产品规格说明书

产品名称:	光流激光二合一模块
产品类别:	
产品代号:_	UP-T301
编制人:	吴冬芝
编制日期: _	2025. 4. 18

审核人: 审核日期:

准人: 批准日期:

upixels 优象®

1

景目

一、产品规格	3
二、外形尺寸结构图	4
三、管脚和功能描述	5
四、硬件接口使用说明	6
五、接口协议内容	7
5.1 优象光流+TOF (UPIXELS)	
5.1.1 Upixels 协议内容	7
5.1.2 输出数据详解	8
5.1.3 速度计算详解	8
5.2 MAVLINK V1 APM	9
4.3 MAVLINK V1 PX4	12
4.4 MSP V2	14
六、光流坐标系定义	15
七、光流机头方向	15
八、使用注意事项	16
8.1 光学盖片的选型与安装建议	16
8.2 激光光斑尺寸	16
九、激光认证信息	
9.1 激光安全说明	17
9.2 环保说明	17
十、典型测试标准	18
10.1 激光正常测距及光流好	18
10.2 激光测距超量程及光流差	18
十一、其他资料	19

一、 产品规格

表 1 产品规格参数表

	参数	值
	工作电压	3. 7∼5. 0V
	工作电流	<250mA
	功耗	<1.3W
	峰值电流	250mA
	通信电平	LVTTL (3.3V)
模块	通讯波特率	460800
	帧率	80Hz
	支持协议	优象光流+TOF 版本协议(Upixels)、 MSP V2 ,MAVLINK V1 PX4、 MAVLINK V1 APM
	初始化时间	3S 内
	工作温度	-20 [~] 50℃
	存储温度	-40 [~] 70℃
	通讯接口	UART
	封装尺寸	34mm×21mm×12.40mm(长*宽*高)
	模组重量	5. 6g
•	使用环境	室内、室外
	激光波长	905nm
	视场角	<2°
TOF	测量量程	$0.2{\sim}20\mathrm{m}$
	抗阳光性能	12m (@100Klux 阳光)
	精度	±6cm@0.2m~6m; ±1%@>6m
		(对应靶面反射率 18% [~] 88%)
	视场角	水平/垂直: 32°/32°
光流	环境光照	>30Lux
	最高测量速度	一米高度时: 10m/s

二、 外形尺寸结构图

UP-T301 主板尺寸结构示意图如下,尺寸分别为: 长 34mm , 宽 21mm, 高为 12.40mm。

图 1 模组结构图

三、 管脚和功能描述

图 2 引脚示意图

表 2 各引脚的功能描述表

序号	端口名称	端口功能描述
Pin1	TX	用于发送数据
Pin2	RX	用于接收数据
Pin3	VCC	电压 3.7~5.0V
Pin4	GND	接地

图 3 端子线尺寸结构图

四、硬件接口使用说明

模组使用 UART 通讯方式, UART 通讯电路图如下。

图 4 UART 通讯模式电路图

五、接口协议内容

5.1 Upixels(优象光流+TOF)

5.1.1 Upixels 协议内容

表 3 Upixels 协议内容

序号	参数名	包数据	内容说明
1	包头	0xFE	数据包的开始标识
2		0x0A	数据包字节数(固定值 0x0A)
3		flow_x_integral 的低字节	X 像素点累计时间内的累加位移,
4		flow_x_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
5		flow_y_integral 的低字节	Y 像素点累计时间内的累加位移,
6	光流	flow_y_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
7) 激 光	integration_timespan 的低字节	上一次发送光流数据到本次发送
8	数	integration_timespan 的高字节	光流数据的累计时间(us)
9	据结	激光测距的低字节	激光测距距离(mm),比如低字节
10	构体	激光测距的高字节	为 0x12, 高字节为 0x08, 则激光 测距距离为 0x0812=2066mm
11	,,	valid	状态值: 0(0x00)为光流数据不可用,245(0xF5)为光流数据可用
12		激光测距的置信度	激光测距置信度,比如 0x64 表示 激光测距置信度为 100%
13	校验值	XOR	3-12 字节异或
14	包尾	0x55	数据包的结束标识(固定值 0x55)

