Aiyagari model in niqlow

Nam Phan

October 23, 2019

1/19

- Brief introduction
- Model
- Algorithm
- Aiyagari in niqlow

Introduction

- Aiyagari (1994) or Bewley-Huggett-Aiyagari (BHA) is a workhorse model to study economy with heterogeneous agents in a general equilibrium setup
 - Application: Precautionary saving, liquidity constraints, distribution of wealth and income.
 - Extension: Macro labour (health, education). Fiscal policy (gov transfer)
- Key assumptions:
 - Agents face idiosyncratic shock only, not aggregate shock (Krusell & Smith 1998)
 - Incomplete market.

3/19

- Brief introduction
- Model
- Algorithm
- 4 Aiyagari in niqlow

Model

Model details:

- Infinite horizon (extension: finite life-cycle)
- Single asset (extension: multiple assets)
- Inelastic labour supply (extension: endogenous labour choice)
- Agents face idiosyncratic labour shocks (extension: aggregate shock, or with both)
- Closed economy (haven't seen extension with open economy yet)
- Representative firm (extension: heterogeneous firms)
- No government, no central bank (extension: with either or both)
- Walrasian labour and good market (extension: decentralized search market)

Household

Solves the following infinite horizon problem:

$$\max E_0 \left[\sum_{t=0}^{\infty} \beta^t U(c_t) \right]$$
s.t: $c_t + a_{t+1} = a_t (1 + r_t) + w_t \epsilon_t$

$$a_{t+1} \ge \underline{a}$$
(1)

where $\epsilon_t \in \mathcal{E}$ is labour shocks. Assume that labour shock is AR(1) process in logs:

$$\epsilon_t^i = \exp(z_t^i)$$

$$z_t^i = \rho z_{t+1}^i + v_t^i$$

$$v \sim N(0, \sigma_v^2)$$
(2)

Household

• Focus on steady-state equilibrium where $r_t = r, w_t = w, \forall t = 0, 1....$ Bellman equation for the problem above is:

$$V(a, \epsilon) = \max_{a', c} \left\{ U(c) + \beta \sum_{\epsilon' \in \mathcal{E}} \Pi(\epsilon' | \epsilon) V(a', \epsilon) \right\}$$
s.t: $c + a' = a(1 + r) - w\epsilon$

$$a' \ge \underline{a}$$
(3)

where $\Pi(\epsilon'|\epsilon)$ describes the transition of labour shock.

• Solving the Bellman equation gives the policy function $a'(a,\epsilon), c(a,\epsilon)$ and value function $V(a,\epsilon)$.

Distribution over state-space

- Construct a probability density function $\lambda(a,\epsilon)$ over state-space, and a transition matrix $Q\big((a',\epsilon'),(a,\epsilon)\big)$
- $\lambda(a, \epsilon)$ returns the proportion of population with asset a and current labour productivity state ϵ . Thus heterogeneous agent model.
- Agents face different labour shock profile, thus heterogeneous in asset accumulation.
 - Uninsured idiosyncratic risk is the key

Distribution over state-space

The distribution λ evolves according to the following Markov chain:

$$\lambda_{t+1}(a_{t+1}, \epsilon_{t+1}) = \sum_{a_t \in \mathcal{A}} \sum_{\epsilon_t \in \mathcal{E}} Q((a_{t+1}, \epsilon_{t+1}), (a_t, \epsilon_t)) \lambda_t(a_t, \epsilon_t)$$
(4)

where $A = [\underline{a}, \infty)$ is the action space, and:

$$Q((a_{t+1}, \epsilon_{t+1}), (a_t, \epsilon_t)) = \mathbf{1}(a_{t+1} = a'(a_t, \epsilon_t)) \Pi(\epsilon_{t+1} | \epsilon_t)$$
 (5)

Stationary distribution satisfies:

$$\lambda_{t+1} = \lambda_t \tag{6}$$

or equivalently

$$\lambda^* = \lambda^* Q \tag{7}$$

Note that λ^* is an equilibrium object.

