |                   |         |



Table CP 9.2.5-7: Spring oilseed rape: Maximum PEC<sub>sw</sub> and PEC<sub>sed</sub> values for YRC 2894-amide at Step 3

|                |            | YRC 289                               | 94-amide                       |                                         |
|----------------|------------|---------------------------------------|--------------------------------|-----------------------------------------|
| Use pattern    |            | Oilseed rape (sprii                   | ng), 2 × 72 g a.s./ha©         | ,Ø' &                                   |
|                | Single ap  | plication                             | Multiple a                     | pplication                              |
|                | $PEC_{sw}$ | PECsed                                | PEC <sub>svy</sub>             | REC segre                               |
| FOCUS scenario | [µg/L]     | [µg/kg]                               | [μg/ <b>Ϳ</b> ͿͿ <sup>ʹ)</sup> | 🎾 μg/kgg 🔍                              |
| D1 (ditch)     | 0.355      | 1.375                                 | 0.533                          | 2357                                    |
| D1 (stream)    | 0.067      | 0.660                                 | <b>Q</b> 119                   | ₩21 🛫                                   |
| D3 (ditch)     | < 0.001    | <0.001                                | Q0.001                         | ( 0.00 × (                              |
| D4 (pond)      | 0.012      | 0.119                                 | Q 0.036                        | 0.32 <b>0</b>                           |
| D4 (stream)    | 0.016      | 0,028                                 | 0,635 Q                        | 0,000 0                                 |
| D5 (pond)      | 0.014      | 0.092                                 | 6×021                          | <b>√</b> √ 159 √                        |
| D5 (stream)    | 0.008      | <b>№</b> 0.012 <b>©</b>               | 0.017                          | ♥ <b>*</b> 0.026 <b>*</b> ♥             |
| R1 (pond)      | 0.032      | 0.232                                 | 0.0 <b>%</b> €                 | √ 0.43 <b>%</b> , .∘                    |
| R1 (stream)    | 0.220      | , , , , , , , , , , , , , , , , , , , | 0.409                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

Table CP 9.2.5- 8: Spring oilseed cape: Maximum PEC and PEC sed values for YRC 2894-des-cyano at Step 3

|                                                        | Oilseed rape (spring), 2 72 g a.s./ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Use pattern                                            | Oilseed rape (spring), 2 72 g a.s./ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|                                                        | Single application         Multiple a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pplication         |
|                                                        | BECsw DECsed PECsw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEC <sub>sed</sub> |
| FOCUS scenario                                         | Mug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [μg/kg]            |
| D1 (ditch)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.651              |
| D1 (stream) D3 (ditch) D4 (pond) D4 (stream) D5 (pond) | 0.048 0 0.0538 0 0 0.090 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.974              |
| D3 (ditch)                                             | \$0.001 \$\frac{1}{2}\$ \$\frac{1} | < 0.001            |
| D4 (pond)                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.251              |
| D4 (stream)                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.091              |
| D5 (pond)                                              | 0.017 0.034 0.019 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.241              |
| D5 (stream)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.050              |
| R1 (pond)                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.193              |
| R1 (stream)                                            | 0.054 0 0.055 0 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.109              |

Table CP 9.2.5- 9. Winter oilseed pape: Waximum PEC and PEC sed values for thiacloprid at Step 3

