Propagarea erorii

Două probleme importante la care teoria erorilor ne ajută să răspundem sunt:

- 1. Cu ce precizie se obțin rezultatele unor calcule efectuate cu numere afectate de erori cunoscute,
- 2. Cât de precise trebuie să fie numerele aproximative utilizate în diverse calcule, pentru ca rezultatele să fie obținute cu o precizie dată.

Fie $f: \mathbb{R}^n \to \mathbb{R}$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ și $a = (a_1, \ldots, a_n)$ o aproximație a lui x. Dorim să evaluăm eroarea absolută Δf și eroarea relativă δf când se aproximează f(x) prin f(a).

Aceste erori Δf și δf se numesc *erori propagate*, deoarece ne spun cum se propagă eroarea inițială (absolută sau relativă) pe parcursul calculării funcției f.

Să presupunem că $x = a + \Delta x$ unde $\Delta x = (\Delta x_1, \dots, \Delta x_n)$.

Pentru *eroarea absolută* se va folosi formula lui Taylor:

$$\Delta f = f(x_1, \ldots, x_n) - f(a_1, \ldots, a_n) = f(a_1 + \Delta a_1, \ldots, a_n + \Delta a_n) - f(a_1, \ldots, a_n)$$

Ținând cont că dacă erorile Δx_i sunt foarte mici, atunci produsele $\Delta a_i \Delta a_j$ sunt neglijabile comparativ cu Δa_i și se obține:

$$\Delta f \approx \sum_{i=1}^{n} \Delta a_i \frac{\partial f}{\partial x_i}(a_1, \dots, a_n)$$
 (1)

Pentru eroarea absolută putem scrie și:

$$|\Delta f| \le \sum_{i=1}^{n} |\Delta a_i| * \left| \frac{\partial f}{\partial x_i}(a_1, \dots, a_n) \right|$$
 (2)

Eroarea relativă este dată de:

$$\delta f = \frac{\Delta f}{f} \approx \sum_{i=1}^{n} \Delta a_i * \frac{\partial (\ln f(x))}{\partial x_i} (a_1, ..., a_n)$$
(3)

De unde se obține:

$$\delta f \approx \sum_{i=1}^{n} \delta a_i * \frac{\partial (\ln f(x))}{\partial x_i} (a_1, ..., a_n)$$
(4)

Exemplu 1: Să se calculeze o margine a erorii absolute și relative pentru lungimea cercului cu raza egală cu 2 ± 0.01 cm și $\pi \approx 3.14$. (lungimea cercului este $l = 2\pi r$, unde $\pi = 3.1415...$)

Rezolvare: Cunoaștem a_1 , a_2 și funcția $f(x_1,x_2)=2x_1x_2$

 $a_1 = 2$ (valoarea aproximativă a lui r)

 $a_2 = 3.14$ (valoarea aproximativă a lui π)

De asemenea cunoaștem că $x=a\pm\Delta a$. În enunț raza este notată sub forma $r=2\pm0.01$, de unde deducem că dacă notăm $a_1=2$, atunci $\Delta a_1=\pm0.01$.

Putem calcula eroarea absolută $|\Delta a_2|$:

 $|\Delta a_2| = |\pi - a_2| = |3.1415 - 3.14| = 0.0015 \approx 0.002$ și cunoaștem

 $|\Delta a_1| = 0.01$

Pentru a calcula <u>eroarea absolută</u> a lungimii cercului, trebuie să calculăm mai întâi derivatele parțiale ale funcției în raport cu fiecare variabilă.

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = (2 * x_1 * x_2)'|_{x_1} = 2 * x_2$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = (2 * x_1 * x_2)'|_{x_2} = 2 * x_1$$

Substituim pe x_1 , x_2 cu a_1 , a_2 și calculăm derivatele parțiale:

$$\frac{\partial f}{\partial x_1}(a_1, a_2) = 2 * a_2 = 2 * 3.14 = 6.28$$

$$\frac{\partial f}{\partial x_2}(a_1, a_2) = 2 * a_1 = 2 * 2 = 4$$

Calculăm eroarea absolută a lungimii cercului după formula (2)

$$|\Delta f| \le \sum_{i=1}^{n=2} |\Delta a_i| \left| \frac{\partial f}{\partial x_i} (a_1, a_2) \right|$$

$$|\Delta f| \le |\Delta a_1| \left| \frac{\partial f}{\partial x_1}(a_1, a_2) \right| + |\Delta a_2| \left| \frac{\partial f}{\partial x_2}(a_1, a_2) \right| = 0.01 * 6.28 + 0.002 * 4 = 0.0628 + 0.008 = 0.0708$$

