Raport 5

Aleksander Milach 21 April 2018

Zadanie 1

```
plot(function (x) dgamma(x,30,1),0,50,col="green4",ylab="",main="N(30,sqrt(30)) oraz Gamma(30,1)") plot(function (x) dnorm(x,30/1,sqrt(30/1^2)),0,50,add=TRUE,lty=17,col="cyan3")
```

N(30,sqrt(30)) oraz Gamma(30,1)

N(50,sqrt(50)) oraz Gamma(50,1)

N(100,10) oraz Gamma(100,1)

Rzeczywiście więc $\Gamma(X,1) \sim N(X,\sqrt{X})$.

```
barp(dbinom(0:20,20,.5),col="green1")
plot(function (x) dnorm(x-1,20*0.5,sqrt(20*.5*.5)),0,20,add=TRUE,col="cyan3",
    main="B(20,.5) i N(10,sqrt(5))")
```


Rzeczywiście więc $B(n,p) \sim N(np, \sqrt{np(1-p)}).$

Podpunkt a(rozkład normalny)

```
a1=qt(0.975,99)/10
b1=matrix(rnorm(1000*100),1000,100)
d1=apply(b1,1, function(v) {
    c((mean(v)-a1*sd(v))<=0 & 0<=(mean(v)+a1*sd(v)),sd(v))
    })
pu100=mean(d1[1,])

a2=qt(0.975,199)/sqrt(200)
b2=matrix(rnorm(1000*200),1000,200)
d2=apply(b2,1, function(v) {
    c((mean(v)-a2*sd(v))<=0 & 0<=(mean(v)+a2*sd(v)),sd(v))
})
pu200=mean(d2[1,])

n100=2*mean(d1[2,])*a1
n200=2*mean(d2[2,])*a2</pre>
```

Przedział ufności dla wartości oczekiwanej na poziomie 95% dla prób 100 elementowych zawiera 0.944 średnich. Przedział ufności dla wartości oczekiwanej na poziomie 95% dla prób 200 elementowych zawiera 0.947 średnich. Średnia szerokość tego przedziału ufności dla prób 100 elementowych wynosi 0.3948239, zaś dla prób 200 elementowych 0.2789625. Dla większej próby przedział ufności jest zauważalnie krótszy.

Podpunkt b(rozkład wykładniczy)

```
a3=qt(0.975,99)/10
b3=matrix(rexp(1000*100),1000,100)
d3=apply(b3,1, function(v) {
    c((mean(v)-a3*sd(v))<=1 & 1<=(mean(v)+a3*sd(v)),sd(v))
})
expu100=mean(d3[1,])

a4=qt(0.975,199)/sqrt(200)
b4=matrix(rexp(1000*200),1000,200)
d4=apply(b4,1, function(v) {
    c((mean(v)-a4*sd(v))<=1 & 1<=(mean(v)+a4*sd(v)),sd(v))
})
expu200=mean(d4[1,])

exp100=2*mean(d3[2,])*a3
exp200=2*mean(d4[2,])*a4</pre>
```

Przedział ufności dla wartości oczekiwanej na poziomie 95% dla prób 100 elementowych zawiera 0.934 średnich. Przedział ufności dla wartości oczekiwanej na poziomie 95% dla prób 200 elementowych zawiera 0.952 średnich. Średnia szerokość tego przedziału ufności dla prób 100 elementowych wynosi 0.3911284, zaś dla prób 200 elementowych 0.2782132. Dla większej próby przedział ufności jest zauważalnie krótszy.

Podpunkt a

```
n=dim(t)[1]
U=sqrt(t[[5]][t[[5]]>=0])
hist(U,freq=FALSE,main="Pierwiastek z dochodu",col=c("cyan","cyan3","cyan4"),xlab="",ylab="")
```

Pierwiastek z dochodu

			Wyksztalcenie wyzsze
Sredni pierwiastek z dochodu	Sredni dochód	Wyksztalcenie srednie (%)	(%)
179.4087	37864.61	0.3167	0.1002

