

Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Martedì 22 febbraio 2022 - Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Sia dato un array A di n elementi in cui l'elemento massimo è pari a k. Trasformando gli elementi da ordinare in base $b = \Theta(n)$, quante passate di Bucket Sort sono necessarie all'algoritmo Radix Sort per ordinare A?
 - a) $\Theta(n^k)$ b) $\Theta(n \log_k n)$ *c) $\Theta\left(\frac{\log k}{\log n}\right)$ d) $\Theta(\log n)$
- 2. Sotto quali ipotesi la soluzione dell'equazione di ricorrenza $T(n) = a \cdot T(n/b) + f(n)$, con $T(1) = \Theta(1)$, a, b costanti non negative, è pari a $T(n) = \Theta(f(n))$?
 - a) Se $f(n) = O\left(n^{\log_b a + \epsilon}\right)$, per qualche $\epsilon > 0$, e se vale la condizione di regolarità: $af(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande
 - *b) Se $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$, per qualche $\epsilon > 0$, e se vale la condizione di regolarità: $af(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande
 - c) Se $f(n) = \Theta(n^{\log_b a})$ d) Se $f(n) = \Omega(n^{\log_b a \epsilon})$, per qualche $\epsilon > 0$
- 3. Quale tra i seguenti algoritmi è ottimo se applicato al problema descritto?
 - a) HEAPSORT per ordinare una sequenza di n interi compresi tra $1 e n^2$
 - *b) MERGESORT per ordinare una sequenza di n interi con valori arbitrari
 - c) Algoritmo di ricerca sequenziale per cercare un elemento in una sequenza di n interi ordinati
 - d) Integer Sort per ordinare una sequenza di n interi con valori $O(n^2)$
- $4. \ \ A \ quale \ delle \ seguenti \ classi \ di \ complessità \ \underline{non} \ appartiene \ la \ complessità \ temporale \ dell'algoritmo \ Quicksort:$
 - a) $O(n^3)$ b) $\Theta(n^2)$ c) $\Omega(n)$ *d) $o(n^2)$
- 5. Sia dato un albero AVL di altezza h, e si supponga di cancellare un elemento che provochi lo sbilanciamento dell'albero. Quale tra le seguenti è una terna di valori ammissibili per l'altezza dell'AVL prima della cancellazione, subito dopo la cancellazione, e infine dopo il ribilanciamento complessivo dell'AVL:
 - a) h, h 1, h 1 b) h, h, h 2 c) h, h 1, h *d) h, h, h 1
- 6. Quale tra le seguenti affermazioni relative a proprietà topologiche di un grafo è falsa:
 - a) Il grafo completo con 5 nodi non è planare b) Tutti gli alberi sono grafi bipartiti
 - *c) Il diametro di un grafo connesso non pesato di n nodi è al più pari a n/2
 - d) Ogni sottografo indotto di un grafo completo è un grafo completo
- 7. Quale tra le seguenti è la corretta definizione di ordinamento topologico di un grafo diretto G = (V, A)?
 - a) è una funzione iniettiva $\sigma: V \mapsto \{1, \dots, n\}$ tale che se \exists un cammino da u a v in G, con $u \neq v$, allora $\sigma(u) < \sigma(v)$.
 - *b) è una funzione biettiva $\sigma: V \mapsto \{1, \ldots, n\}$ tale che se \exists un cammino da u a v in G, con $u \neq v$, allora $\sigma(u) < \sigma(v)$.
 - c) è una funzione biettiva $\sigma: V \mapsto \{1, \dots, n\}$ tale che $\sigma(u) < \sigma(v)$ se e solo se \exists un cammino da u a v in G, con $u \neq v$.
 - d) è una funzione iniettiva $\sigma: V \mapsto \{1, \dots, n\}$ tale che $\sigma(u) < \sigma(v)$ se e solo se \exists un cammino da u a v in G, con $u \neq v$.
- 8. Sia dato un grafo pesato G = (V, E) con n nodi ed m archi, senza cicli negativi, e si consideri il problema di trovare i cammini minimi in G tra tutte le coppie di nodi. Quando è conveniente (asintoticamente) applicare l'algoritmo di Floyd&Warshall rispetto ad un'applicazione ripetuta dell'algoritmo di Dijkstra con heap binari?
 - *a) $m = \omega(n^2/\log n)$ b) $m = \Theta(n)$ c) per ogni valore di m d) per nessun valore di m
- 9. La somma di 2 grafi $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ è un grafo G = (V, E) in cui $V = V_1 \cup V_2$, ed $E = E_1 \cup E_2 \cup \{(x, y) | x \in V_1, y \in V_2\}$. Sia G il grafo ottenuto sommando un ciclo di 3 nodi ed un grafo connesso di 2 nodi. Numerare in modo arbitrario i vertici di G da 1 a 5, e pesare ogni arco come somma dei numeri associati ai vertici incidenti. Quanto pesa il minimo albero ricoprente di G?
 - a) 4 b) 10 *c) 18 d) 5
- 10. Dato il problema della gestione di n insiemi disgiunti, quale delle seguenti affermazioni è vera?
 - a) L'operazione Union(A, B) con alberi QuickFind senza l'euristica dell'unione pesata $by\ rank$ costa $\Theta(\min(|A|, |B|))$;
 - b) L'operazione Union con alberi QuickUnion con l'euristica dell'unione pesata by size costa nel caso peggiore O(log n);
 - *c) Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, un insieme di $m=n^2$ Find può essere eseguito in $O(n^2 \log n)$; d) L'operazione Find con alberi QuickUnion con l'euristica dell'unione pesata by rank costa $\Omega(\log n)$.

	Griglia Risposte Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										