Derechos Reservados © 2003 CENTRO NACIONAL DE METROLOGÍA km 4,5 Carretera Los Cués, 76241 El Marques, Querétaro, México

DE METROLOGIA ÁREA DE METROLOGÍA MECÁNICA División de Metrología de Masa

CENTRO NACIONAL DE METROLOGÍA

PUBLICACIÓN TÉCNICA CNM-MMM-PT-003

EL SISTEMA INTERNACIONAL DE UNIDADES (SI)

NOTA:

ESTE DOCUMENTO SE HA ELABORADO CON RECURSOS DEL GOBIERNO FEDERAL. SOLO SE PERMITE SU REPRODUCCIÓN SIN FINES DE LUCRO, Y HACIENDO REFERENCIA A ESTA FUENTE.

INDICE

Prefacio	1
Prefacio a la segunda edición	3
Prefacio a la tercera edición	5
Capítulo I. El Tratado del Metro y el Sistema Internacional de Unidades	7
Capítulo II. Unidades del SI y prefijos	17
Capítulo III. La gramática del SI	37
Capítulo IV. Magnitudes y unidades	49
Capítulo V. Correspondencia entre Unidades	79
Capítulo VI. Antecedentes de la metrología mexicana	105
Apéndices	123
Bibliografía	141
ANEXO: El patrón nacional de masas. Kilogramo prototipo Nº 21	143

PREFACIO

"La batalla más grande que la ciencia ha librado a través del siglo XVIII, ha sido haber vencido a la naturaleza, tomándole el SISTEMA DE PESAS Y MEDIDAS"

Napoleón Bonaparte

Las miradas escrutadoras de los representantes del pueblo, se detuvieron varias veces en los cuadernos de quejas que la comuna les enviaba. Con aire de gravedad tomaban nota de las solicitudes sobre la unificación de las medidas en el reino.

Estaban formando sus programas de trabajo para asistir a la reunión de los Estados Generales convocada por Luis XVI, rey de Francia.

El lugar, París. La época, finales del siglo XVIII.

Los nubarrones provocados por los problemas sociales presagiaban una gran revolución popular, entre ellos se levantaba un clamor que de tanto repetirse se volvió común: el pueblo sojuzgado por la prepotencia y las injusticias que cometían los señores feudales exigía a su soberano que impusiera su autoridad para tener un solo **rey**, una sola **ley** y una sola **medida**, en todo su territorio.

La revolución se desencadenó, y a su triunfo algunos de sus anhelos se fueron cumpliendo. No había transcurrido mucho tiempo cuando el químico francés, Henry Antoine de Lavoisier, entusiasmado, sin presagiar su trágico destino, escribía refiriéndose al sistema propuesto para la unificación de las medidas:

" ... nada más grande ni más sublime ha salido de las manos del hombre que el Sistema Métrico Decimal".

Lavoisier pagó con su vida el encargo de recaudador de impuestos que le había otorgado la realeza, pero este Sistema, símbolo del deseo universal de unificar las medidas en el que tanto trabajó, pudo continuar existiendo para crecer y proliferar entre las naciones del mundo.

Sin embargo a la sombra de esta proliferación se creó un caos científico, los físicos, los mecánicos, los electricistas y aún los comerciantes establecieron sus propias formas métricas, e hicieron su aparición los sistemas CGS, MKS, MKSA y el MTS algunos con sus variantes electrostático y electrodinámico, gravitacionales y absolutos, según el caso, hasta que en 1960 la XI Conferencia General de Pesas y Medidas, la misma que terminó con la hegemonía del patrón de longitud materializado de platino iridio para sustituirlo por la longitud de onda luminosa del kriptón 86, decidió también adoptar el uso universal de un solo sistema de unidades al que denominó Sistema Internacional de Unidades y sus siglas SI.

Como todo sistema armónico y coherente, el SI tiene sus propias reglas cuya observancia es obligatoria a fin de preservar el espíritu de unificación universal que tantas vicisitudes y esfuerzos han costado a la humanidad, para tener un solo lenguaje que permita el buen entendimiento entre los hombres en materia de mediciones.

Sirva este trabajo para contribuir a la difusión del Sistema Internacional de Unidades y ayudar a cumplir sus objetivos sobre todo entre los que estamos profesionalmente obligados a usarlo.

Héctor Nava Jaimes

PREFACIO (a la segunda edición)

La preferencia que ha tenido la primera edición del "Sistema Internacional de Unidades" (SI), cuyo tiraje se agotó rápidamente es un indicativo del interés por el conocimiento y aplicación de este sistema coherente, fundado en 7 unidades básicas, cuyo origen se encuentra en el antiguo sistema métrico que adoptó las dimensiones de la tierra como base natural del mismo.

Las definiciones y la estructura del Sistema se han actualizado de conformidad con las necesidades de los distintos campos de la física y la ingeniería hasta llegar al estado actual que se muestra en esta edición del Sistema Internacional de Unidades (SI).

Nos hemos esmerado para que en esta segunda edición se consideraran las observaciones que amablemente los lectores interesados nos hicieron; se rectificaron errores involuntarios y se adicionaron ejemplos principalmente para apoyar las definiciones y las reglas de la escritura de los nombres y símbolos del SI.

Tenemos la firme convicción de que esta publicación contribuirá a la mejor realización de los programas de enseñanza de nuestras instituciones de educación, y al apoyo del uso del SI en el aseguramiento de las mediciones en la industria [1].

Queremos recordar a nuestros lectores que en nuestro país el Sistema Internacional de Unidades (SI) esta establecido mediante la norma oficial mexicana NOM-008-SCFI-1993 * con el nombre de Sistema General de Unidades de Medida y es el único legal y de uso obligatorio en México de acuerdo con lo dispuesto en el artículo 5 de la Ley Federal sobre Metrología y Normalización.

Abril, 1998

^{*} actualmente (mayo 2004): NOM-008-SCFI-2002

PREFACIO (a la tercera edición)

Cierto día comentando sobre el tema de las unidades de medida y de la incertidumbre de la medición, Rigoberto García Cantú, maestro de la metrología e impulsor de esta ciencia en México desde los tiempos en que eran pocos los que tenían la iniciativa de señalar con énfasis, su importancia en el desarrollo industrial del país, mencionó lo que Roberto Grosseteste, maestro de Rogerio Bacon (1212-1294) manifestó en el siglo XIII con relación al tema que se estaba comentando: "...no existe medida perfecta de una magnitud continua, excepto cuando se hace por medio de magnitudes continuas indivisibles, por ejemplo, por medio de un punto y ninguna magnitud puede ser perfectamente medida a menos que se conozcan cuantos puntos individuales contiene y dado que estos son infinitos, su número no puede ser conocido por criatura alguna, excepto por Dios, quien dispone cada cosa en número, peso y medida...". Esto -manifestaba Rigobertonos hace reflexionar desde otro punto de vista sobre el concepto de la incertidumbre de la medición y de la unidad de comparación que en aquel entonces se tenía, lo cual a pesar de ello, no fue impedimento para que su mismo discípulo, el franciscano Rogerio Bacon, influenciara con sus teorías para establecer la separación entre la teología y la ciencia.

Actualmente Rigoberto García Cantú, no se encuentra entre nosotros pero el legado que dejó en aquellas personas que con él trataron es semilla que fructificará en el campo que fue su pasión: el de las mediciones.

Esta tercera edición de "El Sistema Internacional de Unidades (SI)" se dedica a su memoria.

Por otra parte comentamos a nuestros lectores que con el constante afán de mejorar nuestra publicación, esta edición se ha revisado y actualizado de acuerdo con la séptima edición 1998 de "Le Système International d'Unités" publicada recientemente por el Bureau International des Poids et Mesures, organización intergubernamental del Tratado del Metro.

En esta revisión resalta la aplicación del signo decimal; en 1997 el Comité Internacional de Pesas y Medidas aprobó el uso del punto como separador decimal en la escritura de los números que aparecen en los textos ingleses "en la misma forma como se acepta las pequeñas variantes en la escritura de los nombres de las unidades en lengua inglesa"; sin embargo, en esta edición que se presenta a la consideración de ustedes seguimos apegándonos a nuestra normatividad nacional de utilizar la coma decimal de conformidad con lo establecida por la norma oficial mexicana NOM-008-SCFI-1993 * publicada en el Diario Oficial de la Federación el 14 de octubre de 1993.

Deseamos que esta publicación sirva para cumplir con los objetivos de su consulta, esta será siempre nuestra finalidad.

Octubre, 1998

^{*} Actualmente (mayo 2004): NOM-008-SCFI-2002, diario oficial: 27 Nov 2002

CAPITULO I

EL TRATADO DEL METRO Y EL SISTEMA INTERNACIONAL DE UNIDADES

EL TRATADO DEL METRO Y LOS ORGANISMOS QUE INTEGRA

Después de la Revolución Francesa los estudios para determinar un sistema de unidades único y universal concluyeron con el establecimiento del Sistema Métrico Decimal. La adopción universal de este sistema se consolidó con el Tratado del Metro (Convención del Metro), que se firmó en Francia el 20 de mayo de 1875, y en el cual se establece la creación de una organización científica que tuviera, por una parte, una estructura permanente que permitiera a los países miembros tener una acción común sobre todas las cuestiones que se relacionen con las unidades de medida y que asegure la unificación mundial de las mediciones físicas.

La estructura

Los organismos que fueron creados para establecer dicha estructura son los siguientes [2,3]:

La Conferencia General de Pesas y Medidas (CGPM), que actualmente se reúne cada 4 años, integrada por los representantes de los Gobiernos de los países firmantes del Tratado del Metro. Bajo su autoridad se encuentra el Comité Internacional de Pesas y Medidas (CIPM), quien a su vez, supervisa las actividades de la Oficina Internacional de Pesas y Medidas (Bureau International des Poids et Mesures, BIPM) que es el laboratorio científico permanente.

Los objetivos

Cada Conferencia General recibe el informe del Comité Internacional sobre los trabajos desarrollados, discute y examina las disposiciones necesarias para asegurar la extensión y el mejoramiento del Sistema Internacional de Unidades, sanciona los resultados de las nuevas determinaciones metrológicas fundamentales, adopta las resoluciones científicas de carácter internacional en el campo de la metrología y las decisiones importantes que afecten a la organización y al desarrollo de la Oficina Internacional de Pesas y Medidas.

El CIPM prepara el programa de trabajo de la Conferencia General, establece un informe anual a los Gobiernos de las Altas Partes Contratantes sobre la situación administrativa y financiera del BIPM. Sus reuniones y discusiones son el objeto de informes detallados que publica el BIPM.

Los Comités Consultivos

El CIPM, ha creado Comités Consultivos que reúnen a los expertos mundiales en cada campo particular de la metrología los que son consejeros sobre todas las cuestiones científicas y técnicas. Los Comités Consultivos estudian de manera profunda los progresos científicos y técnicos que puedan tener una influencia directa sobre la metrología, preparan recomendaciones que son discutidas por el CIPM, organizan

comparaciones internacionales de patrones y aconsejan al CIPM sobre los trabajos científicos a efectuar en el BIPM. Estos Comités tienen relación con los grandes laboratorios de metrología. Los Comités Consultivos son actualmente diez y sus actividades son:

Comité Consultivo de Electricidad (CCE), creado en 1927: la realización práctica del volt, del ohm, del ampere y del watt del SI, patrones de referencia del volt y del ohm fundados sobre el efecto Josephson y el efecto Hall cuántico, patrones de capacidad y de paso de corriente continua a corriente alterna, patrones eléctricos en radiofrecuencias y en ondas milimétricas.

- Comité Consultivo de Fotometría y Radiometría (CCPR) nuevo nombre dado en 1971 al Comité Consultivo de Fotometría (CCP), creado en 1933: escalas fotométricas y radiométricas, desarrollo de la radiometría absoluta, radiometría para las fibras ópticas.
- Comité Consultivo de Termometría (CCT), creado en 1937: establecimiento y realización de la Escala Internacional de Temperatura de 1990 (EIT-90), diferencias entre T₉₀ y la temperatura termodinámica, extensión y mejoramiento de la EIT-90, puntos secundarios de referencia, tablas internacionales de referencia para los termopares y los termómetros de resistencia.

- Comité Consultivo de las Longitudes (CCL) nuevo nombre dado en 1997 al Comité Consultivo para la Definición del Metro (CCDM), creado en 1952: definición y realización del metro, medidas prácticas de longitud y ángulo.
- Comité Consultivo de Tiempo y Frecuencia (CCTF) nuevo nombre dado en 1997 al Comité Consultivo para la Definición del Segundo (CCDS) creado en 1956: definición y realización del segundo, establecimiento y difusión del tiempo atómico internacional (TAI) y del tiempo universal coordinado (UTC).
- Comité Consultivo de las Radiaciones Ionizantes (CCRI) nuevo nombre dado en 1997 al Comité Consultivo para los Patrones de Medida de las Radiaciones Ionizantes (CCEMRI), creado en 1958: definiciones de las magnitudes y de las unidades, patrones de dosimetría para los rayos X y γ para los neutrones, medidas de radioactividad y Sistema Internacional de Referencia para la medida de los radionúclidos (SIR).
- Comité Consultivo para la Masa y Magnitudes relacionadas (CCM), creado en 1980: comparaciones de patrones de masa con el prototipo internacional del kilogramo, problemas relativos a la definición de la unidad de masa, determinación de la constante de Avogadro, así como patrones de densidad, de presión y

de fuerza, dureza, gastos de fluidos y viscosidad (los tres últimos agregados en 1999)

- Comité Consultivo para la Cantidad de Sustancia (CCQM), creado en 1993: métodos primarios para medir la cantidad de sustancia y comparaciones internacionales, establecimiento de la trazabilidad a nivel internacional entre laboratorios nacionales concernientes a la metrología química.
- Comité Consultivo de Unidades (CCU), creado en 1964: evolución del Sistema Internacional de Unidades (SI), publicación de ediciones sucesivas de folletos sobre el SI.
- Comité Consultivo de Acústica, ultrasonidos y vibraciones (CCAUV), creado en 1998.

EL TRATADO DEL METRO Y LOS ORGANISMOS QUE INTEGRA

^{*} datos de 1998; hasta el 11 de sept de 2003 son 51 miembros mas 10 miembros asociados

ANTECEDENTES DEL SI

En 1790, en la etapa final de la Revolución Francesa, le correspondió a la Academia de Ciencias de París hacer las proposiciones para crear un sistema de medidas que pudiera ordenar el caos que había en aquel entonces por la gran variedad de medidas existentes en toda Francia [4].

La base del Sistema

Estas proposiciones las hace la Academia a petición de la Asamblea Nacional Francesa, fundamentándose en un sistema decimal perdurable e indestructible tomado de la naturaleza fijando como base la unidad de longitud, el metro, del cual se deducirán las unidades de las magnitudes que fueron de uso común para la época: el área, el volumen y los pesos.

Los científicos

Excepcionales fueron los trabajos de los hombres de ciencia de aquel entonces para establecer el sistema, entre los que podemos citar [5]: Legendré, Lavoisier, Coulomb, Borda, Berthollet, Lagrange, Delambre, Lefëvre-Gineau, Haüy, Mechain, Van Swiden, para que junto con otros científicos llegaran al establecimiento del Sistema Métrico Decimal.

La universalidad

Al transcurrir los años, el Sistema Métrico Decimal se hizo universal después de la firma en 1875 por los países signatarios de la Convención del Metro y que instituyó en esa ocasión la Conferencia General de Pesas y Medidas, el Comité y la Oficina, Internacional de Pesas y Medidas.

En 1960 la Conferencia denomina Sistema Internacional de Unidades (SI), a este Sistema.

Las reuniones de la Conferencia

La Conferencia General de Pesas y Medidas (CGPM), máxima autoridad de la metrología científica es la que aprueba las nuevas definiciones del Sistema internacional de Unidades y recomienda a los países miembros de la Convención del Metro, que, en la medida de lo posible lo integren a sus legislaciones. Hasta el año 2004, la CGPM se ha reunido 22 veces.

Algunos antecedentes de la formación del SI a través de las reuniones de la CGPM, son los siguientes:

- en el año de 1948, la novena Conferencia General de Pesas y Medidas (CGPM) encomienda al Comité Internacional de Pesas y Medidas (CIPM), mediante su resolución 6, el estudio completo de una reglamentación de las unidades de medida del sistema MKS y de una unidad eléctrica del sistema práctico absoluto, a fin de establecer un sistema de unidades de medida susceptible de ser adoptado por todos los países signatarios del Tratado del Metro. Esta misma Conferencia en su resolución 7, fija los principios generales para los símbolos de las unidades y proporciona una lista de nombres especiales para ellas.
- o En 1954, la décima Conferencia General de Pesas y Medidas, en su resolución 6 adopta las unidades de base de este sistema práctico de unidades en la forma siguiente: de longitud, metro; de masa, kilogramo; de tiempo, segundo; de intensidad de corriente eléctrica, ampere; de temperatura termodinámica, kelvin; de intensidad luminosa, candela.

En 1956, reunido el Comité Internacional de Pesas y Medidas, emite su recomendación número 3 por la que establece el nombre de Sistema Internacional de Unidades, para las unidades de base adoptadas por la décima CGPM y recomienda que se sujete a la aprobación de la siguiente conferencia.

- Posteriormente, en 1960 la décima primera CGPM en su resolución 12 fija los símbolos de las unidades de base, adopta definitivamente el nombre de Sistema Internacional de Unidades SI; designa los múltiplos y submúltiplos y define las unidades suplementarias y derivadas.
- o La decimacuarta CGPM efectuada en 1971, mediante su resolución 3 decide incorporar a las unidades de base del SI, la mol como unidad de cantidad de sustancia. Con esta son 7 las unidades de base que integran el Sistema Internacional de Unidades.
 - En 1980, en ocasión de la reunión del CIPM se hace la observación de que el estado ambiguo de las unidades suplementarias compromete la coherencia interna del SI y decide recomendar (resolución número 1) que se interprete a las unidades suplementarias como unidades derivadas adimensionales.
- O Posteriormente, la vigésima Conferencia General de Pesas y Medidas celebrada en 1995 decide aprobar lo expresado por el CIPM, en el sentido de que las unidades suplementarias del SI, nombradas radián y esterradián, se consideren como unidades derivadas adimensionales y recomienda consecuentemente, eliminar la clase de unidades suplementarias como una de las que integran el Sistema Internacional.

Como resultado de esta resolución, el SI queda conformada únicamente con dos clases de unidades: las de base y las derivadas.

El perfeccionamiento del SI

Ha transcurrido cerca de medio siglo desde que empezó a integrarse el Sistema Internacional de Unidades, cerca de 50 años en los cuales se ha logrado simplificar su estructura sin dejar de cubrir todo el campo del conocimiento humano. La incorporación de

nuevas unidades, de sus definiciones, del cambio de ellas motivado por el avance científico y tecnológico, ha sido únicamente después de laboriosas investigaciones y de interesantes debates efectuados en cada uno de los organismos citados que regulan la metrología científica; este sistema por lo tanto, no es estático sino que se adapta para responder a las exigencias de un mundo cuyas necesidades en materia de mediciones crecen inexorablemente.

LAS DECISIONES RELEVANTES	Encomienda al CIPM un estudio para reglamentar las unidades de medida. Define el ampere.
DE LA CONFERENCIA GENERAL DE PESAS	Adopta el sistema de 6 unidades de base. Elige el punto triple del agua.
Y MEDIDAS QUE HAN CONTRIBUIDO AL	Adopta el nombre de Sistema Internacional de Unidades y las siglas SI. Redefine el metro y el segundo. Fija reglas para los prefijos.
PERFECCIONAMIENTO DEL SI	Decide sobre el litro y el decímetro cúbico. Se introduce el prefijo femto y atto.
9a. CGPM, 1948	Define el segundo en función del átomo de cesio 133. Redefine la candela. Adiciona unidades derivadas. El °K se reemplaza por K.
10a. CGPM, 1954	Define la unidad de temperatura termodinámica.
11a. CGPM, 1960	
12a. CGPM, 1964	Define e incorpora la mol como séptima unidad de base. Introduce el pascal y el siemens.
13a. CGPM, 1967	
14a. CGPM, 1971	Establece el Tiempo Universal Coordinado como escala de tiempo
15a. CGPM, 1975	(UTC). Introduce el becquerel y el gray .Se adicionan los prefijos exa y peta.
16a. CGPM, 1979	
17a. CGPM, 1983	Redefine la candela. Introduce el sievert. Se establecen los símbolos l y L para el litro.
19a. CGPM, 1991	
20a. CGPM, 1995	Redefine el metro en función de la velocidad de la luz.
21a. CGPM, 2001	
22a. CGPM, 2003	Introduce los prefijos Z, Y, z, y.
	Elimina la clase de unidades suplementarias dentro del contexto del SI.
	Nueva unidad derivada el katal (mol/s) para la actividad catalítica [27].
	Declara el uso indistinto del punto o de la coma como separador decimal [28].

CAPITULO II

UNIDADES DEL SI Y PREFIJOS

UNIDADES DEL SI

El Sistema Internacional de Unidades (SI) es el sistema coherente de unidades adoptado y recomendado por la Conferencia General de Pesas y Medidas [5, 6, 7, 8, 9].

Hasta antes de octubre de 1995, el Sistema Internacional de Unidades estaba integrado por tres clases de unidades: Unidades SI de base, Unidades SI suplementarias y Unidades SI derivadas.

La XX Conferencia General de Pesas y Medidas, reunida en esa fecha, decidió que las unidades suplementarias (radián y esterradián) formaran parte de las unidades derivadas adimensionales. Con esta decisión las clases de unidades que forman el SI se redujo a dos clases: unidades SI de base y unidades SI derivadas.

Clases de Unidades que integran el SI

Unidades SI de base

Unidades SI derivadas

UNIDADES SI DE BASE

Son 7 unidades sobre las que se basa el sistema y de cuya combinación se obtienen todas las unidades derivadas. La magnitud correspondiente, el nombre de la unidad y su símbolo se indican en la Tabla 1.

Magnitud	Unidad	Símbolo
longitud	metro	m
masa	kilogramo	kg
tiempo	segundo	S
corriente eléctrica	ampere	A
temperatura termodinámica	kelvin	K
intensidad luminosa	candela	cd
cantidad de sustancia	mol	mol

Tabla 1. Magnitudes, nombres y símbolos de las unidades SI de base

Unidad de longitud

En su inicio, en 1793, se definió como la diezmillonésima parte del cuadrante del meridiano terrestre. Luego se materializó en una regla de platino (depositado en los archivos de Francia). Posteriormente, fue de platino-iridio. Después se redefinió por medio de la longitud de onda de la luz y finalmente en términos de la velocidad de esta.

Actualmente, en la práctica, la unidad de longitud se reproduce y se disemina por medio de láseres estabilizados, lámparas espectrales y patrones materializados de acuerdo a su definición.

metro:

Es la longitud de la trayectoria recorrida por la luz en el vacío en un lapso de 1/299 792 458 de segundo, (17ª CGPM, 1983).

Reproducción en el CENAM de la definición del metro mediante un Láser He-Ne estabilizado con una celda interna de yodo a una longitud de onda de 632 991 398,22 fm [10].

Unidad de masa

Partiendo de la "grave" de Lavoisier en 1793, la unidad de masa fue el "peso" de un decímetro cúbico de agua a la temperatura de fusión del hielo. Después se consideró a la temperatura de su máxima densidad.

Actualmente la unidad de masa está representada por un cilindro de platino iridio de diámetro y altura iguales (39 mm).

El mundo científico hace esfuerzos para redefinir la unidad de masa en términos de constantes universales ya que el kilogramo es la única unidad de todas las unidades de base del SI que se realiza por medio de un patrón materializado, desde los tiempos de la fundación del Sistema Métrico.

kilogramo:

Es la masa igual a la del prototipo internacional del kilogramo, (1^a y 3^a CGPM, 1889 y 1901)

Patrón Nacional de Masa prototipo No. 21, conservado en el CENAM.

Unidad de tiempo

La escala de tiempo de los astrónomos fundamentada en las leyes de la gravitación universal sirvió para definir el segundo hasta 1967. Actualmente esta unidad se define en la escala de tiempo de los físicos a partir de la frecuencia de una cierta transición hiperfina del átomo de cesio 133. El patrón atómico de cesio constituye a la vez la referencia de tiempo y frecuencia.

segundo:

Es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133 (13ª CGPM, 1967).

Laboratorio de relojes atómicos del CENAM, donde se mantienen en operación los Patrones Nacionales de Tiempo y Frecuencia.

Unidad de corriente eléctrica

La realización práctica de esta definición se logra con el uso de balanzas de corriente o electrodinamómetros, sin embargo como la medición de la fuerza ejercida mutuamente por una corriente que circula en ellos es difícil, la incertidumbre asociada a este método es alta. En la práctica la unidad de corriente eléctrica se realiza a partir de patrones materializados de tensión y resistencia.

Los grandes laboratorios utilizan como patrón de tensión una red de uniones Josephson y como patrón de resistencia el efecto Hall cuántico.

ampere:

Es la intensidad de una corriente constante que mantenida en dos conductores paralelos, rectilíneos de longitud infinita, de sección circular despreciable, colocados a un metro de distancia entre sí, en el vacío, producirá entre ellos una fuerza igual a $2x10^{-7}$ newton por metro de longitud (9ª CGPM, 1948).

Laboratorio de patrón de tensión del CENAM, donde se mantiene en operación el efecto Josephson.

Unidad de temperatura termodinámica

En 1954, la 10a. CGPM modificó la base termodinámica de la escala de temperatura, en vez de hacerla sobre dos puntos fijos, el punto de congelación y el punto de ebullición del agua, se hizo sobre un solo punto fijo fundamental, el punto triple del agua al cual se le atribuye el valor de 273,16 K. Las medidas prácticas de temperaturas se efectúan en las denominadas escalas internacionales que en su turno fueron conocidas como EIT-27, EIT-48, EIPT-68 y finalmente la EIT-90, escala internacional de temperatura de 1990, basada en un número definido de puntos fijos y en instrumentos de interpolación calibrados en dichos puntos.

