

What is claimed is:

1 A Jacobian group element adder, which is an arithmetic unit for executing addition in a Jacobian group of an algebraic curve defined by a polynomial defined over a
5 finite field that is

$$Y^3 + \alpha_0 X^4 + \alpha_1 XY^2 + \alpha_2 X^2 Y + \alpha_3 X^3 + \alpha_4 Y^2 + \alpha_5 XY + \alpha_6 X^2 + \alpha_7 Y + \alpha_8 X + \alpha_9,$$

or

$$Y^2 + \alpha_0 X^5 + \alpha_1 X^2 Y + \alpha_2 X^4 + \alpha_3 XY + \alpha_4 X^3 + \alpha_5 Y + \alpha_6 X^2 + \alpha_7 X + \alpha_8$$

or

10 $Y^2 + \alpha_0 X^7 + \alpha_1 X^3 Y + \alpha_2 X^6 + \alpha_3 X^2 Y + \alpha_4 X^5 + \alpha_5 XY + \alpha_6 X^4 + \alpha_7 Y + \alpha_8 X^3 + \alpha_9 X^2 + \alpha_{10} X + \alpha_{11},$

said Jacobian group element adder comprising:

means for inputting an algebraic curve parameter file having an order of a field of definition, a monomial order,
15 and a coefficient list described as a parameter representing said algebraic curve;

means for inputting Groebner bases I_1 and I_2 of ideals of the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, said Groebner
20 bases representing elements of said Jacobian group;

ideal reduction means for, in the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing a Groebner basis J of the ideal which is a product of the
25 ideal that the Groebner basis I_1 generates, and the ideal

that the Groebner basis I_2 generates;

first ideal reduction means for, in the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing 5 a Groebner basis J^* of the ideal, which is smallest in the monomial order designated by said algebraic curve parameter file among the ideals equivalent to an inverse ideal of the ideal that the Groebner basis J generates; and

10 second ideal reduction means for, in the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing a Groebner basis J^{**} of the ideal, which is smallest in the monomial order designated by said algebraic curve 15 parameter file among the ideals equivalent to an inverse ideal of the ideal that the Groebner basis J^* generates, to output it.

2 The Jacobian group element adder according to claim 1,
20 wherein said ideal composition means has:

linear-relation derivation means for, for a plurality of vectors v_1, v_2, \dots, v_n that were input, outputting a plurality of vectors
 $\{m_1 = (m_{1,1}, m_{1,2}, \dots, m_{1,n}), m_2 = (m_{2,1}, m_{2,2}, \dots, m_{2,n}), \dots\}$ representing
25 linear dependence relations

$\sum_i m_j, i v_i = 0 (j=1, 2, \dots)$ of all of them employing a discharging method;

an ideal type table that is composed of a record number field, an ideal type number field, an order field,
5 and an ideal type field;

a monomial list table that is composed of the record number field, the order field, and a monomial list field;

a table for a Groebner basis construction that is composed of the record number field, the order field, a
10 component number list field, a first vector type field, a second vector type field, and a third vector type field;

ideal type classification means for acquiring said algebraic curve parameter file to make a reference to said ideal type table for each of Groebner bases I_1 and I_2 that
15 were input, to retrieve a record in which the ideal type described in the ideal type field accords with the type of an input ideal $I_i (i=1, 2)$, and to acquire a value N_i of the ideal type number field and a value d_i of the order field of the retrieved record;

