Lecture Notes for Machine Learning in Python

Professor Eric Larson Week Five, Lecture A

Class Logistics and Agenda

- Grades are coming...
- Agenda
 - Numerical Optimization Techniques
 - Types of Optimization
 - Programming the Optimization
- Whirlwind Lecture Alert: entire classes cover these concepts
 - We only want an intuition!

Gradient Descent Techniques

Optimization: gradient descent

What we know thus far:

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x_j^{(i)}$$

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)}$$

$$w \leftarrow w + \eta \nabla l(w)$$

Line Search: a better method

Line search in direction of gradient:

$$w \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \underbrace{\eta}_{\text{best step?}} \nabla l(w)$$

$$\eta \leftarrow \arg \min_{\eta} \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})^2$$

Stochastic Methods

How much computation is required for the gradient?

Per iteration:

M*N multiplies 2M add/subtract

approx. gradient

i chosen at random

Per iteration:

N multiplies
1 add/subtract

Demo

Numerical Optimization

Gradient Descent (with line search)
Stochastic Gradient Descent

Optimization Techniques with the Hessian

The Hessian

Assume function is quadratic:

function of one variable:

$$w \leftarrow w + \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{inverse 2nd deriv}} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

will solve in one step!

what is the second order derivative for a multivariate function?

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Hessian

Assume function is quadratic:

function of one variable:
$$w \leftarrow w + \left[\frac{\partial^{2}}{\partial w}l(w)\right]^{-1} \frac{\partial}{\partial w}l(w)$$

$$\mathbf{H}[l(w)] = \begin{bmatrix} \frac{\partial^{2}}{\partial w_{1}}l(w) & \frac{\partial}{\partial w_{1}}\frac{\partial}{\partial w_{2}}l(w) & \dots & \frac{\partial}{\partial w_{1}}\frac{\partial}{\partial w_{N}}l(w) \\ \frac{\partial}{\partial w_{2}}\frac{\partial}{\partial w_{1}}l(w) & \frac{\partial^{2}}{\partial w_{2}}l(w) & \dots & \frac{\partial}{\partial w_{2}}\frac{\partial}{\partial w_{N}}l(w) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial}{\partial w_{N}}\frac{\partial}{\partial w_{1}}l(w) & \frac{\partial}{\partial w_{N}}\frac{\partial}{\partial w_{2}}l(w) & \dots & \frac{\partial^{2}}{\partial w_{N}}l(w) \end{bmatrix}$$

The Newton Update Method

Assume function is quadratic (in high dimensions):

$$w \leftarrow w + \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{inverse 2nd deriv}} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

$$w \leftarrow w + \eta \cdot \mathbf{H}[l(w)]^{-1} \cdot \nabla l(w)$$

$$w \leftarrow w + \eta \cdot \underbrace{\mathbf{H}[l(w)]^{-1}}_{\text{inverse Hessian}} \cdot \underbrace{\nabla l(w)}_{\text{gradient}}$$

J. newlon'

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

The Hessian for Logistic Regression

 The hessian is easy to calculate from the gradient for logistic regression

Demo

Numerical Optimization

Newton's method

Problems with only using Newton's Method

- Quadratic isn't always a great assumption:
 - highly dependent on starting point
 - jumps can get REALLY random!
 - near saddle points, inverse hessian unstable
 - hessian not always invertible...
 - or invertible with correct numerical precision

The solution: quasi Newton methods

- Typically built as follows:
 - approximate the Hessian with something numerically sound and readily invertible
 - back off to gradient descent when the approximate hessian is not stable
 - use momentum to update approximate hessian
- A popular approach: use Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - which you can look up if you are interested ...

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

BFGS (if time)

$$\perp B_0 = I$$
,

2.
$$B_k \mathbf{p}_k = -\nabla f(\mathbf{x}_k)$$
 update direction

 $3 \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$

update equation

$$4 \mathbf{s}_k = \alpha_k \mathbf{p}_k$$

5.
$$\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$$
 intermediate constants

6.
$$B_{k+1} = B_k + rac{\mathbf{y}_k \mathbf{y}_k^{\mathrm{T}}}{\mathbf{y}_k^{\mathrm{T}} \mathbf{s}_k} - rac{B_k \mathbf{s}_k \mathbf{s}_k^{\mathrm{T}} B_k}{\mathbf{s}_k^{\mathrm{T}} B_k \mathbf{s}_k}$$

$$B_{k+1}^{-1} = B_k^{-1} + \frac{(\mathbf{s}_k^\mathrm{T}\mathbf{y}_k + \mathbf{y}_k^\mathrm{T}B_k^{-1}\mathbf{y}_k)(\mathbf{s}_k\mathbf{s}_k^\mathrm{T})}{(\mathbf{s}_k^\mathrm{T}\mathbf{y}_k)^2} - \frac{B_k^{-1}\mathbf{y}_k\mathbf{s}_k^\mathrm{T} + \mathbf{s}_k\mathbf{y}_k^\mathrm{T}B_k^{-1}}{\mathbf{s}_k^\mathrm{T}\mathbf{y}_k}$$

invertibility of B well defined and only matrix operations

Demo

Numerical Optimization

BFGS (if time) parallelization

For Next Lecture

- Next time: SVMs via in class assignment
- Next Next time: Neural Networks