Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG - LFA 2021/1 - H. Longo

(1 – 1 de 1/

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (35 - 55 de 176)

Conjuntos e expressões regulares

- Expressões regulares são usadas para abreviar a descrição de conjuntos regulares:
 - O conjunto regular {*a*} é representado por *a*.
 - ► As operações de união, fecho de Kleene e concatenação são designadas por ∪, * e justaposição, respectivamente.
 - Parênteses são usados para indicar a precedência dos operadores.

Expressões regulares

Definição 1.30

lacktriangle Uma expressão regular sobre um alfabeto Σ é definida como:

Base: \emptyset , ε e a, para todo $a \in \Sigma$, são expressões regulares sobre Σ .

Recursão: Se u e v são expressões regulares sobre Σ , então $(u \cup v)$, (uv) e (u^*) também são expressões regulares sobre Σ .

Fecho: u é uma expressão regular sobre Σ se pode ser obtida, a partir das expressões regulares básicas, com a aplicação da recursão um número finito de vezes.

Linguagem de uma expressão regular

Se u é uma expressão regular, então a linguagem gerada por u é denotada por $\mathcal{L}(u)$.

INF/UFG - LFA 2021/1 - H. Longo Expressões regulares (36 - 55 de 176) INF/UFG - LFA 2021/1 - H. Longo Expressões regulares (37 - 55 de 176)

- ► Uma expressão regular define um padrão e uma cadeia pertence à linguagem gerada pela expressão se está de acordo com o padrão definido.
 - ► A concatenação especifica uma ordem relativa entre dois elementos.
 - O fecho de Kleene permite repetições.
 - ▶ A operação ∪ permite seleção.

INF/UFG – LFA 2021/1 – H. Longo

Expressões regulares (38 - 55 de 176)

Expressões regulares

- ► Precedência dos operadores regulares:
 - 1. Fecho de Kleene.
 - Concatenação e união.
- Parênteses podem ser eliminados de expressões que são sequências de uniões ou concatenações.
 - União e concatenação são operações associativas.

Exemplo 1.31

- $(a \cup b)^*bb(a \cup b)^*$: expressão regular para o conjunto $\{a,b\}^* \circ \{bb\} \circ \{a,b\}^*$.
- $\bullet \ \ a(a \cup b)^*b(a \cup b)^*a : \text{ expressão regular para o conjunto } \{a\} \circ \{a,b\}^* \circ \{b\} \circ \{a,b\}^* \circ \{a\}.$

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (39 - 55 de 176)

Expressões regulares

Exemplo 1.32

- Expressões regulares especificam um padrão que as cadeias de uma determinada linguagem devem satisfazer.
- Em muitas situações são usadas notações diferentes, ou mesmo terminologias, mas o conceito básico permanece o mesmo:
 - 1. Nomes de usuários: $\land [a-z0-9_-]{3, 16}$ \$.
 - $\text{2. Endereços de emails: } \land ([a-z0-9_\backslash .-]+) @ ([a-z0-9_\backslash .-]+) \backslash .([a-z\backslash .]2,6)\$.$

Expressões regulares

Definição 1.33

$$u^{+} = uu^{*}.$$

$$u^{2} = uu.$$

$$u^{3} = u^{2}u.$$

$$\vdots$$

$$u^{n} = u^{n-1}u.$$

Linguagens de expressões regulares

Resumo

Expressão regular	Linguagem
Ø	$\mathcal{L}(\emptyset) = \{\} = \emptyset$
arepsilon	$\mathcal{L}(\varepsilon) = \{\varepsilon\}$
$a, a \in \Sigma$	$\mathcal{L}(a) = \{a\}$
и	$\mathcal{L}(u)$
$u \cup v$	$\mathcal{L}(u \cup v) = \mathcal{L}(u) \cup \mathcal{L}(v)$
uv	$\mathcal{L}(uv) = \mathcal{L}(u) \circ \mathcal{L}(v)$
u*	$\mathcal{L}(u^*) = (\mathcal{L}(u))^*$

Observações

- ▶ A notação (u + v) também é usada para denotar a união $(u \cup v)$.
- ► Alguns parênteses podem ser eliminados. Em cada caso, a interpretação é feita de acordo com a ordem de precedência: fecho de Kleene, concatenação e, por último, união.
- $u^+ = uu^*$ e u^k , para k concatenações sucessivas, são notações válidas.

