### Revisão de Matrizes

# A matrix **A** is an  $m \times n$  rectangular array of elements, arranged in m rows and n columns, denoted

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

# Some examples of 2 x 2 matrices are given below:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, C = \begin{pmatrix} 1 & 3-2i \\ 4+5i & 6-7i \end{pmatrix}$$

## Transpose

$$\#$$
 The **transpose** of  $\mathbf{A} = (a_{ij})$  is  $\mathbf{A}^T = (a_{ji})$ .

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

★ For example,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \Rightarrow B^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

# Conjugate

**\*\*** The **conjugate** of 
$$A = (a_{ij})$$
 is  $\overline{A} = (\overline{a_{ij}})$ .

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \Rightarrow \bar{A} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{12} & \cdots & \bar{a}_{1n} \\ \bar{a}_{21} & \bar{a}_{22} & \cdots & \bar{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{m1} & \bar{a}_{m2} & \cdots & \bar{a}_{mn} \end{pmatrix}$$

★ For example,

$$A = \begin{pmatrix} 1 & 2+3i \\ 3-4i & 4 \end{pmatrix} \Rightarrow \bar{A} = \begin{pmatrix} 1 & 2-3i \\ 3+4i & 4 \end{pmatrix}$$

## Adjoint

 $\Re$  The **adjoint** of **A** is  $\overline{\mathbf{A}}^T$ , and is denoted by  $\mathbf{A}^*$ 

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \Rightarrow A^{i} = \begin{pmatrix} \overline{a}_{11} & \overline{a}_{21} & \cdots & \overline{a}_{m1} \\ \overline{a}_{12} & \overline{a}_{22} & \cdots & \overline{a}_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a}_{1n} & \overline{a}_{2n} & \cdots & \overline{a}_{mn} \end{pmatrix}$$

★ For example,

$$A = \begin{pmatrix} 1 & 2+3i \\ 3-4i & 4 \end{pmatrix} \Rightarrow A^{i} = \begin{pmatrix} 1 & 3+4i \\ 2-3i & 4 \end{pmatrix}$$

## **Square Matrices**

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

### Vectors

 $\Re$  A column vector x is an  $n \times 1$  matrix. For example,

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

# A row vector x is a 1 x n matrix. For example,

$$y = (1 \ 2 \ 3)$$

\*\*Note here that  $\mathbf{y} = \mathbf{x}^T$ , and that in general, if  $\mathbf{x}$  is a column vector  $\mathbf{x}$ , then  $\mathbf{x}^T$  is a row vector.

#### The Zero Matrix

The zero matrix is defined to be  $\mathbf{0} = (0)$ , whose dimensions depend on the context. For example,

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad 0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad 0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \dots$$

## Matrix Equality

\*\*Two matrices  $\mathbf{A} = (a_{ij})$  and  $\mathbf{B} = (b_{ij})$  are **equal** if  $a_{ij} = b_{ij}$  for all i and j. For example,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \Rightarrow A = B$$

## Matrix – Scalar Multiplication

\*\* The product of a matrix  $\mathbf{A} = (a_{ij})$  and a constant k is defined to be  $k\mathbf{A} = (ka_{ii})$ . For example,

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \Rightarrow -5A = \begin{pmatrix} -5 & -10 & -15 \\ -20 & -25 & -30 \end{pmatrix}$$

### Matrix Addition and Subtraction

**\*\*** The **sum** of two  $m \times n$  matrices  $\mathbf{A} = (a_{ij})$  and  $\mathbf{B} = (b_{ij})$  is defined to be  $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})$ . For example,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \Rightarrow A + B = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$

**\*\*** The **difference** of two  $m \times n$  matrices  $\mathbf{A} = (a_{ij})$  and  $\mathbf{B} = (b_{ij})$  is defined to be  $\mathbf{A} - \mathbf{B} = (a_{ij} - b_{ij})$ . For example,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \Rightarrow A - B = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix}$$

# Matrix Multiplication

\*\* The **product** of an  $m \times n$  matrix  $\mathbf{A} = (a_{ij})$  and an  $n \times r$  matrix  $\mathbf{B} = (b_{ij})$  is defined to be the matrix  $\mathbf{C} = (c_{ij})$ , where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

