

AW-CM276MA-PUR

IEEE 802.11a/b/g/n/ac Wireless LAN 2T2R and Bluetooth 5.0 Combo Module (M.2 2230)

Datasheet

Rev. B

DF

(For Standard)

Features

WLAN

- PCIe M.2 TYPE 2230: 30mm(L) x 22mm(W)
 x 2.85 mm(H)(Max)
- PCIe interface support for WLAN
- Sub-meter accuracy WiFi indoor locationing(802.11mc)
- Multiple power saving modes for low power consumption
- IEEE 802.11i for advanced security
- Quality of Service (QoS) support for multimedia applications
- Support China WAPI
- Lead-free design

Bluetooth

- UART interface support for Bluetooth
- High speed UART,PCM interfaces
- Audio Codec interface support
- Bluetooth 5.0 complaint with Bluetooth 2.1 + Enhanced Data Rate (EDR)

Revision History

Document NO: R2-2276MA-DST-01

Version	Revision Date	DCN NO.	Description	Initials	Approved
Α	2019/12/03	DCN016398	Initial Version(new format)	Renton Tao	NC Chen
В	2020/05/06	DCN017212	Modify model name	Renton Tao	NC Chen
			.01		

Table of Contents

Features	
Revision History	3
Table of Contents	4
1. Introduction	
1.1 Product Overview	
1.2 Block Diagram	6
1.3 Specifications Table	7
1.3.1 General	
1.3.2 WLAN	7
1.3.3 Bluetooth	
1.3.4 Operating Conditions	
2. Pin Definition	
2.1 Pin Table	
3. Electrical Characteristics	
3.1 Absolute Maximum Ratings	
3.2 Recommended Operating Conditions	14
3.3 Digital IO Pin DC Characteristics	14
3.3.1 DC Electricals-1.8V Operation(VIO)	14
3.3.2 DC Electricals-3.3V Operation(VIO)	14
3.4 Host Interface	
3.4.1 PCI Express Interface	16
3.4.2 High-Speed UART Interface	17
3.4.3 PCM Interface	19
3.5 Power up Timing Sequence	22
3.6 Power consumption	23
3.6.1 WLAN result	23
3.6.2 BT result	23
4. Mechanical Information	24
4.1 Mechanical Drawing	24
4.2 Antenna connector drawing	25
5. Packaging Information	

1. Introduction

1.1 Product Overview

AzureWave Technologies, Inc. introduces the IEEE 802.11ac/a/b/g/n 2X2 MU-MIMO WLAN & Bluetooth NGFF module --- AW-CM276MA-PUR. The module is targeted to mobile devices including Notebook, TV, Tablet and Gaming Device which need small package module, low power consumption, multiple interfaces and OS support. By using AW-CM276MA-PUR, the customers can easily enable the Wi-Fi, and BT embedded applications with the benefits of high design flexibility, short development cycle, and quick time-to-market.

Compliance with the IEEE 802.11ac/a/b/g/n standard supporting 802.11ac Wave 2, the AW-CM276MA-PUR uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), DBPSK, DQPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CM276MA-PUR. In addition to the support of WPA/WPA2 and WEP 64-bit and 128-bit encryption, the AW-CM276MA-PUR also supports the IEEE 802.11i security standard through the implementation of Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), Advanced Encryption Standard (AES)/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms.

For the video, voice and multimedia applications the AW-CM276MA-PUR support **802.11e Quality** of Service (QoS). The device also supports **802.11h Dynamic Frequency Selection (DFS)** for detecting radar pulses when operating in the 5GHz range.

For Bluetooth operation, AW-CM276MA-PUR is **Bluetooth 5.0 (supports Low Energy).**

AW-CM276MA-PUR supports **PCIE** and high speed **UART interfaces** for WLAN and Bluetooth to the host processor.

AW-CM276MA-PUR is suitable for multiple mobile processors for different applications with the support cellular phone co-existence.

AW-CM276MA-PUR module adopts NXP's latest highly-integrated dual-band WLAN & Bluetooth SoC---88W8997. All the other components are implemented by all means to reach the mechanical specification required.

