Exercices Mathématiques pour l'informatique I : Systèmes linéaires

- 1. Résolvez, par la méthode de l'échelonnement, le système Ax = 0 où $x \in \mathbb{R}^{4 \times 1}$ et $A = (a_{ij})_{1 \le i \le 4, 1 \le j \le 4}$ est définie par $a_{ij} = j i$.
- 2. Soient les vecteurs $v_1 = (-2,9,6)$, $v_2 = (-3,2,1)$ et $v_3 = (1,7,5)$. Existe-t-il des réels $\alpha_1, \alpha_2, \alpha_3$ tels que

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0$$
?

Si oui, donnez les tous. Expliquez votre démarche et détaillez vos calculs.

3. Soient les systèmes (S) et (S') définis par

(S)
$$\begin{cases} x + 2\pi^{-1}y + 3z = 0 \\ \pi x + ey + \pi z = 0 \end{cases}$$
 (S')
$$\begin{cases} -x - 2\pi^{-1}y - 3z = 0 \\ (e - 2)y - 2\pi z = 0 \end{cases}$$

Sans les résoudre, montrez que les systèmes (S) et (S') sont équivalents.

4. Pour quelle(s) valeur(s) des paramètres $a,b,c,d \in \mathbb{R}$, le vecteur (1,2,3,4) est-il solution du système

$$\begin{cases} ax_1 + bx_2 + cx_3 + dx_4 = 0\\ 2ax_1 + bx_2 - 3dx_4 = 0\\ -3ax_1 - 2bx_2 + 5cx_3 - dx_4 = 0. \end{cases}$$

Expliquez votre démarche.

5. Soient les systèmes suivants, notés respectivement (S) et (S'):

(S)
$$\begin{cases} a_1x + a_2y = a_3 \\ b_1x + b_2y = b_3 \end{cases}$$
 et
$$(S') \begin{cases} -3a_1x - 3a_2y = -3a_3 \\ (a_1 + b_1)x + (a_2 + b_2)y = a_3 + b_3 \end{cases}$$

où, pour tout $i \in \{1,2,3\}$, $a_i,b_i,c_i \in \mathbb{R}$. Montrez que si (α,β) est solution du système (S'), alors (α,β) est aussi solution du système (S).

- 6. Soit la fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^3 + ax^2 + bx + c$ où a,b,c sont des paramètres réels. Pour quelle(s) valeur(s) de a,b,c le graphe de f passe-t-il par les points (1,4), (2,15) et (3,40)? Expliquez votre raisonnement et détaillez vos calculs.
- 7. Résolvez le système suivant

$$\begin{cases} x_1 + x_2 + 2x_3 = 8 \\ -x_1 - 2x_2 - 3x_3 = 1 \\ 3x_1 - 7x_2 + 4x_3 = 10. \end{cases}$$

8. Résolvez le système suivant

$$\begin{cases} 5x_1 + 3x_2 + 2x_3 = 4 \\ 3x_1 + 3x_2 + 2x_3 = 2 \\ x_2 + x_3 = 5. \end{cases}$$

1

- 9. Soit la matrice $A = \begin{pmatrix} 1 & \lambda + 1 & 1 \\ 1 & \lambda & \lambda \\ \lambda & \lambda & 1 \end{pmatrix}$ où λ est un paramètre réel.
 - (a) Calculez le déterminant de A.
 - (b) Soit le système

$$\begin{pmatrix} 1 & \lambda + 1 & 1 \\ 1 & \lambda & \lambda \\ \lambda & \lambda & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ \lambda \\ 2\lambda \end{pmatrix}$$

où $\lambda \in \mathbb{R}$. Résolvez ce système uniquement dans le cas où le déterminant de la matrice A est nul. Expliquez la méthode que vous utilisez et détaillez vos calculs.

10. Montrez qu'il existe un unique polynôme de degré au plus 3, $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$ tel que p(1) = 1, p(2) = 15, p(3) = 51 et $\partial_x p(-1) = 11$.