TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 11.02.-15.02.2019

15. Übung Analysis III für Mathematiker(innen)

(Untermannigfaltigkeiten, Integration über Untermannigfaltigkeiten)

Themen der großen Übung am 04.02.

Wir diskutieren, ob die folgenden Teilmengen von \mathbb{R}^2 eindimensionale Untermannigfaltigkeiten sind:

$$A := \{(x,y) \in \mathbb{R}^2 \mid x^2 + 4y^2 = 1\}, \quad B := \mathbb{R} \times \{0\}, \quad C := \{(x,\sin(x)) \mid x \in]0, \pi[\},$$

$$D := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}, \quad E := \{(x,y) \in \mathbb{R}^2 \mid y = x \text{ oder } y = -x\}.$$

Kompakta mit glattem Rand Wir betrachten die eindimensionale Untermannigfaltigkeit

$$M := \{(x, y) \in \mathbb{R}^2 \mid x^2 + 3y^2 = 4\} \subseteq \mathbb{R}^2$$

und bestimmen Tangential- und Normalraum am Punkt p=(1,1). Dann zeigen wir, dass $K=\{(x,y)\in\mathbb{R}^2\mid x^2+3y^2\leq 4\}\subseteq\mathbb{R}^2$ ein Kompaktum mit glattem Rand ist, und bestimmen den äußeren Normalenvekor.

Kugeloberfläche: Wir bestimmen die Kugeloberfläche $Vol_2(\mathbb{S}^2) = 4\pi$ mittels der Integration über Untermannigfaltigkeiten: Die 2-Sphäre \mathbb{S}^2 in \mathbb{R}^3 hat die Karte

$$\Phi \colon (0,\pi) \times (0,2\pi) \to \mathbb{R}^3, \qquad \Phi(\theta,\varphi) := \begin{pmatrix} \cos(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) \\ \cos(\theta) \end{pmatrix},$$

vgl. Beispiel 4.1.8.

Tutoriumsvorschläge

50. Aufgabe

Sei $f: I \to (0, \infty)$ eine stetig differenzierbare Funktion auf einem (nicht entarteten) Intervall I. Wir definieren die Menge $M_f := \{(x, y, z) \in \mathbb{R}^3 \mid z \in I, x^2 + y^2 = f(z)^2\}$. Zeigen Sie:

- (i) M_f ist eine 2-dimensionale Untermannigfaltigkeit von \mathbb{R}^3 .
- (ii) Bis auf eine 2-dimensionale Nullmenge kann man ${\cal M}_f$ durch die folgende Karte beschreiben:

$$\Phi \colon I \times (0, 2\pi) \to \mathbb{R}^3, \qquad (t, \varphi) \mapsto \begin{pmatrix} f(t) \cos(\varphi) \\ f(t) \sin(\varphi) \\ t \end{pmatrix}.$$

- (iii) Bestimmen Sie eine allgemeine Formel für $Vol(M_f)$.
- (iv) Seien nun $f:(0,2)\to(0,\infty), f(t):=t^2$. Skizzieren Sie die Menge M_f und wenden Sie dann Ihre Formel aus (iii) an, um die Oberfläche des Körpers zu bestimmen.

51. Aufgabe

Beweisen Sie Lemma 4.2.2: Seien $\varphi \colon T \to V \subseteq M$ und $\tilde{\varphi} \colon \tilde{T} \to \tilde{V} \subseteq M$ zwei Karten der k-dimensionalen Untermannigfaltigkeit $M \subseteq \mathbb{R}^d$ und g, \tilde{g} die zugehörigen Gram'schen Determinanten. Es gelte $V \cap \tilde{V} \neq \emptyset$, o.E. daher $V = \tilde{V}$ und $\tau \colon T \to \tilde{T}$ der zugehörige Kartenwechsel $\tilde{\varphi} = \varphi \circ \tau$. Dann gilt

$$\tilde{g}(y) = |\det(D\tau(y))|^2 g(\tau(y)), \qquad y \in \tilde{T}.$$

52. Aufgabe

Wir definieren das sogenannte **Möbiusband** M als Bild der Abbildung

$$F: \mathbb{R} \times (-1,1) \to \mathbb{R}^3, \qquad (t,s) \mapsto \begin{pmatrix} \cos(2t)(1+s\cos(t)) \\ \sin(2t)(1+s\cos(t)) \\ s\sin(t) \end{pmatrix}.$$

- (i) Zeigen Sie, dass F eine Immersion ist.
- (ii) Zeigen Sie, dass F auf geeigneten offenen Teilmengen zu einer C^{∞} -Karte von M eingeschränkt werden kann, und folgern Sie, dass M eine 2-dimensionale Untermannigfaltigkeit von \mathbb{R}^3 ist.

Hinweis: Für die jeweiligen Umkehrabbildungen dürfen Sie annehmen, dass Sie stetig sind (das zeigt man mit trigonometrischen Überlegungen die etwas involviert sind).

- (iii) Zeigen Sie, dass man bis auf eine Nullmenge M mit nur einer der Karten aus (ii) überdecken kann.
- (iv) Bestimmen Sie eine Formel für das Volumen des Möbiusbandes.

