毫米波传感导论: FMCW 雷达

Sandeep Rao,德克萨斯仪器公司

毫米波传感导论: FMCW 雷达

1

模块1: 距离估计

- •FMCW 雷达操作基础
- •使用雷达测量雷达前方多个物体的距离
- •中频信号和中频带宽的概念
- •距离分辨率

在本单元中,我们将尝试回答以下问题......

雷达如何估计物体的距离?

目标雷达 D

两个对象之间的距离有多近,还能被分解为两个对象?

什么决定了雷达能看到的最远距离?

什么是啁啾声?

调频连续波雷达发射一种称为"啁啾"的信号。啁啾是频率随时间线性增加的正弦波,如这里的振幅与时间(或"A-t"图)所示。

- 频率-时间图(或"f-t 图")是表示啁啾的方便方法。
- 啁啾的特征是起始频率(fc)、带宽(B)和持续时间(Tc)。
- 啁啾的斜率定义了啁啾上升的速率。在这个例子中,啁啾以 40us 扫过 4GHz 的带宽,对应于 100MHz/us 的斜率

A 1TX-1RX FMCW radar

- 1. A synthesizer (synth) generates a chirp
- 2. The chirp is transmitted by the TX antenna
- The chirp is reflected off an object and the reflected chirp is received at the RX antenna.
- The RX signal and TX signal are 'mixed' and the resulting signal is called an 'IF signal'. We'll analyze the IF signal in more detail in the next slide

What is a mixer?

A mixer is a 3 port device with 2 inputs and 1 output. For our purposes, a mixer can be modelled as follows. For two sinusoids x1 and x2 input at the two input ports, the output is a sinusoid with:

- Instantaneous frequency equal to the difference of the instantaneous frequencies of the two input sinusoids.
- Phase equal to the difference of the phase of the two input sinusoids

$$x_1 = \sin[w_1 t + \phi_1]$$
 $x_{out} = \sin[(w_1 - w_2)t + (\phi_1 - \phi_2)]$
 $x_2 = \sin[w_2 t + \phi_2]$

中频信号

注意,通常是总啁啾时间的一小部分=>TX 啁啾的非重叠 段通常可以忽略不计。例如,对于最大距离为 300m 且

Tc=40us 的雷达。Tc=5%*τ τ/*

为 S2d/c ^{K1}

K 信号的延迟版本T 表示雷达

irp 的瞬时频率之差。如下图所示,这是一条

且线。

- 因此:在雷达前面的单个物体产生一个中频信号,它是一个恒定频率的音调。
 - –此音调的频率为 $S_T = S_2 d/c$ [$e_T = 2 d/c$, 其中 $e_T d$ 是物体的距离, $e_T d$ 是光速]

使用 f-t 图可以很容易地理解混合器的操作。

傅立叶变换: 快速回顾

- •傅里叶变换将时域信号转换为频域。
- •时域中的正弦波在频域中产生单峰。

傅立叶变换: 快速回顾

在下面的观察窗口 T 内,红色音调完成 2 个周期,而蓝色音调完成 2.5 个周期。0.5 个周期的差异不足以分辨频谱中的音调。

 观察时间越长=>分辨率越高。一般来说, T 的观测窗可以分离出间隔大于 1/T 赫兹

雷达前面有多个物体

雷达前面的多个物体=>接收天 反射啁啾

线处的多个

从多个对象

中频信号的频谱将显示多个音调,每个音调的频率与雷达上每个物体的距离成比例

中频频谱F

- 距离分辨率指的是分辨两个密集物体的能力。
- 在这张幻灯片中,两个物体距离太近,在频谱中显示为单峰

-距离为 d 的物体产生频率为 S2d/c 的中频音调

- --只要频率不同,两个音调就可以在频率上分辨Δf>1/T
- •你能用上面的公式推导出雷达的距离分辨率吗?
 - -- 距离分辨率取决于哪些参数? 啁啾持续时间, 带宽, 斜率?

