Вывод 1:

Суммарная загрузка N-канальной системы массового обслуживания определяет среднее число каналов, занятых обслуживанием заявок, т. е. она определяет среднее число заявок, обслуживаемых в каналах. Поэтому, можно сделать вывод, что вероятность пребывания n заявок в N-канальной системе приближается к своему максимуму, когда число заявок в системе примерно равно сумме среднего числа заявок, находящихся в очереди и среднего число заявок, обслуживаемых в процессоре(n=1+R).

При R < N/2 средняя длина очереди близка к нулю, поскольку заявки почти сразу обрабатываются, исходя из этого делаем вывод, что очередь не образуется и величина 1 незначительна. Поэтому в n = 1 + R влияние 1 несущественно и этим значением можно пренебречь, следовательно, $n \approx R$. Можно предположить, что при R=1.2 среднее количество заявок в очереди будет примерно равно нулю.

При R = N/2, величина l также незначительна, поэтому заявки в очереди надолго не задерживаются. Поэтому в n = 1 + R влияние l несущественно, следовательно, $n \approx R$. Можно предположить, что при R = 2.0 среднее количество заявок в очереди будет примерно равно l.

При R > N/2 все процессоры в среднем загружены, то есть влияние 1 существенно и n = 1 + R, заявки надолго задерживаются в очереди и медленно выходят из неё. Можно предположить, что при R = 3.2 и R = 2.8 среднее количество заявок в очереди будет большим. n = 1 + R

Стационарный режим существует, если ρ < 1. Следовательно, параметры системы должны отвечать соотношению $(\lambda / N) *V < 1$, то есть $\lambda * \theta < N * B$. Все рассмотренные системы в таблице 2 удовлетворяют данным условиям, а значит у них существует стационарный режим.

$$U = (1+R)/2$$

Так как, разница между U_1 и U_2 больше чем в 2 раза, то можно сделать вывод, что U сильно зависит от l (длина очереди), а длина очереди зависит от загрузки канала.

$$U_1$$
: $l=1,04$; $\rho=0,625$ U_2 : $l=0,067$; $\rho=0,3125$.

Вывод 2:

1) В↑ При увеличении быстродействия канала, с неизменным количеством каналов:

- увеличивается интенсивность обслуживания заявки каналом μ , потому что увеличивается быстродействие канала B, согласно формуле $\mu = B$ / θ , где θ константа;
- Уменьшается средняя загрузка канала ρ, т.к она обратно пропорциональна μ;
- Уменьшается суммарная загрузка системы R, т.к. уменьшается средняя загрузка канала, согласно формуле $R = N \rho$, где N константа;

- Уменьшается средняя длина очереди ℓ , т.к интенсивность обслуживания заявки канала увеличивается, а среднее время обработки заявки уменьшается. μ обратно пропорционально V;
- Уменьшается среднее время ожидания заявки в очереди W, т.к. увеличивается интенсивность обслуживания заявки каналом и уменьшается средняя длина очереди. µ обратно пропорционально U
- Уменьшается среднее время обработки заявки V, т.к. увеличивается быстродействие канала, согласно формуле V = θ/B , где θ константа;
- Уменьшается среднее время пребывания заявки в системе U, потому что увеличивается интенсивность обслуживания заявки каналом и, следовательно, уменьшается W и уменьшается V;

2) N↑ При увеличении количества каналов, с неизменным быстродействием:

- Интенсивность обслуживания заявок μ каналом остается неизменной, т.к. зависит от быстродействия процессора, согласно формуле μ = B / θ , где θ константа;
- Средняя загрузка канала ρ уменьшается, т.к. обратно пропорционально зависит от числа каналов N, согласно формуле $\rho = \lambda / (N * \mu)$, где λ и μ константы;
- Суммарная загрузка системы R не изменяется, т.к. зависит прямо пропорционально от интенсивности входного потока и обратно пропорционально от интенсивности обслуживания заявки каналом, согласно формуле $R = \lambda/\mu$, где λ и μ константы;
- Средняя длина очереди ℓ, среднее время ожидания заявки в очереди W и среднее время пребывания заявки в системе U уменьшается, т.к. заявки обрабатываются несколькими каналами и быстрее поступают на обработку;
- Среднее время обработки заявки каналом V не изменяется, т.к. зависит от быстродействия канала, которое является постоянным.

