Let us define a sequence $\{b_k\}_{k\geq 1}$ such that $k\alpha \equiv b_k \pmod{2\pi}$ for all $k\in\{1,\cdots,n\}$. Now we can consider $\frac{V_n(\alpha)}{n}$ as the probability of sign change occurrence between $k\alpha$ and $(k+1)\alpha$. Hence it is same as the probability of occurrence of b_k in \mathcal{I} which is equal to

$$\frac{\text{Length of }(\mathcal{I})}{\text{Length of }[0,2\pi]} = \frac{\text{Length of }(\mathcal{I})}{2\pi}$$