Linear Regression

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Define simple linear regression
- Build a linear regression model using statsmodels
- Evaluate model fit using statistical analysis (t-tests, p-values, t-values, confidence intervals)

Here's what's happening today:

- Simple Linear Regression
 - Interpreting the regression's coefficients
 - Are these coefficients significant?
 - Common Regression Assumptions
 - Model Fit and R^2
- The Normal Distribution
 - ► The 68 90 95 99.7 Rule

- Hypothesis Testing
 - Two-Tail Hypothesis Testing
 - t-values
 - p-values
 - Confidence Intervals
- The Student's t-distribution

Simple Linear Regression

Simple Linear Regression

• The simple linear regression model captures a linear relationship between a single feature variable *x* and a response variable *y*

$$y = \beta_0 + \beta_1 \cdot x + \varepsilon$$

- y is the **response** variable (what we want to predict);
 also called *dependent* variable, *endogenous* variable, or
 regressand
- x is the **feature** variable (what we use to train the model); also called *explanatory* variable, *independent* variable, *exogenous* variable, or *regressor*
- β_0 and β_1 are the **regression's coefficients**; also called the *model's parameters*
 - β_0 is the line's intercept; β_1 is the line's slope
- ε is the **error** term; also called the residual

• Given $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$, we can formulate the linear model as

$$y_i = \beta_0 + \beta_1 \cdot x_i + \varepsilon_i$$

In words, this equation says that for each observation i, y_i can be explained by $\beta_0 + \beta_1 \cdot x_i$

- In our Python environment, x and y represent pandas Series and x_i and y_i their values at index i
- E.g. (SF housing dataset),
 - x is the property's size (df.Size)
 - y is the property's sale price (df.SalePrice)

- ε_i is a "white noise" disturbance which **we do not observe**
 - ε_i models how the observations deviate from the exact slope-intercept relation
- **We do not observe** the constants β_0 or β_1 either, so we have to estimate them

• Given estimates for the model coefficients $\hat{\beta}_0$ (β_0 hat) and $\hat{\beta}_1$ (β_1 hat), we predict y using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

► The hat symbol (^) denotes an estimated value

• E.g. (SF housing dataset),

$$SalePrice = \hat{\beta}_0 + \hat{\beta}_1 \cdot Size$$

How to interpret *statsmodels* report?

Dep. Variable:	SalePrice	κ-squared:	0.236
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	r-statistic:	297.4
Date:		Prob (F-statistic):	2.67e-59
Time:		Log-Likelihood:	-1687.9
No. Observations:	967	AIC:	3380.
Df Residuals:	965	BIC:	3390.
Df Model:	1		
Covariance Type:	nonrobust		

The model's fit

Is the model's fit significant?

The estimated coefficients $\widehat{m{\beta}}_0$ (the intercept) and $\widehat{m{\beta}}_1$ (the slope; "size")

	coef	std err	•	P> t	[95.0% Conf. In.]
Intercept	0.1551).084	1.842	0.066	-0.010 0.320
ize	0.749	0.043	1, 246	0.000	0.664 0.835

 Omnibus:
 1842.865
 Durbin-Watson:
 1.704

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3398350.943

 Skew:
 13.502
 Prob(JB):
 0.00

 Kurtosis:
 292.162
 Cond. No.
 4.40

Are these estimated significant? (i.e., are they meaningful?; do they make sense?)

Simple Linear Regression

Interpreting the regression's coefficients \hat{eta}

Interpreting the regression's coefficients

$$\hat{\beta}_0 = .155$$

- What's the unit of $\hat{\beta}_0$?
 - $[\hat{\beta}_0] = [\widehat{SalePrice}] = M$
- How to interpret $\hat{\beta}_0$?
 - $\hat{\beta}_0 = 0.155 \, [\$M] = \$155k$
 - $SalePrice_{(Size=0)} = \hat{\beta}_0 + \hat{\beta}_1 \cdot 0 = \hat{\beta}_0$
 - The model predicts that a property of o sqft would cost \$155k

$$\hat{\beta}_1 = .750$$

• What's the unit of $\hat{\beta}_0$?

- How to interpret $\hat{\beta}_1$?
 - $\hat{\beta}_1 = \$.750/1,000 \ sqft = \$750k/1,000 \ sqft$
 - The model predicts that each additional 1,000 sqft costs buyers \$750k

Simple Linear Regression

Are the regression's coefficients $\hat{\beta}$ significant?

Are the regression's coefficients $\hat{\beta}$ significant?

