

Mensch-Roboter-Interaktion

Kinematik – Teil IV DH-Parameter

WiSe 2022/2023
Prof. Dr.-Ing. Hannes Höppner

Transformationen: Homogene Transformation

Berechnung der Transformation von der Basis bis zum Endeffektor mit einer kompakten Matrix, welche Rotationen und Translationen abbildet

Rotationsmatrix Translationsvektor

$$\boldsymbol{H} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & v_{x} \\ r_{21} & r_{22} & r_{23} & v_{y} \\ r_{31} & r_{32} & r_{33} & v_{z} \end{bmatrix} \qquad \begin{pmatrix} x_{neu} \\ y_{neu} \\ z_{neu} \\ 1 \end{pmatrix} = \boldsymbol{H} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$= f \left(v_x, v_y, v_z, \alpha, \beta, \gamma \right) \qquad \text{6 Parameter zur Definition von Lage und Orientierung zweier Roboterachsen?}$$

$$\begin{pmatrix} x_{neu} \\ y_{neu} \\ z_{neu} \\ 1 \end{pmatrix} = \boldsymbol{H} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Denavit Hartenberg Konvention (klassisch)

Festlegung der Achsen

Ursprung der zweiten Achse in Schnittpunkt Normale von z₁ mit z₀ legen; x₁ entspricht Kreuzprodukt von z₁ mit z₀

Ausrichtung der xy-Ebene der ersten Achse kann frei gewählt werden → nach Struktur ausrichten; hat Einfluss auf Ausrichtung nachfolgender Frames

6 Parameter zur Definition von Lage und Orientierung zweier Roboterachsen?

Geht das auch mit weniger?

Denavit-Hartenberg-Transformation Einführung von Zwangsbedingung:

- 1. z-Achsen definieren die Gelenkachsen (Rotationsrichtung beachten; Right-Hand-Rule)
- \rightarrow 2. die x_i-Achsen stehen senkrecht auf den z_{i-1}-Achsen des vorigen Gelenks $(x_i = z_i \times z_{i-1})$
- → gewisse Wahlfreiheit bleibt erhalten; durch sinnvolle Festlegungen können DH-Parameter gezielt auf 0 gesetzt werden

Berliner Hochschule für Technik Studiere Zukunft

Mensch-Roboter-Interaktion Prof. Dr.-Ing. Hannes Höppner

Denavit Hartenberg Konvention (klassisch)

UR5					
Kinematics	theta [rad]	a [m]	d [m]	alpha [rad]	
Joint 1	0	0	0.089159	π/2	
Joint 2	0	-0.425	0	0	
Joint 3	0	-0.39225	0	0	
Joint 4	0	0	0.10915	π/2	
Joint 5	0	0	0.09465	-π/2	
Joint 6	0	0	0.0823	0	

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

Y_{i-1} X_{i-1}

Denavit-Hartenberg-Transformation

- 1. Drehung um die z_{i-1} -Achse um θ_i
- 2. Verschiebung entlang der z_{i-1} -Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

Denavit-Hartenberg-Transformation

- 1. Drehung um die z_{i-1}-Achse um θ_i
- 2. Verschiebung entlang der z_{i-1} -Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

Denavit-Hartenberg-Transformation

- 1. Drehung um die z_{i-1} -Achse um θ_i
- 2. Verschiebung entlang der z_{i-1}-Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

Denavit-Hartenberg-Transformation

- 1. Drehung um die z_{i-1} -Achse um θ_i
- 2. Verschiebung entlang der z_{i-1} -Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

\mathbf{z}_{i} \mathbf{v}_{i} $\mathbf{\alpha}_{i}$

Denavit-Hartenberg-Transformation

- 1. Drehung um die z_{i-1} -Achse um θ_i
- 2. Verschiebung entlang der z_{i-1} -Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

- 1. Drehung um die z_{i-1} -Achse um θ_i
- 2. Verschiebung entlang der z_{i-1} -Achse um d_i
- 3. Verschiebung entlang der x_i -Achse um r_i
- 4. Drehung um die x_i -Achse um α_i

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

$$R_{x_{i},\alpha_{i}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$/\cos \theta_{i} - \sin \theta_{i} & 0 & 0 \rangle$$

$$R_{z_{i-1},\theta_i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{z_{i-1},d_i} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_i \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 $T_{x_i,r_i} = egin{pmatrix} 1 & 0 & 0 & r_i \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$

$$\boldsymbol{T_{i}^{i-1}} = \begin{pmatrix} \cos\theta_{i} & -\sin\theta_{i}\cos\alpha_{i} & \sin\theta_{i}\sin\alpha_{i} & r_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\theta_{i}\cos\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} & r_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \underbrace{f(\theta_{i},d_{i},r_{i},\alpha_{i})}_{DH-Parameter}$$

Denavit-Hartenberg-Konvention – Wozu?

