

机器学习实验指导书

日期: 2024年3月25日

目 录

实验注意	意事项:	3
实验一:	贝叶斯决策论	4
实验二:	线性判别函数和参数、非参数估计	7
实验三:	基于决策树算法完成鸢尾花卉品种预测任务	14
实验四:	神经网络学习	16
实验五:	支持向量机	19
实验六:	集成学习	21

实验注意事项

- 1. 本次实验一共有六道大题,包含了本学期的主要内容,目的是促进同学们巩固课堂讲解的内容,并通过实验实现加深对机器学习理论和方法的理解。
- 2. 实验实现不限编程语言 (Python、C++ or Matlab), **推荐**使用 python。
- 3. 实现过程中不得使用现成工具包(如Sklearn、Pytorch等,对机器学习感兴趣可以自行了解),代码要求同学们亲自书写。【思维发散除外】
- 4. 除了代码,要求同学们认真撰写实验报告,格式规范、分析透彻、 内容丰富。
- 5. 代码与实验报告不得有任何抄袭内容。

犯大家完美完成全部题目, 并取得好成绩!

实验一: 贝叶斯决策论

【实验背景】

信用风险是指银行向用户提供金融服务后,用户不还款的概率。信用风险一直是银行贷款决策中广泛研究的领域。信用风险对银行和金融机构,特别是商业银行来说,起着至关重要的作用,但是一直以来都比较难管理。

【实验说明】

本实验以贷款违约为背景,要求使用贝叶斯决策论的相关知识在训练集上构建模型,在测试集上进行贷款违约预测并计算分类准确度。

【实验数据说明】

训练数据集 train.csv 包含 9000 条数据。

测试数据集 test. csv 包含 1000 条数据。

最后一列为样本标签。

注意, 训练集和测试集中都有缺失值存在。

【数据字段说明】

表 1-1 贷款违约数据字段说明

字段	描述
loan_id	贷款记录唯一标识
user_id	借款人唯一标识
total_loan	贷款数额
year_of_loan	贷款年份
interest	当前贷款利率
monthly_payment	分期付款金额
grade	贷款级别
employment_type	所在公司类型

industry	工作领域		
work_year	工作年限		
home_exist	是否有房		
censor_status	审核情况		
issue_date	贷款发放的月份		
use	贷款用途类别		
post_code	贷款人申请时邮政编码		
region	地区编码		
debt_loan_ratio	债务收入比		
del_in_18month	借款人过去 18 个月逾期 30 天以上的违 约事件数		
scoring_low	借款人在贷款评分中所属的下限范围		
scoring_high	借款人在贷款评分中所属的上限范围		
known_outstanding_loan	借款人档案中未结信用额度的数量		
known_dero	贬损公共记录的数量		
pub_dero_bankrup	公开记录清除的数量		
recircle_bal	信贷周转余额合计		
recircle_util	循环额度利用率		
initial_list_status	贷款的初始列表状态		
app_type	是否个人申请		
earlies_credit_mon	借款人最早报告的信用额度开立的月份		
title	借款人提供的贷款名称		
policy_code	公开可用的策略_代码=1 新产品不公开 可用的策略_代码=2		
f系列匿名特征	匿名特征 f 0-f 4, 为一些贷款人行为计数特征的处理		
early_return	借款人提前还款次数		
early_return_amount	贷款人提前还款累积金额		
early_return_amount_3mon	近3个月内提前还款金额		
isDefault	贷款是否违约 (预测标签)		

【实验注意事项】

- 1. 实验不限制使用何种高级语言,推荐使用 python 中 pandas 库处理 csv 文件。
 - (1) 安装: pip install pandas/conda install pandas【在使用 conda 命令,需安装 anaconda 环境】
 - (2) 导入: import pandas as pd【建议】
- 2. 在进行贝叶斯分类之前重点是对数据进行预处理操作,如,缺失值的填充、将文字表述转为数值型、日期处理格式(处理成"年-月-日"三列属性或者以最早时间为基准计算差值)、无关属性的删除、多列数据融合等方面。
- 3. 数据中存在大量连续值的属性,不能直接计算似然,需要将连续属性离散化。
- 4. 另外,特别注意零概率问题,贝叶斯算法中如果乘以 0 的话就会失去意义,需要使用平滑技术。【可以百度了解一下拉普拉斯平滑】
- 5. 实验目的是使用贝叶斯处理实际问题,不得使用现成工具包直接进行分类。【该点切记!!!这个一定要自己写,才能感受贝叶斯的魅力】
- 6. 实验代码中需要有必要的注释,具有良好的可读性。

