(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

(10) International Publication Number WO 01/00844 A2

(51) International Patent Classifica	ation ⁷ : C12N 15/31,	199 42 088.2	3 September 1999 (03.09.1999)	DE
15/55, 1/21, 9/18, C07K 14/34, C12P 13/08, C12O 1/68		199 42 095.5	3 September 1999 (03.09.1999)	DE
	,	199 42 123.4	3 September 1999 (03.09.1999)	DE
(21) International Application Num	nber: PCT/IB00/00943	199 42 125.0	3 September 1999 (03.09.1999)	DE
(22) International Filing Date: 2	23 June 2000 (23.06.2000)	(71) Applicant: [DE/DE]; D-676	BASF AKTIENGESELLSCH 056 Ludwigshafen (DE).	IAFT
(25) Filing Language:	English	(72) Inventors: PC	OMPEJUS, Markus; Wenjenstrass	e 21,
(26) P. I.P. (1) I. P.	E . P.A.		sheim (DE). KRÖGER, Burkhard	

- (26) Publication Language: English Waldhof 1, D-67117 Limburgerhof (DE). SCHRÖDER, Hartwig; Goethestrasse 5, D-69226 Nussloch (DE). ZELDER, Oskar; Rossmarktstrasse 27, D-67346 Speyer (DE). HABERHAUER, Gregor; Moselstrasse 42, 25 June 1999 (25.06.1999) US D-67117 Limburgerhof (DE). 8 July 1999 (08.07.1999) DE
 - (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
 - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(30) Priority Data: 60/141,031 199 31 562.0 8 July 1999 (08.07.1999) 199 31 634.1 DE 199 31 412.8 8 July 1999 (08.07.1999) DE 8 July 1999 (08.07.1999) 199 31 413.6 DE 199 31 419.5 8 July 1999 (08.07.1999) DE 199 31 420.9 8 July 1999 (08.07.1999) DE 8 July 1999 (08.07.1999) DE 199 31 424.1 8 July 1999 (08.07.1999) DE 199 31 428.4 8 July 1999 (08.07.1999) 199 31 431.4 DE 199 31 433.0 8 July 1999 (08.07.1999) DE 199 31 434.9 8 July 1999 (08.07.1999) DE 8 July 1999 (08.07.1999) 199 31 510.8 DE 60/143,208 9 July 1999 (09.07.1999) US 199 32 180.9 9 July 1999 (09.07.1999) DE 199 32 227.9 9 July 1999 (09.07.1999) DΕ 199 32 230.9 9 July 1999 (09.07.1999) DE 14 July 1999 (14.07.1999) 199 33 005.0 DE 14 July 1999 (14.07.1999) 199 32 924.9 DE 199 32 973.7 14 July 1999 (14.07.1999) DE 27 August 1999 (27.08.1999) DE 199 40 765.7 60/151,572 31 August 1999 (31.08.1999) US 199 42 076.9 3 September 1999 (03.09.1999) DE 3 September 1999 (03.09.1999) DE 199 42 079.3 199 42 086.6 3 September 1999 (03.09.1999) DE 3 September 1999 (03.09.1999) 199 42 087.4 DE

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PROTEINS INVOLVED IN CARBON METABOLISM AND ENERGY PRODUCTION

(57) Abstract: Isolated nucleic acid molecules, designated SMP nucleic acid molecules, which encode novel SMP proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing SMP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated SMP proteins, mutated SMP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of SMP genes in this organism.

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PROTEINS INVOLVED IN CARBON METABOLISM AND ENERGY PRODUCTION

Related Applications

5 This application claims priority to prior U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/143208, filed July 9, 1999, and U.S. Provisional Patent Application Serial No. 60/151572, filed August 31, 1999. This application also claims priority to prior German Patent Application No. 19931412.8, filed July 8, 1999, German Patent Application No. 19931413.6, filed July 8, 1999, German Patent Application No. 19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July 8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent Application No. 19931428.4, filed July 8, 1999, German Patent Application No. 19931431.4, filed July 8, 1999, German Patent Application No. 19931433.0, filed July 8, 1999, German Patent Application No. 19931434.9, filed July 8, 1999, German Patent Application No. 19931510.8, filed July 8, 1999, German Patent Application No. 19931562.0, filed July 8, 1999, German Patent Application No. 19931634.1, filed July 8, 1999, German Patent Application No. 19932180.9, filed July 9, 1999, German Patent Application No. 19932227.9, filed July 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent Application No. 19932924.9, filed July 14, 1999, German Patent Application No. 19932973.7, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent Application No. 19942088.2, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942123.4, filed September 3, 1999, and German Patent Application No. 19942125.0, filed September 3, 1999. The entire contents of all of the aforementioned application are hereby expressly incorporated 30 herein by this reference.

- 2 -

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through the large-scale culture of bacteria developed to produce and secrete large quantities of one or more desired molecules. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

15

20

10

Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as sugar metabolism and oxidative phosphorylation (SMP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The SMP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the SMP nucleic acids of the invention, or modification of the sequence of the SMP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a

- 3 **-**

microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The SMP nucleic acids of the invention may also be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof, or to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is nonpathogenic, it is related to species pathogenic in humans, such as Corynebacterium diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The SMP nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. glutamicum* genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species.

15

20

25

30

The SMP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. Given the availability of cloning vectors for use in *Corynebacterium glutamicum*, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al., J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals. This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation.

- 4 -

There are a number of mechanisms by which the alteration of an SMP protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a C. glutamicum strain incorporating such an altered protein. The degradation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NADH and FADH2 to compounds containing high energy phosphate bonds via oxidative phosphorylation results in a number of compounds which themselves may be desirable fine chemicals, such as pyruvate, ATP, NADH, and a number of intermediate sugar compounds. Further, the energy molecules (such as ATP) and the reducing equivalents (such as NADH or NADPH) produced by these metabolic pathways are utilized in the cell to drive reactions which would otherwise be energetically unfavorable. Such unfavorable reactions include many biosynthetic pathways for fine chemicals. By improving the ability of the cell to utilize a particular sugar (e.g., by manipulating the genes encoding enzymes involved in the degradation and conversion of that sugar into energy for the cell), one may increase the amount of energy available to permit unfavorable, yet desired metabolic reactions (e.g., the biosynthesis of a desired fine chemical) to occur.

10

15

20

25

30

The mutagenesis of one or more SMP genes of the invention may also result in SMP proteins having altered activities which indirectly impact the production of one or more desired fine chemicals from C. glutamicum. For example, by increasing the efficiency of utilization of one or more sugars (such that the conversion of the sugar to useful energy molecules is improved), or by increasing the efficiency of conversion of reducing equivalents to useful energy molecules (e.g., by improving the efficiency of oxidative phosphorylation, or the activity of the ATP synthase), one can increase the amount of these high-energy compounds available to the cell to drive normally unfavorable metabolic processes. These processes include the construction of cell walls, transcription, translation, and the biosynthesis of compounds necessary for growth and division of the cells (e.g., nucleotides, amino acids, vitamins, lipids, etc.) (Lengeler et al. (1999) Biology of Prokaryotes, Thieme Verlag: Stuttgart, p. 88-109; 913-918; 875-899). By improving the growth and multiplication of these engineered cells, it is possible to increase both the viability of the cells in large-scale culture, and also to improve their rate of division, such that a relatively larger number of cells can survive in fermentor culture. The yield, production, or efficiency of production may be increased, at least

- 5 -

due to the presence of a greater number of viable cells, each producing the desired fine chemical. Also, many of the degradation products produced during sugar metabolism are utilized by the cell as precursors or intermediates in the production of other desirable products, such as fine chemicals. So, by increasing the ability of the cell to metabolize sugars, the number of these degradation products available to the cell for other processes should also be increased.

The invention provides novel nucleic acid molecules which encode proteins, referred to herein as SMP proteins, which are capable of, for example, performing a function involved in the metabolism of carbon compounds such as sugars and the generation of energy molecules by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. Nucleic acid molecules encoding an SMP protein are referred to herein as SMP nucleic acid molecules. In a preferred embodiment, the SMP protein participates in the conversion of carbon molecules and degradation products thereof to energy which is utilized by the cell for metabolic processes. Examples of such proteins include those encoded by the genes set forth in Table 1.

10

15

20

25

30

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an SMP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of SMPencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7...), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEO ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an evennumbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ

- 6 -

ID NO:6, SEQ ID NO:8...).. The preferred SMP proteins of the present invention also preferably possess at least one of the SMP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an SMP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding oddnumbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....).

10

15

20

25

30

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an SMP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (*e.g.*, a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to perform a function involved in the metabolism of carbon compounds such as sugars or the generation of energy molecules (*e.g.*, ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

-7-

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing) A. Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum SMP protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an SMP protein by culturing the host cell in a suitable medium. The SMP protein can be then isolated from the medium or the host cell.

10

15

20

25

30

Yet another aspect of the invention pertains to a genetically altered microorganism in which an SMP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated SMP sequence as a transgene. In another embodiment, an endogenous SMP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered SMP gene. In another embodiment, an endogenous or introduced SMP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SMP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SMP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SMP gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the

sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 782) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated SMP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated SMP protein or portion thereof is capable of performing a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum. In another preferred embodiment, the isolated SMP protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum.

10

15

20

25

30

The invention also provides an isolated preparation of an SMP protein. In preferred embodiments, the SMP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated SMP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corvnebacterium glutamicum, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated SMP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 55%, 96%, 97%, 98,%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of SMP proteins also have one or more of the SMP bioactivities described herein.

The SMP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-SMP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the SMP protein alone. In other preferred embodiments, this fusion protein performs a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in

15 Corynebacterium glutamicum. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an SMP protein, either by interacting with the protein itself or a substrate or binding partner of the SMP protein, or by modulating the transcription or translation of an SMP nucleic acid molecule of the invention.

20

25

30

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an SMP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an SMP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an

agent which modulates SMP protein activity or SMP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* carbon metabolism pathways or for the production of energy through processes such as oxidative phosphorylation, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates SMP protein activity can be an agent which stimulates SMP protein activity or SMP nucleic acid expression. Examples of agents which stimulate SMP proteins, and nucleic acids encoding SMP proteins that have been introduced into the cell. Examples of agents which inhibit SMP activity or expression include small molecules and antisense SMP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant SMP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

10

15

20

25

The present invention provides SMP nucleic acid and protein molecules which are involved in the metabolism of carbon compounds such as sugars and the generation of energy molecules by processes such as oxidative phosphorylation in Corynebacterium glutamicum. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as C. glutamicum, either directly (e.g., where overexpression or optimization of a glycolytic pathway protein has a direct impact on the yield, production, and/or efficiency of production of, e.g., pyruvate from modified C. glutamicum), or may have an indirect

impact which nonetheless results in an increase of yield, production, and/or efficiency of production of the desired compound (e.g., where modulation of proteins involved in oxidative phosphorylation results in alterations in the amount of energy available to perform necessary metabolic processes and other cellular functions, such as nucleic acid and protein biosynthesis and transcription/translation). Aspects of the invention are further explicated below.

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by 10 an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: 15 Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and 20 references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research -Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in 25 Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

30 A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is art-

- 12 -

recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, 10 and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino 15 acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids – technical production and use, p. 466-502 in Rehm *et al.* (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others

20

25

30

- 13 -

described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. Biochem. 47: 533-606). Glutamate is synthesized by the reductive amination of αketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a threestep process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

10

20

25

30

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own

- 14 -

production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

5

10

15

20

25

30

B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological

Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole mojeties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β -alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to βalanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

10

15

20

25

30

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system.

The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

10

15

20

25

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of

- 17 -

enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." *Curr. Opin. Struct. Biol.* 5: 752-757; (1995) *Biochem Soc. Transact.* 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (*e.g.*, thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (*e.g.*, ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (*e.g.*, IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol. 6, Rehm *et al.*, eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

10

15

20

25

The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

- 18 -

D. Trehalose Metabolism and Uses

10

Trehalose consists of two glucose molecules, bound in α, α-1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto *et al.*, (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech*. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Sugar and Carbon Molecule Utilization and Oxidative Phosphorylation

Carbon is a critically important element for the formation of all organic compounds, and thus is a nutritional requirement not only for the growth and division of 15 C. glutamicum, but also for the overproduction of fine chemicals from this microorganism. Sugars, such as mono-, di-, or polysaccharides, are particularly good carbon sources, and thus standard growth media typically contain one or more of: glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch, or cellulose (Ullmann's Encyclopedia of Industrial Chemistry 20 (1987) vol. A9, "Enzymes", VCH: Weinheim). Alternatively, more complex forms of sugar may be utilized in the media, such as molasses, or other by-products of sugar refinement. Other compounds aside from the sugars may be used as alternate carbon sources, including alcohols (e.g., ethanol or methanol), alkanes, sugar alcohols, fatty acids, and organic acids (e.g., acetic acid or lactic acid). For a review of carbon sources and their utilization by microorganisms in culture, see: Ullman's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes", VCH: Weinheim; Stoppok, E. and Buchholz, K. (1996) "Sugar-based raw materials for fermentation applications" in Biotechnology (Rehm, H.J. et al., eds.) vol. 6, VCH: Weinheim, p. 5-29; Rehm, H.J. (1980) Industrielle Mikrobiologie, Springer: Berlin; Bartholomew, W.H., and Reiman, 30 H.B. (1979). Economics of Fermentation Processes, in: Peppler, H.J. and Perlman, D., eds. Microbial Technology 2nd ed., vol. 2, chapter 18, Academic Press: New York; and

- 19 -

Kockova-Kratachvilova, A. (1981) Characteristics of Industrial Microorganisms, in: Rehm, H.J. and Reed, G., eds. Handbook of Biotechnology, vol. 1, chapter 1, Verlag Chemie: Weinheim.

After uptake, these energy-rich carbon molecules must be processed such that they are able to be degraded by one of the major sugar metabolic pathways. Such pathways lead directly to useful degradation products, such as ribose-5-phosphate and phosphoenolpyruvate, which may be subsequently converted to pyruvate. Three of the most important pathways in bacteria for sugar metabolism include the Embden-Meyerhoff-Pamas (EMP) pathway (also known as the glycolytic or fructose bisphosphate pathway), the hexosemonophosphate (HMP) pathway (also known as the pentose shunt or pentose phosphate pathway), and the Entner-Doudoroff (ED) pathway (for review, see Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York, and Stryer, L. (1988) Biochemistry, Chapters 13-19, Freeman: New York, and references therein).

10

15

20

25

30

The EMP pathway converts hexose molecules to pyruvate, and in the process produces 2 molecules of ATP and 2 molecules of NADH. Starting with glucose-1-phosphate (which may be either directly taken up from the medium, or alternatively may be generated from glycogen, starch, or cellulose), the glucose molecule is isomerized to fructose-6-phosphate, is phosphorylated, and split into two 3-carbon molecules of glyceraldehyde-3-phosphate. After dehydrogenation, phosphorylation, and successive rearrangements, pyruvate results.

The HMP pathway converts glucose to reducing equivalents, such as NADPH, and produces pentose and tetrose compounds which are necessary as intermediates and precursors in a number of other metabolic pathways. In the HMP pathway, glucose-6-phosphate is converted to ribulose-5-phosphate by two successive dehydrogenase reactions (which also release two NADPH molecules), and a carboxylation step. Ribulose-5-phosphate may also be converted to xyulose-5-phosphate and ribose-5-phosphate; the former can undergo a series of biochemical steps to glucose-6-phosphate, which may enter the EMP pathway, while the latter is commonly utilized as an intermediate in other biosynthetic pathways within the cell.

The ED pathway begins with the compound glucose or gluconate, which is subsequently phosphorylated and dehydrated to form 2-dehydro-3-deoxy-6-P-gluconate.

5

- 20 -

Glucuronate and galacturonate may also be converted to 2-dehydro-3-deoxy-6-P-gluconate through more complex biochemical pathways. This product molecule is subsequently cleaved into glyceraldehyde-3-P and pyruvate; glyceraldehyde-3-P may itself also be converted to pyruvate.

The EMP and HMP pathways share many features, including intermediates and enzymes. The EMP pathway provides the greatest amount of ATP, but it does not produce ribose-5-phosphate, an important precursor for, e.g., nucleic acid biosynthesis, nor does it produce erythrose-4-phosphate, which is important for amino acid biosynthesis. Microorganisms that are capable of using only the EMP pathway for glucose utilization are thus not able to grow on simple media with glucose as the sole carbon source. They are referred to as fastidious organisms, and their growth requires inputs of complex organic compounds, such as those found in yeast extract.

In contrast, the HMP pathway produces all of the precursors necessary for both nucleic acid and amino acid biosynthesis, yet yields only half the amount of ATP energy that the EMP pathway does. The HMP pathway also produces NADPH, which may be used for redox reactions in biosynthetic pathways. The HMP pathway does not directly produce pyruvate, however, and thus these microorganisms must also possess this portion of the EMP pathway. It is therefore not surprising that a number of microorganisms, particularly the facultative anerobes, have evolved such that they possess both of these pathways.

The ED pathway has thus far has only been found in bacteria. Although this pathway is linked partly to the HMP pathway in the reverse direction for precursor formation, the ED pathway directly forms pyruvate by the aldolase cleavage of 3-ketodeoxy-6-phosphogluconate. The ED pathway can exist on its own and is utilized by the majority of strictly aerobic microorganisms. The net result is similar to that of the HMP pathway, although one mole of ATP can be formed only if the carbon atoms are converted into pyruvate, instead of into precursor molecules.

The pyruvate molecules produced through any of these pathways can be readily converted into energy via the Krebs cycle (also known as the citric acid cycle, the citrate cycle, or the tricarboxylic acid cycle (TCA cycle)). In this process, pyruvate is first decarboxylated, resulting in the production of one molecule of NADH, 1 molecule of acetyl-CoA, and 1 molecule of CO₂. The acetyl group of acetyl CoA then reacts with

10

15

20

25

- 21 -

the 4 carbon unit, oxaolacetate, leading to the formation of citric acid, a 6 carbon organic acid. Dehydration and two additional CO₂ molecules are released. Ultimately, oxaloacetate is regenerated and can serve again as an acetyl acceptor, thus completing the cycle. The electrons released during the oxidation of intermediates in the TCA cycle are transferred to NAD⁺ to yield NADH.

During respiration, the electrons from NADH are transferred to molecular oxygen or other terminal electron acceptors. This process is catalyzed by the respiratory chain, an electron transport system containing both integral membrane proteins and membrane associated proteins. This system serves two basic functions: first, to accept electrons from an electron donor and to transfer them to an electron acceptor, and second, to conserve some of the energy released during electron transfer by the synthesis of ATP. Several types of oxidation-reduction enzymes and electron transport proteins are known to be involved in such processes, including the NADH dehydrogenases, flavin-containing electron carriers, iron sulfur proteins, and cytochromes. The NADH dehydrogenases are located at the cytoplasmic surface of the plasma membrane, and transfer hydrogen atoms from NADH to flavoproteins, in turn accepting electrons from NADH. The flavoproteins are a group of electron carriers possessing a flavin prosthetic group which is alternately reduced and oxidized as it accepts and transfers electrons. Three flavins are known to participate in these reactions: riboflavin, flavin-adenine dinucleotide (FAD) and flavin-mononucleotide (FMN). Iron sulfur proteins contain a cluster of iron and sulfur atoms which are not bonded to a heme group, but which still are able to participate in dehydration and rehydration reactions. Succinate dehydrogenase and aconitase are exemplary iron-sulfur proteins; their iron-sulfur complexes serve to accept and transfer electrons as part of the overall electron-transport chain. The cytochromes are proteins containing an iron porphyrin ring (heme). There are a number of different classes of cytochromes, differing in their reduction potentials. Functionally, these cytochromes form pathways in which electrons may be transferred to other cytochromes having increasingly more positive reduction potentials. A further class of non-protein electron carriers is known: the lipid-soluble quinones (e.g., 30 coenzyme Q). These molecules also serve as hydrogen atom acceptors and electron donors.

The action of the respiratory chain generates a proton gradient across the cell membrane, resulting in proton motive force. This force is utilized by the cell to synthesize ATP, via the membrane-spanning enzyme, ATP synthase. This enzyme is a multiprotein complex in which the transport of H⁺ molecules through the membrane results in the physical rotation of the intracellular subunits and concomitant phosphorylation of ADP to form ATP (for review, see Fillingame, R.H. and Divall, S. (1999) *Novartis Found, Symp.* 221: 218-229, 229-234).

Non-hexose carbon substrates may also serve as carbon and energy sources for cells. Such substrates may first be converted to hexose sugars in the gluconeogenesis pathway, where glucose is first synthesized by the cell and then is degraded to produce energy. The starting material for this reaction is phosphoenolpyruvate (PEP), which is one of the key intermediates in the glycolytic pathway. PEP may be formed from substrates other than sugars, such as acetic acid, or by decarboxylation of oxaloacetate (itself an intermediate in the TCA cycle). By reversing the glycolytic pathway (utilizing a cascade of enzymes different than those of the original glycolysis pathway), glucose-6-phosphate may be formed. The conversion of pyruvate to glucose requires the utilization of 6 high energy phosphate bonds, whereas glycolysis only produces 2 ATP in the conversion of glucose to pyruvate. However, the complete oxidation of glucose (glycolysis, conversion of pyruvate into acetyl CoA, citric acid cycle, and oxidative phosphorylation) yields between 36-38 ATP, so the net loss of high energy phosphate bonds experienced during gluconeogenesis is offset by the overall greater gain in such high-energy molecules produced by the oxidation of glucose.

III. Elements and Methods of the Invention

10

20

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as SMP nucleic acid and protein molecules, which participate in the conversion of sugars to useful degradation products and energy (e.g., ATP) in C. glutamicum or which may participate in the production of useful energy-rich molecules (e.g., ATP) by other processes, such as oxidative phosphorylation. In one embodiment, the SMP molecules participate in the metabolism of carbon compounds such as sugars or the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum. In a preferred embodiment,

- 23 -

the activity of the SMP molecules of the present invention to contribute to carbon metabolism or energy production in C. glutamicum has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the SMP molecules of the invention are modulated in activity, such that the C. glutamicum metabolic and energetic pathways in which the SMP proteins of the invention participate are modulated in yield, production, and/or efficiency of production, which either directly or indirectly modulates the yield, production, and/or efficiency of production of a desired fine chemical by C. glutamicum.

The language, "SMP protein" or "SMP polypeptide" includes proteins which are 10 capable of performing a function involved in the metabolism of carbon compounds such as sugars and the generation of energy molecules by processes such as oxidative phosphorylation in Corynebacterium glutamicum. Examples of SMP proteins include those encoded by the SMP genes set forth in Table 1 and by the odd-numbered SEQ ID NOs. The terms "SMP gene" or "SMP nucleic acid sequence" include nucleic acid sequences encoding an SMP protein, which consist of a coding region and also 15 corresponding untranslated 5' and 3' sequence regions. Examples of SMP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a. particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation

20

25

30

- 24 -

products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The term "degradation product" is art-recognized and includes breakdown products of a compound. Such products may themselves have utility as precursor (starting point) or intermediate molecules necessary for the biosynthesis of other compounds by the cell. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

10

15

20

25

30

In another embodiment, the SMP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as C. glutamicum. There are a number of mechanisms by which the alteration of an SMP protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a C. glutamicum strain incorporating such an altered protein. The degradation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NADH and FADH₂ to more useful forms via oxidative phosphorylation results in a number of compounds which themselves may be desirable fine chemicals, such as pyruvate, ATP, NADH, and a number of intermediate sugar compounds. Further, the energy molecules (such as ATP) and the reducing equivalents (such as NADH or NADPH) produced by these metabolic pathways are utilized in the cell to drive reactions which would otherwise be energetically unfavorable. Such unfavorable reactions include many biosynthetic pathways for fine chemicals. By improving the ability of the cell to utilize a particular sugar (e.g., by manipulating the genes encoding enzymes involved in the degradation and conversion of that sugar into energy for the cell), one may increase the amount of energy available to permit unfavorable, yet desired metabolic reactions (e.g., the biosynthesis of a desired fine chemical) to occur.

The mutagenesis of one or more SMP genes of the invention may also result in SMP proteins having altered activities which indirectly impact the production of one or more desired fine chemicals from *C. glutamicum*. For example, by increasing the efficiency of utilization of one or more sugars (such that the conversion of the sugar to useful energy molecules is improved), or by increasing the efficiency of conversion of

reducing equivalents to useful energy molecules (e.g., by improving the efficiency of oxidative phosphorylation, or the activity of the ATP synthase), one can increase the amount of these high-energy compounds available to the cell to drive normally unfavorable metabolic processes. These processes include the construction of cell walls, transcription, translation, and the biosynthesis of compounds necessary for growth and division of the cells (e.g., nucleotides, amino acids, vitamins, lipids, etc.) (Lengeler et al. (1999) Biology of Prokaryotes, Thieme Verlag: Stuttgart, p. 88-109; 913-918; 875-899). By improving the growth and multiplication of these engineered cells, it is possible to increase both the viability of the cells in large-scale culture, and also to improve their rate of division, such that a relatively larger number of cells can survive in fermentor culture. The yield, production, or efficiency of production may be increased, at least due to the presence of a greater number of viable cells, each producing the desired fine chemical. Further, a number of the degradation and intermediate compounds produced during sugar metabolism are necessary precursors and intermediates for other biosynthetic pathways throughout the cell. For example, many amino acids are synthesized directly from compounds normally resulting from glycolysis or the TCA cycle (e.g., serine is synthesized from 3-phosphoglycerate, an intermediate in glycolysis). Thus, by increasing the efficiency of conversion of sugars to useful energy molecules, it is also possible to increase the amount of useful degradation products as well.

10

15

20

25

30

The isolated nucleic acid sequences of the invention are contained within the genome of a Corynebacterium glutamicum strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated C. glutamicum SMP DNAs and the predicted amino acid sequences of the C. glutamicum SMP proteins are shown in the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode proteins having a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules by processes such as oxidative phosphorylation in Corynebacterium glutamicum.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention

- 26 -

(e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

An SMP protein or a biologically active portion or fragment thereof of the invention can participate in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*, or can have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

10

15

20

25

30

One aspect of the invention pertains to isolated nucleic acid molecules that encode SMP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of SMP-encoding nucleic acid (e.g., SMP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the

- 27 -

genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated SMP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a *C. glutamicum* cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule 10 having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a C. glutamicum SMP DNA can be isolated from a C. glutamicum library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this 20 sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate 25 extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the 30 nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and

5

15

- 28 -

appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an SMP nucleotide sequence can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the *Corynebacterium glutamicum* SMP DNAs of the invention. This DNA comprises sequences encoding SMP proteins (*i.e.*, the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in each odd-numbered SEQ ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the sequences in nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA, RXN, or RXS number having the designation "RXA," "RXN," or "RXS" followed by 5 digits (i.e., RXA01626, RXN00043, or RXS0735). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, or RXS designation to eliminate confusion. The recitation "one of the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, which may also be distinguished by their differing RXA, RXN, or RXS designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also set forth in the Sequence Listing, as an even-numbered SEQ ID NO: immediately following the corresponding nucleic acid sequence. For example, the coding region for RXA02735 is set forth in SEQ ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same 30 RXA, RXN, or RXS designations as the amino acid molecules which they encode, such that they can be readily correlated. For example, the amino acid sequence designated

RXA00042 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXA00042, and the amino acid sequence designated RXN00043 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXN00043. The correspondence between the RXA, RXN and RXS nucleotide and amino acid sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXAdesignation. For example, SEQ ID NO:11, designated, as indicated on Table 1, as "F RXA01312", is an F-designated gene, as are SEQ ID NOs: 29, 33, and 39 (designated on Table 1 as "F RXA02803", "F RXA02854", and "F RXA01365", respectively).

In one embodiment, the nucleic acid molecules of the present invention are not intended to include those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) J. Bacteriol. 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

20

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%,

- 30 -

87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intendedto be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

10

20

25

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, for example a fragment which can be used as a probe or primer 15 or a fragment encoding a biologically active portion of an SMP protein. The nucleotide sequences determined from the cloning of the SMP genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning SMP homologues in other cell types and organisms, as well as SMP homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (e.g., a sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing), an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone SMP homologues. Probes based on the SMP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an SMP protein, such as by measuring a level of an SMP-encoding

- 31 -

nucleic acid in a sample of cells, e.g., detecting SMP mRNA levels or determining whether a genomic SMP gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an evennumbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the even-numbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the protein or portion thereof is able to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in Corynebacterium glutamicum. Protein members of such sugar metabolic pathways or energy producing systems, as described herein, may play a role in the production and secretion of one or more fine chemicals. Examples of such activities are also described herein. Thus, "the function of an SMP protein" contributes either directly or indirectly to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of SMP protein activities are set forth in Table 1.

10

20

25

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention(e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing).

Portions of proteins encoded by the SMP nucleic acid molecules of the invention are preferably biologically active portions of one of the SMP proteins. As used herein, the term "biologically active portion of an SMP protein" is intended to include a portion, e.g., a domain/motif, of an SMP protein that participates in the metabolism of carbon

- 32 -

compounds such as sugars, or in energy-generating pathways in *C. glutamicum*, or has an activity as set forth in Table 1. To determine whether an SMP protein or a biologically active portion thereof can participate in the metabolism of carbon compounds or in the production of energy-rich molecules in *C. glutamicum*, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an SMP protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing), expressing the encoded portion of the SMP protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the SMP protein or peptide.

10

20

25

30

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same SMP protein as that encoded by the nucleotide sequences of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:). In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid of the invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 58% identical to the nucleotide sequence designated RXA00014 (SEQ ID NO:41),

- 33 -

a nucleotide sequence which is greater than and/or at least % identical to the nucleotide sequence designated RXA00195 (SEQ ID NO:399), and a nucleotide sequence which is greater than and/or at least 42% identical to the nucleotide sequence designated RXA00196 (SEQ ID NO:401). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

10

15

20

25

30

In addition to the *C. glutamicum* SMP nucleotide sequences set forth in the Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by those of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of SMP proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the SMP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an SMP protein, preferably a *C. glutamicum* SMP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the SMP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in SMP that are the result of natural variation and that do not alter the functional activity of SMP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum SMP DNA of the invention can be isolated based on their homology to the C. glutamicum SMP nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in

PCT/IB00/00943 WO 01/00844

- 34 -

another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those of ordinary skill in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum SMP protein.

10

15

20

25

In addition to naturally-occurring variants of the SMP sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded SMP protein, without altering the functional ability of the SMP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the SMP proteins (e.g., an 30 even-numbered SEQ ID NO: of the Sequence Listing) without altering the activity of said SMP protein, whereas an "essential" amino acid residue is required for SMP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only

- 35 -

semi-conserved in the domain having SMP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering SMP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding SMP proteins that contain changes in amino acid residues that are not essential for SMP activity. Such SMP proteins differ in amino acid sequence from a sequence of an even-numbered SEO ID NO: of the Sequence Listing yet retain at least one of the SMP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the invention and is capable of participate in the metabolism of carbon compounds such as sugars, or in the biosynthesis of high-energy compounds in C. glutamicum, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the amino acid sequences the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

25

30

- 36 -

An isolated nucleic acid molecule encoding an SMP protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCRmediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, 15 isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an SMP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an SMP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an SMP activity described herein to identify mutants that retain SMP activity. Following mutagenesis of the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

10

20

25

30

In addition to the nucleic acid molecules encoding SMP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or

- 37 -

complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire SMP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an SMP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of NO. 3 (RXA01626) comprises nucleotides 1 to 345). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding SMP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

10

20

30

Given the coding strand sequences encoding SMP disclosed herein (e.g., the sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of SMP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of SMP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of SMP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-

- 38 -

galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-

methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

10

15

20

25

30

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an SMP protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids*. *Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-

methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave SMP mRNA transcripts to thereby inhibit translation of SMP mRNA. A ribozyme having specificity for an SMP-encoding nucleic acid can be designed based upon the nucleotide sequence of an SMP cDNA disclosed herein (i.e., SEQ ID NO. 3 (RXA01626)). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an SMP-encoding mRNA. See, e.g., Cech et al. U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5,116,742. Alternatively, SMP mRNA can be used to select a catalytic RNA having a 15 specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

Alternatively, SMP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an SMP nucleotide sequence (e.g., an SMP promoter and/or enhancers) to form triple helical structures that prevent transcription of an SMP gene in target cells. See generally, Helene, C. (1991)

Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

25 B. Recombinant Expression Vectors and Host Cells

20

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an SMP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of

autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-

However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

15

20

25

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_Ror λ P_L, which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4,

10

15

20

25

30

usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by those of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., SMP proteins, mutant forms of SMP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of SMP proteins in prokaryotic or eukaryotic cells. For example, SMP genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefaciens - mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion

5

expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the SMP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant SMP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

15 Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315), pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, \(\lambda\)gt11, pBdCl, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). 20 Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by 25 host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation 30 of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

10

15

25

30

In another embodiment, the SMP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the SMP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the SMP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+,

- 44 -

pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

10

30

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and 20 Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in

- 45 -

a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to SMP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986.

10

15

20

25

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an SMP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to one of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid,

PCT/IB00/00943 WO 01/00844

- 46 -

transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an SMP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

10

20

25

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an SMP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the SMP gene. Preferably, this SMP gene is a Corynebacterium glutamicum SMP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous SMP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous SMP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous SMP protein). In the homologous recombination vector, the altered portion of the SMP gene is flanked at its 5' and 3' ends by additional nucleic acid of the SMP 30 gene to allow for homologous recombination to occur between the exogenous SMP gene carried by the vector and an endogenous SMP gene in a microorganism. The additional

- 47 -

flanking SMP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see *e.g.*, Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (*e.g.*, by electroporation) and cells in which the introduced SMP gene has homologously recombined with the endogenous SMP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an SMP gene on a vector placing it under control of the lac operon permits expression of the SMP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous SMP gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced SMP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SMP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SMP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SMP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described SMP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

20

25

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an SMP protein. Accordingly, the invention further provides methods for producing SMP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an SMP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered SMP protein) in a suitable medium until SMP protein is produced. In another

embodiment, the method further comprises isolating SMP proteins from the medium or the host cell.

C. Isolated SMP Proteins

5

30

Another aspect of the invention pertains to isolated SMP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of SMP protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of SMP protein having less than about 30% (by dry weight) of non-SMP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-SMP protein, still more preferably less than about 10% of non-SMP protein, and most preferably less than about 5% non-SMP protein. When the SMP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of SMP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of SMP protein having less than about 30% (by dry weight) of chemical precursors or non-SMP chemicals, more preferably less than about 20% chemical precursors or non-SMP chemicals, still more preferably less than about 10% chemical precursors or non-SMP chemicals, and most preferably less than about 5% chemical precursors or non-SMP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the SMP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a C. glutamicum SMP protein in a microorganism such as C. glutamicum.

10

15

20

25

30

An isolated SMP protein or a portion thereof of the invention can participate in the metabolism of carbon compounds such as sugars, or in the production of energy compounds (e.g., by oxidative phosphorylation) utilized to drive unfavorable metabolic pathways, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules by processes such as oxidative phosphorylation in Corynebacterium glutamicum. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an SMP protein of the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the SMP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another preferred embodiment, the SMP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred SMP proteins of the present invention also preferably possess at least one of the SMP activities described herein. For example, a preferred SMP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention, and

5

10

20

25

30

which can perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*, or which has one or more of the activities set forth in Table 1.

In other embodiments, the SMP protein is substantially homologous to an amino acid sequence of of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the SMP protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention and which has at least one of the SMP activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention.

Biologically active portions of an SMP protein include peptides comprising amino acid sequences derived from the amino acid sequence of an SMP protein, e.g., an amino acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino acid sequence of a protein homologous to an SMP protein, which include fewer amino acids than a full length SMP protein or the full length protein which is homologous to an SMP protein, and exhibit at least one activity of an SMP protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an SMP protein. Moreover, other

5

15

25

30

- 51 -

biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an SMP protein include one or more selected domains/motifs or portions thereof having biological activity.

SMP proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the SMP protein is expressed in the host cell. The SMP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an SMP protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native SMP protein can be isolated from cells (e.g., endothelial cells), for example using an anti-SMP antibody, which can be produced by standard techniques utilizing an SMP protein or fragment thereof of this invention.

The invention also provides SMP chimeric or fusion proteins. As used herein, an SMP "chimeric protein" or "fusion protein" comprises an SMP polypeptide operatively linked to a non-SMP polypeptide. An "SMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an SMP protein, whereas a "non-SMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the SMP protein, e.g., a protein which is different from the SMP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the SMP polypeptide and the non-SMP polypeptide are fused in-frame to each other. The non-SMP polypeptide can be fused to the N-terminus or C-terminus of the SMP polypeptide. For example, in one embodiment the fusion protein is a GST-SMP fusion protein in which the SMP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant SMP proteins. In another embodiment, the fusion protein is an SMP protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of an SMP protein can be increased through use of a heterologous signal sequence.

- 52 -

Preferably, an SMP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends, as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, Ausubel et al., eds. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An SMP-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the SMP protein.

15

20

25

Homologues of the SMP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the SMP protein. As used herein, the term "homologue" refers to a variant form of the SMP protein which acts as an agonist or antagonist of the activity of the SMP protein. An agonist of the SMP protein can retain substantially the same, or a subset, of the biological activities of the SMP protein. An antagonist of the SMP protein can inhibit one or more of the activities of the naturally occurring form of the SMP protein, by, for example, competitively binding to a downstream or upstream member of the sugar molecule metabolic cascade or the energy-producing pathway which includes the SMP protein.

In an alternative embodiment, homologues of the SMP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the SMP protein for SMP protein agonist or antagonist activity. In one embodiment, a variegated library of SMP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of SMP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential SMP

- 53 -

sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of SMP sequences therein. There are a variety of methods which can be used to produce libraries of potential SMP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential SMP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

In addition, libraries of fragments of the SMP protein coding can be used to generate a variegated population of SMP fragments for screening and subsequent selection of homologues of an SMP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an SMP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the SMP protein.

15

20

25

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of SMP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the

frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify SMP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated SMP library, using methods well known in the art.

D. Uses and Methods of the Invention

5

10

15

20

25

30

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C. glutamicum* sequences of interest; evolutionary studies; determination of SMP protein regions required for function; modulation of an SMP protein activity; modulation of the metabolism of one or more sugars; modulation of high-energy molecule production in a cell (*i.e.*, ATP, NADPH); and modulation of cellular production of a desired compound, such as a fine chemical.

The SMP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present.

Although Corynebacterium glutamicum itself is nonpathogenic, it is related to pathogenic species, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and

5

15

20

25

30

- 55 -

spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence or activity of Cornyebacterium diphtheriae in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of Corynebacterium diphtheriae in the subject. C. glutamicum and C. diphtheriae are related bacteria, and many of the nucleic acid and protein molecules in C. glutamicum are homologous to C. diphtheriae nucleic acid and protein molecules, and can therefore be used to detect C. diphtheriae in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The SMP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and energy-releasing processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the

- 56 -

evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the SMP nucleic acid molecules of the invention may result in the production of SMP proteins having functional differences from the wild-type SMP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

10

15

20

25

30

The invention provides methods for screening molecules which modulate the activity of an SMP protein, either by interacting with the protein itself or a substrate or binding partner of the SMP protein, or by modulating the transcription or translation of an SMP nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more SMP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the SMP protein is assessed.

There are a number of mechanisms by which the alteration of an SMP protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a *C. glutamicum* strain incorporating such an altered protein. The degradation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NADH and FADH₂ to more useful forms via oxidative phosphorylation results in a number of compounds which themselves may be desirable fine chemicals, such as pyruvate, ATP, NADH, and a number of intermediate sugar compounds. Further, the energy molecules (such as ATP) and the reducing equivalents (such as NADH or NADPH) produced by these metabolic pathways are utilized in the cell to drive reactions which would otherwise be energetically unfavorable. Such unfavorable reactions include many biosynthetic pathways for fine chemicals. By improving the ability of the cell to utilize a particular sugar (e.g., by manipulating the genes encoding enzymes involved in the degradation and conversion of that sugar into energy for the cell), one may increase the amount of energy available to permit

- 57 -

unfavorable, yet desired metabolic reactions (e.g., the biosynthesis of a desired fine chemical) to occur.

Further, modulation of one or more pathways involved in sugar utilization permits optimization of the conversion of the energy contained within the sugar molecule to the production of one or more desired fine chemicals. For example, by reducing the activity of enzymes involved in, for example, gluconeogenesis, more ATP is available to drive desired biochemical reactions (such as fine chemical biosyntheses) in the cell. Also, the overall production of energy molecules from sugars may be modulated to ensure that the cell maximizes its energy production from each sugar molecule. Inefficient sugar utilization can lead to excess CO₂ production and excess energy, which may result in futile metabolic cycles. By improving the metabolism of sugar molecules, the cell should be able to function more efficiently, with a need for fewer carbon molecules. This should result in an improved fine chemical product: sugar molecule ratio (improved carbon yield), and permits a decrease in the amount of sugars that must be added to the medium in large-scale fermentor culture of such engineered *C. glutamicum*.

10

15

20

25

The mutagenesis of one or more SMP genes of the invention may also result in SMP proteins having altered activities which indirectly impact the production of one or more desired fine chemicals from C. glutamicum. For example, by increasing the efficiency of utilization of one or more sugars (such that the conversion of the sugar to useful energy molecules is improved), or by increasing the efficiency of conversion of reducing equivalents to useful energy molecules (e.g., by improving the efficiency of oxidative phosphorylation, or the activity of the ATP synthase), one can increase the amount of these high-energy compounds available to the cell to drive normally unfavorable metabolic processes. These processes include the construction of cell walls, transcription, translation, and the biosynthesis of compounds necessary for growth and division of the cells (e.g., nucleotides, amino acids, vitamins, lipids, etc.) (Lengeler et al. (1999) Biology of Prokaryotes, Thieme Verlag: Stuttgart, p. 88-109; 913-918; 875-899). By improving the growth and multiplication of these engineered cells, it is possible to increase both the viability of the cells in large-scale culture, and also to improve their rate of division, such that a relatively larger number of cells can survive in fermentor culture. The yield, production, or efficiency of production may be increased, at least

- 58 -

due to the presence of a greater number of viable cells, each producing the desired fine chemical.

Further, many of the degradation products produced during sugar metabolism are themselves utilized by the cell as precursors or intermediates for the production of a number of other useful compounds, some of which are fine chemicals. For example, pyruvate is converted into the amino acid alanine, and ribose-5-phosphate is an integral part of, for example, nucleotide molecules. The amount and efficiency of sugar metabolism, then, has a profound effect on the availability of these degradation products in the cell. By increasing the ability of the cell to process sugars, either in terms of efficiency of existing pathways (e.g., by engineering enzymes involved in these pathways such that they are optimized in activity), or by increasing the availability of the enzymes involved in such pathways (e.g., by increasing the number of these enzymes present in the cell), it is possible to also increase the availability of these degradation products in the cell, which should in turn increase the production of many different other desirable compounds in the cell (e.g., fine chemicals).

15

20

25

30

The aforementioned mutagenesis strategies for SMP proteins to result in increased yields of a fine chemical from *C. glutamicum* are not meant to be limiting; variations on these strategies will be readily apparent to one of ordinary skill in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated SMP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any product produced by *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: GENES IN THE APPLICATION

HMP:

Function	6-Phosphoglucolactonase L-ribulose-phosphate 4-epimerase RIBULOSE-PHOSPHATE 3-EPIMERASE (EC 5.1.3.1) RIBOSE 5-PHOSPHATE ISOMERASE (EC 5.3.1.6)	Function	SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT (EC	1.3.39.1) 1.3.99.1) 4.3.00.1)	SUCCINATE-SEMIALDEHYDE DEHYDROGENASE (NADP+) (EC 1.2.1.16) SUCCINATE DEHYDROGENASE IRON-SULFUR PROTEIN (EC 1.3.99.1)	FUMARATE HYDRATASE PRECURSOR (EC 4.2.1.2) MALATE DEHYDROGENASE (EC 1.1.1.37) (EC 1.1.1.82)	MALATE DEHYDROGENASE (EC 1.1.1.37)	
NT Stop	15280 3926 14295 5	NT Stop	18785	1614	14015 865	2760 2447	2827	
NT Start	14576 4270 13639 346	NT Start	20803	2690	15484 1611	1354 1407	1844	
Contig.	VV0074 GR00452 GR00654 GR00290	Contig.	VV0082	GR00380	VV0083 GR00380	GR00427 GR00131	GR00392	
Identification Code	RXS02735 RXA01626 RXA02245 RXA01015	Identification Code	RXN01312	F RXA01312	RXN00231 RXA01311	RXA01535 RXA00517	RXA01350	
Amino Acid SEQ ID NO	2 4 9 8	Amino Acid SEO ID NO	10	12	4 ₁ 5	20 20	22	hway
Nucleic Acid SEQ ID NO	1 2 2 2 2	TCA: Nucleic Acid	6	=	5 5	15 19	21	EMB-Pathway

Function	GLUCOKINASE (EC 2.7.1.2) PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	(EC 5.4.2.8) PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	(EC 3.4.2.8) PHOSPHOMANNOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	(EC 3.4.2.6) PHOSPHOMANNOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	(EC 3-7-0.9) PEO E4 19 PHOSPHOMANNOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	(EC 5.4.2.8) PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
NT Stop	18754 910	657	400	35	S	513
NT Start	17786 2571	-	8	1624	1588	-
Contig	GR00639 GR00515	VV0086	GR00784	VV0043	GR10002	GR00129
ode	RXA02149 RXA01814	RXN02803	F RXA02803	RXN03076	F RXA02854	RXA00511
Amino Acid SEQ ID NO	24 26	28	30	32	क्र	36
Nucleic Acid SEQ ID NO	23	27	59	31	33	35

(pen	Function	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE PEC 5.4.2.8)	GLUCOSE-6-PHOSPHATE ISOMERASE (GPI) (EC 5.3.1.9)	GLUCOSE-6-PHOSPHATE ISOMERASE A (GPI A) (EC 5.3.1.9)	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)	HOSPHOGLYCERATE MUTASE (EC 5.4.2.1)	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)	-PHOSPHOFRUCIOKINASE (EC 2.7.1.11)	1-PHOSPHOFRUCTOKINASE (EC 2.7.1.56)	I-FROSTROTING COLONINASE (EC. Z. 7.1.39) FRICTOSE, RISPHOSPHATE ALDOLASE (EC. 4.1.2.13)	REIOSEPHOSPHATE ISOMERASE (FC 5.3.1.1)	LYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (EC 1.2.1.12)	LYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE HOMOLOG	GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (EC 1.2.1.12)	PHOSPHOGLYCERATE KINASE (EC 2.7.2.3)	ENOLASE (EC 4.2.1.11)	PYRUVATE KINASE (EC 2.7.1.40)	YRUVATE KINASE (EC 2.7.1.40)	YKUVATE KINASE (EC 2.7.1.40) VBLIVATE KINASE (EC 2.7.1.40)	TROVATE MINASE (EC. 2.7.1.40) HOSPHOENDI PYRUVATE SYNTHASE (EC. 2.7.9.2)	HOSPHOENOLPYRUVATE SYNTHASE (EC 2.7.9.2)	YRUVATE DEHYDROGENASE (CYTOCHROME) (ÉC 1.2.2.2)	PYRUVATE DEHYDROGENASE (CYTOCHROME) (EC 1.2.2.2)	YRUVATE DEHYDROGENASE (CYTOCHROME) (EC 1.2.2.2)	ည္ဆု	ညှုပ်	PIROVATE DEFICIO COENAGE EL COMPONENT (EC. 1.2.4.1) DYRINATE DEHYDROGENASE EL COMPONENT (EC. 1.2.4.1)	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC. 1.2.4.1)	YRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)	DIHYDROLIPOAMIDE DEHYDROGENASE (EC 1.8.1.4)	IHYDROLIPOAMIDE DEHYDROGENASE (EC 1.8.1.4)	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.31)	PYRUVATE CARBOXYLASE (EC 6.4.1.1)	PYRUVATE CARBOXYLASE	PYRUVATE CARBOXYLASE (EC 6.4.1.1)	YRUVATE CARBOXYLASE	PIRUVALE CARBOXILAGE (EC 6.4.1.1)	ZTROVATE CARBOATLAGE (EC 8.4.1.1) MALIC ENZYME (EC 1.1.1.39)
Table 1 (continued	NT Stop	103 P	4 207 =	_								366				S	a			Ω	364			۰.			_		2650		1362 F				۵.				5346		11316 N
Table	NT Start	1476	897	6525	-	1549	2201	1451	6511	1/19	2302	1397	26451	6382	5302	23934	25155	2365	1552	72801	2040	5299	6449	22708	88	en :	1391	ۍ ۱	2243	411	-	1291	88	89	27401	4500	5338	3533	6305	1042	12539
	Contig.	VV0091	GR00397	GR00014	GR00578	GR00059	GR00720	GR00082	GR00636	GK00032	GR00359	GR00479	GR00654	VV0064	GR00354	GR00654	GR00654	GR00036	GR00306	86000	GR00/54	GR00/33	GR00179	W0135	GR00788	GR00167	W0019	GR00852	5K0004	GR10022	VV0019	GR10039	VV0047	GR10001	GR00654	VV0047	GR00668	VV0047	GK00668	000047	VV0079
	Identification Code	RXN01365	F RXA01365	RXA00098	RXA01989	RXA00340	RXA02492	RXA00381	RXA02122	KXA00206	RXA01243	RX 401702	RXA02258	RXN01225	F RXA01225	RXA02256	RXA02257	RXA00235	RXA01093	KXN02675	F KXA026/5	RXAUGS3	RXA00683	RXN00635	F RXA02807	F RXA00635	EXN03044	F RXA02852	P KANUZOO PYNO3086	F RXA02887	RXN03043	F RXA02897	RXN03083	F RXA02853	RXA02259	RXN02326	F RXA02326	EXN02327	F KXAUZ3Z/	E DV A00000	RXN01048
	Amino Acid SEQ ID NO	38	40	42	44	46	48	20	52	X :	56	8 6	62	64	99	68	70	72	74	9 2	æ ç	2 2	84	98	88	06	92	94	o œ	90	102	104	106	108	110	112	114	116	118	2 5	124
	Nucleic Acid SEQ ID NO	37	39	14															ខរ															107	109	= :	113	115	7	2 5	123

(per	Function	MALIC ENZYME (EC 1.1.1.39)	MALIC ENZYME (EC 1.1.1.39)	LACTATE DEHYDROGENASE (EC 1.1.1.27)	D-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4)	LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4)	L-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.3)	LACTATE DEHYDROGENASE (EC 1.1.1.28)	D-LACTATE DEHYDROGENASE (EC 1.1.1.28)	LACTATE DEHYDROGENASE (EC 1.1.1.28)	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)	OLB PROTEIN	OLB PROTEIN: D-FRUCTOSE 1,6-BISPHOSPHATE = GLYCERONE-CC	PHOSPHATE + D- GLYCERALDEHYDE 3-PHOSPHATE.	OLS PROTEIN	OLS PROTEIN	VAGD PROTEIN	PUTATIVE N-GLYCERALDEHYDE-2-PHOSPHOTRANSFERASE	GLPX PROTEIN	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)	PYRUVATE CARBOXYLASE (EC 6.4.1.1)	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)	PHOSPHOENOLPYRUVATE CARBOXYKINASE [GTP] (EC 4.1.1.32)	LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED. CHAIN AI PHA-KFTO ACID DEHYDROGENASE COMPLEX (EC. 1.8.1.4.)	IPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED- CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)				
Table 1 (continued)	NT Stop	_	-								1734 D				_	_	3207 (<u>а</u> .	929 (2074 P	_	_	_			_	_	_	7 96Z	3533 L
Table 1	NT Start				35763 3			9954 1				6138 5		9 609		3127 2	2344 3								1390 6				•		3477 2	3703 3
	Contig			ς.			4				GR00047 ;		GR00315 ;		GR00316 (W0127	GR00239 ;		VV0354 ;	9	VV0019	۸.	_		Ö						: 6000M	6000//
	Identification Code	F RXA01048	F RXA00290	RXA02694	RXN00296	F RXA00296	RXA01901	RXN01952	F RXA01952	F RXA01955	RXA00293	RXN01130	F RXA01130	RXN03112	F RXA01133	PXN00871	F RXA00871		RXN02829	F RXA02829	RXN01468	F RXA01468.	RXA00794	RXN02920	F RXA02379	RXN02688	RXN03087	RXN03186	RXN03187	RXN02591	RXS01260	RXS01261
	Amino Acid	126	128	130	132	134	136	138	140	142	144	146	148	150	152	154	156		158	1 60	162	164	166	168	170	172	174	176	178	180	182	184
	Nucleic Acid	125	127	129	131	133	135	137	139	141	143	145	147	149	151	153	155		157	159	161	163	165	167	169	171	173	175	177	179	181	183

Ë
۳
ğ
亙
e
Ξ
2
90
ĭ
Ō

Function		GLYCEROL KINASE (EC 2.7.1.30)	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NAD(P)+) (EC 1.	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NAD(P)+) (EC 1.	AEROBIC GLYCEROL-3-PHOSPHATE DEHYDROGENASE (EC 1.	GLYCEROL-3-PHOSPHATE REGULON REPRESSOR	GLYCEROL-3-PHOSPHATE REGULON REPRESSOR
NT Stop		2926	4488	1853	1830	2302	147
NT Start		1400	5483	939	3515	1526	992
Contig.		GR00749	W0143	GR00293	GR00525	GR00359	GR00661
Identification Code		RXA02640	RXN01025	F RXA01025	RXA01851	RXA01242	RXA02288
Amino Acid	SEQ ID NO	186	188	190	192	194	196
Nucleic Acid	SEQ ID NO	185	187	189	191	193	195

(panu	Function	GLYCEROL-3-PHOSPHATE-BINDING PERIPLASMIC PROTEIN PRECURSOR	GLYCEROL-3-PHOSPHATE-BINDING PERIPLASMIC PROTEIN PRECURSOR	Uncharacterized protein involved in glycerol metabolism (homolog of Drosophila rhomboid)	Glycerophosphoryl diester phosphodiesterase
Table 1 (continued)	NT Start NT Stop Function	24086	918	3062	22807
Table	NT Start	24949	1736	3808	22091
	Contig.	VV0122	GR00541	GR00703	VV0122
	Identification Code	RXN01891	F RXA01891	RXA02414	RXN01580
	Amino Acid SEQ ID NO	198	200	202	204
	Nucleic Acid SEQ ID NO	197	199	201	203

Acetate metabolism

Function	ACETATE KINASE (EC 2.7.2.1) ACETATE OPERON REPRESSOR	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)	ALCOHOL DEHYDROGENASE (EC 1.1.1.1) ALCOHOL DEHYDROGENASE (EC 1.1.1.1)	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)	ALDEHYDE DEHYDROGENASE (EC	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)	ACETOLACTATE SYNTHASE SMALL SUBUNIT (EC 4.1.3.18)				
NT Stop	1357	3391	1959 2419	2945	10159	437	10055	860	3160	14163	320	8254	935	7722
NT Start	2547	4425	1360 1928	3961	11676	108	10678	ဗ	1598	15614	2230	9372	243	8237
Contig.	GR00418 GR00179	GR00037	GR00438 GR00438	GR00498	GR00726	W0034	W0155	W 0033	W0008	W0315	W0127	7,0077	VV0264	7,000
Identification Code	RXA01436 RXA00686	RXA00246	KXA015/1 RXA01572	RXA01758	RXA02539	RXN03061	RXN03150	RXN01340	RXN01498	RXN02674	RXN00868	RXN01143	RXN01146	RXN01144
Amino Acid SEQ ID NO	206	210	212 214	216	218	220	222	224	226	228	230	232	234	236
Nucleic Acid	205	209	213	215	217	219	221	223	225	227	229	231	233	235

Butanediol, diacetyl and acetoin formation

Function		(S,S)-butane-2,3-diol dehydrogenase (EC 1	ACETOIN(DIACETYL) REDUCTASE (EC 1	ALCOHOL DEHYDROGENASE (EC 1.1.1.
NT Stop		7309	5351	28399
NT Start		8082	6103	27383
Contig.		GR00715	GR00710	W0112
Identification Code		RXA02474	RXA02453	RXS01758
Amino Acid	SEQ ID NO	238	240	242
Nucleic Acid	SEQ ID NO	237	239	241

T	
Õ	
Š	
=	
÷Ξ	
7	
7	
ပ္ပ	
×	
~	
9	
7	
Tab	
.,,	
_	

Nucleic Acid SEQ ID NO	Amino Acid	Identification Code	Contig	NT Start	NT Stop	Function
243	244	RXA02737	GR00763	3312	1771	GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE (EC 1.1.1.49)
245	246	RXA02738	GR00763	4499	3420	TRANSALDOLASE (EC 2.2.1.2)
247	248	RXA02739	GR00763	6929	. 4670	TRANSKETOLASE (EC 2.2.1.1)
249	250	RXA00965	GR00270	1232	510	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 11144)
251	252	RXN00999	VV0106	2817	1366	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 1 1 1 44)
253	254	F RXA00999	GR00283	3012	4448	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 1.1.1.44)
Nucleotic	le sugar c	Nucleotide sugar conversion				
Nucleic Acid	Amino Acid	ge	Contig.	NT Start	NT Stop	Function

Function	UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9) UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9) UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9) UDP-GLUCOSE 6-DEHYDROGENASE (EC 1.1.1.22) UDP-N-ACETYLENOLPYRLIVOYLGLUCOSAMINE REDUCTASE (EC	1.1.1.158) UDP-N-ACETYLGLUCOSAMINE PYROPHOSPHORYLASE (EC 2.7.7.23) UTPGLUCOSE-1-PHOSPHATE URIDYLYLTRANSFERASE (EC 2.7.7.9) ITTP C11COSE 1 DOCEDHATE URIDYLYLTRANSFERASE	GDP-MANNOSE 6-DEHYDROGENASE (EC 2.7.7.3) GDP-MANNOSE 6-DEHYDROGENASE (EC 1.1.132) MANNOSE-1-PHOSPHATE GUANNY/LTRANSFERASE (EC 2.7.7.3) GLUCOSE-1-PHOSPHATE ADENNY/LTRANSFERASE (EC 2.7.7.27) GLUCOSE-1-PHOSPHATE THYMIDYLY/LTRANSFERASE (EC 2.7.7.24)	GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (EC 2.7.7.24) GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (EC 2.7.7.24) D-RIBITOL-5-PHOSPHATE CYTIDYLYLTRANSFERASE (EC 2.7.7.40) DTDP-GLUCOSE 4,6-DEHYDRATASE (EC 4.2.1.46)
NT Stop	47582 489 5880 646 3445	1202 130	5020 4527 9627	5227 1281 6493 1154
NT Start	48784 1 5383 2 2	2302 987 573	973 8351 3301 8848	4448 427 7260 222
Contig.	VV0098 GR00742 GR00749 GR00737	GR00352 GR00367 GR00616	GR00367 GR00400 GR00626 VV0048	GR00002 GR00438 GR00753 GR00222
Identification Code	RXN02596 F RXA02596 F RXA02642 RXA02572 RXA02485	RXA01216 RXA01259	RXA01262 RXA01377 RXA02063 RXN00014	F RXA00014 RXA01570 RXA02666 RXA00825
Amino Acid SEQ ID NO	256 258 260 262 264	266 268 270	272 274 276 278	280 282 284 286
Nucleic Acid	255 257 259 261 263	265 267 269	271 273 275 277	279 281 283 285

Inositol and ribitol metabolism

Function	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.
NT Stop	3209
NT Start	4219
Contig.	GR00539
Identification Code	RXA01887
Amino Acid SEQ ID NO	288
Nucleic Acid SEQ ID NO	287

lable 1 (continued)	NT Stop Function		8838 MYO-INOSITOL-1(OR 4)-MONOPHOSPHATASE 1 (EC 3.1.3.25)	4438 MYO-INOSITOL-1(OR 4)-MONOPHOSPHATASE 1 (EC 3.1.3.25)	5504 INOSITOL MONOPHOSPHATE PHOSPHATASE	4 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	4 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	3342 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	4462 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	1977 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	47037 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)	22318 MYO-INOSITOL-1-PHOSPHATE SYNTHASE (EC 5.5.1.4)	7688 MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1:18)	10948 GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC 1.1.99.28)	224 RIBITOL 2-DEHYDROGENASE (EC 1.1.1.56)	
aple	NT Start		7966	3566	6328	929	552	2338	3380	2999	48113	23406	7017	10277	931	
	Contig.		VV0048	GR00002	GR00306	VV0273	GR00388	GR00454	GR00454	VV0278	05000	VV0079	VV0028	GR10040	GR00038	
	Identification Code		RXN00013	F RXA00013	RXA01099	RXN01332	F RXA01332	RXA01632	RXA01633	RXN01406	RXN01630	RXN00528	RXN03057	F RXA02902	RXA00251	
	Amino Acid	SEQ ID NO	290	292	294	296	298	300	302	304	306	308	310	312	314	
	Nucleic Acid															

Utilization of sugars

	GLUCOSE 1-DEHYDROGENASE (EC 1.1.1.47)	= (EC 2.7.1.12)	E (EC 2.7.1.12)	E (EC 2.7.1.12)	D-RIBOSE-BINDING PERIPLASMIC PROTEIN PRECURSOR	(EC 2.7.1.4)	(EC 2.7.1.4)	PERIPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR	3.2.1.37)	PERIPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR	3.2.1.37)	MANNITOL 2-DEHYDROGENASE (EC 1.1.1.67)	RESSOR	Hypothetical Oxidoreductase (EC 1.1.1)	GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC		GLUCOSEFRUCTOSE OXIDOREDUCTASE PRECURSOR (EC		GLUCOSEFRUCTOSE OXIDOREDUCTASE PRECURSOR (EC		SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)	SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)	SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)
Function	GLUCOSE 1-DEH	GLUCONOKINASE (EC 2.7.1.12)	GLUCONOKINASE (EC 2.7.1.12)	GLUCONOKINASE (EC 2.7.1.12)	D-RIBOSE-BINDIN	FRUCTOKINASE (EC 2.7.1.4)	FRUCTOKINASE (EC 2.7.1.4)	PERIPLASMIC BE	(EC 3.2.1.21) (EC 3.2.1.37)	PERIPLASMIC BE	(EC 3.2.1.21) (EC 3.2.1.37)	MANNITOL 2-DEF	FRUCTOSE REPRESSOR	Hypothetical Oxido	GLUCOSEFRUC	1.1.99.28)	GLUCOSEFRUC	1.1.99.28)	GLUCOSE-FRUC	1.1.99.28)	SUCROSE-6-PHO	SUCROSE-6-PHO	SUCROSE-6-PHO
NT Stop	13090	11114	492	1499	275	5604	1086	56834		1584		10520	7854	8180	5		7050		301		2	9	349
NT Start	12206	9633	1502	1972	1216	6557	565	58477		_		12028	6880	7035	316		6616		735		1246	725	1842
Contig.	VV0090	6200	GR00296	GR00296	GR00032	W0127	GR00240	6000		GR00214		GR00003	GR00725	W0006	GR00053		00000		GR00053		GR00007	GR00615	GR00626
Identification Code	RXN02654 F RXA02654	RXN01049	F RXA01049	F RXA01050	RXA00202	RXN00872	F RXA00872	RXN00799		F RXA00799		RXA00032	RXA02528	RXN00316	F RXA00309		RXN00310		F RXA00310		RXA00041	RXA02026	RXA02061
Amino Acid SEQ ID NO	316 318	320	322	324	326	328	330	332		334		336	338	340	342		344		346		348	350	352
Nucleic Acid SEQ ID NO	315	319	321	323	325	327	329	331		333		335	337	339	341		343		345		347	349	351

(penui	Function	MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8)	MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8) MANNOSE 5-DHOSPHATE ISOMERASE (EC 5.3.1.8)	1.4-ALPHA-GLUCAN BRANCHING ENZYME (EC 2.4.1.18)	1,4-ALPHA-GLUCAN BRANCHING ENZYME (EC 2.4.1.18)	GLYCOGEN DEBRANCHING ENZYME (EC 2.4.1.25) (EC 3.2.1.33)	GLYCOGEN DEBRANCHING ENZYME (EC 2.4.1.25) (EC 3.2.1.33)	GLYCOGEN OPERON PROTEIN GLGX (EC 3.2.1)	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)	GLYCOGEN PHOSPHORILAGE (EC. 2.4.1.1)	GLYCOGEN PHOSPHORYLASE (EC.2.4.1.1) GLYCOGEN PHOSPHORYLASE (EC.2.4.1.1)	ALPHA-AMYLASE (EC 3.2.1.1)	GLUCOAMYLASE G1 AND G2 PRECURSOR (EC 3.2.1.3)	GLUCOSE-RESISTANCE AMYLASE REGULATOR	XYLULOSE KINASE (EC 2.7.1.17)	XYLULOSE KINASE (EC 2.7.1.17)	RIBOKINASE (EC 2.7.1.15)	RIBOKINASE (EC 2.7.1.15)	RIBOSE OPERON REPRESSOR	O-THOOPING-BEIN-GEOCOGIDAGE (EC. 5.2.1.00)	1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1)	1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1)	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE	4-ALTITA-GLOCANOTRANSFERASE (EC. 2.4.1.23) 4-AI PHA-GLUCANOTRANSFERASE (FC. 2.4.1.25) amvlomaliase	N-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE (EC 3.5.1.25)	N-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE (EC 3.5.1.25)	N-ACETYLGLUCOSAMINYLTRANSFERASE (EC 2.4.1)	N-ACETYLGLUCOSAMINYLTRANSFERASE (EC 2.4.1)	N-ACELYLGLUCOSAMINYL IKANSFEKASE (EC 2.4.1)	GLOCOSAMINE-GATIOGATION E ISOMETANCE (EC. 3.3. T. 10) GLICOSAMINE-FRICTOSE-6-PHOSPHATE AMINOTRANSFERASE	(ISOMERIZING) (EC 2.6.1.16)	URONATE ISOMERASE (EC 5.3.1.12)	URONATE ISOMERASE, Glucuronate isomerase (EC 5.3.1.12)	URONATE ISOMERASE (EC 5.3.1.12)	UKONA I E ISOMEKASE, Glucurona(e Isomerase (EC 5.3.1.12)	GALACTOSIDE O-ACETTETANNOFERANE (EC. 2.3.1.10) D.DIRITOLIA, DHORDHATE OVTINYI VI TRANSFERANE (EC. 2.3.1.10)	D-RIBOSE-BINDING PERIPLASMIC PROTEIN PRECURSOR	D-RIBOSE-BINDING PERIPLASMIC PROTEIN PRECURSOR
Table 1 (continued)	NT Stop	1776	56 56 56 56 56 56 56 56 56 56 56 56 56 5	1752	3985	1890	1475	17427	16260	1346	2320	1207	16532	12352	4923	49244	1118	4 6	2641	731	7007 F005	1103	1708	3137	1039	15/3	3828	2081	2081	33805	510	247	15397	2	299	4	<u>s</u>	153	6403	275	4258
Table	NT Start	595	504 504	3	1793	-	က	16981	14749	ო (٠,	°	15516	10517	4366	50623	က	747	1739	1768	6576 5676	543	1094	1230	2 5	1/6	5927	3244	3244	35265	1157	14/3	17271		2	6/5	672	2/9	7250	1216	2009
	Contig.	VV0124	GR00398	GR00743	GR00743	VV0184	GR00539	GR00306	VV0143	GR00431	VV0318	GR00633	GR00639	GR00422	GR00539	W0127	GR00555	GR00762	GR00778	GR00762	GROOTS	GR00030	GR00030	W0191	GR00436	GK00480	GR00242	W0119	GR00007	W0127	GR00520	GK00529	GR00422		W0336	GK10013	W0337	GK10014	GR00062	GR00032	GR00709
	Identification Code	RXN01369	F RXA01369 F RXA01373	RXA02611	RXA02612	RXN01884	F RXA01884	RXA01111	RXN01550	F RXA01550	FANGETON F DV A 0.2400	F RXA02113	RXA02147	RXA01478	RXA01888	RXN01927	F RXA01927	EXA02729	EXA02797	KXA02/30	PY A01325	RXA00195	RXA00196	RXN01562	F RXA01562	F KXA01/05	F RXA00879	RXN00043	F RXA00043	RXN01752	F RXA01839	KXA01859	RXA01482		RXN03179	F KXA02872	RXN03180	P KXAUZ8/3	RXA02292	RXA00202	RXA02440
	Amino Acid SEQ ID NO	354	356 358	360	362	364	366	368	370	372	97.6	378	380	382	384	386	388	390	392	394	308	400	402	404	406	808	5 7 7 2 7 2	414	416	418	420	77.4	426	ì	428	05.	432	4 4 4	438 438	40	442
	Nucleic Acid SEQ ID NO	353	355 357	359	361	363	365	367	369	371	5/3	377	379	381	383	385	387	389	391	393	307	399	401	403	405	, 6 , 6	411	413	415	417	419	421	425	Ì	427	429	431	453 757	437	439	4

Table 1 (continued)	Function		dTDP-4-DEHYDRORHAMNOSE REDUCTASE (EC 1.1.1.133)	DIDT-4-DEFIDENCE ARDOCIAND (EC. 1.1.155)	DIDP-4-UESTUDACHAMMOSE REDUCTASE (ECT.1.1.55)	10107-06-0000 4-0-06-11073-7-300 (6C 4.2.1.40)	UTOT-GLOCOST 4, G-DENTORA (AC 4.2.1.40)	GIUP-KHAMNOVIC IKANOTEKAVE KTBP (EC)	DIDE-FRAMMOSTE INANSPERASE RIBT (EC. Z)	PROTEIN ARAJ	PROTEIN ARAJ	PROTEIN ARAJ	GLUCAN ENDO-1,3-BETA-GLUCOSIDASE A1 PRECURSOR (EC 3.2.1.39)	UDP-GLUCOSE 6-DEHYDROGENASE (EC 1.1.1.22)	PUTATIVE HEXULOSE-6-PHOSPHATE ISOMERASE (EC 5)	PERIPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR	(EC 3.2.1.21) (EC 3.2.1.37)	5-DEHYDRO-4-DEOXYGLUCARATE DEHYDRATASE (EC 4.2.1.41)	ALDOSE REDUCIASE (EC 1.1.1.21)	arabinosyl transferase subunit B (EC 2.4.2)	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (EC 4.1.2.15)	PUTATIVE GLYCOSYL TRANSFERASE WBIF	PUTATIVE HEXULOSE-8-PHOSPHATE ISOMERASE (EC 5)	NAGD PROTEIN	GALACTOKINASE (EC 2.7.1.6)	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (EC 4.1.2.15)	BETA-HEXOSAMINIDASE A PRECURSOR (EC 3.2.1.52)	GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC	1.1.99.28) CHICOSE EDICTOSE OXIDOBEDIOTASE DOCCHOSOD (CC	GLOCOSE-FROCTOSE OXIDOREDOCTASE PRECURSOR (EC	CYCLOMALTODEXTRINASE (EC 3.2.1.54)	CYCLOMALTODEXTRINASE (EC 3.2.1.54)	protein involved in sugar metabolism	Membrane Lipoprotein involved in sugar metabolism	Exported Protein involved in ribose metabolism	protein involved in sugar metabolism	Membrane Spanning Protein involved in metabolism of diols	Amino Acid ABC Transporter ATP-Binding Protein involved in sugar	metabolism	ABC Transporter ATP-Binding Protein involved in sugar metabolism	Membrane Spanning Protein involved in sugar metabolism	Cytosolic Protein involved in sugar metabolism	Cytosolic Kinase involved in metabolism of sugars and thiamin	ABC: Iransporter ATP-Binding Protein involved in sugar metabolism	Membrane Spanning Protein involved in sugar metabolism	Cytosolic Protein involved in sugar metabolism Cytosolic Datain involved in sugar metabolism	OYIOSOIIO FIOGEII III ACIVOA III SAYBOI III GEBOOIISIII
1 (con	NT Stop		42444	174	1154	1 2 2	27.0	6779	7077	9880	10656	11167	. 26545	&	6935	56443		11489	22442	5116	38303	4750	46143	12408	21418	6640			000	902		260															
Table	NT Start		41086	7,00	7717	777	200	4 200	1861	10263	11147	12390	28686	289	6258	57006	,	1242/	23242	1679	39688	5610	47021	13274	20369	5516				-		1417															
	Contig.		W0009	02400450	GR00624	2220000	GR00024	21100	GRUUUSB	GR00057	GR00057	GR00057	VV0135	VV0063	VV0028	6000/		220000	VV010Z	W0181	W0017	V0091	VV0050	VV0229	W0197	VV0323			00000	のまたつつとう		GR00006															
	Identification Code		RXN01569	1 PXA01309	P KARUZU33	CZ000623	FXA02034	KXN0042/	F FXAU042/	KXA00327	RXA00328	RXA00329	RXN01554	RXN03015	RXN03056	RXN03030	70.00	KXN00401	KXN02125	RXN00200	RXN01175	RXN01376	RXN01631	RXN01593	RXN00337	RXS00584	RXS02574	RXS03215	2 DV A 04 04 E	\{\bar{2}{2}	RXS03224	F RXA00038	RXC00233	RXC00236	RXC00271	RXC00338	RXC00362	RXC00412		RXC00526	EXC01004	KACCION	KXC01021	KXC01212	KAC01306	RXC01355	4 55 55 55
	Amino Acid	מרע מ	444	5 5	0 1 4	450	452	404	430	458	460	462	464	466	468	470		4/2	474	476	478	480	482	484	486	488	490	492	707	ţ	496	498	200	502	504	206	508	510		512	514	נים	318	220	222	524 526	250
	Nucleic Acid	מרת ומ	443	2 1	44.	£40	. C. 4	204		457	459	461	463	465	467	469	į	1/4	473	475	477	479	481	483	485	487	489	491	703	7	495	497	499	501	503	505	207	203	;	511	513	513	71,	503	176	323 525	3

		protein involved in sugar metabolism Cytosolic Protein involved in sugar metabolism Membrane Associated Protein involved in sugar metabolism Cytosolic Protein involved in sugar metabolism protein involved in sugar metabolism Uncharacterized protein involved in glycerol metabolism (homolog of Drosophila rhomboid)			SE (EC 4.1.3.7)	CLIRATE LYASE BETA CHAIN (EC 4.1.3.6) ISOCITRATE DEHYDROGENASE (NADP) (EC 1.1.1.42)	SOCITRATE DEHYDROGENASE (NADP) (EC 1.1.1.42)	ATASE (EC 4.2.1.3)	ACONITATE HYDRATASE (EC 4.2.1.3)	(A LASE (EC 4.2.1.3)	ACONITATE HYDRATASE (EC 4.2.1.3) 2-OXOGLUTARATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.2)	DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT (E2) OF	2-OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)	SUCCINYL-COA SYNTHETASE ALPHA CHAIN (EC 6.2.1.5)	SUCCINYL-COA SYNTHETASE BETA CHAIN (EC 6.2.1.5)	IROGENASE (ACCEPTOR) (EC 1.1.99.16)	L-MALATE DEHYDROGENASE (ACCEPTOR) (EC 1.1.99.16)	ROGENASE (ACCEPTOR) (EC 1.1.99.16)	C 1.1.1.39)	(C 1.1.1.39)	C 1.1.1.39)	(C 1.1.1.39)	DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT (E2) OF	2-OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)	DINTUROLIPONIMIDE SUCCINTELIMANOFERASE COMPONENT OF Z- OXOGLUTARATE DEHYDROGENASE COMPLEX (FC 2-3-1-61)	
(juned)	Function	protein involved in sugar metabolism protein involved in sugar metabolism protein involved in sugar metabolism Cytosolic Protein involved in sugar m Cytosolic Protein involved in sugar metabolism Uncharacterized protein involved in Sugar metabolism Drosophila rhomboid)		Function	CITRATE SYNTHASE (EC 4.1.3.7)	ISOCITRATE DEHY	ISOCITRATE DEHY	ACONITATE HYDR	ACONITATE HYDR	ACONITATE HYDR	2-OXOGLUTARATE	DIHYDROLIPOAMII	2-OXOGLUTARATE	SUCCINYL-COA SY	SUCCINYL-COA SY	L-MALATE DEHYDI	L-MALATE DEHYDI	L-MALATE DEHYDI	MALIC ENZYME (E	MALIC ENZYME (E	MALIC ENZYME (E	MALIC ENZYME (E	DIHYDROLIPOAMII	2-OXOGLUTARATE	OXOG! UTARATE (מעמפרס ועוומן ב מבו זו מומספרו עיסר מסוווו בבע (בי
Table 1 (continued)	NT Stop	568		NT Stop	9418	1829 3372	1060	1671	1661	1512	2046 2870	1495		3103	4009	12806	9546	4179	5655	11316	290	5655	583	74640	04040	
Table	NT Start	825		NT Start	10710	264 / 5585	2	-	_ا	13/8	330 0	. 2		3984	5280	11307	8608	4388	4693	12539	က	4693	7	99091	000001	
	Contig.	GR00709		Contig.	GR00641	VV0144	GR00133	W0304	GR00648	505000	GR00625	GR00495		GR00206	GR00206	VV0139	GR00449	GR00474	GR00046	62007	GR00296	GR00046	W0066	2000741	C700AA	
	Identification Code	RXC01659 RXC01663 RXC01693 RXC01703 RXC02254 RXC02255 RXC02435 F RXA02435		Identification Code	RXA02175	RXN00519	F RXA00521	RXN02209	F RXA02209	EXN02213	F KXA02213 RXA02056	RXA01745		RXA00782	RXA00783	RXN01695	F RXA01615	F RXA01695	RXA00290	RXN01048	F RXA01048	F RXA00290	RXN03101	970001700	KANUZU40	
	Amino Acid SEQ ID NO		<u></u>	Amino Acid SEQ ID NO	546	550	552		٤.			564		266	268	570	572	574	976	578	580	582	584	000	000	
	Nucleic Acid SEQ ID NO	527 529 531 533 535 537 539 541	TCA-cycle	Nucleic Acid SEQ ID NO	545	549	551	553	555	25/	551 561	563		565	267	569	571	573	575	277	579	581	583	303	CQC	

Table 1 (continued)

Glyoxylate bypass

Function	ISOCITRATE LYASE (EC 4.1.3.1) ISOCITRATE LYASE (EC 4.1.3.1) MALATE SYNTHASE (EC 4.1.3.2) MALATE SYNTHASE (EC 4.1.3.2) GLYOXYLATE-INDUCED PROTEIN GLYOXYLATE-INDUCED PROTEIN	
NT Stop	18365 1773 22475 1663 3958 2430	
NT Start	19708 478 20259 3798 3209 3203	
Contig.	VV0176 GR00699 VV0176 GR00700 GR00304 GR00539	
Identification Code	RXN02399 F RXA02399 RXN02404 F RXA02404 RXA01089 RXA01886	
Amino Acid SEQ ID NO	590 592 594 596 600	
Nucleic Acid	589 591 593 595 597	

Methylcitrate-pathway

Function	2-methylisocilrate synthase (EC 5.3.3) 2-methylisocilrate synthase (EC 5.3.3)	2-methylisocitrate synthase (EC 5.3.3.) 2-methylcitrate synthase (EC 4.1.3.1)	2-methylcitrate synthase (EC 4.1.3.31)	2-methylisocitrate synthase (EC 5.3.3) 2-methylisocitrate synthase (EC 5.3.3)	2-methylisocitrate synthase (EC 5.3.3)	2-methylcitrate synthase (EC 4.1.3.31)	methylisocitrate lyase (EC 4.1.3.30)	methylisocitrate lyase (EC 4.1.3.30)	LACTOYLGLUTATHIONE LYASE (EC 4.4.1.5)
NT Stop	1576 4	1576	2773	6017 901	y cy	764	1815	1902	6266
NT Start	3087 978	1983	3069	4647 2	415 607	1906	901	2120	9590
Contig.	VV0092 GR00090	GR00130	GR00131	GR00300 VV0141	GR00668	GR00671	W0141	GR00671	GR00003
Identification Code	RXN03117 F RXA00406	F RXA00514 RXA00512	RXA00518	RXA01077 RXN03144	F RXA02322	RXA02332	RXN02333	F RXA02333	RXA00030
Amino Acid SEQ ID NO	602 604	909	610	612 614	616 618	620	622	624	626
Nucleic Acid SEQ ID NO	600	603 605	209	609 611	613 615	617	619	621	623

Methyl-Malonyl-CoA-Mutases

Function	METHYLMALONYL-COA MUTASE ALPHA-SUBUNIT (EC 5.4.99.2) METHYLMALONYL-COA MUTASE ALPHA-SUBUNIT (EC 5.4.99.2) METHYLMALONYL-COA MUTASE BETA-SUBUNIT (EC 5.4.99.2)
NT Stop	12059 5 2009
NT Start	9849 2002 3856
Contig.	VV0167 GR00023 GR00023
Identification Code	RXN00148 F RXA00148 RXA00149
Amino Acid SEQ ID NO	628 630 632
Nucleic Acid SEQ ID NO	625 627 629

_
ਚ
u
(I)
š
∓
_
$\overline{}$
0
Ü
_
$\boldsymbol{\tau}$
- 27
0
_
Ω
Œ
ם

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function Programme Transfer (2000)
635 637 639	638 638 640	KXN0031/ F RXA00317 RXA02196 RXN02461	VV019/ GR00055 GR00645 VV0124	26879 344 3956 14236	27532 6 3264 14643	PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18) PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18) PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18) PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18)
Redox Chain	hain					
Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
641	642	EXN01744	W0174	2350	812	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT I (EC 1.10.3)
645 645	646	F RXA01744	GR00008	213	1090	CATOCHROME DIDIGOINOL OXIDASE SUBUNIT (EC. 1.10.5) CYTOCHROME DIRIGIINOL OXIDASE SUBINIT (EC. 1.10.5)
647	648	RXA00379	GR00082	212		CYTOCHROME C-TYPE BIOGENESIS PROTEIN CCDA
649	650	RXA00385	GR00083	773	435	CYTOCHROME C-TYPE BIOGENESIS PROTEIN CCDA
651	652	RXA01743	GR00494	806	9	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT II (EC 1.10.3)
653	654	RXN02480	VV0084	31222	29567	CYTOCHROME C OXIDASE POLYPEPTIDE I (EC 1.9.3.1)
655	656	F RXA01919	GR00550	288	4 5	CYTOCHROME C OXIDASE SUBUNIT I (EC 1.9.3.1)
650 650	658 660	F KXA02480	GR00/1/ GB00717	1449 7104	134	CYTOCHKOME C OXIDASE POLYPEPTIDE 1 (EC 1.9.3.1)
	662 662	RXA02140	GR00639	7339	8415	CTTOCHROWE CONDASE FOLFIEF TIDE 1 (EC. 1.9.3.1) CYTOCHROME COXIDASE POLYPEPTIDE II (EC. 1.9.3.1)
663	664	RXA02142	GR00639	9413	10063	CYTOCHROME C OXIDASE POLYPEPTIDE I (EC 1.9.3.1)
965	999	RXA02144	GR00639	11025	12248	RIESKE IRON-SULFUR PROTEIN
299	668	RXA02740	GR00763	7613	8542	PROBABLE CYTOCHROME C OXIDASE ASSEMBLY FACTOR
699	670	RXA02743	GR00763	13534	12497	CYTOCHROME AA3 CONTROLLING PROTEIN
673	5/2 574	KXA0122/ PXA01865	GK00355	1199	1519	FERREDOXIN
675	676	EXA00680	GR00179	2632	2315	FERREDOXIN
211	678	RXA00679	GR00179	2302	1037	FERREDOXIN-NAD(+) REDUCTASE (EC 1.18.1.3)
629	089	RXA00224	GR00032	24965	24015	ELECTRON TRANSFER FLAVOPROTEIN ALPHA-SUBUNIT
681	682	RXA00225	GR00032	25783	24998	ELECTRON TRANSFER FLAVOPROTEIN BETA-SUBUNIT
683	684	RXN00606	W0192	11299	9026	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)
685	989	F RXA00606	GR00160	121	1869	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)
687	889	RXN00595	W0192	8642	7113	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)
689	069	F RXA00608	GR00160	2253	3017	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)
169	692	RXA00913	GR00249	ဗ	2120	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)
693	694	RXA00909	GR00247	2552	3406	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)
695	969	RXA00700	GR00182	846	43	NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2
269	698	RXN00483	W0086	44824	46287	NADH-UBIQUINONE OXIDOREDUCTASE 39 KD SUBUNIT PRECURSOR
						(さつ こうこう) (こつ こう:33:3)

			NADH-UBIQUINONE OXIDOREDUCTASE 39 KD SUBUNIT PRECURSOR IFC 1 6 5 3) (FC 1 6 99 3)	NADH-DEPENDENT FMN OXYDOREDUCTASE	QUINONE OXIDOREDUCTASE (EC 1.6.5.5)	QUINONE OXIDOREDUCTASE (EC 1.6.5.5)	NADPH-FLAVIN OXIDOREDUCTASE (EC 1.6.99)	NADPH-FLAVIN OXIDOREDUCTASE (EC 1.6.99)	SUCCINATE DEHYDROGENASE IRON-SULFUR PROTEIN (EC 1.3.99.1)	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)	bunits	NADH DEHYDROGENASE (EC 1.6.99.3)	ASE	FORMATE DEHYDROGENASE ALPHA CHAIN (EC 1.2.1.2)			CYTOCHROME C BIOGENESIS PROTEIN CCSA	essential protein similar to cytochrome c	RESC PROTEIN, essential protein similar to cytochrome c biogenesis		ome oxidase	FLAVOHEMOPROTEIN / DIHYDROPTERIDINE REDUCTASE (EC			GELUIA-HIONE V-IRANSPERASE (EC. 2.9.1.18)	GLUTATHIONE-DEPENDENT FORMALDEHT DE DEHT DROGENASE (EC. 1.2.1.1)	OCRC PROTEIN menaguinol:cytochrome c oxidoreductase	NADH DEHYDROGENASE I CHAIN M (EC 16.5.3)	NADH-UBIOUINONE OXIDOREDIJCTASE CHAIN 4 (FC 1653)	idorductase	doradictase		nypomencal Oxigoreguciase (EC 1.1.1)
inued)	Function		NADH-UBIQUINONE OXI	NADH-DEPEN	QUINONE OXII	QUINONE OXI	NADPH-FLAVI	NADPH-FLAVII	SUCCINATE D	NADH DEHYD	Hydrogenase subunits	NADH DEHYD	DEHYDROGENASE	FORMATE DE	FDHD PROTEIN	FDHD PROTEIN	CYTOCHROME	essential proteil	RESC PROTE	protein	putative cytochrome oxidase	FLAVOHEMOP	1.6.99.7)	FLAVOREMOPRO EIN	GLUIAIMIONE OFFITTIONE	GLUIAI HIONE	OCRC PROTE	NADH DEHYD	NADH-UBIOUII	Hypothetical Oxidorductase	Hypothetical Oxidoreductase	C legitother.	nypometical O
Table 1 (continued)	NT Stop		20569	547	1636	8620	10788	7160	865	368	1259	ည	817	271	5197	407	3091	299	S		2847	6229		31/6	33/3	<u>بر</u> ع	11025	4	33063	2794	849	3	5
lable	NT Start		19106	1035	2646	9585	9922	6339	1611	1273	က	955	7	2556	6111	1291	2081	696	514		1876	2095		9102	/677	203	10138	405	32683	3552	1784	200	4055
	Contig.		GR00119	GR00427	GR00046	GR00763	W0101	GR00731	GR00380	VV0058	GR00248	W0117	GR00543	GR00183	VV0005	GR00184	VV0025	GR00085	GR00084		GR00259	W0101		GK00/31	GROOMUS	GR00214	GR00639	VV0058	W0176	W0317	VV0302	70707	1010
	Identification Code		F RXA00483	RXA01534	RXA00288	RXA02741	RXN02560	F RXA02560	RXA01311	RXN03014	F RXA00910	RXN01895	F RXA01895	RXA00703	RXN00705	F RXA00705	RXN00388	F RXA00388	F RXA00386		RXA00945	RXN02556		F KXAU2556	KXA01392	KXA00800	RXA02143	RXN03096	RXN02036	RXN02765	BXN02206	20170170	KAN02554
	Amino Acid	SEQ ID NO	200	702	704	206	708	710	712	714	716	718	720	722	724	726	728	730	732		734	736	Š	85,	04.	745	744	746	748	750	752	107	ŧ
	Nucleic Acid	SEQ ID NO	669	701	703	705	707	402	711	713	715	717	719	721	723	725	727	729	731		733	735	į	/3/	£ .	141	743	745	747	749	751	22	267

o
S
æ
_
₹
>
ၯ
₾
Ē

Function	ATP SYNTHASE A CHAIN (EC 3.6.1.34)	ATP SYNTHASE A CHAIN (EC 3.6.1.34)	ATP SYNTHASE ALPHA CHAIN (EC 3.6.1.34)	ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)	ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)	ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)
NT Stop	461	1155	2315	3832	755	3993
NT Start	1270	394	675	5280	15	3355
Contig.	W0121	GR00345	GR00344	VV0175	GR00343	GR00344
Identification Code	RXN01204	F RXA01204	RXA01201	RXN01193	F RXA01193	F RXA01203
Amino Acid SEQ ID NO	756	758	760	762	764	992
Nucleic Acid	755	757	759	761	763	765

				aple	able 1 (continued)	(penu
Nucleic Acid	Amino Acid	Identification Code	Contig.	NT Start	NT Stop	Function
SEQ ID NO	SEQ ID NO					
192	168	PXN02821	VV0121	324	85	ATP SYNTHASE C CHAIN (EC 3.6.1.34)
169	770	F RXA02821	GR00802	139	318	ATP SYNTHASE C CHAIN (EC 3.6.1.34)
171	772	RXA01200	GR00344	2	610	ATP SYNTHASE DELTA CHAIN (EC 3.6.1.34)
773	774	RXA01194	GR00343	770	1141	ATP SYNTHASE EPSILON CHAIN (EC 3.6.1.34)
775	776	RXA01202	GR00344	2375	3349	ATP SYNTHASE GAMMA CHAIN (EC 3.6.1.34)
777	877	RXN02434	0600M	4923	3274	ATP-BINDING PROTEIN
Cytochro	Cytochrome metabolism	oolism				
Nucleic Acid	Amino Acid	Identification Code	Contig.	NT Start	NT Stop	Function
779	780	RXN00684	VV0005	29864	28581	CYTOCHROME P450 116 (EC 1.14)
781	782	RXN00387	VV0025	1150	2004	Hypothetical Cytochrome c Biogenesis Protein

		TABLE 2 - Excluded Genes	ded Genes
GenBank TM Accession No.	Gene Name	Gene Function	Reference
A09073	3dd	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585		Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; flsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," Biochem. Biophys. Res. Commun., 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium lactofermentum</i> ," <i>Biosci. Biotechnol. Biochem.</i> , 60(10):1565-1570 (1996)
AB018531	dtsR1; dtsR2		
AB020624	murl	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038548	pyc	Pyruvate carboxylase	

		Table 2 (continued	nued)
AF038651	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism," Microbiology, 144:1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB;	N-acetylglutamylphosphate reductase;	
	argD; argF; argK;	ornithine acetyltransferase; N-	
		transminase; ornithine	
		carbamoyltransferase; arginine repressor;	
		argininosuccinate synthase;	
A 5050100	A	argininosuccinate lyase	
Ar030105	VIIII	Enloyi-acyl callier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-	
		phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene
			encoding homoserine acetyltransferase in Corynebacterium glutamicum," Mol. Cells., 8(3):286-294 (1998)
AF053071	aroB	Dehydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB;	Chorismate synthase; shikimate kinase; 3-	
) beb	dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

		Table 2 (continued)	nued)
AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)
AJ004934	дарД	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	ftsY, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol aceteyl transferase	
AJ224946	орт	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem, 254(2):395-403 (1998)
AJ238250	upu	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	Vertes et al. "Isolation and characterization of 1S3 1831, a transposable element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	
E01376	տրէ; տրE	Leader peptide; anthranilate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87

E06825 Aspartokinase Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94 E06826 Autant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94 E06826 Autant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
--

Table 2 (contin	Mutated aspartokinase alpha subunit	SecY	Aspartoki	Feedback inhibition-released Aspartokinase		Acetohydroxy-acid isomeroreductase Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94	secE	FT aminotransferase and desthiobiotin synthetase promoter region	Biotin synthetase Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	Aspartase	Dihydrodipicolinate reductase	Diaminopimelic acid decarboxylase	Serine hydroxymethyltransferase), Hansposase Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97		Dihydrodipicolinic acid synthetase	aspartokinase Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Dihydrodipicolinic acid reductase Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
	E06827	E07701	E08177	E08178,	E08179, E08180, E08181, E08182	E08232	E08234	E08643	E08646	E08649	E08900	E08901	E12594	E12760, E12759, E12758	E12764	E12767	E12770	E12773

			,			- /	7 -		ı			-	,
nued)	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065-8072 (1992)	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," FEMS Microbiol. Lett., 107:223-230 (1993)	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol, 175(17):5595-5603 (1993)	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," PNAS USA, 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," FEMS Microbiol. Lett., 119(1-2):137-145 (1994)	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," J. Microbiol. Biotechnol., 4(4):256-263 (1994)	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)		Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol., 177(2):465-467 (1995)	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene," J. Bacteriol., 167:695-702 (1986)	Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," J. Bacteriol., 169:1801-1806 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)
Table 2 (continued)	Glucose-6-phosphate dehydrogenase	Threonine dehydratase	3-deoxy-D-arabinoheptulosonate-7- phosphate synthase	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroreductase	Phosphoenolpyruvate sugar phosphotransferase	Malate synthase	Pyruvate kinase	Isocitrate lyase	Diphtheria toxin repressor	Prephenate dehydratase		Anthranilate synthase, 5' end	Tryptophan synthase, 3'end
		livA	EC 4.2.1.15	IIvB; iIvN; iIvC	PtsM	aceB		aceA	dtxr		5S rRNA	trpE	trpA
	E13655	L01508	L07603	L09232	L18874	L27123	L27126	L28760	L35906	M13774	M16175	M16663	M16664

		Table 2 (continued)	nued)
M25819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium oluramicum ATCC13032." Gene. 77(2):231.751 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M89931	aecD; bmQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)
SS9299	ф	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11545	ιτρ	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cgliM; cgliR; clglIR	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol., 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
U14965 U31224	recA ppx		Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline higgsunthetic nathway: A natural hypers of the prod. etc., I. Received
U31225	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31230	obg; proB; unkdh	?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)

_	r					- 80	-					
nued)	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum," Mol. Microbiol., 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum," Mol. Gen. Genet., 224(3):317-324 (1990)	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol, 174(19):6076-6086 (1992)	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," Mol. Microbiol., 6(3):317-326 (1992)	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," Mol. Microbiol., 5(12):2995-3005 (1991)	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)		Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum," Mol. Microbiol., 9(1):97-109 (1993)	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994)
Table 2 (continued)	Putative leader peptide; anthranilate synthase component 1	Threonine synthase	Attachment site	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Glutamate dehydrogenase	L-lysine permease	Ps1 protein	Citrate synthase	Dihydrodipicolinate reductase	Surface layer protein PS2	IS3 related insertion element
	tpL; trpE	thrC	attB-related site	lysC-alpha; lysC-beta; asd	gap;pgk; tpi	dbg	lysi	cop1	3][6	dapB	csp2	
	X55994	X56037	X56075	X57226	X59403	X59404	X60312	X66078	X66112	X67737	X69103	X69104

			,	_	T		T	- 8		T				, -
tinued)	Patek, M. et al. "Leucine synthesis in Corynebacterium glutamicum: enzyme activities structure of len A and effect of len A inactivation on lesine	synthesis," Appl. Environ. Microbiol., 60(1):133-140 (1994)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774-782 (1995)		Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," <i>Biochem. Biophys. Res. Commun.</i> , 201(3):1255-1262 (1994)	Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)	Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Anionie Van Leeuwenhoek, 64:285-305 (1993)	Billman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)	Reinscheid, D.J. et al. "Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," <i>Microbiology</i> , 40:3349-56 (1994)
Table 2 (continued)	Isopropylmalate synthase		Isocitrate dehydrogenase (NADP+)	Glutamate dehydrogenase (NADP+)	5-methyltryptophan resistance		Partial Isocitrate lyase; ?	ATPase beta-subunit	Elongation factor Tu		Malate synthase	16S ribosomal RNA	Glutamate uptake system	Succinyldiaminopimelate desuccinylase
	leuA		icd	GDHA	mtrA	recA	aceA; thiX		tuf	recA	aceB	16S rDNA	gluA; gluB; gluC; gluD	dapE
	X70959		X71489	X72855	X75083, X70584	X75085	X75504	X76875	X77034	X77384	X78491	X80629	X81191	X81379

Table 2 (continued)		semialdehyde dehydrogenase;? Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)	utamyl phosphate reductase Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)		amino acid permease; ? Wehrmann et al. "Functional analysis of sequences adjacent to dapE of C. glutamicum proline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol., 177(20):5991-5993 (1995)	amate kinase; N-acetyl-gamma- Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early hine aminotransferase; ornithine steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996) transferase; glutamate N-	acetyltransferase; acetate kinase Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)	•			fragment F10 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	fragment F13 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	
Table 2 (continued)	16S ribosomal RNA analyses of analyses of 45(4):740-	Aspartate-semialdehyde dehydrogenase,? Serebrijski dependent Bacteriol.,	Gamma-glutamyl phosphate reductase Serebrijski, dependent Bacteriol.,	16S ribosomal RNA Pascual, C. on 16S rRN	amino acid permease; ?	amate kinase; N-acetyl-gamma- hosphate reductase; hine aminotransferase; ornithine transferase; glutamate N- iferase	acetyltransferase; acetate kinase	Attachment site Le Marrec, functions o 178(7):199	fragment F1	fragment F2	fragment F10	fragment F13	
	16S rDNA 16S ribo	asd, lysC Aspartat	proA Gamma	16S rDNA 16S ribo	aroP; dapE Aromatic	argB; argC; argD; Acetylglut argF; argJ glutamyl-r acetylornit carbamoyl acetyltrans	pta; ackA Phosphate	attB Attachm	Promoter	Promoter	Promoter	Promoter	
	X82061	X82928	X82929	X84257	X85965	X86157	X89084	X89850	X90356	X90357	X90358	X90359	

_							- 8	3					
ltinued)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from C. glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5398-5403 (1996)	Peter, H. et al. "Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine," J. Bacteriol., 178(17):5229-5234 (1996)	Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," Biotechnol. Lett., 19:1113-1117 (1997)	Vrljic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum," Mol. Microbiol., 22(5):815-826 (1996)
Table 2 (continued	Promoter fragment F22	Promoter fragment F34	Promoter fragment F37	Promoter fragment F45	Promoter fragment F64	Promoter fragment F75	Promoter fragment PF101	Promoter fragment PF104	Promoter fragment PF109	Ammonium transport system	Glycine betaine transport system		Lysine exporter protein; Lysine export regulator protein
										amt	betP	orf4	lysE; lysG
	X90360	X90361	X90362	X90363	X90364	X90365	X90366	X90367	X90368	X93513	X93514	X95649	X96471

		Table 2 (continued)	(penu
X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta-alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl. Environ. Microbiol.</i> , 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869)," Gene, 198:217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(9):3922 (1987)
Y00151	qpp	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," Nucleic Acids Res., 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," <i>Nucleic Acids Res.</i> , 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum," Mol. Gen. Genet., 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09548	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Y12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol, 180(22):6005-6012 (1998)

		Table 2 (continued)	nued)
Y13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," FEMS Microbiol. Lett., 154(1):81-88 (1997)
Y16642	pdį	Dihydrolipoamide dehydrogenase	
Y18059		Attachment site Corynephage 304L	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," Virology, 255(1):150-159 (1999)
Z21501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," J. Bacteriol., 175(22):7356-7362 (1993)
Z21502	dapA; dapB	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749 (1993)
229563	thrC	Threonine synthase	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," Appl. Environ. Microbiol., 60(7)2209-2219 (1994)
Z46753	16S rDNA	Gene for 16S ribosomal RNA	
Z49822	sigA	SigA sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)
Z49823	galE; dtxR	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," Gene, 177:103-107 (1996)
Z49824	orfl; sigB	?; SigB sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)
Z66534		Transposase	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," Gene, 170(1):91-94 (1996)
A sequence for the published ver	this gene was published in rsion. It is believed that th	t the indicated reference. However, the sequence published version relied on an incorrect start c	A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Genus :	species	ATCC	FERM	NRRE	CECT	NCIMB	CBS	NCTE	DSMZ
Brevibacterium	ammoniagenes	21054							-
Brevibacterium	ammoniagenes	19350							<u> </u>
Brevibacterium	ammoniagenes	19351		<u> </u>	 				
Brevibacterium	ammoniagenes	19352		-					<u> </u>
Brevibacterium	ammoniagenes	19353		 					<u> </u>
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							<u> </u>
Brevibacterium	ammoniagenes	19356	<u> </u>						
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553							
Brevibacterium	ammoniagenes	21580							
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474			1				
Brevibacterium	flavum	21129							
Brevibacterium	flavum	21518							
Brevibacterium	flavum			B11474					
Brevibacterium	flavum			B11472		-			
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475							
Brevibacterium	flavum	21517							
Brevibacterium	flavum	21528							
Brevibacterium	flavum	21529							
Brevibacterium	flavum			B11477					
Brevibacterium	flavum			B11478					
Brevibacterium	flavum	21127							
Brevibacterium	flavum			B11474					
Brevibacterium	healii	15527							
Brevibacterium	ketoglutamicum	21004							
Brevibacterium	ketoglutamicum	21089							
Brevibacterium	ketosoreductum	21914							
Brevibacterium	lactofermentum				70				
Brevibacterium	lactofermentum				74				
Brevibacterium	lactofermentum				77				
Brevibacterium	lactofermentum	21798							
Brevibacterium	lactofermentum	21799							
Brevibacterium	lactofermentum	21800							
Brevibacterium	lactofermentum	21801		-					
Brevibacterium	lactofermentum			B11470					
Brevibacterium	lactofermentum			B11471					

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Brevibacterium	lactofermentum	21086	T						
Brevibacterium	lactofermentum	21420						1	
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	31269							
Brevibacterium	linens	9174							
Brevibacterium	linens	19391			<u> </u>				
Brevibacterium	linens	8377							<u> </u>
Brevibacterium	paraffinolyticum					11160			
Brevibacterium	spec.			, .			717.73		
Brevibacterium	spec.						717.73		ļ ———
Brevibacterium	spec.	14604	<u> </u>						
Brevibacterium	spec.	21860	1						
Brevibacterium	spec.	21864	İ						
Brevibacterium	spec.	21865							
Brevibacterium	spec.	21866		-			-	i	
Brevibacterium	spec.	19240							
Corynebacterium	acetoacidophilum	21476						<u> </u>	
Corynebacterium	acetoacidophilum	13870							
Corynebacterium	acetoglutamicum			B11473					
Corynebacterium	acetoglutamicum			B11475					
Corynebacterium	acetoglutamicum	15806			1				
Corynebacterium	acetoglutamicum	21491							
Corynebacterium	acetoglutamicum	31270	1					i	
Corynebacterium	acetophilum		1	B3671					
Corynebacterium	ammoniagenes	6872						2399	
Corynebacterium	ammoniagenes	15511							
Corynebacterium	fujiokense	21496							
Corynebacterium	glutamicum	14067							
Corynebacterium	glutamicum	39137							
Corynebacterium	glutamicum	21254							
Corynebacterium	glutamicum	21255	1						
Corynebacterium	glutamicum	31830							
Corynebacterium	glutamicum	13032							
Corynebacterium	glutamicum	14305							
Corynebacterium	glutamicum	15455							
Corynebacterium	glutamicum	13058							
Corynebacterium	glutamicum	13059							
Corynebacterium	glutamicum	13060							
Corynebacterium	glutamicum	21492							
Corynebacterium	glutamicum	21513							
Corynebacterium	glutamicum	21526							
Corynebacterium	glutamicum	21543							
Corynebacterium	glutamicum	13287							
Corynebacterium	glutamicum	21851			1				
Corynebacterium	glutamicum	21253							
Corynebacterium	glutamicum	21514		_					
Corynebacterium	glutamicum	21516	1					T	
cor ynconcier iain	10								

Genus 📜 🧏	spēcies 📜 🛁	ATCC	FERM	NRRL	CECT	NÇIMB	CBS	NCTC	DSMZ
Corynebacterium	glutamicum	21300						1	
Corynebacterium	glutamicum	39684							
Corynebacterium	glutamicum	21488							
Corynebacterium	glutamicum	21649							
Corynebacterium	glutamicum	21650							
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869							
Corynebacterium	glutamicum	21157							
Corynebacterium	glutamicum	21158							
Corynebacterium	glutamicum	21159							
Corynebacterium	glutamicum	21355	<u> </u>						
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							
Corynebacterium	glutamicum	21562			<u> </u>				
Corynebacterium	glutamicum	21563	 		<u> </u>				
Corynebacterium	glutamicum	21564			 		-		
Corynebacterium	glutamicum	21565	· ·						
Corynebacterium	glutamicum	21566							
Corynebacterium	glutamicum	21567							
Corynebacterium	glutamicum	21568							
Corynebacterium	glutamicum	21569							
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571	<u> </u>						
Corynebacterium	glutamicum	21572							
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579							
Corynebacterium	glutamicum	19049							
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051	1						
Corynebacterium	glutamicum	19052							
Corynebacterium	glutamicum	19053							
Corynebacterium	glutamicum	19054							
Corynebacterium	glutamicum	19055	†						
Corynebacterium	glutamicum	19056	 		Ì				
Corynebacterium	glutamicum	19057	<u> </u>	,					
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059							
Corynebacterium	glutamicum	19060							
Corynebacterium	glutamicum	19185							
Corynebacterium	glutamicum	13286	İ						
Corynebacterium	glutamicum	21515				-			
Corynebacterium	glutamicum	21527							
Corynebacterium	glutamicum	21544							
Corynebacterium	glutamicum	21492	1						
Corynebacterium	glutamicum		 	B8183			·		
Corynebacterium	glutamicum			B8182			 -	<u> </u>	
Corynebacterium	glutamicum		 	B12416	<u> </u>				
Corynebacterium	glutamicum			B12417					

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTO	DSMZ
Corynebacterium	glutamicum			B12418					
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608							
Corynebacterium	lilium		P973						
Corynebacterium	nitrilophilus	21419				11594			
Corynebacterium	spec.		P4445			-			
Corynebacterium	spec.		P4446						
Corynebacterium	spec.	31088							
Corynebacterium	spec.	31089		,					
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857							
Corynebacterium	spec.	21862							
Corynebacterium	spec.	21863							

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

				Table 4: Alignment Results				
ID # length	length Genbank Hit	Length	Accession	Length Accession Name of Genbank Hit	Source of Genbank Hit	% homology	Date of	•••
(IN)						(GAP)	Deposit	
xa00013 996	GB_GSS4:AQ713475	581	AQ713475	HS_5402_B2_A12_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=978 Col=24 Row=B, genomic survey sequence.	Homo sapiens	37,148	13-Jul-99	
	GB_HTG3:AC007420	130583	130583 AC007420		Drosophila melanogaster	34,568	20-Sep-99	•
	GB_HTG3:AC007420		130583 AC007420	97.7 P. W. P.	Drosophila melanogaster	34,568	20-Sep-99	
rxa00014 903	GB_BA1:MTCY3A2	25830	Z83867	Mycobacterium tuberculosis H37Rv complete genome; segment 136/162.	Mycobacterium tuberculosis	58,140	17-Jun-98	
	GB_BA1:MLCB1779	43254	Z98271	Mycobacterium leprae cosmid B1779.	Mycobacterium leprae	57,589	8-Aug-97	
rxa00030 513	GB_BA1:SAPURCLUS	9120	X92429 C89713	S.alboniger napH, pur7, pur10, pur6, pur4, pur5 and pur3 genes. C89713 Dictyostelium discoideum SS (H.Urushihara) Dictyostelium discoideum Dictyostelium discoideum	Streptomyces anulatus Dictyostelium discoideum	55,667 45,283	28-Feb-96 20-Apr-98	
	GB_EST28:AI497294	484	Al497294	cDNA clone SSG229, mRNA sequence. fb63g03.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to SW:AFP4_MYOOC P80961 ANTIFREEZE PROTEIN LS-12.; mRNA sequence.	Danio rerio	42,991	11-MAR-1999	
	GB_EST21:C92167	637	C92167	C92167 Dictyostelium discoideum SS (H. Urushihara) Dictyostelium discoideum Dictyostelium discoideum cDNA clone SSD179, mRNA sequence.	Dictyostelium discoideum	44,444	12-Jui-99	
rxa00032 1632	GB_BA2:AF010496	189370	189370 AF010496	Rhodobacter capsulatus strain SB1003, partial genome.	Rhodobacter capsulatus	39,689	12-MAY-1998	
	GB_BA2:AF018073	9810	AF018073	Rhodobacter sphaeroides operon regulator (smoC), periplasmic sorbitol-binding Rhodobacter sphaeroides protein (smoE), sorbitol/mannitol transport inner membrane protein (smoF), sorbitol/mannitol transport inner membrane protein (smoG), sorbitol/mannitol transport pransport protein (smoK), sorbitol dehydrogenase (smoS), mannitol dehydrogenase (mtlK), and periplasmic mannitol-binding protein (smoM) genes, complete cds.	Rhodobacter sphaeroides	48,045	22-OCT-1997	
	GB_BA2:AF045245	5930	AF045245	Klebsiella pneumoniae D-arabinitol transporter (daIT), D-arabinitol kinase (daIK), D-arabinitol dehydrogenase (daID), and repressor (daIR) genes, complete cds.	Klebsiella pneumoniae	38,514	16-Jul-98	
rxa00041 1342	EM_PAT:E11760	6911	E11760	Base sequence of sucrase gene.	Corynebacterium glutamicum	99,031	08-OCT-1997 (Rel. 52, Created)	
	GB_PAT:126124	6911	126124	Sequence 4 from patent US 5556776.	Unknown.	99,031	07-OCT-1996	
	GB_IN1:LMFL5883	31934	AL117384	Leishmania major Friedlin chromosome 23 cosmid L5883, complete sequence.	Leishmania major	43,663	21-OCT-1999	
ra00042 882	EM_PAT:E11760	6911	E11760	Base sequence of sucrase gene.	Corynebacterium glutamicum	94,767	08-OCT-1997 (Rel. 52, Created)	
	GB_PAT:126124	6911	126124	Sequence 4 from patent US 5556776.	Unknown.	94,767	07-OCT-1996	

PCT/IB00/00943

W	O 01	/0084	4									9	1										P	CT	/ IB 0	0/0	094	3	
23-Jan-96	07-OCT-1996	(Rel. 52, Created)	24-Jun-98	19-Apr-97	27-Jul-98	17-Jun-98	17-Jun-98		03-DEC-1996	10-DEC-1996	03-DEC-1996		10-DEC-1996	17-Jun-98		19-Jun-98	15-Jun-96	19-Jun-98		19-Jun-98	19-Jun-98	4 10	42 MAD 4007	1661-WW-51	2-Feb-99		2-Feb-99	17 000 07	23-Jun-99
40,276	97,591	60.	35,879	s 62,658	37,638	36,784	67,457		40,883	67,457	35,883		51,001	51,001		35,735	57,014	41,892		41,841	36,599	40.00	30,212	0,00	42,239		37,307	40.07	36,632 36,632
Caenorhabditis elegans	Unknown.	glutamicum	Homo sapiens	Mycobacterium smegmatis 62,658	Streptomyces coelicolor	Mycobacterium tuberculosis	Mycobacterium	tuberculosis	Mycobacterium tuberculosis	Mycobacterium	Mycobacterium	tuberculosis	Mycobacterium tuberculosis	Mycobacterium	tuberculosis	Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium	tuberculosis	Mycobacterium tuberculosis	Mycobacterium	runer curosis	ratius norvegicus		5' Mus musculus		Mus musculus	Africah estarina forma	Mycobacterium Mycobacterium tuberculosis
Table 4 (continued) Caenomabditis elegans sur-2 mRNA, complete cds.	Sequence 4 from patent US 5556776.	הפסק סקקנים כן סקניפסק שפונים.	Homo sapiens clone UWGC:g1564a012 from 7p14-15, complete sequence.	Mycobacterium smegmatis phosphoglucose isomerase gene, complete cds.	Streptomyces coelicolor cosmid 5A7.	Mycobacterium tuberculosis H37Rv complete genome; segment 44/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 65/162.		ADUCUUUT Mycobacterium tuberculosis sequence from clone y456.	Mycobacterium tuberculosis sequence from clone y175.	Mycobacterium tuberculosis sequence from clone y456.		Mycobacterium tuberculosis sequence from clone y175.	Mycobacterium tuberculosis H37Rv complete genome; segment 65/162.		Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium leprae cosmid B1529 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.		Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Date and a few formation of the first of the few formations of the	rat carbotypuate birtoning receptor genet, compiete cos. mudiscito il Socres monso MMI Mus musculus cDNA clone 1848 CE:679460 E' Mus musculus	mRNA sequence.	mw96a03.y1 Soares mouse NML Mus musculus cDNA clone IMAGE:678508 5' Mus musculus similar to TR:009171 009171 BETAINE-HOMOCYSTEINE	METHYLTRANSFERASE;, mRNA sequence.	mw95c10.y1 Sopres mouse NML Mus musculus cDNA clone IMAGE:678450	Month of the form	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.
U33051	126124	3	AC005174	U88433	AL031107	Z79700	Z79701		ADGOGGO	AD000015	AD000001		AD000015	Z79701		274024	L78824	Z74024		Z74024	Z74024	000000	A 253618	0100704	AI390284		AI390280	700263	AL021287
4899	6911	3	39769	1928	40337	39800	38300	9	3/316	18106	37316		18106	38300		39991	36985	39991		39991	39991	40750	313	2	490		467	44887	70287
GB_IN1:CEU33051	GB_PAT:126124		GB_PR3:AC005174	GB_BA1:MSU88433	GB_BA1:SC5A7	GB_BA1:MTCY10D7	GB_BA1:MTCY277		GB_BA1:MSG1456	GB_BA1:MSGY175	GB BA1:MSGY456	1	GB_BA1:MSGY175	GB_BA1:MTCY277		GB_BA1:MTCY274	GB_BA1:MSGB1529CS 36985	GB_BA1:MTCY274		GB_BA1:MTCY274	GB_BA1:MTCY274	0000740000	GB_ECT11-AA253618		GB_EST26:AI390284		GB_EST26:AI390280	7590 IMI P827	GB_BA1:MTV012
	rxa00043 1287			rxa00098 1743			rxa00148 2334				xa00149 1971					rxa00195 684				rxa00196 738			7200202 1085	7777				1161	000000000000000000000000000000000000000

WO 01/00844

				Table 4 (continued)			
	GB_PR1:HUMFMO1	2134	M64082	Human flavin-containing monooxygenase (FMO1) mRNA, complete cds.	Homo sapiens	37,915	8-Nov-94
	GB_EST32:AI734238	512	AI734238	zb73c05.y5 Soares_fetal_lung_NbHL19W Homo sapiens cDNA clone IMAGE:309224 5' similar to gb:M64082 DIMETHYLANILINE MONOOXYGENASE (HUMAN);, mRNA sequence.	Homo sapiens	41,502	14-Jun-99
rxa00296 2967	GB_HTG6:AC011069	168266	168266 AC011069	Drosophila melanogaster chromosome X clone BACR11H20 (D881) RPCI-98 11.H.20 map 12B-12C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 92 unordered pieces.	Drosophila melanogaster	33,890	02-DEC-1999
	GB_EST15:AA531468	414	AA531468	nj63d12.s1 NCL_CGAP_Pr10 Homo sapiens cDNA clone IMAGE:997175, mRNA sequence.	Homo sapiens	40,821	20-Aug-97
	GB_HTG6:AC011069	168266	168266 AC011069	Drosophila melanogaster chromosome X clone BACR11H20 (D881) RPCI-98 11.H.20 map 12B-12C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 92 unordered pieces.	Drosophila melanogaster	30,963	02-DEC-1999
xa00310 558	GB_VI:VMVY16780	186986	Y16780	variola minor virus complete genome.	variola minor virus	35,883	2-Sep-99
	GB_VI:VARCG	186103		Variola major virus (strain Bangladesh-1975) complete genome.	Variola major virus	34,664	12-Jan-95
	GB_VI:VVCGAA	185578		Variola virus DNA complete genome.	Variola virus	36,000	13-DEC-1996
rxa00317 777	GB_HTG3:AC009571	159648	AC009571	Homo sapiens chromosome 4 clone 57_A_22 map 4, *** SEQUENCING IN PROGRESS ***, 8 unordered pieces.	Homo sapiens	36,988	29-Sep-99
	GB_HTG3:AC009571	159648	AC009571	Homo sapiens chromosome 4 clone 57_A_22 map 4, *** SEQUENCING IN PROGRESS ***, 8 unordered pieces.	Homo sapiens	36,988	29-Sep-99
	GB_PR3:AC005697	174503	AC005697	Homo sapiens chromosome 17, done hRPK.138_P_22, complete sequence.	Homo sapiens	36,340	09-OCT-1998
rxa00327 507	GB_BA1:LCATPASEB	1514	X64542	L.casei gene for ATPase beta-subunit.	Lactobacillus casei	34,664	11-DEC-1992
	GB_BA1:LCATPASEB	1514	X64542	L.casei gene for ATPase beta-subunit.	Lactobacillus casei	39,308	11-DEC-1992
ка00328 615	GB_BA1:STYPUTPE	1887	L01138	Salmonella (S2980) proline permease (putP) gene, 5' end.	Salmonella sp.	39,623	09-MAY-1996
	GB_BA1:STYPUTPF	1887	L01139	Salmonella (S2983) proline permease (putP) gene, 5' end.	Salmonella sp.	39,623	09-MAY-1996
	GB_BA1:STYPUTPI	1889	L01142	Salmonella (S3015) proline permease (putP) gene, 5' end.	Salmonella sp.	42,906	09-MAY-1996
rxa00329 1347	GB_PR3:AC004691	141990	141990 AC004691	Homo sapiens PAC clone DJ0740D02 from 7p14-p15, complete sequence.	Homo sapiens	38,142	16-MAY-1998
	GB_PR4:AC004916 GB_PR3:AC004691	129014 141990	129014 AC004916 141990 AC004691	Homo sapiens clone DJ0891L14, complete sequence. Homo sapiens PAC clone DJ0740D02 from 7p14-p15, complete sequence.	Homo sapiens Homo sapiens	38,549 35,865	17-Jul-99 16-MAY-1998
rxa00340 1269	GB_BA1:MTCY427	38110	Z70692	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Mycobacterium tubercutosis	38,940	24-Jun-99
	GB_GSS12:AQ412290	238	AQ412290	RPCI-11-195H2.TV RPCI-11 Homo sapiens genomic clone RPCI-11-195H2, denomic survey sequence.	Homo sapiens	36,555	23-MAR-1999
	GB PL2:AF112871	2394	AF112871	Astasia longa small subunit ribosomal RNA gene, complete seguence.	Astasia longa	36.465	28-Jun-99
ra00379 307	GB_HTG1:CEY56A3	224746	AL022280	Caenorhabditis elegans chromosome III clone Y56A3, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	35,179	6-Sep-99
	GB_HTG1:CEY56A3	224746	224746 AL022280	Caenorhabditis elegans chromosome III clone Y56A3, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	35,179	6-Sep-99

WO	V U1/UU04	7				(C)	J-7	, C		. C		d.		σ.	U 1/11	200000	,	
23-Nov-99	15-Jul-99	2-Sep-98	2-Sep-98	11-Jun-99	16-Jul-99	29-MAR-1996	17-Jun-98	03-DEC-1996	13-Sep-99	10-DEC-1996	17-Jun-98	29-MAY-1999	22-Aug-97	01-MAR-1999	23-Feb-99	23-Nov-99	23-Nov-99	17-Jun-98
40,604	35,766	41,113	41,113	41,152	41,360	36,792	51,852	51,852	36,875	60,022	60,022	28,013	38,226	37,492	36,648	39,831	36,409	56,232
Homo sapiens	Homo sapiens	e Mus musculus	e Mus musculus	Gossypium hirsutum	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Homo sapiens	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Caenorhabditis elegans	Homo sapiens	Lactococcus lactis subsp.	Caenorhabditis elegans	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis
ž	complete sequence. HS_2149_A1_C06_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2149 Col=11 Row=E, genomic survey sequence.	ub74f05.r1 Soares mouse mammary gland NMLMG Mus musculus cDNA clone Mus musculus IMAGE:1383489 5' similar to gb:J04046 CALMODULIN (HUMAN); gb:M19381 Mouse calmodulin (MOUSE); mRNA sequence.	ub74f05.r1 Soares mouse mammary gland NMLMG Mus musculus cDNA clone Mus musculus IMAGE:1383489 5' similar to gb:J04046 CALMODULIN (HUMAN); gb:M19381 Mouse calmodulin (MOUSE); mRNA sequence.	BNLGHi5857 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AF015913) Skb1Hs [Homo sapiens], mRNA sequence.		H.sapiens mRNA for GAIP protein.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.		Homo sapiens chromosome 21 clone B2308H15 map 21q22.3, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Mycobacterium tuberculosis sequence from clone y126.	Mycobacterium tuberculosis H37Rv complete genome; segment 156/162.	Caenorhabditis elegans chromosome II clone Y48C3, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens chromosome 16 BAC clone CIT987SK-334D11 complete sequence.	Lactococcus lactis cremoris plasmid pJW565 DNA, abiiM, abiiR genes and orfX.		Human DNA sequence from cosmid E127C11 on chromosome 22q11.2-qter contains STS.	Human DNA sequence from cosmid E127C11 on chromosome 22q11.2-qter contains STS.	Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.
AL034555	AQ730532	Al120939	AI120939	AI726450	AQ740856	X91809	295558	AD000004	AP000471	AD000012	Z80343	270193 292855	AF001550	Y12736	206217 AC006754	Z74581	Z 74581	295585
86897	416	561	561	565	768	1587	40838	40051	72466	37164	37085	270193	173882	12828	206217	38423	38423	22550
GB_PR2:HS134019	GB_GSS4:AQ730532	GB_EST23:Al120939	GB_EST23:AI120939	GB_EST32:AI726450	GB_GSS4:AQ740856	GB_PR1:HSPAIP	GB_BA1:MTY25D10	GB_BA1:MSGY224	GB_HTG1:AP000471	GB_BA1:MSGY126	GB_BA1:MTY13D12	GB_HTG1:CEY48C3	GB_PR2:HSAF001550 173882 AF001550	GB_BA1:LLCPJW565	GB_HTG2:AC006754	GB_PR3:HSE127C11	GB_PR3:HSE127C11	GB_BA1:MTCY22G8
	гха00381 729			rxa00385 362			rxa00388 1134			rxa00427 909			rxa00483 1587			rxa00511 615		ка00512 718

PCT/IB00/00943

GB_BA2:ECU73857 GB_HTG2:AC006911

rxa00517 1164

1776

GB_BA1:MSGLTA

298804

GB_HTG2:AC006911 GB_EST29:AI602158

481

128824 8371

GB_BA2:ECU73857 GB_BA2:STU51879

xa00518 320

12498 376

GB_BA2:AE000140 GB_EST32:AU068253

xa00606 2378

81493 80381

3B_PL1:AT81KBGEN

80381

GB_PL2:AC010871

rxa00679 1389

1440 1440 1440

GB_BA1:PAORF1 GB_BA1:PAORF1

rxa00635 1860

329 376

GB_EST13:AA363046 GB_EST32:AU068253

38400 81493 43481

GB_PR3:AC004058

rxa00680 441

GB_PL2:AC010871

GB_PL1:AT81KBGEN

GB_HTG3:AC010325 GB_HTG3:AC010325

rxa00682 2022

GB_PL1:AB026648

GB_PR4:AC008179

				Table 4 (continued)			
rxa00683 1215	GB_BA2:AE000896	10707	AE000896	Methanobacterium thermoautotrophicum from bases 1189349 to 1200055	Methanobacterium	38,429	15-Nov-97
				(section 102 of 148) of the complete genome.	thermoautotrophicum		
	GB_IN1:DMBR7A4	212734	AL109630	Drosophila melanogaster clone BACR7A4.	Drosophila melanogaster	36,454	30-Jul-99
	GB_EST35:AV163010	273	AV163010	AV163010 Mus musculus head C57BU6J 13-day embryo Mus musculus cDNA Mus musculus	Mus musculus	41,758	8-Jul-99
				clone 3110006J22, mRNA sequence.			
rxa00686 927	GB_HTG2:HSDJ137K2 190223 AL049820	190223	AL049820	Homo sapiens chromosome 6 clone RP1-137K2 map q25.1-25.3, ***	Homo sapiens	38,031	03-DEC-1999
				SEQUENCING IN PROGRESS ***, in unordered pieces.			
	GB_HTG2:HSDJ137K2 190223 AL049820	190223	AL049820	Homo sapiens chromosome 6 clone RP1-137K2 map q25.1-25.3, ***	Homo sapiens	38,031	03-DEC-1999
				SEQUENCING IN PROGRESS ***, in unordered pieces.			
	GB_EST12:AA284399	431	AA284399	zs57b04.r1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:701551 5;	Homo sapiens	39,205	14-Aug-97
				mRNA sequence.			
rxa00700 927	GB_EST34:AI785570	454	AI785570	uj44d03.x1 Sugano mouse liver mlia Mus musculus cDNA clone	Mus musculus	41,943	2-Jul-99
				IMAGE:1922789 3' similar to gb:Z28407 60S RIBOSOMAL PROTEIN L8			
	CD ECT06.A1066147	789	A1256147	(HOMAN), MKNA Sequence.	Mine more confire	40 701	12 May 08
	110031003100	5	710071	MAGE: 1800100 3's similar to ob: 228407 60S RIBOSOMAL DROTEIN I 8		2	06-4041-71
				(HUMAN); mRNA sequence.			
	GB BA1:CARCG12	2079	X14979	C. aurantiacus reaction center genes 1 and 2.	Chloroflexus aurantiacus	37,721	23-Apr-91
rxa00703 2409	GB BA1:SC7H2	42655	AL109732	Streptomyces coelicolor cosmid 7H2.	Streptomyces coelicolor	56,646	2-Aug-99
	•				A3(2)		•
	GB_BA1:MTCY274	39991	Z74024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium	37,369	19-Jun-98
				`	tuberculosis		
	GB_BA2:REU60056	2520	Ne0056	Ralstonia eutropha formate dehydrogenase-like protein (cbbBc) gene, complete Ralstonia eutropha	e Ralstonia eutropha	51,087	16-OCT-1996
rxa00705 1038	GB_GSS15:AQ604477	202 203	AQ604477	HS_2116_B1_G07_MR CH Approved Hurnan Genomic Sperm Library D Homo Homo sapiens sapiens genomic clone Plate=2116 Col=13 Row=N, genomic survey sequence.	o Homo sapiens	39,617	10-Jun-99
	GB_EST11:AA224340	443	AA224340	zr14e07.s1 Stratagene hNT neuron (#937233) Homo sapiens cDNA clone	Homo sapiens	35,129	11-MAR-1998
	07 00 00 1 L C C C C C C C C C C C C C C C C C C	č	0700014	MMAGE 04004 3, IIIRANA sequence.			
	GB_ES15:N30848	I.67	N30048	yw / DUZ.S1 Soares_placenta_growners_znonF 8to9vv Homo sapiens CDNA clone IMAGE:258219 3', mRNA sequence.	nomo sapiens	43,986	o-7au-90
rxa00782 1005	GB_BA1:MTCY10D7	39800	002622	Mycobacterium tuberculosis H37Rv complete genome; segment 44/162.	Mycobacterium	63,327	17-Jun-98
					tuberculosis		
	GB_BA1:MLCL373	37304	AL035500	Mycobacterium leprae cosmid L373.	Mycobacterium leprae		27-Aug-99
	GB_BA2:AF128399	2842	AF128399	Pseudomonas aeruginosa succinyi-CoA synthetase beta subunit (sucC) and succinyi-CoA synthetase alpha subunit (sucD) genes, complete cds.	Pseudomonas aeruginosa	53,698	25-MAR-1999
xa00783 1395	GB_HTG2:AC008158	118792	AC008158	Homo sapiens chromosome 17 clone hRPK.42_F_20 map 17, ***	Homo sapiens	35,135	28-Jul-99
				SEQUENCING IN PROGRESS ***, 14 unordered pieces.			
	GB_HTG2:AC008158	118792	118792 AC008158	Homo sapiens chromosome 17 clone hRPK.42_F_20 map 17, *** SEQUENCING IN PROGRESS *** 14 unordered bieces.	Homo sapiens	35,135	28-Jul-99
	GB_PR3:AC005017	137176	137176 AC005017	Homo sapiens BAC clone GS214N13 from 7p14-p15, complete sequence.	Homo sapiens	35,864	8-Aug-98
rxa00794 1128	GB_BA1:MTV017	67200	AL021897	Mycobacterium tuberculosis H37Rv complete genome; segment 48/162.	Mycobacterium	40,331	24-Jun-99
					raperculosis		

				Table 4 (continued)			
	GB_BR1:MLCB1222 GB_PR2:HS151B14	34714	AL049491 Z82188	Mycobacterium leprae cosmid B1222. Human DNA sequence from clone 151B14 on chromosome 22 Contains SOMATOSTATIN RECEPTOR TYPE 3 (SS3R) gene, pseudogene similar to ribosomal protein L39,RAC2 (RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATIZ (P21-RAC2)) gene ESTs, STSs, GSSs and CpG islands,	Mycobacterium leprae Homo sapiens	61,170 37,455	27-Aug-99 16-Jun-99
rxa00799 1767	GB PL2:AF016327	616	AF016327	With the control of t	Hordeum vulgare	41,311	01-OCT-1997
	GB_HTG2:HSDJ319M7 128208 AL079341	7 128208	AL079341	Homo sapiens chromosome 6 clone RP1-319M7 map p21.1-21.3, *** SEQUENCING IN PROGRESS *** in unordered pieces	Homo sapiens	36,845	30-Nov-99
	GB_HTG2:HSDJ319M7 128208 AL079341	7 128208	AL079341	Homo sapiens chromosome 6 clone RP1-319M7 map p21.1-21.3, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	36,845	30-Nov-99
rxa00800 1227	GB_BA1:MTV022	13025	AL021925	Mycobacterium tuberculosis H37Rv complete genome; segment 100/162.	Mycobacterium tuberculosis	63,101	17-Jun-98
	GB_BA1:AB019513	4417	AB019513	Streptomyces coelicolor genes for alcohol dehydrogenase and ABC transporter, complete cds.	Streptomyces coelicolor	41,312	13-Nov-98
	GB_PL1:SCSFAARP	2008	X68020	S.cerevisiae SFA and ARP genes.	Saccharomyces cerevisiae 36,288	36,288	29-Nov-94
rxa00825 1056	GB_BA1:MTY15C10	33050	Z95436	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium tuberculosis	39,980	17-Jun-98
	GB_BA1:MLCB2548 GB_BA2:AF169031	38916 1141	AL023093 AF169031	Mycobacterium leprae cosmid B2548. Xanthomonas oryzae pv. oryzae putative sugar nucleotide	Mycobacterium leprae Xanthomonas oryzae pv.	39,435 46,232	27-Aug-99 14-Sep-99
	1			epimerase/dehydratase gene, partial cds.	oryzae		
rxa00871							
rxa00872 1077	GB_IN1:CEF23H12	35564	274472	Caenorhabditis elegans cosmid F23H12, complete sequence.	Caenorhabditis elegans	34,502	08-OCT-1999
	GB_HTG2:AC007263	167390	167390 AC007263	Homo sapiens chromosome 14 clone BAC 79J20 map 14q31, *** SEQUENCING IN PROGRESS ***, 5 ordered pieces.	Homo sapiens	35,714	24-MAY-1999
	GB_HTG2:AC007263	167390	167390 AC007263	Homo sapiens chromosome 14 clone BAC 79J20 map 14q31, *** SEQUENCING IN PROGRESS ***, 5 ordered pieces.	Homo sapiens	35,714	24-MAY-1999
xa00879 2241	GB_BA1:MTV049	40360	AL022021	Mycobacterium tuberculosis H37Rv complete genome; segment 81/162.	Mycobacterium tuberculosis	36,981	19-Jun-98
	GB_PL2:CDU236897	1827	AJ236897	Candida dubliniensis ACT1 gene, exons 1-2.	Candida dubliniensis	38,716	1-Sep-99
	GB_PL1:CAACT1A	3206	X16377	Candida albicans act1 gene for actin.	Candida albicans	36,610	10-Apr-93
rxa00909 955	GB_BA2:AF010496	189370	AF010496	Rhodobacter capsulatus strain SB1003, partial genome.	Rhodobacter capsulatus	51,586	12-MAY-1998
	GB_BA1:RMPHA	7888	X93358	Rhizobium meliloti pha(A,B,C,D,E,F,G) genes.	Sinorhizobium meliloti	48,367	12-MAR-1999
	GB_EST16:C23528	317	C23528	C23528 Japanese flounder spleen Paralichthys olivaceus cDNA clone HB5(2), mRNA sequence.	Paralichthys olivaceus	41,640	28-Sep-99
xa00913 2118	GB_HTG2:AC007734	188267	188267 AC007734	Homo sapiens chromosome 18 clone hRPK.44_O_1 map 18, *** SEQUENCING IN PROGRESS ***, 18 unordered bieces.	Homo sapiens	34,457	6-Jun-99

	GB_HTG2:AC007734		188267 AC007734		Homo sapiens	34,457	6-Jun-99
	GB_EST18:AA709478	406	AA709478	SEQUENCING IN PROGRESS ***, 18 unordered pieces. vv34a05.r1 Stratagene mouse heart (#937316) Mus musculus cDNA clone	Mus musculus	42,065	24-DEC-1997
				IMAGE:1224272 5', mRNA sequence.			
rxa00945 1095	GB_HTG4:AC010351	220710	220710 AC010351	Homo sapiens chromosome 5 clone CITB-H1_2022B6, *** SEQUENCING IN PROGRESS ***, 68 unordered pieces.	Homo sapiens	36,448	31-OCT-1999
	GB_HTG4:AC010351	220710	220710 AC010351	Homo sapiens chromosome 5 clone CITB-H1_2022B6, *** SEQUENCING IN PROGRESS *** 68 unordered bieces.	Homo sapiens	36,448	31-OCT-1999
	GB_BA1:MTCY05A6	38631	296072	Mycobacterium tuberculosis H37Rv complete genome; segment 120/162.	Mycobacterium tuberculosis	36,218	17-Jun-98
rxa00965							
rxa00999 1575	GB_PAT:E13660	1916	E13660	gDNA encoding 6-phosphogluconate dehydrogenase.	Corynebacterium	98,349	24-Jun-98
	GB_BA1:MTCY359	36021	Z83859	Mycobacterium tuberculosis H37Rv complete genome; segment 84/162.	glutamicum Mycobacterium	38,520	17-Jun-98
	GB_BA1:MLCB1788	39228	AL008609	Mycobacterium leprae cosmid B1788.	tuberculosis Mycobacterium leprae	64,355	27-Aug-99
xa01015 442	GB_BA1:MTV008	63033	AL021246		Mycobacterium	39,860	17-Jun-98
	GB_BA1:MTV008	63033	AL021246	Mycobacterium tuberculosis H37Rv complete genome; segment 108/162.	tuberculosis Mycobacterium tuberculosis	39,120	17-Jun-98
rxa01025 1119	GB_BA1:SC7A1	32039	AL034447	Streptomyces coelicolor cosmid 7A1.	Streptomyces coelicolor	55,287	15-DEC-1998
	GB_BA1:MSGB1723CS 38477	S 38477	L78825	Mycobacterium leprae cosmid B1723 DNA sequence.	Mycobacterium leprae	56,847	15-Jun-96
	GB_BA1:MLCB637	44882	Z 99263	Mycobacterium leprae cosmid B637.	Mycobacterium leprae	56,676	17-Sep-97
rxa01048 1347	GB_BA2:AF017444	3067	AF017444	Sinorhizobium melitoti NADP-dependent malic enzyme (tme) gene, complete	Sinorhizobium meliloti	53,660	2-Nov-97
	GB_BA1:BSUB0013	218470	218470 Z99116	cds. Bacillus subtilis complete genome (section 13 of 21): from 2395261 to	Bacillus subtilis	37,255	26-Nov-97
				2613730.			
4606	GB_VI:HSV2HG52	154746	154746 Z86099	Herpes simplex virus type 2 (strain HG52), complete genome.	human herpesvirus 2	38,081	04-DEC-1998
1740 D40 1000	GB_H1GZ.AC002318	660761	131833 ACOUESTS		nomo sapiens	35,547	/6-dec-7
	GB_HTG2:AC002518	131855	131855 AC002518		Homo sapiens	35,647	2-Sep-97
	0110000 4:00Ti		4 0000			;	;
	GB_H16Z:AC00Z518		131855 ACUU2518	nomo sapiens chromosome X cione bWXD20, *** SEQUENCING IN PROGRESS ***, 11 unordered pieces.	Homo sapiens	26,180	2-Sep-97
rxa01077 1494	GB_PR3:HSDJ653C5	85237	AL049743	Human DNA sequence from clone 653C5 on chromosome 1p21.3-22.3 Contains CA repeat(D1S435), STSs and GSSs, complete sequence.	Homo sapiens	36,462	23-Nov-99
	GB_BA1:ECU29579	72221	U29579	Escherichia coli K-12 genome; approximately 61 to 62 minutes.	Escherichia coli	41,808	1-Jul-95
	GB_BA1:ECU29579	72221	U29579	Escherichia coli K-12 genome; approximately 61 to 62 minutes.	Escherichia coli	36,130	1-Jul-95
rxa01089 873	GB_GSS8:AQ044021	387	AQ044021	CIT-HSP-2318C18.TR CIT-HSP Homo sapiens genomic clone 2318C18,	Homo sapiens	36,528	14-Jul-98
				genomic survey sequence.			

wo	01/00	0844						99)					P	CT/IB0	0/009)43
14-Jul-98	14-Jul-98	07-DEC-1994	17-Jun-98	23-DEC-1996	19-Feb-98	12-MAR-1998	01-MAR-1997	10-Jul-98 01-DEC-1999	13-Aug-99	22-Aug-99	22-Aug-99	05-OCT-1998 27-OCT-1994	07-OCT-1997 (Rel. 52,	09-MAR-1995	07-OCT-1997 (Rel. 52,	27-OCT-1994	5-Apr-92
35,969	44,545	100,000	63,771	67,061	99,615	100,000	37,785	35,835 37,873	37,240	38,416	38,416	38,416 99,931	99,242	39,153	100,000	100,000	36,769
Homo sapiens	Homo sapiens	Corynebacterium	giutamicum Mycobacterium	tuberculosis Mycobacterium	Corynebacterium	glutamicum Corynebacterium glutamicum	Fugu rubripes	Homo sapiens Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Drosophila melanogaster Corynebacterium	grammer Corynebacterium glutamicum	Mycobacterium leprae	Corynebacterium glutamicum	Corynebacterium	Hepatitis C virus
Table 4 (continued) CIT-HSP-2318D17.TR CIT-HSP Homo sapiens genomic clone 2318D17,	genomic survey sequence. CIT-HSP-2318C18.TR CIT-HSP Homo sapiens genomic clone 2318C18,	genomic survey sequence. Corynebacterium pyruvate kinase gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 72/162.	Mycobacterium intracellulare pyruvate kinase (pykF) gene, complete cds.		gene, complete cds. Corynebacterium glutamicum phosphoribosylformimino-5-amino-1- phosphoribosyl-4- imidazolecarboxamide isomerase (hisA) gene, complete	cds. F.rubripes GSS sequence, clone 079B16aE8, genomic survey sequence.		sequence. Homo sapiens clone NH0062F14, *** SEQUENCING IN PROGRESS ***, 5		unordered pieces. Homo sapiens clone 1_O_3, *** SEQUENCING IN PROGRESS ***, 8 unordered pieces.	Drosophila melanogaster cosmid 66A1. C.glutamicum (ASO 19) ATPase beta-subunit gene.	Brevibacterium flavum UncD gene whose gene product is involved in	Mycobacterium leprae cosmid L471.	Brevibacterium flavum UncD gene whose gene product is involved in	C.glutamicum (ASO 19) ATPase beta-subunit gene.	Hepatitis C genomic RNA for putative envelope protein (RE4B isolate).
AQ042907	AQ044021	L27126	Z95554	U65430	AF045998	AF051846	Z89313	177014 AC004063 52268 AL109852	163369 AC009301	164587 AC009444	164587 AC009444	AL031227 X76875	E09634	U15186	E09634	X76875	X60570
392	387	2795	35938	1439	780	738	619	177014 62268	163369	164587	164587	34127 1452	1452	36241	1452	1452	414
GB_GSS8:AQ042907	GB_GSS8:AQ044021	GB_BA1:CORPYKI	GB_BA1:MTCY01B2	GB_BA1:MIU65430	GB_BA2:AF045998	GB_BA2:AF051846	GB_GSS1:FR0005503 619	GB_PR3:AC004063 GB_PR3:HS1178l21	GB_HTG3:AC009301	GB_HTG3:AC009444	GB_HTG3:AC009444	GB_IN1:DMC66A1 GB_BA1:CGASO19	EM_PAT:E09634	GB_BA1:MLU15186	EM_PAT:E09634	GB_BA1:CGASO19	GB_VI:HEPCRE4B
		ra01093 1554			rxa01099 948			rxa01111 541		rxa01130 687		ma01193 1572			xa01194 495		rxa01200

wo	01/00	844							10	10						PCT	/ IB 00)/00	943	
01-MAY-1995	17-Jun-98	09-MAR-1995	01-MAY-1995	01-MAY-1995	26-MAY-1998	15-Sep-99	04-DEC-1999	04-DEC-1999	17-Jun-98	10-MAR-1998	26-Apr-93	2-Jun-98	17-Aug-99	17-Aug-99	13-MAR-1996	17-Jun-98	10-DEC-1996	09-OCT-1998	25-Sep-99	25-Sep-99
69,269	65,437	39,302	57,087	38,298	37,626	38,395	35,459	36,117	39,064	42,671	41,054	36,205	39,922	39,922	64,908	62,838	61,712	35,373	39,863	39,863
Streptomyces lividans	Mycobacterium tuberculosis	Mycobacterium leprae	Streptomyces lividans	Streptomyces lividans	Methylococcus capsulatus 37,626	Chloroplast Arabidopsis thaliana	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Methylobacterium extorquens	Caulobacter crescentus	Streptomyces roseofulvus	Drosophila melanogaster	Drosophila melanogaster	Saccharopolyspora erythraea	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Homo sapiens
Table 4 (continued) S.lividans i protein and ATP synthase genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 57/162.	Mycobacterium leprae cosmid L471.	S.lividans i protein and ATP synthase genes.	S.lividans i protein and ATP synthase genes.	M.capsulatus orfx, orfy, orfz, sqs and shc genes.	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain:Columbia.	Homo sapiens clone RP11-114116, *** SEQUENCING IN PROGRESS ***, 39 unordered pieces.	Homo sapiens clone RP11-114 16, *** SEQUENCING IN PROGRESS ***, 39	unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 47/162.	Methylobacterium extorquens methanol oxidation genes, glmU-like gene, partial cds, and orfL2, orfL1, orfR genes, complete cds.	C.crescentus flagellar gene promoter region.	Streptomyces roseofulvus frenolicin biosynthetic gane cluster, complete sequence.	Drosophila melanogaster chromosome 2 clone BACR04B09 (D576) RPCI-98 04.B.9 map 43E12-44F1 strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 150 unordered pieces.	Drosophila melanogaster chromosome 2 clone BACR04B09 (D576) RPCI-98 04.B.9 map 43E12-44F1 strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 150 unordered pieces.	Saccharopolyspora erythraea ferredoxin (fdxA) gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 51/162.	Mycobacterium tuberculosis sequence from clone y348.	Homo sapiens chromosome 17, clone hRPK.138_P_22, complete sequence.	Homo sapiens clone NH0122L09, *** SEQUENCING IN PROGRESS ***, 2 unordered pieces.	Homo sapiens clone NH0122L09, *** SEQUENCING IN PROGRESS ***, 2 unordered pieces.
Z22606	Z73419	U15186	Z22606	Z22606	Y09978	AP000423	164070 AC009762	164070 AC009762	292539	AF017435	M69228	AF058302	165741 AC007301	165741 AC007301	M61119	AL010186	AD000020	AC005697	AC010722	160723 AC010722
8560	35516	36241	8560	8560	5538	154478	164070	164070	38970	4301	4424	25306	165741	165741	3869	37840	40056	174503	160723	160723
GB_BA1:SLATPSYNA	GB_BA1:MTCY373	GB_BA1:MLU15186	GB_BA1:SLATPSYNA	GB_BA1:SLATPSYNA	GB_BA1:MCSQSSHC	GB_PL1:AP000423	GB_HTG6:AC009762	GB_HTG6:AC009762	GB_BA1:MTCY10G2	GB_BA2:AF017435	GB_BA1:CCRFLBDBA 4424	GB_BA2:AF058302	GB_HTG3:AC007301	GB_HTG3:AC007301	GB_BA1:SERFDXA	GB_BA1:MTV005	GB_BA1:MSGY348	GB_PR3.AC005697	GB_HTG3:AC010722	GB_HTG3:AC010722
rxa01201 1764			xa01202 1098			rxa01204 933			rxa01216 1124			xa01225 1563			xa01227 444			xa01242 900		

V	vo	01	/0	08	344											101)	PCT	/IB	00	/00	94	3		
	23-OCT-1998	00 774 66	06-NONI-C7	23-Nov-98	1-Feb-99	16.0CT-1999		16-OCT-1999		29-OCT-1999				5-Nov-97		21-MAR-1997	18-Apr-98	;	25-Sep-99	25-Sep-99	•	12-Nov-98	23-Jun-99	7007 0 7007	1984-1984	2-Nov-99		2-Nov-99	2-Nov-99		07-DEC-1999			07-DEC-1999	
	38,722	25 440	04400	35,694	100,000	37 17B		37,178		59,719				59,735		37,904	37,340		36,385	36.385		39,494	46,252	0000	40,308	36,016		36,016	39,618		35,366		1	35,366	
:	Magnaporthe grisea	occopia citibalata	Caerloinabulus elegans	Caenorhabditis elegans	Corynebacterium	giutamicum Orosonhila melanogaster		Drosophila melanogaster		Escherichia coli				Escherichia coli		Escherichia coli	Homo sapiens		Homo sapiens	Homo sapiens		Escherichia coli	Mycobacterium	Tuber curosis	Mycobacterium leprae	Homo sapiens		Homo sapiens	Homo sapiens		Drosophila melanogaster		:	Drosophila melanogaster	
Table 4 (continued)	mgxb0008N01r CUGI Rice Blast BAC Library Magnaporthe grisea genomic	Consideration of partial general VOEM community commons	Caenomabanis elegans cosmia Noon4, complete sequemos.	Caenorhabditis elegans cosmid K05D4, complete sequence.	Corynebacterium glutamicum Ipd gene, complete CDS.	Orosophija mejanonaster chromosome 31 /69C1 clone RDC108-11NB ***	SEQUENCING IN PROGRESS ***, 70 unordered pieces.	Drosophila melanogaster chromosome 3L/69C1 clone RPC!98-11N6,	***SEQUENCING IN PROGRESS ***, 70 unordered pieces.	Escherichia coli GalF (galF) gene, partial cds; O-antigen repeat unit transporter Escherichia coli Wzx (wzx), WbnA (wbnA), O-antigen polymerase Wzy (wzy), WbnB (wbnB), אלאים (אלאים אלאים) אלאים (אלאים) אלאים (אלאים) אלאים (אור)	(galE), 6-phosphogluconate dehydrogenase Gnd (gnd), UDP-Glc-6-	dehydrogenase Ugd (ugd), and WbnF (wbnF) genes, complete cds; and chain	length determinant Wzz (wzz) gene, partial cds.	Escherichia coli hypothetical uridine-5'-diphosphoglucose dehydrogenase (ugd) Escherichia coli	and O-chain length regulator (wzz) genes, complete cds.	E.coli genomic DNA, Kohara clone #351(45.1-45.5 min.).	Homo sapiens Xp22 BAC GS-619J3 (Genome Systems Human BAC library)	complete sequence.	Homo sapiens clone NH0310K15, *** SEQUENCING IN PROGRESS ***, 4	undratera pieces. Homo sapiens clone NH0310K15, *** SEQUENCING IN PROGRESS ***, 4	unordered pieces.	Escherichia coli K-12 MG1655 section 377 of 400 of the complete genome.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	M. Contraction of the contractio	Mycobacterium leprae cosmid L306.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 24	unordered pieces.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 24 unordered pieces.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 24	unordered pieces.	Drosophila melanogaster chromosome 2 clone BACR03D06 (D569) RPCI-98	03.D.6 map 32A-32A strain y; cn bw sp, *** SEQUENCING IN PROGRESS***	91 unardered pieces.	Drosophila melanogaster chromosome 2 clone BACR19N18 (D572) RPCI-98 19 N.18 mao 32A-32A strain v. cn bw.sp. *** SEQUENCING IN PROGRESS	***, 22 unordered pieces.
	AQ255057	700007	400767	292804	Y16642	143287 AC010567		143287 AC010567		AF172324				U78086		D90841	144368 AC004103		215529 AC007383	215529 AC007383		AE000487	AL021841	60001	770000	215767 AC009245		215767 AC009245	215767 AC009245		225851 AC007186		!	202291 AC007147	
1	583	000	0006	19000	98 80	143287		143287		14263				4759		20226	144368		215529	215529		13889	53662	26444	1 400	215767		215767	215767		225851			202291	
	GB_GSS10:AQ255057	CD INITIOEDA	GD_INT.CENUSD4	GB_IN1:CEK05D4	GB_BA1:CGLPD	GB HTG4.40010567		GB_HTG4:AC010567		GB_BA2:AF172324				GB_BA2:ECU78086		GB_BA1:D90841	GB_PR3:AC004103		GB_HTG3:AC007383	GB HTG3:AC007383	•	GB_BA2:AE000487		CB BA1:100000	GB_BAT:000022	GB_HTG4:AC009245		GB_HTG4:AC009245	GB_HTG4:AC009245		GB_HTG6:AC007186			GB_HTG6:AC007147	
	rxe01243 1083				rxa01259 981					rxa01262 1284							rxa01311 870					rxa01312 2142				rxa01325 795					rxa01332 576				

<u>., 0 01/000</u>	-			7		72					- `	66	<u>k</u>	•••
16-Sep-99 19-OCT-1999 25-Feb-99	25-Feb-99 17-Jun-98	26-Apr-93	20-Apr-99	17-Jun-98 14-MAY-1997	14-MAY-1997	10-Feb-99	16-Nov-99	16-Nov-99	8-Jul-98	24-Feb-97	30-Jan-99	23-MAR-1999	29-MAY-1997	29-Sep-97 9-Apr-97 3-Jun-99
34,821 58,487 37,963	37,963	47,726	36,599	36,940	38,324	39,778	32,658	38,395	55,221	100,000	36,756	100,000	53,041	54,461 39,286 39,412
5 Homo sapiens Aquaspirillum arcticum Caenorhabditis elegans	Caenorhabditis elegans Mycobacterium	tuberculosis Xanthomonas campestris	Homo sapiens	Mycobacterium tuberculosis Arabidoosis thaliana	Arabidopsis thaliana	Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Streptomyces lividans	Corynebacterium olutamicum	Homo sapiens	Corynebacterium glutamicum	Escherichia coli	Escherichia coli Helicobacter pylori Homo sapiens
Homo sapiens clone RPCI11-375/20, *** SEQUENCING IN PROGRESS ***, 25 Homo sapiens unordered pieces. Aquaspirilium arcticum malate dehydrogenase (MDH) gene, complete cds. Aquaspirillum icanomis elegans clone Y40G12, *** SEQUENCING IN PROGRESS***, Caenorhabditis elegans clone Y40G12, *** SEQUENCING IN PROGRESS***, Caenorhabditis	o unordered preces. Caenorhabditis elegans clone Y40G12, *** SEQUENCING IN PROGRESS***, 8 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Xanthomonas campestris phosphoglucomutase and phosphomannomutase (xanA) and phosphomannose isomerase and GDP-mannose	pyrophosphorylase (xanB) genes, complete cds. RPCI11-47D24.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-47D24, genomic survey sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162. T27419-T7 TAMII Arabidoosis thaliana nanomic clone T27419, cenomic	survey sequence. T21A19-T7.1 TAMU Arabidopsis thaliana genomic clone T21A19, genomic	survey sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Homo sapiens clone RP11-252018, WORKING DRAFT SEQUENCE, 121	unordered nieves.	Streptomyces lividans amplifiable element AUD4: putative transcriptional regulator, putative ferredoxin, putative cytochrome P450 oxidoreductase, and putative oxidoreductase genes, complete cds; and	unknown genes. C.glutamicum lysE and lysG genes.	Homo sapiens 12p13.3 BAC RPCI11-429A20 (Roswell Park Cancer Institute Human BAC Library) complete sequence.	C.glutamicum pta gene and ackA gene.	E.coll genomic DNA, Kohara clone #405(52.0-52.3 min.).	DNA encoding acetate kinase protein form Escherichia coli. Helicobacter pylori feoB-like DNA sequence, genomic survey sequence. we81c04.x1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:2347494 3' similar to gb:L19686_ma1 MACROPHAGE MIGRATION INHIBITORY FACTOR (HUMAN);, mRNA sequence.
207890 AC010207 990 AF109682 103725 AC006759	103725 AC006759 36330 Z95121	M83231	AQ194038	Z95121 R10037	B09549	292771	AC007547	AC007547	AF072709	X96471	185952 AC005906	X89084	D90861	E02087 U60627 AI701691
207890 990 103725	103725	84 5	269	36330	1097	42729	262181	262181	8366	2374		3657	14839	1200 280 349
GB_BA2:AF109682 GB_HTG2:AC006759	GB_HTG2:AC006759 GB_BA1:MTY20B11	GB_BA1:XANXANAB	88	GB_BA1:MTY20B11	GB_GSS3:B09549	GB_BA1:MTCY71	GB_HTG5:AC007547	GB_HTG5:AC007547	GB_BA2:AF072709	GB_BA1:CGLYSEG	GB_PR4:AC005906	GB_BA1:CGPTAACKA	GB_BA1:D90861	GB_PAT:E02087 GB_GSS1:HPU60627 GB_EST31:Al701691
rxa01350 1107	xa01365 1497			rxa01369 1305		rxa01377 1209			rxa01392 1200			rxa01436 1314		rxa01468 948

PCT/IB00/00943

WO 01/00844

WO 0	1/0084	4				1	04					PCT	/ IB 00	0/009	43
30-Jul-96	7-Aug-98	7-Aug-98	7-Aug-98	7-Aug-98	29-Jan-99	18-Sep-98	5-Aug-98	14-Jul-99	22-Jul-99	14-Jul-99 19-OCT-1999	19-OCT-1999	26-Jun-98	26-Nov-97	26-Nov-97	2-Aug-99
58,384	57,500	35,655	57,843	38,119	37,115	34,559	40,351	34,298	34,298	34,298 33,812	33,812	36,111	36,591	34,941	37,037
Neisseria meningitidis	Streptomyces griseus	Streptomyces griseus	Streptomyces griseus	Streptomyces griseus	Choristoneura fumiferana nucleopolyhedrovirus	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens Drosophila melanogaster	Drosophila melanogaster	Homo sapiens	Bacillus subtilis	Bacillus subtilis	Drosophila melanogaster
Table 4 (continued) Neisseria meningitidis dTDP-D-glucose 4,6-dehydratase (rbB), glucose-1-phosphate thymidyl transferase (rbA) and rbC genes, complete cds and UPD-	glucose-4-epimerase (galE) pseudogene. Streptomyces griseus genes for Orf2, Orf3, Orf4, Orf5, AfsA, Orf8, partial and complete cds.	Streptomyces griseus genes for Orf2, Orf3, Orf4, Orf5, AfsA, Orf8, partial and complete cds.	Streptomyces griseus genes for Orf2, Orf3, Orf4, Orf5, AfsA, Orf8, partial and complete cds.	Streptomyces griseus genes for Orf2, Orf3, Orf4, Orf5, AfsA, Orf8, partial and complete cds.	Choristoneura fumiferana nuclear polyhedrosis virus ETM protein homolog, 79 kDa protein homolog, 15 kDa protein homolog and GTA protein homolog genes, complete cds.	HS_3249_B1_A02_MR CIT Approved Human Genomic Sperm Library D Homo Homo sapiens sapiens genomic clone Plate=3249 Col=3 Row=B, genomic survey sequence.	HS_3027_B1_H02_MR CIT Approved Human Genomic Sperm Library D Homo Homo sapiens sapiens genomic clone Plate=3027 Col=3 Row=P, genomic survey sequence.	Homo sapiens protocadherin gamma A3 short form protein (PCDH-gamma-A3) Homo sapiens variable region sequence, complete cds.	Homo sapiens protocadherin gamma A3 (PCDH-gamma-A3) mRNA, complete cds.	Homo sapiens PCDH-gamma-A3 gene, aberrantly spliced, mRNA sequence. Drosophila melanogaster chromosome 2 clone BACR13N02 (D543) RPCI-98 13.N.2 map 36E-36E strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 101 unordered pieces.	Drosophila melanogaster chromosome 2 clone BACR13N02 (D543) RPCI-98 13.N.2 map 36E-36E strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 101 unordered pieces.	CIT-HSP-2280I13.TR CIT-HSP Homo sapiens genomic clone 2280I13, genomic survey sequence.	Bacillus subtilis complete genome (section 9 of 21): from 1598421 to 1807200.	Bacillus subtilis complete genome (section 9 of 21): from 1598421 to 1807200.	Drosophila melanogaster chromosome 2 clone BACR48I10 (D505) RPCI-98 48.I.10 map 49E6-49F8 strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 17 unordered pieces.
L09189	AB011413	AB011413	AB011413	AB011413	U72240	AQ213248	AQ070145	AF152510	AF152323	AF152509 AC006590	127171 AC006590	B99182	Z 99112	299112	174368 AC006247
8905	12070	12070	12070	12070	4783	408	285	2490	4605	2712 127171	127171	415	208780	208780	174368
GB_BA2:NGOCPSPS	GB_BA1:AB011413	GB_BA1:AB011413	GB_BA1:AB011413	GB_BA1:AB011413	GB_VI:CFU72240	GB_GSS10:AQ213248 408	GB_GSS8:AQ070145	GB_PR4:AF152510	GB_PR4:AF152323	GB_PR4:AF152509 GB_HTG4:AC006590	GB_HTG4:AC006590	GB_GSS8:B99182	GB_BA1:BSUB0009	GB_BA1:BSUB0009	GB_HTG2:AC006247
	rxa01571 723		rxa01572 615		rxa01606 2799			rxa01626 468		ra01632 1128			rxa01633 1206		

