

EE/CSCI 451: Parallel and Distributed Computation

Lecture #8

9/10/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Announcement

- Midterm 1 date: 9/25
 - Discussion session 2hours

- HW2 due 9/10 (upcoming Thu.)
- PHW2 due 9/14 (+3 free late-days)
- HW1 and PHW1 grades are out

PHW1 Statistics	
Average	93.51
Median	98.00
Standard Deviation	18.86

HW1 Statistics			
Average	91.10		
Median	96.00		
Standard Deviation	15.39		

Announcement: Midterm1 Logistics

Online Proctored Exam:

- Time: Week 6 discussion session 2 hours: 3:30-5:30PM (Los Angeles time)
- Format: Open-book, open-notes [Attendance is required, no make-up given]
- Proctoring: 2 proctors watching different subgroups of students in separate Zoom meetings, links will be sent to students in advance
 - Require camera-enabled device
- Receiving and returning your exam:
 - Exam will be released on Piazza under resource page at/around 3:26 PM
 - You will submit the completed exam on Blackboard (a submission portal will be created in advance)
- Completing your exam:
 - Download the assignment pages (exam pages) as pdf files on to your tablet and annotate it with your answers. <u>Only handannotated pdf files are acceptable.</u>
 - Require a writable tablet device
- Coverage: Week 1-Week 5 contents (Week 6 contents analytical modeling & communication primitives not covered)
- Special note 1: Important discussion attendance is required on Week 5 (Sept 18)!
 - 10-min midterm trial run to make sure all students are prepared for and comfortable with the exam process
- Special note 2:
 - We have created a Piazza poll [link] to collect info regarding your available resources/capabilities to complete the exam with writable tablet. Everyone is **required to participate in the poll**

Announcement

• Lecture slides will be released **before** each class for your reference

- Occasionally, lecture slides will be updated after the lecture
 - The updated slides will over raid the slides released before the class

 Lecture slides are available at https://piazza.com/usc/fall2020/eecsci451/resources

Outline

- From last class
 - Static and Dynamic networks
 - Shuffle exchange network
 - Multistage network
 - Crossbar network
 - Performance metrics
- Today
 - CLOS network
 - Butterfly network
 - Hypercube network
 - Tree-based network
 - Performance metrics

CLOS network (1) Multistage network

CLOS network (2)

Structure of CLOS network

CLOS network (3)

Stage $i \rightarrow$ Stage i + 1 connections, i = 0, 1

Any Box in stage i is connected to all boxes in the next stage

- Box \sqrt{n} output ports
- Stage \sqrt{n} boxes

CLOS network (4)

- 3 stage network
- Each box $\rightarrow \sqrt{n} \times \sqrt{n}$ crossbar
- Number of switches (boxes) = $3\sqrt{n}$ Cost of $\sqrt{n} \times \sqrt{n}$ crossbar = $O\left((\sqrt{n})^2\right)$ Total Cost = $O(n\sqrt{n}) = O(n^{\frac{3}{2}})$

Note: CLOS network can realize all n! permutations

(For any permutation from input to output, each of the $3\sqrt{n}$ boxes can be configured such that the connection specified by the permutation can be realized)

Example CLOS network

Example using 3×3 switches (n = 9)

CLOS network (5)

Realizing a permutation

Choose the control setting for each of the $3\sqrt{n}$ boxes so the desired connection is realized

of control bits/box = $\log(\sqrt{n}!)$

Any permutation on \sqrt{n} inputs can be specified by $\sqrt{n} \log \sqrt{n}$ bits

CLOS network (6)

Example: $i \rightarrow (i + 3) \mod 9$

CLOS network (7)

Example: 4 input / output CLOS network

Example permutation:

 $0 \rightarrow 2$

 $1 \rightarrow 3$

 $2 \rightarrow 1$

 $3 \rightarrow 0$

Note: All 4! permutations can be realized by above network

CLOS network (8)

Another example: 4 input / output CLOS network

Example permutation:

 $0 \rightarrow 2$

 $1 \rightarrow 3$

 $2 \rightarrow 1$

 $3 \rightarrow 0$

CLOS network (9)

- Routing problem
 - Given a permutation p
 - ullet Specify the switch settings such that all connections in p are realized

Each $3\sqrt{n}$ box \rightarrow permutation on \sqrt{n} inputs

Multistage network (1) Non blocking network

Any connection request from input to output can be routed at **any** time **without rearranging** the existing set of connections at that time

Multistage network (2)

Rearrangeable network (1)

To route a connection, we may have to rearrange existing connections, i.e., change the control settings of some switches that are routing an existing connection

Multistage network (3)

Rearrangeable network (2)

A (multistage) network is rearrangeable if **any** connection request $(i \rightarrow j)$ can be realized by (possibly) rearranging some existing connections at that time.

