# Otwarte układy hydrauliczne





1) Zawartość magazynu

$$V(t) = Ah(t)$$

2) Zmiana zawartości magazynu

$$\frac{dV(t)}{dt} = A\frac{dh(t)}{dt} = A\dot{h}(t)$$

3) Bilans strumieni wpływających i wypływających [m3/s]

$$A\dot{h}(t) = f_{we}(t) - f_{wy}(t)$$

(a)  $f_{wy}(t)$ 

(b) 
$$f_{wy}(t) = A_w \sqrt{2gh(t)} \approx ah(t)$$

(a)  $A\dot{h}(t) = f_{we}(t) - f_{wv}(t)$ 

- (b<sub>1</sub>)  $A\dot{h}(t) = f_{we}(t) A_w \sqrt{2gh(t)}$
- $(b_2) \quad A\dot{h}(t) = f_{we}(t) ah(t)$
- 4) Zmienne wejściowe i wyjściowe, kompletność modelu

1

# Otwarte układy hydrauliczne



 $\begin{cases} A_{1}\dot{h}_{1}(t) = f_{we}(t) - f_{wy1}(t) \\ A_{2}\dot{h}_{2}(t) = f_{wy1}(t) - f_{wy2}(t) \\ f_{wy1}(t) = A_{w1}\sqrt{2gh_{1}(t)} \approx a_{1}h_{1}(t) \\ f_{wy2}(t) = A_{w2}\sqrt{2gh_{2}(t)} \approx a_{2}h_{2}(t) \end{cases}$ 

$$\begin{cases} A_1 \dot{h}_1(t) = f_{we}(t) - A_{w1} \sqrt{2gh_1(t)} \\ A_2 \dot{h}_2(t) = A_{w1} \sqrt{2gh_1(t)} - A_{w2} \sqrt{2gh_2(t)} \end{cases}$$

$$\begin{cases} A_1 \dot{h}_1(t) = f_{we}(t) - a_1 h_1(t) \\ A_2 \dot{h}_2(t) = a_1 h_1(t) - a_2 h_2(t) \end{cases}$$



$$\begin{split} \begin{cases} A_1 \dot{h}_1(t) &= f_{we}(t) - f_{wy1}(t) \\ A_2 \dot{h}_2(t) &= f_{wy1}(t) - f_{wy2}(t) \\ f_{wy1}(t) &= A_{w1} \sqrt{2g(h_1(t) - h_2(t))} \approx a_1 \big( h_1(t) - h_2(t) \big) \end{cases} \end{split}$$

$$f_{wy1}(t) = A_{w1}\sqrt{2g(h_1(t) - h_2(t))} \approx a_1(h_1(t) - h_2(t))$$
$$f_{wy2}(t) = A_{w2}\sqrt{2gh_2(t)} \approx a_2h_2(t)$$

$$\begin{cases} A_1 \dot{h}_1(t) = f_{we}(t) - A_{w1} \sqrt{2g(h_1(t) - h_2(t))} \\ A_2 \dot{h}_2(t) = A_{w1} \sqrt{2g(h_1(t) - h_2(t))} - A_{w2} \sqrt{2gh_2(t)} \end{cases}$$

$$\begin{cases} A_1 \dot{h}_1(t) = f_{we}(t) - a_1 \big( h_1(t) - h_2(t) \big) \\ A_2 \dot{h}_2(t) = a_1 \big( h_1(t) - h_2(t) \big) - a_2 h_2(t) \end{cases}$$

2

#### Obiekty cieplne





Założenie o doskonałym mieszaniu

- 1) Zawartość magazynu  $Q(t) = c_p \rho V T(t) = C_V T(t)$
- 2) Zmiana zawartości magazynu  $\frac{dQ(t)}{dt} = C_V \, \frac{dT_w(t)}{dt} = C_V \, \dot{T}_w(t)$
- 3) Bilans strumieni wpływających i wypływających [W]  $C_{v}\dot{T}_{w}(t)=q_{we}(t)-q_{wv}(t)$