Intervalul de incertitudine este:

Calculăm
$$f=2r\pi=12.566$$

 $f \pm \Delta f = 12.566 \pm 0.0708$

Pentru a calcula *eroarea relativă* a lungimii cercului, trebuie să calculăm mai întâi derivatele parțiale ale logaritmului natural în raport cu fiecare variabilă.

$$\frac{\partial (\ln f(x_1, x_2))}{\partial x_1} = \left(\ln(2x_1 x_2) \right)' \Big|_{x_1} = \frac{(2x_1 x_2)' \Big|_{x_1}}{2x_1 x_2} = \frac{2x_2}{2x_1 x_2} = \frac{1}{x_1}$$

$$\frac{\partial (lnf(x_1,x_2))}{\partial x_2} = \left(ln(2x_1x_2)\right)'\Big|_{x_2} = \frac{(2x_1x_2)'\Big|_{x_2}}{2x_1x_2} = \frac{2x_1}{2x_1x_2} = \frac{1}{x_2}$$

$$(\ln u)' = \frac{u'}{u} \qquad u > 0$$

Substituim pe x_1 , x_2 cu a_1 , a_2 și calculăm derivatele parțiale:

$$\frac{\partial (lnf(x))}{\partial x_1}(a_1, a_2) = \frac{1}{a_1} = \frac{1}{2} = 0.5$$

$$\frac{\partial(\ln f(x))}{\partial x_2}(a_1, a_2) = \frac{1}{a_2} = \frac{1}{3,14} = 0.31847$$

Calculăm *eroarea relativă* a lungimii cercului după formula (3)

$$\delta f \approx \sum_{i=1}^{n=2} |\Delta a_i| * \frac{\partial (\ln f(x))}{\partial x_i} (a_1, a_2)$$

$$\delta f \approx |\Delta a_1| * \frac{1}{a_1} + |\Delta a_2| * \frac{1}{a_2} = 0.01 * 0.5 + 0.002 * 0.31847 = 0.005 + 0.0006369 = 0.0056367$$

Exemplu 2: Un con are raza r≈1m, înălțimea h≈2m. Cu ce erori absolute trebuie determinate r, h, și considerăm π ≈3.14 astfel ca volumul V= π r²h/3 să poată fi calculat cu o eroare mai mică de 0.01 m³.

Aplicăm <u>principiul efectelor egale</u> care spune că fiind dat un eps>0 și valorile a_1, \ldots, a_n aproximative pentru x_1, \ldots, x_n și fiind date niște calcule cu valorile aproximative a_1, \ldots, a_n exprimate prin intermediul funcției $f:R^n \to R$ să se determine valorile pentru Δa_i și δa_i astfel încât $\Delta f < eps$ sau $\delta f < eps$.

Cunoaștem:

- a₁=1 (aproximația lui r), a₂=2 (aproximația lui h),
- $a_3=3.14$ (aproximația lui π), volumul conului este: $V=\pi r^2 h/3$

Notăm funcția de calcul al volumului cu f și obținem $f(x_1,x_2,x_3)=(x_3*x_1^2*x_2)/3$

Derivăm funcția în raport cu x_1 , apoi facem substituirea lui $(x_i)_{i=1:3}$ cu $(a_i)_{i=1:3}$

$$\frac{\partial f(x_1, x_2, x_3)}{\partial x_1} = \left(\frac{x_3 * x_1^2 * x_2}{3}\right)' \bigg|_{x_1} = \frac{2 * x_1 * x_2 * x_3}{3}$$

$$\frac{\partial f}{\partial x_1}(a_1, a_2, a_3) = \frac{2 * 1 * 2 * 3.14}{3} = 4.1867$$

Derivăm funcția în raport cu x₂, apoi facem substituirea lui (x_i)_{i=1:3} cu (a_i)_{i=1:3}

$$\frac{\partial f(x_1, x_2, x_3)}{\partial x_2} = \left(\frac{x_3 * x_1^2 * x_2}{3}\right)' \Big|_{x_2} = \frac{x_3 * x_1^2}{3}$$
$$\frac{\partial f}{\partial x_2}(a_1, a_2, a_3) = \frac{3.14}{3} = 1.0467$$

