BRINGING MEDICAL IMAGING DATA TO LIFE

Jan Margeta | jan@kardio.me | @jmargeta

KardioMe

DATA DELUGE AND AI

MORE DATA THAN EVER BEFORE

EVERY 18 SECONDS

45%

IMAGINGIN CARDIOLOGY

X-Ray

ultrasound

fluoroscopy

computed tomography

magnetic resonance

Kelly 2007

Carmo et al. 2010 Arnold et al. 2008 Foley et al. 2010

Vanezis et al. 2011

SPOTTHE DIFFERENCES

?

SPOTTHE DIFFERENCES

ISCHEMIC HEART FAILURE

MEASURE THE DIFFERENCES

VOLUME: 142 ML

VOLUME: 212 ML

SEGMENTATION

Xue et al. 2013

30 minutes to do manually

WHATAHUMAN SEES

133	115	57	65	52	69	129	145	134	121	106	81	87	59	42	44	18	24
131	87	53	57	140	143	133	130	119	117	112	115	81	94	48	31	31	25
139	59	54	120	138	135	137	139	120	110	107	109	122	68	105	33	36	16
119	60	46		138			133		111	67		46	98	91	44	37	18
106	47	*	13	.20	13:	12	122	114	07	V 87	88	8	62	- H	43	32	17
103	43	80	125	127	124	120	109	120	109	106	110	56	83	92	35	34	24
90	51	59	118	123	113	107		10 9	105	99	91	108	103	69	43	31	32
101	60	59	105	105	105	98	99	105	109	95	114	101	110	54	39	36	22
90	45	49	94	101	96	94	109	104	100	107	93	98	39	49	34	31	18
67	46	45	58	95	102	77	85	101	79	91	97	71	58	43	38	16	19
19	39	50	48	54	72	98	91	68	88	97	79	61	36	33	19	17	20

WELCOME TO COMPUTER VISION

Margeta et al. 2013, Joint work with Inria and Microsoft Research Cambridge

Tobon-Gomez et al. 2013

MACHINE LEARNING

SOLVING PROBLEMS WITH DATA

prediction = predict (data, model)

IMAGE RECOGNITION IN 6 LINES OF CODE

```
from keras.applications import imagenet_utils from keras.applications.vgg16 import VGG16

# Load and prepare input images images_raw = load_images() images = imagenet_utils.preprocess_input(images_raw)

# Load a pretrained image classification model model = VGG16(include_top=True, weights='imagenet')

# Do the prediction predictions = model.predict(images)
```


EXCELLENT FOR NATURAL IMAGES

FINDING THE IMAGE REPRESENTATION

Channel: 1/3, Width: 224, Height: 224

Channel: 2/3, Width: 224, Height: 224

Channel: 3/3, Width: 224, Height: 224

CARDIAC VIEW RECOGNITION

Margeta et al. 2015, Joint work with Inria and Microsoft Research Cambridge

LANDMARK REGRESSION

Margeta et al. 2015, Joint work with Inria and Microsoft Research Cambridge

DRAW CIRCLES NO MORE

Joint work with Inria and IHU Liryc

FROM 30 MINUTES TO 12 SECONDS*

*on a GPU

Joint work with Inria and IHU Liryc

DESCRIBING THE HEARTS

Kristin McLeod et al. 2016, Simula research laboratory

DESCRIBING THE HEARTS

Kristin McLeod et al. 2016, Simula research laboratory

PREDICTING THE FUTURE

FRIENDS ARE WORKING HARD

ELECTROMECHANICAL COUPLING

Hugo Talbot et al. 2012, Inria CHECK OUT

open-source simulation framework:

More information

THERAPY PLANNING

WITH MACHINE LEARNING

Rocío Cabrera Lozoya et al. 2015, Inria and IHU Liryc

FROM HEARTS TO OUR SENSES

COCHLEAR IMPLANT INSERTION PLANNING

Thomas Demarcy et al. 2016, Inria and Oticon Medical

Demarcy, T., Vandersteen, C., Raffaelli, C., Gnansia, D., Guevara, N., Ayache, N., & Delingette, H. (2017). Automated Analysis of Human Cochlea Shape Variability from segmented µCT images. Computerized Medical Imaging and Graphics. To appear.

