

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Q. No. 1 - 25 Carry One Mark Each

The simplified SOP (Sum of Product) form of the Boolean expression

 $(P + \overline{Q} + \overline{R}).(P + \overline{Q} + R).(P + Q + \overline{R})$ is

- $(A) \quad \left(\overline{P}Q + \overline{R}\right) \qquad \qquad (B) \quad \left(P + \overline{Q}\overline{R}\right) \qquad \qquad (C) \quad \left(\overline{P}Q + R\right) \qquad \qquad (D) \quad \left(PQ + R\right)$

Answer: (B)

- Which one of the following circuits is NOT equivalent to a 2-input XNOR (exclusive NOR) gate? 2.
 - (A)

- (C)

Answer: (D)

- The minimum number of D flip-flops needed to design a mod-258 counter is 3.
 - (A) 9
- (B) 8
- (C) 512
- (D) 258

- 4. A thread is usually defined as a 'light weight process' because an operating system (OS) maintains smaller data structures for a thread than for a process. In relation to this, which of the followings is TRUE?
 - (A) On per-thread basis, the OS maintains only CPU register state
 - (B) The OS does not maintain a separate stack for each thread
 - (C) On per-thread basis, the OS does not maintain virtual memory state
 - (D) On per thread basis, the OS maintains only scheduling and accounting information

Answer: (A)

5. K4 and Q3 are graphs with the following structures

Which one of the following statements is TRUE in relation to these graphs?

- (A) K4 is planar while Q3 is not
- (B) Both K4 and Q3 are planar
- (C) Q3 is planar while K4 is not
- (D) Neither K4 not Q3 is planar

Answer: (A)

- 6. If the difference between the expectation of the square of random variable $(E[X^2])$ and the square of the expectation of the random variable $(E[X^2])$ is denoted by R then
 - (A) R = 0
- (B) R<0
- (C) $R \ge 0$
- (D) R>0

7.	The	lexical analy	sis for a moo	dern comput	er langua	ige su	ch as J	ava needs	the pow	ver of v	which on	e of the
	follo	owing machin	e models in a	necessary a	and suffic	ient s	ense?					
	(A)	Finite state	automata		((B)	Determ	ninistic pus	hdown	automa	ıta	
	(C)	Non-Determ	ministic push	down autom	ata ((D)	Turing	machine				
A	nswer:	(A)										
-												
8.	Let	the page faul	t service tim	e be 10ms in	n a comp	uter v	with ave	erage mem	ory acc	ess tim	e being	20ns. If
	one page fault is generated for every 10 ⁶ memory accesses, what is the effective access time for the											
	men	nory?										
	(A)	21ns	(B)	30ns	((C)	23ns		(D)	35ns		
A	nswer:	(B)										
-		//							\			
9.	Con	sider a hypot	hetical proce	essor with a	n instruct	ion o	f type l	LW R1, 20)(R2), v	which o	during ex	ecution
	read	s a 32-bit w	ord from me	emory and s	stores it i	in a 3	32-bit r	egister R1.	The e	ffective	e address	of the
	men	nory location	is obtained b	y the addition	on of con	stant	20 and	the conten	ts of re	gister F	R2. Whic	h of the
	follo	owing best ref	lects the add	ressing mode	e implem	ented	by this	instruction	for the	operan	d in men	nory?
	(A)	Immediate	Addressing									
	(B)	Register Ac	ddressing									
	(C)	Register In	direct Scaled	Addressing								
	(D)	Base Index	ed Addressin	ıg								
A	nswer:	(D)										
10	. Wha	nt does the fol	lowing fragn	nent of C-pro	ogram pri	nt?						
	cha	c[]="GAT	E2011";									
		*p =c;										
	prin	tf ("%s", p+p	[3]-p[1]);									

Answer: (C)

(A) GATE2011 (B) E2011 (C) 2011 (D) 011

11. A max-heap is a heap where the value of each parent is greater than or equal to the value of its children. Which of the following is a max-heap?

(A)

(B)

(D)

Answer:

An algorithm to find the length of the longest monotonically increasing sequence of numbers in an array **12.** A[0:n-1] is given below.

