Modélisation statistique

#2.a Interprétation des paramètres du modèle linéaire

Dr. Léo Belzile HEC Montréal

Interprétation des coefficients du modèle linéaire

On considère le modèle linéaire

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon,$$

où ε est un aléa de moyenne zéro.

- lacktriangledown eta_0 est la moyenne de la réponse quand $X_1, ..., X_p$ sont conjointement nulles.
- ♣ $β_j$ (1 ≤ j ≤ p) est la différence moyenne de Y quand X_j augmente d'une unité, ceteris paribus.
 - lacktriangle si pas d'interaction ou de fonctions impliquant X_j etc.

Données intention

- Dans le cadre d'une étude réalisée au Tech3Lab, des cobayes devaient naviguer sur un site internet qui contenait, entre autres choses, une publicité pour des bonbons.
- → Pendant la navigation, un oculomètre mesurait l'endroit où se posait le regard du sujet. On a ainsi pu mesurer si le sujet a regardé la publicité et la durée du visionnement.
- Un logiciel d'analyse des expressions faciales (FaceReader) a été utilisé pour mesurer l'émotion du sujet pendant qu'il regardait la publicité.
- À la fin de l'expérience, un questionnaire mesurait l'intention d'achat du sujet pour ces bonbons, ainsi que des variables socio-démographiques.

Objectifs de l'étude

Évaluer si

- 1. il y a un lien entre la durée de la fixation de la publicité et l'intention d'achat
- 2. l'émotion perçue est liée à l'intention d'achat.

Seuls les 120 sujets qui ont regardé la publicité sont inclus dans les données intention.

Description des données

- → intention: variable discrète entre 2 et 14; plus elle est élevée, plus le sujet exprime l'intention d'acheter ce produit. Le score a été construit en additionnant les réponses de deux questions sur une échelle de Likert allant de fortement en désaccord (1) à fortement en accord (7).
- + fixation: durée totale de fixation de la publicité (en secondes).
- emotion: une mesure de la valence durant la fixation, soit le ratio de la probabilité d'une émotion positive sur la probabilité d'une émotion négative.

- ***** sexe: sexe du sujet, soit homme (0) ou femme (1).
- age: âge du sujet (en années).
- + statut: statut matrimonial, soit célibaire (0) ou en couple (1).
- revenu: variable catégorielle indiquant le revenu annuel du sujet; un parmi (1) [0, 20 000]; (2) [20 000, 60 000]; (3) 60 000 et plus
- educ: variable catégorielle indiquant le niveau d'éducation, soit le plus haut grade obtenu (1) secondaire ou moindre; (2) collégial; (3) universitaire.

Analyse exploratoire des données

• code SAS → sortie SAS (1) → sortie SAS (2)

```
proc means data=modstat.intention mean std min max maxdec=2;
var intention sexe age statut fixation emotion;
run;

proc freq data=modstat.intention;
tables intention revenu educ;
run;

proc sgplot data=modstat.intention;
histogram intention emotion;
run;
```

Analyse exploratoire des données

- code SAS → sortie SAS (1) → sortie SAS (2)

Variable	Moyenne	Ec-type	Minimum	Maximum
intention	8.26	2.93	2.00	14.00
sexe	0.52	0.50	0.00	1.00
age	30.06	5.02	19.00	45.00
statut	0.54	0.50	0.00	1.00
fixation	1.58	1.09	0.03	5.84
emotion	1.04	0.53	0.05	2.80

revenu	Fréquence	Pourcentage
1	35	29.17
2	42	35.00
3	43	35.83
educ	Fréquence	Pourcentage
educ 1	Fréquence 30	Pourcentage 25.00
	•	
1	30	25.00

intention	Fréquence	Pourcentage
2	2	1.67
3	3	2.50
4	7	5.83
5	9	7.50
6	15	12.50
7	16	13.33
8	18	15.00
9	6	5.00
10	13	10.83
11	13	10.83
12	7	5.83
13	6	5.00
14	5	4.17

Analyse exploratoire des données

- code SAS → sortie SAS (1) → sortie SAS (2)

Terminologie

- ullet variables **explicatives**, **covariables**, régresseurs ou prédicteurs (old x): variables potentiellement liées à Y.

Dans notre exemple, on a

- variable réponse: intention,
- ◆ variables explicatives (x): fixation, emotion, sexe, age, revenu, educ, statut.

On cherche à mesurer l'effet de fixation et emotion sur la variable intention en tenant compte des variables socio-démographiques

Modèle linéaire simple

Considérons un modèle avec fixation comme unique régresseur.

• code SAS → Nuage de points → Estimés

```
proc sgplot data=modstat.intention noautolegend;
scatter y=intention x=fixation;
reg y=intention x=fixation;
yaxis label="intention d'achat";
xaxis label="temps de fixation (en secondes)";
run;

proc glm data=modstat.intention;
 *Imprimer seulement les coefficients;
ods select ParameterEstimates;
model intention=fixation;
run;
```

Modèle linéaire simple

Considérons un modèle avec fixation comme unique régresseur.

