ON FALTINGS' ANNIHILATOR THEOREM

KAWASAKI, TAKESI

Dedicated to Professor Shiro Goto on the occasion of his sixtieth birthday

ABSTRACT. In the present article, the author shows that Faltings' annihilator theorem holds for any Noetherian ring A if A is universally catenary; all the formal fibers of all the localizations of A are Cohen-Macaulay; and the Cohen-Macaulay locus of each finitely generated A-algebra is open.

1. Introduction

Throughout the present article, A always denotes a commutative Noetherian ring. We say that the annihilator theorem holds for A if it satisfies the following proposition [4].

The Annihilator Theorem. Let M be a finitely generated A-module, n an integer and Y, Z subsets of Spec A which are stable under specialization. Then the following statements are equivalent:

- (1) $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth} M_{\mathfrak{q}} \geq n \text{ for any } \mathfrak{q} \in \operatorname{Spec} A \setminus Y \text{ and } \mathfrak{p} \in V(\mathfrak{q}) \cap Z;$
- (2) there is an ideal \mathfrak{b} in A such that $V(\mathfrak{b}) \subset Y$ and \mathfrak{b} annihilates local cohomology modules $H_Z^0(M), \ldots, H_Z^{n-1}(M)$.

Faltings [3] proved that the annihilator theorem holds for A if A has a dualizing complex or if A is a homomorphic image of a regular ring and that (2) always implies (1). Several authors [1, 2, 9, 10, 11] tried to improve Faltings' result. In this article, the author shows the following

Theorem 1.1. The annihilator theorem holds for A if

- (C1) A is universally catenary;
- (C2) all the formal fibers of all the localizations of A are Cohen-Macaulay; and
- (C3) the Cohen-Macaulay locus of each finitely generated A-algebra is open.

These conditions are not only sufficient but also necessary for the annihilator theorem. Indeed, Faltings [4] showed that A satisfies (C1)–(C3) whenever the annihilator theorem holds for each essentially of finite type A-algebra.

These conditions are also related to the uniform Artin-Rees theorem and the uniform Briançon-Skoda theorem. We give an affirmative answer to the conjecture of Huneke [7, Conjecture 2.13] in the last section.

1

Date: 15 Sep. 2006.

¹⁹⁹¹ Mathematics Subject Classification. Primary 13D45; Secondary 13C15, 14B15.

 $Key\ words\ and\ phrases.$ annihilators of local cohomologies, Cousin complex, Artin-Rees theorem, Briançon-Skoda theorem.

This work was supported by Japan Society for the Promotion of Science (the Grant-in-Aid for Scientific Researches (C)(2) 16540032).

2. Preliminaries

First we recall the definition of the local cohomology functor. A subset Z of Spec A is said to be stable under specialization if $\mathfrak{p} \in Z$ implies $V(\mathfrak{p}) \subset Z$. Let M be an A-module and Z a subset of Spec A which is stable under specialization. Then we put

$$H_Z^0(M) = \{ m \in M \mid \text{Supp } Am \subset Z \}.$$

It is an A-submodule of M and $H_Z^0(-)$ is a left exact functor.

Definition 2.1 ([5, p. 223]). The local cohomology functor $H_Z^p(-)$ with respect to Z is the right derived functor of $H_Z^0(-)$.

If \mathfrak{b} is an ideal, then $Z = V(\mathfrak{b})$ is stable under specialization and $H_Z^p(-)$ coincides with the ordinary local cohomology functor $H_{\mathfrak{b}}^p(-)$.

Let Z be a subset of Spec A which is stable under specialization. If \mathfrak{b} , \mathfrak{b}' are ideals such that $V(\mathfrak{b})$, $V(\mathfrak{b}') \subset Z$, then $V(\mathfrak{b} \cap \mathfrak{b}') \subset Z$. Therefore the set \mathcal{F} of all ideals \mathfrak{b} such that $V(\mathfrak{b}) \subset Z$ is a directed set with respect to the opposite inclusion. If \mathfrak{b} , $\mathfrak{b}' \in \mathcal{F}$ such that $\mathfrak{b}' \subset \mathfrak{b}$, then there is a natural transformation $\operatorname{Ext}_A^p(A/\mathfrak{b}, -) \to \operatorname{Ext}_A^p(A/\mathfrak{b}', -)$. Since $H_Z^0(-) = \operatorname{inj} \lim_{\mathfrak{b} \in \mathcal{F}} \operatorname{Hom}(A/\mathfrak{b}, -)$, we obtain the natural isomorphism

(2.1.1)
$$H_Z^p(-) = \inf_{\mathfrak{b} \in \mathcal{F}} \operatorname{Ext}_A^p(A/\mathfrak{b}, -).$$

The following lemma was essentially given by Raghavan [11, p. 491].

