

IN4180 - Analog Microelectronics Design

Basic Operational Amplifier Design and Compensation - Part 2 Compensation and stability

Kristian G. Kjelgård

CMOS OPAMP topology

- PMOS diff input stage
- Numbers realistic transistor widths
 - Length 1-2 times minimum
- Output buffer may not be needed for capacitive loads

University of Oslo

Gain for diff pair – 1. stage

$$A_{v1} = g_{m1}(r_{ds2}||r_{ds4})$$

• Typical gain 50-100

Gain of common source – 2. stage

$$A_{v2} = -g_{m7}(r_{ds6}||r_{ds7})$$

- Typical gain 50-100
- Gain of source follower output buffer

$$A_{v3} = \frac{g_{m8}}{G_L + g_{m8} + g_{s8} + g_{ds8} + g_{ds9}}$$

- Gain ≈1
- Not needed for capacitive loads

Two stage opamp gain

$$g_{m1} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \sqrt{2\mu_n C_{ox} \frac{W}{L} \frac{I_{bias}}{2}}$$

$$= \frac{k_{ds}}{2L\sqrt{V_{DS} - V_{eff} + \Phi_0}}$$

$$k_{ds} = \sqrt{\frac{2K_s \varepsilon_0}{qN_A}}$$

$$r_{ds} \cong \frac{1}{\lambda I_{D_{\gamma} g_m}}$$

$$g_{s8} = \frac{1}{2\sqrt{V_{SB} + |2\varphi_F|}}$$

Feedback stability

16.09.2024

Feedback stability

Frequency response – First order model

Midband frequencies

 C_{ea} dominates

$$A_{1} = g_{m1}Z_{out1}$$

$$= g_{m1}\left(r_{ds2}||r_{ds4}||\frac{1}{sC_{eq}}\right)$$
at midband freq C_{eq} dominates
$$A_{1} = g_{m1}\frac{1}{sC_{eq}} = g_{m1}\frac{1}{sC_{c}A_{2}}$$

$$A_{v} = \frac{v_{out}}{v_{in}} = A_{1}A_{2}A_{3} \approx g_{m1} \frac{1}{sC_{C}A_{2}} \cdot A_{2} \cdot 1 = \frac{g_{m1}}{sC_{C}}$$

Unit-gain frequency proportional to
$$g_m$$
 assuming $A_3=1$
setting $|A_V(j\omega_{ta})|=1$ and solve

$$\omega_{ta} = \frac{g_{m1}}{C_C} = \frac{I_{D5}}{V_{eff1}C_C}$$

University of Oslo

Frequency response - First order model

Midband frequencies

- Below unit-gain frequency
- Above frequencies without compensation effects
- Ignore all C except C_c
- Ignore R_c which only has effect at ω_{ta}

University of Oslo

Frequency response Second order model

Assume R_c=0 give transfer function

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_1R_2\left(1 - \frac{sC_C}{g_{m7}}\right)}{1 + sa + s^2b}$$

$$a = (C_1 + C_C)R_2 + (C_1 + C_C)R_1 + g_{m7}R_1R_2C_C$$

$$b = R_1R_2(C_1C_2 + C_1C_C + C_2C_C)$$

University of Oslo

Assume widely separated poles

$$D(s) = \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \approx 1 + \frac{s}{\omega_{p1}} + \frac{s^2}{\omega_{p1}\omega_{p2}}$$

Dominant pole

$$\begin{split} & \omega_{p1} \\ & = \frac{1}{R_1[C_1 + C_C(1 + g_{m7}R_2)] + R_2(C_1 + C_C)} \\ & \approx \frac{1}{R_1C_C(1 + g_{m7}R_2)} \\ & \approx \frac{1}{g_{m7}R_1R_2C_C} \end{split}$$

Non-dominant pole

$$\omega_{p2} = \frac{g_{m7}C_C}{C_1C_2 + C_1C_C + C_2C_C} \approx \frac{g_{m7}}{C_1 + C_2}$$

- Increasing g_{m7}
- \rightarrow increased pole distance
 - Pole splitting compensation
- •Cc may decrease ω_{p1}

University of Oslo

Additional zero

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_1R_2\left(1 - \frac{sC_C}{g_{m7}}\right)}{1 + sa + s^2b} \Rightarrow \omega_Z = -\frac{g_{m7}}{C_C}$$

- Right half-plane→negative phase shift with decreased PM
- Stability issues
- Hard to get rid of, but pole distance is increased with g_{m7}

Two-pole amplifier

Dominant poles of two-stage amps

University of Oslo

16.09.2024

Opamp compensation

- Dominant-pole compensation
 - Forcing a feedback system to have
 order response up to loop unitgain frequency ω_t
 - First order system unconditional stable with > 90 phase margin
- Lead compensation
 - Adding zero, ω_z,
 just above ω_t
 - May improve PM with 20°

Dominant pole comp using miller Cc

Lead comp using Rc

University of Oslo

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_1R_2\left(1 - \frac{sC_C}{g_{m7}}\right)}{1 + sa + s^2b} \qquad \Rightarrow \omega_Z = -\frac{g_{m7}}{C_C}$$

