Мат.модели машинного обучения: вводная лекция

Воронцов Константин Вячеславович k.v.vorontsov@phystech.edu http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 6 сентября 2024

Эпиграф №1

«Четвёртая технологическая революция строится на вездесущем и мобильном Интернете, искусственном интеллекте и машинном обучении» (2016)

Клаус Мартин Шваб, президент Всемирного экономического форума

Мир наконец поверил в искусственный интеллект Машинное обучение — новый двигатель прогресса Машинное обучение — технология, которая меняет мир

Эпиграф №2 (отчёты Белого Дома США, октябрь 2016)

«Nations with the strongest presence in AI R&D will establish leading positions in the automation of the future»

- Цифровая и распределённая экономика
- Автоматизация и сокращение издержек
- Автономный транспорт и роботизация
- Оптимизация логистики и цепей поставок
- Оптимизация энергетических сетей (Energy Tech)
- Автоматизация банковских услуг (Fin Tech)
- Автоматизация юридических услуг (Legal Tech)
- Автоматизация образовательных услуг (Ed Tech)
- Автоматизация работы с кадрами (HR Tech)
- Персональная медицина (Med Tech)
- Автоматизация в сельском хозяйстве (Agro Tech)
- Автономные системы вооружений (Mil Tech)

Содержание

- Основные понятия и обозначения
 - Данные в задачах обучения по прецедентам
 - Параметрические модели и алгоритмы обучения
 - Обучение и переобучение
- 2 Примеры прикладных задач
 - Задачи классификации
 - Задачи регрессии
 - Задачи ранжирования
- О методологии машинного обучения
 - Особенности данных
 - Стандарт CRISP-DM и взгляд на эволюцию ИИ
 - Эксперименты на синтетических и реальных данных

Оптимизационная постановка задач машинного обучения

X — пространство объектов

Y — множество *ответов* (предсказаний / оценок / прогнозов) y(x), $y: X \to Y$ — неизвестная зависимость (target function)

Дано:

 $\{x_1,\dots,x_\ell\}\subset X$ — обучающая выборка (training sample) $a(x,w),\ a\colon X\! imes\!W o Y$ — параметрическая модель зависимости

Найти:

 $w \in W$ — вектор параметров модели такой, что a(x,w) pprox y(x)

Критерий минимизации эмпирического риска:

$$\sum_{i=1}^\ell \mathscr{L}(w,x_i) o \min_w \; ext{ (empirical risk minimization, ERM)}$$
 где $\mathscr{L}(w,x) - \phi$ ункция потерь (loss function) — тем больше, чем сильнее $a(x,w)$ отклоняется от правильного ответа $y(x)$

Как задаются объекты. Векторное признаковое описание

$$f_j\colon X o D_j,\ j=1,\ldots,n$$
 признаки объектов (features)

Скалярные (одномерные) типы признаков:

- ullet $D_i = \{0,1\}$ бинарный признак f_i
- ullet $|D_i| < \infty$ номинальный признак f_i
- ullet $|D_i| < \infty$, D_i упорядочено *порядковый* признак f_i
- ullet $D_i=\mathbb{R}$ количественный признак f_i

Вектор $(f_1(x),\ldots,f_n(x))$ — признаковое описание объекта x

Матрица «объекты-признаки» (feature data)

$$F = \|f_j(x_i)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}$$

Как задаются объекты. Сложно структурированные данные

Сложные типы признаков:

- текст, символьная дискретнозначная последовательность
- сигнал, непрерывнозначная последовательность
- изображение, 2D-матрица
- многозональное изображение, 3D-матрица
- видео, последовательность изображений
- транзакции, взаимодействия с другими объектами
- всё это вместе мультимодальные данные

Выделение признаков (feature extraction)

- вычисление признаков по формулам (feature engineering)
- генерация векторов признаков (feature generation): $\frac{f(x,w'),\ f\colon X\times W'\to \mathbb{R}^n\ -\ \text{модель векторизации объекта}}{\sum_{w,w'} \mathscr{L}\big(w,f(x_i,w')\big)\to \min_{w,w'}\ -\ \text{обучение векторизатора}}$

Как задаются ответы. Типы задач

Задачи обучения с учителем (supervised learning):

