

Campo Magnético

1.- Una carga puntual $q=2\times 10^{-2}~\mu C$ tiene una masa $m=6\times 10^{-6}g$. La carga se mueve con una velocidad constante ${\bf v}=4\times 10^2~{\rm m/s}~{\hat {\bf i}}$ y entra en una región del espacio en la que existe un campo magnético constante ${\bf B}=5\times 10^{-3}~{\rm T}$ ${\hat {\bf j}}$. Determinar a) La fuerza magnética que se ejerce sobre sobre la carga. b) Determinar la trayectoria descrita por la carga.

Solución: a) $\mathbf{F} = 4 \times 10^{-2} \ \mu \text{N} \ \hat{\mathbf{k}}$. b) Una circunferencia de radio $R = 2.4 \times 10^3 \ \text{m}$.

2.- Un electrón (carga $q \approx 1.6 \times 10^{-19}~C$ y masa $m = \approx 9.11 \times 10^{-31}~kg$) es acelerado con una diferencia de potencial $\Delta V = 200$ voltios. Inmediatamente después, penetra en una región del espacio en la que existe un campo magnético estático B = 10~G. Si al entrar en la región donde existe el campo la velocidad es perpendicular a B, determinar el radio de la trayectoria circular descrita por la carga.

Solución: $R \approx 0.048 \ m$.

3.- Una carga $q=1\times 10^{-9}$ C y masa $m=8\times 10^{-21}$ kg penetra con una velocidad $v=2\times 10^8$ m/s por el punto P en una región con un campo magnético \vec{B} perpendicular al papel y hacia adentro (zona de color gris en la figura). a) Determinar qué intensidad debe tener \vec{B} para que la carga vuelva a la primera región por un punto Q situado a una distancia de 50 cm de P. b) Razona si el punto Q estará localizado por encima o por debajo del punto P.

Solución: B = 64 G.

4.- Un conductor rectilíneo de longitud L=40~cm transporta una corriente I=7~A y forma un ángulo $\theta=27^o$ con un campo magnético uniforme $\mathbf{B}=1.2~T$ $\hat{\mathbf{i}}$. Determinar la fuerza magnética \mathbf{F} sobre el conductor.

Solución: $\mathbf{F} = -1.52 \ N \ \hat{\mathbf{k}}$.

5.- Un conductor está compuesto por dos tramos rectilíneos de longitud L unidos entre sí por un tercer tramo de forma semicircular de radio R. Por el conductor circula una corriente I y el conjunto está inmerso en el seno de un campo magnético uniforme $\mathbf{B} = B \hat{\mathbf{k}}$ perpendicular al plano definido por el conductor. Determinar la fuerza magnética \mathbf{F} sobre el conductor.

Solución: a) $\mathbf{F} = -2IB(L+R) \hat{\mathbf{j}}$.

6.- Sobre una varilla conductora de longitud L=250~mm perpendicular a un campo magnético $\mathbf{B}=340~mT~\hat{\mathbf{k}}$ actúa una fuerza de 2.2~mN. Determinar qué corriente pasa por la varilla.

Solución: $I = 26 \ mA$.

7.- Una varilla conductora cilíndrica de densidad ρ y sección A, está situada perpendicular a un campo magnético \mathbf{B} según muestra figura. Sus extremos están conectados por alambres flexibles por los que se hace circular una corriente cuyo valor I hace que la fuerza magnética contrarreste el peso de la varilla. Calcular el valor de la corriente en función de ρ , A, la aceleración g de la gravedad y \mathbf{B} .

Solución: $I = \rho A g/B$.

8.- Un conductor está compuesto por dos tramos de forma semicircular de radio R unidos según la figura. Por el conductor circula una corriente I y el conjunto está inmerso en el seno de un campo magnético uniforme $\mathbf{B} = B \hat{\mathbf{k}}$ perpendicular al plano definido por el conductor. Determinar la fuerza magnética \mathbf{F} sobre el conductor.

Solución: $\mathbf{F} = -4IRB\,\hat{\mathbf{j}}$.

