The Zeros of the Hardy Z Function are Simple

BY STEPHEN CROWLEY <STEPHENCROWLEY214@GMAIL.COM> February 27, 2017

Abstract

It is proved that the non-trivial roots of the Hardy Z function are simple having multiplicity 1 by showing that the fixed-points $N_Z(\alpha) = \alpha$ of the Newton map $N_Z(t) = t - \frac{Z(t)}{\dot{Z}(t)}$ must have a multiplier $\lambda_{N_Z}(\alpha) = |\dot{N_Z}(\alpha)| = \left|\frac{Z(\alpha)\ddot{Z}(\alpha)}{\dot{Z}(\alpha)}\right| = 0$ and therefore a multiplicity $m_Z(\alpha) = \frac{1}{1 - \lambda_{N_Z}(\alpha)} = \frac{1}{1 - 0} = 1$.

1 Preliminary Outline

1.1 Definitions

Let $\zeta(t)$ be the Riemann zeta function

$$\zeta(t) = \sum_{n=1}^{\infty} n^{-s} \qquad \forall \text{Re}(s) > 1
= (1 - 2^{1-s}) \sum_{n=1}^{\infty} n^{-s} (-1)^{n-1} \quad \forall \text{Re}(s) > 0$$
(1)

and $\vartheta(t)$ be Riemann-Siegel vartheta function

$$\vartheta(t) = -\frac{i}{2} \left(\ln \Gamma \left(\frac{1}{4} + \frac{it}{2} \right) - \ln \Gamma \left(\frac{1}{4} - \frac{it}{2} \right) \right) - \frac{\ln(\pi)t}{2} \tag{2}$$

so that the Hardy Z function[1] can be defined by

$$Z(t) = e^{i\vartheta(t)} \zeta\left(\frac{1}{2} + it\right)$$
(3)

which is real-valued when t is real and satisfies the identity

$$\zeta(t) = e^{-i\vartheta\left(\frac{i}{2} - it\right)} Z\left(\frac{i}{2} - it\right) \tag{4}$$

where $\ln\Gamma(z)$ is the principal branch of the logarithm of the Γ function defined by

$$\ln\Gamma(z) = \ln(\Gamma(z)) = (z-1)! = \prod_{k=1}^{z-1} k \forall z \in \mathbb{R} > 0$$
(5)

which is analytically continued from the positive real axis when $z \in \mathbb{C}$ is complex. Each of the points $z \in \mathbb{Z} = \{0, -1, -2, ...\}$ is a singularity and a branch point so that the union of the branch cuts is the negative real axis. On the branch cuts, the values of $\ln \Gamma(z)$ are determined by continuity from above.

Conjecture 1. (The Riemann hypothesis) All solutions t of the equation

$$\zeta(t) = 0 \tag{6}$$

besides the trivial solutions t = -2n with $n \in \mathbb{Z}^+$ have real-part $\frac{1}{2}$, that is, $\operatorname{Re}(t) = \frac{1}{2}$ when $\zeta(t) = 0$ and $t \neq -2n$.

1.2 Iterated Function Systems

Definition 2. A fixed-point α of a function f(x) is a value α such that

$$f(\alpha) = \alpha \tag{7}$$

[4, 3.]

Definition 3. The multiplier of a fixed point α of a map f(x) where $f(\alpha) = \alpha$ is equal to the absolute value of the derivative of the map evaluated at the point α .

$$\lambda_f(\alpha) = |\dot{f}(\alpha)| \tag{8}$$

If $\lambda_f(\alpha) < 1$ then α is a said to be an attractive fixed-point of the map f(x). If $\lambda_f(\alpha) = 1$ then α is an indifferent fixed point, and if $\lambda_f(\alpha) > 1$ then α is a repelling fixed-point. When $\lambda_f(\alpha) = 0$ the fixed-point α is said to be super-attractive [4, 3.]

Definition 4. The Newton map of a function g(t) is given by

$$N_g(t) = t - \frac{g(t)}{\dot{g}(t)} \tag{9}$$

and the multiplier of its fixed-points $g(\alpha) = 0$ where $N_q(\alpha) = \alpha$ is equal to

$$\lambda_{N_f(\alpha)} = \left| \frac{f(\alpha)\ddot{f}(\alpha)}{\dot{f}(\alpha)} \right| \tag{10}$$

