Methodology, Ethics and Practice of Data Privacy

实验部分

Lan Zhang School of Computer Science and Technology University of Science and Technology of China Spring 2021

Part 1

K-Anonymity

K-Anonymity简介

Every QI-cluster contains k or more tuples. (k=4)

	Name	Age	Gender	Zip Code	Nationality	Condition
1	Ann	20-29	Any	130**	Asian	Heart disease
2	Bruce	20-29	Any	130**	Asian	Heart disease
3	Cary	20-29	Any	130**	Asian	Viral infection
4	Dick	20-29	Any	130**	Asian	Viral infection
5	Eshwar	40-59	Any	14***	Asian	Cancer
6	Fox	40-59	Any	14***	Asian	Flu
7	Gary	40-59	Any	14***	Asian	Heart disease
8	Helen	40-59	Any	14***	Asian	Flu
9	Igor	30-39	Any	1322*	American	Cancer
10	Jean	30-39	Any	1322*	American	Cancer
11	Ken	30-39	Any	1322*	American	Cancer
12	Lewis	30-39	Any	1322*	American	Cancer

Identifier attributes

Quasi-identifiers, QI

Sensitive attributes

K-Anonymity 算法1 -- Samarati算法

》 技术:

- Generalization: 泛化;
- Suppression: 不发布/删除。

» 单个(categorical) Attribute:

- 预先定义泛化层数,设可以删除的最大记录数MaxSup;
- 先泛化到某一层,再删除记录数小于k的QI-cluster使得满足K-Anonymity (Full domain generalization);

[1] Samarati P. Protecting respondents identities in microdata release[J]. IEEE transactions on Knowledge and Data Engineering, 2001, 13(6): 1010-1027.

K-Anonymity 算法1 -- Samarati算法

- » 多个(categorical) Attributes:
 - · 预定义泛化层数,构建lattice,如右下角的图;
 - 例子: 泛化到 $< R_1, Z_1 >$ 对应的距离向量为[1, 1];
 - 要求泛化后的表格在满足*K*-Anonymity、删除的记录数不超过 *MaxSup*的条件下,距离向量的元素之和尽可能得小。
- 》 基本过程(二分):
 - 结构高度为h(下面的例子h = 3),检查高为h/2的节点能否满足k-匿名,满足则继续检查h/4高度的结点,否则检查3h/4高度的结点。重复这一过程直到找到满足k-匿名的最低层。

K-Anonymity 算法1 -- Samarati算法

Find_vector

INPUT: Table $T_i = \mathsf{PT}[QI]$ to be generalized, anonymity requirement k, suppression threshold MaxSup , lattice VL_{DT} of the distance vectors corresponding to the domain generalization hierarchy DGH_{DT} , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table GT_{sol} that is a k-minimal generalization of $\mathsf{PT}[QI]$ according to Definition 4.3. METHOD: Executes a binary search on VL_{DT} based on height of vectors in VL_{DT} .

- 1. low := 0; $high := height(\top, VL_{DT})$; $sol := \top$
- 2. while low < high
 - $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor$
 - 2.2 $Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
 - $2.3 \; reach_k := false$
 - $2.4 \text{ while } Vectors \neq \emptyset \land reach_k \neq \texttt{true do}$

Select and remove a vector vec from Vectors

if satisfies($vec, k, T_i, MaxSup$) then $sol := vec; reach_k := true$

- 2.5 if $reach_k = true then high:= try else low:= try + 1$
- 3. Return sol
-)》 T表示完全generalization的Table;
- VL_{DT} 表示右下角的图;
- >> 2.2 Vectors:表示元素之和为try的距离向量的集合;

K-Anonymity 算法2 -- Mondrian算法

- **》** 技术:
 - Generalization: 泛化;
- » 单个 (数值型) Attribute:
 - 以所有记录在该属性取值的中位数将记录划分为两部分,然后每一部分继续以中位数划分为两个区间(有两种方式)。
 - 重复这个过程,直到每个区间包含的记录数>=k,且不能再划分。
 此时每个区间都是一个等价类,记录泛化为对应范围。
- 》 中位数划分的两种方式(后面介绍第一种):
 - $abla \square k = 2$, dataset = [1, 2, 3, 3, 4, 5];
 - 第一种划分: [1, 2, 3, 3], [4, 5]; (strict partitioning)
 - 第二种划分: [1, 2, 3], [3, 4, 5]。

LeFevre K, DeWitt D J, Ramakrishnan R. Mondrian multidimensional k-anonymity[C]//22nd International conference on data engineering (ICDE'06). IEEE, 2006: 25-25.

K-Anonymity 算法2 -- Mondrian算法

» 多个 (数值型) Attributes:

- 每个Partition单独选择一个属性,可以选择范围最大的属性, 或者随机选;
- · 找到属性的中位数,对Partition划分;
- 重复上述过程,直到不能划分为止。

K-Anonymity 算法2 -- Mondrian算法

》 算法 (strict multidimensional partitioning):

```
Anonymize(partition)

if (no allowable multidimensional cut for partition)

return \phi: partition \rightarrow summary

else

dim \leftarrow \text{choose\_dimension}()

fs \leftarrow \text{frequency\_set}(partition, dim)

splitVal \leftarrow \text{find\_median}(fs)

lhs \leftarrow \{t \in partition : t.dim \leq splitVal\}

rhs \leftarrow \{t \in partition : t.dim > splitVal\}

return Anonymize(rhs) \cup Anonymize(lhs)
```

评价指标 Loss Metric (LM)

>> LM[1] is defined in terms of a normalized loss for each attribute of every tuple.

