Gym Venue Optimal Location
IBM/Coursera Applied Data Science Capstone project
Oleksandr Bogach
May 31, 2020

Table of contents

Introduction	3
Business goal	3
Business objectives	3
Target Audience	3
In scope	3
Out of scope	3
Impact factors overview	3
Data	5
Data sources	5
Considered impact factors by data source	5
Data processing	6
Data retrieval	6
Categories retrieval	6
Venues retrieval	7
Chicago demographics data	8
Data consolidation	8
Venue-community resolution	8
Community scope reconciliation	9
Put data together	9
Methodology	12
Exploratory Data Analysis	12
Clustering	16
Results	21
Discussion	23
Conclusion	23

Introduction

This project is about finding an optimal location for a gym. Specifically, this report will be targeted to stakeholders interested in opening a gym in Chicago, IL.

There are a lot of sports facilities in Chicago, so the target is to detect optimal locations: accessible, not crowded with competitors, located closer to where people live, work or spend a lot of time, and proper adjacent tenants. More preferable locations will be identified among communities with higher income and greater population density.

Data science power will be utilized to generate the top five most promising neighborhoods based on these criteria. The advantages of each location will then be clearly expressed so that the best possible final location can be chosen by stakeholders.

Business goal

Find an optimal location for opening a new gym in Chicago, IL.

Business objectives

- identify positive and negative impact factors on a gym location;
- analyze impact factors across all communities in Chicago, IL;
- suggest the top five locations to open a new gym.

Target Audience

- gym/fitness business owners looking for an expansion in Chicago, IL
- real estate agencies

In scope

Find an optimal location for an abstract gym

Out of scope

- Publishing intermediate files produced by the code is not intended to comply with data sources Terms of Use and avoid any discrepancies. Nonetheless, this study is completely reproducible.
- Economical efficiency is not considered
- Facility availability is out of scope
- Obtaining foursquare credentials and switching to the Personal tier are not described here

Impact factors overview

The following factors impact our business problem:

Demographics of the community - Normally, the majority of gym members prefer to have
workouts at a nearby facility. This makes demographics an essential factor either to find
optimal location or plan gym facilities. Population and Population density can be used to
assess foot traffic as it mainly depends on how many people live in a particular community.
Foot traffic is also important for a business to grow - walking by people can be converted
to regular clients. Income and Population can also be used to help in decision making

when choosing from multiple communities or exploring suitable quality, facility specialization, or membership options. The nearby location of the gym also promotes overall attendance. Such demographics factors as education, employment status, industries, occupation, sex, and age can help better understand hidden correlations and therefore should also be explored.

- Facility accessibility Location should be easily accessible by feet, bike, public transport or car. By feet is based on the closest location to such places as subway stations, public transport stops, shopping malls, or business centers. Clients who bike over to the gym facility will require additional area to secure it while on a workout. Such areas are often located nearby public commuting hubs, end of line transport stops or at car parking. Public transport in walking vicinity is also a significant factor, meaning clients can commute more faster and take a short walk to the gym. For clients driving a car, the nearby parking lot is a mandatory consideration.
- **Competitors** The best strategy with competitors is to avoid or minimize their impact by distancing from them. Competitors are not only facilities that offer the same specialization, but those with similar specializations as well. For instance, yoga studio, fitness studio, pool, and gym are all competing in one way or another. Therefore, distance to the nearest competitors along with the rating will play a significant role in choosing an optimal location for the gym.
- Adjacent Tenants Two sides of the same coin: facilities that promote the gym and facilities that demote it. For instance, located next to a bar, liquor or smoke store, or fast-food venue does not deliver a "be healthy" message, while having such neighbors as organic grocery or sporting gear stores can help to maintain a client base.

Data

Data sources

Four sources of data are considered to address the business problem: Foursquare Places API, Chicago GEO json, Chicago Demographics Data, and Reverse GEO coding service

- <u>Chicago GEO json</u> Defines geospatial shape (boundaries) of Chicago communitites. This geo json file will be used for area calculation and visualization purposes;
- <u>Foursquare Places API</u> API that helps to get venues at the specific location. Although there are some limitations of API access, this source is considered as a main provider of most up-to-date venues data;
- <u>Chicago Demographic Data</u> Chicago demographic, income, and education data by community in CSV format and corresponding columns description file. Might be inaccessible out of USA;
- OpenCage Geocoder API that will be used reverse geocoding, e.g. to get address by geospatial data.

