UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Report 9: MOS Characterization and Amplifiers

3.1.3 Approximately what criterion determines the boundary between saturation and triode?

3.1.4	Properties (Part 1)
	$g_m =$
	$r_o =$
	Region of Operation:
3.1.5	Properties (Part 2)
	$g_m =$
	$r_o =$
	Region of Operation:
3.2.1	Channel Length Modulation Factor
	$\lambda =$
3.2.3	Attach plot of $(I_D)^{\frac{1}{2}}$ vs. V_G .
3.2.4	Find K_n .
	$K_n =$
3.2.5	Find V_{TH} .
	$V_T =$
3.3.2	Identify the two amplifier stages.

Name:

Lab Section:

3.1.2 Attach your printout.

3.2.3	Find the DC bias of V_{IN} for maximum gain. Find the gain and output swing at this bias point.	What
	problems might we encounter with biasing exactly at the point of maximum gain?	

 $V_{IN} =$ $A_v =$

Output Voltage Swing:

3.3.4 What problems might we run into if the resistor were too big or too small?