- Testes Qui-quadrado -Aderência e Independência

1. Testes de Aderência

Objetivo: Testar a adequação de um modelo probabilístico a um conjunto de dados observados.

Exemplo 1: Segundo Mendel (geneticista famoso), os resultados dos cruzamentos de ervilhas amarelas redondas com ervilhas verdes enrugadas ocorrem na proporção de 9:3:3:1, ou seja, seguem uma distribuição de probabilidades dada por:

Resultado	Amarela	Amarela	Verde	Verde
	redonda	enrugada	redonda	enrugada
Probabilidade	9/16	3/16	3/16	1/16

Uma amostra de **556 ervilhas** resultantes de cruzamentos de ervilhas amarelas redondas com ervilhas verdes enrugadas foi classificada da seguinte forma:

Resultado	Amarela	Amarela	Verde	Verde
	redonda	enrugada	redonda	enrugada
Freq. observada	315	101	108	32

Há evidências de que os resultados desse experimento estão de acordo com a distribuição de probabilidades proposta por Mendel?

4 categorias para os resultados dos cruzamentos:

Amarelas redondas (AR), Amarelas enrugadas (AE), Verdes redondas (VR), Verdes enrugadas (VE).

Segundo Mendel, a probabilidade de cada categoria é dada por:

 Probabilidades:
 AR
 AE
 VR
 VE

 (de Mendel)
 9/16
 3/16
 3/16
 1/16

No experimento, 556 ervilhas foram classificadas segundo o tipo de resultado, fornecendo a tabela a seguir:

Tipo de resultado	Frequência observada
AR	315
AE	101
VR .	108
VE	33
Total	556

Objetivo: Verificar se o modelo probabilístico proposto é adequado aos resultados do experimento.

Se o modelo probabilístico for adequado, a **frequência esperada** de ervilhas do tipo AR, dentre as 556 observadas, pode ser calculada por:

$$556 \times P(AR) = 556 \times 9/16 = 312,75$$

Da mesma forma, temos para o tipo AE,

$$556 \times P(AE) = 556 \times 3/16 = 104,25$$

Para o tipo VR temos

$$556 \times P(VR) = 556 \times 3/16 = 104,25$$

E para o tipo *VE*,

$$556 \times P(VE) = 556 \times 1/16 = 34,75$$

Podemos expandir a tabela de frequências dada anteriormente:

Tipo de resultado	Frequência observada	Frequência esperada (por Mendel)
AR	315	312,75
AE	101	104,25
VR	108	104,25
VE	32	34,75
Total	556	556

[→] Pergunta: Podemos afirmar que os valores observados estão suficientemente próximos dos valores esperados, de tal forma que o modelo probabilístico proposto por Mendel é adequado aos resultados desse experimento?

Testes de Aderência – Metodologia

Considere uma tabela de frequências, com $k \ge 2$ categorias de resultados:

Categorias	Frequência observada
1	O_1
2	O_2
3	O_3
•	• •
k	O_k
Total	n

em que O_i é o total de indivíduos *observados* na categoria i, i = 1,...,k.

Seja p_i a probabilidade associada à categoria i, i = 1,..., k.

O objetivo do teste de aderência é testar as hipóteses

$$H_0: p_1 = p_{o1}, \dots, p_k = p_{ok}$$

 H_1 : existe pelo menos uma diferença

sendo p_{oi} a probabilidade especificada para a categoria i, i = 1, ..., k, fixada através do modelo probabilístico de interesse.

Se E_i é o total de indivíduos **esperados** na categoria i, quando a hipótese H_0 é verdadeira, então:

$$E_i = n \times p_{0i}, i = 1, ...,k$$

Expandindo a tabela de frequências original, temos:

Categorias	Frequência observada	Frequência esperada, sob $H_{\boldsymbol{\theta}}$
1	O_1	E_1
2	O_2	E_2
3	O_3	E_3
•	• • •	• •
k	O_k	E_k
Total	n	n

Quantificação da distância entre as colunas de frequências:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 Estatística do teste de aderência

Supondo H_0 verdadeira,

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_q^2$$
, aproximadamente,

sendo que q = k - 1 representa o número de graus de liberdade.

 \rightarrow Em outras palavras, se H_0 é verdadeira, a v.a. χ^2 tem distribuição aproximada <u>qui-quadrado com q graus de liberdade</u>.

IMPORTANTE.: Esta <u>resultado é válido</u> para *n* **grande** e para

$$E_i \geq 5$$
, $i = 1, ..., k$.

