- 1.1 પ્રસ્તાવના
- 1.2 ભૌતિકવિજ્ઞાન કાર્યક્ષેત્ર અને ઉત્તેજના
- 1.3 ભૌતિક વિજ્ઞાન, ટેક્નોલૉજી અને સમાજ
- 1.4 કુદરતમાં મૂળભૂત બળો
- 1.5 ભૌતિકવિજ્ઞાનના નિયમોની પ્રકૃતિ
 - સારાંશ
 - સ્વાધ્યાય

1.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, ભૌતિકવિજ્ઞાનના આ પ્રથમ તાસમાં આપ સર્વેનું સ્વાગત છે. ધોરણ 10 સુધીના વિજ્ઞાન વિષય અંતર્ગત તમે પ્રકાશ, વિદ્યુત, ચુંબકત્વ, ગતિ, બળ, ગુરુત્વાકર્ષણ, ઉખ્મા, ઊર્જા, તરંગ, ધ્વનિ, બ્રહ્માંડ વગેરે વિશે પ્રાથમિક પ્યાલ મેળવ્યો. આ વિષયવસ્તુઓનો સમાવેશ ભૌતિક વિજ્ઞાનમાં થાય છે.

હવે તમને પ્રશ્ન એ ઉદ્દ્ભવે કે ભૌતિક વિજ્ઞાન એટલે શું ? વિદ્યાર્થીમિત્રો ભૌતિકવિજ્ઞાન એ પ્રાકૃતિક વિજ્ઞાનોની શ્રેણીનો પાયાનો વિષય છે. ભૌતિક વિજ્ઞાન એ કુદરતને સમજવાનું વિજ્ઞાન છે. સંસ્કૃત શબ્દ 'ભૌતિકી' પરથી ભૌતિક જગતને લગતા વિજ્ઞાન માટે 'ભૌતિક વિજ્ઞાન' શબ્દનો ઉપયોગ થયો. કુદરતના મૂળભૂત નિયમોના અભ્યાસ તથા વિવિધ પ્રાકૃતિક ઘટનાઓમાં તેની અભિવ્યક્તિ રજૂ કરતું વિજ્ઞાન એટલે ભૌતિક વિજ્ઞાન. આપણી આસપાસના વિશ્વને જાણવાની જિજ્ઞાસા આપણામાં સદાયથી રહેલી છે. આ જ જિજ્ઞાસા અને કુતૂહલથી માનવીએ ભૌતિક પર્યાવરણને સાવધાનીપૂર્વક અવલોકિત કર્યું, પ્રાકૃતિક ઘટનાઓમાં અર્થપૂર્ણ વ્યવસ્થા અને સંબંધ શોધ્યા તથા હજી પણ તેમાં ખેડાણ ચાલુ જ રાખ્યું. આ સર્વે પ્રયાસોનાં તારણો, તથ્યો, સિદ્ધાંતો વગેરેથી સભર છે ભૌતિક વિજ્ઞાન. તમને અહીં એ પણ જણાવીએ કે અંગ્રેજીમાં ભૌતિક વિજ્ઞાન માટે વપરાતો શબ્દ 'Physics' (ફિઝિક્સ) એ 'પ્રકૃતિ' એવો અર્થ ધરાવતા ગ્રીક શબ્દ 'Physics' પરથી આવ્યો છે.

ભૌતિક વિજ્ઞાનમાં ગણિતનો બહોળો ઉપયોગ થાય છે. ગાણિતીક સિદ્ધાંતો, સૂત્રો કે ગાણિતીક રચનાઓ એ ભૌતિક વિજ્ઞાનનું અભિન્ન અંગ છે. એક પ્રચલિત ઉક્તિ પ્રમાણે "ભૌતિક વિજ્ઞાન એ વિજ્ઞાનનો રાજા છે, જ્યારે ગણિત એ રાણી છે" (Physics is a king of science while mathematics is a queen). કોઈ ભૌતિક ઘટના અંગે મેળવેલ ગાણિતિય નિરૂપણો એ માત્ર તે ભૌતિક ઘટના તર્કબદ્ધ સમજાવે છે તેટલું જ નથી, પરંતુ આવી ઘટનાઓ પરથી બીજી ઘણી બાબતોનું ભવિષ્યકથન પણ કરી શકાય છે. માનવીની ઉત્પત્તિથી અત્યાર સુધીની આપણી ભૌતિક સુવિધાઓ પણ ભૌતિક વિજ્ઞાનને આભારી છે.

2 ભૌતિકવિજ્ઞાન

1.2 ભૌતિક વિજ્ઞાન-કાર્યક્ષેત્ર અને ઉત્તેજના (Physics - Scope and Excitement)

વિદ્યાર્થીમિત્રો, વર્ગખંડમાં શિક્ષક બોલે છે અને તમને સંભળાય છે. શું તમે આ ઘટનાનું વિશ્લેષણ કોઈ વાર કર્યું છે ખરૂં ?

છે. સું તે જા વહે હું કર્યા રહ્યું કર્યા રહ્યું કર્યા રહ્યું કર્યા રહ્યું કર્યા રહ્યા કર્યા રહ્યા કર્યા રહ્યા કર્યા રહ્યા કર્યા રહ્યા કર્યા રહ્યા કર્યા કર્યા રહ્યા કર્યા છે ? ક્રિયનન થયેલ ધ્વનિ આપના કાન દ્વારા કેવી રીતે ઝિલાય છે ? પ્રસરે પામેલ ધ્વનિ આપના કાન દ્વારા કેવી રીતે ઝિલાય છે ? તે જ રીતે ઋતુચક્રો, ગ્રહેશો, ભરતી-ઓટ, દિવસ-રાત્રિનું નિયમિત પુનરાવર્તન, રાત્રે આકાશમાં ચમકતા ખગોળીય પદાર્થી વગેરે વિશે પશ કોઈ વાર વિચાર કર્યો છે ?

ભૌતિક વિજ્ઞાનમાં (i) આપણે કુદરતમાં બનતી કે રોજિંદા જીવનમાં બનતી આવી ઘટનાઓ માત્ર નિહાળતા જ નથી પણ સુનિયોજિત, શ્રેણીબદ્ધ અવલોકનોમાંથી મળતી કોઈ ચોક્કસ વ્યવસ્થા શોધવાની છે.

- (ii) આવી ઘટનાઓમાં સંકળાયેલી રાશિઓને સુસ્પષ્ટ અને અર્થસભર રીતે વ્યાખ્યાયિત કરવાની છે.
- (iii) આવા અભ્યાસોમાંથી કુદરતના નિયમો કે સિદ્ધાંતોને તારવવાના છે અને
- (iv) આમ તારવેલા નિયમો કે સિદ્ધાંતોને વ્યાપક ફ્લક પર ચકાસવાના છે.

બ્રહ્માંડના બે મૂળભૂત ઘટકો એવા દ્રવ્ય (Matter) અને વિકિરણ (Radiation)નો અભ્યાસ, દ્રવ્ય અને વિકિરણના મૂળભૂત કણોની ઉત્પત્તિ, તેમની વચ્ચેની રસપ્રદ આંતરક્રિયાઓ, તેમની સાથે સંકળાયેલ કુદરતના નિયમો વગેરેનો અભ્યાસનો સમાવેશ ભૌતિકવિજ્ઞાનમાં થાય છે.

