	For office use only	Team Control Number	For office use only
T1		1916921 F1	
T2		F2	
T3		Problem Chosen F3	
T4		E F4	

2019 MCM/ICM Summary Sheet

Environmental Degradation Should Draw Attention Abstract

Environmental degradation caused by human activities has a significant impact on ecosystem services. The task of our team is to conduct a cost-benefit analysis for land development projects based on building ecosystem service value model.

In order to solve the foundation of the whole work -- how to establish an appropriate ecosystem service value model, we first consider that ecosystem service function is divided into 4 service categories of supply, regulating, supporting and culture, and further subdivided into 9 kinds of small categories. Then the value of each service function is transformed into the relative value of the total ecosystem service value by the **regression analysis method** and **Entropy Method**. Finally, the value of various ecosystem service functions is calculated recording to the grain price and the ecosystem service value model is established.

On this basis, we consider the loss of ecosystem service value caused by human activities as one of the costs of land development projects in combination with the economic principles. The value weights of various ecosystem service functions are determined through the **Analytic Hierarchy Process (AHP)**, so as to establish the cost-benefit analysis model of land development projects and the evaluation standard of projects economic level.

Connecting with the above two models, we select the Beijing-Shanghai high-speed railway project and a typical residential development project in Xuzhou, China for cost-benefit analysis, their **cost-benefit analysis coefficient** respectively are 0.315 and 0.195. And obtain the corresponding economic rating of the projects.

Through the analysis of these two examples and the design of the model, it can be proved that our model is very effective. Based on this, we make reasonable suggestions to land development project planners and managers.

Finally, we use the collected data to predict the cost of farmland, the area of crops and the disaster area of crops in the next 10 year through **Grey Prediction Model**. Then the **regression equation** between the value of farmland ecosystem service and the above three factors is determined by the regression analysis method. By combining the predicted value with the regression equation, the value of farmland ecosystem service is predicted, and then the dynamic model of ecosystem service value changing with time is established.

At the same time, we do sensitivity analysis and error analysis for various parameters of the value dynamic model, which turns out that our model is superior. Besides, we list the overall strengths and weakness of our models as well as further work.

Key words: ecosystem service value model, cost-benefit analysis model, Entropy Method, Analytic Hierarchy Process (AHP), value dynamic model.

Content

1 Introduction	1
1.1 Background	1
1.2 Previous Research	1
1.3 Our Tasks	1
1.4 Model Overview	2
2 General Assumptions	3
3 Symbols Description	3
4 Ecological Services Valuation Model	3
4.1 The value of standard relative factor	4
4.2 Relative Factor Table of Ecosystem Service Function Value	4
4.3 Determination of Ecosystem Service Value	6
5 Cost-benefit Analysis Model	8
5.1 Construction of AHP model	8
5.2 Project analysis	13
5.2.1 Large project—Beijing-Shanghai high-speed railway	13
5.2.2 Small project—Typical residential development project	14
5.3 Effectiveness analysis model	14
5.4 Recommendations for managers and planners	15
6 Dynamic Model	15
6.1 Grey prediction model	15
6.2 Multiple linear regression analysis	17
7 Testing the Model	18
7.1 Sensitivity Analysis	18
7.2 Error Analysis	19
8 Strength and Weakness	19
8.1 Strength	19
8.2 Weakness	19
9 Future Work	20
Deference & Annondiv	

Team # 1916921 Page 1 of 20

1 Introduction

1.1 Background

Ecosystem services and their economic theory

Ecosystem services refers to all benefits acquired by humans from the ecosystem directly and indirectly, including supply services (e.g. provide food and water), regulating services (e.g. control floods and diseases), cultural services (e.g. benefits of spirit and entertainment), and supporting services (e.g. maintenance of nutrient cycling in the living environment of life on earth). From the perspective of economic theory, ecosystem services are equivalent to "natural capital".

There have been many studies in the last few decades aiming at estimating the value of a wide variety of ecosystem services. Through these studies we found that before the formation of the globally recognized pricing method of ecological services, the value of ecological services calculated by the alternative method can basically reflect the benefits people get from the ecosystem.

The impact of land use change on ecosystem service value

Land use change refers to the change of land cover caused by human's change in land use and management mode. This change not only changes the surface structure, but also affects major ecological processes such as material circulation and energy exchange, and impacts the structure and function of the entire ecosystem, thus affecting ecosystem services and human well-being. [1] Therefore, it is the most direct method to study the change of ecosystem service value based on land use.

1.2 Previous Research

All economic activities of human beings are carried out under the support of the ecosystem. In this sense, the value of ecological services should be unlimited. But the impact of human activities on ecosystems is also measurable to some extent.^[2] Previous studies have shown that changes in land use caused by human activities will affect the structure and function of the ecosystem, thus leading to influences on the types and intensity of services provided by the ecosystem. Therefore, on the basis of clear connotation of ecosystem service function, it is of great theoretical significance to study the change of ecosystem service value caused by land use change.

So far, researchers in different countries have used different calculation methods to discuss and study the value of ecological services in specific regions, and the results reflect the value of regional ecosystem services to a certain extent. In 1997, American ecologist Costanza^[3] proposed a research method based on land use cover area and service unit price to calculate regional ecological service value, which opened a new era of ecological service value assessment accounting and has been widely used in the international scope. The equivalent value, coefficient and regional correction coefficient of China's terrestrial ecosystem services proposed by Chinese scholar Gaodi Xie enrich and develop the evaluation system of the value of ecological services based on land use types. ^[4]

1.3 Our Tasks

In most cases, land-use projects ignore impacts on ecosystem services and their value changes. In fact, the affected ecosystem services should also be included in the

Team # 1916921 Page 2 of 20

cost-benefit analysis of the project. To understand the true economic costs of land use projects in ecosystem services, Our specific tasks are as follows:

- Considering the ecosystem function and its value transformation synthetically, establish the ecosystem service evaluation model.
- According to the principle of economics and its application, establish the cost-benefit analysis model.
- Carry out the cost-benefit analysis of different scale land use and development projects.
- Analyze the impact of the model on land use project planners and managers.
- Consider the situation where the ecological service evaluation model changes over time.

1.4 Model Overview

In order to show our modeling process more clearly, we make the mind map as below:

Figure1: mind map

Team # 1916921 Page 3 of 20

2 General Assumptions

• Assume that there are only six ecosystems and nine ecosystem services on global scale (like be mentioned in this article). Ecosystem types and service functions are subdivided into many types, but only the ones mentioned in this paper have a great impact on the value of ecosystem services and a great possibility to be affected by human activities.

- After the completion of the project, the ecosystem service function in the project land was neglected. There may still have some ecosystem service functions after the completion of the project, we will not consider the value of ecosystem service generated by this part.
- The weights obtained by using the analytic hierarchy process (AHP) are in line with the views of the social subject groups. The weights obtained by this method are influenced by subjective factors. When the number of empowerment is small, it has greater contingency.
- During the cost-benefit analysis period, the project does not incur additional losses due to accidents.
- When considering the cost effectiveness of project, the price level is assumed to be constant.

3 Symbols Description

Symbol	Definition	Symbol	Definition
i	Years	S_{im}	The m^{th} area of ecosystem in the i^{th} year
m	The type of ecosystem	$oxed{V_j}$	The j^{th} ($j:1\sim6$) total value of ecosystem services over the years
j	The type of ecosystem service function	$oldsymbol{v}_{ij}$	Total value of the j^{th} ecosystem service functions in the i^{th} year
E_n	The value of grain crop per unit area per year	W	A series of weight (Contains absolute weight and relative weight)
СВ	Cost-benefit analysis coefficient	E_f	Effectiveness judgment factor

4 Ecological Services Valuation Model

Ecosystem service value evaluation is an important basis for ecological environmental protection, ecological function zoning, environmental economic accounting and ecological compensation decision-making.^[5~6] We use the method based on the relative factor of value per unit area (hereinafter referred to as the relative factor method) to calculate the value of ecosystem services. Relative factor method is on the basis of differentiating different types of ecosystem service function, construct the relative value equivalent of different types of each ecosystem services function based on quantifiable criteria, and then make an evaluation combined with the distribution area of ecosystem.

Team # 1916921 Page 4 of 20

This method is intuitive and easy to use, and is applicable to the evaluation of regional ecosystem service value. First, we calculate the relative factors of each ecosystem service value, and then determine the value of each ecosystem service function. Finally we build the model of the total ecosystem service value.

4.1 The value of standard relative factor

A standard unit ecosystem service value relative factor (hereinafter refers to as standard relative factor) is the economic value of $1 \ hm^2$ national average yield farmland natural grain yield per year. The relative factors of the service value of other ecosystems can be determined by taking this factor as reference and combining with the expert knowledge. Its role is to characterize and quantify the potential contribution of different types of ecosystems to ecological service function. We take the net profit of grain production per unit area of farmland ecosystem as a standard relative factor of ecosystem service value.

4.2 Relative Factor Table of Ecosystem Service Function Value

Using millennium ecosystem assessment (MA), the ecosystem services can be divided into 4 major categories: supply services, regulating services, supporting services, and cultural service, and further subdivided into 9 kinds of service functions: food production, gas regulation, tourism, waste treatment, hydrological adjustment, holding soil, raw material production, climate regulation, biodiversity maintaining (table 1).

Use the following calculation procedure to get the relative factor table of ecosystem service value:

(1) Data acquisition

The original data representing the 9 kinds of service functions and 6 kinds of ecosystems are in the appendix.

(2) The least square method was used to determine the regression coefficients, and Non-negative processing is applied to the coefficients to determine the weights of ecosystem service value corresponding to different ecosystems.

Let S_{im} be the m^{th} ($m:1\sim6$) area of ecosystem in the i^{th} ($i:1\sim8$) year,

$$S_{im} = \begin{bmatrix} 1 & s_{11} & \cdots & s_{16} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & s_{81} & \cdots & s_{86} \end{bmatrix}$$
 (1)

Let V_j be the j^{th} ($j:1\sim6$) total value of ecosystem services over the years,

$$V_{j} = \begin{bmatrix} v_{1j} & \cdots & v_{ij} & \cdots & v_{8j} \end{bmatrix}^{T}$$

$$\varepsilon = \begin{bmatrix} \varepsilon_{1}, \cdots, \varepsilon_{8} \end{bmatrix}^{T}, \quad \beta = \begin{bmatrix} \beta_{0}, \beta_{1}, \cdots, \beta_{6} \end{bmatrix}^{T}$$
(2)

Select the estimated value $\hat{\beta}_q$, so when $\beta_q = \hat{\beta}_q$, j = 1,...,6, the sum of the squared errors

Team # 1916921 Page 5 of 20

$$Q_{j} = \sum_{i=1}^{8} \varepsilon_{i}^{2} = \sum_{i=1}^{8} (v_{ij} - \hat{v}_{ij})^{2} = \sum_{i=1}^{8} (v_{ij} - \beta_{0} - \beta_{1} s_{i1} - \dots - \beta_{i} s_{i6})$$
(3)

is minimized. And for that, let

$$\frac{\partial Q}{\partial \beta_a} = 0, \quad q = 0, 1, 2, \dots, 8,$$

Get

$$\begin{cases}
\frac{\partial Q}{\partial \beta_{0}} = -2\sum_{i=1}^{8} (v_{ij} - \beta_{0} - \beta_{1}s_{i1} - \dots - \beta_{i}s_{i6}) = 0, \\
\frac{\partial Q}{\partial \beta_{q}} = -2\sum_{i=1}^{8} (v_{ij} - \beta_{0} - \beta_{1}s_{i1} - \dots - \beta_{i}s_{i6})s_{i6} = 0
\end{cases}$$
(4)

