- ©Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze
- Zimní semestr 2013/14

EVROPSKÝ SOCIÁL **PRAHA & EU: INVESTUJENE** DO VAŠÍ BUDOUCNOSTI

MI-PAA 3. NP-úplné (NPC) a NP-těžké (NPH) problémy

- Karpova redukce
- NP-úplné problémy (NPC)
- Cookova věta
- Turingova redukce
- NP-těžké problémy (NPH)
- problémy mezi P a NPC

NP-úplné (NPC) a NP-těžké (NPH) problémy

- Karpova redukce
- NP-úplné problémy (NPC)
- Cookova věta
- Turingova redukce
- NP-těžké problémy (NPH)
- problémy mezi P a NPC

Vztah tříd P a NP

- možná, že P = NP: na každý NPproblém existuje polynomiální algoritmus, ale my o něm nevíme
- ale jsou příznaky, že P⊂NP
- jeden z hlavních příznaků:
 nejtěžší problémy v NP
 - · je jich mnoho
 - polynomiální alg. na jeden ⇒ polynomiální alg. na všechny

Pojmy X-těžký a X-úplný

(X-complete a X-hard)

- Problém 7 je X-těžký, jestliže se <u>efektivní řešení</u> všech problémů z třídy X dá <u>zredukovat</u> na efektivní řešení problému 77.
- Problém // je X-úplný, jestliže je X-těžký a sám patří do třídy X.
- efektivní řešení: v polynomiálním čase (jindy např. s omezenou chybou)
- zredukovat: vyřešit pomocí
- za X dosadit: NP, NPO, APX...

Co jsou nejtěžší problémy v NP?

Co je "lehčí" a "těžší" problém?

snadný převod instance problému Π_2

- získali jsme algoritmus na Π_1
- který není horší než algoritmus na Π_2
- Π_1 je nejvýše tak těžký jako Π_2
- \cdot Π_2 je nejméně tak těžký jako Π_1

algoritmus na Π_2

shodný výstup

Který problém je nejtěžší?

Ten, <u>na který</u> jdou převést všechny ostatní.

Karpova redukce (polynomiální transformace)

- Poefinice Karpovy redukce
 Rozhodovací problém Π_1 je Karp-redukovatelný na Π_2 ($\Pi_1 \propto \Pi_2$), jestliže existuje polynomiální program pro (deterministický) Turingův stroj, který převede každou instanci I_1 problému I_2 na instanci I_2 problému I_2 tak, že výstup obou instancí je shodný.
- Jiné značení: <

Vlastnosti

Tranzitivita

$$\Pi_1 \propto \Pi_2 \wedge \Pi_2 \propto \Pi_3 \Rightarrow \Pi_1 \propto \Pi_3$$

• Třídy polynomiální ekvivalence $\Pi_1 \propto \Pi_2 \wedge \Pi_2 \propto \Pi_1 \Rightarrow \Pi_1$ a Π_2 jsou polynomiálně ekvivalentní.

Příklad: HC ∝ TSP

Dán graf G=(V,E). Obsahuje tento graf Hamiltonovu kružnici?

převést

Dána množina n měst $C=\{c_1,c_2,...,c_n\}$. Pro každá dvě města c_i,c_j je dána vzdálenost $d(c_i,c_j)>0$. Existuje uzavřená túra, která prochází každým městem právě jednou a má délku nejvýše B?

Karpova redukce HC ∝ TSP

Algoritmus:

 $V, E \rightarrow C, d(c_i, c_j), B$

- Nechť každému uzlu v_i odpovídá jiné město c_i .
- Je-li $(v_i, v_j) \in E$, nechť $d(c_i, c_j)=1$ jinak $d(c_i, c_j)=2$
- Nechť B=/V/.

Osnova důkazu, že je Karpovou redukcí:

- 1. HC ∝ TSP má polynomiální složitost

2. výstup je stejný \langle 2.1 \exists kružnice v $G \Rightarrow \exists$ túra v C

2.2 ∃ túra v $C \Rightarrow \exists$ kružnice v G

Důkaz HC ∝ TSP

1. HC ∝ TSP má polynomiální složitost (*n*=| *V*|)

- •Konstrukce měst: O(n); vzdáleností: $O(n^2)$; B: O(1)
- \Rightarrow složitost $O(n^2)$;

2.1 \exists kružnice v $G \Rightarrow \exists$ túra v C

- $\cdot (v_1, v_2, \dots v_n, v_1)$ Hamiltonova kružnice v G.
- $n \leq B$.

