```
!pip install scikit-learn==1.3.0 --upgrade
!pip install --upgrade xgboost
     Requirement already satisfied: scikit-learn==1.3.0 in /usr/local/lib/python3.11/dist-packages (1.3.0)
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from scikit-le
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from s
     Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.4)
     Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4
     Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboo
     Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1
#classify with cycle features including alignment
import pandas as pd
# import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.metrics import classification_report
import xgboost as xgb
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
import seaborn as sns
from matplotlib import pyplot as plt
import numpy as np
from IPython import get_ipython
from IPython.display import display
from sklearn.impute import SimpleImputer # Import SimpleImputer for imputation
import shap
shap.initjs()
\rightarrow
Set up
df = pd.read_csv('/content/cycle_and_HMM_features_true_7-10_dataset_48days.csv')
df.head()
```

do the same thing, but use scikitlearn randomforest classifier

40

37.5

35.333333

5.7154

13

27

```
# LOOK AT LAUREN'S GITHUB FOR CODE
# try w xgboost
# try w subset of features
# explanatory tools to see which variables are important (SHAP values)
df = df.loc[df['pat_cat_map'].isin(['Baseline','PCOS'])]
df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
df = df.replace(-np.inf, np.nan)
df.columns
Index(['hub_id', 'pat_cat_map', 'cycle_min', 'cycle_max', 'cycle_median',
             'cycle_mean', 'cycle_range', 'cycle_std', 'num_cycles',
             'viterbi_logprob_mean', 'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std', 'viterbi_logprob_median',
             'complete_logprob_mean', 'complete_logprob_min', 'complete_logprob_max',
             'complete_logprob_std', 'complete_logprob_median', 'label_01'],
           dtype='object')
HMM_features = [ 'viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
cycle_features = ['cycle_min', 'cycle_max', 'cycle_median',
       'cycle_mean', 'cycle_range', 'cycle_std']
target = 'label_01'
```

PCOS

All features

4 U2F65CA17170226

```
print('Performance with all features')

X_train_all, X_test_all, y_train_all, y_test_all = train_test_split(df[HMM_features+cycle_features], df[tashuffle=True, random_state=51)
```

```
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_all, y_train_all)
y_pred_all = clf.predict(X_test_all)
y_score_all = clf.predict_proba(X_test_all)
print(confusion_matrix(y_test_all, y_pred_all, normalize='true'))
```

(0.28985507 0.71014493) [0.07894737 0.92105263]]

print(classification_report(y_pred_all, y_test_all))

→	precision	recall	f1-score	support
0	0.29	0.53	0.37	38
1	0.92	0.81	0.86	259
accuracy			0.77	297
macro avg	0.61	0.67	0.62	297
weighted avg	0.84	0.77	0.80	297

fpr_full, tpr_full, thresholds_full = roc_curve(y_test_all, y_score_all[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features - False Missigness 0-3 Days', errorbar=None
#plt.savefig('/content/drive/MyDrive/fall_research/feature_distribution_plots/xgb_full_features.pdf')

#overall accuracy:
print((y_pred_all==y_test_all).sum()/len(y_pred_all))

→ 0.7744107744107744

Cycle features only

weighted avg

0.81

0.77

```
#PERFORMANCE WITH CYCLE FEATURES ONLY
print('Performance with cycle features only')
X_train_cycle, X_test_cycle, y_train_cycle, y_test_cycle = train_test_split(df[cycle_features], df[target]
                                                     shuffle=True, random_state=51)
Performance with cycle features only
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_cycle, y_train_cycle)
y_pred_cycle = clf.predict(X_test_cycle)
y_score_cycle = clf.predict_proba(X_test_cycle)
print(confusion_matrix(y_test_cycle, y_pred_cycle, normalize='true'))
[[0.34782609 0.65217391]
      [0.10526316 0.89473684]]
print(classification_report(y_pred_cycle, y_test_cycle))
\overline{\Rightarrow}
                   precision
                                recall f1-score
                                                    support
                0
                        0.35
                                   0.50
                                             0.41
                                                         48
                1
                        0.89
                                   0.82
                                             0.86
                                                        249
                                             0.77
                                                        297
         accuracy
        macro avg
                        0.62
                                   0.66
                                             0.63
                                                        297
```

fpr_cycle, tpr_cycle, thresholds_cycle = roc_curve(y_test_cycle, y_score_cycle[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_cycle_features_only.pdf'

297

0.78

#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))

