# **Exploring Areas of London**

## Introduction

London is one of the largest and most important cities of Europe with a diverse population of close to 9 million people. It makes a considerable impact upon the arts, commerce, education, entertainment, fashion, finance, healthcare, media, professional services, research and development, tourism and transportation.

In this project we aim to understand the structure of London better: is there a clear distinction between some areas and what is it? For that we will analyse different locations around the city and venues close to them. This should tell us how people use them.

Aside from pure academic interest, our research can help the government of London in city development planning.

## Data

We used free and open sources of data for the project, listed below.

## Wikipedia

Link: https://en.wikipedia.org/wiki/List of areas of London

List of London locations and boroughs is provided in HTML format:

| Location +       | London borough \$                             | Post town      | Postcode district + | Dial code ¢ | OS grid ref \$ |
|------------------|-----------------------------------------------|----------------|---------------------|-------------|----------------|
| Abbey Wood       | Bexley, Greenwich [7]                         | LONDON         | SE2                 | 020         | Q TQ465785     |
| Acton            | Ealing, Hammersmith and Fulham <sup>[8]</sup> | LONDON         | W3, W4              | 020         | Q TQ205805     |
| Addington        | Croydon <sup>[8]</sup>                        | CROYDON        | CR0                 | 020         | Q TQ375645     |
| Addiscombe       | Croydon <sup>[8]</sup>                        | CROYDON        | CR0                 | 020         | Q TQ345665     |
| Albany Park      | Bexley                                        | BEXLEY, SIDCUP | DA5, DA14           | 020         | Q TQ478728     |
| Aldborough Hatch | Redbridge <sup>[9]</sup>                      | ILFORD         | IG2                 | 020         | Q TQ455895     |
| Aldgate          | City <sup>[10]</sup>                          | LONDON         | EC3                 | 020         | Q TQ334813     |
| Aldwych          | Westminster <sup>[10]</sup>                   | LONDON         | WC2                 | 020         | Q TQ307810     |
| Alperton         | Brent <sup>[11]</sup>                         | WEMBLEY        | HA0                 | 020         | Q TQ185835     |

## Geocoder

Link: https://geocoder.readthedocs.io/

This is a geocoding library supporting many providers. Free Arcgis provider was used.

```
>>> import geocoder
>>> g = geocoder.google('Mountain View, CA')
>>> g.latlng
(37.3860517, -122.0838511)
```

## Foursquare

Link: https://developer.foursquare.com/docs/places-api/

Foursquare provides an HTTP REST API for access to a list of venues at any coordinates. That API is free, but requires a registration to obtain an API key.

#### An example of data:

```
{'meta': {'code': 200, 'requestId': '5f0265e7efbbe10132e2f2d5'},
 'response': {'warning': {'text': "There aren't a lot of results near you. Try something more general, reset your fil
ters, or expand the search area."},
  'headerLocation': 'Bygrave',
  'headerFullLocation': 'Bygrave'
  'headerLocationGranularity': 'city',
  'totalResults': 1,
  'suggestedBounds': {'ne': {'lat': 52.00900000900001,
    'lng': -0.1354088564683746},
   'sw': {'lat': 51.9909999999999, 'lng': -0.16459114353162538}},
  'groups': [{'type': 'Recommended Places',
    'name': 'recommended',
    'items': [{'reasons': {'count': 0,
       'items': [{'summary': 'This spot is popular',
         'type': 'general',
      'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '514f51d67ab4081c42d8050a',
       'name': 'SG7.biz',
       'location': {'address': 'Royston Road',
        'lat': 51.997292929613515,
        'lng': -0.15892269822019148,
        'labeledLatLngs': [{'label': 'display',
          'lat': 51.997292929613515,
         'lng': -0.15892269822019148}],
        'distance': 681,
        'postalCode': 'SG7 6QY',
        'cc': 'GB',
        'city': 'Baldock',
        'state': 'Hertfordshire',
        'country': 'United Kingdom',
        'formattedAddress': ['Royston Road',
         'Baldock',
         'Hertfordshire',
         'SG7 6QY',
         'United Kingdom']},
       'categories': [{'id': '4bf58dd8d48988d1f4941735',
```

