Санкт-Петербургский политехнический университет имени Петра великого
Институт компьютерных наук и технологий
Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе \mathbb{N}_3

Дисциплина "Вычислительная математика"

Выполнил студент гр. 3530901\10003			Рубцов Е.А.
Руководитель			Цыган В.Н
	"	11	2023 г

Содержание

1 Задание

Вариант 18: Привести дифференциальное уравнение: $t^2y'' + t^3y' + (t^2 - 2)y = 0$ к системе двух дифференциальных уравнений первого порядка.

Начальные условия: $y_{t=1} = 1$; $y'_{t=1} = -1$

Tочное решение: $y(t) = \frac{1}{t}$

решить на интервале: $1 \le t \le 2$

- 1. Используя программу RKF45 с шагом печати $h_{print}=0.1$ и выбранной вами погрешностью EPS в диапазоне 0.001 0.00001, а также составить собственную программу и решить с шагом интегрирования $h_{int}=0.1$
- 2. Используя усовершенствованный метод ломанных Эйлера

Сравнить результаты, полученные заданными приближенными способами с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int}=0.05$, $h_{int}=0.025$, $h_{int}=0.0125$)

2 Инструменты

Для выполнения поставленного задания был выбран язык python версии 3.10. Были использованы следующие библиотеки:

- 1. NumPy для улучшения скорости расчетов
- 2. SciPy библиотека предоставляет неообходимые функции для решения дифф. уравнений
- 3. MatPlotLib для отрисовки графиков
- 4. Tabulate для более удобного вывода таблиц значений в консоль

3 Ход выполнения работы

3.1 Порядок действий:

- 1. Привести исходное уравнение к системе двух дифференциальных уравнений первого порядка
- 2. Получить решение полученной системы используя RKF45
- 3. Получить решение полученной системы используя усовершенствованный метод ломаных Эйлера

3.2 Задача №1

Сделаем коэффициент при производной второй степени равным 1, для этого разделим все уравнение на t^2 :

$$y'' + ty' + \frac{t^2 - 2}{t^2}y = 0$$

Положим $\alpha_1=t$ и $\alpha_2=\frac{t^2-2}{t^2},$ получим:

$$y'' + \alpha_1 y' + \alpha_2 y = 0$$

Это уравнение в векторно-матричной форме имеет вид: $\frac{dx}{dt} = Ax + f(t)$, где f(t) = 0, а матрица A – это матрица Фробениуса вида: $A = \begin{pmatrix} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{pmatrix}$, $x = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = \begin{pmatrix} y' \\ y \end{pmatrix}$ Таким образом получаем систему уравнений:

$$\begin{cases} x^{(2)'} = x^{(1)} \\ x^{(1)'} = -\alpha_1 x^{(1)} - \alpha_2 x^{(2)} \end{cases}$$

3.3 Задача №2

Решение:

Создадим функцию для получения значений системы уравнений для заданных начальных условий и t:

```
def func(t, X):
    dX = np.zeros(X.shape)
    dX[0] = X[1]
    dX[1] = -t * X[1] - (np.power(t, 2) - 2) / np.power(t, 2) * X[0]
    return dX
```

Так же создадим функцию для получения точного значения решения(для сравнения погрешностей):

```
1
2 def func_exact(t):
```

Далее создадим аналог функции RKF45, используя библиотеку SciPy:

```
def RKF45(f, T, x0):
    rk_integ = ode(f).set_integrator("dopri5", atol=EPS).
    set_initial_value(x0, T[0])

X = np.array([x0, *[rk_integ.integrate(T[i]) for i in range(1, len(T) + )]])

# Split the array to values of Y and values of Y derivative return X[:, 0], X[:, 1]
```

3.4 Задача №3

Усовершенствованный метод ломаных Эйлера: $\begin{cases} x_{n+1/2}^* = x_n + \frac{h}{2} f(t_n, x_n), \\ x_{n+1} = x_n + h f\left(t_n + \frac{h}{2}, x_{n+1/2}^*\right) \end{cases}$

