Métodos Quantitativos para Ciência da Computação Experimental

Regressão Linear

Jussara Almeida DCC-UFMG 2017

Modelos de Regressão Linear

- O que é um bom modelo?
- Como estimar os parâmetros do modelo?
- Como alocar variações?
- Intervalos de Confiança para Regressões
- Inspeçao Visual

O que é um bom modelo?

- Para dados correlacionados, um modelo deve prever uma resposta dado uma entrada.
- Modelo deve ser a equação que "se adequa" ("fit") aos dados.
- Uma definição padrão de "fits" está diretamente relacionada aos mínimos quadrados ("least-squares")
 - Minimizar o erro ao quadrado
 - Enquanto mantém o erro médio em zero
 - Equivalente a minimizar a variância dos erros

Erro do Mínimo Quadrado

• Se $\hat{y} = b_0 + b_1 x$ então o erro na estimativa para x_i é

$$e_i = y_i - \hat{y}_i$$

Minimizar a Soma dos Erros ao Quadrado (SSE)

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Sujeita as restrições

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0$$

Estimando os Parâmetros do Modelo

 Os melhores parâmetros da regressão (levam ao menor erro) são:

$$b_1 = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2} \qquad b_0 = \overline{y} - b_1\overline{x}$$

onde

$$\overline{x} = \frac{1}{n} \sum x_i \qquad \overline{y} = \frac{1}{n} \sum y_i$$

$$\sum xy = \sum x_i y_i \qquad \sum x^2 = \sum x_i^2$$

Estimativa dos parâmetros exemplo

• Tempo de execução de um query para várias palavras:

x	Palavras	3	5	7	9	10
у	Tempo	1.19	1.73	2.53	2.89	3.26

$$\overline{x} = 6.8, \quad \overline{y} = 2.32, \qquad \Sigma xy = 88.54, \ \Sigma x^2 = 264$$

$$b_1 = \frac{88.54 - (5)(6.8)(2.32)}{264 - (5)(6.8)^2} = 0.29$$

•
$$b_0 = 2.32 - (0.29)(6.8) = 0.35$$

Gráfico dos Parâmetros de Estimativa exemplo

Variantes da Regressão Linear

- Algumas relações não lineares podem ser tratadas por transformações:
 - Para $y = ae^{bx}$ pegue o logaritmo de y, faça a regressão sobre $\log(y) = b_0 + b_1 x$, sendo $b = b_1$, $a = e^{b_0}$
 - Para $y = a+b \log(x)$, tome o log de x antes dos parâmetros de "fitting", seja $b = b_1$, $a = b_0$

- Para $y = ax^b$, tire o log de ambos X e y, e faça $b = b_1$, $a = e^{b_0}$

Alocando a Variação

- Sem regressão, a melhor estimativa de y é y
- Valores observados de y diferem de y aumentando os erros (variação)
- Regressão provê uma melhor estimativa, mas ainda existem erros
- Nós podemos avaliar a qualidade da regressão pela alocação das fontes de erros.

Gráfico dos Parametros de Estimativa exemplo: regressão e a média

Notação

- SSE Sum of Squared Errors
- SST Total Sum of Squares

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \left(\sum_{i=1}^{n} y_i^2\right) - n\bar{y}^2 = SSY - SSO$$

- SSR Sum of Squares explained by Regression

A Soma Total dos Quadrados

· Sem regressão, o erro ao quadrado é

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i^2 - 2y_i \bar{y} + \bar{y}^2)$$

$$= \left(\sum_{i=1}^{n} y_i^2\right) - 2\bar{y} \left(\sum_{i=1}^{n} y_i\right) + n\bar{y}^2$$

$$= \left(\sum_{i=1}^{n} y_i^2\right) - 2\bar{y} (n\bar{y}) + n\bar{y}^2$$

$$= \left(\sum_{i=1}^{n} y_i^2\right) - n\bar{y}^2 = SSY - SS0$$

A Soma dos Quadrados da Regressão

A soma dos erros quadrados sem regressão (=SST):

$$\sum e_i^2 = \sum \left(y_i - \overline{y}_i \right)^2$$

• SSE (com regressao):

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

- Assim a regressão explica SSR = SST SSE
- Qualidade da regressão medida pelo coeficiente de determinação:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}}$$

Quanto maior o valor de R², melhor a regressão.