Let L_i denote the length of the longest monotonically increasing sequence starting at index i in the array Initialize $L_{n-1} = 1$

For all i such that $0 \le i \le n-2$

$$L_{_{i}} = \begin{cases} 1 + L_{_{i+1}} \text{ if } A[i] < A[i+1] \\ 1 & \text{Otherwise} \end{cases}$$

Finally the length of the longest monotonically increasing sequence is $Max(L_0, L_1, ..., L_{n-1})$. Which of the following statements is TRUE?

- (A) The algorithm uses dynamic programming paradigm
- (B) The algorithm has a linear complexity and uses branch and bound paradigm

	(C)	The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm									
	(D)	The algorithm uses divide	The algorithm uses divide and conquer paradigm.								
Ansv	ver:	(A)									
13.	L of D	be a regular language and	1 O be a context	froe lone	maga such that Oc	– D (E	For ove	omple let P be the			
13.								-			
	language represented by the regular expression p^*q^* and Q be $\left\{p^nq^n n\in N\right\}$). Then which of the										
	follov	wing is ALWAYS regular?	?								
	(A)	$P \cap Q$ (B)	P-Q	(C)	$\Sigma^* - P$	(D)	Σ*-	-Q			
Ansv	ver:	(C)									
14.	In a c	compiler, keywords of a lar	nguage are recog	nized du	ring						
	(A)	parsing of the program		(B)	the code generation	n					
	(C)	the lexical analysis of the	program	(D)	dataflow analysis						
Ansv	ver:	(C)									
15.	A lay	er-4 firewall (a device that	t can look at all p	rotocol l	neaders up to the tra	nsport	t layer)) CANNOT			
	(A)	block entire HTTP traffic	during 9:00PM	and 5:00	AM						
	(B)	block all ICMP traffic									
	(C)	stop incoming traffic from	n a sp <mark>ec</mark> ific IP ac	ldress bu	t allow outgoing tra	affic to	the sa	ame IP address			
	(D)	block TCP traffic from a	specific user on	a multi-u	ser system during 9	9:00PN	A and	5:00AM			
Ansv	ver:	(A)									
						_					
16.		o fair coins are flipped and	at least one of the	he outco	mes is known to be	a head	d, wha	t is the probability			
		ooth outcomes are heads?									
	(A)	1/3 (B)	1/4	(C)	1/2	(D)	2/3				
Ansv	ver:	(A)									

17. Consider different activities related to email.

m1: Send an email from a mail client to a mail server

m2: Download an email from mailbox server to a mail client

m3: Checking email in a web browser

Which is the application level protocol used in each activity?

(A) m1:HTTP m2:SMTP m3:POP

(B) m1:SMTP m2:FTP m3:HTTP

(C) m1: SMTP m2: POP m3: HTTP

(D) m1: POP m2: SMTP m3:IMAP

Answer: (C)

18. A company needs to develop a strategy for software product development for which it has a choice of two programming languages L1 and L2. The number of lines of code (LOC) developed using L2 is estimated to be twice the LOC developed with L1. the product will have to be maintained for five years. Various parameters for the company are given in the table below.

Parameter	Language L1	Language L2
Man years needed for development	LOC / 10000	LOC / 10000
Development Cost per year	Rs. 10,00,000	Rs. 7,50,000
Maintenance time	5 years	5 years
Cost of maintenance per year	Rs. 1,00,000	Rs. 50,000

Total cost of the project includes cost of development and maintenance. What is the LOC for L1 for which the cost of the project using L1 is equal to the cost of the project using L2?

(A) 4000

(B) 5000

(C) 4333

(D) 4667

Answer: (B)

19. Let the time taken to switch between user and kernel modes of execution be t_1 while the time taken to switch between two processes be t_2 . Which of the following is TRUE?

(A)	t,	>	t,
()	٠,	-	٠,

(B)
$$t_1 = t_2$$

(C)
$$t_1 < t_2$$

(D) Nothing can be said about the relation between t₁ and t₂

Answer:

(B)

20. A company needs to develop digital signal processing software for one of its newest inventions. The software is expected to have 40000 lines of code. The company needs to determine the effort in personmonths needed to develop this software using the basic COCOMO model. The multiplicative factor for this model is given as 2.8 for the software development on embedded systems, while the exponentiation factor is given as 1.20. What is the estimated effort in person-months?