AGE-RELATED MACULAR DEGENERATION IMAGING

Hrvoje Bogunović et al. 2017, OPTIMA @ Medical University of Vienna

AGE-RELATED MACULAR DEGENERATION IMAGING

Hrvoje Bogunović et al. 2017, OPTIMA @ Medical University of Vienna

AGE-RELATED MACULAR DEGENERATION PREDICTION

Hrvoje Bogunović et al. 2017, OPTIMA @ Medical University of Vienna

TIPS AND TRICKS

ITERATE FAST ONE METRIC TO RULE THEM ALL

PROGRESS WITH CONFIDENCE

HAVE REPEATABLE PIPELINES

NO GLORY IN DATA PREPARATION

BUT IT MUST BE DONE

HAVING A SMALL DATASET?

DO SOMETHING ABOUT IT

https://affinelayer.com/pixsrv/

GOT UNLABELED DATA?

DON'T BE LAZY, JUST ANNOTATE IT IF YOU CAN, THERE ARE TOOLS TO HELP YOU

Margeta et al. 2015, Joint work with Inria and Microsoft Research Cambridge

Check out also Scikit learn example on Label Propagation digits active learning

BE PRACTICAL HAVE AN OPEN MIND

PYTHON+AI+ MEDICINE=A\$

LIBRARIES

MEDICAL DATA LOADING

- pydicom
- SimpleItk
- ITK
- nibabel

STORAGE OF LARGE INTERMEDIATE / PREPROCESSED IMAGING DATA

- bcolz
- h5py

MACHINE LEARNING

- Keras
- Tensorflow
- MxNet
- MinPy/PyTorch

VISUALISATION

- matplotlib
- seaborn
- bokeh
- mayavi
- vtk
- paraview

YOUR HEALTH DASHBOARD

THANKS

Krissy, Hrvoje, Hubert, Hugo, Karol, Loïc, Maxime, Rado, Rocío, Thomas, Maggie, Asclepios, GapData Institute, IHU Liryc, Microsoft Research Cambridge, NumFOCUS, PyData, OPTIMA, Oticon Medical, Simula research laboratory

CONNECT WITH ME

Jan Margeta | jan@kardio.me | @jmargeta

CREDITS

- Statue of Asklepius, exhibited in the Museum of Epidaurus Theatre. By original file by Michael F. Mehnert CC BY-SA 3.0, via Wikimedia Commons
- Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA. "Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI." The MIDAS Journal – Cardiac MR Left Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070

 Some results come from my PhD thesis funded by Microsoft Research through its PhD Scholarship Programme and by the ERC Advanced Grant MedYMA

RESOURCES

- PhD thesis Jan Margeta
- PhD thesis Rocío Cabrera Lozoya
- PhD thesis Hugo Talbot
- Book From Andrew Ng
- Fast AI Notebooks and course
- Visualizing convnets
- Conv filter visualization

- Transfer learning with MNIST
- Label propagation with scikit learn
- Keras and pretrained models
- Staying organized Templates for data science
- Cardiac atlas project
- Sunnybrook cardiac dataset
- UK biobank

- Mimesis team @ Inria
- Asclepios @ Inria
- SOFA Opensource simulation framework
- Cardiovascular death stats
- Detecting cancer with deep learning
- Dermatologist-level classification of skin cancer with deep neural networks

REFERENCES

- Kelly, M. D. (2007). Laparoscopic repair of strangulated Morgagni hernia. World Journal of Emergency Surgery. Springer Nature. https://doi.org/10.1186/1749-7922-2-27
- Carmo, P., Andrade, M. J., Aguiar, C., Rodrigues, R., Gouveia, R., & Silva, J. A. (2010, December). Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovascular Ultrasound. Springer Nature. https://doi.org/10.1186/1476-7120-8-53
- Arnold, J. R., West, N. E., van Gaal, W. J., Karamitsos, T. D., & Banning, A. P. (2008, May 31).
 The role of Intravascular Ultrasound in the management of spontaneous coronary artery dissection. Cardiovascular Ultrasound. Springer Nature. https://doi.org/10.1186/1476-7120-6-24