$$C_{v}\dot{T}_{w}(t) = q_{g}(t) - K_{c}(T_{w}(t) - T_{zew}(t))$$

$$C_{v}\dot{T}_{w}(t) = c_{p}\rho f(t)T_{z}(t) - c_{p}\rho f(t)T_{w}(t)$$

4) Zmienne wejściowe i wyjściowe, kompletność modelu

3

### Obiekty cieplne



$$\begin{cases} C_{\scriptscriptstyle \mathcal{W}} \dot{T}_{\scriptscriptstyle \mathcal{W}ew}(t) = K_g \left( T_g(t) - T_{\scriptscriptstyle \mathcal{W}ew}(t) \right) - K_c \left( T_{\scriptscriptstyle \mathcal{W}ew}(t) - T_{\scriptscriptstyle \mathcal{Z}ew}(t) \right) - c_{pp} \rho_p f_p(t) \left( T_{\scriptscriptstyle \mathcal{W}ew}(t) - T_{\scriptscriptstyle \mathcal{Z}ew}(t) \right) \\ C_{\scriptscriptstyle \mathcal{V}g} \dot{T}_g(t) = q_g(t) - K_g \left( T_g(t) - T_{\scriptscriptstyle \mathcal{W}ew}(t) \right) \end{cases}$$



$$\begin{cases} C_{vg}\dot{T}_{gp}(t) = c_{pw}\rho_{pw}f(t)T_{gz}(t) - c_{pw}\rho_{pw}f(t)T_{gp}(t) - K_g\left(T_{gp}(t) - T_{wew}(t)\right) \\ C_{vw}\dot{T}_{wew}(t) = K_g\left(T_{gp}(t) - T_{wew}(t)\right) - K_c\left(T_{wew}(t) - T_{zew}(t)\right) \end{cases}$$

$$\begin{cases} C_{vg} \dot{T}_{gp}(t) = c_{pw} \rho_{pw} f(t) \Big( T_{gz}(t) - T_{gp}(t) \Big) - K_g \Big( T_{gp}(t) - T_{wew}(t) \Big) \\ C_{vw} \dot{T}_{wew}(t) = K_g \Big( T_{gp}(t) - T_{wew}(t) \Big) - K_c \Big( T_{wew}(t) - T_{zew}(t) \Big) \end{cases}$$

4

#### Proste układy mechaniczne

Założenie – jeden kierunek działania sił

1) Opis działania układu za pomocą idealnych elementów







$$\begin{split} F_{cA}(t) &= c \big( x_A(t) - x_B(t) \big) \\ F_{bA}(t) &= b \big( \dot{x}_A(t) - \dot{x}_B(t) \big) \\ F_{cB}(t) &= c \big( x_B(t) - x_A(t) \big) \\ \end{split}$$

$$F_{bA}(t) = b(\dot{x}_A(t) - \dot{x}_B(t))$$

$$F_m(t) = m\ddot{x}(t)$$

$$F_{cB}(t) = c(x_B(t) - x_A(t))$$

$$F_{bR}(t) = b(\dot{x}_R(t) - \dot{x}_A(t))$$

2) Punkt bilansowania sił







3) Bilans sił [N]

$$m\ddot{x}(t) + b\dot{x}(t) + cx(t) = F(t)$$

$$b\dot{x}(t) + cx(t) = F(t)$$

$$b\dot{x}(t) + cx(t) = F(t)$$

5

## Proste układy mechaniczne



$$\begin{cases}
F = m_2 \ddot{x}_2 + b_2 \dot{x}_2 + c_2 (x_2 - x_1) \\
0 = m_1 \ddot{x}_1 + b_1 \dot{x}_1 + c_1 x_1 + c_2 (x_1 - x_2)
\end{cases}$$

(2 punkty, 2 masy)



$$\begin{cases} 0 = m_2 \ddot{x}_2 + b_2 \dot{x}_2 + c_2 (x_2 - x_1) \\ 0 = b_1 \dot{x}_1 + c_1 x_1 + c_2 (x_1 - x_2) \end{cases}$$

(2 punkty, 2 masy, bez zewnętrzbej siły)

6

#### Proste obwody elektryczne



$$\int_{0}^{(1)} j\omega L I + R I + \frac{1}{j\omega C} I = U$$

(2) 
$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int i(t)dt = u(t)$$
 (3)  $L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = u(t)$ 

(2) 
$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int i(t)dt = u(t)$$
 (3)  $L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = u(t)$  (4)  $sLi(s) + Ri(s) + \frac{1}{sC}i(s) = u(s)$  (5)  $i(s) = \frac{sC}{s^2LC + sRC + 1}u(s)$ 

$$u(t) = U\sin(\omega t)$$
  $s = j\omega$   $i(t) = \frac{dq(t)}{dt}$   $i(t) = I\sin(\omega t + \varphi)$   $i(s) = sq(s)$  7

