Clase 2. Respuestas de los ejercicios. Análisis Matemático

EJERCICIOS RESUELTOS

1. Pruebe que si a > 0 $(a, x \in \mathbb{R})$:

$$a) |x| \le a \iff -a \le x \le a$$

b)
$$|x| \ge a \iff x \le a \text{ \'o } x \ge a$$

RESPUESTA

a) (1ra Vía Analizando por casos)

Comencemos demostrando la implicación en el sentido (\Rightarrow), es decir, que a > 0 $y |x| \le a \Rightarrow -a \le x \le a$

- 1. $\forall x \in \mathbb{R}, x \leq |x|$ por definición de módulo y $|x| \leq a$ por hipótesis
- 2. Por transitividad, $x \le a$
- 3. Como $|x| \le a$ entonces $-a \le -|x|$ y $\forall x \in \mathbb{R}$, $-|x| \le x$
- 4. Por transitividad, $-a \le x$
- 5. Finalmente de 2 y 4 , se obtiene que $-a \le x \le a$

Demostremos ahora la implicación en el sentido (\Leftarrow), es decir, que a > 0 $y - a \le x \le a \Rightarrow |x| \le a$

- 1. Si $x \ge 0$ entonces |x| = x por definición de módulo y $-a \le x \le a$ por hipótesis
- 2. Por tanto se cumple que $-a \le |x| \le a$, de ahí que $|x| \le a$
- 3. Si x < 0 entonces |x| = -x por definición de módulo y $-a \le x \le a$ por hipótesis
- 4. Multiplicando $-a \le x \le a \text{ por } -1 \text{ obtenemos } a \ge -x \ge -a$
- 5. De ahí que $a \ge |x| \ge -a$ y por tanto $|x| \le a$

(2da Vía)

TEOREMA 1
$$\forall \alpha \in \mathbb{R}: |\alpha|^2 = \alpha^2$$

Demostración:

(1) Por definición de potencia: $|a|^2 = |a||a|$

(2) Si
$$a \ge 0 \rightarrow |a|^2 = a.a \rightarrow |a|^2 = a^2$$

(3)Si
$$a < 0 \rightarrow |a|^2 = (-a)(-a) \rightarrow |a^2| = a^2$$

TEOREMA 2 $\forall a \in \mathbb{R}: |a| = \sqrt{a^2}$

Demostración:

(1) Por el T.1 : $|a|^2 = a^2$

(2) Entonces: $\sqrt{|a|^2} = \sqrt{a^2}$

$$(3): |a| = \sqrt{a^2}$$

Utilicemos estos resultados en la solución del ejercicio. Se quiere demostrar que a>0 y $|x|\leq a \Leftrightarrow -a\leq x\leq a$. Como $|x|=\sqrt{x^2}$ y se tiene que $|x|\leq a$, entonces

$$(1) \sqrt{x^2} \le a$$

$$(2) \Leftrightarrow \left(\sqrt{x^2}\right)^2 \le a^2$$

(3)
$$\Leftrightarrow x^2 \leq a^2$$

$$(4) \Leftrightarrow x^2 - a^2 \le 0$$

$$(5) \Leftrightarrow (x - a)(x + a) \le 0$$

$$(6) \Leftrightarrow x \in [-a,a]$$

(7) O sea,
$$-a \le x \le a$$

b) (Analizando por casos)

Comencemos demostrando la implicación en el sentido (\Rightarrow), es decir, que a>0 y $|x|\geq a\Rightarrow x\leq -a$ ó $x\geq a$

1) Si
$$x \ge 0$$
, $|x| = x \Rightarrow x \ge a$ por hipótesis.