Made it into the following normal equations:

$$\begin{cases} 8\beta_{0} + \sum_{i=1}^{8} s_{i1}\beta_{1} + \sum_{i=1}^{8} s_{i2}\beta_{2} + \dots + \sum_{i=1}^{8} s_{i6}\beta_{6} = \sum_{i=1}^{8} v_{ij} \\ \sum_{i=1}^{8} s_{i1}\beta_{0} + \sum_{i=1}^{8} s_{i1}^{2}\beta_{1} + \sum_{i=1}^{8} s_{i1}s_{i2}\beta_{2} + \dots + \sum_{i=1}^{8} s_{i1}s_{i6}\beta_{6} = \sum_{i=1}^{8} s_{i1}v_{ij} \\ \vdots \\ \sum_{i=1}^{8} s_{i6}\beta_{0} + \sum_{i=1}^{8} s_{i6}s_{i1}\beta_{1} + \sum_{i=1}^{8} s_{i6}s_{i2}\beta_{2} + \dots + \sum_{i=1}^{8} s_{i6}^{2}\beta_{6} = \sum_{i=1}^{8} s_{i6}v_{ij} \end{cases}$$

$$(5)$$

The matrix form of the normal system is

$$S_{im}^{T}S_{im}\beta = S_{im}^{T}V_{j}, \qquad (6)$$

When the matrix S_{im} has column full rank, $S_{im}^{T}S_{im}$ is invertible square matrix, the solution to the above equation is

$$\hat{\beta}_{q} = (S_{im}^{T} S_{im})^{-1} S_{im}^{T} V_{j} \tag{7}$$

$$\beta = E(\hat{\beta}_q) \tag{8}$$

 $\hat{\beta}_q$ is the linear unbiased minimum variance estimation of β .

The expected value of $\hat{\beta}_a$ is equal to β .

The smaller the negative value in β indicates that the negative correlation between S_{im} and V_j is stronger and the positive correlation is weaker. Then make B non-negative.

(3) Because the values of the six ecosystem service function are different, the entropy method is used to determine the weight of each ecosystem service function value relative to the total ecosystem service value.

Team # 1916921 Page 6 of 20

Table 1: Relative factor table of ecosystem service value

Ecological Services	Farmland	Forest	Grassland	River/Lake	Wetland	Desert
Food production	1	0.907366497	0.86470633	0.862903431	0.842157386	0.919961403
Gas regulation	1.059333807	0.629357917	0.759534104	0.752567383	1.251726045	0.938292791
Tourism	0.84082658	1.008023386	0.885929277	0.866430281	0.772232358	0.926266698
Waste treatment	0.311952154	0.877854157	0.808394606	0.994488917	1.238184531	0.899193277
Hydrological adjustment	0.877436259	0.862505525	0.873703575	1.12916229	0.860613617	0.862786755
Holding soil	0.844645807	1.449890499	0.797630583	0.843475515	0.792313385	0
Raw material production	0.39	2.98	0.36	0.35	0.24	0.04
Climate regulation	0.97	4.07	1.56	2.06	13.55	0.13
Biodiversity maintaining	1.02	4.51	1.87	3.43	3.69	0.4

Note: For raw material production, climate regulation, biodiversity maintaining, we could not obtain the relevant data, their relative factors are quoted from Xie's Expert Knowledge Based paper^[3].

4.3 Determination of Ecosystem Service Value

The way to determine relative value: the relative value of the average annual natural grain crop yield per hectare of farmland is defined as 1. Its economic value is equal to 1/7 of the regional average market value of grain crop yield per unit area. Other relative factors of ecosystem services value refer to the contribution of ecosystem services to farmland ecosystem services. Given the price of grain crop, we could convert the relative factor table of ecosystem service value to ecosystem service value table (table 2).

$$E_n = \frac{1}{7} \sum_{k=1}^n \frac{O_k}{M} (k = 1, ..., n)$$
 (9)

$$E_{jm} = e_{jm} E_n \tag{10}$$

$$E = \sum_{a=1}^{n} A_m E_{jm}$$
 (11)

Team # 1916921 Page 7 of 20

Where

 E_n : Economic value per unit area of farmland ecosystem to provide food production services, $\frac{Y}{km^2}$

k: Crop species

 P_k : Prices of k^{th} crop, $\frac{1}{2}/kg$

 O_k : The total value of k^{th} grain crop per year, Ψ

M: Total area of n grain crops, km^2

 E_{im} : Unit price of j ecological service functions of m ecosystem, $\frac{1}{2} km^2$

 e_{jm} : The relative factors of unit price of ecosystem services provided by the j ecological service functions of m ecosystem relative to the farmland ecosystem

E: Total value of regional ecosystem services

 A_m : The area of m^{th} ecosystem

At the research area, formula (9) is firstly used to calculate the economic value of grain crop per unit area of farmland ecosystem. The formula (10) is to calculate the value of each ecological service in each ecosystem. Finally, according to formula (11), the total value of ecological services at the research area is obtained. The formula (10) calculation results are shown in the table 2.

Table 2: Ecosystem service value ($\frac{1}{2}/(a \cdot km^2)$)

Ecological Services Project	Farmland	Forest	Grassland	River/Lake	Wetland	Desert
Food production	209904.7173	190460.508	181505.9379	181127.5007	176772.808	193104.2382
Tourism	176493.4656	211588.8639	185960.7345	181867.8033	162095.2149	194427.7494
Waste treatment	65480.22877	184265.7287	169685.8412	208747.9151	259900.774	188744.9107
Hydrological adjustment	184178.0098	181043.9784	183394.502	237016.4913	180646.858	181103.0099
Holding soil	177295.1394	304338.8553	167426.422	177049.4895	166310.3171	0
Raw material production	81862.83976	625516.0577	75565.69824	73466.65107	50377.13216	8396.188694
Climate regulation	203607.5758	854312.1996	327451.359	432403.7177	2844208.92	27287.61325
Biodiversity maintaining	214102.8117	946670.2752	392521.8214	719973.1805	774548.407	83961.88694

Team # 1916921 Page 8 of 20

5 Cost-benefit Analysis Model

5.1 Construction of AHP model

(1) Establishing hierarchical structure diagram

Firstly, according to the problems to be studied, the overall goal is determined as cost-benefit analysis, and list the relevant influencing factors of the target one by one, and then the internal relations and membership relationships between them are analyzed and layered. Finally, we form a hierarchical structure model. By dividing the three layers into target layer, criterion layer and indicator layer, we construct the following hierarchy diagram.

Figure 2: hierarchical structure diagram

(2) Construction of judgment matrix

According to the established hierarchical structure diagram, the elements of each level are compared in pairs through the 1-9 scale method as shown in the table 3, so as to obtain the relative importance of indexes and assign values.

Scale	Meaning
1	The two comparison factors i and j are equally important
3	i is slightly more important than j
5	i is significantly more important than j
7	i is much more important than j
9	i is extremely more important than j
2,4,6,8	The importance is between the two adjacent judgments above

Table 3: The value meaning of Scale 1~9 of judgment matrix

Note: a_{ij} is the ratio of the importance of factor i relative to factor j, $1/a_{ij}$ is the ratio of the importance of factor j relative to factor i,

Team # 1916921 Page 9 of 20

For n elements, the judgment matrix $A = (a_{ij})_{n \times n}$ of pairwise comparison is obtained by pairwise comparison of n elements in each level according to the expert evaluation method. As shown in the figure below:

A_k	B_1	B_2	B_3	•••	B_n
B_1	a_{11}	a_{12}	a_{13}	•••	a_{1n}
B_2	a_{21}	a_{22}	a_{23}		a_{2n}
B_3	a_{31}	a_{32}	a_{33}	•••	a_{3n}
÷	÷	÷	:	·	÷
B_{n}	a_{n1}	a_{n2}	a_{n3}	•••	a_{nn}

The judgment matrix has the following properties:

$$a_{ij} > 0$$
; $a_{ij} = \frac{1}{a_{ii}}$ $(i \neq j)$; $a_{ii} = 1$ $(i, j = 1, 2, 3, \dots, n)$

(3) Calculate the relative weight

The specific calculation steps are:

Calculate the product of each row element of the judgment matrix G_i :

$$G_i = \prod_{j=1}^n a_{ij}$$
 $i = 1, 2, 3, ..., n$

Take the n_{th} root of G_i :

$$\overline{W_i} = \sqrt[n]{G_i} \qquad i = 1, 2, 3, \dots, n$$

Normalizing vector $\overline{W} = \left[\overline{W_1}, \overline{W_2}, \dots, \overline{W_n}\right]^T$:

$$W_{i} = \frac{\overline{W_{i}}}{\sum_{i=1}^{n} \overline{W_{i}}} \qquad i = 1, 2, 3, \dots, n$$

Eigenvector $W = (W_1, W_2, W_3, \dots, W_n)^T$ is the weight vector of B_i relative to A

(4) Consistency Test

① Calculate the maximum characteristic root of judgement matrix λ_{max} , the calculation formula is as follows:

$$\lambda_{\text{max}} = \sum_{i=1}^{n} \frac{(AW)_{i}}{nW_{i}}$$
 $i = 1, 2, 3, ..., n$

(2) The calculation formula of consistency index CI:

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

The smaller the CI value calculated by the above formula is, the better the consistency of the judgment matrix is. If CI = 0, the judgment matrix is completely consistent. If $CI \neq 0$, the consistency index CR can be introduced to assist the test.

(3) The calculation formula of index CR:

$$CR = \frac{CI}{RI}$$

Team # 1916921 Page 10 of 20

RI is the average consistency index, some CI values are shown in the following table.

Table 4: RI values

Order	1	2	3	4	5	6	7	8	9	10	11	12
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.52	1.54

When n = 1,2, RI = 0, the formula does not hold, but in general, CI = 0, with complete consistency. The formula holds for order n > 2.

When $CR = \frac{CI}{RI} < 0.1$, it shows that the matrix satisfies the consistency.

According to the hierarchy model layer, the consistency test of the total ranking should be carried out at the end. The calculation formula is as follows:

$$CR = \frac{\sum B_i CI_i}{\sum B_i RI_i}$$
 $i = 1, 2, 3, \dots, n$

Where

 B_i : The weight of each lower level value.

When CR < 0.1, it indicates that the consistency requirement is satisfied.

 Table 5: Target layer importance judgment matrix

СВ	Cost	Benefit	Weight
Cost	1	1	0.5
Benefit	1	1	0.5

By calculating, $\lambda_{\text{max}} = 2$, n=2, CI =0, CR =0<0.1 Pass the consistency test.

Table 6: Cost importance judgment matrix

Cost	Construction cost	Ecological Service value	Operation cost	Maintenance cost	Weight
Construction cost	1	5	7	5	0.632291626
Ecological Service value	1/5	1	3	1	0.153001515
Operation cost	1/7	1/3	1	1/3	0.061705344
Maintenance cost	1/5	1	3	1	0.153001515

By calculating, $\lambda_{\rm max}$ =4.0732, n=4, CI =0.0244, RI =0.9, CR =0.027111<0.1 Pass the consistency test.

Team # 1916921 Page 11 of 20

Benefit	Benefit direct		Weight		
direct	1	5	0.833333333		
indirect	1/5	1	0.166666667		

Table 7: Benefit importance judgment matrix

By calculating, $\lambda_{\text{max}} = 2$, n=2, CI =0, CR =0<0.1 Pass the consistency test.