Regra de decisão:

Pode ser baseada no **nível descritivo** ou **valor-***p*, neste caso

valor-
$$p = P(\chi_q^2 \ge \chi_{obs}^2)$$
,

em que χ^2_{obs} é o valor calculado, a partir dos dados, usando a expressão apresentada para χ^2 .

Graficamente:

Se, para α fixado, obtemos valor- $p \le \alpha$, rejeitamos a hipótese H_0 .

Exemplo (continuação): Cruzamentos de ervilhas

Hipóteses:

 H_0 : O modelo probabilístico proposto por Mendel é adequado.

 H_1 : O modelo proposto por Mendel não é adequado.

De forma equivalente, podemos escrever:

$$H_0$$
: $P(AR) = 9/16$; $P(AE) = 3/16$; $P(VR) = 3/16$; $P(VE) = 1/16$.

 H_1 : ao menos uma das igualdades não se verifica.

A tabela seguinte apresenta os valores observados e esperados (calculados anteriormente).

Resultado	O_i	E_{i}
AR	315	312,75
AE	101	104,25
VR	108	104,25
VE	32	34,75
Total	556	556

Cálculo do valor da estatística do teste (k = 4):

$$\chi_{obs}^{2} = \sum_{1}^{4} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \frac{(315 - 312,75)^{2}}{312,75} + \frac{(101 - 104,25)^{2}}{104,25} + \frac{(108 - 104,25)^{2}}{104,25} + \frac{(32 - 34,75)^{2}}{34,75} = 0,016 + 0,101 + 0,135 + 0,218 = 0,470.$$

Usando a distribuição de qui-quadrado com q = k-1 = 3 graus de liberdade, o nível descritivo é dado por: **valor-** $p = P(\chi^2) \ge 0,470 = 0,925$.

Conclusão: Para α =0,05, como **valor-**p= **0,925> 0,05**, não há evidências para rejeitarmos a hipótese H_0 , isto é, ao nível de significância de 5%, concluímos não há evidências para contestar o modelo de probabilidades de Mendel.

13

O cálculo do *nível descritivo* (valor-p) pode ser feito no *Rcmdr*, via menu, através do seguinte caminho:

Distribuições → Distribuições contínuas → Distribuição Qui-Quadrado → Probabilidades da Qui-Quadrado → Cauda Superior

Inserindo o valor 0,470 e o número de graus de liberdade igual a 3, o valor-p será igual a 0,925431.

Exemplo 2: Deseja-se verificar se o número de acidentes em uma estrada muda conforme o dia da semana. O número de acidentes observado para cada dia de uma semana escolhida aleatoriamente foram:

		•
Dia da semana	No. de acidentes	
Seg	20	
Ter	10	
Qua	10	⇒ O que pode ser dito?
Qui	15	→ O quo podo doi dito:
Sex	30	
Sab	20	
Dom	35	_

Hipóteses a serem testadas:

 H_0 : O número de acidentes não muda conforme o dia da semana;

 H_1 : Pelo menos um dos dias tem número diferente dos demais.

Se p_i representa a probabilidade de ocorrência de acidentes no i-ésimo dia da semana, temos as hipóteses estatísticas,

$$H_0$$
: p_i = 1/7 para todo i = 1,..., 7

 H_1 : $p_i \neq 1/7$ para pelo menos um valor de i.

Total de acidentes na semana: n = 140.

Logo, se H_0 for verdadeira,

$$E_i = 140 \times 1/7 = 20, i = 1,...,7,$$

ou seja, esperamos 20 acidentes por dia.

Dia da semana	N° . de acidentes observados (O_i)	N° . esperado de acidentes (E_i)
Seg	20	20
Ter	10	20
Qua	10	20
Qui	15	20
Sex	30	20
Sab	20	20
Dom	35	20

Cálculo da estatística de qui-quadrado:

$$\chi_{obs}^{2} = \sum_{1}^{7} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \frac{(20 - 20)^{2}}{20} + \frac{(10 - 20)^{2}}{20} + \frac{(10 - 20)^{2}}{20} + \frac{(15 - 20)^{2}}{20} + \frac{(30 - 20)^{2}}{20} + \frac{(30 - 20)^{2}}{20} + \frac{(35 - 20)^{2}}{20} = 0 + 5 + 5 + 1,25 + 5 + 0 + 11,25 = 27,50$$

Neste caso, temos $\chi^2 \sim \chi_6^2$, aproximadamente.

