DATA605: Fundamentals of Computational Mathematics

Assignment 7

Donald Butler

03/12/2022

Problem 1.

Let X_1, X_2, \ldots, X_n be n mutually independent random variables, each of which is uniformly distributed on the integers from 1 to k. Let Y denote the minimum of the X_i s. Find the distribution of Y.

The distribution of Y is discrete on the interval [1, k] and can be calculated by finding the probability that the minimum value of the X_i s each value. There are k^n ways of selecting the X_i values. For $1 \le j \le k$, the number of ways that each X_i can be selected so that the minimum value is j, is the number of ways that $X_i \ge j$ minus the ways that $X_i \ge j$. So, the distribution of Y is:

$$\frac{(k-j+1)^n - (k-j)^n}{k^n}, 1 \le j \le k$$

Problem 2.

[1] 9.486833

Your organization owns a copier (future lawyers, etc.) or MRI (future doctors). This machine has a manufacturer's expected lifetime of 10 years. This means that we expect one failure every ten years.

Part a. (geometric)

What is the probability that the machine will fail after 8 years?

```
p <- .1
(prob_fail_after_8 <- (1-p)^8)

## [1] 0.4304672

(ev <- 1/p)

## [1] 10

(sd <- sqrt((1-p)/p^2))</pre>
```

Part b. (exponential)

What is the probability that the machine will fail after 8 years?

```
p <- .1
(prob_fail_after_8 <- 1 - pexp(8,p))

## [1] 0.449329

(ev <- 1/p)

## [1] 10

(sd <- sqrt(1/p^2))

## [1] 10</pre>
```

Part c. (binomial)

What is the probability that the machine will fail after 8 years?

```
p <- .1
(prob_fail_after_8 <- dbinom(0,8,p))

## [1] 0.4304672

(ev <- 8 * p)

## [1] 0.8

(sd <- sqrt(8 * p * (1-p)))</pre>
```

[1] 0.8485281

Part d. (poisson)

What is the probability that the machine will fail after 8 years?

```
p <- .1
(prob_fail_after_8 <- dpois(0,8 * p))</pre>
```

```
## [1] 0.449329
```

```
(ev <- 8 * p)
## [1] 0.8
(sd <- sqrt(8 * p))</pre>
```

[1] 0.8944272