

SEQUENCE LISTING

<110> Kim, Kyung Jin
Chuntharapai, Anan
Lu, Ji

<120> Monoclonal Antibodies to IFNAR2

<130> A-67640-1/RFT/DCF

<140> 09/166,298

<141> 1998-10-05

<150> 60/061,185

<151> 1997-10-06

<160> 26

<170> PatentIn Ver. 2.0

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 1

gatcgggaaa gggaaaccga aactgaagcc

30

<210> 2

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 2

gatcggtttc agtttcggtt tccctttccc

30

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 3
Asp Tyr Thr Asp Glu
1 5

<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

B1
<400> 4
Ala Tyr Thr Ala Ala
1 5

<210> 5
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 5
Glu Leu Lys Asn His
1 5

<210> 6
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 6
Ala Leu Ala Asn Ala
1 5

<210> 7
<211> 6

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 7
Lys Pro Glu Asp Leu Lys
1 5

(S)

<210> 8
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 8
Ala Pro Ala Ala Leu Ala
1 5

<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 9
Asp Leu Thr Asp Glu
1 5

<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 10
Ala Leu Thr Ala Ala
1 5

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 11
Arg Ser Thr His Glu
1 5

B
<210> 12
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 12
Ala Ser Thr Ala Ala
1 5

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 13
Asp Met Ser Phe Glu
1 5

<210> 14
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 14
Ala Met Ser Phe Ala
1 5

<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 15
Glu Glu Glu Leu Gln Phe Asp
1 5

<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 16
Ala Ala Ala Leu Gln Phe Ala
1 5

<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 17
Glu Glu Gln Ser Glu
1 5

<210> 18
<211> 5
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 18

Ala Ala Gln Ser Ala

1

5

<210> 19

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 19

Lys Lys His Lys Pro

1

5

<210> 20

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 20

Ala Ala His Ala Pro

1

5

<210> 21

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 21

Glu Ile Lys Gly Asn

1

5

<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 22
Ala Ile Ala Gly Asn
1 5

<210> 23
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 23
Glu His Ser Asp Glu Ala
1 5

<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 24
Ala Ala Ser Ala Ala Gln
1 5

<210> 25
<211> 6152
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 25

gaattcctaa aaatagcaaa gatgctttg agccagaatg cttcatcgat cagatcactt 60
aatttgggtc tcatgggtt tatcagccctc gtgtttggta ttcatatga ttcgcctgat 120
tacacagatg aatcttgac tttcaagata tcattgcgaa atttccggtc catcttatca 180
tggaaattaa aaaaccactc cattgtacca actcactata cattgctgta tacaatcatg 240
agtaaaccag aagatttcaa ggtggtaag aactgtgcaaa ataccacaag atcattttgt 300
gacctcacag atgagtggag aagcacacac gaggcctatg tcaccgtcct agaaggattc 360
agcgggaaaca caacgttgtt cagttgctca cacaatttct ggctggccat agacatgtct 420
tttgaaccac cagagttga gattgttgtt ttacccaacc acattaatgt gatggtaaaa 480
tttccatcta ttgttgagga agaattacag tttgatttat ctctcgat tgaagaacag 540
tcagaggaa ttgttaagaa gcataaaaccc gaaataaaaag gaaacatgag tggaaatttc 600
acctatatca ttgacaagtt aattccaaac acgaactact gtgtatctgt ttattnagag 660
cacagtatg agcaaggact aataaaagtct cccttaaaat gcaccctcct tccacctggc 720
caggaatcag aatcagcaga atctgcgcac aaaactcaca catgcccacc gtgcccagca 780
cctgaactcc tggggggacc gtcagtcctc ctcttccccca caaaacccaa ggacaccctc 840
atgatctccc ggaccctgaa ggtcacatgc gtgggtggg acgtgagcca cgaagaccct 900
gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgcca gacaaagccg 960
cgggaggagc agtacaacag cacgtaccga gtggtcagcg tcctcaccgt cctgcaccag 1020
gactggctga atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagccccc 1080
atcgagaaaa ccatctccaa agccaaaggc cagccccgag aaccacaggt gtacaccctg 1140
cccccatccc gggaaagagat gaccaagaac caggtcagcc tgacotgcct ggtcaaaggc 1200
ttctatccca gcgacatcg cgtggagtgg gagagcaatg ggcagccgga gaacaactac 1260
aagaccacgc ctccctgtct ggactccgcac ggctccttct tcctctacag caagctcacc 1320
gtggacaaga gcaggtggca gcagggaaac gtctctcat gtcctgtat gcatgaggct 1380
ctgcacaacc actacacgc aagagccctc tccctgtctc cggtaaatg agtgcgacgg 1440
ccctagatgc gacctgcaga agcttagaac cgagggcccg ccatggccca acttgggtt 1500
tgcagctt aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaaggcatt 1560
ttttcactg cattcttagt gtggttgtc caaactcattc aatgtatctt atcatgtctg 1620
gatcgatcg gaattaattc ggccgcgcac catggcctgaa aataacctct gaaagaggaa 1680
cttggtagg taccttctgaa ggccggaaaga accagctgtg gaatgtgtgt cagtttaggt 1740
gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt 1800
cagcaaccag gtgtggaaag tccccaggct ccccaggcagg cagaagtatg caaagcatgc 1860
atctcaatta gtcagcaacc atagtccgc ccttaactcc gcccattccccc cccctaactc 1920
cgcccaggctc cgccattct ccgccttgc gctgactaat ttttttatt tatgcagagg 1980
ccgaggccgc ctggcctct gagctattcc agaagtagtg aggaggctt tttggaggcc 2040
taggctttg caaaaagctg ttaacagctt ggcactggcc gtcgtttac aacgtcgatg 2100
ctggaaaaac cctggcgta cccaaacttac tcgccttgc gacatcccc cttcgccag 2160
ctggcgtaat agcgaagagg cccgcaccga tcgccttcc caacagttgc gtagcctgaa 2220
tggcgaatgg cgccctgtgc ggtattttct ccttaacgcat ctgtgcggta tttcacacccg 2280
catacgtcaa agcaaccata gtacgcgcac ttagtgcggcg cattaagcgc ggcgggtgtg 2340
gtggttacgc gcagcgtgac cgctacactt gccagcgcac tagcgcggcc tccttcgct 2400
ttcttcctt ccttctcgac cacgttcgcg ggctttcccc gtcaagctt aatcggggg 2460
ctcccttag ggttccgatt tagtgccttca cggcacctcg aaaaaaaa acttgatttgc 2520
ggtgatgggtt cacgtatgg gccatgcgc ttagtgcggg ttttcgcctt tttgacgtt 2580
gagttccacgt tcttaatag tggactcttgc ttccaaactg gaacaacact caaccctatc 2640
tcgggctatt ctttgattt ataaggattt tgccgattt cggccttattt gttaaaaaat 2700
gagctgattt aacaaaaatt taacgcgaat ttaacaaaa tattaaacgtt tacaatttt 2760
tggtgcactc tcagtcataat ctgctcgat gccgcataatg taagccaaact ccgctatcg 2820

