计算理论导论——期末复习

陈志朋

Contents

1	总览			3
2	正则	语言		4
	2.1	有穷自动机	 	4
		2.1.1 有穷自动机的形式定义	 	4
		2.1.2 有穷自动机举例	 	4
		2.1.3 计算的形式定义	 	4
		2.1.4 设计有穷自动机	 	4
		2.1.5 正则运算	 	4
	2.2	非确定性	 	5
		2.2.1 非确定型有穷自动机的形式定义	 	5
		2.2.2 NFA 与 DFA 的等价性	 	5
		2.2.3 在正则运算下的封闭性	 	5
	2.3	正则表达式	 	6
		2.3.1 正则表达式的形式定义	 	6
		2.3.2 与有穷自动机的等价性	 	7
	2.4	非正则语言	 	7
3	上下	文无关语言		8
	3.1	上下文无关文法	 	8
		3.1.1 上下文无关文法的形式定义	 	8
		3.1.2 上下文无关文法举例	 	8
		3.1.3 设计上下文无关文法	 	8
		3.1.4 歧义性	 	9
		3.1.5 乔姆斯基范式	 	9
	3.2	下推自动机	 	9
		3.2.1 下推自动机的形式定义	 	9
		3.2.2 下推自动机举例	 	9
		3.2.3 与上下文无关语法的等价性	 	10
	3.3	非上下文无关语言	 	10
4	丘奇	————————————————————————————————————		11
	4.1	图灵机	 	11
		4.1.1 图灵机的形式定义	 	11
		4.1.2 图灵机的例子		
	4.2	图灵机的变形		

		4.2.1	多带图灵机	 12
		4.2.2	非确定型图灵机	 13
		4.2.3	枚举器	 13
		4.2.4	与其他模型的等价性	 13
	4.3	算法的	り定义	 13
		4.3.1	希尔伯特问题	 13
		4.3.2	描述图灵机的术语	 13
5	可判	定性		14
	5.1		と と 语言	
	0.1	5.1.1	与正则语言相关的可判定性	
		5.1.2	与上下文无关语言相关的可判定性问题	
	5.2	停机问		
	-	5.2.1	对角化方法	
		5.2.2	停机问题是不可判定的	
		5.2.3	一个图灵不可识别语言	
6	可归			16
	6.1		里论中的不可判定问题	
	6.2		简单的不可判定问题	
	6.3		T归约性	
		6.3.1	可计算函数	
		6.3.2	映射可归约的形式定义	 18
7	可计	算理论	的高级专题	18
	7.1	递归定	[理]	
		7.1.1	自引用	
		7.1.2	应用递归定理的术语	 18
		7.1.3	应用	 18
	7.2		里论的可判定性	
			一个可判定的理论	
			一个不可判定的理论	
	7.3		丁归约性	
	7.4	信息的	句定义	
		7.4.1	极小长度的描述	
			定义的优化	
		7.4.3	不可压缩的串和随机性	 20
8	时间	复杂性		20
	8.1	度量复	夏杂性	 20
		8.1.1	大 O 和小 o 记法	 20
		8.1.2	分析算法	 20
		8.1.3	模型间的复杂度关系	 21
	8.2	P 类。		 21
		8.2.1	多项式时间	 21
		0.00	P 中的问题举例	21

	8.3	NP 类						 	 									21
		8.3.1	NP 中的	问题革	纟例			 	 									22
		8.3.2	$P \ni NF$	问题				 	 									22
	8.4	NP 完全	全性					 	 									22
		8.4.1	多项式时	间可归	约性	生.		 	 									22
		8.4.2	NP 完全	性的定	义			 	 									23
		8.4.3	库克一列	文定理	l			 	 									23
	8.5	几个 N	P 完全问]题				 	 									23
		8.5.1	顶点覆盖	问题.				 	 									23
		8.5.2	哈密顿路	径问题	į.,			 	 									23
		8.5.3	子集和问	题				 	 									24
		8.5.4	补充					 	 									24
		0.0.4	7176															
9	空间	复杂性	η()u															24
9	空间 9.1	复杂性	定理					 	 									
9		复杂性 萨维奇第																25
9	9.1	复杂性 萨维奇》 <i>PSPA</i> (定理				•	 	 							•		25 26
9	9.1 9.2	复杂性 萨维奇第 PSPA(定理 CE 类 .	·····································				 	 					•				25 26 26
9	9.1 9.2	复杂性 萨维奇第 <i>PSPA</i> (<i>PSPA</i> (9.3.1	定理 CE 类 CE 完全'	····· 性 <i>BF</i> · ·				 	 	 		 						25 26 26 26
9	9.1 9.2	复杂性 萨维奇第 <i>PSPA</i> (9.3.1 9.3.2	定理 CE 类 CE 完全 问题 TQ	性 <i>BF</i> 胜策略				 	 	 · · · ·	 	 	· · · · · ·	 	 		 	25 26 26 26 26
9	9.1 9.2	复杂性 萨维奇第 <i>PSPA</i> (9.3.1 9.3.2 9.3.3	定理 CE 类 CE 完全' 问题 TQ 博弈的必	性 <i>BF</i> 胜策曍 学				 	 	 	 	 	 	 	· · · · · ·		 	25 26 26 26 26 27
9	9.1 9.2 9.3	复杂性 萨维奇第 <i>PSPA</i> (9.3.1 9.3.2 9.3.3 <i>L</i> 类和	定理 CE 类 完全 完全 问题 TQ 博弈的必 广义地理	性 <i>BF</i> 胜策略 学	 			 	 	 	 	 	 	 			 	25 26 26 26 26 27 27

1 总览

所有语言的关系如图1。

Figure 1: Overview

2 正则语言

2.1 有穷自动机

2.1.1 有穷自动机的形式定义

<mark>定义 2.1</mark> 有穷自动机是一个 5 元组 $(Q, \Sigma, \delta, q_0, F)$:

- 1) Q 是一个有穷集合,叫做**状态集**。
- 2) Σ 是一个有穷集合,叫做字母集。
- 3) $\delta: Q \times \Sigma \to Q$ 是转移函数。
- 4) $q_0 \in Q$ 是起始状态。
- 5) $F \subseteq Q$ 是接受状态集。

2.1.2 有穷自动机举例

例 2.3 接受语言 $L(M) = \{w | w \text{ is the empty string } \varepsilon \text{ or ends in a } 0\}$ 的 DFA,示意图 2

Figure 2: A DFA of language M

2.1.3 计算的形式定义

当一个字符串 w 从有穷自动机的起始状态开始,按照转移函数从一个状态到一个状态,并且机器结束在接受状态,则称 M 接受 w。如果 $A=\{w|Macceptsw\}$,则称 M 识别语言 A。

<mark>定义 2.7</mark> 如果一个语言被一台**有穷自动机**识别,则称它是**正则语言**。

2.1.4 设计有穷自动机

例 2.9 有穷自动机 E_2 识别含有 001 作为子串的所有字符串组成的正则语言,示意图 3

Figure 3: DFA E_2

2.1.5 正则运算

定义 2.10 设 A 和 B 是两个语言,定义正则运算并、连接和星号如下: 并: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

连结: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$

星号: $A^* = \{x_1 \dot{x}_k | k \ge 0 \text{ and } \forall x_i \in A\}$

定理 2.12 正则语言类在并运算下封闭。

证明思路 设 $M_1=Q_1,\Sigma,\delta_1,q_1,F_1$ 可以识别 A,设 $M_2=Q_2,\Sigma,\delta_2,q_2,F_2$ 可以识别 B。 构造 $M=Q_1\times Q_2,\Sigma,\delta,(q_1,q_2),(F_1\times Q_2)\cup(F_2\times Q_1)$,其中 $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$,可以识别 $A\cup B$ 。

