2

SUPERVISOR'S USE ONLY

91164

Level 2 Chemistry, 2019

91164 Demonstrate understanding of bonding, structure, properties and energy changes

2.00 p.m. Monday 11 November 2019 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of bonding, structure, properties and energy	Demonstrate in-depth understanding of bonding, structure, properties and	Demonstrate comprehensive understanding of bonding, structure,
changes.	energy changes.	properties and energy changes.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided in the Resource Booklet L2–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Complete the table below by stating the type of solid, the type of particle, and the type of bonding (attractive forces) between the particles in each solid.

Solid	Type of solid	Type of particle	Attractive forces between particles
Na(s) (sodium)			
NaI(s) (sodium iodide)			
$I_2(s)$ (iodine)			

Explain these obs	ervations by re	ferring to the	e structure and	l bonding of e	ach substance
inplant mose oos	or vacions by re-			, conding of c	acii saostaiice.

Compar cyclohe	be the solubilities of iodine, $I_2(s)$, in water, $H_2O(\ell)$ – a polar solvent, and exame, $C_6H_{12}(\ell)$ – a non-polar solvent.	d in
Use you	ar knowledge of structure and bonding to explain the solubility of iodin	
solvents		

se your knowledge of enth	alpy changes associated with changes of state to elaborate on the
ason why the drink cools.	any changes associated with changes of state to classifice on the

QUESTION TWO

ASSESSOR'S USE ONLY

(a) (i) Draw the Lewis structure (electron dot diagram) for the following molecules, and name their shapes.

Molecule	CH ₄	NCl ₃	OF ₂
Lewis structure			
Name of shape			

(ii) The above molecules have different shapes; however each molecule has an approximate bond angle of 109.5°.

Justify this statement by referring to the factors that d molecule.	etermine the shape of each
	TDI • C

There is more room for your answer on the following page.

(b) The following table shows the Lewis structures (electron dot diagrams) for the molecules, ${\rm CHCl_3}$ and ${\rm NH_3}$.

ASSESSOR'S
USE ONLY

Molecule	CHCl ₃	NH ₃
Lewis structure	H : Ül – C – Ül: : Ül:	H-N-H
Polarity		

(i) In the boxes above, identify the polarity of each molecule by writing either **polar** or **non-polar**.

(ii)	Justify	your	choices.
------	---------	------	----------

$$C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$$
 $\Delta_r H = -2056 \text{ kJ mol}^{-1}$

$$\Delta_{\rm r} H = -2056 \text{ kJ mol}^{-1}$$

Calculate the average bond enthalpy of the C = O bond using the data below.

\cap	=	\cap
\sim		\sim

$$O = C = O$$

Bond	Average bond enthalpy/kJ mol ⁻¹
C - C	348
C – H	413
O = O	495
O – H	463

QUESTION THREE

ASSESSOR'S USE ONLY

(a)	Classify the following chemical process as exothermic or endothermic and give a reason for
	your choice.

(i)	C(s)	$+ O_{2}(g) -$	$\rightarrow CO_2(g)$
\ /	- (-)	- /(3/	/(3/

$$\Delta_r H = -394 \text{ kJ mol}^{-1}$$

(ii) In the reaction above, C(s) in the form of graphite can conduct electricity. The product, carbon dioxide, $CO_2(g)$, does not conduct electricity.

Use your knowledge of structure and bonding to explain this observation.

(b)	Whe	n magnesium, $Mg(s)$, is burned, it produces a white powder according to the equation w.
		$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ $\Delta_r H = -1203 \text{ kJ mol}^{-1}$
	(i)	Calculate the mass of oxygen required to produce 1804.5 kJ of energy. $M(O) = 16.0 \text{ g mol}^{-1}$
	(ii)	Calculate the energy change when 100 g of MgO(s) is produced. $M(MgO) = 40.3 \text{ g mol}^{-1}$

(c)	A common industrial process is the extraction of metals from their ores. Aluminium is found naturally in aluminium oxide, and the oxygen is removed to produce the metal.	ASSESS USE O
	Information is given below of the enthalpy change when aluminium, $Al(s)$, is extracted.	
	$2Al_2O_3(s) \rightarrow 4Al(s) + 3O_2(g) \qquad \Delta_r H = 3350 \text{ kJ mol}^{-1}$	
	A production plant produces 65.0 kg (65000 g) of aluminium per minute.	
	Calculate how much energy is required per hour of production of aluminium.	
	Round your answer to 3 significant figures.	
	$M(Al) = 27.0 \text{ g mol}^{-1}$	
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

	Extra paper if required.	
QUESTION NUMBER	Write the question number(s) if applicable.	
HOMBER		