Introduction to Bayesian nonparametrics

Tom Thorne

18th June 2018

Overview

- Bayesian nonparametrics
- Finite mixture models
- Dirichlet processes
- Markov Chain Monte Carlo
- Hierarchical Dirichlet processes
- Some other Bayesian nonparametric models

Bayesian nonparametrics

Bayesian parametric models

An example of a Bayesian parametric model:

 $X|\theta \sim p_{\theta}, \ \theta \in \Theta$ with e.g. $\Theta \subset \mathbb{R}^d$

with a prior $p(\theta)$. Then p_{θ} could be for example a normal distribution.

Bayesian nonparametric models

 $X|G \sim G$ with $G \sim Q$

- ▶ Does not mean that there are no parameters instead there are an infinite number.
- ▶ Placing a prior on *G* makes it a *Bayesian* nonparametric model.

Why use Bayesian nonparametric models?

Motivations

Practical:

- Scales automatically with complexity of the data
- Relatively easy to integrate into existing MCMC samplers
- Not computationally demanding

Philosophical:

- Prior has a large support
- (Hopefully) no need to adjust the prior after observing the data

Bayesian parametric example - Finite mixtures

Observations are generated from a mixture with a fixed number of components:

$$p(y|\theta, w) = \sum_{k=1}^{K} w_k p(y|\theta_k)$$

A simple example is a mixture of normal distributions:

Dirichlet priors for finite mixtures

- Prior on parameters H
- Prior on cluster membership probabilities w
- Allocation to clusters z_i
- Observations y_i

$$heta_1, \dots, heta_K \sim H$$

$$w \sim \text{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

$$z_i \sim \text{Multinomial}(w)$$

$$y_i \sim F(\theta_{z_i})$$

Dirichlet priors

We can define the posterior of the model as:

$$p(\theta, z, w|y) \propto p(y|\theta, z)p(z|w)p(w)p(\theta)$$

The Dirichlet prior on w allows us to integrate out to give:

$$p(z|\theta,y) \propto p(y|\theta,z)p(z)$$

Then we can construct a Gibbs sampler that samples from $p(\theta|y,z)$ and $p(z|\theta,y)$

Dirichlet priors

In the Gibbs sampler we can sweep over each z_i and update it conditional on the other parameters:

$$p(z_i = j|y, z_{-i}, \theta) \propto p(y_i|\theta_j)p(z_i = j|z_{-i})$$

Where

$$p(z_i = j | z_{-i}) = \frac{n_j + \frac{\alpha}{K}}{N - 1 + \alpha}$$

with n_j the number of $z_{-i} = j$.

```
Initialisation:
for s \in 1, \ldots, Steps do
    for i \in 1, ..., N do
        for k \in 1, ..., K do
         p_k \leftarrow p(y_i|\theta_k)p(z_i = k|z_{-i});
        end
         Normalise p;
        Sample z_i \sim \text{Mult}(p);
    end
    for k \in 1, \ldots, K do
        Update \theta_k given y_i where z_i = k;
    end
    Store z. K. \theta
end
```

```
Initialisation:
for s \in 1, \ldots, Steps do
    for i \in 1, ..., N do
        for k \in 1, ..., K do
         p_k \leftarrow p(y_i|\theta_k)p(z_i = k|z_{-i});
         end
         Normalise p;
         Sample z_i \sim \text{Mult}(p);
    end
    for k \in 1, \ldots, K do
        Update \theta_k given y_i where z_i = k;
    end
    Store z. K. \theta
end
```

Update z for each data point

```
Initialisation:
for s \in 1, \ldots, Steps do
    for i \in 1, ..., N do
        for k \in 1, ..., K do
         p_k \leftarrow p(y_i|\theta_k)p(z_i = k|z_{-i});
         end
         Normalise p;
         Sample z_i \sim \text{Mult}(p);
    end
                                                          Update \theta for each
    for k \in 1, \ldots, K do
                                                          cluster
        Update \theta_k given y_i where z_i = k;
    end
    Store z, K. \theta
end
```

Finite mixture - Example

y < -c(rnorm(100,5,0.5), rnorm(60,3,0.6), rnorm(20,1,0.2))

Finite mixture - Example

Markov Chain Monte Carlo traces: Counts of membership for each cluster

Normal distribution means for each cluster

Finite mixture - Example

Density estimation:

Looking at posterior samples, for each z_i , z_j , how often does $z_i = z_i$?

