סיכומי הרצאות - חדו"א 1א

מיכאל פרבר ברודסקי

		עניינים	לוכן
2	ו כלליות	נוסחאוח	1
2	עליונים ותחתונים	חסמים י	2
2		. סדרות	3
2	הגדרת הגבול	3.1	
3		3.2	
3	טענות על גבולות	3.3	
3	מבחן ה[(שורש)(מנה)] (הגבולי)?	3.4	
3	סדרות מונוטוניות	3.5	
4	תתי סדרות	3.6	
4	גבולות חלקיים		
4		. טורים	4
5		4.1	
5	מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? (לזזיים)?	4.2	
6	טור מתכנס בהחלט	4.3	
6		4.4	
6	טענות נוספות על טורים	4.5	
7		פונקציור	5
7	הגדרת הגבול	5.1	
7	חשבון גבולות (דומה לסדרות)	5.2	
7		5.3	
7		5.4	
9	רציפות במ"ש (במידה שווה)	5.5	
9	נגזרת	5.6	
10	חקירת פונקציות	5.7	
10			
10			
11	כלל לופיטל	5.8	
11			
11			
11	ב	יורי טיי	6
11	היי זה לא הזה ממבוא מורחב?	6.1	-
11	באמת טורי טיילור אני מבטיח		

1 נוסחאות כלליות

בינום:

א"ש הממוצעים:

 $rac{a_1+\cdots+a_n}{n}\geq \sqrt[n]{a_1\cdot\cdots\cdot a_n}\geq rac{n}{rac{1}{a_1}+\cdots+rac{1}{a_n}}$ לכל $(1+x)^n\geq 1+nx$ מתקיים $x>-1,n\in\mathbb{N}$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

א"ש ברנולי: א"ש המשולש:

 $|a+b| \le |a| + |b|$

2 חסמים עליונים ותחתונים

 $.x \leq M$, $x \in A$ יקרא חסם מלעיל של A אם לכל M יקרא חסם מלרע של A אם לכל A יקרא חסם מלרע של A

אקסיומת השלמות: לכל קבוצה לא ריקה וחסומה מלעיל קיים חסם עליון קטן ביותר, ונסמן $\sup A$ אותו ב־

a < b < a < b כך ש־a < a < b כד שימושית: אם $b = \sup A$ אז לכל b < b < b < b

|b-a|<arepsilon בך ש־ $a\in A$ קיים קיים אברה: נאמר ש־B אם לכל אם לכל אם ולכל הגדרה: נאמר ש־

 $s(a,b)\cap S
eq \emptyset$, $a< b\in \mathbb{R}$ לכל R צפופה ב־ $S\subseteq \mathbb{R}$ צפופה ב

 $.q \in (a,b)$ טענה: לכל קיים q קיים a < b

a>0הוכחה: נניח ש־0. a>0 היי a>0 פ"- a>0. יהי a>0 המספר הקטן ביותר כך ש־a>0. יהי a<0 המספר הקטן אז a>0 אז בנוסף, בנוסף, $a+\frac{1}{k}<a+(b-a)=b$ ולכן $a+\frac{m-1}{k}<a+(b-a)=b$ וסיימנו. אם $a>\frac{m-1}{k}<a+(b-a)=b$ בנוסף, אם בוסף, אז a>0 בנוסיף אם $a+\frac{1}{k}<a+(b-a)=b$ ולכן אם $a+\frac{1}{k}<a+(b-a)=b$ בנוסיף את בנוסיף את בנוסיף את בוסיף את בוסי

[a,b]ענה: \mathbb{Q} צפופה ב־ \mathbb{R} ו־ $[a,b] \cap \mathbb{Q}$ צפופה ב

3 סדרות

 $(a_n)_{n=1}^\infty$ או ב־ (a_n)

 $a_n \leq M$, מער שסדרה **חסומה מלעיל** אם קיים M כך שלכל

 $M \leq a_n$, אם כך שלכל M כל מלרע, אם היים M כל שלכל מסדרה אסומה נאמר

 $|a_n| \leq M$, אם כך שלכל M כד שסדרה אם נאמר אם קיים M

3.1 הגדרת הגבול

 $a_n o L$ אם: או $\lim_{n o \infty} a_n = L$ ונסמן, ונסמן, הוא (a_n) או נאמר שהגבול של

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. |a_n - L| < \varepsilon$$

 $\lim_{n \to \infty} a_n = \infty$ אם, אם, אוו $\lim_{n \to \infty} a_n = \infty$ ונסמן, הוא או (a_n) אוו נאמר שהגבול של

$$\forall M > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. a_n > M$$

L=L' אז $\lim_{n o\infty}a_n=L,\lim_{n o\infty}a_n=L'$ משפט (יחידות הגבול): אם

 $:\!L$ את בשבילו את בריך לדעת בשבילו את סדרות קושי: זהו תנאי שקול להתכנסות, שלא צריך לדעת בשבילו

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall m, n \geq n_0. |a_m - a_n| < \varepsilon$$