- Foley, P. W., Hamaad, A., El-Gendi, H., & Leyva, F. (2010). Incidental cardiac findings on computed tomography imaging of the thorax. BMC Research Notes. Springer Nature. https://doi.org/10.1186/1756-0500-3-326
- Vanezis, A. P., Baig, M. K., Mitchel, I. M., Shajar, M., Naik, S. K., Henderson, R. A., & Mathew, T. (2011). Pseudoaneurysm of the left ventricle following apical approach TAVI. Journal of Cardiovascular Magnetic Resonance. Springer Nature. https://doi.org/10.1186/1532-429x-13-79
- Xue, H., Kellman, P., LaRocca, G., Arai, A. E., & Hansen, M. S. (2013). High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. Journal of Cardiovascular Magnetic Resonance. Springer Nature. https://doi.org/10.1186/1532-429x-15-102
- Margeta, J., McLeod, K., Criminisi, A., & Ayache, N. (2014). Decision Forests for Segmentation of the Left Atrium from 3D MRI. Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_6

- Tobon-Gomez, C., Geers, A. J., Peters, J., Weese, J., Pinto, K., Karim, R., ... Rhode, K. S. (2015, July). Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets. IEEE Transactions on Medical Imaging. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tmi.2015.2398818
- Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D. C., & Ayache, N. (2015, August 13).
 Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition.
 Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. Informa UK Limited. https://doi.org/10.1080/21681163.2015.1061448
- McLeod, K., Wall, S., Leren, I. S., Saberniak, J., & Haugaa, K. H. (2016, October 14).
 Ventricular structure in ARVC: going beyond volumes as a measure of risk. Journal of
 Cardiovascular Magnetic Resonance. Springer Nature. https://doi.org/10.1186/s12968-016-0291-9

- Talbot, H., Marchesseau, S., Duriez, C., Sermesant, M., Cotin, S., & Delingette, H. (2013, February 21). Towards an interactive electromechanical model of the heart. Interface Focus. The Royal Society. https://doi.org/10.1098/rsfs.2012.0091
- Demarcy, T., Vandersteen, C., Raffaelli, C., Gnansia, D., Guevara, N., Ayache, N., & Delingette, H. (2016). Uncertainty Quantification of Cochlear Implant Insertion from CT Images. Clinical Image-Based Procedures. Translational Research in Medical Imaging. Springer International Publishing. https://doi.org/10.1007/978-3-319-46472-5_4
- Montuoro, A., Waldstein, S. M., Gerendas, B. S., Schmidt-Erfurth, U., & Bogunović, H. (2017, February 27). Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomedical Optics Express. The Optical Society. https://doi.org/10.1364/boe.8.001874
- Demarcy, T., Vandersteen, C., Raffaelli, C., Gnansia, D., Guevara, N., Ayache, N., & Delingette, H. (2017). Automated Analysis of Human Cochlea Shape Variability from segmented µCT images. Computerized Medical Imaging and Graphics (to appear).

- Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, AJ., Wright, GA. (2009). Evaluation
 Framework for Algorithms Segmenting Short Axis Cardiac MRI. The MIDAS Journal –
 Cardiac MR Left Ventricle Segmentation Challenge. http://hdl.handle.net/10380/3070
- Kadish, A. H., Bello, D., Finn, J. P., Bonow, R. O., Schaechter, A., Subacius, H., ...
 Goldberger, J. J. (2009, September). Rationale and Design for the Defibrillators to Reduce
 Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) Trial. Journal of
 Cardiovascular Electrophysiology. Wiley-Blackwell. https://doi.org/10.1111/j.15408167.2009.01503.x
- Fonseca, C. G., Backhaus, M., Do Chung, J., Tao, W., Medrano-Gracia, P., Cowan, B. R., ...
 Young, A. A. (2010). The Cardiac Atlas Project: Rationale, Design and Procedures.
 Statistical Atlases and Computational Models of the Heart. Springer Berlin Heidelberg.
 https://doi.org/10.1007/978-3-642-15835-3_4