Split Adjoint Operators

by Adam Nemecek, Sven Nilsen, 2020

In this paper we generalize split-imaginary numbers to split adjoint operators.

An split-imaginary number^[1] is defined as following:

$$i^2 = 1$$

By adding a minus sign to the each side:

$$-i^2 = -1$$

Using Avatar Covers^[2], it is natural to use the avatar cover `xor` for this product:

$$\mathbf{i} \cdot (-\mathbf{i}) = (-\mathbf{i}) \cdot \mathbf{i} = -1$$

$$mul[neg]_a <=> xor$$

We use the same process as in the paper "Imaginary Adjoint Operators" [3].

Hence, for any symmetric avatar cover `xor`:

$$f[g]_a \le xor$$

An Split Adjoint Operator `g` is defined as the following relation with `f`:

$$\exists e \{ \exists i \{ f(i, g(i)) = f(g(i), i) = g(e) \} \land \forall y \{ f(y, e) = f(e, y) = y \} \}$$

Here, 'e' is some unit element of 'f'.

The element `i` is an imaginary element.

Notice that `-1` is represented as `g(e)`.

References:

- [1] "Split-complex number"
 Wikipedia
 https://en.wikipedia.org/wiki/Split-complex_number
- [2] "Avatar Covers"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path-semantics/blob/master/papers-wip/avatar-covers.pdf
- [3] "Imaginary Adjoint Operators"
 Adam Nemecek, Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/imaginary-adjoint-operators.pdf