## Methodology

Prepare London locations dataset

## Downloading

First we download a list of all locations from Wikipedia with Pandas **read\_html** method:

|   | Location    | Borough                           | Town           | Postcode  |
|---|-------------|-----------------------------------|----------------|-----------|
| 0 | Abbey Wood  | Bexley, Greenwich [7]             | LONDON         | SE2       |
| 1 | Acton       | Ealing, Hammersmith and Fulham[8] | LONDON         | W3, W4    |
| 2 | Addington   | Croydon[8]                        | CROYDON        | CR0       |
| 3 | Addiscombe  | Croydon[8]                        | CROYDON        | CR0       |
| 4 | Albany Park | Bexley                            | BEXLEY, SIDCUP | DA5, DA14 |
|   | 1000        |                                   | 6222           | 000       |

There are **533** locations.

## Cleaning

Borough, Town and Postcode columns have multiple comma-separated values in many cases. We only want to take a single one for geocoding purposes. There are also numeric references present in some boroughs which we want to remove.

## Geocoding

We don't have any coordinates in the dataset from Wiki. To get them we will use Geocoder python library with Arcgis provider which doesn't require any API key.

After this step we have a clean dataset with coordinates:

|     | Location        | Borough                | Town           | Postcode | Lat     | Lng        |
|-----|-----------------|------------------------|----------------|----------|---------|------------|
| 0   | Abbey Wood      | Bexley                 | LONDON         | SE2      | 51.4925 | 0.12127    |
| 1   | Acton           | Ealing                 | LONDON         | W3       | 51.5181 | -0.301954  |
| 2   | Addington       | Croydon                | CROYDON        | CR0      | 51.3588 | -0.0329062 |
| 3   | Addiscombe      | Croydon                | CROYDON        | CR0      | 51.3736 | -0.0903331 |
| 4   | Albany Park     | Bexley                 | BEXLEY         | DA5      | 51.4357 | 0.12588    |
|     | 8200            | 202                    | 023            |          | 200     | 513        |
| 528 | Woolwich        | Greenwich              | LONDON         | SE18     | 51.4855 | 0.00627    |
| 529 | Worcester Park  | Sutton                 | WORCESTER PARK | KT4      | 51.3751 | -0.23489   |
| 530 | Wormwood Scrubs | Hammersmith and Fulham | LONDON         | W12      | 51.4777 | -0.20145   |
| 531 | Yeading         | Hillingdon             | HAYES          | UB4      | 51.5244 | -0.399389  |
| 532 | Yiewsley        | Hillingdon             | WEST DRAYTON   | UB7      | 51.5126 | -0.47259   |

533 rows × 6 columns

## Visualizing

Plotting them on the map we can see we covered the city pretty well:



## Get venues data

Foursquare has venues organized into lots of hierarchical categories, with top level:

1. Arts & Entertainment

- 2. College & University
- 3. Event
- 4. Food
- 5. Nightlife Spot
- 6. Outdoors & Recreation
- 7. Professional & Other Places
- 8. Residence'
- 9. Shop & Service
- 10. Travel & Transport

Every category has a known ID, which can be obtained in the website or by listing the categories via REST API:

https://developer.foursquare.com/docs/api-reference/venues/categories/.

The venues can be gueried with another REST API:

https://developer.foursquare.com/docs/api-reference/venues/explore/

That API has the following useful parameters, among many:

- *II* coordinates
- categoryld filter by category
- radius radius in meters to look for venues around the coordinates

In our project we won't actually use venues data itself, but rather *totalResults* response field. We will make a query for **every location** for **every category** and get a total count of venues in that category at that location. Overall we will make 533\*10 requests, so that will take a while. But in the end we are going to have this dataset:

