Verope I 3	Brues nu Yvette, le 21 octobre 1968
Vanagar II 3	Cla grotherdreck,
	En fait, il n'est pas nécessaire de faire de savants
	recollages de constenes cotangents pour prouver que
	proposition: Soit X un espace analytique complexe compact. Pour que
	X soit un schéma, il faut et suffit que X red le soit
	On se ramène à myposor montrer que si Xo est défini par un Idéal
	de carré ruel, soit il, de X, alors
	(Xo at un schema) \Rightarrow (X at un schema)
	Soit Ean (Xo, N) et E ely (Xo, N) les groupes analytiques et algébriques
	d'entensions infinitérimales de Xo par et . Soit enfin X le complène cotangent
	de Xo, donné localement, dans la catégorie décivée . il s'obtient en plongeont
	localement (Zarishi, ou étale) Xo dans un setémes line et permet de définie
(1)	$\mathcal{X}_{om}(\mathcal{V}, \mathcal{N})$ et $Ext'(\mathcal{V}, \mathcal{N})$.
	Soit le diagramme :
(2)	0 → H' dg(Xo, 20m (K, N)) → Ealg(Xo, N) → H°(Xo, Ent'(K, N))
	0 → H'an (X, Xom(K, W)) → Ean(Xo, W) B Hoan(Xo, Ent'(K, W))
	Vu les significations (locales) de (1), les lignes sont essetes;
	par GAGA, les flècles verticales extrêmes nont des isomorphismes. Roste à
	comparer les insges de « et p monter que lm (p) « lm («).
311	
14	

Soit donc Vi un reconverment affine de Xo, et $e \in H^{\circ}(X, \operatorname{Ent}^{1}(K, \mathcal{O}))$ representé par des clanes d'isomorphies (algébriques) d'estérnions de Vi par WIVi, clares d'isomorphies qui se recollent: noit My un isomorphisme U; | VinV, ~ U' | VinV; L'abstruction à construir des M, tel que M, M, = M, h est denné par do n où do at une certaine flèche a: H° (x, Ent' (k, d)) -> H2 (x, 20m (k, d)) La même construction marche dans le cas analytique, et on conclut par une nouvelle application de GAGA. Roma!: Non pour les espaces algébriques; espaces rigides analytiques; ochémes formels BOHNE . Bien à toi P. Deligne