CMPS 102 — Fall 2018 — Homework 2

"I have read and agree to the collaboration policy." - Kevin Wang

Solution to Problem 1: Hadamard Matrix

Claim 1.
$$H_n = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$$
 where $H_n[i,j] = \frac{1}{\sqrt{2^n}} (-1)^{i \cdot j}$

Proof. Given that $H_n[i,j] = \frac{1}{\sqrt{2^n}}(-1)^{i\cdot j}$, let matrix $H_n = \frac{1}{\sqrt{2^n}}H_n'$ where $H_n'[i,j] = (-1)^{i\cdot j}$. Let A_n , B_n , C_n , and D_n be the four $2^{n-1} \times 2^{n-1}$ sized submatrices formed when dividing matrix H_n into quarters as shown below:

where
$$i, j \in [0, 2^{n-1})$$

where $i', j' \in [2^{n-1}, 2^n)$

By definition of a Walsh-Hadamard matrix, the submatrix A_n is constructed such that the (i, j)-th entry of $A_n[i,j] = \frac{1}{\sqrt{2^n}}(-1)^{i \cdot j}$ where $i, j \in [0, 2^{n-1})$. As such,

$$A_n[i,j] = \frac{1}{\sqrt{2^n}} H'_{n-1}[i,j]$$

$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2^{n-1}}} H'_{n-1}[i,j]$$

$$\implies A_n = \frac{1}{\sqrt{2}} H_{n-1}$$

By definition of a Walsh-Hadamard matrix, the submatrix B_n is constructed such that the (i', j)-th entry of $B_n[i',j] = \frac{1}{\sqrt{2^n}}(-1)^{i'\cdot j}$ where $i' = i + 2^{n-1}$. As such,

$$i' \cdot j = (i+2^{n-1}) \cdot j$$

$$= (i \cdot j) + (2^{n-1} \cdot j)$$

$$= (i \cdot j) + [(1)(0) + (0)(j_{bit}) + (0)...]$$

$$= (i \cdot j) + 0$$

$$B_n[i', j] = \frac{1}{\sqrt{2^n}} H'_{n-1}[i', j]$$

$$= \frac{1}{\sqrt{2^n}} H'_{n-1}[i, j]$$

$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2^{n-1}}} H'_{n-1}[i, j]$$

$$\implies B_n = \frac{1}{\sqrt{2}} H_{n-1}$$

We note that the vice versa i, j' is an equivalent case. As such, $C_n = \frac{1}{\sqrt{2}}H_{n-1}$.

Finally, by definition of a Walsh-Hadamard matrix, the submatrix D_n is constructed such that the (i',j')-th entry of $D_n[i',j'] = \frac{1}{\sqrt{2^n}}(-1)^{i'\cdot j'}$ where $i',j'=i,j+2^{n-1}$. As such,

$$i' \cdot j' = (i + 2^{n-1}) \cdot (j + 2^{n-1})$$

$$= (i \cdot (j + 2^{n-1})) + (2^{n-1} \cdot (j + 2^{n-1}))$$

$$= (i \cdot j) + (i \cdot 2^{n-1}) + (j \cdot 2^{n-1}) + (2^{n-1} \cdot 2^{n-1})$$

$$= (i \cdot j) + 2[(1)(0) + (0)(i, j_{bit}) + (0)...] + [(1)(1) + (0)(0) + ...]$$

$$= (i \cdot j) + (0) + (1)$$

$$= (i \cdot j) + 1$$

$$D_n[i', j'] = \frac{1}{\sqrt{2^n}} H'_{n-1}[i', j']$$

$$= \frac{1}{\sqrt{2^n}} [H'_{n-1}[i, j] \times (-1^1)]$$

$$= -\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2^{n-1}}} H'_{n-1}[i, j]$$

$$\implies D_n = -\frac{1}{\sqrt{2}} H_{n-1}$$

Lastly, we piece the matrix together and get the recursive representation:

$$H_{n} = \begin{bmatrix} A_{n} & B_{n} \\ C_{n} & D_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} H_{n-1} & \frac{1}{\sqrt{2}} H_{n-1} \\ \frac{1}{\sqrt{2}} H_{n-1} & -\frac{1}{\sqrt{2}} H_{n-1} \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$$

Claim 2. The Euclidian norm of every column and every row is 1.

Proof. Let matrix $H_n = \frac{1}{\sqrt{2^n}} H'_n$ where $H'_n[i,j] = (-1)^{i \cdot j}$.