			,	\mathcal{C}	
Target layer	Criterion layer	Weight	Index layer	Relative weight	Absolute weight
	Cost	0.5	Construction cost	0.632291626	0.316145813
			Ecological Service value	0.153001515	0.076500757
Cost-benefit			Operation cost	0.061705344	0.030852672
analysis coefficient			Maintenance cost	0.153001515	0.076500757
		0.5	Direct value	0.833333333	0.416666667
	Benefit	0.5 Indirect va	Indirect value	0.166666667	0.083333333

Table 8: Cost-benefit analysis index system weight table

(5) Standardized processing of cost-benefit data

1 Dimensionless processing of index

Through the analysis, we divide the cost-benefit index into positive index and negative index. Positive index means that the result is proportional to the index, and increases or decreases at the same time. The opposite is negative. In the evaluation index system of cost-benefit analysis, each index is responsible for the overall target level, but the importance of each index is not comparable, so we introduce dimensionless processing.

Dimensionless treatment of positive index

When
$$Y_{j\min} < Y_j < Y_{j\max}$$
; $r_j(y) = \frac{1}{2} + \frac{1}{2} \sin \left| \frac{\pi}{y_{j\max} - y_{j\min}} \left(y_j - \frac{y_{j\max} + y_{j\min}}{2} \right) \right|$

When Y_i is some other value, $r_i(y) = 0$

Dimensionless treatment of negative index

When
$$Y_{j\min} < Y_j < Y_{j\max}$$
; $r_j(y) = \frac{1}{2} - \frac{1}{2} \sin \left[\frac{\pi}{y_{j\max} - y_{j\min}} \left(y_j - \frac{y_{j\max} + y_{j\min}}{2} \right) \right]$

When Y_j is some other value, $r_j(y) = 0$

Team # 1916921 Page 12 of 20

Where

 $Y_{i_{\text{max}}}$: The maximum possible value of the j^{th} term.

 $Y_{i,min}$: The minimum possible value of the j^{th} term.

 r_i : The dimensionless value of the j^{th} index.

 Y_i : The original value of the j^{th} evaluation index.

2 Normalization processing

The data after dimensionless processing vary greatly, and the influence of absolute weight on the total cost-benefit analysis coefficient is greatly weakened. In order to avoid this situation, the data after dimensionless processing is normalized.

(6) Evaluation result calculation and standard determination

$$CB = C \cdot T \tag{12}$$

C: The weight of the index in the index layer relative to the total target

T: The value of the index in the index layer after Standardized processing

Using the linear dimensionless processing method, the cost-benefit analysis index of ecosystem service value are divided into the following five sections, as shown in table 9:

Economic level of Cost-benefit index	Coefficient interval	Evaluation level
Economy needs to be improved	[0, 0.2)	I
Certain economy	[0.2, 0.4)	П
Better economy	[0.4, 0.6)	III
Good economy	[0.6, 0.8)	IV
Excellent economy	[0.8, 1.0]	V

Table 9: Cost-benefit index rating table

5.2 Project analysis

5.2.1 Large project—Beijing-Shanghai high-speed railway

The Beijing-Shanghai high-speed railway is a high-speed railway linking Beijing and Shanghai. The project was officially started on April 18, 2008 and officially opened to traffic on June 30, 2011. It is 1318 km long and has a designed maximum speed of 380 km/h.

In order to obtain more reliable cost-benefit analysis result, we select the estimated cost and benefit of Beijing-Shanghai high-speed railway in the next 50 years for analysis.

Team # 1916921 Page 13 of 20

By consulting relevant materials, we know the total construction cost, annual operation cost, maintenance cost and direct benefit of the Beijing-Shanghai high-speed railway. Based on this criterion, the total operating cost, total maintenance cost and total direct benefit in the next 50 years are estimated (refer to appendix).

We define the indirect benefit algorithm as: the difference between the product of the average ticket price and the passenger flow of the current high-speed train and the product of the average ticket price and the passenger flow of the original ordinary train (both the original passenger flow and the current passenger flow are calculated based on the saturated passenger flow that the Beijing-Shanghai railway system can bear at that time)

According to literature review, the total area of farmland, woodland, grassland and wetland in China accounts for 20.4%, 38.3%, 33.2% and 8.1% of the total area of these four types of land respectively. The total area of farmland, woodland, grassland and wetland occupied by the Beijing-Shanghai high-speed railway in the construction process is determined with this proportion, and then the ecosystem service value loss caused by the construction process of the Beijing-Shanghai high-speed railway is obtained according to the ecosystem services value table.

Based on the dimensionless processing and normalization processing listed above, process the above five costs and benefits. The following cost-benefit analysis table of Beijing-Shanghai high-speed railway is obtained:

		-				-
	Construction cost	Ecological Service value	Operation cost	Maintenance cost	Direct value	Indirect value
Cost	220900000000	164862909718.04	843950000000.00	19770000000	1479750000000.00	28575000000000.00
Dimensionless processing	0.8844	0.9345	0.0589	0.999	0.201	0.6114
Normalization processing	0.307424917	0.3248401	0.020474138	0.347260845	0.247415066	0.752584934

Table 10: Cost-benefit analysis table of Beijing-Shanghai high-speed railway

Using the ecosystem service value model above, we get the cost-benefit analysis coefficient of Beijing-Shanghai high-speed railway is $0.315044036 \in [0.2, 0.4)$. Refer to the Cost-benefit index rating table (table 9) above, the economic level of Beijing-Shanghai high-speed railway cost-benefit index belongs to the 2nd evaluation level. It has certain economy.

5.2.2 Small project—Typical residential development project

Referring to relevant materials, we select the residential development project in Xuzhou, Jiangsu province, China, Xi Sheng real estate co.,ltd. for cost-benefit analysis.

When considering the project cost, the operation cost mainly includes the elevator operation cost and labor cost (calculated according to the current wage level and electricity cost of Xuzhou);

Team # 1916921 Page 14 of 20

Maintenance costs mainly include wall maintenance, green maintenance and elevator maintenance (according to the current price level statistics in Xuzhou);

Ecosystem service value costs mainly include the service value loss of farmland, woodland and river/lake caused in the process of project construction.

The direct benefit is the product of the current average housing price of Xuzhou and the total construction area of the community.

The indirect benefits mainly include the increase of consumption level of Xuzhou residents driven by the project and the income of shops along the street (it is estimated that about 30 shops will be built in this community).

Based on the dimensionless processing and normalization processing listed above, process the above five costs and benefits. The following cost-benefit analysis table of typical community is obtained:

	Construction	Ecological	Operation	Maintenance	Direct volue	Indirect value	
	cost	Service value	cost	cost	Difect value	municet value	
Cost	159928400	11495286.55	59515150	72018000	1175200000	4295163000	
Dimensionless processing	0.095822297	0.991870964	0.796964812	0.71276172	0.1302	0.9518	
Normalization processing	0.03689134	0.381867793	0.306829421	0.274411446	0.120332717	0.879667283	

Table 11: Cost-benefit analysis table of residential development project

Using the ecosystem service value model above, we get the cost-benefit analysis coefficient of the residential development project is $0.194779648 \in [0, 0.2)$. Refer to the Cost-benefit index rating table (table 3) above, the economic level of the residential development project cost-benefit index belongs to the 1st evaluation level. Its economy needs to be improved.

5.3 Effectiveness analysis model

Using control-experiment method to test the validity of our model. Data before and after the elimination of ecosystem service value were divided into control group and experimental group.

The validity coefficient of the model E_f is defined as:

$$E_f = \frac{CB'}{CB} \tag{13}$$

CB': Cost-benefit coefficient excluding ecosystem service value

CB: Cost-benefit coefficient including ecosystem service value

When $E_f > 1$, the model is proved to be effective, the opposite is noneffective.

For the large project—Beijing-Shanghai high-speed railway,

$$CB' = 0.381826354$$
, $CB = 0.315044036$, $E_f = 1.2119777249 > 1$

This proves that our model is effective in analyzing Beijing-Shanghai high-speed railway project.

Team # 1916921 Page 15 of 20

For the small project—residential development project in Xuzhou,

$$CB' = 0.207158729$$
, $CB = 0.194779648$, $E_f = 1.0635542837 > 1$

This proves that our model is effective in analyzing the project of residential development project in Xuzhou.

Through the analysis of these two examples and the design of the model, it can be proved that our model is very effective.

5.4 Recommendations for managers and planners

To the land use project planners, we will advise that they can choose several places as candidates. They can use our cost-benefit analysis model to judge which one is the best choice. Besides, we will suggest that the place chosen as a candidate should deserve fewer ecosystem services value. To the managers, we advise that the project is deserved to be approved whose CB achieves level 5 or level 4. The project whose CB achieves level 3 or level 2 should choose better places. It is better to prohibit the project whose CB achieves level 1.

6 Dynamic Model

Assume the relative factor table is constant, according to our ecological services valuation model, what affects our value table is the change of grain price. We apply Grey prediction model and Multiple linear regression model to describe and predict the price change of grain price, and then get the value table change over time.

On the one hand, the change of the second model over time depends on the change of the value table over time in the first model. On the other hand, it relies on how much people pay attention to the cost of ecological services, that is, the scale size in the AHP (Analytic Hierarchy Process).

6.1 Grey prediction model

(1) Establishment of the GM(1,1) model

GM(1,1) means the model is first order differential equation, and it is a gray model with only one variable.

Known the reference data column $x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \dots, x^{(0)}(n))$, once accumulation order (1-AGO)

$$x^{(1)} = (x^{(1)}(1), x^{(1)}(2), \dots, x^{(1)}(n))$$

= $(x^{(0)}(1), x^{(0)}(1) + x^{(0)}(2), \dots, x^{(0)}(1) + \dots + x^{(0)}(n))$

Where $x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(i)$, $k = 1, 2, \dots, n$. The average generation sequence of $x^{(1)}$:

$$z^{(1)} = (z^{(1)}(2), z^{(1)}(3), \dots, z^{(1)}(n)),$$

Where
$$z^{(1)}(k) = 0.5x^{(1)}(k) + 0.5x^{(1)}(k-1), k = 2,3,\dots,n$$

Establish Grey differential equation

$$x^{(0)}(k) + az^{(1)}(k) = b, \quad k = 2,3,\dots,n$$
 (14)

Team # 1916921 Page 16 of 20

The corresponding albino differential equation is

$$\frac{dx^{(1)}}{dt} + ax^{(1)}(t) = b {15}$$

Let
$$\vec{u} = [a,b]^T$$
, $\vec{Y} = [x^{(0)}(2), x^{(0)}(3), \dots, x^{(0)}(n)]^T$, $\vec{B} = \begin{bmatrix} -z^{(1)}(2) & 1 \\ -z^{(1)}(3) & 1 \\ \vdots & \vdots \\ -z^{(1)}(n) & 1 \end{bmatrix}$, by least square

method, the estimate of \vec{u} to minimize $J(\vec{u}) = (\vec{Y} - \vec{B}\vec{u})^T (\vec{Y} - \vec{B}\vec{u})$ is

$$\hat{u} = \left[\hat{a}, \hat{b}\right]^T = (\vec{B}^T \vec{B})^{-1} \vec{B}^T \vec{Y}$$

Then solving equation (15), get

$$\hat{x}^{(1)}(k+1) = \left(x^{(0)}(1) - \frac{\hat{b}}{\hat{a}}\right)e^{-\hat{a}k} + \frac{\hat{b}}{\hat{a}}, \quad k = 0, 1, \dots, n-1, \dots$$
 (16)

(2) Data verification and processing

In order to ensure the feasibility of the model method, the known data columns need to be examined and processed. Let the reference be $x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \dots, x^{(0)}(n))$, Calculate the level ratio of sequence

$$\lambda(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)}, \quad k = 2,3,\dots,n$$

If all level ratios $\lambda(k)$ fall within the allowable coverage of $\Theta = (e^{-\frac{2}{n+1}}, e^{\frac{2}{n+2}})$, sequence $x^{(0)}$ can be used as the data of model GM(1,1) for gray prediction.