定理 2.13 正则语言类在连结运算下封闭。

证明思路 引入非确定性的新技术,即使用非确定型有穷自动机来证明。

2.2 非确定性

2.2.1 非确定型有穷自动机的形式定义

<mark>定义 2.17</mark> 非确定型有穷自动机是一个 5 元组 $(Q, \Sigma, \delta, q_0, F)$,其中

- 1) Q 是有穷的状态集。
- 2) Σ 是有穷的字母表。
- 3) $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ 是转移函数。
- 4) $q_0 \in Q$ 是起始状态。
- 5) $F \subseteq Q$ 是接受状态集。

2.2.2 NFA 与 DFA 的等价性

定理 2.19 每一台非确定型有穷自动机都有一条等价的确定型有穷自动机。

证明思路 把能到达的子集合并,构造新的状态。

推论 2.20 一个语言是正则的,当且仅当有一台非确定型的有穷自动机识别它。

证明思路 NFA 和 DFA 等价。

2.2.3 在正则运算下的封闭性

定理 2.22 正则语言在并运算下封闭。

证明思路 示意图 4。

图 2-24 识别 A₁ U A₂ 的 NFA N 的构造

Figure 4: NFA recognizes $A = A_1 \cup A_2$

定理 2.23 正则语言在连结运算下封闭。

证明思路 示意图 5。

图 2-25 识别 A_1 ° A_2 的 N 的构造

Figure 5: NFA recognizes $A = A_1 \circ A_2$

定理 2.22 正则语言在星号运算下封闭。

证明思路 示意图 6。

图 2-26 识别 Ai 的 N 的构造

Figure 6: NFA recognizes $A = A_1^*$

2.3 正则表达式

2.3.1 正则表达式的形式定义

定义 2.26 称 R 是一个正则表达式,如果 R 是:

- 1) a,这里的 a 是字母表 Σ 中的一个元素。
- 2) ε .
- 3) ∅ 。
- 4) $(R_1 \cup R_2)$, 这里的 R_1 和 R_2 是正则表达式。
- 5) $(R_1 \circ R_2)$, 这里的 R_1 和 R_2 是正则表达式。
- (R_1^*) , 这里的 R_1 是正则表达式。

连接符号和括号可以省略。如果没有括号,优先级从高到低为:星号、连结、并。

2.3.2 与有穷自动机的等价性

定理 2.28 一个语言是正则的,当且仅当可以用正则表达式描述它。

证明思路 使用引理 2.29 和引理 2.30。

引理 2.29 如果一个语言可以用正则表达式描述,则它是正则的。

证明思路 对于每种正则运算有对应的 NFA 构造方法。

引理 2.30 如果一个语言是正则的,则它可以用正则表达式描述。

证明思路 把 DFA 转化为 GNFA, 然后把 GNFA 转化为正则表达式。

定义 2.33 广义非确定型有穷自动机 $(Q, \Sigma, \delta, q_{start}, q_{accept})$ 是一个 5 元组,其中:

- 1) Q 是有穷的状态集。
- 2) Σ 是输入字母表。
- 3) $\delta: (Q \{q_{accept}\}) \times (Q \{q_{start}\})_{\circ}$
- 4) q_{start} 是起始状态。
- 5) q_{accept} 是接受状态。

如果字符串 w 可写成 $w = w_1, w_2 \dots w_k$,这里每一个 $w_i \in \Sigma^*$,并且存在状态序列 q_0, q_1, \dots, q_k ,使得:

- 1) $q_0 = q_{start}$ 是起始状态。
- $2) q_0 = q_{accept}$ 是接受状态。
- 3) 对于每一个 i, $w_i \in L(R_i)$, 其中 $R_i = \delta(q_{i-1}, q_i)$, 换句话说,R 是从 q_{i-1} 到 q_i 的箭头上的表达式。

则称这台 GNFA 接受字符串 w。

GNFA 的特殊形式:

- 1) 起始状态有射到其他每一个状态的箭头,但是没有从任何其他状态射入的箭头。
- 2) 有唯一的一个接受状态,并且他有从每一个状态射入的箭头,但是没有射到任何 其他状态的箭头。此外,这个接受状态与其实状态不同。
 - 3) 除起始状态和接受状态之外,每一个状态到自身和其他每一个状态都有一个箭头。

DFA 到 GNFA 的转化: 添加新的起始状态和新的接受状态,从新起始状态到老起始状态有一个 ε 箭头,从每一个老接受状态到新接受状态有一个 ε 箭头。对于其他状态,没有边的连一个 \emptyset 的箭头,一条边上有多个的字母的取并集。

GNFA 到正则表达式的转化: 当状态数 k > 2 时,选取一个状态(非起始状态和接受状态),删除这个状态,然后对其他状态的路径进行修改,示意图 7。

Figure 7: Delete q_{rip}

2.4 非正则语言

定理 2.37 泵引理(Pumping Lemma)

设 A 是一个正则语言,则存在一个数 p (泵长度 Pumping Length) 使得,如果 s 是 A 中任一长度不小于 p 的字符串,那么 s 可以被分成 3 段,s=xyz,满足下述条件:

- 1) 对每一个 $i \geq 0$, $xyz \in A$
- 2) |y| > 0
- $|xy| \le p$

证明思路 设 M 是识别 A 的 DFA,令泵长度(Pumping Length)p 等于 M 的状态数,起始节点也算一个状态,所以一共经过了 p+1 个状态。根据鸽笼原理一定会经过重复结点,这个重复状态(即 y)可以进行扩展,也可以把这段删除。

例 2.38 证明语言 $B = \{0^n 1^n | n \ge 0\}$ 不是正则的。

证明

假设语言 B 是正则的,那么存在 Pumping Length,设为 p。

取 $s = 0^p 1^p$, 那么 s 可以被分解为 3 部分,即 s = xyz, 其中 |y| > 0,且 $|xy| \le p$ 。那么, $xy = 0^{t_1+t_2}$,其中 $t_1 = |x|, t_2 = |y|$ 且 $t_2 > 0$ $t_1 + t_2 \le p$ 。

取 i = 0,则 $xy^0z = xz = 0^{n-t_2}1^n$,显然 $n - t_2 \neq n$,所以 $xy^0z \notin B$,矛盾! 综上,语言 B 不是正则的。

3 上下文无关语言

3.1 上下文无关文法

上下文无关文法:一个文法有一组**替换规则**组成,替换规则又叫做**产生式**。在上述文法中每一个规则占一行,由一个符号和一个字符串构成,符号和字符串之间同一个箭头隔开。这个符号叫做**变元**。字符串由边缘和另一种叫做终结符的符号组成。变元经常用大写字母表示。终结符类似于输入符号,经常用小写字母、数字或特殊符号表示。一个变元被指定为**起始变元**,通常它出现在第一条规则的左边。

3.1.1 上下文无关文法的形式定义

 \mathbb{C} 定义 3.1 上下文无关文法是一个 4 元组 (V, Σ, R, S) ,这里

- 1) V 是一个有穷集合,称作**变元集**。
- 2) Σ 是一个与 V 不相交的有穷集合,称作**终结符集**。
- 3) R 是一个有穷的**规则集**,每一条规则是一个变元和一个由变元和终结符组成的字符串。
 - 4) $S \in V$ 是起始变元。

3.1.2 上下文无关文法举例

例 3.2 考虑文法 $G_3 = (\{S\}, \{a,b\}, R, S)$, 其中规则集 R 为:

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

3.1.3 设计上下文无关文法

略

3.1.4 歧义性

定义 3.4 如果字符串 w 在上下文无关文法 G 中有两个或两个以上不同的最左派生,则称在 G 中歧义地产生字符串 w。如果文法 G 歧义地产生某个字符串,则称 G 是歧义的。

一个示例 8。

EXPR>→< EXPR> + < EXPR> | **< EXPR>** × **< EXPR>** | **(EXPR>**) | a
这个文法歧义地产生字符串 a + a × a。图 3-3 给出它的两棵不同的语法分析树。

Figure 8: Ambitious grammar

3.1.5 乔姆斯基范式

定义 3.5 一个上下文无关文法为乔姆斯基范式,如果它的每一个规则具有如下形式:

$$A \rightarrow BC$$

 $A \rightarrow a$

这里, a 是任意的终结符, A、B 和 C 是任意的变元, 但 B 和 C 不能是起始变元。此外, 允许规则 $S \to \varepsilon$, 其中 S 是起始变元。

定理 3.6 任一上下文无关语言都可以用乔姆斯基范式的上下文无关文法产生。

证明思路 分四阶段将上下文无关语法转化为乔姆斯基范式:

- 1) 增加新的起始变元 S_0 ,然后增加规则 $S_0 \to S$ 。
- 2) 如果存在 $A \to \varepsilon$,删除这条规则,然后修改其他和 A 有关的规则。
- 3) 处理所有单一规则。对于单一规则 $A\to B$,删除这条,然后增加 A 生成 B 能产生的字符串的规则。举例:对于 $A\to B$ 和 $B\to u$,删除第一条,增加一条 $A\to u$ 。
 - 4) 把所有留下的规则转换称适当的形式。

3.2 下推自动机

3.2.1 下推自动机的形式定义

定义 3.8 下推自动机是一个 6 元组 $(Q, \Sigma, \Gamma, \delta, q_0, F)$,这里 Q, Σ , Γ 和 F 都是有穷集合,并且

- 1) Q 是状态集。
- 2) Σ 是输入字母表。
- 3) Γ 是栈字母表。
- 4) $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$
- 5) $q_0 \in Q$ 是起始状态。
- 6) $F \subseteq Q$ 是接受状态。

3.2.2 下推自动机举例

例 3.9 下面是识别语言 $\{0^n1^n|n\geq 0\}$ 的 PDA,示意图 9。

Figure 9: PDA recognizes $\{0^n 1^n | n \ge 0\}$

3.2.3 与上下文无关语法的等价性

定理 3.12 一个语言是上下文无关的,当且仅当存在一台下推自动机识别它。

证明思路 使用引理 3.13 和引理 3.15。

引理 3.13 如果一个语言是上下文无关的,则存在一台下推自动机识别它。

证明思路 非确定性的枚举,然后压到栈中,和输入进行比较,如果不成立就拒绝该计算分支。如果有一个计算分支接受则接受。

引理 3.15 如果一个语言被一台下推自动机识别,则它是上下文无关的。

证明思路 粗略的证明:使用分治的思想, A_{pq} 可以由 A_{pr} 和 A_{rq} 产生,如图所示10。

PROOF Say that $P=(Q,\Sigma,\Gamma,\delta,q_0,\{q_{\mathrm{accept}}\})$ and construct G. The variables of G are $\{A_{pq}|\ p,q\in Q\}$. The start variable is $A_{q_0,q_{\mathrm{accept}}}$. Now we describe G's rules.

- For each $p,q,r,s\in Q,\ t\in \Gamma$, and $a,b\in \Sigma_{\varepsilon}$, if $\delta(p,a,\varepsilon)$ contains (r,t) and $\delta(s,b,t)$ contains (q,ε) , put the rule $A_{pq}\to aA_{rs}b$ in G.
- For each $p,q,r\in Q$, put the rule $A_{pq}\to A_{pr}A_{rq}$ in G.
- Finally, for each $p \in Q$, put the rule $A_{pp} \to \varepsilon$ in G.

You may gain some insight for this construction from the following figures.

Figure 10: PDA computation corresponding to the rule $A_{pq} \to A_{pr}A_{rq}$

3.3 非上下文无关语言

定理 3.19 (关于上下文无关语言的泵引理(Pumping Lemma))如果 A 是上下文无关语言,则存在数 p (泵长度 Pumping Length),使得 A 中热河一个长度不小于 p 的字符串 s 能够划分成 5 段,s = uvxyz,满足下述条件:

- 1) 对于每一个 i, $uv^i x y^i z \in A$ 。
- 2) |vy| > 0.
- 3) $|vxy| \leq p_{\circ}$

证明思路 鸽笼原理。取 $p = b^{|V|+2}$,其中 b 为一个结点最多的儿子数,|V| 为 G 中变元的数目(由于叶子节点为终结符,所以这里要加 2)。示意图 11。

Figure 11: Surgery on parse trees

例 3.20 用 Pumping Lemma 证明语言 $B = \{a^n b^n c^n | n \ge 0\}$ 不是上下文无关的。证明

假设语言 B 是上下文无关的,设 Pumping Length 为 p。

令 $s = a^p b^p c^p$,则 s 可以被分解为 5 部分,s = uvxyz。其中, $|vxy| \le p$,|vy| > 0。显然,vy 中至多包含两种字符。

取 i=0,即 $uv^0xy^0z=uxz$,至少由一种字符的数量减少了,同时至少由一种字符的数量没变。显然, $uxz \notin B$,矛盾!

综上, 语言 B 不是上下文无关的。

4 丘奇一图灵论题

4.1 图灵机

4.1.1 图灵机的形式定义

定义 4.1 一个图灵机是一个 7 元组 $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$,其中: Q, Σ, Γ 是有穷集合,并且:

- 1) Q 是状态集
- 2) Σ 是输入字母表,不包括特殊空白符号。
- 3) Γ 是带字母表,其中:空白符号属于 Γ , $\Sigma \subseteq \Gamma$ 。
- 4) $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ 是转移函数。
- 5) $q_0 \in Q$ 是起始状态。
- 6) $q_{accept} \in Q$ 是接受状态。
- 7) $q_{reject} \in Q$ 是拒绝状态。

图灵机计算时,当前状态、当前带内容和读写头位置,这三项构成的整体叫做图灵机的格局。

<mark>定义 4.2</mark> 如果有图灵机识别一个语言,则称该语言是**图灵可识别**的。

在输入上运行一个 TM 是,可能出现三种结果:接受、拒绝和循环。**这里的循环仅仅指** 机器不停机。

定义 4.3 称一个语言是**图灵可判定**的,或简单地讲,是**可判定**的,如果有图灵机判定它。 称对所有输入都停机的图灵机为**判定器**,他们永不循环,总能决定接受还是拒绝。也称识 别某个语言的判定器**判定**该语言。 图灵可判定语言都是图灵可识别语言,但某些图灵可识别语言不是可判定的。

4.1.2 图灵机的例子

例 4.4 现在描述 TM M_2 ,它识别的语言是所有由 0 组成,长度为 2 的放米的字符串,即他判定的语言是 $A = \{0^{2^n} | n \ge 0\}$ 。

 $M_2=$ "对于输入字符串 w:

- 1) 从左往右扫描整个带子,隔一个消去一个0。
- 2) 如果在第一步之后,带子上只剩下唯一的一个0,则接受。
- 3) 如果在第一步之后,带子上包含不只一个0,并且0的个数是奇数,则拒绝。
- 4) 让读写头返回带子的最左端。
- 5) 转到第一步。"

