南京林业大学试卷(B卷)

课程 高等数学 A(2)

2015~2016 学年第 2 学期

题号	_	 =	四	五	六	总分
得分						

名

世

一、填空题(每题4分,共20分)

1. 已知
$$|\vec{a}| = 3, |\vec{b}| = 4, \langle \vec{a}, \vec{b} \rangle = \frac{2}{3}\pi$$
,则 $\vec{a} \cdot \vec{b} =$ ______.

2. 设级数
$$\sum_{n=0}^{\infty} (2+u_n)$$
 收敛,则 $\lim_{n\to\infty} u_n = \underline{\qquad}$.

3. 曲面
$$e^z - z + xy = 3$$
 在点 $(2,1,0)$ 处的切平面方程为_____.

4. 设
$$L$$
 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 其周长为 a , 则 $\oint_L (3x^2 + 4y^2) ds = _____.$

ᄳ

中

5. 设 $f(x, y, z) = x^2 + 2y^2 + 3z^2 + xy + 3x - 2y - 6z$, 则 gradf(1,1,1) =____

壯

二、选择题(每题4分,共20分)

1. 通解为
$$y = C_1 + C_2 e^{-x}$$
 的微分方程是 ().

$$(A) y'' + y' = 0$$

$$(B) y'' - y' = 0$$

(A)
$$y'' + y' = 0$$
 (B) $y'' - y' = 0$ (C) $y'' - y' + 2y = 0$ (D) $y'' + y' + 2y = 0$

2. 过 Z 轴和点(-3,1,-2)的平面方程是().

$$(A) 3x + y = 0$$

$$(B) x + 3y = 0$$

$$(C) x - 8y = 0$$

(A)
$$3x + y = 0$$
 (B) $x + 3y = 0$ (C) $x - 8y = 0$ (D) $8y + x = 2$

3. 设
$$D = \{(x, y) \mid x^2 + y^2 \le R^2\}$$
,则 $\iint_D \sqrt{R^2 - x^2 - y^2} dx dy = ($).

(A) πR^3 (B) $\frac{4\pi R^3}{3}$ (C) $\frac{2\pi R^3}{3}$ (D) $\frac{\pi R^3}{3}$

4. 以
$$2\pi$$
 为周期的函数 $f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ 1 & 0 \le x < \pi \end{cases}$ 的傅里叶级数在 $x = 0$ 处收敛于()

(A) 0

(B) 1 (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$

5. 幂级数
$$\sum_{n=1}^{+\infty} \frac{3^n + 5^n}{n} x^n$$
 的收敛域为(

(A) $\left[-\frac{1}{5}, \frac{1}{5}\right]$ (B) $\left[-\frac{1}{3}, \frac{1}{3}\right]$ (C) $\left[-1, 1\right]$ (D) $\left[-2, 2\right]$

三、计算题(每题8分,共16分)

1. 设
$$f(x,y) = (1+xy)^y$$
, 求 $df(1,1)$.

2. 设
$$z = \frac{y^2}{3x} + \varphi(xy)$$
,其中 $\varphi(u)$ 可导,证明 $x^2 \frac{\partial z}{\partial x} + y^2 = xy \frac{\partial z}{\partial y}$.

四、(每题6分,共18分)

$$1. \iint_D x^2 e^{-y^2} d\sigma$$
,其中 D 是以 $(0,0)$, $(1,1)$, $(0,1)$ 为顶点的三角形闭区域。

2. 计算
$$\iint_{\Omega} xy^2z^3dv$$
, 其中 Ω 是由曲面 $z=xy$, $y=x$, $x=1$, $z=0$ 所围成的闭区域。

3.计算
$$\iint_\Sigma zxdydz$$
,其中 Σ 是柱面 $x^2+y^2=R^2(x\geq 0,y\geq 0)$,平面 $z=H$ 及坐标平面所构成的闭曲面的外侧表面.

五、(每题6分,共12分)

1.求微分方程
$$(x-2)\frac{dy}{dx} = y + 2(x-2)^3$$
的通解。

2.已知
$$y'' + y' + 2y = x^2 - 3$$
 的一个特解为 $y^* = \frac{1}{2}x^2 - \frac{1}{2}x - \frac{7}{4}$, 试求该微分方程的通解。

六、计算与证明(共14分)

1. (8 分) 将函数
$$f(x) = \frac{d}{dx} \left(\frac{e^x - 1}{x} \right)$$
 展开为 x 的幂级数,并求级数 $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$ 的和。

2. (6分) 如果级数
$$\sum_{n=1}^{\infty} a_n$$
 与级数 $\sum_{n=1}^{\infty} b_n$ 都收敛,且 $a_n \le c_n \le b_n$. 证明:级数 $\sum_{n=1}^{\infty} c_n$ 也收敛。