Universidad de Guanajuato División de Ciencias e Ingenierías

REPORTE: ACTIVIDAD 3 Taller de Investigación

Gil Estéfano Rodríguez Rivera

NUA: 390906 ge.rodriguezrivera@ugto.mx

23 de octubre de 2021

1. Fluido perfecto y estático

El tensor de energía momento de un fluido perfecto se define de la siguiente manera:

$$T_{ab} = (\rho + p)u_a u_b - pg_{ab} \tag{1.1}$$

Donde c=1, ρ es la densidad y p es la presión. El cuadrivector de velocidad es $u^a=\gamma(1,u_x,u_y,u_z)$.

En el caso de un fluido estático, $u^a=(\gamma,0,0,0)$, pero note que $\gamma=1$ porque $\mathbf{u}=0$. Es decir, se obtiene: $u^a=(1,0,0,0)$.

Se estudia la métrica $g_{ab}=diag(e^{2\lambda},-e^{2\nu},-r^2,-r^2sin^2\theta).$

Para continuar, se supone que u^a es unitario, es decir, que $u_au^a=1$. Como la métrica es diagonal y sólo la componente u^0 de la velocidad es no nula, se obtiene la siguiente propiedad:

$$u_a u^a = q_{ab} u^a u^b = q_{00} u^0 u^0 = u_0 u^0 = 1$$

Es decir, para garantizar que u^a sea unitario, es necesario multiplicarlo por un factor de $e^{-\lambda}$, pues, al realizar el producto $g_{00}u^0u^0$, estos factores de los u^0 se van a cancelar con $g_{00}=e^{2\lambda}$. Es decir, la forma apropiada de definir la cuadrivelocidad es $u^a=(e^{-\lambda},0,0,0)$ y $u_a=(e^{\lambda},0,0,0)$.

Con esta nueva definición de la cuadrivelocidad, se puede calcular el tensor de energía momento T_{ab} :

$$T_{00} = (\rho + p)u_0u_b - pg_{00} = (\rho + p)e^{2\lambda} - pe^{2\lambda} = \rho e^{2\lambda}$$

$$T_{11} = (\rho + p)u_1u_1 - pg_{11} = 0 - p(-e^{2\nu}) = pe^{2\nu}$$

$$T_{22} = (\rho + p)u_2u_2 - pg_{22} = 0 - p(-r^2) = pr^2$$

$$T_{33} = (\rho + p)u_3u_3 - pg_{33} = 0 - p(-r^2sin^2\theta) = pr^2sin^2\theta$$

Donde el resto de las componentes son nulas por la diagonalidad de la métrica y la diagonalidad del término $u_a u_b$.

Asimismo, para calcular T^{ab} se utiliza que $T^{ab}=g^{ac}g^{bd}T_{cd}$. Donde $g^{ab}=diag(e^{-2\lambda},-e^{-2\nu},-\frac{1}{r^2},-\frac{1}{r^2sin^2\theta})$. El cálculo se muestra a continuación:

$$T^{00} = g^{00}g^{00}T_{00} = e^{-2\lambda}e^{-2\lambda}\rho e^{2\lambda} = \rho e^{-2\lambda}$$

$$T^{11} = g^{11}g^{11}T_{11} = (-e^{-2\nu})(-e^{-2\nu})pe^{2\nu} = pe^{-2\nu}$$

$$T^{22} = g^{22}g^{22}T_{22} = (-r^{-2})(-r^{-2})pr^2 = \frac{p}{r^2}$$

$$T^{33} = g^{33}g^{33}T_{33} = (-(rsin\theta)^{-2})(-(rsin\theta)^{-2})pr^2sin^2\theta = \frac{p}{r^2sin^2\theta}$$

2. Ecuaciones de conservación

Por definición, la **derivada covariante** del tensor T^{ab} es:

$$\nabla_b T^{ab} = \frac{\partial T^{ab}}{\partial x^b} + \Gamma^a_{bi} T^{ib} + \Gamma^b_{bi} T^{ai}$$
 (2.1)

Por la diagonalidad de T^{ab} , las componentes no nulas de la expresión anterior se simplifican de la siguiente manera:

$$\nabla_b T^{ab} = \frac{\partial T^{a1}}{\partial x^1} + \Gamma^a_{00} T^{00} + \Gamma^a_{11} T^{11} + \Gamma^a_{22} T^{22} + \Gamma^a_{33} T^{33} + \Gamma^0_{0i} T^{ai} + \Gamma^1_{1i} T^{ai} + \Gamma^2_{2i} T^{ai} + \Gamma^3_{3i} T^{ai} + \Gamma^a_{1i} T^{ai} + \Gamma^a_{2i} T^{ai} + \Gamma^a_{3i} T^{$$

Donde el primer término se debe a que todas las funciones dependen de r, es decir, de x^1 .

