Feature Engineering

Dr Alexander A S Gunawan

aagung@binus.edu http://sigmetris.com 08175001010

Data Science Project Flow

2B. Feature Generation

A. Feature Engineering

- Rescaling/ standardization of existing features
- Performing data transformations: Tf-Idf, log1p, min-max scaling, binning of numeric features
- Turn categorical features to numeric (label encoding / one hot encoding)
- Create count features
- Parsing textual features to get more generalizable features
- Time series: Extracting date/time features i.e month, year, DayOfWeek, dayOfMonth, isHoliday?, isExtreme? etc.

B. Feature Selection

- Remove near-zero-variance features
- Use feature importance and eliminate least important features
- Remove 1-2 most significant features to increase model diversity
- Recursive Feature Elimination

Feature Generation

Squared area: 55 m^2

Price: 107000 \$

Price for 1m2: 107000 \$ / 55 m2

Feature generation is powered by:

- a. Prior knowledge
- b. Exploratory data analysis

Categorical Variables

Encoding categorical features

Index	Country		
1	'India'		
2	'USA'		
3	'UK'		
4	'UK'		
5	'France'		
•••			

Index	C_India	C_USA	C_UK	C_France
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	1	0
5	0	0	0	1
***	•••	•••	•••	***

Encoding categorical features

- One-hot encoding
- Dummy encoding

- One-hot encoding: Explainable features
- Dummy encoding: Necessary information without duplication

Index	Sex
0	Male
1	Female
2	Male

Index	Male	Female	
0	1	0	
1	0	1	
2	1	0	

Index	Male		
0	1		
1	0		
2	1		

Limiting your columns

```
counts = df['Country'].value_counts()
print(counts)
```

```
'USA' 8
'UK' 6
'India' 2
'France' 1
Name: Country, dtype: object
```

Limiting your columns

```
mask = df['Country'].isin(counts[counts < 5].index)

df['Country'][mask] = 'Other'

print(pd.value_counts(colors))</pre>
```

```
'USA' 8
'UK' 6
'Other' 3
Name: Country, dtype: object
```

Numeric Variables

Types of numeric features

- Age
- Price
- Counts

Scaling data

Min-Max scaling

Standardization

Log Transformation

What are outliers?

Quantile based detection

Standard deviation based detection

Datetime and coordinates

Date and time

1. Periodicity

Day number in week, month, season, year second, minute, hour.

2. Time since

- a. Row-independent moment
 For example: since 00:00:00 UTC, 1 January 1970;
- Row-dependent important moment
 Number of days left until next holidays/ time passed after last holiday.

3. Difference between dates

datetime_feature_1 - datetime_feature_2

Coordinates

Other train samples and centers of clusters

Aggregated stats

Text

Length of text

```
speech_df['char_cnt'] = speech_df['text'].str.len()
print(speech_df['char_cnt'].head())
```

```
0 1889
1 806
2 2408
3 1495
4 2465
Name: char_cnt, dtype: int64
```

Word counts

```
speech_df['word_cnt'] =
    speech_df['text'].str.split()
speech_df['word_cnt'].head(1)
```

```
['fellow', 'citizens', 'of', 'the', 'senate', 'and',...
```

Text to columns

"citizens of the senate and of the house of representatives"

Index	citizens	of	the	senate	and	house	representatives
1	1	3	2	1	1	1	1

TF-IDF