

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт кибернетики Кафедра высшей математики

ОТЧЁТ ПО Практике по получению первичных профессиональных умений и навыков

(укизать вид приктики)

Тема практики: Построение предсказания заражения компьютера вредоносным программным обеспечением «Microsoft Malware Prediction» (kaggle.com)

приказ университета о направлении на практику 793 – С от 12.02.2019 г.

Отчет представлен к

рассмотрению: Студент

группы

КМБО-01-18

Терехов Т.А. (расшифровка подписи)

« C» usom 2019.

Отчет утвержден.

Допущен к защите:

Руководитель практики

от кафедры

ana

Пструсевич Д.А. (расшифровка подписи) « в эмерия 2010 г.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

ЗАДАНИЕ НА Практику по получению первичных профессиональных умений и навыков

Студенту 1 курса учебной группы КМБО-01-18 института кибернетики Терехову Тимофею Александровичу

(фимилии, ями и отчество)

Место и время практики: Институт кибернетики, кафедра высшей математики Времи практики: с «16» февраля 2019 по «31» мая 2019

Должность на практике: практикант

1. ЦЕЛЕВАЯ УСТАНОВКА: изучение основ анализа данных и машинного обучения

2. СОДЕРЖАНИЕ ПРАКТИКИ:

- 2.1 Изучить: литературу и практические примеры по темам: 1) построение линейной регрессии, 2) использование метода главных компонент, 3) поиск и устранение линейной зависимости в данных, 4) основы нормализации данных, 5) методы классификации и кластеризации («решающее дерево», «случайный лес», «к ближайших соседей»), 6) обучение с учителем («градиентный спуск»).
- 2.2 Практически выполнить: 1) снижение размерности исходных задач при номощи метода главных компонент при возможности; построение линейной регрессии для некоторого параметра, исключение регрессоров, не коррелирующих с объясняемой переменной; решение задачи классификации или кластеризации на основе открытого набора данных с ресурса kaggle.com
- 2.3 Ознакомиться: с применением метода главных компонент; методов классификации («решающего дерева», «случайного леса»); методов градиентного спуска («градиентным бустингом»); методов кластеризации («к ближайших соседей»).
- 3.ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ: построение предсказания заражения компьютера вредоносным программным обеспечением «Microsoft Malware Prediction» (kaggle.com).
- 4. ОГРАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ: постронть классификацию на основе нескольких методов и произвести сравнение результатов классификации; сделать выводы о применимости непользованных методов; сформировать выводы по результатам задачи из предметной области: какие характеристики компьютера сигнализируют о

	,	
Заведующий кафедрой высшей математики	fe	Ю.И.Худак
«16» polo 2013 r.	/	
СОГЛАСОВАНО		
Руководитель практики от кафедры:		
«16» февраля 2019 г	(MODIBICE)	(Петрусевич Д.А.) (фамили и повідшлы)
Задание получил:		
«16»февраля 2019 г.	TH	(Терехов Т.А.)
	(DOUBLINCY)	(фомилия и инициалы)

том, что он, вероятно, подвергнется атаке вредоносного ПО вскоре, будет

заражён вредоносным ПО.

ИНСТРУКТАЖ ПРОВЕДЕН:

Вид мероприятия	ФИО ответственного, подпись, дата	ФИО студента, подпись, дата
Охрана труда	Петрусевич Д.А.	Терехов Т.А.
	«16» февраля 2019 г.	«16» февраля 2019 г.
Техника безопасности	Петрусевич Д.А.	Терехов Т.А.
	«16» февраля 2019 г.	«16» февраля 2019 г.
Пожарная безопасность	Петрусевич Д.А.	Терехов Т.А.
	«16» февраля 2019 г.	«16» февраля 2019 г.
Правила внутреннего	Петрусевич Д.А.	Терехов Т.А.
распорядка	«16» февраля 2019 г.	«16» февраля 2019 г.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

РАБОЧИЙ ГРАФИК ПРОВЕДЕНИЯ Практики по получению первичных профессиональных умений и навыков

студента Терехова Т.А. 1 курса группы КМБО-01-18 очной формы обучения, обучающегося по направлению подготовки 01.03.02 «Прикладиая математика и информатика», профиль «Математическое моделирование и вычислительная математика»

Неделя Сроки выполнения 1 16.02.2019		Этап	Отметка о выполнении	
		Выбор темы практики/НИР. Пройти инструктаж по технике безопасности.		
1	16.02.2019	Вводная установочная лекция.	ALT	
3	02.03.2019	Построение и оценка линейной регрессии с помощью языка R	They	
5	16.03.2019	Использование метода главных компонент, выделение линейной зависимости в данных	Aug	
7	30.03.2019	Методы классификации и кластеризации; построение решающего дерева;	984	
9 13.04.2019 «случайный концепция бус градиентные м		Концепция бэггинга, «случайный лес»; концепция бустинга; градиентные методы обучения и кластеризации	Hat	

17	07.06.2019	Представление отчётных материалов по практике/НИР и их защита. Передача обобщённых материалов на кафедру для архивного хранения.	Weg
	6.03.2020	Зачётная аттестация.	Cont

Содержание практики и планируемые результаты согласованы о руководителем практики от профильной организации.

Согласовано:

Заведующий кафедрой

Руководитель

практики от кафедры

/ ФИО / Худак Ю.И.

/ ФИО / Петрусевич Д.А.

Обучающийся / ФИО / Терехов Т.А.

ОГЛАВЛЕНИЕ

Введение	8
Основная часть	9
Задача № 1	9
Задача № 2	18
Задача № 3	28
Список литературы	34
Код задачи № 1	35
Код задачи № 2	37
Код задачи № 3	42

Введение

Основной первых двух заданий является решение задач регрессионного анализа с применением метода наименьших квадратов (МНК — математический метод, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных) для построения линейных регрессий на заданных наборах, исследования зависимостей между имеющимися переменными и выдвижения предположений на основе проведенных наблюдений.

это область Анализ данных математики и информатики, занимающаяся исследованием наиболее общих математических построением методов вычислительных алгоритмов извлечения знаний из экспериментальных (в широком исследования, фильтрации, преобразования данных; процесс моделирования данных с целью извлечения полезной информации и принятия решений.

<u>Регрессионный анализ</u> — статистический метод исследования влияния одной или нескольких независимых переменных X1, X2, ..., Xp на зависимую переменную Y [3]. Независимые переменные также называют регрессорами или предикторами, а зависимые переменные – объясняемыми или критериальными.

<u>Кластеризация</u> — задача группировки множества объектов на подмножества (кластеры) таким образом, чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.

Кластерный анализ — это семейство алгоритмов, разработанных для формирования групп таким образом, чтобы члены группы были наиболее похожими друг на друга и не похожими на элементы, не выходящие в группу. Кластер и группа — это синонимы в мире кластерного анализа.

Задачи выполняются с использованием языков программирования Python и R

Основная часть.

Задача № 1.

В задаче № 1 необходимо загрузить данные из указанного набора и произвести следующие действия:

- 1. Нормализовать данные, вычтя из каждого столбца среднее значение mean(x) и поделив на среднеквадратическое отклонение $\sigma \sim \text{sqrt}(\text{var}(x))$, где x столбец данных.
- 2. Проверить, что в наборе данных нет линейной зависимости (построить зависимости между переменными, указанными в варианте, и проверить, что R^2 в каждой из них не высокий). В случае, если R^2 большой, один из таких столбцов можно исключить из рассмотрения.
- 3. Построить линейную модель зависимой переменной от указанных в варианте регрессоров по методу наименьших квадратов (команда lm пакета lmtest в языке R). Оценить, насколько хороша модель, согласно: 1) R², 2) р-значениям каждого коэффициента.
- 4. Ввести в модель логарифмы регрессоров. Сравнить модели и выбрать наилучшую.
- 5. Ввести в модель всевозможные произведения из пар регрессоров, в том числе квадраты регрессоров. Найдите одну или несколько наилучших моделей по доле объяснённого разброса в данных \mathbb{R}^2 .

Набор данных (Вариант № 21 (8)):

- Набор данных: mtcars.
- Объясняемая переменная: mpg.
- Регрессоры: Disp, drat, qsec.

Выполнять указанные действия будем при помощи языка программирования R.

Анализируемый набор **mtcars** содержит данные из журнала «**Motor Trend US**» 1974 года. Данные включают 11 столбцов (численных признаков), среди которых расход топлива и ещё 10 характеристических особенностей для 32 автомобилей моделей 1973 – 1974 годов (всего 32 записи). Задача заключается в обработке указанных ниже столбцов из набора с последующим анализом линейных моделей, построенной для объясняемой переменной через объясняющие (регрессоры). Из набора выделим интересующие нас переменные: mpg – пробег миль на галлон – объясняемая переменная

- **disp** объем двигателя регрессор
- **drat** передаточное число заднего моста количество оборотов задних колес по сравнению с определенной скоростью передачи (чем выше коэффициент, тем медленнее двигатель может работать, все еще позволяя автомобилю достичь заданной скорости) регрессор
- wt вес автомобиля (в тысячах английских фунтов) регрессор

Для обработки данных и построения линейных моделей будем использовать библиотеки **dplyr** (функция **mutate_all** для преобразования всех элементов таблицы) и **lmtest** (функция **lm** для построения регрессионной модели).