Firm

A representative firms solves the following (static) profit maximization problem:

$$\max AF(K_t, H_t) - w_t H_t - r_t K_t - \delta K_t \tag{8}$$

where A is an aggregate productivity level. In a stationary equilibrium, FOC gives:

$$w = AF_H(K, H)$$

$$r + \delta = AF_K(K, H)$$
 (9)

Market clearing

Good:

$$\sum_{a \in \mathcal{A}} \sum_{\epsilon \in \mathcal{E}} c(a, \epsilon) \lambda(a, \epsilon) + \sum_{a \in \mathcal{A}} \sum_{\epsilon \in \mathcal{E}} a'(a, \epsilon) \lambda(a, \epsilon) = AF(K, H) - \delta K$$
(10)

2 Labour:

$$H = \sum_{a \in \mathcal{A}} \sum_{\epsilon \in \mathcal{E}} \epsilon \lambda(a, \epsilon) \tag{11}$$

Capital:

$$K = \sum_{a \in A} \sum_{\epsilon \in \mathcal{E}} a'(a, \epsilon) \lambda(a, \epsilon)$$
(12)

Stationary Recursive equilibrium (RCE)

RCE is a value function $V(a,\epsilon)$, and policy functions $c(a,\epsilon)$ and $a'(a,\epsilon)$; firm's decision for aggregate factor demand K and H; prices w and r; and a stationary measure λ^* such that:

- \bullet Given r and w, policy functions c and a' solve the household's problem, and V is the associated value function
- \bullet Given r and w, aggregate factor K and H solves the firm's profit maximization problem
- Markets for good, labour and capital clear
- Stationary measure:

$$\lambda^*(a,\epsilon) = \sum_{a \in A} \sum_{\epsilon \in \mathcal{E}} Q((a',\epsilon'),(a,\epsilon)) \lambda^*(a,\epsilon)$$
(13)

- Brief introduction
- 2 Model
- 3 Algorithm
- 4 Aiyagari in niqlow

Algorithm

Nested fixed loop algorithm:

- For given prices \hat{r} and \hat{w} , solve for an inner loop:
 - Solve for value function and policy function
 - Initialize an agent measure $\lambda(a,\epsilon)$ and construct transition matrix Q.
 - Iterate $\lambda_{t+1} = \lambda_t Q$ until convergence. Obtain stationary measure λ^*
- Outer loop:
 - Compute aggregate factor K and H implied by policy function and agent measure λ^* .
 - \bullet Compute prices r and w implied by firm's FOCs (market clearing prices)
 - If r and w are different than \hat{r} and \bar{w} , update prices and go back to the inner loop.

Model result

Kernel plot of $a'(a,\epsilon)$ for $\mathcal{A} \in [-1,10]$

Few notes:

- In theory, $\mathcal{A}=[\underline{a},\infty).$ In practice, we normally discretize the state-space and experiment with the upper bound \bar{a}
- Value function can be solved by VFI or Policy function iteration.
- Linear interpolation between grid points in state space to reduce computational burden
- There are some alternative algorithms to compute stationary measure.
- Prices could be updated by bi-section method.

- Brief introduction
- 2 Model
- Algorithm
- 4 Aiyagari in niqlow

Summary for niqlow input

- Clock: Ergodic
- Action variable: $a'(\theta) \in \mathcal{A} = [\underline{a}, \overline{a}]$
- States: $\theta = (a, \epsilon)$
- Transition:

$$a' = a(1+r) - w\epsilon - c$$

$$\log(\epsilon') = \rho \log(\epsilon) + v, v \sim N(0, \sigma_v^2)$$
(14)

Utility:

$$U(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma}, \sigma > 0$$
 (15)

Stationary distribution:

$$\lambda^*(a,\epsilon) = \sum_{a \in A} \sum_{\epsilon \in \mathcal{E}} Q((a',\epsilon'),(a,\epsilon)) \lambda^*(a,\epsilon)$$
 (16)

ullet How about solve for equilibrium prices w and r?