1.2 Block Diagram

AW-CM276MA-PUR NGFF Module

Module antenna configuration

1.3 Specifications Table

1.3.1 General

Features	Description
Product Description	Wireless LAN 2T2R & Bluetooth Combo M.2 Module
Major Chipset	NXP 88W8997
Host Interface	PCIe for WLAN,UART for Bluetooth
Dimension	22mm(W) x 30mm(L) x 2.85mm(H) (Tolerance remarked in mechanical drawing)
Package	M.2 2230
Antenna	I-PEX MHF4 Connector Receptacle (20449) ANT1: WiFi/Bluetooth → TX/RX ANT2: WiFi → TX/RX
Weight	0.5 g

1.3.2 WLAN

Features	Description		
WLAN Standard	IEEE 802.11 a/b/g/n/ac		
WLAN VID/PID	1B4B/2B42		
Frequency Rage	2.4 GHz : 2.412 ~ 2.484 GHz 5 GHz : 4.915 ~5.925GHz		
Modulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM, 256-QAM		
Number of Channels	 2.4GHz ■ USA, NORTH AMERICA, Canada and Taiwan – 1 ~ 11 ■ China, Australia, Most European Countries, Japan – 1 ~ 13 5GHz ■ USA, EUROPE –36,40,44,48,52,56,60,64,100,104,108,112,116,120, 124,128,132,136,140,149,153,157,161,165 		

2	A	\sim	ш	-
Z.	4	G	П	1

	Min	Тур	Max	Unit	
11b (11Mbps) @EVM<35%	15.5	17	18.5	dBm	
11g (54Mbps) @EVM≦ <i>-</i> 27 dB	14.5	16	17.5	dBm	
11n (HT20 MCS7) @EVM≦-28 dB	14.5	16	17.5	dBm	
11n (HT40 MCS7) @EVM≦-28 dB	12.5	14	15.5	dBm	

Output Power (Board Level Limit)*

5GHz

JOI IE				
	Min	Тур	Max	Unit
11a (54Mbps) @EVM≦-27 dB	11	13	15	dBm
11n (HT20 MCS7) @EVM≦-28 dB	11	13	15	dBm
11n (HT40 MCS7) @EVM≦-28 dB	10	12	14	dBm
11ac (VHT20 MCS8) @EVM≦-30 dB	11	13	15	dBm
11ac (VHT40 MCS9) @EVM≦-32 dB	10	12	14	dBm
11ac (VHT80 MCS9) @EVM≦-32 dB	8	10	12	dBm

2.4GHz

						
		Min	Тур	Max	Unit	
	11b (11Mbps)	-	-88	-85	dBm	
11g (54Mbps)		-	-75	-72	dBm	
	11n (HT20 MCS7)	-	-72	-70	dBm	
	11n (HT40 MCS7)	-	-69	-67	dBm	

Receiver Sensitivity

5GHz

	Min	Тур	Max	Unit
11a (54Mbps)	-	-72	-68	dBm
11n (HT20 MCS7)	-	-70	-67	dBm
11n (HT40 MCS7)	-	-68	-65	dBm
11ac(VHT20 MCS8)	-	-65	-62	dBm
11ac(VHT40 MCS9)	-	-63	-60	dBm
11ac(VHT80 MCS9)	-	-60	-57	dBm

Data Rate	 802.11b: 1, 2, 5.5, 11Mbps 802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n: up to 150Mbps-single 802.11n: up to 300Mbps-2x2 MIMO 802.11ac:up to 192.6Mbps (20MHz channel) 802.11ac:up to 400Mbps (40MHz channel) 802.11ac:up to 866.7Mbps (80MHz channel)
Security	 WAPI WEP 64-bit and 128-bit encryption with H/W TKIP processing WPA/WPA2 (Wi-Fi Protected Access) AES-CCMP hardware implementation as part of 802.11i security standard

^{*} If you have any certification questions about output power please contact FAE directly.