Для начала загрузим и посмотрим несколько первых записей набора **mtcars**:

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

Все столбцы таблицы содержат числа, причем признаки \mathbf{vs} и \mathbf{am} — бинарные.

В дальнейшем, чтобы строить разнообразные модели, будут использованы логарифмы от значений регрессоров, поэтому сразу добавим три столбца, **data\$Logdisp**, **data\$Logdrat**, **data\$Logwt**, в таблицу с вычисленными логарифмами (это делается для того, чтобы, когда данные будут стандартизированы, не пришлось исключать отрицательные значения для вычисления логарифмов).

Подключим библиотеку dplyr и прочитаем данные:

```
1 library(lmtest)
2 data = mtcars
3
4
```

Вычислим data\$Logdisp, data\$Logdrat, data\$Logwt:

```
#Сразу возьмем логарифмы каждой переменной до нормализации, а затем нормализуем отдельно.

17
18 data$Logdisp = log(data$disp)
19 data$Logdrat = log(data$drat)
20 data$Logwt = log(data$wt)
```

Нормализуем данные, вычтя из каждого столбца среднее значение mean(x) и поделив на среднеквадратическое отклонение $\sigma \sim \text{sqrt}(\text{var}(x))$:

```
#Нормализуем данные

23

24 data$mpg = (data$mpg - mean(data$mpg))/sqrt(var(data$mpg))

25 data$disp = (data$disp - mean(data$disp))/sqrt(var(data$disp))

26 data$drat = (data$drat - mean(data$drat))/sqrt(var(data$drat))

27 data$wt = (data$wt - mean(data$wt))/sqrt(var(data$wt))

28
```

Также нормализуем логарифмы:

```
#Hopмализуем логарифмы
data$Logdisp = (data$Logdisp - mean(data$Logdisp))/sqrt(var(data$Logdisp))
data$Logdrat = (data$Logdrat - mean(data$Logdrat))/sqrt(var(data$Logdrat))
data$Logwt = (data$Logwt - mean(data$Logwt))/sqrt(var(data$Logwt))

33
34
```

2.Проверить, что в наборе данных нет линейной зависимости (построить зависимости между переменными, указанными в варианте, и проверить, что R^2 в каждой из них не высокий). В случае, если R^2 большой, один из таких столбцов можно исключить из рассмотрения.

```
42 #Построим модель зависимости пройденного расстояния от коэффициента заднего моста
43
44 modeldispdrat = lm(disp ~ drat, data)
    modeldispdrat
    summary(modeldispdrat)
46
47
48 #Multiple R-squared: 0.5044, Adjusted R-squared: 0.4879
   #Коэффициент детерминации не очень большой, линейной зависимости не существует
49
50
51
    #Построим модель зависимости коэффициента заднего моста от веса
53
54
    modeldratwt = lm(drat ~ wt, data)
55
    modeldratwt
    summary(modeldratwt)
56
57
58
    #Multiple R-squared: 0.5076, Adjusted R-squared: 0.4912
    #Коэффициент детерминации не очень большой, линейной зависимости не существует
62
   #Построим модель зависимости коэффициента заднего моста от веса
63
64
65 modeldispwt = lm(disp ~ wt, data)
   modeldispwt
    summary(modeldispwt)
68
69
70 #Multiple R-squared: 0.7885, Adjusted R-squared: 0.7815
71 #Коэффициент детерминации увеличился , но не превышает 0.
    #Коэффициент детерминации увеличился , но не превышает 0.8 , поэтому не будем выкидывать столбец
72
73
   #Таким образом, мы подтверждаем гипотезу о линейной независимости переменных
75
```

Disp ~ Drat: $R^2 = 0.4879$ VIF = 1.952682

Disp ~ Wt : $R^2 = 0.7815$ VIF = 4.575792

Drat ~ Wt : $R^2 = 0.4912$ VIF = 1.965244

В целом можно судить о низком уровне мультиколлинеарности, однако стоит обратить внимание на относительно высокие показатели параметра **VIF** для переменных **disp** и **wt** - возможно в дальнейшем они либо повлияют, либо не повлияют на результативность построенных моделей.

3.Построить линейную модель зависимой переменной от указанных в варианте регрессоров по методу наименьших квадратов (команда lm пакета lmtest в языке R). Оценить, насколько хороша модель, согласно: 1) R^2 , 2) р-значениям каждого коэффициента.

```
#Пункт3

77

78

#Построим простую линейную модель зависимости mpg от всех описывающих переменных 79

#и оценим ее по коэффициенту детерминации и по р-критерию 80

#р-критерий - это вероятность ошибки при отклонении нулевой гипотезы 81

#(Предположения того, что линейной зависимости не существует)

82

83

model1 = lm(mpg ~ disp + drat + wt, data) 84

model1 #p-value - (.)()(*) 85

summary(model1) 86

#Multiple R-squared: 0.7835, Adjusted R-squared: 0.7603

#Pезультат неплох
```

```
> summary(model1)
lm(formula = mpq \sim disp + drat + wt, data = data)
Residuals:
                 Median
              1Q
-0.53662 -0.39355 -0.05223 0.27070 1.04232
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.065e-17 8.654e-02 0.000 1.0000
disp -3.370e-01 1.970e-01 -1.711 0.0981
           7.487e-02 1.291e-01 0.580 0.5665
drat
          -5.150e-01 1.976e-01 -2.606 0.0145 *
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4896 on 28 degrees of freedom
Multiple R-squared: 0.7835, Adjusted R-squared: 0.7603
F-statistic: 33.78 on 3 and 28 DF, p-value: 1.92e-09
```

Построенная модель имеет неплохие показатели: получены высокая доля объясненной дисперсии $\mathbf{R^2} = 0.7603$ и вероятность **p-value** = 1.92 * 10-9 << 0.001

Однако по значимости переменных можно судить о небольшом влиянии переменных (особенно **drat**). Это также можно увидеть из графика **mpg** ~ **drat**, построенного ранее – разброс данных относительно велик, а потому переменная drat плохо описывает объясняемую переменную **mpg**.

4.Ввести в модель логарифмы регрессоров. Сравнить модели и выбрать наилучшую.

```
95 #Добавим логарифм от параметра Disp в модель
 96 model2 = lm(mpg ~ Logdisp + disp + drat + wt, data)
 97 model2 #p-value - (***)(**)()(**)
    summary(model2) #Multiple R-squared: 0.8837, Adjusted R-squared: 0.8665
> summary(model2) #Multiple R-squared: 0.8837, Adjusted R-squared: 0.8665
lm(formula = mpg ~ Logdisp + disp + drat + wt, data = data)
Residuals:
            1Q Median
                            3Q
                                   Max
-0.5251 -0.2597 -0.0251 0.2456 0.5902
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.790e-16 6.460e-02 0.000 1.00000
Logdisp -1.492e+00 3.094e-01 -4.823 4.91e-05 ***
           9.146e-01 2.983e-01 3.066 0.00488 **
disp
           -1.105e-01 1.037e-01 -1.066 0.29606
drat
           -4.387e-01 1.483e-01 -2.958 0.00637 **
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.3654 on 27 degrees of freedom
Multiple R-squared: 0.8837, Adjusted R-squared: 0.8665
F-statistic: 51.29 on 4 and 27 DF, p-value: 3.138e-12
```

