CZSL project overview

February 28, 2020

What was done in October

- 1. Continual learning pipeline for CUB/AwA
- 2. Sequential/EWC/MAS/A-GEM baselines for classification with attributes on CUB/AwA datasets
- 3. Some metrics to measure performance for continual zero-shot learning

Figure: Joint accuracy on all the remaining unseen classes for CUB

What was done in November

- ▶ LGM-GAN on CUB dataset with the *pretrained and fixed* embedder
- LGM-VAE on CUB dataset with the pretrained and fixed embedder
 - with/without the learned prior
 - with/without class attributes in VAE/in Classifier
- CL "validation" pipeline from A-GEM paper, trying different optimizers, trying model reinits, tweaking architectures, moving workflow into slurm, some metrics (LCA, forgetting speed) from A-GEM paper, fixing several bugs

Fact: original MeRGAN operates in the image space.

Fact: original MeRGAN operates in the image space.

Claim: applying the creativity loss in the image space is not good.

Fact: original MeRGAN operates in the image space. **Claim**: applying the creativity loss in the image space is not good. **Justification**:

- ▶ In CIZSL, the creativity loss was applied to features, not images, i.e. we didn't have a good precedent of using the creativity loss in the image space to improve model's performance on unseen.
- It feels hard to manipulate images to generate sensible unseen images
- We would need a very big GAN model to do that, which is slower to train and harder to tune

Fact: original MeRGAN operates in the image space.

Claim: applying the creativity loss in the image space is not good.

Justification:

- ▶ In CIZSL, the creativity loss was applied to features, not images, i.e. we didn't have a good precedent of using the creativity loss in the image space to improve model's performance on unseen.
- It feels hard to manipulate images to generate sensible unseen images
- We would need a very big GAN model to do that, which is slower to train and harder to tune

 $\mbox{\bf Idea}~\#1:$ let's apply creativity in the feature space, sticking closer to CIZSL

Problem: where can we get these features?

Fact: original MeRGAN operates in the image space.

Claim: applying the creativity loss in the image space is not good.

Justification:

- ▶ In CIZSL, the creativity loss was applied to features, not images, i.e. we didn't have a good precedent of using the creativity loss in the image space to improve model's performance on unseen.
- It feels hard to manipulate images to generate sensible unseen images
- We would need a very big GAN model to do that, which is slower to train and harder to tune

 $\mbox{\bf Idea}~\#1:$ let's apply creativity in the feature space, sticking closer to CIZSL

Problem: where can we get these features? **Idea #2**: let's just use features from Classifier

Claim It doesn't work as is.

Claim It doesn't work as is.

Intuition. Features drift away and LGM produces old features that are not only useless but even detrimental.

Claim It doesn't work as is.

Intuition. Features drift away and LGM produces old features that are not only useless but even detrimental.

Justification

Idea #3: what if we'll use a pretrained feature extractor?

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

▶ It feels unfair to use pretrained models

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

- ▶ It *feels* unfair to use pretrained models
- ▶ It feels not novel (ICCV19 paper does that, for example)

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

- ▶ It *feels* unfair to use pretrained models
- ▶ It feels not novel (ICCV19 paper does that, for example)

Idea #4: ok then, let's apply EWC to the Classifier to prevent features from drifting away.

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

- It feels unfair to use pretrained models
- ▶ It *feels* not novel (ICCV19 paper does that, for example)

 $\label{ldea} \textbf{#4}: \ \mbox{ok then, let's apply EWC to the Classifier to prevent features from drifting away.}$

Claim: it did not help, but I am sure I have a bug...

Idea #3: what if we'll use a pretrained feature extractor?

Claim: it has 2 serious problems:

- ▶ It feels unfair to use pretrained models
- ▶ It feels not novel (ICCV19 paper does that, for example)

Idea #4: ok then, let's apply EWC to the Classifier to prevent features from drifting away.

Claim: it did not help, but I am sure I have a bug...