|                                                                |                  | Thiacloprid       |                    |                        |                      |         |  |  |  |
|----------------------------------------------------------------|------------------|-------------------|--------------------|------------------------|----------------------|---------|--|--|--|
| Use pattern                                                    |                  |                   |                    | ter), 2 × 72 g a.s./ha |                      |         |  |  |  |
|                                                                |                  | ingle@pplicatio   | on ¸∜              | Mı                     | Multiple application |         |  |  |  |
|                                                                | <b>Entry</b>     | PEC               | PEC <sub>sed</sub> | Entry                  | <b>PECsw</b>         | PECsed  |  |  |  |
| FOCUS scenario                                                 |                  | ு [μg <b>/t</b> ] | 🌱 [μg/kg]          | route*                 | [µg/L]               | [µg/kg] |  |  |  |
| D2 (ditch)                                                     | S E              | 0.462             | 0.814              | S                      | 0.411                | 1.166   |  |  |  |
| D2 (stream)                                                    |                  | <b>20</b> .411    | 0.726              | S                      | 0.357                | 0.994   |  |  |  |
| D3 (ditch)                                                     |                  | © 0.457 V         | 0.301              | S                      | 0.400                | 0.354   |  |  |  |
| D4 (pond)                                                      | y" <b>8</b> 8" , | 0.026             | 0.051              | S                      | 0.021                | 0.081   |  |  |  |
| D4 (stream)                                                    |                  | 0.392             | 0.065              | S                      | 0.341                | 0.083   |  |  |  |
| D4 (stream) D5 (pond) D5 (stream)                              | S ()             | 0.016             | 0.055              | S                      | 0.020                | 0.085   |  |  |  |
| D5 (stream)                                                    | S S              | 0.406             | 0.035              | S                      | 0.368                | 0.091   |  |  |  |
| $\perp R \perp (\mathfrak{s} \wr \mathfrak{S} nd) = \emptyset$ | S                | 0.016             | 0.090              | R                      | 0.047                | 0.217   |  |  |  |
| R K stream                                                     | A.S.             | 0.300             | 0.112              | R                      | 0.501                | 0.390   |  |  |  |
| R3 (stream)                                                    | S                | 0.424             | 0.456              | S                      | 0.368                | 0.453   |  |  |  |

<sup>\*</sup> Entry route: letters S, D, and R correspond to the dominant entry path – spray drift, drainage, and runoff.



**Table CP 9.2.5-10:** Winter oilseed rape: Maximum PEC<sub>sw</sub> and PEC<sub>sed</sub> values for YRC 2894-amide

|                |                          | YRC 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94-amide                               |                           |
|----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|
| Use pattern    |                          | Oilseed rape (wint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er), 2 × 72 g a.s./ha©                 | (U )                      |
|                | Single a                 | pplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiple a                             | ipplication 🔻 🤝 🗍         |
|                | <b>PEC</b> <sub>sw</sub> | PEC <sub>sed</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEC <sub>sw</sub>                      | PEC seg                   |
| FOCUS scenario | [µg/L]                   | [µg/kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [μg/ <b>Ϳ</b> Ϣ                        | µg/kgp 📈                  |
| D2 (ditch)     | 0.104                    | 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.222                                  | 1,008                     |
| D2 (stream)    | 0.065                    | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Q</b> 39                            | Ø \$396 ×                 |
| D3 (ditch)     | < 0.001                  | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>20.001</b> €                        | £ 20.00 £ &               |
| D4 (pond)      | 0.012                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q 0.023                                | 0.23 <b>4</b> C           |
| D4 (stream)    | 0.013                    | 0,021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,643 Q                                | 0,0° 0,0071 0,0°          |
| D5 (pond)      | 0.012                    | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6019 6                                 | <b>√</b> 128 <b>√</b> 1   |
| D5 (stream)    | 0.004                    | \$\sqrt{0.005}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\tetx{\texi}\text{\text{\texi}\text{\texi{\texi{\texi{\texi{\texi{\texi{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{ | 0.009                                  | ₩ <b>~</b> 0.013 <b>~</b> |
| R1 (pond)      | 0.031                    | 0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 <b>%</b> €                         | 0.52%,                    |
| R1 (stream)    | 0.162                    | 0.2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.352                                  | O 0236                    |
| R3 (stream)    | 0.265                    | © ~0.7131 ~ °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$\tag{\text{0}\}552_\ \times^\text{0} | √                         |

