WHETGEO 1D Grid creation

WHETGEO-1D model solves the so called mixed - or conservative - formulation of the Richards' equation. The novelty regards the use of the nested Newton-Casulli-Zanolli (NCZ) algorithm, (Casulli and Zanolli, 2010) to linearize the nonlinear system resulting from the approximation of the governing equation.

WHETGEO 1D project:

https://github.com/GEOfra meOMSProjects/OMS_Pro ject_WHETGEO1D

In order to apply the numerical model it is necessary to define a **grid** on which to calculate the solution.

GRID creation for WHETGEO 1D

For the column of soil:

- Identify homogeneous layers and define their depth
- Determine / hypothesize the **parameters** of the **SWRC**
- Assume an initial condition for water suction, soil temperature (use field measurements, if it is possible).

All this information must be placed in **files** .csv

Grid creation for WHETGEO 1D

The grid consists of:

Layer → Soil layer

Control volumes

Control volume centroids

Interface between control volumes

The computational grid is created by a **Notebook**

WHETGEO1D_RichardsCoupled_Computational_grid.ipynb

It needs as **input** of **3 file .cvs** with the soil column characteristics:

- Geometry of the soil column (grid_input_file_name.csv)
- Initial conditions (ic input file name.csv)
- SWRC parameters (parameter_input_file_name.csv)

grid_input_file_name.csv

⊞ _grid_	Richards_coupled_(×								
Delimiter: , Y									
	Туре	eta	К	equationStateID	parameterID				
1	L	0	30	1	1				
2	Ĺ	-1	20	1	2				
3	L	-2	10	1	3				
4	L	-3	nan	nan	nan				

Type

L: identifies a layer. The first and last row must always be layers (L).

M: identifies a suction measurement point. This point must belong to the computation domain both because it is to be used to reconstruct the initial suction profile and to validate the calculated solution.

grid_input_file_name.csv

eta: is the upward positive vertical coordinate with origin fixed to the surface [m]

grid_input_file_name.csv

K: number of control volumes in which the layer is to be discretized

grid_input_file_name.csv

⊞ _grid_	Richards_coupled_(×	
Delimiter	: , ~	
	Туре	parameterID
1	L	1
2	L	2
3	L	3
4	L	nan

parameterID: number refers to the set of parameter chosen in the
parameter_input_file_name.csv file

ic_input_file_name.csv

⊞ _ic.csv	×		
Delimiter: ,	′		
	eta	Psi0	ТО
1	-0.0	-3.0	273.15
2	-3.0	0.0	273.15
3			

Psi0: In this column you must enter the value of the initial condition for the suction.

T0: In this column you must enter the value of the initial condition for the soil temperature.

The SWRC parametrization implemented are:

- Van Genuchten
- Brooks Corey
- Kosugi
- Romano

Van Genuchten

$$\theta(\psi) = \begin{cases} \theta_r + (\theta_s - \theta_r)[1 + (|\alpha\psi|)^n]^{-m} & \text{if } \psi < 0\\ \theta_s + \rho g(\alpha_{ss} + \theta_s \beta_{ss})\psi & \text{otherwise} \end{cases}$$

Symbol	Physical quantity	Unit	Input
θ_r	residual water content	[-]	thetaR
θ_s	water content at saturation	[-]	thetaS
α	Van Genuchten parameter	$[m^{-1}]$	alpha
n	Van Genuchten parameter (>1)	[-]	n
$m = 1$ $-\frac{1}{n}$	Van Genuchten parameter	[-]	not required
α_{ss}	matrix compressibility	[]	alphaSpecificStorage
βss	water compressibility	[]	betaSpecificStorage
K_s	saturated hydraulic conductivity	$[\mathrm{m}\;\mathrm{s}^{-1}]$	Ks

