

Tópicos de matemática II: Revisão de Cálculo vetorial

Prof. André L. A. dos Reis

Objetivos da aula

- * Revisar e definir operações envolvendo dois vetores
- * Definir a norma euclidiana entre dois vetores
- * Operações de derivação e o gradiente de um vetor
- * Expansão em séries de Taylor com notação vetorial

Operações com vetores

O que é um vetor?

Um segmento orientado de reta que possui um módulo, direção e sentido

Axiomas de espaço vetorial:

Comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Associatividade: (u + v) + w = u + (v + w)

Vetor nulo: $\mathbf{u} + \mathbf{0} = \mathbf{u}$

Inverso aditivo: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Distributividade: $(a + b) \mathbf{v} = a \mathbf{v} + b \mathbf{v}$ ou $a (\mathbf{u} + \mathbf{v}) = a \mathbf{u} + a \mathbf{v}$

Multiplicação por 1: 1.v = v

Definição 1:

Um vetor **x** com M elementos é uma matriz de uma coluna e M linhas

tinhas
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} \qquad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_M \end{bmatrix}$$

Produto escalar:

Se um vetor **u** com M elementos for multiplicado por outro vetor **v** com com M elementos, teremos

Produto escalar:

Se um vetor **u** com M elementos for multiplicado por outro vetor **v** com com M elementos, teremos

$$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \dots & u_M \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{bmatrix}$$
(M x 1)

Produto escalar:

Se um vetor **u** com M elementos for multiplicado por outro vetor **v** com com M elementos, teremos

$$\mathbf{u}^T\mathbf{v} = u_1v_1 + u_2v_2 + \ldots + u_Mv_M$$

Propriedades do produto escalar:

Comutatividade: $\mathbf{u}^{\mathsf{T}} \mathbf{v} = \mathbf{v}^{\mathsf{T}} \mathbf{u}$

Distributividade:
$$(\mathbf{u} + \mathbf{v})^{\mathsf{T}} \mathbf{w} = \mathbf{u}^{\mathsf{T}} \mathbf{w} + (\mathbf{v}^{\mathsf{T}} \mathbf{w})$$

Vetor nulo: $\mathbf{u}^{\mathsf{T}} \mathbf{0} = \mathbf{0}$

Multiplicação por escalar: $(a\mathbf{u}^T)\mathbf{w} = a(\mathbf{u}^T\mathbf{w})$

Norma Euclidiana:

Se um vetor **u** com M elementos for multiplicado por ele mesmo, então o tamanho (o módulo) deste vetor será dado por:

$$\|\mathbf{u}\|_{2}^{2} = (\mathbf{u}^{T}\mathbf{u})^{1/2} = (u_{1}^{2} + u_{2}^{2} + \dots + u_{M}^{2})^{1/2}$$

Denota-se por: || . ||₂

A norma Euclidiana de um vetor, ou somente a norma L-2 de um vetor.

Distância entre dois vetores:

A distância entre um vetor **u** com M elementos e um vetor **v** com M elementos é dada por :

$$\|\mathbf{u} - \mathbf{v}\|_2^2 = [(\mathbf{u} - \mathbf{v})^T (\mathbf{u} - \mathbf{v})]^{1/2}$$

A norma Euclidiana desta operação nos dará a distância entre estes dois vetores.

Derivadas e gradientes de um conjunto de funções

Definição 2:

Dado um conjunto de N funções, o vetor **f(x)** de funções será igual a :

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_N(\mathbf{x}) \end{bmatrix}$$

Definição 3:

A derivada de um vetor de funções f(x) em relação ao i-ésimo elemento do vetor x é igual a :

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_i} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_i} \\ \frac{\partial f_2(\mathbf{x})}{\partial x_i} \\ \vdots \\ \frac{\partial f_N(\mathbf{x})}{\partial x_i} \end{bmatrix}$$

Definição 4:

O operador gradiente em relação ao vetor x de N elemento é igual a :

$$\nabla = \mathbf{J} = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_N} \end{bmatrix}$$

Definição 5:

O operador Hessiana em relação ao vetor x de N elemento é igual a :

$$\nabla \nabla^{T} = \mathbf{H} = \begin{bmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}} & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2}}{\partial x_{N} \partial x_{1}} \\ \frac{\partial^{2}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2}}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}}{\partial x_{N} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial x_{1} \partial x_{N}} & \frac{\partial^{2}}{\partial x_{2} \partial x_{N}} & \cdots & \frac{\partial^{2}}{\partial x_{N} \partial x_{N}} \end{bmatrix}$$

Exemplos de aplicações

M	elementos	e o	vetor	f(x)	com	N	elemer	ıtos

A seguir calcularemos as derivadas, o gradiente e a Hessiana

para diversos casos. Portanto, considere que o vetor **x** contém

Começando pelas derivadas....

Exemplo 1:

Seja f(x) = x, em que x é um vetor com matriz M elementos. Demonstre que:

$$\partial_{x_j} \mathbf{f}(\mathbf{x}) = \mathbf{u}_j$$

Exemplo 2:

Seja $f(x) = a^T x = x^T a$, em que a é um vetor com N elementos. Demonstre que:

$$\partial_{x_j} \mathbf{f}(\mathbf{x}) = \mathbf{a}^T \mathbf{u}_j$$

Exemplo 3:

Seja f(x) = Ax, em que A é uma matriz N x M. Demonstre que:

$$\partial_{x_j} \mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{u}_j$$

Exemplo 4:

Seja $f(x) = x^T A^T$, em que A é uma matriz N x M. Demonstre que:

$$\partial_{x_j} \mathbf{f}(\mathbf{x}) = \mathbf{u}_j^T \mathbf{A}^T$$

Exemplo 5:

Seja $f(x) = x^T A^T A x$, em que A é uma matriz $N \times M$. Demonstre que:

$$\partial_{x_j} \mathbf{f}(\mathbf{x}) = 2\mathbf{u}_j^T \mathbf{A}^T \mathbf{A} \mathbf{x}$$

Os gradientes...

Exemplo 6:

Seja $f(x) = a^T x = x^T a$, em que a é um vetor com N elementos. Demonstre que:

$$\mathbf{J}[\mathbf{f}(\mathbf{x})] = \mathbf{a}$$

Exemplo 7:

Seja $f(x) = x^T A^T A x$, em que A é uma matriz $N \times M$. Demonstre que:

$$\mathbf{J}[\mathbf{f}(\mathbf{x})] = 2\mathbf{A}^T \mathbf{A} \mathbf{x}$$

A Hessiana...

Exemplo 8:

Seja $f(x) = x^T A^T A x$, em que A é uma matriz $N \times M$. Demonstre que:

$$\mathbf{H}[\mathbf{f}(\mathbf{x})] = 2\mathbf{A}^T\mathbf{A}$$

Expansão em séries de Taylor

Do que se trata uma expansão em série de Taylor?

Representar uma determinada função em torno de um ponto x₀ por soma em série de funções.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

^{*}em funções de uma variável.

Do que se trata uma expansão em série de Taylor?

Podemos expandir esta representação para uma notação em que temos mais de uma variável, expandindo em torno de $\mathbf{x} = \mathbf{x}_0 + \Delta \mathbf{x}$

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + \mathbf{J}^T(\mathbf{x}_0) \mathbf{\Delta} \mathbf{x}$$

*Até primeira ordem.

Do que se trata uma expansão em série de Taylor?

Podemos expandir esta representação para uma notação em que temos mais de uma variável, expandindo em torno de $\mathbf{x} = \mathbf{x}_0 + \Delta \mathbf{x}$

expandindo em torno de
$$\mathbf{x} = \mathbf{x}_0 + \Delta \mathbf{x}$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + \mathbf{J}^T(\mathbf{x}_0) \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}_0) \Delta \mathbf{x}$$

*Até segunda ordem.

Objetivos da aula

- * Revisar e definir operações envolvendo dois vetores
- * Definir a norma euclidiana entre dois vetores
- * Operações de derivação e o gradiente de um vetor
- * Expansão em séries de Taylor com notação vetorial

Até breve!