Yingru Liu

Research Scientist in Facebook Inc.

☑ liu2231665@hotmail.com • ② www.yingrliu.com

Research Interest

• Recurrent Neural Network, Probabilistic Graphical Models, Generative Models, Multi-task Learning

Education

Stony Brook University (SBU)

Stony Brook, NY, USA

Phd. in Computer Engineering

Aug. 2015-Jun. 2021 (expected)

Thesis: Sequential Deep Generative Models for Stochastic Modeling of High-Dimensional Sequential data

GPA: 3.71/4.00

Univ. of Electronic Sci. and Tech. of China (UESTC)

Chengdu, China

B.S. in Automation Engineering

Sep. 2011-Jun. 2015

Thesis: Dynamic Modeling and Adaptive Neural Network Control of 3-D Position Mooring System

GPA: 3.88/4.00

Industrial Experience

Facebook, New York, NY, USA

Jul. 2021 - Now

Research Scientist

• Worked with colleague on designing and deploying deep learning methodologies into real-world applications.

Facebook, Seattle, WA, USA

Jun. 2020 - Aug. 2020

Software Engineer Intern, Machine Learning (PhD)

• Worked with colleague on designing and deploying deep learning methodologies into real-world applications.

Tencent AI Lab, Shenzhen, China

Jun. 2019 - Aug. 2019

Research Summer Intern

- Implemented SC-FEGAN for free-form facial editing and a GUI for user interaction.
- Cooperated with colleagues on model acceleration for pix2pixHD-based 2D Broadcaster Synthesis.

Academic Experience

Wireless and Networking Systems Lab, Stony Brook, NY, USA Accurate, Scalable and Interpretable Deep Multi-task Learning

Aug. 2015 - May. 2021

- Proposed a scalable and accurate model named Task Adaptive Activation Network (TAAN) for Multi-Task Learning on multiple computer vision problems.
- Designed two regularization methods to automatically discover relation of multiple domains.
- Proved that TAAN has better interpretability and analytical properties than other methods.
- Empirical Evaluation shows that TAAN consistently outperform state-of-the-art Multi-Task Learning models and has extremely lower model complexity in large scale applications.

Generalized Boltzmann Machine with Deep Neural Structures

- Proposed a flexible and efficient approach called Normalizing Flow Restricted Boltzmann Machines (NF-RBMs) that scale Boltzmann machines to deeper representations.
- Implemented NF-RBMs by Tensorflow for density modeling and feature learning.
- Extended NF-RBMs for stochastic modeling on human motions and music streams.
- \bullet Our methods have up to 100% improvement than convetional RBMs in gray-scale image datasets.

Energy-based Recurrent Generative Model for Music Modeling

- Proposed an energy-based deep generative model called Chain-Graph Recurrent Neural Network (CGRNN) to efficiently and accurately model the dynamics of music, which is represented as MIDI or audio sound.
- Impremented state-of-art Recurrent Variational Autoencoders (STORN/VRNN/SRNN), Recurrent Boltzmann Machine (RNN-RBM) and baseline Autoregressive RNN by Tensorflow.
- Empirical Analysis demonstrates that the proposed model outperforms the state-of-the-art generative models on modeling high-dimensional multivariate music sequences. The performance improves up to 18%.

Brookhaven National Laboratory, Upton, NY, USA

Jan. 2020 - Apr. 2021

Machine Learning for Improving Reliability of Physical Optics Simulations

• design machine learning algorithms to automatically control the physical optics simulations.

Center for Robotics at UESTC, Chengdu, China

Sep. 2013 - July 2015

Adaptive Neural Network Control Design of a 3-D Position Mooring System

- Deducted the dynamic formulation of a 3-D positioon mooring system via Finite Element Method (FEM).
- Proposed a model-based robust and adaptive boundary controller by incorporating RBF Neural Nework.
- Proved of convergency of the proposed controller via Lyapunov's direct method.
- Conducted empirical evaluation on Matlab to demonstrate the control performance.

Adaptive Control of Offshore Ocean Thermal Energy Conversion System

- Developed an accurate dynamic modeling of an OTEC system via Hamilton's Principle.
- Proposed a model-based robust and adaptive boundary controller via Lyapunov's direct method.
- Conducted empirical evaluation on Matlab to demontrate the control performance.
- The proposed controller efficiently suppresses the vibration of OTEC system and fixes OTEC system to equilibrium position.

Skill

• Programming: Python, C/C++, Matlab

• ML Toolkits: Tensorflow, Pytorch, Scikit-Learn

Publications

Conference.....

- 1. X. Yang, H. Zhang, D. Jin, <u>Y. Liu</u>, C. Wu, J. Tan, D. Xie, J. Wang, X. Wang, "Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards," in 2020 European Conference on Computer Vision (ECCV 2020), Online, 2020
- 2. <u>Y. Liu</u>, X. Yang, D. Xie, X. Wang, L. Shen, H. Huang, N. Balasubramanian. "Adaptive Activation Network and Functional Regularization for Efficient Deep Multi-Task Learning," in *The 34rd AAAI Conference on Artificial Intelligence (AAAI-20)*, New York, US, 2020
- 3. X. Yang, Y. Liu, D. Xie, X. Wang, N. Balasubramanian. "Latent Part-of-Speech Sequences for Neural Machine Translation", in 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP 2019), Hong Kong, China, 2019.
- 4. <u>Y. Liu</u>, D. Xie, X. Wang, "Energy-based Recurrent Model for Stochastic Modeling of Music", in *IEEE International Conference on Multimedia and Expo (ICME 2019)*, Shanghai, China, 2019
- 5. <u>Y. Liu</u>, D. Xie, X. Wang, "Generalized Boltzmann Machine with Deep Neural Structure", in *The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)*, Okinawa, Japan, 2019
- 6. Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, S. He, "Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting", in *The 33rd AAAI Conference on Artificial Intelligence (AAAI-19)*, Hawaii, US, 2019
- 7. J. Li, H. Du, <u>Y. Liu</u>, K. Zhang, H. Zhou, "Extended Gradient Local Ternary Pattern for Vehicle Detection", in *IEEE 17th International Conference on Computational Science and Engineering (CSE)*, Chengdu, 2014

Journal
1. X. He, W. He, Y. Liu, Y. Wang, G. Li, Y. Wang, "Robust Adaptive Control of an Offshore Ocean Thermal Energy
Conversion System," in IEEE Transactions on Systems, Man, and Cybernetics: Systems