下面给出 $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ 的形式描述:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- $\Sigma = \{0\}$
- $\Gamma = \{0, x, BLANK\}$
- 将 δ 描述成状态图 12
- 开始、接受和拒绝状态分别是 q_1 、 q_{accept} 和 q_{reject} 。

Figure 12: State diagram for Turing machine M_2

4.2 图灵机的变形

4.2.1 多带图灵机

多带图灵机,在普通图灵机的基础上,有多个带子,每个带子都有子集的读写头,用于读和写。开始时,输入出现在第一个带子上,其余的带子都是空白的。转移函数该为允许同时进行读、写和移动读写头,其形式为:

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

定理 4.8 每个多带图灵机都有一个与之等价的单带图灵机。

证明思路 把多条纸带的内容写道一条纸带上,用特殊符号分隔。

推论 4.9 一个语言是图灵可识别的, 当且仅当有多带图灵机识别它。

证明思路 多带图灵机可以转化为单带图灵机。

4.2.2 非确定型图灵机

非确定型图灵机,在计算的任何时刻,机器可以在多种可能性中选择一种继续进行,它的 转移函数具有如下形式:

$$\delta: Q \times \Gamma \to \mathcal{P}_3(Q \times \Gamma \times \{L, R, S\})$$

定理 4.10 每个非确定型图灵机都有一个与之等价的确定型图灵机。

证明思路 使用宽度优先搜索的方法(BFS)模拟非确定型的计算分支,一共使用三条纸带。

- 1) 第一条纸带用于储存输入,只读不写。
- 2) 第二条纸带用于进行与原来 NTM 类似的计算。
- 3) 第三条纸带用与存储可能转移到的下一组格局。

推论 4.11 一个语言是图灵可识别的,当且仅当有非确定型图灵机识别它。

证明思路 非确定型图灵机能转化为多带图灵机,多带图灵机可以转化为单带图灵机。

推论 4.12 一个语言是可判定的, 当且仅当有非确定型图灵机判定它。

4.2.3 枚举器

定理 4.13 一个语言是图灵可识别的,当且仅当有枚举器枚举它。

证明思路

如果有枚举器 E 枚举语言 A,则有 TMM 识别 A。 TMM 如下运行:

M= "对与输入 w:

- 1) 运行 E, 每当 E 输出一个串时, 将之与 w 比较。
- 2) 如果 w 曾经在 E 的输出中出现过,则接受。"

如果 TMM 识别语言 A, 为 A 构造枚举器 E 如下:

E= "忽略输入。

- 1) 对 i = 1, 2.3, ... 重复下列步骤。
- 2) 对 s_1, s_2, \ldots, s_i 中的每一个, 让 M 以其作为输入运行 i 步。
- 3) 如果有计算接受,则打印出相应的 s_i 。

4.2.4 与其他模型的等价性

略

4.3 算法的定义

4.3.1 希尔伯特问题

希尔伯特问题

 $D = \{p | p \text{ is a polynomial with an integral root}\}$

对于一元多项式,其根在 $\pm k \frac{c_{max}}{c_1}$ 。其中,k 是此多项式中项的个数, c_{max} 是绝对值最大的系数, c_1 是最高次项的系数。因此,一元多项式是否有整数根的问题是可判定的。

但是, 多元多项式是否有整数根的问题是不可判定的。

4.3.2 描述图灵机的术语

略。

5 可判定性

5.1 可判定语言

5.1.1 与正则语言相关的可判定性

定理 5.1 $A_{DFA} = \{ \langle B, w \rangle | B \text{ is } DFA, w \text{ is string}, B \text{ accepts } w \}$ 是一个可判定语言。

证明思路 在输入w上模拟B即可。

定理 5.2 $A_{NFA} = \{ \langle B, w \rangle | B \text{ is NFA}, w \text{ is string}, B \text{ accepts } w \}$ 是一个可判定语言。

证明思路 先将 NFA 转化为 DFA, 然后在输入上模拟即可。

定理 5.3 $A_{REX} = \{ \langle B, w \rangle | B \text{ is regular expression that generates string } w \}$ 是一个可判定语言。

证明思路 先将正则表达式转化为 DFA, 然后在输入上模拟即可。

定理 5.4 $E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$ 是一个可判定语言。

证明思路 从 DFA 的起始状态开始遍历,如果不能到达接受状态就接受,否则就拒绝。

定理 5.5 $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B) \}$ 是一个可判定语言。

证明思路 构造 DFAC,满足 $L(C)=(L(A)\cap\overline{L(B)})\cup(\overline{L(A)}\cap L(B))$ 。判断 L(C) 是否为空,为空则接受,否则拒绝。构造 L(C) 的时候转化成正则表达式,正则语言类在补、并和交下是封闭的。

5.1.2 与上下文无关语言相关的可判定性问题

定理 5.6 $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$ 是一个可判定语言。

证明思路 转成乔姆斯基文法,列出 2n-1 步的所有派生 (n 为 w) 的长度 (n ∧ w) ,判断 (n ∧ w) 。

定理 5.7 $E_{CFG} = \{ \langle G \rangle | G \text{ is a } CFG \text{ and } L(G) = \emptyset \}$ 是一个可判定语言。

证明思路 把终结符都打上标记,然后对于规则 $A \to U_1 \dots U_k$,如果 U_1, \dots, U_k 都有标记,就把 A 也打上标记。如果起始状态没被标记则接受,否则拒绝。

定理 5.8 每个上下文无关语言是可判定的。

证明思路 使用定理 5.6 提到的图灵机。

5.2 停机问题

定理 5.9 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a } TM \text{ that accepts } w \}$ 是不可判定的。 A_{TM} 有时被成为停机问题。

5.2.1 对角化方法

定义 5.10 设 A 和 B 两个集合,f 是从 A 到 B 的函数。如果 f 从步将两个不同元素 映射到同一地方,即:只要 $a \neq b$ 就有 $f(a) \neq f(b)$,则称 f 是一对一的。对于 B 中的每个元素 b,都存在 $a \in A$,使得 f(a) = b,则称 f 是**到上的**。如果一个函数即使一对一又是到上的,那么称为对应。

例 5.11 自然数集合 $\mathcal{N}=\{1,2,3,\dots\}$ 和偶自然数集合 $\varepsilon=\{2,4,6,\dots\}$ 具有相同的规模。

定义 5.12 成一个集合是可数的,如果它是有限的,或者它与 N 有相同的规模。例 5.13 正有理数集合 Q 与自然数集合 N 具有相同的规模,示意图 13。

Figure 13: A correspondence of \mathcal{N} and \mathcal{Q}

定理 5.14 R 是不可数的。

证明思路 假设每个自然数都对应了一个实数,那么取 $x \in \mathcal{R}$,其中 x 的整数位为 0,第 i 位小数与自然数 i 的第 i 位小数不同。因此,该实数没有被任意一个自然数映射。

推论 5.15 存在语言不是图灵可识别的。

证明思路 证明分为两部分:

- 1) 所有图灵机构成的集合是可数的。
- 2) 所有语言构成的集合是不可数的。

5.2.2 停机问题是不可判定的

证明

假设 A_{TM} 是可判定的。设 H 是 A_{TM} 的判定器。令 M 是一个 TM,w 是一个串。

$$H(< M, w >) = \begin{cases} accept & \text{M accepts w} \\ reject & \text{M rejects w} \end{cases}$$

构造一个新的图灵机 D,输入为一个图灵机 M。在输入 < M, < M >> 上运行 H,并且得出与 H 相反的结论。

当以 D 的描述 < D > 作为输入来运行 D 自身时,有

$$D(< D >) = \begin{cases} accept & D \text{ rejects } \\ reject & D \text{ accepts } \end{cases}$$

矛盾!