				Table 4 (continued)			
rxa01695 1623	GB_BA1:CGA224946	2408	AJ224946	Corynebacterium glutamicum DNA for L-Malate:quinone oxidoreductase.	Corynebacterium	100,000	11-Aug-98
	GB_BA1:MTCY24A1	20270	295207	Mycobacterium tuberculosis H37Rv complete genome; segment 124/162.	glutamicum Mycobacterium	38,626	17-Jun-98
	GB_IN1:DMU15974	2994	U15974	Drosophila melanogaster kinesin-like protein (klp68d) mRNA, complete cds.	tuberculosis Drosophila melanogaster	36,783	18-Jul-95
rxa01702 1155	GB_BA1:CGFDA	3371	X17313	S	Corynebacterium glutamicum	99,913	12-Sep-93
	GB_BA1:MTY13E10	35019	Z95324	Mycobacterium tuberculosis H37Rv complete genome; segment 18/162.	Mycobacterium tuberculosis	38,786	17-Jun-98
	GB_BA1:MLCB4	36310	AL023514	Mycobacterium leprae cosmid B4.	Mycobacterium leprae	38,238	27-Aug-99
rxa01743 901	GB_IN2:CELC27H5	35840	U14635	_	Caenorhabditis elegans	35,334	13-Jul-95
٠	GB_EST24:AI167112	629	AI167112	xylem.est.878 Poplar xylem Lambda ZAPII library Populus balsamifera subsp. I frichocama cDNA 5' mRNA sequence	Populus balsamifera subso trichocama	39,222	03-DEC-1998
	GB_GSS9:AQ102635	347	AQ102635	Human Genomic Sperm Library D Homo I=15 Row=L, genomic survey sequence.	Homo sapiens	40,653	27-Aug-98
rxa01744 1662	GB_BA1:MTCY01B2	35938	295554	Mycobacterium tuberculosis H37Rv complete genome; segment 72/162.	Mycobacterium tuberculosis	36,650	17-Jun-98
	GB_GSS1:AF009226	999	AF009226	Mycobacterium tuberculosis cytochrome D oxidase subunit I (appC) gene,	Mycobacterium	63,438	31-Jul-97
				quence.	tuberculosis		
	GB_BA1:SCD78	36224	AL034355		Streptomyces coelicolor	53,088	26-Nov-98
rxa01745 836	GB_BA1:MTCY190	34150	Z70283	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium tuberculosis	62,081	17-Jun-98
	GB_BA1:MLCB22	40281	Z98741		Mycobacterium leprae	61,364	22-Aug-97
	GB_BA2:AE000175	15067		Escherichia coli K-12 MG1655 section 65 of 400 of the complete genome.	Escherichia coli	52,323	12-Nov-98
rxa01758 1140	GB_PR3:HS57G9	113872	Z95116	Human DNA sequence from BAC 57G9 on chromosome 22q12.1 Contains ESTs, CA repeat, GSS.	Homo sapiens	39,209	23-Nov-99
	GB_PL2:YSCH9666	39057	U10397	Saccharomyces cerevisiae chromosome VIII cosmid 9666.	Saccharomyces cerevisiae 40,021	40,021	5-Sep-97
	GB_PL2:YSCH9986	41664	U00027	Saccharomyces cerevisiae chromosome VIII cosmid 9986.	Saccharomyces cerevisiae 34,375	34,375	29-Aug-97
rxa01814 1785	GB_BA1:ABCCELB	2058	L24077	Acetobacter xylinum phosphoglucomutase (celB) gene, complete cds.	Acetobacter xylinus	62,173	21-Sep-94
	GB_BA1:MTCY22D7	31859	Z83866	Mycobacterium tuberculosis H37Rv complete genome; segment 133/162.	Mycobacterium tuberculosis	39,749	17-Jun-98
	GB_BA1:MTCY22D7	31859	Z83866	Mycobacterium tuberculosis H37Rv complete genome; segment 133/162.	Mycobacterium tuberculosis	40,034	17-Jun-98
rxa01851 1809	GB_GSS9:AQ142579	529	AQ142579	HS_2222_B1_H03_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2222 Col=5 Row=P, genomic survey sequence.	Homo sapiens	38,068	24-Sep-98
	GB_IN2:AC005889	108924	108924 AC005889	Drosophila melanogaster, chromosome 2L, region 30A3- 30A6, P1 clones DS06958 and DS03097, complete sequence.	Drosophila melanogaster	36,557	30-OCT-1998
	GB_GSS1:AG008814	637	AG008814	Homo sapiens genomic DNA, 21q region, clone: B137B7BB68, genomic survey Homo sapiens sequence.	Homo sapiens	35,316	7-Feb-99

wc	01/008	844						106						PCT	/ IB 00/009	43
03-OCT-1999		15-Nov-99	03-OCT-1999	13-MAR-1996	17-Jun-98	10-DEC-1996	27-Apr-93 23-Nov-98	18-OCT-1997	17-Jun-98	29-MAR-1999	7-Feb-99 20-Apr-99	2-Jun-99 28-Nov-98	03-DEC-1999	03-DEC-1999	01-OCT-1999	2-Aug-99
36,364		35,334	36,529	59,862	61,949	59,908	36,899 36,899	34,805	37,892	40,413	47,792 43,231	39,306 42,807	36,417	37,667	39,640	32,969
Microcystis aeruginosa		Trypanosoma brucei	Microcystis aeruginosa	Saccharopolyspora	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Homo sapiens Homo sapiens		Mycobacterium tubercutosis	Streptomyces coelicolor	Synechocystis sp. Homo sapiens	Thermotoga maritima Drosophila melanogaster	Homo sapiens	Homo sapiens	Acinetobacter Iwoffii	Drosophila melanogaster
Table 4 (continued) Microcystis aeruginosa DNA polymerase III beta subunit (dnaN) gene, partial	cds; microcystin synthetase gene cluster, complete sequence; Uma1 (uma1), Uma2 (uma2), Uma3 (uma3), Uma4 (uma4), and Uma5 (uma5) genes, complete cds; and Uma6 (uma6) gene, partial cds.	Trypanosoma brucei chromosome II clone RPCi93-25N14, *** SEQUENCING IN PROGRESS ***, 2 unordered pieces.	Microcystis aeruginosa DNA polymerase III beta subunit (dnaN) gene, partial ods; microcystin synthetase gene cluster, complete sequence; Uma1 (uma1), Uma2 (uma2), Uma3 (uma3), Uma4 (uma4), and Uma5 (uma5) genes, complete ode: and Ilma6 (uma6) nane, partial ode	Saccharopolyspora erythraea ferredoxin (fdxA) gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 51/162.	Mycobacterium tuberculosis sequence from clone y348.	Human kidney alpha-2-adrenergic receptor mRNA, complete cds. Homo sapiens alpha2-C4-adrenergic receptor gene, complete cds.	HS-1055-B1-A03-MR abi CIT Human Genomic Sperm Library C Homo sapiens genomic clone Plate=CT 777 Col=5 Row=B, genomic survey sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 69/162.	Streptomyces coelicolor A3(2), glycogen metabolism cluster II.	Synechocystis sp. PCC6803 complete genome, 10/27, 1188886-1311234. RPCI11-49P6,TK:1 RPCI-11 Home sapiens genomic clone RPCI-11-49P6, genomic survay sequence.	Thermotoga maritima section 33 of 136 of the complete genome. GM01044 Sprime GM Drosophila melanogaster ovary BlueScript Drosophila melanogaster cDNA clone GM01044 Sprime. mRNA sequence.	Homo sapiens clone RP3-405J10, *** SEQUENCING IN PROGRESS ***, 102 unordered pieces.	Homo sepients cone RP3-405J10, *** SEQUENCING IN PROGRESS ***, 102 unordered pieces.	Acinetobacter Iwoffii wzc, wzb, wza, weeA, weeB, wceC, wzx, wzy, weeD, weeE, weeC, weeG, weeH, weeI, weeV, galU, ugd, pgi, galE, pgm (partial) and mip (partial) genes (emulsan biosynthetic gene cluster), strain RAG-1.	Drosophila melanogaster chromosome 3 clone BACR02L12 (D753) RPCI-98 02.L.12 map 94B-94C strain y; cn bw sp, *** SEQUENCING IN PROGRESS*** 113 unordered pieces.
AF183408		158889 AC008031	AF183408	M61119	AL010186	AD000020	J03853 U72648	B42200	Z74020	AJ001206	D90908 AQ116291	AE001721 AA567090	303147 AC008147	303147 AC008147	AJ243431	125235 AC008197
63626		158889	63626	3869	37840	40056	1491 4850	387	35377	9184	122349 572	17632 596	303147	303147	26953	125235
GB_BA2:AF183408		GB_HTG5:AC008031	GB_BA2:AF183408	GB_BA1:SERFDXA	GB_BA1:MTV005	GB_BA1:MSGY348	GB_PR1:HUMADRA2C GB_PR4:HSU72648	GB_GSS3:B42200	GB_BA1:MTCY48	GB_BA1:SCO001206	GB_BA1:D90908 GB_GSS9:AQ116291	GB_BA2:AE001721 GB_EST16:AA567090	GB_HTG6:AC008147	GB_HTG6:AC008147	GB_BA2:ALW243431	GB_HTG2:AC008197
rxa01859 1050				xa01865 438			rxa01882 1113		rxa01884 1913		rxa01886 897		rxa01887 1134			ന്മ01888 658

				Table 4 (continued)			
	GB_HTG2:AC008197	125235	125235 AC008197	Drosophila melanogaster chromosome 3 clone BACR02L12 (D753) RPCI-98 02.L.12 map 948-94C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 113 unordered bieces.	Drosophila melanogaster	32,969	2-Aug-99
	GB_EST36:AI881527	598	AI881527	606070C09.y1 606 - Ear tissue cDNA library from Schmidt lab Zea mays cDNA, Zea mays	,Zea mays	43,617	21-Jul-99
7801801 887	GR VI:HIV232971	109	A 1232971	mRNA sequence. Himan imminodeficianty virus type 1 subtype C nef sens patient MD83	Himse in managed and the second	070	05-MAP 1000
		į		the state of the s	virus type 1		2001-1000-00
	GB_PL1:AFCHSE	6158	Y09542	A.fumigatus chsE gene.	Aspergillus fumigatus	37,844	1-Apr-97
	GB_PR3:AF064858	193387	AF064858	Homo sapiens chromosome 21q22.3 BAC 28F9, complete sequence.	Homo sapiens	37,136	2-Jun-98
rxa01895 1051	GB_BA1:CGL238250	1593	AJ238250	Corynebacterium glutamicum ndh gene.	Corynebacterium	100,000	24-Apr-99
		i			glutamicum		
	GB_BA2:AF038423	1376	AF038423	Mycobacterium smegmatis NADH dehydrogenase (ndh) gene, complete cds.	Mycobacterium smegmatis 65,254	65,254	05-MAY-1998
	GB_BA1:MTCY359	36021	Z83859	Mycobacterium tuberculosis H37Rv complete genome; segment 84/162.	Mycobacterium	40,058	17-Jun-98
2007		,			tuberculosis		
xa01901 1383	GB_BA1:MSGB38COS 3/114	3/114	L01095	M. leprae genomic DNA sequence, cosmid B38 bfr gene, complete cds.	Mycobacterium leprae	59,551	6-Sep-94
	GB_BA1:SCE63	37200	AL035640	Streptomyces coelicolor cosmid E63.	Streptomyces coelicolor	39,468	17-MAR-1999
	GB_PR3:AF093117	147216	AF093117	Homo sapiens chromosome 7qtelo BAC E3, complete sequence.	Homo sapiens	39,291	02-OCT-1998
rxa01927 1503	GB_BA1:CGPAN	2164	X96580	C.glutamicum panB, panC & xylB genes.	Corynebacterium	38,384	11-MAY-1999
					glutamicum		
	GB_BA1:ASXYLA	1905	X59466	Arthrobacter Sp. N.R.R.L. B3728 xylA gene for D-xylose(D-glucose) isomerase.	Arthrobacter sp.	56,283	04-MAY-1992
	GB_HTG3:AC009500	176060	176060 AC009500		Homo sapiens	37,593	24-Aug-99
				unordered pieces.			
xa01952 1836	GB_BA2:AE000739	13335	AE000739	Aquifex aeolicus section 71 of 109 of the complete genome.	Aquifex aeolicus	36,309	25-MAR-1998
	GB_EST28:AI519629	612	AI519629	LD39282.5prime LD Drosophila melanogaster embryo pOT2 Drosophila	Drosophila melanogaster	41,941	16-MAR-1999
						1	
	GB_ES121:AA949396	/9/	AA949396	LU282/7.5prime LD Drosophila metanogaster embryo pO12 Drosophila metanogaster cDNA clone LD28277 5prime. mRNA sequence.	Drosophila melanogaster	39,855	25-Nov-98
xa01989 630	GB_BA1:BSPGIA	1822	X16639	Bacillus stearothermophilus pgiA gene for phosphoglucoisomerase isoenzyme	Bacillus	66,292	20-Apr-95
				A (EC 5.3.1.9).	stearothermophilus		
	GB_BA1:BSUB0017	217420	217420 299120	Bacillus subtilis complete genome (section 17 of 21); from 3197001 to 3414420.	Bacillus subtilis	37,255	26-Nov-97
	GB_BA2:AF132127	8452	AF132127	Streptococcus mutans sorbitol phosphoenolpyruvate:sugar phosphotransferase Streptococcus mutans	Streptococcus mutans	63,607	28-Sep-99
				operon, complete sequence and unknown gene.			
xa02026 720	GB_BA1:SXSCRBA	3161		S.xylosus scrB and scrR genes.	Staphylococcus xylosus	67,778	28-Nov-96
	GB_BA1:BSUB0020	212150	Z99123	Bacillus subtilis complete genome (section 20 of 21); from 3798401 to	Bacillus subtilis	35,574	26-Nov-97
	ON TO SOLVE	07015	V72424	4010550. B cubilis generals seeing (225 to 222)		000	
00000	de da la colonia	97070	70124	D.Subulins genomic region (323 to 333).	Dacillus subtilis	079,10	56-NON-2
1xa0z0z8 5z6	GB_BAT:MICIZ3/	2/030	784/27	Mycobacterium tuberculosis H3/KV complete genome; segment 46/162.	Mycobacterium	54,476	17-Jun-98

1	wo	01/00	084	4										108	3										P	CT/II	300/	009	94	3		
	1-Aug-97	29-Apr-99	27-Aug-99	17-Jun-98	14-Aug-97	00 111 90		6-Feb-99		18-Jun-98	08-DEC-1999		19-DEC-1997	04-MAR-1998		12-Jul-99	1-Jul-99		27-OCT-1999		10-DEC-1996	17- lin-98		29-MAR-1999	29-MAY-1997	6-Sep-99	15-Sep-99	111	15-Jun-96	15-Jun-96	01-OCT-1999	17-Jun-98
	9 36,100	e 32,039	61,896	59,964	659'65	900 80	20,00	98,928		39,265	37,453	;	37,711	37,711	_	56,972	40,696		36,795		40,156	55 21B	2 1	38,475	38,586	37,259	38,868	000	51,399	51,399	36,683	262'/9
	Saccharomyces cerevisiae 36,100	, Saccharomyces cerevisiae	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium	tuberculosis	glutamicum	Corynebacterium	glutamicum	Mycobacterium tuberculosis	Homo sapiens	:	Arabidopsis thaliana	Arabidopsis thaliana		Streptomyces coelicolor	Oryza sativa		Homo sapiens		Mycobacterium	(uberculosis Mycobacterium	tuberculosis	Streptomyces coelicolor	Escherichia coli	Homo sapiens	Homo sapiens		Mycobactenum leprae	Mycobacterium leprae	Mus musculus	Mycobacterium tuberculosis
Table 4 (continued)	Saccharomyces cerevisiae chromosome V cosmids 9537, 9581, 9495, 9867, and lambda clone 5888.	V2669 mTn-Sacharon Company Saccharomyces cerevisiae genomic 5', Saccharomyces cerevisiae 32,039	genomic solvey sequence. Mycobacterium lebrae cosmid B1222.	Mycobacterium tuberculosis H37Rv complete genome; segment 147/162.	Mycobacterium tuberculosis rfbA, rhamnose biosynthesis protein (rfbA), and	rmiC genes, complete cds. Branihardenium jardafamantum agas for alaba kabalutaria anid	dehydrogenase.	Corynebacterium glutamicum DNA for 2-oxoglutarate dehydrogenase, complete Corynebacterium	cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 54/162.	Homo sapiens chromosome 17 clone RP11-958E11 map 17, ***	SEQUENCING IN PROGRESS **, 2 ordered pieces.	Arabidopsis thaliana chromosome II BAC T21L14 genomic sequence, complete Arabidopsis thaliana	sequence. Arabidopsis thaliana chromosome II BAC F25118 genomic sequence, complete Arabidopsis thaliana	sequence.	S.coelicolor DNA for glgC gene.	nbxb0074H11r CUGI Rice BAC Library Oryza sativa genomic clone	nbxb0074H11r, genomic survey sequence.	wv27f10.x1 NCI_CGAP_Kid11 Homo sapiens cDNA clone IMAGE:2530795 3'	Similar to W.P.: 105G11.6 CEU48/4: MKNA sequence.	Mycobacterium tuberculosis sequence from clone y151.	Muzakadarium tukaraulasis H37Bu camalata danama: saamaat 50/162		Streptomyces coelicolor A3(2) glycogen metabolism clusterl.	E.coli genomic DNA, Kohara clone #401(51.3-51.6 min.).	wq07d12.x1 NCI_CGAP_Kid12 Homo sapiens cDNA clone IMAGE:2470583 3', Homo sapiens mRNA sequence.	Homo sapiens chromosome 5 clone CITB-H1_2074D8, *** SEQUENCING IN	PROGRESS // unordered pieces.	Mycobacterium leprae cosmid B1551 DNA sequence.	Mycobacterium leprae cosmid B1554 DNA sequence.	Mus musculus transcription factor TBLYM (Tblym) mRNA, complete cds.	Mycobactenum tuberculosis H3/Ry complete genome; segment 98/162.
	U18778	AQ501177	AL049491	Z95390	U43540	E14801		D84102		AL021006	211682 AC005883		AC003033	AC002334		X89733	AQ687350		AW028530		AD000018	773902	300	AJ001205	D90858	A1948595	220665 AC010387	40040	L/8813	L78814	AF093099	Z/0Z83
	66030	167	34714	43401	3453	7307	}	4394		22440	211682		84254	75050		1518	786		444		37036	22514	2	9589	13548	469	220665	07300	36548	36548	2482	34150
	GB_PL2:SCE9537	GB_GSS13:AQ501177	GB BA1:MLCB1222	GB_BA1:MTY13E12	GB_BA1:MTU43540	CO DATICAJEDA		GB_BA1:D84102		GB_BA1:MTV006	GB_HTG7:AC005883	`	GB_PL2:ATAC003033	GB_PL2:ATAC002334		GB_BA1:SCGLGC	GB_GSS4:AQ687350		GB_EST38:AW028530		GB_BA1:MSGY151	CB BA1-MATCV130		GB_BA1:SCO001205	GB_BA1:D90858	GB_EST37:AI948595	GB_HTG3:AC010387	0013310003111100	GB_BA1:MSGB1551CS 36548	GB_BA1:MSGB1554CS 36548	GB_RO:AF093099	GB_BAT:MICTISO
			xa02054 1140			2000 3904	1007 00070801				rxa02061 1617					xa02063 1350					rxa02100 2348				rxa02122 822			400 4000	Mau2140 1200		711	rxaU2142 //4

1	vo (01/00	844								109)							I	PCT/	IB(0/00)943
	24-MAR-1999	5-Aug-99	17-Jun-98	15-Jun-96	15-Jun-96	17-Jun-98	18-Feb-00	18-Feb-00	30-MAR-1999	11-DEC-1996	11-DEC-1996	23-Nov-99	06-DEC-1999	2-Jul-99	17-Feb-95	17-Jun-98	10-Feb-99	31-MAY-1995	4-Jun-98	31-MAY-1995	0	86-IdV-6	26-MAR-1998
	35,058	47,403	57,317	38,159	38,159	55,530	39,659	39,659	39,798	36,436	36,436	36,872	43,175	39,715	100,000	64,331	62,491	38,791	40,044	37,312	7	99,17	40,219
	Streptomyces coelicolor	Pseudomonas putida	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Rhizobium etli	Mus musculus	Corynebacterium dutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Rattus norvegicus	Rhodobacter sphaeroides	Rattus norvegicus		Corynebacterium glutamicum	Mycobacterium avium
Table 4 (continued)	Streptomyces coelicolor cosmid 6G10.	Pseudomonas putida genes for cytochrome o ubiquinol oxidase A-E and 2 ORFs, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium leprae cosmid B1551 DNA sequence.	Mycobacterium leprae cosmid B1554 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Homo sapiens chromosome 19 done CIT978SKB_60E11, *** SEQUENCING IN PROGRESS ***, 246 unordered pieces.	Homo sapiens chromosome 19 clone CIT978SKB_60E11, *** SEQUENCING IN PROGRESS ***, 246 unordered pieces.	tg07a01.x1 NCI_CGAP_CLL1 Homo sapiens cDNA clone IMAGE:2108040 3', mRNA sequence.	zo50e01.r1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone IMAGE:590328 5', mRNA sequence.	zo50e01.r1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone IMAGE:590328 5', mRNA sequence.	Human DNA sequence from clone 277P6 on chromosome 1q25.3-31.2, complete sequence.	Rhizobium etli mutant MB045 RosR-franscriptionally regulated sequence.	uk53g05.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:1972760 5' similar to WP:K11H12.8 CE12160 ;, mRNA sequence.	C.glutamicum glt gene for citrate synthase and ORF.	Mycobacterium tuberculosis H37Rv complete genome; segment 41/162.	Mycobacterium leprae cosmid B57.	Rattus norvegicus dipeptidyl aminopeptidase-related protein (dpp6) mRNA, complete cde	127PB037070197 Cosmid library of chromosome II Rhodobacter sphaeroides	genomic clone 127PB037070197, genomic survey sequence. Rattus norvegicus dipeptldyl aminopeptidase-related protein (dpp6) mRNA,	complete cds.	Coryneoacterium glutamicum gene ior aconitase, partial cus.	Mycobacterium avium strain GIR10 transcriptional regulator (mav81) gene, partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and ferrochelatase (mav272) genes, complete cds.
	AL049497	AB016787	Z70283	L78813	L78814	270283	AC011500	AC011500	AI492095	AA157467	AA157467	AL117347	AF116423	AI789323	X66112	273101	Z99494	M76426	AQ012162	M76426	4000	AB023424	AF002133
	36734	5550	34150	36548	36548	34150	300851	300851	485	376	376	61698	360	574	3013	37630	38029	2819	763	2819	1000	C887	15437
	GB_BA1:SC6G10	GB_BA1:AB016787	GB_BA1:MTCY190	GB_BA1:MSGB1551CS 36548	GB_BA1:MSGB1554CS 36548	GB_BA1:MTCY190	GB_HTG3:AC011500_0 300851	GB_HTG3:AC011500_0 300851 AC011500	GB_EST28:Al492095	GB_EST10:AA157467	GB_EST10:AA157467	GB_PR3:HSBK277P6	GB_BA2:EMB065R075	GB_EST34:AI789323	GB_BA1:CGGLTG	GB_BA1:MTCY31	GB_BA1:MLCB57	GB_RO:RATDAPRP	GB_GSS8:AQ012162	GB_RO:RATDAPRP	707.2000	GB_BA1:AB025424	GB_BA2:AF002133
			rxa02143 1011			rxa02144 1347			rxa02147 1140			rxa02149 1092			rxa02175 1416			rxa02196 816			7007	KaUZZU9 1694	

•	ХO	01/0	0844				1	10									PC	T/IE	300/0	0943	3
	17-Jun-98	3-Apr-99	17-Jun-98	26-MAR-1998	28-OCT-1997	11-Jan-97	26-Jun-99	05-OCT-1992	11-Jun-99	19-Jun-98	2004 100	7661-120-cn	19-Jun-98	6-Jan-98	05-OCT-1992	16 050 1006	6661-030-61	25-Aug-93	15-DEC-1995	25-Aug-93	12-Sep-93
	38,253	960'66	34,937	36,885	48,701	39,119	33,118	99,289	36.951	64,196	00	98,873	61,273	61,772	299'66	000	000,001	100,000	100,000	100,000	99,827
	Mycobacterium	tuberculosis Corynebacterium	glutamicum Mycobacterium tuberculosis	Mycobacterium avium	Rhodobacter capsulatus	Escherichia coli	Homo sapiens	Corynebacterium	Streptomyces coelicolor	Mycobacterium	tuberculosis	Corynebactenum glutamicum	Mycobacterium tuberculosis	Mycobacterium avium	Corynebacterium .	giutamicum	glutamicum	Corynebacterium glutamicum	Corynebacterium	Corynebacterium	glutamicum Corynebacterium glutamicum
Table 4 (continued)	AL021184 Mycobacterium tuberculosis H37Rv complete genome; segment 64/162.	AB025424 Corynebacterium glutamicum gene for aconitase, partial cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 64/162.	Mycobacterium avium strain GIR10 transcriptional regulator (mav81) gene, partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and ferrochelatase (mav272) genes, complete cds.	Rhodobacter capsulatus Calvin cycle carbon dioxide fixation operon: fructose-1,6-/sedoheptulose-1,7-bisphosphate aldolase (cbbA) gene, partial cds, Form Il ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbM) gene, complete cds, and Calvin cycle operon: pentose-5-phosphate-3-epimerase (cbbE), phosphoglycolate phosphatase (cbbZ), and cbbY genes, complete cds.	Escherichia coli minutes 9 to 11 genomic sequence.	Homo sapiens chromosome 18 done hRPK.178_F_10 map 18, *** SEQUENCING IN PROGRESS ***, 11 unordered pieces.	C.glutamicum gap, pgk and tpi genes for glyceraldehyde-3-phosphate, phosphonlynarate kinase and trinsenhonbate isomerase	Streetomyces coelicolor cosmid C54.	Mycobacterium tuberculosis H37Rv complete genome; segment 63/162.		 C.glutamicum gap, pgk and tpi genes for glyceraldenyde-3-pnospnate, phosphoglycerate kinase and triosephosphate isomerase. 	Mycobacterium tuberculosis H37Rv complete genome; segment 63/162.	Mycobacterium avium glyceraldehyde-3-phosphate dehydrogenase homolog	Ciglutamicum gap, pgk and toi genes for glyceraldehyde-3-phosphate,	phosphoglycerate kinase and triosephosphate isomerase.	C.giulaniiculii piiosprioenojpyruvate carboxylase gene, complete cus.	C.glutamicum ppg gene for phosphoenol pyruvate carboxylase.	C.glutamicum phosphoenolpyruvate carboxylase gene, complete cds.	C.glutamicum ppg gene for phosphoenol pyruvate carboxylase.	Corynebacterium glutamicum phosphoenolpyruvate carboxylase gene (EC 4.1.1.31).
	AL021184	AB025424	AL021184	AF002133	U23145	139818 U82664	158858 AC007922	X59403	AL035591	295844	200	A59403	Z95844	U82749	X59403	MOEG40	610CZM	A09073	M25819	A09073	X14234
	32806	2995	32806	15437	2960	139818	158858	3804	30753	40790	,	3804	40790	2530	3804	1007	000	4885	4885	4885	3292
	GB_BA1:MTV007	GB_BA1:AB025424	GB_BA1:MTV007	GB_BA2:AF002133	GB_BA2:RCU23145	GB_BA1:ECU82664	GB_HTG2:AC007922	GB_BA1:CGGAPPGK	GB BA1:SCC54	GB_BA1:MTCY493		GB_BA1:CGGAPFGK	GB_BA1:MTCY493	GB_BA2:MAU82749	GB_BA1:CGGAPPGK	000000000000000000000000000000000000000	טרפיראטטיייאפייפט	GB_PAT:A09073	GB_BA1:CORPEPC	GB_PAT:A09073	GB_BA1:CGPPC
		rxa02213 874			ка02245 780			rxa02256 1125			2000	xa0225/ 1338			xa02258 900				rxa02259 2895		

W	O 01/0	0844	ļ							111										PCT	/IB 00)/0	0943	;
03-DEC-1999	11-Sep-99	11-Sep-99	01-DEC-1999	16-Jul-99	21-Apr-97	17-Jun-98	17-Jun-98	08-MAY-1998	74 070	24-DEC-1397	17-Jun-98	08-MAY-1998	0.00	24-DEC-1997	17-Jun-98	08-MAY-1998	,	24-DEC-1997	29-OCT-1998	20-Sep-91	23-Sep-97	12-Nov-98	20-Sep-91	23-Nov-99
36,039	35,331	35,331	39,747	39,185	35,922	57,677	37,143	100,000	000	000'001	37,363	99,259	000	807'88	41,317	100,000		100,000	52,248	natis 58,460	52- 57,154	38,164	natis 58,929	33,070
Homo sapiens	Homo sapiens	Homo sapiens	Bacteroides fragilis	Homo sapiens	Homo sapiens	Mycobacterium	Mycobacterium tuberculosis	Corynebacterium	glutamicum	corynebacterium glutamicum	Mycobacterium	Corynebacterium	glutamicum	Corynebacterium glutamicum	Mycobacterium tuberculosis	Corynebacterium	glutamicum	Corynebacterium glutamicum	Aspergillus terreus	Mycobacterium smegmatis 58,460	Antarctic bacterium DS2- 3R	Escherichia coli	Mycobacterium smegmatis 58,929	Homo sapiens
Table 4 (continued) Human DNA sequence from clone RP1-94E24 on chromosome 20q12,	complete sequence. Homo sapiens clone NH0295A01, *** SEQUENCING IN PROGRESS ***, 4	unordered pieces. Homo sapiens clone NH0295A01, *** SEQUENCING IN PROGRESS ***, 4	unordered pieces. Bacteroides fragilis 638R polysaccharide B (PS B2) biosynthesis locus,	complete sequence; and unknown genes. HS_5505_A2_C06_SP6 RPCI-11 Human Male BAC Library Homo sapiens	genomic clone Plate=1081 Col=12 Row=E, genomic survey sequence. EST95058 Activated T-cells I Homo sapiens cDNA 5' end, mRNA sequence.	Mycobacterium tuberculosis H37Rv complete genome, segment 49/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.	Corynebacterium glutamicum pyc gene.		Coryneoacterium glutamicum pyruvate carooxytase (pyc) gene, complete cas.	Mycobacterium tuberculosis H37Rv complete genome; segment 131/162.	Corynebacterium glutamicum pyc gene.		Cotynebacterum glutamicum pyruvate carboxytase (pyc) gene, complete cos.	Mycobacterium tuberculosis H37Rv complete genome; segment 131/162.	Corynebacterium glutamicum pyc gene.		Corynebacterium glutamicum pyruvate carboxylase (pyc) gene, complete cds.	Aspergillus terreus pyruvate carboxylase (Pyc) mRNA, complete cds.	M.smegmatis gItA gene for citrate synthase.	Antarctic bacterium DS2-3R citrate synthase (cisy) gene, complete cds.	Escherichia coli K-12 MG1655 section 65 of 400 of the complete genome.	M.smegmatis gItA gene for citrate synthase.	Homo sapiens Chromosome 16 BAC clone CIT987-SKA-113A6 ~complete genomic sequence, complete sequence.
243145 AL050317	AC010091	159526 AC010091	AF125164	AQ744695	AA381925	Z95585	Z 95585	Y09548	A E0305.40	Arusas40	Z83018	Y09548	04.0000	Aruso340	Z 83018	Y09548		AF038548	AF097728	X60513	U85944	AE000175	X60513	AC002299
243145	159526	159526	26443	827	309	22550	22550	3728	2637	202	43523	3728	7000	702	43523	3728		363/	3916	1776	1334	15067	1776	171681
GB_PR3:HSDJ94E24	GB_HTG3:AC010091	GB_HTG3:AC010091	GB_BA2:AF125164	GB_GSS5:AQ744695	GB_EST14:AA381925	GB_BA1:MTCY22G8	GB_BA1:MTCY22G8	GB_BA1:CGPYC	, DAD: AE030640	GB_BAZ:Ar036346	GB_BA1:MTCY349	GB_BA1:CGPYC	07000014	GB_BAZ:AFU30340	GB_BA1:MTCY349	GB_BA1:CGPYC		GB_BAZ:AF038548	GB_PL2:AF097728	GB_BA1:MSGLTA	GB_BA2:ABU85944	GB_BA2:AE000175	GB_BA1:MSGLTA	GB_PR4:HUAC002299 171681 AC002299
ra02288 969			rxa02292 798			rxa02322 511		rxa02326 939				rxa02327 1083				xa02328 1719				rxa02332 1266			rxa02333 1038	

				Table 4 (continued)			
	GB_HTG2:AC007889	127840	127840 AC007889	Drosophila melanogaster chromosome 3 clone BACR48E12 (D695) RPCI-98	Drosophila melanogaster	34,897	2-Aug-99
				48.E.12 map 87A-87B strain y; on bw sp, *** SEQUENCING IN PROGRESS***, 86 unordered pieces.			
rxa02399 1467	GB_BA1:CGACEA	2427	X75504	C.glutamicum aceA gene and thiX genes (partial).	Corynebacterium	100,000	9-Sep-94
	GB_BA1:CORACEA	1905	128760	Corynebacterium glutamicum isocitrate lyase (aceA) gene.	giutamicum Corynebacterium	100,000	10-Feb-95
	CB DAT-143603	2135	113603	Considered 2 from material 118 5430822	glutamicum	307.00	30 90 90
xa02404 2340	GB_BA1:CGACEB	3024	X78491	Cigutamicum (ATCC 13032) aceB gene.	Corynebacterium	99,914	13-Jan-95
		3436	047.00		glutamicum	1 00	9
	GB_BAT.CORACEB	6717	57 /77	Corynebacterium glutarmcum marate symnase (aceb) gene, complete cos.	corynebactenum olutamicum	00/66	cs-unr-e
	GB_BA1:PFFC2	5588	Y11998	P.fluorescens FC2.1, FC2.2, FC2.3c, FC2.4 and FC2.5c open reading frames.	Pseudomonas fluorescens 63,539	63,539	11-Jul-97
rxa02414 870	GB_PR4:AC007102	176258	176258 AC007102	Homo sapiens chromosome 4 clone C0162P16 map 4p16, complete sequence. Homo sapiens	. Homo sapiens	35,069	2-Jun-99
	GB_HTG3:AC011214	183414		Homo sapiens clone 5_C_3, LOW-PASS SEQUENCE SAMPLING.	Homo sapiens	36,885	03-OCT-1999
	GB_HTG3:AC011214	183414	AC011214	Homo sapiens clone 5_C_3, LOW-PASS SEQUENCE SAMPLING.	Homo sapiens	36,885	03-OCT-1999
ra02435 681	GB_BA2:AF101055	7457	AF101055	Clostridium acetobutylicum atp operon, complete sequence.	Clostridium acetobutylicum 39,605	39,605	03-MAR-1999
	GB_OM:RABPKA	4441	J03247	Rabbit phosphorylase kinase (alpha subunit) mRNA, complete cds.	Oryctolagus cuniculus	36,061	27-Apr-93
	GB_OM:RABPLASISM	4458	M54656	Oryctolagus cuniculus phosphorylase kinase alpha subunit mRNA, complete cds.	Oryctolagus cuniculus	36,000	22-Jun-98
ra02440 963	GB_EST14:AA417723	374	AA417723	zv01b12.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:746207 3' similar to contains Alu repetitive element; contains element L1 repetitive planent: mRNA sequence	Homo sapiens	38,770	16-OCT-1997
	GB_EST11:AA215428	303	AA215428	ze95a07.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:683412 3'	Homo sapiens	39,934	13-Aug-97
				similar to contains Alu repetitive element;, mRNA sequence.			
	GB_BA1:MTCY77	22255	295389	Mycobacterium tuberculosis H37Rv complete genome; segment 146/162.	Mycobacterium tubercutosis	38,889	18-Jun-98
rxa02453 876	GB_EST14:AA426336	375	AA426336	zv53g02.s1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:757394 3', mRNA sequence.	Homo sapiens	38,043	16-OCT-1997
	GB_BA1:STMAACC8	1353	M55426	S.fradiae aminoglycoside acetyltransferase (aacC8) gene, complete cds.	Streptomyces fradiae	37,097	05-MAY-1993
	GB_PR3:AC004500	77538	AC004500	Homo sapiens chromosome 5, P1 clone 1076B9 (LBNL H14), complete sequence.	Homo sapiens	33,256	30-MAR-1998
rxa02474 897	GB_BA1:AB009078	2686	AB009078	Brevibacterium saccharolyticum gene for L-2.3-butanediol dehydrogenase,	Brevibacterium	066'96	13-Feb-99
	GB OM:BTU71200	877	U71200	Bos taurus acetoin reductase mRNA, complete cds.	Saccharolyticum Bos faurus	51 659	8-04-97
	GB_EST2:F12685	287	F12685	HSC3DA031 normalized infant brain cDNA Homo sapiens cDNA clone c-	Homo sapiens	41,509	14-Mar-95
00000	200	1	100700	3da03, mRNA sequence		,	
rxa0z460 1779	56_6A1.W1.V012	/970/	ALU2128/	Mycobacterium tuberculosis H3/KV complete genome; segment 13z/16z.	Mycobacterium tuberculosis	36,737	23-Jun-99

112

PCT/IB00/00943

WO 01/00844

				:			
GB_BA1:SC6G10 36734 AL049497 Stre	36734 AL049497	AL049497		Table 4 (continued) Streptomyces coelicolor cosmid 6G10.	Streptomyces coelicolor	35,511	24-MAR-1999
GB_BA1:AP000060 347800 AP000060	347800 AP000060	AP000060		Aeropyrum pernix genomic DNA, section 3/7.	Aeropyrum pernix	48,014	22-Jun-99
GB_BA1:STMPGM 921 M83661	M83661			Streptomyces coelicolor phosphoglycerate mutase (PGM) gene, complete cds. Streptomyces coelicolor	Streptomyces coelicolor	65,672	26-Apr-93
GB_BA1:MTCY20G9 37218 Z77162 N	277162		~	Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	61,436	17-Jun-98
GB_BA1:U00018 42991 U00018 M	U00018		2	Mycobacterium leprae cosmid B2168.	Mycobacterium leprae	37,893	01-MAR-1994
GB_PR2:HS161N10 56075 AL008707 Hun ES1	AL008707		Ξű	Human DNA sequence from PAC 161N10 on chromosome Xq25. Contains EST.	Homo sapiens	37,051	23-Nov-99
GB_HTG2.AC008235 136017 AC008235 Dro. 15.E				Drosophila melanogaster chromosome 3 clone BACR15B19 (D995) RPCI-98 15.B.19 map 94F-95A strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 125 unordered pieces.	Drosophila melanogaster	36,822	2-Aug-99
GB_HTG2.AC008235 136017 AC008235 Dro 15.E 125			15.1 125	Drosophila melanogaster chromosome 3 clone BACR15B19 (D995) RPCI-98 15. B.19 map 94F-95A strain y; cn bw sp. *** SEQUENCING IN PROGRESS*** 125 unordered pieces.	Drosophila melanogaster	36,822	2-Aug-99
GB_BA2:RSU17129 17425 U17129 Rhodo	U17129		Rhoc	Rhodococcus erythropolis ThcA (thcA) gene, complete cds; and unknown genes.	Rhodococcus erythropolis 66,117	66,117	16-Jul-99
GB_BA1:MTV038 16094 AL021933 Myc	AL021933		Myc	Mycobacterium tuberculosis H37Rv complete genome; segment 24/162.	Mycobacterium tuberculosis	65,174	17-Jun-98
GB_BA2:AF068264 3152 AF068264 Pset parti: dehy dehy dehy dehy genti	AF068264		Pseu partiti dehy gene	Pseudomonas aeruginosa quinoprotein ethanol dehydrogenase (exaA)gene, partial cds; cytochrome c550 precursor (exaB), NAD+ dependent acetaldehyde dehydrogenase (exaC), and pyrroloquinoline quinone synthesis A (pqqA) genes, complete cds; and pyrroloquinoline quinone synthesis B (pqqB) gene,		65,448	18-MAR-1999
GB_BA1:BACHYPTP 17057 D29985 Baci	D29985		Back	paries Cos. Bacillus subtilis wapA and orf genes for wall-associated protein and hypothetical profeins.	Bacillus subtilis	53,602	7-Feb-99
GB_BA1:BACHUTWAPÆ8954 D31856 Bac GB_BA1:BSGBGLUC 4290 Z34526 B.st	D31856 Z34526		Bac B.s.	Bacillus subtilis genome containing the hut and wapA loci. B.subtilis (Marburg 168) genes for beta-glucoside permease and beta-	Bacillus subtilis Bacillus subtilis	53,602 53,602	7-Feb-99 3-Jul-95
GB_HTG3:AC008128 335761 AC008128 Ho GB_HTG3:AC008128 335761 AC008128 Ho GB_PL2:AC005292 99053 AC005292 Ge	AC008128 AC008128 AC005292	AC008128 AC008128 AC005292	목동동요	glucosidase. Homo sapiens, *** SEQUENCING IN PROGRESS ***, 106 unordered pieces. Homo sapiens, *** SEQUENCING IN PROGRESS ***, 106 unordered pieces. Genomic sequence for Arabidopsis thaliana BAC F26F24, complete sequence.	Homo sapiens Homo sapiens . Arabidopsis thaliana	34,022 34,022 33,858	22-Aug-99 22-Aug-99 16-Apr-99
GB_IN1:CEF07A11 35692 Z66511 C8 GB_EST32:AI731605 566 AI731605 BP	Z66511 Al731605	92	Ö के 5	Caenorhabditis elegans cosmid F07A11, complete sequence. BNLGHi10201 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to	Caenorhabditis elegans Gossypium hirsutum	36,420 38,095	2-Sep-99 11-Jun-99
GB_IN1:CEF07A11 35692 Z66511 Cat	266511		Z Ö	(Acudeos4) nypometical protein (Acadeos5s mailana), mrava sequence. Caenomabditis elegans cosmid F07A11, complete sequence.	Caenorhabditis elegans	33,707	2-Sep-99

113

PCT/IB00/00943

WO 01/00844

				Table 4 (continued)				,
GB_BA1:MTCY63 389	88	38900	296800	Mycobacterium tuberculosis H37Rv complete genome; segment 16/162.	Mycobacterium tuberculosis	61,677	17-Jun-98	wo (
GB_BA1:MTCY63 38900	389	8	296800	Mycobacterium tuberculosis H37Rv complete genome; segment 16/162.	Mycobacterium tuberculosis	37,170	17-Jun-98	01/00
GB_HTG1:HS24H01 46989	4698	စ္တ	AL121632	Homo sapiens chromosome 21 clone LLNLc116H0124 map 21q21, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	19,820	29-Sep-99	844
GB_BA1:MTV026 23740	2374		AL022076	Mycobacterium tuberculosis H37Rv complete genome; segment 157/162.	Mycobacterium tuberculosis	36,957	24-Jun-99	
GB_BA2:AF026540 1778	1778		AF026540	Mycobacterium tuberculosis UDP-galactopyranose mutase (gif) gene, complete Mycobacterium	Mycobacterium	67,627	30-OCT-1998	
GB_BA2:MTU96128 1200	1200		U96128	cas. Mycobacterium tuberculosis UDP-galactopyranose mutase (gif) gene, complete Mycobacterium cats	Mycobacterium tuberculosis	70,417	25-MAR-1998	
GB_BA1:MTCY130 32514	32514		Z73902	Mycobacterium tuberculosis H37Rv complete genome; segment 59/162.	Mycobacterium tuberculosis	38,532	17-Jun-98	
GB_BA1:MSGY151 37036	37036		AD000018	AD000018 Mycobacterium tuberculosis sequence from clone y151.	Mycobacterium tuberculosis	60,575	10-DEC-1996	
GB_BA1:U00014 36470	36470	_	U00014	Mycobacterium leprae cosmid B1549.	Mycobacterium leprae	57,486	29-Sep-94	
GB_BA1:MTCY130 32514	32514		Z73902	Mycobacterium tuberculosis H37Rv complete genome; segment 59/162.	Mycobacterium tuberculosis	38,018		
GB_BA1:MSGY151 37036	37036		AD000018	Mycobacterium tuberculosis sequence from clone y151.	Mycobacterium tuberculosis	58,510	10-DEC-1996	114
GB_BA1:STMGLGEN 2557	2557		L11647	Streptomyces aureofaciens glycogen branching enzyme (glgB) gene, complete cds.	Streptomyces aureofaciens	57,193	25-MAY-1995	
GB_BA1:CGL133719 1839	1839		AJ133719	Corynebacterium glutamicum yjcc gene, amtR gene and citE gene, partial.	Corynebacterium glutamicum	36,858	12-Aug-99	
GB_IN1:CEM106 39973 GB_EST29:AI547662 377	39973 377		Z46935 AI547662	Caenorhabditis elegans cosmid M106, complete sequence. UI-R-C3-sz-h-03-0-UI.s1 UI-R-C3 Rattus norvegicus cDNA clone UI-R-C3-sz-h- Rattus norvegicus	Caenorhabditis elegans Rattus norvegicus	37,608 50,667	2-Sep-99 3-Jul-99	
GB_BA1:MTV025 121125	121125		121125 AL022121	US-U-UI 3, mrNA sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 155/162.	Mycobacterium	39,187	24-Jun-99	
GB_BA1:PAU49666 4495	4495		U49666	Pseudomonas aeruginosa (orfX), glycerol diffusion facilitator (glpF), glycerol kinase (glpK), and Glp repressor (glpR) genes, complete cds, and (orftk) gene, natrial cds	Pseudomonas aeruginosa	59,273	18-MAY-1997	
GB_BA1:AB015974 1641 GB_EST6:N65787 512	1641 512		AB015974 N65787	Pennar 2005. Pseudomonas tolaasii glpK gene for glycerol kinase, complete cds. 20827 Lambda-PRL2 Arabidopsis thaliana cDNA clone 232B777, mRNA	Pseudomonas tolaasii Arabidopsis thaliana	58,339 39,637	28-Aug-99 5-Jan-98	PCT/I
GB_PL2:T17H3 65839	6583(•	AC005916	sequence. Arabidopsis thatiana chromosome 1 BAC T17H3 sequence, complete sequence.	Arabidopsis thaliana	33,735	5-Aug-99	B 00/0
GB_RO:MMU58105 88871	. 2888		U58105	Mus musculus Btk locus, alpha-D-galactosidase A (Ags), ribosomal protein (L44L), and Bruton's tyrosine kinase (Btk) genes, complete cds.	Mus musculus	35,431	13-Feb-97	0943
GB_PR3:AC004643 43411	43411		AC004643	Homo sapiens chromosome 16, cosmid clone 363E3 (LANL), complete sequence.	Homo sapiens	38,851	01-MAY-1998	

wo	01/00844						115					PCT/I	B 00/0	0943		
01-MAY-1998	1-Jul-98	20-MAY-1993	17-Jun-98	27-Jan-94 26-Apr-93	26-Apr-93	29-Jul-93	27-Jun-97	27-Jun-97	29-DEC-1998	27-Jun-97	15-Nov-99 24-Jun-98	19-Jun-98	27-Jul-98 24-Jun-98	12ful-99	27-Jul-98	20-Feb-99
41,599	40,413	40,735	36,471	38,477 57,371	57,277	57,277	50,746	36,364	37,059	42,149	37,655	38,363	39,444	60 399	36,426	99,640
Homo sapiens	Corynebacterium glutarnicum	Paracoccus denitrificans	Mycobacterium tuberculosis	Myxococcus xanthus Bacillus caldolyticus	Bacillus stearothermophilus	Bacillus	stearotnermopnius Danio rerio	Danio rerio	A Homo sapiens	Danio rerio	Homo sapiens Covnebacterium	glutamicum Mycobacterium	tuberculosis Streptomyces coelicolor Corynebacterium	glutamicum Strentomyces coelicolor	Streptomyces coelicolor	Corynebacterium glutamicum
Table 4 (continued) Homo sapiens chromosome 16, cosmid clone 363E3 (LANL), complete	sequence. Corynebacterium glutamicum N-acetylglutamyphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) argininosuccinate carbamoyltransferase (argH).	Paracoccus denitrificans NADH dehydrogenase (URF4), (NQO8), (NQO9), (URF5), (URF6), (NQO10), (NQO11), (NQO12), (NQO13), and (NQO14) genes, complete cds's; biotin [acetyl-CoA carboxyl] ligase (birA) gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 101/162.	Myxococcus xanthus devR and devS genes, complete cds's. B.caldolyticus lactate dehydrogenase (LDH) gene, complete cds.	B stearothermophilus lct gene encoding L-lactate dehydrogenase, complete cds.	B.stearothermophilus lct gene.	fa09d04.r1 Zebrafish ICRFzfis Danio rerio cDNA clone 11A22 5' similar to TR:G1171163 G1171163 G/T-MISMATCH BINDING PROTEIN.;, mRNA	sequence. fa09d04.r1 Zebrafish ICRFzfis Danio rerio cDNA clone 11A22 5' similar to TR:G1171163 G1171163 G/T-MISMATCH BINDING PROTEIN. ;; mRNA sequence.	ah67d06.s1 Soares_testis_NHT Homo sapiens cDNA clone 1320683 3', mRNA Homo sapiens sequence.	fa09d04.r1 Zebrafish ICRFzfls Danio rerio cDNA clone 11A22 5' similar to TR:G1171163 G1171163 G/T-MISMATCH BINDING PROTEIN.; mRNA	sequerica. Homo sapiens, complete sequence. oDNA encoding alucose-6-phosphate dehydrocenase.	Mycobacterium tuberculosis H37Rv complete genome; segment 63/162.	Streptomyces coelicolor cosmid 5A7. oDNA encoding glucose-6-phosphate dehydrogenase	Strentomyces coelicolor cosmid C22	Streptomyces coelicolor cosmid 5A7.	Corynebacterium glutamicum tkt gene for transketolase, complete cds.
AC004643	AF049897	L02354	Z77163	L19029 M19394	M14788	A06664	AA494626	AA494626	AA758660	AA494626	150172 AC006285 2260 E13655	Z95844	AL031107 E13655	AL 096839	AL031107	AB023377
43411	9196	10425	42861	2452 1147	1361	1350	121	121	233	121	150172	40790	40337	22115	40337	2572
GB_PR3:AC004643	GB_BA2:AF049897	GB_BA1:PDENQOURF 10425	GB_BA1:MTCY339	GB_BA1:MXADEVRS GB_BA1:BACLDH	GB_BA1:BACLDHL	GB_PAT:A06664	GB_EST15:AA494626	GB_EST15:AA494626 121	GB_EST19:AA758660	GB_EST15:AA494626	GB_PR4:AC006285 GB_PAT:E13655	GB_BA1:MTCY493	GB_BA1:SC5A7 GB_PAT:E13655	GB BA1·SCC22	GB_BA1:SC5A7	GB_BA1:AB023377
		rxa02675 1980		rxa02694 1065			rxa02729 844		rxa02730 1161		xa02737 1665		rxa02738 1203			rxa02739 2223

	/00044						8 8 9.	•		86		3 6	FC1/II	00/002	7.5	
04-DEC-1998 01-MAR-1994	2-Aug-99	2-Aug-99	20-Sep-99	12-Jun-98	12-Jun-98	23-Jun-99	04-DEC-1998 01-MAR-1994	26-Jun-99	8-Sep-97	08-OCT-1998	1-Feb-97	01-MAR-1994	9-Apr-97	20-Aug-98 22-Jul-99	22-Jul-99	30-Jun-99
61,573 61,573	37,105	37,105	38,728	33,116	33,116	36,379	48,401 48,401	37,128	38,889	34,321	38,072	34,462	7. 50,445	59,314 37,607	37,607	40,157
Mycobacterium leprae Mycobacterium leprae	Drosophila melanogaster	Drosophila melanogaster	Drosophila melanogaster	Homo sapiens	Homo sapiens	Ephydatia fluviatilis	Mycobacterium leprae Mycobacterium leprae	Homo sapiens	Corynebacterium		Bacillus firmus	Mycobacterium leprae	Pseudomonas syringae pv. 50,445 syringae	Streptomyces coelicolor Homo sapiens	Homo sapiens	Mus musculus
Table 4 (continued) Mycobacterium leprae cosmid L536. Mycobacterium leprae cosmid B1496.	Drosophila melanogaster chromosome 2 clone BACR48I10 (D505) RPCI-98 48.I.10 map 49E6-49F8 strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 17 unordered pieces.		Drosophila melanogaster chromosome 2 clone BACR16P13 (D597) RPCI-98 16.P.13 map 49E-49F strain y; cn bw sp. *** SEQUENCING IN PROGRESS*** 87 unordered pieces.	Homo sapiens clone DJ1022114, *** SEQUENCING IN PROGRESS ***, 14 unordered pieces.	Homo sapiens clone DJ1022I14, *** SEQUENCING IN PROGRESS ***, 14 unordered places.	Ephydatia fluviatilis mRNA for G protein a subunit 4, partial cds.	Mycobacterium leprae cosmid L536. Mycobacterium leprae cosmid B1496.	Homo sapiens clone NH0501O07, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	C.glutamicum betP gene.	HS_3136_A1_A03_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3136 Col=5 Row=A, genomic survey sequence.	Bacillus firmus dppABC operon, dipeptide transporter protein dppA gene, partial cds, and dipeptide transporter proteins dppB and dppC genes, complete cds.	Mycobacterium leprae cosmid B229.	Pseudomonas syringae pv. syringae putative dihydropteroate synthase gene, partial cds, regulatory protein MrsA (mrsA), triose phosphate isomerase (tpiA), transport protein SecG (secG), tRNA-Leu, tRNA-Met, and 15 kDa protein genes, complete cds.	Streptomyces coelicolor cosmid 6G4. Homo sapiens chromosome 17 clone 2020_K_17 map 17, *** SEQUENCING IN PROGRESS ***, 12 unordered pieces.		AV117143 Mus musculus C57BL6J 10-day embryo Mus musculus cDNA clone Mus musculus 2610200J17, mRNA sequence.
Z99125 U00013	174368 AC006247	174368 AC006247	121474 AC007150	129429 AC004951	129429 AC004951	AB006546	Z99125 U00013	AC007401	X93514	AQ148714	U64514	U0000Z0	U85643	AL031317 AC008105	AC008105	AV117143
36224 35881	174368	174368	121474	129429	129429	931	36224 35881	83657	2339	405	3837	36947	4032	41055 91421	91421	222
GB_BA1:MLCL536 GB_BA1:U00013	GB_HTG2:AC006247	GB_HTG2:AC006247	GB_HTG3:AC007150	GB_HTG2:AC004951	GB_HTG2:AC004951	GB_IN1:AB006546	GB_BA1:MLCL536 GB_BA1:U00013	GB_HTG2:AC007401	GB_BA1:CGBETPGEN 2339	GB_GSS9:AQ148714	GB_BA1:BFU64514	GB_BA1:U00020	GB_BA2:PSU85643	GB_BA1:SC6G4 GB_HTG2:AC008105	GB_HTG2:AC008105	GB_EST33:AV117143
	rxa02740 1053			rxa02741 1089			rxa02743 1161		xa02797 1026			rxa02803 680		rxa02821 363		

116

WO 01/00844

PCT/IB00/00943

				Table 4 (continued)			
rxa02829 373	GB_HTG1:HSU9G8	48735	48735 AL008714	Homo sapiens chromosome X clone LL0XNC01-9G8, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	41,595	23-Nov-99
	GB_HTG1:HSU9G8	48735	48735 AL008714	Homo sapiens chromosome X clone LL0XNC01-9G8, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	41,595	23-Nov-99
	GB_PR3:HSU85B5	39550	39550 Z69724	•	Homo sapiens	41,595	23-Nov-99
אכ03216 1141	GB_HTG3:AC008184 151720 AC008184	151720	AC008184	Drosophila melanogaster chromosome 2 clone BACR04D05 (D540) RPCI-98 04.D.5 map 36E5-36F2 strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 27 unordered pieces.	Drosophila melanogaster	39,600	2-Aug-99
	GB_EST15:AA477537 411	11	AA477537	zu36g12.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:740134 5' similar to contains Alu repetitive element; contains element HGR repetitive element;, mRNA sequence.	Homo sapiens	37,260	9-Nov-97
	GB_EST26:AI330662 412	412	AI330662	fa91d08.y1 zebrafish fin day1 regeneration Danio rerio cDNA 5', mRNA sequence.	Danio rerio	37,805	28-DEC-1998
rxs03215 1038	GB_BA1:SC3F9	19830	AL023862	Streptomyces coelicolor cosmid 3F9.	Streptornyces coelicolor A3(2)	48,657	10-Feb-99
	GB_BA1:SLLINC	36270	36270 X79146	S.lincolnensis (78-11) Lincomycin production genes.	Streptomyces lincolnensis	39,430	15-MAY-1996
	GB_HTG5:AC009660	204320	AC009660	GB_HTG5:AC009660 204320 AC009660 Homo sapiens chromosome 15 clone RP11-424J10 map 15, *** SEQUENCING Homo sapiens IN PROGRESS ***, 41 unordered pieces.	Homo sapiens	35,151	04-DEC-1999
ms03224 1288	GB_PR3:AC004076 GB_PL2:SPAC926	41322 /	AC004076 AL110469	Homo sapiens chromosome 19, cosmid R30217, complete sequence. S.pombe chromosome I cosmid c926.	Homo sapiens Schizosaccharomyces	37,788 38,474	29-Jan-98 2-Sep-99
	GB_BA2:AE001081	11473	AE001081	11473 AE001081 Archaeoglobus fulgidus section 26 of 172 of the complete genome.	pombe Archaeoglobus fulgidus	35,871	15-DEC-1997

Exemplification

5

15

20

25

30

Example 1: Preparation of total genomic DNA of *Corynebacterium glutamicum* ATCC 13032

A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose. 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃ 20 mg/l CoCl₂ x 6 H,O, 1 mg/l NiCl, x 6 H,O, 3 mg/l Na,MoO₄ x 2 H,O, 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 µg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

- 119 -

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

25

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see *e.g.*, Fleischman, R.D. *et al.* (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

30 In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia coli* and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between Escherichia coli and Corynebacterium glutamicum

Several Corvnebacterium and Brevibacterium species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — 20 Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuftle vectors described above and to introduce such a hybrid vectors into strains of Corynebacterium glutamicum. Transformation of C. glutamicum can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159306-311), electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

30

(1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient 5 E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

Genes may be overexpressed in C. glutamicum strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) Proc. Natl. Acad. Sci. USA 77(12): 7176-7180). In addition, genes may be overexpressed in C. glutamicum strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) J. Microbiol. Biotechnol. 4: 256-263).

10

25

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in C. glutamicum or other Corynebacterium or Brevibacterium species may be accomplished by well-known methods, such as homologous recombination with genomic region(s), restriction 15 endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon 20 mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones – Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al.

(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) *Mol. Microbiol.* 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

10

25

30

20 Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der Osten *et al.* (1998) *Biotechnology Letters*, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: The Procaryotes, Volume II, Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

- 123 -

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

10

15

25

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

30

20

10

15

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

PCT/IB00/00943 WO 01/00844

- 125 -

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York: Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco: Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford: Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York: Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 10 352-363.

The activity of proteins which bind to DNA can be measured by several wellestablished methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) EMBO J. 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

15

25

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, 20 Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired **Product**

The effect of the genetic modification in C. glutamicum on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (i.e., an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining 30 methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 5 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

15

20

25

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the C. glutamicum cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further 30 purification of the desired compound. If the product is secreted from the C. glutamicum

- 127 -

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

10

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci.* USA 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA

- 128 -

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to SMP nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to SMP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

15

25

30

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention

- 129 -

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

10

15

20

25

30

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995)

Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367;

DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al. (1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) BioEssays 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.* (1995) *Science* 270: 467-470).

10

15

20

25

30

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide synthesis as described by Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

10

15

20

25

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (e.g., during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann *et al.* (1998) *Electrophoresis* 19: 3217-3221; Fountoulakis *et al.* (1998) *Electrophoresis* 19: 1193-1202; Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192; Antelmann *et al.* (1997) *Electrophoresis* 18:

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

10

15

20

25

30

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

- 133 -

Equivalents

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

- 134 -

PCT/IB00/00943

What is claimed:

WO 01/00844

- An isolated nucleic acid molecule from Corynebacterium glutamicum encoding an
 SMP protein, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
 - 2. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes an SMP protein involved in the production of a fine chemical.

10

3. An isolated *Corynebacterium glutamicum* nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

15

4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing,, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

20

30

- 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth in as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- genes set forth in Table 1.
 - 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

- 135 -

- 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
 - 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
- 9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.

15

30

5

- 11. The vector of claim 10, which is an expression vector.
- 12. A host cell transfected with the expression vector of claim 11.
- 20 13. The host cell of claim 12, wherein said cell is a microorganism.
 - 14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
- 25 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
 - 16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.
- 5 18. An isolated SMP polypeptide from *Corynebacterium glutamicum*, or a portion thereof.

10

15

20

30

19. The polypeptide of claim 18, wherein said polypeptide is involved in the production of a fine chemical.

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.

21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.

- 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
- 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.
 - 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those

- 137 -

sequences as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.

- 5 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
 - 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.

10

- 27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
- 15 28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
 - 29. The method of claim 25, wherein said cell is selected from the group consisting of: Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium,
- 20 Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum,
 Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium
 fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes,
 Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum,
 Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium
- 25 ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens, Brevibacterium paraffinolyticum, and those strains set forth in Table 3.
 - 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.

30

31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine

and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 5 32. The method of claim 25, wherein said fine chemical is an amino acid.
 - 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
 - 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.

35. A method for diagnosing the presence or activity of *Corynebacterium*diphtheriae in a subject, comprising detecting the presence of one or more of SEQ ID

10

15

30

subject.

are not or are not encoded by any of the F-designated sequences set forth in Table 1,

thereby diagnosing the presence or activity of Corynebacterium diphtheriae in the

NOs 1 through 782 of the Sequence Listing in the subject, provided that the sequences

- 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the
- 25 Sequence Listing, wherein the nucleic acid molecule is disrupted.
 - 35. 37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs in the Sequence Listing, wherein the nucleic acid molecule comprises one or more nucleic acid modifications from the sequence set forth as odd-numbered SEQ ID NOs of the Sequence Listing s.

- 139 -

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the regulatory region of the nucleic acid molecule is modified
5 relative to the wild-type regulatory region of the molecule.

SEQUENCE LISTING

<pre><110> BASF Aktiengesellschaft <120> CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PROTEINS</pre>	A.
<220> <221> CDS <222> (101)(805) <223> RXS02735	
<400> 1 gaggagette gecacatgga tecagatttg ggetaceage acgeactate eggettgtee 6	0
agcgtcaagc tggaaaccgt ctaaggagaa atacaacact atg gtt gat gta gta 1 Met Val Asp Val Val 1 5	.15
cgc gca cgc gat act gaa gat ttg gtt gca cag gct gcc tcc aaa ttc 1 Arg Ala Arg Asp Thr Glu Asp Leu Val Ala Gln Ala Ala Ser Lys Phe 10 15 20	.63
att gag gtt gtt gaa gca gca act gcc aat aat ggc acc gca cag gta 2 Ile Glu Val Val Glu Ala Ala Thr Ala Asn Asn Gly Thr Ala Gln Val 25 30 35	11
gtg ctc acc ggt ggt ggc gcc ggc atc aag ttg ctg gaa aag ctc agc 2 Val Leu Thr Gly Gly Gly Ala Gly Ile Lys Leu Glu Lys Leu Ser 40 45 50	:59
gtt gat gcg gct gac ctt gcc tgg gat cgc att cat gtg ttc ttc ggc 3 Val Asp Ala Ala Asp Leu Ala Trp Asp Arg Ile His Val Phe Phe Gly 55 60 65	07
gat gag cgc aat gtc cct gtc agt gat tct gag tcc aat gag ggc cag Asp Glu Arg Asn Val Pro Val Ser Asp Ser Glu Ser Asn Glu Gly Gln 70 80 85	55
gct cgt gag gca ctg ttg tcc aag gtt tct atc cct gaa gcc aac att 4 Ala Arg Glu Ala Leu Leu Ser Lys Val Ser Ile Pro Glu Ala Asn Ile 90 95 100	03
cac gga tat ggt ctc ggc gac gta gat ctt gca gag gca gcc cgc gct 4 His Gly Tyr Gly Leu Gly Asp Val Asp Leu Ala Glu Ala Ala Arg Ala 105 110 115	51
tac gaa gct gtg ttg gat gaa ttc gca cca aac ggc ttt gat ctt cac 4 Tyr Glu Ala Val Leu Asp Glu Phe Ala Pro Asn Gly Phe Asp Leu His 120 125 130	99
ctg ctc ggc atg ggt ggc gaa ggc cat atc aac tcc ctg ttc cct cac 5	47

1

135	ly Gly Glu 140	Gly His Ile	Asn Ser Leu 145	Phe Pro His	3
acc gat gca gtc a Thr Asp Ala Val L 150					
tcc cct aag cct c Ser Pro Lys Pro P 1					
cac tcc gca aag c His Ser Ala Lys A 185					
gag gca gct gcg g Glu Ala Ala Ala A 200	la Ile Val				
gct gct gga gct a Ala Ala Gly Ala T 215			•		
gat gct gca gga a Asp Ala Ala Gly A 230	_	cagcgc cagct	ctaac aag		828
<210> 2					
<211> 235 <212> PRT <213> Corynebacte	rium glutam	icum			
<212> PRT	· .		Glu Asp Leu	Val Ala Glr 15	n
<212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V	al Arg Ala . 5	Arg Asp Thr 10		15	
<212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V 1 Ala Ala Ser Lys P	al Arg Ala / 5 he Ile Glu '	Arg Asp Thr 10 Val Val Glu 25	Ala Ala Thr	15 Ala Asn Asr 30	n
<212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V 1 Ala Ala Ser Lys P 20 Gly Thr Ala Gln V	al Arg Ala . 5 he Ile Glu '	Arg Asp Thr 10 Val Val Glu 25 Thr Gly Gly 40	Ala Ala Thr Gly Ala Gly 45	15 Ala Asn Asn 30 Ile Lys Let	1
<212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V 1 Ala Ala Ser Lys P 20 Gly Thr Ala Gln V 35 Leu Glu Lys Leu S	al Arg Ala de Since Ile Glu de Since Ile	Arg Asp Thr 10 Val Val Glu 25 Thr Gly Gly 40	Ala Ala Thr Gly Ala Gly 45 Leu Ala Trp 60	Ala Asn Asn 30 Ile Lys Leu Asp Arg Ile	
<pre><212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V</pre>	al Arg Ala 2 5 he Ile Glu 2 al Val Leu 2 er Val Asp 2 55 ly Asp Glu 2	Arg Asp Thr 10 Val Val Glu 25 Thr Gly Gly 40 Ala Ala Asp Arg Asn Val	Ala Ala Thr Gly Ala Gly 45 Leu Ala Trp 60 Pro Val Ser 75	Ala Asn Asn 30 Ile Lys Leu Asp Arg Ile Asp Ser Glu 80	
<pre><212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V</pre>	al Arg Ala a be al Val Leu ser Val Asp 55 ly Asp Glu 70 ln Ala Arg 685	Arg Asp Thr 10 Val Val Glu 25 Thr Gly Gly 40 Ala Ala Asp Arg Asn Val Glu Ala Leu 90	Ala Ala Thr Gly Ala Gly 45 Leu Ala Trp 60 Pro Val Ser 75 Leu Ser Lys	Ala Asn Asn 30 Ile Lys Leu Asp Arg Ile Asp Ser Glu 80 Val Ser Ile 95	
<pre><212> PRT <213> Corynebacte <400> 2 Met Val Asp Val V</pre>	al Arg Ala a be al Val Leu der Val Asp 55 ly Asp Glu 70 ln Ala Arg 685 le His Gly de la Tyr Glu a	Arg Asp Thr 10 Val Val Glu 25 Thr Gly Gly 40 Ala Ala Asp Arg Asn Val Glu Ala Leu 90 Tyr Gly Leu 105	Ala Ala Thr Gly Ala Gly 45 Leu Ala Trp 60 Pro Val Ser 75 Leu Ser Lys Gly Asp Val	Ala Asn Asn 30 Ile Lys Leu Asp Arg Ile Asp Ser Glu 80 Val Ser Ile 95 Asp Leu Ala 110	

2

Ser Leu Phe Pro His Thr Asp Ala Val Lys Glu Ser Ser Ala Lys Val 150 Ile Ala Val Phe Asp Ser Pro Lys Pro Pro Ser Glu Arg Ala Thr Leu 170 165 Thr Leu Pro Ala Val His Ser Ala Lys Arg Val Trp Leu Leu Val Ser Gly Ala Glu Lys Ala Glu Ala Ala Ala Ile Val Asn Gly Glu Pro Ala Val Glu Trp Pro Ala Ala Gly Ala Thr Gly Ser Glu Glu Thr Val Leu Phe Leu Ala Asp Asp Ala Ala Gly Asn Leu 230 <210> 3 <211> 468 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(445) <223> RXA01626 <400> 3 gcaatagcga atgcgtaatt aaccacactt caaacctagc ccctcaggtg gaggattccg 60 acattaccgt ctgaaaaatt tcatccgtag gctaaagagc atg tcg aaa acg atc 115 Met Ser Lys Thr Ile atc gtg cgc acc gaa att gaa atc cct gga cac cca acc gcc atc cat Ile Val Arg Thr Glu Ile Glu Ile Pro Gly His Pro Thr Ala Ile His 10 atc gca gag atg cag gag ctt ccc cca tct gag gct caa ggc ggc gtg Ile Ala Glu Met Gln Glu Leu Pro Pro Ser Glu Ala Gln Gly Gly Val 25 259 caq atg tgc aaa atg cag cgc att att gaa cta gca gga act gcc gaa Gln Met Cys Lys Met Gln Arg Ile Ile Glu Leu Ala Gly Thr Ala Glu 40 ggg gat gtc gtt act ggt gca ggt gtt att ggc gga tct aat ttc cag 307 Gly Asp Val Val Thr Gly Ala Gly Val Ile Gly Gly Ser Asn Phe Gln 55 ctg aat aac gag cca aat gaa gtg gtt ccc cat cca gat acc tat gcg 355 Leu Asn Asn Glu Pro Asn Glu Val Val Pro His Pro Asp Thr Tyr Ala 70 403 gat ttc ccc gat atc aag gcg gtt gtt atc tcc gcg gag act ttt gaa Asp Phe Pro Asp Ile Lys Ala Val Val Ile Ser Ala Glu Thr Phe Glu 100 90 445 ggc ctg tgg ctg gaa gcg gga gcg aag ttc cct ggg tta aat

Gly Leu Trp Leu Glu Ala Gly Ala Lys Phe Pro Gly Leu Asn 110 468 taaccacttg cagtataccc tag <210> 4 <211> 115 <212> PRT <213> Corynebacterium glutamicum <400> 4 Met Ser Lys Thr Ile Ile Val Arg Thr Glu Ile Glu Ile Pro Gly His Pro Thr Ala Ile His Ile Ala Glu Met Gln Glu Leu Pro Pro Ser Glu Ala Gln Gly Gly Val Gln Met Cys Lys Met Gln Arg Ile Ile Glu Leu Ala Gly Thr Ala Glu Gly Asp Val Val Thr Gly Ala Gly Val Ile Gly Gly Ser Asn Phe Gln Leu Asn Asn Glu Pro Asn Glu Val Val Pro His Pro Asp Thr Tyr Ala Asp Phe Pro Asp Ile Lys Ala Val Val Ile Ser 85 Ala Glu Thr Phe Glu Gly Leu Trp Leu Glu Ala Gly Ala Lys Phe Pro 105 Gly Leu Asn 115 <210> 5 <211> 780 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(757) <223> RXA02245 <400> 5 gccacaccgc cacggcaccg atgcgatgtt tgtggcagtg ctgcgaaaga agtagacctg 60 tgagctaagt ggggtagaca agagggctat gatttagggc atg gca caa cgt act 115 Met Ala Gln Arg Thr 1 cca cta atc gcc cca tcc att ctt gct gct gat ttc tcc cgc tta ggg 163 Pro Leu Ile Ala Pro Ser Ile Leu Ala Ala Asp Phe Ser Arg Leu Gly 10 gag cag gtg ttg gct gtt cct gat gct gac tgg att cac gtc gac atc 211

Glu Gln Val Leu Ala Val Pro Asp Ala Asp Trp Ile His Val Asp Ile

25

atg gac gg Met Asp Gl 4	y His Phe											259
gct gcg gt Ala Ala Va 55			r Asp									307
atc gaa aa Ile Glu As: 70	c cca gaç n Pro Glu	aag tg Lys Tr 75	g gtg p Val	gac Asp	aac Asn	tac Tyr 80	atc Ile	gac Asp	gct Ala	ggc Gly	gcg Ala 85	355
gac tgc at Asp Cys Il		His Va										403
gct aag ta Ala Lys Ty												451
cct gga ac Pro Gly Th 12	r Pro Ile											499
gaa gtc at Glu Val Il 135			l Glu									547
atg cct ga Met Pro Gl 150												595
gag cgc gg Glu Arg Gl	-	Thr Va				_				_	_	643
aag acc at Lys Thr Il												691
ggt tcc gc Gly Ser Al 20	a Val Tyr	Gly Al		Asp			Lys					739
ttg cga gc Leu Arg Al 215			aatgg	atg 1	ttgc	gcac	gc gt	t				780
<210> 6 <211> 219 <212> PRT <213> Cory	nebacteri	um glut	amicu	m								
<400> 6 Met Ala Gl: 1	n Arg Thr		ı Ile	Ala	Pro 10	Ser	Ile	Leu	Ala	Ala 15	Asp	
Phe Ser Are	g Leu Gly 20	Glu Gl	n Val	Leu 25	Ala	Val	Pro	Asp	Ala 30	Asp	Trp	

Ile	His	Val 35	Asp	Ile	Met	Asp	Gly 40	His	Phe	Val	Pro	Asn 45	Leu	Ser	Phe	
Gly	Ala 50	Asp	Ile	Thr	Ala	Ala 55	Val	Asn	Arg	Val	Thr 60	Asp	Lys	Glu	Leu	
Asp 65	Val	His	Leu	Met	Ile 70	Glu	Asn	Pro	Glu	Lys 75	Trp	Val	Asp	Asn	Tyr 80	
Ile	Asp	Ala	Gly	Ala 85	Asp	Cys	Ile	Val	Phe 90	His	Val	Glu	Ala	Thr 95	Glu	
Gly	His	Val	Glu 100	Leu	Ala	Lys	Tyr	Ile 105	Arg	Ser	Lys	Gly	Val 110	Arg	Ala	
Gly	Phe	Ser 115	Leu	Arg	Pro	Gly	Thr 120	Pro	Ile	Glu	Asp	Tyr 125	Leu	Asp	Asp	
Leu	Glu 130	His	Phe	Asp	Glu	Val 135	Ile	Val	Met	Ser	Val 140	Glu	Pro	Gly	Phe	
Gly 145	Gly	Gln	Ser	Phe	Met 150	Pro	Glu	Gln	Leu	Glu 155	Lys	Val	Arg	Thr	Leu 160	
Arg	Lys	Val	Ile	Asp 165	Glu	Arg	Gly	Leu	Asn 170	Thr	Val	Ile	Glu	Ile 175	Asp	
Gly	Gly	Ile	Ser 180	Ala	Lys	Thr	Ile	Lys 185	Gln	Ala	Ala	Asp	Ala 190	Gly	Val	
Asp	Ala	Phe 195	Val	Ala	Gly	Ser	Ala 200	Val	Tyr	Gly	Ala	Glu 205	Asp	Pro	Asn	
Lys	Ala 210	Ile	Gln	Glu	Leu	Arg 215	Ala	Leu	Ala	Gln						
<212 <212)> 7 L> 44 2> DM 3> Co	IA	ebact	ceriu	ım gl	Lutar	nicur	n								
<222	l> C[2> (]		(44 015	12)												
<400 ccaa		ga ç	gtcga	agcta	at tt	tgc	gattt	gtç	gaaco	ccc	aaat	agg	gga a	aaagt	ccggg	60
tato	ccgcc	egt t	gtga	aaaat	ig co	etgca	agtaa	a act	gact	tcc	_		-	tac Tyr		115
					ggt Gly											163
					cac His											211

25 30 35

gat gca gaa gat gac tac cca gcc ttc tgc atc gaa gca gct agc cgc 259
Asp Ala Glu Asp Asp Tyr Pro Ala Phe Cys Ile Glu Ala Ala Ser Arg
40 45 50

aca gta aac gac cca ggc tca ctc ggc atc gtc ctg ggt gga tcc gga 307
Thr Val Asn Asp Pro Gly Ser Leu Gly Ile Val Leu Gly Gly Ser Gly
55 60 65

aac ggc gag cag atc gcc gcc aac aag gtc aag ggt gca cgt tgt gca 355 Asn Gly Glu Gln Ile Ala Ala Asn Lys Val Lys Gly Ala Arg Cys Ala 70 75 80 85

ctt gct tgg tct gtt gaa act gca cgc ctc gcc cgc gag cac aac aat 403 Leu Ala Trp Ser Val Glu Thr Ala Arg Leu Ala Arg Glu His Asn Asn 90 95 100

gcg aac ctc atc ggc atc ggc cgc atg cac tca gag 442 Ala Asn Leu Ile Gly Ile Gly Gly Arg Met His Ser Glu 105 110

<210> 8

<211> 114

<212> PRT

<213> Corynebacterium glutamicum

<400> 8

Met Arg Val Tyr Leu Gly Ala Asp His Ala Gly Phe Glu Thr Lys Asn 1 5 10 15

Ala Ile Ala Glu His Leu Lys Ala His Gly His Glu Val Ile Asp Cys 20 25 30

Gly Ala His Thr Tyr Asp Ala Glu Asp Asp Tyr Pro Ala Phe Cys Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Ala Ala Ser Arg Thr Val Asn Asp Pro Gly Ser Leu Gly Ile Val
50 55 60

Leu Gly Gly Ser Gly Asn Gly Glu Gln Ile Ala Ala Asn Lys Val Lys 65 70 75 80

Gly Ala Arg Cys Ala Leu Ala Trp Ser Val Glu Thr Ala Arg Leu Ala 85 90 95

Arg Glu His Asn Asn Ala Asn Leu Ile Gly Ile Gly Gly Arg Met His $100 \hspace{1cm} 105 \hspace{1cm} 105$

Ser Glu

<210> 9

<211> 2142

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(2119) <223> RXN01312

<400> 9 gcagttgcgt acatcgttcc tgcactggtc ctgatcggca acatcaccat tccgttcgcc 60 atcgctgttg gttggattgc gtaaaggtta ggaagaattt atg agc act cac tct 115 Met Ser Thr His Ser gaa acc acc cgc cca gag ttc atc cac cca gtc tca gtc ctc cca qaq 163 Glu Thr Thr Arg Pro Glu Phe Ile His Pro Val Ser Val Leu Pro Glu 10 gtc tca gct ggt acg gtc ctt gac gct gca gag cca gca ggc gtt ccc 211 Val Ser Ala Gly Thr Val Leu Asp Ala Ala Glu Pro Ala Gly Val Pro 25 acc aaa gat atg tgg gaa tac caa aaa gac cac atg aac ctg gtc tcc Thr Lys Asp Met Trp Glu Tyr Gln Lys Asp His Met Asn Leu Val Ser 40 307 cca ctq aac cqa cqc aaq ttc cqt gtc ctc gtc gtt ggc acc ggc ctg Pro Leu Asn Arg Arg Lys Phe Arg Val Leu Val Val Gly Thr Gly Leu 55 60 355 tee ggt ggt get gea gea gee ete gge gaa ete gga tae gae gte Ser Gly Gly Ala Ala Ala Ala Leu Gly Glu Leu Gly Tyr Asp Val 75 70 aag gcg ttc acc tac cac gac gca cct cgc cgt gcg cac tcc att gct Lys Ala Phe Thr Tyr His Asp Ala Pro Arg Arg Ala His Ser Ile Ala 90 gca cag ggt ggc gtt aac tcc gcc cgc ggc aag aag gta gac aac gac Ala Gln Gly Gly Val Asn Ser Ala Arg Gly Lys Lys Val Asp Asn Asp 105 ggc gca tac cgc cac gtc aag gac acc gtc aag ggc ggc gac tac cgt Gly Ala Tyr Arg His Val Lys Asp Thr Val Lys Gly Gly Asp Tyr Arg 120 gqt cgc gag tcc gac tgc tgg cgt ctc gcc gtc gag tcc gtc cgc gtc 547 Gly Arg Glu Ser Asp Cys Trp Arg Leu Ala Val Glu Ser Val Arg Val 135 140 ate gae cae atg aac gee ate ggt gea cea tte gee ege gaa tae ggt 595 Ile Asp His Met Asn Ala Ile Gly Ala Pro Phe Ala Arg Glu Tyr Gly 150 155 ggc gcc ttg gca acc cgt tcc ttc ggt ggt gtg cag gtc tcc cgt acc Gly Ala Leu Ala Thr Arg Ser Phe Gly Gly Val Gln Val Ser Arg Thr 170 691 tac tac acc cgt gga caa acc gga cag ctg cag ttc tcc acc gca Tyr Tyr Thr Arg Gly Gln Thr Gly Gln Gln Leu Gln Phe Ser Thr Ala 190 185 739 tec qua eta cag ege cag ate cac ete gge tee gta gaa ate tte ace Ser Ala Leu Gln Arg Gln Ile His Leu Gly Ser Val Glu Ile Phe Thr 200 205

cat His	aac Asn 215	gaa Glu	atg Met	gtt Val	gac Asp	gtc Val 220	att Ile	gtc Val	acc Thr	gaa Glu	cgt Arg 225	aac Asn	ggt Gly	gaa Glu	aag Lys	787
						atg Met										835
						gtt Val										883
						ctg Leu										931
						ggc Gly										979
_						ctg Leu 300										1027
						tcg Ser										1075
						aac Asn									Asp	1123
						gag Glu										1171
						tcc Ser										1219
		Gly	Val	Gly	Pro	ctg Leu 380	Asn	Asn								.1267
gac Asp 390	gcc Ala	acc Thr	gag Glu	cgc Arg	ctc Leu 395	gga Gly	cag Gln	gac Asp	acc Thr	atc Ile 400	cgc Arg	gag Glu	cgt Arg	tac Tyr	tcc Ser 405	1315
						gaa Glu										1363
						ccg Pro										1411
						atg Met										1459

ggc gaa gca tcc tg Gly Glu Ala Ser Tr 455	•			
tec etg etc tec go Ser Leu Leu Ser Al 470				
atc cct aac tac ct Ile Pro Asn Tyr Le 49	eu Gly Pro Leu	ctt ggc tcc gag Leu Gly Ser Glu 495	cgt ctg tca gag Arg Leu Ser Glu 500	1603
gat gca cca gaa gc Asp Ala Pro Glu Al 505				
gac cgc ctc atg gg Asp Arg Leu Met Gl 520	•		-	
gga cct gag tac ta Gly Pro Glu Tyr Ty 535			_	
tgt ggc gtt tcc cg Cys Gly Val Ser Ar 550				
atc cgt gcc ctc cg Ile Arg Ala Leu Ar 57	g Asp Asp Phe			
agc acc gat gag at Ser Thr Asp Glu Me 585				
gac tac atc gac ct Asp Tyr Ile Asp Le 600				
gac gag tcc tgt gg Asp Glu Ser Cys Gl 615			Leu Ser Glu Asp	
ggc gaa gca caa cg Gly Glu Ala Gln Ar 630				
gaa cca ggc gag aa Glu Pro Gly Glu As 65	n Gly Thr Phe			
ttc gaa tct gtc cc Phe Glu Ser Val Pr 665	•		taatgaaact	2129
tacacttgag atc				2142

<210> 10 <211> 673

<212> PRT

<213> Corynebacterium glutamicum

<400> 10

Met Ser Thr His Ser Glu Thr Thr Arg Pro Glu Phe Ile His Pro Val 1 5 10 15

Ser Val Leu Pro Glu Val Ser Ala Gly Thr Val Leu Asp Ala Ala Glu 20 25 30

Pro Ala Gly Val Pro Thr Lys Asp Met Trp Glu Tyr Gln Lys Asp His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Met Asn Leu Val Ser Pro Leu Asn Arg Arg Lys Phe Arg Val Leu Val 50 55 60

Val Gly Thr Gly Leu Ser Gly Gly Ala Ala Ala Ala Ala Leu Gly Glu 65 70 75 80

Leu Gly Tyr Asp Val Lys Ala Phe Thr Tyr His Asp Ala Pro Arg Arg $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ala His Ser Ile Ala Ala Gln Gly Gly Val Asn Ser Ala Arg Gly Lys 100 105 110

Lys Val Asp Asn Asp Gly Ala Tyr Arg His Val Lys Asp Thr Val Lys 115 120 125

Gly Gly Asp Tyr Arg Gly Arg Glu Ser Asp Cys Trp Arg Leu Ala Val 130 135 140

Glu Ser Val Arg Val Ile Asp His Met Asn Ala Ile Gly Ala Pro Phe 145 150 155 160

Ala Arg Glu Tyr Gly Gly Ala Leu Ala Thr Arg Ser Phe Gly Gly Val 165 170 175

Gln Val Ser Arg Thr Tyr Tyr Thr Arg Gly Gln Thr Gly Gln Gln Leu 180 185 190

Gln Phe Ser Thr Ala Ser Ala Leu Gln Arg Gln Ile His Leu Gly Ser 195 200 205

Val Glu Ile Phe Thr His Asn Glu Met Val Asp Val Ile Val Thr Glu 210 215 220

Arg Asn Gly Glu Lys Arg Cys Glu Gly Leu Ile Met Arg Asn Leu Ile 225 230 235 240

Thr Gly Glu Leu Thr Ala His Thr Gly His Ala Val Ile Leu Ala Thr 245 250 255

Gly Gly Tyr Gly Asn Val Tyr His Met Ser Thr Leu Ala Lys Asn Ser 260 265 270

Asn Ala Ser Ala Ile Met Arg Ala Tyr Glu Ala Gly Ala Tyr Phe Ala 275 280 285

Ser Pro Ser Phe Ile Gln Phe His Pro Thr Gly Leu Pro Val Asn Ser 290 295 300

Thr Try 305	> Gln	Ser	Lys	Thr 310	Ile	Leu	Met	Ser	Glu 315	Ser	Leu	Arg	Asn	Asp 320
Gly Ar	, Ile	Trp	Ser 325	Pro	Lys	Glu	Pro	Asn 330	Asp	Asn	Arg	Asp	Pro 335	Asn
Thr Ile	Pro	Glu 340	Asp	Glu	Arg	Asp	Tyr 345	Phe	Leu	Glu	Arg	Arg 350	Tyr	Pro
Ala Phe	Gly 355	Asn	Leu	Val	Pro	Arg 360	Asp	Val	Ala	Ser	Arg 365	Ala	Ile	Ser
Gln Gli 370		Asn	Ala	Gly	Leu 375	Gly	Val	Gly	Pro	Leu 380	Asn	Asn	Ala	Ala
Tyr Let 385	r Asp	Phe	Arg	Asp 390	Ala	Thr	Glu	Arg	Leu 395	Gly	Gln	Asp	Thr	Ile 400
Arg Gl	ı Arg	Tyr	Ser 405	Asn	Leu	Phe	Thr	Met 410	Tyr	Glu	Glu	Ala	Ile 415	Gly
Glu Ası) Pro	Tyr 420	Ser	Ser	Pro	Met	Arg 425	Ile	Ala	Pro	Thr	Cys 430	His	Phe
Thr Met	Gly 435	Gly	Leu	Trp	Thr	Asp 440	Phe	Asn	Glu	Met	Thr 445	Ser	Leu	Pro
Gly Let 450		Суѕ	Ala	Gly	Glu 455	Ala	Ser	Trp	Thr	Tyr 460	His	Gly	Ala	Asn
Arg Let	ı Gly	Ala	Asn	Ser 470	Leu	Leu	Ser	Ala	Ser 475	Val	Asp	Gly	Trp	Phe 480
Thr Le	ı Pro	Phe	Thr 485	Ile	Pro	Asn	Tyr	Leu 490	Gly	Pro	Leu	Leu	Gly 495	Ser
Glu Ar	, Leu	Ser 500	Glu	Asp	Ala	Pro	Glu 505	Ala	Gln	Ala	Ala	Ile 510	Ala	Arg
Ala Gli	1 Ala 515	Arg	Ile	Asp	Arg	Leu 520	Met	Gly	Asn	Arg	Pro 525	Glu	Trp	Val
Gly Asp 530		Val	His	Gly	Pro 535	Glu	Tyr	Tyr	His	Arg 540	Gln	Leu	Gly	Asp
Ile Let 545	ı Tyr	Phe	Ser	Cys 550	Gly	Val	Ser	Arg	Asn 555	Val	Glu	Asp	Leu	Gln 560
Asp Gl	/ Ile	Asn	Lys 565	Ile	Arg	Ala	Leu	Arg 570	Asp	Asp	Phe	Trp	Lys 575	Asn
Met Ar	, Ile	Thr 580	Gly	Ser	Thr	Asp	Glu 585	Met	Asn	Gln	Val	Leu 590	Glu	Tyr
Ala Ala	Arg 595	Val	Ala	Asp	Tyr	Ile 600	Asp	Leu	Gly	Glu	Leu 605	Met	Cys	Val
Asp Ala		Asp	Arg	Asp	Glu 615	Ser	Cys	Gly	Ala	His 620	Phe	Arg	Asp	Asp
His Le	ı Ser	Glu	Asp	Gly	Glu	Ala	Gln	Arg	Asp	Asp	Gln	Asn	Trp	Cys

630

625

635

640

Phe Val Ser Ala Trp Glu Pro Gly Glu Asn Gly Thr Phe Val Cys His Ala Glu Pro Leu Phe Phe Glu Ser Val Pro Leu Gln Thr Arg Asn Tyr Lys <210> 11 <211> 1100 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1077) <223> FRXA01312 <400> 11 gag tog ctg cgt aac gac ggc cgc atc tgg toc cct aag gaa ccg aac 48 Glu Ser Leu Arg Asn Asp Gly Arg Ile Trp Ser Pro Lys Glu Pro Asn 10 96 gat aac cgc gat cca aac acc atc cct gag gat gag cgc gac tac ttc Asp Asn Arg Asp Pro Asn Thr Ile Pro Glu Asp Glu Arg Asp Tyr Phe ctg gag cgc cgc tac cca gca ttc ggt aac ctc gtc cca cgt gac gtt 144 Leu Glu Arg Arg Tyr Pro Ala Phe Gly Asn Leu Val Pro Arg Asp Val 192 get tee egt geg ate tee eag eag ate aat get ggt ete ggt gtt gga Ala Ser Arg Ala Ile Ser Gln Gln Ile Asn Ala Gly Leu Gly Val Gly cct ctg aac aac gct gca tac ctg gac ttc cgc gac gcc acc gag cgc 240 Pro Leu Asn Asn Ala Ala Tyr Leu Asp Phe Arg Asp Ala Thr Glu Arg 288 ctc gga cag gac acc atc cgc gag cgt tac tcc aac ctc ttc acc atg Leu Gly Gln Asp Thr Ile Arg Glu Arg Tyr Ser Asn Leu Phe Thr Met 90 tac gaa gag gca att ggc gag gac cca tac tcc agc cca atg cgt att 336 Tyr Glu Glu Ala Ile Gly Glu Asp Pro Tyr Ser Ser Pro Met Arg Ile gca ccg acc tgc cac ttc acc atg ggt ggc ctc tgg act gac ttc aac 384 Ala Pro Thr Cys His Phe Thr Met Gly Gly Leu Trp Thr Asp Phe Asn 120 432 gaa atg acg tca ctc cca ggt ctg ttc tgc gca ggc gaa gca tcc tgg Glu Met Thr Ser Leu Pro Gly Leu Phe Cys Ala Gly Glu Ala Ser Trp 135 480 acc tac cac ggt gca aac cgt ctg ggc gca aac tcc ctg ctc tcc gct Thr Tyr His Gly Ala Asn Arg Leu Gly Ala Asn Ser Leu Leu Ser Ala

145	150	155	160
tcc gtc gat ggc tgc Ser Val Asp Gly Tr _l 16	g ttc acc ctg cca ttc p Phe Thr Leu Pro Phe 5 170	acc atc cct aac tac Thr Ile Pro Asn Tyr 175	ctc 528 Leu
ggc cca ttg ctt ggc Gly Pro Leu Leu Gl 180	c tcc gag cgt ctg tca y Ser Glu Arg Leu Ser 185	gag gat gca cca gaa Glu Asp Ala Pro Glu 190	gca 576 Ala
cag gca gcg att gc Gln Ala Ala Ile Ala 195	g cgt gca cag gct cgc a Arg Ala Gln Ala Arg 200	att gac cgc ctc atg Ile Asp Arg Leu Met 205	ggc 624 Gly
aac cgc cca gag tg Asn Arg Pro Glu Tr 210	g gtc ggt gac aac gtt p Val Gly Asp Asn Val 215	cac gga cct gag tac His Gly Pro Glu Tyr 220	tac 672 Tyr
cac cgc cag ctt gg His Arg Gln Leu Gl 225	c gat atc ctg tac ttc y Asp Ile Leu Tyr Phe 230	tcc tgt ggc gtt tcc Ser Cys Gly Val Ser 235	cga 720 Arg 240
aac gta gaa gac ct Asn Val Glu Asp Le 24	c cag gat ggc atc aac u Gln Asp Gly Ile Asn 5 250	aag atc cgt gcc ctc Lys Ile Arg Ala Leu 255	cgc 768 Arg
gat gac ttc tgg aad Asp Asp Phe Trp Ly 260	g aac atg cgc atc acc s Asn Met Arg Ile Thr 265	ggc agc acc gat gag Gly Ser Thr Asp Glu 270	atg 816 Met
	a tac gca gca cgc gta u Tyr Ala Ala Arg Val 280		
	t gtc gac gcc ctc gac s Val Asp Ala Leu Asp 295		
	c gac cac ctc tcc gaa p Asp His Leu Ser Glu 310		
	g tgc ttc gtc tcc gca p Cys Phe Val Ser Ala 5 330		
	c cac gca gaa cca ctg s His Ala Glu Pro Leu 345		
ctg cag aca agg aa Leu Gln Thr Arg As: 355	c tac aag taatgaaact t n Tyr Lys	acacttgag atc	1100
<210> 12 <211> 359 <212> PRT <213> Corynebacter	ium glutamicum		

<400> 12

Glu 1	Ser	Leu	Arg	Asn 5	Asp	Gly	Arg	Ile	Trp 10	Ser	Pro	Lys	Glu	Pro 15	Asn
Asp	Asn	Arg	Asp 20	Pro	Asn	Thr	Ile	Pro 25	Glu	Asp	Glu	Arg	Asp 30	Tyr	Phe
Leu	Glu	Arg 35	Arg	Tyr	Pro	Ala	Phe 40	Gly	Asn	Leu	Val	Pro 45	Arg	Asp	Val
Ala	Ser 50	Arg	Ala	Ile	Ser	Gln 55	Gln	Ile	Asn	Ala	Gly 60	Leu	Gly	Val	Gly
Pro 65	Leu	Asn	Asn	Ala	Ala 70	Tyr	Leu	Asp	Phe	Arg 75	Asp	Ala	Thr	Glu	Arg 80
Leu	Gly	Gln	Asp	Thr 85	Ile	Arg	Glu	Arg	Tyr 90	Ser	Asn	Leu	Phe	Thr 95	Met
Tyr	Glu	Glu	Ala 100	Ile	Gly	Glu	Asp	Pro 105	Tyr	Ser	Ser	Pro	Met 110	Arg	Ile
Ala	Pro	Thr 115	Суз	His	Phe	Thr	Met 120	Gly	Gly	Leu	Trp	Thr 125	Asp	Phe	Asn
Glu	Met 130	Thr	Ser	Leu	Pro	Gly 135	Leu	Phe	Суз	Ala	Gly 140	Glu	Ala	Ser	Trp
Thr 145	Tyr	His	Gly	Ala	Asn 150	Arg	Leu	Gly	Ala	Asn 155	Ser	Leu	Leu	Ser	Ala 160
Ser	Val	Asp	Gly	Trp 165	Phe	Thr	Leu	Pro	Phe 170	Thr	Ile	Pro	Asn	Tyr 175	Leu
Gly	Pro	Leu	Leu 180	Gly	Ser	Glu	Arg	Leu 185	Ser	Glu	Asp	Ala	Pro 190	Glu	Ala
Gln	Ala	Ala 195	Ile	Ala	Arg	Ala	Gln 200	Ala	Arg	Ile	Asp	Arg 205	Leu	Met	Gly
Asn	Arg 210	Pro	Glu	Trp	Val	Gly 215	Asp	Asn	Val	His	Gly 220	Pro	Glu	Tyr	Tyr
His 225	Arg	Gln	Leu	Gly	Asp 230	Ile	Leu	Tyr	Phe	Ser 235	Cys	Gly	Val	Ser	Arg 240
Asn	Val	Glu	Asp	Leu 245	Gln	Asp	Gly	Ile	Asn 250	Lys	Ile	Arg	Ala	Leu 255	Arg
Asp	Asp	Phe	Trp 260	Lys	Asn	Met	Arg	Ile 265	Thr	Gly	Ser	Thr	Asp 270	Glu	Met
Asn	Gln	Val 275	Leu	Glu	Tyr	Ala	Ala 280	Arg	Val	Ala	Asp	Tyr 285	Ile	Asp	Leu
Gly	Glu 290	Leu	Met	Cys	Val	Asp 295	Ala	Leu	Asp	Arg	Asp 300	Glu	Ser	Cys	Gly
Ala 305	His	Phe	Arg	Asp	Asp 310	His	Leu	Ser	Glu	Asp 315	Gly	Glu	Ala	Gln	Arg 320
Asp	Asp	Gln	Asn	Trp	Cys	Phe	Val	Ser	Ala	Trp	Glu	Pro	Gly	Glu	Asn

325 330 335

Gly Thr Phe Val Cys His Ala Glu Pro Leu Phe Phe Glu Ser Val Pro 340 345 350

Leu Gln Thr Arg Asn Tyr Lys 355

<210> 13 <211> 1593 <212> DNA <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1570)
<223> RXN00231

<400> 13

caggactacc tegacgeegg egecaacttt gteegagteg gtgeegatgt eeagcaacte 60

aacgctgctg gatacgaaaa gtgaaggaaa ataacgcatc atg act att aat gtt 115 Met Thr Ile Asn Val 1 5

ttc gaa cta ctt gtc aaa agt ccc acg ggt cta ctg att ggt gat tcc 163 Phe Glu Leu Leu Val Lys Ser Pro Thr Gly Leu Leu Ile Gly Asp Ser 10 15 20

tgg gtg gaa gca tcc gac ggc ggt act ttc gat gtg gaa aac cca gcg 211
Trp Val Glu Ala Ser Asp Gly Gly Thr Phe Asp Val Glu Asn Pro Ala
25
30
35

acg ggt gaa aca atc gca acg ctc gcg tct gct act tcc gag gat gca 259 Thr Gly Glu Thr Ile Ala Thr Leu Ala Ser Ala Thr Ser Glu Asp Ala 40 45 50

ctg gct gct ctt gat gct gca tgc gct gtt cag gcc gag tgg gct agg 307 Leu Ala Ala Leu Asp Ala Ala Cys Ala Val Gln Ala Glu Trp Ala Arg 55 60 65

atg cca gcg cgc gag cgt tct aat att tta cgc cgc ggt ttt gag ctc 355 Met Pro Ala Arg Glu Arg Ser Asn Ile Leu Arg Arg Gly Phe Glu Leu 70 80 85

gta gca gaa cgt gca gaa gag ttc gcc acc ctc atg acc ttg gaa atg 403 Val Ala Glu Arg Ala Glu Glu Phe Ala Thr Leu Met Thr Leu Glu Met

ggc aag oot ttg gct gaa gct cgc ggc gaa gtc acc tac ggc aac gaa 451 Gly Lys Pro Leu Ala Glu Ala Arg Gly Glu Val Thr Tyr Gly Asn Glu 105 110 115

ttc ctg cgc tgg ttc tct gag gaa gca gtt cgt ctg tat ggc cgt tac 499
Phe Leu Arg Trp Phe Ser Glu Glu Ala Val Arg Leu Tyr Gly Arg Tyr
120 125 130

gga acc aca cca gaa ggc aac ttg cgg atg ctg acc gcc ctc aag cca 547 Gly Thr Thr Pro Glu Gly Asn Leu Arg Met Leu Thr Ala Leu Lys Pro 135 140 145

				ctc Leu										595
				gtc Val 170										643
				cga Arg										691
	_		_	gcc Ala				_		_			_	739
				tct Ser										787
				tcc Ser										835
				gcc Ala 250										883
				ttc Phe										931
				atg Met										979
				cgt Arg										1027
Gly	Arg	Arg	Phe	gct Ala	Āla	Arg	Leu	Ğlu	Glu	Gln	-			 1075
				gtc Val 330										1123
				tcg Ser										1171
				ggc Gly										1219
				acg Thr										1267

'	WU U	1/0094	14												PC1/I	LD00/009
								atc Ile								1315
								acc Thr								1363
								att Ile 430								1411
								tcc Ser								1459
-					-			tcc Ser		-		-	-			1507
								tcc Ser								1555
-	cct Pro		-		tago	catct	ge (ecct	taca	aa at	c					1593
<211 <212)> 14 l> 49 ?> PF 3> Co	90 RT	ebact	ceri	ım gl	Lutan	nicum	n								
)> 14 Thr		Asn	Val 5	Phe	Glu	Leu	Leu	Val 10	Lys	Ser	Pro	Thr	Gly 15	Leu	
Leu	Ile	Gly	Asp 20	Ser	Trp	Val	Glu	Ala 25	Ser	Asp	Gly	Gly	Thr 30	Phe	Asp	
Val	Glu	Asn 35	Pro	Ala	Thr	Gly	Glu 40	Thr	Ile	Ala	Thr	Leu 45	Ala	Ser	Ala	
Thr	Ser 50	Glu	Asp	Ala	Leu	Ala 55	Ala	Leu	Asp	Ala	Ala 60	Cys	Ala	Val	Gln	
Ala 65	Glu	Trp	Ala	Arg	Met 70	Pro	Ala	Arg	Glu	Arg 75	Ser	Asn	Ile	Leu	Arg 80	

Arg Gly Phe Glu Leu Val Ala Glu Arg Ala Glu Glu Phe Ala Thr Leu 85 90 95

Met Thr Leu Glu Met Gly Lys Pro Leu Ala Glu Ala Arg Gly Glu Val 100 105 110

Thr Tyr Gly Asn Glu Phe Leu Arg Trp Phe Ser Glu Glu Ala Val Arg 115 120 125

Leu Tyr Gly Arg Tyr Gly Thr Thr Pro Glu Gly Asn Leu Arg Met Leu 130 $$135\$

Thr 145	Ala	Leu	Lys	Pro	Val 150	Gly	Pro	Cys	Leu	Leu 155	Ile	Thr	Pro	Trp	Asn 160
Phe	Pro	Leu	Ala	Met 165	Ala	Thr	Arg	Lys	Val 170	Ala	Pro	Ala	Ile	Ala 175	Ala
Gly	Cys	Val	Met 180	Val	Leu	Lys	Pro	Ala 185	Arg	Leu	Thr	Pro	Leu 190	Thr	Ser
Gln	Tyr	Phe 195	Ala	Gln	Thr	Met	Leu 200	Asp	Ala	Gly	Leu	Pro 205	Ala	Gly	Val
Leu	Asn 210	Val	Val	Ser	Gly	Ala 215	Ser	Ala	Ser	Ala	Ile 220	Ser	Asn	Pro	Ile
Met 225	Glu	Asp	Asp	Arg	Leu 230	Arg	Lys	Val	Ser	Phe 235	Thr	Gly	Ser	Thr	Pro 240
Val	Gly	Gln	Gln	Leu 245	Leu	Lys	Lys	Ala	Ala 250	Asp	Lys	Val	Leu	Arg 255	Thr
Ser	Met	Glu	Leu 260	Gly	Gly	Asn	Ala	Pro 265	Phe	Ile	Val	Phe	Glu 270	Asp	Ala
Asp	Leu	Asp 275	Leu	Ala	Ile	Glu	Gly 280	Ala	Met	Gly	Ala	Lys 285	Met	Arg	Asn
Ile	Gly 290	Glu	Ala	Cys	Thr	Ala 295	Ala	Asn	Arg	Phe	Leu 300	Val	His ,	Glu	Ser
Val 305	Ala	Asp	Glu	Phe	Gly 310	Arg	Aṛg	Phe	Ala	Ala 315	Arg	Leu	Glu	Glu	Gln 320
Val	Leu	Gly	Asn	Gly 325	Leu	Asp	Glu	Gly	Val 330	Thr	Val	Gly	Pro	Leu 335	Val
Glu	Glu	Lys	Ala 340	Arg	Asp	Ser	Val	Ala 345	Ser	Leu	Val	Asp	Ala 350	Ala	Val
Ala	Glu	Gly 355	Ala	Thr	Val	Leu	Thr 360	Gly	Gly	Lys	Ala	Gly 365	Thr	Gly	Ala
Gly	Tyr 370	Phe	Tyr	Glu	Pro	Thr 375	Val	Leu	Thr	Gly	Val 380	Ser	Thr	Asp	Ala
Ala 385	Ile	Leu	Asn	Glu	Glu 390	Ile	Phe	Gly	Pro	Val 395	Ala	Pro	Ile	Val	Thr 400
Phe	Gln	Thr	Glu	Glu 405	Glu	Ala	Leu	Arg	Leu 410	Ala	Asn	Ser	Thr	Glu 415	Tyr
Gly	Leu	Ala	Ser 420	Tyr	Val	Phe	Thr	Gln 425	Asp	Thr	Ser	Arg	Ile 430	Phe	Arg
Val	Ser	Asp 435	Gly	Leu	Glu	Phe	Gly 440	Leu	Val	Gly	Val	Asn 445	Ser	Gly	Val
Ile	Ser 450	Asn	Ala	Ala	Ala	Pro 455	Phe	Gly	Gly	Val	Lys 460	Gln	Ser	Gly	Met

Gly Arg Glu Gly Gly Leu Glu Gly Ile Glu Glu Tyr Thr Ser Val Gln Tyr Ile Gly Ile Arg Asp Pro Tyr Ala Gly 485 <210> 15 <211> 870 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(847) <223> RXA01311 <400> 15 tegteteege atgggaacca ggegagaatg gaacettegt etgeeacgea gaaceactgt 60 tcttcgaatc tgtcccactg cagacaagga actacaagta atg aaa ctt aca ctt Met Lys Leu Thr Leu 1 gag atc tgg cgt caa gca ggc cca act gcg gaa ggc aag ttc gaa acc 163 Glu Ile Trp Arg Gln Ala Gly Pro Thr Ala Glu Gly Lys Phe Glu Thr 10 15 gtc cag gtt gac gac gcc gtc gcg cag atg tcc atc ctg gag ctg ctt 211' Val Gln Val Asp Asp Ala Val Ala Gln Met Ser Ile Leu Glu Leu Leu 25 35 gac cac gta aac aac aag ttc atc gaa gaa ggc aaa gaa cca ttc gcg 259 Asp His Val Asn Asn Lys Phe Ile Glu Glu Gly Lys Glu Pro Phe Ala 40 ttc gcc tct gac tgc cgc gaa ggc att tgt ggt acc tgt ggt ctc ctc 307 Phe Ala Ser Asp Cys Arg Glu Gly Ile Cys Gly Thr Cys Gly Leu Leu 55 gtg aac ggt cgc cct cac ggc gcc gac cag aac aag cct gcc tgt gcg Val Asn Gly Arg Pro His Gly Ala Asp Gln Asn Lys Pro Ala Cys Ala 70 75 80 403 cag ege etg gte age tae aag gaa gge gae ace ete aag ate gaa eea Gln Arg Leu Val Ser Tyr Lys Glu Gly Asp Thr Leu Lys Ile Glu Pro 90 100 ctg cgt tcc gcc gca tac cca gtg atc aag gac atg gtc gtc gac cgc 451 Leu Arg Ser Ala Ala Tyr Pro Val Ile Lys Asp Met Val Val Asp Arg 105 115 tcc gca ctg gac cgt gtc atg gaa cag ggt ggc tac gtg acc atc aac 499 Ser Ala Leu Asp Arg Val Met Glu Gln Gly Gly Tyr Val Thr Ile Asn 120 130 125 gea ggt acc gea cet gac get gat acc etc cac gtc aac cac gaa acc 547 Ala Gly Thr Ala Pro Asp Ala Asp Thr Leu His Val Asn His Glu Thr 135 140 gea gaa ctc gca ctt gac cac gca gcc tgc atc ggc tgt ggc gca tgt

Ala 150	Glu	Leu	Ala	Leu	Asp 155	His	Ala	Ala	Cys	Ile 160	Gly	Cys	Gly	Ala	Cys 165	
														gca Ala 180		643
														gga Gly		691
cgt Arg	gca Ala	cgt Arg 200	aag Lys	atg Met	gtt Val	gat Asp	gaa Glu 205	atg Met	gaa Glu	acc Thr	aac Asn	ttc Phe 210	gga Gly	cac His	tgc Cys	739
tcc Ser	ctc Leu 215	tac Tyr	ggc Gly	gag Glu	tgc Cys	gca Ala 220	gat Asp	gtc Val	tgc Cys	ccc Pro	gca Ala 225	ggc Gly	atc Ile	cca Pro	ctg Leu	787
														ttc Phe		835
		gac Asp		tag	tctt	taa t	ccaa	agtaa	ag ta	ac						870

<210> 16

<211> 249

<212> PRT

<213> Corynebacterium glutamicum

<400> 16

Met Lys Leu Thr Leu Glu Ile Trp Arg Gln Ala Gly Pro Thr Ala Glu 1 5 10 15

Gly Lys Phe Glu Thr Val Gln Val Asp Asp Ala Val Ala Gln Met Ser 20 25 30

Ile Leu Glu Leu Leu Asp His Val Asn Asn Lys Phe Ile Glu Glu Gly 35 40 45

Lys Glu Pro Phe Ala Phe Ala Ser Asp Cys Arg Glu Gly Ile Cys Gly 50 55 60

Thr Cys Gly Leu Leu Val Asn Gly Arg Pro His Gly Ala Asp Gln Asn 65 70 75 80

Lys Pro Ala Cys Ala Gln Arg Leu Val Ser Tyr Lys Glu Gly Asp Thr 85 90 95

Leu Lys Ile Glu Pro Leu Arg Ser Ala Ala Tyr Pro Val Ile Lys Asp 100 105 110

Met Val Val Asp Arg Ser Ala Leu Asp Arg Val Met Glu Gln Gly Gly 115 120 125

Tyr Val Thr Ile Asn Ala Gly Thr Ala Pro Asp Ala Asp Thr Leu His 130 135 140

Gly Cys Gly Ala Cys Val Ala Ala Cys Pro Asn Gly Ala Ala His Leu 165 170 175	
Phe Thr Gly Ala Lys Leu Val His Leu Ser Leu Leu Pro Leu Gly Lys 180 185 190	
Glu Glu Arg Gly Leu Arg Ala Arg Lys Met Val Asp Glu Met Glu Thr 195 200 205	
Asn Phe Gly His Cys Ser Leu Tyr Gly Glu Cys Ala Asp Val Cys Pro 210 215 220	
Ala Gly Ile Pro Leu Thr Ala Val Ala Ala Val Thr Lys Glu Arg Ala 225 230 235 240	
Arg Ala Ala Phe Arg Gly Lys Asp Asp 245	
<210> 17 <211> 1530 <212> DNA <213> Corynebacterium glutamicum	
<220> <221> CDS	
<222> (101)(1507) <223> RXA01535	
	60
<223> RXA01535 <400> 17	60 115
<223> RXA01535 <400> 17 acccacctca ctctaggggt ggactccagt gtttcgcgac aacacaatga gtaagcttgt gacagccgta tttaattctc agtaagaaat gagtgatttc atg acc gag cag gaa Met Thr Glu Gln Glu	
<223> RXA01535 <400> 17 acccacctca ctctaggggt ggactccagt gtttcgcgac aacacaatga gtaagcttgt gacagccgta tttaattctc agtaagaaat gagtgatttc atg acc gag cag gaa Met Thr Glu Gln Glu 1 5 ttc cgt att gag cac gac acc atg ggt gaa gtg aag gtt cca gca aag Phe Arg Ile Glu His Asp Thr Met Gly Glu Val Lys Val Pro Ala Lys	115
<pre><223> RXA01535 <400> 17 acccacctca ctctaggggt ggactccagt gtttcgcgac aacacaatga gtaagcttgt gacagccgta tttaattctc agtaagaaat gagtgattc atg acc gag cag gaa</pre>	115
<pre><223> RXA01535 <400> 17 acccacctca ctctaggggt ggactccagt gtttcgcgac aacacaatga gtaagcttgt gacagccgta tttaattctc agtaagaaat gagtgatttc atg acc gag cag gaa</pre>	115 163 211
<pre><223> RXA01535 <400> 17 acccacctca ctctaggggt ggactccagt gtttcgcgac aaccaatga gtaagcttgt gacagccgta tttaattctc agtaagaat gagtgatttc atg acc gag cag gaa Met Thr Glu Gln Glu 1</pre>	115 163 211 259

	90	95		100
act tcc tcc aac Thr Ser Ser Asn 105				
gct aac ggc gtt Ala Asn Gly Val 120	gag gtt cac Glu Val His	cca aat gac c Pro Asn Asp H 125	ac gtc aac atg is Val Asn Met 130	ggt cag 499 Gly Gln
tcc tcc aat gac Ser Ser Asn Asp 135	acc ttc cct Thr Phe Pro 140	act gca act c Thr Ala Thr H	ac gtt gct gca is Val Ala Ala 145	acc gaa 547 Thr Glu
gct gct gtc aat Ala Ala Val Asn 150	gac ctc atc Asp Leu Ile 155	Pro Gly Leu L	ag gtt ctg cac ys Val Leu His 60	gag tct 595 Glu Ser 165
ttg gcg aag aag Leu Ala Lys Lys	, , ,		_	
acc cac ctg atg Thr His Leu Met 185				
ggc tac gct cgc Gly Tyr Ala Arg 200				
ctt cct cgc ctt Leu Pro Arg Leu 215				
ggt atc aac acc Gly Ile Asn Thr 230		Phe Gly Gly L		
atc aac ttg acc Ile Asn Leu Thr				
gag gct cag gct Glu Ala Gln Ala 265				
cgc gtt atc gct Arg Val Ile Ala 280				
atg ggc tcc ggc Met Gly Ser Gly 295				
ctg cag cca ggt Leu Gln Pro Gly 310		Met Pro Gly L		
tgt gag acc gct Cys Glu Thr Ala	acc cag gtt Thr Gln Val 330	tcc gct cag g Ser Ala Gln V 335	tt atc ggc aat al Ile Gly Asn	gac gca 1123 Asp Ala 340

Ala Val Ala	ttc tcc Phe Ser 345	ggc ac Gly Th	c cag r Gln	ggc Gly 350	cag Gln	ttc Phe	gag Glu	ctc Leu	aac Asn 355	gtg Val	ttc Phe	1171
atc cca gtg Ile Pro Val 360	atg gct Met Ala	cgc aa Arg As	c gtg n Val 365	ctt Leu	gag Glu	tcc Ser	gct Ala	cgc Arg 370	ctg Leu	ctg Leu	gct Ala	1219
aac act tcc Asn Thr Ser 375			a Thr									1267
aac gag gca Asn Glu Ala 390	cac atg His Met	aag ga Lys Gl 395	g ctc u Leu	gct Ala	gag Glu	tct Ser 400	tca Ser	cct Pro	tcc Ser	atc Ile	gtt Val 405	1315
acc cca ctg Thr Pro Leu												1363
aag act gct Lys Thr Ala	ttg gct Leu Ala 425	gag gg Glu Gl	c aag y Lys	acc Thr 430	atc Ile	cgc Arg	cag Gln	act Thr	gtc Val 435	atc Ile	gat Asp	1411
ttg ggc ttg Leu Gly Leu 440	gtt gat Val Asp	ggc ga	g aag u Lys 445	ctc Leu	acc Thr	gag Glu	gaa Glu	gag Glu 450	ctg Leu	gac Asp	aag Lys	1459
cgc ctc gac	gtt ctt	gct at	g gct	cac	acc	gag	cgc	gag	aac	aag	ttc	1507
Arg Leu Asp 455	Val Leu	Ala Me		His	Thr	Glu	Arg 465	Glu	Asn.	Lys	Phe .	
Arg Leu Asp		4 6		His	Thr	Glu		Glu	Asn.	Lys	Phe .	1530
Arg Leu Asp 455	acccgata	46 aa taa	60	His	Thr	Glu		Glu	Asn	Lys	Phe .	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18	acccgata ebacteri	46 aa taa um glut	amicu	His	Thr	Glu	465				Phe	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18 Met Thr Glu	acccgata ebacteri Gln Glu	46 aa taa um glut	amicu	His m Glu	Thr	Glu	465	Met	Gly	Glu	Phe .	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18 Met Thr Glu	acccgata ebacteri Gln Glu 5	46 aa taa um glut Phe Ar	amicu	His M Glu	His 10	Asp	465	Met	Gly	Glu 15	Phe .	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18 Met Thr Glu 1	ebacteri Gln Glu 5 Ala Lys 20	46 aa taa um glut Phe Ar Ala Le	amicu	His Glu Gln 25	His 10 Ala	Asp	Thr	Met Gln	Gly Arg 30	Glu 15 Ala	Val Val	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18 Met Thr Glu 1 Lys Val Pro Glu Asn Phe	ebacteri Gln Glu 5 Ala Lys 20 Pro Ile	aa taa um glut Phe Ar Ala Le Ser Gl	amicu g Ile u Trp y Arg 40	His Glu Gln 25 Gly	His 10 Ala Leu	Asp Gln	Thr Thr Ser	Met Gln Ala 45	Gly Arg 30 Gln	Glu 15 Ala Ile	Val Val Arg	1530
Arg Leu Asp 455 taaaactaga <210> 18 <211> 469 <212> PRT <213> Coryn <400> 18 Met Thr Glu 1 Lys Val Pro Glu Asn Phe 35 Ala Met Gly	ebacteri Gln Glu 5 Ala Lys 20 Pro Ile Leu Leu	aa taa um glut Phe Ar Ala Le Ser Gl	amicumos Ile u Trp y Arg 40 a Ala	His Glu Gln 25 Gly Cys	His 10 Ala Leu	Asp Gln Glu	Thr Thr Ser Val	Met Gln Ala 45 Asn	Gly Arg 30 Gln Lys	Glu 15 Ala Ile Asp	Val Val Arg	1530

Gln Thr Gly Ser Gly Thr Ser Ser Asn Met Asn Thr Asn Glu Val Ile

100 105 110 Ala Ser Ile Ala Lys Ala Asn Gly Val Glu Val His Pro Asn Asp His 120 Val Asn Met Gly Gln Ser Ser Asn Asp Thr Phe Pro Thr Ala Thr His 135 Val Ala Ala Thr Glu Ala Ala Val Asn Asp Leu Ile Pro Gly Leu Lys 150 Val Leu His Glu Ser Leu Ala Lys Lys Ala Asn Glu Trp Ser Glu Val Val Lys Ser Gly Arg Thr His Leu Met Asp Ala Val Pro Val Thr Leu Gly Gln Glu Phe Gly Gly Tyr Ala Arg Gln Ile Gln Leu Gly Ile Glu Arg Val Glu Ala Thr Leu Pro Arg Leu Gly Glu Leu Ala Ile Gly Gly Thr Ala Ala Gly Thr Gly Ile Asn Thr Ser Ala Asp Phe Gly Gly Lys 230 235 Val Val Ala Glu Leu Ile Asn Leu Thr Asp Val Lys Glu Leu Lys Glu Ala Glu Asn His Phe Glu Ala Gln Ala Ala Arg Asp Ala Leu Val Glu 265 260 Phe Ser Gly Ala Met Arg Val Ile Ala Val Ser Leu Tyr Lys Ile Ala 280 Asn Asp Ile Arg Leu Met Gly Ser Gly Pro Leu Thr Gly Leu Gly Glu 295 Ile Arg Leu Pro Asp Leu Gln Pro Gly Ser Ser Ile Met Pro Gly Lys Val Asn Pro Val Leu Cys Glu Thr Ala Thr Gln Val Ser Ala Gln Val Ile Gly Asn Asp Ala Ala Val Ala Phe Ser Gly Thr Gln Gly Gln Phe Glu Leu Asn Val Phe Ile Pro Val Met Ala Arg Asn Val Leu Glu Ser Ala Arg Leu Leu Ala Asn Thr Ser Arg Val Phe Ala Thr Arg Leu Val 375 Asp Gly Ile Glu Pro Asn Glu Ala His Met Lys Glu Leu Ala Glu Ser 385 Ser Pro Ser Ile Val Thr Pro Leu Asn Ser Ala Ile Gly Tyr Glu Ala

410

Ala Ala Lys Val Ala Lys Thr Ala Leu Ala Glu Gly Lys Thr Ile Arg

425

405

Gln Thr Val Ile Asp Leu Gly Leu Val Asp Gly Glu Lys Leu Thr Glu 435 Glu Glu Leu Asp Lys Arg Leu Asp Val Leu Ala Met Ala His Thr Glu 460 Arg Glu Asn Lys Phe <210> 19 <211> 1164 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1141) <223> RXA00517 <400> 19 qqtcttaqaa ccaqcqtqca ctgatqqcqa ttaaaqqqqq ttqcqcctat acctattqct 60 ggtatacatt tcggtatacc taaaccgaat tgagggattc atg cca gaa gtc act Met Pro Glu Val Thr gto aac goo caa caa cto act gtt cto tgo aca gao ato cto aco aaa Val Asn Ala Gln Gln Leu Thr Val Leu Cys Thr Asp Ile Leu Thr Lys 10 15 act qqa qta cct qca qca qac qcc cat ctt qtc ggt gat agt ttg gtg 211 Thr Gly Val Pro Ala Ala Asp Ala His Leu Val Gly Asp Ser Leu Val 25 30 cag get gat ett tgg ggt cac eec tee cac ggt gtg ett ega etg eet 259 Gln Ala Asp Leu Trp Gly His Pro Ser His Gly Val Leu Arg Leu Pro 40 tgg tat gtg cgc aga ctc cac agt ggc gcg atg act aca cat gca cac 307 Trp Tyr Val Arg Arg Leu His Ser Gly Ala Met Thr Thr His Ala His 55 355 gtg gag gtt ctc aat gat ttg ggt gcc gtg ttg gcg ttg gat gga cac Val Glu Val Leu Asn Asp Leu Gly Ala Val Leu Ala Leu Asp Gly His 70 aat gga atc ggc caa gtt tta gct gat cat gct cgt aaa gaa gca gtg 403 Asn Gly Ile Gly Gln Val Leu Ala Asp His Ala Arg Lys Glu Ala Val 100 act agg gca atg atg ttc ggc atc ggt gcg gtg tcg gtg cgc aac tcc Thr Arg Ala Met Met Phe Gly Ile Gly Ala Val Ser Val Arg Asn Ser 105 499 aat cat ttt gga act gcc atg tac tac acc cgg aaa gcg gca gcg caa Asn His Phe Gly Thr Ala Met Tyr Tyr Thr Arg Lys Ala Ala Ala Gln 120 gga tgt gtt tcc att ctc acc acc aat gca tct ccg gcg atg gcg ccc 547

Gly Cy 13		Ser	Ile	Leu	Thr 140	Thr	Asn	Ala	Ser	Pro 145	Ala	Met	Ala	Pro	
tgg gg Trp Gl 150															595
gca cc Ala Pr															643
gtt gc Val Al															691
cct ga Pro Gl	-	Trp			_	-			-				-		739
gct ga Ala Gl 21	Āla				_	-			_	-					787
tat gc Tyr Al 230	-	_		-	-	-					-				835
tcc ca Ser Gl	-	-		-	-			_		_					883
ggt gg Gly Gl	-			_			-	_	_	_	-			-	931
gat cc Asp Pr		Asp		_	-	-		-	-	_	-		-	_	979
aaa tc Lys Se 29	r Thr														1027
gaa tc Glu Se 310															1075
ttg cc Leu Pr	-		_		-	-	_		-	-	-				1123
cat gt His Va					tgat	ctgo	egc g	gttaa	aacct	g go	ec				1164

<210> 20

<211> 347

<212> PRT

<213> Corynebacterium glutamicum

<400> 20 Met Pro Glu Val Thr Val Asn Ala Gln Gln Leu Thr Val Leu Cys Thr Asp Ile Leu Thr Lys Thr Gly Val Pro Ala Ala Asp Ala His Leu Val Gly Asp Ser Leu Val Gln Ala Asp Leu Trp Gly His Pro Ser His Gly Val Leu Arg Leu Pro Trp Tyr Val Arg Arg Leu His Ser Gly Ala Met Thr Thr His Ala His Val Glu Val Leu Asn Asp Leu Gly Ala Val Leu Ala Leu Asp Gly His Asn Gly Ile Gly Gln Val Leu Ala Asp His Ala Arg Lys Glu Ala Val Thr Arg Ala Met Met Phe Gly Ile Gly Ala Val Ser Val Arg Asn Ser Asn His Phe Gly Thr Ala Met Tyr Tyr Thr Arg 120 Lys Ala Ala Ala Gln Gly Cys Val Ser Ile Leu Thr Thr Asn Ala Ser 135 Pro Ala Met Ala Pro Trp Gly Gly Arg Glu Lys Arg Ile Gly Thr Asn Pro Trp Ser Ile Ala Ala Pro Phe Gly Glu Thr Ala Thr Val Val Asp Ile Ala Asn Thr Ala Val Ala Arg Gly Lys Ile Tyr His Ala Arg Gln Thr Asn Met Pro Ile Pro Glu Thr Trp Ala Ile Thr Ser Glu Gly Ala Pro Thr Thr Asp Pro Ala Glu Ala Ile Asn Gly Val Val Leu Pro Met Ala Gly His Lys Gly Tyr Ala Ile Ser Phe Met Met Asp Val Leu Ser Gly Val Leu Thr Gly Ser Gln His Ser Thr Lys Val His Gly Pro Tyr 250 Asp Pro Thr Pro Pro Gly Gly Ala Gly His Leu Phe Ile Ala Leu Asp Val Ala Ala Phe Arg Asp Pro Gln Asp Phe Asp Asp Ala Leu Ser Asp 280 Leu Val Gly Glu Val Lys Ser Thr Pro Lys Ala Gln Asn Thr Glu Glu Ile Phe Tyr Pro Gly Glu Ser Glu Asp Arg Ala His Arg Lys Asn Ser

315

Ala His Gly Ile Ser Leu Pro Glu Lys Thr Trp Met Glu Leu Gln Glu 325 330 335

Leu Ala Ile Glu Asn His Val Val Thr His Arg 340 345

<210> 21 <211> 1107 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1084) <223> RXA01350 <400> 21 tgcagtatcg tcaagatcac ccaaaactgg tggctgttct cttttaagcg ggatagcatg 60 ggttcttaga ggacccccta caaggattga ggattgttta atg aat tcc ccg cag Met Asn Ser Pro Gln 1 aac gtc tcc acc aag aag gtc acc gtc acc ggc gca gct ggt caa atc 163 Asn Val Ser Thr Lys Lys Val Thr Val Thr Gly Ala Ala Gly Gln Ile 10 15 tet tat tea etg ttg tgg ege ate gee aae ggt gaa gta tte gge ace 211 Ser Tyr Ser Leu Leu Trp Arg Ile Ala Asn Gly Glu Val Phe Gly Thr 25 30 gac acc cct gta gaa ctg aaa ctt ctg gag atc cct cag gct ctt ggc 259 Asp Thr Pro Val Glu Leu Lys Leu Glu Ile Pro Gln Ala Leu Gly 45 40 ggg gca gag ggt gtg gct atg gaa ctt ctg gat tct gcc ttc ccc ctc 307 Gly Ala Glu Gly Val Ala Met Glu Leu Leu Asp Ser Ala Phe Pro Leu 55 ctg cga aac atc acc acc gcg gat gcc aat gag gca ttc gac ggc 355 Leu Arg Asn Ile Thr Ile Thr Ala Asp Ala Asn Glu Ala Phe Asp Gly 70 75 80 get aat geg geg ttt ttg gte ggt geg aag eet ege gga aaa gge gaa 403 Ala Asn Ala Ala Phe Leu Val Gly Ala Lys Pro Arg Gly Lys Gly Glu 90 100 451 gag cgc gca gat ttg ctg gct aac ggc aag att ttc gga cct caa Glu Arg Ala Asp Leu Leu Ala Asn Asn Gly Lys Ile Phe Gly Pro Gln 105 115 499 ggt aaa gct atc aat gac aac gcc gca gat gac att cgt gtc cta gtt Gly Lys Ala Ile Asn Asp Asn Ala Ala Asp Asp Ile Arg Val Leu Val 120 125 547 gtt gga aac cca gcg aac acc aac gcg ttg att gct tca gct gcg gcc Val Gly Asn Pro Ala Asn Thr Asn Ala Leu Ile Ala Ser Ala Ala Ala

29

595

140

cca gat gtt cca gca tcc cgc ttc aac gca atg atg cgc ctt gat cac

Pro Asp Val 150	Pro Ala Ser 155	Arg Phe Asn	Ala Met Met 160	Arg Leu Asp	His 165
aac cgt gcg Asn Arg Ala	atc tcc cag Ile Ser Gln 170	ctg gcc acc Leu Ala Thr	aag ctt ggc Lys Leu Gly 175	cgt gga tct Arg Gly Ser 180	gcg 643 Ala
gaa ttt aac Glu Phe Asn	aac att gtg Asn Ile Val 185	gtc tgg gga Val Trp Gly 190	aat cac tcc Asn His Ser	gca acc cag Ala Thr Gln 195	ttc 691 Phe
	acc tac gca Thr Tyr Ala				
	gat tgg tat Asp Trp Tyr				
cgt ggc gct Arg Gly Ala 230	gaa atc att Glu Ile Ile 235	gag gtc cgt Glu Val Arg	gga aag tct Gly Lys Ser 240	tct gca gct Ser Ala Ala	tct 835 Ser 245
	tct gcg att Ser Ala Ile 250				
	tcc tct gcg Ser Ser Ala 265				
	att ttt gtc Ile Phe Val				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gtt gaa ggc Val Glu Gly		_		•
	aat gct cag Asn Ala Gln 315				_
gac ttg cto Asp Leu Leu	: taatctttaa o	cgcatgactt co			1107

<210> 22

<211> 328

<212> PRT

<213> Corynebacterium glutamicum

<400> 22

Met Asn Ser Pro Gln Asn Val Ser Thr Lys Lys Val Thr Val Thr Gly
1 10 15

Ala Ala Gly Gln Ile Ser Tyr Ser Leu Leu Trp Arg Ile Ala Asn Gly
20 25 30

Glu Val Phe Gly Thr Asp Thr Pro Val Glu Leu Lys Leu Leu Glu Ile

40 45 35 Pro Gln Ala Leu Gly Gly Ala Glu Gly Val Ala Met Glu Leu Leu Asp Ser Ala Phe Pro Leu Leu Arg Asn Ile Thr Ile Thr Ala Asp Ala Asn Glu Ala Phe Asp Gly Ala Asn Ala Ala Phe Leu Val Gly Ala Lys Pro Arg Gly Lys Gly Glu Glu Arg Ala Asp Leu Leu Ala Asn Asn Gly Lys Ile Phe Gly Pro Gln Gly Lys Ala Ile Asn Asp Asn Ala Ala Asp Asp Ile Arg Val Leu Val Val Gly Asn Pro Ala Asn Thr Asn Ala Leu Ile Ala Ser Ala Ala Ala Pro Asp Val Pro Ala Ser Arg Phe Asn Ala Met Met Arg Leu Asp His Asn Arg Ala Ile Ser Gln Leu Ala Thr Lys Leu Gly Arg Gly Ser Ala Glu Phe Asn Asn Ile Val Val Trp Gly Asn His 185 Ser Ala Thr Gln Phe Pro Asp Ile Thr Tyr Ala Thr Val Gly Gly Glu Lys Val Thr Asp Leu Val Asp His Asp Trp Tyr Val Glu Glu Phe Ile Pro Arg Val Ala Asn Arg Gly Ala Glu Ile Ile Glu Val Arg Gly Lys 235 Ser Ser Ala Ala Ser Ala Ala Ser Ser Ala Ile Asp His Met Arg Asp Trp Val Gln Gly Thr Glu Ala Trp Ser Ser Ala Ala Ile Pro Ser Thr 265 260 Gly Ala Tyr Gly Ile Pro Glu Gly Ile Phe Val Gly Leu Pro Thr Val 280 Ser Arg Asn Gly Glu Trp Glu Ile Val Glu Gly Leu Glu Ile Ser Asp 295

Phe Gln Arg Ala Arg Ile Asp Ala Asn Ala Gln Glu Leu Gln Ala Glu

Arg Glu Ala Val Arg Asp Leu Leu 325

<210> 23

<211> 1092

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1069) <223> RXA02149 <400> 23 ttgcagagtg aaccacgatg atggttggac agctgttgat agctaatctt tgaaagatta 60 aattcaccta aatcctgtgt agaacgcgag gggcactctt atg cca caa aaa ccg 115 Met Pro Gln Lys Pro gec agt ttc geg gtg ggc ttt gac atc ggc ggc acc aac atg cga gcc 163 Ala Ser Phe Ala Val Gly Phe Asp Ile Gly Gly Thr Asn Met Arg Ala 10 ggg ctt gtc gac gaa tcc ggg cgc atc gtg acc agt ttg tcg gcg ccg 211 Gly Leu Val Asp Glu Ser Gly Arg Ile Val Thr Ser Leu Ser Ala Pro 30 tcg ccg cgc acg acg cag gca atg gaa cag ggg att ttt gat cta gtc 259 Ser Pro Arg Thr Thr Gln Ala Met Glu Gln Gly Ile Phe Asp Leu Val 40 45 gaa cag ctc aag gcc gaa tac ccg gtt ggt gct gtg gga ctt gcc gtc 307 Glu Gln Leu Lys Ala Glu Tyr Pro Val Gly Ala Val Gly Leu Ala Val 60 gcg gga ttt ttg gat cct gag tgc gag gtt gtt cga ttt gcc ccg cac 355 Ala Gly Phe Leu Asp Pro Glu Cys Glu Val Val Arg Phe Ala Pro His ctt cct tgg cgc gat gag cca gtg cgt gaa aag ttg gaa aac ctt ttg 403 Leu Pro Trp Arq Asp Glu Pro Val Arq Glu Lys Leu Glu Asn Leu Leu 90 95 ggc ctg cct gtt cgt ttg gaa cat gat gcc aac tca gca gcg tgg ggt 451 Gly Leu Pro Val Arg Leu Glu His Asp Ala Asn Ser Ala Ala Trp Gly 110 gag cat cgt ttt ggt gca gct caa ggc gct gac aac tgg gtt ttg ttg 499 Glu His Arg Phe Gly Ala Ala Gln Gly Ala Asp Asn Trp Val Leu Leu 125 gca ctc ggc act gga att ggt gca gcg ctg att gaa aaa ggc gaa att 547 Ala Leu Gly Thr Gly Ile Gly Ala Ala Leu Ile Glu Lys Gly Glu Ile 140 tac cgt ggt gca tat ggc acg gca cca gaa ttt ggt cat ttg cgt gtt 595 Tyr Arg Gly Ala Tyr Gly Thr Ala Pro Glu Phe Gly His Leu Arg Val gtt cgt ggc gga cgc gca tgt gcg tgt ggc aaa gaa ggc tgc ctg gag 643 Val Arg Gly Gly Arg Ala Cys Ala Cys Gly Lys Glu Gly Cys Leu Glu 175 cgt tac tgt tcc ggt act gcc ttg gtt tac act gcg cgt gaa ttg gct 691 Arg Tyr Cys Ser Gly Thr Ala Leu Val Tyr Thr Ala Arg Glu Leu Ala 190

_					-		-		-		-	-	atc Ile		-	739
													gcg Ala			787
													gag Glu			835
	_		-				-	-	_		-		ggc Gly	-		883
					-			-	-	-			ttg Leu 275	-	_	931
-	-						_		_		•		tat Tyr	-		979
													ggc Gly			1027
					gct Ala 315											1069
tago	gtgtt	tt t	cggt	gggd	et go	eg .										1092
<210)> 24	1														

<210> 24

<211> 323

<212> PRT

<213> Corynebacterium glutamicum

<400> 24

Met Pro Gln Lys Pro Ala Ser Phe Ala Val Gly Phe Asp Ile Gly Gly 1 5 10 15

Thr Asn Met Arg Ala Gly Leu Val Asp Glu Ser Gly Arg Ile Val Thr 20 25 30

Ser Leu Ser Ala Pro Ser Pro Arg Thr Thr Gln Ala Met Glu Gln Gly 35 40 45

Ile Phe Asp Leu Val Glu Gln Leu Lys Ala Glu Tyr Pro Val Gly Ala 50 55 60

Val Gly Leu Ala Val Ala Gly Phe Leu Asp Pro Glu Cys Glu Val Val 65 70 75 80

Arg Phe Ala Pro His Leu Pro Trp Arg Asp Glu Pro Val Arg Glu Lys
85 90 95

Leu Glu Asn Leu Leu Gly Leu Pro Val Arg Leu Glu His Asp Ala Asn 100 105 110

Ser	Ala	Ala 115	Trp	Gly	Glu	His	Arg 120	Phe	Gly	Ala	Ala	Gln 125	Gly	Ala	Asp	
Asn	Trp 130	Val	Leu	Leu	Ala	Leu 135	Gly	Thr	Gly	Ile	Gly 140	Ala	Ala	Leu	Ile	
Glu 145	Lys	Gly	Glu	Ile	Tyr 150	Arg	Gly	Ala	Tyr	Gly 155	Thr	Ala	Pro	Glu	Phe 160	
Gly	His	Leu	Arg	Val 165	Val	Arg	Gly	Gly	Arg 170	Ala	Cys	Ala	Cys	Gly 175	Lys	
Glu	Gly	Cys	Leu 180	Glu	Arg	Tyr	Cys	Ser 185	Gly	Thr	Ala	Leu	Val 190	Tyr	Thr	
Ala	Arg	Glu 195	Leu	Ala	Ser	His	Gly 200	Ser	Phe	Arg	Asn	Ser 205	Gly	Leu	Phe	
Asp	Lys 210	Ile	Lys	Ala	Asp	Pro 215	Asn	Ser	Ile	Asn	Gly 220	Lys	Thr	Ile	Thr	
Ala 225	Ala	Ala	Arg	Gln	Glu 230	Asp	Pro	Leu	Ala	Leu 235	Ala	Val	Leu	Glu	Asp 240	
Phe	Ser	Glu	Trp	Leu 245	Gly	Glu	Thr	Leu	Ala 250	Ile	Ile	Ala	Asp	Val 255	Leu	
Asp	Pro	Gly	Met 260	Ile	Ile	Ile	Gly	Gly 265	Gly	Leu	Ser	Asn	Ala 270	Ala	Asp	
Leu	Tyr	Leu 275	Asp	Arg	Ser	Val	Asn 280	His	Tyr	Ser	Thr	Arg 285	Ile	Val	Gly	•
Ala	Gly 290	Tyr	Arg	Pro	Leu	Ala 295	Arg	Val	Ala	Thr	Ala 300	Gln	Leu	Gly	Ala	
Asp 305	Ala	Gly	Met	Ile	Gly 310	Val	Ala	Asp	Leu	Ala 315	Arg	Arg	Ser	Val	Val 320	
Glu	Ala	Asn														
<213 <213 <213 <220 <221)> L> C[785 NA oryne OS	ebact		om g]	utan	nicum	3								
<223	3> R)	(A018				\									·~	
)> 25 caago		ccta	ctcc	g to	gaatt	ttgc	cgt	atct	cgt	gcgo	cacaa	att ç	gcttt	tgagg	60
ggaa	agato	gaa q	gagaa	agta	ıt to	ggtgt	ttta	agg	gagca	aac		gca Ala				115

	Gly ggg															163
_	acc Thr	_				-	_	-	-					-	_	211
	gtc Val															259
-	ttc Phe 55			-			_	-			_			-	_	307
	cgc Arg															355
-	gat Asp	-		-	_		_			_		-				403
	ctc Leu															451
	acc Thr	_	_		_							-			_	499
	atc Ile 135					_				_			-	-		547
	gţg Val									-	_					595
	aac Asn		Ala				Pro		Asp							643
	gcc Ala		-	-		_		_	_		-		-	_		691
	cga Arg															739
_	ttc Phe 215	-					_	-	_				-			787
_	gcc Ala		-	-	-		-	_			_	-		_		835
ggc	gca	tcc	gtg	gat	tac	tgg	ggt	gcc	atc	gca	gaa	acc	cat	ggc	ctc	883

Gly	Ala	Ser	Val	Asp 250	Tyr	Trp	Gly	Ala	Ile 255	Ala	Glu	Thr	His	Gly 260	Leu	
aac Asn	ctc Leu	acc Thr	gtg Val 265	gtc Val	aac Asn	cca Pro	cac His	gtt Val 270	gat Asp	tcc Ser	acc Thr	ttc Phe	cgc Arg 275	ttc Phe	atg Met	931
aca Thr	ttg Leu	gac Asp 280	acc Thr	gac Asp	ggc Gly	aag Lys	atc Ile 285	cgc Arg	atg Met	gac Asp	tgc Cys	tcc Ser 290	agc Ser	cca Pro	cac His	979
gca Ala	atg Met 295	gca Ala	tcg Ser	ctg Leu	att Ile	gac Asp 300	aac Asn	cga Arg	gac Asp	aag Lys	ttc Phe 305	gat Asp	gtg Val	gca Ala	acc Thr	1027
ggc Gly 310	aac Asn	gac Asp	gcc Ala	gac Asp	gcc Ala 315	gac Asp	cgc Arg	cac His	ggc Gly	atc Ile 320	gtc Val	acc Thr	cca Pro	gac Asp	gct Ala 325	1075
	ttg Leu															1123
	gct Ala															1171
	gtc Val															1219
acc Thr	ctc Leu 375	gtt Val	gag Glu	gtt Val	cca Pro	gtc Val 380	gga Gly	ttc Phe	aag Lys	tgg Trp	ttt Phe 385	gtc Val	cca Pro	ggt Gly	ttg Leu	1267
	tcc Ser															1315
	ctc Leu	_	_	_							-	-	_			1363
	ctt Leu															1411
	tca Ser															1459
	gcc Ala 455	_		-	-	-	_		-	_		-	-		-	1507
	gca Ala															1555

490 500 495 gga gga cta aaa gtg acc acc gaa aac gcc tgg ttc gca gca cgc cca 1651 Gly Gly Leu Lys Val Thr Thr Glu Asn Ala Trp Phe Ala Ala Arg Pro 505 tcc ggc acc gaa gac aag tac aag atc tac gca gaa tcc ttc aag ggc 1699 Ser Gly Thr Glu Asp Lys Tyr Lys Ile Tyr Ala Glu Ser Phe Lys Gly gaa gag cac ctc gcc cag gtt cag aag gaa gcc caa gcg ttg gtc agc 1747 Glu Glu His Leu Ala Gln Val Gln Lys Glu Ala Gln Ala Leu Val Ser 535 gaa gta ctc gga cag taaaactgcg gacttgctga caa 1785 Glu Val Leu Gly Gln 550 <210> 26 <211> 554 <212> PRT <213> Corynebacterium glutamicum <400> 26 Met Ala His Glu Arg Ala Gly Gln Leu Ala Gln Pro Glu Asp Leu Ile Asp Val Ala Glu Leu Val Thr Ala Tyr Phe Thr Arg Lys Pro Asp Val 25 Asn Asn Pro Asp Gln Gln Val Ala Phe Gly Thr Ser Gly His Arg Gly 35 Phe Ala Leu Asp Ser Ala Phe Asn Glu Asp His Ile Leu Ala Thr Thr Gln Ala Ile Val Asp Tyr Arg Asn Gln Gln Pro Lys Asn Trp Val Gly Pro Leu Phe Ile Gly Arg Asp Thr His Ala Leu Ser Glu Pro Ala Met Ile Ser Ala Leu Glu Val Leu Ile Ala Asn Asp Val Glu Val Leu Val Asp Ala Asp Gly Arg Tyr Thr Pro Thr Pro Ala Val Ser His Ala Ile 120 Leu Arg His Asn Asp Gly Ile Ile Leu Gly Thr Ala Gly Pro Ser Arg Pro Tyr Ala Asp Gly Ile Val Ile Thr Pro Ser His Asn Pro Pro Arg 150 155 Asp Gly Gly Phe Lys Tyr Asn Pro Ala Asn Gly Gly Pro Ala Asp Thr

Asp Ala Thr Asp Trp Ile Ala Asn Arg Ala Asn Asp Ile Leu Arg Gly

185

Asp	Leu	Ala 195	Asp	Val	Lys	Arg	Val 200	Pro	Val	Ser	Gly	Val 205	Leu	Asp	Glu
Arg	Thr 210	Thr	Ala	Tyr	Asp	Phe 215	Lys	Gly	Ile	Tyr	Ile 220	Ala	Asp	Leu	Pro
Asn 225	Val	Val	Asn	Ile	Asp 230	Ala	Ile	Arg	Glu	Ala 235	Gly	Val	Arg	Ile	Gly 240
Ala	Asp	Pro	Met	Gly 245	Gly	Ala	Ser	Val	Asp 250	Tyr	Trp	Gly	Ala	Ile 255	Ala
Glu	Thr	His	Gly 260	Leu	Asn	Leu	Thr	Val 265	Val	Asn	Pro	His	Val 270	Asp	Ser
Thr	Phe	Arg 275	Phe	Met	Thr	Leu	Asp 280	Thr	Asp	Gly	Lys	Ile 285	Arg	Met	Asp
Cys	Ser 290	Ser	Pro	His	Ala	Met 295	Ala	Ser	Leu	Ile	Asp 300	Asn	Arg	Asp	Lys
Phe 305	Asp	Val	Ala	Thr	Gly 310	Asn	Asp	Ala	Asp	Ala 315	Asp	Arg	His	Gly	Ile 320
Val	Thr	Pro	Asp	Ala 325	Gly	Leu	Met	Asn	Pro 330	Asn	His	Tyr	Leu	Ala 335	Val
Ala	Ile	Glu	Tyr 340	Leu	Phe	Ala	His	Arg 345	Pro	Gly	Trp	Ser	Ala 350	Asp	Thr
Ala	Val	Gly 355	Lys	Thr	Leu	Val	Ser 360	Ser	Ser	Met	Ile	Asp 365	Arg	Val	Val
Ala	Gln 370	Leu	Gly	Arg	Thr	Leu 375	Val	Glu	Val	Pro	Val 380	Gly	Phe	Lys	Trp
Phe 385	Val	Pro	Gly	Leu	11e 390	Ser	Gly	Glu	Ile	Gly 395	Phe	Gly	Gly	Glu	Glu 400
Ser	Ala	Gly	Ala	Ser 405	Phe	Leu	Arg	Met	Asp 410	Gly	Thr	Thr	Trp	Ser 415	Thr
Asp	Lys	Asp	Gly 420	Leu	Ile	Leu	Asp	Leu 425	Leu	Ala	Ala	Glu	11e 430	Ile	Ala
Val	Thr	Gly 435	Lys	Thr	Pro	Ser	Gln 440	Arg	Tyr	Ala	Glu	Leu 445	Ala	Glu	Glu
Phe	Gly 450	Ala	Pro	Ala	Tyr	Ala 455	Arg	Thr	Asp	Ala	Glu 460	Ala	Asn	Arg	Glu
Gln 465	Lys	Ala	Ile	Leu	Lys 470	Ala	Leu	Ser	Pro	Glu 475	Gln	Val	Thr	Ala	Thr 480
Glu	Leu	Ala	Gly	Glu 485	Ala	Ile	Thr	Ala	Lys 490	Leu	Thr	Glu	Ala	Pro 495	Gly
Asn	Gly	Ala	Ala 500	Ile	Gly	Gly	Leu	Lys 505	Val	Thr	Thr	Glu	Asn 510	Ala	Trp
Phe	Ala	Ala	Arg	Pro	Ser	Gly	Thr	Glu	Asp	Lys	Tyr	Lys	Ile	Tyr	Ala

520 525 515 Glu Ser Phe Lys Gly Glu Glu His Leu Ala Gln Val Gln Lys Glu Ala 535 Gln Ala Leu Val Ser Glu Val Leu Gly Gln 550 <210> 27 <211> 680 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(657) <223> RXN02803 <400> 27 gtc tct gga gag atg ctc gcg gca gca ctt tca gca ggc atg gcc agc Val Ser Gly Glu Met Leu Ala Ala Ala Leu Ser Ala Gly Met Ala Ser 5 10 caq qqt qtt qat qtc att cgt qtt ggt gtc atc cca acc cca gct gtt 96 Gln Gly Val Asp Val Ile Arg Val Gly Val Ile Pro Thr Pro Ala Val 25 20 gca ttc ctc acc gat gat tat ggc gct gac atg ggc gtg atg att tct 144 Ala Phe Leu Thr Asp Asp Tyr Gly Ala Asp Met Gly Val Met Ile Ser 35 40 gca tcc cac aac cca atg ccg gac aac gga atc aag ttc ttt tct gca 192 Ala Ser His Asn Pro Met Pro Asp Asn Gly Ile Lys Phe Phe Ser Ala 50 ggt gga cac aag ctt cca gac cat gtg gaa gac gag att gag cgt gtt Gly Gly His Lys Leu Pro Asp His Val Glu Asp Glu Ile Glu Arg Val 65 atq qac aqc ttq cca qca gaa gqc cca aca ggg cat gga gtt ggc cgt 288 Met Asp Ser Leu Pro Ala Glu Gly Pro Thr Gly His Gly Val Gly Arg 85 qtc atc qaa qaa qca acc gat gca cag gac cgt tac cta gag cac ctg 336 Val Ile Glu Glu Ala Thr Asp Ala Gln Asp Arg Tyr Leu Glu His Leu 100 aag gaa gct gtt cct acg tca ctt gaa ggc atc aag att gtt gtg gat 384 Lys Glu Ala Val Pro Thr Ser Leu Glu Gly Ile Lys Ile Val Val Asp 120 115 432 gca gcc aat ggt gcg gca agt gtt gta gct cca acg gct tat gag gct Ala Ala Asn Gly Ala Ala Ser Val Val Ala Pro Thr Ala Tyr Glu Ala

atc aac atg gac tgc ggt tcc acc cac att gat cag gcg cag ccg cca 5

gcg ggt gca act gta att gct att cat aac aag cca gac tca tac aac Ala Gly Ala Thr Val Ile Ala Ile His Asn Lys Pro Asp Ser Tyr Asn

135

150

130

145

480

Ile Asn Met Asp Cys Gly Ser Thr His Ile Asp Gln Ala Gln Pro Pro 170 qtc ttg aag cac ggt gct gac ctt gga ctc gcg cat gac ggt gat gct 576 Val Leu Lys His Gly Ala Asp Leu Gly Leu Ala His Asp Gly Asp Ala 185 624 qac cqt tqt ttq qct qtg aac aag gat gcc aac ctt gtt gat ggt gac Asp Arg Cys Leu Ala Val Asn Lys Asp Ala Asn Leu Val Asp Gly Asp 200 caa atc atg gcg ctg tta gcc att gcg atg aaa taaaacggcg agctgcgcaa 677 Gln Ile Met Ala Leu Leu Ala Ile Ala Met Lys 215 680 gaa <210> 28 <211> 219 <212> PRT <213> Corynebacterium glutamicum <400> 28 Val Ser Gly Glu Met Leu Ala Ala Ala Leu Ser Ala Gly Met Ala Ser 10 Gln Gly Val Asp Val Ile Arg Val Gly Val Ile Pro Thr Pro Ala Val 20 25 Ala Phe Leu Thr Asp Asp Tyr Gly Ala Asp Met Gly Val Met Ile Ser Ala Ser His Asn Pro Met Pro Asp Asn Gly Ile Lys Phe Phe Ser Ala Gly Gly His Lys Leu Pro Asp His Val Glu Asp Glu Ile Glu Arg Val Met Asp Ser Leu Pro Ala Glu Gly Pro Thr Gly His Gly Val Gly Arg Val Ile Glu Glu Ala Thr Asp Ala Gln Asp Arg Tyr Leu Glu His Leu 105 Lys Glu Ala Val Pro Thr Ser Leu Glu Gly Ile Lys Ile Val Val Asp 115 Ala Ala Asn Gly Ala Ala Ser Val Val Ala Pro Thr Ala Tyr Glu Ala 135 Ala Gly Ala Thr Val Ile Ala Ile His Asn Lys Pro Asp Ser Tyr Asn 145 Ile Asn Met Asp Cys Gly Ser Thr His Ile Asp Gln Ala Gln Pro Pro 170 Val Leu Lys His Gly Ala Asp Leu Gly Leu Ala His Asp Gly Asp Ala Asp Arg Cys Leu Ala Val Asn Lys Asp Ala Asn Leu Val Asp Gly Asp

200 205 195 Gln Ile Met Ala Leu Leu Ala Ile Ala Met Lys 215 <210> 29 <211> 399 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(399) <223> FRXA02803 <400> 29 tct gga gag atg ctc gcg gca gca ctt tca gca ggc atg gcc agc cag 4 B Ser Gly Glu Met Leu Ala Ala Ala Leu Ser Ala Gly Met Ala Ser Gln 10 ggt gtt gat gtc att cgt gtt ggt gtc atc cca acc cca gct gtt gca 96 Gly Val Asp Val Ile Arg Val Gly Val Ile Pro Thr Pro Ala Val Ala 144 ttc ctc acc gat gat tat ggc gct gac atg ggc gtg atg att tct gca Phe Leu Thr Asp Asp Tyr Gly Ala Asp Met Gly Val Met Ile Ser Ala tcc cac aac cca atg ccg gac aac gga atc aag ttc ttt tct gca ggt 192 Ser His Asn Pro Met Pro Asp Asn Gly Ile Lys Phe Phe Ser Ala Gly gga cac aag ctt cca gac cat gtg gaa gac gag att gag cgt gtt atg 240 Gly His Lys Leu Pro Asp His Val Glu Asp Glu Ile Glu Arg Val Met gac age ttg cca gca gaa ggc cca aca ggg cat gga gtt ggc cgt gtc 288 Asp Ser Leu Pro Ala Glu Gly Pro Thr Gly His Gly Val Gly Arg Val 90 336 atc gaa gaa gca acc gat gca cag gac cgc tac cta gag cac ctg aag Ile Glu Glu Ala Thr Asp Ala Gln Asp Arg Tyr Leu Glu His Leu Lys 105 384 gaa get gtt eet aeg tea ett gaa gge ate aag att gtt gtg gat gea Glu Ala Val Pro Thr Ser Leu Glu Gly Ile Lys Ile Val Val Asp Ala