|     | Location           | Arts &<br>Entertainment | College &<br>University | Event | Food | Nightlife<br>Spot | Outdoors &<br>Recreation | Professional &<br>Other Places | Residence | Shop & Service | Travel &<br>Transport |
|-----|--------------------|-------------------------|-------------------------|-------|------|-------------------|--------------------------|--------------------------------|-----------|----------------|-----------------------|
| 0   | Abbey Wood         | 1                       | 0                       | 0     | 6    | 6                 | 5                        | 3                              | 2         | 7              | 4                     |
| 1   | Acton              | 4                       | 5                       | 0     | 61   | 14                | 12                       | 38                             | 6         | 66             | 30                    |
| 2   | Addington          | 0                       | 0                       | 0     | 6    | 1                 | 5                        | 4                              | 0         | 3              | 3                     |
| 3   | Addiscombe         | 5                       | 7                       | 0     | 53   | 25                | 8                        | 36                             | 6         | 82             | 32                    |
| 4   | Albany Park        | 1                       | 2                       | 0     | 5    | 5                 | 2                        | 6                              | 0         | 17             | 2                     |
|     |                    |                         | /                       | 1442  | 120  |                   | 5212                     | 2227                           |           | (0.12)         |                       |
| 528 | Woolwich           | 6                       | 11                      | 0     | 31   | 11                | 13                       | 23                             | 8         | 16             | 14                    |
| 529 | Worcester Park     | 2                       | 0                       | 0     | 12   | 4                 | 2                        | 7                              | 1         | 19             | 4                     |
| 530 | Wormwood<br>Scrubs | 9                       | 4                       | 0     | 113  | 40                | 33                       | 40                             | 10        | 60             | 19                    |
| 531 | Yeading            | 0                       | 2                       | 0     | 5    | 3                 | 2                        | 5                              | 0         | 16             | 3                     |
| 532 | Yiewsley           | 1                       | 1                       | 0     | 5    | 5                 | 4                        | 7                              | 1         | 12             | 11                    |

533 rows × 11 columns

### **Pickle**

Both geocoding and querying Foursquare takes a long time, besides there is a limit on the number of calls per day. To avoid repeating these queries all over again when re-running the notebook we serialize results in Python binary format: **Pickle**.

# **Data Analysis**

## Analyse venues

Let's take a look at most popular venues in London, by their max presence in any location by using Pandas **describe** method:

|                             | count | mean      | std       | min | 25%  | 50%  | 75%  | max   |
|-----------------------------|-------|-----------|-----------|-----|------|------|------|-------|
| Food                        | 533.0 | 44.917448 | 55.979829 | 0.0 | 7.0  | 22.0 | 57.0 | 247.0 |
| Nightlife Spot              | 533.0 | 23.046904 | 36.504450 | 0.0 | 4.0  | 7.0  | 22.0 | 240.0 |
| Shop & Service              | 533.0 | 32.204503 | 26.846427 | 0.0 | 10.0 | 21.0 | 53.0 | 137.0 |
| Travel & Transport          | 533.0 | 21.090056 | 28.533573 | 0.0 | 4.0  | 8.0  | 23.0 | 129.0 |
| Arts & Entertainment        | 533.0 | 9.410882  | 16.950448 | 0.0 | 1.0  | 3.0  | 8.0  | 125.0 |
| Outdoors & Recreation       | 533.0 | 18.131332 | 23.700465 | 0.0 | 4.0  | 7.0  | 21.0 | 123.0 |
| Professional & Other Places | 533.0 | 23.945591 | 22.452767 | 0.0 | 7.0  | 16.0 | 35.0 | 116.0 |
| College & University        | 533.0 | 10.170732 | 17.141136 | 0.0 | 2.0  | 4.0  | 7.0  | 107.0 |
| Residence                   | 533.0 | 4.170732  | 4.162007  | 0.0 | 1.0  | 3.0  | 6.0  | 32.0  |
| Event                       | 533.0 | 0.106942  | 0.431173  | 0.0 | 0.0  | 0.0  | 0.0  | 4.0   |

Or another nice representation with a boxplot graph:

```
places_stacked = places.set_index('Location').stack().reset_index()
places_stacked.columns = ['Location', 'Category', 'Count']
sns.catplot(x="Count", y="Category", orient="h", aspect=2, data=places_stacked);

Arts & Entertainment -
College & University -
Event -
Food -
Nightlife Spot -
Outdoors & Recreation -
Professional & Other Places -
```

We can see that different categories have different max counts. We, however, want to compare different areas of the city to each other, not categories. That's why we need to normalize the data.

100

Count

150

200

250

#### Normalization

Residence

Shop & Service

Travel & Transport

We will do this by dividing each category count by the max number of these categories.