综上,图灵机H是不存在的。

5.2.3 一个图灵不可识别语言

<mark>定理 5.16</mark> 一个语言是可判定的,当且仅当它既是图灵可识别的,也是补图灵可识别的。

证明思路证明分两个部分:

- 1)如果 A 是可判定的,显然 A 和 \overline{A} 都是图灵可识别的。因为任何可判定语言都是图灵可识别语言,任何可判定语言的补都是可判定语言。
- 2)构造两个图灵机: M_1 识别 A, M_2 识别 \overline{A} 。构造图灵机 M: 在 M_1 和 M_2 上同时运行 A(可以采用多带图灵机)。如果 M_1 接受就接受, M_2 接受就拒绝。

推论 5.17 $\overline{A_{TM}}$ 不是图灵可识别的。

证明思路 如果 $\overline{A_{TM}}$ 是图灵可识别的,那么可以推出 A_{TM} 是可判定的,矛盾!

6 可归约性

6.1 语言理论中的不可判定问题

定理 6.1 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ halts on input } s \}$ 是不可判定的。 证明思路 用反证法, A_{TM} 可以归约到 $HALT_{TM}$ 。

定理 6.2 $E_{TM} = \{ \langle M \rangle | M \text{ is a } TM \text{ and } L(M) = \emptyset \}$ 是不可判定的。

证明思路 用反证法,把 A_{TM} 归约到 E_{TM} 。对于一个 TM,先判断输入是否为 w,如果不是直接拒绝,否则执行图灵机。如果 E_{TM} 可判定,那么 A_{TM} 也是可判定的。

定理 6.3 $REGULAR_{TM} = \{ \langle M \rangle | M \text{ is a } TM \text{ and } L(M) \text{ is a } regular \text{ language} \}$ 是不可判定的。

证明思路 用反证法,如果 $REGULAR_{TM}$ 是可判定的,那么 A_{TM} 也是可判定的。

设判定 $REGULAR_{TM}$ 的图灵机为 R,判定 A_{TM} 的图灵机为 S。对于输入 < M, w>,构造图灵机 M_2 ,如果输入为 0^n1^n 的形式,则接受。否则,在输入 w 上运行 M,M 接受 M_2 就接受,否则拒绝。在输入 $< M_2 >$ 上运行 R,如果 R 接受则 S 接受,否则拒绝。

补充定理 Race Theorem Let P be any problem about TM that satisfies the following two properties. As usual, P is expressed as a language.

- 1) For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, we have $< M_1 > \in P \Leftrightarrow < M_2 > \in P$
 - 2) There exist TMs M_1 and M_2 , where $\langle M_1 \rangle \in P$, $\langle M_2 \rangle \notin P$.

Then P is undecidable.

定理 6.4 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are } TMs \text{ and } L(M_1) = L(M_2) \}$ 是不可判定的。

证明思路 用反证法,在输入 $< M, M_1 >$ 上运行 EQ_{TM} ,其中 M_1 拒绝所有输入,即可判定 E_{TM} 问题,矛盾。

定义 6.5 设 M 是一个图灵机,w 是一个串。M 在 w 上的一个**接受计算历史**是一个格局序列 C_1, C_2, \ldots, C_l ,其中: C_1 是 M 在 w 上的其实格局, C_l 是 M 的一个接受格局,且每个 C_i 都是 C_{i-1} 的合法结果,即符合 M 的规则。同理可以定义**拒绝计算历史**。

定义 6.6 线性界限自动机(LBA)是一种受到限制的图灵机,它不允许其读写头离开包含输入的带区域。

引理 6.7 设 M 是有 q 个状态和 g 个带符号的 LBA。对于长度为 n 的带子,M 汽油 qng^n 个不同的格局。

证明思路 每个状态、读写头位置、纸带内容。

定理 6.8 $A_{LBA} = \{ \langle M, w \rangle | M \text{ is a } LBA \text{ that accepts } w \}$ 是可判定的。

证明思路 因为 LBA 的格局数有限,当模拟超过一定步数后,会出现循环,直接拒绝。 这样保证了一定能停机。

定理 6.9 $E_{LBA} = \{ \langle M \rangle | M \text{ is a } LBA \text{ and } L(M) = \emptyset \}$ 是不可判定的。

证明思路 构造 A_{TM} 的判定机 R。对于输入 < M, w >,构造一个接受 < M, w > 的接受计算历史的 LBAB。如果 B 接受的语言为空,R 则拒绝,否则接受。

定理 6.10 $ALL_{CFG} = \{ \langle G \rangle | G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \}$ 是不可判定的。

证明思路 对于 < M, w >,构造 CFG 派生所有计算历史(**除了接受计算历史**)。如果 CFG 能接受所有串,那么 M 就不能接受 w,否则 M 就能接受 w。

可以用定理 6.10 来证明 EQ_{CFG} 是不可判定的。

6.2 一个简单的不可判定问题

- 一个关于串操作的不可判定问题, 称为波斯特对应问题, 或 PCP。
- 一族骨牌:

$$\{\left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right]\}$$

上述骨牌的一个匹配:

$$[\frac{a}{ab}], [\frac{b}{ca}], [\frac{ca}{a}], [\frac{a}{ab}], [\frac{abc}{c}]$$

骨牌的上部和下部组成的字符串都是 abcaaabc。

定理 6.11 $PCP = \{ \langle P \rangle | P \text{ is an instance of the PCP with a match} \}$ 是不可判定的。

证明思路 用反证法,利用 PCP 问题,构造判定 A_{TM} 问题的图灵机。

先将 *PCP* 问题转化为 *MPCP* 问题(第一个骨牌是固定的),利用接受历史计算来构造骨牌的上部(上一个历史计算)和下部(下一个历史理算)。如果有一个匹配,就是有一个接受历史计算,示意图 14。

Figure 14: Example of MPCP

通过添加特殊符号,将 MPCP 问题转化为 PCP 问题,示意图 15。

$$\left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_1}{b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \left[\frac{\star t_3}{b_3 \star} \right], \dots, \left[\frac{\star t_k}{b_k \star} \right], \left[\frac{\star \diamondsuit}{\diamondsuit} \right] \right\}.$$

Figure 15: MPCP to PCP

6.3 映射可归约性

用映射可归约性将问题 A 归约为问题 B。

6.3.1 可计算函数

定义 6.12 函数 $f: \Sigma^* \to \Sigma^*$ 是一个可计算函数,如果有某个图灵机 M,使得在每个输入 w 上,M 停机,且此时只有 f(w) 出现在带上。

6.3.2 映射可归约的形式定义

定义 6.15 语言 A 是**映射可归约**到语言 B 的,如果存在可计算函数 $f: \Sigma^* \to \Sigma^*$ 使得对每个 w,

$$w \in A \Leftrightarrow f(w) \in B$$

记作 $A \leq_m B$ 。称函数 f 为 A 到 B 的归约。

<mark>定理 6.16</mark> 如果 $A \leq_m B$ 且 B 是可判定的,则 A 也是可判定的。

推论 6.17 如果 $A \leq_m B$ 且 A 不是可判定的,则 B 也不是可判定的。

定理 6.22 如果 $A \leq_m B$ 且 B 是图灵可识别的的,则 A 也是图灵可识别的的。

推论 6.23 如果 $A \leq_m B$ 且 A 不是图灵可识别的,则 B 也不是图灵可识别的。

定理 6.24 EQ_{TM} 既不是图灵可识别的,也不是不图灵可识别的。

证明思路 分为两步

- 1) 证明 EQ_{TM} 不是图灵可识别的,只要证明 A_{TM} 可归约到 $\overline{EQ_{TM}}$ 即可。
- 2) 证明 $\overline{EQ_{TM}}$ 不是图灵可识别的,只要证明 A_{TM} 可归约到 $\overline{\overline{EQ_{TM}}}$ 即可。