Es de uso común expresar una temperatura termodinámica (T) en función de su diferencia con relación a la temperatura de referencia To = 273,15 K, punto de congelación del agua. Esta diferencia de temperatura es llamada temperatura Celsius (t) y se define por la ecuación t = T-To. La unidad de temperatura Celsius es el grado Celsius (°C) igual a la unidad kelvin por definición. Un intervalo o una diferencia de temperatura puede expresarse tanto en kelvin como en grado Celsius (13ª CGPM, Resolución 3). El kelvin y el grado Celsius son unidades de la Escala Internacional de temperatura de 1990 (EIT-90) adoptado por el Comité Internacional en 1989 en su recomendación 5.

kelvin: Es la fracción de 1/273,16 de la temperatura termodinámica del punto triple del agua (13ª CGPM, 1967).

Celda del punto triple del agua, estas celdas se construyen y mantienen en el laboratorio de termometría del CENAM y definen al kelvin.

Unidad de intensidad luminosa

La realización de la candela puede hacerse midiendo la energía de una fuente a través de un filtro $V(\lambda)$ que simula la respuesta del sistema visual humano en función de la longitud de onda. La transferencia de la unidad se realiza a partir de lámparas patrón y fotodiodos, mediante métodos de comparación.

La unidad de intensidad luminosa primeramente fue establecida utilizando patrones de flama o de filamento incandescente. Fueron reemplazadas por "la bujía nueva" fundada sobre la luminancia del radiador de Planck (cuerpo negro) a la temperatura de congelación del platino. La 9ª CGPM adopta un nuevo nombre internacional, la candela, símbolo cd. En 1979 en razón de las dificultades experimentales para la realización de un radiador de Planck a temperaturas elevadas y a las posibilidades ofrecidas por la radiometría (medida de la potencia de la radiación de la candela, que actualmente se encuentra vigente.

candela:

Es la intensidad luminosa en una dirección dada de una fuente que emite una radiación monocromática de frecuencia 540x10¹² hertz y cuya intensidad energética en esa dirección es 1/683 watt por esterradián (16^a CGPM, 1979).

Laboratorio de fotometría del CENAM, donde se realiza y se mantienen en operación el Patrón Nacional de Intensidad Luminosa.

Unidad de cantidad de sustancia

Incorporada en 1971 como la séptima unidad de base del SI para formar la estructura metrológica del campo de la físico-química, la mol no se refiere a una masa sino a un número de partículas. Mencionar un número determinado de mol sin indicar cuales son las partículas es tan incierto como mencionar un número de metros sin señalar a que dimensión del objeto se refiere.

La definición de mol establecida por la 14^a CGPM en 1971 se refiere a los átomos de carbono 12 no ligados, que se encuentran en reposo y en su estado fundamental.

mol:

Es la cantidad de sustancia que contiene tantas entidades elementales como existen átomos en 0,012 kg de carbono 12 (14ª CGPM, 1971).

Imagen de partículas de dióxido de silicio obtenidas con microscopía de barrido de electrones del CENAM. Suponiendo que cada partícula esférica como las mostradas es equivalente a una molécula de SiO_2 , entonces 6,022 143 0 x 10^{23} de tales partículas, formarían una mol de SiO_2 con una masa de 60,083 g \pm 0,000 4 g.

EJEMPLOS DE UNIDADES SI DERIVADAS EXPRESADAS EN TÉRMINOS DE LAS UNIDADES DE BASE

Estas unidades se forman por combinaciones simples de las unidades del SI de base de acuerdo con las leyes de la física.

Unidad SI		
Magnitud	Nombre	Símbolo
superficie	metro cuadrado	m^2
volumen	metro cúbico	m^3
velocidad	metro por segundo	m/s
aceleración	metro por segundo al cuadrado	m/s ²
número de ondas	metro a la menos uno	m ⁻¹
masa volúmica, densidad	kilogramo por metro cúbico	kg/m³
volumen específico	metro cúbico por kilogramo	m ³ /kg
densidad de corriente	ampere por metro cuadrado	A/m^2
campo magnético	ampere por metro	A/m
concentración (de cantidad de sustancia)	mol por metro cúbico	mol/m³
luminancia	candela por metro cuadrado	cd/m ²
índice de refracción	(el número) uno	1

Tabla 2. Ejemplo de unidades SI expresadas en términos de las unidades de base.

UNIDADES SI DERIVADAS QUE TIENEN NOMBRE Y SÍMBOLO ESPECIAL

facilitar Para expresión de unidades derivadas formadas de combinaciones unidades de base, se le ha dado a un cierto número de ellas un nombre y un símbolo especial. Estas se indican en la Tabla 3, y ellas mismas pueden ser utilizadas para expresar otras unidades como se muestra en la tabla 4.

Magnitud	Nombre de la unidad SI derivada	Símbolo	Expresión en unidades SI de base	Expresión en otras unidades SI
ángulo plano	radián	rad	m• m ⁻¹ =1	
ángulo sólido	esterradián	sr	$m^2 \bullet m^{-2} = 1$	•
frecuencia	hertz	Hz	s ⁻¹	
fuerza	newton	N	m•kg•s-2	•
presión, esfuerzo	pascal	Pa	m⁻¹•kg•s⁻²	N/m²
trabajo,energía, cantidad de calor	joule	J	m²•kg•s⁻²	N•m
potencia, flujo energético	watt	W	m²•kg•s⁻³	
carga eléctrica, cantidad de electricidad	coulomb	C	s•A	
diferencia de potencial, tensión eléctrica, fuerza electromotriz, potencial eléctrico	volt	V	m²•kg•s⁻³ •A⁻¹	W/A
capacitancia eléctrica	farad	F	$m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$	C/V
resistencia eléctrica	ohm	Ω	$m^2 \bullet kg \bullet s^{-3} \bullet A^{-2}$	V/A
conductancia eléctrica	siemens	S	$m^{-2} \bullet kg^{-1} \bullet s^3 \bullet A^2$	A/V
flujo de inducción magnético	weber	Wb	m ² •kg•s ⁻² • A ⁻¹	V.s
inducción magnética	tesla	T	kg•s ⁻² • A ⁻¹	Wb/m²
inductancia	henry	Н	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$	Wb/A
flujo luminoso	lumen	lm	m ² •m ⁻² •cd=cd	cd•sr
iluminancia	lux	1x	m ² •m ⁻⁴ •cd=m ⁻² •cd	lm/m²
actividad de un radionúclido	becquerel	Bq	s^{-1}	
dosis absorbida, energía másica, kerma	gray	Gy	m²•s⁻²	J/kg
temperatura Celsius	grado Celsius	°C	K	
dosis equivalente,equivalente de dosis ambiental, equivalente de dosis direccional, equivalente de dosis individual, dosis equivalente en un órgano	sievert	Sv	m ² •s ⁻²	J/kg
actividad catalítica	katal	kat	mol/s	

Tabla 3. Unidades SI derivadas con nombres y símbolos especiales.

UNIDADES SI DERIVADAS CON NOMBRES ESPECIALES

Ejemplos de unidades SI derivadas cuyos nombres y símbolos incluyen unidades SI derivadas con nombres y símbolos especiales.

Magnitud derivada	Unidad SI derivada			
	Nombre	Símbolo	Expresión en unidades SI de base	
viscosidad dinámica	pascal segundo	Pa•s	m⁻¹•kg•s⁻¹	
momento de una fuerza	newton metro	N•m	m²•kg•s⁻²	
tensión superficial	newton por metro	N/m	kg•s ⁻²	
velocidad angular	radián por segundo	rad/s	$\mathbf{m}^{\bullet}\mathbf{m}^{-1}^{\bullet}\mathbf{s}^{-1} = \mathbf{s}^{-1}$	
aceleración angular	radián por segundo cuadrado	rad/s ²	$\mathbf{m}^{\bullet}\mathbf{m}^{-1}^{\bullet}\mathbf{s}^{-2} = \mathbf{s}^{-2}$	
flujo térmico superficial luminosidad energética	watt por metro cuadrado	w/m ²	kg•s ⁻³	
capacidad térmica entropía	joule por kelvin	J/K	m²•kg•s⁻²•K⁻¹	
capacidad térmica másica, entropía másica	joule por kilogramo kelvin	J/(kg•K)	m²•s⁻²•K⁻¹	
energía másica	joule por kilogramo	J/kg	m²•s⁻²	
conductividad térmica	watt por metro kelvin W/(n		m•kg•s ⁻³ •K ⁻¹	
energía volúmica	joule por metro cúbico	J/m ³	m ⁻¹ •kg•s ⁻²	
campo eléctrico	volt por metro	V/m	m•kg•s ⁻³ •A ⁻¹	
carga eléctrica volúmica	coulomb por metro cúbico C/m ³		m⁻³•s•A	
desplazamiento eléctrico	coulomb por metro cuadrado C/m ²		m ⁻² •s•A	
permitividad	farad por metro	F/m	m ⁻³ •kg ⁻¹ •s ⁴ •A ²	
permeabilidad	henry por metro	H/m	m•kg•s ⁻² •A ⁻²	
energía molar	joule por mol J/mol		m²•kg•s⁻²•mol⁻¹	
entropía molar, capacidad térmica molar	joule por mol kelvin	J/(mol•K)	m²•kg•s⁻²•K⁻¹•mol⁻¹	
exposición (rayos χ y γ)	coulomb por kilogramo C/kg		kg ⁻¹ •s•A	
gasto de dosis absorbida	gray por segundo	Gy/s	m²•s⁻³	
intensidad energética	watt por esterradián W/sr		$m^4 \bullet m^{-2} \bullet kg \bullet s^{-3} = m^2 \bullet kg \bullet s^{-3}$	
luminancia energética	watt por metro cuadrado esterradián	W/(m ² •sr)	$m^2 \bullet m^{-2} \bullet kg \bullet s^{-3} = kg \bullet s^{-3}$	

Tabla 4. Ejemplo de unidades SI derivadas con nombres especiales.

UNIDADES QUE NO PERTENECEN AL SI, PERO QUE SE ACEPTAN PARA UTILIZARSE CON EL MISMO

Este tipo de unidades no pertenece al Sistema Internacional de Unidades, pero por su uso extendido se considera que es preferible mantenerlas.

En la tabla siguiente se indican sus equivalencias con las unidades del SI.

Nombre	Símbolo	Valor en unidades SI
minuto	min	1 min = 60 s
hora	h	1 h = 60 min = 3 600 s
día	d	1 d = 24 h = 86 400 s
grado minuto	· ,	$1^{\circ} = (\pi/180) \text{ rad}$
segundo	"	$1'=(1/60)^{\circ}=(\pi/10~800)$ rad $1''=(1/60)^{\circ}=(\pi/648~000)$ rad
litro	L,1	$1 L= 1 dm^3 = 10^{-3} m^3$
tonelada	t	1 t=10 ³ kg
neper	Np	1 Np=1
bel	В	1 B=(1/2) ln 10 (Np)

Tabla 5. Unidades que no pertenecen al SI, pero que se aceptan para utilizarse con el mismo

UNIDADES QUE NO SON DEL SISTEMA INTERNACIONAL DE UNIDADES, QUE SE ACEPTAN PARA UTILIZARSE CON EL SI Y CUYO VALOR SE OBTIENE EXPERIMENTALMENTE

Nombre	Símbolo	Valor en unidades SI
electronvolt	eV	1 eV= 1,602 177 33 (49) • 10 ⁻¹⁹ J
unidad de masa atómica unificada	u	$1 \text{ u} = 1,660 540 2(10) \cdot 10^{-27} \text{ kg}$
unidad astronómica	ua	1 ua=1,495 978 706 91(30) •10 ¹¹ m

Tabla 6. Unidades que no son del sistema internacional de unidades, que se aceptan para utilizarse con el SI y cuyo valor se obtiene experimentalmente

UNIDADES QUE NO SON DEL SI QUE PUEDEN UTILIZARSE CON EL SISTEMA INTERNACIONAL

Estas unidades que no son del SI se utilizan para responder a necesidades específicas en el campo comercial o jurídico o por interés particular científico. Las equivalencias de estas unidades con las unidades del SI deben ser mencionadas en todos los documentos donde se utilicen. Es preferible evitar emplearlas.

Magnitud	Símbolo	Valor en unidades SI
milla marina		1 milla marina= 1 852 m
nudo		1 milla marina por hora
		= (1 852/3 600) m/s
area	a	1 a=1 dam²=10² m²
hectárea	ha	1 ha=1 hm ² =10 ⁴ m ²
bar	bar	1 bar = 0, 1 Mpa=100 kPa = 1000 hPa=10 ⁵ Pa
ångstrom *	Å	1 Å=0,1 nm=10 ⁻¹⁰ m
barn	b	1 b=100 fm ² = 10 ⁻²⁸ m ²

Tabla 7. Unidades que no son del SI, pero que pueden utilizarse con el.

^{*} ángstrom, de acuerdo con la Real Academia Española.

UNIDADES DERIVADAS DEL SISTEMA CGS CON NOMBRE ESPECIAL

En algunos campos especializados de la investigación científica, en particular en física, pueden existir algunas veces motivos serios que justifiquen el empleo de otros sistemas o de otras unidades, y aunque no se recomienda su uso, es importante que los símbolos empleados para representar las unidades que no son del Sistema Internacional estén conforme a las recomendaciones internacionales en vigor.

Nombre	Símbolo	Valor en unidades SI
erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$
dyne	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$
poise	P	$1 P = 1 \text{ dyn} \cdot \text{s/cm}^2 = 0,1 \text{ Pa.s}$
stokes	St	$1 \text{ St} = 1 \text{ cm}^2/\text{s} = 10^{-4} \text{ m}^2/\text{s}$
gauss	G	1 G corresponde a 10 ⁻⁴ T
oersted	Oe	1 Oe corresponde a (1000/4 π) A/m
maxwell	Mx	1 Mx corresponde a 10 ⁻⁸ Wb
stilb	sb	$1 \text{ sb} = 1 \text{ cd/cm}^2 = 10^4 \text{ cd/m}^2$
phot	ph	$1 \text{ ph} = 10^4 \text{ lx}$
gal	Gal	$1Gal = 1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$

Tabla 8. Unidades del sistema CGS con nombre especial que es preferible evitar su uso.

OTROS EJEMPLOS DE UNIDADES FUERA DEL SI

La tabla 8a contiene unidades que aparecen todavía en libros de texto que no han sido actualizados y se recomienda que en caso de ser usadas en documentos técnicos se especifique su relación con las unidades del SI.

Nombre	Símbolo	Valor en unidades SI
curie	Ci	1Ci=3,7•10 ¹⁰ Bq
röntgen	R	1R=2,58•10 ⁻⁴ C/kg
rad	rad	1rad=1cGy=10 ⁻² Gy
rem	rem	$1 \text{ rem} = 1 \text{cSv} = 10^{-2} \text{ Sv}$
unidad X		1 unidad X≈1,002•10⁴ nm
gamma	γ	$1 \gamma = 1 \text{nt} = 10^{-9} \text{ T}$
jansky	Jy	1 Jy=10 ⁻²⁶ W•m ⁻² •Hz ⁻¹
fermi		1 fermi=1 fm=10 ⁻¹⁵ m
quilate métrico		1 quilate métrico = 200 mg=2•10 ⁻⁴ kg
torr	Torr	1 Torr=(101 325/760) Pa
atmósfera normal	atm	1atm=101 325 Pa
caloría	cal	tiene varios valores (ver capítulo V "correspondencia entre unidades")
micrón	μ	1 μ=1 μm=10 ⁻⁶ m
kilogramo fuerza	kgf	1 kgf = 9,806 65 N
stere	st	1 st=1 m ³

PREFIJOS DEL SI

En la actualidad existen 20 prefijos, debido al gran número de ellos se dificulta utilización; tiempo en un estuvieron sujetos a desaparecer para substituirlos por potencias positivas y negativas de base 10. Los prefijos no contribuyen a la coherencia del SI pero se ha visto la necesidad de su empleo para facilitar la expresión de cantidades muy grandes o muy pequeñas.

Nombre	Símbolo	-		Valor
yotta	Y	10 ²⁴	=	1 000 000 000 000 000 000 000 000
zetta	Z	10^{21}	=	1 000 000 000 000 000 000 000
exa	Е	10 ¹⁸	=	1 000 000 000 000 000 000
peta	P	10^{15}	=	1 000 000 000 000 000
tera	T	10 ¹²	=	1 000 000 000 000
giga	G	10 ⁹	=	1 000 000 000
mega	M	10^{6}	=	1 000 000
kilo	k	10^3	=	1 000
hecto	h	10^2	=	100
deca	da	10 ¹	=	10
deci	d	10 ⁻¹	=	0,1
centi	c	10 ⁻²	=	0,01
mili	m	10 ⁻³	=	0,001
micro	μ	10 ⁻⁶	=	0,000 001
nano	n	10-9	=	0,000 000 001
pico	p	10 ⁻¹²	=	0,000 000 000 001
femto	f	10 ⁻¹⁵	=	0,000 000 000 000 001
atto	a	10 ⁻¹⁸	=	0,000 000 000 000 000 001
zepto	Z	10 ⁻²¹	=	0,000 000 000 000 000 000 001
yocto	у	10 ⁻²⁴	=	0,000 000 000 000 000 000 000 001

Tabla 9. Prefijos del SI

PREFIJOS DEL SI

Nombre	Símbolo	Valor	Origen	Significado	Año de adopción por la CGPM
yotta	Y	10^{24}	griego	ocho	1991
zetta	Z	10^{21}	griego	siete	1991
exa	Е	10^{18}	griego	seis	1975
peta	P	10^{15}	griego	cinco	1975
tera	Т	10 ¹²	griego	monstruoso, prodigioso	1960
giga	G	10^{9}	griego	gigante	1960
mega	M	10^{6}	griego	grande	1960
kilo	k	10^{3}	griego	mil	1960
hecto	h	10^{2}	griego	cien	1960
deca	da	10^{1}	griego	diez	1960
deci	d	10-1	latino	décimo	1960
centi	c	10-2	latino	centésimo	1960
mili	m	10-3	latino	milésimo	1960
micro	μ	10 ⁻⁶	griego	pequeño	1960
nano	n	10-9	latino	pequeño	1960
pico	p	10 ⁻¹²	italiano	pequeño	1960
femto	f	10 ⁻¹⁵	danés	quince	1964
atto	a	10 ⁻¹⁸	danés	diez y ocho	1964
zepto	Z	10 ⁻²¹	griego	siete	1991
yocto	у	10 ⁻²⁴	griego	ocho	1991

Tabla 9a. Prefijos, su origen y significado

CAPITULO III LA GRAMÁTICA DEL SI

REGLAS DE ESCRITURA DE LOS SÍMBOLOS DE LAS UNIDADES Y LOS PREFLIOS

La conformación de un lenguaje contiene reglas para su escritura que evitan confusiones y facilitan la comunicación. Lo mismo sucede en el lenguaje de las medidas.

El Sistema Internacional de Unidades (SI) tiene sus propias reglas de escritura que permiten una comunicación unívoca.

Por ejemplo, abreviar indiscriminadamente o escribir con mayúscula el nombre de las unidades es muy común en el medio y son faltas que podrían causar ambigüedad. En este capítulo se presentan las reglas que apoyan el uso del Sistema Internacional (SI), en documentos escritos. El cuidado que se ponga en aplicar estas reglas ayuda a incrementar la credibilidad y seriedad en la presentación de resultados en los ambientes técnico y científico.

No.	Descripción	Escribir	No escribir
1	El uso de unidades que no pertenecen al SI debe limitarse a aquellas que han sido aprobadas por la Conferencia General de Pesas y Medidas.		
2	Los símbolos de las unidades deben escribirse en tipos de caracteres romanos rectos y no, por ejemplo, en caracteres oblicuos ni con letras cursivas.	m Pa	m Pa
3	El símbolo de las unidades se inicia con minúscula a excepción hecha de las que se derivan de nombres propios. No utilizar abreviaturas.	metro m segundo s ampere A pascal Pa	Mtr Seg Amp. pa
4	En los símbolos, la substitución de una minúscula por una mayúscula no debe hacerse ya que puede cambiar el significado.	5 km para indicar 5 kilómetros	5 Km porque significa 5 kelvin metro
5	En la expresión de una magnitud, los símbolos de las unidades se escriben después del valor numérico completo, dejando un espacio entre el valor numérico y el símbolo. Solamente en el caso del uso de los símbolos del grado, minuto y segundo de ángulo plano, no se dejará espacio entre estos símbolos y el valor numérico.	253 m 5 °C 5°	253m 5°C 5°
6	Contrariamente a lo que se hace para las abreviaciones de las palabras, los símbolos de las unidades se escriben sin punto final y no deben pluralizarse para no utilizar la letra "s" que por otra parte representa al segundo. En el primer caso existe una excepción: se pondrá punto si el símbolo finaliza una frase o una oración.	50 mm 50 kg	50 mm. 50 kgs
7	Cuando la escritura del símbolo de una unidad no pareciese correcta, no debe substituirse este símbolo por sus abreviaciones aún si estas pareciesen lógicas. Se debe recordar la escritura correcta del símbolo o escribir con todas las letras el nombre de la unidad o del múltiplo a que se refiera.	segundo (s) ampere (A) kilogramo (kg) litros por minuto (L/min) s ⁻¹ , min ⁻¹ km/h	seg. Amp. Kgr LPM RPS, RPM KPH

Tabla 10. Reglas de escritura de los símbolos de las unidades y los prefijos

^{*} La NOM-SCFI-2002 indica el uso de las unidades "revoluciones por minuto" (r/min) y "revoluciones por segundo" (r/s) para la frecuencia rotacional.

No.	Descripción	Escribir	No escribir
8	Cuando haya confusión con el símbolo l de litro y la cifra 1, se puede escribir el símbolo L, aceptada para representar a esta unidad por la Conferencia General de Pesas y Medidas.	ede escribir el símbolo L, aceptada para representar a esta unidad 11 L (para indicar 11 litros)	
9	Las unidades no se deben representar por sus símbolos cuando se escribe con letras su valor numérico.	cincuenta kilómetros	cincuenta km
10	Las unidades de las magnitudes derivadas deben elegirse tomando en consideración principalmente las unidades de las magnitudes componentes de su definición. momento de una fuerza: newton metro energía cinética: joule		momento de una fuerza: joule (en vez de newton metro) energía cinética: newton metro (en vez de joule)
11	No deben agregarse letras al símbolo de las unidades como medio de información sobre la naturaleza de la magnitud considerada. Las expresiones MWe para "megawatts eléctrico", Vac para "volts corriente alterna" y kJt para "kilojoules térmico" deben evitarse. Por esta razón no deben hacerse construcciones SI equivalentes al de las abreviaciones "psia" y "psig" para distinguir entre presión absoluta y presión manométrica; en este caso, la palabra presión es la que debe ser calificada apropiadamente.	presión manométrica de 10 kPa presión absoluta de 10 kPa tensión en corriente alterna: 120 V	presión: 10 kPa man. presión: 10 kPa abs. tensión: 120 Vac
12	El signo de multiplicación para indicar el producto de dos o mas unidades debe ser de preferencia un punto. Este punto puede suprimirse cuando la falta de separación de los símbolos de las unidades que intervengan en el producto no se preste a confusión	N•m, N m, para designar: newton metro o m•N, para designar: metro newton	mN que se confunde con milinewton
13	Cuando se escribe el producto de los símbolos éste se expresa nombrando simplemente a estos símbolos.	m⋅s se dice metro segundo kg⋅m se dice kilogramo metro	metro por segundo kilogramo por metro
14	Cuando una magnitud es el producto de varias magnitudes y entre estas no existe ningún cociente, el símbolo de la unidad de esta magnitud se forma por el producto del símbolo de las unidades componentes.	viscosidad dinámica (η): Pa•s momento magnético (<i>m</i>): A•m ²	

Tabla 10 (Cont.). Reglas de escritura de los símbolos de las unidades y los prefijos

No.	Descripción	Escribir	No escribir
15	Para no repetir el símbolo de una unidad que interviene muchas veces en un producto, se utiliza el exponente conveniente. En el caso de un múltiplo o de un submúltiplo, el exponente se aplica también al prefijo.	1 dm ³ 1 dm ³ = $(0,1 \text{ m})^3$ = 0,001 m ³	1 dm•dm 1 dm ³ = 0,1 m ³
16	Para expresar el cociente de dos símbolos, puede usarse entre ellos una línea inclinada o una línea horizontal o bien afectar al símbolo del denominador con un exponente negativo, en cuyo caso la expresión se convierte en un producto	m/s m.s ⁻¹	$m \div s$
17	Cuando una magnitud es el cociente de otras, se expresa el nombre de la unidad de esa magnitud intercalando la palabra "por" entre el nombre de la unidad del dividendo y el nombre de la unidad del divisor.	km/h o kilómetro por hora	kilómetro entre hora
18	En la expresión de un cociente no debe ser usada mas de una línea inclinada.	m/s ² J/mol K	m/s/s J/mol/K
19	Cuando se trata del símbolo de una magnitud que sea el cociente de dos unidades, solamente se debe utilizar un prefijo y este debe ser colocado en el numerador. Es preferible en forma general, no usar múltiplos o submúltiplos en el denominador	kV/m J/kg	kV/mm J/g
20	En las expresiones complicadas debe utilizarse paréntesis o exponentes negativos.	J/(mol·K) o bien J·mol ⁻¹ ·K ⁻¹	J/mol•K J/mol/K
21	Los nombres completos de las unidades y los símbolos de ellas no deben usarse combinados en una sola expresión. (ver 9)	m/s	metro/s
22	Si el nombre de una unidad figura muchas veces en el denominador como factor de un producto, se puede en lugar de repetirlo, emplear según el caso, uno de los adjetivos "cuadrado", "cubo", etc.	aceleración: metro por segundo cuadrado	

