1

Oxidación redución

• Estequiometría redox

- 1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga:
 - a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular.
 - b) Calcula o volume de ácido nítrico consumido.

Datos: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. extr. 19)

Rta.: a) 2 Br⁻(aq) + 2 NO₃(aq) + 4 H⁺(aq) \rightarrow Br₂(l) + 2 NO₂(g) + 2 H₂O(l);

 $2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}; b) V = 126 \text{ cm}^3 \text{ HNO}_3$

Datos Cifras significativas: 3

Masa de bromuro de sodio m(NaBr) = 100 gDisolución de ácido nítrico: densidade $\rho = 1,39 \text{ g/cm}^3$ riqueza r = 70,0 %

Masa molar do bromuro de sodio M(NaBr) = 103 g/molMasa molar do ácido nítrico $M(HNO_3) = 63.0 \text{ g/mol}$

Incógnitas

Volume de disolución de HNO₃ que reacciona

V

Solución:

a) Escríbense as semirreaccións iónicas:

Oxidación: $2 \text{ Br}^- - 2 \text{ e}^- \rightarrow \text{Br}_2$

Redución: $(NO_3)^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Obtense a ecuación iónica axustada multiplicando a segunda semirreacción por 2 e sumando:

$$2 Br^{-} + 2 (NO_3)^{-} + 4 H^{+} \rightarrow Br_2 + 2 NO_2 + 2 H_2O$$

Para obter a ecuación global, súmase a cada lado 2 Na⁺ e 2 (NO₃)⁻, e combínanse os ións para formar os compostos:

$$2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \longrightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

b) Calcúlase a cantidade de bromuro de sodio que hai en 100 g:

$$n=100$$
 g NaBr $\frac{1 \text{ mol NaBr}}{103 \text{ g NaBr}} = 0,972 \text{ mol NaBr}$

Calcúlase a cantidade de ácido nítrico necesaria para reaccionar con esa cantidade de bromuro de sodio, mirando a ecuación axustada da reacción:

$$n'=0,972 \text{ mol NaBr} \frac{4 \text{ mol HNO}_3}{2 \text{ mol NaBr}} = 1,94 \text{ mol HNO}_3$$

Calcúlase o volume de disolución ácido nítrico do 70 % e densidade 1,39 g/cm³ que contén esa cantidade:

$$V=1,94 \text{ mol HNO}_3 = \frac{63.0 \text{ g HNO}_3}{1 \text{ mol HNO}_3} = \frac{100 \text{ g D HNO}_3}{70.0 \text{ g HNO}_3} = \frac{1 \text{ cm}^3 \text{ D HNO}_3}{1,39 \text{ g D HNO}_3} = 126 \text{ cm}^3 \text{ D HNO}_3$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u>
As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>.
Para ir á folla onde resolver un problema de oxidación redución, pode elixir unha destas opcións:

- Busque a pestana Redox na zona inferior. Se non está á vista, pulse varias veces na icona ▶ da pestana A ▶ ▶ , situada na zona inferior esquerda, ata que apareza pola dereita a pestana
 Redox. Logo prema sobre esa pestana.
- Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Reaccións redox</u> de <u>Oxidación redución</u>.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. DATOS:

	Reactivos \rightarrow			•	Produtos				
	NaBr	HNO ₃		Br_2	NO ₂	NaNO ₃	H ₂ O		
Ca	lcular:	volume	disolución	HNO ₃	[HNO ₃] =	70	% masa		
					Densidade	1,39	g/cm³		
nec	cesarios	para reacciona	_						
	100	g		NaBr					
RESULTADOS:									
Ax	custe ión-ele	ctrón							
Ox	xidación	2 Br ⁻		$-2 e$ $^−$ \rightarrow	Br_2		×1		
Red	dución	$(NO_3)^-$	+ 2 H ⁺	+ e ⁻ →	NO ₂	+ H ₂ O	×2		
		2 Br ⁻	$+ 2 (NO_3)^-$	+ 4 $H^+ \rightarrow$	Br_2	+ 2 NO ₂	+ 2 H ₂ O		
Ecuación axustada:									
$2 \text{ NaBr} + 4 \text{ HNO}_3 \longrightarrow \text{Br}_2 + 2 \text{ NO}_2 + 2 \text{ NaNO}_3 + 2 \text{ H}_2\text{O}$									
	n(NaBr) =	0,972 mol			$n(HNO_3) =$	1,9	4 mol		
					$V(HNO_3) =$	120	6 cm³ (D)		

Electrólise

- 1. Durante a electrólise do cloruro de magnesio fundido:
 - a) Cantos gramos de Mg prodúcense cando pasan 8,80·10³ culombios a través da célula?
 - b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?
 - c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatura de 27 $^{\circ}$ C
 - d) Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo.