Challenges

- How do we set the number of clusters?
 - Look at the data?
 - Model selection?
- What happens if we collect a new, much larger data set?

Dirichlet processes

The Dirichlet process is a nonparametric extension of the Dirichlet distribution

$$G \sim \mathrm{DP}(\alpha, H)$$

- A distribution over distributions
- Samples exhibit clustering behaviour
- ightharpoonup Concentration parameter α
- Centering measure H

Ferguson, T. S. A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics 1, 209–230 (1973).

Stick breaking construction

Sethuraman J, A constructive definition of Dirichlet prior. Stat Sin 2:639–650 (1994)

$$u_k|\gamma \sim \text{Beta}(1,\gamma),$$

 $\beta_k = u_k \prod_{i=1}^{k-1} (1-u_i),$

denoted as $\beta \sim \text{GEM}(\gamma)$. Then if $G \sim \text{DP}(\alpha, H)$:

$$G = \sum_{k=1}^{\infty} \beta_k \delta_{\theta_k}$$

where $\theta_k \sim H$.

$$\beta_1$$
 $\frac{\beta_2}{\beta_3}$

$$\beta_1 = u_1, \ \beta_2 = u_2(1-u_1), \ \beta_3 = u_3(1-u_2)(1-u_1)$$

Polya urn representation

The stick breaking construction is an infinite mixture, and so hard to work with. Fortunately we can marginalise out G.

If $G \sim \mathsf{DP}(\gamma, H)$, for a set of observations $\theta_i \sim G$:

$$\theta_{N}|\theta_{1}\dots\theta_{N-1},\alpha,H\sim\frac{\alpha}{\alpha+N-1}H+\sum_{k=1}^{K}\frac{n_{k}}{\alpha+N-1}\delta_{\theta_{k}^{*}}$$

where $\theta_1^*, \dots, \theta_K^*$ are the unique values in $\theta_1, \dots, \theta_{N-1}$, and n_k is the number of θ_i having value θ_k^*

Blackwell, D. & MacQueen, J. B. Ferguson Distributions Via Polya Urn Schemes. The Annals of Statistics 1, 353-355 (1973).

Polya urn representation

Going back to the Dirichlet distribution with *w* integrated out:

$$p(z_i = j|z_{-i}) = \frac{n_j + \frac{\alpha}{K}}{N - 1 + \alpha}$$

If $K \to \infty$, then:

$$p(z_i = j | z_{-i}) = \frac{n_j}{N - 1 + \alpha}$$

and so

$$p(z_i = \text{new}|z_{-i}) = \frac{\alpha}{N - 1 + \alpha}$$

If $G \sim \mathsf{DP}(\alpha, H)$, for a set of observations $\theta \sim G$:

Analogy for the Dirichlet process due to Pitman and Dubins

If $G \sim \mathsf{DP}(\alpha, H)$, for a set of observations $\theta \sim G$:

Analogy for the Dirichlet process due to Pitman and Dubins

If $G \sim \mathsf{DP}(\alpha, H)$, for a set of observations $\theta \sim G$:

Analogy for the Dirichlet process due to Pitman and Dubins

If $G \sim \mathsf{DP}(\alpha, H)$, for a set of observations $\theta \sim G$:

Analogy for the Dirichlet process due to Pitman and Dubins

If $G \sim \mathsf{DP}(\alpha, H)$, for a set of observations $\theta \sim G$:

Analogy for the Dirichlet process due to Pitman and Dubins

Dirichlet process mixture models

We can use the DP prior in a mixture:

$$G \sim DP(\alpha, H)$$

 $\theta_i \sim G$
 $y_i \sim F(\theta_i)$

Dirichlet process mixture models

We can use the DP prior in a mixture:

$$\theta_k^* \sim H$$

$$\beta \sim \text{GEM}(\alpha)$$

$$z_i \sim \beta$$

$$y_i \sim F(\theta_{z_i}^*)$$

- ▶ Data points $y_1, ..., y_n$
- ▶ Latent variables z_1, \ldots, z_n
- K parameter sets $\theta_1, \ldots, \theta_K$
- Likelihood $f(y|\theta_k)$

Indicator updates

Existing cluster:

$$p(z_i = k|z_{-i}, y, \theta) \propto p(z_i = k|z_{-i})f(y_i|\theta_k)$$

Where z_{-i} is the set of cluster allocations excluding i.

