ANLY-601 Pattern Recognition

Homework 1

Due Tuesday, January 29, 2018

Use only your course notes — no internet or texts.

1. Moments of Gaussian Densities (10 points)

Consider the one-dimensional Gaussian pdf

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) .$$

Use the fact that

$$\int_{-\infty}^{\infty} \exp{-(\alpha u^2)} \ du = \sqrt{\frac{\pi}{\alpha}}$$

and the identity

Assign/m²ent Project Exam Help

 $\begin{array}{c} \mathbf{https://powcoder.com} \\ \mathbf{https://powcoder.com} \\ \end{array} . \end{array}$ Use symmetry arguments (hint: antisymmetric integrand over symmetric bounds) to show

that the *odd* central moments are all zero

Add WeChat powcoder

2. Conditional and Unconditional Variance (10 points)

In class we showed the relationship between conditional means and unconditional means. Specifically for random variables $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$, the conditional mean of x is

$$E[x|y] = \int x p(x|y) d^N x$$

and the unconditional mean is

$$E[x] = \int x \, p(x) \, d^N x = \int x \, \left(\int p(x|y) \, p(y) \, d^M y \right) \, d^N x$$
$$= \int \left(\int x \, p(x|y) \, d^N x \right) \, p(y) \, d^M y = E_y[E_x[x|y]] .$$

The relationship between the conditional variance and the unconditional variance is a bit more interesting. For simplicity, take $x \in R$ and $y \in R$ (scalar random variables). The conditional variance is

$$var(x|y) = \int (x - E[x|y])^2 p(x|y) dx$$
 (1)

(Note that like the mean, the conditional variance is a function of x_2 .) Show that the unconditional variance is related to the condition variance by

$$var(x) = \int (x - E[x])^2 p(x) dx = E_y[var_x(x|y)] + var_y(E[x|y]).$$
 (2)

Your derivation must show explicitly what $\operatorname{var}_y(E[x|y])$ means in terms of integral averages over quantities.

(Hint: Rewrite

)

$$(x - E[x])^{2} = (x - E[x] + E[x|y] - E[x|y])^{2} = (x - E[x|y] + E[x|y] - E[x])^{2}$$
$$= (x - E[x|y])^{2} + (E[x|y] - E[x])^{2}$$
$$+ 2(x - E[x|y])(E[x|y] - E[x]) .$$

3. A Maximum likelihood estimation (5 points)

This problem has an interesting practical origin, that I'll explain after you hand your solution back.

I have a bassie vitin easit bulk to be consecuted in 2. Help lon't tell you what the value of m is; I want you to make a (statistically informed) guess.

So I give you one piece of data. I reach into the bag and pull out one of the balls at random (i.e. with probability 11/23 and handing co. to learn 19" printed on it.

Let's compute the $maximum\ likelihood\ estimate\ of\ the\ total\ number\ of\ balls\ m$. Mathematically, this is the value of m that maximizes p(x=19|m). Start by building a likelihood function — since her is one ball with each number 1,2,3. Of e^{-m} , any number on a ball in the range 1,2,3 with each pumber 1,2,3 of e^{-m} , any number on a

$$p(1|m) = p(2|m) = \cdots = p(m|m) = 1/m$$
.

Note also that it's not possible to observe a number on a ball greater than (the unknown) m

$$p(n|m) = 0 \text{ for } n > m$$
.

These two pieces of information fix the likelihood function p(x|m). Given this information, what is the value of m that maximizes the likelihood of the data p(19|m)?