Ala Asn Gly Ala Ala 130 <210> 30 <211> 133

120

115

gcc aat ggt gcg gca

<213> Corynebacterium glutamicum

<212> PRT

<400> 30 Ser Gly Glu Met Leu Ala Ala Leu Ser Ala Gly Met Ala Ser Gln 399

1				5					10					15		
Gly	Val	Asp	Val 20	Ile	Arg	Val	Gly	Val 25	Ile	Pro	Thr	Pro	Ala 30	Val	Ala	
Phe	Leu	Thr 35	Asp	Asp	Tyr	Gly	Ala 40	Asp	Met	Gly	Val	Met 45	Ile	Ser	Ala	
Ser	His 50	Asn	Pro	Met	Pro	Asp 55	Asn	Gly	Ile	Lys	Phe 60	Phe	Ser	Ala	Gly	
Gly 65	His	Lys	Leu	Pro	Asp 70	His	Val	Glu	Asp	Glu 75	Ile	Glu	Arg	Val	Met 80	
Asp	Ser	Leu	Pro	Ala 85	Glu	Gly	Pro	Thr	Gly 90	His	Gly	Val	Gly	Arg 95	Val	
Ile	Glu	Glu	Ala 100	Thr	Asp	Ala	Gln	Asp 105	Arg	Tyr	Leu	Glu	His 110	Leu	Lys	
Glu	Ala	Val 115	Pro	Thr	Ser	Leu	Glu 120	Gly	Ile	Lys	Ile	Val 125	Val	Asp	Ala	
Ala	Asn 130	Gly	Ala	Ala												
<211 <212)> 31 l> 17 2> Di 3> Co	713 NA	ebact	eri	ım gi	lutar	nicur	n			,					
<222)> l> CI ?> (1 3> R)	LO1).		590)												
)> 31 acctt		igttl	tgt	cc go	caggo	cgtai	t caq	ggaaa	acc	tgc	agcgo	egg 1	agaç	gtcgag	60
tcta	aataq	gtg a	atcc	cacga	aa aa	acaaa	aggat	cg(gggt	gttc		gac Asp				115
	ctt Leu															163
	cat His															211
	agt Ser															259
	cct Pro 55															307
ggt	ccg	ttg	cgg	gtc	gtt	gtg	ggg	tat	gac	gct	cgc	tat	ggt	tcg	cat	355

Gly 70	Pro	Leu	Arg	Val	Val 75	Val	Gly	Tyr	Asp	Ala 80	Arg	Tyr	Gly	Ser	His 85	
act Thr	ttt Phe	gct Ala	gca Ala	acc Thr 90	act Thr	gcg Ala	gag Glu	gtg Val	ttc Phe 95	gcg Ala	ggt Gly	gct Ala	ggt Gly	ttt Phe 100	gag Glu	403
gtg Val	acg Thr	ttg Leu	ctc Leu 105	ccc Pro	acg Thr	cct Pro	agc Ser	cct Pro 110	acg Thr	ccg Pro	ttg Leu	att Ile	ccg Pro 115	tgg Trp	ttg Leu	451
gtg Val	aac Asn	aag Lys 120	cat His	ggg Gly	ttg Leu	gat Asp	gcg Ala 125	ggc Gly	gtt Val	cag Gln	atc Ile	acg Thr 130	gct Ala	tcg Ser	cat His	499
aat Asn	ggt Gly 135	gcg Ala	gcg Ala	gac Asp	aat Asn	ggc Gly 140	tac Tyr	aag Lys	gtg Val	ttt Phe	ttg Leu 145	tct Ser	aat Asn	ggt Gly	cgc Arg	547
cag Gln 150	ctt Leu	tat Tyr	tct Ser	gaa Glu	ctg Leu 155	gag Glu	cct Pro	gag Glu	ctt Leu	gag Glu 160	gcg Ala	cat His	atc Ile	aat Asn	gct Ala 165	595
gtg Val	gaa Glu	gat Asp	ccg Pro	att Ile 170	cgg Arg	gtt Val	cct Pro	cgg Arg	gtg Val 175	acg Thr	gtg Val	cgc Arg	ccc Pro	act Thr 180	gct Ala	643
						gtt Val										691
gat Asp	cag Gln	gct Ala 200	gat Asp	ttg Leu	ttg Leu	cgg Arg	gtg Val 205	aat Asn	tct Ser	gag Glu	cgg Arg	ggc Gly 210	aat Asn	ctt Leu	cgc Arg	739
						cat His 220										787
						ttt Phe										835
						ttc Phe										883
						ttg Leu	_	-	-	_	_	_	-	_		931
						ctt Leu										979
						ggc Gly 300										1027
						act Thr										1075

WO 01/00844	PCT/IB00/00943

310	315	320	325
ggc cca cgt ccc gtg Gly Pro Arg Pro Val 330	gtt gcc acc acg gtg Val Ala Thr Thr Val 335	gtg tct tcg cag ctt Val Ser Ser Gln Leu 340	ctg 1123 Leu
	gat aaa ggg tgg gat Asp Lys Gly Trp Asp 350		
	tcg agg gct gcc gat Ser Arg Ala Ala Asp 365		
	gaa gct gtg ggc acc Glu Ala Val Gly Thr 380		
	ggc atc tct aca gcg Gly Ile Ser Thr Ala 395		• •
	gct cag ggc gca agc Ala Gln Gly Ala Ser 415		
	tat ggg tat ttt gcg Tyr Gly Tyr Phe Ala 430		
cgc acg agc agt cca Arg Thr Ser Ser Pro 440	cgc gag tta gtt gat Arg Glu Leu Val Asp 445	cac tgg att gcg cat His Trp Ile Ala His 450	cct 1459 Pro
	gga gtg tct gtc acc Gly Val Ser Val Thr 460		
	ttg cat ggc cag gtg Leu His Gly Gln Val 475		
	tct gga act gag gcg Ser Gly Thr Glu Ala 495		
	agc tcc cat gat gaa Ser Ser His Asp Glu 510		
	gtc caa agc tgg ttg Val Gln Ser Trp Leu 525		etg 1700
getgeteeeg gtt			1713

<210> 32

<211> 530

<212> PRT

<213> Corynebacterium glutamicum

)> 32														
Met 1	Asp	Glu	Ser	Arg 5	Gln	Leu	Ser	Phe	Gly 10	Thr	Ala	Gly	Leu	Arg 15	Ala
Pro	Val	Gly	Pro 20	Ala	Arg	His	Gln	Met 25	Asn	Val	Leu	Gln	Val 30	Thr	Arg
Thr	Thr	Ala 35	Gly	Val	Ala	Ser	Trp 40	Leu	Ala	Glu	Arg	Ala 45	Ala	Leu	Asn
Pro	Val 50	Pro	His	Leu	Val	Pro 55	Glu	Asp	Glu	Thr	Gly 60	Ile	Gly	Arg	Ala
Leu 65	Tyr	Pro	Gln	Asp	Gly 70	Pro	Leu	Arg	Val	Val 75	Val	Gly	Tyr	Asp	Ala 80
Arg	Tyr	Gly	Ser	His 85	Thr	Phe	Ala	Ala	Thr 90	Thr	Ala	Glu	Val	Phe 95	Ala
Gly	Ala	Gly	Phe 100	Glu	Val	Thr	Leu	Leu 105	Pro	Thr	Pro	Ser	Pro 110	Thr	Pro
Leu	Ile	Pro 115	Trp	Leu	Val	Asn	Lys 120	His	Gly	Leu	Asp	Ala 125	Gly	Val	Gln
Ile	Thr 130	Ala	Ser	His	Asn	Gly 135	Ala	Ala	Asp	Asn	Gly 140	Tyr	Lys	Val	Phe
Leu 145	Ser	Asn	Gly	Arg	Gln 150	Leu	Tyr	Ser	Glu	Leu 155	Glu	Pro	Glu	Leu	Glu 160
Ala	His	Ile	Asn	Ala 165	Val	Glu	Asp	Pro	Ile 170	Arg	Val	Pro	Arg	Val 175	Thr
Val	Arg	Pro	Thr 180	Ala	Asp	Gln	Leu	Arg 185	Arg	Tyr	Val	Asp	Glu 190	Met	Val
Ser	Leu	Val 195	Thr	Pro	Asp	Gln	Ala 200	Asp	Leu	Leu	Arg	Val 205	Asn	Ser	Glu
Arg	Gly 210	Asn	Leu	Arg	Val	Val 215	Tyr	Thr	Ala	Leu	His 220	Gly	Val	Gly	Gly
Arg 225	Ala	Met	Alà	Asn	Ala 230	Phe	Gln	Phe	Ala	Gly 235	Phe	Pro	His	Thr	His 240
Gly	Val	Lys	Ala	Gln 245	Gln	Tyr	Pro	Asp	Pro 250	Thr	Phe	Pro	Thr	Val 255	Ala
Phe	Pro	Asn	Pro 260	Glu	Glu	Pro	Ser	Ala 265	Ile	Glu	Leu	Leu	Leu 270	Glu	Arg
Ala	Lys	Glu 275	Lys	Asn	Ala	Asp	Ile 280	Leu	Phe	Ala	Leu	Asp 285	Pro	Asp	Ala
Asp	Arg 290	Cys	Ala	Val	Gly	Ile 295	Arg	Thr	Ala	Asp	Gly 300	Gly	His	Arg	Met
Leu 305	Ser	Gly	Asp	Glu	Val 310	Gly	Thr	Leu	Leu	Ala 315	Thr	Arg	Leu	Val	Pro 320

Glu Tyr Ser Gly Glu Gly Pro Arg Pro Val Val Ala Thr Thr Val Val Ser Ser Gln Leu Leu Gly Ile Ile Ala Glu Asp Lys Gly Trp Asp Tyr Ser Glu Thr Leu Thr Gly Phe Lys Asn Leu Ser Arg Ala Ala Asp Gly Leu Asp Gly Pro Leu Ala Phe Ala Tyr Glu Glu Ala Val Gly Thr Cys Pro Val Pro Asp Val Val Pro Asp Lys Asp Gly Ile Ser Thr Ala Leu 390 395 Phe Met Ala Ser Trp Ala Ala Glu Leu Lys Ala Gln Gly Ala Ser Leu 405 Gln Gln Lys Leu Asn Glu Leu Tyr Arg Arg Tyr Gly Tyr Phe Ala Ser 420 425 Ser Gln Ile Ala Val Arg Thr Ser Ser Pro Arg Glu Leu Val Asp His 440 Trp Ile Ala His Pro Gln Gln Glu Leu Ile Gly Val Ser Val Thr Pro 455 His Ile Leu Pro Glu Lys Gln Gly Ile Ala Leu His Gly Gln Val Gly His Val His Ile Arg Ala Ile Gly Arg Val Ser Gly Thr Glu Ala Lys Ala Lys Leu Tyr Leu Glu Val Gly Gln Ala Ser Ser His Asp Glu Ala Ala Gln Leu Leu His Gln Leu Glu Asp Glu Val Gln Ser Trp Leu Ser 520 Lys Leu 530 <210> 33 <211> 1684 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1684) <223> FRXA02854 <400> 33 aatacctttc tgttttgtcc gcaggcgtat caggaaaacc tgcagcgcgg tagagtcgag 60 totaatagtg atoccacgaa aacaaaggat cggggtgttc atg gac gag tot cgt Met Asp Glu Ser Arg

						gca Ala										163
						ttg Leu										211
						cgt Arg										259
						gga Gly 60										307
ggt Gly 70	ccg Pro	ttg Leu	cgg Arg	gtc Val	gtt Val 75	gtg Val	G]A ggg	tat Tyr	gac Asp	gct Ala 80	cgc Arg	tat Tyr	ggt Gly	tcg Ser	cat His 85	355
						gcg Ala										403
Val	Thr	Leu	Leu 105	Pro	Thr	cct Pro	Ser	Pro 110	Thr	Pro	Leu	Ile	Pro 115	Trp	Leu	451
Val	Asn	Lys 120	His	Gly	Leu	gat Asp	Ala 125	Ğly	Val	Gln	Ile	Thr 130	Āla	Ser	His	499
						ggc Gly 140										547
-				_	_	gag Glu									_	595
Val	Glu	Āsp	Pro	Ile 170	Arg	gtt Val	Pro	Arg	Val 175	Thr	Val	Arg	Pro	Thr 180	Ala	643
						gtt Val										691
-	_	-	_	_	_	cgg Arg	-								-	739
						cat His 220										787
_				-		ttt Phe							_	-	_	835
cag	tat	cct	gat	ccc	acc	ttc	ccc	act	gtg	gcg	ttc	ccc	aat	ccg	gaa	883

	Tyr	Pro	Asp	Pro 250	Thr	Phe	Pro	Thr	Val 255	Ala	Phe	Pro	Asn	Pro 260	Glu	
						ttg Leu										931
						ctt Leu										979
						ggc Gly 300										1027
						act Thr										1075
						gcc Ala										1123
						aaa Lys										1171
						agg Arg										1219
						gct Ala 380										1267
ata																
						atc Ile										1315
Val 390 gct	Pro	Asp	Lys	Asp	Gly 395 gct		Ser ggc	Thr	Ala agc	Leu 400 ctg	Phe cag	Met caa	Ala aaa	Ser	Trp 405 aat	1315 1363
Val 390 gct Ala	Pro gcc Ala ttg	Asp gaa Glu tat	Lys ctg Leu cgc	Asp aag Lys 410 cga	Gly 395 gct Ala tat	<pre>Ile cag</pre>	Ser ggc Gly tat	Thr gca Ala ttt	Ala agc Ser 415 gcg	Leu 400 ctg Leu tcc	Phe cag Gln tcg	Met caa Gln caa	Ala aaa Lys att	ser ctc Leu 420 gct	Trp 405 aat Asn gtg	
Val 390 gct Ala gag Glu	gcc Ala ttg Leu	Asp gaa Glu tat Tyr	Lys ctg Leu cgc Arg 425	Asp aag Lys 410 cga Arg	Gly 395 gct Ala tat Tyr	Ile cag Gln ggg	ggc Gly tat Tyr	Thr gca Ala ttt Phe 430 gtt	agc Ser 415 gcg Ala	Leu 400 ctg Leu tcc Ser	Phe cag Gln tcg Ser	Met caa Gln caa Gln att	Ala aaa Lys att Ile 435 gcg	ctc Leu 420 gct Ala	Trp 405 aat Asn gtg Val	1363
Val 390 gct Ala gag Glu cgc Arg	pro gcc Ala ttg Leu acg Thr	Asp gaa Glu tat Tyr agc Ser 440	ctg Leu cgc Arg 425 agt Ser	Asp aag Lys 410 cga Arg cca Pro	Gly 395 gct Ala tat Tyr cgc Arg	Cag Gln ggg Gly	ggc Gly tat Tyr tta Leu 445	Thr gca Ala ttt Phe 430 gtt Val	Ala agc Ser 415 gcg Ala gat Asp	Leu 400 ctg Leu tcc Ser cac His	Phe cag Gln tcg Ser tgg Trp cat	Met caa Gln caa Gln att Ile 450 att	Ala aaa Lys att Ile 435 gcg Ala	ctc Leu 420 gct Ala cat His	Trp 405 aat Asn gtg Val cct Pro	1363 1411
Val 390 gct Ala gag Glu cgc Arg cag Gln	pro gcc Ala ttg Leu acg Thr caa Gln 455	Asp gaa Glu tat Tyr agc Ser 440 gaa Glu	ctg Leu cgc Arg 425 agt Ser ctc Leu	Asp aag Lys 410 cga Arg cca Pro att Ile	Gly 395 gct Ala tat Tyr cgc Arg	Cag Gln ggg Gly gag Glu gtg Val	ggc Gly tat Tyr tta Leu 445 tct Ser	Thr gca Ala ttt Phe 430 gtt Val gtc Val cag	Ala agc Ser 415 gcg Ala gat Asp acc Thr	Leu 400 ctg Leu tcc Ser cac His cca Pro	Phe cag Gln tcg Ser tgg Trp cat His 465 cat	Met caa Gln caa Gln att Ile 450 att Ile gtg	Ala aaa Lys att Ile 435 gcg Ala ctt Leu cat	ctc Leu 420 gct Ala cat His cct Pro	Trp 405 aat Asn gtg Val cct Pro gaa Glu cgt	1363 1411 1459

490 495 500

gaa gtt ggt cag gcc agc tcc cat gat gaa gca gct cag ttg ttg cat 1651 Glu Val Gly Gln Ala Ser Ser His Asp Glu Ala Ala Gln Leu Leu His 505 510 515

cag ctg gag gat gaa gtc caa agc tgg ttg agc 1684 Gln Leu Glu Asp Glu Val Gln Ser Trp Leu Ser 520 525

<210> 34

<211> 528

<212> PRT

<213> Corynebacterium glutamicum

<400> 34

Met Asp Glu Ser Arg Gln Leu Ser Phe Gly Thr Ala Gly Leu Arg Ala 1 5 10 15

Pro Val Gly Pro Ala Arg His Gln Met Asn Val Leu Gln Val Thr Arg
20 25 30

Thr Thr Ala Gly Val Ala Ser Trp Leu Ala Glu Arg Ala Ala Leu Asn 35 40 45

Pro Val Pro His Leu Val Pro Glu Asp Glu Thr Gly Ile Gly Arg Ala 50 55 60

Leu Tyr Pro Gln Asp Gly Pro Leu Arg Val Val Val Gly Tyr Asp Ala 65 70 75. 80

Arg Tyr Gly Ser His Thr Phe Ala Ala Thr Thr Ala Glu Val Phe Ala $85 \\ 90 \\ 95$

Gly Ala Gly Phe Glu Val Thr Leu Leu Pro Thr Pro Ser Pro Thr Pro 100 105 110

Leu Ile Pro Trp Leu Val Asn Lys His Gly Leu Asp Ala Gly Val Gln 115 120 125

Ile Thr Ala Ser His Asn Gly Ala Ala Asp Asn Gly Tyr Lys Val Phe 130 135 140

Leu Ser Asn Gly Arg Gln Leu Tyr Ser Glu Leu Glu Pro Glu Leu Glu 145 150 155 160

Ala His Ile Asn Ala Val Glu Asp Pro Ile Arg Val Pro Arg Val Thr
165 170 175

Val Arg Pro Thr Ala Asp Gln Leu Arg Arg Tyr Val Asp Glu Met Val 180 185 190

Ser Leu Val Thr Pro Asp Gln Ala Asp Leu Leu Arg Val Asn Ser Glu 195 200 205

Arg Gly Asn Leu Arg Val Val Tyr Thr Ala Leu His Gly Val Gly 210 215 220

Arg Ala Met Ala Asn Ala Phe Gln Phe Ala Gly Phe Pro His Thr His 225 230 235 240

Gly Val Lys Ala Gln Gln Tyr Pro Asp Pro Thr Phe Pro Thr Val Ala Phe Pro Asn Pro Glu Glu Pro Ser Ala Ile Glu Leu Leu Glu Arg Ala Lys Glu Lys Asn Ala Asp Ile Leu Phe Ala Leu Asp Pro Asp Ala Asp Arg Cys Ala Val Gly Ile Arg Thr Ala Asp Gly Gly His Arg Met Leu Ser Gly Asp Glu Val Gly Thr Leu Leu Ala Thr Arg Leu Val Pro 315 Glu Tyr Ser Gly Glu Gly Pro Arg Pro Val Val Ala Thr Thr Val Val Ser Ser Gln Leu Leu Gly Ile Ile Ala Glu Asp Lys Gly Trp Asp Tyr Ser Glu Thr Leu Thr Gly Phe Lys Asn Leu Ser Arg Ala Ala Asp Gly 360 Leu Asp Gly Pro Leu Ala Phe Ala Tyr Glu Glu Ala Val Gly Thr Cys 375 Pro Val Pro Asp Val Val Pro Asp Lys Asp Gly Ile Ser Thr Ala Leu 390 395 Phe Met Ala Ser Trp Ala Ala Glu Leu Lys Ala Gln Gly Ala Ser Leu 405 Gln Gln Lys Leu Asn Glu Leu Tyr Arg Arg Tyr Gly Tyr Phe Ala Ser Ser Gln Ile Ala Val Arg Thr Ser Ser Pro Arg Glu Leu Val Asp His Trp Ile Ala His Pro Gln Gln Glu Leu Ile Gly Val Ser Val Thr Pro His Ile Leu Pro Glu Lys Gln Gly Ile Ala Leu His Gly Gln Val Gly His Val His Ile Arg Ala Ile Gly Arg Val Ser Gly Thr Glu Ala Lys 490 Ala Lys Leu Tyr Leu Glu Val Gly Gln Ala Ser Ser His Asp Glu Ala Ala Gln Leu Leu His Gln Leu Glu Asp Glu Val Gln Ser Trp Leu Ser 520 525

<210> 35 <211> 536

	?> D) ?> Co		ebact	eri	um gl	Lutar	nicur	n								
<222	L> CE	L)	(513) 511)												
gag		cgc												ctg Leu 15		48
ttg Leu	aag Lys	att Ile	gct Ala 20	atg Met	gat Asp	gaa Glu	gcc Ala	gga Gly 25	att Ile	aca Thr	ctg Leu	cgt Arg	acc Thr 30	acc Thr	aag Lys	96
														ttc Phe		144
ctg Leu	ggc Gly 50	ggc Gly	gag Glu	caa Gln	tct Ser	ggc Gly 55	cac His	att Ile	gtt Val	ctt Leu	cca Pro 60	gat Asp	cat His	ggc Gly	acc Thr	192
														atg Met		240
gaa Glu	acc Thr	gga Gly	aag Lys	tcc Ser 85	ttg Leu	ggc Gly	gag Glu	ttg Leu	gca Ala 90	caa Gln	gct Ala	atg Met	acg Thr	gtg Val 95	ctg Leu	288
														atc Ile		336
														gag Glu		384
														gag Glu		432
														cgt Arg		480
								gca Ala			taat	tcad	ett (cagto	cacago	533
gca																536
<212	0> 30 1> 1' 2> PI 3> Co	71 RT	ebact	teri	um gl	Lutar	nicur	n								

<400> 36

Glu Leu Arg Lys Asn Thr Leu Val Gly Thr Val Met Ser Asn Leu Gly Leu Lys Ile Ala Met Asp Glu Ala Gly Ile Thr Leu Arg Thr Thr Lys Val Gly Asp Arg Tyr Val Leu Glu Asp Leu Asn Ala Gly Gly Phe Ser Leu Gly Gly Glu Gln Ser Gly His Ile Val Leu Pro Asp His Gly Thr Thr Gly Asp Gly Thr Leu Thr Gly Leu Ser Ile Met Ala Arg Met Ala Glu Thr Gly Lys Ser Leu Gly Glu Leu Ala Gln Ala Met Thr Val Leu Pro Gln Val Leu Ile Asn Val Pro Val Ser Asp Lys Ser Thr Ile Val Ser His Pro Ser Val Val Ala Ala Ile Ala Glu Ala Glu Ala Glu Leu Gly Ala Thr Gly Arg Val Leu Leu Arg Ala Ser Gly Thr Glu Glu Leu 135 140 Phe Arg Val Met Val Glu Ala Gly Asp Lys Glu Gln Ala Arg Arg Ile 150 155 Ala Gly Arg Leu Ala Ala Val Val Ala Glu Val . <210> 37 <211> 1497 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1474) <223> RXN01365 <400> 37 cctgatcagg acgaatcata aggtttgcta ttcggattgg atcctttggc aggggtagga 60 ttgcaagcgt tattttgttc cctaacccct tcgaggattt atg cgt acc cgt gaa 115 Met Arg Thr Arg Glu 1 tct gtc aca gct gta att aag gcg tat gac gtc cgt ggt gtt gtt ggt 163 Ser Val Thr Ala Val Ile Lys Ala Tyr Asp Val Arg Gly Val Val Gly 10 gtc gat att gat gct gat ttc att tct gag act ggc gct gcc ttt ggt 211 Val Asp Ile Asp Ala Asp Phe Ile Ser Glu Thr Gly Ala Ala Phe Gly 25 259 cgg ctc atg cgt agt gag ggt gaa acc acc gtt gct att ggc cat gac

52

_	Leu	Met 40	Arg	Ser	Glu	Gly	Glu 45	Thr	Thr	Val	Ala	Ile 50	Gly	His	Asp	
atg Met	cgt Arg 55	gat Asp	tcc Ser	tcc Ser	cct Pro	gaa Glu 60	ttg Leu	gcc Ala	aag Lys	gcg Ala	ttt Phe 65	gcc Ala	gat Asp	ggc Gly	gtg Val	307
act Thr 70	gca Ala	cag Gln	ggt Gly	ttg Leu	gat Asp 75	gtt Val	gtt Val	cat His	ttg Leu	gga Gly 80	ctg Leu	act Thr	tct Ser	act Thr	gat Asp 85	355
	ctg Leu															403
act Thr	gcg Ala	tcg Ser	cat His 105	aac Asn	ccc Pro	gct Ala	gag Glu	tac Tyr 110	aac Asn	ggc Gly	atc Ile	aag Lys	ttg Leu 115	tgt Cys	cgt Arg	451
gcg Ala	ggt Gly	gct Ala 120	cgt Arg	ccg Pro	gtc Val	ggt Gly	cag Gln 125	gat Asp	tct Ser	ggt Gly	ttg Leu	gcc Ala 130	aac Asn	atc Ile	att Ile	499
gat Asp	gat Asp 135	ctg Leu	gtt Val	gag Glu	ggt Gly	gtt Val 140	cca Pro	gcg Ala	ttt Phe	gat Asp	ggt Gly 145	gag Glu	tca Ser	ggt Gly	tcg Ser	547
gtt Val 150	tct Ser	gag Glu	cag Gln	gat Asp	ttg Leu 155	ctg Leu	agc Ser	gca Ala	tat Tyr	gcc Ala 160	gag Glu	tac Tyr	ctc Leu	aat Asn	gag Glu 165	595
	gtt Val															643
gca	330															691
Ala	Asn	ggc	atg Met 185	ggt Gly	ggg Gly	Phe	Thr	gtc Val 190	cct Pro	gag Glu	gta Val	Phe	Lys 195	ggt Gly	Leu	0,1
cca	Asn ctt Leu	Gly gat	Met 185 gtt	Gly	Gly	Phe	Thr	Val 190 ttt	Pro gag	Glu ctt	Val gac	Phe ggc	Lys 195 aat	Gly	Leu	739
cca Pro	Asn	gat Asp 200	Met 185 gtt Val gcc	Gly gcg Ala aat	Gly cca Pro	Phe ctg Leu ctg	tat Tyr 205 gag	Val 190 ttt Phe	Pro gag Glu gcc	Ctt Leu aac	yal gac Asp	ggc Gly 210 gtt	Lys 195 aat Asn gat	ttc Phe	ccc Pro	
cca Pro aac Asn	Asn ctt Leu cat	gat Asp 200 gag Glu	Met 185 gtt Val gcc Ala	gcg Ala aat Asn	CCA Pro	ctg Leu ctg Leu 220	tat Tyr 205 gag Glu	Val 190 ttt Phe cct Pro	gag Glu gcc Ala	Glu ctt Leu aac Asn	yal gac Asp ctg Leu 225	ggc Gly 210 gtt Val	Lys 195 aat Asn gat Asp	ttc Phe ttg Leu	ccc Pro	739
cca Pro aac Asn aag Lys 230	Asn ctt Leu cat His 215	gat Asp 200 gag Glu acc Thr	Met 185 gtt Val gcc Ala gta Val	gcg Ala aat Asn gag Glu	CCa Pro CCt Pro acc Thr 235	ctg Leu ctg Leu 220 gga Gly	tat Tyr 205 gag Glu tct Ser	Val 190 ttt Phe cct Pro gat Asp	gag Glu gcc Ala atc Ile	ctt Leu aac Asn ggt Gly 240	gac Asp ctg Leu 225 ttg Leu	ggc Gly 210 gtt Val gcg Ala	Lys 195 aat Asn gat Asp ttc Phe	ttc Phe ttg Leu gac Asp	ccc Pro cag Gln ggc Gly 245	739 787
cca Pro aac Asn aag Lys 230 gat Asp	Asn ctt Leu cat His 215 ttt Phe	gat Asp 200 gag Glu acc Thr gat Asp	Met 185 gtt Val gcc Ala gta Val cgt Arg	gcg Ala aat Asn gag Glu tgc Cys 250	CCA Pro CCT Pro acc Thr 235 ttc Phe	ctg Leu ctg Leu 220 gga Gly gtg Val	tat Tyr 205 gag Glu tct Ser gtc Val	Val 190 ttt Phe cct Pro gat Asp gat Asp	gag Glu gcc Ala atc Ile gag Glu 255 gag	ctt Leu aac Asn ggt Gly 240 aag Lys	gac Asp ctg Leu 225 ttg Leu ggc Gly	ggc Gly 210 gtt Val gcg Ala cag Gln	Lys 195 aat Asn gat Asp ttc Phe cca Pro	ttc Phe ttg Leu gac Asp gtc Val 260	ccc Pro cag Gln ggc Gly 245 agc Ser	739 787 835

280 285 290 1027 qaq qtq att gct gaa aac ggt ggc act gcg gtg cgt act cgc gtg ggt Glu Val Ile Ala Glu Asn Gly Gly Thr Ala Val Arg Thr Arg Val Gly 300 cac tee tte ate aag geg aag atg gea gag ace ggt geg gee ttt ggt 1075 His Ser Phe Ile Lys Ala Lys Met Ala Glu Thr Gly Ala Ala Phe Gly 315 ggc gag cac tot gcg cac tac tac ttc act gag ttc ttc aat gcg gac 1123 Gly Glu His Ser Ala His Tyr Tyr Phe Thr Glu Phe Phe Asn Ala Asp tcc ggc att ttg gct gcg atg cac gtg ctg gct gcg ctg gga agc cag 1171 Ser Gly Ile Leu Ala Ala Met His Val Leu Ala Ala Leu Gly Ser Gln 345 gac cag cca ctc agt gag atg atg gct agg tat aac cgg tac gtt gct 1219 Asp Gln Pro Leu Ser Glu Met Met Ala Arg Tyr Asn Arg Tyr Val Ala 360 365 tca ggc gag ttg aac tcc cgt ttg gct aat gca gag gcg cag caa gag Ser Gly Glu Leu Asn Ser Arg Leu Ala Asn Ala Glu Ala Gln Glu 380 385 375 ege ace eaq get gtg ete gat geg tte get gat ege ace gag tee gtg 1315 Arg Thr Gln Ala Val Leu Asp Ala Phe Ala Asp Arg Thr Glu Ser Val 390 395 400 gac acc ctt gac ggc gtg act gtg gaa ctc aag gac acc tcc gcg tgg 1363 Asp Thr Leu Asp Gly Val Thr Val Glu Leu Lys Asp Thr Ser Ala Trp 420 410 ttc aac gtg cgt gcg tcc aac acc gag ccg ctg ctt cgc ctc aat gtt 1411 Phe Asn Val Arg Ala Ser Asn Thr Glu Pro Leu Leu Arg Leu Asn Val 430 425 qaa qct qca tcq aag gaa gaa gtc gat gcg ttg gta gcg gag att cta 1459 Glu Ala Ala Ser Lys Glu Glu Val Asp Ala Leu Val Ala Glu Ile Leu 440 445 ggg att atc cgc gca taatcccatt ttccggcggg cat 1497 Gly Ile Ile Arg Ala 455 <210> 38 <211> 458 <212> PRT <213> Corynebacterium glutamicum Met Arq Thr Arq Glu Ser Val Thr Ala Val Ile Lys Ala Tyr Asp Val Arg Gly Val Val Gly Val Asp Ile Asp Ala Asp Phe Ile Ser Glu Thr Gly Ala Ala Phe Gly Arg Leu Met Arg Ser Glu Gly Glu Thr Thr Val

40

45

Ala Ile Gly His Asp Met Arg Asp Ser Ser Pro Glu Leu Ala Lys Ala Phe Ala Asp Gly Val Thr Ala Gln Gly Leu Asp Val Val His Leu Gly Leu Thr Ser Thr Asp Glu Leu Tyr Phe Ala Ser Gly Thr Leu Lys Cys Ala Gly Ala Met Phe Thr Ala Ser His Asn Pro Ala Glu Tyr Asn Gly 105 Ile Lys Leu Cys Arg Ala Gly Ala Arg Pro Val Gly Gln Asp Ser Gly Leu Ala Asn Ile Ile Asp Asp Leu Val Glu Gly Val Pro Ala Phe Asp Gly Glu Ser Gly Ser Val Ser Glu Gln Asp Leu Leu Ser Ala Tyr Ala Glu Tyr Leu Asn Glu Leu Val Asp Leu Lys Asn Ile Arg Pro Met Lys Val Ala Val Asp Ala Ala Asn Gly Met Gly Gly Phe Thr Val Pro Glu Val Phe Lys Gly Leu Pro Leu Asp Val Ala Pro Leu Tyr Phe Glu Leu 200 Asp Gly Asn Phe Pro Asn His Glu Ala Asn Pro Leu Glu Pro Ala Asn Leu Val Asp Leu Gln Lys Phe Thr Val Glu Thr Gly Ser Asp Ile Gly 230 235 Leu Ala Phe Asp Gly Asp Ala Asp Arg Cys Phe Val Val Asp Glu Lys 250 245 Gly Gln Pro Val Ser Pro Ser Ala Ile Cys Ala Ile Val Ala Glu Arg Tyr Leu Glu Lys Leu Pro Gly Ser Thr Ile Ile His Asn Leu Ile Thr Ser Lys Ala Val Pro Glu Val Ile Ala Glu Asn Gly Gly Thr Ala Val Arg Thr Arg Val Gly His Ser Phe Ile Lys Ala Lys Met Ala Glu Thr Gly Ala Ala Phe Gly Gly Glu His Ser Ala His Tyr Tyr Phe Thr Glu Phe Phe Asn Ala Asp Ser Gly Ile Leu Ala Ala Met His Val Leu Ala Ala Leu Gly Ser Gln Asp Gln Pro Leu Ser Glu Met Met Ala Arg Tyr 355 360 365

Asn Arg Tyr Val Ala Ser Gly Glu Leu Asn Ser Arg Leu Ala Asn Ala Glu Ala Gln Gln Glu Arg Thr Gln Ala Val Leu Asp Ala Phe Ala Asp 390 Arg Thr Glu Ser Val Asp Thr Leu Asp Gly Val Thr Val Glu Leu Lys Asp Thr Ser Ala Trp Phe Asn Val Arg Ala Ser Asn Thr Glu Pro Leu Leu Arg Leu Asn Val Glu Ala Ala Ser Lys Glu Glu Val Asp Ala Leu Val Ala Glu Ile Leu Gly Ile Ile Arg Ala <210> 39 <211> 994 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(994) <223> FRXA01365 <400> 39 cctgatcagg acgaatcata aggtttgcta ttcggattgg atcctttggc aggggtagga 60 ttgcaagcgt tattttgttc cctaacccct tcgaggattt atg cgt acc cgt gaa Met Arg Thr Arg Glu tct gtc aca gct gta att aag gcg tat gac gtc cgt ggt gtt gtt ggt Ser Val Thr Ala Val Ile Lys Ala Tyr Asp Val Arg Gly Val Val Gly 10 gtc gat att gat gct gat ttc att tct gag act ggc gct gcc ttt ggt 211 Val Asp Ile Asp Ala Asp Phe Ile Ser Glu Thr Gly Ala Ala Phe Gly 25 cgg ctc atg cgt agt gag ggt gaa acc acc gtt gct att ggc cat gac 259 Arg Leu Met Arg Ser Glu Gly Glu Thr Thr Val Ala Ile Gly His Asp 40 45 atg cgt gat tcc tcc cct gaa ttg gcc aag gcg ttt gcc gat ggc gtg 307 Met Arg Asp Ser Ser Pro Glu Leu Ala Lys Ala Phe Ala Asp Gly Val 55 act gca cag ggt ttg gat gtt gtt cat ttg gga ctg act tct act gat 355 Thr Ala Gln Gly Leu Asp Val Val His Leu Gly Leu Thr Ser Thr Asp 70 gag ctg tac ttt gcg tcc gga acc ttg aag tgt gct ggt gcg atg ttt 403 Glu Leu Tyr Phe Ala Ser Gly Thr Leu Lys Cys Ala Gly Ala Met Phe 90 100 act gcg tcg cat aac ccc gct gag tac aac ggc atc aag ttg tgt cgt 451

Thr	Ala	Ser	His 105	Asn	Pro	Ala	Glu	Tyr 110	Asn	Gly	Ile	Lys	Leu 115	Cys	Arg	
	ggt Gly															499
	gat Asp 135															547
	tct Ser															595
	gtt Val															643
gca Ala	aac Asn	ggc Gly	atg Met 185	ggt Gly	ggg Gly	ttc Phe	act Thr	gtc Val 190	cct Pro	gag Glu	gta Val	ttc Phe	aag Lys 195	ggt Gly	ctg Leu	691
	ctt Leu															739
	cat His 215															787
	ttt Phe															835
	gcg Ala															883
	tcg Ser															931
	ggt Gly															979
	gtg Val 295		-	-												994
<21 <21	0> 40 1> 29 2> Pl 3> Co	98 RT	ebact	teri	ım gi	lutar	nicum	n								
	0> 40 Arg		Arg	Glu 5	Ser	Val	Thr	Ala	Val 10	Ile	Lys	Ala	Туr	Asp 15	Val	

Arg Gly Val Val Gly Val Asp Ile Asp Ala Asp Phe Ile Ser Glu Thr 20 25 30

Gly Ala Ala Phe Gly Arg Leu Met Arg Ser Glu Gly Glu Thr Thr Val 35 40 45

Ala Ile Gly His Asp Met Arg Asp Ser Ser Pro Glu Leu Ala Lys Ala 50 60

Phe Ala Asp Gly Val Thr Ala Gln Gly Leu Asp Val Val His Leu Gly 65 70 75 80

Leu Thr Ser Thr Asp Glu Leu Tyr Phe Ala Ser Gly Thr Leu Lys Cys 85 90 95

Ala Gly Ala Met Phe Thr Ala Ser His Asn Pro Ala Glu Tyr Asn Gly 100 105 110

Ile Lys Leu Cys Arg Ala Gly Ala Arg Pro Val Gly Gln Asp Ser Gly 115 120 125

Leu Ala Asn Ile Ile Asp Asp Leu Val Glu Gly Val Pro Ala Phe Asp 130 135 140

Glu Tyr Leu Asn Glu Leu Val Asp Leu Lys Asn Ile Arg Pro Met Lys 165 170 175

Val Ala Val Asp Ala Ala Asn Gly Met Gly Gly Phe Thr Val Pro Glu 180 185 190

Val Phe Lys Gly Leu Pro Leu Asp Val Ala Pro Leu Tyr Phe Glu Leu 195 200 205

Asp Gly Asn Phe Pro Asn His Glu Ala Asn Pro Leu Glu Pro Ala Asn 210 215 220

Leu Val Asp Leu Gln Lys Phe Thr Val Glu Thr Gly Ser Asp Ile Gly 225 230 235 240

Leu Ala Phe Asp Gly Asp Ala Asp Arg Cys Phe Val Val Asp Glu Lys 245 250 255

Gly Gln Pro Val Ser Pro Ser Ala Ile Cys Ala Ile Val Ala Glu Arg 260 265 270

Tyr Leu Glu Lys Leu Pro Gly Ser Thr Ile Ile His Asn Leu Ile Thr 275 280 285

Ser Lys Ala Val Pro Glu Val Ile Ala Glu 290 295

<210> 41

<211> 1743

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(1720)

<223> RXA00098

<400> 41 taaatttgtc gtgtttccca ctttgaacac tcttcgatgc gcttggccac aaaagcaagc 60 taacctgaag atgttattta acgacaataa aggagttttc atg gcg gac att tcg 115 Met Ala Asp Ile Ser acc acc cag gtt tgg caa gac ctg acc gat cat tac tca aac ttc cag 163 Thr Thr Gln Val Trp Gln Asp Leu Thr Asp His Tyr Ser Asn Phe Gln gca acc act ctg cgt gaa ctt ttc aag gaa gaa aac cgc gcc gag aag 211 Ala Thr Thr Leu Arg Glu Leu Phe Lys Glu Glu Asn Arg Ala Glu Lys tac acc ttc tcc gcg gct ggc ctc cac gtc gac ctg tcg aag aat ctg 259 Tyr Thr Phe Ser Ala Ala Gly Leu His Val Asp Leu Ser Lys Asn Leu ctt gac gac gcc acc ctc acc aag ctc ctt gca ctg acc gaa gaa tct 307 Leu Asp Asp Ala Thr Leu Thr Lys Leu Leu Ala Leu Thr Glu Glu Ser 60 355 qqc ctt cqc gaa cqc att gac qcg atg ttt gcc ggt gaa cac ctc aac Gly Leu Arg Glu Arg Ile Asp Ala Met Phe Ala Gly Glu His Leu Asn aac acc gaa gac cgc gct gtc ctc cac acc gcg ctg cgc ctt cct gcc 403 Asn Thr Glu Asp Arg Ala Val Leu His Thr Ala Leu Arg Leu Pro Ala 90 gaa gct gat ctg tca gta gat ggc caa gat gtt gct gct gat gtc cac 451 Glu Ala Asp Leu Ser Val Asp Gly Gln Asp Val Ala Ala Asp Val His gaa gtt ttg gga cgc atg cgt gac ttc gct act gcg ctg cgc tca ggc 499 Glu Val Leu Gly Arg Met Arg Asp Phe Ala Thr Ala Leu Arg Ser Gly 125 aac tgg ttg gga cac acc ggc cac acg atc aag aag atc gtc aac att 547 Asn Trp Leu Gly His Thr Gly His Thr Ile Lys Lys Ile Val Asn Ile 140 595 ggt atc ggt ggc tct gac ctc gga cca gcc atg gct acg aag gct ctg Gly Ile Gly Gly Ser Asp Leu Gly Pro Ala Met Ala Thr Lys Ala Leu 160 cgt gca tac gcg acc gct ggt atc tca gca gaa ttc gtc tcc aac gtc 643 Arg Ala Tyr Ala Thr Ala Gly Ile Ser Ala Glu Phe Val Ser Asn Val 175 691 gac cca gca gac ctc gtt tct gtg ttg gaa gac ctc gat gca gaa tcc Asp Pro Ala Asp Leu Val Ser Val Leu Glu Asp Leu Asp Ala Glu Ser 190 739 aca ttg ttc gtg atc gct tcg aaa act ttc acc acc cag gag acg ctg

Thr Leu Phe Val Ile Ala Ser Lys Thr Phe Thr Thr Gln Glu Thr Leu

200 205 210 787 tcc aac gct cgt gca gct cgt gct tgg ctg gta gag aag ctc ggt gaa Ser Asn Ala Arg Ala Arg Ala Trp Leu Val Glu Lys Leu Gly Glu 220 qaq qct qtc qcq aaq cac ttc qtc qca gtg tcc acc aat gct gaa aag 835 Glu Ala Val Ala Lys His Phe Val Ala Val Ser Thr Asn Ala Glu Lys 235 gtc gca gag ttc ggt atc gac acg gac aac atg ttc ggc ttc tgg gac 883 Val Ala Glu Phe Gly Ile Asp Thr Asp Asn Met Phe Gly Phe Trp Asp 250 tgg gtc gga ggt cgt tac tcc gtg gac tcc gca gtt ggt ctt tcc ctc 931 Trp Val Gly Gly Arg Tyr Ser Val Asp Ser Ala Val Gly Leu Ser Leu 270 atq gca gtg atc ggc cct cgc gac ttc atg cgt ttc ctc ggt gga ttc Met Ala Val Ile Gly Pro Arg Asp Phe Met Arg Phe Leu Gly Gly Phe 280 cac gcg atg gat gaa cac ttc cgc acc acc aag ttc gaa gag aac gtt 1027 His Ala Met Asp Glu His Phe Arg Thr Thr Lys Phe Glu Glu Asn Val 300 295 1075 cca atc ttq atg gct ctg ctc ggt gtc tgg tac tcc gat ttc tat ggt Pro Ile Leu Met Ala Leu Leu Gly Val Trp Tyr Ser Asp Phe Tyr Gly 310 315 320 1123 gca gaa acc cac gct gtc cta cct tat tcc gag gat ctc agc cgt ttt Ala Glu Thr His Ala Val Leu Pro Tyr Ser Glu Asp Leu Ser Arg Phe 330 340 gct gct tac ctc cag cag ctg acc atg gaa tca aat ggc aag tca gtc 1171 Ala Ala Tyr Leu Gln Gln Leu Thr Met Glu Ser Asn Gly Lys Ser Val 345 cac cgc gac ggc tcc cct gtt tcc act ggc act ggc gaa att tac tgg His Arg Asp Gly Ser Pro Val Ser Thr Gly Thr Gly Glu Ile Tyr Trp 360 ggt gag cct ggc aca aat ggc cag cac gct ttc ttc cag ctg atc cac 1267 Gly Glu Pro Gly Thr Asn Gly Gln His Ala Phe Phe Gln Leu Ile His 375 380 caq qqc act cqc ctt qtt cca qct qat ttc att ggt ttc gct cgt cca 1315 Gln Gly Thr Arg Leu Val Pro Ala Asp Phe Ile Gly Phe Ala Arg Pro 400 390 395 aag cag gat ctt cct gcc ggt gag cgc acc atg cat gac ctt ttg atg 1363 Lys Gln Asp Leu Pro Ala Gly Glu Arg Thr Met His Asp Leu Leu Met 410 1411 age aac tte tte gea cag ace aag gtt ttg get tte ggt aag aac get Ser Asn Phe Phe Ala Gln Thr Lys Val Leu Ala Phe Gly Lys Asn Ala 425 430

gaa gag atc gct gcg gaa ggt gtc gca cct gag ctg gtc aac cac aag Glu Glu Ile Ala Ala Glu Gly Val Ala Pro Glu Leu Val Asn His Lys 445

440

1459

	atg Met 455														ctt Leu	1507	
	cct Pro														gtg Val 485	1555	
	gtt Val															1603	
	gaa Glu															1651	
	gaa Glu															1699	
	tgg Trp 535						tagt	cgct	tg (cttat	taggo	gt ca	ag			1743	
<21:	0> 42 1> 54 2> PE 3> Co	10 RT	ebact	eriu	um gl	Lutan	nicun	n									
	0> 42 Ala		Ile	Ser 5	Thr	Thr	Gln	Val	Trp 10	Gln	Asp	Leu	Thr	Asp 15	His		
Tyr	Ser	Asn	Phe 20	Gln	Ala	Thr	Thr	Leu 25	Arg	Glu	Leu	Phe	Lys 30	Glu	Glu		
Asn	Arg	Ala 35	Glu	Lys	Tyr	Thr	Phe 40	Ser	Ala	Ala	Gly	Leu 45	His	Val	Asp		
Leu	Ser 50	Lys	Asn	Leu	Leu	_	Asp				Thr 60	Lys	Leu	Leu	Ala		
Leu 65	Thr	Glu	Glu	Ser	Gly 70	Leu	Arg	Glu	Arg	Ile 75	Asp	Ala	Met	Phe	Ala 80		
Gly	Glu	His	Leu	Asn 85	Asn	Thr	Glu	Asp	Arg 90	Ala	Val	Leu	His	Thr 95	Ala		
Leu	Arg	Leu	Pro 100	Ala	Glu	Ala	Asp	Leu 105	Ser	Val	Asp	Gly	Gln 110	Asp	Val		
Ala	Ala	Asp 115	Val	His	Glu	Val	Leu 120	Gly	Arg	Met	Arg	Asp 125	Phe	Ala	Thr		
Ala	Leu 130	Arg	Ser	Gly	Asn	Trp 135	Leu	Gly	His	Thr	Gly 140	His	Thr	Ile	Lys		
Lys 145	Ile	Val	Asn	Ile	Gly 150	Ile	Gly	Gly	Ser	Asp 155	Leu	Gly	Pro	Ala	Met 160		

Ala Thr Lys Ala Leu Arg Ala Tyr Ala Thr Ala Gly Ile Ser Ala Glu Phe Val Ser Asn Val Asp Pro Ala Asp Leu Val Ser Val Leu Glu Asp Leu Asp Ala Glu Ser Thr Leu Phe Val Ile Ala Ser Lys Thr Phe Thr Thr Gln Glu Thr Leu Ser Asn Ala Arg Ala Arg Ala Trp Leu Val Glu Lys Leu Gly Glu Glu Ala Val Ala Lys His Phe Val Ala Val Ser 235 Thr Asn Ala Glu Lys Val Ala Glu Phe Gly Ile Asp Thr Asp Asn Met Phe Gly Phe Trp Asp Trp Val Gly Gly Arg Tyr Ser Val Asp Ser Ala 260 265 Val Gly Leu Ser Leu Met Ala Val Ile Gly Pro Arg Asp Phe Met Arg 280 Phe Leu Gly Gly Phe His Ala Met Asp Glu His Phe Arg Thr Thr Lys 295 Phe Glu Glu Asn Val Pro Ile Leu Met Ala Leu Leu Gly Val Trp Tyr Ser Asp Phe Tyr Gly Ala Glu Thr His Ala Val Leu Pro Tyr Ser Glu Asp Leu Ser Arg Phe Ala Ala Tyr Leu Gln Gln Leu Thr Met Glu Ser Asn Gly Lys Ser Val His Arg Asp Gly Ser Pro Val Ser Thr Gly Thr 355 Gly Glu Ile Tyr Trp Gly Glu Pro Gly Thr Asn Gly Gln His Ala Phe 375 Phe Gln Leu Ile His Gln Gly Thr Arg Leu Val Pro Ala Asp Phe Ile Gly Phe Ala Arg Pro Lys Gln Asp Leu Pro Ala Gly Glu Arg Thr Met His Asp Leu Leu Met Ser Asn Phe Phe Ala Gln Thr Lys Val Leu Ala Phe Gly Lys Asn Ala Glu Glu Ile Ala Ala Glu Gly Val Ala Pro Glu 440 Leu Val Asn His Lys Val Met Pro Gly Asn Arg Pro Thr Thr Thr Ile Leu Ala Glu Glu Leu Thr Pro Ser Ile Leu Gly Ala Leu Ile Ala Leu 470 475

Tyr Glu His Ile Val Met Val Gln Gly Val Ile Trp Asp Ile Asn Ser Phe Asp Gln Trp Gly Val Glu Leu Gly Lys Gln Gln Ala Asn Asp Leu Ala Pro Ala Val Ser Gly Glu Glu Asp Val Asp Ser Gly Asp Ser Ser Thr Asp Ser Leu Ile Lys Trp Tyr Arg Ala Asn Arg 535 <210> 43 <211> 630 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(630) <223> RXA01989 <400> 43 gtt aaa tca att cac aaa aca att cat gaa ggt act ggt gca ggt agt 48 Val Lys Ser Ile His Lys Thr Ile His Glu Gly Thr Gly Ala Gly Ser 15 1 gac ttc tta ggc tgg gtt gat tta cca gtt gat tac gac aaa gaa gaa 96 Asp Phe Leu Gly Trp Val Asp Leu Pro Val Asp Tyr Asp Lys Glu Glu 20 ttt tca aga att gtt gaa gca tca aaa cgc att aaa gaa aat tct gat Phe Ser Arg Ile Val Glu Ala Ser Lys Arg Ile Lys Glu Asn Ser Asp 35 gtt tta gta gtc atc ggt att ggt ggt tct tac tta ggt gca cgt gca 192 Val Leu Val Val Ile Gly Ile Gly Gly Ser Tyr Leu Gly Ala Arg Ala 50 gca atc gaa atg tta acg tca tca ttt aga aac agc aat gaa tac cct 240 Ala Ile Glu Met Leu Thr Ser Ser Phe Arg Asn Ser Asn Glu Tyr Pro 65 70 288 gaa att gta ttt gtt ggt aat cac tta tca tca aca tat acg aaa gag Glu Ile Val Phe Val Gly Asn His Leu Ser Ser Thr Tyr Thr Lys Glu 85 336 tta gtt gat tat tta gca gac aaa gat ttc tct gta aac gtt att tct Leu Val Asp Tyr Leu Ala Asp Lys Asp Phe Ser Val Asn Val Ile Ser 100 aaa tot ggt aca act aca gaa cca gca gtt gca ttt aga ttg ttc aaa 384 Lys Ser Gly Thr Thr Thr Glu Pro Ala Val Ala Phe Arg Leu Phe Lys 115 120 caa tta gtt gaa gaa aga tac ggt aaa gaa gaa gca caa aaa cgt ata 432 Gln Leu Val Glu Glu Arg Tyr Gly Lys Glu Glu Ala Gln Lys Arg Ile 130 ttt gca aca acg gat aaa gaa aaa ggt gct tta aaa cag ttg gct aca 480

Phe Ala Thr 145	Thr Asp	Lys Glu 150	Lys	Gly	Ala	Leu 155	Lys	Gln	Leu	Ala	Thr 160	
aac gaa ggt Asn Glu Gly		Thr Phe										528
tat tct gtt Tyr Ser Val												576
att aac atc Ile Asn Ile 195	gaa gct Glu Ala	atg ato Met Met	att Ile 200	ggt Gly	gct Ala	gca Ala	aaa Lys	gca Ala 205	cgt Arg	gaa Glu	gaa Glu	624
tta tct Leu Ser 210												630
<210> 44 <211> 210 <212> PRT <213> Coryn	ebacteri	um gluta	micum	n								
<400> 44 Val Lys Ser 1	Ile His 5	_	lle	His	Glu 10	Gly	Thr	Gly	Ala	Gly 15	Ser	
Asp Phe Leu	Gly Trp 20	Val Asp	Leu	Pro 25	Val	Asp	Tyr	Asp	Lys 30	Glu	Glu	
Phe Ser Arg 35	Ile Val	Glu Ala	Ser 40	Lys	Arg	Ile	Lys	Glu 45	Asn	Ser	Asp	
Val Leu Val 50	Val Ile	Gly Ile		Gly	Ser	Tyr	Leu 60	Gly	Ala	Arg	Ala	
Ala Ile Glu 65	Met Leu	Thr Ser	Ser	Phe	Arg	Asn 75	Ser	Asn	Glu	Tyr	Pro 80	
Glu Ile Val	Phe Val 85		His				Thr	Tyr	Thr	Lys 95	Glu	
Leu Val Asp	Tyr Leu 100	Ala Asp	Lys	Asp 105	Phe	Ser	Val	Asn	Val 110	Ile	Ser	
Lys Ser Gly 115	Thr Thr	Thr Glu	Pro 120	Ala	Val	Ala	Phe	Arg 125	Leu	Phe	Lys	
Gln Leu Val 130	Glu Glu	Arg Tyr	-	Lys	Glu	Glu	Ala 140	Gln	Lys	Arg	Ile	
Phe Ala Thr 145	Thr Asp	Lys Glu 150	Lys	Gly	Ala	Leu 155	Lys	Gln	Leu	Ala	Thr 160	
Asn Glu Gly	Tyr Glu 165		lle	Val	Pro 170	Asp	Asp	Val	Gly	Gly 175	Arg	
Tyr Ser Val	Leu Thr 180	Ala Val	Gly	Leu 185	Leu	Pro	Ile	Ala	Thr 190	Ala	Gly	

Ile Asn Ile Glu 195	Ala Met Met	Ile Gly Ala Ala 200	Lys Ala Arg 205	Glu Glu										
Leu Ser 210														
<210> 45 <211> 1269 <212> DNA <213> Corynebacterium glutamicum														
<220> <221> CDS <222> (101)(1246) <223> RXA00340														
<400> 45 cggtatctcc gacatccgca acacccccaa agatgaggtt ccacagtgcc cagaatgtgg 6														
ctcttacctc atcactgaca tctcttagaa agaccaccca gtg aaa tta gtc atc Val Lys Leu Val Ile 1 5														
		gga aac ccc ggc Gly Asn Pro Gly 15												
	•	aaa gca gaa gtt Lys Ala Glu Val 30	-	-										
		acc aac aac gtc Thr Asn Asn Val 45												
		gcc cgc gag ctc Ala Arg Glu Leu												
Asp Val Tyr Met	Asp Ser Lys	ctt gtc gtt gaa Leu Val Val Glu 80	Gln Met Ser											
		atg aaa gtt cta Met Lys Val Leu 95												
		tcc gtt tct tat Ser Val Ser Tyr 110												
gag aaa aac aaa Glu Lys Asn Lys 120	cga gct gac Arg Ala Asp	gca ttg tcc aac Ala Leu Ser Asn 125	gtg gcg atg Val Ala Met 130	gat gct 499 Asp Ala										
		ggt gtt gta ggg Gly Val Val Gly												

						gcg Ala										595
						aac Asn										643
						cac His										691
ctt Leu	tac Tyr	tcc Ser 200	ggt Gly	agg Arg	tcc Ser	aac Asn	cca Pro 205	gag Glu	ctg Leu	tct Ser	gaa Glu	ctt Leu 210	ggt Gly	gaa Glu	aaa Lys	739
caa Gln	gca Ala 215	gca Ala	gcg Ala	gca Ala	gca Ala	cga Arg 220	cga Arg	ctc Leu	gct Ala	caa Gln	acc Thr 225	ggt Gly	ggc Gly	atc Ile	gac Asp	787
_		, ,	_		-	ctc Leu		_	-	-			_	_	_	835
gca Ala	gcg Ala	gcc Ala	gca Ala	ctg Leu 250	gga Gly	atg Met	aaa Lys	gta Val	cgt Arg 255	gtt Val	atc Ile	gat Asp	gat Asp	ctc Leu 260	atc Ile	883
gaa Glu	act Thr	gac Asp	ttt Phe 265	gga Gly	ctg Leu	tgg Trp	gat Asp	gga Gly 270	aaa Lys	tca Ser	ttt Phe	tca Ser	gaa Glu 275	gcc Ala	cac His	931
gaa Glu	caa Gln	gat Asp 280	cca Pro	gaa Glu	ctg Leu	cac His	acc Thr 285	aag Lys	tgg Trp	ctc Leu	act Thr	gac Asp 290	tca Ser	tct Ser	gta Val	979
gcc Ala	cca Pro 295	ccc Pro	ggt Gly	ggt Gly	gag Glu	tcc Ser 300	ctg Leu	cag Gln	acg Thr	gtt Val	aat Asn 305	cga Arg	cgt Arg	gtg Val	aaa Lys	1027
						caa Gln										1075
						cca Pro										1123
						ttt Phe										1171
						tac Tyr										1219
						ctg Leu 380			tga	cgaca	agt (ctgad	eggaa	ag		1266
ctc																1269

<210> 46 <211> 382 <212> PRT <213> Corynebacterium glutamicum

<400> 46

Val Lys Leu Val Ile Glu Ala Asp Gly Gly Ser Arg Gly Asn Pro Gly
1 5 10 15

Val Ala Gly Ser Gly Thr Val Val Tyr Ser Asp Asn Lys Ala Glu Val 20 25 30

Leu Lys Glu Ile Ala Tyr Val Val Gly Thr Lys Ala Thr Asn Asn Val
35 40 45

Ala Glu Tyr Arg Gly Leu Leu Glu Gly Leu Lys Ala Arg Glu Leu 50 55 60

Gly Ala Thr Ser Val Asp Val Tyr Met Asp Ser Lys Leu Val Val Glu 65 70 75 80

Gln Met Ser Gly Arg Trp Lys Ile Lys His Pro Asp Met Lys Val Leu 85 90 95

Ala Ile Glu Ala Lys Glu Ile Ala Ser Glu Ile Gly Ser Val Ser Tyr 100 105 110

Thr Trp Ile Pro Arg Glu Lys Asn Lys Arg Ala Asp Ala Leu Ser Asn 115 120 125

Val Ala Met Asp Ala Ala Ala Gly Lys Pro Val Gly Val Val Gly 130 135 140

Asp Ser Ala Ser Val Ser Ser Ala Ser Ser Val Ala Gly Ser Glu Lys 145 150 155 160

Glu Asp Leu Asn Cys Thr Glu Thr Lys Pro Thr Asn Trp Asn Gly Ala 165 170 175

Thr Thr Asp Pro Thr Arg Phe Leu Leu Arg His Gly Gln Thr Ala 180 185 190

Met Ser Val Ala Arg Leu Tyr Ser Gly Arg Ser Asn Pro Glu Leu Ser 195 200 205

Glu Leu Gly Glu Lys Gln Ala Ala Ala Ala Ala Arg Arg Leu Ala Gln 210 215 220

Thr Gly Gly Ile Asp Ala Ile Val Ser Ser Pro Leu Thr Arg Thr Met 225 230 235 240

Gln Thr Ala Glu Ala Ala Ala Ala Leu Gly Met Lys Val Arg Val 245 250 255

Ile Asp Asp Leu Ile Glu Thr Asp Phe Gly Leu Trp Asp Gly Lys Ser 260 265 270

Phe Ser Glu Ala His Glu Gln Asp Pro Glu Leu His Thr Lys Trp Leu 275 280 285

Thr Asp Ser 290	Ser Val A	Ala Pro 295	Pro Gly	Gly G	Glu Ser 300	Leu	Gln	Thr	Val				
Asn Arg Arg 305	-	Lys Ala 310	Arg Glu		Leu Gln 315	Arg	Glu	Tyr	Gly 320				
Ala Ala Asn	Val Leu V 325	Val Val	Ser His	Val 1 330	Thr Pro	Ile	Lys	Ala 335	Ile				
Met Arg Gln	Ala Leu A 340	Asp Ala	Gly Pro		Phe Phe	Gln	Lys 350	Ala	His				
Leu Asp Leu 355	Ala Ser l	Leu Ser	Ile Ala 360	Glu F	Phe Tyr	Glu 365	Asp	Gly	Pro				
Thr Cys Val 370	Arg Leu l	Phe Asn 375	Asp Thr	Ser F	His Leu 380	Glu	Ala						
<210> 47 <211> 840 <212> DNA <213> Corynebacterium glutamicum													
<2213> Corynebacterium glutamicum <220> <221> CDS <222> (101)(817) <223> RXA02492													
<pre>. <400> 47 gctgtacaac gacgctattg ccaacgaaaa tgtcgacggt gaaacgcatc acggctaagt @</pre>													
	gacgctatte	g ccaaco	gaaaa to	tcgacq	ggt gaa	acgca	atc a	acggo	ctaagt	60			
					cct atg		aac	gga	aaa	60 115			
gctgtacaac g	egtggaaca	t aaagto	ggcaa ac	tagtad gaa t	cct atg Met 1 tgg aac	act Thr	aac Asn	gga Gly aac	aaa Lys 5 cag				
gctgtacaac g aaacgcgcgt c	ctt cgt (Leu Arg 10	t aaagto cac ggt His Gly gac gtc	ggcaa ac cag agc Gln Ser aat ctc	gaa t Glu 1 15	cct atg Met 1 tgg aac Trp Asn	act Thr gca Ala	aac Asn tcc Ser	gga Gly aac Asn 20	aaa Lys 5 cag Gln gag	115			
gctgtacaac g aaacgcgcgt c ttg att ctt Leu Ile Leu ttc act gga	ctt cgt (Leu Arg 10 tgg gtc (Trp Val 2 25	t aaagto cac ggt His Gly gac gtc Asp Val	cag ago Gln Ser aat cto Asn Leu 30	gaa t Glu 15 acc G	cct atg Met 1 tgg aac Trp Asn gaa cag Glu Gln acc tcc	act Thr gca Ala ggt Gly	aac Asn tcc Ser gag Glu 35	gga Gly aac Asn 20 gct Ala	aaa Lys 5 cag Gln gag Glu	115 163			
aaacgcgcgt control of the second of the seco	ctt cgt of Leu Arg life 10 ctg gtc ctc gtc ctc val Leu ctg act gca of ctg act gca	cac ggt His Gly gac gtc Asp Val cca ggc Pro Gly	cag ago Gln Ser aat cto Asn Leu 30 gtt gta Val Val 45	gaa t Glu 15 acc G Thr G	cct atg Met 1 tgg aac Trp Asn gaa cag Glu Gln acc tcc Thr Ser gct gca	act Thr gca Ala ggt Gly ttg Leu 50	aac Asn tcc Ser gag Glu 35 ctg Leu	gga Gly aac Asn 20 gct Ala cgt Arg	aaa Lys 5 cag Gln gag Glu cgc Arg	115163211			
aaacgcgcgt control of the state	ctt cgt (Leu Arg 10 tgg gtc (Trp Val i 25 gtc ctc (Val Leu i act gca i Thr Ala i atc cgc (cac ggt His Gly gac gtc Asp Val cca ggc Pro Gly aac atc Asn Ile 60 gac tgg	cag ago Gln Ser aat cto Asn Leo 30 gtt gta Val 45 gca cto Ala Leo	gaa t Glu 1 15 acc c Thr C	cct atg Met 1 tgg aac Trp Asn gaa cag Glu Gln acc tcc Thr Ser gct gca Ala Ala 65 gag cgt	act Thr gca Ala ggt Gly ttg Leu 50 gac Asp	aac Asn tcc Ser gag Glu 35 ctg Leu cgc Arg	gga Gly aac Asn 20 gct Ala cgt Arg	aaa Lys 5 cag Gln gag Glu cgc Arg tgg Trp	115163211259			

cag ttc atg gaa tgg cgc cgc tcc tac gac acc cca cca cca gag ctc Gln Phe Met Glu Trp Arg Arg Ser Tyr Asp Thr Pro Pro Pro Glu Leu 105 110 115	451
gcg gat gac gca gag tac tcc cag gca aat gac cct cgt tac gcg gac Ala Asp Asp Ala Glu Tyr Ser Gln Ala Asn Asp Pro Arg Tyr Ala Asp 120 125 130	499
ctc gac gta gtt cca cgc acc gaa tgc ctc aag gac gtt gtg gtt cgt Leu Asp Val Val Pro Arg Thr Glu Cys Leu Lys Asp Val Val Val Arg 135 140 145	547
ttt gtt cct tac ttc gag gaa gaa atc ctg cca cgc gca aag aag ggc Phe Val Pro Tyr Phe Glu Glu Glu Ile Leu Pro Arg Ala Lys Lys Gly 150 155 160 165	595
gaa acc gtc ctc atc gca gca cac ggc aac tcc ctg cgt gcg ctg gtt Glu Thr Val Leu Ile Ala Ala His Gly Asn Ser Leu Arg Ala Leu Val 170 175 180	643
aag cac ctt gac ggc atc tcc gat gct gat atc gca gag ctc aac atc Lys His Leu Asp Gly Ile Ser Asp Ala Asp Ile Ala Glu Leu Asn Ile 185 190 195	691
cca acc ggc atc cca ctg gtc tac gaa atc gcc gaa gac ggt tcc gta Pro Thr Gly Ile Pro Leu Val Tyr Glu Ile Ala Glu Asp Gly Ser Val 200 205 210	739
gta aac cca ggc ggc acc tac ctc gat cct gag gca gca gcc ggc Val Asn Pro Gly Gly Thr Tyr Leu Asp Pro Glu Ala Ala Ala Gly 215 220 225	787
gca gca gca gta gca aac cag ggt aat aag tagctatttg taggtgagca Ala Ala Ala Val Ala Asn Gln Gly Asn Lys	837
230 235	
	840
230 235	840
230 235 ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum <400> 48	840
230 235 ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum	840
ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum <400> 48 Met Thr Asn Gly Lys Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp	840
ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum <400> 48 Met Thr Asn Gly Lys Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp 1 5 10 15 Asn Ala Ser Asn Gln Phe Thr Gly Trp Val Asp Val Asn Leu Thr Glu	840
ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum <400> 48 Met Thr Asn Gly Lys Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp 1 5 10 15 Asn Ala Ser Asn Gln Phe Thr Gly Trp Val Asp Val Asn Leu Thr Glu 20 25 30 Gln Gly Glu Ala Glu Ala Lys Gly Val Leu Pro Gly Val Val Tyr Thr	840
ctc <210> 48 <211> 239 <212> PRT <213> Corynebacterium glutamicum <400> 48 Met Thr Asn Gly Lys Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp 1 5 10 15 Asn Ala Ser Asn Gln Phe Thr Gly Trp Val Asp Val Asn Leu Thr Glu 20 25 30 Gln Gly Glu Ala Glu Ala Lys Gly Val Leu Pro Gly Val Val Tyr Thr 35 40 45 Ser Leu Leu Arg Arg Ala Ile Arg Thr Ala Asn Ile Ala Leu Asn Ala	840

				85					90					95		
Lys	Tyr	Gly	Asp 100	Asp	Gln	Phe	Met	Glu 105	Trp	Arg	Arg	Ser	Tyr 110	Asp	Thr	
Pro	Pro	Pro 115	Glu	Leu	Ala	Asp	Asp 120	Ala	Glu	Tyr	Ser	Gln 125	Ala	Asn	Asp	
Pro	Arg 130	Tyr	Ala	Asp	Leu	Asp 135	Val	Val	Pro	Arg	Thr 140	Glu	Cys	Leu	Lys	
Asp 145	Val	Val	Val	Arg	Phe 150	Val	Pro	Tyr	Phe	Glu 155	Glu	Glu	Ile	Leu	Pro 160	
Arg	Ala	Lys	Lys	Gly 165	Glu	Thr	Val	Leu	Ile 170	Ala	Ala	His	Gly	Asn 175	Ser	
Leu	Arg	Ala	Leu 180	Val	Lys	His	Leu	Asp 185	Gly	Ile	Ser	Asp	Ala 190	Asp	Ile	
Ala	Glu	Leu 195	Asn	Ile	Pro	Thr	Gly 200	Ile	Pro	Leu	Val	Tyr 205	Glu	Ile	Ala	
Glu	Asp 210	Gly	Ser	Val	Val	Asn 215	Pro	Gly	Gly	Thr	Tyr 220	Leu	Asp	Pro	Glu	
Ala 225	Ala	Ala	Ala	Gly	Ala 230		Ala	Val	Ala	Asn 235	Gln	Gly	Asn	Lys		
<pre> <210> 49 <211> 729 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)(706) <223> RXA00381</pre>																
	0> 49 cctg		tgtg	tctt	ec go	ctct	cacg	g ac	gatg	attt	ctc	caaga	atc q	gagca	aggcac	60
tca	agcc	cgc (cgca	cgtgo	ca go	cage	agaaq	g cga	aagg	catc				acc Thr		115
	cat His															163
	gga Gly															211
gcc Ala	gcc Ala	cgc Arg 40	act Thr	gca Ala	gct Ala	tct Ser	ttt Phe 45	gaa Glu	ggc Gly	cac His	gat Asp	gtc Val 50	acc Thr	tac Tyr	att Ile	259
gcg Ala	gcc Ala	tcc Ser	cca Pro	ttg Leu	cag Gln	cgt Arg	gtg Val	cag Gln	gaa Glu	acc Thr	tcc Ser	gaa Glu	ccg Pro	ttc Phe	atc Ile	307

60 65 55 aag gtc aca ggc cta gaa ctg atc acc gac gag gat ctt ctg gaa gca 355 Lys Val Thr Gly Leu Glu Leu Ile Thr Asp Glu Asp Leu Leu Glu Ala 80 ggc aac cgt ttc gaa ggc ctg cgc acc aaa ggt tgg cgt tcc cag ttg Gly Asn Arg Phe Glu Gly Leu Arg Thr Lys Gly Trp Arg Ser Gln Leu 100 tgg aac ccc gtg cgt tgg cct ttg atg tac aac ccc acg ctt ccc agc Trp Asn Pro Val Arg Trp Pro Leu Met Tyr Asn Pro Thr Leu Pro Ser 105 110 tgg ggc gaa cac tac acc gac att ttg gaa aga atg atg gcg gct gtg 499 Trp Gly Glu His Tyr Thr Asp Ile Leu Glu Arg Met Met Ala Ala Val 120 125 gaa cga gct cgg gtg gca gcg gaa gga cac gaa gca atc ctg gtg acc 547 Glu Arg Ala Arg Val Ala Ala Glu Gly His Glu Ala Ile Leu Val Thr 145 135 140 595 cac cag ttg ccg atc gtg tgc gtg caa cgc cac gcc cgc gga caa agc His Gln Leu Pro Ile Val Cys Val Gln Arg His Ala Arg Gly Gln Ser 150 155 ctg tcc cat aac cca gcg acc agg caa tgc gac ctc gcc tca gtg aca 643 Leu Ser His Asn Pro Ala Thr Arg Gln Cys Asp Leu Ala Ser Val Thr 170 175 tcc ttg qtg ttc caa qac gat caa att gtc ggc gtg cat tac aac gaa Ser Leu Val Phe Gln Asp Asp Gln Ile Val Gly Val His Tyr Asn Glu 729 cca gct cag gag att tgatcactcg tgcgtttgac caa Pro Ala Gln Glu Ile 200 <210> 50 <211> 202 <212> PRT <213> Corynebacterium glutamicum <400> 50 Met Thr Gln Thr Ile Val His Leu Val Arg His Gly Glu Val His Asn Pro Glu Lys Ile Leu Tyr Gly Arg Met Pro Gly Tyr Arg Leu Ser Ser Arg Gly Arg Ser Gln Ala Ala Arg Thr Ala Ala Ser Phe Glu Gly His

Arg Gly Arg Ser Gln Ala Ala Arg Thr Ala Ala Ser Phe Glu Gly His
35 40 45
Asp Val Thr Tvr Ile Ala Ala Ser Pro Leu Gln Arg Val Gln Glu Thr

Asp Val Thr Tyr Ile Ala Ala Ser Pro Leu Gln Arg Val Gln Glu Thr 50 55 60

Ser Glu Pro Phe Ile Lys Val Thr Gly Leu Glu Leu Ile Thr Asp Glu 65 70 75 80

Asp Leu Leu Glu Ala Gly Asn Arg Phe Glu Gly Leu Arg Thr Lys Gly

Trp	Arg	Ser	Gln 100	Leu	Trp	Asn	Pro	Val 105	Arg	Trp	Pro	Leu	Met 110	Tyr	Asn	
Pro	Thr	Leu 115	Pro	Ser	Trp	Gly	Glu 120	His	Tyr	Thr	Asp	Ile 125	Leu	Glu	Arg	
Met	Met 130	Ala	Ala	Val	Glu	Arg 135	Ala	Arg	Val	Ala	Ala 140	Glu	Gly	His	Glu	
Ala 145	Ile	Leu	Val	Thr	His 150	Gln	Leu	Pro	Ile	Val 155	Cys	Val	Gln	Arg	His 160	
Ala	Arg	Gly	Gln	Ser 165	Leu	Ser	His	Asn	Pro 170	Ala	Thr	Arg	Gln	Cys 175	Asp	
Leu	Ala	Ser	Val 180	Thr	Ser	Leu	Val	Phe 185	Gln	Asp	Asp	Gln	Ile 190	Val	Gly	
Val	His	Tyr 195	Asn	Glu	Pro	Ala	Gln 200	Glu	Ile							
<213 <213 <213 <223 <223 <223	<210> 51 <211> 822 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)(799) <223> RXA02122															
)> 51 cttca		tcac	cgaca	ag ti	tgta	acatt	t tg	gtgga	aaga	ctca	acaco	ccc a	acaco	cctaga	60
ccti	tttt	ta a	agtg	ggcg	gt ca	aggaa	attt	t to	gcaca	aggt				gtç Val		115
					gca Ala											163
					ggg Gly											211
					tta Leu											259
			-	-	cgt Arg	_				_			_	-		307
					cgt Arg 75											355

			ggg ctt att gaa Gly Leu Ile Glu	
			gag ctc aat gcc Glu Leu Asn Ala 115	
			acc ttc agg ttt Thr Phe Arg Phe 130	
			atg gtg gag gct Met Val Glu Ala 145	
		Gly Glu Ile V	gtt gct gcg ttt Val Ala Ala Phe 160	
			ttt gta ggc act Phe Val Gly Thr	
	-	, , ,	gcg tca att tcc Ala Ser Ile Ser 195	
			tcc cat atg ctg Ser His Met Leu 210	-
			cga gac aaa ctt Arg Asp Lys Leu 225	
gct ccg caa cca Ala Pro Gln Pro 230	tgatcacctc	accatttgag cgc		822
<210> 52 <211> 233 <212> PRT <213> Corynebac	terium gluta	micum		
<400> 52 Met Leu His Val 1	Met Lys Pro	Gly Ser His A	Ala Ala Ala Glu	Lys Thr 15
Gln Ser Thr Val 20	Val Leu Leu	Ile Arg His G 25	Gly Gln Thr Pro	Thr Thr
Gly Gln Val Leu 35	Pro Gly Gln	Thr Pro Gly I	Leu His Leu Ser 1 45	Asp Lys
Gly Glu Glu Gln 50	Ala Arg Glu 55	Val Ala Gln A	Arg Leu Ala Glu ' 60	Val Pro
Ile Thr Ala Val 65	Tyr Ser Ser 70	Pro Met Glu A	Arg Ala Gln Glu ' 75	Thr Ala 80

Ala Pro Thr Val Ser Ala His Gly Leu Glu Leu Thr Val Glu Pro Gly 90 Leu Ile Glu Cys Asp Phe Gly Glu Trp Thr Gly Arg Lys Leu Thr Glu 105 Leu Asn Ala Leu Glu Glu Trp Lys Ala Val Gln Lys Thr Pro Ser Thr 120 Phe Arg Phe Pro Gly Gly Glu Ser Phe Val Glu Met Gln Asp Arg Met 135 Val Glu Ala Ile Gly Asn Ile Ala Gln Gln His Pro Gly Glu Ile Val 150 155 Ala Ala Phe Ser His Ala Asp Thr Ile Lys Ala Ala Val Ala His Phe 170 Val Gly Thr Pro Leu Asp Ser Phe Gln Arg Ile Phe Ile Asp Thr Ala 180 185 Ser Ile Ser Ala Val Glu Phe Thr Gly Lys Ser Ser Gly Val Ser Ser 200 His Met Leu Leu Thr Asn Ser Arg Thr Gly Ser Leu Gly Tyr Leu Arg 215 Asp Lys Leu Pro Lys Ala Pro Gln Pro 230 <210> 53 <211> 1161 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1138) <223> RXA00206 <400> 53 ttaaataaga tggtcagaga cagttttttg gcctgtcaac ccctgtgatt ctcttatttt 60 tgggtgattg ttccggcgcg ggtgttgtga tgggtttaat atg gaa gac atg cga Met Glu Asp Met Arg att gct act ctc acg tca ggc ggc gac tgc ccc gga cta aac gcc gtc 163 Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro Gly Leu Asn Ala Val 211 ate ega gga ate gte ege aca gee age aat gaa tit gge tee ace gte Ile Arg Gly Ile Val Arg Thr Ala Ser Asn Glu Phe Gly Ser Thr Val 30 gtt ggt tat caa gac ggt tgg gaa gga ctg tta ggc gat cgt cgc gta 259 Val Gly Tyr Gln Asp Gly Trp Glu Gly Leu Leu Gly Asp Arg Arg Val 45

						gat Asp 60										307
						cgc Arg										355
						aac Asn										403
						gga Gly										451
						gtc Val										499
						acc Thr 140										547
-		-	-	-	_	cgc Arg	-				_	_				595
						gtc Val										643
						ggc Gly										69 i
-			-		-	gag Glu		-	_	-	-	-	-	-		739
_	_		Glu	Lys	Tyr	ggc Gly 220	Ile	Ile	Val	Val	Ala	Glu			-	787
						gag Glu										835
						gga Gly										883
		_				gat Asp	_	_	_		_					931
						act Thr										979
tat	ggt	gtt	cgt	gca	gct	cgt	gcg	tgc	cat	gag	gga	agc	ttt	gac	aag	1027

Tyr Gly Val Arg Ala Ala Arg Ala Cys His Glu Gly Ser Phe Asp Lys gtt gtt gct ttg aag ggt gag agc att gag atg atc acc ttt gaa gaa 1075 Val Val Ala Leu Lys Gly Glu Ser Ile Glu Met Ile Thr Phe Glu Glu 320 qca qtc qqa acc ttq aaq qaa gtt cca ttc gaa cgc tgg gtt act gcc Ala Val Gly Thr Leu Lys Glu Val Pro Phe Glu Arg Trp Val Thr Ala 335 cag gca atg ttt gga tagtttttcg ggcttttatc aac 1161 Gln Ala Met Phe Gly 345 <210> 54 <211> 346 <212> PRT <213> Corynebacterium glutamicum <400> 54 Met Glu Asp Met Arg Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro Gly Leu Asn Ala Val Ile Arg Gly Ile Val Arg Thr Ala Ser Asn Glu Phe Gly Ser Thr Val Val Gly Tyr Gln Asp Gly Trp Glu Gly Leu Leu Gly Asp Arg Arg Val Gln Leu Tyr Asp Asp Glu Asp Ile Asp Arg Ile Leu Leu Arg Gly Gly Thr Ile Leu Gly Thr Gly Arg Leu His Pro Asp Lys Phe Lys Ala Gly Ile Asp Gln Ile Lys Ala Asn Leu Glu Asp Ala Gly Ile Asp Ala Leu Ile Pro Ile Gly Gly Glu Gly Thr Leu Lys Gly Ala Lys Trp Leu Ser Asp Asn Gly Ile Pro Val Val Gly Val Pro Lys 115 Thr Ile Asp Asn Asp Val Asn Gly Thr Asp Phe Thr Phe Gly Phe Asp Thr Ala Val Ala Val Ala Thr Asp Ala Val Asp Arg Leu His Thr Thr Ala Glu Ser His Asn Arg Val Met Ile Val Glu Val Met Gly Arg His 170 Val Gly Trp Ile Ala Leu His Ala Gly Met Ala Gly Gly Ala His Tyr Thr Val Ile Pro Glu Val Pro Phe Asp Ile Ala Glu Ile Cys Lys Ala

205

200

Met	210	Arg	Arg	rne	GIII	215	Gry	Gra	гуs	ıyı	220	110	110	•••	VUI	
Ala 225	Glu	Gly	Ala	Leu	Pro 230	Arg	Glu	Gly	Thr	Met 235	Glu	Leu	Arg	Glu	Gly 240	
His	Ile	Asp	Gln	Phe 245	Gly	His	Lys	Thr	Phe 250	Thr	Gly	Ile	Gly	Gln 255	Gln	
Ile	Ala	Asp	Glu 260	Ile	His	Val	Arg	Leu 265	Gly	His	Asp	Val	Arg 270	Thr	Thr	
Val	Leu	Gly 275	His	Ile	Gln	Arg	Gly 280	Gly	Thr	Pro	Thr	Ala 285	Phe	Asp	Arg	
Val	Leu 290	Ala	Thr	Arg	Tyr	Gly 295	Val	Arg	Ala	Ala	Arg 300	Ala	Суѕ	His	Glu	
Gly 305	Ser	Phe	Asp	Lys	Val 310	Val	Ala	Leu	Lys	Gly 315	Glu	Ser	Ile	Glu	Met 320	
Ile	Thr	Phe	Glu	Glu 325	Ala	Val	Gly	Thr	Leu 330	Lys	Glu	Val	Pro	Phe 335	Glu	
Arg	Trp	Val	Thr 340	Ala	Gln	Ala	Met	Phe 345	Gly							
<211 <211 <211 <221 <221 <221 <221	0> L> CI 2> (1 3> R)	083 NA Oryne OS 101)	(10	ceriu 060)	д <u>.</u>	Iutar	nicur	n								
	0> 55 caato	-	cgata	atcga	at gi	tggt	ggtca	a cc	gatgo	eggg	tgca	acca	gca a	agtti	tcgttg	60
agca	agtto	gcg a	agaad	cgcga	at gi	tagaa	agtto	g tga	attgo	caga				aca Thr		115
act Thr	gca Ala	agt Ser	ccg Pro	tat Tyr 10	ctg Leu	ttg Leu	agc Ser	acc Thr	aat Asn 15	gag Glu	ctt Leu	gac Asp	ggc Gly	acc Thr 20	atc Ile	163
gaa Glu	att Ile	ggc Gly	gaa Glu 25	gca Ala	aac Asn	aaa Lys	atc Ile	cgg Arg 30	cag Gln	gtt Val	tcc Ser	act Thr	gtt Val 35	gcc Ala	ggt Gly	211
ggt Gly	ttt Phe	ggc Gly 40	acc Thr	ggt Gly	gtg Val	gct Ala	gcc Ala 45	acc Thr	ttg Leu	ttt Phe	tat Tyr	ggc Gly 50	ggc Gly	aat Asn	gaa Glu	259
				ttt			cca Pro									307

														ggt Gly		355
atc Ile	ccc Pro	atg Met	cat His	ttg Leu 90	acc Thr	atg Met	cgt Arg	gat Asp	gca Ala 95	gag Glu	ggc Gly	aat Asn	gag Glu	act Thr 100	aag Lys	403
ttc Phe	aaa Lys	gac Asp	tcc Ser 105	ccc Pro	atg Met	cct Pro	ttg Leu	gat Asp 110	gtg Val	tcc Ser	cag Gln	ttg Leu	gca Ala 115	att Ile	ctt Leu	451
cgt Arg	gat Asp	cta Leu 120	gtg Val	gtg Val	cgt Arg	cga Arg	gcc Ala 125	gaa Glu	gat Asp	gcc Ala	gcg Ala	tgg Trp 130	gtg Val	ttg Leu	ttg Leu	499
														gat Asp		547
														atc Ile		595
														gct Ala 180		643
														gcc Ala		691
														gat Asp		739
tcc Ser	ccg Pro 215	act Thr	gtg Val	gcg Ala	gca Ala	gcg Ala 220	cgc Arg	gct Ala	tta Leu	att Ile	gat Asp 225	agc Ser	ggt Gly	gtc Val	acc Thr	787
														tcc Ser		835
														cag Gln 260		883
														tcc Ser		931
														tac Tyr		979
														gat Asp		1027
ctt	cgg	gcg	gag	cac	gtg	gtc	atc	aaa	tcg	ctt	taga	acca	ege a	aaaa	agcctc	1080

Leu Arg Ala Glu His Val Val Ile Lys Ser Leu 310 315 320

aaa 1083

<210> 56

<211> 320

<212> PRT

<213> Corynebacterium glutamicum

<400> 56

Met Ile Leu Thr Val Thr Ala Ser Pro Tyr Leu Leu Ser Thr Asn Glu
1 5 10 15

Leu Asp Gly Thr Ile Glu Ile Gly Glu Ala Asn Lys Ile Arg Gln Val 20 25 30

Ser Thr Val Ala Gly Gly Phe Gly Thr Gly Val Ala Ala Thr Leu Phe 35 40 45

Tyr Gly Gly Asn Glu Thr Phe Ala Val Phe Pro Ala Pro Glu Ile Ser 50 55 60

His Tyr Met Arg Leu Val Thr Phe Ala Gly Leu Pro His Glu Ile Ile 65 70 75 80

Pro Val Ala Gly Pro Ile Pro Met His Leu Thr Met Arg Asp Ala Glu 85 90 95

Gly Asn Glu Thr Lys Phe Lys Asp Ser Pro Met Pro Leu Asp Val Ser 100 105 110

Gln Leu Ala Ile Leu Arg Asp Leu Val Val Arg Arg Ala Glu Asp Ala 115 120 125

Ala Trp Val Leu Leu Gly Gly Asn Leu Pro Ser Ile Ala Pro Ala Ala 130 135 140

Trp Phe Val Asp Val Val Arg Ser Leu Arg Leu Tyr His Pro His Val 145 150 155 160

Lys Val Ala Ile Ala Ala Thr Gly Ala Ala Leu Arg Ala Val Ile Arg 165 170 175

Gln Leu Ala Ala Thr Ser Pro Asp Ala Leu Ile Val Ala Ala Glu Glu 180 185 190

Ile Glu Ile Ala Thr Gly Leu Glu Pro Lys Thr Leu Arg Gly Pro Trp 195 200 205

Val Glu Gly Asp Leu Ser Pro Thr Val Ala Ala Ala Arg Ala Leu Ile 210 215 220

Asp Ser Gly Val Thr Glu Val Leu Val Thr Asn Lys Arg Thr Glu Ser 225 230 235 240

Leu Tyr Val Ser Glu Ser Glu Ser Leu Leu Ala Ser Tyr Asp Ser Thr 245 250 255

Pro Gly Lys Gln Gly Val Asn Trp Arg Glu Ser Phe Thr Ala Gly Phe

270

Leu Ala Ala Ser Asn Asp Gly Lys Ser Thr Glu Asp Ser Val Ile Asn 275 280 285

Ala Val Ala Tyr Ala Asn Ala Glu Gly Ser Glu Trp Asp Asn Tyr Ile

260

265

Pro Thr Pro Asp Lys Leu Arg Ala Glu His Val Val Ile Lys Ser Leu 305 310 315 320

<210> 57 <211> 1113 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1090) <223> RXA01882 <400> 57 accettttte cacettgget gattttgatg ceettgttac egatgaceae aegetagatt 60 ttccagtttt gcccgaccac aactttcagg tggtaacccc atg atc atc aca ttc 115 Met Ile Ile Thr Phe 1 acc cca aac ccg agt att gat tcc acg ctg tcg ctc ggc gaa gag ctc Thr Pro Asn Pro Ser Ile Asp Ser Thr Leu Ser Leu Gly Glu Glu Leu 10 tcc cgt gga tcc gtc caa cga ctt gat tcc gtc acc gct gtc gca ggt 211 Ser Arg Gly Ser Val Gln Arg Leu Asp Ser Val Thr Ala Val Ala Gly 30 ggt aaa ggc atc aat gtc gcc cac gct gtc ttg ctt gcg ggc ttt gaa 259 Gly Lys Gly Ile Asn Val Ala His Ala Val Leu Leu Ala Gly Phe Glu 40 307 acc ttg gct gtg ttc cca gcc ggc aag ctc gac ccc ttc gtc cca ctg Thr Leu Ala Val Phe Pro Ala Gly Lys Leu Asp Pro Phe Val Pro Leu 55 gtc cgc gac atc ggc ttg ccc gtg gaa act gtt gtg atc aac aag aac 355 Val Arg Asp Ile Gly Leu Pro Val Glu Thr Val Val Ile Asn Lys Asn 70 75 403 gto oge ace aac ace aca gto ace gaa cog gac ggc ace ace ace aag Val Arg Thr Asn Thr Thr Val Thr Glu Pro Asp Gly Thr Thr Thr Lys 90 . etc aac ggc ecc ggc geg ecg etc age gag eag aag etc egt age ttg 451 Leu Asn Gly Pro Gly Ala Pro Leu Ser Glu Gln Lys Leu Arg Ser Leu 115 105 110

gaa aag gtg ctt atc gac gcg ctc cgc ccc gaa gtc acc tgg gtt gtc

499

Glu	Lys	Val 120	Leu	Ile	Asp	Ala	Leu 125	Arg	Pro	Glu	Val	Thr 130	Trp	Val	Val	
ctg Leu	gcg Ala 135	ggc Gly	tcg Ser	ctg Leu	cca Pro	cca Pro 140	ggg Gly	gca Ala	cca Pro	gtt Val	gac Asp 145	tgg Trp	tac Tyr	gcg Ala	cgt Arg	547
	acc Thr															595
	acc Thr															643
	ggc Gly															691
	ctg Leu															739
	gat Asp 215															787
	atc Ile	-	-			_		-		_	_			_		835
gtc Val	aac Asn	gca Ala	gaa Glu	ggt Gly 250	gcg Ala	tgg Trp	act Thr	gct Ala	act Thr 255	tct Ser	cca Pro	aag Lys	att Ile	gat Asp 260	gtt Val	883
	tcc Ser															931
	cgt Arg															979
	tac Tyr 295															1027
	gac Asp															1075
_	aaa Lys	_		-	tgaa	atago	cgt a	aaata	aatto	cc to	⊃g					1113

<210> 58

<211> 330

<212> PRT <213> Corynebacterium glutamicum

)> 58 Ile		Thr	Phe 5	Thr	Pro	Asn	Pro	Ser 10	Ile	Asp	Ser	Thr	Leu 15	Ser
Leu	Gly	Glu	Glu 20	Leu	Ser	Arg	Gly	Ser 25	Val	Gln	Arg	Leu	Asp 30	Ser	Val
Thr	Ala	Val 35	Ala	Gly	Gly	Lys	Gly 40	Ile	Asn	Val	Ala	His 45	Ala	Val	Leu
Leu	Ala 50	Gly	Phe	Glu	Thr	Leu 55	Ala	Val	Phe	Pro	Ala 60	Gly	Lys	Leu	Asp
Pro 65	Phe	Val	Pro	Leu	Val 70	Arg	Asp	Ile	Gly	Leu 75	Pro	Val	Glu	Thr	Val 80
Val	Ile	Asn	Lys	Asn 85	Val	Arg	Thr	Asn	Thr 90	Thr	Val	Thr	Glu	Pro 95	Asp
_			100				Gly	105					110		
		115					Val 120					125			
	130					135	Gly				140				
145	_	_			150		Ala			155					160
Val	Arg	Val	Ala	Val 165	Asp	Thr	Ser	Asp	Lys 170	Pro	Leu	Met	Ala	Leu 175	Gly
			180			_	Ala	185					190		
		195					Ala 200					205			
	210					215	Tyr				220				
225		*			230		Glu			235					240
				245			Ala		250					255	
			260				Thr	265					270		
	-	275					Ser 280					285			
	290					295	Gly				300				
Thr 305	Thr	Ile	Pro	Arg	Pro 310	Asp	Gln	Leu	Ala	Thr 315	Ala	Gly	Ala	Thr	Val 320

Thr Gln Val Lys Gly Leu Lys Glu Ser Ala 325 330

<210> 59 <211> 1155 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1132) <223> RXA01702 <400> 59 attgtgaatg tgggattatc ggttcgcgct tcaccatgtt tctgcatgat gaaattacat 60 acatagttca gtgacagtca ccttttggag gagacacctt atg cct atc gca act Met Pro Ile Ala Thr ccc gag gtc tat aac gag atg ctc gat cgt gct aag gaa ggc gga ttc Pro Glu Val Tyr Asn Glu Met Leu Asp Arg Ala Lys Glu Gly Gly Phe qcc ttc cca qcc atc aac tqc acc tcc tcg gaa acc atc aac gca gct 211 Ala Phe Pro Ala Ile Asn Cys Thr Ser Ser Glu Thr Ile Asn Ala Ala 259 ctc aag ggc ttc gca gag gct gaa tct gac gga atc atc cag ttc tcc Leu Lys Gly Phe Ala Glu Ala Glu Ser Asp Gly Ile Ile Gln Phe Ser acc ggt ggt gca gag ttc ggt tcc ggc ctg gca gta aag aac aag gtc 307 Thr Gly Gly Ala Glu Phe Gly Ser Gly Leu Ala Val Lys Asn Lys Val aag ggc gca gtt gcg ctt gca gcc ttc gcc cac gag gca gca aag agc 355 Lys Gly Ala Val Ala Leu Ala Ala Phe Ala His Glu Ala Ala Lys Ser tac ggc atc aac gtt gct ctg cac act gac cac tgc cag aag gaa gtc 403 Tyr Gly Ile Asn Val Ala Leu His Thr Asp His Cys Gln Lys Glu Val 95 451 ctq qac qaq tac qtc cgc cca ctq ctq qct atc tcc cag gag cgc gtc Leu Asp Glu Tyr Val Arg Pro Leu Leu Ala Ile Ser Gln Glu Arg Val 110 499 gac ege gge gag ett eea etg tte eag tee eac atg tgg gat ggt tee Asp Arg Gly Glu Leu Pro Leu Phe Gln Ser His Met Trp Asp Gly Ser 125 get gtc eca ate gae gag aac ete gaa ate gea eag gag etg etg get 547 Ala Val Pro Ile Asp Glu Asn Leu Glu Ile Ala Gln Glu Leu Leu Ala 140 aaq gcc aag gca gcg aac atc atc ttg gaa gtt gag atc ggt gtt gtc 595 Lys Ala Lys Ala Ala Asn Ile Ile Leu Glu Val Glu Ile Gly Val Val 160 155 150

ggt ggc gad Gly Gly Gl	a gaa gac ggc u Glu Asp Gly 170	gtt gag gct Val Glu Ala	aag gct ggc Lys Ala Gly 175	gca aac ctc Ala Asn Leu 180	tac 643 Tyr
acc tcc cc Thr Ser Pr	a gaa gac ttt o Glu Asp Phe 185	gag aag acc Glu Lys Thr 190	atc gat gca Ile Asp Ala	atc ggc acc Ile Gly Thr 195	ggt 691 Gly
gag aag gg Glu Lys Gl 20	c cgc tac ctg y Arg Tyr Leu 0	cta gca gct Leu Ala Ala 205	acc ttc ggt Thr Phe Gly	aac gtc cac Asn Val His 210	ggc 739 Gly
gtt tac aa Val Tyr Ly 215	g cca ggc aac s Pro Gly Asn	gtc aag ctg Val Lys Leu 220	cgc cca gag Arg Pro Glu 225	gtc ctc ctt Val Leu Leu	gag 787 Glu
ggc cag ca Gly Gln Gl 230	g gtt gca cgc n Val Ala Arg 235	aag aag ctt Lys Lys Leu	gga ctt gca Gly Leu Ala 240	gac gac gca Asp Asp Ala	ctt 835 Leu 245
	c ttc gtc ttc p Phe Val Phe 250				
	g gcg ctg acc u Ala Leu Thr 265				
gac acc ca Asp Thr Gl 28	g tac gca ttc n Tyr Ala Phe O	acc cgc cca Thr Arg Pro 285	atc gtc tcc Ile Val Ser	cac atg ttt His Met Phe 290	gag 979 Glu
	c ggc gtt ctc n Gly Val Leu				
	c cca cgc tct p Pro Arg Ser 315				
	t atc gag tct e Ile Glu Ser 330		_		
acc tct aa Thr Ser Ly	g taatctcagc s	agttaaaaag go	gc		1155

<210> 60

<211> 344

<212> PRT

<213> Corynebacterium glutamicum

<400> 60

Met Pro Ile Ala Thr Pro Glu Val Tyr Asn Glu Met Leu Asp Arg Ala 1 5 10 15

Lys Glu Gly Gly Phe Ala Phe Pro Ala Ile Asn Cys Thr Ser Ser Glu 20 25 30

Thr	Ile	Asn 35	Ala	Ala	Leu	Lys	Gly 40	Phe	Ala	Glu	Ala	Glu 45	Ser	Asp	Gly
Ile	Ile 50	Gln	Phe	Ser	Thr	Gly 55	Gly	Ala	Glu	Phe	Gly 60	Ser	Gly	Leu	Ala
Val 65	Lys	Asn	Lys	Val	Lys 70	Gly	Ala	Val	Ala	Leu 75	Ala	Ala	Phe	Ala	His 80
Glu	Ala	Ala	Lys	Ser 85	Tyr	Gly	Ile	Asn	Val 90	Ala	Leu	His	Thr	Asp 95	His
Cys	Gln	Lys	Glu 100	Val	Leu	Asp	Glu	Tyr 105	Val	Arg	Pro	Leu	Leu 110	Ala	Ile
Ser	Gln	Glu 115 \	Arg	Val	Asp	Arg	Gly 120	Glu	Leu	Pro	Leu	Phe 125	Gln	Ser	His
Met	Trp 130	Asp	Gly	Ser	Ala	Val 135	Pro	Ile	Asp	Glu	Asn 140	Leu	Glu	Ile	Ala
Gln 145	Glu	Leu	Leu	Ala	Lys 150	Ala	Lys	Ala	Ala	Asn 155	Ile	Ile	Leu	Glu	Val 160
Glu	Ile	Gly	Val	Val 165	Gly	Gly	Glu	Glu	Asp 170	Gly	Val	Glu	Ala	Lys 175	Ala
Gly	Ala	Asn	Leu 180	Tyr	Thr	Ser	Pro	Glu 185	Asp	Phe	Glu	Lys	Thr 190	Ile	Asp
Ala	Ile	Gly 195	Thr	Gly	Glu	Lys	Gly 200	Arg	Tyr	Leu	Leu	Ala 205	Ala	Thr :	Phe
Gly	Asn 210	Val	His	Gly	Val	Tyr 215	Lys	Pro	Gly	Asn	Val 220	Lys	Leu	Arg	Pro
Glu 225	Val	Leu	Leu	Glu	Gly 230	Gln	Gln	Val	Ala	Arg 235	Lys	Lys	Leu	Gly	Leu 240
Ala	Asp	Asp	Ala	Leu 245	Pro	Phe	Asp	Phe	Val 250	Phe	His	Gly	Gly	Ser 255	Gly
Ser	Glu	Lys	Glu 260	Lys	Ile	Glu	Glu	Ala 265	Leu	Thr	Tyr	Gly	Val 270	Ile	Lys
Met	Asn	Val 275	Asp	Thr	Asp	Thr	Gln 280	Tyr	Ala	Phe	Thr	Arg 285	Pro	Ile	Val
Ser	His 290	Met	Phe	Glu	Asn	Tyr 295	Asn	Gly	Val	Leu	Lys 300	Ile	Asp	Gly	Glu
Val 305	Gly	Asn	Lys	Lys	Ala 310	Tyr	Asp	Pro	Arg	Ser 315	Tyr	Met	Lys	Lys	Ala 320
Glu	Gln	Ser	Met	Ser 325	Glu	Arg	Ile	Ile	Glu 330	Ser	Cys	Gln	Asp	Leu 335	Lys
Ser	Val	Gly	Lys 340	Thr	Thr	Ser	Lys								

<210> 61 <211> 900 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(877) <223> RXA02258 <400> 61 cgttgcaatt ctcgctcagt aaatccgaca cggccctttg ttagaaaaca aaacataaag 60 ggccaccggg aaacttttt aagaaaggtg tgtttcacac atg gca cgt aag cca Met Ala Arg Lys Pro ctt atc gct ggt aac tgg aag atg aac ctg gat cac cag cag gca atc Leu Ile Ala Gly Asn Trp Lys Met Asn Leu Asp His Gln Gln Ala Ile ggc act gtt cag aag ctt gca ttc gcc ctt cca aag gaa tac ttc gag 211 Gly Thr Val Gln Lys Leu Ala Phe Ala Leu Pro Lys Glu Tyr Phe Glu 30 aaq gtt gac gtt gca gtc acc gtt cct ttc act gac atc cgc tcc gtc 259 Lys Val Asp Val Ala Val Thr Val Pro Phe Thr Asp Ile Arg Ser Val 45 307 cag act ctc gtt gag ggc gac aag ctt gag gtc act ttc ggt gct cag Gln Thr Leu Val Glu Gly Asp Lys Leu Glu Val Thr Phe Gly Ala Gln gac gtc tcc cag cac gag tcc ggt gcg tac acc ggt gaa gtt tct gca 355 Asp Val Ser Gln His Glu Ser Gly Ala Tyr Thr Gly Glu Val Ser Ala age atg ctg gca aag ttg aac tgc tct tgg gtt gtc gtt gga cac tcc 403 Ser Met Leu Ala Lys Leu Asn Cys Ser Trp Val Val Val Gly His Ser 90 95 gag cgc cgc gag tac cac aac gag tct gat gag ttg gtt gct gcg aag 451 Glu Arg Arg Glu Tyr His Asn Glu Ser Asp Glu Leu Val Ala Ala Lys 110 gca aag gca gct ctg tcc aac ggc atc agc ccg atc gtc tgc gtt ggt 499 Ala Lys Ala Ala Leu Ser Asn Gly Ile Ser Pro Ile Val Cys Val Gly 125 547 gag cca ctg gaa atc cgt gaa gct ggc acc cac gtt gag tac gtc gtc Glu Pro Leu Glu Ile Arg Glu Ala Gly Thr His Val Glu Tyr Val Val 595 gag cag acc cgt aag tcc ctt gct ggc ctg gat gct gct gag ctg gcc Glu Gln Thr Arg Lys Ser Leu Ala Gly Leu Asp Ala Ala Glu Leu Ala 155 aac acc gtt atc gcg tat gag cca gtg tgg gct atc ggc acc ggt aag 643 Asn Thr Val Ile Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Lys 175

gtt gct tcc gca gct gac gct cag gaa gtg tgc aag gct atc cgc ggt Val Ala Ser Ala Ala Asp Ala Gln Glu Val Cys Lys Ala Ile Arg Gly 185 190 195	691
ctg atc gtg gag ctt gca ggc gac gag gtc gct gag ggc ctg cgt att Leu Ile Val Glu Leu Ala Gly Asp Glu Val Ala Glu Gly Leu Arg Ile 200 205 210	739
ctt tac ggt ggt tct gtt aag gca gaa acc gtc gct gag atc gtc ggt Leu Tyr Gly Gly Ser Val Lys Ala Glu Thr Val Ala Glu Ile Val Gly 215 220 225	787
cag cct gac gtc gac ggc gga ctt gtc ggt ggc gct tcc ctc gac ggt Gln Pro Asp Val Asp Gly Gly Leu Val Gly Gly Ala Ser Leu Asp Gly 230 235 240 245	835
gaa gca ttc gcc aag ctg gct gcc aac gct gcg agc gtt gct Glu Ala Phe Ala Lys Leu Ala Ala Asn Ala Ala Ser Val Ala 250 255	877
taaagtacag agctttaaag cac	900
<210> 62 <211> 259 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 62 Met Ala Arg Lys Pro Leu Ile Ala Gly Asn Trp Lys Met Asn Leu Asp</pre>	
His Gln Gln Ala Ile Gly Thr Val Gln Lys Leu Ala Phe Ala Leu Pro 20 25 30	
Lys Glu Tyr Phe Glu Lys Val Asp Val Ala Val Thr Val Pro Phe Thr 35 40 45	
Asp Ile Arg Ser Val Gln Thr Leu Val Glu Gly Asp Lys Leu Glu Val 50 55 60	
Thr Phe Gly Ala Gln Asp Val Ser Gln His Glu Ser Gly Ala Tyr Thr 65 70 75 80	
Gly Glu Val Ser Ala Ser Met Leu Ala Lys Leu Asn Cys Ser Trp Val 85 90 95	
Val Val Gly His Ser Glu Arg Arg Glu Tyr His Asn Glu Ser Asp Glu 100 105 110	
Leu Val Ala Ala Lys Ala Lys Ala Ala Leu Ser Asn Gly Ile Ser Pro 115 120 125	
Ile Val Cys Val Gly Glu Pro Leu Glu Ile Arg Glu Ala Gly Thr His 130 135 140	
Val Glu Tyr Val Val Glu Gln Thr Arg Lys Ser Leu Ala Gly Leu Asp 145 150 155 160	
Ala Ala Glu Leu Ala Asn Thr Val Ile Ala Tyr Glu Pro Val Trp Ala 165 170 175	

Ile Gly Thr Gly Lys Val Ala Ser Ala Ala Asp Ala Gln Glu Val Cys Lys Ala Ile Arg Gly Leu Ile Val Glu Leu Ala Gly Asp Glu Val Ala 200 Glu Gly Leu Arg Ile Leu Tyr Gly Gly Ser Val Lys Ala Glu Thr Val Ala Glu Ile Val Gly Gln Pro Asp Val Asp Gly Gly Leu Val Gly Gly Ala Ser Leu Asp Gly Glu Ala Phe Ala Lys Leu Ala Ala Asn Ala Ala 250 Ser Val Ala <210> 63 <211> 1563 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1540) <223> RXN01225 <400> 63 tttgggctaa tgttgggggg agtgctttca actatccacg agagctgccc agtgataaac 60 cccgggttaa ccccacgcct aagtcagtga aggacttttt atg acg cac aac cac 115 Met Thr His Asn His aag gac tgg aac gat cgc att gca gtt gcg gag gaa atg gtg ccg ttg 163 Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu Glu Met Val Pro Leu 15 atc ggg cgc ctg cac cgc aac aac gtg gtg gtt tcc gta ttc ggt 211 Ile Gly Arg Leu His Arg Asn Asn Val Val Val Ser Val Phe Gly cgt ctc ctt gtg aat gtc tca gac atc gat atc atc aag tct cac cgc 259 Arg Leu Leu Val Asn Val Ser Asp Ile Asp Ile Ile Lys Ser His Arg 4.5 307 tac gcc cgc cac atc ata tcc aag gaa ctt cca ctg gaa agc tcc ttg Tyr Ala Arg His Ile Ile Ser Lys Glu Leu Pro Leu Glu Ser Ser Leu gat att ttg cgc gaa ctg gta gat atg aac ctt ggt acc gca tcg atc 355 Asp Ile Leu Arg Glu Leu Val Asp Met Asn Leu Gly Thr Ala Ser Ile 403 gac ctq qqa caq ctg qcc tac aqc ttc qaa qaa tcc gaa agc acc gac Asp Leu Gly Gln Leu Ala Tyr Ser Phe Glu Glu Ser Glu Ser Thr Asp 90 95

				ctg Leu												451
				cca Pro												499
				gcc Ala												547
				cgc Arg												595
				gca Ala 170												643
	_			atc Ile			-		-						-	691
				atc Ile												739
				tac Tyr												787
				gac Asp												835
	-	-	-	gtt Val 250	-				_		_		-	-	-	883
				ggc Gly					-			-	•	-	-	931
	-		-	gca Ala		-				_						979
-				gat Asp	_				_				_	-		1027
-				acc Thr		_	_		-		-				_	1075
		-	-	ggt Gly 330	_	-	_		_		-	_			-	1123
acc	ggc	gct	gca	aag	gct	gta	tcc	aag	gcg	ctt	cca	gag	ctg	gaa	ggc	1171

345 350	ro Glu Leu Glu Gly 355
aag ctc acc ggc aat gcc atc cgc gtt cct acc c Lys Leu Thr Gly Asn Ala Ile Arg Val Pro Thr P 360 365	
gct gtg ctc aac ttg acc ctg aac acg gag gtg g Ala Val Leu Asn Leu Thr Leu Asn Thr Glu Val A 375 380 3	
aac gag ttc ctc cgc cgt gtg tcc ctg cac tct g Asn Glu Phe Leu Arg Arg Val Ser Leu His Ser A 390 395 400	
atc gac tgg atc cgt tcc cca gag gtt gtt tcc a Ile Asp Trp Ile Arg Ser Pro Glu Val Val Ser T 410 415	
ace ace cae gcg gge ate gtt gat ggt eta gce a Thr Thr His Ala Gly Ile Val Asp Gly Leu Ala T 425 430	
cgc cac ctg gtg ctt tac gtg tgg tac gac aac g Arg His Leu Val Leu Tyr Val Trp Tyr Asp Asn G 440 445	
aac cag gtc att cgc atc gtc gag gag atc gcc g Asn Gln Val Ile Arg Ile Val Glu Glu Ile Ala G 455 460 4	
gtg tac ccg gag cgc agg cag cca gcc gta cta ti	aggttatcc aagcctaata 1560
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480	,
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu	1563
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT	
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT <213> Corynebacterium glutamicum	
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT	1563
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Thr His Asn His Lys Asp Trp Asn Asp Arg I	1563 le Ala Val Ala Glu 15
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Thr His Asn His Lys Asp Trp Asn Asp Arg I. 1 5 10 Glu Met Val Pro Leu Ile Gly Arg Leu His Arg A	le Ala Val Ala Glu 15 sn Asn Asn Val Val 30
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Thr His Asn His Lys Asp Trp Asn Asp Arg I 1 5 10 Glu Met Val Pro Leu Ile Gly Arg Leu His Arg Arg 20 25 Val Ser Val Phe Gly Arg Leu Leu Val Asn Val Ser 35 40 Ile Lys Ser His Arg Tyr Ala Arg His Ile Ile Se	le Ala Val Ala Glu 15 sn Asn Asn Val Val 30 er Asp Ile Asp Ile 45
Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 470 475 480 cac <210> 64 <211> 480 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Thr His Asn His Lys Asp Trp Asn Asp Arg I 1 5 10 Glu Met Val Pro Leu Ile Gly Arg Leu His Arg Arg 20 25 Val Ser Val Phe Gly Arg Leu Leu Val Asn Val Ser 35 40 Ile Lys Ser His Arg Tyr Ala Arg His Ile Ile Se	le Ala Val Ala Glu 15 sn Asn Asn Val Val 30 er Asp Ile Asp Ile 45 er Lys Glu Leu Pro

Ser	Glu	Ser	Thr 100	Asp	Leu	Arg	Ala	Phe 105	Leu	Glu	Asp	Ala	Leu 110	Ala	Pro
Val	Ile	Gly 115	Ala	Glu	Thr	Asp	Ile 120	Asn	Pro	Thr	Asp	11e 125	Val	Leu	Tyr
Gly	Phe 130	Gly	Arg	Ile	Gly	Arg 135	Leu	Leu	Ala	Arg	Ile 140	Leu	Val	Ser	Arg
Glu 145	Ala	Leu	Tyr	Asp	Gly 150	Ala	Arg	Leu	Arg	Ala 155	Ile	Val	Val	Arg	Lys 160
Asn	Gly	Glu	Glu	Asp 165	Leu	Val	Lys	Arg	Ala 170	Ser	Leu	Leu	Arg	Arg 175	Asp
Ser	Val	His	Gly 180	Gly	Phe	Asp	Gly	Thr 185	Ile	Thr	Thr	Asp	Tyr 190	Asp	Asn
Àsn	Ile	Ile 195	Trp	Ala	Asn	Gly	Thr 200	Pro	Ile	Lys	Val	Ile 205	Tyr	Ser	Asn
Asp	Pro 210	Ala	Thr	Ile	Asp	Tyr 215	Thr	Glu	Tyr	Gly	Ile 220	Asn	Asp	Ala	Val
Val 225	Val	Asp	Asn	Thr	Gly 230	Arg	Trp	Arg	Asp	Arg 235	Glu	Gly	Leu	Ser	Gln 240
His	Leu	Lys	Ser	Lys 245	Gly	Val	Ala	Lys	Val 250	Val	Leu	Thr	Ala	Pro 255	Gly
Lys	Gly	Asp	Leu 260	Lys	Asn	Ile	Val	Tyr 265	Gly	Ile	Asn	His	Thr 270	Asp	Ile
Thr	Ala	Asp 275	Asp	Gln	Ile	Val	Ser 280	Ala	Ala	Ser	Cys	Thr 285	Thr	Asn	Ala
Ile	Thr 290	Pro	Val	Leu	Lys	Val 295	Ile	Asn	Asp	Arg	Tyr 300	Gly	Val	Glu	Phe
Gly 305	His	Val	Glu	Thr	Val 310	His	Ser	Phe	Thr	Asn 315	Asp	Gln	Asn	Leu	Ile 320
Asp	Asn	Phe	His	Lys 325	Gly	Ser	Arg	Arg	Gly 330	Arg	Ala	Ala	Gly	Leu 335	Asn
Met	Val	Leu	Thr 340	Glu	Thr	Gly	Ala	Ala 345	Lys	Ala	Val	Ser	Lys 350	Ala	Leu
Pro	Glu	Leu 355	Glu	Gly	Lys	Leu	Thr 360	Gly	Asn	Ala	Ile	Arg 365	Val	Pro	Thr
Pro	Asp 370	Val	Ser	Met	Ala	Val 375	Leu	Asn	Leu	Thr	Leu 380	Asn	Thr	Glu	Val
Asp 385	Arg	Asp	Glu	Val	Asn 390	Glu	Phe	Leu	Arg	Arg 395	Val	Ser	Leu	His	Ser 400
Asp	Leu	Arg	Gln	Gln 405	Ile	Asp	Trp	Ile	Arg 410	Ser	Pro	Glu	Val	Val 415	Ser

<210> 65 <211> 1563 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1540) <223> FRXA01225 <400> 65 tttgggctaa tgttgggggg agtgctttca actatccacg agagctgccc agtgataaac 60 cccgggttaa ccccacgcct aagtcagtga aggacttttt atg acg cac aac cac Met Thr His Asn His aag gac tgg aac gat cgc att gca gtt gcg gag gaa atg gtg ccg ttg Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu Glu Met Val Pro Leu atc ggg cgc ctg cac cgc aac aac gtg gtg gtt tcc gta ttc ggt 211 Ile Gly Arg Leu His Arg Asn Asn Val Val Val Ser Val Phe Gly cqt ctc ctt qtq aat gtc tca gac atc gat atc atc aag tct cac cgc 259 Arg Leu Leu Val Asn Val Ser Asp Ile Asp Ile Ile Lys Ser His Arg 45 tac gcc cgc cac atc ata tcc aag gaa ctt cca ctg gaa agc tcc ttg 307 Tyr Ala Arg His Ile Ile Ser Lys Glu Leu Pro Leu Glu Ser Ser Leu gat att ttg cgc gaa ctg gta gat atg aac ctt ggt acc gca tcg atc 355 Asp Ile Leu Arg Glu Leu Val Asp Met Asn Leu Gly Thr Ala Ser Ile 403 gac ctg gga cag ctg gcc tac agc ttc gaa gaa tcc gaa agc acc gac Asp Leu Gly Gln Leu Ala Tyr Ser Phe Glu Glu Ser Glu Ser Thr Asp ctg cgt gcc ttc ctg gag gac gct ctc gcg ccg gtc att ggt gcg gaa 451 Leu Arg Ala Phe Leu Glu Asp Ala Leu Ala Pro Val Ile Gly Ala Glu 105 110

92

acc Thr	gac Asp	atc Ile 120	aac Asn	cca Pro	act Thr	gat Asp	atc Ile 125	gtg Val	ctg Leu	tac Tyr	ggt Gly	ttc Phe 130	ggc Gly	cgc Arg	atc Ile	499
ggt Gly	cgc Arg 135	ctg Leu	ctg Leu	gcc Ala	cgc Arg	atc Ile 140	ctg Leu	gtt Val	tcc Ser	cgc Arg	gag Glu 145	gca Ala	ctg Leu	tat Tyr	gac Asp	547
	gct Ala															595
	gtc Val															643
ttc Phe	gat Asp	ggc Gly	acc Thr 185	atc Ile	acc Thr	acc Thr	gat Asp	tat Tyr 190	gac Asp	aac Asn	aac Asn	atc Ile	atc Ile 195	tgg Trp	gcc Ala	691
aac Asn	ggc Gly	acc Thr 200	cca Pro	atc Ile	aag Lys	gtc Val	atc Ile 205	tac Tyr	tcc Ser	aat Asn	gac Asp	cca Pro 210	gcc Ala	acc Thr	att Ile	739
gat Asp	tac Tyr 215	acc Thr	gaa Glu	tac Tyr	ggc Gly	atc Ile 220	aat Asn	gac Asp	gcc Ala	gtc Val	gtg Val 225	gta Val	gac Asp	aac Asn	acc Thr	787
ggc Gly 230	cgc Arg	tgg Trp	cgt Arg	gac Asp	cgc Arg 235	gaa Glu	ggc Gly	ctg Leu	tcc Ser	cag Gln 240	cac His	ctc Leu	aag Lys	tcc Ser	aag Lys 245	835
	gtt Val															883
	atc Ile															931
	gtt Val					Cys					Ile					979
aag Lys	gtg Val 295	atc Ile	aat Asn	gat Asp	cgc Arg	tac Tyr 300	Gly Ggc	gtg Val	gaa Glu	ttc Phe	ggc Gly 305	cac His	gta Val	gaa Glu	acc Thr	1027
	cac His															1075
	tct Ser															1123
	ggc Gly															1171
aag	ctc	acc	ggc	aat	gcc	atc	cgc	gtt	cct	acc	cct	gac	gtg	tcc	atg	1219

ys Leu Thr Gly Asn Ala Ile Arg Val Pro Thr Pro Asp Val Ser Met 360 365 370	
act gtg ctc aac ttg acc ctg aac acg gag gtg gac cgc gat gag gtc 1267 Ala Val Leu Asn Leu Thr Leu Asn Thr Glu Val Asp Arg Asp Glu Val 375 380 385	
ac gag ttc ctc cgc cgt gtg tcc ctg cac tct gac ttg cgc cag caa 1315 ISN Glu Phe Leu Arg Arg Val Ser Leu His Ser Asp Leu Arg Gln Gln 190 395 400 405	,
ttc gac tgg atc cgt tcc cca gag gtt gtt tcc act gac ttc gtg ggc 1363 le Asp Trp Ile Arg Ser Pro Glu Val Val Ser Thr Asp Phe Val Gly 410 415 420	j
Coc acc cac gcg ggc atc gtt gat ggt cta gcc acc atc gca acc ggt 1411 Chr Thr His Ala Gly Ile Val Asp Gly Leu Ala Thr Ile Ala Thr Gly 425 430 435	
egc cac ctg gtg ctt tac gtg tgg tac gac aac gag ttc ggc tac tcc 1459 org His Leu Val Leu Tyr Val Trp Tyr Asp Asn Glu Phe Gly Tyr Ser 440 445 450	J
ac cag gtc att cgc atc gtc gag gag atc gcc ggc gtg cgt cct cgc 1507 Asn Gln Val Ile Arg Ile Val Glu Glu Ile Ala Gly Val Arg Pro Arg 455 460 465	
tg tac ccg gag cgc agg cag cca gcc gta cta taggttatcc aagcctaata 1560 Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu 170 475 480)
1563	}
2210> 66 2211> 480 2212> PRT 2213> Corynebacterium glutamicum	3
2210> 66 2211> 480 2212> PRT 2213> Corynebacterium glutamicum	3
2210> 66 2211> 480 2212> PRT 2213> Corynebacterium glutamicum	3
(210> 66 (211> 480 (212> PRT (213> Corynebacterium glutamicum (400> 66 Met Thr His Asn His Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu	3
3210> 66 3211> 480 3212> PRT 3213> Corynebacterium glutamicum 3400> 66 3et Thr His Asn His Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu 1 5 10 15	3
2210> 66 (2211> 480) (2212> PRT (2213> Corynebacterium glutamicum) (400> 66 (4et Thr His Asn His Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu 1 5 10 15 (6lu Met Val Pro Leu Ile Gly Arg Leu His Arg Asn Asn Asn Val Val 20 25 30 (7al Ser Val Phe Gly Arg Leu Leu Val Asn Val Ser Asp Ile Asp Ile	3
2210> 66 (2211> 480) (2212> PRT) (2213> Corynebacterium glutamicum) (400> 66 (4et Thr His Asn His Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu 1	3
2210> 66 (2211> 480 (2212> PRT (2213> Corynebacterium glutamicum (2400> 66 (Met Thr His Asn His Lys Asp Trp Asn Asp Arg Ile Ala Val Ala Glu 1 5 10 15 (Glu Met Val Pro Leu Ile Gly Arg Leu His Arg Asn Asn Asn Val Val 20 25 30 (7al Ser Val Phe Gly Arg Leu Leu Val Asn Val Ser Asp Ile Asp Ile 35 40 (The Lys Ser His Arg Tyr Ala Arg His Ile Ile Ser Lys Glu Leu Pro 50 55 60 (Seu Glu Ser Ser Leu Asp Ile Leu Arg Glu Leu Val Asp Met Asn Leu	3

Val	Ile	Gly 115	Ala	Glu	Thr	Asp	Ile 120	Asn	Pro	Thr	Asp	Ile 125	Val	Leu	Tyr
Gly	Phe 130	Gly	Arg	Ile	Gly	Arg 135	Leu	Leu	Ala	Arg	Ile 140	Leu	Val	Ser	Arg
Glu 145	Ala	Leu	Tyr	Asp	Gly 150	Ala	Arg	Leu	Arg	Ala 155	Ile	Val	Val	Arg	Lys 160
Asn	Gly	Glu	Glu	Asp 165	Leu	Val	Lys	Arg	Ala 170	Ser	Leu	Leu	Arg	Arg 175	Asp
Ser	Val	His	Gly 180	Gly	Phe	Asp	Gly	Thr 185	Ile	Thr	Thr	Asp	Tyr 190	Asp	Asn
Asn	Ile	Ile 195	Trp	Ala	Asn	Gly	Thr 200	Pro	Ile	Lys	Val	Ile 205	Tyr	Ser	Asn
Asp	Pro 210	Ala	Thr	Ile	Asp	Tyr 215	Thr	Glu	Tyr	Gly	11e 220	Asn	Asp	Ala	Val
Val 225	Val	Asp	Asn	Thr	Gly 230	Arg	Trp	Arg	Asp	Arg 235	Glu	Gly	Leu	Ser	Gln 240
His	Leu	Lys	Ser	Lys 245	Gly	Val	Ala	Lys	Val 250	Val	Leu	Thr	Ala	Pro 255	Gly
Lys	Gly	Asp	Leu 260	Lys	Asn	Ile	Val	Tyr 265	Gly	Ile	Asn	His	Thr 270	Asp	Ile
Thr	Ala	Asp 275	Asp	Gln	Ile	Val	Ser 280	Ala	Ala	Ser	Cys	Thr 285	Thr	Asn	Ala
Ile	Thr 290	Pro	Val	Leu	Lys	Val 295	Ile	Asn	Asp	Arg	Tyr 300	Gly	Val	Glu	Phe
Gly 305	His	Val	Glu	Thr	Val 310	His	Ser	Phe	Thr	Asn 315	Asp	Gln	Asn	Leu	Ile 320
Asp	Asn	Phe	His	Lys 325	Gly	Ser	Arg	Arg	Gly 330	Arg	Ala	Ala	Gly	Leu 335	Asn
Met	Val	Leu	Thr 340	Glu	Thr	Gly	Ala	Ala 345	Lys	Ala	Val	Ser	Lys 350	Ala	Leu
Pro	Glu	Leu 355	Glu	Gly	Lys	Leu	Thr 360	Gly	Asn	Ala	Ile	Arg 365	Val	Pro	Thr
Pro	Asp '370	Val	Ser	Met	Ala	Val 375	Leu	Asn	Leu	Thr	Leu 380	Asn	Thr	Glu	Val
Asp 385	Arg	Asp	Glu	Val	Asn 390	Glu	Phe	Leu	Arg	Arg 395	Val	Ser	Leu	His	Ser 400
Asp	Leu	Arg	Gln	Gln 405	Ile	Asp	Trp	Ile	Arg 410	Ser	Pro	Glu	Val	Val 415	Ser
Thr	Asp	Phe	Val 420	Gly	Thr	Thr	His	Ala 425	Gly	Ile	Val	Asp	Gly 430	Leu	Ala
Thr	Ile	Ala	Thr	Gly	Arg	His	Leu	Val	Leu	Tyr	Val	Trp	Tyr	Asp	Asn

445

Glu Phe Gly Tyr Ser Asn Gln Val Ile Arg Ile Val Glu Glu Ile Ala
450 455 460

Gly Val Arg Pro Arg Val Tyr Pro Glu Arg Arg Gln Pro Ala Val Leu
465 470 475 480

440

435

<210> 67 <211> 1125 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1102) <223> RXA02256 <400> 67 ttgggttctg tcagctcaag aattcttgag tgaccgatgc tctgattgac ctaactgctt 60 gacacattgc atttcctaca atctttagag gagacacaac atg acc att cgt gtt Met Thr Ile Arg Val ggt att aac gga ttt ggc cgt atc gga cgt aac ttc ttc cgc gca gtt 163 Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn Phe Phe Arg Ala Val 10 ctg gag cgc agc gac gat ctc gag gta gtt gca gtc aac gac ctc acc 211 Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala Val Asn Asp Leu Thr 30 gac aac aag acc ctt tcc acc ctt ctc aag ttc gac tcc atc atg ggc 259 Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe Asp Ser Ile Met Gly cgc ctt ggc cag gaa gtt gaa tac gac gat gac tcc atc acc gtt ggt 307 Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Ser Ile Thr Val Gly 355 qqc aaq cqc atc gct gtt tac gca gag cgc gat cca aag aac ctg gac Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp Pro Lys Asn Leu Asp 403 tgg gct gca cac aac gtt gac atc gtg atc gag tcc acc ggc ttc ttc Trp Ala Ala His Asn Val Asp Ile Val Ile Glu Ser Thr Gly Phe Phe 90 . 95 451 ace gat gca aac geg get aag get eac ate gaa gea ggt gee aag aag Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu Ala Gly Ala Lys Lys 110 499 gto ato ato too goa coa goa ago aac gaa gac goa aco tto gtt tac Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp Ala Thr Phe Val Tyr 125

ggt gtg aac cac gag tcc tac gat cct gag aac cac aac gtg atc tcc Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn His Asn Val Ile Ser 135 140 145	547
ggc gca tct tgc acc acc aac tgc ctc gca cca atg gca aag gtc cta Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Met Ala Lys Val Leu 150 155 160 165	595
aac gac aag ttc ggc atc gag aac ggc ctc atg acc acc gtt cac gca Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met Thr Thr Val His Ala 170 175 180	643
tac act ggc gac cag cgc ctg cac gat gca cct cac cgc gac ctg cgt Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Pro His Arg Asp Leu Arg 185 190 195	691
cgt gca cgt gca gca gca gtc aac atc gtt cct acc tcc acc ggt gca Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro Thr Ser Thr Gly Ala 200 205 210	739
gct aag gct gtt gct ctg gtt ctc cca gag ctc aag ggc aag ctt gac Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu Lys Gly Lys Leu Asp 215 220 225	787
ggc tac gca ctt cgc gtt cca gtt atc acc ggt tcc gca acc gac ctg Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly Ser Ala Thr Asp Leu 230 235 240 245	835
acc ttc aac acc aag tct gag gtc acc gtt gag tcc atc aac gct gca Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu Ser Ile Asn Ala Ala 250 255 260	883
atc aag gaa gct gca gtc ggc gag ttc ggc gag acc ctg gct tac tcc Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu Thr Leu Ala Tyr Ser 265 270 275	931
gaa gag cca ctg gtt tcc acc gac atc gtc cac gat tcc cac ggc tcc Glu Glu Pro Leu Val Ser Thr Asp Ile Val His Asp Ser His Gly Ser 280 285 290	979
atc ttc gac gct ggc ctg acc aag gtc tcc ggc aac acc gtc aag gtt Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly Asn Thr Val Lys Val 295 300 305	1027
gtt tcc tgg tac gac aac gag tgg ggc tac acc tgc cag ctc ctg cgt Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr Cys Gln Leu Leu Arg 310 315 320 325	1075
ctg acc gag ctc gta gct tcc aag ctc taattagttc acatcgctaa Leu Thr Glu Leu Val Ala Ser Lys Leu 330	1122
cgt	1125
<210> 68 <211> 334 <212> PRT <213> Corynebacterium glutamicum	

<400> 68

Met 1	Thr	Ile	Arg	Val 5	Gly	Ile	Asn	Gly	Phe 10	Gly	Arg	Ile	Gly	Arg 15	Asn
Phe	Phe	Arg	Ala 20	Val	Leu	Glu	Arg	Ser 25	Asp	Asp	Leu	Glu	Val 30	Val	Ala
Val	Asn	Asp 35	Leu	Thr	Asp	Asn	Lys 40	Thr	Leu	Ser	Thr	Leu 45	Leu	Lys	Phe
Asp	Ser 50	Ile	Met	Gly	Arg	Leu 55	Gly	Gln	Glu	Val	Glu 60	Tyr	Asp	Asp	Asp
Ser 65	Ile	Thr	Val	Gly	Gly 70	Lys	Arg	Ile	Ala	Val 75	Tyr	Ala	Glu	Arg	Asp 80
Pro	Lys	Asn	Leu	Asp 85	Trp	Ala	Ala	His	Asn 90	Val	Asp	Ile	Val	Ile 95	Glu
Ser	Thr	Gly	Phe 100	Phe	Thr	Asp	Ala	Asn 105	Ala	Ala	Lys	Ala	His 110	Ile	Glu
Ala	Gly	Ala 115	Lys	Lys	Val	Ile	Ile 120	Ser	Ala	Pro	Ala	Ser 125	Asn	Glu	Asp
Ala	Thr 130	Phe	Val	Tyr	Gly	Val 135	Asn	His	Glu	Ser	Tyr 140	Asp	Pro	Glu	Asn
His 145	Asn	Val	Ile	Ser	Gly 150	Ala	Ser	Суз	Thr	Thr 155	Asn	Cys	Leu	Ala	Pro 160
Met	Ala	Lys	Val	Leu 165	Asn	Asp	Lys	Phe	Gly 170	Ile	Glu	Asn	Gly	Leu 175	Met
Thr	Thr	Val	His 180	Ala	Tyr	Thr	Gly	Asp 185	Gln	Arg	Leu	His	Asp 190	Ala	Pro
His	Arg	Asp 195	Leu	Arg	Arg	Ala	Arg 200	Ala	Ala	Ala	Val	Asn 205	Ile	Val	Pro
Thr	Ser 210	Thr	Gly	Ala	Ala	Lys 215	Ala	Val	Ala	Leu	Val 220	Leu	Pro	Glu	Leu
Lys 225	Gly	Lys	Leu	Asp	Gly 230	Tyr	Ala	Leu	Arg	Val 235	Pro	Val	Ile	Thr	Gly 240
Ser	Ala	Thr	Asp	Leu 245	Thr	Phe	Asn	Thr	Lys 250	Ser	Glu	Val	Thr	Val 255	Glu
Ser	Ile	Asn	Ala 260	Ala	Ile	Lys	Glu	Ala 265	Ala	Val	Gly	Glu	Phe 270	Gly	Glu
Thr	Leu	Ala 275	Tyr	Ser	Glu	Glu	Pro 280	Leu	Val	Ser	Thr	Asp 285	Ile	Val	His
Asp	Ser 290	His	Gly	Ser	Ile	Phe 295	Asp	Ala	Gly	Leu	Thr 300	Lys	Val	Ser	Gly
Asn 305	Thr	Val	Lys	Val	Val 310	Ser	Trp	Tyr	Asp	Asn 315	Glu	Trp	Gly	Tyr	Thr 320
Cys	Gln	Leu	Leu	Arg	Leu	Thr	Glu	Leu	Val	Ala	Ser	Lys	Leu		

325 330

<210> 69 <211> 1338 <212> DNA <213> Corynebacteri	um glutamicum			
<220> <221> CDS <222> (101)(1315) <223> RXA02257				
<400> 69 ataccggtgc cagcgcca	.ca caatgtgtgg ca	aatctggga cag	tgcatca catto	gcacca 60
gaagaatttt ttaaacaa	tc aaatctccaa go		Ala Val Lys	
ctc aag gac ttg ctc Leu Lys Asp Leu Leu 10	Asp Glu Gly Val	a gac gga cgc l Asp Gly Arg 15	cac gtc atc His Val Ile 20	gtt 163 Val
cga tct gac ttc aat Arg Ser Asp Phe Asr 25		n Asp Asp Arg		
aag ggc cga atc att Lys Gly Arg Ile Ile 40				
ggt ggc gca aag gtc Gly Gly Ala Lys Val 55	atc gtc atg gc Ile Val Met Ala 60	t cac ctt ggo a His Leu Gly 65	Arg Pro Lys	ggc 307 Gly
gag gtc aac gag aac Glu Val Asn Glu Lys 70	g tac tcc ctc gca Tyr Ser Leu Ala 75	a cct gtc gct a Pro Val Ala 80	gag gca ctc Glu Ala Leu	tcc 355 Ser 85
gat gag ctt ggc cag Asp Glu Leu Gly Glr 90	Tyr Val Ala Le			
gac gca cac gag cgc Asp Ala His Glu Arc 105		u Thr Glu Gly		_
ctg gag aac gtg cgc Leu Glu Asn Val Arc 120				
gag cgc acc gct ttc Glu Arg Thr Ala Phe 135			Ala Ala Asp	
ggc gca ttc gtt tct Gly Ala Phe Val Ser 150				
tee gte tae gae att	gca aag ttg ct	g cca cac tac	gct ggc gga	ctġ 643

Ser Val Tyr Asp	Ile Ala Lys 170	Leu Leu Pro 175	His Tyr Ala	Gly Gly Leu 180	
gta gag acc gag Val Glu Thr Glu 185					691
gca cca tac gta Ala Pro Tyr Val 200	gtg gtt ctc Val Val Leu	ggt gga tcc Gly Gly Ser 205	aag gtc tct Lys Val Ser 210	gac aag atc Asp Lys Ile	739
ggt gtt att gag Gly Val Ile Glu 215	gcg ctg gct Ala Leu Ala 220	gcc aag gct Ala Lys Ala	gac aag atc Asp Lys Ile 225	atc gtc ggt Ile Val Gly	787
ggc ggc atg tgc Gly Gly Met Cys 230					835
cag tcc ctc ctg Gln Ser Leu Leu	cag gaa gaa Gln Glu Glu 250	atg aag gct Met Lys Ala 255	acc tgc acc Thr Cys Thr	gac ctg ctc Asp Leu Leu 260	883
gca cgc ttc ggt Ala Arg Phe Gly 265					931
tcc gaa ttt aac Ser Glu Phe Asn 280					979
atc cca gaa ggc Ile Pro Glu Gly 295		•			1027
aac ttc ggt gag Asn Phe Gly Glu 310					1075
cca atg ggc gtg Pro Met Gly Val		- •			1123
atc gcc cag gcc Ile Ala Gln Ala 345	_	-		_	1171
gtt gtt ggc ggt Val Val Gly Gly 360		-			1219
aac gaa gac ggc Asn Glu Asp Gly 375				-	1267
gag tac ctt gaa Glu Tyr Leu Glu 390					1315
taaatccgac acggc	eccttt gtt				1338

<210> 70 <211> 405

<212> PRT

<213> Corynebacterium glutamicum

<400> 70

Met Ala Val Lys Thr Leu Lys Asp Leu Leu Asp Glu Gly Val Asp Gly 1 5 10 15

Arg His Val Ile Val Arg Ser Asp Phe Asn Val Pro Leu Asn Asp Asp 20 25 30

Arg Glu Ile Thr Asp Lys Gly Arg Ile Ile Ala Ser Leu Pro Thr Leu 35 40 45

Lys Ala Leu Ser Glu Gly Gly Ala Lys Val Ile Val Met Ala His Leu 50 60

Gly Arg Pro Lys Gly Glu Val Asn Glu Lys Tyr Ser Leu Ala Pro Val 65 70 75 80

Ala Glu Ala Leu Ser Asp Glu Leu Gly Gln Tyr Val Ala Leu Ala Ala 85 90 95

Asp Val Val Gly Glu Asp Ala His Glu Arg Ala Asn Gly Leu Thr Glu 100 105 110

Gly Asp Ile Leu Leu Glu Asn Val Arg Phe Asp Pro Arg Glu Thr 115 120 125

Ser Lys Asp Glu Ala Glu Arg Thr Ala Phe Ala Gln Glu Leu Ala Ala 130 135 140

Leu Ala Ala Asp Asn Gly Ala Phe Val Ser Asp Gly Phe Gly Val Val 145 150 155 160

His Arg Ala Gln Thr Ser Val Tyr Asp Ile Ala Lys Leu Leu Pro His 165 170 175

Tyr Ala Gly Gly Leu Val Glu Thr Glu Ile Ser Val Leu Glu Lys Ile 180 185 190

Ala Glu Ser Pro Glu Ala Pro Tyr Val Val Leu Gly Gly Ser Lys 195 200 205

Val Ser Asp Lys Ile Gly Val Ile Glu Ala Leu Ala Ala Lys Ala Asp 210 215 220

Lys Ile Ile Val Gly Gly Gly Met Cys Tyr Thr Phe Leu Ala Ala Gln 225 230 235 240

Gly His Asn Val Gln Gln Ser Leu Leu Gln Glu Glu Met Lys Ala Thr 245 250 255

Cys Thr Asp Leu Leu Ala Arg Phe Gly Asp Lys Ile Val Leu Pro Val 260 265 270

Asp Leu Val Ala Ala Ser Glu Phe Asn Lys Asp Ala Glu Lys Gln Ile 275 280 285

Val Asp Leu Asp Ser Ile Pro Glu Gly Trp Met Ser Leu Asp Ile Gly Pro Glu Ser Val Lys Asn Phe Gly Glu Val Leu Ser Thr Ala Lys Thr 315 Ile Phe Trp Asn Gly Pro Met Gly Val Phe Glu Phe Ala Ala Phe Ser Glu Gly Thr Arg Gly Ile Ala Gln Ala Ile Ile Asp Ala Thr Ala Gly Asn Asp Ala Phe Ser Val Val Gly Gly Asp Ser Ala Ala Ser Val Arg Val Leu Gly Leu Asn Glu Asp Gly Phe Ser His Ile Ser Thr Gly Gly Gly Ala Ser Leu Glu Tyr Leu Glu Gly Lys Glu Leu Pro Gly Val 390 395 Ala Ile Leu Ala Gln 405 <210> 71 <211> 1398 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1375) <223> RXA00235 <400> 71 cgaaacaaga ttcgtgcaac aattgggtgt agacgtgatt gaagacattt gatcacgtga 60 ataattctag ttagctccca agttggcata ggaggccaca gtg gct gaa atc atg Val Ala Glu Ile Met 1 cac gta ttc gct cgc gaa att ctc gac tcc cgc ggt aac cca acc gtc 163 His Val Phe Ala Arg Glu Ile Leu Asp Ser Arg Gly Asn Pro Thr Val gag gca gag gtt ttc ctg gat gac ggt tcc cac ggt gtc gca ggt gtt 211 Glu Ala Glu Val Phe Leu Asp Asp Gly Ser His Gly Val Ala Gly Val 25 cca tcc ggc gca tcc acc ggc gtc cac gag gct cat gag ctg cgt gac 259 Pro Ser Gly Ala Ser Thr Gly Val His Glu Ala His Glu Leu Arg Asp 40 Gly Gly Asp Arg Tyr Leu Gly Lys Gly Val Leu Lys Ala Val Glu Asn 55 gto aac gaa gaa atc ggc gac gag ctc gct ggc cta gag gct gac gat 355 Val Asn Glu Glu Ile Gly Asp Glu Leu Ala Gly Leu Glu Ala Asp Asp 70

_	_			-	gaa Glu	-	_		-		-			-		403
_		_	_		gca Ala		-				-		_	_	-	451
					gat Asp											499
				_	cac His	-			-		-	_				547
					gct Ala 155											595
	-				gca Ala						_		_			643
		-			gca Ala	_	-		_		_	_	_		_	691
					gat Asp											739
					gac Asp											787
				-	gac Asp 235		-		-	_	-					835
					ggc Gly	Thr		His	Phe	Glu	Gly	Gly			Ser	883
					aac Asn											931
					gac Asp											979
					acc Thr											1027
					aac Asn 315											1075

aag gct gcc aac Lys Ala Ala Asn				1123
acc gag acc ttc Thr Glu Thr Phe 345				1171
tcc atg atg tcc Ser Met Met Ser 360	His Arg Ser			1219
gac ctc gca gtt Asp Leu Ala Val 375				1267
gca cgt tcc gac Ala Arg Ser Asp 390		Lys Tyr Asn (-	 1315
cag ctg ctt ggc Gln Leu Leu Gly				1363
cgc ttt cag ggc Arg Phe Gln Gly 425	taaataaaag c	gcttttcga cgo	С	1398

<210> 72

<211> 425

<212> PRT

<213> Corynebacterium glutamicum

<400> 72

Val Ala Glu Ile Met His Val Phe Ala Arg Glu Ile Leu Asp Ser Arg 1 5 10 15

Gly Asn Pro Thr Val Glu Ala Glu Val Phe Leu Asp Asp Gly Ser His
20 25 30

Gly Val Ala Gly Val Pro Ser Gly Ala Ser Thr Gly Val His Glu Ala 35 40 45

His Glu Leu Arg Asp Gly Gly Asp Arg Tyr Leu Gly Lys Gly Val Leu 50 60

Lys Ala Val Glu Asn Val Asn Glu Glu Ile Gly Asp Glu Leu Ala Gly 65 70 75 80

Leu Glu Ala Asp Asp Gln Arg Leu Ile Asp Glu Ala Met Ile Lys Leu 85 90 95

Asp Gly Thr Ala Asn Lys Ser Arg Leu Gly Ala Asn Ala Ile Leu Gly 100 105 110

Val Ser Met Ala Val Ala Lys Ala Ala Ala Asp Ser Ala Gly Leu Pro 115 120 125

Leu Phe Arg Tyr Ile Gly Gly Pro Asn Ala His Val Leu Pro Val Pro 130 135 140

Met 145	Met	Asn	Ile	Ile	Thr 150	Gly	Gly	Ala	His	Ala 155	Asp	Ser	Gly	Val	Asp 160
Val	Gln	Glu	Phe	Met 165	Ile	Ala	Pro	Ile	Gly 170	Ala	Glu	Thr	Phe	Ser 175	Glu
Ala	Leu	Arg	Asn 180	Gly	Ala	Glu	Val	Tyr 185	His	Ala	Leu	Lys	Ser 190	Val	Ile
Lys	Glu	Lys 195	Gly	Leu	Ser	Thr	Gly 200	Leu	Gly	Asp	Glu	Gly 205	Gly	Phe	Ala
Pro	Ser 210	Val	Gly	Ser	Thr	Arg 215	Glu	Ala	Leu	Asp	Leu 220	Ile	Val	Glu	Ala
Ile 225	Glu	Lys	Ala	Gly	Phe 230	Thr	Pro	Gly	Lys	Asp 235	Ile	Ala	Leu	Ala	Leu 240
Asp	Val	Ala	Ser	Ser 245	Glu	Phe	Phe	Lys	Asp 250	Gly	Thr	Tyr	His	Phe 255	Glu
Gly	Gly	Gln	His 260	Ser	Ala	Ala	Glu	Met 265	Ala	Asn	Val	Tyr	Ala 270	Glu	Leu
Val	Asp	Ala 275	Tyr	Pro	Ile	Val	Ser 280	Ile	Glu	Asp	Pro	Leu 285	Gln	Glu	Asp
Asp	Trp 290	Glu	Gly	Tyr	Thr	Asn 295	Leu	Thr	Ala	Thr	Ile 300	Gly	Asp	Lys	Val
Gln 305	Ile	Val	Gly	Asp	Asp 310	Phe	Phe	Val	Thr	Asn 315	Pro	Glu	Arg		Lys 320
Glu	Gly	Ile	Ala	Lys 325	Lys	Ala	Ala	Asn	Ser 330	Ile	Leu	Val	Lys	Val 335	Asn
Gln	Ile	Gly	Thr 340	Leu	Thr	Glu	Thr	Phe 345	Asp	Ala	Val	Asp	Met 350	Ala	His
Arg	Ala	Gly 355	Tyr	Thr	Ser	Met	Met 360	Ser	His	Arg	Ser	Gly 365	Glu	Thr	Glu
Asp	Thr 370	Thr	Ile	Ala	Asp	Leu 375	Ala	Val	Ala	Leu	Asn 380	Cys	Gly	Gln	Ile
Lys 385	Thr	Gly	Ala	Pro	Ala 390	Arg	Ser	Asp	Arg	Val 395	Ala	Lys	Tyr	Asn	Gln 400
Leu	Leu	Arg	Ile	Glu 405	Gln	Leu	Leu	Gly	Asp 410	Ala	Gly	Val	Tyr	Ala 415	Gly

<210> 73

<211> 1554

<212> DNA

<213> Corynebacterium glutamicum

PCT/IB00/00943 WO 01/00844

<220> <221> CDS <222> (101)..(1531) <223> RXA01093 <400> 73 cagaggegta gaacattgtc tgttcacact ctgggtcgca agattcatcg agaattaatg 60 gtagtacctg tggcttgagg gggaatgacg tactaggctt atg ggc gtg gat aga 115 Met Gly Val Asp Arg cga act aag att gta tgt acc cta ggc cca gcg gtg gct agt gca gat 163 Arg Thr Lys Ile Val Cys Thr Leu Gly Pro Ala Val Ala Ser Ala Asp 10 gga att ctg cgt ttg gta gaa gac ggc atg gat gtt gct cgc ctc aac 211 Gly Ile Leu Arg Leu Val Glu Asp Gly Met Asp Val Ala Arg Leu Asn ttc tcc cat ggt gac cac cca gat cat gag caa aac tac aag tgg gtc Phe Ser His Gly Asp His Pro Asp His Glu Gln Asn Tyr Lys Trp Val 40 45 50 cgc gag gcg gcg gag aag act ggc cgt gca gtc ggt att ctc gca gac 307 Arg Glu Ala Ala Glu Lys Thr Gly Arg Ala Val Gly Ile Leu Ala Asp 55 60 65 ctc caa gga ccg aag atc cgt ctt ggc cgt ttc act gac ggc gca acc 355 Leu Gln Gly Pro Lys Ile Arg Leu Gly Arg Phe Thr Asp Gly Ala Thr 75 gtg tgg gaa aac ggc gag acc att cgg atc acc gtt gac gat gta gag 403 Val Trp Glu Asn Gly Glu Thr Ile Arg Ile Thr Val Asp Asp Val Glu 90 100 gga acg cac gat cgt gtg tcc acc acc tac aag aat ctg gca aaa gac 451 Gly Thr His Asp Arg Val Ser Thr Thr Tyr Lys Asn Leu Ala Lys Asp 105

gto tgo gtt too gto gaa ggt aac gao gto ato tgt gag gtt gtt gag Val Cys Val Ser Val Glu Gly Asn Asp Val Ile Cys Glu Val Val Glu 135 140 595 ggc gga cca gtc tcc aac aac aag ggt gtt tcc ctg cca ggt atg gat Gly Gly Pro Val Ser Asn Asn Lys Gly Val Ser Leu Pro Gly Met Asp 150 155 att too gta cot goa otg too gaa aag gat atc ogt gao otg ogo tto 643 Ile Ser Val Pro Ala Leu Ser Glu Lys Asp Ile Arg Asp Leu Arg Phe 170 175 180 691 gcc ctg aag ctc ggc gtg gac ttt att gca ctg tcc ttc gta cgt tcc Ala Leu Lys Leu Gly Val Asp Phe Ile Ala Leu Ser Phe Val Arg Ser 185 cca gca gat gct gaa ctc gtt cac aag atc atg gac gaa gga ggt cgt 106

547

gcg aag cca ggc gac cgc ctg ctc gtt gat gac ggc aag gtt ggc ctc Ala Lys Pro Gly Asp Arg Leu Leu Val Asp Asp Gly Lys Val Gly Leu

125

120

Pro Ala As	-	Leu Val	His L 205	ys Ile	Met As	p Glu 210	Glu	Gly	Arg	
cgt gtt cc Arg Val Pr 215	t gtg atc o Val Ile	gcc aag Ala Lys 220	ctg g Leu G	aa aag lu Lys	cca ga Pro Gl 22	u Ala	gtc Val	acc Thr	tcc Ser	787
ctc gag co Leu Glu Pr 230										835
gac ctc gg Asp Leu Gl	c gtt gag y Val Glu 250	gtt cct Val Pro	ctg g Leu G	ag gag lu Glu 255	gtt cc Val Pr	a ctg o Leu	gtt Val	cag Gln 260	aag Lys	883
cgc gca at Arg Ala Il	c cag att e Gln Ile 265	gcc cgt Ala Arg	Glu A	ac gca sn Ala 70	aag cc Lys Pr	a gtt o Val	atc Ile 275	gtg Val	gca Ala	931
acc cag at Thr Gln Me 28	t Leu Asp	tcc atg Ser Met	att g Ile G 285	ag aac lu Asn	tcc cg Ser Ar	c cca g Pro 290	acc Thr	cgt Arg	gcg Ala	979
gaa gct to Glu Ala Se 295	t gac gtg r Asp Val	gca aac Ala Asn 300	Ala V	tg ctc al Leu	gat gg Asp Gl 30	y Ala	gat Asp	gct Ala	gtc Val	1027
atg ctt to Met Leu Se 310	t ggt gaa r Gly Glu	act tca Thr Ser 315	gtg g Val G	gc aaa Sly Lys	gat co Asp Pr 320	g cac o His	aac Asn	gtt Val	gtg Val 325	1075
cgc acc at Arg Thr Me	g tot ogo t Ser Arg 330	Ile Val	cgc t Arg P	tc gct The Ala 335	gaa ac Glu Th	c gac r Asp	ggt Gly	cgc Arg 340	gtc Val	1123
cca gac ct Pro Asp Le			Arg T							1171
tct gca co Ser Ala An 36	g Asp Ile	gcc gag Ala Glu	cgc c Arg L 365	tc aac eu Asn	gct cg Ala Ar	t gca g Ala 370	ttg Leu	gtt Val	gcg Ala	1219
ttc acc ac Phe Thr Th 375			Ala L			a Arg				1267
cac ctg co His Leu Pr 390										1315
ctg gcg ct Leu Ala Le		Gly Ala								1363
gat acc ga Asp Thr As			Glu V							1411
cct gag ta Pro Glu Ty	c aac aag	ggt gac	atg a	tg gtt	gtt gt	t gca	ggt	tcc	cct	1459

440 445 450

cct ggt gtt acc ggt aac acc aac atg att cac gtc cac ctt ctt ggt
Pro Gly Val Thr Gly Asn Thr Asn Met Ile His Val His Leu Leu Gly
455
460
465

gac gac aca agg att gca aag ctc taatcgctta aatctttcaa aaa 1554 Asp Asp Thr Arg Ile Ala Lys Leu

<210> 74

<211> 477

<212> PRT

<213> Corynebacterium glutamicum

<400> 74

Met Gly Val Asp Arg Arg Thr Lys Ile Val Cys Thr Leu Gly Pro Ala 1 5 10 15

Val Ala Ser Ala Asp Gly Ile Leu Arg Leu Val Glu Asp Gly Met Asp
20 25 30

Val Ala Arg Leu Asn Phe Ser His Gly Asp His Pro Asp His Glu Gln 35 40 45

Asn Tyr Lys Trp Val Arg Glu Ala Ala Glu Lys Thr Gly Arg Ala Val
50 60

Gly Ile Leu Ala Asp Leu Gln Gly Pro Lys Ile Arg Leu Gly Arg Phe
65 70 75 80

Thr Asp Gly Ala Thr Val Trp Glu Asn Gly Glu Thr Ile Arg Ile Thr 85 90 .95

Val Asp Asp Val Glu Gly Thr His Asp Arg Val Ser Thr Thr Tyr Lys 100 105 110

Asn Leu Ala Lys Asp Ala Lys Pro Gly Asp Arg Leu Leu Val Asp Asp 115 120 125

Gly Lys Val Gly Leu Val Cys Val Ser Val Glu Gly Asn Asp Val Ile 130 135 140

Cys Glu Val Val Glu Gly Gly Pro Val Ser Asn Asn Lys Gly Val Ser 145 150 155 160

Leu Pro Gly Met Asp Ile Ser Val Pro Ala Leu Ser Glu Lys Asp Ile 165 170 175

Arg Asp Leu Arg Phe Ala Leu Lys Leu Gly Val Asp Phe Ile Ala Leu 180 185 190

Ser Phe Val Arg Ser Pro Ala Asp Ala Glu Leu Val His Lys Ile Met 195 200 205

Asp Glu Glu Gly Arg Arg Val Pro Val Ile Ala Lys Leu Glu Lys Pro 210 215 220

Glu Ala Val Thr Ser Leu Glu Pro Ile Val Leu Ala Phe Asp Ala Val 225 230 235 240

Met Val Ala Arg Gly Asp Leu Gly Val Glu Val Pro Leu Glu Glu Val Pro Leu Val Gln Lys Arg Ala Ile Gln Ile Ala Arg Glu Asn Ala Lys Pro Val Ile Val Ala Thr Gln Met Leu Asp Ser Met Ile Glu Asn Ser Arg Pro Thr Arg Ala Glu Ala Ser Asp Val Ala Asn Ala Val Leu Asp Gly Ala Asp Ala Val Met Leu Ser Gly Glu Thr Ser Val Gly Lys Asp Pro His Asn Val Val Arg Thr Met Ser Arg Ile Val Arg Phe Ala Glu Thr Asp Gly Arg Val Pro Asp Leu Thr His Ile Pro Arg Thr Lys Arg 345 Gly Val Ile Ser Tyr Ser Ala Arg Asp Ile Ala Glu Arg Leu Asn Ala 360 Arg Ala Leu Val Ala Phe Thr Thr Ser Gly Asp Thr Ala Lys Arg Val 375 Ala Arg Leu His Ser His Leu Pro Leu Leu Val Phe Thr Pro Asn Glu 395 390 Ala Val Arg Ser Glu Leu Ala Leu Thr Trp Gly Ala Thr Thr Phe Leu 405 410 Cys Pro Pro Val Ser Asp Thr Asp Asp Met Met Arg Glu Val Asp Arg Ala Leu Leu Ala Met Pro Glu Tyr Asn Lys Gly Asp Met Met Val Val Val Ala Gly Ser Pro Pro Gly Val Thr Gly Asn Thr Asn Met Ile His Val His Leu Leu Gly Asp Asp Thr Arg Ile Ala Lys Leu 470 <210> 75 <211> 1980 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1957) <223> RXN02675 <400> 75 aagtgtttca ttggaacact tgcgctgcca actttttggt ttacgggcac aatgaaactg 60

ttggatggaa tttagagtgt ttgtagctta aggagctcaa atg aat gag ttt gac 115

Met Asn Glu Phe Asp cag gac att ctc cag gag atc aag act gaa ctc gac gag tta att cta 163 Gin Asp Ile Leu Gin Glu Ile Lys Thr Glu Leu Asp Glu Leu Ile Leu gaa ctt gat gag gtg aca caa act cac agc gag gcc atc ggg cag gtc 211 Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu Ala Ile Gly Gln Val tcc cca acc cat tac gtt ggt gcc cgc aac ctc atg cat tac gcg cat 259 Ser Pro Thr His Tyr Val Gly Ala Arg Asn Leu Met His Tyr Ala His 307 ctt cgc acc aaa gac ctc cgt ggc ctg cag caa cgc ctc tcc tct gtg Leu Arg Thr Lys Asp Leu Arg Gly Leu Gln Gln Arg Leu Ser Ser Val gga gct acc cgc ttg act acc acc gaa cca gca gtg cag gcc cgc ctc 355 Gly Ala Thr Arg Leu Thr Thr Glu Pro Ala Val Gln Ala Arg Leu 80 403 aag gcc gcc cgc aat gtt atc gga gct ttc gca ggt gaa ggc cca ctt Lys Ala Ala Arq Asn Val Ile Gly Ala Phe Ala Gly Glu Gly Pro Leu 95 451 tat cca ccc tca gat gtc gtc gat gcc ttc gaa gat gcc gat gag att Tyr Pro Pro Ser Asp Val Val Asp Ala Phe Glu Asp Ala Asp Glu Ile 105 110 ctc gac gag cac gcc gaa att ctc ctt ggc gaa ccc cta ccg gat act 499 Leu Asp Glu His Ala Glu Ile Leu Leu Gly Glu Pro Leu Pro Asp Thr 125 120 cca tcc tgc atc atg gtc acc ctg ccc acc gaa gcc gcc acc gac att Pro Ser Cys Ile Met Val Thr Leu Pro Thr Glu Ala Ala Thr Asp Ile 135 gaa ctt gtc cgt ggc ttc gcc aaa agc ggc atg aat cta gct cgc atc 595 Glu Leu Val Arg Gly Phe Ala Lys Ser Gly Met Asn Leu Ala Arg Ile 160 aac tgt gca cac gac gat gaa acc gtc tgg aag cag atg atc gac aac 643 Asn Cys Ala His Asp Asp Glu Thr Val Trp Lys Gln Met Ile Asp Asn 170 175 qtc cac acc gtt gca gaa gtt ggc cgg gaa atc cgc gtc agc atg 691 Val His Thr Val Ala Glu Glu Val Gly Arg Glu Ile Arg Val Ser Met 190 gac ete gee gga eca aaa gta ege ace gge gaa ate gee eca gge gea 739 Asp Leu Ala Gly Pro Lys Val Arg Thr Gly Glu Ile Ala Pro Gly Ala 205 787 qaa qta qqt cqc qca cqa qta acc cgc gac gaa acc gga aaa gta ctg Glu Val Gly Arg Ala Arg Val Thr Arg Asp Glu Thr Gly Lys Val Leu 835 acg ccc gca aaa ctg tgg atc acc gcc cac ggc tcc gaa cca gtc cca Thr Pro Ala Lys Leu Trp Ile Thr Ala His Gly Ser Glu Pro Val Pro

