Описание:

IP - ядро Adc_ad9643 предназначено для конвертации данных от АЦП AD9643-250 из Double Data Rate формата в формат Single Data Rate с последующим применением протокола AXI-Stream. Функции управления ядром осуществляются через интерфейс AXI-Lite.

Структурная схема ядра:

Структурная схема ядра показана на рисунке 1.

Рис.1 - Структурная схема IP-ядра Adc_ad9643

Описание модулей ядра:

Данное ядро состоит из следующих модулей:

LVDS_interface

Модуль LVDS_interface состоит из дифференциальных буферов, которые преобразуют данные, поступающие с АЦП (клок, сигнал переполнения АЦП, и собственно, сами данные) из формата LVDS.

Временная диаграмма модуля представлена на рисунке 2.

Рисунок 2. Временная диаграмма модуля LVDS_interface

AXI_lite

Модуль AXI_lite - IP-ядро, которое предоставляет компания Xilinx. В данном ядре присутствуют 4 регистра, два из которых задействованы.

Адрес регистра	Описание	Функция
0x0	Младший бит (LSB) включает IDDR регистры. Т.е	Запись
	начинается передача данных.	
	0х1 – включение модуля	
	0х0 – выключение модуля	
0x4	Два младших бита показывают переполнение АЦП.	Чтение

Временная диаграмма модуля представлена на рисунке 3.

Рисунок 3. Временная диаграмма модуля AXI_lite

На нижней половине диаграммы показан процесс записи в регистр 0x0. На верхней половине показана диаграмма модуля AXI_stream для наглядности. Видно, что спустя несколько тактов после записи в регистр slv_reg0(0x0) модуль AXI_stream начал формировать данные. Регистр slv_reg1(0x4) принимает значения 0x1 и 0x2 там самым показывает в каком канале произошло переполнение. С ЗАДЕРЖКОЙ

AXI_stream

Модуль AXI_stream состоит из DDR-регистров. Данные регистры преобразуют данные из формата Double Data Rate в формат Single Data Rate с задержкой в 2 такта. Данный модуль реализует неполный функционал протокола AXI-Stream (m_axis_tvalid, m_axis_tdata). Так же модуль имеет порт adc_data_rdy, который показывает состоянии АЦП, возникло ли на входе переполнение или нет.

Временная диаграмма модуля представлена на рисунке 4.

Рисунок 4. Временная диаграмма модуля AXI_stream

В данной диаграмме видно что данные были сформированы с задержкой относительно пришедшего сигнала включения DDR-регистров с модуля AXI_lite. Так же видно как модуль реагирует на переполнение в отдельных каналах A и Б соответственно. Сигналы валидности(m_axi_tvalid_chA, m_axi_tvalid_chB) и сигнал готовности модуля (adc_data_rdy) не формируются на тех данных, где было обнаружено переполнение.

Dat_delay

Описание тестового окружения:

Для верификации ядра adc_ad9643 применялись IP-ядра AXI-stream VIP, AXI-lite VIP. С помощью функций AXI4LITE_WRITE_BURST был произведен процесс записи в регистр slv_reg0(0x0) числа 0x01234561 — включение модуля AXI_stream, а через 10 периодов S_AXI_ACLK процесс записи числа 0x89ABCDE2 — остановка принимаемых данных от АЦП. Данный цикл повторялся 3 раза для проверки корректности формирования сигналов valid для каналов A и Б.

Временная диаграмма тестбенча представлена на рисунке 5.

Рисунок 5. Временная диаграмма модуля