PORFOLIO

Highlight Project from Digital Skill Fair 41.0: Python & EDA Practice

AUDRY PRITHA EKAHARYANI

HELLO 7 m AUDRY PRITHA EKAHARYANI

An Informatics student at Universitas Teknologi Yogyakarta with a strong interest in data analysis and data management.

Throughout my studies, I have learned the fundamentals of data processing and visualization using tools such as Google Colab, VSCode, Google Sheets and RapidMiner.

To deepen these skills in a practical setting, I participated in the Digital Skill Fair 41.0 program by libimbing, where I learned to apply data exploration, data cleaning and insight presentation techniques using Python.

TOOLS & SKILLS

X Tools Used

Python

Pandas

Matplotlib

Seaborn

Kaggle

Skills Acquired

Data Cleaning

Exploratory Data Analysis

Data Visualization

Insight Generation

This program is designed to classify student exam scores based on user input name, student ID (NIM) and a score ranging from 0 to 100 and then display the corresponding grade category, from A (Excellent) to E (Very Poor).

Problem Statement

How to develop a simple Python program that processes user input, identifies data types and categorizes exam scores based on predefined grading criteria.

Method

- Utilized input() to collect user data and int() to convert the exam score into an integer.
- Displayed data types using type()
 to ensure input validity.
- Applied if-elif-else statements to categorize scores based on predefined value ranges.

```
D: > 🕏 tugas_datascience1_audry.py > ..
      variabel nama = "audry"
      variabel nim = 1124022
      variabel nilai = 92
      nama = input("Masukkan nama mahasiswa: ")
     nim = input("Masukkan NIM: ")
      nilai = int(input("Masukkan nilai ujian (0-100): "))
      if 85 <= nilai <= 100:
       kategori_nilai = "A (Sangat Baik)"
11 elif 75 <= nilai <= 84:
       kategori nilai = "B (Baik)"
13 elif 60 <= nilai <= 74:
       kategori nilai = "C (Cukup)"
15 elif 40 <= nilai <= 59:
       kategori_nilai = "D (Kurang)"
17 else:
       kategori nilai = "E (Sangat Kurang)"
      print(f"\nNama: {nama} (type: {type(nama)})")
     print(f"NIM: {nim} (type: {type(nim)})")
      print(f"Nilai: {nilai} (type: {type(nilai)})")
     print("\nHasil Evaluasi:")
     print(f"Mahasiswa: {nama} (NIM: {nim})")
      print(f"Nilai Ujian: {nilai}")
     print(f"Kategori Nilai: {kategori_nilai}")
```

PROJECT 01

```
PS C:\Users\user\AppData\Local\Programs\Microsoft VS Code> & C

Masukkan nama mahasiswa: audry

Masukkan NIM: 11221122

Masukkan nilai ujian (0-100): 88

Nama: audry (type: <class 'str'>)

NIM: 11221122 (type: <class 'str'>)

Nilai: 88 (type: <class 'int'>)

Hasil Evaluasi:

Mahasiswa: audry (NIM: 11221122)

Nilai Ujian: 88

Kategori Nilai: A (Sangat Baik)

PS C:\Users\user\AppData\Local\Programs\Microsoft VS Code> []
```

The program successfully displays the user input, including the student's name, ID (NIM) and exam score, along with their respective data types.

The exam score is then classified into a grade category based on a predefined range.

In this example, a score of 88 is classified into category A (Excellent).

Performed initial cleaning on the sales dataset using Exploratory Data Analysis (EDA), focusing on handling missing values and removing duplicate records as a crucial step to ensure data quality before conducting further analysis.

eode data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2005 entries, 0 to 2004
Data columns (total 14 columns):
 # Column
                     Non-Null Count Dtype
 0 transaction id 2004 non-null
                                    object
1 customer id
                     2002 non-null
                                   object
 2 customer name
                     2003 non-null
                                   object
3 customer age
                     2003 non-null float64
 4 gender
                     2003 non-null
                                   object
 5 product id
                     2005 non-null
                                    object
 6 product name
                     2005 non-null
                                   object
    product category 2005 non-null
                                   object
   quantiy
                     2005 non-null
                                    int64
                     2005 non-null
    prce
                                   int64
                     2004 non-null
 10 payment mode
                                    object
 11 purchase date
                     2004 non-null
                                    object
 12 time of purchase 2004 non-null
                                    object
 13 status
                     2004 non-null
                                   object
dtypes: float64(1), int64(2), object(11)
memory usage: 219.4+ KB
PS D:\tugas datascience2 audry>
```

The dataset consists of 2,005 rows and 14 columns, with most columns having an object data type and several missing values.

data.describe()

