PROGRAMME DE COLLES

SUP MPSI 2

Semaine 18

Du 12 au 16 février 2024.

MECANIQUE 1:

Mécanique 3 APPROCHE ENERGETIQUE DU MOUVEMENT D'UN POINT MATERIEL

EN TD UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.3. Approche énergétique du mouvement d'un	n point matériel
Puissance, travail et énergie cinétique Puissance et travail d'une force dans un référentiel.	Reconnaître le caractère moteur ou résistant d'une force.
Théorèmes de l'énergie cinétique et de la puissance cinétique dans un référentiel galiléen, dans le cas d'un système modélisé par un point matériel.	Utiliser le théorème approprié en fonction du contexte.
Champ de force conservative et énergie potentielle	
Énergie potentielle. Lien entre un champ de force conservative et l'énergie potentielle. Gradient.	Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique. Déterminer l'expression d'une force à partir de l'énergie potentielle, l'expression du gradient étant fournie. Déduire qualitativement, en un point du graphe d'une fonction énergie potentielle, le sens et l'intensité de la force associée.
Énergie mécanique	
Énergie mécanique. Théorème de l'énergie	Distinguer force conservative et force non conservative.
mécanique. Mouvement conservatif.	Reconnaître les cas de conservation de l'énergie mécanique. Utiliser les conditions initiales.
Mouvement conservatif à une dimension.	Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel. Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
Positions d'équilibre. Stabilité.	Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre. Analyser qualitativement la nature, stable ou instable, de ces positions.
Petits mouvements au voisinage d'une position d'équilibre stable, approximation locale par un puits de potentiel harmonique.	Établir l'équation différentielle du mouvement au voisinage d'une position d'équilibre.
	Capacité numérique : à l'aide d'un langage de programmation, résoudre numériquement une équation différentielle du deuxième ordre non-linéaire et faire apparaître l'effet des termes non-linéaires.

Mécanique 4 MOUVEMENTS DE PARTICULES CHARGEES DANS DES CHAMPS ELECTRIQUES ET MAGNETIQUES UNIFORMES ET STATIONNAIRES

EN COURS ET TD.

Notions et contenus	Capacités exigibles
2.4. Mouvement de particules chargées de uniformes et stationnaires	ans des champs électrique et magnétostatique,
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire et le sens de parcours.

ARCHITECTURE DE LA MATIERE:

Structure Mat 1

CLASSIFICATION PERIODIQUE DES ELEMENTS

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
	Positionner dans le tableau périodique et reconnaître les métaux et non métaux.

STRUCTURE ELECTRONIQUE DES MOLECULES

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles	
4.2.1 Structure des entités chimiques		
Modèle de la liaison covalente Liaison covalente localisée. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Identifier les écarts à la règle de l'octet.	
Géométrie et polarité des entités chimiques Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Associer qualitativement la géométrie d'une entité à une minimisation de son énergie. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.	
	Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique donnée d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule de géométrie donnée.	

Questions de cours à choisir parmi les suivantes :

- ✓ Q1: Force de Lorentz; Comparaison entre les ordres de grandeurs des force électrique et/ou magnétique et la force gravitationnelle; Puissance de la force de Lorentz et conséquence (§ II.1, 2 & 3).
- ✓ Q2 : Action d'un champ électrostatique uniforme sur une particule chargée ; Mvt à vecteur acc cst. Cas général d'une trajectoire parabolique (§ III.1).
- ✓ Q3 : Action d'un champ électrostatique uniforme sur une particule chargée dans le cas où \vec{E} // $\vec{v_0}$; Savoir effectuer un bilan énergétique pour calculer la vitesse de la particule accélérée par une ddp U (§ III.2).
- ✓ Q4 : Action d'un champ magnétique uniforme sur une particule chargée dans le cas où $\overrightarrow{v_0} \perp \overrightarrow{B}$; Savoir retrouver l'équation cartésienne du cercle (avec coordonnées du centre) et le rayon de la trajectoire par la méthode intégration/substitution.
- ✓ Q5 : Action d'un champ magnétique uniforme sur une particule chargée dans le cas où $\overrightarrow{v_0} \perp \overrightarrow{B}$; Savoir déterminer le rayon de la trajectoire en utilisant la base de Frenet. (§ IV.3).
- ✓ Q6: Savoir construire les 4 premières lignes du tableau périodique, en y plaçant les blocs s, p et d. Y ajouter les 4 familles alcalin, alcalino-terreux, halogène et gaz rares. Préciser la position des métaux / non métaux. Savoir y placer un élément (jusqu'à Z=36) en connaissant son numéro atomique et/ou savoir déduire un numéro atomique d'un élément, connaissant sa position, savoir établir sa configuration électronique externe et son schéma de Lewis (blocs s ou p). Savoir définir l'électronégativité d'un élément; Connaitre son évolution dans la classification périodique (§ V).
- ✓ Q7: Pour les molécules de HCl, CO₂, CH₄, H₂O, NH₃: Savoir dessiner leur schéma de Lewis; Savoir donner leur forme géométrique liée à la méthode VSEPR et l'ordre de grandeur des angles et savoir les dessiner correctement; Savoir dire si ce sont des molécules polaires et savoir dessiner le moment dipolaire s'il y en a un. (Le colleur doit fournir les numéros atomiques).