1 Combinatorics

Classical Problems

HanoiTower(HT) min steps	$T_n = 2^n - 1$	Regions by n lines	$L_n = n(n+1)/2 + 1$		
Regions by n Zig lines	$Z_n = 2n^2 - n + 1$	Joseph Problem (every m-th)	$F_1 = 0, F_i = (F_{i-1} + m)\%i$		
Joseph Problem (every 2nd)	rotate n 1-bit to left	HanoiTower (no direct A to C)	$T_n = 3^n - 1$		
Bounded regions by n lines	$(n^2 - 3n + 2)/2$	Joseph given pos j , find $m.(\downarrow con.)$	$m \equiv 1 \pmod{\frac{L}{p}},$		
HT min steps A to C clockw.	$Q_n = 2R_{n-1} + 1$	$L(n) = lcm(1,, n), p \text{ prime } \in [\frac{n}{2}, n]$	$m \equiv j + 1 - n \pmod{p}$		
HT min steps C to A clockw.	$R_n = 2R_{n-1} + Q_{n-1} + 2$	$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$	$\sum_{i=1}^{n} i^{3} = n^{2}(n+1)^{2}/4$ $m'' = \lfloor (n+N)/n' \rfloor m' - m$		
Egyptian Fraction	$\frac{m}{n} = \frac{1}{\lceil n/m \rceil} + \left(\frac{m}{n} - \frac{1}{\lceil n/m \rceil}\right)$	Farey Seq given m/n , m'/n'	$m'' = \lfloor (n+N)/n' \rfloor m' - m$		
Farey Seq given m/n , m''/n''	$m'/n' = \frac{m+m''}{n+n''}$	m/n = 0/1, m'/n' = 1/N	$n'' = \lfloor (n+N)/n' \rfloor n' - n$		
#labeled rooted trees	n^{n-1}	#labeled unrooted trees	n^{n-2}		
#SpanningTree of G (no SL)	$C(G) = D(G) - A(G)(\downarrow)$	Stirling's Formula	$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n}\right)$		
D: DegMat; A: AdjMat	$Ans = \det(C - 1r - 1c) $	Farey Seq	mn' - m'n = -1		
#heaps of a tree (keys: $1n$)	$\frac{(n-1)!}{\prod_{i \neq root} \operatorname{size}(i)}$	#ways $0 \to m$ in n steps (never < 0)	$\frac{m+1}{\frac{n+m}{2}+1} \left(\frac{n}{\frac{n+m}{2}}\right)$		
$\#seq\langle a_0,,a_{mn}\rangle$ of 1's and ($\#seq\langle a_0,,a_{mn}\rangle$ of 1's and $(1-m)$'s with sum $+1 = {mn+1 \choose n} \frac{1}{mn+1} = {mn \choose n} \frac{1}{(m-1)n+1}$ $\Big D_n^2 = nD_{n-1} + (-1)^n \Big $				

Binomial Coefficients

$\binom{n}{k} = \frac{n!}{k!(n-k)!}$, int $n \ge k \ge 0$	$\binom{n}{k} = \binom{n}{n-k}$, int $n \ge 0$, int k	$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$, int $k \neq 0$
$\binom{r}{k} = (-1)^k \binom{k-r-1}{k}$, int k		$(x+y)^r = \sum_k {r \choose k} x^k y^{r-k}$, int $r \ge 0$ or $ x/y < 1$
$\binom{r}{k} = \binom{r-1}{k} + \binom{r-1}{k-1}$, int k	$\sum_{k \le n} {r+k \choose k} = {r+n+1 \choose n}$, int n	$\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}$, int $m, n \ge 0$
$\binom{r+s}{n} = \sum_{k} \binom{r}{k} \binom{s}{n-k}$, int n	$\sum_{k \le m} {r \choose k} \left(\frac{r}{2} - k\right) = \frac{m+1}{2} {r \choose m+1}, \text{ int } m$	$\sum_{k \le m} {r \choose k} (-1)^k = (-1)^m {r-1 \choose m}, \text{ int } m$
$\sum_{k} {r \choose m+k} {s \choose n-k} = {r+s \choose m+n}$, int m, n	$\begin{pmatrix} \binom{\binom{k}{2}}{2} = 3\binom{k+1}{4} & \sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n} \end{pmatrix}$	$\sum_{k} {l \choose m+k} {s \choose n+k} = {l+s \choose l-m+n} \text{ int } l \ge 0, \text{ int } m, n$
$\sum_{k} \binom{n}{2k} = 2^{n - even(n)}$	$ lcm_{i=0}^n \binom{n}{i} = \frac{L(n+1)}{n+1} $	$S(n,1) = S(n,n) = n \Rightarrow S(n,k) = \binom{n+1}{k} - \binom{n-1}{k-1}$
$\sum_{i=1}^{n} {n \choose i} F_i = F_{2n}, F_n = n$ -th Fib	$\sum_{i} \binom{n-i}{i} = F_{n+1}$	