Реализуем его в качестве функции:

3.5 Отрисовка графиков результата

Создадим функцию, которая позволит нам получать решение данного уравнения с заданным шагом и интервалом:

```
def evaluate(h, rang):
        global T
        global Y_EXACT
        global Y_RKF45
4
        global Y_DER_RKF45
        global Y_RKF45_ERR
        global Y_EULER
        global Y_EULER_ERR
        x0 = np.array([1, -1])
        T = np.arange(rang[0], rang[1] + h, h)
11
        Y_EXACT = func_exact(T)
12
13
        Y_RKF45, Y_DER_RKF45 = RKF45 (func, T, x0)
14
        Y_RKF45_ERR = Y_RKF45 - Y_EXACT
15
16
        Y_EULER = eulers_method(func, T, x0)
17
        Y_EULER_ERR = Y_EULER - Y_EXACT
```

Для удобства отрисовки графиков создадим отдельную функцию:

```
def draw_graphs(values, titles, output_filename):
        fig, *ax = plt.subplots(nrows=1, ncols=len(values))
2
3
        figsizes = [0, 4, 12, 12]
4
        fig.set_figwidth(figsizes[len(values)])
        for i in range(len(values)):
             ax[0][i].title.set_text(titles[i])
             ax[0][i].grid()
             ax[0][i].set(xlabel='t', ylabel='y')
10
11
             if len(values[i][0]) < 25:</pre>
12
                 ax[0][i].plot(values[i][0], values[i][1], marker='0')
             else:
1.4
                 ax[0][i].plot(values[i][0], values[i][1], marker=',')
15
16
        fig.savefig(output_filename, bbox_inches='tight')
17
        plt.close(fig)
18
```

Так же создадим функцию для вывода точных значений результата в консоль (для удобства выводятся значения только для 10 точек):

```
def print_table():
        column_titles = ["t", "Exact value", "RKF45", "RKF45 err", "Euler's
       \hookrightarrow method", "Euler's method err"]
        table = []
        sample_values = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
4
       \hookrightarrow 2.0]
5
        it = 0
6
        for i in range(len(sample_values)):
             while not np.isclose(sample_values[i], T[it], atol=1e-05):
                 it += 1
             table.append([round(T[it], 5), Y_EXACT[it], Y_RKF45[it],

→ Y_RKF45_ERR[it], Y_EULER[it], Y_EULER_ERR[it]])
11
        print(tabulate(table, column_titles, 'pretty'))
        print("RKF45 global err:", np.sum(Y_RKF45_ERR))
        print("Euler global err:", np.sum(Y_EULER_ERR))
14
15
        print("\n\n")
16
```

Далее для получения графиков результата будем вызывать эти три функции для различных значений h_{int} :

```
def main():
         evaluate(0.1, [1, 2])
2
         draw_graphs(
3
                  np.array(([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
4
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
5
                  "plots \\functions -01"
         )
         draw_graphs(
                  np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
                   ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
10
                  "plots \\errors -01"
         )
12
         print("h = 0.1")
13
         print_table()
1.4
15
         evaluate(0.05, [1, 2])
16
         draw_graphs(
17
                  \label{eq:np.array} \verb"([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
18
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
19
                  "plots \setminus functions - 005"
         )
21
         draw_graphs(
22
                  np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
                  ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
24
                  "plots\\errors-005"
25
26
         print("h = 0.05")
27
         print_table()
28
```

Аналогичным образом выводятся результаты для остальных значений h_{int}

Результат:

Рис. 1: Графики функций при h=0.1

Рис. 2: Графики погрешности для h=0.1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	Exact value	RKF45	RKF45 err	Euler's method	Euler's method err
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0	1.0	1.0	0.0	1.0	0.0
1.3	1.1	0.9090909090909091	0.9090909103954291	1.3045200475403362e-09	0.909999999999999	0.0009090909090908594
1.4 0.7142857142857141 0.7142857277107874 1.3425073275286081e-08 0.7158987095779135 0.0016129952921993 1.5 0.6666666666666666666 0.666666812064076 1.4539741077790325e-08 0.6682194413173079 0.0015527746506414 1.6 0.62499999999999 0.625000015068709 1.5068709169341332e-08 0.6264363458843467 0.0014363458843469 1.7 0.5882352941176469 0.5882353093370457 1.5219398852295285e-08 0.5895260038964957 0.0012907097788488 1.8 0.55555555555555554 0.555555706758482 1.5120292795600676e-08 0.5566891641421717 0.0011336085866163	1.2	0.8333333333333333	0.8333333410740418	7.740708518610973e—09	0.834709125442739	[0.001375792109405749
1.5	1.3	0.769230769230769	0.7692307806021708	1.1371401709148188e-08	0.7708063655271175	[0.0015755962963484027
1.6 0.62499999999999 0.625000015068709 1.5068709169341332e-08 0.6264363458843467 0.0014363458843469 1.7 0.5882352941176469 0.5882353093370457 1.5219398852295285e-08 0.5895260038964957 0.0012907097788488 1.8 0.555555555555555554 0.5555555706758482 1.5120292795600676e-08 0.5566891641421717 0.0011336085866163	1.4	0.7142857142857141	0.7142857277107874	1.3425073275286081e-08	0.7158987095779135	0.0016129952921993818
1.7 0.5882352941176469 0.5882353093370457 1.5219398852295285e-08 0.5895260038964957 0.0012907097788488	1.5	0.66666666666666	0.6666666812064076	1.4539741077790325e-08	0.6682194413173079	[0.0015527746506414086
1.8 0.555555555555554 0.5555555706758482 1.5120292795600676e-08 0.5566891641421717 0.001133608586616	1.6	0.624999999999998	0.625000015068709	1.5068709169341332e-08	0.6264363458843467	[0.0014363458843469346
	1.7	0.5882352941176469	0.5882353093370457	1.5219398852295285e-08	0.5895260038964957	[0.0012907097788488198
$ \mid \ 1.9 \ \mid \ 0.526315789473684 \mid \ 0.5263158043286036 \mid \ 1.4854919627715901 \\ \text{e} - 08 \mid \ 0.5272924120227146 \mid \ 0.00097662254903061 \\ \text{e} \cdot 1.4854919627715901 \\ \text{e} \cdot 1.4854917901 \\ \text{e} \cdot 1.485491 \\ \text{e} \cdot 1.4854917901 \\ \text{e} \cdot 1.4854917901 \\ \text{e} \cdot 1.485491 \\ \text{e}$	1.8	0.55555555555554	0.5555555706758482	1.5120292795600676e-08	0.5566891641421717	0.0011336085866163748
	1.9	0.526315789473684	0.5263158043286036	1.4854919627715901e-08	0 . 5 2 7 2 9 2 4 1 2 0 2 2 7 1 4 6	[0.0009766225490306368
$ \mid 2.0 \mid 0.4999999999999999999999999999999999999$	2.0	0.499999999999998	0.5000000144799004	1.4479900611874541e-08	0.5008271149717587	[0.0008271149717589132

