Data and Signals

Introduction

Computer networks transmit signals

Signals are the electric or electromagnetic *encoding* of data

Data and signals can be analog or digital

Data vs Signals

Data is what we want to transmit

Data is usually stored

Signals are what we use to transmit the data

Signals are transient

Data and Signals

Examples of data include:

- computer files
- movie on a DVD
- music on a compact disc
- collection of samples from a blood gas analysis device

Data and Signals

Examples of signals include:

- telephone conversation over a telephone line
- live television news interview from Europe
- web page download over your telephone line via the Internet
- others?

Analog is a continuous waveform, with examples such as music and video.

Figure 2-1 A simple example of an analog waveform

Digital is a discrete or non-continuous waveform with examples such as computer 1s and 0s.

It is harder to separate noise from an analog signal than it is to separate noise from a digital signal.

Figure 2-2
The waveform of a
symphonic overture
with noise

Noise in a digital signal. You can still discern a high voltage from a low voltage.

Figure 2-4
A digital signal with
some noise introduced

Noise in a digital signal. Too much noise - you cannot discern a high voltage from a low voltage.

Figure 2-5
A digital waveform
with noise so great
that you can no longer
recognize the original
waveform

All Signals Three Components

Amount - Amplitude

Time - Frequency

Phase

Amplitude

The amplitude of a signal is the height of the wave above or below a given reference point.

Figure 2-6
A signal with two
different amplitudes

Frequency

The frequency is the number of times a signal makes a complete cycle within a given time frame.

Measured in Hz (hertz = cycles/second)

Period is the length of one cycle = 1/frequency

Spectrum - The range of frequencies that a signal spans from minimum to maximum.

Human speech: 300 Hz to 3100 Hz

Bandwidth - The absolute value of the difference between the lowest and highest frequencies of a signal.

Human speech: 2800 Hz

Data Communications and Computer Networks Chapter 2

Figure 2-7 Three signals of 1 Hz, 2 Hz, and 3 Hz

Phase

The phase of a signal is the position of the waveform *relative* to a given moment of time or relative to time zero.

A change in phase can be any number of angles between 0 and 360 degrees.

Phase changes often occur on common angles, such as 45, 90, 135, etc.

Figure 2-8

A sine wave showing no phase change (a), a 180 degree phase change (b), and a 90 degree phase change (c)

Encoding

Converting data into signals - types

Transmitting

Digital data to digital signals

Digital data with analog signals

Analog data with digital signals

Analog data with analog signals

Different Conversion Schemes

Digital to Digital Encoding

Types of Digital to Digital Encoding

Unipolar Encoding

Types of Polar Encoding

NRZ-L and NRZ-I Encoding

Manchester and Diff. Manchester Encoding

RZ Encoding

Converting Digital Data into Analog Signals

Modulation: change from one version to another

Three basic techniques:

- Amplitude modulation
- Frequency modulation
- Phase modulation

Modem

- Device that converts digital data to analog signal and back again.
- MOdulator/DEModulator

Amplitude Modulation

One amplitude encodes a 0 while another amplitude encodes a 1.

Figure 2-14
Example of amplitude
modulation

Amplitude Modulation

Some systems use multiple amplitudes.

Figure 2-15
Amplitude modulation
using four different
amplitude levels

Frequency Modulation

One frequency encodes a 0 while another frequency encodes a 1.

Figure 2-16 Simple example of frequency modulation

Phase Modulation

One phase change encodes a 0 while another phase change encodes a 1. Here, only phase change for a 1.

Figure 2-17
An example of simple
phase modulation of a
sine wave

Converting Analog Data into Digital Signals

To convert analog data into a digital signal, there are two basic techniques:

- Pulse code modulation (used by telephone systems)
- Delta modulation

The analog waveform is sampled at specific intervals and the "snapshots" are converted to binary values.

Figure 2-20
Example of taking
"snapshots" of an
analog waveform
for conversion to a
digital signal

When the binary values are later converted to an analog signal, a waveform similar to the original results.

Figure 2-21
Reconstruction of the
analog waveform from
the digital "snapshots"

The more snapshots taken in the same amount of time, the better the resolution.

Figure 2-22
A more accurate reconstruction of the original
waveform using a
higher sampling rate

Since telephone systems digitize human voice, and since the human voice has a fairly narrow bandwidth, telephone systems can digitize voice into either 128 levels or 256 levels.

These levels are called quantization levels.

If 128 levels, then each sample is 7 bits $(2 \land 7 = 128)$.

If 256 levels, then each sample is 8 bits $(2 ^ 8 = 256)$.

Delta Modulation

An analog waveform is tracked, using a binary 1 to represent a rise in voltage, and a 0 to represent a drop.

Figure 2-25
Example of delta
modulation that is
experiencing slope
overload noise and
quantizing noise

Converting Analog Data into Analog Signals

Many times it is necessary to modulate analog data onto a different set of analog frequencies.

Broadcast radio and television are two very common examples of this.

Low-frequency analog signals (like human voice, 300 Hz–3.4 kHz) can't travel far on their own. Modulating them onto high-frequency carrier waves (like 100 MHz for FM radio) helps send them farther.

Figure 2-26
An audio waveform
modulated onto a carrier frequency using
amplitude modulation