- ullet заданы «ответы учителя» $y_i = y(x_i)$ на обучающих x_i
- задачи классификации (classification, Y class labels):
 - ullet $Y = \{-1, +1\}$ на 2 класса (binary classification)
 - ullet $Y=\{1,\ldots,M\}$ на много классов (multiclass c.)
 - ullet $Y=\{0,1\}^M$ на пересекающиеся классы (multilabel c.)
- задачи восстановления регрессии (regression):
 - ullet $Y=\mathbb{R}$ или $Y=\mathbb{R}^m$
- задачи ранжирования (ranking, learning to rank):
 - Y конечное упорядоченное множество

Задачи обучения без учителя (unsupervised learning):

• ответов нет, требуется что-то делать с самими объектами

Статистическое (машинное) обучение с учителем

- = обучение по прецедентам
- = восстановление зависимостей по эмпирическим данным
- = предсказательное моделирование
- = аппроксимация функций по заданным точкам

Два основных типа задач — классификация и регрессия

Пример: задача классификации цветков ириса [Фишер, 1936]

$$n=4$$
 признака, $|Y|=3$ класса, длина выборки $\ell=150$.

Как задаются предсказательные модели

Модель (predictive model) — параметрическое семейство функций

$$A = \{a(x, w) \mid w \in W\},\$$

где $a\colon X\times W\to Y$ — фиксированная функция, W — множество допустимых значений параметра w

Пример.

Линейная модель с вектором параметров $w=(w_1,\ldots,w_n)\in\mathbb{R}^n$:

$$a(x,w) = \sum_{j=1}^n w_j f_j(x)$$
 — для регрессии и ранжирования, $Y = \mathbb{R}$

$$a(x,w) = \operatorname{sign} \sum_{i=1}^n w_i f_i(x)$$
 — для классификации, $Y = \{-1,+1\}$

Пример: задача регрессии, синтетические данные

$$X = Y = \mathbb{R}$$
, $\ell = 200$, $n = 3$ признака: $\{x, x^2, 1\}$ или $\{x, \sin x, 1\}$

- вычисление новых признаков может обогатить модель
- на практике очень важно «правильно угадать модель»

Алгоритм обучения, этапы обучения и применения

Этап *обучения* (train):

алгоритм обучения (learning algorithm) $\mu \colon (X \times Y)^\ell \to W$ по выборке $X^\ell = (x_i, y_i)_{i=1}^\ell$ строит функцию a(x, w), оценивая (оптимизируя) параметры модели $w \in W$:

$$\begin{bmatrix}
f_1(x_1) & \dots & f_n(x_1) \\
\dots & \dots & \dots \\
f_1(x_\ell) & \dots & f_n(x_\ell)
\end{bmatrix} \xrightarrow{y} \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}$$

$$\xrightarrow{\mu} w$$

Этап применения (test):

функция a(x,w) для новых объектов x_i' выдаёт ответы $a(x_i',w)$:

$$\begin{pmatrix} f_1(x_1') & \dots & f_n(x_1') \\ \dots & \dots & \dots \\ f_1(x_k') & \dots & f_n(x_k') \end{pmatrix} \stackrel{a}{\longrightarrow} \begin{pmatrix} a(x_1', w) \\ \dots \\ a(x_k', w) \end{pmatrix}$$

Как задаются функции потерь

Функции потерь для задач классификации:

- ullet $\mathscr{L}(w,x) = igl[a(x,w)
 eq y(x) igr]$ индикатор ошибки
- для модели $a(x, w) = \operatorname{sign} b(x, w)$, где b непрерывна по w: $M = b(x, w)y(x) o\tau c\tau y\pi \ (margin)$ объекта x, L(M) непрерывная невозрастающая функция отступа, $\mathscr{L}(w, x) = L(b(x, w)y(x))$ margin-based функция потерь

Функции потерь для задач регрессии:

- ullet $\mathscr{L}(w,x)=ig|a(x,w)-y(x)ig|$ абсолютное значение ошибки
- \bullet $\mathscr{L}(w,x) = \left(a(x,w) y(x)\right)^2$ квадратичная ошибка

