A Refined Mean Field Approximation for Synchronous Population Processes

Nicolas Gast

Inria, Grenoble, France (joint work with Diego Latella and Mieke Massink, CNR/ISTI (Italy))

MAMA Workshop, 2018

How to characterize emerging behavior starting from a stochastic model of interacting objects?

Evacuation

Thanks to the law of large numbers : Some systems simplify as they grow

Applications:

- Communication protocols (MPTCP, Simgrid)
- Mean field games (Adversarial classification)
- Performance of load balancing / caching algorithms
- Stochastic approximation / learning
- Theoretical biology

We can study large systems. What about moderate sizes?

We can study large systems. What about moderate sizes?

For many systems, asymptotically:
$$Perf(N) \approx Perf(\infty) + \frac{1}{N}V$$

We can study large systems. What about moderate sizes?

Refined mean field approximation

Outline

- 1 Mean field approximations of synchronous populations
- 2 The refined mean field
- 3 Does it always work?
- 4 Conclusion and recap

Outline

- Mean field approximations of synchronous populations
- 2 The refined mean field
- 3 Does it always work?
- 4 Conclusion and recap

Discrete-time mean field models

Population of N objects (discrete time, discrete space).

 $X_i(t)$ = fraction of object in state i at time t

Discrete-time mean field models

Population of N objects (discrete time, discrete space).

 $X_i(t)$ = fraction of object in state i at time t

There are two cases:

- Asynchronous case (BLB08,K81) One (or a few) objects change state at each time step. (see talk at SIGMETRICS)
 - ► Continuous-time mean field approximation
- Synchronous case (LB+07) All object simultaneously change state (this talk).
 - ► Discrete-time mean field approximation

- BLB08 Michel Benaïm, Jean-Yves Le Boudec: A class of mean field interaction models for computer and communication systems. Perform. Eval. 2008
 - K81 Thomas G. Kurtz: Approximation of Population Processes. 1981

Our synchronous model is similar to the one of [LB+07]

At each time step: all objects perform an independent transition:

$$K_{ij}(x) = \mathbf{P} [$$
An object in state i changes to state $j \mid X(t) = x]$.

The mean field approximation is given by :

$$\mu(t+1) = \mu(t)K(\mu(t)) =: \Phi_1(\mu(t))$$

The mean field approximation is asymptotically exact (LB+07) :

$$X(t) = \mu(t) + o_{N \to \infty}(1).$$

Evolution of one individual:

Evolution of one individual:

We plot $\mathbb{E}[X_S(t)]$ as a function of time :

Evolution of one individual:

We plot $\mathbb{E}[X_S(t)]$ as a function of time :

Evolution of one individual:

We plot $\mathbb{E}[X_S(t)]$ as a function of time :

Outline

- 1 Mean field approximations of synchronous populations
- 2 The refined mean field
- 3 Does it always work?
- 4 Conclusion and recap

First result : transient regime

We assume that $\Phi_1: x \mapsto xK(x)$ is twice differentiable and we define

$$A(t) = (D\Phi_1)(\mu(t)) \text{ and } B(t) = (D^2\Phi_1)(\mu(t))$$

$$\Gamma_{jk}(x) = \sum_{i=1}^{n} x_i K_{ij}(x) (\mathbf{1}_{j=k} - K_{ik}(x))$$

Let V(0) = 0, W(0) = 0 and

$$V(t+1) = A(t)V(t) + \frac{1}{2}B(t) \cdot W(t) W(t+1) = \Gamma(\mu(t)) + A(t)W(t)A(t)^{T}.$$
 (1)

Theorem (Transient Regime)

For any time $t : \mathbb{E}[X(t)] = \mu(t) + \frac{1}{N}V(t) + o(1/N)$.

Second result: steady-state

We assume that in addition, the mean field approximation has a unique fixed point that is exponentially stable : $|\Phi_t(m) - \pi| \le ae^{-bt}$.

Second result : steady-state

We assume that in addition, the mean field approximation has a unique fixed point that is exponentially stable : $|\Phi_t(m) - \pi| \leq ae^{-bt}$.

Theorem

If the mean field approximation has a unique exponentially stable fixed point, then the previous theorem holds uniformly in time.

In particular in steady state: $\mathbb{E}[X] = \pi + \frac{1}{N} \left(\lim_{t \to \infty} V(t) \right) + o(1/N)$.

Refined m.f. $\mu(t) + \frac{V_t}{10}$

Mean field $\mu(t)$

Second result : steady-state

We assume that in addition, the mean field approximation has a unique fixed point that is exponentially stable : $|\Phi_t(m) - \pi| \leq ae^{-bt}$.

Theorem

If the mean field approximation has a unique exponentially stable fixed point, then the previous theorem holds uniformly in time.

In particular in steady state: $\mathbb{E}[X] = \pi + \frac{1}{N} \left(\lim_{t \to \infty} V(t) \right) + o(1/N)$.