For two objects separated by a distance Δd , the difference in their IF frequencies is given by $\Delta f = \frac{S2\Delta d}{c}$. Since the observation interval is T_c , this means that

$$\Delta f > \frac{1}{T_c} \Rightarrow \frac{S2\Delta d}{c} > \frac{1}{T_c} \Rightarrow \Delta d > \frac{c}{2 \, ST_c} \Rightarrow \frac{c}{2 \, B} \mathbb{E} \text{ (since B=ST_c)}$$

距离分辨率 (dres) 仅取决于啁啾扫频的带宽

$$d_{res} = \frac{c}{2B}$$

问题

- •这两个啁啾中哪一个提供了更好的距离分辨率?
 - -这个结果背后的直觉是什么?

问题

- •这两个啁啾中哪一个提供了更好的距离分辨率?
 - -这个结果背后的直觉是什么?

啁啾 A 啁啾 B

一些典型的数字				
带宽	距离分辨率			
4 兆赫	3.75 厘米			
2GHz	7.5 厘米			
1 兆赫	15 厘米			
600 兆赫	25 厘米			

中频信号数字化

fIF\U 最大值

- •中频信号的相关带宽取决于所需的最大距离: $f_{\text{IF_max}} = \frac{\text{S2d}_{\text{max}}}{\text{c}}$
- •如果信号通常数字化(LPF+ADC),以便在 DSP 上进行进一步处理。
- •如果带宽因此受到 ADC 采样率(Fs)的限制。 $F_s \geq \frac{S2d_{max}}{c}$

$$d_{\max} = \frac{F_s c}{2S}$$

Fs 的 ADC 采样率将雷达的最大范围限制为

问题

•回顾我们之前的例子,我们现在还能对这两个啁啾说些什么?

啁啾 A 啁啾 B

啁啾 A 和啁啾 B 具有相同的距离分辨率:

- •对于相同的 dmax, Chirp A 只需要一半的 IF 带宽(=>ADC 上更小的 Fs)。
- •但是 Chirp B 的优点是需要一半的测量时间。

摘要

关键概念/公式

•距离 d 处的物体产生的中频频率为:

$$-f_{IF} = \frac{S2d}{c}$$

- •距离分辨率(dres)取决于带宽(B):
 - $-d_{res} = \frac{c}{2B}$
- •ADC 采样率 Fs 将最大范围(dmax)限制为

$$d_{\max} = \frac{F_s c}{2s}$$

啁啾带宽 vs 中频带宽?

更大的啁啾带宽=>更好的距离分辨率 更大的中频带宽=>更快的啁啾,更好的最大距离

后记

•与雷达等距离的两个物体。范围-FFT 是什么样子的?

范围 FFT 将具有对应于范围 d 的单峰

- •我们如何区分这两个物体?
 - -事实证明,如果两个物体相对于雷达的速度不同,那么这些物体可以通过进一步的信号处理分离出来。为了理解这一点,我们需要看看中频信号的相位,这是我们将在下一个模块中做的事情

毫米波传感简介:调频连续波雷达模块 2:中频信号的相位

傅立叶变换: 快速回顾

- •傅里叶变换将时域信号转换为频域。
- •时域中的正弦曲线在频域中产生峰值。一般来说,频域中的信号是复杂的(即,每个值都是具有振幅和相位的相量)

- 傅立叶变换将时域信号转换为频域信号。
- 时域中的正弦曲线在频域中产生峰值。一般来说,频域中的信号是复杂的(即,每个值都是具有振幅和相位的相量)

傅立叶变换: 快速回顾

中频信号频率: 模块 1 概述

让我们快速回顾一下模块 1 中的内容。我们看到 FMCW 雷达发射啁啾,可以用这里所示的频率-时间(或 f-t)图来表示,或者等效地用(电流-时间)或 a-t 图来表示。聚焦在 f-t 图上,雷达接收到来自物体的反射啁啾,经过 tau 的往返延迟。发射信号和反射信号在混频器中混合,以产生具有恒定频率 Stau(或等效的 S2d/c,其中 d 是到对象的距 离)的 IF 信号。暂停

