Practice Problem Set 1

(MA6.102) Probability and Random Processes, Monsoon 2024

Problem 1. Let C_1, C_2, \ldots, C_n be events that form a partition of the sample space Ω . For two events A and B, suppose we know that

- A and B are conditionally independent given C_i , i.e., $P(A \cap B|C_i) = P(A|C_i)P(B|C_i)$, for all $i \in \{1, 2, ..., n\}$;
- B is independent of C_i , i.e., $P(B \cap C_i) = P(B)P(C_i)$, for all $i \in \{1, 2, ..., n\}$.

Are A and B independent events?

Problem 2. Let X and Y be independent random variables, each taking the values +1 or -1 with equal probability $\frac{1}{2}$, and let Z = XY.

- (a) Are \bar{X} , Y, and Z independent?
- (b) Are X, Y, and Z pairwise independent?

Problem 3. Let X_1 and X_2 be two discrete independent random variables which are symmetric about 0; that is, X_i and $-X_i$ have exactly the same PMFs. Show that, for all x,

$$P(X_1 + X_2 \ge x) = P(X_1 + X_2 \le -x).$$

Is the conclusion necessarily true without the assumption of independence?

Problem 4. A permutation on the numbers in [1:n] can be represented as a function $\pi:[1:n] \to [1:n]$, where $\pi(i)$ is the position of i in the ordering given by the permutation. A fixed point of a permutation $\pi:[1:n] \to [1:n]$ is a value x for which $\pi(x)=x$. Let X be number of fixed points of a permutation chosen uniformly at random from all permutations. Find $\mathbb{E}[X]$.

Hint: Express X as a sum of indicator random variables.

Problem 5. Alvin shops for probability books for K hours, where K is a random variable that is equally likely to be 1, 2, 3, or 4. The number of books N that he buys is random and depends on how long he shops according to the conditional PMF $P_{N|K}(n|k) = \frac{1}{k}$, for n = 1, 2, ..., k.

- (a) Find the joint PMF of K and N.
- (b) Find the marginal PMF of N.
- (c) Find the conditional PMF of K given that N=2.
- (d) Find the conditional mean and conditional variance of K, given that he bought at least 2 but no more than 3 books.
- (e) The cost of each book is a random variable with mean Rs. 30. What is the expected value of his total expenditure?

Problem 6. Let X_1, X_2, \ldots, X_n be independent discrete random variables and let $X = X_1 + X_2 + \cdots + X_n$. Suppose that each X_i is a geometric random variable with parameter p_i , and that p_1, p_2, \ldots, p_n are chosen so that the mean of X is a given $\mu > 0$. Show that the variance of X is minimized if the p_i values are chosen to be all equal to $\frac{n}{\mu}$.

Problem 7. For two random variables X and Y, prove the triangle inequality:

$$\sqrt{\mathbb{E}[(X+Y)^2]} \le \sqrt{\mathbb{E}[X^2]} + \sqrt{\mathbb{E}[Y^2]}.$$

[*Hint:* Use the Cauchy-Schwarz inequality.]

Problem 8. For a non-negative continuous random variable X, show that

$$\mathbb{E}[X^n] = \int_0^\infty nx^{n-1}P(X > x) \ dx.$$

Problem 9. Consider a random variable X with the following two-sided exponential PDF

$$f_X(x) = \begin{cases} p\lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ (1-p)\lambda e^{\lambda x}, & \text{if } x < 0, \end{cases}$$

where λ and p are scalars with $\lambda > 0$ and $p \in [0, 1]$. Find the mean and the variance of X.

Problem 10. A stick of length 1 is split at a point U that is uniformly distributed over [0,1]. Determine the expected length of the substick that contains the point p, $0 \le p \le 1$. Also, find the value of p that maximizes this expected length.

All the best for mid-semester examinations