- (A) 234.25
- (B) 932.50
- (C) 287.80
- (D) 122.40

Answer: (A)

21. Which of the following pairs have DIFFERENT expressive power?

- (A) Deterministic finite automata (DFA) and Non-deterministic finite automata (NFA)
- (B) Deterministic push down automata (DPDA) and Non-deterministic push down automata (NPDA)
- (C) Deterministic single-tape Turing machine and Non-deterministic single tape Turing machine
- (D) Single-tape Turing machine and multi-tape Turing machine

Answer: (B)

22. HTML (Hyper Text Markup Language) has language elements which permit certain actions other than describing the structure of the web document. Which one of the following actions is NOT supported by pure HTML (without any server or client side scripting) pages?

- (A) Embed web objects from different sites into the same page
- (B) Refresh the page automatically after a specified interval
- (C) Automatically redirect to another page upon download
- (D) Display the client time as part of the page

23.	Whic	ch of the following is NOT desired in	a good Softwai	re Requirement Specifications (SRS) document?				
	(A)	Functional Requirements	8	1				
	(B)	Non Functional Requirements						
	(C)	Goals of Implementation						
	(D)	Algorithms for Software Implementa	ation					
Ansy	wer:	(D)						
24.			ces of which the	e following are relevant for this question.				
Interrupt from CPU temperature sensor								
	Inter	rupt from Mouse						
	Inter	rupt from Keyboard						
	Inter	rupt from Hard Disk						
	(A)	Interrupt from Hard Disk	(B)	Interrupt from Mouse				
	(C)	Interrupt from Keyboard	(D)	Interrupt from CPU temp sensor				
Ansv	wer:	(D)						
25.	Cons	sider a relational table with a single red	cord for each re	egistered student with the following attributes.				
	1.	Registration_Number: Unique regist	tration number	for each registered student				
	2.	UID: Unique Identity number, uniqu	ue at the nation	al level for each citizen				
	3.	BankAccount_Number: Unique account	ount number a	t the bank. A student can have multiple accounts				
		or joint accounts. This attributes stor	res the primary	account number				
	4.	Name: Name of the Student						
	5.	Hostel_Room: Room number of the	hostel					
	Whic	ch of the following options is INCORE	RECT?					
	(A)	BankAccount_Number is a candidat	te key					
	(B)	Registration_Number can be a prima	ary key					
	(C)	UID is a candidate key if all students	s are from the s	same country				
	(D)	If S is a superkey such that $S \cap UID$	is NULL then	SUJUID is also a superkey				

Q. No. 26 – 55 Carry Two Marks Each

- Which of the given options provides the increasing order of asymptotic complexity of functions f₁, f₂, f₃ 26. and f_4 ? $f_1(n) = 2^n$; $f_2(n) = n^{3/2}$; $f_3(n) = n \log_2 n$; $f_4(n) = n^{\log_2 n}$
- (A) f_3, f_2, f_4, f_1 (B) f_3, f_2, f_1, f_4 (C) f_2, f_3, f_1, f_4 (D) f_2, f_3, f_4, f_1

Answer: (A)

Four matrices M_1 , M_2 , M_3 and M_4 are dimensions $p \times q$, $q \times r$, $r \times s$ and $s \times t$ respectively can be multiplied 27. in several ways with different number of total scalar multiplications. For example When multiplied as $((M_1 \times M_2) \times (M_3 \times M_4))$ the total number of scalar multiplications is pqr+rst+prt. When multiplied as $(((M_1 \times M_2) \times M_3) \times M_4)$, the total number of scalar multiplications is pqr+prs+pst.

If p=10, q=100, r=20, s=5 and t=80, then the minimum number of scalar multiplications needed is

- (A) 248000
- (B) 44000
- (C) 19000
- (D) 25000

Answer: (C)

Consider a relational table r with sufficient number of records, having attributes A1, A2,..., An and let 28. $1 \le p \le n$. Two queries Q1 and Q2 are given below.

Q1: $\pi_{A_{1...A}}$ $(\sigma_{A_{n}=c}(r))$ where c is a const

Q2: $\pi_{A1...A_n} \left(\sigma_{c_1 \leq A_p \leq c_2}(r) \right)$ where c_1 and c_2 are constants

The database can be configured to do ordered indexing on Ap or hashing on Ap. Which of the following statements is TRUE?

- (A) Ordered indexing will always outperform hashing for both queries
- Hashing will always outperform ordered indexing for both queries (B)
- Hashing will outperform ordered indexing on Q1, but not on Q2 (C)
- (D) Hashing will outperform ordered indexing on Q2, but not on Q1.