# Examples (note **AB** does not necessarily equal **BA**):

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \Rightarrow \mathbf{AB} = \begin{pmatrix} 1+4 & 3+8 \\ 3+8 & 9+16 \end{pmatrix} = \begin{pmatrix} 5 & 11 \\ 11 & 25 \end{pmatrix}$$
$$\Rightarrow \mathbf{BA} = \begin{pmatrix} 1+9 & 2+12 \\ 2+12 & 4+16 \end{pmatrix} = \begin{pmatrix} 10 & 14 \\ 14 & 20 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 \\ 1 & 2 \\ 0 & -1 \end{pmatrix} \Rightarrow \mathbf{CD} = \begin{pmatrix} 3+2+0 & 0+4-3 \\ 12+5+0 & 0+10-6 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 17 & 4 \end{pmatrix}$$

## **Vector Multiplication**

# The **dot product** of two  $n \times 1$  vectors  $\mathbf{x} \& \mathbf{y}$  is defined as

$$x^T y = \sum_{k=1}^n x_i y_j$$

 $\divideontimes$  The inner product of two  $n \times 1$  vectors  $\mathbf{x} \& \mathbf{y}$  is defined as

$$(x,y) = x^T \overline{y} = \sum_{k=1}^n x_i \overline{y}_j$$

**\*\*** Example:

$$x = \begin{pmatrix} 1 \\ 2 \\ 3i \end{pmatrix}, \quad y = \begin{pmatrix} -1 \\ 2 - 3i \\ 5 + 5i \end{pmatrix} \Rightarrow x^{T} y = (1)(-1) + (2)(2 - 3i) + (3i)(5 + 5i) = -12 + 9i$$
$$\Rightarrow (x, y) = x^{T} \bar{y} = (1)(-1) + (2)(2 + 3i) + (3i)(5 - 5i) = 18 + 21i$$

## Vector Length

# The **length** of an  $n \times 1$  vector  $\mathbf{x}$  is defined as

$$||x|| = (x, x)^{1/2} = \left[\sum_{k=1}^{n} x_k \bar{x}_k\right]^{1/2} = \left[\sum_{k=1}^{n} |x_k|^2\right]^{1/2}$$

 $\Re$  Note here that we have used the fact that if x = a + bi, then

$$x \cdot \overline{x} = (a + bi)(a - bi) = a^2 + b^2 = |x|^2$$

**\*** Example:

$$x = \begin{pmatrix} 1 \\ 2 \\ 3+4i \end{pmatrix} \Rightarrow ||x|| = (x, x)^{1/2} = \sqrt{(1)(1) + (2)(2) + (3+4i)(3-4i)}$$
$$= \sqrt{1 + 4 + (9+16)} = \sqrt{30}$$

## Orthogonality

- **\*\*** Two  $n \times 1$  vectors  $\mathbf{x} & \mathbf{y}$  are **orthogonal** if  $(\mathbf{x}, \mathbf{y}) = 0$ .
- **\*** Example:

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad y = \begin{pmatrix} 11 \\ -4 \\ -1 \end{pmatrix} \Rightarrow (x, y) = (1)(11) + (2)(-4) + (3)(-1) = 0$$



The multiplicative **identity matrix I** is an  $n \times n$  matrix given by

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- # For any square matrix **A**, it follows that  $\mathbf{AI} = \mathbf{IA} = \mathbf{A}$ .
- \* The dimensions of I depend on the context. For example,

$$\mathbf{AI} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad \mathbf{IB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$



- \*\* A square matrix **A** is **nonsingular**, or **invertible**, if there exists a matrix **B** such that that AB = BA = I. Otherwise **A** is **singular**.
- \*\* The matrix **B**, if it exists, is unique and is denoted by  $A^{-1}$  and is called the **inverse** of **A**.
- It turns out that  $A^{-1}$  exists iff  $\det A \neq 0$ , and  $A^{-1}$  can be found using **row reduction** (also called Gaussian elimination) on the augmented matrix (A|I), see example on next slide.
- \*\* The three elementary row operations:
  - Interchange two rows.
  - Multiply a row by a nonzero scalar.
  - Add a multiple of one row to another row.