Para la métrica dada, los únicos símbolos de Christoffel no nulos son Γ^0_{01} , Γ^1_{00} , Γ^1_{11} , Γ^1_{22} , Γ^1_{33} , Γ^2_{12} , Γ^2_{33} , Γ^3_{31} , Γ^3_{32} , por lo que la forma expansida del tensor $\nabla_b T^{ab}$ es:

$$\nabla_b T^{ab} = \frac{\partial T^{a1}}{\partial x^1} + \Gamma^a_{00} T^{00} + \Gamma^a_{11} T^{11} + \Gamma^a_{22} T^{22} + \Gamma^a_{33} T^{33} + \Gamma^0_{01} T^{a1} + \Gamma^1_{11} T^{a1} + \Gamma^2_{21} T^{a1} + \Gamma^3_{31} T^{a1} + \Gamma^3_{32} T^{a2}$$
(2.2)

En el caso en el que a=1, se tiene el siguiente valor:

$$\nabla_b T^{1b} = \frac{\partial T^{11}}{\partial x^1} + \Gamma^1_{00} T^{00} + \Gamma^1_{11} T^{11} + \Gamma^1_{22} T^{22} + \Gamma^1_{33} T^{33} + \Gamma^0_{01} T^{11} + \Gamma^1_{11} T^{11} + \Gamma^2_{21} T^{11} + \Gamma^3_{31} T^{11} + \Gamma^3_{32} T^{12} + \Gamma^3_{32} T^{$$

Note que $T^{12} = 0$, entonces:

$$\boldsymbol{\nabla}_b T^{1b} = \frac{\partial T^{11}}{\partial x^1} + \Gamma^1_{00} T^{00} + \Gamma^1_{11} T^{11} + \Gamma^1_{22} T^{22} + \Gamma^1_{33} T^{33} + \Gamma^0_{01} T^{11} + \Gamma^1_{11} T^{11} + \Gamma^2_{21} T^{11} + \Gamma^3_{31} T^{11} + \Gamma^3_{11} T^{11} + \Gamma^3_{11}$$

Los símbolos de Christoffel de interés se muestran a continuación:

$$\Gamma_{01}^0 = \lambda'$$

$$\Gamma_{00}^1 = \lambda' e^{2(\lambda - \nu)}$$

$$\Gamma_{11}^1 = \nu'$$

$$\Gamma^1_{22} = -re^{-2\nu}$$

$$\Gamma_{33}^1 = -rsin^2\theta e^{-2\nu}$$

$$\Gamma_{21}^2 = \frac{1}{r}$$

$$\Gamma_{31}^3 = \frac{1}{r}$$

Sustituyendo los símbolos de Christoffel en la expresión para $\nabla_b T^{1b}$ se obtiene:

$$\begin{split} \nabla_b T^{1b} &= \frac{\partial T^{11}}{\partial x^1} + \lambda' e^{2(\lambda - \nu)} T^{00} + \nu' T^{11} - r e^{-2\nu} T^{22} - r sin^2 \theta e^{-2\nu} T^{33} + \lambda' T^{11} + \nu' T^{11} + \frac{1}{r} T^{11} + \frac{1}{r} T^{11} \\ &= p' e^{-2\nu} - 2\nu' p e^{-2\nu} + \lambda' e^{2(\lambda - \nu)} T^{00} + \nu' T^{11} - r e^{-2\nu} T^{22} - r sin^2 \theta e^{-2\nu} T^{33} + \lambda' T^{11} + \nu' T^{11} + \frac{1}{r} T^{11} + \frac{1}{r} T^{11} \\ &= p' e^{-2\nu} - 2\nu' p e^{-2\nu} + \lambda' e^{2(\lambda - \nu)} \rho e^{-2\lambda} + \nu' p e^{-2\nu} - r e^{-2\nu} \frac{p}{r^2} - r sin^2 \theta e^{-2\nu} \frac{p}{r^2 sin^2 \theta} + \\ &\quad + \lambda' p e^{-2\nu} + \nu' p e^{-2\nu} + \frac{1}{r} p e^{-2\nu} \\ &= e^{-2\nu} \left(p' - 2\nu' p + \lambda' e^{2\lambda} \rho e^{-2\lambda} + \nu' p - r \frac{p}{r^2} - r sin^2 \theta \frac{p}{r^2 sin^2 \theta} + \lambda' p + \nu' p + \frac{1}{r} p + \frac{1}{r} p \right) \\ &= e^{-2\nu} \left(p' - 2\nu' p + \lambda' \rho + \nu' p - \frac{p}{r} - \frac{p}{r} + \lambda' p + \nu' p + \frac{1}{r} p + \frac{1}{r} p \right) \\ &= e^{-2\nu} \left(p' + \lambda' (\rho + p) \right) \end{split}$$

Esta expresión se puede igualar a 0 para obtener la ecuación de continuidad $\nabla_b T^{ab} = 0$. Es decir, para a=1:

$$\nabla_b T^{1b} = e^{-2\nu} \left(p' + \lambda'(\rho + p) \right) = 0$$

$$\implies (\rho + p)\lambda' = -p'$$
(2.3)

3. Referencias

 SCHUTZ, B. (2009). A First Course in General Relativity. Cambridge University Press. Second edition.