Considered impact factors by data source

The following table describes data source for the considered impact factors and further detalization.

factor	data item	data source	
Demographics of the community	communities boundaries	Chicago GEO json	
Demographics of the community	population, population density	Chicago Demographics Data	
Demographics of the community	income, education, employment status, industries, occupation, sex, and age	Chicago Demographics Data	
Facility Accessibility	nearby parkings, transport stops	Foursquare Places API	
Competitors	nearby gym facilities, rating	Foursquare Places API	
Adjacent Tenants	"conflicting" venues	Foursquare Places API	
Adjacent Tenants	relevant (supportive) venues	Foursquare Places API	
Venue address	reverse geocoding	OpenCage Geocoder	

Data processing

Data retrieval

Chicago GEO json file contains shape of Chicago communities, ready to be used for the needs of visualization and area calculation. Number of retrieved Chicago communities is 77 which matches with <u>corresponding Wikipedia page</u>. This gives us geometrical shape (polygon) of all communities expressed as a series of longitude, latitude pairs.

Retrieved geospatial data is then used to calculate rough shape of Chicago area by finding min, max latitude and longitude of all Chicago communities and finally select an estimated viewpoint center of the city area, assuming it has a rectangular shape.

Foursquare Places API provides convenient way to explore specified area and retrieve various well-structured information about places: category, location, opening hours, social media, etc. Usage of the Foursquare Places will be split on two stages. First is to get all available categories and groups according to the Considered impact factors by data source. While second stage is to retrieve all relevant venues.

Categories retrieval

Regular expressions will serve the best to precisely identify needed categories. There are six categories of venues I was interested in:

venue	category name tokens							
category	included	excluded						
transport	 parking, auto garage, or combination of: bus, metro, train, rail, bike, sub way stop, station, rental, lot, area, parking 							
public places	 movie, general entertainment, or combination of: shopping, business, office, corporate, outlet mall, plaza, center, amenity, store 	paper						
residence	residence	college						
competitors	 combination of: college gym, stadium, baseball, cricket, football, hockey, soccer, tennis, track or combination of: athletics, gym sports, center 							
conflicting	fast food, nightlife or combination of smoke, vape, liquor, wine, beer							

venue	category name tokens				
category	included	excluded			
	• store, shop, bar				
supporting	 combination of: organic, supplement, health, sporting, bike store, grocery, shop, service 				

With those categories I came to the second stage – long lasting process of pulling venues data from the Foursquare Places API.

Venues retrieval

Main idea of venue data pulling is based on the city area scanning, simplified flow of which is shown below:

Roughly calculated Chicago area is initially "zoomed in" with factor 10 for each venue category. Areas are defined by four coordinates to form a rectangular shape. Initially this produces 100 subareas to be searched in through the Foursquare venues/search API endpoint. The former has one limitation which limits response to 50 venues maximum. This makes uncertain every response with 50 venues: whether particular sub-area has exactly 50 venues or more. To unveil that, another "zoom in" is performed whenever a response contains 50 venues, so that divides the area on 100 sub-areas. This continues recursively, until number of returned venues for the particular area becomes less than 50. This decision came at a cost: Because Chicago area was assumed to be rectangular, venues which do not belong to Chicago must be identified and filtered off later.

Another feature of venue data extraction is using a deque to manage the scope of areas to be retrieved. Handling of any exception, e.g. bad response, exceed hourly limit, server error is done through adding of problematic areas to the queue, so that re-iteration will occur later. Venue data retrieval is end when the queue is empty. Once venues data is pulled, the results are stored to disk to avoid API usage next run.

In the result I extracted 31733 venue records including geospatial coordinates, categories (one as per data source, another one according to previously composed venue groups) and two kind of identifiers – original and calculated one.

Chicago demographics data

Chicago demographics data is available per community, available as a csv file, and complemented with columns description pdf file. Although it is being a little bit outdated (dataset update date is June 2019), ratio is assumed to be the same. Analysis of information available allowed to select following data (columns): Total population, age cohorts, race and ethnicity, employment status, mode of travel to work, vehicles available, educational attainment, household income, highly walkable percentage.

Data consolidation

Venue-community resolution

Venue-community resolution is necessary to filter out venues that do not belong to Chicago area, but were picked earlier due to the selected approach of venues retrieval. This is illustrated on the figure below where blue line polygons represent Chicago communities and green filled area corresponds to the considered Chicago area to retrieve venues data from. At this point every sing

Fig. Retrieved venues breakdown by category

Fig. Considered Chicago area vs Communities

Total number of venues in scope was reduced from 31733 to 24382.

Community scope reconciliation

Comparison of communities naming identified two discrepancies between Chicago GEO json and Chicago Demographics data: the former was fixed by renaming "LOOP" and "OHARE" to "THE LOOP" and "O'HARE" correspondingly.

Put data together

At this point we have collected and pre-processed:

- Chicago venues by category groups and linked them to corresponding community
- Demographics data per community
- GEO json with fixed naming

What is a common scale for different communities of the same city in the context of business goal? Basically, there are two of them: average venue category density per community and venue category distance per community. To calculate the averages following steps were done for each Chicago community area to form an area grid:

- get community boundaries to obtain min, max latitude and longitude
- find community center and place first 300x300m rectangular polygon
- fill community area with adjacent 300x300m rectangular polygon areas in all directions from area center unless border is crossed
- extend coverage if at least one of polygon vertices belongs to the current community area

Latitude, longitude conversion to UTM coordinates was done for zone 16N. This corresponds to Chicago longitude.

