Problem 1. Let X be the set of all symmetric $n \times n$ matrices over \mathbb{R} , and $Y \subseteq X$ the subset of all positive semidefinite matrices.

- (i) For two matrices $A, B \in X$, define $A \ge B$ if $A B \in Y$. Prove that \ge is a partial order, i.e. (1) $A \ge A$, (2) $A \ge B$ and $B \ge A$ implies A = B, (3) $A \ge B$ and $B \ge C$ implies $A \ge C$.
- (ii) Prove that Y is convex, i.e. for $A, B \in Y$, we have $tA + (1-t)B \in Y$ for all real $t \in [0,1]$.
- (iii) Let $A, B \in Y$. Suppose that AB = BA. Prove that $AB \in Y$.
- (iv) Let

$$Z := \{ A \in X : \operatorname{tr}(AB) \ge 0 \text{ for all } B \in Y \},$$

where tr means trace. It is a known fact that tr(AB) = tr(BA) for matrices A, B with compatible sizes. Prove that Z = Y.

Problem 2.

- (i) Let $X := (-0.01, 2\pi) \times (-0.01, 2\pi)$. Consider $f : X \to \mathbb{R}$ given by $f(x, y) = (\cos x)(\cos y)$. Find all its local maximals (both points and values) and local minimals (both points and values).
- (ii) Let X be the set of real 2×2 orthogonal matrices. Consider $f: X \to \mathbb{R}$ given by $A \mapsto \operatorname{tr} A^2$ where tr means trace. Find all its global maximum and minimum (both points and values).

Problem 3. We define an equivalence relation \sim on $M_n(k)$ by

$$A \sim B$$
 if $B = S^{\top}AS$ for some invertible $S \in M_n(k)$.

- (i) For $k=\mathbb{C}$ and n=2, find a complete set of representatives for $M_n(k)/\sim$.
- (ii) For $k = \mathbb{R}$ and n = 2, find a complete set of representatives for $M_n(k) / \sim$.

Problem 4. Let M be a finite inner product space over \mathbb{C} . For an ordered basis B, let G_B be its Gram matrix. A pair of *dual bases* consists of an ordered basis $B = (b_1, \ldots, b_m)$ of M and another ordered basis $C = (c_1, \ldots, c_m)$ of M such that

$$\langle b_i, c_j \rangle_M = \delta_{ij},$$

where $\delta_{ij} := 1$ if i = j and $\delta_{ij} := 0$ if $i \neq j$.

- (i) Let b_1, \ldots, b_m and c_1, \ldots, c_m be dual bases. Give a simple formula for an element $v \in M$ as a linear combination of b_1, \ldots, b_m .
- (ii) Let b_1, \ldots, b_m be an ordered basis of M. Prove that there exist $c_1, \ldots, c_m \in M$ such that b_1, \ldots, b_m and c_1, \ldots, c_m are dual bases.
- (iii) Prove that, if B and C are dual bases, then G_B and G_C are inverses to each other.
- (iv) Disprove that, if G_B and G_C are inverses to each other, then B and C are dual bases.

Problem 5. Consider square matrices over \mathbb{C} . It is a known fact that every matrix is upper triangularizable. Prove the following statements.

- (i) Every matrix is unitarily triangularizable.
- (ii) Eigenspaces with distinct eigenvalues of a normal matrix are orthogonal.
- (iii) Every normal matrix is unitarily diagonalizable.
- (iv) A matrix is unitarily diagonalizable if and only if it is normal.

Problem 6. Let $k := \mathbb{C}$. For a $A \in M_n(k)$, let

$$e^A := \sum_{i=0}^{\infty} \frac{A^i}{i!},$$

where we adopt the convention that $A^0 = I$. It is known facts that e^A always exists (the series converges) and $e^{A+B} = e^A e^B$ for [A, B] = 0. A logarithm of A is a matrix B such that $e^B = A$.

- (i) Find all logarithms of the 2×2 identity matrix.
- (ii) Let $\theta \in \mathbb{R}$ such that $\sin \theta \neq 0$. Let

$$A_{\theta} := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Find all logarithms of A_{θ} .

- (iii) Prove that, for a unitary matrix A, there exists a skew-Hermitian $(B^{\dagger} = -B)$ logarithm B.
- (iv) Prove that a logarithm of A exist if and only if A is invertible.

Problem 7. Let M be a finite k-module over an algebraically closed field k. Let $\mathfrak{g} := \operatorname{End}(M)$. For each $x \in \mathfrak{g}$, let $x = x_s + x_n$ be its (unique) Jordan-Chevalley decomposition in \mathfrak{g} . For each $x \in \mathfrak{g}$, let ad $x : \mathfrak{g} \to \mathfrak{g}$ be the (a priori not necessarily linear) map given by $y \mapsto [x, y]$, where [x, y] := xy - yx.

- (i) Prove that the map ad x is an element in $\text{End}(\mathfrak{g})$, i.e. ad x is a linear transformation.
- (ii) Prove that the map ad x_s is semisimple in End(\mathfrak{g}).
- (iii) Prove that the map ad x_n is nilpotent in $\operatorname{End}(\mathfrak{g})$.
- (iv) Prove that [ad x_s , ad x_n] = 0 in End(\mathfrak{g}).

Problem 8. Let $k := \mathbb{C}$, $d \ge 1$, and $c_0, \ldots, c_{d-1} \in k$. Let $p := x^d + c_{d-1}x^{d-1} + \cdots + c_1x + c_0$ and suppose that $p = (x - \lambda_1)^{d_1} \cdots (x - \lambda_t)^{d_t}$ for distinct $\lambda_1, \ldots, \lambda_t \in k$. The companion matrix of p is

$$C := \begin{bmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \dots & 1 & -c_{d-1} \end{bmatrix}_{d \times d}$$

- (i) For d=2, find an explicit similarity from C to its Jordan normal form.
- (ii) Consider a recurrence $f_0 = 0$, $f_1 = 1$ and $f_{n+2} = af_{n+1} + bf_n$, where $a, b, f_i \in \mathbb{C}$. Give an explicit formula (without using matrices) for f_n in terms of a, b, n.
- (iii) Prove that the only annihilating polynomial of C of degree at most d-1 is 0.
- (iv) Calculate the Jordan normal form of C.