## Example: Finding the Identity Matrix (1 of 2)

# Use row reduction to find the inverse of the matrix **A** below, if it exists.

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$$

# Solution: If possible, use elementary row operations to reduce (**A**|**I**),

$$(A|I) = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{pmatrix},$$

such that the left side is the identity matrix, for then the right side will be  $A^{-1}$ . (See next slide.)

## Example: Finding the Identity Matrix (2 of 2)

$$(A|I) = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{pmatrix}$$

### **Matrix Functions**

\*\*The elements of a matrix can be functions of a real variable. In this case, we write

$$x(t) = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{m}(t) \end{pmatrix}, \quad A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m2}(t) & \cdots & a_{mn}(t) \end{pmatrix}$$

\*\* Such a matrix is continuous at a point, or on an interval (a, b), if each element is continuous there. Similarly with differentiation and integration:

$$\frac{dA}{dt} = \left(\frac{da_{ij}}{dt}\right), \quad \int_a^b A(t) dt = \left(\int_a^b a_{ij}(t) dt\right)$$

## Example & Differentiation Rules

$$A(t) = \begin{pmatrix} 3t^2 & \sin t \\ \cos t & 4 \end{pmatrix} \Rightarrow \frac{dA}{dt} = \begin{pmatrix} 6t & \cos t \\ -\sin t & 0 \end{pmatrix},$$
$$\Rightarrow \int_0^{\pi} A(t) dt = \begin{pmatrix} \pi^3 & 0 \\ -1 & 4\pi \end{pmatrix}$$

\*\*Many of the rules from calculus apply in this setting. For example:  $d(\mathbf{C}\mathbf{A}) = d\mathbf{A}$ 

$$\frac{d\left(\mathbf{CA}\right)}{dt} = C\frac{dA}{dt}, \text{ where } C \text{ is a constant matrix}$$

$$\frac{d\left(A+B\right)}{dt} = \frac{dA}{dt} + \frac{dB}{dt}$$

$$\frac{d\left(\mathbf{AB}\right)}{dt} = \left(\frac{dA}{dt}\right)B + A\left(\frac{dB}{dt}\right)$$

# Sistemas

 $\Re$  A system of *n* linear equations in *n* variables,

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

can be expressed as a matrix equation Ax = b:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

**X** If **b** = **0**, then system is **homogeneous**; otherwise it is **nonhomogeneous**.

## Nonsingular Case

# If the coefficient matrix A is nonsingular, then it is invertible and we can solve Ax = b as follows:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \implies \mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \implies \mathbf{I}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

- ## This solution is therefore unique. Also, if  $\mathbf{b} = \mathbf{0}$ , it follows that the unique solution to  $\mathbf{A}\mathbf{x} = \mathbf{0}$  is  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{0} = \mathbf{0}$ .
- # Thus if A is nonsingular, then the only solution to Ax = 0 is the trivial solution x = 0.

## Example 1: Nonsingular Case (1 of 3)

\*From a previous example, we know that the matrix **A** below is nonsingular with inverse as given.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}, \quad \mathbf{A}^{-1} = \begin{pmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{pmatrix}$$

# Using the definition of matrix multiplication, it follows that the only solution of  $\mathbf{A}\mathbf{x} = \mathbf{0}$  is  $\mathbf{x} = \mathbf{0}$ :

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{0} = \begin{pmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

## Example 1: Nonsingular Case (2 of 3)

Now let's solve the nonhomogeneous linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  below using  $\mathbf{A}^{-1}$ :  $0x_1 + x_2 + 2x_3 = 2$ 

$$1x + 0x + 2x = 2$$

$$1x_1 + 0x_2 + 3x_3 = -2$$

$$4x_1 - 3x_2 + 8x_3 = 0$$

# This system of equations can be written as Ax = b, where

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$$

Then 
$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \begin{pmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -23 \\ -12 \\ 7 \end{pmatrix}$$

## Example 1: Nonsingular Case (3 of 3)

\*\* Alternatively, we could solve the nonhomogeneous linear system Ax = b below using row reduction.

$$0x_1 + x_2 + 2x_3 = 2$$

$$1x_1 + 0x_2 + 3x_3 = -2$$

$$4x_1 - 3x_2 + 8x_3 = 0$$

 $\mathbb{R}$  To do so, form the augmented matrix  $(\mathbf{A}|\mathbf{b})$  and reduce,

using elementary row operations.  