(C) Answer:

- **29.** Consider the matrix as given below.
 - $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
 - 0 4 7
 - 0 0 3

Which one of the following provides the CORRECT values of eigenvalues of the matrix?

- (A) 1,4,3
- (B) 3,7,3
- (C) 7,3,2
- (D) 1,2,3

Answer: (A)

30. Consider an instruction pipeline with four stages (S1, S2, S3 and S4) each with combinational circuit only. The pipeline registers are required between each stage and at the end of the last stage. Delays for the stages and for the pipeline registers are as given in the figure.

What is the approximate speed up of the pipeline in steady state under ideal conditions when compared to the corresponding non-pipeline implementation?

- (A) 4.0
- (B) 2.5
- (C) 1.1
- (D) 3.0

Answer: (B)

31. Definition of a language L with alphabet {a} is given as following

 $L = \{a^{nk} \mid k > 0, \text{ and n is a positive integer constant}\}$

What is the minimum number of states needed in a DFA to recognize L?

- (A) k+1
- (B) n+1
- (C) 2^{n+1}
- (D) 2^{k+1}

Enroll now and get 20% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com

- **32.** An 8KB direct mapped write-back cache is organized as multiple blocks, each of size 32-bytes. The processor generates 32-bit addresses. The cache controller maintains the tag information for each cache block comprising of the following.
 - 1 Valid bit
 - 1 Modified bit

As many bits as the minimum needed to identify the memory block mapped in the cache.

What is the total size of memory needed at the cache controller to store meta-data (tags) for the cache?

- (A) 4864 bits
- (B) 6144bits
- (C) 6656bits
- (D) 5376bits

Answer: (A)

- 33. An application loads 100 libraries at startup. Loading each library requires exactly one disk access. The seek time of the disk to a random location is given as 10ms. Rotational speed of disk is 6000rpm. If all 100 libraries are loaded from random locations on the disk, how long does it take to load all libraries? (the time to transfer data from the disk block once the head has been positioned at the start of the block may be neglected)
 - (A) 0.50s
- (B) 1.50s
- (C) 1.25s
- (D) 1.00s

Answer: (B)

34. A deterministic finite automation (DFA)D with alphabet $\Sigma = \{a, b\}$ is given below:

Which of the following finite state machines is a valid minimal DFA which accepts the same language as D?

Answer: (A)

35. The following is comment written for a C function

/* This function computes the roots of a quadratic equation $ax^2 + bx + c = 0$. The function stores two real roots in * root1 and * root2 and returns the status of validity of roots. It handles four different kinds of cases.

- (i) When coefficient a is zero irrespective of discriminant
- (ii) When discriminant is positive
- (iii) When discrimanant is zero
- (iv) When discrimanant is negative

Only in cases (ii) and (iii), the stored roots are valid.

Otherwise 0 is stored in the roots. The function returns 0 when the roots are valid and -1 otherwise.

The function also ensures root $1 \ge 1000$

Int get_QuadRoots (float a, float b, float c, float *root1, float *root 2);*/

A software test engineer is assigned the job of doing black box testing. He comes up with the following test cases, many of which are redundant.

		Input set		Expected Output set			
Test Case	a	b	С	Root1	Root2	Return Value	
T1	0.0	0.0	7.0	0.0	0.0	-1	
T2	0.0	1.0	3.0	0.0	0.0	-1	
Т3	1.0	2.0	1.0	-1.0	-1.0	0	
T4	4.0	-12.0	9.0	1.5	1.5	0	
T5	1.0	-2.0	-3.0	3.0	-1.0	0	
Т6	1.0	1.0	4.0	0.0	0.0	-1	

Which one of the following options provide the set of non-redundant tests using equivalence class partitioning approach from input perspective for black box testing?

- (A) T1,T2,T3,T6
- (B) T1,T3,T4,T5
- (C) T2,T4,T5,T6
- (D) T2,T3,T4,T5

Answer: (C)

36. Database table by name Loan_Records is given below.

Borrower	Bank_Manager	Loan_ Amount
Ramesh	Sunderajan	10000.00
Suresh	Ramgopal	5000.00
Mahesh	Sunderajan	7000.00

What is the output of the following SQL query?