Derivăm funcția în raport cu x_3 , apoi facem substituirea lui $(x_i)_{i=1:3}$ cu $(a_i)_{i=1:3}$

$$\frac{\partial f(x_1, x_2, x_3)}{\partial x_3} = \left(\frac{x_3 * x_1^2 * x_2}{3}\right)' \Big|_{x_3} = \frac{x_2 * x_1^2}{3}$$

$$\frac{\partial f}{\partial x_3}(a_1, a_2, a_3) = \frac{2}{3} = 0.6667$$

Folosim principiul efectelor egale:

$$\Delta a_{i} \approx \frac{\Delta f}{n*\left|\frac{\partial f}{\partial x_{i}}(a_{1},...,a_{n})\right|} \leq \frac{\varepsilon}{n*\left|\frac{\partial f}{\partial x_{i}}(a_{1},...,a_{n})\right|}$$
Analog, $\delta a_{i} \approx \frac{\delta f}{n*\left|a_{i}*\frac{\partial (\ln f(x))}{\partial x_{i}}(a_{1},...,a_{n})\right|} \leq \frac{\varepsilon}{n*\left|a_{i}*\frac{\partial (\ln f(x))}{\partial x_{i}}(a_{1},...,a_{n})\right|}$

 $\epsilon = 0.01$ (valoarea erorii din enunț), n=3 (numărul de variabile ale funcției)

$$\Delta a_1 = \Delta r \le \frac{0.01}{3 * |4.1867|} = 0.0008$$

$$\Delta a_2 = \Delta h \le \frac{0.01}{3 * |1.0467|} = 0.0031$$

$$\Delta a_3 = \Delta \pi \le \frac{0.01}{3 * |0.6667|} = 0.0049$$

Calculăm *eroarea absolută* după formula (2)

$$|\Delta f| \le \sum_{i=1}^{n=3} |\Delta a_i| \left| \frac{\partial f}{\partial x_i} (a_1, a_2, a_3) \right|$$

$$\begin{split} |\Delta f| & \leq |\Delta a_1| \left| \frac{\partial f}{\partial x_1}(a_1, a_2, a_3) \right| + |\Delta a_2| \left| \frac{\partial f}{\partial x_2}(a_1, a_2, a_3) \right| + |\Delta a_3| \left| \frac{\partial f}{\partial x_3}(a_1, a_2, a_3) \right| = 0.0008 * \\ 4.1867 + 0.0031 * 1.0467 + 0.0049 * 0.6667 = 0.0098 \end{split}$$

Suplimentar față de cerințele problemei:

Dacă dorim să calculăm **eroarea relativă**, aceasta se obține aplicând formula pt. principiul efectelor egale:

$$\frac{\partial (\ln f(x_1, x_2, x_3))}{\partial x_1} = \left(\ln \left(\frac{x_3 * x_1^2 * x_2}{3}\right)\right)' \bigg|_{x_1} = \frac{\left(\left(\frac{x_3 * x_1^2 * x_2}{3}\right)\right)' \bigg|_{x_1}}{\frac{x_3 * x_1^2 * x_2}{3}} = \frac{2x_1 * x_2 * x_3}{3} * \frac{3}{x_3 * x_1^2 * x_2} = \frac{2}{x_1}$$

$$\frac{\partial (\ln f(x))}{\partial x_1} (a_1, a_2, a_3) = \frac{2}{1} = 2$$

$$\frac{\partial \left(\ln \left(\frac{x_3 * x_1^2 * x_2}{3} \right) \right)}{\partial x_2} = \left(\ln \left(\frac{x_3 * x_1^2 * x_2}{3} \right) \right)' \Big|_{x_2} = \frac{x_3 * x_1^2 * 1}{3} * \frac{3}{x_3 * x_1^2 * x_2} = \frac{1}{x_2}$$

$$\frac{\partial \left(\ln f(x) \right)}{\partial x_2} (a_1, a_2, a_3) = \frac{1}{2} = 0.5$$

$$\frac{\partial \left(\ln \left(\frac{x_3 * x_1^2 * x_2}{3} \right) \right)}{\partial x_3} = \left(\ln \left(\frac{x_3 * x_1^2 * x_2}{3} \right) \right)' \Big|_{x_3} = \frac{1 * x_1^2 * x_2}{3} * \frac{3}{x_3 * x_1^2 * x_2} = \frac{1}{x_3}$$

$$\frac{\partial \left(\ln f(x) \right)}{\partial x_3} (a_1, a_2, a_3) = \frac{1}{3.14} = 0.3185$$

