The 'simsem' Package Manual

Beta version 0.2-1

Sunthud Pornprasertmanit Patrick Miller Alex Schoemann

Center for Research Methods and Data Analysis, University of Kansas

Contents

Introduction	2
Installing simsem package	2
Example 1: Getting Started	2
Example 2: Covariance Matrix Specification	10
Example 3: Model Misspecification	12
Example 4: Random Parameters	17
Example 5: Equality Constraint	21
Example 6: Power Analysis in Model Evaluation	27
Example 7: Missing Data Handling	31
Example 8: Planned Missing Design	36
Example 9: Nonnormal Distribution	38
Example 10: Nonnormal Factor Distribution	43
Example 11: Single Indicator	47
Example 12: Missing at Random and Auxiliary Variable	51
Example 13: Analyzing Real Data	56
Example 14: Analyzing Real Data with Multiple Imputation	60
Example 15: Modeling a Covariate	64
Example 16: Select a set of variables for analysis	71
Example 17: Simulation with Varying Sample Size	79
Example 18: Simulation with Varying Sample Size and Percent Missing	81
Example 19: Simulation with Varying Sample Size and Parameters	85
Summary of Model Specification	88
Accessing Help Files	88
List of Distribution Objects	89
Public Objects	90
Symbols of Matrices	91
Fit Indices Details	92
Give Us Feedback	Q/

Latest Updated: May 28, 2012

Introduction

This R package has been developed for facilitating analysts to simulate and analyze data within a structural equation modeling (SEM) framework. *simsem* aims to help analysts create simulated data based on hypothesized relationships or analytic results from obtained data. The simulated data can be used for different purposes, such as power analysis, model fit evaluation, and methodological investigations. The highlights of the current version are:

- 1. Building simulated sampling distributions for fit indices. This package will help researchers tailor their fit indices cutoffs based on a priori alpha level and a priori definition of trivial model misspecification. In other words, this package will help researchers simulate data based on their actual model with defined trivial model misspecification. Then, the fit indices from the simulated data can be used to create empirical sampling distributions and find fit indices cutoffs based on these sampling distributions. The parameters used for data generation can be specified manually or obtained from the results of data analysis. If the actual parameters are obtained from the results of data analysis, this approach is also known as the parametric bootstrap or Monte Carlo approach. The Bollen-Stine bootstrap approach for data generation is also available, as well as creating nonnormal distribution by Gaussian copula.
- 2. **Power analysis.** This package will help analysts find power of both parameter estimates and model evaluation. This package can find the power by accounting for missing data. The missing data imposed into the simulated data can be 1) missing completely at random, 2) missing at random, 3) missing not at random, and 4) planned missing data (n-form design or two-method design), 5) attrition. Sample size and percent missing can be varied continuously across replication and a power plot given values of sample size or percent missing can be created.

Installing simsem package

Install the simsem package by typing this line in R:

install.packages("simsem")

Windows users may click Packages → Install Packages on the menu bar, choose a desired repository and choose simsem).

After installing the package, in an open R session, load the package the package:

library(simsem)

Example 1: Getting Started

Model Description

The first example is confirmatory factor analysis (CFA) model with two factors and three indicators each. Factor loadings are .7. Error variances are .51 to make the indicator variances equal to 1. The factor correlation is .5.

When using simsem, users specify models in a LISREL matrix format. To specify a CFA model, three matrices are required: the factor loading, error covariance, and factor covariance matrices. This package has two options to specify error covariance and factor covariance matrices. First, similar to the LISREL format, matrices can represent covariance matrices. Second, unlike LISREL, covariance matrices can be separated into a correlation matrix and a variance vector. The second option is a useful feature in this package such that standardized parameter values can be directly specified in the code. The second option will be introduced first in this example. Then, the option for specifying the covariance matrix will be introduced in the second example.

Syntax

When creating matrices for data generation and analysis, *simsem* will create a matrix object. Matrix objects have two components: free/fixed parameters and popultation parameter/starting values. In the free/fixed parameters part, the elements of the matrix can be divided into two types: NA and numbers. NA means that the element is freely estimated in the model. Numbers means that the element is fixed as a specified number, usually as 0. For example, with fixed factor method for scaling identification, factor loading matrix parameters will be NA in elements (1,1), (2,1), (3,1), (4,2), (5,2), and (6,2) (these are the estimated factor loadings). Other elements in the matrix are 0. This can be scripted in R as:

```
loading <- matrix(0, 6, 2) #create a matrix of all 0s loading[1:3, 1] <- NA #specify free paramters with NA loading[4:6, 2] <- NA
```

The second part of the matix object is a marix of population parameter values (for data generation) or starting values (for data analysis) of the free parameters. In data simulation, these population parameters will be used as the data generation model. The elements of this matix can be a number that provides the same population value across replications or a distribution object for a random parameter (which will be clarified in the third example). In this example, all population

parameters/starting values of the factor loading matrix are 0.7. Thus, a new matrix with 6 rows and 2 columns is created and the (1,1), (2,1), (3,1), (4,2), (5,2), and (6,2) elements are specified as 0.7 (the factor loadings). The R script is

```
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
```

Next, combine two parts to create the factor loading matrix object by the simMatrix command:

```
LX <- simMatrix(loading, loadingValues)
```

If the parameter/starting values of a matrix are the same for all parameters, instead of specifying as a matrix, one parameter/starting value can be put in the simMatrix command:

```
LX <- simMatrix(loading, 0.7)
```

Alternatively, users can simply specify a matrix of parameter values. In this case, all population parameters with values of 0 or 1 are assumed to be fixed parameters in the model and all population parameters with values other than 0 and 1 are assumed to be fixed parameters:

```
LX <- simMatrix(value=loadingValues)
```

Users can view all specifications in a matrix object by using the summary function by:

```
summary(LX)
```

In the population parameters/starting values portion, if an element is not free, the population parameters/starting value will be automatically set as blanks.

As explained above, the covariance matrix can be separated into two parts: a vector of error variances (or indicator variances) and error correlations. By default, indicator variances (as well as factor variances, which will be described later) are set to 1. Thus, the factor loading can be interpreted as standardized factor loadings. The error variances by default are free parameters. From this example, the error variances are .51, which implies that indicator variances are 1 (i.e., $.7 \times 1 \times .7 + .51$). Therefore, we will not set any error variances (or any indicator variances) and use the program default by skipping the error-variance specification and set only error correlations. There are no error correlations in this example; therefore, the error correlation matrix is set to be an identity matrix without any free parameters:

```
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
```

Because there are no free parameters in the error correlation matrix, parameter/starting values are not applicable. Next, make the error correlation matrix a symmetric matrix object by using the symMatrix function:

```
RTD <- symMatrix(error.cor)
```

The symMatrix command is similar to the simMatrix command. The main difference is that symMatrix limits users control over free parameters and constants such that the elements above and below the diagonal line are the same (i.e., symmetric). The population parameter/starting values are not required with the symMatrix command (as well as with simMatrix) so there is only one attribute of the free parameters in this function.

The last matrix is the factor covariance matrix. Again, the factor covariance matrix can be separated into two parts: a vector of factor variances (or factor residual variances) and a matrix of factor correlation (or factor residual correlation). The default in this program is that the factor variances are constrained to be 1. All exogenous and endogenous factor variances are fixed parameters (i.e., fixed factor method of scale identification). Therefore, the only thing we need to specify is the factor correlation. For all correlation matrices, the diagonal elements are 1. In this model, we allow the only one element of factor correlation to be freely estimated and have the parameter/starting value of 0.5. Thus, latent correlation matrix is specified as:

```
latent.cor <- matrix(NA, 2, 2) #specify a 2x2 matrix of NAs diag(latent.cor) <- 1 #set the diagonal of the matrix to 1
```

The symmetric matrix object is created for this factor correlation by

```
RPH <- symMatrix(latent.cor, 0.5) \#Defaults to making all NA values in the matrix .5
```

At this point, all required matrices for CFA are specified. The next step is to create an object containing the set of matrices (the factor loading matrix, the factor correlation matrix, and the error correlation matrix). This example uses CFA; therefore, the simSetCFA function will be used. The R script will be:

```
CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
```

Similar to the LISREL notation, LX means the factor loading matrix, RPH means the factor correlation matrix, and RTD means the error correlation matrix. You may notice that RPH and RTD begin with 'R' to be indicated as correlation matrices. This step will apply all defaults of this package, in this case: free error variances and to fix factor variances to 1. This default can be seen by the summary function:

```
summary(CFA.Model)
```

The summary function will show all parameters/starting values in the models, including all defaults. You may notice that all *X*-side in LISREL notation are changed to the *Y*-side notation automatically. The simSetCFA can be specified as the *Y*-side also as

```
CFA.Model <- simSetCFA(LY = LX, RPS = RPH, RTE = RTD)
```

This set of all CFA matrices will be used to create a data-generation object (a data object) and an analysis-model object (a model object) in order to create a set of simulated data and analyze the set of

simulated data later. The data and model objects do not need to have the same set of matrices (e.g., data can be generated with a CFA and analyzed with an SEM). However, in this example, we will use the same set of matrices, the CFA model with two factors with three indicators each without any additional constraints, in both data generation (the data object) and analysis of simulated data (the model object). Before simulating and analyzing data the data and model object must be created.

First, the data object is specified with the simData function:

```
SimData <- simData(CFA.Model, 200)
```

The first argument is the matrix set (the simsetCFA object). The second argument is a desired sample size, which is 200 in this example. You can see the specification of the data object by the summary function as well. From this, you are ready to simulate data by using the run command:

```
run(SimData) #This will print a single simulated data set to the screen
```

To save a single simulated dataset:

```
Sample <- run(SimData)
```

Next, the model object is specified with the simModel function:

```
SimModel <- simModel(CFA.Model)</pre>
```

In the future, models will be fit with various SEM packages. Currently, the model can be only fit with the lavaan package, which is the default of this program. You may see the specification of this model object with the summary function also. You may run the saved data with this model object by the run function:

```
out <- run(SimModel, Sample) #where sample is a saved dataset to be fit
```

Results can be summarized with:

```
summary(out)
```

The simulated data was analyzed by the specified CFA model. All fit indices, parameter estimates, standard errors, and Wald statistics will be printed to the screen. Finally, we need to use the data object and the model object to create many simulated data sets and analyze each one. The result object is used to run a simulation. We can create the result object by the simResult function:

```
Output <- simResult(1000, SimData, SimModel)
```

The first attribute is the number of replications. The second attribute is the data object (population parameters) to be used. The third attribute is the model object (analysis model specification) to be used. After submitting this command, the program will simulate 1000 datasets and analyze each of the datasets by the specified model. The result object contains all information from each replication in the simulation

and can be used to find Simulated Sampling Distributions for fit indices (SSDs), or summarize results from the simulation.

The result object contains all fit indices values that are ready for creating the SSD. You can find a fit indices cutoff based on the percentile point of the SSD. For example, we wish to find the 95th percentile (alpha level = .05). The getCutoff function can be used:

```
getCutoff(Output, 0.05)
```

The first argument is the result object. The second argument is the alpha level. You can see the SSD with the cutoffs in a set of figures:

```
plotCutoff(Output, 0.05)
```

The result object is set in a specific seed number. Therefore, the SSD is expected to be the same. The seed number could be changed by adding the seed argument in the simResult function:

```
Output <- simResult(1000, SimData, SimModel, seed=751785)
```

If users who have a computer with multiple processors, this package can ask R to run with multiple processors by setting the multiple processors by setting the multiple processors.

```
Output <- simResult(1000, SimData, SimModel, multicore=TRUE)
```

The default is to use the maximum numbers of the processors in the machine. The users can specify their desired number of processors by adding the numProc argument:

```
Output <- simResult(1000, SimData, SimModel, multicore=TRUE, numProc=2)
```

The summary of the result object contains common results of interest from the simulation:

```
summary(Output)
```

The summary on the screen has mainly two sections: the fit indices cutoffs based on each alpha level and the summary of parameter estimates and standard errors. For the cutoffs, note that the larger the alpha level, the more lenient the cutoffs are. For the parameter estimates and the standard errors, there are seven columns provided:

- 1) Estimate. Average: Average of parameter estimates
- 2) Estimate.SD: Standard deviation of parameter estimates (the empirical standard errors)
- 3) Average . SE: Average of standard errors of each parameter estimate
- 4) Power: The proportion of significant parameter estimates
- 5) Average. Param: Population parameter values underlying simulated data
- 6) Average Bias: Average relative bias of parameter estimates (relative bias = (population parameter average parameter estimate)/ population parameter

7) Coverage: Proportion replication with confidence intervals containing the population parameter values.

Note that columns 5-7 are not provided if users provide a list of data frames instead of data object in the simResult function (providing simulated data instead of a SimData object). Also, those values in columns 5-7 have different meanings when parameters are treated as random, which are shown in the Example 4.

If users want the parameter estimates and the standard errors of all replications only, the summaryParam function can be used:

```
summaryParam(Output)
```

Users can round the number in the summaryParam function:

```
round(summaryParam(Output), 3)
```

Syntax Summary

The summary of the whole script in this example is

```
library(simsem)
2
3
      loading <- matrix(0, 6, 2)</pre>
      loading[1:3, 1] <- NA
4
5
      loading[4:6, 2] <- NA
6
      LX <- simMatrix(loading, 0.7)
7
8
      latent.cor <- matrix(NA, 2, 2)</pre>
9
      diag(latent.cor) <- 1</pre>
10
     RPH <- symMatrix(latent.cor, 0.5)
11
12
      error.cor <- matrix(0, 6, 6)
      diag(error.cor) <- 1</pre>
1.3
14
      RTD <- symMatrix(error.cor)
15
      CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
16
      SimData <- simData(CFA.Model, 200)
17
      SimModel <- simModel(CFA.Model)</pre>
18
19
      Output <- simResult(1000, SimData, SimModel)
20
      getCutoff(Output, 0.05)
21
     plotCutoff(Output, 0.05)
22
      summaryParam(Output)
```

Remarks

1) Users may want to explicitly specify the error variances and the factor variances. This can be done by changing Lines 15-16 to:

```
error.var <- rep(NA, 6)
VTD <- simVector(error.var, 0.51)

factor.var <- rep(1, 2)
VPH <- simVector(factor.var)

CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, VTD = VTD, VPH = VPH)</pre>
```

where VTD (or VTE) is the vector of the error variance and VPH (or VPS) is the vector of the factor variance

2) Users may want to include the indicators intercepts or the factor intercepts (or means) by changing Lines 15-16 to

```
intercept <- rep(NA, 6)
TX <- simVector(intercept, 0)

factor.mean <- rep(0, 2)
KA <- simVector(factor.mean)

CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, TX = TX, KA = KA)</pre>
```

where TX (or TY) is the vector of the indicator intercepts and KA (or AL) is the vector of the factor intercepts

3) simsem can directly specify the indicator variances (instead of the error variances) by

```
indicator.var <- rep(NA, 6)
VX <- simVector(indicator.var, 1)

CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, VX = VX)</pre>
```

where VX (or VY) is the vector of the indicator variances. You cannot specify the error variances of indicators and the overall indicators variances at the same time.

4) simsem can directly specify indicator means (instead of measurement intercepts) by

```
indicator.mean <- rep(NA, 6)
MX <- simVector(indicator.mean, 0)

CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, MX = MX)</pre>
```

where MX (or MY) is the vector of indicator means. Users cannot specify indicator intercepts and the overall indicators means at the same time.

5) In the summaryParam function, relative bias, standardized bias, and relative bias in standard errors can be calculated by set detail as TRUE.

```
summaryParam(Output, detail=TRUE)
```

Details of how they are calculated are available in help file of the summaryParam function:

```
?summaryParam
```

Functions Review

Functions	Usage
simMatrix	Create matrix object
symMatrix	Create symmetric matrix object
simSetCFA	Create set of matrices for CFA
simData	Create data template in order to simulate data

simModel	Create analysis model	
run	Run all objects in the simsem package	
summary	Summarize all objects in the simsem package	
simResult	Create result of simulation	
getCutoff	Get the fit indices cutoff with a priori alpha level	
plotCutoff	Plot the sampling distribution of fit indices	
summaryParam	Summary parameter estimates and standard errors	

Example 2: Covariance Matrix Specification

Model Description

This example is also a confirmatory factor analysis (CFA) model with three factors and three indicators each. All parameter estimates listed here are similar to the values obtained from the classic Holzinger and Swineford (1939) example (for further details see the lavaan package). All parameter estimates are provided in the Figure below.

The fixed factor method of scale identification is used in this example such that the first loading of each factor is fixed as 1. All factor variances are free.

Syntax

The factor loading is specified:

```
loading <- matrix(0, 9, 3)
loading[1:3, 1] <- c(1, NA, NA)
loading[4:6, 2] <- c(1, NA, NA)
loading[7:9, 3] <- c(1, NA, NA)
loadingVal <- matrix(0, 9, 3)
loadingVal[2:3, 1] <- c(0.6, 0.7)
loadingVal[5:6, 2] <- c(1.1, 0.9)
loadingVal[8:9, 3] <- c(1.2, 1.1)
LY <- simMatrix(loading, loadingVal)</pre>
```

The parameters of the first indicator of each factor are fixed to 1. The other nonzero loadings are free. The factor covariance is specified:

```
facCov <- matrix(NA, 3, 3)
facCovVal <- diag(c(0.8, 0.9, 0.4))
facCovVal[lower.tri(facCovVal)] <- c(0.4, 0.2, 0.3)
facCovVal[upper.tri(facCovVal)] <- c(0.4, 0.2, 0.3)
PS <- symMatrix(facCov, facCovVal)</pre>
```

All parameters in the factor covariance object are free. The diag function takes a vector and it will create a diagonal matrix with the specified vector as the diagonal elements. The lower.tri and upper.tri functions are used to extract the elements below and above diagonal line of a matrix, respectively. Finally, the error covariance matrix is specified:

```
errorCov <- diag(NA, 9)
errorCovVal <- diag(c(0.5, 1.1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.5, 0.6))
TE <- symMatrix(errorCov, errorCovVal)
```

The diagonal elements of the error covariance are free, indicating that the error variances are estimated. Those three matrices can be combined together to represent the Holzinger and Swineford (1939) example:

```
HS.Model <- simSetCFA(LY=LY, PS=PS, TE=TE)
```

The data object, model object, and the result object is specified:

```
SimData <- simData(HS.Model, 200)
SimModel <- simModel(HS.Model)
Output <- simResult(200, SimData, SimModel)
```

The result object can be examined:

```
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summary(Output)
```

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
3
      loading \leftarrow matrix(0, 9, 3)
4
      loading[1:3, 1] <- c(1, NA, NA)
      loading[4:6, 2] <- c(1, NA, NA)
5
6
      loading[7:9, 3] <- c(1, NA, NA)
7
      loadingVal <- matrix(0, 9, 3)</pre>
8
      loadingVal[2:3, 1] <- c(0.6, 0.7)
      loadingVal[5:6, 2] <- c(1.1, 0.9)
9
10
      loadingVal[8:9, 3] <- c(1.2, 1.1)
11
      LY <- simMatrix(loading, loadingVal)
12
13
      facCov <- matrix(NA, 3, 3)</pre>
      facCovVal < - diag(c(0.8, 0.9, 0.4))
14
15
      facCovVal[lower.tri(facCovVal)] <- c(0.4, 0.2, 0.3)</pre>
      facCovVal[upper.tri(facCovVal)] <- c(0.4, 0.2, 0.3)</pre>
16
17
      PS <- symMatrix(facCov, facCovVal)
18
      errorCov <- diag(NA, 9)
19
      errorCovVal < - diag(c(0.5, 1.1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.5, 0.6))
2.0
      TE <- symMatrix(errorCov, errorCovVal)</pre>
2.1
22
23
      HS.Model <- simSetCFA(LY=LY, PS=PS, TE=TE)
24
25
      SimData <- simData(HS.Model, 200)
      SimModel <- simModel(HS.Model)</pre>
26
27
      Output <- simResult(200, SimData, SimModel)
      getCutoff(Output, 0.05)
28
29
      plotCutoff(Output, 0.05)
30
      summaryParam(Output)
```

Remarks

1) The factor means and measurement intercepts can be also specified by changing Lines 22-23 to

```
AL <- simVector(rep(NA, 3), 0)

TY <- simVector(c(0, NA, NA, 0, NA, NA, 0, NA, NA), 0)

HS.Model <- simSetCFA(LY=LY, PS=PS, TE=TE, AL=AL, TY=TY)
```

Users may input the observed values of factor means and measurement intercepts by entering them in the second argument of the simVector function.

Example 3: Model Misspecification

Model Description

In this example, we will focus on a special kind of CFA: a growth curve model. The growth curve model in this example specifies two factors as and intercept and slope. The factor loadings of the intercept factor are all fixed to 1. The factor loadings of the slope factor are fixed to 0, 1, 2, and 3, representing linear change across time. In the population model, the intercept factor has a mean of 5 and a variance of 1. The slope factor has a mean of 1 and a variance of 0.25. All error variances are 1.2.

In this model, we will add a trivial misspecification. In other words, we will specify a model such that the specified model is a good (but not perfect) approximation of the desired population. For example, the changes in the population model may not exactly follow a linear trend but the specification as a linear trend is still a good approximation of the population model. As shown in the Figure shown below, we will add a minor model misspecification that the factor loadings from the slope factor to the indicators

representing Time 2 and 3 deviated from 1 and 2 by ± 0.1 . For example, (0, 0.9, 2.05, 3) or (0, 1.05, 1.94, 3) are the examples of the population model which is well approximated by (0, 1, 2, 3).

Syntax

The factor loading matrix is specified:

```
factor.loading <- matrix(NA, 4, 2)
factor.loading[,1] <- 1
factor.loading[,2] <- 0:3
LY <- simMatrix(factor.loading)</pre>
```

The factor variance vector is specified:

```
factor.var <- rep(NA, 2)
factor.var.starting <- c(1, 0.25)
VPS <- simVector(factor.var, factor.var.starting)</pre>
```

The factor correlation matrix is specified:

```
factor.cor <- matrix(NA, 2, 2)
diag(factor.cor) <- 1
RPS <- symMatrix(factor.cor, 0.5)</pre>
```

The factor mean vector is specified:

```
factor.mean <- rep(NA, 2)
factor.mean.starting <- c(5, 1)
AL <- simVector(factor.mean, factor.mean.starting)</pre>
```

The error variance vector is specified (with the rep function put directly in the argument of a function.):

```
VTE <- simVector(rep(NA, 4), 1.2)
```

Next, the error correlation matrix is specified:

```
RTE <- symMatrix(diag(4))
```

The diag function creates an identity matrix. The attribute of the diag function means the number of row and columns in the identity matrix.

Finally, the indicator intercepts vector is specified:

```
TY <- simVector(rep(0, 4))
```

The CFA object that represents the growth curve model is specified:

```
LCA.Model <- simSetCFA(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY)
```

where LY is the factor loading matrix, RPS is the factor correlation matrix, RTE is the error correlation matrix, VPS is the factor variance vector, VTE is the error variance vector, AL is the factor mean vector, and TY is the measurement intercept vector.

As the previous example, the data, model, and result objects are specified:

```
Data.True <- simData(LCA.Model, 300)
SimModel <- simModel(LCA.Model)
Output <- simResult(1000, Data.True, SimModel)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summaryParam(Output)
```

This example uses a sample size of 300 and 1000 replications. The next step is to add trivial misspecification. That is, the factor loadings from the slope factor to the indicators representing Times 2 and 3 vary ± 0.1 . Thus, we need to make an object representing the variation. This object is called a distribution object. For this example, the uniform distribution with lower bound of -0.1 and upper bound of 0.1 is needed. This is specified by the simUnif function:

```
u1 <- simUnif(-0.1, 0.1)
```

The first attribute is the lower bound and the second attribute is the upper bound. Other distributions are available, such as a normal distribution (with the simNorm function). We can use this object to sample a random number from this uniform distribution by the run function:

```
run(u1)
```

We can also use summary function to see the specification of this object. We may plot the distribution object by the plotDist function:

```
plotDist(u1)
```

Next, we need to apply the distribution object to the desired parameters in the model. We need to apply the uniform distribution object to the factor loadings from the slope factor to the indicators representing Times 2 and 3. Therefore, we need to create a factor loading matrix and put the distribution

object into the factor loading matrix. The process is similar to building the simMatrix object. The only difference is to use the distribution object name in the parameter/starting values matrix:

```
loading.trivial <- matrix(0, 4, 2)
loading.trivial[2:3, 2] <- NA
loading.mis <- simMatrix(loading.trivial, "u1")</pre>
```

Make sure that the distribution object name is put into single or double quotations in the parameter/starting value specification. The run function can be used to see how this matrix randomly draws numbers from the specified distribution. Because this example has trivial misspecification in only factor loadings, we are ready to create an object with the set of the matrices containing model misspecification, called a misspecified set object. The function name to create the misspecified set object depends on an analysis model. This example uses a simMisspecCFA function to represent the misspecification in CFA model:

```
LCA.Mis <- simMisspecCFA(LY = loading.mis)
```

The summary function can be used to see the specification of this object. To add the trivial misspecification into the data object use the misspec attribute in the simData command:

```
Data.Mis <- simData(LCA.Model, 300, misspec = LCA.Mis)
```

The parameters from the misspecification set will added on top of the population parameters specified in the simsemCFA object and data will be created based on the combined parameters. Users may use the run function on this object to create data from the population with trivial misspecification. We retain the same analysis model; therefore, we do need to change the model object. Finally, we are ready to create a new result object and examine the results of the simulation:

```
Output.Mis <- simResult(1000, Data.Mis, SimModel)
getCutoff(Output.Mis, 0.05)
plotCutoff(Output.Mis, 0.05)
summaryParam(Output.Mis)
```

The fit indices cutoffs from the simulation results without the trivial misspecification is a little more stringent than from the simulation result with the trivial misspecification.

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
2
3
      factor.loading <- matrix(NA, 4, 2)
4
      factor.loading[,1] <- 1</pre>
      factor.loading[,2] <- 0:3</pre>
5
6
      LY <- simMatrix(factor.loading)</pre>
7
8
      factor.mean <- rep(NA, 2)</pre>
9
      factor.mean.starting <- c(5, 1)
10
      AL <- simVector(factor.mean, factor.mean.starting)
11
      factor.var <- rep(NA, 2)
```

```
factor.var.starting <- c(1, 0.25)
14
      VPS <- simVector(factor.var, factor.var.starting)</pre>
15
      factor.cor <- matrix(NA, 2, 2)</pre>
16
17
      diag(factor.cor) <- 1
18
      RPS <- symMatrix(factor.cor, 0.5)
19
20
      VTE <- simVector(rep(NA, 4), 1.2)
21
22
      RTE <- symMatrix(diag(4))
2.3
24
      TY <- simVector(rep(0, 4))
25
26
      LCA.Model <- simSetCFA(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY)
27
28
      SimModel <- simModel(LCA.Model)
29
30
      ### Get the number sign out if you wish to run the model without misspecification
31
      # Data.True <- simData(LCA.Model, 300)</pre>
      # Output <- simResult(1000, Data.True, SimModel)</pre>
32
33
      # getCutoff(Output, 0.05)
34
      # plotCutoff(Output, 0.05)
35
      # summaryParam(Output)
36
37
      u1 <- simUnif(-0.1, 0.1)
38
39
      loading.trivial <- matrix(0, 4, 2)</pre>
40
      loading.trivial[2:3, 2] <- NA</pre>
41
      loading.mis <- simMatrix(loading.trivial, "u1")</pre>
42
43
      LCA.Mis <- simMisspecCFA(LY = loading.mis)</pre>
44
45
      Data.Mis <- simData(LCA.Model, 300, misspec = LCA.Mis)
46
47
      Output.Mis <- simResult(1000, Data.Mis, SimModel)
48
      getCutoff(Output.Mis, 0.05)
49
      plotCutoff(Output.Mis, 0.05)
      summaryParam(Output.Mis)
```

Remarks

- 1) Click <u>here</u> to go to the list of other distribution objects.
- 2) We can compute the skewness and excessive kurtosis of the distribution object by the skew and kurtosis functions:

```
u1 <- simUnif(-0.1, 0.1)
skew(u1)
kurtosis(u1)</pre>
```

Note that the skew and kurtosis function work on a vector of a variable or a data frame as well. See here for the description of <u>skewness</u> and <u>excessive kurtosis</u>.

Functions Review

Functions	Usage
simUnif	Create parameters distributed as uniform distribution
simNorm	Create parameters distributed as normal distribution
simMisspecCFA	Create set of matrices for misspecification in CFA
plotDist	Plot a distribution object

Example 4: Random Parameters

Model Description

This example changes the analysis model to a path analysis model. This is another example of adding trivial model misspecification. In this example, the population model also has random parameters (parameters with population values that vary across replications).

The hypothesized model is a full mediation model (all black paths). Users might be not sure about the exact population values of the parameters in the model. Therefore, they specify parameters in ranges to represent this uncertainty. The effects from Y_1 to Y_3 and Y_2 to Y_3 range from 0.3 to 0.5 in a uniform distribution. The effect from Y_3 to Y_4 ranges from 0.5 to 0.7. The correlation between two exogenous variables ranges in a normal distribution with the mean of 0.3 and the standard deviation of 0.1. To keep all parameters in a standardized scale, all error variances are computed such that their indicator variances equal 1.

In the population model, the mediator does not explain all effects from the independent variables to the dependent variable. The trivial misspecification in this model is the potential direct effects from Y_1 and Y_2 to Y_4 . These effects are specified in a uniform distribution with the lower and upper bounds of -0.1 and 0.1.

Syntax

First, we need to specify the distribution objects corresponding to the population and misspecification models:

```
u35 <- simUnif(0.3, 0.5)
u57 <- simUnif(0.5, 0.7)
u1 <- simUnif(-0.1, 0.1)
n31 <- simNorm(0.3, 0.1)</pre>
```

The simUnif function is used to make a uniform distribution object. The simNorm function is used to make a normal distribution object. The first and second arguments of the simUnif function are the lower and the upper bounds, respectively. The first and second arguments of the simNorm function are the mean and the standard deviation, respectively.

We will need only two matrices in this model: a path matrix and an indicator covariance matrix. The path matrix is specified:

```
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "u35"
starting.BE[4, 3] <- "u57"
BE <- simMatrix(path.BE, starting.BE)</pre>
```

Similar to LISREL, in this matrix the row number represents response variables and the column number represents predictors. For example, freeing the (3, 2) element is to estimate the regression coefficient from Y_2 to Y_3 (in other words, the regression of Y_3 on Y_2). To include random parameters in data genration, the appropriate names of the random parameter object should be set in the appropriate positions in the population parameter/starting values matrix. Note that a nonrecursive model (with feedback loop) is not allowed in this program.

The indicator covariance matrix is separated into the indicator variance vector and the indicator correlation (or residual correlation) matrix. First, the indicator correlation is specified:

```
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- symMatrix(residual.error, "n31")
```

In this example, only the indicator correlation between Y_1 and Y_2 is estimated. For indicator variances, the default in *simsem* is to make the overall indicator variances equal to 1 and all indicator variances are estimated in a path analysis model.

The matrix set of the path analysis model object can be specified by the simSetPath function:

```
Path.Model <- simSetPath(RPS = RPS, BE = BE)
```

where PS is the indicator correlation matrix and BE is the matrix of regression coefficients.

The misspecification model in this example is in the regression coefficients only. This can be specified by the simMisspecPath function as

```
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- NA
mis.BE <- simMatrix(mis.path.BE, "u1")
Path.Mis.Model <- simMisspecPath(BE = mis.BE)</pre>
```

Notice that the "u1" object (the uniform distribution object ranging from -0.1 to 0.1) is put in the elements (4, 1) and (4, 2) of the regression coefficient matrix to represent the misspecified direct effects.

The data object with trivial misspecification, the model object, and the result object are created with:

```
Data.Mis <- simData(Path.Model, 500, misspec = Path.Mis.Model)

SimModel <- simModel(Path.Model)

Output <- simResult(1000, Data.Mis, SimModel)

getCutoff(Output, 0.05)

plotCutoff(Output, 0.05)

summary(Output)
```

summaryParam(Output)

This example uses a sample size of 500 and uses 1000 replications.

Note that the printout from the summary and summaryParam functions provides a slightly different output. There are nine columns in the parameter estimates and standard errors section. The first four columns are the same as previous examples. The last five columns are:

- 5) Average. Param: The average of random parameter values underlying the simulated data across all replications
- 6) SD. Param: The standard deviation of the random parameter values
- 7) Average.Bias: The average bias of the parameter estimates from the random parameters of each replication.
- 8) SD.Bias: The standard deviation of the bias of all parameter estimates. This value is expected to be equal to the average of standard errors across all replications (i.e. the empirical standard errors) if random parameters are specified.
- 9) Coverage: Proportion of replications with confidence intervals containing the random parameter values in each replication.

This printout is shown only when random parameters are specified.

Syntax Summary

```
library(simsem)
2
3
      u35 < - simUnif(0.3, 0.5)
      u57 < - simUnif(0.5, 0.7)
4
5
      u1 <- simUnif(-0.1, 0.1)
6
      n31 < - simNorm(0.3, 0.1)
7
8
     path.BE <- matrix(0, 4, 4)
     path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
9
10
11
     starting.BE <- matrix("", 4, 4)
     starting.BE[3, 1:2] <- "u35"
12
13
      starting.BE[4, 3] <- "u57"
      BE <- simMatrix(path.BE, starting.BE)</pre>
14
15
16
      residual.error <- diag(4)
17
      residual.error[1,2] <- residual.error[2,1] <- NA</pre>
18
      RPS <- symMatrix(residual.error, "n31")</pre>
19
20
      Path.Model <- simSetPath(RPS = RPS, BE = BE)
21
      mis.path.BE <- matrix(0, 4, 4)
22
23
      mis.path.BE[4, 1:2] <- NA
24
      mis.BE <- simMatrix(mis.path.BE, "u1")</pre>
25
      Path.Mis.Model <- simMisspecPath(BE = mis.BE)
26
27
      Data.Mis <- simData(Path.Model, 500, misspec = Path.Mis.Model)
28
      SimModel <- simModel(Path.Model)</pre>
      Output <- simResult(1000, Data.Mis, SimModel)
29
30
      getCutoff(Output, 0.05)
31
      plotCutoff(Output, 0.05)
      summaryParam(Output)
```

Remarks

1) We can directly specify the indicator variances by changing Lines 19-20 to:

```
VE <- simVector(rep(NA, 4), 1)
```

```
Path.Model <- simSetPath(RPS = RPS, BE = BE, VE = VE)
```

where VE is the vector of the indicator variances (In SEM models, VE means the overall variances of factors). Users cannot specify the error variances (VPS) of indicators and the overall indicators variances at the same time.

2) This program can directly specify the indicator means (instead of the measurement intercepts) by:

```
ME <- simVector(rep(NA, 4), 0)
Path.Model <- simSetPath(RPS = RPS, BE = BE, ME = ME)</pre>
```

where ME is the vector of the indicator means (In SEM models, ME means the overall means of factors). Users cannot specify the indicator intercepts (AL) and the overall indicators means at the same time.

3) This program can analyze models with both *X* and *Y* sides at the same time. The script in Lines 8-25 can be changed to:

```
path.GA <- matrix(0, 2, 2)
path.GA[1, 1:2] <- NA
GA <- simMatrix(path.GA, "u35")

path.BE <- matrix(0, 2, 2)
path.BE[2, 1] <- NA
BE <- simMatrix(path.BE, "u57")

exo.cor <- matrix(NA, 2, 2)
diag(exo.cor) <- 1
RPH <- symMatrix(exo.cor, "n31")

RPS <- symMatrix(diag(2))

Path.Model <- simSetPath(RPS = RPS, BE = BE, RPH = RPH, GA = GA, exo=TRUE)

mis.path.GA <- matrix(0, 2, 2)
mis.path.GA (- simMatrix(mis.path.GA, "u1")
Path.Mis.Model <- simMisspecPath(GA = mis.GA, exo=TRUE)</pre>
```

Similar to LISREL notation, we use GA for the effects from exogenous indicators to endogenous indicators, RPH for the correlations (instead of covariance) among exogenous indicators, BE for the directional effects among endogenous indicators, and RPS for the correlations among endogenous residuals.

4) Users might wish to create a dataset and see the population values underlying the specific dataset. Then, a data output object can be created instead. This could be created by setting the dataOnly argument to FALSE:

```
dat <- run(Data.Mis, dataOnly = FALSE)</pre>
```

The data can be analyzed as usual by the run command with the model object as the first argument and the data output object as the second argument

```
out <- run(SimModel, dat)
summary(out)
summaryParam(out)</pre>
```

Notice that the output has three additional columns: the parameters underlying the data (Param), the difference between the parameters values and the parameter estimates (Bias), and whether the confidence interval covers the parameter value (Coverage). Note that this printout will be provided only when the parameter set using for data simulation and the parameter set in the analysis model are the same.

Functions Review

Functions	Usage
simSetPath	Create set of matrices for path analysis
simMisspecPath	Create set of matrices for misspecification in path analysis

Example 5: Equality Constraint

Model Description

This example will show how to specify a full SEM model with random parameters and a trivial model misspecification. Furthermore, this example will illustrate how to set an equality constraint. The specification of the factors and indicators in the exogenous side is similar to the syntax provided in the Example 1. In this example, we will add trivial cross-loadings as a trivial misspecification. We still need to make sure that the indicator variances are still equal to 1. The two exogenous factors predict one endogenous factor. The effect from the first factor is normally distributed with the mean of 0.6 and the standard deviation of 0.05. The effect from the second factor is uniformly distributed with the lower and the upper bounds of 0.3 and 0.5. The endogenous factor has two indicators. The factor loadings of the endogenous factor are constrained to equality in the analysis model (in order to set the scale of measurement). The endogenous factor loadings are uniformly distributed with the lower and the upper bounds of 0.6 to 0.8. The endogenous factor's error variance is the value that makes the endogenous factor's overall variance equal to 1. As a result, the regression coefficients and the factor loadings can be interpreted as standardized coefficients. However, fixing overall variances as 1 can be done only in data generation. The analysis model will fix the endogenous factor's error variance to 1 instead (not the overall variance). Therefore, the analysis result will not provide the standardized coefficients.

We will have two types of trivial misspecification in this model. First, all possible cross loadings are in a uniform distribution from -0.2 to 0.2. Second, all possible error correlations parameters are in a normal distribution with mean of 0 and *SD* of 0.1.

 1^* = Residual variance that makes indicator variance of 1

Syntax

First, the distribution objects in this model are created:

```
n65 <- simNorm(0.6, 0.05)

u35 <- simUnif(0.3, 0.5)

u68 <- simUnif(0.6, 0.8)

u2 <- simUnif(-0.2, 0.2)

n1 <- simNorm(0, 0.1)
```

For a full SEM model, if we consider only the *Y* side, four matrices are required: the factor loading matrix, the error covariance matrix, the factor regression coefficient matrix, and the factor residual covariance matrix. The factor loading matrix is specified:

```
loading <- matrix(0, 8, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:8, 3] <- NA
loading.start <- matrix("", 8, 3)
loading.start[1:3, 1] <- 0.7
loading.start[4:6, 2] <- 0.7
loading.start[7:8, 3] <- "u68"
LY <- simMatrix(loading, loading.start)</pre>
```

If we run the LY object, we will see that the loadings of the endogenous indicators are not equal. We will constain them to equality later. We will set the error variances by default (overall indicator variances = 1). The error correlation matrix is specified:

```
RTE <- symMatrix(diag(8))
```

We will also set the factor error variances by default (overall factor variances = 1). The factor correlation matrix is specified:

```
factor.cor <- diag(3)
factor.cor[1, 2] <- factor.cor[2, 1] <- NA
RPS <- symMatrix(factor.cor, 0.5)</pre>
```

The factor regression coefficient matrix is specified:

```
path <- matrix(0, 3, 3)
path[3, 1:2] <- NA
path.start <- matrix(0, 3, 3)
path.start[3, 1] <- "n65"
path.start[3, 2] <- "u35"
BE <- simMatrix(path, path.start)</pre>
```

Now, all matrices are set up. The simSetSEM function will be used to create the set of matrices in the SEM model:

```
SEM.model <- simSetSEM(BE=BE, LY=LY, RPS=RPS, RTE=RTE)
```

LY is the factor loading matrix, TE is the error correlation matrix, BE is the regression coefficient matrix, and RPS is the factor (residual) correlation matrix. The next step is to set the matrices in the trivial model misspecification. In this example, the factor loading and the error correlation matrices are needed. The set of misspecification matrices can be created by the simMisspecSEM function:

```
loading.trivial <- matrix(NA, 8, 3)
loading.trivial[is.na(loading)] <- 0
LY.trivial <- simMatrix(loading.trivial, "u2")
error.cor.trivial <- matrix(NA, 8, 8)
diag(error.cor.trivial) <- 1
RTE.trivial <- symMatrix(error.cor.trivial, "n1")

SEM.Mis.Model <- simMisspecSEM(LY = LY.trivial RTE = RTE.trivial)</pre>
```

Now, we will create the equality constraint object to equate the two factor loadings. In a single group model as in this example, a matrix is needed for each equality constraint. The number of rows in this matrix is the number of constrained parameters in each equality constraint. The number of columns is two representing the row and the column of the target matrices. The row name represents the name of the target matrices. In this example, the equality constraint matrix should be

$$LY \begin{bmatrix} 7 & 3 \\ LY \end{bmatrix} \begin{bmatrix} 8 & 3 \end{bmatrix}$$

This means that the element (7, 3) in LY matrix equals the element (8, 3) in LY matrix. The syntax is:

```
constraint <- matrix(0, 2, 2)
constraint[1,] <- c(7, 3)
constraint[2,] <- c(8, 3)
rownames(constraint) <- rep("LY", 2)</pre>
```

Now, the equality constraint object can be created from this matrix by the simEqualCon function:

```
equal.loading <- simEqualCon(constraint, modelType="SEM")
```

The first arguments to this function are matrices representing equality constraints and the last argument is the type of analysis in the modelType. The possible values of the modelType attribute are "CFA", "Path", "Path.exo", "SEM", and "SEM.exo", for each type of analysis.

The next step is to create a data object:

```
Data.Original <- simData(SEM.model, 300)
Data.Mis <- simData(SEM.model, 300, misspec=SEM.Mis.Model)
Data.Con <- simData(SEM.model, 300, equalCon=equal.loading)
Data.Mis.Con <- simData(SEM.model, 300, misspec=SEM.Mis.Model, equalCon=equal.loading)
```

Here is the list of four possible combinations to make a data object. We can put the constraint object in the equalCon argument. In this example, the sample size is specified as 300. The model objects with and without equality constraints are

```
Model.Original <- simModel(SEM.model)
Model.Con <- simModel(SEM.model, equalCon=equal.loading)
```

Finally, the result object can be created by any possible combinations of the data and the model objects. We include only the most complex combination (the data object with the trivial misspecification and the equality constraint combined with the model object with the equality constraint):

```
Output <- simResult(1000, Data.Mis.Con, Model.Con)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summaryParam(Output)
```

Syntax Summary

```
1
      library(simsem)
2
3
      n65 < - simNorm(0.6, 0.05)
4
      u35 <- simUnif(0.3, 0.5)
5
      u68 < - simUnif(0.6, 0.8)
6
      u2 <- simUnif(-0.2, 0.2)
      n1 <- simNorm(0, 0.1)
7
8
9
      loading <- matrix(0, 8, 3)</pre>
10
      loading[1:3, 1] <- NA
      loading[4:6, 2] <- NA
11
12
      loading[7:8, 3] <- NA
13
      loading.start <- matrix("", 8, 3)</pre>
      loading.start[1:3, 1] <- 0.7</pre>
14
      loading.start[4:6, 2] <- 0.7
15
      loading.start[7:8, 3] <- "u68"</pre>
16
17
      LY <- simMatrix(loading, loading.start)
18
19
      RTE <- symMatrix(diag(8))</pre>
20
21
      factor.cor <- diag(3)</pre>
      factor.cor[1, 2] <- factor.cor[2, 1] <- NA</pre>
22
23
      RPS <- symMatrix(factor.cor, 0.5)
24
      path \leftarrow matrix(0, 3, 3)
25
26
      path[3, 1:2] <- NA
```

```
path.start <- matrix(0, 3, 3)</pre>
28
      path.start[3, 1] <- "n65"</pre>
29
      path.start[3, 2] <- "u35"
30
      BE <- simMatrix(path, path.start)</pre>
31
32
      SEM.model <- simSetSEM(BE=BE, LY=LY, RPS=RPS, RTE=RTE)</pre>
33
      loading.trivial <- matrix(NA, 8, 3)</pre>
34
35
      loading.trivial[is.na(loading)] <- 0</pre>
      LY.trivial <- simMatrix(loading.trivial, "u2")
36
37
38
      error.cor.trivial <- matrix(NA, 8, 8)
39
      diag(error.cor.trivial) <- 1</pre>
40
      RTE.trivial <- symMatrix(error.cor.trivial, "n1")</pre>
41
42
      SEM.Mis.Model <- simMisspecSEM(LY = LY.trivial, RTE = RTE.trivial)</pre>
43
      constraint <- matrix(0, 2, 2)</pre>
44
45
      constraint[1,] \leftarrow c(7, 3)
      constraint[2,] \leftarrow c(8, 3)
46
47
      rownames(constraint) <- rep("LY", 2)</pre>
48
      equal.loading <- simEqualCon(constraint, modelType="SEM")</pre>
49
50
      Data.Original <- simData(SEM.model, 300)</pre>
51
      Data.Mis <- simData(SEM.model, 300, misspec=SEM.Mis.Model)
      Data.Con <- simData(SEM.model, 300, equalCon=equal.loading)</pre>
53
      Data.Mis.Con <- simData(SEM.model, 300, misspec=SEM.Mis.Model,
              equalCon=equal.loading)
54
55
      Model.Original <- simModel(SEM.model)</pre>
56
      Model.Con <- simModel(SEM.model, equalCon=equal.loading)</pre>
57
58
      Output <- simResult(1000, Data.Mis.Con, Model.Con)
59
      getCutoff(Output, 0.05)
60
      plotCutoff(Output, 0.05)
61
      summaryParam(Output)
```

Remarks

1) If users wish to constrain all factor loadings within a same factor to be equal, we need multiple constraints. All three constraints are:

To make this change, Lines 44-48 can be changed:

```
constraint1 <- matrix(1, 3, 2)
constraint1[,1] <- 1:3
rownames(constraint1) <- rep("LY", 3)
constraint2 <- matrix(2, 3, 2)
constraint2[,1] <- 4:6
rownames(constraint2) <- rep("LY", 3)
constraint3 <- matrix(3, 2, 2)
constraint3[,1] <- 7:8
rownames(constraint3) <- rep("LY", 2)
equal.loading <- simEqualCon(constraint1, constraint2, constraint3, modelType="SEM")</pre>
```

The first three arguments of the simEqualCon function is each equality constraint.

