

MARKING GUIDE

UTEC P425/2

APPLIED MATHEMATICS 2023

NO	SOLUTION	Mks	Comments
1	(a) From $P(A' \cup B) = 1 - P(A \cap B')$		
	$\frac{1}{2} = 1 - \frac{5}{8} P(B')$		
	$\frac{5}{8}P(B') = \frac{1}{2} \qquad \therefore P(B') = \frac{4}{5}$		
	$\Rightarrow P(A \cup B') = 1 - P(A' \cap B)$		
	$=1-\left(\frac{3}{8}\times\frac{1}{5}\right)$		
	$=\frac{37}{40}$		
	(b) $P(A' \cup B') = P(A \cap B)^1$		
	$= 1 - P(A \cap B)$		
	$=1-\left(\frac{5}{8}\times\frac{1}{5}\right)$		
	$=\frac{7}{8}$		
		05	
2	i) $ \begin{array}{c cccc} 0.5 & 0.8 & 1.2 \\ \hline A & -0.24 & 0.18 \end{array} $ $ \frac{A+0.24}{A} = \frac{-0.24-0.18}{A} = \frac{-0.24-0.18}{A$		
	$\frac{11.0121}{0.5-0.8} = \frac{0.21.012}{0.8-1.2}$		
	A = -0.555		
	ii)		

	$ \begin{array}{c cccc} 0.8 & B & 1.2 \\ \hline -0.24 & -0.12 & 0.18 \end{array} $ $ \frac{B-0.8}{-0.12+0.24} = \frac{1.2-0.8}{0.18+0.24} $ $ B = 0.9143 $	0.5	
		05	
3	(a) $G(\bar{x}, \bar{y}) = G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ $= G\left(\frac{0 + 9 + 6}{3}, \frac{0 + 0 + 6}{3}\right)$ $= G(5, 2)$ (b) B $\tan \theta = \frac{2}{5}$ $\theta = \tan^{-1}\left(\frac{2}{5}\right)$ $\theta = 21.80^{0}$		
		05	
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

	$ ho=1-rac{6\sum d^2}{n(n^2-1)}$ Very high positive correlation $ ho=1-rac{6 imes 10}{7(7^2-1)}$ Or Significant at 5% $ ho=0.8214$ Or Not significant at 1%		
	(, , , , ,)	05	
5	$v = {12t^{2} \choose 8t + 23} ms^{-1}$ Position vector, $r = \int v dt$ $= 4t^{3} \mathbf{i} + (4t^{2} + 23t) \mathbf{j} + \mathbf{c}$ Average velocity = $\frac{\Delta r}{\Delta t}$ $= \frac{r_{(t=3)} - r_{(t=1)}}{3 - 1}$ $= \frac{1}{2} [(108\mathbf{i} + 105\mathbf{j} + \mathbf{c}) - (4\mathbf{i} + 27\mathbf{j} + \mathbf{c})]$ $= 52\mathbf{i} + 39\mathbf{j}$ Average speed = $\sqrt{52^{2} + 39^{2}}$ $= 65 ms^{-1}$		
		05	
6	$e_x = 0.005, e_y = 0.0005$ Max value = $(xy)_{max}$ = $(1.25 + 0.005) \times (1.600 + 0.0005)$ = 2.0086 Min value = $(xy)_{min}$ = $(1.25 - 0.005) \times (1.600 - 0.0005)$ = 1.9914 Interval = $1.9914 \le xy \le 2.0086$ Or = $[1.9914, 2.0086]$		

	Maximum	$error = \frac{1}{2}$	(2.008	6 – 1.99	14)				
		= 0	.0086						
							05		
7	P(H) = 3 P(T)								
	P(H) + P(7)	$^{-}$) = 1							
	3P(T) + P	(T)=1							
	$4P(T) = 1$ $\therefore P(T) = \frac{1}{4} = 0.25, P(H) = 0.75$								
	Let $X = Number of heads that occurs$								
	$X \sim B(15, 0)$.75)							
	$P(X \ge 7) =$	$=P(X' \leq$	8)						
	=	=1-P(2)	$X' \ge 9$						
	=	= 1 - 0.0	042						
	=	= 0.9958							
								05	
8	From $v = v$	u + at							
	0 = 12 + 5a								
	$a = -2.4 \ ms^{-2}$								
	$s = s_{(t=5)} - s_{(t=4)}$								
	$s = \left(12 \times 5 - \frac{1}{2} \times 2.4 \times 5^{2}\right) - \left(12 \times 4 - \frac{1}{2} \times 2.4 \times 4^{2}\right)$								
	s = 30 - 2	28.8							
	s=1.2~m								
								05	
9	c. b	f	х	fx	С	f.d	c.f		
	0 - 10 10 - 15	8 10	5 12.5	40 125	10 5	0.8	8 18		
	10 - 13 $15 - 25$	25	20	500	10	2.5	43		
	25 - 40	15	32.5	487.5	15	1	58		
	40 - 50 $50 - 60$	4 2	45 55	180 110	10 10	0.4 0.2	62 64		
	Σ	64		1442.5	- 10	<u>.</u>	<u> </u>		

