

Name:

Fizza

Roll no.:

SP23-BAI-016

Teacher Name:

Sir Aksam Iftikhar

Semester:

SP24 (Semester 4)

Section:

SP23-BAI-A

Dataset Description:

Air Quality Dataset (Regression)

- Size: 9358 data points.
- Features: 12 and 1 Target Label.
- Target Variable: Nox(GT) concentration (regression task).
- Train/Test Split: 90% training, 10% testing.

Fashion-MNIST (Classification)

- Size: 60,000 training images, 10,000 test images.
- Features: 28x28 grayscale images (784 pixels).
- Classes: 10 categories.
- Train/Test Split: 60,000 training, 10,000 test images.

CIFAR-10 (Classification)

- Size: 60,000 images (50,000 training, 10,000 test).
- Features: 32x32 RGB images.
- Classes: 10.
- Train/Test Split: 50,000 training, 10,000 test images.

Model Details

Regression (ANN)

- Model Architecture:
 - o Input Layer: Size = 12
 - Hidden Layer 1: 128 neurons, ReLU activation.
 - o **Hidden Layer 2:** 64 neurons, ReLU activation.
 - o **Output Layer:** 1 neuron.

Classification (ANN)

- Model Architecture:
- Model 1:
 - o **Input Layer:** Size = 784 neurons (28x28 pixels).
 - o **Hidden Layer 1:** 128 neurons, Relu activation.
 - Hidden Layer 2: 64 neurons, Relu activation.
 - o **Output Layer:** 10 neurons, Softmax activation.

Model 2:

- Input Layer: Size = 784 neurons (28x28 pixels).
- o Hidden Layer 1: 256 neurons, Relu activation.
- o **Hidden Layer 2:** 128 neurons, Relu activation.
- Output Layer: 10 neurons, Softmax activation.

Model 3:

- o **Input Layer:** Size = 784 neurons (28x28 pixels).
- Hidden Layer 1: 64 neurons, Relu activation.
- o **Hidden Layer 2:** 32neurons, Relu activation.
- Output Layer: 10 neurons, Softmax activation.

Classification (CNN)

- Model Architecture:
- Model 1:
 - Convolutional Layer 1: 32 filters, 3x3 window, ReLU activation.
 - Max Pooling: 2x2.
 - Convolutional Layer 2: 64 filters, 3x3 window, ReLU activation.
 - Max Pooling: 2x2.
 - o Flatten Layer: Converts 3D output to 1D.
 - Dense Layer: 128 neurons, ReLU activation.
 - o **Dropout Layer:** 0.3
 - o **Output Layer:** 10 neurons, Softmax activation.

Model 2:

- Convolutional Layer 1: 32 filters, 3x3 window, ReLU activation.
- o Max Pooling: 2x2.
- o **Convolutional Layer 2:** 64 filters, 3x3 window, ReLU activation.
- Max Pooling: 2x2.
- o **Convolutional Layer 1:** 128 filters, 3x3 window, ReLU activation.
- O Max Pooling: 2x2.
- Flatten Layer: Converts 3D output to 1D.
- Dense Layer: 128 neurons, ReLU activation.
- Dense Layer: 64 neurons, ReLU activation.

- O Dropout Layer: 0.5
- Output Layer: 10 neurons, Softmax activation.
- Model 3:
 - o **Convolutional Layer 1:** 64 filters, 3x3 window, ReLU activation.
 - o Max Pooling: 2x2.
 - o Convolutional Layer 2: 128 filters, 3x3 window, ReLU activation.
 - o Max Pooling: 2x2.
 - o Flatten Layer: Converts 3D output to 1D.
 - o **Dense Layer:** 256 neurons, ReLU activation.
 - o **Dropout Layer:** 0.4
 - Output Layer: 10 neurons, Softmax activation.

Training Configurations

Regression Model (ANN)

- Optimizer: SGD
- Learning Rate: 0.001
- Batch Size: 20
- **Epochs:** 50
- Loss Function: Mean Squared Error (MSE)

Classification Model (ANN)

- Optimizer: Adam
- Learning Rate: 0.001,0.005,0.0005
- **Epochs:** 5 per model
- Loss Function: Cross-Entropy Loss

Classification Model (CNN)

- Optimizer: Adam
- **Learning Rate:** 0.001,0.001,0.0005
- Batch Size: 64
- **Epochs:** 5 per model
- Loss Function: Categorical Cross-Entropy Loss

Performance Metrics

Regression Model (ANN)

- MSE (Mean Squared Error): 1.02
- MEA (Mean Absolute Error): 0.70

Classification Model (ANN)

Model 1 Accuracy: 0.86
 Model 2 Accuracy: 0.84
 Model 3 Accuracy: 0.87

Classification Model (CNN)

Model 1 Accuracy: 0.69
 Model 2 Accuracy: 0.69
 Model 3 Accuracy: 0.72

Visualizations:

Regression Plot:

Classification (ANN):

Model 1:

Model 2:

Model 3:

Classification (CNN):

Model 1:

Model 2:
Confusion Matrix:

Model 3:

Comparative Table:

Model	Dataset	Key	Final Metric	Training Time
		Hyperparameters		
Regression	Air Quality	LearningRate=0.001	MEA:0.70	5 min
(ANN)		Epoch=50	MSE:1.02	
Classification	Fashion-MNIST	LearningRate=0.0005	Accuracy:86%	10 min
(ANN)		Epoch=5/model		
Classification	CIFAR-10	LearningRate=0.0005	Accuracy:72%	44 min
(CNN)		Epoch=5/model		

Strengths and Weaknesses of Each Model

Regression Model (ANN):

Strengths: The model demonstrated strong predictive power with a MAE ,MSE, indicating good performance for regression tasks.

Weaknesses: It may not generalize well to unseen data due to limited complexity and potential overfitting on small datasets.

Classification Model (ANN):

Strengths: Achieved high accuracy with a relatively simple architecture, making it computationally efficient.

Weaknesses: Struggles with misclassifications for visually similar classes due to its limited feature extraction capabilities compared to CNNs.

Classification Model (CNN):

Strengths: Good performance on image classification tasks, leveraging convolutional layers for robust feature extraction.

Weaknesses: Computationally intensive, requiring more resources for training compared to ANNs, and slightly lower accuracy than state-of-the-art CNN architectures for CIFAR-10.