Architecture des Réseaux (ARES) 4/5 : **Réseau**

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Version 6.2

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Couche réseau

La **couche réseau** achemine les paquets de la source vers les destinataires en effectuant des sauts entre les différents **nœuds** intermédaires

- de bout-en-bout (end-to-end)
- connaissance de la topologie
- calcul du chemin (routage)
- adressage virtuel
- abstraction des technologies sous-jacentes
 - encapsulation sur chaque technologie
 - fragmentation
 - conversion d'adresses

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Couche réseaux : OSI

Couche réseau : approche circuit virtuel ou datagramme

Couche réseau : encapsulation

La couche réseau fait abstraction des technologies sous-jacentes

- les données doivent pouvoir circuler de réseaux en réseaux
- les couches supérieures ne doivent faire aucune hypothèse sur les couches basses

■ sera approfondie dans les cours sur les Architectures supports

Couche réseau : fragmentation

Couche réseau : adressage

La couche réseau définit un **adressage virtuel** valide sur tous les réseaux

- identification unique d'un équipement
- masquage des mécanismes d'adressages spécifiques à une technologie

sera aussi approfondi dans les cours sur les Architectures supports

Couche réseau : routage

Calcul du chemin

- initial (circuits virtuels)
- à chaque paquet (sans mémoire)

Décisions de routage basée :

- table de routage
 - statique
 - dynamique
 - algorithmes de routage
 - protocoles de routage...
- sera approfondi dans la suite du chapitre

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Couche Réseaux : TCP/IP

■ IP est l'interface universelle

IPv4

Service en mode non connecté à remise non garantie (best effor

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

IPv4 : structure du packet

IPv4: versions

32 bits (4 octets)>					
Ver	Hlen	TOS	Packet Length		
Identifier		tifier	Frag. offset		
TTL		Protocol	Header checksum		
IP source address					
IP destination address					
Options					

4 bits

• IP actuel: version 4

• IP next generation : version 6

w voir l'U.E. ING

IPv4 : longueur de l'entête

32 bits (4 octets) — →				
Ver	Hlen	TOS	Packet Length	1
Identifier			Frag. offset	20 octets)
TTL		Protocol	Header checksum	nin 5 lignes (min 20 octets)
IP source address				
IP destination address				ļ
Options				

- 4 bits (valeur 15 max)
 - indique le nombre de lignes de 32 bits dans l'entête IP
 - nécessaire car le champ option est de longueur variable (20 à 60 octets)
 - valeur de 5 (pas d'options)
 à 15 (10 lignes d'options, soit 40 octets)

IPv4: type de service (TOS)

8 bits

• 3 bits de **priorité** (precedence)

> 000 : Routine • 001 : Priority 010 · Immediate

011 : Flash

100 : Flash override

 110 · Internetwork control 111 : Network control

3 bits de service

Delay

Throughput

Reliability

(Cost)

IPv4 : taille du paquet

- 16 bits (64 Koctets maximum)
 - taille totale du paquet avec entête
 - exprimé en octets
 - le réseau support doit accepter un MTU^a > 576 octets^b

 a MTU : Maximum Transmission Unit b 576 octets = 512 de données applicative + 64 de surcoût protocolaires (entêtes IP et transport)

IPv4: identificateur

- 16 bits (boucle tous les 64 Kpaquets)
- défini de manière unique pour chaque paquet
- pour réassembler les fragments d'un même paquet
- habituellement, incrément d'un compteur pour chaque paquet successif

IPv4: fragmentation

Fragmentation non transparente

- 1 bit réservé
- 1 bit DF : Don't fragment (=1 interdit la fragmentation)
- 1 bit MF : More fragment (=0 pour le dernier fragment)
- 13 bits *fragment offset* en bloc de 8 octets (shift 3)

exemples:

```
0x0000 paquet entier (offset=0)
0x2000 premier fragment (offset=0)
0x20A0 fragment central (offset=1280)
0x00B0 dernier fragment (offset=1
```

IPv4: fragmentation

Numero du premier élément du segment contenu dans ce paquet indication Identificateur d'autres fragments 1 octet du paquet В Е 27 O G Entête (a) 27 В C Е F 27 8 G н Entête Entête (b) В Е 5 F G 27 D 27 Н 27 8 0 Entête Entête Entête

(C)

Attention : le décalage du fragment indique dans cet exemple les octets et non les multiples de 8 utilisés avec IP24

IPv4: Temps de vie (TTL)

Time To Live

- 8 bits
 - unité initiale : seconde
 - valeur maximum fixé par l'émetteur (255, 128, 64...)
 - décrément dans chaque routeur
 - minimum 1 par routeur
 - nombre de sauts
 - max 255 secondes ou sauts
 - évite les boucles