230	235	240	245
gcc ccc gaa agc ctg Ala Pro Glu Ser Leu 250	ccc ggt cgc ccc gct Pro Gly Arg Pro Ala 255	ctg ccg att gaa gtc Leu Pro Ile Glu Val 260	acc 883 Thr
cca gaa tgg ttc gac Pro Glu Trp Phe Asp 265	aaa cta gaa atc ggc Lys Leu Glu Ile Gly 270	agc gtc atc aac gtc Ser Val Ile Asn Val 275	cca 931 Pro
gac acc cgc gga tcc Asp Thr Arg Gly Ser 280	cgc cga gca ttc acc Arg Arg Ala Phe Thr 285	gtg acc agg gtt ttt Val Thr Arg Val Phe 290	gat 979 Asp
	gaa ggc cca caa aaa Glu Gly Pro Gln Lys 300		
acc ctc ctg gaa cac Thr Leu Leu Glu His 310	aac tac gac cgc tcc Asn Tyr Asp Arg Ser 315	cgg gtc tac ggc atc Arg Val Tyr Gly Ile 320	ccc 1075 Pro 325
	atc aac ctc aaa gtc Ile Asn Leu Lys Val 335		
acc gac gaa gaa ctc Thr Asp Glu Glu Leu 345	acc tac gat cca tcc Thr Tyr Asp Pro Ser 350	ctc gga tcc ggc cgc Leu Gly Ser Gly Arg 355	aca 1171 Thr
	acc ctt cca caa gca Thr Leu Pro Gln Ala 365		
ggg cac cgc gtg ctt Gly His Arg Val Leu 375	ttc gac gac gga gcc Phe Asp Asp Gly Ala 380	atc gcc gca gtc tgc Ile Ala Ala Val Cys 385	atc 1267 Ile
	gcc gac ggc cac aac Ala Asp Gly His Asn 395		
acc cac gcc cgc cca Thr His Ala Arg Pro 410	caa ggc gta aac ctg Gln Gly Val Asn Leu 415	gcc gca tac aag gga Ala Ala Tyr Lys Gly 420	atc 1363 Ile
	gaa ctt cca ctc cca Glu Leu Pro Leu Pro 430		
	ttt gtc gtc aaa tac Phe Val Val Lys Tyr 445		
	gtc gcc gac gtg gaa Val Ala Asp Val Glu 460		
	cca gta gcc gtc gaa Pro Val Ala Val Glu 475		

Lys Ile Glu Thr Ile Pro Gly Tyr Glu Gly Leu Ala Gln Ile Leu Leu 490 495 500	1603
acc ggc atg cgc cac gaa aac ttc ggc atc atg atc gcc cgc gga gac Thr Gly Met Arg His Glu Asn Phe Gly Ile Met Ile Ala Arg Gly Asp 505 510 515	1651
ctc gcc gtc gaa ctc ggc ttc gac cgc atg gca gaa gtc ccc caa ctg Leu Ala Val Glu Leu Gly Phe Asp Arg Met Ala Glu Val Pro Gln Leu 520 525 530	1699
atc atg gcc ctt gcc gaa gcc gcc cac gtc cca acc atc ttg gcc acc Ile Met Ala Leu Ala Glu Ala Ala His Val Pro Thr Ile Leu Ala Thr 535 540 545	1747
caa gtc ctg gaa aac atg gcc aaa aac gga ctc cca tct cgc gca gaa Gln Val Leu Glu Asn Met Ala Lys Asn Gly Leu Pro Ser Arg Ala Glu 550 555 560 565	1795
atc acc gac gca gca atg gca ctt cgc gct gaa tgc gtc atg ctg aac Ile Thr Asp Ala Ala Met Ala Leu Arg Ala Glu Cys Val Met Leu Asn 570 575 580	1843
aag gga cca cac atc aac gac gcc atc aag gtc ctc acc gaa atg agc Lys Gly Pro His Ile Asn Asp Ala Ile Lys Val Leu Thr Glu Met Ser 585 590 595	1891
cgc aaa ctt ggt gca tcc caa cga aag agt agg ctg ctg ctg cgc aag Arg Lys Leu Gly Ala Ser Gln Arg Lys Ser Arg Leu Leu Arg Lys 600 605 610	1939
The are are tag and the terminal aggregating out	1980
gtg aag agc tgg gaa gag taactcacaa aggcgattgg cgt Val Lys Ser Trp Glu Glu 615	
Val Lys Ser Trp Glu Glu	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum <400> 76	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum <400> 76 Met Asn Glu Phe Asp Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum <400> 76 Met Asn Glu Phe Asp Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu 1 5 10 15 Asp Glu Leu Ile Leu Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum <400> 76 Met Asn Glu Phe Asp Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu 1 5 10 15 Asp Glu Leu Ile Leu Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu 20 25 30 Ala Ile Gly Gln Val Ser Pro Thr His Tyr Val Gly Ala Arg Asn Leu	
Val Lys Ser Trp Glu Glu 615 <210> 76 <211> 619 <212> PRT <213> Corynebacterium glutamicum <400> 76 Met Asn Glu Phe Asp Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu 1 5 10 15 Asp Glu Leu Ile Leu Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu 20 25 30 Ala Ile Gly Gln Val Ser Pro Thr His Tyr Val Gly Ala Arg Asn Leu 35 40 45 Met His Tyr Ala His Leu Arg Thr Lys Asp Leu Arg Gly Leu Gln Gln	

Gly Glu	Gly	Pro 100	Leu	Tyr	Pro	Pro	Ser 105	Asp	Val	Val	Asp	Ala 110	Phe	Glu
Asp Ala	Asp 115		Ile	Leu	Asp	Glu 120	His	Ala	Glu	Ile	Leu 125	Leu	Gly	Glu
Pro Let		Asp	Thr	Pro	Ser 135	Cys	Ile	Met	Val	Thr 140	Leu	Pro	Thr	Glu
Ala Ala 145	Thr	Asp	Ile	Glu 150	Leu	Val	Arg	Gly	Phe 155	Ala	Lys	Ser	Gly	Met 160
Asn Le	a Ala	Arg	Ile 165	Asn	Cys	Ala	His	Asp 170	Asp	Glu	Thr	Val	Trp 175	Lys
Gln Me	: Ile	Asp 180	Asn	Val	His	Thr	Val 185	Ala	Glu	Glu	Val	Gly 190	Arg	Glu
Ile Ar	y Val 195		Met	Asp	Leu	Ala 200	Gly	Pro	Lys	Val	Arg 205	Thr	Gly	Glu
Ile Ala 21		Gly	Ala	Glu	Val 215	Gly	Arg	Ala	Arg	Val 220	Thr	Arg	Asp	Glu
Thr Gly 225	/ Lys	Val	Leu	Thr 230	Pro	Ala	Lys	Leu	Trp 235	Ile	Thr	Ala	His	Gly 240
Ser Gl	ı Pro	Val	Pro 245	Ala	Pro	Glu	Ser	Leu 250	Pro	Gly	Arg	Pro	Ala 255	Leu
Pro Il	e Glu	Val 260	Thr	Pro	Glu	Trp	Phe 265	Asp	Lys	Leu	Glu	Ile 270	Gly	Ser
Val Il	275		Pro	Asp	Thr	Arg 280	Gly	Ser	Arg	Arg	Ala 285	Phe	Thr	Val
Thr Ar	_	Phe	Asp	Gly	Ala 295	Val	Leu	Ala	Glu	Gly 300	Pro	Gln	Lys	Ala
Tyr Ile	e Ser	Asn	Gly	Thr 310	Leu	Leu	Glu	His	Asn 315	Tyr	Asp	Arg	Ser	Arg 320
Val Ty	r Gly	Ile	Pro 325	Ala	Val	Val	Gln	Arg 330	Ile	Asn	Leu	Lys	Val 335	Gly
Asp Ar	g Leu	11e 340	Leu	Thr	Asp	Glu	Glu 345	Leu	Thr	Tyr	Asp	Pro 350	Ser	Leu
Gly Se	r Gly 355	_	Thr	Pro	Arg	11e 360	Ser	Cys	Thr	Leu	Pro 365	Gln	Ala	Val
Asp Al		Lys	Val	Gly	His 375	Arg	Val	Leu	Phe	Asp 380	Asp	Gly	Ala	Ile
Ala Al 385	a Val	Cys	Ile	Asp 390	Lys	Thr	Ser	Thr	Ala 395	Asp	Gly	His	Asn	Asp 400
Val Gl	u Leu	Glu	Val 405	Thr	His	Ala	Arg	Pro 410	Gln	Gly	Val	Asn	Leu 415	Ala

Ala Tyr Lys Gly Ile Asn Leu Pro Asp Ser Glu Leu Pro Leu Pro Ser 425 Leu Thr Glu Glu Asp Leu Gln His Leu Arg Phe Val Val Lys Tyr Ala Asp Ile Ala Ala Ile Ser Phe Ile Arg Asn Val Ala Asp Val Glu Tyr Leu Leu Gln Ala Leu Ala Asp Ile Gly Asp Pro Val Ala Val Glu Arg 475 Leu Gly Leu Val Leu Lys Ile Glu Thr Ile Pro Gly Tyr Glu Gly Leu Ala Gln Ile Leu Leu Thr Gly Met Arg His Glu Asn Phe Gly Ile Met Ile Ala Arg Gly Asp Leu Ala Val Glu Leu Gly Phe Asp Arg Met Ala Glu Val Pro Gln Leu Ile Met Ala Leu Ala Glu Ala Ala His Val Pro 535 Thr Ile Leu Ala Thr Gln Val Leu Glu Asn Met Ala Lys Asn Gly Leu 550 555 Pro Ser Arg Ala Glu Ile Thr Asp Ala Ala Met Ala Leu Arg Ala Glu 570 Cys Val Met Leu Asn Lys Gly Pro His Ile Asn Asp Ala Ile Lys Val Leu Thr Glu Met Ser Arg Lys Leu Gly Ala Ser Gln Arg Lys Ser Arg 595 Leu Leu Leu Arg Lys Val Lys Ser Trp Glu Glu 610 <210> 77 <211> 386 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(363) <223> FRXA02675 <400> 77 atc ctc atg acc ggc atg cgc cac gaa aac ttc ggc atc atg atc gcc 48 Ile Leu Met Thr Gly Met Arg His Glu Asn Phe Gly Ile Met Ile Ala cgc gga gac etc gec gtc gaa etc ggc ttc gac egc atg gea gaa gtc 96 Arg Gly Asp Leu Ala Val Glu Leu Gly Phe Asp Arg Met Ala Glu Val ccc caa ctg atc atg gcc ctt gca gaa gcc gcc cac gtc cca acc atc Pro Gln Leu Ile Met Ala Leu Ala Glu Ala Ala His Val Pro Thr Ile

40 35 45 192 ttg gcc acc caa gtc ctg gaa aac atg gcc aaa aac gga ctc cca tct Leu Ala Thr Gln Val Leu Glu Asn Met Ala Lys Asn Gly Leu Pro Ser 240 cgc gca gaa atc acc gac gca gca atg gca ctt cgc gct gaa tgc gtc Arg Ala Glu Ile Thr Asp Ala Ala Met Ala Leu Arg Ala Glu Cys Val atg ctg aac aag gga cca cac atc aac gac gcc atc aag gtc ctc acc Met Leu Asn Lys Gly Pro His Ile Asn Asp Ala Ile Lys Val Leu Thr 85 gaa atg agc cgc aaa ctt ggt gca tcc caa cga aag agt agg ctg ctg Glu Met Ser Arg Lys Leu Gly Ala Ser Gln Arg Lys Ser Arg Leu Leu 110 ctg cgc aag gtg aag agc tgg gaa gag taactcacaa aggcgattgg 383 Leu Arg Lys Val Lys Ser Trp Glu Glu 115 386 cgt <210> 78 <211> 121 <212> PRT <213> Corynebacterium glutamicum <400> 78 Ile Leu Met Thr Gly Met Arg His Glu Asn Phe Gly Ile Met Ile Ala Arg Gly Asp Leu Ala Val Glu Leu Gly Phe Asp Arg Met Ala Glu Val Pro Gln Leu Ile Met Ala Leu Ala Glu Ala Ala His Val Pro Thr Ile Leu Ala Thr Gln Val Leu Glu Asn Met Ala Lys Asn Gly Leu Pro Ser Arg Ala Glu Ile Thr Asp Ala Ala Met Ala Leu Arg Ala Glu Cys Val Met Leu Asn Lys Gly Pro His Ile Asn Asp Ala Ile Lys Val Leu Thr Glu Met Ser Arg Lys Leu Gly Ala Ser Gln Arg Lys Ser Arg Leu Leu Leu Arg Lys Val Lys Ser Trp Glu Glu 115

<210> 79 <211> 1522 <212> DNA <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1522)
<223> FRXA02695

<400> 79 aagtgtttca ttggaacact tgcgctgcca actttttggt ttacgggcac aatgaaactg 60 ttggatggaa tttagagtgt ttgtagctta aggagctcaa atg aat gag ttt gac 115 Met Asn Glu Phe Asp cag gac att ctc cag gag atc aag act gaa ctc gac gag tta att cta 163 Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu Asp Glu Leu Ile Leu 10 gaa ctt gat gag gtg aca caa act cac agc gag gcc atc ggg cag gtc 211 Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu Ala Ile Gly Gln Val 25 tcc cca acc cat tac gtt ggt gcc cgc aac ctc atg cat tac gcg cat Ser Pro Thr His Tyr Val Gly Ala Arg Asn Leu Met His Tyr Ala His 40 ctt cgc acc aaa gac ctc cgt ggc ctg cag caa cgc ctc tcc tct gtg 307 Leu Arg Thr Lys Asp Leu Arg Gly Leu Gln Gln Arg Leu Ser Ser Val 55 60 355 qqa qct acc cgc ttg act acc acc gaa cca gca gtg cag gcc cgc ctc Gly Ala Thr Arg Leu Thr Thr Glu Pro Ala Val Gln Ala Arg Leu 70 75 aag gcc gcc cgc aat gtt atc gga gct ttc gca ggt gaa ggc cca ctt 403 Lys Ala Ala Arg Asn Val Ile Gly Ala Phe Ala Gly Glu Gly Pro Leu 90 95 tat cca ccc tca gat gtc gtc gat gcc ttc gaa gat gcc gat gag att Tyr Pro Pro Ser Asp Val Val Asp Ala Phe Glu Asp Ala Asp Glu Ile 105 110 ctc gac gag cac gcc gaa att ctc ctt ggc gaa ccc cta ccg gat act Leu Asp Glu His Ala Glu Ile Leu Leu Gly Glu Pro Leu Pro Asp Thr 120 cca tcc tgc atc atg gtc acc ctg ccc acc gaa gcc gcc acc gac att 547 Pro Ser Cys Ile Met Val Thr Leu Pro Thr Glu Ala Ala Thr Asp Ile 135 595 qaa ctt gtc cgt ggc ttc gcc aaa agc ggc atg aat cta gct cgc atc Glu Leu Val Arg Gly Phe Ala Lys Ser Gly Met Asn Leu Ala Arg Ile 150 aac tgt gca cac gac gat gaa acc gtc tgg aag cag atg atc gac aac Asn Cys Ala His Asp Asp Glu Thr Val Trp Lys Gln Met Ile Asp Asn 180 170 691 gtc cac acc gtt gca gaa gat ggc cgg gaa atc cgc gtc agc atg Val His Thr Val Ala Glu Glu Val Gly Arg Glu Ile Arg Val Ser Met 185 190 739 gac etc gec gga eca aaa gta ege ace gge gaa ate gee eea gge gea

Asp Leu Ala 200		Lys Val	Arg 205	Thr	Gly	Glu	Ile	Ala 210	Pro	Gly	Ala	
gaa gta ggt Glu Val Gly 215												787
acg ccc gca Thr Pro Ala 230												835
gcc ccc gaa Ala Pro Glu	agc ctg Ser Leu 250	ccc ggt Pro Gly	cgc Arg	ccc Pro	gct Ala 255	ctg Leu	ccg Pro	att Ile	gaa Glu	gtc Val 260	acc Thr	883
cca gaa tgg Pro Glu Trp												931
gac acc cgc Asp Thr Arg 280												979
ggc gcg gtc Gly Ala Val 295												1027
acc ctc ctg Thr Leu Leu 310	-		-	_			_					1075
gcc gta gtt Ala Val Val		Ile Asn			-		-	-				1123
acc gac gaa Thr Asp Glu	-		-							-		1171
cca cgc atc Pro Arg Ile 360	Ser Cys											1219
ggg cac cgc Gly His Arg 375												1267
gac aag acc Asp Lys Thr 390												1315
acc cac gcc Thr His Ala												1363
aac ctc cca Asn Leu Pro	-	-										1411
ctc caa cac Leu Gln His												1459

440 445 450

tcc ttc atc cga aac gtc gcc gac gtg gaa tac ctc ctc caa gca ctc 1507 Ser Phe Ile Arg Asn Val Ala Asp Val Glu Tyr Leu Leu Gln Ala Leu

gcc gac atc gga gat 1522 Ala Asp Ile Gly Asp 470

<210> 80

<211> 474

<212> PRT

<213> Corynebacterium glutamicum

<400> 80

Met Asn Glu Phe Asp Gln Asp Ile Leu Gln Glu Ile Lys Thr Glu Leu
1 5 10 15

Asp Glu Leu Ile Leu Glu Leu Asp Glu Val Thr Gln Thr His Ser Glu
20 25 30

Ala Ile Gly Gln Val Ser Pro Thr His Tyr Val Gly Ala Arg Asn Leu 35 40 45

Met His Tyr Ala His Leu Arg Thr Lys Asp Leu Arg Gly Leu Gln Gln 50 55 60

Arg Leu Ser Ser Val Gly Ala Thr Arg Leu Thr Thr Glu Pro Ala 65 70 75 80

Val Gln Ala Arg Leu Lys Ala Ala Arg Asn Val Ile Gly Ala Phe Ala 85 90 95

Gly Glu Gly Pro Leu Tyr Pro Pro Ser Asp Val Val Asp Ala Phe Glu 100 105 110

Asp Ala Asp Glu Ile Leu Asp Glu His Ala Glu Ile Leu Leu Gly Glu 115 120 125

Pro Leu Pro Asp Thr Pro Ser Cys Ile Met Val Thr Leu Pro Thr Glu 130 135 140

Ala Ala Thr Asp Ile Glu Leu Val Arg Gly Phe Ala Lys Ser Gly Met 145 150 155 160

Asn Leu Ala Arg Ile Asn Cys Ala His Asp Asp Glu Thr Val Trp Lys 165 170 175

Gln Met Ile Asp Asn Val His Thr Val Ala Glu Glu Val Gly Arg Glu 180 185 190

Ile Arg Val Ser Met Asp Leu Ala Gly Pro Lys Val Arg Thr Gly Glu 195 200 205

Ile Ala Pro Gly Ala Glu Val Gly Arg Ala Arg Val Thr Arg Asp Glu 210 215 220

Thr Gly Lys Val Leu Thr Pro Ala Lys Leu Trp Ile Thr Ala His Gly 225 230 235 240

Ser Glu Pro Val Pro Ala Pro Glu Ser Leu Pro Gly Arg Pro Ala Leu Pro Ile Glu Val Thr Pro Glu Trp Phe Asp Lys Leu Glu Ile Gly Ser Val Ile Asn Val Pro Asp Thr Arg Gly Ser Arg Arg Ala Phe Thr Val 280 Thr Arg Val Phe Asp Gly Ala Val Leu Ala Glu Gly Pro Gln Lys Ala Tyr Ile Ser Asn Gly Thr Leu Leu Glu His Asn Tyr Asp Arg Ser Arg 310 315 Val Tyr Gly Ile Pro Ala Val Val Gln Arg Ile Asn Leu Lys Val Gly Asp Arg Leu Ile Leu Thr Asp Glu Glu Leu Thr Tyr Asp Pro Ser Leu Gly Ser Gly Arg Thr Pro Arg Ile Ser Cys Thr Leu Pro Gln Ala Val 360 Asp Ala Ile Lys Val Gly His Arg Val Leu Phe Asp Asp Gly Ala Ile 375 380 Ala Ala Val Cys Ile Asp Lys Thr Ser Thr Ala Asp Gly His Asn Asp 390 Val Glu Leu Glu Val Thr His Ala Arg Pro Gln Gly Val Asn Leu Ala Ala Tyr Lys Gly Ile Asn Leu Pro Asp Ser Glu Leu Pro Leu Pro Ser 425 Leu Thr Glu Glu Asp Leu Gln His Leu Arg Phe Val Val Lys Tyr Ala Asp Ile Ala Ala Ile Ser Phe Ile Arg Asn Val Ala Asp Val Glu Tyr Leu Leu Gln Ala Leu Ala Asp Ile Gly Asp 470 <210> 81 <211> 2022 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1999) <223> RXA00682 <400> 81 ataggeacct tegattteag etcaateace gtegeaatga eeggeaegaa gtaaaaccae 60

cgcatctttt cgtcgaaaag catctaaaag gagtttgacc atg gct aat aaa tct 115

Met Ala Asn Lys Ser ttc ccc aag ccc tcc gat ctt cca gtg ccc aag ggc gct gaa ggt tgg 163 Phe Pro Lys Pro Ser Asp Leu Pro Val Pro Lys Gly Ala Glu Gly Trp qaa qat ctq tac ccq tac tac ctc gtt ttc caa gac aag ctc atg gat 211 Glu Asp Leu Tyr Pro Tyr Tyr Leu Val Phe Gln Asp Lys Leu Met Asp 259 caa gag aat gag aaa ttc tgg ttc tgc gat tca cag cac tgg cca act Gln Glu Asn Glu Lys Phe Trp Phe Cys Asp Ser Gln His Trp Pro Thr gtg ttc aag cct ttt gaa act atc ggt ggt gaa ttc gct gta aag tgc 307 Val Phe Lys Pro Phe Glu Thr Ile Gly Gly Glu Phe Ala Val Lys Cys ctc ggc caa tac aac gct cgg cat ttg atg atc ccg aat gcc aat ggc 355 Leu Gly Gln Tyr Asn Ala Arg His Leu Met Ile Pro Asn Ala Asn Gly atc gag ttc cgc gtg cat ctg gga tac ctc tat atg tcc cct att cca 403 Ile Glu Phe Arg Val His Leu Gly Tyr Leu Tyr Met Ser Pro Ile Pro 90 gtg cct gaa gat cag att gcg gaa cgc gtc ccc atg ttc cag gaa cgc 451 Val Pro Glu Asp Gln Ile Ala Glu Arg Val Pro Met Phe Gln Glu Arg 105 110 atc acg cac tac ttc caa aac tgg gag cca atg ctg gca aat tgg aag 499 Ile Thr His Tyr Phe Gln Asn Trp Glu Pro Met Leu Ala Asn Trp Lys 120 125 gag cga gta tta gga acc atc aat gag ctg gaa tct cta gaa ttc aag 547 Glu Arg Val Leu Gly Thr Ile Asn Glu Leu Glu Ser Leu Glu Phe Lys cca ctg cct gac tac gtg cct atc gat gat att gtc tcc gga aaa gcc 595 Pro Leu Pro Asp Tyr Val Pro Ile Asp Asp Ile Val Ser Gly Lys Ala aaa gac ggc acc gaa gta ctc atg gaa aac ttc gat cgg ctc att cag 643 Lys Asp Gly Thr Glu Val Leu Met Glu Asn Phe Asp Arg Leu Ile Gln 175 ctc gcc tac caa aac tgg caa tac cac ttt gag ttc ctc aac ttg ggt 691 Leu Ala Tyr Gln Asn Trp Gln Tyr His Phe Glu Phe Leu Asn Leu Gly 190 tac atc gct tac cta gat ttc ttc aat ttc tgc aag gaa gtc ttc cca 739 Tyr Ile Ala Tyr Leu Asp Phe Phe Asn Phe Cys Lys Glu Val Phe Pro 205 787 gat atc cct gat caa tca att tcg atg atg gtt cag ggc gtg gat atg Asp Ile Pro Asp Gln Ser Ile Ser Met Met Val Gln Gly Val Asp Met 220 835 gag ctg ttc cgc ccc gat gat gaa cta aag att ctg gca cag cta gcg Glu Leu Phe Arg Pro Asp Asp Glu Leu Lys Ile Leu Ala Gln Leu Ala

230	235	240	245
	caa act cac ttt gcc Gln Thr His Phe Ala 255		
	atc gca aag gca gaa Ile Ala Lys Ala Glu 270		
	gca caa gat ccg tgg Ala Gln Asp Pro Trp 285	_	
	cac gat aaa tac tgg His Asp Lys Tyr Trp 300		
	gcg gat tac atc cgc Ala Asp Tyr Ile Arg 315		
	aaa gat gaa ctc atc Lys Asp Glu Leu Ile 335		
	gac ctt ttg gat gga Asp Leu Leu Asp Gly 350		
	ctc gct gct act gca Leu Ala Ala Thr Ala 365		
	gag cac tgg acc atg Glu His Trp Thr Met 380		
	cgc act ctc cag ggc Arg Thr Leu Gln Gly 395		
	tac ctc aac cgc act Tyr Leu Asn Arg Thr 415		
	gcg tgg ggt gtc ggc Ala Trp Gly Val Gly 430		
	ccg gaa gaa att gag Pro Glu Glu Ile Glu 445		
	gcc cga cca gcg cca Ala Arg Pro Ala Pro 460		
	cct ttc acc cgc atg Pro Phe Thr Arg Met 475		

gaa cag gtg ca Glu Gln Val Gl	a tca tgg n Ser Trp 490	ttg ggc Leu Gly	aat gac Asn Asp 495	gag gat Glu Asp	gcc gaa Ala Glu	gaa gga Glu Gly 500	1603
acc ctt aaa gg Thr Leu Lys Gl 50	y Met Ala	gca tcc Ala Ser	cct ggt Pro Gly 510	gtg gtg Val Val	gaa ggc Glu Gly 515	tac gct Tyr Ala	1651
cga gta att ct Arg Val Ile Le 520	c agc gca u Ser Ala	gat gac Asp Asp 525	ctt tca Leu Ser	gaa atc Glu Ile	cag cag Gln Gln 530	gat gaa Asp Glu	1699
atc ctc gtt gc Ile Leu Val Al 535	c cct gta .a Pro Val	aca gca Thr Ala 540	cct tct Pro Ser	tgg ggc Trp Gly 545	cca atc Pro Ile	ttt ggc Phe Gly	1747
aaa atc aag go Lys Ile Lys Al 550	a aca gtc La Thr Val 555	act gat Thr Asp	att ggt Ile Gly	ggc atg Gly Met 560	atg agc Met Ser	cat gct His Ala 565	1795
gcg atc gtg to Ala Ile Val Cy	gc cgc gaa ys Arg Glu 570	tac ggc Tyr Gly	ttg ccg Leu Pro 575	gct gtt Ala Val	act gga Thr Gly	act ggc Thr Gly 580	1843
gct gca tcc ac Ala Ala Ser Th 58	or Thr Ile	aaa acc Lys Thr	ggc gat Gly Asp 590	tac ctc Tyr Leu	aag gtc Lys Val 595	gat gga Asp Gly	1891
acc aag ggc aa Thr Lys Gly Ly 600	ig gtt gtc ⁄s Val Val	att gtt Ile Val 605	gat cca Asp Pro	gat gcg Asp Ala	cca cgc Pro Arg 610	atc gaa .Ile Glu	1939
gga ccc ggc go Gly Pro Gly Al 615	g cac agc la His Ser	cat gcg His Ala 620	cac tca His Ser	gta gca Val Ala 625	gca cat Ala His	ggg gtg Gly Val	1987
gat aca cat go Asp Thr His Al 630		cgc actgt	tetta to	ca			2022
<210> 82 <211> 633 <212> PRT <213> Coryneba	acterium g	lutamicum	n				
<400> 82							
Met Ala Asn Ly 1	ys Ser Phe 5	Pro Lys	Pro Ser 10	Asp Leu	Pro Val	Pro Lys 15	
1 Gly Ala Glu G	5		10			15 Phe Gln	
1 Gly Ala Glu G	5 ly Trp Glu 20	Asp Leu	Tyr Pro 25	Tyr Tyr	Leu Val	15 Phe Gln	
1 Gly Ala Glu G	5 ly Trp Glu 20 et Asp Gln	Asp Leu Glu Asn 40	Tyr Pro 25 Glu Lys	Tyr Tyr	Leu Val 30 Phe Cys 45	15 Phe Gln Asp Ser	

65					70					75					80
Pro	Asn	Ala	Asn	Gly 85	Ile	Glu	Phe	Arg	Val 90	His	Leu	Gly	Tyr	Leu 95	Tyr
Met	Ser	Pro	Ile 100	Pro	Val	Pro	Glu	Asp 105	Gln	Ile	Ala	Glu	Arg 110	Val	Pro
Met	Phe	Gln 115	Glu	Arg	Ile	Thr	His 120	Tyr	Phe	Gln	Asn	Trp 125	Glu	Pro	Met
Leu	Ala 130	Asn	Trp	Lys	Glu	Arg 135	Val	Leu	Gly	Thr	Ile 140	Asn	Glu	Leu	Glu
Ser 145	Leu	Glu	Phe	Lys	Pro 150	Leu	Pro	Asp	Tyr	Val 155	Pro	Ile	Asp	Asp	Ile 160
Val	Ser	Gly	Lys	Ala 165	Lys	Asp	Gly	Thr	Glu 170	Val	Leu	Met	Glu	Asn 175	Phe
Asp	Arg	Leu	Ile 180	Gln	Leu	Ala	Tyr	Gln 185	Asn	Trp	Gln	Tyr	His 190	Phe	Glu
Phe	Leu	Asn 195	Leu	Gly	Tyr	Ile	Ala 200	Tyr	Leu	Asp	Phe	Phe 205	Asn	Phe	Cys
Lys	Glu 210	Val	Phe	Pro	Asp	Ile 215	Pro	Asp	Gln	Ser	Ile 220	Ser	Met	Met	Val
Gln 225	Gly	Val	Asp	Met	Glu 230	Leu	Phe	Arg	Pro	Asp 235	Asp	Glu	Leu	Lys	Ile 240
Leu	Ala	Gln	Leu	Ala 245	Val	Asp	Leu	Gly	Leu 250	Gln	Thr	His	Phe	Ala 255	Asn
Pro	Asp	Asp	Pro 260	Gln	Ala	Thr	Leu	Ala 265	Ala	Ile	Ala	Lys	Ala 270	Glu	Gly
Gly	Ala	Thr 275	Trp	Ile	Ala	Arg	Trp 280	Glu	Glu	Ala	Gln	Asp 285	Pro	Trp	Phe
Asn	Phe 290	Thr	Val	Gly	Asn	Gly 295	Phe	Tyr	Gly	His	Asp 300	Lys	Tyr	Trp	Ile
Glu 305	His	Leu	Glu	Leu	Pro 310	Leu	Gly	Tyr	Ile	Ala 315	Asp	Tyr	Ile	Arg	Arg 320
Leu	Asp	Glu	Gly	Gln 325	Thr	Ile	Ser	Arg	Pro 330	Lys	Asp	Glu	Leu	Ile 335	Ala
Glu	Lys	Glu	Arg 340	Val	Val	Glu	Glu	Tyr 345	Arg	Asp	Leu	Leu	Asp 350	Gly	Glu
Gln	Leu	Ala 355	Gln	Phe	Asp	Ala	Lys 360	Cys	Gly	Leu	Ala	Ala 365	Thr	Ala	Tyr
Pro	Tyr 370	Val	Glu	Asn	His	Asn 375	Phe	Tyr	Ile	Glu	His 380	Trp	Thr	Met	Ser
Val 385	Phe	Trp	Arg	Lys	Val 390	Arg	Glu	Leu	Ser	Arg 395	Thr	Leu	Gln	Gly	Tyr 400

Gly Phe Trp Glu Asn Glu Asp Asp Met Leu Tyr Leu Asn Arg Thr Glu

Val Arg Asp Val Leu Phe Asp Leu Ala Thr Ala Trp Gly Val Gly Ala 425 Pro Gly Gly Pro Ile Gly Thr Ile Ile Trp Pro Glu Glu Ile Glu Arg Arg Lys Ala Ile Val Thr Ala Leu Lys Thr Ala Arg Pro Ala Pro Ala Leu Asn Thr Pro Pro Glu Ser Ile Thr Glu Pro Phe Thr Arg Met Leu 470 475 Trp Gly Ile Thr Thr Glu Gln Val Gln Ser Trp Leu Gly Asn Asp Glu Asp Ala Glu Glu Gly Thr Leu Lys Gly Met Ala Ala Ser Pro Gly Val Val Glu Gly Tyr Ala Arg Val Ile Leu Ser Ala Asp Asp Leu Ser Glu Ile Gln Gln Asp Glu Ile Leu Val Ala Pro Val Thr Ala Pro Ser Trp 535 Gly Pro Ile Phe Gly Lys Ile Lys Ala Thr Val Thr Asp Ile Gly Gly 555 Met Met Ser His Ala Ala Ile Val Cys Arg Glu Tyr Gly Leu Pro Ala 570 Val Thr Gly Thr Gly Ala Ala Ser Thr Thr Ile Lys Thr Gly Asp Tyr 585 Leu Lys Val Asp Gly Thr Lys Gly Lys Val Val Ile Val Asp Pro Asp 600 595 Ala Pro Arg Ile Glu Gly Pro Gly Ala His Ser His Ala His Ser Val Ala Ala His Gly Val Asp Thr His Ala <210> 83 <211> 1215 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1192) <223> RXA00683 <400> 83 qqacaaaqct atcqqqttcc qqqaqaacct ctccttccqc qtccccactt ctgttcccgt 60 gacttggaac gettaaeget ttattaaata aggagacaee atg aee aac agt ttg 115

											Met 1	Thr	Asn	Ser	Leu 5	
aac Asn	atc Ile	ccg Pro	ttt Phe	gtc Val 10	cag Gln	cgc Arg	ttc Phe	gat Asp	gaa Glu 15	ggc Gly	ctg Leu	gat Asp	cct Pro	gtt Val 20	cta Leu	163
gaa Glu	gta Val	ctc Leu	ggt Gly 25	ggc Gly	aag Lys	ggc Gly	gct Ala	tca Ser 30	cta Leu	gtc Val	acc Thr	atg Met	aca Thr 35	gat Asp	gct Ala	211
gga Gly	atg Met	ccc Pro 40	gtt Val	cca Pro	cct Pro	gga Gly	ttt Phe 45	gtg Val	gtc Val	act Thr	act Thr	gcc Ala 50	agc Ser	ttt Phe	gat Asp	259
gaa Glu	ttc Phe 55	atc Ile	cgt Arg	gaa Glu	gca Ala	60 GJ y ggg	gtt Val	gct Ala	gaa Glu	cac His	atc Ile 65	gat Asp	aaa Lys	ttc Phe	cta Leu	307
aac Asn 70	gat Asp	ctc Leu	gat Asp	gca Ala	gaa Glu 75	gat Asp	gtt Val	aag Lys	gaa Glu	gtg Val 80	gat Asp	cga Arg	gtt Val	tct Ser	gcg Ala 85	355
atc Ile	atc Ile	cgc Arg	gat Asp	gag Glu 90	ctg Leu	tgc Cys	agt Ser	ctt Leu	gac Asp 95	gtt Val	cca Pro	gaģ Glu	aat Asn	gct Ala 100	cgt Arg	403
														ggt Gly		451
gac Asp	gtc Val	ccg Pro 120	gtt Val	gct Ala	gtc Val	cgg Arg	tca Ser 125	tcg Ser	gcc Ala	act Thr	gcc Ala	gaa Glu 130	gat Asp	ctg Leu	ccc Pro	499
gat Asp	gct Ala 135	tcc Ser	ttc Phe	gca Ala	Gly ggg	caa Gln 140	cag Gln	gac Asp	acc Thr	tat Tyr	ctg Leu 145	tgg Trp	caa Gln	gtc Val	ggt Gly	547
														ctg Leu		595
														aat Asn 180		643
ggc Gly	ctc Leu	tcc Ser	atg Met 185	gcg Ala	gta Val	gtt Val	gtt Val	caa Gln 190	aaa Lys	atg Met	gtc Val	aac Asn	tct Ser 195	cgt Arg	gtc Val	691
														tcg Ser		739
atc Ile	acc Thr 215	atc Ile	gat Asp	tcc Ser	tca Ser	tgg Trp 220	ggt Gly	gtt Val	ggt Gly	gaa Glu	atg Met 225	gtg Val	gtc Val	tca Ser	ggt Gly	787
gaa Glu	gtg Val	aca Thr	cca Pro	gac Asp	aat Asn	atc Ile	ttg Leu	ctg Leu	gac Asp	aag Lys	atc Ile	acg Thr	ctg Leu	cag Gln	gtt Val	835

230	235		240	245
			gaa ctc atc ccc gat Glu Leu Ile Pro Asp 260	
acc agt gga ago Thr Ser Gly Ser 265	Leu Val Glu	aag ccc gtt Lys Pro Val 270	gat gaa gaa cgc gca Asp Glu Glu Arg Ala 275	aac 931 Asn
cgc cgc agt ctg Arg Arg Ser Leu 280	act gat gag Thr Asp Glu	gaa atg ctc Glu Met Leu 285	gct gtg gca caa atg Ala Val Ala Gln Met 290	gct 979 Ala
aag cgt gca gaa Lys Arg Ala Glu 295	aaa cac tac Lys His Tyr 300	aag tgc cca Lys Cys Pro	caa gat atc gaa tgg Gln Asp Ile Glu Trp 305	gcg 1027 Ala
			ctt ctg tta ttg caa Leu Leu Leu Gln 320	
			aag aag gaa acc cca Lys Lys Glu Thr Pro 340	
	Lys Thr Ile		gat ttc agc tca atc Asp Phe Ser Ser Ile 355	
gtc gca atg acc			gcatcttttc gtc	1215
360				
<210> 84 <211> 364 <212> PRT <213> Corynebac	terium gluta	micum	·	
<210> 84 <211> 364 <212> PRT	terium gluta	micum	·	
<210> 84 <211> 364 <212> PRT <213> Corynebac <400> 84	_		Gln Arg Phe Asp Glu 15	Gly
<210> 84 <211> 364 <212> PRT <213> Corynebac <400> 84 Met Thr Asn Ser 1	Leu Asn Ile 5 Leu Glu Val	Pro Phe Val		
<210> 84 <211> 364 <212> PRT <213> Corynebac <400> 84 Met Thr Asn Ser 1 Leu Asp Pro Val	Leu Asn Ile 5 Leu Glu Val	Pro Phe Val 10 Leu Gly Gly 25	15 Lys Gly Ala Ser Leu	Val
<210> 84 <211> 364 <212> PRT <213> Corynebac <400> 84 Met Thr Asn Ser 1 Leu Asp Pro Val 20 Thr Met Thr Asp 35	Leu Asn Ile 5 Leu Glu Val Ala Gly Met	Pro Phe Val 10 Leu Gly Gly 25 Pro Val Pro 40	Lys Gly Ala Ser Leu 30 Pro Gly Phe Val Val	Val
<210> 84 <211> 364 <212> PRT <213> Corynebac <400> 84 Met Thr Asn Ser 1 Leu Asp Pro Val 20 Thr Met Thr Asp 35 Thr Ala Ser Phe 50	Leu Asn Ile 5 Leu Glu Val Ala Gly Met Asp Glu Phe 55	Pro Phe Val 10 Leu Gly Gly 25 Pro Val Pro 40	Lys Gly Ala Ser Leu 30 Pro Gly Phe Val Val 45 Ala Gly Val Ala Glu	Val Thr His
<210> 84 <211> 364 <211> 364 <212> PRT <213> Corynebac <400> 84 Met Thr Asn Ser 1 Leu Asp Pro Val 20 Thr Met Thr Asp 35 Thr Ala Ser Phe 50 Ile Asp Lys Phe 65	Leu Asn Ile 5 Leu Glu Val Ala Gly Met Asp Glu Phe 55 Leu Asn Asp 70	Pro Phe Val 10 Leu Gly Gly 25 Pro Val Pro 40 Ile Arg Glu Leu Asp Ala	Lys Gly Ala Ser Leu 30 Pro Gly Phe Val Val 45 Ala Gly Val Ala Glu 60 Glu Asp Val Lys Glu	Val Thr His Val 80

Glu Arg Cys Gly Gly Asp Val Pro Val Ala Val Arg Ser Ser Ala Thr Ala Glu Asp Leu Pro Asp Ala Ser Phe Ala Gly Gln Gln Asp Thr Tyr Leu Trp Gln Val Gly Leu Ser Ala Val Thr Glu His Ile Arg Lys Cys Trp Ala Ser Leu Phe Thr Ser Arg Ala Ile Ile Tyr Arg Leu Lys Asn 170 Asn Ile Pro Asn Glu Gly Leu Ser Met Ala Val Val Gln Lys Met Val Asn Ser Arg Val Ala Gly Val Ala Ile Thr Met Asn Pro Ser Asn 200 Gly Asp Arg Ser Lys Ile Thr Ile Asp Ser Ser Trp Gly Val Gly Glu 215 220 Met Val Val Ser Gly Glu Val Thr Pro Asp Asn Ile Leu Leu Asp Lys 235 230 Ile Thr Leu Gln Val Val Ser Glu His Ile Gly Ser Lys His Ala Glu 250 245 Leu Ile Pro Asp Ala Thr Ser Gly Ser Leu Val Glu Lys Pro Val Asp Glu Glu Arg Ala Asn Arg Arg Ser Leu Thr Asp Glu Glu Met Leu Ala Val Ala Gln Met Ala Lys Arg Ala Glu Lys His Tyr Lys Cys Pro Gln Asp Ile Glu Trp Ala Leu Asp Ala Asp Leu Pro Asp Gly Glu Asn Leu Leu Leu Gln Ser Arg Pro Glu Thr Ile His Ser Asn Gly Val Lys 330 Lys Glu Thr Pro Thr Pro Gln Ala Ala Lys Thr Ile Gly Thr Phe Asp Phe Ser Ser Ile Thr Val Ala Met Thr Gly Thr Lys 360

<210> 85

<211> 1860

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1837)

<223> RXN00635

<400> 85

ctggcaggcg ggcgaa	agcgt ggcaacaac	t ggaatttaag	agcacaattg a	aagtcgcacc 60	
aagttaggca acacaa	atagc cataacgtt	g aggagttcag	atg gca cac Met Ala His 1		5
gca gaa caa tta a Ala Glu Gln Leu :					3
tat ggt ttg gtg g Tyr Gly Leu Val G 25	ggt gac agc ctt Gly Asp Ser Leu	aat ccg atc Asn Pro Ile 30	gtg gat gct Val Asp Ala 35	gtc cgc 21 Val Arg	1
caa tca gat att q Gln Ser Asp Ile (40	gag tgg gtg cac Glu Trp Val His 45	: Val Arg Asn	gag gaa gcg Glu Glu Ala 50	gcg gcg 25 Ala Ala	9
ttt gca gcc ggt o Phe Ala Ala Gly A 55	gcg gaa tcg ttg Ala Glu Ser Leu 60	g atc act ggg n Ile Thr Gly	gag ctg gca Glu Leu Ala 65	gta tgt 30 Val Cys	7
gct gct tct tgt of Ala Ala Ser Cys of 70					5
gat tcg cat cga a Asp Ser His Arg A	aat ggt gcg aag Asn Gly Ala Lys 90	g gtg ttg gcc Wal Leu Ala 95	atc gct agc Ile Ala Ser	cat att 40 His Ile 100	3
ccg agt gcc cág a Pro Ser Ala Gln : 105					1
att ttg ttt aag o Ile Leu Phe Lys 0 120		Tyr Cys Glu			9
gag cag ggt gaa d Glu Gln Gly Glu 7 135					7
ggt aaa ggt gtg 6 Gly Lys Gly Val 5 150					5
gac gca ggt gac (Asp Ala Gly Asp (3
cct gtg gtg ttc o Pro Val Val Phe 1 185					1
att aac aac gct a Ile Asn Asn Ala 1 200		Leu Phe Cys			9
aat gct cgc gcg (Asn Ala Arg Ala (215					7

atc ggg Ile Gly 230										835
ttt gag Phe Glu										883
gcg tcc Ala Ser	Asn G									931
tat tct Tyr Ser										979
ggt gcg Gly Ala 295	His I	 _	_	_		_		-		 1027
gat gtt Asp Val 310										1075
aca gat Thr Asp										1123
ttg ago Leu Ser	Ser V									1171
cct att Pro Ile										1219
aag gat Lys Asp 375	Ala Va									1267
gcg agg Ala Arg 390		Asn		Gly	Thr		Asp		Gly	1315
ttc cgc Phe Arg										1363
caa agt Gln Ser	Val As									1411
ggt ttg Gly Leu										1459
ctt ccg Leu Pro 455	Leu L									1507

aag ttg gag Lys Leu Glu 470													1555
gag gaa gto Glu Glu Val		e Ala											1603
gta cgc ato Val Arg Ile	_	-	-		-	_		_		-		_	1651
ttg gca tat Leu Ala Tyr 520	Pro Gl												1699
gcg ctg tcg Ala Leu Ser 535					-		-	_	_	_			1747
agc aag gcg Ser Lys Ala 550	-												1795
atc gat cto		g Ser											1837
tgatgattga	tacacct	gct g	tt										1860
<210> 86 <211> 579 <212> PRT <213> Coryr	ebacter	ium gi	lutar	micur	n								
<211> 579 <212> PRT		_				Ile	Asp	Thr	Leu	Glu	Ala	Gln	
<211> 579 <212> PRT <213> Coryr <400> 86	Ser Ty	_				Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
<211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His	Ser Ty	r Ala	Glu	Gln	Leu	10	_				15		
<211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His	Ser Ty Arg Il 20 Val Ar	r Ala 5 e Tyr	Glu Gly	Gln Leu	Leu Val 25	10 Gly	Asp	Ser	Leu	Asn 30	15 Pro	Ile	
<211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His 1 Gly Val Lys	Ser Ty Arg Il 20 Val Ar	r Ala 5 e Tyr g Gln	Glu Gly Ser	Gln Leu Asp	Leu Val 25 Ile	10 Gly Glu	Asp Trp	Ser Val	Leu His 45	Asn 30 Val	15 Pro Arg	Ile Asn	
<211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His 1 Gly Val Lys Val Asp Ala 35 Glu Glu Ala	Ser Ty Arg Il 20 Val Ar	r Ala 5 e Tyr g Gln	Glu Gly Ser Ala 55	Gln Leu Asp 40 Ala	Leu Val 25 Ile Gly	10 Gly Glu Ala	Asp Trp Glu	Ser Val Ser 60	Leu His 45 Leu	Asn 30 Val Ile	15 Pro Arg Thr	Ile Asn Gly	
<pre><211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His 1 Gly Val Lys Val Asp Ala 35 Glu Glu Ala 50</pre> Glu Leu Ala	Ser Ty Arg Il 20 Val Ar Ala Al	r Ala 5 Tyr g Gln a Phe s Ala 70	Glu Gly Ser Ala 55	Gln Leu Asp 40 Ala Ser	Leu Val 25 Ile Gly Cys	10 Gly Glu Ala Gly	Asp Trp Glu Pro	Ser Val Ser 60 Gly	Leu His 45 Leu Asn	Asn 30 Val Ile	15 Pro Arg Thr	Ile Asn Gly Leu 80	
<211> 579 <212> PRT <213> Coryr <400> 86 Met Ala His 1 Gly Val Lys Val Asp Ala 35 Glu Glu Ala 50 Glu Leu Ala 65	Ser Ty Arg Il 20 Val Ar Ala Al Val Cy Leu Ty 8	r Ala 5 e Tyr g Gln a Phe s Ala 70 r Asp	Glu Gly Ser Ala 55 Ala	Gln Leu Asp 40 Ala Ser	Leu Val 25 Ile Gly Cys	Gly Glu Ala Gly Asn 90	Asp Trp Glu Pro 75	Ser Val Ser 60 Gly Ala	Leu His 45 Leu Asn	Asn 30 Val Ile Thr	15 Pro Arg Thr His Leu 95	Ile Asn Gly Leu 80 Ala	

Met	Val 130	Asn	Gly	Gly	Glu	Gln 135	Gly	Glu	Arg	Ile	Leu 140	His	His	Ala	Ile
Gln 145	Ser	Thr	Met	Ala	Gly 150	Lys	Gly	Val	Ser	Val 155	Val	Val	Ile	Pro	Gly 160
Asp	Ile	Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly 170	Thr	Tyr	Ser	Asn	Ser 175	Thr
Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
Gly	Ala 210	Gly	Vál	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
Lys 225	Ile	Lys	Ser	Pro	11e 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
Gln	His	Glu	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
Gln	Val 290	Asp	Ile	Asn	Gly	Ala ,295	His	Ile	Gly	Arg	Arg 300	Ţhr	Thr	Val	Lys
Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	11e 315	Glu	Asn	Ile	Leu	Pro 320
His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400
Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
Val	Lys	Leu	His	Gln	Leu	Pro	Leu	Lys	Ala	Val	Val	Phe	Asn	Asn	Ser

450 455 460 Ser Leu Gly Met Val Lys Leu Glu Met Leu Val Glu Gly Gln Pro Glu 475 470 Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala 490 Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu 505 Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile 520 Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly 545 Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile 570 Pro Thr Pro <210> 87 <211> 552 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (88)..(552) <223> FRXA02807 <400> 87 aaagcgtggc aacaactgga atttaagagc acaattgaag tcgcaccaag ttaggcaaca 60 caatagccat aacgttgagg agttcagatg gca cac agc tac gca gaa caa tta 114 Met Ala His Ser Tyr Ala Glu Gln Leu 5 att gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg 162 Ile Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val 10 ggt gac agc ctt aat ccg atc gtg gat gct gtc cgc caa tca gat att 210 Gly Asp Ser Leu Asn Pro Ile Val Asp Ala Val Arg Gln Ser Asp Ile 30 gag tgg gtg cac gtt cga aat gag gaa gcg gcg gtg ttt gca gcc ggt 258 Glu Trp Val His Val Arg Asn Glu Glu Ala Ala Ala Phe Ala Ala Gly 45 306 geg gaa teg ttg ate act ggg gag etg gea gta tgt get get tet tgt Ala Glu Ser Leu Ile Thr Gly Glu Leu Ala Val Cys Ala Ala Ser Cys 60 65

354

ggt cct gga aac aca cac ctg att cag ggt ctt tat gat tcg cat cga

7	ro Gly 75	Asn	Thr	His	Leu 80	Ile	Gln	Gly	Leu	Tyr 85	Asp	Ser	His	Arg	
aat go Asn Gl 90															402
att go Ile Gl															450
gaa to Glu Cy															498
cgc at Arg I		His													546
tcg gt Ser Va	al														552
<210><211><211><212><213>	155 PRT	ebact	teri	um gl	lutan	nicum	n								
<400> Met Al		Ser	Tyr 5	Ala	Glu	Gln	Leu	Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
Gly Va	al Lys		Ile	Tyr	Gly	Leu		Gly	Asp	Ser	Leu		Pro	Ile	
		20					25					30			
Val As	sp Ala 35	Val	Arg	Gln	Ser	Asp 40		Glu	Trp	Val	His 45		Arg	Asn	
Glu Gl	35	Val				40	Ile				45	Val			
Glu Gl	35 lu Ala 50	Val Ala	Ala	Phe	Ala 55	40 Ala	Ile	Ala	Glu	Ser 60	45 Leu	Val Ile	Thr	Gly	
Glu Glu Le	35 lu Ala 50 eu Ala	Val Ala Val	Ala Cys	Phe Ala 70	Ala 55 Ala	40 Ala Ser	Ile Gly Cys	Ala Gly	Glu Pro 75	Ser 60 Gly	45 Leu Asn	Val Ile Thr	Thr	Gly Leu 80	
Glu Gl Glu Le 65	35 lu Ala 50 eu Ala ln Gly	Val Ala Val Leu	Ala Cys Tyr 85	Phe Ala 70 Asp	Ala 55 Ala Ser	40 Ala Ser His	Ile Gly Cys Arg	Ala Gly Asn 90	Glu Pro 75 Gly	Ser 60 Gly Ala	45 Leu Asn Lys	Val Ile Thr	Thr His Leu 95	Gly Leu 80 Ala	
Glu Glu Le 65	35 lu Ala 50 eu Ala ln Gly	Val Ala Val Leu His 100 Pro	Ala Cys Tyr 85	Phe Ala 70 Asp	Ala 55 Ala Ser	40 Ala Ser His	Ile Gly Cys Arg Gln 105	Ala Gly Asn 90 Ile	Glu Pro 75 Gly	Ser 60 Gly Ala Ser	45 Leu Asn Lys Thr	Val Ile Thr Val Phe 110	Thr His Leu 95	Gly Leu 80 Ala	
Glu Le 65 Ile Glu Ith	35 lu Ala 50 eu Ala ln Gly la Ser nr His 115	Val Ala Val Leu His 100 Pro	Ala Cys Tyr 85 Ile	Phe Ala 70 Asp Pro	Ala 55 Ala Ser Ser	40 Ala Ser His Ala Phe 120	Ile Gly Cys Arg Gln 105 Lys	Ala Gly Asn 90 Ile Glu	Glu Pro 75 Gly Gly Cys	Ser 60 Gly Ala Ser	45 Leu Asn Lys Thr Gly 125	Val Thr Val Phe 110	Thr His Leu 95 Phe Cys	Gly Leu 80 Ala Gln	

<210> 89 <211> 944 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(921) <223> FRXA00635 <400> 89 ggt acg gat ttc cct tat tct gat ttc ctt cct aaa gac aac gtt gcc 48 Gly Thr Asp Phe Pro Tyr Ser Asp Phe Leu Pro Lys Asp Asn Val Ala cag gtg gat atc aac ggt gcg cac att ggt cga cgt acc acg gtg aag 96 Gln Val Asp Ile Asn Gly Ala His Ile Gly Arg Arg Thr Thr Val Lys tat ccg gtg acc ggt gat gtt gct gca aca atc gaa aat att ttg cct Tyr Pro Val Thr Gly Asp Val Ala Ala Thr Ile Glu Asn Ile Leu Pro 40 cat gtg aag gaa aaa aca gat cgt tcc ttc ctt gat cgg atg ctc aag 192 His Val Lys Glu Lys Thr Asp Arg Ser Phe Leu Asp Arg Met Leu Lys 55 gea cac gag egt aag ttg age teg gtg gta gag aeg tae aea eat aac 240 Ala His Glu Arg Lys Leu Ser Ser Val Val Glu Thr Tyr Thr His Asn gtc gag aag cat gtg cct att cac cct gaa tac gtt gcc tct att ttg 288 Val Glu Lys His Val Pro Ile His Pro Glu Tyr Val Ala Ser Ile Leu aac gag ctg gcg gat aag gat gcg gtg ttt act gtg gat acc ggc atg 336 Asn Glu Leu Ala Asp Lys Asp Ala Val Phe Thr Val Asp Thr Gly Met tgc aat gtg tgg cat gcg agg tac atc gag aat ccg gag gga acg cgc 384 Cys Asn Val Trp His Ala Arg Tyr Ile Glu Asn Pro Glu Gly Thr Arg 120 gac ttt gtg ggt tca ttc cgc cac ggc acg atg gct aat gcg ttg cct 432 Asp Phe Val Gly Ser Phe Arg His Gly Thr Met Ala Asn Ala Leu Pro 135 480 cat gcg att ggt gcg caa agt gtt gat cga aac cgc cag gtg atc gcg His Ala Ile Gly Ala Gln Ser Val Asp Arg Asn Arg Gln Val Ile Ala 155 atg tgt ggc gat ggt ttg ggc atg ctg ctg ggt gag ctt ctg acc 528 Met Cys Gly Asp Gly Gly Leu Gly Met Leu Leu Gly Glu Leu Leu Thr 576 gtt aag ctg cac caa ctt ccg ctg aag gct gtg gtg ttt aac aac agt Val Lys Leu His Gln Leu Pro Leu Lys Ala Val Phe Asn Asn Ser tct ttg ggc atg gtg aag ttg gag atg ctc gtg gag gga cag cca gaa 624 Ser Leu Gly Met Val Lys Leu Glu Met Leu Val Glu Gly Gln Pro Glu

200 195 205 ttt ggt act gac cat gag gaa gtg aat ttc gca gag att gcg gcg gct 672 Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala 210 215 gcg ggt atc aaa tcg gta cgc atc acc gat ccg aag aaa gtt cgc gag 720 Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu cag cta gct gag gca ttg gca tat cct gga cct gta ctg atc gat atc 768 Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile 245 gtc acg gat cct aat gcg ctg tcg atc cca cca acc atc acg tgg gaa 816 Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu cag gtc atg gga ttc agc aag gcg gcc acc cga acc gtc ttt ggt gga 864 Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly 280 275 gga gta gga gcg atg atc gat ctg gcc cgt tcg aac ata agg aat att 912 Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile 290 295 944 cct act cca tgatgattga tacacctgct gtt Pro Thr Pro 305 <210> 90 <211> 307 <212> PRT <213> Corynebacterium glutamicum <400> 90 Gly Thr Asp Phe Pro Tyr Ser Asp Phe Leu Pro Lys Asp Asn Val Ala Gln Val Asp Ile Asn Gly Ala His Ile Gly Arg Arg Thr Thr Val Lys Tyr Pro Val Thr Gly Asp Val Ala Ala Thr Ile Glu Asn Ile Leu Pro His Val Lys Glu Lys Thr Asp Arg Ser Phe Leu Asp Arg Met Leu Lys Ala His Glu Arg Lys Leu Ser Ser Val Val Glu Thr Tyr Thr His Asn 70 Val Glu Lys His Val Pro Ile His Pro Glu Tyr Val Ala Ser Ile Leu 90 Asn Glu Leu Ala Asp Lys Asp Ala Val Phe Thr Val Asp Thr Gly Met Cys Asn Val Trp His Ala Arg Tyr Ile Glu Asn Pro Glu Gly Thr Arg

125

120

115

Asp Phe Val Gly Ser Phe Arg His Gly Thr Met Ala Asn Ala Leu Pro 135 His Ala Ile Gly Ala Gln Ser Val Asp Arg Asn Arg Gln Val Ile Ala Met Cys Gly Asp Gly Gly Leu Gly Met Leu Leu Gly Glu Leu Leu Thr 170 Val Lys Leu His Gln Leu Pro Leu Lys Ala Val Val Phe Asn Asn Ser Ser Leu Gly Met Val Lys Leu Glu Met Leu Val Glu Gly Gln Pro Glu Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala 215 Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile 250 Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu 260 265 Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly 280 Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile 295 300 Pro Thr Pro 305 <210> 91 <211> 954 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(931) <223> RXN03044 <400> 91 tacgccaccc acggcaaggc catgattccg ctgtacatct tctactcgat gttcgggatt 60 ccagegeace ggtgacteca tetgggeage agecgateag atg gea egt gge tte 115 Met Ala Arg Gly Phe 1 ctc ttg ggc gct acc gca ggt cgc acc ctg acc ggt gaa ggc ctc 163 Leu Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu 10 20 cag cac atg gat gga cac tee cet gte ttg get tee ace aac gag ggt 211 Gln His Met Asp Gly His Ser Pro Val Leu Ala Ser Thr Asn Glu Gly 25

										gag Glu						259
										ggc Gly						307
										acc Thr 80						355
cca Pro	gaa Glu	gga Gly	ctg Leu	gac Asp 90	gta Val	gaa Glu	ggc Gly	ctg Leu	cac His 95	aag Lys	ggc Gly	atc Ile	tac Tyr	ctc Leu 100	tac Tyr	403
tcc Ser	cgc Arg	ggt Gly	gaa Glu 105	ggc Gly	acc Thr	ggc Gly	cat His	gag Glu 110	gca Ala	aac Asn	atc Ile	ttg Leu	gct Ala 115	tcc Ser	ggt Gly	451
										tcc Ser						499
										act Thr						547
										cag Gln 160						595
gca Ala	gat Asp	gct Ala	ggc Gly	gag Glu 170	gca Ala	ttc Phe	gta Val	acc Thr	acc Thr 175	cag Gln	ctg Leu	aag Lys	cag Gln	acc Thr 180	tcc Ser	643
										act Thr						691
	Arg		Trp	Val		Gĺy	Asp	Tyr		gtt Val		Gly	Ala			739
										cgt Arg						787
										aac Asn 240						835
										gct Ala						883
										cca Pro						931

taaatcacct caagggacag ata

954

<210> 92	- 21	U>	92
----------	------	----	----

<211> 277

<212> PRT

<213> Corynebacterium glutamicum

<400> 92

Met Ala Arg Gly Phe Leu Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu 1 5 10 15

Thr Gly Glu Gly Leu Gln His Met Asp Gly His Ser Pro Val Leu Ala 20 25 30

Ser Thr Asn Glu Gly Val Glu Thr Tyr Asp Pro Ser Phe Ala Tyr Glu 35 40 45

Ile Ala His Leu Val His Arg Gly Ile Asp Arg Met Tyr Gly Pro Gly 50 55 60

Lys Gly Glu Asp Val Ile Tyr Tyr Ile Thr Ile Tyr Asn Glu Pro Thr 65 70 75 80

Pro Gln Pro Ala Glu Pro Glu Gly Leu Asp Val Glu Gly Leu His Lys
85 90 95

Gly Ile Tyr Leu Tyr Ser Arg Gly Glu Gly Thr Gly His Glu Ala Asn 100 105 110

Ile Leu Ala Ser Gly Val Gly Met Gln Trp Ala Leu Lys Ala Ala Ser 115 120 125

Ile Leu Glu Ala Asp Tyr Gly Val Arg Ala Asn Ile Tyr Ser Ala Thr 130 135 140

Ser Trp Val Asn Leu Ala Arg Asp Gly Ala Ala Arg Asn Lys Ala Gln 145 150 155 160

Leu Arg Asn Pro Gly Ala Asp Ala Gly Glu Ala Phe Val Thr Thr Gln 165 170 175

Leu Lys Gln Thr Ser Gly Pro Tyr Val Ala Val Ser Asp Phe Ser Thr 180 185 190

Asp Leu Pro Asn Gln Ile Arg Glu Trp Val Pro Gly Asp Tyr Thr Val 195 200 205

Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr Arg Pro Ala Ala Arg 210 215 220

Arg Phe Phe Asn Ile Asp Ala Glu Ser Ile Val Val Ala Val Leu Asn 225 230 235 240

Ser Leu Ala Arg Glu Gly Lys Ile Asp Val Ser Val Ala Ala Gln Ala 245 250 255

Ala Glu Lys Phe Lys Leu Asp Asp Pro Thr Ser Val Ser Val Asp Pro 260 265 270

Asn Ala Pro Glu Glu

275

```
<210> 93
<211> 302
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (1)..(279)
<223> FRXA02852
<400> 93
gtt gca gtg tct gac ttc tcc act gat ctg cca aac cag atc cgt gaa
                                                                   48
Val Ala Val Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu
tgg gtc cca ggc gac tac acc gtt ctc ggt gca gat ggc ttc ggt ttc
Trp Val Pro Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe
tct gat acc cgc cca gct gct cgt cgc ttc ttc aac atc gac gct gag
Ser Asp Thr Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu
         35
                             40
tcc att gtt gtt gca gtg ctg aac tcc ctg gca cgc gaa ggc aag atc
                                                                   192
Ser Ile Val Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile
                         55 . .
     50
gac gtc tcc gtt gct gct cag gct gct gag aag ttc aag ttg gat gat
                                                                   240
Asp Val Ser Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp
65
                     70
cct acg agt gtt tcc gta gat cca aac gct cct gag gaa taaatcacct
                                                                   289
Pro Thr Ser Val Ser Val Asp Pro Asn Ala Pro Glu Glu
                 85
                                                                   302
caagggacag ata
<210> 94
<211> 93
<212> PRT
<213> Corynebacterium glutamicum
<400> 94
Val Ala Val Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu
Trp Val Pro Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe
                                 25
Ser Asp Thr Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu
                             40
Ser Ile Val Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile
                         55
Asp Val Ser Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp
```

Pro Thr Ser Val Ser Val Asp Pro Asn Ala Pro Glu Glu 85 90

<210> 95 <211> 954 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(931) <223> FRXA00268 <400> 95 tacgccaccc acggcaaggc catgattccg ctgtacatct tctactcgat gttcgggatt 60 ccagcgcacc ggtgactcca tttgggcagc agccgatcag atg gca cgt ggc ttc Met Ala Arg Gly Phe 1 ttt ttg ggc gct acc gca ggt cgc acc acc ttg acc ggt gaa ggc ctc 163 Phe Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu 10 15 20 211 cag cac atg gat gga cac tee eet gtt ttg get tee ace aac gag ggt Gln His Met Asp Gly His Ser Pro Val Leu Ala Ser Thr Asn Glu Gly · 25 30 gtc gag acc tac gac cca tcc ttt gcg tac gag atc gca cac ctg gtt 259 Val Glu Thr Tyr Asp Pro Ser Phe Ala Tyr Glu Ile Ala His Leu Val 40 45 307 cac cqt ggc atc gac cgc atg tac ggc cca ggc aag ggt gaa gat gtt His Arg Gly Ile Asp Arg Met Tyr Gly Pro Gly Lys Gly Glu Asp Val 55 atc tac tac atc acc atc tac aac gag cca acc cca cag cca gct gag Ile Tyr Tyr Ile Thr Ile Tyr Asn Glu Pro Thr Pro Gln Pro Ala Glu 70 cca gaa gga ctg gac gta gaa ggc ctg cac aag ggc atc tac ctc tac 403 Pro Glu Gly Leu Asp Val Glu Gly Leu His Lys Gly Ile Tyr Leu Tyr 100 90 tee eqe qqt qaa qqc ace qqc cat gag gca aac ate ttg gct tee ggt 451 Ser Arg Gly Glu Gly Thr Gly His Glu Ala Asn Ile Leu Ala Ser Gly 110 105 gtt ggt atg cag tgg gct ctc aag gct gca tcc atc ctt gag gct gac 499 Val Gly Met Gln Trp Ala Leu Lys Ala Ala Ser Ile Leu Glu Ala Asp 120 125 tac gga gtt cgt gcc aac att tac tcc gct act tct tgg gtt aac ttg 547 Tyr Gly Val Arg Ala Asn Ile Tyr Ser Ala Thr Ser Trp Val Asn Leu 135 595 gct cgc gat ggc gct gct cgt aac aag gca cag ctg cgc aac cca ggt Ala Arg Asp Gly Ala Ala Arg Asn Lys Ala Gln Leu Arg Asn Pro Gly 160 150 155

			acc cag ctg a Thr Gln Leu I 175	
			tcc act gat of Ser Thr Asp 1	
			acc gtt ctc of Thr Val Leu (
~ ~	•	•	gct cgt cgc t Ala Arg Arg 1 225	
, , , , ,		, , ,	ctg aac tcc o Leu Asn Ser 1 240	 -
,,			cag gct gct (Gln Ala Ala (255	 _
			gat cca aac o Asp Pro Asn A	
taaatcacct o	caagggacag a	ta		954

<210> 96

<211> 277

<212> PRT

<213> Corynebacterium glutamicum

<400> 96

Met Ala Arg Gly Phe Phe Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu 1 5 10 15

Thr Gly Glu Gly Leu Gln His Met Asp Gly His Ser Pro Val Leu Ala 20 25 30

Ser Thr Asn Glu Gly Val Glu Thr Tyr Asp Pro Ser Phe Ala Tyr Glu 35 40 45

Ile Ala His Leu Val His Arg Gly Ile Asp Arg Met Tyr Gly Pro Gly 50 55 60

Lys Gly Glu Asp Val Ile Tyr Tyr Ile Thr Ile Tyr Asn Glu Pro Thr 65 70 75 80

Pro Gln Pro Ala Glu Pro Glu Gly Leu Asp Val Glu Gly Leu His Lys
85 90 95

Gly Ile Tyr Leu Tyr Ser Arg Gly Glu Gly Thr Gly His Glu Ala Asn 100 105 110

Ile Leu Ala Ser Gly Val Gly Met Gln Trp Ala Leu Lys Ala Ala Ser 115 120 125

Ile Leu Glu Ala Asp Tyr Gly Val Arg Ala Asn	Ile Tyr Ser Ala Thr											
130 135	140											
Ser Trp Val Asn Leu Ala Arg Asp Gly Ala Ala	Arg Asn Lys Ala Gln											
145 150 155	160											
Leu Arg Asn Pro Gly Ala Asp Ala Gly Glu Ala	Phe Val Thr Thr Gln											
165 170	175											
Leu Lys Gln Thr Ser Gly Pro Tyr Val Ala Val	Ser Asp Phe Ser Thr											
180 185	190											
Asp Leu Pro Asn Gln Ile Arg Glu Trp Val Pro	Gly Asp Tyr Thr Val											
195 200	205											
Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr	Arg Pro Ala Ala Arg											
210 215	220											
Arg Phe Phe Asn Ile Asp Ala Glu Ser Ile Val	Val Ala Val Leu Asn											
225 230 235	240											
Ser Leu Ala Arg Glu Gly Lys Ile Asp Val Ser	Val Ala Ala Gln Ala											
245 250	255											
Ala Glu Lys Phe Lys Leu Asp Asp Pro Thr Ser	Val Ser Val Asp Pro											
260 265	270											
Asn Ala Pro Glu Glu 275												
<210> 97 <211> 508 <212> DNA <213> Corynebacterium glutamicum												
<220> <221> CDS <222> (101)(508) <223> RXN03086												
<400> 97												
ttcgtgcact tcggcgtgtc acaattaggt acgaccaaga												
cgtataaacg aaataaaaca ttccaacagg aggtgtggaa	atg gcc gat caa gca 115 Met Ala Asp Gln Ala 1 5											
aaa ctt ggt ggc aag ccc tcg gat gac tct aac Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn 10												
gat ggc gtg gca tct tat ttg aac gac tca gat Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp 25												
gag tgg atg gat tca ctc gac gga tta ctc cag Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln 40 45												

					atg Met											307
					cca Pro 75											355
cca Pro	acc Thr	tct Ser	atg Met	gaa Glu 90	cct Pro	gaa Glu	ttc Phe	cca Pro	ggc Gly 95	gat Asp	gag Glu	gaa Glu	atg Met	gag Glu 100	aag Lys	403
cgt Arg	tac Tyr	cgt Arg	cgt Arg 105	tgg Trp	att Ile	cgc Arg	tgg Trp	aac Asn 110	gca Ala	gcc Ala	atc Ile	atg Met	gtt Val 115	cac His	cgc Arg	451
gct Ala	cag Gln	cga Arg 120	cca Pro	ggc Gly	atc Ile	ggc Gly	gtc Val 125	ggc Gly	gga Gly	cac His	att Ile	tcc Ser 130	act Thr	tac Tyr	gca Ala	499
	gca Ala 135	-														508
<211 <212	0> 98 1> 13 2> PI 3> Co	36 RT	ebact	ceriu	um gi	lutan	nicum	n								
)> 98 Ala		Gln	Ala 5	Lys	Leu	Gly	Gly	Lys 10	Pro	Ser	Asp	Asp	Ser 15	Asn	
Phe	Ala	Met	Ile 20	Arg	Asp	Gly	Val	Ala 25	Ser	Tyr	Leu	Asn	Asp 30	Ser	Asp	
Pro	Glu	Glu 35	Thr	Asn	Glu	Trp	Met 40	Asp	Ser	Leu	Asp	Gly 45	Leu	Leu	Gln	
Glu	Ser 50	Ser	Pro	Glu	Arg	Ala 55	Arg	Tyr	Leu	Met	T au	Ara	Leu	Leu	Glu	
						33					60	9				
Arg 65	Ala	Ser	Ala	Lys	Arg 70		Ser	Leu			60			Thr	Asp 80	
65						Val			Pro	Pro 75	60 Met	Thr	Ser		80	
65 Tyr	Val	Asn	Thr	Ile 85	70	Val Thr	Ser	Met	Pro Glu 90	Pro 75 Pro	60 Met Glu	Thr Phe	Ser Pro	Gly 95	80 Asp	
65 Tyr Glu	Val Glu	Asn Met	Thr Glu 100	Ile 85 Lys	70 Pro	Val Thr Tyr	Ser Arg	Met Arg 105	Pro Glu 90 Trp	Pro 75 Pro Ile	60 Met Glu Arg	Thr Phe Trp	Ser Pro Asn 110	Gly 95 Ala	80 Asp Ala	
65 Tyr Glu Ile	Val Glu Met	Asn Met Val 115	Thr Glu 100 His	Ile 85 Lys Arg	70 Pro Arg	Val Thr Tyr Gln	Ser Arg Arg 120	Met Arg 105	Pro Glu 90 Trp	Pro 75 Pro Ile	60 Met Glu Arg	Thr Phe Trp Val	Ser Pro Asn 110	Gly 95 Ala	80 Asp Ala	

<211> 508

```
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (101)..(508)
<223> FRXA02887
<400> 99
ttcgtgcact tcggcgtgcc acaattaggt acgaccaaga atgggaccgg gaaaccggga 60
cgtataaacg aaataaaaca ttccaacagg aggtgtggaa atg gcc gat caa gca
                                                                   115
                                             Met Ala Asp Gln Ala
                                                                   163
aaa ctt ggt ggc aag ccc tcg gat gac tct aac ttc gcg atg atc cgc
Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn Phe Ala Met Ile Arg
                                     15
gat ggc gtg gca tct tat ttg aac gac tca gat ccg gag gag acc aac
                                                                   211
Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Asn
gag tgg atg gat tca ctc gac gga tta ctc cag gag tct tct cca gaa
                                                                   259
Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln Glu Ser Ser Pro Glu
                                                                   307
cqt gct cqt tac ctc atg ctt cqt ttg ctt gag cgt gca tct gca aag
Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys
                         60
cgc gta tct ctt ccc cca atg acg tca acc gac tac gtc aac acc att
                                                                   355
Arg Val Ser Leu Pro Pro Met Thr Ser Thr Asp Tyr Val Asn Thr Ile
                                         80
                                                                   403
cca acc tct atg gaa cct gaa ttc cca ggc gat gag gaa atg gag aag
Pro Thr Ser Met Glu Pro Glu Phe Pro Gly Asp Glu Glu Met Glu Lys
                                     95
                                                                   451
cgt tac cgt cgt tgg att cgc tgg aac gca gcc atc atg gtt cac cgc
Arg Tyr Arg Arg Trp Ile Arg Trp Asn Ala Ala Ile Met Val His Arg
                                110
get cag ega eca gge ate gge gte gge gga cae att tee aet tae gea
                                                                   499
Ala Gln Arg Pro Gly Ile Gly Val Gly Gly His Ile Ser Thr Tyr Ala
                            125
                                                                   508
ggc gca gcc
Gly Ala Ala
    135
<210> 100
<211> 136
<212> PRT
<213> Corynebacterium glutamicum
<400> 100
Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn
                                     10
```

Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Asn Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln Glu Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys Arg Val Ser Leu Pro Pro Met Thr Ser Thr Asp Tyr Val Asn Thr Ile Pro Thr Ser Met Glu Pro Glu Phe Pro Gly Asp Glu Glu Met Glu Lys Arg Tyr Arg Arg Trp Ile Arg Trp Asn Ala Ala Ile Met Val His Arg Ala Gln Arg Pro Gly Ile Gly Val Gly Gly His Ile Ser Thr Tyr Ala Gly Ala Ala <210> 101 <211> 1385 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1362) <223> RXN03043 <400> 101 gat ctc gat ggc ttc cgt cag gaa gtt tcc cgt gag cag ggt ggc att 48 Asp Leu Asp Gly Phe Arg Gln Glu Val Ser Arg Glu Gln Gly Gly Ile 5 1 ccg tcc tac cct cac cca cac ggt atg aag gac ttc tgg gag ttc cca Pro Ser Tyr Pro His Pro His Gly Met Lys Asp Phe Trp Glu Phe Pro act gtg tcc atg ggt ctt ggc cca atg gat gcc att tac cag gca cgt Thr Val Ser Met Gly Leu Gly Pro Met Asp Ala Ile Tyr Gln Ala Arg 35 tto aac cgc tac ctc gaa aac cgt ggc atc aag gac acc tct gac cag 192 Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile Lys Asp Thr Ser Asp Gln 50 cac qtc tqq qcc ttc ctt qqc qac qgc qaa atg gac gag cca gaa tca 240 His Val Trp Ala Phe Leu Gly Asp Gly Glu Met Asp Glu Pro Glu Ser 65 cgt ggt ctc atc cag cag gct gca ctg aac aac ctg gac aac ctg acc 288 Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn Asn Leu Asp Asn Leu Thr 85 90 336 tte gtg gtt aac tgc aac ctg cag cgt ctc gac gga cct gtc cgc ggt

145

Phe	Val	Val	Asn 100	Cys	Asn	Leu	Gln	Arg 105	Leu	Asp	Gly	Pro	Val 110	Arg	Gly	
					cag Gln											384
					gtt Val											432
					ggt Gly 150											480
					acc Thr											528
					cgt Arg											576
_		_	-	-	atc Ile		_			_				_		624
					gcc Ala											672
					gct Ala 230											720
					aac Asn											768
-	-	_	_	•	ttc Phe	-	-	_	_						_	816
					gat Asp											864
					atc Ile											912
					gag Glu 310											960
					ctt Leu											1008
cag Gln	atc Ile	gct Ala	acc Thr	acc Thr	atg Met	gcg Ala	act Thr	gtt Val	cgt Arg	acc Thr	ttc Phe	aag Lys	gaa Glu	ctg Leu	atg Met	1056

340 345 350 cgc gat aag ggc ttg gct gat cgc ctt gtc cca atc att cct gat gag 1104 Arg Asp Lys Gly Leu Ala Asp Arg Leu Val Pro Ile Ile Pro Asp Glu 360 355 gca cgt acc ttc ggt ctt gac tct tgg ttc cca acc ttg aag atc tac 1152 Ala Arg Thr Phe Gly Leu Asp Ser Trp Phe Pro Thr Leu Lys Ile Tyr 370 375 aac ccg cac ggt cag aac tac gtg cct gtt gac cac gac ctg atg ctc Asn Pro His Gly Gln Asn Tyr Val Pro Val Asp His Asp Leu Met Leu 385 390 395 tcc tac cgt gag gca cct gaa gga cag atc ctg cac gaa ggc atc aac 1248 Ser Tyr Arg Glu Ala Pro Glu Gly Gln Ile Leu His Glu Gly Ile Asn 405 gag get ggt tee gtg gea teg tte ate get geg ggt ace tee tae gee 1296 Glu Ala Gly Ser Val Ala Ser Phe Ile Ala Ala Gly Thr Ser Tyr Ala 420 425 430 acc cac ggc aag gcc atg att ccg ctg tac atc ttc tac tcg atg ttc 1344 Thr His Gly Lys Ala Met Ile Pro Leu Tyr Ile Phe Tyr Ser Met Phe 435 440 ggg att cca gcg cac cgg tgactccatc tgggcagcag ccg 1385 Gly Ile Pro Ala His Arg 450 <210> 102 <211> 454 <212> PRT <213> Corynebacterium glutamicum <400> 102 Asp Leu Asp Gly Phe Arg Gln Glu Val Ser Arg Glu Gln Gly Gly Ile Pro Ser Tyr Pro His Pro His Gly Met Lys Asp Phe Trp Glu Phe Pro 25 Thr Val Ser Met Gly Leu Gly Pro Met Asp Ala Ile Tyr Gln Ala Arg Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile Lys Asp Thr Ser Asp Gln His Val Trp Ala Phe Leu Gly Asp Gly Glu Met Asp Glu Pro Glu Ser Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn Asn Leu Asp Asn Leu Thr Phe Val Val Asn Cys Asn Leu Gln Arg Leu Asp Gly Pro Val Arg Gly

Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser Phe Phe Arg Gly Ala Gly
115 120 125

Trp	Ser 130	Val	Ile	Lys	Val	Val 135	Trp	Gly	Arg	Glu	Trp 140	Asp	Glu	Leu	Leu
Glu 145	Lys	Asp	Gln	Asp	Gly 150	Ala	Leu	Val	Glu	Ile 155	Met	Asn	Asn	Thr	Ser 160
Asp	Gly	Asp	Tyr	Gln 165	Thr	Phe	Lys	Ala	Asn 170	Asp	Gly	Ala	Tyr	Val 175	Arg
Glu	His	Phe	Phe 180	Gly	Arg	Asp	Pro	Arg 185	Thr	Ala	Lys	Leu	Val 190	Glu	Asn
Met	Thr	Asp 195	Glu	Glu	Ile	Trp	Lys 200	Leu	Pro	Arg	Gly	Gly 205	His	Asp	Tyr
Arg	Lys 210	Val	Tyr	Ala	Ala	Tyr 215	Lys	Arg	Ala	Leu	Glu 220	Thr	Lys	Asp	Arg
Pro 225	Thr	Val	Ile	Leu	Ala 230	His	Thr	Ile	Lys	Gly 235	Tyr	Gly	Leu	Gly	His 240
Asn	Phe	Glu	Gly	Arg 245	Asn	Ala	Thr	His	Gln 250	Met	Lys	Lys	Leu	Thr 255	Leu
Asp	Asp	Leu	Lys 260	Leu	Phe	Arg	Asp	Lys 265	Gln	Gly	Ile	Pro	Ile 270	Thr	Asp
Glu	Gln	Leu 275	Glu	Lys	Asp	Pro	Tyr 280	Leu	Pro	Pro	Tyr	Tyr 285	His	Pro	Gly
Glu	Asp 290	Ala	Pro	Glu	Ile	Lys 295	Tyr	Met	Lys	Glu	Arg 300	Arg	Ala	Ala	Leu
Gly 305	Gly	Tyr	Leu	Pro	Glu 310	Arg	Arg	Glu	Asn	Tyr 315	Asp	Pro	Ile	Gln	Val 320
Pro	Pro	Leu	Asp	Lys 325	Leu	Arg	Ser	Val	Arg 330	Lys	Gly	Ser	Gly	Lys 335	Gln
Gln	Ile	Ala	Thr 340	Thr	Met	Ala	Thr	Val 345	Arg	Thr	Phe	Lys	Glu 350	Leu	Met
Arg	Asp	Lys 355	Gly	Leu	Ala	Asp	Arg 360	Leu	Val	Pro	Ile	Ile 365	Pro	Asp	Glu
Ala	Arg 370	Thr	Phe	Gly	Leu	Asp 375	Ser	Trp	Phe	Pro	Thr 380	Leu	Lys	Ile	Tyr
Asn 385	Pro	His	Gly	Gln	Asn 390	Tyr	Val	Pro	Val	Asp 395	His	Asp	Leu	Met	Leu 400
Ser	Tyr	Arg	Glu	Ala 405	Pro	Glu	Gly	Gln	Ile 410	Leu	His	Glu	Gly	Ile 415	Asn
Glu	Ala	Gly	Ser 420	Val	Ala	Ser	Phe	Ile 425	Ala	Ala	Gly	Thr	Ser 430	Tyr	Ala
Thr	His.	Gly 435	Lys	Ala	Met	Ile	Pro 440	Leu	Tyr	Ile	Phe	Tyr 445	Ser	Met	Phe
Gly	Ile	Pro	Ala	His	Arg										

450

<210> 103 <211> 1287 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1287) <223> FRXA02897 <400> 103 gat etc gat gge ttc egt eag gaa gtt tec egt gag eag ggt gge att Asp Leu Asp Gly Phe Arg Gln Glu Val Ser Arg Glu Gln Gly Gly Ile ccg tcc tac cct cac cca cac ggt atg aag gac ttc tgg gag ttc cca 96 Pro Ser Tyr Pro His Pro His Gly Met Lys Asp Phe Trp Glu Phe Pro act gtg tcc atg ggt ctt ggc cca atg gat gcc att tac cag gca cgt Thr Val Ser Met Gly Leu Gly Pro Met Asp Ala Ile Tyr Gln Ala Arg ttc aac cgc tac ctc qaa aac cgt ggc atc aag gac acc tct gac cag Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile Lys Asp Thr Ser Asp Gln 50 cac gtc tgg gcc ttc ctt ggc gac ggc gaa atg gac gag cca gaa tca 240 His Val Trp Ala Phe Leu Gly Asp Glu Met Asp Glu Pro Glu Ser 65 70 cgt ggt ctc atc cag cag gct gca ctg aac aac ctg gac aac ctg acc Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn Asn Leu Asp Asn Leu Thr 85 ttc gtg gtt aac tgc aac ctg cag cgt ctc gac gga cct gtc cgc ggt 336 Phe Val Val Asn Cys Asn Leu Gln Arg Leu Asp Gly Pro Val Arg Gly 100 aac acc aag atc atc cag gaa ctc gag tcc ttc ttc cgt ggc gca ggc Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser Phe Phe Arg Gly Ala Gly 115 tgg tct gtg atc aag gtt gtt tgg ggt cgc gag tgg gat gaa ctt ctg 432 Trp Ser Val Ile Lys Val Val Trp Gly Arg Glu Trp Asp Glu Leu Leu 130 135 gag aag gac cag gat ggt gca ctt gtt gag atc atg aac aac acc tcc Glu Lys Asp Gln Asp Gly Ala Leu Val Glu Ile Met Asn Asn Thr Ser 145 gat ggt gac tac cag acc ttc aag gct aac gac ggc gca tat gtt cgt 528 Asp Gly Asp Tyr Gln Thr Phe Lys Ala Asn Asp Gly Ala Tyr Val Arg 175 165 gag cac ttc ttc gga cgt gac cca cgc acc gca aag ctc gtt gag aac Glu His Phe Phe Gly Arg Asp Pro Arg Thr Ala Lys Leu Val Glu Asn

														gat Asp		624
														gat Asp		672
		-			-				-					ggc Gly		720
														acg Thr 255		768
														acc Thr		816
														cca Pro		864
_	_	_		-		-		_	-	-	_	_	_	gcg Ala		912
														cag Gln		960
		-	•	_		_		-	_	_				aag Lys 335	_	1008
-		-			_			_	_			_	_	ctg Leu	-	1056
	Asp		Gly	Leu		Asp	Arg	Leu	Val	Pro	Ile	Ile	Pro	gat Asp		1104
														atc Ile		1152
														atg Met		1200
														atc Ile 415		1248
					gca Ala											1287

<210> 104 <211> 429

<212> PRT

<213> Corynebacterium glutamicum

<400> 104

Asp Leu Asp Gly Phe Arg Gln Glu Val Ser Arg Glu Gln Gly Gly Ile
1 5 10 15

Pro Ser Tyr Pro His Pro His Gly Met Lys Asp Phe Trp Glu Phe Pro 20 25 30

Thr Val Ser Met Gly Leu Gly Pro Met Asp Ala Ile Tyr Gln Ala Arg 35 40 45

Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile Lys Asp Thr Ser Asp Gln 50 55 60

His Val Trp Ala Phe Leu Gly Asp Gly Glu Met Asp Glu Pro Glu Ser 65 70 75 80

Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn Asn Leu Asp Asn Leu Thr 85 90 95

Phe Val Val Asn Cys Asn Leu Gln Arg Leu Asp Gly Pro Val Arg Gly
100 105 110

Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser Phe Phe Arg Gly Ala Gly 115 120 125

Trp Ser Val Ile Lys Val Val Trp Gly Arg Glu Trp Asp Glu Leu Leu 130 135 140

Glu Lys Asp Gln Asp Gly Ala Leu Val Glu Ile Met Asn Asn Thr Ser 145 150 155 160

Asp Gly Asp Tyr Gln Thr Phe Lys Ala Asn Asp Gly Ala Tyr Val Arg 165 170 175

Glu His Phe Phe Gly Arg Asp Pro Arg Thr Ala Lys Leu Val Glu Asn 180 185 190

Met Thr Asp Glu Glu Ile Trp Lys Leu Pro Arg Gly Gly His Asp Tyr 195 200 205

Arg Lys Val Tyr Ala Ala Tyr Lys Arg Ala Leu Glu Thr Lys Asp Arg 210 220

Pro Thr Val Ile Leu Ala His Thr Ile Lys Gly Tyr Gly Leu Gly His 225 230 235 240

Asn Phe Glu Gly Arg Asn Ala Thr His Gln Met Lys Lys Leu Thr Leu 245 250 255

Asp Asp Leu Lys Leu Phe Arg Asp Lys Gln Gly Ile Pro Ile Thr Asp 260 265 270

Glu Gln Leu Glu Lys Asp Pro Tyr Leu Pro Pro Tyr Tyr His Pro Gly
275 280 285

Glu Asp Ala Pro Glu Ile Lys Tyr Met Lys Glu Arg Arg Ala Ala Leu 290 295 300
Gly Gly Tyr Leu Pro Glu Arg Arg Glu Asn Tyr Asp Pro Ile Gln Val 305 310 315 320
Pro Pro Leu Asp Lys Leu Arg Ser Val Arg Lys Gly Ser Gly Lys Gln 325 330 335
Gln Ile Ala Thr Thr Met Ala Thr Val Arg Thr Phe Lys Glu Leu Met 340 345 350
Arg Asp Lys Gly Leu Ala Asp Arg Leu Val Pro Ile Ile Pro Asp Glu 355 360 365
Ala Arg Thr Phe Gly Leu Asp Ser Trp Phe Pro Thr Leu Lys Ile Tyr 370 375 380
Asn Pro His Gly Gln Asn Tyr Val Pro Val Asp His Asp Leu Met Leu 385 390 395 400
Ser Tyr Arg Glu Ala Pro Glu Gly Gln Ile Leu His Glu Gly Ile Asn 405 410 415
Glu Ala Gly Ser Val Ala Ser Phe Ile Ala Ala Gly Thr 420 425
<pre><210> 105 <211> 1133 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (88)(1110) <223> RXN03083</pre>
<400> 105 attcagcagt aatcatttag acttggaacc gcttaccagt ggtttcaaca atgcattcac 60
ccagctcaca cgtgtggagg tgccttaatg gca aag agg atc gta att atc ggc 114 Met Ala Lys Arg Ile Val Ile Ile Gly 1 5
ggt gga cct gca ggc tat gaa gcc gca ctc gca ggc gct aaa tac ggt 162 Gly Gly Pro Ala Gly Tyr Glu Ala Ala Leu Ala Gly Ala Lys Tyr Gly 10 15 20 25
gca gaa gtt acc gtt att gaa gat gtc gga gtt ggc gga tcc gca gtc 210 Ala Glu Val Thr Val Ile Glu Asp Val Gly Val Gly Gly Ser Ala Val 30 35 40
acc atg gac tgt gta cct tca aag tcc ttc atc gct ggt acc ggt atc 258 Thr Met Asp Cys Val Pro Ser Lys Ser Phe Ile Ala Gly Thr Gly Ile 45 50 55
aaa acc gac ctc cga cgt gct gat gac atg gga ctt aac cgt ggg ctt 306 Lys Thr Asp Leu Arg Arg Ala Asp Asp Met Gly Leu Asn Arg Gly Leu 60 65 70

	aaa Lys 75															354
	gcg Ala															402
	gtc Val															450
	caa Gln															498
	acc Thr															546
	att Ile 155															594
	cag Gln															642
	tcc Ser															690
ggc Gly	gtc Val	aaa Lys	gtc Val 205	acc Thr	atg Met	gtg Val	gca Ala	tcc Ser 210	cgt Arg	gac Asp	cgc Arg	att Ile	ttg Leu 215	cct Pro	cac His	738
	gac Asp															786 .
	gta Val 235															834
	gac Asp															882
	tct Ser															930
	ggc Gly															978
_	gtt Val	_				_				-		_	-	_	_	1026
gtg	act	gta	ctg	acc	tat	tcc	cac	tgg	cgt	ccg	ttg	cag	cga	tgc	agg	1074

Val Thr Val Leu Thr Tyr Ser His Trp Arg Pro Leu Gln Arg Cys Arg
315 320 325

gcc gta tcg cca tgt atc acg cac tcg gtg aag gcg tgagccccat
Ala Val Ser Pro Cys Ile Thr His Ser Val Lys Ala
330 335 340

ccgtttgaag act 1133

<210> 106 <211> 341 <212> PRT <213> Corynebacterium glutamicum

<400> 106
Met Ala Lys Arg Ile Val Ile Ile Gly Gly Gly Pro Ala Gly Tyr Glu
1 5 10 15

Ala Ala Leu Ala Gly Ala Lys Tyr Gly Ala Glu Val Thr Val Ile Glu 20 25 30

Asp Val Gly Val Gly Gly Ser Ala Val Thr Met Asp Cys Val Pro Ser 35 40 45

Lys Ser Phe Ile Ala Gly Thr Gly Ile Lys Thr Asp Leu Arg Arg Ala 50 55 60

Asp Asp Met Gly Leu Asn Arg Gly Leu Gly Lys Ala His Leu Glu Ile 65 70 75 80

Asp Ala Leu Asn Ile Arg Val Lys Asp Leu Ala Lys Ala Gln Ser Glu 85 90 95

Asp Ile Leu Gly Gln Leu Gln Arg Ser Asp Val Arg Met Ile Asn Gly 100 105 110

Val Gly Arg Phe Asp Asp Tyr Asn Thr Lys Gln Thr Thr His Tyr Ile 115 120 125

Lys Val Thr His Ser Asp Gly Ser Glu Glu Thr Val Glu Cys Asp Leu 130 135 140

Val Leu Val Ala Thr Gly Ala Thr Pro Arg Ile Leu Lys Gly Ala Glu 145 150 155 160

Pro Asp Gly Glu Arg Ile Leu Thr Trp Arg Gln Val Tyr Asp Ile Glu 165 170 175

Glu Leu Pro Thr His Leu Ile Val Val Gly Ser Gly Val Thr Gly Ala 180 185 190

Glu Phe Val Ser Ala Phe Ala Glu Leu Gly Val Lys Val Thr Met Val 195 200 205

Ala Ser Arg Asp Arg Ile Leu Pro His Asp Asp Ala Asp Ala Asp 210 215 220

Val Leu Glu Thr Val Leu Ala Glu Arg Gly Val Ser Leu Glu Lys His 225 230 235 240

Ala Arg Val Glu Ser Val Thr Arg Thr Glu Asp Gly Gly Val Cys Val Arg Thr Ala Asp Gly Arg Glu Ile Tyr Gly Ser His Ala Leu Met Thr Val Gly Ser Ile Pro Asn Thr Ala Asp Leu Gly Leu Glu Asn Ile Gly 280 Val Glu Leu Ala Pro Ser Gly His Ile Lys Val Asp Arg Ser Pro Ala Pro Thr Ser Pro Val Cys Thr Gln Gln Val Thr Val Leu Thr Tyr Ser His Trp Arg Pro Leu Gln Arg Cys Arg Ala Val Ser Pro Cys Ile Thr 330 His Ser Val Lys Ala 340 <210> 107 <211> 1518 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (89)..(1495) <223> FRXA02853 <400> 107 aattcagcag taatcattta gacttggaac cgcttaccag tggtttcaac aatgcattca 60 cccagctcac acgtgtggag gtgccttaatg gca aag agg atc gta att atc ggc 115 Met Ala Lys Arg Ile Val Ile Ile Gly 163 ggt gga cct gca ggc tat gaa gcc gca ctc gca ggc gct aaa tac ggt Gly Gly Pro Ala Gly Tyr Glu Ala Ala Leu Ala Gly Ala Lys Tyr Gly gca gaa gtt acc gtt att gaa gat gtc gga gtt ggc gga tcc gca gtc 211 Ala Glu Val Thr Val Ile Glu Asp Val Gly Val Gly Ser Ala Val 35 acc atg gac tgt gta cct tca aag tcc ttc atc gct ggt acc ggt atc 259 Thr Met Asp Cys Val Pro Ser Lys Ser Phe Ile Ala Gly Thr Gly Ile 307 aaa acc gac ctc cga cgt gct gat gac atg gga ctt aac cgt ggg ctt Lys Thr Asp Leu Arg Arg Ala Asp Asp Met Gly Leu Asn Arg Gly Leu 355 qqa aaa qca cac cta qaa atc qat qca ctq aac atc cqt gtg aag gac Gly Lys Ala His Leu Glu Ile Asp Ala Leu Asn Ile Arg Val Lys Asp 403 ctt gcg aaa gca cag tcc gaa gat atc ttg ggc cag ctg cag cgc tca Leu Ala Lys Ala Gln Ser Glu Asp Ile Leu Gly Gln Leu Gln Arg Ser

90					95					100					105	
					aac Asn											451
					tac Tyr											499
					gat Asp											547
					gca Ala											595
cgt Arg 170	cag Gln	gtc Val	tac Tyr	gac Asp	att Ile 175	gaa Glu	gaa Glu	ctc Leu	ccc Pro	acc Thr 180	cac His	ctt Leu	atc Ile	gtg Val	gtt Val 185	643
					ggt Gly											691
ggc Gly	gtc Val	aaa Lys ,	gtc Val 205	acc Thr	atg Met	gtg Val	gca Ala	tcc Ser 210	cgt Arg	gac Asp	cgc Arg	att Ile	ttg Leu 215	cct Pro	cac His	739
					gca Ala											787
					aag Lys											835
-	_				tgt Cys 255	-	_		-	-		-	_			883
					atg Met											931
					atc Ile											979
					tcc Ser											1027
					cta Leu											1075
					tat Tyr 335											1123

Arg	ttg Leu	aag Lys	act Thr	gtt Val 350	gcc Ala	acc Thr	gca Ala	gtg Val	ttt Phe 355	acc Thr	cgc Arg	cca Pro	gag Glu	atc Ile 360	gca Ala	1171
gca Ala	gta Val	ggt Gly	atc Ile 365	acc Thr	cat His	gca Ala	caa Gln	gtt Val 370	gat Asp	tcc Ser	ggc Gly	gaa Glu	gtg Val 375	tct Ser	gct Ala	1219
cgc Arg	gtg Val	att Ile 380	gtg Val	ctt Leu	cct Pro	ttg Leu	gct Ala 385	act Thr	aac Asn	cca Pro	cgc Arg	gcc Ala 390	aag Lys	atg Met	cgt Arg	1267
tcc Ser	ctg Leu 395	cgc Arg	cac His	ggt Gly	ttt Phe	gtg Val 400	aag Lys	ctg Leu	ttc Phe	tgc Cys	cgc Arg 405	cgt Arg	aac Asn	tct Ser	ggc Gl y	1315
ctg Leu 410	atc Ile	atc Ile	ggt Gly	ggt Gly	gtc Val 415	gtg Val	gtg Val	gca Ala	ccg Pro	acc Thr 420	gcg Ala	tct Ser	gag Glu	ctg Leu	atc Ile 425	1363
cta Leu	ccg Pro	atc Ile	gct Ala	gtg Val 430	gca Ala	gtg Val	acc Thr	aac Asn	cgt Arg 435	ctg Leu	aca Thr	gtt Val	gct Ala	gat Asp 440	ctg Leu	1411
				gcg Ala												1459
gca Ala	gca Ala	cgt Arg 460	cag Gln	ctg Leu	gtt Val	caa Gln	cat His 465	gat Asp	gat Asp	cta Leu	ggc Gly	taai	tttt	tct		1505
gag	tctta	aga 1	ttt													1518
<21 <21 <21	0> 10 1> 40 2> Pi	08 69 RT		teri	um gi	lutaı	nicur	n								1518
<21 <21 <21 <21 <40	0> 10 1> 40 2> P1 3> Co	08 69 RT oryne	ebact		_					-			61		Clu	1518
<21 <21 <21 <21 <40	0> 10 1> 40 2> P1 3> Co	08 69 RT oryne	ebact	teriu Ile 5	_				Gly 10	Gly	Pro	Ala	Gly	Tyr 15	Glu	1518
<21 <21 <21 <21 <40 Met	0> 10 1> 40 2> P1 3> Co 0> 10 Ala	08 69 RT oryne 08 Lys	ebac† Arg		Val	Ile	Ile	Gly	10					15		1518
<21 <21 <21 <21 <40 Met 1	0> 10 1> 40 2> P1 3> C0 0> 10 Ala	08 69 RT oryno 08 Lys Leu	Arg Ala 20	Ile 5	Val Ala	Ile Lys	Ile Tyr	Gly Gly 25	10 Ala	Glu	Val	Thr	Val 30	15 Ile	Glu	1518
<21 <21 <21 <21 <40 Met 1 Ala	0> 10 1> 40 2> P1 3> Co 0> 10 Ala Ala	08 69 RT oryne 08 Lys Leu Gly 35	Arg Ala 20 Val	Ile 5 Gly	Val Ala	Ile Lys Ser	Ile Tyr Ala 40	Gly Gly 25 Val	10 Ala Thr	Glu Met	Val Asp	Thr Cys 45	Val 30 Val	15 Ile Pro	Glu Ser	1518
<21 <21 <21 <40 Met 1 Ala Asp	0> 10 1> 40 2> P1 3> Co 0> 10 Ala Ala Val Ser 50 Asp	08 69 RT oryne 08 Lys Leu Gly 35	Arg Ala 20 Val	Ile 5 Gly Gly	Val Ala Gly	Ile Lys Ser Thr	Ile Tyr Ala 40 Gly	Gly Gly 25 Val	10 Ala Thr Lys	Glu Met Thr	Val Asp Asp 60	Thr Cys 45 Leu	Val 30 Val Arg	15 Ile Pro Arg	Glu Ser Ala	1518
<21 <21 <21 <40 Met 1 Ala Asp Lys Asp 65	0> 10 1> 40 2> P1 3> Co 0> 10 Ala Ala Val Ser 50 Asp	08 69 RT oryno 08 Lys Leu Gly 35 Phe	Arg Ala 20 Val Ile	Ile 5 Gly Gly Ala	Val Ala Gly Gly Asn 70	Ile Lys Ser Thr 55	Tyr Ala 40 Gly	Gly Gly 25 Val Ile	10 Ala Thr Lys Gly	Glu Met Thr Lys 75	Val Asp Asp 60 Ala	Thr Cys 45 Leu	Val 30 Val Arg	15 Ile Pro Arg Glu	Glu Ser Ala Ile 80	1518

100 105 110

Val Gly Arg Phe Asp Asp Tyr Asn Thr Lys Gln Thr Thr His Tyr Ile
115

Lys Val Thr His Ser Asp Gly Ser Glu Glu Thr Val Glu Cys Asp Leu
130

135

Val Leu Val Ala Thr Gly Ala Thr Pro Arg Ile Leu Lys Gly Ala Glu 145 150 155 160

Pro Asp Gly Glu Arg Ile Leu Thr Trp Arg Gln Val Tyr Asp Ile Glu 165 170 175

Glu Leu Pro Thr His Leu Ile Val Val Gly Ser Gly Val Thr Gly Ala 180 185 190

Glu Phe Val Ser Ala Phe Ala Glu Leu Gly Val Lys Val Thr Met Val 195 200 205

Ala Ser Arg Asp Arg Ile Leu Pro His Asp Asp Ala Asp Ala Asp 210 215 220

Val Leu Glu Thr Val Leu Ala Glu Arg Gly Val Ser Leu Glu Lys His 225 230 235 240

Ala Arg Val Glu Ser Val Thr Arg Thr Glu Asp Gly Gly Val Cys Val 245 250 255

Arg Thr Ala Asp Gly Arg Glu Ile Tyr Gly Ser His Ala Leu Met Thr 260 265 . 270

Val Gly Ser Ile Pro Asn Thr Ala Asp Leu Gly Leu Glu Asn Ile Gly 275 280 285

Val Glu Leu Ala Pro Ser Gly His Ile Lys Val Asp Arg Val Ser Arg 290 295 300

Thr Asn Ile Pro Gly Val Tyr Ala Ala Gly Asp Cys Thr Asp Leu Phe 305 310 315 320

Pro Leu Ala Ser Val Ala Ala Met Gln Gly Arg Ile Ala Met Tyr His 325 330 335

Ala Leu Gly Glu Gly Val Ser Pro Ile Arg Leu Lys Thr Val Ala Thr 340 345 350

Gln Val Asp Ser Gly Glu Val Ser Ala Arg Val Ile Val Leu Pro Leu 370 375 380

Ala Thr Asn Pro Arg Ala Lys Met Arg Ser Leu Arg His Gly Phe Val 385 390 395

Lys Leu Phe Cys Arg Arg Asn Ser Gly Leu Ile Ile Gly Gly Val Val 405 410 415

Val Ala Pro Thr Ala Ser Glu Leu Ile Leu Pro Ile Ala Val Ala Val 420 425 430

Thr Asn Arg Leu Thr Val Ala Asp Leu Ala Asp Thr Phe Ala Val Tyr 440 435 Pro Ser Leu Ser Gly Ser Ile Thr Glu Ala Ala Arg Gln Leu Val Gln 455 His Asp Asp Leu Gly <210> 109 <211> 2895 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2872) <223> RXA02259 <400> 109 atgageceat gaaagecate gaaateaate geceagetaa acacetgttt tgetgggtga 60ttttttatct catgcacgcc aacaccctca atgtgaaaga gtg ttt aaa gta gtt Val Phe Lys Val Val 1 atg act gat ttt tta cgc gat gac atc agg ttc ctc ggt caa atc ctc 163 Met Thr Asp Phe Leu Arg Asp Asp Ile Arg Phe Leu Gly Gln Ile Leu 10 ggt gag gta att gcg gaa caa gaa ggc cag gag gtt tat gaa ctg gtc 211 Gly Glu Val Ile Ala Glu Gln Glu Gly Gln Glu Val Tyr Glu Leu Val 25 gaa caa gcg cgc ctg act tct ttt gat atc gcc aag ggc aac gcc gaa 259 Glu Gln Ala Arg Leu Thr Ser Phe Asp Ile Ala Lys Gly Asn Ala Glu 40 45 atg gat agc ctg gtt cag gtt ttc gac ggc att act cca gcc aag gca 307 Met Asp Ser Leu Val Gln Val Phe Asp Gly Ile Thr Pro Ala Lys Ala 55 60 aca eeg att get ege gea ttt tee eac tte get etg etg get aac etg 355 Thr Pro Ile Ala Arg Ala Phe Ser His Phe Ala Leu Leu Ala Asn Leu 70 75 gcg gaa gac ctc tac gat gaa gag ctt cgt gaa cag gct ctc gat gca 403 Ala Glu Asp Leu Tyr Asp Glu Glu Leu Arg Glu Gln Ala Leu Asp Ala 90 ggc gac acc cct ccg gac agc act ctt gat gcc acc tgg ctg aaa ctc 451 Gly Asp Thr Pro Pro Asp Ser Thr Leu Asp Ala Thr Trp Leu Lys Leu 105 115 499 aat gag ggc aat gtt ggc gca gaa gct gtg gcc gat gtg ctg cgc aat Asn Glu Gly Asn Val Gly Ala Glu Ala Val Ala Asp Val Leu Arg Asn 120 125 547 get gag gtg gcg ccg gtt ctg act gcg cac cca act gag act cgc cgc

Ala Glu Val A 135	Ala Pro Val	Leu Thr A	la His Pro Th 14		g Arg
cgc act gtt t Arg Thr Val P 150			gg atc acc ac rp Ile Thr Th 160		
cgc cac gct t Arg His Ala I	tg cag tct Seu Gln Ser 170	gcg gag c Ala Glu P	ct acc gct cg ro Thr Ala Ar 175	t acg caa ag g Thr Gln Se 18	r Lys
Leu Asp Glu I	itc gag aag [le Glu Lys [85	Asn Ile A	gc cgt cgc at rg Arg Arg Il 90	c acc att tt e Thr Ile Le 195	g tgg 691 u Trp
			gc cca cgt at rg Pro Arg Il		
			tg agc ctt tt eu Ser Leu Le 22	u Glu Glu Il	
cgt atc aac c Arg Ile Asn A 230	egt gat gtg Arg Asp Val 235	gct gtt g Ala Val G	ag ctt cgt ga lu Leu Arg Gl 240	g cgt ttc gg u Arg Phe Gl	c gag 835 y Glu 245
			ag cca ggt to ys Pro Gly Se 255		y Gly
Asp His Asp G		Tyr Val T	cc gcg gaa ac hr Ala Glu Th 70		
			tc aag tac ta eu Lys Tyr Ty		
			tg tcg gac cg eu Ser Asp Ar 30	g Met Asn Ly	
		ctg gca g	at oca ooo ca		1075
310	315	Leu Ala A	sp Ala Gly Hi		
agc cgc gtg g	315 gat gag cct	tat cga c	sp Ala Gly Hi	s Asn Asp Va t ggc gtt cg	1 Pro 325 c gga 1123 g Gly
agc cgc gtg g Ser Arg Val A cgt atc ctc g Arg Ile Leu A	315 gat gag cct Asp Glu Pro 330 gcg acg acg	tat cga c Tyr Arg A gcc gag c Ala Glu L	sp Ala Gly Hi 320 gc gcc gtc ca rg Ala Val Hi	s Asn Asp Va t ggc gtt cg s Gly Val Ar 34 g gac gcc gt	1 Pro 325 c gga 1123 g Gly 0 t gag 1171
agc cgc gtg g Ser Arg Val A cgt atc ctc g Arg Ile Leu A ggc gtg tgg t	gat gag cct Asp Glu Pro 330 gcg acg acg Ala Thr Thr 345	tat cga c Tyr Arg A gcc gag c Ala Glu L 3	sp Ala Gly Hi 320 gc gcc gtc ca rg Ala Val Hi 335 tg atc ggc ga eu Ile Gly Gl	t ggc gtt cg s Gly Val Ar 34 g gac gcc gt u Asp Ala Va 355 t ccg gaa ga	1 Pro 325 c gga 1123 g Gly 0 t gag 1171 l Glu a ttc 1219

	375					380					385					
					gat Asp 395											1315
					ctt Leu											1363
agc Ser	tac Tyr	gag Glu	gac Asp 425	gtc Val	ctc Leu	acc Thr	gag Glu	ctt Leu 430	ttc Phe	gaa Glu	cgc Arg	gcc Ala	caa Gln 435	gtc Val	acc Thr	1411
					ctg Leu											1459
					cct Pro											1507
					gac Asp 475											1555
					ttc Phe											1603
					gtc Val											1651
					atc Ile											1699
					ctg Leu											1747
					gaa Glu 555											1795
					aac Asn											1843
					gga Gly											1891
					gtc Val											1939
					cgt Arg											1987

			ctt Leu 635								2035
			cag Gln								2083
			cga Arg								2131
			gac Asp								2179
_	_	-	gag Glu			-	_	_	_	_	2227
			gat Asp 715								2275
			att Ile								2323
			tcc Ser								2371
			cag Gln								2419
			gag Glu								2467
		Glu	ctg Leu 795		Asn		Ser				2515
			aac Asn								2563
			tac Tyr								2611
			gtc Val								2659
			acc Thr								2707

ett etc gea ege tet gte eag ege ega tae eec tae etg ett eea etc 2755 Leu Leu Ala Arg Ser Val Gln Arg Arg Tyr Pro Tyr Leu Leu Pro Leu 870 aac gtg atc cag gta gag atg atg cga cgc tac cga aaa ggc gac caa 2803 Asn Val Ile Gln Val Glu Met Met Arg Arg Tyr Arg Lys Gly Asp Gln age gag caa gtg tee ege aac att eag etg ace atg aac ggt ett tee 2851 Ser Glu Gln Val Ser Arg Asn Ile Gln Leu Thr Met Asn Gly Leu Ser act gcg ctg cgc aac tcc ggc tagtccagcc ggctgggtag tac 2895 Thr Ala Leu Arg Asn Ser Gly 920 <210> 110 <211> 924 <212> PRT <213> Corynebacterium glutamicum <400> 110 Val Phe Lys Val Val Met Thr Asp Phe Leu Arg Asp Asp Ile Arg Phe 5 10 Leu Gly Gln Ile Leu Gly Glu Val Ile Ala Glu Gln Glu Gly Gln Glu Val Tyr Glu Leu Val Glu Gln Ala Arg Leu Thr Ser Phe Asp Ile Ala Lys Gly Asn Ala Glu Met Asp Ser Leu Val Gln Val Phe Asp Gly Ile Thr Pro Ala Lys Ala Thr Pro Ile Ala Arg Ala Phe Ser His Phe Ala Leu Leu Ala Asn Leu Ala Glu Asp Leu Tyr Asp Glu Glu Leu Arg Glu Gln Ala Leu Asp Ala Gly Asp Thr Pro Pro Asp Ser Thr Leu Asp Ala Thr Trp Leu Lys Leu Asn Glu Gly Asn Val Gly Ala Glu Ala Val Ala 120 Asp Val Leu Arg Asn Ala Glu Val Ala Pro Val Leu Thr Ala His Pro Thr Glu Thr Arg Arg Arg Thr Val Phe Asp Ala Gln Lys Trp Ile Thr 155 Thr His Met Arg Glu Arg His Ala Leu Gln Ser Ala Glu Pro Thr Ala 165 Arg Thr Gln Ser Lys Leu Asp Glu Ile Glu Lys Asn Ile Arg Arg Arg 185 Ile Thr Ile Leu Trp Gln Thr Ala Leu Ile Arg Val Ala Arg Pro Arg 195

Ile	Glu 210	Asp	Glu	Ile	Glu	Val 215	Gly	Leu	Arg	Tyr	Tyr 220	Lys	Leu	Ser	Leu
Leu 225	Glu	Glu	Ile	Pro	Arg 230	Ile	Asn	Arg	Asp	Val 235	Ala	Val	Glu	Leu	Arg 240
Glu	Arg	Phe	Gly	Glu 245	Gly	Val	Pro	Leu	Lys 250	Pro	Val	Val	Lys	Pro 255	Gly
Ser	Trp	Ile	Gly 260	Gly	Asp	His	Asp	Gly 265	Asn	Pro	Tyr	Val	Thr 270	Ala	Glu
Thr	Val	Glu 275	Tyr	Ser	Thr	His	Arg 280	Ala	Ala	Glu	Thr	Val 285	Leu	Lys	Tyr
Tyr	Ala 290	Arg	Gln	Leu	His	Ser 295	Leu	Glu	His	Glu	Leu 300	Ser	Leu	Ser	Asp
Arg 305	Met	Asn	Lys	Val	Thr 310	Pro	Gln	Leu	Leu	Ala 315	Leu	Ala	Asp	Ala	Gly 320
His	Asn	Asp	Val	Pro 325	Ser	Arg	Val	Asp	Glu 330	Pro	Tyr	Arg	Arg	Ala 335	Val
His	Gly	Val	Arg 340	Gly	Arg	Ile	Leu	Ala 345	Thr	Thr	Ala	Glu	Leu 350	Ile	Gly
Glu	Asp	Ala 355	Val	Glu	Gly	Val	Trp 360	Phe	Lys	Val	Phe	Thr 365	Pro	Tyr	Ala
Ser	Pro 370	Glu	Glu °	Phe	Leu	Asn 375	Asp	Ala	Leu	Thr	11e 380	Asp	His	Ser	Leu
			٥			375	_				380				
Arg 385	370	Ser	Lys	Asp	Val 390	375 Leu	Ile	Ala	Asp	Asp 395	380 Arg	Leu	Ser	Val	Leu 400
Arg 385 Ile	370 Glu	Ser Ala	Lys Ile	Asp Glu 405	Val 390 Ser	375 Leu Phe	Ile	Ala Phe	Asp Asn 410	Asp 395 Leu	380 Arg Tyr	Leu Ala	Ser Leu	Val Asp 415	Leu 400 Leu
Arg 385 Ile Arg	370 Glu Ser	Ser Ala Asn	Lys Ile Ser 420	Asp Glu 405 Glu	Val 390 Ser	375 Leu Phe Tyr	Ile Gly Glu	Ala Phe Asp 425	Asp Asn 410 Val	Asp 395 Leu Leu	380 Arg Tyr Thr	Leu Ala Glu	Ser Leu Leu 430	Val Asp 415 Phe	Leu 400 Leu Glu
Arg 385 Ile Arg	370 Glu Ser Gln	Ser Ala Asn Gln 435	Lys Ile Ser 420 Val	Asp Glu 405 Glu Thr	Val 390 Ser Ser	375 Leu Phe Tyr Asn	Ile Gly Glu Tyr 440	Ala Phe Asp 425 Arg	Asp Asn 410 Val Glu	Asp 395 Leu Leu	380 Arg Tyr Thr	Leu Ala Glu Glu 445	Ser Leu Leu 430 Ala	Val Asp 415 Phe Glu	Leu 400 Leu Glu Lys
Arg 385 Ile Arg Arg	370 Glu Ser Gln Ala	Ser Ala Asn Gln 435 Val	Ser 420 Val	Asp Glu 405 Glu Thr	Val 390 Ser Ser Ala	375 Leu Phe Tyr Asn Glu 455	Ile Gly Glu Tyr 440 Leu	Ala Phe Asp 425 Arg	Asp Asn 410 Val Glu Ser	Asp 395 Leu Leu Pro	380 Arg Tyr Thr Ser Arg 460	Leu Ala Glu Glu 445 Pro	Ser Leu Leu 430 Ala Leu	Val Asp 415 Phe Glu	Leu 400 Leu Glu Lys
Arg 385 Ile Arg Arg Leu His 465	370 Glu Ser Gln Ala Glu 450	Ser Ala Asn Gln 435 Val	Lys Ile Ser 420 Val Leu Asp	Asp Glu 405 Glu Thr Leu Glu	Val 390 Ser Ser Ala Lys	375 Leu Phe Tyr Asn Glu 455 Ser	Ile Gly Glu Tyr 440 Leu Glu	Ala Phe Asp 425 Arg Val	Asp Asn 410 Val Glu Ser	Asp 395 Leu Leu Pro Asp 475	380 Arg Tyr Thr Ser Arg 460 Arg	Leu Ala Glu Glu 445 Pro	Ser Leu 430 Ala Leu Leu	Val Asp 415 Phe Glu Ile	Leu 400 Leu Glu Lys Pro
Arg 385 Ile Arg Arg Leu His 465 Phe	370 Glu Ser Gln Ala Glu 450 Gly	Ser Ala Asn Gln 435 Val Ser	Lys Ile Ser 420 Val Leu Asp	Asp Glu 405 Glu Thr Leu Glu Ser 485	Val 390 Ser Ser Ala Lys Tyr 470 Glu	375 Leu Phe Tyr Asn Glu 455 Ser	Ile Gly Glu Tyr 440 Leu Glu Val	Ala Phe Asp 425 Arg Val	Asp Asn 410 Val Glu Ser Thr Lys 490	Asp 395 Leu Leu Pro Asp 475 Phe	380 Arg Tyr Thr Ser Arg 460 Arg	Leu Ala Glu Glu 445 Pro Glu Pro	Ser Leu 430 Ala Leu Leu Arg	Val Asp 415 Phe Glu Ile Gly Met 495	Leu 400 Leu Glu Lys Pro Ile 480 Val

Asn Pro Arg Gly Thr Val Asp Val Ile Pro Leu Phe Glu Thr Ile Glu 535 Asp Leu Gln Ala Gly Ala Gly Ile Leu Asp Glu Leu Trp Lys Ile Asp 555 Leu Tyr Arg Asn Tyr Leu Leu Gln Arg Asp Asn Val Gln Glu Val Met Leu Gly Tyr Ser Asp Ser Asn Lys Asp Gly Gly Tyr Phe Ser Ala Asn Trp Ala Leu Tyr Asp Ala Glu Leu Gln Leu Val Glu Leu Cys Arg Ser Ala Gly Val Lys Leu Arg Leu Phe His Gly Arg Gly Gly Thr Val Gly 615 Arg Gly Gly Pro Ser Tyr Asp Ala Ile Leu Ala Gln Pro Arg Gly Ala Val Gln Gly Ser Val Arg Ile Thr Glu Gln Gly Glu Ile Ile Ser Ala Lys Tyr Gly Asn Pro Glu Thr Ala Arg Arg Asn Leu Glu Ala Leu 665 Val Ser Ala Thr Leu Glu Ala Ser Leu Leu Asp Val Ser Glu Leu Thr 675 680 Asp His Gln Arg Ala Tyr Asp Ile Met Ser Glu Ile Ser Glu Leu Ser 695 Leu Lys Lys Tyr Ala Ser Leu Val His Glu Asp Gln Gly Phe Ile Asp 710 715 Tyr Phe Thr Gln Ser Thr Pro Leu Gln Glu Ile Gly Ser Leu Asn Ile Gly Ser Arg Pro Ser Ser Arg Lys Gln Thr Ser Ser Val Glu Asp Leu Arg Ala Ile Pro Trp Val Leu Ser Trp Ser Gln Ser Arg Val Met Leu Pro Gly Trp Phe Gly Val Gly Thr Ala Leu Glu Gln Trp Ile Gly Glu Gly Glu Gln Ala Thr Gln Arg Ile Ala Glu Leu Gln Thr Leu Asn Glu 795 Ser Trp Pro Phe Phe Thr Ser Val Leu Asp Asn Met Ala Gln Val Met Ser Lys Ala Glu Leu Arg Leu Ala Lys Leu Tyr Ala Asp Leu Ile Pro 825 Asp Thr Glu Val Ala Glu Arg Val Tyr Ser Val Ile Arg Glu Glu Tyr 835 Phe Leu Thr Lys Lys Met Phe Cys Val Ile Thr Gly Ser Asp Asp Leu

850 855 860 Leu Asp Asp Asn Pro Leu Leu Ala Arg Ser Val Gln Arg Arg Tyr Pro 870 875 Tyr Leu Leu Pro Leu Asn Val Ile Gln Val Glu Met Met Arg Arg Tyr 890 Arg Lys Gly Asp Gln Ser Glu Gln Val Ser Arg Asn Ile Gln Leu Thr 905 Met Asn Gly Leu Ser Thr Ala Leu Arg Asn Ser Gly 920 <210> 111 <211> 939 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(916) <223> RXN02326 <400> 111 ccaggeggae agttqtccaa cctgcgtqca caggecaccg cactgggcct tgcggatcgt 60 ttegaactea tegaagacaa etaegeaage egttaatgag atg etg gga ege eea Met Leu Gly Arg Pro 1 acc aag gtc acc cca tcc tcc aag gtt gtt ggc gac ctc gca ctc cac 163 Thr Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu His 10 15 ctc gtt ggt gcg ggt gtg gat cca gca gac ttt gct gcc gat cca caa 211 Leu Val Gly Ala Gly Val Asp Pro Ala Asp Phe Ala Ala Asp Pro Gln 25 aag tac gac atc cca gac tct gtc atc gcg ttc ctg cgc ggc gag ctt 259 Lys Tyr Asp Ile Pro Asp Ser Val Ile Ala Phe Leu Arg Gly Glu Leu 40 ggt aac cct cca ggt ggc tgg cca gag cca ctg cgc acc cgc gca ctg 307 Gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Thr Arg Ala Leu 55 gaa ggc cgc tcc gaa ggc aag gca cct ctg acg gaa gtt cct gag gaa 355 Glu Gly Arg Ser Glu Gly Lys Ala Pro Leu Thr Glu Val Pro Glu Glu 70 75 gag cag gcg cac ctc gac gct gat gat tcc aag gaa cgt cgc aat agc 403 Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys Glu Arg Arg Asn Ser 90 100 451 ctc aac ege etg etg ttc eeg aag eea ace gaa gag tte etc gag eac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 105 115

cgt cgc cgc ttc ggc aac acc tct gcg ctg gat gat cgt gaa ttc ttc

Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe 120 125 130	
tac ggc ctg gtc gaa ggc cgc gag act ttg atc cgc ctg cca gat gtg Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 140 145	547
cgc acc cca ctg ctt gtt cgc ctg gat gcg atc tct gag cca gac gat Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 150 165	595
aag ggt atg cgc aat gtt gtg gcc aac gtc aac ggc cag atc cgc cca Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 175 180	643
atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gaa Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 185 190 195	691
aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 200 205 210	739
gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 220 225	787
gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 235 240 245	835
tet gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gct gca acg aag Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys 250 255 260	883
gtg gaa ggt ggc gac ttg atc gtc gtt tcc taaacctttc tgtaaaaagc 9 Val Glu Gly Gly Asp Leu Ile Val Val Val Ser 265 270	936
ccc	939
<210> 112 <211> 272 <212> PRT <213> Corynebacterium glutamicum	
<400> 112	
Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser Lys Val Val Gly 1 5 10 15	
1 5 10 15 Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp Pro Ala Asp Phe	
1 5 10 15 Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp Pro Ala Asp Phe 20 25 30 Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser Val Ile Ala Phe	

65 70 75 80 Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys 90 Glu Arq Arq Asn Ser Leu Asn Arq Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu 230 235 Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp Arg Val Val Val 250 Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile Val Val Ser 265 260

<210> 113 <211> 939 <212> DNA <213> Corynebacterium glutamicum <220>

<220> <221> CDS <222> (101)..(916) <223> FRXA02326

<400> 113 ccaggeggae agttgtecaa eetgegtgea caggeeaceg caetgggeet tgeggategt 60

ttcgaactca tcgaagacaa ctacgcaagc cgttaatgag atg ctg gga cgc cca 115 Met Leu Gly Arg Pro 1 5

acc aag gtc acc cca tcc tcc aag gtt gtt ggc gac ctc gca ctc cac 163 Thr Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu His

10 15 20

Leu Val Gly Ala Gly Val Asp Pro Ala Asp Phe Ala Ala Asp Pro Gln 30 30 Asp Pro Ala Asp Pro Ala Asp Pro Ala Asp Pro Gln 35 25 aag tac gac acc cca gac tct gtc atc gcg tct ctg cgc ggc gga ctt Lys Tyr Asp Ile Pro Asp Ser Val Ile Ala Phe Leu Arg Gly Glu Leu 40 25! ggt aac cct cca ggt ggc tgg cca gag cca ctg cgc acc cgc ggc acc Gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Thr Arg Ala Leu 65 30° gaa ggc cgc tcc gaa ggc aag gca acc ctg acg gaa ggt cca ctg ggc Asn Asp Pro Pro Gly Gly Lys Ala Pro Leu Thr Glu Val Pro Glu Glu 70 85 gag cag gcg cac ctc gac gct gat gat tcc aag gaa cgt cgc aat agc Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys Glu Arg Arg Asn Ser 90 85 gag cag cgc ctc gdt tc ccg aag cca acc gaa gag ttc ctc gag cac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 105 100 cct aac cgc ctg ctg tgt tc ccg aag cca acc gaa gag ttc ctc gag cac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Phe 120 49! cgt cgc cgc ttc ggc aac acc tct gcg ctg gat gat ctt gaa tgt phe Pro Lys Pro Thr Glu Glu Phe Phe 120 130 cgt cgc acc cc cg ct tc ggc aac acc tct gcg ctg gat gat gat gat gat gat gat gat gat g																	
Lys Tyr Asp Ile Pro Asp Ser Val Ile Ala Phe Leu Arg Gly Glu Leu 40 50 50 30° ggt aac cet cet cea ggt gge tgg get gg ge cea gag cea cet ce ge acc ce ge gea cet gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Thr Arg Ala Leu 55 30° 30° gaa ggc cgc tec gaa gge aag gea cet cet gae gaa gtt cet gag gaa Glu Gly Arg Ser Glu Gly Lys Ala Pro Leu Thr Glu Val Pro Glu Glu 85 35° gag cag geg cac cet ce gae get gat gat tec aag gaa cet cet gae gag clu Glu Ala His Leu Asp Ala Asp Asp Ser Lys Glu Arg Arg Asn Ser 90 40° ctc aac cgc ctg ttc ceg aag caa cac cac gaa gag ttc ctc gag cac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 1105 110° cgt cqc cgc ttc ggc aac acc tct geg ctg gat gat cgt gaa ttc ttc Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe 120° 125 cgt cqc cgc ttc ggt gaa agc cgc gag act ttg atc acc cac gaa gag ttc cac gat gag ttg Cgc ala gac acc cac cac gaa gag ttc cac gaa gag tac gaa ttc acc gaa gaa ttc cac gaa gag ttc cac gaa gag tac gaa ttc acc gaa gaa ttc cac gaa gaa gaa gaa cac cac cac gaa gaa				Ala					Ala					Asp			211
Gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Thr Arg Ala Leu 55 60 60 65 gaa ggc cgc tcc gaa ggc aag gca cct ctg acg gaa gtt cct gag gaa Glu Gly Arg Ser Glu Gly Lys Ala Pro Leu Thr Glu Val Pro Glu Glu Gly 70 75 80 85 85 gag cag gcg cac ctc gac gct gat gat tcc aag gaa cgt cgc aat agc Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys Glu Arg Arg Asn Ser 90 95 95 ctc aac cgc ctg ctg ttc ccg aag cca acc gaa gag ttc ctc gag cac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 105 115 cgt cgc cgc ttc ggc aac acc tct gcg ctg gat gat cgt gat gat ctc tcc gag cac Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe 120 125 130 tac ggc ctg gtc gaa ggc cgc gag act ttg atc cgc cac gat gtg Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 cgc acc cca ctg ctt tt cgc ctg gat gcg atc tct gag cca gat gtg Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 agg ggt atg cgc aat gtt gtg gcc aac gtc gac gat ctc tct gag cca gac gac Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 165 aag ggt atg cgc aat gtt gtg gcc aac gtc gac gat ctc tct gag cca gac cac gac gac Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gac Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 185 aag gca gat tcc tcc aac aag ggc cat gtt gct acc gca cac tcc gct ggt yal Asp Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 195 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca tcc gcd ggt yal Asp Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 195 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca tcc gcd ggt yal Asp 200 gtt gtc acc gtg act gtt gct gaa ggt gat gac ga aca acc act act gct gac gca gtc gca atc act gag gct atg aga gca acc acc acc acc acc alc acc gcc gca gcc gca gtc gca acc acc gca gcc gcd gcc			Asp					Val					Arg				259
Glu Gly Arg Ser Glu Gly Lys Ala Pro Leu Thr Glu Val Pro Glu Glu 70 75 85 86 86 86 86 86 86 86 86 86 86 86 86 86	ggt Gly	Asn	cct Pro	cca Pro	ggt Gly	ggc Gly	Trp	cca Pro	gag Glu	cca Pro	ctg Leu	Arg	acc Thr	cgc Arg	gca Ala	ctg Leu	307
Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys Glu Arg Arg Asn Ser 100 ctc aac cgc ctg ctg ttc cgg aag cca acc gaa gag ttc ctc gag cac Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 115 cgt cgc cgc ttc ggc aac acc tct gcg gat gat cgt gaa ttc ttc Arg Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe 120 tac ggc ctg gtc gaa ggc cgc gag act ttg atc cgc ctg cca gat gtg Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 cgc acc cca ctg ctt gtt cgc ctg gat gat ctc tgag cca gac gat Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 165 aag ggt atg cgc atg tt gtg ggc aac ggc aac ggc aac ggc aac ggc ag gtg gtg gtg gtg gtg gtg gtg gtg gtg	Glu	ggc Gly	cgc Arg	tcc Ser	gaa Glu	Gly	aag Lys	gca Ala	cct Pro	ctg Leu	Thr	gaa Glu	gtt Val	cct Pro	gag Glu	Glu	355 ·
Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His 115 cgt cgc cgc ttc ggc aac acc tct gcg ctg gat gat cgt gaa ttc ttc Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe Phe 120 120 120 120 120 120 120 125 130 130 145 125 130 145 130 145 130 145 135 120 120 120 125 130 130 145 140 145 145 145 135 130 146 146 145 145 145 145 145 145 145 145 145 145	gag Glu	cag Gln	gcg Ala	cac His	Leu	gac Asp	gct Ala	gat Asp	gat Asp	Ser	aag Lys	gaa Glu	cgt Arg	cgc Arg	Asn	agc Ser	403
Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe 125 130 tac ggc ctg gtc gaa ggc cgc gag act ttg atc cgc ctg cca gat gtg Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 245 cgc acc cca ctg ctt gtt cgc ctg gat gcg atc tct gag cca gac gat Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 160 165 aag ggt atg cgc aat gtt gtg gcc aac gtc aac gtc aac gc cag atc ccc cca Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 175 180 atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gac Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 195 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt gc gca gat ccc cca gaa gcc gcc cca gca gac gcc gcc				Leu					Pro					Leu			451
Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile Arg Leu Pro Asp Val 135 cgc acc cca ctg ctt gtt cgc ctg gat gcg atc tct gag cca gac gat Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 150 aag ggt atg cgc aat gtt gtg gcc aac gtc aac ggc cag atc cgc cca Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gaa 691 Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 195 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 200 gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 tct gtt gac ggc aaa atc ggt cgc gct gtt gtg gtt cct gct gca acg aag 881 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gct gca acg aag 881 scr Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys			Arg					Ser					Arg				499
Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp 150 aag ggt atg cgc aat gtt gtg gcc aac gtc aac ggc cag atc cgc cca Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gaa Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 185 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 205 gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp 215 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gct gca acg aag 883 Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys		Gly					Arg	Glu				Arg					547
Lys Gly Met Arg Asn Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro 170 175 180 atg cgt gtg cgt gac cgc tcc gtt gag tct gtc acc gca acc gca gaa 691 Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 195 195 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 200 205 210 gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 220 225 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 235 240 245 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gca acg aag 883 Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys	Arg					Val					Ile					Asp	595
Met Arg Val Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu 185 aag gca gat tcc tcc aac aag ggc cat gtt gct gca cca ttc gct ggt 739 Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 200 gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gca acg aag 883 ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys					Asn					Val					Arg		643
Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly 200 205 210 gtt gtc acc gtg act gtt gct gaa ggt gat gag gtc aag gct gga gat Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 220 225 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 235 240 245 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gct gca acg aag 883 Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys				Arg					Glu					Thr			691
Val Val Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp 215 gca gtc gca atc atc gag gct atg aag atg gaa gca aca atc act gct Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 235 240 245 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gca acg aag Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys			Asp					Gly					Pro				739
Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala 230 245 tct gtt gac ggc aaa atc gat cgc gtt gtg gtt cct gct gca acg aag 883 Ser Val Asp Gly Lys Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys		Val					Ala					Val					787
Ser Val Asp Gly Lys Ile Asp Arg Val Val Pro Ala Ala Thr Lys	Āla	-	_			Glu	_	_	-	_	Glu	-				Ala	835
		-	_		Lys		-	_	-	Val	_		_	_	Thr		883

gtg gaa ggt ggc gac ttg atc gtc gtt tcc taaacctttc tgtaaaaagc 936 Val Glu Gly Gly Asp Leu Ile Val Val Ser 265 270

939

<210> 114

<211> 272

<212> PRT

<213> Corynebacterium glutamicum

<400> 114

Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser Lys Val Val Gly
1 5 10 15

Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp Pro Ala Asp Phe 20 25 30

Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser Val Ile Ala Phe 35 40 45

Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Leu 50 55 60

Arg Thr Arg Ala Leu Glu Gly Arg Ser Glu Gly Lys Ala Pro Leu Thr
65 70 75 80

Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala Asp Asp Ser Lys 85 90 95

Glu Arg Arg Asn Ser Leu Asn Arg Leu Leu Phe Pro Lys Pro Thr Glu 100 105 110

Glu Phe Leu Glu His Arg Arg Arg Phe Gly Asn Thr Ser Ala Leu Asp 115 120 125

Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg Glu Thr Leu Ile 130 135 140

Arg Leu Pro Asp Val Arg Thr Pro Leu Leu Val Arg Leu Asp Ala Ile 145 150 155 160

Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val Ala Asn Val Asn 165 170 175

Gly Gln Ile Arg Pro Met Arg Val Arg Asp Arg Ser Val Glu Ser Val 180 185 190

Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys Gly His Val Ala 195 200 205

Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala Glu Gly Asp Glu 210 215 220

Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala Met Lys Met Glu 225 230 235 240

Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp Arg Val Val Val 245 250 255

Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile Val Val Ser 260 265 270

<213 <213	0> 13 L> 10 2> DN 3> Co	083 NA	ebact	eri	ım gi	lutar	nicur	n								
<222	0> 1> CI 2> (1 3> R)	101))60)											١	
)> 11 gctga		cagct	tgg	cc ca	agcc	gcgtt	t tg	ctcgt	gat	ctc	cgtga	agc a	aggad	cgcact	60
ggca	agtta	act (gatao	ccaco	et to	ecgc	gatgo	c aca	accaç	gtct				acc Thr		115
														aag Lys 20		163
														tac Tyr		211
														gac Asp		259
														cgc Arg		307
														cgc Arg		355
					Ala									atc Ile 100		403
														gca Ala		451
														tct Ser		499
-			-			_	_				_	-		tac Tyr		547

					atc Ile 155											595
					ctg Leu											643
acc Thr	gca Ala	ctg Leu	cgc Arg 185	cgt Arg	gaa Glu	ttc Phe	gat Asp	ctg Leu 190	cca Pro	gtg Val	cac His	gtg Val	cac His 195	acc Thr	cac His	691
gac Asp	act Thr	gcg Ala 200	ggt Gly	ggc Gly	cag Gln	ctg Leu	gca Ala 205	acc Thr	tac Tyr	ttt Phe	gct Ala	gca Ala 210	gct Ala	caa Gln	gct Ala	739
					gac Asp											787
ctc Leu 230	cca Pro	agc Ser	cat His	ccc Pro	ttg Leu 235	tct Ser	gcc Ala	att Ile	gtt Val	gct Ala 240	gca Ala	ttc Phe	gcg Ala	cac His	acc Thr 245	835
cgt Arg	cgc Arg	gat Asp	acc Thr	ggt Gly 250	ttg Leu	agc Ser	ctc Leu	gag Glu	gct Ala 255	gtt Val	tct Ser	gac Asp	ctc Leu	gag Glu 260	ccg Pro	883
					cgc Arg											931
					cgc Arg											979
					gca Ala											1027
					gac Asp 315						taat	gaga	atg (ctgg	gacgcc	1080
caa																1083
<21 <21	0> 1: 1> 3: 2> PI 3> Co	20 RT	ebact	teri	ım gi	Lutar	nicur	n								
	0> 1: Leu		Thr	Arg	Val	Arg	Ser	Phe	Ala	Leu	Lys	Pro	Ala	Ala	Glu	
_				-										4.5		

Leu Leu Ala Thr Arg Val Arg Ser Phe Ala Leu Lys Pro Ala Ala Glu 1 5 10 15

Ala Val Ala Lys Leu Thr Pro Glu Leu Leu Ser Val Glu Ala Trp Gly 20 25 30

Gly Ala Thr Tyr Asp Val Ala Met Arg Phe Leu Phe Glu Asp Pro Trp 35 40 45

Asp	Arg 50	Leu	Asp	Glu	Leu	Arg 55	Glu	Ala	Met	Pro	Asn 60	Val	Asn	Ile	Gln
Met 65	Leu	Leu	Arg	Gly	Arg 70	Asn	Thr	Val	Gly	Tyr 75	Thr	Pro	Tyr	Pro	Asp 80
Ser	Val	Cys	Arg	Ala 85	Phe	Val	Lys	Glu	Ala 90	Ala	Ser	Ser	Gly	Val 95	Asp
Ile	Phe	Arg	Ile 100	Phe	Asp	Ala	Leu	Asn 105	Asp	Val	Ser	Gln	Met 110	Arg	Pro
Ala	Ile	Asp 115	Ala	Val	Leu	Glu	Thr 120	Asn	Thr	Ala	Val	Ala 125	Glu	Val	Ala
Met	Ala 130	Tyr	Ser	Gly	Asp	Leu 135	Ser	Asp	Pro	Asn	Glu 140	Lys	Leu	Tyr	Thr
Leu 145	Asp	Tyr	Tyr	Leu	Lys 150	Met	Ala	Glu	Glu	Ile 155	Val	Lys	Ser	Gly	Ala 160
His	Ile	Leu	Ala	11e 165	Lys	Asp	Met	Ala	Gly 170	Leu	Leu	Arg	Pro	Ala 175	Ala
Val	Thr	Lys	Leu 180	Val	Thr	Ala	Leu	Arg 185	Arg	Glu	Phe	Asp	Leu 190	Pro	Val
His	Val	His 195	Thr	His	Asp	Thr	Ala 200	Gly	Gly	Gln	Leu	Ala 205	Thr	Tyr	Phe
Ala	Ala 210	Ala	Gln	Ala	Gly	Ala 215	Asp	Ala	Val	Asp	Gly 220	Ala	Ser	Gly	Thr
Thr 225	Val	Trp	His	His	Leu 230	Pro	Ser	His	Pro	Leu 235	Ser	Ala	Ile	Val	Ala 240
Ala	Phe	Ala	His	Thr 245	Arg	Arg	Asp	Thr	Gly 250	Leu	Ser	Leu	Glu	Ala 255	Val
Ser	Asp	Leu	Glu 260	Pro	Tyr	Trp	Glu	Ala 265	Val	Arg	Gly	Leu	Tyr 270	Leu	Pro
Phe	Glu	Ser 275	Gly	Thr	Pro	Gly	Pro 280	Thr	Gly	Arg	Val	Tyr 285	Arg	His	Glu
Ile	Pro 290	Gly	Gly	Gln	Leu	Ser 295	Asn	Leu	Arg	Ala	Gln 300	Ala	Thr	Ala	Leu
Gly 305	Leu	Ala	Asp	Arg	Phe 310	Glu	Leu	Ile	Glu	Asp 315	Asn	Tyr	Ala	Ser	Arg 320

<210> 117

<211> 1083

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1060)
<223> FRXAO2327

<400> 117 accqctqaaq caqcttqqcc caqccqcqtt tqctcqtqat ctccgtgagc aggacqcact 60 ggcagttact gataccacct teegegatge acaccagtet ttg ett geg ace ega Leu Leu Ala Thr Arg gtc cgc tca ttc gca ctg aag cct gcg gca gag gcc gtc gca aag ctg Val Arg Ser Phe Ala Leu Lys Pro Ala Ala Glu Ala Val Ala Lys Leu act cct gag ctt ttg tcc gtg gag gcc tgg ggc gcg acc tac gat 211 Thr Pro Glu Leu Leu Ser Val Glu Ala Trp Gly Gly Ala Thr Tyr Asp 259 gtg gcg atg cgt ttc ctc ttt gag gat ccg tgg gac agg ctc gac gag Val Ala Met Arg Phe Leu Phe Glu Asp Pro Trp Asp Arg Leu Asp Glu 40 45 ctg cgc gag gcg atg ccg aat gta aac att cag atg ctg ctt cgc ggc 307 Leu Arg Glu Ala Met Pro Asn Val Asn Ile Gln Met Leu Leu Arg Gly 55 cgc aac acc gtg gga tac acc ccg tac cca gac tcc gtc tgc cgc gcg 355 Arg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Asp Ser Val Cys Arg Ala 80 ttt gtt aag gaa gct gcc agc tcc ggc gtg gac atc ttc cgc atc ttc Phe Val Lys Glu Ala Ala Ser Ser Gly Val Asp Ile Phe Arg Ile Phe 90 95 100 gac gcg ctt aac gac gtc tcc cag atg cgt cca gca atc gac gca gtc 451 Asp Ala Leu Asn Asp Val Ser Gln Met Arg Pro Ala Ile Asp Ala Val 105 110 ctg gag acc aac acc gcg gta gcc gag gtg gct atg gct tat tct ggt Leu Glu Thr Asn Thr Ala Val Ala Glu Val Ala Met Ala Tyr Ser Gly 120 125 gat ctc tct gat cca aat gaa aag ctc tac acc ctg gat tac tac cta Asp Leu Ser Asp Pro Asn Glu Lys Leu Tyr Thr Leu Asp Tyr Tyr Leu 135 aag atg gca gag gag atc gtc aag tct ggc gct cac atc ttg gcc att Lys Met Ala Glu Glu Ile Val Lys Ser Gly Ala His Ile Leu Ala Ile 150 aag gat atg gct ggt ctg ctt cgc cca gct gcg gta acc aag ctg gtc Lys Asp Met Ala Gly Leu Leu Arg Pro Ala Ala Val Thr Lys Leu Val 170 ace gea etg ege egt gaa tte gat etg eea gtg eac gtg eac ace eac Thr Ala Leu Arg Arg Glu Phe Asp Leu Pro Val His Val His Thr His 185 gac act gcg ggt ggc cag ctg gca acc tac ttt gct gca gct caa gct

200	Gly Gln	Leu Al	_	Tyr	Phe	Ala	Ala 210	Ala	Gln	Ala	
ggt gca gat gct Gly Ala Asp Ala 215											787
ctc cca agc cat Leu Pro Ser His 230	ccc ttg Pro Leu 235	tct go Ser Al	cc att La Ile	Val .	gct Ala 240	gca Ala	ttc Phe	gcg Ala	cac His	acc Thr 245	835
cgt cgc gat acc Arg Arg Asp Thi	ggt ttg Gly Leu 250	agc ct Ser Le	c gag eu Glu	gct Ala 255	gtt Val	tct Ser	gac Asp	ctc Leu	gag Glu 260	ccg Pro	883
tac tgg gaa gca Tyr Trp Glu Ala 26	Val Arg										931
cca ggc cca acc Pro Gly Pro The 280		Val Ty									979
ttg tcc aac ctc Leu Ser Asn Leu 295											1027
ttc gaa ctc atc Phe Glu Leu Ile 310		Asn Ty		Ser .		taat	gaga	atg (ctgg	gacgcc	1080
caa ·											1083
<pre><210> 118 <211> 320 <212> PRT <213> Corynebace</pre>	terium g	lutami	cum	, -							1083
<210> 118 <211> 320 <212> PRT				Ala	Leu	Lys	Pro	Ala	Ala	Glu	1083
<210> 118 <211> 320 <212> PRT <213> Corynebac <400> 118 Leu Leu Ala Thi	Arg Val	Arg Se	er Phe	10					15		1083
<210> 118 <211> 320 <212> PRT <213> Corynebac <400> 118 Leu Leu Ala Th:	Arg Val 5 Leu Thr	Arg Se	er Phe	10					15		1083
<210> 118 <211> 320 <212> PRT <213> Corynebace <400> 118 Leu Leu Ala Thing 1	. Arg Val 5 Leu Thr	Arg Se	er Phe lu Leu 25	10 Leu	Ser	Val	Gl _u	Ala 30	15 Trp	Gly	1083
<210> 118 <211> 320 <212> PRT <213> Corynebace <400> 118 Leu Leu Ala Thi 1 Ala Val Ala Lya CGly Ala Thr Tyx	. Arg Val 5 Leu Thr	Arg Se	er Phe lu Leu 25 et Arg	Leu Phe	Ser Leu	Val Phe	Glu Glu 45	Ala 30 Asp	15 Trp Pro	Gly Trp	1083
<210> 118 <211> 320 <212> PRT <213> Corynebace <400> 118 Leu Leu Ala Thi 1 Ala Val Ala Lys 20 Gly Ala Thr Tys 35 Asp Arg Leu Asp	. Arg Val 5 Leu Thr . Asp Val	Arg Scanning	er Phe lu Leu 25 et Arg 10	10 Leu Phe	Ser Leu Pro	Val Phe Asn 60	Glu Glu 45 Val	Ala 30 Asp Asn	15 Trp Pro	Gly Trp Gln	1083
<pre><210> 118 <211> 320 <212> PRT <213> Corynebac <400> 118 Leu Leu Ala Th:</pre>	. Arg Val 5 Leu Thr Asp Val 6 Glu Leu 70	Arg Scanning Arg Gibbs Scanning	er Phe lu Leu 25 et Arg 10 lu Ala	10 Leu Phe Met Gly	Ser Leu Pro Tyr 75	Val Phe Asn 60 Thr	Glu Glu 45 Val Pro	Ala 30 Asp Asn Tyr	Trp Pro Ile Pro	Gly Trp Gln Asp 80	1083

Ala Ile Asp Ala Val Leu Glu Thr Asn Thr Ala Val Ala Glu Val Ala 120 Met Ala Tyr Ser Gly Asp Leu Ser Asp Pro Asn Glu Lys Leu Tyr Thr 135 Leu Asp Tyr Tyr Leu Lys Met Ala Glu Glu Ile Val Lys Ser Gly Ala His Ile Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg Pro Ala Ala Val Thr Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp Leu Pro Val His Val His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr Tyr Phe Ala Ala Ala Gln Ala Gly Ala Asp Ala Val Asp Gly Ala Ser Gly Thr Thr Val Trp His His Leu Pro Ser His Pro Leu Ser Ala Ile Val Ala 235 Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Ser Leu Glu Ala Val 250 Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr Leu Pro 260 265 270 Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg His Glu 280 285 Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Thr Ala Leu 290 295 Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Asn Tyr Ala Ser Arg 310 315

Leu Gly C	Gly Leu	Leu 1	Leu	Lys	Gly	Ile	Ile 15	Thr	Leu	Val	Ser	Thr 20	His	
aca tct t Thr Ser S	_			-			_		_	-			-	211
ggc gaa a Gly Glu														259
gcc acg (Ala Thr \ 55	gta gct Val Ala	att i	tac Tyr	ccc Pro 60	cgt Arg	gaa Glu	gat Asp	cgg Arg	gga Gly 65	tca Ser	ttc Phe	cac His	cgc Arg	307
tct ttt o Ser Phe A	gct tct Ala Ser	gaa (Glu <i>i</i>	gct Ala 75	gtc Val	cgc Arg	att Ile	ggt Gly	acc Thr 80	gaa Glu	ggc Gly	tca Ser	cca Pro	gtc Val 85	355
aag gcg t Lys Ala '														403
aaa gca (Lys Ala <i>l</i>														451
cag ctt o														499
acc cca	gag gtt	ctt	gat	ctc	acc	ggt	gat	aag	tct	cgc	qcq	ota	acc	547
Thr Pro (31,
	Glu Val	gct o	Asp ggt	Leu 140 ctg	Thr	Gly gtt	Asp ttg	Lys	Ser 145 gaa	Arg tcc	Ala	Val ccg	Thr agc	595
gcc gcg a	Glu Val aag aag Lys Lys atc gat	gct (Ala (Asp ggt Gly 155 atc	Leu 140 ctg Leu gtt	Thr cca Pro	Gly gtt Val agc	Asp ttg Leu gct	gcg Ala 160 gaa Glu	Ser 145 gaa Glu ggc	tcc Ser	Ala acc Thr	Val ccg Pro	Thr agc Ser 165	
gcc gcg a Ala Ala l 150 aaa aac a	Glu Val aag aag Lys Lys atc gat Ile Asp	gct (Ala (Glu: 170)	Asp ggt Gly 155 atc Ile	Leu 140 ctg Leu gtt Val	Thr cca Pro aaa Lys	Gly gtt Val agc Ser	ttg Leu gct Ala 175	gcg Ala 160 gaa Glu	Ser 145 gaa Glu ggc Gly	tcc Ser cag Gln	acc Thr act Thr	ccg Pro tac Tyr 180	agc Ser 165 ccc Pro	595
gcc gcg a Ala Ala 1 150 aaa aac a Lys Asn 3 atc ttt a Ile Phe 3 gtt gct 3 Val Ala 8	Glu Val aag aag Lys Lys atc gat Ile Asp gtg aag Val Lys 185 tca cct	gct (Ala (Glu : 170) gca (Ala (Glu : 170) gca (Ala (Glu : 170) gca (Ala (Glu : 170))	Asp ggt Gly 155 atc Ile gtt Val	Leu 140 ctg Leu gtt Val gcc Ala	Thr cca Pro aaa Lys ggt Gly	gtt Val agc Ser ggt Gly 190	ttg Leu gct Ala 175 ggc Gly	gcg Ala 160 gaa Glu gga Gly	Ser 145 gaa Glu ggc Gly cgc Arg	tcc Ser cag Gln ggt Gly	acc Thr act Thr atg Met 195	ccg Pro tac Tyr 180 cgt Arg	agc Ser 165 ccc Pro	595 643
gcc gcg a Ala Ala 1 150 aaa aac a Lys Asn 3 atc ttt a Ile Phe 3 gtt gct 3 Val Ala 8	Glu Val aag aag Lys Lys atc gat Ile Asp gtg aag Val Lys 185 tca cct Ser Pro 200 gaa gcg	gct (Ala (Glu (Ala (Asp (Gct (Asp (Asp (Gct (Asp (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (Asp (Gct (As)(Asp (Gct (Asp (Asp (Asp (Asp (Asp (Asp (Asp (Asp	Asp ggt Gly 155 atc Ile gtt Val gag Glu ttc Phe	Leu 140 ctg Leu gtt Val gcc Ala ctt Leu	Thr cca Pro aaa Lys ggt Gly cgc Arg 205 gat	gtt Val agc Ser ggt Gly 190 aaa Lys	ttg Leu gct Ala 175 ggc Gly tta Leu	gcg Ala 160 gaa Glu gga Gly gca Ala	Ser 145 gaa Glu ggc Gly cgc Arg aca Thr	tcc Ser cag Gln ggt Gly gaa Glu 210	Ala acc Thr act Thr atg Met 195 gca Ala gaa	CCG Pro tac Tyr 180 cgt Arg tct Ser	agc Ser 165 ccc Pro ttt Phe cgt Arg	595 643 691
gcc gcg a Ala Ala 1 150 aaa aac a Lys Asn 1 150 atc ttt a Ile Phe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	aag aag Lys Lys atc gat Ile Asp gtg aag Val Lys 185 tca cct Ser Pro 200 gaa gcg Glu Ala aac cct	gct Glu Sala Sala Sala Sala Sala Sala Sala Sa	Asp ggt Gly 155 atc Ile gtt Val gag Glu ttc Phe cat	Leu 140 ctg Leu gtt Val gcc Ala ctt Leu ggc Gly 220 att	Thr cca Pro aaa Lys ggt Gly cgc Arg 205 gat Asp	gtt Val agc Ser ggt Gly 190 aaa Lys ggc Gly	Asp ttg Leu gct Ala 175 ggc Gly tta Leu gcg Ala	gcg Ala 160 gaa Glu gga Gly gca Ala gta Val	Ser 145 gaa Glu ggc Gly cgc Arg aca Thr tat Tyr 225 ctt	tcc Ser cag Gln ggt Gly gaa Glu 210 gtc Val	acc Thr act Thr atg Met 195 gca Ala gaa Glu	CCG Pro tac Tyr 180 Cgt Arg tct Ser Cgt Arg	Thr agc Ser 165 ccc Pro ttt Phe cgt Arg gct Ala act	595643691739