SELECT count(*)

FROM(

(SELECT Borrower. Bank_Manager FROM Loan_Records) AS S

NATURAL JOIN

(SELECT Bank_Manager, Loan_Amount FROM Loan_Records) AS T

);

- (A) 3
- (B) 9
- (C) 5
- (D) 6

37. Consider two binary operators ' \uparrow ' and ' \downarrow ' with the precedence of operator \downarrow being lower than that of the operator \uparrow . Operator \uparrow is right associative while operator \downarrow , is left associative. Which one of the following represents the parse tree for expression $(7 \downarrow 3 \uparrow 4 \uparrow 3 \downarrow 2)$?

(A) 7 1 3 1 1 3 2

Answer: (B)

38. Consider the languages L1, L2 and L3 as given below

$$L1 = \{0^p 1^q \mid p, q \in N\}$$

$$L2 = \left\{ 0^p 1^q \mid p,q \in N \text{ and } p = q \right\}$$
 and

$$L3 = \{0^p 1^q 0^r \mid p, q, r \in N \text{ and } p = q = r\}$$

Which of the following statements is NOT TRUE?

- (A) Push Down Automata (PDA) can be used to recognize L1 and L2
- (B) L1 is a regular language
- (C) All the three languages are context free
- (D) Turing machines can be used to recognize all the languages

39. On a non-pipelined sequential processor, a program segment, which is a part of the interrupt service routine, is given to transfer 500 bytes from an I/O device to memory.

Initialize the address register

Initialize the count to 500

LOOP: Load a byte from device

Store in memory at address given by address register

Increment the address register

Decrement the count

If count != 0 go to LOOP

Assume that each statement in this program is equivalent to a machine instruction which takes one clock cycle to execute if it is a non-load/store instruction. The load-store instructions take two clock cycles to execute.

The designer of the system also has an alternate approach of using the DMA controller to implement the same transfer. The DMA controller requires 20 clock cycles for initialization and other overheads. Each DMA transfer cycle takes two clock cycles to transfer one byte of data from the device to the memory.

What is the approximate speedup when the DMA controller based design is used in place of the interrupt driven program based input-output?

- (A) 3.4
- (B) 4.4
- (C) 5.1
- (D) 6.7

Answer: (A)

- 40. We are given a set of n distinct elements and an unlabeled binary tree with n nodes. In how many ways can we populate the tree with the given set so that it becomes a binary search tree?
 - (A) 0
- (B) 1

- (C) n!
- (D) $\frac{1}{n+1}.^{2n}C_n$

41. Which one of the following options is CORRECT given three positive integers x, y and z, and a predicate

$$P(x) = \neg(x=1) \land \forall y (\exists z (x=y*z) \Rightarrow (y=x) \lor (y=1))$$

- (A) P(x) being true means that x is a prime number
- (B) P(x) being true means that x is a number other than 1
- (C) P(x) is always true irrespective of the value of x
- (D) P(x) being true means that x has exactly two factors other than 1 and x

Answer: (A)

- 42. Given $i = \sqrt{-1}$, what will be the evaluation of the definite integral $\int_{0}^{\pi/2} \frac{\cos x + i \sin x}{\cos x i \sin x} dx?$
 - (A) 0
- (B) 2
- (C) -i
- (D) i

Answer: (D)

43. Consider a database table T containing two columns X and Y each of type integer. After the creation of the table, one record (X= 1, Y=1) is inserted in the table.

Let MX and MY denote the respective maximum values of X and Y among all records in the table at any point in time. Using MX and MY, new records are inserted in the table 128 times with X and Y values being MX+1, 2*MY+1 respectively. It may be noted that each time after the insertion, values of MX and MY change.

What will be the output of the following SQL query after the steps mentioned above are carried out? SELECT Y FROM T WHERE X=7;

- (A) 127
- (B) 255
- (C) 129
- (D) 257

- 44. Consider a finite sequence of random values $X = [x_1, x_2, ... x_n]$. Let μ_x be the mean and σ_x be the standard deviation of X. Let another finite sequence Y of equal length be derived from this as $y_i = a * x_i + b$, where a and b are positive constants. Let μ_y be the mean and σ_y be the standard deviation of this sequence. Which one of the following statements is INCORRECT?
 - (A) Index position of mode of X in X is the same as the index position of mode of Y in Y.
 - (B) Index position of median of X in X is the same as the index position of median of Y in Y.
 - (C) $\mu_v = a\mu_x + b$
 - (D) $\sigma_{y} = a\sigma_{x} + b$

Answer: (D)

- 45. A deck of 5 cards (each carrying a distinct number from 1 to 5) is shuffled thoroughly. Two cards are then removed one at a time from the deck. What is the probability that the two cards are selected with the number on the first card being one higher than the number on the second card?
 - (A) 1/5
- (B) 4/25
- (C) 1/4
- (D) 2/5

Answer: (D)

46. Consider the following table of arrival time and burst time for three processes P0, P1 and P2.

Process	Arrival time	Burst Time
P0	0 ms	9 ms
P1	1 ms	4ms
P2	2 ms	9ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes. What is the average waiting time for the three processes?

