PLP - 37

TOPIC 37—PROOF BY CONTRADICTION — EXAMPLES

Demirbaş & Rechnitzer

EXAMPLES

NO INTEGER SOLUTIONS

PROPOSITION:

There are no integers a, b so that 2a + 4b = 1.

Scratchwork:

- ullet The negation is $\exists a,b\in\mathbb{Z}$ s.t. 2a+4b=1
- If we assume the result is false, then we have some a,b so that 2a+4b=1
- ullet But dividing this by 2 gives $a+2b=rac{1}{2}$
- ullet This cannot happen, since $a,b\in\mathbb{Z}$ we must have $a+2b\in\mathbb{Z}$
- Contradiction!

PROOF

There are no integers a,b so that 2a+4b=1.

PROOF.

- Assume, to the contrary, that the result is false
- ullet So there are $a,b\in\mathbb{Z}$ so that 2a+4b=1
- ullet Dividing this by 2 gives $a+2b=rac{1}{2}$
- However this cannot happen since the sum of integers is an integer
- Hence there cannot be such integers a,b and so the result holds.

NO INTEGER SOLUTIONS #2

PROPOSITION:

There are no integers a,b so that $a^2-4b=3$

Scratchwork

- ullet Assume, to the contrary, that we can find $a,b\in\mathbb{Z}$ with $a^2-4b=3$
- ullet Write as $a^2=3+4b$ and notice that the RHS is odd, so the LHS must also be odd
- But this means that a is odd (we proved this!)
- Hence we can write a=2k+1 and so we have

$$a^2 = a^2 - 4b = (2k+1)^2 - 4b = 4k^2 + 4k + 1 - 4b = 4(k^2 + k - b) + 1$$

ullet This implies that $3\equiv 1 mod 4$ — contradiction!

PROOF

There are no integers a,b so that $a^2-4b=3$

PROOF.

Assume, to the contrary that there are integers a,b so that $a^2-4b=3$.

Rewrite this as $a^2=4b+3$. Since the RHS is odd, the LHS must be odd, and consequently a is odd. So write a=2k+1 for some $k\in\mathbb{Z}$.

Then notice that

$$3 = a^2 - 4b = 4(k^2 + k - b) + 1$$

which implies that $3\equiv 1 \bmod 4$ which is a contradiction. Thus the result follows.

IRRATIONAL NUMBERS

DEFINITION:

Let q be a real number.

• We say that q is rational if we can write it $q=rac{a}{b}$ with $a,b\in\mathbb{Z}$ and b
eq 0.

$$\exists a \in \mathbb{Z} ext{ s.t. } \exists b \in \mathbb{Z} - \{0\} ext{ s.t. } q = rac{a}{b}$$

• We say that q is irrational when it is not rational.

$$orall a \in \mathbb{Z}, orall b \in \mathbb{Z} - \left\{0
ight\}, q
eq rac{a}{b}$$

• To denote the set of irrational numbers use $\mathbb{I} = \mathbb{R} - \mathbb{Q}$.

IRRATIONAL EXAMPLE

PROPOSITION:

If $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ then $x + y \in \mathbb{I}$.

Scrathwork

- ullet Assume negation: $\exists x \in \mathbb{Q} ext{ s.t. } \exists y \in \mathbb{I} ext{ s.t. } x + y
 otin \mathbb{I}$
- But since $x,y\in\mathbb{R}$ we know $x+y\in\mathbb{R}$, so we have $x+y\in\mathbb{Q}$
- Now since $x,(x+y)\in\mathbb{Q}$, we can write x=a/b and (x+y)=c/d with $a,b,c,d\in\mathbb{Z}$.
- ullet But this means $y=(x+y)-x=rac{c}{d}-rac{a}{b}=rac{bc-ad}{bd}\in\mathbb{Q}^{-1}$
- So we have $y \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ contradiction!

PROOF

If $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ then $x + y \in \mathbb{I}$.

PROOF.

Assume, to the contrary, that there is $x\in\mathbb{Q}$ and $y\in\mathbb{I}$ so that $x+y\in\mathbb{Q}$.

This implies that $x=rac{a}{b}$ and $(x+y)=rac{c}{d}$ with $a,b,c,d\in\mathbb{Z}$ and b,d
eq 0 .

From this we see that $y=(x+y)-x=rac{c}{d}-rac{a}{b}=rac{bc-ad}{bd}$ and hence $y\in\mathbb{Q}$.

This contradicts our assumption that $y \in \mathbb{I}$, and so the result follows.