IPv4 : protocole transporté

- 8 bits
- démultiplexage vers les protocoles de la couche supérieure :

```
Unix> cat /etc/protocols
icmp
            # internet control message protocol
            # gateway-gateway protocol
ggp
ipencap 4
            # IP encapsulated in IP
            # ST datagram mode
st.
tcp
            # transmission control protocol
egp
            # exterior gateway protocol
           # user datagram protocol
udp
            # "reliable datagram" protocol
rdp
iso-tp4 29
            # ISO Transport Protocol class 4
            # Xpress Tranfer Protocol
xtp
            # Inter-Domain Routing Protocol
idrp
rsvp
            # Reservation Protocol
gre
            # General Routing Encapsulation
ospf
            # Open Shortest Path Firs
```

IPv4 : contrôle d'erreur sur l'entête

- 16 bits
- idem UDP/TCP mais que sur l'entête
- émetteur :
 - $checksum^a = \overline{\sum mot_{16bits}}$
- récepteur :
 - recalcul de $\sum mot_{16 \mathrm{bits}}$
 - = 0 : pas d'erreur détectée toujours possible...
 - ≠ 0 : erreur (destruction silencieuse)

aSomme binaire sur 16 bits avec report de la retenue débordante ajoutée au bit de poid faible

IPv4: adresse source

- 32 bits (adresse IPv4)
- identifie l'émetteur du paquet
- permet de retourner un message à l'émetteur (ICMP, UDP...)

IPv4: Adresse destination

32 bits (4 octets) —					
Ver	Hlen	TOS	Packet Length		
Identifier			Frag. offset		
TTL Protocol		Protocol	Header checksum		
IP source address					
IP destination address					
Options					

- 32 bits (adresse IPv4)
- utilisée pour le routage
 - indique le réseau (ou l'agrégation de réseau) du destinataire
 - identifie l'interface du destinataire dans son réseau

IPv4: options

- 0 à 40 octets (alignés sur 32 bits)
- système TLV identique à TCP
- exemple :
 - enregistrement de la route
 - routage à la source strict
 - routage à la source relâché
 - estampilles temporelles
 - sécurité
 - ...
- analysées dans chaque routeur
- A éviter!

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Adressage : principe

- 2 parties de taille variable
- identifiants du réseau (netId) et de l'hôte (hostId) associé dans l'adresse IPv4 :

Adressage : classes

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Adressage : Masques

Application de masques binaires

classe	masque binaire	netmask	prefixe
Α	111111110000000000000000000000000000000	255.0.0.0	/8
В	111111111111111100000000000000000000000	255.255.0.0	/16
С	111111111111111111111111100000000	255.255.255.0	/24

Extraction	du	netI	d
400	005		-

132.227. 60.135 netId.hostId

&& 255.255. 0. 0 & & netmask

132.227. 0. 0 netId. 0. 0

Extraction du hostId

132.227. 60.135 netId.hostId && 0. 0.255.255 && !netmask

60.135 hostId

Adressage : adresses particulières

- pour chaque réseau (netId), 2 adresses de réservées :
 - netId.000....000

 identification de ce réseau
 - netId.111....111 ➡ adresse de diffusion de ce réseau
- autres :
 - 000....000

 → adresse source inconnue
 - 111....111 adresse de diffusion locale
 - 127.x.y.z → adresse de rebouclage logiciel (loopback)

Adressage : subneting (1)

Taille de l'identifiant de réseau (netId) initiale :

- 132.77.0.0 /16 (notation par **préfixe**)
- 132.77.0.0 netmask 255.255.0.0 (notation par masque)

Subdivision possible :

- 132.77.12.0 /22
- 132.77.12.0 netmask 255.255.252.0

pictures from Tanenbaum A. S. Computer Networks 3rd ed

Adressage : subneting (2)

Adressage : subneting (3)

Adressage: affectation

IPv4 : logique de routage

Destination	Gateway	Genmask	Flags	${\tt Metric}$	Ref	Use	Iface
192.33.182.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
10.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	atm0
154.18.2.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
132.77.0.0	154.18.2.254	255.255.0.0	UG	0	0	0	eth1
default	192.33.182.254	0.0.0.0	UG	0	0	O	eth0
			< □ > < □	∮	∢ ≣ :	· 1	200

Routage : longest préfix match

${\tt Destination}$	Gateway	Genmask	Flags	${\tt Metric}$	Ref	Use	Iface
20.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if1
30.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if2
40.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if3
30.3.0.0	20.1.2.3	255.255.0.0	UG	0	0	0	if1
30.1.2.3	20.1.0.1	255.255.255.255	UGH	0	0	0	if1
60.126.6.0	30.0.0.1	255.255.255.0	UG	0	0	0	if2 >mc
default	30.0.0.1	0.0.0.0	UG	0	0	0	if2 SORBONNE UNIVERSITE
				4 1 1 4 1 1	P 4 -	= 7 1	= 1 = 1)40