Получили прирост значений параметров \mathbb{R}^2 , а также уменьшение **p-value**.

```
101 #Добавим логарифм от параметра drat в модель
           model3 = lm(mpg ~ Logdrat + drat + disp + wt, data)
      103 model3 #p-value - ()()(.)(*)
           summary(model3) #Multiple R-squared: 0.7901, Adjusted R-squared: 0.759
      105
      106
> summary(model3) #Multiple R-squared: 0.7901, Adjusted R-squared: 0.759
lm(formula = mpg ~ Logdrat + drat + disp + wt, data = data)
Residuals:
    Min
              1Q Median
                               3Q
-0.4715 -0.3783 -0.1480 0.2449 1.0380
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.927e-16 8.678e-02
                                     0.000
                                              1.000
Logdrat -1.057e+00 1.148e+00 -0.921 drat 1.126e+00 1.149e+00 0.980 disp -3.750e-01 2.018e-01 -1.859 wt -4.817e-01 2.014e-01 -2.391
                                                 0.365
                                                0.336
                                                 0.074
                                                0.024 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4909 on 27 degrees of freedom
Multiple R-squared: 0.7901, Adjusted R-squared: 0.759
F-statistic: 25.41 on 4 and 27 DF, p-value: 8.195e-09
R^2 = 0.759, p-value = 8.195*10-9
Параметр \mathbb{R}^2 стал немного хуже по сравнение с model 2, увеличился p-value, а
также страдает значимость.
107 #Добавим логарифм от параметра wt в модель
 108 model4 = lm(mpg ~ Logwt + wt + disp + drat, data)
      model4 #p-value - (**)(.)(*)()
 110 summary(model4) #Multiple R-squared: 0.8479, Adjusted R-squared: 0.8254
 111
> summary(model4) #Multiple R-squared: 0.8479, Adjusted R-squared: 0.8254
call:
lm(formula = mpg \sim Logwt + wt + disp + drat, data = data)
Residuals:
    Min
              1Q Median
                             3Q
-0.4488 -0.2687 -0.1608 0.1290 0.9797
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.710e-16 7.387e-02 0.000 1.00000
Logwt -1.285e+00 3.801e-01 -3.381 0.00222 **
wt
            7.337e-01 4.061e-01 1.807 0.08196 .
            -4.067e-01 1.694e-01 -2.401 0.02352 *
disp
            -2.454e-02 1.140e-01 -0.215 0.83128
drat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4179 on 27 degrees of freedom
Multiple R-squared: 0.8479, Adjusted R-squared: 0.8254
```

F-statistic: 37.63 on 4 and 27 DF, p-value: 1.131e-10

```
R^2 = 0.8254 p-value = 1.131* 10-10
```

Параметр R^2 стал немного хуже по сравнение с **model 2**, а также получилась не самая лучшая значимость.

В итоге добились большого роста качества модели в сравнении с исходной, где не использовались логарифмы значений переменных.

Самая лучшая получившаяся модель с использованием логарифмов **model 2**.

5. Ввести в модель всевозможные произведения из пар регрессоров, в том числе квадраты регрессоров. Найдите одну или несколько наилучших моделей по доле объяснённого разброса в данных \mathbb{R}^2 .

```
119 model5 = lm(mpg ~ disp + drat + I(disp * wt) + wt, data)
 120 model5 #p-value - (*)()(**)(***)
 121 summary(model5) #Multiple R-squared: 0.8511, Adjusted R-squared: 0.829
122
> summary(model5) #Multiple R-squared: 0.8511, Adjusted R-squared: 0.829
lm(formula = mpg ~ disp + drat + I(disp * wt) + wt, data = data)
Residuals:
            1Q
    Min
                 Median
                              3Q
                                      Max
-0.56356 -0.26642 -0.09657 0.21668 0.82759
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
-0.40255
                      0.16742 -2.404 0.023328 *
disp
                      0.11447 -0.412 0.683894
           -0.04711
drat
I(disp * wt) 0.24428 0.06981 3.499 0.001636 **
           -0.63700 0.17051 -3.736 0.000886 ***
Wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4135 on 27 degrees of freedom
Multiple R-squared: 0.8511, Adjusted R-squared: 0.829
F-statistic: 38.57 on 4 and 27 DF, p-value: 8.543e-11
```

$R^2 = 0.829$ **p-value** = 8.54 * 10-11

Неплохая модель, однако, показатель **p-value** значительно увеличился

```
model6 = lm(mpg ~ disp + drat + wt + I(disp * drat), data)

model6 #p-value - (*)()(**)(**)

summary(model6) #Multiple R-squared: 0.84, Adjusted R-squared: 0.8163
```

```
> summary(model6) #Multiple R-squared: 0.84, Adjusted R-squared: 0.8163
lm(formula = mpg ~ disp + drat + wt + I(disp * drat), data = data)
Residuals:
          1Q Median
                         3Q
   Min
-0.4527 -0.3400 -0.1223 0.2180 0.8861
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
             -0.205082 0.100797
                                -2.035 0.05182
-2.182 0.03799
(Intercept)
                                       0.03799 *
disp
             -0.377392
                       0.172964
                      0.115734 -0.016 0.98708
             -0.001892
drat
             -0.547849 0.173349 -3.160 0.00386 **
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4287 on 27 degrees of freedom
Multiple R-squared: 0.84, Adjusted R-squared: 0.8163
F-statistic: 35.43 on 4 and 27 DF, p-value: 2.23e-10
R^2 = 0.8163 p-value = 2.23 * 10-10
{\bf R}^2 и значимость немного упали, но p-value улучшился.
 127 model7 = lm(mpg ~ disp + drat + wt + I(drat * wt), data)
 128 model7 #p-value (*)()(**)(**)
 129 summary(model7) #Multiple R-squared: 0.8321, Adjusted R-squared: 0.8072
 130
    > summary(model7) #Multiple R-squared: 0.8321, Adjusted R-squared: 0.8072
     lm(formula = mpg ~ disp + drat + wt + I(drat * wt), data = data)
    Residuals:
                 1Q Median
                                30
     -0.4279 -0.2825 -0.1449 0.3202 0.9549
    Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
     Residual standard error: 0.4391 on 27 degrees of freedom
    Multiple R-squared: 0.8321,
                                   Adjusted R-squared: 0.8072
     F-statistic: 33.45 on 4 and 27 DF, p-value: 4.228e-10
R^2 = 0.8072 p-value = 4.228*10-10
```

R^2 ,**p-value** значимость немного упали. Комбинации с **drat** дают не самые лучшие результаты, так что попробуем различные варианты исключения этого регрессора.

```
131 model8 = lm(mpg ~ disp + drat + wt + I(disp^2), data)
132 model8 #p-value (**)()(**)(***)
133 summary(model8) #Multiple R-squared: 0.8621, Adjusted R-squared: 0.8417
134
```

```
> summary(model8) #Multiple R-squared: 0.8621, Adjusted R-squared: 0.8417
lm(formula = mpq \sim disp + drat + wt + I(disp^2), data = data)
Residuals:
   Min
            1Q
                Median
                          3Q
-0.61906 -0.23955 -0.07465 0.25728 0.67011
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
disp
         -0.53366
                  0.16775 -3.181 0.003668 **
drat
         -0.10481 0.11448 -0.916 0.368024
         wt
         I(disp^2)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3979 on 27 degrees of freedom
Multiple R-squared: 0.8621,
                        Adjusted R-squared: 0.8417
F-statistic: 42.2 on 4 and 27 DF, p-value: 3.058e-11
```

```
R^2 = 0.8417 p-value = 3.058*10-11
```

Видим увеличение R^2 и значимости модели по сравнению с предыдущими.

Пока что лучшая получившаяся модель.

```
140 model10 = lm(mpg ~ disp + drat + wt + I(wt^2), data)
141 model10 #p-value - (*)()(***)(**)
142 summary(model10) #Multiple R-squared: 0.847, Adjusted R-squared: 0.8244
143
```

```
> summary(model10) #Multiple R-squared: 0.847, Adjusted R-squared: 0.8244
call:
lm(formula = mpq \sim disp + drat + wt + I(wt^2), data = data)
Residuals:
   Min
           1Q Median
                          3Q
-0.5179 -0.2270 -0.1719 0.1644 0.9255
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
0.16898 -2.211 0.035661 *
          -0.37368
disp
                     0.11574 -0.348 0.730678
drat
          -0.04025
          -0.64784
                     0.17376 -3.728 0.000904 ***
wt
          0.19076
                     0.05699
                             3.347 0.002414 **
I(wt^2)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4191 on 27 degrees of freedom
Multiple R-squared: 0.847, Adjusted R-squared: 0.8244
F-statistic: 37.37 on 4 and 27 DF, p-value: 1.223e-10
```

```
R^2 = 0.8244 p-value = 1.223* 10-10
```

R^2 и значимость упали по сравнение с моделью 8. Однако показатель **p-value** улучшился.

В итоге, **model 8** оказалась наилучшей среди построенных по показателю \mathbb{R}^2 .

Также стоит отметить, что в процессе формирования моделей приходилось исключать регрессор **drat**, который плохо описывает объясняемую переменную **mpg**.

Таким образом можно сделать вывод о том, что рассматриваемая величина **mpg** (число миль на галлон) относительно слабо зависит (плохо выражается) от значения **drat** (передаточного числа заднего моста) для автомобилей.

Задача 2

В этой задаче необходимо проанализировать данные волны мониторинга экономического положения и здоровья населения РФ (данные обследования РМЭЗ НИУ ВШЭ).

Прочитайте данные, выберите столбцы, которые Вам кажутся необходимыми, чтобы описать социально-экономическое положение граждан Российской Федерации.

Минимальный набор параметров: зарплата, пол, семейное положение, наличие высшего образования, возраст, тип населенного пункта, длительность рабочей недели.

