Floating point assignment #1

Exponent

Real numbers are stored using floating-point representation in a computer system.

This representation uses:

- 8 bits for the mantissa, followed by
- 4 bits for the exponent.

Two's complement form is used for both the mantissa and the exponent.

Mantissa

(a) (i) A real number is stored as a 12-bit normalised binary number as follows:

										1		_			
		0	1	0	1	0	0	1	0		0	0	1	0	
		Calc	ulate	the	dena	ry va	lue f	or th	is bir	nary number. Sho	w you	ır wo	rking	J.	
		Work	king												
								•••••							
		Dena	ary va	alue											[3]
	(ii)	Calc	ulate	the	norm	alise	d bir	narv i	numk	per for –3.75. Sho	ow vo	ur wo	orkino	a.	
	(,	Odio	aiato					.a.y .							
					Man	tissa	l 					=xpc	nen		
		Work	king										•••••		
															[3]
(b)	The	numl	ber o	f bits	avai	lable	to re	epres	sent	a real number is i	increa	sed	to 16	ò.	
	Stat	e the	effec	ct of i	ncre	asing	the	size	of th	e exponent by 4	bits.				
															[41
															[1]

(c)	State why some binary representations can lead to rounding errors.	
		[1]
(d)	Complete the following descriptions by inserting the two missing terms.	
	can occur in the exponent of a floating-point number, when	the
	exponent has become too large to be represented using the number of bits available.	
	A calculation results in a number so small that it cannot be represented by the number of	bits
	available. This is called	[2]

(a)		ompu			s rea	al nu	umbe	ers (using	floating-point	repre	senta	ition.	The	floating-po	oint
	:	eight four l														
	The	mant	issa	and e	expor	nent	are b	ooth	store	d in two's com	pleme	nt for	mat.			
	(i)	Calc	ulate	the o	denar	ry va	ılue o	f the	e follo	wing floating-p	oint n	umbe	r.			
	.,	Shov	v vou	ır wo	rkina											
			. ,													
					Mant	ISSa	l 					Exp	onen	τ		
		0	0	1	1	0	1	1	1		0	1	0	1		
		Work	ing .													
						•••••										
		Ansv	ver													[3]
	(ii)	State	why	the '	floati	na-n	oint r	num	har in	part (a)(i) is r	ot no	rmalic	had			
	(")	Olale	vviiy	uic	lloati	ng-p	Oniti	Iuiii		part (a)(i) is i	iot no	mana	ocu.			
																[1]
	(iii)	Give	the f	loatir	ng-po	int n	numb	er in	part	(a)(i) in norma	alised t	wo's	comp	leme	nt format.	
				-	Mant	issa	ı					Ехр	onen	t		
																[2]
																_

(b)	(i)	Convert the denary number +11.625	nto a normalised floating-point number.
		Show your working.	
		Working	
		Mantissa	Exponent
			[3]
	(ii)	Convert the denary number -11.625	nto a normalised floating-point number.
		Show your working.	
		Working	
		Mantissa	Exponent
			[3]
			I SI

(c)	A student	enters	the	following	into	an	interpreter

The student is surprised to see that the interpreter outputs the following:

0.080000000000000002

plain why the interpreter outputs this value.	
	3

A normalised floating point representation uses an 8-bit mantissa and a 4-bit exponent, both stored using **two's complement format**.

1 1			I	1					1	
		Man	tissa					Exp	onent	
This is a	floating po	oint re _l	preser	ntation	of a n	umber:	V			
		T	T	T					T	
0 • 1	1 0	1	1	0	0	0	0	0	1	1
		Man	tissa					Exp	onent	

1 0 Exponent u have arriv	ed at yo
u have arriv	
	[1
	[1
	[1
	-
	[1
	[2 r
	•
	tive denary

(e) (i)	In the context of floating point representation, explain what overflow is.	[2 marks]
(e) (ii)	Table 5 below contains descriptions of operations which may or may not cause overflow error when they are carried out with a floating point representation.	se an
	Place one tick next to the operation that may cause overflow.	[1 mark]

Table 5

Operation	May cause overflow? (Tick one box)
Subtracting a very small number from a large number.	
Dividing a large number by a very small number.	
Multiplying a large number by a very small number.	

In a particular computer system, real numbers are stored using floating-point representation with:

- 12 bits for the mantissa
- 4 bits for the exponent
- two's complement form for both mantissa and exponent

(,	Calcula	ie ine	lloat	ing-p	OII IL I	epres	Cinai	1011 01	+2.0	,	,			· you	*****	ung.	
					Man	tissa								Ехро	onent	t	
	•																
					•••••			•••••				•••••					
					•••••												
																	[3]
											•••••						[0]
/I_\	0-1	4 - 41			-:			:	0.5	: Al-3			OI				
(b)	Calcula	te the	float	ting-p	oint r	epres	entat	ion of	-2.5	in th	is sys	tem.	Show	your	work	ing.	
(b)	Calcula	ite the	float	ting-p		epres tissa	entat	ion of	-2.5	in thi	is sys	tem.	Show		work		
(b)	Calcula	te the	float	ting-p			entat	ion of	-2.5	in thi	is sys	tem.	Show				
(b)	Calcula	ite the	float	ting-p			entat	ion of	-2.5	in thi	is sys	tem.	Show				
(b)	Calcula	ite the	float	ting-p			entat	ion of	-2.5	in th	is sys	tem.	Show				
(b)	Calcula	te the	float	ting-p			entat	ion of	-2.5	in thi	is sys	tem.	Show				
(b)	Calcula	ite the	float	ting-p			entat	ion of	-2.5	in thi	is sys	tem.	Show				
(b)	• Calcula	ite the	float	ting-p			entat	ion of	-2.5	in thi	is sys	tem.	Show				
(b)	Calcula	te the	float	ting-p										Expo	enent		[3]

				Man	tissa								Expo	onent	:
0	0 1	1	0	0	0	0	0	0	0	0		0	0	1	1
		'	•												
(i)	State w														
(ii)	Justify	vour a	nswer	aive	n in p	art (c	l)(i).								
(ii)	Justify														
(ii)															
The	system	chang	jes so	that	it nov	v allo	cates	8 bits	to be	oth the	ma	ntissa			
The State	system	chang	ges so	that	it now	v alloo umbe	cates ers tha	8 bits	to be	oth the	ma entec	ntissa	a and	the e	xpor
The State	system	chang	ges so	that	it now	v alloo umbe	cates ers tha	8 bits	to be	oth the	ma entec	ntissa	a and	the e	xpor
The State	system	chang	ges so	that	it now	v alloo umbe	cates ers tha	8 bits	to be	oth the	ma entec	ntissa	a and	the e	xpor
The State	system	chang	ges so	that as on	it now	v alloo umbe	cates ers tha	8 bits	to be	oth the	ma entec	ntissa	a and	the e	xpor

A student enters the following expression into an interpreter:
OUTPUT (0.1 + 0.2)
The student is surprised to see the following output:
0.30000000000001
Explain why this output has occurred.
[3]