→ 0.76767676767676

HMM Features only

```
#PERFORMANCE WITH HMM FEATURES ONLY
print('Performance with HMM features only')
X_train_hmm, X_test_hmm, y_train_hmm, y_test_hmm = train_test_split(df[HMM_features], df[target],
                                                    shuffle=True, random_state=51)
     Performance with HMM features only
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_hmm = imputer.fit_transform(X_train_hmm)
X_test_hmm = imputer.transform(X_test_hmm)
clf = RFC(random_state=101)
clf.fit(X_train_hmm, y_train_hmm)
y_pred_hmm = clf.predict(X_test_hmm)
y_score_hmm = clf.predict_proba(X_test_hmm)
print(confusion_matrix(y_test_hmm, y_pred_hmm, normalize='true'))
fpr_hmm, tpr_hmm, thresholds_hmm = roc_curve(y_test_hmm, y_score_hmm[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_hmm_features_only.pdf')
```


print(classification_report(y_pred_cycle, y_test_cycle))

→		precision	recall	f1-score	support
	0	0.35	0.50	0.41	48
	1	0.89	0.82	0.86	249
	accuracy			0.77	297
	macro avg	0.62	0.66	0.63	297
	weighted avg	0.81	0.77	0.78	297

```
#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

```
#make kdeplots of all features
for feature in HMM_features+cycle_features:
    sns.kdeplot(data=df, x=feature, hue='pat_cat_map', common_norm=False)
    #plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_kdeplots_feature_dis
    plt.clf()
```

→ <Figure size 640x480 with 0 Axes>

0.7676767676767676

ROC Curves

```
# put 3 ROC curves on one axis (cycle, hmm, all)
# # Create subplots
# fig, axes = plt.subplots(1, 3, figsize=(15, 5)) # 1 row, 3 columns
# Plot Cycle + HMM features
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features', errorbar=None)
# axes[0].set_title("Cycle + HMM ROC Curve")
# Plot Cycle features only
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
# axes[1].set_title("Cycle Only ROC Curve")
# Plot HMM features only
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
# axes[2].set_title("HMM Only ROC Curve")
# Adjust layout
# plt.tight_layout()
plt.show()
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_roc_curves.pdf')
₹
                 Cycle + HMM features
      1.0
                 Cycle features only
                 HMM features only
      0.8
      0.6
      0.4
      0.2
```

use HMM features and take one out to see if any features are important (leave one out version)

0.6

0.8

1.0

0.4

0.0

0.0

0.2

without viterbi_logprob_mean

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

```
HMM_features = [
                'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
                'viterbi_logprob_median', 'complete_logprob_mean',
                'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
                'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_mean ')
X_train_without_viterbi_logprob_mean, X_test_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_nean, y_train_without_viterbi_logprob_n
                                                                                                                  shuffle=True, random state=51)
          Performance with HMM features _without_viterbi_logprob_mean
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X train without viterbi logprob mean = imputer.fit transform(X train without viterbi logprob mean)
X_test_without_viterbi_logprob_mean = imputer.transform(X_test_without_viterbi_logprob_mean)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_mean)
y_pred_without_viterbi_logprob_mean = clf.predict(X_test_without_viterbi_logprob_mean)
y_score_without_viterbi_logprob_mean = clf.predict_proba(X_test_without_viterbi_logprob_mean)
print(confusion_matrix(y_test_without_viterbi_logprob_mean, y_pred_without_viterbi_logprob_mean, normalize=
fpr_without_viterbi_logprob_mean, tpr_without_viterbi_logprob_mean, thresholds_without_viterbi_logprob_mean
sns.lineplot(x=fpr_without_viterbi_logprob_mean, y=tpr_without_viterbi_logprob_mean, label='HMM features wi
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_wi
           [[0.23188406 0.76811594]
              [0.10526316 0.89473684]]
           <Axes: >
              1.0
                                     HMM features without viterbi logprob mean
              0.8
```

→		precision	recall	f1-score	support
	0	0.23	0.40	0.29	40
	1	0.89	0.79	0.84	257
	accuracy			0.74	297
	macro avg	0.56	0.60	0.57	297
	weighted avg	0.81	0.74	0.77	297

```
#overall accuracy:
```

print((y_pred_without_viterbi_logprob_mean==y_test_without_viterbi_logprob_mean).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

0.7407407407407407

without viterbi_logprob_min