Lemma 2.2. Let M be a finitely generated A-module. Then $\mathcal{L} = \{H_Z^0(M) \mid Z \subset \operatorname{Spec} A \text{ is stable under specialization}\}$ is a finite set.

Proof. Let Ass $M = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ and $0 = M_1 \cap \dots \cap M_r$ be a primary decomposition of 0 in M where Ass $M/M_i = \{\mathfrak{p}_i\}$ for all i. Then $H_Z^0(M) = \bigcup_{V(\mathfrak{b}) \subset Z} 0 :_M \mathfrak{b} = \bigcap_{\mathfrak{p}_i \notin Z} M_i$. Therefore $\#\mathcal{L} \leq 2^r$.

We need Cousin complexes to prove Theorem 1.1.

Let M be a finitely generated A-module. For a prime ideal $\mathfrak{p} \in \operatorname{Supp} M$, the M-height of \mathfrak{p} is defined to be $\operatorname{ht}_M \mathfrak{p} = \dim M_{\mathfrak{p}}$. If \mathfrak{b} is an ideal in A such that $M \neq \mathfrak{b}M$, then let $\operatorname{ht}_M \mathfrak{b} = \inf\{\operatorname{ht}_M \mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp} M \cap V(\mathfrak{b})\}$.

Definition 2.3 ([12]). The Cousin complex $(M^{\bullet}, d_M^{\bullet})$ of M is defined as follows: Let $M^{-2}=0, \ M^{-1}=M$ and $d_M^{-2}\colon M^{-2}\to M^{-1}$ be the zero map. If $p\geq 0$ and $d_M^{p-2}\colon M^{p-2}\to M^{p-1}$ is given, then we put

$$M^p = \bigoplus_{\substack{\mathfrak{p} \in \operatorname{Supp} M \\ \operatorname{ht}_M \, \mathfrak{p} = p}} (\operatorname{Coker} d_M^{p-2})_{\mathfrak{p}}.$$

If $\xi \in M^{p-1}$ and $\bar{\xi}$ is the image of ξ in Coker d_M^{p-2} , then the component of $d_M^p(\xi)$ in $(\operatorname{Coker} d_M^{p-2})_{\mathfrak{p}}$ is $\bar{\xi}/1$.

The following theorem contains [6, Theorems 11.4 and 11.5].

Theorem 2.4. Assume that A satisfies (C1)–(C3) and let M be a finitely generated A-module satisfying

(QU)
$$\operatorname{ht}\mathfrak{p}/\mathfrak{q} + \operatorname{ht}_M\mathfrak{q} = \operatorname{ht}_M\mathfrak{p}$$
 for any $\mathfrak{p}, \mathfrak{q} \in \operatorname{Supp} M$ such that $\mathfrak{p} \supset \mathfrak{q}$.

Then there is an ideal \mathfrak{a} in A satisfying the following properties:

- (1) $V(\mathfrak{a})$ is the non-Cohen-Macaulay locus of M. In particular, $\operatorname{ht}_M \mathfrak{a} > 0$.
- (2) Let Z be a subset of Spec A which are stable under specialization and n an integer. If $\operatorname{ht}_M \mathfrak{p} \geq n$ for any $\mathfrak{p} \in Z \cap \operatorname{Supp} M$, then $\mathfrak{a}H_Z^p(M) = 0$ for each p < n.
- (3) Let $x_1, \ldots, x_n \in A$ be a sequence. If $\operatorname{ht}_M(x_1, \ldots, x_n)A \geq n$, then $\mathfrak a$ annihilates the Koszul cohomology module $H^p(x_1, \ldots, x_n; M)$ of M with respect to x_1, \ldots, x_n for any p < n.

