

Power Analysis

Prof. Dr. Teena Hassan teena.hassan@h-brs.de

Department of Computer Science

Hochschule Bonn-Rhein-Sieg Sankt Augustin

27 June 2024

Learning Goals

- At the end of today's lecture, you will be able to:
 - 1. Identify the factors that influence the **sample size** of participants required for an experiment.
 - 2. Apply **power analysis** to determine sample size for validating hypotheses in HRI experiments.

Primary Reference

 Guy Hoffman and Xuan Zhao. 2020. A Primer for Conducting Experiments in Human Robot Interaction ACM Trans. Hum. Robot Interact . 10, 1, Article 6 (October 2020), 31 pages https://doi.org/10.1145/3412374

Your reading assignment for last week!

Hypothesis-Driven Experimental Research

(Hoffman & Zhao, 2020)

Make a Guess...

➤ Which design would require more samples to achieve the same statistical power?

A. Within-subjects design

B. Between-subjects design

How Many Samples are Enough?

- Very crucial question in empirical research.
- How many samples are needed to draw scientifically sound conclusions?

Power Analysis

Simply put, a **statistically sound** method to determine **the sample size** and **power** of an experiment.

Why is Power Analysis Important in HRI?

- Humans are unpredictable and exhibit variability in their behavior.
 - Inter- and intrapersonal variability
- When we conduct an experiment:
 - How can we be sure that the effects that we observed are meaningful and not noise?
- We should perform a priori and post hoc power analyses.

(Bartlett et al., 2022)

Hypothesis-driven Experimental Research

Level of users' trust in:

Interactive

Level of users' trust in:

Straight Line

Level of users' trust in:

>H0 posits there is no difference between users' level of trust in cond-A and cond-B.

Null Hypothesis

Objective of the Experiment

Can we reject H0:

Level of users' trust in:

Level of users' trust in:

Cond-B

• And accept H1:

Level of users' trust in:

Cond-A

Level of users' trust in:

Cond-B

Power Analysis

b-it O

- Examines the relationship between four parameters:
 - 1. alpha level
 - 2. Power
 - 3. Effect size
 - 4. Sample size
- Given any three of these parameters, we can predict the fourth.

Too small alpha contestigh Samples

a priori Power Analysis

- Given:
 - Expected or desired values for:
 - 1. alpha level
 - 2. Power
 - 3. Effect size
- Predict, sample size needed for the experiment.

post hoc Power Analysis

b-it O

- Done after the experiment.
- Given:
 - Values computed from experimental data:
 - 1. Effect size
 - 2. Sample size
 - 3. alpha level
- Predict statistical power of the experiment.

Alpha Level, Power, Effect Size

To get the same power after reducing alpha, we should increase the sample size.

Errors Induced by Sampling – Type I, Type II

Test Results.

		Reject H0 Accept H1	Accept H0 Reject H1
	H0 is True H1 is False	α False positive rate (Type I error)	1- α True negative rate
r	H0 is False H1 is True	1- β True positive rate (POWER)	β False negative rate (Type II error)

Holds in the sampled population

Estimating Effect Size

- Effect size is the difference between outcomes measured in different conditions.
- ➤ Effect size computation depends on the method chosen for the statistical test.

Computing Effects Using t-tests

Independent t-test

Paired t-test

- Between subject
 - Two separate groups of subjects A and B
 - Each group exposed to only one condition
 - Two sampling distributions
- Computes means of dependent variable in either distribution: μ_A, μ_B
- Difference between means: $\Delta = \mu_A \mu_B$
- Effect: Compares Δ to zero.
- Effect size (Cohen's d): Δ / σpooled

- Within subject
 - One group of subjects
 - Each subject exposed to both conditions
 A and B
- One sampling distribution S based on difference Δ_s in response of each subject s in condition A and condition B.

$$\Delta_s = a_s - b_s$$

- μ_S = Mean Δ_s over all s
- Effect: Compares μ_S to zero.
- Effect size (Cohen's d): μ_S / σ_S

$$\sigma_{pooled} = \sqrt{(\sum (a - \mu_A)^2 + \sum (b - \mu_B)^2) / (n_A + n_B - 2)}$$

a priori Power Analysis

- Commonly used values:
 - alpha: 0.05 or 0.01
 - power: 0.8 (HRI), 0.95 (clinical)
 - effect-size (for t-tests): 0.5

	Small effect size	Medium effect size	Large effect size
Cohen's d	0.2	0.5	8.0

Jacob Cohen. 1992. A power primer. Psychol. Bull. 112, 1 (1992).

Conclusion

- In this lecture, you learned to:
 - 1. Identify the factors that influence the **sample size** of participants required for an experiment.
 - 2. Apply **power analysis** to determine sample size for validating hypotheses in HRI experiments.

References

- Guy Hoffman and Xuan Zhao. 2020. A Primer for Conducting Experiments in Human–Robot Interaction. ACM Trans. Hum.-Robot Interact. 10, 1, Article 6 (October 2020), 31 pages. https://doi.org/10.1145/3412374
- Madeleine E. Bartlett, C. E. R. Edmunds, Tony Belpaeme, and Serge Thill. 2022.
 Have I Got the Power? Analysing and Reporting Statistical Power in HRI. J. Hum.-Robot Interact. 11, 2, Article 16 (June 2022), 16 pages. https://doi.org/10.1145/3495246

Next Week

- Lecture on "Statistical Tests"
 - Thursday, 4.07.2024 at 9 am in B060, Sankt Augustin