20 monomial vector generation means for calculating a sum $d_3 = d_1 + d_2$ of said values d_1 and d_2 of said order field to make a reference to said monomial list table for retrieving a record R of which a value of the order field is said d_3 , to acquire a list M_1, M_2, \dots of the monomial
25 described in said monomial list field of said record R ,

when I_1 and I_2 are different, to calculate a remainder equation r_i of dividing each said monomial M_i by I_1 , to generate a vector $w^{(i)}_1$ that is composed of coefficients of the remainder equation r_i according to the monomial order 5 described in said algebraic curve parameter file, furthermore to calculate a remainder equation s_i of dividing M_i by I_2 , to generate a vector $w^{(i)}_2$ that is composed of coefficients of the remainder equation s_i according to the monomial order described in an algebraic 10 curve parameter file A, to connect the above-mentioned two vectors $w^{(i)}_1$ and $w^{(i)}_2$ for generating a vector v_i , also, when I_1 and I_2 are equal, to calculate a remainder equation r_i of dividing each said monomial M_i by I_1 , to generate a vector $w^{(i)}_1$ that is composed of coefficients of 15 the remainder equation r_i according to the monomial order described in said algebraic curve parameter file, furthermore to construct a defining polynomial F employing the coefficient list and the monomial order described in said algebraic curve parameter file, when a differential 20 of a polynomial M with regard to by its X is expressed by $D_X(M)$, and a differential of the polynomial M with regard to by its Y is expressed by $D_Y(M)$, to calculate a remainder equation s_i of dividing a polynomial $D_X(M_i) D_Y(F) - D_Y(M_i) D_X(F)$ by I_1 , to generate a vector $w^{(i)}_2$ that is 25 composed of coefficients of the remainder equation s_i

according to the monomial order described in said algebraic curve parameter file, and to connect the above-mentioned two vectors $w^{(i)}_1$ and $w^{(i)}_2$ for generating a vector v_i ; and

- 5 basis construction means for inputting said plurality of said vectors v_1, v_2, \dots into said linear-relation derivation means, to acquire a plurality of vectors m_1, m_2, \dots as an output, to make an reference to said table for a Groebner basis construction for retrieving a record R_2 , of
- 10 which a value of the order field is said value d_3 , and in which a vector of which the components that correspond to all component numbers described in the component number list field are all zero does not lie in said plurality of said vectors m_1, m_2, \dots , to select a vector m that accords
- 15 with a first vector type of said record R_2 from among said plurality of said vectors m_1, m_2, \dots , to generate a polynomial f_1 of which the coefficient is a value of a component of the vector m according to the monomial order described in said algebraic curve parameter file,
- 20 hereinafter, similarly, to generate a polynomial f_2 employing a vector that accords with a second vector type, and also a polynomial f_3 employing a vector that accords with a third vector type, to obtain a set $J = \{f_1, f_2, f_3\}$ of the polynomial, and to output it as said Groebner basis J .

3 The Jacobian group element adder according to one of
claim 1 and claim 2, wherein each of said first and said
second ideal reduction means has:

linear-relation derivation means for, for a plurality
5 of vectors v_1, v_2, \dots, v_n that were input, outputting a
plurality of vectors

$\{m_1 = (m_{1,1}, m_{1,2}, \dots, m_{1,n}), m_2 = (m_{2,1}, m_{2,2}, \dots, m_{2,n}), \dots\}$ representing
linear dependence relations
 $\sum_i m_{j,i} v_i = 0 (j=1, 2, \dots)$ of all of them employing a discharging
10 method;

an ideal type table that is composed of the record
number field, the ideal type number field, a reduction
order field, and the ideal type field;

a monomial list table that is composed of the record
15 number field, the order field, and the monomial list
field;

a table for a Groebner basis construction that is
composed of the record number field, the order field, the
component number list field, the first vector type field,
20 the second vector type field, and the third vector type
field;

ideal type classification means for acquiring said
algebraic curve parameter file to make a reference to said
ideal type table, to retrieve a record in which the ideal
25 type described in the ideal type field accords with the

type of an input ideal J, to acquires a value N of the ideal type number field and a value d of the reduction order field of the retrieved record;