Proof. Let M^{\bullet} be the Cousin complex of M and \mathfrak{a} the product of all the annihilators of all the non-zero cohomologies of M^{\bullet} . Then it is well-defined and satisfies (1). See [8, Corollary 6.4].

We prove (2). Because of (2.1.1), it is enough to show that $\mathfrak{a} \operatorname{Ext}^p(A/\mathfrak{b}, M) = 0$ for any ideal \mathfrak{b} such that $V(\mathfrak{b}) \subset Z$ and for any p < n. Let \mathfrak{b} be such an ideal and F_{\bullet} a free resolution of A/\mathfrak{b} . The double complex $\operatorname{Hom}(F_{\bullet}, M^{\bullet})$ gives two spectral sequences

$${}^{\prime}E_{2}^{pq} = \operatorname{Ext}^{p}(A/\mathfrak{b}, H^{q}(M^{\bullet})) \Rightarrow H^{p+q}(\operatorname{Hom}(F_{\bullet}, M^{\bullet})),$$
$${}^{\prime\prime}E_{2}^{pq} = H^{p}(\operatorname{Ext}^{q}(A/\mathfrak{b}, M^{\bullet})) \Rightarrow H^{p+q}(\operatorname{Hom}(F_{\bullet}, M^{\bullet})).$$

The first spectral sequence tells us that $\mathfrak{a}H^k(\operatorname{Hom}(F_{\bullet}, M^{\bullet})) = 0$ for any k.

On the other hand, ${}''E_2^{pq} = 0$ if p < -1 or if q < 0. Let $0 \le p < n$ be an integer and $\mathfrak{p} \in \operatorname{Supp} M$ such that $\operatorname{ht}_M \mathfrak{p} = p$. Since $\mathfrak{b} \not\subset \mathfrak{p}$, we find that $\operatorname{Hom}(F_{\bullet}, (\operatorname{Coker} d_M^{p-2})_{\mathfrak{p}})$ is exact. Hence $\operatorname{Hom}(F_{\bullet}, M^p)$ is also exact. Thus ${}''E_2^{pq} = 0$ if $0 \le p < n$ and ${}''E_2^{-1,q} = \operatorname{Ext}^q(A/\mathfrak{b}, M)$. If k < n, then ${}''E_2^{p,k-p-1} = {}''E_2^{p,k-p} = 0$ whenever $p \ne -1$. Therefore $H^{k-1}(\operatorname{Hom}(F_{\bullet}, M^{\bullet})) = {}''E_2^{-1,k} = \operatorname{Ext}^k(A/\mathfrak{b}, M)$ is annihilated by \mathfrak{a} .

Next we consider (3). Let K_{\bullet} be the Koszul complex of A with respect to x_1 , ..., x_n . By considering the double complex $\text{Hom}(K_{\bullet}, M^{\bullet})$, instead of $\text{Hom}(F_{\bullet}, M^{\bullet})$, we obtain the assertion.

3. The proof of Theorem 1.1

Before the proof of Theorem 1.1, we fix some notation. Let $\mathfrak X$ be the free Abelian group with basis Spec A and $\mathfrak X_+ = \{\sum k_{\mathfrak p} \mathfrak p \mid k_{\mathfrak p} \geq 0 \text{ for all } \mathfrak p \}$. If $\alpha = k_1 \mathfrak p_1 + \cdots + k_n \mathfrak p_n$ and $\beta = l_1 \mathfrak p_1 + \cdots + l_n \mathfrak p_n$ where $\mathfrak p_i \neq \mathfrak p_j$ whenever $i \neq j$, then we put

$$\alpha \vee \beta = \sum_{i=1}^{n} \max\{k_i, l_i\} \mathfrak{p}_i.$$

It is clear that $(\alpha \vee \beta) + \gamma = (\alpha + \gamma) \vee (\beta + \gamma)$. Let $\alpha = k_1 \mathfrak{p}_1 + \cdots + k_n \mathfrak{p}_n \in \mathfrak{X}_+$ and Y be a subset of Spec A which is stable under specialization. Then we put $\mathfrak{b}(\alpha, Y) = \prod_{\mathfrak{p}_i \in Y} \mathfrak{p}_i^{k_i}$. Since $V(\mathfrak{b}(\alpha, Y)) \subset Y$, Theorem 1.1 is contained in the following