Resulting area grid with 8547 areas looks like below

Fig. Grid areas are shown as red rectangles; community boundaries are shown with solid blue line; black dots correspond to community center. Extended areas are noticeable at north east.

Venues allocation by communities was obtained as cartesian product of venues and grid areas with consequent filtering: rough and precise. The former was required to reduce population of the precise filtering and was done on GPU in batches due to the high volumes (200M+). Precise check was necessary to avoid false positive allocations because of polygonal area shape.

As it was intended some venues were simultaneously allocated to more than one community which means that they are reachable from multiple communities simultaneously within 300x300m area.

Then I calculated average venue category density per community as a ratio of venue category count to number of grid cells within particular Chicago community. First five communities (alphabetical order) have following venue category density:

category	competitors	conflicting	public places	residence	supporting	transport
community						
ALBANY PARK	0.439024	0.548780	0.134146	1.158537	0.097561	1.243902
ARCHER HEIGHTS	0.176471	0.470588	0.058824	0.073529	0.117647	0.308824
ARMOUR SQUARE	0.217391	0.717391	0.434783	0.239130	0.304348	0.565217
ASHBURN	0.076923	0.360947	0.082840	0.041420	0.029586	0.236686
AUBURN GRESHAM	0.069767	0.573643	0.077519	0.162791	0.069767	0.263566

Fig. Average venue category density per community

With ready grid and allocated venues, I calculated venue category distance for each community as Euclidian distance from area grid cell to closest venue of particular category, which belongs to this grid cell. Below is an illustration of WEST RIDGE Chicago community. Expectedly, some areas don't have any venue category out of previously identified six groups.

Fig. Grid areas of the WEST RIDGE community with areas centers as black circles and all allocated venue types (colors as per venue category – blue for transport, grey for public places, red for competitors, orange for conflicting, green for supporting, lime for residence)

	area_id	competitors	conflicting	public places	residence	supporting	transport	community
27	0180137c4b4b97ffc981fa6d807cd432	NaN	74.989431	NaN	NaN	NaN	NaN	WEST RIDGE
28	0181b08d83cbdad58560d84043e726dd	NaN	114.527762	NaN	84.306120	NaN	60.471214	WEST RIDGE
61	03448309d537a7ea09b7b33eeafd3fe0	NaN	102.305196	NaN	33.285950	NaN	142.147547	WEST RIDGE
113	06c57fe2b6a33cb101b336068037c722	94.248909	NaN	NaN	100.852455	NaN	88.669067	WEST RIDGE
187	0a91e86d68075903848ecf3a6bd54b3e	146.844806	168.753362	NaN	103.514808	NaN	NaN	WEST RIDGE
211	0b3c45a319c5457c2798496f9a1cf492	NaN	NaN	NaN	NaN	NaN	126.252841	WEST RIDGE
281	0f820c72135cee0da7fe5a2f3c7fd52d	NaN	15.111498	NaN	NaN	NaN	21.421905	WEST RIDGE
295	1011775b900abd3be6dbe7084bf4df7c	NaN	NaN	NaN	127.708653	128,349032	75.775071	WEST RIDGE
360	13aaa45e8254daaab2f1c7c163c75769	103.431131	109.584972	NaN	NaN	NaN	89.507939	WEST RIDGE
468	1a6e432860356192d9c5ba519978b8c6	NaN	88.067840	NaN	NaN	NaN	94.037285	WEST RIDGE

Fig. Calculation results of venue category distance to grid area cell center (in meters)

Since missed values cannot be kept as is and have to be imputed somehow, I decided that the best way to do it was to find distance beyond boundaries of such grid cell areas. So cartesian

product of areas with missed venue category and all venues of the same category were obtained to find minimal possible distance per area grid cell per category. This calculation was done on GPU to speed up the process. Finally, two distance datasets were merged into one to form average distance per community per venue category table and assessed from data quality point of view to ensure all areas now have populated distance to a venue of particular category. Figure below shows results for three random Chicago communities:

category	competitors	conflicting	public places	residence	supporting	transport
community						
ALBANY PARK	269.605149	317.099854	452.109839	166.124850	551.582775	184.619948
THE LOOP	117.839023	130.478823	265.548695	171.715404	205.577592	125.122677
WEST RIDGE	370.366112	265.272458	514.581730	241.431251	672.340682	202.503256

Fig. Complete result of venue category distance to grid area cell center (in meters)

Methodology

Exploratory Data Analysis

To identify optimal areas, we need to understand impact factors. So far average distance and average density were calculated, demographics data per community is also available