	250	255		260
cac caa aaa gtt His Gln Lys Val 265	Val Glu Ile	gcg cca gca Ala Pro Ala 270	cag cat ttg gat Gln His Leu Asp 275	cca gaa 931 Pro Glu
ctg cgt gat cgc Leu Arg Asp Arg 280	att tgt gcg Ile Cys Ala	gat gca gta Asp Ala Val 285	aag ttc tgc cgc Lys Phe Cys Arg 290	tcc att 979 Ser Ile
ggt tac cag ggc Gly Tyr Gln Gly 295	gcg gga acc Ala Gly Thr 300	gtg gaa ttc Val Glu Phe	ttg gtc gat gaa Leu Val Asp Glu 305	aag ggc 1027 Lys Gly
aac cac gtc ttc Asn His Val Phe 310	atc gaa atg Ile Glu Met 315	aac cca cgt Asn Pro Arg	atc cag gtt gag Ile Gln Val Glu 320	cac acc 1075 His Thr 325
			gtg aag gcg cag Val Lys Ala Gln	
	Ala Thr Leu		ggt ctg acc caa Gly Leu Thr Gln 355	
atc aag acc cac Ile Lys Thr His 360	ggt gca gca Gly Ala Ala	ctg cag tgc Leu Gln Cys 365	cgc atc acc acg Arg Ile Thr Thr 370	gaa gat 1219 Glu Asp
cca aac aac ggo Pro Asn Asn Gly 375	ttc cgc cca Phe Arg Pro 380	gat acc gga Asp Thr Gly	act atc acc gcg Thr Ile Thr Ala 385	tac cgc 1267 Tyr Arg
tca cca ggc gga Ser Pro Gly Gly 390	a gct ggc gtt / Ala Gly Val 395	cgt ctt gac Arg Leu Asp	ggt gca gct cag Gly Ala Ala Gln 400	ctc ggt 1315 Leu Gly 405
			ctg gtg aaa atg Leu Val Lys Met	
	Phe Glu Thr		cgt gca cag cgc Arg Ala Gln Arg 435	
			aac att ggt ttc Asn Ile Gly Phe 450	
			aag cgc atc gcc Lys Arg Ile Ala 465	
ttc att gcc gat Phe Ile Ala Asp 470	cac ccg cac His Pro His 475	ctc ctt cag Leu Leu Gln	get cca cct gct Ala Pro Pro Ala 480	gat gat 1555 Asp Asp 485
gag cag gga cgo Glu Gln Gly Aro	e atc ctg gat g Ile Leu Asp 490	tac ttg gca Tyr Leu Ala 495	gat gtc acc gtg Asp Val Thr Val	aac aag 1603 Asn Lys 500

cct cat ggt gtg cgt cca aag gat gtt gca gct cct atc gat aag ctg 1651 Pro His Gly Val Arg Pro Lys Asp Val Ala Ala Pro Ile Asp Lys Leu 510 cct aac atc aag gat ctg cca ctg cca cgc ggt tcc cgt gac cgc 1696 Pro Asn Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser Arg Asp Arg 525 tgaagcagct tggcccagcc gcg 1719 <210> 120 <211> 532 <212> PRT <213> Corynebacterium glutamicum <400> 120 Val Thr Ala Ile Thr Leu Gly Gly Leu Leu Leu Lys Gly Ile Ile Thr Leu Val Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile 30 Leu Val Ala Asn Arg Gly Glu Ile Ala Val Arg Ala Phe Arg Ala Ala 40 Leu Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala Ala Lys Lys Val Lys Ala Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys 135 Ser Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu Ser Thr Pro Ser Lys Asn Ile Asp Glu Ile Val Lys Ser Ala Glu Gly Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Arg Gly Met Arg Phe Val Ala Ser Pro Asp Glu Leu Arg Lys Leu Ala 200 Thr Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ala Val 215 210 Tyr Val Glu Arg Ala Val Ile Asn Pro Gln His Ile Glu Val Gln Ile

225					230					235					240
Leu	Gly	Asp	His	Thr 245	Gly	Glu	Val	Val	His 250	Leu	Tyr	Glu	Arg	Asp 255	Cys
Ser	Leu	Gln	Arg 260	Arg	His	Gln	Lys	Val 265	Val	Glu	Ile	Ala	Pro 270	Ala	Gln
His	Leu	Asp 275	Pro	Glu	Leu	Arg	Asp 280	Arg	Ile	Cys	Ala	Asp 285	Ala	Val	Lys
Phe	Cys 290	Arg	Ser	Ile	Gly	Tyr 295	Gln	Gly	Ala	Gly	Thr 300	Val	Glu	Phe	Leu
Val 305	Asp	Glu	Lys	Gly	Asn 310	His	Val	Phe	Ile	Glu 315	Met	Asn	Pro	Arg	11e 320
Gln	Val	Glu	His	Thr 325	Val	Thr	Glu	Glu	Val 330	Thr	Glu	Val	Asp	Leu 335	Val
Lys	Ala	Gln	Met 340	Arg	Leu	Ala	Ala	Gly 345	Ala	Thr	Leu	Lys	Glu 350	Leu	Gly
Leu	Thr	Gln 355	Asp	Lys	Ile	Lys	Thr 360	His.	Gly	Ala	Ala	Leu 365	Gln	Cys	Arg
Ile	Thr 370	Thr	Glu	Asp	Pro	Asn 375	Asn	Gly	Phe	Arg	Pro 380	Asp	Thr	Gly	Thr
Ile 385	Thr	Ala	Tyr	Arg	Ser 390	Pro	Gly.	Gly	Ala	Gly 395	Val	Arg	Leu	Asp	Gly 400
Ala	Ala	Gln	Leu	Gly 405	Gly	Glu	Ile	Thr	Ala 410	His	Phe	Asp	Ser	Met 415	Leu
Val	Lys	Met	Thr 420	Cys	Arg	Gly	Ser	Asp 425	Phe	Glu	Thr	Ala	Val 430	Ala	Arg
Ala	Gln	Arg 435	Ala	Leu	Ala	Glu	Phe 440	Thr	Val	Ser	Gly	Val 445	Ala	Thr	Asn
Ile	Gly 450	Phe	Leu	Arg	Ala	Leu 455	Leu	Arg	Glu	Glu	Asp 460	Phe	Thr	Ser	Lys
Arg 465	Ile	Ala	Thr	Gly	Phe 470	Ile	Ala	Asp	His	Pro 475	His	Leu	Leu	Gln	Ala 480
Pro	Pro	Ala	Asp	Asp 485	Glu	Gln	Gly	Arg	Ile 490	Leu	Asp	Tyr	Leu	Ala 495	Asp
Val	Thr	Val	Asn 500	Lys	Pro	His	Gly	Val 505	Arg	Pro	Lys	Asp	Val 510	Ala	Ala
Pro	Ile	Asp 515	Lys	Leu	Pro	Asn	Ile 520	Lys	Asp	Leu	Pro	Leu 525	Pro	Arg	Gly
Ser	Arg 530	Asp	Arg												

<210> 121

<211> 1406 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1383) <223> FRXA02328 <400> 121 gct tct gaa gct gtc cgc att ggt acc gaa ggc tca cca gtc aag gcg Ala Ser Glu Ala Val Arg Ile Gly Thr Glu Gly Ser Pro Val Lys Ala 5 tac ctg gac atc gat gaa att atc ggt gca gct aaa aaa gtt aaa gca Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala Ala Lys Lys Val Lys Ala 20 gat gcc att tac ccg gga tac ggc ttc ctg tct gaa aat gcc cag ctt 144 Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ala Gln Leu 35 40 gcc cgc gag tgt gcg gaa aac ggc att act ttt att ggc cca acc cca 192 Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr Phe Ile Gly Pro Thr Pro 50 gag gtt ctt gat ctc acc ggt gat aag tct cgc gcg gta acc gcc gcg 240 Glu Val Leu Asp Leu Thr Gly Asp Lys Ser Arg Ala Val Thr Ala Ala 65 aag aag get ggt etg eea gtt ttg geg gaa tee ace eeg age aaa aac Lys Lys Ala Gly Leu Pro Val Leu Ala Glu Ser Thr Pro Ser Lys Asn 85 90 atc gat gag atc gtt aaa agc gct gaa ggc cag act tac ccc atc ttt 336 Ile Asp Glu Ile Val Lys Ser Ala Glu Gly Gln Thr Tyr Pro Ile Phe 100 105 gtg aag gca gtt gcc ggt ggc gga cgc ggt atg cgt ttt gtt gct 384 Val Lys Ala Val Ala Gly Gly Gly Arg Gly Met Arg Phe Val Ala 115 120 tca cct gat gag ctt cgc aaa tta gca aca gaa gca tct cgt gaa gct 432 Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr Glu Ala Ser Arg Glu Ala 130 gaa gcg gct ttc ggc gat ggc gcg gta tat gtc gaa cgt gct gtg att 480 Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr Val Glu Arg Ala Val Ile 145 aac cet cag cat att gaa gtg cag ate ett gge gat cae aet gga gaa Asn Pro Gln His Ile Glu Val Gln Ile Leu Gly Asp His Thr Gly Glu 165 gtt gta cac ctt tat gaa cgt gac tgc tca ctg cag cgt cgt cac caa Val Val His Leu Tyr Glu Arg Asp Cys Ser Leu Gln Arg Arg His Gln 180 aaa gtt gtc gaa att gcg cca gca cag cat ttg gat cca gaa ctg cgt Lys Val Val Glu Ile Ala Pro Ala Gln His Leu Asp Pro Glu Leu Arg 195

gat Asp	cgc Arg 210	att Ile	tgt Cys	gcg Ala	gat Asp	gca Ala 215	gta Val	aag Lys	ttc Phe	tgc Cys	cgc Arg 220	tcc Ser	att Ile	ggt Gly	tac Tyr	672
		gcg Ala														720
gtc Val	ttc Phe	atc Ile	gaa Glu	atg Met 245	aac Asn	cca Pro	cgt Arg	atc Ile	cag Gln 250	gtt Val	gag Glu	cac His	acc Thr	gtg Val 255	act Thr	768
gaa Glu	gaa Glu	gtc Val	acc Thr 260	gag Glu	gtg Val	gac Asp	ctg Leu	gtg Val 265	aag Lys	gcg Ala	cag Gln	atg Met	cgc Arg 270	ttg Leu	gct Ala	816
-		gca Ala 275		_	_	-	-		_			-	_		_	864
		ggt Gly														912
		ttc Phe	-		_								_			960
		gct Ala		_	_		-		_	_	_				_	1008
		gca Ala			-		_	_			_		_	_		1056
		ttt Phe 355														1104
		gtg Val			Val		Thr			Gly		Leu				1152
		gaa Glu														1200
		cac His														1248
		atc Ile														1296
		cgt Arg 435														1344

atc aag gat ctg cca ctg cca cgc ggt tcc cgt gac cgc tgaagcagct 1393

Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser Arg Asp Arg
450 455 460

tggcccagcc gcg 1406

<210> 122

<211> 461

<212> PRT

<213> Corynebacterium glutamicum

<400> 122

Ala Ser Glu Ala Val Arg Ile Gly Thr Glu Gly Ser Pro Val Lys Ala 1 5 10 15

Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala Ala Lys Lys Val Lys Ala 20 25 30

Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ala Gln Leu 35 40 45

Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr Phe Ile Gly Pro Thr Pro 50 55 60

Glu Val Leu Asp Leu Thr Gly Asp Lys Ser Arg Ala Val Thr Ala Ala 65 70 75 80

Lys Lys Ala Gly Leu Pro Val Leu Ala Glu Ser Thr Pro Ser Lys Asn 85 90 95

Ile Asp Glu Ile Val Lys Ser Ala Glu Gly Gln Thr Tyr Pro Ile Phe 100 105 110

Val Lys Ala Val Ala Gly Gly Gly Gly Arg Gly Met Arg Phe Val Ala 115 120 125

Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr Glu Ala Ser Arg Glu Ala 130 135 140

Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr Val Glu Arg Ala Val Ile 145 150 155 160

Asn Pro Gln His Ile Glu Val Gln Ile Leu Gly Asp His Thr Gly Glu 165 170 175

Val Val His Leu Tyr Glu Arg Asp Cys Ser Leu Gln Arg Arg His Gln 180 185 190

Lys Val Val Glu Ile Ala Pro Ala Gln His Leu Asp Pro Glu Leu Arg 195 200 205

Asp Arg Ile Cys Ala Asp Ala Val Lys Phe Cys Arg Ser Ile Gly Tyr 210 215 220

Gln Gly Ala Gly Thr Val Glu Phe Leu Val Asp Glu Lys Gly Asn His 225 230 235 240

Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Glu	Glu	Val	Thr 260	Glu	Val	Asp	Leu	Val 265	Lys	Ala	Gln	Met	Arg 270	Leu	Ala	
Ala	Gly	Ala 275	Thr	Leu	Lys	Glu	Leu 280	Gly	Leu	Thr	Gln	Asp 285	Lys	Ile	Lys	
Thr	His 290	Gly	Ala	Ala	Leu	Gln 295	Cys	Arg	Ile	Thr	Thr 300	Glu	Asp	Pro	Asn	
Asn 305	Gly	Phe	Arg	Pro	Asp 310	Thr	Gly	Thr	Ile	Thr 315	Ala	Tyr	Arg	Ser	Pro 320	
Gly	Gly	Ala	Gly	Val 325	Arg	Leu	Asp	Gly	Ala 330	Ala	Gln	Leu	Gly	Gly 335	Glu	
Ile	Thr	Ala	His 340	Phe	Asp	Ser	Met	Leu 345	Val	Lys	Met	Thr	Cys 350	Arg	Gly	
Ser	Asp	Phe 355	Glu	Thr	Ala	Val	Ala 360	Arg	Ala	Gln	Arg	Ala 365	Leu	Ala	Glu	
Phe	Thr 370	Val	Ser	Gly	Val	Ala 375	Thr	Asn	Ile	Gly	Phe 380	Leu	Arg	Ala	Leu	
Leu 385	Arg	Glu	Glu	Asp	Phe 390	Thr	Ser	Lys	Arg	Ile 395	Ala	Thr	Gly	Phe	Ile 400	
Ala	Asp	His	Pro	His 405	Leu	Leu	Gln	Ala	Pro 410	Pro	Ala	Asp	Asp	Glu 415	Gln	
Gly	Arg	Ile	Leu 420	Asp	Tyr	Leu	Ala	Asp 425	Val	Thr	Val	Asn	Lys 430	Pro	His	
Gly	Val	Arg 435	Pro	Lys	Asp	Val	Ala 440	Ala	Pro	Ile	Asp	Lys 445	Leu	Pro	Asn	
Ile	Lys 450	Asp	Leu	Pro	Leu	Pro 455	Arg	Gly	Ser	Arg	Asp 460	Arg				
<21:	0> 1; l> 1; 2> DI 3> Co	347	ebact	teri	um gl	lutar	micur	n								
<22	1> CI 2> (:	os 101). KN010		324)												
)> 1: taca		tago	ctagi	tg ti	ttt	gttc	c aga	acco	ctaa	atga	aggti	ct a	accct	taaca	60
gag	cttc	ccg (caaaa	aaca	cc ga	atta	acaa	g gct	caaat	gat				gac Asp		115
		tcc Ser														163

												ctc Leu				211
	_				_					_	_	cag Gln 50	-	_	-	259
												acg Thr				307
												ctt Leu				355
												ggc Gly				403
												atc Ile				451
-		-		•	-	_	_				_	gcc Ala 130				499
												cct Pro				547
			-	_			_	-		_		cca Pro	_	-		595
												gcg Ala				643
		Lys					Lys		Glu			aag Lys				691
												atg Met 210				739
-		-		_			-		-		_	ggc Gly				787
												ctt Leu				835
												gct Ala				883
gcg	gac	ctg	ttc	att	ggc	gtg	tcc	ggc	ggc	aac	atc	ggc	gag	gac	gct	931

Ala Asp	Leu Ph 26		Gly	Val	Ser	Gly 270	Gly	Asn	Ile	Gly	Glu 275	Asp	Ala	
ctc aaa Leu Lys	ctc at Leu Me 280	g gcc t Ala	ccg Pro	gag Glu	cca Pro 285	atc Ile	ctg Leu	ttc Phe	acc Thr	ctg Leu 290	gcg Ala	aac Asn	cca Pro	979
acc cca Thr Pro 295	gag at Glu Il	c gat e Asp	cct Pro	gag Glu 300	ctg Leu	tct Ser	cag Gln	aag Lys	tac Tyr 305	ggc Gly	gcc Ala	atc Ile	gtc Val	1027
gcg acc Ala Thr 310														1075
ttc cca Phe Pro	gga at Gly Il	t ttc e Phe 330	gcc Ala	ggc Gly	gct Ala	ctc Leu	gca Ala 335	gcc Ala	aag Lys	gct Ala	aag Lys	aag Lys 340	atc Ile	1123
acc ccc Thr Pro		t Lys												1171
ctg agg Leu Arg	acc tc Thr Se 360	g agg r Arg	tcg Ser	gcc Ala	gca Ala 365	tcg Ser	tgc Cys	cta Leu	ccg Pro	ccc Pro 370	tgg Trp	atc Ile	ccc Pro	1219
gcg ttg Ala Leu 375										Ser				1267
aaa acg Lys Thr 390														1315
cca ata Pro Ile		agagc	aaa (cttga	aggc	cc a	ca							1347
<210> 1: <211> 4: <212> P: <213> C:	08 RT	cteri	um gi	lutar	micur	m								
<400> 1 Met Thr 1		p Leu 5	Gln	Arg	Ser	Thr	Gln 10	Asn	Leu	Thr	His	Glu 15	Glu	
Ile Phe		a His	Glu	Gly	Gly	Lys 25	Leu	Ser	Ile	Ser	Ser 30	Thr	Arg	

Pro Leu Arg Asp Met Arg Asp Leu Ser Leu Ala Tyr Thr Pro Gly Val

Ala Gln Val Cys Glu Ala Ile Lys Glu Asp Pro Glu Val Ala Arg Thr

His Thr Gly Ile Gly Asn Thr Val Ala Val Ile Ser Asp Gly Thr Ala

70

Val	Leu	Gly	Leu	Gly 85	Asp	Ile	Gly	Pro	Gln 90	Ala	Ser	Leu	Pro	Val 95	Met
Glu	Gly	Lys	Ala 100	Gln	Leu	Phe	Ser	Ser 105	Phe	Ala	Gly	Leu	Lys 110	Ala	Ile
Pro	Ile	Val 115	Leu	Asp	Val	His	Asp 120	Val	Asp	Ala	Leu	Val 125	Glu	Thr	Ile
Ala	Ala 130	Ile	Ala	Pro	Ser	Phe 135	Gly	Ala	Ile	Asn	Leu 140	Glu	Asp	Ile	Ser
Ala 145	Pro	Arg	Cys	Phe	Glu 150	Val	Glu	Arg	Arg	Leu 155	Ile	Glu	Arg	Leu	Asp 160
Ile	Pro	Val	Met	His 165	Asp	Asp	Gln	His	Gly 170	Thr	Ala	Val	Val	Ile 175	Leu
Ala	Ala	Leu	Arg 180	Asn	Ser	Leu	Lys	Leu 185	Leu	Asp	Arg	Lys	Ile 190	Glu	Asp
Leu	Lys	Ile 195	Val	Ile	Ser	Gly	Ala 200	Gly	Ala	Ala	Gly	Vaļ 205	Ala	Ala	Val
Asp	Met 210	Leu	Thr	Asn	Ala	Gly 215	Ala	Thr	Asp	Ile	Val 220	Val	Leu	Asp	Ser
Arg 225	Gly	Ile	Ile	His	Asp 230	Ser	Arg	Glu	Asp	Leu 235	Ser	Pro	Val	Lys	Ala 240
Ala	Leu	Ala	·Glu	Lys 245	Thr	Asn	Pro	Arg	Gly 250	Ile	Ser	Gly	Gly	Ile 255	Asn
Glu	Ala	Phe	Thr 260	Gly	Ala	Asp	Leu	Phe 265	Ile	Gly	Val	Ser	Gly 270	Gly	Asn
Ile	Gly	Glu 275	Asp	Ala	Leu	Lys	Leu 280	Met	Ala	Pro	Glu	Pro 285	Ile	Leu	Phe
Thr	Leu 290	Ala	Asn	Pro	Thr	Pro 295	Glu	Ile	Asp	Pro	Glu 300	Leu	Ser	Gln	Lys
Tyr 305	Gly	Ala	Ile	Val	Ala 310	Thr	Gly	Arg	Ser	Asp 315	Leu	Pro	Asn	Gln	Ile 320
Asn	Asn	Val	Leu	Ala 325	Phe	Pro	Gly	Ile	Phe 330	Ala	Gly	Ala	Leu	Ala 335	Ala
Lys	Ala	Lys	Lys 340	Ile	Thr	Pro	Glu	Met 345	Lys	Leu	Ala	Ala	Gln 350	Arg	Gln
Ser	Gln	Thr 355	Ser	Gln	Leu	Arg	Thr 360	Ser	Arg	Ser	Ala	Ala 365	Ser	Cys	Leu
Pro	Pro 370	Trp	Ile	Pro	Ala	Leu 375	Pro	Gln	Gln	Ser	Arg 380	Gln	Leu	Ser	Arg
Pro 385	Ser	Pro	Lys	Arg	Lys 390	Thr	Leu	Lys	Asn	Leu 395	Leu	Ile	Asp	Ala	Ser 400
Leu	Pro	Val	Glu	Ala	Pro	Ile	Phe								

<211 <212	0> 12 L> 31 2> DN 3> Co	l 1 NA	ebact	eri	ım gi	lutan	nicum	n								
<222	l> C[2> (]	OS l))												
cgc		gac			aac Asn											48
att				gct	ctc Leu				gct							96
					cag Gln											144
					tcg Ser											192
				_	ctg Leu 70				-		-	_		-		240
					gac Asp											288
taaq	gagca	aaa (cttga	aggco	cc a	ca										311
<213 <213	0> 12 1> 90 2> PI 3> Co	6 RT	ebact	teri	ım gi	lutar	nicum	n								
)> 12 Ser		Leu	Pro 5	Asn	Gln	Ile	Asn	Asn 10	Val	Leu	Ala	Phe	Pro 15	Gly	
Ile	Phe	Ala	Gly 20	Ala	Leu	Ala	Ala	Lys 25	Ala	Lys	Lys	Ile	Thr 30	Pro	Glu	
Met	Lys	Leu 35	Ala	Ala	Gln	Arg	Gln 40	Ser	Gln	Thr	Ser	Gln 45	Leu	Arg	Thr	
Ser	Arg 50	Ser	Ala	Ala	Ser	Cys 55	Leu	Pro	Pro	Trp	Ile 60	Pro	Ala	Leu	Pro	
Gln 65	Gln	Ser	Arg	Gln	Leu 70	Ser	Arg	Pro	Ser	Pro 75	Lys	Arg	Lys	Thr	Leu 80	

Lys Asn Leu Leu Ile Asp Ala Ser Leu Pro Val Glu Ala Pro Ile Phe 85 90 95

<210> 127 <211> 1063 <212> DNA <213> Corynebact	erium gluta:	micum	
<220> <221> CDS <222> (101)(10 <223> FRXA00290)63)		
<400> 127 agctacagat ttage	ctagtg tttt	gttcc agaaccctaa	atgaggttct accettaaca 60
gagetteeeg caaaa	aacacc gatta	acaag gctaaatgat	atg acc atc gac ctg 11 Met Thr Ile Asp Leu 1 5
cag cgt tcc acc Gln Arg Ser Thr	caa aac ctc Gln Asn Leu 10	acc cat gag gaa Thr His Glu Glu 15	atc ttc gag gca cac 16 Ile Phe Glu Ala His 20
			ccg ctc cgc gac atg 21 Pro Leu Arg Asp Met 35
			gct cag gtt tgt gaa 25 Ala Gln Val Cys Glu 50
		Val Ala Arg Thr	cac acg ggc att gga 30 His Thr Gly Ile Gly 65
			gtt ctt ggc ctt ggc 35 Val Leu Gly Leu Gly 85
			gag ggc aag gct cag 40 Glu Gly Lys Ala Gln 100
			cct atc gtt ttg gac 45 Pro Ile Val Leu Asp 115
gtt cac gat gtt Val His Asp Val 120	gac gct ttg Asp Ala Leu	gtt gag acc atc Val Glu Thr Ile 125	gca gcc atc gcg cct 49 Ala Ala Ile Ala Pro · 130
		Glu Asp Ile Ser	gct cct cgt tgc ttc 54 Ala Pro Arg Cys Phe 145

gag Glu 150	gtg Val	gag Glu	cgc Arg	cgc Arg	ctc Leu 155	atc Ile	gag Glu	cgt Arg	ctc Leu	gat Asp 160	att Ile	cca Pro	gtt Val	atg Met	cac His 165	595
gat Asp	gac Asp	cag Gln	cac His	ggc Gly 170	acc Thr	gct Ala	gtg Val	gtt Val	atc Ile 175	ctc Leu	gct Ala	gcg Ala	ctg Leu	cgc Arg 180	aac Asn	643
tcc Ser	ctg Leu	aag Lys	ctg Leu 185	ctg Leu	gat Asp	cgc Arg	aag Lys	atc Ile 190	gaa Glu	gac Asp	ctc Leu	aag Lys	att Ile 195	gtt Val	att Ile	691
tcc Ser	ggc Gly	gca Ala 200	ggc Gly	gca Ala	gcg Ala	ggc Gly	gtt Val 205	gca Ala	gct Ala	gta Val	gat Asp	atg Met 210	ctg Leu	acc Thr	aac Asn	739
gct Ala	gga Gly 215	gca Ala	acc Thr	gac Asp	atc Ile	gtg Val 220	gtt Val	ctt Leu	gat Asp	tcc Ser	cga Arg 225	ggc Gly	atc Ile	atc Ile	cac His	787
gac Asp 230	agc Ser	cgt Arg	gag Glu	gat Asp	ctt Leu 235	tcc Ser	cca Pro	gtt Val	aag Lys	gct Ala 240	gct Ala	ctt Leu	gca Ala	gag Glu	aag Lys 245	835
acc Thr	aac Asn	cct Pro	cgt Arg	ggc Gly 250	atc Ile	agc Ser	ggt Gly	ggc Gly	atc Ile 255	aat Asn	gag Glu	gct Ala	ttc Phe	acc Thr 260	ggc Gly	883
gcg Ala	gac Asp	ctg Leu	ttc Phe 265	att Ile	ggc Gly	gtg Val	tcc Ser	ggc Gly 270	ggc	aac Asn	atc Ile	ggc Gly	gag Glu 275	gac Asp	gct Ala	931
ctc Leu	aaa Lys	ctc Leu 280	atg Met	gcc Ala	ccg Pro	gag Glu	cca Pro 285	atc Ile	ctg Leu	ttc Phe	acc Thr	ctg Leu 290	gcg Ala	aac Asn	cca Pro	979
	cca Pro 295															1027
	acc Thr			Val		Thr					Ser					1063
<21 <21	0> 1: 1> 3: 2> Pi 3> Co	21 RT	ebac	teri	um gi	luta	micu	n								
	0> 1: Thr		Asp	Leu 5	Gln	Arg	Ser	Thr	Gln 10	Asn	Leu	Thr	His	Glu 15	Glu	
Ile	Phe	Glu	Ala 20	His	Glu	Gly	Gly	Lys 25	Leu	Ser	Ile	Ser	Ser 30	Thr	Arg	
Pro	Leu	Arg 35		Met	Arg	Asp	Leu 40	Ser	Leu	Ala	Tyr	Thr 45	Pro	Gly	Val	
Ala	Gln	Val	Cys	Glu	Ala	Ile	Lys	Glu	Asp	Pro	Glu	Val	Ala	Arg	Thr	

50 55 60

His Thr Gly Ile Gly Asn Thr Val Ala Val Ile Ser Asp Gly Thr Ala 65 70 75 80

Val Leu Gly Leu Gly Asp Ile Gly Pro Gln Ala Ser Leu Pro Val Met 85 90 95

Pro Ile Val Leu Asp Val His Asp Val Asp Ala Leu Val Glu Thr Ile 115 120 125

Ala Ala Ile Ala Pro Ser Phe Gly Ala Ile Asn Leu Glu Asp Ile Ser 130 135 140

Ala Pro Arg Cys Phe Glu Val Glu Arg Arg Leu Ile Glu Arg Leu Asp 145 150 155 160

Ile Pro Val Met His Asp Asp Gln His Gly Thr Ala Val Val Ile Leu 165 170 175

Ala Ala Leu Arg Asn Ser Leu Lys Leu Leu Asp Arg Lys Ile Glu Asp 180 185 190

Leu Lys Ile Val Ile Ser Gly Ala Gly Ala Gly Val Ala Ala Val 195 200 205

Asp Met Leu Thr Asn Ala Gly Ala Thr Asp Ile Val Val Leu Asp Ser 210 215 220

Arg Gly Ile Ile His Asp Ser Arg Glu Asp Leu Ser Pro Val Lys Ala 225 230 235 240

Aļa Leu Ala Glu Lys Thr Asn Pro Arg Gly Ile Ser Gly Gly Ile Asn 245 250 255

Glu Ala Phe Thr Gly Ala Asp Leu Phe Ile Gly Val Ser Gly Gly Asn 260 265 270

Ile Gly Glu Asp Ala Leu Lys Leu Met Ala Pro Glu Pro Ile Leu Phe 275 280 285

Thr Leu Ala Asn Pro Thr Pro Glu Ile Asp Pro Glu Leu Ser Gln Lys 290 295 300

Tyr Gly Ala Ile Val Ala Thr Gly Pro Val Leu Thr Cys Leu Thr Arg 305 310 315 320

Ser

<210> 129

<211> 1065 <212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1042) <223> RXA02694

<400> 129 attaaaggtg taacaaagga atccgggcac aagctcttgc tgattttctg agctgctttg 60 tgggttgtcc ggttagggaa atcaggaagt gggatcgaaa atg aaa gaa acc gtc Met Lys Glu Thr Val ggt aac aag att gtc ctc att ggc gca gga gat gtt gga gtt gca tac 163 Gly Asn Lys Ile Val Leu Ile Gly Ala Gly Asp Val Gly Val Ala Tyr 15 10 gca tac gca ctg atc aac cag ggc atg gca gat cac ctt gcg atc atc 211 Ala Tyr Ala Leu Ile Asn Gln Gly Met Ala Asp His Leu Ala Ile Ile 25 gac atc gat gaa aag aaa ctc gaa ggc aac gtc atg gac tta aac cat 259 Asp Ile Asp Glu Lys Lys Leu Glu Gly Asn Val Met Asp Leu Asn His ggt gtt gtg tgg gcc gat tcc cgc acc cgc gtc acc aag ggc acc tac 307 Gly Val Val Trp Ala Asp Ser Arg Thr Arg Val Thr Lys Gly Thr Tyr 55 60 get que tge qua que que que atq gtt gte att tgt gee gge gea gee 355 Ala Asp Cys Glu Asp Ala Ala Met Val Val Ile Cys Ala Gly Ala Ala 70 75 403 caa aag cca ggc gag acc cgc ctc cag ctg gtg gac aaa aac gtc aag Gln Lys Pro Gly Glu Thr Arg Leu Gln Leu Val Asp Lys Asn Val Lys 90 100 att atg aaa too atc gtc ggc gat gtc atg gac agc gga ttc gac ggc Ile Met Lys Ser Ile Val Gly Asp Val Met Asp Ser Gly Phe Asp Gly 105 ate tte etc gtg geg tec aac eca gtg gat ate etg ace tae gea gtg Ile Phe Leu Val Ala Ser Asn Pro Val Asp Ile Leu Thr Tyr Ala Val 120 125 tqq aaa ttc tcc qqc ttq qaa tqq aac cqc qtq atc ggc tcc gga act 547 Trp Lys Phe Ser Gly Leu Glu Trp Asn Arg Val Ile Gly Ser Gly Thr 135 140 gtc ctg gac tcc gct cga ttc cgc tac atg ctg ggc gaa ctc tac gaa 595 Val Leu Asp Ser Ala Arg Phe Arg Tyr Met Leu Gly Glu Leu Tyr Glu 150 155 gtg gca cca agc tcc gtc cac gcc tac atc atc ggc gaa cac ggc gac Val Ala Pro Ser Ser Val His Ala Tyr Ile Ile Gly Glu His Gly Asp 180 170 691 act gaa ctt cca gtc ctg tcc tcc gcg acc atc gca ggc gta tcg ctt Thr Glu Leu Pro Val Leu Ser Ser Ala Thr Ile Ala Gly Val Ser Leu 185 739 age ega atg etg gae aaa gae eea gag ett gag gge egt eta gag aaa Ser Arg Met Leu Asp Lys Asp Pro Glu Leu Glu Gly Arg Leu Glu Lys 200 205

	att Ile	ttc Phe 215	gaa Glu	gac Asp	acc Thr	cgc Arg	gac Asp 220	gct Ala	gcc Ala	tat Tyr	cac His	att Ile 225	atc Ile	gac Asp	gcc Ala	aag Lys	787
(ggc Gly									835
								gtt Val									883
								gac Asp									931
								cgc Arg 285									979
								cat His									1027
	_	_	-	ttc Phe		taaa	atcti	ttg (geged	etagt	t go	gc					1065
)> 13 l> 31															
		2> PE 3> Co		ebact	eri	ım gl	Lutar	nicur	n								
	<213	3> Co 0> 13	oryne 30			-		micur Lys		Val 10	Leu	Ile	Gly	Ala	Gly 15	Asp	
	<213 <400 Met 1	3> Co)> 1: Lys	oryne 30 Glu	Thr	Val 5	Gly	Asn		Ile	10					15		
	<213 <400 Met 1 Val	3> Co)> 1: Lys Gly	oryne 30 Glu Val	Thr Ala 20	Val 5 Tyr	Gly Ala Asp	Asn Tyr Ile	Lys	Ile Leu 25 Glu	10 Ile Lys	Asn Lys	Gln Leu	Gly Glu	Met 30 Gly	15 Ala Asn	Asp	
	<213 <400 Met 1 Val	3> Co D> 1: Lys Gly Leu	Oryne 30 Glu Val Ala 35	Thr Ala 20 Ile	Val 5 Tyr	Gly Ala Asp	Asn Tyr Ile	Lys Ala Asp	Ile Leu 25 Glu	10 Ile Lys	Asn Lys	Gln Leu	Gly Glu 45	Met 30 Gly	15 Ala Asn	Asp	
	<213 <400 Met 1 Val His	3> Co)> 13 Lys Gly Leu Asp 50	Val Ala 35	Thr Ala 20 Ile Asn	Val 5 Tyr Ile	Gly Ala Asp	Asn Tyr Ile Val	Lys Ala Asp 40	Ile Leu 25 Glu Trp	10 Ile Lys Ala	Asn Lys Asp	Gln Leu Ser 60	Gly Glu 45 Arg	Met 30 Gly Thr	15 Ala Asn Arg	Asp Val Val	
	<213 <400 Met 1 Val His Met Thr 65	3> Co Lys Gly Leu Asp 50	Val Ala 35 Leu Gly	Thr Ala 20 Ile Asn	Val 5 Tyr Ile His	Gly Ala Asp Gly Ala 70	Asn Tyr Ile Val 55 Asp	Lys Ala Asp 40 Val	Ile Leu 25 Glu Trp Glu	10 Ile Lys Ala Asp	Asn Lys Asp Ala 75	Gln Leu Ser 60 Ala	Glu 45 Arg Met	Met 30 Gly Thr	15 Ala Asn Arg Val	Val Val Ile	
	<213 <400 Met 1 Val His Met Cys	3> Co Lys Gly Leu Asp 50 Lys	Oryne 30 Glu Val Ala 35 Leu Gly	Thr Ala 20 Ile Asn Thr	Val 5 Tyr Ile His Tyr	Gly Ala Asp Gly Ala 70 Gln	Asn Tyr Ile Val 55 Asp	Lys Ala Asp 40 Val	Ile Leu 25 Glu Trp Glu Gly	10 Ile Lys Ala Asp Glu 90	Asn Lys Asp Ala 75	Gln Leu Ser 60 Ala Arg	Glu 45 Arg Met Leu	Met 30 Gly Thr Val	15 Ala Asn Arg Val Leu 95	Val Val Ile 80 Val	
	<213 <400 Met 1 Val His Met Cys Asp	3> Co Lys Gly Leu Asp 50 Lys Ala	Val Ala 35 Leu Gly Gly Asn	Thr Ala 20 Ile Asn Thr Ala Val	Val 5 Tyr Ile His Tyr Ala 85 Lys	Gly Ala Asp Gly Ala 70 Gln	Asn Tyr Ile Val 55 Asp Lys	Lys Ala Asp 40 Val Cys	Ile Leu 25 Glu Trp Glu Gly Ser 105	10 Ile Lys Ala Asp Glu 90 Ile	Asn Lys Asp Ala 75 Thr	Gln Leu Ser 60 Ala Arg	Glu 45 Arg Met Leu Asp	Met 30 Gly Thr Val Gln Val	Ala Asn Arg Val Leu 95 Met	Asp Val Ile 80 Val Asp	

	130					135					140					
Ile 145	Gly	Ser	Gly	Thr	Val 150	Leu	Asp	Ser	Ala	Arg 155	Phe	Arg	Tyr	Met	Leu 160	
Gly	Glu	Leu	Tyr	Glu 165	Val	Ala	Pro	Ser	Ser 170	Val	His	Ala	Tyr	Ile 175	Ile	
Gly	Glu	His	Gly 180	Asp	Thr	Glu	Leu	Pro 185	Val	Leu	Ser	Ser	Ala 190	Thr	Ile	
Ala	Gly	Val 195	Ser	Leu	Ser	Arg	Met 200	Leu	Asp	Lys	Asp	Pro 205	Glu	Leu	Glu	
Gly	Arg 210	Leu	Glu	Lys	Ile	Phe 215	Glu	Asp	Thr	Arg	Asp 220	Ala	Ala	Tyr	His	
Ile 225	Ile	Asp	Ala	Lys	Gly 230	Ser	Thr	Ser	Tyr	Gly 235	Ile	Gly	Met	Gly	Leu 240	
Ala	Arg	Ile	Thr	Arg 245	Ala	Ile	Leu	Gln	Asn 250	Gln	Asp	Val	Ala	Val 255	Pro	
Val	Ser	Ala	Leu 260	Leu	His	Gly	Glu	Tyr 265	Gly	Glu	Glu	Asp	Ile 270	Tyr	Ile	
Gly	Thr	Pro 275	Ala	Val	Val	Asn	Arg 280	Arg	Gly	Ile	Arg	Arg 285	Val	Val	Glu	
Leu	Glu 290	Ile	Thr	Asp	His	Glu 295	Met	Glu	Arg	Phe	Lys 300	His	Ser	Ala	Asn	
Thr 305	Leu	Arg	Glu	Ile	Gln 310	Lys	Gln	Phe	Phe							
<213 <213	0> 1; 1> 29 2> Di 3> Co	967 NA	ebact	ceriu	ım g]	lutan	nicum	n								,
<222	0> 1> CI 2> (1 3> R)	101)		944)												•
	0> 1: ttgt!		catgi	ctga	ac at	tato	cgcac	c aat	ttcad	ccac	agta	acco	ggt a	acat	gttac	60
tcaa	aagco	ccg (cttg	gatc	ga at	ttca	acaaa	a ago	gacco	cacc		act Thr			_	115
					gac Asp											163
_	_	-	_	-	atg Met			_							_	211

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1663)
<223> RXN01498

<400> 225 caqtqqacaa ctacttqqcq qqtcttaaat caqctqtqaa ggattctqca taagctqqqc 60 accacacgag catcagaacg cgaaacgaag gtaaaagccc atg atc aaa cgt ctt Met Ile Lys Arg Leu cct tta ggt ccg ctg cct aaa gaa ctt cat cag act ctg ctt gat ctg Pro Leu Gly Pro Leu Pro Lys Glu Leu His Gln Thr Leu Leu Asp Leu 10 20 acc gca aat gcc caa gat gcg gcg aaa gtg gag gtt ata gcg cca ttt 211 Thr Ala Asn Ala Gln Asp Ala Ala Lys Val Glu Val Ile Ala Pro Phe 25 30 act ggc gag acc ctc gga ttt ggt ttt gat ggt gat gag caa gac gtc 259 Thr Gly Glu Thr Leu Gly Phe Gly Phe Asp Gly Asp Glu Gln Asp Val 40 307 gag cat gct ttt gca ctt tca agg gca gcc cag aaa aag tgg gtg cac Glu His Ala Phe Ala Leu Ser Arg Ala Ala Gln Lys Lys Trp Val His 55 acc acg gca gtg gaa cgg aag atc ttc ctg aag gtt cat gat ctg 355 Thr Thr Ala Val Glu Arg Lys Lys Ile Phe Leu Lys Val His Asp Leu 70 gta ttg aaa aac cgt gag ctg ctc atg gac atc gtg cag ttg gaa aca 403 Val Leu Lys Asn Arg Glu Leu Leu Met Asp Ile Val Gln Leu Glu Thr 90 95 100 ggc aaa aat cga gca tcg gct gcc gat gag gtg ttg gac gtt gcg atc 451 Gly Lys Asn Arg Ala Ser Ala Ala Asp Glu Val Leu Asp Val Ala Ile 105 acc acc cgc ttc tac gca aac aat gca gga aag ttt tta aat gac aag 499 Thr Thr Arg Phe Tyr Ala Asn Asn Ala Gly Lys Phe Leu Asn Asp Lys 120 125 aaa cgc ccc ggc gcg ctt ccg atc atc acg aaa aac aca caa cag tat 547 Lys Arg Pro Gly Ala Leu Pro Ile Ile Thr Lys Asn Thr Gln Gln Tyr 135 140 gtg ccc aag gga gtg gtc ggg cag atc acg ccg tgg aat tac cct tta 595 Val Pro Lys Gly Val Val Gly Gln Ile Thr Pro Trp Asn Tyr Pro Leu 150 155 act ttg gga gta tct gat gct gtt ccg gcg ctg ctg gca gga aac gca 643 Thr Leu Gly Val Ser Asp Ala Val Pro Ala Leu Leu Ala Gly Asn Ala 170 180 gtg gtg gct aaa cct gac ctc gcg aca cct ttc tcc tgc ttg atc atg Val Val Ala Lys Pro Asp Leu Ala Thr Pro Phe Ser Cys Leu Ile Met

, , ,	ctc att ga Leu Ile Gl					 739
	cct ggc ga Pro Gly As					787
	atg ttc ac Met Phe Th 23	c Gly Ser				835
	ggt gag cg Gly Glu Ar 250					883
	ctt att gt Leu Ile Va 265					931
	ccg cag gc Pro Gln Al					979
•	cgt att ta Arg Ile Ty					 1027
	agc aag gc Ser Lys Al 31	a Ala Lys				1075
	tat gag at Tyr Glu Me 330					1123
	acc ttt gt Thr Phe Va 345	-	-			 1171
	ggc aag tc Gly Lys Se		Asp Ile	Gly Pro	Phe Phe	1219
	ttg gcg ga Leu Ala As	-			_	 1267
	ggg ccg gt Gly Pro Va 39	l Val Phe				1315
	gat aag gc Asp Lys Al 410					1363
	tcg tcg ga Ser Ser Gl 425					1411

gct ggc ggt Ala Gly Gly 440	atc ggt Ile Gly	att aat Ile Asn	gat gg Asp Gl 445	c tac o y Tyr i	gcc gcg Ala Ala	acg Thr 450	tgg Trp	gcg Ala	agc Ser	1459
gtg tcc acg Val Ser Thr 455	cct ctg Pro Leu	ggt ggc Gly Gly 460	Met Ly	g cag t s Gln :	tcg ggg Ser Gly 465	ctg Leu	ggg Gly	cac His	cgc Arg	1507
cat ggt gcg His Gly Ala 470	gag gga Glu Gly	att aca Ile Thr 475	aaa ta Lys Ty	r Ala (gag atc Glu Ile 480	cga Arg	aac Asn	atc Ile	gcg Ala 485	1555
gag cag cgc Glu Gln Arg	tgg atg Trp Met 490	Ser Met	cgt gg Arg Gl	g ccg (y Pro 1 495	gcc aaa Ala Lys	atg Met	ccg Pro	cga Arg 500	aag Lys	1603
gtg tac tca Val Tyr Ser				a Leu :						1651
aaa gtt ttg Lys Val Leu 520	Pro	caaaaag	ccggacc	ctt gc	t					1686
<210> 226 <211> 521 <212> PRT <213> Coryn	ebacteri	um gluta	micum					•		·
<400> 226 Met Ile Lys	Arg Leu 5		Gly Pr	o Leu i	Pro Lys	Glu	Leu	His 15	Gln	
1 Thr Leu Leu	_		Asn Al	a Gln	Asp Ala	Ala	Lys 30		Glu	
Val Ile Ala 35		Thr Gly	Glu Th	r Leu	Gly Phe	Gly 45	Phe	Asp	Gly	
Asp Glu Gln 50	Asp Val	Glu His 55		e Ala :	Leu Ser 60	Arg	Ala	Ala	Gln	
Lys Lys Trp 65	Val His	Thr Thr	Ala Va	l Glu		Lys	Ile	Phe	Leu 80	
					75					
Lys Val His	Asp Leu 85		Lys As	n Arg (_	Leu	Met	Asp 95		
Lys Val His	85			90 g Ala	Glu Leu			95	Ile	
	Glu Thr 100 Ala Ile	Gly Lys	Asn Ar 10	90 g Ala : 5	Glu Leu Ser Ala	Ala	Asp 110	95 Glu	Ile Val	
Val Gln Leu Leu Asp Val	Glu Thr 100 Ala Ile	Gly Lys	Asn Ar 10 Arg Ph 120 Pro Gl	90 g Ala : 5 e Tyr :	Glu Leu Ser Ala Ala Asn	Ala Asn 125	Asp 110 Ala	95 Glu Gly	Ile Val Lys	

Trp Asn Tyr Pro Leu Thr Leu Gly Val Ser Asp Ala Val Pro Ala Leu Leu Ala Gly Asn Ala Val Val Ala Lys Pro Asp Leu Ala Thr Pro Phe Ser Cys Leu Ile Met Val His Leu Leu Ile Glu Ala Gly Leu Pro Arg Asp Leu Met Gln Val Val Thr Gly Pro Gly Asp Ile Val Gly Gly Ala Ile Ala Ala Gln Cys Asp Phe Leu Met Phe Thr Gly Ser Thr Ala Thr Gly Arg Ile Leu Gly Arg Thr Met Gly Glu Arg Leu Val Gly Phe Ser 250 Ala Glu Leu Gly Gly Lys Asn Pro Leu Ile Val Ala Lys Asp Ala Asp Leu Asp Lys Val Glu Ala Glu Leu Pro Gln Ala Cys Phe Ser Asn Ser 280 275 Gly Gln Leu Cys Val Ser Thr Glu Arg Ile Tyr Val Glu Glu Asp Val 295 Tyr Glu Glu Val Ile Ala Arg Phe Ser Lys Ala Ala Lys Ala Met Ser 310 Ile Gly Ala Gly Phe Glu Trp Lys Tyr Glu Met Gly Ser Leu Ile Asn His Ala Gln Leu Asp Arg Val Ser Thr Phe Val Asp Gln Ala Lys Ala Ala Gly Ala Thr Val Leu Cys Gly Gly Lys Ser Arg Pro Asp Ile Gly 360 Pro Phe Phe Tyr Glu Pro Thr Val Leu Ala Asp Val Pro Glu Gly Thr Pro Leu Leu Thr Glu Glu Val Phe Gly Pro Val Val Phe Ile Glu Lys 395 390 Val Ala Thr Leu Glu Glu Ala Val Asp Lys Ala Asn Gly Thr Pro Tyr Gly Leu Asn Ala Ser Val Phe Gly Ser Ser Glu Thr Gly Asn Leu Val 425 Ala Gly Gln Leu Glu Ala Gly Gly Ile Gly Ile Asn Asp Gly Tyr Ala 435 Ala Thr Trp Ala Ser Val Ser Thr Pro Leu Gly Gly Met Lys Gln Ser 455 Gly Leu Gly His Arg His Gly Ala Glu Gly Ile Thr Lys Tyr Ala Glu Ile Arg Asn Ile Ala Glu Gln Arg Trp Met Ser Met Arg Gly Pro Ala

490

485

495

Lys Met Pro Arg Lys Val Tyr Ser Asp Thr Val Ala Thr Ala Leu Lys 505 Leu Gly Lys Ile Phe Lys Val Leu Pro 515 <210> 227 <211> 1575 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1552) <223> RXN02674 <400> 227 atcgacctct agggcagcag tgattgattt cataaaaatc acaagtttgt aactaaaggt 60 acagttggtg aagtatccac aatcaacttt aggagacctt gtg act gca aca ttt Val Thr Ala Thr Phe 1 163 gct gga atc gac gcc acc aaa cac ctc atc gga ggt cag tgg gtg gag Ala Gly Ile Asp Ala Thr Lys His Leu Ile Gly Gly Gln Trp Val Glu 10 15 gga aac tcg gat cga att tcc acc aat atc aat cct tac gac gat tcc 211 Gly Asn Ser Asp Arg Ile Ser Thr Asn Ile Asn Pro Tyr Asp Asp Ser 25 qta atc qcc qaa agc aaa caa gct tcc att gct gat gtt gat gcc gcg 259 Val Ile Ala Glu Ser Lys Gln Ala Ser Ile Ala Asp Val Asp Ala Ala 40 tat gaa gee geg aag aag gee eag get gag tgg gea get aeg eee get 307 Tyr Glu Ala Ala Lys Lys Ala Gln Ala Glu Trp Ala Ala Thr Pro Ala 55 60 gcq qaa cga tct gcc atc atc tac cgt gcg gct gaa ctt ctt gaa gag 355 Ala Glu Arg Ser Ala Ile Ile Tyr Arg Ala Ala Glu Leu Leu Glu Glu 70 cac cgg gag gaa atc gtg gaa tgg ctg atc aag gaa tcc ggc tcg acg 403 His Arg Glu Glu Ile Val Glu Trp Leu Ile Lys Glu Ser Gly Ser Thr 90 cgt tcc aag gct aat ttg gaa atc act ttg gca gga aac atc act aaa 451 Arg Ser Lys Ala Asn Leu Glu Ile Thr Leu Ala Gly Asn Ile Thr Lys 105 110 115 gaa tcg gct tca ttc cct ggt cgt gtg cat ggt cga att tct cct tcg 499 Glu Ser Ala Ser Phe Pro Gly Arg Val His Gly Arg Ile Ser Pro Ser 120 aat act ccg ggc aaa gaa aac cgt gtg tac cgc gta gcc aag ggc gtt 547 Asn Thr Pro Gly Lys Glu Asn Arg Val Tyr Arg Val Ala Lys Gly Val 135 140

													atc Ile		595
													aag Lys 180		643
													atc Ile		691
 	-		_		-				-	-	-		ggc Gly	_	739
													aag Lys		787
													gag Glu		835
													ggt Gly 260		883
													gct Ala		931
													tgt Cys		979
		_	-		-	_	-	_	-		-	_	ttc Phe		1027
 Lys		Val	Glu	Āla	Val	_	Asn	Ile	Pro	Thr		-	cca Pro	-	1075
													ctc Leu 340		1123
													acc Thr		1171
													gtg Val		1219
													ttc Phe		1267

	ctc Leu															1315
	gcc Ala															1363
	att Ile															1411
	cac His															1459
	ggt Gly 455															1507
	gag Glu															1552
taa	ttgti	ttt t	cgad	egtaa	ac co	cc										1575
<21 <21	0> 2: 1> 4: 2> P: 3> C:	34 RT	ah a at		·			_								
		_	space	rerru	ли д.	Lucar	uicui	a								
<40	0> 2: Thr	28			·				Ala 10	Thr	Lys	His	Leu	Ile 15	Gly	
<40 Val 1	0> 2:	28 Ala	Thr	Phe 5	Ala	Gly	Ile	Asp	10					15		
<40 Val 1 Gly	0> 2: Thr	28 Ala Trp	Thr Val 20	Phe 5 Glu	Ala Gly	Gly Asn	Ile Ser	Asp Asp 25	10 Arg	Ile	Ser	Thr	Asn 30	15 Ile	Asn	
<40 Val 1 Gly	0> 2: Thr Gln	28 Ala Trp Asp 35	Thr Val 20 Asp	Phe 5 Glu Ser	Ala Gly Val	Gly Asn Ile	Ile Ser Ala 40	Asp 25 Glu	10 Arg Ser	Ile Lys	Ser	Thr Ala 45	Asn 30 Ser	15 Ile Ile	Asn	
<400 Val 1 Gly Pro	0> 2: Thr Gln Tyr Val	28 Ala Trp Asp 35 Asp	Thr Val 20 Asp	Phe 5 Glu Ser	Ala Gly Val	Gly Asn Ile Glu 55	Ile Ser Ala 40 Ala	Asp 25 Glu Ala	10 Arg Ser Lys	Ile Lys Lys	Ser Gln Ala 60	Thr Ala 45 Gln	Asn 30 Ser Ala	15 Ile Ile Glu	Asn Ala Trp	
<400 Val 1 Gly Pro Asp Ala 65	0> 2: Thr Gln Tyr Val	28 Ala Trp Asp 35 Asp	Thr Val 20 Asp Ala Pro	Phe 5 Glu Ser Ala	Ala Gly Val Tyr Ala 70	Gly Asn Ile Glu 55	Ile Ser Ala 40 Ala	Asp 25 Glu Ala Ser	10 Arg Ser Lys Ala	Ile Lys Lys Ile 75	Ser Gln Ala 60	Thr Ala 45 Gln Tyr	Asn 30 Ser Ala Arg	15 Ile Ile Glu Ala	Asn Ala Trp Ala 80	
<400 Val 1 Gly Pro Asp Ala 65 Glu	0> 2: Thr Gln Tyr Val 50	28 Ala Trp Asp 35 Asp Thr	Thr Val 20 Asp Ala Pro Glu	Phe 5 Glu Ser Ala Ala Glu 85	Ala Gly Val Tyr Ala 70	Gly Asn Ile Glu 55 Glu Arg	Ile Ser Ala 40 Ala Arg	Asp 25 Glu Ala Ser	10 Arg Ser Lys Ala Ile 90	Ile Lys Lys Ile 75 Val	Ser Gln Ala 60 Ile Glu	Thr Ala 45 Gln Tyr	Asn 30 Ser Ala Arg	15 Ile Ile Glu Ala Ile 95	Asn Ala Trp Ala 80 Lys	
<400 Val 1 Gly Pro Asp Ala 65 Glu Glu	0> 2: Thr Gln Tyr Val 50 Ala	28 Ala Trp Asp 35 Asp Thr Leu Gly	Thr Val 20 Asp Ala Pro Glu Ser 100	Phe 5 Glu Ser Ala Ala Glu 85	Ala Gly Val Tyr Ala 70 His	Gly Asn Ile Glu 55 Glu Arg	Ile Ser Ala 40 Ala Arg Glu Lys	Asp 25 Glu Ala Ser Glu Ala 105	10 Arg Ser Lys Ala Ile 90 Asn	Ile Lys Lys Ile 75 Val	Ser Gln Ala 60 Ile Glu Glu	Thr Ala 45 Gln Tyr Trp	Asn 30 Ser Ala Arg Leu Thr	15 Ile Ile Glu Ala Ile 95 Leu	Asn Ala Trp Ala 80 Lys	
<400 Val 1 Gly Pro Asp Ala 65 Glu Gly Gly	0> 2: Thr Gln Tyr Val 50 Ala Leu	28 Ala Trp Asp 35 Asp Thr Leu Gly Ile 115	Thr Val 20 Asp Ala Pro Glu Ser 100 Thr	Phe 5 Glu Ser Ala Ala Glu 85 Thr	Ala Gly Val Tyr Ala 70 His Arg	Gly Asn Ile Glu 55 Glu Arg Ser	Ile Ser Ala 40 Ala Arg Glu Lys Ala 120	Asp 25 Glu Ala Ser Glu Ala 105 Ser	10 Arg Ser Lys Ala Ile 90 Asn Phe	Ile Lys Lys Ile 75 Val Leu	Ser Gln Ala 60 Ile Glu Glu	Thr Ala 45 Gln Tyr Trp Ile Arg 125	Asn 30 Ser Ala Arg Leu Thr 110 Val	15 Ile Ile Glu Ala Ile 95 Leu His	Asn Ala Trp Ala 80 Lys Ala Gly	

150 155 145 Asn Leu Ser Ile Arg Ser Val Ala Pro Ala Leu Ala Val Gly Asn Ala 170 Val Val Ile Lys Pro Ala Ser Asp Thr Pro Val Thr Gly Gly Val Ile 180 185 Pro Ala Arg Ile Phe Glu Glu Ala Gly Val Pro Ala Gly Val Ile Ser 200 Thr Val Ala Gly Ala Gly Ser Glu Ile Gly Asp His Phe Val Thr His 215 Ala Val Pro Lys Leu Ile Ser Phe Thr Gly Ser Thr Pro Val Gly Arg 230 Arg Val Gly Glu Leu Ala Ile Asn Gly Gly Pro Met Lys Thr Val Ala Leu Glu Leu Gly Gly Asn Ala Pro Phe Val Val Leu Ala Asp Ala Asp Ile Asp Ala Ala Ala Gln Ala Ala Val Gly Ala Phe Leu His Gln Gly Gln Ile Cys Met Ser Ile Asn Arg Val Ile Val Asp Ala Ala Val 295 His Asp Glu Phe Leu Glu Lys Phe Val Glu Ala Val Lys Asn Ile Pro Thr Gly Asp Pro Ser Ala Glu Gly Thr Leu Val Gly Pro Val Ile Asn 330 Asp Ser Gln Leu Ser Gly Leu Lys Glu Lys Ile Glu Leu Ala Lys Lys Glu Gly Ala Thr Val Gln Val Glu Gly Pro Ile Glu Gly Arg Leu Val 360 His Pro His Val Phe Ser Asp Val Thr Ser Asp Met Glu Ile Ala Arg Glu Glu Ile Phe Gly Pro Leu Ile Ser Val Leu Lys Ala Asp Asp Glu Ala His Ala Ala Glu Leu Ala Asn Ala Ser Asp Phe Gly Leu Ser Ala 405 Ala Val Trp Ser Lys Asp Ile Asp Arg Ala Ala Gln Phe Ala Leu Gln 425 Ile Asp Ser Gly Met Val His Ile Asn Asp Leu Thr Val Asn Asp Glu 440 Pro His Val Met Phe Gly Gly Ser Lys Asn Ser Gly Leu Gly Arg Phe 455 Asn Gly Asp Trp Ala Ile Glu Glu Phe Thr Thr Asp Arg Trp Ile Gly

475

470

Ile Lys Arg Ser

<210> 229 <211> 2034 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2011) <223> RXN00868 <400> 229 cgatgaccca gcgcacgcct gggttcgaga tacatggacc gggcaagcat ttgatgatcg 60 cttgccatat gagaacgcaa acaaggaggg ataaaatttc atg gct gaa acg aag 115 Met Ala Glu Thr Lys aga atg aca gtt agc cag gca ctg gtt gaa ttc ctt ggt cac cag tgg 163 Arg Met Thr Val Ser Gln Ala Leu Val Glu Phe Leu Gly His Gln Trp 10 act gtc gac ggc gat atc cgc gag cgc acc att cca ggc atg ttc gga 211 Thr Val Asp Gly Asp Ile Arg Glu Arg Thr Ile Pro Gly Met Phe Gly 25 att ttc gga cac gga aac gtt gct ggc att ggc cag gca ctc aag cag 259 Ile Phe Gly His Gly Asn Val Ala Gly Ile Gly Gln Ala Leu Lys Gln 40 tac aac gtt gaa caa cct gag ctc atg ccg tac tac cag gct cgt aat 307 Tyr Asn Val Glu Gln Pro Glu Leu Met Pro Tyr Tyr Gln Ala Arg Asn 55 gag cag gcg atg gtg cac cag tct gtt gga tat gca cgc atg cac cgc 355 Glu Gln Ala Met Val His Gln Ser Val Gly Tyr Ala Arg Met His Arg 70 egt egt gge aca tac gea tet gee gea tet gtt gga eee gge geg ace 403 Arg Arg Gly Thr Tyr Ala Ser Ala Ala Ser Val Gly Pro Gly Ala Thr 90 100 aac ctg tta acc ggt gcg gct ctt gct acc acc cgt ttg cca gcg 451 Asn Leu Leu Thr Gly Ala Ala Leu Ala Thr Thr Asn Arg Leu Pro Ala 105 110 115 ttg ctg ctg cct agt gat act ttt gcc acc cgc gtg gcg gat cca gtg 499 Leu Leu Pro Ser Asp Thr Phe Ala Thr Arg Val Ala Asp Pro Val 120 125 130 ttg cag cag ttg gag cag cca tgg gat atc ggg ctg acg gtt aat gat 547 Leu Gln Gln Leu Glu Gln Pro Trp Asp Ile Gly Leu Thr Val Asn Asp 140 135 145 gct ttc cgc cct gtg tct aag ttc ttt gat cgg gtg cag cgc ccg gag 595 Ala Phe Arg Pro Val Ser Lys Phe Phe Asp Arg Val Gln Arg Pro Glu 150 155 160

cag Gln																643
gca Ala																691
gaa Glu																739
att Ile					cca Pro											787
gtc Val 230				_	aag Lys 235		_	-			-					835
ttg Leu	tac Tyr	tcc Ser	gat Asp	gcg Ala 250	gaa Glu	acg Thr	cag Gln	ctg Leu	cag Gln 255	gca Ala	ctt Leu	gtg Val	gag Glu	cag Gln 260	act Thr	883
ggc Gly																931
gat Asp					tta Leu											979
					ggt Gly											1027
cgt Arg 310					acc Thr 315											1075
gat Asp			Phe	Ile	aac Asn	Ile	Asn	Val	Āla	Ser					Lys	1123
					cct Pro											1171
gag Glu	ctt Leu	gct Ala 360	gaa Glu	gcc Ala	ctg Leu	cag Gln	gga Gly 365	ttc Phe	acc Thr	gtg Val	gca Ala	gag Glu 370	gat Asp	tac Tyr	gcg Ala	1219
					gaa Glu											1267
					ggt Gly 395											1315

ggc gcg gtg cag Gly Ala Val Gln		Ser Glu L			
gct gga tcc ttg Ala Gly Ser Leu 425					
gcg ctg ggc tac Ala Leu Gly Tyr 440	cac gtg gaa His Val Glu	tat gcg t Tyr Ala P 445	tc tcg tgc Phe Ser Cys	atg ggc tat Met Gly Tyr 450	gaa 1459 Glu
atc gcg ggc ggt Ile Ala Gly Gly 455	atc ggc gcg Ile Gly Ala 460	aag cgt g Lys Arg G	gga ctt gat Gly Leu Asp 465	gcc gca ggc Ala Ala Gly	gat 1507 Asp
gac cgc gac gtg Asp Arg Asp Val 470	gtg atc atg Val Ile Met 475	gtt ggt g Val Gly A	gat ggg tcc Asp Gly Ser 480	tac ctc atg Tyr Leu Met	ctc 1555 Leu 485
aac act gag ctg Asn Thr Glu Leu		Val Ala G			
gtg ctc atc caa Val Leu Ile Gln 505					
act gtc ggt tcg Thr Val Gly Ser 520					
gag gcg aaa aac Glu Ala Lys Asn 535					
atg aat gca cgc Met Asn Ala Arg 550					
gcg aat gcg atc Ala Asn Ala Ile		Lys Ala A			
tcg gag aaa tcc Ser Glu Lys Ser 585					
gca cca gac ggt Ala Pro Asp Gly 600					
act ctg gat agc Thr Leu Asp Ser 615					
gcc ctc cag cgt Ala Leu Gln Arg 630			cagtt ggcta	aacca aaa	2034

<210> 230

<211> 637

<212> PRT

<213> Corynebacterium glutamicum

<400> 230

Met Ala Glu Thr Lys Arg Met Thr Val Ser Gln Ala Leu Val Glu Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Gly His Gln Trp Thr Val Asp Gly Asp Ile Arg Glu Arg Thr Ile 20 25 30

Pro Gly Met Phe Gly Ile Phe Gly His Gly Asn Val Ala Gly Ile Gly
35 40 45

Gln Ala Leu Lys Gln Tyr Asn Val Glu Gln Pro Glu Leu Met Pro Tyr 50 55 60

Tyr Gln Ala Arg Asn Glu Gln Ala Met Val His Gln Ser Val Gly Tyr
65 70 75 80

Ala Arg Met His Arg Arg Arg Gly Thr Tyr Ala Ser Ala Ala Ser Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Gly Pro Gly Ala Thr Asn Leu Leu Thr Gly Ala Ala Leu Ala Thr Thr 100 105 110

Asn Arg Leu Pro Ala Leu Leu Pro Ser Asp Thr Phe Ala Thr Arg 115 120 125

Val Ala Asp Pro Val Leu Gln Gln Leu Glu Gln Pro Trp Asp Ile Gly 130 135 140

Leu Thr Val Asn Asp Ala Phe Arg Pro Val Ser Lys Phe Phe Asp Arg 145 150 155 160

Val Gln Arg Pro Glu Gln Leu Phe Ser Ile Ala Leu Ala Ala Met Arg 165 170 175

Val Leu Thr Asp Pro Ala Glu Thr Gly Ala Val Thr Ile Ala Leu Pro 180 185 190

Glu Asp Val Gln Ala Glu Met Leu Asp Val Pro Val Glu Phe Leu Gln 195 200 205

Asp Arg Glu Trp His Ile Arg Arg Pro Arg Pro Glu Arg Ala Ala Leu 210 215 220

Ala Arg Ala Ile Glu Val Ile Lys Asn Ala Lys Asn Pro Met Ile Ile 225 230 235 240

Ala Gly Gly Gly Val Leu Tyr Ser Asp Ala Glu Thr Gln Leu Gln Ala 245 250 255

Leu Val Glu Gln Thr Gly Ile Pro Val Gly Thr Ser Gln Ala Gly Gly 260 265 270

Gly Val Leu Ala Trp Asp His Ala Gln Asn Leu Gly Gly Val Gly Ala 275 280 285

Thr Gly Thr Leu Ala Ala Asn Arg Ile Ala Gly Asp Ala Asp Val Ile

WO 01/00844 295 300 290 Ile Gly Ile Gly Thr Arg Tyr Ser Asp Phe Thr Thr Ala Ser Arg Thr 315 Ala Phe Gln Asn Pro Asp Val Thr Phe Ile Asn Ile Asn Val Ala Ser 330 Phe Asp Ala Tyr Lys His Gly Thr Gln Leu Pro Val Ile Ala Asp Ala Arg Glu Ala Ile Val Glu Leu Ala Glu Ala Leu Gln Gly Phe Thr Val 360 Ala Glu Asp Tyr Ala Gln Arg Ile Ala Lys Glu Lys Ala Ala Trp Asp Ala Glu Val Asp Lys Ser Phe Ala Pro Ser Gly Leu Ala Leu Pro Gly 395 390 Gln Pro Glu Ile Ile Gly Ala Val Gln Ala Ser Thr Ser Glu Lys Asp Val Ile Val Gln Ala Ala Gly Ser Leu Pro Gly Asp Leu His Lys Leu 420 Trp Arg Val Arg Asp Ala Leu Gly Tyr His Val Glu Tyr Ala Phe Ser

Cys Met Gly Tyr Glu Ile Ala Gly Gly Ile Gly Ala Lys Arg Gly Leu

Asp Ala Ala Gly Asp Asp Arg Asp Val Val Ile Met Val Gly Asp Gly

Ser Tyr Leu Met Leu Asn Thr Glu Leu Val Thr Ala Val Ala Glu Gly

Ile Lys Val Ile Val Val Leu Ile Gln Asn His Gly Tyr Ala Ser Ile 505

Gly His Leu Ser Glu Thr Val Gly Ser Gln Arg Phe Gly Thr Trp Tyr

Arg Glu Tyr Asp Ala Glu Ala Lys Asn Phe Gln Gly Glu Gln Ile Leu 535

Pro Val Asp Leu Ala Met Asn Ala Arg Ser Tyr Gly Met Asp Val Ile 545

Glu Val Glu Pro Ser Ala Asn Ala Ile Glu Asp Leu Lys Ala Ala Met

Ala Thr Ala Lys Ala Ser Glu Lys Ser Thr Phe Ile His Ile Asn Ser

Asp Pro Leu Ile Tyr Ala Pro Asp Gly Ala Gly Trp Trp Asp Val Pro

Val Ser Glu Thr Ser Thr Leu Asp Ser Thr Asn Ala Ala Arg Glu Asp

Tyr Leu Lys Asn Gln Ala Leu Gln Arg Pro Leu Leu Gly

625 <210> 231 <211> 1142 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1119) <223> RXN01143 <400> 231 ate eea gtt gte ace ace ttg atg get ttg ggt act tte eea gag tet 48 Ile Pro Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser 1 5 10 cac gag ctg cac atg ggt atg cca ggc atg cat ggc act gtg tcc gct 96 His Glu Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala 20 144 gtt ggt gca ctg cag cgc agc gac ctg ctg att gct atc ggc tcc cgc Val Gly Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg 35 ttt gat gac ege gtc ace ggt gac gtt gac ace tte geg eet gac gee Phe Asp Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala 50 aag atc att cac gcc gac att gat cct gcc gaa atc ggc aag atc aag 240 Lys Ile Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys 65 cag gtt gag gtt cca atc gtg ggc gat gcc cgc gaa gtt ctt gct cgt 288 Gln Val Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg 85 ctg ctg gaa acc acc aag gca agc aag gca gag acc gag gac atc tcc 336 Leu Leu Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser 100 gag tgg gtt gac tac ctc aag ggc ctc aag gca cgt ttc ccg cgt ggc 384 Glu Trp Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly 115 tac gac gag cag cca ggc gat ctg ctg gca cca cag ttt gtc att gaa 432 Tyr Asp Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu 130 135 140 acc ctg tcc aag gaa gtt ggc ccc gac gca att tac tgc gcc ggc gtt 480 Thr Leu Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val 160 145 150 ggc cag cac caa atg tgg gca gct cag ttc gtt gac ttt gaa aag cca 528 Gly Gln His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro 175 165 cgc acc tgg ctc aac tcc ggt gga ctg ggc acc atg ggc tac gca gtt 576

Arg	Thr	Trp	Leu 180	Asn	Ser	Gly	Gly	Leu 185	Gly	Thr	Met	Gly	Tyr 190	Ala	Val	
					gca Ala											624
					ggc Gly											672
acc Thr 225	gcc Ala	gca Ala	gtt Val	gaa Glu	ggt Gly 230	ttc Phe	ccc Pro	att Ile	aag Lys	atc Ile 235	gca Ala	cta Leu	atc Ile	aac Asn	aac Asn 240	720
					tgg Trp											768
					act Thr											816
_		-			tct Ser					_	-	_		_	-	864
					gta Val											912
					gtc Val 310											960
_			_		tct Ser	_						_		-		1008
_			_	-	cca Pro			_		_	-		-	-	-	1056
					cac His											1104
			gag Glu		taaq	ggaga	aga d	ccaa	agato	gg ct	a					1142
<21 <21	0> 2: 1> 3: 2> P: 3> C:	73 RT	ebact	ceriu	um gl	lutar	nicur	n								
	0> 2: Pro		Val	Thr 5	Thr	Leu	Met	Ala	Leu 10	Gly	Thr	Phe	Pro	Glu 15	Ser	

His Glu Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala 🗻 Lys Ile Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu 135 Thr Leu Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro 170 175 Arg Thr Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp 195 Ala Ile Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Lys Pro Gly Ala Trp Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val 280 Thr Lys Ala Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile 290 Asn Asp Arg Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln 310 315 Val Trp Pro Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr 325 Ala Leu Gly Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu

350

345

340

Asp Pro Ala Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val 360 Glu Ser Thr Glu Ala 370 <210> 233 <211> 793 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(793) <223> RXN01146 <400> 233 tatttaqtaa aqqaqccaqa aagtcgtgaa tgtggcagct tctcaacagc ccactcccgc 60 cacqqttgca agccqtqgtc gatccqccqc ccctgagcgg atg aca ggt gca aag 115 Met Thr Gly Ala Lys gca att gtt cga tcg ctc gag gag ctt aac gcc gac atc gtg ttc ggt 163 Ala Ile Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly 10 att cct ggt ggt gcg gtg cta ccg gtg tat gac ccg ctc tat tcc tcc 211 Ile Pro Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser 25 aca aag gtg cgc cac gtc ttg gtg cgc cac gag cag ggc gca ggc cac 259 Thr Lys Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His 50 gca gca acc ggc tac gcg cag gtt act gga cgc gtt ggc gtc tgc att 307 Ala Ala Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile 55 60 gca acc tct ggc cca gga gca acc aac ttg gtt acc cca atc gct gat 355 Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp 70 75 403 gca aac ttg gac tcc gtt ccc atg gtt gcc atc acc ggc cag gtc gga Ala Asn Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly 100 90 agt ggc ctg ctg ggt acc gac gct ttc cag gaa gcc gat atc cgc ggc 451 Ser Gly Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly 105 atc acc atg cca gtg acc aag cac aac ttc atg gtc acc aac cct aac 499 Ile Thr Met Pro Val Thr Lys His Asn Phe Met Val Thr Asn Pro Asn 120 125 gac att cca cag gca ttg gct gag gca ttc cac ctc gcg att act ggt

Asp Ile Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly

140

135

Arg Pro Gly 150					Asp Val									
gaa ttg gat Glu Leu Asp							Arg							
cca gtt tca Pro Val Ser														
atc ggt gag Ile Gly Glu 200														
aag gct gac Lys Ala Asp 215														
atc cca Ile Pro 230							793							
<210> 234 <211> 231 <212> PRT <213> Corynebacterium glutamicum														
<400> 234 Met Thr Gly 1	Ala Lys 5	Ala Ile	Val Arg	Ser Leu 10	Glu Glu	Leu Asr								
Met Thr Gly	5			10		15	•							
Met Thr Gly 1	Phe Gly 20	Ile Pro	Gly Gly 25	10 Ala Val	Leu Pro	Val Tyr 30	Asp							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr	Phe Gly 20 Ser Ser	Ile Pro Thr Lys	Gly Gly 25 Val Arg 40	10 Ala Val His Val	Leu Pro	Val Tyr 30 Arg His	Asp Glu							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr 35 Gln Gly Ala	Phe Gly 20 Ser Ser Gly His	Ile Pro Thr Lys Ala Ala 55	Gly Gly 25 Val Arg 40 Thr Gly	10 Ala Val His Val Tyr Ala	Leu Pro Leu Val 45 Gln Val 60	Val Tyr 30 Arg His	Asp Glu Arg							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr 35 Gln Gly Ala 50 Val Gly Val	Phe Gly 20 Ser Ser Gly His Cys Ile	Ile Pro Thr Lys Ala Ala 55 Ala Thr	Gly Gly 25 Val Arg 40 Thr Gly Ser Gly	10 Ala Val His Val Tyr Ala Pro Gly 75	Leu Pro Leu Val 45 Gln Val 60 Ala Thr	Val Tyr 30 Arg His Thr Gly	Asp Glu Arg Val 80							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr 35 Gln Gly Ala 50 Val Gly Val 65	Phe Gly 20 Ser Ser Gly His Cys Ile Ala Asp	Ile Pro Thr Lys Ala Ala 55 Ala Thr 70 Ala Asn	Gly Gly 25 Val Arg 40 Thr Gly Ser Gly Leu Asp	10 Ala Val His Val Tyr Ala Pro Gly 75 Ser Val 90	Leu Pro Leu Val 45 Gln Val 60 Ala Thr	Val Tyr 30 Arg His Thr Gly Asn Leu Val Ala	Asp Glu Arg Val 80							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr 35 Gln Gly Ala 50 Val Gly Val 65 Thr Pro Ile	Phe Gly 20 Ser Ser Gly His Cys Ile Ala Asp 85 Val Gly 100	Ile Pro Thr Lys Ala Ala 55 Ala Thr 70 Ala Asn Ser Gly	Gly Gly 25 Val Arg 40 Thr Gly Ser Gly Leu Asp Leu Leu 105	10 Ala Val His Val Tyr Ala Pro Gly 75 Ser Val 90 Gly Thr	Leu Pro Leu Val 45 Gln Val 60 Ala Thr Pro Met Asp Ala	Val Tyr 30 Arg His Thr Gly Asn Lew Val Ala 95 Phe Glr	Asp Glu Arg Val 80 Ile							
Met Thr Gly 1 Asp Ile Val Pro Leu Tyr 35 Gln Gly Ala 50 Val Gly Val 65 Thr Pro Ile Thr Gly Gln Ala Asp Ile	Phe Gly 20 Ser Ser Gly His Cys Ile Ala Asp 85 Val Gly 100 Arg Gly	Ile Pro Thr Lys Ala Ala 55 Ala Thr 70 Ala Asn Ser Gly Ile Thr	Gly Gly 25 Val Arg 40 Thr Gly Ser Gly Leu Asp Leu Leu 105 Met Pro 120	10 Ala Val His Val Tyr Ala Pro Gly 75 Ser Val 90 Gly Thr	Leu Pro Leu Val 45 Gln Val 60 Ala Thr Pro Met Asp Ala Lys His 125	Val Tyr 30 Arg His Thr Gly Asn Lev Val Ala 95 Phe Glr 110 Asn Phe	Asp Glu Arg Val 80 Ile							

Asp Val Gln Asn Ala Glu Leu Asp Phe Val Trp Pro Pro Lys Ile Asp 170 Leu Pro Gly Tyr Arg Pro Val Ser Thr Pro His Ala Arg Gln Ile Glu 185 Gln Ala Val Lys Leu Ile Gly Glu Ala Lys Lys Pro Val Leu Tyr Val 200 Gly Gly Gly Val Ile Lys Ala Asp Ala His Glu Glu Leu Arg Ala Phe 220 Ala Glu Tyr Thr Gly Ile Pro 230 <210> 235 <211> 639 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(616) <223> RXN01144 <400> 235 ggtgatgaat ctgcagcaga agatcctgcc gacattcacg aagccgtcag cgacattgat 60 gccgccgttg aatcgaccga ggcataagga gagacccaag atg gct aat tct gac Met Ala Asn Ser Asp qtc acc cqc cac atc ctq tcc gta ctc gtt cag gac gta gac gga atc Val Thr Arg His Ile Leu Ser Val Leu Val Gln Asp Val Asp Gly Ile 10 211 att tee ege gta tea ggt atg tte ace ega ege gea tte aac ete gtg Ile Ser Arg Val Ser Gly Met Phe Thr Arg Arg Ala Phe Asn Leu Val 25 ttc ctc gtg tct gca aag acc gaa aca cac ggc atc aac cgc atc acg 259 Phe Leu Val Ser Ala Lys Thr Glu Thr His Gly Ile Asn Arg Ile Thr 40 45 gtt gtt gtc gac gcc gac gag ctc aac att gag cag atc acc aag cag 307 Val Val Val Asp Ala Asp Glu Leu Asn Ile Glu Gln Ile Thr Lys Gln 55 ctc aac aag ctg atc ccc gtg ctc aaa gtc gtg cga ctt gat gaa gag 355 Leu Asn Lys Leu Ile Pro Val Leu Lys Val Val Arg Leu Asp Glu Glu 70 acc act atc gcc cgc gca atc atg ctg gtt aag gtc tct gcg gac agc 403 Thr Thr Ile Ala Arg Ala Ile Met Leu Val Lys Val Ser Ala Asp Ser acc aac cgt ccg cag atc gtc gac gcc gcg aac atc ttc cgc gcc cga 451 Thr Asn Arg Pro Gln Ile Val Asp Ala Ala Asn Ile Phe Arg Ala Arg 105

gtc gtc gac gtg gct cca gac tct gtg gtt att gaa tcc aca ggc acc Val Val Asp Val Ala Pro Asp Ser Val Val Ile Glu Ser Thr Gly Thr 499 125 cca ggc aag ctc cgc gca ctg ctt gac gtg atg gaa cca ttc gga atc 547 Pro Gly Lys Leu Arg Ala Leu Leu Asp Val Met Glu Pro Phe Gly Ile 140 145 cgc gaa ctg atc caa tcc gga cag att gca ctc aac cgc ggt ccg aag 595 Arg Glu Leu Ile Gln Ser Gly Gln Ile Ala Leu Asn Arg Gly Pro Lys 160 155 639 acc atg gct ccg gcc aag atc taaacagcaa ttaatctgat tgc Thr Met Ala Pro Ala Lys Ile 170 <210> 236 <211> 172 <212> PRT <213> Corynebacterium glutamicum <400> 236 Met Ala Asn Ser Asp Val Thr Arg His Ile Leu Ser Val Leu Val Gln Asp Val Asp Gly Ile Ile Ser Arg Val Ser Gly Met Phe Thr Arg Arg Ala Phe Asn Leu Val Phe Leu Val Ser Ala Lys Thr Glu Thr His Gly Ile Asn Arg Ile Thr Val Val Val Asp Ala Asp Glu Leu Asn Ile Glu Gln Ile Thr Lys Gln Leu Asn Lys Leu Ile Pro Val Leu Lys Val Val Arg Leu Asp Glu Glu Thr Thr Ile Ala Arg Ala Ile Met Leu Val Lys Val Ser Ala Asp Ser Thr Asn Arg Pro Gln Ile Val Asp Ala Ala Asn Ile Phe Arg Ala Arg Val Val Asp Val Ala Pro Asp Ser Val Val Ile Glu Ser Thr Gly Thr Pro Gly Lys Leu Arg Ala Leu Leu Asp Val Met Glu Pro Phe Gly Ile Arg Glu Leu Ile Gln Ser Gly Gln Ile Ala Leu 155 160 145 Asn Arg Gly Pro Lys Thr Met Ala Pro Ala Lys Ile 165

<210> 237 <211> 897

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(874)
<223> RXA02474

<400> 237

tgctggtcta ttgtggcgac cgagggcctt tgaaggttcg acaaactgta taaggccttg 60

aatcttgaga atttattttg aggaagcaag aggaagtgtc atg agc aaa gtt gca 115 Met Ser Lys Val Ala 1 5

atg gtt acc ggt ggt gca caa ggc atc ggt cgt gga att tca gag aag 163 Met Val Thr Gly Gly Ala Gln Gly Ile Gly Arg Gly Ile Ser Glu Lys 10 15 20

ctg gca gca gat ggt ttc gat att gcc gta gcc gac ctg cca caa cag 211 Leu Ala Ala Asp Gly Phe Asp Ile Ala Val Ala Asp Leu Pro Gln Gln 25 30 35

gaa gaa caa gct gca gag acc atc aag ttg att gaa gct gca ggt caa 259 Glu Glu Gln Ala Ala Glu Thr Ile Lys Leu Ile Glu Ala Ala Gly Gln 40 45

aag gct gta ttc gtt gga tta gat gtc acc gat aag gct aat ttc gac 307 Lys Ala Val Phe Val Gly Leu Asp Val Thr Asp Lys Ala Asn Phe Asp 55 60 65

agt gca att gat gag gca gca gag aaa ctt ggc ggc ttc gat gtg cta 355 Ser Ala Ile Asp Glu Ala Ala Glu Lys Leu Gly Gly Phe Asp Val Leu 70 85

gta aac aac gcc ggc atc gca caa att aag cca ctt ctg gaa gtc acc 403 Val Asn Asn Ala Gly Ile Ala Gln Ile Lys Pro Leu Leu Glu Val Thr 90 95 100

gaa gaa gac cta aag cag atc tac tcc gtg aac gtt ttt agc gta ttt 451 Glu Glu Asp Leu Lys Gln Ile Tyr Ser Val Asn Val Phe Ser Val Phe 105 110 115

ttt ggt att caa gca gca tcc cga aag ttc gat gag ctt ggc gta aaa 499 Phe Gly Ile Gln Ala Ala Ser Arg Lys Phe Asp Glu Leu Gly Val Lys 120 125 130

ggc aag atc atc aac gct gca tca atc gct gct atc caa ggt ttc cca 547 Gly Lys Ile Ile Asn Ala Ala Ser Ile Ala Ala Ile Gln Gly Phe Pro 135 140 145

atc ttg agc gcc tac tcc acc acc aaa ttc gcg gtt cgt ggc ctc acc

Ile Leu Ser Ala Tyr Ser Thr Thr Lys Phe Ala Val Arg Gly Leu Thr

150 165 160 165

cag gct gct gcg caa gaa ctc gca ccc aag ggt cac acc gtg aat gcc 643 Gln Ala Ala Ala Gln Glu Leu Ala Pro Lys Gly His Thr Val Asn Ala 170 175 180

tac gca cct ggc atc gtg ggc acc gga atg tgg gag caa atc gat gcc 691 Tyr Ala Pro Gly Ile Val Gly Thr Gly Met Trp Glu Gln Ile Asp Ala 185 190 195

gag ctt tcc Glu Leu Ser 200	Lys Ile									739				
tac tcc tcc Tyr Ser Ser 215			Gly A			al Pro				787				
gcc ggt ctg Ala Gly Leu 230										835				
gga cag gtc Gly Gln Val	_	Val Asp		-			tago	gggt1	gc	884				
tttcccgcac tca														
<210> 238 <211> 258 <212> PRT <213> Corynebacterium glutamicum														
<400> 238 Met Ser Lys	Val Ala 5		Thr G	ly Gly 10	Ala Gl	n Gly	Ile	Gly 15	Arg					
Gly Ile Ser	Glu Lys 20	Leu Ala		sp Gly 25	Phe As	sp Ile	Ala 30	Val	Ala					
Asp Leu Pro		Glu Glu	Gln A	la Ala	Glu Th	r Ile 45	Lys	Leu	Ile					
Glu Ala Ala 50	Gly Gln	Lys Ala 55		he Val		eu Asp 50	Val	Thr	Asp					
Lys Ala Asn 65	Phe Asp	Ser Ala 70	Ile A	sp Glu	Ala Al 75	a Glu	Lys	Leu	Gly 80					
Gly Phe Asp	Val Leu 85		Asn A	la Gly 90	Ile Al	a Gln	Ile	Lys 95	Pro					
Leu Leu Glu	Val Thr 100	Glu Glu		eu Lys 05	Gln Il	e Tyr	Ser 110	Val	Asn					
Val Phe Ser 115	Val Phe	Phe Gly	Ile G	ln Ala	Ala Se	er Arg 125	Lys	Phe	Asp					
Glu Leu Gly 130	Val Lys	Gly Lys 135		le Asn	Ala Al 14	_	Ile	Ala	Ala					
Ile Gln Gly 145	Phe Pro	Ile Leu 150	Ser Al	la Tyr	Ser Th	r Thr	Lys	Phe	Ala 160					
Val Arg Gly	Leu Thr 165	Gln Ala	Ala Al	la Gln 170	Glu Le	u Ala	Pro	Lys 175	Gly					
His Thr Val	Asn Ala 180	Tyr Ala		ly Ile 85	Val Gl	y Thr	Gly 190	Met	Trp					

Glu Gln Ile Asp Ala Glu Leu Ser Lys Ile Asn Gly Lys Pro Ile Gly Glu Asn Phe Lys Glu Tyr Ser Ser Ile Ala Leu Gly Arg Pro Ser Val Pro Glu Asp Val Ala Gly Leu Val Ser Phe Leu Ala Ser Glu Asn Ser Asn Tyr Ile Thr Gly Gln Val Met Leu Val Asp Gly Gly Met Leu Tyr Asn . <210> 239 <211> 876 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(853) <223> RXA02453 <400> 239 aaccaacaaa ggtcatctca accggcttaa gaaaattctg ccagctttct gctgattgaa 60 tcgtgccagc tcagggcata tctcacctaa agtaaacacc atg aaa tca atc ttc Met Lys Ser Ile Phe att tcc ggt gcg gcg aac gga att ggc aaa gct gtg gcg ttg aaa ttt Ile Ser Gly Ala Ala Asn Gly Ile Gly Lys Ala Val Ala Leu Lys Phe 10 ctt cac gaa ggt tgg ctc gtt gga gcc tac gac ctc gcg gaa atc acc 211 Leu His Glu Gly Trp Leu Val Gly Ala Tyr Asp Leu Ala Glu Ile Thr 25 259 tac tca cac ccc aat ctt cgc tgg ggc tac ctc aat gtt cga cag tcc Tyr Ser His Pro Asn Leu Arg Trp Gly Tyr Leu Asn Val Arg Gln Ser 40 307 gag tcg tgg gac aaa gcc cta gaa gac ttt gcg acg cac acc gga ggc Glu Ser Trp Asp Lys Ala Leu Glu Asp Phe Ala Thr His Thr Gly Gly 55 acc atc gat gtg gtg gac aat aat gcc ggc gta att att gag gga ccg 355 Thr Ile Asp Val Val Asp Asn Asn Ala Gly Val Ile Ile Glu Gly Pro 70 ctg cag gac gca gag gag ggg agc gtc gac aag ctt ctt gca atc aac 403 Leu Gln Asp Ala Glu Glu Gly Ser Val Asp Lys Leu Leu Ala Ile Asn gtc aat ggc gtg act ctt ggt gcc cgc gcc gct cat cct tat ttg gcg Val Asn Gly Val Thr Leu Gly Ala Arg Ala Ala His Pro Tyr Leu Ala 105

cgc acg														499
tac ggg Tyr Gly 135														547
gca ggt Ala Gly 150														595
cgc gtg Arg Val	gtc gat Val Asp	gtt Val 170	tgg Trp	cct Pro	ttg Leu	tgg Trp	gcg Ala 175	aaa Lys	acc Thr	gat Asp	ttg Leu	gtg Val 180	aac Asn	643
ggc gtg Gly Val	aag gct Lys Ala 185	aag Lys	tca Ser	ctg Leu	aag Lys	cgt Arg 190	ttg Leu	ggt Gly	gtc Val	cgg Arg	atc Ile 195	act Thr	ccg Pro	691
gaa cag Glu Gln														739
tgg gcg Trp Ala 215														787
ctg tat Leu Tyr 230														835
gcg cga Ala Arg		-		taaa	atgaa	att q	gatta	attt	a go	gc				876
<210> 240 <211> 251 <212> PRT <213> Corynebacterium glutamicum														
<400> 24 Met Lys		Phe	Ile	Ser	Gly	Ala	Ala	Asn	Gly	Ile	Gly	Lys	Ala	
1		5			-		10		_			15		
Val Ala	Leu Lys 20		Leu	His	Glụ	Gly 25	Trp	Leu	Val	Gly	Ala 30	Tyr	Asp	
Leu Ala	Glu Ile 35	Thr	Tyr	Ser	His 40	Pro	Asn	Leu	Arg	Trp 45	Gly	Tyr	Leu	
Leu Ala	35				40					45				
Asn Val	35 Arg Gln	Ser	Glu	Ser 55	40 Trp	Asp	Lys	Ala	Leu 60	45 Glu	Asp	Phe	Ala	

Leu Leu Ala Ile Asn Val Asn Gly Val Thr Leu Gly Ala Arg Ala Ala His Pro Tyr Leu Ala Arg Thr Pro Gly Ala Gln Leu Leu Asn Met Ser Ser Ala Ser Ala Val Tyr Gly Gln Pro Gln Ile Ala Val Tyr Ser Ala Ser Lys Phe Tyr Val Ala Gly Leu Thr Glu Ala Leu Asn Leu Glu Trp Arg Lys Asp Asp Ile Arg Val Val Asp Val Trp Pro Leu Trp Ala Lys Thr Asp Leu Val Asn Gly Val Lys Ala Lys Ser Leu Lys Arg Leu Gly Val Arg Ile Thr Pro Glu Gln Val Ala Gln Ala Val Trp Asp Ala Val 200 205 His Pro Lys Ser Arg Trp Ala Lys Gly Lys Val His His Gly Val Ser 215 Lys Leu Asp Lys Ala Leu Tyr Leu Met Lys Ser Leu Ser Pro Asp Arg 235 225 230 Val Ala Met Cys Phe Ala Arg Leu Ile Ala Gly 245 <210> 241 <211> 1140 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1117) <223> RXS01758 <400> 241 cccccttatt cagagtgatg gtctaccgga gaagtaccca gaccaatagc atcgaccaac 60 115 gatagcgcgc tcagaagttc tttagtgaaa gcagaaccaa atg ccc aaa tac att Met Pro Lys Tyr Ile gcc atg cag gta tcc gaa tcc ggt gca ccg tta gcc gcg aat ctc gtg 163 Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu Ala Ala Asn Leu Val 211 caa cct gct ccg ttg aaa tcg agg gaa gtc cgc gtg gaa atc gct gct Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg Val Glu Ile Ala Ala 259 agt ggt gtg tgc cat gca gat att ggc acg gca gca gca tcg ggg aag Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala Ala Ala Ser Gly Lys 45

										gag Glu						307
										acg Thr 80						355
										gac Asp						403
gca Ala	ggt Gly	gat Asp	cct Pro 105	gtg Val	cat His	tgc Cys	aga Arg	gag Glu 110	cgg Arg	aag Lys	att Ile	cct Pro	ggc Gly 115	gtt Val	tct Ser	451
										gtt Val						499
										gag Glu						547
-	-							-	_	cga Arg 160		-	_	-	-	595
										ggc Gly			Val			643
										cga Arg						691
										caa Gln						739
					Asp					cag Gln		Leu				787
		_	-	_		-				tcc Ser 240		_				835
										ggg Gly						883
										gca Ala						931
	_	_								gga Gly	-			-	_	979
gaa	cag	act	atg	aaa	ttt	gct	cat	ctc	cat	ggc	gtg	aaa	ccg	ctt	att	1027

Glu Gln Thr Met Lys Phe Ala His Leu His Gly Val Lys Pro Leu Ile qaa cgg atg cct ctc gat caa gcc aac gag gct att gca cgt att tca 1075 Glu Arq Met Pro Leu Asp Gln Ala Asn Glu Ala Ile Ala Arg Ile Ser 320 315 gct ggt aaa cca cgt ttc cgt att gtc ttg gag ccg aat tca 1117 Ala Gly Lys Pro Arg Phe Arg Ile Val Leu Glu Pro Asn Ser 330 335 taatgccaac agcaagccca att 1140 <210> 242 <211> 339 <212> PRT <213> Corynebacterium glutamicum <400> 242 Met Pro Lys Tyr Ile Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu 10 Ala Ala Asn Leu Val Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg Val Glu Ile Ala Ala Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala Ala Ala Ser Gly Lys His Thr Val Phe Pro Val Thr Pro Gly His Glu Ile Ala Gly Thr Ile Ala Glu Ile Gly Glu Asn Val Ser Arg Trp Thr Val Gly Asp Arg Val Ala Ile Gly Trp Phe Gly Gly Asn Cys Gly Asp Cys Ala Phe Cys Arg Ala Gly Asp Pro Val His Cys Arg Glu Arg Lys Ile Pro Gly Val Ser Tyr Ala Gly Gly Trp Ala Gln Asn Ile Val Val Pro Ala Glu Ala Leu Ala Ala Ile Pro Asp Gly Met Asp Phe Tyr Glu 135 Pro Ala Pro Met Gly Cys Ala Gly Val Thr Thr Phe Asn Ala Leu Arg Asn Leu Lys Leu Asp Pro Gly Ala Ala Val Ala Val Phe Gly Ile Gly 170 Gly Leu Val Arg Leu Ala Ile Gln Phe Ala Ala Lys Met Gly Tyr Arg Thr Ile Thr Ile Ala Arg Gly Leu Glu Arg Glu Glu Leu Ala Arg Gln Leu Gly Ala Asn His Tyr Ile Asp Ser Asn Asp Leu His Pro Gly Gln 215

Ala Leu Phe Glu Leu Gly Gly Ala Asp Leu Ile Leu Ser Thr Ala Ser Thr Thr Glu Pro Leu Ser Glu Leu Ser Thr Gly Leu Ser Ile Gly Gly Gln Leu Thr Ile Ile Gly Val Asp Gly Gly Asp Ile Thr Val Ser Ala Ala Gln Leu Met Met Asn Arg Gln Ile Ile Thr Gly His Leu Thr Gly 280 Ser Ala Asn Asp Thr Glu Gln Thr Met Lys Phe Ala His Leu His Gly 295 Val Lys Pro Leu Ile Glu Arg Met Pro Leu Asp Gln Ala Asn Glu Ala 315 Ile Ala Arg Ile Ser Ala Gly Lys Pro Arg Phe Arg Ile Val Leu Glu 330 Pro Asn Ser <210> 243 <211> 1665 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1642) <223> RXA02737 <400> 243 agcacqctgc atcagtaacg gcgacatgaa atcgaattag ttcgatctta tgtggccgtt 60 acacatettt cattaaagaa aggategtga cactaceate gtg age aca aac aeg Val Ser Thr Asn Thr acc ccc tcc agc tgg aca aac cca ctg cgc gac ccg cag gat aaa cga 163 Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp Pro Gln Asp Lys Arg ctc ccc cgc atc gct ggc cct tcc ggc atg gtg atc ttc ggt gtc act 211 Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val Ile Phe Gly Val Thr 259 gge gae ttg get ega aag aag etg ete eee gee att tat gat eta gea Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala Ile Tyr Asp Leu Ala aac cgc gga ttg ctg ccc cca gga ttc tcg ttg gta ggt tac ggc cgc 307 Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu Val Gly Tyr Gly Arg 355 cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac gta cgc gat gcc gca Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr Val Arg Asp Ala Ala

70					75				80			85	
	gct Ala												403
	gag Glu												451
	gac Asp												499
	gcc Ala 135												547
	gcg Ala												595
-	gaa Glu	-		_	_				_				643
	gaa Glu		-				_	_	-	-	-		691
	tct Ser											gtt [.] Val	739
	aac Asn 215												787
	aac Asn												835
	ggc Gly												883
	gac Asp												931
	gaa Glu												979
	aag Lys 295												1027
	gct Ala												1075

aag gga ctt cgo Lys Gly Leu Aro			
act ttt gcg gc Thr Phe Ala Ala 34	Cys Thr		
gtg ccg ttc tac Val Pro Phe Ty: 360			
gag att gcc gtc Glu Ile Ala Va. 375	l Val Phe		
gac atg act gto Asp Met Thr Va. 390			
cct gat gaa gg Pro Asp Glu Gl			Ser
gcc atg gaa gt Ala Met Glu Va 42	l Arg Asp		
ttc act gaa ga Phe Thr Glu Gl 440			
ctg tta gat ga Leu Leu Asp Gl 455	ı Ser Ser		 _
agc tgg aag at Ser Trp Lys Il 470			
gaa cca gag ga Glu Pro Glu As			Asp
gaa atg ctt tc Glu Met Leu Se 50	r Arg Asn		ggg 1652
gcaaaaaatg atc			1665
<210> 244 <211> 514 <212> PRT			

<212> PRT

<213> Corynebacterium glutamicum

<400> 244

Val Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp 1 5 10 15

Pro	Gln	Asp	Lys 20	Arg	Leu	Pro	Arg	11e 25	Ala	Gly	Pro	Ser	Gly 30	Met	Val
Ile	Phe	Gly 35	Val	Thr	Gly	Asp	Leu 40	Ala	Arg	Lys	Lys	Leu 45	Leu	Pro	Ala
Ile	Tyr 50	Asp	Leu	Ala	Asn	Arg 55	Gly	Leu	Leu	Pro	Pro 60	Gly	Phe	Ser	Leu
Val 65	Gly	Tyr	Gly	Arg	Arg 70	Glu	Trp	Ser	Lys	Glu 75	Asp	Phe	Glu	Lys	Tyr 80
Val	Arg	Asp	Ala	Ala 85	Ser	Ala	Gly	Ala	Arg 90	Thr	Glu	Phe	Arg	Glu 95	Asn
Val	Trp	Glu	Arg 100	Leu	Ala	Glu	Gly	Met 105	Glu	Phe	Val	Arg	Gly 110	Asn	Phe
Asp	Asp	Asp 115	Ala	Ala	Phe	Asp	Asn 120	Leu	Ala	Ala	Thr	Leu 125	Lys	Arg	Ile
Asp	Lys 130	Thr	Arg	Gly	Thr	Ala 135	Gly	Asn	Trp	Ala	Tyr 140	Tyr	Leu	Ser	Ile
Pro 145	Pro	Asp	Ser	Phe	Thr 150	Ala	Val	Cys	His	Gln 155	Leu	Glu	Arg	Ser	Gly 160
Met	Ala	Glu	Ser	Thr 165	Glu	Glu	Ala	Trp	Arg 170	Arg	Val	Ile	Ile	Glu 175	Lys
Pro	Phe	Gly	His 180	Asn	Leu	Glu	Ser	Ala 185	His	Glu	Leu	Asn	Gln 190	Leu	Val
Asn	Ala	Val 195	Phe	Pro	Glu	Ser	Ser 200	Val	Phe	Arg	Ile	Asp 205	His	Tyr	Leu
Gly	Lys 210	Glu	Thr	Val	Gln	Asn 215	Ile	Leu	Ala	Leu	Arg 220	Phe	Ala	Asn	Gln
Leu 225	Phe	Glu	Pro	Leu	Trp 230	Asn	Ser	Asn	Tyr	Val 235	Asp	His	Val	Gln	11e 240
Thr	Met	Ala	Glu	Asp 245	Ile	Gly	Leu	Gly	Gly 250	Arg	Ala	Gly	Tyr	Tyr 255	Asp
Gly	Ile	Gly	Ala 260	Ala	Arg	Asp	Val	Ile 265	Gln	Asn	His	Leu	Ile 270	Gln	Leu
Leu	Ala	Leu 275	Val	Ala	Met	Glu	Glu 280	Pro	Ile	Ser	Phe	Val 285	Pro	Ala	Gln
Leu	Gln 290	Ala	Glu	Lys	Ile	Lys 295	Val	Leu	Ser	Ala	Thr 300	Lys	Pro	Cys	Tyr
Pro 305	Leu	Asp	Lys	Thr	Ser 310	Ala	Arg	Gly	Gln	Tyr 315	Ala	Ala	Gly	Trp	Gln 320
Gly	Ser	Glu	Leu	Val 325	Lys	Gly	Leu	Arg	Glu 330	Glu	Asp	Gly	Phe	Asn 335	Pro
Glu	Ser	Thr	Thr	Glu	Thr	Phe	Ala	Ala	Cys	Thr	Leu	Glu	Ile	Thr	Ser

345 350 Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu 360 Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His 375 380 Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile 390 Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser 410 Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe 425 Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg 435 440 Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn 455 Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala 470 Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg 500 505 510 Arg Pro <210> 245 <211> 1203 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1180) <223> RXA02738 <400> 245 ttqttqttaa tcqqtacaaa qqqtcttaaq cacatccctt acttqcctqc tctccttqaq 60 cacagttcaa gaacaattct tttaaggaaa atttagtttc atg tct cac att gat Met Ser His Ile Asp gat ctt gca cag ctc ggc act tcc act tgg ctc gac gac ctc tcc cgc 163 Asp Leu Ala Gln Leu Gly Thr Ser Thr Trp Leu Asp Asp Leu Ser Arg 211 gag cgc att act tcc ggc aat ctc agc cag gtt att gag gaa aag tct Glu Arg Ile Thr Ser Gly Asn Leu Ser Gln Val Ile Glu Glu Lys Ser

30

-	-		•				cca Pro 45	-			-	_	_	_		259
aag Lys	ggc Gly 55	gat Asp	tcc Ser	tac Tyr	gac Asp	gct Ala 60	cag Gln	atc Ile	gca Ala	gag Glu	ctc Leu 65	aag Lys	gcc Ala	gct Ala	ggc Gly	307
gca Ala 70	tct Ser	gtt Val	gac Asp	cag Gln	gct Ala 75	gtt Val	tac Tyr	gcc Ala	atg Met	agc Ser 80	atc Ile	gac Asp	gac Asp	gtt Val	cgc Arg 85	355
							ggc									403
							gtt Val									451
							aag Lys 125									499
		_	_		-		cct Pro	-					-		_	547
							ggc Gly									595
							gag Glu									643
							ggc Gly									691
	_				_		cgc Arg 205	_	-	_			_	-		739
							gag Glu									787
							gct Ala									835
							ggt Gly									883
_					_		cct Pro			_	-					931
tcc	gag	ctg	gct	ggt	cca	aac	acc	gtc	aac	acc	atg	cca	gaa	ggc	acc	979

Ser Glu Leu Ala Gly Pro Asn Thr Val Asn Thr Met Pro Glu Gly Thr 285 atc gac gcg gtt ctg gag cag ggc aac ctg cac ggt gac acc ctg tcc 1027 Ile Asp Ala Val Leu Glu Gln Gly Asn Leu His Gly Asp Thr Leu Ser aac tcc gcg gca gaa gct gac gct gtg ttc tcc cag ctt gag gct ctg 1075 Asn Ser Ala Ala Glu Ala Asp Ala Val Phe Ser Gln Leu Glu Ala Leu 320 315 ggc gtt gac ttg gca gat gtc ttc cag gtc ctg gag acc gag ggt gtg 1123 Gly Val Asp Leu Ala Asp Val Phe Gln Val Leu Glu Thr Glu Gly Val 335 330 gac aag ttc gtt gct tct tgg agc gaa ctg ctt gag tcc atg gaa gct 1171 Asp Lys Phe Val Ala Ser Trp Ser Glu Leu Leu Glu Ser Met Glu Ala 350 1203 cgc ctg aag tagaatcagc acgctgcatc agt Arg Leu Lys 360 <210> 246 <211> 360 <212> PRT <213> Corynebacterium glutamicum <400> 246 Met Ser His Ile Asp Asp Leu Ala Gln Leu Gly Thr Ser Thr Trp Leu Asp Asp Leu Ser Arg Glu Arg Ile Thr Ser Gly Asn Leu Ser Gln Val Ile Glu Glu Lys Ser Val Val Gly Val Thr Thr Asn Pro Ala Ile Phe Ala Ala Ala Met Ser Lys Gly Asp Ser Tyr Asp Ala Gln Ile Ala Glu 55 Leu Lys Ala Ala Gly Ala Ser Val Asp Gln Ala Val Tyr Ala Met Ser Ile Asp Asp Val Arg Asn Ala Cys Asp Leu Phe Thr Gly Ile Phe Glu Ser Ser Asn Gly Tyr Asp Gly Arg Val Ser Ile Glu Val Asp Pro Arg 105 Ile Ser Ala Asp Arg Asp Ala Thr Leu Ala Gln Ala Lys Glu Leu Trp 115 Ala Lys Val Asp Arg Pro Asn Val Met Ile Lys Ile Pro Ala Thr Pro Gly Ser Leu Pro Ala Ile Thr Asp Ala Leu Ala Glu Gly Ile Ser Val 160 Asn Val Thr Leu Ile Phe Ser Val Ala Arg Tyr Arg Glu Val Ile Ala

170 175 165 Ala Phe Ile Glu Gly Ile Lys Gln Ala Ala Ala Asn Gly His Asp Val 185 Ser Lys Ile His Ser Val Ala Ser Phe Phe Val Ser Arg Val Asp Val Glu Ile Asp Lys Arg Leu Glu Ala Ile Gly Ser Asp Glu Ala Leu Ala Leu Arg Gly Lys Ala Gly Val Ala Asn Ala Gln Arg Ala Tyr Ala Val 230 Tyr Lys Glu Leu Phe Asp Ala Ala Glu Leu Pro Glu Gly Ala Asn Thr Gln Arg Pro Leu Trp Ala Ser Thr Gly Val Lys Asn Pro Ala Tyr Ala Ala Thr Leu Tyr Val Ser Glu Leu Ala Gly Pro Asn Thr Val Asn Thr 280 Met Pro Glu Gly Thr Ile Asp Ala Val Leu Glu Gln Gly Asn Leu His 295 Gly Asp Thr Leu Ser Asn Ser Ala Ala Glu Ala Asp Ala Val Phe Ser 310 315 Gln Leu Glu Ala Leu Gly Val Asp Leu Ala Asp Val Phe Gln Val Leu 325 Glu Thr Glu Gly Val Asp Lys Phe Val Ala Ser Trp Ser Glu Leu Leu Glu Ser Met Glu Ala Arg Leu Lys 355 <210> 247 <211> 2223 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2200) <223> RXA02739 <400> 247 cctttgccaa atttgaacca attaacctaa gtcgtagatc tgatcatcgg atctaacgaa 60 aacgaaccaa aactttggtc ccggtttaac ccaggaagga ttg acc acc ttg acg 115 Leu Thr Thr Leu Thr 1 163 ctg tca cct gaa ctt cag gcg ctc act gta cgc aat tac ccc tct gat Leu Ser Pro Glu Leu Gln Ala Leu Thr Val Arg Asn Tyr Pro Ser Asp 20 10

tgg tcc gat gtg gac acc aag gct gta gac act gtt cgt gtc ctc gct

211

Trp	Ser	Asp	Val 25	Asp	Thr	Lys	Ala	Val 30	Asp	Thr	Val	Arg	Val 35	Leu	Ala	
-	_	gct Ala 40	-	-		-								-	_	259
-	-	gct Ala			-			_		_		_	-		_	307
		cag Gln														355
		cac His														403
		ctt Leu														451
_		cca Pro 120						_			_					499
		ggc Gly														547
_	-	gct Ala	-			_				-			-	-		595
	_	tcc Ser			-					-		_		-		643
		cag Gln														691
		ctg Leu 200														739
		gac Asp														787
		gct Ala														835
		gca Ala														883
_		acc Thr			-	-	-							-		931

265 270 275

											gct Ala					979
											gat Asp 305					1027
											cgc Arg					1075
cgc Arg	gct Ala	gca Ala	cag Gln	aag Lys 330	aag Lys	gct Ala	gca Ala	tgg Trp	cag Gln 335	gtc Val	aag Lys	ttc Phe	gat Asp	gag Glu 340	tgg Trp	1123
											gat Asp					1171
											cca Pro					1219
											gag Glu 385					1267
											ggt Gly					1315
											cct Pro					1363
									_	-	cct Pro			_		1411
ctg Leu	cac His	ttc Phe 440	ggt Gly	atc Ile	cgt Arg	gag Glu	cac His 445	gct Ala	atg Met	gga Gly	tcc Ser	atc Ile 450	ctc Leu	aac Asn	ggc Gly	1459
											gga Gly 465					1507
											gca Ala					1555
	_	-			-				-		atc Ile		-		_	1603
-					-		•	-		_	gct Ala	-	_	-	-	1651

atc cca ggt ctg tcc gtc ctg cgt cct gca gat gcg aac gag acc gcc Ile Pro Gly Leu Ser Val Leu Arg Pro Ala Asp Ala Asn Glu Thr Ala 520 525 530	1699
cag gct tgg gct gca gca ctt gag tac aag gaa ggc cct aag ggt ctt Gln Ala Trp Ala Ala Ala Leu Glu Tyr Lys Glu Gly Pro Lys Gly Leu 535 540 545	1747
gca ctg acc cgc cag aac gtt cct gtt ctg gaa ggc acc aag gag aag Ala Leu Thr Arg Gln Asn Val Pro Val Leu Glu Gly Thr Lys Glu Lys 550 565	1795
gct gct gaa ggc gtt cgc cgc ggt ggc tac gtc ctg gtt gag ggt tcc Ala Ala Glu Gly Val Arg Arg Gly Gly Tyr Val Leu Val Glu Gly Ser 570 575 580	1843
aag gaa acc cca gat gtg atc ctc atg ggc tcc ggc tcc gag gtt cag Lys Glu Thr Pro Asp Val Ile Leu Met Gly Ser Gly Ser Glu Val Gln 585 590 595	1891
ctt gca gtt aac gct gcg aag gct ctg gaa gct gag ggc gtt gca gct Leu Ala Val Asn Ala Ala Lys Ala Leu Glu Ala Glu Gly Val Ala Ala 600 605 610	1939
cgc gtt gtt tcc gtt cct tgc atg gat tgg ttc cag gag cag gac gca Arg Val Val Ser Val Pro Cys Met Asp Trp Phe Gln Glu Gln Asp Ala 615 620 . 625	1987
gag tac atc gag tcc gtt ctg cct gca gct gtg acc gct cgt gtg tct Glu Tyr Ile Glu Ser Val Leu Pro Ala Ala Val Thr Ala Arg Val Ser 630 635 640	2035
gtt gaa gct ggc atc gca atg cct tgg tac cgc ttc ttg ggc acc cag Val Glu Ala Gly Ile Ala Met Pro Trp Tyr Arg Phe Leu Gly Thr Gln 650 655 660	2083
ggc cgt gct gtc tcc ctt gag cac ttc ggt gct tct gcg gat tac cag Gly Arg Ala Val Ser Leu Glu His Phe Gly Ala Ser Ala Asp Tyr Gln 665 670 675	2131
acc ctg ttt gag aag ttc ggc atc acc acc gat gca gtc gtg gca gcg Thr Leu Phe Glu Lys Phe Gly Ile Thr Thr Asp Ala Val Val Ala Ala 680 685 690	2179
gcc aag gac tcc att aac ggt taattgccct gctgttttta gct Ala Lys Asp Ser Ile Asn Gly 695 700	2223
<210> 248 <211> 700 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 248 Leu Thr Thr Leu Thr Leu Ser Pro Glu Leu Gln Ala Leu Thr Val Arg 1 5 10 15</pre>	
Asn Tyr Pro Ser Asp Trp Ser Asp Val Asp Thr Lys Ala Val Asp Thr 20 25 30	

Val Arg Val Leu Ala Ala Asp Ala Val Glu Asn Cys Gly Ser Gly His Pro Gly Thr Ala Met Ser Leu Ala Pro Leu Ala Tyr Thr Leu Tyr Gln Arg Val Met Asn Val Asp Pro Gln Asp Thr Asn Trp Ala Gly Arg Asp Arg Phe Val Leu Ser Cys Gly His Ser Ser Leu Thr Gln Tyr Ile Gln Leu Tyr Leu Gly Gly Phe Gly Leu Glu Met Asp Asp Leu Lys Ala Leu Arg Thr Trp Asp Ser Leu Thr Pro Gly His Pro Glu Tyr Arg His Thr 120 Lys Gly Val Glu Ile Thr Thr Gly Pro Leu Gly Gln Gly Leu Ala Ser 135 Ala Val Gly Met Ala Met Ala Ala Arg Arg Glu Arg Gly Leu Phe Asp 155 150 Pro Thr Ala Ala Glu Gly Glu Ser Pro Phe Asp His His Ile Tyr Val 170 Ile Ala Ser Asp Gly Asp Leu Gln Glu Gly Val Thr Ser Glu Ala Ser 185 Ser Ile Ala Gly Thr Gln Gln Leu Gly Asn Leu Ile Val Phe Trp Asp Asp Asn Arg Ile Ser Ile Glu Asp Asn Thr Glu Ile Ala Phe Asn Glu Asp Val Val Ala Arg Tyr Lys Ala Tyr Gly Trp Gln Thr Ile Glu Val Glu Ala Gly Glu Asp Val Ala Ala Ile Glu Ala Ala Val Ala Glu Ala 250 Lys Lys Asp Thr Lys Arg Pro Thr Phe Ile Arg Val Arg Thr Ile Ile Gly Phe Pro Ala Pro Thr Met Met Asn Thr Gly Ala Val His Gly Ala 280 Ala Leu Gly Ala Ala Glu Val Ala Ala Thr Lys Thr Glu Leu Gly Phe Asp Pro Glu Ala His Phe Ala Ile Asp Asp Glu Val Ile Ala His Thr 315 310 Arg Ser Leu Ala Glu Arg Ala Ala Gln Lys Lys Ala Ala Trp Gln Val Lys Phe Asp Glu Trp Ala Ala Ala Asn Pro Glu Asn Lys Ala Leu Phe 340 345

Asp Arg Leu Asn Ser Arg Glu Leu Pro Ala Gly Tyr Ala Asp Glu Leu 360 Pro Thr Trp Asp Ala Asp Glu Lys Gly Val Ala Thr Arg Lys Ala Ser Glu Ala Ala Leu Gln Ala Leu Gly Lys Thr Leu Pro Glu Leu Trp Gly Gly Ser Ala Asp Leu Ala Gly Ser Asn Asn Thr Val Ile Lys Gly Ser Pro Ser Phe Gly Pro Glu Ser Ile Ser Thr Glu Thr Trp Ser Ala Glu Pro Tyr Gly Arg Asn Leu His Phe Gly Ile Arg Glu His Ala Met Gly Ser Ile Leu Asn Gly Ile Ser Leu His Gly Gly Thr Arg Pro Tyr Gly Gly Thr Phe Leu Ile Phe Ser Asp Tyr Met Arg Pro Ala Val Arg Leu 475 Ala Ala Leu Met Glu Thr Asp Ala Tyr Tyr Val Trp Thr His Asp Ser Ile Gly Leu Gly Glu Asp Gly Pro Thr His Gln Pro Val Glu Thr Leu 500 505 Ala Ala Leu Arg Ala Ile Pro Gly Leu Ser Val Leu Arg Pro Ala Asp 520 Ala Asn Glu Thr Ala Gln Ala Trp Ala Ala Ala Leu Glu Tyr Lys Glu Gly Pro Lys Gly Leu Ala Leu Thr Arg Gln Asn Val Pro Val Leu Glu Gly Thr Lys Glu Lys Ala Ala Glu Gly Val Arg Arg Gly Gly Tyr Val Leu Val Glu Gly Ser Lys Glu Thr Pro Asp Val Ile Leu Met Gly Ser 585 Gly Ser Glu Val Gln Leu Ala Val Asn Ala Ala Lys Ala Leu Glu Ala Glu Gly Val Ala Ala Arg Val Val Ser Val Pro Cys Met Asp Trp Phe 615 Gln Glu Gln Asp Ala Glu Tyr Ile Glu Ser Val Leu Pro Ala Ala Val Thr Ala Arg Val Ser Val Glu Ala Gly Ile Ala Met Pro Trp Tyr Arg 650 Phe Leu Gly Thr Gln Gly Arg Ala Val Ser Leu Glu His Phe Gly Ala Ser Ala Asp Tyr Gln Thr Leu Phe Glu Lys Phe Gly Ile Thr Thr Asp

675 680 685

Ala Val Val Ala Ala Ala Lys Asp Ser Ile Asn Gly 690 695 700

<210> 249 <211> 793 <212> DNA <213> Corynebacterium glutamicum <220>

<221> CDS <222> (48)..(770) <223> RXA00965

<400> 249

agattgcggg cctcggcttc attgaaaaca agacggtgtt tgaataaatg aca act 56 Met Thr Thr 1

ttc cac gat ctt ccg ctg gag gag cgg ctg aca ctg gcc agg ttg ggc 104
Phe His Asp Leu Pro Leu Glu Glu Arg Leu Thr Leu Ala Arg Leu Gly
5 10 15

aca tcc cac tac tcc cgt cag ctc tcc ctc gtg gac aac gct gag ttc $\,$ 152 Thr Ser His Tyr Ser Arg Gln Leu Ser Leu Val Asp Asn Ala Glu Phe $\,$ 25 $\,$ 30 $\,$ 35

ggc gag cat tcc ctg cta gaa ggg tgg act cgt tcc cac ctc att gcc $\,$ 200 Gly Glu His Ser Leu Leu Glu Gly Trp Thr Arg Ser His Leu Ile Ala $\,$ 40 $\,$ 45 $\,$ 50

cac gtg gca tac aac gcc atc gca ctg tgc aac ctc atg cac tgg gca $$ 248 His Val Ala Tyr Asn Ala Ile Ala Leu Cys Asn Leu Met His Trp Ala $$ 55 $$ 60 $$ 65

aat act ggt gag gaa acc cca atg tac gtg tcg cca gaa gcg cgc aac 296 Asn Thr Gly Glu Glu Thr Pro Met Tyr Val Ser Pro Glu Ala Arg Asn 70 75 80

gag gaa att gcc tac ggt tcc acg ctc aat ccc gat gcg ttg cgt aac 344 Glu Glu Ile Ala Tyr Gly Ser Thr Leu Asn Pro Asp Ala Leu Arg Asn 85 90 95

ctg cat gaa cac tcc gtc gca cgc ctg gac gtg gct tgg cgt gaa acg 392 Leu His Glu His Ser Val Ala Arg Leu Asp Val Ala Trp Arg Glu Thr 100 105 110 115

tct gaa gat gct tgg tca cac gag gtt ctg aca gct cag gga cgc act \$440\$ Ser Glu Asp Ala Trp Ser His Glu Val Leu Thr Ala Gln Gly Arg Thr \$120\$ \$130\$

gtc cca gct agt gaa aca ttg tgg atg cgt tcc cgc gaa gtc tgg atc 488
Val Pro Ala Ser Glu Thr Leu Trp Met Arg Ser Arg Glu Val Trp Ile
135 140 145

cac gca gtt gac ctc ggt gca gtg gca acc ttt ggc gac atc cca gag 536 His Ala Val Asp Leu Gly Ala Val Ala Thr Phe Gly Asp Ile Pro Glu 150 155 160

	atc Ile 165															584
caa Gln 180	gga Gly	gcc Ala	ggc Gly	gag Glu	gga Gly 185	ctt Leu	gtg Val	ctt Leu	ctc Leu	gac Asp 190	gag Glu	ccc Pro	tcc Ser	agc Ser	act Thr 195	632
cgc Arg	tac Tyr	ccc Pro	gcc Ala	gcc Ala 200	cca Pro	ej aaa	cag Gln	gac Asp	gag Glu 205	gta Val	gta Val	gtg Val	tcc Ser	ggt Gly 210	agc Ser	680
	gca Ala															728
	tct Ser															770
tagi	tttc	cac a	acatt	tctta	aa at	g										793
<21 <21	0> 25 1> 24 2> PI 3> Co	41 RT	ebact	teri	um gi	lutar	nicur	n .								
-	0> 2! Thr		Phe	His 5	Asp	Leu	Pro	Leu	Glu 10	Glu	Arg	Leu	Thr	Leu 15	Ala	
Arg	Leu	Gly	Thr 20	Ser	His	Tyr	Ser	Arg 25	Gln	Leu	Ser	Leu	Val 30	Asp	Asn	
Ala	Glu	Phe 35	Gly	Glu	His	Ser	Leu 40	Leu	Glu	Gly	Trp	Thr 45	Arg	Ser	His	
Leu	Ile 50	Ala	His	Val	Ala	Tyr 55	Asn	Ala	Ile	Ala	Leu 60	Cys	Asn	Leu	Met	
His 65	Trp	Ala	Asn	Thr	Gly 70	Glu	Glu	Thr	Pro	Met 75	Tyr	Val	Ser	Pro	Glu 80	
Ala	Arg	Asn	Glu	Glu 85	Ile	Ala	Tyr	Gly	Ser 90	Thr	Leu	Asn	Pro	Asp 95	Ala	
Leu	Arg	Asn	Leu 100	His	Glu	His	Ser	Val 105	Ala	Arg	Leu	Asp	Val 110	Ala	Trp	
Arg	Glu	Thr 115	Ser	Glu	Asp	Ala	Trp 120	Ser	His	Glu	Val	Leu 125	Thr	Ala	Gln	
Gly	7	Thr	Val	Pro	Ala	Ser	Glu	Thr	Leu	Trp		Arg	Ser	Arg	Glu	
	130					135					140					
Val 145	130 Trp				Val 150		Leu	Gly	Ala	Val 155		Thr	Phe	Gly	Asp 160	

Trp Thr Ser Gln Gly Ala Gly Glu Gly Leu Val Leu Leu Asp Glu Pro

185 Ser Ser Thr Arg Tyr Pro Ala Ala Pro Gly Gln Asp Glu Val Val Val 200 Ser Gly Ser Leu Ala Gly Ile Val Arg Tyr Ala Ala Gly Arg Gly Ser 215 Asp Gly Val Thr Ser Ser Thr Gly Glu Val Pro Glu Pro Pro Arg Trp 225 230 235 Leu <210> 251 <211> 1575 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1552) <223> RXN00999 <400> 251 cctcctgtga cctggtaaaa tcgccactac ccccaaatgg tcacaccttt taggccgatt 60 ttgctgacac cgggctatgc cgtcaagtac gatcaataac atg act aat gga gat Met Thr Asn Gly Asp 1 163 aat ctc qca cag atc qqc qtt qta qqc cta gca gta atg ggc tca aac Asn Leu Ala Gln Ile Gly Val Val Gly Leu Ala Val Met Gly Ser Asn 10 ctc gcc cgc aac ttc gcc cgc aac ggc aac act gtc gct gtc tac aac 211 Leu Ala Arg Asn Phe Ala Arg Asn Gly Asn Thr Val Ala Val Tyr Asn 25 cgc agc act gac aaa acc gac aag ctc atc gcc gat cac ggc tcc gaa 259 Arg Ser Thr Asp Lys Thr Asp Lys Leu Ile Ala Asp His Gly Ser Glu 307 ggc aac ttc atc cct tct gca acc gtc gaa gag ttc gta gca tcc ctg Gly Asn Phe Ile Pro Ser Ala Thr Val Glu Glu Phe Val Ala Ser Leu 55 60 gaa aag cca cgc cgc gcc atc atc atg gtt cag gct ggt aac gcc acc Glu Lys Pro Arg Arg Ala Ile Ile Met Val Gln Ala Gly Asn Ala Thr 75 80 70 gac gca gtc atc aac cag ctg gca gat gcc atg gac gaa ggc gac atc 403 Asp Ala Val Ile Asn Gln Leu Ala Asp Ala Met Asp Glu Gly Asp Ile 90 100 ate ate gae gge gge aac gee ete tae ace gae ace att egt ege gag 451 Ile Ile Asp Gly Gly Asn Ala Leu Tyr Thr Asp Thr Ile Arg Arg Glu 105

	gaa Glu														499
	ggc Gly 135														547
	gca Ala	_			-				_					-	595
	aac Asn														643
-	ggc Gly			-	-	_	-						_	-	691
-	cag Gln	-				-				_		-	_		739
	cag Gln 215														787
	ctg Leu														835
	gat Asp														883
	ggt Gly														931
	ggt Gly		Ala	Thr	Thr	Gly	Ile	Glu	Ala	Val	Phe	Ala			979
	tcc Ser 295														1027
	ggt Gly														1075
	gtc Val														1123
	gca Ala														1171

Trp Asp Val Asp	cct cgc Pro Arg								1219
atc att cgc gct Ile Ile Arg Ala 375	Lys Phe								1267
aac gct gaa ctt Asn Ala Glu Leu 390	gag tcc Glu Ser 395	ctg ctg Leu Leu	ctc gat Leu Asp	cct tac Pro Tyr 400	ttc Phe	aag Lys	agc Ser	gag Glu 405	1315
ctc ggc gac ctc Leu Gly Asp Leu	atc gat Ile Asp 410	tca tgg Ser Trp	cgt cgc Arg Arg 415	gtg att Val Ile	gtc Val	acc Thr	gcc Ala 420	acc Thr	1363
cag ctt ggc ctg Gln Leu Gly Leu 425	Pro Ile								1411
gac agc ctg cgt Asp Ser Leu Arg 440		-	_	-				_	1459
ege gae tte tte Arg Asp Phe Phe 455	Gly Ala								1507
tcc ttc cac acc Ser Phe His Thr 470									1552
470				100					
taaaggetet eett		a		100					1575
	ttaaca ca		n					·	1575
<pre>taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252</pre>	ttaaca ca	utamicur			17-1		•		1575
<pre><210> 252 <211> 484 <212> PRT <213> Corynebac</pre>	ttaaca ca	utamicur Leu Ala		Gly Val	Val	Gly	Leu 15	Ala	1575
<pre>taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252</pre>	ttaaca ca terium gl Asp Asn 5 Asn Leu	utamicur Leu Ala	Gln Ile 10	Gly Val			15		1575
<pre>taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252 Met Thr Asn Gly 1</pre> Val Met Gly Ser	ttaaca ca terium gl Asp Asn 5 Asn Leu	utamicur Leu Ala Ala Arg	Gln Ile 10 Asn Phe 25	Gly Val Ala Arg	Asn	Gly 30	15 Asn	Thr	1575
<pre>taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252 Met Thr Asn Gly 1 Val Met Gly Ser 20 Val Ala Val Tyr</pre>	terium gl Asp Asn 5 Asn Leu Asn Arg	utamicur Leu Ala Ala Arg Ser Thr 40	Gln Ile 10 Asn Phe 25 Asp Lys	Gly Val Ala Arg Thr Asp	Asn Lys 45	Gly 30 Leu	15 Asn Ile	Thr Ala	1575
<pre>taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252 Met Thr Asn Gly 1 Val Met Gly Ser 20 Val Ala Val Tyr 35 Asp His Gly Ser</pre>	terium gl Asp Asn 5 Asn Leu Asn Arg Glu Gly	utamicur Leu Ala Ala Arg Ser Thr 40 Asn Phe 55	Gln Ile 10 Asn Phe 25 Asp Lys Ile Pro	Gly Val Ala Arg Thr Asp Ser Ala 60	Asn Lys 45 Thr	Gly 30 Leu Val	15 Asn Ile Glu	Thr Ala Glu	1575
taaaggctct cctt <210> 252 <211> 484 <212> PRT <213> Corynebac <400> 252 Met Thr Asn Gly 1 Val Met Gly Ser 20 Val Ala Val Tyr 35 Asp His Gly Ser 50 Phe Val Ala Ser	terium gl Asp Asn 5 Asn Leu Asn Arg Glu Gly Leu Glu 70	utamicur Leu Ala Ala Arg Ser Thr 40 Asn Phe 55 Lys Pro	Gln Ile 10 Asn Phe 25 Asp Lys Ile Pro	Gly Val Ala Arg Thr Asp Ser Ala 60 Ala Ile 75	Asn Lys 45 Thr	Gly 30 Leu Val	15 Asn Ile Glu Val	Thr Ala Glu Gln 80	1575

Thr	Ile	Arg 115	Arg	Glu	Lys	Glu	Ile 120	Ser	Ala	Arg	Gly	Leu 125	His	Phe	Val
Gly	Ala 130	Gly	Ile	Ser	Gly	Gly 135	Glu	Glu	Gly	Ala	Leu 140	Asn	Gly	Pro	Ser
Ile 145	Met	Pro	Gly	Gly	Pro 150	Ala	Lys	Ser	Tyr	Glu 155	Ser	Leu	Gly	Pro	Leu 160
Leu	Glu	Ser	Ile	Ala 165	Ala	Asn	Val	Asp	Gly 170	Thr	Pro	Суѕ	Val	Thr 175	His
Ile	Gly	Pro	Asp 180	Gly	Ala	Gly	His	Phe 185	Val	Lys	Met	Val	His 190	Asn	Gly
Ile	Glu	Tyr 195	Ala	Asp	Met	Gln	Val 200	Ile	Gly	Glu	Ala	Tyr 205	His	Leu	Leu
Arg	Tyr 210	Ala	Ala	Gly	Met	Gln 215	Pro	Ala	Glu	Ile	Ala 220	Glu	Val	Phe	Lys
Glu 225	Trp	Asn	Ala	Gly	Asp 230	Leu	Asp	Ser	Tyr	Leu 235	Ile	Glu	Ile	Thr	Ala 240
Glu	Val	Leu	Ser	Gln 245	Val	Asp	Ala	Glu	Thr 250	Gly	Lys	Pro	Leu	Ile 255	Asp
Val	Ile	Val	Asp 260	Ala	Ala	Gly	Gln	Lys 265	Gly	Thr	Gly	Arg	Trp 270	Thr	Val
Lys	Ala	Ala 275	Leu	Asp	Leu	Gly	Ile 280	Ala	Thr	Thr	Gly	Ile 285	Gly	Glu	Ala
Val	Phe 290	Ala	Arg	Ala	Leu	Ser 295	Gly	Ala	Thr	Ser	Gln 300	Arg	Ala	Ala	Ala
Gln 305	Gly	Asn	Leu	Pro	Ala 310	Gly	Val	Leu	Thr	Asp 315	Leu	Glu	Ala	Leu	Gly 320
Val	Asp	Lys	Ala	Gln 325	Phe	Val	Glu	Asp	Val 330	Arg	Arg	Ala	Leu	Tyr 335	Ala
Ser	Lys	Leu	Val 340	Ala	Tyr	Ala	Gln	Gly 345	Phe	Asp	Glu	Ile	Lys 350	Ala	Gly
Ser	Asp	Glu 355	Asn	Asn	Trp	Asp	Val 360	Asp	Pro	Arg	Asp	Leu 365	Ala	Thr	Ile
Trp	Arg 370	Gly	Gly	Суз	Ile	Ile 375	Arg	Ala	Lys	Phe	Leu 380	Asn	Arg	Ile	Val
Gľu 385	Ala	Tyr	Asp	Ala	Asn 390	Ala	Glu	Leu	Glu	Ser 395	Leu	Leu	Leu	Asp	Pro 400
Tyr	Phe	Lys	Ser	Glu 405	Leu	Gly	Asp	Leu	Ile 410	Asp	Ser	Trp	Arg	Arg 415	Val
Ile	Val	Thr	Ala 420	Thr	Gln	Leu	Gly	Leu 425	Pro	Ile	Pro	Val	Phe 430	Ala	Ser

Ser Leu Ser Tyr Tyr Asp Ser Leu Arg Ala Glu Arg Leu Pro Ala Ala

Leu Ile Gln Gly Gln Arg Asp Phe Phe Gly Ala His Thr Tyr Lys Arg 455 Ile Asp Lys Asp Gly Ser Phe His Thr Glu Trp Ser Gly Asp Arg Ser Glu Val Glu Ala <210> 253 <211> 1537 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1537) <223> FRXA00999 <400> 253 cctcctqtqa cctqqtaaaa tcqccactac ccccaaatqq tcacaccttt tagqccqatt 60 ttgctgacac cgggctatgc cgtcaagtac gatcaataac atg act aat gga gat 115 Met Thr Asn Gly Asp aat ctc qca cag atc ggc gtt gta ggc cta gca gta atg ggc tca aac Asn Leu Ala Gln Ile Gly Val Val Gly Leu Ala Val Met Gly Ser Asn 10 ctc gcc cgc aac ttc gcc cgc aac ggc aac act gtc gct gtc tac aac 211 Leu Ala Arg Asn Phe Ala Arg Asn Gly Asn Thr Val Ala Val Tyr Asn 25 cgc agc act gac aaa acc gac aag ctc atc gcc gat cac ggc tcc gaa 259 Arg Ser Thr Asp Lys Thr Asp Lys Leu Ile Ala Asp His Gly Ser Glu 40 45 307 ggc aac ttc atc cct tct gca acc gtc gaa gag ttc gta gca tcc ctg Gly Asn Phe Ile Pro Ser Ala Thr Val Glu Glu Phe Val Ala Ser Leu 55 gaa aag cca cgc cgc gcc atc atc atg gtt cag gct ggt aac gcc acc 355 Glu Lys Pro Arg Arg Ala Ile Ile Met Val Gln Ala Gly Asn Ala Thr 70 gac gca gtc atc aac cag ctg gca gat gcc atg gac gaa ggc gac atc 403 Asp Ala Val Ile Asn Gln Leu Ala Asp Ala Met Asp Glu Gly Asp Ile 90 100 ate ate gae gge gge aac gee ete tae ace gae ace att egt ege gag 451 Ile Ile Asp Gly Gly Asn Ala Leu Tyr Thr Asp Thr Ile Arg Arg Glu 105 aag gaa atc tcc gca cgc ggt ctc cac ttc gtc ggt gct ggt atc tcc Lys Glu Ile Ser Ala Arg Gly Leu His Phe Val Gly Ala Gly Ile Ser 120

ggc Gly	ggc Gly 135	gaa Glu	gaa Glu	ggc Gly	gca Ala	ctc Leu 140	aac Asn	ggc Gly	cca Pro	tcc Ser	atc Ile 145	atg Met	cct Pro	ggt Gly	ggc Gly	547
											ctt Leu					595
gcc Ala	aac Asn	gtt Val	gac Asp	ggc Gly 170	acc Thr	cca Pro	tgt Cys	gtc Val	acc Thr 175	cac His	atc Ile	ggc Gly	cca Pro	gac Asp 180	ggc Gly	643
											atc Ile					691
atg Met	cag Gln	gtc Val 200	atc Ile	ggc Gly	gag Glu	gca Ala	tac Tyr 205	cac His	ctt Leu	ctc Leu	cgc Arg	tac Tyr 210	gca Ala	gca Ala	ggc Gly	739
											gaa Glu 225					787
											gag Glu					835
											gtc Val					883
											aag Lys					931
ctg Leu	ggt Gly	att Ile 280	gct Ala	acc Thr	acc Thr	ggc Gly	atc Ile 285	ggc Gly	gaa Glu	gct Ala	gtt Val	ttc Phe 290	gca Ala	cgt Arg	gca Ala	979
ctc Leu	tcc Ser 295	Gly	gca Ala	acc Thr	agc Ser	Gln	cgc Arg	Ala	Ala	gca Ala	cag Gln 305	ggc Gly	aac Asn	cta Leu	cct Pro	1027
											gtg Val					1075
ttc Phe	gtc Val	gaa Glu	gac Asp	gtt Val 330	cgc Arg	cgt Arg	gca Ala	ctg Leu	tac Tyr 335	gca Ala	tcc Ser	aag Lys	ctt Leu	gtt Val 340	gct Ala	1123
											tcc Ser					1171
											tgg Trp					1219

					ttc Phe											1267
					tcc Ser 395											1315
					gat Asp											1363
					atc Ile											1411
					gag Glu											1459
					gcg Ala											1507
					tgg Trp 475			-	-							1537
	0> 29 1> 4	79									٠					
	2> PI 3> Co		ebact	teri	ım gi	lutar	nicur	n								
<21:	3> Co 0> 2!	oryne 54			ım gi Asn				Ile 10	Gly	Val	Val	Gly	Leu 15	Ala	
<21: <40: Met 1	3> Co 0> 2! Thr	oryne 54 Asn	Gly	Asp 5	_	Leu	Ala	Gln	10					15		
<21: <400 Met 1 Val	3> Co 0> 2! Thr Met	64 Asn Gly Val	Gly Ser 20	Asp 5 Asn	Asn	Leu Ala Ser	Ala Arg Thr	Gln Asn 25 Asp	10 Phe Lys	Ala	Arg Asp	Asn Lys	Gly 30	15 Asn	Thr	
<21: <400 Met 1 Val	3> Co 0> 2! Thr Met Ala	Gly Val	Gly Ser 20 Tyr	Asp 5 Asn Asn	Asn Leu Arg	Leu Ala Ser	Ala Arg Thr 40	Gln Asn 25 Asp	10 Phe Lys	Ala	Arg Asp	Asn Lys 45	Gly 30 Leu	15 Asn Ile	Thr Ala	
<21: <400 Met 1 Val Val	3> Co 0> 2! Thr Met Ala His 50	Gly Val 35	Gly Ser 20 Tyr	Asp 5 Asn Asn Glu	Asn Leu Arg	Leu Ala Ser Asn 55	Ala Arg Thr 40 Phe	Gln Asn 25 Asp	10 Phe Lys Pro	Ala Thr Ser	Arg Asp Ala 60	Asn Lys 45 Thr	Gly 30 Leu Val	15 Asn Ile Glu	Thr Ala Glu	
<21: <400 Met 1 Val Val Asp	3> Co 0> 2! Thr Met Ala His 50	Gly Val 35 Gly Ala	Gly Ser 20 Tyr Ser	Asp 5 Asn Asn Glu Leu	Asn Leu Arg Gly	Leu Ala Ser Asn 55 Lys	Ala Arg Thr 40 Phe	Gln Asn 25 Asp Ile Arg	10 Phe Lys Pro	Ala Thr Ser Ala 75	Arg Asp Ala 60	Asn Lys 45 Thr	Gly 30 Leu Val Met	15 Asn Ile Glu Val	Thr Ala Glu Gln 80	
<21: <400 Met 1 Val Val Asp Phe 65 Ala	3> Co 0> 2! Thr Met Ala His 50 Val	Gly Val 35 Gly Ala Asn	Ser 20 Tyr Ser Ser	Asp 5 Asn Asn Glu Leu Thr 85	Asn Leu Arg Gly	Leu Ala Ser Asn 55 Lys	Ala Arg Thr 40 Phe Pro	Gln Asn 25 Asp Ile Arg	10 Phe Lys Pro Arg Asn 90	Ala Thr Ser Ala 75	Arg Asp Ala 60 Ile	Asn Lys 45 Thr Ile	Gly 30 Leu Val Met	15 Asn Ile Glu Val Ala 95	Thr Ala Glu Gln 80 Met	
<21: <400 Met 1 Val Val Asp Phe 65 Ala Asp	3> Co 0> 29 Thr Met Ala His 50 Val Gly	Gly Val 35 Gly Ala Asn	Ser 20 Tyr Ser Ala Asp	Asp 5 Asn Asn Glu Leu Thr 85 Ile	Asn Leu Arg Gly Glu 70 Asp	Leu Ala Ser Asn 55 Lys Ala	Ala Arg Thr 40 Phe Pro Val	Gln Asn 25 Asp Ile Arg Ile Gly 105	10 Phe Lys Pro Arg Asn 90 Gly	Ala Thr Ser Ala 75 Gln Asn	Arg Asp Ala 60 Ile Leu Ala	Asn Lys 45 Thr Ile Ala	Gly 30 Leu Val Met Asp	15 Asn Ile Glu Val Ala 95 Thr	Thr Ala Glu Gln 80 Met	

Ile Met Pro Gly Gly Pro Ala Lys Ser Tyr Glu Ser Leu Gly Pro Leu Leu Glu Ser Ile Ala Ala Asn Val Asp Gly Thr Pro Cys Val Thr His Ile Gly Pro Asp Gly Ala Gly His Phe Val Lys Met Val His Asn Gly Ile Glu Tyr Ala Asp Met Gln Val Ile Gly Glu Ala Tyr His Leu Leu Arg Tyr Ala Ala Gly Met Gln Pro Ala Glu Ile Ala Glu Val Phe Lys Glu Trp Asn Ala Gly Asp Leu Asp Ser Tyr Leu Ile Glu Ile Thr Ala Glu Val Leu Ser Gln Val Asp Ala Glu Thr Gly Lys Pro Leu Ile Asp Val Ile Val Asp Ala Ala Gly Gln Lys Gly Thr Gly Arg Trp Thr Val Lys Ala Ala Leu Asp Leu Gly Ile Ala Thr Thr Gly Ile Gly Glu Ala 280 Val Phe Ala Arg Ala Leu Ser Gly Ala Thr Ser Gln Arg Ala Ala Ala 295 Gln Gly Asn Leu Pro Ala Gly Val Leu Thr Asp Leu Glu Ala Leu Gly 315 310 Val Asp Lys Ala Gln Phe Val Glu Asp Val Arg Arg Ala Leu Tyr Ala Ser Lys Leu Val Ala Tyr Ala Gln Gly Phe Asp Glu Ile Lys Ala Gly Ser Asp Glu Asn Asn Trp Asp Val Asp Pro Arg Asp Leu Ala Thr Ile 360 Trp Arg Gly Gly Cys Ile Ile Arg Ala Lys Phe Leu Asn Arg Ile Val Glu Ala Tyr Asp Ala Asn Ala Glu Leu Glu Ser Leu Leu Leu Asp Pro 395 Tyr Phe Lys Ser Glu Leu Gly Asp Leu Ile Asp Ser Trp Arg Arg Val Ile Val Thr Ala Thr Gln Leu Gly Leu Pro Ile Pro Val Phe Ala Ser 425 Ser Leu Ser Tyr Tyr Asp Ser Leu Arg Ala Glu Arg Leu Pro Ala Ala 435 Leu Ile Gln Gly Gln Arg Asp Phe Phe Gly Ala His Thr Tyr Lys Arg 455 450

Ile Asp Lys Asp Gly Ser Phe His Thr Glu Trp Ser Gly Asp Arg

470 <210> 255 <211> 1326 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1303) <223> RXN02596 <400> 255 aaqqtatctq qqtqtqqata tqccctqcta actqqaqaaa cttqqcccqa tcqqqtqtct 60 gaaatttcgg caacgccgaa tgtaagttag tgtcgaatgc atg acg gaa tcg aaa Met Thr Glu Ser Lys aat tac gac tta atc gtt gta ggc tcc ggc ctc ttc ggg ctc acc gtg 163 Asn Tyr Asp Leu Ile Val Val Gly Ser Gly Leu Phe Gly Leu Thr Val 10 15 gct gag cgt gca gct agc cag ctg ggt aag aaa gtc ctc atc gtt gaa 211 Ala Glu Arg Ala Ala Ser Gln Leu Gly Lys Lys Val Leu Ile Val Glu cgc cgc tcg cac ctc ggt ggc aat gct tac tct gaa gca gaa cca gag 259 Arg Arg Ser His Leu Gly Gly Asn Ala Tyr Ser Glu Ala Glu Pro Glu acc ggc att gaa atc cac aaa tac ggc gcg cac ctc ttc cac acc tcc 307 Thr Gly Ile Glu Ile His Lys Tyr Gly Ala His Leu Phe His Thr Ser aac aca cgc gtg tgg gaa tac gtc aac cag ttc acc agt ttc acc ggc 355 Asn Thr Arg Val Trp Glu Tyr Val Asn Gln Phe Thr Ser Phe Thr Gly 75 80 tac cag cac cgc gtc ttc gca atg cac aac ggc acc gcc tac caa ttc 403 Tyr Gln His Arg Val Phe Ala Met His Asn Gly Thr Ala Tyr Gln Phe 90 95 ccc atg gga ctg ggc ctg att aac cag ttc ttc ggc aag tac tac agc 451 Pro Met Gly Leu Gly Leu Ile Asn Gln Phe Phe Gly Lys Tyr Tyr Ser 110 cca gat gaa gcc cgt gag ctc atc aag gaa cag tct gca gaa atc gat 499 Pro Asp Glu Ala Arg Glu Leu Ile Lys Glu Gln Ser Ala Glu Ile Asp 125 547 tcc tcc gac gcc acc aac ctc gaa gaa aag gcc att tcc ctc att ggt Ser Ser Asp Ala Thr Asn Leu Glu Glu Lys Ala Ile Ser Leu Ile Gly

160

cgc cca ctt tac gag gca ttc atc cgc gac tac acc gca aag cag tgg Arg Pro Leu Tyr Glu Ala Phe Ile Arg Asp Tyr Thr Ala Lys Gln Trp

155

595

cag act Gln Thr			s Asn											643
gtt cgc Val Arg	Tyr A				_				-			-		691
ctt ccc Leu Pro														739
gag ctt Glu Leu 215	Ile A	_	_		-		_			_	-	-	-	787
gac cto Asp Leu 230	-				_	-			-					835
ctc gac Leu Asp			e Asn		-			-	_			-		883
ctc gad Leu Asp	Phe G													931
cca gtg Pro Val	-			-		-	-				_			979
gag tto Glu Phe 295	Arg H					_	_	_	-			_	_	1027
aag acc Lys Thr 310														1075
gag cct Glu Pro		yr Pr		Asn	Thr	Pro	Asp	Asp	Arg	_	Met	_	Lys	1123
cag tac Gln Tyr	Arg L													1171
ttc ggc Phe Gly														1219
atc ggt Ile Gly 375	Ser A													1267
gaa gaa Glu Glu 390										taaa	agga	ag		1313
ggcatct	ccc ac	a												1326

<210> 256

<211> 401

<212> PRT

<213> Corynebacterium glutamicum

<400> 256

Met Thr Glu Ser Lys Asn Tyr Asp Leu Ile Val Val Gly Ser Gly Leu 1 5 10 15

Phe Gly Leu Thr Val Ala Glu Arg Ala Ala Ser Gln Leu Gly Lys Lys 20 25 30

Val Leu Ile Val Glu Arg Arg Ser His Leu Gly Gly Asn Ala Tyr Ser 35 40 45

Glu Ala Glu Pro Glu Thr Gly Ile Glu Ile His Lys Tyr Gly Ala His
50 55 60

Leu Phe His Thr Ser Asn Thr Arg Val Trp Glu Tyr Val Asn Gln Phe 65 70 75 80

Thr Ser Phe Thr Gly Tyr Gln His Arg Val Phe Ala Met His Asn Gly 85 90 95

Thr Ala Tyr Gln Phe Pro Met Gly Leu Gly Leu Ile Asn Gln Phe Phe 100 105 110

Gly Lys Tyr Tyr Ser Pro Asp Glu Ala Arg Glu Leu Ile Lys Glu Gln 115 120 125

Ser Ala Glu Ile Asp Ser Ser Asp Ala Thr Asn Leu Glu Glu Lys Ala 130 135 140

Ile Ser Leu Ile Gly Arg Pro Leu Tyr Glu Ala Phe Ile Arg Asp Tyr 145 150 155 160

Thr Ala Lys Gln Trp Gln Thr Asp Pro Lys Asn Leu Pro Ala Gly Asn 165 170 175

Ile Thr Arg Leu Pro Val Arg Tyr Asn Phe Asn Asn Arg Tyr Phe Asn 180 185 190

Asp Thr Tyr Glu Gly Leu Pro Thr Asp Gly Tyr Ala Ala Trp Leu Glu 195 200 205

Lys Met Ala Glu His Glu Leu Ile Asp Val Arg Leu Asp Thr Asp Trp 210 215 220

Phe Asp Val Arg Asp Asp Leu Arg Ala Ser Asn Pro Asp Ala Pro Val 225 230 235 240

Val Tyr Thr Gly Pro Leu Asp Leu Tyr Phe Asn Tyr Ala Glu Gly Lys 245 250 255

Leu Gly Trp Arg Thr Leu Asp Phe Glu Thr Glu Val Val Glu Thr Gly 260 265 270

Asp Phe Gln Gly Thr Pro Val Met Asn Tyr Asn Asp Ala Asp Val Pro 275 280 285

Phe Thr Arg Ile His Glu Phe Arg His Phe His Pro Glu Arg Asp Asp 290 295 Ser Tyr Pro Lys Asp Lys Thr Val Ile Met Arg Glu Phe Ser Arg Phe 315 310 Ala Asp Asn Glu Asp Glu Pro Tyr Tyr Pro Ile Asn Thr Pro Asp Asp 325 330 Arg Asp Met Leu Lys Gln Tyr Arg Leu Leu Ala Ala Glu Glu Ala Ala 345 Asn Asn Lys Val Leu Phe Gly Gly Arg Leu Gly Thr Tyr Gln Tyr Leu 355 360 365 Asp Met His Met Ala Ile Gly Ser Ala Leu Ser Met Phe Asp Asn Lys 375 Leu Val Pro Phe Phe Glu Glu Gly Thr Pro Leu Glu Gln Glu Arg Gly His <210> 257 <211> 512 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(489) <223> FRXA02596 <400> 257 cct gtg gtc tac acc ggc cca ctc gac ctc tac ttc aac tac gca gag 48 Pro Val Val Tyr Thr Gly Pro Leu Asp Leu Tyr Phe Asn Tyr Ala Glu ggc aag ctg gga tgg cgc acc ctc gac ttt gaa acc gaa gta gta gaa 96 Gly Lys Leu Gly Trp Arg Thr Leu Asp Phe Glu Thr Glu Val Val Glu acc ggt gac ttc caa gga acc cca gtg atg aac tac aac gat gcg gac 144 Thr Gly Asp Phe Gln Gly Thr Pro Val Met Asn Tyr Asn Asp Ala Asp 40 gta ect tte ace ege ate eac gag tte egt eac tte eac eea gag egt 192 Val Pro Phe Thr Arg Ile His Glu Phe Arg His Phe His Pro Glu Arg 55 gat gac agt tac ccc aag gat aag acc gtc atc atg cgc gag ttc tcc 240 Asp Asp Ser Tyr Pro Lys Asp Lys Thr Val Ile Met Arg Glu Phe Ser 70 cgt ttc gca gat aac gag gat gag cct tat tac cca atc aac act cca 288 Arg Phe Ala Asp Asn Glu Asp Glu Pro Tyr Tyr Pro Ile Asn Thr Pro 85 90

						cag Gln							gag Glu	336
-	-		-		-	ttc Phe 120			-	_	- :		_	384
						atc Ile								432
						gaa Glu								480
-	gga Gly	taaa	aagga	aag q	ggcat	tete	cc a	ca						512

<210> 258

<211> 163

<212> PRT

<213> Corynebacterium glutamicum

<400> 258

Pro Val Val Tyr Thr Gly Pro Leu Asp Leu Tyr Phe Asn Tyr Ala Glu
1 5 10 15

Gly Lys Leu Gly Trp Arg Thr Leu Asp Phe Glu Thr Glu Val Val Glu 20 25 30

Thr Gly Asp Phe Gln Gly Thr Pro Val Met Asn Tyr Asn Asp Ala Asp 45

Val Pro Phe Thr Arg Ile His Glu Phe Arg His Phe His Pro Glu Arg 50 55 60

Asp Asp Ser Tyr Pro Lys Asp Lys Thr Val Ile Met Arg Glu Phe Ser 65 70 75 80

Arg Phe Ala Asp Asn Glu Asp Glu Pro Tyr Tyr Pro Ile Asn Thr Pro 85 90 95

Asp Asp Arg Asp Met Leu Lys Gln Tyr Arg Leu Leu Ala Ala Glu Glu 100 105 110

Ala Ala Asn Asn Lys Val Leu Phe Gly Gly Arg Leu Gly Thr Tyr Gln 115 120 125

Tyr Leu Asp Met His Met Ala Ile Gly Ser Ala Leu Ser Met Phe Asp 130 135 140

Asn Lys Leu Val Pro Phe Phe Glu Glu Gly Thr Pro Leu Glu Gln Glu 145 150 155 160

Arg Gly His

<210> 259 <211> 598 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(598) <223> FRXA02642 <400> 259 aaggtatctg ggtgtggata tgccctgcta actggagaaa cttggcccga tcgggtgtct 60 qaaatttcqq caacqccqaa tqtaaqttaq tqtcqaatqc atq acq qaa tcq aaa Met Thr Glu Ser Lys 163 aat tac gac tta atc gtt gta ggc tcc ggc ctc ttc ggg ctc acc gtg Asn Tyr Asp Leu Ile Val Val Gly Ser Gly Leu Phe Gly Leu Thr Val 15 gct gag cgt gca gct agc cag ctg ggt aag aaa gtc ctc atc gtt gaa 211 Ala Glu Arg Ala Ala Ser Gln Leu Gly Lys Lys Val Leu Ile Val Glu cgc cgc tcg cac ctc ggt ggc aat gct tac tct gaa gca gaa cca gag 259 Arg Arg Ser His Leu Gly Gly Asn Ala Tyr Ser Glu Ala Glu Pro Glu acc ggc att gaa atc cac aaa tac ggc gcg cac ctc ttc cac acc tcc 307 Thr Gly Ile Glu Ile His Lys Tyr Gly Ala His Leu Phe His Thr Ser 60 aac aca cgc gtg tgg gaa tac gtc aac cag ttc acc agt ttc acc ggc 355 Asn Thr Arg Val Trp Glu Tyr Val Asn Gln Phe Thr Ser Phe Thr Gly tac cag cac ege gte tte gea atg cac aac gge ace gee tac caa tte 403 Tyr Gln His Arg Val Phe Ala Met His Asn Gly Thr Ala Tyr Gln Phe ccc atg gga ctg ggc ctg att aac cag ttc ttc ggc aag tac tac agc 451 Pro Met Gly Leu Gly Leu Ile Asn Gln Phe Phe Gly Lys Tyr Tyr Ser 110 cca gat gaa gcc cgt gag ctc atc aag gaa cag tct gca gaa atc gat 499 Pro Asp Glu Ala Arg Glu Leu Ile Lys Glu Gln Ser Ala Glu Ile Asp tcc tcc gac gcc acc aac ctc gaa gaa aag gcc att tcc ctc att ggt 547 Ser Ser Asp Ala Thr Asn Leu Glu Glu Lys Ala Ile Ser Leu Ile Gly 140 ege eca ett tae gag gea tte ate ege gae tae ace gea aag eag tgg 595 Arg Pro Leu Tyr Glu Ala Phe Ile Arg Asp Tyr Thr Ala Lys Gln Trp 160 598 caq Gln

<210> 260 <211> 166 <212> PRT <213> Corynebacterium glutamicum Met Thr Glu Ser Lys Asn Tyr Asp Leu Ile Val Val Gly Ser Gly Leu Phe Gly Leu Thr Val Ala Glu Arg Ala Ala Ser Gln Leu Gly Lys Lys Val Leu Ile Val Glu Arg Arg Ser His Leu Gly Gly Asn Ala Tyr Ser 40 Glu Ala Glu Pro Glu Thr Gly Ile Glu Ile His Lys Tyr Gly Ala His Leu Phe His Thr Ser Asn Thr Arg Val Trp Glu Tyr Val Asn Gln Phe Thr Ser Phe Thr Gly Tyr Gln His Arg Val Phe Ala Met His Asn Gly Thr Ala Tyr Gln Phe Pro Met Gly Leu Gly Leu Ile Asn Gln Phe Phe Gly Lys Tyr Tyr Ser Pro Asp Glu Ala Arg Glu Leu Ile Lys Glu Gln Ser Ala Glu Ile Asp Ser Ser Asp Ala Thr Asn Leu Glu Glu Lys Ala Ile Ser Leu Ile Gly Arg Pro Leu Tyr Glu Ala Phe Ile Arg Asp Tyr 155 Thr Ala Lys Gln Trp Gln <210> 261 <211> 668 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(645) <223> RXA02572 <400> 261 gcg gtc gct gag att tgc gag ccg acc ggc gcc gat gcg gtt gcg ctt Ala Val Ala Glu Ile Cys Glu Pro Thr Gly Ala Asp Ala Val Ala Leu gtg gat gcc atc ggt cac gac gat cgt atc ggc cga aag ttc tta ggc Val Asp Ala Ile Gly His Asp Asp Arg Ile Gly Arg Lys Phe Leu Gly 20 gcg ggc ctg gga ttc ggt ggc ggt tgt ttg cct aaa gac atc cgc gct