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 1 & 0 & 3 & -2 \\ 4 & -3 & 8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & 2 & 2 \\ 4 & -3 & 8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -3 & -4 & 8 \end{pmatrix}$$

## Singular Case

- # If the coefficient matrix A is singular, then  $A^{-1}$  does not exist, and either a solution to Ax = b does not exist, or there is more than one solution (not unique).
- ## Further, the homogeneous system Ax = 0 has more than one solution. That is, in addition to the trivial solution x = 0, there are infinitely many nontrivial solutions.
- The nonhomogeneous case Ax = b has no solution unless (b, y) = 0, for all vectors y satisfying A\*y = 0, where A\* is the adjoint of A.
- In this case,  $\mathbf{A}\mathbf{x} = \mathbf{b}$  has solutions (infinitely many), each of the form  $\mathbf{x} = \mathbf{x}^{(0)} + \boldsymbol{\xi}$ , where  $\mathbf{x}^{(0)}$  is a particular solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , and  $\boldsymbol{\xi}$  is any solution of  $\mathbf{A}\mathbf{x} = \mathbf{0}$ .

## Example 2: Singular Case (1 of 3)

 $\Re$  Solve the nonhomogeneous linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  below using row reduction.

$$1x_1 - 2x_2 - 1x_3 = 1$$
$$-1x_1 + 5x_2 + 6x_3 = 0$$
$$5x_1 - 4x_2 + 5x_3 = -1$$

To do so, form the augmented matrix (A|b) and reduce, using elementary row operations.

(A|b) = 
$$\begin{pmatrix} 1 & -2 & -1 & 1 \ -1 & 5 & 6 & 0 \ 5 & -4 & 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 & 1 \ 0 & 3 & 5 & 1 \ 0 & 6 & 10 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 & 1 \ 0 & 3 & 5 & 1 \ 0 & 3 & 5 & -3 \end{pmatrix}$$
  
 $\begin{pmatrix} 1 & -2 & -1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & -2 & -1 & 1 \ 0 & 3 & 5 & -3 \end{pmatrix}$ 

## Example 2: Singular Case (2 of 3)

 $\Re$  Solve the nonhomogeneous linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  below using row reduction.

$$1x_1 - 2x_2 - 1x_3 = b_1$$
$$-1x_1 + 5x_2 + 6x_3 = b_2$$
$$5x_1 - 4x_2 + 5x_3 = b_3$$

## Example 2: Singular Case (3 of 3)

\* From the previous slide, we require

$$b_3 - 2b_2 - 7b_1 = 0$$

**\*** Suppose

$$b_1 = 1, b_2 = -1, b_3 = 5$$

# Then the reduced augmented matrix (A|b) becomes:

$$\begin{pmatrix} 1 & -2 & -1 & b_1 \\ 0 & 3 & 5 & b_2 + b_1 \\ 0 & 0 & 0 & \frac{1}{2}b_3 - b_2 - \frac{7}{2}b_1 \end{pmatrix} \rightarrow \begin{pmatrix} x_1 & -2x_2 & -1x_3 & =1 \\ 3x_2 & +5x_3 & =0 \\ 0x_3 & =0 \end{pmatrix}$$

## Linear Dependence and Independence

 $\bigstar$  A set of vectors  $\mathbf{x}^{(1)}$ ,  $\mathbf{x}^{(2)}$ ,...,  $\mathbf{x}^{(n)}$  is **linearly dependent** if there exists scalars  $c_1, c_2,..., c_n$ , not all zero, such that

$$c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \dots + c_n \mathbf{x}^{(n)} = \mathbf{0}$$

**X** If the only solution of

$$c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \dots + c_n \mathbf{x}^{(n)} = \mathbf{0}$$

is  $c_1 = c_2 = ... = c_n = 0$ , then  $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)}$  is linearly independent.

## Example 3: Linear Independence (1 of 2)

\*\*Determine whether the following vectors are linear dependent or linearly independent.