Tabla 10 (Cont.). Reglas de escritura de los símbolos de las unidades y los prefijos

No.	Descripción	Escribir	No escribir
23	En la escritura de los múltiplos y submúltiplos de las unidades, el nombre del prefijo no debe estar separado del nombre de la unidad.	microfarad	micro farad
24	Debe evitarse el uso de unidades de diferentes sistemas.	kilogramo por metro cúbico.	kilogramo por galón
25	Celsius es el único nombre de unidad que se escribe siempre con mayúscula, los demás siempre deben escribirse con minúscula, exceptuando cuando sea principio de una frase.	El newton es la unidad SI de fuerza. El grado Celsius es una unidad de temperatura. Pascal es el nombre dado a la unidad SI de presión	el Newton es la unidad SI de fuerza El grado celsius es la unidad de temperatura
26	El plural de los nombres de las unidades se forma siguiendo las reglas para la escritura del lenguaje.	10 newtons 50 gramos	10 N's ó 10 Newton 50 gramo
27	Sin embargo, se recomienda los plurales irregulares para los siguientes casos.	Singular Plural lux lux hertz hertz siemens siemens	luxes hertzes
28	Para escribir un producto con el nombre completo de las unidades que intervienen, debe dejarse un espacio o un guión entre el nombre de ellas.	newton metro o newton- metro exceptuando: watthora	watt-hora
29	Los prefijos deberán ser usados con las unidades SI para indicar orden de magnitud ya que proporcionan convenientes substitutos de las potencias de 10.	18,4 Gm	18 400 000 000 m
30	Se recomienda el uso de prefijos escalonados de mil en mil.	micro (μ), mili (m) kilo (k), mega (M)	1hg (en vez de 0,1 kg)

Tabla 10 (Cont.). Reglas de escritura de los símbolos de las unidades y los prefijos

No.	Descripción	Escribir	No escribir
31	Los prefijos hecto, deca, deci y centi se recomiendan únicamente en las magnitudes de longitud, área y volumen. Sin embargo, excepciones de ello pueden considerarse en ciertos campos de aplicación como el de la industria de la construcción, el de la madera, etc.	dam ² , dl, cm ³	(no es recomendable) daK, cs, ccd
32	No deben usarse prefijos repetidos en una sola expresión.	PF Gg	μμF Mkg
33	Los prefijos que se utilicen para formar los múltiplos y submúltiplos de las unidades, deben ser antepuestos a las unidades de base o derivadas del SI. Exceptuando la unidad de base, el kilogramo que ya contiene en si un prefijo; en este caso el prefijo requerido debe ser antepuesto al gramo.	Mg (megagramo) μs (microsegundo) mK (milikelvin)	
34	El símbolo del prefijo no debe estar separado del símbolo de la unidad ni por un espacio, ni por cualquier signo tipográfico.	cm	c m o c·m
35	En las expresiones de magnitudes de la misma naturaleza, los prefijos no deben ser mezclados a menos que el valor numérico de las magnitudes justifique una diferencia.	15 mm de longitud x 10 mm de altura 5 mm de diámetro por 10 m de longitud	5 mm de longitud x 0,01m de altura 5mm de diámetro x 10 000 mm de longitud.
36	Solamente en los casos siguientes se admite la contracción del nombre del prefijo al anteponerse al nombre de la unidad	megohm kilohm hectárea	megaohm kiloohm
37	Los prefijos giga (10 ⁹) y tera (10 ¹²) deben ser usados cuando se preste a confusión el término "billón" que en unos países representa un millar de millones y en otros un millón de millones, por tanto el término billón así como trillón, etc. no se recomienda en la literatura técnica.	1 teraohm	1 billón de ohm

Tabla 10 (Cont.). Reglas de escritura de los símbolos de las unidades y los prefijos

No.	Descripción	Escribir	No escribir
38	Los valores numéricos serán expresados, cuando así correspondan, en decimales y nunca en fracciones. El decimal será precedido de un cero cuando el número sea menor que la unidad.	1,75 m 0,5 kg	1 3/4 m 1/2 kg
39	Se recomienda generalmente que los prefijos sean seleccionados de tal manera que los valores numéricos que le antecedan se sitúen entre 0,1 y 1 000.	9 Gg 1,23 nA 204 μN	9 000 000 kg 0, 001 23 μA 0,000 204 N
40	Otras recomendaciones cuyas reglas especificas no se indican pero que es conveniente observar (vea las diferencias entre la primera y la segunda columna y determine las conclusiones)	$20 \text{ mm x } 30 \text{ mm x } 40 \text{ mm}$ $200 \text{ nm a } 300 \text{ nm}$ $0 \text{ V a } 50 \text{ V}$ $(35,4 \pm 0,1) \text{ m}$ $35,4 \text{ m} \pm 0,1 \text{ m}$ $\text{Ur} = 3 \text{ x } 10^{-6}$ 25 cm^3 $T\Omega$ $M\Omega$	20 x 30 x 40 mm 200 a 300 nm 0 - 50 V 35,4 ± 0,1 m 35,4 m ± 0,1 Ur = 3 ppm 25 cc Tohm Mohm

Tabla 10 (Concluye). Reglas de escritura de los símbolos de las unidades y los prefijos

REGLAS ADICIONALES DE ESCRITURA

Regla	Enunciado	Ejemplo
Signo decimal	El signo decimal debe ser una coma sobre la línea (,). Si la magnitud de un número es menor que la unidad, el signo decimal debe ser precedido por un cero *	70,250 0,468
Números	Los números deben ser impresos generalmente en tipo romano (recto); para facilitar la lectura con varios dígitos, estos deben ser separados en grupos, preferentemente de tres, contando del signo decimal a la derecha y a la izquierda. Los grupos deben ser separados por un espacio, nunca por una coma, un punto u otro medio; en los números de cuatro cifras, se puede omitir ese espacio.	943,056 7 801 234,539 0,542

Tabla 11a. Reglas para la escritura del signo decimal y los números

Reglas	Fecha	Ejemplos
Se utilizan dos o cuatro caracteres para el	9 de julio de 1996	1996-07-09 6 96-07-09
año, dos para el mes y dos para el día, en ese orden	12 de noviembre de 1997	1997-11-12 ó 97-11-12
ese orden	3 de enero de 2000	2000-01-03

Tabla 11b. Reglas para la escritura de fechas por medio de dígitos

NOTA: La Norma Oficial Mexicana NOM-008-SCFI-1993, establece como separador decimal la coma. La Norma Internacional ISO-31 parte 0:1992 reconoce que en el idioma inglés se usa frecuentemente el punto pero de conformidad con la decisión del Consejo de la ISO, se acepta exclusivamente la coma como separador decimal en todos los documentos ISO.

En la resolución 10 de la 22ª CGPM (2003) se establece que el símbolo del separador decimal puede ser la coma o el punto sobre la línea, según el lenguaje y reafirma que para facilitar la lectura, los números pueden ser separados en grupos de tres cifras los cuales nunca deberán diferenciarse utilizando puntos o comas. Debido a esto la tendencia en los círculos técnicos y científicos en México, de usar el punto como separador decimal, requiere previamente el cambio de la NOM-008-SCFI-2002* que por otra parte, debe ser congruente con la normatividad que establecen los organismos internacionales.

Reglas	Ejemplo correcto	Ejemplo incorrecto
Se debe utilizar el sistema de 24 horas con dos dígitos para la hora, dos dígitos para los minutos y dos dígitos para los segundos. En los intermedios se indica el símbolo de la unidad	20 h 00 09 h 30 12 h 40 min 30	8 PM 9:30 hrs 12 h 40' 30

Tabla 11c. Reglas para expresar el horario del día (Para otras formas de expresión consúltese ISO 8601)

Correcto	Incorrecto
watt	vatio
ampere	amperio
volt	voltio
ohm	ohmio
vóltmetro	voltímetro
ampérmetro	amperímetro

Tabla 11d. Castellanizar los nombres de las unidades es contrario al carácter universal del SI

Se recomienda	No se recomienda
tensión eléctrica, diferencia de potencial, fuerza electromotriz, potencial eléctrico	voltaje
corriente eléctrica	amperaje
frecuencia	ciclaje
distancia en kilómetros	kilometraje
potencia, flujo energético	wattaje

Tabla 11e. Evitar confundir nombres de magnitudes con unidades mal expresadas

Se recomienda	No se recomienda
alcance	rango
patrón, nivel, modelo, prototipo.	estándar *
norma, referencia, primario, normalizado	
verificar, inspeccionar	checar
interruptor	switch
cuadrante, escala	dial
calibre, calibrador	gauge
indicador electrónico, pantalla	display

Tabla 11f. Utilización de términos no adecuados o incorrectamente traducidos

CAPITULO IV MAGNITUDES Y UNIDADES

MAGNITUDES Y UNIDADES

El SI cubre todo el campo del conocimiento del hombre. En esta sección se mencionan las magnitudes, las unidades, así como sus correspondientes símbolos en 10 ramas de la física.

En las tablas que se describen a continuación los números de la columna de la izquierda corresponden con sus homólogos de la Norma Internacional ISO 31en la que se basa este capítulo [11].

Las unidades subrayadas con línea punteada no son del SI, pero se toleran para utilizarse con dicho sistema según ISO 31.

Las magnitudes adimensionales son magnitudes que cuando se expresan como el producto de factores que representan una potencia de las magnitudes de base, estos factores tienen todos sus exponentes reducidos a cero; es decir, son magnitudes formadas por el cociente de magnitudes de la misma naturaleza.

Por ejemplo:

eficiencia =
$$\frac{\text{energ\'ia estado 1}}{\text{energ\'ia estado 2}}$$
$$= \frac{\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}}{\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}}$$

$$= kg^0 \cdot m^0 \cdot s^0 = 1$$

en las tablas se identifica como unidad de las magnitudes adimensionales el nombre genérico 1 y como su símbolo 1 (uno).

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
1-1	ángulo	$\alpha, \beta, \gamma, \vartheta, \varphi$	radián grado minuto segundo	rad • ,
1-2	ángulo sólido	arOmega	esterradián	sr
1-3.1 1-3.2 1-3.3 1-3.4 1-3.5 1-3.6 1-3.7 1-3.8 1-3.9 1-3.10	longitud ancho altura espesor radio diámetro longitud de trayectoria distancia coordenadas cartesianas radio de curvatura	l, L b h d, δ r, R d, D s d, r x, y, z ρ	metro	m
1-4	curvatura	8	metro a la menos uno	m ⁻¹
1-5	área	A, (S)	metro cuadrado	m^2
1-6	volumen	V	metro cúbico litro	m ³ l, L
1-7	tiempo, intervalo de tiempo, duración	t	segundo minuto hora día	s min h d
1-8	velocidad angular	ω	radián por segundo	rad/s
1-9	aceleración angular	α	radián por segundo al cuadrado	rad/s ²
1-10	velocidad	v, c, u, w	metro por segundo	m/s
1-11.1 1-11.2 1-11.3	aceleración aceleración de caida libre, aceleración debida a la gravedad	а g	metro por segundo al cuadrado	m/s ²

Tabla 12a. Magnitudes y unidades de espacio y tiempo

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
2-1	período, tiempo periódico	T	segundo	S
2-2	constante de tiempo de una magnitud que varía exponencialmente	τ	segundo	S
2-3.1 2-3.2	frecuencia frecuencia de rotación	f, v n	hertz segundo a la menos uno	Hz s ⁻¹
2-4	frecuencia angular, pulsatancia	ω	radián por segundo segundo a la menos uno	rad/s s ⁻¹
2-5	longitud de onda	λ	metro	m
2-6	número de onda	σ	metro a la menos uno	m ⁻¹
2-7	número de onda angular	k	radián por metro metro a la menos uno	rad/m m ⁻¹
2-8.1	velocidad de fase	c, v	metro por segundo	m/s
2-8.2	velocidad de grupo	c_{φ}, V_{φ} c_{g}, V_{g}		
2-9	magnitud del nivel de un campo	$L_{\scriptscriptstyle F}$	neper bel	Np B
2-10	magnitud del nivel de potencia	L_p	neper bel	Np B
2-11	coeficiente de amortiguamiento	δ	segundo a la menos uno neper por segundo	s ⁻¹ Np/s
2-12	decremento logarítmico	Λ	neper	Np
2-13.1	coeficiente de atenuación	α	metro a la menos uno	m ⁻¹
2-13.2	coeficiente de fase	β		
2-13.3	coeficiente de propagación	γ		

Tabla 12b. Magnitudes y unidades de fenómenos periódicos y conexos

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
3-1	masa	m	kilogramo tonelada	kg t
3-2	masa volúmica, densidad	ρ	kilogramo por metro cúbico tonelada por metro cúbico kilogramo por litro	kg/m ³ t/m ³ kg/L
3-3	masa volumica relativa, densidad relativa	d	uno	1
3-4	volumen másico, volumen específico	v	metro cúbico por kilogramo	m ³ /kg
3-5	densidad lineal, masa lineal	$ ho_{l}$	kilogramo por metro	kg/m
3-6	densidad de superficie	ρ_{A} , (ρ_{s})	kilogramo por metro cuadrado	kg/m ²
3-7	momento de inercia	I, J	kilogramo metro cuadrado	kg • m ²
3-8	momentum	p	kilogramo metro por segundo	kg • m/s
3-9.1 3- 9.2	fuerza peso	F $F_{v}, (G), (P), (W)$	newton	N
3-10	impulso	I	newton segundo	N • s
3-11	momento momentum, momentum angular	L	kilogramo metro cuadrado por segundo	kg • m ² /s
3-12.1 3-12.2 3-12.3	momento de una fuerza momento de un par par torsional	М М М, Т	newton metro	N • m
3-13	impulso angular	H	newton metro segundo	N • m • s
3-14	constante gravitacional	<i>G</i> , (<i>f</i>)	newton metro cuadrado por kilogramo cuadrado	$N \cdot m^2/kg^2$
3-15.1 3-15.2 3-15.3	presión esfuerzo normal esfuerzo cortante	p σ τ	pascal	Pa

Tabla 12c. Magnitudes y unidades de mecánica

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
3-16.1 3-16.2 3-16.3	deformación lineal deformación angular deformación de volumen	ε, e γ 9	uno	1
3-17	coeficiente de Poisson número de Poisson	μ, ν	uno	1
3-18. 3-28.2 3-18.3	módulo de elasticidad módulo de corte, módulo de rigidez módulo de compresión	E G K	pascal	Pa
3-19	compresibilidad	8	pascal a la menos uno	Pa ⁻¹
3-20.1 3-20.2	momento segundo de área (momento segundo axial de área) momento segundo polar de área	I_{a} , (I) $I_{ ho}$	metro a la cuarta potencia	m^4
3-21	módulo de sección	Z, W	metro cúbico	m^3
3-22.1 3-22.2	factor de fricción dinámica factor de fricción estática	$\mu, (f)$ $\mu_s, (f_s)$	uno	1
3-23	viscosidad, (viscosidad dinámica)	η, (μ)	pascal segundo	Pa • s
3-24	viscosidad cinemática	ν	metro cuadrado por segundo	m^2/s
3-25	tensión superficial	γ, σ	newton por metro	N/m
3-26.1 3-26.2 3-26.3 3-26.4	energía trabajo energía potencial energía cinética	$E \ W, (A) \ E_p, V, arPhi \ E_k, T$	joule	J
3-27	potencia	P	watt	W
3-28	eficiencia	η	uno	1
3-29	gasto masa	q_m	kilogramo por segundo	kg/s
3-30	gasto volumétrico	$q_{\rm v}$	metro cúbico por segundo	m^3/s

Tabla 12c. Magnitudes y unidades de mecánica (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
4-1	temperatura termodinámica	T, (Θ)	kelvin	K
4-2	temperatura Celsius	au, $artheta$	grado Celsius	°C
4-3.1 4-3.2 4-3.3	coeficiente de expansión lineal coeficiente de expansión cúbica coeficiente de presión relativa	$egin{aligned} lpha_l \ lpha_v, & lpha, \ (\gamma) \ lpha_p \end{aligned}$	kelvin a la menos uno	K ⁻¹
4-4	coeficiente de presión	β	pascal por kelvin	Pa/K
4-5.1 4-5.2	compresibilidad isotérmica compresibilidad isentrópica	$m{lpha}_{\scriptscriptstyle T}$	pascal a la menos uno	Pa ⁻¹
4-6	calor, cantidad de calor	Q	joule	J
4-7	relación de flujo de calor	Φ	watt	W
4-8	relación de flujo de calor por área, densidad de flujo de calor	q, φ	watt por metro cuadrado	W/m ²
4-9	conductividad térmica	λ, (🕅)	watt por metro kelvin	W/(m • K)
4-10.1 4-10.2	coeficiente de transferencia de calor coeficiente de transferencia de calor de la superficie	K, (k) h, (α)	watt por metro cuadrado kelvin	$W/(m^2 \cdot K)$
4-11	aislamiento térmico, coeficiente de aislamiento térmico	М	metro cuadrado kelvin por watt	m ² • K/W
4-12	resistencia térmica	R	kelvin por watt	K/W
4-13	conductancia térmica	G	watt por kelvin	W/K
4-14	difusividad térmica	a	metro cuadrado por segundo	m^2/s
4-15	capacidad calorífica	C	joule por kelvin	J/K

Tabla 12d. Magnitudes y unidades de calor

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
4-16.1	capacidad calorífica másica, capacidad calorífica específica	c	joule por kilogramo kelvin	J/(kg • K)
4-16.2	capacidad calorífica másica a presión constante, capacidad calorífica específica a presión constante	C_p		
4-16.3	capacidad calorífica másica a volumen constante, capacidad calorífica específica a volumen constante	$\mathcal{C}_{_{\scriptscriptstyle \mathcal{V}}}$		
4-16.4	capacidad calorífica másica a saturación, capacidad calorífica específica a saturación	C _{sat}		
4-17.1	relación de capacidades caloríficas másicas, relación de capacidades caloríficas específicas	γ	uno	1
4-17.2	exponente isentrópico	8		
4-18	entropía	S	joule por kelvin	J/K
4-19	entropía másica, entropía específica	S	joule por kilogramo kelvin	J/(kg • K)
4-20.1	energía	E	joule	J
4-20.2	energía termodinámica	U		
4-20.3	entalpía	H		
4-20.4	energía libre Helmholtz, función Helmholtz	A, F		
4-20.5	energía libre Gibbs, función Gibbs	G		

Tabla 12d. Magnitudes y unidades de calor (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
4-21.1	energía másica, energía específica	e	joule por kilogramo	J/kg
4-21.2	energía termodinámica másica, energía termodinámica específica	и		
4-21.3	entalpía másica, entalpía específica	h		
4-21.4	energía libre másica Helmholtz, energía libre específica Helmholtz, función específica Helmholtz	a,f		
4-21.5	energía libre másica Gibbs, energía libre específica Gibbs, función específica Gibbs	g		
4-22	función Massieu	J	joule por kelvin	J/K
4-23	función Planck	Y	joule por kelvin	J/K

Tabla 12d. Magnitudes y unidades de calor (Concluye)

No	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
5-1	corriente eléctrica	I	ampere	A
5-2	carga eléctrica, cantidad de electricidad	Q	coulomb	С
5-3	carga volúmica, densidad de carga	ρ , (η)	coulomb por metro cúbico	C/m ³
5-4	densidad de carga de la superficie	σ	coulomb por metro cuadrado	C/m ²
5-5	intensidad de campo eléctrico	E	volt por metro	V/m
5-6.1 5-6.2	potencial eléctrico, diferencia de potencial, tensión fuerza electromotriz	V, φ U, (V)	volt	V
5-6.3		E		C/m ²
5-7	densidad de flujo eléctrico	D	coulomb por metro cuadrado	
5-8	flujo eléctrico	Ψ	coulomb	С
5-9	capacitancia	С	farad	F
5-10.1 5-10.2	permitividad constante eléctrica, permitividad del vacío	arepsilon	farad por metro	F/m
5-11	permitividad relativa	\mathcal{E}_r	uno	1
5-12	susceptibilidad eléctrica	χ , χ_e	uno	1
5-13	polarización eléctrica	P	coulomb por metro cuadrado	C/m ²
5-14	momento dipolo eléctrico	p , (p_e)	coulomb metro	C • m
5-15	densidad de corriente eléctrica	J,(S)	ampere por metro cuadrado	A/m ²
5-16	corriente eléctrica lineal, densidad lineal de corriente eléctrica	Α, (α)	ampere por metro	A/m
5-17	intensidad de campo magnético	H	ampere por metro	A/m
5-18.1 5-18.2 5-18.3	diferencia de potencial magnético fuerza magnetomotriz corriente totalizada	$U_{\scriptscriptstyle m},(U) \ F,F_{\scriptscriptstyle m} \ arTheta$	ampere	A

Tabla 12e. Magnitudes y unidades de electricidad y magnetismo

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
5-19	densidad de flujo magnético, inducción magnética	B	tesla	T
5-20	flujo magnético	Φ	weber	Wb
5-21	potencial del vector magnético	A	weber por metro	Wb/m
5-22.1 5-22.2	autoinductancia inductancia mutua	$L \ M, L_{mn}$	henry	Н
5-23.1 5-23.2	coeficiente de acoplamiento coeficiente de dispersión	$k, (N)$ σ	uno	1
5-24.1 5-24.2	permeabilidad constante magnética, permeabilidad del vacío	$\mu \ \mu_0$	henry por metro	H/m
5-25	permeabilidad relativa	μ_r	uno	1
5-26	susceptibilidad magnética	\aleph , (χ_m)	uno	1
5-27	momento magnético, momento electromagnético	m	ampere metro cuadrado	A • m ²
5-28	magnetización	$M, (H_i)$	ampere por metro	A/m
5-29	polarización magnética	$J, (B_i)$	tesla	T
5-30	energía electromagnética volúmica, densidad de energía electromagnética	w	joule por metro cúbico	J/m ³
5-31	vector de Poynting	S	watt por metro cuadrado	W/m^2
5-32.1	velocidad de fase de ondas electromagnéticas	С	metro por segundo	m/s
5-32.2	velocidad de ondas electromagnéticas en el vacío	<i>c</i> , <i>c</i> ₀		
5-33	resistencia (a la corriente directa)	R	ohm	Ω
5-34	conductancia (para corriente directa)	G	siemens	S
5-35	potencia (para corriente eléctrica)	Р	watt	W
5-36	resistividad	ho	ohm metro	Ω • m
5-37	conductividad	γ, σ	siemens por metro	S/m

Tabla 12e. Magnitudes y unidades de electricidad y magnetismo (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
5-38	reluctancia	R, R_m	henry a la menos uno	H^{-1}
5-39	permeancia	Λ , (P)	henry	Н
5-40.1 5-40.2	número de vueltas en un devanado número de fases	N m	uno	1
5-41.1 5-41.2	frecuencia de rotación	f, v n	hertz segundo a la menos uno	Hz s ⁻¹
5-42	frecuencia angular, pulsatancia	ω	radián por segundo segundo a la menos uno	rad/s s ⁻¹
5-43	diferencia de fase	φ	radián	rad
5-44.1 5-44.2 5-44.3 5-44.4	impedancia, (impedancia compleja) módulo de impedancia, (impedancia) resistencia (a la corriente alterna) reactancia	Z Z R X	ohm	Ω
5-45.1 5-45.2 5-45.3 5-45.4	admitancia, (admitancia compleja) módulo de admitancia, (admitancia) conductancia (para corriente alterna) susceptancia	Y Y G B	siemens	S
5-46	factor de calidad	Q	uno	1
5-47	factor de pérdida	d	uno	1
5-48	ángulo de pérdida	δ	radián	rad
5-49	potencia activa	P	watt	W
5-50.1 5-50.2	potencia aparente potencia reactiva	$S, (P_s)$ Q, P_Q	volt ampere	V • A
5-51	factor de potencia	λ	uno	1
5-52	energía activa	W , (W_p)	joule	J
			<u>watthora</u>	W • h

Tabla 12e. Magnitudes y unidades de electricidad y magnetismo (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
6-1	frecuencia	f, v	hertz	Hz
6-2	frecuencia angular	ω	radián por segundo segundo a la menos uno	rad/s s ⁻¹
6-3	longitud de onda	λ	metro	m
6-4	número de onda	σ	metro a la menos uno	m ⁻¹
6-5	número de onda angular	k	radián por metro metro a la menos uno	rad/m m ⁻¹
6-6	velocidad de ondas electromagnéticas en el vacío	<i>c</i> , <i>c</i> ₀	metro por segundo	m/s
6-7	energía radiante	Q , W , (U) , (Q_e)	joule	J
6-8	densidad de energía radiante	w, (u)	joule por metro cúbico	J/m ³
6-9	concentración espectral de densidad de energía radiante (en términos de longitud de onda), densidad de energía radiante espectral (en términos de longitud de onda)	w_{λ}	joule por metro a la cuarta potencia	J/m ⁴
6-10	potencia radiante, flujo de energía radiante	$P, \Phi, (\Phi_e)$	watt	W
6-11	fluencia de energía radiante	Ψ	joule por metro cuadrado	J/m^2
6-12	relación de fluencia de energía radiante	φ, ψ	watt por metro cuadrado	W/m^2
6-13	intensidad radiante	$I, (I_e)$	watt por esterradián	W/sr
6-14	radiancia	L , (L_e)	watt por esterradián metro cuadrado	$W/(sr \cdot m^2)$
6-15	excitancia radiante	M , (M_e)	watt por metro cuadrado	W/m^2
6-16	irradiancia	$E, (E_e)$	watt por metro cuadrado	W/m^2
6-17	exposición radiante	H , (H_e)	joule por metro cuadrado	J/m^2
6-18	constante de Stefan- Boltzman	σ	watt por metro cuadrado kelvin a la cuarta potencia	$W/(m^2 \cdot K^4)$
6-19	primera constante de radiación	$c_{\scriptscriptstyle I}$	watt metro cuadrado	$\mathbf{W} \bullet \mathbf{m}^2$

