Samarakoon S.M.O.T.

PRE LAB - EE 256 : POWER AND ENERGY THREE PHASE MEASUREMENTS.

- Describe the different methods of three phase measurements for balanced three phase loads?
 - (i) Three-watt meter method

- configuration each waterelet is connected to a line CA2B,c) with common nowal
- •Used for balanced and unbalanced loads
- a neutral connection,

Active -> P=WI+W2+W3

(in Two-wattreter method

- . configuration: watermeters are connected between two lines.
 - * Used for > balanced foods system: star or delta unbalanced system: only in a wire systems (no neutral)

Reactive power = Without Reactive power = V3 (wow)

(ii) One-wattmeter method.

- · configuration: one waterneter connected and
 Teading taken with switching
 connections.
- · Used only for balanced loads.

Active power = Ni+ Wa

1 compare the prose cons of the methods you described in 21?

method	Pros	cons.
Three-Wattmeter.	 suitable for 4-wire Systems with neutral Accurate for both balanced & unbalanced systems 	 Requires 3 wattmeters. Need access to the neutral point Complex wiring.
Two-wattmeter	o works for both balanced and unbalanced loads. Clh 3-wire systems) can be used to calculate power factor.	o Accuracy reduce at lower power factors. o Not suitable for 4-wire systems.
	other not require neutrol other two wattmeters required.	
One-wattmeter	 Economicalionly needed one watereter. osimple setup for balanced loads. 	o Only works for balanced loads. Required switching for full measurement.

1 Derive the equation of total load power in a wyell) configuration for two-water method.

assume that reference is va, and power factor is

$$w_1 = |\widehat{\Gamma}_B||\widehat{V}_{ac}| \cos(30-\Theta)$$

$$= |\widehat{\Gamma}_{LV_L}\cos(30-\Theta)| - 0$$

$$w_2 = |\widehat{T}_L||\widehat{V}_{ac}| \cos(30+\Theta)$$

w> = ILVL cos (30+0) -0

$$0+0 \Rightarrow w_1+w_2 = I_{L}V_{L} \left[\cos(30-0) + \cos(30+0) \right]$$

$$= I_{L}V_{L} \left[2\cos(30+0) + \cos(30+0) \right]$$

$$w_1+w_2 = \sqrt{3} I_{L}V_{L}\cos(0)$$

03/07