Метод наименьших квадратов — частный случай ERM:

$$\sum_{i=1}^{\ell} (a(x_i, w) - y_i)^2 \to \min_{w}$$

Пример Рунге. Аппроксимация функции полиномом

Функция
$$y(x) = \frac{1}{1 + 25x^2}$$
 на отрезке $x \in [-2, 2]$

Признаковое описание объекта $x \mapsto (1, x^1, x^2, \dots, x^n)$

Модель полиномиальной регрессии

$$a(x,w)=w_0+w_1x+\cdots+w_nx^n$$
 — полином степени n

Обучение методом наименьших квадратов:

$$Q(w, X^{\ell}) = \sum_{i=1}^{\ell} (w_0 + w_1 x_i + \dots + w_n x_i^n - y_i)^2 \to \min_{w_0, \dots, w_n}$$

Обучающая выборка:
$$X^{\ell} = \{x_i = 4\frac{i-1}{\ell-1} - 2 \mid i = 1, \dots, \ell\}$$

Контрольная выборка:
$$X^k = \left\{ x_i = 4 \frac{i - 0.5}{\ell - 1} - 2 \mid i = 1, \dots, \ell - 1 \right\}$$

Что происходит с $Q(w,X^{\ell})$ и $Q(w,X^k)$ при увеличении n?

Пример Рунге. Переобучение при n = 38, $\ell = 50$

$$y(x) = \frac{1}{1 + 25x^2}$$
; $a(x)$ — полином степени $n = 38$

Пример Рунге. Зависимость Q от степени полинома n

Переобучение — это когда $Q(\mu(X^{\ell}), X^k) \gg Q(\mu(X^{\ell}), X^{\ell})$:

Проблемы недообучения и переобучения

недообучение

переобучение

- Недообучение (underfitting): данных много, параметров недостаточно, модель простая, негибкая
- Переобучение (overfitting): данных мало, параметров слишком много, модель сложная, избыточно гибкая

Переобучение — ключевая проблема в машинном обучении

- Из-за чего возникает переобучение?
 - избыточные параметры в модели a(x, w) «расходуются» на чрезмерно точную подгонку под обучающую выборку
 - выбор a из A производится по неполной информации X^ℓ
- Как обнаружить переобучение?
 - эмпирически, путём разбиения выборки на train и test (на test должны быть известны правильные ответы)
- Избавиться от него нельзя. Как его минимизировать?
 - увеличивать объём обучающих данных (big data)
 - накладывать ограничения на w (регуляризация)
 - минимизировать одну из теоретических оценок
 - выбирать модель (model selection) по оценкам обобщающей способности (generalization performance)

Эмпирические оценки обобщающей способности

• Эмпирический риск на тестовых данных (hold-out):

$$\mathsf{HO}(\mu, X^{\ell}, X^{k}) = Q(\mu(X^{\ell}), X^{k}) \to \mathsf{min}$$

ullet Скользящий контроль (leave-one-out), $L=\ell+1$:

$$LOO(\mu, X^{L}) = \frac{1}{L} \sum_{i=1}^{L} \mathcal{L}(\mu(X^{L} \setminus \{x_{i}\}), x_{i}) \to \min$$

• Кросс-проверка (cross-validation), $L = \ell + k$:

$$\mathsf{CV}(\mu, X^L) = \frac{1}{|P|} \sum_{p \in P} Q(\mu(X_p^\ell), X_p^k) \to \mathsf{min}$$

где P — множество разбиений $X^L = \frac{X_0^{\ell}}{2} \sqcup X_0^{k}$

Задачи медицинской диагностики

Объект — пациент в определённый момент времени.

Классы: диагноз или способ лечения или исход заболевания.

Примеры признаков:

- бинарные: пол, головная боль, слабость, тошнота, и т. д.
- порядковые: тяжесть состояния, желтушность, и т. д.
- количественные: возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата, и т. д.

- обычно много «пропусков» в данных;
- нужна интерпретируемая модель классификации;
- нужно выделять синдромы сочетания симптомов;
- нужна оценка вероятности отрицательного исхода.

Задача медицинской диагностики. Пример переобучения

Задача предсказания отдалённого результата хирургического лечения атеросклероза; точки — различные решающие правила

Задачи распознавания месторождений

Объект — геологический район (рудное поле).