Avaliação do Coeficiente de Determinação

• Calcule
$$SST = (\sum y^2) - n\overline{y}^2$$

• Calcule
$$SSE = \sum y^2 - b_0 \sum y - b_1 \sum xy$$

• Calcule
$$R^2 = \frac{\text{SST-SSE}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

Exemplo de Coeficiente de Determinação

Para o exemplo anterior de regressão

X	3	5	7	9	10
y	1.19	1.73	2.53	2.89	3.26

$$n\overline{y}^2 = (5)(2.32)^2 = 26.9$$

- SSE = 29.79-(0.35)(11.60)-(0.29)(88.54) = 0.05
- SST = 29.79-26.9 = 2.89
- SSR = 2.89-.05 = 2.84
 - $R^2 = (2.89 0.05)/2.89 = 0.98$

Desvio Padrão de Erros

- Variancia de erros é SSE dividido pelos graus de liberdade (DOF):
 - DOF: n-2 porque calculamos 2 parametros de regressão dos dados.
 - Assim a variância (*mean squared error*, MSE): $\frac{SSE}{n-2}$
- Desvio padrão dos erros é a raiz quadrada:

$$s_e = \sqrt{\frac{\text{SSE}}{n-2}}$$

Coeficiente de Determinação X Correlação da Amostra

Coeficiente de determinação

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}}$$

Correlação da Amostra (premissa: linearidade)

$$s^{2}_{xy} = \sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i} - \overline{x})$$

Correlação da amostra =
$$R_{xy} = \frac{S^2_{xy}}{S_x S_y}$$

Apresentação derivada dos slides originais de Virgilio Almeida

Calculando os graus de liberdade de várias soma de quadrados

SST	n-1	Precisa computar $\overline{\mathcal{Y}}$
SSY	n	Não depende de nenhum outro parâmetro
SS0	1	Precisa computar \overline{y}
SSE	n-2	Precisa computar dois parâmetros da regressão
SSR	1	=SST-SSE

$$SST = SSY - SS0 = SSR + SSE$$

 $n-1 = n - 1 = 1 + (n-2)$

Apresentação derivada dos slides originais de Virgilio Almeida

Exemplo de Desvio Padrão de Erros

Para o exemplo de regressão, SSE era 0.05, então

MSE =
$$0.05/(5-2) = 0.05/3 = 0.017$$

 $s_e = \sqrt{MSE} = 0.13$

- Observe a alta qualidade da regressão do exemplo:
 - $-R^2 = 0.98$
 - $-s_e = 0.13$

Intervalos de Confiança para Regressões

- Regressão é calculada de uma única amostra da população (tamanho n)
 - Diferentes amostras devem dar resultados diferentes.
 - Modelo verdadeiro é $y = \beta_0 + \beta_1 x$
 - Parâmetros b_0 e b_1 são na verdade médias (estimativas para parametros reais) retiradas das amostras da população.

Cálculo de Intervalos para Parâmetros da Regressão

Desvio Padrão dos Parâmetros:

$$s_{b_0} = s_e \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum x^2 - n\bar{x}^2}}$$

$$S_{b_1} = \frac{S_e}{\sqrt{\sum x^2 - n\overline{x}^2}}$$

- Intervalos de confiança são $b_i \neq t_{[1-lpha/2,n-2]} s_{bi}$
- Onde *t* tem *n* 2 graus de liberdade
- S_e é o desvio padrão dos erros

Exemplo do Intervalo de Confiança da Regressão

- Lembre que $s_e = 0.13$, n = 5, $\Sigma x^2 = 264$, x = 6.8
- Assim $s_{b_0} = 0.13 \sqrt{\frac{1}{5} + \frac{(6.8)^2}{264 5(6.8)^2}} = 0.16$

$$s_{b_1} = \frac{0.13}{\sqrt{264 - 5(6.8)^2}} = 0.004$$

Usando um intervalo de confiança de 90%:

$$t_{0.95:3} = 2.353$$

Exemplo do Intervalo de Confiança da Regressão

Assim, o intervalo b₀

$$0.35 \pm 2.353(0.16) = (-0.03, 0.73)$$

b₁ é

$$0.29 \pm 2.353(0.004) = (0.28, 0.30)$$

Intervalos de Confiança para Predições

- Intervalos de confiança vistos são para os parâmetros
 - Quão certo podemos estar que os parâmetros estão corretos?
- Finalidade da regressão é a *predição*
 - Quão precisas são as predições?
 - Regressão oferece APENAS uma média das respostas previstas, baseadas nas amostras usadas.