Venue Category - Demographic Factor Correlation

Fig. Venue Category - Demographic Factor Correlation Heatmap

Average density per community has greater number of strong correlations (>0.8), so it is reasonable to use average venue category density data set over average distance data set. Moreover, the latter one indicates a strong, but weaker than density data frame correlation between `conflicting`, `competitors`, `transport` and `residence` factors. Therefore, I focused efforts on the average density per community and demographics data set. Density heatmap in conjunction with the pairwise relationship plot (see below) allowed to bring following insights:

competitors factor:

- pair competitors transport has strong correlation as it was initially thought.
 Venues of transport type (as defined at Venue category) act as a primary factor of proper location for a gym
- areas where people travel to work either by walk or bike (WALK_BIKE) is also a strong factor for having a competitor in particular area. Same time correlation between competitors and NO_VEH (no vehicle in household) suggests previous one is more likely to be not by choice
- good correlation also exists between competitors and residence, conflicting. To run business effectively, optimal location should be closer to residence rather than to conflicting

transport factor:

- correlation transport WALK_BIKE suggests that the former looks like more bike than walk
- expectedly, strong correlation between transport and residence, transport and conflicting
- good correlation between transport and GRAD_PROF (Post Graduates)
- conflicting factor:
 - o this factor has strong correlation with almost all selected demographics factors
 - WORK AT HOME factor has strong correlation with conflicting
 - strong correlation with BACH and GRAD_PROF. So it's more common within areas with higher number of Bachelors and Post Graduates
 - income INC_100_150K, INC_GT_150 are also in a strong correlation with conflicting factor

Fig. average density – demographics data pairwise relationship plot

Feature set above looks reasonable for further analysis, however, to address the business problem, I will go with unsupervised learning method – clustering. Clustering algorithms are designed to properly reduce number of points in a dataset, so it should fit the best here as identified number of areas for location is 8547 and it must be reduced to 25...50 to select manually from. Dimensionality reduction, such as PCA will not work here as after dimensionality reduction, there usually is not a particular meaning assigned to each principal component because the new components are just the new main dimensions of variation.

As such, I considered average competitors density. At first, I calculated average density per community per venue category:

	community	category	density_avg
0	ALBANY PARK	competitors	0.439024
77	ALBANY PARK	conflicting	0.548780
154	ALBANY PARK	public places	0.134146
231	ALBANY PARK	residence	1.158537
308	ALBANY PARK	supporting	0.097561
153	WOODLAWN	conflicting	0.477273
230	WOODLAWN	public places	0.068182
307	WOODLAWN	residence	0.363636
384	WOODLAWN	supporting	0.011364
461	WOODLAWN	transport	0.625000

Fig. Average density per community per venue category

Then I composed data frame with detailed breakdown for each area with at least one competitor venue. It included information about area centroid, count of competitor venues, weight and rank. Weight was calculated as average density divided by competitor venues count (the smaller number of competitors the higher weight) and then ranked area within communities. Rank was turned into negative to make a way for the areas without any competitor venue and corresponding representation on the geo heatmap (otherwise blank areas would be filled on the heatmap and it would make it unreadable). It contains 1342 records.

	area_id	category	venue_count	community	centroid_lon	centroid_lat	density_avg	weight	rank
340	001bea5d124376f9170b859ffcafbc44	competitors	8	THE LOOP	-87.623985	41.878954	7.136364	0.892045	-7.0
341	07cdad3da0e99283f6c2b31acbd3e47e	competitors	17	THE LOOP	-87.624037	41.884358	7.136364	0.419786	-15.0
342	1178bf1cdbfe1667123746a8c09b109b	competitors	12	THE LOOP	-87.638500	41.884279	7.136364	0.594697	-11.0
343	11e26605ce22cff3479190341fd7bd0e	competitors	19	THE LOOP	-87.631295	41.887021	7.136364	0.375598	-16.0
344	139063e7110ab333d277ffaa2fbe668b	competitors	16	THE LOOP	-87.627653	41.884338	7.136364	0.446023	-14.0
10655	e7b1afb4b45a4676c9131f00ea69784a	competitors	1	EDISON PARK	-87.810426	42.012608	0.400000	0.400000	-1.0
10656	eab255b9fad496dcf70afefb9101c194	competitors	1	EDISON PARK	-87.806666	42.001826	0.400000	0.400000	-1.0
10657	ed6facfcded3e8631687ae1d9ee69579	competitors	5	EDISON PARK	-87.810220	41.996397	0.400000	0.080000	-4.0
10658	ef7dd0459798d110de169a65227b0090	competitors	4	EDISON PARK	-87.817567	42.004451	0.400000	0.100000	-3.0
10659	fcf8c100a0f6c390d3a00e6a2429b0fc	competitors	3	EDISON PARK	-87.806769	42.009931	0.400000	0.133333	-2.0

Fig. Chicago 300x300m areas with competitors

Obtained data frame allowed to exclude those 1342 areas from 8547 grid areas to act upon remaining 7205 areas. To reduce it further, I considered to keep only those areas where distance to closest competitor venue is greater than average for corresponding community. This resulted in 2638 optimal location candidate areas:

Fig. Competitors heatmap (1342 areas)

Fig. Optimal location candidate areas without competitors and with distance to the closest competitor venue greater than average for current community

Exploratory analysis indicated transport as a factor strongly correlated with competitors, therefore I considered candidate areas with at least one transport venue. This resulted in candidate venues reduction from 2638 to 429 areas.