Theorem 3.1. Assume that A satisfies (C1)–(C3). If M is a finitely generated A-module, then there is $\alpha(M) \in \mathfrak{X}_+$ satisfying the following property:

Let Y, Z be subsets of Spec A which are stable under specialization and n an integer. If

- (A) $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth} M_{\mathfrak{q}} \geq n \text{ for any } \mathfrak{q} \in \operatorname{Spec} A \setminus Y \text{ and } \mathfrak{p} \in V(\mathfrak{q}) \cap Z,$ then
 - (B) $\mathfrak{b}(\alpha(M), Y)$ annihilates $H_Z^0(M), \ldots, H_Z^{n-1}(M)$.

We prove this theorem by the Noetherian induction on $\operatorname{Supp} M$ and the induction on the number of associated primes of M.

If M=0, then $\alpha(M)=0$ obviously satisfies the assertion. Assume that $M\neq 0$ and that, for any finitely generated A-module M', there is $\alpha(M')$ satisfying the assertion of Theorem 3.1 if $\operatorname{Supp} M' \subseteq \operatorname{Supp} M$ or if $\operatorname{Supp} M' = \operatorname{Supp} M$ and $\#\operatorname{Ass} M' < \#\operatorname{Ass} M$. We first prove the following claim.

Claim. There is $\alpha'(M) \in \mathfrak{X}_+$ satisfying the following property:

Let Y, Z be subsets of Spec A which are stable under specialization and n an integer. If $Y \cap Ass M = \emptyset$ and (A) holds, then (B) also does.

Proof. Let Ass $M = \{P_1, \dots, P_r\}$. We may assume that $P_1 \not\subset P_2, \dots, P_r$ without loss of generality. There is an exact sequence

$$0 \to L \to M \to N \to 0$$

such that Ass $L = \{P_2, \dots, P_r\}$ and Ass $N = \{P_1\}$. Since A is universally catenary and N has the unique minimal prime, N satisfies (QU). Let \mathfrak{a} be the ideal obtained by applying Theorem 2.4 to N. Then $P_1 \subseteq \mathfrak{a}$. Since $P_1 \not\subset P_2, \dots, P_r$, we find that $\mathfrak{a} \not\subset P_2, \dots, P_r$. Let $x'' \in \mathfrak{a} \setminus (P_1 \cup \dots \cup P_r)$.

Since Supp $L \subseteq \text{Supp } M$ or since Supp L = Supp M and # Ass L < # Ass M, there is $\alpha(L) \in \mathfrak{X}_+$ satisfying the assertion of Theorem 3.1. Let $\alpha(L) = k_1Q_1 + \cdots + k_sQ_s$. We may assume that $Q_1, \ldots, Q_{s_0} \not\subset P_1 \cup \cdots \cup P_r$ and $Q_{s_0+1}, \ldots, Q_s \subset P_1 \cup \cdots \cup P_r$. Let $x' \in Q_1^{k_1} \cdots Q_{s_0}^{k_{s_0}} \setminus P_1 \cup \cdots \cup P_r$ and x = x'x''.

Since x is an M-non zero divisor, Supp $M/xM \subseteq \text{Supp } M$. We want to show that $\alpha'(M) = \alpha(M/xM)$ satisfies the assertion of the claim.

Let Y, Z be subsets of Spec A which are stable under specialization and n an integer. Assume that $Y \cap \operatorname{Ass} M = \emptyset$ and $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth} M_{\mathfrak{q}} \geq n$ for any $\mathfrak{q} \in \operatorname{Spec} A \setminus Y$ and $\mathfrak{p} \in V(\mathfrak{q}) \cap Z$. If $\mathfrak{p} \in Z \cap \operatorname{Supp} N$, then $\operatorname{ht} \mathfrak{p}/P_1 + \operatorname{depth} M_{P_1} \geq n$ because $\operatorname{Supp} N = V(P_1)$ and $P_1 \notin Y$. Since $\operatorname{depth} M_{P_1} = 0$, we have

(3.1.1)
$$\operatorname{ht}_{N} \mathfrak{p} = \operatorname{ht} \mathfrak{p}/P_{1} \geq n \quad \text{for any } \mathfrak{p} \in Z \cap \operatorname{Supp} N.$$

By using Theorem 2.4 (2), we find that $x''H_Z^p(N) = 0$ for any p < n.