After checking the data (see appendix) of unit area cost, total area of crops and disaster area of crops obtained from the Chinese national bureau of statistics, we found that the data satisfies the requirements of GM (1,1) model.

(3) Level ratio deviation test

Firstly, Level ratio $\lambda(k)$ is calculated from reference data $x^{(0)}(k-1)$, $x^{(0)}(k)$. Then, the development coefficient a is used to calculate the level ratio deviation.

$$\rho(k) = 1 - \left(\frac{1 - 0.5a}{1 + 0.5a}\right) \lambda(k),$$

If $\rho(k) < 0.2$, it is considered to meet the general requirements; If $\rho(k) < 0.1$, the higher requirements are considered to be met.

(4) Solution of model

The data from 2011 to 2016 are substituted into the model we established, and the predicted results based on our model were obtained and compared with the original data. Finally, the data of the next ten years are predicted. We get the equations of these three factors (the cost of farmland, the area of crops and the disaster area of crops) over time. They are shown as below:

Team # 1916921 Page 17 of 20

$$C(k) = -17506200e^{-0.0361545k} + 18119100$$

$$S(k) = -160467000e^{-0.0104502t} + 162136000$$

$$Z(k) = 2839511e^{-0.0104502t} - 2577300$$

Where, k: The difference between the current year and 2010

C(k): the cost of farmland in year (k+2010)

S(k): the area of crops in year (k+2010)

Z(k): the disaster area of crops in year (k+2010)

6.2 Multiple linear regression analysis

Using the method of regression analysis, a multiple linear regression model is established: $\gamma = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + \varepsilon$

Matlab software is used for regression calculation to get the point estimation of regression coefficient.

Finally, the linear regression equation is established.

$$E_n(k) = 0.456C(k) - 0.8435S(k) - 0.2078Z(k) + 1404553.3664$$
 (17)

The following table lists the predicted data for 2019. All the predicted data for the decade after 2016 are shown in the appendix.

Table 12: The predicted data of ecosystem service value in 2019

2019	farmland	forest	grassland	river/lake	wetland	desert
Gas regulation	248122.7747	147411.5446	177902.1005	176270.3181	293185.9036	219771.9069
Food production	234225.2961	212528.1864	202536.0963	202113.8116	197254.563	215478.232
Aesthetic landscape	196942.8547	236104.5761	207507.0473	202939.8892	180876.3528	216955.0916
Waste treatment	73067.08572	205615.6499	189346.4659	232934.4611	290014.1384	210613.8116
Hydrological adjustment	205517.7675	202020.612	204643.4786	264478.3718	201577.4793	202086.4831
Soil conservation	197837.4143	339601.0314	186825.2595	197563.3022	185579.8372	0
Raw material production	91347.86549	697991.3825	84321.10661	81978.85365	56214.07107	9369.011845
Climate adjustment	227198.5373	953296.9553	365391.462	482504.11	3173752.763	30449.2885
Biodiversity maintaining	238909.8021	1056356.086	438001.3038	803392.7657	864291.3427	93690.11845

Team # 1916921 Page 18 of 20

7 Testing the Model

7.1 Sensitivity Analysis

In this section, we test the sensitivity of the three regression coefficients of our Dynamic model. The regression coefficients reflect the contribution of their corresponding variables to the result to a great extent. In our model, α_1 is the regression coefficient of the farmland's cost of unit area. α_2 is the regression coefficient of the total area of various crops. And α_3 is the regression coefficient of the total area of the farmland that is affected by disaster.

To test the sensitivity of our model, we decide to make every regression coefficient increase by 10%, 20%, 30%, 40% and 50% successively. Then we can get the change of the farmland service function value per unit area shown in the Figure 3, Figure 4, Figure 5 below.

Figure 3: Sensitivity analysis of α_1

Figure 4: Sensitivity analysis of α_2

The Figure 3 indicates that the influences of the change of α_1 to the result gets smaller and smaller as time goes by. The Figure 4 indicates that the change of α_2 influences the result greatly all the time.

Figure 5: Sensitivity analysis of α_3

The Figure 5 indicates that the influences of the change of α_3 to the result gets larger and larger as time goes by.

As a conclusion, the sensitivity of α_1 is higher in the short term while the sensitivity of α_3 is higher in the long term. The sensitivity of α_3 is always very high.

Team # 1916921 Page 19 of 20

7.2 Error Analysis

In the Dynamic model, we predict the theoretical value of En in recent years. The theoretical value also include the value between 2011 and 2016. They are different from the actual value. By analyzing the error, we can obtain the conclusion that whether our model is accurate or not. The error is shown in the Table 13.

Actual value	Theoretical value	Absolute error	Relative error
209904.7173	221484.4171	11579.6998	0.0552
231032.8919	233093.3976	2060.5057	0.0089
251473.1478	233775.1764	17697.9713	0.0704
234831.8854	234347.5675	484.3178	0.0021
240839.4310	234773.9365	6065.4945	0.0252
224319.3124	235016.0129	10696.7005	0.0477

Table 13: the value of error analysis

We define a variable that is AARE to finally determine whether the error is acceptable. AARE is defined as AARE= $\frac{1}{n}\sum_{k=1}^{n}R_{k}$. And R_{k} is the relative error of the

 k_{th} value, and n is the number of data. When AARE is smaller than 0.1, the error is acceptable, else the error is unacceptable.

At last the AARE equals 0.0349. The error is acceptable. The other error analyses can be seen in the appendix.

8 Strength and Weakness

8.1 Strength

- Our team use objective weighting method to make the relative factor table of ecosystem service function value per unit area. It can reflect the objective laws between the ecosystem service function value and the ecosystem. Using this method, we reduce the influence of subjectivity to our model.
- The cost-benefit analysis model is able to calculate both benefit and cost of a project. We can intuitively find which project is better and whether a project is worth the government to approve it or not through making comparison of the cost-benefit analysis coefficient.
- Our Dynamic model can reflect the changes of the En over time. It makes us able to change our model. This make our model is still effective a few years later.

8.2 Weakness

• The data we use to build our model is not exact enough. This makes slight error to our model and makes it a little deviate from reality. We find no data about the bio-diversity, climate condition and the raw material production which makes us unable to quantify them.

Team # 1916921 Page 20 of 20

• The Dynamic model is built to make our Ecological services valuation model able to adapt to the future project. However, gray prediction model can only be used to predict the data a few years later. This makes our model cannot predict the data many years later.

9 Future work

Data acquisition and representation: Although we tried our best to obtain accurate data in many ways in the limited time, we could not get all-sided data inevitably. Especially for some unusual data, statistics office would not collect these data. We will try our best to obtain the data to improve our model accuracy. We will also find a better representation way to quantify the bio-diversity, climate condition and the raw material production to make our model correspond to the objective laws more.

Model refinement: The model should also reflect the subjective willing of people. So we will combine the objective laws and the people's subjective willing to define the ecosystem service function value of various ecosystems per unit area.

Reference & Appendix

Reference

- [1] Kalnay E, Cai M. Impact of urbanization and land-use change on climate[J]. Nature (London), 2003, 423(6939):528-531.
- [2] Han P, Jin S I, Wang Y. Contrastive Analysis of Valuation Methods of Ecosystem Services Value——A Case Study of Zhifanggou Watershed in a Hilly and Gully Region of Loess Plateau[J]. Journal of Basic Science & Engineering, 2009, 17:102-112.
- [3] COSTANZA R, DARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997,387(6630): 253–260.
- [4] Gao-Di X , Lin Z , Chun-Xia L U , et al. Expert Knowledge Based Valuation Method of Ecosystem Services in China[J]. Journal of Natural Resources, 2008.
- [5]Edoh B, Rouget M,Reyers B, et al. Integrating ecosystem services into conservation assessment: A review [J]. Ecological Economics, 2007,63:714-721.
- [6] Lautenbach S, Kugel C, Lausch A, et al. Analysis of historic changes in regional ecosystem service provisioning using land use data [J]. Ecological Indicators, 2011, 11: 676-687.
- [7] NBD.Infographics:http://www.nbd.com.cn/columns/442?display way=article list
- [8] Sohu:https://www.sohu.com/picture/287798223
- [9] KNOWPIA:https://zh.knowpia.com/pages/Beijing-Shanghai high-speed railway
- [10] Price Division of the National Development and Reform. Commission *National Compilation*
- Of Cost-Benefit Data of Agricultural Products 2017. China Statics Press. 2017
- [11] Xuzhou Xisheng Real Estate Co., Ltd. Estimation Report on Sub-item Cost of Residential Area Development.
- [12] Jiangsu Statistical Bureau. Jiangsu Statistical Yearbook 2017.

Appendix

6.1 MATLAB of Gray prediction model

```
En=[209904.7173 231032.8919 251473.1478 234831.8854 240839.431 224319.3124]';
C=[612945.4742 610307.0566 598430.7174 596492.3694 574539.1049 515456.8988]';
S=[1669390.4 1668292.8 1649658.3 1634531.2 1618274 1598593.6]';
Z=[262207 217698 248907 313498 249620 324705]';
n=length(C);
lamda=C(1:n-1)./C(2:n);
range=minmax(lamda');
if range(1)>exp(-2/(n+1))&range(2)<exp(2/(n+1))
biaozhi=1
else
biaozhi=0
end
```

```
lamda=S(1:n-1)./S(2:n);
range=minmax(lamda');
n=length(S);
if range(1)>exp(-2/(n+1))&range(2)<exp(2/(n+1))
biaozhi=1
else
biaozhi=0
end
lamda=Z(1:n-1)./Z(2:n);
range=minmax(lamda');
n=length(Z);
if range(1) > exp(-2/(n+1)) & range(2) < exp(2/(n+1))
biaozhi=1
else
biaozhi=0
end
n=length(C);
lamda=C(1:n-1)./C(2:n);
C1=cumsum(C);
BC=[-0.5*(C1(2:n)+C1(1:n-1)),ones(n-1,1)];
YC=C(2:n);
uC=BC\YC;
syms x(t)
x=dsolve(diff(x)+uC(1)*x==uC(2),x(0)==C(1));
Ct=vpa(x,6)
yuceC1=subs(x,t,[0:n-1]);
yuceC1=double(yuceC1);
yuceC=[C(1),diff(yuceC1)];
epsilonC=C'-yuceC;
deltaC=abs(epsilonC./C');
rhoC=1-(1-0.5*uC(1))/(1+0.5*uC(1))*lamda';
clear lamda
n=length(S);
lamda=S(1:n-1)./S(2:n);
lamda=prod(1:n-1)./prod(2:n);
S1=cumsum(S);
BS=[-0.5*(S1(2:n)+S1(1:n-1)),ones(n-1,1)];
YS=S(2:n);
uS=BS\YS;
syms x(t)
x=dsolve(diff(x)+uS(1)*x==uS(2),x(0)==S(1));
St=vpa(x,6)
yuceS1=subs(x,t,[0:n-1]);
```

```
yuceS1=double(yuceS1);
yuceS=[S(1),diff(yuceS1)];
epsilonS=S'-yuceS;
deltaS=abs(epsilonS./S');
rhoS=1-(1-0.5*uS(1))/(1+0.5*uS(1))*lamda';
clear lamda
n=length(Z);
lamda=Z(1:n-1)./Z(2:n);
Z1=cumsum(Z);
BZ=[-0.5*(Z1(2:n)+Z1(1:n-1)),ones(n-1,1)];
YZ=Z(2:n);
uZ=BZ\backslash YZ;
syms x(t)
x=dsolve(diff(x)+uZ(1)*x==uZ(2),x(0)==Z(1));
Zt=vpa(x,6)
yuceZ1=subs(x,t,[0:n-1]);
yuceZ1=double(yuceZ1);
yuceZ=[Z(1),diff(yuceZ1)];
epsilonZ=Z'-yuceZ;
deltaZ=abs(epsilonZ./Z');
rhoZ=1-(1-0.5*uZ(1))/(1+0.5*uZ(1))*lamda';
```