7 可计算理论的高级专题

7.1 递归定理

7.1.1 自引用

引理 7.1 存在可计算函数 $q: \Sigma^* \to \Sigma^*$,对任意串 w, $\mathbf{q}(\mathbf{w})$ 是图灵机 P_w 的描述, P_w 打印出 w,然后停机。

输出图灵机自己的编码,可以将这个编码分为两部分: < SELF >=< AB >。首先,令 < A >= q(< B >),然后 A 输出 < B >,接着 B 根据 < B > 输出 q(< B >),最后拼接得到 < AB >=< SELF >。

定理 7.2 递归定理 设 T 是计算函数 $t: \Sigma^* \to \Sigma^*$ 的一个图灵机。则存在计算函数 $r: \Sigma^* \to \Sigma^*$ 的一个图灵机 R,使得对每个 w,有:

$$r(w) = t(\langle R \rangle, w)$$

7.1.2 应用递归定理的术语

略

7.1.3 应用

定理 7.3 A_{TM} 是不可判定的。

证明思路 反证法。假设图灵机 H 判定 A_{TM} ,构造图灵机 B: 对于输入 w,通过递归定理构造 < B >,在输入 < B, w > 上运行 H。如果 H 接受,则 B 拒绝;如果 H 拒绝,则 B 接受。

定义 7.4 如果 M 是一个图灵机,则 M 的描述 < M > 的长度是描述 M 的串中所含符号的个数。如果没有与 M 等价的图灵机有更短的描述,则称 M 是极小的。令

$$MIN_{TM} = \{ \langle M \rangle | M \text{ is a minimal } TM \}$$

定理 7.5 MIN_{TM} 是不可判定的。

证明思路 反证法。假设 TME 枚举 MIN_{TM} ,构造 TMC: 对于任意输入 w,通过递归定理得到自己的描述 < C >,然后通过枚举器 E 找到一个更长描述的 TMD,在 w 上模拟 D。如果 D 接受,C 就接受;如果 D 拒绝,C 就拒绝。

定理 7.6 设 $t: \Sigma^* \to \Sigma^*$ 是一个可计算函数,则存在一个图灵机 F,使得 t(< F>) 描述一个与 F 等价的图灵机。

证明思路 构造图灵机 F: 对于任意输入 w, 通过递归定理获得自己的描述 < F >, 然后计算 t(< F >) 得到一个 TMG 的描述,在输入 w 上模拟 G。如果 G 接受,F 就接受;如果 G 拒绝,F 就拒绝。

7.2 逻辑理论的可判定性

对于模型 \mathcal{M} ,令 \mathcal{M} 的理论是这个模型语言中所有真聚集的集合,记作 $Th(\mathcal{M})$ 。

7.2.1 一个可判定的理论

定理 7.10 $Th(\mathcal{N},+)$ 是可判定的。

7.2.2 一个不可判定的理论

定理 7.11 $Th(\mathcal{N}, +, \times)$ 是不可判定的。

引理 7.12 设 M 是一个图灵机,w 是一个串。从 M 和 w 能构造 $Th(\mathcal{N},+,\times)$ 的语言中的公式 $\phi_{M,w}$,使得它只包含单个自由变元 x,且句子 $\exists x\phi_{M,w}$ 为真当且仅当 M 接受 w。

定理 7.13 $Th(\mathcal{N}, +, \times)$ 中可证命题的集合是图灵可识别的。

定理 7.14 $Th(\mathcal{N}, +, \times)$ 中有真命题是不可证的。

7.3 图灵可归约性

定义 7.16 语言 B 的一个谕示是一个能够报告某个串是否为 B 的成员的外部装置。一个谕示图灵机是一种修改过的图灵机,它有询问一个谕示的额外能力。记 M^B 为对语言 B 有谕示的谕示图灵机。

<mark>定义 7.19</mark> 语言 A **图灵可归纳**到 B,如果 A 相对于 B 是可判定的,基座 $A \leq_T B$ 。

定理 7.19 如果 $A \leq_T B$ 且 B 是可判定的,则 A 也是可判定的。

7.4 信息的定义

7.4.1 极小长度的描述

定义 7.20 设 x 是二进制数的串。x 的**极小描述**是最短的串 < M, w>,其中: TMM 在 输入 w 上停机时,x 在带上。且如果有多个这样的串存在,则在其中选择字典序下的第一个 串。记 x 的极小描述为 d(x)。x 的描述复杂性 K(x) 是

$$K(x) = |d(x)|$$

定理 7.21 $\exists c \forall x [K(x) \leq |x| + c]$

定理 7.22 $\exists c \forall x [K(xx) \leq K(x) + c]$

定理 7.23 $\exists c \forall x, y [K(xy) \leq 2K(x) + K(y) + c]$

7.4.2 定义的优化

<mark>定理 7.24</mark> 对任何描述语言 p,存在一个只与 p 有关的常量 c,使得:

$$\forall x [K(x) \leq K_p(x) + c]$$

7.4.3 不可压缩的串和随机性

$$K(x) \le |x| - c$$

则称 $x \in c$ 一可压缩的。如果 x 不是 c一可压缩的,则称 x 是不可压缩 c 的。如果 x 是不可压缩 1 的,则称 x 是不可压缩的。

<mark>定理 7.26</mark> 对于每个长度,都存在不可压缩的串。

推论 7.27 至少有 $2^n - 2^{n-c+1} + 1$ 个长度为 n 的串是不可压缩 c 的。

定理 7.28 设 f 是一个对几乎所有串成立的性质,则对任意 b > 0,性质 f 只在有限多个不可压缩 b 的串上的值是 FALSE。

定理 7.29 存在常量 b,使得对每个串 x,x 的极小描述 d(x) 都不可压缩 b。

8 时间复杂性

8.1 度量复杂性

定义 8.1 时间复杂度是一个函数: $f: \mathcal{N} \to \mathcal{N}$ 。

8.1.1 大 O 和小 o 记法

定义 8.2 设 f 和 g 是两个函数 $f,g: \mathcal{N} \to \mathcal{R}^+$ 。称 f(n) = O(g(n)),若存在正整数 c 和 n_0 ,使得对所有 $n > n_0$,有

$$f(n) \le cg(n)$$

当 f(n) = O(g(n)) 时,称 g(n) 是 f(n) 的上界,更准确说是渐进上界。

例 8.3 设 $f_1(n) = 5n^3 + 2n^2 + 22n + 6$,则 $f_1(n) = O(n^3)$

例 8.4 写 $f(n) = O(\log n)$ 时,不必再指明基数。

定义 8.5 设 f 和 g 是两个函数 $f,g: \mathcal{N} \to \mathcal{R}^+$ 。称 f(n) = o(g(n)),若存在正整数 n_0 ,对于任何实数 c > 0,使得对所有 $n \ge n_0$,有

或

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

8.1.2 分析算法

对于语言 $A = \{0^k 1^k | k \ge 0\}$,算法如图所示 16。该算法的时间复杂度为 $O(n^2)$ 定义 8.7 令 $t: \mathcal{N} \to \mathcal{N}$ 是一个函数。定义时间复杂性类 TIME(t(n)) 为