实验二: 线性判别函数与参数、非参数估计

一、 线性判别函数

【实验目的】

掌握线性判别函数算法的原理

【实验数据格式】

实验数据的格式如表 2-1 所示。

x 1 x 2 y 1.9643 4.5957 1 1 2, 2753 3, 8589 2 1 3 2.9781 4.5651 1 2.9320 3. 5519 4 1 5 3. 5772 2.8560 1

表 2-1 线性判别函数实验数据格式样例

【实验内容及说明】

采用 exp2_1. mat 中的数据,实现线性判别函数分类算法,其 x1、x2 为二维自变量,y 为样本类别。编程实现线性判别函数分类,并做出分类结果可视化。

xxx.mat 格式的数据文件可以使用 scipy.io 进行读取处理,算法实现部分不可借助现成库。

(安装: pip install scipy 导入: import scipy)

二、 最大似然估计

【实验目的】

掌握用最大似然估计进行参数估计的原理; 当训练样本服从多元 正态分布时, 计算不同高斯情况下的均值和方差

【实验数据格式】

实验数据的格式如表 2-2 所示。

样 类1 类2 x 1 x 2 x 3 x 1 x 2 **x** 3 本 1 0.42 -0.0870.58 -0.40.58 0.089 -0.2-3.3-3.4-0.310.27 -0.042 0.38 -0.0353 1.3 -0.321.7 0.055 0.39 0.71 0.53 0.011 4 0.23 -0.155 -1.6-5.3-0.15-0.350.47 0.034 -0.0290.89 -4.76 0.17 0.69 0. 1 7 -0.231.9 2. 2 -0.0110.55 -0.180.27 -0.3-0.87-0.270.61 0.12 8 -1.90.76 -2.1-0.0659 0.49 0.0012 0.87 -2.6-0.12-0.0631 -1 0.054 0

表 2-2 最大似然估计实验数据格式样例

【实验内容及说明】

使用上面给出的三维数据或者使用 exp2_2.x1sx 中的数据:

- (1)编写程序,对类 1 和类 2 中的三个特征 x_i 分别求解最大似然估计的均值 $\hat{\mu}$ 和方差 $\hat{\sigma}^2$ 。
- (2)编写程序,处理二维数据的情形 $p(x)\sim N(\mu,\Sigma)$ 。对类 1 和类 2 中

任意两个特征的组合分别求解最大似然估计的均值 $\hat{\mu}$ 和方差 $\hat{\Sigma}$ (每个类有3种可能)。

- (3)编写程序,处理三维数据的情形 $p(x)\sim N(\mu,\Sigma)$ 。对类 1 和类 2 中三个特征求解最大似然估计的均值 $\hat{\mu}$ 和方差 $\hat{\Sigma}$ 。
- (4) 假设该三维高斯模型是可分离的,即 $\Sigma = diag\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)$,编写程序估计类 1 和类 2 中的均值和协方差矩阵中的参数。
- (5) 比较前 4 种方法计算出来的每一个特征的均值 μ_i 的异同,并加以解释。
- (6) 比较前 4 种方法计算出来的每一个特征的方差 σ_i 的异同,并加以解释。

数据读取: 可以使用python的pandas库读取xxx. x1sx格式的文件

三、非参数估计

【实验目的】

掌握用非参数的方法估计概率密度 了解parzen 窗方法的原理

了解k近邻方法的原理

【实验数据】

实验数据的格式如表 2-3 所示。

表 2-3 非参数估计实验数据格式样例

样	类1			类2			类3		
本	x1	x 2	x 3	x1	x 2	x 3	x1	x 2	х3
1	0.28	1. 31	-6.2	0.011	1.03	-0.21	1. 36	2.17	0.14
2	0.07	0.58	-0.78	1. 27	1.28	0.08	1.41	1.45	-0.38
3	1.54	2.01	-1.63	0.13	3. 12	0.16	1.22	0.99	0.69
4	-0.44	1.18	-4.32	-0.21	1.23	-0.11	2.46	2.19	1.31
5	-0.81	0.21	5.73	-2.18	1. 39	-0.19	0.68	0.79	0.87
6	1.52	3. 16	2.77	0. 34	1.96	-0.16	2.51	3. 22	1.35
7	2.20	2.42	-0.19	-1.38	0.94	0.45	0.60	2.44	0.92
8	0.91	1.94	6.21	-0.12	0.82	0.17	0.64	0.13	0.97
9	0.65	1.93	4.38	-1.44	2. 31	0.14	0.85	0.58	0.99
10	-0.26	0.82	-0.96	0.26	1.94	0.08	0.66	0.51	0.88

【实验内容及说明】

Parzen 窗估计:

使用上面表格中的数据或者使用 exp2_3.x1sx 中的数据进行 Parzen 窗估计和设计分类器。窗函数为一个球形的高斯函数如公式 2-1所示:

$$\varphi\left(\frac{(x-x_i)}{h}\right) \propto exp[-(x-x_i)^T(x-x_i)/(2h^2)] \tag{2-1}$$

编写程序,使用 Parzen 窗估计方法对任意一个的测试样本点x进行分类。对分类器的训练则使用表2-2中的三维数据。令h=1,分类样本点为(0.5,1.0,0.0)^T,(0.31,1.51,-0.50)^T,(-0.3,0.44,-0.1)^T。

k-近邻概率密度估计:

对上面表格中的数据使用k-近邻方法进行概率密度估计:

- 1) 编写程序,对于一维的情况,当有 n 个数据样本点时,进行k-近邻概率密度估计。对表格中的类3的特征x₁,用程序画出当k=1,3,5 时的概率密度估计结果。
- 2)编写程序,对于二维的情况,当有n个数据样本点时,进行k-近邻概率密度估计。对表格中的类2的特征(x1, x2)^{\dagger},用程序画出当k=1,3,5时的概率密度估计结果。
- 3) 编写程序,对表格中的3个类别的三维特征,使用k-近邻概率密度估计方法。并且对下列点处的概率密度进行估计: (-0.41,0.82,0.88)^T, (0.14,0.72,4.1)^T, (-0.81,0.61, -0.38)^T。

数据读取: 可以使用 python 的 pandas 库读取 xxx. x1sx 格式的文件

四、KNN 实战

【实验目的】

掌握 KNN 算法的使用。

【实验数据】

数据集存放在 exp2_4. txt 中, 共有 1000 条数据 exp2_4. txt 中实验数据的格式如表 2-4 所示。

表 2-4 KNN 实验数据格式样例

largeDoses	0. 953952	8. 326976	40920
smallDoses	1.673904	7. 153469	14488
didntLike	0.805124	1.441871	26052

其中, 前三列是样本数据, 最后一列是样本标签

用学过的 KNN 方法来构建一个分类器,判断一个样本所属的类别

【具体任务】

- 一、数据预处理
- 1. 将 e2. txt 中的数据处理成可以输入给模型的格式
- 2. 是否还需要对特征值进行归一化处理? 目的是什么?
 - 二、数据可视化分析

将预处理好的数据以散点图的形式进行可视化,通过直观感觉总结规律,感受 KNN 模型思想与人类经验的相似之处。

- 三、构建 KNN 模型并测试
- 1. 输出测试集各样本的预测标签和真实标签,并计算模型准确率。
- 2. 选择哪种距离更好? 欧氏还是马氏?
- 3. 改变数据集的划分以及 k 的值, 观察模型准确率随之的变化情况。

注意:选择训练集与测试集的随机性

四、使用模型构建可用系统

利用构建好的 KNN 模型实现系统,输入为新的数据的三个特征,输出为预测的类别。

【实验要求】

- 1. 编程语言不限,推荐使用 Python 或者 MATLAB
- 2. KNN 模型需要自己实现,不可使用现成的第三方库
- 3. 实验报告中提供的代码需要有必要的注释

实验三:基于决策树算法完成鸢尾花品种预测任务

【实验说明】

本实验通过鸢尾花数据集 iris.csv 来实现对决策树进一步的了解。其中,Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征: 花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这 4 个特征预测鸢尾花卉属于 (iris-setosa, iris-versicolour, iris-virginica) 三个类别中的哪一品种。Iris 数据集样例如下图所示:

SepalLength | SepalWidth Peta1Length PetalWidth Species 5.1 3. 5 1.4 0. 2 Iris-setosa 4.9 1.4 0.2 Iris-setosa 4.7 3. 2 1. 3 0.2 Iris-setosa 3. 1 1.5 0. 2 4.6 Iris-setosa

表 3-1 决策树实验数据格式样例

本实验将五分之四的数据集作为训练集对决策树模型进行训练;将剩余五分之一的数据集作为测试集,采用训练好的决策树模型对其进行预测。训练集与测试集的数据随机选取。本实验采用准确率 (accuracy) 作为模型的评估函数:预测结果正确的数量占样本总数,如公式 3-1 所示

$$\frac{TP + TN}{TP + TN + FP + FN} \tag{3-1}$$

【实验要求】

- 1. 本实验要求输出测试集各样本的预测标签和真实标签,并计算模型准确率。另外,给出 3 个可视化预测结果。
- 2. 决策树算法可以分别尝试 ID3, C4. 5, cart 树, 并评判效果。
 - 3. (选做): 对你的决策树模型进行预剪枝与后剪枝
 - 4. (选做): 分别做 c4.5 和 cart 树的剪枝并比较不同。