2.2 ∃ túra v $C \Rightarrow \exists$ kružnice v G

- $(c_1, c_2, \dots c_n, c_1)$ je túra délky nejvýše *B.*
- \cdot n úseků, délka B=n každý úsek túry má délku 1
- → každý úsek odpovídá hraně
- $\cdot (v_1, v_2, \dots v_n, v_1)$ Hamiltonova kružnice v G.

Q.e.d.

Třída NP-úplný (NP-Complete, NPC)

- Definice (třída NP-úplný):
- Problém ∏je NP-úplný, jestliže
 - *∏*∈ NP
 - pro všechny problémy $\Pi' \in NP$, $\Pi' \propto \Pi'$

NP-úplný jako třída ekvivalence

- Všechny NPC problémy tvoří třídu ekvivalence
- Π_1 , $\Pi_2 \in NPC \implies \Pi_1 \in NP$, $\Pi_2 \in NP$
- $\Pi_1 \propto \Pi_2$ (protože $\Pi_1 \in NP$, $\Pi_2 \in NPC$)
- $\Pi_2 \propto \Pi_1$ (protože $\Pi_2 \in NP$, $\Pi_1 \in NPC$)

Q.e.d.

Cookova věta a důsledky

- SAT je NP-úplný
- říká, že NPC není prázdná
- otevírá cestu k důkazům NP-úplnosti převodem
- jsou známy tisíce NPC problémů
- které tvoří třídu ekvivalence
- polynomiální program na jeden ⇒
 ⇒ polynomiální program na všechny
- nevypadá to, že by P=NP…

P, NP, NPC (a NPH)

Osnova důkazu

SAT \in NPC ? $\forall \Pi \in$ NP, $\Pi \propto$ SAT

každou instanci / každého problému // převést na booleovskou formuli

v polynomiálním čase

/má výstup "ano" ⇔ ⇔ formule je splnitelná

Důsledky ∏∈NP, /∈∏_{ANO}

- Existuje program M pro Turingův stroj, který kontroluje certifikát Y instance I v čase p(n), kde p je polynom a n velikost instance I a skončí ve stavu q_{ANO} .
- Velikost certifikátu je nejvýše p(n).
- Rozsah políček pásky je -p(n)...p(n)+1.

Konstruovaná formule

- Jestliže I∈∏_{ANO}, pak formule, která vyjadřuje výrok "proběhl výpočet stroje M, který se zastavil ve stavu q_{ANO}" má ohodnocení proměnných, při kterém nabývá hodnoty true.
- "Náhrada naprogramovaného počítače kombinačním obvodem"
- Musí obsahovat
 - vlastnosti Turingova stroje
 - program *M*
 - výsledek "ano"

Celkový stav Turingova stroje

- Stav řídícího automatu
- Obsah všech políček pásky
- Pozice hlavy na pásce

Výpočet Turingova stroje

- Posloupnost celkových stavů v čase 0...t, kde t je celkový čas výpočtu
- → proměnné formule

Proměnné formule

r...počet stavů; v...počet symbolů abecedy pásky

Q[i, k]v čase *i* je M ve stavu q_k

> *H*[*i*, *j*] v čase *i* je hlava na políčku *j*

S[i, j, k] v čase i je obsah políčka j symbol s_k $O(p(n)^2)$ proměnných

$$k=0...r$$

$$j = -p(n)...p(n) + 1$$

$$j=-p(n)...p(n)+1$$

 $k=0...v$

čas
$$i=0...p(n)_0$$

Klauzule formule musí být splněny současně (součin)

počítá to jako Turingův stroj

v každém čase *i*, řízení je v právě jednom stavu

v každém čase *i*, hlava je na právě jednom políčku

v každém čase *i*, každé políčko obsahuje právě jeden symbol

v čase 0, celkový stav je inicializován

výstup je "ano"

v čase p(n), řízení je ve stavu q_{ANO}

program

v každém čase *i*, celkový stav je výsledkem aplikace přechodové funkce δ na předchozí celkový stav

Ukázky konstrukce některých skupin

```
v každém čase i, řízení je
v právě jednom stavu
```

... v alespoň jednom stavu

```
\neg (Q[i, 0].Q[i, 1]) =
= (\neg Q[i, 0] + \neg Q[i, 1])
```

```
(\neg Q[i, j] + \neg Q[i, j'])

i=0...p(n) j=-p(n)...p(n)+1

j'=j+1...p(n)+1
```

... v nejvýše

jednom stavu

```
(Q[i, 0] + Q[i, 1] + ... + Q[i, r])

i=0...p(n) k=0...r
Jan Schmidt 2011-2013
```

