Learning Objectives

Compare/Contrast z-test and t-test

 <u>Describe</u> standardized effect sizes and compare them to z-scores

 <u>Learn</u> naming conventions for Cohen's *d*, and three different variants of *d*

• Calculate Cohen's \hat{d} (and compare to calculating the t-statistic)

t-test

z test is "perfectly normal", doesn't need to be corrected for/no df: no estimate for sd, we know it

$$z_{\text{obt}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

$$t_{\rm obt} = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$

sigma = z dist.

Notice: We're using $S_{\overline{X}}$ instead of $\sigma_{\overline{X}}$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

$$S_{\bar{X}} = \frac{S}{\sqrt{N}}$$

t-test estimates σ

- We assume that $s = \sigma$
 - However, s is a biased estimator
 - s will systematically underestimate σ

We correct for bias using degrees of freedom

2 variables: calculate s for x and y, so df is N - 2

number of s calculations = # of "corrections" (N - #)

$$s = \sigma_{\text{est}} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N - 1}}$$

The values listed in the table are the critical values of t for the specified degrees of freedom (left (column heading). For two-tailed alpha levels, t_{crit} is both + and -. To be significant, $|t_{obt}| \ge |t_{obt}|$

df	Level of Significance for One-Tailed Test, $lpha_{1 ext{tail}}$			
	.10	.05	.025	.01
	Level of Significance for Two-Tailed Test, $oldsymbol{lpha}_2$ $_{ m tail}$			
	.20	.10	.05	.02
1	3.078	6.314	12.706	31.821
2	1.886	2.920	4.303	6.965
3	1.638	2.353	3.182	4.541
4	1.533	2.132	2.776	3.747
5	1.476	2.015	2.571	3.365
6	1.440	1.943	2.447	3.143
7	1.415	1.895	2.365	2.998
8	1.397	1.860	2.306	2.986
9	1.383	1.833	2 262	2.821
10	1.372	1.812	2.228	2.764

Determining t_{crit} when N = 11, $\alpha = .05$

Dist of t-statistic (when df = 10)

1.415

1.397

9

10

The values listed in the table are the critical values of t for the specified degrees of freedom (left (column heading). For two-tailed alpha levels, t_{crit} is both + and -. To be significant, $|t_{obt}| \ge |t_{obt}|$

Level of Significance for One-Tailed Test, $\alpha_{1 \text{ tai}}$.10 .05 .025 .01 df Level of Significance for Two-Tailed Test, $\alpha_{2 \text{ tai}}$.10 .05 .20 .02 3.078 6.314 12.706 31.821 1.886 2.920 4.303 6.965 1.638 2.353 3.182 4.541 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 2.447 1.440 1.943 3.143

1.895

1.860

2.365

2.306

2.998

2.986

Determining t_{crit} when N = 11, $\alpha = .05$

how close is t to z?

Dist of t-statistic (when df = 10)

Effect Sizes

- Effect sizes are meant to capture *magnitude* rather than *reliability*
 - ES are descriptive stats, not inferential stats
- Examples of raw *ES*:
 - $-(\bar{X}_{\rm obt}-\mu)$
 - $-(\bar{X}_1-\bar{X}_2)$
 - $-(\bar{X}_{\text{pre}}-\bar{X}_{\text{post}})$
- Raw effect sizes are expressed in original units of measurement (e.g., IQ points, percentage grade, likert scale ratings)

Standardized Effect Sizes

- Standardized ES is like standardized scores
 - They're put on the same scale

comparable bc they are divided by s

dividing by standard deviation!

mu or sample mean; can be either

$$\hat{d} = \frac{\bar{X}_{\text{obt}} - \mu}{s}$$

Standardized

Difference or ES

$$z_1 = \frac{X_1 - \bar{X}}{s}$$

Standardized Score

Standardized Effect Sizes

- Easily comparable across different studies:
 - We could compare:
 - z scores to each other
 - r values to each other
 - d values to each other
 - How different are these patterns, in units of standard deviations?
- Naming conventions for d (just like r):
 - *d* = 0, "no effect"
 - d = .20, "small effect" antihistamines have d of .20
 - *d* = .50, "medium effect"
 - *d* = .80+, "large effect"

Three Cohen's d's

There are different calculations for *d*, depending on the research design:

Comparing a <u>sample mean to a population mean</u>;
 (single sample *t*-test)

 \hat{d}

Comparing two independent sample means to each other:
 (Student's or independent t-test)

 d_{s}

Comparing two dependent means to each other:
 (dependent t-test)

Calculating Cohen's \hat{d}

best for: single sample t test

An instructor tested a new teaching technique on a sample of 500 students last year. The sample scored 10% better on the final exam, 75%, compared to her population of past students. The standard deviation of her sample was 14%.

What was the effect size for this teaching technique?

First, what Cohen's d should we use?

$$\hat{d} = \frac{\bar{X} - \mu}{S} \qquad \qquad \hat{d} = \frac{75 - 65}{14} = 0.71$$

Calculating Cohen's \hat{d}

An instructor tested a new teaching technique on a sample of <u>20</u> students last year. The sample scored <u>10% better</u> on the final exam, <u>75%</u>, compared to her population of past students. The standard deviation of her sample was <u>14%</u>.

What was the effect size for this teaching technique?

$$\hat{d} = \frac{\bar{X} - \mu}{S}$$

$$\hat{d} = \frac{75 - 65}{14} = 0.71$$

Calculating t- & p-values

An instructor tested a new teaching technique on a sample of <u>20</u> students last year. The sample scored 10% better on the final exam compared to her population of past students. The standard deviation of her sample was 14%.

Is this effect statistically reliable?

Calculating t- & p-values

• An instructor tested a new teaching technique on a *sample* of <u>20</u> students last year. The sample scored **10**% better on the final exam compared to her *population* of past students. The standard deviation of her sample was <u>14</u>%.

Is this effect statistically reliable?

$$s_{\bar{X}} = \frac{s}{\sqrt{N}} = \frac{14}{\sqrt{20}} = 3.1304$$

$$t_{\text{obt}} = \frac{\bar{X}_{\text{obt}} - \mu}{s_{\bar{X}}}$$

Calculating t- & p-values

• An instructor tested a new teaching technique on a *sample* of **20** students last year. The sample scored 10% better on the final exam compared to her *population* of past students. The standard deviation of her sample was 14%.

Is this effect statistically reliable?

$$s_{\bar{X}} = \frac{s}{\sqrt{N}} = \frac{14}{\sqrt{20}} = 3.1304$$

$$t_{\text{obt}} = \frac{\bar{X}_{\text{obt}} - \mu}{s_{\bar{X}}} = \frac{75 - 65}{3.1304} = 3.194$$

Lookup $t_{\rm crit}$ in Table D ($\alpha_{\rm 2-tail}$ = .05, df = N-1 = 19) $t_{\rm crit}$ = ± 2.093 Compare $t_{\rm obt}$ to $t_{\rm crit}$ passes, reject H_0