Tabla 12f. Magnitudes y unidades de luz y radiaciones electromagnéticas relacionadas

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
6-20	segunda constante de radiación	c_2	metro kelvin	$m \cdot K$
6-21.1 6-21.2 6-21.3	emisividad emisividad espectral, emisividad a una longitud de onda especificada emisividad espectral direccional	$arepsilon \ arepsilon \left(\lambda ight) \ arepsilon \left(\lambda , artheta , arphi ight)$	uno	1
6-22	número del fotón	N_p, Q_p, Q	uno	1
6-23	flujo de fotones	$\Phi_{p},\;\Phi$	segundo a la menos uno	s ⁻¹
6-24	intensidad del fotón	I_p , I	segundo recíproco por esterradián	s ⁻¹ /sr
6-25	radiancia del fotón, luminancia del fotón	L_p , L	segundo a la menos uno por esterradián metro cuadrado	$s^{-1}/(sr \cdot m^2)$
6-26	excitancia del fotón	M_{p} , M	segundo a la menos uno por metro cuadrado	s^{-1}/m^2
6-27	irradiancia del fotón	E_p , E	segundo recíproco por metro cuadrado	s^{-1}/m^2
6-28	exposición del fotón	H_p , H	metro cuadrado recíproco	m^{-2}
6-29	intensidad luminosa	$I, (I_v)$	candela	cd
6-30	flujo luminoso	Φ , $(\Phi_{\scriptscriptstyle \mathcal{V}})$	lumen	lm
6-31	cantidad de luz	Q , (Q_v)	lumen segundo <u>lumen hora</u>	lm . s lm . h
6-32	luminancia	L , (L_{ν})	candela por metro cuadrado	cd/m ²
6-33	excitancia luminosa	M , (M_{ν})	lumen por metro cuadrado	lm/m ²
6-34	iluminancia	E , (E_{ν})	lux	lx
6-35	exposición de luz	Н	lux segundo <u>lux hor</u> a	lx . s lx. h
6-36.1 6-36.2	eficacia luminosa eficacia luminosa espectral, eficacia luminosa a una longitud de onda especificada	$K \ K(\lambda)$	lumen por watt	lm/W
6-36.3	eficacia luminosa espectral máxima	Km		

Tabla 12f. Magnitudes y unidades de luz y radiaciones electromagnéticas relacionadas (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
6-37.1 6.37.2	eficiencia luminosa eficiencia luminosa espectral, eficiencia luminosa a una longitud de onda especificada	$V \ V(\lambda)$	uno	1
6-38	funciones colorimétricas IEC	$X(\lambda), Y(\lambda), Z(\lambda)$	uno	1
6-39	coordenadas tricromáticas	<i>x</i> , <i>y</i> , <i>z</i>	uno	1
6-40.1	factor de absorción espectral, absorbancia espectral	$\alpha(\lambda)$	uno	1
6-40.2	factor de reflexión espectral, reflectancia espectral	$ ho(\lambda)$		
6-40.3	factor de transmisión espectral, transmitancia espectral	$ au(\lambda)$		
6-40.4	factor de radiancia espectral	$eta(\lambda)$		
6-41	densidad óptica	$D(\lambda)$	uno	1
6-42.1 6-42.2	coeficiente de atenuación lineal, coeficiente de extinción lineal coeficiente de absorción lineal	$\mu, \mu_{\scriptscriptstyle 1}$ a	metro a la menos uno	m ⁻¹
6-43	coeficiente de absorción molar	К	metro cuadrado por mol	m ² /mol
6-44	índice de refracción	n	uno	1
6-45.1 6-45.2 6-45.3	distancia del objeto distancia de la imagen distancia focal	p p' f	metro	m
6-46	vergencia, potencia del lente	1/f'	metro a la menos uno	m ⁻¹

Tabla 12f. Magnitudes y unidades de luz y radiaciones electromagnéticas relacionadas (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
7-1	período, tiempo periódico	T	segundo	S
7-2	frecuencia	f, v	hertz	Hz
7-3	intervalo de frecuencia		<u>octava</u>	
7-4	frecuencia angular, pulsatancia	ω	radián por segundo segundo a la menos uno	rad/s s ⁻¹
7-5	longitud de onda	λ	metro	m
7-6	repetencia, número de onda	σ	metro a la menos uno	m ⁻¹
7-7	repetencia angular, número de onda angular	k	radián por metro metro a la menos uno	rad/m m ⁻¹
7-8	masa volúmica, densidad	ρ	kilogramo por metro cúbico	kg/m ³
7-9.1 7-9.2	presión estática presión del sonido (instantánea)	p_s p , p_a	pascal	Pa
7-10	desplazamiento (instantáneo) de una partícula sonora	ζ , (x)	metro	m
7-11	velocidad (instantánea) de una partícula sonora)	u, v	metro por segundo	m/s
7-12	aceleración (instantánea) de una partícula sonora)	a	metro por segundo al cuadrado	m/s ²
7-13	gasto volumétrico (instantáneo)	$q, U, (q_v)$	metro cúbico por segundo	m^3/s
7-14.1	velocidad del sonido, (velocidad de fase)	c , (c_a)	metro por segundo	m/s
7-14.2	velocidad de grupo	C_{g}		. 3
7-15	densidad de energía del sonido, energía volúmica del sonido	$w_{,}(w_{a})_{,}(e)$	joule por metro cúbico	J/m ³
7-16	potencia sonora	P , P_a	watt	W
7-17	intensidad del sonido	I, J	watt por metro cuadrado	W/m^2

Tabla 12g. Magnitudes y unidades acústicas

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
7-18	impedancia acústica	Z_a	pascal segundo por metro cúbico	Pa • s/m ³
7-19	impedancia mecánica	Z_m	newton segundo por metro	N • s/m
7-20.1	densidad de superficie de la impedancia mecánica	Z_s	pascal segundo por metro	Pa • s /m
7-20.2	impedancia característica de un medio	Z_c		
7-21	nivel de presión sonora	L_p	<u>bel</u>	В
7-22	nivel de potencia sonora	$L_{_{w}}$	<u>bel</u>	В
7-23	coeficiente de amortiguamiento	δ	segundo a la menos uno	s ⁻¹
			neper por segundo	Np/s
7-24	constante de tiempo, tiempo de relajación	τ	segundo	S
7-25	decremento logarítmico	Λ	neper	Np
7-26.1 7-26.2 7-26.3	coeficiente de atenuación coeficiente de fase coeficiente de propagación	$egin{array}{c} lpha \ eta \ \gamma \end{array}$	metro a la menos uno	m ⁻¹
7-27.1 7-27.2 7-27.3 7-27.4	factor de disipación, disipancia factor de reflección, reflectancia factor de transmisión, transmitancia factor de absorción, absorbancia	$egin{array}{l} \delta,\psi \ r,(ho) \ au \ lpha,lpha_a \end{array}$	uno	1
7-28	índice de reducción del sonido	R	<u>bel</u>	В
7-29	área de absorción equivalente de una superficie u objeto	A	metro cuadrado	m^2
7-30	tiempo de reverberación	T	segundo	S
7-31	nivel de sonoridad	$L_{\scriptscriptstyle N}$	fono	
7-32	sonoridad	N	sono	

Tabla 1g. Magnitudes y unidades acústicas (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
8-1.1 8-1.2	masa atómica relativa masa molecular relativa	$egin{aligned} A_r \ M_r \end{aligned}$	uno	1
8-2	número de moléculas u otras entidades elementales	N	uno	1
8-3	cantidad de substancia	n, (v)	mol	mol
8-4	constante de Avogadro	L , N_{A}	mol a la menos uno	mol ⁻¹
8-5	masa molar	M	kilogramo por mol	kg/mol
8-6	volumen molar	$V_{\scriptscriptstyle m}$	metro cúbico por mol	m ³ /mol
8-7	energía termodinámica molar	$U_{\scriptscriptstyle m}$	joule por mol	J/mol
8-8	capacidad calorífica molar	C_m	joule por mol kelvin	J/(mol • K)
8-9	entropía molar	S_m	joule por mol kelvin	J/(mol • K)
8-10.1 8-10.2	densidad numérica de moléculas (o partículas) concentración molecular de B	n C_B	metro a la menos tres	m ⁻³
8-11.1	masa volúmica, densidad	ρ	kilogramo por metro cúbico	kg/m ³
8-11.2	concentración másica de B	$ ho_{\!\scriptscriptstyle B}$	kilogramo por litro	kg/L
8-12	fracción masa de B	W_B	uno	1
8-13	concentración de B,	C_B	mol por metro cúbico	mol/m ³
	concentración de cantidad de substancia de B		mol por litro	mol/L
8-14.1 8-14.2	fracción molar de B relación molar de soluto B	$x_{B}, (y_{B})$ r_{B}	uno	1
8-15	fracción volumen de B	$arphi_B$	uno	1
8-16	molalidad del soluto B	$b_{\scriptscriptstyle B}$, $m_{\scriptscriptstyle B}$	mol por kilogramo	mol/kg
8-17	potencial químico de B	$\mu_{\!\scriptscriptstyle B}$	joule por mol	J/mol
8-18	actividad absoluta de B	$\lambda_{\!\scriptscriptstyle B}$	Uno	1

Tabla 12h. Magnitudes y unidades de fisicoquímica y física molecular

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
8-19	presión parcial de B (en una mezcla gaseosa)	p_B	pascal	Pa
8-20	fugacidad de B (en una mezcla gaseosa)	p_B , (f_B)	pascal	Pa
8-21	actividad absoluta normal de B (en una mezcla gaseosa)	$\lambda^{ heta}_{~B}$	uno	1
8-22.1 8-22.2	coeficiente de actividad de B (en una mezcla sólida o líquida) actividad absoluta normal de B (en una mezcla sólida o líquida)	f_{B} $\lambda^{ heta}_{\ B}$	uno	1
8-23	actividad del soluto B, actividad relativa del soluto B (especialmente en una solución diluída líquida)	$a_{\scriptscriptstyle B}$, $a_{\scriptscriptstyle m.B}$	uno	1
8-24.1 8-24.2	coeficiente de actividad del soluto B (especialmente en una solución diluída líquida) actividad absoluta normal del soluto B	$\gamma_{_{B}}$ $\lambda^{ heta}_{_{B}}$	uno	1
	(especialmente en una solución líquida diluída)	72		
8-25.1	actividad del solvente A, actividad relativa del solvente A (especialmente en una solución líquida diluída)	$a_{\scriptscriptstyle A}$	uno	1
8-25.2	coeficiente osmótico del solvente A, (especialmente en una solución líquida diluída)	φ		
8-25.3	actividad absoluta normal del solvente A (especialmente en una solución líquida diluída)	$\lambda^{ heta}_{\ A}$		

Tabla 12h. Magnitudes y unidades de fisicoquímica y física molecular (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
8-26	presión osmótica	П	pascal	Pa
8-27	número estequiométrico de B	v_B	uno	1
8-28	afinidad (de una reacción química)	A	joule por mol	J/mol
8-29	extensión de la reacción	ζ	mol	mol
8-30	constante de equilibrio normal	K^{Θ}	uno	1
8-31	masa de una molécula	m	kilogramo unidad de masa atómica unificada	kg u
8-32	momento dipolo eléctrico de una molécula	P, μ	coulomb metro	C • m
8-33	polarizabilidad eléctrica de una molécula	α	colulomb metro cuadrado por volt	$C \cdot m^2/V$
8-34.1 8-34-2 8-34.3 8-34.4	función de partición microcanónica función de partición canónica función de partición gran canónica función de partición molecular, función de partición de una molécula	$egin{array}{c} arOmega \ Z \ arSigma \ q \end{array}$	uno	1
8-35	peso estadístico	g	uno	1
8-36	constante molar de los gases	R	joule por mol kelvin	J/(mol • K)
8-37	constante de Boltzmann	k	joule por kelvin	J/K
8-38	trayectoria libre media	l, λ	metro	m
8-39	coeficiente de difusión	D	metro cuadrado por segundo	m^2/s
8-40.1 8-40.2	relación de difusión térmica factor de difusión térmica	$k_T lpha_T$	uno	1
8-41	coeficiente de difusión térmica	D_T	metro cuadrado por segundo	m^2/s
8-42	número de protón	Z	uno	1
8-43	carga elemental	e	coulomb	С
8-44	número de carga del ión	z	uno	1
8-45	constante de Faraday	F	coulomb por mol	C/mol
8-46	esfuerzo iónico	I	mol por kilogramo	mol/kg

Tabla 12h. Magnitudes y unidades de fisicoquímica y física molecular (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
8-47	grado de disociación	α	uno	1
8-48	conductividad electrolítica	\aleph , σ	siemens por metro	S/m
8-49	conductividad molar	Λ_m	siemens metro cuadrado por mol	S • m ² /mol
8-50	número de transporte del ión B	t_B	uno	1
8-51	ángulo de rotación óptica	α	radián	rad
8-52	potencia rotatoria óptica molar	\mathcal{C}_n	radián metro cuadrado por mol	rad • m ² /mol
8-53	potencia rotatoria óptica másica, potencia rotatoria óptica específica	\mathcal{C}_m	radián metro cuadrado por kilogramo	rad • m²/kg

Tabla 12h. Magnitudes y unidades de fisicoquímica y física molecular (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
9-1	número de protón, número atómico	Z	uno	1
9-2	número de neutrón	N	uno	1
9-3	número de nucleón, número de masa	A	uno	1
9-4. 9-4.21	masa de un átomo (de un nuclido X), masa nuclídica constante de masa atómica unificada	m_a , $m(X)$ m_u	kilogramo unidad de masa atómica unificada	kg u
9-5.1 9-5.2 9-5.3	masa del electrón (en reposo) masa del protón (en reposo) masa del neutrón (en reposo)	$m_e \ m_n \ m_n$	kilogramo unidad de masa atómica unificada	kg u
9-6	carga elemental	e	coulomb	С
9-7	constante de Planck	h	joule segundo	J•s
9-8	radio de Bohr	a_o	metro	m
9-9	constante de Rydberg	R_{∞}	metro a la menos uno	m ⁻¹
9-10	energía Hartree	E_h	joule	J
9-11.1 9-11.2 9-11.3	momento magnético de partícula o núcleo magnetón de Bohr magnetón nuclear	$\mu \ \mu_{eta} \ \mu_{N}$	ampere metro cuadrado	A•m ²
9-12	coeficiente giromagnético, (relación giromagnética)	γ	ampere metro cuadrado por joule segundo	$A \cdot m^2/(J \cdot s)$
9-13.1 9-13.2	factor g de átomo o electrón factor g de núcleo o partícula nuclear	g g	uno	1
9-14.1 9-14.2	frecuencia angular de Larmor frecuencia angular de precesión nuclear	$egin{array}{c} \omega_{\!\scriptscriptstyle L} \ \omega_{\!\scriptscriptstyle N} \end{array}$	radián por segundo segundo a la menos uno	rad/s s ⁻¹
9-15	frecuencia angular del ciclotrón	\mathcal{O}_c	radián por segundo segundo a la menos uno	rad/s s ⁻¹
9-16	momento cuadrupolo nuclear	Q	metro cuadrado	m^2

Tabla 12i. Magnitudes y unidades de física atómica y nuclear

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
9-17	radio nuclear	R	metro	m
9-18	número cuántico del momento angular orbital	l_i, L	uno	1
9-19	número cuántico del momento angular del espín	s_i , S	uno	1
9-20	número cuántico del momento angular total	j_i , J	uno	1
9-21	número cuántico del espín nuclear	I	uno	1
9-22	número cuántico de la estructura hiperfina	F	uno	1
9-23	número cuántico principal	n	uno	1
9-24	número cuántico magnético	m_i, M	uno	1
9-25	constante de estructura fina	α	uno	1
9-26	radio del electrón	r_e	metro	m
9-27	longitud de onda Compton	λ_c	metro	m
9-28.1	exceso de masa	Δ	kilogramo	kg
9-28-2	defecto de masa	В	unidad de masa atómica unificada	u
9-29.1 9-29.2	exceso relativo de masa defecto relativo de masa	$rac{arDelta_r}{B_r}$	uno	1
9-30.1 9-30.1	fracción de empaquetamiento fracción de enlace	f b	uno	1
9-31	vida media	τ	segundo	S
9-32	ancho de nivel	Γ	joule electronvolt	J eV
9-33	actividad	A	becquerel	Bq
9-34	actividad másica, actividad específica	а	becquerel por kilogramo	Bq/kg
9-35	actividad volúmica, concentración de actividad	\mathcal{C}_A	becquerel por metro cúbico	Bq/m ³

Tabla 12i. Magnitudes y unidades de física atómica y nuclear (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
9-36	constante de decaimiento, constante de desintegración	λ	segundo a la menos uno	s ⁻¹
9-37	vida promedio	$T_{I/2}$	segundo	S
9-38	energía de desintegración alfa	Q_{lpha}	joule electronvolt	J eV
9-39	energía máxima de partícula beta	E_{eta}	joule electrovolt	J eV
9-40	energía de desintegración beta	Q_eta	joule electrovolt	J eV
9-41	factor de conversión interna	α	uno	1

Tabla 12i. Magnitudes y unidades de física atómica y nuclear (Concluye)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
10-1	energía de reacción	Q	joule electronyolt	J eV
10-2	energía de resonancia	E_r , E_{res}	joule electronyolt	J eV
10-3	sección transversal sección transversal total	$\sigma \ \sigma_{tob} \ \sigma_{\scriptscriptstyle T}$	metro cuadrado	m ²
10-4	sección transversal angular	$\sigma_{\!\scriptscriptstyle \Omega}$	metro cuadrado por esterradián	m ² /sr
10-5	sección transversal espectral	$\sigma_{\!\scriptscriptstyle E}$	metro cuadrado por joule	m^2/J
10-6	sección transversal angular espectral	$\sigma_{\!arOmega_{\!$	metro cuadrado por esterr adián joule	m ² /(sr • J)
10-7.1 10-7.2	sección transversal volúmica, sección transversal macroscópica sección transversal volúmica total sección transversal total macroscópica	Σ $\Sigma_{tot},~\Sigma_{T}$	metro a la menos uno	m ⁻¹
10-8	fluencia de partículas	Φ	metro a la menos dos	m ⁻²
10-9	relación de fluencia de partículas	φ	metro a la menos dos por segundo	$\mathrm{m}^{-2}/\mathrm{s}$
10-10	fluencia de energía	Ψ	joule por metro cuadrado	J/m^2
10-11	relación de fluencia de energía, (densidad de flujo de energía)	Ψ	watt por metro cuadrado	W/m^2
10-12	densidad de corriente de partículas	J, (S)	metro a la menos dos por segundo	$\mathrm{m}^{-2}/\mathrm{s}$
10-13	coeficiente de atenuación lineal	μ,μ_l	metro a la menos uno	m ⁻¹
10-14	coeficiente de atenuación másica	μ_m	metro cuadrado por kilogramo	m ² /kg
10-15	coeficiente de atenuación molar	μ_c	metro cuadrado por mol	m ² /mol
10-16	coeficiente de atenuación atómica	$\mu_a, \; \mu_{at}$	metro cuadrado	m^2
10-17	espesor medio	$d_{1/2}$	metro	m
10-18	poder de frenado lineal total	S , S_l	joule por metro electronyolt por metro	J/m eV/m

Tabla 12j. Magnitudes y unidades de reacciones nucleares y radiaciones ionizantes

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
10-19	poder de frenado atómico total	S_a	joule metro cuadrado electronvolt metro cuadrado	J • m2 eV• m2
10-20	poder de frenado másico total	Sm	joule metro cuadrado por kilogramo electronvolt metro cuadrado por kilogramo	J•m2/kg eV•m2/kg
10-21	alcance lineal medio	R, R_{l}	metro	m
10-22	alcance másico medio	R_p , (R_m)	kilogramo por metro cuadrado	kg/m ²
10-23	ionización lineal por una partícula	N_{il}	metro a la menos uno	$\mathrm{m}^{\text{-}1}$
10-24	ionización total por una partícula	N_i	uno	1
10-25	pérdida de energía promedio por par de iones formado (pérdida de energía promedio por carga elemental del mismo signo producido)	W_i	joule <u>electonvolt</u>	J eV
10-26	movilidad	μ	metro cuadrado por volt segundo	$m^2/(V^{\bullet}s)$
10-27	densidad numérica de iones, densidad de iones	n^+ , n^-	metro a la menos tres	m ⁻³
10-28	coeficiente de recombinación	α	metro cúbico por segundo	m^3/s
10-29	densidad numérica de neutrones	n	metro a la menos tres	m^{-3}
10-30	velocidad del neutrón	v	metro por segundo	m/s
10-31	relación de fluencia del neutrón, densidad de flujo neutrónico	φ	metro a la menos dos por segundo	m ⁻² /s
10-32	coeficiente de difusión, coeficiente de difusión para la densidad numérica del neutrón	D, D_n	metro cuadrado por segundo	m ² /s
10-33	coeficiente de difusión para la relación de fluencia del neutrón, (coeficiente de difusión para la densidad de flujo neutrónico)	$D\varphi$, (D)	metro	m

Tabla 12j. Magnitudes y unidades de reacciones nucleares y radiaciones ionizantes (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
10-34	densidad de fuente de neutrones	S	segundo a la menos uno por metro cúbico	s^{-1}/m^3
10-25	densidad de decaimiento	q	metro a la menos tres por segundo	m^{-3}/s
10-36	probabilidad de escape a la resonancia	p	uno	1
10-37	letargia	и	uno	1
10-38	decremento de energía logarítmica promedio	5	uno	1
10-39	trayectoria libre media	l, λ	metro	m
10-40.1 10-40.2 10-40.3	área de decaimeinto área de difusión área de migración	$L^{2}_{s},L^{2}_{sl} \ L^{2} \ M^{2}$	metro cuadrado	m ²
10-41.1 10-41.2 10-41.3	longitud de decaimiento longitud de difusión longitud de migración	L_s , Lsl L M	metro	m
10-42.1 10-42.2	neutrón producido por fisión neutrón producido por absorción	$rac{v}{\eta}$	uno	1
10-43	factor de fisión rápida	\mathcal{E}	uno	1
10-44	factor de utilización térmica	f	uno	1
10-45	probabilidad de permanencia	Λ	uno	1
10-46.1 10-46.2 10-46.3	factor de multiplicación factor de multiplicación de un medio infinito factor de multiplicación efectivo	$k \ k \infty \ k_{e\!f\!f}$	uno	1
10-47	reactividad	ρ	uno	1
10-48	constante de tiempo del reactor	T	segundo	S
10-49	actividad	A	becquerel	Bq

Tabla 12j. Magnitudes y unidades de reacciones nucleares y radiaciones ionizantes (Continúa)

No.	Magnitud	Símbolo	Nombre de la unidad	Símbolo internacional de la unidad
10-50.1 10-50.2	energía impartida media	$rac{arepsilon}{arepsilon}$	joule	J
10-51.1 10-51.2	energía específica impartida, energía másica impartida dosis absorbida	z D	gray	Gy
10-52	dosis equivalente	H	sievert	Sv
10-53	relación de dosis absorbida	D	gray por segundo	Gy/s
10-54	transferencia de energía lineal	L	joule por metro electronvolt por metro	J/m eV/m
10-55	kerma	K	gray	Gy
10-56	relación de kerma	K	gray por segundo	Gy/s
10-57	coeficiente de transferencia de energía másica	$\mu_{\scriptscriptstyle tr}/ ho$	metro cuadrado por kilogramo	m^2/kg
10-58	exposición	X	coulomb por kilogramo	C/kg
10-59	relación de exposición	X	coulomb por kilogramo segundo	C/kg • s

Tabla 12j. Magnitudes y unidades de reacciones nucleares y radiaciones ionizantes (Concluye)

CAPITULO V

CORRESPONDENCIA ENTRE UNIDADES[12]

CORRESPONDENCIA ENTRE UNIDADES

Cuando medimos una longitud y decimos que es igual a 25 m, esto expresa que una magnitud física Q es el producto del valor numérico {Q} y la unidad correspondiente [Q], es decir:

$$Q = \{Q\} \cdot [Q] \tag{1}$$

Ahora bien, si utilizamos una unidad diferente [Q'] para expresar la misma magnitud, que podrían ser yardas en nuestro ejemplo, habrá un cambio del valor numérico debido al cambio de la unidad y la ecuación (1) por lo tanto, se puede expresar:

$$Q = \{Q'\} \cdot [Q'] \tag{2}$$

Como la magnitud física es invariante, con las ecuaciones (1) y (2), se determina que la relación de los valores numéricos de la magnitud Q es inversamente proporcional a la relación de sus unidades:

$$\{Q\} / \{Q'\} = [Q'] / [Q] = \alpha$$
 (3)

De acuerdo con esto, se dice entonces que: [Q'] unidades de la magnitud Q corresponden a α veces [Q] unidades de la misma magnitud y se expresa en la forma siguiente:

$$[Q'] \cong \alpha \cdot [Q] \tag{4}$$

Los valores de los factores de correspondencia α , conocidos en el lenguaje de uso común como "factores de conversión", son elementos imprescindibles en la comunicación dentro de las ciencias exactas y la ingeniería para expresar el valor de magnitudes de la misma naturaleza en diferentes unidades.

Los factores de correspondencia se indican en las tablas siguientes. Se ha considerado respetar el nombre de las unidades en el idioma inglés [13] para facilitar la práctica de su utilización.