O nível descritivo é dado por: valor- $p = P(\chi^2_6 \ge 27,50) \cong 0,00012$, que pode ser obtido no *Rcmdr* pelo caminho (via menu):

Distribuições → Distribuições contínuas → Distribuição Qui-Quadrado → Probabilidades da Qui-Quadrado → Cauda Superior

(inserindo o valor 27,50 e o número de graus de liberdade igual a 6).

Conclusão: Para α = 0,05, temos que valor-p = 0,0001 < α .

Assim, há evidências para **rejeitarmos** H_0 , ou seja, concluímos, ao nível de significância de 5%, de que o número de acidentes se altera ao longo das semanas.

2. Testes de Independência

Objetivo: Verificar se há dependência entre duas variáveis medidas nas mesmas unidades experimentais.

Exemplo 3: Uma grande empresa de comunicação no Brasil fez um levantamento com 1300 usuários de seus recursos midiáticos, para verificar se a preferência por um determinado canal de informação para se inteirar de notícias é independente do nível de instrução do indivíduo. Os resultados obtidos foram:

		Tipo de mídia			
Grau de instrução	Internet	TV	Rede Social	Outras	Total
Fundamental	10	27	5	8	50
Médio	90	73	125	162	450
Superior	200	130	220	250	800
Total	300	230	350	420	1300

Vamos calcular *proporções segundo os totais das colunas* (poderiam também ser calculadas pelos totais das linhas). Temos a seguinte tabela:

	Tipo de mídia				
Grau de instrução	Internet	TV	Rede Social	Outras	Total
Fundamental	3,33%	11,74%	1,90%	1,43%	3,85%
Médio	30,00%	31,74%	38,57%	35,71%	34,62%
Superior	66,67%	56,52%	59,52%	62,86%	61,54%
Total	100,00%	100,00%	100,00%	100,00%	100,00%

- ⇒ O que representam as porcentagens na colunas?Distribuição de grau de instrução por tipo de mídia.
- ⇒ Independentemente da preferência por um tipo de mídia:
- 3,85% dos usuários têm ensino fundamental,
- 34,62% têm ensino médio e
- 61,54% têm ensino superior.

Sob independência entre grau de instrução e preferência por um tipo de mídia, o <u>número esperado de usuários</u> que têm:

- Fundam. e preferem Internet é igual a 300x0,0385=11,54(=300x50/1300),
- Médio e preferem Internet é 300x0,3462=103,85 (=300x450/1300),
- Superior e preferem Internet é 300x0,6154=184,62 (=300x800/1300).

		Tipo de mídia			
Grau de instrução	Internet	TV	Rede Social	Outras	Total
Fundamental	10 11,54 (3,85%)	27 8,85 (3,85%)	5 13,46 (3,85%)	8 16,15 (3,85%)	50 (3,85%)
Médio	90 103,85 (34,62) %	73 79,62 (34,62%)	125 121,15 (34,62%)	162 145,38 (34,62%)	450 (34,62%)
Superior	200 184,62 (61,54%)	130 141,54 (61,54%)	220 215,38 (61,54%)	250 258,46 (61,54%)	800 (61,54%)
Total	300	230	350	420	1300

As diferenças entre os valores observados e os esperados não são muito pequenas. Preferência por um tipo de mídia e grau de instrução parecem não ser *independentes*.

Testes de Independência – Metodologia

Em geral, os dados referem-se a mensurações de duas características ($A \in B$) feitas em n unidades experimentais, que são apresentadas conforme a seguinte tabela:

$A \setminus B$	B_1	B_2	 $B_{\scriptscriptstyle S}$	Total
A_1	O_{11}	O_{12}	 O_{1s}	$O_{1.}$
A_2	O_{21}	O_{22}	 O_{2s}	$O_{2.}$
A_r	O_{r1}	O_{r2}	 O_{rs}	$O_{r.}$
Total	<i>O</i> _{.1}	$O_{.2}$	 $O_{.s}$	n

Hipóteses a serem testadas – **Teste de independência**:

 H_0 : A e B são variáveis independentes

 H_1 : As variáveis A e B não são independentes

 \rightarrow Quantas observações devemos esperar em cada casela, se A e B forem independentes?

$$E_{ij} = \frac{O_{i.} \times O_{.j}}{n}$$

Distância entre os valores observados e os valores esperados sob a suposição de independência:

$$\chi^{2} = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Supondo H_0 verdadeira,

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi_{q}^{2}$$

aproximadamente, sendo $q = (r - 1) \times (s - 1)$ o número de **graus** de liberdade.

