Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_șt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Test 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(0,2\cdot 10-1)(0,2\cdot 10+1)=(2-1)(2+1)=$	3 p
	$=1\cdot 3=3$	2 p
2.	$x^2 - 2 = x \Leftrightarrow x^2 - x - 2 = 0$	3 p
	x = -1 sau $x = 2$	2 p
3.	$4(6-x) = x+14 \Rightarrow 24-4x = x+14 \Leftrightarrow 5x = 10$	3 p
	x = 2, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 7 numere care au cifra zecilor cu 2 mai mică decât cifra unităților, deci sunt 7 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{7}{90}$	2 p
5.	$\vec{u} + \vec{v} = (a+2)\vec{i} + (a+2)\vec{j}$	3р
	a = -2	2p
6.	Cum $\sin^2 x + \cos^2 x = 1$ și $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$	3p
	$tg x = \frac{\sin x}{\cos x} = \frac{3}{5} \cdot \frac{5}{4} = \frac{3}{4}$	2 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)		
	$A(0) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -1 & 1 \end{vmatrix} =$	3 p
	=1+0+0-0-0-0=1	2p
b)	$\int x - y = 1$	
	$\begin{cases} 2x + y - z = 4 & \text{si } \det(A(-1)) = -1 \neq 0 \text{, deci sistemul de ecuații admite soluție unică} \\ -3x - y + z = 1 \end{cases}$	2 p
	-3x - y + z = 1	
	x = -5, $y = -6$, $z = -20$	3р
c)	$A(p) = \begin{pmatrix} 1 & p & 0 \\ 2 & 1 & p \\ -3 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(p)) = -3p^2 - p + 1, \text{ unde } p \text{ este număr rațional}$	2p
	$\begin{pmatrix} -3 & -1 & 1 \end{pmatrix}$	•
	$-3p^2 - p + 1 = 0 \Leftrightarrow p = -\frac{1 + \sqrt{13}}{6} \notin \mathbb{Q}$ sau $p = -\frac{1 - \sqrt{13}}{6} \notin \mathbb{Q}$, deci, pentru orice număr	3 p
	rațional p , $\det(A(p)) \neq 0$, adică matricea $A(p)$ este inversabilă	
2.a)	x * y = xy - 101x - 101y + 10201 + 101 = x(y - 101) - 101(y - 101) + 101 =	3 p
	= $(x-101)(y-101)+101$, pentru orice numere reale x și y	2p

b)	Elementul neutru al legii ,,*" este $e = 102$	2p
	$x = x' \Leftrightarrow x * x = 102 \Leftrightarrow (x - 101)^2 = 1$, de unde obţinem $x = 100$ sau $x = 102$	3 p
c)	$x * y = 202 \Leftrightarrow (x-101)(y-101) + 101 = 202 \Leftrightarrow (x-101)(y-101) = 101$	2 p
	Cum x și y sunt numere întregi cu $x < y$ și 101 este număr prim, obținem $x = 0$ și $y = 100$ sau $x = 102$ și $y = 202$	3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = e^x - 1, \ x \in \mathbb{R}$	3 p
	Panta tangentei la graficul funcției f în punctul de abscisă $x = 0$, situat pe graficul funcției	•
	f este egală cu $f'(0) = e^0 - 1 = 0$	2 p
b)	$f''(x) = e^x, x \in \mathbb{R}$	2p
	$f''(x) > 0$, pentru orice număr real x , deci funcția f este convexă pe \mathbb{R}	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 0$	1p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f$ este descrescătoare pe $(-\infty, 0]$, $f'(x) \ge 0$, pentru	
	orice $x \in [0, +\infty) \Rightarrow f$ este crescătoare pe $[0, +\infty)$ și, cum $f(0) = -4$, obținem $f(x) \ge -4$,	2 p
	pentru orice $x \in \mathbb{R}$	
	$f(-x) \ge -4$, deci $e^{-x} \ge -x+1$, de unde $e^{x}(1-x) \le 1$, pentru orice număr real x	2 p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{4}{x} \right) dx = \int_{1}^{3} \left(\frac{x^{2} + 4}{x} - \frac{4}{x} \right) dx = \int_{1}^{3} x dx = \frac{x^{2}}{2} \Big _{1}^{3} =$	3p
	$=\frac{9}{2}-\frac{1}{2}=4$	2p
b)		3 p
	$= \ln 40 - \ln 8 = \ln 5$	2 p
c)	$\int_{1}^{e} \left(f(x) - \frac{4}{x} \right) \ln x dx = \int_{1}^{e} x \ln x dx = \int_{1}^{e} \left(\frac{x^2}{2} \right) \ln x dx = \frac{x^2}{2} \ln x \left \frac{e}{1} - \int_{1}^{e} \frac{x}{2} dx = \frac{e^2}{2} - \frac{x^2}{4} \left \frac{e}{1} = \frac{e^2 + 1}{4} \right $	3p
	$\frac{e^2+1}{4} = \frac{e^2+1}{a}$, deci $a = 4$	2p