2) Si
$$x < 0$$
, $|x| = -x$

Dividamos en dos casos |x| > a y |x| = a

•
$$|x| > a$$

$$\Leftrightarrow -x > a$$

$$\Leftrightarrow -(-x) < -a$$

$$\Leftrightarrow x < -a$$

$$\therefore x \leq -a$$

•
$$|x| = a$$

$$\Leftrightarrow x = a$$
 , $a \ge a \Rightarrow x \ge a$

$$\Leftrightarrow x = -a, -a < -a \Rightarrow x < -a$$

Demostremos ahora la implicación en el sentido (\Leftarrow), es decir, que a > 0 y $x \le -a$ ó $x \ge a \Rightarrow |x| \le a$

1) Si
$$x \ge a \Rightarrow x \ge 0 \Rightarrow |x| = x y |x| \ge a$$

2) Si
$$x \le -a \Rightarrow x \le 0 \Rightarrow |x| = -x$$

Dividamos en dos casos x < -a y x = -a

•
$$x < -a \Rightarrow -x > a \Rightarrow |x| > a$$

$$|x| \ge a$$

•
$$x = -a \Rightarrow -x = a \Rightarrow |x| = a$$

$$|x| \ge a$$

2. Demuestre que si $a, b \in \mathbb{R}$:

$$a) |ab| = |a||b|$$

b)
$$|a+b| \le |a| + |b|$$

c)
$$|a-b| \ge ||a| - |b|| \ge |a| - |b|$$

RESPUESTA

a)

$$|ab| = |a||b|$$

Demostración:

(1) Por el T.2 :
$$|ab| = \sqrt{(ab)^2}$$

(2) Por propiedad de potencia: $|ab| = \sqrt{a^2b^2}$

b)

 $|a+b| \le |a| + |b|$ (Designaldar Triangular)

Demostración:

(2)
$$\leq a^2 + 2|a*b| + b^2 \dots (ab \leq |ab|)$$

(3)
$$\leq |a|^2 + 2|a||b| + |b|^2 \dots \dots (T.1) y \text{ Ej. 2a}$$

$$(4) \leq (|a|+|b|)^2$$

(5) Como |a+b| y (|a|+|b|) son ambos positivos, entoces:

$$|a+b|\leq |a|+|b|$$

Recomendación: Estudiar la demostración del Teorema 1.3 pág. 44 LT Análisis Matemático, tomo I, Carlos Sánchez.

c) Teorema 3. |a - b| = |b - a|

Demostración

$$|a-b| = \sqrt{(a-b)^2} = \sqrt{(a^2 - 2ab + b^2)} = \sqrt{(b-a)^2} = |b-a|.$$

Demostremos que $|a - b| \ge ||a| - |b|| \ge |a| - |b|$ usando el teorema anterior.

- (1) $|a| = |a-b+b| = |(a-b)+b| \le |a-b| + |b|$ por designaldad triangular
- (2) Por transitividad, $|a| \le |a b| + |b|$
- (3) $|a| |b| \le |a b|$
- (4) $|b| = |b a + a| = |(b a) + a| \le |b a| + |a|$ por designaldad triangular
- (5) Por transitividad, $|b| \le |b a| + |a|$
- (6) $|b| |a| \le |b a|$
- (7) $|b| |a| \le |a b|$ por T.3
- $(8) |a| |b| \ge -|a b|$
- (9) De 3 y 8 tenemos $-|a-b| \le |a| |b| \le |a-b|$
- (10) $||a| |b|| \le |a b|$ por Ej. 1^a
- (11) $||a| |b|| \ge |a| |b|$ por definición de módulo
- (12) De 10 y 11 tenemos que $|a b| \ge ||a| |b|| \ge |a| |b|$

EJERCICIOS DE LA CLASE

1. Para todo $x \in \mathbb{R}, x > 0$,
pruebe que existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < x$.

RESPUESTA

 $\forall x \in \mathbb{R}, x > 0$ podemos definir $\frac{1}{x} > 0, \frac{1}{x} \in \mathbb{R}$.