Let $\mathfrak{q} \in \operatorname{Spec} A \setminus (Y \cup V(x''A))$ and $\mathfrak{p} \in V(\mathfrak{q}) \cap Z$. Since $x'' \notin \mathfrak{q}$, $N_{\mathfrak{q}}$ is Cohen-Macaulay. If $N_{\mathfrak{q}} \neq 0$, then $\mathfrak{p} \in Z \cap \operatorname{Supp} N$ and hence

$$ht \mathfrak{p}/\mathfrak{q} + \operatorname{depth} N_{\mathfrak{q}} = \operatorname{ht} \mathfrak{p}/\mathfrak{q} + \dim N_{\mathfrak{q}}
= \operatorname{ht}_{N} \mathfrak{p} \ge n.$$

Here we used (3.1.1). If $N_{\mathfrak{q}}=0$, then depth $N_{\mathfrak{q}}=\infty$ and hence $\operatorname{ht}\mathfrak{p}/\mathfrak{q}+\operatorname{depth}N_{\mathfrak{q}}\geq n$. Since $\mathfrak{q}\notin Y$, the assumption tells us that $\operatorname{ht}\mathfrak{p}/\mathfrak{q}+\operatorname{depth}M_{\mathfrak{q}}\geq n$. Therefore $\operatorname{ht}\mathfrak{p}/\mathfrak{q}+\operatorname{depth}L_{\mathfrak{q}}\geq n$. Because of the induction hypothesis,

$$\mathfrak{b}(\alpha(L), Y \cup V(x''A))H_Z^p(L) = 0$$

for p < n.

Since $x'' \notin P_1 \cup \cdots \cup P_r$, $P_1, \ldots, P_r \notin Y$ and $Q_{s_0+1}, \ldots, Q_s \subset P_1 \cup \cdots \cup P_r$, we have $Q_{s_0+1}, \ldots, Q_s \notin Y \cup V(x''A)$. Therefore $x' \in Q_1^{k_1} \cdots Q_{s_0}^{k_{s_0}} \subset \mathfrak{b}(\alpha(L), Y \cup V(x''A))$ and hence $x'H_Z^p(L) = 0$ if p < n. Since $H_Z^p(L) \to H_Z^p(M) \to H_Z^p(N)$ is exact, $xH_Z^p(M) = 0$ if p < n.

Since x is an M-non zero divisor, $H_Z^0(M) = 0$,

$$0 \to H^{p-1}_Z(M) \to H^{p-1}_Z(M/xM) \to H^p_Z(M) \to 0$$

is exact for p < n and $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth}(M/xM)_{\mathfrak{q}} \ge n-1$ for any $\mathfrak{q} \in \operatorname{Spec} A \setminus Y$ and $\mathfrak{p} \in V(\mathfrak{q}) \cap Z$. Therefore $\mathfrak{b}(\alpha'(M), Y) = \mathfrak{b}(\alpha(M/xM), Y)$ annihilates $H_Z^p(M)$ if p < n.

Next we give $\alpha(M)$. Let Ass $M = \{P_1, \ldots, P_r\}$ and $0 = M_1 \cap \cdots \cap M_r$ be a primary decomposition of 0 in M such that Ass $M/M_i = \{P_i\}$. Then there are integers k_1, \ldots, k_r such that $P_i^{k_i}M \subset M_i$ for each i.

Let $\{H_Z^0(M) \mid Y \subset \operatorname{Spec} A \text{ is stable under specialization}\} = \{L_1, \ldots, L_s\}$. Assume that $L_1 = 0$ and $L_2, \ldots, L_s \neq 0$. Since $\operatorname{Supp} M/L_i \subseteq \operatorname{Supp} M$ or $\operatorname{Supp} M/L_i = \operatorname{Supp} M$, $\# \operatorname{Ass} M/L_i < \# \operatorname{Ass} M$, there is $\alpha(M/L_i) \in \mathfrak{X}_+$ satisfying the assertion of Theorem 3.1 for each $i = 2, \ldots, s$. We put $\alpha(M) = \alpha'(M) \vee [\sum k_i P_i + \alpha(M/L_2) \vee \cdots \vee \alpha(M/L_s)]$. Then $\alpha(M)$ has required property.