雷达前面的单个物体产生一个恒定频率为 S2d/c 的中频信号

中频信号的相位

对于距离雷达 d 的物体,中频信号将是正弦信号:

$$Asin(2\pi ft + \phi o)$$
= S2d

为了更直观地了解 IF 信号的本质,让我们看看"A-t"图。

Phase difference between A and D is $4\pi \Delta d$

$$\Delta \Phi = 2\pi f_c \Delta \tau = \frac{4\pi \Delta}{\lambda}$$

This is also the phase difference between C and F

For an object at a distance d from the radar, the IF signal will be a sinusoid:

$$f = \frac{S2d}{c} \qquad \Delta \phi = \frac{4\pi\Delta d}{\lambda}$$

中频信号的相位

如果往返延误变化不大怎么办Δτ

中频信号对物体小位移的灵敏度(1/2)

回想一下,对于距离雷达 d 的物体,中频信号将是正弦信号:

$$Asin(2.\pi f t + \phi o)$$

$$S2.d 4.\pi \Delta d$$

$$f = \Delta \phi =$$

$$c \lambda$$

考虑左边显示的啁啾。如果雷达前面有物体

s=50MHz/μS 将其位置更改 1 毫米 (对于 77GHz 雷达, 1 毫米=λ/4)

f•中频信号的相位变化

•中频信号的频率变化。现在,

$$\Delta \phi = \frac{4\pi \Delta d}{\lambda} = \pi = 180^{\circ}$$

$$\Delta f = \frac{52\Delta d}{c} = \frac{50 \times 10^{12} \times 22 \times 1 \times 10^{-3}}{3 \times 10^{8}} = 33$$

333Hz 看起来像一个大数字,但在观察窗口中,这只对应于 Tc=40s 的额外频率 $\Delta fTc=333x40x10$ 型-6 = 0.013回循环。这种变化在频谱中是看不出来的 μ^T

中频信号的相位对物体范围的微小变化非常敏感

中频信号对物体小位移的灵敏度(2/2)

一定距离的物体产生一定频率和相位的中频信号

Small motion in the object changes the phase of the IF signal but not the frequency

如何用两个啁啾测量物体的速度(v)

- •发射两个由 Tc 隔开的啁啾
- •与每个啁啾相对应的范围 fft 将在相同位置具有峰值,但具有不同的相位。
- •测量的相位差(ω) 对应于 vTc 对象中的运动

$$\omega = \frac{4\pi v T_C}{\lambda} \Rightarrow v = \frac{\lambda \omega}{4\pi T_C}$$

两个连续啁啾之间的相位差可以用来估计物体的速度

振动物体的测量

除了速度测量外,中频信号的相位对微小运动非常敏感这一事实也是电机振动监测、心跳监测等有趣应用的基础。这张幻灯片是如何工作的快速介绍。此图描绘了以振荡运动移动的对象的时间演化。例如,这可以表示振动物体。这里的假设是这些运动非常小,因此物体的最大位移增量是波长的一小部分(例如,毫米或更小)。如果我们在这个振荡的物体前面放置一个雷达,然后发射一束等间距的啁啾,会发生什么呢。

这些 TX 啁啾中的每一个都会产生反射啁啾,如果信号经过处理,则会在 FFT 范围内产生峰值。现在这个峰值的频率在啁啾中不会有太大的变化。但峰值的相位会对物体的振荡运动作出反应。

振动物体的测量

The time evolution of phase can be used to estimate both the amplitude and periodicity of the vibration

$$\Delta \Phi = \frac{4\pi \Delta d}{\lambda} \Rightarrow \Delta d = \frac{\lambda \Delta d}{4\pi}$$

后记

•多个物体与雷达距离相等,但相对于雷达的速度不同。

•我们如何分离这些物体?

