```
# importing required libraries
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns
```

Week 1

```
In [2]:
         # Load data set for processing and analysis
         data = pd.read csv("C:\MySpace\Data Science\Capstone\Project2\health care diabetes.csv")
In [3]:
         # Data mining to understand the data and take necessary action w.r.t. data correction
In [4]:
          data.head()
Out[4]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
                     6
         0
                                                               0 33.6
                           148
                                          72
                                                       35
                                                                                         0.627
                                                                                                50
         1
                     1
                            85
                                          66
                                                       29
                                                               0 26.6
                                                                                         0.351
                                                                                                31
                                                                                                           0
                     8
         2
                           183
                                          64
                                                        0
                                                               0 23.3
                                                                                         0.672
                                                                                                32
         3
                            89
                                                       23
                                                                                                           0
                                          66
                                                                  28.1
                                                                                         0.167
                     0
                           137
                                          40
                                                       35
                                                              168 43.1
                                                                                         2.288
                                                                                                33
                                                                                                           1
In [5]:
          data.describe()
```

Out[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

In [6]: data.corr()

Out[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221898
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.466581
	BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.065068
	SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074752
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130548
	ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.292695
	DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173844
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.238356
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.000000

```
In [7]: #required Column to Update for Null (0) Values
Sel_Col=['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
Sel_Col
```

Out[7]: ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']

```
In [8]:
         # Count of zero in fields ,Interested columns are ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
         Col_Zero_Val=data[data[Sel_Col]==0].count()
         Col Zero Val
        Pregnancies
                                       0
Out[8]:
        Glucose
        BloodPressure
                                      35
        SkinThickness
                                     227
        Insulin
                                     374
        BMI
                                      11
        DiabetesPedigreeFunction
                                       0
        Age
        Outcome
                                       0
        dtype: int64
In [9]:
         #Updating required column with their respective Median value
         # We are not considering Mean as there are rows present with "0" values and due to same mean values are not the correct value
         for i in data.columns:
             if (i in Sel Col):
                 m=data[data[i]!=0][i].median()
                   print(i)
                   print(m)
                 data[i]=data[i].apply(lambda x: m if x==0 else x)
         data.head()
Ou-
```