Adressage sans classe

L'attribution des adresses IP avec classe est inefficace

- adresses allouées par blocs de 256, 65K ou 16M
 - les sous-réseaux permettent une meilleure gestion
- un adressage sans classe augmente la souplesse dans l'attribution des adresses :
 - les adresses :
 - 192.77.16.0/24
 - 192.77.17.0/24
 - 192.77.18.0/24
 - 192.77.19.0/24
 - peuvent être regroupées en :
 - notation par **préfixe** : 192.77.16.0/**22**
 - notation par masque :
 192.77.16.0 netmask 255.255.252.0

Adressage : CIDR (Classless InterDomain Routing)

- permet d'agréger des blocs d'adresses contigües (et à préfixe identique)
- permet aux routeurs de maintenir une seule entrée de table de routage
- utilisé initialement par les ISP pour grouper des adresses de classe C
 - le préfixe réseau par défaut pour la classe C est /24
 - les valeurs de préfixes réseau /23, /22, /21, etc. décrivent des agrégations d'adresses de classe C
 - 197.88.0.0/16 agrège 256 adresses de classe C
- actuellement utilisé pour toutes tailles de bloc d'adresses possible
 - dans tout l'espace d'adressage des ex-classes A, B et C
 - 81.152.12.0/22

Adressage : Calcul CIDR

Un bloc CIDR est donc l'agrégation d'un ensemble d'adresses

- bits réseau (netId) d'un bloc CIDR correspondent aux N bits les plus à gauche (/N définit le masque réseau du bloc CIDR)
- bits hôte (hostId) du bloc CIDR correspondent aux 32 N bits restants
- ensemble des adresses attribuables dans un bloc CIDR :

```
    premier hôte : hostId = 000...0001
```

- dernier hôte : hostId = 111...1110
- adresse de diffusion : hostId = 111...1111
 - exemple :

```
Bloc CIDR -> 192.77.20.0/22
```

@ premier hôte : 192.77.20.1

. . .

@ dernier hôte : 192.77.23.254

@ de diffusion : 192.77.23.255

Adressage : découpage des blocs CIDR

Les blocs d'adresses CIDR se divisent en sous-bloc selon le principe du découpage en sous-réseau (subneting)

Adressage: affectation

IPv4 : Adresses publiques ou privées

Adressage public

tout hôte connecté à l'Internet doit avoir une adresse unique valide

Adressage privé

pour un usage de TCP/IP déconnecté de l'Internet

- gestion autonome d'un plan d'adressage (adresses uniques)
- utilisation de plages d'adresses spécifiques recommandée :
 - adresses non routées (adresses privées) :

```
10.0.0.0/8 (1 ex-classe A)
```

172.16.0.0/12 (16 ex-classe B)

192.168.0.0/16 (256 ex-classes C)

169.254.0.0/16 (link local block pour l'auto-configuration)

- utilisable dans chaque internet privé
- même en cas de connexion à l'Internet, trafic non relayé
- communication vers l'Internet possibile (proxy, NAT...)

IPv4 : NAT (Network Address Translation)

pictures from Tanenbaum A. S. Computer Networks 4rd edition

IPv4: NAT, DNAT et NAPT

Plusieurs approches de la conversion d'adresses :

NAT statique : correspondance fixe d'adresses

NAT dynamique: correspondance dynamique d'adresses

rable d'adresses dynamique :

adresse privée	adresse publique
10.0.0.3	192.33.182.117
10.0.0.4	192.33.182.118

NAPT (CISCO NAT overload): correspondance dynamique vers une adresse (ou plusieurs adresses) avec surcharge ports + table dynamique (pour chaque protocole):

proto | adr. privée | port privée | adr. publique | port

proto	aur. privee	port privee	aur. publique	port public	
TCP	10.0.0.3	1027	192.33.182.117	1027	
TCP	10.0.0.4	1027	192.33.182.117	1028	
UDP	10.0.0.4	31765	192.33.182.117	31765	
				1001 S	ORBO

IPv4: mécanismes NAPT

Où sont modifiée les adresses?

au niveau de la carte d'interface :

NAT en entrée mar processus de routage mar NAT en sortie

Modifications annexes:

- le checksum des entêtes doit être recalculé
 - NAT IP, TCP et UDP (adresse + pseudo-header)
 - **NAPT** IP, TCP et UDP (adresse + pseudo-header + port)
- les adresses et ports paramètres de protocoles applicatifs doivent être aussi modifiées (commande PORT de FTP)
- les messages ICMP sont analysés

IPv4: NAT et IETF (RFC 1631)

- NAPT très fortement utilisé actuellement
 - entreprises (flexibilité)
 - fournisseurs de services (manque d'adresses)
 - particuliers (n'ont qu'une adresse)
- pose qqs problèmes
 - architecturaux :
 - les ports doivent identifier des processus et non des machines
 - modification de paramètres de la couche transport par le réseau
 - principe de bout-en-bout : 2 hôtes doivent communiquer directement
 - sécuritaires : incompatible avec les mécanismes d'authentification
 - techniques : comment "entrer" dans le réseau translaté
- solutions
 - court terme conversions statiques, serveurs intermédiaires
 - long terme