The result of MATLAB

```
biaozhi =

1

biaozhi =

1

biaozhi =

1

Ct =

1.81191e7 - 1.75062e7*exp(-0.0361545*t)

epsilonC =
```

```
1.0e+04 *
      0 -1.1315 -0.1119 1.8232 1.6812 -2.2466
deltaC =
     0 0.0185 0.0019 0.0306 0.0293 0.0436
rhoC =
  St =
1.62136e8 - 1.60467e8*exp(-0.0104502*t)
epsilonS =
 1.0e+03 *
      0 0.1118 -1.1807 0.8540 1.5802 -1.2934
deltaS =
 1.0e-03 *
      0 0.0670 0.7157 0.5225 0.9765 0.8091
rhoS =
  Zt =
2839511.0*exp(0.0779801*t) - 2577300.0
```

```
epsilonZ =

1.0e+04 *

0 -1.2590 -0.0057 4.4343 -4.1364 1.0122

deltaZ =

0 0.0578 0.0002 0.1414 0.1657 0.0312

rhoZ =

-0.3022 0.0544 0.1416 -0.3578 0.1689
```

6.2 MATLAB of Linear regression method

[B,Bint,R,Rint,Stats]=regress(En,[ones(6,1),C,S,Z])

The result of MATLAB

```
B =

1.0e+06 *

1.4046
0.0000
-0.0000
-0.0000

Bint =

1.0e+06 *

-2.3514 5.1605
```

-0.0000	0.0000				
-0.0000	0.0000				
-0.0000	0.0000				
R =					
1.0e+04 *					
-1.1580					
0.0578					
1.7200					
0.2104					
-0.8863					
0.0560					
D'					
Rint =					
1.0e+05 *					
1.00+05					
-1.4382	1.2066				
-1.8857	1.8972				
-1.1337	1.4777				
-1.0065	1.0486				
-0.5188	0.3416				
-0.1337	0.1449				
Stats =					
1.0e+08 *					
0.0000	0.0000	0.0000	2.5678	 	

7.1 MATLAB of Sensitivity analysis

for i=1:6

En=1404553.366385746+(1+(i-1)*0.1)*0.455994457*yuceC-0.843473853*yuceS-0.207780628*y

```
uceZ;
plot([2011:2026],En','LineWidth',3)
hold on
clear En
end
for i=1:6
En=1404553.366385746+0.455994457*yuceC-(1+(i-1)*0.1)*0.843473853*yuceS-0.207780628*y
plot([2011:2026],En','LineWidth',3)
hold on
clear En
end
for i=1:6
En=1404553.366385746+0.455994457*yuceC-0.843473853*yuceS-(1+(i-1)*0.1)*0.207780628*y
uceZ;
plot([2011:2026],En','LineWidth',3)
hold on
clear En
end
```

5.1 MATLAB of Dimensionless treatment

```
C=[15992840011495286.55 59515150 72018000]';

V=[1175200000 4295163000]';

Cmax=2000000000;

Cmin=0;

Vmax=50000000000;

m=size(C);

n=size(V);

for i=1:m

Cdless(i)=1/2-1/2*sin(pi/(Cmax-Cmin)*(C(i)-(Cmax+Cmin)/2));

end

for i=1:n

Vdless(i)=1/2+1/2*sin(pi/(Vmax-Vmin)*(V(i)-(Vmax+Vmin)/2));
```

```
end

C=[220900000000 164862909718.04 843950000000.00 19770000000]';

V=[2857500000000.00 1479750000000.00]';

Cmax=10000000000;

Cmin=100000000;

Vmin=0;

Vmax=500000000000;

m=size(C);

n=size(V);

for i=1:m

Cdless(i)=1/2-1/2*sin(pi/(Cmax-Cmin)*(C(i)-(Cmax+Cmin)/2));

end

for i=1:n

Vdless(i)=1/2+1/2*sin(pi/(Vmax-Vmin)*(V(i)-(Vmax+Vmin)/2));

end
```

The result of MATLAB

```
Cdless =

0.0958  0.9919  0.7970  0.7128

Vdless =

0.1302  0.9518

Cdless =

0.8844  0.9345  0.0589  0.9990

Vdless

Vdless =

0.6114  0.2010
```

4.2 MATLAB of Entropy method

```
X=[0 0.188739987 0.757662991 0.935834315 0.85614896 0.902614999 0.971093592 1
   0.26955088
   0.810441039 0.653405278 0.536020677 0.414023155 0.306109247 0.203307034 0
0.473730439 0.70258924 0.627137535 1
                                 0.753632876  0.172273893  0.078885013  0
0.597685049 1
             0.510972127  0.435432207  0.510457452  0.68103087
                                                     0
                                                         0.830614461
   for i=1:8
for j=1:6
   p(i,j)=X(i,j)/sum(X(:,j));
end
end
k=-log(8);
for j=1:6
   e(j)=-k*sum(p(:,j).*log(p(:,j)));
end
e(find(isnan(e)))=0;
d=ones(1,6)-e;
w=d./sum(d);
```

The result of MATLAB

w =

4.2 MATLAB of Least squares

```
X=[1 0.836575875 0.708171206 0.552529183 0.416342412 0.26848249 0.093385214 0
0.52739726  0.02739726
0.610653069 1
              0.517333863  0.447039281  0.510564772  0.679851661  0
                                                             0.837060583
                         0.445319741  0.611677479  0.714087118  0.759962929  1
   0.106116775 0.3197405
   0.792114695  0.716845878  0.670250896  0.415770609  0.372759857  0.200716846  0
0.9402078
              0.989190467  0.805671656  0.656694899  0.496588537  0.302769352  0]';
Y=[1 0.811260013 0.242337009 0.064165685 0.14385104 0.097385001 0.028906408 0]';
[B1,Bint1,R1,Rint1,Stats1]=regress(Y,[ones(8,1),X]);
Y=[1 0.935951395 0.825955932 0.726307463 0.616350046 0.45315855 0.26955088
                                                                    0]';
[B2,Bint2,R2,Rint2,Stats2]=regress(Y,[ones(8,1),X]);
```

The result of MATLAB

```
B1 =
    1.5976
    0.5963
    0.0262
   0.1207
  -1.6794
   -0.4985
   -0.8454
B2 =
    0.1159
    0.4152
   -0.0311
   -0.0540
   -0.0439
   -0.1064
    0.6421
B3 =
    0.4818
    0.6672
    0.0198
   -0.0710
   -0.4083
   -0.0267
   -0.1017
B4 =
```

```
2.0950
    0.3036
    0.6469
   -0.0311
  -1.1064
   0.3007
   -2.5401
B5 =
    0.0192
   -0.0455
    0.0014
    1.0041
   -0.0284
   -0.0248
    0.0367
B6 =
    0.6333
   -0.5284
   0.4414
  -0.0453
   -0.5235
   1.0444
   -0.3556
```

```
5.1 MATLAB of Consistency test

clear A

clear W

clear Q

A=[11

1 1];

W=[0.5

0.5];

Q=A*W;

lamda1=0;
```

```
[m,n]=size(Q);
for i=1:m
lamda1=lamda1+Q(i)/m/W(i);
end
lamda1
clear A
clear W
clear Q
A=[1 1/5 1/7 1/5
5
        1
             1/31
7
            1 3
             1/31]';
W=[0.632291626 0.153001515 0.061705344 0.153001515]';
Q=A*W;
lamda2=0;
[m,n]=size(Q);
for i=1:m
lamda2=lamda2+Q(i)/m/W(i);
end
lamda2
clear A
clear W
clear Q
A=[15
1/51];
W=[0.833333333
0.166666667];
Q=A*W;
lamda3=0;
[m,n]=size(Q);
for i=1:m
lamda3=lamda3+Q(i)/m/W(i);
end
lamda3
The result of MATLAB
```

lamda3 =			
2			

Ratio deviation test

rhoC	0.0313	0.0164	0.0324	-0.0013	-0.0750
rhoS	0.1009	0.0908	-0.0597	0.0351	-0.0625
rhoZ	-0.3022	0.0544	0.1416	-0.3578	0.1689

Cost-benefit analysis of Beijing-Shanghai High-speed Railway

	cost	weight	dimensionless	normalization
construction cost(Y)	220900000000	0. 31615	0. 88440	0. 30742
ecological services value(Y)	164862909718. 04400	0. 07650	0. 93450	0. 32484
operating cost(Y)	843950000000.00000	0. 03085	0. 05890	0. 02047
Maintenance cost(Y)	19770000000.00000	0. 07650	0. 99900	0. 34726
Indirect benefit(Y)	28575000000000.00000	0. 08333	0. 61140	0. 75258
Direct benefit(Y)	1479750000000. 00000	0. 41667	0. 20100	0. 24742

Type	Area
farmland(km²)	1027. 467591
woodland(km²)	393. 2460133
grassland(km²)	130. 5362507

wetland(km^2)	10. 58537866

Ecosystem area occupied by Beijing-Shanghai high-speed railway

Yield Value and Planting Area of Major Crops in 2016

	unhusked rice	wheat	corn	soybean	peanut
unit area output value	2015655.00	1395540.00	1148835.00	702945. 00	2526720.00
area	307458.90	246939. 70	441776. 10	72023.00	44484.00

Comparison matrix and weight of cost without ecological services value

	construction cost	operating cost	maintenance cost	weight
construction cost	1	7	5	0. 730644671
operating cost	0. 142857143	1	0. 333333333	0. 080961232
maintenance cost	0. 2	3	1	0. 188394097

The relative and absolute weight without ecological services value

	relative weight		relative weight	absolute weight
		construction cost	0. 730644671	0. 365322336
cost		operating cost	0. 080961232	0. 040480616
		Maintenance cost	0. 188394097	0. 094197048
benefit	0.5	Indirect benefit	0.833333333	0. 416666667
		Direct benefit	0. 166666667	0. 083333333

	woodland	grassland	rivers/lakes	wetland	desert	farmland
Gas regulation	-0. 6833	-0.119	-0. 1492	2. 0146	0. 6559	1. 1806
Food production	0. 1618	-0.0062	-0. 0133	-0.095	0. 2114	0. 5266
Aesthetic	0. 5019	0. 0279	-0. 0478	-0.4135	0. 1845	-0. 1472

landscape						
Waste disposal	-0. 3467	-0. 5892	0.0605	0. 9113	-0. 2722	-2. 3224
Hydrologic adjustment	-0. 0379	0. 0059	1.0051	-0.0453	-0.0368	0. 0205
Soil conservation	2. 2875	-0. 2763	-0. 0961	-0. 2972	-3. 4115	-0. 0915

