Electronique Numérique TD n°3

- 1. Simplifiez au moyen d'un diagramme de Karnaugh les fonctions suivantes :
 - (a) $f(A, B, C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$
 - (b) $f(A, B, C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + ABC + A\overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$
 - (c) $f(A, B, C, D) = AB\overline{C} + BCD + B\overline{D}$
 - (d) $f(A, B, C) = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$
 - (e) $f(A, B, C, D) = (A + B + C)(\overline{A} + B + D)$
- 2. Ecrire l'expression booléenne simplifiée de y pour le circuit logique ci-dessous.

Fig. 1

- 3. Dessiner un circuit simplifié réalisant l'équation $S = \overline{AB + \overline{A}.\overline{B}} + \overline{A}.B$ en n'utilisant que des portes NAND.
- 4. Soit le circuit logique montré sur la figure 2. Ecrire la table de vérité entre les entrée A et B et la sortie S. Quelle est la fonction du circuit? Compléter les chronogrammes de la figure 3

Fig. 2

Fig. 3

5. Réaliser le circuit ayant la table de verité suivante en n'utilisant que des portes $\operatorname{NON-OU}.$

В	С	X
0	0	1
0	1	0
1	0	1
1	1	1
0	0	1
0	1	0
1	0	0
1	1	1
	0 1 1 0 0	0 1 1 0 1 1 0 0 0 1 1 0

Table 1