Lehrstuhl für Informatik 7 RWTH Aachen Prof. W. Thomas Dipl. Inform. A. Spelten

Automaten, Sprachen, Komplexität – SS 2010

Aufgaben für die erste Übung

19.04.2010

Aufgabe I

Wir betrachten den folgenden DEA \mathcal{A} über dem Alphabet $\mathbb{B} = \{0, 1\}$:

- (a) Geben Sie die formale Definition/Beschreibung von A an.
- (b) Listen Sie die ersten 10 Wörter über $\mathbb B$ in natürlicher Reihenfolge auf, und notieren Sie jeweils, ob $\mathcal A$ das Wort akzeptiert.
- (c) Welches ist das Wort Nummer 40 in der kanonischen Reihenfolge? Wird es durch $\mathcal A$ akzeptiert?
- (d) Welche Nummer wird dem Wort 001011 zugeordnet? Wird es durch $\mathcal A$ akzeptiert?
- (e) Geben Sie eine möglichst einfache umgangssprachliche (aber dennoch präzise) Beschreibung der Wörter in L(A).

Aufgabe II

Gegeben sei ein DEA $\mathcal{A}'=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_2\})$, wobei δ durch durch folgende Tabelle spezifiziert sei:

Geben Sie den Transitionsgraphen von \mathcal{A}' an. Welche Wörter akzeptiert \mathcal{A}' ?

Aufgabe III

Geben Sie DEAs für folgende Sprachen über $\Sigma = \{a, b\}$ an.

- $L_1 = \{w \mid w \text{ enthält wenigstens zwei } b\}$
- $L_2 = \{w \mid w \text{ beginnt mit } a \text{ und endet mit } b\}$
- $L_3 = \{w \mid w \text{ hat ungerade Länge}\}$
- $L_4 = \{\varepsilon, b\}$
- $L_5 = \emptyset$
- $L_6 = \Sigma^* \setminus \{\varepsilon\}$

$$A = \{Q_{1}, \dots, Q_{4}\}$$

$$E = \{B = \{Q_{1}, \dots, Q_{4}\}\}$$

$$F = \{Q_{1}, \dots, Q_{4}\}$$

$$A = \{Q_{1}, \dots, Q_{4}\}$$

b.) Worter	EL(A)
E	X
O	V
1	V
00	×
0 1	V
10	✓
11	×
000	×
001	✓
010	×

$$40 = 19.7 + 2$$

$$19 = 9.2 + 1$$

$$9 = 4.7 + 1$$

$$4 = 1.7 + 2$$

$$1 = 0.7 + 1$$

$$1 = 0.7 + 1$$

$$2 \cdot 2^{\circ}$$
 2
 $+2 \cdot 2^{\circ}$ 4
 $+1 \cdot 2^{\circ}$ 4
 $+2 \cdot 2^{\circ}$ 16
 $+1 \cdot 2^{\circ}$ 16
 $+1 \cdot 2^{\circ}$ 32 = 74

e) Der susomet erkennt die Worter
"0", "1" und elle Worter der Länge

22, die mit 0 au been gen und mit
1 centhören oder anders herum.

2.)
$$A'$$

$$\Rightarrow q_0 = \begin{cases} q_1 \\ b \end{cases}$$

$$= \begin{cases} 1 \\ 1 \end{cases}$$

$$= \begin{cases} w \in \{q, b\}^* \\ w \in \{q, b\}^* \end{cases}$$

$$= \begin{cases} 1 \\ 1 \end{cases}$$

$$= \begin{cases} 1 \end{cases}$$

$$= \begin{cases} 1 \\ 1 \end{cases}$$

$$= \begin{cases} 1 \end{cases}$$

3.)
$$\xi = \{a, b\}$$

$$L_1 = \{w \mid w \text{ enth. untr. } 7b\}$$

$$\Rightarrow q_1 \Rightarrow q_1 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_1 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_1 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_2 \Rightarrow q_3 \Rightarrow q_4 \Rightarrow q_4 \Rightarrow q_5 \Rightarrow q_5 \Rightarrow q_6 \Rightarrow q_6$$

Lz= { w/ w beginned my a und encled with b}

L3= { W/w hat ungerøde Lange}

-> 90 (91)

$$L_{4} = \{ \mathcal{E}, b \}$$

$$\Rightarrow (90) \Rightarrow (91)$$

$$q_{2}$$

$$q_{3}$$

$$q_{4}$$

$$q_{5}$$

$$q_{5}$$

$$q_{6}$$

 $L_{5} = \emptyset$ $A_{5} = (Q, Z, 9_{0}, 5, F)$ $\Rightarrow q_{4} \Rightarrow q_{6} \Rightarrow q_{6} \Rightarrow q_{6} \Rightarrow q_{7} \Rightarrow$

Z

 $L_{6} = \{ \{ \} \}$ $\Rightarrow q_{0} \xrightarrow{\alpha, b} (q_{1}) \Rightarrow q_{1} \Rightarrow b$