9.- Moldeamos un hilo conductor de longitud $\mathcal S$ de forma que responde a la siguiente función:

$$S = \{(x, y) \mid y = a \sin(2\pi x/L)\}.$$

Por el conductor circula una corriente I y el conjunto está inmerso en el seno de un campo magnético uniforme $\mathbf{B} = B \hat{\mathbf{k}}$ perpendicular al plano definido por el conductor. Determinar la fuerza magnética \mathbf{F} sobre el conductor.

Solución: $\mathbf{F} = -BIL \hat{\mathbf{j}}$.

10.- Una bobina rectangular de lados a=8 cm y b=10 cm por la que circula una corriente de I=50 mA se halla contenida en el plano y-z. La bobina tiene 800 espiras y se encuentra inmersa en un campo magnético uniforme $\mathbf{B}=(0.5\ \hat{\mathbf{i}}+0.3\ \hat{\mathbf{j}})$ T. Determinar: a) El módulo del momento magnético μ de la bobina. b) El módulo del momento τ de la fuerza que actúa sobre la bobina.

Solución: a) $\mu = 0.32 \ Am^2$. b) $\tau = 9.6 \times 10^{-2} \ Nm$.

11.- Un motor eléctrico sencillo consta de una bobina circular de radio R=15~mm y 100 vueltas por la que pasa una corriente I=65~mA y que está inmersa en un campo magnético uniforme ${\bf B}=23~mT$ $\hat{\bf k}$. En un cierto instante el vector área ${\bf S}$ forma un ángulo $\theta=25^o$ con el campo magnético según la figura. La bobina puede girar alrededor de un eje O perpendicular a ${\bf S}$ y a ${\bf B}$ que pasa por su centro. a) Determinar el valor, dirección y sentido del momento τ . b) Calcular valor, dirección y sentido de τ si se invierte la corriente.

Solución: a) $\tau=4.5\times 10^{-5}~N.m$ e induce una rotación antihoraria. b) Obtenemos el mismo momento pero la rotación será horaria.

12.- Una bobina circular de radio R=15~cm tiene 100 vueltas y por ella circula una corriente de I=250~mA. La bobina puede girar alrededor de un eje perpendicular a un campo magnético uniforme de 0.40 T, como se indica en la figura. Calcular el momento de la fuerza magnética sobre la bobina cuando el ángulo θ que forma su vector área con el campo es a) $\theta=60^{o}$, b) $\theta=90^{o}$ y c) $\theta=120^{o}$

Solución: a) $6.1 \times 10^{-1} \ N \cdot m$, b) $7.1 \times 10^{-2} \ N \cdot m$, c) $6.1 \times 10^{-1} \ N \cdot m$.

13.- Determinar el campo magnético creado en cualquier punto P del espacio por un alambre recto infinito por el que circula una corriente I.

Solución: $B = \frac{\mu_o I}{2\pi R}$, siendo R la distancia del punto P al alambre.

14.- Dos alambres largos y rectos separados una distancia $D=240 \ mm$ entre sí, transportan corrientes $I_1=20 \ A$ e $I_2=30 \ A$ en el mismo sentido. a) Calcular el campo magnético creado por estos alambres en un punto P del plano de los alambres, equidistante de ambos. b) Suponiendo que se invierte el sentido de I_2 , determinar B en el mismo punto.

Solución: a) $B \approx 1.7 \times 10^{-5} \ T$ hacia afuera del plano; b) $B \approx 8.3 \times 10^{-5} \ T$ hacia adentro del plano.

15.- Dos alambres largos y rectos paralelos entre sí, transportan igual corriente I en sentidos opuestos según la figura. Calcular el campo magnético creado por estos alambres en el punto P de la figura.

Solución: $B = \mu_o I/(2 \pi a)$ hacia la derecha.

16.- Una corriente I=8 A pasa por dos alambres largos, rectos y paralelos, unidos entre sí por un tramo rectangular de alambre, según la figura. Determinar el campo magnético en el punto P.

Solución: $B = 226 \ \mu T$ hacia adentro (negativo).

