

Suthatta Dontriros (Fongnam)

Term Deposit

- Term deposits is an interest-bearing bank account and the bank makes a revenue from this.
- Telemarketing campaigns are the one of the high productive way to contact with people.
- However, the bank needs to spend more cost for telemarketing such as labour cost and phone bill for the large call centers investment.
- Hence, it is important to identify the customers most likely to subscribe the campaign to reduce the cost.

Problem Statement

 The goal for this project is to develop the model that predicts the success of a bank marketing campaign based on the features in the dataset from UCI.

 This model should help the bank to identify potential customers who will be interested in the term deposit campaign.

Dataset

41,188 rows 21 columns

Dataset

41,188 rows 21 columns

Work Process

Data Cleaning EDA Model Flask API

Data cleaning

Dealing with unexpected value

- Fill 'unknown'
- Replace 999 by 0

Drop Duplicate rows

Drop 11 duplicate rows

Feature Engineering

Binary Feature Encoding

- yes = 1
- no = 0

Data contains only 11% of positive class

More number of contact, less success rate

Successful case took more time per call

Average duration = 4.3 mins

Average duration for successful case = 9.2 mins

Average duration for unsuccessful case = 3.7 mins

Young adults & middle-aged adults have low success rate

Customer with university degree is the high value customer

Admin gives the high success case, but student shows the high success rate

Customers who agreed with the previous campaign tend to subscribe the term deposit

Method 1 Method 2 Method 3

Pipeline

- Classification model
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - XGBoost
- SMOTE

Best model

Method 1

- All features
- Dummy
- SMOTE

Feature Engineering (Method 1)

Dummy

Nominal columns

Take get_dummies() on 8
 columns
 (job, education, contact,
 month, day_of_week,
 marital, poutcome,
 default)

Method 1

- All features
- Dummy

Method 2

- Feature Selection
- Dummy
- More feature engineering

Feature Engineering (Method 2)

Feature

Selection

Drop columns

 (housing, previous, loan, emp.var.rate)

Dummy Nominal columns

Take get_dummies()
 on 7 columns
 (job, contact, marital,
 poutcome, default,
 day_of_week, month)

Remove

Outliers

 Remove outliers in column named campaign by IQR

Ordinal Feature Encoding

Convert string to integer in education column

Method 1

- All features
- Dummy
- SMOTE

Method 2

- Feature Selection
- Dummy
- More feature engineering

Method 3

- Feature Selection
- Dummy
- Feature engineering
- PCA

	Method 1	Method 2	Method 3
Best Model	Random Forest	XGBoost	Logistic Regression
Training ROCAUC score	0.795	0.799	0.791
CV ROCAUC score	0.790	0.789	0.788
Validation ROCAUC score	0.808	0.815	0.815
Best Parameters	'rfmax_depth': 5 'rfmin_samples_split': 4 'rfn_estimators': 50 'smk_neighbors': 5	'smkneighbors': 5 'xglearning_rate': 0.1 'xgmax_depth': 5 'xgmin_child_weight': 4	'lrC': 0.01 'lrpenalty': 'l2' 'smk_neighbors': 3

Feature Importance

Cost-Benefit Analysis

Increase % of Profit

Reduce cost

^{*} Model lets the bank miss some successful cases

Deploy model using Flask API

Customer Response Prediction

Insert your CSV file and then download the Result

เลือกไฟล์ ไม่ได้เลือกไฟล์

Submit

Deploy model by Flask API

Conclusion

- The best performing model is XGBoost with the ROCAUC score at 0.815.
- Number of employees was the top feature importance for tree splitting.
- This model should reduce the cost around 80% and increase the percent of profit from 76% to 95%. However, this model had some FN that means the bank will miss up some customers.

Next steps

Further improve the model:

- more data collection
- more data about the customer such as incomes, account balance and location
- Try to build Deep learning model

Recommendations

Digital marketing can increase the success rate.

Thank you

Q&A