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}, \quad \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \quad \mathbf{x}^{(3)} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix}$$

\*\* We need to solve 
$$c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + c_3 \mathbf{x}^{(3)} = \mathbf{0}$$

or 
$$c_1 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} + c \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

## Example 3: Linear Independence (2 of 2)

# We thus reduce the augmented matrix (A|b), as before.

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 3 & 0 \\ 4 & -3 & 8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$c_{1} + 3c_{3} = 0$$

$$c_{2} + 2c_{3} = 0 \rightarrow \mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$c_{3} = 0$$

\*\* Thus the only solution is  $c_1 = c_2 = ... = c_n = 0$ , and therefore the original vectors are linearly independent.

## Example 4: Linear Dependence (1 of 2)

\*\*Determine whether the following vectors are linear dependent or linearly independent.

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}, \quad \mathbf{x}^{(2)} = \begin{pmatrix} -2 \\ 5 \\ -4 \end{pmatrix}, \quad \mathbf{x}^{(3)} = \begin{pmatrix} -1 \\ 6 \\ 5 \end{pmatrix}$$

\*\* We need to solve 
$$c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + c_3 \mathbf{x}^{(3)} = \mathbf{0}$$

$$\text{or} \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 5 \\ -4 \end{pmatrix} + c_3 \begin{pmatrix} -1 \\ 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -2 & -1 \\ -1 & 5 & 6 \\ 5 & -4 & 5 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

## Example 4: Linear Dependence (2 of 2)

# We thus reduce the augmented matrix (A|b), as before.

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 1 & -2 & -1 & 0 \\ -1 & 5 & 6 & 0 \\ 5 & -4 & 5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{cccc}
c_1 & -2c_2 & -1c_3 & = 0 \\
\rightarrow & 3c_2 & +5c_3 & = 0 \rightarrow \mathbf{c} = \begin{pmatrix} -7c_3/3 \\
-5c_3/3 \\
c_3 \end{pmatrix} \rightarrow \mathbf{c} = k \begin{pmatrix} 7 \\ 5 \\
-3 \end{pmatrix}$$

\*\*Thus the original vectors are linearly dependent, with

$$7 \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} + 5 \begin{pmatrix} -2 \\ 5 \\ -4 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

# Linear Independence and Invertibility

- **\*\*** Consider the previous two examples:
  - The first matrix was known to be nonsingular, and its column vectors were linearly independent.
  - The second matrix was known to be singular, and its column vectors were linearly dependent.
- \*\*This is true in general: the columns (or rows) of **A** are linearly independent iff **A** is nonsingular iff **A**-1 exists.
- \*\*Also, A is nonsingular iff detA  $\neq$  0, hence columns (or rows) of A are linearly independent iff detA  $\neq$  0.
- ## Further, if A = BC, then det(C) = det(A)det(B). Thus if the columns (or rows) of A and B are linearly independent, then the columns (or rows) of C are also.

## Linear Dependence & Vector Functions

\*\*Now consider vector functions  $\mathbf{x}^{(1)}(t)$ ,  $\mathbf{x}^{(2)}(t)$ ,...,  $\mathbf{x}^{(n)}(t)$ , where

$$\mathbf{x}^{(k)}(t) = \begin{pmatrix} x_1^{(k)}(t) \\ x_2^{(k)}(t) \\ \vdots \\ x_m^{(k)}(t) \end{pmatrix}, \quad k = 1, 2, \dots, n, \quad t \in I = (\alpha, \beta)$$

- \*\*As before,  $\mathbf{x}^{(1)}(t)$ ,  $\mathbf{x}^{(2)}(t)$ ,...,  $\mathbf{x}^{(n)}(t)$  is **linearly dependent** on I if there exists scalars  $c_1, c_2, \ldots, c_n$ , not all zero, such that  $c_1\mathbf{x}^{(1)}(t) + c_2\mathbf{x}^{(2)}(t) + \cdots + c_n\mathbf{x}^{(n)}(t) = \mathbf{0}$ , for all  $t \in I$
- $\Re$  Otherwise  $\mathbf{x}^{(1)}(t)$ ,  $\mathbf{x}^{(2)}(t)$ ,...,  $\mathbf{x}^{(n)}(t)$  is **linearly independent** on I See text for more discussion on this.

