Recitation 9

DS-GA 1013 Mathematical Tools for Data Science

$A * is born^{-1}$

Let x[n] and y[n] with $n \in \mathbb{Z}$ be two discrete time signals (essentially just think of them as two array of numbers). The convolution between them is a new signal y defined as y := x * h given by

$$y[k] := \sum_{k=-\infty}^{\infty} x[k]h[n-k] \tag{1}$$

1. Consider two sequence x[n] = [3,1,2] and h[n] = [3,2,1]. The indexing of both the sequences starts from n = 0. Find the convolution x * h by using equation 1. Start by filling in the following table:

k	-3	-2	-1	0	1	2	3	4	5	6	$\sum_{k=-\infty}^{\infty} x[k]h[n-k]$
x[k]											
h[-1-k]											
h[-k]											
h[1-k]											
h[2-k]											
h[3-k]											
h[4-k]											
h[5-k]											
h[6-k]											

2. Describe h[-k] and h[n-k] for a given n.

3. Let x[n] have a width of w_x , that is it takes indices $n = 0, \ldots, w_x - 1$ and h[n] have a width of w_h , i.e it takes indices $n = 0, \ldots, w_h - 1$. What are the indices that the signal y = x * h takes and what is the width of the signal?

4. Are the following properties true?

1.
$$x * h = h * x$$

2.
$$x * (h_1 + h_2) = x * h_1 + x * h_2$$

3.
$$x * (\alpha h) = (\alpha x) * h = \alpha (x * h)$$
 for some $\alpha \in \mathbb{R}$

5. Is convolution is a linear operation? If yes, represent represent the operation in question 1 as y = Cx where y and x are vectors and C is a matrix that will depend on h.

6. Consider that the signals x and h in question 1 are periodic with period N=3, that is x[n+kN]=x[n] for any $k \in \mathbb{Z}$. Considering that x and h are periodic with N=4 fill the following table. The convolution between x and h considering that they're periodic is called circular convolution.

 $^{^1\}mathrm{Title}$ shamelessly lifted off from Osgood's book on Fourier transform.

k	-3	-2	-1	0	1	2	3	4	5	6	$\sum_{k=-\infty}^{\infty} x[k]h[n-k]$
x[k]											
h[-1-k]											
h[-k]											
h[1-k]											
h[2-k]											
h[3-k]											
h[4-k]											
h[5-k]											
h[6-k]											

- 7. Is the result of circular convolution periodic?
- 8. Write the matrix for circulation convolution matrix like you did in the question before.
- 9. The analogue of equation 1 for the case when the signals are continuous is equation 2. For two continuous signals f and g, the convolution between them is defined as

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau.$$
 (2)

Let f(t) = 1 for $-1 \le t \le 1$. Find f * f. Use a compute to see what happens if you keep convolving fwith itself $f * f * f * \dots$

2D Convolutions

if x and h are discrete 2 dimensional signals, the convolution between them is defined as

$$x(n_1, n_2) * *h(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2)$$

10. Describe the action of the following filters to an image:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} 2. \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} 3. \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} 4. \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} 5. \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} 6. \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
 It might be helpful to sum the entries of the following filters when thinking about them:

$$7. \begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} 8. \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} 9. \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} 10. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 5 & 1 \\ 0 & 1 & 0 \end{bmatrix} 11. \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} 12. \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} 13. \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$