 IPv6

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

IPv4: ICMP (Internet Control Message Protocol, RFC 792)

Encapsulé dans un paquet IP (mais appartient à la couche 3)

test et diagnostique du réseau

ICMP Type	Code	Description
0	0	<i>⇔echo reply</i>
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench
8	0	<i>→echo request</i>
9	0	router advertisement
10	0	router discovery
11 0		TTL expired

ICMP: echo

Туре	Code	Checksum	Identifier	Seq. Num.	Data
8 (Echo Request)	0				
0 (Echo Response)	0				
1 octet	1	2	2	2	

Teste l'accessibilité d'un équipement

- utilisé par la commande ping :
 - indique la connectivité et la disponibilité d'IP chez le destinataire
 - plusieurs messages permettent d'estimer le RTT et le taux de perte

ICMP: destination inaccessible

Message sent when the destination cannot be reached

- the IP header and some transport layer information are returned
 - @ source = originator of the ICMP message
- @ destination = @ source of the packet in question Olivier Fourmaux (olivier.fourmaux@upmc.fr)

ICMP: expiration de temporisation

_

туре	Code	Cnecksum	Unusea	Data
11 0 (Time To Live Exceeded)				IP Header
	1 (Frag. Reass. Time Exceeded)			+ 64 bits
1 octet	1	4	2	(IHL * 4) + 8
1 octet	1	4	2	(IHL * 4) +

Messages émis lorsque le temps de vie ou de réassemblage est dépassé.

- l'entête IP et une partie de la couche transport sont retournés
 - @ source = créateur du message ICMP
 - ullet @ destination = @ source de l'émetteur du paquet en cause
- utilisé par la commande traceroute

ICMP: autres messages

- Source Quench (Type 4)
 - indique une congestion à la source
 - pas de signalisation de fin de congestion
- **Redirection** (Type **5**)
 - indique si une meilleure route est disponible
 - configuration minimale des hôtes
- autres messages principalement pour l'autoconfiguration

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

IPv4: RARP (Reverse Address Resol. Protocol, RFC 903)

Inverse du protocole ARP (réseaux à diffusion)

- obtention d'une @ IP à partir de @ MAC au démarrage
 - hôtes sans disques (terminaux X, imprimantes...)
 - hôtes mobiles (portable changé de réseau...)
- utilisation d'un serveur (rarpd)
 - mise en correspondance de /etc/ethers et de /etc/hosts
- format des trames identique à ARP
 - type Ethernet: 0x8035
 - o code 3 pour une requête RARP
 - code 4 pour une réponse RARP
- exemple d'autoconfiguration :
 - la nouvelle station déclanche un échange RARP
 - la station demande le *netmask* par un echange **ICMP**
 - la station demande au serveur RARP son programme de démarrage par tftp

IPv4: BOOTP (BOOT Protocol, RFC 951 et 1542)

- protocole portable, sur UDP
 - requête sur le port 68, réponse sur le port 67
 - quelles addresses IP utiliser lorqu'on n'en connait aucunes?
 - @ IP de diffusion (255.255.255.255)
 - @ IP par défaut (0.0.0.0)
 - permet d'atteindre un serveur sur un autre réseau
 - à travers des agents BOOTP relais
 - nombreuses extensions (RFC 1533)
 - netmask
 - liste des routeurs du sous-réseau
 - liste de serveurs NTP
 - liste des serveurs de noms (DNS)
 - liste des serveurs d'impression (LPD et autres)
 - hostname et domainname
 - TTL par défaut ...

IPv4: DHCP (Dynamic Host Config. Protocol, RFC 2131)

Extension compatible de BOOTP avec gestion dynamique des @IP

- attribution dynamique par **bail** (lease) limité dans le temps
 - bail renouvelé périodiquement si nécessaire
- nouvelles options DHCP (extensions BOOTP) :

DHCPDISCOVER	C⊪ S	localisation du serveur
DHCPOFFER	S™ C	proposition au client
DHCPREQUEST	C ™ S	confirmation d'une propositon
DHCPACK	S ™ C	validation d'une configuration
DHCPNACK	S ™ C	invalidation d'une configuration
DHCPDECLINE	C ™ S	refus d'une configuration invalide
DHCPRELEASE	C ™ S	libération d'une configuration
DHCPINFORM	C ™ S	demande d'information autre que @ IP
DHCPFORCERENEW	S ™ C	demande de reconfiguration

IPv4 : échanges DHCP

Tunneling

- encapsulation alternative à la traduction (translation)
- traversées de zones avec des protocoles différents
 - ex : relier des ilots avec des protocoles non généralisés (IPmulticast, IPv6...)
- contrôle du flux de T1 à T2 (IPv4 dans IPv4, VPN...)
 VPN...