tacgtgactg ggtcatggct gcgcggcggac acccgccaaac acccgctgac gcgcctgac 2880
gggcttgc tctccggca tcgcgttaca gacaagctgt gaccgtctcc gggagctgca 2940
tgtgtcagag gtttcaccg tcatacccg aacgcgcgag gcagtattct tgaagacgaa 3000
agggcctcgat gatacgccata ttatgtcat gataataatg gtttcttaga 3060
ogtcaggtgg cactttcg ggaaatgtgc gcggAACCC tatttgc ttttctaaa 3120
tacattcaaa tatgtatccg ctcatgagac aataaccctg ataaatgctt caataatatt 3180
gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ccttattccc tttttgcgg 3240
cattttgc tccgtttt gtcacccag aaacgctggt gaaagtaaaa gatgctgaag 3300
atcagttggg tgacagatgt ggttacatcg aactggatct caacagcggt aagatcctt 3360
agagtttcg cccccaagaa cgtttccaa tgatgagcac tttaaagtt ctgctatgt 3420
gcgcggatt atccgtat gacgcgggc aagagcaact cggtcgcgc atacactatt 3480
ctcagaatga cttgggttag tactcaccag tcacagaaaa gcatcttacg gatggcatga 3540
cagtaagaga attatgcagt gtcgcataa ccatgagtgta taacactgcg gccaacttac 3600
ttctgacaac gatcgagga ccgaaggagc taaccgc tttgcacaac atggggatc 3660
atgtaaactcg cttgtatcg tgggaaccgg agctgaatga agccatacca aacgacgagc 3720
gtgacaccac gatgccagca gcaatggcaa caacggtcgcaaaacttata actggcgaa 3780
tacttactt agcttccgg caacaattaa tagactggat ggaggcgat aaagttgcag 3840
gaccacttct ggcgtcgcc cttccggctg gctggtttat tgctgataaa tctggagccg 3900
gtgagcgtgg gtctcgccgtt atcattgcag cactggggcc agatggtaag ccctccgta 3960
tcgtagttat ctacacgacg gggagtcagg caactatggta tgaacgaaat agacagatcg 4020
ctgagatagg tgcctcaactg attaagcatt ggttaactgtc agaccaagtt tactcatata 4080
tacttttagat tgatttaaaa cttcatttt aatttaaaag gatcttaggtg aagatcctt 4140
ttgataatct catgaccaaaa atcccttaac gtgagtttc gttccactga gcgtcagacc 4200
ccgtagaaaaa gatcaaagga tcttcttgcg atccctttt tctgcgcgtatctgct 4260
tgcaaacaaa aaaaccacccg ctaccagcg tggttgc tccggatcaa gagctaccaa 4320
ctcttttcc gaaggttaact ggcttcagca gagcgcagat accaaataact gtccttctag 4380
tgtagccgtat gttaggccac cacttcaaga actctgtac accgcctaca tacctcgctc 4440
tgctaattct gttaccatgt gctgctgca gtggcgatata gtcgtgtctt accgggttgg 4500
actcaagacg atagttaccg gataaggcgc acgcggcggg ctgaacgggg gttcgtgca 4560
cacagccccag cttggagcga acgacccata cccaaactgag atacccatcg cgtgagcatt 4620
gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 4680
tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggatcttataatgc 4740
ctgtcggtt tcgcccaccc tgcatttgc gtcgatttt gtatgtcg tcaaggggggc 4800
ggagccatag gaaaaacgcc agcaacgcgg ccttttacg gttccctggcc ttttgcgtgc 4860
cttttgcata catgttctt cctgcgttat cccctgattt tgcgtataac cgtattaccg 4920
cctttgagtg agctgatacc gctcgccgca gccgaacgac cggcgcagc ggttcgtgca 4980
gcgcggaaac ggaagagcgc ccaatacgca aaccgcctct cccgcgcgt tggccgattc 5040
attaatcccg ctggcgcacg aggttcccg actggaaagc gggcgttgc gcaacgca 5100
ttaatgtgag ttacactact cattaggcact cccaggctt acactttatg cttccggctc 5160
gtatgttgcg tggaaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg 5220
attacgaatt aattcgagct cggccgcacat tgattattga ctgttataatgtaatca 5280
attacggggt cattagttca tagccatat atggagttcc gcgttacata acttacggta 5340
aatggccccgc ctggctgacc gcccacgc ccccgcccat tgacgtcaat aatgacgtat 5400
gttcccatag taacgcataat agggacttcc cattgcgtc aatgggtggatgtttacgg 5460
taaaactgccc acttggcagt acatcaagt gatcatatgc caagtaacgc ccctattgac 5520
gtcaatgcg gtaaatggcc cgcctggcat tatgcccagt acatgacctt atgggacttt 5580
cctacttggc agtacatcta cgtattagtc atcgcttata ccatgggtat gcgggtttgg 5640
cagtacatca atggcgtgg atagcgttt gactcacggg gatttccaag tctccacccc 5700

