Risk Modeling and Classification

EN5422/EV4238 | Fall 2023 w05_classification_1.pdf (Week 5 - 1/2)

Contents

1	RISE	RISK MODELING INTRO			
	1.1	CREDIT CARD DEFAULT DATA (DAFAULT)			
	1.2	SET-UP			
	1.3	BINARY RISK MODELING	4		
	1.3.1	Linear Regression	4		
	1.3.2	k-nearest neighbor (kNN)			
2	LOG	ISTIC REGRESSION	7		
	2.1	BASICS	7		
	2.2	ESTIMATION	8		
2.3		LOGISTIC REGRESSION IN ACTION			
	2.3.1	Penalized Logistic Regression	10		
	2.3.2	Logistic Regression Summary	11		

1 Risk Modeling Intro

1.1 Credit Card Default Data (Dafault)

The textbook *An Introduction to Statistical Learning (ISL)* has a description of a simulated credit card default dataset. The interest is on predicting whether an individual will default on their credit card payment.

```
# The URL of the xlsx file
url = 'https://github.com/JWarmenhoven/ISLR-
python/raw/4100e941914519eea18385daadc9b3dab99ca8e2/Notebooks/Data/Default.xl
sx'
# Load the xlsx data
df = pd.read_excel(url, engine='openpyxl')
```

The variables are:

- Outcome variable is categorical (factor) Yes and No (default)
- The categorical (factor) variable (student) is either Yes or No
- The average balance a customer has after making their monthly payment (balance)
- The customer's income (income)

default	student	balance	income
No	No	729.526495	44361.625074
No	Yes	817.180407	12106.134700
No	No	1073.549164	31767.138947
No	No	529.250605	35704.493935
No	No	785.655883	38463.495879

Your Turn #1 How would you construct a model to predict the risk of default?

1.2 Set-up

- The outcome variable is categorical and denoted $G \in \mathcal{G}$.
 - o Default Credit Card Example: $G = \{\text{"Yes", "No"}\}\$
 - \circ Medical Diagnosis Example: $G = \{\text{"stroke"}, \text{"heart attack"}, \text{"drug overdose"}\}$
- The training data is $D = \{(X_1, G_1), (X_2, G_2), ..., (X_n, G_n)\}$
- The optimal decision/classification is often based on the posterior probability $Pr(G = g | \mathbf{X} = \mathbf{x})$

1.3 Binary Risk Modeling

- Classification is simplified when there are only 2 classes.
 - o Many multi-class problems can be addressed by solving a set of binary classification problems (e.g., on-vs-rest).
- It is often convenient to transform the outcome variable to a binary {0, 1} variable:

$$Y_i = \begin{cases} 1 & G_i \in \mathcal{G}_1 \\ 0 & G_i \in \mathcal{G}_2 \end{cases}$$
 (outcome of interest)

• In the Default data, it would be natural to set default=Yes to 1 and default=No to 0.

1.3.1 Linear Regression

• In this set-up we can run linear regression:

$$\hat{y}(\mathbf{x}) = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j$$

```
import pandas as pd
import statsmodels.api as sm

Default = df
# Convert 'Yes'/'No' columns to 1/0, if applicable.
# For example, if 'student' is 'Yes'/'No'

Default['student'] = (Default['student'] == "Yes").astype(int)

# Create binary column (y)

Default['y'] = (Default['default'] == "Yes").astype(int)

# Now, for the regression:

X = Default[['student', 'balance', 'income']]
# Adding a constant to the model (intercept)

X = sm.add_constant(X)
y = Default['y']
```

```
# Fit the model
model = sm.OLS(y, X).fit()

# Print the summary of the regression
print(model.summary())
```

=======	coef	std err	t	P> t	[0.025	0.975]
const	-0.0812	0.008	-9.685	0.000	-0.098	-0.065
student	-0.0103	0.006	-1.824	0.068	-0.021	0.001
balance	0.0001	3.55e-06	37.412	0.000	0.000	0.000
income	1.992e-07	1.92e-07	1.039	0.299	-1.77e-07	5.75e-07

Your Turn #2

- 1. For the binary *Y*, what is linear regression estimating?
- 2. What is the *loss function* that linear regression is using?
- 3. How could you create a hard classification from the linear model?
- 4. Does it make sense to use linear regression for binary risk modeling and classification?