આ સૂક્ષ્માતિસૂક્ષ્મ કશોથી આગળ વધીએ, તો પરમાશુના ન્યુક્લિયસની વાતો આવે. અહીં ન્યુટ્રૉન, પ્રોટૉન, મેસોન ક્વાક, ગ્લુઓન વગેરે સાથે કામ લેવું પડે છે.તેમના કારણે રચાતા આશરે 10^{-14} m ત્રિજ્યાના ન્યુક્લિયસની ઊર્જાઓ, ન્યુક્લિયસમાં થતી સંક્રાંતિઓ, તેમને કારણે મળતાં વિકિરણો વગેરે ન્યુક્લિયર ભૌતિક વિજ્ઞાનને લગતી બાબતો છે.

ન્યુક્લિયસની આસપાસ કંઈક અંશે 10⁻¹⁰mના ક્રમની ત્રિજ્યા ધરાવતી નિયત કક્ષામાં, નિયત સંખ્યા સાથે ઘૂમતા ઇલેકટ્રૉનનો, ઇલેકટ્રૉનની સંરચનાઓ, તેમની સંક્રાંતિઓ, તેમની આંતરક્રિયાઓ, તેમના વડે પરમાશુઓને મળતા વિશિષ્ટ ગુજ઼ધર્મો વગેરે બાબતોનો પણ ભૌતિક વિજ્ઞાનમાં સમાવેશ થાય છે.

પરમાણુઓ (Atoms) પણ પરસ્પર આંતરક્રિયાઓ કરે છે અને અણુઓની (Molecues) રચના કરે છે. આ પરમાણુઓ અણુમાં શાંત ન રહેતાં, તેઓ દોલનો કે ભ્રમણો કરતાં હોય છે. અણુઓ અને પરમાણુઓમાંથી ઉત્સર્જાતાં વિકિરણોના અભ્યાસ થકી આપણને તેમના બંધારણની સમજણ મળે છે. આવા ભૌતિક વિજ્ઞાન થકી રસાયણવિજ્ઞાનની પણ ઘણી બધી બાબતો સમજવા મળે છે.

અશુઓ અને પરમાશુઓ 'જથ્થાબંધ' રીતે ભેગા મળીને ભૌતિક પરિસ્થિતિ અનુસાર વાયુ (Gas), પ્રવાહી (Liquid) કે ધન (Solid) પદાર્થ બનાવે છે. વળી, તાપમાન અને બીજી પરિસ્થિતિઓ અનુસાર દ્રવ્યનું ચોથું સ્વરૂપ પ્લાઝ્મા (Plasma) પણ મળે છે.ખૂબ જ ઉચ્ચ તાપમાને મળતી દ્રવ્યની પ્લાઝ્મા અવસ્થાએ માનવજાત માટે ઊર્જાના અખૂટ સ્રોતની અશા જન્માવી છે.

ભૌતિક વિજ્ઞાનમાં પદાર્થોના યાંત્રિક, ઉષ્મીય, વિદ્યુતીય, ચુંબકીય અને પ્રકાશીય ગુણધર્મોનો અભ્યાસ કરવામાં આવે છે. વિદ્યાર્થીમિત્રો, તમે હવે સમજી શકશો કે આવા વિવિધ ગુણધર્મો જાણવા અને સમજવા યંત્રશાસ્ત્ર (Mechanics), ધર્મોડાઇનેમિક્સ (Thermodynamics - ઉષ્માગતિકી), વિદ્યુત-ચુંબકીય (Electromagnetic), પ્રકાશશાસ્ત્ર (Optics), ઇલેક્ટ્રૉડાઇનામિક્સ (Electrodynamics - વિદ્યુતગતિકિ) જેવી ભૌતિક વિજ્ઞાનની શાખાઓ વિકસી.

યંત્રશાસ્ત્ર ન્યૂટનના ગતિના નિયમો નિયમ પર આધારિત છે. જે કશો, દઢ તથા વિરૂપણશીલ પદાર્થ વગેરેની ગતિ (Motion), બળ (Force), કાર્ય (Work) વગેરે સાથે સંબંધિત છે. ઇલેક્ટ્રૉડાઇનેમિક્સ એ વિદ્યુતભાર અને ચુંબકીય પદાર્થ સાથે સંકળાયેલ વિદ્યુત અને ચુંબકિય ઘટનાઓ સાથે સંબંધિત છે. કુલંબ, ઑર્સ્ટેડ, ઍમ્પિયર, ફેરેડે, મેક્સવેલ જેવા ભૌતિકશાસ્ત્રીઓનું યોગદાન અહીં કેમ વિસરી જવાય!!!

ઓપ્ટિકલ ફાઇબર, ટેલિસ્કોપ અને માઇક્રોસ્કોપની કાર્ય પદ્ધતિ; પાતળા સ્તરથી પ્રદર્શિત થતાં રંગો, મેઘધનુષ્ય, મરીચિકા, અરીસા અને લેન્સથી રચાતાં પ્રતિબિંબો વગેરે જેવી ઘટનાઓની સમજૂતી પ્રકાશશાસ્ત્રમાં આવે છે.

થર્મોડાઇનામિક્સમાં બાહ્ય કાર્ય તથા ઉષ્મા પ્રસારણ વડે પ્રણાલીની આંતરિક ઊર્જા, તાપમાન, એન્ટ્રોપી વગેરેમાં થતાં ફેરફારનો સમાવેશ થાય છે. ઉષ્માયંત્રો અને રેફ્રિજરેટરની કાર્યદક્ષતા, ભૌતિક અને રાસાયણિક પ્રક્રિયાઓની દિશા વગેરે નો અભ્યાસ થર્મોડાઇનામિક્સમાં કરવામાં આવે છે.

અનંત પરિમાણવાળા અવકાશની વાત પણ ભૌતિક વિજ્ઞાનમાં આવે. આવા અવકાશમાં કવૉન્ટમ મિકેનિક્સના ગાણિતીય કારકો અને તેમના સદિશો પરનાં ઑપરેશન અને તેમાંથી ફ્રલિત થતી વાસ્તવિકતાઓ તો ખૂબ જ રસપ્રદ છે.

ભૌતિક વિજ્ઞાન આટલેથી પૂરું થઈ જતું નથી. સૂર્ય અને તેના ગ્રહમંડળને લગતા અભ્યાસનો સમાવેશ પણ ભૌતિક વિજ્ઞાનમાં કરવામાં આવે છે. તારાવિશ્વો (Galaxies) અને તેના બંધારણો, તેમની વચ્ચેનાં અબજો પ્રકાશવર્ષીનાં અંતરો, તેમના

અબજો કિલોગ્રામ દ્રવ્યનાં વિતરણો, તારાવિશ્વો વચ્ચેના અવકાશો, જુદા-જુદા તારાઓની જીવનલીલાઓનો અભ્યાસ પણ ભૌતિક વિજ્ઞાનની એક શાખા ખગોળશાસ્ત્ર (astrophysics- ઍસ્ટ્રોફિઝિક્સ) અંતર્ગત કરવામાં આવે છે.

વિદ્યાર્થીમિત્રો, આમ આપણે જોયું કે ભૌતિક વિજ્ઞાનનો વિસ્તાર લગભગ 'શૂન્ય'થી 'અનંત' સુધીનો છે. ભૌતિક વિજ્ઞાન તો શૂન્ય અવકાશને પણ એક ચોક્કસ 'અવસ્થા' ગણાવે છે.

આમ, ભૌતિક વિજ્ઞાનનું કાર્યક્ષેત્ર લંબાઈના અતિસૂક્ષ્મ $10^{-14}~\mathrm{m}$ (ન્યુક્લિયસની ત્રિજયા)થી લઈ $10^{26}~\mathrm{m}$

(તારાવિશ્વની લંબાઈ)ના માપક્રમ સુધી વિસ્તરેલું છે. આમ, લંબાઈના માપક્રમનો ગુણોત્તર 10^{40} ના ક્રમનો થાય.

