

ME 313: Mechanical Design Week 9

What are Gears?

Rotating machines with cut teeth or cogs to transmit torque

Type of Gears

Internal vs External Gears

While most gears we use are usually external gears, there are still some uses for internal gears

Dr. Sappinandana Akamphon

Type of Gears

Spur gears

Bevel gears

Type of Gears (cont)

Helical gears

Double helical gears

Dr. Sappinandana Akamphon

Type of Gears (cont)

Crown Gears

Worm Gear

Pressure Angle

- Angle of gear surface compared to pitch circle tangent line
- Typical values are 20 and 25 degrees

Dr. Sappinandana Akamphon

Mating Two Gears

- Two mating gears must have the same circular pitches
- They also must have the same pressure angles

Fundamentals of Gear Motion

$$\frac{\omega_1}{\omega_2} = \frac{r_2}{r_1} = \frac{D_2}{D_1}$$

 Gear angular velocity ratio is dependent on gear pitch radius ratio

Dr. Sappinandana Akamphon

Force Transmission

$$W_{t} = F \cos \phi$$
$$W_{a} = F \sin \phi$$

- Force transmitted in gear is dependent on the pressure angle, φ
 - where F is the total reaction force

Torque Transmission

Only the tangential force transmit torque and power

$$T = \frac{D}{2}W_{t}$$

ightharpoonup If pitch line velocity is v, then power, P, is

$$P = W_t v$$
$$= T \omega$$

Dr. Sappinandana Akamphon

Bevel Gear

• Aside from pressure angle ϕ , bevel gear is also defined by angle of pitch surface, γ

Force Analysis—Bevel Gears

Assume that the forces were concentrated at the midpoint of the tooth

$$W_t = \frac{T}{r_{av}}$$

 r_{av} is the pitch radius at midpoint

Force acting on the tooth have three components: axial, radial, and tangential

$$W_r = W_t \tan \phi \cos \gamma$$
$$W_a = W_t \tan \phi \sin \gamma$$

Dr. Sappinandana Akamphon

Helical Gears

• Defining angles are pressure angle ϕ and helix angle ψ

Force Analysis—Helical Gear

▶ Point of force is at the middle of the gear face

 $W_r = W \sin \phi$

 $W_t = W \cos \phi \cos \psi$

 $W_a = W \cos \phi \sin \psi$

Dr. Sappinandana Akamphon

Worm Gears

- Defining angles are pressure angle ϕ and helix angle λ
- Additionally, worm and pinion surfaces are always sliding
 - Friction becomes an important factor
- Worm gears are not 100% efficient

Force Analysis—Worm Gears

Directions are relative to the worm

$$W_{x} = W(\cos\phi\sin\lambda + \mu\cos\lambda)$$

$$W_{y} = W\sin\phi$$

 $W_z = W(\cos\phi\cos\lambda - \mu\sin\lambda)$

Efficiency

$$\eta = \frac{\cos\phi - \mu\tan\lambda}{\cos\phi + \mu\cot\lambda}$$

