MATH150A Midterm, Fall 2012 Paul Bryan

1. Given the parametrised curve

$$\alpha(s) = \left(\frac{1}{3}(1+s)^{3/2}, \frac{1}{3}(1-s)^{3/2}, \frac{1}{\sqrt{2}}s\right)$$

Show that the parameter s is the arc length. Determine the curvature $\kappa(s)$, the torsion $\tau(s)$ and the Frenet trihedron $\mathbf{t}(s)$, $\mathbf{n}(s)$, $\mathbf{b}(s)$.

2. Let $\alpha: I = [a, b] \to \mathbb{R}^2$ be a closed curve, L it's length and A the area it encloses. Prove that L^2/A is invariant under scaling, that is under maps $v \in \mathbb{R}^2 \mapsto \lambda v$ for $\lambda > 0$.

Hint: Apply the formulae

$$L = \int_{a}^{b} |\alpha'(\tau)| d\tau$$
$$A = \int_{a}^{b} x(\tau)y'(\tau)d\tau$$

to α and to the rescaled curve $t \mapsto \lambda \alpha(t)$.

- 3. A surface of revolution is a surface obtained by rotating a plane curve about an axis not meet the curve.
 - Show that the surface of revolution given by rotating the curve (f(t), 0, t) about the z-axis is a regular surface by finding a parametrisation with angle of rotation θ ranging over $(0, 2\pi)$.

Note: Only prove parts 1 and 3 of the definition of a parametrisation, i.e. that the parametrisation is differentiable and has injective derivative.

- Show that $S^2 \{(0,0,1), (0,0,-1)\}$ is a surface of revolution.
- 4. Prove the inverse function theorem for maps of surfaces. Namely, if $f: S_1 \to S_2$ is a differentialable map of surfaces and $df_p: T_pS_1 \to T_{f(p)}S_2$ is an isomorphism, then f is locally a diffeomorphism near p.

Hint: Choose parametrisations $\phi_i: U_i \to S_i$, i = 1, 2 for S_1 and S_2 about p and f(p) respectively. Using the chain rule, show the map $h = \phi_2^{-1} \circ f \circ \phi_1: U_1 \to U_2$ has dh_q is an isomorphism for $q = \phi_1^{-1}(p)$. Apply the inverse function theorem for maps $\mathbf{R}^2 \to \mathbf{R}^2$ and then translate the result back to S_1 and S_2 by noting that ϕ_1 and ϕ_2 are diffeomorphisms and using the fact that $f = \phi_2 \circ h \circ \phi_1^{-1}$ is a local diffeomorphism if and only if h is a local diffeomorphism.