VPN (Virtual Private Network)

- layer 3 VPN: integrates security and automation
 - IPSEC : confidentiality and integrity (RFC 4301 à 4309)
 - AAA (Authentification, Autorisation, Accounting)
- other VPN approaches at layer 2 (PPP...)

Filtrage d'adresses

pictures from ${\tt Tanenbaum}$ A. S. Computer Networks 3rd edition

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Synthèse sur la couche réseau

La **Couche Réseau** achemine les paquets de la source vers les destinataires en effectuant des sauts entre les différents **nœuds** intermédaires

- acheminement de bout-en-bout (end-to-end)
 - adressage virtuel
- connaissance locale de la topologie
 - besoin d'informations pour orienter les PDU
 - statique : configuration manuelle
 - dynamique : algorithmes et protocoles de routage
- adaptation à la taille du réseau
 - structure hiérarchique (AS)
 - routage interne : RIP, EIGRP, OSPF, IS-IS
 - routage externe : BGP-4

Routage

eth0 Link encap:Ethernet HWaddr 00:20:ED:87:FD:E6

Routage dans l'hôte : GNU/Linux

Unix> /sbin/ifconfig eth0

```
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU: 1500 Metric: 1
     RX packets:1115393 errors:0 dropped:0 overruns:0 frame:0
     TX packets:966470 errors:0 dropped:0 overruns:0 carrier:0
     collisions:0 txqueuelen:100
     RX bytes:445681702 (425.0 Mb) TX bytes:370060277 (352.9 Mb)
     Interrupt:9 Base address:0x6f00
Unix> /sbin/route
Kernel IP routing table
Destination
              Gateway
                              Genmask
                                             Flags Metric Ref Use Iface
132.227.61.0
                               255.255.255.0 U
                                                                   et.h0
127.0.0.0
                               255.0.0.0
                                                                   10
default.
              132.227.61.200
                              0.0.0.0
                                             IJG
                                                          Λ
```

inet addr:132.227.61.122 Bcast:132.227.61.255 Mask:255.255.255.0

4日 > 4周 > 4 至 > 4 至 >

Routage dans l'hôte : MS Windows

```
C:\Program Files\Support Tools>ipconfig
Ethernet carte Connexion au réseau local :
        Suffixe DNS spéc. à la connexion. :
        Masque de sous-réseau . . . . . : 255.255.255.0
        Passerelle par défaut . . . . . : 132.227.61.200
C:\Program Files\Support Tools>route print
Liste d'Interfaces
0x1 ..... MS TCP Loopback interface
0x1000003 ...00 03 47 7c b9 d5 ..... Intel(R) PRO Adapter
Itinéraires actifs :
 Destination réseau
               Masque réseau Adr. passerelle Adr. interface Métr.
        0.0.0.0
                     0.0.0.0 132.227.61.200 132.227.61.136
       127.0.0.0
                   255 0 0 0
                               127 0 0 1
                                           127.0.0.1
     132,227,61.0 255,255,255.0 132,227,61,136 132,227,61,136
   132.227.61.136 255.255.255.255
                               127.0.0.1
                                          127.0.0.1
   132.227.61.255 255.255.255.255 132.227.61.136 132.227.61.136
       224 0 0 0
                   224 0 0 0 132 227 61 136 132 227 61 136
   Passerelle par défaut : 132.227.61.200
```


Routeur

Routage et "relayage" (forwarding)

- interfaces (terminaisons physiques, encapsulation...)
- files d'attente
- système de **relayage** (mémoire partagée, bus ou *crossbar*)
- système de routage
 - table, algorithmes et protocoles de routage

Types de routage

Configuration du routeur :

- statique
- dynamique (en particulier lorsqu'il y a des liens redondants)
 - protocoles et algorithmes de routage
 - ordinateurs: Unix avec logiciels routed, gated, GNU Zebra, Quagga...
 - matériels dédiés : Cisco, Juniper, Alcatel, Hp...

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Algorithmes de routage

Optimisation d'un critère

- plus court chemin
 - vecteurs de distance
 - état des liaisons
- routage politique
 - vecteurs de chemin
- routage multipoint
 - plus court chemin
 - coût minimum (arbre de steiner)
 - arbres centrés
 - voir le module ING

Routage par vecteurs de distance

Algorithme simple basé sur :

- l'échange d'informations entre routeurs adjacents (liaison directe)
 - vecteur de distance (≠ table de routage)
- propagation de proche en proche de l'accessibilité du réseau

... mais limité à des réseaux de taille réduite

- utilisé sur des sites avec quelques routeurs pour éviter les configurations manuelles
- problème avec les informations de seconde main

Principe du routage à vecteur de distance

Les routeurs ne connaissent initialement que leurs propres liaisons. Ils diffusent leurs vecteurs de distance (table de routage sans les interface) à leur voisins