 $\delta a_i \le \frac{\varepsilon}{n * \left| a_i * \frac{\partial (\ln f(x))}{\partial x} (a_1, \dots, a_n) \right|}$ Folosim principiul efectelor egale:

$$\begin{aligned} \epsilon &= 0.01 \; (\textit{valoarea erorii din enunț}), \, n = 3 \; (\textit{numărul de variabile ale funcției}) \\ \delta a_1 &\leq \frac{0.01}{3*|a_1*2|} = \frac{0.01}{3*|1*2|} = \frac{0.01}{6} = 0.0017 \end{aligned}$$

$$\delta a_2 \le \frac{0.01}{3 * |a_2 * 0.5|} = \frac{0.01}{3 * |2 * \frac{1}{2}|} = \frac{0.01}{3} = 0.0033$$

$$\delta a_3 \le \frac{0.01}{3 * |a_3 * 0.3185|} = \frac{0.01}{3 * |3.14 * 0.3185|} = \frac{0.01}{3 * 1.00009} = 0.0033$$

Conform formulei (4) eroarea relativă este:

$$\delta f \approx 1 * \delta a_1 + 0.5 * \delta a_2 + 0.3185 * \delta a_3 = 1 * 0.0017 + 0.5 * 0.0033 + 0.3185 * 0.0033 = 0.0017 + 0.0034 + 0.0033 = 0.0044$$

Conform formulei (3) eroarea relativă este:

$$\delta f \approx \frac{2}{a_1} * \Delta a_1 + \frac{1}{a_2} * \Delta a_2 + \frac{1}{a_3} * \Delta a_3 = \frac{2}{1} * 0.0008 + \frac{1}{2} * 0.0031 + \frac{1}{3.14} * 0.0049$$

$$= 0.0016 + 0.0015 + 0.0016 = 0.0047$$

Exercițiu 1:

- A. O sferă are raza r \approx 2m. Cu ce erori absolute trebuie determinate r, și $\pi \approx$ 3.14 astfel ca volumul V= $4\pi r^3/3$ să poată fi calculat cu o eroare mai mică de 0.01 m³.
- B. Un cerc are raza r \approx 5cm. Cu ce erori absolute trebuie determinate r și $\pi \approx$ 3.14 astfel ca lungimea cercului L_{cerc} =2 π r să poată fi calculată cu o eroare mai mică de 0.02 cm².
- C. Să se calculeze o margine a erorii absolute $|\Delta f|$ și relative δf pentru aria cercului, cu raza egală 3 ± 0.01 cm și $\pi\approx3.14$. ($A_{cerc}=\pi r^2$)
- D. Să se calculeze o margine a erorii absolute $|\Delta f|$ și relative δf pentru volumul unui con, cu raza r=2±0.003, h=2±0.001 și $\pi \approx 3.14$. Volumul conului este: V= $\pi r^2 h/3$.

Propagarea erorilor de calcul

Operațiile aritmetice cu valori aproximative implică necesitatea cunoașterii efectului erorilor operanzilor asupra erorii rezultatului și asupra operațiilor de adunare, scădere, înmulțire și împărțire.

Operația de adunare și scădere

Presupunem că avem două măsuri x1 și x2 date sub forma:

 $x1=a1 \pm \Delta a1$ și

 $x2=a2 \pm \Delta a2$

unde a1 și a2 sunt valorile 'bune' ale celor două măsuri.

Trebuie determinată eroarea $\triangle aq$ unde q=x1+x2 (sau q=x1-x2).

Ceea ce cunoaștem este aq=a1+a2.

 $\Delta aq = \Delta a1 + \Delta a2$ reprezintă eroarea în q = x1 + x2. Similar se aplică și pentru scădere q = x1 - x2.

