Rango de r

Dayan Bravo Fraga

Abril 2023

1 Interrogante

 \mathcal{E} Cuál es el rango de r en la transformación de Hough para rectas?

2 Desmotración

Tenemos la siguiente ecuación:

$$r = x\cos(\theta) + y\sin(\theta) \tag{1}$$

El dominio de θ es:

$$\theta \in [0, \pi] \tag{2}$$

Si tenemos que m y n son el ancho y alto de la imagen respectivamente (cantidad de pixeles), entonces:

$$x \in \mathbb{N}, 1 \le x \le m - 1, m > 0 \tag{3}$$

$$y \in \mathbb{N}, 1 \le y \le n - 1, n > 0 \tag{4}$$

Ahora graficaremos las funciones $\cos(\theta)$ y $\sin(\theta)$ para $\theta \in [0, \pi]$:

De las gráficas podemos deducir que, si sumamos ambas funciones $(\cos(\theta)$ y $\sin(\theta))$:

- El valor máximo es en $0 < \theta < \pi/2$
- El valor mínimo es en $\theta = \pi$

Ahora graficaremos la Función $r=x\cos(\theta)+y\sin(\theta),$ en $\theta\in[0,\pi],$ para x=1 y y=1:

Como podemos observar, se confirma lo que habíamos deducido anteriormente.

2.1 Valor mínimo de r

En caso del valor mínimo de r, se da cuando $\theta=\pi,$ entonces, si sustituimos en la ecuación $\ref{eq:total_state}$:

$$r = x\cos(\pi) + y\sin(\pi)$$
$$r = x\cos(\pi)^{-1} + y\sin(\pi)^{0}$$
$$r = -r$$

Como $x \in [0, m-1]$, entonces $-x \in [-m+1, 0]$. Entonces, el valor mínimo de r es -m+1.

2.2 Valor máximo de r

Para calcular el valor máximo de r vamos a derivar la ecuación $\ref{eq:constraint}$, para x=1 y y=1:

$$r = \cos(\theta) + \sin(\theta)$$
$$\frac{dr}{d\theta} = -\sin(\theta) + \cos(\theta)$$

Podemos graficar esta nueva funcion para analizar su comportamiento:

Debemos calcular el *cero* de la función, para ello, igualamos a cero la derivada:

$$-\sin(\theta) + \cos(\theta) = 0$$
$$\sin(\theta) = \cos(\theta)$$
$$\frac{\sin(\theta)}{\cos(\theta)} = 1$$
$$\tan(\theta) = 1$$
$$\theta = \frac{\pi}{4}$$

Ahora podemos sustituir $\theta = \frac{\pi}{4}$ en la ecuación ??:

$$r = x\cos(\frac{\pi}{4}) + y\sin(\frac{\pi}{4})$$
$$r = \frac{x\sqrt{2}}{2} + \frac{y\sqrt{2}}{2}$$
$$r = \frac{\sqrt{2}}{2}(x+y)$$

Lamentablemente este no es el valor máximo absoluto de r, es el valor máximo de r cuando x=1 y y=1, aunque se podría generalizar a cuando x=y.

Como es una suma de funciones, su valor máximo pudiera ser estimado con los valores máximos de cada función.

$$r = x\cos(\theta) + y\sin(\theta)$$
$$r = x\cos(\theta)^{1} + y\sin(\theta)^{1}$$
$$r = x + y$$

Note que r siempre será menor que este valor, ya que no existe ningún valor de θ que haga que $\cos(\theta)$ y $\sin(\theta)$ sean 1 al mismo tiempo.

Como $x \in [0, m-1]$ y $y \in [0, n-1]$, entonces $x+y \in [0, m+n-2]$. Entonces, el valor máximo de r es m+n-2.

Nota:

Si la x es muy grande con respecto a y, el valor máximo de r se acercará a x, por el ángulo 0, donde el $\cos(\theta)=1$

De forma similar, si y es muy grande con respecto a x, el valor máximo de r se acercará a y, por el ángulo $\pi/2$, donde el $\sin(\theta)=1$

2.3 Rango de r

El rango de r es $r \in [-m+1, m+n-2)$.