Por la propiedad arquimediana, $\exists n \in \mathbb{N}$ tal que $\frac{1}{r} < n$

Despejando $\frac{1}{n} < x$

2. Si $x,y \in \mathbb{R}, x < y$, demuestre que existe $z \in \mathbb{R}$ tal que x < z < y . ¿Será z único?. Justifique su respuesta.

RESPUESTA

 $\forall x, y \in \mathbb{R}$ podemos definir $z = \frac{x+y}{2} \in \mathbb{R}$

Demostremos que x < z < y

- $\bullet \quad x < \frac{x+y}{2}$
 - (1) x < y por hipótesis
 - (2) x + x < y + x por axioma 14
 - (3) 2x < x + y por conmutatividad de la operación suma
 - (4) $x < \frac{x+y}{2}$ por axioma 15

- $\bullet \quad \frac{x+y}{2} < y$
 - (1) x < y por hipótesis
 - (2) x + y < y + y por axioma 14
 - (3) x + y < 2y por conmutatividad de la operación suma
 - (4) $\frac{x+y}{2} < y$ por axioma 15

Por tanto, $\forall x, y \in \mathbb{R}$ existe al menos un número $z = \frac{x+y}{2} \in \mathbb{R}$, tal que x < z < y.

¿Será z único? No, existen infinitos valores de z que cumplen esa propiedad. Basta con seguir dividiendo el intervalo a la mitad infinitamente.

3. Si $x \in \mathbb{R}$, demuestre que existe un entero n único tal que $n \le x < n+1$.

RESPUESTA

Sea $x \in \mathbb{R}$ por propiedad arquimediana $\exists n \in \mathbb{N}: n > x$, es decir , existe al menos un número natural n mayor que x.

Definamos $A = \{m \in \mathbb{Z}: m > x\}$ el conjunto de los enteros mayores que x, A está acotado inferiormente por x y por el teorema del supremo, podemos garantizar que existe el ínfimo de A.

Definamos $a + 1 = Inf A \in \mathbb{Z}$

- Si a + 1 x = 1 (Distancia entre x y a + 1 es 1) Entonces $\exists a = x : a \le x \le a + 1$
- Si a + 1 x < 1 (Distancia entre x y a + 1 es menor que 1) Entonces $\exists a \in \mathbb{Z} : a < x < a + 1$
- Si a + 1 x > 1 (Distancia entre x y a + 1 es mayor que 1)
 Entonces a + 1 no es el ínfimo del conjunto A porque a ∈ Z y a > x por tanto a pertenece al conjunto y sería su ínfimo.

Este caso nos lleva a una contradicción con el planteamiento de $a + 1 = Inf A \in \mathbb{Z}$

• El caso a + 1 - x < 0 no es posible porque a + 1 > x

Otra manera de ver es considerar a = [x] parte entera de x, es decir, mayor entero menor o igual a x.

4. Demuestre que el sistema de intervalos cerrados encajados $[0, 3; 0, 4], [0, 33; 0, 34], [0, 33; 0, 334], \dots$ tiene como único punto común el número $\frac{1}{3}$.

RESPUESTA

 $\frac{1}{3}$ = 0.33333333 ... es un número con desarrollo decimal periódico

Construyamos un sistema de intervalos cerrados encajados de la siguiente manera

$$I_1 = [a1, b1] = [0.3, 0.4]$$

 $I_2 = [a2, b2] = [0.33, 0.34]$
 $I_3 = [a3, b3] = [0.333, 0.334]$
 $I_4 = [a4, b4] = [0.3333, 0.3334]$

Por la forma de construcción de los intervalos $\frac{1}{3} \in I_n = [an, bn], \ \forall n \in \mathbb{N}$

Demostremos que $\frac{1}{3}$ es el único número que pertenece a todos.