Классы — есть или нет полезное ископаемое.

Примеры признаков:

- **бинарные**: присутствие крупных зон смятия и рассланцевания, и т. д.
- порядковые: минеральное разнообразие; мнения экспертов о наличии полезного ископаемого, и т. д.
- количественные: содержания сурьмы, присутствие в рудах антимонита, и т. д.

Особенности задачи:

• проблема «малых данных» — для редких типов месторождений объектов много меньше, чем признаков.

Задача кредитного скоринга

Объект — заявка на выдачу банком кредита.

Kлассы — bad или good.

Примеры признаков:

- бинарные: пол, наличие телефона, и т. д.
- номинальные: место проживания, профессия, работодатель, и т. д.
- порядковые: образование, должность, и т. д.
- количественные: возраст, зарплата, стаж работы, доход семьи, сумма кредита, и т. д.

Особенности задачи:

ullet нужно оценивать вероятность дефолта $P(y(x)=\mathsf{bad})$.

Задача предсказания оттока клиентов

Объект — абонент в определённый момент времени.

Классы — уйдёт или не уйдёт в следующем месяце.

Примеры признаков:

- бинарные: корпоративный клиент, включение услуг, и т. д.
- номинальные: тарифный план, регион проживания, и т. д.
- количественные: длительность разговоров (входящих, исходящих, СМС, и т. д.), частота оплаты, и т. д.

- нужно оценивать вероятность ухода;
- сверхбольшие выборки;
- признаки приходится вычислять по «сырым» данным.

Задача категоризации текстовых документов

Объект — текстовый документ.

Классы — рубрики иерархического тематического каталога.

Примеры признаков:

- номинальные: автор, издание, год, и т. д.
- количественные: для каждого термина частота в тексте, в заголовках, в аннотации, и т. д.

- лишь небольшая часть документов имеют метки y_i ;
- документ может относиться к нескольким рубрикам;
- в каждом ребре дерева свой классификатор на 2 класса.

Задачи биометрической идентификации личности

Идентификация личности по отпечаткам пальцев

Идентификация личности по радужной оболочке глаза

- нетривиальная предобработка для извлечения признаков;
- высочайшие требования к точности.

Задача прогнозирования стоимости недвижимости

Объект — квартира в Москве.

Примеры признаков:

- **бинарные:** наличие балкона, лифта, мусоропровода, охраны, и т. д.
- номинальные: район города, тип дома (кирпичный/панельный/блочный/монолит), и т. д.
- количественные: число комнат, жилая площадь, расстояние до центра, до метро, возраст дома, и т. д.

- выборка неоднородна, стоимость меняется со временем;
- разнотипные признаки;
- для линейной модели нужны преобразования признаков;

Задача прогнозирования объёмов продаж

Объект — тройка (товар, магазин, день).

Примеры признаков:

- бинарные: выходной день, праздник, промоакция, и т. д.
- количественные: объёмы продаж в предшествующие дни.

- функция потерь не квадратична и даже не симметрична;
- разреженные данные.

Конкурс kaggle.com: TFI Restaurant Revenue Prediction

Объект — место для открытия нового ресторана.

Предсказать — прибыль от ресторана через год.

Примеры признаков:

- демографические данные: возраст, достаток и т.д.,
- цены на недвижимость поблизости,
- маркетинговые данные: наличие школ, офисов и т.д.

- мало объектов, много признаков;
- разнотипные признаки;
- есть выбросы;
- разнородные объекты (возможно, имеет смысл строить разные модели для мелких и крупных городов).

Задача ранжирования поисковой выдачи

Объект — пара (короткий текстовый запрос, документ).

Классы — релевантен или не релевантен, разметка делается людьми — асессорами.

Примеры количественных признаков:

- частота слов запроса в документе,
- число ссылок на документ,
- число кликов на документ: всего, по данному запросу.

- сверхбольшие выборки документов;
- оптимизируется не число ошибок, а качество ранжирования;
- проблема конструирования признаков по сырым данным.

