Public Key Infrastructure (PKI)

Introduction

Ritger Teunissen (ritger@hack42.nl)

November 10, 2018

Hack42, Arnhem

Who am I?

- Worked in Information Security for 12 years
- Member of Hack42 (https://www.hack42.nl/)

Table of Contents

- 1. Background
- 2. Asymmetric Cryptography
- 3. Public Key Infrastructure
- 4. Certificate Life Cycle

Background

What is PKI?

PKI is a (supporting) technical solution used to secure digital communication

Real-life Examples

Figure 1: Duck Duck Go

Real-life Examples

Figure 2: E-mail

Communication

Figure 3: Communication

When can digital communication be considered secure?

When can digital communication be considered secure?

AuthenticityDo we know who the sender is?

When can digital communication be considered secure?

Authenticity

Do we know who the sender is?

Non-repudiation

Did the message really come from the sender and hasn't the message been changed?

When can digital communication be considered secure?

Authenticity

Do we know who the sender is?

Non-repudiation

Did the message really come from the sender and hasn't the message been changed?

Confidentiality

Can the message only be read by the sender and receiver?

Asymmetric Cryptography

Cryptography

When you use cryptography to solve a problem, you have TWO problems

Asymmetric Cryptography

01. Generate key pair

02. Generate key pair

Figure 4: Key Generation

Asymmetric Cryptography

Figure 4: Key Generation

Key PairA key pair has both a public and private key

Figure 5: Digital Signature

Figure 5: Digital Signature

Figure 5: Digital Signature

ExampleDigitally signing a document or e-mail message

01. Encrypt message (public)

Figure 6: Encryption

01. Encrypt message (public) O2. Send message Bob

Figure 6: Encryption

Figure 6: Encryption

Example Encrypting a document or e-mail message

How to prove authenticity?Prove possession of the private key for a public key

Figure 7: Authenticity

How to prove authenticity?Prove possession of the private key for a public key

Figure 7: Authenticity

How to prove authenticity?Prove possession of the private key for a public key

Figure 7: Authenticity

How to prove authenticity?

Prove possession of the private key for a public key

Figure 7: Authenticity

Why is authenticity separate from non-repudiation?

Why is authenticity separate from non-repudiation?

Answer Prevent unintended signature creation

What do you need to know?

What do you need to know?

Key Pair

Both a public and private key. All users need to have all public keys

What do you need to know?

Key Pair

Both a public and private key. All users need to have all public keys

Digital Signature Sign using the private key, verify using the public key

What do you need to know?

Key Pair

Both a public and private key. All users need to have all public keys

Digital Signature

Sign using the private key, verify using the public key

Encryption

Encryption using the public key, decryption using the private key

Public Key Infrastructure

Key Distribution

Figure 8: Key Distribution

Delegated Trust

Figure 9: Delegated Trust

What is a Certificate Authority?

What is a Certificate Authority?

· Certifies the link between an identity and a public key

What is a Certificate Authority?

- · Certifies the link between an identity and a public key
- Certifies a key for specific use cases

What is a Certificate Authority?

- · Certifies the link between an identity and a public key
- Certifies a key for specific use cases
- · Can revoke trust in a public key

X.509 Certificates

Figure 10: X.509 Certificate

X.509 Certificates

Figure 10: X.509 Certificate

- Certificate = identity + public key
- · Limits key usage
- Limited validity (best-before date)
- · Certificate Revocation List
- Digitally signed by issuer (CA)

· Generates its own key pair (public and private key)

- · Generates its own key pair (public and private key)
- · Issues its own X.509 CA certificate

- Generates its own key pair (public and private key)
- · Issues its own X.509 CA certificate
- · Issues X.509 certificates for end entities

- Generates its own key pair (public and private key)
- Issues its own X.509 CA certificate
- Issues X.509 certificates for end entities
- · Makes X.509 certificate non-reputable through a digital signature

Setup

Figure 11: PKI Architecture

Setup

Figure 11: PKI Architecture

Figure 11: PKI Architecture

CA Trust

How is a (CA) certificate trusted?

CA Trust

How is a (CA) certificate trusted?

End-entity & Intermediate CATrusted when the digital signature created by the CA is valid and the certificate has not been revoked

CA Trust

How is a (CA) certificate trusted?

End-entity & Intermediate CA

Trusted when the digital signature created by the CA is valid and the certificate has not been revoked

Root CA

Trusted through the use of an Access Control List

Largest Use Case

Prove authenticity of devices

Largest Use Case

Prove authenticity of devices

Web Server

Is issued an end entity certificate by a CA, which allows clients to trust the web server by its address (FQDN)

Public & Private Trust

 Private CAs issue X.509 certificates for a closed (usually corporate) environment

Public & Private Trust

- Private CAs issue X.509 certificates for a closed (usually corporate) environment
- Publicly trusted CAs issue X.509 certificates which are automatically trusted

CA/B Forum

Figure 12: CA/B Forum

Problem?

What could possibly go wrong?

DigiNotar

What do you need to know?

What do you need to know?

Key DistributionKey distribution is a difficult problem to solve at scale

What do you need to know?

Key Distribution

Key distribution is a difficult problem to solve at scale

Delegated Trust

Key distribution is much easier when trust is centralised

What do you need to know?

Key Distribution

Key distribution is a difficult problem to solve at scale

Delegated Trust

Key distribution is much easier when trust is centralised

Certificate Authority

In PKI, the Certificate Authority manages trust. Everything start (or stops) with the CA

• A key pair (public and private key) is used to secure digital communication.

- A key pair (public and private key) is used to secure digital communication.
- Trust is delegated to a Certificate Authority (CA)

- A key pair (public and private key) is used to secure digital communication.
- Trust is delegated to a Certificate Authority (CA)
- Certificate Authorities certify the combination of identity + key (including the CA public key itself)

- A key pair (public and private key) is used to secure digital communication.
- Trust is delegated to a Certificate Authority (CA)
- Certificate Authorities certify the combination of identity + key (including the CA public key itself)
- Global trust is managed by a small group of (very powerful) companies (CA/B Forum)

Certificate Life Cycle

Certificate Life Cycle

Figure 13: Certificate Life Cycle

Certificate Life Cycle

Figure 13: Certificate Life Cycle

RegistrationCreate a new certificate request

Attestation Attestation (validation) of the certificate request

IssuanceIssuance of an X.509 certificate

Management
Management of issued X.509 certificates

RevocationRevocation of issued X.509 certificates

Challenges

 \cdot Often forgotten or neglected

Challenges

- · Often forgotten or neglected
- "Bob" manages certificates using Excel

Challenges

- · Often forgotten or neglected
- "Bob" manages certificates using Excel
- · Manual work, does not scale and is expensive

Solution?

Automation!

Solution?

- Automation!
- · Certificate Management System (CMS)

Solution?

- Automation!
- · Certificate Management System (CMS)
- Provisioning Agents