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (42 - 55 de 176)

Linguagens de expressões regulares

Exemplo 1.34

Expressão regular	Linguagem
$a \cup b$	$\mathcal{L}(a \cup b) = \{a\} \cup \{b\} = \{a, b\}$
a^*	$\mathcal{L}(a^*) = (\mathcal{L}(a))^* = (\{a\})^* = \{\varepsilon, a, aa, aaa, aaaa,\}$
$(a \cup b)(a \cup b)$	$\mathcal{L}((a \cup b)(a \cup b)) = \mathcal{L}((a \cup b)) \circ \mathcal{L}((a \cup b)) = \{a, b\} \circ \{a, b\} = \{aa, ab, ba, bb\}$
$a \cup (ab)^*$	$\mathcal{L}(a \cup (ab)^*) = \mathcal{L}(a) \cup \mathcal{L}((ab)^*) = \{a\} \cup \{\varepsilon, ab, abab, \dots\}$ $\{a, \varepsilon, ab, abab, ababab, \dots\}$

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (43 - 55 de 176)

Linguagens de expressões regulares

Exemplo 1.35

► Seja o alfabeto $\Sigma = \{a, b\}$:

Expressão regular	Linguagem
$a \cup b$	$\{a,b\} = \Sigma.$
$(a \cup b)^*$	Todas as palavras sobre Σ (Σ *).
$a(a \cup b)^*$	Todas as palavras que começam com a .
$b^*(a \cup \varepsilon)b^*$	Todas as palavras que contêm zero ou um a .
$a(\varepsilon \cup b)^*$	$\{a,ab,abb,abbb,\ldots\}.$
$((a \cup b)(a \cup b))^*$	Todas as palavras de comprimento par.
$(a^*b)^*a^*$	Σ^* .

Expressões regulares

Exemplo 1.36

▶ O conjunto $\{bawab \mid w \in \{a,b\}^*\}$, sobre o alfabeto $\Sigma = \{a,b\}$ é regular:

	Conjunto	Expressão	Justificativa
1.	{a}	a	Base
2.	$\{b\}$	b	Base
3.	$\{a\} \circ \{b\} = \{ab\}$	ab	1, 2, Concatenação
4.	${a} \cup {b} = {a, b}$	$a \cup b$	1, 2, União
5.	$\{b\} \circ \{a\} = \{ba\}$	ba	2, 1, Concatenação
6.	${a,b}^*$	$(a \cup b)^*$	4, Fecho de Kleene
7.	$\{ba\}\circ\{a,b\}^*$	$ba(a \cup b)^*$	5, 6, Concatenação
8.	$\{ba\}\!\circ\!\{a,b\}^*\!\circ\!\{ab\}$	$ba(a \cup b)^*ab$	7, 3, Concatenação

Exemplo 1.37

- ▶ Alfabeto: $\Sigma = \{a, b\}$.
- ► Cadeias que contêm aa: $(a \cup b)^*aa(a \cup b)^*$.
- ► Cadeias que contêm bb: $(a \cup b)^*bb(a \cup b)^*$.
- ▶ Cadeias que contêm aa ou bb: $(a \cup b)^*aa(a \cup b)^* \cup (a \cup b)^*bb(a \cup b)^*$.

Exemplo 1.38

- Expressões regulares que definem o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b\}$, que contêm pelo menos 2 *b*'s:
 - 1. $a^*ba^*b(a \cup b)^*$.
 - 2. $(a \cup b)^*ba^*ba^*$.
 - 3. $(a \cup b)^*b(a \cup b)^*b(a \cup b)^*$.

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (46 - 55 de 176)

Expressões regulares

Exemplo 1.39

- Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b\}$, que contêm exatamente 2 b's:
 - ▶ a*ba*ba*.

Exemplo 1.40

- Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b\}$, que contêm número par de b's:
 - $a^*(a^*ba^*ba^*)^*$.
 - $ightharpoonup a^*(ba^*ba^*)^*.$

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (47 - 55 de 176

Expressões regulares

Definição 1.41

- ▶ Duas expressões regulares r e s são equivalentes se $\mathcal{L}(r) = \mathcal{L}(s)$.
- Pode não existir uma única expressão regular para definir um conjunto.
- ▶ Duas expressões que representam o mesmo conjunto são ditas equivalentes.
- Expressões regulares podem ser manipuladas algebricamente para a construção de expressões equivalentes.

Expressões regulares

Definição 1.42 (Identidades Básicas)

- 1. $\emptyset u = u\emptyset = \emptyset$
- 2. $\varepsilon u = u\varepsilon = u$
- 3. $\emptyset^* = \varepsilon$
- 4. $\varepsilon^* = \varepsilon$
- 5. $u \cup v = v \cup u$
- 6. $u \cup \emptyset = u$
- 7. $u \cup u = u$ 8. $u^* = (u^*)^*$
-
- 9. $u(v \cup w) = uv \cup uw$
- 0. $(u \cup v)w = uw \cup vw$ 1. $(uv)^*u = u(vu)^*$
- 12. $(u \cup v)^* = (u^* \cup v)^*$

$$= u^*(u \cup v)^* = (u \cup vu^*)^*$$

$$= (u^*v^*)^* = u^*(vu^*)^*$$

$$= (u^*v)^*u^*$$

Exemplo 1.43

- Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b\}$, que não contêm a subcadeia aa.
 - ▶ Uma cadeia pode conter um prefixo com qualquer número de *b*'s;
 - ► Todo *a* deve ser seguido por pelo menos um *b* ou terminar a cadeia.
 - $b^*(ab^+)^* \cup b^*(ab^+)^*a$
 - $= b^*(ab^+)^*(\varepsilon \cup a)$
 - $= b^*(abb^*)^*(\varepsilon \cup a)$
 - $= (b \cup ab)^*(\varepsilon \cup a)$