50

```
places_normalized = places.set_index('Location')
places_normalized = places_normalized.div(places_normalized.max())
places_normalized = places_normalized.reset_index()
places_normalized
```

#### So we'll have every category count in range 0 to 1:

|   | Location    | Arts &<br>Entertainment | College &<br>University | Event | Food     | Nightlife<br>Spot | Outdoors &<br>Recreation | Professional &<br>Other Places | Residence | Shop &<br>Service | Travel &<br>Transport |
|---|-------------|-------------------------|-------------------------|-------|----------|-------------------|--------------------------|--------------------------------|-----------|-------------------|-----------------------|
| 0 | Abbey Wood  | 0.008                   | 0.000000                | 0.0   | 0.024291 | 0.025000          | 0.040650                 | 0.025862                       | 0.06250   | 0.051095          | 0.031008              |
| 1 | Acton       | 0.032                   | 0.046729                | 0.0   | 0.246964 | 0.058333          | 0.097561                 | 0.327586                       | 0.18750   | 0.481752          | 0.232558              |
| 2 | Addington   | 0.000                   | 0.000000                | 0.0   | 0.024291 | 0.004167          | 0.040650                 | 0.034483                       | 0.00000   | 0.021898          | 0.023256              |
| 3 | Addiscombe  | 0.040                   | 0.065421                | 0.0   | 0.214575 | 0.104167          | 0.065041                 | 0.310345                       | 0.18750   | 0.598540          | 0.248062              |
| 4 | Albany Park | 0.008                   | 0.018692                | 0.0   | 0.020243 | 0.020833          | 0.016260                 | 0.051724                       | 0.00000   | 0.124088          | 0.015504              |
|   | 0442        | 100                     |                         | 0000  | 939      | 100               | 939                      | 100                            | 227       |                   | 122                   |



That's much better and we are ready for machine learning.

### Cleaning

We chose to use a predefined set of categories for our analysis. That saved us from the need to clean category data.

## **Machine Learning**

We will use K-Means - unsupervised learning algorithm that will cluster London locations into several groups.

## Optimal K

The most important part is to find the number of clusters we want to use. There can be multiple viable numbers all grouping data points in different ways (or none at all, in which case K-Mean doesn't fit here).

There are two methods we can use to help us: Elbow and Silhouette

**The Elbow Method**- calculate the sum of squared distances of samples to their closest cluster center for different values of k. The value of k after which there is no significant decrease in sum of squared distances is chosen.

```
sum_of_squared_distances = []

K = range(1,20)

for k in K:
    print(k, end=' ')
    kmeans = KMeans(n_clusters=k).fit(places_clustering)
    sum_of_squared_distances.append(kmeans.inertia_)
```

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

```
plt.plot(K, sum_of_squared_distances, 'bx-')
plt.xlabel('k')
plt.ylabel('sum_of_squared_distances')
plt.title('Elbow Method For Optimal k');
```



It looks like we have an elbow point at k = 4 or k = 5. But let's see if another method gives a better result.

**The Silhouette Method** - The silhouette value measures how similar a point is to its own cluster (cohesion) compared to other clusters (separation).

```
sil = []
K_sil = range(2,20)
# minimum 2 clusters required, to define dissimilarity
for k in K_sil:
    print(k, end=' ')
    kmeans = KMeans(n_clusters = k).fit(places_clustering
    labels = kmeans.labels_
    sil.append(silhouette_score(places_clustering, labels
```

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

```
plt.plot(K_sil, sil, 'bx-')
plt.xlabel('k')
plt.ylabel('silhouette_score')
plt.title('Silhouette Method For Optimal k')
plt.show()
```



We have local maximums at: 4,7, 9.

Looking at both methods it seems we can try 4 clusters. This is a small enough number so we can analyse every cluster better.