Famous Numbers

Catalan	$C_0 = 1, C_n = \frac{1}{n+1} {2n \choose n} = \sum_{i=0}^{n-1} C_i C_{n-i-1} = \frac{4n-2}{n+1} C_{n-1}$	
Stirling 1st kind	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0, \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$	#perms of n objs with exactly k cycles
Stirling 2nd kind	$\left\{ {n \atop 1} \right\} = \left\{ {n \atop n} \right\} = 1, \left\{ {n \atop k} \right\} = k \left\{ {n-1 \atop k} \right\} + \left\{ {n-1 \atop k-1} \right\}$	#ways to partition n objs into k nonempty sets
Euler	$\left \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle$	#perms of n objs with exactly k ascents
Euler 2nd Order	$\left \left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (k+1) \left\langle \left\langle {n-1 \atop k} \right\rangle \right\rangle + (2n-k-1) \left\langle \left\langle {n-1 \atop k-1} \right\rangle \right\rangle$	#perms of $1, 1, 2, 2,, n, n$ with exactly k ascents
Bell	$B_1 = 1, B_n = \sum_{k=0}^{n-1} B_k \binom{n-1}{k} = \sum_{k=0}^n \binom{n}{k}^n$	#partitions of 1 n (Stirling 2nd, no limit on k)

The Twelvefold Way (Putting n balls into k boxes)					
Balls	same	distinguishable	same	distinguishable	
Boxes	same	same	distinguishable	distinguishable	Remarks
-	$p_k(n)$	$\sum_{i=0}^{k} {n \brace i}$	$\binom{n+k-1}{k-1}$	k^n	$p_k(n)$: #partitions of n into $\leq k$ positive parts
$\mathrm{size} \geq 1$	p(n,k)	$\left\{ egin{array}{l} n \\ k \end{array} \right\}$	$\binom{n-1}{k-1}$	$k! \begin{Bmatrix} n \\ k \end{Bmatrix}$	p(n,k): #partitions of n into k positive parts
$\mathrm{size} \leq 1$	$[n \leq k]$	$[n \le k]$	$\binom{k}{n}$	$n!\binom{k}{n}$	[cond]: 1 if $cond = true$, else 0

Burnside's Lemma: $L = \frac{1}{|G|} \sum_{k=1}^{n} |Z_k| = \frac{1}{|G|} \sum_{a_i \in G} C_1(a_i)$. Z_k : the set of permutations in G under which k stays stable; $C_1(a_i)$: the number of cycles of order 1 in a_i . Pólya's Theorem: The number of colorings of n objects with m colors $L = \frac{1}{|G|} \sum_{g_i \in \overline{G}} m^{c(g_i)}$. \overline{G} : the group over n objects; $c(g_i)$: the number of cycles in g_i .

Regular Polyhedron Coloring with at most n colors (up to isomorph)				
$\overline{Description}$	Formula	Remarks		
vertices of octahedron or faces of cube	$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$		$\overline{(V, F, E)}$	
vertices of cube or faces of octahedron	$(n^8 + 17n^4 + 6n^2)/24$	tetrahedron:	(4, 4, 6)	
edges of cube or edges of octahedron	$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$	cube:	(8, 6, 12)	
vertices or faces of tetrahedron	$(n^4 + 11n^2)/12$	octahedron:	(6, 8, 12)	
edges of tetrahedron	$(n^6 + 3n^4 + 8n^2)/12$	dodecahedron:	(20, 12, 30)	
vertices of icosahedron or faces of dodecahedron	$(n^{12} + 15n^6 + 44n^4)/60$	icosahedron	(12, 20, 30)	
vertices of dodecahedron or faces of icosahedron	$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$			
edges of dodecahedron or edges of icosahedron	$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$	This line may be wrong.		