Ala Gly Leu Gly Phe Gly Gly Gly Cys Leu Pro Lys Asp Ile Arg Ala 35 40 45	
ttc atg gca cgc gcg ggc gaa ttg ggt gct gac cag gca tta acg ttc Phe Met Ala Arg Ala Gly Glu Leu Gly Ala Asp Gln Ala Leu Thr Phe 50 55 60	192
ttg cgt gag gtc gat tcc atc aat atg cgt cgt cgc gac cgt gtg gtg Leu Arg Glu Val Asp Ser Ile Asn Met Arg Arg Arg Asp Arg Val Val 65 70 75 80	240
cag ctg gcc aaa gag atg tgt ggc ggt tcg ctg ggc aag cgg gtt Gln Leu Ala Lys Glu Met Cys Gly Gly Ser Leu Leu Gly Lys Arg Val 85 90 95	288
aca gtg ctc ggc gcc gca ttc aaa ccc aac tcg gac gat gtc cgc gat Thr Val Leu Gly Ala Ala Phe Lys Pro Asn Ser Asp Asp Val Arg Asp 100 105 110	336
tct ccg gcg ctg tcg gtc gcg ggt tcg ctg tcg ctc cag ggt gcg gcg Ser Pro Ala Leu Ser Val Ala Gly Ser Leu Ser Leu Gln Gly Ala Ala 115 120 125	384
gtc tcg gtc tac gac ccg gaa gct atg gac aac gct cga cgc gtc ttc Val Ser Val Tyr Asp Pro Glu Ala Met Asp Asn Ala Arg Arg Val Phe 130 135 140	432
ccg acg ctc agc tat gcg tcc agc act aaa gag gcg ctt atc gac gcc Pro Thr Leu Ser Tyr Ala Ser Ser Thr Lys Glu Ala Leu Ile Asp Ala 145 150 155 160	480
cac ctc gtc gtt ctt gcc act gaa tgg caa gaa ttc cgc gac ctt gac His Leu Val Val Leu Ala Thr Glu Trp Gln Glu Phe Arg Asp Leu Asp 165 170 175	528
ccc gaa gtg gcg gga ggg gtc gtc gag aag cgc gct att att gat ggc Pro Glu Val Ala Gly Gly Val Val Glu Lys Arg Ala Ile Ile Asp Gly 180 185 190	576
cga aac gtc ctc gat gtt gcc aaa tgg aag gcc gcc ggt tgg gaa atg Arg Asn Val Leu Asp Val Ala Lys Trp Lys Ala Ala Gly Trp Glu Met 195 200 205	624
gaa gcg ctc ggc cgc aac ctt tagtgcggtg gatcaggcgg ggc Glu Ala Leu Gly Arg Asn Leu 210 215	668
<210> 262 <211> 215 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 262 Ala Val Ala Glu Ile Cys Glu Pro Thr Gly Ala Asp Ala Val Ala Leu 1 5 10 15</pre>	
Val Asp Ala Ile Gly His Asp Asp Arg Ile Gly Arg Lys Phe Leu Gly 20 25 30	
Ala Gly Leu Gly Phe Gly Gly Gly Cys Leu Pro Lys Asp Ile Arg Ala	

		35					40					45				
Phe	Met 50	Ala	Arg	Ala	Gly	Glu 55	Leu	Gly	Ala	Asp	Gln 60	Ala	Leu	Thr	Phe	
Leu 65	Arg	Glu	Val	Asp	Ser 70	Ile	Asn	Met	Arg	Arg 75	Arg	Asp	Arg	Val	Val 80	
Gln	Leu	Ala	Lys	Glu 85	Met	Cys	Gly	Gly	Ser 90	Leu	Leu	Gly	Lys	Arg 95	Val	
Thr	Val	Leu	Gly 100	Ala	Ala	Phe	Lys	Pro 105	Asn	Ser	Asp	Asp	Val 110	Arg	Asp	
Ser	Pro	Ala 115	Leu	Ser	Val	Ala	Gly 120	Ser	Leu	Ser	Leu	Gln 125	Gly	Ala	Ala	
Val	Ser 130	Val	Tyr	Asp	Pro	Glu 135	Ala	Met	Asp	Asn	Ala 140	Arg	Arg	Val	Phe	
Pro 145	Thr	Leu	Ser	Tyr	Ala 150	Ser	Ser	Thr	Lys	Glu 155	Ala	Leu	Ile	Asp	Ala 160	
His	Leu	Val	Val	Leu 165	Ala	Thr	Glu	Trp	Gln 170	Glu	Phe	Arg	Asp	Leu 175	Asp	
Pro	Glu	Val	Ala 180	Gly	Gly	Val	Val	Glu 185	Lys	Arg	Ala	Ile	Ile 190	Asp	Gly	
Arg	Asn	Val 195	Leu	Asp	Val	Ala	Lys 200	Trp	Lys	Ala	Ala	Gly 205	Trp	Glu	Met	
Glu	Ala 210	Leu	Gly	Arg	Asn	Leu 215										
<213 <213	0> 20 1> 12 2> Di 3> Co	224 NA	ebact	teri	ım gi	lutar	nicur	n								
<222	1> CI 2> (:	-	(1: 485	201)												
	0> 20 tggto		tgct	tggt	gc ac	cctt	geega	a cg	ggct	gatt	gate	cgtaa	atg (gtgti	tttctg	60
tac	gcgt1	tgc (catga	aggat	a ag	gacta	accgt	t tag	gtgg	ggtg		gat Asp				115
				gcc Ala												163

act ttc gcc gat ctg acg acc ctc cgc atc ggc gga aaa ccc cgc agc Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile Gly Gly Lys Pro Arg Ser 25 30 35

	gta Val															259
	gac Asp 55															307
	gtc Val															355
	gac Asp															403
	ggc Gly															451
	ggt Gly															499
acc Thr	cca Pro 135	gtc Val	caa Gln	aac Asn	gtg Val	ggc Gly 140	gcc Ala	tac Tyr	ggc Gly	acg Thr	gaa Glu 145	gtt Val	tcc Ser	gat Asp	gta Val	547
	acc Thr															595
	gac Asp															643
ttc Phe	acc Thr	aac Asn	cgc Arg 185	gca Ala	gtc Val	gtc Val	ttg Leu	gcg Ala 190	atc Ile	gaa Glu	ctc Leu	cag Gln	ctc Leu 195	ctc Leu	acc Thr	691
	gga Gly															739
	atc Ile 215															787
	gac Asp															835
cac	acc Thr	gac Asp	cac His	gac Asp 250	acc Thr	tgg Trp	tcc Ser	gcc Ala	gga Gly 255	tcc Ser	ttc Phe	ttc Phe	acc Thr	aac Asn 260	cca Pro	883
	gtc Val															931
ccc	acc	atg	ccc	cgc	ttc	cca	gcc	ggc	gat	ggc	aaa	gaa	aaa	ctc	tcc	979

280 285 290	Ser
gca gcc tgg ctc atc gaa cgc gcc ggc ttc aaa aag gga cac ccc Ala Ala Trp Leu Ile Glu Arg Ala Gly Phe Lys Lys Gly His Pro 295 300 305	
gca ggc gca aaa gcc tcc ctg agc acc aaa cac acc ctc gca ctc Ala Gly Ala Lys Ala Ser Leu Ser Thr Lys His Thr Leu Ala Leu 310 315 320	
aac cgt ggc gac gcc cgc gcc tcc gac ctc gtc gca tta gcc aaa Asn Arg Gly Asp Ala Arg Ala Ser Asp Leu Val Ala Leu Ala Lys 330 335 340	
atc cgc gac gga gtc ctc gaa acc ttc ggc gtc acc ctc gtc cca Ile Arg Asp Gly Val Leu Glu Thr Phe Gly Val Thr Leu Val Pro 345 350 355	
ccc gtc tgg att gga atc agc atc gat gac tgaattttcc gacgtccct Pro Val Trp Ile Gly Ile Ser Ile Asp Asp 360 365	:g 1221
gca	1224
<210> 264 <211> 367 <212> PRT <213> Corynebacterium glutamicum	
<400> 264	
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val	Glu
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val 1 5 10 15	
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val	
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val 1 5 10 10 15 Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile	Gly
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val 1 5 10 10 15 Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile 20 25 30 Gly Lys Pro Arg Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu	Gly Val
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile 20 Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 40 Ser Leu Pro Leu Leu Ile	Gly Val Val
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile 30 Gly Lys Pro Arg Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 35 Ser Ala Ile Lys Leu Leu Asp Asp Ala Ser Leu Pro Leu Leu Ile 50 Gly Gly Gly Ser Asn Leu Val Val Ala Asp Gly Asp Leu Asp Val	Gly Val Val Ile 80
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile Gly Lys Pro Arg Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 35 Leu Asp Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 50 Ser Ala Ile Lys Leu Leu Asp Asp Ala Ser Leu Pro Leu Leu Ile 60 Gly Gly Gly Ser Asn Leu Val Val Ala Asp Gly Asp Leu Asp Val 65 Ala Val Ile Ile Glu Thr Asp Asp Val Ser Ile Asn Leu Thr Asp	Gly Val Val Ile 80 Gly
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val 15 Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile Gly Lys Pro Arg Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 45 Ser Ala Ile Lys Leu Leu Asp Asp Ala Ser Leu Pro Leu Leu Ile 60 Gly Gly Gly Ser Asn Leu Val Val Ala Asp Gly Asp Leu Asp Val 65 Ala Val Ile Ile Glu Thr Asp Asp Asp Val Ser Ile Asn Leu Thr Asp 95 Leu Leu Thr Ala Asp Ala Gly Ala Val Trp Asp Asp Val Val His	Gly Val Val Ile 80 Gly Leu
Leu Asp Ser Ser Leu Ala Gln Glu Ile Ala Ala Ile Asp Gly Val 15 Leu Asp Ser Glu Val Thr Phe Ala Asp Leu Thr Thr Leu Arg Ile 30 Gly Lys Pro Arg Ser Ala Val Arg Cys Gln Thr Thr Glu Ala Leu 45 Ser Ala Ile Lys Leu Leu Asp Asp Asp Ala Ser Leu Pro Leu Leu Ile 60 Gly Gly Gly Ser Asn Leu Val Val Ala Asp Gly Asp Leu Asp Val 75 Ala Val Ile Ile Glu Thr Asp Asp Asp Val Ser Ile Asn Leu Thr Asp 95 Leu Leu Thr Ala Asp Ala Gly Leu Gly Gly Ile Glu Cys Leu Ser Gly Ile Ser Val Asp Ala Gly Leu Gly Gly Ile Glu Cys Leu Ser Gly Ile	Gly Val Val Ile 80 Gly Leu Pro

His Gln Val Ser Trp Val Asp Ala Ser Glu Leu Asp Leu Ser Tyr Arg Tyr Ser Asn Leu Lys Phe Thr Asn Arg Ala Val Val Leu Ala Ile Glu 185 Leu Gln Leu Leu Thr Asp Gly Leu Ser Ala Pro Leu Arg Phe Gly Glu 200 Leu Gly Arg Arg Leu Ala Ile Ser Glu Ala Glu Pro His Pro Arg Arg 215 Pro Val Arg Met Val Arg Asp Ala Val Leu Glu Leu Arg Arg Ala Lys 230 235 Gly Met Val Val Glu His Thr Asp His Asp Thr Trp Ser Ala Gly Ser Phe Phe Thr Asn Pro Ile Val Asp Pro Ala Leu Ala Asp Ala Val Phe 260 265 270 Glu Lys Val Gly Glu Pro Thr Met Pro Arg Phe Pro Ala Gly Asp Gly 280 Lys Glu Lys Leu Ser Ala Ala Trp Leu Ile Glu Arg Ala Gly Phe Lys Lys Gly His Pro Gly Ala Gly Ala Lys Ala Ser Leu Ser Thr Lys His Thr Leu Ala Leu Thr Asn Arg Gly Asp Ala Arg Ala Ser Asp Leu Val Ala Leu Ala Lys Glu Ile Arg Asp Gly Val Leu Glu Thr Phe Gly Val 345 Thr Leu Val Pro Glu Pro Val Trp Ile Gly Ile Ser Ile Asp Asp 360 <210> 265 <211> 1124 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1101) <223> RXA01216 <400> 265 acc gac cac act ctg tct gca ctg ctg gat gca cac gtg gaa gtt cca 48 Thr Asp His Thr Leu Ser Ala Leu Leu Asp Ala His Val Glu Val Pro acc gct gtc acc gtg ttg acc atg cgt ctg gat gac ccc acc ggc tac 96 Thr Ala Val Thr Val Leu Thr Met Arg Leu Asp Asp Pro Thr Gly Tyr 20 25 ggc cgc atc gtg cgc aac gaa gac gaa gtc acc gcc atc gtt gag

	Arg	Ile 35	Val	Arg	Asn	Glu	Glu 40	Gly	Glu	Val	Thr	Ala 45	Ile	Val	Glu	
							gtc Val									192
							gcc Ala									240
ctg Leu	aag Lys	tcc Ser	gac Asp	aac Asn 85	gct Ala	cag Gln	ggc Gly	gag Glu	ctg Leu 90	tac Tyr	ctg Leu	acc Thr	gac Asp	gtt Val 95	ttg Leu	288
ggc Gly	att Ile	gct Ala	cgt Arg 100	ggc Gly	gag Glu	ggc Gly	cac His	cca Pro 105	gtg Val	cgc Arg	gcc Ala	cac His	acc Thr 110	gcc Ala	gcc Ala	336
gat Asp	gct Ala	cgt Arg 115	gaa Glu	ctc Leu	gcc Ala	ggc Gly	gtc Val 120	aac Asn	gat Asp	cgt Arg	gtg Val	cag Gln 125	ctc Leu	gca Ala	gaa Glu	384
gcc Ala	ggc Gly 130	gcc Ala	gaa Glu	cta Leu	aac Asn	cgt Arg 135	cgc Arg	acc Thr	gtc Val	atc Ile	gcc Ala 140	gct Ala	atg Met	cgt Arg	ggt Gly	432
							gca Ala									480
							atc Ile		cct Pro							528
		_		165					170	-				175	-	
	act	gtc	atc	165 gga	gac	cgc	gtt Val		gtt	ggt	cca		acc	175 acc	ttg	576
Glu	act Thr	gtc Val atg	atc Ile 180	165 gga Gly atc	gac Asp ggc	cgc Arg gac	gtt	Glu 185 gca	gtt Val tcc	ggt Gly gta	cca Pro	Asp	acc Thr 190	175 acc Thr	ttg Leu ggt	576 624
Glu acc Thr	act Thr aac Asn	gtc Val atg Met 195	atc Ile 180 acc Thr	gga Gly atc Ile	gac Asp ggc Gly	cgc Arg gac Asp	gtt Val ggc Gly	Glu 185 gca Ala gcc	gtt Val tcc Ser	ggt Gly gta Val	cca Pro atc Ile	cgc Arg 205	acc Thr 190 acc Thr	acc Thr cac His	ttg Leu ggt Gly	
Glu acc Thr ttc Phe	act Thr aac Asn gac Asp 210	gtc Val atg Met 195 tcc Ser	atc Ile 180 acc Thr acc Thr	gga Gly atc Ile atc	gac Asp ggc Gly ggt Gly	cgc Arg gac Asp gaa Glu 215	gtt Val ggc Gly 200	Glu 185 gca Ala gcc Ala	gtt Val tcc Ser acc Thr	ggt Gly gta Val gtt Val	cca Pro atc Ile ggc Gly 220	cgc Arg 205 ccc Pro	acc Thr 190 acc Thr ttc Phe	acc Thr cac His acc Thr	ttg Leu ggt Gly tac Tyr	624
Glu acc Thr ttc Phe atc Ile 225 gta	act Thr aac Asn gac Asp 210 cgc Arg	gtc Val atg Met 195 tcc Ser cca Pro	atc Ile 180 acc Thr acc Thr	gga Gly atc Ile atc Ile acc Thr	gac Asp ggc Gly ggt Gly aca Thr 230	cgc Arg gac Asp gaa Glu 215 ctg Leu	gtt Val ggc Gly 200 aac Asn	Glu 185 gca Ala gcc Ala cca Pro	gtt Val tcc Ser acc Thr	ggt Gly gta Val gtt Val ggc Gly 235	cca Pro atc Ile ggc Gly 220 aag Lys	cgc Arg 205 ccc Pro ctc Leu	acc Thr 190 acc Thr ttc Phe ggt Gly	acc Thr cac His acc Thr ggc Gly cca	ttg Leu ggt Gly tac Tyr ttc Phe 240 cac	624 672
acc Thr ttc Phe atc Ile 225 gta Val	act Thr aac Asn gac Asp 210 cgc Arg gaa Glu	gtc Val atg Met 195 tcc Ser cca Pro acc Thr	atc Ile 180 acc Thr acc Thr gga Gly aag Lys	gga Gly atc Ile atc Ile acc Thr aag Lys 245	gac Asp ggc Gly ggt Gly aca Thr 230 gcc Ala	gac Asp gaa Glu 215 ctg Leu aca Thr	gtt Val ggc Gly 200 aac Asn gga Gly	Glu 185 gca Ala gcc Ala cca Pro ggc Gly	gtt Val tcc Ser acc Thr, gaa Glu cgt Arg 250	ggt Gly gta Val gtt Val ggc Gly 235 ggc Gly	cca Pro atc Ile ggc Gly 220 aag Lys tcc Ser	cgc Arg 205 ccc Pro ctc Leu aag Lys	acc Thr 190 acc Thr ttc Phe ggt Gly gtt Val	acc Thr cac His acc Thr ggc Gly cca Pro 255 atc	ttg Leu ggt Gly tac Tyr ttc Phe 240 cac His	624 672 720

275 280 285 912 acc atc qgc agc cac gtt cgc act ggt tct gac acc atg ttt atc gct Thr Ile Gly Ser His Val Arg Thr Gly Ser Asp Thr Met Phe Ile Ala 295 290 960 cca gtg acc gtg ggt gac gga gcg tat tcc gga gcc ggt aca gta att Pro Val Thr Val Gly Asp Gly Ala Tyr Ser Gly Ala Gly Thr Val Ile 1008 aaa gac gat gtt ccg cca gga gcc ctt gcc gtg tcc ggc gga cgc caa Lys Asp Asp Val Pro Pro Gly Ala Leu Ala Val Ser Gly Gly Arg Gln cga aac atc gaa ggc tgg gtg caa aag aag cgc cct gga acc gct gca 1056 Arg Asn Ile Glu Gly Trp Val Gln Lys Lys Arg Pro Gly Thr Ala Ala 1101 gca caa gcc gca gaa gcc gcc caa aac gtc cac aac cag gaa ggc Ala Gln Ala Ala Glu Ala Ala Gln Asn Val His Asn Gln Glu Gly taagcaggat cctcatgact gct 1124 <210> 266 <211> 367 <212> PRT <213> Corynebacterium glutamicum <400> 266 Thr Asp His Thr Leu Ser Ala Leu Leu Asp Ala His Val Glu Val Pro 5 10 Thr Ala Val Thr Val Leu Thr Met Arg Leu Asp Asp Pro Thr Gly Tyr Gly Arg Ile Val Arg Asn Glu Glu Gly Glu Val Thr Ala Ile Val Glu Gln Lys Asp Ala Ser Ala Glu Val Gln Ala Ile Asp Glu Val Asn Ser Gly Val Phe Ala Phe Asp Ala Ala Ile Leu Arg Ser Ala Leu Ala Glu Leu Lys Ser Asp Asn Ala Gln Gly Glu Leu Tyr Leu Thr Asp Val Leu Gly Ile Ala Arg Gly Glu Gly His Pro Val Arg Ala His Thr Ala Ala Asp Ala Arg Glu Leu Ala Gly Val Asn Asp Arg Val Gln Leu Ala Glu 120 Ala Gly Ala Glu Leu Asn Arg Arg Thr Val Ile Ala Ala Met Arg Gly Gly Ala Thr Ile Val Asp Pro Ala Thr Thr Trp Ile Asp Val Glu Val 155 145 150

Ser	Ile	Gly	Arg	Asp 165	Val	Ile	Ile	His	Pro 170	Gly	Thr	Gln	Leu	Lys 175	Gly	
Glu	Thr	Val	Ile 180	Gly	Asp	Arg	Val	Glu 185	Val	Gly	Pro	Asp	Thr 190	Thr	Leu	
Thr	Asn	Met 195	Thr	Ile	Gly	Asp	Gly 200	Ala	Ser	Val	Ile	Arg 205	Thr	His	Gly	
Phe	Asp 210	Ser	Thr	Ile	Gly	Glu 215	Asn	Ala	Thr	Val	Gly 220	Pro	Phe	Thr	Tyr	
Ile 225	Arg	Pro	Gly	Thr	Thr 230	Leu	Gly	Pro	Glu	Gly 235	Lys	Leu	Gly	Gly	Phe 240	
Val	Glu	Thr	Lys	Lys 245	Ala	Thr	Ile	Gly	Arg 250	Gly	Ser	Lys	Val	Pro 255	His	
Leu	Thr	Tyr	Val 260	Gly	Asp	Ala	Thr	Ile 265	Gly	Glu	Glu	Ser	Asn 270	Ile	Gly	
Ala	Ser	Ser 275	Val	Phe	Val	Asn	Tyr 280	Asp	Gly	Glu	Asn	Lys 285	His	His	Thr	
Thr	11e 290	Gly	Ser	His	Val	Arg 295	Thr	Gly	Ser	Asp	Thr 300	Met	Phe	Ile	Ala	
Pro 305	Val	Thr	Val	Gly	Asp 310	Gly	Ala	Tyr	Ser	Gly 315	Ala	Gly	Thr	Val	Ile 320	
Lys	Asp	Asp	Val	Pro 325	Pro	Gly	Ala	Leu	Ala 330	Val	Ser	Gly	Gly	Arg 335	Gln	
Arg	Asn	Ile	Glu 340	Gly	Trp	Val	Gln	Lys 345	Lys	Arg	Pro	Gly	Thr 350	Ala	Ala	
Ala	Gln	Ala 355	Ala	Glu	Ala	Ala	Gln 360	Asn	Val	His	Asn	Gln 365	Glu	Gly		
<213 <213	0> 20 1> 98 2> Di 3> Co	81 NA	ebaci	teri	um gl	Lutar	nicur	n								
<22	0> 1> CI 2> (: 3> RI	101)	•	58)												
	0> 20 agaat		tttc	taaa	at to	cggta	atcgi	t cta	aagaa	aatg	agti	tgc	caa t	agct	cagca	60
tca	aaat	gct (gtaa	aaac	tg to	egtg	gtac	c ago	ctgca	agga				cgg Arg		115
										ctt Leu						163

acc co Thr Pr															211
act cg Thr Ar	-	-				_	_			-					259
cac tt His Ph															307
aag ac Lys Th 70															355
aca gt Thr Va															403
ggc ct Gly Le															451
atg ct Met Le	-	-	-	_		_				_			_	_	499
gca ga Ala Gl 13	u Val														547
gtg gc Val Al 150	-	-	_	-					-		_			_	595
ctc ga Leu As	-			_	-	_				_	_	_		_	643
gtt ga Val Gl	u Lys		Ala	Pro	Glu	Asp	Āla	Pro	Ser		Phe	Ala			691
ggc cg Gly Ar															739
gag co Glu Pr 21	o Gly														787
ttg at Leu Il 230															835
cgc ca Arg Hi															883
ttc gg	a ctt	cgt	cat	gca	gag	tac	ggt	tcc	aag	att	cac	cgt	gcg	gtg	931

Phe Gly Leu Arg His Ala Glu Tyr Gly Ser Lys Ile His Arg Ala Val 265 270 275

aag gaa ata ctc gct gag ttt gaa tct taaaaaggaa accgccttcc 978 Lys Glu Ile Leu Ala Glu Phe Glu Ser 280

aca 981

<210> 268 <211> 286

<212> PRT

<213> Corynebacterium glutamicum

<400> 268

Met Gly Thr Arg Phe Leu Pro Ala Thr Lys Thr Ile Pro Lys Glu Leu 1 5 10 15

Leu Pro Val Val Asp Thr Pro Gly Ile Glu Leu Val Ala Lys Glu Ala 20 25 30

Ala Asp Leu Gly Ala Thr Arg Leu Ala Ile Ile Thr Ala Pro Asn Lys 35 40 45

Asp Gly Ile Leu Lys His Phe Glu Glu Phe Pro Glu Leu Glu Ala Thr 50 55 60

Leu Glu Ala Arg Gly Lys Thr Asp Gln Leu Asn Lys Val Arg Ala Ala 65 70 75 80

Arg Glu Leu Ile Ala Thr Val Pro Val Val Gln Glu Lys Pro Leu Gly 85 90 95

Leu Gly His Ala Val Gly Leu Ala Glu Ser Val Leu Asp Asp Glu 100 105 110

Asp Val Val Ala Val Met Leu Pro Asp Asp Leu Val Leu Pro Phe Gly
115 120 125

Val Thr Glu Arg Met Ala Glu Val Arg Ala Lys Phe Gly Gly Ser Val 130 135 140

Leu Ala Ala Ile Glu Val Ala Glu Asp Glu Val Ser Asn Tyr Gly Val 145 150 155 160

Phe Lys Leu Gly Glu Leu Asp Ala Glu Ser Glu Ser Glu Gly Ile Arg 165 170 175

Arg Val Val Gly Met Val Glu Lys Pro Ala Pro Glu Asp Ala Pro Ser 180 185 190

Arg Phe Ala Ala Thr Gly Arg Tyr Leu Leu Asp Arg Ala Ile Phe Asp 195 200 205

Ala Leu Arg Arg Ile Glu Pro Gly Ala Gly Glu Leu Gln Leu Thr 210 215 220

Asp Ala Ile Ala Leu Leu Ile Glu Glu Gly His Pro Val His Ile Val 225 230 235 240

Val His Glu Gly Lys Arg His Asp Leu Gly Asn Pro Ala Gly Tyr Ile

Pro Ala Val Val Tyr Phe Gly Leu Arg His Ala Glu Tyr Gly Ser Lys Ile His Arg Ala Val Lys Glu Ile Leu Ala Glu Phe Glu Ser 280 <210> 269 <211> 526 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(526) <223> RXA02028 <400> 269 tgcgcagttc ctgcttagtt tggctcataa atctaaggat aaccgttatt ttcggagggg 60 tacgacgatt ggggttgcgg gggcaggtac tcttggttcc atg agt ttg cct atc Met Ser Leu Pro Ile gat gag cac gtg aac gcg gtt aaa acc gtc gta gtg cct gct gca gga 163 Asp Glu His Val Asn Ala Val Lys Thr Val Val Val Pro Ala Ala Gly 15 10 ctg gga acc cga ttc ctt ccg gcc acc aaa acc gta ccc aag gag ttg 211 Leu Gly Thr Arg Phe Leu Pro Ala Thr Lys Thr Val Pro Lys Glu Leu ctg ccg gtt gtc gat acc cca ggt att gag ctg att gct gct gag gct 259 Leu Pro Val Val Asp Thr Pro Gly Ile Glu Leu Ile Ala Ala Glu Ala 45 307 gcc gaa ctt ggt gcg acc agg ctg gcg atc atc act gcg cca aac aaa Ala Glu Leu Gly Ala Thr Arg Leu Ala Ile Ile Thr Ala Pro Asn Lys 60 355 gct ggg gta ctt gca cac ttt gag cgt tct tct gaa ttg gaa gaa acg Ala Gly Val Leu Ala His Phe Glu Arg Ser Ser Glu Leu Glu Glu Thr 403 ctg atg gag cgt ggc aag act gac cag gtg gag ata atc cgc cgc gcc Leu Met Glu Arg Gly Lys Thr Asp Gln Val Glu Ile Ile Arg Arg Ala gcc gat tta atc aag gca gtt cca gta acc cag gac aag ccg ctg ggg 451 Ala Asp Leu Ile Lys Ala Val Pro Val Thr Gln Asp Lys Pro Leu Gly 110 cta ggt cat gct gtt ggt ttg gct gag tct gtg ttg gat gat gaa 499 Leu Gly His Ala Val Gly Leu Ala Glu Ser Val Leu Asp Asp Asp Glu 125 526 gat gtc gta gcg gtg atg ttg ccg cac Asp Val Val Ala Val Met Leu Pro His

135 140

<210> 270

<211> 142

<212> PRT

<213> Corynebacterium glutamicum

<400> 270

Met Ser Leu Pro Ile Asp Glu His Val Asn Ala Val Lys Thr Val Val 1 5 10 15

Val Pro Ala Ala Gly Leu Gly Thr Arg Phe Leu Pro Ala Thr Lys Thr 20 25 30

Val Pro Lys Glu Leu Leu Pro Val Val Asp Thr Pro Gly Ile Glu Leu 35 40 45

Ile Ala Ala Glu Ala Ala Glu Leu Gly Ala Thr Arg Leu Ala Ile Ile 50 55 60

Thr Ala Pro Asn Lys Ala Gly Val Leu Ala His Phe Glu Arg Ser Ser 65 70 75 80

Glu Leu Glu Glu Thr Leu Met Glu Arg Gly Lys Thr Asp Gln Val Glu
85 90 95

Ile Ile Arg Arg Ala Ala Asp Leu Ile Lys Ala Val Pro Val Thr Gln
100 105 110

Asp Lys Pro Leu Gly Leu Gly His Ala Val Gly Leu Ala Glu Ser Val 115 120 125

Leu Asp Asp Asp Glu Asp Val Val Ala Val Met Leu Pro His 130 135 140

<210> 271

<211> 1284

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1261)

<223> RXA01262

<400> 271

tatactcgtc aagggccttc gataaaacaa agacaatttt cccccgacgg gacaatctga 60

aaacttgctg tatcaataaa acacgaaaag gaatactttt atg aaa att gcc gtc 115 Met Lys Ile Ala Val 1 5

gca ggg ctc gga tat gtt ggg ctt tca aat gca gct ctc ctc tct aaa 163 Ala Gly Leu Gly Tyr Val Gly Leu Ser Asn Ala Ala Leu Leu Ser Lys 10 15 20

aat cat aaa gtt gtt gca gtt gac att gat gaa gaa cga gtg aaa cta 211 Asn His Lys Val Val Ala Val Asp Ile Asp Glu Glu Arg Val Lys Leu 25 30 35

gtt ca Val G	-			-	-			-	-	-	-		-	-		259
ctg to																307
gct to Ala T														Asn		355
gac c	ca g ro G	gag Slu	tca Ser	aac Asn 90	ttt Phe	ttt Phe	gat Asp	act Thr	tcc Ser 95	agc Ser	gtt Val	gag Glu	tcc Ser	gta Val 100	att Ile	403
gag a Glu I		/al														451
act a Thr I	le F															499
gct to Ala S 1																547
tac g Tyr A 150																595
ctg g Leu G																643
cct c Pro P	-	le			_	-				_						691
ttt t Phe S	er A					Ála		Arg			Phe					739
gat a Asp T 2																787
ggg g Gly V 230	-			_		-										835
ttt g Phe G																883
gcc a Ala A		ſyr														931

gca aat aag act Ala Asn Lys Thr 280								979
tca cct act gta Ser Pro Thr Val 295	Val Gly	att tac Ile Tyr 300	cgc ctt Arg Leu	gta atg Val Met 305	aag Lys	tct gg Ser Gl	a tca y Ser	1027
gat aac ttt cgt Asp Asn Phe Arg 310				-		-	_	1075
gcc aag gga atc Ala Lys Gly Ile	Glu Ile						u Glu	1123
act ttc tac aat Thr Phe Tyr Asn 345			_	_	Glu			1171
tac tgc gac atc Tyr Cys Asp Ile 360								1219
gta cca gaa aaa Val Pro Glu Lys 375	Val Tyr	_	-	_	-	-		1261
taagtggaaa gaat	cttttg tt	g						1.284
<210> 272 <211> 387 <212> PRT <213> Corynebac	terium gl	utamicum	n					
<211> 387 <212> PRT	·			Val Gly	Leu :		n Ala 5	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala	Val Ala 5 Lys Asn	Gly Leu	Gly Tyr 10			1	5	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala 1	Val Ala 5 Lys Asn	Gly Leu His Lys	Gly Tyr 10 Val Val 25	Ala Val	Asp	1 Ile As 30	5 p Glu	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala 1 Ala Leu Leu Ser 20 Glu Arg Val Lys	Val Ala 5 Lys Asn Leu Val	Gly Leu His Lys Gln Glu 40	Gly Tyr 10 Val Val 25 Phe Arg	Ala Val	Asp Ile	lle As 30 Val As	5 p Glu p Ser	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala 1 Ala Leu Leu Ser 20 Glu Arg Val Lys 35 Asp Leu Glu Glu	Val Ala 5 Lys Asn Leu Val	Gly Leu His Lys Gln Glu 40 Ser Thr 55	Gly Tyr 10 Val Val 25 Phe Arg	Ala Val Ser Pro Gln Asn 60	Asp Ile 45 Leu	Ile As 30 Val As Thr Al	5 p Glu p Ser a Thr	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala 1 Ala Leu Leu Ser 20 Glu Arg Val Lys 35 Asp Leu Glu Glu 50 Thr Asp Ala Glu	Val Ala 5 Lys Asn Leu Val Tyr Leu Ala Ala 70	Gly Leu His Lys Gln Glu 40 Ser Thr 55 Tyr Lys	Gly Tyr 10 Val Val 25 Phe Arg Lys Pro	Ala Val Ser Pro Gln Asn 60 Asp Phe 75	Asp Ile 45 Leu Ile	Ile As 30 Val As Thr Al Val Il	p Glu p Ser a Thr e Ala 80	
<211> 387 <212> PRT <213> Corynebac <400> 272 Met Lys Ile Ala 1 Ala Leu Leu Ser 20 Glu Arg Val Lys 35 Asp Leu Glu Glu 50 Thr Asp Ala Glu 65	Val Ala 5 Lys Asn Leu Val Tyr Leu Ala Ala 70 Tyr Asp 85 Ile Glu	Gly Leu His Lys Gln Glu 40 Ser Thr 55 Tyr Lys Pro Glu	Gly Tyr 10 Val Val 25 Phe Arg Lys Pro Gly Ala Ser Asn 90	Ala Val Ser Pro Gln Asn 60 Asp Phe 75 Phe Phe	Asp Ile 45 Leu Ile Asp	Ile As 30 Val As Thr Al Val Il	p Glu p Ser a Thr e Ala 80 r Ser 5	

PCT/IB00/00943 WO 01/00844

Ile Lys His Pro Glu Ala Ser Ile Ile Phe Ser Pro Glu Phe Leu Arg Glu Gly Arg Ala Phe Tyr Asp Asn Leu Tyr Pro Ser Arg Val Val 155 Gly Asp Arg Ser Pro Leu Gly Glu Glu Phe Ala Thr Leu Leu Ala Glu Gly Ala Lys Glu Lys Pro Pro Ile Leu Leu Thr Asp Ser Thr Glu Ala 185 Glu Ala Ile Lys Leu Phe Ser Asn Thr Tyr Leu Ala Leu Arg Val Ala 200 Phe Phe Asn Glu Leu Asp Thr Tyr Ala Ser Val Arg Ser Leu Asp Thr 215 Lys Gln Ile Ile Glu Gly Val Gly Leu Asp Pro Arg Ile Gly Ser His 230 Tyr Asn Asn Pro Ser Phe Gly Tyr Gly Gly Tyr Cys Leu Pro Lys Asp 250 Thr Lys Gln Leu Leu Ala Asn Tyr Lys Asp Val Pro Gln Asn Leu Ile Ser Ala Val Val Gln Ala Asn Lys Thr Arg Lys Asp Phe Ile Ala Glu 280 275 Asp Ile Leu Ser Lys Ser Pro Thr Val Val Gly Ile Tyr Arg Leu Val Met Lys Ser Gly Ser Asp Asn Phe Arg Ser Ser Ile Gln Gly Val Met Lys Arg Ile Lys Ala Lys Gly Ile Glu Ile Val Val Phe Glu Pro 330 Asn Leu Gly Glu Glu Thr Phe Tyr Asn Ser Lys Ile Leu Asn Asp Ile Glu Glu Phe Lys Asp Tyr Cys Asp Ile Ile Ile Ala Asn Arg Pro Thr 360 Asp Glu Leu Ser Asp Val Pro Glu Lys Val Tyr Thr Arg Asp Ile Phe 375 Gln Arg Asp 385

<210> 273 <211> 1209 <212> DNA <213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1186) <223> RXA01377

<400> 273 tgaaatggat ttgctgcggc cccggaatta cccttttcgc ggccgtcatc aaatttqtac 60 ccccttaaag acaccctaaa cacgagtgaa ataggaacac atg act tta act gac Met Thr Leu Thr Asp 1 aac agc aaa aac gtt gat gct gtc atc ttg gtc ggt ggc aaa ggt acc Asn Ser Lys Asn Val Asp Ala Val Ile Leu Val Gly Gly Lys Gly Thr 10 20 cga ctg cgc ccc ctg acc gtc aat act cca aag cca atg ctg cca act 211 Arg Leu Arg Pro Leu Thr Val Asn Thr Pro Lys Pro Met Leu Pro Thr 25 30 259 gct ggc cac cca ttc ttg acc cac ctt ttg gcc cgc atc aag gcc gca Ala Gly His Pro Phe Leu Thr His Leu Leu Ala Arg Ile Lys Ala Ala 40 45 ggc atc aca cac gtc gtg ctg gga acg tca ttc aaa gct gaa gtc ttc 307 Gly Ile Thr His Val Val Leu Gly Thr Ser Phe Lys Ala Glu Val Phe 60 55 355 gag gaa tac ttc gga gat ggc tcc gaa atg ggc ttg gaa att gaa tat Glu Glu Tyr Phe Gly Asp Gly Ser Glu Met Gly Leu Glu Ile Glu Tyr 70 gtc gtc gag gat cag cct ttg ggc act ggt ggc atc cga aac gtc Val Val Glu Asp Gln Pro Leu Gly Thr Gly Gly Gly Ile Arg Asn Val 95 90 100 tac gac aag ctg cgt cac gat act gcg att gtg ttc aac ggc gat gtg 451 Tyr Asp Lys Leu Arg His Asp Thr Ala Ile Val Phe Asn Gly Asp Val 105 110 ctc tcc ggt gcg gat ctc aac agc att ctg gac acc cac cgc gaa aag 499 Leu Ser Gly Ala Asp Leu Asn Ser Ile Leu Asp Thr His Arg Glu Lys 125 120 gac gca gat ctg acc atg cat ctc gtg cgc gta gct aac cct cgt gcg 547 Asp Ala Asp Leu Thr Met His Leu Val Arg Val Ala Asn Pro Arg Ala 135 140 ttt ggt tgc gtc ccc acc gat gag gat ggt cgc gtc agc gaa ttc ctt 595 Phe Gly Cys Val Pro Thr Asp Glu Asp Gly Arg Val Ser Glu Phe Leu 150 155 gaa aag acc gaa gat cca cca acc gat cag atc aac gcc ggc tgc tac Glu Lys Thr Glu Asp Pro Pro Thr Asp Gln Ile Asn Ala Gly Cys Tyr 180 691 gtg ttc aag aag gaa ctc atc gag cag atc ccg gca ggc cga gca gtt Val Phe Lys Lys Glu Leu Ile Glu Gln Ile Pro Ala Gly Arg Ala Val 195 185 190 739 tcc gtc gag cgc gaa acc ttc cct cag ctg ttg gaa gaa ggc aag cga Ser Val Glu Arg Glu Thr Phe Pro Gln Leu Leu Glu Glu Gly Lys Arg 200 gtc ttc ggc cac gtc gac gct tcc tac tgg cgc gac atg ggc acc cca 787

Val	Phe 215	Gly	His	Val	Asp	Ala 220	Ser	Tyr	Trp	Arg	Asp 225	Met	Gly	Thr	Pro	
agc Ser 230	gac Asp	ttc Phe	gtc Val	cgc Arg	ggc Gly 235	tcg Ser	gct Ala	gac Asp	ctg Leu	gtc Val 240	cgc Arg	ggc Gly	att Ile	gcg Ala	tac Tyr 245	835
											ctt Leu					883
											gga Gly					931
											gac Asp					979
											att Ile 305					1027
											cac His					1075
											tgt Cys					1123
											gac Asp					1171
	_	tct Ser 360	-	_	tag	gcati	tt 1	tage	ectt	t go	ga					1209
<211 <212	0> 2 ⁻ l> 36 2> Pi 3> Co	62	ebaci	teri	um gi	Lutar	nicur	n								
)> 2 ⁻ Thr		Thr	Asp 5	Asn	Ser	Lys	Asn	Val 10	Asp	Ala	Val	Ile	Leu 15	Val	
Gly	Gly	Lys	Gly 20	Thr	Arg	Leu	Arg	Pro 25	Leu	Thr	Val	Asn	Thr 30	Pro	Lys	
Pro	Met	Leu 35	Pro	Thr	Ala	Gly	His 40	Pro	Phe	Leu	Thr	His 45	Leu	Leu	Ala	
Arg	Ile 50	Lys	Ala	Ala	Gly	Ile 55	Thr	His	Val	Val	Leu 60	Gly	Thr	Ser	Phe	

Leu Glu Ile Glu Tyr Val Val Glu Asp Gln Pro Leu Gly Thr Gly Gly 85 90 95

Gly Ile Arg Asn Val Tyr Asp Lys Leu Arg His Asp Thr Ala Ile Val 100 105 110

Phe Asn Gly Asp Val Leu Ser Gly Ala Asp Leu Asn Ser Ile Leu Asp 115 120 125

Thr His Arg Glu Lys Asp Ala Asp Leu Thr Met His Leu Val Arg Val 130 135 140

Ala Asn Pro Arg Ala Phe Gly Cys Val Pro Thr Asp Glu Asp Gly Arg 145 150 155 160

Val Ser Glu Phe Leu Glu Lys Thr Glu Asp Pro Pro Thr Asp Gln Ile 165 170 175

Asn Ala Gly Cys Tyr Val Phe Lys Lys Glu Leu Ile Glu Gln Ile Pro 180 185 190

Ala Gly Arg Ala Val Ser Val Glu Arg Glu Thr Phe Pro Gln Leu Leu 195 200 205

Glu Glu Gly Lys Arg Val Phe Gly His Val Asp Ala Ser Tyr Trp Arg 210 215 220

Asp Met Gly Thr Pro Ser Asp Phe Val Arg Gly Ser Ala Asp Leu Val 225 230 235 240

Arg Gly Ile Ala Tyr Ser Pro Leu Leu Glu Gly Lys Thr Gly Glu Ser · 245 250 255

Leu Val Asp Ala Ser Ala Gly Val Arg Asp Gly Val Leu Leu Gly 260 265 270

Gly Thr Val Val Gly Arg Gly Thr Glu Ile Gly Ala Gly Cys Arg Val 275 280 285

Asp Asn Thr Val Ile Phe Asp Gly Val Thr Ile Glu Pro Gly Ala Val 290 295 300

Ile Glu Asn Ser Ile Ile Ser Ser Gly Ala Arg Ile Gly Ala Asn Ala 305 310 315 320

His Ile Ser Gly Cys Ile Ile Gly Glu Gly Ala Gln Val Gly Ala Arg 325 330 335

Cys Glu Leu Asn Ala Gly Met Arg Val Phe Pro Gly Val Val Ile Pro $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$

Asp Ser Gly Ile Arg Phe Ser Ser Asp Gln 355

<210> 275

<211> 1350

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(1327) <223> RXA02063

<400> 275 accqaaatqq qqqcattaaa aggggctatc attcggaccc caaaacgatg tttagacaat 60 ttgttaccca gctttcatgc gggatagtta ttttgccttt atg gtt aag ggt gtg Met Val Lys Gly Val aag ggt aga cca aat gtt cta gca atc gtt ctc gca ggt ggc gag ggc 163 Lys Gly Arg Pro Asn Val Leu Ala Ile Val Leu Ala Gly Gly Glu Gly aaa cqa ctt ttt ccq ttg acg gag gac cga gct aag cct gcg gtc cca 211 Lys Arg Leu Phe Pro Leu Thr Glu Asp Arg Ala Lys Pro Ala Val Pro 30 259 ttc qqc gqa act tac aga ttg atc gac ttt gtt ttg tcg aac ctg gtg Phe Gly Gly Thr Tyr Arg Leu Ile Asp Phe Val Leu Ser Asn Leu Val 45 307 aac too gga tto oto aag ato gog gta otg act cag tac aag tog cat Asn Ser Gly Phe Leu Lys Ile Ala Val Leu Thr Gln Tyr Lys Ser His tca ttg gat agg cat att tca ttg tcg tgg aac gtg tct ggt cca acg 355 Ser Leu Asp Arg His Ile Ser Leu Ser Trp Asn Val Ser Gly Pro Thr 80 ggg cag tac att gct tct gtt cct gcg cag cag cgc ctg ggc aag cga 403 Gly Gln Tyr Ile Ala Ser Val Pro Ala Gln Gln Arg Leu Gly Lys Arg 95 tqq ttc act qqt tcc qcq qat qca att ttg cag tct ctg aac ttg atc 451 Trp Phe Thr Gly Ser Ala Asp Ala Ile Leu Gln Ser Leu Asn Leu Ile 105 110 499 tot gat gag aaa cog gat tat gto ato gtt tto ggo gog gac cac gtg Ser Asp Glu Lys Pro Asp Tyr Val Ile Val Phe Gly Ala Asp His Val 125 547 tat cgc atg gac cca agc cag atg cta gat gag cac att gca tct ggt Tyr Arg Met Asp Pro Ser Gln Met Leu Asp Glu His Ile Ala Ser Gly 140 cgc gcg gtg tct gtg gca ggt att cgc gtt cca cgt gag gaa gca act 595 Arg Ala Val Ser Val Ala Gly Ile Arg Val Pro Arg Glu Glu Ala Thr gcg ttt ggt tgc atc cag tcc gat gtc gac ggc aac ata acc gag ttc 643 Ala Phe Gly Cys Ile Gln Ser Asp Val Asp Gly Asn Ile Thr Glu Phe ttg gaa aag cca gct gac cct ccg gga acc cct gat gat cct gac atg 691 Leu Glu Lys Pro Ala Asp Pro Pro Gly Thr Pro Asp Asp Pro Asp Met 739 act tac gcg tcg atg ggt aac tac att ttc acc act gaa gcc ctg atc Thr Tyr Ala Ser Met Gly Asn Tyr Ile Phe Thr Thr Glu Ala Leu Ile

	200					205				210			
cag go Gln Al 21	a Leu												787
ggc gg Gly Gl 230													835
tat ga Tyr As													883
ggc ta Gly Ty													931
atg ga Met As													979
tgg cc Trp Pr 29	o Ile												1027
gtt cg Val Ar 310													1075
att to Ile Se													1123
gtc ga Val Gl													1171
cgc at Arg Il		Lys		_	-	_	-			_	-	_	1219
gtg gt Val Va 37	ıl Val												1267
gcg ca Ala Gl 390													1315
aac ca Asn Gl			taaa	acgg	gaa a	aggga	accti	ta aa	aa				1350

<210> 276

<211> 409

<212> PRT

<213> Corynebacterium glutamicum

<400> 276

Met 1	Val	Lys	Gly	Val 5	Lys	Gly	Arg	Pro	Asn 10	Val	Leu	Ala	Ile	Val 15	Leu
Ala	Gly	Gly	Glu 20	Gly	Lys	Arg	Leu	Phe 25	Pro	Leu	Thr	Glu	Asp 30	Arg	Ala
Lys	Pro	Ala 35	Val	Pro	Phe	Gly	Gly 40	Thr	Tyr	Arg	Leu	Ile 45	Asp	Phe	Val
Leu	Ser 50	Asn	Leu	Val	Asn	Ser 55	Gly	Phe	Leu	Lys	Ile 60	Ala	Val	Leu	Thr
Gln 65	Tyr	Lys	Ser	His	Ser 70	Leu	Asp	Arg	His	Ile 75	Ser	Leu	Ser	Trp	Asn 80
Val	Ser	Gly	Pro	Thr 85	Gly	Gln	Tyr	Ile	Ala 90	Ser	Val	Pro	Ala	Gln 95	Gln
Arg	Leu	Gly	Lys 100	Arg	Trp	Phe	Thr	Gly 105	Ser	Ala	Asp	Ala	Ile 110	Leu	Gln
Ser	Leu	Asn 115	Leu	Ile	Ser	Asp	Glu 120	Lys	Pro	Asp	Tyr	Val 125	Ile	Val	Phe
Gly	Ala 130	Asp	His	Val	Tyr	Arg 135	Met	Asp	Pro	Ser	Gln 140	Met	Leu	Asp	Glu
His 145	Ile	Ala	Ser	Gly	Arg 150	Ala	Val	Ser	Val	Ala 155	Gly	Ile	Arg	Val	Pro 160
Arg	Glu	Glu	Ala	Thr 165	Ala	Phe	Gly	Суѕ	Ile 170	Gln	Ser	Asp	Val	Asp 175	Gly
Asn	Ile	Thr	Glu 180	Phe	Leu	Glu	Lys	Pro 185	Ala	Āsp	Pro	Pro	Gly 190	Thr	Pro
Asp	Asp	Pro 195	Asp	Met	Thr	Tyr	Ala 200	Ser	Met	Gly	Asn	Tyr 205	Ile	Phe	Thr
Thr	Glu 210	Ala	Leu	Ile	Gln	Ala 215	Leu	Lys	Asp	Asp	Glu 220	Asn	Asn	Glu	Asn
Ser 225	Asp	His	Asp	Met	Gly 230	Gly	Asp	Ile	Ile	Pro 235	Tyr	Phe	Val	Ser	Arg 240
Asn	Asp	Ala	His	Val 245	Tyr	Asp	Phe	Ser	Gly 250	Asn	Ile	Val	Pro	Gly 255	Ala
Thr	Glu	Arg	Asp 260	Lys	Gly	Tyr	Trp	Arg 265	Asp	Val	Gly	Thr	Ile 270	Asp	Ala
Phe	Tyr	Glu 275	Cys	His	Met	Asp	Leu 280	Ile	Ser	Val	His	Pro 285	Ile	Phe	Asn
Leu	Tyr 290	Asn	Ser	Glu	Trp	Pro 295	Ile	His	Thr	Thr	Ser 300	Glu	Gly	Asn	Leu
Pro 305	Pro	Ala	Lys	Phe	Val 310	Arg	Gly	Gly	Ile	Ala 315	Gln	Ser	Ser	Met	Val 320
Ser	Ser	Gly	Ser	Ile	Ile	Ser	Ala	Gly	Thr	Val	Arg	Asn	Ser	Val	Leu

330

335

325

Ser Asn Asn Val Val Glu Glu Gly Ala Thr Val Glu Gly Ala Val 345 Leu Met Pro Gly Val Arg Ile Gly Lys Gly Ala Val Val Arg His Ala Ile Leu Asp Lys Asn Val Val Val Arg Asp Gly Glu Leu Ile Gly Val Asp Gln Val Arg Asp Ala Gln Arg Phe Lys Val Ser Ala Gly Gly Val Val Val Val Gly Lys Asn Gln Val Val 405 <210> 277 <211> 903 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(880) <223> RXN00014 <400> 277 catcaaagtg accgccggcg gcgtcgaatg gtccgttgca ggaaacgcgg aagcagttag 60 tgagatetee gaaactttaa gegeactaga etaacaacae atg age aaa tat gea Met Ser Lys Tyr Ala gac gat tta gcc tta gcc ctc gaa ctt gcc gaa ctt gcc gat tcc atc Asp Asp Leu Ala Leu Ala Leu Glu Leu Ala Glu Leu Ala Asp Ser Ile 10 211 acc ctc gac cgc ttc gaa gcc tct gac ctg gaa gta tcc tcc aag cca Thr Leu Asp Arg Phe Glu Ala Ser Asp Leu Glu Val Ser Ser Lys Pro 30 gac atg act ccc gtc agc gat gcc gac ctg gcg acc gaa gaa gca ctc 259 Asp Met Thr Pro Val Ser Asp Ala Asp Leu Ala Thr Glu Glu Ala Leu 45 307 cqt gag aaa atc gcc acc gcc cgc ccc gcc gac tcc atc ctc ggt gaa Arg Glu Lys Ile Ala Thr Ala Arg Pro Ala Asp Ser Ile Leu Gly Glu 60 qaa ttc ggt ggc gac gta gaa ttc agc ggc cgc cag tgg atc atc gac 355 Glu Phe Gly Gly Asp Val Glu Phe Ser Gly Arg Gln Trp Ile Ile Asp 403 ccc atc gac ggc acc aaa aac tac gtc cgc ggc gtc ccc gta tgg gca Pro Ile Asp Gly Thr Lys Asn Tyr Val Arg Gly Val Pro Val Trp Ala 451 acc ctg atc gcg ctg ctc gac aac ggc aaa ccc gtc gca ggt gtc atc

Thr Leu Ile Ala Leu Leu Asp Asn Gly Lys Pro Val Ala Gly Val Ile

105 110 115 tcc gca ccc gca ctg gct agg cgt tgg tgg gca tcc gaa ggg gcc ggc 499 Ser Ala Pro Ala Leu Ala Arg Arg Trp Trp Ala Ser Glu Gly Ala Gly gca tgg cgc acc ttc aac ggc agc tcc cca cgc aaa ctg tcc gtg tcc 547 Ala Trp Arg Thr Phe Asn Gly Ser Ser Pro Arg Lys Leu Ser Val Ser cag gtg tcc aag ctt gac gac gcc tcc ctc tcc tcc tcc ctc tcc 595 Gln Val Ser Lys Leu Asp Asp`Ala Ser Leu Ser Phe Ser Ser Leu Ser ggc tgg gcc gaa cga gat ttg cgc gat cag ttc gtc tcc cta act gat Gly Trp Ala Glu Arg Asp Leu Arg Asp Gln Phe Val Ser Leu Thr Asp 170 acc acc tgg cga ctc cgc ggc tac ggc gac ttc ttc tcc tac tgc ctc 691 Thr Trp Arg Leu Arg Gly Tyr Gly Asp Phe Phe Ser Tyr Cys Leu 739 gtc gcc gaa ggt gcc gtc gat atc gcc gct gaa cca gaa gtc agc ctc Val Ala Glu Gly Ala Val Asp Ile Ala Ala Glu Pro Glu Val Ser Leu 200 tgg gat ctt gct ccc ctg tcc atc ctg gtc acc gaa gcc gga gga aag 787 Trp Asp Leu Ala Pro Leu Ser Ile Leu Val Thr Glu Ala Gly Gly Lys 215 tto acc toa ctg got ggo gto gat gga coa cac ggt ggo gat gca gta 835 Phe Thr Ser Leu Ala Gly Val Asp Gly Pro His Gly Gly Asp Ala Val 230 235 240 gcc acc aac ggc atc ctg cac gat gag acg ctg gat cgt tta aaa 880 Ala Thr Asn Gly Ile Leu His Asp Glu Thr Leu Asp Arg Leu Lys 250 255 260 903 tagactcccq qqttttqctt ggt <210> 278 <211> 260 <212> PRT <213> Corynebacterium glutamicum <400> 278 Met Ser Lys Tyr Ala Asp Asp Leu Ala Leu Ala Leu Glu Leu Ala Glu Leu Ala Asp Ser Ile Thr Leu Asp Arg Phe Glu Ala Ser Asp Leu Glu Val Ser Ser Lys Pro Asp Met Thr Pro Val Ser Asp Ala Asp Leu Ala 40 Thr Glu Glu Ala Leu Arg Glu Lys Ile Ala Thr Ala Arg Pro Ala Asp Ser Ile Leu Gly Glu Glu Phe Gly Gly Asp Val Glu Phe Ser Gly Arg

75

Gln	Trp	Ile	Ile	Asp 85	Pro	Ile	Asp	Gly	Thr 90	Lys	Asn	Tyr	Val	Arg 95	Gly	
Val	Pro	Val	Trp 100	Ala	Thr	Leu	Ile	Ala 105	Leu	Leu	Asp	Asn	Gly 110	Lys	Pro	
Val	Ala	Gly 115	Val	Ile	Ser	Ala	Pro 120	Ala	Leu	Ala	Arg	Arg 125	Trp	Trp	Ala	
Ser	Glu 130	Gly	Ala	Gly	Ala	Trp 135	Arg	Thr	Phe	Asn	Gly 140	Ser	Ser	Pro	Arg	
Lys 145	Leu	Ser	Val	Ser	Gln 150	Val	Ser	Lys	Leu	Asp 155	Asp	Ala	Ser	Leu	Ser 160	
Phe	Ser	Ser	Leu	Ser 165	Gly	Trp	Ala	Glu	Arg 170	Asp	Leu	Arg	Asp	Gln 175	Phe	
Val	Ser	Leu	Thr 180	Asp	Thr	Thr	Trp	Arg 185	Leu	Arg	Gly	Tyr	Gly 190	Asp	Phe	
Phe	Ser	Tyr 195	Cys	Leu	Val	Ala	Glu 200	Gly	Ala	Val	Asp	Ile 205	Ala	Ala	Glu	
Pro	Glu 210	Val	Ser	Leu	Trp	Asp 215	Leu	Ala	Pro	Leu	Ser 220	Ile	Leu	Val	Thr	
Glu 225	Ala	Gly	Gly	Lys	Phe 230	Thr	Ser	Leu	Ala	Gly 235	Val	Asp	Gly	Pro	His 240	
Gly	Gly	Asp	Ala	Val. 245	Ala	Thr	Asn	Gly	Ile 250	Leu	His	Asp	Glu	Thr 255	Leu	
Asp	Arg	Leu	Lys 260													
<211 <212)> 27 l> 90 2> Di 3> Co	03 NA	ebact	teri	um gi	Lutar	nicum	n								
<222	l> CI ?> (1		(88 0014	30)												
)> 27 caaaq		accgo	ccgg	eg go	cgtc	gaato	g gto	ccgtt	gca	ggaa	aacgo	egg a	aagca	agttag	60
tgaç	gatct	tee q	gaaad	cttta	aa go	egcad	ctaga	a cta	agcaa	acac	-	agc Ser			-	115
						ctc Leu										163
						gcc Ala										211

25 30 35

						gat Asp										259
cgc Arg	gag Glu 55	aaa Lys	atc Ile	gcc Ala	acc Thr	gcc Ala 60	cgc Arg	ccc Pro	gcc Ala	gac Asp	tcc Ser 65	atc Ile	ctc Leu	ggt Gly	gaa Glu	307
						gaa Glu										355
						aac Asn										403
						gac Asp										451
						agg Arg										499
						ggc Gly 140										547
cag Gln 150	gtg Val	tcc Ser	aag Lys	ctt Leu	gac Asp 155	gac Asp	gcc Ala	tcc Ser	ctc Leu	tcc Ser 160	ttc Phe	tcc Ser	tcc Ser	ctc Leu	tcc Ser 165	595
						ttg Leu										643
						ggc Gly										691
						gat Asp										739
						tcc Ser 220										787
						gtc Val										835
						cac His										880
taga	actc	ccg (ggtti	tgct	tt g	jt										903

<210> 280

<211> 260

<212> PRT

<213> Corynebacterium glutamicum

<400> 280

Met Ser Lys Tyr Ala Asp Asp Leu Ala Leu Ala Leu Glu Leu Ala Glu 1 5 10 15

Leu Ala Asp Ser Ile Thr Leu Asp Arg Phe Glu Ala Ser Asp Leu Glu 20 25 30

Val Ser Ser Lys Pro Asp Met Thr Pro Val Ser Asp Ala Asp Leu Ala 35 40 45

Thr Glu Glu Ala Leu Arg Glu Lys Ile Ala Thr Ala Arg Pro Ala Asp 50 55 60

Ser Ile Leu Gly Glu Glu Phe Gly Gly Asp Val Glu Phe Ser Gly Arg
65 70 75 80

Gln Trp Ile Ile Asp Pro Ile Asp Gly Thr Lys Asn Tyr Val Arg Gly
85 90 95

Val Pro Val Trp Ala Thr Leu Ile Ala Leu Leu Asp Asn Gly Lys Pro 100 105 110

Val Ala Gly Val Ile Ser Ala Pro Ala Leu Ala Arg Arg Trp Trp Ala 115 120 125

Ser Glu Gly Ala Gly Ala Trp Arg Thr Phe Asn Gly Ser Ser Pro Arg 130 135 140

Lys Leu Ser Val Ser Gln Val Ser Lys Leu Asp Asp Ala Ser Leu Ser 145 150 155 160

Phe Ser Ser Leu Ser Gly Trp Ala Glu Arg Asp Leu Arg Asp Gln Phe 165 170 175

Val Ser Leu Thr Asp Thr Thr Trp Arg Leu Arg Gly Tyr Gly Asp Phe 180 185 190

Phe Ser Tyr Cys Leu Val Ala Glu Gly Ala Val Asp Ile Ala Ala Glu 195 200 205

Pro Glu Val Ser Leu Trp Asp Leu Ala Pro Leu Ser Ile Leu Val Thr 210 215 220

Glu Ala Gly Gly Lys Phe Thr Ser Leu Ala Gly Val Asp Gly Pro His 225 235 240

Gly Gly Asp Ala Val Ala Thr Asn Gly Ile Leu His Asp Glu Thr Leu 245 250 . 255

Asp Arg Leu Lys 260

<210> 281

<211> 978

<212> DNA

PCT/IB00/00943 WO 01/00844

115

163

211

307

355

403

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(955) <223> RXA01570 <400> 281 cactgaactc cgttttggat ctcggcaaaa tcgaagccac cggatttagc gcaccgacct 60 ggcagacccg cctcaacgac tacctcaagg aactctcaaa gtg aaa ggc atc atc Val Lys Gly Ile Ile ctc qca gqt gqc tcc gqc acc cgg ctc tac ccc atc acc aag ggc atc Leu Ala Gly Gly Ser Gly Thr Arg Leu Tyr Pro Ile Thr Lys Gly Ile 10 tcc aag caa ctg atg ccg att tac gac aaa ccc atg gtc tac tac cca Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro Met Val Tyr Tyr Pro 25 ctg acc acg ctc att cag gcc ggc atc aaa gac atc ctg att atc acc Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp Ile Leu Ile Ile Thr 40 45 acc cct gaa gac agc gcc tcc ttt gaa cgc ttg ctt ggc gac ggc tcc Thr Pro Glu Asp Ser Ala Ser Phe Glu Arg Leu Leu Gly Asp Gly Ser 55 60 tcc tgg ggc atc aac ctc acc tac gcc gtc caa ccc tcc ccc gac gga Ser Trp Gly Ile Asn Leu Thr Tyr Ala Val Gln Pro Ser Pro Asp Gly 75 80 70 cta gcc caa gca ttc atc atc ggc gag gaa ttc atc ggt gac gac gac Leu Ala Gln Ala Phe Ile Ile Gly Glu Glu Phe Ile Gly Asp Asp Asp 100 90 105

gtc gcg ttg gtg ctt ggc gat aac atc ttc gac ggc gca caa ctt ggc 451 Val Ala Leu Val Leu Gly Asp Asn Ile Phe Asp Gly Ala Gln Leu Gly cac gca cta aag cag tgc tcc aac ccc gac ggt ggc att gtc ttt gct 499 His Ala Leu Lys Gln Cys Ser Asn Pro Asp Gly Gly Ile Val Phe Ala 120 tat gag gtc tcc gat cct gag cgt tat ggc gtg gta gaa ttt gat gct 547 Tyr Glu Val Ser Asp Pro Glu Arg Tyr Gly Val Val Glu Phe Asp Ala 135 140 get aat aag geg gtg tet att gaa gaa aag eec ace geg eea aaa tee 595 Ala Asn Lys Ala Val Ser Ile Glu Glu Lys Pro Thr Ala Pro Lys Ser 150 155 643 aac ttt gcc gtg gta gga cta tat ttc tac gac aat cgc gtg gtg gac Asn Phe Ala Val Val Gly Leu Tyr Phe Tyr Asp Asn Arg Val Val Asp 180 170 691 ate que aaq tea ate aag eet tee teg egt gge gaa etg gaa ate ace Ile Ala Lys Ser Ile Lys Pro Ser Ser Arg Gly Glu Leu Glu Ile Thr 185 190

Ser Val Asn Asp Ala Tyr Leu Gln Gln Gly Ala Leu Thr Val Gln Arg 200 205 210	739
ctg gac cgt ggc gat gtc tgg tta gat acc ggc aca atc gat tcc atg Leu Asp Arg Gly Asp Val Trp Leu Asp Thr Gly Thr Ile Asp Ser Met 215 220 225	787
tcc gag gcg tct tcc tat gtt gag gtc ctg caa aaa cgt acc ggc aac Ser Glu Ala Ser Ser Tyr Val Glu Val Leu Gln Lys Arg Thr Gly Asn 230 235 240 245	835
atc atc gga tcc ccc gaa gtc gct gcg tac cgc gaa ggt ttc atc aca Ile Ile Gly Ser Pro Glu Val Ala Ala Tyr Arg Glu Gly Phe Ile Thr 250 255 260	883
gct gaa gaa ctc aca gtg ctt ggt gag gaa ctg aag aaa tca ggc tac Ala Glu Glu Leu Thr Val Leu Gly Glu Glu Leu Lys Lys Ser Gly Tyr 265 270 275	931
gga aac tac ctg ctg aga gct ttg taatttacgg tgtggttgtg gag Gly Asn Tyr Leu Leu Arg Ala Leu 280 285	978
<210> 282 <211> 285 <212> PRT <213> Corynebacterium glutamicum	
<400> 282	
val Lys Gly lie lie Leu Ala Gly Gly Ser Gly Inr Ard Leu lyr Pro	
Val Lys Gly Ile Ile Leu Ala Gly Gly Ser Gly Thr Arg Leu Tyr Pro 1 5 10 15	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 25 30 Met Val Tyr Tyr Pro Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 25 30 Met Val Tyr Tyr Pro Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp 35 40 45 Ile Leu Ile Ile Thr Thr Pro Glu Asp Ser Ala Ser Phe Glu Arg Leu	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 25 30 Met Val Tyr Tyr Pro Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp 35 40 45 Ile Leu Ile Ile Thr Thr Pro Glu Asp Ser Ala Ser Phe Glu Arg Leu 50 55 60 Leu Gly Asp Gly Ser Ser Trp Gly Ile Asn Leu Thr Tyr Ala Val Gln	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 25 30 Met Val Tyr Tyr Pro Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp 45 Ile Leu Ile Ile Thr Thr Pro Glu Asp Ser Ala Ser Phe Glu Arg Leu 50 60 Leu Gly Asp Gly Ser Ser Trp Gly Ile Asn Leu Thr Tyr Ala Val Gln 65 70 75 80 Pro Ser Pro Asp Gly Leu Ala Gln Ala Phe Ile Ile Gly Glu Glu Phe	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 25 8 10 10 11	
1 5 10 15 Ile Thr Lys Gly Ile Ser Lys Gln Leu Met Pro Ile Tyr Asp Lys Pro 20 Met Val Tyr Tyr Pro Leu Thr Thr Leu Ile Gln Ala Gly Ile Lys Asp 35 Ile Leu Ile Ile Thr Thr Pro Glu Asp Ser Ala Ser Phe Glu Arg Leu 50 Leu Gly Asp Gly Ser Ser Trp Gly Ile Asn Leu Thr Tyr Ala Val Gln 65 Pro Ser Pro Asp Gly Leu Ala Gln Ala Phe Ile Ile Gly Glu Glu Phe 85 Ile Gly Asp Asp Asp Asp Val Ala Leu Val Leu Gly Asp Asn Ile Phe Asp 105 Gly Ala Gln Leu Gly His Ala Leu Lys Gln Cys Ser Asn Pro Asp Gly	

Thr Ala Pro Lys Ser Asn Phe Ala Val Val Gly Leu Tyr Phe Tyr Asp Asn Arg Val Val Asp Ile Ala Lys Ser Ile Lys Pro Ser Ser Arg Gly Glu Leu Glu Ile Thr Ser Val Asn Asp Ala Tyr Leu Gln Gln Gly Ala 200 Leu Thr Val Gln Arg Leu Asp Arg Gly Asp Val Trp Leu Asp Thr Gly Thr Ile Asp Ser Met Ser Glu Ala Ser Ser Tyr Val Glu Val Leu Gln 230 235 Lys Arg Thr Gly Asn Ile Ile Gly Ser Pro Glu Val Ala Ala Tyr Arg Glu Gly Phe Ile Thr Ala Glu Glu Leu Thr Val Leu Gly Glu Glu Leu 265 260 Lys Lys Ser Gly Tyr Gly Asn Tyr Leu Leu Arg Ala Leu 280 <210> 283 <211> 891 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(868) <223> RXA02666 <400> 283 gctcggcgac gaggaagaa agaaggacgc attcgacgac ttcgacgatt ccgacgtgga 60 tottgacgat ctgagetteg acgacgaaga ttagacgeec atg teg tet aca ega Met Ser Ser Thr Arg 163 ate eee gte ate gea ete ete geg geg geg ggg ege gga ace ege ete Ile Pro Val Ile Ala Leu Leu Ala Ala Gly Arg Gly Thr Arg Leu 10 ggc gga ccc atc ccc aaa gca ttc gtc acg ttg cgt gaa cgc aca ctt 211 Gly Gly Pro Ile Pro Lys Ala Phe Val Thr Leu Arg Glu Arg Thr Leu 259 tta gag cgc tcg ctc caa gcc atg ctc acc tcc gaa agc gtc gac gaa Leu Glu Arg Ser Leu Gln Ala Met Leu Thr Ser Glu Ser Val Asp Glu ate ate etc gtc age ecc gac atg gaa ace tac gec egc gat ttg 307 Ile Ile Ile Leu Val Ser Pro Asp Met Glu Thr Tyr Ala Arg Asp Leu ctg cgc aaa cgc ggt ctt ttg aac gac ccc gaa ggg gta cgc gta cgg Leu Arg Lys Arg Gly Leu Leu Asn Asp Pro Glu Gly Val Arg Val Arg

70	75	80	85
ctc gtg cac ggc gg Leu Val His Gly G	gc ggg gag cgc ly Gly Glu Arg 90	gcg gac tcg gtc t Ala Asp Ser Val 7 95	gg gca ggc ctt 403 Trp Ala Gly Leu 100
cag gca att tcg ct Gln Ala Ile Ser Le 105	tt gac gac gcc eu Asp Asp Ala	acc ccc gat gca a Thr Pro Asp Ala I 110	att gtc tta atc 451 Tle Val Leu Ile 115
cac gac agc gcc cq His Asp Ser Ala An 120	ga gcg ctc aca rg Ala Leu Thr 125	Pro Pro Gly Met 1	att gcg cgc gtg 499 Tle Ala Arg Val .30
gtg cgc aaa gtc ca Val Arg Lys Val H: 135			
gta tcg gac acc at Val Ser Asp Thr I 150	tc aaa cga gtg le Lys Arg Val 155	tcc cct gat ggc o Ser Pro Asp Gly 0 160	gga gta gtt gtc 595 Gly Val Val Val 165
gac aca ccc aac co Asp Thr Pro Asn An			
ttc ctg ctg tcc ga Phe Leu Leu Ser G 185			
ccc aac cca ggc to Pro Asn Pro Gly Pi 200		Asp Asp Ala Ser I	
tac ggc gca gat g Tyr Gly Ala Asp Va 215			
gta aca acc ccc at Val Thr Thr Pro II 230			
Ala Glu Pro Thr I			ccaatc atcccccgcg 888
tag			891
<210> 284 <211> 256 <212> PRT <213> Corynebacter	rium glutamicu	m	
<400> 284 Met Ser Ser Thr A: 1	rg Ile Pro Val 5	Ile Ala Leu Leu A	Ala Ala Gly 15
Arg Gly Thr Arg Lo	eu Gly Gly Pro	Ile Pro Lys Ala E 25	Phe Val Thr Leu 30

Arg Glu Arg Thr Leu Leu Glu Arg Ser Leu Gln Ala Met Leu Thr Ser Glu Ser Val Asp Glu Ile Ile Ile Leu Val Ser Pro Asp Met Glu Thr Tyr Ala Arg Asp Leu Leu Arg Lys Arg Gly Leu Leu Asn Asp Pro Glu Gly Val Arg Val Arg Leu Val His Gly Gly Glu Arg Ala Asp Ser Val Trp Ala Gly Leu Gln Ala Ile Ser Leu Asp Asp Ala Thr Pro Asp Ala Ile Val Leu Ile His Asp Ser Ala Arg Ala Leu Thr Pro Pro Gly 120 Met Ile Ala Arg Val Val Arg Lys Val His Glu Gly Ala Thr Ala Val 135 Ile Pro Val Leu Pro Val Ser Asp Thr Ile Lys Arg Val Ser Pro Asp 155 145 150 Gly Gly Val Val Asp Thr Pro Asn Arg Ala Glu Leu Arg Ala Val 170 Gln Thr Pro Gln Gly Phe Leu Leu Ser Glu Leu Val Ala Ala Asn Glu 185 180 Lys Phe Phe Ala Asp Pro Asn Pro Gly Phe Ile Pro Thr Asp Asp Ala Ser Leu Met Glu Trp Tyr Gly Ala Asp Val Val Cys Val Gln Gly Asp Pro Met Ala Phe Lys Val Thr Thr Pro Ile Asp Met Met Leu Ala Gln 235

Arg Ile Thr Asp Glu Ala Glu Pro Thr Ile Phe Glu Val Pro Gly Asp

255

<210> 285 <211> 1056 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1033) <223> RXA00825

245

 $<\!400>$ 285 cccgttcatg ctgggctttg gtgcggtgat ggcaactatt tgtctgatca ttgtgagttt 60

tagtgcacgc cgattctgag aaacaactaa agtgagccac atg cgc aca gta gtt 115 Met Arg Thr Val Val

											1				5 ,	
acc Thr	ggc Gly	ggt Gly	gcc Ala	ggc Gly 10	ttc Phe	atc Ile	gga Gly	tcc Ser	cat His 15	ctc Leu	gtt Val	gac Asp	ctt Leu	ttg Leu 20	atc Ile	163
aag Lys	gaa Glu	ggc Gly	cac His 25	gag Glu	gtc Val	gtt Val	gtg Val	atc Ile 30	gat Asp	aac Asn	ctc Leu	tcc Ser	cgc Arg 35	gga Gly	cgc Arg	211
ctg Leu	gag Glu	aat Asn 40	ctc Leu	tcc Ser	gat Asp	gcg Ala	gaa Glu 45	gcc Ala	acc Thr	gga Gly	aaa Lys	ctc Leu 50	acc Thr	ttt Phe	gtg Val	259
						gtt Val 60										307
						cac His										355
tct Ser	gtt Val	gta Val	gat Asp	cct Pro 90	ctt Leu	cac His	gac Asp	gcc Ala	gaa Glu 95	acc Thr	aac Asn	att Ile	ttg Leu	tcc Ser 100	acc Thr	403
atc Ile	cgc Arg	atc Ile	gct Ala 105	gac Asp	gct Ala	gcc Ala	cgc Arg	cag Gln 110	cac His	ggt Gly	gtt Val	cgc Arg	aag Lys 115	gtt Val	gtc Val	451
ttt Phe	acc Thr	tcc Ser 120	tca Ser	ggc Gly	ggt Gly	tcc Ser	att Ile 125	tac Tyr	ggt Gly	gag Glu	cct Pro	tcg Ser 130	gaa Glu	ttc Phe	cca Pro	499
Val	gat Asp 135	gaa Glu	acc Thr	gtg Val	cca Pro	gtg Val 140	gat Asp	cca Pro	cat His	tcc Ser	cct Pro 145	tat Tyr	gcg Ala	gca Ala	tcc Ser	547
						tac Tyr										595
tta Leu	gac Asp	tgt Cys	tct Ser	cac His 170	atc Ile	gca Ala	ccg Pro	gca Ala	aat Asn 175	gtt Val	tac Tyr	ggc Gly	cca Pro	cgc Arg 180	caa Gln	643
gat Asp	cca Pro	cac His	ggt Gly 185	gaa Glu	gca Ala	gga Gly	gtt Val	gtg Val 190	gcc Ala	att Ile	ttc Phe	gcg Ala	ctg Leu 195	cga Arg	ctt Leu	691
						aag Lys										739
						gac Asp 220										787
						gag Glu										835

acc tct gac Thr Ser Æsp	cgc cag c Arg Gln L 250	tg cac acc eu His Thr	ctc gtg Leu Val 255	gcc act Ala Thr	gcg gca Ala Ala	ggt t Gly S 260	cc 883 Ser
aaa gat gat Lys Asp Asp	cct gaa t Pro Glu T 265	at gca cct yr Ala Pro	gca cgt Ala Arg 270	ctc ggc Leu Gly	gat gtg Asp Val 275	cca o	ege 931 Arg
agt gca ctc Ser Ala Leu 280			Lys Glu				
gag gtg aac Glu Val Asn 295	atc gaa c Ile Glu G	aa ggt gtg ln Gly Val 300	gcc aag Ala Lys	act gtg Thr Val 305	gag tac Glu Tyr	ttc o	egc 1027 Arg
act cac tage Thr His 310	gggaaaa tc	caccacaa a	tc				1056
<210> 286 <211> 311 <212> PRT <213> Coryne	ebacterium	glutamicu	m				
<400> 286 Met Arg Thr 1	Val Val T	hr Gly Gly	Ala Gly		Gly Ser	His 1	Leu
Val Asp Leu	Leu Ile L 20	ys Glu Gly	His Glu 25	Val Val	Val Ile 30	Asp A	Asn
Leu Ser Arg 35	Gly Arg L	eu Glu Asn 40		Asp Ala	Glu Ala 45	Thr (Gly
Lys Leu Thr 50	Phe Val G	lu Ala Asp 55	Leu Leu	Asp Val 60	Asp Phe	Asn (Glu
Phe Leu Gly 65		ys Pro Glu 70	Val Ile	Phe His	Leu Ala	Ala (31n 80
Ile Asp Val	Arg His S 85	er Val Val	Asp Pro 90	Leu His	Asp Ala	Glu 7 95	Chr
Asn Ile Leu	Ser Thr I 100	le Arg Ile	Ala Asp 105	Ala Ala	Arg Gln 110	His (Sly
Val Arg Lys 115	Val Val P	he Thr Ser 120		Gly Ser	Ile Tyr 125	Gly (Glu
Pro Ser Glu 130	Phe Pro V	al Asp Glu 135	Thr Val	Pro Val 140	Asp Pro	His S	Ser
Pro Tyr Ala 145		ys Val Ser 50	Gly Glu	Ile Tyr 155	Leu Asn		Phe 160
Arg His Leu	Tyr Gly L 165	eu Asp Cys	Ser His 170	Ile Ala	Pro Ala	Asn V 175	/al

Tyr Gly Pro Arg Gln Asp Pro His Gly Glu Ala Gly Val Val Ala Ile Phe Ala Leu Arg Leu Leu Gly Gly Leu Asp Thr Lys Val Phe Gly Asp 200 Gly Gly Asn Thr Arg Asp Tyr Val Tyr Val Gly Asp Val Val Arg Ala Phe Tyr Leu Ala Ser Gly Glu Ile Gly Gly Gly Glu Arg Phe Asn Ile 235 Gly Thr Ser Val Glu Thr Ser Asp Arg Gln Leu His Thr Leu Val Ala Thr Ala Ala Gly Ser Lys Asp Asp Pro Glu Tyr Ala Pro Ala Arg Leu 265 Gly Asp Val Pro Arg Ser Ala Leu Ser Phe Gly Lys Ala Lys Glu Val 280 Leu Gly Trp Glu Pro Glu Val Asn Ile Glu Gln Gly Val Ala Lys Thr 300 295 290 Val Glu Tyr Phe Arg Thr His 310 <210> 287 <211> 1134 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1111) <223> RXA01887 <400> 287 catctttaca ggaaacccct tgacggcatc aatgggtggt atctagtatc tactagaacg 60 ttatagtaga acgttctagt aaaacttgga aggatgaaaa atg tca gtc aaa ctt 115 Met Ser Val Lys Leu gcc ctc atc ggt gct gga cgc atc gga tca aat cac gca cgc ctg atc 163 Ala Leu Ile Gly Ala Gly Arg Ile Gly Ser Asn His Ala Arg Leu Ile aca aac cac gtg atc ggc tct gaa ctg gtc gcc gtc gtt gac cca act 211 Thr Asn His Val Ile Gly Ser Glu Leu Val Ala Val Val Asp Pro Thr 259 ccc aac gca gaa acc ctc gct gat gaa ttg ggc gcc gtt gcg ttc tct Pro Asn Ala Glu Thr Leu Ala Asp Glu Leu Gly Ala Val Ala Phe Ser 307 aac cca gat gac gtc ctg acc cgc gat gac att gac gcg gtt ttg att Asn Pro Asp Asp Val Leu Thr Arg Asp Asp Ile Asp Ala Val Leu Ile

					acc Thr 75											355
gcg Ala	ggc Gly	aag Lys	cac His	gtg Val 90	ttt Phe	gtg Val	gaa Glu	aag Lys	ccc Pro 95	atg Met	gcc Ala	gtc Val	acc Thr	ctc Leu 100	gag Glu	403
gac Asp	gca Ala	gat Asp	cgt Arg 105	gcc Ala	atc Ile	aac Asn	gca Ala	gca Ala 110	cgc Arg	gaa Glu	gca Ala	aac Asn	act Thr 115	gtc Val	ctg Leu	451
cag Gln	gtg Val	ggc Gly 120	ttc Phe	aat Asn	cgt Arg	cgt Arg	ttc Phe 125	gcg Ala	gca Ala	ggt Gly	ttc Phe	gct Ala 130	gca Ala	gca Ala	cgc Arg	499
					ggc Gly											547
gtg Val 150	acc Thr	cgc Arg	gat Asp	cca Pro	gga Gly 155	cca Pro	ttc Phe	acc Thr	gct Ala	gac Asp 160	ccc Pro	aac Asn	aag Lys	atc Ile	cct Pro 165	595
					ctg Leu											643
					ggc Gly											691
					cca Pro											739
					cgt Arg											787
gca Ala 230	agc Ser	ttc Phe	agc Ser	Ala	gcc Ala 235	Tyr	ggt Gly	Tyr	Asp	gtt Val 240	Arg	ggt Gly	gaa Glu	gtc Val	ttc Phe 245	835
					atg Met											883
					gag Glu											931
					gat Asp											979
					aac Asn											1027
cgc	acc	gca	cta	ctc	atc	gca	ctc	ggc	gcc	atc	cga	agc	gta	gaa	acc	1075

Arg Thr Ala Leu Leu Ile Ala Leu Gly Ala Ile Arg Ser Val Glu Thr 315 320 qqc qca acc atc aac ctt gct gaa agc atc gag gtt taaccatgac 1121 Gly Ala Thr Ile Asn Leu Ala Glu Ser Ile Glu Val 330 1134 ttttaaactc gca <210> 288 <211> 337 <212> PRT <213> Corynebacterium glutamicum <400> 288 Met Ser Val Lys Leu Ala Leu Ile Gly Ala Gly Arg Ile Gly Ser Asn His Ala Arg Leu Ile Thr Asn His Val Ile Gly Ser Glu Leu Val Ala Val Val Asp Pro Thr Pro Asn Ala Glu Thr Leu Ala Asp Glu Leu Gly Ala Val Ala Phe Ser Asn Pro Asp Asp Val Leu Thr Arg Asp Asp Ile 55 Asp Ala Val Leu Ile Ala Thr Pro Ala Arg Thr His Ala Asp Leu Val , 75 Val Lys Ala Ala Ala Ala Gly Lys His Val Phe Val Glu Lys Pro Met Ala Val Thr Leu Glu Asp Ala Asp Arg Ala Ile Asn Ala Ala Arg Glu Ala Asn Thr Val Leu Gln Val Gly Phe Asn Arg Arg Phe Ala Ala Gly Phe Ala Ala Ala Arg Ala Arg Ile Asp Ala Gly Asp Ile Gly Thr Pro Gln Leu Leu Arg Ser Val Thr Arg Asp Pro Gly Pro Phe Thr Ala Asp Pro Asn Lys Ile Pro Gln Trp Thr Ile Phe Leu Glu Thr Leu Ile His Asp Phe Asp Ala Leu Cys Tyr Leu Asn Pro Gly Ala Thr Pro Val Glu

235

Val Thr Ala His Ala Asp Cys Leu Val Val Pro Glu Ala Ala Gly Thr 195 200 205

Gly Phe Leu Asp Thr Ala Val Val Thr Val Arg Phe Asp Asn Gly Ala

Ile Gly Thr Ala Glu Ala Ser Phe Ser Ala Ala Tyr Gly Tyr Asp Val

230

Arg Gly Glu Val Phe Gly Ser Lys Gly Met Met Thr Ala Gly Asp Ala Arg Ala Thr Asn Met Thr Phe Tyr Gly Ala Glu Gly Ile Ala Ala Ala Thr Ser Arg Ala Asp Thr Asp Leu Leu Ser Asp Ala Tyr Arg Ala Glu Phe Gln Ala Phe Val Asp Ser Ile Arg Thr Asn Thr Pro Ser Lys Val Pro Gly Glu Ala Ala Arg Thr Ala Leu Leu Ile Ala Leu Gly Ala Ile Arg Ser Val Glu Thr Gly Ala Thr Ile Asn Leu Ala Glu Ser Ile Glu Val <210> 289 <211> 996 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(973) <223> RXN00013 <400> 289 ctgcagaaaa ttcgggacgc atgattgcac atattacccg caccgattgt gattcttaga 60 acgccacctt attcagcaca cttggccgac ggcatgcaca atg gaa ggc atg act Met Glu Gly Met Thr aat cca gag cag aca cat ccc gct gca agc ctc gaa gac atg atc aaa Asn Pro Glu Gln Thr His Pro Ala Ala Ser Leu Glu Asp Met Ile Lys 211 ace atc aca aag acc ttc gtg att gct cac gat cag gat tct gat gag Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp Gln Asp Ser Asp Glu 259 cat ctt gcg cag gca ctg gtg tac aac gct gga cgt ttg gca tgg cgc His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly Arg Leu Ala Trp Arg atg cgc gaa aac ggt gtg gat acg gat tac aag act tct gtg tct gat 307 Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys Thr Ser Val Ser Asp gtg gtc acg gat gcc gat cgt gcg gcc gag gcc ttc gtc gca ggc gtt 355 Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala Phe Val Ala Gly Val 403 ctt gaa gcg ttg cgg cct gag gac ggc gtg ctt ggc gag gaa ggc gcg Leu Glu Ala Leu Arg Pro Glu Asp Gly Val Leu Gly Glu Glu Gly Ala

	90		95			100	
gac cgg gcg tcg Asp Arg Ala Ser 105	Lys Ser	gga aaa Gly Lys	acc tgg Thr Trp 110	gtc atc Val Ile	gac ccg Asp Pro 115	gtt gat Val Asp	451
ggc acc tac aac Gly Thr Tyr Asn 120	ttc acc Phe Thr	cag ggc Gln Gly 125	tca gat Ser Asp	Tyr Trp	tgc tcg Cys Ser 130	gcg ctc Ala Leu	499
gcg ctg gtc gag Ala Leu Val Glu 135	ggc gat Gly Asp	cca tcc Pro Ser 140	gcg cca Ala Pro	tcg cgc Ser Arg 145	gtg ctt Val Leu	ttc ggc Phe Gly	547
gcc gta cac cgc Ala Val His Arg 150	cca gcc Pro Ala 155	atg ggt Met Gly	tat acg Tyr Thr	tgg ttc Trp Phe 160	ggt ggc Gly Gly	ccg gga Pro Gly 165	595
atc cgc acc acg Ile Arg Thr Thr	ctc gac Leu Asp 170	ggc aag Gly Lys	gag cta Glu Leu 175	gat ttg Asp Leu	ctt gtc Leu Val	gac gcc Asp Ala 180	643
ccc ctc aat caa Pro Leu Asn Gln 185	Ile Ser	ctg gcc Leu Ala	acc tac Thr Tyr 190	atc cac Ile His	ccg tca Pro Ser 195	cgc atc Arg Ile	691
gcg gaa cct gat Ala Glu Pro Asp 200				Ser Val			739
gca acg ctg cgc Ala Thr Leu Arg 215	atg ttc Met Phe	ggc gcc Gly Ala 220	ggc tcc Gly Ser	atc gat Ile Asp 225	ttg gcc Leu Ala	aac atc Asn Ilė	787
gcc gac ggc agc Ala Asp Gly Ser 230	atg ggc Met Gly 235	gca tgg Ala Trp	gtg cag Val Gln	cac agc His Ser 240	gtc gca Val Ala	gat tgg Asp Trp 245	835
gac tgg cta ccc Asp Trp Leu Pro							883
atc aaa gtg acc Ile Lys Val Thr 265	Ala Gly						931
gaa gca gtt agt Glu Ala Val Ser 280			Thr Leu	Ser Ala			973
taacaacaca tgag	caaata t	gc					996
<210> 290 <211> 291 <212> PRT <213> Corynebac	terium g	lutamicu	m				
<400> 290 Met Glu Gly Met 1	Thr Asn 5	Pro Glu	Gln Thr	His Pro	Ala Ala	Ser Leu 15	

Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp Gln Asp Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly Arg Leu Ala Trp Arg Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys Thr Ser Val Ser Asp Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala Phe Val Ala Gly Val Leu Glu Ala Leu Arg Pro Glu Asp Gly Val Leu Gly Glu Glu Gly Ala Asp Arg Ala Ser Lys Ser Gly Lys Thr Trp Val Ile Asp Pro Val Asp Gly Thr Tyr Asn Phe Thr Gln Gly Ser Asp Tyr 120 Trp Cys Ser Ala Leu Ala Leu Val Glu Gly Asp Pro Ser Ala Pro Ser 135 Arg Val Leu Phe Gly Ala Val His Arg Pro Ala Met Gly Tyr Thr Trp 145 150 155 Phe Gly Gly Pro Gly Ile Arg Thr Thr Leu Asp Gly Lys Glu Leu Asp 170 Leu Leu Val Asp Ala Pro Leu Asn Gln Ile Ser Leu Ala Thr Tyr Ile His Pro Ser Arg Ile Ala Glu Pro Asp Ile Gln Lys Ala Trp Met Ser Val Ala Thr His Pro Ala Thr Leu Arg Met Phe Gly Ala Gly Ser Ile Asp Leu Ala Asn Ile Ala Asp Gly Ser Met Gly Ala Trp Val Gln His 235 Ser Val Ala Asp Trp Asp Trp Leu Pro Gly Arg Ala Leu Ile Glu Gly Val Gly Gly Ala Cys Ile Lys Val Thr Ala Gly Gly Val Glu Trp Ser 265 Val Ala Gly Asn Ala Glu Ala Val Ser Glu Ile Ser Glu Thr Leu Ser Ala Leu Asp

Ala Leu Asp 290

<210> 291

<211> 996

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(973) <223> FRXA00013

<400> 291 ctgcagaaaa ttcgggacgc atgattgcac atattacccg caccgattgt gattcttaga 60 115 acqccacctt attcaqcaca cttggccgac ggcatgcaca atg gaa ggc atg act Met Glu Gly Met Thr aat cca gag cag aca cat ccc gct gca agc ctc gaa gac atg atc aaa 163 Asn Pro Glu Gln Thr His Pro Ala Ala Ser Leu Glu Asp Met Ile Lys 10 211 acc atc aca aag acc ttc gtg att gct cac gat cag gat tct gat gag Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp Gln Asp Ser Asp Glu 25 cat ctt gcg cag gca ctg gtg tac aac gct gga cgt ttg gca tgg cgc His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly Arg Leu Ala Trp Arg 40 atg cgc gaa aac ggt gtg gat acg gat tac aag act tct gtg tct gat 307 Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys Thr Ser Val Ser Asp 55 60 355 gtg gtc acg gat gcc gat cgt gcg gcc gag gcc ttc gtc gca ggc gtt Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala Phe Val Ala Gly Val 70 75 403 ctt gaa gcg ttg cgg cct gag gac ggc gtg ctt ggc gag gaa ggc gcg Leu Glu Ala Leu Arg Pro Glu Asp Gly Val Leu Gly Glu Glu Gly Ala 95 90 100 451 qac cqq qcq tcq aaa agc gga aaa acc tqg gtc atc gac ccg gtt gat Asp Arg Ala Ser Lys Ser Gly Lys Thr Trp Val Ile Asp Pro Val Asp 105 ggc acc tac aac ttc acc cag ggc tca gat tat tgg tgc tcg gcg ctc Gly Thr Tyr Asn Phe Thr Gln Gly Ser Asp Tyr Trp Cys Ser Ala Leu 120 gcg ctg gtc gag ggc gat cca tcc gcg cca tcg cgc gtg ctt ttc ggc 547 Ala Leu Val Glu Gly Asp Pro Ser Ala Pro Ser Arg Val Leu Phe Gly 135 140 595 gcc gta cac cgc cca gcc atg ggt tat acg tgg ttc ggt ggc ccg gga Ala Val His Arg Pro Ala Met Gly Tyr Thr Trp Phe Gly Gly Pro Gly 150 atc cgc acc acg ctc gac ggc aag gag cta gat ttg ctt gtc gac gcc 643 Ile Arg Thr Thr Leu Asp Gly Lys Glu Leu Asp Leu Leu Val Asp Ala 180 170 691 ccc ctc aat caa atc tcc ctg gcc acc tac atc cac ccg tca cgc atc Pro Leu Asn Gln Ile Ser Leu Ala Thr Tyr Ile His Pro Ser Arg Ile 185

geg gaa cet gat att caa aag geg tgg atg age gtt gee ace eac eet

739

200 205 210	
gca acg ctg cgc atg ttc ggc gcc ggc tcc atc gat ttg gcc aac atc Ala Thr Leu Arg Met Phe Gly Ala Gly Ser Ile Asp Leu Ala Asn Ile 215 220 225	787
gcc gac ggc agc atg ggc gca tgg gtg cag cac agc gtc gca gat tgg Ala Asp Gly Ser Met Gly Ala Trp Val Gln His Ser Val Ala Asp Trp 230 235 240	835
gac tgg cta ccc ggc cgc gca ctc atc gaa ggc gtc ggc gga gcg tgc Asp Trp Leu Pro Gly Arg Ala Leu Ile Glu Gly Val Gly Gly Ala Cys 250 255 260	883
atc aaa gtg acc gcc ggc ggc gtc gaa tgg tcc gtt gca gga aac gcg. Ile Lys Val Thr Ala Gly Gly Val Glu Trp Ser Val Ala Gly Asn Ala 265 270 275	931
gaa gca gtt agt gag atc tcc gaa act tta agc gca cta gac Glu Ala Val Ser Glu Ile Ser Glu Thr Leu Ser Ala Leu Asp 280 285 290	973
tagcaacaca tgagcaaata tgc	996
<210> 292 <211> 291 <212> PRT <213> Corynebacterium glutamicum	
<400> 292	
Met Glu Gly Met Thr Asn Pro Glu Gln Thr His Pro Ala Ala Ser Leu	
1 5 10 15	
1 5 10 15 Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20 25 30	
1 5 10 15 Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp	
1 5 10 15 Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20 25 30 Gln Asp Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly	
1 5 10 15 Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20 25 30 Gln Asp Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly 35 40 45 Arg Leu Ala Trp Arg Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys	
1 5 10 15 Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20 25 Thr Phe Val Ile Ala His Asp 30 Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly 45 Arg Leu Ala Trp Arg Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys 50 55 60 Thr Ser Val Ser Asp Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala	
Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 25 Thr Asp Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly Asg Leu Ala Trp Arg Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys 60 Thr Ser Val Ser Asp Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala 65 To 70 Thr Asp Pro Glu Asp Gly Val Leu Phe Val Ala Gly Val Leu Glu Ala Leu Arg Pro Glu Asp Gly Val Leu	
Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20	
Glu Asp Met Ile Lys Thr Ile Thr Lys Thr Phe Val Ile Ala His Asp 20 Ser Asp Glu His Leu Ala Gln Ala Leu Val Tyr Asn Ala Gly Arg Leu Ala Trp Arg Met Arg Glu Asn Gly Val Asp Thr Asp Tyr Lys 50 Thr Ser Val Ser Asp Val Val Thr Asp Ala Asp Arg Ala Ala Glu Ala 65 Phe Val Ala Gly Val Leu Glu Ala Leu Arg Pro Glu Asp Gly Val Leu 90 Ser Gly Val Leu Asp Pro Val Asp Pro Val Asp Gly Thr Tyr Asn Phe Thr Gln Gly Ser Asp Tyr Ile Asp Pro Val Asp Gly Thr Tyr Asn Phe Thr Gln Gly Ser Asp Tyr	

Phe Gly Gly Pro Gly Ile Arg Thr Thr Leu Asp Gly Lys Glu Leu Asp Leu Leu Val Asp Ala Pro Leu Asn Gln Ile Ser Leu Ala Thr Tyr Ile 185 His Pro Ser Arq Ile Ala Glu Pro Asp Ile Gln Lys Ala Trp Met Ser 200 Val Ala Thr His Pro Ala Thr Leu Arg Met Phe Gly Ala Gly Ser Ile Asp Leu Ala Asn Ile Ala Asp Gly Ser Met Gly Ala Trp Val Gln His 230 235 Ser Val Ala Asp Trp Asp Trp Leu Pro Gly Arg Ala Leu Ile Glu Gly Val Gly Gly Ala Cys Ile Lys Val Thr Ala Gly Gly Val Glu Trp Ser Val Ala Gly Asn Ala Glu Ala Val Ser Glu Ile Ser Glu Thr Leu Ser Ala Leu Asp 290 <210> 293 <211> 948 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(925) <223> RXA01099 <400> 293 ggatgagggc attgattccg tcatcattgg caaggcactt tatgagcaca agttcaccct 60 cgaagaggct ttggctgcag tagaaaagct cggttaatac atg gat gct cgt ggg Met Asp Ala Arg Gly 163 atq ttg gcc att gcg gag gcc gtt gta gat gat gcc gaa gcc ctc ttc Met Leu Ala Ile Ala Glu Ala Val Val Asp Asp Ala Glu Ala Leu Phe 10 211 atg cag ggc ttc gga gct gca cct gcc cat atg aaa tcc ccg ggg gat Met Gln Gly Phe Gly Ala Ala Pro Ala His Met Lys Ser Pro Gly Asp 25 259 ttt gcc acg gaa gtg gat atg gcc atc gaa tcc cat atg cgt tcg atg Phe Ala Thr Glu Val Asp Met Ala Ile Glu Ser His Met Arg Ser Met 40 307 ctg aac atg atg aca ggc att gct gtc atc ggt gaa gaa ggt ggc ggt Leu Asn Met Met Thr Gly Ile Ala Val Ile Gly Glu Glu Gly Gly Gly 55 60

-				_	cgc Arg 75				_			-		-	355
					aac Asn										403
					gtc Val										451
					ttt Phe										499
					caa Gln										547
					tcc Ser 155										595
					acc Thr										643
					ggt Gly										691
					tcg Ser										739
					cgc Arg										787
ggc Gly 230	His	Pro	Trp	Ala	cca Pro 235	Gly	Arg	Gly	Val	Val	Ala				835
					tta Leu										883
					gac Asp										925
taaa	atg	ggc (gtggd	caatt	c ga	ag									948

<210> 294

<211> 275

<212> PRT <213> Corynebacterium glutamicum

<400> 294

Met Asp Ala Arg Gly Met Leu Ala Ile Ala Glu Ala Val Val Asp Asp 1 10 15

Ala Glu Ala Leu Phe Met Gln Gly Phe Gly Ala Ala Pro Ala His Met 20 25 30

Lys Ser Pro Gly Asp Phe Ala Thr Glu Val Asp Met Ala Ile Glu Ser 35 40 45

His Met Arg Ser Met Leu Asn Met Met Thr Gly Ile Ala Val Ile Gly 50 55 60

Glu Glu Gly Gly Gly Ala Thr Ser Gly Thr Arg Trp Val Ile Asp Pro 65 70 75 80

Ile Asp Gly Thr Ala Asn Phe Ala Ala Ser Asn Pro Met Ser Ala Ile 85 90 95

Leu Val Ser Leu Leu Val Asp Asp Gln Pro Val Leu Gly Ile Thr Ser 100 105 110

Met Pro Met Leu Gly Lys Arg Leu Thr Ala Phe Glu Gly Ser Pro Leu 115 120 125

Met Ile Asn Gly Glu Pro Gln Glu Pro Leu Gln Glu Gln Ser Ser Leu 130 135 140

Val Ser His Ile Gly Phe Ser Ser Met Ala Ser Pro Arg Asn Thr Ala 145 150 155 160

Phe Pro Val Glu Leu Arg Arg Asp Leu Leu Thr Glu Leu Thr Glu Ser 165 170 175

Tyr Leu Arg Pro Arg Ile Thr Gly Ser Val Gly Val Asp Leu Ala Phe 180 185 190

Thr Ala Gln Gly Ile Phe Gly Ala Cys Val Ser Phe Ser Pro His Val 195 200 205

Trp Asp Asn Ser Ala Gly Val Met Leu Met Arg Ala Ala Gly Ala Gln 210 215 220

Val Thr Asp Thr Glu Gly His Pro Trp Ala Pro Gly Arg Gly Val Val 225 230 235 240

Ala Gly Thr Lys Arg Ala His Asp Val Leu Leu Ser Lys Ile Glu Lys 245 250 255

Val Arg Leu Met His Ala Asp Ala Gly Asn Asp Gln Ser Leu Asn Glu 260 265 270

Glu Tyr Lys 275

<210> 295

<211> 576

<212> DNA

<213> Corynebacterium glutamicum

```
<220>
<221> CDS
<222> (1)..(576)
<223> RXN01332
<400> 295
cac atc tct gcc att att gag ccc gac gca gca cgt gcc gct gca gct
His Ile Ser Ala Ile Ile Glu Pro Asp Ala Ala Arg Ala Ala Ala Ala
gca gaa gac gcg ccg ggt gca cag gcc ttc act cgc att gaa gat gct
Ala Glu Asp Ala Pro Gly Ala Gln Ala Phe Thr Arg Ile Glu Asp Ala
atc gca gcc gat gct gtc gac gca gtg ctg atc gcc gta cca ggt cag
Ile Ala Ala Asp Ala Val Asp Ala Val Leu Ile Ala Val Pro Gly Gln
                             40
ttc cat gag cca gta ctt gtc cca gca cta gaa gca ggc ctt ccc atc
                                                                   192
Phe His Glu Pro Val Leu Val Pro Ala Leu Glu Ala Gly Leu Pro Ile
     50
                         55
ctg tgt gaa aag cca ctg acc cca gat tct gaa tcc tca ctg cgc atc
                                                                   240
Leu Cys Glu Lys Pro Leu Thr Pro Asp Ser Glu Ser Ser Leu Arg Ile
65
                     70
gtc gag ctg gag cag aag ctg gac aag cca cac atc cag gtt ggt ttc
                                                                   288
Val Glu Leu Glu Gln Lys Leu Asp Lys Pro His Ile Gln Val Gly Phe
                 85
                                                                   336
atg cgc cgc ttc gac cct gag tac aac aac ttg cgc aaa ttg gtg gaa
Met Arg Arg Phe Asp Pro Glu Tyr Asn Asn Leu Arg Lys Leu Val Glu
            100
tee qge qaa qet qqe qaa etq etc atq etc ege gge etq eac ege aac
                                                                   384
Ser Gly Glu Ala Gly Glu Leu Leu Met Leu Arg Gly Leu His Arg Asn
                            120
        115
cca agt gtt ggt gag agc tac acc cag tcc atg ctg atc acc gac tcc
                                                                   432
Pro Ser Val Gly Glu Ser Tyr Thr Gln Ser Met Leu Ile Thr Asp Ser
    130
                        135
gtc gtc cac gaa ttc gat gtc atc cca tgg ctc gca ggc tcc cga gtt
                                                                   480
Val Val His Glu Phe Asp Val Ile Pro Trp Leu Ala Gly Ser Arg Val
145
                    150
gtc tcc gtt gaa gtg aag tac cca aag acc tcc tca ctg gcg cac tcc
                                                                   528
Val Ser Val Glu Val Lys Tyr Pro Lys Thr Ser Ser Leu Ala His Ser
ggc ctc aag gaa cca atc ctg gtg atc atg gag ctc gaa aac ggc gtg
Gly Leu Lys Glu Pro Ile Leu Val Ile Met Glu Leu Glu Asn Gly Val
            180
```

<210> 296

<211> 192

<212> PRT

<213> Corynebacterium glutamicum

<400> 296

His Ile Ser Ala Ile Ile Glu Pro Asp Ala Ala Arg Ala Ala Ala Ala Ala Glu Asp Ala Pro Gly Ala Gln Ala Phe Thr Arg Ile Glu Asp Ala Ile Ala Ala Asp Ala Val Asp Ala Val Leu Ile Ala Val Pro Gly Gin Phe His Glu Pro Val Leu Val Pro Ala Leu Glu Ala Gly Leu Pro Ile Leu Cys Glu Lys Pro Leu Thr Pro Asp Ser Glu Ser Ser Leu Arg Ile Val Glu Leu Glu Gln Lys Leu Asp Lys Pro His Ile Gln Val Gly Phe Met Arg Arg Phe Asp Pro Glu Tyr Asn Asn Leu Arg Lys Leu Val Glu Ser Gly Glu Ala Gly Glu Leu Leu Met Leu Arg Gly Leu His Arg Asn 120 Pro Ser Val Gly Glu Ser Tyr Thr Gln Ser Met Leu Ile Thr Asp Ser 135 Val Val His Glu Phe Asp Val Ile Pro Trp Leu Ala Gly Ser Arg Val 150 . 155 Val Ser Val Glu Val Lys Tyr Pro Lys Thr Ser Ser Leu Ala His Ser 170 Gly Leu Lys Glu Pro Ile Leu Val Ile Met Glu Leu Glu Asn Gly Val 180

<210> 297
<211> 549
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (1)..(549)
<223> FRXA01332

<400> 297
gca gca cgt gcc gct gca gct gca gaa gac gcg ccg ggt gca cag gcc Ala Ala Arg Ala Ala Ala Ala Ala Glu Asp Ala Pro Gly Ala Gln Ala 1 5 10 15

ttc act cgc att gaa gat gct atc gca gcc gat gct gca gca gtg Phe Thr Arg Ile Glu Asp Ala Ile Ala Ala Asp Ala Val Asp Ala Val 20 25 30

ctg atc gcc gta cca ggt cag ttc cat gag cca gta ctt gtc cca gca

Leu Ile Ala Val Pro Gly Gln Phe His Glu Pro Val Leu Val Pro Ala

48

96

35 40 45 192 cta qua qua que ett ecc ate etg tgt gaa aag eca etg ace eca gat Leu Glu Ala Gly Leu Pro Ile Leu Cys Glu Lys Pro Leu Thr Pro Asp 55 tot gaa too toa otg ogo ato gto gag otg gag cag aag otg gac aag 240 Ser Glu Ser Ser Leu Arg Ile Val Glu Leu Glu Gln Lys Leu Asp Lys 288 cca cac atc cag gtt ggt ttc atg cgc cgc ttc gac cct gag tac aac Pro His Ile Gln Val Gly Phe Met Arg Arg Phe Asp Pro Glu Tyr Asn 336 aac ttg cgc aaa ttg gtg gaa tcc ggc gaa gct ggc gaa ctg ctc atg Asn Leu Arg Lys Leu Val Glu Ser Gly Glu Ala Gly Glu Leu Leu Met 100 ctc cqc gqc ctq cac cqc aac cca agt gtt ggt gag agc tac acc cag 384 Leu Arg Gly Leu His Arg Asn Pro Ser Val Gly Glu Ser Tyr Thr Gln 115 tcc atg ctg atc acc gac tcc gtc gtc cac gaa ttc gat gtc atc cca Ser Met Leu Ile Thr Asp Ser Val Val His Glu Phe Asp Val Ile Pro 135 130 tgq ctc gca ggc tcc cga gtt gtc tcc gtt gaa gtg aag tac cca aag 480 Trp Leu Ala Gly Ser Arg Val Val Ser Val Glu Val Lys Tyr Pro Lys 145 150 ace tee tea etg geg cae tee gge etc aag gaa eea ate etg gtg ate Thr Ser Ser Leu Ala His Ser Gly Leu Lys Glu Pro Ile Leu Val Ile 165 170 549 atg gag ctc gaa aac ggc gtg Met Glu Leu Glu Asn Gly Val 180 <210> 298 <211> 183 <212> PRT <213> Corynebacterium glutamicum Ala Ala Arg Ala Ala Ala Ala Glu Asp Ala Pro Gly Ala Gln Ala Phe Thr Arg Ile Glu Asp Ala Ile Ala Ala Asp Ala Val Asp Ala Val Leu Ile Ala Val Pro Gly Gln Phe His Glu Pro Val Leu Val Pro Ala Leu Glu Ala Gly Leu Pro Ile Leu Cys Glu Lys Pro Leu Thr Pro Asp

Ser Glu Ser Ser Leu Arg Ile Val Glu Leu Glu Gln Lys Leu Asp Lys

Pro His Ile Gln Val Gly Phe Met Arg Arg Phe Asp Pro Glu Tyr Asn

90 85 95 Asn Leu Arg Lys Leu Val Glu Ser Gly Glu Ala Gly Glu Leu Leu Met 105 Leu Arg Gly Leu His Arg Asn Pro Ser Val Gly Glu Ser Tyr Thr Gln 120 Ser Met Leu Ile Thr Asp Ser Val Val His Glu Phe Asp Val Ile Pro 135 Trp Leu Ala Gly Ser Arg Val Val Ser Val Glu Val Lys Tyr Pro Lys 150 155 Thr Ser Ser Leu Ala His Ser Gly Leu Lys Glu Pro Ile Leu Val Ile 170 Met Glu Leu Glu Asn Gly Val 180 <210> 299 <211> 1128 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1105) <223> RXA01632 <400> 299 aagggctgca acgtgctttc gacaccacca tcgcagcgtt tgaacaagct gctcgtctcg 60 cccctccac taactgatct ttgaaaggct gaaaaaactc atg act ctt cgt atc Met Thr Leu Arg Ile gcc ctt ttc ggc gct ggc cgc atc ggt cac gtc cac gct gcc aac att Ala Leu Phe Gly Ala Gly Arg Ile Gly His Val His Ala Ala Asn Ile 10 gct gca aac cct gat ctt gaa ctc gtt gtt atc gcc gat cct ttc att 211 Ala Ala Asn Pro Asp Leu Glu Leu Val Val Ile Ala Asp Pro Phe Ile 25 qaa qqc qca cag cqt ttq qca qaa qcc aat qqq qca gaa gcg gtt gca 259 Glu Gly Ala Gln Arg Leu Ala Glu Ala Asn Gly Ala Glu Ala Val Ala 40 45 tca cca gat gag gtg ttc gcc cgc gat gat atc gat ggc atc gtg atc 307 Ser Pro Asp Glu Val Phe Ala Arg Asp Asp Ile Asp Gly Ile Val Ile 55 60 355 ggt toa coa acc agc acc cac gtt gat ctg atc acc cgc gcc gtg gaa Gly Ser Pro Thr Ser Thr His Val Asp Leu Ile Thr Arg Ala Val Glu 70 75 403 cgt ggc att cct gca ctg tgc gaa aaa ccc att gat tta gac att gaa Arg Gly Ile Pro Ala Leu Cys Glu Lys Pro Ile Asp Leu Asp Ile Glu

	Cys Lys Glu		gac ggc gct tcc aag gtg Asp Gly Ala Ser Lys Val 115	451
			tct ttc gct gcc atc aat Ser Phe Ala Ala Ile Asn 130	499
			ctg gag cag ttg gtg atc Leu Glu Gln Leu Val Ile 145	547
			gac tac atc gca ggt tcc Asp Tyr Ile Ala Gly Ser 160	595
			gat ctg gat atg gcg cgt Asp Leu Asp Met Ala Arg 180	643
	Asn Ile Val		gca acc ggc gcc aat gtt Ala Thr Gly Ala Asn Val 195	691
			tac gac cag gtt atc gtc Tyr Asp Gln Val Ile Val 210	739
			aac atc gtg aac tcc cgc Asn Ile Val Asn Ser Arg 225	787
			gag gct ttc ggc tct aag Glu Ala Phe Gly Ser Lys 240 245	835
			acc acg gtg cgc aag cac Thr Thr Val Arg Lys His 260	883
	Thr Glu Gln		att ttc aac ttc ttc ctc Ile Phe Asn Phe Phe Leu 275	931
			ctc gca act ttt gct caa Leu Ala Thr Phe Ala Gln 290	979
			aac ttc gag gac ggc gtc Asn Phe Glu Asp Gly Val 305	1027
			gaa tca gct caa acc ggc Glu Ser Ala Gln Thr Gly 320 325	1075
cgc acc gtc acc Arg Thr Val Thr		_	tagtcaacgt ctagttaatg	1125

cct 1128

<210> 300

<211> 335

<212> PRT

<213> Corynebacterium glutamicum

<400> 300

Met Thr Leu Arg Ile Ala Leu Phe Gly Ala Gly Arg Ile Gly His Val 1 5 10 15

His Ala Ala Asn Ile Ala Ala Asn Pro Asp Leu Glu Leu Val Val Ile 20 25 30

Ala Asp Pro Phe Ile Glu Gly Ala Gln Arg Leu Ala Glu Ala Asn Gly 35 40 45

Ala Glu Ala Val Ala Ser Pro Asp Glu Val Phe Ala Arg Asp Asp Ile 50 55 60

Asp Gly Ile Val Ile Gly Ser Pro Thr Ser Thr His Val Asp Leu Ile 65 70 75 80

Thr Arg Ala Val Glu Arg Gly Ile Pro Ala Leu Cys Glu Lys Pro Ile 85 90 95

Asp Leu Asp Ile Glu Met Val Arg Ala Cys Lys Glu Lys Ile Gly Asp 100 105 110

Gly Ala Ser Lys Val Met Leu Gly Phe Asn Arg Arg Phe Asp Pro Ser 115 120 125

Phe Ala Ala Ile Asn Ala Arg Val Ala Asn Gln Glu Ile Gly Asn Leu 130 135 140

Glu Gln Leu Val Ile Ile Ser Arg Asp Pro Ala Pro Ala Pro Lys Asp 145 150 155 160

Tyr Ile Ala Gly Ser Gly Gly Ile Phe Arg Asp Met Thr Ile His Asp 165 170 175

Leu Asp Met Ala Arg Phe Phe Val Pro Asn Ile Val Glu Val Thr Ala 180 185 190

Thr Gly Ala Asn Val Phe Ser Gln Glu Ile Ala Glu Phe Asn Asp Tyr 195 200 205

Asp Gln Val Ile Val Thr Leu Arg Gly Ser Lys Gly Glu Leu Ile Asn 210 215 220

Ile Val Asn Ser Arg His Cys Ser Tyr Gly Tyr Asp Gln Arg Leu Glu 225 230 235 240

Ala Phe Gly Ser Lys Gly Met Leu Ala Ala Asp Asn Ile Arg Pro Thr 245 250 255

Thr Val Arg Lys His Asn Ala Glu Ser Thr Glu Gln Ala Asp Pro Ile 260 265 270

Phe Asn Phe Phe Leu Glu Arg Tyr Asp Ala Ala Tyr Lys Ala Glu Leu

285

280

275

120

Ala Thr Phe Ala Gln Gly Ile Arg Asp Gly Gln Gly Phe Ser Pro Asn 295 300 Phe Glu Asp Gly Val Ile Ala Leu Glu Leu Ala Asn Ala Cys Leu Glu 315 Ser Ala Gln Thr Gly Arg Thr Val Thr Leu Asn Pro Ala Asn Val <210> 301 <211> 1206 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(1183) <223> RXA01633 <400> 301 qcqaatqcat qccttqaatc aqctcaaacc ggccgcaccg tcaccctcaa ccctgccaac 60 gtttagtcaa cgtctagtta atgcctaagg agaaaacctc atg aaa aac atc acc Met Lys Asn Ile Thr atc gga atg gtc ggc gtc ggc cgc att ggc cgc atg cac gtc gcc aac 163 Ile Gly Met Val Gly Val Gly Arg Ile Gly Arg Met His Val Ala Asn 211 atg ctt gcc gtt gct gaa act ttg aag gaa cgc gac ctc aac att gag Met Leu Ala Val Ala Glu Thr Leu Lys Glu Arg Asp Leu Asn Ile Glu 30 ate gtg etc gea gac gea atg eec ggt ttt geg gag eag gtg gge geg 259 Ile Val Leu Ala Asp Ala Met Pro Gly Phe Ala Glu Gln Val Gly Ala 45 307 gac atg ggc gtg aag gcg gcg gca agc gtc gat aag ctt att gag gac Asp Met Gly Val Lys Ala Ala Ala Ser Val Asp Lys Leu Ile Glu Asp 355 ggg gtg gat gcc ctt ttc att gcc acc agc acc gct ggc cac gtc gat Gly Val Asp Ala Leu Phe Ile Ala Thr Ser Thr Ala Gly His Val Asp gtt ttg cgc aag ggc atc gcg gca aag ctg ccg atg ttc tgc gag aag 403 Val Leu Arg Lys Gly Ile Ala Ala Lys Leu Pro Met Phe Cys Glu Lys 451 ccg atc gcg tcg gat gtg cct gag tcg ctg aac atc atc cgc gaa att Pro Ile Ala Ser Asp Val Pro Glu Ser Leu Asn Ile Ile Arg Glu Ile 110 499 gat gcg gct ggc gcg acg gtt cag gtc ggc cac cag cgc cgt ttt gac Asp Ala Ala Gly Ala Thr Val Gln Val Gly His Gln Arg Arg Phe Asp

	cag gaa gct aa Gln Glu Ala Ly 14	Arg Arg Le			
	ccg ctc aag gc Ger Leu Lys Al 155			Pro Pro	
gtg tcc tac t Val Ser Tyr C	gc gct acc tc Cys Ala Thr Se 170	ggt gga ct Gly Gly Le 17	u Phe Arg Asp	gtg tcg (Val Ser : 180	ctg 643 Leu
His Asp Phe A	gac atc att cg Asp Ile Ile Ar 185				
gtg tac gcc a Val Tyr Ala I 200	aag ggc agc aa Lys Gly Ser As	aac ggc ga n Asn Gly As 205	c cca gaa atc p Pro Glu Ile 210	ggc gca (Gly Ala '	gtc 739 Val
ggt gac atc of Gly Asp Ile A 215	gat acc gga gc Asp Thr Gly Al 22	a Ala Leu Le	c acg ctt gcc u Thr Leu Ala 225	gac ggc a	acc 787 Thr
	gcc atc gcc ac Ala Ile Ala Th 235			His Asp	
	gtt atg ggc tc Val Met Gly Se 250		r Thr Ile Val		
Glu Lys Ser A	gcg ttc gct tc Ala Phe Ala Se 265				
	cac cca acg tt His Pro Thr Ph				
Asn Glu Cys 1	att gcg ttc gt Ile Ala Phe Va 30	l Glu Leu Il	c ctg gga gag e Leu Gly Glu 305	cgg gaa Arg Glu	aac 1027 Asn
	cet gca gac gc Pro Ala Asp Al 315			Ala Asp	
	teg ctg gtc ac Ser Leu Val Th 330		o Val Lys Ile		
Arg Glu Ile I	ctt gaa ggt tc Leu Glu Gly Se 345				
gtt cca tct (Val Pro Ser <i>I</i> 360	gct taaaacctta Ala	ctgcttatct	aaa		1206

<210> 302

<211> 361

<212> PRT

<213> Corynebacterium glutamicum

<400> 302

Met Lys Asn Ile Thr Ile Gly Met Val Gly Val Gly Arg Ile Gly Arg
1 5 10 15

Met His Val Ala Asn Met Leu Ala Val Ala Glu Thr Leu Lys Glu Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Leu Asn Ile Glu Ile Val Leu Ala Asp Ala Met Pro Gly Phe Ala 35 40 45

Glu Gln Val Gly Ala Asp Met Gly Val Lys Ala Ala Ala Ser Val Asp 50 55 60

Lys Leu Ile Glu Asp Gly Val Asp Ala Leu Phe Ile Ala Thr Ser Thr 65 70 75 80

Ala Gly His Val Asp Val Leu Arg Lys Gly Ile Ala Ala Lys Leu Pro 85 90 95

Met Phe Cys Glu Lys Pro Ile Ala Ser Asp Val Pro Glu Ser Leu Asn 100 105 110

Ile Ile Arg Glu Ile Asp Ala Ala Gly Ala Thr Val Gln Val Gly His
115 120 125

Gln Arg Arg Phe Asp Leu Gly Tyr Gln Glu Ala Lys Arg Arg Leu Asp 130 135 140

Ala Gly Asp Leu Gly Trp Leu His Ser Leu Lys Ala Val Ser Ser Asp 145 150 155 160

Ala Phe Pro Pro Pro Val Ser Tyr Cys Ala Thr Ser Gly Gly Leu Phe 165 170 175

Arg Asp Val Ser Leu His Asp Phe Asp Ile Ile Arg Trp Leu Thr Gly 180 185 190

Gln Asp Ile Val Glu Val Tyr Ala Lys Gly Ser Asn Asn Gly Asp Pro 195 200 205

Glu Ile Gly Ala Val Gly Asp Ile Asp Thr Gly Ala Ala Leu Leu Thr 210 215 220

Leu Ala Asp Gly Thr Leu Ala Thr Ala Ile Ala Thr Arg Tyr Asn Gly 225 230 235 240

Ala Gly His Asp Val Arg Leu Asp Val Met Gly Ser Lys Asp Ser Thr 245 250 255

Ile Val Gly Leu Asp Glu Lys Ser Ala Phe Ala Ser Ala Glu Glu Gly 260 265 270

Ile Asp Phe Pro Thr Gly Glu Ser His Pro Thr Phe Ala Glu Arg Phe 275 280 285

Ala Asp Ala Tyr Lys Asn Glu Cys Ile Ala Phe Val Glu Leu Ile Leu

290 295 300 Gly Glu Arg Glu Asn Pro Cys Thr Pro Ala Asp Ala Val Ala Ala Ala 310 Ile Val Ala Asp Ala Ala Gln Leu Ser Leu Val Thr Gly Glu Pro Val Lys Ile Pro Thr Val Arg Glu Ile Leu Glu Gly Ser Ala Gln Pro Val Glu Val Arg Ala Leu Val Pro Ser Ala 360 <210> 303 <211> 1146 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1123) <223> RXN01406 <400> 303 gttcctcatt cctctaatcg gcgcactatc tttgcctcgc gacggcggtg cccgagcctt 60 ttcctcctct tagaaaccca cttctgaaag gtataaaaac atg act att cga atc Met Thr Ile Arq Ile 1 qga ctc qtt ggc tac ggt gtc ggc agg ctc ttt cac acc cct tac Gly Leu Val Gly Tyr Gly Val Gly Gly Arg Leu Phe His Thr Pro Tyr 10 atc caa gct tct acg cac tgc gaa tta gta ggc gta gtt gct cgt tcc 211 Ile Gln Ala Ser Thr His Cys Glu Leu Val Gly Val Val Ala Arg Ser 25 259 gaa ggc acc aaa gca gcc gtt gca gaa gat ctt cca gat gtt gcc atc Glu Gly Thr Lys Ala Ala Val Ala Glu Asp Leu Pro Asp Val Ala Ile 45 gtg gga tcg ctg aca gaa ctc ctc gaa ctg ggc gtc gat gca gtg gtg 307 Val Gly Ser Leu Thr Glu Leu Leu Glu Leu Gly Val Asp Ala Val Val 55 atc tcc acc cct cca gcc acg cgc cgg gaa ctg gcc ttg gaa gca atc 355 Ile Ser Thr Pro Pro Ala Thr Arg Arg Glu Leu Ala Leu Glu Ala Ile 70 aac gca ggt gtc gca gtg gtt gcc gat aaa ccg ttt gca cca tca gcc Asn Ala Gly Val Ala Val Val Ala Asp Lys Pro Phe Ala Pro Ser Ala gca gat gcc atg gaa ctt gtc gaa gcc gcc gaa aag gct gga gtg ctg Ala Asp Ala Met Glu Leu Val Glu Ala Ala Glu Lys Ala Gly Val Leu

499

ctc aac gtc ttc cac aac agg cgc aac gac acc cac att gtc acg gca

Leu	Asn	Val 120	Phe	His	Asn	Arg	Arg 125	Asn	Asp	Thr	His	11e 130	Val	Thr	Ala	
ctg Leu	gga Gly 135	atc Ile	caa Gln	gaa Glu	gaa Glu	ctt Leu 140	ggt Gly	gcg Ala	atg Met	cgt Arg	gga Gly 145	ctg Leu	gac Asp	ctg Leu	cga Arg	547
cta Leu 150	gac Asp	ctg Leu	atc Ile	gaa Glu	cct Pro 155	gat Asp	tcc Ser	ttg Leu	gag Glu	gca Ala 160	ggt Gly	cct Pro	gaa Glu	ggt Gly	ggt Gly 165	595
ttg Leu	ctg Leu	cgc Arg	gat Asp	ctg Leu 170	ggc Gly	tca Ser	cac His	gta Val	gtc Val 175	gat Asp	cag Gln	acc Thr	ctg Leu	gtt Val 180	ctc Leu	643
	ggg Gly															691
	gaa Glu															739
	ggc Gly 215															787
	tgg Trp															835
	acc Thr															883
	gac Asp															931
_	gtt Val		-	_			_									979
	acc Thr 295															1027
	ggg Gly															1075
	gct Ala															1123
taa	ggaga	aag 1	tgct	gctg	gc to	gc										1146

<210> 304 <211> 341

<212> PRT

. .

<213> Corynebacterium glutamicum

<400> 304

Met Thr Ile Arg Ile Gly Leu Val Gly Tyr Gly Val Gly Gly Arg Leu 1 5 10 15

Phe His Thr Pro Tyr Ile Gln Ala Ser Thr His Cys Glu Leu Val Gly 20 25 30

Val Val Ala Arg Ser Glu Gly Thr Lys Ala Ala Val Ala Glu Asp Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Pro Asp Val Ala Ile Val Gly Ser Leu Thr Glu Leu Leu Glu Leu Gly 50 55 60

Val Asp Ala Val Val Ile Ser Thr Pro Pro Ala Thr Arg Arg Glu Leu 65 70 75 80

Ala Leu Glu Ala Ile Asn Ala Gly Val Ala Val Val Ala Asp Lys Pro 85 90 95

Phe Ala Pro Ser Ala Ala Asp Ala Met Glu Leu Val Glu Ala Ala Glu 100 105 110

Lys Ala Gly Val Leu Leu Asn Val Phe His Asn Arg Arg Asn Asp Thr 115 120 125

His Ile Val Thr Ala Leu Gly Ile Gln Glu Glu Leu Gly Ala Met Arg 130 135 140

Gly Leu Asp Leu Arg Leu Asp Leu Ile Glu Pro Asp Ser Leu Glu Ala
145 150 155 160

Gly Pro Glu Gly Gly Leu Leu Arg Asp Leu Gly Ser His Val Val Asp 165 170 175

Gln Thr Leu Val Leu Met Gly Pro Ala Thr Ser Val Thr Ala Gln Leu 180 185 190

Gly Ser Ile Asp Leu Pro Glu Gly Pro Thr Asn Ala Arg Phe Arg Ile 195 200 205

Val Leu Glu His Glu Ser Gly Ala Val Ser His Ile Ser Ala Ser Lys 210 215 220

Ile Asp Arg Leu Glu Ser Trp Glu Ile Arg Leu Val Gly Glu Arg Gly 225 230 235 240

Ser Tyr Val Ser Asn Tyr Thr Asp Val Gln Thr Val Ala Ile Lys Gln 245 250 255

Gly Leu Arg Pro Thr Asn Asp Arg Glu His Trp Gly Tyr Glu Ser Glu 260 265 270

Glu Arg Trp Gly Thr Leu Val Thr Asp Glu Gly Ser Lys Val Ile Pro 275 280 285

Ser Ala Gln Gly Asp Tyr Thr Arg Phe Tyr Asp Ala Phe Ala Leu Ala 290 295 300

Val Glu Asn Gly Gly Ala Gly Pro Val Pro Ala Arg Glu Gly Val Ala

310

305

315

320

Val Leu Lys Val Leu Asp Ala Val Ala Gln Ser Ala Ala Glu Lys Arg 330 325 Thr Ile Glu Leu Ser 340 <210> 305 <211> 1200 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1177) <223> RXN01630 <400> 305 gtaggtgagt cttcgtgaga tacccccggc cagtcataca gttcaaccaa gctccaccac 60 ccagataaaa acctgcgggt tgcgttttag gagaattccc atg agt gat caa aaa 115 Met Ser Asp Gln Lys 1 att qtt qtt qgc ctg cta ggc atc acc cac ccg cat gcg tcg gcg cgg 163 Ile Val Val Gly Leu Leu Gly Ile Thr His Pro His Ala Ser Ala Arg 10 gtg cgt gcc ctc cgt gaa att gat ggg gta gag gtc gtc gcc gcc gcg 211 Val Arg Ala Leu Arg Glu Ile Asp Gly Val Glu Val Val Ala Ala Ala 25 30 gat act gat tcc cgc ctc cag tac ttc acc gac aaa tat gat gtt gaa 259 Asp Thr Asp Ser Arg Leu Gln Tyr Phe Thr Asp Lys Tyr Asp Val Glu 40 45 ccc cgc gag atc gat gac gtc ttg aac gac gat cgc atc aac gcc atc 307 Pro Arg Glu Ile Asp Asp Val Leu Asn Asp Asp Arg Ile Asn Ala Ile 55 60 atg qtt cac tcc aag agc aag gac atg gtc cct cac gcc aag cgc gcg 355 Met Val His Ser Lys Ser Lys Asp Met Val Pro His Ala Lys Arg Ala 70 ctc qcq qcc qqa aaa tcc qtc qtc qtg gag aag ccc ggc ggg gga aca 403 Leu Ala Ala Gly Lys Ser Val Val Glu Lys Pro Gly Gly Gly Thr 100 90 gtg gcg gat ctt gag gag ctc ctg gcc ctc aaa gaa gct gcc gat cct 451 Val Ala Asp Leu Glu Glu Leu Leu Ala Leu Lys Glu Ala Ala Asp Pro 105 115 cag cga atc gtg cag gtc ggg tac aac gtc cgc ctg tct gaa tcg gtt 499 Gln Arg Ile Val Gln Val Gly Tyr Asn Val Arg Leu Ser Glu Ser Val 120 125 547 cag aga tta aaa gag ctt ctc gac gcc ggc ctc atc ggc gaa gtc gtc Gln Arg Leu Lys Glu Leu Leu Asp Ala Gly Leu Ile Gly Glu Val Val 135 140

											cat His				595
											tgg Trp				643
											gct Ala				691
		-	_			_		-			gac Asp 210	-		-	739
											gat Asp				787
_		_		-			-	-	_	-	 ttc Phe	_	_		835
											gcc Ala				883
											cag Gln				931
											cca Pro 290				979
											cta Leu				1027
											tcc Ser				1075
											aca Thr				1123
											ggc Gly				1171
	atc Ile	taaq	gagga	igc a	actco	catga	aa ad	cc							1200

<210> 306 <211> 359 <212> PRT

<213> Corynebacterium glutamicum

<400> 306 Met Ser Asp Gln Lys Ile Val Val Gly Leu Leu Gly Ile Thr His Pro His Ala Ser Ala Arg Val Arg Ala Leu Arg Glu Ile Asp Gly Val Glu Val Val Ala Ala Ala Asp Thr Asp Ser Arg Leu Gln Tyr Phe Thr Asp Lys Tyr Asp Val Glu Pro Arg Glu Ile Asp Asp Val Leu Asm Asp Asp Arg Ile Asn Ala Ile Met Val His Ser Lys Ser Lys Asp Met Val Pro His Ala Lys Arg Ala Leu Ala Ala Gly Lys Ser Val Val Val Glu Lys Pro Gly Gly Gly Thr Val Ala Asp Leu Glu Glu Leu Leu Ala Leu Lys Glu Ala Ala Asp Pro Gln Arg Ile Val Gln Val Gly Tyr Asn Val Arg 120 Leu Ser Glu Ser Val Gln Arg Leu Lys Glu Leu Leu Asp Ala Gly Leu 135 Ile Gly Glu Val Val Ser Val Gln Ala Arg Gly Ala Ala Lys Val Gly 155 Glu His Ile Thr Glu His Leu Asn Gln Pro Ala Asp Met Gly Gly Val Leu Trp Ile Leu Gly Cys His Met Leu Asp Ala Leu Val Glu Val Phe Gly Ala Pro Glu Ser Val Asn Ala Arg Val His Lys Thr Ala Lys Leu 200 Ser Asp Asp Thr Ser Arg Glu Asp Ser Ala Ser Ala Leu Leu Tyr Tyr 215 Pro Asp Phe Ser Val Ser Phe Ser Phe Asp Gly His Asp Asp Leu Glu 230 Trp Phe Glu Ser Ser Arg Leu Thr Val Tyr Gly Thr Lys Gly Met Ile Glu Ala Gly Ile Leu Pro Gln Thr Leu Arg Val Tyr Leu Asn Glu Ser Arg Gln Gly Trp Pro Gln Gly Trp Thr Glu Trp Thr Gln Ser Tyr Phe 280

Glu Leu Glu Asn Ile Ser Asn Phe Arg Thr Glu Met Gln Gly Trp Val

Thr Pro Pro Phe Ala Arg Thr Glu Ser Asn Lys Phe Ser Glu Leu Pro

303					310					313					320	
Asn	Ser	Ile	Arg	Thr 325	Gly	Ser	Arg	Asn	Val 330	Ala	Pro	Val	Glu	Asp 335	Ala	
Leu	Thr	Val	Ala 340	Arg	Ile	Val	Ser	Ala 345	Cys	Tyr	Glu	Ser	Asp 350	Asn	Asn	
Gln	Gly	Ile 355	Ser	Val	Asn	Ile										
<21 <21	0> 30 1> 12 2> Di 3> Co	212 NA	ebact	ceri	um gl	lutar	nicur	n								
<22	0> 1> CI 2> (: 3> R	101)		189)												
	0> 30 tgcto		aatco	cca	ca tt	ttg	gaac	g tag	gcgto	cgat	aago	egtge	cgg (cgaaq	gctttt	60
tcg	gtcg	cgg (ccgtt	tato:	ct tt	taaq	gagga	a gaa	aatti	tag				tcc Ser		115
atc Ile	agg Arg	gtt Val	gcc Ala	att Ile 10	gcc Ala	gga Gly	gtc Val	gga Gly	aac Asn 15	tgc Cys	gcg Ala	acc Thr	tcc Ser	ctc Leu 20	att Ile	163
cag Gln	ggt Gly	gtg Val	gaa Glu 25	tat Tyr	tac Tyr	cga Arg	aat Asn	gcg Ala 30	gat Asp	cct Pro	tcc Ser	gaa Glu	act Thr 35	gtc Val	ccg Pro	211
ggt Gly	ttg Leu	atg Met 40	cac His	gtc Val	aaa Lys	ttc Phe	ggt Gly 45	gat Asp	tac Tyr	cac His	gtt Val	ggc Gly 50	gac Asp	att Ile	gaa Glu	259
ttc Phe	gtg Val 55	Ala	Ala	Phe	Asp	Val	Asp	Ala	gaa Glu	Lys	Val	Gly	atc Ile	gat Asp	ctt Leu	307
gcc Ala 70	gac Asp	gcc Ala	acc Thr	gag Glu	gct Ala 75	tca Ser	caa Gln	aac Asn	tgc Cys	act Thr 80	atc Ile	aaa Lys	atc Ile	gcc Ala	gat Asp 85	355
	cca Pro															403
ctg Leu	ggc Gly	gat Asp	cat His 105	tac Tyr	cgc Arg	gcg Ala	acc Thr	atc Ile 110	gac Asp	gag Glu	tcc Ser	acc Thr	gcc Ala 115	gag Glu	cca Pro	451
	gac Asp															499

tcc tac ctc Ser Tyr Leu 135	cca gtg ggc Pro Val Gly	tcc gaa gaa Ser Glu Glu 140	gcc gac aaa Ala Asp Lys 145	ttc tac gca Phe Tyr Ala	caa 547 Gln
				ctc cca gta Leu Pro Val	
atc gcc tcc Ile Ala Ser	gac cct gag Asp Pro Glu 170	tgg gct aag Trp Ala Lys	aag ttc act Lys Phe Thr 175	gac gct ggc Asp Ala Gly 180	atc 643 Ile
cca att gtt Pro Ile Val	ggc gat gac Gly Asp Asp 185	atc aaa tcc Ile Lys Ser 190	Gln Ile Gly	gca acc atc Ala Thr Ile 195	acc 691 Thr
				gtt cgc gta Val Arg Val 210	
				ttc aaa aac Phe Lys Asn	
				aaa acc caa Lys Thr Gln	
				aag gtg gaa Lys Val Glu 260	
			His Val Gln	tgg ctc gat Trp Leu Asp 275	
				ttc ggt gga Phe Gly Gly 290	
Pro Leu Asn	Leu Glu Tyr	Lys Leu Glu		tca ccc aac Ser Pro Asn	
				atc gcc ctc Ile Ala Leu	
cgc ggt atc Arg Gly Ile	ggc gga ccg Gly Gly Pro 330	atc atg cca Ile Met Pro	gca agc tcc Ala Ser Ser 335	tac ctg atg Tyr Leu Met 340	aag 1123 Lys
			Val Ala Cys	gaa cgc cta Glu Arg Leu 355	
gca ttc atc Ala Phe Ile 360		taaaattagg	ctaaaaattt g	g g	1212

<210> 308

<211> 363

<212> PRT

<213> Corynebacterium glutamicum

<400> 308

Met Ser Thr Ser Thr Ile Arg Val Ala Ile Ala Gly Val Gly Asn Cys
1 5 10 15

Ala Thr Ser Leu Ile Gln Gly Val Glu Tyr Tyr Arg Asn Ala Asp Pro 20 25 30

Ser Glu Thr Val Pro Gly Leu Met His Val Lys Phe Gly Asp Tyr His 35 40 45

Val Gly Asp Ile Glu Phe Val Ala Ala Phe Asp Val Asp Ala Glu Lys 50 55 60

Val Gly Ile Asp Leu Ala Asp Ala Thr Glu Ala Ser Gln Asn Cys Thr 65 70 75 80

Ile Lys Ile Ala Asp Val Pro Gln Thr Gly Ile Asn Val Leu Arg Gly
85 90 95

Pro Thr Leu Asp Gly Leu Gly Asp His Tyr Arg Ala Thr Ile Asp Glu 100 105 110

Ser Thr Ala Glu Pro Val Asp Val Val Gln Ala Leu Ile Asp Ala Lys 115 120 125

Ala Asp Val Leu Val Ser Tyr Leu Pro Val Gly Ser Glu Glu Ala Asp 130 135 140

Lys Phe Tyr Ala Gln Ala Ala Ile Asp Ala Gly Cys Ala Phe Val Asn 145 150 155 160

Ala Leu Pro Val Phe Ile Ala Ser Asp Pro Glu Trp Ala Lys Lys Phe 165 170 175

Thr Asp Ala Gly Ile Pro Ile Val Gly Asp Asp Ile Lys Ser Gln Ile 180 185 190

Gly Ala Thr Ile Thr His Arg Val Leu Ala Arg Leu Phe Glu Glu Arg 195 200 205

Gly Val Arg Val Asp Arg Thr Met Gln Leu Asn Val Gly Gly Asn Met 210 215 220

Asp Phe Lys Asn Met Leu Asp Arg Asn Arg Leu Glu Ser Lys Lys Val 225 230 235 240

Ser Lys Thr Gln Ala Val Thr Ser Asn Ile Pro Asp Gly Pro Leu Ser 245 250 255

Gly Lys Val Glu Asp Arg Asn Val His Ile Gly Pro Ser Asp His Val 260 265 270

Gln Trp Leu Asp Asp Arg Lys Trp Ala Tyr Val Arg Leu Glu Gly Thr 275 280 285

Ala Phe Gly Gly Val Pro Leu Asn Leu Glu Tyr Lys Leu Glu Val Trp

295 300 290 Asp Ser Pro Asn Ser Ala Gly Ile Ile Ile Asp Ala Val Arg Ala Ala 315 310 Lys Ile Ala Leu Asp Arg Gly Ile Gly Gly Pro Ile Met Pro Ala Ser 330 Ser Tyr Leu Met Lys Ser Pro Pro Glu Gln Leu Pro Asp Asp Val Ala Cys Glu Arg Leu Glu Ala Phe Ile Ile Glu Ala 360 <210> 309 <211> 795 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(772) <223> RXN03057 <400> 309 catcaacgcc gagtacaact aaggacaact gataatgaca aatgctgcaa ttgtcggatg 60 aggagacgtc gcaaccgttc atacagaagc gctggaagct ttg gct tcc gat ctt 115 Leu Ala Ser Asp Leu ggt att aag ttc gtc gca gtg gtg gat aaa gat cta gag act gct gag Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp Leu Glu Thr Ala Glu 10 aaa ttt gcg acg gqa ctt gga gct gct ggc gat tct tca gaa agc agc 211 Lys Phe Ala Thr Gly Leu Gly Ala Ala Gly Asp Ser Ser Glu Ser Ser 25 259 gtc aag gcc cac ggc agc ctg ccg gct ttg ttc tcc aaa aag aag atc Val Lys Ala His Gly Ser Leu Pro Ala Leu Phe Ser Lys Lys Ile 40 45 307 gat gtt cta cac atc acc acc ccc cac gac caa cac att ggt ttg gct Asp Val Leu His Ile Thr Thr Pro His Asp Gln His Ile Gly Leu Ala 55 ctc gaa gcg cta cac cac ggt gta aat gtc atc ctg gaa aag ccg ttg 355 Leu Glu Ala Leu His His Gly Val Asn Val Ile Leu Glu Lys Pro Leu 70 gct aat gag ttg gac cag gcg cag cgt ctc atc gac tac ttg gat gaa 403 Ala Asn Glu Leu Asp Gln Ala Gln Arg Leu Ile Asp Tyr Leu Asp Glu 100 aac ccc gat ggt cca aag att gca gtg tgc tat cag aac cgt tac aac 451 Asn Pro Asp Gly Pro Lys Ile Ala Val Cys Tyr Gln Asn Arg Tyr Asn 105

499

gtt tcc tcc cag gaa ctg cgt cgt ctg ctc gat tca ggt gac ctc ggt

120 125 130	
gcc atc aat ggt gca tat tcc tct gtg gtg tgg acc cgc acc cca ggc Ala Ile Asn Gly Ala Tyr Ser Ser Val Val Trp Thr Arg Thr Pro Gly 135 140 145	547
tac tac acc cag aaa cct tgg cgt ggc cag caa gca cac tcc ggt ggt Tyr Tyr Thr Gln Lys Pro Trp Arg Gly Gln Gln Ala His Ser Gly Gly 150 155 160 165	595
ggc ctg ctg atg aac caa gca att cac acc ctg gat ctg ctg cag tgg Gly Leu Leu Met Asn Gln Ala Ile His Thr Leu Asp Leu Leu Gln Trp 170 175 180	643
ttc ctt gga aag gca aca gaa gtc aag ggc act gtc tcc acc gat aag Phe Leu Gly Lys Ala Thr Glu Val Lys Gly Thr Val Ser Thr Asp Lys 185 190 195	691
tat gcc gat gtc atc gat gtt gaa gac acc gca cac gca tac atc ggt Tyr Ala Asp Val Ile Asp Val Glu Asp Thr Ala His Ala Tyr Ile Gly 200 205 210	739
cac gag tcc gga gtc cac acc agt gaa gtg agt tgaaccatgc tattggtga His Glu Ser Gly Val His Thr Ser Glu Val Ser 215 220	t 792
aca .	795
<210> 310	
<211> 224 <212> PRT <213> Corynebacterium glutamicum	
<212> PRT	
<212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp	
<212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1 5 10 15 Leu Glu Thr Ala Glu Lys Phe Ala Thr Gly Leu Gly Ala Ala Gly Asp	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1</pre>	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1 5 10 15 Leu Glu Thr Ala Glu Lys Phe Ala Thr Gly Leu Gly Ala Ala Gly Asp 20 25 30 Ser Ser Glu Ser Ser Val Lys Ala His Gly Ser Leu Pro Ala Leu Phe 35 40 45</pre> Ser Lys Lys Lys Ile Asp Val Leu His Ile Thr Thr Pro His Asp Gln	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1</pre>	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1</pre>	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 310 Leu Ala Ser Asp Leu Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp 1</pre>	

 130
 135
 140

 Thr Arg Thr Pro Gly 150
 Tyr Thr Gln Lys Pro 155
 Trp Arg Gly Gly Gln Gln 160

 Ala His Ser Gly Gly 165
 Leu Leu Met Asn 170
 Gln Ala Ile His Thr Leu 175

 Asp Leu Leu Gln Trp Phe Leu Gly Lys Ala Thr Glu Val Lys Gly 190
 Gly Thr 190

 Val Ser Thr Asp Lys Tyr Ala Asp 200
 Val Ile Asp Val Glu Asp Thr Ala 205

 His Ala Tyr Ile Gly His Glu 215
 Ser Gly Val His Thr 220

<210> 311 <211> 795 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(772) <223> FRXA02902 <400> 311 catcaacgcc gagtacaact aaggacaact gataatgaca aatgctgcaa ttgtcggatg 60 aggagacgtc gcaaccgttc atacagaagc gctggaagct ttg gct tcc gat ctt Leu Ala Ser Asp Leu ggt att aag ttc gcc gca gtg gtg gat aaa gat cta gag act gct gag 163 Gly Ile Lys Phe Val Ala Val Val Asp Lys Asp Leu Glu Thr Ala Glu 10 aaa ttt gcg acg gga ctt gga gct gct ggc gat tct tca gaa agc agc 211 Lys Phe Ala Thr Gly Leu Gly Ala Ala Gly Asp Ser Ser Glu Ser Ser 25 259 gtc aag gcc cac ggc agc ctg ccg gct ttg ttc tcc aaa aag aag atc Val Lys Ala His Gly Ser Leu Pro Ala Leu Phe Ser Lys Lys Ile 40 45 gat gtt cta cac atc acc ccc cac gac caa cac att ggt ttg gct 307 Asp Val Leu His Ile Thr Thr Pro His Asp Gln His Ile Gly Leu Ala 55 ctc gaa gcg cta cac cac ggt gta aat gtc atc ctg gaa aag ccg ttg 355 Leu Glu Ala Leu His His Gly Val Asn Val Ile Leu Glu Lys Pro Leu 70 gct aat gag ttg gac cag gcg cag cgt ctc atc gac tac ttg gat gaa 403

Ala Asn Glu Leu Asp Gln Ala Gln Arg Leu Ile Asp Tyr Leu Asp Glu

aac ccc Asn Pro															451
gtt tco Val Ser															499
gcc ato Ala Ile 135	Asn														547
tac tac Tyr Tyr 150															595
ggc cto Gly Leo	_	_			-				_	_	_	-	_		643
ttc ctt Phe Let															691
tat gcc Tyr Ala															739
cac gad His Glu 215	Ser									tgaa	accat	igc 1	tatto	ggtgat	792
aca									•						795
<210> 3 <211> 2 <212> E <213> 0	24 PRT	ebact	teri	um g]	lutan	nicum	n								
<400> 3		7 en	Lou	Glw	Tla	Tue	Dha	Va 1	Λla	บรา	V = 1	Aen	Tue	Asn	٠
l l	. Ser	nsp	5	GIĄ	116	nys	FIIG	10	VIG	Val	Vai	изр	15	vah	
Leu Glu	Thr	Ala 20	Glu	Lys	Phe	Ala	Thr 25	Gly	Leu	Gly	Ala	Ala 30	Gly	Asp	
Ser Ser	Glu 35	Ser	Ser	Val	Lys	Ala 40	His	Gly	Ser	Leu	Pro 45	Ala	Leu	Phe	
Ser Lys		Lys	Ile	Asp	Val 55	Leu	His	Ile	Thr	Thr 60	Pro	His	Asp	Gln	
His Ile	Gly	Leu	Ala	Leu 70	Glu	Ala	Leu	His	His 75	Gly	Val	Asn	Val	Ile 80	
Lan Gh															
Ded Git	Lys	Pro	Leu 85	Ala	Asn	Glu	Leu	Asp 90	Gln	Ala	Gln	Arg	Leu 95	Ile	

105 110 100 Gln Asn Arg Tyr Asn Val Ser Ser Gln Glu Leu Arg Arg Leu Leu Asp 120 Ser Gly Asp Leu Gly Ala Ile Asn Gly Ala Tyr Ser Ser Val Val Trp 135 Thr Arg Thr Pro Gly Tyr Tyr Thr Gln Lys Pro Trp Arg Gly Gln Gln Ala His Ser Gly Gly Leu Leu Met Asn Gln Ala Ile His Thr Leu Asp Leu Leu Gln Trp Phe Leu Gly Lys Ala Thr Glu Val Lys Gly Thr 185 Val Ser Thr Asp Lys Tyr Ala Asp Val Ile Asp Val Glu Asp Thr Ala 200 His Ala Tyr Ile Gly His Glu Ser Gly Val His Thr Ser Glu Val Ser 215 220

<210> 313 <211> 831 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS

<222> (101)..(808) <223> RXA00251

<400> 313

aaccagcgtt ttcagcgaga tactggacat atcaactaaa atccctgaat aaaacatcta 60

acatgggttt tatacagaaa attcatacga aaggttgatc atg aag aag att 115 Met Lys Lys Lys Ile 1 5

gcg gtc gtt acc gga gcg acc gga ggc atg gga att gag atc gtc aaa 163 Ala Val Val Thr Gly Ala Thr Gly Gly Met Gly Ile Glu Ile Val Lys 10 15 20

gac ctc tcc cgc gac cac att gtc tac gcc ttg ggc cga aat cca gag 211 Asp Leu Ser Arg Asp His Ile Val Tyr Ala Leu Gly Arg Asn Pro Glu 25 30 35

cat ctg gca gct ctc gca gag atc gag gga gta gag cct atc gag tcc 259 His Leu Ala Ala Leu Ala Glu Ile Glu Gly Val Glu Pro Ile Glu Ser 40 45 50

gat atc gtg aag gaa gtg ttg gaa gag gga ggc gtc gac aag cta aaa 307 Asp Ile Val Lys Glu Val Leu Glu Glu Gly Gly Val Asp Lys Leu Lys 55 60 65

aac ctc gac cac gtg gat acg ctg gtg cac gcc gcg gcg gtg gcg cgt 355

Asn Leu Asp His Val Asp Thr Leu Val His Ala Ala Ala Val Ala Arg 70 75 80 85	
gac acg acc atc gaa gcc ggc agt gtg gcc gaa tgg cac gca cac ctt Asp Thr Thr Ile Glu Ala Gly Ser Val Ala Glu Trp His Ala His Leu 90 95 100	403
gat ctc aac gtc att gtc ccg gcc gag ttg agt cgc caa ctc ttg ccc Asp Leu Asn Val Ile Val Pro Ala Glu Leu Ser Arg Gln Leu Leu Pro 105 110 115	451
gcc ctc cgc gcg gca tcc ggc tgc gtc atc tac atc aac tcc ggc gcc Ala Leu Arg Ala Ala Ser Gly Cys Val Ile Tyr Ile Asn Ser Gly Ala 120 125 130	499
ggc aac gga cca cac ccc ggc aac acc atc tac gcc gcc agc aaa cac Gly Asn Gly Pro His Pro Gly Asn Thr Ile Tyr Ala Ala Ser Lys His 135 140 145	547
gcc ctc cgc gga ctc gcc gac gcc ttc cgc aaa gaa gcc aac aac Ala Leu Arg Gly Leu Ala Asp Ala Phe Arg Lys Glu Glu Ala Asn Asn 150 155 160 165	595
ggc atc cgc gtc agc act gtc agc ccc ggc ccc acc acc acc ccc atg Gly Ile Arg Val Ser Thr Val Ser Pro Gly Pro Thr Asn Thr Pro Met 170 175 180	643
ctg caa ggc ctc atg gac tca caa ggc acc aac ttc cgc cca gag atc Leu Gln Gly Leu Met Asp Ser Gln Gly Thr Asn Phe Arg Pro Glu Ile 185 190 195	691
tac atc gaa cca aaa gaa atc gcc aac gca atc aga ttc gtg att gac Tyr Ile Glu Pro Lys Glu Ile Ala Asn Ala Ile Arg Phe Val Ile Asp 200 205 210	739
gct ggc gaa acc acc cag atc acc aac gtg gac gta cga cca cgt atc Ala Gly Glu Thr Thr Gln Ile Thr Asn Val Asp Val Arg Pro Arg Ile 215 220 225	787
gaa ctg gcg gac cgg aaa gat tagttetggg gggetteetg gge Glu Leu Ala Asp Arg Lys Asp 230 235	831
<210> 314 <211> 236 <212> PRT <213> Corynebacterium glutamicum	
<400> 314 Met Lys Lys Lys Ile Ala Val Val Thr Gly Ala Thr Gly Gly Met Gly 1 5 10 15	
Ile Glu Ile Val Lys Asp Leu Ser Arg Asp His Ile Val Tyr Ala Leu 20 25 30	
Gly Arg Asn Pro Glu His Leu Ala Ala Leu Ala Glu Ile Glu Gly Val 35 40 45	
Glu Pro Ile Glu Ser Asp Ile Val Lys Glu Val Leu Glu Glu Gly Gly 50 55 60	

Val 65	Asp	Lys	Leu	Lys	Asn 70	Leu	Asp	His	Val	Asp 75	Thr	Leu	Val	His	Ala 80	
Ala	Ala	Val	Ala	Arg 85	Asp	Thr	Thr	Ile	Glu 90	Ala	Gly	Ser	Val	Ala 95	Glu	
Trp	His	Ala	His 100	Leu	Asp	Leu	Asn	Val 105	Ile	Val	Pro	Ala	G1u 110	Leu	Ser	
Arg	Gln	Leu 115	Leu	Pro	Ala	Leu	Arg 120	Ala	Ala	Ser	Gly	Cys 125	Val	Ile	Tyr	
Ile	Asn 130	Ser	Gly	Ala	Gly	Asn 135	Gly	Pro	His	Pro	Gly 140	Asn	Thr	Ile	Tyr	
Ala 145	Ala	Ser	Lys	His	Ala 150	Leu	Arg	Gly	Leu	Ala 155	Asp	Ala	Phe	Arg	Lys 160	
Glu	Glu	Ala	Asn	Asn 165	Gly	Ile	Arg	Val	Ser 170	Thr	Val	Ser	Pro	Gly 175	Pro	
Thr	Asn	Thr	Pro 180	Met	Leu	Gln	Gly	Leu 185	Met	Asp	Ser	Gln	Gly 190	Thr	Asn	
Phe	Arg	Pro 195	Glu	Ile	Tyr	Ile	Glu 200	Pro	Lys	Glu	Ile	Ala 205	Asn	Ala	Ile	
Arg	Phe 210	Val	Ile	Asp	Ala	Gly 215	Glu	Thr	Thr	Gln	11e 220	Thr	Asn	Val	Asp	
Val 225	Arg	Pro	Arg	Ile	Glu 230	Leu	Ala	Asp	Arg	Lys 235	Asp					
<211 <212)> 31 l> 10 2> DN 3> Co	800 NA	ebact	eri	ım g]	Lutar	nicum	n								
<220 <221)> L> CI	os														
	?> (1 3> R)		(98 554	35)												
)> 31 :ttcq		aattt	atac	ca go	aato	cctco	g aaa	atcct	aat	aaaç	gatco	cct t	atc	gtggga	60
gago	gtaco	ggt a	agtto	cgtto	eg ag	ggaca	aacgt	: cga	agaaa	iggc			tca Ser			115
	_		_		cta Leu		-		-	-			-		agc Ser	163
					cta Leu											211
ggt	ctc	tcc	agc	tat	caa	gga	agt	gga	agg	ctt	aag	ggc	cgc	aag	gct	259

Gly	Leu	Ser 40	Ser	Tyr	Gln	Gly	Ser 45	Gly	Arg	Leu	Lys	Gly 50	Arg	Lys	Ala	
ctt Leu	att Ile 55	act Thr	ggt Gly	ggc Gly	gat Asp	tct Ser 60	Gly ggg	att Ile	gga Gly	gct Ala	gcc Ala 65	gta Val	gca Ala	atc Ile	gct Ala	307
									atc Ile							355
									gca Ala 95							403
									cgt Arg							451
									tta Leu							499
									gca Ala							547
									cag Gln							595
		-			-				cat His 175							643
				_			_		tac Tyr			_				691
									ttg Leu							739
									att Ile							787
									ccc Pro							835
									gct Ala 255							883
									gtt Val							931
									gga Gly							979

