ECON3102-005 Chapter 4: Consumer and Firm Behavior

Neha Bairoliya

Spring 2014

Representative Consumer

• The representative consumer values two goods: leisure / and the consumption good *c*.

Representative Consumer

- The representative consumer values two goods: leisure / and the consumption good *c*.
- Consumer's preferences Consumers preferences over consumption and leisure as represented by indifference curves. The preferences can be captured by the utility function U(c, l).

Representative Consumer

- The representative consumer values two goods: leisure *l* and the consumption good *c*.
- Consumer's preferences Consumers preferences over consumption and leisure as represented by indifference curves. The preferences can be captured by the utility function U(c, l).
- A particular combination (c, l) of c and l is called a consumption bundle.

The Representative Consumer's Preferences

• If $U(c_1, l_1) > U(c_2, l_2)$, then the consumer strictly prefers bundle (c_1, l_1) to bundle (c_2, l_2) .

THE REPRESENTATIVE CONSUMER'S PREFERENCES

- If $U(c_1, l_1) > U(c_2, l_2)$, then the consumer strictly prefers bundle (c_1, l_1) to bundle (c_2, l_2) .
- If $U(c_1, l_1) < U(c_2, l_2)$, then the consumer strictly prefers bundle (c_2, l_2) to bundle (c_1, l_1) .

The Representative Consumer's Preferences

- If $U(c_1, l_1) > U(c_2, l_2)$, then the consumer strictly prefers bundle (c_1, l_1) to bundle (c_2, l_2) .
- If $U(c_1, l_1) < U(c_2, l_2)$, then the consumer strictly prefers bundle (c_2, l_2) to bundle (c_1, l_1) .
- If $U(c_1, l_1) = U(c_2, l_2)$, then the consumer is indifferent between the two bundles.

The Representative Consumer's Preferences

- If $U(c_1, l_1) > U(c_2, l_2)$, then the consumer strictly prefers bundle (c_1, l_1) to bundle (c_2, l_2) .
- If $U(c_1, l_1) < U(c_2, l_2)$, then the consumer strictly prefers bundle (c_2, l_2) to bundle (c_1, l_1) .
- If U(c₁, I₁) = U(c₂, I₂), then the consumer is indifferent between the two bundles.
- In fact, the actual level of utility is irrelevant. What matters is the order of preferences implied by the utility function.

Assumptions on The Representative Consumer's Preferences

• More is always preferred to less: the consumer always likes more leisure, and more consumption.

Assumptions on The Representative Consumer's Preferences

- More is always preferred to less: the consumer always likes more leisure, and more consumption.
- The consumer likes diversity, i.e. he prefers mixtures to extremes: He would rather have some consumption and some leisure rather than a lot of leisure and no consumption!

Assumptions on The Representative Consumer's Preferences

- More is always preferred to less: the consumer always likes more leisure, and more consumption.
- The consumer likes diversity, i.e. he prefers mixtures to extremes: He would rather have some consumption and some leisure rather than a lot of leisure and no consumption!
- Consumption and leisure are normal goods to the consumer (as opposed to inferior goods!): he consumes more of each as his income goes up.

Indifference Curves (IC curves)

Definition

An indifference curve connects a set of points that represent bundles among which the consumer is indifferent.

• IC curves are downward sloping (more is preferred to less).

Indifference Curves (IC curves)

Definition

An indifference curve connects a set of points that represent bundles among which the consumer is indifferent.

- IC curves are downward sloping (more is preferred to less).
- convex or bowed-in toward the origin (consumer's preferences for diversity).

Definition

The marginal rate of substitution of leisure for consumption, denoted MRS_{lc} , is the rate at which the consumer is just willing to substitute leisure for consumption goods.

Definition

The marginal rate of substitution of leisure for consumption, denoted MRS_{lc} , is the rate at which the consumer is just willing to substitute leisure for consumption goods.

Between bundles A and B, the rate at which the consumer substitutes c for I is \(\frac{c_1 - c_2}{l_1 - l_2} = -\) the slope of line AB.

Definition

The marginal rate of substitution of leisure for consumption, denoted MRS_{lc} , is the rate at which the consumer is just willing to substitute leisure for consumption goods.

