5.16 CASCADED SYSTEMS

The two-port systems approach is particularly useful for cascaded systems such as that appearing in Fig. 5.69, where $A_{\nu_1}, A_{\nu_2}, A_{\nu_3}$, and so on, are the voltage gains of each stage under loaded conditions. That is, A_{ν_1} is determined with the input impedance to A_{ν_2} acting as the load on A_{ν_1} . For A_{ν_2}, A_{ν_1} will determine the signal strength and source impedance at the input to A_{ν_2} . The total gain of the system is then determined by the product of the individual gains as follows:

$$A_{\nu_{t}} = A_{\nu_{1}} \cdot A_{\nu_{2}} \cdot A_{\nu_{3}} \cdot \cdots$$
 (5.93)

and the total current gain is given by

$$A_{i_{\tau}} = -A_{\nu_{\tau}} \frac{Z_{i_{1}}}{R_{L}}$$
 (5.94)