-可使用"多普勒 FFT"分离出相对于雷达具有不同速度的等距离目标。这是我们将在下一个模块中看到的。

毫米波传感导论: FMCW 雷达

模块 3: 速度估计

•快速回顾 FFT 的背景资料

- •测量速度
- •最大可测量速度

•速度分辨率和帧概念

32

复杂序列的快速傅立叶变换:快速回顾(1/3)

考虑与相量旋转的恒定信号对应的离散信号。 ω 每个样本的弧度。对这一系列样本进行 FFT,会产生一个峰值,峰值位于 ω

ω

如果信号由两个相量之和组成,则FFT有两个峰值(每个相量以

 ω_1 and ω_2 radians per sample , respectively)

 $A1.ejk\omega 1 + A2.ejk\omega 2.$

复杂序列的快速傅立叶变换:快速回顾(2/3)

•ω1=0, ω2=π/N 在 N 个样本上,第二相量已经穿过半个周期(π rads) 大于第 1 相量=>不足以在频域中解析 两个对象

序列长度越长=>分辨率越高。一般来说,一个长度为 N 的序列可以分离出相隔 2 倍以上的角频率 π/N rad/样品 34

复杂序列的快速傅立叶变换:快速回顾(3/3)

连续和离散信号的频域分辨率准则比较

•连续信号:
$$\Delta f = \frac{1}{T}$$
 cycles/sec

•离散信号:
$$\Delta \omega = \frac{2\pi}{N} radians/sample$$

$$= \frac{1}{N} \ cycles/sample$$

如何用两个啁啾测量物体的速度(v)

- •发射两个由 Tc 隔开的啁啾
- •与每个啁啾相对应的范围 fft 将在相同位置具有峰值,但具有不同的相位。
- •测量的相位差(ω) 对应于 vTc 对象中的运动

$$\omega = \frac{4\pi v T_C}{\lambda} \Rightarrow v = \frac{\lambda \omega}{4\pi T_C}$$

两个连续啁啾之间的相位差可以用来估计物体的速度

最大可测速度

Movement away from radar => ω >0

Movement towards the radar => ω <0

The measurement is unambiguous only if $\mid \omega \mid$ < 180° (i.e. π radians)

- Unambiguous measurement of velocity => $|\omega| < \pi$
- $\frac{4\pi v T_c}{\lambda} < \pi l \Rightarrow [v < \frac{\lambda}{4T_c}]$

$$v_{max} = \frac{\lambda}{4T_c}$$
 由两个间隔 Tc 的啁啾测得的最大相对速度()为*最大值*

因此,更高的 vmax 需要密集的啁啾

同一距离多目标测速

考虑在速度 V1 和 V2 附近雷达接近雷达的两个物体。

峰值处的值具有两个对象的相量分量。

因此,前面的方法将不起作用

同一距离多目标测速

解决方案:发射 N 个等间距啁啾(此单元通常称为"帧")

123牛

An FFT on the sequence of phasors corresponding to the range-FFT peaks resolves the two objects. This is called a doppler-FFT

 ω_1 and ω_2 correspond to the phase difference between consecutive chirps for the respective objects

$$v_1 = \frac{\lambda \omega_1}{4\pi T_c}$$
, $v_2 = \frac{\lambda \omega_2}{4\pi T_c}$

速度分辨率

- •什么是"多普勒 FFT"的速度分辨率(vres)能力?
 - -即 v1 和 v2 之间的最小间距是多少,以使它们在 DopplerFt 中显示为两个峰值
 - —回想一下,长度为 N 的序列上的 FFT 可以分离两个频率ω1 和ω2 等长|ω1 ω2| > 2π/N 这可用于导出方框(左下方)中所示的 VRE

雷达中的一帧有一帧长

问题

雷达 AF 由 2N 个等间距啁啾组成

雷达B中的一帧具有相同长度Tf的帧,但是啁啾

数(N)的一半。雷达B

•关于这两台雷达的最大可测量速度 (vmax)和速度分辨率(vres),你 能说些什么?

