

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

São Carlos - SP

2017

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

Orientador: Fredy João Valente

Universidade Federal de São Carlos - UFSCar

Departamento de Computação

Ciência da Computação

Laboratório de Circuitos Digitais

São Carlos - SP 2017

Lista de ilustrações

Figura 1 – Desenho do circuito do cenário 1	8
Figura 2 – Imagem do circuito no Quartus do cenário 1	9
Figura 3 – Configuração onde o LED Verde deveria acender (1001, por exemplo).	9
Figura 4 – Configuração onde o LED Vermelho deveria acender (0001, por exemplo	<mark>o)</mark> 10
Figura 5 – Desenho do circuito do cenário 2	.11
Figura 6 – Imagem do circuinto no programa Quartus do cenário 2	11
Figura 7 – Resultado da compilação do circuito do cenário 2	. 12
Figura 8 – Imagens das simulações rodadas no Quartus do cenário 1	13
Figura 9 – Resultado da simulação do cenário 2	.14
Figura 10 – Imagens do circuito do cenário 2 na placa	.15
Figura 11 – Desenho do circuito	17

Lista de tabelas

Tabela 1 – Tabela verdade da expressão lógica do	cenário 1 8
Tabela 2 – Tabela verdade da expressão lógica do	cenário 211
Tabela 3 – Tabela verdade da expressão lógica	17

Lista de abreviaturas e siglas

CI Circuito Integrado

FPGA Field Programmable Gate Array - Arranjo de Portas Programáveis em

Campo

Sumário

I	RESUMO	6
1.1	Cenario I	. 6
1.2	Cenario 2	. 6
2	DESCRIÇÃO DA EXECUÇÃO DO EXPERIMENTO	7
2. I	Cenario I	7
2.2	Cenario 2	10
3	AVALIAÇÃO DOS RESULTADOS DO EXPERIMENTO	13
3.I	Cenario I	13
3.2	Cenario 2	13
4	ANÁLISE CRÍTICA E DISCUSSÃO	16
4. I	Cenario I	16
4.2	Cenario 2	16
5	OUTRAS INFORMAÇÕES	17

1 Resumo

1.1 Cenario 1

Esta atividade foi desenvolvida com o objetivo de introduzir conceitos básicos de circuitos digitais, como lógica digital. Foi implementando fisicamente um sistema simples de votação, utilizando uma *protoboard*. As entradas (sinais lógicos 0 ou 1) deveriam ser tratadas segundo algumas regras:

Haviam 4 pessoas possíveis para realizar votos, sendo um presidente, um diretor financeiro, um diretor de operações e um controller. O circuito deve acender um led verde, sinalizando um "sim", se:

Caso 1: O presidente E qualquer outro membro votar sim. (Sinal lógico 1/Verdadeiro)

Caso 2: Ao menos 3 membros votarem sim. (Sinal lógico 1/Verdadeiro) Não sendo válidas quaisquer dessas premissas, nada acontece ou, opcionalmente, um led vermelho é acionado, sinalizando um "não".

1.2 Cenario 2

O experimento serviu para solidificar o conhecimento de desenvolver circuitos digitais utilizando o programa Quartus e o funcionamento deste circuito numa placa *Field Programmable Gate Array* - Arranjo de Portas Programáveis em Campo (FPGA). Para tal, tinha-se que solucionar o problema:

Considere um circuito lógico presente em uma geladeira que deve acionar um indicador de alerta (luz presente na alça de abertura da porta) na seguinte condição:

Se a porta estiver aberta ou o nível de gelo do congelador estiver acima do permitido ou o nível de gás do motor não estiver adequado, então acenda uma luz de advertência.

2 Descrição da execução do experimento

2.1 Cenario 1

Foram necessários para o desenvolvimento do experimento:

- · Multímetro Digital
- · Circuito Integrado (CI) de portas lógicas AND (datasheet 7400)
- · CI de portas lórigas *OR*
- · CI de porta lógica inversora / NOT (datashee 7404)
- Protoboard
- Fios para conectar as portas
- Fonte de Alimentação DC 5V
- · LED Vermelho
- LED Verde
- · 2 resistores para polarizar os LED's
- Alicate

A partir do problema proposto, montou-se a seguinte expressão lógica

$$P.(F + C + O) + (F.C.O)$$

com P representando *o voto do presidente*, F *o voto do diretor financeiro*, C *o voto do controller* e O *o voto do diretor de operações*, após a montagem da expressão, foi elaborada aTabela 1. Com esta tabela e a expressão lógica, elaborou-se o circuito, conforme aFigura 1. Com tais informações, foi repassado o circuito para o Quartus, depois renomeou-se as entradas e saídas para que, por meio do arquivo tradutor, a placa FPGA reconhecesse os componentes, conformeFigura 2. Para cobrir todos os casos de testes, foi realizada uma simulação, conforme aFigura 8.