INF/UFG - LFA 2021/1 - H. Longo

Expressões regulares (50 - 55 de 176)

Expressões regulares

Exemplo 1.44

- Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b, c\}$, que contêm a subcadeia bc:
 - $(a \cup b \cup c)^*bc(a \cup b \cup c)^*.$

Exemplo 1.45

- ▶ Linguagem \mathcal{L} definida por $c^*(b \cup ac^*)^*$:
 - $ightharpoonup c^*$ e ac^* garante que a's e b's podem ocorrer em qualquer ordem.
 - Quando ocorre um elemento de ac*, este pode ser seguido por qualquer número de a's ou b's (em qualquer ordem).
 - \mathcal{L} não contém cadeias com a subcadeia bc.

Exemplo 1.46

- Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b\}$, que não contêm a subcadeia abb:
 - $b^* \cup b^* a (a \cup ba)^* (b \cup \varepsilon) \equiv b^* (a^+ b)^* a^*.$

INF/UFG – LFA 2021/1 – H. Longo Expressões regulares (51 – 55 de 176)

Expressões regulares

Exemplo 1.47

Expressão regular	Conjunto regular
a*ba*	$\{w \in \{a,b\}^* \mid w \text{ cont\'em apenas um s\'embolo } b\}$
$(a \cup b)^*b(a \cup b)^*$	$\{w \in \{a,b\}^* \mid w \text{ cont\'em pelo menos um s\'embolo } b\}$
$a(a \cup b)^* a \cup b(a \cup b)^* b \cup a \cup b$	$\{w \in \{a,b\}^* \mid w \text{ começa e termina com o mesmo símbolo}\}$
$(a^*ba^*b)^*a^*$	$\{w \in \{a,b\}^* \mid \text{ número de ocorrências do símbolo } b \text{ é par}\}$
$(a \cup b)^*aa(a \cup b)^*$	$\{w \in \{a,b\}^* \mid w \text{ contém pelo menos um par de } a$'s consecutivos}
$(a \cup b)^*b(a \cup b)(a \cup b)(a \cup b)$	$\{w \in \{a,b\}^* \mid w \text{ cont\'em um } b \text{ no quarto s\'embolo a partir do final}\}$
$(b^*abb^*)^*(a \cup \varepsilon) \cup b^*$	$\{w \in \{a,b\}^* \mid w \text{ não cont\'em um par de } a\text{'s consecutivos}\}$
$(a \cup b)^*(aa \cup ba \cup bb) \cup a \cup b \cup \varepsilon$	$\{w \in \{a,b\}^* \mid w \text{ não termina com } ab\}$

Expressões regulares

Exemplo 1.48

Expressão regular para o conjunto de cadeias, sobre o alfabeto $\Sigma = \{a, b, c\}$, que contêm todos os símbolos pelo menos uma vez:

$$\begin{split} &(a \cup b \cup c)^*a(a \cup b \cup c)^*b(a \cup b \cup c)^*c(a \cup b \cup c)^* \cup \\ &(a \cup b \cup c)^*a(a \cup b \cup c)^*c(a \cup b \cup c)^*b(a \cup b \cup c)^* \cup \\ &(a \cup b \cup c)^*b(a \cup b \cup c)^*a(a \cup b \cup c)^*c(a \cup b \cup c)^* \cup \\ &(a \cup b \cup c)^*b(a \cup b \cup c)^*c(a \cup b \cup c)^*a(a \cup b \cup c)^* \cup \\ &(a \cup b \cup c)^*c(a \cup b \cup c)^*a(a \cup b \cup c)^*b(a \cup b \cup c)^* \cup \\ &(a \cup b \cup c)^*c(a \cup b \cup c)^*b(a \cup b \cup c)^*a(a \cup b \cup c)^* \end{split}$$

Teorema 1.49

Existem linguagens que não podem ser definidas por expressões regulares.

Demonstração.

No decorrer do curso

INF/UFG - LFA 2021/1 - H. Longo Expressões regulares (54 - 55 de 176)

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics - An Applied Introduction.

Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação.

Ed. Campus.

Languages and Machines – An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation. PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (176 - 176 de 176)

Algumas questões a serem respondidas

- ▶ Dada uma palavra w e uma expressão regular e, existe um algoritmo que decida se $w \in \mathcal{L}(e)$?
- ightharpoonup Dadas expressões regulares e_1 e e_2 , sobre o mesmo alfabeto, existe um algoritmo que decida se $\mathcal{L}(e_1) = \mathcal{L}(e_2)$?
- ▶ Todas as linguagens são regulares? Caso a resposta seja negativa, como provar que uma linguagem \mathcal{L} não é regular?

INF/UFG - LFA 2021/1 - H. Longo Expressões regulares (55 - 55 de 176)