⊞ Richar	ds_VG.csv	×					
Delimiter:	: , ~						
	thetaS	thetaR	n	alpha	alphaSpecificStorage	betaSpecificStorage	Ks
1	#1 Sand	Bonan 2018 Tab 8.3					
2	0.43	0.045	2.68	14.5	0.0	0.0	8.25e-05
3	#2 Loamy sand	Bonan 2018 Tab 8.3					
4	0.41	0.057	2.28	12.4	0.0	0.0	4.0528e-05
5	#3 Sandy Ioam	Bonan 2018 Tab 8.3					
6	0.41	0.065	1.89	7.5	0.0	0.0	1.2278e-05

Brooks - Corey

$$\theta(\psi) = \begin{cases} \theta_r + (\theta_s - \theta_r) \left(\frac{\psi_D}{\psi}\right)^n & \text{if } \psi < \psi_D \\ \theta_s + \rho g(\alpha_{ss} + \theta_s \beta_{ss}) \psi & \text{otherwise} \end{cases}$$

Symbol	Physical quantity	Unit	Input
θ_r	residual water content	[-]	thetaR
θ_s	water content at saturation	[-]	thetaS
ψ_D	Brooks and Corey parameter	[m]	psiD
n	Brooks and Corey parameter	[-]	n
α_{ss}	matrix compressibility	[]	alphaSpecificStorage
βss	water compressibility	[]	betaSpecificStorage
K_s	saturated hydraulic conductivity	$[\mathrm{m}\;\mathrm{s}^{-1}]$	Ks

Richar	ds_BC.csv	×					
Delimiter:	, ~						
	thetaS	thetaR	n	psiD	alphaSpecificStorage	betaSpecificStorage	Ks
1	#sand						
2	0.36689	0.05385	2.54723	-0.334	0.0	0.0	5.40583E-05
3	#clay						
4	0.46291	0.06707	1.65275	-2.247	0.0	0.0	5.18521E-06
5	#silt						
6	0.48664	0.13335	1.34174	-1.397	0.0	0.0	9.73284E-07

Kosugi

$$\theta(\psi) = \begin{cases} \frac{\theta_s - \theta_r}{(2\pi)^{1/2} \sigma(-\psi)} \exp\left\{-\frac{[\ln(\psi/\psi_m)]^2}{2\sigma^2}\right\} & \text{if } \psi < \psi_D\\ \theta_s + \rho g(\alpha_{ss} + \theta_s \beta_{ss}) \psi & \text{otherwise} \end{cases}$$

Symbol	Physical quantity	Unit	Input
θ_r	residual water content	[-]	thetaR
θ_s	water content at saturation	[-]	thetaS
ψ_m	median value	[m]	psiMedian
σ	dimensionless parameter	[-]	sigma
α_{ss}	matrix compressibility	[]	alphaSpecificStorage
βss	water compressibility	[]	betaSpecificStorage
K_s	saturated hydraulic conductivity	$[m s^{-1}]$	Ks

Delimiter:	, ~						
	thetaS	thetaR	psiMedian	sigma	alphaSpecificStorage	betaSpecificStorage	Ks
1	#loam						
2	0.42	0.09	-4.9	0.98	0.0	0.0	1.19444E-06
3	#sandy-loam						
4	0.41	0.27	-2.63	1.79	0.0	0.0	8.3611E-06
5	#silt						
6	0.38	0.01	-2.63	2.74	0.0	0.0	4.4444e-05

Grid creation for WHETGEO 1D

parameter_input_file_name.csv

Romano

$$\theta(\psi) = \begin{cases} \theta_r + (\theta_s - \theta_r) \left\{ w \left\{ \frac{1}{2} \left[\frac{\ln(\psi/\psi_{m1})}{\sigma_1 \sqrt{2}} \right] \right\} + (1 - w) \left\{ \frac{1}{2} \left[\frac{\ln(\psi/\psi_{m2})}{\sigma_2 \sqrt{2}} \right] \right\} \right\} & \text{if } \psi < \psi_I \\ \theta_s + \rho g(\alpha_{ss} + \theta_s \beta_{ss}) \psi & \text{otherwise} \end{cases}$$

