BMCS2003 Artificial Intelligence

Introduction to Expert System

Aims

- Introduction of expert system
- Expert system architecture (production system model)
- Expert system vs. conventional system
- Designing and developing an expert system

What is knowledge?

Who is Expert?

Complex mental processing and problem solving

Knowledge in RULES

Rules as Knowledge Representation

IF the 'traffic light' is green

THEN the action is go

IF the 'traffic light' is red

THEN the action is stop

Rules as Knowledge Representation

- Any rule consists of two parts:
 - IF part, called the antecedent (premise or condition)
 - THEN part called the consequent (conclusion or action).

```
IF <antecedent>
THEN <consequent>
```


Using conjunction and disjunction

 A rule can have multiple antecedents joined by the keywords AND (conjunction), OR (disjunction) or a combination of both.

IF <antecedent 1>
AND <antecedent 2>
...
AND <antecedent n>
THEN <consequent>

IF <antecedent 1> OR <antecedent 2> OR < antecedent n> THEN < consequent>

Production System Model STRUCTURE OF A EXPERT SYSTEM

Production System Model

- It is the foundation of the modern rulebased expert systems.
- Proposed by Newell and Simon (1970s), Carnegie-Mellon University,
- Based on the idea that humans solve problems by applying their knowledge (production rules) to a given problem represented by problem-specific information

Production System Model

Basic Structure

Complete Structure

Question

 What is the difference between knowledge-base and database?

Characteristics of an expert system

Narrow but specialized domain.

e.g. Medical diagnosis

High-quality performance

Correctness, accuracy, reliable

Speed

 for instance, in an emergency, when a patient dies or a nuclear power plant explodes.

Characteristics of an expert system

Apply heuristics to guide reasoning and reduce search space

Search performance

Contains explanation capability

 Why (the input is needed)? How (the conclusion is yielded)?

employ symbolic reasoning when solving a problem.

Natural language as input, e.g. "I am not sure"

ES vs Conventional Program

Expert System

- knowledge is separated from its processing (the knowledge base and the inference engine are split up).
- Easier to maintain, easy to understand

Conventional program

- mixture of knowledge and the control structure to process this knowledge.
- Difficult to understand and review the program code, as any change to the code affects both the knowledge and its processing.

Comparison of expert systems with conventional systems and human experts

Human Experts	Expert Systems	Conventional Programs
Use knowledge in the form of rules of thumb or heuristics to solve problems in a narrow domain.	Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow domain</i> .	Process data and use algorithms, a series of well-defined operations, to solve general numerical problems.
In a human brain, knowledge exists in a compiled form.	Provide a clear separation of knowledge from its processing.	Do not separate knowledge from the control structure to process this knowledge.
Capable of explaining a line of reasoning and providing the details.	Trace the rules fired during a problem-solving session and explain how a particular conclusion was reached and why specific data was needed.	Do not explain how a particular result was obtained and why input data was needed.

Comparison of expert systems with conventional systems and human experts (Continued)

Human Experts	Expert Systems	Conventional Programs
Use inexact reasoning and can deal with incomplete, uncertain and fuzzy information.	Permit <i>inexact reasoning</i> and can deal with incomplete, uncertain and fuzzy data.	Work only on problems where data is complete and exact.
Can make mistakes when information is incomplete or fuzzy.	Can make mistakes when data is incomplete or fuzzy.	Provide no solution at all, or a wrong one, when data is incomplete or fuzzy.
Enhance the quality of problem solving via years of learning and practical training. This process is slow, inefficient and expensive.	Enhance the quality of problem solving by adding new rules or adjusting old ones in the knowledge base. When new knowledge is acquired, <i>changes are easy</i> to accomplish.	Enhance the quality of problem solving by changing the program code, which affects both the knowledge and its processing, making changes difficult.

Question

 Discuss TWO (2) differences between an expert system of accounting and a conventional accounting software.