1.3.3 Bluetooth

Features	Description				
Bluetooth Standard	Bluetooth 2.1 and 3.0	+Enhance	ed Data Rate (EDR) + BT 5.0		
Bluetooth VID/PID	1286/204E				
Frequency Rage	2402~2480MHz				
Modulation	GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps)			s)	
Output Power	BDR EDR BLE	Min 0 0 0	Typ 2 2 2 2	Max 4 4 4	Unit dBm dBm dBm
Receiver Sensitivity	BER < 0.1% BDR	Min	Тур -83	Max	Unit dBm

1.3.4 Operating Conditions

Features	Description
Operating Conditions	
Voltage	Power supply for host:3.3V
Operating Temperature	-30~85 °C
Operating Humidity	less than 85% R.H.
Storage Temperature	-40~125 °C
Storage Humidity	less than 60% R.H.
ESD Protection	
Human Body Model	+-2kV
Changed Device Model	+-500V

2. Pin Definition

2.1 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND	Ground	GND	
2	3.3V	3.3V power supply.	Power	3.3V
3	NC	No connect to anything	Floating	
4	3.3V	3.3V power supply	Power	3.3V
5	NC	No connect to anything	Floating	
6	LED_WLAN_L	Active low signal. The signal is used to provide status indicators via LED. (in this project is not used, please let it open)	Floating	1.8V
7	GND	Ground	GND	
8	PCM_CLK	PCM clock	I/O	1.8V
9	NC	No connect to anything	Floating	
10	PCM_SYNC	PCM Synchronization control	0	1.8V
11	NC	No connect to anything	Floating	
12	PCM_OUT	PCM data Out	0	1.8V
13	NC	No connect to anything	Floating	
14	PCM_IN	PCM data Input	1	1.8V
15	NC	No connect to anything	Floating	
16	LED_BT_L	Active low signal. The signal is used to provide status indicators via LED. (in this project is not used, please let it open)	Floating	1.8V
17	NC	No connect to anything	Floating	
18	GND	Ground.	GND	
17	NC	No connect to anything	Floating	
20	GPIO[13]/BT IRQ	GPIO[13]/ BT Wake Host(active low)	0	3.3V
21	NC	No connect to anything	Floating	
22	GPIO[8] / UART_SOUT	GPIO[8] / UART_SOUT (output)	0	1.8V

23	NC	No connect to anything	Floating	
32	GPIO[9] / UART_SIN	GPIO[9] / UART_SIN (input)	I	1.8V
33	GND	Ground.	GND	
34	GPIO[11] / UART_RTSn	GPIO[11] / UART_RTSn (output)	0	1.8V
35	PCIE_RXP	PCI Express Lane 0, Receive Pair, Positive Signal 2.5 GHz serial low-voltage interface	I	1.8V
36	GPIO[10] / UART_CTSn	GPIO[10 / UART_CTSn] (input)	I	1.8V
37	PCIE_RXN	PCI Express Lane 0, Receive Pair, Negative Signal 2.5 GHz serial low-voltage interface	I	1.8V
38	NC	No connect to anything	Floating	
39	GND	Ground	GND	
40	NC	No connect to anything	Floating	
41	PCIE_TXP	PCI Express Lane 0, Transmit Pair, Positive Signal 2.5 GHz serial low-voltage interface	0	1.8V
42	NC	No connect to anything	Floating	
43	PCIE_TXN	PCI Express Lane 0, Transmit Pair, Negative Signal 2.5 GHz serial low-voltage interface	0	1.8V
44	NC	No connect to anything	Floating	
45	GND	Ground	GND	
46	NC	No connect to anything	Floating	
47	PCIE_CLKP	PCI Express Differential Clock Input—Positive	I	1.8V
48	NC	No connect to anything	Floating	
49	PCIE_CLKN	PCI Express Differential Clock Input—Negative	I	1.8V
50	CLK_32KHz	External sleep clock input (32.768 kHz).	I	3.3V
51	GND	Ground	GND	
52	GPIO[21]/PCIE_ PERSTn	PCIe host indication to reset the device (input) (active low)	I	3.3V
53	PCIE_CLKREQ _N	PCI Express Clock Request	I/O	3.3V
54	NC	No connect to anything	Floating	
55	PCIE_WAKEUP _N	PCI Express Clock Request	I/O	3.3V
56	PDn	Full Power-Down (input) (active low) The module internal pull-up $51k\Omega$ on this pin.	I	3.3V