Машинное обучение на данных сложной структуры

- Статистический машинный перевод:
 - объект предложение на естественном языке ответ его перевод на другой язык
- Перевод речи в текст:
 - объект аудиозапись речи человека ответ — текстовая запись речи
- Управление беспилотным аппаратом:
 - объект поток данных с видеокамер, датчиков ответ решение об управляющем воздействии

Предпосылки прорыва ИИ в задачах со сложными данными:

- большие и *чистые* данные (Big Data)
- методы оптимизации для задач большой размерности и обучаемая векторизация данных (Deep Learning)
- рост вычислительных мощностей (закон Мура, GPU)

Особенности данных и постановок прикладных задач

- разнородные (признаки измерены в разных шкалах)
- неполные (измерены не все, имеются пропуски)
- неточные (измерены с погрешностями)
- противоречивые (объекты одинаковые, ответы разные)
- избыточные (сверхбольшие, не помещаются в память)
- недостаточные (объектов меньше, чем признаков)
- сложно структурированные (нет признаковых описаний)

Риски, связанные с постановкой задачи:

- «грязные» данные (заказчик не обеспечивает качество данных)
- неясные критерии качества модели (заказчик не определился с целями или критериями)

Межотраслевой стандарт интеллектуального анализа данных

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

Компании-инициаторы:

- SPSS
- Teradata
- Daimler AG
- NCR Corp.
- OHRA

Шаги процесса:

- понимание бизнеса
 - понимание данных
- предобработка данных и инженерия признаков
- разработка моделей и настройка параметров
- оценивание качества
- внедрение

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

- Expert Systems: жёсткие модели, основанные на правилах
- Machine Learning: параметрические модели, обучаемые по данным

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

- Expert Systems: жёсткие модели, основанные на правилах
- Machine Learning: параметрические модели, обучаемые по данным
- Deep Learning: модели с обучаемой векторизацией данных

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

- Expert Systems: жёсткие модели, основанные на правилах
- Machine Learning: параметрические модели, обучаемые по данным
- Deep Learning: модели с обучаемой векторизацией данных
- AutoML: автоматический выбор моделей и архитектур

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

- Expert Systems: жёсткие модели, основанные на правилах
- Machine Learning: параметрические модели, обучаемые по данным
- Deep Learning: модели с обучаемой векторизацией данных
- AutoML: автоматический выбор моделей и архитектур
- Lifelong Learning: бесшовная интеграция обучения и выбора моделей в бизнес-процесс

Эксперименты на реальных данных

Эксперименты на конкретной прикладной задаче:

- цель решить задачу как можно лучше
- важно понимание задачи и данных
- важно придумывать информативные признаки
- конкурсы по анализу данных: http://www.kaggle.com

Эксперименты на наборах прикладных задач:

- цель протестировать метод в разнообразных условиях
- нет необходимости (и времени) разбираться в сути задач :(
- признаки, как правило, уже кем-то придуманы
- репозиторий UC Irvine Machine Learning Repository
 http://archive.ics.uci.edu/ml (668 задачи, 2024-09-01)

Эксперименты на синтетических данных

Используются для тестирования новых методов обучения. Преимущество — мы знаем истинную y(x) (ground truth)

Эксперименты на синтетических данных:

- цель отладить метод, выявить границы применимости
- объекты x_i из придуманного распределения (часто 2D)
- ullet ответы $y_i = y(x_i)$ для придуманной функции y(x)
- двумерные данные + визуализация выборки

Эксперименты на полу-синтетических данных:

- цель протестировать помехоустойчивость модели
- объекты x_i из реальной задачи (признаки + шум)
- ullet ответы $y_i = y(x_i)$ для придуманной функции y(x) (+ шум)

Резюме в конце лекции

- Основные понятия машинного обучения: объект, ответ, признак, функция потерь, модель, метод обучения, эмпирический риск, переобучение
- Постановка задачи её ДНК (Дано, Найти, Критерий)
- Этапы решения задач машинного обучения:
 - понимание задачи и данных
 - предобработка данных и изобретение признаков
 - построение модели
 - сведение обучения к оптимизации
 - решение проблем оптимизации и переобучения
 - оценивание качества
 - внедрение и эксплуатация
- Прикладные задачи машинного обучения: очень много, очень разных, во всех областях бизнеса, науки, производства