2) Users may wish to use both *X* and *Y* sides by changing Lines 9-48:

```
loading.X <- matrix(0, 6, 2)
loading.X[1:3, 1] <- NA
loading.X[4:6, 2] <- NA
```

```
LX <- simMatrix(loading.X, 0.7)
loading.Y <- matrix(NA, 2, 1)</pre>
LY <- simMatrix(loading.Y, "u68")
RTD <- symMatrix(diag(6))</pre>
RTE <- symMatrix(diag(2))</pre>
factor.K.cor <- matrix(NA, 2, 2)
diag(factor.K.cor) <- 1
RPH <- symMatrix(factor.K.cor, 0.5)</pre>
RPS <- symMatrix(as.matrix(1))</pre>
path.GA <- matrix(NA, 1, 2)</pre>
path.GA.start <- matrix(c("n65", "u35"), ncol=2)</pre>
GA <- simMatrix(path.GA, path.GA.start)</pre>
BE <- simMatrix(as.matrix(0))
SEM.model <- simSetSEM(GA=GA, BE=BE, LX=LX, LY=LY, RPH=RPH, RPS=RPS, RTD=RTD, RTE=RTE, exo=TRUE)
loading.X.trivial <- matrix(NA, 6, 2)</pre>
loading.X.trivial[is.na(loading.X)] <- 0</pre>
LX.trivial <- simMatrix(loading.X.trivial, "u2")</pre>
error.cor.X.trivial <- matrix(NA, 6, 6)
diag(error.cor.X.trivial) <- 1
RTD.trivial <- symMatrix(error.cor.X.trivial, "n1")</pre>
error.cor.Y.trivial <- matrix(NA, 2, 2)
diag(error.cor.Y.trivial) <- 1</pre>
RTE.trivial <- symMatrix(error.cor.Y.trivial, "n1")</pre>
RTH.trivial <- simMatrix(matrix(NA, 6, 2), "n1")
SEM.Mis.Model <- simMisspecSEM(LX = LX.trivial, RTE = RTE.trivial, RTD = RTD.trivial, RTH =
        RTH.trivial, exo=TRUE)
constraint <- matrix(0, 2, 2)</pre>
constraint[1,] \leftarrow c(1, 1)
constraint[2,] \leftarrow c(2, 1)
rownames(constraint) <- rep("LY", 2)</pre>
equal.loading <- simEqualCon(constraint, modelType="SEM.exo")
```

LX is the factor loading matrix of the exogenous factors. LY is the factor loading matrix of the endogenous factors. RTD is the correlation matrix of the measurement errors among exogenous indicators. RTE is the correlation matrix of the measurement errors among endogenous indicators. RTH is the correlation matrix across the measurement errors of indicators in both exogenous side (representing rows) and endogenous side (representing columns). RPH is the correlation matrix among the exogenous factors. PS is correlation matrix among residuals of endogenous factors. GA is the regression coefficient matrix from exogenous factors to endogenous factors. BE is the regression coefficient matrix among endogenous factors. If there is only one element in a matrix (1 x 1 dimension), make sure to put the as.matrix function on that element so that the program recognizes the element as a matrix.

Functions Review

Functions Usage

simSetSEM	Create set of matrices for SEM
simMisspecSEM	Create set of matrices for misspecification in SEM
simEqualCon	Create list of equality constraints in the model

Example 6: Power Analysis in Model Evaluation

Model Description

All previous examples have shown how to find a cutoff in order to discriminate between trivial misspecification and severe misspecification using SSD. This example shows how to build two models: a correct population model in which users do not wish to reject the null hypothesis of good model fit and an incorrect population in which users wish to reject the null hypothesis of good model fit. A cutoff is created from a correct population with a trivial model misspecification, and the data is created from the other population that users wish to reject. Finally, we will determine the proportion of replications simulated from a model with serious misspecification rejected by the cutoffs (i.e., statistical power).

In this example, the correct population is the one-factor model with six indicators. All factor loadings are 0.7. All error variances are calculated so that all indicator variances are 1. The trivial misspecification of the correct model includes all possible small error correlations. The other population model is a two-factor model with three indicators each. The factor correlation of the other model ranges from 0.7 to 0.8 in a uniform distribution. We assume that the two factors are not correlated enough to be considered as one factor, thus the model is misspecified and we wish to reject the null hypothesis of good model fit . Thus, we hope that a high proportion of the replications from the two-factor model are rejected (high power).

Syntax

All relevant distribution objects are specified:

```
u2 <- simUnif(-0.2, 0.2)
n1 <- simNorm(0, 0.1)
u79 <- simUnif(0.7, 0.9)
```

The correct population model is specified as:

```
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LX.NULL <- simMatrix(loading.null, 0.7)
RPH.NULL <- symMatrix(diag(1))
RTD <- symMatrix(diag(6))
CFA.Model.NULL <- simSetCFA(LY = LX.NULL, RPS = RPH.NULL, RTE = RTD)</pre>
```

The misspecification of the correct population model is specified:

```
error.cor.mis <- matrix(NA, 6, 6)
diag(error.cor.mis) <- 1
RTD.Mis <- symMatrix(error.cor.mis, "n1")
CFA.Model.NULL.Mis <- simMisspecCFA(RTD.Mis)
```

The result object from the correct population model with trivial misspecification is specified:

```
SimData.NULL <- simData(CFA.Model.NULL, 500, misspec = CFA.Model.NULL.Mis)
SimModel <- simModel(CFA.Model.NULL)
Output.NULL <- simResult(1000, SimData.NULL, SimModel)
```

From here, we can find cutoffs or plot cutoffs of the correct population model. Then we create the other (misspecified) model:

```
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LX.ALT <- simMatrix(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPH.ALT <- symMatrix(latent.cor.alt, "u79")
CFA.Model.ALT <- simSetCFA(LY = LX.ALT, RPS = RPH.ALT, RTE = RTD)</pre>
```

We wish to reject this model. We can add a trivial misspecification in this model; however, we still wish to reject this model. We will add trivial misspecification on top of this model to expand the range of models we wish to reject. The misspecification part is specified:

```
loading.alt.mis <- matrix(NA, 6, 2)
loading.alt.mis[is.na(loading.alt)] <- 0
LX.alt.mis <- simMatrix(loading.alt.mis, "u2")
CFA.Model.alt.mis <- simMisspecCFA(LY = LX.alt.mis, RTE=RTD.Mis)</pre>
```

The result object from the other model with trivial misspecification is created:

```
SimData.ALT <- simData(CFA.Model.ALT, 500, misspec = CFA.Model.alt.mis)
Output.ALT <- simResult(1000, SimData.ALT, SimModel)
```

Note that the same model object is used and we wish that the result of the analysis will provide a bad fit index. We expect the fit indices obtained from the data from the misspecified model indicate worse fit than the fit indices from the correct model with trivial misspecification. Then, as previous examples, we can find the fit indices cutoffs from the correct model:

```
cutoff <- getCutoff(Output.NULL, 0.05)</pre>
```

Now, we save the cutoff in order to find power.

We can find the proportion of samples from the other model that was rejected by the cutoffs by the getPowerFit function as

```
getPowerFit(Output.ALT, cutoff)
```

The first argument is the result object based on the alternative model or the model we wish to reject. The second argument is the cutoffs saved from the correct model.

The cutoffs can be plot on a figure of overlapping histograms from the samples from both populations by the plotPowerFit function as

```
plotPowerFit(Output.ALT, Output.NULL, 0.05)
```

The first argument is the alternative model or the model we wish to reject. The second argument is the null model or the correct model. The third argument is the alpha level. We may set a priori cutoffs, such as RMSEA < .05, CFI > .95, TLI > .95, and SRMR < .06, and use these cutoffs to find the power:

```
cutoff2 <- c(RMSEA = 0.05, CFI = 0.95, TLI = 0.95, SRMR = 0.06)
getPowerFit(Output.ALT, cutoff2)
plotPowerFit(Output.ALT, cutoff2)</pre>
```

The plotPowerFit function will plot all fit indices. If you wish to plot only some of fit indices, you can use a usedFit argument:

```
plotPowerFit(Output.ALT, cutoff2, usedFit=c("RMSEA", "CFI"))
```

Syntax Summary

```
library(simsem)
2
3
      u2 < - simUnif(-0.2, 0.2)
      n1 < - simNorm(0, 0.1)
4
5
      u79 < - simUnif(0.7, 0.9)
6
      loading.null <- matrix(0, 6, 1)</pre>
7
8
      loading.null[1:6, 1] <- NA</pre>
9
      LX.NULL <- simMatrix(loading.null, 0.7)
10
      RPH.NULL <- symMatrix(diag(1))</pre>
11
      RTD <- symMatrix(diag(6))
12
      CFA.Model.NULL <- simSetCFA(LY = LX.NULL, RPS = RPH.NULL, RTE = RTD)
13
      error.cor.mis <- matrix(NA, 6, 6)
14
      diag(error.cor.mis) <- 1</pre>
15
      RTD.Mis <- symMatrix(error.cor.mis, "n1")</pre>
16
17
      CFA.Model.NULL.Mis <- simMisspecCFA(RTE = RTD.Mis)</pre>
18
      SimData.NULL <- simData(CFA.Model.NULL, 500, misspec = CFA.Model.NULL.Mis)
19
20
      SimModel <- simModel(CFA.Model.NULL)</pre>
      Output.NULL <- simResult(1000, SimData.NULL, SimModel)
21
22
23
      loading.alt <- matrix(0, 6, 2)
24
      loading.alt[1:3, 1] <- NA</pre>
25
      loading.alt[4:6, 2] <- NA
26
      LX.ALT <- simMatrix(loading.alt, 0.7)
27
      latent.cor.alt <- matrix(NA, 2, 2)</pre>
2.8
      diag(latent.cor.alt) <- 1</pre>
29
      RPH.ALT <- symMatrix(latent.cor.alt, "u79")</pre>
30
      CFA.Model.ALT <- simSetCFA(LY = LX.ALT, RPS = RPH.ALT, RTE = RTD)
31
32
      loading.alt.mis <- matrix(NA, 6, 2)
33
      loading.alt.mis[is.na(loading.alt)] <- 0</pre>
34
      LX.alt.mis <- simMatrix(loading.alt.mis, "u2")</pre>
35
      CFA.Model.alt.mis <- simMisspecCFA(LY = LX.alt.mis, RTE=RTD.Mis)
36
37
      SimData.ALT <- simData(CFA.Model.ALT, 500, misspec = CFA.Model.alt.mis)</pre>
38
      Output.ALT <- simResult(1000, SimData.ALT, SimModel)
39
40
      cutoff <- getCutoff(Output.NULL, 0.05)</pre>
41
      getPowerFit(Output.ALT, cutoff)
      plotPowerFit(Output.ALT, Output.NULL, 0.05)
42
43
      cutoff2 <- c(RMSEA = 0.05, CFI = 0.95, TLI = 0.95, SRMR = 0.06)
44
45
      getPowerFit(Output.ALT, cutoff2)
      plotPowerFit (Output.ALT, cutoff2)
```

Functions Review

Functions	Usage
getPowerFit	Get the power given cutoffs
plotPowerFit	Visualize the power of rejection in sampling distribution

Example 7: Missing Data Handling

Model Description

This example will show how to impose missing values into datasets. The model of this example is the Multi-Trait, Multi-Method (MTMM) model. There are three traits in this model. Y_1 , Y_4 , and Y_7 are measured by a common method. The model is shown below. The trivial model misspecification is specified in cross-loadings and error correlations. Note that the cross-loadings in the construct side are only specified because the cross-loadings in the method side do not make sense. We specify that the percentage of missing data will be approximately 20% in all variables.

Syntax

All relevant distribution objects are specified:

```
u2 <- simUnif(-0.2, 0.2)
u49 <- simUnif(0.4, 0.9)
u36 <- simUnif(0.3, 0.6)
n1 <- simNorm(0, 0.1)
n21 <- simNorm(0.2, 0.1)
n31 <- simNorm(0.3, 0.1)
n41 <- simNorm(0.4, 0.1)</pre>
```

The factor loading matrix is specified:

```
loading <- matrix(0, 9, 4)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[c(1, 4, 7), 4] <- NA
loading.v <- matrix(0, 9, 4)
loading.v[1:3, 1] <- "u49"
loading.v[4:6, 2] <- "u49"
loading.v[7:9, 3] <- "u49"
loading.v[7:9, 3] <- "u49"
loading.v[c(1, 4, 7), 4] <- "u36"
LY <- simMatrix(loading, loading.v)</pre>
```

For some users, typing values into a matrix might be easier. Users might consider the data.entry function:

```
loading <- matrix(0, 9, 4)
data.entry(loading)</pre>
```

Then, users can edit each element of the loading matrix. The loading matrix should appear as:

R Data Editor				
	var1	var2	var3	var4
1	NA	0	0	NA
2	NA	0	0	0
3	NA	0	0	0
4	0	NA	0	NA
5	0	NA	0	0
6	0	NA	0	0
7	0	0	NA	NA
8	0	0	NA	0
9	0	0	NA	0

The syntax of the factor correlation matrix is:

```
faccor <- diag(4)
faccor[1, 2] <- faccor[2, 1] <- NA
faccor[1, 3] <- faccor[3, 1] <- NA
faccor[2, 3] <- faccor[3, 2] <- NA
faccor.v <- diag(4)
faccor.v[1, 2] <- faccor.v[2, 1] <- "n41"
faccor.v[1, 3] <- faccor.v[3, 1] <- "n21"
faccor.v[2, 3] <- faccor.v[3, 2] <- "n31"
RPS <- symMatrix(faccor, faccor.v)</pre>
```

In this example, suntax is shortend to keep from entering values twice. The semi-colon is used to save space. Users may wish to use separate lines instead of the semi-colons in order to aid in debugging. The factor variances are set as 1 by the program default. There is no correlation among measurement errors. The error correlation matrix is specified:

```
RTE <- symMatrix(diag(9))
```

Thus, the MTMM model is set up:

```
mtmm.model <- simSetCFA(LY=LY, RPS=RPS, RTE=RTE)
```

The trivial model misspecification is specified:

```
error.cor.mis <- matrix(NA, 9, 9)
diag(error.cor.mis) <- 1
RTE.mis <- symMatrix(error.cor.mis, "n1")
loading.mis <- matrix(NA, 9, 4)
loading.mis[is.na(loading)] <- 0
loading.mis[,4] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
mtmm.model.mis <- simMisspecCFA(RTE = RTE.mis, LY=LY.mis)</pre>
```

Next, we need to specify a missing object. This object will indicate both the amount of missingness imposed in the simulated data and the method to handle missing data. The missing object can be made by the simMissing function:

```
SimMissing <- simMissing(pmMCAR=0.2, numImps=5)
```

The pmMCAR argument indicates the proportion of values in each variable that will be missing completely at random. The numImps argument is the number of imputations run on each simulated data set, which implies using the multiple imputation method in missing data handling. If the numImps argument is not specified (or set to 0), the missing data handling method will be full information maximum likelihood.

The data object and the model object are specified:

```
SimData <- simData(mtmm.model, 500, misspec = mtmm.model.mis)
SimModel <- simModel(mtmm.model)</pre>
```

We can create only one dataset, impose missing values, and analyze the data:

```
data <- run(SimData)
data <- run(SimMissing, data)
result <- run(SimModel, data, SimMissing)
summary(result)</pre>
```

The run function on the missing object with a dataset as the second argument will impose missing values on the data. Also, we can add the missing object on the third argument of the run function. The summary of the result will provide two new columns: FMI1 and FMI2. These are the fraction missing information for each parameter using two different methods.

The result object can be specified and investigated:

```
Output <- simResult(1000, SimData, SimModel, SimMissing)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summary(Output)
```

Note that the simulation could be slow because we create five copies of a dataset (i.e., multiple imputation) in each replication. Therefore, we need to run the MTMM model for five times in each replication.

The summary of the simResult object will provide four new columns: the means and the standard deviations of FMI1 and FMI2 across replications.

Syntax Summary

```
library(simsem)
2
3
       u2 <- simUnif(-0.2, 0.2)
4
      u49 < - simUnif(0.4, 0.9)
      u36 <- simUnif(0.3, 0.6)
5
6
      n1 <- simNorm(0, 0.1)
7
      n21 <- simNorm(0.2, 0.1)
8
      n31 < - simNorm(0.3, 0.1)
      n41 < - simNorm(0.4, 0.1)
9
10
      loading <- matrix(0, 9, 4)</pre>
11
      loading[1:3, 1] <- NA
12
13
      loading[4:6, 2] <- NA
      loading[7:9, 3] <- NA
loading[c(1, 4, 7), 4] <- NA
14
15
      loading.v \leftarrow matrix(0, 9, 4)
16
      loading.v[1:3, 1] <- "u49"
17
      loading.v[4:6, 2] <- "u49" loading.v[7:9, 3] <- "u49"
18
19
20
      loading.v[c(1, 4, 7), 4] <- "u36"
21
      LY <- simMatrix(loading, loading.v)
22
23
      faccor <- diag(4)
24
      faccor[1, 2] <- faccor[2, 1] <- NA</pre>
      faccor[1, 3] <- faccor[3, 1] <- NA
faccor[2, 3] <- faccor[3, 2] <- NA
25
26
27
      faccor.v <- diag(4)
      faccor.v[1, 2] <- faccor.v[2, 1] <- "n41"
faccor.v[1, 3] <- faccor.v[3, 1] <- "n21"</pre>
2.8
29
      faccor.v[2, 3] <- faccor.v[3, 2] <- "n31"
30
31
      RPS <- symMatrix(faccor, faccor.v)</pre>
32
33
      RTE <- symMatrix(diag(9))
34
      mtmm.model <- simSetCFA(LY=LY, RPS=RPS, RTE=RTE)</pre>
35
36
      error.cor.mis <- matrix(NA, 9, 9)
37
38
      diag(error.cor.mis) <- 1</pre>
39
      RTE.mis <- symMatrix(error.cor.mis, "n1")</pre>
40
      loading.mis <- matrix(NA, 9, 4)</pre>
41
      loading.mis[is.na(loading)] <- 0</pre>
42
      loading.mis[,4] <- 0
43
       LY.mis <- simMatrix(loading.mis, "u2")
44
      mtmm.model.mis <- simMisspecCFA(RTE = RTE.mis, LY=LY.mis)</pre>
45
46
       SimMissing <- simMissing(pmMCAR=0.2, numImps=5)</pre>
47
48
       SimData <- simData(mtmm.model, 500, misspec = mtmm.model.mis)</pre>
49
      SimModel <- simModel(mtmm.model)</pre>
50
      Output <- simResult(1000, SimData, SimModel, SimMissing)
51
52
      getCutoff(Output, 0.05)
      plotCutoff(Output, 0.05)
53
54
       summary(Output)
```

Remarks

1) If users wish to not impose missing values on a set of variables, they can specify the ignoreCols argument in the missing object in the Line 46 as:

```
SimMissing <- simMissing(pmMCAR=0.2, numImps=5, ignoreCols=c(1, 4, 7))
```

Variables 1, 4, and 7 will not have any missing values.

Functions Review

Functions	Usage
simMissing	Create a missing object

Example 8: Planned Missing Design

Model Description

This example will show how to implement a planned missing data. The model of this example is confirmatory factor analysis model with 4 factors and 12 indicators in each factor. We will make a three-form design such that the Indicators 1-3 in each factor are observed in all form, Indicators 4-6 are missing in Form 1, Indicators 7-9 are missing in Form 2, and Indicators 10-12 are missing in Form 3. The factor loading of all indicators are uniformly distributed from 0.4 to 0.9. The factor correlations are uniformly distributed from 0.1 to 0.6. The error variances are constrained such that the indicators variances will be equal to 1. The trivial model misspecification is specified in cross-loadings only, which is uniformly distributed from -0.2 to 0.2.

1* = Residual variance that makes indicator variance of 1

Trivial Misspecification: All cross loadings have U(-0.2, 0.2).