Indeed, let Y, Z be subsets of Spec A which are stable under specialization and n an integer. If $H_Y^0(M) = 0$, then $Y \cap \operatorname{Ass} M = \emptyset$ and hence $\mathfrak{b}(\alpha'(M), Y)$ annihilates $H_Z^0(M), \ldots, H_Z^{n-1}(M)$. Assume that $H_Y^0(M) = L_j$ for some $2 \leq j \leq s$. If $\mathfrak{q} \in \operatorname{Spec} A \setminus Y$ and $\mathfrak{p} \in V(\mathfrak{q}) \cap Z$, then $(L_j)_{\mathfrak{q}} = 0$ and hence $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth}(M/L_j)_{\mathfrak{q}} = \operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth} M_{\mathfrak{q}} \geq n$. Therefore $\mathfrak{b}(\alpha(M/L_j), Y)$ annihilates $H_Z^0(M/L_j), \ldots, H_Z^{n-1}(M/L_j)$. On the other hand, since there is a monomorphism

$$L_j = \bigcap_{P_i \notin Y} M_i \hookrightarrow \bigoplus_{P_i \in Y} M/M_i,$$

we find that $\mathfrak{b}(\sum k_i P_i, Y) L_j = 0$. Since $H_Z^p(L_j) \to H_Z^p(M) \to H_Z^p(M/L_j)$ is exact, $\mathfrak{b}(\sum k_i P_i + \alpha(M/L_j), Y)$ annihilates $H_Z^0(M), \ldots, H_Z^{n-1}(M)$. Thus (B) holds. If L_1, \ldots, L_s are all non-zero, then we put $\alpha(M) = \sum k_i P_i + \alpha(M/L_1) \vee \cdots \vee$

If L_1, \ldots, L_s are all non-zero, then we put $\alpha(M) = \sum k_i P_i + \alpha(M/L_1) \vee \cdots \vee \alpha(M/L_s)$. We can show that $\alpha(M)$ satisfies the assertion of Theorem 3.1 in the same way as above. The proof of Theorem 1.1 is completed.

The following corollary is an improvement of [11, Theorem 3.1].

Corollary 3.2. Assume that A satisfies (C1)–(C3). If M is a finitely generated A-module, then there is a positive integer k satisfying the following property:

Let \mathfrak{a} , \mathfrak{b} be ideals in A and n an integer. If $\operatorname{ht} \mathfrak{p}/\mathfrak{q} + \operatorname{depth} M_{\mathfrak{q}} \geq n$ for any $\mathfrak{q} \in \operatorname{Spec} A \setminus V(\mathfrak{b})$ and $\mathfrak{p} \in V(\mathfrak{a} + \mathfrak{q})$, then $\mathfrak{b}^k H^p_{\mathfrak{a}}(M) = 0$ for all p < n.

Proof. Let
$$\alpha(M) = k_1 \mathfrak{p}_1 + \cdots + k_r \mathfrak{p}_r$$
 and $k = k_1 + \cdots + k_r$. Then $\mathfrak{b}(\alpha(M), V(\mathfrak{b})) \supset \mathfrak{b}^k$

4. A Conjecture of Huneke

The following theorem is an affirmative answer to Conjecture 2.13 of [7]. Its proof is similar to that of Theorem 2.4.

Theorem 4.1. Assume that A satisfies (C1)–(C3) and let M be a finitely generated A-module satisfying (QU). Then there is an ideal $\mathfrak a$ in A satisfying the following property:

- (1) $\operatorname{ht}_M \mathfrak{a} > 0$.
- (2) *Let*

$$0 \longrightarrow F^{-n} \xrightarrow{f^{-n}} F^{-n+1} \longrightarrow \cdots \longrightarrow F^{-1} \xrightarrow{f^{-1}} F^0$$

be a complex of finitely generated free A-modules such that

- (a) rank $f^{-n} = \operatorname{rank} F^{-n}$;
- (b) $\operatorname{rank} F^i = \operatorname{rank} f^i + \operatorname{rank} f^{i-1}$ for each -n < i < 0:

(c) $\operatorname{ht}_M I_{r_i}(f^i) \geq -i$ for each $-n \leq i < 0$ where $r_i = \operatorname{rank} f_i$ for each i. Then $\mathfrak{a}H^p(F^{\bullet} \otimes M) = 0$ for all p < 0. Here $I_{r_i}(f^i)$ denotes the ideal generated by all the r_i -minors of the representation matrix of f^i .

