Decentralization Induced by Power System Flexibility:

A Multi-Regional Optimization Framework for Assessing Energy Transition Scenarios

Théotime Coudray¹ and Sandrine Michel¹

¹Université de Montpellier, UMR 5281 ART-Dev

1 Introduction

- 1.1 Motivation
- 1.2 Contributions
- 1.3 Paper outline

2 Methodology

We develop a multi-regional flexibility optimizer that solves a two-stage Mixed-Integer Linear Program (MILP) to coordinate generation, storage, demand response, and inter-regional power flows. The model accounts for technical constraints and economic costs defined at the regional level, and uses dual analysis to derive marginal price signals.

2.1 Model Formulation

Let \mathcal{R} denote the set of regions and \mathcal{T} the set of hourly time steps. For each $(r,t) \in \mathcal{R} \times \mathcal{T}$:

• C are the costs associated with each flexibility option;

- $g_k^{r,t}$ is the dispatch of technology k in region r at time t;
- ullet $c_s^{r,t}$ and $d_s^{r,t}$ are the charge and discharge from storage unit s;
- $f^{r \to r',t}$ is the power flow from region r to r';
- $dr^{r,t}$ is the net demand response (positive = reduction);
- $soc_s^{r,t}$ is the state of charge of storage unit s;
- binary variables $z^{r,t}$ activate DR flexibility if required.

The primal problem is written:

$$\min_{\mathbf{x}, \mathbf{y} \in \{0,1\}} \quad \sum_{r,t} \left[\sum_{k} C_k^r \cdot g_k^{r,t} + \sum_{s} \left(C_s^{\text{charge}} \cdot c_s^{r,t} + C_s^{\text{discharge}} \cdot d_s^{r,t} \right) + C^{\text{DR}} \cdot |dr^{r,t}| + \sum_{r' \neq r} C_{r \rightarrow r'}^{\text{flow}} \cdot f^{r \rightarrow r',t} \right]$$

$$\tag{1}$$

2.2 Constraint Structure

C1. Regional energy balance (per r, t):

$$\sum_{k} g_k^{r,t} + \sum_{s} d_s^{r,t} + \sum_{r' \neq r} (1 - \ell_{r' \to r}) f^{r' \to r,t} = L^{r,t} + \sum_{s} c_s^{r,t} - dr^{r,t}$$
 (2)

where $L^{r,t}$ is the exogenous residual demand and $\ell_{r'\to r}$ are distance-based losses.

C2. Generation bounds (per tech k):

$$0 \le g_k^{r,t} \le G_k^r \tag{3}$$

C3. Storage dynamics:

$$soc_s^{r,t} = soc_s^{r,t-1} + \eta_s^{\text{charge}} \cdot c_s^{r,t} - \frac{d_s^{r,t}}{\eta_s^{\text{discharge}}} - \gamma_s \cdot soc_s^{r,t-1}$$

$$\tag{4}$$

with optional cyclical constraint:

$$soc_s^{r,T} = soc_s^{r,0} \tag{5}$$

C4. Storage power and energy limits:

$$0 \le c_s^{r,t} \le C_s^{\max}, \quad 0 \le d_s^{r,t} \le D_s^{\max}, \quad 0 \le soc_s^{r,t} \le SOC_s^{\max}$$
 (6)

C5. Transport (flow) limits:

$$0 \le f^{r \to r', t} \le F_{r \to r'}^{\max} \tag{7}$$

C6. Demand response:

$$|dr^{r,t}| \le \alpha_r \cdot L^{r,t}$$
 (instantaneous limit) (8)

$$\sum_{t} dr^{r,t} = 0 \quad \text{(net-zero over horizon)} \tag{9}$$

$$dr^{r,t} = dr^{r,t,+} - dr^{r,t,-}, \quad dr^{r,t,+}, dr^{r,t,-} \ge 0$$
(10)

C7. Ramping limits:

$$|g_k^{r,t} - g_k^{r,t-1}| \le \rho_k \cdot G_k^r \tag{11}$$

2.3 Dual Variables and LP Relaxation

After solving the MILP, we freeze $\mathbf{y} = \mathbf{y}^*$ and relax the integrality constraints to obtain a Linear Program. Solving the LP yields:

- $\lambda_{r,t}$: the shadow price of (2), interpreted as the regional marginal cost of electricity (nodal price);
- μ : duals on capacity constraints, including line flow limits, storage power bounds, and DR ceilings.

These multipliers enable a comparison between actual operational cost and marketbased nodal valuation.

2.4 Implementation

The model is implemented in Python using PuLP. Constraints and cost parameters are dynamically built from a YAML configuration file, and post-processing scripts (in Jupyter) extract time-series of costs and marginal prices for visualisation and comparison.

2.5 Data Sources

The model relies on empirical data from publicly available platforms and national reports:

- Electricity demand profiles are retrieved from the $ODR\acute{E}$ platform¹, which provides hourly regional consumption series for mainland France.
- Renewable generation profiles (solar and wind) also come from ODRÉ.
- Installed capacities, flexibility parameters, and costs assumptions are informed by official literature, including regional energy planning documents and technical reports from RTE (*Réseau de Transport d'Électricité*), such as the "Panorama régional de l'électricité" series.

