CHAPTER 5. INVERSE FUNCTIONS Section 5.8. Indeterminate forms

1. Indeterminate Quotients.

Theorem: Suppose that f and g are differentiable and $g'(x) \neq 0$. Suppose that $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ or $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$. Then $\lim_{x\to a} f(x) = 0 = f(a)$ $\lim_{x\to a} \frac{f(x)}{g(x)} = 0 = 0 \text{ or } \lim_{x\to a} \frac{f(x)}{g(x)} = 0$ $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

$$\lim_{\substack{x \to a \\ x \to a \\ \text{lim}}} f(x) = 0 = f(a)$$

$$\lim_{\substack{x \to a \\ x \to a}} g(x) = 0 = g(a)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Exercise. Evaluate the limit. $\lim_{x \to 1} \frac{\ln x}{\sin \pi x}$

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)-f(a)}{\frac{x-a}{g(x)-g(a)}} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

$$\frac{x + e^{-x}}{1 - \cos x} = \lim_{x \to 0} \frac{e^{x} - e^{-x}}{\sin x}$$

$$= \lim_{x \to 0} \frac{e^{x} + e^{-x}}{\cos x}$$

$$\lim_{x\to\infty} \frac{x}{\sqrt{x^2+5}} - \lim_{x\to\infty} \frac{1}{\sqrt{x^2+5}}$$

$$\frac{1}{x-30} = \frac{\sqrt{x^2+5}}{x-300}$$

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 5}} - \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 5}}$$

2. Indeterminate Products.

When $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$. What is $\lim_{x\to a} f(x)g(x)$? Well, it depends! It is not always zero. How can we use the above theorem to eliminate the indetermination in the case of the products of the form " $0 \cdot \pm \infty$?

lun
$$f(x) \cdot g(x) = \lim_{x \to a} \frac{f(x)}{g(x)} > 0$$

$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \frac{f(x)}{g(x)} > 0$$

$$\lim_{x \to a} f(x) \cdot g(x) - \lim_{x \to a} \frac{g(x)}{g(x)} > 0$$

or lim
$$f(x) - g(x)$$
 - lim $\frac{g(x)}{g(x)} \rightarrow \pm \infty$

Exercise: Evaluate the limit.
$$\lim_{x\to\infty} x \tan(1/x)$$

imtano=1 x + on
$$(\frac{1}{x}) = \lim_{x \to \infty} \frac{\tan (\frac{1}{x})}{x}$$

lim
$$\frac{\tan(\frac{1}{x})}{x \to \infty} = \lim_{x \to \infty} \frac{\tan (\frac{1}{x})}{x}$$

Exercise: Evaluate the limit.
$$\lim_{x\to\infty} x \tan(1/x)$$

$$\lim_{x\to\infty} x + \tan\left(\frac{1}{x}\right) = \lim_{x\to\infty} \frac{\tan\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \frac{\cot^2\left(\frac{1}{x}\right)}{x}$$

$$\lim_{x\to\infty} \tan\left(\frac{1}{x}\right) = \lim_{x\to\infty} \frac{\tan\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \sec^2\left(\frac{1}{x}\right)$$

$$\lim_{x\to\infty} \tan\left(\frac{1}{x}\right) = \lim_{x\to\infty} \frac{\tan\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \sec^2\left(\frac{1}{x}\right)$$

$$\lim_{x\to\infty} \frac{\tan\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \frac{\tan\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \frac{\sec^2\left(\frac{1}{x}\right)}{x} = \lim_{x\to\infty} \frac{\sec^2\left(\frac{1}{x}\right$$

3. Indeterminate Differences.

When evaluating the limit $\lim_{x\to a} f(x) - g(x)$, where $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$, we have an indeterminate case of the form " $\infty - \infty$ ".

Exercise. Evaluate the limit. $\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$

Lim
$$\left(\frac{1}{\ln x} - \frac{1}{x-1}\right) = \lim_{x \to 1} \frac{\ln x}{(x-1)\ln x} = \lim_{x \to 1} \frac{1-\frac{1}{x}}{\ln x + (x-1)\frac{1}{x}}$$

$$= \lim_{x \to 1} \frac{1-\frac{1}{x}}{\ln x + 1 - \frac{1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x}}{\ln x + 1} = \frac{1}{2}$$

4. Indeterminate Powers.

When we evaluate a limit of the form $\lim_{x\to a} [f(x)]^{g(x)}$, we will have an indeterminate form in the following cases.

(a)
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$ type 0^0 .

(b)
$$\lim_{x \to a} f(x) = \infty$$
 and $\lim_{x \to a} g(x) = 0$ type ∞^0 .

(c)
$$\lim_{x\to a} f(x) = 1$$
 and $\lim_{x\to a} g(x) = \pm \infty$ type 1^{∞} .

We first find $\lim_{x\to a} \ln[f(x)]^{g(x)}$ and then use the properties of the logarithmic functions to find $\lim_{x\to a} [f(x)]^{g(x)}$

Exercises. Evaluate the limit.

Stepl:
$$\lim_{x\to\infty} \ln\left(1+\frac{1}{x}\right)^{x} = \lim_{x\to\infty} \frac{1}{x} \cdot \ln$$

(b)
$$\lim_{x\to 0^{+}} (\tan 2x)^{x} > 0$$
 $\lim_{x\to 0^{+}} (\ln (\tan 2x)^{x}) = \lim_{x\to 0^{+}} (\tan 2x) = \lim_{x\to 0^{+}} (\tan 2x)$

Use $\lim_{x\to 0^{+}} (\tan 2x)^{x} = \lim_{x\to 0^{+}} (\tan 2x) = \lim_{x\to 0^{+}} (-x^{2})$
 $\lim_{x\to 0^{+}} (\tan 2x)^{x} = \lim_{x\to 0^{+}} (-x^{2})$
 $\lim_{x\to 0^{+}} (-x^{2})^{x} = \lim_{x\to 0^{+}} (-x^{2})^{x} = \lim_{x\to$