Algèbre 2 Test Nº 1

AU 2015-2016 CPI 1 Durée: 2h

Questions de cours:

- a) Soient a et b deux entiers.
 - Définir pgcd(a,b) et ppcm(a,b).
 - Comment monter que a et b sont premiers entre eux de deux façons différentes.
- b) Décrire l'algorithme d'Euclide pour calculer pgcd(a,b).
- c) Donner une méthode pour calculer ppcm(a,b).
- d) Soit $P = \sum_{i=0}^{n} a_i X^i$ et $Q = \sum_{i=0}^{n} b_i X^i$ deux polynômes de $\mathbb{K}[X]$.
 - Donner les coefficients du polynôme P.Q en fonction des coefficients de P et de Q.
 - Donner les coefficients du polynôme (P.Q)' en fonction des coefficients de P et de Q.

Exercice 1:

- a) Montrer que : $a \wedge b = 1 \Leftrightarrow (ab) \wedge (a+b) = 1$.
- b) Soit n un entier ≥ 2 tel que $2^n 1$ est premier. Montrer que n est nombre premier.
- c) Montrer que:

$$(n^2 + n) \wedge (2n + 1) = 1$$
 et $(3n^2 + 2n) \wedge (n + 1) = 1$

Exercice 2:

- a) Résoudre dans \mathbb{Z}^2 : $\frac{1}{x} + \frac{1}{y} = 6$.
- b) Résoudre dans \mathbb{N}^2 : $\begin{cases} pgcd(a,b) = 5\\ ppcm(a,b) = 80 \end{cases}$

Exercice 3:

- a) Soit n un entier. On pose $P_n = 1 + \frac{1}{1!}X + \frac{1}{2!}X(X+1) + \cdots + \frac{1}{n!}[X(X+1)...(X+n-1)].$ Montrer que : $P_n = \frac{1}{n!}(X+1)(X+2)...(X+n)$.
- b) Développer le polynôme $Q_n=(1+X)(1+X^2)\dots(1+X^{2^n})$. c) Résoudre dans $\mathbb{K}[X](X^2+1)P''-6P=0$.