(a) (i) mean =
$$\frac{\sum fx}{\sum f}$$

= $\frac{1442.5}{64}$
= 22.5391

(ii) mode =
$$l_1 + \left(\frac{d_1}{d_1 + d_2}\right) \times c$$

= $15 + \left(\frac{0.5}{0.5 + 1.5}\right) \times 10$
= 17.5

(b)

Percentile deviation =
$$P_{80} - P_{10}$$

= $\left(\frac{80}{100} \times 64\right)^{th} - \left(\frac{10}{100} \times 64\right)^{th}$
= $51.2^{th} - 6.4^{th}$
= $32 - 9$
= 23

					12	
10	(a) Let $y = 2$	$x \perp \cos x \ h$	$\frac{\pi}{2} - 0$ _ π			
	$\begin{bmatrix} (a) & \text{Let } y = 2. \\ \end{bmatrix}$	λ Τ COS λ , Π ·	$-\frac{1}{6}$ $-\frac{1}{12}$			
	x		ν			
	0	1.00000	ĺ			
	$\pi/12$		1.48952			
	$\pi/6$		1.91322			
	$\pi/4$		2.27790			
	$\pi/3$		2.59440			
	$5\pi/12$		2.87681			
	$\pi/2$	3.14159				
	Total	4.14159	11.15185			
	$\int_0^{\pi/2} (2x + c)^{\pi/2}$	$(\cos x)dx \approx \frac{1}{2} \times$	$\frac{\pi}{12}[4.14159 + 2]$	(11.15185)]		
		~ 3 ≈ 3	3.461680366			
		≈ 3.	.4617 (4dps)			
	(b) Exact = [2					
	= (
	= 3					
	≈ 3					
	%age erro	$r = \frac{ 3.4674 - 3.4674 }{3.4674}$	$\frac{1617 }{1} \times 100$			
		= 0.1644 %	% or 0.16 %			
	It can be mini ordinates					
		12				
11	(a) From v^2 =					
	When $x =$					
	$64 = \omega^2($	$a^2 - 9)$	(i)			
	When $x =$	4 m, v = 6 r	ns^{-1}			

$$36 = \omega^2(a^2 - 16)$$
(ii)

$$(i) \div (ii);$$

$$\frac{64}{36} = \frac{a^2 - 9}{a^2 - 16}$$

$$16(a^2 - 16) = 9(a^2 - 9)$$

$$16a^2 - 256 = 9a^2 - 81$$

$$7a^2 = 175$$

$$a^2 = 25$$

$$\therefore a = 5 m$$

From (i);
$$64 = \omega^2(25 - 9)$$

$$\omega^2 = 4$$

$$\omega^2 = 4$$
 $\therefore \omega = 2 \text{ rads}^{-1}$

From
$$T = \frac{2\pi}{\omega}$$

$$T = \frac{2\pi}{2}$$

$$T = \pi = 3.1416 \text{ s}$$

(b)

From $x = a \sin \omega t$

Time at point A from centre, O

$$3 = 5\sin(2t_1)$$

$$t_1 = \frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$$

Time at point B from centre, O

$$4 = 5\sin(2t_2)$$

$$t_2 = \frac{1}{2}\sin^{-1}\left(\frac{4}{5}\right)$$

Time from A to B,

$$t = t_2 - t_1$$

	$t = \frac{1}{2} \left[\sin^{-1} \left(\frac{4}{5} \right) - \sin^{-1} \left(\frac{3}{5} \right) \right]$		
	t = 0.14187s		
	$\approx 0.1419s$		
		12	
12	(a) $F(2)$; $3a = a + 2b$		
	2a = 2b		
	a = b		
	F(3) = 1;		
	a + 3b = 1		
	b + 3b = 1		
	$4b=1 \qquad \qquad \therefore b=\frac{1}{4}, a=\frac{1}{4}$		
	F(x)		
	F(x) = 1		
	$F(x) = \frac{1}{4} + \frac{1}{4}x$		
	3		
	$\frac{3}{4}$		
	$F(x) = 0 F(x) = \frac{1}{4}(x^2 - 1)$		
	1 2 3 2		
	(b) $P(X < 2.5/X < 1.5) = \frac{P(X < 2.5 \cap X > 1.5)}{P(X > 1.5)}$		
	$=\frac{P(1.5 < X < 2.5)}{P(X > 1.5)}$		
	$=\frac{F(2.5)-F(1.5)}{1-F(1.5)}$		
	$=\frac{\left(\frac{1}{4} + \frac{1}{4}(2.5)\right) - \left(\frac{1}{4}(1.5^2 - 1)\right)}{1 - \frac{1}{4}(1.5^2 - 1)}$		
	$=\left(\frac{7}{8}-\frac{5}{16}\right)\div\left(1-\frac{5}{16}\right)$		
	$=\frac{9}{16}\times\frac{16}{11}$		

