

Design and Analysis of Algorithms I

Divide and Conquer

Closest Pair II

Correctness Claim

Claim: Let $p \in Q, q \in R$ be a split pair with $d(p,q) < \delta$

Then: (A) p and q are members of S_v

(B) p and q are at most 7 positions apart in S_v .

 $min\{d(p_1,q_1),d(p_2,q_2)\}$

Proof of Correctness Claim (A)

Let
$$p = (x_1, y_1) \in Q, q = (x_2, y_2) \in R, d(p, q) \le \delta$$

Note: Since $d(p,q) \leq \delta$, $|x_1 - x_2| \leq \delta$ and $|y_1 - y_2| \leq \delta$. Proof of (A) [p and q are members of S_y i.e. $x_1, x_2 \in [\bar{x} - \delta, \bar{x} + \delta]$]

Note:
$$p \in Q => x_1 \le \bar{x} \text{ and } q \in R => x_2 \ge \bar{x}$$
.
=> $x_1, x_2 \in [\bar{x} - \delta, \bar{x} + \delta]$

Proof of Correctness Claim (B)

(B): $p = (x_1, y_1)$ and $q = (x_2, y_2)$ are at most 7 positions apart in S_y

<u>Key Picture</u>: draw $\delta/2 \times \delta/2$ boxes with center \bar{x} and

Tim Roughgarden

Proof of Correctness Claim (B)

Lemma 1 : all points of S_y with y-coordinate between those of p and q, inclusive, lie in one of these 8 boxes.

<u>Proof</u>: First, recall y-coordinates of p,q differ by $<\delta$ Second, by definition of S_y, all have x-coordinates between $\bar{x}-\delta$ and $\bar{x}+\delta$

Proof of Correctness Claim (B)

Lemma 2 : At most one point of P in each box.

Suppose a,b lie in the same box. Then:

I. a,b are either both in Q or both in R

II.
$$d(a,b) \le \frac{\delta}{2} \cdot \sqrt{2} \le \delta$$

But (i) and (ii) contradict the definition of δ (as smallest distance between pairs of points in Q or in R)

Tim Roughgarden

Final Wrap-Up

Lemmas 1 and 2 => at most 8 points in this picture (including p and q)

=> Positions of p,q in S_y differ by at most 7