Inference Engine

- Forward-chaining
- Backward-chaining

Starts from known data

Datadriven

Forwardchaining New data will be added to database

Fire topmost rule

Rule can be executed only once

The match-fire cycle stops when no further rules can be fired.

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	
A , B, C, D, E	

Cycle 1: rule 3 and 4 match facts in kb

Knowled	dge base
Rule 1	IF Y is true AND D is true
	THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	
A, B, C, D, E, X	

Cycle 1 : rule 3 and 4 match facts in kb rule 3 fired first (topmost); new fact X added to db

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	
A, B, C, D, E, X, L	

Cycle 1 : rule 3 and 4 match facts in kb rule 3 fired first (topmost); new fact X added to db rule 4 fired next; new fact L added to db

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	
A. B. C. D. E. X. L. Y	

Cycle 1: rule 3 and 4 match facts in kb

rule 3 fired first (topmost); new fact X added to db

rule 4 fired next; new fact L added to db

Cycle 2: rule 2 is fired as B,E,X are in db; new fact Y added to db

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	

A, B, C, D, E, X, L, Y, Z

Cycle 1: rule 3 and 4 match facts in kb

rule 3 fired first (topmost); new fact X added to db

rule 4 fired next; new fact L added to db

Cycle 2: rule 2 is fired as B,E,X are in db; new fact Y added to db

Cycle 3 : rule 1 is fired; added Z in the db

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	

A, B, C, D, E, X, L, Y, Z

Cycle 1: rule 3 and 4 match facts in kb

rule 3 fired first (topmost); new fact X added to db

rule 4 fired next; new fact L added to db

Cycle 2: rule 2 is fired as B,E,X are in db; new fact Y added to db

Cycle 3: rule 1 is fired; added Z in the db

Cycle 4: stop because rule 5 does not match any facts

Exp:

Rule 1

IF The patient has a sore throat

AND We suspect a bacterial infection

THEN We believe the patient has strep throat

Rule 2

IF The patient's temperature is > 100

THEN The patient has a fever

Rule 3

IF The patient has been sick over a month

AND The patient has a fever THEN We suspect a bacterial infection

The following facts is assert into the working memory as supplied by the patient:

Patient's temperature = 102
Patient has been sick for two months
Patient has a sore throat

From the initial information entered into the WM, the system concludes three new pieces of information from the rules:

- The patient has a fever
- 2. We suspect a bacterial infection
- 3. We believe the patient has strep throat

Forward Chaining - limitations

- We are required to gather all information which seems may be necessary
- However, many rules executed may have nothing to do with the established goal.

Backward chaining

Backward chaining

Knowledge base	
Rule 1	IF Y is true AND D is true THEN Z is true
Rule 2	IF X is true AND B is true AND E is true THEN Y is true
Rule 3	IF A is true THEN X is true
Rule 4	IF C is true THEN L
Rule 5	IF L is true AND M is true THEN N
Working Memory/DB	
A, B, C, D, E	

Pass 1: rule 1 stacked to confirm fact Y and D

Pass 2: sets up subgoal Y, checks db, Y not there. kb is searched for rule with Y in the THEN part found rule 2, , stack rule 2.

Pass 3: sets up subgoal X, checks db, X not there kb searched for rule X in the THEN part, found rule 3, stack rule 3

pass 4 : sets up subgoal A, checks db, A found, rule 3 fired, new fact X inferred and add to db

Pass 5: IE returns to subgoal Y, tries to execute rule 2, X,B,E are in db, rule 2 fired, new fact Y inferred, add to db

Pass 6 : returns to goal Z, tries to execute rule 1, Y and D are in db,

rule 1 fired, thus goal Z is established

How do we choose?

Forward chaining

- needs to gather facts
- then only can try to infer from it
- e.g. identify a strange creature

Backward chaining

- begins with a hypothetical solution
- then attempts to find facts to prove it
- e.g. Is it going to rain today?