New cluster:

$$p(z_i = K+1|z_{-i}, y, \theta) \propto p(z_i = K+1|z_{-i}) \int_{\theta} f(y_i|\theta) p(\theta) d\theta$$

When $f(y|\theta)$ and $p(\theta)$ are non-conjugate we can't directly evaluate the integral.

Indicator updates

Existing cluster:

$$p(z_i = k|z_{-i}) = \frac{n_k}{N - 1 + \alpha}$$

Where n_k is the size of cluster k in z_{-i} .

New cluster:

$$p(z_i = K + 1|z_{-i}) = \frac{\alpha}{N - 1 + \alpha}$$

```
for s \in 1, \ldots, Steps do
      for i \in 1, ..., N do
            for k \in 1, ..., K do
            p_k \leftarrow f(y_i|\theta_k)p(z_i = k|z_{-i});
            end
            for l \in 1, \ldots, L do
             Sample \theta_{K+l} \sim p(\theta); p_{K+l} \leftarrow \frac{1}{l} f(y_i | \theta_{K+l}) p(z_i = \text{new} | z_{-i});
            end
            Sample z_i \sim \text{Mult}(p);
           Tidy z,\theta
      end
      for k \in 1, \ldots, K do
           Update \theta_k given y_i where z_i = k;
      end
      Store z. K. \theta
end
```

```
for s \in 1, \ldots, Steps do
      for i \in 1, ..., N do
            for k \in 1, ..., K do
             p_k \leftarrow f(y_i|\theta_k)p(z_i = k|z_{-i});
            end
            for l \in 1, \ldots, L do
                 Sample \theta_{K+I} \sim p(\theta); p_{K+I} \leftarrow \frac{1}{I} f(y_i | \theta_{K+I}) p(z_i = \text{new} | z_{-i});
            end
            Sample z_i \sim \text{Mult}(p);
           Tidv z.\theta
      end
      for k \in 1, \ldots, K do
            Update \theta_k given y_i where z_i = k;
      end
      Store z. K. \theta
end
```

Update z for each data point.

end

```
for s \in 1, \ldots, Steps do
     for i \in 1, ..., N do
           for k \in 1, ..., K do
               p_k \leftarrow f(y_i | \theta_k) p(z_i = k | z_{-i});
           end
           for l \in 1, \ldots, L do
                Sample \theta_{K+I} \sim p(\theta); p_{K+I} \leftarrow \frac{1}{I} f(y_i | \theta_{K+I}) p(z_i = \text{new} | z_{-i});
           end
           Sample z_i \sim \text{Mult}(p);
                                                                  If any cluster has no members,
           Tidv z.\theta
                                                                  delete it. If we created a new
     end
                                                                  cluster, increase K and set \theta_K
     for k \in 1, ..., K do
                                                                  appropriately.
           Update \theta_k given y_i where z_i = k;
     end
     Store z. K. \theta
```

```
for s \in 1, \ldots, Steps do
     for i \in 1, ..., N do
           for k \in 1, ..., K do
            p_k \leftarrow f(y_i|\theta_k)p(z_i = k|z_{-i});
           end
           for l \in 1, \ldots, L do
                Sample \theta_{K+I} \sim p(\theta); p_{K+I} \leftarrow \frac{1}{I} f(y_i | \theta_{K+I}) p(z_i = \text{new} | z_{-i});
           end
            Sample z_i \sim \text{Mult}(p);
           Tidv z.\theta
     end
     for k \in 1, ..., K do
           Update \theta_k given y_i where z_i = k;
                                                                                     Update \theta for
     end
                                                                                     each cluster.
     Store z. K. \theta
end
```

Example application

Bivariate normal mixture

```
library(DPpackage)
library(mvtnorm)
# assume cov1,2,3 are covariance matrices
y < -rbind(rmvnorm(n1, c(5,5), cov1),
    rmvnorm(n2,c(3,3),cov2).
    rmvnorm(n3,c(1.5,6),cov3))
mcmc <- list(nburn=1000,nsave=10000,nskip=10)</pre>
prior \leftarrow list(alpha=1,m1=rep(4,2),
    psiinv1=diag(0.2,2),nu1=4,tau1=1,tau2=100)
results <- DPdensity(y,prior=prior,
    mcmc=mcmc,state=NULL,status=TRUE)
https://cran.r-project.org/web/packages/DPpackage/index.html
```

Results

Posterior density estimate

Example of cluster allocation from a single sample

The Dirichlet process has a tendency to infer small extra clusters.