	$=\frac{9}{11}$		
	(c) For $1 \le x \le 2$, $f(x) = \frac{d}{dx} \left[\frac{1}{4} (x^2 - 2) \right] = \frac{x}{2}$ For $2 \le x \le 3$, $f(x) = \frac{d}{dx} \left[\frac{1}{4} + \frac{1}{4} x \right] = \frac{1}{4}$		
	For $x \ge 1$, $f(x) = \frac{d}{dx}(1) = 0$		
	$f(x) = \begin{cases} \frac{x}{2}, 1 \le x \le 2\\ \frac{1}{4}, 2 \le x \le 3\\ 0, elsewhere \end{cases}$		
	$E(X) = \int_{1}^{2} \frac{1}{2} x^{2} dx + \int_{2}^{3} \frac{1}{4} x dx$		
	$E(X) = \left[\frac{x^3}{6}\right]_1^2 + \left[\frac{x^2}{8}\right]_2^3$ $E(X) = \frac{1}{6}(8-1) + \frac{1}{8}(9-4)$		
	$E(X) = \frac{43}{24} \text{ or } 1.7917$	12	
13	(a) Let $2l$ =length of the ladder, x = distance the man climbs before the ladder slides.		
	Let $\theta = \tan^{-1}\frac{3}{4}$; $\tan \theta = \frac{3}{4}$		

$$(\to); R_B = \frac{1}{2}R_A....(i)$$

(1);
$$R_A + \frac{1}{3}R_B = 40g + 10g$$

 $R_A + \frac{1}{3}R_B = 50g$
 $2R_B + \frac{1}{3}R_B = 50g$
 $\frac{7}{3}R_B = 50g$
 $R_B = \frac{3 \times 50 \times 9.8}{7} = 210N$

From (i);

$$R_A = 2 \times 210 = 420$$
N

Taking moments about point A;

$$40g \times x \cos \theta + 10g \times l \cos \theta = R_B \times 2l \sin \theta + \frac{1}{3}R_B \times 2l \cos \theta$$

Dividing through by $\cos \theta$;

$$40gx + 10gl = 2lR_B \tan\theta + \frac{2}{3}lR_B$$

$$40gx = \frac{2}{3} \times l \times 210 + 2 \times l \times 210 \times \frac{3}{4} - 10 \times 9.8 \times l$$

$$40gx = 140l + 315l - 98l$$

$$40gx = 357l$$

$$x = \frac{357}{392}l = \frac{51}{56}l$$
 m or = 0.9107 l m from A

(b) Let P be the minimum horizontal force

(†);
$$\frac{1}{3}R_B + R_A = 50g$$

 $R_B = 150g - 3R_A$
 $R_B = 150 \times 9.8 - 3R_A$
 $R_B = 1470 - 3R_A$(i)

$$(\to); R_B = P + \frac{1}{2}R_A....(ii)$$

$$(i) = (ii);$$

$$1470 - 3R_A = P + \frac{1}{2}R_A$$

$$\frac{7}{2}R_A = 1470 - P$$

$$R_A = 420 - \frac{2}{7}P$$

Taking moments about point B;

$$10g \times l\cos\theta + \frac{1}{2}R_A \times 2l\sin\theta + P \times 2l\sin\theta = R_A \times 2l\cos\theta$$