3.2 חשבון גבולות

יהיו $a_n o a, b_n o b$ ש־ל כך שדרות $(a_n), (b_n)$ יהיו

- $a_n + b_n \to a + b \bullet$
 - $a_n \cdot b_n \to a \cdot b$ •
- $b \neq 0$ ו היס לכל $b_n \neq 0$ אם שו $\frac{a_n}{b_n} o \frac{a}{b}$

$$rac{1}{b_n} o\infty$$
 אם $b=0$ לכל $b_n
eq 0$ אז $b=0$

- $|a_n| \to |a| \bullet$
- n לכל $a_n \geq 0$ אם $\sqrt{a_n} \rightarrow \sqrt{a}$

3.3 טענות על גבולות

 $a \leq b$:אז: $a_n \leq b_n$ שדרות מתכנסות סדרות $(a_n) \to a, (b_n) \to b$ טענה: יהיו

 $x_n o x, y_n o x$ אם $x_n o x$ אם $x_n o x_n, y_n, z_n$ כלל הסנדוויץ': יהיו x_n, y_n, z_n סדרות כך ש־ x_n, y_n, z_n יהיו יהיו $z_n o x_n$

 $x_n o \infty$ אז $y_n o \infty$ ו ו־ $x_n o y_n$ אז הרחבה: אם

 $|a_n| > r$, $n > n_0$ כך שלכל n_0 כיים n_0 אז קיים $a_n \to L
eq 0$ טענה: תהי $a_n \to L \neq 0$ טענה:

משפט (שטולץ): יהיו a_n,b_n סדרות כך ש־ b_n מונוטונית עולה ו־ a_n,b_n או ש־ a_n,b_n סדרות משפט (שטולץ): יהיו מחרוסות ל- a_n,b_n

$$\lim_{n o\infty}rac{a_n}{b_n}=L$$
 אזי, אם $\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$ במובן הרחב

3.4 מבחן ה[(שורש)(מנה)] (הגבולי)?

 $\lim_{n \to \infty} a_n = 0$ אזי $(a_n)^{1/n} \le \alpha$ ע די $0 \le \alpha < 1$ וקיים $a_n \ge 0$ וקיים $a_n \ge 0$ לכל השורש: $\lim_{n \to \infty} a_n^{1/n} = L$ ו ו $a_n > 0$ ווות השורש הגבולי: $a_n > 0$ ווות השורש הגבולי: $a_n > 0$ ווות השורש הגבולי: $a_n > 0$

- $\lim_{n \to \infty} a_n = 0$ th L < 1 DN •
- $\lim_{n \to \infty} a_n = \infty$ th L > 1 on •

, אזי, $\lim_{n o \infty} rac{a_{n+1}}{a_n} = L$ ר וי $a_n > 0$ אזי, משפט המנה הגבולי:

- $\lim_{n \to \infty} a_n = 0$ th L < 1 DN ullet
- $\lim_{n\to\infty}a_n=\infty$ th L>1 on •

 $a_n>0$ משפט המנה הכללי:

- $\lim_{n \to \infty} a_n = 0$ אם קיים L < 1 ממקום מסוים או L < 1 סיים •
- $\lim_{n \to \infty} a_n = \infty$ אז $a_{n+1} > La_n$ מסוים מסוים L > 1 כך שהחל

3.5 סדרות מונוטוניות

 $a_n o \sup a_n$:מונוטונית עולה וחסומה מלעיל. אזי (a_n) מונוטונית עולה

 $a_n o \infty$: אזי: מונוטונית עולה ולא חסומה מלעיל. אזי: מונוטונית עולה ולא

3.6 תתי סדרות

 (a_n) שדרה וד (n_k) סדרה ממש של טבעיים. אז מש סדרה וד (n_k) סדרה וד (a_n) סדרה של ונסמן ב־ $(a_{n_k})_{k=1}^\infty$

משפט הירושה: תהי (a_n) סדרה ו־ (a_{nk}) תת־סדרה.

- $a_{nk} \to L \wr k \ a_n \to L \square k \bullet$
- אם a_{n_k} מונוטונית עולה a_n מונוטונית עולה \bullet
 - אם a_{n_k} אם חסומה a_n •

משפט בולצנו־ויירשטראס: לכל סדרה חסומה יש תת־סדרה מתכנסת ומונוטונית. אם הסדרה לא חסומה יש תת־סדרה מונוטונית מתבדרת ל־ $\infty\pm$.