Из параметра, отвечающего семейному положению, сделать дамми-переменные (с помощью one-hot-encoding): 1) переменная **wed1** имеет значение 1 в случае, если респондент женат, 0 – в противном случае; 2) **wed2**=1, если респондент разведён или вдовец; 3) **wed3** = 1, если респондент никогда не состоял в браке; 4) если считаете необходимым, введите другие параметры. Следите за мультиколлинеарностью (убедитесь в её отсутствии, оценив вспомогательную регрессию любого параметра (например, зарплаты или одного из параметров wed) на эти переменные и использовав команду **VIF** для неё).

Из параметра пол сделаете переменную sex, имеющую значение 1 для мужчин и равную 0 для женщин.

Из параметра, отвечающего типу населённого пункта, создайте одну даммипеременную **city_status** со значением 1 для города или областного центра, $0 - \mathbf{B}$ противоположном случае. Введите один параметр **higher_educ**, характеризующей наличие полного высшего образования.

Факторные переменные, «имеющие много значений», такие как: зарплата, длительность рабочей недели и возраст, - необходимо преобразовать в вещественные переменные и нормализовать их: вычесть среднее значение по этой переменной, разделить её значения на стандартное отклонение.

- 1. Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из данных мониторинга. Не забудьте оценить коэффициент вздутия дисперсии VIF.
- 2. Поэкспериментируйте с функциями вещественных параметров: используйте логарифм и степени (хотя бы от 0.1 до 2 с шагом 0.1).
- 3. Выделите наилучшие модели из построенных: по значимости параметров, включённых в зависимости, и по объяснённому с помощью построенных зависимостей разбросу adjusted R2 R2adj.
- 4. Сделайте вывод о том, какие индивиды получают наибольшую зарплату.
- 5. Оцените регрессии для подмножества индивидов, указанных в варианте.

Решение

17 Волна. Файл – " r17i_os26b.sav".

Установим необходимые библиотеки и пакеты для чтения файлов и работы с данными

```
# для чтения .sav файлов
install.packages("devtools")
devtools::install_github("https://github.com/bdemeshev/rlms")

# подключение необходимых библиотек
library("lmtest")
library("rlms")
library("dplyr")
library("GGally")
library("car")
library("sandwich")
library("Hmisc")
```

Составим базу из данных: mj13.2, m_age, m_educ, status, mj6.2, m_marst, mh5

```
# чтение данных о 17-й волне

data <- rlms_read("C:\\Users\\AmazZinG\\Desktop\\practice\\r17i_os26b.sav")

glimpse(data)

# выделяем интересующие нас столбцы

data2 = select(data, mj13.2, mh5, m_marst, m_educ, m_age, status, mj6.2)

# зарплата - mj13.2, пол - mh5, семейное положение - m_marst, наличие высшего образования - m_educ, возраст - m_age,

# тип населенного пункта - status ,длительность рабочей недели - mj6.2
```

mj13.2 - среднемесячная зарплата

```
m_age – возраст
```

mh5 – пол

m_educ - Образование

status – Тип населённого пункта

mj6.2 - Сколько часов в среднем продолжается Ваша обычная рабочая неделя?

m_marst - Семейные положение мы переделываем в (wed, wed1, wed2, wed3, wed4)

Из параметра, отвечающего семейному положению, сделать дамми-переменные (с помощью one-hot-encoding): 1) переменная **wed1** имеет значение 1 в случае, если респондент женат, 0 – в противном случае; 2) **wed2**=1, если респондент разведён или вдовец; 3) **wed3** = 1, если респондент никогда не состоял в браке; 4) если считаете необходимым, введите другие параметры. Следите за мультиколлинеарностью (убедитесь в её отсутствии, оценив вспомогательную регрессию любого параметра (например, зарплаты или одного из параметров wed) на эти переменные и использовав команду **VIF** для неё).

```
30 #Разделим респондентов на 3 группы (по семейному положению)
    #переменная wed1 имеет значение 1 в случае, если респондент женат, 0 - в противном случае;
    #wed2 = 1, если респондент разведён или вдовец;
   #wed3 = 1, если респондент никогда не состоял в браке;
    #Просматривая другие знчения, делаю вывод: смысла в вводе других параметров - нет
35
36 #Обнуляем новый стобец
37 data2["wed1"] = data2$m_marst
38 data2["wed1"] = 0
39
40 #Состоите в зарегистрированном браке = 2, ОФИЦИАЛЬНО ЗАРЕГИСТРИРОВАНЫ, НО ВМЕСТЕ НЕ ПРОЖИВАЮТ = 6
41 data2$wed1[which(data2$m_marst == '2') | which(data2$m_marst == '6')] = 1
44 #Обнуляем новый стобец
51
52 #обнуляем новый стобец
53 data2["wed3"] = data2$m_marst
54 data2["wed3"] = 0
   #Никогда в браке не состояли = 1
    data2$wed3[which(data2$m_marst == '1')] = 1
58
```

Из параметра пол сделаете переменную sex, имеющую значение 1 для мужчин и равную 0 для женщин.

```
59 #ИЗ параметра пол сделаем переменную sex, имеющую значение 1 для мужчин и равную 0 для женщин 60 data2["sex"] = data2$mh5 61 data2$sex[which(data2$sex == '1')] = 1 62 data2$sex[which(data2$sex == '2')] = 0 63 64
```

Из параметра, отвечающего типу населённого пункта, создайте одну даммипеременную **city_status** со значением 1 для города или областного центра, 0 – в противоположном случае. Введите один параметр **higher_educ**, характеризующей наличие полного высшего образования.

```
# Из параметра, отвечающего типу населённого пункта, создайте одну дамми-переменную city_status
# со значением 1 для города или областного центра, 0 - в противоположном случае.

data2["city_status"] = data2$status
data2["city_status"] = 0

data2$city_status[which(data2$status == '1')] = 1

data2$city_status[which(data2$status == '2')] = 1

#Введите один параметр higher_educ, характеризующий наличие полного высшего образования
data2["higher_educ"] = data2$m_educ
data2["higher_educ"] = 0

#ЕСТЬ полное высшее образование
data2$higher_educ[which(data2$m_educ == '21')] = 1

data2$higher_educ[which(data2$m_educ == '22')] = 1

data2$higher_educ[which(data2$m_educ == '22')] = 1

data2$higher_educ[which(data2$m_educ == '23')] = 1
```

Факторные переменные, «имеющие много значений», такие как: зарплата, длительность рабочей недели и возраст, - необходимо преобразовать в вещественные переменные и нормализовать их: вычесть среднее значение по этой переменной, разделить её значения на стандартное отклонение.

```
87 #Факторные переменные, «имеющие много значений», такие как: зарплата, длительность рабочей недели и возраст
      #- необходимо преобразовать в вещественные переменные и нормализовать их
 89 # вычесть среднее значение по этой переменной, разделить её значения на стандартное отклонение.
      data2["salary"] = data2$mj13.2
      data2$salary = as.numeric(data2$salary)
data2["salary"] = (data2["salary"] - mean(data2$salary)) / sqrt(var(data2$salary))
 93
 97
      data2["week_len"] = data2$mj6.2
      data2$week_len = as.numeric(data2$week_len)
data2["week_len"] = (data2["week_len"] - mean(data2$week_len)) / sqrt(var(data2$week_len))
 98
 99
100
      #BO3pacT
data2["age"] = data2$m_age
101
102
      data2$age = as.numeric(data2$age)
data2["age"] = (data2["age"] - mean(data2$age)) / sqrt(var(data2$age))
103
104
105
106
      #Соберем подготовленные данные
107
      data3 = select(data2, salary, sex, wed1, wed2, wed3, higher_educ, age, status, week_len)
108
      glimpse(data3)
109
```

1. Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из данных мониторинга. Не забудьте оценить коэффициент вздутия дисперсии VIF.

```
110 #1 Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из данных мониторинга.
111
    #Не забудьте оценить коэффициент вздутия дисперсии VIF.
112
113
    #Построю модель зависимости зарплаты от других вакторов
    model1 = lm(salary ~ sex + wed1 + wed2 + wed3 + higher_educ + age + status + week_len, data3)
    summary(model1)
116
> summary(model1)
call:
lm(formula = salary ~ sex + wed1 + wed2 + wed3 + higher_educ +
    age + status + week_len, data = data3)
Residuals:
             1Q Median
                               3Q
                                      Max
-1.9390 -0.5009 -0.1669 0.2641 12.9867
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
             0.07949
                         0.03765
(Intercept)
                                   2.111
                                            0.0348 *
                         0.03091 13.215 < 2e-16 ***
sex
             0.40851
wed1
                   NA
                               NA
                                       NA
                                                 NA
            -0.03070
                        0.04264 -0.720
                                            0.4716
wed2
                         0.04460 -5.737 1.04e-08 ***
            -0.25584
higher_educ 0.53477
                         0.03338 16.019 < 2e-16 ***
                         0.01677 -6.022 1.88e-09 ***
            -0.10098
age
             -0.17766
                         0.01274 -13.944 < 2e-16 ***
status
                         0.01494 10.817 < 2e-16 ***
week_len
            0.16161
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.9038 on 3866 degrees of freedom
Multiple R-squared: 0.1847,
                                  Adjusted R-squared: 0.1832
F-statistic: 125.1 on 7 and 3866 DF, p-value: < 2.2e-16
```