Ukázky konstrukce některých skupin

když hlava není na políčku *j*, obsah se nezmění

$$(\neg S[i, j, l] + H[i, j] + S[i+1, j, l])$$

 $i=0...p(n)$ $j=-p(n)...p(n)+1$ $l=0...$

v každém čase *i*, celkový stav je výsledkem aplikace přechodové funkce δ na předchozí celkový stav

$$a \Rightarrow b = \neg a + b$$

$$(\neg H[i, j] + \neg Q[i, k] + \neg S[i, j, l] + H[i+1, j+\Delta])$$

$$(\neg H[i, j] + \neg Q[i, k] + \neg S[i, j, l] + Q[i+1, k'])$$

$$(\neg H[i, j] + \neg Q[i, k] + \neg S[i, j, l] + S[i+1, j, l'])$$

$$i=0...p(n) \quad j=-p(n)...p(n)+1 \quad l=0... \quad k=0...r$$

Polynomiální složitost

- Ukázat, že velikost výsledné formule F je polynomiální s n – velikostí původní instance
- velikost formule s množinou C klauzulí nad množinou X proměnných: |X|.|C|
- r, ν ... konstantní pro daný problém Π
- $|X| = O(p(n)^2) |C| = O(p(n)^2)$
- $|F| = O(p(n)^4)$

Osnova důkazu

Dokazování NP-úplnosti 17

- Z definice lehce nepraktické, že
- $\Pi' \in NPC$ je speciálním případem Π
- $\Pi \in NP$, $\exists \Pi' \in NPC$, $\Pi' \propto \Pi \Rightarrow \Pi \in NPC$ $\Pi \in NP$, $SAT \propto \Pi \Rightarrow \Pi \in NPC$

Na počátku je SAT...

- 3-SAT: každá klauzule má právě 3 literály
- Trojná svatba:
 - dány disjunktní množiny W, X, Y, |W| = |X| = |Y| = q, množina $M \subseteq W \times X \times Y$;
 - existuje M'⊆M taková, že |M'|=q a žádné dva prvky M' se neshodují ani v jedné souřadnici?
- Uzlové pokrytí:
 - dán graf G=(V,E), celé číslo K≤|V|;
 - existuje $V \subseteq V$ taková, že $|V'| \le K$ a $\forall (u, v) \in E$, $u \in V'$ nebo $v \in V'$?

- Klika: ("politická klika")
 - dán graf G=(V,E), celé číslo K≤|V|;
 - existuje úplný podgraf G = (V, E) grafu G takový, že $|V'| \ge K$?
- Problém rozkladu:
 - dána množina $A=\{a_1, \ldots, a_n\}$ a funkce $s: A \rightarrow Z^+;$
 - existuje podmnožina A'⊆A taková, že

$$\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$$

(rozklad na podmnožiny se stejnou cenou)

- Steinerův problém
 - dán graf *G*=(*V,E*)
 - dána podmnožina V'⊆ V
 - sestrojit minimální souvislý podgraf H=(W,F) takový, že $V'\subseteq W$.
- Mnoho variant na speciálních grafech

Steinerův problém v pravoúhlé metrice

Problém plánování (jeden z mnoha)

- Dána množina T operací o jednotkové době trvání, dále je dáno částečné uspořádání < na T a maximální doba výpočtu $D \in Z^+$. Existuje takový plán $\delta \colon T \to \{0, 1, \dots D\}$ že
 - v každém okamžiku z {0, 1, ... D} je naplánováno nejvýše m operací a
 - je–li $t_i < t_j$ pak $\delta(t_i) < \delta(t_j)$
- Úloha je NP-těžká; je-li však < zobrazitelné množinou stromů, je polynomiální.

Smečka bestií jménem SAT

F		
obecná	SAT $\exists Y, F(Y) = 1$	tautologie $\forall Y, F(Y) = 1$
	je NP-úplný	je co-NP úplný
omezená	SAT ∃ Y, CNF(Y) = 1 je NP-úplný	tautologie $\forall Y, DNF(Y) = 1$ je co-NP úplný
obecná	QBF_{k} $\exists Y_{1} \forall Y_{2} \exists Y_{3},$ $F(Y_{1}, Y_{2}, Y_{3},) = 1$ $je \sum_{k}^{P} - uplny$	co-QBF _k $\forall Y_1 \exists Y_2 \forall Y_3 \dots,$ $F(Y_1, Y_{2,} Y_{3,} \dots) = 1$ je $\prod_k P - \text{úplný}$

P, NP, NPC, PO, NPO, NPH

Turingova redukce (Turingova transformace)

- Poefinice Turingovy redukce Rozhodovací problém Π_1 je Turing-redukovatelný na Π_2 ($\Pi_1 \propto \Pi_2$), jestliže existuje program pro (deterministický) Turingův stroj, který řeší každou instanci I_1 problému I_1 tak, že používá program I_2 pro problém I_2 jako podprogram (jehož trvání považujeme za jeden krok).
- Pozor: obecně se nevyžaduje, aby Turingova redukce proběhla v polynomiálním čase. Pro naše účely to musíme říkat explicitně (... Turingredukovatelný v polynomiálním čase ...)