- (A) 5.0 ms
- (B) 4.33 ms
- (C) 6.33 ms
- (D) 7.33 ms

47. Consider evaluating the following expression tree on a machine with load-store architecture in which memory can be accessed only through load and store instructions. The variables a, b, c, d and e are initially stored in memory. The binary operators used in this expression tree can be evaluated by the machine only when the operands are in registers. The instructions produce result only in a register. If no intermediate results can be stored in memory, what is the minimum number of registers needed to evaluate this expression?

Answer: (D)

(A)

Common Data Questions: 48 & 49

(C)

Consider the following recursive C function that takes two arguments unsigned int foo(unsigned int n, unsigned int r) { $if (n>0) \ return (n\%r) + foo (n/r, r)); \\ else \ return \ 0;$

(B)

- **48.** What is the return value of the function foo when it is called as foo (513, 2)?
 - (A) 9
- (B) 8
- (C) 5
- (D) 2

(D)

Answer: (D)

- **49**. What is the return value of the function foo when it is called as foo (345, 10)?
 - (A) 345
- (B) 12
- (C) 5
- (D) 3

Common Data Questions: 50 & 51

Consider the following circuit involving three D-type flip-flops used in a certain type of counter configuration.

- 50. If all the flip-flops were reset to 0 at power on, what is the total number of distinct outputs (states) represented by PQR generated by the counter?
 - (A) 3
- (B) 4
- (C) 5
- (D) 6

Answer: (B)

- 51. If at some instance prior to the occurrence of the clock edge, P. Q and R have a value 0, 1 and 0 respectively, what shall be the value of PQR after the clock edge?
 - (A) 000
- (B) 001
- (C) 010
- (D) 011

Answer: (D)

Statement for Linked Answer Questions: 52 & 53

An undirected graph G(V,E) contains n (n > 2) nodes named v_1, v_2, v_n. Two nodes v_i, v_j are connected if and only if $0 < |i-j| \le 2$. Each edge $\left(v_i, v_j\right)$ is assigned a weight i+j. A sample graph with n=4 is shown below

52. What will be the cost of the minimum spanning tree (MST) of such a graph with n nodes?

(A)

(B) $n^2 - n + 1$

(C) 6n-11

(D) 2n+1

Answer: (B)

53. The length of the path from v_5 to v_6 in the MST of previous question with n = 10 is

(A) 11

- (B) 25
- (C) 31
- (D) 41

Answer: (C)

Statement for Linked Answer Questions: 54 & 55

Consider a network with five nodes, N1 to N5, as shown below

The net work uses a Distance Vector Routing protocol. Once the routes have stabilized, the distance vectors at different nodes are as following

N1:(0,1,7,8,4)

N2:(1,0,6,7,3)

N3:(7,6,0,2,6)

N4:(8,7,2,0,4)

N5:(4,3,6,4,0)

Each distance vector is the distance of the best known path at that instance to nodes, N1 to N5, where the distance to itself is 0. Also, all links are symmetric and the cost is identical in both directions. In each round, all nodes exchange their distance vectors with their respective neighbors. Then all nodes update their distance vectors. In between two rounds, any change in cost of a link will cause the two incident nodes to change only that entry in their distance vectors

- 54. The cost of link N2-N3 reduces to 2 in (both directions). After the next round of updates, what will be the new distance vector at node, N3?
 - (A) (3. 2, 0, 2, 5)

(B) (3, 2, 0, 2, 6)

(C) (7, 2, 0, 2, 5)

(D) (7, 2, 0, 2, 6)

Answer: (A)

- 55. After the update in the previous question, the link N1-N2 goes down. N2 will reflect this change immediately in its distance vector as cost, ∞. After the NEXT ROUND of update, what will be the cost to N1 in the distance vector of N3?
 - (A) 3
- (B) 9
- (C) 10
- (D) ∞