- Algorithme de Bellman-Ford distribué (ou Ford-Fulkerson 1962) A la réception d'un vecteur, un routeur intégre l'information dans sa table :
 - rajout des entrées nouvelles en indiquant l'interface d'arrivée
 - modifier le coût des entrées
 - si un plus court chemin est proposé
 - si un plus long chemin est proposé par l'interface déjà choisie
- les échanges successifs doivent amener à la convergence

Algorithmes de base Hiérarchie de routage

Exemple de table issue des vecteurs de distance

J's four neighbors

New estimated

Line

Н

Κ

Limitations du routage à vecteur de distance

Plusieurs problèmes sont apparus avec ces algorithmes :

- convergence lente
- risques de boucle
 - horizon partagé (split horizon)

- envoi de vecteurs avec tous les réseaux de la table de routage
 - taille de réseau limitée

Routage par état des liaisons (Link State)

Comment s'adapter à des réseaux importants tout en évitant la propagation des informations de proche en proche?

- connaitre son voisinage
- construire une synthèse de l'info locale
- diffuser l'info locale à tous les routeurs
- construire un graphe représentant le réseau
- calculer le **plus court chemin** (SPF) vers tous les routeurs

Etat des liaisons : Acquisition du voisinage

But : création d'un graphe équivalent

- envoi de paquets de détection sur les liaisons
- supports partagés (LAN) remplacés par un seul nœud virtuel

Pour pondérer les liaisons, possibilité de réaliser des mesures

Etat des liaisons : Construction des paquets de contrôle

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Etat des liaisons : Distribution des paquets de contrôle

Les routeurs doivent recevoir les messages de tous les routeurs :

- besoin d'une distribution fiable
 - numéro de séquence
 - age de la connexion
- diffusion de routeur en routeur sans modification du contenu des messages

Problème de consistance pendant la diffusion de changements

Système hiérarchique à envisager pour les gros réseaux.

Etat des liaisons : Calcul des routes

Algorithme du plus court chemin de **Dijkstra** :

pictures from Tanenbaum A. S. Computer Networks 3rd edition

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

Organisation de très grand réseaux : Internet

AS (Autonomous System, RFC 1930)

Un AS est un ensemble d'un ou plusieurs préfixes IP interconnectés et gérés par un ou plusieurs opérateurs de réseaux qui fonctionnent avec une **unique** politique de routage **clairement définie**.

AS : organisation externe (1)

Les relations entre AS sont basées sur la notion de client/fournisseur

AS: organisation externe (2)

Relation économique :

- les fournisseurs font payer leurs clients
 - les pairs échangent gratuitement du trafic
 - les contrats sont secrets!
- Tier-1: les plus gros fournisseurs (11)
 - L3 (Level(3), ex-Genuity/BBN), GBLX (Global Crossing),
 AT&T (Worldnet), NTT (ex-Verio), Quest, Sprint, Tata (ex-Teleglobe), Vérizon (ex-UUnet), Savvis (ex-MCI),
 TeliaSonera, Tinet (ex-Tiscali).
 - a network that c an reach every other network on the Internet without purchasing IP transit or paying settlements
 - infrastructure mondiale et possèdent leur propre réseau physique

AS: routage simple

Pour un réseau d'extrémité (stub network) :

- Annonce directe :
 - ses préfixes sont annoncés pour qu'il reçoive son trafic entrant
 - le réseau d'extrémité envoie tout son trafic sortant vers le reste de l'Internet

AS: routage entre multiples AS

Pour les réseaux d'infrastructure (transit network) :

Comment trouver son chemin à travers plusieurs possibilités?

AS : critère optimal du routage

Routage politique (critère commercial) :

Ce n'est pas forcément le plus court chemin!

AS : routage politique

Intégration des contraintes politiques :

- nouvelles règles;
 - un AS accepte le trafic de ou vers ses clients
 - un AS n'accepte pas le trafic de transit entre deux clients de ses concurents
 - besoin d'un nouveau type de routage!
- but simple :
 - un FAI route le trafic en provenance d'un des ses clients
 - le trafic est routé à un FAI pair ou à un FAI de niveau supérieur
 - le FAI du destinaire route le trafic vers son client destinataire
- mais plus complexe :
 - les AS peuvent être rattachés à plusieurs FAI (multihoming)
 - souvent plusieurs chemins possibles

AS : routage hiérarchique

Deux catégories de protocole :

- **IGP** (Interior Gateway Protocols)
 - Routage à l'intérieur d'un AS (basé sur le plus court chemin)
 - RIP-2, EIGRP, IS-IS, **OSPF**
- EGP (Exterior Gateway Protocols)
 - Routage entre AS (basé sur les aspects politiques)
 - il n'y en a qu'un : BGP-4

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

OSPF: Open Shortest Path First

- conçut par l'IETF dès 1988 pour :
 - dépasser l'approche de RIP
 - converger rapidement
 - s'adapter aux réseaux de grande taille
 - s'adapter au cas général :
 - LAN (broadcast)
 - NBMA
 - point-à-point
 - acquérir la topologie du réseau
 - calculer le plus court chemin sur le graphe associé au réseau
 - être non propriétaire

OSPF: zones (1)

Pour limiter l'impact des changements (échanges, recalculs...)