1008

280 285 290

acc cca tagtcggtac aagcggaatc act Thr Pro

295

<210> 316

<211> 295

<212> PRT

<213> Corynebacterium glutamicum

<400> 316

Met Ile Ser Leu Leu Asn Asp Pro Arg Thr Leu Phe Pro Lys Val Asp 1 5 10 15

Pro Pro Lys Gln Ser Gln Pro Glu Pro Gly Leu Asp Ile Lys Leu Ser 20 25 30

Pro Gln Ala Asp Ile Gly Leu Ser Ser Tyr Gln Gly Ser Gly Arg Leu 35 40 45

Lys Gly Arg Lys Ala Leu Ile Thr Gly Gly Asp Ser Gly Ile Gly Ala 50 55 60

Ala Val Ala Ile Ala Tyr Ala Arg Glu Gly Ala Asp Val Ala Ile Ala 65 70 75 80

Tyr Leu Pro Glu Glu Gln Ala Asp Ala Asp Arg Val Leu Gln Ala Ile 85 90 95

Glu Glu Thr Gly Gln Lys Ala Phe Ser Phe Pro Gly Asp Leu Arg Asp 100 105 110

Pro Glu Tyr Cys Arg Ser Leu Val Gln Glu Thr Val Asn Ala Leu Gly
115 120 125

Gly Leu Asp Ile Leu Val Asn Asn Ala Ser Arg Gln Val Trp Ala Pro 130 135 140

Gly Leu Thr Glu Ile Thr Asp Glu Asn Phe Asp Gln Thr Leu Gln Val 145 150 155 160

Asn Leu Tyr Gly Ser Phe Arg Val Thr Lys Ala Ala Ile Pro His Leu 165 170 175

Lys Pro Gly Ser Ser Ile Ile Phe Thr Ser Ser Ile Gln Ala Tyr Gln 180 185 190

Pro Ser Glu Thr Leu Leu Asp Tyr Ala Met Thr Lys Ala Ala Leu Asn 195 200 205

Asn Leu Ser Lys Gly Leu Ala Ser Ser Leu Ile Gly Asp Gly Ile Arg 210 215 220

Val Asn Ser Val Ala Pro Gly Pro Phe Trp Thr Pro Leu Gln Pro Ser 225 230 235 240

His Gly Gln Pro Gln Glu Lys Ile Glu Gly Phe Gly Gln His Ala Pro 245 250 255

gga Gly	att Ile	ttt Phe 40	aga Arg	cgc Arg	gtc Val	cct Pro	gca Ala 45	gct Ala	gta Val	gct Ala	gaa Glu	cca Pro 50	gaa Glu	aat Asn	gtg Val	259
gaa Glu	caa Gln 55	att Ile	cgt Arg	gat Asp	gcc Ala	att Ile 60	gct Ala	gtt Val	gcg Ala	gtg Val	gca Ala 65	cga Arg	ggg Gly	tgg Trp	tct Ser	307
gtt Val 70	gtt Val	ggg Gly	cgc Arg	ggt Gly	gga Gly 75	gga Gly	agc Ser	tcg Ser	gtt Val	gct Ala 80	gga Gly	aat Asn	gcg Ala	atc Ile	ggt Gly 85	355
	ggt Gly															403
att Ile	gat Asp	cca Pro	gtt Val 105	gca Ala	caa Gln	act Thr	gca Ala	gtt Val 110	gtg Val	gaa Glu	ccc Pro	ggt Gly	gtg Val 115	gtg Val	tgt Cys	451
gat Asp	gcc Ala	ttg Leu 120	cgc Arg	gat Asp	gca Ala	gcc Ala	gca Ala 125	gaa Glu	ttc Phe	gga Gly	tta Leu	act Thr 130	tac Tyr	ggc Gly	ccg Pro	499
	cct Pro 135															547
aat Asn 150	gcg Ala	tgt Cys	ggt Gly	tca Ser	cac His 155	tcg Ser	gtt Val	gca Ala	Phe	ggt Gly 160	aca Thr	gct Ala	gcg Ala	gaa Glu	aat Asn 165	595
	gtg Val															643
	aaa Lys															691
	gcg Ala					Asp		Ile			Glu					739
	cgc Arg 215															787
	aaa Lys															835
_	acg Thr		_	-	-									-	-	883
	gct Ala															931
cga	ctg	cct	ggg	gta	gca	acc	att	gaa	ggc	atg	ggc	gga	gat	ctc	ctc	979

Arg Leu Pro Gly 280	Val Ala Thr	Ile Glu Gly 285	Met Gly Gly 290	Asp Leu	Leu
gct gcg ctg cgc Ala Ala Leu Arg 295		Gly Gln Ser			
cca gga aac cgc Pro Gly Asn Arg 310				Tyr Cys	
aca gga agt gac Thr Gly Ser Asp	-		-		-
gca acc gcc gtt Ala Thr Ala Val 345	Asp Thr Ile				
gaa atg cgg gaa Glu Met Arg Glu 360	, ,,				-
acg cgc tta gct Thr Arg Leu Ala 375				• -	_
gcg gtg cct cca Ala Val Pro Pro 390		•		Leu Tyr 2	
ctg atg gat aag Leu Met Asp Lys	_				
gaa ggc tgc gtc Glu Gly Cys Val 425	His Val Arg	_	-		_
ggc ctg aag aaa Gly Leu Lys Lys 440		_	-	_	
gcg tct tat ggt Ala Ser Tyr Gly 455					
cgc tca tcc ttc Arg Ser Ser Phe 470		-		Arg Ala 1	
ttc gaa gaa ttc Phe Glu Glu Phe		-			-
gga gtg ttg gtc Gly Val Leu Val 505					
ccg ggc cag cgc Pro Gly Gln Arg	•	_	•		

520)	525		530	
			g aat ege tge o . Asn Arg Cys v 545		
	•		g tgc ccg tcc 1 : Cys Pro Ser 1 560		
	-		c cgc gcc cgc t 7 Arg Ala Arg 1 575	_	
			c ggc tac cgc a o Gly Tyr Arg S		_
	a Leu Ásp Leu	-	: tgc aaa gca 1 : Cys Lys Ala (-
-			tac aaa gcc o Tyr Lys Ala (625	-	_
		-	e atg gcc cat to Met Ala His 5 640		
			c cat aaa ata d A His Lys Ile 1 655	-	
•			a gca ctc acc o Ala Leu Thr <i>l</i>		
	l Gly Gly Leu		ccg ttg att t Pro Leu Ile S		
			g aaa aac tca g s Lys Asn Ser (705		
			aac ete gae a Asn Leu Asp 1 720		
			ctc ggt tac a Leu Gly Tyr A 735		
			acc tgg cat t Thr Trp His S		
	Thr Lys Lys		caa acg gcg a Gln Thr Ala I		

ccc tac ctg gad Pro Tyr Leu As 775	caa ggt Gln Gly	cta aca Leu Thr 780	gtc gt Val Va	t ggt	ttg gaa Leu Glu 785	cct Pro	tcg Ser	tgc Cys	2467
acc gtc atg ct Thr Val Met Le 790									2515
ctg gca cgc ct Leu Ala Arg Le	gca gca Ala Ala 810	ctg acc Leu Thr	aaa co Lys Pr 81	o Phe	gct gag Ala Glu	gtc Val	atc Ile 820	gca Ala	2563
cca aag atc ac Pro Lys Ile Th	Glu Leu	gtc gag Val Glu	tct gg Ser Gl 830	ga agc Ly Ser	ctc cag Leu Gln	cta Leu 835	aca Thr	gaa Glu	2611
tca act gcg ct Ser Thr Ala Le 840	acc cag Thr Gln	gtg cac Val His 845	tgc ca Cys Hi	ac gag is Glu	cgt tcg Arg Ser 850	cta Leu	ggc Gly	gac Asp	2659
cca caa caa tc Pro Gln Gln Se 855									2707
caa att gcc ac Gln'Ile Ala Th 870									2755
aaa gac cac gc Lys Asp His Al				eu Gly					2803
ccc aag gtc ag Pro Lys Val Ar 90	Lys Ala								2851
tgć cgc acc ca Cys Arg Thr Gl 920									2899
gca gag gtg gt Ala Glu Val Va 935	L Leu Ser	_	Glu Gl		Asn Met	-			2944
taacgatcat gca	acaggtg c	tc							2967
<210> 132 <211> 948 <212> PRT <213> Coryneba	cterium g	lutamicu	m						
<400> 132 Met Thr His Th	: Ile Lys 5	Phe Asn		eu Asp 10	Pro Glu	Val	Phe 15	Ser	
Gln His Ser Are		Leu Arg	Thr As	sp Met	Thr Thr	Arg 30	Ala	Ala	

Tyr Ser Ser Asp Ala Gly Ile Phe Arg Arg Val Pro Ala Ala Val Ala

		35					40					45			
Glu	Pro 50	Glu	Asn	Val	Glu	Gln 55	Ile	Arg	Asp	Ala	Ile 60	Ala	Val	Ala	Val
Ala 65	Arg	Gly	Trp	Ser	Val 70	Val	Gly	Arg	Gly	Gly 75	Gly	Ser	Ser	Val	Ala 80
Gly	Asn	Ala	Ile	Gly 85	Glu	Gly	Leu	Ile	Ile 90	Asp	Thr	Ser	Arg	Tyr 95	Phe
Asn	Arg	Ile	Leu 100	Asp	Ile	Asp	Pro	Val 105	Ala	Gln	Thr	Ala	Val 110	Val	Glu
Pro	Gly	Val 115	Val	Суѕ	Asp	Ala	Leu 120	Arg	Asp	Ala	Ala	Ala 125	Glu	Phe	Gly
Leu	Thr 130	Tyr	Gly	Pro	Asp	Pro 135	Ser	Thr	His	Ser	Arg 140	Суѕ	Thr	Ile	Gly
Gly 145	Met	Val	Ala	Asn	Asn 150	Ala	Cys	Gly	Ser	His 155	Ser	Val	Ala	Phe	Gly 160
Thr	Ala	Ala	Glu	Asn 165	Leu	Val	Asp	Val	Thr 170	Leu	Met	Leu	Ser	Asp 175	Gly
Arg	Glu	Val	Thr 180	Val	Thr	Lys	Asp	Gly 185	Cys	Asp	Asp	Ala	Glu 190	Ile	Asn
Gln	Lys	Leu 195	Thr	Asp	Leu	Ala	Ser 200	Lys	Asn	Glņ	Asp	Leu 205	Ile	Ser	Lys
Glu	Leu 210	Gly	Arg	Phe	Pro	Arg 215	Gln	Val	Ser	Gly	Tyr 220	Gly	Leu	His	Tyr
Leu 225	Ala	His	Asp	Met	Ala 230	Lys	Ala	Met	Ala	Gly 235	Thr	Glu	Gly	Thr	Ile 240
Gly	Ile	Ile	Thr	Arg 245	Leu	Thr	Val	Lys	Leu 250	Val	Pro	Thr	Pro	Lys 255	Val
Lys	Ala	Leu	Ala 260	Val	Leu	Ala	Phe	Asp 265	Thr	Val	Phe	Asp	Ala 270	Ala	Arg
Ala	Ala	Ala 275	Lys	Leu	Arg	Leu	Pro 280	Gly	Val	Ala	Thr	Ile 285	Glu	Gly	Met
Gly	Gly 290	Asp	Leu	Leu	Ala	Ala 295	Leu	Arg	Ser	Lys	Gln 300	Gly	Gln	Ser	Glu
Ala 305	Gly	Gln	Asn	Leu	Pro 310	Gly	Asn	Arg	Ile	Gly 315	Ile	Glu	Ala	Gly	Gly 320
Trp	Leu	Tyr	Cys	Glu 325	Thr	Gly	Ser	Asp	Thr 330	Leu	Gln	Ala	Ala	Val 335	Gln
Ala	Ala	Glu	Glu 340	Val	Ala	Thr	Ala	Val 345	Asp	Thr	Ile	Asp	Tyr 350	Val	Val
Val	Ser	Glu 355	Pro	Ser	Glu	Met	Arg 360	Glu	Leu	Trp	Arg	Ile 365	Arg	Glu	Ser

Ser	Ala 370	Gly	Ile	Val	Thr	Arg 375	Leu	Ala	Asp	Gly	Gly 380	Glu	Ala	Trp	Pro
Asn 385	Trp	Glu	Asp	Ser	Ala 390	Val	Pro	Pro	Glu	Asn 395	Leu	Ala	Asp	Tyr	Le:
Arg	Asp	Leu	Tyr	Ala 405	Leu	Met	Asp	Lys	Phe 410	Asp	Tyr	Gln	Gly	Ile 415	Pro
Phe	Gly	His	Phe 420	Gly	Glu	Gly	Cys	Val 425	His	Val	Arg	Ile	Ser 430	Phe	Asp
Phe	Ser	Thr 435	Lys	Glu	Gly	Leu	Lys 440	Lys	Phe	Glu	Ala	Phe 445	Met	Asn	Glı
Ala	Ser 450	Thr	Leu	Val	Ala	Ser 455	Tyr	Gly	Gly	Ser	Leu 460	Ser	Gly	Glu	His
Gly 465	Asp	Gly	Arg	Ala	Arg 470	Ser	Ser	Phe	Leu	Asp 475	Arg	Met	Tyr	Ser	Ala 480
Glu	Met	Arg	Ala	Leu 485	Phe	Glu	Glu	Phe	Lys 490	Leu	Ile	Phe	Asp	Pro 495	Glr
Arg	Ile	Phe	Asn 500	Pro	Gly	Val	Leu	Val 505	Trp	Ala	Asp	Pro	Val 510	Met	Glr
Gly	Leu	Arg 515	Met	Asp	Pro	Gly	.Gln 520	Arg	Ala	Leu	Asp	Ile 525	Thr	Pro	Va]
His	Lys 530	Phe	Ser	Lys	Asp	Lys 535	Gly	Ser	Met	Ile	Asn 540	Ala	Val	Asn	Arq
Cys 545	Val	Gly	Val	Ser	Ala 550	Суз	Arg	Ser	Glu	Ser 555	Asp	Ala	Met	Суѕ	Pro 560
Ser	Phe	Gln	Ile	Thr 565	Gly	Asp	Glu	Val	His 570	Ser	Thr	Arg	Gly	Arg 575	Ala
Ąrg	Leu	Leu	Ser 580	Glu	Met	Phe	Arg	Gly 585	Glu	Ser	Ile	Ala	Asp 590	Gly	Туз
Arg	Ser	Glu 595	Glu	Val	Asn	Glu	Ala 600	Leu	Asp	Leu	Cys	Leu 605	Ser	Cys	Lys
Ala	Cys 610	Ala	Ser	Glu	Cys	Pro 615	Val	Asn	Val	Asp	Met 620	Ser	Thr	Tyr	Lys
Ala 625	Glu	Phe	Leu	Asp	Lys 630	His	Tyr	Ala	Gly	Arg 635	Leu	Arg	Pro	Met	Ala 640
His	Tyr	Val	Met	Gly 645	Trp	Leu	Pro	Leu	Leu 650	Gly	His	Val	Ala	His 655	Lys
Ile	Pro	Leu	Leu 660	Pro	Thr	Leu	Ile	Asp 665	Ala	Thr	Met	Gln	Ser 670	Ala	Let
Thr	Ala	Pro 675	Val	Val	Arg	Lys	Val 680	Gly	Gly	Leu	Ala	Asp 685	Arg	Pro	Leu

Ile Ser Phe Ala His Arg Ser Leu Arg Lys Tyr Lys Pro Lys Lys Asn Ser Gly Glu Thr Val Val Leu Trp Pro Asp Ser Phe Asn Thr Asn Leu Asp Thr Gly Pro Ala His Ala Ala Ile Lys Thr Leu Glu Ala Leu Gly Tyr Asn Val Val Ile Pro Asp Gly Phe Val Cys Cys Gly Leu Thr Trp His Ser Thr Gly Gln Leu Ser Met Thr Lys Lys Val Leu Glu Gln Thr Ala Lys Val Met Lys Pro Tyr Leu Asp Gln Gly Leu Thr Val Val Gly Leu Glu Pro Ser Cys Thr Val Met Leu Gln Asp Glu Ala Thr Glu Leu Ser Asp Asn Pro Asp Leu Ala Arg Leu Ala Ala Leu Thr Lys Pro Phe Ala Glu Val Ile Ala Pro Lys Ile Thr Glu Leu Val Glu Ser Gly Ser Leu Gln Leu Thr Glu Ser Thr Ala Leu Thr Gln Val His Cys His Glu 840 Arg Ser Leu Gly Asp Pro Gln Gln Ser Ala Leu Val Leu Glu Ala Leu 855 Gly Val Lys Asp Glu Gln Ile Ala Thr Gly Cys Cys Gly Leu Ala Gly 870 875 Asn Trp Gly Phe Glu Lys Asp His Ala Glu Met Ser Phe Ala Leu Gly Glu Arg Glu Leu Phe Pro Lys Val Arg Lys Ala Glu Gly His Val Ile Ala Asp Gly Phe Ser Cys Arg Thr Gln Ile Glu Gln Gly Thr Gly Lys Gln Ala Thr His Leu Ala Glu Val Val Leu Ser Ile Leu Glu Gln Asn 935 Asn Met Ala Gln 945 <210> 133

<210> 133 <211> 2858

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (1)..(2835)
<223> FRXA00296

<400)> 13	13						•								
acc	atc	aaa	ttc Phe	aac Asn 5	aga Arg	ctc Leu	gac Asp	cca Pro	gaa Glu 10	gta Val	ttt Phe	agc Ser	cag Gln	cat His 15	tct Ser	48
cgc Arg	gcg Ala	aag Lys	ctg Leu 20	cgc Arg	acg Thr	gat Asp	atg Met	aca Thr 25	acc Thr	cgt Arg	gca Ala	gca Ala	tat Tyr 30	tct Ser	tct Ser	96
gat Asp	gca Ala	gga Gly 35	att Ile	ttt Phe	aga Arg	cgc Arg	gtc Val 40	cct Pro	gca Ala	gct Ala	gta Val	gct Ala 45	gaa Glu	cca Pro	gaa Glu	144
							gcc Ala									192
tgg Trp 65	tct Ser	gtt Val	gtt Val	ggg Gly	cgc Arg 70	ggt Gly	gga Gly	gga Gly	agc Ser	tcg Ser 75	gtt Val	gct Ala	gga Gly	aat Asn	gcg Ala 80	240
							gat Asp									288
tta Leu	gat Asp	att Ile	gat Asp 100	cca Pro	gtt Val	gca Ala	caa Gln	act Thr 105	gca Ala	gtt Val	gtg Val	gaa Glu	ccc Pro 110	ggt Gly	gtg Val	336
							gca Ala 120									384
ggc Gly	ccg Pro 130	gat Asp	cct Pro	tcc Ser	acg Thr	cat His 135	tcc Ser	cgg Arg	tgc Cys	acg Thr	atc Ile 140	ggt Gly	ggc Gly	atg Met	gtt Val	432
gcc Ala 145	aac Asn	aat Asn	gcg Ala	tgt Cys	ggt Gly 150	tca Ser	cac His	tcg Ser	gtt Val	gca Ala 155	ttc Phe	ggt Gly	aca Thr	gct Ala	gcg Ala 160	480
gaa Glu	aat Asn	ctc Leu	gtg Val	gat Asp 165	gtc Val	acg Thr	ctc Leu	atg Met	ctc Leu 170	agc Ser	gat Asp	ggc Gly	cga Arg	gaa Glu 175	gtc Val	528
							gat Asp									576
							cag Gln 200									624
cgt Arg	ttc Phe 210	cct Pro	cgc Arg	caa Gln	gtg Val	tcg Ser 215	ggc Gly	tac Tyr	ggt Gly	ttg Leu	cat His 220	tat Tyr	ctt Leu	gcc Ala	cac His	672
gac Asp 225	atg Met	gcc Ala	aaa Lys	gca Ala	atg Met 230	gcg Ala	ggc Gly	acc Thr	gag Glu	gga Gly 235	acc Thr	att Ile	gga Gly	atc Ile	att Ile 240	720

act Thr	cgg Arg	ttg Leu	acg Thr	gtg Val 245	aag Lys	ttg Leu	gtt Val	cca Pro	aca Thr 250	ccc Pro	aaa Lys	gtg Val	aaa Lys	gcg Ala 255	ctt Leu	768
gct Ala	gtc Val	ctg Leu	gct Ala 260	ttc Phe	gac Asp	acg Thr	gtt Val	ttt Phe 265	gac Asp	gcc Ala	gcc Ala	cga Arg	gca Ala 270	gcc Ala	gcc Ala	816
aaa Lys	ttg Leu	cga Arg 275	ctg Leu	cct Pro	ggg Gly	gta Val	gca Ala 280	acc Thr	att Ile	gaa Glu	ggc Gly	atg Met 285	ggc Gly	gga Gly	gat Asp	864
ctc Leu	ctc Leu 290	gct Ala	gcg Ala	ctg Leu	cgc Arg	agt Ser 295	aaa Lys	cag Gln	gga Gly	caa Gln	tca Ser 300	gaa Glu	gct Ala	ggg Gly	cag Gln	912
aat Asn 305	ctt Leu	cca Pro	gga Gly	aac Asn	cgc Arg 310	atc Ile	ggc Gly	att Ile	gaa Glu	gcc Ala 315	ggc Gly	gga Gly	tgg Trp	ttg Leu	tac Tyr 320	960
											gta Val					1008
											gtg Val					1056
cct Pro	tct Ser	Glu	atg Met	cgg Arg	gaa Glu	ttg Leu	tgg Trp 360	cgc Arg	atc Ile	cgt Arg	gaa Glu	tcc Ser 365	tcg Ser	gcg Ala	ggc Gly	1104
											tgg Trp 380					1152
											tat Tyr					1200
Tyr	Ala	Leu	Met	Asp	Lys	Phe	Asp	Tyr	Gln	Gly	att Ile	Pro	Phe	Gly	His	1248
ttt Phe	gga Gly	gaa Glu	ggc Gly 420	tgc Cys	gtc Val	cac His	gtt Val	cgc Arg 425	atc Ile	agt Ser	ttt Phe	gat Asp	ttc Phe 430	tct Ser	acc Thr	1296
aag Lys	gaa Glu	ggc Gly 435	ctg Leu	aag Lys	aaa Lys	ttc Phe	gag Glu 440	gcg Ala	ttc Phe	atg Met	aat Asn	gaa Glu 445	gcc Ala	tcc Ser	acc Thr	1344
ttg Leu	gtg Val 450	gcg Ala	tct Ser	tat Tyr	ggt Gly	ggc Gly 455	agc Ser	ctc Leu	tcg Ser	ggc Gly	gag Glu 460	cat His	gga Gly	gac Asp	ggt Gly	1392
cgc Arg 465	gcc Ala	cgc Arg	tca Ser	tcc Ser	ttc Phe 470	ctt Leu	gac Asp	cgc Arg	atg Met	tat Tyr 475	tca Ser	gca Ala	gaa Glu	atg Met	cgt Arg 480	1440

gca ctc Ala Leu	ttc g Phe G	Slu G	gaa Glu 185	ttc Phe	aag Lys	ctg Leu	att Ile	ttc Phe 490	gat Asp	ccc Pro	cag Gln	cgc Arg	atc Ile 495	ttc Phe	1488
aat ccg Asn Pro	Gly V	gtg t /al I 500	tg Leu	gtc Val	tgg Trp	gca Ala	gat Asp 505	cct Pro	gtc Val	atg Met	caa Gln	gga Gly 510	ctt Leu	cgc Arg	1536
atg gac Met Asp	ccg g Pro G 515	ggc c	cag Gln	cgc Arg	gcc Ala	ctc Leu 520	gac Asp	atc Ile	acg Thr	ccc Pro	gta Val 525	cac His	aaa Lys	ttc Phe	1584
tct aaa Ser Lys 530	Asp I	aaa g Lys G	ggt Sly	tcc Ser	atg Met 535	atc Ile	aac Asn	gcg Ala	gtg Val	aat Asn 540	cgc Arg	tgc Cys	gtg Val	ggt Gly	1632
gta tcc Val Ser 545	gca t Ala C	igc c Cys A	Arg	tca Ser 550	gaa Glu	tcc Ser	gac Asp	gcg Ala	atg Met 555	tgc Cys	ccg Pro	tcc Ser	ttc Phe	caa Gln 560	1680
atc acc Ile Thr	Gly F	Asp G	31u 565	Val	His	Ser	Thr	Arg 570	Gly	Arg	Ala	Arg	Leu 575	Leu	1728
tct gag Ser Glu	Met E	ttc c Phe <i>F</i> 580	cgc Arg	ggt Gly	gaa Glu	tcc Ser	atc Ile 585	gcc Ala	gac Asp	ggc Gly	tac Tyr	cgc Arg 590	agc Ser	gaa Glu	1776
gaa gto Glu Val															1824
tcg gaa Ser Glu 610	Cys I	Pro V	Val	Asn	Val 615	Asp	Met	Ser	Thr	Tyr 620	Lys	Ala	Glu	Phe	1872
ctg gac Leu Asp 625	aaa o Lys H	cac t His T	tac Fyr	gcc Ala 630	ggc Gly	cga Arg	ctt Leu	cgc Arg	ccc Pro 635	atg Met	gcc Ala	cat His	tac Tyr	gtc Val 640	1920
atg ggo Met Gly		Leu I													1968
ctt cct Leu Pro	Thr I	ctt a Leu I 660	atc Ile	gac Asp	gcc Ala	acc Thr	atg Met 665	cag Gln	tca Ser	gca Ala	ctc Leu	acc Thr 670	gcc Ala	cca Pro	2016
gtg gtg Val Val	cgc a Arg I 675	aag q Lys \	gtc Val	ggc Gly	Gly	ctc Leu 680	gct Ala	gat Asp	cgc Arg	ccg Pro	ttg Leu 685	att Ile	tcc Ser	ttc Phe	2064
gcc cac Ala His 690	Arg S														2112
acg gtg Thr Val 705															2160
cca gct	cac o	gca ç	gcg	atc	aaa	act	ctt	gaa	gcc	ctc	ggt	tac	aac	gtg	2208

Pro Ala Hi	is Ala Ala 725	Ile Lys T		Glu Ala 730	Leu Gly	Tyr Asn 735	Val	
gtc atc co Val Ile Pi	ca gat ggc ro Asp Gly 740	ttc gtc t Phe Val C	cgc tgt Cys Cys 745	gga ctc Gly Leu	acc tgg Thr Trp	cat tcc His Ser 750	acc 22 Thr	256
Gly Gln Le	tg agc atg eu Ser Met 55	Thr Lys I	aaa gtc Lys Val 760	cta gaa Leu Glu	caa acg Gln Thr 765	gcg aaa Ala Lys	gtg 23 Val	304
atg aaa co Met Lys Pi 770	cc tac ctg ro Tyr Leu	gac caa g Asp Gln G 775	ggt cta Sly Leu	aca gtc Thr Val	gtt ggt Val Gly 780	ttg gaa Leu Glu	cct 23 Pro	352
tcg tgc ac Ser Cys Th 785	cc gtc atg hr Val Met	ctt caa g Leu Gln A 790	gat gag Asp Glu	gca aca Ala Thr 795	gaa ctc Glu Leu	tcc gat Ser Asp	aac 24 Asn 800	400
cct gat ct Pro Asp Le	tg gca cgc eu Ala Arg 805	ctt gca g Leu Ala A	gca ctg Ala Leu	acc aaa Thr Lys 810	cca ttc Pro Phe	gct gag Ala Glu 815	gtc 24 Val	448
atc gca co Ile Ala Pi	ca aag atc ro Lys Ile 820	acc gag o	cta gtc Leu Val 825	gag tct Glu Ser	gga agc Gly Ser	ctc cag Leu Gln 830	cta 24 Leu	196
Thr Glu Se	ca act gcg er Thr Ala 35	Leu Thr G	cag gtg Gln Val 840	cac tgc His Cys	cac gag His Glu 845	cgt tcg Arg Ser	cta 25 Leu	544
ggc gac co Gly Asp P: 850	ca caa caa ro Gln Gln	tcg gca c Ser Ala I 855	ctc gtt Leu Val	ctt gaa Leu Glu	gct ttg Ala Leu 860	ggt gta Gly Val	aaa 25 Lys	592
	aa att gcc ln Ile Ala							640
	aa gac cac ys Asp His 885						, ,	688
	cc aag gtc ro Lys Val 900						J J .	736
Phe Ser C	gc cgc acc ys Arg Thr 15	Gln Ile G	gaa caa Glu Gln 920	ggc acc Gly Thr	gga aaa Gly Lys 925	caa gca Gln Ala	acg 27	784
	ca gag gtg la Glu Val							332
caa taacg Gln 945	atcat gcaa	caggtg cto	c				28	858

<210> 134

<211> 945

<212> PRT

<213> Corynebacterium glutamicum

<400> 134

Thr Ile Lys Phe Asn Arg Leu Asp Pro Glu Val Phe Ser Gln His Ser 1 5 10 15

Arg Ala Lys Leu Arg Thr Asp Met Thr Thr Arg Ala Ala Tyr Ser Ser 20 25 30

Asp Ala Gly Ile Phe Arg Arg Val Pro Ala Ala Val Ala Glu Pro Glu 35 40 45

Asn Val Glu Gln Ile Arg Asp Ala Ile Ala Val Ala Val Ala Arg Gly
50 55 60

Trp Ser Val Val Gly Arg Gly Gly Gly Ser Ser Val Ala Gly Asn Ala 65 70 75 80

Ile Gly Glu Gly Leu Ile Ile Asp Thr Ser Arg Tyr Phe Asn Arg Ile 85 90 95

Leu Asp Ile Asp Pro Val Ala Gln Thr Ala Val Val Glu Pro Gly Val
100 105 110

Val Cys Asp Ala Leu Arg Asp Ala Ala Ala Glu Phe Gly Leu Thr Tyr 115 120 125

Gly Pro Asp Pro Ser Thr His Ser Arg Cys Thr Ile Gly Gly Met Val 130 135 140

Ala Asn Asn Ala Cys Gly Ser His Ser Val Ala Phe Gly Thr Ala Ala 145 150 155 160

Glu Asn Leu Val Asp Val Thr Leu Met Leu Ser Asp Gly Arg Glu Val 165 170 175

Thr Val Thr Lys Asp Gly Cys Asp Asp Ala Glu Ile Asn Gln Lys Leu 180 185 190

Thr Asp Leu Ala Ser Lys Asn Gln Asp Leu Ile Ser Lys Glu Leu Gly
195 200 205

Arg Phe Pro Arg Gln Val Ser Gly Tyr Gly Leu His Tyr Leu Ala His 210 215 220

Asp Met Ala Lys Ala Met Ala Gly Thr Glu Gly Thr Ile Gly Ile Ile 225 230 235 240

Thr Arg Leu Thr Val Lys Leu Val Pro Thr Pro Lys Val Lys Ala Leu 245 250 255

Ala Val Leu Ala Phe Asp Thr Val Phe Asp Ala Ala Ala Ala Ala 260 265 270

Lys Leu Arg Leu Pro Gly Val Ala Thr Ile Glu Gly Met Gly Gly Asp 275 280 285

Leu Leu Ala Ala Leu Arg Ser Lys Gln Gly Gln Ser Glu Ala Gly Gln 290 295 300

305	Leu	Pro	Gly	Asn	Arg 310	Ile	Gly	Ile	Glu	Ala 315	Gly	Gly	Trp	Leu	Tyr 320
Cys	Glu	Thr	Gly	Ser 325	Asp	Thr	Leu	Gln	Ala 330	Ala	Val	Gln	Ala	Ala 335	Glu
Glu	Val	Ala	Thr 340	Ala	Val	Asp	Thr	Ile 345	Asp	Tyr	Val	Val	Val 350	Ser	Glu
Pro	Ser	Glu 355	Met	Arg	Glu	Leu	Trp 360	Arg	Ile	Arg	Glu	Ser 365	Ser	Ala	Gly
Ile	Val 370	Thr	Arg	Leu	Ala	Asp 375	Gly	Gly	Glu	Ala	Trp 380	Pro	Asn	Trp	Glu
Asp 385	Ser	Ala	Val	Pro	Pro 390	Glu	Asn	Leu	Ala	Asp 395	Tyr	Leu	Arg	Asp	Leu 400
Tyr	Ala	Leu	Met	Asp 405	Lys	Phe	Asp	Tyr	Gln 410	Gly	Ile	Pro	Phe	Gly 415	His
Phe	Gly	Glu	Gly 420	Суѕ	Val	His	Val	Arg 425	Ile	Ser	Phe	Asp	Phe 430	Ser	Thr
Lys	Glu	Gly 435	Leu	Lys	Lys	Phe	Glu 440	Ala	Phe	Met	Asn	Glu 445	Ala	Ser	Thr
Leu	Val 450	Ala	Ser	Tyr	Gly	Gly 455	Ser	Leu	Ser	Gly	Glu 460	His	Gly	Asp	Gly
Arg	Ala	Arq	Ser	Ser	Phe	Leu	Asp	Arg	Met	Tyr	Ser	Ala	Glu	Met	Arq
465					470		-	-		475					48Õ
465	Leu	-			470					475					480
465 Ala		Phe	Glu	Glu 485	470 Phe	Lys	Leu	Ile	Phe 490	475 Asp	Pro	Gln	Arg	Ile 495	480 Phe
465 Ala Asn	Leu	Phe	Glu Val 500	Glu 485 Leu	470 Phe Val	Lys Trp	Leu Ala	Ile Asp 505	Phe 490 Pro	475 Asp Val	Pro Met	Gln Gln	Arg Gly 510	Ile 495 Leu	480 Phe Arg
465 Ala Asn Met	Leu Pro	Phe Gly Pro 515	Glu Val 500 Gly	Glu 485 Leu Gln	470 Phe Val Arg	Lys Trp Ala	Leu Ala Leu 520	Ile Asp 505 Asp	Phe 490 Pro	475 Asp Val Thr	Pro Met Pro	Gln Gln Val 525	Arg Gly 510 His	Ile 495 Leu Lys	480 Phe Arg
465 Ala Asn Met Ser	Leu Pro Asp	Phe Gly Pro 515 Asp	Glu Val 500 Gly Lys	Glu 485 Leu Gln	470 Phe Val Arg	Lys Trp Ala Met 535	Leu Ala Leu 520 Ile	Ile Asp 505 Asp	Phe 490 Pro Ile	475 Asp Val Thr	Pro Met Pro Asn 540	Gln Gln Val 525 Arg	Arg Gly 510 His	Ile 495 Leu Lys Val	480 Phe Arg Phe Gly
Asn Met Ser Val	Leu Pro Asp Lys 530	Phe Gly Pro 515 Asp	Glu Val 500 Gly Lys Cys	Glu 485 Leu Gln Gly	470 Phe Val Arg Ser Ser	Lys Trp Ala Met 535 Glu	Leu Ala Leu 520 Ile Ser	Ile Asp 505 Asp Asn	Phe 490 Pro Ile Ala	475 Asp Val Thr Val Met 555	Pro Met Pro Asn 540 Cys	Gln Gln Val 525 Arg	Arg Gly 510 His Cys	Ile 495 Leu Lys Val	Arg Phe Gly Gln 560
Asn Met Ser Val 545	Leu Pro Asp Lys 530 Ser	Phe Gly Pro 515 Asp Ala	Glu Val 500 Gly Lys Cys	Glu 485 Leu Gln Gly Arg	470 Phe Val Arg Ser Ser 550 Val	Lys Trp Ala Met 535 Glu His	Leu Ala Leu 520 Ile Ser	Ile Asp 505 Asp Asn Asp	Phe 490 Pro Ile Ala Ala Arg 570	475 Asp Val Thr Val Met 555 Gly	Pro Met Pro Asn 540 Cys	Gln Val 525 Arg Pro	Arg Gly 510 His Cys Ser	Ile 495 Leu Lys Val Phe Leu 575	Arg Phe Gly Gln 560 Leu
Asn Met Ser Val 545 Ile	Leu Pro Asp Lys 530 Ser	Phe Gly Pro 515 Asp Ala Gly Met	Glu Val 500 Gly Lys Cys Asp	Glu 485 Leu Gln Gly Arg Glu 565	470 Phe Val Arg Ser Ser 550 Val	Lys Trp Ala Met 535 Glu His	Leu Ala Leu 520 Ile Ser Ser	Ile Asp 505 Asp Asn Asp Thr	Phe 490 Pro Ile Ala Ala Arg 570 Ala	475 Asp Val Thr Val Met 555 Gly Asp	Pro Met Pro Asn 540 Cys Arg	Gln Val 525 Arg Pro Ala	Arg Gly 510 His Cys Ser Arg	Ile 495 Leu Lys Val Phe Leu 575 Ser	Arg Phe Gly Gln 560 Leu Glu

Leu 625	Asp	Lys	His	Tyr	Ala 630	Gly	Arg	Leu	Arg	Pro 635	Met	Ala	His	Tyr	Val 640
Met	Gly	Trp	Leu	Pro 645	Leu	Leu	Gly	His	Val 650	Ala	His	Lys	Ile	Pro 655	Leu
Leu	Pro	Thr	Leu 660	Ile	Asp	Ala	Thr	Met 665	Gln	Ser	Ala	Leu	Thr 670	Ala	Pro
Val	Val	Arg 675	Lys	Val	Gly	Gly	Leu 680	Ala	Asp	Arg	Pro	Leu 685	Ile	Ser	Phe
Ala	His 690	Arg	Ser	Leu	Arg	Lys 695	Tyr	Lys	Pro	Lys	Lys 700	Asn	Ser	Gly	Glu
Thr 705	Val	Val	Leu	Trp	Pro 710	Asp	Ser	Phe	Asn	Thr 715	Asn	Leu	Asp	Thr	Gly 720
Pro	Ala	His	Ala	Ala 725	Ile	Lys	Thr	Leu	Glu 730	Ala	Leu	Gly	Tyr	Asn 735	Val
Val	Ile	Pro	Asp 740	Gly	Phe	Val	Cys	Cys 745	Gly	Leu	Thr	Trp	His 750	Ser	Thr
Gly	Gln	Leu 755	Ser	Met	Thr	Lys	Lys 760	Val	Leu	Glu	Gln	Thr 765	Ala	Lys	Val
Met	Lys 770	Pro	Tyr	Leu	Asp	Gln 775	Gly	Leu	Thr	Val	Val 780	Gly	Leu	Glu	Pro
Ser 785	Суѕ	Thr	Val	Met	Leu 790	Gln	Asp	Glu	Ala	Thr 795	Glu	Leu	Ser	Asp	Asn 800
Pro	Asp	Leu	Ala	Arg 805	Leu	Ala	Ala	Leu	Thr 810	Lys	Pro	Phe	Ala	Glu 815	Val
Ile	Ala	Pro	Lys 820	Ile	Thr	Glu	Leu	Val 825	Glu	Ser	Gly	Ser	Leu 830	Gln	Leu
Thr	Glu	Ser 835	Thr	Ala	Leu	Thr	Gln 840	Val	His	Cys	His	Glu 845	Arg	Ser	Leu
Gly	Asp 850	Pro	Gln	Gln	Ser	Ala 855	Leu	Val	Leu	Glu	Ala 860	Leu	Gly	Val	Lys
Asp 865	Glu	Gln	Ile	Ala	Thr 870	Gly	Cys	Cys	Gly	Leu 875	Ala	Gly	Asn	Trp	Gly 880
Phe	Glu	Lys	Asp	His 885	Ala	Glu	Met	Ser	Phe 890	Ala	Leu	Gly	Glu	Arg 895	Glu
Leu	Phe	Pro	Lys 900	Val	Arg	Lys	Ala	Glu 905	Gly	His	Val	Ile	Ala 910	Asp	Gly
Phe	Ser	Cys 915	Arg	Thr	Gln	Ile	Glu 920	Gln	Gly	Thr	Gly	Lys 925	Gln	Ala	Thr
His	Leu 930	Ala	Glu	Val	Val	Leu 935	Ser	Ile	Leu	Glu	Gln 940	Asn	Asn	Met	Ala
Gln															

945

<2 <2	211 212	> 13 > 13 > DN > Co	183 IA	bact	eriu	ım gl	utam	nicum	ı								
<;	222)> > CE !> (1 !> RX	01).		360)												
)> 13 gttg		tcto	ctctc	gt ga	tcgc	cctc	g tto	cttca	atcc	aacq	gcgto	ege g	gcaco	caagag	60
a	act	aaaa	itc t	aagt	aaaa	ac co	ctco	cgaaa	a gga	acca	ccc	atg Met 1	gtg Val	aaa Lys	cgt Arg	caa Gln 5	115
C†	tg eu	ccc Pro	aac Asn	ccc Pro	gca Ala 10	gaa Glu	cta Leu	ctc Leu	gaa Glu	ctc Leu 15	atg Met	aag Lys	ttc Phe	aaa Lys	aag Lys 20	cca Pro	163
g. G.	ag lu	ctc Leu	aac Asn	ggc Gly 25	aag Lys	aaa Lys	cga Arg	cgc Arg	cta Leu 30	gac Asp	tcc Ser	gcg Ala	ctc Leu	acc Thr 35	atc Ile	tac Tyr	211
g. A.	ac sp	ctg Leu	cgt Arg 40	aaa Lys	att Ile	gct Ala	aaa Lys	cga Arg 45	cgc Arg	acc Thr	cca Pro	gct Ala	gcc Ala 50	gcg Ala	ttc Phe	gac Asp	259
t. T	ac yr	acc Thr 55	gac Asp	ggc Gly	gca Ala	gcc Ala	gag Glu 60	gcc Ala	gaa Glu	ctc Leu	tca Ser	atc Ile 65	aca Thr	cgc Arg	gca Ala	cgt Arg	307
G	aa lu 70	gca´ Ala	ttc Phe	gaa Glu	aac Asn	atc Ile 75	gaa Glu	ttc Phe	cac His	cca Pro	gac Asp 80	atc Ile	ctc Leu	aag Lys	cct Pro	gca Ala 85	355
						acc Thr											403
						cca Pro											451
g G	gt ly	gaa Glu	atc Ile 120	gca Ala	ggt Gly	gcc Ala	gga Gly	gct Ala 125	gca Ala	ggc Gly	gct Ala	gca Ala	gga Gly 130	att Ile	cct Pro	ttc Phe	499
						ggc Gly											547
A	ac sn 50	ccc Pro	aac Asn	ggc Gly	cga Arg	aac Asn 155	tgg Trp	ttc Phe	cag Gln	ctc Leu	tac Tyr 160	gtc Val	atg Met	cgc Arg	gac Asp	cgc Arg 165	595
ď	22	atc	tcc	tac	aac	ctc	atc	gaa	cac	aca	acc	aaa	gca	gga	ttc	gac	643

Glu	Ile	Ser	Tyr	Gly 170	Leu	Val	Glu	Arg	Ala 175	Ala	Lys	Ala	Gly	Phe 180	Asp	
acc Thr	ctg Leu	atg Met	ttc Phe 185	acc Thr	gtg Val	gat Asp	acc Thr	ccc Pro 190	atc Ile	gcc Ala	ggc Gly	tac Tyr	cgc Arg 195	atc Ile	cgc Arg	691
gat Asp	tcc Ser	cgc Arg 200	aac Asn	gga Gly	ttc Phe	tcc Ser	atc Ile 205	ccg Pro	cca Pro	cag Gln	ctg Leu	acc Thr 210	cca Pro	tcc Ser	acc Thr	739
gtg Val	ctc Leu 215	aat Asn	gca Ala	atc Ile	cca Pro	cgc Arg 220	cca Pro	tgg Trp	tgg Trp	tgg Trp	atc Ile 225	gac Asp	ttc Phe	ctg Leu	acc Thr	787
acc Thr 230	cca Pro	acc Thr	ctt Leu	gag Glu	ttc Phe 235	gca Ala	tcc Ser	ctt Leu	tcc Ser	tcg Ser 240	acc Thr	ggc Gly	gga Gly	acc Thr	gtg Val 245	835
ggc Gly	gac Asp	ctc Leu	ctc Leu	aac Asn 250	tcc Ser	gcg Ala	atg Met	gat Asp	ccc Pro 255	acc Thr	att Ile	tct Ser	tac Tyr	gaa Glu 260	gac Asp	883
	aag Lys															931
gtc Val	cag Gln	aac Asn 280	gtt Val	gaa Glu	gac Asp	tcc Ser	gtc Val 285	aaa Lys	ctc Leu	ctc Leu	gac Asp	caa Gln 290	ggc Gly	gtc Val	gac Asp	979
ggc	ctc Leu 295	atc Ile	ctc Leu	tcc Ser	aac Asn	cac His 300	ggt Gly	ggc Gly	cgt Arg	caa Gln	ctc Leu 305	gac Asp	cgc Arg	gca Ala	cca Pro	1027
	cca Pro															1075
	acc Thr															1123
gca Ala	gcc Ala	gta Val	gcc Ala 345	atg Met	ggc Gly	gct Ala	gac Asp	ttc Phe 350	acc Thr	ctc Leu	atc Ile	ggt Gly	cgt Arg 355	gcc Ala	tac Tyr	1171
	tac Tyr															1219
	att Ile 375															1267
	tcc Ser															1315
	gtt Val															1360

410 415 420

taaaagtttc tctccttagc tat 1383

<210> 136

<211> 420

<212> PRT

<213> Corynebacterium glutamicum

<400> 136

Met Val Lys Arg Gln Leu Pro Asn Pro Ala Glu Leu Leu Glu Leu Met
1 10 15

Lys Phe Lys Lys Pro Glu Leu Asn Gly Lys Lys Arg Arg Leu Asp Ser 20 25 30

Ala Leu Thr Ile Tyr Asp Leu Arg Lys Ile Ala Lys Arg Arg Thr Pro
35 40 45

Ala Ala Ala Phe Asp Tyr Thr Asp Gly Ala Ala Glu Ala Glu Leu Ser 50 60

Ile Thr Arg Ala Arg Glu Ala Phe Glu Asn Ile Glu Phe His Pro Asp
65 70 75 80

Ile Leu Lys Pro Ala Glu His Val Asp Thr Thr Thr Gln Ile Leu Gly
85 90 95

Gly Thr Ser Ser Met Pro Phe Gly Ile Ala Pro Thr Gly Phe Thr Arg 100 105 110

Leu Met Gln Thr Glu Gly Glu Ile Ala Gly Ala Gly Ala Ala Gly Ala 115 120 125

Ala Gly Ile Pro Phe Thr Leu Ser Thr Leu Gly Thr Thr Ser Ile Glu 130 135 140

Asp Val Lys Ala Thr Asn Pro Asn Gly Arg Asn Trp Phe Gln Leu Tyr 145 150 155 160

Val Met Arg Asp Arg Glu Ile Ser Tyr Gly Leu Val Glu Arg Ala Ala 165 170 175

Lys Ala Gly Phe Asp Thr Leu Met Phe Thr Val Asp Thr Pro Ile Ala 180 185 190

Gly Tyr Arg Ile Arg Asp Ser Arg Asn Gly Phe Ser Ile Pro Pro Gln 195 200 205

Leu Thr Pro Ser Thr Val Leu Asn Ala Ile Pro Arg Pro Trp Trp 210 215 220

Ile Asp Phe Leu Thr Thr Pro Thr Leu Glu Phe Ala Ser Leu Ser Ser 225 235 240

Thr Gly Gly Thr Val Gly Asp Leu Leu Asn Ser Ala Met Asp Pro Thr 245 250 255

Ile Ser Tyr Glu Asp Leu Lys Val Ile Arg Glu Met Trp Pro Gly Lys 260 265 270

Leu	Val	Val 275	Lys	Gly	Val	Gln	Asn 280	Val	Glu	Asp	Ser	Val 285	Lys	Leu	Leu	
Asp	Gln 290	Gly	Val	Asp	Gly	Leu 295	Ile	Leu	Ser	Asn	His 300	Gly	Gly	Arg	Gln	
Leu 305	Asp	Arg	Ala	Pro	Val 310	Pro	Phe	His	Leu	Leu 315	Pro	Gln	Val	Arg	Lys 320	
Glu	Val	Gly	Ser	Glu 325	Pro	Thr	Ile	Met	Ile 330	Asp	Thr	Gly	Ile	Met 335	Asn	
Gly	Ala	Asp	Ile 340	Val	Ala	Ala	Val	Ala 345	Met	Gly	Ala	Asp	Phe 350	Thr	Leu	
Ile	Gly	Arg 355	Ala	Tyr	Leu	Tyr	Gly 360	Leu	Met	Ala	Gly	Gly 365	Arg	Glu	Gly	
Val	Asp 370	Arg	Thr	Ile	Ala	Ile 375	Leu	Arg	Ser	Glu	Ile 380	Thr	Arg	Thr	Met	
Ala 385	Leu	Leu	Gly	Val	Ser 390	Ser	Leu	Gl u	Glu	Leu 395	Glu	Pro	Arg	His	Val 400	
Thr	Gln	Leu	Ala	Lys 405	Met	Val	Pro	Val	Ser 410	Asp	Ala	Thr	Arg	Ser 415	Ala	
Ala	Ala	Glu	Ile 420													
<21 <21	0> 1: 1> 18 2> DB 3> Co	336 NA	ebact	teri	ım gl	lutar	nicur	n								
<22	0> 1> CI 2> (1 3> R)	101)		313)	<u>.</u>											
	0> 13 tcaaa		atgaa	acgao	cc go	eggad	ctago	c to	ggat	caag	gcga	acato	ccc (ctca	gcatca	60
tga	cgcg	ett (gtgat	tgcaa	ac to	gaata	atago	g aaq	gctta	agag		acg Thr	_		_	115
					tcg Ser											163
					gta Val											211
					ttc Phe											259

ccc Pro	ggc Gly 55	acg Thr	ctg Leu	gtc Val	gag Glu	atg Met 60	tgg Trp	cgg Arg	gcg Ala	ctg Leu	cag Gln 65	gta Val	tcc Ser	gtc Val	gac Asp	307
	aac Asn															355
	tcc Ser															403
	act Thr															451
gcg Ala	atc Ile	tcg Ser 120	ctc Leu	gcg Ala	ggc Gly	acc Thr	ccg Pro 125	ctg Leu	aca Thr	cac His	ctg Leu	acc Thr 130	gac Asp	gcg Ala	ctc Leu	499
	aag Lys 135															547
Gly 150	gcc Ala	Ser	Val	Ile	Gly 155	Gly	Ile	Ala	Asn	Asn 160	Ser	Gly	Gly	Ser	Gln 165	595
Ile	.cgc Arg	Lys	Gly	Pro 170	Ala	Phe	Thr	Arg	Glu 175	Ala	Ile	Phe	Ala	Arg 180	Val	643
	gac Asp															691
	gac Asp															739
	ccc Pro 215	Glu	Asp	Val	Thr		Ala	Pro		Asp	Ser	Asn				787
	gcc Ala															835
	aac Asn															883
	gtg Val															931
	gtg Val															979
cgt	cgg	ttg	ttc	ctc	gaa	gcc	gac	atg	ccg	ctg	cct	atc	tct	ggt	gag	1027

Arg Arg 295	Leu Phe	Leu		Ala 300	Asp	Met	Pro	Leu	Pro 305	Ile	Ser	Gly	Glu	1
tac atg Tyr Met 310	ggc cgc Gly Arg	Ser	gcc Ala 315	ttc Phe	gac Asp	ttg Leu	gcc Ala	gag Glu 320	aag Lys	tac Tyr	ggc Gly	aaa Lys	gac Asp 325	1075
acc ttc Thr Phe	gtc ttc Val Phe	ctg Leu 330	aag Lys	ttc Phe	atg Met	agt Ser	cca Pro 335	gcg Ala	ctg Leu	cag Gln	acg Thr	cgc Arg 340	atg Met	1123
	ttc aag Phe Lys 345													1171
	ccg acc Pro Thr 360													1219
	aac cag Asn Gln													1267
	cac ctg His Leu	Leu												1315
gag aag Glu Lys	atg ctc Met Leu	aag Lys 410	gag Glu	ttc Phe	ttc Phe	gca Ala	gag Glu 415	Pro	gag Glu	cac His	act Thr	ggt Gly 420	gag Glu	1363
	atc tgc Ile Cys 425	Thr												1411
	gcg gcc Ala Ala 440													1459
	gca ggg Ala Gly													1507
	tgg ctc Trp Leu	Glu												1555
	gcg tat Ala Tyr													1603
tat gtc Tyr Val	gcc aag Ala Lys 505	Gln	ggc Gly	gtg Val	gat Asp	ctc Leu 510	gag Glu	gcg Ala	ctg Leu	cac His	gac Asp 515	cgc Arg	atc Ile	1651
cag cac Gln His	ctg ctg Leu Leu	gag Glu	gag Glu	cgc Arg	Gly	gcg Ala	aag Lys	ctg Leu	ccc Pro	Ala	gag Glu	cac His	aac Asn	1699
	520				525					530				

535 540 545

gag ctc gat ccg acg aat acg ttc aac gcc ggt atc ggc ggc acg tcg 1795 Glu Leu Asp Pro Thr Asn Thr Phe Asn Ala Gly Ile Gly Gly Thr Ser 550 565

ccg cac aag gac tgg gcc taagtcccca aggtagcgcg acg 1836 Pro His Lys Asp Trp Ala

<210> 138

<211> 571

<212> PRT

<213> Corynebacterium glutamicum

<400> 138

Met Thr Gln Pro Gly Gln Thr Thr Thr Thr Ser His Glu Ala Ile Asp 1 5 10 15

Ala Phe Lys Arg Ile Val Gly Asp Glu His Val Leu Thr Ser Glu Arg
20 25 30

Ala Thr Met Pro Phe Ser Lys Gly Tyr Arg Phe Gly Gly Gly Pro Val

Phe Ala Val Val Arg Pro Gly Thr Leu Val Glu Met Trp Arg Ala Leu 50 55 60

Gln Val Ser Val Asp Asn Asn Leu Ile Val Ile Pro Gln Ala Ser Asn 65 70 75 80

Thr Gly Leu Thr Gly Gly Ser Gly Pro Gly Phe Gln Asp Tyr Asp Arg 85 90 95

Pro Ile Val Ile Ile Ser Thr His Arg Ile Asp Glu Val His Leu Ile 100 105 110

Asn Asp Ala Arg Glu Ala Ile Ser Leu Ala Gly Thr Pro Leu Thr His 115 120 125

Leu Thr Asp Ala Leu Ala Lys His Gln Arg Glu Pro His Ser Val Ile 130 135 140

Gly Ser Thr Ser Ile Gly Ala Ser Val Ile Gly Gly Ile Ala Asn Asn 145 150 155 160

Ser Gly Gly Ser Gln Ile Arg Lys Gly Pro Ala Phe Thr Arg Glu Ala 165 170 175

Ile Phe Ala Arg Val Asn Asp Asp Gly Lys Val Glu Leu Val Asn His 180 185 190

Leu Gly Ile Ser Leu Gly Asp Asp Pro Glu Val Ala Leu Asp Arg Leu 195 200 205

Gln Arg Gly Glu Trp Ser Pro Glu Asp Val Thr Pro Ala Pro Glu Asp 210 215 220

Ser Asn Glu Thr Glu Tyr Ala Glu His Leu Arg Lys Ile Val Pro Ser 225 230 235 240

Pro Ala Ai	g Tyr Asn 245		Pro	Glu	Tyr 250	Leu	Phe	Glu	Ala	Ser 255	Gly
Ser Ala G	Ly Lys Leu 260	Met Val	Phe	Ala 265	Val	Arg	Thr	Arg	Thr 270	Phe	Pro
Arg Glu Va 2		Thr Val	Phe 280	Tyr	Ile	Gly	Thr	Asn 285	Asn	Thr	His
Glu Leu G 290	lu Glu Ile	Arg Arg 295		Phe	Leu	Glu	Ala 300	Asp	Met	Pro	Leu
Pro Ile Se 305	er Gly Glu	Tyr Met 310	Gly	Arg	Ser	Ala 315	Phe	Asp	Leu	Ala	Glu 320
Lys Tyr G	ly Lys Asp 325		Val	Phe	Leu 330	Lys	Phe	Met	Ser	Pro 335	Ala
Leu Gln T	nr Arg Met 340	Phe Ser	Phe	Lys 345	Thr	Trp	Ala	Asn	Gly 350	Leu	Phe
Ser Lys I	le Pro Gly 55	lle Gly	Pro 360	Thr	Phe	Ala	Asp	Thr 365	Val	Ser	Gln
Ala Met Pl 370	ne Ser Val	Leu Pro 375		Gln	Leu	Pro	Lys 380	Arg	Met	Met	Glu
Tyr Arg A	sn Arg Phe	Glu His 390	His	Leu	Leu	Leu 395	Thr	Val	Ser	Glu	Ser 400
Gln Lys A	la Ala Ser 405	_	Met	Leu	Lys 410	Glu	Phe	Phe	Ala	Glu 415	Pro
Glu His T	420			425					430		
	35		440					445			
Ala Leu L 450	-	455					460				
Leu Arg A 465	rg Asp Asp	Trp Asn 470	Trp	Leu	Glu	Val 475	Leu	Pro	Glu	Glu	Ile 480
Asp Asp G	ln Leu Glu 485		Ala	Tyr	Tyr 490	Gly	His	Phe	Phe	Cys 495	His
Val Met H	is Gln Asp 500	Tyr Val	Ala	Lys 505	Gln	Gly	Val	Asp	Leu 510	Glu	Ala
Leu His A 5	sp Arg Ile 15	Gln His	Leu 520	Leu	Glu	Glu	Arg	Gly 525	Ala	Lys	Leu
Pro Ala G 530	lu His Asr	Tyr Gly 535		Met	Tyr	Lys	Leu 540	Pro	Glu	Ser	Met
Glu Glu H 545	is Phe Lys	Glu Leu 550	Asp	Pro	Thr	Asn 555	Thr	Phe	Asn	Ala	Gly 560

Ile Gly Gly Thr Ser Pro His Lys Asp Trp Ala 565 570

<210> 139

<211> 239

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(216)

<223> FRXA01952

<400> 139

cca gga cta tgt cgc caa gca ggg cgt gga tct caa ggc gct gac 48 Pro Gly Leu Cys Arg Gln Ala Gly Arg Gly Ser Gln Gly Ala Asp Asp 1 5 10

cgc atc cag cac ttg ctg gag gag cac ggc aag aag ctg ccc gcc gag 96 Arg Ile Gln His Leu Leu Glu Glu His Gly Lys Lys Leu Pro Ala Glu 20 25 30

cac aac tac ggt cgc atg tac aag ctg ccg gag tcc atg gaa gag cac 144 His Asn Tyr Gly Arg Met Tyr Lys Leu Pro Glu Ser Met Glu Glu His 35 40 45

ttc aag gag ctc gat ccg acg aat acg ttc aac gcc ggt atc ggc ggc 192
Phe Lys Glu Leu Asp Pro Thr Asn Thr Phe Asn Ala Gly Ile Gly Gly
50 55 60

acg tcg ccg cac aag gac tgg gcc taagtcccca aggtagcgcg acg

Thr Ser Pro His Lys Asp Trp Ala

70

<210> 140

<211> 72

<212> PRT

<213> Corynebacterium glutamicum

<400> 140

Pro Gly Leu Cys Arg Gln Ala Gly Arg Gly Ser Gln Gly Ala Asp Asp 1 5 10 15

Arg Ile Gln His Leu Leu Glu Glu His Gly Lys Lys Leu Pro Ala Glu 20 25 30

His Asn Tyr Gly Arg Met Tyr Lys Leu Pro Glu Ser Met Glu Glu His 35 40 45

Phe Lys Glu Leu Asp Pro Thr Asn Thr Phe Asn Ala Gly Ile Gly Gly 50 55 60

Thr Ser Pro His Lys Asp Trp Ala 65 70

<210> 141

<211> 1699

<212> DNA

PCT/IB00/00943 WO 01/00844

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1699) <223> FRXA01955

<400> 141 ccatcaaaaa atgaacgacc gcggactagc tcggatcaag gcgacatccc ctcagcatca 60 tgacqcqctt gtgatqcaac tgaatatagg aagcttagag atg acg caa cca gga 115 Met Thr Gln Pro Gly cag acc acc acg act tcg cac gaa gcg atc gat gcg ttc aag aga atc 163 Gln Thr Thr Thr Ser His Glu Ala Ile Asp Ala Phe Lys Arg Ile 10 gtc ggc gac gaa cat gta ctg acc tct gag cgt gcc acg atg cca ttc Val Gly Asp Glu His Val Leu Thr Ser Glu Arg Ala Thr Met Pro Phe age aaa gge tat ega tte gge gga gga eea gte tte gee gtg gtg ege Ser Lys Gly Tyr Arg Phe Gly Gly Gly Pro Val Phe Ala Val Val Arg 40 50 307 ccc qqc acq ctq qtc qaq atq tgg cqq gcg ctg cag gta tcc gtc gac Pro Gly Thr Leu Val Glu Met Trp Arg Ala Leu Gln Val Ser Val Asp 55 60 355 aac aac ctc atc gtc atc ccg cag gca tcg aac acg ggc ctg act ggt Asn Asn Leu Ile Val Ile Pro Gln Ala Ser Asn Thr Gly Leu Thr Gly 70 75 gga tcc ggc ccc ggc ttc caa gac tac gat cgc ccc att gtg atc atc 403 Gly Ser Gly Pro Gly Phe Gln Asp Tyr Asp Arg Pro Ile Val Ile Ile 90 tcg act cac cgc atc gat gag gtg cac ctc atc aac gac gcg cgc gag Ser Thr His Arg Ile Asp Glu Val His Leu Ile Asn Asp Ala Arg Glu 105 gcg atc tcg ctc gcg ggc acc ccg ctg aca cac ctg acc gac gcg ctc 499 Ala Ile Ser Leu Ala Gly Thr Pro Leu Thr His Leu Thr Asp Ala Leu 120 qcc aag cac cag cgc gag ccg cac tcg gtg atc ggg tcg aca tca atc 547 Ala Lys His Gln Arg Glu Pro His Ser Val Ile Gly Ser Thr Ser Ile 135 595 ggc gcc tcg gtc atc ggc ggc atc gcg aac aac tcg ggc ggc agc cag Gly Ala Ser Val Ile Gly Gly Ile Ala Asn Asn Ser Gly Gly Ser Gln 150 643 _ att cgc aag ggt ccg gca ttc acg cgc gaa gcg atc ttc gcc cgc gtc

180

691

Ile Arg Lys Gly Pro Ala Phe Thr Arg Glu Ala Ile Phe Ala Arg Val

aac gac gac agg atc gag ctg gtc aat cac ctg ggc atc tcg ctc Asn Asp Asp Gly Lys Val Glu Leu Val Asn His Leu Gly Ile Ser Leu 190

170

185

gga Gly	gac Asp	gac Asp 200	cct Pro	gag Glu	gtc Val	gca Ala	ctc Leu 205	gac Asp	cgt Arg	cta Leu	cag Gln	cgc Arg 210	ggc Gly	gag Glu	tgg Trp	739
tct Ser	ccc Pro 215	gag Glu	gat Asp	gtc Val	acc Thr	cca Pro 220	gct Ala	ccc Pro	gaa Glu	gac Asp	tcg Ser 225	aac Asn	gag Glu	acc Thr	gag Glu	787
tac Tyr 230	gcc Ala	gag Glu	cac His	ttg Leu	cgc Arg 235	aag Lys	atc Ile	gtg Val	cct Pro	tcg Ser 240	cct Pro	gct Ala	cgc Arg	tac Tyr	aat Asn 245	835
gcg Ala	aac Asn	ccc Pro	gag Glu	tac Tyr 250	ctg Leu	ttc Phe	gag Glu	gct Ala	tcc Ser 255	ggc Gly	tcg Ser	gcc Ala	ggc Gly	aag Lys 260	ctg Leu	883
atg Met	gtg Val	ttc Phe	gcg Ala 265	gtg Val	cgc Arg	acc Thr	cgc Arg	acc Thr 270	ttc Phe	cct Pro	cgc Arg	gaa Glu	gtg Val 275	cac His	ccg Pro	931
acc Thr	gtg Val	ttt Phe 280	tac Tyr	atc Ile	ggc Gly	acg Thr	aac Asn 285	aac Asn	acg Thr	cac His	gag Glu	ctc Leu 290	gaa Glu	gag Glu	atc Ile	979
cgt Arg	cgg Arg 295	ttg Leu	ttc Phe	ctc Leu	gaa Glu	gcc Ala 300	gac Asp	atg Met	ccg Pro	ctg Leu	cct Pro 305	atc Ile	tct Ser	ggt Gly	gag Glu	1027
tac Tyr 310	atg Met	ggc Gly	cgc Arg	agt Ser	gcc Ala 315	ttc Phe	gac Asp	ttg Leu	gcc Ala	gag Glu 320	aag Lys	tac Tyr	ggc Gly	aaa Lys	gac Asp 325	1075
					aag Lys											1123
					tgg Trp											1171
att Ile	ggt Gly	ccg Pro 360	acc Thr	ttc Phe	gcc Ala	gac Asp	acg Thr 365	gta Val	tcg Ser	caa Gln	gcc Ala	atg Met 370	ttc Phe	agc Ser	gtg Val	1219
					ccc Pro											1267
					ctc Leu 395											1315
					gag Glu											1363
					tct Ser											1411

ttc Phe	ggc Gly	gcg Ala 440	gcc Ala	agt Ser	gcc Ala	gcc Ala	act Thr 445	cgc Arg	tac Tyr	gcc Ala	gcg Ala	ttg Leu 450	aag Lys	cgc Arg	cgg Arg	1459
cac His	atc Ile 455	gca Ala	ggg Gly	ctc Leu	atc Ile	ccc Pro 460	atc Ile	gat Asp	gtg Val	gcc Ala	ctg Leu 465	cgt Arg	cgc Arg	gac Asp	gat Asp	1507
tgg Trp 470	aac Asn	tgg Trp	ctc Leu	gag Glu	gtg Val 475	ctg Leu	ccg Pro	gag Glu	gag Glu	atc Ile 480	gac Asp	gac Asp	cag Gln	ctt Leu	gag Glu 485	1555
gtc Val	aag Lys	gcg Ala	tat Tyr	tac Tyr 490	Gly	cac His	ttc Phe	ttc Phe	tgc Cys 495	cat His	gtg Val	atg Met	cac His	cag Gln 500	gac Asp	1603
tat Tyr	gtc Val	gcc Ala	aag Lys 505	cag Gln	ggc Gly	gtg Val	gat Asp	ctc Leu 510	gag Glu	gcg Ala	ctg Leu	cac His	gac Asp 515	cgc Arg	atc Ile	1651
cag Gln	cac His	ctg Leu 520	ctg Leu	gag Glu	gag Glu	cgc Arg	ggc Gly 525	gcg Ala	aag Lys	ctg Leu	ccc Pro	gcc Ala 530	gag Glu	cac His	aac Asn	1699
<212 <212	0> 14 l> 5: 2> Pi 3> Co	33 RT	ebact	teri	ım gi	Lutar	nicu	n	J							
		• •														
<400 Met 1	0> 1 Thr		Pro	Gly 5	Gln	Thr	Thr	Thr	Thr 10	Ser	His	Glu	Ala	Ile 15	Asp	
Met 1	Thr	Gln		5	Gln Val				10					15		
Met 1 Ala	Thr	Gln Lys	Arg 20	5 Ile		Gly	Asp	Glu 25	10 His	Val	Leu	Thr	Ser 30	15 Glu	Arg	
Met 1 Ala Ala	Thr Phe Thr	Gln Lys Met 35	Arg 20 Pro	5 Ile Phe	Val	Gly Lys	Asp Gly 40	Glu 25 Tyr	10 His Arg	Val Phe	Leu Gly	Thr Gly 45	Ser 30 Gly	15 Glu Pro	Arg Val	
Met 1 Ala Ala Phe	Thr Phe Thr Ala 50	Lys Met 35 Val	Arg 20 Pro Val	5 Ile Phe Arg	Val Ser	Gly Lys Gly 55	Asp Gly 40 Thr	Glu 25 Tyr Leu	10 His Arg Val	Val Phe Glu	Leu Gly Met 60	Thr Gly 45 Trp	Ser 30 Gly Arg	15 Glu Pro Ala	Arg Val Leu	
Met 1 Ala Ala Phe Gln 65	Thr Phe Thr Ala 50 Val	Gln Lys Met 35 Val	Arg 20 Pro Val	5 Ile Phe Arg	Val Ser Pro	Gly Lys Gly 55 Asn	Asp Gly 40 Thr	Glu 25 Tyr Leu Ile	10 His Arg Val	Val Phe Glu Ile 75	Leu Gly Met 60 Pro	Thr Gly 45 Trp Gln	Ser 30 Gly Arg	15 Glu Pro Ala Ser	Arg Val Leu Asn 80	
Met 1 Ala Ala Phe Gln 65 Thr	Thr Phe Thr Ala 50 Val	Lys Met 35 Val Ser	Arg 20 Pro Val Val	5 Ile Phe Arg Asp Gly 85	Val Ser Pro Asn 70	Gly Lys Gly 55 Asn	Asp Gly 40 Thr Leu Gly	Glu 25 Tyr Leu Ile	10 His Arg Val Val Gly 90	Val Phe Glu Ile 75 Phe	Leu Gly Met 60 Pro	Thr Gly 45 Trp Gln Asp	Ser 30 Gly Arg Ala Tyr	15 Glu Pro Ala Ser Asp 95	Arg Val Leu Asn 80 Arg	
Met 1 Ala Ala Phe Gln 65 Thr	Thr Phe Thr Ala 50 Val Gly Ile	Lys Met 35 Val Ser Leu Val	Arg 20 Pro Val Val Thr Ile 100 Arg	5 Ile Phe Arg Asp Gly 85 Ile	Val Ser Pro Asn 70 Gly	Gly Lys Gly 55 Asn Ser	Asp Gly 40 Thr Leu Gly	Glu 25 Tyr Leu Ile Pro	10 His Arg Val Val Gly 90 Ile	Val Phe Glu Ile 75 Phe Asp	Leu Gly Met 60 Pro Gln Glu	Thr Gly 45 Trp Gln Asp	Ser 30 Gly Arg Ala Tyr His 110	15 Glu Pro Ala Ser Asp 95 Leu	Arg Val Leu Asn 80 Arg	
Met 1 Ala Ala Phe Gln 65 Thr	Thr Phe Thr Ala 50 Val Gly Ile Asp	Lys Met 35 Val Ser Leu Val Ala 115	Arg 20 Pro Val Val Thr Ile 100 Arg	5 Ile Phe Arg Asp Gly 85 Ile Glu	Val Ser Pro Asn 70 Gly Ser	Gly Lys Gly 55 Asn Ser Thr	Asp Gly 40 Thr Leu Gly His	Glu 25 Tyr Leu Ile Pro Arg 105 Leu	10 His Arg Val Val Gly 90 Ile Ala	Val Phe Glu Ile 75 Phe Asp	Leu Gly Met 60 Pro Gln Glu Thr	Thr Gly 45 Trp Gln Asp Val Pro 125	Ser 30 Gly Arg Ala Tyr His 110 Leu	15 Glu Pro Ala Ser Asp 95 Leu	Arg Val Leu Asn 80 Arg Ile	

Ser	Gly	Gly	Ser	Gln 165	Ile	Arg	Lys	Gly	Pro 170	Ala	Phe	Thr	Arg	Glu 175	Ala
Ile	Phe	Ala	Arg 180	Val	Asn	Asp	Asp	Gly 185	Lys	Val	Glu	Leu	Val 190	Asn	His
Leu	Gly	Ile 195	Ser	Leu	Gly	Asp	Asp 200	Pro	Glu	Val	Ala	Leu 205	Asp	Arg	Leu
Gln	Arg 210	Gly	Glu	Trp	Ser	Pro 215	Glu	Asp	Val	Thr	Pro 220	Ala	Pro	Glu	Asp
Ser 225	Asn	Glu	Thr	Glu	Tyr 230	Ala	Glu	His	Leu	Arg 235	Lys	Ile	Val	Pro	Ser 240
Pro	Ala	Arg	Tyr	Asn 245	Ala	Asn	Pro	Glu	Туг 250	Leu	Phe	Glu	Ala	Ser 255	Gly
Ser	Ala	Gly	Lys 260	Leu	Met	Val	Phe	Ala 265	Val	Arg	Thr	Arg	Thr 270	Phe	Pro
Arg	Glu	Val 275	His	Pro	Thr	Val	Phe 280	Tyr	Ile	Gly	Thr	Asn 285	Asn	Thr	His
Glu	Leu 290	Glu	Glu	Ile	Arg	Arg 295	Leu	Phe	Leu	Glu	Ala 300	Asp	Met	Pro	Leu
Pro 305	Ile	Ser	Gly	Glu	Tyr 310	Met	Gly	Arg	Ser	Ala 315	Phe	Asp	Leu	Ala	Glu 320
Lys	Tyr	Gly	Lys	Asp 325	Thr	Phe	Val	Phe	Leu 330	Lys	Phe	Met	Ser	Pro 335	Ala
Leu	Gln	Thr	Arg 340	Met	Phe	Ser	Phe	Lys 345	Thr	Trp	Ala	Asn	Gly 350	Leu	Phe
Ser	Lys	Ile 355	Pro	Gly	Ile	Gly	Pro 360	Thr	Phe	Ala	Asp	Thr 365	Val	Ser	Gln
Ala	Met 370	Phe	Ser	Val	Leu	Pro 375	Asn	Gln	Leu	Pro	Lys 380	Arg	Met	Met	Glu
Tyr 385	Arg	Asn	Arg	Phe	Glu 390	His	His	Leu	Leu	Leu 395	Thr	Val	Ser	Glu	Ser 400
Gln	Lys	Ala	Ala	Ser 405	Glu	Lys	Met	Leu	Lys 410	Glu	Phe	Phe	Ala	Glu 415	Pro
Glu	His	Thr	Gly 420	Glu	Phe	Phe	Ile	Cys 425	Thr	Ser	Asp	Glu	Glu 430	Lys	Ser
Ala	Ser	Leu 435	Asn	Arg	Phe	Gly	Ala 440	Ala	Ser	Ala	Ala	Thr 445	Arg	Tyr	Ala
Ala	Leu 450	Lys	Arg	Arg	His	Ile 455	Ala	Gly	Leu	Ile	Pro 460	Ile	Asp	Val	Ala
Leu 465	Arg	Arg	Asp	Asp	Trp 470	Asn	Trp	Leu	Glu	Val 475	Leu	Pro	Glu	Glu	Ile 480
Asp	Asp	Gln	Leu	Glu	Val	Lys	Ala	Tyr	Tyr	Gly	His	Phe	Phe	Cys	His

490 485 495 Val Met His Gln Asp Tyr Val Ala Lys Gln Gly Val Asp Leu Glu Ala Leu His Asp Arq Ile Gln His Leu Leu Glu Glu Arg Gly Ala Lys Leu Pro Ala Glu His Asn 530 <210> 143 <211> 1035 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1012) <223> RXA00293 <400> 143 agagattgtt gattcggcac caactttacc cacgagggta gaaatgaagc attcaggatg 60 acaaaaccca acctcacacc aacaacctat cctggagccc atg aaa atc ttt gtt Met Lys Ile Phe Val ggt ttt ggc gat tat cca ctc acc acc aag gcc ctt aag gag gca ggc 163 Gly Phe Gly Asp Tyr Pro Leu Thr Thr Lys Ala Leu Lys Glu Ala Gly 211 gca gaa ata gtg gac tcc ctc gaa aaa gcc gag ggg ttt gtc ttc act Ala Glu Ile Val Asp Ser Leu Glu Lys Ala Glu Gly Phe Val Phe Thr caa aca cca ggc aca gaa ttt ccc cta ctt ccc gac gga gtg agg tgg 259 Gln Thr Pro Gly Thr Glu Phe Pro Leu Leu Pro Asp Gly Val Arg Trp qtq caa ttt ccc aat gcg ggg ctc aac gca tat ttc aca gct ggg cag 307 Val Gln Phe Pro Asn Ala Gly Leu Asn Ala Tyr Phe Thr Ala Gly Gln 60 att gat gac aaa cgc cgg tgg tca aat gca tca ggg gtg tat ggc caa 355 Ile Asp Asp Lys Arg Arg Trp Ser Asn Ala Ser Gly Val Tyr Gly Gln cag gta gcc gaa gca gca atg gct ctt ttg ctg gga ctg att cat atg 403 Gln Val Ala Glu Ala Ala Met Ala Leu Leu Gly Leu Ile His Met cac ccc acc atg gtg cgt gcc gat agt tgg gca cca agc act caa ata 451 His Pro Thr Met Val Arg Ala Asp Ser Trp Ala Pro Ser Thr Gln Ile gat cag cag acc aga tgg ctt gat ggt gca aca gtt gcc att gtg gga 499 Asp Gln Gln Thr Arg Trp Leu Asp Gly Ala Thr Val Ala Ile Val Gly

gct ggt gga Ala Gly Gly 135							547
gca aag tct Ala Lys Ser 150	tta gca gt Leu Ala Va	l Ser Arg	acc ggt Thr Gly	aca ccc Thr Pro 160	acc caa Thr Gln	gat ttt Asp Phe 165	595
gat gca acg Asp Ala Thr	gaa cct at Glu Pro Il 170	a tcc aac e Ser Asn	ctg cac Leu His 175	caa gta Gln Val	ctt gcc Leu Ala	gac gcc Asp Ala 180	643
gac cat gtg Asp His Val							691
atc gga aaa Ile Gly Lys 200							739
aac gtg gct Asn Val Ala 215							787
tta gat gcc Leu Asp Ala 230		e Ser Gly					835
gaa cca ttg Glu Pro Leu					Ser Asn		883
att acc ccg Ile Thr Pro							931
gcc cca gtg Ala Pro Val 280							979
atg ctg acc Met Leu Thr 295					agcagtg o	gctttgaata	1032
tag							1035
<210> 144 <211> 304 <212> PRT <213> Coryne	ebacterium	glutamicur	n				
<400> 144 Met Lys Ile 1	Phe Val Gl	y Phe Gly	Asp Tyr 10	Pro Leu	Thr Thr	Lys Ala 15	
Leu Lys Glu	Ala Gly Al 20	a Glu Ile	Val Asp 25	Ser Leu	Glu Lys 30	Ala Glu	
Gly Phe Val		n Thr Pro	Gly Thr	Glu Phe	Pro Leu 45	Leu Pro	

Asp Gly Val Arg Trp Val Gln Phe Pro Asn Ala Gly Leu Asn Ala Tyr Phe Thr Ala Gly Gln Ile Asp Asp Lys Arg Arg Trp Ser Asn Ala Ser Gly Val Tyr Gly Gln Gln Val Ala Glu Ala Ala Met Ala Leu Leu Gly Leu Ile His Met His Pro Thr Met Val Arg Ala Asp Ser Trp Ala Pro Ser Thr Gln Ile Asp Gln Gln Thr Arg Trp Leu Asp Gly Ala Thr 120 Val Ala Ile Val Gly Ala Gly Gly Ile Gly Lys His Leu Ala Ala Met Leu Lys Pro Phe Gly Ala Lys Ser Leu Ala Val Ser Arg Thr Gly Thr 155 150 Pro Thr Gln Asp Phe Asp Ala Thr Glu Pro Ile Ser Asn Leu His Gln 170 Val Leu Ala Asp Ala Asp His Val Val Leu Cys Val Pro Leu Thr Ala 180 Asp Thr Tyr His Leu Ile Gly Lys Ala Glu Leu Lys Ala Met Gln Ser 200 Thr Ala Ile Leu Ile Asn Val Ala Arg Gly Glu Val Val Asp Thr Glu Ala Leu Val Asp Ala Leu Asp Ala Gln Glu Ile Ser Gly Ala Gly Leu 235 Asp Val Thr Asp Pro Glu Pro Leu Pro Asp Asp His Pro Leu Trp Gly Arg Ser Asn Val Ile Ile Thr Pro His Val Ala Asn Thr Leu Thr Ser 265 Met Asp Arg Met Leu Ala Pro Val Val Ala Glu Asn Tyr Arg Arg Phe 275 280

Leu Ala Gly Glu Lys Met Leu Thr Glu Val Asp Ile His Lys Gly Tyr

295

<210> 145

<211> 687

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (62)..(664)

<223> RXN01130

<400> 145 agttcgtggc ggatgctgtg aacgtttccg gtggtcgcgt gggcgaagag gttctgtgtg 60 gatg gat ctg gct cgc aag ctt ggt ctt ctt gct ggc aag ctt gtc gac 109 Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp 157 gcc gcc cca gtc tcc att gag gtt gag gct cga ggc gag ctt tct tcc Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser gag cag gtc aat gca ctt ggt ttg tcc gct gtt cgt ggt ttg ttc tcc 205 Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser 40 253 gga att atc gaa gag tcc gtt act ttc gtc aac gct cct cgc att gct Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala 55 gaa gag cgt ggc ctg gac atc tcc gtg aag acc aac tct gag tct gtt 301 Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val 70 act cac cgt tcc gtc ctg cag gtc aag gtc att act ggc agc gcg 349 Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala 85 age gea act gtt gtt ggt gee etg act ggt ett gag ege gtt gag aag 397 Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys atc acc cgc atc aat ggc cgt ggc ctg gat ctg cgc gca gag ggt ctg 445 Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu 120 493 aac etc tte etg eag tae act gae get eet ggt gea etg ggt ace gtt Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val 135 ggt acc aag ctg ggt gct gct ggc atc aac atc gag gct gct gcg ttg 541 Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Leu 155 150 act cag gct gag aag ggt gac ggc gct gtc ctg atc ctg cgt gtt gag 589 Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu tcc gct gtc tct gaa gag ctg gaa gct gaa atc aac gct gag ttg ggt 637 Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly gct act tcc ttc cag gtt gat ctt gac taattagaga tccatttgct 684 Ala Thr Ser Phe Gln Val Asp Leu Asp 195 687 tga

<210> 146

<211> 201

<212> PRT

<213> Corynebacterium glutamicum

<400> 146

Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp 1 5 10 15

Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser 20 25 30

Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser 35 40 45

Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala 50 55 60

Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val 65 70 75 80

Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala 85 90 95

Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys
100 105 110

Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu 115 120 125

Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val 130 135 140

Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu 145 150 155 160

Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu 165 170 175

Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly 180 185 190

Ala Thr Ser Phe Gln Val Asp Leu Asp 195 200

<210> 147

<211> 326

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(303)

<223> FRXA01130

<400> 147

gtt ggt gcc ctg act ggt ctt gag cgc gtt gag aag atc acc cgc atc 48
Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys Ile Thr Arg Ile
1 5 10 15

aat ggc cgt ggc ctg gat ctg cgc gca gag ggt ctg aac ctc ttc ctg 96

Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu Asn Leu Phe Leu cag tac act gac gct cct ggt gca ctg ggt acc gtt ggt acc aag ctg 144 Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val Gly Thr Lys Leu ggt gct gct ggc atc aac atc gag gct gct gcg ttg act cag gct gag 192 Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu Thr Gln Ala Glu aag ggt gac ggc gct gtc ctg atc ctg cgt gtt gag tcc gct gtc tct 240 Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu Ser Ala Val Ser gaa gag ctg gaa gct gaa atc aac gct gag ttg ggt gct act tcc ttc 288 Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly Ala Thr Ser Phe 90 cag gtt gat ctt gac taattagaga tccatttgct tga 326 Gln Val Asp Leu Asp 100 <210> 148 <211> 101 <212> PRT <213> Corynebacterium glutamicum <400> 148 Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly Ala Thr Ser Phe Gln Val Asp Leu Asp 100 <210> 149 <211> 604 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(604) <223> RXN03112

```
<400> 149
gtgagcacgc aatttetttg etgetgteta etgetegeea gateetgetg etgatgegae 60
gctgcgtgag ggcgagtgga agcggtcttc tttcaacggt gtg gaa att ttc gga
                                                                   115
                                            Val Glu Ile Phe Gly
aaa act gtc ggt atc gtc ggt ttt ggc cac att ggt cag ttg ttt gct
                                                                   163
Lys Thr Val Gly Ile Val Gly Phe Gly His Ile Gly Gln Leu Phe Ala
                 10
cag cgt ctt gct gcg ttt gag acc acc att gtt gct tac gat cct tac
                                                                   211
Gln Arg Leu Ala Ala Phe Glu Thr Thr Ile Val Ala Tyr Asp Pro Tyr
                                                                   259
gct aac cct gct cgt gcg gct cag ctg aac gtt gag ttg gtt gag ttg
Ala Asn Pro Ala Arg Ala Ala Gln Leu Asn Val Glu Leu Val Glu Leu
                           . 45
         40
gat gag etg atg age egt tet gae ttt gte ace att cae ett eet aag
                                                                   307
Asp Glu Leu Met Ser Arg Ser Asp Phe Val Thr Ile His Leu Pro Lys
     55
                         60
acc aag gaa act gct ggc atg ttt gat gcg cac ctc ctt gct aag tcc
                                                                   355
Thr Lys Glu Thr Ala Gly Met Phe Asp Ala His Leu Leu Ala Lys Ser
70
                     75
aag aag ggc cag atc atc atc gct gct cgt ggt ggc ctt gtt gat
Lys Lys Gly Gln Ile Ile Ile Asn Ala Ala Arg Gly Gly Leu Val Asp
                 90
                                                        100
gag cag gct ttg gct gat gcg att gag tcc ggt cac att cgt ggc gct
Glu Gln Ala Leu Ala Asp Ala Ile Glu Ser Gly His Ile Arg Gly Ala
            105
ggt ttc gat gtg tac tcc acc gag cct tgc act gat tct cct ttg ttc
Gly Phe Asp Val Tyr Ser Thr Glu Pro Cys Thr Asp Ser Pro Leu Phe
        120
                            125
aaq ttq cct caq qtt qtt gtg act cct cac ttg ggt gct tct act gaa
                                                                   547
Lys Leu Pro Gln Val Val Thr Pro His Leu Gly Ala Ser Thr Glu
    135
                        140
                                                                   595
gag gct caa gat cgt gcg ggt act gac att gct gat tct gtg ctc aag
Glu Ala Gln Asp Arg Ala Gly Thr Asp Ile Ala Asp Ser Val Leu Lys
150
                    155
                                                                   604
gcg ctg gct
Ala Leu Ala
<210> 150
<211> 168
<212> PRT
<213> Corynebacterium glutamicum
<400> 150
Val Glu Ile Phe Gly Lys Thr Val Gly Ile Val Gly Phe Gly His Ile
```

Gly	Gln	Leu	Phe 20	Ala	Gln	Arg	Leu	Ala 25	Ala	Phe	Glu	Thr	Thr 30	Ile	Val	
Ala	Tyr	Asp 35	Pro	Tyr	Ala	Asn	Pro 40	Ala	Arg	Ala	Ala	Gln 45	Leu	Asn	Val	
Glu	Leu 50	Val	Glu	Leu	Asp	Glu 55	Leu	Met	Ser	Arg	Ser 60	Asp	Phe	Val	Thr	
Ile 65	His	Leu	Pro	Lys	Thr 70	Lys	Glu	Thr	Ala	Gly 75	Met	Phe	Asp	Ala	His 80	
Leu	Leu	Ala	Lys	Ser 85	Lys	Lys	Gly	Gln	Ile 90	Ile	Ile	Asn	Ala	Ala 95	Arg	
Gly	Gly	Leu	Val 100	Asp	Glu	Gln	Ala	Leu 105	Ala	Asp	Ala	Ile	Glu 110	Ser	Gly	
His	Ile	Arg 115	Gly	Ala	Gly	Phe	Asp 120	Val	Tyr	Ser	Thr	Glu 125	Pro	Суѕ	Thr	
Asp	Ser 130	Pro	Leu	Phe	Lys	Leu 135	Pro	Gln	Val	Val	Val 140	Thr	Pro	His	Leu	
Gly 145	Ala	Ser	Thr	Glu	Glu 150	Ala	Gln	Asp	Arg	Ala 155	Gly	Thr	Asp	Ile	Ala 160	
Asp	Ser	Val	Leu	Lys 165	Ala	Leu	Ala									
<210> 151 <211> 649 <212> DNA <213> Corynebacterium glutamicum																
<222 <222	<220> <221> CDS <222> (101)(649) <223> FRXA01133															
)> 15		cgca	egeca	aa aa	accc	ggcgt	t gga	acac	gtct	gca	geega	acg d	cggto	egtgee	60
tgti	gta	gac (ggaca	attc	ct aq	gttt	tcca	a gga	agtaa	actt				aat Asn		115
cgt Arg	ccg Pro	gta Val	gtc Val	ctc Leu 10	atc Ile	gcc Ala	gat Asp	aag Lys	ctt Leu 15	gcg Ala	cag Gln	tcc Ser	act Thr	gtt Val 20	gac Asp	163
		gga Gly														211
		ctg Leu 40														259

					gat Asp											307
					gcc Ala 75											355
gct Ala	gcc Ala	act Thr	gaa Glu	gct Ala 90	ggc Gly	gtc Val	atg Met	gtt Val	gct Ala 95	aac Asn	gca Ala	ccg Pro	acc Thr	tct Ser 100	aat Asn	403
					gag Glu											451
					ctg Leu											499
					gtg Val											547
					ttg Leu 155											595
					ttg Leu											643
	ggt Gly															649

<210> 152

<211> 183

<212> PRT

<213> Corynebacterium glutamicum

<400> 152

Val Ser Gln Asn Gly Arg Pro Val Val Leu Ile Ala Asp Lys Leu Ala 1 10 15

Gln Ser Thr Val Asp Ala Leu Gly Asp Ala Val Glu Val Arg Trp Val 20 25 30

Asp Gly Pro Asn Arg Pro Glu Leu Leu Asp Ala Val Lys Glu Ala Asp
35 40 45

Ala Leu Leu Val Arg Ser Ala Thr Thr Val Asp Ala Glu Val Ile Ala

Ala Ala Pro Asn Leu Lys Ile Val Gly Arg Ala Gly Val Gly Leu Asp
65 70 75 80

Asn Val Asp Ile Pro Ala Ala Thr Glu Ala Gly Val Met Val Ala Asn 85 90 95

Ala Pro Thr Ser Asn Ile His Ser Ala Cys Glu His Ala Ile Ser Leu Leu Leu Ser Thr Ala Arg Gln Ile Leu Leu Leu Met Arg Arg Cys Val 120 Arg Ala Ser Gly Ser Gly Leu Leu Ser Thr Val Trp Lys Phe Ser Glu Lys Leu Ser Val Ser Ser Val Leu Ala Thr Leu Val Ser Cys Leu Leu 155 Ser Val Leu Leu Arg Leu Arg Pro Pro Leu Leu Thr Ile Leu Thr 170 Leu Thr Leu Leu Arg Ala Gly 180 <210> 153 <211> 1011 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(988) <223> RXN00871 <400> 153 gggaaaaggc gatcaccagc cgttggctcg acccagcaac ccacggtggc attaacctcg 60 gtttcccaca gaacgattaa ttgaaggaga gcacaggact atg cgt tgg ttc cat Met Arg Trp Phe His aag aag ggc gaa ctg gcc cga gat ggt tgg caa agc gtt gtc gat gcc Lys Lys Gly Glu Leu Ala Arg Asp Gly Trp Gln Ser Val Val Asp Ala 20 acc acc cca gqt tqq qaa tat acc ggc atc cgc att gcc gaa ctg ggc 211 Thr Thr Pro Gly Trp Glu Tyr Thr Gly Ile Arg Ile Ala Glu Leu Gly 25 30 259 agt ggt gaa tcg ctt gaa ctg aat gac act ggt gtg gaa cgc atc ttc Ser Gly Glu Ser Leu Glu Leu Asn Asp Thr Gly Val Glu Arg Ile Phe 40 45 att cca ctt cag ggc agc ttc gat gtt gcc cac cat ggt cag gtg acc 307 Ile Pro Leu Gln Gly Ser Phe Asp Val Ala His His Gly Gln Val Thr 55 355 cat ctt cac gga aga aag tca gtc ttt gat gga cca acc gat gtg ctc His Leu His Gly Arg Lys Ser Val Phe Asp Gly Pro Thr Asp Val Leu 70 tac ctc ccc act gga caa aca gca acg ctc agt ggt cag gga cga gtc Tyr Leu Pro Thr Gly Gln Thr Ala Thr Leu Ser Gly Gln Gly Arg Val 90 gcc gtg gcg gaa gct ccc act cag gaa ccc aag gag tgg aag tac atc

Ala Val Ala Glu Ala Pro Thr Gln Glu Pro Lys Glu Trp Lys Tyr Ile 105 110 115	
gct cca gca gaa act cct gtg gag ttg cgt gga gct ggc cgc tcg agc Ala Pro Ala Glu Thr Pro Val Glu Leu Arg Gly Ala Gly Arg Ser Ser 120 125 130	499
cga caa gtc cac aac ttt ggc acc ccg gaa gct ctc gat gct cga Arg Gln Val His Asn Phe Gly Thr Pro Glu Ala Leu Asp Ala Ala Arg 135 140 145	547
cta atc gtg tgt gaa gta atc acc cca ggt gaa aac tgg agc tct tac Leu Ile Val Cys Glu Val Ile Thr Pro Gly Glu Asn Trp Ser Ser Tyr 150 155 160 165	595
cct cca cac aag cat gat gag cac atc cca gga cac gag tcc aag ctg Pro Pro His Lys His Asp Glu His Ile Pro Gly His Glu Ser Lys Leu 170 175 180	643
gag gaa atc tac ttc gaa agc gcc cca tcg cga gtt ggt ggc agg Glu Glu Ile Tyr Tyr Phe Glu Ser Ala Pro Ser Arg Val Gly Gly Arg 185 190 195	691
gcc gaa gca gca gga gct ttc gga atg ttt tcc acc tac tcc tca Ala Glu Ala Ala Glu Gly Ala Phe Gly Met Phe Ser Thr Tyr Ser Ser 200 205 210	739
cca gcg ggg gag atc gat atc aac gcc atg gtg tac agc ggc gat atc Pro Ala Gly Glu Ile Asp Ile Asn Ala Met Val Tyr Ser Gly Asp Ile 215 220 225	787
gcg cta gtt cct ttc gga tac cac ggc cct gcc gtg gca gca cct ggc Ala Leu Val Pro Phe Gly Tyr His Gly Pro Ala Val Ala Ala Pro Gly 230 235 240 245	835
tat gac ttg tac tac ctc aac gtc atg gca gga cct gat ccg gag aga Tyr Asp Leu Tyr Tyr Leu Asn Val Met Ala Gly Pro Asp Pro Glu Arg 250 255 260	883
atc tgg ctg att aac gat gac cca gcg cac gcc tgg gtt cga gat aca Ile Trp Leu Ile Asn Asp Asp Pro Ala His Ala Trp Val Arg Asp Thr 265 270 275	931
tgg acc ggg caa gca ttt gat gat cgc ttg cca tat gag aac gca aac Trp Thr Gly Gln Ala Phe Asp Asp Arg Leu Pro Tyr Glu Asn Ala Asn 280 285 290	979
aag gag gga taaaatttca tggctgaaac gaa Lys Glu Gly 295 ·	1011
<210> 154 <211> 296 <212> PRT <213> Corynebacterium glutamicum	
<400> 154 Met Arg Trp Phe His Lys Lys Gly Glu Leu Ala Arg Asp Gly Trp Gln	
1 5 10 15	

Ser Val Val Asp Ala Thr Thr Pro Gly Trp Glu Tyr Thr Gly Ile Arg 20 25 30

Ile Ala Glu Leu Gly Ser Gly Glu Ser Leu Glu Leu Asn Asp Thr Gly 35 40 45

Val Glu Arg Ile Phe Ile Pro Leu Gln Gly Ser Phe Asp Val Ala His 50 55 60

His Gly Gln Val Thr His Leu His Gly Arg Lys Ser Val Phe Asp Gly 65 70 75 80

Pro Thr Asp Val Leu Tyr Leu Pro Thr Gly Gln Thr Ala Thr Leu Ser 85 90 95

Gly Gln Gly Arg Val Ala Val Ala Glu Ala Pro Thr Gln Glu Pro Lys 100 105 110

Glu Trp Lys Tyr Ile Ala Pro Ala Glu Thr Pro Val Glu Leu Arg Gly 115 120 125

Ala Gly Arg Ser Ser Arg Gln Val His Asn Phe Gly Thr Pro Glu Ala 130 135 140

Leu Asp Ala Ala Arg Leu Ile Val Cys Glu Val Ile Thr Pro Gly Glu 145 150 155 160

Asn Trp Ser Ser Tyr Pro Pro His Lys His Asp Glu His Ile Pro Gly
165 170 175

His Glu Ser Lys Leu Glu Glu Ile Tyr Tyr Phe Glu Ser Ala Pro Ser 180 185 190

Arg Val Gly Gly Arg Ala Glu Ala Ala Glu Gly Ala Phe Gly Met Phe 195 200 205

Ser Thr Tyr Ser Ser Pro Ala Gly Glu Ile Asp Ile Asn Ala Met Val 210 215 220

Tyr Ser Gly Asp Ile Ala Leu Val Pro Phe Gly Tyr His Gly Pro Ala 225 230 235 240

Val Ala Ala Pro Gly Tyr Asp Leu Tyr Tyr Leu Asn Val Met Ala Gly 245 250 255

Pro Asp Pro Glu Arg Ile Trp Leu Ile Asn Asp Asp Pro Ala His Ala 260 265 270

Trp Val Arg Asp Thr Trp Thr Gly Gln Ala Phe Asp Asp Arg Leu Pro 275 280 285

Tyr Glu Asn Ala Asn Lys Glu Gly 290 295

<210> 155

<211> 964

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(964) <223> FRXA00871

<400> 155

gggaaaaggc gatcaccagc cgttggctcg acccagcaac ccacggtggc attaacctcg 60

gtttcccaca gaacgattaa ttgaaggaga gcacaggact atg cgt tgg ttc cat 115

Met Arg Trp Phe His

1 5

aag aag ggc gaa ctg gcc cga gat ggt tgg caa agc gtt gtc gat gcc 163 Lys Lys Gly Glu Leu Ala Arg Asp Gly Trp Gln Ser Val Val Asp Ala 10 15 20

acc acc cca ggt tgg gaa tat acc ggc atc cgc att gcc gaa ctg ggc 211
Thr Thr Pro Gly Trp Glu Tyr Thr Gly Ile Arg Ile Ala Glu Leu Gly
25 30 35

agt ggt gaa tcg ctt gaa ctg aat gac act ggt gtg gaa cgc atc ttc 259 Ser Gly Glu Ser Leu Glu Leu Asn Asp Thr Gly Val Glu Arg Ile Phe . 40 45 50

att cca ctt cag ggc agc ttc gat gtt gcc cac cat ggt cag gtg acc 307 Ile Pro Leu Gln Gly Ser Phe Asp Val Ala His His Gly Gln Val Thr 55 60 65

cat ctt cac gga aga aag tca gtc ttt gat gga cca acc gat gtg ctc 355 His Leu His Gly Arg Lys Ser Val Phe Asp Gly Pro Thr Asp Val Leu 70 75 80 85

tac ctc ccc act gga caa aca gca acg ctc agt ggt cag gga cga gtc

Tyr Leu Pro Thr Gly Gln Thr Ala Thr Leu Ser Gly Gln Gly Arg Val
90 95 100

gcc gtg gcg gaa gct ccc act cag gaa ccc aag gag tgg aag tac atc 451 Ala Val Ala Glu Ala Pro Thr Gln Glu Pro Lys Glu Trp Lys Tyr Ile 105 110 115

gct cca gca gaa act cct gtg gag ttg cgt gga gct ggc cgc tcg agc 499
Ala Pro Ala Glu Thr Pro Val Glu Leu Arg Gly Ala Gly Arg Ser Ser
120 125 130

cga caa gtc cac aac ttt ggc acc ccg gaa gct ctc gat gct gct cga 547 Arg Gln Val His Asn Phe Gly Thr Pro Glu Ala Leu Asp Ala Ala Arg 135 140 145

cta atc gtg tgt gaa gta atc acc cca ggt gaa aac tgg agc tct tac 595 Leu Ile Val Cys Glu Val Ile Thr Pro Gly Glu Asn Trp Ser Ser Tyr 150 165 160

cct cca cac aag cat gat gag cac atc cca gga cac gag tcc aag ctg $^{\circ}$ 643 Pro Pro His Lys His Asp Glu His Ile Pro Gly His Glu Ser Lys Leu 170 175 180

gag gaa atc tac tac ttc gaa agc gcc cca tcg cga gtt ggt ggc agg 691 Glu Glu Ile Tyr Tyr Phe Glu Ser Ala Pro Ser Arg Val Gly Gly Arg 185 190 195

gcc gaa gca gca gga gct ttc gga atg ttt tcc acc tac tcc tca 739 Ala Glu Ala Ala Glu Gly Ala Phe Gly Met Phe Ser Thr Tyr Ser Ser

205 200 210 787 cca qcq qqq gag atc gat atc aac gcc atg gtg tac agc ggc gat atc Pro Ala Gly Glu Ile Asp Ile Asn Ala Met Val Tyr Ser Gly Asp Ile 220 835 qcq cta qtt cct ttc qqa tac cac ggc cct gcc gtg gca gca cct ggc Ala Leu Val Pro Phe Gly Tyr His Gly Pro Ala Val Ala Ala Pro Gly 235 883 tat gac ttg tac tac ctc aac gtc atg gca gga cct gat ccg gag aga Tyr Asp Leu Tyr Tyr Leu Asn Val Met Ala Gly Pro Asp Pro Glu Arg atc tgg ctg att aac gat gac cca gcg cac gcc tgg gtt cga gat aca 931 Ile Trp Leu Ile Asn Asp Asp Pro Ala His Ala Trp Val Arg Asp Thr 964 tgg acc ggg caa gca ttt gat gat cgc ttg cca Trp Thr Gly Gln Ala Phe Asp Asp Arg Leu Pro <210> 156 <211> 288 <212> PRT <213> Corvnebacterium glutamicum Met Arg Trp Phe His Lys Lys Gly Glu Leu Ala Arg Asp Gly Trp Gln 5 10 Ser Val Val Asp Ala Thr Thr Pro Gly Trp Glu Tyr Thr Gly Ile Arg Ile Ala Glu Leu Gly Ser Gly Glu Ser Leu Glu Leu Asn Asp Thr Gly 35 Val Glu Arg Ile Phe Ile Pro Leu Gln Gly Ser Phe Asp Val Ala His His Gly Gln Val Thr His Leu His Gly Arg Lys Ser Val Phe Asp Gly Pro Thr Asp Val Leu Tyr Leu Pro Thr Gly Gln Thr Ala Thr Leu Ser Gly Gln Gly Arg Val Ala Val Ala Glu Ala Pro Thr Gln Glu Pro Lys Glu Trp Lys Tyr Ile Ala Pro Ala Glu Thr Pro Val Glu Leu Arg Gly 120 Ala Gly Arg Ser Ser Arg Gln Val His Asn Phe Gly Thr Pro Glu Ala 130 135 Leu Asp Ala Ala Arg Leu Ile Val Cys Glu Val Ile Thr Pro Gly Glu 155 Asn Trp Ser Ser Tyr Pro Pro His Lys His Asp Glu His Ile Pro Gly 165 170

His Glu Ser Lys Leu Glu Glu Ile Tyr Tyr Phe Glu Ser Ala Pro Ser Arg Val Gly Gly Arg Ala Glu Ala Ala Glu Gly Ala Phe Gly Met Phe Ser Thr Tyr Ser Ser Pro Ala Gly Glu Ile Asp Ile Asn Ala Met Val Tyr Ser Gly Asp Ile Ala Leu Val Pro Phe Gly Tyr His Gly Pro Ala Val Ala Ala Pro Gly Tyr Asp Leu Tyr Tyr Leu Asn Val Met Ala Gly Pro Asp Pro Glu Arg Ile Trp Leu Ile Asn Asp Asp Pro Ala His Ala 265 Trp Val Arg Asp Thr Trp Thr Gly Gln Ala Phe Asp Asp Arg Leu Pro 280 285 <210> 157 <211> 373 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(373) <223> RXN02829 <400> 157 tttttcqttt aatctcatat ttaaacacgt tccttttaat tggttttata aattgataaa 60 ctgaattcgt cagttaaagt gtatcgaaag gagactggac atg caa aaa aat att Met Gln Lys Asn Ile 163 cta aaa agt ggc atc gaa att tct gaa ctt ggg tta ggt tgc atg agt Leu Lys Ser Gly Ile Glu Ile Ser Glu Leu Gly Leu Gly Cys Met Ser tta ggc aca gat tat aaa aaa gcg caa cca att att gaa agt gca att 211 Leu Gly Thr Asp Tyr Lys Lys Ala Gln Pro Ile Ile Glu Ser Ala Ile gat aat ggt att acg tat ttt gat act gca gat att tac gat caa gga 259 Asp Asn Gly Ile Thr Tyr Phe Asp Thr Ala Asp Ile Tyr Asp Gln Gly 45 307 gtt aat gaa gaa att gtt ggt aaa gcc tta aaa aaa tat caa aat cgt Val Asn Glu Glu Ile Val Gly Lys Ala Leu Lys Lys Tyr Gln Asn Arg

gat gac atc gtt atc gga act aaa gtt gga aat cga tta act gac gat Asp Asp Ile Val Ile Gly Thr Lys Val Gly Asn Arg Leu Thr Asp Asp

355

70 75 80 85 373 gga cat atg acg tgg gat Gly His Met Thr Trp Asp <210> 158 <211> 91 <212> PRT <213> Corynebacterium glutamicum <400> 158 Met Gln Lys Asn Ile Leu Lys Ser Gly Ile Glu Ile Ser Glu Leu Gly Leu Gly Cys Met Ser Leu Gly Thr Asp Tyr Lys Lys Ala Gln Pro Ile Ile Glu Ser Ala Ile Asp Asn Gly Ile Thr Tyr Phe Asp Thr Ala Asp Ile Tyr Asp Gln Gly Val Asn Glu Glu Ile Val Gly Lys Ala Leu Lys Lys Tyr Gln Asn Arg Asp Asp Ile Val Ile Gly Thr Lys Val Gly Asn 70 Arg Leu Thr Asp Asp Gly His Met Thr Trp Asp 85 <210> 159 <211> 376 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(376) <223> FRXA02829 <400> 159 tttttcgttt aatctcatat ttaaacacgt tccttttaat tggttttata aattgataaa 60 ctgaattcgt cagttaaagt gtatcgaaag gagactggac atg caa aaa aat att 115 Met Gln Lys Asn Ile cta aaa agt ggc atc gaa att tct gaa ctt ggg tta ggt tgc atg agt 163 Leu Lys Ser Gly Ile Glu Ile Ser Glu Leu Gly Leu Gly Cys Met Ser 211 tta ggc aca gat tat aaa aaa gcg caa cca att att gaa agt gca att Leu Gly Thr Asp Tyr Lys Lys Ala Gln Pro Ile Ile Glu Ser Ala Ile 259 gat aat ggt att acg tat ttt gat act gca gat att tac gat caa gga

Asp Asn Gly Ile Thr Tyr Phe Asp Thr Ala Asp Ile Tyr Asp Gln Gly

gtt aat gaa gaa att gtt ggt aaa gcc tta aa Val Asn Glu Glu Ile Val Gly Lys Ala Leu Ly 55 60	
gat gac atc gtt atc gga act aaa gtt gga aa Asp Asp Ile Val Ile Gly Thr Lys Val Gly As 70 75	
gga cat atg acg tgg gga tcc Gly His Met Thr Trp Gly Ser 90	376
<210> 160 <211> 92 <212> PRT <213> Corynebacterium glutamicum	
<400> 160 Met Gln Lys Asn Ile Leu Lys Ser Gly Ile G 1 5 10	u Ile Ser Glu Leu Gly 15
Leu Gly Cys Met Ser Leu Gly Thr Asp Tyr Ly 20 25	s Lys Ala Gln Pro Ile 30
Ile Glu Ser Ala Ile Asp Asn Gly Ile Thr Ty 35 40	r Phe Asp Thr Ala Asp 45
Ile Tyr Asp Gln Gly Val Asn Glu Glu Ile Va 50 55	l Gly Lys Ala Leu Lys 60
Lys Tyr Gln Asn Arg Asp Asp Ile Val Ile G	y Thr Lys Val Gly Asn 5 80
Arg Leu Thr Asp Asp Gly His Met Thr Trp G	y Ser
<210> 161 <211> 948 <212> DNA <213> Corynebacterium glutamicum	
<220> <221> CDS <222> (101)(925) <223> RXN01468	
<400> 161 tgccaaggat ttgaccaccg tgcaggattt gattgact	t attaacacca ataaggctga 60
ttagcgggaa aatttcgccc aaaacaggga caatggtg	t atg aca gtg aac att 115 Met Thr Val Asn Ile 1 5
tca tat ctg acc gac atg gac ggc gtc ctc at Ser Tyr Leu Thr Asp Met Asp Gly Val Leu I 10	
att ccg ggt gca gat cgt ttt ctt cag tct c Ile Pro Gly Ala Asp Arg Phe Leu Gln Ser Le	

25 30 35

						aac Asn										259
tct Ser	gca Ala 55	cgt Arg	ctt Leu	aag Lys	act Thr	tcc Ser 60	ggt Gly	ttg Leu	gat Asp	atc Ile	ccg Pro 65	ccg Pro	gag Glu	cgt Arg	att Ile	307
						act Thr										355
						gtt Val										403
						ttg Leu										451
						tat Tyr										499
						gct Ala 140										547
act Thr 150	gga Gly	cct Pro	tca Ser	cca Pro	agt Ser 155	ggc Gly	att Ile	ttg Leu	cct Pro	gct Ala 160	act Thr	ggc Gly	tct Ser	gtc Val	gcc Ala 165	595
						act Thr										643
						cgc Arg										691
						atc Ile										739
tct Ser	ggt Gly 215	ttg Leu	gaa Glu	gcc Ala	ggc Gly	ctg Leu 220	agc Ser	acc Thr	gtg Val	ctg Leu	gtt Val 225	cga Arg	agc Ser	gga Gly	att Ile	787
						cgc Arg										835
						ctt Leu										883
						cca Pro										925

tagtattctg taggtcatgg cat

948

<210> 162

<211> 275

<212> PRT

<213> Corynebacterium glutamicum

<400> 162

Met Thr Val Asn Ile Ser Tyr Leu Thr Asp Met Asp Gly Val Leu Ile 1 5 10 15

Lys Glu Gly Glu Ile Ile Pro Gly Ala Asp Arg Phe Leu Gln Ser Leu 20 25 30

Thr Asp Asn Asn Val Glu Phe Met Val Leu Thr Asn Asn Ser Ile Phe 35 40 45

Thr Pro Arg Asp Leu Ser Ala Arg Leu Lys Thr Ser Gly Leu Asp Ile 50 55 60

Pro Pro Glu Arg Ile Trp Thr Ser Ala Thr Ala Thr Ala His Phe Leu 65 70 75 80

Lys Ser Gln Val Lys Glu Gly Thr Ala Tyr Val Val Gly Glu Ser Gly 85 90 95

Leu Thr Thr Ala Leu His Thr Ala Gly Trp Ile Leu Thr Asp Ala Asn 100 105 110

Pro Glu Phe Val Val Leu Gly Glu Thr Arg Thr Tyr Ser Phe Glu Ala 115 120 125

Ile Thr Thr Ala Ile Asn Leu Ile Leu Gly Gly Ala Arg Phe Ile Cys 130 140

Thr Asn Pro Asp Val Thr Gly Pro Ser Pro Ser Gly Ile Leu Pro Ala 145 150 155 160

Thr Gly Ser Val Ala Ala Leu Ile Thr Ala Ala Thr Gly Ala Glu Pro 165 170 175

Tyr Tyr Ile Gly Lys Pro Asn Pro Val Met Met Arg Ser Ala Leu Asn 180 185 190

Thr Ile Gly Ala His Ser Glu His Thr Val Met Ile Gly Asp Arg Met 195 200 205

Asp Thr Asp Val Lys Ser Gly Leu Glu Ala Gly Leu Ser Thr Val Leu 210 215 220

Val Arg Ser Gly Ile Ser Asp Asp Ala Glu Ile Arg Arg Tyr Pro Phe 225 230 235 240

Arg Pro Thr His Val Ile Asn Ser Ile Ala Asp Leu Ala Asp Cys Trp
245 250 255

Asp Asp Pro Phe Gly Asp Gly Ala Phe His Val Pro Asp Glu Gln Gln 260 265 270

Phe Thr Asp 275

<210> 163 <211> 948 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(925) <223> FRXA01468 <400> 163 tgccaaggat ttgaccaccg tgcaggattt gattgacttt attaacacca ataaggctga 60 ttagcgggaa aatttcgccc aaaacaggga caatggtgtt atg aca gtg aac att Met Thr Val Asn Ile tca tat ctg acc gac atg gac ggc gtc ctc atc aaa gag ggc gag ata 163 Ser Tyr Leu Thr Asp Met Asp Gly Val Leu Ile Lys Glu Gly Glu Ile 15 10 att ccq qqt qca qat cqt ttt ctt cag tct ctc acc gat aac aat gtg 211 Ile Pro Gly Ala Asp Arg Phe Leu Gln Ser Leu Thr Asp Asn Asn Val gag ttt atg gtt ttg acc aac tcc att ttc acc ccg agg gat ctt 259 Glu Phe Met Val Leu Thr Asn Asn Ser Ile Phe Thr Pro Arg Asp Leu 307 tct gca cgt ctt aag act tcc ggt ttg gat atc ccg ccg gag cgt att Ser Ala Arg Leu Lys Thr Ser Gly Leu Asp Ile Pro Pro Glu Arg Ile 355 tgg act tct gca acc gcc act gct cac ttc ctg aaa tcc cag gtc aag Trp Thr Ser Ala Thr Ala Thr Ala His Phe Leu Lys Ser Gln Val Lys gag ggc aca gcc tat gtt gtt ggc gag tcc ggt ctg acc act gcg ttg 403 Glu Gly Thr Ala Tyr Val Val Gly Glu Ser Gly Leu Thr Thr Ala Leu 95 cat acc gcg ggt tgg att ttg acg gat gca aat cct gag ttt gtc 451 His Thr Ala Gly Trp Ile Leu Thr Asp Ala Asn Pro Glu Phe Val Val 110 ctg ggc gaa acc cgc aca tat tcc ttc gag gca atc act act gcg ata 499 Leu Gly Glu Thr Arg Thr Tyr Ser Phe Glu Ala Ile Thr Thr Ala Ile 125 547 aat ctg att ttg ggt ggc gct cgc ttt att tgc acc aac ccg gat gtc Asn Leu Ile Leu Gly Gly Ala Arg Phe Ile Cys Thr Asn Pro Asp Val act gga cct tca cca agt ggc att ttg cct gct act ggc tct gtc gcc Thr Gly Pro Ser Pro Ser Gly Ile Leu Pro Ala Thr Gly Ser Val Ala .160

_																
				-	gct Ala			-							_	643
					atg Met											691
					atg Met											739
					ggc Gly											787
					atc Ile 235											835
				-	gat Asp		-	-	_		-	-				883
					gta Val											925
tag	tatto	ctg 1	aggt	cate	gg ca	at										948
<21 <21	0> 10 1> 2 ⁻ 2> PI 3> Co	75 RT	ebact	ceriu	um gi	lutar	nicur	n								
<21: <21: <21: <40:	1> 2° 2> PI 3> Co 0> 10	75 RT Oryne 64			ım gi				Asp 10	Met	Asp	Gly	Val	Leu 15	Ile	
<21: <21: <21: <40: Met	1> 2 ⁻ 2> PI 3> Co 0> 10 Thr	75 RT oryne 64 Val	Asn	Ile 5		Tyr	Leu	Thr	10					15		
<21: <21: <21: <40: Met 1 Lys	1> 2' 2> PI 3> Co 0> 10 Thr	75 RT Oryne 64 Val Gly	Asn Glu 20	Ile 5 Ile	Ser	Tyr Pro	Leu Gly	Thr Ala 25	10 Asp	Arg	Phe	Leu	Gln 30	15 Ser	Leu	
<21: <21: <21: <40: Met 1 Lys	1> 2° 2> PI 3> Co 0> 10 Thr Glu	75 RT oryne 64 Val Gly Asn 35	Asn Glu 20 Asn	Ile 5 Ile Val	Ser	Tyr Pro Phe	Leu Gly Met 40	Thr Ala 25 Val	10 Asp Leu	Arg Thr	Phe Asn	Leu Asn 45	Gln 30 Ser	15 Ser Ile	Leu Phe	
<21: <21: <21: <40: Met 1 Lys Thr	1> 2° 2> PI 3> Co 0> 1° Thr Glu Asp	75 RT Oryne 64 Val Gly Asn 35	Asn Glu 20 Asn Asp	Ile 5 Ile Val Leu	Ser Ile Glu	Tyr Pro Phe Ala 55	Leu Gly Met 40 Arg	Thr Ala 25 Val	10 Asp Leu Lys	Arg Thr Thr	Phe Asn Ser 60	Leu Asn 45 Gly	Gln 30 Ser Leu	15 Ser Ile Asp	Leu Phe Ile	
<21: <21: <21: <40: Met	1> 2° 2> PI 3> Co 0> 1° Thr Glu Asp Pro 50	75 RT Oryne 64 Val Gly Asn 35 Arg	Asn Glu 20 Asn Asp	Ile 5 Ile Val Leu Ile	Ser Ile Glu Ser	Tyr Pro Phe Ala 55	Leu Gly Met 40 Arg	Thr Ala 25 Val Leu Ala	10 Asp Leu Lys Thr	Arg Thr Thr Ala 75	Phe Asn Ser 60	Leu Asn 45 Gly Ala	Gln 30 Ser Leu His	15 Ser Ile Asp	Leu Phe Ile Leu 80	
<21: <21: <21: <400 Met	1> 2° 2> PI 3> Co 0> 1° Thr Glu Asp Pro 50 Pro	75 RT Dryne 64 Val Gly Asn 35 Arg	Asn Glu 20 Asn Asp Arg	Ile 5 Ile Val Leu Ile Lys 85	Ser Ile Glu Ser Trp 70	Tyr Pro Phe Ala 55 Thr	Leu Gly Met 40 Arg Ser	Thr Ala 25 Val Leu Ala Ala	10 Asp Leu Lys Thr	Arg Thr Thr Ala 75	Phe Asn Ser 60 Thr	Leu Asn 45 Gly Ala Gly	Gln 30 Ser Leu His	15 Ser Ile Asp Phe	Leu Phe Ile Leu 80 Gly	

Ile Thr Thr Ala Ile Asn Leu Ile Leu Gly Gly Ala Arg Phe Ile Cys 135 Thr Asn Pro Asp Val Thr Gly Pro Ser Pro Ser Gly Ile Leu Pro Ala 150 155 Thr Gly Ser Val Ala Ala Leu Ile Thr Ala Ala Thr Gly Ala Glu Pro Tyr Tyr Ile Gly Lys Pro Asn Pro Val Met Met Arg Ser Ala Leu Asn 180 185 190 Thr Ile Gly Ala His Ser Glu His Thr Val Met Ile Gly Asp Arg Met 200 Asp Thr Asp Val Lys Ser Gly Leu Glu Ala Gly Leu Ser Thr Val Leu 215 Val Arg Ser Gly Ile Ser Asp Asp Ala Glu Ile Arg Arg Tyr Pro Phe Arg Pro Thr His Val Ile Asn Ser Ile Ala Asp Leu Ala Asp Cys Trp 245 Asp Asp Pro Phe Gly Asp Gly Ala Phe His Val Pro Asp Glu Gln Gln Phe Thr Asp 275 <210> 165 <211> 1128 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1105) <223> RXA00794 <400> 165 gcqqqttqat acaqcccaaq cqccqataca tttataatqc qcctagatac gtgcaaccca 60 cgtaaccagg tcagatcaag tgccccagga ggcccttcag atg aac cta aag aac Met Asn Leu Lys Asn ccc gaa acg cca gac cgt aac ctt gct atg gag ctg gtg cga gtt acg Pro Glu Thr Pro Asp Arg Asn Leu Ala Met Glu Leu Val Arg Val Thr gaa gca gct gca ctg gct tct gga cgt tgg gtt gga cgt ggc atg aag 211 Glu Ala Ala Ala Leu Ala Ser Gly Arg Trp Val Gly Arg Gly Met Lys aat gaa ggc gac ggt gcc gct gtt gac gcc atg cgc cag ctc atc aac 259 Asn Glu Gly Asp Gly Ala Ala Val Asp Ala Met Arg Gln Leu Ile Asn tca gtg acc atg aag ggc gtc gtt gtt atc ggc gag ggc gaa aaa gac 307

Ser	Val 55	Thr	Met	Lys	Gly	Val 60	Val	Val	Ile	Gly	Glu 65	Gly	Glu	Lys	Asp	
	gct Ala															355
	gag Glu															403
	gag Glu															451
	acc Thr															499
gtg Val	gga Gly 135	cct Pro	gag Glu	gcc Ala	gca Ala	ggc Gly 140	aag Lys	atc Ile	gac Asp	atc Ile	gaa Glu 145	gct Ala	cca Pro	gtt Val	gcc Ala	547
	aac Asn															595
	acc Thr															643
-	att Ile	_	_	-		_	-	-	_				_		_	691
_	gca Ala		-	•	-	-	_	_	_					-		739
	atg Met 215															787
	aag Lys															835
	ttc Phe															883
	ctg Leu															931
	acc Thr															979
	aac Asn															1027

295 300 305

acc atc cgc cac atc gag tct gtc cac cag ctg tcc aag ctg cag gaa 1075
Thr Ile Arg His Ile Glu Ser Val His Gln Leu Ser Lys Leu Gln Glu
310 320 325

tac tcc gtg gtt gac tac acc gcg acc taagagctct tagttcgaaa 1125 Tyr Ser Val Val Asp Tyr Thr Thr Ala Thr 330 335

aac 1128

<210> 166

<211> 335

<212> PRT

<213> Corynebacterium glutamicum

<400> 166

Met Asn Leu Lys Asn Pro Glu Thr Pro Asp Arg Asn Leu Ala Met Glu
1 5 10 15

Leu Val Arg Val Thr Glu Ala Ala Ala Leu Ala Ser Gly Arg Trp Val 20 25 30

Gly Arg Gly Met Lys Asn Glu Gly Asp Gly Ala Ala Val Asp Ala Met 35 40 45

Arg Gln Leu Ile Asn Ser Val Thr Met Lys Gly Val Val Val Ile Gly 50 60

Glu Gly Glu Lys Asp Glu Ala Pro Met Leu Tyr Asn Gly Glu Glu Val 65 70 75 80

Gly Thr Gly Phe Gly Pro Glu Val Asp Ile Ala Val Asp Pro Val Asp 85 90 95

Gly Thr Thr Leu Met Ala Glu Gly Arg Pro Asn Ala Ile Ser Ile Leu 100 105 110

Ala Ala Ala Glu Arg Gly Thr Met Tyr Asp Pro Ser Ser Val Phe Tyr 115 120 125

Met Lys Lys Ile Ala Val Gly Pro Glu Ala Ala Gly Lys Ile Asp Ile 130 135 140

Glu Ala Pro Val Ala His Asn Ile Asn Ala Val Ala Lys Ser Lys Gly 145 150 155 160

Ile Asn Pro Ser Asp Val Thr Val Val Leu Asp Arg Pro Arg His
165 170 175

Ile Glu Leu Ile Ala Asp Ile Arg Arg Ala Gly Ala Lys Val Arg Leu 180 185 190

Ile Ser Asp Gly Asp Val Ala Gly Ala Val Ala Ala Ala Gln Asp Ser 195 200 205

Asn Ser Val Asp Ile Met Met Gly Thr Gly Gly Thr Pro Glu Gly Ile 210 215 220

225 230	Gly Gly Glu Ile Gln Gly Ile 235 240
Leu Ala Pro Met Asn Asp Phe Glu Arg 245	Gln Lys Ala His Asp Ala Gly 250 255
Leu Val Leu Asp Gln Val Leu His Thr 260 265	
Asn Cys Tyr Phe Val Ala Thr Gly Val 275 280	Thr Asn Gly Asp Met Leu Arg 285
Gly Val Ser Tyr Arg Ala Asn Gly Ala 290 295	Thr Thr Arg Ser Leu Val Met 300
Arg Ala Lys Ser Gly Thr Ile Arg His 305 310	Ile Glu Ser Val His Gln Leu 315 320
Ser Lys Leu Gln Glu Tyr Ser Val Val 325	Asp Tyr Thr Thr Ala Thr 330 335
<210> 167 <211> 1035 <212> DNA <213> Corynebacterium glutamicum	
<220> <221> CDS	
<222> (101)(1012) <223> RXN02920	
<400> 167 tgcatgcaga ttatctgtcc aactacgcca gc	cgcgcgta aagcgcgggc ctgctggtgg 60
<400> 167	
<400> 167 tgcatgcaga ttatctgtcc aactacgcca gc	ttaagacg atg aag ttt gtt atg 115 Met Lys Phe Val Met 1 5 gct gtc att gag ggt ggc gga 163
<pre><400> 167 tgcatgcaga ttatctgtcc aactacgcca gc cgggtggcgt cgaaaagcat ttttaaagga gt tat ccg cat ttg tgg gag tcc acg acc Tyr Pro His Leu Trp Glu Ser Thr Thr</pre>	ttaagacg atg aag ttt gtt atg 115 Met Lys Phe Val Met 1 5 gct gtc att gag ggt ggc gga 163 Ala Val Ile Glu Gly Gly Gly 15 20 gca gac ttc att ttc ttt aat 211
<pre><400> 167 tgcatgcaga ttatctgtcc aactacgcca gc cgggtggcgt cgaaaagcat ttttaaagga gt tat ccg cat ttg tgg gag tcc acg acc Tyr Pro His Leu Trp Glu Ser Thr Thr</pre>	ttaagacg atg aag ttt gtt atg 115 Met Lys Phe Val Met 1 5 gct gtc att gag ggt ggc gga 163 Ala Val Ile Glu Gly Gly Gly 15 20 gca gac ttc att ttc ttt aat 211 Ala Asp Phe Ile Phe Phe Asn 35 ccg gag aac atc aag ttc gtg 259
<pre><400> 167 tgcatgcaga ttatctgtcc aactacgcca gc cgggtggcgt cgaaaagcat ttttaaagga gt tat ccg cat ttg tgg gag tcc acg acc Tyr Pro His Leu Trp Glu Ser Thr Thr</pre>	ttaagacg atg aag ttt gtt atg 115 Met Lys Phe Val Met 1 5 gct gtc att gag ggt ggc gga 163 Ala Val Ile Glu Gly Gly Gly 15 20 gca gac ttc att ttc ttt aat 211 Ala Asp Phe Ile Phe Phe Asn 35 ccg gag aac atc aag ttc gtg 259 Pro Glu Asn Ile Lys Phe Val 50 ctg gtc aag cgt ggt ggt gtc 307
<pre><400> 167 tgcatgcaga ttatctgtcc aactacgcca gc cgggtggcgt cgaaaagcat ttttaaagga gt tat ccg cat ttg tgg gag tcc acg acc Tyr Pro His Leu Trp Glu Ser Thr Thr</pre>	ttaagacg atg aag ttt gtt atg 115 Met Lys Phe Val Met 1

•				90					95					100		
						aag Lys										451
aac Asn	aac Asn	aag Lys 120	tca Ser	tgg Trp	ctg Leu	cat His	gac Asp 125	aat Asn	aaa Lys	act Thr	gtc Val	gct Ala 130	att Ile	ttg Leu	ggc Gly	499
gcc Ala	ggt Gly 135	ggc Gly	att Ile	ggc Gly	gtg Val	cgt Arg 140	ctg Leu	ctg Leu	gaa Glu	atg Met	ctc Leu 145	aag Lys	ccg Pro	ttc Phe	aac Asn	547
						aat Asn										595
gat Asp	gaa Glu	acc Thr	ttc Phe	gcc Ala 170	atg Met	gat Asp	aag Lys	gct Ala	gag Glu 175	cac His	gtg Val	tgg Trp	gct Ala	gag Glu 180	gct Ala	643
						ctg Leu										691
						ggc Gly										739
						ctg Leu 220										787
						gcg Ala										835
						cac His										883
						aac Asn										931
						aac Asn										979
						gtg Val 300					tago	gcctt	itt a	atggt	gtgat	1032
ccg																1035

<210> 168

<211> 304

<212> PRT

<213> Corynebacterium glutamicum

<400> 168 Met Lys Phe Val Met Tyr Pro His Leu Trp Glu Ser Thr Thr Ala Val Ile Glu Gly Gly Gly His Glu Arg Val Glu Asp Ile Lys Asp Ala Asp Phe Ile Phe Phe Asn Gly Ser Ala Pro Glu Phe Pro Asp Leu Pro Glu Asn Ile Lys Phe Val Gln Ala Ser Met Ala Gly Ile Asp Ala Leu Val Lys Arg Gly Val Val Asn Glu Lys Ala Arg Trp Ala Asn Ala Ala Gly Leu Tyr Ala Asp Thr Val Ala Glu Ser Thr Ile Gly Leu Ile Leu Ala Gln Met His Met His Ala Thr Thr Arg Leu Ala Lys Ser Trp Ser Val Arg Pro Glu Val Glu Asn Asn Lys Ser Trp Leu His Asp Asn Lys Thr Val Ala Ile Leu Gly Ala Gly Gly Ile Gly Val Arg Leu Leu Glu Met Leu Lys Pro Phe Asn Val Lys Thr Ile Ala Val Asn Asn Ser Gly Arg 155 150 Pro Val Glu Gly Ala Asp Glu Thr Phe Ala Met Asp Lys Ala Glu His 170 Val Trp Ala Glu Ala Asp Val Phe Val Leu Ile Leu Pro Leu Thr Asp Ala Thr Tyr Gln Ile Val Asn Ala Glu Thr Leu Gly Lys Met Lys Pro Ser Ala Val Val Asn Val Gly Arg Gly Pro Leu Ile Asn Thr Asp Asp Leu Val Asp Ala Leu Asn Asn Gly Thr Ile Ala Gly Ala Ala Leu Asp Val Thr Asp Pro Glu Pro Leu Pro Asp Ser His Pro Leu Trp Glu Met Asp Asn Val Val Ile Thr Pro His Thr Ala Asn Thr Asn Glu Arg 265 Ile Arg Ala Leu Thr Gly Glu Leu Thr Leu Arg Asn Ile Glu Leu Phe Glu Ala Gly Glu Gln Met Ala Thr Glu Val Asp Val Val Ala Gly Tyr 295 300

<210> 169 <211> 779 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (52)(756)	
<223> FRXA02379	
<pre><400> 169 tgcaggcctc catggcgggt attgatgcgc tggtcaagcg tggtgtcgtc aatg aga 57</pre>	
aag cac cgt tgg gca aac gcg gct ggc ctg tac gct gac acc gtt gct 105 Lys His Arg Trp Ala Asn Ala Ala Gly Leu Tyr Ala Asp Thr Val Ala 5 10 15	5
gag tcc acc att ggt tta att ctg gcg cag atg cac atg cat gcg acg Glu Ser Thr Ile Gly Leu Ile Leu Ala Gln Met His Met His Ala Thr 20 25 30	3
act cgt ttg gct aag tcg tgg agc gtg cgg cct gag gtg gaa aac aac 200 Thr Arg Leu Ala Lys Ser Trp Ser Val Arg Pro Glu Val Glu Asn Asn 35 40 45 50	1
aag toa tgg ctg cat gac aat aaa act gtc gct att ttg ggc gcc ggt 249 Lys Ser Trp Leu His Asp Asn Lys Thr Val Ala Ile Leu Gly Ala Gly 55 : 60 65	9
ggc att ggc gtg cgt ctg ctg gaa atg ctc aag ccg ttc aac gtg aag Gly Ile Gly Val Arg Leu Leu Glu Met Leu Lys Pro Phe Asn Val Lys 70 75 80	7
acc att gcg gtt aat aac tct ggt cgt ccg gtg gaa ggt gca gat gaa 345 Thr Ile Ala Val Asn Asn Ser Gly Arg Pro Val Glu Gly Ala Asp Glu 85 90 95	5
acc ttc gcc atg gat aag gct gag cac gtg tgg gct gag gct gat gtg Thr Phe Ala Met Asp Lys Ala Glu His Val Trp Ala Glu Ala Asp Val 100 105 110	3
ttt gtg ctc atc ctg ccg ctg act gat gcc act tat cag atc gtc aat Phe Val Leu Ile Leu Pro Leu Thr Asp Ala Thr Tyr Gln Ile Val Asn 115 120 125 130	1
gca gaa act ttg ggc aag atg aag cct tct gcc gtg gtg gtc aat gtg 489 Ala Glu Thr Leu Gly Lys Met Lys Pro Ser Ala Val Val Val Asn Val 135 140 145	9
ggg cgt ggc ccg ctg atc aac acc gat gat ctg gtg gat gca ttg aac Gly Arg Gly Pro Leu Ile Asn Thr Asp Asp Leu Val Asp Ala Leu Asn 150 155 160	7
aac ggc acc att gcg ggt gct gcg ctg gac gtt acc gat cct gag cca S85 Asn Gly Thr Ile Ala Gly Ala Ala Leu Asp Val Thr Asp Pro Glu Pro 165 170 175	5

						ctg Leu 185										633
cct Pro 195	cat His	act Thr	gca Ala	aac Asn	acg Thr 200	aat Asn	gag Glu	agg Arg	att Ile	cgt Arg 205	gct Ala	ttg Leu	acc Thr	ggc Gly	gaa Glu 210	681
						gag Glu										729
						gct Ala			tago	gccti	tt a	atggt	gtga	at		776
ccg																779
<211 <212	0> 17 1> 23 2> PE 3> Co	35 RT	ebact	eri	um g]	lutan	nicur	n								
)> 17 Arg		His	Arg 5	Trp	Ala	Asn	Ala	Ala 10	Gly	Leu	Tyr	Ala	Asp 15	Thr	
Val	Ala	Glu	Ser 20	Thr	Ile	Gly	Leu	Ile 25	Leu	Ala	Gln	Met	His 30	Met	His	
Ala	Thr	Thr 35	Arg	Leu	Ala	Lys	Ser 40	Trp	Ser	Val	Arg	Pro 45	Glu	Val	Glu	
Asn	Asn 50	Lys	Ser	Trp	Leu	His 55	Asp	Asn	Lys	Thr	Val 60	Ala	Ile	Leu	Gly	
Ala 65	Gly	Gly	Ile	Gly	Val 70	Arg	Leu	Leu	Glu	Met 75	Leu	Lys	Pro	Phe	Asn 80	
Val	Lys	Thr	Ile	Ala 85	Val	Asn	Asn	Ser	Gly 90	Arg	Pro	Val	Glu	Gly 95	Ala	
Asp	Glu	Thr	Phe 100	Ala	Met	Asp	Lys	Ala 105	Glu	His	Val	Trp	Ala 110	Glu	Ala	
Asp	Val	Phe 115	Val	Leu	Ile	Leu	Pro 120	Leu	Thr	Asp	Ala	Thr 125	Tyr	Gln	Ile	
Val	Asn 130	Ala	Glu	Thr	Leu	Gly 135	Lys	Met	Lys	Pro	Ser 140	Ala	Val	Val	Val	
Asn 145	Val	Gly	Arg	Gly	Pro 150	Leu	Ile	Asn	Thr	Asp 155	Asp	Leu	Val	Asp	Ala 160	
Leu	Asn	Asn	Gly	Thr 165	Ile	Ala	Gly	Ala	Ala 170	Leu	Asp	Val	Thr	Asp 175	Pro	
Glu	Pro	Leu	Pro 180	Asp	Ser	His	Pro	Leu 185	Trp	Glu	Met	Asp	Asn 190	Val	Val	

Ile Thr Pro His Thr Ala Asn Thr Asn Glu Arg Ile Arg Ala Leu Thr Gly Glu Leu Thr Leu Arg Asn Ile Glu Leu Phe Glu Ala Gly Glu Gln Met Ala Thr Glu Val Asp Val Val Ala Gly Tyr 230 <210> 171 <211> 792 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(769) <223> RXN02688 <400> 171 gtgcggaaga cagcacgccc caaaccgacc aactagctaa gctacacaag gcggacgaat 60 gggttcgcgc agcaagcgaa ggaaggaaac ttaactagcc atg gcc ggc cgg att Met Ala Gly Arg Ile 163 att ttg cta cga cac ggg cag act cac aac aac gtc aaa cac ctc ctg Ile Leu Leu Arg His Gly Gln Thr His Asn Asn Val Lys His Leu Leu 10 gac acc cgc cca cca gga gct gaa ctc acc gac ctg ggc cgt aaa caa 211 Asp Thr Arg Pro Pro Gly Ala Glu Leu Thr Asp Leu Gly Arg Lys Gln gcc ctt gaa gtt ggc cac gaa cta gcc acc tac tcc ggt gag cgc ctc 259 Ala Leu Glu Val Gly His Glu Leu Ala Thr Tyr Ser Gly Glu Arg Leu 307 gee cat gtg tac age tee ate gtg ttg ege gee caa caa ace gee gtg Ala His Val Tyr Ser Ser Ile Val Leu Arg Ala Gln Gln Thr Ala Val ctt gcc acc tct acc ttt gaa aaa gct cgc gac atg cag tcc ggt gcg 355 Leu Ala Thr Ser Thr Phe Glu Lys Ala Arg Asp Met Gln Ser Gly Ala 403 att cca ctc gac gtt gtg gaa ggc att cag gaa atc aac gtc ggc gac Ile Pro Leu Asp Val Val Glu Gly Ile Gln Glu Ile Asn Val Gly Asp 90 ttt gaa atg cgc ggc gat gaa gac cac atg aat tac tcc cgc gca 451 Phe Glu Met Arg Gly Asp Glu Glu Ala His Met Asn Tyr Ser Arg Ala 110 499 ctc aac ggc tgg ctt cac ggg gat cct gcc gct ggt ctt ccc ggc ggt Leu Asn Gly Trp Leu His Gly Asp Pro Ala Ala Gly Leu Pro Gly Gly 125 547 gag acc tac aaa gac gtg ctg aac cgc tac cag ccg act ctt gat cga Glu Thr Tyr Lys Asp Val Leu Asn Arg Tyr Gln Pro Thr Leu Asp Arg

135 140 145 atc atg gac agc cac gac ctt gac gac gac ggc gac gtt gcc gtt gtc 595 Ile Met Asp Ser His Asp Leu Asp Asp Asp Asp Val Ala Val Val ago cao ggo gco gto ato cgo ato gtg gca aca cao gca act ggt gtg 643 Ser His Gly Ala Val Ile Arg Ile Val Ala Thr His Ala Thr Gly Val gat ecc aac ttt geg tte aac acc tac etg gge aac tge ege tte gtg 691 Asp Pro Asn Phe Ala Phe Asn Thr Tyr Leu Gly Asn Cys Arg Phe Val 739 qtq ctq qaq cca aac ggt aag aaa ttc agc caa tgg gat gtt gtg cgc Val Leu Glu Pro Asn Gly Lys Lys Phe Ser Gln Trp Asp Val Val Arg 205 200 789 tgg act gac agc cca ctg cca tgg cag gag taattgagac caaaggctcg Trp Thr Asp Ser Pro Leu Pro Trp Gln Glu 792 gat <210> 172 <211> 223 <212> PRT <213> Corynebacterium glutamicum <400> 172 Met Ala Gly Arg Ile Ile Leu Leu Arg His Gly Gln Thr His Asn Asn Val Lys His Leu Leu Asp Thr Arg Pro Pro Gly Ala Glu Leu Thr Asp Leu Gly Arg Lys Gln Ala Leu Glu Val Gly His Glu Leu Ala Thr Tyr 40 Ser Gly Glu Arg Leu Ala His Val Tyr Ser Ser Ile Val Leu Arg Ala Gln Gln Thr Ala Val Leu Ala Thr Ser Thr Phe Glu Lys Ala Arg Asp Met Gln Ser Gly Ala Ile Pro Leu Asp Val Val Glu Gly Ile Gln Glu Ile Asn Val Gly Asp Phe Glu Met Arg Gly Asp Glu Glu Ala His Met Asn Tyr Ser Arg Ala Leu Asn Gly Trp Leu His Gly Asp Pro Ala Ala Gly Leu Pro Gly Gly Glu Thr Tyr Lys Asp Val Leu Asn Arg Tyr Gln Pro Thr Leu Asp Arg Ile Met Asp Ser His Asp Leu Asp Asp Asp Arg

Asp Val Ala Val Val Ser His Gly Ala Val Ile Arg Ile Val Ala Thr His Ala Thr Gly Val Asp Pro Asn Phe Ala Phe Asn Thr Tyr Leu Gly 185 Asn Cys Arg Phe Val Val Leu Glu Pro Asn Gly Lys Lys Phe Ser Gln 200 Trp Asp Val Val Arg Trp Thr Asp Ser Pro Leu Pro Trp Gln Glu 215 <210> 173 <211> 336 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(313) <223> RXN03087 <400> 173 gttgccgcca gccgttccag ggcgcttgag ctggtcagcg acatcgcaat gatcaaccag 60 gaatacctgg aaaagagctg atattgatag ggtttaagtc atg aag atc tac gca Met Lys Ile Tyr Ala 1 163 cct ttt gct gga atc gtc cac tat ttt gtc gat gaa ggc gat ccc gtg Pro Phe Ala Gly Ile Val His Tyr Phe Val Asp Glu Gly Asp Pro Val 20 10 gaa acc ggc atg caa ctg gga acg gta gaa acc atc aaa ctc gag gca 211 Glu Thr Gly Met Gln Leu Gly Thr Val Glu Thr Ile Lys Leu Glu Ala 25 30 cca atc atg gca ccg gga cct ggc atc gta gct aag gtt tct ttt gat 259 Pro Ile Met Ala Pro Gly Pro Gly Ile Val Ala Lys Val Ser Phe Asp 40 45 gat ttc tcc gac gtc acc ggc ggc gat gaa ctc ctc gaa ttg gag gca 307 Asp Phe Ser Asp Val Thr Gly Gly Asp Glu Leu Glu Leu Glu Ala 55 60 336 aag aac taatgggtca aacccgcatc att Lys Asn 70 <210> 174 <211> 71 <212> PRT <213> Corynebacterium glutamicum <400> 174 Met Lys Ile Tyr Ala Pro Phe Ala Gly Ile Val His Tyr Phe Val Asp 15 Glu Gly Asp Pro Val Glu Thr Gly Met Gln Leu Gly Thr Val Glu Thr

30

25

20

Ile Lys Leu Glu Ala Pro Ile Met Ala Pro Gly Pro Gly Ile Val Ala Lys Val Ser Phe Asp Asp Phe Ser Asp Val Thr Gly Gly Asp Glu Leu Leu Glu Leu Glu Ala Lys Asn <210> 175 <211> 310 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(310) <223> RXN03186 <400> 175 ttcgtgcact tcggcgtgtc acaattaggt acgaccaaga atgggaccgg gaaaccggga 60 cgtataaacg aaataaaaca ttccaacagg aggtgtggaa atg gcc gat caa gca Met Ala Asp Gln Ala aaa ctt ggt ggc aag ccc tcg gat gac tct aac ttc gcg atg atc cgc 163 Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn Phe Ala Met Ile Arg 10 15 gat ggc gtg gca tct tat ttg aac gac tca gat ccg gag gag acc aac 211 Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Asn 25 30 259 gag tgg atg gat tca ctc gac gga tta ctc cag gag tct tct cca gaa Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln Glu Ser Ser Pro Glu 45 cgt gct cgt tac ctc atg ctt cgt ttg ctt gag cgt gca tct gca aag 307 Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys 60 65 310 cgc Arg 70 <210> 176 <211> 70 <212> PRT <213> Corynebacterium glutamicum Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp 25 30

Pro Glu Glu Thr Asn Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln Glu Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys Arg <210> 177 <211> 302 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(279) <223> RXN03187 <400> 177 gtt gca gtg tct gac ttc tcc act gat ctg cca aac cag atc cgt gaa 48 Val Ala Val Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu tgg gtc cca ggc gac tac acc gtt ctc ggt gca gat ggc ttc ggt ttc Trp Val Pro Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe 20 tot gat acc ege eca get get ege tte tte aac ate gae get gag 144 Ser Asp Thr Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu 35 tcc att qtt qtt qca qtq ctg aac tcc ctg gca cgc gaa ggc aag atc 192 Ser Ile Val Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile 55 50 240 gac gtc tcc gtt gct gct cag gct gct gag aag ttc aag ttg gat gat Asp Val Ser Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp 70 75 65 cct acg agt gtt tcc gta gat cca aac gct cct gag gaa taaatcacct 289 Pro Thr Ser Val Ser Val Asp Pro Asn Ala Pro Glu Glu 85 302 caagggacag ata <210> 178 <211> 93 <212> PRT <213> Corynebacterium glutamicum Val Ala Val Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu Trp Val Pro Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe

Ser Asp Thr Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu

Ser Ile Val Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile 55 Asp Val Ser Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp Pro Thr Ser Val Ser Val Asp Pro Asn Ala Pro Glu Glu 85 <210> 179 <211> 1953 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1930) <223> RXN02591 <400> 179 atgtqtccqt tqtctcacct aaagttttaa ctagttctgt atctgaaagc tacgctaggg 60 ggcgagaact ctgtcgaatg acacaaaatc tggagaagta atg act act gct gca Met Thr Thr Ala Ala 1 atc agg ggc ctt cag ggc gag gcg ccg acc aag aat aag gaa ctg ctg 163 Ile Arg Gly Leu Gln Gly Glu Ala Pro Thr Lys Asn Lys Glu Leu Leu 15 10 aac tgg atc gca gac gcc gtc gag ctc ttc cag cct gag gct gtt gtg 211 Asn Trp Ile Ala Asp Ala Val Glu Leu Phe Gln Pro Glu Ala Val Val 25 30 ttc gtt gat gga tcc cag gct gag tgg gat cgc atg gcg gag gat ctt 259 Phe Val Asp Gly Ser Gln Ala Glu Trp Asp Arg Met Ala Glu Asp Leu 40 gtt qaa gcc ggt acc ctc atc aag ctc aac gag gaa aag cgt ccg aac 307 Val Glu Ala Gly Thr Leu Ile Lys Leu Asn Glu Glu Lys Arg Pro Asn 55 355 age tac cta get egt tee aac cea tet gae gtt geg ege gtt gag tee Ser Tyr Leu Ala Arg Ser Asn Pro Ser Asp Val Ala Arg Val Glu Ser 70 75 403 cgc acc ttc atc tgc tcc gag aag gaa gaa gat gct ggc cca acc aac Arg Thr Phe Ile Cys Ser Glu Lys Glu Glu Asp Ala Gly Pro Thr Asn 90 100 451 aac tgg gct cca cca cag gca atg aag gac gaa atg tcc aag cat tac Asn Trp Ala Pro Pro Gln Ala Met Lys Asp Glu Met Ser Lys His Tyr 115 105 110 499 gct ggt tcc atg aag ggg cgc acc atg tac gtc gtg cct ttc tgc atg Ala Gly Ser Met Lys Gly Arg Thr Met Tyr Val Val Pro Phe Cys Met 120 125

ggt cca a Gly Pro I 135	tc agc gat le Ser Asp	ccg gac Pro Asp 140	cct aag Pro Lys	ctt ggt Leu Gly	gtg cag Val Gln 145	ctc act Leu Thr	gac Asp	547
tcc gag to Ser Glu T 150	ac gtt gtc yr Val Val	atg tcc Met Ser 155	atg cgc Met Arg	atc atg Ile Met 160	acc cgc Thr Arg	atg ggt Met Gly	att Ile 165	595
gaa gcg c Glu Ala L	tg gac aag eu Asp Lys 170	atc ggc Ile Gly	gcg aac Ala Asn	ggc agc Gly Ser 175	ttc gtc Phe Val	agg tgc Arg Cys 180	ctc Leu	643
	tt ggt gct al Gly Ala 185							691
Pro Cys A	ac gac acc sn Asp Thr 00	Lys Tyr						739
	cc tac ggt er Tyr Gly							787
	ac gca ctg 'yr Ala Leu							835
tgg atg g Trp Met A	ct gag cac la Glu His 250	atg ctc Met Leu	atc ctg Ile Leu	aag ctg Lys Leu 255	atc aac Ile Asn	cca gag Pro Glu 260	ggc Gly	883
	ac cac atc yr His Ile 265							931
Asn Leu A	cc atg atc la Met Ile 80	Thr Pro					3	979
	gac gac atc asp Asp Ile		Leu Lys		Glu Asp			1027
gca gtt a Ala Val A 310	ac cca gaa sn Pro Glu	aat ggt Asn Gly 315	ttc ttc Phe Phe	ggt gtt Gly Val 320	gct cca Ala Pro	ggc acc Gly Thr	aac Asn 325	1075
	cc aac cca Ser Asn Pro 330							1123
	hec aac gtg hr Asn Val 345							1171
Gly Met A	gac ggc gac Asp Gly Asp 860	Ala Pro						1219

gac tgg acc Asp Trp Thr	cca gag tcc Pro Glu Ser	gac gaa aac Asp Glu Asn 380	gct gct cac Ala Ala His 385	cct aac tcc Pro Asn Ser	cgt 1267 Arg
tac tgc gta Tyr Cys Val 390	gca atc gac Ala Ile Asp 395	cag tcc cca Gln Ser Pro	gca gca gca Ala Ala Ala 400	cct gag ttc Pro Glu Phe	aac 1315 Asn 405
gac tgg gaa Asp Trp Glu	ggc gtc aag Gly Val Lys 410	atc gac gca Ile Asp Ala	atc ctc ttc Ile Leu Phe 415	ggt gga cgt Gly Gly Arg 420	cgc 1363 Arg
Ala Asp Thr					
acc atg gtt Thr Met Val 440	ggt gca ctg Gly Ala Leu	ctc gca tcc Leu Ala Sex 445	ggt cag acc Gly Gln Thr	gca gct tcc Ala Ala Ser 450	gca 1459 Ala
gaa gca aag Glu Ala Lys 455	gtc ggc aca Val Gly Thr	ctc cgc cac Leu Arg His 460	gac cca atg Asp Pro Met 465	gca atg ctc Ala Met Leu	cca 1507 Pro
ttc att ggc Phe Ile Gly 470	tac aac gct Tyr Asn Ala 475	ggt gaa tac Gly Glu Tyr	ctg cag aac Leu Gln Asn 480	tgg att gac Trp Ile Asp	atg 1555 Met 485
ggt aac aag Gly Asn Lys	ggt ggc gac Gly Gly Asp 490	aag atg cca Lys Met Pro	tcc atc ttc Ser Ile Phe 495	ctg gtc aac Leu Val Asn 500	tgg 1603 Trp
Phe Arg Arg			ctg tgg cct Leu Trp Pro		
aac tct cgc Asn Ser Arg 520	gtt ctg aag Val Leu Lys	tgg gtc ato Trp Val Ile 525	gac cgc atc Asp Arg Ile	gaa ggc cac Glu Gly His 530	gtt 1699 Val
ggc gca gac Gly Ala Asp 535	gag acc gtt Glu Thr Val	gtt gga cac Val Gly His 540	acc gct aag Thr Ala Lys 545	gcc gaa gac Ala Glu Asp	ctc 1747 Leu
			gag gat gtc Glu Asp Val 560		
acc gct cct Thr Ala Pro	gca gag cag Ala Glu Gln 570	tgg gca aac Trp Ala Asr	gac gtt gaa Asp Val Glu 575	gac aac gcc Asp Asn Ala 580	gag 1843 Glu
Tyr Leu Thr			cct gca gag Pro Ala Glu		
			gca gct cac Ala Ala His		ac 1940
gcttaagaac t	gc				1953

<210> 180 <211> 610 <212> PRT <213> Corynebacterium glutamicum <400> 180

Met Thr Thr Ala Ala Ile Arg Gly Leu Gln Gly Glu Ala Pro Thr Lys
1 5 10 15

Asn Lys Glu Leu Leu Asn Trp Ile Ala Asp Ala Val Glu Leu Phe Gln
20 25 30

Pro Glu Ala Val Val Phe Val Asp Gly Ser Gln Ala Glu Trp Asp Arg
35 40 45

Met Ala Glu Asp Leu Val Glu Ala Gly Thr Leu Ile Lys Leu Asn Glu 50 55 60

Glu Lys Arg Pro Asn Ser Tyr Leu Ala Arg Ser Asn Pro Ser Asp Val 65 70 75 80

Ala Arg Val Glu Ser Arg Thr Phe Ile Cys Ser Glu Lys Glu Glu Asp 85 90 95

Ala Gly Pro Thr Asn Asn Trp Ala Pro Pro Gln Ala Met Lys Asp Glu
100 105 110

Met Ser Lys His Tyr Ala Gly Ser Met Lys Gly Arg Thr Met Tyr Val 115 120 125

Val Pro Phe Cys Met Gly Pro Ile Ser Asp Pro Asp Pro Lys Leu Gly 130 135 140

Val Gln Leu Thr Asp Ser Glu Tyr Val Val Met Ser Met Arg Ile Met 145 150 155 160

Thr Arg Met Gly Ile Glu Ala Leu Asp Lys Ile Gly Ala Asn Gly Ser 165 170 175

Phe Val Arg Cys Leu His Ser Val Gly Ala Pro Leu Glu Pro Gly Gln 180 185 190

Glu Asp Val Ala Trp Pro Cys Asn Asp Thr Lys Tyr Ile Thr Gln Phe 195 200 205

Pro Glu Thr Lys Glu Ile Trp Ser Tyr Gly Ser Gly Tyr Gly Gly Asn 210 215 220

Ala Ile Leu Ala Lys Lys Cys Tyr Ala Leu Arg Ile Ala Ser Val Met 225 230 235 240

Ala Arg Glu Glu Gly Trp Met Ala Glu His Met Leu Ile Leu Lys Leu 245 250 255

Ile Asn Pro Glu Gly Lys Ala Tyr His Ile Ala Ala Ala Phe Pro Ser 260 265 270

Ala Cys Gly Lys Thr Asn Leu Ala Met Ile Thr Pro Thr Ile Pro Gly 275 280 285

Trp	Thr 290	Ala	Gln	Val	Val	Gly 295	Asp	Asp	Ile	Ala	Trp 300	Leu	Lys	Leu	Arg
Glu 305	Asp	Gly	Leu	Tyr	Ala 310	Val	Asn	Pro	Glu	Asn 315	Gly	Phe	Phe	Gly	Val 320
Ala	Pro	Gly	Thr	Asn 325	Tyr	Ala	Ser	Asn	Pro 330	Ile	Ala	Met	Lys	Thr 335	Met
Glu	Pro	Gly	Asn 340	Thr	Leu	Phe	Thr	Asn 345	Val	Ala	Leu	Thr	Asp 350	Asp	Gly
Asp	Ile	Trp 355	Trp	Glu	Gly	Met	Asp 360	Gly	Asp	Ala	Pro	Ala 365	His	Leu	Ile
Asp	Trp 370	Met	Gly	Asn	Asp	Trp 375	Thr	Pro	Glu	Ser	Asp 380	Glu	Asn	Ala	Ala
His 385	Pro	Asn	Ser	Arg	Tyr 390	Cys	Val	Ala	Ile	Asp 395	Gln	Ser	Pro	Ala	Ala 400
Ala	Pro	Glu	Phe	Asn 405	Asp	Trp	Glu	Gly	Val 410	Lys	Ile	Asp	Ala	Ile 415	Leu
Phe	Gly	Gly	Arg 420	Arg	Ala	Asp	Thr	Val 425	Pro	Leu	Val	Thr	Gln 430	Thr	Tyr
Asp	Trp	Glu 435	His	Gly	Thr	Met	Val 440	Gly	Ala	Leu	Leu	Ala 445	Ser	Gly	Gln
Thr	Ala 450	Ala	Ser	Ala	Glu	Ala 455	Lys	Val	Gly	Thr	Leu 460	Arg	His	Asp	Pro
Met 465	Ala	Met	Leu	Pro	Phe 470	Ile	Gly	Tyr	Asn	Ala 475	Gly	Glu	Tyr	Leu	Gln 480
Asn	Trp	Ile	Asp	Met 485	Gly	Asn	Lys	Gly	Gly 490	Asp	Lys	Met	Pro	Ser 495	Ile
Phe	Leu	Val	Asn 500	Trp	Phe	Arg	Arg	Gly 505	Glu	Asp	Gly	Arg	Phe 510	Leu	Trp
Pro	Gly	Phe 515	Gly	Asp	Asn	Ser	Arg 520	Val	Leu	Lys	Trp	Val 525	Ile	Asp	Arg
Ile	Glu 530	Gly	His	Val	Gly	Ala 535	Asp	Glu	Thr	Val	Val 540	Gly	His	Thr	Ala
Lys 545	Ala	Glu	Asp	Leu	Asp 550	Leu	Asp	Gly	Leu	Asp 555	Thr	Pro	Ile	Glu	Asp 560
Val	Lys	Glu	Ala	Leu 565	Thr	Ala	Pro	Ala	Glu 570	Gln	Trp	Ala	Asn	Asp 575	Val
Glu	Asp	Asn	Ala 580	Glu	Tyr	Leu	Thr	Phe 585	Leu	Gly	Pro	Arg	Val 590	Pro	Ala
Glu	Val	His 595	Ser	Gln	Phe	Asp	Ala 600	Leu	Lys	Ala	Arg	Ile 605	Ser	Ala	Ala

