SEQUENCE LISTING

<110> Dehesh, Katayoon

<120> NUCLEIC ACID SEQUENCES ENCODING BETA KETOACYL-ACP SYNTHASE AND USES THEREOF

- <130> MTC 6796
- <150> US 60/220,702
- 2000-07-25 <151>
- <160> 6
- <170> PatentIn version 3.0
- <210> 1
- <211> 1275
- <212> DNA
- <213> Synechocystis sp.
- <400>

ggatccgcat gcatggcaaa tttggaaaag aaacgtgttg ttgtaacggg attgggagcc 60 atcacccca tcggtaatac tctccaagac tattggcaag gcttaatgga gggtcgtaac 120 ggcattggcc ccattacccg tttcgatgct agtgaccaag cctgccgttt tggaggggaa 180 gtaaaggatt ttgatgctac ccagtttctt gaccgcaaag aagctaaacg gatggaccgg 240 ttttgccatt ttgctgtttg tgccagtcaa caggcaatta acgatgctaa gttggtgatt 300 360 aacgaactca atgccgatga aatcggggta ttgattggca cgggcattgg tggtttgaaa gtactggaag atcaacaaac cattctgttg gataagggtc ctagccgttg cagtcctttt 420 atgatecega tgatgatege caacatggee tetgggttaa eegecateaa ettaggggee 480 aagggtccca ataactgtac ggtgacggcc tgtgcggcgg gttccaatgc cattggagat 540 gcgtttcgtt tggtgcaaaa tggctatgct aaggcaatga tttgcggtgg cacggaagcg 600 660 gccattaccc cgctgagcta tgcaggtttt gcttcggccc gggctttatc tttccgcaat 720 gatgatecee tecatgecag tegteeette gataaggace gggatggttt tgtgatgggg 780 gaaggatcgg gcattttgat cctagaagaa ttggaatccg ccttggcccg gggagcaaaa atttatgggg aaatggtggg ctatgccatg acctgtgatg cctatcacat taccgcccca 840 gtgccggatg gtcggggagc caccagggcg atcgcctggg ccttaaaaaga cagcggattg 900 aaaccggaaa tggtcagtta catcaatgcc catggtacca gcacccctgc taacgatgtg 960 acggaaaccc gtgccattaa acaggcgttg ggaaatcatg cctacaatat tgcggttagt 1020 totactaagt ctatgaccgg toacttgttg ggcggctccg gaggtatcga agcggtggcc 1080 accgtaatgg cgatcgccga agataaggta ccccccacca ttaatttgga gaaccccgac 1140 cctgagtgtg atttggatta tgtgccgggg cagagtcggg ctttaatagt ggatgtagcc 1200

1	2	6	0
1	2	7	5

ctatccaact cctttggttt tggtggccat aacgtcacct tagctttcaa aaaatatcaa tagaagcttg gatcc

<210>	2
<211>	416

<212> PRT

<213> Synechocystis sp.

<400> 2

Met Ala Asn Leu Glu Lys Lys Arg Val Val Val Thr Gly Leu Gly Ala 1 5 10 15

Ile Thr Pro Ile Gly Asn Thr Leu Gln Asp Tyr Trp Gln Gly Leu Met 20 25 30

Glu Gly Arg Asn Gly Ile Gly Pro Ile Thr Arg Phe Asp Ala Ser Asp 35 40 45

Gln Ala Cys Arg Phe Gly Gly Glu Val Lys Asp Phe Asp Ala Thr Gln 50 55 60

Phe Leu Asp Arg Lys Glu Ala Lys Arg Met Asp Arg Phe Cys His Phe 65 70 75 80

Ala Val Cys Ala Ser Gln Gln Ala Ile Asn Asp Ala Lys Leu Val Ile 85 90 95

Asn Glu Leu Asn Ala Asp Glu Ile Gly Val Leu Ile Gly Thr Gly Ile 100 105 110

Gly Gly Leu Lys Val Leu Glu Asp Gln Gln Thr Ile Leu Leu Asp Lys 115 120 125

Gly Pro Ser Arg Cys Ser Pro Phe Met Ile Pro Met Met Ile Ala Asn 130 135 140

Met Ala Ser Gly Leu Thr Ala Ile Asn Leu Gly Ala Lys Gly Pro Asn 145 150 155 160

Asn Cys Thr Val Thr Ala Cys Ala Ala Gly Ser Asn Ala Ile Gly Asp 165 170 175

Ala Phe Arg Leu Val Gln Asn Gly Tyr Ala Lys Ala Met Ile Cys Gly 180 185 190

Gly Thr Glu Ala Ala Ile Thr Pro Leu Ser Tyr Ala Gly Phe Ala Ser 195 200 205

Ala Arg Ala Leu Ser Phe Arg Asn Asp Asp Pro Leu His Ala Ser Arg 210 215 220

Pro Phe Asp Lys Asp Arg Asp Gly Phe Val Met Gly Glu Gly Ser Gly 225 230 235 240

Ile Leu Ile Leu Glu Glu Leu Glu Ser Ala Leu Ala Arg Gly Ala Lys 245 250 255

IIe	Tyr	GLY	260	Met	Val	GIY	Tyr	A1a 265	Met	Thr	Cys	Asp	A1a 270	Tyr	His		
Ile	Thr	Ala 275	Pro	Val	Pro	Asp	Gly 280	Arg	Gly	Ala	Thr	Arg 285	Ala	Ile	Ala		
Trp	Ala 290	Leu	Lys	Asp	Ser	Gly 295	Leu	Lys	Pro	Glu	Met 300	Val	Ser	Tyr	Ile		
Asn 305	Ala	His	Gly	Thr	Ser 310	Thr	Pro	Ala	Asn	Asp 315	Val	Thr	Glu	Thr	Arg 320		
Ala	Ile	Lys	Gln	Ala 325	Leu	Gly	Asn	His	Ala 330	Tyr	Asn	Ile	Ala	Val 335	Ser		
Ser	Thr	Lys	Ser 340	Met	Thr	Gly	His	Leu 345	Leu	Gly	Gly	Ser	Gly 350	Gly	Ile		
Glu	Ala	Val 355	Ala	Thr	Val	Met	Ala 360	Ile	Ala	Glu	Asp	Lys 365	Val	Pro	Pro		
Thr	Ile 370	Asn	Leu	Glu	Asn	Pro 375	Asp	Pro	Glu	Cys	Asp 380	Leu	Asp	Tyr	Val		
Pro 385	Gly	Gln	Ser	Arg	Ala 390	Leu	Ile	Val	Asp	Val 395	Ala	Leu	Ser	Asn	Ser 400		
Phe	Gly	Phe	Gly	Gly 405	His	Asn	Val	Thr	Leu 410	Ala	Phe	Lys	Lys	Tyr 415	Gln		
<210> 3 <211> 45 <212> DNA <213> Synechocystis sp.																	
< 400)> 3	3															
ggat	ccg	cat o	gcato	ggcaa	aa tt	tgga	aaaa	g aaa	acgt	gttg	ttgt	.a					45
<210 <211		4 38															
<212	2> [ANC	chocy	ystis	gs s												
<213> Synechocystis sp. <400> 4																	
ggatccaagc ttctattgat attttttgaa agctaagg 38									38								
<210 <211		5 33															
	<212> DNA <213> Cuphea hookeriana																
<400> 5																	
ctgagatctg tcgacatggc gaccgcttct cgc 33										33							
<210		5															
<211> 30																	
	<212> DNA <213> Cuphea hookeriana																