$$10 \times 9.8 + R_A \tan \theta + 2P \tan \theta = 2R_A$$

	$98 + \frac{3}{4}R_A + 2P \times \frac{3}{4} = 2R_A$		
	$98 + \frac{3}{2}P = \frac{5}{4}R_A$		
	$392 + 6P = 5R_A$		
	But $R_A = 420 - \frac{2}{7}P$		
	$\Rightarrow 392 + 6P = 5\left(420 - \frac{2}{7}P\right)$		
	$392 + 6P = 2100 - \frac{10}{7}P$		
	$\frac{52}{7}P = 1708 \qquad \therefore P = \frac{2989}{13}N \text{ or } 229.9231N$		
		12	
14	(a) Let $X =$ weights of the goats sold		
	$\mu = 26 \text{ kg}, \delta = ?$		
	$P(X > 20) = \frac{8}{12} = 0.6667$		
	$P\left(z > \frac{20 - 26}{\delta}\right) = 0.6667$		
	$Let \frac{20-26}{\delta} = z_0$		
	$P(z > z_0) = 0.6667$		
	$ \begin{array}{c} 0.1667 \\ 0.5 \\ -z_o \end{array} $		
	$P(0 < z < z_0) = 0.1667$		
	$z_0 = -0.431$		
	$\frac{20-26}{\delta} = -0.431$		
	$-0.431\delta = -6$ $\therefore \delta = 13.92111369 \approx 14 \text{ g}$		
	(b) Let \bar{X} =sample mean, $n = 25$		
	$P(\bar{X} > 15) = P\left(z > \frac{15 - 26}{14/\sqrt{25}}\right)$		

$$P(z > -3.929) = 0.5 + P(0 < z < 3.929)$$

= 0.5 + 0.49996
= 0.99996 (Cal)

12

15 (a) From $\theta = \tan^{-1}\frac{4}{3}$, $\tan \theta = \frac{4}{3}$, $\sin \theta = \frac{4}{5}$, $\cos \theta = \frac{3}{5}$

For minimum:

This is when the particle is just at the point of moving down the plane

At equilibrium;

$$T = mg$$
(i)

Along the plane;

$$T + o.5R = 10g \sin \theta$$

But
$$R = 10g \cos \theta$$

$$mg + 0.5 \times 10g \cos \theta = 10g \sin \theta$$

$$m = 10 \times \frac{4}{5} - 5 \times \frac{3}{5}$$

$$m = 8 - 3 = 5 \text{ kg}$$

For maximum;

This is when the particle is just at the point of moving up the plane

At equilibrium;

$$T = mg$$

Along the plane;

$$T = 0.5R + 10g \sin \theta$$

But
$$R = 10g \cos \theta$$

$$mg = 0.5 \times 10g \times \cos\theta + 10g \times \sin\theta$$

$$m = 5 \times \frac{3}{5} + 10 \times \frac{4}{5}$$

$$m = 3 + 8 = 11 \text{ kg}$$

(b) When the mass of B is 5kg

For 5 kg mass;

$$T - 5g = 5a$$

$$T = 5a + 5g$$
(i)

For 20 kg mass;

$20g\sin\theta - 0.5R - T = 20a$

But $R = 20g \cos \theta$

$$20 \times 9.8 \times \frac{4}{5} - 0.5 \times 20 \times 9.8 \times \frac{3}{5} - 5a - 5 \times 9.8 = 20a$$

$$25a = 49$$

$$a = 1.96 \, ms^{-2}$$

When he mass of B is 11 kg;

For 11 kg mass;

$$T - 11g = 11a$$

$$T = 11a + 11g$$

For 20 kg mass;

$$20g\sin\theta - 0.5R - T = 20a$$

But $R = 20g \cos \theta$

$$20 \times 9.8 \times \frac{4}{5} - 0.5 \times 20 \times 9.8 \times \frac{3}{5} - 11a - 11 \times 9.8 = 20a$$

$$31a = -9.8$$

$$31a = -9.8;$$
 $a = -\frac{49}{155} \, ms^{-2}$

$$\therefore a = \frac{49}{155} ms^{-2} \text{ or } 0.3161 ms^{-2}$$

(a) Let $f(x) = x \sin x - 1$ 16

$$f(1) = 1\sin(1) - 1 = -0.15853$$

$$f(1.5) = 1.5\sin(1.5) - 1 = 0.49624$$

: Since
$$f(1) \cdot f(1.5) < 0$$
, then $1 < \text{root} < 1.5$

1	x_0	1.5
-0.15853	0	0.49624

12

$\frac{x_0 - 1}{0 + 0.15853} = \frac{1.5 - 1}{0.49624 + 0.15853}$		
$x_0 = 1.121057776$		
$x_0 \approx 1.12106$		
(b) $f'(x) = x \cos x + \sin x$		
$x_{n+1} = x_n - \left(\frac{x_n \sin x_n - 1}{x_n \cos x_n + \sin x_n}\right)$		
Taking $x_0 = 1.12106$		
$x_1 = 1.12106 - \left(\frac{1.12106\sin(1.12106) - 1}{1.12106\cos(1.12106) + \sin(1.12106)}\right)$		
= 1.11415		
$x_2 = 1.11415 - \left[\frac{1.11415\sin(1.11415) - 1}{1.11415\cos(1.11415) + \sin(1.11415)} \right]$		
= 1.11416		
Since $ x_2 - x_1 = 0.00001 < 0.00005$, then the root		
is 1.1142		
	12	