MA571 Homework 9

Carlos Salinas

November 1, 2015

PROBLEM 9.1 (MUNKRES §52, Ex. 2)

Let α be a path in X from x_0 to x_1 ; let β be a path in X from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.

Proof.

PROBLEM 9.2 (MUNKRES §52, Ex. 3)

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is Abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

Proof.

PROBLEM 9.3 (MUNKRES §52, Ex. 4)

Let $A \subset X$; suppose $r: X \to A$ is continuous map such that r(a) = a for each $a \in A$. (The map r is called a *retraction* of X onto A.) If $a_0 \in A$, show that

$$r_* \colon \pi_1(X, x_0) \longrightarrow \pi_1(A, a_0)$$

is surjective.

Proof.

Problem 9.4 (Munkres §53, Ex. 6)

Show that if X is path connected, the homomorphism induced by a continuous map is independent of the base point, up to isomorphisms of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1}) \circ \hat{\alpha}.$$

This equation expresses the fact that the following diagram of maps "commutes"

$$\pi_1(X, x_0) \xrightarrow{(h_{x_0})_*} \pi_1(Y, y_0)$$

$$\downarrow^{\hat{\alpha}} \qquad \qquad \downarrow^{\hat{\beta}}$$

$$\pi_1(X, x_1) \xrightarrow{(h_{x_1})_*} \pi_1(Y, y_1).$$

Proof.

PROBLEM 9.5 (MUNKRES §55, Ex. 1)

Show that if A is a retract of B^2 , then every continuous map $f \colon A \to A$ has a fixed point.

Proof.

 $MA571\ Homework\ 9$ 5

PROBLEM 9.6 (MUNKRES §55, Ex. 2)

Show that if $h \colon S^1 \to S^1$ is nulhomotopic, then h has a fixed point and h maps some point x to its antipode -x.

Proof.

 $CARLOS \; SALINAS \qquad \qquad PROBLEM \; 9.7((A))$

PROBLEM 9.7 ((A))

Prove that every m-manifold is locally path-connected.

Proof.

 $CARLOS\ SALINAS$ $PROBLEM\ 9.8((B))$

PROBLEM 9.8 ((B))

Prove that every m-manifold is regular.

Proof.

 $CARLOS \ SALINAS$ PROBLEM 9.9((C))

PROBLEM 9.9 ((C))

Prove that there is no 1-1 continuous function $\iota \colon S^1 \to \mathbb{R}$. You may assume any fact about trigonometric functions. (Note: this shows in particular that there is no $\iota \colon S^1 \to \mathbb{R}$ with $p \circ \iota$ equal to the identity map, where p is the map in the note on the Fundamental Group of the Circle.)

Proof.