Computer Simulation of Liquids Michael P. Allen and Dominic J. Tildesley

Second edition, Oxford University Press, 2017 List of errata up to August 9, 2019

Line numbers below do not include section headings, equations, figures etc. Negative line numbers are counted up from the bottom of the page.

Chapter 1

p11 ℓ –16 'It quite possible' \rightarrow 'It is quite possible'.	2017-10-07
$\mathbf{p14}$ In eqn (1.15) the signs of the odd-order terms are wrong:	MPA 2017-04-04

F Perez

A Fleury

2018-08-02

$$+T_{\alpha} \to -T_{\alpha}$$
 and $+\frac{1}{3}T_{\alpha\beta\gamma} \to -\frac{1}{3}T_{\alpha\beta\gamma}$.

p15 In eqn (1.20),
$$T_{\alpha\beta} \to T_{\alpha\beta}^{ab}$$
. In eqn (1.21), $A_{\alpha\beta} \to A_{\alpha\beta}^{ab}$.

p17 In eqn (1.22), $B_{\alpha\beta} \to B_{\alpha\beta}^{ab}$, $T_{\alpha\beta} \to T_{\alpha\beta}^{ab}$, $(\alpha^a)^{-1} \to (\alpha^a)_{\alpha\beta}^{-1}$.

MPA

2019-08-09

MPA

2019-08-09

p17 In eqn (1.22),
$$B_{\alpha\beta} \to B_{\alpha\beta}^{ab}$$
, $T_{\alpha\beta} \to T_{\alpha\beta}^{ab}$, $(\alpha^a)^{-1} \to (\alpha^a)_{\alpha\beta}^{-1}$.
 In eqn (1.23) and ℓ 15, $\tilde{T}_{\alpha\beta} \to \tilde{T}_{\alpha\beta}^{ab}$. Also in this equation the factor $4\pi\epsilon_0$ should be omitted for consistency with eqn (1.17).

p35
$$\ell$$
 11 'See Chapter 13' \rightarrow 'See Chapter 14'.

p36 ℓ 8 'Chapter 5' \rightarrow 'Chapter 6'.

p42 ℓ 3 Remove sentence 'Some of these methods ... Appendix A.'

MPA

2019-07-30

MPA

2019-07-30

Chapter 2

p66
$$\ell$$
 19, $k_{\rm B}T/V\beta_T \to k_{\rm B}T/V\beta_S$. MPA & Y Yang 2019-07-22 MPA **p67** ℓ 8, between eqns (2.85) and (2.86), 'viral' \to 'virial'. 2019-07-18

Chapter 3

p116 All the masses in eqns (3.49ab) should be raised to the power -1:

$$\mathbf{r}_{12}(t+\delta t) = \mathbf{r}'_{12}(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right)\lambda_{12}^{(r)}\mathbf{r}_{12}(t) - m_2^{-1}\lambda_{23}^{(r)}\mathbf{r}_{23}(t)$$

$$\mathbf{r}_{23}(t+\delta t) = \mathbf{r}'_{23}(t+\delta t) - m_2^{-1}\lambda_{12}^{(r)}\mathbf{r}_{12}(t) + \left(m_2^{-1} + m_3^{-1}\right)\lambda_{23}^{(r)}\mathbf{r}_{23}(t).$$

The same correction should be applied to eqns (3.53ab); in addition, all the bond vectors in eqns (3.53ab) should be evaluated at $t + \delta t$:

$$\mathbf{v}_{12}(t+\delta t) = \mathbf{v}_{12}'(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right)\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) - m_2^{-1}\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t)$$

$$\mathbf{v}_{23}(t+\delta t) = \mathbf{v}_{23}'(t+\delta t) - m_2^{-1}\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) + \left(m_2^{-1} + m_3^{-1}\right)\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t)$$

p141 In the equation at the top of the page the sign of $\mathbf{r} \cdot \mathbf{f}$ is wrong:

MPA
2017-04-30

$$\mathcal{P}' = \mathcal{P} + (d/g)\mathbf{p}\cdot\mathbf{p}/m = \frac{1}{dV}\big(\alpha\mathbf{p}\cdot\mathbf{p}/m + \mathbf{r}\cdot\mathbf{f}\big) - \frac{\partial\mathcal{V}}{\partial V}.$$

p142 The expression for iL'_2 should have a factor of d:

should have a factor of d: 2017-04-30 $iL_2' = d(\mathcal{P}' - P)V \frac{\partial}{\partial p_c}.$

MPA

MPA

2017-04-19 snafumeander

2019-01-24

J Dürholt

MPA

MPA

MPA

2017-03-07

2019-07-30 MPA

2019-07-30

2018-04-13

Chapter 4

p162 In the second part of eqn (4.34), defining the terms $\mathcal{V}_m^{(12)}$ and $\mathcal{V}_m^{(6)}$, the negative sign is wrong: $-\mathcal{V}_m^{(6)} \to +\mathcal{V}_m^{(6)}$, giving

$$\mathcal{V}_m = 4\epsilon \sum_i \sum_{j>i} \left(\frac{\sigma}{L_m s_{ij}^m}\right)^{12} - 4\epsilon \sum_i \sum_{j>i} \left(\frac{\sigma}{L_m s_{ij}^m}\right)^{6}$$
$$= \mathcal{V}_m^{(12)} + \mathcal{V}_m^{(6)}.$$

Chapter 6

p229 ℓ 8 'charges densities' \rightarrow 'charge densities'.

Also, in eqn (6.43) there is a superfluous right parenthesis in the denominator, should be

 $b(k_x) = \frac{\exp(\mathrm{i}(P-1)k_x\ell)}{\sum_{q=0}^{P-2}\exp(\mathrm{i}k_x\ell q)M_P(q+1)}.$

p251 In eqn (6.106) the factor V should be 1/V:

 $V_{\text{correction}}^{qq} = \frac{2\pi}{V} \left(\sum_{i} q_i z_i \right)^2$

Chapter 10

p344 In eqn (10.2b) $\int_{r \in A} \rightarrow \int_{r \in R}$

Chapter 11

p362 ℓ 6 'Fig. 9.4' \rightarrow 'Fig. 1.15(b)'. **p379** ℓ -16 'Chapter 9' \rightarrow 'Chapter 3'.

Chapter 13

p443 ℓ –12 'described in Section 13.4' \rightarrow 'described in Section 13.2'. 2019-08-01 MPA P444 ℓ 9 'described in Section 13.4' \rightarrow 'described in Section 13.2'. 2019-08-01