Dynamic trajectory annotation for integrating environmental and movement data

Vanessa S. Brum-Bastos , Jed A. Long , Urška Demšar

Menawarkan 2 metode untuk integrasi data dalam *space-time cube*:

- Dinamic Trajectory annotiation pada saat data obyek lebih detail daripada data lingkungan
- Dinamic Trajectory annotiation w/ Space Time Prism pada saat data lingkungan lebih detail daripada data obyek

Visual Exploration of Migration Patterns in Gull Data

Pieter Gijsbers, Ferry Timmers, Maximilian Konzack, Michel A. Westenberg, Kevin Buchin

Menyajikan *visual analytics* dari data pada penelitian sebelumnya tentang migrasi burung Camar oleh Stienen dkk (2016). Penelitian sebelumnya memasang GPS pada 101 burung Camar dan memperoleh hampir 2,5 juta titik koordinat.

Dynamic trajectory annotation for integrating environmental and movement data

Dynamic trajectory annotation

- Pada kasus dimana data obyek bergerak memiliki resolusi temporal lebih detail daripada data lingkungan
- Jarak temporal yang jauh memperbesar resiko kesalahan, karena bisa saja ada perubahan pada data lingkungan disela-sela interval waktu yang disajikan
- Dilakukan interpolasi sehingga nilai j bukan didasarkan pada t1 (terdekat) melainkan dari interpolasi antara t1-t2

Dynamic trajectory annotation for integrating environmental and movement data

Dynamic trajectory annotation with space-time prisms

- Pada kasus dimana data lingkungan memiliki resolusi temporal lebih detail daripada data obyek bergerak
- Diusulkan menggunakan metode space-time prisms (STP)
- STP menggunakan jarak terjauh obyek dapat pergi sebagai radius (Hägerstrand 1970)
- Deliniasi yang dihasilkan STP dapat memprediksi posisi obyek pada area lingkungan di waktu tertentu (yang tidak ada datanya)

Visual Exploration of Migration Patterns in Gull Data

Tujuan

- 1. Identify spatial patterns
- 2. Identify temporal patterns
- 3. Identify stopovers
- 4. Compare groups and individuals

Metode

Pendekatan analisis visual

- 1. Metode komputasi → interpolasi linear (interval 15 menit)
- 2. Teknik visualisasi → Interaktif website dengan 3 tampilan:
 - a. trajectory density map
 - b. stopovers and segmented trajectories
 - c. a detail view with calendar

Hasil dan diskusi

Dengan visualisasi dapat dilakukan eksplorasi secara tematik sehingga menemukan hal2 menarik, antara lain:

- a. Kelompok Camar dari Spanyol tidak bermigrasi ke Afika
- b. Camar lebih sering terbang malam

Tampilan interaktif. Dapat digunakan untuk eksplorasi data secara visual

Terimakasih