57	GND	Ground	GND	
58	NC	No connect to anything	Floating	
59	NC	No connect to anything	Floating	
60	NC	No connect to anything	Floating	
61	NC	No connect to anything	Floating	
62	NC	No connect to anything	Floating	
63	GND	Ground	GND	
64	NC	No connect to anything	Floating	
65	NC	No connect to anything	Floating	
66	NC	No connect to anything	Floating	
67	NC	No connect to anything	Floating	
68	NC	No connect to anything	Floating	
69	GND	Ground	GND	
70	NC	No connect to anything	Floating	
71	NC	No connect to anything	Floating	
72	3.3V	3.3V power supply	Power	
73	NC	No connect to anything	Floating	
74	3.3V	3.3V power supply	Power	
75	GND	Ground	GND	

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Host I/O power			1.8	2.2	
VIO	•			2.5	3.0	V
	supply			3.3	4.0	
3.3V	3.3V VBAT input			3.3	3.63	٧
Tstorage	Storage Temperature		-40		125	$^{\circ}\mathbb{C}$

3.2 Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
	1.8V/2.5V/3.3V		1.62	1.8	1.98	
VIO	digital I/O power		2.25	2.5	2.75	V
	supply		2.97	3.3	3.63	
3.3V	3.3V VBAT input		2.97	3.3	3.63	V
TA	Ambient operating temperature		-30		85	$^{\circ}\!\mathbb{C}$

3.3 Digital IO Pin DC Characteristics

3.3.1 DC Electricals-1.8V Operation(VIO)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VIL	Input low voltage	-0.4	-	0.3*V18	V
VIH	Input high voltage	0.7*V18	-	V18+0.4	V
VHYS	Input hysteresis	100	-	-	mV
VOL	Output low voltage	-	-	0.4	V
VOH	Output high voltage	V18-0.4	-	-	V

3.3.2 DC Electricals-3.3V Operation(VIO)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VIL	Input low voltage	-0.4	-	0.3*V33	V
VIH	Input high voltage	0.7*V33	-	V33+0.4	V

V _{HYS}	Input hysteresis	100	-	-	mV
VOL	Output low voltage	-	-	0.4	V
VOH	Output high voltage	V33-0.4	-	-	V

3.4 Host Interface

3.4.1 PCI Express Interface

3.4.1.1 Differential Tx Output Electricals

Sy mbol	Paramete r	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 PPM. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V_{Tx_DIFFpp}	Differential peak-to-peak output voltage V _{Tx_DIFFpp} = 2* V _{TX-D+} - V _{TX-D} -	0.800		1.2	٧
V _{Tx_DE_RATIO}	De-emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	db
T _{Rx_EYE}	Minimum Tx eye wid th	0.75			UI
T _{RX_EYE_MEDIAN} _ MAX_JIT	Maximum time between jitter median and maximum deviation from median			0.125	UI
T _{TX_RISE} , T _{TX_FALL}	D+/D- Tx output rise/fall time	0.125			UI
V _{Tx_CM_DC_} ACTIV E_IDLE_DELTA	Absolute delta of DC common mode voltage during L0 and electrical idle	0-	-	100	mV
V _{Tx_CM_DC_LINE_} DE LTA	Absolute delta of DC common mode voltage between D+ and D-	0-	-	25	mV
V _{Tx_IDLE_D IFF} p	Electrical idle differential peak output voltage	0		20	mV
V _{Tx_RCV_DETECT}	Voltage change allowed during receiver detection			600	mV
V _{Tx_DC_CM}	Tx DC common mode voltage			3.6	V
I _{Tx_SHORT}	Tx short circuit current limit			90	mA
T _{Tx_IDLE_MIN}	Minimum time spent in electrical idle	50			UI
T _{TX_IDLE_} SET_TO_ IDLE	Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set			20	UI
T _{TX_} IDLE_T O_DI FF_ DATA	Maximum time to transition to valid Tx specifications after leaving an electrical idle condition			20	UI
RL _{Tx_DIFF}	Differential return loss	10			dB
RL _{Tx_CM}	Common mode return loss	6			dB
C _{Tx}	AC coupling capacitor	75		200	nF
T _{Crosstalk}	Crosstalk random timeout	0		1	ms

