Econ 3389 Big Data: Homework 2

Due Monday, Feb 29th (Beginning of class)

1 Programming Practice

In this section you will use all the programming techniques we have learned in the last few weeks: arrays and data manipulation, random number generation, plotting, and optimization.

- 1. Data Simulation Define a function generate_data that takes an integer n_obs (for "number of observations") and performs the following:
 - 1. Creates the vectors (x_1, x_2, e) , each of size $(n_obs, 1)$, where each component is independently drawn from the following distributions: ¹
 - $x_{1i} \sim \text{Uniform}[0, 10]$
 - $x_{2i} \sim \text{Uniform}[-5, 5]$
 - $e_i \sim \mathcal{N}(0,1)$
 - 2. For each i, computes y_i as

$$y_i = 2 + 3x_{1i} + 5x_{2i} + e_i$$

3. Returns a pandas DataFrame data whose columns are (x_1, x_2, y)

¹For example, $x_1 = np.random.uniform(low = a, high = b, size = (n,m), where a,b,n,m are appropriate numbers. Similarly for other distributions.$

2. Sum of Squared Residuals Define a function get_sum_of_squared_residuals that takes a pandas DataFrame data, and a 3-by-1 vector β as input and returns the value

$$\sum_{i} (y_i - \beta_0 - \beta_1 x_1 - \beta_2 x_2)^2$$

- 3. Estimate β Define a function estimate_beta that takes a pandas DataFrame data and outputs the 3-by-1 vector $\hat{\beta}$ that minimizes the function get_sum_of_squared_residuals. Use the function scipy.optimize.minimize to do this.²
- **4. Monte Carlo** Define a function monte_carlo that takes as input a number of simulations n_sims and a number of observations n_obs, and performs the following:
 - Initializes betahats as a (n_sims, 3) NumPy array of zeros.
 - For i in $\{0, 1, \dots, n_{-}sims 1\}$:
 - Computes a new data set data using the function generate_data
 - Estimates $\hat{\beta}$ using estimate_beta
 - Stores $\hat{\beta}$ on the \mathbf{i}^{th} row of betahats.
 - Returns betahats
- **5. Plotting** Use your monte_carlo function to simulate $\hat{\beta}$ for n_sims = 500 times, using some small n_obs = 50 or so. Then, use the matplotlib.pyplot.hist function to plot three histograms, each corresponding to one of the components of $\hat{\beta}$.

Each histogram should be in its separate subplot, be normalized to one, have 80 bins, and be of a different color. Also, include a title for your figure and title for each panel.

²Some of you may notice that we could have exploited the structure of the problem and computed β much faster using linear algebra, but I'd like you to get some practice with this useful function.

2 Theory

1. Violation of Gauss-Markov assumptions Consider the model

$$y_i = \beta_0 + \beta_1 x_i + u_i$$
, where $u_i = \sqrt{x_i} \epsilon_i$ $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Assume that ϵ_i and x_i are independent.

- 1. In real life, where could such a model arise?
- 2. What would a scatterplot of x_i against y_i look like? (Draw a picture).
- 3. Which of the Gauss-Markov assumptions are violated?
- 4. Compute $E[u_i|x_i]$ and $Var[u_i|x_i]$.
- 5. If you forgot about the Gauss-Markov violation and estimated the least squares coefficients anyway, would they be biased? Would they be consistent?
- 6. How could you transform the model so that the Gauss-Markov assumptions are satisfied?

2. Bias vs. Variance Consider the standard simple regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where x_i are independent from ϵ_i .

Let $\hat{\beta}_0$, $\hat{\beta}_1$ be the usual OLS estimators of β_0 , β_1 . Let $\tilde{\beta}_1$ be the estimator of β_1 obtained by wrongly assuming that the intercept is zero.

- 1. Find and expression for the conditional bias³ of $\tilde{\beta}_1$ in terms of the x_i , β_0 , and β_1 .
- 2. Find the conditional variance of $\tilde{\beta}_1$.
- 3. Show that $Var(\tilde{\beta}_1|X) \leq Var(\hat{\beta}_1|X)$
- 4. Comment on the trade-off between conditional bias and conditional variance when choosing between $\tilde{\beta}_1$. and $\hat{\beta}_1$.

Remark: Under the standard Gauss-Markov assumptions, the x_i are assumed to be constants, so the conclusions of this exercise are valid for the unconditional bias and variance as well.

The conditional bias of some estimator $\hat{\theta}$ of θ is defined as $E[\hat{\theta} - \theta | X]$, where $X = \{x_1, \dots, x_n\}$