Exemplu 3:

 $x1 = 3.52 \text{ cm} \pm 0.05 \text{ cm}$

 $x2 = 2.35 \text{ cm} \pm 0.04 \text{ cm}, q = x1 + x2$

Se cere să se calculeze eroarea absolută a lui q, Δaq

(Notații q = f(x1,x2), aq = f(a1,a2), $|\Delta aq| = |\Delta f|$)

Cunoaștem

 $a_1=3.52$, $a_2=2.35$, $f(x_1,x_2)=x_1+x_2$

 $|\Delta a_1|=0.05$, $|\Delta a_2|=0.04$

aq=a1+a2=3.52+2.35=5.87

Derivăm în raport cu x₁:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = (x_1 + x_2)'|_{x_1} = 1 + 0 = \mathbf{1}$$

Derivăm în raport cu x₂:

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = (x_1 + x_2)'|_{x_2} = 0 + 1 = \mathbf{1}$$

$$|\Delta aq| \le |\mathbf{1}| * |\Delta a_1| + |\mathbf{1}| * |\Delta a_2| = 0.05 + 0.04 = 0.09$$

 $q = aq \pm \Delta aq = 5.87 \pm 0.09cm$

Codul Matlab pentru exemplul 3 este:

```
clear, clc
syms x y a d a
for ind=1:2
    a(ind)=input(['dati a', num2str(ind), '= '], 's');
    a(ind) = sym(a(ind));
    d a(ind)=input(['dati |delta a',num2str(ind),'|= '],'s');
    d a(ind) = sym(d a(ind));
end
f=input('dati expresia functiei f(x,y)= ','s');
f=str2sym(f);
                                                              dati a1= 3.52
fprintf('Derivatele partiale: \n')
                                                              dati |delta a1|= 0.05
dx(1) = diff(f,x); dx(2) = diff(f,y);
                                                              dati a2= 2.35
                                                              dati |delta_a2|= 0.04
fprintf("dx=%s, dy=%s\n", dx(1), dx(2));
                                                              dati expresia functiei f(x,y) = x+y
                                                              Derivatele partiale:
fprintf('Substituim pe x cu a1 si pe y cu a2: \n')
                                                              dx=1, dv=1
for ind=1:2
                                                              Substituim pe x cu al si pe y cu a2:
    dxa(ind) = subs(dx(ind), [x y], a(1:2));
                                                              dxa=1, dya=1
end
                                                              Se calculeaza eroarea absoluta a fct:
                                                              dq=0.0900
                                                              Intervalul de incertitudine este:
fprintf("dxa=%s, dya=%s\n", dxa(1), dxa(2));
                                                              [5.87 - 0.09, 5.87 + 0.09]
aq=double(subs(f,[x y],a(1:2)));
                                                            fx >> 
fprintf('Se calculeaza eroarea absoluta a fct: \n')
dq = 0;
for ind=1:2
    dq = dq + abs(double(d a(ind)))*abs(double(dxa(ind)));
fprintf('dq=%.4f\nIntervalul de incertitudine este: ',dq);
fprintf('\n[%.2f - %.2f, %.2f + %.2f]\n',double(aq),dq,double(aq),dq);
```

Exercițiu 2:

```
x = 1.33 \text{ cm} \pm 0.05 \text{ cm}

y = 0.35 \text{ cm} \pm 0.04 \text{ cm}

z = 0.75 \text{ cm} \pm 0.01 \text{ cm}
```

Se cere să se calculeze eroarea absolută a lui q = 2x - y + z

Exercițiu 3:

Se cere construirea unui fișier script în Matlab pentru rezolvarea problemei de la exercițiul 2 unde se va citi de la tastatură valorile pentru a_i , $delta_a_i$ (i=1,2,3) și expresia funcției f(x,y,z). Pentru calculul derivatelor parțiale se va folosi funcția diff.

Operația de înmulțire și împărțire

Presupunem că avem două măsuri x1 și x2 date sub forma: $x1=a1\pm\Delta a1$ și $x2=a2\pm\Delta a2$ unde a1 și a2sunt valorile 'bune' ale celor două măsuri.

Trebuie determinată eroarea $\triangle aq$ unde q=x1*x2 (sau q=x1/x2). Ceea ce cunoaștem este aq=a1*a2.