Para mas información consúltese [29]

Unidad	Símbolo de la unidad
atmosphere, standard	atm
atmosphere technical	at
barrel	bbl
British Thermal Unit it	$\mathrm{BTU}_{\mathrm{IT}}$
British Thermal Unit th	$\mathrm{BTU}_{\mathrm{th}}$
bushel	bu
calorie _{IT}	cal _{IT}
calorie th	cal _{th}
chain	ch
day	d
debye	D
dyne	dyn
erg	erg
fluid ounce	fl oz
foot	ft
franklin	Fr
gal	Gal
gallon	gal
gilbert	Gi
gill	gi
gon	gon
grain	gr

Unidad	Símbolo de la unidad
horse power	hp
inch	in
kilopond	kp
light year	l.y.
mile	mi
nautic mile per hour	knot
ounce	OZ
parsec	pc
peck	pk
pennyweight	dwt
pint	pt
pound	lb
quart	qt
revolution	r
slug	slug
stere	st
stilb	sb
stokes	St
ton, assay	AT
tonne	t
yard	yd

Tabla 13. Unidades escritas en ingles y sus símbolos

Unidad [Q]	corresponde a [Q']	multiplicándola por α
ft/s ²	metro por segundo al cuadrado (m/s²)	3,048 000*E-01
free fall, standard (g)	metro por segundo al cuadrado (m/s²)	9,806 650*E+00
gal	metro por segundo al cuadrado (m/s²)	1,000 000*E-02
in/s ²	metro por segundo al cuadrado (m/s²)	2,540 000*E-02

Tabla 13a. Unidades de aceleración

Unidad [Q]	corresponde a [Q']	multiplicándola por α
degree (angle)	radian (rad)	1,745 329*E-02
minute (angle)	radian (rad)	2,908 882*E-04
second (angle)	radian (rad)	4,848 137*E-06
gon	radian (rad)	1,570 796*E-02

Tabla 13b. Unidades de ángulo

Unidad [Q]	corresponde a [Q']	multiplicándola por α
acre	metro cuadrado (m²)	4,046 873*E+03
are	metro cuadrado (m²)	1,000 000*E+02
barn	metro cuadrado (m²)	1,000 000*E-28
circular mil	metro cuadrado (m²)	5,067 075*E-10
ft ²	metro cuadrado (m²)	9,290 304*E-02
hectare	metro cuadrado (m²)	1,000 000*E+04
in ²	metro cuadrado (m²)	6,451 600*E-04
mi ² (international)	metro cuadrado (m²)	2,589 988*E+06
mi ² (U. S. statute)	metro cuadrado (m²)	2,589 998*E+06
yd^2	metro cuadrado (m²)	8,361 274*E-01

Tabla 13c. Unidades de área

Unidad [Q]	corresponde a [Q']	multiplicándola por α
lbf·fl/in	newton metro por metro (N·m/m)	5,337 866*E+01
lbf·in/in	newton metro por metro (N·m/m)	4,448 222*E+00

Tabla 13d. Momento de flexión o par torsional por unidad de longitud

Unidad [Q]	corresponde a [Q']	multiplicándola por α
dyne∙cm	newton metro (N·m)	1,000 000*E-07
kgf·m	newton metro (N·m)	9,806 650*E+00
ozf·in	newton metro (N·m)	7,061 552*E-03
lbf·in	newton metro (N·m)	1,129 848*E-01
lbf·ft	newton metro (N·m)	1,355 818*E+00

Tabla 13d1. Momento de flexión o par torsional

Unidad [Q]	corresponde a [Q']	multiplicándola por α
abampere	ampere (A)	1,000 000*E+01
abcoulomb	coulomb (C)	1,000 000*E+01
abfarad	farad (F)	1,000 000*E+09
abhenry	henry (H)	1,000 000*E-09
abmho	siemens (S)	1,000 000*E+09
abohm	$\mathrm{ohm}(\Omega)$	1,000 000*E-09
abvolt	volt (V)	1,000 000*E-08
ampere hour	coulomb (C)	3,600 000*E+03
biot (Bi)	ampere (A)	1,000 000*E+01
EMU of capacitance	farad (F)	1,000 000*E+09
EMU of current	ampere (A)	1,000 000*E+01
EMU of electric potential	volt (V)	1,000 000*E-08
EMU of inductance	henry (H)	1,000 000*E-09
EMU of resistance	$\mathrm{ohm}(\Omega)$	1,000 000*E-09
ESU of capacitance	farad (F)	1,112 650*E-12
ESU of current	ampere (A)	3,335 641*E-10
ESU of electric potential	volt (V)	2,997 925*E+02
ESU of inductance	henry (H)	8,987 552*E+11
ESU of resistance	$\mathrm{ohm}(\Omega)$	8,987 552*E+11
faraday (based on carbon-12)	coulomb (C)	9,648 531*E+04
franklin	coulomb (C)	3,335 641*E-10
gamma	tesla (T)	1,000 000*E-09
gauss	tesla (T)	1,000 000*E-04
gilbert	ampere (A)	7,957 747*E-01

Tabla 13e. Electricidad y magnetismo

Unidad [Q]	corresponde a [Q']	multiplicándola por α
maxwell	weber (Wb)	1,000 000*E-08
mho	siemens (S)	1,000 000*E+00
oersted	ampere per metre (A/m)	7,957 747*E+01
ohm cetimetre	ohm metre (Ω ·m)	1,000 000*E-02
ohm circular-mil per foot	ohm metre ($\Omega \cdot m$)	1,662 426*E-09
statampere	ampere (A)	3,335 641*E-10
statcoulomb	coulomb (C)	3,335 641*E-10
statfarad	farad (F)	1,112 650*E-12
stathenry	henry (H)	8,987 552*E+11
statmho	siemens (S)	1,112 650*E-12
statohm	ohm (Ω)	8,987 552*E+11
statvolt	volt (V)	2,997 925*E+02
unit pole	weber (Wb)	1,256 637*E-07
British thermal unit (International Table)	joule (J)	1,055 056*E+03
British thermal unit (mean)	joule (J)	1,055 870*E+03
British thermal unit (thermochemical)	joule (J)	1,054 350*E+03

Tabla 13e. Electricidad y magnetismo (Concluye)

Unidad [Q]	corresponde a [Q']	multiplicándola por α
British thermal unit (39° F)	joule (J)	1,059 670*E+03
British thermal unit (59° F)	joule (J)	1,054 800*E+03
British thermal unit (60° F)	joule (J)	1,054 680*E+03
calorie (International Table)	joule (J)	4,186 800*E+00
calorie (mean)	joule (J)	4,190 020*E+00
calorie (thermochemical)	joule (J)	4,184 000*E+00
calorie (15° C)	joule (J)	4,185 800*E+00
calorie (20° C)	joule (J)	4,181 900*E+00
calorie (kilogram, International Table)	joule (J)	4,186 800*E+03
calorie (kilogram, mean)	joule (J)	4,190 020*E+03
calorie (kilogram, thermochemical)	joule (J)	4,184 000*E+03
electronvolt	joule (J)	1,602 177*E-19
erg	joule (J)	1,000 000*E-07
ft·lbf	joule (J)	1,355 818*E+00
ft-poundal	joule (J)	4,214 011*E-02
kilocalorie (International Table)	joule (J)	4,186 800*E+03
kilocalorie (mean)	joule (J)	4,190 020*E+03
kilocalorie (thermochemical)	joule (J)	4,184 000*E+03
kW⋅h	joule (J)	3,600 000*E+06
therm	joule (J)	1,055 060*E+08
ton (nuclear equivalent of TNT)	joule (J)	4,184 000*E+09
W·h	joule (J)	3, 600 000*E+03
W·s	joule (J)	1,000 000*E+00

Tabla 13f. Energía, (incluye trabajo)

Unidad [Q]	corresponde a [Q']	multiplicándola por α
erg/(cm ² ·s)	watt por metro cuadrado (W/m²)	1,000 000*E-03
W/cm ²	watt por metro cuadrado (W/m²)	1,000 000*E+04
W/in ²	watt por metro cuadrado (W/m²)	1,550 003*E+03

Tabla 13f1. Energía por unidad de área tiempo

Unidad [Q]	corresponde a [Q']	multiplicándola por α
dyne	newton (N)	1,000 000*E-05
kilogram-force	newton (N)	9,806 650*E+00
kilopond	newton (N)	9,806 650*E+00
kip(1 000 lbf)	newton (N)	4,448 222*E+03
ounce-force	newton (N)	2,780 139*E-01
pound-force(lbf)	newton (N)	4,448 222*E+00
lbf/lb (thrust to mass ratio)	newton por kilogramo (N/kg)	9,806 650*E+00
poundal	newton (N)	1,382 550*E-01
ton-force (2 000 lbf)	newton (N)	8,896 443*E+03

Tabla 13g Fuerza

Unidad [Q]	corresponde a [Q']	multiplicándola por α
lbf/ft	newton por metro (N/m)	1,459 390*E+01
lbf/in	newton por metro (N/m)	1,751 268*E+02

Tabla 13g1. Fuerza por unidad de longitud

Unidad [Q]	Corresponde a [Q']	multiplicándola por α
BTU/ft ³ (International table)	joule por metro cúbico (J/m³)	3,725 895*E+04
BTU/ft ³ (thermochemical)	joule por metro cúbico (J/m³)	3,723 403*E+04
BTU/lb (International table)	joule por kilogramo (J/kg)	2,326 000*E+03
BTU/lb (thermochemical)	joule por kilogramo (J/kg)	2,324 444 *E+03
calorie (International Table) per gram	joule por kilogramo (J/kg)	4,186 800*E+03
calorie (thermochemical) per gram	joule por kilogramo (J/kg)	4,184 000*E+03

Tabla 13h. Calor, energía disponible

Unidad [Q]	Corresponde a [Q']	multiplicándola por α
Btu (International Table)/(h·ft²·°F)	watt por metro cuadrado kelvin [(W/(m²·K)]	5,678 263*E+00
Btu (thermochemical)/(h·ft²·°F)	watt por metro cuadrado kelvin [(W/(m²·K)]	5,674 466*E+00
Btu (International Table)/s·ft ² .°F)	watt por metro cuadrado kelvin [(W/(m²·K)]	2,044 175*E+04
Btu (thermochemical)/(s·ft ² .°F)	watt por metro cuadrado kelvin [(W/(m²·K)]	2,042 808*E+04

Tabla 13h1. Calor, coeficiente de transferencia de calor

Unidad [Q]	Corresponde a [Q']	multiplicándola por α
Btu (International Table)/ft ²	joule por metro cuadrado (J/m²)	1,135 653*E+04
Btu (thermochemical)/ft ²	joule por metro cuadrado (J/m²)	1,134 893*E+04
calorie (International Table) per	joule por metro cuadrado (J/m²)	4,184 000*E+04
square centimeter		
langley (caloríe (International	joule por metro cuadrado (J/m²)	4,184 000*E+04
Table) per square centimeter)		

Tabla 13h2. Calor, densidad

Unidad [Q]	corresponde a [Q']	multiplicándola por α
British thermal unit (International Table) per square foot hour	watt por metro cuadrado (W/m²)	3,154 591*E+00
British thermal unit (thermochemical) per square foot hour	watt por metro cuadrado (W /m²)	3,152 481*E+00
British thermal unit (thermochemical) per square foot minute	watt por metro cuadrado (W /m²)	1,891 489*E+02
British thermal unit (International Table) per square foot second	watt por metro cuadrado (W /m²)	1,135 653*E+04
British thermal unit (thermochemical) per square foot second	watt por metro cuadrado (W /m²)	1,134 893*E+04
British thermal unit (International Table) per square inch second	watt por metro cuadrado (W /m²)	1,634 246*E+06
cal (thermochemical) per square centimeter minute	watt por metro cuadrado (W/m²)	6,973 333*E+02
cal (thermochemical) per square centimeter second	watt por metro cuadrado (W/m²)	4,184 000*E+04

Tabla 13h3. Calor, densidad de flujo de calor

Unidad [Q]	corresponde a [Q']	multiplicándola por α
gallon (U.S) per horsepower hour	metro cúbico por joule (m³/J)	1,410 089*E-09
gallon (U.S) per horsepower hour	litro por joule (L/J)	1,410 089*E-06
mile per gallon (U.S)	metro por metro cúbico (m/m³)	4,251 437*E+05
mile per gallon (U.S)	kilómetro por litro (km/L)	4,251 437*E-01
mile per gallon (U.S)	litro por cien kilómetros (L/100	dividir 235,215 por el
	km)	número de millas por
		galón
pound per horsepower hour	kilogramo por joule (kg/J)	1,689 659*E-07

Tabla 13h4. Calor, consumo de combustible

Unidad [Q]	corresponde a [Q']	multiplicándola por α
British thermal unit (International Table) per degree	joule por kelvin (J/K)	1,899 101*E+03
Fahrenheit		
British thermal unit (thermochemical) per degree	joule por kelvin (J/K)	1,897 830*E+03
Fahrenheit		
British thermal unit (International Table) per degree	joule por kelvin (J/K)	1,899 101*E+03
Rankine		
British thermal unit (thermochemical) per degree	joule por kelvin (J/K)	1,897 830*E+03
Rankine		

Tabla 13h5. Calor, capacidad calorífica y entropía

Unidad [Q]	corresponde a [Q']	multiplicándola por α
British thermal unit (International Table) per hour	watt (W)	2,930 711*E-01
British thermal unit (thermochemical) per hour	watt (W)	2,928 751*E-01
British thermal unit (thermochemical) per minute	watt (W)	1,757 250*E+01
British thermal unit (International Table) per seconde	watt (W)	1,055 056*E+03
British thermal unit (thermochemical) per second	watt (W)	1,054 350*E+03
cal (thermochemica)per minute	watt (W)	6,973 333*E-02
cal (thermochemical)per second	watt (W)	4,184 000*E+00
kilocalorie (thermochemical) per minute	watt (W)	6,973 333*E+01
kilocalorie (thermochemical) per second	watt (W)	4,184 000*E+03
ton of refrigeration (12 000 BTU International table/h)	watt (W)	3,516 853*E+03

Tabla 13h6. Calor, relación de flujo de calor

Unidad [Q]	corresponde a [Q']	multiplicándola por α
Btu (International Table) per pound degree, Fahrenheit	joule por kilogramo kelvin [(J/(kg·K)]	4,186 800*E+03
Btu (thermochemical) per pound degree Fahrenheit	joule por kilogramo kelvin [(J/(kg·K)]	4,184 000*E+03
Btu (International Table) per pound degree Rankine)	joule por kilogramo kelvin [(J/(kg·K)]	4,186 800*E+03
Btu (thermochemical) per pound degree Rankine	joule por kilogramo kelvin [(J/(kg·K)]	4,184 000*E+03
cal (International Table) per gram degree Celsius	joule por kilogramo kelvin [(J/(kg·K)]	4,186 800*E+03
cal (thermochemical) per gram degree Celsius	joule por kilogramo kelvin [(J/(kg·K)]	4,184 000*E+03
cal (International Table) per gram kelvin	joule por kilogramo kelvin [(J/(kg·K)]	4,186 800*E+03
cal (thermochemical) per gram kelvin	joule por kilogramo kelvin [(J/(kg·K)]	4,184 000*E+03

Tabla 13h7. Calor, capacidad calorífica y entropía específica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
Btu (International Table) foot per hour square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	1,730 735*E+00
Btu (thermochemical) foot per hour square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	1,729 577*E+00
Btu (International Table) inch per hour square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	1,442 279*E-01
Btu (thermochemical) inch per hour square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	1,441 314*E-01
Btu (International Table) inch per second square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	5,192 204*E+02
Btu (thermochemical) inch per second square foot degree Fahrenheit	watt por metro kelvin [W/(m . K)]	5,188 732*E+02
calorie (thermochemical) per centimeter second degree Celsius	watt por metro kelvin [W/(m . K)]	4,184 000*E+02

Tabla 13h8. Calor, conductividad térmica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
square foot per hour	metro cuadrado por segundo (m²/s)	2,580 640*E-05

Tabla 13h9. Calor, difusividad térmica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
clo	kelvin metro cuadrado por watt (K·m²/W)	1,550 000*E-01
degree Fahrenheit hour square foot per Btu (International Table)	kelvin metro cuadrado por watt (K·m²/W)	1,761 102*E-01
degree Fahrenheit hour square foot per Btu (thermochemical)	kelvin metro cuadrado por watt (K·m²/W)	1,762 280*E-01

Tabla 13h10. Calor, aislamiento térmico

Unidad [Q]	corresponde a [Q']	multiplicándola por α
degree Fahrenheit hour per Btu	kelvin por watt (K/W)	1,895 634*E+00
(International Table)		
degree Fahrenheit hour per Btu	kelvin por watt (K/W)	1,896 903*E+00
(thermochemical)		
degree Fahrenheit second per Btu	kelvin por watt (K/W)	5,265 651*E-04
(International Table)		
degree Fahrenheit second per Btu	kelvin por watt (K/W)	5,269 175*E-04
(thermochemical)		

Tabla 13h11. Calor, resistencia térmica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
degree Fahrenheit hour square foot per	kelvin metro por watt (K·m/W)	6,933 472*E+00
Btu (International Table)		
degree Fahrenheit hour square foot per	kelvin metro por watt (K·m/W)	6,938 112*E+04
Btu (thermochemical) inch	_	

Tabla 13h12. Calor, resistividad térmica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
angstrom	metro (m)	1,000 000*E-10
astronomical unit	metro (m)	1,495 979*E+11
chain	metro (m)	2,011 684*E+01
fathom	metro (m)	1,828 804*E+00
fermi	metro (m)	1,000 000*E-15
foot	metro (m)	3,048 000*E-01
foot (U.S. survey)	metro (m)	3,048 006*E-01
inch	metro (m)	2,540 000*E-02
light year	metro (m)	9,460 730*E+15
microinch	metro (m)	2,540 000*E-08
micron	metro (m)	1,000 000*E-06
mil (0,001 inch)	metro (m)	2,540 000*E-05
mile (international nautical)	metro (m)	1,852 000*E+03
mile (U.S. nautical)	metro (m)	1,852 000*E+03
mile (international)	metro (m)	1,609 344*E+03
mile (U.S. statute)	metro (m)	1,609 347*E+03
parsec	metro (m)	3,085 678*E+16
pica (printer`s)	metro (m)	4,217 518*E-03
point (printer`s)	metro (m)	3,514 598*E-04
rod	metro (m)	5,029 210*E+00
yard	metro (m)	9,144 000*E-01

Tabla 13i. Longitud

Unidad [Q]	corresponde a [Q']	multiplicándola por α
cd/in ²	candela por metro cuadrado (cd/m²)	1,550 003*E+03
footcandle	lux (lx)	1,076 391*E+01
footlambert	candela por metro cuadrado (cd/m²)	3,426 259*E+00
lambert	candela por metro cuadrado (cd/m²)	3,183 099*E+03
lm/ft ²	lux (lx)	1,076 391*E+01
phot (ph)	lux (lx)	1,000 000*E+04
stilb	candela por metro cuadrado (cd/m²)	1,000 000*E+04

Tabla 13j. Luz

Unidad [Q]	corresponde a [Q']	multiplicándola por α
carat (metric)	kilogramo (kg)	2,000 000*E-04
grain	kilogramo (kg)	6,479 891*E-05
gram	kilogramo (kg)	1,000 000*E-03
hundredweight (long 112 lb)	kilogramo (kg)	5,080 235*E+01
hundredweight (short 100 lb)	kilogramo (kg)	4,535 924*E+01
kgf·s²/m	kilogramo (kg)	9,806 650*E+00
ounce (avoirdupois)	kilogramo (kg)	2,834 952*E-02
ounce (troy or apothecary)	kilogramo (kg)	3,110 348*E-02
pennyweight (dwt)	kilogramo (kg)	1,555 174*E-03
pound (lb avoirdupois)	kilogramo (kg)	4,535 924*E-01
pound (troy or apothecary)	kilogramo (kg)	3,732 417*E-01
slug	kilogramo (kg)	1,459 390*E+01
ton, assay (AT)	kilogramo (kg)	2,916 667*E-02
ton (Long, 2240 lb)	kilogramo (kg)	1,016 047*E+03
ton (metric)	kilogramo (kg)	1,000 000*E+03
ton (short, 2 000 lb)	kilogramo (kg)	9,071 847*E+02
tonne	kilogramo (kg)	1,000 000*E+03

Tabla 13k. Masa

Unidad [Q]	corresponde a [Q']	multiplicándola por α
oz/ft ²	kilogramo por metro cuadrado (kg/m²)	3,051 517*E-01
oz/yd ²	kilogramo por metro cuadrado (kg/m²)	3,390 575*E-02
lb/ ft ²	kilogramo por metro cuadrado (kg/m²)	4,882 428*E+00
lb/ in ²	kilogramo por metro cuadrado (kg/m²)	7,030 696*E+02

Tabla 13k1. Masa por unidad de área

Unidad [Q]	corresponde a [Q']	multiplicándola por α
denier	kilogramo por metro (kg/m)	1,111 111*E-07
lb/ft	kilogramo por metro (kg/m)	1,488 164*E+00
lb/in	kilogramo por metro (kg/m)	1,785 797*E+01
tex	kilogramo por metro (kg/m)	1,000 000*E-06
lb/yd	kilogramo por metro (kg/m)	4,960 546*E-01

Tabla 13k2. Masa por unidad de longitud

Unidad [Q]	corresponde a [Q']	multiplicándola por α
lb/h	kilogramo por segundo (kg/s)	1,259 979*E-04
lb/min	kilogramo por segundo (kg/s)	7,559 873*E-03
lb/s	kilogramo por segundo (kg/s)	4,535 924*E-01
ton (short)/h	kilogramo por segundo (kg/s)	2,519 958*E-01

Tabla 13k3. Masa por unidad de tiempo

Unidad [Q]	corresponde a [Q']	multiplicándola por α
grain/gal (U.S. liquid)	kilogramo por metro cubico (kg/m3)	1,711 806*E-02
g/cm ³	kilogramo por metro cubico (kg/m3)	1,000 000*E+03
oz (avoirdupois)/gal (U.K. liquid)	kilogramo por metro cubico (kg/m3)	6,236 023*E+00
oz (avoirdupois)/gal (U.S. liquid)	kilogramo por metro cubico (kg/m3)	7,489 152*E+00
oz (avoirdupois)/in ³	kilogramo por metro cubico (kg/m3)	1,729 994*E+03
lb/ft ³	kilogramo por metro cubico (kg/m3)	1,601 846*E+01
lb/in ³	kilogramo por metro cubico (kg/m3)	2,767 990*E+04
lb/gal (U.K. liquid)	kilogramo por metro cubico (kg/m3)	9,977 637*E+01
lb/gal (U.S. liquid)	kilogramo por metro cubico (kg/m3)	1,198 264*E+02
lb/yd ³	kilogramo por metro cubico (kg/m3)	5,932 764*E-01
slug/ft ³	kilogramo por metro cubico (kg/m3)	5,153 788*E+02
ton(long)/yd ³	kilogramo por metro cubico (kg/m3)	1,328 939*E+03
ton(short)/yd ³	kilogramo por metro cubico (kg/m3)	1,186 553*E+03

Tabla 13k4. Masa por unidad de volumen

Unidad [Q]	corresponde a [Q']	multiplicándola por α
darcy	metro cuadrado (m²)	9,869 233*E-13
perm (0 °C)	kilogramo por pascal segundo metro	5,721 350*E-11
	cuadrado [kg/(Pa·s·m²)]	
perm (23 °C)	kilogramo por pascal segundo metro	5,745 250*E-11
	cuadrado [kg/(Pa·s·m²)]	
perm·inch (0 °C)	kilogramo por pascal segundo metro	1,453 220*E-12
	[kg/(Pa·s·m)]	
perm·inch (23 °C)	kilogramo por pascal segundo metro	1,459 290*E-12
	[kg/(Pa·s·m)]	

Tabla 13l. Permeabilidad

Unidad [Q]	corresponde a [Q']	multiplicándola por α
erg/s	watt (W)	1,000 000*E-07
ft·lbf/h	watt (W)	3,766 161*E-04
ft·lbf/min	watt (W)	2,259 697*E-02
ft·lbf/s	watt (W)	1,355 818*E+00
horsepower (550 ft·lbf/s)	watt (W)	7,456 999*E+02
horsepower (boiler)	watt (W)	9,809 500*E+03
horsepower (electric)	watt (W)	7,460 000*E+02
horsepower (metric)	watt (W)	7,354 988*E+02
horsepower (water)	watt (W)	7,460 430*E+02
horsepower (U.K.)	watt (W)	7,457 000*E+02

Tabla 13m. Potencia

Unidad [Q]	corresponde a [Q']	multiplicándola por α
atmosphere(standard)	pascal (Pa)	1,013 250*E+05
$atmosphere(technical = 1kgf/cm^2)$	pascal (Pa)	9,806 650*E+04
bar	pascal (Pa)	1,000 000*E+05
centimetre of mercury (0 °C)	pascal (Pa)	1,333 220*E+03
centimetre of water (4 °C)	pascal (Pa)	9,806 380*E+01
dyn/cm ²	pascal (Pa)	1,000 000*E-01
foot of water (39,2 °F)	pascal (Pa)	2,988 980*E+03
gf/cm ²	pascal (Pa)	9,806 650*E+01
inch of mercury (32 °F)	pascal (Pa)	3,386 380*E+03
inch of mercury (60 °F)	pascal (Pa)	3,376 850*E+03
inch of water (39, 2 °F)	pascal (Pa)	2,490 820*E+02
inch of water (60 °F)	pascal (Pa)	2,488 400*E+02
kgf/cm ²	pascal (Pa)	9,806 650*E+04
kgf/m ²	pascal (Pa)	9,806 650*E+00
kgf/mm ²	pascal (Pa)	9,806 650*E+06
kip/in ² (ksi)	pascal (Pa)	6,894 757*E+06
millibar	pascal (Pa)	1,000 000*E+02
millimetre of mercury (0 °C)	pascal (Pa)	1,333 224*E+02
poundal/ft ²	pascal (Pa)	1,488 164*E+00
lbf/ft ²	pascal (Pa)	4,788 026*E+01
lbf/in ²	pascal (Pa)	6,894 757*E+03
psi	pascal (Pa)	6,894 757*E+03
torr	pascal (Pa)	1,333 224*E+02