Regra de decisão:

Pode ser baseada no **valor-***p* (nível descritivo), neste caso

valor-
$$p = P(\chi_q^2 \ge \chi_{obs}^2)$$
,

em que χ^2_{obs} é o valor calculado, a partir dos dados, usando a expressão apresentada para χ^2 .

Graficamente:

Se, para α fixado, obtemos valor- $p \le \alpha$, rejeitamos a hipótese H_0 de independência.

Exemplo 3 (continuação): Estudo da dependência entre preferência por um tipo de mídia e grau de instrução. Foram selecionados ao acaso, e entrevistados, 1300 usuários.

Hipóteses: H_0 : As variáveis preferência por um tipo de mídia e grau de instrução são independentes.

 H_1 : Existe dependência entre as variáveis.

Tabela de valores observados

	Tipo de mídia				
Grau de instrução	Internet	TV	Rede social	Outras	Total
Fundamental	10	27	5	8	50
Médio	90	73	125	162	450
Superior	200	130	220	250	800
Total	300	230	350	420	1300

 \rightarrow Exemplo do cálculo dos valores esperados sob H_0 (independência):

 Número esperado de usuários que têm fundamental e preferem internet:

 $E_{11} = \frac{300 \times 50}{1300} = 11,54$

Tabela de valores observados e esperados (entre parênteses)

		Tipo d				
Grau de instrução	Internet	TV	Rede social	Outras	Total	
Fundamental	10	27	5	8	50	
Fundamental	(11,54)	(8,85)	(13,46)	(16,15)		
Mádia	90	73	125	162	450	
Médio	(103,85)	(79,62)	(121,15)	(145,38)	450	
Suporior	200	130	220	250	800	
Superior	(184,62)	(141,54)	(215,38)	(258,46)	000	
Total	300	230	350	420	1300	

Médio e prefere TV:

Superior e prefere outras mídias:

$$E_{22} = \frac{230 \times 450}{1300} = 79,62$$

$$E_{34} = \frac{420 \times 800}{1300} = 258,46$$

Lembre-se: $O_{i.} \times O_{.j.}$

$$E_{ij} = \frac{O_{i.} \times O_{.j}}{n_{..}}$$

Cálculo da estatística de qui-quadrado:

	Tipo de Mídia				
Grau de instrução	Internet	TV	Rede social	Outras	Total
Fundamental	10 (11,54)	27 (8,85)	5 (13,46)	8 (16,15)	50
Médio	90 (103,85)	73 (79,62)	125 (121,15)	162 (145,38)	450
Superior	200 (184,62)	130 (141,54)	220 (215,38)	250 (258,46)	800
Total	300	230	350	420	1300

$$\chi_{obs}^{2} = \frac{(10-11,54)^{2}}{11,54} + \frac{(27-8,85)^{2}}{8,85} + \frac{(5-13,46)^{2}}{13,46} + \frac{(8-16,15)^{2}}{16,15}$$

$$+ \frac{(90-103,85)^{2}}{103,85} + \frac{(73-79,62)^{2}}{79,62} + \frac{(125-121,15)^{2}}{121,15} + \frac{(162-145,38)^{2}}{145,38}$$

$$+ \frac{(200-184,62)^{2}}{184,62} + \frac{(130-141,54)^{2}}{141,54} + \frac{(220-215,38)^{2}}{215,38} + \frac{(250-258,46)^{2}}{258,46}$$

$$= 0,21+37,25+5,32+4,12+1,85+0,55+0,12+1,90+1,28+0,94+0,10+0,28$$

$$= 53,91.$$

Determinação do **número de graus de liberdade**:

- Categorias de Grau de instrução: s = 3
- Categorias de Tipo de mídia: r = 4 $\implies q = (r-1) \times (s-1) = 3 \times 2 = 6$

O nível descritivo (valor-
$$p$$
): valor- $p = P(\chi_6^2 \ge 53,910) < 0,0001$

Supondo $\alpha = 0.05$, temos valor- $p < \alpha$.

Assim, temos evidências para rejeitar a independência entre as variáveis grau de instrução e preferência por tipo de mídia para informação, ao nível de 5% de significância, i.é, há evidências amostrais de que a preferência por uma mídia depende do grau de instrução do usuário.