polynomial vector generation means for, when said d is
5 zero, outputting the input ideal J as said Groebner basis
J*, when said d is not zero, to make a reference to said
monomial list table for retrieving a record R of which a
value of the order field is said d, to acquire a list M₁,
M₂, ... of the monomial described in the monomial list field
10 of said record R, to construct a defining polynomial F
employing the coefficient list and the monomial order
described in said algebraic curve parameter file, to
acquire a first polynomial f, a second polynomial g, and a
third polynomial h of the input ideal J, to calculate a
15 remainder equation r_i of a product M_i · g of each said
monomial M_i and the polynomial g by the polynomials f and
F, to generate a vector w⁽ⁱ⁾₁ that is composed of
coefficients of the remainder equation r_i according to the
monomial order described in said algebraic curve parameter
20 file, furthermore to calculate a remainder equation s_i of
a product M_i · h of each said monomial M_i and the polynomial
h by the polynomials f and F, to generate a vector w⁽ⁱ⁾₂
that is composed of coefficients of the remainder equation
s_i according to the monomial order described in said
25 algebraic curve parameter file, and to connect the above-

mentioned two vectors $w^{(i)}_1$ and $w^{(i)}_2$ for generating a vector v_i ;

and basis construction means for inputting said plurality of said vectors v_1, v_2, \dots into said linear-
5 relation derivation means, to obtain a plurality of vectors m_1, m_2, \dots as an output, to make a reference to said table for a Groebner basis construction for retrieving a record R_2 of which a value of the order field is said value d , and in which a vector of which the
10 components that correspond to all component numbers described in the component number list field are all zero does not lie in said plurality of said vectors m_1, m_2, \dots , to select a vector m that accords with a first vector type of said record R_2 from among said plurality of said
15 vectors m_1, m_2, \dots , to generate a polynomial f_1 of which a coefficient is a value of the component of the vector m according to the monomial order described in said algebraic curve parameter file, hereinafter, similarly, to generate a polynomial f_2 employing the vector that accords
20 with a second vector type, and also a polynomial f_3 employing the vector that accords with a third vector type, to obtain a set $\{f_1, f_2, f_3\}$ of the polynomial, and to output it as said Groebner basis J^* or J^{**} .

25 4 A record medium having a program recorded for causing

an information processing unit configuring an arithmetic unit for executing addition in a Jacobian group of an algebraic curve defined by a polynomial defined over a finite field that is

5 $Y^3 + \alpha_0 X^4 + \alpha_1 XY^2 + \alpha_2 X^2 Y + \alpha_3 X^3 + \alpha_4 Y^2 + \alpha_5 XY + \alpha_6 X^2 + \alpha_7 Y + \alpha_8 X + \alpha_9$

or

$$Y^2 + \alpha_0 X^5 + \alpha_1 X^2 Y + \alpha_2 X^4 + \alpha_3 XY + \alpha_4 X^3 + \alpha_5 Y + \alpha_6 X^2 + \alpha_7 X + \alpha_8$$

or

$$Y^2 + \alpha_0 X^7 + \alpha_1 X^3 Y + \alpha_2 X^6 + \alpha_3 X^2 Y + \alpha_4 X^5 + \alpha_5 XY + \alpha_6 X^4 + \alpha_7 Y + \alpha_8 X^3 + \alpha_9 X^2 + \alpha$$

10 $\alpha_{10} X + \alpha_{11}$ to perform:

a process of inputting an algebraic curve parameter file having an order of a field of definition, a monomial order, and a coefficient list described as a parameter representing said algebraic curve;

15 a process of inputting Groebner bases I_1 and I_2 of ideals of the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, said Groebner bases representing an element of said Jacobian group;

20 an ideal composition process of, in the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing a Groebner basis J of an ideal which is a product of the ideal that the Groebner basis I_1 generates, and an ideal that the Groebner basis I_2 generates;

a first ideal reduction process of, in the coordinate ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing a Groebner basis J^* of the ideal, which is smallest in the 5 monomial order designated by said algebraic curve parameter file among the ideals equivalent to an inverse ideal of the ideal that the Groebner basis J generates; and

a second ideal reduction process of, in the coordinate 10 ring of the algebraic curve designated by said algebraic curve parameter file, performing arithmetic of producing a Groebner basis J^{**} of the ideal, which is smallest in the monomial order designated by said algebraic curve parameter file among the ideals equivalent to an inverse 15 ideal of the ideal that the Groebner basis J^* generates, to output it, said record medium being readable by said information processing unit.

