

15-826: Multimedia Databases and Data Mining

Lecture #21: Tensor decompositions C. Faloutsos

Must-read Material

• Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Technical Report SAND2007-6702, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, November 2007

2

CMU SCS

Outline

Goal: 'Find similar / interesting things'

- Intro to DB

Indexing - similarity search

• Data Mining

CMU SCS

Indexing - Detailed outline

- · primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- text
- Singular Value Decomposition (SVD)

- Tensors

- multimedia

4

Most of foils by

- Dr. Tamara Kolda (Sandia N.L.)
- csmr.ca.sandia.gov/~tgkolda

- Dr. Jimeng Sun (CMU -> IBM)
- www.cs.cmu.edu/~jimeng

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/

5

CMU SCS

Motivation 0: Why "matrix"?

• Why matrices are important?

Tensor tools - summary

- Two main tools
 - PARAFAC
 - Tucker
- Both find row-, column-, tube-groups
 - but in PARAFAC the three groups are identical
- To solve: Alternating Least Squares
- Toolbox: from Tamara Kolda: http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

44

Outline

- Motivation Definitions
- Tensor tools

- P1: web graph mining ('TOPHITS')
- P2: phone-call patterns
- P3: N.E.L.L. (never ending language learner)

46

P1: Web graph mining

• T. G. Kolda, B. W. Bader and J. P. Kenny, *Higher-Order Web Link Analysis Using Multilinear Algebra*, ICDM 2005: ICDM, pp. 242-249, November 2005, doi:10.1109/ICDM.2005.77. [PDF]

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

References

 Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha: Information-theoretic co-clustering. KDD 2003: 89-98

- T. G. Kolda, B. W. Bader and J. P. Kenny. *Higher-Order Web Link Analysis Using Multilinear Algebra*. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. Window-based Tensor Analysis on High-dimensional and Multiaspect Streams, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006