13. Übung AuD

Dominic Deckert

25. Januar 2017

Previously on ...

- ► Semi-Ring
- ► Aho-Algorithmus

 mA_G

mA_G

$$\begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \emptyset & \{\varepsilon\} \end{pmatrix}$$

$$\begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{\varepsilon, cb\} \end{pmatrix}$$

$$egin{array}{lll} \left\langle \left\{ arepsilon \right\} & \left\{ b
ight\} & \left\{ a
ight\} & \left\{ c
ight\} & \left\{ c, cb
ight\} & \left\{ b, ba
ight\} & \left\{ \varepsilon
ight\} & \left\{ a
ight\} & \left\{ c
ight\} & \left\{ \varepsilon, cb, cba
ight\} & \left\{ c
ight\} & \left\{ \varepsilon, cb, cba
ight\} & \left\{ c
ight\} & \left\{ \varepsilon, cb, cba
ight\} & \left\{ \varepsilon
igh$$

```
 \begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{\varepsilon, cb\} \end{pmatrix}   \begin{pmatrix} \{\varepsilon\} & \{b\} & \{b, ba\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{\varepsilon, cb, cba\} \end{pmatrix}   (\{cb, cba\}^* \circ \{c\} & \{cb, cba\}^* \cdot \{cb\} & \{cb, cba\}^* ) D_{G'}(3,3) = \{bc, ba, cba\}^*
```

Zufallsexperimente

Zufallsexperiment:

- Ausgang kann nicht vorhergesagt werden
- wiederholbar

X: mögliche Ausgänge eines Zufallsexperiment

Y: mögliche Interpretationen eines Ausgangs $x \in X$

 $yield: X \rightarrow Y$ interprtiert Ausgänge

Analysator $A: Y \rightarrow Y$ analysiert Beobachtungen d.h. $x \in A(yield(x))$

Korpus

Korpus $h:X \to \mathbb{R}^\infty_{\geq 0}$ "zählt" Ausgänge bei mehrfacher Wiederholung

Größe eines Korpus:
$$|h| = \sum_{x \in X} h(x)$$

Korpus unvollständiger Daten $c:Y\to\mathbb{R}^\infty_{\geq 0}$ gibt Anzahl der Beobachtungen an (tatsächliche Ausgänge nicht bekannt)

Likelihood

Zufallsexperimente können durch Wahrscheinlichkeitsverteilung p beschrieben werden

$$p: X \to [0, 1]$$

"Wahrscheinlichkeit", dass ein Korpus von einer bestimmten Wahrscheinlichkeit

erzeugt wird: Likelihood

$$L(h, p) = \prod_{x \in X} p(x)^{h(x)}$$

Aufgabe: Gegeben einen Korpus, welche Wahrscheinlichkeitsverteilung hat diesen

Korpus höchstwahrscheinlich erzeugt?

Wahrscheinlichkeitsmodell

Einschränkung der möglichen Wahrscheinlichkeiten: M Häufig anhand von Wissen/ Annahmen über das Zufallsexperiment Wahrscheinlichstes p: Maximum-Likelihood-Schätzung $mle(M,h) = argmax_{p \in M} \{L(h,p)\}$ relative Häufigkeitsverteilung $rfe(h)(x) = \frac{h(x)}{|h|}$ Wenn $rfe(h) \in M$, dann ist mle(M,h) = rfe(h)

a

$$X =$$

a)

$$X = \{1, 2, 3, 4, 5, 6\}$$

 $|h| =$

a)

$$\begin{array}{l} X = & \{1,2,3,4,5,6\} \\ |h| = & 18 \\ M = & \{p : X \to [0,1] | p(i) = p(6-i)\} \\ \hline \times & ||1| | 2 | |3| | |4| | |5| | |6| \\ \hline |h(x)| | |3| |5| |1| |1| |5| |3| | |rfe(h)| |\frac{1}{6}| |\frac{5}{19}| |\frac{1}{19}| |\frac{1}{19}| |\frac{1}{19}| |\frac{1}{6}| \\ \hline \end{array}$$

EM

Ziel: Gegeben einen unvollständigen Korpus, welches p hat dann die höchste Likelihood?

→ nichtlineare Optimierung

Ansatz: schrittweises Erzeugen immer besserer q^i durch EM-Algorithmus

E-Schritt: Erzeuge (hypothetischen) vollständigen Korpus

$$h^{i}(x) = h(yield(x)) \cdot \frac{q^{i-1}(x)}{\sum_{x' \in A(yield(x))} q^{i-1}(x')}$$

M-Schritt: Bestimme $p^i = mle(h^i)$

Aufgabe 3

Χ	(K,K	()	Z, Z)	(K,	Z)	(Z, K)	(R, K)	(R, Z)
Α	win	1	win	lose		lose	lose	lose
q_0	$\frac{\frac{2}{15}}{2}$		$\frac{4}{15}$		<u>1</u> 5	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$
h_1	2		4	8	3	4	2	4
p_1	$\frac{1}{12}$		$\frac{1}{6}$	$\frac{1}{3}$		$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{6}$
	K^1	Z^1	R^1	K^2	Z^2			
h_1'	10	8	6	8	16			
p_1'	$\frac{5}{12}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{3}$	_		