ut[9]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148.0	72.0	35.0	125.0	33.6	0.627	50	1
	1	1	85.0	66.0	29.0	125.0	26.6	0.351	31	0
	2	8	183.0	64.0	29.0	125.0	23.3	0.672	32	1
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1

```
In [10]:  # ReChecking post updating null value with median
Col_Zero_Val=data[data[Sel_Col]==0].count()
```

```
Col Zero Val
         Pregnancies
                                       0
Out[10]:
          Glucose
                                       0
          BloodPressure
          SkinThickness
                                       0
          Insulin
          BMI
          DiabetesPedigreeFunction
          Age
                                       0
          Outcome
          dtype: int64
In [11]:
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 768 entries, 0 to 767
          Data columns (total 9 columns):
               Column
                                          Non-Null Count Dtype
               Pregnancies
                                          768 non-null
                                                          int64
           1
               Glucose
                                          768 non-null
                                                          float64
               BloodPressure
                                          768 non-null
                                                          float64
           3
               SkinThickness
                                          768 non-null
                                                          float64
           4
               Insulin
                                          768 non-null
                                                          float64
           5
               BMI
                                          768 non-null
                                                          float64
               DiabetesPedigreeFunction 768 non-null
           6
                                                          float64
                                          768 non-null
           7
               Age
                                                          int64
           8
               Outcome
                                          768 non-null
                                                          int64
          dtypes: float64(6), int64(3)
          memory usage: 54.1 KB
In [12]:
          Positive = data[data['Outcome']==1]
           Positive.head(5)
Out[12]:
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
          0
                      6
                           148.0
                                         72.0
                                                      35.0
                                                            125.0 33.6
                                                                                         0.627
                                                                                                50
          2
                      8
                           183.0
                                         64.0
                                                      29.0
                                                            125.0 23.3
                                                                                         0.672
                                                                                                32
                                                                                                          1
```

```
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
                     0
                           137.0
                                         40.0
                                                            168.0 43.1
                                                      35.0
                                                                                         2.288
                                                                                                33
          6
                     3
                           78.0
                                         50.0
                                                      32.0
                                                             88.0 31.0
                                                                                        0.248
                                                                                                26
          8
                     2
                           197.0
                                         70.0
                                                      45.0
                                                            543.0 30.5
                                                                                        0.158
                                                                                                53
                                                                                                          1
In [13]:
          data[Sel Col].value counts()
          Glucose BloodPressure SkinThickness Insulin
                                                           BMI
Out[13]:
          44.0
                   62.0
                                   29.0
                                                  125.0
                                                           25.0
                                                                   1
          56.0
                   56.0
                                                  45.0
                                                           24.2
                                                                   1
                                   28.0
          129.0
                   86.0
                                   20.0
                                                  270.0
                                                           35.1
                                                                   1
                                                  326.0
                   90.0
                                   7.0
                                                           19.6
                                                                   1
                   92.0
                                   49.0
                                                  155.0
                                                           36.4
                                                                   1
                                                                   . .
          105.0
                   100.0
                                                                   1
                                   36.0
                                                  125.0
                                                           43.3
          106.0
                   52.0
                                   29.0
                                                  125.0
                                                           31.2
                                                                   1
                   54.0
                                   21.0
                                                  158.0
                                                           30.9
                                                                   1
                   56.0
                                   27.0
                                                  165.0
                                                           29.0
                                                                   1
          199.0
                   76.0
                                   43.0
                                                  125.0
                                                           42.9
                                                                   1
          Length: 768, dtype: int64
In [14]:
          data['Glucose'].value counts().head(7)
          99.0
                   17
Out[14]:
          100.0
                   17
          117.0
                   16
          129.0
                   14
          125.0
                   14
          106.0
                   14
          111.0
                   14
          Name: Glucose, dtype: int64
In [15]:
          plt.hist(data['Glucose'])
          (array([ 4., 19., 87., 149., 166., 125., 88., 54., 44., 32.]),
Out[15]:
           array([ 44. , 59.5, 75. , 90.5, 106. , 121.5, 137. , 152.5, 168. ,
                  183.5, 199. ]),
           <BarContainer object of 10 artists>)
```



```
In [16]:
          data['BloodPressure'].value counts().head(7)
         72.0
                 79
Out[16]:
         70.0
                 57
         74.0
                 52
         78.0
                 45
         68.0
                 45
         64.0
                 43
         80.0
                 40
         Name: BloodPressure, dtype: int64
In [17]:
          plt.hist(data['BloodPressure'])
         (array([ 3., 2., 35., 118., 261., 214., 105., 18., 10., 2.]),
Out[17]:
          array([ 24. , 33.8, 43.6, 53.4, 63.2, 73. , 82.8, 92.6, 102.4,
                 112.2, 122. ]),
          <BarContainer object of 10 artists>)
```



```
In [18]:
          data['SkinThickness'].value_counts().head(7)
         29.0
                 244
Out[18]:
         32.0
                  31
         30.0
                  27
         27.0
                  23
         23.0
                  22
         28.0
                  20
         33.0
                  20
         Name: SkinThickness, dtype: int64
In [19]:
          plt.hist(data['SkinThickness'])
         (array([ 59., 141., 408., 118., 36., 4., 1., 0., 0., 1.]),
Out[19]:
          array([ 7. , 16.2, 25.4, 34.6, 43.8, 53. , 62.2, 71.4, 80.6, 89.8, 99. ]),
          <BarContainer object of 10 artists>)
```



```
In [20]:
          data['Insulin'].value counts().head(7)
         125.0
                  378
Out[20]:
         105.0
                   11
         130.0
                   9
         140.0
                   9
         120.0
         94.0
         180.0
         Name: Insulin, dtype: int64
In [21]:
          plt.hist(data['Insulin'])
         (array([142., 517., 55., 29., 7., 10., 4., 1., 2., 1.]),
Out[21]:
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                 762.8, 846. ]),
          <BarContainer object of 10 artists>)
```



```
In [22]:
          data['BMI'].value_counts().head(7)
         32.3
                 14
Out[22]:
         32.0
                 13
         31.6
                 12
         31.2
                 12
         33.3
                 10
         32.4
                 10
         30.1
         Name: BMI, dtype: int64
In [23]:
          plt.hist(data['BMI'])
         (array([ 52., 161., 207., 193., 91., 48., 10., 4., 1., 1.]),
Out[23]:
          array([18.2, 23.09, 27.98, 32.87, 37.76, 42.65, 47.54, 52.43, 57.32,
                 62.21, 67.1 ]),
          <BarContainer object of 10 artists>)
```


In [24]:

data.describe().transpose()