લંબાઈના માપક્રમને પ્રકાશના વેગથી ભાગતાં સમયના માપક્રમનો વિસ્તાર 10^{-22} s થી 10^{18} s જેટલો મળે છે.

દ્રવ્યમાનનો વિસ્તાર $10^{-30}~{
m kg}$ (ઇલેક્ટ્રૉનનું દ્રવ્યમાન)થી $10^{55}~{
m kg}$ (અવલોક્તિ વિશ્વનું દ્રવ્યમાન) જેટલો છે.

ટેબલ 1.1 થી ટેબલ 1.3 મૂળભૂત ભૌતિક રાશિઓ લંબાઈ, સમય અને દ્રવ્યમાનના વિસ્તારનો ખ્યાલ દર્શાવે છે. ભૌતિક વિજ્ઞાનનું કાર્યક્ષેત્ર મૂળરૂપે સ્થૂળ (Macroscopic)

ટેબલ 1.1 : વિવિધ પદાર્થની લંબાઈનો માપક્રમ (માત્ર જાણકારી માટે)

પદાર્થનું કદ કે અંતર	લંબાઈનો માપક્રમ (m)
પ્રોટોનની ત્રિજયા	10 ⁻¹⁵
પરમાશુના ન્યુક્લિયસની ત્રિજ્યા	10 ⁻¹⁴
હાઇડ્રોજન પરમાણુની ત્રિજ્યા	10 ⁻¹⁰
કાગળની જાડાઈ	10 ⁻⁴
માનવીની ઊંચાઈ	10°
માઉન્ટ એવરેસ્ટની ઊંચાઈ (સમુદ્રની સરેરાશ સપાટીથી)	10 ⁴
પૃથ્વીની ત્રિજ્યા	107
સૂર્યનું પૃથ્વીથી અંતર	10 ¹¹
આકાશગંગાનો વિસ્તાર	10^{21}
દેખીતા વિશ્વની પરિસીમા સુધીનું અંતર	10 ²⁴ 10 ⁻²⁵

ટેબલ 1.2 : વિવિધ ઘટનાઓના સમય-અંતરાલનો માપક્રમ (માત્ર જાણકારી માટે)

ઘટના	સમય અંતરાલનો માપક્રમ(s)
અધિક અસ્થાયી ક્ણનો જીવનકાળ	10 ⁻²⁴
પ્રકાશ દ્વારા ન્યૂક્લિયસનું અંતર કાપવા લાગતો સમય	10 ⁻²²
અશુઓમાં અને ઘન પદાર્થોમાં પરમાશુઓના દોલનનો આવર્તકાળ	10-15
ધ્વનિતરંગનો આવર્તકાળ	10^{-3}
આંખના પલકારાનો સમય	10 ⁻¹
માનવહૃદયના ક્રમિક ધબકારા વચ્ચેનો સમય	10°
પૃથ્વીનો ઘુર્શનકાળ	10 ⁵
પૃથ્વીનો પરિક્રમણકાળ	10 ⁷
માનવીનો સરેરાશ જીવનકાળ	10 ⁹
બ્રહ્માંડની ઉંમર	10 ¹⁷

ટેબલ 1.3 : વિવિધ પદાર્થોના દ્રવ્યમાનનો માપક્રમ (માત્ર જાણકારી માટે)

પદાર્થ	દ્રવ્યમાનનો માપક્રમ (kg)
ઇલેક્ટ્રૉન	10 ⁻³⁰
પ્રોટ ૉ ન	10 ⁻²⁷
રજક્શ	10 ⁻⁹
મચ્છર	10 ⁻⁵
દ્રાક્ષ	10 ⁻³
માનવી	10 ²
પૃથ્વી	10 ²⁵
સૂર્ય	10 ³⁰
આકાશગંગા–મંદાકિની	10 ⁴¹
દેખીતું વિશ્વ	10 ⁵⁵

4 ભૌતિકવિજ્ઞાન

અને સૂક્ષ્મ (Microscopic) એમ બે રસપ્રદ પ્રભાવક્ષેત્રો (Domains) સુધી વિસ્તરેલ છે. આ ઉપરાંત તે સ્થિત (Static) અને ચલિત (Dynamic) પ્રશાલી સાથે પણ સંલગ્ન છે. આમ, ભૌતિક વિજ્ઞાન એ સમય, દ્રવ્ય અને ઊર્જા સાથે પણ સંકળાયેલ છે.

વિદ્યાર્થીમિત્રો, મુક્તપતન કરતા દઢ પદાર્થનું જમીન પર પડવું અને હલકા વાયુ ભરેલા ફુગ્ગાનું જમીનથી ઉપર ઊડવું, ટાંકણી કે સોયનું પાણીમાં ડૂબી જવું, જ્યારે મોટાં-મોટાં વહાણોનું પાણી પર તરવું, વગેરે સામાન્ય દેખાતી ઘટનાઓ કે પછી લાર્જ હેડ્રોન કોલાઇડર (LHC), ઇન્ટરનેશનલ થર્મોન્યુક્લિયર એક્સપરિમેન્ટલ રિએક્ટર (ઇટર-ITER) તથા ચંદ્રયાન જેવા અત્યાધુનિક પ્રોજેક્ટ્સ આપણને જરૂરથી ભૌતિક વિજ્ઞાનના અભ્યાસ તરફ આકર્ષિત કરે.

આંતરરાષ્ટ્રીય ક્ષેત્રે ખ્યાતી પ્રાપ્ત કરનાર ભારતના સી. વી. રામન, જે. સી. બોઝ, એમ. એન. સહા, હોમી ભાભા, એસ. એન. બોઝ, વિક્રમ સારાભાઈ, એસ. ચંદ્રશેખર વગેરે ભૌતિકશાસ્ત્રીઓના નામોથી આપ પરિચિત જ હશો. આપણા દેશમાં ભૌતિક વિજ્ઞાન ક્ષેત્રે સંશોધનમાં કાર્યરત કેટલીક સંસ્થાઓની યાદી ટેબલ 1.4માં આપની માહિતી માટે આપેલ છે.

ટેબલ 1.4 : ભૌતિક વિજ્ઞાનના સંશોધનમાં કાર્યરત ભારતની કેટલીક સંસ્થાઓની યાદી (માત્ર જાણકારી માટે)