Вывод: $\mathbf{R^2} = 0.1832$

Имеем показатель $R^2 = 0.1832$ и низкую значимость регрессоров **wed1** и **wed2** Построим модель без **wed1** и **wed2**:

```
> summary(model2)
call:
lm(formula = salary ~ sex + wed3 + higher_educ + age + status +
     week_len, data = data3)
Residuals:
                 1Q Median 3Q
     Min
                                              Max
-1.9391 -0.4997 -0.1641 0.2678 12.9939
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07134 0.03591 1.987 0.047 *
sex 0.41414 0.02990 13.849 < 2e-16 ***
wed3 -0.25265 0.04437 -5.694 1.33e-08 ***
higher_educ 0.53527 0.03337 16.039 < 2e-16 ***
age -0.10284 0.01657 -6.207 5.97e-10 ***
status -0.17757 0.01274 -13.938 < 2e-16 ***
week_len 0.16152 0.01494 10.812 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9037 on 3867 degrees of freedom
Multiple R-squared: 0.1846, Adjusted R-squared: 0.1833
F-statistic: 145.9 on 6 and 3867 DF, p-value: < 2.2e-16
R^2 = 0.1833
> vif(model2)
    sex wed3 higher_educ age status
1.047006 1.296011 1.047585 1.301681 1.027290
                                                               status week_len
                                                                            1.058340
```

Исходя из полученных данных, делаем вывод: уровень мультиколлинеарности низкий – регрессоры линейно-независимы.

Все регрессоры замечательно описывают модель, после исключения $\mathbf{wed1}$, $\mathbf{wed2}$, немного повысился \mathbf{R}^2 .

2. Поэкспериментируйте с функциями вещественных параметров: используйте логарифм и степени (хотя бы от 0.1 до 2 с шагом 0.1).

Для логарифмирования вещественных параметров необходимо, чтобы значения были > 0, поэтому:

```
133 data3["salary"] = data3["salary"] + 1.2

134 data3["age"] = data3["age"] + 2.1

135 data3["week_len"] = data3["week_len"] + 3.3

136
```

```
#Строим модель с логарифмами
138 model3 = lm(salary ~ sex + wed3 + higher_educ + log(age) + status + log(week_len), data3)
139 summary(model3)
140
```

```
> summary(model3)
lm(formula = salary ~ sex + wed3 + higher_educ + log(age) + status +
   log(week_len), data = data3)
Residuals:
   Min
           1Q Median
                          30
-1.8994 -0.5019 -0.1693 0.2788 13.0659
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             (Intercept)
             0.41743
                      0.03007 13.880 < 2e-16 ***
sex
wed3
            -0.20972
                      0.04764 -4.402 1.1e-05 ***
             0.52330
                     0.03354 15.604 < 2e-16 ***
higher_educ
            -0.09773
                     0.02945 -3.319 0.000913 ***
log(age)
            -0.17599 0.01282 -13.728 < 2e-16 ***
status
log(week_len) 0.43736 0.04195 10.425 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Все регрессоры имеют высокое значение в модели.

Пробую использовать комбинации регрессоров для построения модели.

```
> summary(model4)
call:
lm(formula = salary ~ sex + wed3 + higher_educ + age + status +
    week_len + I(age * week_len) + I(age^2) + I(week_len^2),
    data = data3)
Residuals:
            1Q Median
   Min
                            3Q
-1.8541 -0.4903 -0.1605 0.2740 12.9340
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                  0.326275   0.164223   1.987   0.04702 *
(Intercept)
                             0.029757 14.346 < 2e-16 ***
sex
                  0.426897
                             0.047336 -1.913 0.05587
wed3
                 -0.090536
                             0.033052 16.038 < 2e-16 ***
higher_educ
                  0.530097
                  0.532577
                                       6.075 1.36e-09 ***
                             0.087672
age
                             0.012651 -14.686 < 2e-16 ***
status
                 -0.185781
                                       3.263 0.00111 **
                             0.059347
week_len
                  0.193625
I(age * week_len) -0.010154
                             0.014696 -0.691 0.48962
                                               < 2e-16 ***
I(age^2)
                 -0.134081
                             0.014675
                                       -9.137
                             0.005936 -0.454 0.65018
I(week_len^2)
                 -0.002692
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Комбинации с week_len и wed3 имеют низкий приоритет, исключаем их

```
> summary(model5)
call:
lm(formula = salary ~ sex + higher_educ + age + status + week_len +
    I(age^2), data = data3)
Residuals:
              1Q Median
    Min
                                3Q
                                        Max
-1.8265 -0.4914 -0.1612 0.2744 12.9568
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34523 0.07934 4.351 1.39e-05 ***
                         0.02964 14.424 < 2e-16 ***
              0.42745
higher_educ 0.53055 0.03304 16.060 < 2e-16 ***
            0.55631 0.05949 9.351 < 2e-16 ***
age
status -0.18554 0.01264 -14.677 < 2e-16 ***
week_len 0.15257 0.01482 10.295 < 2e-16 ***
I(age^2) -0.14348 0.01348 -10.644 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

После исключения комбинации с **week_len** ничего не изменилась, как и прежде показатели модели относительно хороши

Построим модель на комбинациях логарифмов регрессоров

```
> summary(model6)
call:
lm(formula = salary ~ sex + higher_educ + log(age) + status +
   log(week_len) + I(log(age) * log(week_len)) + I(log(age)^2) +
   I(\log(\text{week\_len})^2), data = data3)
Residuals:
            1Q Median
   Min
                           3Q
-1.8903 -0.4988 -0.1652 0.2774 12.9460
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                          (Intercept)
                                     0.02985 13.781 < 2e-16 ***
                           0.41134
sex
                                     0.03349 15.010 < 2e-16 ***
higher_educ
                          0.50267
                          0.09907
                                    0.06904
                                             1.435 0.151382
log(age)
                          -0.18065
                                    0.01272 -14.206 < 2e-16 ***
status
                           0.22474
                                             3.565 0.000369 ***
log(week_len)
                                    0.06304
                                    0.05728 1.069 0.284984
I(log(age) * log(week_len)) 0.06125
                          -0.30140
                                     0.03338 -9.030 < 2e-16 ***
I(log(age)^2)
                          0.11682
                                    0.02825 4.135 3.63e-05 ***
I(log(week_len)^2)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Теперь снизились показатели модели, а так же влияние комбинации с **log(age)** и **I(log(age)** * **log(week_len)**) построим модель без них

Показатели модели незначительно повысились.

Построим модель с квадратами логарифмов

```
> summary(model8)
call:
lm(formula = salary ~ sex + higher_educ + age + log(age^2) +
         status + week_len + log(week_len^2), data = data3)
Residuals:
                                                                  3Q
         Min
                           1Q Median
 -1.8803 -0.4947 -0.1645 0.2712 12.9231
Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
                                    1.34211 0.08774 15.296 < 2e-16 ***
 (Intercept)

      sex
      0.41925
      0.02969
      14.120
      < 2e-16</td>
      ***

      higher_educ
      0.50557
      0.03323
      15.215
      < 2e-16</td>
      ***

      age
      -0.50767
      0.04757
      -10.671
      < 2e-16</td>
      ***

      log(age^2)
      0.39079
      0.03942
      9.915
      < 2e-16</td>
      ***

      status
      -0.18404
      0.01266
      -14.535
      < 2e-16</td>
      ***

      week_len
      0.13129
      0.03111
      4.220
      2.49e-05
      ***

      log(week_len^2)
      0.03368
      0.04359
      0.773
      0.44

                                                              0.02969 14.120 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Качество модели относительно высокое, однако значимость регрессора **log(week_len^2)** не высока

3. Выделите наилучшие модели из построенных: по значимости параметров, включённых в зависимости, и по объяснённому с помощью построенных зависимостей разбросу adjusted R2 - R2adj.

