Introduction to Algorithms Project Report

1)Shellsort is an in-place comparison sort. The idea is to arrange the list of elements so that, starting anywhere considering every hth element gives a sorted list. For the given array $A=\{9,8,7,6,5,4,3,2,1\}$. Value of the array after each iteration of for loop

9	8	7	6	5	4	3	2	1
2	8	7	6	5	4	3	9	1
2	1	7	6	5	4	3	9	8
							1	,
2	1	7	6	5	4	3	9	8
2	1	7	6	5	4	3	9	8
	.		1	1	T	T	1	1
2	1	4	6	5	7	3	9	8
2	1	4	3	5	7	6	9	8
-							1	,
2	1	4	3	5	7	6	9	8
-							1	,
2	1	4	3	5	7	6	9	8
1	2	4	3	5	7	6	9	8
	_			1			1	,
1	2	4	3	5	7	6	9	8
	,	_	1	1	T	T	1	1
1	2	3	4	5	7	6	9	8
	1		1	ı	T	T	ı	<u> </u>
1	2	3	4	5	7	6	9	8
	1		T	T	T	T	T	1
1	2	3	4	5	7	6	9	8
	T -		T .	Т .	T	T	Т -	
1	2	3	4	5	6	7	9	8
			T	T	T	T	T	- 1
1	2	3	4	5	6	7	9	8
			T	T	T	T	T	- 1
1	2	3	4	5	6	7	8	9

Sai Gandham @01499559

2) loop invariants:

a) first while loop produces h values. All h values are less than n i.e., Array size. All the hvalues produced are odd numbers. The i th iteration "h" value is equals to floor ((i+1 th iteration "h")/2) value.

- b) Second while loop invariants: h is always greater than 0, h ordered sorted sets are formed at the end of each loop.
- c) For loop: for every iteration A[j] is picked out of array. h separated sub array is produced.
- d) Starting in position j-h, elements are successively moved h positions to the right until proper position for A[j] is found.

3)proof by contradiction.

Given condition $B[i] \le C[i]$ for all $1 \le i \le m$ before sorting ------condition #1

Asked to prove B[i]<=C[i] condition holds true after sorting for all 1<=i<=m.

Lets assume that B[i]>C[i] for all 1<=i<=m after sorting

Then it means that B[i] value >= i elements of C for all 1 <= i<= m-----2

But as per the 1st condition it gets that any i elements of C >= any i elements of B

Here we gets that B[i]> i elements of B, which is not true for the sorted order

Therefore B[i]<=C[i] holds true after sorting

4)proof by contradiction

Given condition B[i]<=C[i+j] for 1<=i<=m-j before sorting -----condition #1

Asked to prove B[i] <= C[i+j] for 1 <= i <= m-j holds true after sorting

Lets assume that B[i]>C[i+i] for all 1<=i<=m-i after sorting,

From the 1st condition we gets that any i C elements are greater than or equals to any i B elements

From that we gets that B[i] > i+j C elements > i B elements , it is a fallacy as B[i] cant be greater than i B elements after sorting.

There fore $B[i] \le C[i+j]$ holds true after sorting

5)Given K>h>1. To show A remains K-ordered after A is h-sorted. Have to prove A[i]<=A[i+k] remains same after sorting h gap elements of Array A

we take a difference of h on both sides to show that A remains K ordered after h sorted.

B[]=...A[i-h],A[i],A[i+h]....and C[]=....A[i+k-h],A[i+k],A[i+k+h]....

Have to prove The above sequences are independently sorted the condition still holds

i.e., $B[i] \le C[i+k]$ for values $1...i-h \le i \le i+h...m$ -----condition 1

By contradiction: lets assume that B[i]>C[i+k] after sorting

It means that B[i] is greater than i+k elements of sorted array C.

As per 1^{st} condition we gets that any i C elements are greater than or equal to any i B elements. From that we gets that B[i]>i+k C elements > I B elements , it is a not possible as B[i] can not be greater than I B elements after sorting.

Therefore B[i]<=C[i+k] holds true

EMPIRICAL ANALYSIS

For Empirical analysis I used 4 different gap sequences

Sequence1: h=2*h+1

Sequence 2: $\left\lceil \frac{9^k - 4^k}{5 \cdot 4^{k-1}} \right\rceil$

Sequence3: $(3^k - 1)/2$

My Sequence 4: e^{i} .

6)

Sai Gandham @01499559

8)

9)