Fig. areas centers where there is at least one venue of transport category (429 areas)

429 areas is still ten times greater than target number (25...50), so with these I will use clustering to reduce this number even more.

Clustering

Clustering is done by community where previously identified 429 area candidates are located. Initialization method is `k-means++`. Results of clustering are visualized over the heatmap with candidate areas.

Fig. Clustering 429 area candidates (shown in white)

Special handling (clustering imitation) was done for cases when a community contained either one or two area candidates. Such cases should have been dropped when acted in isolated environment, however I decided to keep them as they may become useful during next stage.

Finding optimal clusters number is based on silhouette score and illustrated below.

Fig. Silhouette score of Clustering

To sum up clustering process, it produced 158 clusters from 429 area candidates.

	id	community	cluster_number	area_count	lon	lat	х	у
0	LIN-PAR\$0	LINCOLN PARK	0	6	-87.639458	41.925573	446979.810667	4.641710e+06
1	LIN-PAR\$1	LINCOLN PARK	1	4	-87.669676	41.931932	444479.802213	4.642436e+06
2	BEL-CRA\$0	BELMONT CRAGIN	0	4	-87.746927	41.915715	438059.503561	4.640688e+06
3	BEL-CRA\$1	BELMONT CRAGIN	1	3	-87.782986	41.930786	435084.496418	4.642388e+06
4	BEL-CRA\$2	BELMONT CRAGIN	2	2	-87.755242	41.930522	437384.503245	4.642338e+06
	•••			•••	•••	•••	•••	
153	NEA-SOU-SID\$0	NEAR SOUTH SIDE	0	2	-87.633043	41.857883	447456.239119	4.634191e+06
154	NEA-SOU-SID\$1	NEAR SOUTH SIDE	1	1	-87.606001	41.864784	449706.248905	4.634941e+06
155	BUR\$0	BURNSIDE	0	1	-87.602824	41.729373	449864.475494	4.619905e+06
156	PUL\$0	PULLMAN	0	2	-87.590930	41.716079	450843.559197	4.618422e+06
157	PUL\$1	PULLMAN	1	3	-87.609929	41.691210	449243.567434	4.615672e+06

158 rows × 8 columns

Fig. Produced clusters

It's good but still insufficient, especially when it comes to review them one by one. Fortunately, this can be automated even more by using graph and longest path. This also explains the reason to keep one or two areas per community and make "imputed" clusters. Cluster radius is decided to be 600m. In order to build cluster group (a cluster of clusters) where they all have overlapped areas is solved by selecting pairs of previously obtained clusters with distance between their centers less than 1200m (radius x2). Resulting vertices matrix will look like below:

	id_x	id_y	cluster_graph_id_x	cluster_graph_id_y
0	LIN-PAR\$1	LAK-VIE\$0	89	1
1	LIN-PAR\$1	LAK-VIE\$1	89	16
2	LAK-VIE\$0	LAK-VIE\$1	1	16
3	BEL-CRA\$0	HER\$0	11	65
4	HUM-PAR\$0	HER\$0	17	65
	•••			
93	MON\$0	MON\$1	35	39
94	LOW-WES-SID\$0	LOW-WES-SID\$1	76	99
95	WES-PUL\$1	WES-PUL\$3	106	42
96	WES-PUL\$2	WES-PUL\$4	59	49
97	ARM-SQU\$0	NEA-SOU-SID\$0	14	10

98 rows × 4 columns

Fig. Vertices of clusters graph

Corresponding graph is shown below. For instance, edges with labels 89, 1, 16 form a cluster of clusters with some underlying 300x300m areas.

Fig. Cluster of clusters graph

All characteristics are composed into single data frame, including cluster group size and number of areas included

	id	community	cluster_number	area_count	lon	lat	x	у	cluster_graph_id	cluster_group	group_size
0	LIN-PAR\$1	LINCOLN PARK	1	4	-87.669676	41.931932	444479.802213	4.642436e+06	89	26	3
1	BEL-CRA\$0	BELMONT CRAGIN	0	4	-87.746927	41.915715	438059.503561	4.640688e+06	11	36	5
2	BEL-CRA\$3	BELMONT CRAGIN	3	1	-87.776770	41.915517	435584.503290	4.640688e+06	61	9	2
3	CAL-HEI\$0	CALUMET HEIGHTS	0	2	-87.568766	41.736660	452702.386875	4.620695e+06	88	31	3
4	HUM-PAR\$0	HUMBOLDT PARK	0	6	-87.731039	41.908439	439370.210588	4.639869e+06	17	36	5
			-								
102	MON\$1	MONTCLARE	1	1	-87.805349	41.930526	433230.131747	4.642376e+06	39	29	3
103	LOW-WES-SID\$1	LOWER WEST SIDE	1	1	-87.665280	41.852796	444776.156886	4.633646e+06	99	16	2
104	WES-PUL\$3	WEST PULLMAN	3	3	-87.618941	41.674193	448480.022077	4.613788e+06	42	39	7
105	WES-PUL\$4	WEST PULLMAN	4	1	-87.640564	41.674074	446680.026289	4.613788e+06	49	37	5
106	NEA-SOU-SID\$0	NEAR SOUTH SIDE	0	2	-87.633043	41.857883	447456.239119	4.634191e+06	10	23	2