```
1)model5: R^2=0.2011 ,(значимость параметров – максимальная ***)
2)model7: R^2=0.1861 ,(значимость параметров – максимальная ***)
3)model8: R^2=0.1985, (значимость параметров – максимальная ***)
В итоге лучшая по показателям model5
```

4.Сделайте вывод о том, какие индивиды получают наибольшую зарплату

> summary(model2)

Вывод: наибольшую зарплату получает мужчина (estimate: sex > 0), с высшим образованием (estimate: $higher_educ > 0$), преимущественно женатый (estimate: wed3 < 0), однако этот показатель не вносит наибольший вклад, этот мужчина примерно средних лет (estimate: $age \sim 0$), тем не менее обычно это не городской житель (estimate: status < 0), что очень странно, т.к. в реальной ситуации у городского жителя преимущественно большая зарплата. Так же у него наблюдаются переработки (estimate: duration > 0). В целом, в модели присутствуют некоторые неточности, но схожести с реальностью присутствуют.

- 5. Оцените регрессии для подмножества индивидов, указанных в варианте.
- 1)Городские жители, не состоявшие в браке; 2)разведенные женщины, без высшего образования
- 1)Данная группа индивидов теряет в зарплате из-за того, что это городские жители (status < 0) да и ещё не состоявшие в браке (wed3 < 0), в итоге у данной группы индивидов зарплата ниже среднего
- 2)Эта группа индивидов получает относительно низкую з/п из-за отсутствия высшего образования, а регрессия по зарплате говорит о том, что высшее образование играет значительную роль в ее размере, также зарплата снижается из-за женского

пола(estimate: sex > 0), то что они разведены, оказывает минимальное значение на их зарплату по модели m (wed2 ~ 0

Задача 3

Необходимо провести анализ вашего датасета и сделать обработку данных.

Ответить на следующие вопросы:

- 1. Сколько в датасете объектов и признаков? Дать описание каждому признаку, если оно есть.
 - 2. Сколько категориальных признаков, какие?
- 3. Столбец с макимальным количеством уникальных значений категориального признака?
 - 4. Есть ли бинарные признаки?
 - 5. Есть ли пропуски?
 - 6. Сколько объектов с пропусками?
 - 7. Столбец с максимальным количеством пропусков?
 - 8. Есть ли на ваш взгляд выбросы, аномальные значения?
- 9. Столбец с максимальным средним значением после нормировки признаков через стандартное отклонение?
 - 10. Столбец с целевым признаком?
- 11. Сколько объектов попадает в тренировочную выборку при использовании train test split с параметрами test size = 0.3, random state = 42?
- 12. Сколько признаков достаточно для объяснения 90% дисперсии после применения метода РСА?
 - 13. Какой признак вносит наибольший вклад в первую компоненту?

Для работы с данным набором будем использовать вспомогательные библиотеки, поэтому установим их и загрузим данные:

1.Сколько в датасете объектов и признаков? Дать описание каждому признаку, если оно есть.

Определим размеры нашей таблицы с данными:

```
In [19]: print("data2.shape=",data2.shape)

data2.shape= (1000, 7)
```

В нашей таблице с данными 1000 строки и 4 столбца.

Прежде чем приступать к обработке данных, посмотрим на наши признаки:

Итак, в нашем наборе данных содержится 100000 строк (объектов) и 4столбца (признака).

Дадим описание каждому признаку:

- 1. MachineIdentifier категориальный признак, Индивидуальный ID машины
- 2. **AVProductStatesIdentifier** вещественный признак, ID для конкретной конфигурации антивирусного программного обеспечения пользователя
- 3. Country Identifier целочисленный признак, ID для страны, в которой находится машина
- 4. **OrganizationIdentifier** вещественный признак, ID для организации, которой принадлежит машина, идентификатор организации сопоставляется как с конкретными компаниями, так и с широкими отраслями промышленности
- 5. Census_ProcessorCoreCount Количество логических ядер в процессоре
- 6. Census_TotalPhysicalRAM- Извлекает физическую оперативную память в МБ
- 7. **HasDetections** Обнаружено ли вредоносное ПО на машине
 - 2. Сколько категориальных признаков, какие?

Таким образом, у нас есть 1 категориальный признак – MachineIdentifier

3. Столбец с максимальным количеством уникальных значений категориального признака?

В данном случае столбец с максимальным количеством уникальных значений категориального признака (единственный) – **MachineIdentifier.**

4.Есть ли бинарные признаки?

Бинарные признаки в нашем датасете присутствуют в столбце HasDetections.

5.Есть ли пропуски?

Да, есть, в вещественных столбцах: AVProductStatesIdentifier, OrganizationIdentifier, Census_ProcessorCoreCount, Census_TotalPhysicalRAM

6. Сколько объектов с пропусками?

336 объектов с пропусками.

7. Столбец с максимальным количеством пропусков?

Исходя из проделанной операции, можно сделать вывод, что пропусков максимальное количество в столбце **OrganizationIdentifier**

Для дальнейшего анализа, уберём все строки с пропусками.

8. Есть ли на ваш взгляд выбросы, аномальные значения?

Для начала обработаем столбец с категориальным признаком.

Проверим наш датасет на наличие аномальных значений с помощью графика:

На мой взгляд, аномальные значения в таблице отсутствуют.

9. Столбец с максимальным средним значением после нормировки признаков через стандартное отклонение?

MachineIdentifier, AVProductStatesIdentifier, CountryIdentifier, OrganizationIdentifier, HasDetections не имеет смысл использовать.

```
In [16]: def maxstd(data2):
    max = 0
    max_name = str()
    for i in data2.columns:
        num = (data2[i] - data2[i].mean()) / data2[i].std()
        data2[i] = num
        if max < num.mean():
            max_name, max = i, num.mean()
        return max_name
    maxstd(data2)</pre>
Out[16]: 'Census_TotalPhysicalRAM'
```

После проверки условия, столбцом с максимальным средним после нормировки признаков через стандартное отклонение, является столбец **Census_TotalPhysicalRAM**

10. Столбец с целевым признаком?

Опираясь на условие задачи, можно сделать вывод, что целевой признак - это **HasDetection**

11. Сколько объектов попадает в тренировочную выборку при использовании train_test_split с параметрами test_size = 0.3, random_state = 42?

```
In [26]: target = data2.HasDetections
In [27]: train = data2

In [28]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(train, target, test_size = 0.3, random_state = 42)
    N_train, _ = X_train.shape
    N_test, _ = X_test.shape
    print (N_train, N_test)

470 202
```

Заметим, что в тренировочную выборку попадает 470 объектов.

12. Сколько признаков достаточно для объяснения 90% дисперсии после применения метода РСА?

```
In [113]:
          from sklearn.decomposition import PCA
          %matplotlib inline
          import matplotlib.pyplot as plt
          pca = PCA()
pca.fit(X train)
          X_pca = pca.transform(X_train)
          for i, component in enumerate(pca.components_):
    print("{} component: {}% of initial variance".format(i + 1,
           1 component: 92.31% of initial variance
          -1.000 x AVProductStatesIdentifier + -0.000 x CountryIdentifier + 0.000 x OrganizationIdentifier + -0.000 x Census ProcessorCor
          eCount + -0.006 x Census_TotalPhysicalRAM
          2 component: 7.66% of initial variance
-0.006 x AVProductStatesIdentifier + -0.000 x CountryIdentifier + -0.000 x OrganizationIdentifier + 0.000 x Census_ProcessorCor
          eCount + 1.000 x Census_TotalPhysicalRAM
          3 component: 0.0% of initial variance
          -0.000 x AVProductStatesIdentifier + 1.000 x CountryIdentifier + 0.004 x OrganizationIdentifier + 0.001 x Census ProcessorCoreC
          ount + 0.000 x Census_TotalPhysicalRAM
          4 component: 0.0% of initial variance
          0.000 x AVProductStatesIdentifier + -0.004 x CountryIdentifier + 1.000 x OrganizationIdentifier + 0.016 x Census ProcessorCoreC
          ount + 0.000 x Census_TotalPhysicalRAM
          5 component: 0.0% of initial variance
          -0.000 x AVProductStatesIdentifier + -0.001 x CountryIdentifier + -0.016 x OrganizationIdentifier + 1.000 x Census_ProcessorCor
          eCount + -0.000 x Census_TotalPhysicalRAM
  In [104]: plt.figure(figsize=(10,7))
               plt.plot(np.cumsum(pca.explained_variance_ratio_), color='k', lw=2)
               plt.axhline(0.9, c='r')
               plt.axvline(1, c='b')
  Out[104]: <matplotlib.lines.Line2D at 0x258c2f2bd08>
                1.00
                0.98
                0.96
                0.94
                                                                                                            40
```

Чтобы описать 90% дисперсии после применения метода РСА, достаточно 1 признака.

13. Какой признак вносит наибольший вклад в первую компоненту?

По полученным данным, можно понять, что наибольший вклад в 1 компоненту вносит признак **AVProductStatesIdentifier**

Вывод:

Была произведена первичная обработка данных, исключены признаки

MachineIdentifier и HasDetections. Также были выделены тестовые и тренировочные выборки. С помощью метода главных компонент было выявлено, что для объяснения 90 процентов дисперсии достаточно лишь 1 признака, а также было замечено, что наибольший вклад в первую компоненту вносит признак AVProductStatesIdentifier.

Список литературы.

- 1. Роберт И. Кабаков R в действии: Анализ и визуализация данных на языке R: [Электронный ресурс] 2014. URL: http://kek.ksu.ru/eos/WM/kabacoff2014ru.pdf
- 2. Баженов Д. О задачах классификации: [Электронный ресурс]. URL: http://bazhenov.me/blog/2012/06/05/classification.html
- 3. Алексей Орлов @Lexxo Как работает метод главных компонент (PCA) на простом примере: [Электронный ресурс]. URL: https://habr.com/ru/post/304214/
- 4. Микаел Григорян @temujin R значит регрессия 2018. URL: https://habr.com/ru/post/350668/

Код номера 1