Joint	a (m)	d (m)	α (rad)	θ (rad)
Joint 1	0	0.333	0	$ heta_1$
Joint 2	0	0	$-\frac{\pi}{2}$	$ heta_2$
Joint 3	0	0.316	$\frac{\pi}{2}$	$ heta_3$
Joint 4	0.0825	0	$\frac{\pi}{2}$	$ heta_4$
Joint 5	-0.0825	0.384	$-\frac{\pi}{2}$	$ heta_5$
Joint 6	0	0	$\frac{\pi}{2}$	$ heta_6$
Joint 7	0.088	0	$\frac{\pi}{2}$	$ heta_7$
Flange	0	0.107	0	0

$$\boldsymbol{T_{i}^{i-1}} = \boldsymbol{R_{z_{i-1},\theta_{i}}} \cdot \boldsymbol{T_{z_{i-1},d_{i}}} \cdot \boldsymbol{T_{x_{i},r_{i}}} \cdot \boldsymbol{R_{x_{i},\alpha_{i}}}$$

$$\boldsymbol{T_{i}^{i-1}} = \begin{pmatrix} \cos\theta_{i} & -\sin\theta_{i}\cos\alpha_{i} & \sin\theta_{i}\sin\alpha_{i} & r_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\theta_{i}\cos\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} & r_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_n = \operatorname{Rot}_{x_{n-1}}(lpha_{n-1}) \cdot \operatorname{Trans}_{x_{n-1}}(a_{n-1}) \cdot \operatorname{Rot}_{z_n}(heta_n) \cdot \operatorname{Trans}_{z_n}(d_n)$$

$$T_n = egin{bmatrix} \cos heta_n & -\sin heta_n & 0 & a_{n-1} \ \sin heta_n\coslpha_{n-1} & \cos heta_n\coslpha_{n-1} & -\sinlpha_{n-1} \ \sin heta_n\sinlpha_{n-1} & \cos heta_n\sinlpha_{n-1} & \coslpha_{n-1} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

A NOTE ON DENAVIT-HARTENBERG NOTATION IN ROBOTICS

HARVEY LIPKIN

Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332-0405 harvey.lipkin@me.gatech.edu

- → z-Achsen definieren die Gelenkachsen (Rotationsrichtung beachten; Right-Hand-Rule)
- \rightarrow die x_i-Achsen stehen senkrecht auf den z_{i-1}-Achsen des vorigen Gelenks (x_i = z_i x z_{i-1})

i	θ_i	d_i	r_i	α_i
1				
2				
3				

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

Keine Verschiebung in z

i	θ_i	d_i	r_i	α_i
1		0		
2		0		
3		0		
3				

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

Übung $\boldsymbol{\mathcal{O}}_1$ Berliner Hochschule für Technik Mensch-Roboter-Interaktion Studiere Zukunft Prof. Dr.-Ing. Hannes Höppner z-Achse zeigt aus Ebene raus (keine Rotationen um x)

Keine Verschiebung in z

i	θ_i	d_i	r_i	α_i
1		0		0
2		0		0
3		0		0
				'

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

$$T_3^B = T_1^B \cdot T_2^1 \cdot T_3^2$$

	i	θ_i	d_i	r_i	α_i
T_1^B	1	$\boldsymbol{\theta}_1$	0	l_1	0
T_2^1	2	$\boldsymbol{\theta}_2$	0	l_2	0
T_3^2	3	$\boldsymbol{\theta}_3$	0	l ₃	0

$$T_i^{i-1} = R_{z_{i-1},\theta_i} \cdot T_{z_{i-1},d_i} \cdot T_{x_i,r_i} \cdot R_{x_i,\alpha_i}$$

Übung

Homogene Transformation

Übung

VS.

Berliner Hochschule für Technik Studiere Zukunft

Ende.

WiSe 2022/2023 Prof. Dr.-Ing. Hannes Höppner