**Table CP 9.2.5-11:** Winter oilseed raper Maximu at Step 3 Q

|                                                         | Ø ,*\                                 | VAR C 28/4                              | -des-Qano                                 | <b>%</b>         |
|---------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|------------------|
| Use pattern                                             |                                       | Oilseed rape (winter                    | er)( 7 × 72 @ s /bs                       |                  |
| Osc pattern                                             | Signia an                             | plication                               | Multiple a                                | ralication       |
|                                                         | PEC <sub>sw</sub>                     | h dina                                  | PEC                                       | PECsed           |
| FOCUS scenario                                          | Γ - Δ <del>Γ</del>                    | ØPEC.<br>Ο [μg/kg] , Ο                  | Lec. (μg/L) (S                            | [μg/kg]          |
| D2 (ditch)                                              | 0025                                  |                                         | © 6251 K                                  | 1.744            |
| D2 (ditch) D2 (stream) D3 (ditch) D4 (pond) D4 (stream) | 0.0025<br>0.0079<br>0.00079<br>0.0009 | N 7518 N 1                              | $\mathcal{D}_{n} = 0.157$                 | 1.027            |
| D3 (ditch)                                              | ©<0.001y                              | 0.010<br>0.000<br>0.000<br>0.000        | ~~0.00m                                   | < 0.001          |
| D4 (pond)                                               | 0.009<br>0.009<br>0.005 Ø             | 0.095                                   |                                           | 0.210            |
| D4 (stream)                                             | 0.00                                  | © 03037 ©                               | 0,044                                     | 0.082            |
| D5 (pond)                                               | °° 0.005 ₺                            | 0.045<br>0.069<br>0.015                 | <b>50</b> .010                            | 0.129            |
| D5 (stream)                                             | ÷ 0.014° &                            | " <sup>0</sup> 0.015 ~                  | 0.019                                     | 0.027            |
| R1 (popul)                                              | 0.003                                 | 0.069 V<br>0.015 V<br>0.066 V           | 。 O 0.019                                 | 0.155            |
| R1 (stream)                                             | 0.040 🐇                               | © 20042 &                               | 0.010<br>0.019<br>0.019<br>0.102          | 0.101            |
| R3 (stream)                                             | Ø.072/\$\frac{\frac{1}{2}}{2}         | y 60.0470 ×                             | 0.144                                     | 0.084            |
| Q -                                                     |                                       |                                         |                                           |                  |
| Sten 4: The maxim                                       | UPPEC Cand REC.                       | ⊾vQues∘oPthiaclobrid                    | l for relevant FOCUS                      | Step 4 scenarios |
| are given in the foll                                   | owing tables                          |                                         | 1011010 (                                 | orep . seemanes  |
| are given in the ion                                    | lowing gaoles .                       |                                         |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
| **************************************                  |                                       | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
| _ \                                                     |                                       | A 0,                                    |                                           |                  |
| ,                                                       |                                       | Ž,                                      |                                           |                  |
|                                                         |                                       | ¥<br>A n                                |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
| Ŭ Ŝ                                                     |                                       |                                         |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
|                                                         |                                       |                                         |                                           |                  |
| A 'QA                                                   |                                       |                                         |                                           |                  |
| Ö                                                       |                                       |                                         | 0.010<br>0.019<br>0.019<br>0.102<br>0.144 |                  |
|                                                         |                                       |                                         |                                           |                  |



**Table CP 9.2.5-12:** Spring oilseed rape: Maximum PEC<sub>sw</sub> values for thiacloprid at Step 4 after single<sub>o</sub> and multiple applications