Tabla 13n. Presión

Unidad [Q]	corresponde a [Q']	De acuerdo a la fórmula
grado Celsius	kelvin (K)	$K = {}^{\circ}C + 273,15$
grado Fahrenheit	grado Celsius (°C)	°C = (°F - 32)/1,8
grado Fahrenheit	kelvin (K)	$K = (^{\circ}F + 459,67)/1,8$
grado Rankine	kelvin (K)	$K = {}^{\circ}R/1,8$
kelvin (K)	grado Celsius (°C)	°C = K-273,15

Tabla 130. Temperatura

Unidad [Q] (Intervalo de)	corresponde a [Q'] (Intervalo de)	multiplicándola por α
grado Celsius	kelvin (K)	1,000 000*E+00
grado Fahrenheit	grado Celsius (°C)	5,555 556*E-01
grado Fahrenheit	kelvin (K)	5,555 556*E-01
grado Rankine	kelvin (K)	5,555 556*E-01

Tabla 1301. Intervalo de temperatura

Unidad [Q]	corresponde a [Q']	multiplicándola por α
day	segundo (s)	8,640 000*E+04
day (sidereal)	segundo (s)	8,616 409*E+04
hour	segundo (s)	3,600 000*E+03
hour (sidereal)	segundo (s)	3,590 170*E+03
minute	segundo (s)	6,000 000*E+01
minute (sidereal)	segundo (s)	5,983 617*E+01
second (sidereal)	segundo (s)	9,972 696*E-01
year (365 days)	segundo (s)	3,153 600*E+07
year (sidereal)	segundo (s)	3,155 815*E+07
year (tropical)	segundo (s)	3,155 693*E+07

Tabla 13p. Tiempo

Unidad [Q]	corresponde a [Q']	multiplicándola por α
ft/h	metro por segundo (m/s)	8,466 667*E-05
ft/min	metro por segundo (m/s)	5,080 000*E-03
ft/s	metro por segundo (m/s)	3,048 000*E-01
in/s	metro por segundo (m/s)	2,540 000*E-02
km/h	metro por segundo (m/s)	2,777 778*E-01
knot	metro por segundo (m/s)	5,144 444*E-01
mi/h	metro por segundo (m/s)	4,470 400*E-01
mi/min	metro por segundo (m/s)	2,682 240*E+01
mi/s	metro por segundo (m/s)	1,609 344*E+03
mi/h	kilometro por hora (km/h)	1,609 344*E+00
rpm (r/min)	radián por segundo (rad/s)	1,047 198*E-01

Tabla 13q. Velocidad

Unidad [Q]	corresponde a [Q']	multiplicándola por α
centipoise	pascal segundo (Pa·s)	1,000 000*E-03
poise	pascal segundo (Pa·s)	1,000 000*E-01
poundal s/ft ²	pascal segundo (Pa·s)	1,488 164*E+00
lb/(ft-h)	pascal segundo (Pa·s)	4,133 789*E-04
lb/(ft-s)	pascal segundo (Pa·s)	1,488 164*E+00
lbf⋅ s/ft ²	pascal segundo (Pa·s)	4,788 026*E+01
lbf· s/in ²	pascal segundo (Pa·s)	6,894 757*E+03
rhe	1 por pascal segundo[(1/(Pa·s)]	1,000 000*E+01
slug/(ft·s)	pascal segundo (Pa·s)	4,788 026*E+01

Tabla 13r. Viscosidad dinámica

Unidad [Q]	corresponde a [Q']	multiplicándola por α
centistokes	metro cuadrado por segundo (m ² /s)	1,000 000*E-06
square foot per second	metro cuadrado por segundo (m²/s)	9,290 304*E-02
stokes	metro cuadrado por segundo (m²/s)	1,000 000*E-04

Tabla 13r1. Viscosidad cinemática

Unidad [Q]	corresponde a [Q']	multiplicándola por α
ft ³ /min	metro cúbico por segundo (m ³ /s)	4,719 474*E-04
ft ³ /s	metro cúbico por segundo (m³/s)	2,831 685*E-02
in ³ /min	metro cúbico por segundo (m³/s)	2,731 177*E-07
yd ³ /min	metro cúbico por segundo (m³/s)	1,274 258*E-02
gallon (U.S. liquid) per day	metro cúbico por segundo (m³/s)	4,381 264*E-08
gallon (U.S. liquid) per	metro cúbico por segundo (m³/s)	6,309 020*E-05
minute		

Tabla 13s. Volumen por unidad de tiempo (gasto)

Unidad [Q]	corresponde a [Q']	multiplicándola por α
acre-foot	metro cúbico (m ³)	1,233 489*E+03
barrel (oil, 42 gal)	metro cúbico (m ³)	1,589 873*E-01
bushel (U.S.)	metro cúbico (m³)	3,523 907 *E-02
cup (U. S.)	metro cúbico (m³)	2,365 882*E-04
fluid ounce (U.S.)	metro cúbico (m³)	2,957 353*E-05
ft ³	metro cúbico (m ³)	2,831 685*E-02
gallon (canadian liquid)	metro cúbico (m ³)	4,546 090*E-03
gallon (U.K. liquid)	metro cúbico (m ³)	4,546 090*E-03
gallon (U.S. liquid)	metro cúbico (m ³)	3,785 412*E-03
gill (U.K.)	metro cúbico (m ³)	1,420 653*E-04
gill (U.S.)	metro cúbico (m ³)	1,182 941*E-04
in ³	metro cúbico (m ³)	1,638 706*E-05
litre	metro cúbico (m ³)	1,000 000*E-03
ounce (U.K. fluid)	metro cúbico (m ³)	2,841 306*E-05
ounce (U.S. fluid)	metro cúbico (m ³)	2,957 353*E-05
peck (U.S.)	metro cúbico (m ³)	8,809 768*E-03
pint (U.S. dry)	metro cúbico (m ³)	5,506 105*E-04
pint (U.S. liquid)	metro cúbico (m ³)	4,731 765*E-04
quart (U.S. dry)	metro cúbico (m ³)	1,101 221*E-03
quart (U.S. liquid)	metro cúbico (m ³)	9,463 529*E-04
stere	metro cúbico (m ³)	1,000 000*E+00
tablespoon	metro cúbico (m ³)	1,478 676*E-05
teaspoon	metro cúbico (m ³)	4,928 922*E-06
ton (register)	metro cúbico (m ³)	2,831 685*E+00
yd ³	metro cúbico (m ³)	7,645 549*E-01

Tabla 13s1. Volumen

CAPITULO VI

RESUMEN HISTÓRICO DE LA METROLOGÍA MEXICANA

BREVE RESEÑA HISTORICA DE LA METROLOGÍA EN MÉXICO

"...y porque pudiera suceder que al repartir las tierras hubiera duda en las medidas, declaramos que una peonía es . . . tierra de pasto para diez puercas de vientre, veinte vacas y cinco yeguas, cien ovejas y veinte cabras."

Ley primera del Título 12, Libro IV de la Recopilación de las Leyes de Indias

Epoca Prehispánica.

México es sin duda una de las naciones que cuenta con una historia muy variada en civilizaciones. La última tribu que llegó a la mesa central después de una peregrinación que duró ciento sesenta y cinco años fue la de los aztecas quienes el 18 de julio de 1325 fundaron la gran Tenochtitlan.

Además de su actividad guerrera, el amplio núcleo de habitantes desplegó su actividad en los campos relativos al conocimiento, a la construcción, a la manufactura, al tráfico mercantil y a la producción agrícola.

Esto necesariamente supone la idea de ciertas medidas para la construcción de los palacios, la determinación de los tributos, la limitación de sus tierras y la mesuración de los objetos sujetos a transacción.

En el campo mercantil los historiadores coinciden en que las mercancías se vendían y se permutaban por número y medida, en igual forma mesuraban sus tributos; pero no tuvieron noticias de que hayan usado pesas, incluso hay constancia de que las cosas que comúnmente se sujetaban a la determinación de su peso en otras civilizaciones, entre los mexicanos se determinaron mediante el uso de medidas para áridos.

En el campo dimensional para mesuración de sus tierras, casas, templos y pirámides, la principal medida lineal mexicana correspondía a tres varas de Burgos.

En 1521 se rinde la gran Tenochtitlan principal reducto militar de los aztecas y con ello todo su sistema de numeración y medidas utilizadas se vieron truncados violentamente.

Cronistas e Historiadores

Las evidencias del uso de unidades de medidas nos lo proporcionan los cronistas e historiadores de la Conquista y relatores de la vida cotidiana del México Antiguo:

Citando a Alfonso de Molina [14] en su Vocabulario de la Lengua Mexicana: ". . . la medida que se utilizaba en aquel entonces, es el octacatl o vara de medir".

Manuel Orozco y Berra, [15] en su Historia Antigua y de la Conquista de México: ". . . encontramos después en Ixtlixóchitl al hacer la descripción de los palacios de Netzahualcoyotl". . . "Tenían las casas de longitud, que recorrían de oriente a poniente, cuatrocientas y once medidas y media que reducidas a nuestras medidas hacen mil doscientas treinta v cuatro varas y media, y de latitud que es de norte a sur, trescientos veinte y seis medidas que hacen novecientas y setenta y ocho varas" - continua diciendo- ". . . Refiérese Ixtlixóchitl en su comparación, por la una parte a la medida de Texcoco, igual en todo a la de México y por la otra a la vara de Burgos que era la mandada usar en la Colonia por la Ordenanza de Don Antonio de Mendoza. De esta relación directa se saca que una medida lineal mexicana corresponde a tres varas exactas de Burgos: cada una de estas es igual a 0,838 m, luego aquella mide 2,514 m. Como según la índole de la numeración, cada una de estas unidades principales se dividía en cinco menores, cada una de estas era equivalente a 21,6 pulgadas castellanas o 0.503 m."

Citado por N. Molina Fábrega [16] en su obra el Código Mendocino y la Economía de Tenochtitlan:

"... En la ciudad de Texcoco, con sus barrios y aldeas puso por mayordomo a Matlalaca, el cual ademas de estar a su cargo todas las rentas y tributos de ella, tenía la obligación de sustentar la casa y corte del rey setenta días, dando cada día, en grano veinticinco tlacopustlis de maiz para ser tomados, que era una medida que en aquel tiempo se usaba y cada tlacopustli tenía tres almudes mas una fanega, las que reducidas a fanegas montan treinta y una fanegas y tres almudes".

Antonio de Solis [17] autor de la Historia de la Conquista de México, manifiesta:". . . Hacíanse las compras y ventas por vía de permutación con que daba cada uno lo que le sobraba por lo que había menester, y el maíz o el cacao servía de moneda para las cosas menores. No se gobernaban por el peso, ni le conocieron; pero tenían diferentes medidas con que distinguir las cantidades, y sus números o caracteres con que ajustar los precios según sus transacciones".

Las medidas de longitud de los pueblos nahuatl generalmente fueron basadas en las dimensiones del cuerpo humano, promedio de esa época, algunas de ellas se describen en la tabla 14 [30].

Sin embargo, consideramos sin lugar a dudas que hubieron muchas más unidades de medida que utilizaron los antiguos mexicanos, pero que el conocimiento de ellas se pierde en el tiempo y en los efectos devastadores de la Conquista.

Epoca Colonial

El empleo de las medidas españolas se hizo extensivo en las tierras de Anáhuac porque la Conquista al truncar el desarrollo natural de la cultura de los pueblos indígenas, implantó el uso, la costumbre y el idioma de los vencedores.

Bajo la sombra del sistema de medidas impuesto, proliferó el desorden y la arbitrariedad de su aplicación que tenía como víctima principal al indio, al verdadero dueño de todo, que trabajaba la tierra con el recuerdo de su pasada grandeza.

Una vez consumada la Conquista y apenas transcurrido cuatro años de dominación española, Hernán Cortés, Capitán General y Gobernador de la Nueva España, dictó la ordenanza de 1525 que reglamentó de alguna forma las pesas y las medidas al señalar que en cada villa haya un fiel, personal designado y elegido por los alcaldes y regidores cada año que tenía la obligación de conservar en su casa pesas y medidas desde la arroba hasta el cuartillo y medio cuartillo, los cuales servían como patrones de verificación.

En 1536, el 4 de junio Juan de Bustillos, pregonero público, dió a conocer las ordenanzas del Virrey Don Antonio de Mendoza que se refiere a las medidas para tierra fundándose principalmente en las medidas españolas. Estableció como medida esencial la vara "... y está declarado que cada pie de los de dichas medidas ha de ser una tercia y cada paso, de cinco pies", lo anterior citado por don Mariano Galván Rivera en su obra Ordenanzas de Tierra y Aguas [18].

En 1567 se dictaron las ordenanzas del Virrey Don Gastón de Peralta, Marqués de Falces de cuya época, Francisco Sedano [20], en sus Noticias de México hace alusión: ". . . En el convento de San Hipólito de México se halla en el archivo un legajo con este brevete, Perote, una merced de tierra hecha por su majestad el año de 1567 que dice: Paso de marcas de cinco tercias de largo. Cinco tercias es lo mismo que cinco pies o vara y dos tercias. Paso geométrico es de dos pies y medio, la mitad del paso de marca o de Salomón y tiene cinco sesmas. Sitio de ganado. Un sitio de ganado mayor tiene una legua de largo y una legua de ancho. La legua en esta Nueva España tiene cinco mil varas y viene a tener un sitio de 25 000 000 de varas cuadradas de área. Un sitio de ganado menor tiene 3 333 varas y dos tercias de largo y otro tanto de ancho y tiene 11 133 333 varas y una tercia cuadradas de área. En un sitio de ganado mayor caben 41 caballerías de tierra y 14 272 varas cuadradas. En un sitio de ganado menor caben 18 caballerías de tierra. Una caballería de tierra tiene 1 104 varas de largo y 552 varas de ancho y su área tiene 609 408 varas cuadradas. Una avanzada de tierra tiene 220 pies de largo y 220 de ancho; 220 pies o tercias hacen 73 1/2 varas y esto tiene por lado la avanzada y 377 2/9 varas cuadradas de área. Vi varios expedientes firmados por el señor Don José Antonio de Areche, fiscal de su majestad, sobre medidas de tierra, con motivo de la venta de haciendas que fueron de los regulares de la Compañía de Jesús y en ellos se asienta que una legua en Nueva España tiene 5 000 varas de

largo y que un sitio de ganado mayor tiene una legua de largo y otra de ancho y concuerda con lo que va referido".

En esta época se conocían unidades que servían para la mesuración de tierras como las huebras y las peonías a las cuales la Ley primera del Título 12 del Libro IV de la recopilación de las Leyes de Indias daba la siguiente equivalencia: ". . . la peonía es un solar de 50 pies de ancho y 100 de largo, cien fanegas de tierra de labor de trigo o de cebada, diez de maíz, dos huebras de tierra para huerta y ocho para plantas de otros árboles de secadal, tierra de pasto para diez puercas de vientre, veinte vacas y cinco yeguas, cien ovejas y veinte cabras. . . la huebra es la superficie que se ara en un día. . . la caballería es como de cinco peonías" [19].

Refiriéndose al año de 1763 el historiador Francisco Sedano en su obra citada [20] dice: ". . . por carga de pulque, para la cuenta y pago de los derechos que pagan los pulqueros, se entiende 18 arrobas. La carga de 18 arrobas se compone de nueve cubos, cada cubo de 60 cuartillos".

En esa época se utilizaban principalmente, arrobas quintales y libras para determinar el peso de las cosas y en lo referente a ello menciona: ". . . la campana mayor de la Santa Iglesia Catedral llamada de Nuestra Señora de Guadalupe pesa 270 quintales. Tiene de alto desde el bordo hasta la extremidad de las asas, tres varas y tercia. Tiene de circunferencia en el bordo 10

varas: tiene de diámetro 3 varas y 10 pulgadas. El badajo tiene dos varas y media y pesa 22 arrobas y 19 libras de fierro".

De estas evidencias podemos afirmar que el sistema de pesas y medidas en la época colonial estuvo fundamentado en tres unidades básicas: la vara castellana, en longitud; la libra castellana en peso y el tiempo en segundos. De estas unidades se derivaban las demás, múltiplos y submúltiplos, cuya variación no era decimal, por ejemplo: la vara se dividía en tres pies, el pie en doce pulgadas, la pulgada en doce líneas y la línea en doce puntos; la legua, único múltiplo, equivalía a 5 000 varas. Las superficies se valoraban en varas cuadradas y los volúmenes en varas cúbicas.

La vara castellana también se conocía como vara de Burgos que después se transformó en la vara mexicana "..y entre ellas habían algunas diferencias..."

Sin embargo, lo cierto es que a la luz de estas unidades se habían establecido otras de carácter fuertemente arbitrario debido a las necesidades del comercio y que quedaron muy arraigadas en los habitantes: los grandes hacendados valoraban sus extensiones de tierra no solamente en sitios de ganado mayor o sitios de ganado menor, sino también en criaderos de ganado mayor o criaderos de ganado menor. Las superficies de sembradío lo valoraban no solamente en caballerías de tierra sino también en fanegas de sembradura de maíz. Estas tierras se

regaban con agua de manantiales caudalosos cuyos gastos se medían en buey de agua, o de los ríos, cuyos flujos se medían en surcos, naranjas, reales o limones.

Era común que los habitantes de la ciudad tomaran agua de las fuentes de los acueductos que fluía a razón de 5 pajas. En las transacciones mercantiles los líquidos se vendían en barriles, jarras y cuartillos. Para el caso de los granos se usaban medidas de capacidad que tomaban por nombre: carga, fanega, media fanega, cuartilla, almud y cuartillo. Para los pesos (masas) en general se utilizaba el quintal, la arroba, la libra, la onza, el adarme, el tomín y el grano.

Si las transacciones comerciales se hacían con plata se utilizaba el marco y la ochava. Si se tratase de oro, el castellano; y para usos medicinales , el dracma y el escrúpulo. La libra, la onza, el tomín y el grano se utilizaban también en estas actividades con pequeñas variantes

Habían otras unidades como el montón, el huacal, el chiquihuite, el cubo, la tinaja, la tercia y la cuarta que se usaban hasta que poco a poco fueron desapareciendo conforme el Sistema Métrico cobraba mayor expansión como resultado de los esfuerzos que los gobiernos hacían para que la población aceptara el nuevo sistema y al ingreso de México al Tratado del Metro.

Epoca Independiente

La emancipación política de nuestra patria no trajo consigo de inmediato cambios radicales porque muchas instituciones coloniales subsistieron y diversas disposiciones españolas tuvieron vigencia hasta que paulatinamente se fueron substituyendo por otras.

En tales condiciones cabe decir que la situación de las pesas y de las medidas reinante en la época colonial también imperó en el México Independiente hasta que se creó un nuevo régimen sobre la materia con la adopción del Sistema Métrico Decimal; adopción que como veremos después no fue del todo fácil.

Desde la circular de Don Manuel Siliceo, Ministro de Fomento, Colonización, Industria y Comercio de la República Mexicana firmada el 20 de febrero de 1856 (ver copia de la circular en página 114), continuando con el primer Decreto que establece el uso del Sistema Métrico Decimal Francés de Don Ignacio Comonfort en 1857 (ver copia del decreto en página 115), siguiendo en su turno por los Decretos de Don Benito Juárez, los de Maximiliano de Habsburgo y otros gobernantes hasta la Ley de 1895 de Don Porfirio Díaz, el país atravesaba por etapas difíciles, de invasiones, insurrecciones y gobiernos inestables y galopantes que lo mantenían en condiciones no aptas para la adopción integral de un nuevo sistema en materia de pesas y medidas, por lo que se establecían decretos que primeramente confirmaban y después aplazaban la obligación del uso del Sistema Métrico.

Respecto a las unidades de medida mas comunes que se utilizaron en el México Colonial y en el México Independiente se indica una relación en la tabla 14A.

Epoca Revolucionaria

La revolución social de 1910, una explosión del pueblo bajo el lema de "Tierra y Libertad" en contra de sus opresores y terratenientes y sus instrumentos de opresión: la tienda de raya, la leva, los salarios raquíticos, las grandes jornadas de trabajo en condiciones muchas veces inhumanas, hicieron aparecer caudillos que levantaron la voz del pueblo y lo guiaron en una revolución fratricida por buscar mejores condiciones de vida. Así, Emiliano Zapata y Francisco Villa principales actores de la revolución ofrendaron su vida por estos ideales.

En medio de esta fragorosa lucha seguía vivo el espíritu de superación metrológica dentro del gobierno en turno que a pesar de tener su estabilidad en continua zozobra, hubieron quienes con anticipación establecían el papel importante de la metrología en el desarrollo económico del país. En esta época se adquirieron equipos que formaron parte del laboratorio de metrología instalado en el edificio del Departamento de Pesas y Medidas de las calles de Filomeno Mata, esquina con Av. 5 de mayo, en la ciudad capital, hecho que da fe de la importancia que se concedía al aspecto legal de las pesas y de las medidas, sin embargo, en el caso de la metrología industrial y científica no se podía tener aún la

infraestructura necesaria para incursionar en ellas.

Aún así al transcurrir los años, la aplicación práctica de la metrología legal empezó a decaer hasta quedar en completo abandono el laboratorio a fines de la década de los años 70; de sus actividades la industria no obtenía ya ningún beneficio, y el caos metrológico se hizo presente.

En la transición entre estas dos épocas, la revolucionaria y la moderna, y principalmente en el transcurso de esta última, hubo necesidad de que se produjera un detonante que hiciera despertar la conciencia de la metrología entre aquellos que en los gobiernos, tenían el poder de decisión.

Epoca Moderna

La desaparición de los mercados domésticos cautivos, la apertura de fronteras al libre comercio, la necesidad de ganar mercados externos para superar la crisis económica hizo que muchos países miraran con interés a la metrología como un elemento básico indispensable que le permitirá el mejoramiento de su producción y la competitividad de sus productos tanto en el mercado interno como en el externo. Así en México, el ingreso al GATT (actualmente la Organización Mundial de Comercio) y posteriormente al Tratado de Libre Comercio con Norteamérica vino a dar un fuerte impulso a la metrología nacional dado que esta es parte de la infraestructura que es requerida por la industria mexicana para producir con calidad y poder hacer frente con éxito a las exigencias

normativas de los países compradores.

Con el ímpetu de las circunstancias, esta época ha visto el nacimiento del Sistema Nacional de Calibración y una etapa importante ha quedado plasmado en los anales de la metrología científica nacional ya que el proyecto y diseño de un laboratorio cúpula de alto nivel ha finalizado y dado lugar en 1991, a la instalación del Centro Nacional de Metrología (CENAM) como laboratorio primario del Sistema. El CENAM inició sus operaciones el 29 de abril de 1994.

Con el CENAM se ha hecho realidad la transferencia de la exactitud de los patrones nacionales y un acontecimiento histórico se ha marcado con respecto al patrón nacional de masa, el prototipo número 21, de platino iridio, añejo representante del Sistema Métrico Decimal y que desde 1891, hace mas de un siglo, se encuentra en nuestro país. Desde ese año y por diversas razones no se podía establecer la trazabilidad de las mediciones de masa en México. Actualmente ya se ha ralizado.

Dentro de las importantes disposiciones legislativas que se han publicado, resalta últimamente la Ley Federal sobre Metrología y Normalización [21] firmada el 18 de junio de 1992, que contiene una regulación moderna sobre la materia de las mediciones en el país. Esta Ley fue publicada en el Diario Oficial de la Federación, el primero de julio de 1992. Se

adicionó y reformó el 24 de diciembre de 1996 y se volvió a reformar el 20 de mayo de 1997 estando la presidencia del gobierno federal a cargo del Dr. Ernesto Zedillo Ponce de León. Estas reformas tienen la finalidad de privatizar algunas actividades del gobierno federal en materia de metrología, normalización, certificación y evaluación de la calidad de servicios y de productos, estableciéndose la acreditación como reconocimiento a la capacidad técnica de los organismos que las realizan, otorgado por una nueva figura legal, las entidades mexicanas de acreditación. La aprobación de los organismos acreditados podrá concederse por las dependencias oficiales correspondientes. Actualmente la Entidad Mexicana de Acreditación (ema), reconocida por varias dependencias del gobierno federal otorga a propuesta de los comités y subcomités de evaluación, la acreditación a las entidades, físicas o morales, para desempeñarse como laboratorios de metrología, laboratorios de pruebas, organismos de certificación y unidades de verificación tanto en el campo de la metrología como en la de pruebas o ensayos de la calidad de productos o de servicios. El órgano coordinador de este nuevo esquema es la Comisión Nacional de Normalización.

Completando la relatoría anterior, se proporciona en las tablas 15 y 16 una lista de Leyes y Decretos, en este orden, que situándonos a partir de la época independiente se han emitido en torno al tema de la adopción del Sistema Métrico y en general a la materia de pesas y medidas.