- 本协议的默认通信速率为: 460800 bps。
- 本文采用的硬件通信格式: 1 位起始位, 8 位数据位和 1 位停止位, 其他无。

5.1.2 输出数据详解

输出数据示例如下: 0xFE, 0x0A, 0x02, 0x00, 0xFE, 0xFF, 0x20, 0x4E, 0xFD, 0x09, 0xF5, 0x00, 0x6C, 0x55

- flow_x_integral 的低字节为 0x02
- flow_x_integral 的高字节为 0x00
- flow_y_integral 的低字节为 0xFE
- flow y integral 的高字节为 0xFF
- integration_timespan 的低字节为 0x20
- integration_timespan 的高字节为 0x4E
- 激光测距的低字节为 0xFD
- 激光测距的高字节为 0x09
- valid为 0xF5
- 激光测距的置信度为 0x00

5.1.3 速度计算详解

由 4.1.2 得到的 flow_x_integral=0x0002 即 2rad, integration_timespan=0x4E20 即 20000us 即 20ms 为例,由于放大了 10000 倍因此 20ms 内角位移为 2/10000rad=0.0002rad, 进而可以计算:

- 直接计算角速度 rad/ms: 0.0002rad/20ms
- 结合高度信息计算 20ms 的实际位移 mm: 0.0002rad*高度 mm
- 结合高度信息计算实际速度 mm/ms: (0.0002rad*高度 mm)/20ms

5.2 MAVLINK V1 APM

- 1、MAVLink 全称 Micro Air Vehicle Link(微型飞行器连接通信协议);
- 2、Mavlink 有 V1 和 V2 版本,本产品使用的是 V1 版本,消息格式参考 https://mavlink.io/en/messages/common.html,顺序以本手册为准;
- 3、Mavlink V1 APM 用于 APM 飞控固件; 而 Mavlink V1 PX4 用于 PX4 飞控固件。
- 用一个消息 ID 为 0x64 的数据包发送光流数据,
- 另一个消息 ID 为 0x84 的数据包发送距离数据。

表 4 APM 协议内容

参数名		数据类型	说明
帧头		uint8_t	0xFE
负载长度	美	uint8_t	消息负载长度,固定为 0x1A
包序列号	<u></u>	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID		uint8_t	发送本消息的设备编号,用于区分同一网络中
			的不同设备,固定为 0x00
组件 ID		uint8_t	发送本消息的组件编号,用于区分同一设备中
			不同组件,固定为 0x9E
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固定
			为 0x64
	time_usec(us) ^{注1}	uint64_t	Timestamp (time since system boot)
	flow_comp_x(m/s)	float	Flow in x-sensor direction, angular-speed
			compensated 没有陀螺仪因此不补偿直接使用
	△ △		(优 象 协 议 的
224			flow_x_integral (rad)/10000)*(优象协议中
消			的激光测距值 m)/(优象协议中的
息			integration_timespan(s)) **2
负			注: 在激光测距值超量程时,此时参与计算的测距值
载		61	固定为: 25m, 其余情况使用测距真实值
26	flow_comp_y(m/s)	float	Flow in y-sensor direction, angular-speed
个			compensated 没有陀螺仪因此不补偿直接使用 (优 象 协 议 中 的
字			(优 象 协 议 中 的 (flow y integral(rad)/10000)*(优象协议
节			中的激光测距值 m)/(优象协议中的
,			integration timespan(s))
			注: 在激光测距值超量程时,此时参与计算的测距值
			固定为: 25m, 其余情况使用测距真实值
	<pre>ground_distance(m)</pre>	float	Ground distance. Positive value: distance
			known. Negative value: Unknown distance
			使用优象协议中的激光测距值(m)
	flow_x(dpix)	int16_t	Flow in x-sensor direction 使用优象协议
			中的 flow_x_integral*10/36 ^{注3}
	flow_y(dpix)	int16_t	Flow in y-sensor direction 使用优象协议