17.- Una corriente I=15~A pasa por dos alambres largos, rectos y paralelos, unidos entre sí por un alambre semicircular de radio R=20~cm, según la figura. Determinar el campo magnético en el punto P.

Solución: $B = 23.6 \ \mu T$ hacia adentro (negativo).

18.- Se tienen dos hilos conductores rectos, paralelos e infinitos, separados una distancia d=30 cm. Por el conductor 1 circula una corriente eléctrica de intensidad I_1 conocida hacia la derecha como indica la figura. Por el conductor 2 sabemos que circula una cierta corriente I_2 . Si una carga eléctrica q viaja en el plano definido por los hilos en línea recta y con velocidad constante v según el dibujo, determinar el valor de la intensidad de corriente I_2 .

Solución: $I_2 = 2I_1$.

19.- Un cilindro conductor macizo y largo de radio R transporta una corriente I que está uniformemente distribuida por toda su sección. Determinar el campo magnético en un punto separado una distancia r del eje del cilindro cuando: a) r < R, b) r > R.

Solución: a) $B = \mu_o I r / 2\pi R^2$. b) $B = \mu_o I / 2\pi r$.

20.- Un cilindro conductor hueco y largo transporta una corriente I que está uniformemente distribuida por toda su sección. Determinar el campo magnético en un punto separado una distancia r del eje del cilindro cuando: a) $r \le a$, b) $a \le r \le b$, y c) $r \ge b$.

Solución: a) B = 0. b) $B = \mu_o I(r^2 - a^2)/((2\pi r(b^2 - a^2))$. c) $B = \mu_o I/2\pi r$

21.- En la figura se muestra un cable coaxial largo. Por ambos conductores circula una misma intensidad I pero en sentidos opuestos. Determinar el campo magnético en un punto separado una distancia r del eje del cable cuando: a) $r \le a$, b) $a \le r \le b$, c) $b \le r \le c$ y d) $r \ge c$.

Solución: a) $B = -\mu_o Ir/(2 \pi a^2)$ (B gira en sentido horario). b) $B = -\mu_o I/(2 \pi r)$ (B gira en sentido niversidad de La horario). c) $B = -\mu_o I/(2 \pi r) + \mu_o I(r^2 - b^2)/((2 \pi r)(c^2 - b^2))$. d) B = 0.

22.- Problema de examen

El segmento conductor de la figura (a=3 cm, b=4 cm) transporta una corriente I=1.8 A y se encuentra en el interior de campo magnético ${\bf B}=1.2$ T k. La fuerza total ${\bf F}$ que actúa sobre el conductor es:

a)
$$\mathbf{F} = (0.086 \ \mathbf{i} - 0.065 \mathbf{j}) \ \mathbf{N}$$

b)
$$\mathbf{F} = (8.6 \ \mathbf{i} - 6.5 \mathbf{j}) \ \text{N}$$

c)
$$\mathbf{F} = (-0.086 \ \mathbf{i} + 0.065 \mathbf{j}) \ \text{N}.$$

d)
$$\mathbf{F} = (0.065 \ \mathbf{i} - 0.086 \ \mathbf{j}) \ N.$$

23.- Problema de examen

Dos conductores muy largos y paralelos están separados una distancia L. Si la corriente $I_1 = I$ es hacia fuera e $I_2 = I$ es hacia fuera también, el campo magnético $\mathbf B$ que crean ambos conductores en el punto P es:

Física Ap

a)
$$\mathbf{B} = \frac{\mu_o I}{2\pi L} \left(-\frac{3\mathbf{i}}{2} + \frac{\mathbf{j}}{2} \right)$$

b)
$$\mathbf{B} = \frac{\mu_o I}{2\pi L} \left(-\frac{\mathbf{i}}{2} + \frac{3\mathbf{j}}{2} \right)$$

c)
$$\mathbf{B} = \frac{\mu_o I}{2\pi L} \left(\frac{3\mathbf{i}}{2} - \frac{\mathbf{j}}{2} \right)$$

d)
$$\mathbf{B} = \frac{\mu_o I}{2\pi L} \left(-\frac{\mathbf{i}}{2} - \frac{3\mathbf{j}}{2} \right)$$

