# Decidability CSCI 338

#### **August**



Computational Models



#### **December**

Goal: Understand and identify fundamental limitations of computers.

Computability: What's solvable by computers.



#### August



Computational Models



#### December

Goal: Understand and identify fundamental limitations of computers.

Computability: What's solvable by computers. **August** Computational Complexity: What's Models efficiently solvable by computers. <u>NFA</u> Stack: \  $\varepsilon, \varepsilon \to \$$  $1,0 \rightarrow \varepsilon$   $\epsilon, \$ \rightarrow \varepsilon$ <u>PDA</u>  $1,0 \rightarrow \varepsilon$  $0, \varepsilon \to 0$  $0 \rightarrow 1, L \quad 1 \rightarrow 0, L$  $0 \rightarrow R$ Tape: **Turing Machine** 

#### December

Goal: Understand and identify fundamental limitations of computers.

## Church-Turing Thesis

## Intuitive notion of algorithms.

## Turing Machine algorithms.

#### TM M: on input $\omega$

- 1. If  $\omega = \varepsilon$ , accept. Otherwise, change first a to a 1.
- 2. Move right to first b and change to a 2. Reject if c or \_ found first.
- 3. Move right to first c and change to a 3. Reject if a or  $\underline{\ }$  found first.
- 4. Move back to first a. If it exists, loop to step 1. If not, exit loop.
- 5. Move right to verify no b or c exist. If so, reject. If not, accept.



#### Definitions

A language is <u>Turing recognizable</u> if there is a TM that accepts every string in the language, and nothing not in the language.

Called a decider.

#### **Definitions**

#### Language $L = \{w: |w| \text{ is even}\}$

A language is <u>Turing recogn</u> { accepts every string in the I the language.

```
if (s.length() % 2 == 0)
{
    return true;
} else {
    return false;
}
```

#### **Definitions**

#### Language $L = \{w: |w| \text{ is even}\}$

A language is <u>Turing recognizable</u> if there is a TM that accepts every string in the language, and nothing not in the language.

A language L is <u>decidable</u> L and rejects everything

```
if (s.length() % 2 == 0) {
    return true;
} else {
    while (true) {
        contemplateMortality();
    }
}
```

### Computability Hierarchy

Recognizable: ∃ TM that accepts everything in L, and nothing not.

<u>Decidable:</u> ∃ TM that recognizes L and rejects everything else.



### Computability Hierarchy

Recognizable: ∃ TM that accepts everything in L, and nothing not.

<u>Decidable:</u> ∃ TM that recognizes L and rejects everything else.



Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

-Denotes string encoding of some object

Claim:  $A_{DFA} = \langle \langle B, \omega \rangle \rangle B$  is a DFA that accepts string  $\omega$ } is a decidable language.

#### DFA Formal Definition



$$Q = \{q_1, q_2, q_3\}$$
  
 $\Sigma = \{0, 1\}$   
 $\delta$ :  $\begin{vmatrix} 0 & 1 \\ q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{vmatrix}$ 

Start state = 
$$q_1$$
  
 $F = \{q_2\}$ 

```
private String[] states;
private char[] alphabet;
private HashMap<String, HashMap<Character, HashSet<String>>> transitions;
private String startState;
private String[] acceptStates;
public String name;
```

-Denotes string encoding of some object

Claim:  $A_{DFA} = \langle \langle B, \omega \rangle \rangle B$  is a DFA that accepts string  $\omega$ } is a decidable language.

Language decidability Computational problem decidability

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

Proof:

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

Proof:

$$M_1 = \text{on input } \langle B, \omega \rangle$$

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

$$M_1 = \text{on input } \langle B, \omega \rangle$$
  
1. ?

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

```
M_1 = \text{on input } \langle B, \omega \rangle
```

- 1. Run B on  $\omega$ .
- 2. ?

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_1 = \text{on input } \langle B, \omega \rangle$ 

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### **Proof:**

 $M_1 = \text{on input } \langle B, \omega \rangle$ 

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

 $M_1$  is a decider, because ?

