Loan Approval Predictor

1. Project Overview

This group project involves building a machine learning model to predict whether a loan application should be approved based on basic applicant information.

You will work in your groups to complete the ML lifecycle from data exploration to model testing. Deployment is optional.

2. Project Goal

Predict loan approval using a binary classification model (Approved or Not Approved).

3. Dataset

Name: Loan Approval Dataset

Source: https://www.kaggle.com/datasets/granjithkumar/loan-approval-data-set/data

Files: Loan_train.csv

4. Tasks to Complete

- 1. Understand the problem and define objectives.
- 2. Load the dataset from Kaggle.
- 3. Perform Exploratory Data Analysis (EDA):
- Identify patterns and distributions
- Check class balance for the target variable
- 4. Clean and preprocess the data:
 - Handle missing values
 - Encode categorical variables
 - Normalize/scale features (optional)
- 5. Perform feature selection (optional).
- 6. Split the dataset into training and testing sets.
- 7. Train two models:
 - Logistic Regression
 - Decision Tree

- 8. Evaluate the models using:
 - Accuracy
 - Precision
- Recall
- F1-score
- Confusion Matrix
- 9. Test the models on the reserved test set.
- 10. Draw conclusions and give recommendations based on your findings.

5. Tech Stack

Python, Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn, Jupyter Notebook

6. Submission Requirements

Each group must submit Github links with:

- 1. Jupyter Notebook (.ipynb or .py) with clean code and markdown
- 2. Project Report (.pdf or .docx), summarizing your process, findings, and conclusion
- 3. A README.md file

7. Evaluation Rubric (Out of 100)

Criteria	Marks
Exploratory Data Analysis (EDA)	10
- Overview of dataset and key features	
- Target variable class balance checked	
- Visualizations or summaries included	
Data Preprocessing	15
- Missing values handled appropriately	
- Categorical variables encoded	
Scaling/normalization (if needed)	

Model Development	20
- Both Logistic Regression and Decision Tree built and trained	
- Training and test split handled correctly	
Model Evaluation	15
- Use of accuracy, precision, recall, F1-score, confusion matrix	
- Clear comparison of model performance	
Code Quality	10
- Code is clean, modular, and well-commented	
- Logical structure in notebook or script	
Report & Conclusions	20
- Concise summary of approach and findings	
- Justified conclusions and recommendations	
Bonus: Presentation/Visuals	+10
- Group includes presentation slides or dashboard	