Fig. Cluster groups characteristics

Top 3 cluster groups by number of clusters are considered further as more beneficial from area coverage and a strong indicator of an optimal location. OpenCage API was used to retrieve more human readable address by geospatial coordinates. 26 areas instead of 429.

address	group_size	cluster_group	cluster_graph_id	у	×	lat	lon	area_count	cluster_number	community	id	
120 East Kensington Avenue, Chicago, IL 60628	7	39	57	4.614913e+06	448405.031975	41.684320	-87.619939	4	1	WEST PULLMAN	WES-PULS1	0
St. John M.B. Church, 205-221 East 115th Stree.	7	39	98	4.615019e+06	448572.758391	41.685286	-87.617933	3	2	ROSELAND	ROS\$2	1
Pullman National Monument Visitors Center, 111	7	39	31	4.615672e+06	449243.567434	41.691210	-87.609929	3	1	PULLMAN	PUL\$1	2
12105 South Edbrooke Avenue, Chicago, IL 60628	7	39	78	4.613788e+06	448480.022077	41.674193	-87.618941	3	3	WEST PULLMAN	WES-PULS3	3
470 East Kensington Avenue, Chicago, IL 60628	7	39	21	4.614901e+06	449054,805200	41.684248	-87.612131	2	0	RIVERDALE	RIVSO	4
690 East Kensington Avenue, Chicago, IL 60626	7	39	70	4.614901e+06	449654.805199	41.684286	-87.604922	2	1	RIVERDALE	RIV\$1	5
South Doty Avenue, Chicago, IL 60633	7	39	13	4.614786e+06	449996.352685	41.683276	-87.600809	31	2	SOUTH DEERING	SOU-DEE\$2	6
644 West 111th Street, Chicago, IL 60643	5	36	14	4.615859e+06	446792,768713	41.692735	-87.639394	5	3	ROSELAND	ROS\$3	7
11023 South Sangamon Street, Chicago, IL 60643	5	36	25	4.615931e+06	446272,418692	41.693344	-87.645654	2	0	MORGAN PARK	MOR-PARSO	8
800-900 West 115th Street, Chicago, IL 60643	5	36	41	4.615181e+06	446422.418626	41.686599	-87.643784	2	2	MORGAN PARK	MOR-PARS2	9
727 West 116th Street, Chicago, IL 60628	5	36	28	4.614838e+06	446680,026251	41.683531	-87.640658	2	2	WEST PULLMAN	WES-PULS2	10
12101 South Emerald Avenue, Chicago, IL 60628	5	36	42	4.613788e+06	446680.026289	41.674074	-87.640564	1	4	WEST PULLMAN	WES-PULS4	11
7711 South Wolcott Avenue, Chicago, IL 60620	5	37	10	4.622634e+06	444240.835554	41.753575	-87.670693	5	0	AUBURN GRESHAM	AUB-GRESO	12
Coc Water South District Headquarters, 7501-75.	5	37	67	4.623014e+06	443231.014361	41.756930	-87.682875	4	2	ASHBURN	ASH\$2	13
1815 West 74th Street, Chicago, IL 60636	5	37	20	4.623110e+06	444483.926107	41.757883	-87.667814	3	2	WEST ENGLEWOOD	WES-ENG\$2	14
7410-7426 South Western Avenue, Chicago, IL 60643	5	37	11	4.623179e+06	443191.200460	41.758413	-87.683370	3	1	CHICAGO LAWN	CHI-LAW\$1	15
2148 West 75th Place, Chicago, IL 60620	5	37	44	4.623160e+06	443683.928800	41.758277	-87.677441	2	3	WEST ENGLEWOOD	WES-ENG\$3	16
1513 North Keeler Avenue, Chicago, IL 60651	5	38	66	4.639869e+06	439370.210588	41.908439	-87,731039	6	0	HUMBOLDT PARK	HUM-PARSO	17
1923 North La Crosse Avenue, Chicago, IL 60635	5	38	58	4.640688e+06	438059.503561	41.915715	-87.746927	4	0	BELMONT CRAGIN	BEL-CRASO	18
4218 West Armitage Avenue, Chicago, IL 60635	5	38	16	4.640870e+06	439285.848666	41.917445	-87.732159	4	.1	HERMOSA	HERS1	19
4900 West Bloomingdale Avenue, Chicago, IL 60639	5	38	100	4.640442e+06	437843.078345	41.913487	-87.749511	2	6	AUSTIN	AUS\$6	20
4700 West Grand Avenue, Chicago, IL 60651	5	38	86	4.640345e+06	438385.851680	41.912648	-87.742956	1	0	HERMOSA	HER\$0	21
Conrail 51st Street Freight House, West 51st S.	4	35	15	4.627730e+06	447042.201722	41.799669	-87.637454	5	1	NEW CITY	NEW-CIT\$1	22
638-640 West Garfield Boulevard, Chicago, IL 6065	4	35	9	4.627132e+06	446681.201571	41.794253	-87.641745	3	3	ENGLEWOOD	ENG\$3	23
Conrall 51st Street Freight House, West 51st S.	4	35	3	4.627672e+06	447164.218123	41.799149	-87.635980	3	1	FULLER PARK	FUL-PARS1	24
4914 South Wells Street, Chicago, IL 6065	4	35	82	4.628322e+05	447464.218322	41.805023	-87.632427	2	0	FULLER PARK	FUL-PARSO	25