|                 |             |       |                   |                  | Thiac         | loprid               | ^                |                      |                     |
|-----------------|-------------|-------|-------------------|------------------|---------------|----------------------|------------------|----------------------|---------------------|
|                 |             |       |                   | Oilseed          | rape (sprii   | ng), $2 \times 72$   | g a.s./ha        | d                    |                     |
|                 |             |       | Single ap         | plication        |               |                      | Multiple a       | pplication           |                     |
| Buffer<br>Width | Scenario    |       | PECsw<br>Drift Re |                  | Ĉħ            | A                    |                  | [µg/LD eduction      |                     |
| & Type          |             | 0%    | 50%               | 75%              | 90%           | 0%_@                 | 50%              | Ø5% <sub>~</sub> O   | <sup>9</sup> 90%    |
|                 | D1 (ditch)  | 0.125 | 0.063             | 0.031            | <b>£0.013</b> | 0.10                 |                  | 0.040                | 00016 <sub>(4</sub> |
|                 | D1 (stream) | 0.147 | 0.074             | 0.037            | ©′0.015       | 0,223                | 0.062,0          | 0.031                | @0.012              |
|                 | D3 (ditch)  | 0.124 | 0.062             | 0.031            | 0.013         | 0.104                |                  | g::026               | - 0 0 1 A .         |
| 5m              | D4 (pond)   | 0.014 | 0.007             | 0.0630           | 0.001         | >0.017 <sup>©</sup>  | 0.009            | 0.004                | 0.002               |
| SD              | D4 (stream) | 0.144 | 0.072             | 0036             | ∂0.014\$      | 0. <b>121</b> ″      | <b>20</b> 9060 2 | 0.030                | <b>Ø</b> Ø12        |
| SD              | D5 (pond)   | 0.014 | 0.007             | ©003             | © 0.00%       | 0.0017               | ₹0.009           | 0,004                | ₹ 0.002°            |
|                 | D5 (stream) | 0.141 | 0.071             | <u>4</u> 0.035   | 0.054         | .00.122 <sup>©</sup> | 0.061            | 6030                 | 0.012               |
|                 | R1 (pond)   | 0.033 | 0.028 🔏           | √0.Q <b>2</b> 6√ | 0.025         | 0.0484               | 0.042            | , 0.039 <sup>©</sup> | 0,037               |
|                 | R1 (stream) | 0.280 | 0.280             | 0.280            | @Ø.280L       | 0.426                | ° 426 €          | 0.426                | <b>4</b> 26         |

<sup>\*</sup> SD and RO denote spray drift and runoff buter

Spring oilseed rape: Maximum PEC values for this copridat Step 4 after single and mattiple applications Table CP 9.2.5- 13:

|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                   |                                                             |                                         |                                       | <u> </u>  |            |         |
|------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------|------------|---------|
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Offseed                                                     | <b>Thiac</b>                            | loprid                                |           | Ö          |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ĭ Ŵ                 | Offseed                                                     | rape (sprji                             | ng), 2 <sup>2</sup> / <sub>2</sub> 72 | g azs./ha | <i>J</i>   |         |
|            |                                                                                                         | Y A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Single a            | pptcation<br>dug/kgky<br>reduction<br>75%<br>0.074<br>0.019 | <u>/</u>                                | <b>L</b>                              | Multiple  | pplication |         |
| Buffer     | Scenario                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PECsed              | dμg/kgt)<br>eduction                                        | & _                                     |                                       | PEC sed   | [µg/kg]    |         |
| Width      | Scenario                                                                                                | \$ ·,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ODrift R            | eduction                                                    |                                         |                                       | Drift Ro  |            |         |
| & Type     | Š.                                                                                                      | 9% 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> 50%    | 75%                                                         | 90%                                     | <b>0%</b>                             | ♥ 50%     | 75%        | 90%     |
|            | D1 (dit(A)<br>D1 (stream)<br>D3 (ditch)                                                                 | 0.279<br>0. <b>0</b> 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q.144               | @0.07 <b>4</b> \$                                           | 0.031                                   | \$0.439                               | 0.226     | 0.117      | 0.048   |
|            | D1 (stream)                                                                                             | 0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.038               | 0.019                                                       | <b>10</b> 008                           | D 0.08₽                               | 0.043     | 0.022      | 0.009   |
|            | D3@ditch)                                                                                               | 0,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.038              | 00020                                                       | 0.008<br>0.008                          | 0.091                                 | 0.047     | 0.024      | 0.010   |
| 5m &       | D4 (pond)                                                                                               | ©0.04 <b>0</b> €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.029               | 0.011                                                       | 0.000                                   | 0.063                                 | 0.033     | 0.017      | 0.007   |
| SD &       | D4 (stream) 🧏                                                                                           | 0.075<br>0.075<br>0.040<br>0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.014               | 0.007                                                       | 0.003                                   | 0.031                                 | 0.016     | 0.008      | 0.003   |
| SD         | D5 (pond) 💨 '                                                                                           | 0.40,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø.024 (             | 0.913                                                       | Ø.005 ≥                                 | 0.072                                 | 0.037     | 0.020      | 0.008   |
|            | D5 (stream)                                                                                             | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D" 0.0 <b>03</b> ," | 0.002                                                       | < 0.00                                  | 0.009                                 | 0.005     | 0.002      | < 0.001 |
|            | R1 (pond)                                                                                               | 0.1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.006               | ×0.087 C                                                    | ₹ 0.0 <b>%∑</b>                         | 0.170                                 | 0.142     | 0.128      | 0.119   |
|            | R1 (stream)                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ <b>0,499</b> _    | 0.498                                                       | 0.497                                   | 0.629                                 | 0.626     | 0.624      | 0.624   |
| * SD and   | RO denote spray                                                                                         | drift and run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | off buffer          |                                                             |                                         |                                       |           |            |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | ~ ×                                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       |           |            |         |
| d          | Ö y                                                                                                     | ¥ Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                             | ,                                       |                                       |           |            |         |
| <b>%</b> 1 | , Ç                                                                                                     | , A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                             |                                         |                                       |           |            |         |
| ~~         |                                                                                                         | \$ ' \cdot \c | y Q                 |                                                             |                                         |                                       |           |            |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>(V)            | 4                                                           |                                         |                                       |           |            |         |
|            | L & 1                                                                                                   | \ \Q^{y}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŢĢ                  | Q`                                                          |                                         |                                       |           |            |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
|            |                                                                                                         | , O ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ý «Q                |                                                             |                                         |                                       |           |            |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
| K          |                                                                                                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                             |                                         |                                       |           |            |         |
|            | "O" Ä"                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
| Æ,         |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
| ,          | O <sub>A</sub>                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
|            | D1 (ditCh) D1 (stream) D3 (ditch) D4 (pond) D5 (pond) D5 (stream) R1 (pond) R1 (stream) RO denote spray |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |
|            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                                             |                                         |                                       |           |            |         |

**Table CP 9.2.5-14:** Winter oilseed rape: Maximum PEC<sub>sw</sub> values for thiacloprid at Step 4 after single<sub>o</sub> and multiple applications

|                 |                                                                                                     |                                                                               |                                                                      |                                                                      | Thiac                    | loprid                           | ^                                                                             |                                                    |                 |
|-----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-----------------|
|                 |                                                                                                     |                                                                               |                                                                      | Oilseed                                                              | rape (wint               | er), 2 × 72                      | g a.s./ha                                                                     |                                                    |                 |
|                 |                                                                                                     |                                                                               | Single ap                                                            | plication                                                            |                          |                                  | Multiple a                                                                    | pplication                                         |                 |
| Buffer<br>Width | Scenario                                                                                            |                                                                               |                                                                      | [µg/L])<br>eduction                                                  | Ĉħ                       |                                  |                                                                               | [μg/LΦ eduction                                    |                 |
| & Type          |                                                                                                     | 0%                                                                            | 50%                                                                  | 75%                                                                  | 90%                      | 0%_@                             | 50%                                                                           | Ø5%~C                                              | 90%             |
| 5m<br>SD        | D2 (ditch) D2 (stream) D3 (ditch) D4 (pond) D4 (stream) D5 (pond) D5 (stream) R1 (pond) R1 (stream) | 0.125<br>0.150<br>0.124<br>0.014<br>0.143<br>0.014<br>0.148<br>0.014<br>0.138 | 0.063<br>0.075<br>0.062<br>0.007<br>0.072<br>0.007<br>0.074<br>0.012 | 0.031<br>0.038<br>0.031<br>0.003<br>0.036<br>0.037<br>0.011<br>0.138 | 0.001<br>30.014<br>0.005 | 0.045<br>0.130<br>0.045<br>0.501 | 0.053<br>0.063<br>0.055<br>0.009<br>0.009<br>0.009<br>0.065<br>0.040<br>0.551 | 0.005<br>0.005<br>0.004<br>0.032<br>0.038<br>0.594 | 0.002<br>0.01\$ |
| SD              | D5 (stream)<br>R1 (pond)                                                                            | 0.148<br>0.014                                                                | 0.074<br>0.012 ×                                                     | <u>4</u> 0.037                                                       | 0.05                     | 0.045                            | 0.065                                                                         | 4.00                                               | 6032<br>0.038 € |

