**Proposition 37.4.** Given a topological space  $(E, \mathcal{O})$ , given any subset A of E, the closure  $\overline{A}$  of A is the set of all points  $x \in E$  such that for every open set U containing x, then  $U \cap A \neq \emptyset$ . See Figure 37.10.



Figure 37.10: The topological space  $(E, \mathcal{O})$  is  $\mathbb{R}^2$  with topology induced by the Euclidean metric. The purple subset A is illustrated with three red points, each in its closure since the open ball centered at each point has nontrivial intersection with A.

Proof. If  $A = \emptyset$ , since  $\emptyset$  is closed, the proposition holds trivially. Thus, assume that  $A \neq \emptyset$ . First assume that  $x \in \overline{A}$ . Let U be any open set such that  $x \in U$ . If  $U \cap A = \emptyset$ , since U is open, then E - U is a closed set containing A, and since  $\overline{A}$  is the intersection of all closed sets containing A, we must have  $x \in E - U$ , which is impossible. Conversely, assume that  $x \in E$  is a point such that for every open set U containing x, then  $U \cap A \neq \emptyset$ . Let F be any closed subset containing A. If  $x \notin F$ , since F is closed, then U = E - F is an open set such that  $x \in U$ , and  $U \cap A = \emptyset$ , a contradiction. Thus, we have  $x \in F$  for every closed set containing A, that is,  $x \in \overline{A}$ .

Often it is necessary to consider a subset A of a topological space E, and to view the subset A as a topological space. The following proposition shows how to define a topology on a subset.

**Proposition 37.5.** Given a topological space  $(E, \mathcal{O})$ , given any subset A of E, let

$$\mathcal{U} = \{ U \cap A \mid U \in \mathcal{O} \}$$

be the family of all subsets of A obtained as the intersection of any open set in  $\mathcal{O}$  with A. The following properties hold.