સંસ્થાનું નામ	સ્થળ
ભાભા ઍટોમિક રિસર્ચ સેન્ટર (BARC)	મુંબઈ
ફિઝિકલ રિસર્ચ લૅબોરેટરી (PRL)	અમદાવાદ
ઇન્સ્ટિટ્યૂટ ફોર પ્લાઝ્મા રિસર્ચ (IPR)	ગાંધીનગર
ઇન્સ્ટિટ્યૂટ ઑફ ફિઝિક્સ (IOP)	ભૂવનેશ્વર
નેશનલ ફિઝિકલ લેંબોરેટરી (NPL)	દિલ્લી
ઈન્ટર યુનિવર્સિટી કન્સોર્ટિયમ ફૉર ઍસ્ટ્રોનોમી ઍન્ડ ઍસ્ટ્રોફિઝિક્સ (IUCAA)	પૂના
ઇન્ડિયન ઇન્સ્ટિટ્યૂટ ઑફ સાયન્સ (IISc)	બૅંગ્લો૨
રામન રિસર્ચ ઇન્સ્ટિટ્યૂટ (RRI)	બૅંગ્લો૨
ટાટા ઇન્સ્ટિટ્યૂટ ઑફ ફન્ડામેન્ટલ રિસર્ચ (TIFR)	મુંબઈ
સેન્ટર ફોર એડવાન્સ ટેક્નોલૉજી (CAT)	ઇન્દોર
ન્યુક્લિયર સાયન્સ સેન્ટર (NSC)	દિલ્લી
ઇન્દિરા ગાંધી સેન્ટર ફ્રોર ઍટોમિક રિસર્ચ (IGCAR)	કલ્પક્રમ
સહા ઇન્સ્ટિટ્યૂટ ઑફ ન્યુક્લિયર ફિઝિક્સ (SINP)	કોલકાતા
રિજિયોનલ રિસર્ચ લેબોરેટરી (RRL)	ભોપાલ
ઇન્ટર યુનિવર્સિટી એસિલરેટર સેન્ટર (IUAC)	ન્યુ દિલ્લી
વેરિયેબલ ઍનર્જી સાયક્લોટ્રૉન સેન્ટર (VECC)	કોલકાતા
વિક્રમ સારાભાઈ સ્પેસ સેન્ટર (VSSC)	બૅંગ્લોર
ઇન્ડિયન ઇન્સ્ટિટ્યૂટ ઑફ ઍસ્ટ્રોફિઝિક્સ (ΠA)	મુંબઈ
ઇન્ડિયન ઇન્સ્ટિટ્યૂટ ઑફ જીઓમેંગ્નેટિઝમ (IIG)	મુંબઈ
ઇન્ડિયન સ્પેશ રિસર્ચ ઑર્ગેનાઇઝેશન (ISRO)	ભારતમાં વિવિધ જગ્યાએ
સ્પેસ એપ્લિકેશન સેન્ટર (SAC)	ભારતમાં વિવિધ જગ્યાએ
ઇન્ડિયન ઇન્સ્ટિટ્યૂટ ઑફ ટેક્નોલૉજી (IIT)	ભારતમાં વિવિધ જગ્યાએ
નેશનલ ઇન્સ્ટિટ્યૂટ ઑફ ટેક્નોલૉજી (NIT)	ભારતમાં વિવિધ જગ્યાએ
વિશ્વવિદ્યાલયો	ભારતમાં વિવિધ જગ્યાએ

ભૌતિક વિજ્ઞાન, ટેક્નોલોજી અને સમાજ (Physics, Technology and Society)

આજ વિશ્વના કોઈ પણ ખૂશે આપશે થોડાક જ કલાકોમાં પહોંચી શકે છે. થોડીક જ સેકન્ડ્સમાં વિશ્વના કોઈ પણ ખૂણામાં રહેલ અન્ય વ્યક્તિ સાથે વાતચીત કરી શકે છે. દુનિયાના અન્ય ભાગોમાં બનતી ઘટનાઓ કે રમતોનું જીવંત પ્રસારણ ઘરે બેઠાં જોઈ શકાય છે. આપણા સૂર્યમંડળ તથા તારાવિશ્વોની તસ્વીરો મેળવી શકીએ છીએ. આ બધું શક્ય બન્યું છે ભૌતિક વિજ્ઞાન થકી.

બળદગાડા, સાઇકલ, મોટરસાઈકલ, કાર, હવાઈજહાજ, વહાણ જેવાં વાહનવ્યવહારનાં સાધનોનો થયેલો વિકાસ; સંદેશાવ્યવહારમાં વપરાતાં તાર, ટેલિફોન, મોબાઇલ, સેટેલાઇટ ફોન; મનોરંજનમાં ઉપયોગી એવા રેડિયો, ટેપરેકોર્ડર, ટેલિવિઝન; રસોડામાં વપરાતાં કેરોસીન સ્ટવ, ગૅસસ્ટવ, માઇક્રોવેવઓવન વગેરે ભૌતિક વિજ્ઞાનના નિયમો કે સિદ્ધાંતનું ટેક્નોલૉજીમાં યોગ્ય ઉપયોગ થકી શક્ય બન્યું છે.

ભૌતિક વિજ્ઞાને આપણને વિકિરણની ઓળખ આપી, વિદ્યુતભારિત કણોને પ્રવેગિત કરવાનું શીખવ્યું. અલ્ટ્રાસોનિક અને ઓપ્ટિકલ ફાઇબર આધારિત સાધનો આપ્યાં. X-Ray, સોનોગ્રાફી, ઇલેક્ટ્રૉકાર્ડિયોગ્રાફ (ECG), ઇલેક્ટ્રૉન સ્પીન, રેઝોનન્સ (ESR), ન્યુક્લિયર મેગ્નેટીક રેઝોનન્સ (NMR), એન્ડોસ્કોપી વગેરે બહુઉપયોગી મેડિકલ ટેકનોલૉજી પણ ભૌતિક વિજ્ઞાનને આભારી છે.

સૂક્ષ્મદર્શકયંત્ર, ઇલેક્ટ્રૉન માઇક્રોસ્કૉપ (EM), ઍટોમિક ફોર્સ માઇક્રોસ્કૉપ (AFM) જેવાં સાધનોએ મટીરિયલ ટેક્નોલૉજી, નેનો ટેક્નોલૉજી અને બાયોટેક્નોલૉજીના વિકાસમાં અગત્યનો ભાગ ભજવ્યો છે.

સ્પેસ ટેક્નોલૉજીથી પણ તમે અજાણ નહિ હો. રૉકેટ, મિસાઇલ, અવકાશયાન, કૃત્રિમ ઉપગ્રહ, રિમોટ સેન્સિંગ વગેરે શબ્દો તો હવે રોજિંદા થઈ ગયા છે. લેસર, રડાર અને માઇક્રોવેવ વિશે પણ તમે સાંભળ્યું જ હશે.

ભૌતિક વિજ્ઞાને આપણને અતિનીચાં તાપમાનો મેળવવાની પદ્ધતિઓ શીખવી, જેના પરિણામે ક્રાયોજેનિકસનો વિકાસ થયો. ઇલેક્ટ્રૉનિક્સ અને કમ્યુનિકેશન, કમ્પ્યૂટર ટેક્નોલૉજી, ઇન્ફોરર્મેશન ટેક્નોલૉજી વગેરે વિષયોની જનેતા પણ ભૌતિક વિજ્ઞાન છે.

ભૌતિકશાસ્ત્રના આટલા બહોળા વિકાસ પછી પણ આપણે કહી શકતા નથી કે કુદરતને આપણે પૂરી સમજી શક્યા છીએ. અનેક પ્રશ્નો હજી ભૌતિકશાસ્ત્રીઓ સામે ઊભા છે. જેમ કે, શું બ્રહ્માંડના અસ્તિત્વમાં કોઈ એકાકી પાયો છે ખરો ? શું આ સઘળું દ્રવ્ય અને વિકિરણ કોઈ એક જ 'વસ્તુ'માંથી ઉદ્દ્ભવેલ છે ? વિશ્વમાં પ્રવર્તતાં વિવિધ પ્રકારનાં બળો શું કોઈ એક જ પ્રકારના બળનાં વિવિધ સ્વરૂપો છે ? બ્રહ્માંડનું ભવિષ્ય શું છે ?

આવા પાયાના અનેક પ્રશ્નો સાથે ભૌતિકશાસ્ત્રીઓ આજે પણ ભૌતિક વિજ્ઞાનના બે પ્રમુખ વિચારો : એકીકીકરણ (unification) અને ન્યુનીકરણ (reduction) ઉપર મથામણ કરી રહ્યાં છે.