 $TIME(t(n)) = \{L|L \text{ is a language that can be decided in } O(t(n))\}$

对于语言 A 存在一个 $O(n \log n)$ 的算法: 每次间隔一个删一个,直至删完。 当图灵机有两条纸带时,语言 A 能在 O(n) 的时间内被判定。

$M_1 =$ "对输入串 w:

- 1) 扫描带, 如果在1的右边发现0, 就拒绝。
- 2) 如果 0 和 1 都在带上, 就重复下一步。
- 3) 扫描带, 删除一个0 和一个1。
- 4) 如果所有1都被删除以后还有0,或者所有0都被删除以后还有1,就拒绝。 否则,如果在带上没有留下0和1,就接受。"

Figure 16: Algorithm for language $A = \{0^k 1^k | k \ge 0\}$

8.1.3 模型间的复杂度关系

定理 8.8 设 t(n) 是一个函数, $t(n) \ge n$ 。则每一个 t(n) 时间的多带图灵机都和某一个 $O(t(n)^2)$ 时间的单带图灵机等价。

证明思路 模拟多带图灵机的每一步最多需要单带机的 O(t(n)) 步,因此总共需要时间为 $O(t^2(n))$ 步。

定义 8.9 N 的运行时间是函数 $f: \mathcal{N} \to \mathcal{N}$, f(n) 是在任何长度为 n 的输入上,N 的所有计算分支的最大步数。

定理 8.10 设 t(n) 是一个函数, $t(n) \ge n$ 。则每一个 t(n) 时间的非确定型单带图灵机都和某一个 $2^{O(t(n)^2)}$ 时间的确定型单带图灵机等价。

证明思路 对递归模拟计算树。计算树的最大深度为 O(t(n)),最后一层有 b 个儿子,则 $O(t(n)b^{t(n)}) = 2^{O(t(n))}$

8.2 *P* 类

8.2.1 多项式时间

 $\frac{\mathbf{E} \mathbf{V} \mathbf{8.11}}{\mathbf{P}}$ 是确定型单带图灵机在多项式时间内可判定的语言类。换句话说,

$$P = \bigcup_k (n^k)$$

8.2.2 *P* 中的问题举例

 $PATH = \{ < G, s, t > | G \ is \ a \ directed \ graph \ that \ has \ a \ directed \ path \ from \ s \ to \ t \}$

定理 8.12 $PATH \in P$ 。

 $RELPRIME = \{ \langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

定理 8.13 $RELPRIME \in P$ 。

定理 8.14 每一个上下文无关语言都是 P 的成员。

证明思路 对于一个 CFL, 存在对应的乔姆斯基范式 G。对于长度为 n 的串,需要 2n-1 来生成。使用动态规划算法进行判定,运行时间为 $O(n^3)$ 。

8.3 NP 类

 \mathbb{E} **E** \mathbb{E} **E**

 $A = \{w | V \ accepts < w, c > for some string c\}$

 $\mathbb{E} \times \mathbb{E} \times$

<mark>定理 8.17</mark> 一个语言在 *NP* 中,当且仅当它能被某个非确定型多项式图灵机判定。

证明思路 非确定性地枚举证书进行验证。

定义 8.18

 $NTIME(t(n)) = \{L | L \text{ is a language decided by a } O(t(n)) \text{ time nondeterministic Turing machine} \}$

推论 8.19 $NP = \bigcup_k NTIME(n^k)$

8.3.1 *NP* 中的问题举例

 $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k - clique \}$

定理 8.20 CLIQUE 属于 NP。

证明思路

思路一: 团即是证书。

思路二: 非确定性地选择一个点集,验证这个点集是否满足条件。

 $SUBSET - SUM = \{ \langle S, t \rangle | S = \{x_1, \dots, x_k\} \text{ and for some } \}$

$$\{y_1, \dots, y_l\} \subseteq S$$
, we have $\Sigma y_i = t\}$ (1)

定理 8.21 SUBSET - SUM 属于 NP。

证明思路子集即是证书。

8.3.2 P与NP问题

求解 NP 语言的已知的最好方式确定性地使用指数时间。换言之,可以证明。

$$NP \subseteq EXPTIME = \cup_k TIME(2^K)$$

8.4 NP 完全性

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

定理 8.22 库克—列文定理

$$SAT \in P \text{ if and only if } P = NP$$

8.4.1 多项式时间可归约性

定义 8.23 若存在多项式时间图灵机 M,使得在任何输入 w 上,M 停机是 f(w) 恰好在带上,则称函数 $f: \Sigma^* \to \Sigma^*$ 为**多项式时间可计算函数**。

定义 8.24 语言 A 成为多项式时间映射可归约到语言 B,或简称为多项式时间可归约到 B,记为 $A \leq_P B$,若存在多项式时间可计算函数: $f: \Sigma^* \to \Sigma^*$,对于每一个 w,有

$$w \in A \Leftrightarrow f(w) \in B$$

函数 f 称为 A 到 B 的**多项式归约**。

定理 8.25 若 $A \leq_P B$ 且 $B \in P$,则 $A \in P$ 。

证明思路 A 多项式时间归约到 B,然后 B 在多项式时间内求解。

定理 8.26 3SAT 多项式时间可规约到 CLIQUE。

证明思路 可以同时成真的结点连边,需要找一个大小为 k 的团 (k 为合取式的数量),示意图 17

图 8-7 月约从 $\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2) 生 成的图$

Figure 17: 3SAT to CLIQUE

8.4.2 NP 完全性的定义

定义 8.27 语言 $B \in NP$ 完全的,若它满足两个条件:

- 1) B 属于 NP。
- **2)** NP 中的每一个语言 A 多项式时间可归约到 B。

定理 8.28 若 $B \in NP$ 完全的,且 $B \in P$,则 P = NP。

定理 8.29 若 $B \in \mathbb{R}$ 是 \mathbb{R} 完全的,且 $B \leq_P C$, \mathbb{C} 属于 \mathbb{R} \mathbb{R} 则 \mathbb{C} 是 \mathbb{R} 完全的。

8.4.3 库克—列文定理

定理 8.30 SAT 是 NP 完全的。

证明思路 首先,证明 SAT 是 NP 的(容易)。然后证明所有 NP 的问题都能规约到 SAT (极其困难,略)。

推论 8.32 3SAT 是 NP 完全的。

要证明一个问题是 NP 完全的,只需证 3SAT 能归约到这个问题,且这个问题是 NP 的即可。

8.5 几个 NP 完全问题

推论 8.33 CLIQUE 是 NP 完全的。

8.5.1 顶点覆盖问题

 $VECTOR - COVER = \{ \langle G, k \rangle | G \text{ is an undirected graph that } \}$

 $has\ a\ k-node\ vertex\ cover\}$ (2)

定理 8.34 VECTOR - COVER 是 NP 完全的。

证明思路 从 3SAT 归约到 VECTOR - COVER,示意图 18。

8.5.2 哈密顿路径问题

定理 8.35 HAMPATH 是 NP 完全的。

证明思路 从 3SAT 归约到 HAMPATH, 示意图 19。

图 8-11 归约从 $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ 产生的图

Figure 18: 3SAT to VECTOR - COVER

Figure 19: 3SAT to HAMPATH

定理 8.36 UHAMPATH(无向图的哈密顿回路)是 NP 完全的。

证明思路 从 HAMPATH 归约到 UHAMPATH。有向图的一个点 u,拆成无向图的三个点 u^{in}, u^{mid}, u^{out} 。

8.5.3 子集和问题

定理 8.34 *SUBSET – SUM* 是 *NP* 完全的,示意图 20。

证明思路 从 3SAT 归约到 SUBSET - SUM

8.5.4 补充

<mark>补充定理</mark> 最小旅行商问题 TSP 是 NP 完全的。

证明思路 从哈密顿回路问题归约到 TSP 问题,每条路径的长度都为 1。

补充定理 k-独立集 是 NP 完全的。

证明思路 从 k - CLIQUE 归约到 k - 独立集。

更多 NP 完全问题的归约关系图 21

9 空间复杂性

定义 9.1 空间复杂度: O(f(n))。其中, $f: \mathcal{N} \to \mathcal{N}$ 。

该表根据样例子句 c_1 , c_2 和 c_k 演写了一部分: $(x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor x_3 \lor \cdots) \land \cdots \land (\bar{x}_3 \lor \cdots \lor \cdots)$