- code SAS → Nuage de points → Estimés

Modèle linéaire simple

Considérons un modèle avec fixation comme unique régresseur.

- code SAS → Nuage de points → Estimés

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	6.453188456	0.42849218	15.06	<.0001
fixation	1.144083751	0.22351452	5.12	<.0001

La droite ajustée est

$$\widehat{\mathtt{intention}} = 6.45 + 1.14 \mathtt{fixation}$$

Problèmes?

Spécification de variables catégorielles en SAS

- La commande class crée une variable catégorielle (collection de variables binaires).
- La catégorie de référence est spécifiée à l'aide de ref; par défaut, c'est la première valeur rencontrée.
- → Dans R, l'analogue est factor et la référence est la première valeur en ordre alphanumérique.

Variable explicative binaire

Soit un modèle linéaire avec sexe comme seul régresseur.

code SAS + Estimés + Interprétation

```
proc glm data=modstat.intention;
ods select ParameterEstimates;
model intention=sexe;
run;

/* Si pas codé avec 0/1, utiliser "class" */
proc glm data=modstat.intention;
class sexe(ref="0");
model intention=sexe / solution;
run;
```

Variable explicative binaire

Soit un modèle linéaire avec sexe comme seul régresseur.

Le modèle postulé est

$$intention = \beta_0 + \beta_1 sexe + \varepsilon$$

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	7.551724138	0.37626498	20.07	<.0001
sexe	1.367630701	0.52346612	2.61	0.0102

Variable explicative binaire

Soit un modèle linéaire avec sexe comme seul régresseur.

- code SAS + Estimés + Interprétation
- ◆ La moyenne du score d'intention d'achat des hommes est de 7.55 points.
- La moyenne du score d'intention d'achat des femmes est de 8.92 points. L'estimé de la « pente » est $\hat{\beta}_1 = 1.37$, soit une augmentation de l'intention moyenne d'achat de 1.37 points pour les femmes par rapport à la moyenne des hommes.

Variables explicatives catégorielles

- Les variables revenu et educ sont catégorielles et chacune a trois niveaux.
- L'inclusion d'une variable catégorielle à k niveaux requiert k-1 variables explicatives additionnelles dans le modèle. Par exemple
 - + educ1 = 1 si educ = 1 et zéro sinon.
 - + educ2 = 1 si educ = 2 et zéro sinon.

Si le modèle contient l'ordonnée à l'origine, inclure une troisième variable binaire est superflu.

educ	ordonnée à l'origine	educ1	educ2
1	1	1	0
2	1	0	1
3	1	0	0

• Quand educ = 3 (référence), les deux indicatrices sont nulles.

Ajuster le modèle avec des indicatrices

Pour ajuster le modèle, on peut remplacer educ par les deux indicatrices

```
data intention;
set modstat.intention;
educ1=(educ=1);
educ2=(educ=2);
run;
proc glm data=intention;
ods select ParameterEstimates;
model intention=educ1 educ2;
run;
/* Alternative avec `class` */
proc glm data=modstat.intention;
ods select ParameterEstimates;
class educ(ref="3");
model intention=educ / solution;
run;
```

Ajuster le modèle avec des indicatrices

Pour ajuster le modèle, on peut remplacer educ par les deux indicatrices

- code SAS (1) → sortie SAS (1) → sortie SAS (2)

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	7.114285714	0.48424632	14.69	<.0001
educ1	1.652380952	0.71279129	2.32	0.0222
educ2	1.594805195	0.61944998	2.57	0.0113

Ajuster le modèle avec des indicatrices

Pour ajuster le modèle, on peut remplacer educ par les deux indicatrices

```
- code SAS (1) → sortie SAS (1) → sortie SAS (2)
```

Parame	ètre	Estimation		Erreur type	Valeur du test t	Pr > t
Consta	ante	7.114285714	В	0.48424632	14.69	<.0001
educ	1	1.652380952	В	0.71279129	2.32	0.0222
educ	2	1.594805195	В	0.61944998	2.57	0.0113
educ	3	0.000000000	В			

Les résultats sont identiques selon que l'on crée les indicateurs manuellement ou avec class.

Interprétation des effets différentiels

- La moyenne empirique de l'intention pour les trois catégories d'éducation est 8.77, 8.71, et 7.11 pour respectivement 1, 2 et 3.
- La moyenne d' intention est 1.65 points plus élevée quand educ = 1 que quand educ = 3, etc.
- Pour comparer educ = 1 et educ = 2, on pourrait réajuster le modèle en changeant la catégorie de référence (exercice).

Commentaire sur la commande class

- Dans SAS, les noms des niveaux de la variable catégorielles sont sensibles à la casse à l'intérieur de class, par exemple, class echelon(ref="ProfAdjoint")
- **SAS** n'imprimer pas le tableau des coefficients lorsque class est spécifié, hormis si / solution est ajouté à la ligne contenant l'appel à model.