1.4 કુંદરતમાં મૂળભૂત બળો (Fundamental Forces in Nature)

વ્હાલા વિદ્યાર્થીઓ, જો આપણે એક દડાને સપાટી પર ગબડાવવો હોય, તો દડાને ગિત આપવા બળ આપવું પડે છે. દડો સપાટી પર અમુક અંતર કાપ્યા પછી અટકી જાય છે. કારણ કે દડાની સપાટી પર ઘર્ષણબળ લાગે છે. સપાટી પરથી દડાને ઉપાડવા પણ આપણે બળ વાપરવું પડે છે. અરે કોઈ આપણને ખેંચે કે ધક્કો મારે ત્યારે પણ આપણે બળનો અનુભવ કરીએ છીએ. આમ, રોજ-બ-રોજના વ્યવહારમાં આપણે બળનો વિવિધ રીતે અનુભવ કરીએ છીએ. બળના આવા પ્રાથમિક ખ્યાલો પરથી બળના વૈજ્ઞાનિક ખ્યાલો સમજીશું.

બળ અંગેનો સાચો ખ્યાલ સૌપ્રથમ આઇઝેક ન્યૂટને ગતિના પ્રખ્યાત નિયમો દ્વારા આપ્યો. સાથેસાથે તેણે ગુરુત્વાકર્ષણ બળનો સાર્વત્રિક નિયમ પણ આપ્યો.

સ્થૂળ પ્રભાવક્ષેત્રોમાં ગુરુત્વાકર્ષણ બળ ઉપરાંત, પદાર્થોની સંપર્કસપાટીઓ વચ્ચે લાગતું ઘર્ષણબળ, ખેંચાયેલી કે દબાયેલી સ્પ્રિંગમાં ઉદ્દભવતું પુનઃસ્થાપક બળ, દોરીમાં ઉદ્દભવતું તણાવ બળ, પ્રવાહીની મુક્ત સપાટીને સમાંતર લાગતું પૃષ્ઠતાણ, તરલ માધ્યમમાં ઉદ્દભવતું શ્યાનતાબળ વગેરેનો આપણને અનુભવ તો છે જ. આ ઉપરાંત વિદ્યુતભારિત અને ચુંબકીય વસ્તુઓને કારણે પણ બળ ઉદ્દભવે છે. વિદ્યુત અને ચુંબકીય બળો, ન્યુક્લિયર બળો, આંતર પરમાણ્વીય અને આંતરઆણ્વીય બળો વગેરે સૂક્ષ્મ પ્રભાવક્ષેત્રોમાંનાં બળોનાં ઉદાહરણો છે.

હાલમાં કુદરતમાં ચાર પ્રકારનાં મૂળભૂત બળો હોવાનું મનાય છે, જેનો ગુણાત્મક પરિચય હવે મેળવીશું.

1.4.1 ગુરુત્વાકર્ષી બળ (Gravitational Force)

ગુરુત્વાકર્ષી બળ એ સાર્વત્રિક છે અને બ્રહ્માંડમાં રહેલ બધા જ પદાર્થો આ બળ વડે એકબીજા સાથે આંતરક્રિયા કરે છે. વિશ્વમાં પ્રત્યેક કણ કોઈ પણ કણ પર આકર્ષણબળ લગાડે છે. ન્યૂટનના ગુરુત્વાકર્ષણના નિયમ અનુસાર વિશ્વમાં કોઈપણ બે કણો વચ્ચે લાગતું ગુરુત્વાકર્ષણ બળ તે બે કણોના દ્રવ્યમાનના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે. ગુરુત્વાકર્ષી બળ એ પદાર્થોના દળના કારણે ઉદ્ભવતું આકર્ષણબળ છે તથા તે ગુરુઅંતરીય છે. આ બળ લાગવા માટે બે પદાર્થો વચ્ચે કોઈ માધ્યમની જરૂર હોતી

બૌતિકવિશાન

નથી. ગુરુત્વાકર્ષણ બળ બે પદાર્થો વચ્ચે લાગતું માત્ર આકર્ષણ બળ છે. અન્ય મૂળભૂત બળોની સરખામણીમાં ગુરુત્વાકર્ષી બળ એ સૌથી નબળું બળ છે, છતાં બ્રહ્માંડમાં પ્રવર્તતાં બીજાં બળો સમજવા માટે તેનું મૂલ્ય ઓછું આંકી શકાય નહિ. ગુરુત્વાકર્ષણ બળની મદદથી જ આપણે પૃથ્વી ઉપર ઊભા રહી શકીએ છીએ, હવામાં ઉપર ઉછાળેલ દડો પાછો નીચે આવે છે. દરિયામાં આવતી ભરતી-ઓટમાં પૃથ્વી અને ચંદ્ર વચ્ચે લાગતાં ગુરુત્વાકર્ષી બળનો પ્રભાવ માનવામાં આવે છે. પૃથ્વીની આસપાસ ફરતા ઉપગ્રહોની ગતિ, સૂર્યમંડળમાં ગ્રહોની ગતિ, બ્રહ્માંડની ઉત્પત્તિ, તારા અને તારાવિશ્વોની ઉત્પત્તિ તથા તેનો વિકાસ વગેરે બાબતોમાં ગુરુત્વાકર્ષી બળ જ સૌથી અગત્યનું પરિબળ છે.

1.4.2 વિદ્યુતચુંબકીય બળ (Electromagnetic Force)

વીજભારિત કશો વચ્ચે લાગતાં બળને વિદ્યુતચુંબકીય બળ તરીકે ઓળખવામાં આવે છે. સાદા કિસ્સામાં, જ્યારે વિદ્યુતભારો સ્થિર સ્થિતિમાં રહેલા હોય ત્યારે તેમની વચ્ચેના બળને સ્થિત વિદ્યુતબળ કહે છે. આ વિદ્યુતબળનું મૂલ્ય કુલંબના વ્યસ્ત વર્ગના નિયમને અનુસરે છે. આમ, આવા બે વિદ્યુતભારો પર લાગતું વિદ્યુતબળ બે વિદ્યુતભારોના ગુશાકારના સમપ્રમાણમાં અને વિદ્યુતભારિત કશો વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં ચલે છે. સજાતીય વિદ્યુતભારો વચ્ચે આ બળ અપાકર્ષી, જયારે વિજાતીય વીજભારો વચ્ચે આ બળ આકર્ષી હોય છે.

જ્યારે વિદ્યુતભારો ગતિમાં હોય, ત્યારે તે ચુંબકીય અસરો પણ ઉપજાવે છે. આ ચુંબકીય ક્ષેત્ર ગતિમાં રહેલા વિદ્યુતભારો પર બળ લગાડે છે. ચુંબકીય ક્ષેત્રની તીવ્રતામાં વિદ્યુભારની ગતિને કારણે ફેરફાર થાય છે. વિદ્યુત અને ચુંબકીય ક્ષેત્રની આ સંયુક્ત અસર અલગ ન પાડી શકાય તેવી હોય છે. આથી જ, સંયુક્ત રીતે ઉદ્દભવતી બળની આ અસરો વિદ્યુતચુંબકીય બળ તરીકે ઓળખાય છે. બે પદાર્થો વચ્ચે લાગતું વિદ્યુતચુંબકીય બળ તેમની વચ્ચેના માધ્યમ પર પણ આધાર રાખે છે. ગુરુત્વાકર્ષી બળની જેમજ વિદ્યુતચુંબકીય બળ પણ ગુરુઅંતરીય છે અને તે લાગવા માટે કોઈ માધ્યમની જરૂર પડતી નથી. આ બળ ગુરુત્વાકર્ષી બળની સરખામણીમાં વધારે પ્રબળ હોય છે. કોઈ નિશ્ચિત અંતરે રહેલા બે પ્રોટોન વચ્ચે લાગતા ગુરુત્વાકર્ષી બળ કરતાં તેમની વચ્ચે લાગતું વિદ્યુતીય બળ 1036 ગણું વધારે હોય છે.