- Between bundles A and B, the rate at which the consumer substitutes c for I is \(\frac{c_1-c_2}{l_1-l_2}\) = the slope of line AB.
- This is because if you take away (c_1-c_2) from him, he would ask to be given (I_2-I_1) in return, in order to remain indifferent between bundles A and B.

Definition

The marginal rate of substitution of leisure for consumption, denoted MRS_{lc} , is the rate at which the consumer is just willing to substitute leisure for consumption goods.

- Between bundles A and B, the rate at which the consumer substitutes c for I is \(\frac{c_1-c_2}{h-b}\) = the slope of line AB.
- This is because if you take away
 (c₁ c₂) from him, he would ask to be
 given (l₂ l₁) in return, in order to
 remain indifferent between bundles A
 and B.
- As bundle B gets arbitrarily close to bundle A, this rate of substitution becomes $\frac{\partial c}{\partial I} =$ the slope of the line tangent to the IC at point A (the derivative of IC at A).

 $MRS_{l,c} = -$ the slope of the IC passing through bundle (c, l):

Consumer's Time Constraint

• Each period, the consumer has h units of hours of time available, to allocate between l units of leisure and N^s units of work.

Consumer's Time Constraint

- Each period, the consumer has h units of hours of time available, to allocate between l units of leisure and Ns units of work.
- The time constraint is

$$I + N^s = h$$

• The numeraire throughout is the consumption good. That is, all prices will be in terms of units of consumption (i.e., in real terms).

- The numeraire throughout is the consumption good. That is, all
 prices will be in terms of units of consumption (i.e., in real terms).
- The consumer receives real wage w per hour, so real wage income wNs. She pays lump-sum taxes T to the government.

- The numeraire throughout is the consumption good. That is, all
 prices will be in terms of units of consumption (i.e., in real terms).
- The consumer receives real wage w per hour, so real wage income wN^s. She pays lump-sum taxes T to the government.
- He receives π units of current consumption as in the form of dividend income from the firm.

- The numeraire throughout is the consumption good. That is, all
 prices will be in terms of units of consumption (i.e., in real terms).
- The consumer receives real wage w per hour, so real wage income wN^s. She pays lump-sum taxes T to the government.
- He receives π units of current consumption as in the form of dividend income from the firm.
- Hence, his disposable income is:

$$wN^s + \pi - T$$

• The consumer's budget constraint (BC) is:

$$c = wN^s + \pi - T$$

• w is interpreted as the opportunity cost of leisure.

• The consumer's budget constraint (BC) is:

$$c = wN^s + \pi - T$$

substituting the time constraint gives:

$$c = w(h-I) + \pi - T$$

• w is interpreted as the opportunity cost of leisure.

• The consumer's budget constraint (BC) is:

$$c = wN^s + \pi - T$$

• substituting the time constraint gives:

$$c = w(h-I) + \pi - T$$

• or,

$$\underbrace{c + wl}_{\text{Implicit expenditure on goods}} = \underbrace{wh + \pi - T}_{\text{Implicit Real Disposable Income}}$$

• w is interpreted as the opportunity cost of leisure.

For convenience, we rewrite the BC as: $c = -wl + wh + \pi - T$

The Consumer's Budget Constraint if $T>\pi$

The Consumer's Budget Constraint if $T < \pi$

Just to show that either case is easy to analyze and that the implications do not change, we will assume in this chapter that $T<\pi$. That is, we will be working with the kinked budget constraint.

Definition

The **optimal consumption bundle (OCB)** is the point representing a consumption-leisure pair that is on the highest possible indifference cure and is on or inside the budget constraint.

Definition

The **optimal consumption bundle (OCB)** is the point representing a consumption-leisure pair that is on the highest possible indifference cure and is on or inside the budget constraint.

• We next show that the OCB is the point where the IC is tangent to the budget constraint.

 First the consumer will never chose a point inside the budget constraint, so we know the OCB is on line (AB).

- First the consumer will never chose a point inside the budget constraint, so we know the OCB is on line (AB).
- At point F, -slope of IC (MRS_{I,c}) >
 -slope of the budget constraint (=w) :
 MRS_{I,c} > w).

- First the consumer will never chose a point inside the budget constraint, so we know the OCB is on line (AB).
- At point F, -slope of IC $(MRS_{l,c}) >$ -slope of the budget constraint (=w): $MRS_{l,c} > w$).
- Hence, at point F, rate at which the consumer would trade leisure for consumption > the rate at which he can trade leisure for consumption.