We define the Euclidian norm as the square root of the absolute squares of its elements. Because each element of H_n is equal to $\frac{1}{\sqrt{2^n}} \times \pm 1$, the Euclidian norm of every column and row in the $2^n \times 2^n$ Walsh-Hadamard matrix H_n is equal to:

$$||H_n|| = \sqrt{\left(\pm \frac{1}{\sqrt{2^n}}\right)^2 \times 2^n}$$
$$= \sqrt{\frac{2^n}{2^n}}$$
$$= 1$$

Lemma 1. Let M be a matrix with size $2^n \times 2^n$ and let M^T be its transpose. If M is an orthonormal matrix, then $M^TM = I_{2^n \times 2^n}$.

Proof. The result of M^TM is a matrix where [i, j] is equal to the dot product of columns i and j. As the dot product of every column must be 0 and each column has a Euclidian norm of 1, the result is the Identity matrix.

Claim 3. The columns of H_n form an orthonormal basis.

Proof. Let
$$H_n = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$$
 where $H_n[i,j] = \frac{1}{\sqrt{2^n}} (-1)^{i \cdot j}$.

Let $H_n^T = H_n$ due to the commutative property of the bitwise dot product $i \cdot j$. By Lemma 1, the base case H_1 is an orthonormal matrix:

$$H_1^T H_1 = H_1 H_1$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1+1 & 1-1 \\ 1-1 & 1+1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= I_{2^1 \times 2^1}$$

Let us assume that H_{n-1} is orthonormal:

$$H_{n-1}^T H_{n-1} = H_{n-1} H_{n-1} = I_{2^{n-1} \times 2^{n-1}}$$

Then:

$$\begin{split} H_n^T H_n &= H_n H_n \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} (H_{n-1} H_{n-1}) + (H_{n-1} H_{n-1}) & (H_{n-1} H_{n-1}) - (H_{n-1} H_{n-1}) \\ (H_{n-1} H_{n-1}) - (H_{n-1} H_{n-1}) & (H_{n-1} H_{n-1}) + (H_{n-1} H_{n-1}) \end{bmatrix} \\ &= \begin{bmatrix} H_{n-1} H_{n-1} & 0 \\ 0 & H_{n-1} H_{n-1} \end{bmatrix} \\ &= \begin{bmatrix} I_{2^{n-1} \times 2^{n-1}} & 0 \\ 0 & I_{2^{n-1} \times 2^{n-1}} \end{bmatrix} \\ &= I_{2^{n} \times 2^{n}} \end{split}$$

Let a vector
$$v\in\mathbb{R}^{2^n}$$
 and let $H_n=\frac{1}{\sqrt{2}}egin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$

Algorithm 1 Uses divide-and-conquer to compute $H_n \cdot v$

Hadamard-Vector-Product
$$(H_n$$
, v , n):

Let $v_1 = \begin{bmatrix} v_0 \\ \vdots \\ v_{(m/2)-1} \end{bmatrix}$ and $v_2 = \begin{bmatrix} v_{m/2} \\ \vdots \\ v_{m-1} \end{bmatrix}$, where $m = 2^n$

Let $H_n \cdot v = \begin{bmatrix} (H_n \cdot v)_A \\ (H_n \cdot v)_B \end{bmatrix}$, where

$$(H_n \cdot v)_A = H_{n-1} \cdot v_A + H_{n-1} \cdot v_B = H_{n-1} \cdot (v_A + v_B)$$

$$(H_n \cdot v)_B = H_{n-1} \cdot v_A - H_{n-1} \cdot v_B = H_{n-1} \cdot (v_A - v_B)$$

if $n = 1$ then
$$\text{Return } \frac{1}{\sqrt{2}} \begin{bmatrix} H_n \cdot v_A \\ H_n \cdot v_B \end{bmatrix}$$
else $\{n > 1\}$

$$\text{Return } \begin{bmatrix} \text{Hadamard-Vector-Product } (H_{n-1}, (v_A + v_B), n - 1) \\ \text{Hadamard-Vector-Product } (H_{n-1}, (v_A - v_B), n - 1) \end{bmatrix}$$
end if

Claim 4. The time complexity of the algorithm is $O(m \log m)$, where $m = 2^n$.

Proof. Each half of $H_n \cdot v$ takes time $T\left(\frac{m}{2}\right)$. Each vector/matrix addition or subtraction takes time O(m). Therefore, the recurrence relation for the algorithm is defined as:

$$T(m) = 2T\left(\frac{m}{2}\right) + O(m)$$

Thus, by Case 2 of the Master Theorem, the algorithm's time complexity is $O(m \log m)$.