Computational Methods for Amorphous Semiconductor Devices

Ember L. Sikorskia

^aBoise State University

Abstract

- DOS
- structural modeling

1. Introduction

2. Density of States

Raty 2015 [1] - Aging in Phase Change Materials (dots figure)

- Motivation
 - "Amorphous materials are out of thermodynamic equilibrium"
 - subject to physical aging
 - phase-change materials (PCMs) have a fast, reversible switch between a conductive crystalline and more resistive amorphous phase
 - aging increases the resistivity 'resistance drift'
 - computer simulation to investigate relaxation processes
 - Modeling comment: complexity of the chemistry requires DFT to describe and understand bonding and the amorphous phase

• Literature

 DFT simulations of GeSbTe alloys report many tetrahedrally bonded Ge, which does not exist in crystal. These are obtained from MQ calcs

• Methods

- Car-Parrinello
- To circumvent time scale problem, generated collection of a-structures
- mixed Gaussian/plane wave code in CP2K
- cutoff 300 Ry

- sampled at gamma only
- annealed using plane-wave code in Quantum Espresso
- 34 Ry
- 3.84 fs
- Berendsen thermostat
- 10 models produced starting from liquid

Results

- Ge^T is associated with homopolar Ge-Ge bonds
- heat of formaion shows homopolar bonds more favorable in GeTe than GeSe and SnTe
- wanted to investigate effects of varying amounts Ge-Ge bonds
- used different alloys along the phase diagram and substituted with Ge or Te to form different GeTe structures "mimicking aging"
- homopolar bonds correlated with tetrahedral Ge
- freezing at density of amorphous GeTe, tetrahedral rich models had the largest values of stress
- this agrees with experiments showing the drift of PCMS is accompanied by stress relief
- order parameter d_4/d_0 goes from tetrahedrally bonded Ge, Ge^T , to Ge^{III} and d_3/d_0 goes from Te^{II} to Te^{III}
- increase in band gap directly linked to decrease in homopolar bonds
- "melt-quenched model has a smaller band gap and possesses a (localized) mid-gap state"

3. Density Functional Theory

- Kohn Sham: A system of one-electrons
- Hartree: a potential of how each electrons feels the electron gas
- Hartree Fock: how we describe the wave functions

References

[1] J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, M. Wuttig, Aging mechanisms in amorphous phase-change materials, Nature Communications 6 (7467) (2015) 1–8. doi:10.1038/ncomms8467. URL http://dx.doi.org/10.1038/ncomms8467