Intervalo dalijimo pusiau metodas

- 1. $x_m = (a+b)/2$, L = b a, skaičiuojame $f(x_m)$;
- 2. $x_1 = a + L/4$, $x_2 = b L/4$, skaičiuojame $f(x_1)$ ir $f(x_2)$;
- 3. jei $f(x_1) < f(x_m)$, tai:
 - 3.1 atmetamas $(x_m, b]$ atliekant keitimą $b = x_m$;
 - 3.2 intervalo centru tampa x_1 , tad keičiamas $x_m = x_1$;
 - 3.3 einama į 6 punktą
- 4. jei $f(x_2) < f(x_m)$, tai:
 - 4.1 atmetamas $[a, x_m)$ atliekant keitimą $a = x_m$;
 - 4.2 intervalo centru tampa taškas x_2 , tad keičiama $x_m = x_2$;
 - 4.3 einama į 6 punktą
- 5. priešingu atveju $(f(x_1) \ge f(x_m) \text{ ir } f(x_2) \ge f(x_m))$:
 - 5.1 atmetami intervalai $[a, x_1)$ ir $(x_2, b]$ atliekant keitimus $a = x_1$ ir $b = x_2$;
- 6. skaičiuojamas L = b a; jei L pakankamai mažas, skaičiavimus baigiame, jei ne einame j 2 punktą.

Auksinio pjūvio algoritmas

- 1. L = b a, $x_l = b \tau L$ ir $x_r = a + \tau L$, skaičiuojame $f(x_l)$ ir $f(x_r)$;
- 2. jei $f(x_r) < f(x_l)$, tai:
 - 2.1 atmetamas $[a, x_l)$ atliekant keitimą $a = x_l, L = b a$;
 - 2.2 kairiuoju tašku tampa ankstesnis dešinysis taškas $x_l = x_r$;
 - 2.3 naujasis dešinysis taškas $x_r = a + \tau L$, skaičiuojame $f(x_r)$;
- priešingu atveju:
 - 3.1 atmetamas $(x_r, b]$ atliekant keitimą $b = x_r, L = b a$;
 - 3.2 dešiniuoju tašku tampa ankstesnis kairysis taškas $x_r = x_l$;
 - 3.3 naujasis kairysis taškas $x_l = b \tau L$, skaičiuojame $f(x_l)$;
- 4. jei L pakankamai mažas, skaičiavimus baigiame, jei ne einame į 2 punktą.

$$\tau^2 = 1 - \tau$$
, $\tau = (-1 \pm \sqrt{5})/2 = 0.61803...$

