

Solving Poisson's equation

<u>Denis Davydov (denis.davydov@fau.de)</u> Luca Heltai (<u>luca.heltai@sissa.it</u>)

25 February - 1 March 2019

Aims for this module

- First introduction into assembly of sparse linear systems
 - Translation of weak form to assembly loops
 - Applying boundary conditions
- Using linear solvers
- Post-processing and visualization

Reference material

- Tutorials
 - Step-3 https://dealii.org/9.0.0/doxygen/deal.II/step_3.html
- Documentation
 - https://www.dealii.org/9.0.0/doxygen/deal.II/ group FE vs Mapping vs FEValues.html
 - https://www.dealii.org/9.0.0/doxygen/deal.II/group_UpdateFlags.html

Sparse linear systems

- Minimize data storage
 - Evaluate grid connectivity
- Functions to help set up
 - Sparsity pattern
 - Constraints
- Minimal access times
 - Direct manipulation of (non-zero) entries
 - Matrix-vector operations (skip over zeroentries)
- Types
 - Unity (monolithic, contiguous)
 - Block sparse structures
- Sub-organisation (e.g. component-wise)

$$[K] \{d\} = \{F\}$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{Bmatrix} d_1 \\ d_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ F_2 \end{Bmatrix}$$

$$(K_{11} - K_{12}K_{22}^{-1}K_{21}) d_1$$

$$= F_1 - K_{12}K_{22}^{-1}F_2$$

$$d_2 = K_{22}^{-1} (F_2 - K_{21}d_1)$$

Constraints on sparse linear systems

- Strong Dirichlet boundary conditions
 - Apply user-defined spatially-dependent functions to specific boundaries
 - Can restrict to components of a multidimensional field
 - Limited to interpolatory FEM
- Neumann boundary conditions
 - Implementation dependent
- Other constraints need special consideration
 - Periodic boundary conditions
 - Refinement with hanging nodes
 - Some time-dependent formulations

$$[K] \{d\} = \{F\}$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{Bmatrix} d_1 \\ d_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ F_2 \end{Bmatrix}$$

$$(K_{11} - K_{12}K_{22}^{-1}K_{21}) d_1$$

$$= F_1 - K_{12}K_{22}^{-1}F_2$$

$$d_2 = K_{22}^{-1} (F_2 - K_{21}d_1)$$

Integration on a cell: the FEValues class

$$K = \int_{\Omega} \nabla \delta \phi(\mathbf{x}) \cdot k \, \nabla \phi(\mathbf{x}) dV$$

$$\approx \delta \phi^I \sum_K \left(\int_{\Omega_K^h} \nabla N^I(\mathbf{x}) \cdot k \, \nabla N^J(\mathbf{x}) dV^h \right) \phi^J$$

$$\approx \delta \phi^I \sum_K \left(\sum_q \nabla N^I(\mathbf{x}_q) \cdot k_q \nabla N^J(\mathbf{x}_q) w_q \right) \phi^J$$

$$K_{IJ} = (\nabla N^I, k \nabla N^J)$$

$$\approx \delta \phi^{I} \sum_{K} \left(\sum_{q} J_{K}^{-1}(\hat{\mathbf{x}}_{q}) \hat{\nabla} \hat{N}^{I}(\hat{\mathbf{x}}_{q}) \cdot k_{q} J_{K}^{-1}(\hat{\mathbf{x}}_{q}) \hat{\nabla} \hat{N}^{J}(\hat{\mathbf{x}}_{q}) \left| \det J_{K}(\hat{\mathbf{x}}_{q}) \right| w_{q} \right) \phi^{J}$$

Integration on a cell: the FEValues class

- Object that helps perform integration
- Combines information of:
 - Cell geometry
 - Finite-element system
 - Quadrature rule
 - Mappings

$$K_{IJ} = \sum_{K} \left(\sum_{q} J_K^{-1}(\hat{\mathbf{x}}_q) \hat{\nabla} \hat{N}^I(\hat{\mathbf{x}}_q) \cdot J_K^{-1}(\hat{\mathbf{x}}_q) \hat{\nabla} \hat{N}^J(\hat{\mathbf{x}}_q) | \det J_K(\hat{\mathbf{x}}_q) | w_q \right)$$

cell matrix(I,J) += k

* fe values.shape grad (I, q point)

* fe_values.shape_grad (J, q_point)

* fe values.JxW (q point);

- Can provide:
 - Shape function data
 - Quadrature weights and mapping jacobian at a point
 - Normal on face surface
 - Covariant/contravariant basis vectors
- More ways it can help:
 - Object to extract shape function data for individual fields
 - Natural expressions when coding
- Low level optimizations

Integration on a cell: the Quadrature classes

- n-Order Gauss quadrature
- Other rules
 - Gauss Lobatto
 - Simpson
 - Trapezoidal
 - Midpoint
 - •

Integration on a cell: the Mapping classes

- n-order mappings
 - Increase accuracy of:
 - Integration schemes
 - Surface basis vectors
- Lagrangian / Eulerian
 - Latter useful for fluid and contact problems, data visualization
- Boundary and interior manifolds

Solving Poisson's equation

- Demonstration: Step-3
 https://www.dealii.org/9.0.0/doxygen/deal.II/step_3.html
 http://www.math.colostate.edu/~bangerth/videos.676.10.html
- Key points
 - Local assembly + quadrature rules
 - Distribution of local contributions to the global linear system
 - Application of boundary conditions
 - Solving a linear system
 - Output for visualisation