The β coefficients follow a normal distribution:

$$\mu_{\beta} \sim N\left(\beta, (X^T X)^{-1} \sigma^2\right)$$

$$(or)$$

$$\mu_{\beta_j} \sim N(\beta_j, v_j \sigma^2)$$

$$(X^T X)^{-1} = \begin{pmatrix} v_0 = v_{0,0} & \cdots & v_{0,j} & \cdots \\ \vdots & \ddots & & & \\ v_{j,0} & v_j = v_{j,j} & & \ddots \end{pmatrix}$$

$$\vdots & \ddots & & & \ddots \end{pmatrix}$$

 $(v_j \text{ is the } j^{th} \text{ diagonal element of } (X^TX)^{-1})$

The Normal Distribution

People's height follows a bell shape distribution. (For men in the US, the average height is around 70 inches (5'10) with a standard deviation of 4 inches; few people are shorter than 67 inches; few are as tall as 73 inches)

The Normal Distribution

This bell-shaped curve is a probability density function (PDF): The area under the curve is always 1 (for any σ)

The area under the curve is called a cumulative distribution function (CDF)

The Standard Normal Distribution ($\mu=0;\sigma=1$)

$$X \sim N(\mu, \sigma)$$

$$X = \mu + \sigma \cdot Z$$

$$Z = \frac{X - \mu}{\sigma}$$

$$Z \sim N(0,1)$$

The Standard Normal Distribution Table

The Standard Normal Distribution Table (cont.)

The 68 - 90 - 95 - 99.7 Rule

68%					
Z	-1	1			
CDF(z)	.1587	.8413			
$P[-1 \le Z \le 1] = CDF(1) - CDF(-1)$ = .84131587 = .6826 \(\text{\tint{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\tint{\tint{\text{\tint{\tint{\tint{\tint{\text{\text{\text{\tint{\text{\ti}\text{\tiliex{\tin{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex					

90%					
Z	-1.65	1.65			
CDF(z)	.0495	.9505			
$P[-1.65 \le Z \le 1.65] = CDF(1.65) - CDF(-1.65)$ = .95050495 = .9010 \times 90\%					

95%					
Z	-2	2			
CDF(z)	.0228	.9772			
$P[-2 \le Z \le 2] = CDF(2) - CDF(-2)$ = .97720228 = .9544 \(\pexprescript{\pi}\) 95%					

99.7%					
Z	-3	3			
CDF(z)	.0013	.9987			
$P[-3 \le Z \le 3] = CDF(3) - CDF(-3)$ = .99870013 = .9974 \(\sime\) 99.7%					

The 68 - 90 - 95 - 99.7 Rule (cont.)

Activity | The 68 – 90 – 95 – 99.7 Rule

DIRECTIONS (10 minutes)

- 1. Adult women have an average height of 65 inches (5'5) and standard deviation of 3.5 inches. What are the lower and upper bounds for the middle 68%, 90%, 95%, and 99.7%?
- 2. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

Hypothesis Testing

Hypothesis Testing

· A hypothesis is an assumption about the a population parameter. E.g.,

```
• \mu_{\beta_0} = \langle \text{a specific value, e.g. } 0.155 \rangle
```

- $\mu_{\beta_1} = \langle \text{a specific value, e.g. } 0.750 \rangle$
- In both cases, we made a statement about a population parameter that may or may not be true
- The purpose of hypothesis testing is to make a statistical conclusion about
 rejecting or failing to reject such statement

Two-Tail Hypothesis Test

• The *null hypothesis* (H_0) represents the status quo; that the mean of the population is equal to a specific value:

$$H_0$$
: $\mu = \mu_0$

The *alternate hypothesis* (H_a) represents the opposite of the null hypothesis and holds true if the *null hypothesis* is found to be false:

$$H_a$$
: $\mu \neq \mu_0$

Two-Tail Hypothesis Test (cont.)

t-value measures the difference to μ_0 in σ . t-values of large magnitudes (either negative or positive) are less likely. The far left and right "tails" of the distribution curve represent instances of obtaining extreme values of t, far from μ

p-value determines the probability (assuming H_0 is true) of observing a more extreme test statistic in the direction of H_a than the one observed

Two-Tail Hypothesis Test (simplified) (cont.)

Two-Tail Hypothesis Test (simplified) (cont.)

Two-Tail Hypothesis Test (cont.)

t-value	p-value	$1-\alpha$ Confidence Interval $([\mu_0-\cdot\sigma,\mu_0+\cdot\sigma])$	H ₀ / H _a	Outcome
<.	> α	μ_0 is inside	Did not find evidence that $\mu \neq \mu_0$: Fail to reject H_0	$\mu=\mu_0$ (assume)
\geq \cdot	≤ α	μ_0 is outside	Found evidence that $\mu \neq \mu_0$: Reject H ₀	$\mu \neq \mu_0$

Two-Tail Hypothesis Test ($\alpha = .05$) (cont.)

t-value	p-value	95% Confidence Interval $([\mu_0-2\sigma,\mu_0+2\sigma])$	H ₀ / H _a	Outcome
$<$ " \sim 2"(*) (*) (check t-table slide)	> .05	μ_0 is inside	Did not find evidence that $\mu \neq \mu_0$: Fail to reject H_0	$\mu=\mu_0$ (assume)
≥ "~2"	≤ .05	μ_0 is outside	Found evidence that $\mu \neq \mu_0$: Reject H ₀	$\mu \neq \mu_0$

Simple Linear Regression

Are the regression's coefficients \hat{eta} significant? (cont.)