3.6.1 גבולות חלקיים

הגדוה: $\hat{\mathcal{P}}(a_n)$ את הגבולות החלקיים, מסמן היימת הגבולות החלקיים, הגדוה: בול חלקי אם הגבולות החלקיים בלי בי $\pm\infty$ את קבוצת הגבולות החלקיים בלי

 $\lim\sup a_n=\overline{\lim}a_n=\sup\hat{\mathcal{P}}\left(a_n
ight),\qquad \liminf a_n=\underline{\lim}a_n=\inf\hat{\mathcal{P}}\left(a_n
ight)\qquad :$ בנוסף, נגדיר

הערה: על פי בולצנו־ויירשטראס, תמיד קיים גבול חלקי

 $:\iff L=\limsup a_n$ חסומה. תהי (a_n) אימושית: תהי

(חוץ ממספר סופי של איברים) כמעט ממיד $a_n < L + arepsilon$,arepsilon > 0 לכל |.1|

(באינסוף איברים) תופעה שכיחה $L-\varepsilon < a_n$, $\varepsilon > 0$ לכל |.2|

אינסופית $\{n \mid |a_n-L|<arepsilon\}$,arepsilon>0 לכל $\iff (a_n)$ אינסופית גבול חלקי של

 \mathbf{o} טענה: $\lim\sup a_n$, $\lim\inf a_n$ \iff חסומה (a_n) סענה:

 $-\infty/\infty\iff$ טענה: חסומה מלעיל/מלרע אינה אינה אינה אינה מלעיל

טענה: (a_n) מתכנסת במובן הרחב \iff יש גבול חלקי יחיד

 $\inf a_n \leq \liminf a_n \leq \limsup a_n \leq \sup a_n$ טענה: בסדרה חסומה,

 $\mbox{,}(x_n)\subseteq B$ סדרה אם לכל סגורה ש־Bקבוצה. נאמר ש־Bקבוצה תהי תהי הי $B\subseteq\mathbb{R}$ תהי תהי תהי הי $x_n\to x\Longrightarrow x\in B$

משפט: אם (a_n) חסומה אז $\mathcal{P}(a_n)$ קבוצה סגורה.

4 טורים

 $.s_n = \sum_{k=1}^n a_k$ החלקיים החכומים סדרת עדיר את מדרה. נגדיר את סדרת הסכומים החלקיים s_n מתכנסת האדרה: נאמר ש $\sum_{k=1}^\infty a_k$ מתכנסת הגדרה: נאמר ש

הערה: הטור הוא עצם נפרד מסדרת הסכומים החלקיים, אסור לבלבל ביניהם

.|q|<1 עבור $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$ אבור הגיאומטרי:

 $a_n o 0$ אז מתכנס אז $\sum a_n$ טענה: אם

 $orall arepsilon>0. \exists n_0. orall m\geq n_0. orall p\in \mathbb{N}. \left|\sum_{k=m}^{m+p}a_k
ight|<arepsilon$ טורים:

חשבון טורים:

- מתכנסי מתכנס $\sum (a_n+b_n)=K+L$ אם מתכנסים $\sum a_n=K, \sum b_n=L$ אם
 - מתכנס אז $\sum a a_n = \alpha L$ אם מתכנס $\sum a_n = L, \alpha \in \mathbb{R}$ אם •

טור חיובי 4.1

n לכל $a_n \geq 0$ טור חיובי אם $\sum a_n$

משפט: טור חיובי מתכנס \Longleftrightarrow חסומה מלעיל

משפט: יהי $\sum a_n$ טור חיובי. אם אם ב a_n מתכנס, אז כל טור שמתקבל מסידור מחדש של האיברים בו גם מתכנס ולאותו הגבול.

4.2 מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? (לזזיים)?

 $\sum a_n\succcurlyeq \sum b_n$ נסמן, $a_n\ge b_n$ נסמום, אם החל ממקום טורים. אם החל $\sum a_n,\sum b_n$ ניהיו יהיו $\sum a_n\succcurlyeq \sum b_n$ שדים כך ש־ $\sum a_n,\sum b_n$ אז:

- מתכנס, $\sum b_n$ מתכנס $\sum a_n$ מתכנס.1
- מתבדר $\sum a_n$ מתבדר מתבדר 2.

 $\lim_{n o\infty}rac{a_n}{b_n}=L$ טורים חיוביים כך טורים ההשוואה הגבולי לטורים חיוביים: יהיו יהיו יהיו

- מתבדר אז גם $\sum b_n$ מתכנס אם הבדר אז גם $\sum a_n$ מתכנס גם הבדר אז גם $\sum b_n$ מתבדר אז גם .1
- מתכנס אז גם הס $\sum b_n$ מתכנס אז מתבדר מתבדר בה הא $\sum b_n$ מתבדר אז הח $\sum b_n$ אז אם אז גר .2

0 < q < 1 ויהי חיובי טור יהי יהי יהי יהי חיוביים: מבחן השורש לטורים חיוביים: יהי

. אם החל ממקום מסוים, אז א $\sum a_n$ אז החל מסוים, קום מסוים, אם החל מ

מבחן השורש הגבולי לטורים חיוביים: יהי $\sum a_n$ יהי

- מתכנס $\sum a_n$ אז $\lim \sup \sqrt[n]{a_n} < 1$ מתכנס.1
- מתבדר $\sum a_n$ אז $\limsup \sqrt[n]{a_n} > 1$ מתבדר .2

 $a_n>0$ שים כך טור חיובי יהי יהי לכל חיובי כך שים לכל מבחן המנה לטורים חיוביים: יהי

- מתכנס מחור אז הטור מחור מסוים מסוים כך ט
 0 < q < 1 אז הטור מתכנס .1
 - מתבדר מתבדר אז הטור מחלים מסוים מסוים אז הטור מתבדר .2

 $a_n>0$ ש־ $a_n>0$ לכל מבחן המנה הגבולי לטורים חיוביים: יהי

- מתכנס $\sum a_n$ אז $\lim \sup rac{a_{n+1}}{a_n} < 1$ מתכנס.1
- מתבדר $\sum a_n$ אז $\lim\infrac{a_{n+1}}{a_n}>1$ מתבדר.

(מונוטוני יורד חלש). $a_n \geq a_{n+1} \geq 0$ ש־ס טור חיובי יהי יהי חיוביים: יהי אוי, $\sum a_n$ מתכנס אם ורק אם $\sum 2^n a_{2^n}$ מתכנס אם ורק אם ורק אם יורק אם $\sum a_n$

4.3 טור מתכנס בהחלט

נאמר ש־ a_n מתכנס בהחלט אם $\sum |a_n|$ מתכנס. אם טור לא מתכנס בהחלט נאמר שהוא "מתכנס בתנאי"

טענה: אם $\sum a_n$ מתכנס בהחלט אז $\sum a_n$ מתכנס

$$\overline{a_n}=rac{|a_n|+a_n}{2}, \underline{a}_n=rac{|a_n|-a_n}{2}$$
 טענה שימושית: נסמן

$$a_n \ge 0$$
 $\overline{a}_n = a_n$ $\underline{a}_n = 0$
 $a_n \le 0$ $\overline{a}_n = 0$ $\underline{a}_n = -a_n$

 $a_n=\overline{a}_n-\underline{a}_n$ ומתקיים ש

. טענה: אם $\sum a_n$ מתכנסים אז $\sum \overline{a}_n, \sum \underline{a}_n$ מתכנס בהחלט. $\sum \overline{a}_n, \sum \underline{a}_n \to \infty$ אז מתכנס בתנאי, אז $\sum a_n$

4.4 טורי חזקות

.(או מתייחסים מחות מחליו), $\sum a_n \left(x-x_0\right)^n$ (או אליו) אבל פחות מתייחסים אליו).

0 טור חזקות בהכרח מתכנס באיזשהו x, למשל

משפט ואל רדיוס ההתכנסות) $R\in [0,\infty]$ "מספר" קיים ההתכנסות לכל טור חזקות ההתכנסות לכל השפט בהחלט, ולx>R, x<-R הטור מתכנס בהחלט, ולx>R

הערה: משפט Abel לא מתייחס ל־ $\pm R$, צריך לבדוק עבורם בנפרד

4.5 טענות נוספות על טורים

טענה הפוכה: תהי (a_n) סדרה ור n_k מתכנס אז n_k מתכנס אז n_k מתכנס מחנה מתכנס.

 $\sum a_n = (a_1 + a_2) + (a_3 + a_4 + a_5) + \dots$ שימוש: בתנאים הנכונים,

 $\sum (-1)^n a_n$ משפט לייבניץ על טורים מתכנסים: תהי (a_n) סדרה אי־שלילית יורדת ל־0. אזי הטור מתכנס.

יים: מתקיים הבאים מהניסוחים אחד מתכנס מתכנס $\sum a_n b_n$ סדרות. $(a_n)\,,(b_n)$ יהיו

 $|s_n^a| < M$ ו $b_n \searrow 0$ או $b_n \nearrow 0$:Dirichlet תנאי

 $\sum a_n$ מתכנס מונוטונית וחסומה ו b_n :Abel תנאי

משפט יהי לסדר לחדר את יהי ותוך מתכנס בתנאי. אזי לכל היהי ג Riemann משפט היהי איברי את איברי את שאפילו לא יתכנס במובן הרחב.

5 פונקציות

5.1 הגדרת הגבול

. בשביל נקובה בסביבה לעהי. בשביל נדרוש בירוש נדרוש נדרוש $\lim_{x \to x_0} f\left(x\right)$

$\lim f(x) = L$	$\forall \varepsilon > 0.\exists \delta > 0. \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}. f(x) - L < \varepsilon$	Cauchy
$x \rightarrow x_0$	$f\left(x_{n} ight) ightarrow L$ אז $x_{n} ightarrow x_{0}$ אם נקובה, אם וווע סביבה ווווע ווווע ווווע סביבה אז ווווע ווווע וווווע וווווע וווווע וווווו	Heine
$\lim_{x \to x_0^+} f(x) = L$	$\forall \varepsilon > 0. \exists \delta > 0. \forall x \in (x_0, x_0 + \delta) . f(x) - L < \varepsilon$	Cauchy
$x \rightarrow x_0^+$	$f\left(x_{n} ight) ightarrow L$ れ $x_{0} < x_{n} ightarrow x_{0}$ つ $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine
$\lim_{x \to \infty} f(x) = L$	$\forall \varepsilon > 0. \exists M > 0. \forall x > M. f(x) - L < \varepsilon$	Cauchy
$x \rightarrow \infty$	$f\left(x_{n} ight) ightarrow L$ th $x_{n} ightarrow\infty$	Heine
$\lim_{x \to x_0^+} f(x) = -\infty$	$\forall M > 0. \exists \delta > 0. \forall x \in (x_0, x_0 + \delta). f(x) < -M$	Cauchy
$x \rightarrow x_0^+$	$f\left(x_{n} ight) ightarrow -\infty$ th $x_{0} < x_{n} ightarrow x_{0}$, $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine

5.2 חשבון גבולות (דומה לסדרות)

 $\lim_{x o x_{0}}f\left(x
ight)=L_{1},\lim_{x o x_{0}}g\left(x
ight)=L_{2}$ ר הייו $f,g:I\setminus\{x_{0}\} o\mathbb{R}$ יהיו

- $\lim_{x \to x_0} f(x) + g(x) = L_1 + L_2 \bullet$
 - $\lim_{x \to x_0} f(x) \cdot g(x) = L_1 \cdot L_2 \bullet$
- $\lim_{x o x_0}rac{f\left(x
 ight)}{g\left(x
 ight)}=rac{L_1}{L_2}$:($g\left(x
 ight)
 eq 0$ אם סביבה נקובה בה לימת סביבה נקובה $L_2
 eq 0$

 $f:I\setminus\{x_0\} o J\setminus\{y_0\}$ תהיינה $x_0\in I,y_0\in J$ ר קטעים פתוחים ו־ $x_0\in I,y_0\in J$ ר יהיו $\lim_{x o x_0}g\left(f\left(x\right)
ight)=L$ אז: $\lim_{y o y_0}g\left(y\right)=L$ ו וו $\lim_{x o x_0}f\left(x\right)=y_0$ אם $g:J\setminus\{x_0\} o \mathbb{R}$ ר י

5.3 גבולות שימושיים

- .(מחשבון גבולות) $\lim_{x \to x_0} \frac{p\left(x\right)}{q\left(x\right)} = \frac{p\left(x_0\right)}{q\left(x_0\right)}$, $\lim_{x \to x_0} x = x_0$ פולינומים: בגלל ש
 - $\lim_{x\to\infty}a^{1/x}=1$, a>0 עבור
 - $\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \bullet$

5.4 רציפות

 $f:I o\mathbb{R}$ יהי $x_0\in I$ אז: קטע פתוח ויהי $x_0\in I$ אז:

- $\lim_{x\to x_0}f\left(x
 ight)=f\left(x_0
 ight)$ אם x_0 רציפה ב־ $f\left(x_0
 ight)$
- Iבים בכל נקודה ב־f אם f רציפה בכל נקודה נאמר ש־f

חשבון הציפות (נובע מחשבון גבולות): יהי I קטע פתוח וי $x_0 \in I$ (נכון גם לחד־צדדי), ויהיו יהי $f,g:I \to \mathbb{R}$

- x_0 רציפה ב־ f+g .1
 - x_0 רציפה ב־ $f \cdot g$.2
- x_0 בסביבת $\frac{f}{g}$ אז $\frac{f}{g}$ רציפה ב־3.

gבר x_0 בי A אם A רציפה ב־A וו־A משפט (הרכבה): יהיו A הייו A הייו A בי A כך שרA כך שרA בי A הייו A רציפה ב־A רציפה ב־A רציפה ב־A רציפה בי A רציפה בי

 $\lim_{x o a^+}f\left(x
ight)=f\left(a
ight)\iff a$ רציפה מימין ב־fר איז $f:[a,b) o\mathbb{R}$ תהי תהי רציפה x_0 ד איז ומשמאל ב־ $f\iff x_0$ רציפה בי

מיון נקודות אי רציפות: תהי f מוגדרת ב־I ו־ x_0 נקודה פנימית.

- נאמר שיש ב־ x_0 אי רציפות סליקה כי , $\lim_{x\to x_0}f(x)\neq f(x_0)$ אבל אי רציפות סליקה כי .1 אם קיים לטלק אותה עם החלפת ערך אחד.
- נאמר שיש $\lim_{x\to x_0^+}f(x)\neq\lim_{x\to x_0^-}f(x)$ אבל $\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)$ נקודת אי־רציפות ממין ראשון.

 $f:(a,b) \to \mathbb{R}$ עולה.

- $\lim_{x\to b^-} f(x) = \sup (f(a,b))$ אם f חסומה מלעיל:
- $\lim_{x \to b^{-}} f\left(x
 ight) = \infty$:(a,b)אם מלעיל הינה חסומה אינה f

משפט: יהי f(I) קטע מוכלל ותהי $f:I\to\mathbb{R}$ רציפה ומונוטונית חזק. אזי קטע מוכלל ותהי ו־ $f:I\to\mathbb{R}$ רציפה.