Cocy Burbana Character School Character

Fig. 26 optimal location areas with address given for area center

Fig. optimal location areas visualized

One last step we can do here is to try find corresponding venues to open a new gym. For this purpose I use centers of already identified 26 clusters and look for buildings, coworking spaces, business centers, and rehab centers in 600m radius with help of Foursquare Places API. Obtained result is filtered of religious and some other venues. It counts 65 optimal venues within optimal locations to open a new gym.

Fig. First ten optimal venues within optimal locations to open a gym

Results

- 24K venues of six different categories were analyzed
- Chicago area was split on 8.5K 300x300m areas for detailed analysis
- Impact factors are analyzed: gym venue location is mostly influenced by nearby transportrelated venues
- Answers to address business problem are:
 - o 26 optimal locations were identified to open a gym in 600m radius:

-	
community	optimal location address (600m radius)
ASHBURN	Coc Water South District Headquarters, 7501-7521 South Western
	Avenue, Chicago, IL 60643
AUBURN GRESHAM	7711 South Wolcott Avenue, Chicago, IL 60620
AUSTIN	4900 West Bloomingdale Avenue, Chicago, IL 60639
BELMONT CRAGIN	1923 North La Crosse Avenue, Chicago, IL 60639
CHICAGO LAWN	7410-7426 South Western Avenue, Chicago, IL 60643
ENGLEWOOD	638-640 West Garfield Boulevard, Chicago, IL 6069
FULLER PARK	4914 South Wells Street, Chicago, IL 6069
	Conrail 51st Street Freight House, West 51st Street, Chicago, IL 60632
HERMOSA	4218 West Armitage Avenue, Chicago, IL 60639
	4700 West Grand Avenue, Chicago, IL 60651
HUMBOLDT PARK	1513 North Keeler Avenue, Chicago, IL 60651
MORGAN PARK	11023 South Sangamon Street, Chicago, IL 60643
	800-900 West 115th Street, Chicago, IL 60643
NEW CITY	Conrail 51st Street Freight House, West 51st Street, Chicago, IL 60632
PULLMAN	Pullman National Monument Visitors Center, 11139-11141 South
	Cottage Grove Avenue, Chicago, IL 60628
RIVERDALE	470 East Kensington Avenue, Chicago, IL 60628
	690 East Kensington Avenue, Chicago, IL 60628
ROSELAND	644 West 111th Street, Chicago, IL 60643
	St. John M.B. Church, 205-221 East 115th Street, Chicago, IL 60628
SOUTH DEERING	South Doty Avenue, Chicago, IL 60633
WEST ENGLEWOOD	1815 West 74th Street, Chicago, IL 60636
	2148 West 75th Place, Chicago, IL 60620
WEST PULLMAN	120 East Kensington Avenue, Chicago, IL 60628
	12101 South Emerald Avenue, Chicago, IL 60628
	12105 South Edbrooke Avenue, Chicago, IL 60628
	727 West 116th Street, Chicago, IL 60628

 $_{\circ}\quad$ 65 optimal venues were identified to open a gym in there:

optimal venue address					
7511 South Damen Avenue, Chicago, IL 60620					
7906-7910 South Hermitage Avenue, Chicago, IL 60620					
5012 West Concord Place, Chicago, IL 60639					
BMO Harris Bank, 4959 West North Avenue, Chicago, IL 60639					
4545-4555 West Armitage Avenue, Chicago, IL 60639					
4712 West Armitage Avenue, Chicago, IL 60639					
4901-4915 West Armitage Avenue, Chicago, IL 60639					
5000-5008 West Bloomingdale Avenue, Chicago, IL 60639					
5008-5010 West Dickens Avenue, Chicago, IL 60639					
4749 South Wentworth Avenue, Chicago, IL 60621					