Symbol	Physical quantity	Unit	Input
θ_r	residual water content	[-]	thetaR
θ_s	water content at saturation	[-]	thetaS
\boldsymbol{w}	weighting factor	[-]	W
ψ_{m1}	median value of water suction texture	[m]	h1
ψ_{m2}	median value of water suction structure	[m]	h2
σ_1	standard deviation texture	[-]	sigma1
σ_2	standard deviation structure	[-]	sigma2
α_{ss}	matrix compressibility	[]	alphaSpecificStorage
βss	water compressibility	[]	betaSpecificStorage
K_s	saturated hydraulic conductivity	$[\mathrm{m}\;\mathrm{s}^{-1}]$	Ks

III Richard	ds_Romano.csv	×								
Delimiter:	, ~									
	thetaS	thetaR	w	sigma1	sigma2	h1	h2	alphaSpecificStorage	betaSpecificStorage	Ks
1	#loam									
2	0.39	0.02	0.4	0.2	0.8	-10.25	-1.4	0.0	0.0	0.0000981
3	#sandy-loam									
4	0.2	0.04	0.5	0.4	0.9	-1.25	-0.04	0.0	0.0	0.0000981
5	#silt									
6	0.5	0.01	0.45	0.3	0.8	-2.3	-0.5	0.0	0.0	0.000006

Create all the input.csv files

run the notebook

WHETGEO1D_RichardsCoupled_Computational_grid.ipynb

Create the grid for WHETGEO 1D Richards coupled with shallow water

```
-Author: Niccolò Tubini and Riccardo Rigon
-License: this work is licensed under a Creative Commons Attribution—NonCommercial 4.0 International License
```

```
grid_input_file_name = project_path + "/data/Grid_input/_grid_Richards_coupled.csv"
ic_input_file_name = project_path + "/data/Grid_input/_ic.csv"
parameter_input_file_name = project_path + "/data/Grid_input/Richards_VG.csv"
dictionary_input_file_name = project_path + "/data/Grid_input/dictionary.csv"
grid_type = 'classical'
```

grid_type: string defining how to discretize the 1D domain. You can choose among:

mixed


```
dz_min: thickness of the first layer (for exponential and mixed )

dz_max: larger thickness of the grid (for mixed )

b: growth rate (for exponential and mixed )

psi_interp_model: string defining the type of the 1D interpolation function used to define the initial condition for water suction

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

T_interp_model: string defining the type of the 1D interpolation function used to define the initial condition for temperature

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

water_ponding_0: double [m] defining the water suction at soil surface. If it is larger than 0 means that there is water ponding.

T_water_ponding_0: double [K] defining the temperature at soil surface.
```

```
dz_min = 0.005

dz_max = 0.1

b = 0.1

psi_interp_model = "linear"

T_interp_model = "linear"

water_ponding_0 = -3.0

T_water_ponding_0 = 273.15
```

```
output_file_name = project_path + "/data/Grid_NetCDF/Richards_coupled_VG2.nc"
output_title = '''Computational grid to solve the Richards' equation with the surface
                     boundary condition defined coupling with the shallow water.
                   111
output_summary = '''
Type, eta, K, equationStateID, parameterID
L,0,150,1,1
L,-1,50,1,2
L,-2,10,1,3
L,-3, nan, nan, nan
eta, Psi0, T0
-0.0, -3.0, 273.15
-3.0,0.0,273.15
water ponding 0 = -3.0
T_water_ponding_0 = 273.15
111
output date = ''
output_institution = 'GEOframe'
```


WHETGEO 1D

Author: Niccolò Tubini

Executables: WHETGEO-1D v0.98

For more general information regarding the use of GEOframe programs and models, please see:

GEOframe essentials

GEOframe Winter School