			中的 flow y integral*10/36
	sensor_id	uint8_t	Sensor ID 固定为 0x00
	quality	uint8_t	Optical flow quality / confidence. 0: bad, 255: maximum quality 使用优象协议中的 valid 值只有 0x00-invalid 和 0xF5-valid 两
	flow_rate_x(rad/s)	float	种 未使用
	flow_rate_y(rad/s)	float	未使用
帧校验		uint16_t	校验从负载长度到消息载荷,但需要在消息负载后额外加上一个 MAVLINK_CRC_EXTRA 值 ^{注 4} , 使用 CRC-16/MCRF4XX 算法
帧头		uint8_t	0xFE
负载长	度	uint8_t	消息负载长度 0x0E
包序列	号	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID		uint8_t	同上
组件 ID		uint8_t	同上
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固定为 0x84
	time_boot(ms)	uint32_t	Timestamp (time since system boot)
	min_distance(cm)	uint16_t	Minimum distance the sensor can measure T1 固定为 0x0002,T2 固定为 0x0005
	max_distance(cm)	uint16_t	Maximum distance the sensor can measure T1 固定为 0x0190,T2 固定为 0x05DC
	<pre>current_distance(cm)</pre>	uint16_t	Current distance reading 使用优象协议中的测距值(cm)
消	Type	uint8_t	Type of distance sensor 固定为 0x00
息	id	uint8_t	Onboard ID of the sensor 固定为 0x00
负载 14 个字节	orientation	uint8_t	Direction the sensor faces. downward-facing: ROTATION_PITCH_270 , upward-facing: ROTATION_PITCH_90, backward-facing: ROTATION_PITCH_180 , forward-facing: ROTATION_NONE, left-facing: ROTATION_YAW_90, right-facing: ROTATION_YAW_270. 固定为 0x19
	covariance(cm²)	uint8_t	Measurement variance. Max standard deviation is 6cm. UINT8_MAX if unknown 固定为 0x00
	horizontal_fov(rad) ^注	float	未使用
	vertical_fov(rad)	float	未使用
	quaternion	float[4]	未使用
	signal_quality(%)	uint8_t	未使用
帧校验		uint16_t	同上

注意事项:

注1: 黄色文字背景表示非固定量;

注 2: 需要按公式中的单位转换单位,下文不再赘述;

注 3: 本文所有数据均采用小端模式发送,下文不再赘述;

注 5: 蓝色字体表示为协议可选项,本文未使用未包含进固件,并非固定为 0.

5.3 MAVLINK V1 PX4

- 用一个消息 ID 为 0x6A 的数据包发送光流数据,
- 另一个消息 ID 为 0x84 的数据包发送距离数据。

表 5 PX4 协议内容

参数	名	数据类型	说明
帧头		uint8_t	0xFE
负载	长度	uint8_t	消息负载长度,固定为0x2C
包序		uint8_t	数据包序列号 0x00-0xFF 循环
系统	ID	uint8_t	发送本消息的设备编号,用于区分同一网络中
			的不同设备,固定为 0x00
组件	ID	uint8_t	发送本消息的组件编号,用于区分同一设备中
			不同组件,固定为 0x9E
消息	ID	uint8_t	不同消息 ID 对应不同的消息负载格式,固定
			为 0x6A
	time_usec(us)	uint64_t	Timestamp (time since system boot)
	<pre>integration_time(us)</pre>	uint32_t	Integration time. Divide integrated_x and
			integrated_y by the integration time to
			obtain average flow. The integration time
			also indicates the 使用优象协议中的
			integration_timespan(us)值
	<pre>integrated_x(rad)</pre>	float	Flow around X axis (Sensor RH rotation
			about the X axis induces a positive flow.
		1	Sensor linear motion along the positive Y
			axis induces a negative flow.)使用优象协
消			议中的 flow_x_integral(rad)/10000
息	<pre>integrated_y(rad)</pre>	float	Flow around Y axis (Sensor RH rotation
负			about the Y axis induces a positive flow.
载			Sensor linear motion along the positive X
			axis induces a positive flow.)使用优象协
44			议中的 flow_y_integral(rad)/10000
个	integrated_xgyro(rad)	float	RH rotation around X axis 固定为 NaN 值
字	integrated_ygyro(rad)	float	RH rotation around Y axis 固定为 NaN 值
节	integrated_zgyro(rad)	float	RH rotation around Z axis 固定为 NaN 值
	time_delta_distance(us)	uint32_t	Time since the distance was sampled T1
			固定为 0x00008235, T2 固定为 0x0000208D
	distance(m)	float	Distance to the center of the flow field.
			Positive value (including zero): distance
			known. Negative value: Unknown distance
			使用优象协议中的激光测距值(m)
	temperature(°C)	int16_t	Temperature 固定为 0x0000
	sensor_id	uint8_t	Sensor ID 固定为 0x00