- zone (areas) : sous-parties de l'AS où fonctionne OSPF
 - identificateur sur 32 bits
 - contiguës à un backbone (Zone 0)

OSPF: zones (2)

- 3 types de zone :
 - terminale (stub area) sans trafic de transit (Zone 1)
 - pas si terminale (NSSA, Not So Stubby Area)
 - transit (transit area) (Zones 0 et 3)

OSPF: zones (3)

- 3 types de routeur :
 - bordure d'AS : échange d'info. avec l'extérieur (A et H)
 - frontière de zone : appartenant à deux zones (B, D et E)
 - interne : appartenant à 1 zone (C, F et G)

OSPF: routage dans une zone

Diffusion de l'information dans sa zone

- LAN (broadcast) : routeur désigné
- inondation (ne pas propager une information déjà reçue)
 - les annonces de G sont transmise à D par F inutilement

4□ > 4□ > 4 ≥ > 4 ≥ >

OSPF : échange entre zone

Annonces entre zones

- Zone 1 reçoit les annonces du backbone et de Zone 3 par B
 - B est le routeur par défaut
- Zone 3 reçoit les annonces du *backbone* et de Zone 1 par D
 - E → permet de choisir D ou E

OSPF: communication avec l'extérieur de l'AS

Exchanging announcements outside the AS

- inform regarding local accessibility
 - careful not to transform the network into a transit network

OSPF: protocoles

Version 2 (RFC 2328) incompatible avec OSPF v1

- définition complexe avec plusieurs sous-protocoles
 - hello : test des voisins et élection du routeur désigné (LAN)
 - tansfert de base : synchronisation
 - mise à jour : envoi de l'état des liaisons
 - acquittement : confirmation des mises à jours
 - demande de l'état des liaisons : connaissance des routeurs de la zone (NBMA)
- encapsulation directe dans un paquet IP (protocole 89)
- utilisation du multicast si disponible :
 - 224.0.0.5 : tous les routeurs du réseau
 - 224.0.0.6 : les routeurs désignés

OSPF : Entête générique

0	7		15	23	bit 31
Version		Туре		Longueur	du paquet
Identité du routeur					
Indicateur de zone					
Checksum				Type d'authentification	
Authentification					

données

- Version = 2
- Type = 1 (Hello), 2 (transfert de base), 3 (demande de l'état des liaisons), 4 (mise à jour), 5 (acquittement)
- Longueur du paquet = taille avec entête
- Identité du routeur = unique même si plusieurs interfaces
- Indicateur de zone = zone où se trouve le routeur
- Authentification = permet l'utilisation de MD5
- données... nombreuses structures : voir le RFC 2328

ARES: plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- Routage
 - Algorithmes de base
 - Hiérarchie de routage
 - Un protocole de routage interne : OSPF
 - Un protocole de routage externe : BGP

BGP: introduction

Protocole de routage externe de facto

- chronologie des standards :
 - EGP (1984) : RFC 904
 - BGP-1 (1989) : RFC 1195
 - BGP-2 (1990) : RFC 1163
 - BGP-3 (1991) : RFC 1267
 - BGP-4 (1995) : RFC 1771, 1772 et 1773
 - support de CIDR
 - exploitation à grande échelle dès 95 avec la commercialisation d'Internet
- procole à vecteur de chemin :
 - similaire aux protocoles à vecteur de distance
 - permet d'appliquer des contraintes politiques

BGP: topologie

BGP se base sur un ensemble d'AS interconnectés.

- les AS sont représentés par des numéros sur 16 bits
 - attribués par les bureaux d'enregistrement (ARIN, RIPE-NCC...)
 - comme pour les préfixes de réseau
 - env. 25000 attribués (64512 à 65535 privés)

BGP : correspondance AS/réseaux

Un AS ne correspond pas forcément à un réseau

- les *Tier-1* fractionnent souvent leur réseau :
 - ATT: 5074, 6341, 7018...
 - MCI (UUnet) : 284, 701, 702, 12199...
 - Sprint: 1239, 1240, 6211, 6242...