Expert System Shell

- When an expert system shell is used, a knowledge engineer or an expert simply enters rules in the knowledge base.
- Each new rule adds some new knowledge and makes the expert system smarter.
- E.g. Prolog, Drools, CLIPS, JESS, e2gLite, etc.

Next

RECOMMENDER SYSTEM/ ENGINE

Recommender System

to provide the most relevant information to a user by discovering patterns in a dataset

Search

Subscriptions

Recommended

Om Nom Stories UNPACKING | Cut The Rope: Video Blog | WildBrain - Kids Videos VI 609,314 views • 5 days ago

False Facts About The Lord Of The Rings You've Always. 311,352 views • 3 weeks ago

Om Nom Stories: Video Blog | Cartoons for Children | Funn... HooplaKidz TV - Funny Cartoons For 615,242 views • 1 week ago

All JoJo's Bizarre Adventure Openings but with SFX and. 12,001 views • 1 week ago

Cartoon | Om Nom Stories: Bakery | Funny Cartoons For. HooplaKidz TV - Funny Cartoons For 3.938,040 views • 3 months ago

Garfielf is asks for lasag 103,376 views • 10 months

Enlightenment While Eating. First We Feast 66 052 views • 2 hours ago

Cartoon | Om Nom Stories: The Stone Age | Cut The Rop. HooplaKidz TV - Funny Cartoons For 3.457,763 views • 5 months ago

JoJo's Rizarre Adventure: Stardust Crusaders - Jotaro. The JoJotard 16.011 views • 1 week ago

Om Nom Stories: Love At The Fair | Valentine's Special |. HooplaKidz TV - Funny Cartoons For Children

1,137,271 views • 2 weeks ago

Om Nom Stories: CYCLE RACE | Cut The Rope: Aroun. WildBrain - Kids Videos 4,311,878 views • 2 months ago

Om Nom Stories WINTE PARK | Cut The Rope Arc WildBrain - Kids Videos 504 293 views • 1 week ago

HooplaKidz TV - Funny Cartoons For Children Recommended channel for you

Om Nom Stories: Snow Fair | Christmas Cartoons | Funny. HooplaKidz TV - Funny Cartoons For Children

1,381,558 views • 2 months ago

Om Nom Stories: Dragon Warrior | Om Nom Season 4:. HooplaKidz TV - Funny Cartoons For 381,574 views • 1 month ago

Underground | Funny. HooplaKidz TV - Funny Cartoons For 2,318,905 views • 5 months ago

Om Nom Stories: A Red-Nosed Adventure | Christma. HooplaKidz TV - Funny Cartoons For Children

684,024 views • 2 months ago

Gazoon | Cartoons for Children | The Hallucinating. HooplaKidz TV - Funny Cartoons For 3,601,522 views • 7 months ago

Om Nom Stories: Myster House | Cartoons for Ch HooplaKidz TV - Funny Carto

617,415 views • 2 months

WildBrain - Kids Videos Recommended channel for you

Types of Recommender Systems

content based recommender systems

 and collaborative filtering recommender systems

Collaborative Filtering System

In this model products are recommended to a user based on the fact that the products have been liked by users similar to the user.

Depending on the score the system can recommend item C to the other user because it detects that those two users are similar interms of the items they purchase.

Content based Recommender System

- use meta data such as genre, producer, actor, musician to recommend items say movies or music.
- Such a recommendation would be for instance recommedation log that featured Vin Disiel because someone watched and liked The Fate of the Furious.

Item-based Recommender System

- Item-based collaborative filtering: These systems identify similar items based on users' previous ratings.
- For example if users A,B and C gave a 5 star rating to books X and Y then when a user D buys book Y they also get a recommendation to purchase book X because the system identifies book X and Y as similar based on the ratings of users A,B and C.

Next

UNCERTAINTY MANAGEMENT