Syntax

All relevant distribution objects are specified:

```
u2 <- simUnif(-0.2, 0.2)
u49 <- simUnif(0.4, 0.9)
u16 <- simUnif(0.1, 0.6)
```

The parameter model is specified:

```
loading <- matrix(0, 48, 4)
loading[1:12, 1] <- NA
loading[13:24, 2] <- NA
loading[25:36, 3] <- NA
loading[37:48, 4] <- NA
LY <- simMatrix(loading, "u49")
faccor <- matrix(NA, 4, 4)
diag(faccor) <- 1
RPS <- symMatrix(faccor, "u16")
RTE <- symMatrix(diag(48))
CFA.model <- simSetCFA(LY=LY, RPS=RPS, RTE=RTE)</pre>
```

The trivial model misspecification is specified:

```
loading.mis <- matrix(NA, 48, 4)
loading.mis[is.na(loading)] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
CFA.model.mis <- simMisspecCFA(LY=LY.mis)
```

Next, we need to specify a missing object specifying the three-form design. We need to make a group of variables in Set X (variables without any missing values), Set 1, Set 2, and Set 3. Subjects with Form 1 will answer the variables in Set X, Set 1 and Set 2. Subjects with Form 2 will answer the variables in Set X, Set 1 and Set 3. Subjects with Form 3 will answer the variables in Set X, Set 2 and Set 3. After we specify the sets of variables, we group them together in a list and make a missing object:

```
setx <- c(1:3, 13:15, 25:27, 37:39)
set1 <- setx + 3
set2 <- set1 + 3
set3 <- set2 + 3
itemGroups <- list(setx, set1, set2, set3)

SimMissing <- simMissing(nforms=3, itemGroups=itemGroups, numImps=5)</pre>
```

The nforms argument means the number of forms in the planned missing data design. The itemGroups argument means the list representing sets of variables. The number of sets must be greater than the number of forms by 1. Then, the numImps argument is the number of imputations.

The data, model, and result objects are made and investigated:

```
SimData <- simData(CFA.model, 1000, misspec = CFA.model.mis)
SimModel <- simModel(CFA.model)
Output <- simResult(1000, SimData, SimModel, SimMissing)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summary(Output)</pre>
```

Again, the simulation could be slow because we use five copies of a dataset (multiple imputation) in each replication.

Syntax Summary

```
library(simsem)
2
3
      u2 < - simUnif(-0.2, 0.2)
4
      u49 < - simUnif(0.4, 0.9)
5
      u16 <- simUnif(0.1, 0.6)
6
7
      loading <- matrix(0, 48, 4)</pre>
      loading[1:12, 1] <- NA
8
      loading[13:24, 2] <- NA
9
      loading[25:36, 3] <- NA
10
      loading[37:48, 4] <- NA
11
      LY <- simMatrix(loading, "u49")
12
13
14
      faccor <- matrix(NA, 4, 4)
15
      diag(faccor) <- 1
16
      RPS <- symMatrix(faccor, "u16")
17
      RTE <- symMatrix(diag(48))
18
19
2.0
      CFA.model <- simSetCFA(LY=LY, RPS=RPS, RTE=RTE)</pre>
21
2.2
      loading.mis <- matrix(NA, 48, 4)</pre>
23
      loading.mis[is.na(loading)] <- 0</pre>
24
      LY.mis <- simMatrix(loading.mis, "u2")
25
      CFA.model.mis <- simMisspecCFA(LY=LY.mis)
26
      setx <- c(1:3, 13:15, 25:27, 37:39)
27
28
      set1 <- setx + 3
29
      set2 <- set1 + 3
30
      set3 \leftarrow set2 + 3
31
      itemGroups <- list(setx, set1, set2, set3)</pre>
32
33
      SimMissing <- simMissing(nforms=3, itemGroups=itemGroups, numImps=5)
34
35
      SimData <- simData (CFA.model, 1000, misspec = CFA.model.mis)
36
      SimModel <- simModel(CFA.model)</pre>
37
      Output <- simResult(100, SimData, SimModel, SimMissing)
38
      getCutoff(Output, 0.05)
39
      plotCutoff(Output, 0.05)
40
      summary(Output)
```

Remarks

1) Users may implement a two-method design. For example, Indicators 1 is an expensive measurement and users wish to measure it for only 50% of all subjects. The missing object in Line 33 can be changed to:

```
SimMissing <- simMissing(twoMethod=c(1, 0.5), numImps=5)
```

where the twoMethod argument is the specification of the two-method design. It takes a vector with two arguments: the index of variable that researchers wish to impose missing values and the proportion of missing values.

Example 9: Nonnormal Distribution

Model Description

In this example and the next example, we will discuss how to create nonnormally distributed data. We have two ways to create data and model the nonnormal distribution. The first method is to create data

from the model implied means and covariance matrix among indicators. This method has been used since the first example. In this example, the nonnormal distribution is created directly from the model implied means and covariance matrix among indicators.

This package uses Gaussian copula. The underlying distribution among indicators is a multivariate normal distribution. Then, users specify the marginal distribution of each indicator. The marginal distribution can be arbitrary. Then, a phantom datapoint is generated from the underlying distribution. The cumulative probabilities of the phantom datapoint with respect to each marginal distribution of the marginal distribution of the multivariate normal distribution are calculated. Then, the real data is the datapoint in a specified distribution that provides the same marginal cumulative probabilities of the phantom datapoint.

We will consider a CFA model with three factors and four indicators each. Factor loadings are .7. Error variances are .51. Factor correlation ranges from -0.5 to 0.5 in a uniform distribution. The model misspecification is that all cross loadings range from -0.3 to 0.3 in uniform distribution.

We will make data have high kurtosis. Let Y_1 to Y_4 have t-distribution with degrees of freedom from 2 to 5. Let Y_5 to Y_8 have chi-square distribution with degrees of freedom from 3 to 6. Let Y_9 to Y_{12} have chi-square distribution with degrees of freedom from 3 to 6 but flip them between right and left (i.e., from positively skewed to negatively skewed).

Syntax

All relevant distribution objects are specified:

```
u2 <- simUnif(-0.2, 0.2)
u5 <- simUnif(-0.5, 0.5)
t2 <- simT(2)
t3 <- simT(3)
t4 <- simT(4)
t5 <- simT(5)
chi3 <- simChisq(3)
chi4 <- simChisq(4)
chi5 <- simChisq(5)
chi6 <- simChisq(6)</pre>
```

Click <u>here</u> to see all possible distribution objects. The simT function is the random t distribution object. Its argument is its degree of freedom. Its non-centrality parameter can be specified as the second argument, which is 0 by default. The simChisq function is the random chi-squared distribution object. Its argument is its degree of freedom. Its non-centrality parameter can be specified as the second argument, which is 0 by default.

The parameter model is specified:

```
loading <- matrix(0, 12, 3)
loading[1:4, 1] <- NA
loading[5:8, 2] <- NA
loading[9:12, 3] <- NA
LX <- simMatrix(loading, 0.7)

latent.cor <- matrix(NA, 3, 3)
diag(latent.cor) <- 1
RPH <- symMatrix(latent.cor, "u5")

error.cor <- matrix(0, 12, 12)
diag(error.cor) <- 1
RTD <- symMatrix(error.cor)</pre>
CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
```

The trivial model misspecification is specified:

```
loading.mis <- matrix(NA, 12, 3)
loading.mis[is.na(loading)] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
CFA.model.mis <- simMisspecCFA(LY=LY.mis)
```

Next, we need to specify the distribution of indicators. We will use a data distribution object to model the indicator distribution. The data distribution object can be created by the simDataDist function and list the distribution objects as the arguments of the function:

```
SimDataDist <- simDataDist(t2, t3, t4, t5, chi3, chi4, chi5, chi6, chi3, chi4, chi5, chi6, reverse=c(rep(FALSE, 8), rep(TRUE, 4)))
```

The arguments, t2 to chi6, are the distribution of each variable from Y_1 to Y_{12} . The reverse argument is to flip the distribution from right and left. Because we need to flip the distributions of Y_9 to Y_{12} , we need the last four elements of the vector for the reverse attribute to be TRUE. If we wish to make

the same distribution for all variables, we can put only one distribution object, the reverse argument, and specify the p argument, which is the number of variables. For example:

```
SimDataDist <- simDataDist(chi3, p=12, reverse=TRUE)
```

This is the data distribution object such that all twelve variables are chi-squared distributed with degree of freedom of 3 and all variables' distributions are flipped. The summary function can be applied to the data distribution object to find a description of the object.

The data object can include a data distribution object:

```
SimData <- simData(CFA.Model, 200, misspec=CFA.model.mis, indDist=SimDataDist)
```

The addition argument is indDist that is the distribution of indicators specification.

The existence of the nonnormal distribution will violate the assumption of the maximum likelihood estimator in structural equation modeling. Therefore, other estimators might be needed. The estimator option can be specified by the estimator argument when building a model object:

```
SimModel <- simModel(CFA.Model, estimator="mlm")
```

mlm is the maximum likelihood estimator with Satorra and Bentler scale correction. Other estimation options can be found in the help page of the sem function from the lavaan package:

```
?sem
```

The result object can be specified and investigated:

```
Output <- simResult(1000, SimData, SimModel)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summary(Output)
```

Syntax Summary

The summary of the whole script in this example:

```
library(simsem)
3
      u2 < - simUnif(-0.2, 0.2)
      u5 <- simUnif(-0.5, 0.5)
4
5
      t2 < - simT(2)
6
      t3 < - simT(3)
7
      t4 <- simT(4)
8
      t5 <- simT(5)
      chi3 <- simChisq(3)</pre>
9
10
      chi4 <- simChisq(4)
      chi5 <- simChisq(5)
11
      chi6 <- simChisq(6)
12
13
14
      loading <- matrix(0, 12, 3)</pre>
      loading[1:4, 1] <- NA
15
16
      loading[5:8, 2] <- NA
17
      loading[9:12, 3] <- NA
      LX <- simMatrix(loading, 0.7)
18
19
```

```
latent.cor <- matrix(NA, 3, 3)
21
      diag(latent.cor) <- 1
22
      RPH <- symMatrix(latent.cor, "u5")</pre>
23
24
      error.cor <- matrix(0, 12, 12)
      diag(error.cor) <- 1</pre>
2.5
26
      RTD <- symMatrix(error.cor)
27
      CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
28
29
      loading.mis <- matrix(NA, 12, 3)</pre>
30
31
      loading.mis[is.na(loading)] <- 0</pre>
32
      LY.mis <- simMatrix(loading.mis, "u2")
33
      CFA.model.mis <- simMisspecCFA(LY=LY.mis)</pre>
34
35
      SimDataDist <- simDataDist(t2, t3, t4, t5, chi3, chi4, chi5, chi6, chi3, chi4, chi5, chi6,
      reverse=c(rep(FALSE, 8), rep(TRUE, 4)))
36
      SimData <- simData(CFA.Model, 200, misspec=CFA.model.mis, indDist=SimDataDist)
37
      SimModel <- simModel(CFA.Model, estimator="mlm")</pre>
38
      Output <- simResult(1000, SimData, SimModel)
39
      getCutoff(Output, 0.05)
40
      plotCutoff(Output, 0.05)
41
      summary(Output)
```

Remarks

1) The data distribution object can be plotted by the plotDist function. However, the data distribution object can be plotted for only one or two variables. For two variables, the correlation between two variables is 0 by default. We can change the correlation between variables by changing the r argument. For example:

```
g21 <- simGamma(2, 1)
n01 <- simNorm(0, 1)

object <- simDataDist(g21)
plotDist(object)

object2 <- simDataDist(g21, n01)
plotDist(object2, r=0.5)</pre>
```

Note that simGamma is the constructor of the random gamma distribution object. If we have the data object distribution with multiple variables already, we can select the variables by setting the var argument:

```
g21 <- simGamma(2, 1)
n01 <- simNorm(0, 1)
chi2 <- simChisq(2)
obj <- simDataDist(g21, n01, chi2)
plotDist(obj, var=c(2,3))
```

2) If users wish to use the means and variances from the specified distribution instead of the means and variances implied from a specified model, we can specify the keepScale argument as FALSE. For example, change Line 35:

```
SimDataDist <- simDataDist(t2, t3, t4, t5, chi3, chi4, chi5, chi6, chi3, chi4, chi5, chi6, reverse=c(rep(FALSE, 8), rep(TRUE, 4)), keepScale=FALSE)
```

Functions Review

Functions	Usage	
simDataDist	Create data distribution object	

Example 10: Nonnormal Factor Distribution

Model Description

This example will also show how to create nonnormal distribution. Instead of generating data directly from model-implied means and covariance matrix of observed indicators, this example uses a different approach, which will be referred as sequential method. This sequential method will generate all exogenous factors first, then endogenous factors, and then measurement errors. After that, the factor scores and error scores are combined together to get the observed scores. This sequential method will allow us to pinpoint the part inside the model that are not normally distributed. This example will show nonnormal exogenous factors. The nonnormality model can be built by the Gaussian copula approach.

We will consider a SEM model with four factors and three indicators each. The first two factors are exogenous and influence the fourth factor. The third factor fully mediates the direct effect from the first two factors to the fourth factor. The correlation between the first and the second factors ranges from -0.5 to 0.5 in uniform distribution. The effect from the first two factors to the third factors ranges from 0.3 to 0.5 in uniform distribution. The effect from the third factor to the fourth factor ranges from 0.5 to 0.7 in uniform distribution. All exogenous factor variances are 1 and all error variances of endogenous factors are equal to the value that makes overall factor variances equal to 1. The factor loadings range from 0.7 to 0.9 in uniform distribution. The measurement variance will be made so that overall indicators variances equal to 1.

There are three types of misspecification imposed here. First, the cross loadings ranges from -0.3 to 0.3 in uniform distribution. Second, the error correlations range in normal distribution with the mean of 0 and standard deviation of 0.1. Third, the direct effects are ranged from -0.1 to 0.1 in uniform distribution. The marginal distributions of the exogenous factors are chi-squared distribution with the degree of freedom of 5. The distributions of residuals of endogenous factors are normally distributed.

1* = Residual variance that makes indicator variance of 1

Trivial Misspecification:

- 1. All cross loadings have U(-0.3, 0.3).
- 2. All error correlations have N(0, 0.1).
- 3. All direct effects have U(-0.1, 0.1)

Syntax

All relevant distribution objects are specified:

```
u35 <- simUnif(0.3, 0.5)
u57 <- simUnif(0.5, 0.7)
u1 <- simUnif(-0.1, 0.1)
u3 <- simUnif(-0.3, 0.3)
n1 <- simNorm(0, 0.1)
n31 <- simNorm(0.3, 0.1)
u79 <- simUnif(0.7, 0.9)
chi5 <- simChisq(5)</pre>
```

The parameter model is specified:

```
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "u35"
starting.BE[4, 3] <- "u57"
BE <- simMatrix(path.BE, starting.BE)</pre>
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA</pre>
RPS <- symMatrix(residual.error, "n31")</pre>
loading <- matrix(0, 12, 4)
loading[1:3, 1] \leftarrow NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA
LY <- simMatrix(loading, "u79")
RTE <- symMatrix(diag(12))
SEM.Model <- simSetSEM(RPS = RPS, BE = BE, LY = LY, RTE = RTE)
```

Trivial model misspecification is specified:

```
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- NA
mis.BE <- simMatrix(mis.path.BE, "u1")

mis.loading <- matrix(NA, 12, 4)
mis.loading[is.na(loading)] <- 0
mis.LY <- simMatrix(mis.loading, "u3")

mis.error.cor <- matrix(NA, 12, 12)
diag(mis.error.cor) <- 0
mis.RTE <- symMatrix(mis.error.cor, "n1")

SEM.Mis.Model <- simMisspecSEM(BE = mis.BE, LY = mis.LY, RTE = mis.RTE)</pre>
```

Next, we need to specify the distribution of factors. Again, we use a data distribution object to model the factor distributions. We create only four distribution objects to represent the distribution of four factors.

```
facDist <- simDataDist(chi5, chi5, n1, n1)
```

Because Factors 1 and 2, Factor 3, and Factor 4 are in the different parts of the regression chain in sequential data generation, the multivariate distribution of the first two factors will be built first. In this case Factor 1 and 2's marginal distributions are chi-squared distributed. Then, the residual from Factor 3 is generated, which is normally distributed, and is combined with the predicted score from the first two factors. Finally, the normal residual from Factor 4 is generated and is combined with the predicted score from the other factors.

The data object is specified:

```
dataTemplate <- simData(SEM.Model, 500, SEM.Mis.Model, sequential=TRUE, facDist=facDist)
```

There are two additional arguments. The sequential argument is to use the sequential method of data generation. The facDist argument is to put the factor distribution objects.

The model object is specified:

```
SimModel <- simModel(CFA.Model, estimator="mlr")
```

mlr is the maximum likelihood estimator with robust Huber-White standard error with Yuan-Bentler T2 scaled test statistic.

The result object can be specified and investigated:

```
simOut <- simResult(1000, dataTemplate, modelTemplate)
getCutoff(simOut, 0.05)
plotCutoff(simOut, 0.05)
summaryParam(simOut)</pre>
```

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
2
      u35 <- simUnif(0.3, 0.5)
3
      u57 <- simUnif(0.5, 0.7)
4
      u1 <- simUnif(-0.1, 0.1)
5
6
      u3 <- simUnif(-0.3, 0.3)
7
      n1 <- simNorm(0, 0.1)
8
      n31 <- simNorm(0.3, 0.1)
9
      u79 < - simUnif(0.7, 0.9)
10
      chi5 <- simChisq(5)
11
12
      path.BE \leftarrow matrix(0, 4, 4)
13
      path.BE[3, 1:2] <- NA
      path.BE[4, 3] <- NA
14
      starting.BE <- matrix("", 4, 4)
15
      starting.BE[3, 1:2] <- "u35"
16
      starting.BE[4, 3] <- "u57"
17
18
      BE <- simMatrix(path.BE, starting.BE)</pre>
      residual.error <- diag(4)
19
      residual.error[1,2] <- residual.error[2,1] <- NA</pre>
20
21
      RPS <- symMatrix(residual.error, "n31")</pre>
22
      loading <- matrix(0, 12, 4)</pre>
23
      loading[1:3, 1] <- NA
      loading[4:6, 2] <- NA loading[7:9, 3] <- NA
24
25
      loading[10:12, 4] <- NA
26
      LY <- simMatrix(loading, "u79")
27
28
      RTE <- symMatrix(diag(12))
      SEM.Model <- simSetSEM(RPS = RPS, BE = BE, LY = LY, RTE = RTE)
29
30
31
      mis.path.BE <- matrix(0, 4, 4)
32
      mis.path.BE[4, 1:2] <- NA
33
      mis.BE <- simMatrix(mis.path.BE, "u1")</pre>
34
      mis.loading <- matrix(NA, 12, 4)
35
      mis.loading[is.na(loading)] <- 0
      mis.LY <- simMatrix(mis.loading, "u3")</pre>
36
37
      mis.error.cor <- matrix(NA, 12, 12)
      diag(mis.error.cor) <- 0</pre>
38
39
      mis.RTE <- symMatrix(mis.error.cor, "n1")</pre>
40
      SEM.Mis.Model <- simMisspecSEM(BE = mis.BE, LY = mis.LY, RTE = mis.RTE)
41
      facDist <- simDataDist(chi5, chi5, n1, n1)</pre>
42
43
      dataTemplate <- simData(SEM.Model, 500, SEM.Mis.Model, sequential=TRUE, facDist=facDist)</pre>
      modelTemplate <- simModel(SEM.Model, estimator="mlr")</pre>
44
      simOut <- simResult(1000, dataTemplate, modelTemplate)</pre>
45
46
      getCutoff(simOut, 0.05)
      plotCutoff(simOut, 0.05)
```

Remarks

The regression residual could be nonnormally distributed. For example, the residual distribution of the third and the fourth factors are reversed chi-squared distributions with degrees of freedom of 10. The syntax in Line 42 can be changed:

```
chi10 <- simChisq(10)
facDist <- simDataDist(chi5, chi5, chi10, chi10, reverse=c(F, F, T, T))</pre>
```

2) The measurement error could be nonnormally distributed as well. For example, the measurement error are a t-distribution with 10 degrees of freedom. The syntax in Line 42-43 can be changed:

```
t10 < - simT(10)
facDist <- simDataDist(chi5, chi5, n1, n1)</pre>
errorDist <- simDataDist(t10, p=12)
dataTemplate <- simData(SEM.Model, 500, SEM.Mis.Model, sequential=TRUE, facDist=facDist,
   errorDist=errorDist)
```

The data distribution object representing the measurement error distribution is added to the errorDist argument of the constructor of data object.

Example 11: Single Indicator

Model Description

This example will show how to create a factor with a single indicator. We will not introduce any new syntax here; however, we will emphasize on the mean and variance vectors. We will simulate a model with three factors: two of which are single-indicator factors and the other factor has three indicators. The multiple indicator factor and one single-indicator factor predict the other single-indicator factor. The loadings of the multiple indicator factor are uniformly distribution from 0.7 to 0.9 and the error variances are set to make the indicator variance of 1. The factor loadings of the single-indicator factors are freely estimated with a population parameter of 1. The factor loading is free instead of the factor variance to set the scale of factor variance at 1 and making the latent covariance matrix equivlent to a correlation matrix. The error variances of the single-indicator factors are fixed to 0. The variances of all factors are fixed to 1. The exogenous factor correlation is uniformly distributed from -0.5 to 0.5, as well as the regression paths toward the only endogenous factor. We still have model misspecification in error correlations (normally distributed with the mean of 0 and standard deviation of 1). The misspecified error correlations are not applicable to the indicators in the single-indicator factor. The exogenous singleindicator factor is chi-squared distributed with three degrees of freedom.

1* = Residual variance that makes indicator variance of 1

Trivial Misspecification: All error correlations have N(0, 0.1).

Syntax

All relevant distribution objects are specified:

```
u79 <- simUnif(0.7, 0.9)
u5 <- simUnif(-0.5, 0.5)
n01 <- simNorm(0, 1)
c5 <- simChisq(5)</pre>
```

Factor loading are specified:

```
loading <- matrix(0, 5, 3)
loading[1:3, 1] <- NA
loading[4, 2] <- NA
loading[5, 3] <- NA
loadingVal <- matrix(0, 5, 3)
loadingVal[1:3, 1] <- "u79"
loadingVal[4, 2] <- 1
loadingVal[5, 3] <- 1
LY <- simMatrix(loading, loadingVal)</pre>
```

Note that the factor loadings of Indicators 4 and 5 are free and set their parameter values as 1. The factor correlation is specified:

```
facCor <- diag(3)
facCor[2, 1] <- NA
facCor[1, 2] <- NA
RPS <- symMatrix(facCor, "u5")</pre>
```

The regression paths among factors are specified:

```
path <- matrix(0, 3, 3)
path[3, 1] <- NA
path[3, 2] <- NA
BE <- simMatrix(path, "u5")</pre>
```

The error correlations are specified:

```
RTE <- symMatrix(diag(5))
```

Importantly, the indicator variances (not measurement error variance) are specified:

```
VY <- simVector(c(NA, NA, NA, 0, 0), 1)
```

The indicator variances of the first three indicators are set as free and have parameter values of 1. It means that the error variances are free and the parameter values of the error variances are the values that make the indicator variances equal 1. The last two indicators, the single-indicator factors, are not free and fixed as 0. For this package, if the total indicator variance is set to 0, it means that error variance is set to 0. This feature sallow users to set measurement error of 0 while allowing them to set the total variance of other variables at the same time.

The set of SEM object is specified:

```
SEM.Model <- simSetSEM(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY)
```

Trivial model misspecification is specified:

```
errorCorMis <- diag(5)
errorCorMis[1:3, 1:3] <- NA
errorCorMis <- diag(5)
RTE.mis <- symMatrix(errorCorMis, n01)

SEM.Model.Mis <- simMisspecSEM(RTE=RTE.mis)</pre>
```

The distribution of factors (one multiple indicator factor and two single indicator factors) is specified:

```
facDist <- simDataDist(n01, c5, n01)</pre>
```

The data object, model object, and result object are specified:

```
SimData <- simData(SEM.Model, 200, misspec=SEM.Model.Mis, sequential=TRUE, facDist=facDist)
SimModel <- simModel(SEM.Model, estimator="mlm")
Output <- simResult(1000, SimData, SimModel)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summaryParam(Output)
```

Syntax Summary

The summary of the whole script in this example is:

```
n01 < - simNorm(0, 1)
6
      c5 <- simChisq(5)
7
      loading <- matrix(0, 5, 3)</pre>
8
9
      loading[1:3, 1] <- NA
      loading[4, 2] <- NA loading[5, 3] <- NA
10
11
      loadingVal <- matrix(0, 5, 3)</pre>
12
      loadingVal[1:3, 1] <- "u79"
13
      loadingVal[4, 2] <- 1
loadingVal[5, 3] <- 1</pre>
14
15
16
      LY <- simMatrix(loading, loadingVal)
17
18
      facCor <- diag(3)</pre>
19
      facCor[2, 1] <- NA
20
      facCor[1, 2] <- NA
21
      RPS <- symMatrix(facCor, "u5")</pre>
22
23
      path \leftarrow matrix (0, 3, 3)
24
      path[3, 1] <- NA
25
      path[3, 2] <- NA
26
      BE <- simMatrix(path, "u5")
27
28
      RTE <- symMatrix(diag(5))
29
30
      VY \leftarrow simVector(c(NA, NA, NA, 0, 0), 1)
31
32
      SEM.Model <- simSetSEM(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY)
33
34
      errorCorMis <- diag(5)
35
      errorCorMis[1:3, 1:3] <- NA
36
      errorCorMis <- diag(5)</pre>
37
      RTE.mis <- symMatrix(errorCorMis, n01)
38
39
      SEM.Model.Mis <- simMisspecSEM(RTE=RTE.mis)</pre>
40
41
      facDist <- simDataDist(n01, c5, n01)</pre>
42
43
      SimData <- simData(SEM.Model, 200, misspec=SEM.Model.Mis, sequential=TRUE, facDist=facDist)
44
      SimModel <- simModel(SEM.Model, estimator="mlm")</pre>
4.5
      Output <- simResult(1000, SimData, SimModel)
46
      getCutoff(Output, 0.05)
47
      plotCutoff(Output, 0.05)
48
      summaryParam(Output)
```

Remarks

1) The example specifies single indicator factors by freeing the factor loadings and estimating the indicator intercepts to specify the mean. Instead, we can estimate the factor variance and factor mean as another parameterization of the single indicator. The syntax is more complicated. The factor loading in Lines 8-16 can be changed to:

```
loading <- matrix(0, 5, 3)
loading[1:3, 1] <- NA
loading[4, 2] <- 1
loading[5, 3] <- 1
loadingVal <- matrix(0, 5, 3)
loadingVal[1:3, 1] <- "u79"
LY <- simMatrix(loading, loadingVal)</pre>
```

The factor loadings of the single-indicator factors are fixed to 1. In addition, Lines 31-32 can be changed to:

```
VE <- simVector(c(1, NA, NA), c(0, 1, 1))
ME <- simVector(c(0, NA, NA), c(0, 0, 0))
```

```
TY <- simVector(c(NA, NA, NA, 0, 0), rep(0, 5))
SEM.Model <- simSetSEM(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY, VE=VE, ME=ME, TY=TY)
```

VE is the total variance of factors. Here we fix the variance of the first factor as 1. The variances of the single-indicator factors are free and their parameter values are 1. ME is the total mean of factors. The overall mean of the first factor is fixed to 1. The overall mean of the second and the third factors are free and their parameter values are 1. TY is the indicator intercept. The first three indicators intercepts are freely estimates and their parameter values are 1. The measurement intercepts of the single-factor indicator are fixed to 1. The measurement intercepts of the other two indicators are fixed to 1.

Example 12: Missing at Random and Auxiliary Variable

Model Description

This example will demonstrate how to model an auxiliary variable in the data and how to create data with missing data that is missing at random (MAR) given the auxiliary variable. The auxiliary variable is not the variables of interest but it influences the missing pattern (e.g., the higher the value of the auxiliary variable is, the higher the chance of missing in a target variable). In this example, we will make all target variables have a chance of missing if the specified auxiliary variables are greater a given value (e.g., its mean).

The model in this example is two-factor confirmatory factor analysis model with three indicators each. The factor loadings are uniformly distributed from 0.5 to 0.7. The factor correlation is uniformly distributed from 0.3 to 0.5. The error covariances are set to make the indicator variance of 1. Next, an auxiliary variable with a variance of 1 is included in the model and it correlates with measurement errors ranging from -0.4 to 0.4 based on a uniform distribution. For the model misspecification, the cross loadings range from -0.2 to 0.2 based on a uniform distribution. The overall percent of missing values is 10%. However, for each case the data may be missing if and only if the auxiliary-variable value is greater than 0.5. Because the auxiliary variable has the mean of 0 and the variance of 1, the auxiliary-variable value can be interpreted as standard score.

Syntax

Missing

No missing if $Y_7 \le 0.5$

All relevant distribution objects are specified:

```
u57 <- simUnif(0.5, 0.7)
u4 < - simUnif(-0.4, 0.4)
u35 <- simUnif(0.3, 0.5)
```

The model parameters are specified:

```
loading <- matrix(0, 7, 2)
loading[1:3, 1] <- NA loading[4:6, 2] <- NA
LX <- simMatrix(loading, "u57")
latent.cor <- matrix(NA, 2, 2)</pre>
diag(latent.cor) <- 1</pre>
RPH <- symMatrix(latent.cor, "u35")</pre>
error.cor <- diag(7)
error.cor[1:6, 7] <- NA
error.cor[7, 1:6] <- NA
RTD <- symMatrix(error.cor, "u4")
VX <- simVector(rep(NA, 7), 1)
CFA.Model.Aux <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, VX = VX)
```

There are two new things here. First, the correlations between the auxiliary variable and the target-variables measurement errors are freely estimated. Second, the VX command is the total variances of indicators. As shown in Example 1, this is the default of the program. This command is explicitly shown here to emphasize the existence of the auxiliary variable.

Trivial model misspecification can be specified:

```
mis.loading <- matrix(0, 7, 2)
mis.loading[1:3, 2] <- NA
mis.loading[4:6, 1] <- NA
mis.LY <- simMatrix(mis.loading, "u2")

CFA.Mis.Model <- simMisspecCFA(LY = mis.LY)</pre>
```

Note that the auxiliary variables are not involved with trivial model misspecification: the cross loadings are not related to Variable 7.

We create a data object (with 200 cases) based on this model:

```
SimData <- simData(CFA.Model.Aux, 200, misspec = CFA.Mis.Model)
```

Actually, we can use CFA.Model.Aux for creating a model object. However, accounting for an auxiliary variable is a tedious task. This package allows you to only set the model for the analysis model and specify the list of auxiliary variables. Then, the package will create the model accounting for auxiliary variables (in the full information maximum likelihood) or take out the list of auxiliary variables and analyze by the analysis model in the multiple imputation.

Now, you may specify the analysis model (i.e., with six variables). If you already have the model with auxiliary variables, you may extract only a part of the model, CFA.Model.Aux, by the extract function:

```
CFA.Model <- extract(CFA.Model.Aux, y=1:6)
```

The y argument is the index of target variables. We need to keep the first six variables for the analysis model. You may use the summary function to check the new object.

The model object is created:

```
SimModel <- simModel(CFA.Model)
```

This model object will have only six target variables. Then, we need to specify the missing object to impose missing values such that missingness depends on the auxiliary variable. To repeat, the missing values are imposed only when the covariate value of a case is over 0.5. The missing object is specified:

```
SimMissing <- simMissing(pmMAR=0.1, cov=7, numImps=5, threshold=0.5)
```

The pmMAR argument is the percentage of overall missing values. The cov argument is the index of covariate in a dataset (a variable that will not have missing values). The numImps argument is the number of imputations, which implies that the following data analysis will use multiple imputation. The pCov argument is the proportion of data that have missing values based on MAR process.

The selection is based on the values of the specified covariate. The proportion of the auxiliary variable over 0.5 is approximately 31%. Therefore, there is a 32% (overall missing / proportion of auxiliary variable = .1 / .31 = .32) chance that the other variables corresponding to the case which the value of auxiliary variable is over 0.5 will be missing.

To generate a dataset, impose missing values, and analyze the generated data. The syntax is:

```
data <- run(SimData, dataOnly=F)
data <- run(SimMissing, data)
out <- run(SimModel, data, simMissing=SimMissing)
summary(out)</pre>
```

The first line is to create data. The dataOnly = F provides the data, population parameter values and other setups in the data generation as well. The second line imposes missing values on the data. The third line analyzes the data with a specified missing object. The list of auxiliary variables is the cov argument in the missing object. The fourth line summarizes the output from data analysis. In multiple imputation, all variables are used in the multiple imputation and the auxiliary variables will be excluded from the data analysis. If full information maximum likelihood is used (not specify the numImps argument in the missing object), the auxiliary variables will be included in the model. See Remarks for further details.

The result object is specified and investigated:

```
Output <- simResult(1000, SimData, SimModel, SimMissing)
getCutoff(Output, 0.05)
plotCutoff(Output, 0.05)
summaryParam(Output)
```

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
2
3
     u57 < - simUnif(0.5, 0.7)
4
     u4 < - simUnif(-0.4, 0.4)
     u35 < - simUnif(0.3, 0.5)
5
6
     u2 < - simUnif(-0.2, 0.2)
7
     n01 < - simNorm(0, 1)
8
     loading <- matrix(0, 7, 2)</pre>
9
     loading[1:3, 1] <- NA
10
     loading[4:6, 2] <- NA
11
     LX <- simMatrix(loading, "u57")
12
13
     latent.cor <- matrix(NA, 2, 2)
14
     diag(latent.cor) <- 1</pre>
1.5
     RPH <- symMatrix(latent.cor, "u35")
     error.cor <- diag(7)
16
     error.cor[1:6, 7] <- NA
17
18
     error.cor[7, 1:6] <- NA
19
     RTD <- symMatrix(error.cor, "u4")
20
     VX <- simVector(rep(NA, 7), 1)
2.1
     CFA.Model.Aux <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD, VX = VX)
22
2.3
     mis.loading <- matrix(0, 7, 2)
     mis.loading[1:3, 2] <- NA
24
2.5
     mis.loading[4:6, 1] <- NA
26
     mis.LY <- simMatrix(mis.loading, "u2")
27
     CFA.Mis.Model <- simMisspecCFA(LY = mis.LY)</pre>
28
29
      SimData <- simData(CFA.Model.Aux, 200, misspec = CFA.Mis.Model)
30
```

```
CFA.Model <- extract(CFA.Model.Aux, y=1:6)
32
33
      SimMissing <- simMissing (pmMAR=0.1, cov=7, numImps=5, threshold=0.5)
34
35
      SimModel <- simModel(CFA.Model)</pre>
36
37
     Output <- simResult(1000, SimData, SimModel, SimMissing)
     getCutoff(Output, 0.05)
38
39
     plotCutoff(Output, 0.05)
40
      summaryParam(Output)
```

Remarks

1) To use the full-information maximum likelihood, the syntax in Line 33 can be specified as:

```
SimMissing <- simMissing(pmMAR=0.1, cov=7, threshold=0.5)
```

The numImps is not specified here (it can also be set it to 0 for FIML).

- 2) The techniques used to account for auxiliary variables in the full information maximum likelihood method in this package are both extra-dependent-variables and saturated-correlates approaches. For all path analysis models, the extra dependent-variables approach is used. For all confirmatory factor analysis and structural equation modeling models, the saturated-correlates approach is mainly used. When an indicator with no measurement error exists (see Examples 11 or 12), the extra-dependent-variables approach is used such that the factors on the indicators predict the auxiliary variables. See here for the details of both approaches.
- 3) The list of auxiliary variables can be specified when building the model object. Line 40 can be changed to:

```
SimModel <- simModel(CFA.Model, auxiliary = 7)
```

The auxiliary argument can take the index (column number) or the variable name of the desired auxiliary variable.

4) If we want to create data that the missingness depends on the value of an auxiliary variable but analyze the data by not accounting for the auxiliary variable, the syntax in Lines 33-35 can be changed to:

```
SimMissing <- simMissing(pmMAR=0.1, cov=7, numImps=5, threshold = 0.5, covAsAux=FALSE)

SimModel <- simModel(CFA.Model, indLab=1:6)
```

The covAsAux argument in the simMissing function means to not include the specified covariate as auxiliary variable but treat as the real variable in data analysis. In other words, all seven variables are used in data analysis. Therefore, the indLab argument in the simModel is used to extract only the first six variables in data analysis. By this way, the auxiliary variable will not be accounted, as well as analyzed, by model object.

Functions Review

Functions	Usage
extract	Extract a subset of a specified object

Example 13: Analyzing Real Data

Model Description

This example will show how to analyze data by this package. The aim of this package is not to fit structural equation models from real data. For fitting structural equation models in R we recomend the sem, lavaan and OpenMx packages. This package, rather, will use the result for data analysis as parameters in data generation of a simulation study. This procedure will yield a distribution of fit indices from simulated data, which can compare with the result of the real data. This procedure is called a Monte Carlo approach for model evaluation.

This example will show how to analyze the Holzinger and Swineford (1939) data that have three factors with three indicators each. The data will be analyzed by confirmatory factor analysis with three factors with three indicators each. The fixed factor method of scale identification is used. The resulting standardized parameter estimates will be used for data generation. Then, cross-loadings with uniform distribution from -0.2 to 0.2 are added to the parameter estimates to generate trivial model misspecification. Then, the generated data (from both real parameters and trivial misspecification) is analyzed and provide the distribution of fit indices.

Syntax

In this example, we do not need to specify parameter values. Therefore, only parameter specifications are needed. Thus, the matrix object, symmetric matrix object, vector object, and the specification using simSet functions are not needed. Instead, the parameter specifications can be used and combined together by simParam functions (simParamCFA, simParamPath, or simParamSEM). For the CFA model, the simParamCFA is needed:

```
loading <- matrix(0, 9, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
model <- simParamCFA(LY=loading)</pre>
```

The loading matrix shows which elements are freely estimated and which elements are fixed to 0. The simParamCFA function will build the analysis model. By default of this function, all factor variances are fixed to 1, all factor covariances are free, all error variances are free, all error covariances are fixed to 0, all factor means are fixed to 0, and all measurement intercepts are free. See the Remarks

section for the manual specification of all matrices. The Holzinger and Swineford (1939) data can be found from the lavaan package:

```
library(lavaan)
summary(HolzingerSwineford1939)
```

The target variables used for the analysis are x1 to x9. Thus, the model object is specified:

```
SimModel <- simModel(model, indLab=paste("x", 1:9, sep=""))
```

The indLab argument is used to select a subset of variables for data analysis. The paste ("x", 1:9, sep="")) is used to get a vector of x1, x2, ..., x9. The model object will search for these variable names and select for data analysis. The order of the names must be the same as the order of indicators in the analysis model. The data is analyzed:

```
out <- run(SimModel, HolzingerSwineford1939)
summary(out)</pre>
```

The data and the model object can also be used to build a simulation study based on the parameter estimates obtained from the output. The default of this package is to use standardized parameter estimates so that the trivial model misspecification can be added in a meaningful way (note that some models are not standardized, e.g., growth curve model). The simulation study is specified by the runFit function:

```
output <- runFit(SimModel, HolzingerSwineford1939, 1000)
```

The result of the runFit function is a result object. The fit index cutoff using the alpha level of .05 can be visualized by the plotCutoff function:

```
plotCutoff(output, 0.05)
```

Because we have the analysis output from the real data, we can compare the fit indices obtained by the real data analysis and the fit indices from the simulation study by the pValue function:

```
pValue(out, output)
```

The first argument of the pValue function is the analysis output from the real data. The second argument is the result object from the simulation study. The usedFit argument can be used to select desired fit indices. The result provides two extra values: andRule and orRule. The andRule is based on the principle that the model is retained only when all fit indices provide good fit. The proportion is calculated from the number of replications that have all fit indices indicating a better model than the observed data. The proportion from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based on the principle that the model is retained only when at least one fit index provides good fit. The proportion is calculated from the number of replications that have at least one fit index indicating a better model than the observed data. The proportion from the orRule is the most

lenient rule in retaining a hypothesized model. Both rules are based on only selected fit indices. The default uses seven fit indices: Chi-square, AIC, BIC, RMSEA, CFI, TLI, and SRMR.

The previous code does not account for trivial model misspecification yet. The simulated data are generated from the observed results only. Trivial model misspecification can be added by creating the misspecification object first and putting the object in the misspec argument of the simFit function:

```
u2 <- simUnif(-0.2, 0.2)
loading.mis <- matrix(NA, 9, 3)
loading.mis[is.na(loading)] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
misspec <- simMisspecCFA(LY=LY.mis)
output2 <- runFit(SimModel, HolzingerSwineford1939, 1000, misspec=misspec)
pValue(out, output2)</pre>
```

From here, the pValue from the model with trivial misspecification will be larger than the model without trivial misspecification. Therefore, the chance to retain the hypothesized model is higher when accounting for trivial model misspecification.

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
      library(lavaan)
3
      loading <- matrix(0, 9, 3)
      loading[1:3, 1] <- NA loading[4:6, 2] <- NA
4
5
6
      loading[7:9, 3] <- NA
7
      model <- simParamCFA(LY=loading)
8
      SimModel <- simModel(model, indLab=paste("x", 1:9, sep=""))</pre>
9
      out <- run(SimModel, HolzingerSwineford1939)</pre>
10
11
      ### Making result object without trivial model misspecification
12
      #output <- runFit(SimModel, HolzingerSwineford1939, 1000)</pre>
13
      #pValue(out, output)
14
15
      u2 < - simUnif(-0.2, 0.2)
      loading.mis <- matrix(NA, 9, 3)</pre>
16
17
      loading.mis[is.na(loading)] <- 0</pre>
18
      LY.mis <- simMatrix(loading.mis, "u2")
19
      misspec <- simMisspecCFA(LY=LY.mis)</pre>
      output2 <- runFit(SimModel, HolzingerSwineford1939, 1000, misspec=misspec)
20
2.1
      pValue(out, output2)
```

Remarks

1) All parameters can be explicitly specified in the simParamCFA function by changing Line 7

```
facCov <- matrix(NA, 3, 3)
diag(facCov) <- 1
errorCov <- diag(NA, 9)
intercept <- rep(NA, 9)
facMean <- rep(0, 3)
model <- simParamCFA(LY=loading, PS=facCov, TE=errorCov, TY=intercept, AL=facMean)</pre>
```

2) The simulated data can be generated by unstandardized parameters. The usedStd argument in the runFit function can be specified as FALSE to use standardized parameters for data generation. The Line 20 can be changed to:

```
output2 <- runFit(SimModel, HolzingerSwineford1939, 1000, misspec=misspec, usedStd=FALSE)
```

3) Most of arguments in the runFit function are similar to the simData function or the simResult function. The help page can be found by:

method?runFit

The useful arguments are sequential (for the sequential method for data generation) and multicore (for parallelization across processors).

4) The usedFit argument in the pValue function can be specified so the function will find and calculate all *p* values based on only interested fit indices. For example, if we are interested in only RMSEA and CFI, Line 21 can be changed:

```
pValue(out, output2, usedFit=c("RMSEA", "CFI"))
```

Functions Review

Functions	Usage
simParamCFA	Create a set of free parameters for CFA
simParamPath	Create a set of free parameters for path analysis
simParamSEM	Create a set of free parameters for SEM
runFit	Use the result from real data to run a Monte Carlo simulation
pValue	Find a p value

Example 14: Analyzing Real Data with Multiple Imputation

Model Description

This example demonstrates how to analyze data with this package using multiple imputation and how to use a Monte Carlo approach for model evaluation. The PoliticalDemocracy from Bollen (1989; data are available in the lavaan package) will be used. The analysis model is a mediation model among three factors. The fixed factor method of scale identification is used. The resulting standardized parameter estimates are used for data generation. Then, cross-loadings with uniform distribution from -0.2 to 0.2 are added to the parameter estimates to generate trivial model misspecification. Then, the generated data (from both real parameters and trivial misspecification) is be analyzed and provide the distribution of fit indices.

Syntax

The factor loading parameters are specified:

```
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
```

The regression among factors is specified:

```
path <- matrix(0, 3, 3)
path[2:3, 1] <- NA
path[3, 2] <- NA</pre>
```

Because this model is a SEM, the simParamSEM is needed to build the model of free parameters. This function requires only the factor loading matrix and regression coefficients among factors:

```
param <- simParamSEM(LY=loading, BE=path)
```

By default, all factor (residual) variances are fixed to 1, all exogenous factor covariances are free, all endogenous factor covariances are fixed to 0, all error variances are free, all error covariances are fixed to 0, all factor means (intercept) are fixed to 0, and all measurement intercepts are free. See the

Remarks section for the manual specification of all matrices. The Political Democracy can be found from the lavaan package:

```
library(lavaan)
summary(PoliticalDemocracy)
```

To show how to analyze real data by multiple imputation, we need to impose missingness onto the data. We will use the imposeMissing function to make 3% of the data missing completely at random:

```
usedData <- imposeMissing(PoliticalDemocracy, pmMCAR=0.03)
```

Using the imposeMissing function is exactly the same as making a missing object and running it. The imposeMissing function is built as a shortcut for imposing missing data. Now, pretend that the usedData is the actual data that we obtained.

The target variables used for the analysis are $\times 1$ to $\times 3$ and y1 to y8. Thus, the model object is specified:

```
model <- simModel(param, indLab=c(paste("x", 1:3, sep=""), paste("y", 1:8, sep="")))
```

The data are analyzed:

```
miss <- simMissing(numImps=5)
out <- run(model, usedData, miss)
summary(out)</pre>
```

Because we need to use multiple imputation, the missing object is required. The numImps argument is the number of imputed data. The miss object is put in the run function to analyze data by multiple imputation.

Trivial model misspecification with cross-loadings ranged from -0.2 to 0.2 is specified:

```
u2 <- simUnif(-0.2, 0.2)
loading.mis <- matrix(NA, 11, 3)
loading.mis[is.na(loading)] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
misspec <- simMisspecSEM(LY=LY.mis)</pre>
```

The simulation study based on the real data with trivial model misspecification is specified by the runFit function and the pValue function is used to find the p value based on the Monte Carlo approach:

```
output <- runFit(model, usedData, 200, misspec=misspec, missModel=miss)
pValue(out, output)</pre>
```

Note that the runFit function will use the same missing data pattern on the real data imposing to all simulated data. See the Remarks section for imposing different patterns.

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
      library(lavaan)
3
      loading <- matrix(0, 11, 3)</pre>
4
      loading[1:3, 1] <- NA
5
      loading[4:7, 2] <- NA
6
      loading[8:11, 3] <- NA
7
      path <- matrix(0, 3, 3)
8
      path[2:3, 1] <- NA
      path[3, 2] <- NA
9
10
      param <- simParamSEM(LY=loading, BE=path)</pre>
11
      usedData <- imposeMissing(PoliticalDemocracy, pmMCAR=0.03)</pre>
12
13
      model <- simModel(param, indLab=c(paste("x", 1:3, sep=""), paste("y", 1:8, sep="")))</pre>
14
15
      miss <- simMissing(numImps=5)</pre>
16
      out <- run(model, usedData, miss)</pre>
17
18
      u2 < - simUnif(-0.2, 0.2)
      loading.mis <- matrix(NA, 11, 3)</pre>
19
      loading.mis[is.na(loading)] <- 0</pre>
20
      LY.mis <- simMatrix(loading.mis, "u2")
2.1
22
      misspec <- simMisspecSEM(LY=LY.mis)</pre>
23
      output <- runFit(model, usedData, 200, misspec=misspec, missModel=miss)</pre>
24
      pValue(out, output)
```

Remarks

1) All parameters can be explicitly specified in the simParamSEM function by changing Line 10:

2) The missing data can be handled by full information maximum likelihood (instead of multiple imputation) by changing Line 23:

```
output <- runFit(model, usedData, 200, misspec=misspec)
```

The default of the runFit function is to use the full information maximum likelihood method.

