Screenshots:

Initial data:

In [4]: df = pd.read_csv("data.csv")
 df.head(10)

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	
5	843786	М	12.45	15.70	82.57	477.1	0.12780	0.17000	0.15780	0.08089	
6	844359	М	18.25	19.98	119.60	1040.0	0.09463	0.10900	0.11270	0.07400	
7	84458202	М	13.71	20.83	90.20	577.9	0.11890	0.16450	0.09366	0.05985	
8	844981	М	13.00	21.82	87.50	519.8	0.12730	0.19320	0.18590	0.09353	
9	84501001	М	12.46	24.04	83.97	475.9	0.11860	0.23960	0.22730	0.08543	
10 rows x 33 columns											

Split the data into training data and split data.

```
[13]: from sklearn.model_selection import train_test_split
[14]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
[15]: x_train.shape[1]
```

:[15]: 30

Caption

Screenshots of running the Logistic Regression algorith

```
In [16]: from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train,y_train)
y_pred_lr = lr.predict(x_test)
import sklearn.metrics as metrics
fpr, tpr, threshold = metrics.roc_curve(y_test, y_pred_lr)
roc_auc = metrics.auc(fpr,tpr)
roc_auc(
```

```
[18]: plt.subplots(1, figsize=(7,5))
   plt.title('Logistic Regression')
   plt.yticks(tpr)
   plt.xticks(fpr)
   plt.xlabel('FPR')
   plt.ylabel('TPR')
   plt.plot(fpr, tpr)
t[18]: [<matplotlib.lines.Line2D at 0x7f9829115b80>]
```


Running the KNN Algorithm:

```
In [19]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train,y_train)
y_pred_knn = knn.predict(x_test)
import sklearn.metrics
fpr, tpr, threshold = metrics.roc_curve(y_test,y_pred_knn)
roc_auc_knn = metrics.auc(fpr,tpr)
roc_auc_knn
/Users/mounikasika/opt/anaconda3/lib/python3.9/site-packages/sklearn/neighbors/_classification.py:228: FutureWarnin
g: Unlike other reduction functions (e.g. `skew', `kurtosis`), the default behavior of `mode` typically preserves t
he axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become Fals
e, the `axis' over which the statistic is taken will be eliminated, and the value None will no longer be accepted.
Set `keepdims` to True or False to avoid this warning.
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Out[19]: 0.9126706891076531

In [20]: accuracy_score(y_test,y_pred_knn)

Out[20]: 0.9122807017543859
```


Running the Decision Tree algorithm.

EED

```
In [22]: from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(x_train,y_train)
y_pred_dt = dt.predict(x_test)
import sklearn.metrics
fpr, tpr, threshold = metrics.roc_curve(y_test,y_pred_dt)
roc_auc_dt = metrics.auc(fpr,tpr)
roc_auc_dt

Out[22]: 0.9158463004128296

In [23]: accuracy_score(y_test,y_pred_dt)
Out[23]: 0.9122807017543859
```

```
In [24]: plt.subplots(1, figsize=(7,5))
    plt.title('Decision Tree classifier')
    plt.xlabel("FPR")
    plt.ylabel("TPR")
    plt.yticks(tpr)
    plt.xticks(fpr)
    plt.xticks(fpr)
    plt.plot(fpr,tpr)
Out[24]: [<matplotlib.lines.Line2D at 0x7f97f819ae80>]
```

·

TextEdit

Running the SVM algorithm.

```
In [25]: from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn.svm import SVC
    import sklearn.metrics as metrics

pipeline = Pipeline([('scaler', StandardScaler()), ('classifier', SVC(kernel='rbf'))])
    pipeline.fit(x_train,y_train)
    pred_svm=pipeline.predict(x_test)
    fpr,tpr,threshold=metrics.roc_curve(y_test,pred_svm)
    roc_auc_rbf=metrics.auc(fpr,tpr)

In [26]: roc_auc_rbf

Out[26]: 0.9787234042553192

In [27]: accuracy_score(y_test,pred_svm)

Out[27]: 0.9824561403508771
```