Podpunkt b

```
qq=qnorm(0.975)
Y=sapply(1:200,function(i) sample(n,200))
X=apply(Y,2,function(v){
    u=sqrt(t[v,5][t[v,5]>=0])
    j=mean(u)
    k=mean(t[v,5])
    l=table(t[v,3])["3"]/200
    m=table(t[v,3])["6"]/200
    o=j-sd(u)*qq/sqrt(length(u))<=EXU & EXU<=j+sd(u)*qq/sqrt(length(u))
    p=k-sd(t[v,5])*qq/sqrt(length(u))<=EXDoch & EXDoch<=k+sd(t[v,5])*qq/sqrt(length(u))
    q=1-sd(t[v,3]=="3")*qq/sqrt(length(u)) <= PR3 & PR3 <= 1+sd(t[v,3]=="3")*qq/sqrt(length(u))
     r=m-sd(t[v,3]=="6")*qq/sqrt(length(u)) <= PR6 & PR6 <= m+sd(t[v,3]=="6")*qq/sqrt(length(u)) <= PR6 <= m+sd(t[v,3
    c(j,k,l,m,o,p,q,r)
})
W=Y[,1]
K1=c(Pu51=mean(sqrt(t[W,5][t[W,5]>=0]))-sd(sqrt(t[W,5][t[W,5]>=0]))
           *qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
Pu5p=mean(sqrt(t[W,5][t[W,5]>=0]))+sd(sqrt(t[W,5][t[W,5]>=0]))
*qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
K2=c(Pu61=mean(t[W,5])-sd(t[W,5])*qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
Pu6p=mean(t[W,5])+sd(t[W,5])*qq/sqrt(length(sqrt(t[W,5]]t[W,5]))),
X[6,1]
K3=c(Pu71=table(t[W,3])["3"]/200-sd(t[W,3]=="3")*qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0])))
Pu7p = table(t[W,3])["3"]/200 + sd(t[W,3] == "3") *qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
X[7,1])
K4=c(Pu81=table(t[W,3])["6"]/200-sd(t[W,3]=="6")*qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
Pu8p=table(t[W,3])["6"]/200+sd(t[W,3]=="6")*qq/sqrt(length(sqrt(t[W,5][t[W,5]>=0]))),
X[8,1])
MMM=matrix(c(K1,K2,K3,K4),3,4)
rownames(MMM)=c("Lewy koniec PU95%", "Prawy koniec PU95%", "Czy estymowana wartość jest w PU")
kable(MMM,col.names=c("Pierwiastek z dochodu", "Średni dochód", "Wykształcenia średnie(%)",
                                                  "Wykształcenie wyższe(%)"),digits=3,row.names=TRUE,format="markdown")
```

	Pierwiastek z dochodu	Sredni dochód	Wyksztalcenia srednie(%)	Wyksztalcenie wyzsze(%)
Lewy koniec PU95%	161.954	30129.57	0.246	0.035
Prawy koniec PU95%	181.287	38459.22	0.374	0.105
Czy estymowana wartosc jest w PU	1.000	1.00	1.000	1.000

${\bf Podpunkt}~{\bf c}$

Na zielono oznaczona jest estymowana wartość.

hist(X[1,],xlab="Wartośći estymatorów",main="Pierwiastek z dochodu",col="cyan1")
abline(v=EXU,col="green4",lwd=2)

Pierwiastek z dochodu

hist(X[2,],xlab="Wartości estymatorów",main="Dochód",col="cyan1")
abline(v=EXDoch,col="green4",lwd=2)

hist(X[3,],xlab="Wartości estymatorów",main="Wykształcenie średnie(%)",col="cyan1")
abline(v=PR3,col="green4",lwd=2)

hist(X[4,],xlab="Wartości estymatorów",main="Wykształcenie wyższe(%)",col="cyan1")
abline(v=PR6,col="green4",lwd=2)


```
U95=mean(X[5,])
Doch95=mean(X[6,])
PR395=mean(X[7,])
PR695=mean(X[8,])
print("Jak często wartośc estymatora wpadała do PU95%?")
## [1] "Jak czesto wartośc estymatora wpadala do PU95%?"
```

Pierwiastek z dochodu	Dochód	Wyksztalcenie srednie	Wyksztalcenie wyzsze
0.95	0.945	0.955	0.93

```
qqq=qt(0.975,dim(tt)[1]-1)/sqrt(dim(tt)[1])
PuIQL=mean(tt[[3]])-qqq*sd(tt[[3]])
PuIQP=mean(tt[[3]])+qqq*sd(tt[[3]])
PuTSL=mean(tt[[5]])-qqq*sd(tt[[5]])
PuTSP=mean(tt[[5]])+qqq*sd(tt[[5]])
```

Przedział 95% ufności dla wyniku testu IQ wynosi [105.9534814, 111.8926724]. Przedział 95% ufności dla wyniku testu samooceny wynosi [54.1630132, 59.7600638].