5 The record medium according to claim 4, said record 20 medium having a program recorded for causing said information processing unit to further perform in said ideal composition process:

a linear-relation derivation process of, for a plurality of vectors v_1, v_2, \dots, v_n that were input, 25 outputting a plurality of vectors

{ $m_1 = (m_{1,1}, m_{1,2}, \dots, m_{1,n})$, $m_2 = (m_{2,1}, m_{2,2}, \dots, m_{2,n})$, ...} representing linear dependence relations $\sum_i m_{j,i} v_i = 0$ ($j=1, 2, \dots$) of all of them employing a discharging method;

5 . an ideal type classification process of acquiring said algebraic curve parameter file to make a reference to an ideal type table, which is composed of a record number field, an ideal type number field, an order field, and an ideal type field, for each of Groebner bases I_1 and I_2 that were input, to retrieve a record in which the ideal type described in the ideal type field accords with the type of an input ideal I_i ($i=1, 2$), and to acquire a value N_i of the ideal type number field and a value d_i of the order field of the retrieved record;

10 a monomial vector generation process of calculating a sum $d_3 = d_1 + d_2$ of said values d_1 and d_2 of said order field to make a reference to a monomial list table, which is composed of the record number field, the order field, and a monomial list field, for retrieving a record R of which a value of the order field is said d_3 , to acquire a list M_1, M_2, \dots of the monomial described in said monomial list field of said record R , when I_1 and I_2 are different, to calculate a remainder equation r_i of dividing each said monomial M_i by I_1 , to generate a vector $w^{(i)}_1$ that is composed of coefficients of the remainder equation r_i

15

20

25

according to the monomial order described in said algebraic curve parameter file, furthermore to calculate a remainder equation s_i of dividing M_i by I_2 , to generate a vector $w^{(i)}_2$ that is composed of coefficients of the
5 remainder equation s_i according to the monomial order described in an algebraic curve parameter file A, to connect the above-mentioned two vectors $w^{(i)}_1$ and $w^{(i)}_2$ for generating a vector v_i , also, when I_1 and I_2 are equal, to calculate a remainder equation r_i of dividing each said
10 monomial M_i by I_1 , to generate a vector $w^{(i)}_1$ that is composed of coefficients of the remainder equation r_i according to the monomial order described in said algebraic curve parameter file, furthermore to construct a defining polynomial F employing the coefficient list and
15 the monomial order described in said algebraic curve parameter file, when a differential of a polynomial M with regard to by its X is expressed by $D_X(M)$, and a differential of the polynomial M with regard to by its Y is expressed by $D_Y(M)$, to calculate a remainder equation
20 s_i of dividing a polynomial $D_X(M_i) D_Y(F) - D_Y(M_i) D_X(F)$ by I_1 , to generate a vector $w^{(i)}_2$ that is composed of coefficients of the remainder equation s_i according to the monomial order described in said algebraic curve parameter file, and to connect the above-mentioned two vectors $w^{(i)}_1$ and
25 $w^{(i)}_2$ for generating a vector v_i ; and

a basis construction process of obtaining a plurality of vectors m_1, m_2, \dots output in said linear-relation derivation process, to make an reference to a table for a Groebner basis construction, which is composed of the
5 record number field, the order field, a component number list field, a first vector type field, a second vector type field, and a third vector type field, for retrieving a record R_2 , of which a value of the order field is said value d_3 , and in which a vector of which the components
10 that correspond to all component numbers described in the component number list field are all zero does not lie in said plurality of said vectors m_1, m_2, \dots , to select a vector m that accords with a first vector type of said record R_2 from among said plurality of said vectors $m_1, m_2,$
15 ..., to generate a polynomial f_1 of which the coefficient is a value of a component of the vector m according to the monomial order described in said algebraic curve parameter file, hereinafter, similarly, to generate a polynomial f_2 employing a vector that accords with a second vector type,
20 and also a polynomial f_3 employing a vector that accords with a third vector type, to obtain a set $J = \{f_1, f_2, f_3\}$ of the polynomial, and to output it as said Groebner basis J .