આકાશમાં ચમકતી વીજળી, વિદ્યુત ઘંટડી વગેરેમાં વિદ્યુત ચુંબકીય બળની અસર જોવા મળે છે.

1.4.3 સ્ટ્રૉંગ ન્યુક્લિયર બળ (Strong Nuclear Force)

આપશે જાશીએ છીએ કે ન્યુક્લિયસમાં પ્રોટોન્સ અને ન્યુટ્રૉન રહેલા હોય છે. પ્રોટોન ધન વિદ્યુતભારિત કશો છે. જયારે ન્યુટ્રૉન વિદ્યુભાર રહિતના કશો છે. જો કુલંબના નિયમ પ્રમાશે વિચારીએ તો સજાતિય વિદ્યુતભાર ધરાવતા પ્રોટોન-પ્રોટોન વચ્ચે અપાકર્ષીય બળ લાગે અને જો આમ થાય તો ન્યુક્લિયસ અસ્થિર બને. જે સૂચવે છે કે ન્યુક્લિયસમાં પ્રોટોન અને ન્યુટ્રૉનને જકડી રાખતું જવાબદાર બળ પ્રબળ આકર્ષીય બળ છે. પ્રોટોન-પ્રોટોન, ન્યુટ્રૉન-ન્યુટ્રૉન અને પ્રોટોન-ન્યુટ્રોન વચ્ચે ન્યુક્લિયસમાં લાગતા વીજભારથી સ્વતંત્ર એવા આ બળને સ્ટ્રૉંગ ન્યક્લિયર બળ કહે છે. આ બળ ફક્ત ન્યુક્લિયસમાં જ લાગતું હોવાથી તે લઘુઅંતરીય (10⁻¹⁵m) છે. બધાં જ મૂળભૂત બળો કરતાં સ્ટ્રૉંગ ન્યુક્લિયર બળ સૌથી વધારે પ્રબળ હોય છે.

ન્યુટ્રૉન અને પ્રોટોન 'ક્વાર્કસ' તરીકે ઓળખાતા મૂળ ક્યોના બનેલા માનવામાં આવે છે. તેથી હાલનાં સંશોધનો પ્રમાયે આ બળ ક્વાર્ક-ક્વાર્ક બળને આભારી છે. તેમ માનવામાં આવે છે.

વિદ્યાર્થીમિત્રો, અહીં એ નોંધવું ઘટે કે ઇલેક્ટ્રૉન ન્યુક્લિયસની બહાર હોવાથી તેના પર સ્ટ્રૉંગ ન્યુક્લિયર બળ લાગતું નથી.

1.4.4. વીક ન્યુક્લિયર બળ (Weak Nuclear Force)

વીક ન્યુક્લિયર બળ એ માત્ર નિશ્ચિત ન્યુક્લિયર પ્રક્રિયાઓ જેવી કે ન્યુક્લિયસમાંથી β-ક્શોના ઉત્સર્જનમાં જોવા મળે છે. β-ક્શના ઉત્સર્જન દરમ્યાન ન્યુક્લિયસ ઇલેક્ટ્રોન અને વિદ્યુતભારવિહીન એવા ન્યુટ્રિનો ક્શોનું ઉત્સર્જન કરે છે. વીક ન્યુક્લિયર બળ એ ન્યુટ્રૉનોની બીજા કોઈ ક્શોની (માત્ર ફર્મિયોન) સાથેની આંતરિક્રિયા દરિમયાન ઉદ્દ્ભવે છે. વીક ન્યુક્લિયર બળ એ ગુરુત્વાકર્ષી બળ કરતાં પ્રબળ પરંતું સ્ટ્રૉગ ન્યુક્લિયર બળ અને વિદ્યુતચુંબકીય બળ કરતાં નબળું હોય છે. વીક ન્યુક્લિયર બળની અવધી 10-15 m થી 10-15 m ના વિસ્તારના ક્રમની હોય છે.

1.4.5 બળોના એકીકીકરણ તરફ (Towards Unification of Forces)

ટેબલ 1.5માં કુદરતમાં મૂળભૂત બળો, તેની અવિધ, તેનું સાપેક્ષ મૂલ્ય દર્શાવેલ છે. ભૌતિકશાસ્ત્રીઓ વર્ષોથી એ પ્રશ્ન ઉપર વિચાર કરે છે કે, શું આ બધાં મૂળભૂત બળો કોઈ એક જ બળનાં વિવિધ સ્વરૂપ ન હોઈ શકે ? બળના કોઈ એક જ 'ખ્યાલ'થી વિવિધ પ્રકારનાં બળોને સમજાવી ના શકાય ? આવા વિચારોને પરિપૂર્ણ કરવાના પ્રયાસોએ બળોના એકીકીકરણ તરફનાં દ્વાર ખોલ્યાં.

ટેબલ	1.5	: કુદરતમાં	મળભત	બળો
		- A	2	

નામ	સાપેક્ષ મૂલ્ય	અવધિ	કોની-કોની વચ્ચે ઉદ્ભવે છે ?
ગુરુત્વાકર્ષી બળ	10 ⁻³⁸	અનંત (ન્યુક્લિયસમાંના બે ન્યુક્લિયોન વચ્ચે)	બહ્નાંડમાં રહેલા દરેક પદાર્થો વચ્ચે
વીક ન્યુક્લિયર બળ	10 ⁻¹³	અતિ સૂક્ષ્મ (માત્ર ન્યુક્લિયસના અંદરના વિસ્તારમાં 10 ⁻¹⁵ m)	પ્રાથમિક ક્ણો (ન્યુટ્રિનો અને બીજા ફર્મિયોન) વચ્ચે
વિદ્યુતચુંબકીય બળ	10 ⁻²	અનંત	વિદ્યુતભારિત ક્શો વચ્ચે
સ્ટ્રૉંગ ન્યુક્લિયર બળ	1	અતિ સૂક્ષ્મ (માત્ર ન્યુક્લિયસના અંદરના વિસ્તારમાં 10 ⁻¹⁵ m)	ન્યુક્લિઓન્સ (પ્રોટોન-પ્રોટોન, ન્યુટ્રૉન-ન્યુટ્રૉન અને પ્રોટોન- ન્યુટ્રૉન) વચ્ચે

ન્યૂટને ભૂલોક (Terrestrial) અને ખગોળીય (celestial) પ્રભાવક્ષેત્રોને ગુરુત્વાકર્ષણના નિયમ નીચે એકત્રિત કર્યા.

ઑર્સ્ટેડ અને ફેરેડેએ બતાવ્યું કે, વિદ્યુત અને ચુંબકીય ઘટનાઓ એકબીજાથી અલગ પાડી શકાય નહીં.

મેક્સવેલની 'પ્રકાશ એ વિદ્યુતચુંબકીય તરંગ છે' શોધથી તેને વિદ્યુત ચુંબકીય અને પ્રકાશશાસ્ત્રને એકત્રિત કર્યા.

આઇન્સ્ટાઇન ગુરુત્વાકર્ષણ બળ અને વિદ્યુતચુંબકીય બળને એકીકીકરણ કરવા પ્રયત્નો કર્યા જેમાં તેમને સફળતા ન મળી. ગ્લેશોવ, સલામ અને વેઇનબર્ગે બતાવ્યું કે, વીક ન્યુક્લિયર બળ અને વિદ્યુતચુંબકીય બળ એ બન્ને એક જ મૂળભૂત બળ 'ઇલેક્ટ્રો-વિક ઇન્ટરેક્સન'નાં જ વિવિધ પાસાંઓ છે.