24.- Problema de examen

Una espira triangular de lados iguales de longitud L (un triángulo equilátero) está situada en el plano x-y. La espira es recorrida por una corriente I con el sentido que indica la figura. Un campo magético $\mathbf{B} = B$ \mathbf{k} constante según el eje z cruza la espira. La fuerza total \mathbf{F} que ejerce el campo sobre la espira es:

a)
$$\mathbf{F} = I L B (\sqrt{3}\mathbf{i} + 2\mathbf{j}) N$$

b)
$$\mathbf{F} = I \ L \ B \ (-\sqrt{3}\mathbf{i} + 2\mathbf{j}) \ N$$

c)
$$F = 0 N$$

d)
$$\mathbf{F} = I \ L \ B \ (-\sqrt{3}\mathbf{i} - 2\mathbf{j}) \ N$$

25.- Problema de examen

Una corteza cilíndrica infinitamente larga de radio interior $a=2\ cm$ y radio exterior $b=5\ cm$ transporta una corriente $I=100\ A$ que está uniformemente distribuida por toda su sección transversal. Sabemos que el campo magnético ${\bf B}$ que crea esta corriente es siempre tangente a cualquier circunferencia concéntrica de radio r. El módulo B del campo magnético en $r=3\ cm$ es igual a:

a)
$$B \approx 0.015873 \ G$$
.

b)
$$B \approx 6.6667 \ G$$
.

c)
$$B \approx 0.0667 G$$
.

d)
$$B \approx 1.5873 G$$
.

UNIVERSIDAD DE LA RIOJA

26.- Problema de examen

Una varilla metálica de longitud $L=10~{\rm cm}$ y masa $m=10~{\rm g}$, está colgada a modo de péndulo de dos alambres conectados a sus extremos por los que se hace circular una corriente $I=1~{\rm A}$ que también atraviesa la varilla. Se sabe que la varilla está inmersa en un campo magnético ${\mathcal B}$ constante según la dirección del eje z. Además, en el equilibrio los alambres de los que pende la varilla forman un ángulo $\theta=30^o$ con la vertical (eje z). Con estos datos y según el dibujo, el valor y el sentido de ${\mathcal B}$ son:

b)
$$B \approx 0.577$$
 T según el eje z negativo.

c)
$$B \approx 1.732$$
 T según el eje z negativo.

d)
$$B \approx 1.732$$
 T según el eje z negativo.

27.- Problema de examen

Una espira está formada por dos arcos circulares concéntricos y dos rectas radiales perpendiculares, como muestra la figura. Si definimos el eje z como la dirección perpendicular al plano de la espira, el campo magnético \mathbf{B} en el centro P cuando por la espira circula la corriente I=1 A es:

a)
$$B \approx 7.85 \times 10^{-7}$$
 T según el eje z positivo (hacia afuera).

b)
$$B \approx 2.36 \times 10^{-6}$$
 T según el eje z negativo (hacia dentro).

c)
$$B \approx 7.85 \times 10^{-7}$$
 T según el eje z negativo (hacia dentro).

d)
$$B \approx 2.36 \times 10^{-6}$$
 T según el eje z positivo (hacia afuera).

28.-Problema de examen

Un condensador de placas plano-paralelas está cargado según la figura de forma que entre sus placas hay una diferencia de potencial $\Delta V=100~V$. La separación entre las placas es de d=1~cm. Perpendicular la papel, está aplicado un campo magnético uniforme \vec{B} que abarca la región sombreada de la figura. Desde la fuente se lanza un electrón entre las placas del condensador con una velocidad $v_o=10^7~m/s$.

- a) Calcular la intensidad y el sentido del campo magnético aplicado para que el electrón no se desvíe durante su viaje por el interior del condensador. (0.5 puntos)
- b) Calcular el radio de la trayectoria circular descrita por el electrón cuando éste abandona el condensador por la rendija P. (0.5 puntos)

Datos: carga del electrón $q \approx -1.6 \times 10^{-19}~C$; masa del electrón $m \approx 9.1 \times 10^{-31}~kg$.

