

Kontinuumsmechanik

Aufgabenblatt 6

Aufgaben der Hörsaalübung

- 1. Bestimmen Sie für das dargestellte System unter der Voraussetzung stationärer Verhältnisse
 - (a) den Innendruck p_i des Druckbehälters D,
 - (b) die maximal mögliche Anzahl von Entnahmestellen W unter der Bedingung, daß an keiner Stelle der Leitungen L_1 und L_2 Kavitation auftreten soll $(p > p_D)!$

Geg.: h_0 , h_1 , h_3 , h_4 , A_1 , A_3 , A_4 , ϱ , Umgebungsdruck p_0 , Dampfdruck p_D , mit $h_4 < h_1 < h_3 < h_0$ und $\frac{A_1}{2} = A_3 = 10\,A_4$, Erdbeschleunigung g.

- 2. Ein Wasserlauf wird durch ein schräg liegendes Klappenwehr begrenzt. Die Wehrklappe ist in ihrem Schwerpunkt S drehbar gelagert. Die Breite der Wehrklappe (senkrecht zur Bildebene) ist b. Bei einem bestimmten Wasserstand klappt das Wehr selbstständig auf.
 - (a) Berechnen Sie die resultierende Kraft auf die Wehrklappe und das Moment bezüglich der Wehrachse infolge des Wasserdruckes.
 - (b) Berechnen Sie den Wasserstand z_0 , bei dem das Wehr selbstständig öffnet.
 - (c) Bei welchem Füllstand z_0 tritt das maximale Moment auf die Wehrklappe auf?

Geg.: ϱ , h, α , p_0 , g, b

Kontinuumsmechanik Aufgabenblatt 6

Tutoriumsaufgaben

- 3. Auf einem Podest der Höhe H' steht ein großes Gefäß (Durchmesser D), welches bis zur Höhe H mit Wasser gefüllt ist (vgl. nebenstehende Skizze). Dieses Gefäß wird mit Hilfe eines Schlauches (Durchmesser d) nach dem Heberprinzip entleert. Das Gefäß und der Schlauch haben kreisförmigen Querschnitt.
 - (a) Wie groß ist bei reibungsloser Strömung die Wasseraustrittsgeschwindigkeit $v_A(h)$ am Schlauchende in Abhänigkeit von der veränderlichen Wasserhöhe h im Behälter?
 - (b) Wie groß ist bei reibungsloser Strömung die Entleerungszeit T des Behälters?

Geg.: H, H', d, D, g

- 4. Ein Wasserleitungssystem wird aus einem Druckbehälter gespeist. Aus allen drei Austrittsquerschnitten soll der gleiche Volumenstrom austreten. Die Füllhöhe h des Druckbehälters sei konstant. Das Wasser wird als inkompressibel und die Strömung als reibungsfrei angenommen.
 - (a) Berechnen Sie die dazu erforderlichen Querschnitte A_2 und $A_3!$
 - (b) Berechnen Sie das Moment um den Punkt P, das durch den Rückstoß des austretenden Wassers entsteht. *Hinweis:* Die Ergebnisse für v_1 , v_2 und v_3 aus Aufgabenteil (a) sollen <u>nicht</u> eingesetzt werden.

Geg.: $A_1, p_0, p_i, a, h, \rho, g$.

Kontinuumsmechanik Aufgabenblatt 6

Weiterführende Übungsaufgaben

5. Ein dreigeschossiges Wohnhaus werde aus einem Kessel versorgt. Die Füllhöhe H im Kessel sei konstant. Der Luftdruck im Kessel sei p_i . Der Austrittsquerschnitt A_1 und die Höhen der Austritte h_{α} ($\alpha = 1, 2, 3$) seien gegeben. Die Strömung sei stationär. Das Fluid sei inkompressibel und reibungsfrei. Der Umgebungsdruck betrage $p_0 = \frac{1}{6}p_i$.

Hinweis: Entlang einer Stromlinie gilt: $\frac{p}{\rho} + \frac{v^2}{2} + gz = const.$ (BERNOULLIsche Gleichung)

- (a) Bestimmen Sie die Austrittsgeschwindigkeiten v_1, v_2 und v_3 abhängig von den gegebenen Größen $p_0, \rho, g, H, h_1, h_2, h_3$.
- (b) Wie groß müssen die Flächen A_2 und A_3 sein, damit überall derselbe Massenstrom M abfließt?
- (c) In welcher maximalen Höhe über dem Boden $z_{\rm max}$ könnte gerade noch Wasser entnommen werden?
- 6. Gegeben sei das nebenstehend skizzierte Leitungssystem. Der Flüssigkeitspegel im Kessel werde durch eine Speisewasserpumpe auf konstanter Höhe gehalten.

Geg.:
$$h_i(i = 1, ..., 4), A, \rho, p_0, Q_4, g$$

(a) Geben Sie den Zusammenhang zwischen dem Volumenstrom Q_4 und der Austrittsgeschwindigkeit v_4 an der Stelle $\boxed{4}$ an. Wie groß ist dort der Druck?

- (b) Formulieren Sie die Bernoulli-Gleichung zwischen $\boxed{1}$ und $\boxed{4}$. Wie groß muss der Kesseldruck p_1 sein, damit an der Stelle $\boxed{4}$ ein vorgegebener Volumenstrom Q_4 entnommen werden kann?
- (c) Formulieren Sie die Bernoulli-Gleichung nun zwischen $\boxed{1}$ und $\boxed{3}$. Benutzen Sie das Ergebnis für den Druck p_1 aus Aufgabenpunkt (b), um die Austrittsgeschwindigkeit v_3 bei $\boxed{3}$ zu berechnen.
- (d) Auf welche Höhe h_x steigt der Wasserspiegel im Messrohr $\boxed{\mathrm{M}}$?

MMD