COGNOME NOME MATRICOLA.....

○ Gr. 1 - R. Trombetti (A-G)

○ Gr. 2 - F. Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali.

1. Si consideri il seguente sistema lineare su \mathbb{R} , al variare del parametro reale λ :

$$\Sigma_{\lambda} : \begin{cases} -x_1 & +x_2 & -2x_3 = 2 \\ x_1 & +2x_2 & +\lambda x_3 = 1 \\ 2x_1 & +\lambda x_2 & +3x_3 = -1 \end{cases}.$$

- (i) Con il metodo di eliminazione di Gauss-Jordan, calcolarne le soluzioni quando $\lambda = 1$.
- (ii) Esiste un valore di λ per cui il sistema Σ_{λ} è incompatibile? \circ Sì \circ No Perché?

2. Sia V uno spazio vettoriale V su un campo K e $S = \{v_1, \ldots, v_t\}$ un insieme di t vettori di V. Cosa vuol dire che S è linearmente indipendente? Quale dei seguenti insiemi di vettori di \mathbb{R}^3 è linearmente indipendente?

$$S_1 = \{(1, 2, -1), (1, 0, -2), (0, 2, 1)\}$$

$$S_2 = \{(1, 1, 1), (0, 1, 2), (1, -1, 0), (0, 1, 1)\}$$

$$S_3 = \{(1, -1, 1), (0, 1, 2)\}$$

- **3.** Sia V uno spazio vettoriale su \mathbb{R} con base ordinata (e_1, e_2, e_3) .
 - (i) Esibire una base di V che contenga i vettori $e_1 e_3$ e $e_1 + 2e_3$.
 - (ii) Esibire un sottospazio vettoriale di V che abbia dimensione 2.

- **4.** Si consideri l'applicazione lineare $T: \mathbb{R}^4 \to \mathbb{R}^3$ tale che T((x,y,z,t)) = (2x+y+t,2x+z+t,z-y-t).
 - (i) Determinare una base di $Ker\ T$ e una base di $Im\ T$ e dire se Tè iniettiva e suriettiva.
 - (ii) Determinare la matrice associata all'applicazione lineare T nei riferimenti $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,0,1))$ di \mathbb{R}^4 e $\mathcal{B}' = ((1,0,1), (0,1,1), (0,0,1))$ di \mathbb{R}^3 .

5. Cosa è il rango di una matrice su un campo K? Quale matrice ha rango 0?

6. Data la matrice reale $A = \begin{pmatrix} 0 & -1 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & -1 \end{pmatrix}$, determinare autovalori e autospazi dell'endomorfismo

T di \mathbb{R}^3 con matrice associata $\overset{\searrow}{A}$ nel riferimento canonico di \mathbb{R}^3 e, nel caso in cui A sia diagonalizzabile, esibire una matrice che diagonalizza A.

- 7. Fissato un riferimento cartesiano del piano della geometria elementare, si considerino il punto A(-2,3) e la retta r: 2x 3y + 2 = 0.
 - (i) Determinare la retta passante per A e parallela a r.
 - (ii) Determinare un punto che abbia distanza 2 da r.

- 8. Fissato un riferimento cartesiano dello spazio della geometria elementare, si considerino la retta $r: \left\{ \begin{array}{ll} x+y+z &=& 1 \\ x+y+2z &=& 0 \end{array} \right.$ e il piano $\alpha: 2x+2y-z+2=0.$
 - (a) La retta r e il piano α sono paralleli? \circ Si \circ No Perché?
 - (b) Determinare la distanza tra $r \in \alpha$.
 - (c) Determinare un piano ortogonale a α .