Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и

оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа МЗЗ1З		К работе допущен	
Студент	<i>Бажура А.,</i> Демидович Э.	Работа выполнена	
Преподав	атель Зинчик А.А.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 5.12

Определение показателя степени в законе Стефана-Больцмана

Цели работы

Определить показатель степени в законе Стефана- Больцмана на примере реального тела.

Задачи

- 1. Снять зависимость напряжения от температуры источника
- 2. Экспериментально определить показатель степени в законе Стефана-Больцмана

Схема установки

Рис. 2. Общий вид установки 1 — источник питания; 2 — источник высокой температуры; 3 — термоэлектрический элемент Молля; 4, 5, 6 — цифровые мультиметры; точки a, b*, c, d, e*, f — места подключения соединительных проводов, * (место соединения находится на противоположной стороне)

РИС. 3. Принципиальная электрическая схема установки 1 — ИП; 2 — ИВТ; 3 — ТЭ; 4, 5, 6 — ЦМ; точки а, b*, c, d, e*, f \pm места подключения соединительных проводов

Таблица 2

Ил, В	I, A	Uтэ,	R, Om	T, K	ln T	ln Uтэ
		мВ				
2.05	0.76	2.5	2.697368	627.1848	6.441241	0.916291
2.5	0.83	3.5	3.012048	692.2013	6.539877	1.252763
3	0.89	4.9	3.370787	766.3208	6.641601	1.589235
3.5	0.96	6.7	3.645833	823.1486	6.713137	1.902108
4.01	1.03	8.2	3.893204	874.2582	6.773376	2.104134
4.52	1.09	10.9	4.146789	926.6519	6.831578	2.388763
5.01	1.15	13.7	4.356522	969.9851	6.877281	2.617396
5.51	1.2	17.1	4.591667	1018.569	6.926154	2.839078
6.04	1.26	19.2	4.793651	1060.301	6.966308	2.95491
6.5	1.31	22.4	4.961832	1095.049	6.998555	3.109061
7	1.36	27.5	5.147059	1133.319	7.032906	3.314186
7.5	1.41	29.9	5.319149	1168.875	7.063797	3.397858
8	1.46	33.2	5.479452	1201.995	7.091738	3.50255
8.51	1.5	37.4	5.673333	1242.054	7.124521	3.621671
9	1.55	41.9	5.806452	1269.557	7.146424	3.735286
9.5	1.59	45.6	5.974843	1304.349	7.173459	3.819908
10	1.63	51.1	6.134969	1337.433	7.198507	3.933784
10.5	1.67	57.1	6.287425	1368.932	7.221786	4.044804
11	1.72	61	6.395349	1391.23	7.237944	4.110874

Пример расчета R, T

$$R = U_{\rm I\!I} \ / \ I = 2.05 \ / \ 0.76 = 2.7 \ \rm O_{\rm M}$$

R0 = 1.1 Om

T0 = 297.15 K

B = 0.0044

$$T = \left(R - R0\right) / \left(\;d * R0\;\right) + T0 = \left(2.69 - 1.1\right) / \left(0.0044 * 1.1\right) + 297 = 627\;\mathrm{K}$$

График

Коэффициенты получившейся прямой

$$y = kx + b$$

k = 4.110401

b = -25.6536

погрешность k = 0.04

Погрешность вычислялась по формуле:

$$\sigma_k = \sqrt{\frac{1}{n \cdot 2} \left(\frac{D_{yy}}{D_{xx}} \cdot k^2 \right)}$$

Результат расчета коэффициента $(n \pm \Delta n)$

$$4,11 \pm 0,04 \sim 4$$

Вывод:

Сняли зависимость напряжения от температуры источника. Экспериментально определили показатель степени в законе Стефана-Больцмана. Он оказался примерно равен 4.