 $\mathbf{oughtar}$ היים אזי קיימים הווטונית, אזי פענה: תהי $f:I\to\mathbb{R}$ אזי קיימים וסופיים וסופיים ווו $\lim_{x\to x_0^+}f\left(x
ight),\lim_{x\to x_0^-}f\left(x
ight)$

$$R\left(x
ight)=egin{cases} rac{1}{q} & x=rac{p}{q}, p\in\mathbb{Z}, q\in\mathbb{N}, \gcd\left(p,q
ight)=1 \ 0 & x
otin\mathbb{Q} \end{cases}$$
:Riemann פונקציית

מתקיים ש־ $R\left(x
ight)=0$ שלכל ולכל ולכן פונקציית רימן רציפה באי־רציונאלים ואינה רציפה בתקיים שינה ואינה רציפה ברציונאלים.

משפט ויירשטראס: תהי $\mathbb{R} \to [a,b] \to f$ רציפה. אזי: f חסומה ומשיגה את חסמיה (כלומר משיגה מינימום ומקסימום בקטע).

משפט ערך הביניים של קושי: תהי $f:[a,b] o\mathbb{R}$ פונקציה רציפה ויהי $f:[a,b] o\mathbb{R}$. אזי f:[a,b] o x o f מיים f:[a,b] o x o f

מסקנה: אם $f\left[a,b
ight]$ קטע הציפה $f:\left[a,b
ight]
ightarrow\mathbb{R}$ מסקנה: אם

.Iגם ב־ ($\lambda x_1 + (1-\lambda)\,x_2$) היניהם כל מספר אז כל $x_1,x_2\in I$ גם ב־

משפט: אם $f:I o\mathbb{R}$ רציפה ו־I קטע מוכלל אז $f:I o\mathbb{R}$

5.5 רציפות במ"ש (במידה שווה)

הגדרה: תהי $\varepsilon>0$ קיים $\varepsilon>0$ קיים במידה שווה ב־A אם רציפה לכל , $f:A\to\mathbb{R}$ קיים לכל שלכל שלכל שלכל גאמר שלכל האיים אווה ב-A הגדרה: תהי

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

[a,b]ב"משפט קנטור: תהי $f:[a,b]
ightarrow \mathbb{R}$ במ"ש ב־ $f:[a,b]
ightarrow \mathbb{R}$

קטע פתוח: תהי $(a,b] o \mathbb{R}$ רציפה, אזי f רציפה במ"ש ב־ $(a,b] o \mathbb{R}$ קיים וסופי . $\lim_{x o a^+} f(x)$

. משפט: אם $f:[0,\infty)$ אז אם הציפה במ"ש. רציפה בק שקיים וסופי וסופי $f:[0,\infty)$

(a,c)במ"ש ב־(a,b], אז (a,b] רציפה במ"ש ב־(a,c)ד איחוד קטעים: אם (a,c)ד רציפה במ"ש ב

טענה: פונקציה רציפה במ"ש בקטע פתוח היא חסומה.

 $|f(x_n) - f(y_n)|
eq 0$ אבל אבל $|x_n - y_n| \to 0$ כך שיטת הפרכה: למצוא שתי סדרות $|x_n - y_n| \to 0$ כך שיטת הפרכה:

5.6 נגזרת

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ אם קיים וסופי $x_0 \in I$ ו־I ו־I אם קיים וסופי $f'(x_0)$. (הגדרות שקולות), נאמר ש־I גזירה ב־I ונסמן את הגבול ב־I

 x_0 ביפה ב־ x_0 רציפה ב-

משפט רול: תהי f:[a,b] o f:[a,b] רציפה ב־ $f:[a,b] o \mathbb{R}$ אז קיים f:[a,b] o f:[a,b] אז קיים f:[a,b] o f

עבורה $c\in(a,b)$ תהי ב־(a,b). וגזירה ב־(a,b) וגזירה בי נפה ב־ $f:[a,b] o\mathbb{R}$ עבורה גומשפט בורה יותהי $f:[a,b] o \mathbb{R}$ תהי $f'(c)=rac{f(b)-f(a)}{b-a}$

f המשפטים האלה חזקים כי הם מקשרים בין הנגזרת לבין ערכים קונקרטיים של

כך $u,v\in I$ יהי $f:I\to\mathbb{R}$ ותהי ותהי $f:I\to\mathbb{R}$ גזירה. יהיו יהי וברboux משפט ערך הביניים של יהי וf'(w)=c יהי f'(v)=f'(v) קיים f'(v)=f'(v) אזי לכל f'(v)=f'(v) קיים f'(v)=f'(v)

כלומר, למרות שנגזרת לא בהכרח רציפה, היא עדיין תמיד מקיימת את משפט ערך הביניים.

 x_0 גזירה ב x_0 , גזירה ב x_0 , גזירות בסביבה של גזירה ב x_0 , גזירה ב x_0 , גזירה ב x_0 , גזירה ב