RKF45 global err: 1.2312466568520364e-07 Euler global err: 0.01269065102828748

Рис. 3: Точные значения при h=0.1

Рис. 4: Графики функций при h=0.05

Рис. 5: Графики погрешности для h=0.05

t	Exact value	RKF45	RKF45 err	Euler's method	Euler's method err
1.0	1.0	1.0	0.0	1.0	0.0
1.1	0.9090909090909091	0.9090909092230726	1.3216350236433527e-10	0.909296988659755	0.00020607956884588496
1.2	0.8333333333333333	0.8333333336279406	2.9460733852459953e-10	0.8336447823724864	0.00031144903915314437
1.3	0.769230769230769	0.7692307696163557	3.8558667370125477e-10	$\begin{smallmatrix} & 0 & .7 & 6 & 9 & 5 & 8 & 6 & 6 & 5 & 1 & 4 & 4 & 7 & 4 & 5 & 2 & 2 \end{smallmatrix}$	0.00035588221668314546
1.4	0.7142857142857141	0.7142857147221717	4.3645764780109175e—10	0.7146488902413343	0.00036317595562018745
1.5	0.66666666666665	0.6666666671301543	4.634878036924306e-10	0.667014811881098	0.0003481452144314945
1.6	0.624999999999998	0.6250000004756532	4.756534055516681e—10	$\begin{smallmatrix} & 0 & . & 6 & 2 & 5 & 3 & 2 & 0 & 2 & 9 & 2 & 2 & 0 & 4 & 2 & 8 & 9 & 4 \end{smallmatrix}$	0.00032029220428964056
1.7	0.5882352941176469	0.5882352945958439	4.781970375233868e—10	0.5885211233717113	0.00028582925406439585
1.8	0.5555555555554	0.5555555560299045	4.743491155423385e—10	0.555804402009977	0.00024884645442169173
1.9	0.526315789473684	0.5263157899398864	$4.662024100099416e\!-\!10$	0.5265278056812706	0.00021201620758659612
2.0	0.499999999999998	0.5000000004551748	4.5517500879554973e—10	0.5001770374899122	0.00017703748991237944

RKF45 global err: 7.864453088757273e-09 Euler global err: 0.005607481902541678

Рис. 6: Точные значения при h=0.05

Рис. 7: Графики функций при h=0.025

Рис. 8: Графики погрешности для h=0.025

+	Exact value	RKF45	RKF45 err	Euler's method	Euler's method err
1.0	1.0	1.0	0.0	1.0	0.0
1.1	0.9090909090909094	0.9090909090991295	$8 . 2 2 0 0 9 1 2 7 4 3 2 4 6 5 9 \mathrm{e} - \! 1 2$	0.9091399372700221	$\mid 4.902817911267565e-05 \mid$
1.2	0.833333333333333	0.833333333460126	$1.2678746941219288\;\mathrm{e}{-}11$	0.8334073857939172	7.405246058334036e-05
1.3	0.7692307692307698	0.7692307692459308	$1.5160983579676213\mathrm{e}{-}11$	0.7693152943395679	8.452510879808361e-05
1.4	0.714285714285715	0.7142857143022479	$1.653288617120552\mathrm{e}{-}11$	0.7143718331415433	$\mid 8.611885582832102 e-05 \mid$
1.5	0.666666666666674	0.666666666839106	$1.7243206862360694\mathrm{e}{-}11$	0.6667490410301061	$[8.237436343871973\mathrm{e}{\color{blue}-05}$
1.6	0.6250000000000009	0.625000000175392	$1 . 7 5 3 8 3 0 4 1 4 2 3 0 6 0 6 \mathrm{e} - \! 1 1$	0.6250755673192498	[7.556731924895921e-05]
1.7	0.588235294117648	0.5882352941352099	$1.7561951892730576\;\mathrm{e}{-}11$	0.5883024820313982	$[6.718791375026623e{\color{red}-0}5$
1.8	0.555555555555565	0.555555555572959	$1\ .\ 7\ 4\ 0\ 2\ 5\ 2\ 3\ 8\ 6\ 6\ 3\ 9\ 4\ 4\ 0\ 4\ e\1\ 1$	0.5556137739153012	$[5.821835974473277e{\color{red}-0}5$
1.9	0.5263157894736851	0.526315789490802	$1.7116974504460813\;\mathrm{e}{-}11$	0.5263650902501019	$[4.93007764168496\mathrm{e}-05$
2.0	0.50000000000000009	0.5000000000167453	$1.674438365739661\mathrm{e}{-}11$	0.5000408433144072	$[4.084331440634692\;\mathrm{e}{\color{red}-05}$
+	+	 		 	++