<sup>\*</sup> SD and RO denote spray drift and runoff buffer

Winter oilseed vape: Maximum PEC of values for this cloprid at Step 4 after single and multiple applications **Table CP 9.2.5-15:** 

| Thiacloprid  Thiacloprid  Silseed Sape (Winter & 2 × 72 g a.s./ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>V</del> |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>~</u>     |       |
| J. S Oilseed ape (Winter) 2 × 7,2 g a.s./h@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br>)       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | application  | 1     |
| Ruffer & & DPECMug/kgl & Q . PEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed [μg/kg]   |       |
| Buffer Width Scenario PEC [µg/kg]) PECs  Drift Reduction Drift 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reduction    |       |
| Width Scenario Drift Reduction Drift Legy Dr | 75%          | 90%   |
| $D_{2}(A = A = A = A = A = A = A = A = A = A =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.087        | 0.036 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.098        | 0.041 |
| (ditch)   0.085   0.04   0.022   0.009   0.097   0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.026        | 0.011 |
| 5m D4 (pond) 0.04\$\(\text{0.012}\) 0.023 0.012\(\text{0.012}\) 0.005 0.070 0.036 D4 (stream) 0.4024 0.012\(\text{0.012}\) 0.006 0.005 0.005 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.019        | 0.008 |
| 5m D4 (stream) 0.4024 50.012 0 0.606 50.002 \$70.030 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.008        | 0.003 |
| D5 (pond) 0.048 0 0.025 0.0013 0.006 0.074 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020        | 0.008 |
| 5m D4 (stream) 0.024 0.012 0.006 0.002 0.030 0.015 0.048 0.025 0.013 0.006 0.0074 0.038 0.017 0.008 0.013 0.0074 0.038 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.008        | 0.003 |
| D4 (stream) 0.024 0.012 0.006 0.002 0.030 0.015 0.006 0.003 0.015 0.006 0.003 0.017 0.008 0.003 0.007 0.033 0.017 0.006 0.003 0.007 0.006 0.175 0.008 0.107 0.106 0.382 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.160        | 0.151 |
| R1 (stream) 0.107 0.106 0.382 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.379        | 0.378 |
| R3 (stream) 0.440 0.434 0.432 0.430 0.438 0.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.431        | 0.430 |
| SD and to denote spray, If it and Ronoff buffer &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| D5 (stream)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |

### **CP 9.3** Fate and behaviour in air

For information on the fate and behaviour in air please refer to MCA Section 7, data point 7.3.

## **CP 9.3.1**

... point 7.3.
... atransport via air
... air and transport via air please refer to MCA.
... and short half-life in air no PEC calculations are required.

Estimation of concentrations for other routes of exposure the routes of exposure if the product is used according to good agriculations are considered necessary. For information on route and rate of degradation in air and transport via air please refer to Nection 7, data points 7.3.1 and 7.3.2.

Due to the low volatility and short half-life in air no PC calculations are required

### **CP 9.4**

There are no other routes of exposure if the products used according to food a ficultiful product. Therefore no further estimations are considered necessary.