3.4.1.2 Differential Rx Output Electricals

Symbol	Paramet er	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 ppm. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V_{Rx_DIFFpp}	Differential peak-to-peak voltage V _{Rx_DIFFpp} = 2* V _{RX-D+} - V _{RX-D-}	0.175		1.2	V
T _{Rx_EYE}	Minimum receiver eye width	0.4			UI
T _{Rx_EYE_MEDIAN_MAX_} JIT	Maximum time between jitter median and maximum deviation from median			0.3	UI
V _{Rx_CM_ACp}	AC peak common mode input voltage			150	mV
RL _{Rx_DIFF}	Differential return loss	10			dB
RL _{Rx_CM}	Common mode return loss	6			dB
Z _{Rx_DIFF_DC}	DC differential input impedance	80	100	120	Ω
Z _{Rx_DC}	DC input impedance	40	50	60	Ω
Z _{Rx_HIGH_IMP_DC_POS}	Powered down DC input impedance positive	50			k
Z _{Rx_HIGH_IMP_DC_NEG}	Powered down DC input impedance negative	1			kΩ
V _{Rx_IDLE_DET_}	Electrical idle detect threshold	65		175	mV
T _{Rx_IDLE_DET_} DIFF_ENTERTIME	Unexpected electrical idle enter detect threshold integration time			10	ms
L _{Rx_SKEW}	Total skew		-2	0	ns

3.4.2 High-Speed UART Interface

The AW-CM276MA-PUR supports a high-speed Universal Asynchronous Receiver/Transmitter (UART) interface, compliant to the industry standard 16550 specification. High-speed baud rates are supported to provide the physical transport between the device and the host for exchanging Bluetooth data. Table shows the rates supported.

The UART interface features include:

FIFO mode permanently selected for transmit and receive operations

Two pins for transmit and receive operations

Two flow control pins

Interrupt triggers for low-power, high throughput operation

The UART interface operation includes:

Upload boot code to the internal CPU (for debug purposes)

Support diagnostic tests

Support data input/output operations for peripheral devices connected through a standard

UART interface

UART Baud Rates Supported

Ba ud Ra te					
1200	38400	460800	1500000	3000000	
2400	57600	500000	1843200	3250000	
4800	76800	921600	2000000	3692300	
9600	115200	1000000	2100000	4000000	
19200	230400	1382400	2764800		

3.4.2.1 UART Interface Signal Description

Table shows the standard UART signal names on the device.

Signal Name	16550 Standard Pin Name	Description
Data Bus		
UART_SIN	SIN	Serial data input from modem, data set, or peripheral device
UART_SOUT	SOUT	Serial data output from modem, data set, or peripheral device
Modem Control		
UART_RTSN	RTS	Request To Send output to modem, data set, or peripheral device (active low)
UART_CTSN	CTS	Clear To Send input from modem, data set, or peripheral device (active low)

3.4.2.2 UART Interface Functional Description

3.4.2.2.1 Booting from UART

When booting from the UART, the AW-CM276MA-PUR device has the following requirements:

System Requirement	Description
Number of data bits	8 bits
Stop bits	1 bit
Parity	No parity
Baud Rate	115200

3.4.4.2.2 UART as Test Port

Test diagnostic programs may be uploaded to the CPU through the UART interface. During execution, the diagnostic program transmits performance and status information through the UART by performing a write to the PBU address space designated to the UART.

3.4.3 PCM Interface

3.4.3.1 PCM Timing Specification – Master Mode

Sy mbol	Parameter	Con diti on	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK} rise/fall				3		ns
T_{DO}					15	ns
T _{DIS U}			20			ns
T _{DH O}			15			ns
T _{BF}					15	ns

3.4.3.2 PCM Timing Specification – Slave Mode

Symbol	Parameter	Cond ition	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK rise/fall}				3		ns
T _{DO}					30	ns
T _{DISU}			15			ns
T _{DIHO}			10			ns
T _{BFSU}			15			ns
T _{BFHO}			10			ns