```
PS D:\tugas_datascience2_audry> C:
 transaction id
 customer id
                    2
 customer name
 customer age
                    2
 gender
 product id
                    0
 product name
                    0
 product category
 quantiy
                    0
 prce
 payment mode
 purchase date
                    1
 time of purchase
                    1
 status
 dtype: int64
 PS D:\tugas_datascience2_audry>
```

Some columns contain missing values (1–3 entries), such as customer_id, customer_name and customer_age, which need to be cleaned before analysis.

data.isna().sum()

	customer_age	quantiy	prce
count	2003.000000	2005.000000	2005.000000
mean	38.902147	3.043890	7952.523192
std	12.628259	1.411766	6043.285703
min	18.000000	1.000000	101.000000
25%	28.000000	2.000000	2948.000000
50%	39.000000	3.000000	6640.000000
75%	50.000000	4.000000	11745.000000
max	60.000000	5.000000	24985.000000
<pre>PS D:\tugas_datascience2_audry></pre>			

Customers are, on average, 39 years old and purchase 3 products per transaction. Product prices vary, with an average of Rp7,952 and a maximum of Rp24,985. This data reflects customer profiles and shopping behavior.

output

```
transaction id
                    0
customer id
                    0
customer name
                    0
                    0
customer age
gender
                    0
product id
                    0
product name
                    0
product_category
                    0
quantiy
                    0
                    0
prce
payment_mode
                    0
purchase date
                    0
time of purchase
                    0
status
                    0
dtype: int64
PS D:\tugas_datascience2_audry>
```

Handling missing values in several columns.

```
for column in data.columns:
    if data[column].dtype == 'object':
        data[column].fillna(data[column].mode()[0], inplace=True)
    else:
        data[column].fillna(data[column].mean(), inplace=True)
```

output

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2005 entries, 0 to 2004
Data columns (total 14 columns):
                     Non-Null Count Dtype
# Column
0 transaction id 2005 non-null object
    customer id
                     2005 non-null object
                     2005 non-null object
    customer name
                     2005 non-null float64
    customer age
    gender
                     2005 non-null object
    product id
                     2005 non-null object
6 product name
                     2005 non-null object
    product category 2005 non-null
                                    object
    quantiy
                     2005 non-null
                                   int64
                     2005 non-null int64
    prce
10 payment mode
                     2005 non-null
                                   object
                     2005 non-null
11 purchase date
                                    object
12 time of purchase 2005 non-null
                                    object
13 status
                     2005 non-null object
dtypes: float64(1), int64(2), object(11)
memory usage: 219.4+ KB
```

All missing values were successfully handled (0 remaining)

Checking for duplicates across all columns.

```
check_duplicate = data.duplicated().sum()
print(f"Jumlah data yang duplikat = {check_duplicate}")
```


Before removal, 4 duplicate records were detected in the dataset.

```
Jumlah data yang duplikat = 4
PS D:\tugas_datascience2_audry>
```

Handling duplicate

data = data.drop_duplicates()

Checking for duplicates after handling them.

```
handle_duplicate = data.duplicated().sum()
print(f"Jumlah data yang duplikat = {handle_duplicate}")
```


After applying drop_duplicates(), no duplicate records remained.

```
Jumlah data yang duplikat = 0
PS D:\tugas_datascience2_audry> []
```

There is no significant relationship observed between customer age and either quantity or price. In contrast, a positive correlation between quantity and price (correlation coefficient of 0.63) is clearly evident from the upward trend in the data point distribution.

Correlation Matrix customer_age 0.032 -0.0091 - 0.8 - 0.6 quantiy 0.032 0.63 - 0.4 - 0.2 -0.0091 0.63 quantiy customer_age prce

A visual representation of the relationships between variables

Numerical correlation value

THANK YOU