٦.,	+-	[2 / 1]	١.
ノレ		24	

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	121.656250	30.438286	44.000	99.75000	117.0000	140.25000	199.00
BloodPressure	768.0	72.386719	12.096642	24.000	64.00000	72.0000	80.00000	122.00
SkinThickness	768.0	29.108073	8.791221	7.000	25.00000	29.0000	32.00000	99.00
Insulin	768.0	140.671875	86.383060	14.000	121.50000	125.0000	127.25000	846.00
ВМІ	768.0	32.455208	6.875177	18.200	27.50000	32.3000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

Week 2

```
In [25]:
```

plt.hist(Positive['BMI'],histtype='stepfilled',bins=20)

```
(array([ 8., 10., 23., 41., 45., 40., 29., 19., 14., 17., 9., 4., 3.,
Out[25]:
                  3., 1., 0., 1., 0., 0., 1.]),
          array([22.9, 25.11, 27.32, 29.53, 31.74, 33.95, 36.16, 38.37, 40.58,
                 42.79, 45. , 47.21, 49.42, 51.63, 53.84, 56.05, 58.26, 60.47,
                 62.68, 64.89, 67.1 ]),
          [<matplotlib.patches.Polygon at 0x1cb83ca0>])
          40
          30
          20
         10
                     30
                              40
                                                  60
In [26]:
          Positive['BMI'].value counts().head(7)
         32.9
Out[26]:
         31.6
                 7
         33.3
         31.2
         30.5
         32.3
                 5
         32.0
                 5
         Name: BMI, dtype: int64
In [27]:
          plt.hist(Positive['Glucose'],histtype='stepfilled',bins=20)
         (array([ 3., 4., 5., 11., 14., 16., 20., 21., 20., 17., 15., 17., 14.,
Out[27]:
                 15., 15., 14., 12., 12., 10., 13.]),
          array([ 78. , 84.05, 90.1 , 96.15, 102.2 , 108.25, 114.3 , 120.35,
                 126.4 , 132.45 , 138.5 , 144.55 , 150.6 , 156.65 , 162.7 , 168.75 ,
                 174.8 , 180.85, 186.9 , 192.95, 199. ]),
          [<matplotlib.patches.Polygon at 0x1cbb5bb0>])
```



```
In [28]:
          Positive['Glucose'].value counts().head(7)
         125.0
                 7
Out[28]:
         128.0
         158.0
                  6
         129.0
                  6
         115.0
         146.0
                  5
         181.0
                  5
         Name: Glucose, dtype: int64
In [29]:
          plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
         (array([ 1., 0., 1., 0., 6., 5., 3., 17., 25., 35., 68., 30., 25.,
Out[29]:
                 23., 14., 4., 3., 3., 2., 3.]),
          array([ 30. , 34.2, 38.4, 42.6, 46.8, 51. , 55.2, 59.4, 63.6,
                 67.8, 72., 76.2, 80.4, 84.6, 88.8, 93., 97.2, 101.4,
                 105.6, 109.8, 114. ]),
          [<matplotlib.patches.Polygon at 0x1cbf6cd0>])
```

```
70 -
60 -
50 -
40 -
30 -
20 -
10 -
40 60 80 100
```

```
In [30]:
         Positive['BloodPressure'].value counts().head(7)
         72.0
                32
Out[30]:
         70.0
                23
         76.0
                18
         78.0
                17
         74.0
                17
         82.0
                13
         64.0
                13
         Name: BloodPressure, dtype: int64
In [31]:
         plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
         (array([ 1., 5., 11., 21., 113., 41., 34., 20., 15., 4., 1.,
Out[31]:
                  0., 1., 0., 0., 0., 0., 0., 1.]),
          array([ 7., 11.6, 16.2, 20.8, 25.4, 30., 34.6, 39.2, 43.8, 48.4, 53.,
                57.6, 62.2, 66.8, 71.4, 76., 80.6, 85.2, 89.8, 94.4, 99.]),
          [<matplotlib.patches.Polygon at 0x1cc314a8>])
```


