Generation of Pragmatic Information of Minimalistic Agents and Self-Organization

Frank Schweitzer

Institute of Physics, Humboldt University Berlin $\rm http://summa.physik.hu-berlin.de/^frank/$

Schedule of this talk:

- 1. Different Aspects of Information
- 2. Complex vs. Minimalistic Agents
- 3. Example: Biological Aggregation
- 4. Example: Biological Trail Formation
- 5. Conclusions

Aspects of Information

• physics: structural aspects

 \Rightarrow information entropy: $H = -\sum\limits_{i=1}^{s} p_i \ln p_i$ relation to statistical entropy: $S = k_B H$

• informatics: algorithms

 \Rightarrow information distribution, formal relations

• biology: information processing

 \Rightarrow free information \Leftrightarrow bound information ritualization, creation of codes

• communication: meaning

 \Rightarrow semantics, semiotics, pragmatics

Structural Information

- \bullet represents the $structural\ determination$ of a system state
- \bullet measures the content of information, as given by the material structure
- ullet structural information transformed into symbolic sequences
- analysed by means of different measures (e.g. conditional or dynamic entropies, transinformation etc.)

Slide 3

Functional Information

- \bullet activates and interprets the existing structural information (e.g. algorithm)
- ullet is related to $semantic\ aspects$
- \bullet contextual relations \Rightarrow information depends on the situation of the recipient
- represents the self-referentiality and the operational closure of the system

"Quantum Mechanics of Information Theory":

- \bullet state of a micro-object is constituted by the process of measuring
- \Rightarrow the recipient creates information during the process of reception

Purpose of functional information: to transfer structural into pragmatic information.

Pragmatic Information

• measures the effect of information for the recipient

- "classical" view: ranges between primordiality and confirmation
- problems: initial information?, static state space?

evolutionary point of view:

Pragmatic information is generated by an interplay of structural and functional information.

 \Rightarrow new insight into the concept of pragmatic information: must be steadily re-generated (otherwise, it disappears $\ldots)$ pragmatic information is not an invariant of evolution, but

Complex Agent

- \bullet autonomous; knowledge based / behavior based rules
- \bullet performs complex actions: BDI, rational choices, ...
- specialization, learning, genetic evolution, ...
- 1. Problem: information flow
- "rational agent" (economics):
- complete knowledge of all possible actions and their outcomes (or known probability distribution over outcomes)
- common knowledge assumtion
- 2. Problem: combinatoric explosion of the state space: 1000 Agents with 10 rules \Rightarrow 10^{13} possibilities
- Solution:

personally addressed interaction instead of "broadcasting" restrict interactions \Rightarrow control of information flow

• freedom: define rules and interactions $\Rightarrow pitfall$

Minimalistic Agent

- possible simplest set of rules ⇒ "sufficient" complexity (depends on the system considered)
- functional information:

structural information: simple algorithm, which is steadily repeated

- $pragmatic\ information: \Rightarrow$ effective information external information (data) received by the agent
- emerges from the processing of the data by the algorithm
- specific for each agent \Rightarrow enables actions, decisions

characteristics:

- mobility (active walker, active Brownian particle)
- action: agent generates local structural information
- internal degrees of freedom:
- \rightarrow choice between different algorithms
- \rightarrow sensitivity to particular structural information
- \rightarrow generation of different kind of information
- no deliberative actions, no specialization, no internal memory
- cooperative interaction instead of autonomous action

Example: Biological Aggregation

• widely spread phenomenon: cells, larvae, bacteria,

• based on chemical communication (chemotaxis)

• each "agent": transmits signals, receives signals

 \Rightarrow guides its movement accordingly

structural information:

• chemical markings on the surface

• (one-component) chemical field $h_0(\boldsymbol{r},t)$

• production, diffusion, decay

functional information: set of rules

(1) local check for gradients in the field

(2) local decision for the next step

(3) local production of markings

(4) movement to the new site \Rightarrow repeat (1)

ullet determine what $\mathbf{pragmatic}$ information the agent gets out of the existing structural information

 \Rightarrow decision for the next step

Slide 9

Schweitzer, F.; Schimansky-Geier, L.: Clustering of Active Walkers in a Two-Component System, *Physica A* **206**, (1994) 359-379