His Ala 610

<210> 181 <211> 1305 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(1282) <223> RXS01260 <400> 181 ctaaacgtgg gctgcattcc ttccaaagtc tctgatcaaa aacgctgaag ttgcccatac 60 ctttacccat gagaagaaga ccttcggcat caatggcgaa gtg acc ttc aac tat Val Thr Phe Asn Tyr gag gat gct cac aag cgt tcc cgt ggc gtt tcc gac aag atc gtt gga 163 Glu Asp Ala His Lys Arg Ser Arg Gly Val Ser Asp Lys Ile Val Gly 10 ggc gtt cat tac ttg atg aag aag aac aag atc atc gaa att cat ggt 211 Gly Val His Tyr Leu Met Lys Lys Asn Lys Ile Ile Glu Ile His Gly ctt gga aac ttc aag gat gct aag act ctt gag gtc acc gac ggt aag 259 Leu Gly Asn Phe Lys Asp Ala Lys Thr Leu Glu Val Thr Asp Gly Lys 45 gat gct ggc aag acc atc acc ttt gat gac tgc atc atc gca acc ggt 307 Asp Ala Gly Lys Thr Ile Thr Phe Asp Asp Cys Ile Ile Ala Thr Gly tcg gta gtc aac acc ctc cgt ggc gtt gac ttc tca gag aac gtt gtg 355 Ser Val Val Asn Thr Leu Arg Gly Val Asp Phe Ser Glu Asn Val Val 403 tct ttt gaa gag cag att ctt aac cct gtt gcg cca aag aag atg gtc Ser Phe Glu Glu Gln Ile Leu Asn Pro Val Ala Pro Lys Lys Met Val att gtt ggt gca ggc gca att gga atg gaa ttc gcc tac gtt ctt ggt 451 Ile Val Gly Ala Gly Ala Ile Gly Met Glu Phe Ala Tyr Val Leu Gly 110 aac tac ggt gta gat gta acc gtc atc gag ttc atg gat cgt gtg ctt 499 Asn Tyr Gly Val Asp Val Thr Val Ile Glu Phe Met Asp Arg Val Leu 125 547 cca aat gaa gat gct gaa gtc tcc aag gtt att gca aag gcc tac aag Pro Asn Glu Asp Ala Glu Val Ser Lys Val Ile Ala Lys Ala Tyr Lys 140 aag atg ggc gtt aag ctt ctt cct ggc cat gca acc act gct gtt cgg 595 Lys Met Gly Val Lys Leu Pro Gly His Ala Thr Thr Ala Val Arg 155 160

gac aac go Asp Asn Gl		Val Glu							643
aag aca ga Lys Thr Gl	ag act ctt Lu Thr Let 185	act gtt Thr Val	gat cga Asp Arg 190	gtc ato Val Met	g gtt to : Val Se	c gtt er Val 195	ggt Gly	ttc Phe	691
cgt cca co Arg Pro Ai 20	rg Val Glu	gga ttt Gly Phe	ggt ctt Gly Leu 205	gaa aac Glu Asr	act gg Thr Gl 21	y Val	aag Lys	ctc Leu	739
acc gag co Thr Glu Ai 215									787
gat ggc at Asp Gly II 230					a Lys Le				835
cac gtc go		Gln Gly							883
gca gaa ad Ala Glu Th				Met Met					931
ttc tgc as Phe Cys As 28						u Glu			979
aag gag aa Lys Glu Ly 295									1027
tct gca as Ser Ala As 310					Thr As				1075
aag atc gt Lys Ile Va		Ala Glu				y Ala			1123
gtt gga go Val Gly Al									1171
aac tgg ga Asn Trp As						l His			1219
cca acg ct Pro Thr Le 375									1267
cac atg at His Met II 390		_	cac ctcg	ttggcc c	etg				1305

<210> 182

<211> 394

<212> PRT

<213> Corynebacterium glutamicum

<400> 182

Val Thr Phe Asn Tyr Glu Asp Ala His Lys Arg Ser Arg Gly Val Ser 1 $$ 10 $$ 15

Asp Lys Ile Val Gly Gly Val His Tyr Leu Met Lys Lys Asn Lys Ile 20 25 30

Ile Glu Ile His Gly Leu Gly Asn Phe Lys Asp Ala Lys Thr Leu Glu 35 40 45

Val Thr Asp Gly Lys Asp Ala Gly Lys Thr Ile Thr Phe Asp Asp Cys 50 55 60

Ile Ile Ala Thr Gly Ser Val Val Asn Thr Leu Arg Gly Val Asp Phe 65 70 75 80

Ser Glu Asn Val Val Ser Phe Glu Glu Gln Ile Leu Asn Pro Val Ala 85 90 95

Pro Lys Lys Met Val Ile Val Gly Ala Gly Ala Ile Gly Met Glu Phe 100 105 110

Ala Tyr Val Leu Gly Asn Tyr Gly Val Asp Val Thr Val Ile Glu Phe 115 120 125

Met Asp Arg Val Leu Pro Asn Glu Asp Ala Glu Val Ser Lys Val Ile 130 135 140

Ala Lys Ala Tyr Lys Lys Met Gly Val Lys Leu Leu Pro Gly His Ala 145 150 155 160

Thr Thr Ala Val Arg Asp Asn Gly Asp Phe Val Glu Val Asp Tyr Gln 165 170 175

Lys Lys Gly Ser Asp Lys Thr Glu Thr Leu Thr Val Asp Arg Val Met 180 185 190

Val Ser Val Gly Phe Arg Pro Arg Val Glu Gly Phe Gly Leu Glu Asn 195 200 205

Thr Gly Val Lys Leu Thr Glu Arg Gly Ala Ile Glu Ile Asp Asp Tyr 210 215 220

Met Arg Thr Asn Val Asp Gly Ile Tyr Ala Ile Gly Asp Val Thr Ala 225 230 235 240

Lys Leu Gln Leu Ala His Val Ala Glu Ala Gln Gly Ile Val Ala Ala 245 250 255

Glu Thr Ile Ala Gly Ala Glu Thr Gln Thr Leu Gly Asp Tyr Met Met 260 265 270

Met Pro Arg Ala Thr Phe Cys Asn Pro Gln Val Ser Ser Phe Gly Tyr 275 280 285

Thr Glu Glu Gln Ala Lys Glu Lys Trp Pro Asp Arg Glu Ile Lys Val

290 295 300 Ala Ser Phe Pro Phe Ser Ala Asn Gly Lys Ala Val Gly Leu Ala Glu 310 Thr Asp Gly Phe Ala Lys Ile Val Ala Asp Ala Glu Phe Gly Glu Leu Leu Gly Ala His Leu Val Gly Ala Asn Ala Ser Glu Leu Ile Asn Glu Leu Val Leu Ala Gln Asn Trp Asp Leu Thr Thr Glu Glu Ile Ser Arg 360 Ser Val His Ile His Pro Thr Leu Ser Glu Ala Val Lys Glu Ala Ala 375 380 His Gly Ile Ser Gly His Met Ile Asn Phe 390 <210> 183 <211> 294 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(271) <223> RXS01261 <400> 183 gtgggtgttt ttcattttct tccactctaa aattaagtat ggaaaaccaa ccgcacccgg 60 atgcacgaca atgacccact aaacacgtat ccttgaatgc gtg act gaa cat tat Val Thr Glu His Tyr 1 gac gta gta gta ctc gga gcc ggc ccc ggt ggc tat gtc tcc gcc atc Asp Val Val Leu Gly Ala Gly Pro Gly Gly Tyr Val Ser Ala Ile 10 cgt gca gcg cag ctt ggc aag aag gtt gct gta att gag aag cag tac 211 Arg Ala Ala Gln Leu Gly Lys Lys Val Ala Val Ile Glu Lys Gln Tyr 25 tgg ggt ggt gtt tgc cta aac gtg ggc tgc att cct tcc aaa gtc tct 259 Trp Gly Gly Val Cys Leu Asn Val Gly Cys Ile Pro Ser Lys Val Ser 45 40 gat caa aaa cgc tgaagttgcc cataccttta ccc 294 Asp Gln Lys Arg 55 <210> 184 <211> 57 <212> PRT <213> Corynebacterium glutamicum <400> 184

Val Thr Glu His Tyr Asp Val Val Leu Gly Ala Gly Pro Gly Gly Tyr Val Ser Ala Ile Arg Ala Ala Gln Leu Gly Lys Lys Val Ala Val Ile Glu Lys Gln Tyr Trp Gly Gly Val Cys Leu Asn Val Gly Cys Ile Pro Ser Lys Val Ser Asp Gln Lys Arg <210> 185 <211> 1650 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1627) <223> RXA02640 <400> 185 accaacgacg acgccggtgt agcagatgta ttggagtggt ggttctaata ggtggtgtta 60 aaacactgct tagtggccca atacgtgcaa aaataaggcc atg aga atc tca aag Met Arg Ile Ser Lys 1 gcc aat gcg tat gtt gca gcg att gac caa ggc acc act tcc act cgg 163 Ala Asn Ala Tyr Val Ala Ala Ile Asp Gln Gly Thr Thr Ser Thr Arg 10 tgc atc ttc att gat gcc caa gga aaa gtg gtg tct tct gct tcc aag 211 Cys Ile Phe Ile Asp Ala Gln Gly Lys Val Val Ser Ser Ala Ser Lys 25 gag cac cgc caa atc ttc cca caa cag ggc tgg gta gag cac gat cct 259 Glu His Arg Gln Ile Phe Pro Gln Gln Gly Trp Val Glu His Asp Pro 40 50 gaa gaa att tgg gac aac att cga tct gtc gtc agc cag gcg atg gtc 307 Glu Glu Ile Trp Asp Asn Ile Arg Ser Val Val Ser Gln Ala Met Val 55 tcc att gac atc acc cca cac gag gtt gca tcg ctg gga gtc acc aac 355 Ser Ile Asp Ile Thr Pro His Glu Val Ala Ser Leu Gly Val Thr Asn 70 cag cgc gaa acc acc gtg gtg tgg gac aag cac acc ggc gaa cct gtc 403 Gln Arg Glu Thr Thr Val Val Trp Asp Lys His Thr Gly Glu Pro Val 90 tac aac gca atc gtg tgg caa gac acc cgc acc tct gac att tgc cta 451 Tyr Asn Ala Ile Val Trp Gln Asp Thr Arg Thr Ser Asp Ile Cys Leu 105 499 gag atc gcg ggc gaa gaa ggc cag gaa aag tgg ctt gac cgc acc ggc Glu Ile Ala Gly Glu Glu Gly Gln Glu Lys Trp Leu Asp Arg Thr Gly 120 125

														att Ile		547
gac Asp 150	aac Asn	gtt Val	gag Glu	gga Gly	gct Ala 155	cgc Arg	gaa Glu	cgc Arg	gcc Ala	gaa Glu 160	aag Lys	ggc Gly	gac Asp	ctt Leu	ttg Leu 165	595
														ggt Gly 180		643
														acc Thr		691
														gat Asp		739
														gag Glu		787
														acc Thr		835
														gcc Ala 260		883
														tac Tyr		931
														att Ile		979
		Ğİy	Leu	Leu	Ser		Ile	Āla		Gln	Arg	Glu		tcc Ser	_	1027
ccg Pro 310	gtc Val	tac Tyr	gcg Ala	ctg Leu	gaa Glu 315	ggt Gly	tcc Ser	gta Val	tcc Ser	atg Met 320	ggc Gly	ggt Gly	tcc Ser	ttg Leu	gtg Val 325	1075
														gcg Ala 340		1123
														gtt Val		1171
														gct Ala		1219

						acc Thr 380										1267
						aac Asn										1315
						ggc Gly										1363
						gac Asp										1411
						cgt Arg										1459
						ggt Gly 460										1507
						att Ile										1555
-	_	-	_		_	gaa Glu	_	-		-	-				_	1603
						cag Gln		tago	ctgat	tt 🤇	gggt	egge	ct tt	:a		1650
<212 <212)> 18 l> 5(2> PF 3> Co)9 RT	ebact	eri	um gj	lutan	nicum	n								·
)> 18 Arg		Ser	Lys 5	Ala	Asn	Ala	Tyr	Val 10	Ala	Ala	Ile	Asp	Gln 15	Gly	
Thr	Thr	Ser	Thr 20	Arg	Cys	Ile	Phe	Ile 25	Asp	Ala	Gln	Gly	Lys 30	Val	Val	
Ser	Ser	Ala 35	Ser	Lys	Glu	His	Arg 40	Gln	Ile	Phe	Pro	Gln 45	Gln	Gly	Trp	
Val	Glu 50	His	Asp	Pro	Glu	Glu 55	Ile	Trp	Asp	Asn	Ile 60	Arg	Ser	Val	Val	
_	~ 1			11- 1	0	T1 .	7	T1 -	m1	D		01	11-1	71.	C	

Ser Gln Ala Met Val Ser Ile Asp Ile Thr Pro His Glu Val Ala Ser

Leu Gly Val Thr Asn Gln Arg Glu Thr Thr Val Val Trp Asp Lys His

65

Thr Gly Glu Pro Val Tyr Asn Ala Ile Val Trp Gln Asp Thr Arg Thr Ser Asp Ile Cys Leu Glu Ile Ala Gly Glu Gly Gln Glu Lys Trp Leu Asp Arg Thr Gly Leu Leu Ile Asn Ser Tyr Pro Ser Gly Pro Lys 135 Ile Lys Trp Ile Leu Asp Asn Val Glu Gly Ala Arg Glu Arg Ala Glu 150 Lys Gly Asp Leu Leu Phe Gly Thr Met Asp Thr Trp Val Leu Trp Asn Leu Thr Gly Gly Val Arg Gly Asp Asp Gly Asp Asp Ala Ile His Val Thr Asp Val Thr Asn Ala Ser Arg Thr Leu Leu Met Asp Leu Arg Thr Gln Gln Trp Asp Pro Glu Leu Cys Glu Ala Leu Asp Ile Pro Met Ser 215 Met Leu Pro Glu Ile Arg Pro Ser Val Gly Glu Phe Arg Ser Val Arg 230 235 His Arg Gly Thr Leu Ala Asp Val Pro Ile Thr Gly Val Leu Gly Asp 250 Gln Gln Ala Ala Leu Phe Gly Gln Gly Gly Phe His Glu Gly Ala Ala Lys Asn Thr Tyr Gly Thr Gly Leu Phe Leu Leu Met Asn Thr Gly Thr Ser Leu Lys Ile Ser Glu His Gly Leu Leu Ser Thr Ile Ala Tyr Gln Arg Glu Gly Ser Ala Pro Val Tyr Ala Leu Glu Gly Ser Val Ser Met Gly Gly Ser Leu Val Gln Trp Leu Arg Asp Asn Leu Gln Leu Ile Pro 330 Asn Ala Pro Ala Ile Glu Asn Leu Ala Arg Glu Val Glu Asp Asn Gly Gly Val His Val Val Pro Ala Phe Thr Gly Leu Phe Ala Pro Arg Trp 360 Arg Pro Asp Ala Arg Gly Val Ile Thr Gly Leu Thr Arg Phe Ala Asn Arg Lys His Ile Ala Arg Ala Val Leu Glu Ala Asn Ala Phe Gln Thr 395 Arg Glu Val Val Asp Ala Met Ala Lys Asp Ala Gly Lys Ala Leu Glu 405 Ser Leu Arg Val Asp Gly Ala Met Val Glu Asn Asp Leu Leu Met Gln

425 420 430 Met Gln Ala Asp Phe Leu Gly Ile Asp Val Gln Arg Leu Glu Asp Val Glu Thr Thr Ala Val Gly Val Ala Phe Ala Ala Gly Leu Gly Ser Gly Phe Phe Lys Thr Thr Asp Glu Ile Glu Lys Leu Ile Ala Val Lys Lys Val Trp Asn Pro Asp Met Ser Glu Glu Glu Arg Glu Arg Arg Tyr Ala 495 Glu Trp Asn Arg Ala Val Glu His Ser Tyr Asp Gln Ala <210> 187 <211> 1119 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1096) <223> RXN01025 <400> 187 gggcagcagc ggcaggtttc caggaggttt ccatgcgggt ggcttgggac atgggctaac 60 ctgagacggt taaatatcgt tttcgaaagg tgggtttcgc gtg gtt tct gta agc Val Val Ser Val Ser gtg atg ggt gca ggt tcc tgg gga acc acg ttg gcc aag gtc ttc tct 163 Val Met Gly Ala Gly Ser Trp Gly Thr Thr Leu Ala Lys Val Phe Ser gat gct ggc aac gct gtg acg ttg tgg gcg agg cgg gaa gag ttg gca 211 Asp Ala Gly Asn Ala Val Thr Leu Trp Ala Arg Arg Glu Glu Leu Ala 30 259 age ace ate egt gae age cat gaa aac egt gat tae ett eeg ggg att Ser Thr Ile Arg Asp Ser His Glu Asn Arg Asp Tyr Leu Pro Gly Ile 307 acg ttg ccg gag tcg ctg cag gtc aca tca tcg gca acg gag gct tta Thr Leu Pro Glu Ser Leu Gln Val Thr Ser Ser Ala Thr Glu Ala Leu gag ggc gca gcc att gtg gtg ttg gcg att cct tcg cag gcg ttg cgt 355 Glu Gly Ala Ala Ile Val Val Leu Ala Ile Pro Ser Gln Ala Leu Arg ggc aat ttg gcg gag tgg aaa gag acg atc ccg cag gat gcg acc ttg 403 Gly Asn Leu Ala Glu Trp Lys Glu Thr Ile Pro Gln Asp Ala Thr Leu gtg tcc ttg gct aaa ggt att gaa aag ggc acg cac ctg cgg atg agt 451 Val Ser Leu Ala Lys Gly Ile Glu Lys Gly Thr His Leu Arg Met Ser

WO 01/00844	PCT/IB00/00943
-------------	----------------

105		110	115	
gaa gtg atc gcg gag Glu Val Ile Ala Glu 120				
ttg tcg ggg cca aac Leu Ser Gly Pro Asn 135				
gct acg gtg att gct Ala Thr Val Ile Ala 150	-	-		•
gct gca gtg gct gcg Ala Ala Val Ala Ala 170	Pro Tyr Phe		Thr Asn Thr	
gtg ggc act gaa atc Val Gly Thr Glu Ile 185				
tgt ggt att tcc cat Cys Gly Ile Ser His 200				
ttg att act cgt ggc Leu Ile Thr Arg Gly 215				_
ggt gcg gat gcg aag Gly Ala Asp Ala Lys 230				
gtg gct acg tgt tca Val Ala Thr Cys Ser 250	Ser Pro Leu		Arg Ser Phe	
cgt ttg ggt cag ggt Arg Leu Gly Gln Gly 265	•			
ggt cag gtt gcg gag Gly Gln Val Ala Glu 280				
gcc acc aag ctt ggt Ala Thr Lys Leu Gly 295				
gtg tgc cac cga gat Val Cys His Arg Asp 310				
ggc agg tct aag aag Gly Arg Ser Lys Lys 330	Ala Glu	cttagg ttgta	aagctt caa	1119

<210> 188 <211> 332

<212> PRT

<213> Corynebacterium glutamicum

<400> 188

Val Val Ser Val Ser Val Met Gly Ala Gly Ser Trp Gly Thr Thr Leu

1 5 10 15

Ala Lys Val Phe Ser Asp Ala Gly Asn Ala Val Thr Leu Trp Ala Arg 20 25 30

Arg Glu Glu Leu Ala Ser Thr Ile Arg Asp Ser His Glu Asn Arg Asp 35 40 45

Tyr Leu Pro Gly Ile Thr Leu Pro Glu Ser Leu Gln Val Thr Ser Ser 50 55 60

Ala Thr Glu Ala Leu Glu Gly Ala Ala Ile Val Val Leu Ala Ile Pro 65 70 75 80

Ser Gln Ala Leu Arg Gly Asn Leu Ala Glu Trp Lys Glu Thr Ile Pro 85 90 95

Gln Asp Ala Thr Leu Val Ser Leu Ala Lys Gly Ile Glu Lys Gly Thr 100 105 110

His Leu Arg Met Ser Glu Val Ile Ala Glu Val Thr Glu Ala Asp Pro 115 120 125

Ser Arg Ile Ala Val Leu Ser Gly Pro Asn Leu Ala Arg Glu Ile Ala 130 135 140

Glu Gly Gln Pro Ala Ala Thr Val Ile Ala Cys Pro Asp Glu Asn Arg 145 150 155 160

Ala Lys Leu Val Gln Ala Ala Val Ala Ala Pro Tyr Phe Arg Pro Tyr 165 170 175

Thr Asn Thr Asp Val Val Gly Thr Glu Ile Gly Gly Ala Cys Lys Asn 180 185 190

Val Ile Ala Leu Ala Cys Gly Ile Ser His Gly Tyr Gly Leu Gly Glu 195 200 205

Asn Thr Asn Ala Ser Leu Ile Thr Arg Gly Leu Ala Glu Ile Ala Arg 210 215 220

Leu Gly Ala Thr Leu Gly Ala Asp Ala Lys Thr Phe Ser Gly Leu Ala 225 230 235 240

Gly Met Gly Asp Leu Val Ala Thr Cys Ser Ser Pro Leu Ser Arg Asn 245 250 255

Arg Ser Phe Gly Glu Arg Leu Gly Gln Gly Glu Ser Leu Glu Lys Ala 260 265 270

Arg Glu Ala Thr Asn Gly Gln Val Ala Glu Gly Val Ile Ser Ser Gln 275 280 285

Ser Ile Phe Asp Leu Ala Thr Lys Leu Gly Val Glu Met Pro Ile Thr 290 295 300

Gln Ala Val Tyr Gly Val Cys His Arg Asp Met Lys Val Thr Asp Met 310 315 Ile Val Ala Leu Met Gly Arg Ser Lys Lys Ala Glu 325 330 <210> 189 <211> 1015 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1015) <223> FRXA01025 <400> 189 gggcagcagc ggcaggtttc cagraggttt ccatgcgggt ggcttggrac wtgggctaac 60 ctgaracggt taaatatcgt tttcgaaagg tgggtttcgc gtg gtt tct gta agc 115 Val Val Ser Val Ser 1 gtg atg ggt gca ggt tcc tgg gga acc acg ttg gcc aag gtc ttc tct Val Met Gly Ala Gly Ser Trp Gly Thr Thr Leu Ala Lys Val Phe Ser 10 15 gat get ggc aac gct gtg acg ttg tgg gcg agg cgg gaa gag ttg gca 211 Asp Ala Gly Asn Ala Val Thr Leu Trp Ala Arg Arg Glu Glu Leu Ala 25 35 30 age ace ate egt gae age cat gaa aac egt gat tae ett eeg ggg att 259 Ser Thr Ile Arg Asp Ser His Glu Asn Arg Asp Tyr Leu Pro Gly Ile 40 45 307 acg ttg ccg gag tcg ctg cag gtc aca tca tcg gca acg gag gct tta Thr Leu Pro Glu Ser Leu Gln Val Thr Ser Ser Ala Thr Glu Ala Leu 55 60 gag ggc gca gcc att gtg gtg ttg gcg att cct tcg cag gcg ttg cgt 355 Glu Gly Ala Ala Ile Val Val Leu Ala Ile Pro Ser Gln Ala Leu Arg 70 75 80 ggc aat ttg gcg gag tgg aaa gag acg atc ccg cag gat gcg acc ttg 403 Gly Asn Leu Ala Glu Trp Lys Glu Thr Ile Pro Gln Asp Ala Thr Leu 90 100 451 gtg tcc ttg gct aaa ggt att gaa aag ggc acg cac ctg cgg atg agt Val Ser Leu Ala Lys Gly Ile Glu Lys Gly Thr His Leu Arg Met Ser 105 gaa gtg atc gcg gag gtg acg gaa gcg gat cct tca cgc atc gcg gtg 499 Glu Val Ile Ala Glu Val Thr Glu Ala Asp Pro Ser Arg Ile Ala Val 125 120 130 547 ttg tcg ggg cca aac ctt gct cgt gag atc gcg gag ggg cag cct gca Leu Ser Gly Pro Asn Leu Ala Arg Glu Ile Ala Glu Gly Gln Pro Ala 135 140

gct acg gtg att gct tgc cct gat gaa aac cga gcg aaa ctt gtg cag

595

Ala Thr Val Ile Ala Cys Pro Asp Glu Asn Arg Ala Lys Leu Val Gln 150 155 160 165	
gct gca gtg gct gcg ccg tat ttc cgc ccg tac acc aac act gat gtg Ala Ala Val Ala Ala Pro Tyr Phe Arg Pro Tyr Thr Asn Thr Asp Val 170 175 180	643
gtg ggc act gaa atc ggt ggt gcg tgt aag aac gtc atc gcg ctg gcc Val Gly Thr Glu Ile Gly Gly Ala Cys Lys Asn Val Ile Ala Leu Ala 185 190 195	691
tgt ggt att tcc cat ggt tac ggc ctg ggt gag aac acc aat gca tcg Cys Gly Ile Ser His Gly Tyr Gly Leu Gly Glu Asn Thr Asn Ala Ser 200 205 210	739
ttg att act cgt ggc ctt gca gag atc gca cgc ctc ggt gcc aca ttg Leu Ile Thr Arg Gly Leu Ala Glu Ile Ala Arg Leu Gly Ala Thr Leu 215 220 225	787
ggt gcg gat gcg aag act ttt tct ggc ctt gcg gga atg ggc gac ttg Gly Ala Asp Ala Lys Thr Phe Ser Gly Leu Ala Gly Met Gly Asp Leu 230 235 240 245	835
gtg gct acg tgt tca tca ccg ctg tcg cgt aac cgc agc ttc ggt gag Val Ala Thr Cys Ser Ser Pro Leu Ser Arg Asn Arg Ser Phe Gly Glu 250 255 260	883
cgt ttg ggt cag ggt gaa tcc cta gag aag gct cgc gag gca acc aat Arg Leu Gly Gln Gly Glu Ser Leu Glu Lys Ala Arg Glu Ala Thr Asn 265 270 275	931
ggt cag gtt gcg gag ggt gtt att tcc tcg cag tcg att ttt gat ctt Gly Gln Val Ala Glu Gly Val Ile Ser Ser Gln Ser Ile Phe Asp Leu 280 285 290	979
gcc acc aag ctt ggt gtg gag atg ccg atc acc cag Ala Thr Lys Leu Gly Val Glu Met Pro Ile Thr Gln 295 300 305	1015
<210> 190 <211> 305 <212> PRT <213> Corynebacterium glutamicum	
<400> 190 Val Val Ser Val Ser Val Met Gly Ala Gly Ser Trp Gly Thr Thr Leu 1 5 10 15	
Ala Lys Val Phe Ser Asp Ala Gly Asn Ala Val Thr Leu Trp Ala Arg 20 25 30	
Arg Glu Glu Leu Ala Ser Thr Ile Arg Asp Ser His Glu Asn Arg Asp 35 40 45	
Tyr Leu Pro Gly Ile Thr Leu Pro Glu Ser Leu Gln Val Thr Ser Ser 50 55 60	
Ala Thr Glu Ala Leu Glu Gly Ala Ala Ile Val Val Leu Ala Ile Pro 65 70 75 80	

Ser Gln Ala Leu Arg Gly Asn Leu Ala Glu Trp Lys Glu Thr Ile Pro Gln Asp Ala Thr Leu Val Ser Leu Ala Lys Gly Ile Glu Lys Gly Thr 105 His Leu Arg Met Ser Glu Val Ile Ala Glu Val Thr Glu Ala Asp Pro 120 Ser Arg Ile Ala Val Leu Ser Gly Pro Asn Leu Ala Arg Glu Ile Ala Glu Gly Gln Pro Ala Ala Thr Val Ile Ala Cys Pro Asp Glu Asn Arg 150 Ala Lys Leu Val Gln Ala Ala Val Ala Ala Pro Tyr Phe Arg Pro Tyr Thr Asn Thr Asp Val Val Gly Thr Glu Ile Gly Gly Ala Cys Lys Asn Val Ile Ala Leu Ala Cys Gly Ile Ser His Gly Tyr Gly Leu Gly Glu Asn Thr Asn Ala Ser Leu Ile Thr Arg Gly Leu Ala Glu Ile Ala Arg Leu Gly Ala Thr Leu Gly Ala Asp Ala Lys Thr Phe Ser Gly Leu Ala 235 Gly Met Gly Asp Leu Val Ala Thr Cys Ser Ser Pro Leu Ser Arg Asn Arg Ser Phe Gly Glu Arg Leu Gly Gln Gly Glu Ser Leu Glu Lys Ala Arg Glu Ala Thr Asn Gly Gln Val Ala Glu Gly Val Ile Ser Ser Gln 280 Ser Ile Phe Asp Leu Ala Thr Lys Leu Gly Val Glu Met Pro Ile Thr 295 Gln 305 <210> 191 <211> 1809 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1786) <223> RXA01851 <400> 191 ttgtggcctt tttgcagggg aaacttattt aaataattca taagtaaaaa accgtcaatt 60 cacgatgtgg gttggcggtt ttcctattag gctcactttt atg acg agc gca cac Met Thr Ser Ala His

ttt gaa tcc cgc cgg att ggc cct ccg ctt cgc gat aat tat gac gtc 163 Phe Glu Ser Arg Arg Ile Gly Pro Pro Leu Arg Asp Asn Tyr Asp Val att gtg att ggc ggt ggt atc tca ggt gta cag att gcg cga cat gct 211 Ile Val Ile Gly Gly Ile Ser Gly Val Gln Ile Ala Arg His Ala caa ggc cgc ggt tta cgc act gtg atg ttt gag gcc aga gat tat tct 259 Gln Gly Arg Gly Leu Arg Thr Val Met Phe Glu Ala Arg Asp Tyr Ser 40 45 tct gga aca tca tcg aca acc tcc aag atg att cat ggt ggt ttg cgc 307 Ser Gly Thr Ser Ser Thr Thr Ser Lys Met Ile His Gly Gly Leu Arg 55 tat ttg gag cag tac gat ttc ggc gtg gtc cag gaa gcc gtg aag gaa Tyr Leu Glu Gln Tyr Asp Phe Gly Val Val Gln Glu Ala Val Lys Glu 80 ege egg tae eta ggt ate gee get eeg cat ttg gtg get eea ege agt 403 Arg Arg Tyr Leu Gly Ile Ala Ala Pro His Leu Val Ala Pro Arg Ser 90 95 100 ttc atg ctc acg gcg ttt gat tgg tca gag ccg aaa gcc cct atg ttg 451 Phe Met Leu Thr Ala Phe Asp Trp Ser Glu Pro Lys Ala Pro Met Leu 105 110 115 ggt gct ggt gtg gcg ttg tat gaa acg atg gcg tgg cag cgt aac cag 499 Gly Ala Gly Val Ala Leu Tyr Glu Thr Met Ala Trp Gln Arg Asn Gln 120 ggg caa tcg aag gaa aac cac tcg ccg cgt ttc cgg tgg att cct aaa 547 Gly Gln Ser Lys Glu Asn His Ser Pro Arq Phe Arq Trp Ile Pro Lys 135 aat gca ctg ctc aag gaa gtc ccg tgg ctt gac ccg gag ggc ttg aag Asn Ala Leu Leu Lys Glu Val Pro Trp Leu Asp Pro Glu Gly Leu Lys 150 155 gga gcg tgg cgc cac gat gat acg ttg aat ctc cat gca gaa cga ctc 643 Gly Ala Trp Arg His Asp Asp Thr Leu Asn Leu His Ala Glu Arg Leu 180 170 ctc ctc gcg gtg att aaa gct ttt gcg gca gat ggc gga acg gcg atc 691 Leu Leu Ala Val Ile Lys Ala Phe Ala Ala Asp Gly Gly Thr Ala Ile 185 aac cac gcc aaa gtc act cgc att ctc cgg aac gtg gaa gga ggc cgc 739 Asn His Ala Lys Val Thr Arg Ile Leu Arg Asn Val Glu Glu Gly Arg 200 787 gtc aag ggt gta gaa gtg act gat cag gtc acc aac acc acg cat gag Val Lys Gly Val Glu Val Thr Asp Gln Val Thr Asn Thr Thr His Glu 220 215 835 gtg aat gcc cct gtg gtg atc aac gct gcg ggt ccg tgg gtt gcg cag Val Asn Ala Pro Val Val Ile Asn Ala Ala Gly Pro Trp Val Ala Gln 235 230

gcg ttg Ala Leu	ggt gat Gly Asp	ttg gcg Leu Ala 250	gag g Glu V	gta a Val T	cc aachr Lys 255	s Leu	aag Lys	gtg Val	cgc Arg	caa Gln 260	tcc Ser	883
	gtg cat Val His 265	Leu Leu		Gly A								931
	cgt ggc Arg Gly 280		Gly 1									979
	acc ctt Thr Leu											1027
	gcg gct Ala Ala											1075
	tcg gta Ser Val					Arg						1123
	gtg ggt Val Gly 345	Val Arg	_	Leu V								1171
	tct cgc Ser Arg 360		Asp :									1219
	ttg gtg Leu Val	-			-					-		1267
	tac aag Tyr Lys			_					_			1315
	ccg ctg Pro Leu	_	Phe I	Asp S	er Ar	Gln	Met	Pro	Leu	-		1363
	ggc gcg Gly Ala 425	Tyr Glu		Val A								1411
	cac ccc His Pro 440		Asp V									1459
	ctg tat Leu Tyr											1507
	ccc gac Pro Asp											1555

gcg gcg cag gcc gtt ttt gct gtc gcc gag gag gcg gcc gtc gac ctg Ala Ala Gln Ala Val Phe Ala Val Ala Glu Glu Ala Ala Val Asp Leu 490 495 500	1603
gcg gac gtg ctg gat cgt cgc atc gtg ctc ggc acg ctg ggt tat gtg Ala Asp Val Leu Asp Arg Arg Ile Val Leu Gly Thr Leu Gly Tyr Val 505 510 515	1651
caa ccg gct gcc gtg cgt gcg acg gcc gaa gca atg gcg cag gtc acc Gln Pro Ala Ala Val Arg Ala Thr Ala Glu Ala Met Ala Gln Val Thr 520 525 530	1699
ggg tgg tca gct gag ctt atc gac gcc cag tgc cag tcc tac ctc gcc Gly Trp Ser Ala Glu Leu Ile Asp Ala Gln Cys Gln Ser Tyr Leu Ala 535 540 545	1747
aag caa gac aaa atc caa gcc gtg tta aag ccg tac cgc taacactccg Lys Gln Asp Lys Ile Gln Ala Val Leu Lys Pro Tyr Arg 550 555 560	1796
tcatcgacac cgg	1809
<210> 192 <211> 562 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 192 Met Thr Ser Ala His Phe Glu Ser Arg Arg Ile Gly Pro Pro Leu Arg 1</pre>	
Asp Asn Tyr Asp Val Ile Val Ile Gly Gly Gly Ile Ser Gly Val Gln 20 25 30	
Ile Ala Arg His Ala Gln Gly Arg Gly Leu Arg Thr Val Met Phe Glu 35 40 45	
Ala Arg Asp Tyr Ser Ser Gly Thr Ser Ser Thr Thr Ser Lys Met Ile 50 55 60	
His Gly Gly Leu Arg Tyr Leu Glu Gln Tyr Asp Phe Gly Val Val Gln 65 70 75 80	
Glu Ala Val Lys Glu Arg Arg Tyr Leu Gly Ile Ala Ala Pro His Leu 85 90 95	
Val Ala Pro Arg Ser Phe Met Leu Thr Ala Phe Asp Trp Ser Glu Pro 100 105 110	
Lys Ala Pro Met Leu Gly Ala Gly Val Ala Leu Tyr Glu Thr Met Ala 115 120 125	
Trp Gln Arg Asn Gln Gly Gln Ser Lys Glu Asn His Ser Pro Arg Phe 130 135 140	
Arg Trp Ile Pro Lys Asn Ala Leu Leu Lys Glu Val Pro Trp Leu Asp 145 150 155 160	
Pro Glu Gly Leu Lys Gly Ala Trp Arg His Asp Asp Thr Leu Asn Leu 165 170 175	

His Ala Glu Arg Leu Leu Ala Val Ile Lys Ala Phe Ala Ala Asp Gly Gly Thr Ala Ile Asn His Ala Lys Val Thr Arg Ile Leu Arg Asn Val Glu Glu Gly Arg Val Lys Gly Val Glu Val Thr Asp Gln Val Thr Asn Thr Thr His Glu Val Asn Ala Pro Val Val Ile Asn Ala Ala Gly Pro Trp Val Ala Gln Ala Leu Gly Asp Leu Ala Glu Val Thr Lys Leu Lys Val Arg Gln Ser Lys Gly Val His Leu Leu Thr Gly Asp Leu Gly Ser Gln Ser Gly Val Phe Val Arg Gly Lys Asn Gly Lys His Val Ile 280 Val Asn Pro Trp Met Gly Arg Thr Leu Ile Gly Pro Thr Asp Thr Met Ile Asp Gly Asp Ala Asp Asp Ala Ala Ala Asp Glu Ser Asp Ile Asp 310 315 Leu Leu Glu Thr Ile Asp Ser Val Arg Ala Thr Pro Leu Asp Arg 330 Lys Glu Ile Ile Ser Thr Leu Val Gly Val Arg Pro Leu Val Asp Asp 345 Gly Thr Asp Thr Tyr Thr Ser Ser Arg Arg Phe Asp Ile Ser Asp His Ala Asn Val Gly Ile Asp Gly Leu Val Ser Val Ser Gly Gly Lys Trp Thr Thr Ser Arg Val Met Gly Tyr Lys Val Ile Glu His Val Val Glu His Gln Ala Ala Val Leu Pro Pro Leu Arg His Phe Asp Ser Arg Gln Met Pro Leu Ser Thr Ser Phe Gly Ala Tyr Glu Ser Val Ala Asp Ser 425 Phe Glu Ser Ala Leu Arg Ser His Pro Glu Leu Asp Val Asp Asp Glu 440 Ile Arg Val His Leu Ala Arg Leu Tyr Gly Thr Glu His Glu Lys Val 455 Leu Asp Leu Val Ala Lys Gln Pro Asp Leu Gly Arg Arg Leu Asp Pro Asp Asn Leu Asp Ile Ala Ala Gln Ala Val Phe Ala Val Ala Glu Glu 485 490

Ala Ala Val Asp Leu Ala Asp Val Leu Asp Arg Arg Ile Val Leu Gly 505 Thr Leu Gly Tyr Val Gln Pro Ala Ala Val Arg Ala Thr Ala Glu Ala 520 Met Ala Gln Val Thr Gly Trp Ser Ala Glu Leu Ile Asp Ala Gln Cys 535 530 Gln Ser Tyr Leu Ala Lys Gln Asp Lys Ile Gln Ala Val Leu Lys Pro 550 . Tyr Arg <210> 193 <211> 900 <212> DNA <213> Corvnebacterium glutamicum <220> <221> CDS <222> (101)..(877) <223> RXA01242 <400> 193 cgccggcaac caaatgaggc ttttgggcgt tggacagtga gacaatgggt aagaaattcg 60 gacatattta gtaaattggc tttttgcttt aaggagtgac atg tac gca gag gag 115 Met Tyr Ala Glu Glu cgc cgt cga cag att gcc tca tta acg gca gtt gag gga cgt gta aat Arg Arg Arg Gln Ile Ala Ser Leu Thr Ala Val Glu Gly Arg Val Asn qtc aca gaa tta gcg ggc cga ttc gat gtc act gca gag acg att cga 211 Val Thr Glu Leu Ala Gly Arg Phe Asp Val Thr Ala Glu Thr Ile Arg 30 259 cga gac ctt gcg gtg cta gac cgc gag gga att gtt cac cgc gtt cac Arg Asp Leu Ala Val Leu Asp Arg Glu Gly Ile Val His Arg Val His ggt ggc gca gta gcc acc caa tct ttc caa acc aca gag ttg agc ttg 307 Gly Gly Ala Val Ala Thr Gln Ser Phe Gln Thr Thr Glu Leu Ser Leu gat act cgt ttc agg tct gca tcg tca gca aag tac tcc att gcc aag 355 Asp Thr Arg Phe Arg Ser Ala Ser Ser Ala Lys Tyr Ser Ile Ala Lys gca gcg atg cag ttc ctg ccc gct gag cat ggc gga ctg ttc ctc gat 403 Ala Ala Met Gln Phe Leu Pro Ala Glu His Gly Gly Leu Phe Leu Asp gcg gga act act gtt act gct ttg gcc gat ctc att tct gag cat cct Ala Gly Thr Thr Val Thr Ala Leu Ala Asp Leu Ile Ser Glu His Pro 105 110

agc tcc aag cag tgg tcg atc gtg acc aac tgc ctc ccc atc gca ctt Ser Ser Lys Gln Trp Ser Ile Val Thr Asn Cys Leu Pro Ile Ala Leu 120 125 130	499
aat ctg gcc aac gcc ggg ctt gat gat gtc cag ctg ctt gga gga agc Asn Leu Ala Asn Ala Gly Leu Asp Asp Val Gln Leu Leu Gly Gly Ser 135 140 145	547
gtt cgc gcg atc acc cag gct gtt gtg ggt gac act gcg ctt cgt act Val Arg Ala Ile Thr Gln Ala Val Val Gly Asp Thr Ala Leu Arg Thr 150 155 160 165	595
ctc gcg ctg atg cgt gcg gat gta gtg ttc atc ggc acc aac gcg ttg Leu Ala Leu Met Arg Ala Asp Val Val Phe Ile Gly Thr Asn Ala Leu 170 175 180	643
acg ttg gat cac gga ttg tct acg gcc gat tcc caa gag gct gcc atg Thr Leu Asp His Gly Leu Ser Thr Ala Asp Ser Gln Glu Ala Ala Met 185 190 195	691
aaa tct gcg atg atc acc aac gcc cac aag gtg gtg ttg tgt gac Lys Ser Ala Met Ile Thr Asn Ala His Lys Val Val Leu Cys Asp 200 205 210	739
tcc acc aag atg ggc acc gac tac ctc gtg agc ttt ggc gca atc agc Ser Thr Lys Met Gly Thr Asp Tyr Leu Val Ser Phe Gly Ala Ile Ser 215 220 225	787
gat atc gat gtg gtg gtc acc gat gcg ggt gca cca gca agt ttc gtt Asp Ile Asp Val Val Val Thr Asp Ala Gly Ala Pro Ala Ser Phe Val 230 235 240 245	835
gag cag ttg cga gaa cgc gat gta gaa gtt gtg att gca gaa Glu Gln Leu Arg Glu Arg Asp Val Glu Val Val Ile Ala Glu 250 255	877
tgattcttac agtcactgca agt	900
<210> 194 <211> 259 <212> PRT <213> Corynebacterium glutamicum	
<400> 194	
Met Tyr Ala Glu Glu Arg Arg Gln Ile Ala Ser Leu Thr Ala Val 1 5 10 15	
Glu Gly Arg Val Asn Val Thr Glu Leu Ala Gly Arg Phe Asp Val Thr 20 25 30	
Ala Glu Thr Ile Arg Arg Asp Leu Ala Val Leu Asp Arg Glu Gly Ile 35 40 45	
Val His Arg Val His Gly Gly Ala Val Ala Thr Gln Ser Phe Gln Thr 50 55 60	
Thr Glu Leu Ser Leu Asp Thr Arg Phe Arg Ser Ala Ser Ser Ala Lys 65 70 75 80	
Tyr Ser Ile Ala Lys Ala Ala Met Gln Phe Leu Pro Ala Glu His Gly	

90 85 95 Gly Leu Phe Leu Asp Ala Gly Thr Thr Val Thr Ala Leu Ala Asp Leu 105 Ile Ser Glu His Pro Ser Ser Lys Gln Trp Ser Ile Val Thr Asn Cys Leu Pro Ile Ala Leu Asn Leu Ala Asn Ala Gly Leu Asp Asp Val Gln Leu Leu Gly Gly Ser Val Arg Ala Ile Thr Gln Ala Val Val Gly Asp 150 Thr Ala Leu Arg Thr Leu Ala Leu Met Arg Ala Asp Val Val Phe Ile Gly Thr Asn Ala Leu Thr Leu Asp His Gly Leu Ser Thr Ala Asp Ser Gln Glu Ala Ala Met Lys Ser Ala Met Ile Thr Asn Ala His Lys Val 200 Val Val Leu Cys Asp Ser Thr Lys Met Gly Thr Asp Tyr Leu Val Ser 215 Phe Gly Ala Ile Ser Asp Ile Asp Val Val Thr Asp Ala Gly Ala 230 235 Pro Ala Ser Phe Val Glu Gln Leu Arg Glu Arg Asp Val Glu Val Val 250 Ile Ala Glu <210> 195 <211> 969 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(946) <223> RXA02288 <400> 195 aacaacaatc taacgccatc atgttataaa aaagcaagac ctaacataaa aatgttagaa 60 115 agtgctggat ctaacaacat ttccgtggta actttttcac atg tcc caa gtg att Met Ser Gln Val Ile ccc qcc agc tca caa gaa aag cgt cgt gag cgc atc gtt tct tat gtc 163 Pro Ala Ser Ser Gln Glu Lys Arg Arg Glu Arg Ile Val Ser Tyr Val 15 211 acc cqt cat qqa ttc qct cqt qtt qaa qca tta gct gag ctt ttt gag Thr Arg His Gly Phe Ala Arg Val Glu Ala Leu Ala Glu Leu Phe Glu

30

25

														gca Ala		259
aat Asn	ttg Leu 55	gtg Val	gag Glu	cgc Arg	att Ile	agg Arg 60	ggt Gly	ggc Gly	gcg Ala	cgt Arg	tcg Ser 65	gtg Val	tcg Ser	ccg Pro	tcg Ser	307
atg Met 70	agt Ser	gag Glu	ttg Leu	gca Ala	gtg Val 75	gag Glu	cag Gln	cgt Arg	cgg Arg	cat His 80	ttg Leu	cat His	cgc Arg	act Thr	gtt Val 85	355
aaa Lys	gag Glu	gcg Ala	ttg Leu	tgt Cys 90	act Thr	gca Ala	gca Ala	gca Ala	cgg Arg 95	ttg Leu	att Ile	ccg Pro	gag Glu	ggc Gly 100	gct Ala	403
gtg Val	gtg Val	gcg Ala	att Ile 105	gat Asp	gat Asp	tcc Ser	acc Thr	acg Thr 110	ttg Leu	gag Glu	tct Ser	ttg Leu	gtt Val 115	gag Glu	aag Lys	451
ttg Leu	ccg Pro	cag Gln 120	cgg Arg	tca Ser	cca Pro	tcg Ser	gcg Ala 125	ttg Leu	att Ile	acg Thr	cat His	tct Ser 130	ttg Leu	aag Lys	aca Thr	499
														ttg Leu		547
gcg Ala 150	tgt Cys	gcg Ala	gga Gly	ttg Leu	tat Tyr 155	ttc Phe	gcg Ala	gag Glu	act Thr	gat Asp 160	tct Ser	ttc Phe	ttg Leu	ggc Gly	aag Lys 165	595
gca Ala	act Thr	tca Ser	gcg Ala	cag Gln 170	ttg Leu	aat Asn	gag Glu	ctg Leu	tcg Ser 175	gcg Ala	gat Asp	att Ile	tct Ser	ttt Phe 180	gtt Val	643
tct Ser	acg Thr	act Thr	gcg Ala 185	gtg Val	cgc Arg	gct Ala	acg Thr	ggg Gly 190	gag Glu	gtt Val	ccg Pro	gcg Ala	ctg Leu 195	ttt Phe	cat His	691
cct Pro	gat Asp	atg Met 200	gag Glu	gct Ala	gct Ala	Asp	acg Thr 205	Lys	cgg Arg	gcg Ala	ttg Leu	att Ile 210	Gly	att Ile	ggt Gly	739
														gct Ala		787
														att Ile		835
cag Gln	cag Gln	tgc Cys	acc Thr	cgt Arg 250	gag Glu	cag Gln	cgg Arg	gat Asp	ctt Leu 255	ttg Leu	cgt Arg	aat Asn	tcg Ser	cgc Arg 260	gcg Ala	883
														acc Thr		931
acg	gaa	gag	gat	ttt	taa	gatg	gct 1	tggi	ttcti	tg ga	за					969

Thr Glu Glu Asp Phe 280

<210> 196

<211> 282

<212> PRT

<213> Corynebacterium glutamicum

<400> 196

Met Ser Gln Val Ile Pro Ala Ser Ser Gln Glu Lys Arg Arg Glu Arg
1 5 10 15

Ile Val Ser Tyr Val Thr Arg His Gly Phe Ala Arg Val Glu Ala Leu 20 25 30

Ala Glu Leu Phe Glu Val Ser Ala Met Thr Ile His Arg Asp Leu Glu 35 40 45

Ala Leu Ala Ala Asp Asn Leu Val Glu Arg Ile Arg Gly Gly Ala Arg 50 55 60

Ser Val Ser Pro Ser Met Ser Glu Leu Ala Val Glu Gln Arg Arg His 65 70 75 80

Leu His Arg Thr Val Lys Glu Ala Leu Cys Thr Ala Ala Ala Arg Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ile Pro Glu Gly Ala Val Ala Ile Asp Asp Ser Thr Thr Leu Glu 100 105 110

Ser Leu Val Glu Lys Leu Pro Gln Arg Ser Pro Ser Ala Leu Ile Thr 115 120 125

His Ser Leu Lys Thr Met Ala Asp His Arg Val Arg Ala Gly Met Ser 130 135 140

Asp Ile Arg Leu Ile Ala Cys Ala Gly Leu Tyr Phe Ala Glu Thr Asp 145 150 155 160

Ser Phe Leu Gly Lys Ala Thr Ser Ala Gln Leu Asn Glu Leu Ser Ala 165 170 175

Asp Ile Ser Phe Val Ser Thr Thr Ala Val Arg Ala Thr Gly Glu Val 180 185 190

Pro Ala Leu Phe His Pro Asp Met Glu Ala Ala Asp Thr Lys Arg Ala 195 200 . 205

Leu Ile Gly Ile Gly Ser Val Arg Val Leu Val Val Asp Ser Ser Lys 210 215 220

Phe Gly Ser Ala Gly Val Phe Lys Val Ala Ser Ile Glu Glu Phe Asp 225 230 235 240

His Ile Ile Ile Asp Gln Gln Cys Thr Arg Glu Gln Arg Asp Leu Leu 245 250 255

Arg Asn Ser Arg Ala Gln Ile His Val Ile Asp His Asn Gly Asp Glu 260 265 270

Ile Leu Asp Thr Pro Thr Glu Glu Asp Phe 275 280

<210> 197 <211> 887 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(864) <223> RXN01891 <400> 197 ggt ggc cac tat ggt ttg cct ttc gct cgc tcc act gtc ctc ttc tac Gly Gly His Tyr Gly Leu Pro Phe Ala Arg Ser Thr Val Leu Phe Tyr 10 tac aac aag gat ctg tgg gct aag gct ggc ctg gaa gat cgt ggc cca 96 Tyr Asn Lys Asp Leu Trp Ala Lys Ala Gly Leu Glu Asp Arg Gly Pro 144 qaq tca tgg gaa gag ttc tcc gag tgg ggt cca aag ctg cag gaa gcg Glu Ser Trp Glu Glu Phe Ser Glu Trp Gly Pro Lys Leu Gln Glu Ala 192 atg gac agt ggt ttc gca cac ggt tgg gga gat gca acc aac tac ctt Met Asp Ser Gly Phe Ala His Gly Trp Gly Asp Ala Thr Asn Tyr Leu 50 240 tet tgg act tte gaa gge eea atg tgg tee ete gge gge aae tae tet Ser Trp Thr Phe Glu Gly Pro Met Trp Ser Leu Gly Gly Asn Tyr Ser gaa ggt tgg gag tcc cgt ctg act acc cca gag acc atc cgt gca gtt 288 Glu Gly Trp Glu Ser Arg Leu Thr Thr Pro Glu Thr Ile Arg Ala Val 90 qaq tqq ctc aag tcc acc gtt gat gaa ggt ttc gca acc gtc tcc acc 336 Glu Trp Leu Lys Ser Thr Val Asp Glu Gly Phe Ala Thr Val Ser Thr 105 384 gac gtc acc aac gag ttc gca acc ggc ctg atc ggt tca tgc atc cag Asp Val Thr Asn Glu Phe Ala Thr Gly Leu Ile Gly Ser Cys Ile Gln 120 tee acc ggt gat etg tet teg gtt gee gge get gea age tte gae tgg 432 Ser Thr Gly Asp Leu Ser Ser Val Ala Gly Ala Ala Ser Phe Asp Trp ggc gta gca gca ctt cct aac cca acc ggc gag ggc gct tgc cca acc 480 Gly Val Ala Ala Leu Pro Asn Pro Thr Gly Glu Gly Ala Cys Pro Thr 150 155 ggt ggc gca ggc ctg gga atc cca tct ggc atc tct gag cag cgt cag 528 Gly Gly Ala Gly Leu Gly Ile Pro Ser Gly Ile Ser Glu Gln Arg Gln 576 gac aac gcc ctg aag ttc atc gac ttc ctc acc aac gcc gcg aac act Asp Asn Ala Leu Lys Phe Ile Asp Phe Leu Thr Asn Ala Ala Asn Thr

185 190 180 ggc tac tgg tcc cgc gag acc ggt tat gtt cca gtt cgt aag gat gct 624 Gly Tyr Trp Ser Arg Glu Thr Gly Tyr Val Pro Val Arg Lys Asp Ala 195 200 gca tot gat oca gat cac gca gca tto oto gag gag aac oot gca tac 672 Ala Ser Asp Pro Asp His Ala Ala Phe Leu Glu Glu Asn Pro Ala Tyr 210 aac gtt gca gtg gag cag ctt cct gat acc cgt tcc cag gac aac ttc 720 Asn Val Ala Val Glu Gln Leu Pro Asp Thr Arg Ser Gln Asp Asn Phe cgc gtg ctg ctg cca aac ggt gac cgc acc atc ggt gac gca ctg gag 768 Arg Val Leu Leu Pro Asn Gly Asp Arg Thr Ile Gly Asp Ala Leu Glu aag atc tgc ctg act ggt gca gac atc gat gtc acc ctg gct gag gtt 816 Lys Ile Cys Leu Thr Gly Ala Asp Ile Asp Val Thr Leu Ala Glu Val gag acc aag ctg aac acc atc tac acc cgc gac atc gaa cca ctt att Glu Thr Lys Leu Asn Thr Ile Tyr Thr Arg Asp Ile Glu Pro Leu Ile 275 280 887 taatccgagc acttcagcta cac <210> 198 <211> 288 <212> PRT <213> Corynebacterium glutamicum <400> 198 Gly Gly His Tyr Gly Leu Pro Phe Ala Arg Ser Thr Val Leu Phe Tyr Tyr Asn Lys Asp Leu Trp Ala Lys Ala Gly Leu Glu Asp Arg Gly Pro Glu Ser Trp Glu Glu Phe Ser Glu Trp Gly Pro Lys Leu Gln Glu Ala Met Asp Ser Gly Phe Ala His Gly Trp Gly Asp Ala Thr Asn Tyr Leu Ser Trp Thr Phe Glu Gly Pro Met Trp Ser Leu Gly Gly Asn Tyr Ser Glu Gly Trp Glu Ser Arg Leu Thr Thr Pro Glu Thr Ile Arg Ala Val Glu Trp Leu Lys Ser Thr Val Asp Glu Gly Phe Ala Thr Val Ser Thr 100 Asp Val Thr Asn Glu Phe Ala Thr Gly Leu Ile Gly Ser Cys Ile Gln 120

Ser Thr Gly Asp Leu Ser Ser Val Ala Gly Ala Ala Ser Phe Asp Trp

135

130

Gly Val Ala Ala Leu Pro Asn Pro Thr Gly Glu Gly Ala Cys Pro Thr 160

Gly Gly Ala Gly Leu Gly 11e Pro Ser Gly 11e Ser Glu Gln Arg Gln 175

Asp Asn Ala Leu Lys Phe Ile Asp Phe Leu Thr Asn Ala Ala Ala Asn Thr 190

Gly Tyr Trp Ser Arg Glu Thr Gly Tyr Val Pro Val Arg Lys Asp Ala 210

Ala Ser Asp Pro Asp His Ala Ala Ala Phe Leu Glu Glu Asn Pro Ala Tyr 220

Asn Val Ala Val Glu Gln Leu Pro Asp Arg Thr Arg Ser Gln Asp Asn Phe 235

Lys Ile Cys Leu Thr Gly Ala Asp Ile Asp Val Thr Leu Ala Glu Val Glu Thr Lys Leu Asn Thr Ile Tyr Thr Arg Asp Ile Glu Pro Leu Ile 285

Thr Asp Ash Ile Glu Pro Leu Ile Tyr Thr Arg Asp Ile Glu Pro Leu Ile 285

<210> 199 <211> 842 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(819) <223> FRXA01891 <400> 199 tac tac aac aag gat ctg tgg gct aag gct ggc ctg gaa gat cgt ggc 48 Tyr Tyr Asn Lys Asp Leu Trp Ala Lys Ala Gly Leu Glu Asp Arg Gly 96 cca gag tca tgg gaa gag ttc tcc gag tgg ggt cca aag ctg cag gaa Pro Glu Ser Trp Glu Glu Phe Ser Glu Trp Gly Pro Lys Leu Gln Glu gcg atg gac agt ggt ttc gca cac ggt tgg gga gat gca acc aac tac 144 Ala Met Asp Ser Gly Phe Ala His Gly Trp Gly Asp Ala Thr Asn Tyr 40 192 ctt tct tqq act ttc gaa ggc cca atg tgg tcc ctc ggc ggc aac tac Leu Ser Trp Thr Phe Glu Gly Pro Met Trp Ser Leu Gly Gly Asn Tyr 240 tet gaa ggt tgg gag tee egt etg act ace eea gag ace ate egt gea Ser Glu Gly Trp Glu Ser Arg Leu Thr Thr Pro Glu Thr Ile Arg Ala

65					70					75					80	
gtt q Val (gag Glu	tgg Trp	ctc Leu	aag Lys 85	tcc Ser	acc Thr	gtt Val	gat Asp	gaa Glu 90	ggt Gly	ttc Phe	gca Ala	acc Thr	gtc Val 95	tcc Ser	288
acc (336
cag t Gln S	tcc Ser	acc Thr 115	ggt Gly	gat Asp	ctg Leu	tct Ser	tcg Ser 120	gtt Val	gcc Ala	ggc Gly	gct Ala	gca Ala 125	agc Ser	ttc Phe	gac Asp	384
tgg (432
acc of Thr (ggt Gly	ggc Gly	gca Ala	ggc Gly	ctg Leu 150	gga Gly	atc Ile	cca Pro	tct Ser	ggc Gly 155	atc Ile	tct Ser	gag Glu	cag Gln	cgt Arg 160	480
cag o																528
act o	ggc Gly	tac Tyr	tgg Trp 180	tcc Ser	cgc Arg	gag Glu	acc Thr	ggt Gly 185	tat Tyr	gtt Val	cca Pro	gtt Val	cgt Arg 190	aag Lys	gat Asp	576
gct (gca Ala	624
tac a	aac Asn 210	gtt Val	gca Ala	gtg Val	gag Glu	cag Gln 215	ctt Leu	cct Pro	gat Asp	acc Thr	cgt Arg 220	tcc Ser	cag Gln	gac Asp	aac Asn	672
ttc (Phe 2 225																720
gag (Glu)	aag Lys	atc Ile	tgc Cys	ctg Leu 245	act Thr	ggt Gly	gca Ala	gac Asp	atc Ile 250	gat Asp	gtc Val	acc Thr	ctg Leu	gct Ala 255	gag Glu	768
gtt (Val (816
att Ile	taat	ccga	agc a	actto	cagct	ia ca	ac									842

<210> 200

<211> 273

<212> PRT

<213> Corynebacterium glutamicum

<400> 200

Tyr Tyr Asn Lys Asp Leu Trp Ala Lys Ala Gly Leu Glu Asp Arg Gly 15

Pro Glu Ser Trp Glu Glu Phe Ser Glu Trp Gly Pro Lys Leu Gln Glu 30

Ala Met Asp Ser Gly Phe Ala His Gly Trp Gly Asp Ala Thr Asn Tyr 40

Leu Ser Trp Thr Phe Glu Gly Pro Met Trp Ser Leu Gly Gly Asn Tyr 50

Ser Glu Gly Trp Glu Ser Arg Leu Thr Thr Pro Glu Thr Ile Arg Ala 65

Val Glu Trp Leu Lys Ser Thr Val Asp Glu Gly Phe Ala Thr Val Ser 90

Thr Asp Val Thr Asn Glu Phe Ala Thr Gly Leu Ile Gly Ser Cys Ile 110

Gln Ser Thr Gly Asp Leu Ser Ser Val Ala Gly Ala Ala Ser Phe Asp 125

Trp Gly Val Ala Ala Leu Pro Asn Pro Thr Gly Glu Gly Ala Cys Pro 130

Thr Gly Gly Ala Gly Leu Gly Ile Pro Ser Gly Ile Ser Glu Gln Arg 145

Gln Asp Asn Ala Leu Lys Phe Ile Asp Phe Leu Thr Asn Ala Ala Asn 175

Thr Gly Tyr Trp Ser Arg Glu Thr Gly Tyr Val Pro Val Arg Lys Asp

Ala Ala Ser Asp Pro Asp His Ala Ala Phe Leu Glu Glu Asn Pro Ala 195 200 205

Tyr Asn Val Ala Val Glu Gln Leu Pro Asp Thr Arg Ser Gln Asp Asn 210 215 220

Phe Arg Val Leu Leu Pro Asn Gly Asp Arg Thr Ile Gly Asp Ala Leu 225 230 235 240

Glu Lys Ile Cys Leu Thr Gly Ala Asp Ile Asp Val Thr Leu Ala Glu 245 250 255

Val Glu Thr Lys Leu Asn Thr Ile Tyr Thr Arg Asp Ile Glu Pro Leu 260 265 270

Ile

<210> 201

<211> 776

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (7)..(753) <223> RXA02414

<400> 201 tttaccatg agt tac aac agc ccg tat aac acg aat ttc agc acc act 51 Met Ser Tyr Asn Ser Pro Tyr Asn Asn Thr Asn Phe Ser Thr Thr ggc gcg ttc caa cct gct ggt ggg ccg gtg aag ccg tgg aat aag ccc 99 Gly Ala Phe Gln Pro Ala Gly Gly Pro Val Lys Pro Trp Asn Lys Pro gat gcc agc ctg aat cag cag ctg aaa aac aaa tcc cgt gtg cgc aca 147 Asp Ala Ser Leu Asn Gln Gln Leu Lys Asn Lys Ser Arg Val Arg Thr ggt ctt acc atc gcc atc ggt tat gta gtg gtg att tgg gcg gtg cat 195 Gly Leu Thr Ile Ala Ile Gly Tyr Val Val Val Ile Trp Ala Val His ttg gca tcc atc gtc att gcg ctg ctc act ggc ttc aac ctg acc aac 243 Leu Ala Ser Ile Val Ile Ala Leu Leu Thr Gly Phe Asn Leu Thr Asn 291 ttt ggt att cat ccg ctg gat acc agt gca ctg tgg ggt att ttc acc Phe Gly Ile His Pro Leu Asp Thr Ser Ala Leu Trp Gly Ile Phe Thr tca ccg ctg ttg cat gga agc ttc agc cac ctc att gga aat acc gtt 339 Ser Pro Leu Leu His Gly Ser Phe Ser His Leu Ile Gly Asn Thr Val cca ggc ttt ata ttc agt ttc ctc atc ggt atg agt ggc aag cgc gtg 387 Pro Gly Phe Ile Phe Ser Phe Leu Ile Gly Met Ser Gly Lys Arg Val tte tgg gaa gte acg att ate gea ggt ete ate gge ggt ett ggt aca 435 Phe Trp Glu Val Thr Ile Ile Ala Gly Leu Ile Gly Gly Leu Gly Thr 135 tgg att ttc ggt gga atc ggc acc aac cac atc ggt gcg tcc ggc ctg 483 Trp Ile Phe Gly Gly Ile Gly Thr Asn His Ile Gly Ala Ser Gly Leu 150 att tat ggc tgg ctt ggc tac ctg atc gtg cgt gga att ttc aac aag 531 Ile Tyr Gly Trp Leu Gly Tyr Leu Ile Val Arg Gly Ile Phe Asn Lys gat att aaa cag ttc ctg ctt ggc ata gtt ttg gcg ttc att tac tcc 579 Asp Ile Lys Gln Phe Leu Leu Gly Ile Val Leu Ala Phe Ile Tyr Ser 627 ggt ttg ttc tgg ggt ctg cta cct act caa atc ggt gtg tcc tgg cag Gly Leu Phe Trp Gly Leu Leu Pro Thr Gln Ile Gly Val Ser Trp Gln 675 ggc cac ctt ttc ggt gca ctt ggt gga atc ggt gcg ggt gct ttt atc Gly His Leu Phe Gly Ala Leu Gly Gly Ile Gly Ala Gly Ala Phe Ile 215

							ttg Leu									723
							aga Arg			tagt	ttt	cac (ctago	egact	:a	773
cac																776
<212 <212)> 20 l> 24 2> PI 3> Co	19 RT	ebact	eri	um gl	lutar	nicum	n								
)> 2(Ser		Asn	Ser 5	Pro	Tyr	Asn	Asn	Thr 10	Asn	Phe	Ser	Thr	Thr 15	Gly	
Ala	Phe	Gln	Pro 20	Ala	Gly	Gly	Pro	Val 25	Lys	Pro	Trp	Asn	Lys 30	Pro	Asp	
Ala	Ser	Leu 35	Asn	Gln	Gln	Leu	Lys 40	Asn	Lys	Ser	Arg	Val 45	Arg	Thr	Gly	
Leu	Thr 50	Ile	Ala	Ile	Gly	Tyr 55	Val	Val	Val	Ile	Trp 60	Ala	Val	His	Leu	
Ala 65	Ser	Ile	Val	Ile	Ala 70	Leu	Leu	Thr	Gly	Phe 75	Asn	Leu	Thr	Asn	Phe 80	
Gly	Ile	His	Pro	Leu 85	Asp	Thr	Ser	Ala	Leu 90	Trp	Gly	Ile	Phe	Thr 95	Ser	
Pro	Leu	Leu	His 100	Gly	Ser	Phe	Ser	His 105	Leu	Ile	Gly	Asn	Thr 110	Val	Pro	
Gly	Phe	Ile 115	Phe	Ser	Phe	Leu	Ile 120	Gly	Met	Ser	Gly	Lys 125	Arg	Val	Phe	
Trp	Glu 130	Val	Thr	Ile	Ile	Ala 135	Gly	Leu	Ile	Gly	Gly 140	Leu	Gly	Thr	Trp	
Ile 145	Phe	Gly	Gly	Ile	Gly 150	Thr	Asn	His	Ile	Gly 155	Ala	Ser	Gly	Leu	Ile 160	
Tyr	Gly	Trp	Leu	Gly 165	Tyr	Leu	Ile	Val	Arg 170	Gly	Ile	Phe	Asn	Lys 175	Asp	
Ile	Lys	Gln	Phe 180	Leu	Leu	Gly	Ile	Val 185	Leu	Ala	Phe	Ile	Tyr 190	Ser	Gly	
Leu	Phe	Trp 195	Gly	Leu	Leu	Pro	Thr 200	Gln	Ile	Gly	Val	Ser 205	Trp	Gln	Gly	
His	Leu 210	Phe	Gly	Ala	Leu	Gly 215	Gly	Ile	Gly	Ala	Gly 220	Ala	Phe	Ile	Ala	
Ser 225	Asp	Asp	Pro	Ala	Ala 230	Leu	Lys	Ala	Lys	Lys 235	Gln	Gln	Lys	Lys	Leu 240	

Glu Lys Gln Gln Arg Gln Arg Gly Leu 245

<210> 203 <211> 840 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(817) <223> RXN01580 <400> 203 cggtaaacgc ctcattaaag tccaatgcca tgctcataac actaacagtt aaccgtgcgg 60 tcaactttgc tccctatcct taaaaagccc acagaaaagg atg tat aag aat atg 115 Met Tyr Lys Asn Met 1 cac att gtt gcc cat cgc ggt gcg gaa gat ctg cac ctc gaa aac acc 163 His Ile Val Ala His Arg Gly Ala Glu Asp Leu His Leu Glu Asn Thr 10 atg acc gct ttc cag gct gcc gcg ccc gct gac gct ttt gag ctg gat 211 Met Thr Ala Phe Gln Ala Ala Ala Pro Ala Asp Ala Phe Glu Leu Asp 25 atc cac gcc acc gct gac aat cag gtc gtc gtt atc cac gac cgc acc 259 Ile His Ala Thr Ala Asp Asn Gln Val Val Val Ile His Asp Arg Thr 40 45 gca gcg cgt gtt gcc gcg cca gat tcc ctg cac cgc gac acc ccg gtt 307 Ala Ala Arg Val Ala Ala Pro Asp Ser Leu His Arg Asp Thr Pro Val 55 60 355 gcg cgc tta agc gcc gcg caa atc aag gag ata acg ctt atc gac gga Ala Arg Leu Ser Ala Ala Gln Ile Lys Glu Ile Thr Leu Ile Asp Gly 70 75 tcc ccc gta cca acc ctg gag gaa gtt cta ctc cag acg agc ctg ccg 403 Ser Pro Val Pro Thr Leu Glu Glu Val Leu Gln Thr Ser Leu Pro 90 ate caa qtq qaa ate aaa tet qee qqt qca qtt cca gca gcc gca gca 451 Ile Gln Val Glu Ile Lys Ser Ala Gly Ala Val Pro Ala Ala Ala Ala 105 tta ttg cag aaa tac cca gag cac ctg gag cgc ctg ctg ttc atc agt 499 Leu Leu Gln Lys Tyr Pro Glu His Leu Glu Arg Leu Leu Phe Ile Ser 120 ttc atc gat gca gca ctg gtg gaa atc gtg gat cga ctg cca gaa gct Phe Ile Asp Ala Ala Leu Val Glu Ile Val Asp Arg Leu Pro Glu Ala 135 cgc qtq qga atc ttg cgc gat gcg tcc atg gat gat ctg cgc att ctt Arq Val Gly Ile Leu Arg Asp Ala Ser Met Asp Asp Leu Arg Ile Leu 155 160

gat tac Asp Ty:	atc Ile	ccg Pro	cta Leu 170	aaa Lys	aat Asn	gtg Val	ggc Gly	gcg Ala 175	atc Ile	ttg Leu	ccc Pro	tcg Ser	tgg Trp 180	aaa Lys	643
gca cta Ala Le															691
gtt ggo Val Gl															739
caa gc Gln Ala 21	Gly														787
gcg ccc Ala Pro 230									taaa	ataai	ct a	agtga	acca	ga	837
ctg															840
<210> 3 <211> 3 <212> 3 <213> 6	239 PRT	ebact	teri	um gi	lutar	nicum	n								
<400> :		Asn	Met	His	Ile	Val	Ala	His	Arg	Gly	Ala	Glu	Asp	Leu	
1			. 5					10	Ī	-			15		
His Le	ı Glu	Asn 20	Thr	Met	Thr	Ala	Phe 25	Gln	Ala	Ala	Ala	Pro 30	Ala	Asp	
Ala Ph	e Glu 35	Leu	Asp	Ile	His	Ala 40	Thr	Ala	Asp	Asn	Gln 45	Val	Val	Val	
Ile Hi	_	Arg	Thr	Ala	Ala 55	Arg	Val	Ala	Ala	Pro 60	Asp	Ser	Leu	His	
Arg Asy 65	Thr	Pro	Val	Ala 70			Ser		Ala 75	Gln	Ile	Lys	Glu	Ile 80	
Thr Le	ılle	Asp	Gly 85	Ser	Pro	Val	Pro	Thr 90	Leu	Glu	Glu	Val	Leu 95	Leu	
Gln Th	Ser	Leu 100	Pro	Ile	Gln	Val	Glu 105	Ile	Lys	Ser	Ala	Gly 110	Ala	Val	
Pro Ala	Ala 115	Ala	Ala	Leu	Leu	Gln 120	Lys	Tyr	Pro	Glu	His 125	Leu	Glu	Arg	
	. Dha	Tle	Ser	Phe	Ile	Asp	Ala	Ala	Leu		Glu	Ile	Val	Asp	
Leu Le					135					140					
)			Arg 150		Gly	Ile	Leu	Arg 155		Ala	Ser	Met	Asp 160	

165 170 175 Leu Pro Ser Trp Lys Ala Leu Asn Val Ala Ser Ile Ala Asp Leu His 185 Thr Lys Gly Ile Lys Val Gly Cys Trp Thr Ile Arg Asp Glu Asn Ala 200 Phe Gly Ile Ala Gln Gln Ala Gly Val Asp Tyr Ala Thr Val Ser Asp Pro Ser Arg Phe Leu Ala Pro Ser Pro Ala Gly Glu Leu His Trp 230 235 <210> 205 <211> 1314 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1291) <223> RXA01436 <400> 205 qcctaaacaa accaqtcaac qacctttccc qtqqcqcaac aqtccctqac atcqtcaaca 60 cagtagccat cacagcaatt caggcaggag gacgcagcta atg gca ttg gca ctt Met Ala Leu Ala Leu 1 gtt ttg aac tcc ggt tca tct tcc atc aaa ttc cag ctg gtc aac ccc 163 Val Leu Asn Ser Gly Ser Ser Ser Ile Lys Phe Gln Leu Val Asn Pro 10 15 gaa aac tot goo ato gao gag coa tat gtt tot ggt ott gtg gag cag 211 Glu Asn Ser Ala Ile Asp Glu Pro Tyr Val Ser Gly Leu Val Glu Gln 25 att ggt gag cca aac ggc cgc atc gta ctc aaa ata gag ggt gaa aaa Ile Gly Glu Pro Asn Gly Arg Ile Val Leu Lys Ile Glu Gly Glu Lys 40 tat acc eta gag aca ece ate gea gat eac tee gaa gge eta aac etg 307 Tyr Thr Leu Glu Thr Pro Ile Ala Asp His Ser Glu Gly Leu Asn Leu 55 355 gcg ttc gat ctc atg gac cag cac aac tgt ggt cct tcc caa ctg gaa Ala Phe Asp Leu Met Asp Gln His Asn Cys Gly Pro Ser Gln Leu Glu 70 ate ace gea gtt gga cae ege gtg gte cae gge gga ate ttg tte tee 403 Ile Thr Ala Val Gly His Arg Val Val His Gly Gly Ile Leu Phe Ser 100 90

att cca ctc gca cca ctg cac aac cct gca aac gtt gac ggc att gat 499

gca ccq qaa ctt atc act gat gaa atc gtg gaa atg atc cgc gat ctc

Ala Pro Glu Leu Ile Thr Asp Glu Ile Val Glu Met Ile Arg Asp Leu

105

451

115

Ile	Pro	Leu 120	Ala	Pro	Leu	His	Asn 125	Pro	Ala	Asn	Val	Asp 130	Gly	Ile	Asp	
	gct Ala 135															547
	ggt Gly															595
	aag Lys	_	_	_	-	-					-					643
	acc Thr															691
	ccc Pro															739
	tcc Ser 215															787
	atg Met															835
	gat Asp															883
	gat Asp			-		_	-			_	-		-	-		931
	tcc Ser		_		-						-					979
	gat Asp 295															1027
-	cgc Arg						-		_	_			-	_		1075
	gtg Val															1123
	gcc Ala															1171
_	aac Asn	-	_			_			_	_				_	-	1219

360 365 370

tcc aag gtg aag gtg ttt gtt att cca act aat gaa gag tta gct atc 1267 Ser Lys Val Lys Val Phe Val Ile Pro Thr Asn Glu Glu Leu Ala Ile 375 380 385

gct agg tac gcg gtg aag ttc gct tagctctcct ggttaggatc cac 1314 Ala Arg Tyr Ala Val Lys Phe Ala 390 395

<210> 206

<211> 397

<212> PRT

<213> Corynebacterium glutamicum

<400> 206

Met Ala Leu Ala Leu Val Leu Asn Ser Gly Ser Ser Ser Ile Lys Phe 1 5 10 15

Gln Leu Val Asn Pro Glu Asn Ser Ala Ile Asp Glu Pro Tyr Val Ser 20 25 30

Gly Leu Val Glu Gln Ile Gly Glu Pro Asn Gly Arg Ile Val Leu Lys 35 40 45

Ile Glu Gly Glu Lys Tyr Thr Leu Glu Thr Pro Ile Ala Asp His Ser 50 55

Glu Gly Leu Asn Leu Ala Phe Asp Leu Met Asp Gln His Asn Cys Gly 65 70 75 80

Pro Ser Gln Leu Glu Ile Thr Ala Val Gly His Arg Val Val His Gly 85 90 95

Gly Ile Leu Phe Ser Ala Pro Glu Leu Ile Thr Asp Glu Ile Val Glu 100 105 110

Met Ile Arg Asp Leu Ile Pro Leu Ala Pro Leu His Asn Pro Ala Asn 115 120 125

Val Asp Gly Ile Asp Val Ala Arg Lys Ile Leu Pro Asp Val Pro His 130 135 140

Val Ala Val Phe Asp Thr Gly Phe Phe His Ser Leu Pro Pro Ala Ala 145 150 155 160

Ala Leu Tyr Ala Ile Asn Lys Asp Val Ala Ala Glu His Gly İle Arg 165 170 175

Arg Tyr Gly Phe His Gly Thr Ser His Glu Phe Val Ser Lys Arg Val 180 185 190

Val Glu Ile Leu Glu Lys Pro Thr Glu Asp Ile Asn Thr Ile Thr Phe 195 200 205

His Leu Gly Asn Gly Ala Ser Met Ala Ala Val Gln Gly Gly Arg Ala 210 215 220

Val Asp Thr Ser Met Gly Met Thr Pro Leu Ala Gly Leu Val Met Gly 225 230 235 240

Thr	Arg	Ser	Gly	Asp 245	Ile	Asp	Pro	Gly	11e 250	Val	Phe	His	Leu	Ser 255	Arg	
Thr	Ala	Gly	Met 260	Ser	Ile	Asp	Glu	Ile 265	Asp	Asn	Leu	Leu	Asn 270	Lys	Lys	
Ser	Gly	Val 275	Lys	Gly	Leu	Ser	Gly 280	Val	Asn	Asp	Phe	Arg 285	Glu	Leu	Arg	
Glu	Met 290	Ile	Asp	Asn	Asn	Asp 295	Gln	Asp	Ala	Trp	Ser 300	Ala	Tyr	Asn	Ile	
Tyr 305	Ile	His	Gln	Leu	Arg 310	Arg	Tyr	Leu	Gly	Ser 315	Tyr	Met	Val	Ala	Leu 320	
Gly	Arg	Val	Asp	Thr 325	Ile	Val	Phe	Thr	Ala 330	Gly	Val	Gly	Glu	Asn 335	Ala	
Gln	Phe	Val	Arg 340	Glu	Asp	Ala	Leu	Ala 345	Gly	Leu	Glu	Met	Tyr 350	Gly	Ile	
Glu	Ile	Asp 355	Pro	Glu	Arg	Asn	Ala 360	Leu	Pro	Asn	Asp	Gly 365	Pro	Arg	Leu	
Ile	Ser 370	Thr	Asp	Ala	Ser	Lys 375	Val	Lys	Val	Phe	Val 380	Ile	Pro	Thr	Asn	
Glu 385	Glu	Leu	Ala	Ile	Ala 390	Arg	Tyr	Ala	Val	Lys 395	Phe	Ala				
<21:	0> 20 1> 92 2> Di 3> Co	27 NA	ebact	teri	um gl	lutar	nicur	n								
<22	0> 1> CI 2> (1 3> R)	101)		04)												
	0> 20 ggcti		acaat	tacgi	tc gt	taca	actg	g cc	gatti	gat	acct	tttca	aaa a	actt	taccc	60
ttc	atcg	gag 1	tgcca	aggg	ga ao	cttaq	gagga	a gca	attaa	aata				gga Gly		115
							acc Thr									163
							cca Pro									211
							acc Thr 45									259

PCT/IB00/00943 WO 01/00844

acc gaa ggc Thr Glu Gly 55	gga cta ctc Gly Leu Leu	agc aag a Ser Lys L 60	aaa tct g Lys Ser A	at ggg cgc Asp Gly Arg 65	tac caa Tyr Gln	ttg 307 Leu
	atc tgg gaa Ile Trp Glu 75		Gln Asn T			
	cgc ccg ttc Arg Pro Phe 90					
, , ,	cta gtg gtc Leu Val Val 105	Arg Asp L	-		-	-
	ggc acg aag Gly Thr Lys				Val Gly	
	ctg aac tcc Leu Asn Ser					
	tgg gta aaa Trp Val Lys 155		Tyr Leu L			
	aag aca att Lys Thr Ile 170					
	cac tcg caa His Ser Gln 185	Gly Phe A				
	gca tcg atc Ala Ser Ile					
	ctg ggg ttg Leu Gly Leu	Val Val F				
gag cgc tat Glu Arg Tyr 230	ctc ccg atc Leu Pro Ile 235	ctt cag g Leu Gln A	Ala Thr S	ngt cag aga Ser Gln Arg 140	att aca Ile Thr	aaa 835 Lys 245
	ctc att cct Leu Ile Pro 250					
	aaa ggc gat Lys Gly Asp 265		ecegee et	ccatctgc a	ta	927

<210> 208 <211> 268 <212> PRT <213> Corynebacterium glutamicum

<400> 208 Met Ala Gly Gly Asn Arg Glu Pro Gly Arg Thr Val Thr Ser Lys Val Ile Ala Val Leu Gly Ala Phe Glu His Thr Met Arg Pro Leu Gly Val Thr Glu Ile Ala Glu Leu Ala Asp Leu Pro Pro Ser Thr Thr His Arg Leu Val Ser Glu Leu Thr Glu Gly Gly Leu Leu Ser Lys Lys Ser Asp Gly Arg Tyr Gln Leu Gly Leu Arg Ile Trp Glu Leu Ala Gln Asn Thr Gly Arg Gln Leu Arg Asp Thr Ala Arg Pro Phe Ile Gln Glu Leu Tyr Ser Leu Thr Ser Glu Thr Ala Gln Leu Val Val Arg Asp Lys Asp Glu Ala Leu Leu Ile Asp Arg Ala Tyr Gly Thr Lys Lys Ile Pro Arg Ser Ala Arg Val Gly Gly Arg Leu Pro Leu Asn Ser Thr Ala Val Gly Lys 135 Ile Leu Leu Ala Phe Asp Glu Pro Trp Val Lys Gln Ser Tyr Leu Lys 150 155 Leu Pro Leu Asn Ala Ser Thr Pro Lys Thr Ile Val Asn Pro Asp Val 170 Leu Ala Ala Gln Leu Lys Gln Ile His Ser Gln Gly Phe Ala Ile Thr 185 180 His Asp Glu Gln Arg Ile Gly Gly Ala Ser Ile Ala Val Pro Val Trp His Thr Gly Lys Leu Gly Ala Ala Leu Gly Leu Val Val Pro Thr Ala Gln Ala Ala Asn Leu Glu Arg Tyr Leu Pro Ile Leu Gln Ala Thr Ser Gln Arg Ile Thr Lys Ala Thr Ala Leu Ile Pro Leu Asp Thr Leu Leu Ala Ser His Lys Asn Ala Glu Arg Lys Gly Asp Thr

260

265

<210> 209

<211> 1158

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1135) <223> RXA00246

<223> RXA00246 <400> 209 ttgcaaggat tgtaatttaa ggcacatcta tgtcggtgtg aaattacatg tgccagaaga 60 gcaatttgcc aagtaatcca agcgagaagg agtgagtttt atg acc act gct gca Met Thr Thr Ala Ala ccc caa gaa ttt acc gct gct gtt gtt gaa aaa ttc ggt cat gac gtg 163 Pro Gln Glu Phe Thr Ala Ala Val Val Glu Lys Phe Gly His Asp Val 10 acc qtq aag gat att gac ctt cca aag cca ggg cca cac cag gca ttg 211 Thr Val Lys Asp Ile Asp Leu Pro Lys Pro Gly Pro His Gln Ala Leu 25 gtg aag gta etc ace tec gge atc tge cac ace gae etc cac gee ttg 259 Val Lys Val Leu Thr Ser Gly Ile Cys His Thr Asp Leu His Ala Leu 45 50 40 307 qaq qqc qat tqg cca qta aag ccg gaa cca cca ttc gta cca gga cac Glu Gly Asp Trp Pro Val Lys Pro Glu Pro Pro Phe Val Pro Gly His 55 60 355 gaa ggt gta ggt gaa gtt gtt gag ctc gga cca ggt gaa cac gat gtg Glù Gly Val Gly Glu Val Val Glu Leu Gly Pro Gly Glu His Asp Val 70 75 aag gtc ggc gat att gtc ggc aat gcg tgg ctc tgg tca gcg tgt ggc 403 Lys Val Gly Asp Ile Val Gly Asn Ala Trp Leu Trp Ser Ala Cys Gly 90 95 acc tgc gaa tac tgc atc acc ggc agg gaa act cag tgc aac gaa gct 451 Thr Cys Glu Tyr Cys Ile Thr Gly Arg Glu Thr Gln Cys Asn Glu Ala 105 gag tat ggt ggc tac acc caa aat gga tcc ttc ggc cag tac atg ctg 499 Glu Tyr Gly Gly Tyr Thr Gln Asn Gly Ser Phe Gly Gln Tyr Met Leu 120 125 130 gtg gat acc cgt tac gcc gct cgc atc cca gac ggc gtg gac tac ctc 547 Val Asp Thr Arg Tyr Ala Ala Arg Ile Pro Asp Gly Val Asp Tyr Leu 135 595 gaa gca gca cca att ctg tgt gca ggc gtg act gtc tac aag gca ctc Glu Ala Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu 150 155 aaa gtc tct gaa acc cgc ccg ggc caa ttc atg gtg atc tcc ggt gtc 643 Lys Val Ser Glu Thr Arg Pro Gly Gln Phe Met Val Ile Ser Gly Val 170 180 175

Gly Gly Leu Gly His Ile Ala Val Gln Tyr Ala Ala Ala Met Gly Met
185

cgt gtc att gcg gta gat att gcc gat gac aag ctg gaa ctt gcc cgt

Arg Val Ile Ala Val Asp Ile Ala Asp Asp Lys Leu Glu Leu Ala Arg
200

205

739

ggc gga ctt ggc cac atc gca gtc caa tac gca gcg gcg atg ggc atg

691

Lys His Gly 215	gcg gaa Ala Glu	ttt acc Phe Thr 220	gtg aar Val Ası	t gcg cgt n Ala Arg	aat gaa Asn Glu 225	gat tca Asp Ser	ggc Gly	787
gaa gct gta Glu Ala Val 230					His Gly			835
act gca gtt Thr Ala Val	cac gag His Glu 250	gca gca Ala Ala	ttc ggg Phe Gl	c cag gca y Gln Ala 255	ctg gat Leu Asp	atg gct Met Ala 260	Arg	883
cgt gca gga Arg Ala Gly				y Leu Pro				931
gca tcc gtg Ala Ser Val 280								979
ctc gtg gga Leu Val Gly 295								1027
cgc gga cta Arg Gly Leu 310					Ser Leu			1075
aat ggt gtg Asn Gly Val							, Val	1123
gcg att cgt Ala Ile Arg		cggattg	tgttgaa	act gct				1158
<210> 210 <211> 345 <212> PRT <213> Coryne	ebacteri	um gluta	micum				·	
<211> 345 <212> PRT <213> Coryno <400> 210		-		a Thr Ala	Ala Val	Val Glu	Lve	
<211> 345 <212> PRT <213> Coryne		-		∍ Thr Ala 10	Ala Val	Val Glu 15		
<211> 345 <212> PRT <213> Coryno <400> 210 Met Thr Thr	Ala Ala 5	Pro Gln	Glu Pho	10 p Ile Asp		15	,	
<211> 345 <212> PRT <213> Coryno <400> 210 Met Thr Thr 1	Ala Ala 5 Asp Val 20	Pro Gln	Glu Pho Lys Asp	10 p Ile Asp 5	Leu Pro	Lys Pro	o Gly	
<211> 345 <212> PRT <213> Coryne <400> 210 Met Thr Thr 1 Phe Gly His	Ala Ala 5 Asp Val 20 Ala Leu	Pro Gln Thr Val Val Lys	Glu Pho Lys Asp 2. Val Let 40	10 D Ile Asp 5 D Thr Ser	Leu Pro Gly Ile 45	Lys Pro 30 Cys His	Gly Thr	
<211> 345 <212> PRT <213> Coryne <400> 210 Met Thr Thr 1 Phe Gly His Pro His Gln 35 Asp Leu His	Ala Ala 5 Asp Val 20 Ala Leu Ala Leu	Pro Gln Thr Val Val Lys Glu Gly 55	Glu Pho Lys Asp 2: Val Let 40	10 Pile Asp Thr Ser Pro Val	Gly Ile 45 Lys Pro 60	Lys Pro 30 Cys His	Gly Thr	

Trp Ser Ala Cys Gly Thr Cys Glu Tyr Cys Ile Thr Gly Arg Glu Thr Gln Cys Asn Glu Ala Glu Tyr Gly Gly Tyr Thr Gln Asn Gly Ser Phe Gly Gln Tyr Met Leu Val Asp Thr Arg Tyr Ala Ala Arg Ile Pro Asp Gly Val Asp Tyr Leu Glu Ala Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu Lys Val Ser Glu Thr Arg Pro Gly Gln Phe Met Val Ile Ser Gly Val Gly Gly Leu Gly His Ile Ala Val Gln Tyr Ala Ala Ala Met Gly Met Arg Val Ile Ala Val Asp Ile Ala Asp Asp Lys Leu Glu Leu Ala Arg Lys His Gly Ala Glu Phe Thr Val Asn Ala Arg Asn Glu Asp Ser Gly Glu Ala Val Gln Lys Tyr Thr Asn Gly Gly Ala 235 His Gly Val Leu Val Thr Ala Val His Glu Ala Ala Phe Gly Gln Ala 250 Leu Asp Met Ala Arg Arg Ala Gly Thr Ile Val Phe Asn Gly Leu Pro 265 270 Pro Gly Glu Phe Pro Ala Ser Val Phe Asn Ile Val Phe Lys Gly Leu 280 Thr Ile Arg Gly Ser Leu Val Gly Thr Arg Gln Asp Leu Ala Glu Ala 295 Leu Asp Phe Phe Ala Arg Gly Leu Ile Lys Pro Thr Val Ser Glu Cys Ser Leu Asp Glu Val Asn Gly Val Leu Asp Arg Met Arg Asn Gly Lys Ile Asp Gly Arg Val Ala Ile Arg Phe 340

<210> 211

<211> 723

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(700)

<223> RXA01571

<400> 211

aaactacctg ct	gagagett tgtaat:	tggaggggtg cgtcgagaag	60	
cgctcgtagg cg	gettttgat tttteg	gtag gctaactggg	gtg agt atc tca gta Val Ser Ile Ser Val 1 5	115
aaa gca cta c Lys Ala Leu C	caa aag too ggo Gln Lys Ser Gly 10	cca gaa gca cct Pro Glu Ala Pro 15	ttc gag gtc aag atc Phe Glu Val Lys Ile 20	163
			gtt att gat atc aaa Val Ile Asp Ile Lys 35	211
gct gcg ggc a Ala Ala Gly I 40	atc tgc cac agc	gat atc cac acc Asp Ile His Thr 45	atc cgc aac gaa tgg Ile Arg Asn Glu Trp 50	259
ggc gag gcg c Gly Glu Ala F 55	cac ttc ccg ctc His Phe Pro Leu 60	acc gtc ggc cac Thr Val Gly His	gaa atc gca ggc gtt Glu Ile Ala Gly Val 65	307
			aaa gtc ggc gac cgc Lys Val Gly Asp Arg 85	355
			gaa tgc gaa cag tgc Glu Cys Glu Gln Cys 100	403
Val Ala Gly E			aac gtc gga acc tac Asn Val Gly Thr Tyr 115	451
	Asp Val Asp Gly		ggc ggc tac gct gaa Gly Gly Tyr Ala Glu 130	499
			atc cca gag gaa ctt Ile Pro Glu Glu Leu 145	547
			ggc atc acc acc tac Gly Ile Thr Thr Tyr 165	595
			gac aaa gta gca gtc Asp Lys Val Ala Val 180	643
Met Gly Leu (cca gat cgc tgc agc Pro Asp Arg Cys Ser 195	691
caa ggg tgc t Gln Gly Cys 200	tgaggttacc gttct	gtccc gtt		723

<210> 212 <211> 200

<212> PRT <213> Corynebacterium glutamicum Val Ser Ile Ser Val Lys Ala Leu Gln Lys Ser Gly Pro Glu Ala Pro Phe Glu Val Lys Ile Ile Glu Arg Arg Asp Pro Arg Ala Asp Asp Val Val Ile Asp Ile Lys Ala Ala Gly Ile Cys His Ser Asp Ile His Thr Ile Arg Asn Glu Trp Gly Glu Ala His Phe Pro Leu Thr Val Gly His Glu Ile Ala Gly Val Val Ser Ala Val Gly Ser Asp Val Thr Lys Trp Lys Val Gly Asp Arg Val Gly Val Gly Cys Leu Val Asn Ser Cys Gly Glu Cys Glu Gln Cys Val Ala Gly Phe Glu Asn Asn Cys Leu Arg Gly Asn Val Gly Thr Tyr Asn Ser Asn Asp Val Asp Gly Thr Ile Thr Gln Gly Gly Tyr Ala Glu Lys Val Val Val Asn Glu Arg Phe Leu Cys Ser Ile Pro Glu Glu Leu Asn Phe Asp Val Ala Ala Pro Leu Leu Cys Ala 150 155 Gly Ile Thr Thr Tyr Ser Pro Ile Ala Arg Trp Asn Val Lys Glu Gly 165 170 Asp Lys Val Ala Val Met Gly Leu Gly Gly Thr Arg Thr His Gly Cys Pro Asp Arg Cys Ser Gln Gly Cys 195 <210> 213 <211> 615 <212> DNA <213> Corynebacterium glutamicum <220>

<220> <221> CDS <222> (101)..(592) <223> RXA01572

<400> 213 ctgctgtgcg caggcatcac cacctactcc ccaatcgctc gctggaacgt taaagaaggc 60

gacaaagtag cagtcatggg ceteggeggg acteggacae atg ggt gte eag ate 115

Met Gly Val Gln Ile

					ggt Gly 10												163
					gcc Ala												211
					ttc Phe												259
					agc Ser	-				-	-	_		_	-		307
					ggt Gly												355
					ttc Phe 90												403
					ggc Gly				_		_	_	_		-		451
					ggc Gly												499
					gcc Ala												547
	-	-	_		gat Asp		-	_		_		_			_		592
	tag	gttta	act (gaagt	ttcaç	ga ct	t										615
<210> 214 <211> 164 <212> PRT <213> Corynebacterium glutamicum																	
		0> 21 Gly		Gln	Ile 5	Ala	Ala	Ala	Lys	Gly 10	Ala	Glu	Val	Thr	Val 15	Leu	
	Ser	Arg	Ser	Leu 20	Arg	Lys	Ala	Glu	Leu 25	Ala	Lys	Glu	Leu	Gly 30	Ala	Ala	
	Arg	Thr	Leu 35	Ala	Thr	Ser	Asp	Glu 40	Asp	Phe	Phe	Thr	Glu 45	His	Ala	Gly	

Glu Phe Asp Phe Ile Leu Asn Thr Ile Ser Ala Ser Ile Pro Val Asp 50 55 60

35 40

Lys Tyr Leu Ser Leu Lys Pro His Gly Val Met Ala Val Val Gly Leu Pro Pro Glu Lys Gln Pro Leu Ser Phe Gly Ala Leu Ile Gly Gly 90 Gly Lys Val Leu Thr Gly Ser Asn Ile Gly Gly Ile Pro Glu Thr Gln 105 Glu Met Leu Asp Phe Cys Ala Lys His Gly Leu Gly Ala Met Ile Glu 115 120 Thr Val Gly Val Asn Asp Val Asp Ala Ala Tyr Asp Arg Val Val Ala 135 Gly Asp Val Gln Phe Arg Val Val Ile Asp Thr Ala Ser Phe Ala Glu 150 155 145 Val Glu Ala Val <210> 215 <211> 1140 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1117) <223> RXA01758 <400> 215 ccccttatt caqaqtqatq qtctaccqqa qaaqtaccca gaccaataqc atcgaccaac 60 gatagegege teagaagtte tttagtgaaa geagaaceaa atg eee aaa tae att Met Pro Lys Tyr Ile gcc atg cag gta tcc gaa tcc ggt gca ccg tta gcc gcg aat ctc gtg 163 Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu Ala Ala Asn Leu Val caa cct gct ccg ttg aaa tcg agg gaa gtc cgc gtg gaa atc gct gct 211 Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg Val Glu Ile Ala Ala agt ggt gtg tgc cat gca gat att ggc acg gca gca tcg ggg aag 259 Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala Ala Ala Ser Gly Lys 45 cac act gtt ttt cct gtt acc cct ggt cat gag att gca gga acc atc 307 His Thr Val Phe Pro Val Thr Pro Gly His Glu Ile Ala Gly Thr Ile gcg gaa att ggt gaa aac gta tct cgg tgg acg gtt ggt gat cgc gtt 355 Ala Glu Ile Gly Glu Asn Val Ser Arg Trp Thr Val Gly Asp Arg Val 80 gca atc ggt tgg ttt ggt ggc aat tgc ggt gac tgc gct ttt tgt cgt 403 Ala Ile Gly Trp Phe Gly Gly Asn Cys Gly Asp Cys Ala Phe Cys Arg

	90	95		100
gca ggt gat cct of Ala Gly Asp Pro 105				Val Ser
tat gcg ggt ggt Tyr Ala Gly Gly 120				
gct gcg att cca Ala Ala Ile Pro 135				
tgc gca ggt gtg Cys Ala Gly Val				
ccc ggt gcg gct Pro Gly Ala Ala				
gct att cag ttt Ala Ile Gln Phe 185			_	· Ile Ala
cgc ggt tta gag Arg Gly Leu Glu 200				
tac atc gat agc Tyr Ile Asp Ser 215				
ggc ggg gct gac Gly Gly Ala Asp 230				
tcg gag ttg tct Ser Glu Leu Ser				
gga gtt gat ggg Gly Val Asp Gly 265				Met Met
aac cgt cag atc Asn Arg Gln Ile 280				= =
gaa cag act atg Glu Gln Thr Met 295				
gaa cgg atg cct Glu Arg Met Pro 310				
gct ggt aaa cca Ala Gly Lys Pro				

taatgccaac agcaagccca att

1140

<210> 216

<211> 339

<212> PRT

<213> Corynebacterium glutamicum

<400> 216

Met Pro Lys Tyr Ile Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu 1 5 10 15

Ala Ala Asn Leu Val Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg 20 25 30

Val Glu Ile Ala Ala Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala 35 40 45

Ala Ala Ser Gly Lys His Thr Val Phe Pro Val Thr Pro Gly His Glu 50 55 60

Ile Ala Gly Thr Ile Ala Glu Ile Gly Glu Asn Val Ser Arg Trp Thr 65 70 75 80

Val Gly Asp Arg Val Ala Ile Gly Trp Phe Gly Gly Asn Cys Gly Asp 85 90 95

Cys Ala Phe Cys Arg Ala Gly Asp Pro Val His Cys Arg Glu Arg Lys 100 105 110

Ile Pro Gly Val Ser Tyr Ala Gly Gly Trp Ala Gln Asn Ile Val Val 115 120 125

Pro Ala Glu Ala Leu Ala Ala Ile Pro Asp Gly Met Asp Phe Tyr Glu 130 135 140

Pro Ala Pro Met Gly Cys Ala Gly Val Thr Thr Phe Asn Ala Leu Arg 145 150 155 160

Asn Leu Lys Leu Asp Pro Gly Ala Ala Val Ala Val Phe Gly Ile Gly 165 170 175

Gly Leu Val Arg Leu Ala Ile Gln Phe Ala Ala Lys Met Gly Tyr Arg 180 185 190

Thr Ile Thr Ile Ala Arg Gly Leu Glu Arg Glu Glu Leu Ala Arg Gln 195 200 205

Leu Gly Ala Asn His Tyr Ile Asp Ser Asn Asp Leu His Pro Gly Gln 210 215 220

Ala Leu Phe Glu Leu Gly Gly Ala Asp Leu Ile Leu Ser Thr Ala Ser 225 230 235 240

Thr Thr Glu Pro Leu Ser Glu Leu Ser Thr Gly Leu Ser Ile Gly Gly 245 250 255

Gin Leu Thr Ile Ile Gly Val Asp Gly Gly Asp Ile Thr Val Ser Ala 260 265 270

Ala Gln Leu Met Met Asn Arg Gln Ile Ile Thr Gly His Leu Thr Gly

Ser Ala Asn Asp Thr Glu Gln Thr Met Lys Phe Ala His Leu His Gly Val Lys Pro Leu Ile Glu Arg Met Pro Leu Asp Gln Ala Asn Glu Ala Ile Ala Arg Ile Ser Ala Gly Lys Pro Arg Phe Arg Ile Val Leu Glu 330 Pro Asn Ser <210> 217 <211> 1641 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1618) <223> RXA02539 <400> 217 ggctgctaag cgtgcgaatg tgcgcgttgt cacaatcgtt gaccaagtgt cacctgacgc 60 acaggtagtg ctcaggtgga ggtggcccaa aggagaccca atg act gtc tac gca Met Thr Val Tyr Ala aat cca gga acc gaa ggc tcg atc gtt aac tat gaa aag cgc tac gag Asn Pro Gly Thr Glu Gly Ser Ile Val Asn Tyr Glu Lys Arg Tyr Glu aac tac att ggt ggc aag tgg gtt cca ccg gta gag ggc cag tac ctt 211 Asn Tyr Ile Gly Gly Lys Trp Val Pro Pro Val Glu Gly Gln Tyr Leu gag aac att tca cct gtc act ggt gaa gtt ttc tgt gag gtc gca cgt . 259 Glu Asn Ile Ser Pro Val Thr Gly Glu Val Phe Cys Glu Val Ala Arg ggc acc gca gcg gac gtg gag ctt gca ctg gat gct gca cat gca gcc 307 Gly Thr Ala Ala Asp Val Glu Leu Ala Leu Asp Ala Ala His Ala Ala get gat geg tgg gge aag act tet gte get gaa egt get etg ate etg 355 Ala Asp Ala Trp Gly Lys Thr Ser Val Ala Glu Arg Ala Leu Ile Leu 80 cac ege att geg gae ege atg gaa gag cac etg gaa gaa ate gea gtt 403 His Arg Ile Ala Asp Arg Met Glu Glu His Leu Glu Glu Ile Ala Val 90 95 gca gaa acc tgg gag aac ggc aag gca gtc cgt gag act ctt gct gca 451 Ala Glu Thr Trp Glu Asn Gly Lys Ala Val Arg Glu Thr Leu Ala Ala

110

105

gat a																499
cgt (547
tac (Tyr 150								•	_		Gln					595
aac i Asn i																643
gca (Ala (691
att i	_		_						_						-	739
ctc :																787
ggc Gly 230																835
ggc (-	_			-	-	_		_	_				_		883
ctg (-								-	_	_	931
tca (Gln	Asp	Asp	Ala	Phe		Glu	Lys	Ala	Val	Glu	Gly	Phe			979
ttc (1027
gtt (Val 1 310																1075
gtt (Val (1123
ggt (Gly)																1171
aag	atc	ggc	сса	gaa	gaa	ggc	gct	caa	acc	ctc	act	ggt	ggc	aag	gtc	1219

Lys Ile Gly 360	Pro Glu Gl	u Gly Ala 365	Gln Thr	Leu Thr	Gly Gly 370	Lys Val	
aac aag gtt Asn Lys Val 375							1267
ttc cgc ggc Phe Arg Gly 390	-	p Met Arg			-		1315
cca gtc ctt Pro Val Leu							1363
att gca aac Ile Ala Asn	-						1411
gac caa aac Asp Gln Asn 440				-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1459
gtt tgg gtc Val Trp Val 455	-				_		1507
gga tac aag Gly Tyr Lys 470		y Ile Gly					1555
aac cac tac Asn His Tyr							1603
cca acc gga Pro Thr Gly	-	atctaagc (gttaagtco	ct aga			1641
<210> 218 <211> 506 <212> PRT <213> Coryne	ebacterium	glutamicun	n			٠	
<400> 218 Met Thr Val 1	Tyr Ala As	n Pro Gly	Thr Glu 10	Gly Ser	Ile Val	Asn Tyr 15	
Glu Lys Arg	Tyr Glu As	n Tyr Ile	Gly Gly 25	Lys Trp	Val Pro 30	Pro Val	
Glu Gly Gln 35	Tyr Leu Gl	u Asn Ile 40	Ser Pro	Val Thr	Gly Glu 45	Val Phe	
Cys Glu Val 50	Ala Arg Gl	y Thr Ala 55	Ala Asp	Val Glu 60	Leu Ala	Leu Asp	
Ala Ala His 65	Ala Ala Al 7	_	Trp Gly	Lys Thr 75	Ser Val	Ala Glu 80	

Arg	Ala	Leu	Ile	Leu 85	His	Arg	Ile	Ala	Asp 90	Arg	Met	Glu	Glu	His 95	Leu
Glu	Glu	Ile	Ala 100	Val	Ala	Glu	Thr	Trp 105	Glu	Asn	Gly	Lys	Ala 110	Val	Arg
Glu	Thr	Leu 115	Ala	Ala	Asp	Ile	Pro 120	Leu	Ala	Ile	Asp	His 125	Phe	Arg	Tyr
Phe	Ala 130	Gly	Ala	Ile	Arg	Ala 135	Gln	Glu	Asp	Arg	Ser 140	Ser	Gln	Ile	Asp
His 145	Asn	Thr	Val	Ala	Tyr 150	His	Phe	Asn	Glu	Pro 155	Ile	Gly	Val	Val	Gly 160
Gln	Ile	Ile	Pro	Trp 165	Asn	Phe	Pro	Ile	Leu 170	Met	Ala	Thr	Trp	Lys 175	Leu
Ala	Pro	Ala	Leu 180	Ala	Ala	Gly	Asn	Ala 185	Ile	Val	Met	Lys	Pro 190	Ala	Glu
Gln	Thr	Pro 195	Ala	Ser	Ile	Leu	Tyr 200	Leu	Ile	Asn	Ile	Ile 205	Gly	Asp	Leu
Ile	Pro 210	Glu	Gly	Val	Leu	Asn 215	Ile	Val	Asn	Gly	Leu 220	Gly	Gly	Glu	Ala
Gly 225	Ala	Ala	Leu	Ser	Gly 230	Ser	Asn	Arg	Ile	Gly 235	Lys	Ile	Ala	Phe	Thr 240
Gly	Ser	Thr	Glu	Val 245	Gly	Lys	Leu	Ile	Asn 250	Arg	Ala	Ala	Ser	Asp 255	Lys
Ile	Ile	Pro	Val 260	Thr	Leu	Glu	Leu	Gly 265	Gly	Lys	Ser	Pro	Ser 270	Ile	Phe
Phe	Ser	Asp 275	Val	Leu	Ser	Gln	Asp 280	Asp	Ala	Phe	Ala	Glu 285	Lys	Ala	Val
Glu	Gly 290	Phe	Ala	Met	Phe	Ala 295	Leu	Asn	Gln	Gly	Glu 300	Val	Cys	Thr	Cys
Pro 305	Ser	Arg	Ala	Leu	Val 310	His	Glu	Ser	Ile	Ala 315	Asp	Glu	Phe	Leu	Glu 320
Leu	Gly	Val	Lys	Arg 325	Val	Gln	Asn	Ile	Lys 330	Leu	Gly	Asn	Pro	Leu 335	Asp
Thr	Glu	Thr	Met 340	Met	Gly	Ala	Gln	Ala 345	Ser	Gln	Glu	Gln	Met 350	Asp	Lys
Ile	Ser	Ser 355	Tyr	Leu	Lys	Ile	Gly 360	Pro	Glu	Glu	Gly	Ala 365	Gln	Thr	Leu
Thr	Gly 370	Gly	Lys	Val	Asn	Lys 375	Val	Asp	Gly	Met	Glu 380	Asn	Gly	Tyr	Tyr
Ile 385	Glu	Pro	Thr	Val	Phe 390	Arg	Gly	Thr	Asn	Asp 395	Met	Arg	Ile	Phe	Arg 400
Glu	Glu	Ile	Phe	Gly	Pro	Val	Leu	Ser	Val	Ala	Thr	Phe	Ser	Asp	Phe

410 405 415 Asp Glu Ala Ile Arg Ile Ala Asn Asp Thr Asn Tyr Gly Leu Gly Ala 425 Gly Val Trp Ser Arg Asp Gln Asn Thr Ile Tyr Arg Ala Gly Arg Ala 435 440 Ile Gln Ala Gly Arg Val Trp Val Asn Gln Tyr His Asn Tyr Pro Ala His Ser Ala Phe Gly Gly Tyr Lys Glu Ser Gly Ile Gly Arg Glu Asn 465 470 475 His Leu Met Met Leu Asn His Tyr Gln Gln Thr Lys Asn Leu Leu Val Ser Tyr Asp Pro Asn Pro Thr Gly Leu Phe 500 <210> 219 <211> 430 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(430) <223> RXN03061 <400> 219 ctgccaccac tggtcattgc agaggacact ctccgtgatg gtcttcaggt gttagtcgca 60 gccctagagc gcgaaaccgc gcaccagaag gtgggctaaa gtg tct ttg acc ttc Val Ser Leu Thr Phe 1 cca gta atc aac ccc agc gat ggc tcc acc atc acc gag cta gaa aac 163 Pro Val Ile Asn Pro Ser Asp Gly Ser Thr Ile Thr Glu Leu Glu Asn 10 cac gat tee ace cag tgg atg tee geg ete tet gat gea get 211 His Asp Ser Thr Gln Trp Met Ser Ala Leu Ser Asp Ala Val Ala Ala 25 ggt cct tca tgg gct gcg aaa act ccc cgc gaa aga tcc gtg gta ctc 259 Gly Pro Ser Trp Ala Ala Lys Thr Pro Arg Glu Arg Ser Val Val Leu 40 acc gca atc ttc gaa gca ctg acc gaa cgc gcc caa gaa ctt gca gag 307 Thr Ala Ile Phe Glu Ala Leu Thr Glu Arg Ala Gln Glu Leu Ala Glu 55 atc atc cac ctg gaa gct gga aaa tcc gat gca gaa gct ctt ggt gaa 355 Ile Ile His Leu Glu Ala Gly Lys Ser Asp Ala Glu Ala Leu Gly Glu 70 gtc gct tat ggt gca gaa tac ttc cgt tgg ttt gcg gaa gaa gca gtg 403 Val Ala Tyr Gly Ala Glu Tyr Phe Arg Trp Phe Ala Glu Glu Ala Val

430 cgc ctg ccc ggc cgc tac gga cag tca Arg Leu Pro Gly Arg Tyr Gly Gln Ser 105 <210> 220 <211> 110 <212> PRT <213> Corynebacterium glutamicum <400> 220 Val Ser Leu Thr Phe Pro Val Ile Asn Pro Ser Asp Gly Ser Thr Ile 10 Thr Glu Leu Glu Asn His Asp Ser Thr Gln Trp Met Ser Ala Leu Ser 30 20 25 Asp Ala Val Ala Ala Gly Pro Ser Trp Ala Ala Lys Thr Pro Arg Glu 40 Arg Ser Val Val Leu Thr Ala Ile Phe Glu Ala Leu Thr Glu Arg Ala 50 55 Gln Glu Leu Ala Glu Ile Ile His Leu Glu Ala Gly Lys Ser Asp Ala Glu Ala Leu Gly Glu Val Ala Tyr Gly Ala Glu Tyr Phe Arg Trp Phe Ala Glu Glu Ala Val Arg Leu Pro Gly Arg Tyr Gly Gln Ser 105 <210> 221 <211> 747 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(724) <223> RXN03150 <400> 221 tttaacagag tgcgtttcaa tgcctgtagt gttccggcaa ttttgaatgt cgttacggtt 60 acccaagget gaatteetga geteacettg tacaagatea gtg gaa gee eag tte Val Glu Ala Gln Phe acc tct ccc ctq ctc aac aat ggg caa acc tgt ttc ctt ggt acc cga 163 Thr Ser Pro Leu Leu Asn Asn Gly Gln Thr Cys Phe Leu Gly Thr Arg 15 atc ctt gct cca aaa tca cgt tac gcg gaa gta gtc gat gca ttc acc 211 Ile Leu Ala Pro Lys Ser Arg Tyr Ala Glu Val Val Asp Ala Phe Thr gct ttc gct ggc agc ctg cag gtt gga gtc acg tcc tcc cct gac act 259 Ala Phe Ala Gly Ser Leu Gln Val Gly Val Thr Ser Ser Pro Asp Thr

45 50 40 caq atc qqa ccq atg qcq act gcc cgg cag cgt gag cgc gtg gaa tcc 307 Gln Ile Gly Pro Met Ala Thr Ala Arg Gln Arg Glu Arg Val Glu Ser 60 55 tac att tee caa gge aaa aat get gga gee ege ate aet gte ggt gge Tyr Ile Ser Gln Gly Lys Asn Ala Gly Ala Arg Ile Thr Val Gly Gly 70 75 80 age egt eea ega gat ett gae gee gga tte tte gtt gag eea aca gtg 403 Ser Arg Pro Arg Asp Leu Asp Ala Gly Phe Phe Val Glu Pro Thr Val 100 90 95 tto qoo qat qta qac aat cgo goa goo att goo caa gat gaa ato tto 451 Phe Ala Asp Val Asp Asn Arg Ala Ala Ile Ala Gln Asp Glu Ile Phe 110 115 105 gga ccg gtg ccc tct gtt gtt tcc tac caa gac gat gaa cac gcc atc 499 Gly Pro Val Pro Ser Val Val Ser Tyr Gln Asp Asp Glu His Ala Ile 120 125 caa cta gcc aac gat tcc gaa ttc ggt ctc ggc gga act gtc tgg acg 547 Gln Leu Ala Asn Asp Ser Glu Phe Gly Leu Gly Gly Thr Val Trp Thr 135 140 age gat eee gag ege get gea ttg gee ege ega gtt eae aea gga Ser Asp Pro Glu Arg Gly Ala Ala Leu Ala Arg Arg Val His Thr Gly 155 160 150 acc att ggc atc aac cgc tat atc cct gat ccc gcc gca cca ttt gga Thr Ile Gly Ile Asn Arg Tyr Ile Pro Asp Pro Ala Ala Pro Phe Gly 170 175 qqt qtq aaa aac aqt qqc ctt qqc aga gaa ctc ggc ccc gaa ggt ctt 691 Gly Val Lys Asn Ser Gly Leu Gly Arg Glu Leu Gly Pro Glu Gly Leu 190 185 get tee tae caa gaa ace caa ace att tat ete taateeaaae tgeacetata 744 Ala Ser Tyr Gln Glu Thr Gln Thr Ile Tyr Leu 205 747 tat <210> 222 <211> 208 <212> PRT <213> Corynebacterium glutamicum Val Glu Ala Gln Phe Thr Ser Pro Leu Leu Asn Asn Gly Gln Thr Cys Phe Leu Gly Thr Arg Ile Leu Ala Pro Lys Ser Arg Tyr Ala Glu Val 25 Val Asp Ala Phe Thr Ala Phe Ala Gly Ser Leu Gln Val Gly Val Thr

40

Ser Ser Pro Asp Thr Gln Ile Gly Pro Met Ala Thr Ala Arg Gln Arg

50 55 60

Glu Arg Val Glu Ser Tyr Ile Ser Gln Gly Lys Asn Ala Gly Ala Arg
65 70 75 80

Ile Thr Val Gly Gly Ser Arg Pro Arg Asp Leu Asp Ala Gly Phe Phe 85 90 95

Val Glu Pro Thr Val Phe Ala Asp Val Asp Asn Arg Ala Ala Ile Ala 100 105 110

Gln Asp Glu Ile Phe Gly Pro Val Pro Ser Val Val Sér Tyr Gln Asp 115 120 125

Asp Glu His Ala Ile Gln Leu Ala Asn Asp Ser Glu Phe Gly Leu Gly
130 140

Gly Thr Val Trp Thr Ser Asp Pro Glu Arg Gly Ala Ala Leu Ala Arg 145 150 155 160

Arg Val His Thr Gly Thr Ile Gly Ile Asn Arg Tyr Ile Pro Asp Pro 165 170 175

Ala Ala Pro Phe Gly Gly Val Lys Asn Ser Gly Leu Gly Arg Glu Leu 180 185 190

Gly Pro Glu Gly Leu Ala Ser Tyr Gln Glu Thr Gln Thr Ile Tyr Leu 195 200 205

<210> 223

<211> 881

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(858)

<223> RXN01340

<400> 223

aaa gtg ggg gag atc atc gcc tcc gtc ttt gat acc ttt aat atc ccg 48
Lys Val Gly Glu Ile Ile Ala Ser Val Phe Asp Thr Phe Asn Ile Pro
1 5 10 15

cag ggc ttg gtc tca atc acc acc act cga gat gca gag cta tcg 96 Gln Gly Leu Val Ser Ile Ile Thr Thr Thr Arg Asp Ala Glu Leu Ser 20 25 30

gca gaa ctc atg gct gat cct cgc ttg gct aaa gtc acc ttc act gga 144
Ala Glu Leu Met Ala Asp Pro Arg Leu Ala Lys Val Thr Phe Thr Gly
35 40 45

tca acc aac gtg gga cgc atc ctg gtc cgc caa tcc gcg gac cga ctg 192 Ser Thr Asn Val Gly Arg Ile Leu Val Arg Gln Ser Ala Asp Arg Leu 50 55 60

ctg cgc acc tcc atg gaa ctc ggc gga aat gca gct ttt gtt atc gac 240

Leu <i>l</i> 65	Arg	Thr	Ser	Met	Glu 70	Leu	Gly	Gly	Asn	Ala 75	Ala	Phe	Val	Ile	Asp 80	
gaa q Glu <i>l</i>																288
ctc (Leu <i>l</i>	cgc Arg	aac Asn	gcc Ala 100	ggc Gly	caa Gln	gta Val	tgc Cys	atc Ile 105	gca Ala	gct Ala	aac Asn	cgt Arg	ttc Phe 110	ttg Leu	gtt Val	336
cat (384
cag a Gln A																432
atc o Ile 1 145																480
atc (528
atc : Ile :																576
ttc (_			_				_	_		_		624
gtt (Val i	-		_				-				-	_				672
agc a Ser 2 225					_		_		_		_		-	-	-	720
gga a Gly i																768
ttt (Phe (_	_				_	816
gga (Gly																858
tgac	acat	ga ç	gctgi	ccg	gt ga	aa										881

<210> 224 <211> 286 <212> PRT

<213> Corynebacterium glutamicum

<400> 224

Lys Val Gly Glu Ile Ile Ala Ser Val Phe Asp Thr Phe Asn Ile Pro 1 5 10 15

Gln Gly Leu Val Ser Ile Ile Thr Thr Thr Arg Asp Ala Glu Leu Ser 20 25 30

Ala Glu Leu Met Ala Asp Pro Arg Leu Ala Lys Val Thr Phe Thr Gly 35 40 45

Ser Thr Asn Val Gly Arg Ile Leu Val Arg Gln Ser Ala Asp Arg Leu 50 55 60

Leu Arg Thr Ser Met Glu Leu Gly Gly Asn Ala Ala Phe Val Ile Asp 65 70 75 80

Glu Ala Ala Asp Leu Asp Glu Ala Val Ser Gly Ala Ile Ala Ala Lys 85 90 95

Leu Arg Asn Ala Gly Gln Val Cys Ile Ala Ala Asn Arg Phe Leu Val 100 105 110

His Glu Ser Arg Ala Ala Glu Phe Thr Ser Lys Leu Ala Thr Ala Met 115 120 125

Gln Asn Thr Pro Ile Gly Pro Val Ile Ser Ala Arg Gln Arg Asp Arg 130 135 140

Ile Ala Ala Leu Val Asp Glu Ala Ile Thr Asp Gly Ala Arg Leu Ile 145 150 155 160

Ile Gly Glu Val Pro Asp Gly Ser Gly Phe Phe Tyr Pro Ala Thr 165 170 175

Ile Leu Ala Asp Val Pro Ala Gln Ser Arg Ile Val His Glu Glu Ile 180 185 190

Phe Gly Pro Val Ala Thr Ile Ala Thr Phe Thr Asp Leu Ala Glu Gly
195 200 205

Val Ala Gln Ala Asn Ser Thr Glu Phe Gly Leu Ala Ala Tyr Gly Phe 210 215 220

Ser Asn Asn Val Lys Ala Thr Gln Tyr Met Ala Glu His Leu Glu Ala 225 230 235 240

Gly Met Val Gly Ile Asn Arg Gly Ala Ile Ser Asp Pro Ala Ala Pro 245 250 255

Phe Gly Gly Ile Gly Gln Ser Gly Phe Gly Arg Glu Gly Gly Thr Glu 260 265 270

Gly Ile Glu Glu Tyr Leu Ser Val Arg Tyr Leu Ala Leu Pro 275 280 285

<210> 225

<211> 1686

<212> DNA

Ile Gly Arg Ala Gly His Pro Val Glu Leu Ala Gly Ala Tyr Val Phe Leu Ala Ser Asp Glu Ala Ser Tyr Val Val Gly Glu Thr Leu Gly Val 280 Thr Gly Gly Thr Pro Thr Pro <210> 317 <211> 1008 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(985) <223> FRXA02654 <400> 317 tattttcgga aatttataca gcaatcctcg aaatcctaat aaagatccct tatcgtggga 60 gaggtacggt agttcgttcg aggacaacgt cgagaaaggc atg att tca ttg cta Met Ile Ser Leu Leu aat gat cca cgt acg cta ttc ccg aaa gtc gat ccc cca aag caa agc 163 Asn Asp Pro Arg Thr Leu Phe Pro Lys Val Asp Pro Pro Lys Gln Ser 15 10 cag ccg gaa cca ggc cta gat ata aaa ctt tcc ccc caa gcc gat att 211 Gln Pro Glu Pro Gly Leu Asp Ile Lys Leu Ser Pro Gln Ala Asp Ile 259 ggt ctc tcc agc tat caa gga agt gga agg ctt aag ggc cgc aag gct Gly Leu Ser Ser Tyr Gln Gly Ser Gly Arg Leu Lys Gly Arg Lys Ala 307 ctt att act ggt ggc gat tet ggg att gga get gee gta gea ate get Leu Ile Thr Gly Gly Asp Ser Gly Ile Gly Ala Ala Val Ala Ile Ala 60 tat gct cgc gag ggg gca gat gtt gcg atc gct tac ttg ccc gaa gaa 355 Tyr Ala Arg Glu Gly Ala Asp Val Ala Ile Ala Tyr Leu Pro Glu Glu 403 caa gcc gat gct gac aga gtg ctc caa gca atc gag gaa aca ggt caa Gln Ala Asp Ala Asp Arg Val Leu Gln Ala Ile Glu Glu Thr Gly Gln aaa get ttt tet tte eet ggt gat ete egt gat eea gaa tae tgt ege 451 Lys Ala Phe Ser Phe Pro Gly Asp Leu Arg Asp Pro Glu Tyr Cys Arg 499 tcg ctg gtc caa gag acg gtg aac gct tta ggt ggc cta gac atc ttg Ser Leu Val Gln Glu Thr Val Asn Ala Leu Gly Gly Leu Asp Ile Leu 125 gtc aac aac gcg tca cgt cag gtg tgg gca cct ggt ttg acc gaa att 547 Val Asn Asn Ala Ser Arg Gln Val Trp Ala Pro Gly Leu Thr Glu Ile

140 135 145 acc gac gaa aac ttc gac cag act ttg cag gtt aac ctc tat ggt agt 595 Thr Asp Glu Asn Phe Asp Gln Thr Leu Gln Val Asn Leu Tyr Gly Ser 150 155 ttt cgg gtt acc aaa gca gct ata cct cat ctg aag ccc gga tca tcg 643 Phe Arg Val Thr Lys Ala Ala Ile Pro His Leu Lys Pro Gly Ser Ser 170 ata atc ttt aca tcg tcc att cag gcg tac caa cct tcg gaa acc ctc 691 Ile Ile Phe Thr Ser Ser Ile Gln Ala Tyr Gln Pro Ser Glu Thr Leu 185 ttg gat tac gcc atg act aag gcg gca ttg aac aat ttg tca aag ggc 739 Leu Asp Tyr Ala Met Thr Lys Ala Ala Leu Asn Asn Leu Ser Lys Gly 200 205 ttg gca agt agt ctg ata ggc gat ggc att cgg gta aat tct gta gcc 787 Leu Ala Ser Ser Leu Ile Gly Asp Gly Ile Arg Val Asn Ser Val Ala 215 220 225 cca ggt cct ttc tgg acg ccg ttg caa ccc agc cat ggt cag cca caa 835 Pro Gly Pro Phe Trp Thr Pro Leu Gln Pro Ser His Gly Gln Pro Gln 230 235 gag aaa ata gaa gga ttt ggc cag cac gct ccg att gga aga gcg ggt 883 Glu Lys Ile Glu Gly Phe Gly Gln His Ala Pro Ile Gly Arg Ala Gly 250 255 260 cac cct gtt gag ttg gca ggt gcg tac gtt ttt ctc gct tct gac gaa 931 His Pro Val Glu Leu Ala Gly Ala Tyr Val Phe Leu Ala Ser Asp Glu 265 gcc agc tat gtg gta gga gaa acc ctg gga gtc aca ggt ggg acg ccc Ala Ser Tyr Val Val Gly Glu Thr Leu Gly Val Thr Gly Gly Thr Pro 280 285 acc cca tagtcggtac aagcggaatc act 1008 Thr Pro 295 <210> 318 <211> 295 <212> PRT <213> Corynebacterium glutamicum <400> 318 Met Ile Ser Leu Leu Asn Asp Pro Arg Thr Leu Phe Pro Lys Val Asp Pro Pro Lys Gln Ser Gln Pro Glu Pro Gly Leu Asp Ile Lys Leu Ser 25 Pro Gln Ala Asp Ile Gly Leu Ser Ser Tyr Gln Gly Ser Gly Arg Leu 45 Lys Gly Arg Lys Ala Leu Ile Thr Gly Gly Asp Ser Gly Ile Gly Ala

Ala Val Ala Ile Ala Tyr Ala Arg Glu Gly Ala Asp Val Ala Ile Ala Tyr Leu Pro Glu Glu Gln Ala Asp Ala Asp Arg Val Leu Gln Ala Ile 90 Glu Glu Thr Gly Gln Lys Ala Phe Ser Phe Pro Gly Asp Leu Arg Asp Pro Glu Tyr Cys Arg Ser Leu Val Gln Glu Thr Val Asn Ala Leu Gly 120 Gly Leu Asp Ile Leu Val Asn Asn Ala Ser Arg Gln Val Trp Ala Pro 135 Gly Leu Thr Glu Ile Thr Asp Glu Asn Phe Asp Gln Thr Leu Gln Val 155 145 150 Asn Leu Tyr Gly Ser Phe Arg Val Thr Lys Ala Ala Ile Pro His Leu 170 Lys Pro Gly Ser Ser Ile Ile Phe Thr Ser Ser Ile Gln Ala Tyr Gln 180 Pro Ser Glu Thr Leu Leu Asp Tyr Ala Met Thr Lys Ala Ala Leu Asn Asn Leu Ser Lys Gly Leu Ala Ser Ser Leu Ile Gly Asp Gly Ile Arg Val Asn Ser Val Ala Pro Gly Pro Phe Trp Thr Pro Leu Gln Pro Ser 235 His Gly Gln Pro Gln Glu Lys Ile Glu Gly Phe Gly Gln His Ala Pro Ile Gly Arg Ala Gly His Pro Val Glu Leu Ala Gly Ala Tyr Val Phe 265 Leu Ala Ser Asp Glu Ala Ser Tyr Val Val Gly Glu Thr Leu Gly Val Thr Gly Gly Thr Pro Thr Pro 290 295 <210> 319 <211> 1605 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1582) <223> RXN01049 <400> 319 aagcacaqca attgagcaat actcccatgc atgttttcgc gtgatcacgc tatatcctta 60 aagaatatto tttattagto agacotttaa aggaaacott atg gga toa att coa

Met Gly Ser Ile Pro

aca atq tcc atc cct ttt qat qac tca cgt gga cct tat gtc ctt gct 163 Thr Met Ser Ile Pro Phe Asp Asp Ser Arg Gly Pro Tyr Val Leu Ala atg gat att ggt tcc act gca tca cga ggt gga ctt tat gat gct tcc 211 Met Asp Ile Gly Ser Thr Ala Ser Arg Gly Gly Leu Tyr Asp Ala Ser ggc tgc cca atc aaa ggc acc aag cag cgc gaa tcc cat gaa ttc acc 259 Gly Cys Pro Ile Lys Gly Thr Lys Gln Arg Glu Ser His Glu Phe Thr 40 acc ggt gag ggc gtt tcc acc att gat gct gac cag gtg gtt tcg gag 307 Thr Gly Glu Gly Val Ser Thr Ile Asp Ala Asp Gln Val Val Ser Glu 55 60 atc acc tca gtt att aat ggc att ttg aac gcg gct gat cat cac aac 355 Ile Thr Ser Val Ile Asn Gly Ile Leu Asn Ala Ala Asp His His Asn 80 70 75 403 atc aaa gat cag atc gcc gct gtc gcg cta gat tct ttt gca tcc tca Ile Lys Asp Gln Ile Ala Ala Val Ala Leu Asp Ser Phe Ala Ser Ser 90 95 100 tta atc ttg gtc gat ggt gaa ggc aat gcg ctc acc ccg tgc att acc 451 Leu Ile Leu Val Asp Gly Glu Gly Asn Ala Leu Thr Pro Cys Ile Thr 105 115 tac gcg gat tct cgt tct gca cag tat gtg gag cag ctg cgc gcg gaa 499 Tyr Ala Asp Ser Arg Ser Ala Gln Tyr Val Glu Gln Leu Arg Ala Glu 120 atc gat gag aag gcc tac cac ggc cgc acc ggc gtc tgc ttg cac acc 547 Ile Asp Glu Lys Ala Tyr His Gly Arg Thr Gly Val Cys Leu His Thr 135 tcc tac cac cca tcg cgc ttg ctg tgg ctg aaa act gag ttc gag aaa 595 Ser Tyr His Pro Ser Arg Leu Leu Trp Leu Lys Thr Glu Phe Glu Lys 150 155 gag ttc aac aaa gcc aag tat gtg atg acc atc ggt gag tac gtc tac 643 Glu Phe Asn Lys Ala Lys Tyr Val Met Thr Ile Gly Glu Tyr Val Tyr 170 ttc aaa ctt gca ggc atc acc gga atg gct act tcg att gcc gcg tgg 691 Phe Lys Leu Ala Gly Ile Thr Gly Met Ala Thr Ser Ile Ala Ala Trp 185 190 agt ggc att ttg gac gcc cat acc ggc gaa ctt gat ctg act atc ttg 739 Ser Gly Ile Leu Asp Ala His Thr Gly Glu Leu Asp Leu Thr Ile Leu 200 205 787 gag cac atc ggt gtt gat ccg gct ctg ttc ggt gag atc aga aac cct Glu His Ile Gly Val Asp Pro Ala Leu Phe Gly Glu Ile Arg Asn Pro 215 220 gat gaa cca gcc acc gat gcc aaa gtt gtc gac aaa aag tgg aag cac 835 Asp Glu Pro Ala Thr Asp Ala Lys Val Val Asp Lys Lys Trp Lys His 230

	gaa ato Glu Ile				Ala :								883
	ggc cca Gly Pro 265	Gly Ala		Asp S									931
	tcc ggc Ser Gly 280		Arg '										979
atc ccc Ile Pro 295	tct ggc Ser Gly	ctg tgg Leu Trp	tgt : Cys : 300	tac c Tyr A	egc (gtt Val	tcc Ser	cgc Arg 305	gac Asp	cag Gln	tgc Cys	atc Ile	1027
	ggc gca Gly Ala		Asp '										1075
	att atc				Leu I								1123
	gaa ggc Glu Gly 345	Thr Pro		Val I									1171
tcc ato Ser Ile	ggc tgg Gly Trp 360	gca gco Ala Ala	Ser 2	gcg c Ala G 365	cag (Sln)	gcc Ala	acg Thr _.	atc Ile	acc Thr 370	aac Asn	att Ile	cag Gln	1219
-	acc ggo Thr Gly	_		_		_		-		_	-		1267
	tcc tac Ser Tyr		Val '										1315
	gaa cgg Glu Arg	Val Ile		Ser G	Sly A	Arg	Val	Ser	Thr	Asp	His		1363
	ctc gcg Leu Ala 425	Met Lev		Asp A									1411
	atg aag Met Lys 440		Thr 1										1459
	g ctc gaa Leu Glu												1507
	cag ccg Gln Pro		Ala										1555

1602

ttc gac gcc ctc tac ctc aag ttg gtc tagcttttcg cagtggaacg Phe Asp Ala Leu Tyr Leu Lys Leu Val

4 9

cgc 1605

<210> 320

<211> 494

<212> PRT

<213> Corynebacterium glutamicum

<400> 320

Met Gly Ser Ile Pro Thr Met Ser Ile Pro Phe Asp Asp Ser Arg Gly 1 5 10 15

Pro Tyr Val Leu Ala Met Asp Ile Gly Ser Thr Ala Ser Arg Gly Gly
20 25 30

Leu Tyr Asp Ala Ser Gly Cys Pro Ile Lys Gly Thr Lys Gln Arg Glu
35 40 45

Ser His Glu Phe Thr Thr Gly Glu Gly Val Ser Thr Ile Asp Ala Asp 50 55 60

Gln Val Val Ser Glu Ile Thr Ser Val Ile Asn Gly Ile Leu Asn Ala 65 70 75 80

Ala Asp His His Asn Ile Lys Asp Gln Ile Ala Ala Val Ala Leu Asp 85 90 95

Ser Phe Ala Ser Ser Leu Ile Leu Val Asp Gly Glu Gly Asn Ala Leu 100 105 110

Thr Pro Cys Ile Thr Tyr Ala Asp Ser Arg Ser Ala Gln Tyr Val Glu 115 120 125

Gln Leu Arg Ala Glu Ile Asp Glu Lys Ala Tyr His Gly Arg Thr Gly 130 135 140

Val Cys Leu His Thr Ser Tyr His Pro Ser Arg Leu Leu Trp Leu Lys 145 150 155 160

Thr Glu Phe Glu Lys Glu Phe Asn Lys Ala Lys Tyr Val Met Thr Ile 165 170 175

Gly Glu Tyr Val Tyr Phe Lys Leu Ala Gly Ile Thr Gly Met Ala Thr 180 \$185\$

Ser Ile Ala Ala Trp Ser Gly Ile Leu Asp Ala His Thr Gly Glu Leu 195 200 205

Asp Leu Thr Ile Leu Glu His Ile Gly Val Asp Pro Ala Leu Phe Gly 210 215 220

Glu Ile Arg Asn Pro Asp Glu Pro Ala Thr Asp Ala Lys Val Val Asp 225 230 235 240

Lys Lys Trp Lys His Leu Glu Glu Ile Pro Trp Phe His Ala Ile Pro 245 250 255

Asp Gly Trp Pro Ser Asn Ile Gly Pro Gly Ala Val Asp Ser Lys Thr

Val Ala Val Ala Ala Ala Thr Ser Gly Ala Met Arg Val Ile Leu Pro Ser Val Pro Glu Gln Ile Pro Ser Gly Leu Trp Cys Tyr Arg Val Ser Arg Asp Gln Cys Ile Val Gly Gly Ala Leu Asn Asp Val Gly Arg Ala Val Thr Trp Leu Glu Arg Thr Ile Ile Lys Pro Glu Asn Leu Asp Glu Val Leu Ile Arg Glu Pro Leu Glu Gly Thr Pro Ala Val Leu Pro Phe Phe Ser Gly Glu Arg Ser Ile Gly Trp Ala Ala Ser Ala Gln Ala Thr 360 Ile Thr Asn Ile Gln Glu Gln Thr Gly Pro Glu His Leu Trp Arg Gly Val Phe Glu Ala Leu Ala Leu Ser Tyr Gln Arg Val Trp Glu His Met 390 395 Gly Lys Ala Gly Ala Ala Pro Glu Arg Val Ile Ala Ser Gly Arg Val 405 410 415 Ser Thr Asp His Pro Glu Phe Leu Ala Met Leu Ser Asp Ala Leu Asp 420 425 Thr Pro Val Ile Pro Leu Glu Met Lys Arg Ala Thr Leu Arg Gly Thr 440 435 Ala Leu Ile Val Leu Glu Gln Leu Glu Pro Gly Gly Thr Arg Ala Thr 455 Pro Pro Phe Gly Thr Thr His Gln Pro Arg Phe Ala His His Tyr Ser Lys Ala Arg Glu Leu Phe Asp Ala Leu Tyr Leu Lys Leu Val 485 490 <210> 321 <211> 1134 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1111) <223> FRXA01049 <400> 321 cacagtatgt ggagcagctg cgcgcggaaa tcgatgagaa ggcctaccac ggccgcaccg 60 gegtetgett geacacetee taccacecat egegettget gtg gtg aaa act gag Val Val Lys Thr Glu

ttc gag aaa gag ttc aac aaa gcc aag tat gtg atg acc atc ggt gag 163 Phe Glu Lys Glu Phe Asn Lys Ala Lys Tyr Val Met Thr Ile Gly Glu tac gtc tac ttc aaa ctt gca ggc atc acc gga atg gct act tcg att 211 Tyr Val Tyr Phe Lys Leu Ala Gly Ile Thr Gly Met Ala Thr Ser Ile 25 qcc qcg tgg agt ggc att ttg gac gcc cat acc ggc gaa ctt gat ctg 259 Ala Ala Trp Ser Gly Ile Leu Asp Ala His Thr Gly Glu Leu Asp Leu 40 45 act atc ttg gag cac atc ggt gtt gat ccg gct ctg ttc ggt gag atc 307 Thr Ile Leu Glu His Ile Gly Val Asp Pro Ala Leu Phe Gly Glu Ile 55 60 aga aac cct gat gaa cca gcc acc gat gcc aaa gtt gtc gac aaa aag 355 Arg Asn Pro Asp Glu Pro Ala Thr Asp Ala Lys Val Val Asp Lys Lys 70 75 80 tgg aag cac ctg gaa gaa atc cct tgg ttc cat gcc att cca gac ggc 403 Trp Lys His Leu Glu Glu Ile Pro Trp Phe His Ala Ile Pro Asp Gly 90 tgg cct tcc aac att ggc cca ggc gcc gtg gat tct aaa acc gtc gca 451 Trp Pro Ser Asn Ile Gly Pro Gly Ala Val Asp Ser Lys Thr Val Ala 105 110 qtc qcc qcc aca tcc qqc qcc atq cqc qtq atc ctt ccg agc gtt 499 Val Ala Ala Ala Thr Ser Gly Ala Met Arg Val Ile Leu Pro Ser Val 120 125 ccc gaa cag atc ccc tct ggc ctg tgg tgt tac cgc gtt tcc cgc gac 547 Pro Glu Gln Ile Pro Ser Gly Leu Trp Cys Tyr Arg Val Ser Arg Asp 135 140 cag tgc atc gtt ggt ggc gca ctc aac gac gtc gga cgc gcc gtc acc 595 Gln Cys Ile Val Gly Gly Ala Leu Asn Asp Val Gly Arg Ala Val Thr 150 155 tgg ctg gaa cgc acc att atc aag cct gaa aac ctc gac gaa gtg ctg 643 Trp Leu Glu Arg Thr Ile Ile Lys Pro Glu Asn Leu Asp Glu Val Leu 170 ate ege gaa eee ete gaa gge ace eea get gte etg eeg tte tte tee 691 Ile Arg Glu Pro Leu Glu Gly Thr Pro Ala Val Leu Pro Phe Phe Ser 185 190 ggg gaa cgc tcc atc ggc tgg gca gcc tca gcg cag gcc acg atc acc 739 Gly Glu Arg Ser Ile Gly Trp Ala Ala Ser Ala Gln Ala Thr Ile Thr 200 205 aac att cag gaa caa acc ggc cct gaa cac ttg tgg cgc ggc gtt ttc 787 Asn Ile Gln Glu Gln Thr Gly Pro Glu His Leu Trp Arg Gly Val Phe 215 220 gaa gcc ctc gca ctc tcc tac cag cgc gtt tgg gaa cac atg ggg aaa Glu Ala Leu Ala Leu Ser Tyr Gln Arg Val Trp Glu His Met Gly Lys 230 235

Ala Gly Ala	a gcc cct a Ala Pro 250	Glu Ar										883
gac cac cc Asp His Pro		_	-			-	-		-			931
gtc atc cc Val Ile Pro 28	Leu Glu											979
atc gtc ct Ile Val Le 295			u Pro			_	_	-				1027
ttc ggc acc Phe Gly Th 310		-								_	_	1075
aga gag ct Arg Glu Le	_	Ala Le			_	-	-	tago	cttt	cg		1121
cagtggaacg	cgc											1134
<210> 322 <211> 337 <212> PRT		/										
<213> Cory	nebacteri	.um glut	amicu	m								
		Phe Gl			Phe 10	Asn	Lys	Ala	Lys	Tyr 15	Val	
<213> Cory <400> 322 Val Val Ly	s Thr Glu	Phe Gl	u Lys	Glu	10					15		
<213> Corys <400> 322 Val Val Ly 1	s Thr Glu 5 e Gly Glu 20 r Ser Ile	n Phe Gl	u Lys	Glu Phe 25	10 Lys	Leu	Ala	Gly	Ile 30	15 Thr	Gly	
<213> Corys <400> 322 Val Val Ly 1 Met Thr Ile Met Ala Th	s Thr Glu 5 e Gly Glu 20 r Ser Ile	Phe Gl	u Lys 1 Tyr a Trp 40	Glu Phe 25 Ser	10 Lys Gly	Leu Ile	Ala Leu	Gly Asp 45	Ile 30 Ala	15 Thr His	Gly Thr	
<213> Corys <400> 322 Val Val Ly 1 Met Thr II Met Ala Th 3 Gly Glu Les	s Thr Glu 20 Ser Ile	Phe Gl	u Lys 1 Tyr a Trp 40 e Leu 5	Glu Phe 25 Ser Glu	10 Lys Gly His	Leu Ile Ile	Ala Leu Gly 60	Gly Asp 45 Val	Ile 30 Ala Asp	15 Thr His	Gly Thr Ala	
<213> Corys <400> 322 Val Val Ly 1 Met Thr II Met Ala Th 3 Gly Glu Le 50 Leu Phe Gl	S Thr Glu 20 Ser Ile Asp Leu 7 Glu Ile	Phe Gl	u Lys I Tyr a Trp 40 e Leu 5	Glu Phe 25 Ser Glu Asp	10 Lys Gly His Glu	Leu Ile Ile Pro	Ala Leu Gly 60 Ala	Gly Asp 45 Val	Ile 30 Ala Asp	15 Thr His Pro	Gly Thr Ala Lys 80	
<213> Corys <400> 322 Val Val Ly 1 Met Thr II Met Ala Th 3 Gly Glu Le 50 Leu Phe Gl 65	S Thr Glu S Ser Ile S Asp Leu Glu Ile C Lys Lys 85	Phe Gl	u Lys 1 Tyr a Trp 40 e Leu 5	Glu Phe 25 Ser Glu Asp	10 Lys Gly His Glu Glu 90	Leu Ile Ile Pro 75 Glu	Ala Leu Gly 60 Ala	Gly Asp 45 Val Thr	Ile 30 Ala Asp Asp	15 Thr His Pro Ala Phe 95	Gly Thr Ala Lys 80 His	
<213> Corys <400> 322 Val Val Ly 1 Met Thr II Met Ala Th 3 Gly Glu Le 50 Leu Phe Gl 65 Val Val As	S Thr Glu 20 Ser Ile 3 Asp Leu 7 Glu Ile 9 Lys Lys 85 9 Asp Gly 100 100 100 100 100 100 100 1	Phe Gland Tyr Valle Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala	u Lys I Tyr a Trp 40 e Leu 5	Glu Phe 25 Ser Glu Asp Leu Asn	10 Lys Gly His Glu 90 Ile	Leu Ile Ile Pro 75 Glu	Ala Leu Gly 60 Ala Ile	Gly Asp 45 Val Thr Pro	Ile 30 Ala Asp Trp Ala 110	Thr His Pro Ala Phe 95 Val	Gly Thr Ala Lys 80 His	

Arg Val Ser Arg Asp Gln Cys Ile Val Gly Gly Ala Leu Asn Asp Val

Gly Arg Ala Val Thr Trp Leu Glu Arg Thr Ile Ile Lys Pro Glu Asn Leu Asp Glu Val Leu Ile Arg Glu Pro Leu Glu Gly Thr Pro Ala Val Leu Pro Phe Phe Ser Gly Glu Arg Ser Ile Gly Trp Ala Ala Ser Ala Gln Ala Thr Ile Thr Asn Ile Gln Glu Gln Thr Gly Pro Glu His Leu Trp Arg Gly Val Phe Glu Ala Leu Ala Leu Ser Tyr Gln Arg Val Trp 235 Glu His Met Gly Lys Ala Gly Ala Ala Pro Glu Arg Val Ile Ala Ser 250 Gly Arg Val Ser Thr Asp His Pro Glu Phe Leu Ala Met Leu Ser Asp 260 265 Ala Leu Asp Thr Pro Val Ile Pro Leu Glu Met Lys Arg Ala Thr Leu 280 Arg Gly Thr Ala Leu Ile Val Leu Glu Gln Leu Glu Pro Gly Gly Thr 295 Arg Ala Thr Pro Pro Phe Gly Thr Thr His Gln Pro Arg Phe Ala His His Tyr Ser Lys Ala Arg Glu Leu Phe Asp Ala Leu Tyr Leu Lys Leu Val <210> 323 <211> 597 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(574) <223> FRXA01050 <400> 323 aagcacagca attgagcaat actcccatgc atgttttcgc gtgatcacgc tatatcctta 60 aaqaatattc tttattagtc agacctttaa aggaaacctt atg gga tca att cca 115 Met Gly Ser Ile Pro aca atg tcc atc cct ttt gat gac tca cgt gga cct tat gtc ctt gct 163 Thr Met Ser Ile Pro Phe Asp Asp Ser Arg Gly Pro Tyr Val Leu Ala 10

atg Met	gat Asp	att Ile	ggt Gly 25	tcc Ser	act Thr	gca Ala	tca Ser	cga Arg 30	ggt Gly	gga Gly	ctt Leu	tat Tyr	gat Asp 35	gct Ala	tcc Ser	211	
ggc Gly	tgc Cys	cca Pro 40	atc Ile	aaa Lys	ggc Gly	acc Thr	aag Lys 45	cag Gln	cgc Arg	gaa Glu	tcc Ser	cat His 50	gaa Glu	ttc Phe	acc Thr	259	
							att Ile									307	
							att Ile									355	
							gtc Val									403	
							ggc Gly									451	
							cag Gln 125									499	
							ggc Gly									547	
				_	-	-	ctg Leu		tgaa	aact	ga q	gtte	gagaa	aa		594	
gag																597	
<212 <212	0> 32 l> 15 2> PF 3> Co	58 RT	ebact	eri	ım gl	Lutar	nicur	n									
<100)> 32	2.4															
			Ile	Pro 5	Thr	Met	Ser	Ile	Pro 10	Phe	Asp	Asp	Ser	Arg 15	Gly		
Pro	Tyr	Val	Leu 20	Ala	Met	Asp	Ile	Gly 25	Ser	Thr	Ala	Ser	Arg 30	Gly	Gly		
Leu	Tyr	Asp 35	Ala	Ser	Gly	Cys	Pro 40	Ile	Lys	Gly	Thr	Lys 45	Gln	Arg	Glu		
Ser	His 50	Glu	Phe	Thr	Thr	Gly 55	Glu	Gly	Val	Ser	Thr 60	Ile	Asp	Ala	Asp		
Gln 65	Val	Val	Ser	Glu	Ile 70	Thr	Ser	Val	Ile	Asn 75	Gly	Ile	Leu	Asn	Ala 80		
Ala	Asp	His	His	Asn	Ile	Lys	Asp	Gln	Ile	Ala	Ala	Val	Ala	Leu	Asp		

85 90 95 Ser Phe Ala Ser Ser Leu Ile Leu Val Asp Gly Glu Gly Asn Ala Leu Thr Pro Cys Ile Thr Tyr Ala Asp Ser Arg Ser Ala Gln Tyr Val Glu 120 Gln Leu Arg Ala Glu Ile Asp Glu Lys Ala Tyr His Gly Arg Thr Gly Val Cys Leu His Thr Ser Tyr His Pro Ser Arg Leu Leu Trp 150 <210> 325 <211> 1065 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1042) <223> RXA00202 <400> 325 ctggcagcag attgtcatcg gttgtgtcat cgcgcttgcg gtgggcttcg atgtcatccg 60 aaacaaaacc tctaagtaat tcctgaaagg aaattttcac atg tac gct cgt aaa 115 Met Tyr Ala Arg Lys 1 ctt att gct ctg tcc gct tct gtc gtt ttg gct ttc agc ttg tct gct 163 Leu Ile Ala Leu Ser Ala Ser Val Val Leu Ala Phe Ser Leu Ser Ala 10 tgc aac cgt gaa tot tot ggc acc agc gca gac ggc ggt tot gcg gat 211 Cys Asn Arg Glu Ser Ser Gly Thr Ser Ala Asp Gly Gly Ser Ala Asp 25 ggg tcg atc acc ttg gct ctg tct acc cag acc aac ccg ttc ttt gtg Gly Ser Ile Thr Leu Ala Leu Ser Thr Gln Thr Asn Pro Phe Phe Val 40 45 cag ctt cgt gat ggt gcc cag gaa aag gct gat gaa ttg ggc gtg acc 307 Gln Leu Arg Asp Gly Ala Gln Glu Lys Ala Asp Glu Leu Gly Val Thr 55 ctc aat gtt cag gat gct tcc gat gac gct gca acg cag gcc aac cag 355 Leu Asn Val Gln Asp Ala Ser Asp Asp Ala Ala Thr Gln Ala Asn Gln 70 ctc aac aac gct gtc acc acc ggt gct ggc gtg gtg att gtc aac cca 403 Leu Asn Asn Ala Val Thr Thr Gly Ala Gly Val Val Ile Val Asn Pro 90 act gat tot gat gct gtg gtg ccg tcg gtg gaa gct ctc aac cag gct 451 Thr Asp Ser Asp Ala Val Val Pro Ser Val Glu Ala Leu Asn Gln Ala

gac att cct gtt gtg gct gtc gac cgt tcc tcc aat ggt ggc gag gtg

115

105

Asp Ile Pro 120	Val Val	Ala Val	Asp A 125	Arg Ser	Ser .		Gly 130	Gly	Glu	Val	
gcg tcc ttc Ala Ser Phe 135					Gly						547
gca gcc ctg Ala Ala Leu 150											595
caa ggc att Gln Gly Ile											643
gaa gag gag Glu Glu Glu			Glu G								691
acc gcc aac Thr Ala Asn 200	-				-	Val	=			_	739 [.]
ctg cag gca Leu Gln Ala 215				_	Phe		-		-		787
atg gcg ttg Met Ala Leu 230	,,	-	_		-	-	-		-	-	835
gtc atc gtt Val Ile Val		_			-		-	-		-	883
gaa gat gga Glu Asp Gly			Thr V				Pro				931
gga gca aag Gly Ala Lys 280		-		-		Leu i	-			-	979
gct gaa aca Ala Glu Thr 295					Thr '						1027
gtc gcg gac Val Ala Asp 310		tagtcgg	ega tg	yaaaaagt	c cg	t					1065
<210> 326 <211> 314 <212> PRT <213> Coryne	ebacteri	ım glutan	nicum								
<400> 326 Met Tyr Ala 1	Arg Lys 5	Leu Ile	Ala L	eu Ser 10	Ala :	Ser ^v	Val	Val	Leu 15	Ala	

Phe Ser Leu Ser Ala Cys Asn Arg Glu Ser Ser Gly Thr Ser Ala Asp Gly Gly Ser Ala Asp Gly Ser Ile Thr Leu Ala Leu Ser Thr Gln Thr Asn Pro Phe Phe Val Gln Leu Arg Asp Gly Ala Gln Glu Lys Ala Asp Glu Leu Gly Val Thr Leu Asn Val Gln Asp Ala Ser Asp Asp Ala Ala Thr Gln Ala Asn Gln Leu Asn Asn Ala Val Thr Thr Gly Ala Gly Val Val Ile Val Asn Pro Thr Asp Ser Asp Ala Val Val Pro Ser Val Glu Ala Leu Asn Gln Ala Asp Ile Pro Val Val Ala Val Asp Arg Ser Ser Asn Gly Gly Glu Val Ala Ser Phe Val Ala Ser Asp Asn Val Ala Gly 135 Gly Ala Gln Ala Ala Ala Leu Ala Glu Ala Ile Gly Gly Glu Gly Glu Ile Leu Met Leu Gln Gly Ile Ala Gly Ser Ser Ala Ser Arg Asp 170 Arg Gly Gln Gly Phe Glu Glu Glu Ile Ala Lys His Glu Gly Ile Ser 185 Ile Val Ala Lys Gln Thr Ala Asn Phe Asp Arg Gly Glu Gly Leu Asp 200 195 Val Ala Thr Asn Leu Leu Gln Ala His Pro Asn Val Lys Ala Ile Phe Ala Glu Asn Asp Glu Met Ala Leu Gly Ala Ile Glu Ala Leu Gly Ala Arg Ala Gly Glu Asp Val Ile Val Val Gly Phe Asp Gly Thr Asn Asp Gly Leu Ala Ala Val Glu Asp Gly Arg Met Leu Ala Thr Val Ala Gln Gln Pro Glu Glu Leu Gly Ala Lys Ala Val Glu Glu Ala Ala Lys Leu 280 Leu Arg Gly Glu Asp Ala Glu Thr Glu Val Pro Val Glu Val Val Thr 300 Val Lys Leu Asp Asn Val Ala Asp Phe Lys 310

<210> 327

<211> 1077

<212> DNA

<213> Corynebacterium glutamicum

185

<220> <221> CDS <222> (101)..(1054) <223> RXN00872

<400> 327

gaaatgtatt gctttgtcag gacaatgtgt tattgtcatg acatgcgatc gtgagggtcg 60 ccacattcca tcaaaaatga gtgaagggtt gcatcgccac atg act aac ttg acg 115 Met Thr Asn Leu Thr age act cae gaa gte eta get ate gge ege ttg gge gta gat att tae 163 Ser Thr His Glu Val Leu Ala Ile Gly Arg Leu Gly Val Asp Ile Tyr 10 cca ctt caa agt gga gta gga ctg gcc gat gtt caa tct ttc ggc aag 211 Pro Leu Gln Ser Gly Val Gly Leu Ala Asp Val Gln Ser Phe Gly Lys 25 tac ctc ggc gga agc gca gca aac gtt tct gtt gca gcc gcc cgc cat 259 Tyr Leu Gly Gly Ser Ala Ala Asn Val Ser Val Ala Ala Ala Arg His 40 45 50 307 gga cac aat too gca ctg ctg too cgt gtg gga aat gat cot tto ggo Gly His Asn Ser Ala Leu Leu Ser Arg Val Gly Asn Asp Pro Phe Gly 55 gag tac ctg ctt gct gag ctg gag cgt ttg ggc gtg gac aac cag tac 355 Glu Tyr Leu Leu Ala Glu Leu Glu Arg Leu Gly Val Asp Asn Gln Tyr 70 75 gtt gcc acc gat cag act ttt aag acc cca gtg acc ttc tgt gaa att 403 Val Ala Thr Asp Gln Thr Phe Lys Thr Pro Val Thr Phe Cys Glu Ile ttd cca ccg gat gat ttc cca ctg tac ttc tac cgc gaa cca aag gct 451 Phe Pro Pro Asp Asp Phe Pro Leu Tyr Phe Tyr Arg Glu Pro Lys Ala 105 ccg gat ctc aat att gaa tcc gca gac gtc agc ctg gac gat gtg cgc 499 Pro Asp Leu Asn Ile Glu Ser Ala Asp Val Ser Leu Asp Asp Val Arg 120 125 gaa gcc gat att ttg tgg ttc aca ctc act ggt ttc agt gaa gag cca 547 Glu Ala Asp Ile Leu Trp Phe Thr Leu Thr Gly Phe Ser Glu Glu Pro 135 140 age ege gge aca cae ege gag ate ttg act act egt geg aac egt ege 595 Ser Arg Gly Thr His Arg Glu Ile Leu Thr Thr Arg Ala Asn Arg Arg 150 155 cac acc atc ttt gat ctg gac tac cga cca atg ttc tgg gaa tcc cca 643 His Thr Ile Phe Asp Leu Asp Tyr Arg Pro Met Phe Trp Glu Ser Pro 170 180 691 gaa gag gcc acc aag cag gcg gaa tgg gcg ttg cag cat tcc acg gtg Glu Glu Ala Thr Lys Gln Ala Glu Trp Ala Leu Gln His Ser Thr Val