The regression coefficients between ecosystem and ecosystem services

The regression coefficients after Non-negative treatment

	woodland	grassland	rivers/lakes	wetland	desert	farmland
Gas regulation	2. 7282	3. 2925	3. 2623	5. 4261	4. 0674	4. 5921
Food production	3. 5733	3. 4053	3. 3982	3. 3165	3. 6229	3. 9381
Aesthetic landscape	3. 9134	3. 4394	3. 3637	2. 998	3. 596	3. 2643
Waste disposal	3. 0648	2. 8223	3. 472	4. 3228	3. 1393	1. 0891
Hydrologic adjustment	3. 3736	3. 4174	4. 4166	3. 3662	3. 3747	3. 432
Soil conservation	5. 699	3. 1352	3. 3154	3. 1143	0	3. 32

The regression coefficients after Standardized Processing(make the sum of every line equal 1)

	woodland	grassland	rivers/lake s	wetland	desert	farmland
Gas	0. 11674640	0. 14089419	0. 139601859	0. 23219619	0. 17405407	0. 19650727
regulation	3	1	0. 139001639	5	3	9
Food	0. 16812127	0. 16021699	0. 159882941	0. 15603901	0 17045409	O 10500406
production	4	1	0.109002941	3	0.17043492	0.10020400

Aesthetic	0 10020255	0. 16716565	0. 163486401	0 14571999	0. 17477691	0. 15865524
Tandscape		19			2	8
Waste	0. 17111941	0. 15757971	0. 193854933	0. 24135832	0. 17527902	0.06080858
disposal	2	7	0. 193634933	5	9	5
Hydrologic	0. 15778863	0. 15983723	0. 206571409	0. 15744252	0. 15784008	0. 1605201
adjustment	9	5	0. 200071409	9	8	0.1003201
Soil	0. 30666329					0. 17864926
conservatio	5	0. 16870517	0. 178401735	0. 16758054	0	0.17004920
n	J					1

The absolute weight of ecosystem services value to the cost-benefit analysis

	woodland	grassland	rivers/lake s	wetland	desert	farmland
	0. 02146966 4	0. 02591044 2	0. 025672782	0. 04270088	0. 03200854 4	0. 03613768 9
	0. 02367147 5	0. 02255855 2	0. 022511518	0. 02197029 3	0. 02400005 3	0. 02608810 8
Aesthetic landscape	0. 02756049 4	0. 02422230 4	0. 023689179	0. 02111370 2	0. 02532517 4	0. 02298914 5
	0. 04402902 5	0. 04054526 1	0. 049878874	0. 06210149 7	0. 04509929 4	0. 01564604 9
Hydrologic adjustment	0. 02156970 7	0. 02184975	0. 028238312	0. 02152239 4	0. 02157674	0. 02194309 8
Soil conservatio n	0. 04060222	0. 02233656 4	0. 02362039	0. 02218766 4	0	0. 02365316 2

Raw data of ecosystem services

	Food	Total Domestic	Completion	Total	Drought
Major Air	output	Tourism	of	water	and
Pollutants	value(Y)	Consumption(Y)	Investment	resources	flood
(t)	*1∩ ⁸	*10 ⁸	in	(3)	disaster
	. 10.	. 10.	Industrial	(m ³)	area

				Pollution Control(Y)	*10 ⁸	(_{hm} ²)
				*10 ⁴		*10 4
2017	29304941.99	104351.17	45660.8	6815345	28761.2	15290
2016	35078379.04	101842.83	39390	8190041	32466.4	18404
2015	52481374.61	97535.07	34195.1	7736822	27962.6	16230
2014	57931522. 92	93632.53	30311.9	9976511	27266. 9	16990
2013	55493998. 21	89326. 26	26276. 1	8496647	27957.86	22860
2012	56915365.01	82935. 18	22706. 2	5004573	29528. 79	17070
2011	59010081.95	75744. 54	19305. 4	4443610	23256. 7	23167
2010	59894310. 72	65188.1	12579.8	3969768	30906.41	30783.6

The Normalization to raw data of ecosystem services

				Completion		
				of		Drought
		Food	Total Domestic	Investment	Total	and
	Major Air	output	Tourism	in	water	flood
	Pollutants	value(¥)	Consumption(Y)	Industrial	resources	disaster
	(t)	*10 ⁸	*10 ⁸	Pollution	*10 ⁸	area
		10	10	Control(Y)		*10 ⁴
				*10 ⁴		10
2017.00	0.00000	1.00000	1. 00000	0. 47373	0. 59769	0.00000
2016.00	0. 18874	0. 93595	0.81044	0. 70259	1.00000	0. 20099
2015.00	0. 75766	0. 82596	0. 65341	0. 62714	0. 51097	0.06067
2014.00	0. 93583	0. 72631	0. 53602	1.00000	0. 43543	0. 10972
2013.00	0.85615	0. 61635	0. 41402	0. 75363	0.51046	0. 48859
2012.00	0. 90261	0. 45316	0. 30611	0. 17227	0.68103	0. 11489
2011.00	0. 97109	0. 26955	0. 20331	0. 07889	0.00000	0. 50840
2010.00	1.00000	0.00000	0.00000	0.00000	0. 83061	1.00000

Raw data of ecosystem services

	woodland(k	grassland(h	rivers/lakes(wetland(h m²)	desert (k m²)	farmland(h
	m ²)*10 ⁴	m²)*10 ⁸	m³)*108	*10 ⁴	*10 ⁴	m ²)*10 ³
2017	223. 3	392832. 67	27746.3	5360	130.8	166331.91

2016	219.1	392833	31273.9	5589	130. 22	166939.04
2015	215.8	392833. 54	26900.8	6050	130. 01	166829. 28
2014	211.8	392832.11	26263.91	6321	129. 88	164965. 83
2013	208. 3	392832.73	26839.47	6680	129. 17	163453. 12
2012	204. 5	392833. 57	28373. 26	6901	129. 05	161827. 4
2011	200	392832.88	22213.6	7000	128. 57	159859.36
2010	197.6	392832. 15	29797.62	7518	128. 01	156785. 04

The Normalization to raw data of ecosystem services

	woodland(grassland(rivers/lakes(m³)*	wetland(h	desert (k	farmland(
	k m²)*10 ⁴	h m²)*10 ⁸	10 ⁸	m²) *10 ⁴	m²) *10 ⁴	h m²)*10 ³
		0. 38356164				
2017	1	4	0. 610653069	0	1	0. 9402078
	0. 8365758	0.60958904		0. 1061167	0. 7921146	
2016	75	1	1	75	95	1
	0. 7081712	0. 97945205			0. 7168458	0. 9891904
2015	06	5	0. 517333863	0. 3197405	78	67
	0. 5525291			0. 4453197	0. 6702508	0.8056716
2014	83	0	0. 447039281	41	96	56
	0. 4163424	0. 42465753		0.6116774	0. 4157706	0. 6566948
2013	12	4	0. 510564772	79	09	99
	0. 2684824			0. 7140871	0. 3727598	0. 4965885
2012	9	1	0. 679851661	18	57	37
	0. 0933852			0. 7599629	0. 2007168	0. 3027693
2011	14	0. 52739726	0	29	46	52
2010	0	0. 02739726	0. 837060583	1	0	0

The error analysis of the three influencing factors

	actual value	Theoretical value	absolute error	relative error	AARE
	612945. 4742	612945. 4742	0.0000	0.0000	
	610307.0566	621622. 4478	11315. 3912	0. 0185	
Unit area	598430. 7174	599549. 4407	1118. 7232	0. 0019	0.0206
cost	596492. 3694	578260. 2174	18232. 1520	0. 0306	
	574539. 1049	557726. 9468	16812. 1581	0. 0293	

	515456. 8988	537922. 7860	22465. 8872	0. 0436	
	262207. 0000	262207. 0000	0.0000	0.0000	
1.00	217698. 0000	230287. 5175	12589. 5175	0. 0578	
Affected farmland	248907.0000	248964. 0945	57. 0945	0.0002	0.0661
area	313498. 0000	269155. 3629	44342. 6371	0. 1414	0.0001
arca	249620.0000	290984. 1659	41364. 1659	0. 1657	
	324705.0000	314583. 3095	10121. 6905	0.0312	
	1669390. 4000	1669390. 4000	0.0000	0.0000	
T . 1	1668292. 8000	1668181. 0222	111. 7778	0.0001	
Total	1649658. 3000	1650838. 9569	1180. 6569	0.0007	0.0005
planting area	1634531. 2000	1633677. 1762	854. 0238	0.0005	0.0003
arca	1618274. 0000	1616693. 8057	1580. 1943	0.0010	
	1598593. 6000	1599886. 9909	1293. 3909	0.0008	

Cost-benefit analysis of construction of typical residential areas

	cost	weight	dimensionless	normalization
construction cost(Y)	159928400	0. 316145813	0. 095822297	0. 03689134
ecological services value(Y)	11495286. 55	0. 076500757	0. 991870964	0. 381867793
operating cost(Y)	59515150	0. 030852672	0. 796964812	0. 306829421
Maintenance cost(Y)	72018000	0. 076500757	0.71276172	0. 274411446
Indirect benefit(Y)	1175200000	0. 416666667	0.1302	0. 120332717
Direct benefit(Y)	4295163000	0. 083333333	0. 9518	0. 879667283

Raw data of staple crops

2016		planting area	output	Unit area cost	total cost
unhusked rice	2015655	307459	619731069080	726795	223459591226
wheat	1395540	246940	344614228938	651900	160979990430
corn	1148835	441776	507527845844	554325	244887536633
soybean	702945	72023	50628207735	301995	21750585885
peanut	2526720	44484	112398612480	695430	30935508120
2015					
unhusked rice	2066280	307841	636085494852	718035	221040540632

	1				
wheat	1502565	245965	369577648943	630345	155042492753
corn	1424310	449684	640489275609	564330	253770115287
soybean	839430	65061	54614155230	302715	19694940615
peanut	2240310	43855	98249243112	669495	29360837124
2014					
unhusked rice	2072070	307651	637474821984	704700	216801800640
wheat	1579440	244723	386525453064	628545	153819480890
corn	1718565	429968	738928127777	547200	235278544320
soybean	962415	67999	65443257585	304365	20696515635
peanut	2230755	43697	97477301235	643290	28109843130
2013					
unhusked rice	1958850	307097	601557741990	702780	215821910772
wheat	1352895	244701	331055029974	625620	153089964744
corn	1634340	412992	674969508714	539565	222836082437
soybean	989370	67905	67183169850	306405	20806431525
peanut	2162550	43961	95067644295	674760	29663056884
2012					
unhusked rice	2011245	304760	612946422827	680265	207317357321
wheat	1277595	245756	313976125782	595035	146233183446
corn	1682850	391092	658149845340	516870	202143928788
soybean	1060245	71711	76030805097	307095	22021966707
peanut	2758995	44008	121417851960	676215	29758869720
2011					
unhusked rice	1902375	303384	577150327238	614010	186280871241
wheat	1245300	245235	305391145500	535995	131444733825
corn	1540980	367665	566564719896	462675	170109496410
soybean	916080	78885	72265337232	269115	21229244421
peanut	2522190	43362	109367959437	605460	26254138158
L	1			1	

