Contents

0 Introduction			on	1
1	Supply and Demand			3
	1.1	Market	ts and Competition	3
	1.2	Deman	id	3
		1.2.1	The Demand Curve	3
		1.2.2	Market Demand	4
		1.2.3	Shifts in the Demand Curve	5
	1.3	Supply	·	7
		1.3.1	The Supply Curve	7
		1.3.2	Market Supply	7
		1.3.3	Shifts in the Supply Curve	9
	1.4	Supply	and Demand Together	10
		1.4.1	Equilibrium	10
		1.4.2	Analyzing Changes in Equilibrium	11
2	Elasticities 15			15
	2.1	The El	asticity of Demand	15
		2.1.1	The Price Elasticity of Demand	15
		2.1.2	Computing the Price Elasticity of Demand	15
		2.1.3	The Midpoint Method	16

iv CONTENTS

Chapter 2

Elasticities

2.1 The Elasticity of Demand

2.1.1 The Price Elasticity of Demand

- A good's <u>price elasticity of demand</u> measures how much the quantity demanded responds to a change in price.
- Demand for a good is <u>elastic</u> if the quantity demanded responds a lot to changes in price.
- Demand is <u>inelastic</u> if the quantity demanded doesn't respond a lot to changes in price.

Determinants of Price Elasticity of Demand

- 1. Availability of Substitutes: Goods with close substitutes are more elastic.
- 2. Necessities v. Luxuries: Necessities are more inelastic and luxuries are more elastic.
- 3. Market Definition: Goods in narrowly defined markets are more elastic, and goods in broadly defined markets are more inelastic.
- 4. Time Horizon: Goods are more elastic in the long term than the short term.

2.1.2 Computing the Price Elasticity of Demand

• Price elasticity of demand is

$$\eta = \left| \frac{\% \Delta Q_D}{\% \Delta P} \right|$$

• Ex. The price of ice-cream increases by 10%, and the quantity bought decreases by 20%. The price elasticity of demand is:

$$\eta = \left| \frac{-20\%}{10\%} \right| = 2$$

2.1.3 The Midpoint Method

- Problem: The typical percent change calculation depends on the initial point.
- Ex.

Point A:
$$P_A = \$4$$
, $Q_A = 120$
Point B: $P_B = \$6$, $Q_B = 80$

$$\%\Delta P_{A\to B} = \frac{P_B - P_A}{P_A} = \frac{6-4}{4} = \frac{1}{2}$$
$$\%\Delta P_{B\to A} = \frac{P_A - P_B}{P_B} = \frac{4-6}{6} = -\frac{1}{3}$$

- Solution: The <u>midpoint method</u> calculates percent change by using the midpoint of the two values in the denominator.
- Ex.

$$\%\Delta P = \frac{P_B - P_A}{\frac{P_A + P_B}{2}} = \frac{6 - 4}{\frac{4 + 6}{2}} = \frac{2}{5} = 40\%$$

- To calculate elasticities, use the midpoint method.
- Ex.

$$\begin{split} \eta &= \left|\frac{\%\Delta Q}{\%\Delta P}\right| \\ \%\Delta Q &= \frac{Q_A - Q_B}{\frac{Q_A + Q_B}{2}} = \frac{120 - 80}{\frac{120 + 80}{2}} = \frac{2}{5} \\ \%\Delta P &= \frac{P_A - P_B}{\frac{P_A + P_B}{2}} = \frac{4 - 6}{\frac{4 + 6}{2}} = -\frac{2}{5} \\ \eta &= 1 \end{split}$$