## Eigenvalues and Eigenvectors

- # The eqn.  $\mathbf{A}\mathbf{x} = \mathbf{y}$  can be viewed as a linear transformation that maps (or transforms)  $\mathbf{x}$  into a new vector  $\mathbf{y}$ .
- \*\*Nonzero vectors **x** that transform into multiples of themselves are important in many applications.
- **\*\*** Thus we solve  $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$  or equivalently,  $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ .
- # This equation has a nonzero solution if we choose  $\lambda$  such that  $det(\mathbf{A}-\lambda\mathbf{I})=0$ .
- \*\* Such values of  $\lambda$  are called **eigenvalues** of **A**, and the nonzero solutions **x** are called **eigenvectors**.

# Example 5: Eigenvalues (1 of 3)

# Find the eigenvalues and eigenvectors of the matrix **A**.

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}$$

**\*\*** Solution: Choose  $\lambda$  such that  $det(\mathbf{A}-\lambda\mathbf{I}) = 0$ , as follows.

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \det\begin{pmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{pmatrix}$$

$$=(2-\lambda)(-6-\lambda)-(3)(3)$$

$$= \lambda^2 + 4\lambda - 21 = (\lambda - 3)(\lambda + 7)$$

$$\Rightarrow \lambda = 3, \lambda = -7$$

# Example 5: First Eigenvector (2 of 3)

- To find the eigenvectors of the matrix **A**, we need to solve  $(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=\mathbf{0}$  for  $\lambda=3$  and  $\lambda=-7$ .
- # Eigenvector for  $\lambda = 3$ : Solve

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 2 - 3 & 3 \\ 3 & -6 - 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} -1 & 3 & 0 \\ 3 & -9 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 0 \\ 3 & -9 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1x_1 & -3x_2 & = 0 \\ 0x_2 & = 0 \end{pmatrix}$$

$$\rightarrow \mathbf{x}^{(1)} = \begin{pmatrix} 3x_2 \\ x_2 \end{pmatrix} = c \begin{pmatrix} 3 \\ 1 \end{pmatrix}, c \text{ arbitrary} \rightarrow \text{choose } \mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

#### Example 5: Second Eigenvector (3 of 3)

# Eigenvector for  $\lambda = -7$ : Solve

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 2+7 & 3 \\ 3 & -6+7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 9 & 3 & 0 \\ 3 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/3 & 0 \\ 3 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1x_1 & +1/3x_2 & = 0 \\ 0x_2 & = 0 \end{pmatrix}$$

$$\rightarrow \mathbf{x}^{(2)} = \begin{pmatrix} -1/3x_2 \\ x_2 \end{pmatrix} = c\begin{pmatrix} -1/3 \\ 1 \end{pmatrix}, c \text{ arbitrary} \rightarrow \text{choose } \mathbf{x}^{(2)} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

### Normalized Eigenvectors

- \*\*From the previous example, we see that eigenvectors are determined up to a nonzero multiplicative constant.
- \*If this constant is specified in some particular way, then the eigenvector is said to be **normalized**.
- ## For example, eigenvectors are sometimes normalized by choosing the constant so that  $||\mathbf{x}|| = (\mathbf{x}, \mathbf{x})^{1/2} = 1$ .

# Algebraic and Geometric Multiplicity

- In finding the eigenvalues  $\lambda$  of an  $n \times n$  matrix **A**, we solve  $\det(\mathbf{A}-\lambda\mathbf{I})=0$ .
- \*\* Since this involves finding the determinant of an  $n \times n$  matrix, the problem reduces to finding roots of an nth degree polynomial.
- $\bigstar$  Denote these roots, or eigenvalues, by  $\lambda_1, \lambda_2, ..., \lambda_n$ .
- # If an eigenvalue is repeated m times, then its **algebraic multiplicity** is m.
- $\divideontimes$  Each eigenvalue has at least one eigenvector, and a eigenvalue of algebraic multiplicity m may have q linearly independent eigevectors,  $1 \le q \le m$ , and q is called the **geometric multiplicity** of the eigenvalue.

# Eigenvectors and Linear Independence

- \* If an eigenvalue  $\lambda$  has algebraic multiplicity 1, then it is said to be **simple**, and the geometric multiplicity is 1 also.
- # If each eigenvalue of an  $n \times n$  matrix **A** is simple, then **A** has n distinct eigenvalues. It can be shown that the n eigenvectors corresponding to these eigenvalues are linearly independent.
- ## If an eigenvalue has one or more repeated eigenvalues, then there may be fewer than n linearly independent eigenvectors since for each repeated eigenvalue, we may have q < m. This may lead to complications in solving systems of differential equations.