6 The record medium according to one of claim 4 and claim
25 5, said record medium having a program recorded for

causing said information processing to further perform in each of said first and second ideal reduction processes:

a linear-relation derivation process of, for a plurality of vectors v_1, v_2, \dots, v_n that were input,

5 outputting a plurality of vectors

$\{m_1 = (m_{1,1}, m_{1,2}, \dots, m_{1,n}), m_2 = (m_{2,1}, m_{2,2}, \dots, m_{2,n}), \dots\}$ representing linear dependence relations

$\sum_i m_{j,i} v_i = 0 (j=1, 2, \dots)$ of all of them employing a discharging method ;

10 an ideal type classification process of acquiring said algebraic curve parameter file to make a reference to a ideal type table, which is composed of the record number field, the ideal type number field, a reduction order field, and the ideal type field, to retrieve a record in
15 which the ideal type described in the ideal type field accords with the type of an input ideal J , and to acquire a value N of the ideal type number field and a value d of the reduction order field of the retrieved record;

a polynomial vector generation process of, when said d 20 is zero, outputting the input ideal J as said Groebner basis J^* , when said d is not zero, to make a reference to a monomial list table, which is composed of the record number field, the order field, and the monomial list field, for retrieving a record R of which a value of the order 25 field is said d , to acquire a list M_1, M_2, \dots of the

monomial described in the monomial list field of said record R, to construct a defining polynomial F employing the coefficient list and the monomial order described in said algebraic curve parameter file, to acquire a first 5 polynomial f, a second polynomial g, and a third polynomial h of the input ideal J, to calculate a remainder equation r_i of a product $M_i \cdot g$ of each said monomial M_i and said polynomial g by the polynomials f and F, to generate a vector $w^{(i)}_1$ that is composed of 10 coefficients of the remainder equation r_i according to the monomial order described in said algebraic curve parameter file, furthermore to calculate a remainder equation s_i of a product $M_i \cdot h$ of each said monomial M_i and the polynomial h by the polynomials f and F, to generate a vector $w^{(i)}_2$ 15 that is composed of coefficients of the remainder equation s_i according to the monomial order described in said algebraic curve parameter file, and to connect the above-mentioned two vectors $w^{(i)}_1$ and $w^{(i)}_2$ for generating a vector v_i ; and

20 a basis construction process of obtaining a plurality of vectors m_1, m_2, \dots output in said linear-relation derivation process to make a reference to a table for a Groebner basis construction, which is composed of the record number field, the order field, the component number 25 list field, the first vector type field, the second vector

type field, and the third vector type field, for retrieving a record R_2 of which a value of the order field is said value d , and in which a vector of which the components that correspond to all component numbers 5 described in the component number list field are all zero does not lie in said plurality of said vectors m_1, m_2, \dots , to select a vector m that accords with a first vector type of said record R_2 from among said plurality of said vectors m_1, m_2, \dots , to generate a polynomial f_1 of which a 10 coefficient is a value of the component of the vector m according to the monomial order described in said algebraic curve parameter file, hereinafter, similarly, to generate a polynomial f_2 employing the vector that accords with a second vector type, and also a polynomial f_3 15 employing the vector that accords with a third vector type, to obtain a set $\{f_1, f_2, f_3\}$ of the polynomial, and to output it as said Groebner basis J^* or J^{**} .