Exemplu 4:

 $x1 = 49.52cm \pm 0.08cm$

x2 = 189.53cm ± 0.05 cm, q=x1*x2

Se cere să se calculeze eroarea absolută a lui q

Cunoaștem

 $a_1=49.52$, $a_2=189.53$, $f(x_1,x_2)=x_1*x_2$

 $|\Delta a_1|=0.08$, $|\Delta a_2|=0.05$

aq=49.52*189.53=9385.53

(Notații q = f(x1,x2), aq = f(a1,a2), $|\Delta aq| = |\Delta f/|$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = (x_1 * x_2)'|_{x_1} = x_2$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = (x_1 * x_2)'|_{x_2} = x_1$$

Substituim

$$\frac{\partial f(x)(a_1, a_2)}{\partial x_1} = a_2 = 189.53$$

Substituim
$$\frac{\partial f(x)(a_1, a_2)}{\partial x_2} = a_1 = 49.52$$

$$|\Delta aq| \le |189.53| * |\Delta a_1| + |49.52| * |\Delta a_2| = 189.53 * 0.08 + 49.52 * 0.05 = 15.162 + 2.476 = 17.638$$

 $q = 9385.53 \pm 17.638cm$

Exercițiu 4:

A) $x1 = 1.2 \text{ cm} \pm 0.02 \text{ cm}$

 $x2 = 1.3 \text{ cm} \pm 0.03 \text{ cm}$

 $x3 = 1.5 \text{ cm} \pm 0.04 \text{ cm}$

Se cere să se calculeze eroarea absolută a lui q = x1*x2*x3

B)
$$x1 = 2.33 \text{ cm} \pm 0.25 \text{ cm}$$

 $x2 = 13.35 \text{ cm} \pm 0.04 \text{ cm}$

Se cere să se calculeze eroarea absolută a lui q = 2*x1/x2

Calcule cu puteri

Presupunem că avem o măsură x și o putere a lui x: $x=a\pm\Delta a$ unde a este valoarea 'bună' a măsurii. Trebuie determinată eroarea $\triangle aq$ unde $q=x^n$.

Ceea ce cunoaștem este $aq=(a)^n$

Exemplu 5: Fie $q = x^3$ unde x = 5.75cm ± 0.08 cm.

Se cere să se calculeze Δaq pentru cantitatea q.

Cunoaștem

a=5.75,
$$f(x)=x^3$$
, $|\Delta a|=0.08$
 $aq=5.75^3=190.109$
 $n=3$

(Notații q = f(x), aq = f(a), $|\Delta aq| = |\Delta f|$)

Derivăm în raport cu
$$x_1$$
,

$$\frac{\partial f(x)}{\partial x} = (x^3)'|_{x} = 3 * x^2 ,$$
Substituim
$$\frac{\partial f(x)}{\partial x}(a) = 3 * a^2 = 3 * 33.06 = 99.19$$

$$\Delta aq \le |99.19| * |\Delta a| = 99.19 * 0.08 = 7.93$$

 $q = 190.11 \pm 7.93$

Exercițiu 5:

Se cere completarea programului Matlab de la pagina 6 pentru calculul erorii relative. Pentru calculul derivatei parțiale utilizând logaritmul natural al funcției f în raport cu prima variabilă, vom folosi apelul diff(log(f),x).

Exercițiu 6: Verificați rezultatele obținute în urma rezolvării exercițiilor pe foi cu rezultatele afișate de programul Matlab construit la exercițiul 5.

A)
$$x = 2.33$$
 cm ± 0.25 cm
 $y = 1.50$ cm ± 0.05 cm
Se cere să se calculeze eroarea absolută a lui $q = x^2 + y^3 - xy$

B) Fie x = 5.32±0.02 cm
y = 0.103±0.001 s
Se cere să se calculeze eroarea relativă,
$$\delta g$$
, a lui g = g(x,y) = $\frac{2*x^2}{v^2}$

C) Fie x=4.22±0.2 cm
y=0.13±0.01 s
Să se calculeze eroarea relativă,
$$\delta g$$
, a lui g = $\frac{y}{5x}$

În calculul numeric trebuie studiată și propagarea erorilor deoarece acumularea erorilor poate conduce la rezultate complet eronate.

Exemplu 6: Se cere ilustrarea efectului propagării erorilor în *calculul integralei* $I_n = \int_0^1 \frac{t^n}{t+5} dt$, $n \in \mathbb{N}^*$, unde se lucrează cu două zecimale exacte și cu aproximarea prin lipsă.

Pentru calculul integralei se aplică relația de recurență $I_n + 5 * I_{n-1} = \frac{1}{n}$, $\forall n \in \mathbb{N}^*$, $I_0 = ln(6) - ln(5) = 0.18$

Soluție: Pentru formatul lung (**format long**), Matlab afișează rezultatul calculului log(6)-log(5)= 0.182321556793955 cu 15 zecimale.