1.3.2 k-nearest neighbor (kNN)

- The k-NN method is a non-parametric *local* method, meaning that to make a prediction $\hat{y}|x$, it only uses the training data in the *vicinity* of x.
 - o Contrast with OLS linear regression, which uses all X's to get prediction.
- The model (for regression and binary classification) is simple to describe:

$$f_{kNN}(x;k) = \frac{1}{k} \sum_{i: x_i \in N_k(x)} y_i = \text{Avg}(y_i \mid x_i \in N_k(x))$$

- o $N_k(x)$ are the set of k nearest neighbors.
- Only the k closet y's are used to generate a prediction
- When y is binary (i.e., $y \in \{0,1\}$), the kNN model estimates:

$$f_{kNN}(x;k) \approx p(x) = \Pr(Y = 1|X = x)$$

Your Turn #3

The above plots show a kNN model using the *continuous* predictors of balance and income.

- How could you use kNN with the categorical student predictor?
- The kNN model also has a more general description when the outcome variables is categorical $G \in \mathcal{G}$

Logistic Regression, ROC Curves, GAM EN5422/EV4238 | Fall 2023

$$f_g^{knn}(x;k) = \frac{1}{k} \sum_{i: x_i \in N_k(x)} 1(g_i = g) = \widehat{Pr}(G_i = g \mid x_i \in N_k(x))$$

- $N_k(x)$ are the set of k nearest neighbors.
- Only the *k* closest *y*'s are used to generate a prediction.
- It is a *simple proportion* of the *k* nearest observations that are of class *g*.

2 Logistic Regression

2.1 Basics

- Let $0 \le p \le 1$ be a probability.
- The log-odds of *p* is called the *logit*.

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

• The inverse logit is the *logistic function*. Let f = logit(p), then

$$p = \frac{e^f}{1 + e^f} = \frac{1}{1 + e^{-f}}$$

• For binary outcome variables $Y \in \{0,1\}$, Linear Regression models

$$E[Y | X = x] = Pr(Y = 1 | X = x) = \beta^{T} x$$

• Alternatively, Logistic Regression models

logit
$$Pr(Y = 1 | X = x) = log \left(\frac{Pr(Y = 1 | X = x)}{1 - Pr(Y = 1 | X = x)} \right) = \beta^{T} x$$

And thus,

Logistic Regression, ROC Curves, GAM EN5422/EV4238 | Fall 2023

$$\Pr(Y = 1 \mid X = x) = \hat{p}(x) = \frac{e^{\beta^{T}x}}{1 + e^{\beta^{T}x}} = \left(1 + e^{-\beta^{T}x}\right)^{-1}$$

2.2 **Estimation**

- The input data for logistic regression are: $(\mathbf{x}_i, y_i)_{i=1}^n$ where $y_i \in \{0,1\}, \mathbf{x}_i = 1$ $\left(x_{i0},x_{i1},\ldots,x_{ip}\right)^{\mathrm{T}}.$
- $v_i \mid \mathbf{x}_i \sim \text{Bern}(p_i(\beta))$

o
$$p_i(\beta) = \Pr(Y = 1 \mid \mathbf{X} = \mathbf{x}_i; \beta) = (1 + e^{-\beta^T x})^{-1}$$

o Where $\beta^T \mathbf{x}_i = \mathbf{x}_i^T \beta = \beta_0 + \sum_{j=1}^p x_{ij} \beta_j$

$$\text{O Where } \beta^{\mathrm{T}} \mathbf{x}_i = \mathbf{x}_i^{\mathrm{T}} \beta = \beta_0 + \sum_{j=1}^p x_{ij} \beta_j$$