2 Number Theory

Classical Theorems Min general id
x $\lambda(n) \colon \forall_a : a^{\lambda(n)} \equiv 1 (\% n)$ $p \text{ prime} \Leftrightarrow (p-1)! \equiv -1(\%p)$ $a \perp m \Rightarrow a^{\phi(m)} = 1(\%m)$ $\sum_{i=1}^{n} \sigma_0(i) = 2 \sum_{i=1}^{\lceil \sqrt{n} \rceil} [n/j] - [\sqrt{n}]^2$ $\sum_{m \perp n, m < n} m = \frac{n\phi(n)}{2}$ $\sum_{d|n} \phi(d) = \sum_{d|n} \phi(n/d) = n$ $[\sqrt{n}]$ Newton: $y = \left[\frac{x + [n/x]}{2}\right], x_0 = 2^{\left[\frac{\log_2(n) + 2}{2}\right]}$ $\sum_{d|n} n\sigma_1(d)/d = \sum_{d|n} d\sigma_0(d)$ $\left(\sum_{d|n} \sigma_0(d)\right)^2 = \sum_{d|n} \sigma_0(d)^3$ $\sigma_1(p_1^{e_1} \cdots p_s^{e_s}) = \prod_{i=1}^s \frac{p_i^{e_i+1} - 1}{p_i - 1}$ $\sum_{d|n} \mu(d) = 1 \text{ if } n = 1, \text{ else } 0$ $r_1 = 4$, $r_k \equiv r_{k-1}^2 - 2(\%M_p)$, M_p prime $\Leftrightarrow r_{p-1} \equiv 0(\%M_p)$ $\sigma_0(p_1^{e_1}\cdots p_s^{e_s}) = \prod_{i=1}^s (e_i+1)$ $F(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$ $\mu(p_1p_2\cdots p_s) = (-1)^s$, else 0 $n=2,4,p^t,2p^t\Leftrightarrow n \text{ has p_roots}$ $a \perp n$, then $a^i \equiv a^j(\%n) \Leftrightarrow i \equiv j(\% \operatorname{ord}_n(a))$ $n = \sum_{d|n} \mu(\frac{n}{d}) \sigma_1(d)$ $1 = \sum_{d|n} \mu(\frac{n}{d}) \sigma_0(d)$ $r = \operatorname{ord}_n(a), \operatorname{ord}_n(a^u) = \frac{r}{\gcd(r,u)}$ $r \text{ p_root of } n \Leftrightarrow r^{-1} \text{ p_root of } n$ r p_root of n, then r^u is p_root of $n \Leftrightarrow u \perp \phi(n)$ $\operatorname{ord}_n(a) = \operatorname{ord}_n(a^{-1})$ n has p_roots $\Leftrightarrow n$ has $\phi(\phi(n))$ p_roots $a^n \equiv a^{\phi(m)+n\%\phi(m)}(\%m), n \text{big}$ $\lambda(2^t) = 2^{t-2}, \ \lambda(p^t) = \phi(p^t) = (p-1)p^{t-1}, \ \lambda(2^{t_0}p_1^{t_1}\cdots p_m^{t_m}) = lcm(\lambda(2^{t_0}), \phi(p_1^{t_1}), \cdots, \phi(p_m^{t_m}))$ Legendre sym $\left(\frac{a}{p}\right) = 1$ if a is quad residue %p; -1 if a is non-residue; 0 if a = 0 $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2}(\%p)$ $a \equiv b(\%p) \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$ $a \perp p$, s from $a, 2a, ..., \frac{p-1}{2}a(\%p)$ are $> \frac{p}{2} \Rightarrow \left(\frac{a}{p}\right) = (-1)^s$ Gauss Integer $\pi = a + bi$. Norm $(\pi) = p$ prime $\Rightarrow \pi$ and $\overline{\pi}$ prime, p not prime

3 Probability

		Classical Formulae	
Ballot.Always $\#A > k \#B$	$Pr = \frac{a-kb}{a+b}$	Ballot.Always $\#B - \#A \le k$	$Pr = 1 - \frac{a!b!}{(a+k+1)!(b-k-1)!}$
Ballot. Always $\#A \ge k \#B$		Ballot.Always $\#A \ge \#B + k$	$Pr = 1 - \frac{a!b!}{(a+k+1)!(b-k-1)!}$ $Num = \frac{a-k+1-b}{a-k+1} \binom{a+b-k}{b}$
E(X+Y) = EX + EY	$E(\alpha X) = \alpha E X$	$X,Y \text{ indep. } \Leftrightarrow E(XY) = (EX)(EY)$	

