关于测试单周期 CPU 的简单方法

(特别说明:本表每个同学都必须建立,检查实验时,必须提供!)

(有更改处已经用红色标出)

1、测试程序段

						_	
地址	汇编程序	op (6)	rs(5)	rt(5)	rd(5)/immediate		
					(16)		
0x00000000	addi \$1,\$0,8	000001	00000	00001	0000 0000 0000 1000	=	04010008
0x00000004	ori \$2,\$0,2	010000	00000	00010	0000 0000 0000 0010	=	40020002
0x0000008	add \$3, <mark>\$2</mark> ,\$1	000000	00010	00001	0001 1000 0000 0000	=	00411800
0x000000C	sub \$5, \$3 ,\$2	000010	00011	00010	0010 1000 0000 0000	=	08622800
0x0000010	and \$4, <mark>\$5</mark> ,\$2	010001	00101	00010	0010 0000 0000 0000	=	44A22000
0x0000014	or \$8, \$4 ,\$2	010010	00100	00010	0100 0000 0000 0000	=	48824000
0x0000018	sll \$8, \$8 ,1	011000	00000	01000	0100 0000 0100 0000	=	60084040
0x000001C	bne \$8,\$1,-2 (≠,转 18)	110001	01000	00001	1111 1111 1111 1110	=	C501FFFE
0x00000020	slt \$6,\$2,\$1	011100	00010	00001	0011 0000 0000 0000	=	70413000
0x00000024	slt \$7, <mark>\$6</mark> ,\$0	011100	00110	00000	0011 1000 0000 0000	=	70C03800
0x00000028	addi \$7, \$7 ,8	000001	00111	00111	0000 0000 0000 1000	=	04E70008
0x0000002C	beq \$7,\$1,-2 (≠,转 28)	110000	00111	00001	1111 1111 1111 1110	=	C0E1FFFE
0x00000030	sw \$2,4(\$1)	100110	00001	00010	0000 0000 0000 0100	=	98220004
0x00000034	lw \$9,4(\$1)	100111	00001	01001	0000 0000 0000 0100	=	9C290004
0x00000038	bgtz \$9,1 (>0,转 40)	110010	01001	00000	0000 0000 0000 0001	=	C9200001
0x000003C	Halt	111111	00000	00000	0000 0000 0000 0000	=	FC000000
0x00000040	addi \$9,\$0,-1	000001	00000	01001	1111 1111 1111 1111	=	0409FFFF
0x00000044	j 0x00000038	111000	00000	00000	0000 0000 0000 1110	=	E000000E
0x00000048							
0x0000004C							

- 1、将指令代码初始化到指令存储器中,直接写入。
- 2、初始化 PC 的值,也就是以上程序段首地址 PC=0x00000000,以上程序段从 0x00000000 地址开始存放。最后一个 j 指令中,只需要存储 addr[25:0]=指令[25:0],addr 的二进制表示为:

0000 0000 0000 0000 0000 0000 0011 1000

因此只需要保存其中的红色高亮部分即可。表格中红色标记的 addr[25]和 addr[20]的位置恒为 0。

3、运行 Xilinx Vivado 进行仿真,看波形。