Tabela 1 – Tabela verdade da expressão lógica do cenário 1

P	F	C	0	P.(F+C+O)+(F.C.O)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Figura 1 – Desenho do circuito do cenário 1

Figura 2 – Imagem do circuito no Quartus do cenário 1

A porta SW[9] representa P, a SW[8] representa F, a SW[7] representa C, SW[6] representa O, LEDR[1] é um led vermelho que indica que o resultado da votação foi falso e LEDG[1] é um led verde que representa o resultado da votação foi verdadeiro.

Figura 4 – Configuração onde o LED Vermelho deveria acender (0001, por exemplo)

2.2 Cenario 2

Para a realização deste experimento, foram utilizados o programa Quartus 13.0 SP 1 e a placa FPGA Cyclone II - EP2C20F484C7.

A partir do problema proposto, montou-se a seguinte expressão lógica

$$P + G + \sim V$$

com P representando *se a porta estiver aberta,* G *se nível de gelo do congelador estiver acima do permitido* e V *se o nível de gás do motor estiver adequado,* após a montagem da expressão, foi elaborada aTabela 2. Com esta tabela e a expressão lógica, elaborou-se o circuito, conforme aFigura 5. Com tais informações, foi repassado o circuito para o Quartus, depois renomeou-se as entradas e saídas para que, por meio do arquivo tradutor, a placa FPGA reconhecesse os componentes. Para cobrir todos os casos de testes, foi realizada uma simulação, conforme aFigura 9.

Tabela 2 – Tabela verdade da expressão lógica do cenário 2

P	G	~ V	P+G+(~V)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Figura 5 – Desenho do circuito do cenário 2

Figura 6 – Imagem do circuinto no programa Quartus do cenário 2

A porta SW[9] representa a P, a SW[8] representa a G, a SW[7] representa a \sim V e a LEDR[1] é um led vermelho que irá indicar o resultado provido da expressão lógica. Uma observação que não merece uma devida atenção é que na Figura 5 foram necessárias a utilização de duas portas OR, enquanto na Figura 6 foi necessária apenas a utilização de uma porta OR. Isso ocorreu pelo fato de que no Quartus existe a possibilidade de utilizar uma porta OR de três entradas.

Por fim, o circuito virtual foi compilado, conformeFigura 7.

Figura 7 – Resultado da compilação do circuito do cenário 2

3 Avaliação dos resultados do experimento

3.1 Cenario 1

Verificou-se, para todos os casos de entrada, que o valor previsto pela tabela-verdade como saída era válido, demonstrando sucesso na implementação do experimento.

(a) Imagem de 12 simulações

(b) Imagem de 4 simulações

Figura 8 – Imagens das simulações rodadas no Quartus do cenário 1

3.2 Cenario 2

Verificou-se, para todos os casos de entrada, que o valor previsto pela tabela-verdade como saída era válido, demonstrando sucesso na implementação do experimento.

Figura 9 – Resultado da simulação do cenário 2

Figura 10 – Imagens do circuito do cenário 2 na placa

4 Análise crítica e discussão

4.1 Cenario 1

Tal experimento demonstra-se importantíssimo, por introduzir noções gerais sobre Circuitos Digitais em um *protoboard*, isto é, um circuito físico, ao invés de apenas um circuito programado via *software* e gravado posteriormente em um *hardware*. Durante as instruções pré-experimento, também houve uma introdução à notação específica usada para descrever estes circuitos de maneira escrita, cujo conhecimento será indispensável para o desenvolvimento de projetos futuros.

4.2 Cenario 2

Com este experimento foi observado a importância de fazer simulações, já que ao testar o circuito na placa, um dos switchs não estava funcionando, então ao comparar o resultado da placa com o esperado, segundo a simulação, pode-se constatar a falha do equipamento.

Teve-se dificuldade com a utilização do arquivo tradutor, pois ele estava sendo salvo como um arquivo texto e não um arquivo qst. Além disso, sentiu-se dificuldade em gerar a simulação, já que os slides eram do Quartus de uma versão anterior a que estava sendo utilizada.

5 Outras informações

Considere um circuito lógico presente em um sistema de segurança de um cofre privado.

Se a senha primaria estiver correta E (a leitura de digitais apresentar valor válido OU a leitura de íris apresentar valor válido), deve ser acendido um led azul, liberando o acesso. Caso contrário, deve ser acendido um led laranja.

Expressão lógica: S.(D+I) em que S representa se a senha primaria estiver correta, D se a leitura de digitais apresentar valor válido e I se a leitura de íris apresentar valor válido.

Tabela 3 – Tabela verdade da expressão lógica

S	D		S.(D+I)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Figura 11 – Desenho do circuito