Calculemos las longitudes de los intervalos

$$d_1 = b1 - a1 = \frac{1}{10}$$

$$d_2 = b2 - a2 = \frac{1}{100} = \frac{1}{10^2}$$

$$d_3 = b3 - a3 = \frac{1}{1000} = \frac{1}{10^3}$$

$$d_4 = b4 - a4 = \frac{1}{10000} = \frac{1}{10^4}$$

• • • •

$$d_n = bn - an = \frac{1}{10^n}$$

Demostremos que este sistema de intervalos cerrados encajados es infinitesimal.

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N} \colon \tfrac{1}{\varepsilon} < N_\varepsilon \ \Rightarrow \tfrac{1}{N_\varepsilon} < \varepsilon \ \text{Por propiedad arquimediana}$$

$$\forall n \ge N_{\varepsilon}, \ 10^n > n$$

$$\frac{1}{10^n} < \frac{1}{n} < \frac{1}{N_{\varepsilon}} < \varepsilon$$

Entonces
$$\frac{1}{10^n} < \varepsilon, \forall n \ge N_{\varepsilon}$$

Por tanto el sistema de intervalos es infinitesimal.

 $\therefore \frac{1}{3}$ es el único punto que pertenece a todos los intervalos.

 Analice la acotación de los siguientes conjuntos de números reales. Halle, en caso de que existan, el supremo y el ínfimo, diciendo en cada caso si son máximos y mínimos:

a)
$$E = \left\{ x \in \mathbb{R}; \ x = \frac{(-1)^n}{n}, \ n \in \mathbb{N} \right\}$$

b)
$$E = \{x \in \mathbb{R}; \ x = \frac{1}{n} + (-1)^n, \ n \in \mathbb{N} \}$$

c)
$$E = \{x \in \mathbb{R}; |1 + 3x| \le 1\}$$

Determine los puntos de acumulación de los conjuntos

RESPUESTA

a)
$$E = \left\{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, \dots\right\}$$

• Demostremos que $\max E = \frac{1}{2}$

1. $\frac{1}{2}$ es cota superior de E si $\forall x \in E, x \leq \frac{1}{2}$

Si
$$n$$
 es par $\frac{1}{n} \le \frac{1}{2}$

Si
$$n$$
 es impar $-\frac{1}{n} < \frac{1}{2}$

2. $\frac{1}{2}$ es la menor de las cotas superiores

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in E : x_{\varepsilon} > \frac{1}{2} - \varepsilon$$

$$x_{\varepsilon} = \frac{1}{2} \in E$$

Con estos dos pasos demostramos que sup $E = \frac{1}{2}$. Veamos que también es máximo de E.

3. $\frac{1}{2} \in E \text{ si } n = 2 \text{ por tanto es máximo de } E$.

• Demostremos que $\min E = -1$

1. -1 es cota inferior de E si $\forall x \in E, x \ge -1$

Si
$$n$$
 es par $\frac{1}{n} > -1$

Si
$$n$$
 es impar $-\frac{1}{n} \ge -1$

2. -1 es la mayor de las cotas inferiores

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in E : x_{\varepsilon} > -1 + \varepsilon$$

 $x_{\varepsilon} = -1 \in E$

Con estos dos pasos demostramos que
$$\inf E = -1$$
. Veamos que también es mínimo de E .

3. $-1 \in E$ si n = 1 por tanto es mínimo de E.

•
$$E' = \{0\}$$

Demostremos que 0 es punto de acumulación de E0 es punto de acumulación del conjunto $E \Leftrightarrow \forall V(0, \varepsilon), \exists x \in E, x \neq 0: x \in V(0, \varepsilon)$

Por propiedad arquimediana

$$\begin{split} \forall \varepsilon > 0, & \frac{1}{\varepsilon} > 0 \text{ , } \exists N_{\varepsilon} \in \mathbb{N} \text{: } \frac{1}{\varepsilon} < N_{\varepsilon} \Rightarrow \frac{1}{N_{\varepsilon}} < \varepsilon \\ & \text{Si } N_{\varepsilon} \text{ es par, entonces } \frac{1}{N_{\varepsilon}} \neq 0, \frac{1}{N_{\varepsilon}} \in E \\ & \therefore \frac{1}{N_{\varepsilon}} \in V(0, \varepsilon) \cap E \text{ y } 0 \in E' \end{split}$$