Os cálculos podem ser feitos diretamente no Rcmdr:

Estatísticas \rightarrow Tabelas de Contingência \rightarrow Digite e analise tabela de dupla entrada

Saída do *Rcmdr*:

data: .Table

X-squared = 53.9099, df = 6, p-value = 7.692e-10

> .Test\$expected # Expected Counts

```
net tv re_soc outras
1 11.53846 16.15385 13.46154 8.846154
2 103.84615 145.38462 121.15385 79.615385
3 184.61538 258.46154 215.38462 141.538462
```

> round(.Test\$residuals^2, 2) # Chi-square Components

	net	tv	re_soc	outras
1	0.21	37.25	5.32	4.12
2	1.85	0.55	0.12	1.90
3	1.28	0.94	0.10	0.28

Exemplo 4: 1237 indivíduos adultos classificados segundo a pressão sanguínea (mm Hg) e o nível de colesterol ($mg/100cm^3$).

Verificar se existe dependência entre essas variáveis.

Colesterol		- Total		
Colesteroi	< 127	127 a 166	> 166	– IOlai
< 200	117	168	22	307
200 a 260	204	418	63	685
> 260	67	145	33	245
Total	388	731	118	1237

Hipóteses:

 H_0 : Pressão sanguínea e nível de colesterol são independentes;

 H_1 : Nível de colesterol e pressão sanguínea são variáveis dependentes

Rcmdr: Estatísticas \rightarrow Tabelas de Contingência \rightarrow Digite e analise tabela de dupla entrada

Saída do *Rcmdr*: data: .Table X-squared = 13.5501, df = 4,(p-value = 0.008878) > .Test\$expected # Expected Counts 96,29426 181,4204 29,28537 2 214.85853 404.7979 65.34357 3 76.84721 144.7817 23.37106 > round(.Test\$residuals^2, 2) # Chi-square Components 3 1 4.45 0.99 1.81 2 0.55 0.43 0.08 3 1.26 0.00 3.97

Para α = 0,05, temos **valor-**p < α . Assim, temos evidências para rejeitar a hipótese de independência entre as variáveis pressão sanguínea e nível de colesterol ao nível de 5% de significância.

Exemplo 5: Uma indústria, desejando melhorar o nível de seus funcionários em cargos de chefia, montou 2 cursos experimentais de inglês utilizando 2 metodologias distintas (MA, MB). Os dados referentes ao conceito obtido no curso (A, B ou C) e metodologia utilizada estão na tabela a seguir:

- (a) Identifique as variáveis em estudo. Classifique-as.
- (b) Construa uma tabela de contingência para as variáveis "metodologia" e "conceito".
- (c) Conclua se existe associação entre essas variáveis (α = 10%).

Dados:

Funcionário	Metodologia	Conceito
1	MA	A
2	MA	B
3	MB	A
4	MB	B
5	MA	A
6	MA	B
7	MA	C
8	MB	B
9	MB	B
10	MA	B
11	MB	C
12	MB	A
13	MB	B
14	MB	A
15	MB	C
16	MA	A
17	MA	B
18	MB	C
19	MA	C
20	MB	C
21	MB	A
22	MA	C
23	MB	C
24	MA	A
25	MA	B
26	MB	B
27	MA	A
28	MB	C
29	MA	A
30	MA	B
31	MA	A
32	MA	A
33	MB	B
34	MB	B
35	MA	A
36	MA	A
37	MA	A
38	MB	B
39	MB	C
40	MB	C

Variáveis:

- Metodologia: qualitativa nominal
- Conceito: qualitativa ordinal

Remdr: Construção da tabela de contingência (ou tabela de frequencias conjuntas)

Saída do Remdr:

```
Metodologia
> .Table
                Conceito MA MR
                         11
                    A
                    \mathbf{B}
                          6
                          3
                    C
> rowPercents(.Table) # Row Percentages
                Metodologia
                           Total Count
      Conceito
                MA
                     MB
                73.3 26.7 100
                                  15
         A
                42.9 57.1 100 14
         В
                27.3 72.7 100 11
         C
X-squared = 5.8251, df = 2, p-value = 0.05434
> round(.Test$residuals^2, 2) # Chi-square Components
               Metodologia
     Conceito MA
                    MB
         A 1.63 1.63
         B 0.14 0.14
               1.14 1.14
```

Para α = 0,10, temos valor-p < α =0,10, então, H_0 é rejeitada, ou seja, os dados mostram evidências de que o conceito no curso depende da metodologia de ensino, ao nível de 10% de significância.