CS241 – 09 Thanks for the Heap Memory!

Where is the heap stored in process memory? (And why is it so far away from the stack?)

void* malloc(unsigned int numbytes) {
 // sbrk increases the process's data
segment by n bytes
 void* ptr = sbrk(numbytes);
 if(ptr == (void*) -1)
 return NULL; // no memory for you!
 return ptr;
}
void free(void*mem) { /* do nothing */}

What is (was) sbrk?

What are the challenges of writing malloc?

How do I store the linked list of allocated blocks and holes?

What is calloc and realloc?

Placement Strategies - Best Fit. Worst Fit. First Fit Allocaction

Suppose the heap is managed with a linked list. Each node in the list is either allocated or free. The list is sorted by address. When malloc() is called, the list is searched for a free segment that is big enough (depending on the allocation algorithm), that segment is divided into an allocated segment (at the beginning) and a free segment. When free() is called, the corresponding segment should merge with its neighboring segments, if they are also free. A process has a heap of 13KB, which is initially unallocated. During its execution, the process issues the following memory allocate/de-allocate calls (pa... pe are void* pointers). In all cases, break ties by choosing the earliest segment. Also, assume all algorithms allocate memory from the beginning of the free segment they choose.

```
pA = malloc(3KB)

pB = malloc(4KB)

pC = malloc(3KB)

free(pB)

pD = malloc(3KB)

free(pA)

pE = malloc(1KB)
```

For simplicity, assume the memory begins at address 0, and ignore the memory used by the linked list itself. Show the heap allocation after the above calls, using best-fit, worst-fit and first-fit algorithms respectively.

Rost	Fit.
Desi	r II.

0K	1K	2K	3K	4K	5K	6K	7K	8K	9K	10K	11K	12K
							Star	ting addr	ess of nD)= K	and nF:	= K
							Star	ting addi	C33 01 pD	, K	and pL	
Worst	Fit:											
0K	1K	2K	3K	4K	5K	6K	7K	8K	9K	10K	11K	12K
							Ct.	. 11	C D	17	1 5	17
							Starting address of pD = K and pE =					
First 1	Fit:											
0K	1K	2K	3K	4K	5K	6K	7K	8K	9K	10K	11K	12K
	•	•		•	•	•	•	•	•	•	•	•
							Start	ting addre	ess of nD	= K	and nE	=K

What is Fragmentation? What happens if heap memory is severely fragmented?

Best Fit outcome?

Worst Fit outcome?

First Fit outcome?