(E'es el conjunto de los puntos de acumulación de E)

Si
$$N_{\varepsilon}$$
 es impar, entonces $N_{\varepsilon} < N_{\varepsilon} + 1$ y $N_{\varepsilon} + 1$ es par $\varepsilon > \frac{1}{N_{\varepsilon}} > \frac{1}{N_{\varepsilon} + 1}$, por tanto $\frac{1}{N_{\varepsilon} + 1} < \varepsilon$ y $\frac{1}{N_{\varepsilon} + 1} \neq 0$, $\frac{1}{N_{\varepsilon} + 1} \in E$ $\therefore \frac{1}{N_{\varepsilon} + 1} \in V(0, \varepsilon) \cap E$ y $0 \in E'$

Sería interesante pensar en cómo demostrar que 0 es el único punto de acumulación de este conjunto.

Recomendación: Estudiar el Ejercicio Resuelto 1 pág. 72 LT Análisis Matemático, tomo I , Carlos Sánchez.

b)
$$E = \{0, \frac{3}{2}, -\frac{2}{3}, \frac{5}{4}, -\frac{4}{5}, \frac{7}{6}, -\frac{6}{7}, \dots\}$$

- Demostremos que $\max E = \frac{3}{2}$
- 1. $\frac{3}{2}$ es cota superior de E si $\forall x \in E, x \leq \frac{3}{2}$

Si
$$n$$
 es par $\frac{1+n}{n} \le \frac{3}{2}$

Si
$$n$$
 es impar $\frac{1-n}{n} < \frac{3}{2}$

2. $\frac{3}{2}$ es la menor de las cotas superiores

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in E : x_{\varepsilon} > \frac{3}{2} - \varepsilon$$

$$x_{\varepsilon} = \frac{3}{2} \in E$$

Con estos dos pasos demostramos que $\sup E = \frac{3}{2}$. Veamos que también es máximo de E.

- 3. $\frac{3}{2} \in E \text{ si } n = 2 \text{ por tanto es máximo de } E$.
- Demostremos que $\inf E = -1$
- 1. -1 es cota inferior de E si $\forall x \in E, x \geq -1$

Si *n* es par
$$1 + \frac{1}{n} > -1$$

Si *n* es impar
$$-1 + \frac{1}{n} > -1$$

2. -1 es la mayor de las cotas inferiores

$$\forall \varepsilon > 0, \exists x_\varepsilon \in E : x_\varepsilon > -1 + \varepsilon$$

Por la propiedad arquimediana $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N} : \frac{1}{\varepsilon} < N_{\varepsilon} \Rightarrow \frac{1}{N_{\varepsilon}} < \varepsilon$

$$-1 + \frac{1}{N_{\varepsilon}} < -1 + \varepsilon$$

Si N_{ε} es impar entonces $-1 + \frac{1}{N_{\varepsilon}} \in E$

Si N_{ε} es par entonces $N_{\varepsilon}+1$ es impar, N_{ε} < $N_{\varepsilon}+1$, de ahí que

$$\frac{1}{N_{\varepsilon}} > \frac{1}{N_{\varepsilon} + 1}$$

$$-1 + \frac{1}{N_{\varepsilon}} > -1 + \frac{1}{N_{\varepsilon} + 1}$$

$$-1 + \varepsilon > -1 + \frac{1}{N_{\varepsilon}} > -1 + \frac{1}{N_{\varepsilon} + 1}$$

Se tiene que $-1 + \frac{1}{N_{\varepsilon}+1} < -1 + \varepsilon$ y $-1 + \frac{1}{N_{\varepsilon}+1} \in E$ porque $N_{\varepsilon} + 1$ es impar.