All time series are processed and aggregated to half-hourly resolution.

2.6 Parameterization

All technical and economic parameters used in the simulation are loaded from a master configuration file in YAML format. This file defines cost coefficients, technology characteristics, demand response (DR) potentials, storage efficiencies, and grid transfer capacities for each region.

Table 1 summarizes the key values employed in the full-year simulation.

¹https://opendata.reseaux-energies.fr

Table 1: Selected parameters used in the model

Parameter	Value / Description
Generation costs	Hydro: €30/MWh, Nuclear: €40/MWh, Gas: €80/MWh, Coal: €90/MWh, Biofuel: €70/MWh
Demand response cost	€120/MWh (penalty for activation)
Storage costs	Charge: €35/MWh, Discharge: €50/MWh
Flow cost	€35/MWh (for inter-regional exchange)
Slack	Slack penalty: €50,000/MWh
Storage efficiencies	Charge: 90%, Discharge: Batteries: 85%, STEP: 90%, self-discharge (batteries): 19.2% per 30min
DR limits	Max shift: 5% of load, max energy shifted: up to $10,000$ MWh depending on region
Ramp rates	Nuclear: 5%, Hydro: 90%, Gas: 80%, Coal: 30%, Biofuel: 15% (per 30min step)
Min nuclear share	15% of total generation capacity per timestep
Flow loss factor	0.025% per km between regions
Storage initialisation	${\rm Initial~SOC}=50\%$
Transport capacity	Up to 5000 MW between regions

Formal proof: market payments exceed operational cost

Notation.

X	continuous decision variables: dispatch, (dis)charging,
	DR, flows,
$\mathbf{y} \in \{0, 1\}$	non-convex variables (unit commitment, DR flags)
$\mathbf{c}^{\top}\mathbf{x}$	<pre>linear cost function (regional tariffs from config_master.yaml)</pre>
$\mathbf{A}\mathbf{x} = \mathbf{b},$	balance, capacity and loss constraints
$\mathbf{G}\mathbf{x} \leq \mathbf{h}$	
λ	Lagrange multipliers of regional balance equations — nodal prices
$\mu\!\ge\!0$	multipliers of capacity constraints (lines, DR, storage, \dots)
$Z_{ m MILP}$	optimal value of the original MILP ("operational cost")
$P = \sum_{t,r} \lambda_{t,r} D_{t,r}$	market payment, with $D_{t,r}$ the exogenous net demand.

1. From the MILP to a "fixed" LP

Solve the MILP

$$\min_{\mathbf{x},\mathbf{y} \in \{0,1\}} \ \mathbf{c}^{\top}\mathbf{x} \quad \mathrm{s.t.} \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{G}\mathbf{x} \leq \mathbf{h},$$

obtaining $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$ and Z_{MILP} .

Freeze $\mathbf{y} = \mathbf{y}^*$ and drop integrality; the problem becomes a linear programme

$$\boxed{(LP_{fix})} \ \min_{\mathbf{x}} \ \mathbf{c}^{\top}\mathbf{x} \quad \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{G}\mathbf{x} \leq \mathbf{h}.$$

Because $(\mathbf{x}^*, \mathbf{y}^*)$ is feasible,

$$Z_{\rm LP} \leq Z_{\rm MILP}$$
.

2. Strong duality for $(LP_{\rm fix})$

The dual reads

$$\max_{\boldsymbol{\lambda},\;\boldsymbol{\mu} \geq \mathbf{0}} \; \boldsymbol{\lambda}^{\top} \mathbf{b} + \boldsymbol{\mu}^{\top} \mathbf{h} \quad \text{s.t. } \mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{G}^{\top} \boldsymbol{\mu} \; = \; \mathbf{c}.$$

Strong duality gives

$$Z_{\rm LP} = \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{b} + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}. \tag{1}$$

3. Link with market payment

By definition $P = \boldsymbol{\lambda}^{\top} \mathbf{b}$, so (1) becomes

$$Z_{\rm LP} = P - \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}. \tag{2}$$

Since $\mu \geq 0$ and $\mathbf{h} - \mathbf{G}\mathbf{x} \geq \mathbf{0}$, we have $\mu^{\top}\mathbf{h} \geq 0$.

4. Fundamental inequality

Combining $Z_{LP} \leq Z_{MILP}$ with (2),

$$\boxed{Z_{\text{MILP}} \leq P - \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h} < P}.$$

Hence the market payment is always at least as large as the true operational cost. The gap decomposes as

$$P - Z_{\mathrm{MILP}} = \underbrace{\boldsymbol{\mu}^{\top} \mathbf{h}}_{\mathrm{congestion} \ \& \ \mathrm{flexibility} \ \mathrm{rents}} + \underbrace{(Z_{\mathrm{LP}} - Z_{\mathrm{MILP}})}_{\mathrm{non-convexity} \ \mathrm{penalty}},$$

which is strictly positive whenever at least one capacity constraint binds $(\boldsymbol{\mu}^{\top}\mathbf{h} > 0)$ or non-convexities are present $(Z_{\text{LP}} < Z_{\text{MILP}})$.

Q.E.D. This establishes rigorously that the operational (co-optimised) approach yields lower total costs than the price-based market settlement in our model.