3) При быстродействии 240000 оп/с с 1 каналом и при быстродействии 80000 оп/с с 3 каналами вычислительные системы имеют следующие показатели:

- Интенсивность обслуживания заявки каналом напрямую зависит от его быстродействия, следовательно, величина μ для одноканальной системы будет в 3 раза выше;
- Средняя величина загрузки канала при постоянной интенсивности поступления заявок в систему остается неизменной, т. к. интенсивность входного потока заявок λ и средняя трудоемкость θ остаются неизменными, а произведение количества каналов N на быстродействие B у обоих систем одинаково ($\rho = (\lambda * \theta)/(N * B)$);

- Так как суммарная загрузка системы зависит от числа каналов и их загрузки, то суммарная загрузка трехканальной системы будет в 3 раза выше $(R = N * \rho)$;
- Средняя длина очереди заявок 1 и среднее время ожидания заявки в очереди W у трехканальной системы меньше, чем у одноканальной, т. к. наличие в системе 3 каналов позволяет сократить среднюю длину очереди заявок и, следовательно, среднее время ожидания заявки в очереди;
- Среднее время обслуживания заявки каналом V у одноканальной системы в 3 раза меньше, т. к. быстродействие процессора у нее в 3 раза выше;
- Среднее время заявки в системе U у одноканальной системы будет меньше, т. к. среднее время пребывания заявки в системе определяется суммой среднего времени ожидания заявки в очереди W и средней длительности обслуживания заявки каналом V, которая у сравниваемых систем отличается значительно (у одноканальной системы средняя длительность обслуживания заявки каналом в 3 раза меньше)

На основании рассмотренного выше сравнения одно- и трехканальной систем с быстродействием $B_1 = 240000$ оп/с и $B_2 = 80000$ оп/с соответственно можно сделать вывод, что одноканальная система с быстродействием B_1 выигрывает по производительности у системы с тремя каналами с быстродействием B_2 . Численный пример приведен в таблице 3. (U=W+V)

Таблица 3 — Численный пример при $\lambda = 10 \ c^{-1}$ и $\theta = 5000$ операций

1 -			<u> </u>	
	1-канальная		3-канальная	
	V = 0.0208 c	W = 0.005482	V = 0.0625 c	W = 0,000723
$\theta = 5000$	U = 0.026315333 c		U = 0.063223c	
$\lambda = 10 c^{-1}$	B = 240000		B = 80000	

Далее стоит рассмотреть, что будет если интенсивность потока увеличится, например в 100 раз. В этом случае время ожидания заявки в очереди у одноканальной системы станет значительно больше, тогда как время обработки заявки каналом не изменится, в результате чего среднее время пребывания заявки в системе сильно увеличится. Для того чтобы узнать, как повлияет на системы такое увеличение заявок, следует произвести расчет. Численный пример приведен ниже.

Таблица 4 — Численный пример при $\lambda = 1000 \ {
m c}^{-1}$ и $\theta = 5000$ операций

	1-канальная		3-канальная	
	V = 0.0208 c	W = 0,548200	V = 0.0625 c	W = 0.072300
$\theta = 5000$	U = 0.569 c		U = 0.1348 c	
$\lambda = 1000 \ c^{-1}$	B = 240000		B = 80000	

В заключение можно сказать, что при одинаковом суммарном быстродействии при низкой интенсивности потока заявок будет выигрывать одноканальная система, а при высокой — трехканальная так как время ожидания заявки в очереди у одноканальной системы станет слишком большим при большом количестве заявок.