【注意事项】

编程语言不限,推荐使用 python; 决策树模型需要自己实现,不可使用已有的第三方库; 实验报告中提供的代码需要有必要的注释。

实验四:神经网络学习

【实验目的】

掌握 BP 神经网络的基本原理和基本的设计步骤; 了解 BP 算法中各参数的作用和意义。

【实验数据】

CIFAR-10 数据集,数据集中包含 50000 张训练样本,10000 张测试样本,可将训练样本划分为 49000 张样本的训练集和 1000 张祥本的验证集,测试集可只取 1000 张测试样本。其中每个样本都是 32×32 像素的 RGB 彩色图片,具有三个通道,每个像素点包括 RGB 三个数值,数值范围 0 255,所有照片分属 10 个不同的类别: 飞机(airplane)、汽车(automobile)、鸟类(bird)、猫(cat)、鹿(deer)、狗(dog)、蛙类(frog)、马(horse)、船(ship)和卡车(truck)。数据集展示如图 4-1 所示。

图 4-1 神经网络实验数据格式样例

【实验内容及说明】

用神经网络对给定的数据集进行分类,画出 loss 图,给 出在测试集上的精确度;

不能使用 pytorch 等框架,也不能使用库函数,所有算 法都要自己实现;

神经网络结构图如图 4-2 所示。

图 4-2 基础神经网络结构图

整个神经网络包括 3 层——输入层,隐藏层,输出层。输入层有 32*32*3个神经元,隐藏层有1024个神经元,输出层有10个神经元(对应10个类别)。训练10个epoch。注意事项:三层网络模型较为简单,模型准确率不需要很高,保证正确实现神经网络的搭建和训练即可。

其他提示:

1. 建议使用批处理和矩阵运算代替 for 循环,可以提高效率。

- 2. RGB 图像的维度是: 3(通道数)×32(长)×32(宽), 可以根据自己的需求选择平均通道值还是最大最小通道值。
 - 3. 输出层需要加入激活函数

【思维发散】

可以试着添加卷积层,修改隐藏层神经元数,层数,学习率,正则化权重等参数,探究参数对实验结果的影响。(尝试使用 pytorch 或 tensorf low,将结果对比截图放入实验报告)

实验五: 支持向量机

【实验目的】

掌握线性 SVM 的基本原理和基本设计步骤; 掌握非线性 SVM 的基本原理和基本设计步骤。

【实验数据】

Exp5_1.mat 数据格式如表 5-1 所示, 其中 x1、x2 为二 维自变量, y 为样本类别:

表 5-1 支持向量机实验数据格式样例

	x1	x 2	у
1	1. 9643	4. 5957	1
2	2. 2753	3. 8589	1
3	2. 9781	4. 5651	1
4	2. 9320	3. 5519	1

Exp5_2. mat 数据格式如表 5-2 所示, 其中 x1、x2 为二 维自变量, y 为样本类别。

表 5-2 支持向量机实验数据格式样例

	x1	x2	у
1	0.107143	0.603070	1
2	0.093318	0.649854	1
3	0.097926	0.705409	1
4	0.155530	0. 784357	1

【实验内容及说明】

使用 exp5_1. mat 数据,构造线性 SVM 对数据进行划分, 给出可视化的划分边界结果。

探究不同程度的惩罚因子C对样本分类误差的影响。

(选做)构造使用 Gaussian kernels 的 SVM,对 exp5_2.mat 数据进行划分,给出可视化的划分边界的结果。

【注意事项】

编程语言不限,推荐使用 python;

xxx.mat 数据文件可以使用 scipy. io 进行读取处理,模型需要自己实现,不可使用已有的第三方库;实验报告中提供的代码需要有必要的注释。

实验六:集成学习

【实验目的】

用集成方法对数据集进行分类

【实验数据】

Titanic 数据集

【实验内容及说明】

利用若干算法,针对同一样本数据训练模型,使用投票机制,少数服从多数,用多数算法给出的结果当作最终的决策依据,对Titanic数据集进行分类,给出在测试集上的精确度;

除了投票法,其他的集成学习方法也可以。

实验来自 kaggle 入门赛 https://www.kaggle.com/c/t itanic,可以参考原网站代码与预处理部分,但与公开代码不同的在于,集成学习所用的基学习器需要自己实现而不能调用 sklearn 库。

数据集的分析是一个开放性问题,可以参考网站中的预 处理方式。所选算法包括但不限于课堂上学习的模型例如: 决策树、SVM、KNN、神经网络

需要在网站上提交,不要求结果很高,但要求模型自己

实现,如果有优化可以加分。