## Visualization

And here are our clusters on the map:



# Results

Now let's try to understand the clusters.

```
for col in required_column:
   print(cluster 0[col].value counts(ascending = False))
                          138
Shop & Service
Professional & Other Places
Residence
Outdoors & Recreation
                           19
Travel & Transport
Event
College & University
Name: 1st Most Common Venue, dtype: int64
      _____
Professional & Other Places
Shop & Service
Residence
                           66
                           31
17
Outdoors & Recreation
Travel & Transport
College & University
                           13
Event
Arts & Entertainment
Name: 2nd Most Common Venue, dtype: int64
  .......
Barnet
                       36
                      35
Bromley
Bexley
Havering
                       21
Croydon
                      18
Hillingdon
                       17
                       16
Brent
Redbridge
                       16
Enfield
                       16
                       13
Harrow
Newham
                       13
Hounslow
                       12
Richmond upon Thames
                       12
Kingston upon Thames 11
                       10
Greenwich
Lewisham
Barking and Dagenham
Ealing
Merton
Haringey
                       6
Sutton
Lambeth
Waltham Forest
Hackney
Wandsworth
Dartford
Haringey and Barnet
Camden
Kensington and Chelsea
Southwark
Name: Borough, dtype: int64
```

We can see that this cluster has Shops, Professional places and **Residences**. Given that no other cluster has that many residences it looks like a distinction feature of that cluster.

```
for col in required column:
   print(cluster_1[col].value_counts(ascending = False))
   print("----")
Shop & Service
                  101
Professional & Other Places
Food
Travel & Transport
Residence
College & University
Name: 1st Most Common Venue, dtype: int64
Professional & Other Places 58
Shop & Service
                            17
Residence
                            13
Outdoors & Recreation
Travel & Transport
Event
Name: 2nd Most Common Venue, dtype: int64
Tower Hamlets
                                             18
Hackney
                                             15
                                             13
Lewisham
Haringey
                                             10
Wandsworth
Hammersmith and Fulham
Richmond upon Thames
Camden
Lambeth
                                             5
Brent
                                             5
Croydon
Greenwich
                                              4
Hounslow
                                              4
Waltham Forest
                                              4
Kingston upon Thames
Merton
Kensington and Chelsea
                                             2
Bromley
                                             2
Newham
                                             2
Sutton
Ealing
Southwark
Bexley
Harrow
Enfield
Hillingdon
Kensington and ChelseaHammersmith and Fulham
                                             1
Barnet
                                             1
Islington
Name: Borough, dtype: int64
```

This one has mostly Shops and **Professional** places. We can assume it's a business area of London.

```
for col in required column:
   print(cluster_2[col].value_counts(ascending = False))
   print("----")
                         10
Food
Outdoors & Recreation
Shop & Service
Professional & Other Places 1
Travel & Transport
College & University
Arts & Entertainment
Name: 1st Most Common Venue, dtype: int64
Outdoors & Recreation
Food
Professional & Other Places 3
Nightlife Spot
Travel & Transport
College & University
Name: 2nd Most Common Venue, dtype: int64
Southwark
City
Camden
Tower Hamlets 1
Westminster
Name: Borough, dtype: int64
```

This one has mostly Food and **Recreation**. Looks like a usual city center for Londoners.

```
for col in required_column:
   print(cluster 3[col].value counts(ascending = False))
   print("----")
Travel & Transport
                         16
Food
Professional & Other Places 12
Residence
Shop & Service
Outdoors & Recreation
College & University
Name: 1st Most Common Venue, dtype: int64
______
Food
                       12
Outdoors & Recreation
Shop & Service
Travel & Transport
College & University
Professional & Other Places
Name: 2nd Most Common Venue, dtype: int64
_____
Westminster
                     18
Islington
                    14
Camden
Kensington and Chelsea
Tower Hamlets
Camden and Islington
Islington
Hammersmith and Fulham 1
Lambeth
Southwark
Name: Borough, dtype: int64
```

And this one is Food and Travel. Guess **Tourism**.

## Labeled map



# 6. Discussion

We discovered 4 clusters:

- 1. Touristic
- 2. Recreational
- 3. Professional
- 4. Residential

We only used 10 basic categories for our analysis. However a careful selection of subcategories should be tried to improve it further.

Also the size of places is not taken into account, because Foursquare doesn't have such a concept. But other metrics like visits count can be used to get more insight.

## 7. Conclusion

Foursquare data together with unsupervised learning can give useful insights into a city structure. More data from other sources can be used to improve results.