Hash functions

Chanathip Namprempre

Computer Science Reed College

Agenda: Hash functions

- 1. Concept
- 2. Hash function design
- 3. SHA1
- 4. Security definitions for hash functions: pre-image attacks, second pre-image attacks, collision attacks
- 5. Birthday attack
- 6. Building hash functions from compression functions: MD transform
- 7. Building compression functions from block cipher: DM transform

A way to think about hash functions

A way to think about hash functions. The digest is supposed to capture the essense of the object being hashed.

Hash functions

The output is often called a message digest.

Example: SHA1 : $\{0,1\}^{<2^{64}} \rightarrow \{0,1\}^{160}$

Applications: how hash functions are used

- Password hashing: good idea, but be careful
- Message integrity: bad idea
- ► Fingerprint of large file: good idea, but make sure the fingerprint is the "real" one.
- Downline load security: same idea as above
- ightharpoonup Digital signature efficiency: sign H(M) instead of signing M

Hash function design: Merkle-Damgard

The Merkle-Damgard construction.

- ► The trapezoids represent a compression function.
- ightharpoonup The initial vector V[0] is a fixed, public value.
- ▶ The messages M[1], ..., M[n] are fixed-length blocks of the padded input message.
- ► The output is the output *h* of the compression function on the last round.

M

M

M

Example: Computing SHA1(0^{999}) = V_3

SHA1

repeatly apply compression function on each block of message

```
160 bits \leftarrow V_0 = 37452301||...||C3D2E1F0
128 bits \leftarrow K = 5A827999||...||CA62C1D6
```

Observation: use the word "key" but really the "key" is known!

SHA1 in pseudocode

```
//|M| < 2^{64}
algorithm SHA1(M)
    V \leftarrow SHF1(5A827999||6ED9EBA1||8F1BBCDC||CA62C1D6, M)
return V
                                                   //|K| = 128 and |M| < 2^{64}
algorithm SHF1(K, M)
   y \leftarrow \operatorname{shapad}(M)
   Parse y as M_1 || M_2 || ... || M_n where | M_i | = 512 (1 \le i \le n)
    V \leftarrow 67452301 || EFCDAB89 || 98BADCFE || 10325476 || C3D2E1F0
   for i = 1, \ldots, n do
        V \leftarrow \mathsf{shf1}(K, M_i || V)
return V
                                                                    //|M| < 2^{64}
algorithm shapad(M)
    d \leftarrow (447 - |M|) \mod 512
   Let I be the 64-bit binary representation of |M|
   y \leftarrow M \|1\|0^d\|I
                                                      //|y| is a multiple of 512
return y
```

The compression function shf1 in SHA1

```
algorithm shf1(K, B||V)
                                                                                                //|K| = 128, |B| = 512, |V| = 160
    Parse B as W_0 \| \dots \| W_{15} where |W_i| = 32(0 < i < 15)
    Parse V as V_0 \| \dots \| V_4 where |V_i| = 32(0 < i < 4)
    Parse K as K_0 \| \dots \| K_3 where |K_i| = 32(0 < i < 3)
    for t = 16, ..., 79 do
         W_t \leftarrow \mathsf{ROTL}^1(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16})
    A \leftarrow V_0; B \leftarrow V_1; C \leftarrow V_2; D \leftarrow V_3; E \leftarrow V_4
    for t = 0, ..., 19 do
        L_t \leftarrow K_0 \; ; \; L_{t+20} \leftarrow K_1 \; ; \; L_{t+40} \leftarrow K_2 \; ; \; L_{t+60} \leftarrow K_3
    for t = 0, ..., 79 do
         if (0 < t < 19) then f \leftarrow (B \land C) \lor ((\neg B) \land D)
        if (20 < t < 39) OR (60 < t < 79) then f \leftarrow B \oplus C \oplus D
         if (40 < t < 59) then f \leftarrow (B \land C) \lor (B \land D) \lor (C \land D)
         temp \leftarrow ROTL^{5}(A) + f + E + W_{t} + L_{t}
        E \leftarrow D; D \leftarrow C; C \leftarrow ROTL^{30}(B); B \leftarrow A; A \leftarrow temp
    V_0 \leftarrow V_0 + A; V_1 \leftarrow V_1 + B; V_2 \leftarrow V_2 + C; V_3 \leftarrow V_3 + D; V_4 \leftarrow V_4 + E
    V \leftarrow V_0 ||V_1||V_2||V_3||V_4
return V
```

[All pseudocode is from Bellare-Rogaway lecture notes.]

Real world hash functions

Hash function	Number of output bits
MD4	128
MD5	128
SHA1	160
SHA256	256
SHA512	512
SHA3-256	256
SHA3-512	512

Note some terminology:

- ► SHA2 family members = SHA256, SHA512
- ► SHA3 family members = SHA3-256, SHA3-512

Security definitions for hash functions

Security definitions for hash functions

What do we expect from hash functions?