Bernoulli Likelihood Function is:

$$L(\beta) = \prod_{i=1}^{n} p_{i}(\beta)^{y_{i}} (1 - p_{i}(\beta))^{1 - y_{i}}$$

$$\log L(\beta) = \sum_{i=1}^{n} \{ y_i \ln p_i(\beta) + (1 - y_i) \ln(1 - p_i(\beta)) \}$$

$$= \sum_{i=1}^{n} \{ \ln p_i(\beta) & y_i = 1 \\ \ln(1 - p_i(\beta)) & y_i = 0 \}$$

$$= \sum_{i:y_i=1} \ln p_i(\beta) + \sum_{i:y_i=0} \ln(1 - p_i(\beta))$$

The usual approach to estimating the Logistic Regression coefficients is maximum likelihood:

$$\hat{\beta} = \arg \max_{\beta} L(\beta) = \arg \max_{\beta} \log L(\beta)$$

We can also view this as the coefficients that minimize the loss function $\ell(\beta)$, where the loss function is the negative log-likelihood:

$$\hat{\beta} = \arg\min_{\beta} \ell(\beta)$$

Using loss $\ell(\beta) = -C \log L(\beta)$ where C > 0 is some positive constant, e.g., C = 1/n

This view facilitates *penalized logistic regression*:

$$\hat{\beta} = \arg\min_{\beta} \ell(\beta) + \lambda P(\beta)$$

Ridge Penalty
$$P(\beta) = \|\beta\|_2^2 = \sum_{j=1}^p |\beta_j|^2 = \beta^T \beta$$
Lasso Penalty
$$P(\beta) = \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$$
Best Subsets
$$P(\beta) = \|\beta\|_0 = \sum_{j=1}^p |\beta_j|^0 = \sum_{j=1}^p 1_{\beta_j \neq 0}$$
Elastic Net
$$P(\beta, \alpha) = \frac{(1-\alpha)\|\beta\|_2^2}{2} + \alpha\|\beta\|_1 = \sum_{j=1}^p \left(\frac{(1-\alpha)|\beta_j|^2}{2} + \alpha\|\beta\|_1\right)$$

2.3 Logistic Regression in Action

• In **Python**, logistic regression can be implemented with smf.logit() function.

```
import statsmodels.api as sm
import statsmodels.formula.api as smf

# Fit logistic regression model
model_formula = 'y ~ student + balance + income'
fit_lr = smf.logit(formula=model_formula, data=Default).fit()

# Print the summary
print(fit_lr.summary())
```

========	coef	std err	z	P> z	[0.025	0.975]
Intercept	-10.8690	0.492	-22.079	0.000	-11.834	-9.904
student	-0.6468	0.236	-2.738	0.006	-1.110	-0.184
balance	0.0057	0.000	24.737	0.000	0.005	0.006
income	3.033e-06	8.2e-06	0.370	0.712	-1.3e-05	1.91e-05

Your Turn #4: Interpreting Logistic Regression

- 1. What is the estimated probability of default for a Student with a balance of \$1000?
- 2. What is the estimated probability of default for a Non-Student with a balance of \$1000?
- 3. Why does student=Yes appear to lower risk of default, when the plot of student status vs. default appears to increase risk?

2.3.1 Penalized Logistic Regression

• The smf lib can estimate logistic regression using an elastic net penalty (e.g., ridge, lasso).

term	unpenalized	lambda.min	lambda.1se
(Intercept)	-10.869	-11.056	-7.937
studentYes	-0.647	-0.299	-0.041
balance	0.006	0.006	0.004
income	0.000	0.000	0.000
studentNo	NA	0.325	0.044

2.3.2 Logistic Regression Summary

- Logistic Regression (both penalized and unpenalized) estimates a *posterior probability*, $\hat{p}(x) = \widehat{\Pr}(Y = 1 \mid X = x)$.
- This estimate is a function of estimated coefficients.

$$\hat{p}(x) = \frac{e^{\beta^{T}x}}{1 + e^{\beta^{T}x}} = \left(1 + e^{-\beta^{T}x}\right)^{-1}$$

Your Turn #5

1. Given a person's student status, balance, and income, how could you use Logistic Regression to decide if they will default? (i.e., make a hard classification