Refined m.f. $\mu(t) + \frac{V_t}{20}$

Mean field $\mu(t)$

Nicolas Gast - 12 / 20

Second result: steady-state

We assume that in addition, the mean field approximation has a unique fixed point that is exponentially stable : $|\Phi_t(m) - \pi| \le ae^{-bt}$.

Theorem

If the mean field approximation has a unique exponentially stable fixed point, then the previous theorem holds uniformly in time.

In particular in steady state:
$$\mathbb{E}\left[X\right] = \pi + rac{1}{N} \left(\lim_{t o \infty} V(t)\right) + o(1/N).$$

Result for steady-state:

	Ν	10	20	30	50	∞ (mf
$\mathbb{E}\left[X_{\mathcal{S}}\right]$ (Simulation)	ŀ					
$\mu_{S}(\infty) + \frac{V}{N}$ (Refined mf)	0.189	0.176	0.172	0.169	0.167	0.164

Where does the O(1/N)-term come from?

The mean field approximation is $\mu(t+1)=\mu(t)K(\mu(t))$ with $\mu(0)=M(0)$.

$$\mathbb{E}[X(t+1) \mid X(t) = \mu(t)] = \mu(t)K(\mu(t)) = \mu(t+1)$$

Hence:

$$\mathbb{E}\left[X(t+1)\right] = \mathbb{E}\left[X(t)K(X(t))\right]$$

Where does the O(1/N)-term come from?

The mean field approximation is $\mu(t+1)=\mu(t)K(\mu(t))$ with $\mu(0)=M(0)$.

$$\mathbb{E}[X(t+1) \mid X(t) = \mu(t)] = \mu(t)K(\mu(t)) = \mu(t+1)$$

Hence:

$$\mathbb{E}\left[X(t+1)\right] = \mathbb{E}\left[X(t)K(X(t))\right] \approx \mathbb{E}\left[X(t)\right]K(\mathbb{E}\left[X(t)\right]) \quad \text{Mean field approx}.$$

Where does the O(1/N)-term come from?

The mean field approximation is $\mu(t+1)=\mu(t)K(\mu(t))$ with $\mu(0)=M(0)$.

$$\mathbb{E}[X(t+1) \mid X(t) = \mu(t)] = \mu(t)K(\mu(t)) = \mu(t+1)$$

Hence:

$$\mathbb{E}\left[X(t+1)\right] = \mathbb{E}\left[X(t)K(X(t))\right] \approx \mathbb{E}\left[X(t)\right]K(\mathbb{E}\left[X(t)\right]) \quad \text{Mean field approx}.$$

Now, in addition:

$$\operatorname{cov}(X(t), X(t) \mid X(t) = \mu(t)) = \frac{1}{N} \Gamma(\mu(t)).$$

The refined mean field is derived by taking the 1/N-term into account.

Outline

- 1 Mean field approximations of synchronous populations
- 2 The refined mean field
- 3 Does it always work?
- 4 Conclusion and recap

Positive side

Many models satisfy the assumptions (see paper).

- Refined model is easy to compute (linear algebra)
- It improves the accuracy for not so large values of N.

Limit of the approach on an example

- There is a unique fixed point π .
- It is an attractor iff $\alpha \leq 0.75$.
- It is exponentially stable iff $\alpha < 0.75$.

$$a = 0.6$$
 (exponentially stable)

a = 0.75 (not exp. stable).

$$a = 0.6$$
 (exponentially stable)

a = 0.75 (not exp. stable).

a = 0.6 (exponentially stable)

WORKS uniformly in t

a = 0.75 (not exp. stable).

Does not work for $t \gg N$

a = 0.6 (exponentially stable)

WORKS uniformly in t

a = 0.75 (not exp. stable).

Does not work for $t \gg N$

Outline

- 1 Mean field approximations of synchronous populations
- The refined mean field
- 3 Does it always work?
- 4 Conclusion and recap

Recap

The traditional mean field approximation considers

$$X(t) \approx \mu(t)$$
,

where
$$\mu(t) = \lim_{N \to \infty} X(t)$$
.

② Our approach : we focus on $\mathbb{E}\left[X(t)\right]$ and we show that there exists V(t) such that :

$$\mathbb{E}\left[X(t)\right] = \underbrace{\mu(t) + \frac{V(t)}{N}}_{\text{Refined approximation}} + o(1/N)$$

It also works for $\mathbb{E}[h(X(t))]$.

ullet V(t) is easy to evaluate and for small N the refined approximation greatly improves the accuracy compared to the classical mean field approximation.

To go further:

It also works for continuous time models (e.g.: two-choice), see SIGMETRICS paper.

Future work:

- Find a relevant model (more general?) of synchronous population.
- Find guidelines where the method is applicable or not (example : Non-exponentially stable systems)

Main references:

- A Refined Mean Field Approximation of Synchronous Discrete-Time Population Models by Gast, Latella and Massink. To appear in Performance Evaluation.
 - Paper is reproducible: https://github.com/ngast/ RefinedMeanField_SynchronousPopulation
- A Refined Mean Field Approximation by Gast and Van Houdt. To appear in SIGMETRICS 2018 https://hal.inria.fr/hal-01622054/https://github.com/ngast/rmf_tool/