Butterfly network (1)

•
$$n = 2^k$$
 for some k

•
$$\log_2 n + 1$$
 stages

- Power of 2 connections
- 2^{l} , $l = 0,1, ... \log_2 n 1$
- Stage l, $0 \le l < \log_2 n$
- $i \rightarrow i$ in Stage l+1
- $i \rightarrow i$ complement bit l in Stage l+1

Butterfly network (2)

n input butterfly network

• Total number of edges = $n \cdot 2 \cdot \log_2 n$

/ # of stage

of edges/node

Mesh-connected Network

Hypercube Network (1)

Construction of hypercube from hypercubes of lower dimension

Hypercube Network (2)

• In general, for *k* dimension hypercube:

$$p = \text{total number of nodes} = 2^k$$

Node
$$i = i_{k-1}i_{k-2} \dots i_0$$

k connections/node – complement a bit of i

• Example:

Tree-based Network (1)

○ Processing node □ Switching node

p = total number of nodes

Tree-based Network (2) Fat tree (16 processing nodes)

• In a fat tree, branches nearer the top of the hierarchy have higher bandwidth than branches further down the hierarchy.

Performance metrics (1)

Diameter

```
diameter \triangleq \max_{(i,j)} \{distance(i,j)\}
```

 $distance(i,j) \triangleq \min \text{ path length between } i \text{ and } j$

 \triangleq length of the shortest path between *i* and *j*

length of a path = # of edges in the path

Performance metrics (2)

Example:

Distance

$0 \rightarrow 1$	1		
$0 \rightarrow 2$	1		
$0 \rightarrow 3$	1		
$1 \rightarrow 0$	1		
$1 \rightarrow 2$	2		
$1 \rightarrow 3$	1		Diameter = 2
$2 \rightarrow 0$	1	V	
$2 \rightarrow 1$	2		
$2 \rightarrow 3$	1		
$3 \rightarrow 0$	1		
$3 \rightarrow 1$	1		
$3 \rightarrow 2$	1		

Performance metrics (3)

Diameter

Example:

- -1-D mesh (no wraparound): p-1 { $0 \rightarrow p-1$ }
- -2-D mesh (no wraparound): $2(\sqrt{p}-1)$ {(0,0) → $(\sqrt{p}-1,\sqrt{p}-1)$ }
- -Hypercube : $\log_2 p \{0 \rightarrow p 1\}$

Performance metrics (4)

Diameter = d

Routing can be performed in at most d steps (hops).

Note: The routing algorithm may not do shortest path routing (for example, to reduce congestion)

Performance metrics (5)

Bisection width (1)

• Bisection width ≜ Minimum number of links to be removed to partition the network into two equal-sized (in number of nodes) subnetworks

Minimum over all possible partitions

Performance metrics (6) Bisection width (2)

• Example

 \sqrt{p} for 2-D mesh (no wraparound)

Performance metrics (7) Bisection bandwidth (3)

- Bandwidth → number of bits/sec
 - Example:

8 bits

O

Bandwidth = $8 \times \text{clock rate}$

• Bisection bandwidth ≜ Minimum bandwidth between any two equal halves (number of bits/sec that can be exchanged between 2

equal halves of the network)

Performance metrics (8)

Cost of a static network

- Cost ≜ number of communication links in the network
- Example:
 - Tree: p 1
 - 1-D mesh (no wraparound): p-1
 - d-dimensional wraparound mesh: $d \cdot p$
 - Hypercube: $\frac{p \cdot \log_2 p}{2}$
 - *k*-ary *d*-cube
 - A d-dimensional array with k elements in each dimension
 - Number of nodes $p = k^d$
 - Cost: *dp*

Summary

Network	Diameter	Bisection width	Cost (No. of links)
Completely connected	1	$\frac{p^2}{4}$	$\frac{p(p-1)}{2}$
Star	2	1	p-1
Complete binary tree	$2\log\left(\frac{p+1}{2}\right)$	1	p-1
1-D mesh, no wraparound	p-1	1	p-1
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	$2(p-\sqrt{p})$
2-D wraparound mesh	$2[\sqrt{p}/2]$	$2\sqrt{p}$	2 <i>p</i>
Hypercube	$\log p$	<i>p</i> /2	$(p \cdot \log p)/2$
Wraparound k -ary d -cube $p = k^d$	d[k/2]	$2k^{d-1}$	dp

Interconnection networks

Desirable Features

- Low diameter (fast routing)
- High bisection bandwidth (large number of concurrent data transfers)
- Low cost (logic + wiring)
- Localized connections (high clock rate)
- Low congestion (low message latency)
- Simple distributed routing algorithm (low routing overhead)

Summary

- Static network
- Multistage network
- Cost
- Performance
 - Routing
 - Diameter
 - Bisection bandwidth

Some Example Deployed Networks

Oak Ridge National Laboratory **Summit**: Fastest computer in the world (2019)

Network: Fat Tree

 Bandwidth: ~1 Petabits/s (entire network)

Google **Jupiter**: A 40G Datacenter-scale Fabric

Network: CLOS

 Bandwidth: ~1.3 Petabits/s (entire network)