2D-FFT 可视化

与雷达等距离的物体以不同的速度接近它

毫米波传感导论: fmcw 雷达

模块 4: 一些系统设计主题

- •2D-FFT 处理
- •框架设计中的权衡
 - •雷达距离方程

FMCW 二维 FFT 处理

corresponding to chirps are stored as the rows

FMCW 二维 FFT 处理

啁啾参数的映射要求

给定距离分辨率(dres)、最大距离(dmax)、速度分辨率(vres)、最大速度(vmax),我们如何设计帧?。让我们画一个可能的设计方法

1. T_c determined using v_{max}

2. B 使用 dres 测定。注意, 对于 B 和

$$v_{max} = \frac{\lambda}{4 T_{c}}$$

$$v_{res} = \frac{\lambda}{2 T_{f}}$$

$$d_{res} = \frac{c}{2B}$$

$$Em,$$

斜率S现在由S=B/Tc确定

3. 帧时间 Tf 可以使用 vres Fif\u max= S2d 公司 _{最大值}

C

啁啾参数的映射要求

- •在实践中,获得啁啾参数的过程可能比上一张幻灯片中指出的更具迭代性。
- -设备可能不支持带宽时所需的最大值
- •由于 fIF_max=S2dmax/c,可能需要在 S 或 dmax 中进行权衡
- -设备必须能够产生所需的坡度
- -需要遵守设备对相邻啁啾之间空闲时间的特定要求

- -设备必须有足够的内存来存储帧中所有啁啾的范围 FFT 数据。
 - •注意,在开始多普勒 FFT 计算之前,必须存储帧中所有啁啾的距离 FFT 数据。

啁啾参数的映射要求

- •产品 Sxdmax 受到设备中可用 IF 带宽的限制。
- •因此, 当 dmax 增加时, =>S 必须减小。
- •假设 Tc 基于 vmax 冻结,较小的斜率直接转化为较差的分辨率

对于给定的 Tc:

近程雷达具有更高的斜率和更大的线性调频带宽(=>更好的分辨率) 远程雷达具有较低的斜率和较小的啁啾带宽

辐射功率密度辐射功率密度

The Radar Range Equation

P: Output power of device

G_{TX/RX}: TX/RX Antenna Gain

σ: Radar Cross Section of the Target (RCS)

A : Effective aperture area of RX antenna

$$\equiv \frac{\frac{P_t \, \delta_{TX} \, M}{4\pi d^2 2} \, M \, m^2}{4\pi d^2}$$

$$= \frac{\frac{P_t \, G_{TX} \, \sigma_0^2}{4\pi d^2} \, M$$

$$= \frac{\frac{P_t \, G_{TX} \, \sigma_0^2}{4\pi d^2} \, M \, m^2}{(4\pi)^2 d^4} \, M \, m^2$$

Power captured at RX ant = $\frac{P_L G_{TX} \sigma A_{RX} f}{(4\pi)^2 d^4}$ [W] $= \frac{P_L G_{TX} \sigma G_{RX} \lambda^{25}}{(4\pi)^3 d^4}$ [W]

物体反射的能量

$$A_{RX} = \frac{G_{RX}\lambda^2}{4\pi}$$

RX ant 的功率密度

雷达距离方程

- •检测目标需要最小信噪比(SNRmin)。
 - -SNRmin 的选择是漏检概率和虚警概率之间的权衡。典型数字在 15dB-20dB 范围内。

•给定 SNRmin,雷达可看到的最大距离可计算为: $\frac{1}{\sigma PtGTXGRX\lambda 2.Tmeas}$ 4.

$$\left(\begin{array}{c} \\ \end{array} \right)$$

 $Dmax = 4.\pi$

3.*SNRminkTF*

后记

•两个与雷达等距且相对雷达具有相同速度的物体。距离-速度图是什么样子的?