Communication

individual agent: acts locally

- receives structural information ("reading")
- generates structural information ("writing")
- action depending on pragmatic information

interaction between agents: indirect communication

- structural information ⇒ external "field"
- \rightarrow stores information generated by the agents (q)
- \rightarrow memory effect: information with a certain "life time" (τ)
- \rightarrow distribution: information diffuses (D) no restrictions for information flow (broadcasting) finite velocity of distribution
- \bullet consideration of local inhomogeneities
- \bullet different kind of information \to multi-component field
- \Rightarrow non-linear feedback between agents and information field

Slide 11

Schweitzer, F.; Schimansky-Geier, L.: Clustering of Active Walkers in a Two-Component System, $Physica\ A\ {\bf 206}, (1994)\ 359-379$

Example: Biological Trail Formation

biological phenomenon: \Rightarrow rather *complex*

- \bullet trail systems of ants, mice, hoofed animals, ... pedestrians
- \bullet reasons: searching and homing behavior, group interaction, effort savings
- mental capacities: geocentric and ecocentric navigation, "deliberative" movement

complex problem:

- \bullet search for unknown food sources
- \bullet *link* the sources found to the nest
- \bullet adapt the trail system in a changing environment
- 0
- ullet do not count on external information, guidance

agent model: \Rightarrow rather minimalistic

- \bullet two kinds of structural information: $\{-1;+1\}$
- \bullet functional information (algorithm) basically the same
- \bullet internal parameter $\theta_i = \{-1,0,+1\}$ determines:
- which structural information is processed
- \Rightarrow different kind of pragmatic information which structural information is generated
- level of sensitivity
- step-by-step increase of the agent's complexity: scouts, recruitment, death, ...

Formation of trails from a nest (middle) to a line of food at the top and the bottom of a lattice, (ac.) show the distribution of chemical component (+1), and (4:5) show the distribution of chemical component (+1), and (4:5) show the distribution of chemical component (+1). and (4:5) show the distribution of chemical component (+1). Time in simulation steps: (a), (d) t = 1.000, (b), (e) t = 5.000, (c), (f) t = 10.000.

Schweitzer, F.; Lao, K.; Family, F.: Active Random Walkers Simulate Trunk Trail Formation by Ants, $BioSystems~{\bf 41}~(1997)~153-166$

time steps, respectively.

Slide 17

Schweitzer, F.; Lao, K.; Family, F.: Active Random Walkers Simulate Trunk Trail Formation by Ants, *BioSystems* 41 (1997) 153-166

Conclusions

Minimalistic multi-agent system: two levels of description

agent's level:

- \bullet simplex not complex \Rightarrow "intermediate" complexity
- \bullet local response/changes of the environment
- \bullet internal degrees of freedom \Rightarrow variety of responses
- \bullet parallel independent actions coupled by information flow

system's level:

- \bullet emergence of complexity: autonomous "intelligent" system
- adaption to changes in the environment
- failure tolerant (single agents, external pertubations)
- \Rightarrow Reason: Self-Organization
- solutions result from the non-linear interaction boundary conditions (semi-structured environment)

characteristics of the approach:

- non-deterministic
- random events (fluctuations) play a considerable role
- \bullet non-finalistic
- final (global) solutions cannot be predicted from local interactions \Rightarrow solutions emerge \Rightarrow path dependent
- bottom-up approach: create a solution \Rightarrow self-organization top-down approach: design a solution \Rightarrow planning

Self-Organization

Self-organization is the process by which individual subunits achieve, through their cooperative interactions, states characterized by new, emergent properties transcending the properties of their constitutive parts.

Biebricher, C. K.; Nicolis, G.; Schuster, P.: Self-Organization in the Physico-Chemical and Life Sciences, EU Report 16546 (1995)

Self-organization is defined as spontaneous formation, evolution and differentiation of complex order structures forming in non-linear dynamic systems by way of feedback mechanisms involving the elements of the systems, when these systems have passed a critical distance from the statical equilibrium as a result of the influx of unspecific energy, matter or information.

SFB 230 "Natural Constructions", Stuttgart, 1984 - 1995