

# CAPSTONE: THE MILLENNIAL ENTREPENEUR

# **ABSTRACT**

The Foody Entrepreneur has saved enough money to open a small establishment in Europe.

Laruchelle de Almeida-Bekker

Capstone: Data Science

# 1. Introduction

## 1.1 Background

The world is seeing a huge displacement of the Generation Y workforce. The workforce is predominantly becoming occupied by millennials and as studies have shown, millennials differ very much from the Baby Boomer generation in the fact that they are not content with having one job for the rest of their life. The last twenties years have seen a huge increase in entrepreneurs creating their own businesses or goods. As such, technology has also increased, and entrepreneurs don't have to just set up shop at a random location or design something and hope it is what the market needs. With the data available today, entrepreneurs can do their research before-hand to give them a higher probability of success. For this specific problem an EU millennial entrepreneur will be used. As we all know, millennials are very concerned about the environment, so "green" status we also be a determining factor.

#### 1.2 Business Problem

To give the majority workforce a higher probability of success, specifically the entrepreneurial workforce, we the data scientists can assist them in choosing the right location to start their small business. As stated in the background, the business problem we face is to find not only the right location for the entrepreneur to set up shop, but what type of shop will most likely lead to success. This project aims to find an environmentally friendly location for the entrepreneur to set-up shop and give a list of the most shops/venues in the area, to increase his success.

#### 1.3 Interest

Millennials who wish to move to another city, which is more environmentally friendly may find this project interesting, as well as entrepreneurs wishing to start their own small businesses.

# 2. Data Acquisition and Cleaning

## 2.1 Data Sources

To find the most environmentally friendly EU country, OECD data will be used. Specifically, CO1 emission released. Secondly, employment rate in the EU will be analysed to find a good fit. The intersection of the most environmentally friendly and highest employment rate country will then be used.

Once the EU country has been found, we will use the biggest cities in the country to plot a map. From there Foursquare will be utilised to find the most common venues in each city to determine what type of establishment should be opened.

#### 2.2 Resources

| Data                       | Data Source | URL                                                                                                                                                    |
|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 Emissions              | OECD        | https://www.oecd-<br>ilibrary.org/energy/data/iea-co2-<br>emissions-from-fuel-combustion-<br>statistics/indicators-for-co2-<br>emissions data-00433-en |
| Employment Rate            | OECD        | https://data.oecd.org/emp/employment-<br>rate.htm                                                                                                      |
| Main Cities                | Britannica  | https://www.britannica.com/topic/list-<br>of-cities-and-towns-in-Sweden-2050563                                                                        |
| Location of Main<br>Cities | LatLong     | https://www.latlong.net/category/cities-<br>215-15.html                                                                                                |
| Venues in Cities           | Foursquare  | http://www.Foursquare.com                                                                                                                              |

#### 2.3 Data

Below is a screenshot of the CO2 emissions in Europe, the full dataset can be found in the link provided above.

| LOCATION | INDICATOR  | SUBJECT    | MEASURE   | FREQUENCY | TIME | Value    |
|----------|------------|------------|-----------|-----------|------|----------|
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2000 | 15.46764 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2005 | 15.70761 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2010 | 15.36477 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2011 | 15.67401 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | A         | 2012 | 14.50341 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2013 | 14.28511 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | A         | 2014 | 13.53498 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2015 | 13.59913 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2016 | 12.65744 |
| AUT      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | Α         | 2017 | 12.68774 |
| BEL      | POLLUTIONE | EXPOS2PM25 | MICGRCUBM | A         | 2000 | 15.97944 |

| Features Kept               | Dropped Features           | Reason                      |
|-----------------------------|----------------------------|-----------------------------|
| Location, Indicator & Value | Subject, Measure, Freq and | Dropped features not        |
|                             | Time                       | required to find optimal    |
|                             |                            | country.                    |
| Venues & Location           | Tips & Ratings             | Tips & Ratings not required |
|                             |                            | to find most common         |
|                             |                            | establishment.              |

