Name: _	
	/
Assignm	nent_7
Part 1:	
	(0) Suppose we have randomly drawn n iid tuples of sample data $(y, x1, x2, x3, x4)_1$, $(y, x1, x2, x3, x4)_2$,, $(y, x1, x2, x3, x4)_n$, from the population space X and Y. Suppose assumption 1-5 hold. Use the following dataset to answer the following questions. No need to answer this question. This question sets up the parameter of the following questions and serves as a separator. (Round your answer in 3 decimal Places as always).
	Attachments A7.csv
	(1) Which of the following estimator you would use to estimate the linear relationship between X and Y? A. Ordinary Least Square Estimator
	B. Mean Difference Estimator
	C. Variance Estimator
	C D. Sample Mean Estimator
	(2) What is the underlying theorem that guarantees the estimator you use is a consistent estimator? A. Spectral Theorem B. Gauss Markov Theorem
	C. Law of Large Number
	C D. Central Limit Theorem

Accepted characters: numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). **NOTE:** For scientific notation, a period MUST be used as the decimal point marker.

(3) What is your estimation	of for each	of the linear	coefficient
beta0 =			
*			
beta1 =			
*			
beta2=			
*			
beta3 =			
*			
beta4 =			
*			
			

Accepted characters: numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). **NOTE:** For scientific notation, a period MUST be used as the decimal point marker.

(4) Suppose the variance of the uncertainty u, $Var[u|X] = \sigma^2$ is unknown. How to estimate the $\sigma^2 = \dots$

Accepted characters: numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). **NOTE**: For scientific notation, a period MUST be used as the decimal point marker.

(5) After you have the estimated \sigma^2 (hat), think about how to estimate the variance of each linear coefficients. Fill in your estimation result below for the standard deviation of each of the linear coefficients:

```
sd(beta0) = ____

*__

sd(beta1) = ____

*__

sd(beta2) = ____

*__

sd(beta3) = ____

*__

sd(beta4) = ____
```

 (6) Is your estimation for those \beta_hat and \sigma^2_hat still reliable in this case? (Close to the true parameter?) True False
(7) Suppose we want to test whether Beta_2 is greater than 2 Let us first formulate it in the language of Hypothesis Testing. We set up the null hypothesis as H_0: \beta_2 = 2, and the alternative H_1: \beta_2 > 2. We want to know whether we could reject the null H_0 in favor of the alternative H_1 at 90% significant level. Which of the following test statistics do you want to use to test the above Null Hypothesis H_0? A. Wald-statistics B. z-statistics C. F-statistics D. t-statistics
 (8) What is the associated distribution of the correct test statistics follows? A. t-distribution B. F distribution C. \chi ^2 distribution D. Standard Normal
 (9) What is the underlying theorem that guarantees the statistics follow the desired distribution? A. Non of above B. Law of Large Number C. Gauss Markov Theorem D. Central Limit Theorem

Accepted characters : numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). NOTE: For scientific notation, a period MUST be used as the decimal point marker.
(10) What is the numerical value for the correct test statistics under H_0 and H_1 in question (7) = $*$
Accepted characters : numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). NOTE: For scientific notation, a period MUST be used as the decimal point marker.
(11) What is the critical value (Threshold value) for the underlying H_0 and H_1 at 90% significant level = $\underline{\hspace{1cm}}$
(12) Can you reject the Null H_0 in favor of the alternative H_1? True

Accepted characters: numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). NOTE: For scientific notation, a period MUST be used as the

Accepted characters: numbers, decimal point markers (period or comma), sign indicators (-), spaces (e.g., as thousands separator, 5 000), "E" or "e" (used in scientific notation). NOTE: For scientific notation, a period MUST be used as the

(14) What is the 90% confidenceInterval for the \beta 2? 90%CI = (,)

False

decimal point marker.

decimal point marker.

(13) What is the P-Value under H 0 and H 1?

at