Justification

We can go into improving this approach, but let's step back for a while and think about LGM on top of the Classifier's features more generally. It has two serious problems:

▶ We can't learn classes one by one like MerGAN can:

- ▶ We can't learn classes one by one like MerGAN can:
 - because of that it will not be a replacement for MeRGAN

- ▶ We can't learn classes one by one like MerGAN can:
 - because of that it will not be a replacement for MeRGAN
 - because of that it will not be possible to use it in modern CL setups without task identity or task bounds

- ▶ We can't learn classes one by one like MerGAN can:
 - because of that it will not be a replacement for MeRGAN
 - because of that it will not be possible to use it in modern CL setups without task identity or task bounds
- ▶ Its performance will depend a lot on EWC performance

▶ Some small features: label smoothing, tuning joint baseline, etc

- ▶ Some small features: label smoothing, tuning joint baseline, etc
- Add EWC/MAS regularization to LGM

- ▶ Some small features: label smoothing, tuning joint baseline, etc
- Add EWC/MAS regularization to LGM
- ► Some bug fixes (proper GP calculation, metrics, model cloning, etc)

- ▶ Some small features: label smoothing, tuning joint baseline, etc
- Add EWC/MAS regularization to LGM
- ► Some bug fixes (proper GP calculation, metrics, model cloning, etc)
- ▶ December was quite chaotic because of the conference, paperwork, holidays, etc...

- ▶ Some small features: label smoothing, tuning joint baseline, etc
- Add EWC/MAS regularization to LGM
- ► Some bug fixes (proper GP calculation, metrics, model cloning, etc)
- ▶ December was quite chaotic because of the conference, paperwork, holidays, etc...

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.
- ► Convolutional LGM-GAN (like in ICCV19 paper) on CUB
 - ► Result: performance dropped to 17.4% FJA

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.
- Convolutional LGM-GAN (like in ICCV19 paper) on CUB
 - ▶ Result: performance dropped to 17.4% FJA
- Creativity loss via simple entropy
 - Result: nothing changed (but I didn't experiment a lot)

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.
- Convolutional LGM-GAN (like in ICCV19 paper) on CUB
 - ▶ Result: performance dropped to 17.4% FJA
- Creativity loss via simple entropy
 - Result: nothing changed (but I didn't experiment a lot)
- Slow MeRGAN baseline on SVHN and AwA
 - Result: 60% CAS for SVHN

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.
- Convolutional LGM-GAN (like in ICCV19 paper) on CUB
 - ► Result: performance dropped to 17.4% FJA
- Creativity loss via simple entropy
 - Result: nothing changed (but I didn't experiment a lot)
- Slow MeRGAN baseline on SVHN and AwA
 - Result: 60% CAS for SVHN
- ▶ Some small things: CL setup from ICCV19 paper (i.e. a large first task and small subsequent tasks), task transfer metric, etc.

What was done in January

- ▶ LGM-AC-GAN and LGM-VAE without attributes on CUB
 - Result: 19.1% and 33% FJA.
- Convolutional LGM-GAN (like in ICCV19 paper) on CUB
 - Result: performance dropped to 17.4% FJA
- Creativity loss via simple entropy
 - Result: nothing changed (but I didn't experiment a lot)
- Slow MeRGAN baseline on SVHN and AwA
 - Result: 60% CAS for SVHN
- ► Some small things: CL setup from ICCV19 paper (i.e. a large first task and small subsequent tasks), task transfer metric, etc.
 - Result: 37% final joint accuracy on CUB (ICCV19 paper has 53%, but they do a lot of "cheating")

LGM-GAN vs LGM-VAE

▶ Several terms (8 in total) in the objective:

- ▶ Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty

- ▶ Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss

- ▶ Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - Rehearsal losses: generator rehearsal loss, classifier rehearsal loss

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ▶ Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- ► A lot of hyperparameters to tune:

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ► Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- A lot of hyperparameters to tune:
 - Optimizers for each component

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ► Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ► Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)
 - AC-GAN vs cGAN

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ► Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - ► LGM/Classifier training stages
- ▶ A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)
 - AC-GAN vs cGAN
 - On which classes should we rehearse (seen or learned)

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - ► Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- ▶ A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)
 - AC-GAN vs cGAN
 - On which classes should we rehearse (seen or learned)
 - For how many epochs/steps

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - ► LGM/Classifier training stages
- A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)
 - AC-GAN vs cGAN
 - On which classes should we rehearse (seen or learned)
 - For how many epochs/steps
 - Architecture