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_1 = \text{on input } \langle B, \omega \rangle$ 

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

M<sub>1</sub> is a decider, because all DFAs halt on all input.

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_1$  = on input  $\langle B, \omega \rangle$  \_\_Implementation Details?

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

M<sub>1</sub> is a decider, because all DFAs halt on all input.

Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

$$M_1$$
 = on input  $\langle B, \omega \rangle$  \_ Implementation Details?

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

M<sub>1</sub> is a decider, because all DFAs halt on all input.



Claim:  $A_{DFA} = \{\langle B, \omega \rangle : B \text{ is a DFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

$$M_1$$
 = on input  $\langle B, \omega \rangle$  \_ Implementation Details?

- 1. Run B on  $\omega$ .
- 2. If B accepts, accept. If B rejects, reject.

M₁ is a decider, because all DFAs halt on all input.



Mark current state.

Mark current character.

Find applicable transition.

Update state/character.

### Computability Hierarchy

Recognizable: ∃ TM that accepts everything in L, and nothing not.

<u>Decidable:</u> ∃ TM that recognizes L and rejects everything else.



Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

Proof:



Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

$$M_2 = \text{on input } \langle C, \omega \rangle$$

1. Convert C to an equivalent DFA B.

Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_2 = \text{on input } \langle C, \omega \rangle$ 

- 1. Convert C to an equivalent DFA B.
- 2. Run  $M_1$  (TM from first example) on  $\langle B, \omega \rangle$ .

Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_2 = \text{on input } \langle C, \omega \rangle$ 

- 1. Convert C to an equivalent DFA B.
- 2. Run  $M_1$  (TM from first example) on  $\langle B, \omega \rangle$ .
- 3. If  $M_1$  accepts, <u>accept</u>. If  $M_1$  rejects, <u>reject</u>.

Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

#### **Proof:**

 $M_2 = \text{on input } \langle C, \omega \rangle$ 

- 1. Convert C to an equivalent DFA B.
- 2. Run  $M_1$  (TM from first example) on  $\langle B, \omega \rangle$ .
- 3. If  $M_1$  accepts, accept. If  $M_1$  rejects, reject.

 $M_2$  is a decider, because ?

Claim:  $A_{NFA} = \{\langle C, \omega \rangle : C \text{ is an NFA that accepts string } \omega \}$  is a decidable language.

#### Proof:

 $M_2 = \text{on input } \langle C, \omega \rangle$ 

- 1. Convert C to an equivalent DFA B.
- 2. Run  $M_1$  (TM from first example) on  $\langle B, \omega \rangle$ .
- 3. If  $M_1$  accepts, accept. If  $M_1$  rejects, reject.

M<sub>2</sub> is a decider, because all DFAs halt on all input.

## $E_{DFA}$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

Proof:



$$E_{DFA}$$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

$$M_3 = on input \langle A \rangle$$

1. Mark start state of *A*.

## $E_{DFA}$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

 $M_3 = on input \langle A \rangle$ 

- 1. Mark start state of A.
- 2. Mark any state with transition coming from marked state.

## $E_{DFA}$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

 $M_3 = on input \langle A \rangle$ 

- 1. Mark start state of A.
- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.

$$E_{DFA}$$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

 $M_3$  = on input  $\langle A \rangle$ 

- 1. Mark start state of A.
- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.
- 4. ???? , <u>accept</u>. Otherwise, <u>reject</u>.

## $E_{DFA}$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

 $M_3 = on input \langle A \rangle$ 

- 1. Mark start state of A.
- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.
- 4. If no accept states are marked, accept. Otherwise, reject.

## $E_{DFA}$

Claim:  $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$  is decidable.

#### Proof:

 $M_3$  = on input  $\langle A \rangle$ 

- 1. Mark start state of A.
- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.
- 4. If no accept states are marked, accept. Otherwise, reject.

 $M_3$  is a decider since at least one state must be added for step 2 to repeat, and there are a finite number of states.

## $EQ_{DFA}$

Claim:  $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$  is decidable.

Proof:



## $EQ_{DFA}$

Claim:  $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$  is decidable.

Proof:

What if we tried to use  $E_{DFA}$  somehow?