Lecture 14: Digital Watermarking

Some slides from Prof. M. Wu, UMCP

Lab2 Demo

Csil

Monday: May 24, 1 – 4pm Optional (9:30 – 11am) 10 minutes per Group

5 Minutes Presentation5 Minutes Demo

Sign-up Sheet posted outside of my office HFH 1121

Review: What is a Watermark?

- A watermark is a "secret message" that is embedded into a "cover message"
- Usually, only the knowledge of a secret key allows us to extract the watermark.
- Has a mathematical property that allows us to argue that its presence is the result of deliberate actions.
- · Effectiveness of a watermark is a function of its
 - Stealth
 - Resilience
 - Capacity

Various Categories of Watermarks

- Based on method of insertion
 - Additive
 - Quantize and replace
- Based on domain of insertion
 - Transform domain (today)
 - Spatial domain (last lecture)
- · Based on method of detection
 - Private requires original image
 - Public (or oblivious) does not require original
- Based on security type
 - Robust survives image manipulation
 - Fragile detects manipulation (authentication)

Review: Embedding Fragile Watermarks

- Method 1:
 - Spatial Domain Least Significant Bit (LSB) Modification
 - Simple but not robust

Review: Spatial Domain Robust Watermarking

- Pseudo-randomly (based on secret key) select n pairs of pixels:
 - pair i: a_i , b_i are the values of the pixels in the pair
 - The expected value of sum_i $(a_i-b_i)==0$
- Increase a_i by 1, Decrease b_i by 1
 - The expected value of $sum_i (a_i-b_i)$ now →2n
- To detect watermark, check sum_i (a_i-b_i) on the watermarked image

TODAY: FREQUENCY-DOMAIN ROBUST WATERMARKING

Secure Spread Spectrum Watermarking For Multimedia

Cox, Kilian, Leighton, and Shamoon, IEEE Transactions on Image Processing vol. 6, no. 12, December

An Example

1997

© Copyright ...

• Embedding domain tailored to media characteristics & application requirement

Spread Spectrum Watermark

- Spread Spectrum == transmits a narrowband signal over a much larger bandwidth
 - the signal energy present in any single frequency is much smaller
- Apply this to watermark:
 - The watermark is spread over many frequency bins so that the (change of) energy in any one bin is very small and almost undetectable
- Watermark extraction == combine these many weak signals into a single but stronger output
 - Because the watermark verification process knows the location and content of the watermark
- To destroy such a watermark would require noise of high amplitude to be added to all frequency bins

Spread Spectrum Watermark: Cox et al

- What to use as watermark? Where to put it?
 - Place wmk in perceptually significant spectrum (for robustness)
 - Modify by a small amount below Just-noticeable-difference (JND)
 - Use long random noise-like vector as watermark
 - for robustness/security against jamming+removal & imperceptibility

 $\alpha = 0.1$ $w_i \sim \text{iid}$, zeromean, unit variance

- Embedding $v'_i = v_i + \alpha v_i w_i = v_i (1 + \alpha w_i)$
 - Perform DCT on **entire image** and embed wmk in DCT coeff.
 - Choose N=1000 largest AC coeff. and scale {v_i} by a random factor

Details: Embedding a Watermark

- Compute the M x M DCT of an M x M gray scale cover image I
- The watermark W must be composed of random numbers drawn from a Gaussian distribution N(0,1)
 - $N(\mu, \sigma^2)$ denotes a normal distribution with mean μ , and variance σ^2
- Embed a sequence of watermark: W= w₁, w₂, ..., w_n, according to N (0,1), into the n largest magnitude DCT coefficients X_i, excluding the DC component)
 - Type I: $X_{i}' = X_{i} + \alpha w_{i}$, i=1....n
 - Type II: $:X_i' = X_i(1 + \alpha w_i) i = 1...n$
- Now compute the inverse DCT to obtain the watermarked image I' In general α =0.1, n=1000

Watermarking Example by Cox et al.

<u>Original</u>

<u>Cox</u> whole image DCT Embed in 1000 largest coeff.

Difference between marked & original

Cox et al's Scheme (cont'd): Detection

 Subtract original image from the test one before feeding to detector ("non-blind detection")

- Correlation-based detection
 - a correlator normalized by |Y| in Cox et al. paper

Details: Detection Steps

- Compute the DCT of the watermarked (and possibly attacked) cover image I*
 - Need original image and compute its own DCT values
 - Find the n largest AC coefficients from the original image
- Extract the watermark W
 - For Add-SS: $y_i = (x_i^* x_i) / \alpha$
 - For Mult-SS: $y_i = (x_i^* x_i) / \alpha x_i$
- Evaluate the similarity of Y and W using sim $sim(Y,W) = \frac{\langle Y,W \rangle}{\sqrt{\langle Y,Y \rangle}}$

$$sim(Y,W) = \frac{\langle Y,W \rangle}{\sqrt{\langle Y,Y \rangle}}$$

• If sim(Y, W) > T, a given threshold, the watermark W exists

Performance of Cox et al's Scheme

Distortion n Similarity 3: threshold = 6.0 (december of threshold) - (claimed) scanning", n No big surprise equivalen