- un numéro d'AS peut être partagé :
 - AS 7046 : Crestar Bank + NJIT + Hood Clg (clients AS 701)

• et de nombreux réseaux d'extrémité n'ont pas besoin de BG et de numéro d'AS (routage statique en bordure du réseau)

BGP : routeur de frontière

Border Gateway Routers

- passages vers les autres AS
- associés à deux types de connexion :
 - externe (eBGP)
 - interne (iBGP)

BGP: connexions eBGP

exterior BGP

- interconnexion entre AS par les routeurs de frontière
- signalisation BGP sur connexion TCP (port 179) directe

BGP: connexions iBGP

interior BGP

- interconnexion entre les routeurs de frontière dans un AS
- connexion TCP (port 179) routée avec l'IGP de l'AS
- maillage complet (full mesh)

BGP: informations échangées

Quelles sont les informations échangées entre AS?

 principalement les préfixes IP et les chemins des AS vers ceux-ci

BGP: messages

Seulement 4 messages BGP :

- OPEN : ouverture de la connexion
- KEEPALIVE : maintien de la connexion
 - envois périodiques
- NOTIFICATION: terminaison de la connexion
- UPDATE : échange de préfixes avec attributs
 - toute l'information initialement
 - mise à jours ensuite
 - annonce (announcing) de nouvelles routes
 - abandon (withdrawing) de route dèjà annoncées

BGP: attributs (1)

Value	Code	Reference
1	ORIGIN	[RFC 1771]
2	AS_PATH	[RFC 1771]
3	NEXT_HOP	[RFC 1771]
4	MULTI_EXIT_DISC	[RFC 1771]
5	LOCAL_PREF	[RFC 1771]
8	COMMUNITY	[RFC 1997]
19-254	Unassigned	
255	reserved for development	

Annonce = prefixe + quelques attributs (pas tous)

BGP : attributs (2)

ORIGIN : d'ou provient la connaissance du préfixe

- IGP = vient de l'intérieur de l'AS
- EGP = vient de l'extérieur de l'AS
- INCOMPLETE = configuré manuellement

AS_PATH: suite de numéro d'AS parcouru par l'annonce

permet de détecter les boucles

NEXT_HOP: vers qui orienter le trafic du préfixe annoncé

dernier routeur de l'AS précédent

BGP: attributs (3)

MULTI_EXIT_DISC: lorsqu'il y a plusieurs sorties d'un AS

• priorité à la valeur la plus petite

BGP: attributs (4)

LOCAL_PREF: préférence administrative

priorité à la valeur la plus élevée

192.33.182.0 \24 (24, 743, 947) LP=80 Priority 192.33.182.0 \24 (9611, 947) LP=50

BGP: annonces

Emission d'un message **UPDATE**

- quels préfixes annoncer?
 - choix de l'émetteur
- quelles valeurs d'attribut associer?
 - dépend de l'attribut
 - AS_PATH = AS_PATH précédent + numéro de l'AS actuel
 - MULTI_EXIT_DISC = dépend du choix de l'émetteur...

Réception d'un message **UPDATE**

- quels informations prendre en compte?
 - choix de préfixes (filtrage)
 - possibilité de modifier les attributs
- que faire des informations acceptées?
 - choisir les routes
 - utilisation d'un algorithme de décision...

BGP : algorithme de choix des routes

Strongest to weakest choice criteria:

- highest LOCAL_PREF
- shortest AS_PATH
 - but not necessarily the shortest path
- smallest MULTI_EXIT_DISC
- priority to paths learned via eBGP over iBGP
- shortest path to reach the NEXT_HOP
 - IGP metrics
- smallest router ID

BGP : et le choix politique?

Encore un attribut...

COMMUNITY: permet de "colorier" les routes

- liste de valeurs indiquant à quelles communautés appartient un préfixe
 - 32 bits (16 bits AS colorieur + 16bits au choix)
 - les annonces sont généralement coloriés à l'entrée de l'AS
 - communauté client
 - communauté pair
 - communauté fournisseur
 - permet de filtrer à la sortie de l'AS
 - exemple : ne pas injecter les préfixes d'un pair à un autre pair (et ainsi se transformer en AS de transit)

BGP: import de routes

BGP: export de routes

BGP: connectivité

BGP garantit-il la connectivité?

- non, certains réseaux peuvent être injoignables
 - dépend des politiques rencontrées sur le chemin des annonces :

• si "X" n'annonce pas "A" à "B"...

BGP : convergence

BGP garantit-il la convergence pour un routage stable?

- sans changement, il peut y avoir des oscillations (route) flapping)
 - un routeur annonce un préfixe puis l'abandonne
 - lié à des liens défaillants
- avec changement, le nombre d'annonces est élevé
 - certains AS peuvent observer plus 10⁶ UPDATE par jours

BGP: problèmes

- les erreurs ont une portée globale (sur tout l'Internet)
 - un AS avec une mauvaise configuration peut indiquer qu'il a la meilleur route pour tout les destinataires...
- croissance exponentielle du nombre des annonces
 - de plus en plus d'AS
 - préfixes de plus en plus petits
 - pas d'agrégation à cause du multihoming
- supervision complexe
 - le graphe des AS dépend du point de vue
- tentative d'amortissement du route flapping
 - utilisation du route dampening