TABLA 14 Unidades de medida del México prehispánico. (30)

nombre en náhuatl	denominación	realización
cénmatl	un brazo	del pie izquierdo al dedo
(2,50 m)	una mano	cordial de la mano derecha, con el brazo alzado
cémmitl	una uña	del codo izquierdo al dedo cordial de la mano derecha,
(1,25 m)		con el brazo extendido
cenyollotli	un corazón	del corazón al dedo cordial
(0,90 m)		de la mano derecha, con el brazo extendido
cemacolli	un brazo	del hombro al dedo cordial,
(0,80 m)		con el brazo extendido
cenciacátl	una axila	de la axila al dedo cordial,
(0,70 m)		con el brazo extendido
Cenmolícpitl	un codo	del codo al dedo cordial,
(0,45 m)		con el brazo extendido
cenmatzotzopaztli	un codo	del codo a la muñeca
(0,30 m)		
cennequetzalli	una talla de hombre	equivalente a la estatura promedio de un indígena
(1,60 m)		

Menisture del fomento, tolomisación industrio Tomercio - Terin 5th Generalar num 94- 80 (me substante de dela una medida general para la adopun in la Depublica del sistema metio co-decimal, se sugition a il todar les airesus de Current of demand ingeneral empleaded for which britaria In buantal Operacioned executive en il dissempeter de per respectival Considered - So gav com mes a (1. para le cumplimiente, acompanande un sumplan de la relación que por energo de esta Secretaria formo ulternamente de la Council De Manuel Stones, del los peros y medidas de Oscho Leelena con lot que actualmente se wan in la Mepublica, para que la longa hu but habajes - Diet y Tilutal Mijore, biso Ro de MA 56 - Tilies - Le vivale à bodol los directores de laninos y demas ingenieros un pleaded for who secretarias - Mr Suide de Segada.

Primera disposición relativa al Sistema Métrico Decimal que se expidió en México el 20 de febrero de 1856

MINISTERIO DE FOMENTO,

COLONIZACION, INDUSTRIA Y COMBROIO

De la Republica Mexicana,

BECCION PHIMERA.

El Exmo. Sr. Presidente do la República, se ha servido dirigirme el decreto que sigue.

"El C. Ignacio Comonfort, Presidente de la República Mexicana, á los habitantes de ella, sabed: Que en uso de las facultades que me concede el plan proclumado en Ayutla y reformado en Acapulco, he tenido á bien decretar lo signiente.

Art. 1 ≥ Se adopta en la República el sistema métrico decimal francés, sin otras medificaciones que las que exijen las circunstancias particulares del país, en el órden que sigue.

El Metro, 6 sea la diezmillonésima parte de un cuarto del meridiano terrestre, será la unidad para las medidas lineales 6 de longitud;

El Ara, equivalente á un cuadrado de diez metros por cada dado, será la unidad para las medidas de superficie y agraria;

El Metro cúbico ó un metro de un cubo por lado, lo será para las medidas de sólidos;

El Litro, decimetro cúbico, 6 un cubo de un decímetro por lado, será la unidad de medida de capacidad, tanto para los líquidos como para los áridos;

El Gramo, peso en el vacío de un centímetro cúbico de agua destilada, y á la temperatura de cuatro grados centígrados, servirá de unidad para todas las pesas;

La pescia mexicana, pieza de plata del peso de diez gramos, con novecientos milígramos de ley, será la unidad monetaria de la República.

Art. 2º Los múltiplos y sabmúltiplos de les medidas y pesos mencionados, seguirán la progresion

UNIDADES UTILIZADAS EN EL MÉXICO COLONIAL Y EN EL MÉXICO INDEPENDIENTE [22]

Unidad	Equivalencia	Unidad	Equivalencia
adarme	1,798 g	legua	4,190 km
almud	7,568 L	libra	460,246 g
arroba	11,506 kg	limón	8,284 L/min
barril	3,914 L	línea	1,940 mm
buey de agua	159,061 L/s	marco	230,124 g
caballería de tierra	42,795 ha	media fanega	45,407 L
carga (para grano)	181,630 L	naranja	1,105 L/s
cuarta	209,500 mm	ochava	3,595 g
castellano	4,602 g	onza	28,765 g
criadero de ganado mayor	438,90 ha	paja	0,460 L/min
criadero de ganado menor	195,067 ha	pie castellano	279,333 mm
cuartillo (para aceite)	506,162 mL	pulgada castellana	23,278 mm
cuartillo (para líquido)	456,263 mL	punto	0,161 mm
cuartillo (para grano)	1,892 L	quintal	46,025 kg
cuartillo de almud	1,892 L	real o limón	8,284 L/min
cuartilla de fanega	22,704 L	sitio de ganado mayor	1 755,61 ha
dedo	17,458 mm	sitio de ganado menor	780,271 ha
dracma	3,596 g	surco	3,314 L/s
escrúpulo	1,198 g	tomín	0,599 g
fanega	90,814 L	vara de Burgos	848 mm
fanega de sembradura de maíz	3,566 ha	vara castellana	835,6 mm
grano	49,939 mg	vara mexicana	838 mm
jarra	8,213 L		

Tabla 14A. Unidades utilizadas en el México colonial y en el México independiente

SINOPSIS HISTÓRICA DE LA LEGISLACIÓN SOBRE METROLOGÍA EN MÉXICO

Ley sobre Pesas y Medidas de 1895	Adopta el Sistema Métrico Internacional de Pesas y Medidas.
(Porfirio Díaz)	
Ley sobre Pesas y Medidas de 1905	Se declaran patrones nacionales de longitud al metro prototipo Nº 25 y de
(Porfirio Díaz)	masa al kilogramo prototipo Nº 21, ambos de platino iridio.
Ley sobre Pesas y Medidas de 1928	Establece una incipiente cadena metrológica teniendo como origen los
(Plutarco Elías Calles)	patrones nacionales.
Ley General de Normas y de Pesas y Medidas de 1961	Conjunta las actividades de metrología, normalización, verificación y control de la calidad, cuyo Título II referente al Sistema General de Unidades de Medida fue modificado en 1970
(Gustavo Díaz Ordaz)	Unidades de Medida fue modificado en 1970
Ley Federal sobre Metrología y Normalización de 1988	Establece y eleva a rango de Ley, al Centro Nacional de Metrología, al Sistema Nacional de Calibración y al Sistema Nacional de Acreditamiento
(Miguel de la Madrid Hurtado)	de Laboratorios de Pruebas.
Ley Federal sobre Metrología y Normalización de 1992	Modifica procedimientos y funciones de los organismos antes citados. Se reforma en 1996 y se vuelve a reformar en 1997; ambas reformas bajo la
(Carlos Salinas de Gortari)	administración del presidente Ernesto Zedillo Ponce de León. Se privatizan las actividades de normalización, verificación, certificación y evaluación que antes estaba en poder del gobierno federal. Se instaura la Comisión
Reformas a la Ley Federal sobre Metrología y Normalización.	Nacional de Normalización para coadyuvar en las políticas de estas actividades. Se reafirma la creación del Centro Nacional de Metrología
(Ernesto Zedillo Ponce de León)	como laboratorio de alto nivel técnico en materia de metrología.

Tabla 15A. Leyes

15 de marzo de 1857	Se adopta el Sistema Métrico; se instituye la Dirección General de Pesas y Medidas de la República.
(Ignacio Comonfort)	Weddas de la Republica.
15 de marzo de 1861	Enseñanza obligatoria del Sistema. Se establecen las Oficinas del Fiel Contraste
(Benito Juárez)	
27 de octubre de 1865	Confirma la obligatoriedad del Sistema Métrico Decimal Francés.
(Maximiliano de Hapsburgo)	
20 de diciembre de 1882	Prohíbe la fabricación e importación de medidas en desacuerdo con el nuevo Sistema.
(Manuel González)	nucvo sistema.
14 de diciembre de 1883	Establece Oficinas Verificadoras de Pesas y medidas.
(Manuel González)	
18 de febrero de 1927	Ratifica la aceptación al Tratado del Metro
(Plutarco Elías Calles)	
21 de abril de 1980	Establece el Sistema Nacional de Acreditamiento de Laboratorios de Pruebas
(José López Portillo)	Trucous
9 de junio de 1980	Establece el Sistema Nacional de calibración
(José López Portillo)	

Tabla 16A. Decretos

EL TRATADO DEL METRO Y EL SISTEMA MÉTRICO DECIMAL EN MÉXICO

La adhesión al Tratado del Metro

El 30 de diciembre de 1890, una comunicación salía del Ministerio de Negocios Extranjeros, de Francia hacia el presidente del Comité Internacional de Pesas y Medidas dándole a conocer la adhesión de México al Tratado del Metro de 1875.

A su vez, el Presidente del Comité Internacional de Pesas y Medidas lo daba a conocer a las Altas Partes Contratantes el 22 de enero de 1891.

En esta forma terminaron las gestiones iniciadas oficialmente en el año de 1883 cuando siendo presidente de la República Mexicana Dn. Manuel González, dio instrucciones al representante de México en París para que se informara con el Ministro de Relaciones Exteriores del gobierno francés sobre los requisitos que debía cubrir el país para adherirse al Tratado del Metro.

Las gestiones se fortalecieron con un argumento que fue importante: el tiempo transcurrido desde cuando oficialmente se había adoptado el Sistema Métrico Decimal en México.

La adopción del Sistema Métrico

El gobierno pudo demostrar que desde el 20 de febrero de 1856, casi 20 años antes de la reunión diplomática del Tratado del Metro, ya se había cristalizado una inquietud que desde años anteriores existía para la adopción del Sistema Métrico, con la publicación de una circular oficial, la número 94, en la que el Ministerio de Fomento, Colonización, Industria y Comercio del gobierno mexicano exhortaba a los Directores de Caminos y demás ingenieros empleados en esa Dependencia para que se sujetaran a dicho sistema entre tanto se dictaban medidas de carácter general.

Igualmente demostró que con la Constitución promulgada el 5 de febrero de 1857 se dieron las bases para que Dn. Ignacio Comonfort dictara el 15 de marzo de ese año, el primer Decreto con el que se adoptaba el Sistema Métrico Decimal Francés en toda la República y se instituía un organismo, la Dirección General de Pesas y Medidas de la República, que tuvo como misión la de propagar el nuevo sistema.

El año de 1875, año del Tratado del Metro, era tiempo difícil para el país. Gobernaba Dn. Sebastián Lerdo de Tejada quien debido a situaciones diplomáticas no pudo designar representantes para la reunión Internacional, en París, a pesar de estar de paso por esa ciudad, Don Francisco Díaz Covarrubias y Don Manuel Fernández Leal, científicos mexicanos comisionados por el propio presidente Lerdo de Tejada para hacer observaciones del tránsito del planeta Venus por el Sol en Yokohama, Japón, misión que culminaban con mucho éxito.

Por lo tanto, la reunión diplomática se llevó a cabo sin asistir México, y, en ella 17 países de los 20 representados firmaron el Tratado el 20 de mayo de ese año de 1875.

La fecha de la adhesión

Ya señalamos que en 1883, México inicia las gestiones para adherirse al Tratado, pero no fue sino hasta 1890, durante el gobierno de Dn. Porfirio Díaz cuando una vez terminadas estas, el encargado de Negocios de México en París, comunica al Ministro francés de Negocios Extranjeros sobre las instrucciones que tiene de su gobierno de hacerle saber que los Estados Unidos Mexicanos se adhieren al Tratado del Metro.

La fecha de la comunicación que fue transmitida al Presidente del Comité Internacional de Pesas y Medidas como se menciona al inicio de este capítulo, se toma como la fecha oficial de esta adhesión.

Obtención de los prototipos

Habiéndose adherido México al Tratado del Metro, solicitó que se le asignaran los prototipos del metro y del kilogramo. Esta asignación se realizó por sorteo.

En el sorteo en que participó para la asignación del kilogramo, le tocó en suerte el número 21 mismo que llegó a nuestro país en el año de 1891, con su carácter de patrón nacional de masa.

No habiendo prototipos del metro, no fue sino hasta 1893 cuando se obtuvo el número 25 que originalmente le había correspondido al Observatorio Real de Bruselas. Este prototipo en su carácter de patrón nacional de longitud fue recibido en México en el año de 1895.

Ambos prototipos se encuentran actualmente en el Centro Nacional de Metrología.

El del kilogramo sigue representando su papel de patrón nacional de masa; el del metro ha sido sustituido a partir de 1960, como patrón nacional de longitud.

Revisión del Tratado

Cuando fue revisado el Tratado del Metro sufrió modificaciones que se pusieron a consideración de las Altas Partes Contratantes.

Por México lo firma en París, el Sr. Juan F. Urquidi, en su calidad de representante del gobierno mexicano y lo ratifica Dn. Plutarco Elías Calles, presidente de México, por medio del Decreto expedido el 18 de febrero de 1927.

APÉNDICES

APÉNDICE 1

LAS UNIDADES DE BASE DEL SI Y SUS ORÍGENES

MAGNITUD	UNIDAD Y SIMBOLO	BASE DE LAS DEFINICIONES	FECHA	NOTAS
longitud	metro (m)	diezmillonésima parte del cuadrante del meridiano terrestre	1793 1795	Decreto francés de 1º de agosto. Decreto francés de 7 de abril.
		metro de los Archivos de Francia	1799	Ley francesa de 10 de diciembre. Patrón a extremidades, en platino, materializando la definición de 1795.
		metro internacional	1889 (1 ^a . CGPM)	Patrón a trazos, en platino iridio, de sección en "x".
		distancia a 0°C del patrón de platino iridio	1927 (7 ^a . CGPM)	Distancia entre los ejes de dos trazos, cada uno situado en los extremos del patrón de platino iridio
		el metro es la longitud igual a 1 650 763, 73 longitudes de onda en el vacío de la radiación correspondiente a la transición entre los niveles 2p ₁₀ y 5d ₅ del átomo de kriptón 86.	1960 (11 ^a . CGPM)	Una lámpara espectral funcionando en las condiciones que se recomiendan permite realizar la definición mejor que $1x10^{-8}$ o sea 0,01 µm en 1 m
		el metro es la longitud de la trayectoria recorrida por la luz en el vacío en un lapso de 1/299 792 458 de segundo	1983 (17ª. CGPM)	Un láser He-Ne estabilizado con una celda interna de yodo a una longitud de onda de 632 991 398, 22 fm permite realizar la definición a 5x10 ⁻¹¹ o sea 0,05 nm en 1m

masa	grave	decímetro cúbico de agua	1793	Decreto francés de 1°. De agosto.
	gramo (g)	centímetro cúbico de agua (a 0 °C)	1795	Decreto francés de 7 de abril. El kilogramo aparece como múltiplo del gramo
	kilogramo (kg)	kilogramo de los Archivos de Francia	1799	Ley francesa de 10 de diciembre. Cilindro de platino materializando la masa del decímetro cúbico de agua a 4 °C
		masa del prototipo internacional del kilogramo	1889, 1 ^a . (CGPM) 1901 (3 ^a . CGPM)	Cilindro de platino iridio de altura igual a su diámetro (\sim 39 mm). Se puede comparar dos masas de un kilogramo mejor que $1x10^{-8}$ o sea mejor que $10~\mu g$
tiempo	segundo (s)	día solar medio		1 día = 86 400 s
	(8)	año trópico	1960 (11 ^a . CGPM)	1 año trópico = 31 556 925, 974 7 s al 31 de diciembre de 1899
		el segundo es la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133	1967 (13 ^a . CGPM)	Los mejores relojes patrones de Cesio permiten realizar esta definición mejor que $1x10^{-12}$ o sea 1 µs en 12 días

intensidad de corriente eléctrica	ampere (A)	un décimo de la unidad electromagnética CGS	1881	1er. Congreso Internacional de Electricidad (París). El sistema de unidades electromagnéticas CGS esta definido a partir de la fuerza que se ejerce entre dos masas magnéticas, concepto puramente teórico.
		corriente que deposita 1,118 mg de plata por segundo en un voltámetro a nitrato de plata	1893 1908	Congreso de Electricidad de Chicago. Conferencia Internacional de Londres. Representación llamada "ampere internacional" (1908), del ampere cuya definición teórica no cambia.
		definición igual a la que se adopta en 1948	1946 CIPM	Definición equivalente a la de 1881.
		el ampere es la intensidad de una corriente constante que, mantenida en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable, colocados a un metro de distancia entre sí, en el vacío producirá entre ellos una fuerza igual a 2x10 ⁻⁷ newton por metro de longitud.	1948 (9ª.CGPM)	Se realiza la definición del ampere mejor que $3x10^{-6}$ o sea 3 μA

temperatura	grado (centígrado o centesimal) (°C).	punto de fusión del hielo (0 °C) y punto de ebullición del agua a la presión atmosférica normal (100 °C).	1887 (CIPM)	Escala del termómetro a hidrogeno de volumen constante. El termino "grado absoluto" fué sustituido progresivamente por el término "grado Kelvin" y era utilizado antes de 1900 para expresar las temperaturas a partir del cero absoluto (escala termodinámica). Estaba implícitamente admitido que el grado Kelvin era igual al grado centígrado, pero el desfasamiento (~273°) entre la escala termodinámica y la escala centígrada, mal conocida, no había sido fijada.
	grado Celsius (°C)	Id.	1948 (9 ^a . CGPM)	Nuevo nombre del grado centígrado.
	grado Kelvin (°K)	definición equivalente a la que se adopta en 1967.	1954 (10 ^a .CGPM)	La temperatura termodinámica del punto triple del agua (superior a la del punto de fusión del hielo en 0, 01 °C) es fijada en 273,16 °K; la "temperatura Celsius" t, es entonces ligada a la temperatura termodinámica T por t= T-273,15 y el grado Celsius es igual al grado Kelvin.
	kelvin (K)	el kelvin, unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.	1967 (13 ^a . CGPM)	"kelvin" reemplaza a "grado Kelvin". La incertidumbre óptima es del orden de 10 ⁻⁶ a 273,16 K, o sea 0,000 3 K.

cantidad de sustancia	molécula gramo, átomo gramo	hidrógeno (H=1), oxígeno (O=1 ó 15,96 ó 16), plata (Ag=1), uranio (U=1)	Antes de 1900	Se llamaba molécula gramo y átomo gramo lo que se le llama ahora mol de moléculas y mol de átomos
	mol		Hacía 1900	W. F. Ostwald introduce la palabra "mol" para designar una cantidad de sustancia cuya masa en gramos es igual a su "peso" molecular o atómico
		oxígeno (natural)	1902	Proposición de la Comisión Internacional para los Pesos Atómicos: O = 16
		carbono 12	1960/1961	La U.I.P.P.A. y la U.I.C.P.A. proponen tomar para la unidad de masa atómica la fracción 1/12 de la masa del átomo de carbono 12.
	mol (mol)	la mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como hay de átomos en 0,012 kilogramo de carbono 12.	1971 (14ª.CGPM)	La naturaleza de las entidades elementales (átomos, moléculas, iones, electrones, etc) debe ser especificada. Algunas masas atómicas relativas han sido determinadas mejor que 1x10 ⁻⁷ .

intensidad luminosa	bujía	patrones de flama, diversos.	Antes de 1800	Bujías esteáricas, lámparas Carcel (1800), Hefner (1884), Vernon-Harcourt (1887), de acetileno, etc.
	bujía decimal	vigésima parte del patrón Violle	1889	Congreso Internacional de Electricidad (París). El patrón Violle (1884) se refiere a la luminancia del platino en fusión.
		lámparas incandescentes con filamento de carbono.	1921	Comisión Internacional de la Iluminación (5ª.Sesión) Representación llamada "bujía internacional" de la bujía decimal.
	bujía nueva	radiador integral a la temperatura de solidificación de platino, definición equivalente a la de 1967.	1946 (CIPM)	
	candela (cd)	Id.	1948 (9 ^a . CGPM)	Nombre adoptado para la bujía nueva.
		la candela es la intensidad luminosa, en la dirección perpendicular, de una superficie de 1/600 000 de metro cuadrado de un cuerpo negro a la temperatura de congelación del platino bajo la presión de 101 325 newtons por metro cuadrado.	1967 (13 ^a . CGPM)	Se realiza la definición de la candela con una incertidumbre un poco mejor que 1x10 ⁻² o sea 0,01 cd.
		La candela es la intensidad luminosa en una dirección dada de una fuente que emite una radiación monocromática de frecuencia 540x10 ¹² hertz y cuya intensidad energética en esa dirección es 1/683 watt por esterradián.	1979 (16 ^a . CGPM)	

APÉNDICE 2 [25, 26]

LOS HOMBRES DE CIENCIA QUE DIERON NOMBRE A LAS UNIDADES

Magnitud	Unidad	Origen
intensidad de corriente eléctrica	ampere	André – Marie AMPERE, físico y matemático Francia, 1775 – 1836
temperatura termodinámica	kelvin	William Thomson, Lord KELVIN, físico y matemático Inglaterra 1824 – 1907
temperatura Celsius	grado Celsius	Anders CELSIUS, astrónomo Suecia 1701 – 1744
frecuencia	hertz	Heinrich Rudolph HERTZ, físico Alemania 1857 – 1894
fuerza	newton	Isaac NEWTON, físico matemático y astrónomo Inglaterra 1643 – 1727
presión	pascal	Blaise PASCAL, físico matemático y filósofo Francia 1623 – 1662
energía	joule	James Prescott JOULE, físico Inglaterra 1818 – 1889
potencia	watt	James WATT, ingeniero mecánico Escocia 1736 – 1819
cantidad de electricidad	coulomb	Charles Augustin COULOMB, físico Francia 1736 – 1806

tensión eléctrica	volt	Alessandro VOLTA, físico Italia 1745 – 1827
capacidad eléctrica	farad	Michael FARADAY, físico y químico Inglaterra 1791 – 1867
resistencia eléctrica	ohm	George Simon OHM, físico Alemania 1787 – 1854
conductancia eléctrica	siemens	Werner von SIEMENS, ingeniero, inventor e industrial electrotécnico Alemania 1816 – 1892
flujo de inducción magnética	weber	Wilhelm Eduard WEBER, físico Alemania 1804 – 1891
inducción magnética	tesla	Nikolaj TESLA, físico e ingeniero Yugoslavia 1856 – 1943
inductancia	henry	Joseph HENRY, físico Estados Unidos de América 1797 – 1878
actividad de un (radionúclido)	becquerel	Henry BECQUEREL, físico Francia 1852 – 1908
dosis absorbida	gray	Louis Harold GRAY, físico Inglaterra 1905 – 1965
dosis equivalente	sievert	Rolf SIEVERT, físico Suecia 1896 – 1996

APÉNDICE 3 [23]

La física de las constantes universales representa propiedades y comportamientos invariables de la naturaleza. El conjunto de ellas es de gran importancia para el análisis e interpretación de los datos experimentales en muchas disciplinas científicas.

En 1973, CODATA (Comité de datos para la ciencia y la tecnología), publicó los primeros valores consistentes de las constantes físicas fundamentales que fueron subsecuentemente adoptados por muchos organismos nacionales e internacionales.