 $x_0: x_0: x_0$ ביסע n גזירות $f,g: I o \mathbb{R}$ ו וי $x_0 \in I$ בילל לייבניץ: יהי

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) \cdot g^{(n-k)}(x_0)$$

 $(f \cdot g)' = f' \cdot g + g' \cdot f$ שאו הכללה של הכללה

כך $g:V\to\mathbb{R}$ ותהי $x_0\in\mathbb{R}$ ו־U סביבה של $x_0\in\mathbb{R}$. תהי $f:U\to\mathbb{R}$ גזירה ב־ $x_0\in\mathbb{R}$ ותהי $x_0\in\mathbb{R}$ ט"ך $f:U\to\mathbb{R}$ גזירה ב־ $f:U\to\mathbb{R}$ אזי $f:U\to\mathbb{R}$ גזירה ומתקיים:

$$(g(f(x_0)))' = g'(f(x_0)) \cdot f'(x_0)$$

מדריך למהנדסים

$$\begin{array}{cccc} (\alpha f\left(x\right) + \beta g\left(x\right))' & \alpha f'\left(x\right) + \beta g'\left(x\right) \\ (f\left(g\left(x\right)\right))' & f'\left(g\left(x\right)\right) \cdot g'\left(x\right) \\ (f\left(x\right) \cdot g\left(x\right))' & f'\left(x\right) \cdot g\left(x\right) + g'\left(x\right) \cdot f\left(x\right) \\ \frac{\left(\frac{f\left(x\right)}{g\left(x\right)}\right)'}{\left(g\left(x\right)\right)^{2}} & \frac{f'\left(x\right) \cdot g\left(x\right) - g'\left(x\right) \cdot f\left(x\right)}{\left(g\left(x\right)\right)^{2}} \\ \hline \left(x^{n}\right)' & n \cdot x^{n-1} \\ \frac{\left(\ln x\right)'}{\left(\sin \left(x\right)\right)'} & \cos \left(x\right) \\ \left(\cos \left(x\right)\right)' & -\sin \left(x\right) \end{array}$$

f'(x)=g'(x) אם אם וגזירות בפנימו. אם $f,g:I o\mathbb{R}$ רציפות ב־I וגזירות בפנימו. אם משפט: יהי $f,g:I o\mathbb{R}$ לתהיינה גינה איז קיים כך שלכל אים בינימו איז קיים לה

$$f\left(x\right) = g\left(x\right) + c$$

 $\lim_{x \to a^+} f'(x) = l$ משפט: תהי $f:[a,b) \to \mathbb{R}$ רציפה ב־ $f:[a,b) \to \mathbb{R}$ וגזירה ב־ $f:[a,b) \to \mathbb{R}$ אזי $f:[a,b] \to \mathbb{R}$ ומתקיים: $f:[a,b] \to \mathbb{R}$

 x_0 ביפרנציאביליות: תהי f מוגדרת ב־I קטע פתוח ו־ $x_0 \in I$. נאמר ש־f דיפרנציאבילית ב

- x_0 רציפה ב־ f(x) .1
- .($\lim_{x \to x_0} \frac{f(x) (ax + b)}{x x_0} = 0$,כלומר, $x_0 = x_0$ שהוא קירוב אשון ב־ 2.

 $y = f'(x_0)(x - x_0) + f(x_0)$ משפט: f דיפרנציאבלית ב־ x_0 גזירה ב־ x_0 גזירה ב-

. משפט: יהי I קטע פתוח, $x_0 \in I$, $x_0 \in I$ מונוטונית חזק ורציפה

 $.ig(f^{-1}\left(y_{0}
ight)ig)'=rac{1}{f'\left(x_{0}
ight)}$:ו $y_{0}=f\left(x_{0}
ight)$ גזירה ב־ $f^{-1}:f\left(I
ight)
ightarrow\mathbb{R}$ אם f גזירה ב־ x_{0}

5.7 חקירת פונקציות

5.7.1 מינימום ומקסימום מקומי

 $f\left(x
ight)\geq f\left(x_{0}
ight)$, $x\in\left(x_{0}-\delta,x_{0}+\delta
ight)$ הגדרה: $x_{0}\in I$ פנימית מינימום מקומי אם לכל

משפט היי $f:I \to \mathbb{R}$ יהי $f:I \to \mathbb{R}$ יהי ותהי $f:I \to \mathbb{R}$ פנימית. משפט יהי $f:I \to \mathbb{R}$ יהי ותהי ותהי היי ודרה בכל נקודה פנימית ב-1. אם $f:I \to \mathbb{R}$ מינימום/מקסימום מקומי אז $f:I \to \mathbb{R}$ פנימית ב-1.

