ML Model Testing

ModTest

Prof. Dr. Fazlul Hasan Siddiqui

Office: DUET | Education: BSc: IUT; MSc: BUET; PhD: ANU Source: https://youtu.be/aDW44NPhNw0 | Serrano Academy

Which model is better?

Which model is better? Model over train data

Which model is better? Test over "Test" data

K-Fold Cross Validation – Don't loose training data

How well is my model? Credit Card Fraud

Model: All transactions are good.

Correct =
$$\frac{284,335}{284.807}$$
 = 99.83%

Problem: I'm not catching any of the bad ones!

How well is my model? Credit Card Fraud

Model: All transactions are fraudulent.

Great! Now I'm catching all the bad transactions!

Problem: I'm accidentally catching all the good ones!

Model Evaluation | Confusion Matrix

Model Evaluation | Confusion Matrix | Medical Diagnosis

Model Evaluation | Confusion Matrix | Medical Diagnosis

Model Evaluation | Confusion Matrix | Spam Detect

Model Evaluation | Confusion Matrix | Spam Detect

Model Evaluation | Confusion Matrix | Accuracy

-		Diagnosis		
		Diagnosed sick	Diagnosed Healthy	Accuracy: Out of the all the patients, how many did we classify correctly?
Patients	Sick	1000	200	Accuracy = $\frac{1,000 + 8,000}{1,000 + 8,000} = 90\%$
	Healthy	800	8000	10,000

		Folder		
		Spam Folder	Inbox	Accuracy: Out of the all the e-mails, how many did we classify correctly?
E-mail	Spam	100	170	Accuracy = $\frac{100 + 700}{} = 80\%$
	Not spam	30	700	1000

Model Evaluation | Confusion Matrix | Accuracy

Model Evaluation | Confusion Matrix | Recall & Precision

Medical Model
False positives ok
False negatives **NOT** ok

Find all the sick people
Ok if not all are sick

High Recall

Spam Detector
False positives **NOT** ok
False negatives ok

You don't necessarily need to find all spam
But they better all be spam

High Precision

Model Evaluation | Confusion Matrix | Precision

Precision: Out of the all the e-mails, sent to the spam inbox, how many were actually spam?

Precision =
$$\frac{100}{100 + 30}$$
 = 76.9%

Model Evaluation | Confusion Matrix | Recall

		Diagnosis			
Patients		Diagnosed Sick	Diagnosed Healthy	Recall: Out of the sick patients, how many did we correctly diagnose as sick?	
	Sick	1000	200 🗶	Recall == 83.3%	
	Is Healthy	800	8000	1,000 + 200	

Model Evaluation | Precision & Recall

Spam Detector

Precision: 76.9% Recall: 37%

Model Evaluation | One Score – Average !!

Medical Model

Precision: 55.7%

Recall: 83.3%

Average = 69.5%

Spam Detector

Precision: 76.9%

Recall: 37%

Average = 56.95%

Model Evaluation | One Score – Average !!

Model: All transactions are good.

$$Recall = \frac{0}{472} = 0\%$$

Model Evaluation | One Score - Average !!

Model: All transactions are fraudulent.

Precision =
$$\frac{472}{284,807}$$
 = .016% Recall = $\frac{472}{472}$ = 100%

Average = 50.008%

Model Evaluation | One Score - F1 Score

Arithmetic Mean(Precision, Recall)

F1 Score = Harmonic Mean(Precision, Recall)

Model Evaluation | One Score - F1 Score

Precision = 55.7%	Medical			
Recall = 83.3%				
Average = 69.5%				
F1 Score = 2 x 55.7 x 83.3	= 66.76%			
55.7 + 83.3	- 00.7070			

Precision =
$$76.9\%$$
 Spam

Recall = 37%

Average = 56.95%

F1 Score = $\frac{2 \times 76.9 \times 37}{76.9 + 37}$ = 49.96%

Precision = 75%

Recall = 85.7%

Average = 80.35

F1 Score =
$$\frac{2 \times 75 \times 85.7}{75 + 85.7}$$
 = 80%

Model Evaluation | One Score - F1 Score

Model: All transactions are good.

$$Recall = \frac{0}{472} = 0\%$$

Model Evaluation | One Score – F_w Score

Model Evaluation | Error for Bias (Underfitting)

Model Evaluation | Error for Variance (Overfitting)

Model Evaluation | Model Complexity Graph

Model Evaluation

Model Evaluation | Model Complexity Graph

Model Evaluation | Complexity Graph | Cross validation

Model Evaluation | Complexity Graph | Cross validation

Model Complexity Graph | Logistic Regression

Model Complexity Graph | Decision Tree

Hyperparameters Parameters

Depth = 2

Depth = 4

0.5

0.4

0.2

Training

Cross Validation

Testing

Model Complexity Graph | Support Vector Machines

Model Evaluation

Algorithm	Parameters	Hyperparameters
Random Forest	Features Thresholds	Number of trees Depth
Logistic Regression	Coefficients of the polynomial	Degree of the polynomial
Support Vector Machines	Coefficients	Kernel Gamma C
Neural Networks	Coefficients	Number of layers Size of layers Activation function

How to solve a problem

Problem

Tools

Measure each tool's performance

Pick the best tool

Measurement Tools

How to use ML to solve a problem

