Радиотехнические цепи и сигналы РТЦиС Функция корреляции УП процесса Нормальный случайный процесс

СибГУТИ, кафедра РТС

Функция корреляции узкополосного случайного процесса

Вычислим по теореме Хинчина-Винера функцию корреляции УП СП со спектральной плотностью $W(\omega)$ с центральной частотой спектра ω_0

$$B(\tau) = \frac{1}{\pi} \int_0^\infty W(\omega) cos(\omega \tau) d\omega \tag{1}$$

введем новую переменную $\omega' = \omega_0 - \omega$

$$B(\tau) = \frac{1}{\pi} \int_0^\infty W(\omega_0 - \omega') cos(\omega_0 - \omega') \tau d\omega'$$
 (2)

Обозначим $W^*(\omega) = W(\omega_0 - \omega)$, тогда $a_c(\tau) = \frac{1}{\pi} \int_{-\infty}^{\infty} W^*(\omega) cos\omega \tau d\omega$ $a_s(\tau) = \frac{1}{\pi} \int_{-\infty}^{\infty} W^*(\omega) sin\omega \tau d\omega$ и тогда функция корреляции УП СП равна

$$B(\tau) = a_c(\tau)\cos\omega_0 t + a_s(\tau)\sin\omega_0 t \tag{3}$$

Функция корреляции узкополосного случайного процесса

Так как энергетический спектр $W(\omega)$ сосредоточен в узкой полосе частот около ω_0 , а спектр $W^*(\omega)=W(\omega_0-\omega)$ расположен в низкочастотной области, то функции $a_c(\tau)$ и $a_s(\tau)$ будут медленно меняющимися функциями по сравнению с $cos\omega_0 t$ и $sin\omega_0 t$.

Если энергетический спектр узкополосного процесса симметричен относительно центральной частоты ω_0 , то энергетический спектр $W^*(\omega)$ будет симметричен относительно начала координат. Тогда функция $a_s(\tau)=0$, так как для нее подынтегральное выражение является нечетной функцией и

$$B(\tau) = a_c(\tau)cos\omega_0 t \tag{4}$$

Следовательно, корреляционная функция узкополосного случайного процесса с симметричным относительно средней частоты ω_0 энергетическим спектром равна умноженной на $cos\omega_0 t$ корреляционной функции $a_c(\tau)$

Функция корреляции узкополосного случайного процесса

которая соответствует низкочастотному процессу со спектром $W^*(\omega)$, полученному из исходного процесса смещением спектра на величину ω_0 в область низких частот.

Интервал корреляции узкополосного процесса равен

$$\Delta \tau = \frac{2\pi}{\Delta \omega}$$

В радиотехнических и других приложениях наиболее часто встречается гауссов случайный процесс с нормальным распределением вероятностей, описывающий широкий класс физических явлений.

Гауссов процесс - это случайный процесс, все n-мерные плотности вероятности которого имеют нормальные законы распределения. Одномерный нормальный закон распределения плотности вероятности имеет вид

$$W(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m_x)^2}{2\sigma^2}} \tag{5}$$

Функция распределения выражается интегралом

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x - m_x)^2}{2\sigma^2}} dx$$
 (6)

В элементарных функциях интеграл не берется, поэтому при расчетах используется интеграл вероятностей с заменой переменных $\frac{x-m_x}{\sigma}=t, x=\sigma t+m_x, dx=\sigma dt$ функция Лапласа

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$$
 (7)

или функция Крампа

$$\Phi(z) = \frac{2}{\sqrt{2\pi}} \int_{-z}^{z} e^{-\frac{t^2}{2}} dt \tag{8}$$

$$F(x) = \frac{1}{2} \left[1 + \Phi\left(\frac{x - m_x}{\sigma}\right)\right] = F\left(\frac{x - m_x}{\sigma}\right) \tag{9}$$

- Нормальный закон распределения является предельным, то есть к нему стремится распределение суммы произвольно распределенных случайных величин при неограниченном увеличении числа слагаемых
- Любая линейная операция над нормальным случайным процессом, (усиление, дифференцирование, интегрирование и т.д.) не изменяет его закона распределения
- При прохождении широкополосного случайного процесса с любым распределением через узкополосную избирательную систему процесс на ее выходе имеет тенденцию к нормализации
- Для нормального закона стационарность в широком и узком смысле совпадают

Плотность распределения суммы гармонического колебания и нормального СП

Плотность вероятностей суммы независимых случайных процессов может быть вычислена при помощи интеграла свертки. Для процессов $\xi_1(t)$ и $\xi_2(t)$

$$W(x) = \int_{-\infty}^{\infty} W_1(z)W_2(x-z)dz.$$

Если $\xi_1(t)=Ucos(\omega t+\phi)$ - гармоническое колебание с равномерно распределенной фазой ϕ , а $\xi_2(t)$ - нормальный случайный процесс, то плотность верятности их суммы равна

$$W(x) = \frac{1}{\pi\sigma\sqrt{2\pi}} \int_0^{\pi} e^{-\frac{(x - U\cos(\omega t + \phi))^2}{2\sigma^2}} d\phi$$

Зависимости W(x) при различных соотношениях амплитуды гармонического колебания U и дисперсии σ^2 нормального процесса показаны на рисунке

Плотность распределения суммы гармонического колебания и нормального СП

