BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI

4.1. Hipotez Testi

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte "hipotez" denir.

Örneklem dağılımlarından elde edilen istatistiklere bağlı olarak, örneklem dağılımının, parametresi bilinen kitleye ait olup olmadığı araştırılır. Hipotezlerin örneklem yardımıyla incelenmesine "hipotez testi" denir.

$$H_0 o$$
 yokluk hipotezi H_1 ya da $H_s o$ alternatif ya da seçenek hipotez H_1 iki yönlü seçenek hipotez

Örneğin,

Tek yönlü hipotez,

$$H_0$$
: $p = 0.65$ ya da H_0 : $p = 0.65$
 H_1 : $p < 0.65$ H_1 : $p > 0.65$

İki yönlü hipotez

$$H_0: p = 0.65$$

$$H_1: p \neq 0.65$$

Yapılan hipotez testi sonucunda aşağıdaki durumlar ortaya çıkabilir.

Gerçek

$$H_0$$
 doğru H_0 yanlış H_0 red H_0 red H_0 Doğru karar H_0 red edilememesi H_0 Doğru karar H_0 red edilememesi H_0 red edilememesi H_0 Roğru karar H_0 red edilememesi H_0 Roğru karar H_0

$$P(I.Tip\ Hata) = P(H_0\ Red\ | H_0\ Doğru) = \alpha$$

$$1 - \alpha = G\"{u}ven\ d\"{u}zeyi = 1 - P(I\ Tip\ Hata) = P(H_0\ Red\ edilemiyor\ | H_0\ Doğru)$$
 $P(II.Tip\ Hata) = P(H_0\ Red\ edilemiyor\ | H_0\ Yanlış) = \beta$

$$1 - \beta = Testin\ g\"{u}c\"{u} = 1 - P(II.Tip\ Hata) = P(H_0\ Red\ | H_0\ Yanlış)$$

Hipotezin red edildiği bölgeye red bölgesi ya da kritik alan denir.

$$H_0: \mu = \mu_0$$
 $H_0: \mu = \mu_0$ $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$ $H_1: \mu \neq \mu_0$

4.2. Güven Aralığı

Tahmin edici: Kitle parametresini tahmin etmek için kullanılan örnek istatistiğine tahmin edici adı verilir.

Tahmin: Tahmin edicinin almış olduğu değere tahmin denir.

İki türlü tahmin vardır:

- 1) **Nokta tahmini:** Bir kitle parametresini tahmin etmek için kullanılan örnek istatistiğinin değerine nokta tahmini adı verilir.
- 2) Aralık tahmini: Bir parametrenin aralık tahmini, parametreyi tahmin etmek için kullanılan değerleri içeren bir aralıktır.

Bir parametrenin bir aralık tahminin **güven düzeyi**, parametreyi kapsama olasılığıdır. $1 - \alpha$ ile gösterilir. Burada α **anlamlılık düzeyi** adını alır.

Tahminin güven düzeyini kullanarak bir parametre için belirlenen aralığa **güven aralığı** denir. En çok kullanılan güven aralıkları %90, %95 ve %99' dur.

4.3. Kitle Ortalaması İçin Hipotez Testi ve Güven aralığı

4.3.1. Kitle Varyansı σ^2 Biliniyor

Hipotez Testi

1) Hipotez kurulur.

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0, \ \mu > \mu_0, \ \mu \neq \mu_0$$

2) Test istatistiği hesaplanır.

$$Z_H = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

3) Kritik bölgeye göre hipotez red edilir ya da red edilemez.

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

 $-Z_{T(\alpha)}$ $Z_{H} < -Z_{T(\alpha)} \text{ ise } H_{0} \text{ red edilir} \qquad Z_{0}$

 $Z_H > Z_{T(\alpha)}$ ise H_0 red edilir

$$Z_H < -Z_{T(\alpha/2)}$$

ya da

$$Z_H > Z_{T(\alpha/2)}$$
 ise H_0 red

edilir

 $Z_{T(\alpha)}$: $1 - \alpha$ olasılığına karşı gelen tablo değeri

Güven Aralığı

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

$$P \Big(- Z_{T(\alpha/2)} \leq Z \leq Z_{T(\alpha/2)} \Big) = 1 - \alpha$$

$$P\left(-Z_{T(\alpha/2)} \le \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \le Z_{T(\alpha/2)}\right) = 1 - \alpha$$

$$P\left(\bar{x} - Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha \qquad \longrightarrow \qquad (1 - \alpha) \text{ güven düzeyinde}$$

$$\mu \text{ için güven aralığı}$$

4.3.2. Kitle Varyansı σ^2 Bilinmiyor (n < 30)

Hipotez Testi

1) Hipotez kurulur.

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0, \ \mu > \mu_0, \ \mu \neq \mu_0$

2) Test istatistiği hesaplanır.

$$t_H = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

3) Kritik bölgeye göre hipotez red edilir ya da red edilemez.

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

$$t_H < -t_{T(\frac{\alpha}{2},n-1)}$$
 ya da $t_H > t_{T(\frac{\alpha}{2},n-1)}$ ise H_0 red

Güven Aralığı

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} \sim t_{n-1} \ (s^2 \text{\"orneklem varyansi})$$

$$\begin{split} &P\left(-t_{T(\alpha/2,\ n-1)} \leq t \leq t_{T(\alpha/2,\ n-1)}\right) = 1 - \alpha \\ &P\left(-t_{T(\alpha/2,\ n-1)} \leq \frac{\bar{x} - \mu}{s/\sqrt{n}} \leq t_{T(\alpha/2,\ n-1)}\right) = 1 - \alpha \\ &P\left(\bar{x} - t_{T\left(\frac{\alpha}{2},\ n-1\right)} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{T(\alpha/2,\ n-1)} \frac{s}{\sqrt{n}}\right) = 1 - \alpha \\ &P\left(\bar{x} - t_{T\left(\frac{\alpha}{2},\ n-1\right)} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{T(\alpha/2,\ n-1)} \frac{s}{\sqrt{n}}\right) = 1 - \alpha \\ &\mu \text{ için güven aralığı} \end{split}$$

Not: n > 30 olduğunda t istatistiği yerine z istatistiği kullanılır.

Örnek 4.1. Belirli bir tür hastalığın tedavisi için yeni bir tür ilaç geliştirilmiştir. Bu ilaçla tedavi edilen hastaların ortalama iyileşme süresinin 10 günden az olduğu iddia edilmektedir. Rasgele olarak seçilen 7 hasta sözü edilen ilaçla tedavi edilmiş ve kaç günde iyileştikleri aşağıdaki gibi saptanmıştır.

$$X_i$$
: 2, 4, 11, 3, 4, 6, 8

 $\sigma^2 = 4$ ve $\alpha = 0.01$ ise kararınız ne olur? % 99 güven düzeyinde kitle ortalaması için güven aralığı oluşturunuz.

 σ^2 biliniyor.

1) Hipotez kurulur.

$$H_0: \mu = 10$$

$$H_1$$
: $\mu < 10$

2) Test istatistiği hesaplanır.

$$z_H = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{5.43 - 10}{2 / \sqrt{7}} = -6.046$$

$$\bar{x} = \frac{2+4+11+3+4+6+8}{7} = 5.43$$

3)

 $Z_H = -6.046 < -Z_{T(0.01)} = -2.33$ olduğundan H_0 red edilir, yani bu ilaçla tedavi edilen hastaların ortalama iyileşme süresinin 10 günden az olduğu %99 güvenle söylenebilir.

Güven aralığı,

$$P\left(\bar{x} - Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}}\right) = 0.99$$

$$\bar{x} \mp Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}} = 5.43 \mp 2.575 \frac{2}{\sqrt{7}}$$

$$3.482$$

$$7.375$$

 $\mu \colon [3.482,~7.375] \longrightarrow$ Bu aralığın $~\mu'$ yü içeren aralıklardan biri olması olasılığı %99'dur.