RKF45 global err: 6.032587762661024e-10 Euler global err: 0.0026305584190569054

Рис. 9: Точные значения при h=0.025

Рис. 10: Графики функций при h=0.0125

Рис. 11: Графики погрешности для h=0.0125

+	Exact value	RKF45	RKF45 err	Euler's method	Euler's method err
1.0	1.0	1.0	0.0	1.0	0.0
1.1	0.9090909090909094	0.9090909090911512	2.418065747633591e—13	0.9091028646757606	1.1955584851230938e—05
1.2	0.833333333333333	0.83333333333707	3.731459585765151e—13	0.8333513860137096	1.8052680375801877e—05
1.3	0.7692307692307698	0.769230769231216	4.461986335968504e—13	0.7692513637847261	2.0594553956310158e—05
1.4	0.714285714285715	0.7142857142862014	4.863887070882811e-13	0.7143066800928198	2.096580710486684e-05
1.5	0.666666666666674	0.666666666671744	5.07038855346309e-13	0.666686698505418	2.0031838750544928e-05
1.6	0.6250000000000009	0.6250000000005163	$5.153655280309977\mathrm{e}{-}13$	$\begin{smallmatrix} & 0 & . & 6 & 2 & 5 & 0 & 1 & 8 & 3 & 4 & 9 & 4 & 8 & 6 & 4 & 0 & 0 & 2 \end{smallmatrix}$	1.834948639933831e—05
1.7	0.588235294117648	0.5882352941181638	5.158096172408477e-13	0.5882515778131556	1.6283695507657292e—05
1.8	0.555555555555565	0.555555555560676	5.111466805374221e-13	0.55556963070375	1.4075148193515297e—05
1.9	0.5263157894736851	0.5263157894741878	5.027089855502709e-13	0.5263276707063623	1.1881232677257714e—05
2.0	0.50000000000000009	0.5000000000004926	4.917177776064818e—13	0.500009801976889	9.801976888157427e—06
+	+	 	 	+	+

RKF45 global err: 3.572059315004594e-11 Euler global err: 0.0012829516288189735

Рис. 12: Точные значения при h=0.0125

После вычисления данных значений можно сделать несколько выводов:

- 1. Погрешность функции RKF45 значительно меньше погрешности усовершенствованного метода ломаных Эйлера
- 2. Глобальная погрешность уменьшается с уменьшением шага
- 3. Локальная погрешность увеличивается к концу промежутка

4 Вывод

В ходе данной работы мною было решено линейное дифференциальное уравнение второй степени путем приведения этого уравнения к системе из двух дифференциальных уравнений первого порядка и решения этой системы при заданных начальных условиях при помощи программ RKF45, а так же собственной программы, работающей на основе усовершенствованного метода ломаных Эйлера. Была найдена зависимость шага интегрирования h и величин глобальной и локальной погрешностей, а так же были проанализированы различия в точности вычисления для представленных методов.