Definition 5. The multiplicity $m_{N_f}(\alpha)$ of a root $f(\alpha) = 0$ where $N_f(\alpha) = \alpha$ is defined by its Taylor expansion about the point α having the form

$$f(t) = c(t - \alpha)^{m_f(\alpha)} + (\text{higher order terms...})$$
(11)

where $c \neq 0$ and $m \geqslant 1$. The multiplicity of a root is related to the multipler $\lambda_f(\alpha)$ through the formula

$$m_{f}(\alpha) = \frac{1}{1 - \lambda_{N_{f}}(\alpha)}$$

$$= \frac{1}{1 - |\dot{N}_{f}(\alpha)|}$$

$$= \frac{1}{1 - \left|\frac{f(\alpha)\ddot{f}(\alpha)}{\dot{f}(\alpha)}\right|}$$
(12)

when the fixed-point $f(\alpha) = \alpha$ is not indifferent, that is, when $\lambda_{N_f}(\alpha) \neq 1$. When $\lambda_{N_f}(\alpha) = 1$ then $m_f(\alpha)$ is not defined thru this formula since $m_f(t) = \frac{1}{1 - \lambda_{N_f}(t)} = \frac{1}{1 - 1} = \frac{1}{0}$.

See [3, p.52][2]

Definition 6. Let

$$Y(t) = N_Z(t) = t - \frac{Z(t)}{\dot{Z}(t)}$$

be the Newton map of Z(t) which has fixed-points $Y(\alpha) = \alpha$ at the zeros $Z(\alpha) = 0$.

Proposition 7. Y(t) has indifferent fixed-points, $\left\{\lambda_{N_Z}(t) = 1: t = -\frac{i}{2}(-4n-1) \forall n \in \mathbb{Z}^+\right\}$ at each trival zero of α , $Z\left(-\frac{i}{2}(-4n-1)\right) = 0$.

Definition 8. A removable singularity β of a holomorphic function f(t) is a point $f(\beta)$ at which the function is undefined yet it remains possible to redefine the function in such a way that the resulting function is regular in a neighborhood of β .

Theorem 9. Y(t) has super-attractive fixed-points at each non-trivial root of Z, $\{\alpha: Z(\alpha) = 0, \operatorname{Re}(\alpha) \neq 0\}$. That is, $\{\lambda_Y(\alpha) = 0: Z(\alpha) = 0, \operatorname{Re}(\alpha) \neq 0\}$.

Proof. The numerator of the argument of the absolute value function in the multiplier $\lambda_Y(\alpha) = \left| \frac{Z(\alpha)\ddot{Z}(\alpha)}{\dot{Z}(\alpha)} \right|$ is $Z(\alpha)\ddot{Z}(\alpha)$. If α was a geometrically attracting fixed-point $\lambda_Y(\alpha) = l$ where 0 < l < 1 instead of superattracting then its multiplicity would be $\frac{1}{1-l} = m$ and since m must be an integer, the multiplier l would be equal to $\frac{m-1}{m}$. If $m \ge 2$ then $\dot{Z}(\alpha) = 0$ which would require α to be a removable singularity of either Z(t) or $\ddot{Z}(t)$ so the singularity at $\frac{1}{\dot{Z}(t)}$ as $t \to \alpha$ would be canceled by a removable singularity of Z(t) or $\ddot{Z}(t)$ as $t \to \alpha$ so that the limit would exist, but since both Z(t) and $\ddot{Z}(t)$ are well-defined except at their essential singularities then $\ddot{Z}(\alpha)$ does not have any removable singularities. The only essential singularity of Z(t) is at $-\frac{i}{2}$ which corresponds to the pole of $\zeta(t)$ at t=1. The function $\ddot{Z}(t)$ has essential singularities at $-\frac{i}{2}$, $\bigcup_{n=1}^{\infty} -\frac{i}{2}(4n-3)$ and $\bigcup_{n=1}^{\infty} +\frac{i}{2}(4n-3)$.

Theorem 10. The roots of Z(t) are simple, that is, have multiplicity 1.

Proof. Let $\alpha \notin \bigcup_{n=1}^{\infty} -\frac{i}{2}(-4n-1)$ be a non-trivial root where $Z(\alpha)=0$ then the multiplier of its Newton map is $\lambda_{N_Z}(\alpha) = \left|\frac{Z(\alpha)\ddot{Z}(\alpha)}{\dot{Z}(\alpha)}\right| = 0$ therefore its multiplicity is $m_Z(t) = \frac{1}{1-\lambda_{N_Z}(t)} = \frac{1}{1-0} = \frac{1}{1} = 1$. Every simple root of a function f(t) is a super-attracting fixed-point of $N_f(t)$. See [3, p.52]

Bibliography

- [1] A. Ivić. The Theory of Hardy's Z-Function. Cambridge Tracts in Mathematics. Cambridge University Press, 2013.
- [2] T. Kawahira. The Riemann hypothesis and holomorphic index in complex dynamics. ArXiv e-prints, feb 2016.
- [3] John Willard Milnor. Dynamics in one complex variable, volume 160. Springer, 2006.
- [4] Hans Rådström. On the iteration of analytic functions. Mathematica Scandinavica, pages 85–92, 1953.