```
HMM_features = ['viterbi_logprob_mean',
        'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_min ')
X_train_without_viterbi_logprob_min, X_test_without_viterbi_logprob_min, y_train_without_viterbi_logprob_m
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_viterbi_logprob_min
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_min = imputer.fit_transform(X_train_without_viterbi_logprob_min)
X_test_without_viterbi_logprob_min = imputer.transform(X_test_without_viterbi_logprob_min)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_min, y_train_without_viterbi_logprob_min)
y_pred_without_viterbi_logprob_min = clf.predict(X_test_without_viterbi_logprob_min)
y_score_without_viterbi_logprob_min = clf.predict_proba(X_test_without_viterbi_logprob_min)
print(confusion_matrix(y_test_without_viterbi_logprob_min, y_pred_without_viterbi_logprob_min, normalize='
fpr_without_viterbi_logprob_min, tpr_without_viterbi_logprob_min, thresholds_without_viterbi_logprob_min =
sns.lineplot(x=fpr_without_viterbi_logprob_min, y=tpr_without_viterbi_logprob_min, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.26086957 0.73913043]
[0.10964912 0.89035088]]
```

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_min, y_test_without_viterbi_logprob_min))

→	precision	recall	f1-score	support
0	0.26	0.42	0.32	43
1	0.89	0.80	0.84	254
accuracy			0.74	297
macro avg	0.58	0.61	0.58	297
weighted avg	0.80	0.74	0.77	297

```
#overall accuracy:
```

print((y_pred_without_viterbi_logprob_min==y_test_without_viterbi_logprob_min).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7441077441077442

without viterbi_logprob_max

HMM_features = ['viterbi_logprob_mean',

```
'viterbi_logprob_min', 'viterbi_logprob_std',
    'viterbi_logprob_median', 'complete_logprob_mean',
    'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
    'complete_logprob_median']

print('Performance with HMM features _without_viterbi_logprob_max ')

X_train_without_viterbi_logprob_max, X_test_without_viterbi_logprob_max, y_train_without_viterbi_logprob_max
```

Performance with HMM features _without_viterbi_logprob_max

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_max = imputer.fit_transform(X_train_without_viterbi_logprob_max)
X_test_without_viterbi_logprob_max = imputer.transform(X_test_without_viterbi_logprob_max)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_max, y_train_without_viterbi_logprob_max)
y_pred_without_viterbi_logprob_max = clf.predict(X_test_without_viterbi_logprob_max)
y_score_without_viterbi_logprob_max = clf.predict_proba(X_test_without_viterbi_logprob_max)
print(confusion_matrix(y_test_without_viterbi_logprob_max, y_pred_without_viterbi_logprob_max, normalize='tifpr_without_viterbi_logprob_max, tpr_without_viterbi_logprob_max, thresholds_without_viterbi_logprob_max = sns.lineplot(x=fpr_without_viterbi_logprob_max, y=tpr_without_viterbi_logprob_max, label='HMM features without_viterbig('_/content/drive/MyDrive/fall_research/feature_distribution_plots/viterbi_adjusted_plots/xgb_without_viterbi_adjusted_plots/

[[0.2173913 0.7826087] [0.09210526 0.90789474]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_max, y_test_without_viterbi_logprob_max))

	precision	recall	f1-score	support
0	0.22	0.42	0.29	36
1	0.91	0.79	0.85	261
accuracy			0.75	297
macro avg	0.56	0.60	0.57	297
weighted avg	0.82	0.75	0.78	297

#overall accuracy:

print((y_pred_without_viterbi_logprob_max==y_test_without_viterbi_logprob_max).sum()/len(y_pred_without_vi

```
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.7474747474747475

without viterbi_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_std ')
X_train_without_viterbi_logprob_std, X_test_without_viterbi_logprob_std, y_train_without_viterbi_logprob_stc
                                                    shuffle=True, random_state=51)
→ Performance with HMM features _without_viterbi_logprob_std
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_std = imputer.fit_transform(X_train_without_viterbi_logprob_std)
X_test_without_viterbi_logprob_std = imputer.transform(X_test_without_viterbi_logprob_std)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_std, y_train_without_viterbi_logprob_std)
y_pred_without_viterbi_logprob_std = clf.predict(X_test_without_viterbi_logprob_std)
y_score_without_viterbi_logprob_std = clf.predict_proba(X_test_without_viterbi_logprob_std)
print(confusion_matrix(y_test_without_viterbi_logprob_std, y_pred_without_viterbi_logprob_std, normalize='
fpr_without_viterbi_logprob_std, tpr_without_viterbi_logprob_std, thresholds_without_viterbi_logprob_std =
sns.lineplot(x=fpr_without_viterbi_logprob_std, y=tpr_without_viterbi_logprob_std, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.2173913 0.7826087]
[0.10526316 0.89473684]]
<Axes: >
```


print(classification_report(y_pred_without_viterbi_logprob_std, y_test_without_viterbi_logprob_std))

→	precision	recall	f1-score	support
0	0.22	0.38	0.28	39
1	0.89	0.79	0.84	258
accuracy			0.74	297
macro avg	0.56	0.59	0.56	297
weighted avg	0.81	0.74	0.77	297

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_std==y_test_without_viterbi_logprob_std).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.7373737373737373

without viterbi_logprob_median

Performance with HMM features _without_viterbi_logprob_median

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_median, y_train_without_viterbi_logprob_median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.23188406 0.76811594] [0.08333333 0.91666667]] <Axes: >

 $\verb|print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))| \\$

→		precision	recall	f1-score	support
	0	0.23	0.46	0.31	35
	1	0.92	0.80	0.85	262
accu	racy			0.76	297
macro weighted	_	0.57 0.84	0.63 0.76	0.58 0.79	297 297

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_median==y_test_without_viterbi_logprob_median).sum()/len(y_pred_with
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.75757575757576
```

without complete_logprob_mean

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_mean ')
X_train_without_complete_logprob_mean, X_test_without_complete_logprob_mean, y_train_without_complete_logp
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_mean
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_mean = imputer.fit_transform(X_train_without_complete_logprob_mean)
X_test_without_complete_logprob_mean = imputer.transform(X_test_without_complete_logprob_mean)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_mean, y_train_without_complete_logprob_mean)
y_pred_without_complete_logprob_mean = clf.predict(X_test_without_complete_logprob_mean)
y_score_without_complete_logprob_mean = clf.predict_proba(X_test_without_complete_logprob_mean)
print(confusion_matrix(y_test_without_complete_logprob_mean, y_pred_without_complete_logprob_mean, normali
fpr_without_complete_logprob_mean, tpr_without_complete_logprob_mean, thresholds_without_complete_logprob_
sns.lineplot(x=fpr_without_complete_logprob_mean, y=tpr_without_complete_logprob_mean, label='HMM features
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.20289855 0.79710145] [0.09649123 0.90350877]]

<Axes: >

print(classification_report(y_pred_without_complete_logprob_mean, y_test_without_complete_logprob_mean))

→	precision	recall	f1-score	support
0	0.20	0.39	0.27	36
1	0.90	0.79	0.84	261
accuracy			0.74	297
macro avg	0.55	0.59	0.55	297
weighted avg	0.82	0.74	0.77	297

```
#overall accuracy:
```

print((y_pred_without_complete_logprob_mean==y_test_without_complete_logprob_mean).sum()/len(y_pred_withou
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7407407407407407

without complete_logprob_min

Performance with HMM features _without_complete_logprob_min

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_min = imputer.fit_transform(X_train_without_complete_logprob_min)
X_test_without_complete_logprob_min = imputer.transform(X_test_without_complete_logprob_min)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_min, y_train_without_complete_logprob_min)
y_pred_without_complete_logprob_min = clf.predict(X_test_without_complete_logprob_min)
y_score_without_complete_logprob_min = clf.predict_proba(X_test_without_complete_logprob_min)
print(confusion_matrix(y_test_without_complete_logprob_min, y_pred_without_complete_logprob_min, normalize
fpr_without_complete_logprob_min, tpr_without_complete_logprob_min, thresholds_without_complete_logprob_mi
sns.lineplot(x=fpr_without_complete_logprob_min, y=tpr_without_complete_logprob_min, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.17391304 0.82608696] [0.11403509 0.88596491]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_min, y_test_without_complete_logprob_min))

	precision	recall	f1-score	support
0 1	0.17 0.89	0.32 0.78	0.22 0.83	38 259
accuracy macro avg weighted avg	0.53 0.79	0.55 0.72	0.72 0.53 0.75	297 297 297

```
#overall accuracy:
print((y_pred_without_complete_logprob_min==y_test_without_complete_logprob_min).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7205387205387206
```

without complete_logprob_max

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_max ')
X_train_without_complete_logprob_max, X_test_without_complete_logprob_max, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_max
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_max = imputer.fit_transform(X_train_without_complete_logprob_max)
X_test_without_complete_logprob_max = imputer.transform(X_test_without_complete_logprob_max)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_max, y_train_without_complete_logprob_max)
y_pred_without_complete_logprob_max = clf.predict(X_test_without_complete_logprob_max)
y_score_without_complete_logprob_max = clf.predict_proba(X_test_without_complete_logprob_max)
print(confusion_matrix(y_test_without_complete_logprob_max, y_pred_without_complete_logprob_max, normalize
fpr_without_complete_logprob_max, tpr_without_complete_logprob_max, thresholds_without_complete_logprob_ma
sns.lineplot(x=fpr_without_complete_logprob_max, y=tpr_without_complete_logprob_max, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.20289855 0.79710145]
     [0.10964912 0.89035088]]
```

<Axes: >

print(classification_report(y_pred_without_complete_logprob_max, y_test_without_complete_logprob_max))

→	precision	recall	f1-score	support
0	0.20	0.36	0.26	39
1	0.89	0.79	0.84	258
accuracy			0.73	297
macro avg	0.55	0.57	0.55	297
weighted avg	0.80	0.73	0.76	297

```
#overall accuracy:
```

```
print((y_pred_without_complete_logprob_max==y_test_without_complete_logprob_max).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

0.7306397306397306

without complete_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_std ')
```

Performance with HMM features _without_complete_logprob_std

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_std = imputer.fit_transform(X_train_without_complete_logprob_std)
X_test_without_complete_logprob_std = imputer.transform(X_test_without_complete_logprob_std)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_std, y_train_without_complete_logprob_std)
y_pred_without_complete_logprob_std = clf.predict(X_test_without_complete_logprob_std)
y_score_without_complete_logprob_std = clf.predict_proba(X_test_without_complete_logprob_std)
print(confusion_matrix(y_test_without_complete_logprob_std, y_pred_without_complete_logprob_std, normalize
fpr_without_complete_logprob_std, tpr_without_complete_logprob_std, thresholds_without_complete_logprob_st
sns.lineplot(x=fpr_without_complete_logprob_std, y=tpr_without_complete_logprob_std, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.17391304 0.82608696] [0.10964912 0.89035088]] <Axes: >

 $\verb|print(classification_report(y_pred_without_complete_logprob_std, y_test_without_complete_logprob_std)||$

→		precision	recall	f1-score	support
	0	0.17	0.32	0.23	37
	1	0.89	0.78	0.83	260
	accuracy			0.72	297
	macro avg	0.53	0.55	0.53	297
	weighted avg	0.80	0.72	0.76	297

```
#overall accuracy:
print((y_pred_without_complete_logprob_std==y_test_without_complete_logprob_std).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7239057239057239
```

without complete_logprob_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
print('Performance with HMM features _without_viterbi_logprob_median ')
X_train_without_viterbi_logprob_median, X_test_without_viterbi_logprob_median, y_train_without_viterbi_log
                                                    shuffle=True, random_state=51)
Performance with HMM features _without_viterbi_logprob_median
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_median, y_train_without_viterbi_logprob_median)
y pred without viterbi logprob median = clf.predict(X test without viterbi logprob median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
→ [[0.23188406 0.76811594]
      [0.10087719 0.89912281]]
     <Axes: >
                 HMM features without complete logprob median
print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))
\overline{2}
                   precision
                                recall f1-score
                                                    support
                0
                        0.23
                                  0.41
                                            0.30
                                                         39
                1
                        0.90
                                  0.79
                                            0.84
                                                        258
                                                        297
         accuracy
                                            0.74
        macro avg
                        0.57
                                  0.60
                                            0.57
                                                        297
     weighted avg
                        0.81
                                  0.74
                                            0.77
                                                        297
                                                                            ı
          #overall accuracy:
print((y_pred_without_viterbi_logprob_median==y_test_without_viterbi_logprob_median).sum()/len(y_pred_with
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
    0.7441077441077442
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
print('Performance with HMM features _without_viterbi_alignment ')
X_train_without_viterbi_alignment, X_test_without_viterbi_alignment, y_train_without_viterbi_alignment, y_
                                                     shuffle=True, random_state=51)
    Performance with HMM features _without_viterbi_alignment
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_alignment = imputer.fit_transform(X_train_without_viterbi_alignment)
X_test_without_viterbi_alignment = imputer.transform(X_test_without_viterbi_alignment)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_alignment, y_train_without_viterbi_alignment)
y_pred_without_viterbi_alignment = clf.predict(X_test_without_viterbi_alignment)
y_score_without_viterbi_alignment = clf.predict_proba(X_test_without_viterbi_alignment)
print(confusion_matrix(y_test_without_viterbi_alignment, y_pred_without_viterbi_alignment, normalize='true
fpr_without_viterbi_alignment, tpr_without_viterbi_alignment, thresholds_without_viterbi_alignment = roc_c
```