3) If we want to use a missing object to generate different patterns of missing data in the simulation instead of using the missing pattern from the real data, we need to build a missing object and change the empiricalMissing argument in the runFit function. For example, we 20% of the data to be missing completely at random. First, Line 15 can be changed to:

```
miss <- simMissing(pmMCAR=.20, numImps=5)
```

Next, Line 23 can be changed by specifying the empirical Missing argument as FALSE to generate the missing pattern by the missing object:

```
output <- runFit(model, usedData, 200, misspec=misspec, empiricalMissing=FALSE, missModel=miss)
```

If users need complete data, a blank missing object can be specified and put in the runFit runction. The blank missing object can be specified:

miss <- simMissing()</pre>

Functions Review

Functions	Usage
imposeMissing	Impose missing data onto a real data

Example 15: Modeling a Covariate

Model Description

This example will show how to create a model with a covariate and analyze the data with or without the covariate. The target model has two factors with three indicators each. The second factor is regressed on the first factor. The parameters are shown in the figure below. The variable Y_7 is an indicator-level covariate. The effect of the covariate ranges from 0.3 to 0.5 in standardized metric. The trivial misspecification is also added during the data generation process as shown in the box below.

1* = Residual variance that makes indicator variance of 1

Trivial Misspecification: All error correlations have N(0, 0.1).

We will analyze the simulated data by 1) excluding the covariate from the analysis, 2) accounting for the covariate as the model described above, 3) accounting for the covariate by orthogonalization, and 4) accounting for the covariate at the factor level, as shown in the figure below.

Syntax

All relevant distribution objects are specified:

```
u35 <- simUnif(0.3, 0.5)
u57 <- simUnif(0.5, 0.7)
n01 <- simNorm(0, 1)
```

Factor loadings are specified:

```
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "u57"
loadingVal[4:6, 2] <- "u57"
loadingVal[1:6, 3] <- "u35"
loadingVal[7, 3] <- 1
LY <- simMatrix(loading, loadingVal)</pre>
```

Notice that the factor loading of Indicators 7 on Factor 3 is free with the parameter value of 1. The factor correlations are specified:

```
RPS <- symMatrix(diag(3))
```

The regression paths among factors are specified:

```
path <- matrix(0, 3, 3)
path[2, 1] <- NA
BE <- simMatrix(path, "u35")</pre>
```

The error correlations are specified:

```
RTE <- symMatrix(diag(7))
```

Importantly, the indicator variance (not measurement error variance) is specified:

```
VY <- simVector(c(rep(NA, 6), 0), rep(1, 7))
```

Similar to Example 11, the indicator variances of the first six indicators are set as free and have parameter values of 1. This means that the error variances are free and the parameter values of the error variances are the values that make the indicator variances equal 1. The last indicator, the covariate is fixed as 0. For this package, if the total indicator variance is set to 0, it means that error variance is set to 0. This feature allows users to set measurement error of 0 while allowing them to set the total variance of other variables at the same time.

The set of SEM objects are specified:

```
Cov.Model <- simSetSEM(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY)
```

Trivial model misspecification is specified:

```
errorCorMis <- diag(7)
errorCorMis[1:6, 1:6] <- NA
errorCorMis <- diag(7)
RTE.mis <- symMatrix(errorCorMis, n01)
Cov.Model.Mis <- simMisspecSEM(RTE=RTE.mis)
```

The data object is specified:

```
SimData <- simData(Cov.Model, 200, misspec=Cov.Model.Mis)
```

The first analysis model is the model that excludes the covariate. This analysis model is specified:

```
No.Cov.Model <- extract(Cov.Model, y=1:6, e=1:2)
model1 <- simModel(No.Cov.Model, indLab=paste("y", 1:6, sep=""))
Output1 <- simResult(100, SimData, model1)
```

The second analysis model is the model used for data generation. This analysis model is specified:

```
model2 <- simModel(Cov.Model)
Output2 <- simResult(100, SimData, model2)</pre>
```

Before building the third analysis model, we need to know how to orthogonalize data and how to transform the data within the result object. First, the function used for orthogonalization is residualCovariate. For example, if we wish to orthogonalize the Variables 2-7 by the Variable 1 in the attitude dataset, the function can be specified:

```
head(attitude)
dat <- residualCovariate(attitude, targetVar=2:7, covVar=1)
head(dat)</pre>
```

The first argument of the residualCovariate function is the target dataset. The second argument, targetVar, is the variables for orthogonalization. The third argument, covVar, is the

covariate. Note that covariate can be more than one variable. The head function is to view only a first few rows of a dataset. Note that the second to seventh variables have been orthogonalized.

Next, we will introduce a function object that will hold all specifications of a function and can be used for analysis later. For example, if we would like to hold a specification that we wish to use the residualCovariate function that the target variables are Variables 2-7 and the covariate is Variable 1. The function object can be built be the simFunction function:

```
fun <- simFunction(residualCovariate, targetVar=2:7, covVar=1)
```

This function object can be run on the target data as

```
dat <- run(fun, attitude)
head(dat)</pre>
```

When running the function object, the first following argument can be anything that we usually put as the first argument when we call the function. For the residualCovariate function, a dataset should follow the function object name.

As described above, the function object will save a specification of a function and will used for data transformation when the package builds a result object. Thus, the third analysis model, the model using orthogonalization, is specified:

```
ortho <- simFunction(residualCovariate, targetVar=1:6, covVar=7)
model3 <- model1
Output3 <- simResult(100, SimData, model3, objFunction=ortho)
```

The analysis model is exactly the same as the first analysis model.

The fourth analysis model that accounts the covariate in the factor level is specified:

```
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7, 3] <- NA
path <- matrix(0, 3, 3)
path[2, 1] <- NA
path[2, 1] <- NA
path[1, 3] <- NA
path[2, 3] <- NA
path[2, 7] <- NA
path[2, 3] <- NA
path[2, 3] <- NA
path[2, 3] <- NA
errorCov <- diag(NA, 7)
errorCov[7, 7] <- 0
facCov <- diag(3)
Fac.Cov.Model <- simParamSEM(LY=loading, BE=path, TE=errorCov, PS=facCov)
model4 <- simModel(Fac.Cov.Model)
Output4 <- simResult(100, SimData, model4)</pre>
```

Note that the results from the second and the third analysis models are similar.

If we summarize the result objects from the Analysis Model 1, 3, and 4 (which are Output1, Output3, and Output4), we will find the note that the population underlying the data generation model does not show up and we cannot find any biases in parameter estimates or standard errors. The reason is that the population parameters underlying the data generation and the analysis model are not the same (e.g., seven indicators in data generation but six indicators in analysis model). We can still view population parameters underlying the data generation process by the summaryPopulation function:

```
summaryPopulation(Output1)
```

We can also extract the population model underlying each replication by the getPopulation function as

```
param <- getPopulation(Output1)
```

The population underlying the data generation model includes the covariate. If we exclude the covariate from the population set, the population underlying the data generation model should be able to compare with the results from the simulation study. That is, we will exclude the population model that involves with Indicator 7 and Factor 3 and put it back into the result object. The modification of parameter model can be done with the extract function:

```
param <- extract(param, y=1:6, e=1:2)
```

The y argument is the index of indictors to be kept. The e, which is stand for eta, is the index of factors to be kept. These modified parameter values can be put back in the result object with the setPopulation function:

```
Output1 <- setPopulation(Output1, param) summary(Output1)
```

The first argument of the setPopulation function is the target result object. The second argument is the parameter values to be input. Now, the summary function will provide bias in parameter estimates and standard errors. This procedure can also be implemented on the result object from the third analysis model:

```
param <- getPopulation(Output3)
param <- extract(param, y=1:6, e=1:2)
Output3 <- setPopulation(Output3, param)</pre>
```

The same procedure cannot implement on the fourth analysis model because the analysis model is not nested in the data generation model (we have extra parameters in controlling the covariate in the factor level). We can input the appropriate parameter model instead:

```
loadingVal <- matrix(0, 7, 3)</pre>
loadingVal[1:3, 1] <- 0.6
loadingVal[4:6, 2] <- 0.6</pre>
loadingVal[7, 3] <- 1
LY <- simMatrix(loading, loadingVal)
pathVal <- matrix(0, 3, 3)</pre>
pathVal[2, 1] <- 0.4
pathVal[1, 3] <- 0.4
pathVal[2, 3] <- 0.4</pre>
BE <- simMatrix(path, pathVal)
PS <- symMatrix(facCov)
errorCovVal <- diag(0.64, 7)
errorCovVal[7, 7] <- 0
TE <- symMatrix(errorCov, errorCovVal)
Fac.Cov.Model.Full <- simSetSEM(LY=LY, PS=PS, BE=BE, TE=TE)</pre>
Output4 <- setPopulation(Output4, Fac.Cov.Model.Full)
```

We input the set of matrices object as the second argument. Then the appropriate population model is input into the result object.

Syntax Summary

The summary of the whole script in this example is:

```
library(simsem)
2
      u35 < - simUnif(0.1, 0.3)
      u57 <- simUnif(0.5, 0.7)
3
4
      u2 < - simUnif(-0.2, 0.2)
5
6
      loading <- matrix(0, 7, 3)</pre>
      loading[1:3, 1] <- NA
7
      loading[4:6, 2] <- NA loading[1:7, 3] <- NA
8
9
10
      loadingVal <- matrix(0, 7, 3)</pre>
      loadingVal[1:3, 1] <- "u57"
11
      loadingVal[4:6, 2] <- "u57"
12
      loadingVal[1:6, 3] <- "u35"
13
14
      loadingVal[7, 3] <- 1
15
      LY <- simMatrix(loading, loadingVal)
16
17
      RPS <- symMatrix(diag(3))</pre>
18
19
      path \leftarrow matrix (0, 3, 3)
20
      path[2, 1] <- NA
21
      BE <- simMatrix(path, "u35")
22
23
      RTE <- symMatrix(diag(7))</pre>
24
2.5
      VY \leftarrow simVector(c(rep(NA, 6), 0), rep(1, 7))
26
27
      Cov.Model <- simSetSEM(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY)
28
      loading.mis <- matrix(NA, 7, 3)</pre>
29
30
      loading.mis[is.na(loading)] <- 0</pre>
31
      loading.mis[,3] <- 0</pre>
32
      loading.mis[7,] <- 0
33
      LY.mis <- simMatrix(loading.mis, "u2")
      misspec <- simMisspecSEM(LY=LY.mis)</pre>
34
35
36
      SimData <- simData (Cov.Model, 200, misspec=misspec)
37
38
      # First analysis model: Model without covariate
      No.Cov.Model <- extract(Cov.Model, y=1:6, e=1:2)
39
40
      model1 <- simModel(No.Cov.Model, indLab=paste("y", 1:6, sep=""))</pre>
41
      Output1 <- simResult(100, SimData, model1)
42
      param <- getPopulation(Output1)</pre>
43
      param <- extract(param, y=1:6, e=1:2)</pre>
44
      Output1 <- setPopulation(Output1, param)
45
      summary(Output1)
46
47
      # Second analysis model: Model accounting for covariate in the indicator level
48
      model2 <- simModel(Cov.Model)</pre>
49
      Output2 <- simResult(100, SimData, model2)
50
      summary(Output2)
51
52
      # Third analysis model: Model accounting for covariate with orthogonalization
53
      ortho <- simFunction(residualCovariate, targetVar=1:6, covVar=7)
54
      model3 <- model1
      Output3 <- simResult(100, SimData, model3, objFunction=ortho)
55
56
      param <- getPopulation(Output3)</pre>
      param <- extract(param, y=1:6, e=1:2)
57
58
      Output3 <- setPopulation(Output3, param)
59
      summary(Output3)
60
      # Fourth analysis model: Model accounting for covariate in factor level
```

```
loading <- matrix(0, 7, 3)</pre>
      loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
63
64
      loading[7, 3] <- NA
6.5
66
      path \leftarrow matrix(0, 3, 3)
      path[2, 1] <- NA
path[1, 3] <- NA
path[2, 3] <- NA
67
68
69
70
      errorCov <- diag(NA, 7)
71
      errorCov[7, 7] <- 0
72
      facCov <- diag(3)</pre>
73
      Fac.Cov.Model <- simParamSEM(LY=loading, BE=path, TE=errorCov, PS=facCov)
74
      model4 <- simModel(Fac.Cov.Model)</pre>
75
      Output4 <- simResult(100, SimData, model4)
76
77
      loadingVal <- matrix(0, 7, 3)</pre>
78
      loadingVal[1:3, 1] <- 0.6
79
      loadingVal[4:6, 2] <- 0.6
80
      loadingVal[7, 3] <- 1
      LY <- simMatrix(loading, loadingVal)
81
82
      pathVal <- matrix(0, 3, 3)</pre>
      pathVal[2, 1] <- 0.4
83
      pathVal[1, 3] <- 0.4 pathVal[2, 3] <- 0.4
84
85
86
      BE <- simMatrix(path, pathVal)
87
      PS <- symMatrix(facCov)
      errorCovVal <- diag(0.64, 7)
errorCovVal[7, 7] <- 0
88
89
90
      TE <- symMatrix(errorCov, errorCovVal)
      Fac.Cov.Model.Full <- simSetSEM(LY=LY, PS=PS, BE=BE, TE=TE)</pre>
91
92
      Output4 <- setPopulation(Output4, Fac.Cov.Model.Full)
      summary(Output4)
```

Remarks

1) If we run an analysis based on real data, the summary function will not return information on confidence interval coverage. We can put the data generation population into the result of an analysis of a single data by the setPopulation function as well:

```
dat <- run(SimData)
out <- run(model4, dat)
out <- setPopulation(out, Fac.Cov.Model.Full)</pre>
```

Functions Review

Functions	Usage
residualCovariate	Orthogonalize the target variables based on covariates
simFunction	Save a specification of a function to be used after simulated data are generated.
summaryPopulation	Summarize the population model underlying the data generation process
getPopulation	Get the population model underlying the data generation process of each replication
setPopulation	Set a new population model for a simulation study, which can be used to compute biases in parameter estimates and standard errors.

Example 16: Select a set of variables for analysis

Model Description

This example model has three factor each measured over three timepoints (a cross-lagged panel model). The three factors have mediational relationship: Factor 1 causes Factor 2 and then Factor 2 causes Factor 3. The causal regression coefficient ranges from 0.3 to 0.5 and is constant across time. The autoregressive regression paths range from 0.5 to 0.7 and is constant across time. The factor residual variances in the same variables across time are equal. The factor residual variances values of each variable are the values that make the total factor variances in Time 2 equal 1.

Each factor has three indicators each. Factor loadings range from 0.5 to 0.7. The factor loadings from the same factor and the same indicator are constant across time. Measurement error variance values are set such that the indicator variances will equal 1. The measurement errors from the same indicators are the same across time. The first-order measurement error correlation from the same indicators is 0.2 and the second-order error correlation is 0.04. The relationship is shown in the figure below.

Then, the data will be analyzed by two models. First, the simulated data are analyzed by longitudinal mediation model described above. Second, the only data from Time 3 are observed. We analyze it by cross-sectional mediation analysis as the model described below.

Analysis Model

Syntax

All relevant distribution objects are specified:

```
u35 <- simUnif(0.1, 0.3)
u57 <- simUnif(0.5, 0.7)
u2 <- simUnif(-0.2, 0.2)
```

As shown in <u>Example 5</u>, population values will be unconstrained first. Then, equality constraints are used to equate population values equal. First, a path coefficient matrix is specified:

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- NA
path[5, 2] <- path[8, 5] <- NA
path[6, 3] <- path[9, 6] <- NA
path[5, 1] <- path[8, 4] <- NA
path[6, 2] <- path[9, 5] <- NA
pathVal <- matrix(0, 9, 9)
pathVal[4, 1] <- pathVal[7, 4] <- "u57"
pathVal[5, 2] <- pathVal[8, 5] <- "u57"
pathVal[6, 3] <- pathVal[9, 6] <- "u57"
pathVal[6, 3] <- pathVal[9, 6] <- "u57"
pathVal[6, 2] <- pathVal[8, 4] <- "u35"
pathVal[6, 2] <- pathVal[9, 5] <- "u35"
BE <- simMatrix(path, pathVal)</pre>
```

The factor correlation matrix is specified:

```
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- NA
facCor[1, 3] <- facCor[3, 1] <- NA
facCor[2, 3] <- facCor[3, 2] <- NA
RPS <- symMatrix(facCor, "u35")</pre>
```

The factor loading matrix is specified:

```
loading <- matrix(0, 27, 9)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA
loading[10:12, 4] <- NA
loading[13:15, 5] <- NA
loading[16:18, 6] <- NA
loading[19:21, 7] <- NA
loading[22:24, 8] <- NA
loading[25:27, 9] <- NA</pre>
```

The measurement error correlation matrix is specified:

```
errorCor <- diag(27)
errorCor[1, 10] <- errorCor[10, 19] <- NA
errorCor[2, 11] <- errorCor[11, 20] <- NA
errorCor[3, 12] <- errorCor[12, 21] <- NA
errorCor[4, 13] <- errorCor[13, 22] <- NA
errorCor[5, 14] <- errorCor[14, 23] <- NA
errorCor[6, 15] <- errorCor[15, 24] <- NA errorCor[7, 16] <- errorCor[16, 25] <- NA
errorCor[8, 17] <- errorCor[17, 26] <- NA
errorCor[9, 18] <- errorCor[18, 27] <- NA
errorCor[1, 19] <- NA
errorCor[2, 20] <- NA
errorCor[3, 21] <- NA
errorCor[4, 22] <- NA
errorCor[5, 23] <- NA
errorCor[6, 24] <- NA
errorCor[7, 25] <- NA
errorCor[8, 26] <- NA
errorCor[9, 27] <- NA
errorCor <- errorCor + t(errorCor)
diag(errorCor) <- 1
errorCorVal <- diag(27)</pre>
errorCorVal[1, 10] <- errorCorVal[10, 19] <- 0.2
errorCorVal[2, 11] <- errorCorVal[11, 20] <- 0.2
errorCorVal[3, 12] <- errorCorVal[12, 21] <- 0.2
errorCorVal[4, 13] <- errorCorVal[13, 22] <- 0.2
errorCorVal[5, 14] <- errorCorVal[14, 23] <- 0.2
errorCorVal[6, 15] <- errorCorVal[15, 24] <- 0.2 errorCorVal[7, 16] <- errorCorVal[16, 25] <- 0.2
errorCorVal[8, 17] <- errorCorVal[17, 26] <- 0.2
errorCorVal[9, 18] <- errorCorVal[18, 27] <- 0.2
errorCorVal[1, 19] <- 0.04
errorCorVal[2, 20] <- 0.04
errorCorVal[3, 21] <- 0.04
errorCorVal[4, 22] <- 0.04
errorCorVal[5, 23] <- 0.04
errorCorVal[6, 24] <- 0.04
errorCorVal[7, 25] <- 0.04
errorCorVal[8, 26] <- 0.04
errorCorVal[9, 27] <- 0.04
errorCorVal <- errorCorVal + t(errorCorVal)</pre>
diag(errorCorVal) <- 1</pre>
TE <- symMatrix(errorCor, errorCorVal)
```

The set of SEM object for the longitudinal mediation model is specified:

```
longMed <- simSetSEM(BE=BE, RPS=RPS, LY=LY, RTE=TE)</pre>
```

Each equality constraint of the residual variances (VPS), path coefficient (BE), and factor loadings are specified:

```
c1 <- matrix(NA, 2, 1)
c1[,1] <- c(4, 7)
rownames(c1) <- rep("VPS", 2)

c2 <- matrix(NA, 2, 1)
c2[,1] <- c(5, 8)
rownames(c2) <- rep("VPS", 2)

c3 <- matrix(NA, 2, 1)
c3[,1] <- c(6, 9)
rownames(c3) <- rep("VPS", 2)

c4 <- matrix(NA, 2, 2)
c4[1,] <- c(4, 1)
c4[2,] <- c(7, 4)</pre>
```

```
rownames(c4) <- rep("BE", 2)
c5 <- matrix(NA, 2, 2)
c5[1,] <- c(5, 2)
c5[2,] < -c(8, 5)
rownames(c5) <- rep("BE", 2)</pre>
c6 <- matrix(NA, 2, 2)
c6[1,] <- c(6, 3)
c6[2,] \leftarrow c(9, 6)
rownames(c6) <- rep("BE", 2)
c7 <- matrix(NA, 2, 2)
c7[1,] \leftarrow c(5, 1)

c7[2,] \leftarrow c(8, 4)
rownames(c7) <- rep("BE", 2)
c8 <- matrix(NA, 2, 2)
c8[1,] <- c(6, 2)
c8[2,] <- c(9, 5)
rownames(c8) <- rep("BE", 2)
c9 <- matrix(NA, 3, 2)
c9[1,] \leftarrow c(1, 1)
c9[2,] < -c(10, 4)
c9[3,] < -c(19, 7)
rownames(c9) <- rep("LY", 3)</pre>
c10 <- matrix(NA, 3, 2)
c10[1,] <- c(2, 1)
c10[2,] <- c(11, 4)
c10[3,] < -c(20, 7)
rownames(c10) <- rep("LY", 3)
c11 <- matrix(NA, 3, 2)
c11[1,] <- c(3, 1)
c11[2,] \leftarrow c(12, 4)
c11[3,] <- c(21, 7)
rownames(c11) \leftarrow rep("LY", 3)
c12 <- matrix(NA, 3, 2)
c12[1,] \leftarrow c(4, 2)
c12[2,] < -c(13, 5)
c12[3,] < -c(22, 8)
rownames(c12) <- rep("LY", 3)
c13 <- matrix(NA, 3, 2)
c13[1,] < -c(5, 2)
c13[2,] <- c(14, 5)
c13[3,] \leftarrow c(23, 8)
rownames(c13) <- rep("LY", 3)
c14 <- matrix(NA, 3, 2)
c14[1,] <- c(6, 2)
c14[2,] <- c(15, 5)
c14[3,] <- c(24, 8)
rownames(c14) <- rep("LY", 3)</pre>
c15 <- matrix(NA, 3, 2)
c15[1,] \leftarrow c(7, 3)
c15[2,] <- c(16, 6)
c15[3,] < -c(25, 9)
\verb"rownames"(c15) <- \verb"rep"("LY", 3)
c16 <- matrix(NA, 3, 2)
c16[1,] <- c(8, 3)
c16[2,] <- c(17, 6)
c16[3,] <- c(26, 9)
rownames(c16) <- rep("LY", 3)</pre>
c17 <- matrix(NA, 3, 2)
```

```
c17[1,] <- c(9, 3)
c17[2,] <- c(18, 6)
c17[3,] <- c(27, 9)
rownames(c17) <- rep("LY", 3)
```

The equality constraint matrices are combined into an equality constraint object:

```
con <- simEqualCon(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, modelType="SEM", conBeforeFill=FALSE)
```

Note that the residual variances are not specified when building the simSetSEM (RPS is a correlation matrix which does not include any information about residual variances). The program will fill the residual variances by assuming the total factor variances are 1. However, the default of this program is to constrain population values before filling the residual variances (or other population values that have not specified yet). If the VPS is specified in the equality constraints, the program will not know what the value of VPS are because the residual variances have not filled. Specifying the conBeforeFill argument as FALSE makes the program fill the residual variances (or other population values) first, then make the equality constraints, and finally adjust other population values according to the equality constraints. See the simEqualCon function documentation for further details.

The data object, model object, and result object are specified:

```
datModel <- simData(longMed, 200, equalCon=con)
SimModel <- simModel(longMed, equalCon=con)
output <- simResult(1000, datModel, SimModel)</pre>
```

The longitudinal mediation model has been specified. The model object used to analyze data by cross-sectional mediation model is specified:

```
LY2 <- matrix(0, 9, 3)
LY2[1:3, 1] <- NA
LY2[4:6, 2] <- NA
LY2[7:9, 3] <- NA
BE2 <- matrix(0, 3, 3)
BE2[2,1] <- NA
BE2[3,2] <- NA
BE2[3,2] <- NA
crossMed <- simParamSEM(LY=LY2, BE=BE2)
SimModel2 <- simModel(crossMed, indLab=19:27)
output2 <- simResult(1000, datModel, SimModel2)
```

Note that the indLab argument in the simModel function is used to extract the variables from the third timepoint.

Syntax Summary

The summary of the whole script in this example is:

```
1    library(simsem)
2    u35 <- simUnif(0.1, 0.3)
3    u57 <- simUnif(0.5, 0.7)
4    u2 <- simUnif(-0.2, 0.2)
5
6    path <- matrix(0, 9, 9)
7    path[4, 1] <- path[7, 4] <- NA
8    path[5, 2] <- path[8, 5] <- NA</pre>
```

```
path[6, 3] <- path[9, 6] <- NA</pre>
10
      path[5, 1] <- path[8, 4] <- NA</pre>
11
      path[6, 2] <- path[9, 5] <- NA
      pathVal <- matrix(0, 9, 9)
12
13
      pathVal[4, 1] <- pathVal[7, 4] <- "u57"</pre>
      pathVal[5, 2] <- pathVal[8, 5] <- "u57"</pre>
14
      pathVal[6, 3] <- pathVal[9, 6] <- "u57"
15
      pathVal[5, 1] <- pathVal[8, 4] <- "u35"
16
      pathVal[6, 2] <- pathVal[9, 5] <- "u35"</pre>
17
18
      BE <- simMatrix(path, pathVal)
      facCor <- diag(9)</pre>
19
20
      facCor[1, 2] <- facCor[2, 1] <- NA</pre>
      facCor[1, 3] <- facCor[3, 1] <- NA
facCor[2, 3] <- facCor[3, 2] <- NA
21
22
      RPS <- symMatrix(facCor, "u35")
23
24
      loading <- matrix(0, 27, 9)</pre>
25
      loading[1:3, 1] <- NA
26
      loading[4:6, 2] <- NA
27
      loading[7:9, 3] <- NA
2.8
      loading[10:12, 4] <- NA
29
      loading[13:15, 5] <- NA
30
      loading[16:18, 6] <- NA
31
      loading[19:21, 7] <- NA
32
      loading[22:24, 8] <- NA
      loading[25:27, 9] <- NA
33
      LY <- simMatrix(loading, "u57")
34
35
      errorCor <- diag(27)
36
      errorCor[1, 10] <- errorCor[10, 19] <- NA
      errorCor[2, 11] <- errorCor[11, 20] <- NA
37
      errorCor[3, 12] \leftarrow errorCor[12, 21] \leftarrow NA
38
      errorCor[4, 13] <- errorCor[13, 22] <- NA errorCor[5, 14] <- errorCor[14, 23] <- NA
39
40
      errorCor[6, 15] <- errorCor[15, 24] <- NA
41
      errorCor[7, 16] <- errorCor[16, 25] <- NA
42
43
      errorCor[8, 17] <- errorCor[17, 26] <- NA
      errorCor[9, 18] <- errorCor[18, 27] <- NA
44
     errorCor[1, 19] <- NA
errorCor[2, 20] <- NA
errorCor[3, 21] <- NA
45
46
47
48
      errorCor[4, 22] <- NA
      errorCor[5, 23] <- NA
49
50
      errorCor[6, 24] <- NA
      errorCor[7, 25] <- NA
51
52
      errorCor[8, 26] <- NA
53
      errorCor[9, 27] <- NA
54
      errorCor <- errorCor + t(errorCor)</pre>
      diag(errorCor) <- 1</pre>
55
56
      errorCorVal <- diag(27)
57
      errorCorVal[1, 10] <- errorCorVal[10, 19] <- 0.2
      errorCorVal[2, 11] <- errorCorVal[11, 20] <- 0.2
58
59
      errorCorVal[3, 12] <- errorCorVal[12, 21] <- 0.2
60
      errorCorVal[4, 13] <- errorCorVal[13, 22] <- 0.2
      errorCorVal[5, 14] <- errorCorVal[14, 23] <- 0.2
61
      errorCorVal[6, 15] <- errorCorVal[15, 24] <- 0.2
62
      errorCorVal[7, 16] <- errorCorVal[16, 25] <- 0.2
63
64
      errorCorVal[8, 17] <- errorCorVal[17, 26] <- 0.2
      errorCorVal[9, 18] <- errorCorVal[18, 27] <- 0.2
65
66
      errorCorVal[1, 19] <- 0.04
      errorCorVal[2, 20] <- 0.04
67
68
      errorCorVal[3, 21] <- 0.04
69
      errorCorVal[4, 22] <- 0.04
70
      errorCorVal[5, 23] <- 0.04
71
      errorCorVal[6, 24] <- 0.04
      errorCorVal[7, 25] <- 0.04
72
73
      errorCorVal[8, 26] <- 0.04
74
      errorCorVal[9, 27] <- 0.04
75
      errorCorVal <- errorCorVal + t(errorCorVal)
76
      diag(errorCorVal) <- 1
77
      TE <- symMatrix(errorCor, errorCorVal)</pre>
78
      longMed <- simSetSEM(BE=BE, RPS=RPS, LY=LY, RTE=TE)</pre>
79
```

```
c1 <- matrix(NA, 2, 1)
      c1[,1] \leftarrow c(4, 7)
81
82
      rownames(c1) <- rep("VPS", 2)</pre>
83
84
      c2 \leftarrow matrix(NA, 2, 1)
      c2[,1] <- c(5, 8)
85
86
      rownames(c2) <- rep("VPS", 2)</pre>
87
      c3 <- matrix(NA, 2, 1)
88
89
      c3[,1] \leftarrow c(6, 9)
      rownames(c3) <- rep("VPS", 2)</pre>
90
91
      c4 <- matrix(NA, 2, 2)
92
93
      c4[1,] < -c(4, 1)
      c4[2,] \leftarrow c(7, 4)
94
95
      rownames(c4) <- rep("BE", 2)
96
97
      c5 <- matrix(NA, 2, 2)
      c5[1,] \leftarrow c(5, 2)
98
      c5[2,] < -c(8, 5)
99
100
      rownames(c5) <- rep("BE", 2)</pre>
101
102
      c6 <- matrix(NA, 2, 2)
103
      c6[1,] < -c(6, 3)
      c6[2,] \leftarrow c(9, 6)
104
105
      rownames(c6) <- rep("BE", 2)
106
107
      c7 <- matrix(NA, 2, 2)
     c7[1,] <- c(5, 1)
108
109
      c7[2,] < -c(8, 4)
      rownames(c7) <- rep("BE", 2)
110
111
112
      c8 <- matrix(NA, 2, 2)
113
      c8[1,] < -c(6, 2)
      c8[2,] < -c(9, 5)
114
      rownames(c8) <- rep("BE", 2)
115
116
117
      c9 <- matrix(NA, 3, 2)
118
     c9[1,] <- c(1, 1)
      c9[2,] <- c(10, 4)
119
120
      c9[3,] <- c(19, 7)
121
      rownames(c9) <- rep("LY", 3)
122
123
     c10 <- matrix(NA, 3, 2)
      c10[1,] <- c(2, 1)
c10[2,] <- c(11, 4)
124
125
126
      c10[3,] < -c(20, 7)
      rownames(c10) <- rep("LY", 3)</pre>
127
128
129
      c11 <- matrix(NA, 3, 2)
130
     c11[1,] <- c(3, 1)
      c11[2,] <- c(12, 4)
c11[3,] <- c(21, 7)
131
132
133
      rownames(c11) <- rep("LY", 3)
134
135
      c12 <- matrix(NA, 3, 2)
136
      c12[1,] <- c(4, 2)
      c12[2,] \leftarrow c(13, 5)
137
      c12[3,] <- c(22, 8)
138
      rownames(c12) <- rep("LY", 3)</pre>
139
140
141
      c13 <- matrix(NA, 3, 2)
      c13[1,] <- c(5, 2)
c13[2,] <- c(14, 5)
142
143
144
      c13[3,] \leftarrow c(23, 8)
      rownames(c13) <- rep("LY", 3)
145
146
147
      c14 <- matrix(NA, 3, 2)
148
    c14[1,] <- c(6, 2)
     c14[2,] <- c(15, 5)
c14[3,] <- c(24, 8)
149
150
```

```
rownames(c14) <- rep("LY", 3)
152
153
     c15 <- matrix(NA, 3, 2)
     c15[1,] <- c(7, 3)
154
155 c15[2,] <- c(16, 6)
156
     c15[3,] <- c(25, 9)
157
     rownames(c15) <- rep("LY", 3)
158
159
     c16 <- matrix(NA, 3, 2)
160
     c16[1,] < -c(8, 3)
     c16[2,] < -c(17, 6)
161
     c16[3,] \leftarrow c(26, 9)
162
163
     rownames(c16) <- rep("LY", 3)
164
     c17 <- matrix(NA, 3, 2)
165
166
     c17[1,] < -c(9, 3)
     c17[2,] < -c(18, 6)
167
     c17[3,] <- c(27, 9)
168
169
     rownames(c17) <- rep("LY", 3)
170
171
      con <- simEqualCon(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16,
     c17, modelType="SEM", conBeforeFill=FALSE)
172
173
     datModel <- simData(longMed, 200, equalCon=con)</pre>
     SimModel <- simModel(longMed, equalCon=con)</pre>
174
175
     output <- simResult(1000, datModel, SimModel)
176
177
     LY2 \leftarrow matrix(0, 9, 3)
178 LY2[1:3, 1] <- NA
     LY2[4:6, 2] <- NA
179
180
     LY2[7:9, 3] < - NA
181
     BE2 \leftarrow matrix(0, 3, 3)
182
     BE2[2,1] <- NA
     BE2[3,2] <- NA
183
184
     crossMed <- simParamSEM(LY=LY2, BE=BE2)</pre>
185
    SimModel2 <- simModel(crossMed, indLab=19:27)
186
     output2 <- simResult(100, datModel, SimModel2)</pre>
```

Remarks

1) If a model misspecification is added in this model, we can control the program order of (a) filling unspecified parameters, (b) applying the equality constraint, and (c) adding the model misspecification. For example, the direct effect from Factor 1 to Factor 3 is distributed as normal distribution with the mean of 0 and standard deviation of 0.05. The model misspecification can be specified by changing Line 174:

```
n05 <- simNorm(0, 0.05)
pathMis <- matrix(0, 9, 9)
pathMis[6, 1] <- pathMis[9, 4] <- NA
BEMis <- simMatrix(pathMis, "n05")
longMedMis <- simMisspecSEM(BE=BEMis, misBeforeFill=FALSE, misBeforeCon=FALSE)
datModel <- simData(longMed, 200, misspec=longMedMis, equalCon=con)
```

Notice that the simMisspecSEM function has two new arguments: misBeforeFill and misBeforeCon. The misBeforeFill argument is whether to add the model misspecification before filling unspecified parameters. The misBeforeCon is whether to add the model misspecification before applying the equality constraint. See the all possible options of conBeforeMis (in the simEqualCon function), misBeforeFill, and misBeforeCon (in the constructors of the misspecification object: simMisspecCFA, simMisspecPath, and simMisspecSEM) on the help page of the runMisspec function (type ?runMisspec in the R program).

Example 17: Simulation with Varying Sample Size

Model Description

This example will show how to make the simulation study such that the sample size is not equal across replications. That is, the sample size is increasing from 50 to 1000 by 1. Then, we will find the sample size value that the power of a given parameter is equal to .8 and the fit indices cutoff of the estimated sample size value. Let's go back to the confirmatory factor analysis (CFA) model with two factors and three indicators each. Factor loadings are .7. Error variances are s to make the indicator variances equal to 1. The factor correlation is .5. We will find the sample size that provides the power of 0.8 in detecting the factor correlation.

Syntax

The syntax will be similar to the Example 1:

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LX <- simMatrix(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPH <- symMatrix(latent.cor, 0.5)

error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTD <- symMatrix(error.cor)

CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
SimData <- simData(CFA.Model, 200)
SimModel <- simModel(CFA.Model)</pre>
```

Note that the specified sample size in the data object is arbitrary. When we build the result object, the specified sample size will be overwritten. The result object can be specified for the varying sample size by

```
Output <- simResult(NULL, SimData, SimModel, n=50:1000) summary(Output)
```

The first element, the number of replications, is specified as NULL because the number of replications will depend on the number of elements of the vectors given the n argument. The n argument is the varying sample size, which is specified as the sequence of 50 to 1000, increasing by 1. If you call

the summary function from the Output object, you will find the note that the sample size is varying. Note that the resulting summary of fit indices cutoffs is based on each value of sample size.

We can plot the fit indices cutoff by the plotCutoff function as usual:

```
plotCutoff(Output, 0.05)
```

Notice that the graph will show the cutoffs (red line) given each value of sample size given a specified alpha level (the second argument). We can find the cutoff given a value of sample size by the getCutoff function:

```
getCutoff(Output, 0.05, nVal = 200)
```

The first argument is the result object. The second argument is the alpha level. The third argument, nVal, is the value of sample size. If percent missing completely at random is varying, the pmMCARval argument is available for specifying a given value of the missing percentage. If percent missing at random is varying, the pmMARval argument is available for specifying a given value of the missing percentage.

The power of each parameter given the values of sample size can be obtained by the getPower function:

```
Cpow <- getPower(Output)
```

The result of the getPower function is a data frame that the first column is the sample size and the other columns are the power of each parameter. We can find a power given a value of sample size by adding the nVal argument in the getPower function:

```
Cpow2 <- getPower(Output, nVal = 200)
```

We can find the sample size that provides the power just over 0.80 by the findPower function:

```
findPower(Cpow, "N", 0.80)
```

The resulting values of the findPower function can be classified into five types. Please see the help file of the findPower function for further details:

```
?findPower
```

The sample size that provides power of 0.8 in detecting factor correlation is 62.

The first argument is the power table obtained by the <code>getPower</code> function. The second argument is the target varying parameter, which is sample size. This argument can be specified as 1 (as the index of the sample size) or "iv.N" (for the full first column name). The third argument is the desired power. We may plot the power of target parameters when the sample size is varying by the <code>plotPower</code> function:

```
plotPower(Output, powerParam=c("LY1_1", "PS2_1"))
```

The powerParam argument means the parameter names that we wish to plot.

Syntax Summary

The summary of the whole script in this example is

```
1  library(simsem)
2  loading <- matrix(0, 6, 2)
3  loading[1:3, 1] <- NA
4  loading[4:6, 2] <- NA</pre>
```

```
LX <- simMatrix(loading, 0.7)
6
7
      latent.cor <- matrix(NA, 2, 2)</pre>
8
      diag(latent.cor) <- 1</pre>
9
      RPH <- symMatrix(latent.cor, 0.5)
10
11
      error.cor <- matrix(0, 6, 6)
12
      diag(error.cor) <- 1
13
      RTD <- symMatrix(error.cor)
14
15
      CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
16
17
      SimData <- simData (CFA.Model, 500)
18
      SimModel <- simModel(CFA.Model)</pre>
19
      Output <- simResult(NULL, SimData, SimModel, n=50:1000)
20
      summary(Output)
21
      plotCutoff(Output, 0.05)
      getCutoff(Output, 0.05, nVal = 200)
22
23
      Cpow <- getPower(Output)</pre>
2.4
25
      Cpow2 <- getPower(Output, nVal = 200)</pre>
26
      findPower(Cpow, "N", 0.80)
27
      plotPower(Output, powerParam=c("LY1 1", "PS2 1"))
```

Remarks

1) In the example, the number of replications for each sample size is 1 because the vector contains only one value of each sample size. We can increase the number of replications for each sample size by duplicating the sample size vector by changing Line 19 by

```
Output <- simResult(NULL, SimData, SimModel, n=rep(50:1000,3))
```

In this code, the number of replications for each sample size is 3.

2) The sample size can be specified as a distribution object and use the number of replications argument (the first argument) as the number of drawn from the distribution object. For example, Line 19 can be changed as

```
Output <- simResult(1000, SimData, SimModel, n=simUnif(50, 1000))
```

Functions Review

Functions	Usage
getPower	Get the power of each parameter
findPower	Find the value of varying parameters that provides a given power
plotPower	Plot the power of specified parameters against varying parameters

Example 18: Simulation with Varying Sample Size and Percent Missing

Model Description

This example will show how to make the simulation study such that both sample size and percent completely missing at random are not equal across replications. That is, the sample size is increasing from 50 to 500 by 5 and the percent completely missing at random could be 0, 0.1, 0.2, 0.3, or 0.4. Then, we will find the combination of sample size and percent completely missing at random values that the power of a given parameter is equal to .8 and the fit indices cutoff of the estimated sample size value. The model in this example is the conditional growth curve model. That is, the model is the growth curve model from Example 3. The intercept and the slope factors are predicted by a grouping variable. The grouping

variable has two conditions with equal probability (the average and the variance of the binary variable are 0.5 and 0.25). The effects of the grouping variables onto the intercept and slope are 0.5 and 0.1. We will find the power in detecting these two effects.