Distortion	none	scale 25%	JPG 10%	JPG 5%	dither	crop 25%	print- xerox-
							scan
similarity	32.0	13.4	22.8	13.9	10.5	14.6	7.0

threshold = 6.0 (determined by setting false alarm probability)

- (claimed) scaling, JPEG, dithering, cropping, "printing-xeroxingscanning", multiple watermarking
- No big surprise with high robustness
 - equivalent to sending just 1-bit {0,1} with O(103) samples

Summary: Spread Spectrum Embedding

- Main ideas
 - Place wmk in perceptually significant spectrum (for robustness)
 - Modify by a small amount below Just-noticeable-difference (JND)
 - Use long random vector of low power as watermark to avoid artifacts

(for imperceptibility, robustness, and security)

- Cox's approach
 - Perform DCT on entire image & embed wmk in large DCT AC coeff.
 - Embedding: $x'_i = x_i + \alpha x_i w_i = x_i (1 + \alpha w_i)$
 - Detection: subtract original and perform correlation w/ wmk

Collusion Attacks by Multiple Users

- Collusion: A cost-effective attack against multimedia fingerprints
 - Users with same content but different fingerprints come together to produce a new copy with diminished or attenuated fingerprints
 - Fairness: Each colluder contributes equal share through averaging, interleaving, and nonlinear combining

Your Lab3

Implement the spread spectrum watermark embedding in matlab [60pt] (estimated time: 2--3 hours)

- Read original image (download lena.jpg here), make it 8-bit grayscale)
 - rgb2gray(), uint8()
- Generate watermark vector w of length n (e.g., n = 1000)
 - randn()
- Apply 2D DCT transform on the entire image, not each macroblock (dct2())
- Take the n largest AC coefficients x
- Generate watermarked coefficients x' by x' = x * (1 + a * w) w is the corresponding watermark component, a = 0.1
- Apply 2D IDCT on the new DCT coefficients (original DC, new x' and the rest AC coefficients) (idct2())
- · Compare the original and watermarked image
 - Compute the PSNR
- Repeat the above with different n (100, 200, 500, 1000, 1500)
- Plot a figure of PSNR vs. n

Your Lab3 cont

Implement the spread spectrum watermark detection in matlab

[40pt] Detect/extract watermark (estimated time, 2--3 hours)

- apply 2D DCT on the image to be tested
- extract the n largest coefficients (Hint: use the original image to identify the location of these n coefficients)
- Subtract the corresponding n DCT value of the original image,
 y_i =(x_i* -x_i)/ α x_i
- Compute the similarity, and use a threshold of **6** to check with a particular watermark W is present

$$sim(Y,W) = \frac{\langle Y,W \rangle}{\sqrt{\langle Y,Y \rangle}} \quad \langle Y,W \rangle = \sum_{i} y_{i} \cdot w_{i}$$

Due Tue. June 1, 11:59PM via turnin lab3, Individual project, no grouping

Your Lab3 cont

Examine Robustness in matlab

Bonus [25pt] Check robustness (estimated time: 2-3 hours)

- Add noise, alter your image (JPEG compression with quality 25 and 50), and see if you can detect the original watermark
 - Both Noise and JPEG compression steps can be found in the watermarking_demo.zip from the course website

outfilename='temp.jpg'; imwrite(wimg,outfilename,'Quality',25); wcimg=imread(outfilename);

noisyimg = imnoise(wimg,'gaussian');

- Produce collusion attacks
 - Generate three different watermarked (w1,w2,w3) images following the same manner, take the average of the three to create a new image, and detect whether any watermark (w1,w2, w3) is present
- Try the above with different n values and report your findings

FINGERPRINTING

Robust Wmk Application for Tracing Traitors

- Leak of information as well as alteration and repackaging poses serious threats to government operations and commercial markets
 - e.g., pirated content or classified document

- Promising countermeasure: robustly embed digital fingerprints
 - Insert ID or "fingerprint" (often through conventional watermarking) to identify each user
 - Purpose: deter information leakage; digital rights management (DRM)
 - Challenge: imperceptibility, robustness, tracing capability

Summary of Digital Watermarking

- Widely used to protect digital media
- Many different forms (still an active research area today)
 - Spatial vs. Frequency
 - Robust vs. Fragile

Schedule for the Next 2 weeks

- Mon (May 24): No class, Demo Session at Csil
- Wed. (May 26): Discussion on lab3
- Mon (May 31): No class, holiday ☺
- Wed. (June 2): Final review