Results

Practicalities

Likelihood is invariant under swapping of the labels:

- If we are only interested in density estimation this is not a problem
- Can use MAP estimate of assignments
- Place a constraint on the parameters e.g.

$$\mu_1 < \mu_2 < \mu_3, \dots$$

Relabelling strategies

Jasra, A., Holmes, C. & Stephens, D. Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling. Stat Sci 20, 50–67 (2005).

Rodríguez, C. & Walker, S. G. Label Switching in Bayesian Mixture Models: Deterministic Relabeling Strategies. Journal of Computational and Graphical Statistics 23, 25–45 (2014).

Properties

Number of clusters:

- $\blacktriangleright \ \, \text{As} \, \, \textit{n} \rightarrow \infty, \, \, \frac{\textit{K}}{\log \textit{n}} \rightarrow \alpha$
- ▶ With fixed concentration parameter, the DP posterior *does not* converge to the true number of components in the mixture. Miller, J. W. & Harrison, M. T. Inconsistency of Pitman-Yor process mixtures for the number of components. The Journal of Machine Learning Research 15, 3333–3370 (2014).

Cluster sizes

Prior favours few large clusters and many small ones

An alternative approach:

Miller, J. W. & Harrison, M. T. Mixture models with a prior on the number of components. (2015).

Hierarchical Dirichlet processes

Dirichlet process with another Dirichlet process as base measure

- Divide observations into groups
- ▶ Within a group observations are distributed as $G_i \sim \mathrm{DP}(\alpha, G_0)$
- Common measure $G_0 \sim \mathrm{DP}(\gamma, H)$
- Observations all drawn from a shared set of points from the discrete distribution G₀

Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. Hierarchical Dirichlet Processes. Journal of the American Statistical Association 101, 1566–1581 (2012).

Hierarchical Dirichlet processes

$$\theta_{sl} \sim G_s$$
, $G_s \sim DP(\alpha, G_0)$, $G_0 \sim DP(\gamma, H)$

$$\theta_{sl} \sim G_s$$
, $G_s \sim DP(\alpha, G_0)$, $G_0 \sim DP(\gamma, H)$

$$\theta_{sl} \sim G_s$$
, $G_s \sim DP(\alpha, G_0)$, $G_0 \sim DP(\gamma, H)$

$$\theta_{sl} \sim G_s$$
, $G_s \sim DP(\alpha, G_0)$, $G_0 \sim DP(\gamma, H)$

Hidden Markov Models – Generally requires prior specification of the number of hidden states

Hidden Markov Models – Generally requires prior specification of the number of hidden states

Hidden Markov Models – Generally requires prior specification of the number of hidden states

- ▶ Make transition distribution out of each state G_s with DP prior on G_s ?
- ▶ Problem no coupling of the underlying set of states (atoms of G_1, G_2, \ldots are independent sets of draws from H)

- Use a Hierarchical Dirichlet Process to have a common, shared set of states
- Corresponds to the dishes served across all restaurants in the franchise

- Centering measure H
- ▶ Shared state distribution β
- ▶ Transition distributions $\pi_{i,.}$
- ▶ State sequence s_0, \ldots, s_n
- Observations y_1, \ldots, y_n

Beal, M. J., Ghahramani, Z. & Rasmussen, C. E. The Infinite Hidden Markov Model. (2002).

Some other Bayesian nonparametric priors

- Dependent Dirichlet processes (MacEachern 2000)
- ▶ Pitman-Yor processes (Pitman & Yor Annals of Probability, 25, 855–900, 1997)
- Polya trees (Ferguson, Annals of Statistics, 2, 615–629, 1974, Lavine, Annals of Statistics, 20, 1222-1235, 1992)
- ▶ Indian Buffet Process (Griffiths & Ghahramani, 2006)
- Gaussian processes

Some further reading

- Müller, P., Quintana, F. A., Jara, A. & Hanson, T. Bayesian Nonparametric Data Analysis. (Springer, 2015).
- ▶ Phadia, E. G. Prior Processes and Their Applications. (Springer, 2016).
- ▶ Hjort, N. L., Holmes, C., Müller, P. & Walker, S. G. Bayesian Nonparametrics. (Cambridge University Press, 2010).