Bemerkung: Für das Integral, das das Volumen angibt, scheint es keine geschlossene Form zu geben, es muss daher numerisch ausgewertet werden.

Hausaufgaben

Zur Erinnerung: Das 15. Übungsblatt kann als Bonusblatt auf beide Hälften des Hausaufgabenkriteriums angerechnet werden.

56. Aufgabe (7 Punkte)

Seien $k, d \in \mathbb{N}$ mit $k \leq d$. Sei $\varphi = (\varphi_1, \dots, \varphi_d)$ eine Familie von differenzierbaren Abbildungen $\varphi_i \colon \mathbb{R}^k \to \mathbb{R}$, deren Gram'sche Matrix wir definieren als $G(t) = (D\varphi(t))^{\top}(D\varphi(t))$. Die Determinante dieser Matrix nennen wir Gram'sche Determinante g.

- (i) Zeigen Sie, dass $G(t) = [\langle \partial_i \varphi(t), \partial_j \varphi(t) \rangle]_{1 \leq i,j \leq k}$ gilt, wobei $\langle \cdot, \cdot \rangle$ das Euklidische Skalarprodukt bezeichne. Beweisen Sie damit, dass G(t) positiv semidefinit ist und G(t) genau dann positiv definit ist, wenn die Vektoren $\partial_1 \varphi(t), \ldots, \partial_k \varphi(t)$ linear unabhängig sind.
- (ii) Beweisen Sie Formel von Cauchy-Binet für alle Matrizen $A, B \in \mathbb{R}^{d \times k}$:

$$\det(A^{\top}B) = \sum_{1 \le j_1 < j_2 < \dots < j_k \le d} \det(A_{j_1,\dots,j_k}) \det(B_{j_1,\dots,j_k}),$$

wobei $A_{j_1,...,j_k}$ die $k \times k$ Matrix ist, welche aus den Zeilen $A_{j_1},...,A_{j_k}$ von A (in dieser Reihenfolge!) besteht.

(iii) Beweisen Sie nun Lemma 4.2.1: Ist φ eine Karte der k-dimensionalen Untermannigfaltigkeit $M \subseteq \mathbb{R}^d$, so gilt für die Gram'sche Determinante g der Karte φ :

$$g = \sum_{1 \le j_1 < j_2 < \dots < j_k \le d} \left(\det \frac{\partial (\varphi_{j_1}, \varphi_{j_2}, \dots, \varphi_{j_k})}{\partial (t_1, t_2, \dots, t_k)} \right)^2.$$

57. Aufgabe (7 Punkte)

Zeigen Sie Folgendes.

(i) Der Wert des Integrals einer Funktion f in einer Karte φ hängt nicht von der Wahl der Karte ab.

- (ii) Die Abbildung $T_i \to \mathbb{R}, t \mapsto \alpha_i(\varphi(t)) f(\varphi(t)) \sqrt{g(\varphi(t))}$ ist unter den Voraussetzungen in Definition 4.2.3(ii) für jedes $i \in \{1, \dots, m\}$ über T_i integrierbar.
- (iii) Sei $r \in (0, \infty)$ und $M \subseteq \mathbb{R}^d$ eine k-dimensionale Untermannigfaltigkeit. Dann ist $rM = \{rm \mid m \in M\}$ ebenfalls eine k-dimensionale Untermannigfaltigkeit. Eine Funktion $f \colon rM \to \mathbb{R}$ ist genau dann über rM integrierbar, wenn die Abbildung $x \mapsto f(rx)$ über M integrierbar ist, und dann gilt

$$\int_{rM} f(y) \, \mathbb{S}(\mathrm{d}y) = r^k \int_M f(rx) \, \mathbb{S}(\mathrm{d}x).$$

Insbesondere ist für jede integrierbare Teilmenge A von M auch die Menge rA integrierbar mit $\operatorname{Vol}_k(rA) = r^k \operatorname{Vol}_k(A)$.

58. Aufgabe (6 Punkte)

Sei $A \subseteq \mathbb{R}^d$ ein Kompaktum mit glattem Rand, das den Nullpunkt in seinem Inneren enthält, und

$$\alpha(x) := \langle (x, \nu(x)), x \in \partial A,$$

der Winkel zwischen dem Ortsvektor x und dem Normalenvektor $\nu(x)$ an ∂A . Man zeige

$$\int_{\partial A} \frac{\cos(\alpha(x))}{\|x\|^{d-1}} \, \mathbb{S}(\mathrm{d}x) = \omega_d,$$

wobei ω_d die Oberfäche der d-dimensionalen Einheitskugel (siehe Beispiel 4.2.13) ist.

Anleitung: Man wende den Gauß'schen Integralsatz an auf

$$F : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}^d, \qquad F(x) := \frac{x}{\|x\|^d}$$

und die Menge $A_{\varepsilon} := \{x \in A \mid ||x|| \ge \varepsilon\}$ für genügend kleines $\varepsilon > 0$ an. Beachte, dass die folgende Identität gilt: $\cos(\alpha(x)) = \frac{\langle x, \nu(x) \rangle}{||x|| ||\nu(x)||}$.

Gesamtpunktzahl: 20