Recall the common applications:

- password storage
- allowing people to check integrity of software that they download

Security definition: Pre-image resistance

Preimage resistance means that it should be difficult to figure out what was hashed simply by looking at the hash value.

Example application: password storage

Security definition: collision resistance

For collision resistant hash functions, one would expect that, in most cases, hashing two distinct input values would result in two different hash values.

Security definition: collision resistance (cont.)

A collision can always occur, however, since a hash function maps values from a large set to those in a smaller set.

Example application: software integrity check

Example: SHA1

Definition

A collision for a function $h: \mathcal{D} \to \mathcal{R} \equiv$ a pair $x_1, x_2 \in \mathcal{D}$ such that $h(x_1) = h(x_2)$ but $x_1 \neq x_2$

Collision resistance of SHA1:

It is hard to find M and M' such that SHA1(M) = SHA1(M') but $M \neq M'$

There are many such M and M'! (by pigeonhole principle).

Security: resistance against pre-image attacks

Let m, n be integers such that m > n. Let $H: \{0, 1\}^m \to \{0, 1\}^n$ be a hash function.

Subroutine Initialize

$$x \stackrel{\$}{\leftarrow} \{0,1\}^m \; ; \; h \leftarrow H(x)$$

Return h

Subroutine Finalize(x')Return (H(x') = h)

Experiment $\mathbf{Exp}_{H}^{\mathrm{pre}}(A)$

$$h \leftarrow Initialize$$

 $x' \stackrel{\$}{\leftarrow} A(h)$
Return $Finalize(x')$

pre-image advantage

The pre-image advantage of an adversary A mounting a pre-image attack against H is

$$\mathsf{Adv}^{\mathrm{pre}}_H(A) = \mathsf{Pr} \left[\mathsf{Exp}^{\mathrm{pre}}_H(A) \Rightarrow \mathsf{true} \right]$$
.

Security: resistance against second pre-image attacks

Let m, n be integers such that m > n. Let $H: \{0, 1\}^m \to \{0, 1\}^n$ be a hash function.

Subroutine Initialize

$$x \stackrel{\$}{\leftarrow} \{0,1\}^m$$

Return x

Subroutine Finalize(x')Return $(H(x) = H(x') \land x \neq x')$

Experiment $\mathbf{Exp}_H^{\mathrm{sec}}(A)$

$$x \leftarrow Initialize$$

 $x' \stackrel{\$}{\leftarrow} A(x)$
Return $Finalize(x')$

second pre-image advantage

The second pre-image advantage of an adversary A mounting a second pre-image attack against H is

$$Adv_H^{sec}(A) = Pr[Exp_H^{sec}(A) \Rightarrow true]$$
.

Security: collision resistance

Let m, n be integers such that m > n. Let $H: \{0,1\}^m \to \{0,1\}^n$ be a hash function.

Subroutine *Initialize*

Return

Subroutine Finalize (x, x')Return $(H(x) = H(x') \land x \neq x')$ Return Finalize(x, x')

Experiment $\mathbf{Exp}_{H}^{\mathrm{coll}}(A)$

Initialize

$$(x,x') \stackrel{\$}{\leftarrow} A$$

collision advantage

The collision advantage of an adversary A mounting a collision attack against H is

$$\mathsf{Adv}^{\mathrm{coll}}_H(A) = \mathsf{Pr}\left[\mathsf{Exp}^{\mathrm{coll}}_H(A) \Rightarrow \mathsf{true} \right] .$$

Toy example

Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. Let $K \in \{0,1\}^k$.

Define a hash function $H: \{0,1\}^{mn} \to \{0,1\}^n$ based on K and E for any positive integer m using the raw CBC MAC construction.

Is H collision resistant?

Collision-finding attacks: Example

Example: Suppose $|\mathcal{D}| = 2|\mathcal{R}|$

Collision-finding attack: Example (cont.) – strategy #1

Strategy # 1

Pick a point, go through all elements in the domain in some order until collide.

Worst case:

- the last one is the one and
- regular, i.e., evenly distributed. [In this case, only 2 points collide for each element y in \mathcal{R} , i.e., $|H_{\kappa}^{-1}(y)| = 2$]

number of trials needed = 2^{161}

Collision-finding attack: Example (cont.) – strategy #2

Strategy # 2

Pick a point, pick another point at random from \mathcal{D} until collide.

Find collision with probability about 1 in $|\mathcal{R}|$. So,

number of trials needed = 2^{160}

Collision-finding attack: Example (cont.) – strategy #3

Strategy # 3: Birthday attack

Pick random points from \mathcal{D} until find a pair that collides.

number of trials needed
$$= O(\sqrt{|\mathcal{R}|}) = O(2^{80}) < 2^{160}$$

Birthday paradox

Let $x_1, \ldots, x_q \in \mathcal{D}$ be independent identically distributed elements of \mathcal{D} .