	quality	uint8_t	Optical flow quality / confidence. 0: no
			valid flow,255: maximum quality 使用优象
			协议中的 valid 值只有 0x00-invalid 和
			0xF5-valid 两种
帧校	验	uint16_t	校验从负载长度到消息载荷,但需要在消息负
			载后额外加上一个 MAVLINK_CRC_EXTRA 值, 使
			用 CRC-16/MCRF4XX 算法
帧头		uint8_t	0xFE
负载	长度	uint8_t	消息负载长度,固定为0x0E
包序	列号	uint8_t	数据包序列号 0x00-0xFF 循环
系统	ID	uint8_t	同上
组件	ID	uint8_t	同上
消息	ID	uint8_t	不同消息 ID 对应不同的消息负载格式,固定
			为 0x84
	time_boot(ms)	uint32_t	Timestamp (time since system boot)
	min_distance(cm)	uint16_t	Minimum distance the sensor can measure
			固定为 0x0002
	max_distance(cm)	uint16_t	Maximum distance the sensor can measure
			固定为 0x0FA0
	<pre>current_distance(cm)</pre>	uint16_t	Current distance reading 使用优象协议中的
			激光测距值(cm)
	Type	uint8_t	Type of distance sensor 固定为 0x00
消	id	uint8_t	Onboard ID of the sensor 固定为 0x01
息	orientation	uint8_t	Direction the sensor faces.
负	△ △		downward-facing: <u>ROTATION_PITCH_270</u> ,
载			upward-facing: <u>ROTATION_PITCH_90</u> ,
		,	backward-facing: <u>ROTATION_PITCH_180</u> ,
14			forward-facing: <u>ROTATION_NONE</u> ,
个			left-facing: <u>ROTATION_YAW_90</u> ,
字			right-facing: <u>ROTATION_YAW_270.</u>
节			固定为 0x19
	covariance(cm ²)	uint8_t	Measurement variance. Max standard
			deviation is 6cm. UINT8_MAX if unknown
			固定为 0x00
	horizontal_fov(rad)	float	未使用
	vertical_fov(rad)	float	未使用
	quaternion	float[4]	未使用
	signal_quality(%)	uint8_t	未使用
帧校	验	uint16_t	同上

注: 重要字节说明请查看"4.2 MAVLINK V1 APM"中的注意事项。

5.4 MSP V2

- 1、MSP 全称 Multiwii Serial Protocol;
- 2、MSP有V1、V2 orver V1和 V2三个版本,本产品使用的是 V2版本;
- 3、MSP用于 iNavflight、MultiWii、CleanFlight 和 BetaFlight 等飞控。
- 用一个消息 ID 为 0x1F01 的数据包发送距离数据;
- 另一个消息 ID 为 0x1F02 的数据包发送光流数据。

表 6 MSP 协议内容

参数名		数据类型	说明	
帧头 ui		uint8_t	0x24	
帧头 uint8		uint8_t	0x58	
requese	t or response	uint8_t	0x3C	
flag		uint8_t	固定为 0x00	
消息 ID		uint16_t	不同消息 ID 对应不同的消息负载格式,固定为	
			0x1F01	
负载长度	Ê	uint16_t	消息负载长度,固定为 0x0005	
消息	<mark>quality</mark>	uint8_t	使用优象协议中的激光测距置信度	
负载	distance(mm)	uint32_t	使用优象协议的激光测距值(mm)	
校验		uint8_t	校验从 flag 到消息载荷,使用 crc8_dvb_s2 算	
			法	
帧头		uint8_t	0x24	
帧头		uint8_t	0x58	
requese	t or response	uint8_t	0x3C	
flag		uint8_t	固定为 0x00	
消息 ID		uint16_t	不同消息 ID 对应不同的消息负载格式,固定为	
			0x1F02	
负载长度	Ę	uint16_t	消息负载长度,固定为 0x0009	
	<mark>quality</mark>	uint8_t	使用优象协议中的 valid 值只有 0-invalid 和	
			245-valid 两种	
	<pre>motionX(deg)</pre>	int32_t	optical flow in deg measured about the X body	
			axis 使用(优象协议的 flow_x_integral(rad))	
消息			* (180.0 / PI) 转成 deg, 该值被放大了 10000	
负载			倍	
	motionY(deg)	int32_t	optical flow in deg measured about the Y body	
			axis 使用(优象协议的 flow_y_integral(rad))	
			* (180.0 / PI) 转成 deg, 该值被放大了 10000	
			倍	
校验		uint8_t	同上	

注: 黄色文字背景表示非固定量;

六、光流坐标系定义

图 5 光流坐标系

七、光流机头方向

图 6 机头方向

八、使用注意事项

8.1 光学盖片的选型与安装建议

面板选型建议:

- 面板材质对 905nm 波段穿透率 95%以上, 雾度 5%以下。
- 面板上下表面平滑平行,材质颜色不拘。
- 面板最好小于 0.5mm, 最厚不要超过 2mm。
- 面板表面平整度小于 0.03mm。

面板安装建议:

- 面板和模组相互间隙 0.1mm-0.2mm 为官。
- 面板和模组组装后面板表面与模组端面的平行度小于 0.05mm。
- ■如有防雾/防盐碱需要,面板和模组之间间隙可用黑色胶套阻隔间隙防止镜面起雾或结晶。

(a) 安装正确

图 7 玻璃盖片安装示意图

(b) 盖板表面不平整,安装不正

(c)盖板需与激光光束垂直安装

8.2 光斑尺寸

UP-T301 激光具有一定发散角,不同距离光斑尺寸不同,光斑尺寸参考下方示意图: 图 8 光斑尺寸示意图

九、激光认证信息

9.1 激光安全说明

本产品包含一个激光发射器和相应的驱动电路。激光输出设计为保持在所有合理可预见的条件下,包括合规的单一故障, 在1级激光安全限值内符合 IEC 60825-1:2014 标准。只要采用优象推荐的产品配置并遵守规定的运行条件(特别是本手册中所述的绝对使用条件)。不得以任何方式增加激光输出功率,也不得使用任何光学器件聚焦激光束。

注意: 使用本规范规定以外的控制、调整或执行程序可能导致危险的辐射暴露。

CLASS 1 LASER PRODUCT

IEC 60825-1:2014

9.2 环保说明

本产品生产参考欧盟指令《关于限制在电子电气设备中使用某些有害成分的指令》,不含铅、镉、汞等有害物质,符合 RoHS 标准。

十、典型测试标准

10.1 激光正常测距及光流好

FLOW_TOOL_PRODU 1,000 TOF Peak & Noise 500 黑色光流Y轴 (图中模块往Y方向往返均匀移动) 10,000 波形呈正弦波, 代表光流数据好 蓝色TOF距离值: 779mm H 红色光流X轴 -10,000 -500 -20,000 -1.000 】执行步骤 如需切换协议,请先选择要切换的协议再点击"切换协议"即可 50 100 150 200 250 300 350 400

FlowValid(默认美術, 点击图例可开启) - Distance DistanceConfidence(默认美術, 点击图例可开启) FlowX - Flow TOF标定 ▼ 波特率 460800 ▼ 打开串口 配置 3 4

图 9 正常测试值(激光和光流)波形图

10.2 激光测距超量程及光流差

图 10 激光超量程、光流不好时波形图

激光是否有效判断标准示例:

- 激光有效: FE 0A FE FF 04 00 BF 30 84 02 F5 64 9D 55 (84 02 代表实测距离 644mm)
- 激光超量程: FE 0A 00 00 00 00 BF 30 FF FF F5 64 1E 55 (FF FF 代表激光超量程)

十一、其他资料

表 7 资料清单

序号	资料	说明
1	上位机工具	测试模块是否有数据输出,能用输出波形
		的方式看数据,更直观。
2	SSCOM 串口工具	查看模块输出的详细协议内容、输出速度
3	T3 操作使用. mp4	视频包括:模块连接、上位机的使用,注
		意点。
4	T 系列产品调试手册 20241219. pdf	常见问题如何解决:包括上位机、光流和
		激光常见问题解决方案。
5	优象科技协议介绍用户手册.pdf	优象、PX4、APM、MSP协议内容介绍,以
		及连接飞控的详细步骤。
6	T1+APM 协议+MissionPlanner 飞控.mp4	PX4、APM、MSP 飞控如何使用操作视频
	T1+APM 协议+QGC 飞控. mp4	
	T1+MSP 协议+INAV 飞控. mp4	
	T1+PX4 协议+QGC 飞控. mp4	
7	UP-T3.stp	可用于评估结构

注: 如需以上资料请联系客服人员。