## Example 6: Eigenvalues (1 of 5)

# Find the eigenvalues and eigenvectors of the matrix **A**.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

# Solution: Choose  $\lambda$  such that  $det(\mathbf{A}-\lambda\mathbf{I})=0$ , as follows.

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} -\lambda & 1 & 1\\ 1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{pmatrix}$$
$$= -\lambda^3 + 3\lambda + 2$$
$$= (\lambda - 2)(\lambda + 1)^2$$
$$\Rightarrow \lambda_1 = 2, \lambda_2 = -1, \lambda_2 = -1$$

#### Example 6: First Eigenvector (2 of 5)

# Eigenvector for  $\lambda = 2$ : Solve  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ , as follows.

$$\begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1x_1 & -1x_3 & = 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1x_2 & -1x_3 & = 0 \\ 0x_3 & = 0 \end{pmatrix}$$

$$\rightarrow \mathbf{x}^{(1)} = \begin{pmatrix} x_3 \\ x_3 \\ x_3 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, c \text{ arbitrary} \rightarrow \text{choose } \mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

### Example 6: 2<sup>nd</sup> and 3<sup>rd</sup> Eigenvectors (3 of 5)

# Eigenvector for  $\lambda = -1$ : Solve  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ , as follows.

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1x_1 & +1x_2 & +1x_3 & = 0 \\ 0x_2 & = 0 \\ 0x_3 & = 0 \end{pmatrix}$$

$$\rightarrow \mathbf{x}^{(2)} = \begin{pmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \text{ where } x_2, x_3 \text{ arbitrary}$$

$$\rightarrow \text{choose } \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{x}^{(3)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

## Example 6: Eigenvectors of A (4 of 5)

\*\*Thus three eigenvectors of **A** are

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{x}^{(3)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

where  $\mathbf{x}^{(2)}$ ,  $\mathbf{x}^{(3)}$  correspond to the double eigenvalue  $\lambda = -1$ .

- # It can be shown that  $\mathbf{x}^{(1)}$ ,  $\mathbf{x}^{(2)}$ ,  $\mathbf{x}^{(3)}$  are linearly independent.
- # Hence A is a 3 x 3 symmetric matrix  $(A = A^T)$  with 3 real eigenvalues and 3 linearly independent eigenvectors.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

#### Example 6: Eigenvectors of A (5 of 5)

\*\*Note that we could have we had chosen

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{x}^{(3)} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

\*\*Then the eigenvectors are orthogonal, since

$$(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = 0, (\mathbf{x}^{(1)}, \mathbf{x}^{(3)}) = 0, (\mathbf{x}^{(2)}, \mathbf{x}^{(3)}) = 0$$

\*\*Thus A is a 3 x 3 symmetric matrix with 3 real eigenvalues and 3 linearly independent orthogonal eigenvectors.

# Hermitian Matrices

- # A **self-adjoint**, or **Hermitian** matrix, satisfies  $\mathbf{A} = \mathbf{A}^*$ , where we recall that  $\mathbf{A}^* = \overline{\mathbf{A}}^T$ .
- \*\* Thus for a Hermitian matrix,  $a_{ij} = \overline{a_{ji}}$ .
- \*\*Note that if **A** has real entries and is symmetric (see last example), then **A** is Hermitian.
- $\Re$  An  $n \times n$  Hermitian matrix **A** has the following properties:
  - All eigenvalues of A are real.
  - lacktriangle There exists a full set of *n* linearly independent eigenvectors of **A**.
  - If  $\mathbf{x}^{(1)}$  and  $\mathbf{x}^{(2)}$  are eigenvectors that correspond to different eigenvalues of  $\mathbf{A}$ , then  $\mathbf{x}^{(1)}$  and  $\mathbf{x}^{(2)}$  are orthogonal.
  - Corresponding to an eigenvalue of algebraic multiplicity *m*, it is possible to choose *m* mutually orthogonal eigenvectors, and hence A has a full set of *n* linearly independent orthogonal eigenvectors.