ARTIC Pipeline

From Raw ONT Data to Consensus Sequences

Joanna Malukiewicz, Ph.D.

University of Hamburg / Institute of Tropical Medicine, USP

Thursday, the 13^{th} of July, 2023

Introduction

nCoV-2019 novel coronavirus bioinformatics protocol

ONT Software

• MinKNOW software provides a graphical interface between the minION sequencer and the user

- MinKNOW can be set to be run with or without basecalling
- Guppy is used for calling bases from input FAST5 and outputting basecalls as FASTQ format (more on those formats later)

ONT Fast5 Format

• The raw "squiggle" signals that come off the minION are stored in the hdf5-based fast5 format

- HDF = Hierarchical Data Format
- Data in this type of file are structured in a nested format, similar as JSON
- more info https://medium.com/@shiansu/a-look-at-thenanopore-fast5-format-f711999e2ff6

ARTIC Bioinformatics Steps

https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html

- –Basecalling
- -Demultiplexing
- -Mapping
- -Polishing
- -Consensus Generation

Conda Environment

- Manager for programs and environments
- Each environment can have its own versions of Python and/or different versions of a specific program
- We will activate a pre-installed ARTIC environment with Conda
- The following command can be typed into the terminal prompt

source activate artic-ncov2019

Guppy Basecalling

- Barcodes help identify individual samples during sequencing
- Guppy can be used for basecalling (if not previously carried out in minKNOW)
- An example of a basecalling command via guppy would be
- Basecalled data are output in FASTQ format
- FASTQ is similar to FASTA, but it has extra basecall quality information not contained within a FASTA file

guppy_basecaller -c dna_r9.4.1_450bps_hac.cfg -i /path/to/reads -s run_name -x
auto -r

FASTA

FASTA format

Guppy Basecalling

guppy_basecaller -c dna_r9.4.1_450bps_hac.cfg -i /path/to/reads -s run_name -x
auto -r

- "-c" is the configuration file that gives guppy some information about what library kit and flow cell type you used
- "-i" is the directory where your FAST5 reads are found
- "-s" is the name for your sequencing run
- "-x" determines CPU or GPU mode

Guppy Demultiplex

 After (or during) basecalling, sequencing reads from specific samples need to be sorted by their given barcode, ie demultiplexed

Guppy can be

An example of would be

guppy_barcoder --require_barcodes_both_ends -i run_name -s output_directory -arrangements_files "barcode_arrs_nb12.cfg barcode_arrs_nb24.cfg"

ARTIC Filtering

• ARTIC filtering step is carried out to remove chimeric reads

- Chimeric reads can be formed by the ligation of two distinct molecules during library prep
- Chimeras also form in silico by the base calling software when two molecules are sequenced in the same pore in short succession (Martin and Legget, 2021)
- In silico chimeras can lead to barcode misidentification

ARTIC Filtering

• The artic pipeline gets around chimeric reads with two main approaches

- During demultiplex the same barcode is seen at the start and the end of each read
- Reads can also be filtered to ensure they are of the expected size (e.g. amplicon length + adaptor + barcode length, typically around 500bp for our schemes)

Filtering Command

- Filtering by size occurs via the command line below
- This command will also bring all the fastq files for each barcode into a single *.fastq file

artic guppyplex --skip-quality-check --min-length 400 --max-length 700 -- directory output directory/barcode03 --prefix run name

MinION Pipeline

- This command has to be carried out individual per barcode
- Bar code and sample name will need to be altered for each command

artic minion --normalise 200 --threads 4 --scheme-directory ~/artic-ncov2019/primer_schemes --read-file run_name_barcode03.fastq --fast5-directory path_to_fast5 --sequencing-summary path_to_sequencing_summary.txt nCoV-2019/V3 samplename

MinION Pipeline

artic minion --normalise 200 --threads 4 --scheme-directory ~/artic-ncov2019/primer_schemes --read-file run_name_barcode03.fastq --fast5-directory path_to_fast5 --sequencing-summary path_to_sequencing_summary.txt nCoV-2019/V3 samplename

- "threads" is a computing process to support the command
- more threads = more powerful processing
- –scheme-directory is the location of things like primers and reference sequence
- -sequencing-summary file is generated by guppy with information about base calling run such as which reads passed and failed that part of the pipeline

MinION Pipeline

artic minion --normalise 200 --threads 4 --scheme-directory ~/artic-ncov2019/primer_schemes --read-file run_name_barcode03.fastq --fast5-directory path_to_fast5 --sequencing-summary path_to_sequencing_summary.txt nCoV-2019/V3 samplename

- The command will carry out several step
 - Mapping of sequencing reads to a provided SARS CoV-2 reference genome (located within the scheme directory)
 - Polishing the reads (bioinformatically improving the basecalls)
 - Creating a SARS CoV-2 genome consensus based on the provided sequencing reads

Output Files

 samplename.rg.primertrimmed.bam -> BAM file for visualisation after primer-binding site trimming

- samplename.trimmed.bam -> BAM file with the primers left on (used in variant calling)
- samplename.merged.vcf -> all detected variants in VCF format
- samplename.pass.vcf -> detected variants in VCF format passing quality filter

Output Files

 samplename.fail.vcf -> detected variants in VCF format failing quality filter

- samplename.primers.vcf -> detected variants falling in primerbinding regions
- samplename.consensus.fasta -> consensus sequence

BAM File

• binary alignment map

```
@HD
      VN:1.0 SO:coordinate
aS0
       SN:chr20
                    IN:64444167
@PG
       ID:TopHat
                    VN:2.0.14
                                  CL:/srv/dna tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping tophat/index/chr
20 /data/user446/mapping_tophat/L6_18_GTGAAA_L007_R1_001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714
                                         16
                                                chr20
                                                      190930 3
                                                                    100M
      {\tt CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT
    AS: i:-15
                 XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714
                                                                                     HT: i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961
                                         16
                                               chr20 193953 50
                                                                    100M
      TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
    DCDDDDEDDDDDDDDDDDDCCCDDDCDDDDEEC>DFFFEJJJJJIGJJJJIHGBHHGJIJJJJJGJJJJIHJJJJJJJHHHHHFFFFFCCC
   AS:i:-16
                 XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
                                                                    100M
                                               chr20 270877 50
HWI-ST1145:74:C101DACXX:7:1204:14760:4030
                                        16
      DDDDDDDDDDDDDDDDDDDDDDDEEEEEEFFFFFFGHHHHFGDJJHJJJJJJJIIIIGGFJJHHIIIJJJJJJJJGHHFAHGFHJHFGGHFFDD@BB
   AS:i:-11
                 XM:i:2 X0:i:0 XG:i:0 MD:Z:0A85G13
                                                   NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699
                                         0
                                               chr20
                                                      271218 50
                                                                    50M4700N50M
            GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTTCTCGAAGCAGAACATCCTCAAATATGACCTCTCG
accepted hits.sam
```

BAM

VCF File

variant call format

vcf