# 3. Exploratory Data Analysis

# 3.1 CO<sub>2</sub> Emissions

| LOCATION | INDICATOR | SUBJECT | MEASURE   | FREQUENCY | TIME | Value  |
|----------|-----------|---------|-----------|-----------|------|--------|
| AUT      | EMP       | TOT     | PC_WKGPOP | Α         | 2015 | 71.1   |
| AUT      | EMP       | TOT     | PC_WKGPOP | Α         | 2016 | 71.55  |
| AUT      | EMP       | TOT     | PC_WKGPOP | Α         | 2017 | 72.2   |
| AUT      | EMP       | TOT     | PC_WKGPOP | Α         | 2018 | 73.025 |
| AUT      | EMP       | TOT     | PC_WKGPOP | Α         | 2019 | 73.525 |
| BEL      | EMP       | TOT     | PC_WKGPOP | Α         | 2015 | 61.8   |
| BEL      | EMP       | TOT     | PC_WKGPOP | Α         | 2016 | 62.3   |
| BEL      | EMP       | TOT     | PC_WKGPOP | Α         | 2017 | 63.125 |
| BEL      | EMP       | TOT     | PC_WKGPOP | Α         | 2018 | 64.45  |
| BEL      | EMP       | TOT     | PC_WKGPOP | Α         | 2019 | 65.3   |
| CZE      | EMP       | TOT     | PC_WKGPOP | Α         | 2015 | 70.225 |
| CZE      | EMP       | TOT     | PC_WKGPOP | Α         | 2016 | 71.95  |
| CZE      | EMP       | TOT     | PC_WKGPOP | Α         | 2017 | 73.625 |
| CZE      | EMP       | TOT     | PC_WKGPOP | Α         | 2018 | 74.825 |
| CZE      | EMP       | TOT     | PC_WKGPOP | Α         | 2019 | 75.125 |
| DNK      | EMP       | TOT     | PC_WKGPOP | Α         | 2015 | 71.975 |
| DNK      | EMP       | TOT     | PC_WKGPOP | Α         | 2016 | 72.675 |
| DNK      | EMP       | TOT     | PC_WKGPOP | Α         | 2017 | 73.225 |

Figure 1 - CO2 Emissions Table (screenshot)

Using the CO2 emissions table from the OECD page and utilising Tableau Public, the below bubble chart shows EU countries CO2 emissions.



Figure 2 - CO2 Emissions EU

From the bubble chart we can clearly see the two countries with the lowest CO2 emissions are Sweden and Finland.

# 3.2 Employment Rate

Next the Employment rate is analysed.

| LOCATION | Value    |
|----------|----------|
| POL      | 27.10558 |
| POL      | 26.15214 |
| POL      | 26.00973 |
| POL      | 25.92949 |
| BGR      | 25.44274 |
| BGR      | 25.33827 |
| BGR      | 24.3186  |
| POL      | 24.29708 |
| BGR      | 23.62288 |
| BGR      | 23.3744  |
| POL      | 23.22225 |
| POL      | 22.69148 |

Figure 3 -Employment Rate of EU countries (screenshot)

EU employment rate per country is graphically illustrated using a Tree Map in Figure 4. The two countries with the highest employment rate are Netherlands and Sweden.



Figure 4 - Employment Rate

# 3.3 EU Country

Using Figure 2 and Figure 4, it can be clearly seen that Sweden is the country that satisfies the first two problems the millennial entrepreneur has.

Next, the Folium package is used to create a map with Sweden's main cities.

| City        | Latitude  | Longitude |
|-------------|-----------|-----------|
| Lulea       | 65.584816 | 22.156704 |
| Trollhattan | 58.283489 | 12.285821 |
| Vasteras    | 59.611366 | 16.545025 |
| Umea        | 63.825848 | 20.263035 |
| Norrkoping  | 58.588455 | 16.188313 |
| Stockholm   | 59.334591 | 18.06324  |
| Uddevalla   | 58.351307 | 11.885834 |
| Vastervik   | 57.751442 | 16.628838 |



Figure 5 - Sweden's Main Cities

## 3.4 Foursquare Venues

Now that Sweden's main cities are represented by using Longitude and Latitude, Foursquare credentials are used to fetch all venues surrounding the city (limited to 100 venues) with a radius of 500.

When venues in each city have been found, One Hot Encoding will be used to extract all dummy variables necessary to implement K-Means Clustering.

|   | City  | American<br>Restaurant | Arcade | Art<br>Gallery | Arts &<br>Crafts<br>Store | Arts &<br>Entertainment | Asian<br>Restaurant | BBQ<br>Joint | Bakery | Bar | Basketball<br>Stadium | Beer<br>Bar | Bistro | В |
|---|-------|------------------------|--------|----------------|---------------------------|-------------------------|---------------------|--------------|--------|-----|-----------------------|-------------|--------|---|
| 0 | Lulea | 0                      | 0      | 0              | 0                         | 0                       | 0                   | 0            | 0      | 0   | 0                     | 0           | 0      |   |
| 1 | Lulea | 0                      | 0      | 0              | 0                         | 0                       | 0                   | 0            | 0      | 0   | 0                     | 0           | 0      |   |
| 2 | Lulea | 0                      | 0      | 0              | 0                         | 0                       | 0                   | 0            | 0      | 0   | 0                     | 0           | 0      |   |
| 3 | Lulea | 0                      | 0      | 0              | 0                         | 0                       | 0                   | 0            | 0      | 0   | 0                     | 0           | 0      |   |
| 4 | Lulea | 0                      | 0      | 0              | 0                         | 0                       | 0                   | 0            | 0      | 0   | 0                     | 0           | 0      |   |

Figure 6 - One Hot Encoding applied

As shown in Figure 6, now we have venues for each major city in Sweden and this will be used to extract the mean of each venue in the city.