Figure 20: 3SAT to SUBSET - SUM

Figure 21: More NP Problems

定义 9.2 空间复杂性类: SPACE(f(n)) 和 NSPACE(f(n))。前者指确定型图灵机,后者指非确定型图灵机。

例 9.3 SAT 问题可以在线性空间内运行。

例 9.4 对于问题

$$ALL_{NFA} = \{ \langle A \rangle | A \text{ is NFA and } L(A) = \Sigma^* \}$$

该问题在非确定的空间 O(n) 内运行。

9.1 萨维奇定理

定理 9.5 萨维奇定理

对于任何函数: $f: \mathcal{N} \to \mathcal{N}$, 其中 $f(n) \geq n$,

$$NSPACE(f(n)) \subseteq SPACE(f(n)^2)$$

证明思路 使用分治的方式,总空间复杂度为 $O(\log |\Sigma|^{f(n)} \times f(n)) = O(f(n)^2)$ 。

9.2 PSPACE 类

定义 9.6 PSPACE 是在确定型图灵机上、在多项式**空间**内可判定的语言类。换言之,

$$PSPACE = \bigcup_k SPACE(n^k)$$

同理,可以定义 NPSPACE。

需要注意的是,PSPACE 对于一个语言的补集是封闭的,由于空间有上限,所以格局有上限(设为q),计算次数超过 2^q 即出现循环,可以判定此时不会停机。

通过**萨维奇定理**,可以推到得到 NPSPACE = PSPACE。

总结所定义的复杂性类之间的关系:

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

9.3 PSPACE 完全性

- 1) B 属于 PSPACE。
- **2)** PSPACE 中的每一个语言 A 多项式时间可归约到 B。若只满足条件 2,则称它为 PSPACE **难的**。

9.3.1 问题 TQBF

TQBF 问题就是要判定一个全量词化的布尔公式是真还是假。定义语言

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

定理 9.8 TQBF 是 PSPACE 完全的

证明思路

条件 1: 构造算法,说明空间复杂度为多项式的。

条件 2: 利用分治的思想,将一个问题拆成两部分,使用 ∃ (存在一种拆法)和 ∀ (对于所有的递归步骤)两种量词进行构造:

$$\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} [\phi_{c_3,c_4,\lceil \frac{t}{\alpha}\rceil}]$$

9.3.2 博弈的必胜策略

公式博弈游戏: 玩家按照顺序给 x_1,\ldots,x_n 赋值。最后公式真值为 TRUE 则玩家 E 胜利,否则玩家 A 胜利。

例 9.9 公式博弈: $\exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$

公式博弈的语言如下所示:

 $FORMULA - GAME = \{ \langle \phi \rangle | Player E \text{ has a winning strategy } \}$

in the formula game associated with ϕ } (3)

定理 9.10 FORMULA – GAME 是 PSPACE 完全的

证明思路 由于公式中存在 \exists 和 \forall 量词,所以 FORMULA - GAME = TQBF。

9.3.3 广义地理学

广义地理学游戏: 对于一个图, 玩家轮流在图的结点上填写地理名词, 对于有向边 $A \to B$, 要求 B 以 A 的结尾字母开头。

广义地理学的语言如下所示:

 $GG = \{ \langle G, b \rangle | Player I \text{ has a winning strategy } \}$

for the generalized geography game played on graph G starting at node b} (4)

定理 9.11 *GG* 是 *PSPACE* 完全的

证明思路

条件 1: 构造算法,说明空间复杂度为多项式的。

条件 2: 将 FORMULA-GAME 转化为 GG,示意图22。玩家 E 想使公式为真,玩家 A 想使公式为假。最后一个钻石是 E 来选择,那么 A 走完这个钻石,E 走到结点 c 上。此时,如果想要公式成假,那么只要有一个子式为假即可,即这个子式中的任意一个结点之前都没走过。那么 E 和 A 再各走一步之后,E 无路可走,此时原式为假,A 获胜。否则,E 走那条连接之前走过的结点的边,A 无路可走,此时原式为真,E 获胜。

图 9-5 模拟公式游戏的地理学游戏的全部结构,其中 $\phi = \exists x_1 \forall x_2 \cdots \mathbf{Q} x_k [(x_1 \forall \overline{x}_2 \forall x_3) \land (x_2 \forall x_3 \forall \cdots) \land \cdots \land ()]$

Figure 22: FORMULA - GAME to GG

9.4 L 类和 NL 类

定义 9.12 L 和 NL

L 是确定型图灵机在对数空间内可判定的语言类,即 $L = SPACE(\log n)$ 。

NL 是确定型图灵机在对数空间内可判定的语言类,即 $L = NSPACE(\log n)$ 。

需要注意的是,在亚线性空间界限下,图灵机有两条纸带,一条只读,一条可写,模仿内 存和外存。 例 9.13 语言 $A = \{0^k 1^k | k > 0\}$ 是 L 的成员。

例 9.14 语言 $PATH = \{ \langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from s to } t \}$ 是 NL 的成员

定义 9.15 若 M 是一个有单独的只读输入带的图灵机, ω 是输入,则 M 在 ω 上的格局是状态、工作带和两个读写头位置的一种设置。输入 ω 不最为 M 在 ω 上的格局的一部分。

9.5 NL 完全性

定义 9.16

对数空间转换器是有一条只读输入带、一条只写输出带和一条读写工作带的图灵机。 **对数空间可计算函数**: $f: \Sigma^* \to \Sigma^*$

如果语言 A 通过对数空间可计算函数 f 映射可规约到语言 B,则称 A 对数空间可规约到 B,记为 $A \leq_L B$ 。

<mark>定义 9.17</mark> 语言 B 是 NL **完全的**,如果

- 1) $B \in NL$,并且
- 2) NL 中的每个 A 对数空间可规约到 B。

定理 9.18 若 $A \leq_L B$ 且 $B \in L$,则 $A \in L$ 。

推论 9.19 若有一个 NL 完全语言属于 L,则 L = NL。

定理 9.20 PATH 是 NL 完全的。

证明思路 把字符串 ω 映射成一个图,图中结点对应的是 NTM 在输入 ω 上的格局。

推论 9.21 $NL \subseteq P$

证明思路 一个结论: 消耗空间为 O(f(n)) 的图灵机在 $n2^{O(f(n))}$ 下运行。

9.6 NL 等于 coNL

 $L \in coNL$ 当且仅当 $\overline{L} \in NL$

定理 9.22 NL = coNL

证明思路 证明 $\overline{PATH} \in NL$ 。由于 PATH 是 NL 完全的,所以当语言 A 可以归约 到 PATH,那么 \overline{A} 可以归约到 \overline{PATH} ,因此 $A \in coNL$,即可证明 NL = coNL。

当前已知的几个复杂性类之间相互关系的认识总结如下:

 $L\subseteq NL=coNL\subseteq P\subseteq PSPACE$