5 Приложение

```
import numpy as np
    from scipy.integrate import ode
    import matplotlib.pyplot as plt
    from tabulate import tabulate
    # Required absolute tolerance for solution
    EPS = 0.00001
    #Global values for functions
9
    def func(t, X):
        dX = np.zeros(X.shape)
        dX[0] = X[1]
        dX[1] = -t * X[1] - (np.power(t, 2) - 2) / np.power(t, 2) * X[0]
14
        return dX
16
    def func_exact(t):
17
        return 1 / t
18
19
    def RKF45(f, T, x0):
20
        rk_integ = ode(f).set_integrator("dopri5", atol=EPS).

→ set_initial_value(x0, T[0])
        X = np.array([x0, *[rk_integ.integrate(T[i]) for i in range(1, len(T)
       \hookrightarrow )]])
24
        # Split the array to values of Y and values of Y derivative
        return X[:, 0], X[:, 1]
26
27
    def eulers_method(f, T, x0):
        X = np.zeros((len(T), len(x0)))
        X[0] = x0
        h = T[1] - T[0]
31
        for i in range(len(T) - 1):
             x_star = X[i] + h/2 * func(T[i], X[i])
             X[i + 1] = X[i] + h * f(T[i] + h/2, x_star)
35
        return X[:, 0]
37
38
    def evaluate(h, rang):
39
40
        global T
        global Y_EXACT
41
        global Y_RKF45
        global Y_DER_RKF45
        global Y_RKF45_ERR
44
        global Y_EULER
45
```

```
global Y_EULER_ERR
46
         x0 = np.array([1, -1])
48
         T = np.arange(rang[0], rang[1] + h, h)
49
         Y_EXACT = func_exact(T)
51
         Y_RKF45, Y_DER_RKF45 = RKF45 (func, T, x0)
52
         Y_RKF45_ERR = Y_RKF45 - Y_EXACT
         Y_EULER = eulers_method(func, T, x0)
         Y_EULER_ERR = Y_EULER - Y_EXACT
56
57
    def draw_graphs(values, titles, output_filename):
58
         fig, *ax = plt.subplots(nrows=1, ncols=len(values))
59
60
         figsizes = [0, 4, 12, 12]
         fig.set_figwidth(figsizes[len(values)])
62
63
         for i in range(len(values)):
             ax[0][i].title.set_text(titles[i])
             ax[0][i].grid()
66
             ax[0][i].set(xlabel='t', ylabel='y')
67
             if len(values[i][0]) < 25:</pre>
6.9
                 ax[0][i].plot(values[i][0], values[i][1], marker='o')
             else:
71
                 ax[0][i].plot(values[i][0], values[i][1], marker=',')
73
         fig.savefig(output_filename, bbox_inches='tight')
74
         plt.close(fig)
76
    def print_table():
77
         column_titles = ["t", "Exact value", "RKF45", "RKF45 err", "Euler's
       → method", "Euler's method err"]
         table = []
79
         sample_values = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
80
       \hookrightarrow 2.0]
8.1
         it = 0
82
         for i in range(len(sample_values)):
             while not np.isclose(sample_values[i], T[it], atol=1e-05):
                 it += 1
             table.append([round(T[it], 5), Y_EXACT[it], Y_RKF45[it],
86

→ Y_RKF45_ERR[it], Y_EULER[it], Y_EULER_ERR[it]])
87
         print(tabulate(table, column_titles, 'pretty'))
88
         print("RKF45 global err:", np.sum(Y_RKF45_ERR))
90
         print("Euler global err:", np.sum(Y_EULER_ERR))
91
```

```
print("\n\n")
92
93
     def main():
94
          evaluate(0.1, [1, 2])
95
          draw_graphs(
                  np.array(([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
97
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
9.8
                   "plots \\functions -01"
          draw_graphs(
101
                  np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
                   ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
103
                   "plots \\errors -01"
104
          )
          print("h = 0.1")
          print_table()
108
          evaluate(0.05, [1, 2])
          draw_graphs(
110
                  np.array(([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
112
                   "plots \\functions - 005"
113
          )
114
          draw_graphs(
116
                  np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
                   ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
117
118
                   "plots\\errors-005"
119
          print("h = 0.05")
          print_table()
122
          evaluate(0.025, [1, 2])
123
          draw_graphs(
124
                  np.array(([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
125
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
                   "plots \\functions -0025"
          )
128
          draw_graphs(
                  np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
                   ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
                   "plots\\errors-0025"
132
133
          print("h = 0.025")
134
          print_table()
136
          evaluate(0.0125, [1, 2])
137
          draw_graphs(
138
139
                  np.array(([T, Y_EXACT], [T, Y_RKF45], [T, Y_EULER])),
                   ["Исходный график", "RKF45", "Метод ломаных Эйлера"],
140
```

```
141
                    "plots \setminus functions -00125"
          )
142
          draw_graphs(
143
                    np.array(([T, Y_RKF45_ERR], [T, Y_EULER_ERR])),
1\,4\,4
                    ["Погрешность RKF45", "Погрешность ломаных Эйлера"],
145
                    "plots\\errors-00125"
146
147
          print("h = 0.0125")
148
          print_table()
149
150
151
     if __name__ == "__main__":
152
          main()
153
```

Рис. 1: Полный код программы main.py