GENERAL APTITUDE

Q. No. 56 - 60 Carry One Mark Each

56.	6. If $Log(P)=(1/2)Log(Q)=(1/3)Log(R)$, then which of the following options is TRUE?								
	(A)	$P^2 = Q^3 R^2$	(B)	$Q^2 = PR$	(C)	$Q^2 = R^3 P$	(D)	$R = P^2Q^2$	
Ansv	ver:	(B)							
57.	Choo	ose the most app	ropriate w	ord(s) from th	ne options gi	ven below to	complete th	e following se	ntence:
		ontemplated					-		
	(A)	to visit			(B)	having a vis	it		
	(C)	visiting			(D)	for a visit			
Ansv	ver:	(C)							
58.	Choo	ose the most app	ropriate w	ord from the	options give	n below to co	mplete the f	ollowing sente	ence:
	"If y	you are trying	to make	a strong im	pression o	n your audi	ence, you	cannot do so	by being
	unde	erstated, tentati	ve or	·"					
	(A)	hyperbolic	(B)	restrained	(C)	argumentati	ve (D)	indifferent	
Ansv	ver:	(B)							
-0	C1	1 16							
59.		ose the word from	n the option	ons given belo	ow that is me	ost nearly opp	osite in mea	ining to the giv	ven word:
		algamate"	(D)	amlit	(C)	a all a at	(D)	comorato	
	(A)	merge	(B)	split	(C)	collect	(D)	separate	
Ansv	ver:	(D)							
60.	Whic	ch of the followi	ng options	is the closest	in the mear	ning to the wo	rd below:		
	"Ine	xplicable"							
	(A)	Incomprehensi	ble		(B)	Indelible			
	(C)	Inextricable			(D)	Infallible			
Ansv	ver:	(A)							

Q. No. 61 to 65 Carry Two Marks Each

61. P, Q, R and S are four types of dangerous microbes recently found in a human habitat.

The area of each circle with its diameter printed in brackets represents the growth of a single microbe surviving human immunity system within 24 hours of entering the body. The danger to human beings varies proportionately with the toxicity, potency and growth attributed to a microbe shown in the figure above: A pharmaceutical company is contemplating the development of a vaccine against the most dangerous microbe. Which microbe should the company target in its first attempt?

- (A) P
- (B) Q
- (C) R
- (D) S

Answer: (D)

62. The variable cost (V) of manufacturing a product varies according to the equation v = 4q, where q is the quantity produced. The fixed cost (F) of production of same product reduces with q according to the equation F = 100/q. How many units should be produced to minimize the total cost (V+F)?

- (A) 5
- (B) 4

(C) 7

(D) 6

63	3. A t	ransporter receive	es the same num	ber of orders	each day. C	urrently, he h	as some pending	orders
	(ba	cklog) to be ship	ped. If he uses 7	trucks, then	at the end of	the 4 th day he	can clear all the c	orders.
	Alte	ernatively, if he u	ses only 3 trucks	, then all the	orders are clear	red at the end	of the 10 th day. W	hat is
	the	minimum number	r of trucks require	d so that there	will be no pen	ding order at t	he end of the 5 th da	.y?
	(A)	4	(B) 5	(C) 6	(D)	7	
A	nswer:	(C)						
		(0)						
64	4. A c	ontainer originall	y contains 10 litre	es of pure spir	it. From this c	ontainer I litre	of sprit is replaced	d with
	1 li	tre of water. Sub	sequently, 1 litre	of the mixture	is again replac	ce with 1 litre	of water and this pr	rocess
	is re	epeated one more	time. How much	spirit is now	left in the conta	ainer ?		
	(A)	7.58 litres	(B) 7.8	34 litres	(C) 7 litre	es	(D) 7.29 litres	
Δ	nswer:	(D)						
		(2)						
65	5. Fev	v school curricula	include a unit o	n how to dea	l with bereave	ment and grie	f, and yet all stude	ents at
	son	ne point in their li	ves suffer from lo	sses through c	leath and partin	ıg.		
	Bas	ed on the above p	assage which top	ic would not b	e included in a	unit on bereav	vement?	
	(A)	How to write a	letter of condoler	nce				
	(B)	What emotions	al stages are passe	d through in t	he healing proc	ess		
	(C)	What are the le	eading causes of d	eath are				
	(D)		ipport to a grievin					
A		_						
A	nswer:	(C)						