- First the consumer will never chose a point inside the budget constraint, so we know the OCB is on line (AB).
- At point F, -slope of IC $(MRS_{l,c}) >$ -slope of the budget constraint (=w): $MRS_{l,c} > w$).
- Hence, at point F, rate at which the consumer would trade leisure for consumption > the rate at which he can trade leisure for consumption.
- the consumer would then be better off if he sacrifices consumption for more leisure.

CONSUMER OPTIMIZATION

• At point E, -slope of IC $(MRS_{I,c}) <$ -slope of the budget constraint (=w): $MRS_{I,c} < w$).

CONSUMER OPTIMIZATION

- At point E, -slope of IC $(MRS_{l,c}) <$ -slope of the budget constraint (=w): $MRS_{l,c} < w$).
- Hence, the consumer would then be better off sacrificing leisure for more consumption. So, E is not the OCB.

CONSUMER OPTIMIZATION

- At point E, -slope of IC (MRS_{I,c}) <
 -slope of the budget constraint (=w):
 MRS_{I,c} < w).
- Hence, the consumer would then be better off sacrificing leisure for more consumption. So, E is not the OCB.
- Hence, the OCB is the point were:
 MRS_{I,c} = w: where the rate at which
 the consumer would trade consumption
 for leisure price of leisure in units of
 consumption.

An Increase in $\pi - T$ for the Consumer (w is Constant.)

 Real dividends or taxes change for the consumer:

An Increase in $\pi - T$ for the Consumer (w is constant.)

- Real dividends or taxes change for the consumer:
- Note the c and I are normal goods.

An Increase in $\pi - T$ for the Consumer (w is Constant.)

- Real dividends or taxes change for the consumer:
- Note the c and I are normal goods.
 - An increase in dividends or a decrease in taxes will then cause the consumer to increase consumption and reduce the quantity of labor supplied (increase leisure).

This has income and substitution effects.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.
- Income effect: the consumer is effectively more wealthy and, since both goods are normal, consumption increases and leisure increases.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.
- Income effect: the consumer is effectively more wealthy and, since both goods are normal, consumption increases and leisure increases.
- Conclusion: Consumption must rise, but leisure may rise or fall.

 Because of the increase in w, the budget constraint pivots around point B (from AB to EB).

- Because of the increase in w, the budget constraint pivots around point B (from AB to EB).
- Given the new higher w, suppose we take away disposable income from him (example from π) until he is indifferent between his new OCB (point O) and his original OCB (point F).

- Because of the increase in w, the budget constraint pivots around point B (from AB to EB).
- Given the new higher w, suppose we take away disposable income from him (example from π) until he is indifferent between his new OCB (point O) and his original OCB (point F).
- Concretely, we force the consumer to face fictive budget constraint (JKD).
 The movement from F to O is the substitution effect:

- Because of the increase in w, the budget constraint pivots around point B (from AB to EB).
- Given the new higher w, suppose we take away disposable income from him (example from π) until he is indifferent between his new OCB (point O) and his original OCB (point F).
- Concretely, we force the consumer to face fictive budget constraint (JKD).
 The movement from F to O is the substitution effect:
- As w increases, leisure becomes relatively more expensive and the consumer substitutes away from it.

 The movement from O to H is a pure income effect.

- The movement from O to H is a pure income effect.
- For the income effect, suppose w stays the same, but non-wage income increases so that the budget constraint shifts in a parallel way from (JKD) to EBD.

- The movement from O to H is a pure income effect.
- For the income effect, suppose w stays the same, but non-wage income increases so that the budget constraint shifts in a parallel way from (JKD) to EBD.
- Because both goods are normal, the consumer consumes more of both.

This has income and substitution effects.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.
- Income effect: the consumer is effectively more wealthy and, since both goods are normal, consumption increases and leisure increases.

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.
- Income effect: the consumer is effectively more wealthy and, since both goods are normal, consumption increases and leisure increases.
- Conclusion: Consumption must rise, but leisure may rise or fall.

LABOR SUPPLY CURVE

 We assume that the substitution effect dominates so that as w increases, the consumer consumes less leisure and hence works more.

LABOR SUPPLY CURVE: EFFECT OF AN INCREASE IN DIVIDEND INCOME OR A DECREASE IN TAXES