(P.A.U. set. 00)

Rta.: a)
$$m = 1,11$$
 g de Mg; b) $t = 159$ s; c) $V = 0,412$ dm³; d) ánodo: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$; cátodo: $\text{Mg}^{2+} + 2 \text{ e}^- \rightarrow \text{Mg}$.

Cifras significativas: 3 Datos $Q = 8.80 \cdot 10^3 \text{ C}$ Carga eléctrica que atravesa a célula (apdo. a) Masa de magnesio depositada (apdo. b) m(Mg) = 0.500 gIntensidade que atravesa a célula (apdo. b) I = 25,0 AGas cloro: p = 1,23 atmpresión $T = 27 \, ^{\circ}\text{C} = 300 \, \text{K}$ temperatura $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante dos gases ideais M(Mg) = 24.3 g/molMasa atómica do magnesio

Incógnitas

Masa de magnesio depositada cando pasan $8,80\cdot10^3$ C m(Mg)

Tempo que se tarda en depositar 0,500 g de magnesio

Volume de gas cloro desprendido V

Outros símbolos

Cantidade de sustancia (número de moles)

Solución:

a) Calcúlase a cantidade de electróns equivalente á carga de 8,80×10³ C:

$$n(e) = 8,80 \cdot 10^{3} \text{ C} \frac{1 \text{ mol e}}{9,65 \cdot 10^{4} \text{ C}} = 0,912 \text{ mol e}$$

A reacción no cátodo é:

$$Mg^{2+} + 2 e^{-} \longrightarrow Mg$$

n

Se calcula a masa de magnesio depositada, mirando a ecuación axustada da reacción:

$$m(Mg) = 0.0912 \text{ mol e } \frac{1 \text{ mol Mg}}{2 \text{ mol e}} \frac{24.3 \text{ g Mg}}{1.00 \text{ mol Mg}} = 1.11 \text{ g Mg}$$

b) Calcúlase a cantidade de magnesio que hai en 0,500 g

$$n(Mg)=0,500 \text{ g Mg} \frac{1,00 \text{ mol Mg}}{24,3 \text{ g Mg}}=0,0206 \text{ mol Mg}$$

Calcúlase a cantidade de electróns necesaria para que se deposite todo o magnesio, mirando a ecuación axustada da reacción:

$$n(e) = 0.0206 \text{ mol Mg} \frac{2 \text{ mol e}}{1 \text{ mol Mg}} = 0.0412 \text{ mol e}$$

Calcúlase a carga eléctrica equivalente:

$$Q = 0.041 \text{ 2mol } e \cdot \frac{9.65 \cdot 10^4 \text{ C}}{1 \text{ mol } e} = 3.98 \cdot 10^3 \text{ C}$$

Calcúlase o tempo coa expresión da intensidade:

$$I = \frac{Q}{t}$$
 $\Rightarrow t = \frac{Q}{I} = \frac{3.98 \cdot 10^3 \text{ C}}{25 \text{ A}} = 159 \text{ s}$

c) A reacción de electrólise é:

$$MgCl_2 \rightarrow Mg(s) + Cl_2(g)$$

Calcúlase a cantidade de cloro, mirando a ecuación axustada da reacción:

$$n(Cl_2) = n(Mg) = 0.0206 \text{ mol } Cl_2$$

Calcúlase o volume de cloro, medido a 1,23 atm e 27 °C, supoñendo comportamento ideal para o gas:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{0,0206 \text{ mol Cl}_2 \cdot 0,0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1,23 \text{ atm}} = 0,412 \text{ dm}^3 = 412 \text{ cm}^3 \text{ Cl}_2$$

d) A reacción no ánodo é a de oxidación:

$$2 \operatorname{Cl}^{-} \to \operatorname{Cl}_2 + 2 \operatorname{e}^{-}$$

A reacción no cátodo é a de redución:

 $Mg^{2+} + 2 e^- \longrightarrow Mg$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>. Para ir á folla onde resolver un problema de Electrólise, pode elixir unha destas opcións:

Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Electrólise</u> de <u>Oxidación</u> redución.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. DATOS:

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 30/09/24

Sumario

				_
4	OVID	ACION	DEDI	I
и		\mathbf{A}	RFIII	

AIDACION REDUCION	
Estequiometría redox	. 1
 1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga: a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular 	
b) Calcula o volume de ácido nítrico consumido	
Electrólise	
1. Durante a electrólise do cloruro de magnesio fundido:	
a) Cantos gramos de Mg prodúcense cando pasan 8,80·10³ culombios a través da célula?	
b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?	
c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatura de 27 °C	L
d) Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo	