$\begin{array}{c} \text{Maths refreshing course} \\ \text{HSLU, Semester 1} \end{array}$

Matteo Frongillo

September 2, 2024

Contents

Ι	Lession 1	2
1	Algebric definitions	2
2	Prime numbers	2
3	Positive powers	2
	3.1 Property 1	2
	3.2 Property 2	2
	3.3 Property 3	2
4	Fractions	3
	4.1 Property 1	3
	4.2 Property 2	3
	4.3 Property 3	3
5	Negative powers	3
	5.1 Definition	3
	5.2 Property 1	3
	5.3 Property 2	3

Part I

Lession 1

1 Algebric definitions

- $\mathbb{N} := \text{Natural numbers}$
- $\mathbb{Z} := \text{Integral numbers}$
- $\mathbb{Q} := \text{Rational numbers}$
- $\mathbb{R} := \text{Real numbers}$

We have that:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

2 Prime numbers

A prime number is a natural number which can be devided only by itself or 1

$$n \in \mathbb{N}, \ n \neq 0, 1$$

3 Positive powers

Let $a \in \mathbb{R}, n\mathbb{R}, n \neq 0$ and $a \subset \mathbb{R}$

$$3 := 3$$

$$3 := 3 \cdot 3$$

$$3^{23} := 3 \cdot 3 \cdot \dots \cdot 3, 23 \text{ times}$$

3.1 Property 1

Let $a, b \in \mathbb{R}, n, m \in \mathbb{N}$, then

$$a^n \cdot a^m = a^{n+m}$$

3.2 Property 2

Let $a, b \in \mathbb{R}, n \in \mathbb{N}$, then

$$\left| (a \cdot b)^n = a^n \cdot b^n \right|$$

Notaton: The power a^n , a is the base nad n is the exponent.

3.3 Property 3

Let $a \in \mathbb{R}, m, n \in \mathbb{N}^*$, then

$$(a^n)^m = a^{n \cdot m}$$
, which is $\neq a^{(n^m)}$

2

4 Fractions

Notation 1: $a \cdot b = a \times b = ab$; $\frac{a}{b} = a \div b = a : b$

Notation 2: a is called numerator, b is called denominator.

 $\underline{\text{Notation 3}}\text{: } \underline{a},\ a,b\in\mathbb{R},\ b\neq 0$

4.1 Property 1

Let $a, b, c, d \in \mathbb{R}, \ a, b \neq 0$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

4.2 Property 2

Let $a, b, c, d \in \mathbb{R}, \ a, b \neq 0$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

4.3 Property 3

Let $a, b, c, d \in \mathbb{R}, \ a, b \neq 0$

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot b \pm c \cdot b}{b \cdot d}$$

5 Negative powers

5.1 Definition

$$\forall a \in \mathbb{R}, \ a \neq 0; \quad a^{-1} := \frac{1}{a}$$

- 5.2 Property 1
- 5.3 Property 2