### Proste obwody elektryczne

1) Opis działania układu za pomocą idealnych elementów

|                    | Opis napięciowo-prądowy $u(i)$   |                           | O.prądnapięciowy<br>i(u)         | u(q)                     | Impedancje $Z(s) \mid Z(jm)$ |           |
|--------------------|----------------------------------|---------------------------|----------------------------------|--------------------------|------------------------------|-----------|
| rezystor (R)       | u(t) = Ri(t)                     | u(s) = Ri(s)              | i(t) = Gu(t)                     | $u(t)=R\dot{q}(t)$       | R                            | R         |
| kondensalor<br>(C) | $u(t) = \frac{1}{C} \int i(t)dt$ | $u(s) = \frac{1}{sC}i(s)$ | $i(t) = C \frac{du(t)}{dt}$      | $u(t) = \frac{1}{C}q(t)$ | $\frac{1}{sC}$               | 1<br>jecC |
| eewka (L)          | $e_L(t) = -L \frac{di(t)}{dt}$   | u(s) - sLi(s)             | $i(t) = \frac{1}{L} \int u(t)dt$ | $u(t) = L\ddot{q}(t)$    | sL                           | jaL       |





$$\begin{cases} e = sL_{2}i_{2} + R_{2}i_{2}(s) + \frac{i_{2} - i_{1}}{sC_{2}} \\ 0 = sL_{1}i_{1} + R_{1}i_{1} + \frac{i_{1}}{sC_{1}} + \frac{i_{1} - i_{2}}{sC_{2}} \end{cases} \qquad \begin{cases} e = L_{2}\frac{di_{2}}{dt} + R_{2}i_{2} + \int \frac{i_{2} - i_{1}}{C_{2}} dt \\ 0 = L_{1}\frac{di_{1}}{dt} + R_{1}i_{1} + \int \frac{i_{1}}{C_{1}} dt + \int \frac{i_{1} - i_{2}}{C_{2}} dt \end{cases} \qquad \begin{cases} e = L_{2}\ddot{q}_{2} + R_{2}\dot{q}_{2} + \frac{q_{2} - q_{1}}{C_{2}} \\ 0 = L_{1}\ddot{q}_{1} + R_{1}\dot{q}_{1} + \frac{q_{1}}{C_{1}} + \frac{q_{1} - q_{2}}{C_{2}} \end{cases}$$





$$u_R(t) + u_C(t) = U_s$$

$$Ri(t) + \frac{q(t)}{g} = U_s$$

$$R\dot{q}(t) + \frac{1}{C}q(t) = U_s$$
 ,  $q(0) = 0$ 

**r.s.)**  $R\lambda + \frac{1}{C} = 0 \rightarrow \lambda = -\frac{1}{RC}$ 



$$u_R(t) + u_C(t) = 0$$

$$Ri(t) + \frac{q(t)}{C} = 0$$

 $\frac{1}{C}q(t) = 0$ 

 $q_w(t) = 0$ 

$$R\dot{q}(t) + \frac{1}{C}q(t) = 0$$
 ,  $q(0) = q_{\text{max}} = CU_s$ 



$$u_L(t) + u_C(t) = 0$$

$$\begin{aligned} & u_L(t) + u_C(t) = 0 \\ & L \frac{di(t)}{dt} + \frac{1}{C} \int i(t) dt = 0 \\ & L \ddot{q}(t) + \frac{1}{C} q(t) = 0 \end{aligned}$$

$$L\ddot{q}(t) + \frac{1}{C}q(t) = 0$$

$$\ddot{q}(t) + \frac{1}{LC}q(t) = 0$$

$$q_s(t) = Ae^{-\frac{1}{RC}t}$$

$$\mathbf{r.w.}) \frac{1}{C} q(t) = U_s$$

$$q_w(t) = CU_s = q_{\text{max}}$$

**r.o.**) 
$$q(t) = Ae^{-\frac{1}{RC}t} + CU_s$$

**w.p.**) 
$$0 = Ae^{-\frac{1}{RC}0} + CU_s \rightarrow A = -CU_s$$
  
**r.s.**)  $q(t) = CU_s \left(1 - e^{-\frac{1}{RC}t}\right)$ 

$$i(t) = \frac{dq(t)}{dt} = \frac{U_s}{R} e^{-\frac{1}{RC}t} , u_C(t) = \frac{q(t)}{C} = \frac{U_s}{RC}$$

$$CU_s = Ae^{\frac{1}{RC}0} {}_s \rightarrow A = CU_s$$

$$q(t) = CU_s e^{\frac{1}{RC}t}$$

$$i(t) = \frac{dq(t)}{dt} = -\frac{U_s}{R}e^{-\frac{1}{RC}t} , u_C(t) = \frac{q(t)}{C} = \frac{U_s}{RC}e^{-\frac{1}{RC}t}$$