范围-2D-FFT 得到的速 度 图 将 具 有 单 峰,因为它们具

有相同的范围和速度

- •我们如何区分这两个物体?
 - -需要多个天线来估计到达角。在下一个模块中讨论

毫米波传感简介: FMCW 雷达模块 5: 角度估计

欢迎来到 fmcw 雷达介绍系列的第5个模块。在过去的4个模块集中在沿两个维度,即距离和速度传感。本模块将重点关注第三感测维度:角度。

•单个物体的角度估计

- •视野
- •角度分辨率
- •讨论距离、速度和角度分辨率

在本单元中,我们将尝试回答以下问题......

到达角基估计

回想一下,物体距离的微小变化会导致相位变化(ω) 在峰值范围内

$$\omega = \frac{4\pi\Delta d}{\lambda} \sim 0 \qquad d \qquad D$$

角度估计至少需要 2 个接收天线。从目标到每个天线的差分距离导致 2D-FFT 峰值的相位变化,该峰值用于估计到达角

为什么这两个表达式相差 2 倍?

如何使用 2 个接收天线测量物体的 AoA

$$(---)_{\omega = 2\pi d \sin(\theta) \Rightarrow \theta}$$

$$= \sin -\lambda \omega_{1}$$

$$\lambda 2\pi d$$

•TX 天线发射一帧啁啾

- •每个接收天线对应的 2D-FFT 在相同位置具有峰值,但相位不同(θ).
- •测量的相位差(ω) 可以用来估计物体的到达角

估计精度取决于 AoA

$$\omega = \frac{2\pi d \sin(\theta)}{\lambda}$$

 $\omega = \frac{4\pi v^{T_{C}}}{2}$) •注意 ω 以及 θ 是一种非线性关系(与速度的情况不同

- •在 θ =0, ω 对环境变化最敏感 θ . 敏感度 ω θ 减小为 θ 增加(在 θ =90 度)
- •因此估计θ 更容易出错θ 增加。

角度估计是最精确的θ 接近于零

估计精度随着时间的推移而下降θ 接近 90 度

雷达

Sensitivity of $sin(\theta)$ to θ degrades as θ increases

角视野

Objects to the left of the radar => ω >0

Objects to the right of the radar=> ω <0

The measurement is unambiguous only if $|\omega| < 180^{\circ}$ (i.e. π radians)

- Unambiguous measurement of velocity => |ω| < 180°
- $\frac{2\pi d\sin(\theta)}{\lambda} < \pi \Rightarrow \mathbb{I}\theta < \sin^{-1}\left(\frac{\lambda}{2d}\right)$

间隔d的两个天线可以提供的最大视场是

$$\left(-\right)_{0 \text{max} = \sin -1}$$

间距 dλ/最大视野 (+/-90o) 中的 2 个结果

在相同距离和速度下测量多个目标的 AoA

从雷达接近雷达时,考虑两个等距雷达目标

峰值处的值具有两个对象的相量分量。

因此,前面的方法将不起作用

在相同距离和速度下测量多个目标的 AoA

解决方案:接收 N 个天线的阵列

An FFT on the sequence of phasors corresponding to the 2D-FFT peaks resolves the two objects. This is called angle-FFT

 ω_1 and ω_2 correspond to the phase difference between consecutive chirps for the respective objects

$$\theta_1 = \sin^{-1}\left(\frac{\lambda\omega_1}{2\pi d}\right)$$
 , $\theta_2 = \sin^{-1}\left(\frac{\lambda\omega_2}{2\pi d}\right)$

SEX SE

123牛

 $| \cdot$ 角度分辨率(θ res)是两个对象在角度 FFT 中作为单独峰值出现的最小角度间隔。公式如下:

•
$$\theta_{res} = \frac{\lambda}{Ndcos(\theta)}$$
 | Ndcos(θ) | Ndcos(θ)

•分辨率通常引用假设 d=
$$\lambda/2$$
 和 $\theta=0 \Rightarrow \theta_{res} = \frac{2}{N}$

角度分辨率

角度分辨率

•角度分辨率(θres)是两个对象在角度 FFT 中作为单独峰值出现的最小角度间隔。公式如下:

•
$$\theta_{res} = \frac{\Lambda}{Ndcos(\theta)}$$
<=注意分辨率依赖于θ. 最佳分辨率θ=0(为什么?)