	Dan Ryan Expressway, Chicago, IL 60616
	Dan Ryan Expressway, Chicago, IL 6069
	Department of Fleet Management - Bureau of Police Motor Maintenance, 5219 South Wentworth Avenue, Chicago, IL 60621 Harold Washington Professional Building, 5341 South Wentworth
	Avenue, Chicago, IL 60609
HERMOSA	1755 North Karlov Avenue, Chicago, IL 60639
	1924 North Pulaski Road, Chicago, IL 60639
	2045 North Kenneth Avenue, Chicago, IL 60639
	4149 West Armitage Avenue, Chicago, IL 60639
	4335-4359 West Armitage Avenue, Chicago, IL 60639
	4335-4359 West Armitage Avenue, Chicago, IL 60639
	4447-4459 West Cortland Street, Chicago, IL 60639
	4556 West Grand Avenue, Chicago, IL 60651
	Beat 2525, North Hamlin Avenue, Chicago, IL 60618
	Beat 2525, West McLean Avenue, Chicago, IL 60647
	Beat 2525, West McLean Avenue, Chicago, IL 60647
HUMBOLDT PARK	1250-1256 North Kildare Avenue, Chicago, IL 60641
	1409 North Pulaski Road, Chicago, IL 60651
	1620 North Karlov Avenue, Chicago, IL 60639
	1621-1657 North Kostner Avenue, Chicago, IL 60641
	1753 North Tripp Avenue, Chicago, IL 60639
	3925-3929 West Grand Avenue, Chicago, IL 60651
	3950-3952 West Grand Avenue, Chicago, IL 60651
	4059 West North Avenue, Chicago, IL 60302
	4113-4115 West Kamerling Avenue, Chicago, IL 60651
	4123-4125 West North Avenue, Chicago, IL 60302
	4216 West Potomac Avenue, Chicago, IL 60651
	4259 West Kamerling Avenue, Chicago, IL 60651
	4301 West Grand Avenue, Chicago, IL 60651
	North & Pulaski Apartments, 3949 West North Avenue, Chicago, IL 60647
MORGAN PARK	11355-11359 South Halsted Street, Chicago, IL 60827
	11435 South Halsted Street, Chicago, IL 60827
	Mobil Mart, 11501-11507 South Halsted Street, Chicago, IL 60827
NEW CITY	Parkman School, 245 West 51st Street, Chicago, IL 60632
PULLMAN	Comcast, 11201-11203 South Ellis Avenue, Chicago, IL 60628
	Raffin, 734-744 East 113th Street, Chicago, IL 60628
	The University of Chicago Press, 11030 South Langley Avenue, Chicago, IL 60628
RIVERDALE	Chicago, IL 60627
	Chicago, IL 60627
ROSELAND	10844-10848 South Halsted Street, Chicago, IL 60628
	11130-11142 South Halsted Street, Chicago, IL 60628
	11300-11306 South Halsted Street, Chicago, IL 60628
WEST ENGLEWOOD	1919 West 74th Street, Chicago, IL 60636
	7206 South Seeley Avenue, Chicago, IL 60636

	l
	7400 South Damen Avenue, Chicago, IL 60620
WEST PULLMAN	108-112 East 113th Street, Chicago, IL 60628
	11634 South Prairie Avenue, Chicago, IL 60628
	11839 South Lowe Avenue, Chicago, IL 60628
	11912 South Michigan Avenue, Chicago, IL 60628
	12006 South Michigan Avenue, Chicago, IL 60628
	12143 South Normal Avenue, Chicago, IL 60628
	218-224 East Kensington Avenue, Chicago, IL 60628
	224-228 East 121st Place, Chicago, IL 60628
	829-837 West 119th Street, Chicago, IL 60827-6427
	Chase, 11721 South Halsted Street, Chicago, IL 60628
	West Pullman Elementary School, South Parnell Avenue, Chicago, IL

Discussion

Although business problem was addressed, following areas can be improved

60628

- area center calculation
- consequent area coverage by the grid
- grid to exclude irrelevant areas where a venue cannot be located
- reduce number of venues in the "areas, venues" cartesian product, by filtering out all venues located further than 5km either by x or y coordinate
- analyze which venue categories are currently occupied by competitors and use those for finding optimal location
- make transport category more granular, probably by reducing it to the following venues: private and public transport; embarkation, dis-embarkation train stations/hubs.
- · apply PCA, make use of demographics data
- notebook code refactoring

Conclusion

In this study I identified optimal location for opening a gym in Chicago, IL. I analyzed impact factors on having a gym venue and their correlation with demographics data. Optimal locations can be very useful for anyone real estate agencies or gym/fitness business owners, allowing them to save a lot of time and choose from optimal locations prepared with the power of machine learning. Also, existing approach is highly customizable and can be applied for different venue type or even different location with minimal changes.