CS 412 Introduction to Machine Learning

K nearest neighbors

Instructor: Wei Tang

Department of Computer Science
University of Illinois at Chicago
Chicago IL 60607

https://tangw.people.uic.edu tangw@uic.edu

Slides credit: Sargur N. Srihari, Noah Snavely

Regression vs Classification

Regression vs Classification

- In Regression we assign input vector x to one or more continuous target variables t
 - Linear regression has simple analytical and computational properties
- In *Classification* we assign input vector x to one of K discrete classes C_k , k = 1, ..., K
 - Common classification scenario: classes considered disjoint
 - Each input assigned to only one class
 - Input space is thereby divided into decision regions

Boundaries of decision regions

Boundaries are called decision boundaries or decision surfaces

Linear Classification Models

- Decision surfaces are linear functions of input x
 - Defined by (D −1) dimensional hyperplanes within D dimensional input space

Data sets whose classes can be separated exactly by linear decision surfaces are said to be Linearly separable

Representing the target in Classification

- In regression:
 - target variable t is a real number (or vector of real numbers
 t) which we wish to predict
- In classification:
 - there are various ways of using target values to represent class labels, depending on whether
 - Model is probabilistic
 - Model is non-probabilistic

Representing Class in Probabilistic Model

- Two class: Binary representation is convenient
 - Discrete $t \in \{0, 1\}$, t = 1 represents C_1 ,
 - t = 0 means class C_2
 - Can interpret value of t as probability that class is C₁
 - Probabilities taking only extreme values of 0 and 1
- For K > 2: Use a 1-of-K coding scheme
 - − t is a vector of length K
 - Eg. if K = 5, a pattern of class 2 has $\mathbf{t} = (0, 1, 0, 0, 0)^T$
 - Value of t_k interpreted as probability of class C_k
 - If t_k assume real values then we allow different class probabilities

Three Approaches to Classification

1. Non-probabilistic models

- Directly assign x to a specific class
 - E.g., K nearest neighbor

2. Probabilistic Models

- Discriminative approach
 - Model $p(C_k|x)$ in *inference* stage (direct)
 - Use it to make optimal decisions
 - E.g., Logistic Regression
- Generative approach
 - Model class-conditional density $p(x|C_k)$
 - Together with $p(C_k)$ use Bayes rule to compute posterior
 - E.g., Naive Bayes classifier

Probabilistic Models: Generative/Discriminative

- Model $p(C_k|x)$ in an *inference* stage and use it to make optimal decisions
- Approaches to computing the $p(C_k|x)$
 - 1. Generative
 - Model class conditional densities by $p(x \mid C_k)$ together with prior probabilities $p(C_k)$
 - Then use Bayes rule to compute posterior

$$p(C_{k} | \mathbf{x}) = \frac{p(\mathbf{x} | C_{k})p(C_{k})}{p(\mathbf{x})}$$

2. Discriminative

• Directly model conditional probabilities $p(C_k|x)$

Regression to Classification

- Linear Regression: model prediction y (x,w) is a linear function of parameters w
 - In simple case model is also a linear function of x
 - Thus has the form $y(x) = w^{T}x + w_0$ where y is a real no.
- Classification: we need to predict class labels or posterior probabilities in range (0,1)
 - For this, we use a generalization where we transform the linear function of w using a nonlinear function f(.), so that

$$y(\mathbf{x}) = f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0)$$

• f(.) is known as an activation function

Decision surface of linear classifier

• Decision surfaces of $y(x)=f(w^Tx+w_0)$ correspond to y(x)=constant or $w^Tx+w_0=$ constant

Distribution of data from two classes

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

K-Nearest Neighbor (KNN) Classifier

Non-parametric pattern classification approach

For a given query point q, assign the class of the nearest neighbor

k = 1

Compute the k nearest neighbors and assign the class by <u>majority vote</u>.

k = 3

Nearest Neighbor is competitive

MNIST Digit Recognition

- Handwritten digits
- 28x28 pixel images: d = 784
- 60,000 training samples
- 10,000 test samples

Yann LeCunn

Test Error F	
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

What is the best distance metric between data points?

- Typically Euclidean distance
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_N - y_N)^2}$$
 Euclidean

$$D(m{x},m{y}) = rac{m{x}\cdotm{y}}{\|m{x}\|\|m{y}\|} = rac{x_1y_1+\cdots+x_Ny_N}{\sqrt{\sum_n x_n^2}\sqrt{\sum_n y_n^2}}$$
 Cosine

Choice of distance metric

Hyperparameter

L1 (Manhattan) distance

L2 (Euclidean) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

Two most commonly used special cases of p-norm

$$\left|\left|x\right|\right|_p = \left(\left|x_1\right|^p + \dots + \left|x_n\right|^p\right)^{\frac{1}{p}} \qquad p \geq 1, x \in \mathbb{R}^n$$

CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels 50,000 training images 10,000 test images.

automobile
bird
cat
deer
dog
frog
horse
ship
truck

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify

Hyperparameters

- What is the best distance to use?
- What is the best value of k to use?

i.e., how do we set the hyperparameters?

- Very problem-dependent
- Must try them all and see what works best

Try out what hyperparameters work best on test set.

Trying out wha	t hyperparameters	work best on test set:
----------------	-------------------	------------------------

Very bad idea. The test set is a proxy for the generalization performance! Use only **VERY SPARINGLY**, at the end.

train data	test data

Validation

Validation data

use to tune hyperparameters evaluate on test set ONCE at the end

Cross-validation

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

Pros

simple yet effective

Cons

- search is expensive (can be sped-up)
- storage requirements
- difficulties with high-dimensional data

kNN -- Complexity and Storage

N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)