```
library(lmtest)
data = mtcars
#Пункт 1
#Нормализуем данные для того, чтобы набор данных был схож с нормальным распределением:
#Вычитаем среднее значение и делим результат на его среднеквадратичное отклонение
#Входные данные:
#mpg - объясняемая переменная. Мили/(US) галлон.
#Disp - объясняющая переменная. Перемещение.
#drat - объясняющая переменная. Коэффициент заднего моста.
#wt - объясняющая переменная. Вес.
#Сразу возьмем логарифмы каждой переменной до нормализации, а затем нормализуем отдельно.
data Logdisp = log(data disp)
data Logdrat = log(data drat)
data Logwt = log(data wt)
#Нормализуем данные
data$mpg = (data$mpg - mean(data$mpg))/sqrt(var(data$mpg))
data$disp = (data$disp - mean(data$disp))/sqrt(var(data$disp))
data$drat = (data$drat - mean(data$drat))/sqrt(var(data$drat))
data$wt = (data$wt - mean(data$wt))/sqrt(var(data$wt))
#Нормализуем логарифмы
data$Logdisp = (data$Logdisp - mean(data$Logdisp))/sqrt(var(data$Logdisp))
data$Logdrat = (data$Logdrat - mean(data$Logdrat))/sqrt(var(data$Logdrat))
data$Logwt = (data$Logwt - mean(data$Logwt))/sqrt(var(data$Logwt))
#Пункт 2
#Проверим гипотезу о линейной независимости наших переменных
#Для этого построим линейную регрессию между параметрами
#Оценивать будем по показателю Multiple\Adjusted R-squared (Коэффициент детерминации)
#Это значение показывает сколько процентов данных мы смогли описать той или иной моделью
#Построим модель зависимости пройденного расстояния от коэффициента заднего моста
modeldispdrat = lm(disp \sim drat, data)
modeldispdrat
summary(modeldispdrat)
#Multiple R-squared: 0.5044, Adjusted R-squared: 0.4879
#Коэффициент детерминации не очень большой, линейной зависимости не существует
#Построим модель зависимости коэффициента заднего моста от веса
```

```
modeldratwt = lm(drat \sim wt, data)
modeldratwt
summary(modeldratwt)
#Multiple R-squared: 0.5076, Adjusted R-squared: 0.4912
#Коэффициент детерминации не очень большой, линейной зависимости не существует
#Построим модель зависимости коэффициента заднего моста от веса
modeldispwt = lm(disp \sim wt, data)
modeldispwt
summary(modeldispwt)
#Multiple R-squared: 0.7885, Adjusted R-squared: 0.7815
#Коэффициент детерминации увеличился, но не превышает 0.8, поэтому не будем выкидывать столбец
#Таким образом, мы подтверждаем гипотезу о линейной независимости переменных
#Пункт3
#Построим простую линейную модель зависимости mpg от всех описывающих переменных
#и оценим ее по коэффициенту детерминации и по р-критерию
#р-критерий - это вероятность ошибки при отклонении нулевой гипотезы
#(Предположения того, что линейной зависимости не существует)
model1 = lm(mpg \sim disp + drat + wt, data)
model1 #p-value - (.)()(*)
summary(model1)
#Multiple R-squared: 0.7835, Adjusted R-squared: 0.7603
#Результат неплох
#Пункт 4
#Введем в модель логарифмы
#Чтобы избежать взятия логарифмов от отрицательных чисел мы взяли их заранее
#Добавим логарифм от параметра Disp в модель
model2 = lm(mpg \sim Logdisp + disp + drat + wt, data)
model2 #p-value - (***)(**)()(**)
summary(model2) #Multiple R-squared: 0.8837,
                                                  Adjusted R-squared: 0.8665
#Добавим логарифм от параметра drat в модель
model3 = lm(mpg \sim Logdrat + drat + disp + wt, data)
model3 #p-value - ()()(.)(*)
summary(model3) #Multiple R-squared: 0.7901,
                                                  Adjusted R-squared: 0.759
#Добавим логарифм от параметра wt в модель
model4 = lm(mpg \sim Logwt + wt + disp + drat, data)
model4 #p-value - (**)(.)(*)()
```

```
summary(model4) #Multiple R-squared: 0.8479,
                                                    Adjusted R-squared: 0.8254
#Лучший результат получился у модели model2
#Пункт 5
#Ввести в модель всевозможные произведения из пар регрессоров, в том числе квадраты регрессоров
#Найти одну или несколько наилучших моделей по доле объясненного разброса в данных R^2
model5 = lm(mpg \sim disp + drat + I(disp * wt) + wt, data)
model5 #p-value - (*)()(**)(***)
                                                    Adjusted R-squared: 0.829
summary(model5) #Multiple R-squared: 0.8511,
model6 = lm(mpg \sim disp + drat + wt + I(disp * drat), data)
model6 #p-value - (*)()(**)(**)
summary(model6) #Multiple R-squared: 0.84, Adjusted R-squared: 0.8163
model7 = lm(mpg \sim disp + drat + wt + I(drat * wt), data)
model7 #p-value (*)()(**)(**)
summary(model7) #Multiple R-squared: 0.8321,
                                                    Adjusted R-squared: 0.8072
model8 = lm(mpg \sim disp + drat + wt + I(disp^2), data)
model8 #p-value (**)()(**)(***)
                                                    Adjusted R-squared: 0.8417
summary(model8) #Multiple R-squared: 0.8621,
model9 = lm(mpg \sim disp + drat + wt + I(drat^2), data)
model9 \#p-value - (.)()(*)()
summary(model9) #Multiple R-squared: 0.791, Adjusted R-squared: 0.76
model10 = lm(mpg \sim disp + drat + wt + I(wt^2), data)
model10 #p-value - (*)()(***)(**)
summary(model10) #Multiple R-squared: 0.847,
                                                    Adjusted R-squared: 0.8244
#model8 оказалась моделью с самыми хорошими показателями
```

Код номера 2

```
# для чтения .sav файлов
install.packages("devtools")
devtools::install_github("https://github.com/bdemeshev/rlms")
# подключение необходимых библиотек
library("lmtest")
library("rlms")
library("dplyr")
```

```
library("car")
library("sandwich")
library("Hmisc")
# чтение данных о 17-й волне
data <- rlms read("C:\\Users\\AmaZZinG\\Desktop\\practice\\r17i os26b.sav")
glimpse(data)
# выделяем интересующие нас столбцы
data2 = select(data, mj13.2, mh5, m marst, m educ, m age, status, mj6.2)
#зарплата - mj13.2, пол - mh5, семейное положение - m marst, наличие высшего образования - m educ, возраст
- m_age,
#тип населенного пункта - status ,длительность рабочей недели - mj6.2
# отбрасываем пустые поля
data2 = na.omit(data2)
glimpse(data2)
#Разделим респондентов на 3 группы(по семейному положению)
#переменная wed1 имеет значение 1 в случае, если респондент женат, 0 – в противном случае;
\#wed2 = 1, если респондент разведён или вдовец;
\#wed3 = 1, если респондент никогда не состоял в браке;
#Просматривая другие знчения, делаю вывод: смысла в вводе других параметров - нет
#Обнуляем новый стобец
data2["wed1"] = data2$m_marst
data2["wed1"] = 0
#Состоите в зарегистрированном браке = 2, ОФИЦИАЛЬНО ЗАРЕГИСТРИРОВАНЫ, НО ВМЕСТЕ НЕ
ПРОЖИВАЮТ = 6
data2\$\wed1[\which(\data2\$m \marst == '2') | \which(\data2\$m \marst == '6')] = 1
#Обнуляем новый стобец
data2["wed2"] = data2$m_marst
data2["wed2"] = 0
#разведен, в браке не состоит = 4, вдовец(вдова) = 5
data2\$wed2[which(data2\$m_marst == '4')] = 1
data2\$wed2[which(data2\$m_marst == '5')] = 1
#Обнуляем новый стобец
data2["wed3"] = data2$m_marst
data2["wed3"] = 0
#Никогда в браке не состояли = 1
data2\$wed3[which(data2\$m_marst == '1')] = 1
```