Esta lista es una selección de las más utilizadas y en cuya actualización 1998-CODATA[23], tomó en cuenta los avances significativos que han ocurrido desde el análisis de 1973 y representa los esfuerzos de los mejores expertos de los grandes laboratorios metrológicos del **mundo.**

Nota: Los dígitos entre paréntesis representan la incertidumbre con k=1 de los últimos dígitos del valor dado

Magnitud	Símbolo	Valor	Unidades	Incertidumbre relativa	
velocidad de la luz en el vacío	С	299 792 458	ms ⁻¹	(exacto)	
permeabilidad del vacío	μ_0	$4\pi x 10^{-7}$	N A ⁻²		
		= 12,566 370 614	10 ⁻⁷ N A ⁻²	(exacto)	
permitividad del vacío	ϵ_0	$1/\mu_0 c^2$			
constante eléctrica (μ ₀ c²)		=8,854 187 817	10 ⁻¹² Fm ⁻¹	(exacto)	
constante newtoniana de gravitación	G	6,673 (10)	$10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$	1,5 x 10 ⁻³	
constante de Planck	ħ	6,626 068 76 (52)	10 ⁻³⁴ Js	7,8 x 10 ⁻⁸	
h/2πε ₀ ħ		1,054 571 596 (82)	10 ⁻³⁴ Js	7,8 x 10 ⁻⁸	
carga elemental	e	1,602 176 462 (63)	10 ⁻¹⁹ C	3,9 x 10 ⁻⁸	
quantum de flujo magnético h/2e	Φ_0	2,067 833 636 (81)	10 ⁻¹⁵ Wb	3,9 x 10 ⁻⁸	
Quantum de conductancia 2e2/h	G_0	7,748 091 696 (28)	10 ⁻⁵ S	3,7 x 10 ⁻⁹	
masa del electrón	m _e	9,109 381 88 (72)	10 ⁻³¹ kg	7,9 x 10 ⁻⁸	
masa del protón	m _p	1,672 62158 (13)	10 ⁻²⁷ kg	7,9 x 10 ⁻⁸	
relación de masa protón-electrón	m _p /m _e	1 836,152 667 5(39)		2,1 x 10 ⁻⁹	
constante de estructura fina,	α	7,297 352 533 (27)	10-3	3,7 x 10 ⁻⁹	
$e^2/4\pi$					
inversa de la constante de estructura fina	α^{-1}	137,035 999 76(50)		3,7 x 10 ⁻⁹	
constante de Rydberg	R∞	10 973 731,568 549 (83)	m ⁻¹	7,6 x 10 ⁻¹²	
constante de Avogadro	N _A ,L	6,022 141 99 (47)	10 ²³ mol ⁻¹	7,9 x 10 ⁻⁸	
constante de Faraday N _A e	F	96 485,341 5(39)	C mol ⁻¹	4,0 x 10 ⁻⁸	
constante molar de los gases	R	8,314 472(15)	J mol ⁻¹ K ⁻¹	1,7 x 10 ⁻⁶	
constante de Bolztman, R/N _A	k	1,380 650 3(24)	10 ⁻²³ J K ⁻¹	1,7 x 10 ⁻⁶	
constante de Stefan-Bolztman	σ	5,670 400(40)	10 ⁻⁸ W m ⁻²	7,0 x 10 ⁻⁶	
$(\pi^2/60)k^4/\hbar^3c^2$			K ⁻⁴		
Unidades que no son del SI utilizadas con el SI					
electron volt, (e/C) J	eV	1,602 176 462(63)	10 ⁻¹⁹ J	3,9 x 10 ⁻⁸	
unidad de masa atómica unificada, 1 u = mu = $(1/12)$ m (^{12}C) = 10^{-3} kg mol $^{-1}/N_A$	u	1,660 53873 (13)	10 ⁻²⁷ kg	7,9 x 10 ⁻⁸	

APÉNDICE 4 [24]

No. Atómico	Símbolo	Nombre	Peso Atómico	Notas
1	Н	Hidrogeno	1,007 94(7)	1, 2, 3
2	Не	Helio	4,002 602(2)	1, 2
3	Li	Litio	6,941(2)	1, 2, 3, 4
4	Be	Berilio	9,0121 82(3)	
5	В	Boro	10,811 (7)	1, 2, 3
6	С	Carbón	12,010 7(8)	1, 2
7	N	Nitrógeno	14,0067 4(7)	1, 2
8	O	Oxigeno	15,999 4(3)	1, 2
9	F	Flúor	18,998 403 2(5)	
10	Ne	Neón	20,179 7(6)	1, 3
11	Na	Sodio	22,989 770(2)	
12	Mg	Magnesio	24,305 0(6)	
13	Al	Aluminio	26,981 538(2)	
14	Si	Silicón	28,085 5(3)	2
15	P	Fósforo	30,973 761(2)	
16	S	Azufre	32,066(6)	1, 2
17	Cl	Cloro	35,452 7(9)	3
18	Ar	Argón	39,948(1)	1, 2
19	K	Potasio	39,098 3(1)	1
20	Ca	Calcio	40,078(4)	1
21	Sc	Escandio	44,955 910(8)	
22	Ti	Titanio	47,867(1)	

Peso Atómico de los elementos

No. Atómico	Simbolo	Nombre	Peso Atómico	Notas
23	V	Vanadio	50,941 5(1)	
24	Cr	Cromo	51,996 1(6)	
25	Mn	Manganeso	54,938 049(9)	
26	Fe	Fierro	55,845(2)	
27	Со	Cobalto	58,933 200(9)	
28	Ni	Niquel	58,693 4(2)	
29	Cu	Cobre	63,546(3)	2
30	Zn	Zinc	65,39(2)	
31	Ga	Galio	69,723(1)	
32	Ge	Germanio	72,61(2)	
33	As	Arsénico	74,921 60(2)	
34	Se	Selenio	78,96(3)	
35	Br	Bromo	79,904(1)	
36	Kr	Kriptón	83,80(1)	1, 3
37	Rb	Rubidio	85,467 8(3)	1
38	Sr	Estroncio	87,62(1)	1, 2
39	Y	Itrio	88,905 85(2)	
40	Zr	Circonio	91,224(2)	1
41	Nb	Niobio	92,906 38(2)	
42	Mo	Manganeso	95,94(1)	1
43	Тс	Tecnecio	98	5
44	Ru	Rutenio	101,07(2)	1
45	Rh	Rodio	102,905 50(2)	
46	Pd	Paladio	106,42(1)	1
47	Ag	Plata	107,868 2(2)	1

Peso Atómico de los elementos

No. Atómico	Simbolo	Nombre	Peso Atómico	Notas
48	Cd	Cadmio	112,411(8)	1
49	In	Indio	114,818(3)	
50	Sn	Estaño	118,710(7)	1
51	Sb	Antimonio	121,760(1)	1
52	Te	Telurio	127,60(3)	1
53	I	Yodo	126,904 47(3)	
54	Xe	Xenón	131,29(2)	1, 3
55	Cs	Cesio	132,905 45(2)	
56	Ba	Bario	137,327(7)	
57	La	Lantano	138,905 5(2)	1
58	Ce	Cerio	140,116(1)	1
59	Pr	Praseodimio	140,907 65(2)	
60	Nd	Neodimio	144,24(3)	1
61	Pm	Promecio	[145]	5
62	Sm	Samario	150,36(3)	1
63	Eu	Europio	151,964(1)	1
64	Gd	Gadolinio	157,25(3)	1
65	Tb	Terbio	158,925 34(2)	
66	Dy	Disprosio	162,50(3)	1
67	Но	Holmio	164,930 32(2)	
68	Er	Erbio	167,26(3)	1
69	Tm	Tulio	168,934 21(2)	
70	Yb	Yterbio	173,04(3)	1
71	Lu	Lutecio	174,967(1)	1
72	Hf	Hafnio	178,49(2)	

Peso Atómico de los elementos

No. Atómico	Simbolo	Nombre	Peso Atómico	Notas
73	Ta	Tantalio	180,947 9(1)	
74	W	Tungsteno	183,84(1)	
75	Re	Renio	186,207(1)	
76	Os	Osmio	190,23(3)	
77	Ir	Iridio	192,217(3)	1
78	Pt	Platino	195,078(2)	
79	Au	Oro	196,966 55(2)	
80	Нд	Mercurio	200,59(2)	
81	Tl	Talio	204,383 3(2)	
82	Pb	Plomo	207,2(1)	1, 2
83	Bi	Bismuto	208,980 38(2)	
84	Ро	Polonio	[209]	5
85	At	Astato	[210]	5
86	Rn	Radón	[222]	5
87	Fr	Francio	[223]	5
88	Ra	Radio	[226]	5
89	Ac	Actinio	[227]	5
90	Th	Torio	232,038 1(1)	1, 5
91	Pa	Protactinio	231,035 88(2)	5
92	U	Uranio	238,0289(1)	1, 3, 5
93	Np	Neptunio	[237]	5
94	Pu	Plutonio	[244]	5
95	Am	Americio	[243]	5
96	Cm	Curio	[247]	5
97	Bk	Berkelio	[247]	5

No. Atómico	Símbolo	Nombre	Peso Atómico	Notas
98	Cf	Californio	[251]	5
99	Es	Einsteinio	[252]	5
100	Fm	Fermio	[257]	5
101	Md	Mendelevio	[258]	5
102	No	Nobelio	[259]	5
103	Lr	Laurencio	[262]	5
104	Rf	Rutherfordio	[261]	5, 6
105	Db	Dubnio	[262]	5, 6
106	Sg	Seaborgio	[263]	5, 6
107	Bh	Bohrio	[262]	5, 6
108	Hs	Hassio	[265]	5, 6
109	Mt	Meitnerio	[266]	5, 6
110	Uun	Ununnilio	[269]	5, 6
111	Uuu	Unununio	[272]	5, 6
112	Uub	Ununbio	[277]	5, 6

Peso Atómico de los elementos (Concluye)

NOTAS:

- 1. Son conocidos especímenes geológicos en los cuales el elemento tiene una composición isotópica fuera de los límites del material normal. La diferencia entre el peso atómico del elemento en tales especímenes y el dado en la Tabla puede exceder la incertidumbre fijada.
- 2. El intervalo en composición isotópica de material terrestre normal impide un valor más preciso que el que es dado; el valor tabulado debe ser aplicable a cualquier material normal.
- 3. Pueden ser encontradas composiciones isotópicas modificadas en material disponible comercialmente porque ha sido sometido a un fraccionamiento isotópico inadvertido o sin revelar. Desviaciones sustanciales en el peso atómico del elemento del dado en la Tabla pueden ocurrir.

- 4. Materiales de Li disponibles comercialmente tienen pesos atómicos que varían entre 6,94 y 6,99; si un valor más exacto es requerido, debe ser determinado del material específico.
- 5. El elemento no tiene núcleos estables. El valor encerrado en paréntesis , por ejemplo [209], indica el número de masa de más larga vida del elemento. Sin embargo tres de tales elementos (Th, Pa, U) tienen un composición isotópica terrestre característica, y para estos es tabulado un peso atómico.
- 6. Los nombres y símbolos para los elementos 110-111 están bajo revisión. El sistema temporal recomendado por J Chatt, Pure Appl. Chem., 51, 381-384 (1979). Los nombres de los elementos 101-109 fueron acordados en 1997 (Ver Pure Appl. Chem., 1997, 69, 2471-2473)

APÉNDICE 5 [25]

Nombre	Minúsculas	Mayúsculas	Nombre	Minúsculas	Mayúsculas
Alfa	α	A	Ny	ν	N
Beta	β	В	Xi	کے	Ξ
Gamma	γ	Γ	Ómicron	0	О
Delta	δ	Δ	Pi	π	П
Épsilon	3	Е	Rho	ρ	P
Zeta	ζ	Z	Sigma	σ, ς	Σ
Eta	η	Н	Tau	τ	Т
Theta	0,9	Θ	Ípsilon	υ	Y
Iota	ı	Ι	Phi (Fi)	φ,φ	Ф
Kappa	к	K	Ji (Chi)	χ	X
Lambda	λ	Λ	Psi	Ψ	Ψ
Му	μ	M	Omega	ω	Ω

Alfabeto griego

BIBLIOGRAFÍA

- [1] V. Kose. Dissemination of units in Europe. Traceability and its Assurance in a National and Regional Context. metrologia Vol, 31 No. 6. febrero 1995.
- [2] Bureau International des Poids et Mesures. Le BIPM et la Convention du metre, 1995.
- [3] Bureau Internationl des Poids et Mesures, 1875-1975, BIPM. Publicación en ocasión del centenario, 1975.
- [4] Kula W. Las medidas y los hombres.- Editorial Siglo XXI, 1980.
- [5] Moreau H., Le Systeme Métrique. Des anciennes mesures au Sytéme International d' Unités. Editorial Chirón. París 1975
- [6] Le Système International d'Unites / The International System of Units (SI); Bureau International des Poids et Mesures, Organization Intergovernamentale de la Convention du Metrè; 7e Editiòn; Sevres, Cedex: BIPM, 1998.
- [7] Sistema General de Unidades de Medida. Norma Oficial Mexicana NOM-008-SCFI-1993, Dirección General de Normas, Secretaría de Comercio y Fomento Industrial.

- [8] "Si units and recomendations for the use of their multiples and certain other units". International Standard ISO-1000, International Organization for Standardization, 1981.
- [9] Guide for the use of the International System of units (SI). Edition 1995. National Institute of Standards and Technology
- [10] T.J. Quinn.- Mise en Pratique of the Definition of the Metre (1992).- Metrología Volume 30, Number 5, January 1994.
- [11] International Standard ISO 31. Third edition 1992.
- Part 0: General principles
- Part 1: Space and time
- Part 2: Periodic and related phenomena
- Part 3: Mechanics
- Part 4: Heat
- Part 5: Electricity and magnetism
- Part 6: Light and related electromagnetic radiations
- Part 7: Acoustics
- Part 8: Physical chemistry and molecular physics
- Part 9: Atomic and nuclear physics
- Part 10: Nuclear reactions and ionizing radiations

- [12] American Society for Testings and Materials.-ASTM E 380.
- [13] NIST special publication 811. 1995 Edition.
- [14] Alfonso de Molina.-Vocabulario de la lengua mexicana.- Editorial Porrúa, México 1956.
- [15] Manuel Orozco y Berra.-Historia antigua y de la conquista de México. Editorial Porrúa, México 1960.
- [16] N. Molina Fábrega.-El Código Mendocino y la economía de Tenochtitlán, 1956.
- [17] Antonio de Solís.-Historia de la conquista de México.-Edit. Cosmos, 1991.
- [18] Mariano Galván Rivera. Ordenanzas de tierras y aguas, 1883.
- [19] Hector Nava Jaimes.- El Sistema Métrico Decimal.- Artículo aparecido en el libro: La Ciencia en la Revolución Francesa.- Jesús Kumate, compilador.- El Colegio Nacional. 1991.
- [20] Francisco Sedano.- Noticias de México 1880.- Crónicas del siglo XVI al siglo XVIII.
- [21] Ley Federal sobre Metrología y Normalización, Diario Oficial del 1 de Julio de 1992.

- [22] Ley sobre Pesas y Medidas y su Reglamento de 16 de Noviembre de 1905, publicado en el Diario oficial el 20 de Noviembre de 1905.
- [23] Codata Bulletín 1998, recommended values. Pag. NIST.
- [24] Atomic weights of the elements 1995. IUPAC Pure Appl. Chem., 68, 2339-2359 (1996); 69, 2471-24-73 (1997).
- [25] Diccionario de la Lengua Española. Real Academia de la Lengua Española. Vigésima primera edición. Madrid, 1992.
- [26] Enciclopædia Británica (micropedia) 15th. Edition. 1975
- [27] Comptes rendus de la 21^a CGPM (1999), 2001, 145.
- [28] Comptes rendus de la 22^a CGPM (2003), 2003, 0.
- [29] NIST Special Publication 811. 1995 Edition. Guide for the Use of the International System of Units (SI). Barry N. Taylor.
- [30] Víctor Castillo F.- Unidades nahuas de medida.-Estudios de Cultura Náhuatl, No. 10, México 1972, citado por Ma. Teresa Sepúlveda y Herrera en Arqueología Mexicana.

ANEXO $\begin{tabular}{ll} EL PATRÓN NACIONAL DE MASA \\ KILOGRAMO PROTOTIPO NO 21 \end{tabular}$

EL PATRÓN NACIONAL DE MASA KILOGRAMO PROTOTIPO Nº 21

En 1875, Francia dio a conocer oficialmente al mundo el Sistema Métrico Decimal con la celebración del Tratado del Metro*. Los países adherentes que firmaban el Tratado, se comprometían a sostener a gastos comunes, la estructura científica, técnica y administrativa que implicaba el establecimiento, el mejoramiento y la difusión de las unidades de este Sistema. Dentro de este Tratado, se creó la Conferencia General de Pesas y Medidas, CGPM, el Comité Internacional de Pesas y Medidas, CIPM, y la Oficina Internacional de Pesas y Medidas, BIPM.

En el año en que se celebró dicho Tratado, los problemas sociales y los levantamientos armados continuaban por toda la República Mexicana. Tres años antes de la reunión internacional había fallecido Don Benito Juárez y la presidencia, primeramente interina y después constitucional, la tenía Don Sebastián Lerdo de Tejada. En estos años pertenecientes al último cuarto del siglo XIX, se gestaba en la República Mexicana, un gran movimiento científico y cultural, encabezado por personalidades que tenían estrecho contacto en los círculos de gobierno.

En el campo de las mediciones sobresalían, por su apego al Sistema Métrico Decimal y por el convencimiento del gran beneficio que traería al país, los ingenieros de caminos y los topógrafos, pioneros en su aplicación en México. La primera disposición de carácter oficial que tuvo el país relativa al uso del Sistema Métrico Decimal, emergió de la circular Nº 94 del Ministerio de Fomento, Colonización, Industria y Comercio el 20 de febrero de 1856, por el que habían de sujetarse a este Sistema, todos los Directores de caminos y demás ingenieros empleados por esa dependencia, en cuantas operaciones ejecutaren en el desempeño de sus respectivas comisiones. Dentro de esta especialidad se encontraba Francisco Díaz Covarrubias, quien después se destacó como notable hombre de ciencia, educador, gran promotor de los estudios astronómicos en nuestro país y presidente de la Sociedad Humboldt y que conjuntamente con el Ing. Manuel Fernández Leal, que primeramente estuvo como Oficial Mayor y posteriormente desempeñó durante cerca de 10 años el cargo de Ministro de Fomento, Colonización e Industria en el gobierno de Dn. Porfirio Díaz, fueron piezas claves para el ingreso de México a la Convención del Metro y a la adquisición de los patrones nacionales.

En 1875, ambos personajes se encontraban en París, época en que se le consideraba como la capital científica y cultural del mundo, de regreso de Yokohama, ciudad japonesa a la que habían acudido como participantes de la comisión científica mexicana para observar el tránsito del planeta Venus por el Sol e intercambiar con los científicos más destacados del mundo, los cálculos que se derivaban de las observaciones de ese fenómeno natural. Sus intervenciones permitieron demostrar al concierto de los países civilizados de la época, el alto nivel que había alcanzado el México científico de aquel entonces.

A pesar de que los ingenieros Francisco Díaz Covarrubias y Manuel Fernández Leal podían asistir a la Reunión Diplomática del Tratado del Metro, como seguramente eran sus fervientes deseos, nacidos de sus trayectorias y especialidades y del convencimiento de la bondad del Sistema Métrico en el país, no lo hicieron en virtud de que estaban rotas las relaciones del gobierno de la República Mexicana con el gobierno de Francia a causa de los acontecimientos de la época.

^{*} También llamado Convención del Metro

Cuando se celebró el Tratado del Metro aún quedaba entre los propios científicos franceses el resentimiento hacía los representantes del Gobierno Republicano de México que derrocó a la Administración Imperial de Maximiliano, tal como lo experimentó el Ing. Covarrubias en los círculos intelectuales franceses, por la actitud de algunos de sus connotados hombres de ciencia a causa de la fracasada aventura bélica de Napoleón III.

En México en 1876, Don Sebastián Lerdo de Tejada trató de reelegirse como presidente, el General Don Porfirio Díaz lo desconoce y se levantó en armas proclamando el Plan de Tuxtepec, asumiendo la presidencia a partir de enero de 1877 hasta el año de 1880. En noviembre de ese año, culminaron las gestiones apoyadas por el General Díaz con las que el gobierno de Francia restableció las relaciones diplomáticas con México. El General Díaz estaba en las postrimerías de su primera elección como gobernante, para ceder el mando al General Don Manuel González que gobernó hasta el año de 1884.

El 9 de junio de 1883, el gobierno del General González, inició las gestiones para que nuestro país se adhiriese al Tratado del Metro. El Sr. Velazco, Ministro de México en París, notificó que el Gobierno de la República Mexicana había comisionado al Sr. Ing. Francisco Díaz Covarrubias para que estudiara las funciones de la Oficina Internacional de Pesas y Medidas.

Es muy probable que al Ing. Covarrubias, se le haya retrasado su comisión y posteriormente haya sido detenida por el cambio de gobierno que se realizó el 25 de septiembre de 1884 con la primera reelección del Gral. Don Porfirio Díaz; a pesar de ello, el 18 de ese mismo mes y año, el comité Internacional de Pesas y Medidas proporcionó la información sobre la contribución económica de ingreso de nuestro país, basado en el tiempo en que el Sistema Métrico había sido adoptado y en función del número de habitantes que tenía.

Las gestiones se detuvieron hasta después de la segunda reelección del Gral. Porfirio Díaz y fue hasta el 4 de agosto de 1890, cuando el Sr. Gustavo Baz, Ministro de México en París, notificó, la adhesión de los Estados Unidos Mexicanos al Tratado del Metro y manifestó que: "...Mi gobierno está dispuesto a pagar, luego que conozca su monto, las cuotas que le sean designadas, tanto para contribuciones, como para la adquisición del metro y del kilogramo, prototipos de platino e iridio."

Seguramente que esta decisión fue tomada por Don Porfirio Díaz, apoyada en la recomendación del Ing. Manuel Fernández Leal, quien desempeñaba el cargo de Oficial Mayor del Ministerio de Fomento y que al año siguiente sería nombrado Ministro de Estado, encargado del Despacho de ese Ministerio.

Cuando se celebró la Primera Conferencia General de Pesas y Medidas en 1889, México continuaba con sus gestiones para formar parte de este organismo internacional. En dicha Conferencia se presentaron 40 patrones de masa de forma cilíndrica, de altura igual a su diámetro, fabricados de una aleación de platino-iridio, producidos por virtud del Tratado del Metro, por la casa inglesa Jhonson Matthey & Co., los que fueron numerados progresivamente. Uno de ellos se seleccionó como el patrón internacional cuya masa se le asignó por definición el valor exacto de un kilogramo y otros cuatro que fueron designados como sus testigos. Dentro de los restantes quedó el kilogramo Nº 21 que cobraría especial importancia en nuestro país.

El Comité Internacional de Pesas y Medidas, considerando que como México tenía en 1890 una población de 11 632 924 habitantes y que el Sistema Métrico Decimal estaba legalmente en vigor desde el 15 de marzo de 1857, le fijó al país una contribución de ingreso al Tratado de 22 335 francos y para el año siguiente, 1891, le fijó una cuota de 2 878 francos.

Nuestro país se adhirió al Tratado del Metro el 30 de diciembre de 1890. Se consideraba de extrema importancia la obtención de estos prototipos, tanto así que el gobierno del Gral. Díaz dio instrucciones a su Encargado de Asuntos en Francia, Sr. Gustavo Baz, que lo transmitió al Secretario del Comité Internacional de Pesas y Medidas, en relación con el costo del prototipo del kilogramo y su pago inmediato: ..."En lo que concierne al pago del prototipo y de sus accesorios, esta Legación está dispuesta a hacerlo al Ministerio de Asuntos Extranjeros, el mismo día en que se le otorgue..." En el sorteo llevado a cabo el 4 de abril de 1891 en presencia del Sr. Ramón Fernández, enviado Extraordinario y Ministro Plenipotenciario de los Estados Unidos Mexicanos, le tocó en suerte el kilogramo patrón marcado con el Nº 21 que había sido comparado con el patrón internacional el 28 de septiembre de 1889, asignándole un valor de 1 kg + 63 µg. El Sr. Gustavo Baz, pagó a nombre del gobierno mexicano la cantidad de 3 105 francos por la adquisición del prototipo del kilogramo y una suma de 200 francos más por los accesorios y aparatos auxiliares del mismo.

El 13 de noviembre del 1891, el kilogramo patrón Nº 21 fue entregado para su traslado a México al capitán de navío Ortiz Monasterio, comandante del buque "Zaragoza". El 20 de enero de 1892, llegó a nuestro país el prototipo y el 23 del mismo mes fue recibido por el propio Ing. Manuel Fernández Leal que seguía desempeñando su encargo como Ministro de Estado y del Despacho de Fomento, Colonización e Industria del gobierno porfirista, designándolo como Patrón Nacional de Masa y dejándolo guardado con su embalaje con el que fue transportado de Francia en la sede del Ministerio. Posteriormente fue entregado para su depósito al Departamento de Pesas y Medidas, por el propio Ing. Fernández Leal, el 20 de agosto de 1900, en una caja fuerte especialmente adquirida para este fin.

La ley sobre Pesas y Medidas de 1905 promulgada por Dn. Porfirio Díaz el 6 de junio de ese año, declara en su artículo 4º, patrón nacional de masa al kilogramo Nº 21. Este, conjuntamente con el de longitud, el prototipo Nº 25, fueron los primeros patrones nacionales legalmente declarados que tuvo nuestro país.

En los años subsecuentes, la conservación del patrón nacional de masa en su carácter de prototipo nacional, ha estado a cargo de la dependencia del gobierno federal que tiene bajo su responsabilidad la aplicación de la política industrial y comercial del país, hasta que por gestiones con la entonces Secretaría de Comercio y Fomento Industrial, el kilogramo se trasladó en 1994 para su custodia, mantenimiento y transferencia al Centro Nacional de Metrología, en su carácter de patrón nacional.

El 30 de marzo de 1996 en el laboratorio primario de masa, se determinó la transferencia de la exactitud del patrón nacional Nº 21 hacía patrones de referencia de acero inoxidable, estableciéndose en esa forma los primeros eslabones de la cadena de trazabilidad de la escala nacional. Anteriormente, la exactitud de los patrones de referencia utilizados en la medición de masa en el país, se derivaba de los patrones nacionales extranjeros, principalmente de Estados Unidos, Rusia o Alemania; actualmente ya no tenemos dependencia metrológica para establecer el valor correcto de estas mediciones.

El objetivo, hoy en día, es sostener la uniformidad y exactitud de las mediciones en nuestro país dentro del concierto internacional y el patrón nacional de masa, el añejo representante del Sistema Métrico, nos permite, como un ejemplo muy significativo, la posibilidad de

hacerlo, como seguramente fueron los anhelos de Francisco Díaz Covarrubias y Manuel Fernández Leal, preclaros representantes de los ingenieros mexicanos que creyeron fervientemente en que la metrología llamada en aquel entonces "pesas y medidas", desarrollada con el empleo de un sistema único de unidades científicamente establecidas, debe ser una necesidad para cualquier país que busque su desarrollo en la aplicación del conocimiento técnico.

Héctor Nava Jaimes Félix Pezet Sandoval Centro Nacional de Metrología, CENAM.

Julio, 2001

BIBLIOGRAFÍA

Casasola Gustavo, 6 siglos de Historia Gráfica de México 1325-1976, Editorial Gustavo Casasola, 1978, México.

Casasola Gustavo, Hechos y Hombres de México, Porfirio Díaz, Editorial Gustavo Casasola, México, 1994.

Comité International des Poids et Mesures, Quatorzieme Rapport aux Gouvernements Signataires de la Convention du Metre, sur lexercice de 1890, Gauthier-Villars et Fils, Imprimeurs-Libraries, Paris, 1891.

García Julio, La Sección Electrotécnica del Departamento de Pesas y Medidas de la Secretaría de Industria, Comercio y Trabajo; Empresa Editorial de Ingeniería y Arquitectura, S.A., México, 1925.

Krauze Enrique, Biografía del Poder, Porfirio Díaz, Fondo de Cultura Económica, México, 1987.

Moreno Corral Marco Antonio, Odisea 1874 o el Primer Viaje Internacional de Científicos Mexicanos, La ciencia desde México 15, Fondo de Cultura Económica, 1986.

Nava Jaimes Héctor, El Sistema Métrico Decimal, La Ciencia en la Revolución Francesa. J. Kumate (coordinador) El Colegio Nacional, México 1991.

Nava J. H. Pezet S.F. Mendoza I.J. Hernández G.I.- El Sistema Internacional de Unidades (SI). Trcera edición. CENAM, Febrero 1997.

Pezet Sandoval Félix, vivencia con los Patrones Nacionales 1958-1997, CENAM. México.

Secretaría de Fomento, Prototipos nacionales de metro y kilogramo; Datos arreglados por el Departamento de Pesas y Medidas, Oficina Tipográfica de la Secretaría de Fomento, México, 1901.