[<matplotlib.patches.Polygon at 0x1cc65ac0>])

```
In [32]:
         Positive['SkinThickness'].value counts().head(7)
         29.0
                95
Out[32]:
         32.0
                14
         30.0
                 9
         33.0
                 9
         36.0
         37.0
         39.0
         Name: SkinThickness, dtype: int64
In [33]:
         plt.hist(Positive['Insulin'], histtype='stepfilled', bins=20)
         (array([ 4., 12., 165., 31., 18., 10.,
                                                    8.,
                                                               2., 1., 1.,
Out[33]:
                  6., 2., 1., 1., 0., 0., 0., 0.,
                                                               1.]),
          array([ 14. , 55.6, 97.2, 138.8, 180.4, 222. , 263.6, 305.2, 346.8,
                388.4, 430., 471.6, 513.2, 554.8, 596.4, 638., 679.6, 721.2,
                762.8, 804.4, 846. ]),
```



```
In [34]:
          Positive['Insulin'].value_counts().head(7)
         125.0
                  140
Out[34]:
         130.0
                    6
         180.0
         175.0
                     3
         156.0
         185.0
         225.0
                    2
         Name: Insulin, dtype: int64
In [35]:
          #Scatter plot
In [36]:
          BloodPressure = Positive['BloodPressure']
          Glucose = Positive['Glucose']
          SkinThickness = Positive['SkinThickness']
          Insulin = Positive['Insulin']
          BMI = Positive['BMI']
In [37]:
          plt.scatter(BloodPressure, Glucose, color=['b'])
          plt.xlabel('BloodPressure')
          plt.ylabel('Glucose')
```

```
plt.title('BloodPressure & Glucose')
plt.show()
```



```
In [41]:
```

correlation matrix data.corr()

	F 7	
() i i +	1/1/1	
Uu L	141	

:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	Pregnancies	1.000000	0.128213	0.208615	0.081770	0.025047	0.021559	-0.033523	0.544341	0.221898
	Glucose	0.128213	1.000000	0.218937	0.192615	0.419451	0.231049	0.137327	0.266909	0.492782
	BloodPressure	0.208615	0.218937	1.000000	0.191892	0.045363	0.281257	-0.002378	0.324915	0.165723
	SkinThickness	0.081770	0.192615	0.191892	1.000000	0.155610	0.543205	0.102188	0.126107	0.214873
	Insulin	0.025047	0.419451	0.045363	0.155610	1.000000	0.180241	0.126503	0.097101	0.203790
	ВМІ	0.021559	0.231049	0.281257	0.543205	0.180241	1.000000	0.153438	0.025597	0.312038
	DiabetesPedigreeFunction	-0.033523	0.137327	-0.002378	0.102188	0.126503	0.153438	1.000000	0.033561	0.173844
	Age	0.544341	0.266909	0.324915	0.126107	0.097101	0.025597	0.033561	1.000000	0.238356
	Outcome	0.221898	0.492782	0.165723	0.214873	0.203790	0.312038	0.173844	0.238356	1.000000

In [42]:

create correlation heat map sns.heatmap(data.corr())

Out[42]: <AxesSubplot:>


```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value
```

Out[43]: <AxesSubplot:>


```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) ### gives correlation value
```

Out[44]: <AxesSubplot:>

Week 3

In [45]:

Logistic Regreation and model building

```
In [46]:
          data.head(5)
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
Out[46]:
          0
                     6
                          148.0
                                         72.0
                                                      35.0
                                                            125.0 33.6
                                                                                         0.627
                                                                                                50
          1
                           85.0
                                         66.0
                                                      29.0
                                                            125.0 26.6
                                                                                         0.351
                                                                                                31
                                                                                                          0
                     1
          2
                     8
                          183.0
                                         64.0
                                                      29.0
                                                            125.0
                                                                  23.3
                                                                                         0.672
                                                                                                32
                                                                                                          1
          3
                           89.0
                                         66.0
                                                      23.0
                                                             94.0 28.1
                                                                                                21
                                                                                                          0
                     1
                                                                                         0.167
          4
                          137.0
                                         40.0
                                                                                         2.288
                                                                                                33
                     0
                                                      35.0
                                                            168.0 43.1
                                                                                                          1
In [47]:
          features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
          label = data.iloc[:,8].values
In [48]:
          pip install -U scikit-learn
          Requirement already satisfied: scikit-learn in c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages (1.0.2)
          Requirement already satisfied: numpy>=1.14.6 in c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages (from s
          cikit-learn) (1.21.4)
          Requirement already satisfied: joblib>=0.11 in c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages (from sc
          ikit-learn) (1.1.0)
          Requirement already satisfied: scipy>=1.1.0 in c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages (from sc
          ikit-learn) (1.7.3)
          Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages
          (from scikit-learn) (3.1.0)
          Note: you may need to restart the kernel to use updated packages.
          WARNING: You are using pip version 21.3.1; however, version 22.0.3 is available.
          You should consider upgrading via the 'c:\users\prabh\appdata\local\programs\python\python38-32\python.exe -m pip install --upgrad
          e pip' command.
In [49]:
          #Train test split
          from sklearn.model selection import train test split
          X train,X test,y train,y test = train test split(features,
                                                            label,
                                                            test size=0.2,
```

