Design Considerations for the Characterization of Capacitors

Michael L. DeLibero

Case Western Reserve University

August, 2015

Outline

Aim of Work

Background

Instrumentation

Regression

Modeling

Future Work

Aim of Work

Background

Figure: Circuit Flow Chart

SENSEB

C88 0.1uF

9

OUTB

8 REFB

12 SENSEA 13 OUTA 14 REFA 10 SENSEB 9 OUTB

0.1uF

Figure: Basic LSE

Basic Regression

$$y = a_0 + a_1 x \tag{1}$$

$$E^{2} = \sum_{i=1}^{n} (y_{i} - y)^{2}$$
 (2)

$$E^{2} = \sum_{i=1}^{n} (y_{i} - (a_{0} + a_{1}x_{i}))^{2}$$
 (3)

$$\frac{\partial E^2}{\partial a_0} = 0 = \sum_{i=1}^n (-2y_i + 2a_0 + 2a_1x_i) \tag{4}$$

$$\frac{\partial E^2}{\partial a_1} = 0 = \sum_{i=1}^n (-2y_i x_i + 2a_0 x_i + 2a_1 x_i^2)$$
 (5)

Figure: GRM31MR71H105KA88 Capacitor Data [3]

$$G(s) = \frac{A_0 + A_1 s + A_2 s^2 + \dots + A_n s^n}{B_0 + B_1 s + B_2 s^2 + \dots + B_m s^m} [1][Eq. 3]$$
 (6)

$$\lambda_h = \sum_{k=0}^{m} \omega_k^h \, [1][Eq. \, 15] \tag{7}$$

$$S_h = \sum_{k=0}^{m} \omega_k^h R_k \ [1][Eq. \ 16] \tag{8}$$

$$T_h = \sum_{k=0}^{m} \omega_k^h I_k \ [1][Eq. \ 17] \tag{9}$$

$$U_h = \sum_{k=0}^{m} \omega_k^h (R_k^2 + I_k^2) [1] [Eq. 18]$$
 (10)

$$M = \begin{bmatrix} \lambda_0 & 0 & -\lambda_2 & 0 & T_1 & S_2 \\ 0 & \lambda_2 & 0 & -\lambda_4 & -S_2 & T_3 \\ \lambda_2 & 0 & -\lambda_4 & 0 & T_3 & S_4 \\ 0 & \lambda_4 & 0 & -\lambda_6 & -S_4 & T_5 \\ T_1 & -S_2 & -T_3 & S_4 & U_2 & 0 \\ S_2 & T_3 & -S_4 & -T_5 & 0 & U_4 \end{bmatrix}$$
(11)

$$N = \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \\ \vdots \\ B_1 \\ B_2 \\ B_3 \\ \vdots \end{bmatrix} [1][Eq. \ 21b] \quad (12) \qquad C = \begin{bmatrix} S_0 \\ T_1 \\ S_2 \\ T_3 \\ \vdots \\ 0 \\ U_2 \\ 0 \\ \vdots \end{bmatrix} [1][Eq. \ 21c] \quad (13)$$

$$MN = C [1][Eq. 20]$$
 (14)

Figure: Levy's Technique

$$W_{kL} = \frac{1}{|Q(jw_k)_{L-1}|^2} [2]$$
 (15)

$$E = \sum_{k=1}^{n} |\epsilon'_{k}|^{2} W_{kL} [2] [Eq. 7]$$
 (16)

Figure: LSE + Iteration

Figure: 6 Term Model

$$\bar{Z}(s) = \frac{(R_E + R_L) + (L_E + C_D R_D R_E + C_D R_D R_L + C R_E R_L + C_D R_E R_L)s}{1 + (C_D R_D + C R_L + C_D R_L)s + C C_D R_D R_L s^2} + \frac{(C_D L_E R_D + C L_E R_L + C_D L_E R_L + C C_D R_D R_E R_L)s^2 + C C_D L_E R_D R_L s^3}{1 + (C_D R_D + C R_L + C_D R_L)s + C C_D R_D R_L s^2}$$
(17)

$$\bar{Z}(s) = \frac{a_0 + a_1 s + a_2 s^2 + a_3 s^3}{b_0 + b_1 s + b_2 s^2}$$
(18)

Figure: 6 Term Model: Bad Initilization

$$a_{0} = 5.9991E^{+03}$$

$$a_{1} = 1.7934E^{-04}$$

$$a_{2} = 3.3158E^{-12}$$

$$a_{3} = 6.8295E^{-22}$$

$$b_{0} = 1.0000$$

$$b_{1} = 5.9057E^{-03}$$

$$b_{2} = 1.4067E^{-12}$$

$$C = -8.2563E^{-10}$$

$$R_{E} = 3.1886E^{-01}$$

$$L_{E} = 4.8551E^{-10}$$

$$R_{L} = 4.8551E^{-10}$$

$$C_{D} = 9.8536E^{-07}$$

$$R_{D} = -2.8824E^{-01}$$
(20)

$$a_{0} = 1$$
 $a_{1} = 1$
 $a_{2} = 1$
 $a_{3} = 1$
 $b_{0} = 1$
 $b_{1} = 0$
 $c = INF$
 $c = INF$
 $c = INF$
 $c = IND$
 $c = IND$
 $c = IND$
 $c = IND$
 $c = IND$

$$a_{0} = 2$$
 $a_{1} = 5$
 $a_{2} = 4$
 $a_{3} = 1$
 $b_{0} = 1$
 $b_{1} = 3$
 $c = 1$
 $c = 1$

Figure: 6 Term Model: Good Initilization

Figure: 6 Term Model: Relative Error

Modeling

Future Work

Complex-curve fitting.

Automatic Control, IRE Transactions on, AC-4(1):37–44, 1959.

C. K. Sanathanan and J. Koerner.

Transfer function synthesis as a ratio of two complex polynomials.

Automatic Control, IEEE Transactions on, 8(1):56–58, Jan 1963.

Sim surfing.

http://ds.murata.co.jp/software/simsurfing/en-us/ index.html?intcid5=com_xxx_xxx_cmn_nv_xxx.