משפט: יהי $f'(x_0)=0$ פנימית, f גזירה פעמיים ב־ $x_0=0$ ו־ $x_0=0$ אזי, אם $x_0\in I$ אזי, אם $x_0\in I$ אזי, אז x_0 מקטימום מקומי, אם $x_0\in I$ אזי, אז x_0 מקסימום מקומי, אם $x_0\in I$ אזי, אזי x_0 אזי, אזי x_0 מינימום מקומי, אם x_0 אזי, אם

5.7.2 עליה וירידה

 $f'(x)\geq 0$,I קטע מוכלל, $f:I\to\mathbb{R}$ רציפה וגזירה בפנים I. אם לכל x בפנים I קטע מוכלל, $f:I\to\mathbb{R}$ (כ), אז f עולה (ממש) בכל

טענה: תהי $f'(x_0)>0$ ו־ x_0 בימת אם f' רציפה בי $x_0\in I$ אז קיימת $f:I\to\mathbb{R}$ אז קיימת סביבה של x_0 בה x_0 עולה ממש.

5.8 כלל לופיטל

<u>"0"</u> **5.8.1**

יהי הבאים התנאים התנאים על x_0 של בסביבה נקובה בסביבה התנאים התנאים והי f,g^- ו קטע מוכלל ו

$$\lim_{x \to x_0} f(x) = 0$$
 .1

$$\lim_{x\to x_0} g(x) = 0$$
 .2

$$x \in I$$
 לכל $g'(x) \neq 0$.3

(סופי או אינסופי)
$$\lim_{x o x_0} rac{f'(x)}{g'(x)}$$
 4.

$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 tx

$$\frac{"\infty"}{"\infty"}$$
 5.8.2

יהי בסביבה התנאים התנאים על x_0 כך שמתקיימים התנאים הבאים: f,g גזירות בסביבה נקובה של

$$\lim_{x\to x_0} g(x) = \pm \infty$$
 .2

$$x \in I$$
 לכל $g'(x) \neq 0$.3

(סופי או אינסופי)
$$\lim_{x o x_0} rac{f'(x)}{g'(x)}$$
 קיים.

$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 tx

טורי טיילור 6

6.1 היי זה לא הזה ממבוא מורחב?

(בניגוד לחלקים הקודמים אני לא במצב רוח לכתוב באופן יותר מדי פורמלי)

$$\lim_{x\to x_0} f(x) = 0, \lim_{x\to x_0} g(x) = 0$$
 יהיו

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$
 DN $f(x) = o(g(x))$

$$|f(x)| \le c \cdot |g(x)|$$
 קיים $c > 0$ כך שבטביבה של $f(x) = O(g(x))$

(אין באמת שימושים ל־
$$O$$
 עצמו) $f(x) = O(g(x)) \land g(x) = O(f(x))$ $f(x) = \Theta(g(x))$

6.2 באמת טורי טיילור אני מבטיח

הגדרה: יהי I קטע פתוח, $x_0\in I$, אם $x_0\in I$, אם הגדרה: יהי I קטע פתוח, אם הארה: $x_0\in I$, אם הגדרה: יהי $x_0\in I$, אם הארה: יהי $x_0\in I$, אם שתיהן גזירות פעמים ב x_0 ומתקיים ומתקיים x_0 ומתקיים ואס הארה: יהי x_0 ואס הארה: יהי x_0 ומתקיים ואס הארה: יהי x_0 ואס הארה:

$$f(x)-g(x)=o\left(\left(x-x_0
ight)^n
ight)$$
 אז מזדהות עד סדר $f(x)$ מענה: אם אם $f(x)$

 $p_n\left(x
ight)$ נאמר ש־ x_0 פעמים ב x_0 גזירה x_0 פולינום x_0 פולינום x_0 פולינום x_0 פולינום x_0 פולינום x_0 איילור של x_0 אם x_0 בי x_0 מזדהה עם x_0 בי x_0 עד סדר x_0

משפט: קיים ויחיד $p_{n}\left(x\right)$ והנוסחה היא:

$$p_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

 $R_{n}\left(x
ight)=f\left(x
ight)-p_{n}\left(x
ight)$ הגדרה: נגדיר את השארית להיות

משפט פאנו: $R_n\left(x\right)=o\left(\left(x-x_0\right)^n\right)$ משפט אנו: $R_n\left(x\right)=o\left(\left(x-x_0\right)^n\right)$ משפט פאנו: $R_n\left(x\right)=o\left(\left(x-x_0\right)^n\right)$ משפט טיילור עם שארית לגרנז': יהי I קטע פתוח, קטע פתוח, איירה ב־I x_0 בין x_0 בין אז לכל $x_0 \neq x \in I$ אז לכל

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1}$$

, x_0 ל x בין x לכל x ולכל x בין אולכל אולכל מסקנה: אם היים x בין אינסוף פעמים ב־x וקיים ווכל אולכל אולכל אולכל ווכל x בין x בין

לפי טיעון כזה מוכיחים שהשארית שואפת ל-0 ב $e^x = \sum_{k=0}^\infty rac{x^k}{k!}$ ולכן בעצם ואפשר שואפת שהשארית שואפת ל-0 להעריך את השגיאה.