મૂળભૂત બળોના એકીકીકરણ તરફના પ્રયત્નો હાલ પણ ચાલુ છે. ટેબલ 1.6 માં બળોના એકીકીકરણ તરફના પ્રયાસોની ઝાંખી આપેલ છે.

1.5 ભૌતિકશાસ્ત્રના નિયમોની પ્રકૃતિ (Nature of Physical Laws)

વિદ્યાર્થીમિત્રો, વિભિન્ન બળો દ્વારા નિયંત્રિત ઘટનામાંથી કેટલીક ભૌતિક રાશિઓ સમય સાથે બદલાતી હોય છે. જ્યારે કેટલીક વિશિષ્ટ ભૌતિક રાશિઓ સમયની સાથે અચળ રહે છે.

ટેબલ 1.6 : કુદરતનાં વિભિન્ન બળોના એકીકીકરણ તરફના પ્રયાસો (માત્ર જાણકારી માટે)

ભૌતિકશાસ્ત્રી	વર્ષ	એકીકીકરણ તરફની ઉપલબ્ધિ
આઇઝેક ન્યૂટન	1687	ભૂલોક અને ખગોળીય યંત્રશાસ્ત્રનું એકીકીકરણ ગતિના ગુરુત્વાકર્ષણના નિયમો સમાન રીતે બન્ને પ્રભાવક્ષેત્રોમાં લાગુ પડે છે તેમ બતાવ્યું.
હંસ ક્રિશ્ચિયન ઑર્સ્ટેડ માઇકલ ફેરેડે	1820 1830	વિદ્યુત અને ચુંબકીય ઘટનાઓ કોઈ એક જ પ્રભાવક્ષેત્ર - વિદ્યુતચુંબકીય ક્ષેત્રની દેન છે.
જેમ્સ ક્લાર્ક મેક્સવેલ	1873	વિદ્યુત, ચુંબકીય અને પ્રકાશનું એકીકીકરણ. પ્રકાશ એ વિદ્યુત- ચુંબકીય તરંગ છે, તેમ બતાવ્યું.
શૈલ્ડન ગ્લેશોવ, અબ્દુસ સલામ, સ્ટીવન વીનબર્ગ	1979	વિદ્યુતચુંબકીય બળ અને વીક ન્યુક્લિયર બળ એ ઇલેક્ટ્રૉ- વીક બળનાં જ બે પાસાં છે તેમ બતાવ્યું.
કાર્લો રૂબિયા, સાઇમન વાંડર મિર	1984	ઇલેક્ટ્રૉ-વીક બળના સિદ્ધાંતનાં અનુમાનોની પ્રાયોગિક ચકાસણી કરી.

8 ભૌતિકવિજ્ઞાન

સમય સાથે અચળ રહેતી ભૌતિક રાશિઓને તેનું સંરક્ષણ થયું તેમ કહેવાય. આમ, કોઈ પણ રાશિનું સંરક્ષણ થવું, એટલે તે રાશિનું સમય સાથે ન બદલાવવું.

ઊર્જા, વિદ્યુતભાર, રેખીય વેગમાન તથા કોજ્ઞીય વેગમાનના સંરક્ષજ્ઞના નિયમોને ભૌતિક વિજ્ઞાનના મૂળભૂત નિયમો ગજ્ઞવામાં આવે છે. સંરક્ષજ્ઞના આ નિયમો ભૌતિકશાસ્ત્રમાં ખૂબ જ અગત્યનો અને પાયાનો ભાગ ભજવે છે. આ નિયમો નીચે મુજબ છે :

ઊર્જાસંરક્ષણનો નિયમ (Law of Conservation of Energy): વિશ્વમાં રહેલી કુલ ઊર્જાનો જથ્થો અચળ રહે છે. ઊર્જાનો નાશ શક્ય નથી કે નવી ઊર્જાનું સર્જન કરવું પણ શક્ય નથી. ઊર્જાના એક સ્વરૂપનું બીજા સ્વરૂપમાં માત્ર રૂપાંતરણ થાય છે.

વિદ્યુતભારના સંરક્ષણનો નિયમ (Law of Conservation of Charge): વિદ્યુતની દૃષ્ટિએ અલગ કરેલા તંત્રમાં થતી કોઈ પણ પ્રક્રિયામાં વિદ્યુતભારોનો બૈજિક સરવાળો અચળ રહે છે.

રેખીય વેગમાનના સંરક્ષણનો નિયમ (Law of Conservation of Linear Momentum): જો તંત્ર પરનું પરિણામી બાહ્ય બળ શૂન્ય હોય, તો તંત્રનું કુલ રેખીય વેગમાન અચળ રહે છે.

કોણીય વેગમાન સંરક્ષણનો નિયમ (Law of Conservation of Angular Momentum): જો તંત્ર પરનું પરિણામી બાહ્ય ટૉર્ક શૂન્ય હોય, તો તંત્રનું કુલ કોણીય વેગમાન અચળ રહે છે.

ભવિષ્યમાં તમે આ નિયમોનો વિગતવાર અભ્યાસ કરશો. વિદ્યાર્થીમિત્રો, આ ચાર નિયમો સિવાય પણ સ્પિન, બેરયોન સંખ્યા,સ્ટ્રેંજનેસ, હાઇપર ચાર્જ વગેરેના સંરક્ષણના નિયમો ન્યુક્લિર અને પાર્ટિકલ ભૌતિકશાસ્ત્રમાં જોવા મળે છે, જેનો અભ્યાસ અહીં કરવાના નથી.

હવે પ્રશ્ન એ ઉપસ્થિત થાય કે આવા સંરક્ષણના નિયમોના અસ્તિત્વ પાછળ પ્રકૃતિનું કયું ગહન સ્વરૂપ જવાબદાર છે ?

ભૌતિક વિજ્ઞાનમાં અવકાશ (space) અને સમય (time) બન્નેનો અભ્યાસ કરવામાં આવે છે. પ્રચલિત યંત્રશાસ્ત્રમાં અવકાશ અને સમયને એકબીજાથી સ્વતંત્ર ગણવામાં આવે છે. જ્યારે આઇન્સ્ટાઇનના સાપેક્ષવાદ અનુસાર અવકાશ અને સમય એકબીજા સાથે સંકળાયેલ છે. અવકાશ એ સમાંગ (homogeneus) અને સમદિગ્ધર્મી (isotropic) છે, આવા પરિશામસ્વરૂપે આપશને અનુક્રમે રેખીય વેગમાનનો સંરક્ષશનો નિયમ અને કોણીય વેગમાનનો સંરક્ષણનો નિયમ મળે છે. આ જ રીતે સમય પણ સમાંગ અને સમદિગ્ધર્મી છે. સમય એ સમાંગ હોવાને કારણે આપણને ઊર્જાસંરક્ષણનો નિયમ મળે છે અને સમયના સમદિગ્ધર્મીપણાને લીધે શું પરિણામ સંભવી શકે એ હજુ પણ ભૌતિક વિજ્ઞાનીઓ જાણી શક્યા નથી. 20મી સદીના મહાન સૈદ્ધાંતિક ભૌતિકશાસ્ત્રી ડીરાક એવું માનતા હતા કે કદાચ વિદ્યુતભારના સંરક્ષણનો નિયમ એ સમયના સમદિગ્ધર્મી હોવાનું પરિશામ હોઈ શકે. બીજી રીતે કહીએ, તો રેખીય વેગમાન, કોણીય વેગમાન અને ઊર્જાસંરક્ષણના નિયમોના અસ્તિત્વ પાછળનાં મુળભૂત કારણો આપશે જાણી ચૂક્યાં છીએ, પરંતુ આજ દિવસ સુધી વિદ્યુતભારના સંરક્ષણનો નિયમ એ પ્રકૃતિના કયા ગૃઢ રહસ્યને રજૂ કરે છે, તે જાણવા માટે ભૌતિક વિજ્ઞાનીઓ હજ પણ મથામણ કરી રહ્યા છે.