- Have to make R_C >0
 - Zero with some resistive element
 - May eliminate that zero by setting

 $\omega_Z = -\frac{1}{C_C(1/g_{m7} - R_C)}$

$$R_C = \frac{1}{g_{m'}}$$

• Alternatively try to cancel ω_{p2} with ω_z

$$\frac{g_{m7}}{C_1 + C_2} = -\frac{1}{C_C(1/g_{m7} - R_C)} \Rightarrow R_C = \frac{1}{g_{m7}} \left(1 + \frac{C_1 + C_2}{C_C} \right)$$

• "Overcompensation" might even be wise: $\omega_Z=1.7\omega_t$

$$R_C >> 1/g_{m7} \Rightarrow \omega_Z \approx \frac{1}{R_C C_C}$$
 $\omega_t \approx g_{m7}/C_C$ gives $R_C = \frac{1}{1.7g_{m7}}$

University of Oslo

Compensation procedure

$\beta = 1$ (max feedback)

$$L(s) \approx A(s) \frac{Z_1}{Z_1 + Z_2}$$

$$\beta = \frac{Z_1}{Z_1 + Z_2}$$

Dominant pole

- From **first order** model C_C and ω_t is given as:

$$\omega_t = L_0 \omega_{p1} = \beta \frac{g_{m1}}{C_C}$$

- Find initial C_C setting unit-gain frequency close to second pole

$$\beta \frac{g_{m1}}{C_C} = \frac{g_{m7}}{C_1 + C_2} = \frac{g_{m7}}{C_L}$$

$$\downarrow$$

$$C'_C = \left(\beta \frac{g_{m1}}{g_{m7}}\right) C_L$$

UGF Cc -> wp2

Opamp compensation design stategy

Start with
$$C_C' = \left(\beta \frac{g_{m1}}{g_{m7}}\right) C_L$$

setting unit-gain frequency close to second pole

- By simulation (SPICE, CADENCE) find frequency with -125° phase 2. shift (called gain A') - This is our unit gain frequency ω_t target
- 3. Choose new C_C such that ω_t is unit-gain freq of L(s)
 - C_C=C_C'A' giving 55° phase margin
 - A couple of simulation iterations may be necessary
- Choose R_C : $R_C = \frac{1}{1.7 m_e C_C}$ Almost optimum lead compensation for any opamp
 - Giving phase margin of 85° (+30°) leaving 5° for variations
- Sometimes phase margins are not adequate, then increase C_C Replace R_C with a transistor $R_C = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{1.6} V_{eff16}}$ 2.

Opamp compensation Cadence example

Find best compensation network C_c and R_c for:

AMS 0.35um technology

University of Oslo

New simulation with Cc=1.9pF give

$$-\omega_{t}$$
=44.7MHz with A'=1.32

$$C_C = C_C'A' = 1.3pF \cdot 1.32 \approx 2.5pF$$

New simulation with Cc=2.5pF give

$$-\omega_t$$
=41MHz with A'=1.2

$$C_C = C_C'A' = 2.5pF \cdot 1.2 \approx 3.1pF$$

New simulation with Cc=3.1pF give

$$-\omega_t$$
=37.7MHz with A'=1.00

Finding Rc

$$R_C = \frac{1}{1.2\omega_t C_C} = \frac{1}{1.2 \cdot 37.7 \cdot 10^6 \cdot 3.1 \cdot 10^{-12}} \approx 7132\Omega$$

Marker at 55 deg phase margin

Compensation procedure

Lead compensation - controlling Zero

$$\omega_{z} pprox rac{-1}{C_{C} \left(rac{1}{g_{m7}} - R_{C} \right)}$$

Several possibilities for R_C :

$$R_C = \frac{1}{g_{m7}} -> \omega_z = \infty$$

$$R_C > \frac{1}{g_{m7}}$$
 RHPZ -> LHPZ and cancel ω_{p2}

$$R_C \gg \frac{1}{g_{m7}}$$
 Moving LHPZ to a frequency slightly higher than ω_t (wo R_C)

Recommended to get more PM (20-30 degrees)

$$\omega_{p2} = \frac{g_{m7}C_C}{C_1C_2 + C_1C_C + C_2C_C} = \frac{-1}{C_C\left(\frac{1}{g_{m7}} - R_C\right)} \Rightarrow R_C = \frac{1}{g_{m7}}\left(1 + \frac{C_1 + C_2}{C_C}\right)$$

Find bias voltage:

Vbias1=2.3V give 84µA tail current

Found by simple simulation run displaying tail current

University of Oslo

Find (180-125)=55° phase shift at ωt =50.1MHz with gain A'=3.7

$$C_C = C_C'A' = 0.5pF \cdot 3.7 \approx 1.9pF$$

R_C as transistor

- Compensation resistor
 - Replaced by transistor in triode region

$$R_C = r_{ds} = \frac{1}{\mu_n C_{ox} \frac{W}{L} V_{eff}}$$

University of Oslo

Adding compensation resistor Rc

Phase margins?

- What to do?
 - Book: increase Cc
 - Try to decrease Rc

Give unit-gain freq of 133MHz with PM=84° with Rc=2050Ω