Raw data of gray prediction model

En	unit area cost	planting areea	affected farmland
EII	unit area cost	pranting areea	area
209904. 71734	612945. 47425	1669390. 40000	262207. 00000
231032. 89194	610307. 05656	1668292. 80000	217698. 00000
251473. 14778	598430. 71744	1649658. 30000	248907. 00000
234831. 88536	596492. 36940	1634531. 20000	313498. 00000
240839. 43096	574539. 10489	1618274. 00000	249620. 00000
224319. 31244	515456. 89883	1598593. 60000	324705. 00000

The predicted value of En and the three factors

	affected farmland area	planting areea	unit area cost	En
2011	262207. 00000	612945. 47420	1669390. 40000	221484. 41709
2012	230287. 51750	621622. 44781	1668181. 02220	233093. 39763
2013	248964. 09450	599549. 44066	1650838. 95691	233775. 17645
2014	269155. 36291	578260. 21737	1633677. 17615	234347. 56755
2015	290984. 16594	557726. 94680	1616693. 80572	234773. 93648
2016	314583. 30947	537922. 78604	1599886. 99089	235016. 01294
2017	340096. 37011	518821. 84536	1583254. 89624	235033. 70706
2018	367678. 56870	500399. 15431	1566795. 70541	234784. 91262
2019	397497. 71466	482630. 62913	1550507. 62093	234225. 29613
2020	429735. 22694	465493. 04125	1534388. 86401	233308. 07051
2021	464587. 23776	448963. 98690	1518437. 67436	231983. 75205
2022	502265. 78590	433021.85783	1502652. 30998	230199. 89928
2023	543000. 10673	417645. 81309	1487031. 04699	227900. 83223
2024	587038. 02685	402815. 75177	1471572. 17942	225027. 33037
2025	634647. 47188	388512. 28670	1456274. 01904	221516. 30747
2026	686118. 09652	374716. 71913	1441134. 89518	217300. 46155

The predicted value of value table of ecological services

2011	woodland	grassland	river/lake	wetland	desert	farmland
Gas	139392. 971	168224. 968	166681.948	277237. 813	207817. 232	234625. 930
regulation	5	3	1	4	207817. 232	8
Food	200967. 539	191518. 977	191119.663	186524. 737	203757. 115	221484. 417
production	6	6	3	6	203757.115	1
Aesthetic	223261. 472	196219. 529	191900. 805	171037. 433	205153. 639	186229, 985
landscape	223201.472	6	8	7	7	100229, 900
Waste	194431. 016	179046. 808	220263. 798	274238. 579	199157. 298	69092. 5410
disposal	3	179040.000	1	1	8	6
Hydrologic	191031. 533	193511.727	250091.851	190612. 505	191093. 821	194338. 458
adjustment	5	1	6	3	4	3

	T	T	T	T	T	T 1
Soil conservatio n	321128. 151 9	176662. 744 7	186816. 682 7	175485. 068 2	0	187075. 884 3
Raw material production	660023. 562 9	79734. 3901 5	77519. 5459 8	53156. 2601	8859. 37668 4	86378. 9226 6
	901441. 577 6	345515 . 690	456257. 899 2	3001113. 85 2	28792. 9742 2	214839. 884 6
Biodiversit y maintaining	998894. 721 1	414175. 86	759691. 550 6	817277. 499 1	88593. 7668 4	225914. 105 4
2012	woodland	grassland	river/lake	wetland	desert	farmland
	146699. 175 3	177042. 385	175418. 488 2	291769. 076 7	218709. 854 7	246923. 716 3
	211501. 139 6	201557. 336 5	201137. 092 5	196301. 326 3	214436. 929	233093. 397 6
Aesthetic landscape	234963. 595 9	206504 . 265	201959. 178 1	180002. 264 2	215906 . 651 7	195991. 124 4
Waste disposal	204622 . 008	188431. 445 3	231808 . 800	288612 . 639	209596. 016 1	72713. 9875 5
	201044. 343 3	203654. 534 9	263200. 274 7	200603.352	201109. 896 1	204524. 598 7
Soil conservatio n	337959. 902 5	185922. 422 6	196608. 573 6	184683. 018 8	0	196881. 361
Raw material production	694618. 324 9	83913. 6231 5	81582. 6891 7	55942. 4154 3	9323. 73590 5	90906 . 4250
	948690. 128 3	363625 . 700	480172. 399 1	3158415. 53 8	30302. 1416 9	226100. 595 7
Biodiversit y maintaining	1051251. 22 3	435884. 653 6	799510. 353 9	860114. 637 2	93237. 3590 5	237755. 265 6
2013	woodland	grassland	river/lake	wetland	desert	farmland
Gas regulation	147128. 258 2	177560. 219 2	175931. 572 7	292622. 477	219349. 562 9	247645. 947 7
	212119 . 762 8	202146. 875	201725. 401 7	196875. 491 4	215064. 139 2	233775. 176 4

	00=0=0	005100 050	202712 201		010500 100	100501 000
Aesthetic	235650. 844	207108. 273	202549. 891			196564. 382
landscape	9	100000 501	9	8	8	70000 0000
Waste		188982. 591	232486. 822	289456. 807	210209.067	72926. 6699
disposal	5	0 4050 005	1	2	001000 105	2
Hydrologic	201632. 381	_		201190. 100		205122. 816
adjustment	3	5	6	2	8	2
Soil	338948. 407	186466. 230	197183. 637	185223. 201		197457. 222
conservatio	1	2	3	3	0	6
n						
Raw	696650. 025	84159. 0635	81821. 3117	56106. 0423	9351. 00705	91172. 3188
material	8	2	6	5	8	1
production	051464 060	204000 075	401576 060	0107050 04	20200 7700	000701 001
Climate	951464. 968	304089. 275	_	3107053.04		220701.921
adjustment	1	ა	5	1	4	2
Biodiversit	1054326.04	437159. 58	801848. 855	862630. 401	93510.0705	238450.68
maintaining	6	457159.56	2	1	8	230430.00
maintaining						
2014	woodland	grassland	river/lake	wetland	desert	farmland
Gas	147488. 497	177994. 969	176362. 335	293338. 953	219886. 633	248252. 300
regulation	1	8	6	9	3	9
Food	212639. 131	202641.825	202219. 32	197357. 534	215590. 717	234347. 567
production	3	2	202219. 32	8	215590.717	5
Aesthetic	236227. 828	207615.371	203045. 828	180970. 774	217068. 347	197045. 663
landscape	5	1	9	8	6	8
Waste	205722. 986	189445. 309	233056.058	290165. 533	210723. 757	73105. 2285
disposal	4	5	7	290100. 555	2	6
Hydrologic	202126.071	204750. 307	264616. 436	201682. 707	202191.977	205625. 052
adjustment	8	6	1	8	3	9
Soi1	220770 211	186922. 786	107666 425	195676 714		197940. 690
conservatio	6	0	9	5	0	4
n	O	3	2	J		1
Raw	698355 751	84365. 1243	82021 6486	56243 <i>4</i> 169	9373 90970	91395 5513
material	3	9	4	1	9	4
production	O .	2	1	1	2	1
Climate	953794. 599	365582. 205	482755. 989	3175409. 54	30465. 1837	227317. 140
adjustment	9	4	1	01,0100,01	8	5
Biodiversit		438229 951	803812. 156	864742 524	93739 0270	239034 518
У	1056907. 53	3	7	2	2	9
maintaining				_	_	

2015	woodland	grassland	river/lake	wetland	desert	farmland
Gas	147756. 835	178318. 811	150000 005	000070 651	220286. 692	0.40700 000
regulation	7	5	176683. 207	293872. 651	2	248703. 968
Food	213026.004	203010. 509	202587. 235	197716.604	215982. 959	234773. 936
production	2	1	2	5	9	5
Aesthetic	236657.618	207993. 103	203415. 247	181300.030	217463. 278	197404. 166
landscape	4	9	9	6	9	1
Waste	206097. 276	189789. 983	233480. 077	290693. 456	211107. 145	73238. 2352
disposal	1	8	9	4	3	6
Hydrologic	202493. 817	205122. 827	265097. 875	202049.646	202559. 842	205999. 164
adjustment	4	7	8	7	7	4
Soil	340396 499	187262. 871	198026 066	18601/ 532		198300. 821
conservatio	8	8	9	3	0	1
n						
Raw	699626, 330	84518. 6171	82170, 8777	56345, 7447	9390, 95745	91561, 8352
material	7	3	7	5	9	3
production						
Climate		366247. 340	483634. 309		30520. 6117	227730. 718
	5	9	1	9	4	4
Biodiversit	1058830. 45	439027. 261	805274. 602	866315. 825	93909. 5745	239469. 415
У	4	2	1	6	9	2
maintaining						
2016	woodland	grassland	river/lake	wetland	desert	farmland
Gas	147909. 188	178502.676	176865.385	294175.664	220513.830	248960. 407
regulation	5	9	8	4	8	7
Food	213245.656	203219.834	202796. 123	107000 471	216205.660	235016. 012
production	3	2	8	197920. 471	9	9
Aesthetic	236901.637	208207.566	203624. 990	181486. 969	217687. 506	197607.710
landscape	1	5	2	9	3	4
Waste	206309. 784	189985. 677	233720. 820	290993. 191	211324. 818	73313. 7515
disposal	200309.784	1	2	8	8	4
Hydrologic	202702.609	205334. 330	265371. 219	202257. 981	202768. 703	206211. 571
adjustment	6	7	4	202237.961	1	1
Soil	210717 101	187455. 959	108220 252	186206 222		
conservatio	2	4	5	7	0	198505. 29
n	۵	1	U	'		
Raw	700247 710	84605. 7646	82255 6045	56402 2421	9400 64051	01656 2450
material	6	6	3	1	8	5
production				1		0

	ı	ı	ı	Γ	I	T 1
	956515. 172	366624. 980	484132. 986	3184466.97	30552. 0816	227965. 532
adjustment	7	2	7	5	8	6
Biodiversit y	1059922. 21	439479. 944			94006. 4051	239716. 333
maintaining	8	2	4	8	8	2
2017	woodland	grassland	river/lake	wetland	desert	farmland
Gas	147920. 324	178516. 116	176878. 701	294197.812	220530. 433	248979. 151
regulation	4	2	8	6	1	7
Food	213261.711	203235. 134	202811.392	197935. 372	216221. 938	235033. 707
production	3	4	1	3	8	1
Aesthetic landscape	236919. 473 2	208223. 242 2	203640. 321	181500. 633 9	217703. 895 8	197622. 588 1
Waste disposal	206325. 316 8	189999. 981	233738. 416 9	291015. 100 3	211340. 729 3	73319. 2712 5
Hydrologic	202717. 870	205349. 790		202273, 208		206227. 096
adjustment	9	2	9	8	3	6
Soil conservatio n	340773. 138 7	187470. 072 7	198245. 177 1	186220. 352	0	198520. 235 2
Raw material production	700400. 447	84612. 1345 4	82261. 7974 7	56408. 0896 9	9401. 34828 2	91663. 1457 5
Climate adjustment	956587. 187 7	366652. 583	484169. 436 5	3184706. 73 1	30554. 3819 2	227982. 695 8
Biodiversit y maintaining	9	439513. 032 2	806165. 615 2	867274. 379 1	94013. 4828 2	239734. 381 2
2018	woodland	grassland	river/lake	wetland	desert	farmland
Gas		178327. 148	·			248715. 595
regulation	7	3	2	1	220296. 991	4
Food	213035. 963	203020. 000	202596. 706	197725. 848	215993. 057	234784. 912
	6	2	6	2	5	6
Aesthetic	236668. 682	208002. 827	203424. 757	181308. 506	217473. 445	197413. 395
landscape	6	9	9	8	7	1
Waste	206106. 911	189798. 856	233490. 993	290707. 046		73241. 6592
disposal	6	9	5	9	211117. 015	9
	202503. 284	205132. 417	265110. 269	202059. 092	202569. 312	206008. 795
adjustment	3	6	6	9	8	3