Birthday bound

If
$$q=1.2 imes |\mathcal{D}|^{1/2}$$
, then

$$\Pr\left[\exists i \neq j : x_i = x_j\right] \geq \frac{1}{2}.$$

Proof of birthday bound (for uniform independent x's)

Denote $|\mathcal{D}|$ by D. Let E_i be the event that there is no collision after having picked i values. Let q be the total number of values that we pick.

$$\begin{aligned} \Pr\left[\, \exists i \neq j \, : \, x_i = x_j \, \right] &= 1 - \Pr\left[\, \forall i \neq j \, : \, x_i \neq x_j \, \right] \\ &= 1 - \Pr\left[\, E_q \, \right] \\ &= 1 - \Pr\left[\, E_q \, \middle| \, E_{q-1} \, \right] \cdot \Pr\left[\, E_{q-1} \, \right] \\ &= 1 - \left(\frac{D-1}{D} \right) \left(\frac{D-2}{D} \right) \cdots \left(\frac{D-n+1}{D} \right) \\ &= 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{D} \right) \\ &\geq 1 - \prod_{i=1}^{q-1} e^{-\frac{i}{D}} \qquad \text{[because } 1 - x \leq e^{-x} \text{]} \\ &= 1 - e^{-\frac{1}{D} \sum_{i=1}^{q-1} i} \geq 1 - e^{-\frac{q^2}{2D}} \geq 1 - e^{-0.72} = 0.53 \end{aligned}$$

So we get this bound when $q^2/2D=0.72$, i.e., $q=1.2\times |\mathcal{D}|^{1/2}$.

Birthday attack against hash functions

Let $H: \mathcal{D} \to \{0,1\}^n$ be a hash function.

Birthday attack

```
Adversary A

For i=1,\ldots,q do x_i \stackrel{\$}{\leftarrow} \mathcal{D}; y_i \leftarrow H(x_i)

If \exists i,j such that i\neq j and x_i\neq x_j but y_i=y_j then return x_i,x_j return \bot
```

Assuming that H is regular, according to the birthday bound, A should find a collision in about $q=1.2\times\sqrt{|\mathcal{D}|}$ tries.

Birthday attack against hash functions is analogous to exhaustive key search attack against block ciphers.

Building hash functions

A common paradigm for building hash functions

What has been proven

- ightharpoonup Merkle-Damgard: If h is collision-resistant, then so is H.
- ► Davies-Meyer: In the ideal cipher model (i.e., E is a public random permutation), h is collision-resistant.

Compression function \Rightarrow hash function: MD transform

Theorem

Let $h: \{0,1\}^k \times \{0,1\}^{b+n} \to \{0,1\}^n$ be a family of functions, and let $H: \{0,1\}^k \times \mathcal{D} \to \{0,1\}^n$ be the result of applying the MD transform to h. Given a CR adversary A against H, then we can construct a CR adversary B against h such that

$$Adv_H^{coll}(A) \leq Adv_h^{coll}(B)$$

and the running time of B is the running time of A plus the time for computing h on the outputs of A.

Block cipher \Rightarrow compression function

Consider SHA256, our compression function must compress 512+256 bits to 256 bits.

Example

Let $E: \{0,1\}^{512} \times \{0,1\}^{256} \to \{0,1\}^{256}$ be a block cipher. Let $h: \{0,1\}^{512+256} \to \{0,1\}^{256}$ be defined as follows:

$$h(x||v)=E_x(v).$$

Recall the security definition for collision resistant against a compression function.

Would this construction be collision resistant?

Block cipher ⇒ compression function: Davies-Meyer

Consider SHA256, our compression function must compress 512+256 bits to 256 bits.

Davies-Meyer construction

Let $E: \{0,1\}^{512} \times \{0,1\}^{256} \to \{0,1\}^{256}$ be a block cipher. Let $h: \{0,1\}^{512+256} \to \{0,1\}^{256}$ be defined as follows:

$$h(x||v) = E_x(v) \oplus v$$

where \oplus above is actually "component-wise addition modulo 2^{32} ."

Security proof for Davies-Meyer construction?

Q: Can we prove that Davies-Meyer construction yields a collision resistant compression function assuming that E is a PRF?

A: No! PRF does not cut it. We can construct a PRF secure E such that h is not collision resistant.

SHA3

SHA3 does not follow this paradigm.

- ▶ $f: \{0,1\}^{r+c} \rightarrow \{0,1\}^{r+c}$ is a public and invertible permutation.
- d is the number of output bits.
- ightharpoonup c = 2d