- Several terms (8 in total) in the objective:
 - AC-GAN losses: generator loss, generator classification loss, discriminator loss, classifier loss, gradient penalty
 - Generator prototypipcal loss
 - Rehearsal losses: generator rehearsal loss, classifier rehearsal loss
- Complex training scenario
 - Continual learning involves several stages
 - LGM/Classifier training stages
- A lot of hyperparameters to tune:
 - Optimizers for each component
 - Resetting the components (Discriminator and Classifier)
 - AC-GAN vs cGAN
 - On which classes should we rehearse (seen or learned)
 - For how many epochs/steps
 - Architecture
 - etc

Idea #5 Let's extract features for LGM from autoencoder. **Details of training:**

► Train an AutoEncoder sequentially on each task

- ► Train an AutoEncoder sequentially on each task
- ▶ For each task, train LGM on the features from AE

- Train an AutoEncoder sequentially on each task
- ▶ For each task, train LGM on the features from AE
- ▶ For each task, train Classifier on the features from AE

- ► Train an AutoEncoder sequentially on each task
- ► For each task, train LGM on the features from AE
- ► For each task, train Classifier on the features from AE
- ► For each task, rehearse previous data from LGM to LGM

- Train an AutoEncoder sequentially on each task
- ▶ For each task, train LGM on the features from AE
- ► For each task, train Classifier on the features from AE
- For each task, rehearse previous data from LGM to LGM
- For each task, rehearse previous data from LGM to Classifier

- Train an AutoEncoder sequentially on each task
- ► For each task, train LGM on the features from AE
- ► For each task, train Classifier on the features from AE
- For each task, rehearse previous data from LGM to LGM
- For each task, rehearse previous data from LGM to Classifier
- For each task, rehearse previous data from LGM to AutoEncoder

Idea #5 Let's extract features for LGM from autoencoder. **Details of training:**

- Train an AutoEncoder sequentially on each task
- ► For each task, train LGM on the features from AE
- ► For each task, train Classifier on the features from AE
- For each task, rehearse previous data from LGM to LGM
- For each task, rehearse previous data from LGM to Classifier
- For each task, rehearse previous data from LGM to AutoEncoder

Claim: AE features are useless for classification

Idea #5 Let's extract features for LGM from autoencoder. **Details of training:**

- Train an AutoEncoder sequentially on each task
- For each task, train LGM on the features from AE
- ► For each task, train Classifier on the features from AE
- ► For each task, rehearse previous data from LGM to LGM
- For each task, rehearse previous data from LGM to Classifier
- ▶ For each task, rehearse previous data from LGM to AutoEncoder

Idea #5 Let's extract features for LGM from autoencoder. **Details of training:**

- ► Train an AutoEncoder sequentially on each task
- ▶ For each task, train LGM on the features from AE
- For each task, train Classifier on the features from AE
- ► For each task, rehearse previous data from LGM to LGM
- ► For each task, rehearse previous data from LGM to Classifier
- ► For each task, rehearse previous data from LGM to AutoEncoder

Claim: AE features are useless for classification

 $\begin{tabular}{ll} \textbf{Justification 1}: Joint classification score was only 29\% for CIFAR100 in my experiments \\ \end{tabular}$

Justification 2: Joint classification score was only 31% for CIFAR100 in Deep InfoMax paper (but their latent code size was smaller (64 dim), which improves classification).

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features. **Justification (hand-wavy)**: classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features. Justification (hand-wavy): classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

 $\begin{tabular}{ll} \textbf{Idea} \# \textbf{6} \mbox{ (didn't try): we need to add classification objective into AutoEncoder's objective \end{tabular}$

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features. Justification (hand-wavy): classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

 $\begin{tabular}{ll} \textbf{Idea} \# \textbf{6} \ (didn't \ try): \ we \ need \ to \ add \ classification \ objective \ \\ AutoEncoder's \ objective \ \\ \end{tabular}$

Problem: but in this way we won't be able to learn classes one by one since our classification task will be singular (i.e. 1-class classification).

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features. **Justification (hand-wavy)**: classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

 $\begin{tabular}{ll} \textbf{Idea} \ \# \textbf{6} \ (\mbox{didn't try}): \ \mbox{we need to add classification objective into} \\ \mbox{AutoEncoder's objective} \end{tabular}$

Problem: but in this way we won't be able to learn classes one by one since our classification task will be singular (i.e. 1-class classification).

