Statistical modelling Week 1

Dr. Léo Belzile HEC Montréal

Welcome

Léo Belzile

- Assistant professor of Decision Sciences
- PhD from EPFL (Switzerland)
- → I study extreme value analysis (floods, heatwaves, etc.)
- ◆ I come from the Gaspe Peninsula
- I enjoy hiking in the Alps
- Expectations: active learning, participation in class, feedback!

Let's meet

- Where are you from?
- Academic background?
- What are your expectations for this course?

Zoom breakout rooms

A breakout room is used for sessions in small groups.

- → Different settings (you can share content/screen).
- ◆ You can ask me for help; I will get a notification.
- I can send everyone messages (pop-up)
- You can't access the history of the chat from the main meeting while in the breakout rooms.
- Please don't leave the breakout room until I instruct you to!
- Your microphone will be muted when you come back.
- ◆ When I end the breakout sessions, there is a one minute delay before going back (none if you leave them immediately).

Zoom practice

We will practice Breakout rooms, which are small group session.

Icebreaking activity: introduce yourself to classmates and give five facts about yourself, e.g.,

- I live in Tunisia
- I am a mountain climber
- ◆ I own a labrador named Daisy
- I used to work as a photographer
- I have an engineering background

Recap of week 1

- Testing procedure
- Central limit theorem
- Graphics
- Exploratory data analysis

Question and answer (Q&A) period

- Raise your hand to ask a question.
 - When asked, unmute yourself
- or post question on the chat.

Testing

Statistical inference is about drawing conclusion for population based on a representative sample.

- Postulate a model (often implicitly)
- Fix hypotheses
- Choose and compute the test statistic
- lacktriangle What if \mathcal{H}_0 ? Figure out expected behaviour of test
 - using asymptotic arguments (central limit theorem)
 - exact distribution (nonparametric tests, small samples)
 - using simulations from the null model (e.g., permutation, bootstrap)

Simulation-Based and Theoretical F Null Distributions

Often, the null hypothesis is derived by making assumptions about the underlying distribution of the data.

Graphics

Single variable:

- continuous: -
- categorical: -

Two variables:

- → continuous ²: -
- continuous × categorical: -
- categorical ²: -

Improving graphs

Désirée de Leon and Hasse Wallum, CC BY-NC-ND 2.0

Wooclap poll

♣ Go to https://www.wooclap.com/STATMOD1 to begin the poll

SAS on Demand demo

Workshop

Download the .zip folder containing 30 graphs.

- ♣ Does the graph tell a story (i.e., is it standalone?)
- What are the variables and the mapping?
- Variable type: is the choice of geometry adequate?
- Is the graph complete?
- Highlight good features and improvement points

Assignment 1

Pick a graph and repeat this commentary exercise

Good sources include

- the Twitter handles:
 - **★** BBC [@BBCNewsGraphics]
 - ★ Washington Post [@PostGraphics]
 - New York Times [@nytgraphics]
 - + etc.
- newspaper and magazine
- data providers, e.g., US Census

Discussion

Perform and exploratory data analysis of the insurance dataset in small groups.

Questions

Summary

_ _ _