

Biological networks

- Some links specified by regions of DNA
- Protein interactions, RNA/RNA, RNA/DNA, RNA/Protein, cell signalling
- Exhibit modular structure
 - Components
 - Scalability

An Overview of Sea Urchin Gastrulation

Modularity

System built of components

Offspring Father Mother Randomly Selected Subtree Randomly Replace Old Subtree Selected Subtree With New Tree

meetup.com/biocoders

@resurgo
peter@fourpartswater.com
@biocoders_uk

TensorFlow + 3D genome hackathon

Complexity and networks

- Small simple networks can lead to complex structure/function = phenotype
- Network links swapped changes higher level behaviour
- Preferential swapping within modules allows scaling → more complex life

Genetic Programming

- One type of genetic algorithm
 - Populations of solutions
 - Evolve by natural selection inspired processes
 - Selection, mutation, recombination
- Represent solutions to problems as computational trees
- Human competitive for small systems
 - Breaks patents

Program as tree

Scalability

- GP not very scalable
- Specialisation in subtrees broken by swapping
- Network evolution
 - Network connectivity determines behaviour
- Modular evolvability
- How might the genome do this?

Nature Reviews | Drug Discovery

Gene conversion and repeats

- Majority of genome repetitive sequence
- Provides template for exchange of DNA network connections
- Maintained by short term selection on new links
 - hitchhiking homology
- Repetitive landscape conserved and evolves
- Links selected for increase linkage
 - Not the case if no selection