Homework 4 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 19, 2024

1. Since $B \subset C(A, \mathbb{R}^n)$, B_x is totally bounded. From lemma mentioned in class, since A is compact and B_x is totally bounded, B is totally bounded. And since B is equicontinuous, for all $\varepsilon > 0$, there exists $\delta > 0$ s.t. $d(x,y) < \delta \Longrightarrow \|f(x) - f(y) < \frac{\varepsilon}{2}\|$ for all $f \in B$ and $x,y \in A$. Then, there exists $\{x_i \in A\}$ s.t. $A \subseteq \cup D(x_i,\delta)$ and $\{y_{i,j} \mid f(x_i) = y_{i,j} \text{ for some } f \in B\}$ s.t. $B_{x_i} \subseteq \cup D(y_{i,j},\frac{\varepsilon}{2})$. Thus, for any sequence $f_k \in B$, $f_k(x_i)$ will have subsequence fall into a $D(y_{i,j},\frac{\varepsilon}{2})$ for k is large. We collect all of the $y_{i,j}$ for all i, and we can find a function f s.t. $f(x_i) = y_{i,j}$ in g. Then, for the subsequence and any $g \in A$, $\|f_k(x) - f(x)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Thus, every sequence in B has uniformly convergent subsequence.

2. First, we want to show that B is closed. For any sequence $f_k \in B$ which converges to f, since $f_k(0) = 0$ for all k, we can get f(0) = 0. Then, assume there exists an $x_0, x_1 \in (0,1)$ s.t. $\frac{|f(x_0) - f(x_1)|}{|x_0 - x_1|} = \alpha > 1$. Take $\varepsilon = \frac{\alpha - 1}{3}$, there exists $N \in \mathbb{N}$ s.t. $|f(x) - f_k(x)| < \varepsilon$ for all x and k > N. Thus, $|\frac{f_k(x_0) - f_k(x_1)}{x_0 - x_1}| = \frac{|f_k(x_0) - f(x_0) + f(x_0) - f(x_1) + f(x_1) - f_k(x_1)|}{|x_0 - x_1|} > \alpha - \frac{2\varepsilon}{|x_0 - x_1|} > 1$ which causes contradiction to $|f'_k(x)| \le 1$ for all $x \in (0,1)$. Thus, $\frac{|f(x_0) - f(x_1)|}{|x_0 - x_1|} \le 1 \implies f \in B$. Hence, B is closed.

Then, since $|f'(x)| \le 1$ for all $f \in B$ and $x \in (0,1)$. For any $\varepsilon > 0$, we take $\delta < \varepsilon$, for any $x,y \in [0,1]$ s.t. $|x-y| < \varepsilon$, $|f(x)-f(y)| \le 1 \cdot |x-y| = \delta < \varepsilon$. Thus, B is equicontinuous.

Last, for any $x \in [0, 1]$, we want to proof B_x is compact. For x = 0, $B_0 = \{0\}$ obviously compact. For x > 0, since $|f'| \le 1$, we can easily get $B_x = [-x, x]$ by f(x) = ax for all $|a| \le 1$. Thus, B is pointwise compact.

Therefore, by Arzela-Ascoli Theorem, \boldsymbol{B} is compact.

3. For any $\varepsilon > 0$, there exists $\delta > 0$ s.t. $||x - y|| < \delta \implies ||f_k(x) - f_k(y)|| < \frac{\varepsilon}{3}$. And since K is compact, we can find finite $p \in N$ and $\{x_k\}_{k=1}^p$ s.t. $K \subseteq \bigcup_{k=1}^p D(x_k, \delta)$. Also, for all x_k , we can find a $N_{x_k} \in \mathbb{N}$ s.t. $|f_n(x_k) - f_m(x_k)| < \frac{\varepsilon}{3}$ for all $n, m > N_{x_k}$.

Then, we take $N = \max_{x \in [1,p]} \{N_{x_k}\}$, and for any $x \in K$, we can find a $k \in [1,p]$ s.t. $x \in D(x_k, \delta)$. Thus,

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(x_k)| + |f_n(x_k) - f_m(x_k)| + |f_m(x_k) - f_m(x)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Thus, by Cauchy Criterion, $f_k \to f$ uniformly.

4. Since \mathfrak{F} is equicontinuous, for any $\varepsilon > 0$, there exists $\delta > 0$ s.t. $||x-y|| < \delta \Longrightarrow |f(x)-f(y)| < \frac{\varepsilon}{2}$ for all $f \in \mathfrak{F}$. For all $x, y \in D$ and $||x-y|| < \delta$, we want to show $|f^*(x)-f^*(y)| < \varepsilon$. First, if $f^*(x) > f^*(y)$, we can find a $f \in \mathfrak{F}$ s.t. $f^*(x) - f(x) < \frac{\varepsilon}{2}$. Then, $f^*(y) > f^*(x) - \frac{\varepsilon}{2} - |f(x) - f(y)| > f^*(x) - \varepsilon$. For the other case, just change x, y and get the same result. Thus, f^* is continuous.