•分辨率通常引用假设
$$d=\lambda/2$$
 和 $\theta=0 \Rightarrow \theta_{res} = \frac{2}{N}$

分辨率随着 AoA 的增加而降低

角度分辨率

决议经常被引用为假设
$$d=\lambda/2$$
 和 $\theta=0$ => $\theta_{res}=\frac{2}{N}$

角速度估计的比较

角度估计和速度估计都依赖于相似的概念,因此比较我们对这两个问题的讨论是有指导意义的

角度估计

钕

D

- •利用空间中分离的啁啾之间的相位变化
- •分辨率取决于天线阵列长度 (Nd 是数组长度)
- •可明确测量的最大角度取决于距离 d 连续天线之间

FMCW 雷达的角度估计

•单个收发链可以估计多个目标的距离和速度。•除了距离之外,定位还需要角度信息

- •角度估计需要多个 RX 天线。
- •2D FFT 网格在每个 RX 链处生成(对应于每个天线)
- •使用天线上相应峰值的 FFT 来估计角度

问题

- •两个静止物体在同一雷达的同一范围内,该雷达有 1 个 TX 和 2 个 RX 天线。
- •是否可以估计两个物体的到达角

两个对象出现在两个 RX 的同一个箱子中。 仅使用 2 根天线无法分离

问题

•如果其中一个物体的速度不为零呢?

两个对象现在以不同的格式显示 2D 中的"箱子"-快速傅里叶变换。角度 现在可以通过比较蓝色/红色的相位来执行估计箱子

- •距离分辨率:
- -与啁啾所跨越的带宽(B)成正比。
- -一个好的合成器应该能够跨越一个大的带宽(4GHz=>4cm)
- •速度分辨率:
 - -通过增加帧时间(Tf)=>无硬件成本,可以提高速度分辨率。
 - -5 毫秒的 Tf=>1.5 公里/小时的 vres
- •角度分辨率:
 - -提高角度分辨率需要增加接收天线的数量。

每个接收天线都有自己的接收链(LNA、混频器、LPF、ADC)。

-成本和面积限制将大多数单芯片雷达解决方案限制为少量 RX 链(可通过多芯片级联进行进一步改进)

距离和速度分辨率是雷达的固有优势

• 物体只需要在距离、速度和角度的一个维度上相互分辨。因此,具有良好距离和速度分辨率的雷达可以降低对角度分辨率的要求

这些例子说明了这一点。这意味着分离这些信号必须依赖于角度分辨率

雷达 capa。雷达信号

两个与雷达等距离的静止物体=>它们的信号落在同一距离多普勒仓=>需要良好的角度分辨率来分辨它们。

• 物体只需要在距离、速度和角度的一个维度上相互分辨。因此,一个具有良好距离和速度分辨率的雷达可以降低对角度估计的要求

此对象的范围稍有不同,此时不必使用"范围差异>范围分辨率"(range difference>range Resolution)

雷达不再以角度分辨了

实际上,两个物体完全相等的可能性很小。距离分辨率越高,信号越有可能分离到不同的箱子中。

• 物体只需要在距离、速度和角度的一个维度上相互分辨。因此,一个具有良好距离和速度分辨率的雷达可以降低对角度估计的要求

只要雷达是静止的,这两个静止物体就具有相同的相对速度(即零 w.r.t 雷达)。但当雷达开始 向前移动时,这些物体中的每一个都会

雷达在速度维度上分离出来。

雷达的运动也有助于分离静止物体。速度分辨率越高=>速度越小就足够了