```
#Из параметра пол сделаем переменную sex, имеющую значение 1 для мужчин и равную 0 для женщин
data2["sex"] = data2$mh5
data2$sex[which(data2$sex == '1')] = 1
data2$sex[which(data2$sex == '2')] = 0
# Из параметра, отвечающего типу населённого пункта, создайте одну дамми-переменную city status
# со значением 1 для города или областного центра, 0 – в противоположном случае.
data2["city status"] = data2$status
data2["city status"] = 0
data2$city_status[which(data2$status == '1')] = 1
data2$city status[which(data2$status == '2')] = 1
#Введите один параметр higher educ, характеризующий наличие полного высшего образования
data2["higher_educ"] = data2$m_educ
data2["higher\_educ"] = 0
#есть полное высшее образование
data2$higher_educ[which(data2$m_educ == '21')] = 1
data2$higher_educ[which(data2$m_educ == '22')] = 1
data2$higher_educ[which(data2$m_educ == '23')] = 1
data2$wed1 = as.numeric(data2$wed1)
data2\$wed2 = as.numeric(data2\$wed2)
data2$wed3 = as.numeric(data2$wed3)
data2\$sex = as.numeric(data2\$sex)
data2$city_status = as.numeric(data2$city_status)
data2$higher_educ = as.numeric(data2$higher_educ)
#Факторные переменные, «имеющие много значений», такие как: зарплата, длительность рабочей недели и
возраст,
#- необходимо преобразовать в вещественные переменные и нормализовать их:
# вычесть среднее значение по этой переменной, разделить её значения на стандартное отклонение.
#Зарплата
data2["salary"] = data2$mj13.2
data2$salary = as.numeric(data2$salary)
data2["salary"] = (data2["salary"] - mean(data2$salary)) / sqrt(var(data2$salary))
#длительность рабочей недели
data2["week_len"] = data2$mj6.2
data2$week len = as.numeric(data2$week len)
data2["week_len"] = (data2["week_len"] - mean(data2$week_len)) / sqrt(var(data2$week_len))
#возраст
```

```
data2["age"] = data2$m age
data2\$age = as.numeric(data2\$age)
data2["age"] = (data2["age"] - mean(data2\$age)) / sqrt(var(data2\$age))
#Соберем подготовленные данные
data3 = select(data2, salary, sex, wed1, wed2, wed3, higher educ, age, status, week len)
glimpse(data3)
#1 Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из данных
мониторинга.
#Не забудьте оценить коэффициент вздутия дисперсии VIF.
#Построю модель зависимости зарплаты от других вакторов
model1 = lm(salary ~ sex + wed1 + wed2 + wed3 + higher educ + age + status + week len, data3)
summary(model1)
#все регрессоры, кроме wed1 и wed2, хорошо описывают даные(по 3 - *)
#Строю модель без wed1 и wed2
model2 = lm(salary \sim sex + wed3 + higher educ + age + status + week len, data3)
vif(model2)
#уровень мультиколлиниарности низкий
summary(model2)
#2 Поэкспериментируйте с функциями вещественных параметров: используйте логарифм и степени (хотя бы
от 0.1 до 2 с шагом 0.1)
describe(data3)
#для логорифмирование необходимо, чтобы значения были > 0
data3["salary"] = data3["salary"] + 1.2
data3["age"] = data3["age"] + 2.1
data3["week_len"] = data3["week_len"] + 3.3
#Строим модель с логарифмами
model3 = lm(salary ~ sex + wed3 + higher_educ + log(age) + status + log(week_len), data3)
summary(model3)
#Все регрессоры имеют высокое значеие в модели
#Попробую использовать комбинации регрессоров для построения модели
model4 = lm(salary ~ sex + wed3 + higher_educ + age + status + week_len + I(age * week_len) + I(age^2) +
I(week len^2), data3)
summary(model4)
#комбинации с week len и wed3 имеют низкий приоритет, исключаем их
model5 = lm(salary \sim sex + higher_educ + age + status + week_len + I(age^2), data3)
summary(model5)
```

```
#После исключения комбинации с week len ничего не изменилась, как и прежде показатели модели
относительно хороши
#Построю модель на комбинациях логарифмов регрессоров
model6 = lm(salary \sim sex + higher_educ + log(age) + status + log(week_len) + I(log(age) * log(week_len)) +
I(log(age)^2) + I(log(week_len)^2),data3)
summary(model6)
#Теперь снизились показатели модели, а так же влияние комбинации с log(age) и I(log(age) * log(week_len))
построим модель без них
model7 = lm(salary \sim sex + higher\_educ + status + log(week\_len) + I(log(age)^2) + I(log(week\_len)^2), data3)
summary(model7)
#Показатели модели незначительно повысились
#Построим модель с квадратами логарифмов
model8 = lm(salary \sim sex + higher\_educ + age + log(age^2)
    + status + week_len + log(week_len^2), data3)
summary(model8)
#Качество модели относительно высокое, однако значимость регрессора log(week len^2) не высока
#3 Выделите наилучшие модели из построенных: по значимости параметров, включённых в зависимости, и по
объяснённому с помощью построенных зависимостей разбросу adjusted R^2 - R^2.adj.
#1)model5: R^2=0.2011,(значимость параметров – максимальная ***)
#2)model7: R^2=0.1861,(значимость параметров – максимальная ***)
#3)model8: R^2=0.1985, (значимость параметров – максимальная ***)
# В итоге лучшая по показателям model5
#4 Сделайте вывод о том, какие индивиды получают наибольшую зарплату
#4 Сделайте вывод о том, какие индивиды получают наибольшую зарплату
summary(model2)
#Вывод:наибольшую зарплату получает мужчина (estimate: sex > 0), с высшим образованием (estimate:
higher_educ > 0,
#преимущественно женатый (estimate: wed3 < 0), однако этот показатель не вносит наибольший вклад,
#этот мужчина примерно средних лет (estimate: age \sim 0), тем не менее обычно это не городской житель
(estimate: status < 0),
#что очень странно, т.к. в реальной ситуации у городского жителя преимущественно большая зарплата.
#Так же у него наблюдаются переработки (estimate: duration > 0). В целом, в модели присутствуют некоторые
неточности.
#но схожести с реальностью присутствуют.
#5 1) Городские жители, не состоявшие в браке; 2) разведенные женщины, без высшего образования
#1)Данная группа индивидов теряет в зарплате из-за того, что это городские жители (status < 0) да и ещё
несостоявшие в браке (wed3 < 0),
```

#в итоге у данной группы индивидов зарплата ниже среднего

#2)Эта группа индивидов получает относительно низкую з/п из-за отсутствия высшего образования, а регрессия по зарплате говорит о том,

#что высшее образование играет значительную роль в ее размере, также зарплата снижается из-за женского пола(estimate: sex > 0),

#то что они разведены, оказывает минимальное значение на их зарплату по модели m (wed2 \sim 0)

Код номера 3

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data2 =
pd.read_csv('C:/Users/AmaZZinG/Desktop/practice/train.csv',usecols=['MachineIdentifier','CountryIdentifier','AVPro
ductStatesIdentifier','OrganizationIdentifier','Census_ProcessorCoreCount','HasDetections','Census_TotalPhysicalRA
M'], nrows = 1000)
print("data2.shape=",data2.shape)
data2.info()
np.sum(pd.isnull(data2))
data2.dropna(inplace=True)
data2.info()
plt.figure(figsize=(20,16))
plt.scatter(data2.CountryIdentifier, data2.OrganizationIdentifier, s=9, c=data2.AVProductStatesIdentifier, cmap =
'seismic')
plt.colorbar()
plt.xlabel('CountryIdentifier')
plt.ylabel('OrganizationIdentifier')
def maxstd(data2):
  max = 0
  max_name = str()
  for i in data3.columns:
    num = (data2[i] - data2[i].mean()) / data2[i].std()
    data2[i] = num
    if max < num.mean():
      max name, max = i, num.mean()
  return max name
```

```
maxstd(data2)
target = data2.HasDetections
train = data2
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size = 0.3, random_state = 42)
N_train, _ = X_train.shape
N_test, _ = X_test.shape
print (N_train, N_test)
from sklearn.decomposition import PCA
%matplotlib inline
import matplotlib.pyplot as plt
pca = PCA()
pca.fit(X_train)
X_pca = pca.transform(X_train)
for i, component in enumerate(pca.components_):
print("{} component: {}% of initial variance".format(i + 1,
   round(100 * pca.explained_variance_ratio_[i], 2)))
print(" + ".join("%.3f x %s" % (value, name)
          for value, name in zip(component,train.columns)))
plt.figure(figsize=(10,7))
plt.plot(np.cumsum(pca.explained_variance_ratio_), color='k', lw=2)
plt.axhline(0.9, c='r')
plt.axvline(1, c='b')
```