Třída NP-těžký (NP-Hard, NPH)

- Definice (třída NP-těžký):
 Problém ∏je NP-těžký, jestliže pro všechny problémy ∏∈ NP, ∏∞∏v polynomiálním čase.
- Karpova redukce je speciálním případem Turingovy redukce (volání podprogramu jednou, přímé použití výsledku)
- $\overline{\cdot}$ NPC \subset NPH

Rozhodovací (TS) a optimalizační (TSO) verze TSP

- spočítat nejkratší túru pomocí TSO
- porovnat

Turingova redukce

TSE: Dána množina n měst $C=\{c_1,c_2,...,c_n\}$. Pro každá dvě města c_i,c_j je dána vzdálenost $d(c_i,c_j)$. Dále dána mez B a cesta Θ procházející K městy. Dá se Θ prodloužit na túru délky nejvýše B?

TSE: Dána množina n měst $C=\{c_1,c_2,...,c_n\}$, vzdálenost $d(c_i,c_j)$. Dále mez B a cesta Θ procházející K městy. Dá se Θ prodloužit na túru délky $\leq B$?

TSO ∞ TSE

- Víme, že $B_{\min} = n$, $B_{\max} = n$.max $\{d(ci, cj)\}$
- Velikost instance měřme $N = n + \log_2 B_{\text{max}}$
- Nechť existuje program TSE (C, d, ⊕, B). Jak pomocí něj vyřeším TSO?
- 1. Určím B^* pomocí $\log_2 B_{\text{max}}$ volání TSE (C, d, $\{c_1\}$, B).
- 2. Určím další město k C_1 pomocí TSE (C, d, { c_1 , c_i }, B^*).
- 3. Opakuji, až určím celou kružnici

$$O(\log_2 B_{\text{max}}) + O(n^2) = O(N^2)$$

K předchozímu důkazu

1. Určím B^* pomocí $\log_2 B_{\text{max}}$ volání TSE (C, d, $\{c_1\}$, B).

TS a TSO

TS a TSO jsou Turing-ekvivalentní a tedy stejně těžké.

NP-intermediate (NPI)

- NPI: problémy, které nemohou mít polynomiální algoritmus ani na ně nikdy nemůže být převeden SAT, pokud P≠NP
- NP-P-NPC: problémy, pro které ani neumíme nalézt polynomiální algoritmus, ani na ně převést SAT.

Např. izomorfismus grafů, do r. 2004 také test prvočíselnosti

NPI není prázdná

- Důsledek obecnější věty (Ladner 1975):
- Nechť Πje NP-úplný problém a / množina jeho instancí. Pak existuje podmnožina /' jeho instancí, rozpoznatelná polynomiálním algoritmem taková, že problém Π'vzniklý omezením Πna /' není ani NPC, ani P.
- Příklad: musí existovat množina grafů, pro kterou HC není ani NPC, ani P.
- · Zatím nalezeny jen zcela "nepřirozené" případy

Kandidát NPI: isomorfismus grafů

BI-GRA 1

- Dány grafy G = (V, E) a H = (W, F).
- Existuje prosté zobrazení f. V→W takové, že prokaždé u, v ∈ V platí (u, v) ∈ E právě tehdy, když (f(u), f(v)) ∈ F?
- Pokud by tento problém byl NPC, polynomiální hierarchie by zkolabovala (minulá přednáška)

Otevřené verze problémů: problém plánování

< libovolné

< strom

< prázdné

zobecnění

- P
- NP-P-NPC
- NPC

Garey a Johnson

Čemu teď rozumíme

Co to znamená "úplnost" problému v nějaké třídě.

Jak srovnáme dva rozhodovacíproblémy co do obtížnosti (základní kámen teorie složitosti)

Co musíme dokázat, abychom algoritmus prohlásili za Karpovu redukci

Jak můžeme dokázat, že problém je NP-úplný

Jak funguje Turingova redukce

Jak dokážeme, že problém mimo NPO je aspoň tak těžký jako NPC problémy

Jaké pojmy k tomu potřebujeme

Karpova redukce, Turingova redukce

třídy: NPC, NPH, NPI

Petr Fišer & Jan Schmidt, 2007–2013

Jan Schmidt 2011-2013