attgacgtca atggagttt gtttggcac caaatcaac gggacttcc aaaatgtcgt 5760
aacaactccg ccccattgac gcaaattggc gtaggcgtg tacggggaa ggtctatata 5820
agcagagctc gtttagtcaa ccgtcagatc gcctggagac gccatccacg ctgtttgac 5880
ctccatagaa gacaccggaa cgatccagc ctccgcggcc gggAACGGTG cattggAACG 5940
cggttcccccc tgccaaagag tgacgttaat accgcctata gagtctatag gcccaccccc 6000
ttggctcgaa agaacgcggc tacaattaat acataacctt atgtatcata cacatacgat 6060
ttaggtgaca ctatagaata acatccactt tgcccttctc tccacaggtg tccactccca 6120
ggtccaactg caggccatgg cggccatcga tt 6152

<210> 26
<211> 443
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 26
Ile Ser Tyr Asp Ser Pro Asp Tyr Thr Asp Glu Ser Cys Thr Phe Lys
1 5 10 15

Ile Ser Leu Arg Asn Phe Arg Ser Ile Leu Ser Trp Glu Leu Lys Asn
20 25 30

His Ser Ile Val Pro Thr His Tyr Thr Leu Leu Tyr Thr Ile Met Ser
35 40 45

Lys Pro Glu Asp Leu Lys Val Val Lys Asn Cys Ala Asn Thr Thr Arg
50 55 60

Ser Phe Cys Asp Leu Thr Asp Glu Trp Arg Ser Thr His Glu Ala Tyr
65 70 75 80

Val Thr Val Leu Glu Gly Phe Ser Gly Asn Thr Thr Leu Phe Ser Cys
85 90 95

Ser His Asn Phe Trp Leu Ala Ile Asp Met Ser Phe Glu Pro Pro Glu
100 105 110

Phe Glu Ile Val Gly Phe Thr Asn His Ile Asn Val Met Val Lys Phe
115 120 125

Pro Ser Ile Val Glu Glu Leu Gln Phe Asp Leu Ser Leu Val Ile
130 135 140

Glu Glu Gln Ser Glu Gly Ile Val Lys Lys His Lys Pro Glu Ile Lys
145 150 155 160

Gly Asn Met Ser Gly Asn Phe Thr Tyr Ile Ile Asp Lys Leu Ile Pro
165 170 175

Asn Thr Asn Tyr Cys Val Ser Val Tyr Leu Glu His Ser Asp Glu Gln
180 185 190

Ala Val Ile Lys Ser Pro Leu Lys Cys Thr Leu Leu Pro Pro Gly Gln
195 200 205

Glu Ser Glu Ser Ala Glu Ser Ala | Asp Lys Thr His Thr Cys Pro Pro
210 215 220

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
225 230 235 240

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
245 250 255

Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
260 265 270

Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
275 280 285

Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
290 295 300

Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
305 310 315 320

Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
325 330 335

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
340 345 350

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
355 360 365

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
370 375 380

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
385 390 395 400

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
405 410 415

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr

420

425

430

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

435

440

h