Figure 7 - Frequency of Venues

Using Foursquare and frequency of venues, a table can be created showing the 10 most common venues in each city.

|   | City        | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue |
|---|-------------|--------------------------|--------------------------|--------------------------|
| 0 | Lulea       | Café                     | Hotel                    | Fast Food Restaurant     |
| 1 | Norrkoping  | Restaurant               | Shopping Mall            | Café                     |
| 2 | Stockholm   | Hotel                    | Café                     | Cocktail Bar             |
| 3 | Trollhattan | Café                     | Sushi Restaurant         | Pub                      |
| 4 | Uddevalla   | Tunnel                   | Gym                      | Yoga Studio              |

Figure 8 - Most Common Venues

## 3.5 K-Means Clusters

Now that we have the most common venues per city, K-Means Clustering can be applied. In this reason I used unsupervised learning K-means algorithm to cluster the boroughs. K-Means algorithm is one of the most common cluster method of unsupervised learning. A total of 5 cluster (K=5) will be used as it is determined to be the optimal number of clusters.

Before the clusters can be plotted, two tasks have to be completed. Longitude and Latitude of each city has to be appended to the table shown in Figure 8. Secondly, the cluster labels have to change from float to int, to illustrate the clusters in different colours.

|   | City        | Latitude  | Longitude | Cluster<br>Labels | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue |
|---|-------------|-----------|-----------|-------------------|--------------------------|--------------------------|--------------------------|
| 0 | Lulea       | 65.584816 | 22.156704 | 3                 | Café                     | Hotel                    | Fast Food Restaurant     |
| 1 | Trollhattan | 58.283489 | 12.285821 | 4                 | Café                     | Sushi Restaurant         | Pub                      |
| 2 | Vasteras    | 59.611366 | 16.545025 | 1                 | Café                     | Restaurant               | Hotel                    |
| 3 | Umea        | 63.825848 | 20.263035 | 1                 | Hotel                    | Café                     | Italian Restaurant       |
| 4 | Norrkoping  | 58.588455 | 16.188313 | 1                 | Restaurant               | Shopping Mall            | Café                     |
| 5 | Stockholm   | 59.334591 | 18.063240 | 1                 | Hotel                    | Café                     | Cocktail Bar             |
| 6 | Uddevalla   | 58.351307 | 11.885834 | 0                 | Tunnel                   | Gym                      | Yoga Studio              |
| 7 | Vastervik   | 57.751442 | 16.628838 | 2                 | Flower Shop              | Grocery Store            | Department Store         |

Figure 9 - K-means Clustering Table Result



Figure 10 - K-Means Clustering of Venues in Sweden's Cities

# Cluster 0 – Red

|   | City      | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue |
|---|-----------|--------------------------|--------------------------|--------------------------|
| 6 | Uddevalla | Tunnel                   | Gym                      | Yoga Studio              |

# Cluster 1 – Purple

|   | City       | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue |
|---|------------|--------------------------|--------------------------|--------------------------|
| 2 | Vasteras   | Café                     | Restaurant               | Hotel                    |
| 3 | Umea       | Hotel                    | Café                     | Italian Restaurant       |
| 4 | Norrkoping | Restaurant               | Shopping Mall            | Café                     |
| 5 | Stockholm  | Hotel                    | Café                     | Cocktail Bar             |

# Cluster 2 – Orange

|   | City      | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue |
|---|-----------|--------------------------|--------------------------|--------------------------|
| 7 | Vastervik | Flower Shop              | Grocery Store            | Department Store         |

#### Cluster 3 – Blue

|                   | City    | 1st Mos | st Common Venue         | 2nd Most Common Venue | 3rd Most Common Venue    |
|-------------------|---------|---------|-------------------------|-----------------------|--------------------------|
| 0                 | Lulea   |         | Café                    | Hotel                 | Fast Food Restaurant     |
| Cluster 4 – Green |         |         |                         |                       |                          |
|                   | 1       | City    | 1st Most Commo<br>Venue |                       | 3rd Most Common<br>Venue |
| 1                 | Trollha | ttan    | Cafe                    | é Sushi Restaurant    | Pub                      |

# 4. Conclusion

After analysing all the datasets and clusters from k-means clustering, it can be deduced that it would be ideal for a millennial entrepreneur to set-up shop in Sweden. To increase the entrepreneur chances for success, it is recommended to open a Café in Vasteras, Umea, Norrkoping or Stockholm (Purple Cluster). As it clearly shows that Cafés are quite popular in Vasteras, Umea, Norrkoping and Stockholm, it would be a good first choice to open for the young businessman.

To conclude, it is suggested that the entrepreneur open a Café in Stockholm, as it is the country's capital and receives the most tourists in a year.

## 5. Future Directions

There are definitely areas for improvement specifically finding out the rental prices to rent a shop as well as analyse the cost of living in each city.