What β_1 would make our multiple linear regression model useless?

• (the simple linear regression model again, without intercept to keep things simple)

$$y = \beta_1 \cdot x + \varepsilon$$

- Answer: If $\beta_1 = 0$, we don't have a linear model
 - (y = o isn't very exciting, is it?)

Details of statsmodels' coefficients table

	coef	std err	t	P> t	[95.0% Conf. Int.]
Feature variable j, e.g., "Intercept" or "Size"	$\widehat{oldsymbol{eta}}_{oldsymbol{j}}$	$\sqrt{\mathrm{v_{j}}}\cdot\widehat{\mathbf{\sigma}}$	$z_{j} = rac{\hat{eta}_{j}}{\sqrt{v_{j}} \cdot \hat{\sigma}}$ (or) $rac{coef}{std\ err}$	$2 \times$ area under the curve from the Student's tdistribution between $ t $ and $+ \infty$	\hat{eta}_j $\pm z_{lpha=.025} \cdot \hat{\sigma}$ (the value reported in the Student-t distribution table under the 5 th column for $lpha=.025$)

The Student's t-distribution

FYI | We simplified things a bit... t-values refer to the Student's t-distribution, not the normal distribution; the reason behind this is that we substituted $\hat{\sigma}$ for σ (and $\hat{\beta}$ for β)

FYI | We simplified things a bit... t-values refer to the Student's t-distribution, not the normal distribution; the reason behind this is that we substituted $\hat{\sigma}$ for σ (and $\hat{\beta}$ for β) (cont.)

 σ^2 is estimated by $\hat{\sigma}^2$

$$\hat{\sigma}^2 = \frac{1}{df} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

with
$$df = \underbrace{n}_{number\ of\ samples} - \underbrace{k}_{number\ of\ parameters}$$

$$(intercept\ included)$$

Student's t-distribution table: as the sample size grows, the Student's t-distribution converges to a normal distribution

Numbers in each row of the table are values on a t-distribution with (df) degrees of freedom for selected right-tail (greater-than) probabilities (p).

df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208

CI			80%	90%	95%	98%	99%	99.9%
z	0.253347	0.674490	1.281552	1.6446.1	1.95996	2.32635	2.57583	3.2905
30	0.255605	0.682756	1.310415	1.697721	2.04227	45726	2.75000	3.6460
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
23	0256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
22	0256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
18	0.257123	0.688364	1.330391	1.734064	2.10092	2,55238	2.87844	3.9216
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
16	0257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405

Simple Linear Regression

Are the regression's coefficients $\hat{\beta}$ significant? (cont.)

SalePrice as a function of Size (cont.)

Dep. Variable:	SalePrice	R-squared:	0.236
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	297.4
Date:		Prob (F-statistic):	2.67e-58
Time:		Log-Likelihood:	-1687.9
No. Observations:	967	AIC:	3380.
Df Residuals:	965	BIC:	3390.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.1551	0.084	1.842	0.066	-0.010 0.320
Size	0.7497	0.043	17.246	0.000	0.664 0.835

Omnibus:	1842.865	Durbin-Watson:	1.704
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3398350.943
Skew:	13.502	Prob(JB):	0.00
Kurtosis:	292.162	Cond. No.	4.40

SalePrice
$$[\$M] = \underbrace{.155}_{\widehat{\beta}_0} + \underbrace{.750}_{\widehat{\beta}_1} \times Size [1,000 \ sqft]$$

(the slope is significant but not the intercept)

SalePrice ~ 0 + Size ('0' meaning the intercept is forced to 0) (cont.)

Dep. Variable:	SalePrice	R-squared:	0.565
Model:	OLS	Adj. R-squared:	0.565
Method:	Least Squares	F-statistic:	1255.
Date:		Prob (F-statistic):	7.83e-177
Time:		Log-Likelihood:	-1689.6
No. Observations:	967	AIC:	3381.
Df Residuals:	966	BIC:	3386.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Size	0.8176	0.023	35.426	0.000	0.772 0.863

Omnibus:	1830.896	Durbin-Watson:	1.722
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3370566.094
Skew:	13.300	Prob(JB):	0.00
Kurtosis:	291.005	Cond. No.	1.00

SalePrice
$$[\$M] = \underbrace{0}_{\widehat{\beta}_0} + \underbrace{\$10}_{\widehat{\beta}_1} \times Size [1,000 \ sqft]$$

(the slope is significant)

SalePrice ~ Size (with outliers removed) (cont.)