Proof. Let M^{\bullet} be the Cousin complex of M and \mathfrak{a} the product of all the annihilators of all the non-zero cohomologies of M^{\bullet} . Then \mathfrak{a} satisfies (1). The double complex $F^{\bullet} \otimes M^{\bullet}$ gives a spectral sequence

$${}^{\prime}E_{2}^{pq} = H^{p}(F^{\bullet} \otimes H^{q}(M^{\bullet})) \Rightarrow H^{p+q}(F^{\bullet} \otimes M^{\bullet}).$$

It tells us that $\mathfrak{a}H^p(F^{\bullet}\otimes M^{\bullet})=0$ for all p. On the other hand, $F^{\bullet}\otimes M^{\bullet}$ gives another spectral sequence ${}''E_2^{pq}\Rightarrow H^{p+q}(F^{\bullet}\otimes M^{\bullet})$ where ${}''E_2^{pq}$ is the cohomology of

$$H^q(F^{\bullet} \otimes M^{p-1}) \to H^q(F^{\bullet} \otimes M^p) \to H^q(F^{\bullet} \otimes M^{p+1}).$$

If $0 \le p < n$ and $\mathfrak{p} \in \operatorname{Supp} M$ such that $p = \operatorname{ht}_M \mathfrak{p}$, then

$$0 \longrightarrow (F^{-n})_{\mathfrak{p}} \longrightarrow \cdots \longrightarrow (F^{-p})_{\mathfrak{p}}$$

is split exact and hence $H^q(F^{\bullet}\otimes M^p)=0$ if q<-p. Therefore ${}''E_2^{pq}=0$ if p>0 and p+q<0. Furthermore ${}''E_2^{-1,q}=H^q(F^{\bullet}\otimes M)$ for each q<0. Of course, ${}''E_2^{pq}=0$ if p<-1. Thus $H^p(F^{\bullet}\otimes M)={}''E_2^{-1,p}=H^{p-1}(F^{\bullet}\otimes M^{\bullet})$ is annihilated by $\mathfrak a$ if p<0.

References

- M. Brodmann, Ch. Rotthaus, and R. Y. Sharp, On annihilators and associated primes of local cohomology modules, J. Pure Appl. Algebra 153 (2000), no. 3, 197–227. MR 2002b:13027
- [2] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 99h:13020
- [3] Gerd Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Arch. Math. (Basel) 30 (1978), no. 5, 473–476. MR 58 #22058
- [4] ______, Der Endlichkeitssatz in der lokalen Kohomologie, Math. Ann. 255 (1981), no. 1, 45–56. MR 82f:13003
- [5] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 36 #5145
- [6] Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 91g:13010
- [7] Craig Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), no. 1, 203–223. MR 93b:13027
- $[8] \enskip Takesi \enskip Kawasaki, \enskip Finiteness \enskip of \enskip Cousin \enskip cohomologies, to appear in Trans. Amer. Math. Soc.$
- K. Khashyarmanesh and Sh. Salarian, Faltings' theorem for the annihilation of local cohomology modules over a Gorenstein ring, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2215–2220 (electronic). MR MR2052396 (2005f:13021)
- [10] _____, Uniform annihilation of local cohomology modules over a Gorenstein ring, Comm. Algebra 34 (2006), no. 5, 1625–1630. MR MR2229481
- [11] K. Raghavan, Uniform annihilation of local cohomology and of Koszul homology, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 487–494. MR 94e:13033
- [12] Rodney Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring., Math. Z. 112 (1969), 340–356. MR 41 #8400

DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA 1-1, HACHIOJI, TOKYO 192-0397, JAPAN

 $E\text{-}mail\ address:\ kawasaki@comp.metro-u.ac.jp}$ $URL:\ http://www.comp.metro-u.ac.jp/~kawasaki/$