4 Game Theory

Classical Games (1 last one wins (normal); 2 last one loses (misère))					
Name	Description	Criteria / Opt.strategy	Remarks		
NIM	n piles of objs. One can take	$SG = \bigotimes_{i=1}^{n} pile_i$. Strategy: 0	The result of ② is the same		
	any number of objs from any	make the Nim-Sum 0 by de -	as 0 , opposite if all piles are		
	pile (i.e. set of possible moves	creasing a heap; 2 the same,	1's. Many games are essen-		
	for the <i>i</i> -th pile is $M = [pile_i]$,	except when the normal move	tially NIM.		
	$[x] := \{1, 2,, \lfloor x \rfloor\}.$	would only leave heaps of size			
		1. In that case, leave an odd			
		number of 1's.			
NIM (powers)	$M = \{a^m m \ge 0\}$	If a odd:	If a even:		
		$SG_n = n\%2$	$SG_n = 2$, if $n \equiv a\%(a+1)$;		
			$SG_n = n\%(a+1)\%2$, else.		
NIM (half)	$M_{\odot} = \left[rac{pile_i}{2} ight]$				
	$M_{2} = \left[\left\lceil \frac{\bar{pile_i}}{2} \right\rceil, pile_i \right]$	$SG_0 = 0, SG_n = [\log_2 n] + 1$			
NIM (divisors)	$M_{\odot} = \text{divisors of } pile_i$				
	M_{\odot} = proper divisors of $pile_i$	$2SG_1 = 0, SG_n = \text{number of}$			
		0's at the end of n_{binary}			
Subtraction Game	$M_{\mathbb{O}} = [k]$	$SG_{\mathfrak{D},n} = n \mod (k+1).$	For any finite M , SG of one		
	$M_{2} = S \text{ (finite)}$	Olose if $SG = 0$; Olose if $SG = 0$	pile is eventually periodic.		
	$M_{\mathfrak{S}} = S \cup \{pile_i\}$	1. $SG_{\mathfrak{D},n} = SG_{\mathfrak{D},n} + 1$			
Moore's NIM_k	One can take any number of	$lacktriangledown$ Write $pile_i$ in binary, sum up	② If all piles are 1's, losing iff		
	objs from at most k piles.	in base $k+1$ without carry.	$n \equiv 1\%(k+1)$. Otherwise the		
		Losing if the result is 0.	result is the same as 0 .		

Staircase NIM	n piles in a line. One can take	Losing if the NIM formed by	
	any number of objs from $pile_i$,	the odd-indexed piles is los-	
	$i > 0$ to $pile_{i-1}$	ing(i.e. $\bigotimes_{i=0}^{(n-1)/2} pile_{2i+1} = 0$)	
Lasker's NIM	Two possible moves: 1.take	$SG_n = n, \text{ if } n \equiv 1, 2(\%4)$	
	any number of objs; 2.split a	$SG_n = n+1$, if $n \equiv 3(\%4)$	
	pile into two (no obj removed)	$SG_n = n - 1$, if $n \equiv 0(\%4)$	
Kayles	Two possible moves: 1.take 1	SG_n for small n can be com-	SG_n becomes periodic from
	or 2 objs; 2.split a pile into two	puted recursively. SG_n for $n \in$	the 72-th item with period
	(after removing objs)	[72,83]: 4 1 2 8 1 4 7 2 1 8 2 7	length 12.
Dawson's Chess	n boxes in a line. One can oc-	$SG_n \text{ for } n \in [1, 18]: 1 1 2 0 3$	Period = 34 from the 52-th
	cupy a box if its neighbours are	1 1 0 3 3 2 2 4 0 5 2 2 3	item.
	not occupied.		
Wythoff's Game	Two piles of objs. One can	$n_k = \lfloor k\phi \rfloor = \lfloor m_k\phi \rfloor - m_k$	n_k and m_k form a pair of com-
	take any number of objs from	$m_k = \lfloor k\phi^2 \rfloor = \lceil n_k\phi \rceil = n_k + k$	plementary Beatty Sequences
	either pile, or take the same	$\phi := \frac{1+\sqrt{5}}{2}$. (n_k, m_k) is the k-	$\left(\operatorname{since} \frac{1}{\phi} + \frac{1}{\phi^2} = 1\right)$. Every $x > 0$
	number from <i>both</i> piles.	th losing position.	appears either in n_k or in m_k .
Mock Turtles	n coins in a line. One can turn	$SG_n = 2n$, if ones(2n) odd;	SG_n for $n \in [0, 10]$ (leftmost
	over 1, 2 or 3 coins, with the	$SG_n = 2n + 1$, else. ones(x):	position is 0): 1 2 4 7 8 11 13
	rightmost from head to tail.	the number of 1's in x_{binary}	14 16 19 21
Ruler	n coins in a line. One can turn	SG_n = the largest power of	$SG_n \text{ for } n \in [1, 10]: 1 \ 2 \ 1 \ 4 \ 1$
	over any consecutive coins,	2 dividing n . This is imple-	2 1 8 1 2
	with the rightmost from head	mented as $n\&-n(\text{lowbit})$	
	to tail.		
Hackenbush-tree	Given a forest of rooted trees,	At every branch, one can re-	
	one can take an edge and re-	place the branches by a non-	. 1
	move the part which becomes	branching stalk of length equal	
	unrooted.	to their nim-sum.	
Hackenbush-graph		Vertices on any circuit can be	
9-wh	‡ - >	fused without changing SG of	
		the graph. Fusion: two neigh-	
		bouring vertices into one, and	
		bend the edge into a loop.	