ASYMMETRIC ENCRYPTION AND DECRYPTION

Blockchain Technology

Time: 60 mins

Introduction

In this class, the student/s will learn to secure the access by encrypting and decrypting the data using the keys generated with complex algorithms.

New Commands Introduced

• random.randint(2**8, 2**9) Finds a random number between 2 exponential 8

times and 2 exponential 9 times

• ord(char) Finds the ASCII value of a character

.join Joins the characters

Vocabulary

- **Encryption** is the process of protecting information or data by using mathematical models to scramble it in such a way that only the parties who have the key to unscramble it can access it.
- A public key can be given to any person with whom an individual wants to communicate, whereas a
 private key belongs to the individual it was created for and isn't shared.
- A **prime number** is a whole number greater than 1 whose only factors are 1 and itself...
- Co-prime numbers are pairs of numbers that do not have any common factor other than 1.
- Exponents, also known as powers, are values that show how many times to multiply a base number by itself.

Learning Objectives

Student/s should be able to:

- **Explore** how keys help to authorize the access to the data.
- Explain how to generate keys using different mathematical calculations.
- Explain how to encrypt and decrypt the data.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s that they ciphered text but it is still accessible to the unauthorized users and can be secured by encrypting and decrypting the data with keys.

2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to observe.
- Ask students to enter the transaction details and observe the output.
- Introduce the values in the encrypted data as keys and show how encrypted data is decrypted.
- Explain symmetric and asymmetric encryption decryption and its need.

3. Activity 1: Create Prime Number Keys (10 min)

Teacher Activity: (5 mins)

- Explain prime numbers and why we choose prime numbers to generate the keys.
- Explain how to generate the prime number keys by finding the random number and checking if its prime.

Student Activity: (5 mins)

• Guide the student/s to generate the prime number keys.

4. Activity 2: Generate the Public and Private Keys (20 min)

Teacher Activity: (10 mins)

- Explain why complex calculations need to be performed for secure keys and introduce the RSA algorithm steps.
- Demonstrate how to find exponential values, modulus to generate the private and public keys.

Student Activity: (10 mins)

• Guide the student/s to create the public and private keys.

5. Activity 3: Encrypt and Decrypt the Data (10 mins)

Teacher Activity: (5 mins)

- Explain the encryption technique by finding the ASCII value for each character, calculating the exponential value and performing modulo operation to achieve the ciphered text with values.
- Demonstrate encryption using keys.

Student Activity: (5 mins)

Guide the students to decrypt the data by finding the ASCII value for each character, calculating
the exponential value and performing modulo operation to achieve the deciphered text.

6. Introduce the Post class project: (2 min)

• Encrypt the password once entered and decrypt the password while logging in.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective activities.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to debug the isPrime() function to find the prime numbers as a key.
- Encourage the student/s to find the prime number keys within a specified range.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to generate a hash to authenticate the blocks connected in a blockchain.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	Asymmetric Encryption and Decryption	https://s3-whjr-curriculum-uploads. whjr.online/d9e2d6f1-95c7-4f30-89 b7-5de58eb76d1e.html
Explore Activity	Asymmetric Encryption and Decryption	https://github.com/Tynker-Blockch ain/TNK-M11-C83-SAS-BP
Teacher Activity 1	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-TAS-BP
Teacher Reference: Teacher Activity 1 Solution	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-TAS
Student Activity 1	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS-BP
Teacher Reference: Student Activity 1 Solution	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS
Teacher Activity 2	Generate the Public and Private	https://github.com/Tynker-Blockchai

	Keys	n/TNK-M11-C83-TAS-BP
Teacher Reference: Teacher Activity 2 Solution	Generate the Public and Private Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-TAS
Student Activity 2	Generate the Public and Private Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS-BP
Teacher Reference: Student Activity 2 Solution	Generate the Public and Private Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS
Teacher Activity 3	Encrypt and Decrypt the Data	https://github.com/Tynker-Blockchain/TNK-M11-C83-TAS-BP
Teacher Reference: Teacher Activity 3 Solution	Encrypt and Decrypt the Data	https://github.com/Tynker-Blockchain/TNK-M11-C83-TAS
Student Activity 3	Encrypt and Decrypt the Data	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS-BP
Teacher Reference: Student Activity 3 Solution	Encrypt and Decrypt the Data	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS
Student's Additional Activity 1	Debug the Function	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Debug the Function	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS
Student's Additional Activity 2	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Create Prime Number Keys	https://github.com/Tynker-Blockchain/TNK-M11-C83-SAS
Post Class Project	Encrypt and Decrypt the Password	https://github.com/Tynker-Blockchain/TNK-M11-C83-PCP-BP
Teacher Reference: Post Class Project Solution	Encrypt and Decrypt the Password	https://github.com/Tynker-Blockchain/TNK-M11-C83-PCP