Idea: we can use already learned classes from LGM to fix that

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features. **Justification (hand-wavy)**: classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

 $\begin{tabular}{ll} \textbf{Idea} \ \# \textbf{6} \ (\mbox{didn't try}): \ \mbox{we need to add classification objective into} \\ \mbox{AutoEncoder's objective} \end{tabular}$

Problem: but in this way we won't be able to learn classes one by one since our classification task will be singular (i.e. 1-class classification).

Idea: we can use already learned classes from LGM to fix that Potential problem: AutoEncoder's performance can deteriorate because of this additional classification objective.

Claim: since Classifier cannot learn to classify features, there is no reason to try LGM to learn to generate these class-conditional features.

Justification (hand-wavy): classification is an easier task than generation, so if we can't even classify the objects, there is not hope to learn to generate class-conditional objects.

 $\begin{tabular}{ll} \textbf{Idea} \# \textbf{6} \mbox{ (didn't try): we need to add classification objective into } \\ \mbox{AutoEncoder's objective} \end{tabular}$

Problem: but in this way we won't be able to learn classes one by one since our classification task will be singular (i.e. 1-class classification).

Idea: we can use already learned classes from LGM to fix that **Potential problem**: AutoEncoder's performance can deteriorate because of this additional classification objective.

Problem: This will make the whole approach very cumbersome

What was done in February

► Convolutional LGM-VAE on CUB

- ► Convolutional LGM-VAE on CUB
 - ► Result: 33% FJA

Convolutional LGM-VAE on CUB

Result: 33% FJA

Since things didn't work, I started to decompose them and debug each component individually:

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).
 - Toy experiments on "Memorizing Networks"

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).
 - Toy experiments on "Memorizing Networks"
 - Result: 0 MSE loss for memorizing 10k vectors of size 32 into LSTM.

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).
 - Toy experiments on "Memorizing Networks"
 - Result: 0 MSE loss for memorizing 10k vectors of size 32 into LSTM.
 - Training AutoEncoder on CIFAR10/CIFAR100 to incroporate later into LGM

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).
 - Toy experiments on "Memorizing Networks"
 - Result: 0 MSE loss for memorizing 10k vectors of size 32 into LSTM.
 - Training AutoEncoder on CIFAR10/CIFAR100 to incroporate later into LGM
 - Result: described on the previous slide.

Convolutional LGM-VAE on CUB

- Since things didn't work, I started to decompose them and debug each component individually:
 - Training LGM-VAE, LGM-AC-GAN and LGM-cGAN independently to measure CAS on CUB and MNIST in a joint training scenario
 - Result: got 25%, 22% and 27% CAS on CUB, 80% vs 93% CAS for LGM-AC-GAN and LGM-cGAN on MNIST (the goal was to get 98%).
 - Toy experiments on "Memorizing Networks"
 - Result: 0 MSE loss for memorizing 10k vectors of size 32 into LSTM.
 - Training AutoEncoder on CIFAR10/CIFAR100 to incroporate later into LGM
 - Result: described on the previous slide.
 - Training AutoEncoder continually to check its LLL properties
 - Result: it does not forget previous data (it is interesting)

AutoEncoder does not forget previous data

Figure: MSE loss on different tasks for AutoEncoder trained sequentially

Honestly, there were problems in the paper and how the authors behaved:

Honestly, there were problems in the paper and how the authors behaved:

▶ Their approach is cumbersome

Honestly, there were problems in the paper and how the authors behaved:

- ▶ Their approach is cumbersome
- ▶ They are not clear about some important details

Honestly, there were problems in the paper and how the authors behaved:

- Their approach is cumbersome
- They are not clear about some important details
- They try to conceal their research (do not provide the code, do not respond to emails)

That's why I was unconsciously looking for reasons to drop their baseline:

- ▶ I think the way the authors do the research is not the way research should be done
- ► That's why I didn't want to build upon their work (why should we build upon it and spread it if the authors are hiding it?)

Conclusion

To build a good LGM one needs to solve 2 big problems:

- ▶ How to build a good feature extractor, i.e. a feature extractor that provides good features for a classifier.
- How to make its features not to drift away

And currently I do not have any concrete ideas to any of these problems.

Some thoughts:

- ► I do not want to drop the project because it feels like throwing away a 5-month work.
- ▶ But I do not see a concrete and principled idea of how to build LGM.
- Current LGM is already too cumbersome and I believe that cumbersome ideas do not survive unless they have outstanding results (like Mask R-CNN)