	Γ	Г	ı	ı	T	г 1
Soil conservatio n	340412. 414	187271. 626 7	198035. 325	186023. 228 8	0	198310. 092
Raw material production	699659. 039 6	84522. 5685 4	82174. 7194 2	56348. 3790 3	9391. 39650 5	91566. 1159 2
	955574. 594 4	366264. 463 7	483656. 92	3181335. 56 6	30522. 0386 4	227741. 365 2
Biodiversit y maintaining	1058879. 95 6	439047. 786 6	805312. 250 3	866356. 327 6	93913. 9650 5	239480, 610 9
2019	woodland	grassland	river/lake	wetland	desert	farmland
Gas regulation	147411. 544 6	177902. 100 5	176270. 318 1	293185 . 903	219771. 906 9	248122. 774 7
Food	212528. 186 4	202536 . 096	202113 . 811	197254. 563	215478. 232	234225. 296 1
Aesthetic landscape	236104. 576 1	207507. 047 3	202939. 889 2	180876. 352 8	216955. 091 6	196942. 854 7
Waste disposal	205615. 649 9	189346. 465 9	232934. 461 1	290014. 138 4	210613. 811 6	73067. 0857 2
Hydrologic adjustment	202020. 612	204643. 478 6	264478. 371 8	201577. 479 3	202086 . 483	205517. 767 5
Soil conservatio	339601. 031 4	186825. 259 5	197563. 302 2	185579. 837 2	0	197837. 414 3
material	697991. 382 5	84321. 1066 1	81978. 8536 5	56214. 0710 7	9369. 01184 5	91347. 8654 9
	953296 . 955 3	365391. 462	482504.11	3173752. 76 3	30449. 2885	227198. 537 3
Biodiversit y maintaining	1056356. 08 6	438001. 303 8	803392. 765 7	864291. 342 7	93690 . 1184 5	238909. 802 1
2020	woodland	grassland	river/lake	wetland	desert	farmland
Gas regulation	146834. 281 4	177205. 436 3	175580. 044	292037. 788 4	218911. 280 7	247151. 126 6
	211695 . 926	201742. 965 5	201322. 334 4	196482. 114 7	214634. 419 8	233308. 070 5

	005150 001	000004 450	000145 155	100100 041	016105 406	100171 007
	235179. 991	206694. 450	202145. 177		216105. 496	196171.627
landscape	004010 450	100004 005	020000 000	5	000700 040	70700 0550
Waste		188604. 985	232022. 290	288878. 443	_	2 (80. 9552
disposal	6	000040 005	000440 075	9	5	004710 000
*			263442. 675		201295. 113	204712. 960
	9	3	2	5		5
Soil conservatio n	338271. 154 7	186093. 652 2	196789. 644 9	184853. 107	0	197062. 683 5
Raw material production	695258. 050 1	83990. 9053 8	81657. 8246 8	55993. 9369 2	9332. 32282 1	90990. 1475
Climate adjustment	949563. 847	363960. 59	480614. 625 3	3161324. 35 5	30330. 0491 7	226308. 828 4
Biodiversit y maintaining	1052219. 39 8	436286. 091 9	800246. 681 9	860906. 780 2	93323. 2282 1	237974. 231 9
2021	woodland	grassland	river/lake	wetland	desert	farmland
Gas	146000.811	176199. 571	174583. 405	290380. 104	217668. 682	245748. 231
regulation	1	3	2	4	3	3
Food production	210494. 284 3	200597. 819	200179. 575 5	195366. 830 1	213416. 097 9	231983. 752
Aesthetic landscape	233845. 047 2	205521. 197 8	200997. 747 6	179145. 359 9	214878. 824	195058. 104 9
Waste disposal	203647. 901 1	187534. 413 8	230705. 270 4	287238. 693 2	208598. 230 2	72367. 8312 2
Hydrologic adjustment	200087. 267 9	202685. 033 6	261947. 304 7	199648. 375 9	200152 . 508	203550. 955 5
Soil conservatio n	336351. 037 9	185037. 335 3	195672. 614 7	183803. 831 8	0	195944. 103 5
Raw material production	691311. 581 1	83514. 1507 4	81194. 3132 2	55676. 1004 9	9279. 35008 2	90473. 6633
Climate adjustment	944173. 870 8	361894. 653 2	477886. 529 2	3143379. 84	30157. 8877 7	225024. 239 5
Biodiversit y maintaining	2	433809. 616 3	795704. 269 5	856020. 045 1	92793. 5008 2	236623. 427 1

2022	woodland	grassland	river/lake	wetland	desert	farmland
Gas	144878. 129	174844. 674	173240. 935	288147. 209	215994. 906	243858. 535
regulation	2	3	7	5	1	7
Food	208875.676	199055.310	198640. 282	193864. 545	211775. 022	230199. 899
production	1	2	8	3	2	3
Aesthetic	232046. 881	203940. 830	199452. 163	177767.811	213226. 500	193558. 194
landscape	9	4	5	1	6	1
Waste	202081.938	186092.356	228931. 248	285029.954	206994. 201	71811. 3545
disposal	6	8	6	3	8	(1011, 5545)
Hydrologic adjustment	198548. 685	201126. 475	259933. 045 5	198113. 168	198613. 424	201985. 738 4
Soil conservatio	333764. 646 7	183614. 479 8	194167. 978 6	182390. 461 4	0	194437. 379 7
Raw material production	685995. 699 9	82871. 9637 4	80569. 9647 5	55247. 9758 3	9207. 99597 1	89777. 9607 2
Climate	936913. 590	359111.842	474211. 792	3119208.63	29925. 9869	223293. 902
adjustment	1	9	5	5	1	3
Biodiversit y	1038201.54	430473. 811	789585. 654 5	849437. 628 3	92079. 9597	234803. 897 3
maintaining						
2023	woodland	grassland	river/lake	wetland	desert	farmland
Gas regulation	143431. 193 2	173098. 454 5	171510. 732 9	285269. 407	213837. 708	241423. 056
Food production	206789. 579 7			191928. 369	209659 . 969	227900. 832 2
Aesthetic			197460. 182	175992. 397	211096. 951	191625. 077
	6	6	2	1	3	4
Waste disposal	200063.693	184233. 803 4	226644 . 851	282183. 285 1	204926 . 896 2	71094. 1555 9
Hydrologic adjustment	196565. 727	199117. 771 9	257337. 025 7	196134. 559 6	196629. 819 4	199968. 453 6
Soil conservatio n	330431. 251 3	181780. 673 6	192228. 771 8	180568. 879 8	0	192495. 482 4
Raw material production	679144. 480 1	82044. 2996	79765. 2912 8	54696. 1997 4	9116. 03328 9	88881. 3245 7

Climate	927556. 387	355525, 298		3088056. 27		221063.807
adjustment	2	3	4	7	9	3
Biodiversit	1027832.75	426174. 556	781699. 854	840954. 070	91160. 3328	232458. 848
У	3	3	6	9	9	9
maintaining						
2024	woodland	grassland	river/lake	wetland	desert	farmland
Gas	141622. 732	170915. 931	169348. 229	281672. 570	211141. 521	238379. 058
regulation	141022.732	8	1	2	9	6
Food	204182. 260	194582. 557	194176. 855	189508. 428	207016. 458	225027. 330
production	4	1	3	2	5	4
Aesthetic	226832.811	199358.300	194970. 493	173773. 386	208435. 322	189208. 960
landscape	5	2	2	113113.300	3	6
Waste	197541. 177	101010 00	223787. 186	278625. 359	202343. 062	70197. 7604
disposal	4	181910.88	1	5	6	9
Hydrologic	194087. 315	196607. 183	254092. 375	193661.584	194150.600	197447. 138
adjustment	7	1	7	7	1	8
Soil	000004 000	170400 000	100005 040	170000 165		100000 001
conservatio	326264. 988	179488. 680	_	178292. 165	0	190068.391
n	2	(3	8		
Raw	670E01 444	01000 0200	797E0 EGEG	54006. 5592	0001 00221	07760 6500
material	5	01009.0009	3	04000, 0092	5	
production	5	S	S	9	J	4
Climate	915861. 234	351042.635	463556. 300	3049120. 32	29253. 5529	218276. 510
adjustment	6	4	6	6	5	5
Biodiversit		490001 107	771049 749	020250 040	00010 0001	
У	1014873. 26	420001.107	0	830350. 849	5	229527. 877
maintaining		О	<u> </u>	1	J	
2025	woodland	grassland	river/lake	wetland	desert	farmland
Gas		-	·	277277. 731		
	9	2	8	4	5	3
Food		191546, 553	191147. 181	186551. 594		221516, 307
production	8	4	6	4	9	5
Aesthetic		196247. 782	191928. 436	171062. 060	205183. 178	186256. 799
landscape	3	2	6	5	7	3
Waste	194459. 011		220295. 512	274278. 065	199185, 974	~
disposal	4	179072. 588	8	3	4	3
Hydrologic	191059. 039	193539 589		190639. 950		
adjustment	1	8	250127. 861	6	191121. 336	194366. 44
J 5 cmc11 c	I -	-		-		

Soil conservatio n	321174. 389 5	176688. 181 4	186843. 581 5	175510. 335 3	0	187102. 820 3
Raw material production	660118. 596 3	79745. 8706 9	77530. 7076 1	53163. 9137 9	8860. 65229 9	86391. 3599 1
Climate	901571.371	345565. 439	456323. 593	3001545.96	28797. 1199	214870.818
adjustment	4	6	4	6	7	2
Biodiversit y maintaining	999038. 546 7	414235. 495	759800. 934 6	817395. 174 6	88606. 5229 9	225946 . 633
2026	woodland	grassland	river/lake	wetland	desert	farmland
Gas	136759. 765	165047. 111	163533. 239	272000.647	203891.456	230193. 725
regulation	9	4	7	3	6	2
Food	197171. 158	187901.084	187509. 313	183001. 188	199908. 037	217300. 461
production	5	7	7	6	4	5
Aesthetic landscape	219043. 947	192512. 840 8	188275. 700 1	167806. 447 9	201278. 181	182712. 003 9
Waste disposal	190758. 113 5	175664. 520 9	216102. 900 7	269058. 070 1	195395. 114 1	67787. 3471 1
Hydrologic adjustment	187422. 848 7	189856. 190 2	245367. 486 8	187011. 736 2	187483. 96	190667. 304
Soil conservatio n	315061. 874 5	173325. 493 8	183287. 618 7	172170. 064 2	0	183541. 923 8
Raw material production	647555. 375 4	78228. 1661 6	76055. 1615 4	52152. 1107 7	8692. 01846 2	84747. 18
Climate adjustment	884412. 878 5	338988. 72	447638 . 950 8	2944421. 25 4	28249. 06	210781. 447 7
Biodiversit y maintaining	6	406351. 863 1	745340. 583 1	801838. 703 1	86920. 1846 2	221646. 470 8