- Quantify the loss when a leaf node value cannot be disambiguated from another value due to generation.
- Categorical attribute A: For a tuple t, suppose the value of t[A] has been generalized to x. Letting |A| represent the total number of leaf nodes in the tree; Letting M represent the number of leaf nodes in the subtree rooted at x, then the loss for t[A] is (M 1)/(|A| 1).
- What is the loss for "State"? 2/7
- The loss for attribute A is the average of the loss for all tuples t. The LM for the entire data set is the sum of the losses for each attribute.

[1]V. S. Iyengar, "Transforming data to satisfy privacy constraints," in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.

评价指标 Loss Metric (LM)

- LM is defined in terms of a normalized loss for each attribute of every tuple.
- **Numerical information:** For a tuple t, suppose the value of t[A] has been generalized to an interval $[L_i, U_i]$. Letting the lower and upper bounds in the table for A be L and U. The normalized loss for this entry is given by $(U_i L_i)/(U L)$.

Zipcode	Age	Salary	Disease	
476**	20-30	20-40K	Gastric Ulcer	
476**	20-30	20-40K	Gastritis	
476**	20-30	20-40K	Stomach Cancer	
4790*	30-40	40-60K	Gastritis	
4790*	30-40	40-60K	Flu	
4790*	30-40	40-60K	Bronchitis	

>>> The loss for age [20-30] is (30-20)/(40-20)

Adult数据集介绍(文件夹中有提供)

- 》 下载链接: https://archive.ics.uci.edu/ml/datasets/adult
- 》 有32561条数据,删除空的或有?的行后,剩余30162条。
- >>> 15 \(^\)attributes ['age', 'work_class', 'final_weight', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'class']

```
data > F adult.data

1 39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K
2 59, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
3 38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K
5 33, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, <=50K
5 28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, <=50K
6 37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, <=50K
7 49, Private, 169187, 9th, 5, Married-spouse-absent, Other-service, Not-in-family, Black, Female, 0, 0, 45, United-States, >50K
8 52, Self-emp-not-inc, 209642, HS-grad, 9, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 45, United-States, >50K
9 31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, >50K
10 42, Private, 159449, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 80, United-States, >50K
11 37, Private, 280464, Some-college, 10, Married-civ-spouse, Exec-managerial, Husband, Black, Male, 0, 0, 80, United-States, >50K
12 30, State-gov, 141297, Bachelors, 13, Married-civ-spouse, Prof-specialty, Husband, Asian-Pac-Islander, Male, 0, 0, 40, 1ndia, >50K
13 23, Private, 205019, Assoc-acdm, 12, Never-married, Sales, Not-in-family, Black, Male, 0, 0, 50, United-States, <=50K
14 32, Private, 205019, Assoc-acdm, 12, Never-married, Sales, Not-in-family, Black, Male, 0, 0, 50, United-States, <=50K
14 9, Private, 121772, Assoc-voc, 11, Married-civ-spouse, Craft-repair, Husband, Asian-Pac-Islander, Male, 0, 0, 40, ?, >50K
```

实验要求

- 》 必做部分80:
 - 代码正确: 50 (每个算法各25)
 - 代码清晰有注释: 10
 - 实验报告,测试分析结果和讨论:20
- >> 选做部分20:
 - Samarati算法可能会有很多解满足要求,调研并探究如何选择输出保证结果的可用性尽可能大,说说你的启发,(e.g.:选用合适的评价指标评价不同的输出)15
 - Mondrian算法处理categorical (如Gender) 5
- » 代码抄袭O, 会有查重

实验要求

- \gg 实现k-Anonymity两种算法(后面两页有具体要求):
 - Samarati算法 (categorical 型)
 - Mondrian算法 (数值型)
- >> 实验报告:问题描述、程序使用指南、实验结果分析、 讨论与总结。

实验要求(Samarati算法)

Samarati算法:

- 使用Adult数据集;
- QI={age, gender, race, marital _status} (categorical 型), S = {occupation}
- 输入: data, k, maxSup (data是数据集, k是K-Anonymity的参数, maxSup表示最大suppression的个数);
- 输出: 匿名后的数据集。
- · 评价指标: 运行时间和LM。
- 》 可取K=10,maxSup=20。并测试不同的k,maxSup对实验结果的影响。
- Age: 共五层, (1)原始值, (2)range-5, (3)range-10, (4)range-20, (5)*;
- Cender:共两层, (1)Male, Female, (2)*;Race: 共两层, (1)可能的值, (2)*;
- Marital_status:共三层,如图。Married leave alone NM

 Marined-civ-spouse Married-AF-spouse Divorced Seperated Windowed Married-spouse-absent: Never-married

实验要求(Samarati算法)

- Age的层次类似左下图, 共五层, (1)原始值, (2)range-5, (3)range-10, (4)range-20, (5)*;
- Gender、marital_status、race的层次以右下文件形式给出:
 - 子节点,父节点

实验要求(Mondrian算法)

- Mondrian算法:
 - 使用Adult数据集;
 - QI={age, education_num} (数值型), S = {occupation};
 - 输入: data, k (data是数据集, k是K-Anonymity的参数);
 - 输出: 匿名后的数据集。
 - · 评价指标:运行时间和LM。
- 》 可取k=10。并测试不同的k 对实验结果的影响。

参考资料

- Samarati P. Protecting respondents identities in microdata release[J]. IEEE transactions on Knowledge and Data Engineering, 2001.
- >> LeFevre K, DeWitt D J, Ramakrishnan R. Mondrian multidimensional k-anonymity[C].(ICDE'06). IEEE, 2006.
- W. S. Iyengar, "Transforming data to satisfy privacy constraints," in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.
- https://blog.csdn.net/xff1994/article/details/831 49116

THANKS!

Any questions?