Örnek 4.2. Belli bir ilaç kullanılarak yapılan diş dolgularının ortalama dayanma süresinin 5 yıldan farklı olduğu iddia edilmektedir. İlgili ilaç kullanılarak yapılan diş dolgularından rasgele olarak 41 tanesi rasgele olarak seçilmiş ve örnek ortalaması 5.9 yıl, standart sapması da 1.74 olarak hesaplanmıştır. $\alpha = 0.01$ anlamlılık düzeyinde iddiayı test ediniz. Kitle ortalamasının %99 güven düzeyinde güven sınırlarını oluşturunuz.

 σ^2 bilinmiyor, n > 30 olduğun da t istatistiği yerine z istatistiği kullanılır.

1)
$$H_0: \mu = 5$$

 $H_1: \mu \neq 5$

2)
$$Z_H = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{5.9 - 5}{1.74/\sqrt{41}} = 3.33$$

3)

 $Z_H=3.33>Z_{T(\alpha/2=0.005)}=2.575$ olduğundan H_0 red edilir, yani belli bir ilaç kullanılarak yapılan diş dolgularının ortalama dayanma süresinin 5 yıldan farklı olduğu %99 güvenle söylenebilir.

Güven aralığı

$$P\left(\bar{x} - Z_{T(\alpha/2)} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + Z_{T(\alpha/2)} \frac{s}{\sqrt{n}}\right) = 0.99$$

$$\bar{x} \mp Z_{T(\alpha/2)} \frac{s}{\sqrt{n}} = 5.9 \mp 2.575 \frac{1.74}{\sqrt{41}}$$
5.5997

 μ : [5.2003, 5.5997] \longrightarrow Bu aralığın μ' yü içeren aralıklardan biri olması olasılığı %99'dur.

Örnek 4.3. Belirli bir şehirdeki 24 aylık çocukların ortalama ağırlığının 12.5 kg. dan küçük olduğu öne sürülmektedir. Rasgele olarak seçilen 5 tane 24 aylık çocuğun ağırlıkları aşağıda verilmiştir.

$$X_i$$
: 13, 11, 10, 10.5, 10.5

 $\alpha=0.10$ anlamlılık düzeyinde kararınız ne olur? % 90 güven düzeyinde kitle ortalaması için güven aralığı oluşturunuz.

1)
$$H_0$$
: $\mu = 12.5$
 H_1 : $\mu < 12.5$

2)
$$t_H = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{11 - 12.5}{1.173/\sqrt{5}} = -2.86$$

$$\bar{x} = \frac{13 + 11 + 10 + 10.5 + 10.5}{5} = 11$$
, $s = \sqrt{\frac{\sum_{j=1}^{n} x_j^2 - \frac{\left(\sum_{j=1}^{n} x_j\right)^2}{n}}{n-1}} = 1.173$

3) $\alpha = 0.10$ $-t_{T(0.10.4)} = -1.533$

 $t_H = -2.86 < -t_{T(0.10,4)} = -1.533$ olduğundan H_0 red edilir yani belirli bir şehirdeki 24 aylık çocukların ortalama ağırlığının 12.5 kg. dan küçük olduğu %90 güvenle söylenebilir.

Güven aralığı

$$P\left(\bar{x} - t_{T\left(\frac{\alpha}{2}, n-1\right)} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{T\left(\alpha/2, n-1\right)} \frac{s}{\sqrt{n}}\right) = 0.90$$

$$\bar{x} \mp t_{T\left(\frac{\alpha}{2}, n-1\right)} \frac{s}{\sqrt{n}} = 11 \mp 2.132 \frac{1.173}{\sqrt{5}}$$
12.118

 μ : [9.882, 12.118] \Rightarrow Bu aralığın μ' yü içeren aralıklardan biri olması olasılığı %90'dır.