Syntax

The factor loading object can be specified:

```
loading <- matrix(0, 5, 3)
loading[1,1] <- 1
loading[2:5,2] <- 1
loading[2:5,3] <- 0:3
LY <- simMatrix(loading)
```

The factor mean object can be specified:

```
facMean <- rep(NA, 3)
facMeanVal <- c(0.5, 5, 2)
AL <- simVector(facMean, facMeanVal)</pre>
```

The factor variance object can be specified:

```
facVar <- rep(NA, 3)
facVarVal <- c(0.25, 1, 0.25)
VPS <- simVector(facVar, facVarVal)</pre>
```

The factor correlation object can be specified:

```
facCor <- diag(3)
facCor[2,3] <- NA
facCor[3,2] <- NA
RPS <- symMatrix(facCor, 0.5)</pre>
```

The measurement error variance object can be specified:

```
VTE <- simVector(c(0, rep(NA, 4)), 1.2)</pre>
```

The measurement error correlation object can be specified:

```
RTE <- symMatrix(diag(5))

The measurement intercept object can be specified:
```

```
TY <- simVector(rep(0, 5))
```

The regression coefficient matrix object can be specified:

```
path <- matrix(0, 3, 3)
path[2,1] <- NA
path[3,1] <- NA
pathVal <- matrix(0, 3, 3)
pathVal[2,1] <- 0.5
pathVal[3,1] <- 0.1
BE <- simMatrix(path, pathVal)</pre>
```

The SEM object that represents the conditional growth curve model is specified:

```
LCA.Model <- simSetSEM(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY, BE=BE)
```

The trivial misspecified SEM object that represents the deviation from linearity is specified:

```
u1 <- simUnif(-0.1, 0.1)
loading.trivial <- matrix(0, 5, 3)
loading.trivial[3:4, 3] <- NA
loading.mis <- simMatrix(loading.trivial, "u1")
LCA.Mis <- simMisspecSEM(LY = loading.mis)
```

The data distribution object representing the factor distribution can be specified:

```
group <- simBinom(1, 0.5)
n01 <- simNorm(0, 1)
facDist <- simDataDist(group, n01, n01, keepScale=c(FALSE, TRUE, TRUE))</pre>
```

The simBinom function represents the binomial distribution object. The first argument is the number of trials. The second argument is the proportion of success (or treatment group). If the number of trial is 1 in the binomial distribution, the binomial distribution will be a Bernoulli trial which provides only 0 or 1 (or dummy variable). The keepScale argument in the simDataDist function is to use the mean and standard deviation from the model or the distribution. If the keepScale argument is TRUE, the model-implied mean and standard deviation are used. If FALSE, the mean and standard deviation from the distribution are used.

The data and the model objects can be specified:

```
datTemplate <- simData(LCA.Model, 300, LCA.Mis, sequential=TRUE, facDist=facDist)
model <- simModel(LCA.Model)</pre>
```

Note that the sequential method is used and the facDist argument is specified for the factor distribution.

The result object can be specified:

```
Output <- simResult(NULL, datTemplate, model, n=seq(50, 500, 5), pmMCAR=seq(0, 0.4, 0.1))
```

The pmMCAR argument is the values of percent completely missing at random. Notice that both sample size and percent completely missing at random are vectors. The total number of replications is the product of the length of both vectors. That is, the function will run the replications of all factorial combination of sample size and percent missing completely at random.

The cutoffs given the value of sample size and percent completely missing at random can be plotted by the plotCutoff function:

```
plotCutoff(Output, 0.05)
```

We can also use the getCutoff functions to find the cutoff given the specific value of sample size and percent missing completely at random.

```
getCutoff(Output, 0.05, nVal = 200, pmMCARval=0)
```

```
getCutoff(Output, 0.05, nVal = 300, pmMCARval=0.33)
```

The power of each parameter given each combination of sample size and percent missing completely at random can be obtained by the getPower function:

```
Cpow <- getPower(Output)
Cpow2 <- getPower(Output, nVal = 200, pmMCARval=0.35)</pre>
```

The nVal and pmMCARval arguments are used to find the power of each parameter on the specific values of sample size and percent missing completely at random specifically.

The power table obtained from the getPower function can be used to find the sample size value that provides the power of 0.80 given each value of percent missing complete at random by the findPower function:

```
findPower(Cpow, "N", 0.80)
```

The percent missing completely at random value that provides the power 0.80 given each value of sample size can be calculated:

```
findPower(Cpow, "MCAR", 0.80)
```

The power graphs of the regression coefficients from the grouping variable against the sample size and percent completely missing at random can be built by the plotPower function:

```
plotPower(Output, powerParam=c("BE2_1", "BE3_1"))
```

Syntax Summary

The summary of the whole script in this example is

```
library(simsem)
2
3
      loading <- matrix(0, 5, 3)</pre>
      loading[1,1] <- 1
4
5
      loading[2:5,2] <- 1
6
      loading[2:5,3] <- 0:3
7
      LY <- simMatrix(loading)
8
9
      facMean <- rep(NA, 3)</pre>
10
      facMeanVal \leftarrow c(0.5, 5, 2)
      AL <- simVector(facMean, facMeanVal)
11
12
      facVar <- rep(NA, 3)</pre>
13
14
      facVarVal <- c(0.25, 1, 0.25)
15
      VPS <- simVector(facVar, facVarVal)</pre>
16
      facCor <- diag(3)
17
      facCor[2,3] <- NA
18
19
      facCor[3,2] <- NA</pre>
20
      RPS <- symMatrix(facCor, 0.5)
21
22
      VTE <- simVector(c(0, rep(NA, 4)), 1.2)
23
24
      RTE <- symMatrix(diag(5))
2.5
26
      TY <- simVector(rep(0, 5))
2.7
28
      path <- matrix(0, 3, 3)</pre>
29
      path[2,1] <- NA
30
      path[3,1] <- NA
31
      pathVal <- matrix(0, 3, 3)
32
      pathVal[2,1] <- 0.5
33
      pathVal[3,1] <- 0.1
34
      BE <- simMatrix(path, pathVal)</pre>
35
```

```
LCA.Model <- simSetSEM(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY, BE=BE)
37
38
      u1 < - simUnif(-0.1, 0.1)
39
40
      loading.trivial <- matrix(0, 5, 3)</pre>
      loading.trivial[3:4, 3] <- NA</pre>
41
42
      loading.mis <- simMatrix(loading.trivial, "u1")</pre>
43
      LCA.Mis <- simMisspecSEM(LY = loading.mis)</pre>
44
45
      group <- simBinom(1, 0.5)
46
47
      n01 < - simNorm(0, 1)
48
      facDist <- simDataDist(group, n01, n01, keepScale=c(FALSE, TRUE, TRUE))</pre>
49
50
      datTemplate <- simData(LCA.Model, 300, LCA.Mis, sequential=TRUE, facDist=facDist)</pre>
51
      model <- simModel(LCA.Model)</pre>
52
      Output <- simResult(NULL, datTemplate, model, n=seq(50, 500, 5), pmMCAR=seq(0, 0.4, 0.1))
53
54
55
      plotCutoff(Output, 0.05)
56
      getCutoff(Output, 0.05, nVal = 200, pmMCARval=0)
57
      getCutoff(Output, 0.05, nVal = 300, pmMCARval=0.33)
58
59
      Cpow <- getPower(Output)</pre>
      Cpow2 <- getPower(Output, nVal = 200, pmMCARval=0.35)</pre>
60
     findPower(Cpow, "N", 0.80)
findPower(Cpow, "MCAR", 0.80)
61
62
      plotPower(Output, powerParam=c("BE2 1", "BE3 1"))
63
```

Remarks

1) The sample size and percent missing completely at random can be specified as a distribution object and use the number of replications argument (the first argument) as the number of drawn from the distribution object. For example, Line 53 can be changed as

```
Output <- simResult(1000, datTemplate, model, n=simUnif(50, 500), pmMCAR=simUnif(0, 0.4))
```

Example 19: Simulation with Varying Sample Size and Parameters

Model Description

This example will show how to make the simulation study when the sample size is not equal across replications and the model parameters are random. That is, we will find the sample size value that the power of the target parameter is equal to .8 when the target parameter is actually random. This example is a SEM model with two factors. The first factor contains six indicators. The second factor contains four indicators. The target parameter is the regression coefficient from Factor 1 to Factor 2 that is varied from 0 to 0.9 in standardized scale.

1* = Residual variance that makes indicator variance of 1

Syntax

The SEM model, as well as the data and model objects, can be specified:

```
u39 <- simUnif(0.3, 0.9)
u09 <- simUnif(0, 0.9)
loading <- matrix(0, 10, 2)
loading[1:6, 1] <- NA
loading[7:10, 2] <- NA
LY <- simMatrix(loading, "u39")

RPS <- symMatrix(diag(2))

RTE <- symMatrix(diag(10))

path <- matrix(0, 2, 2)
path[2, 1] <- NA
BE <- simMatrix(path, "u09")

latentReg <- simSetSEM(LY = LY, RPS = RPS, RTE = RTE, BE = BE)

SimData <- simData(latentReg, 500)
SimModel <- simModel(latentReg)</pre>
```

The result object can be specified for the varying sample size:

```
Output <- simResult(NULL, SimData, SimModel, n=25:500) summary(Output)
```

The cutoffs given the value of sample size can be plotted by the plotCutoff function:

```
plotCutoff(Output, 0.05)
```

The cutoff given the specific value of sample size can be obtained by the getCutoff functions:

```
getCutoff(Output, 0.05, n = 200)
```

The power of each parameter when both sample size and the target parameter (regression coefficient from Factor 1 to Factor 2) are varying can be obtained by the getPower function:

```
Cpow <- getPower(Output, contParam="BE2_1")
```

The contParam argument is used to specify the desired varying parameter, which is "BE2_1" in this example. The power of parameters given a specific value of sample size and the target varying parameter can be obtained:

```
Cpow2 <- getPower(Output, contParam="BE2 1", nVal = 200, paramVal=seq(0.1, 0.9, 0.1))
```

The paramVal argument is used to provide the specific value of the target varying parameter, which is a sequence from 0.1 to 0.9 increased by 0.1 in this example. If the contParam argument has more than one target varying parameter, the paramVal argument must be specified in a list with an appropriate name of the list:

```
targetVal <- list("BE2_1" = seq(0.1, 0.9, 0.1), "LY1_1" = c(0.5, 0.7))
Cpow3 <- getPower(Output, contParam=c("BE2_1", "LY1_1"), nVal = 200, paramVal=targetVal)
```

The power table obtained from the getPower function can be used to find the sample size value that provides the power of 0.80 given each value of the regression coefficient by the findPower function:

```
findPower(Cpow, 1, 0.80)
```

Note that 1 is the index of the sample size column. The regression coefficient value that provides the power 0.80 given each value of sample size can be calculated:

```
findPower(Cpow, 2, 0.80)
```

Note that 2 is the index of the "BE2_1" column. The power graphs of the regression coefficient from Factor 1 to Factor 2 and the factor loading from Factor 2 to Indicator 10 against the sample size and the regression coefficient can be built by the plotPower function:

```
plotPower(Output, powerParam=c("BE2_1", "LY10_2"), contParam="BE2_1")
```

The powerParam argument is the parameter names that we wish to find the power from. The contParam argument is the parameter that we use as the varying parameter in the simulation.

Syntax Summary

The summary of the whole script in this example is

```
u39 <- simUnif(0.3, 0.9)
2
      u09 < - simUnif(0, 0.9)
3
      loading <- matrix(0, 10, 2)</pre>
4
      loading[1:6, 1] <- NA
5
      loading[7:10, 2] <- NA
6
      LY <- simMatrix(loading, "u39")
7
8
      RPS <- symMatrix(diag(2))
9
10
      RTE <- symMatrix(diag(10))
11
12
      path \leftarrow matrix(0, 2, 2)
13
      path[2, 1] <- NA
14
      BE <- simMatrix(path, "u09")
15
      latentReg <- simSetSEM(LY = LY, RPS = RPS, RTE = RTE, BE = BE)</pre>
16
17
18
      SimData <- simData(latentReg, 500)</pre>
      SimModel <- simModel(latentReg)</pre>
19
20
      Output <- simResult(NULL, SimData, SimModel, n=25:500)
21
      summary(Output)
22
      plotCutoff(Output, 0.05)
23
      getCutoff(Output, 0.05, n = 200)
24
      Cpow <- getPower(Output, contParam="BE2 1")</pre>
```

Summary of Model Specification

This picture shows a map of all objects and their relationships in the package. All solid border boxes indicate the objects in the simsem package. The bold-border boxes shows all objects used in the Example 1, which are required objects for simulation. This is the minimal requirement to run a Monte Carlo simulation without real data. The dashed boxes indicate things that are not the object in this package but can interact with the package.

Accessing Help Files

Function

Users can access help file in each function with:

?run

Class

Users can access help file in each class with:

class?SimMatrix

Methods in each class

Users can access help file for a method that uses in multiple classes with:

method?run

To see the help file of a method used in a specific class:

method?run("SimMatrix")

List of Distribution Objects

Here is the list of distribution objects that can be used in this package. The details of each attribute can be searched from the help of each constructor or the R help page of each distribution. This package uses the same names of attributes as in the R program.

Distribution	Class	Constructor	Attributes
Beta	SimBeta	simBeta	shape1, shape2, ncp
Binomial	SimBinom	simBinom	size, prob
Cauchy	SimCauchy	simCauchy	location, scale
Chi-squared	SimChisq	simChisq	df, ncp
Exponential	SimExp	simExp	rate
F	SimF	simF	df1, df2, ncp
Gamma	SimGamma	simGamma	shape, rate
Geometric	SimGeom	simGeom	prob
Hypergeometric	SimHyper	simHyper	m, n, k
Log Normal	SimLnorm	simLnorm	meanlog, sdlog
Logistic	SimLogis	simLogis	location, scale
Negative Binomial	SimNbinom	simNbinom	size, prob
Normal	SimNorm	simNorm	mean, sd
Poisson	SimPois	simPois	lambda
t	SimT	simT	df, ncp
Uniform	SimUnif	simUnif	min, max
Weibull	SimWeibull	simWeibull	shape, scale

There are six methods for the distribution objects:

- 1. summary: provide a description of an object
- 2. summaryShort: provide a brief distribution of an object
- 3. run: generate a random number from an object
- 4. plotDist: plot a distribution of an object
- 5. skew: Find a skewness of an object
- 6. kurtosis: Find an excessive kurtosis of an object.

Public Objects

This section will list all classes and functions relating to all objects in this package except the distribution objects.

Classes

Public Classes	Getting Documentation by
SimData	class?SimData
SimDataDist	class?SimDataDist
SimDataOut	class?SimDataOut
SimEqualCon	class?SimEqualCon
SimFunction	class?SimFunction
SimMatrix	class?SimMatrix
SimMissing	class?SimMissing
SimMisspec	class?SimMisspec
SimModel	class?SimModel
SimModelMIOut	class?SimModelMIOut
SimModelOut	class?SimModelOut
SimParam	class?SimParam
SimResult	class?SimResult
SimResultParam	class?SimResultParam
SimSet	class?SimSet
SimVector	class?SimVector
SymMatrix	class?SymMatrix

S4 Functions

Public Functions	Getting Documentation by	Available Classes
adjust	method?adjust	SimMatrix, SymMatrix, SimVector
anova	method?anova	SimModelOut, SimResult
createImpliedMACS	method?createImpliedMACS	SimModelOut, SimModelMIOut, SimDataOut
extract	method?extract	<pre>vector, matrix, SimMatrix, SimVector, SimSet, SimDataDist, SimParam</pre>
getCutoff	method?getCutoff	SimResult
getPopulation	method?getPopulation	SimDataOut, SimModelOut, SimResult
getPowerFit	method?getPowerFit	SimResult
kurtosis	method?kurtosis	vector, VirtualDist
plotCutoff	method?plotCutoff	SimResult
plotDist	method?plotDist	SimDataDist
plotPowerFit	method?plotPowerFit	SimResult
popMisfit	method?popMisfit	<pre>(matrix, matrix), (list, list), (SimRSet, SimRSet), (MatrixSet, MatrixSet), (SimSet, SimMisspec)</pre>
pValue	method?pValue	<pre>(numeric, vector), (numeric, data.frame), (SimModelOut, SimResult)</pre>
run	method?run	SimData, SimMatrix, SimSet, SimMisspec, SimModel, SimVector, SymMatrix, SimMissing, SimDataDist
runFit	method?runFit	SimModel, SimModelOut
setPopulation	method?setPopulation	<pre>(SimResult, data.frame), (SimResult, SimSet), (SimResult, VirtualRSet), (SimModelOut, SimRSet), (SimModelOut, SimSet)</pre>
simData	method?simData	SimSet, SimModelOut
simModel	method?simModel	SimSet
skew	method?skew	vector, VirtualDist
summary	method?summary	All classes
summaryParam	method?summaryParam	SimResult
summaryPopulation	method?summaryPopulation	SimDataOut, SimModelOut, SimResult
SummaryPopulation	method:SummaryPopulation	Simparaour, Simpodelour, Simpesure
summaryShort	method?summaryShort	All classes

S3 Functions

Public Functions	Getting Documentation by
continuousPower	?continuousPower
findFactorIntercept	?findFactorIntercept
findFactorMean	?findFactorMean
findFactorResidualVar	?findFactorResidualVar
findFactorTotalCov	?findFactorTotalCov
findFactorTotalVar	?findFactorTotalVar
findIndIntercept	?findIndIntercept
findIndMean	?findIndMean
findIndResidualVar	?findIndResidualVar
findIndTotalVar	?findIndTotalVar
findPossibleFactorCor	?findPossibleFactorCor
findPower	?findPower
findRecursiveSet	?findRecursiveSet
getPower	?getPower
imposeMissing	?imposeMissing
indProd	?indProd
loadingFromAlpha	?loadingFromAlpha
miPoolChi	?miPoolChi
miPoolVector	?miPoolVector
plotMisfit	?plotMisfit
plotPower	?plotPower
popDiscrepancy	?popDiscrepancy
popMisfitMACS	?popMisfitMACS
residualCovariate	?residualCovariate
runMI	?runMI
simData	?simData
simEqualCon	?simEqualCon
simFunction	?simFunction
simMatrix	?simMatrix
simMissing	?simMissing
simMisspecCFA	?simMisspecCFA
simMisspecPath	?simMisspecPath
simMisspecSEM	?simMisspecSEM
simNorm	?simNorm
simParamCFA	?simParamCFA
simParamPath	?simParamPath
simParamSEM	?simParamSEM
simResult	?simResult
simResultParam	?simResultParam
simSetCFA	?simSetCFA
simSetPath	?simSetPath
simSetSEM	?simSetSEM
simUnif	?simUnif
simVector	?simVector
symMatrix	?symMatrix

Symbols of Matrices

Here are the symbols of the matrices used to make the set of matrices object (simSetCFA, simSetPath, or simSetSEM) or the misspecified set of matrices object (simMisspecCFA, simMisspecPath, or simMisspecSEM). The matrix symbols can be classified into different categories:

- 1. Endogenous
 - a. Covariance
 - i. Among Factors: PS
 - ii. Among Measurement Errors: TE

- b. Regression among Factors: BE
- c. Loading from Factors to Indicators: LY
- d. Correlation
 - i. Among Factors: RPS
 - ii. Among Measurement Errors: RTE
- e. Residual Variance
 - i. Factors: VPS
 - ii. Measurement Errors: VTE
- f. Total Variance
 - i. Factors: VE
 - ii. Measurement Errors: VY
- g. Intercept
 - i. Factors: AL
 - ii. Measurement Errors: TY
- h. Total Mean
 - i. Factors: ME
 - ii. Measurement Errors: MY
- 2. Exogenous
 - a. Covariance
 - i. Among Factors: PH
 - ii. Among Measurement Errors: TD
 - b. Loading from Factors to Indicators: LX
 - c. Correlation
 - i. Among Factors: RPH
 - ii. Among Measurement Errors: RTD
 - d. Residual Variance of Measurement Errors: VTD
 - e. Total Variance
 - i. Factors: VPH or VK
 - ii. Measurement Errors: VX
 - f. Intercept of Measurement Errors: TX
 - g. Total Mean
 - i. Factors: KA or MK
 - ii. Measurement Errors: MX
- 3. Exogenous and Endogenous
 - a. Covariance between Measurement Intercepts: TH
 - b. Regression among Factors: GA
 - c. Correlation between Measurement Intercepts: RTH

Fit Indices Details

The fit indices provided in the simsem package:

- 1. Chi-square Test of the Target Model (χ_T^2). The value of chi-square is the -2 times log likelihood between the observed means and covariance matrix and model-implied means and covariance matrix. The degree of freedom (df_T) is the number of elements in the means and covariance matrix subtracted by the number of free parameters in the target model.
- 2. Chi-square Test of the Baseline Model (χ_B^2). Mostly, the baseline model estimates means and variances of the observed data but not the covariances of the observed data. When there are auxiliary variables, the covariance of the auxiliary variables to all other variables (including themselves) are estimated. The chi-square value is the -2 times log likelihood between the observed means and covariance matrix and baseline model-implied means and covariance matrix. The degree of freedom (df_B) is the number of elements in means and covariance matrix and the number of free parameters in the baseline model.
- 3. Comparative Fit Index (CFI). This index is one of the relative fit indices comparing between the fit of the target model and the fit of the baseline model. The minimum is 0 indicating bad fit and the maximum is 1 indicating perfect fit.

$$CFI = \frac{(\chi_B^2 - df_B) - (\chi_T^2 - df_T)}{\chi_B^2 - df_B}$$

 $CFI = \frac{(\chi_B^2 - df_B) - (\chi_T^2 - df_T)}{\chi_B^2 - df_B}$ 4. Tucker-Lewis Index (TLI) or Non-Normed Fit Index (NNFI). This index is also one of the relative fit indices comparing between target model and baseline model. The minimum is 0 indicating bad fit and the maximum can be slightly greater than 1. The larger value indicates good fit.

$$TLI = \frac{\frac{\chi_B^2}{df_B} - \frac{\chi_T^2}{df_T}}{\frac{\chi_B^2}{df_B} - 1}$$

5. Akaike Information Criterion (AIC). This index is usually used to compare between two nonnested model. The model with smaller AIC provides better fit to the observed data.

$$AIC = f_T + 2k_T$$

where $f_T = \exp(-\chi_T^2/2)$ and k_T is the number of free parameters

6. Bayesian Information Criterion (BIC). This index is also usually used to compare between two nonnested model. The model with smaller BIC provides better fit to the observed data.

$$BIC = f_T + \log(N) k_T$$

where N is sample size.

7. Root Mean Squared Error of Approximation (RMSEA). This index approximates the amount of misfit per degree of freedom. The minimum value is 0 indicating excellent fit.

$$RMSEA = \sqrt{\frac{\chi_T^2 - df_T}{df_T(N-1)}}$$

8. Standardized Root Mean Squared Residual (SRMR). This index indicates the average discrepancy between observed correlations and model-implied correlations. The minimum value is 0 indicating excellent fit.

$$SRMR = \sqrt{\frac{2\sum_{i}\sum_{j\leq i}\left(\frac{S_{ij}}{\sqrt{S_{ii}}\sqrt{S_{jj}}} - \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}}\sqrt{\hat{\sigma}_{jj}}}\right)^{2}}{p(p+1)}}$$

where s_{ij} is the observed covariance between indicator i and j, $\hat{\sigma}_{ij}$ is the model-implied covariance between the indicator i and j, and p is the number of indicators.

Give Us Feedback

If you found any bugs or had any suggestions, please let us know at

Sunthud Pornprasertmanit

Center for Research Methods and Data Analysis

University of Kansas

Email: psunthud@ku.edu