random state =10)

```
In [50]:
          #Create model
          from sklearn.linear model import LogisticRegression
          model = LogisticRegression()
          model.fit(X train,y train)
         c:\users\prabh\appdata\local\programs\python\python38-32\lib\site-packages\sklearn\linear model\ logistic.py:814: ConvergenceWarni
         ng: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
         LogisticRegression()
Out[50]:
In [51]:
          print(model.score(X train,y train))
          print(model.score(X test, y test))
         0.7833876221498371
         0.72727272727273
In [52]:
          from sklearn.metrics import confusion matrix
          cm = confusion matrix(label, model.predict(features))
          cm
         array([[445, 55],
Out[52]:
                [120, 148]], dtype=int64)
In [53]:
          from sklearn.metrics import classification report
          print(classification report(label, model.predict(features)))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.79
                                       0.89
                                                 0.84
                                                            500
                             0.73
                                       0.55
                                                 0.63
                                                            268
                                                 0.77
                                                            768
             accuracy
                             0.76
                                       0.72
                                                 0.73
                                                            768
            macro avg
```

weighted avg

0.77

0.77

0.76

768

Week 4

```
In [54]:
          #Preparing ROC Curve (Receiver Operating Characteristics Curve)
          from sklearn.metrics import roc curve
          from sklearn.metrics import roc auc score
          # predict probabilities
          probs = model.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc auc score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc curve(label, probs)
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
         AUC: 0.838
```

Out[54]: [<matplotlib.lines.Line2D at 0x1ee90dd8>]


```
In [55]:
          #Applying Decission Tree Classifier
          from sklearn.tree import DecisionTreeClassifier
          model3 = DecisionTreeClassifier(max depth=5)
          model3.fit(X_train,y_train)
         DecisionTreeClassifier(max depth=5)
Out[55]:
In [56]:
          model3.score(X train,y train)
          0.8192182410423453
Out[56]:
In [57]:
          model3.score(X test,y test)
          0.7467532467532467
Out[57]:
In [58]:
          #Applying Random Forest
          from sklearn.ensemble import RandomForestClassifier
          model4 = RandomForestClassifier(n estimators=11)
          model4.fit(X train,y train)
          RandomForestClassifier(n estimators=11)
Out[58]:
In [59]:
          model4.score(X train,y train)
          0.99185667752443
Out[59]:
In [60]:
          model4.score(X_test,y_test)
         0.72727272727273
Out[60]:
In [61]:
          #Support Vector Classifier
          from sklearn.svm import SVC
          model5 = SVC(kernel='rbf',
```

```
gamma='auto')
          model5.fit(X train,y train)
         SVC(gamma='auto')
Out[61]:
In [62]:
          # model.score(X test, v test).score(X train, v train)
In [63]:
          model5.score(X test,y test)
         0.6168831168831169
Out[63]:
In [64]:
          #Applying K-NN
          from sklearn.neighbors import KNeighborsClassifier
          model2 = KNeighborsClassifier(n neighbors=7,
                                        metric='minkowski',
                                        p = 2
          model2.fit(X train,y train)
         KNeighborsClassifier(n neighbors=7)
Out[64]:
In [65]:
          #Preparing ROC Curve (Receiver Operating Characteristics Curve)
          from sklearn.metrics import roc curve
          from sklearn.metrics import roc auc score
          # predict probabilities
          probs = model2.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc auc score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc curve(label, probs)
          print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fpr,thresholds))
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
```

plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")


```
In [66]:
          #Precision Recall Curve for Logistic Regression
          from sklearn.metrics import precision recall curve
          from sklearn.metrics import f1 score
          from sklearn.metrics import auc
          from sklearn.metrics import average precision score
          # predict probabilities
          probs = model.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1 score(label, yhat)
```

```
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.628 auc=0.715 ap=0.716
Out[66]: [<matplotlib.lines.Line2D at 0x1f4efcd0>]


```
In [67]: #Precision Recall Curve for KNN

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model2.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model2.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
```

```
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.674 auc=0.771 ap=0.730 [<matplotlib.lines.Line2D at 0x1f5254c0>]


```
In [68]: #Precision Recall Curve for Decission Tree Classifier

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model3.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model3.predict(features)
```

```
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.685 auc=0.791 ap=0.762 Out[68]: [<matplotlib.lines.Line2D at 0x1f5581d8>]


```
In [69]: #Precision Recall Curve for Random Forest

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model4.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
```

```
# predict class values
yhat = model4.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.909 auc=0.963 ap=0.955 Out[69]: [<matplotlib.lines.Line2D at 0x1f586e68>]