Aplicând relația de recurență și cunoscând pe I₀ scris cu p zecimale, obținem următoarele rezultate:

Dacă lucrăm cu **p={2,6,15} zecimale** putem observa erorile acumulate în calcule datorită rotunjirii numerelor la un număr de zecimale dat

Rezultatul este eronat pentru calculele subliniate cu galben!

Se observă că, pentru n=21 (când p=15), se obține o valoare negativă a integralei, ceea ce nu este posibil deoarece funcția integrată este pozitivă în intervalul [0,1]. Pentru cele 3 situații din tabel se observă că valorile obținute sunt eronate, începând cu o anumită valoare a lui n.

Explicație: s-au acumulat relativ rapid erori de rotunjire provocate de diferențe între numere apropiate.

Relația de recurență a fost obținută astfel:

$$I_n = \int_0^1 \frac{t^n}{t+5} dt \iff I_n = \int_0^1 \frac{t^{n-1}(t+5-5)}{t+5} dt = \int_0^1 \frac{t^{n-1}(t+5)}{t+5} dt - \int_0^1 \frac{5*t^{n-1}}{t+5} dt = \int_0^1 \frac{t^n}{t+5} dt$$

$$= \int_0^1 t^{n-1} dt - 5 \int_0^1 \frac{t^{n-1}}{t+5} dt$$

După cum se poate observa că dacă $I_n = \int_0^1 \frac{t^n}{t+5} dt$, atunci $I_{n-1} = \int_0^1 \frac{t^{n-1}}{t+5} dt$

$$I_n = \int_0^1 t^{n-1} dt - 5 \int_0^1 \frac{t^{n-1}}{t+5} dt \Leftrightarrow I_n = \int_0^1 t^{n-1} dt - 5I_{n-1}$$

Calculând integrala pe domeniul [0,1] și știind că formulele de calcul sunt:

$$\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \left| \frac{b}{a} + c \right|$$
 \Rightarrow $\int_{a}^{b} f(x) dx = F(b) - F(a)$

obținem:
$$\int_0^1 t^{n-1} dt = \frac{t^n}{n} \Big|_0^1 = \left(\frac{1^n}{n}\right) - \left(\frac{0^n}{n}\right) = \frac{1}{n}, I_n = \frac{1}{n} - 5 * I_{n-1}$$

Dacă înlocuim pe n = 0 în integrala $I_n = \int_0^1 \frac{t^n}{t+5} dt$ obținem că $I_0 = \int_0^1 \frac{1}{t+5} dt$, iar în final prin aplicarea formulei de calcul a integralei $\int_0^1 \frac{1}{t+5} dx = \ln x$ obținem $I_0 = \ln 6 - \ln 5$.

<u>Majorantul erorii absolute</u> pentru integrala este: $|\Delta I_n| \le \left|\frac{1}{n}\right| + |-5| * |I_{n-1}|$

Putem scrie pe $I_{n-1} = -\frac{1}{5}I_n + \frac{1}{n}$ unde aproximarea este mai bună, dacă s-ar porni invers cu $I_{\infty}=0$ în loc de $I_0=ln6-ln5$.

Integrala este aplicată la produs P=K*x, funcția este notată cu f(x)=P(x),

Pentru n=1, $\frac{\partial P(x)}{\partial x} = (K * x)'|_{x} = K$; x se aproximează cu a, eroarea absolută $|\Delta P| = |K| * |\Delta a|$,

Pentru |K|>1, eroarea se amplifică, |K|<1 eroarea se micșorează.

Exercițiu 7: Se cere implementarea unui fișier funcție în Matlab pentru problema de la exemplul 6 unde se cunoaște n, $I_0 = \ln(k+1) - \ln(k)$ și relația de recurență $I_n = \frac{1}{n} - k * I_{n-1}$. Parametrii funcției (argumentele de intrare) vor fi n și k. Testați funcția pentru k=5, n=10 și n=25 respectiv k=0.25, n=20 și n=50 și reprezentați graficul punctelor I_n în patru subgrafice alăturate. Ce observați la reprezentarea graficului atunci când n > 20 și k=5?

Exemplu de apel:

Exercițiu 8: Se cere construirea unui fișier Matlab pentru rezolvarea problemelor la care se aplică principiul efectelor egale (exemplul 2). Programul va afișa cu ce erori absolute trebuie determinate variabilele $x_1,...x_n$ astfel ca funcția $f(x_1,x_2,...,x_n)$ să poată fi calculată cu o eroare mai mică decât *epsilon*.