Dep. Variable:	SalePrice	R-squared:	0.200
Model:	OLS	Adj. R-squared:	0.199
Method:	Least Squares	F-statistic:	225.0
Date:		Prob (F-statistic):	1.41e-45
Time:		Log-Likelihood:	-560.34
No. Observations:	903	AIC:	1125.
Df Residuals:	901	BIC:	1134.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.7082	0.032	22.152	0.000	0.645 0.771
Size	0.2784	0.019	15.002	0.000	0.242 0.315

Omnibus:	24.647	Durbin-Watson:	1.625
Prob(Omnibus):	0.000	Jarque-Bera (JB):	53.865
Skew:	0.054	Prob(JB):	2.01e-12
Kurtosis:	4.192	Cond. No.	4.70

SalePrice [\$M] =

$$.708 + .278 \times Size [1,000 \, sqft]$$
(was .155) (was .750)

(both intercept and slope are now significant)

Simple Linear Regression

Common Regression Assumptions (part 1)

Common Regression Assumptions (part 1)

- The model is linear
 - x significantly explains y
- $\varepsilon \sim N(0, \cdot)$
 - Specifically, we expect ε to be 0 on average, i.e., $\mu_{\varepsilon} = 0$
- x and ε are independent
 - $\rho(x,\varepsilon)=0$

Is $\varepsilon \sim N(0, \cdot)$?

$\varepsilon \sim N(0, \cdot)$: .qqplot()

- "Quantile-Quantile (q-q) Plot"
- Graphical technique for determining if two datasets come from populations with a common distribution
- Plot of the quantiles of the first dataset (vertically) against the quantiles of the second's (horizontally)
- If unspecified, the second dataset will default to N(0,1)

- If the two datasets come from a population with the same distribution, the points should fall approximately along a 45-degree reference line
- The greater the departure from this reference line, the greater the evidence for the conclusion that the datasets have come from populations with different distributions

$\varepsilon \sim N(0, \cdot)$: .qqplot() (with line = 's') (cont.)

x and ε are independent: .plot_regress_exog()

x and ε are independent: .plot_regress_exog() (cont.)

- Scatterplot of observed values (y) compared to fitted values (ŷ) with confidence intervals against the regressor (x)
 - .plot fit()

- "Residual Plot"
 - Scatterplot of the model's residuals $(\hat{\epsilon})$ against the regressor (x)

- "Partial Regression Plot" and "CCPR Plot (Component and Component-Plus-Residual)"
 - (useful for multiple regression)

Simple Linear Regression

Measuring the model's fit with R^2

Fit and Inference

- The deviations of the data from the best fitting line are normally distributed about the line. Since $\mu_{\varepsilon} = 0$, we "expect" that on average, the line will be correct
- How confident we are about how well the relationship holds depends on σ_{ε}^2

Measuring the model's fit with \mathbb{R}^2

When a measure of how much of the total variation in y, $\sigma_y^2 = \beta^2 \sigma_x^2 + \sigma_\varepsilon^2$, is explained by the portion associated with the explanatory variable x, $\sigma_{\hat{y}}^2 = \beta^2 \sigma_x^2$; also called systematic variation (the variation explained by your model)

$$R^{2} = \frac{\sigma_{\hat{y}}^{2}}{\sigma_{y}^{2}} = \frac{\beta^{2} \sigma_{x}^{2}}{\beta^{2} \sigma_{x}^{2} + \sigma_{\varepsilon}^{2}}$$

•
$$0 \le R^2 \le 1$$
 (since $-1 \le \rho_{xy} \le 1$)

• $1 - R^2 = \frac{\sigma_{\varepsilon}^2}{\beta^2 \sigma_x^2 + \sigma_{\varepsilon}^2}$ is the idiosyncratic variation (the variation left unexplained by your model)

R^2 : Goodness of Fit

When x significantly explains y	When x does not significantly explains y
☐ The fit is better	☐ The fit is worse
☐ The explained systematic variation dominates	☐ The unexplained idiosyncratic variation dominates
\square σ_{ε}^2 is low (and/or $\beta^2 \sigma_{\chi}^2$ is high)	\square σ_{ε}^2 is high (and/or $\beta^2\sigma_{x}^2$ is low)
$\square R^2 = \frac{1}{1 + \underbrace{\frac{\sigma_{\mathcal{E}}^2}{\beta^2 \sigma_{\mathcal{X}}^2}}_{\cong 0}} $ is closer to 1	$\square R^2 = \frac{1}{1 + \underbrace{\frac{\sigma_{\varepsilon}^2}{\beta^2 \sigma_{\chi}^2}}_{\gg 1}} \text{ is closer to 0}$

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission