B. 3988.

Kriván Bálint Budapest, Berzsenyi D. Gimn., 10. o. t. redhat24@freemail.hu

Feladat:

Egy konvex ötszög oldalainak felezőpontjai F_1, F_2, F_3, F_4, F_5 , ebben a sorrendben (az F_5 és az F_1 felezőpontokat tartalmazó oldalak közös csúcsa A). Legyen P az a pont a síkban, amelyre a $PF_2F_3F_4$ négyszög paralelogramma. Bizonyítsuk be, hogy ekkor a PF_5AF_1 négyszög is paralelogramma.

Megoldás:

Húzzuk be a BE és a BD szakaszokat:

 F_2F_3 a CBD háromszög BD oldalához tartozó középvonala, tehát F_2F_3 és BD párhuzamos. Mivel $PF_2F_3F_4$ egy paralelogramma, ezért PF_4 és F_2F_3 párhuzamos. Összefoglalva:

$$F_2F_3 \parallel BD$$
, illetve $F_2F_3 \parallel PF_4 \rightarrow BD \parallel PF_4$

Tehát BD és PF_4 is párhuzamosak. Azt is tudjuk, hogy F_4 felezőpontja az ED oldalnak. Mivel PF_4 párhuzamos a BD-vel, és átmegy az EBD háromszög ED oldalának felezőpontján, ezért PF_4 nem lehet más, mint az EBD háromszög BD oldalához tartozó középvonala, azaz P felezőpontja az EB oldalnak.

Mivel P felezőpontja az EB oldalnak, ezért F_1P középvonala az ABE háromszögnek, így $F_1P \parallel AE$, hasonlóan $F_5P \parallel AB$. Mivel AE és AF_5 egyenese, illetve AB és AF_1 egyenese egyebeesik, ezért

$$F_1P \parallel AF_5$$
 illetve $F_5P \parallel AF_1$

Ebből pedig rögtön következik, hogy PF_5AF_1 négyszög is egy paralelogramma.