

Non-Invasive Assessment of Stomach Fullness Using Electrical Impedance Tomography

Team: Harry Guan¹, Brahms Krever¹, Yifei Wu¹ Supervisor: Nasser Ashgriz¹

1. Department of Mechanical & Industrial Engineering, University of Toronto, Ontario, Canada

1. Addressing Lag in Satiety

- 1. Problem: Overeating is a contributor to obesity.
- 2. Solution: Develop a low-cost, real-time stomach fullness monitoring device.
- 3. Goal: Determine the relationship between stomach fullness and electrical conductivity.

Experimental Conditions	
Measurement Interval (min)	5
Avg User Height (cm)	178
Avg User Weight (kg)	75
Avg Solid Food Intake (g)	30
Avg Liquid Food Intake (mL)	20

4. Fullness Correlation

5. Summary & Future Work

Summary: Developed real-time stomach monitoring via EIT with a 16-electrode STM32 system and MATLAB GUI. Safety tested, cost-effective, and compliant.

Future Work: Improve on hardware, algorithms, and user adaptability.

Acknowledgments References