Predições baseadas em m amostras

• Desvio padrão para a média de futuras amostras de m observações em x_p é $y_p = b_0 + b_1 x_p$

$$S_{y_{mp}} = S_e \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum x^2 - n\overline{x}^2}}$$

- Note que o desvio diminui qdo $m \to \infty$
- Variância mínima em x = x

Exemplo de Confiança das Predições

- Usando modelo desenvolvido, qual é o tempo previsto para uma execução com 8 palavras?
- Tempo = 0.35 + 0.29(8) = 2.67
- Desvio padrão de erros $s_e = 0.13$

$$S_{y_p} = 0.13\sqrt{1 + \frac{1}{5} + \frac{(8 - 6.8)^2}{264 - 5(6.8)^2}} = 0.14$$

90% do intervalo é então

$$2.67 \pm 2.353(0.14) = (2.34,3.00)$$

Verificando as hipóteses ("assumptions") visualmente

- Regressões são baseadas em hipóteses:
 - Relação linear entre a resposta y e previsor x
 - Previsor x livre de erro
 - Erros do modelo s\(\tilde{a}\)o estatisticamente independentes
 - Com distribuição normal N(0,c) para desvio padrão constante c
- Se as hipóteses são violadas, o modelo pode ser inadequado ou inválido.

Testando a Linearidade

• Gráficos de pontos x vs. y para ver o tipo básico da curva

Outlier/Exceção

Não linear (Função de Potência)

Apresentação derivada dos slides originais de Virgilio Almeida

Testando a Independência dos Erros

- Gráfico de pontos ε_{i} versus \hat{y}_{i}
- Não deve haver tendência visível
- Exemplo do ajuste de curva feito:

Testando a Independência

1. Scatter plot of ε_i versus the predicted response \hat{y}_i

□ All tests for independence simply try to find dependence.

Testando a Independência

- Pode ser útil "plotar" os resíduos de erro versus o número do experimento
 - No exemplo anterior dá o mesmo gráfico, exceto para a escala de x

Testando a Independência

Testando Erros Normais

- Preparar um gráfico quantil-quantil
- Exemplo da regressão anterior:

Testando Erros Normais

Testando para Desvio-Padrão Constante

- Homoscedasticity (esta hipótese assume que a variância ao longo da linha de regressão é a mesma para todos previsores x)
- Retorno ao gráfico de independência
- Verificar tendência no espalhamento
- Exemplo:

Testando para Desvio-Padrão Constante

■ Trend ⇒ Try curvilinear regression or transformation

Regressão linear pode ser "enganadora" (misleading)

- Regressão despreza alguma informação sobre os dados
 - Para permitir uma sumarização compacta
- Algumas vezes características vitais são perdidas
 - No geral, examinando os gráficos de dados pode-se determinar se ha um problema ou não

Exemplo de Regressões Inadequadas

	1		П		Ш	I	V
X	у	X	у	X	У	X	У
10	8.04	10	9.14	10	7.46	8 6.5	8
8	6.95	8	8.14	8	6.77	8 5.7	'6
13	7.58	13	8.74	13	12.74	8 7.7	'1
9	8.81	9	8.77	9	7.11	8 8.8	34
11	8.33	11	9.26	11	7.81	8 8.4	7
14	9.96	14	8.10	14	8.84	8 7.0	4
6	7.24	6	6.13	6	6.08	8 5.2	25
4	4.26	4	3.10	4	5.39	19 12.5	0
12	10.84	12	9.13	12	8.15	8 5.5	6
7	4.82	7	7.26	7	6.42	8 7.9	1
5	5.68	5	4.74	5	5.73	8 6.8	39

O que a regressão nos diz sobre esses conjuntos de dados?

- Exatamente a mesma coisa para cada um deles!
- N = 11
- Média de y = 7.5
- Y = 3 + .5 X
- Erro padrão da regressão é 0.118
- Todas as somas de quadrados são as mesmas
- Coeficiente de correlação = .82
- $R^2 = .67$

Agora, observe estes gráficos ...

Apresentação derivada dos slides originais de Virgilio Almeida

Sobre os gráficos anteriores

Importância da inspeção visual dos dados experimentais...

Exemplo

- The number of disk I/O's and processor times of seven programs were measured as: (14, 2), (16, 5),
 (27, 7), (42, 9), (39, 10), (50, 13), (83, 20)
- For this data: $n=7, \Sigma xy=3375, \Sigma x=271, \Sigma x^2=13,855,$
- $\Sigma y=66$, $\Sigma y^2=828$, $\chi = 38.71$, $\chi = 9.43$. Therefore,

$$b_1 = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n(\overline{x})^2} = 0.2438$$

$$b_0 = \overline{y} - b_1 \overline{x} = -0.0083$$

Modelo linear: CPU time = -0.0083 + 0.2438 (#Disk I/Os)

Exemplo Computação do Erro

	Disk I/O's	CPU Time	Estimate	Error	$Error^2$
	x_i	y_i	$\hat{y}_i = b_0 + b_1 x_i$	$e_i = y_i - \hat{y}_i$	e_i^2
	14	2	3.4043	-1.4043	1.9721
	16	5	3.8918	1.1082	1.2281
	27	7	6.5731	0.4269	0.1822
	42	9	10.2295	-1.2295	1.5116
	39	10	9.4982	0.5018	0.2518
	50	13	12.1795	0.8205	0.6732
	83	20	20.2235	-0.2235	0.0500
Σ	271	66	66.0000	0.00	5.8690

Exemplo Alocacao da Variacao

SSE =
$$\Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy$$

= $828 + 0.0083 \times 66 - 0.2438 \times 3375 = 5.87$
SST = $SSY - SSO = \Sigma y^2 - n(\bar{y})^2$
= $828 - 7 \times (9.43)^2 = 205.71$
SSR = $SST - SSE = 205.71 - 5.87 = 199.84$
 $R^2 = \frac{SSR}{SST} = \frac{199.84}{205.71} = 0.9715$

Modelo explica 97% da variação: MUITO BOM!!!

Exemplo Desvio Padrao dos Erros

$$SS:$$
 $SST = SSY - SS0 = SSR + SSE$
 $205.71 = 828 - 622.29 = 199.84 + 5.87$
 $DF:$ $6 = 7 - 1 = 1 + 5$

☐ The mean squared error is:

$$MSE = \frac{SSE}{DF \text{ for Errors}} = \frac{5.87}{5} = 1.17$$

□ The standard deviation of errors is:

$$s_e = \sqrt{\text{MSE}} = \sqrt{1.17} = 1.08$$

Exemplo Desvio Padrao dos Parametros

$$s_{b_0} = s_e \left[\frac{1}{n} + \frac{\bar{x}^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}$$

$$= 1.0834 \left[\frac{1}{7} + \frac{(38.71)^2}{13,855 - 7 \times 38.71 \times 38.71} \right]^{1/2} = 0.8311$$

$$s_{b_1} = \frac{s_e}{\left[\Sigma x^2 - n\bar{x}^2 \right]^{1/2}}$$

$$= \frac{1.0834}{\left[13,855 - 7 \times 38.71 \times 38.71 \right]^{1/2}} = 0.0187$$

Exemplo IC de 90% dos Parametros

0.95 quantil of t variate with 5 degrees of freedom = 2.015

 \Rightarrow 90% confidence interval for b_0 is: $-0.0083 \mp (2.015)(0.8311) = -0.0083 \mp 1.6747$ = (-1.6830, 1.6663)

Since, the confidence interval includes zero, the hypothesis that this parameter is zero cannot be rejected at 0.10 significance level. \Rightarrow b₀ is essentially zero.

90% Confidence Interval for b, is: $0.2438 \mp (2.015)(0.0187) = 0.2438 \mp 0.0376$ = (0.2061, 0.2814)

Since the confidence interval does not include zero, the slope b₁ is significantly different from zero at this confidence level.

Exemplo Testes Visuais

- Relationship is linear
- 2. No trend in residuals ⇒ Seem independent
- Linear normal quantile-quantile plot ⇒ Larger deviations at lower values but all values are small

Apresentação derivada dos slides originais de Virgilio Almeida

Outros Métodos de Regressão

- Regressão Linear Múltipla
 - mais de uma variável previsora
- Previsores Categóricos
 - alguns dos previsores não são quantitativos, mas representam categorias
- Regressão Curvilinear
 - relações não lineares
- Transformações
 - quando erros não são normalmente distribuídos ou variância não é constante
- Tratamento de "outliers"
 - pontos fora do corpo principal
- Erros mais comuns na análise de regressão