ભૌતિક વિજ્ઞાનમાં આવતા અનેક રસપ્રદ વણઊકલ્યા કોયડાઓના ઉકેલ શોધવાનું કામ આપના માટે બાકી છે!

સારાંશ

- 1. સંસ્કૃત શબ્દ 'ભૌતિક' પરથી ભૌતિકજગતને લગતા વિજ્ઞાન માટે 'ભૌતિક વિજ્ઞાન' શબ્દનો ઉપયોગ થયો.
- 2. અંગ્રેજીમાં ભૌતિક વિજ્ઞાન માટે વપરાતો શબ્દ Physics (ફિઝીક્સ) એ પ્રકૃતિ એવો અર્થ ધરાવતા ગ્રીક શબ્દ પરથી આવ્યો.
- 3. દ્રવ્યઊર્જાને લગતા પ્રકૃતિના મૂળભૂત નિયમોનો અભ્યાસ તથા વિવિધ પ્રાકૃતિક ઘટનાઓમાં તેની અભિવ્યક્તિ રજૂ કરતું વિજ્ઞાન એટલે ભૌતિક વિજ્ઞાન.
- 4. ભૌતિક વિજ્ઞાનનું કાર્યક્ષેત્ર મૂળરૂપે સ્થૂળ અને સૂક્ષ્મ એમ બે રસપ્રદ પ્રભાવક્ષેત્રો સુધી વિસ્તરેલ છે. ઉપરાંત તે સ્થિત અને ચલિત પ્રણાલી સાથે પણ સંલગ્ન છે.
- 5. ભૌતિક વિજ્ઞાનના મૂળ નિયમો સાર્વત્રિક છે. જેનો પ્રયોગ વિવિધ સંદર્ભો તથા પરિસ્થિતિ અનુસાર થાય છે.
- 6. ગરુત્વાકર્ષણ બળ, વિદ્યુતચુંબકીય બળ, સ્ટ્રૉંગ ન્યુક્લિયર બળ તથા વીક ન્યુક્લિયર બળ એ પ્રકૃતિનાં ચાર મૂળભૂત બળો છે. આ બળોના એકીકીરણ તરફના પ્રયત્નો ચાલુ છે.
- 7. કોઈ પણ ભૌતિક રાશિનું સંરક્ષણ થવું એટલે તે રાશિનું સમય સાથે ન બદલાવવું.
- 8. ઊર્જા, વિદ્યુતભાર, રેખીય વેગમાન અને કોશીય વેગમાનના નિયમોને ભૌતિક વિજ્ઞાનના મૂળભૂત નિયમો ગણવામાં આવે છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1.	બ્રહ્માંડના બે મૂળભૂત ઘટકો છે.	
	(A) દ્રવ્ય અને વિકિરણ	(B) ઉષ્મા અને પ્રકાશ
	(C) અણુ અને પરમાણુ	(D) ઇલેક્ટ્રૉન અને પ્રોટોન
2.	એ દ્રવ્યનું ચોથું સ્વરૂપ છે.	
	(A) धन	(B) પ્રવાહી
	(C) વાયુ	(D) પ્લાઝ્મા
3.	પરમાણુનું ન્યુક્લિયસ કયા મૂળભૂત ઘટકોનું બનેલું	, id ?
	(A) ઇલેક્ટ્રૉન અને પ્રોટોન	(B) ઇલેક્ટ્રૉન અને ન્યુટ્રોન
	(C) પ્રોટોન અને ન્યુટ્રૉન	(D) ફક્ત ઇલેક્ટ્રૉન
4.	ECG નું પૂરું નામ આપો.	
	(A) ઇલેક્ટ્રૉન કાર્ડિયોગ્રામ	(B) ઇલેક્ટ્રૉન કલર ગ્રાફ
	(C) ઇલેક્ટ્રૉ કાર્ડિયોગ્રાફ	(D) ઇલેક્ટ્રિક કાર્ડિયોગ્રામ
5.	NMRનું પૂરું નામ શું છે ?	
	(A) ન્યુટ્રૉન મૅગ્નેટિક રેઝોનન્સ	(B) ન્યુક્લિયર મૅગ્નેટિક રેઝોનન્સ
	(C) ન્યૂટ્રિનો મૅગ્નેટિક રેઝોનન્સ	(D) ન્યુક્લિયર મોશન રેઝોનન્સ
6.	ESRનું પૂરું નામ શું છે ?	
	(A) ઇલેક્ટ્રિક સ્પિન રેઝોનન્સ	(B) ઇલેક્ટ્રૉન સ્પિન રેઝોનન્સ
	(C) ઇલેક્ટ્રૉન સ્પિન રડાર	(D) ઇલેક્ટ્રિક સ્પેસ રડાર
7.	ન્યુક્લિયસમાં ન્યુટ્રૉન અને પ્રોટોન વચ્ચે લાગતું બ	નળ એ
	(A) ગુરુત્વાકર્ષીય બળ છે.	(B) વિદ્યુતચુંબકીય બળ છે.
	(C) સ્ટ્રૉંગ ન્યુક્લિયર બળ છે.	(D) વીક ન્ યુક્લિયર બળ છે.
8.	ન્યુક્લિયસમાંથી β-ક્શના ઉત્સર્જન દરમિયાન કય	ા ક્શોનું ઉત્સર્જન થાય છે ?
	(A) ન્યુટ્રૉન અને પ્રોટોન	(B) ઇલેક્ટ્રૉન અને પ્રોટોન
	(C) ઇલેક્ટ્રૉન અને ન્યુટ્રૉન	(D) ઇલેક્ટ્રૉન અને ન્યૂટ્રિનો
9.	અવકાશ એ સમદિગ્ધર્મી છે, જેના પરિણામસ્વરૂપે	સંરક્ષણનો કયો નિયમ મળે છે ?
	(A) ઊર્જાસંરક્ષણનો નિયમ	(B) વિદ્યુતભાર સંરક્ષણનો નિયમ
	(C) રેખીય વેગમાનના સંરક્ષણનો નિયમ	(D) કોશીય વેગમાનના સંરક્ષણનો નિયમ
10.	અવકાશ એ સમાંગ છે, જેના પરિણામસ્વરૂપે સંર	ક્ષણનો કયો નિયમ મળે છે ?
	(A) ઊર્જાસંરક્ષણનો નિયમ	(B) વિદ્યુતભાર સંરક્ષણનો નિયમ
	(C) રેખીય વેગમાનના સંરક્ષણનો નિયમ	(D) કોશીય વેગમાનના સંરક્ષણનો નિયમ
11.	સમય એ સમાંગ છે, જેના પરિણામસ્વરૂપે સંરક્ષણ	ાનો કયો નિયમ મળે છે ?
	(A) ઊર્જાસંરક્ષણનો નિયમ	(B) વિદ્યુતભાર સંરક્ષણનો નિયમ
	(C) રેખીય વેગમાનના સંરક્ષણનો નિયમ	(D) કોણીય વેગમાનના સંરક્ષણનો નિયમ