3.5 Power up Timing Sequence

3.5.1 Reset Configuration

The AW-CM276MA-PUR is reset to its default operating state under the following conditions:

- Power-on reset (POR)
- Software/Firmware reset
- External pin for power down (PDn)

3.6 Power consumption

3.6.1 WLAN result

No.	ltem -			3.3V_VBAT=3.3V				
INO.				Max.			Avg.	
1.	Power down *(1)			0.61 0.59			9	
2.	Deep sleep*(2) (Not ena	able usb_susp	end.sh)	21.8			21.7	
۷.	Deep sleep *(2) (3)			2.6			2.6	
3.	PS Mode 2.4g band *(3)	(4)		96.0 7.2				
4.	PS Mode 5g band *(3) (4)				163.7		8.3	
No.	It			3.3\	/_VBAT=3	.3V		
Band		BW	RF Power (dBm)	Transmit			Receive	
(GHz)	Mode	(MHz)		Max.	Avg.	DUTY %	Max.	Avg.
	11b@1M	20	17	421.1	417.5	99	116.6	115.3
	11g@6M	20	16	380.5	377.4	99	118.4	117.8
2.4	11n@MCS8 MIMO	20	16	729.3	721.5	98	141.1	140.8
2.7	11n@MCS15 MIMO	20	16	652.1	647.1	78	139.2	139.0
	11n@MCS8 MIMO	40	14	602.4	597.6	89	159.2	158.9
	11n@MCS15 MIMO	40	14	520.4	516.6	70	153.6	153.5
	11a@6M	20	13	402.2	401.3	98	141.9	139.2
5	11n@MCS8 MIMO	20	13	794.5	791.2	95	174.3	174.2
	11n@MCS8 MIMO	40	12	737.9	734.6	88	201.5	201.3
	11ac@MCS0 NSS2	20	13	789.9	784.3	95	175.2	175.2
	11ac@MCS0 NSS2	80	10	656.2	654.7	86	216.3	214.3
*Current Unit:	11ac@MCS9 NSS2	80	10	578.2	577.8	76	212.7	210.6

^{*}Current Unit: mA

Note: DUT set Tx with Adjust Packet Gap with Sifs. Ext: Enter option: 35 1 1

3.6.2 BT result

No.	Mode	3.3V_VBAT=3.3V			
		Max.	Avg.		
1	Connect BT device	35.7	21.4		
2	A2DP (send audio)	47.9	29.8		

^{*}Current Unit: mA

⁽¹⁾ J14 power down pull low.

⁽²⁾ The deep sleep current is too high, we using NXP reference board to measuring is same and highlighted to NXP this.

⁽³⁾ Put the usb_suspend.sh file into the same folder with mlan.ko and run ./usb_suspend.sh 1

⁽⁴⁾ Associate AP RT-AC66U, DTIM=1, Beacon Interval=100ms

4. Mechanical Information

4.1 Mechanical Drawing

TOLERANCES UNLESS OTHERWISE SPECIFIED: ±0.15mm

4.2 Antenna connector drawing

SECTION A-A

UNITS: mm

5. Packaging Information

1. 160pcs M.2 2230 modules put in the one bottom tray

2. One cover tray put on bottom tray

3. 5pcs tray (cover + bottom) stacked together

4. Use P.P Strap to pack 5 trays

5. Put packed trays into inner box

6. Seal the inner box by AzureWave tape

7. One package label pasted in side of inner box

Example:

8. Two inner boxes put into one carton; If only one inner box has modules, "Empty" label pasted on the other one inner box

9. Seal the carton by AzureWave tape

10. One carton label and box label pasted on the carton. If the carton is not full, one balance label pasted on the carton

Example of carton label	AzureWave Technologies Inc.				
	AzureWave P/N				
	Customer	由業務提供			
	Customer P/N	由業務提供			
	Customer PO	由業務提供			
	Description	AW-XXXXXX			
	QTY	1200 pcs			
	C/N				
	N.W.	G.W.			
	RoHs				
		BOX0012018			
Example of production label	P/N: D/C: 1309 PCK NO.: PCKNO QTY: 294	0069097			
Example of balance label		尾 数 Balance			