Con estos dos pasos demostramos que $\inf E = -1$.

- 3. $-1 \notin E$ $\not\equiv \min E$
- $E' = \{-1,1\}$

Este conjunto solo tiene dos puntos de acumulación.

Demostración similar a la anterior.

c) $|1 + 3x| \le 1$ $\Leftrightarrow -1 \le 1 + 3x \le 1$ $\Leftrightarrow -2 \le 3x \le 0$ $\Leftrightarrow -\frac{2}{3} \le x \le 0$

De ahí que
$$E = [-\frac{2}{3}, 0]$$

- Demostremos que $\max E = 0$
- 1. 0 es cota superior de E si $\forall x \in E, x \leq 0$, esto se cumple por la propia definición del conjunto.
- 2. 0 es la menor de las cotas superiores

$$\forall \varepsilon > 0$$
, $\exists x_{\varepsilon} \in E : x_{\varepsilon} > 0 - \varepsilon$

$$x_{\varepsilon} = 0 \in E$$

Con estos dos pasos demostramos que $\sup E = 0$. Veamos que también es máximo de E.

- 3. $0 \in E$ por tanto es máximo de E.
- Demostremos que $\min E = -\frac{2}{3}$
- 1. $-\frac{2}{3}$ es cota inferior de E si $\forall x \in E, x \ge -\frac{2}{3}$, esto se cumple por la propia definición del conjunto.
- 2. -1 es la mayor de las cotas inferiores

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in E : x_{\varepsilon} > -\frac{2}{3} + \varepsilon$$

$$x_{\varepsilon} = -\frac{2}{3} \in E$$

Con estos dos pasos demostramos que $\inf E = -\frac{2}{3}$. Veamos que también es mínimo de E.

- 3. $-\frac{2}{3} \in E$ por tanto es mínimo de E.
- $E' = [-\frac{2}{3}, 0]$ Todos los puntos del conjunto son de acumulación.

Demostremos que $\forall x \in E$, x es punto de acumulación de E.

Esto ocurre si y solo si x cumple que $\forall V(x, \varepsilon), \exists x_0 \in E, x_0 \neq x : x_0 \in V(x, \varepsilon)$

$$V(x,\varepsilon) = (x - \varepsilon, x + \varepsilon)$$

Como entre dos números reales hay infinitos números reales (Véase ej. 2), puede comprobarse que $\exists x_0 \in E, x_0 \neq x: x_0 \in V(x, \varepsilon)$.

Siguiendo la idea de resolución del ej 2, trabajen en formalizar esta demostración.

6. Construya un conjunto que posea exactamente tres puntos de acumulación.

RESPUESTA

$$E = \left\{\frac{1}{n}, n \in \mathbb{N}\right\} \cup \left\{1 + \frac{1}{n}, n \in \mathbb{N}\right\} \cup \left\{2 + \frac{1}{n}, n \in \mathbb{N}\right\}$$

 $E' = \{0,1,2\}$ El conjunto de los puntos de acumulación contiene solo 3 elementos.

¿Por qué contiene solo estos 3 elementos? El ejercicio 7 los puede ayudar a formular la respuesta a esa pregunta.

 Demuestre que si x es punto de acumulación de A∪B, entonces x es punto de acumulación de A o de B. (Demostrando por reducción al absurdo)

Partimos del absurdo... si $x_0 \in (A \cup B)'$ entonces $x_0 \notin A'$ y $x_0 \notin B'$.

Si $x_0 \in (A \cup B)' \Rightarrow \forall \varepsilon > 0$, $\exists x \in (A \cup B), x \neq x_0 : x \in V^*(x_0, \varepsilon)$, o lo que es lo mismo, $x_0 - \varepsilon < x < x_0 + \varepsilon$

Como $x_0 \notin A'$ y $x_0 \notin B'$. Entonces

$$\exists \ \varepsilon_1: \forall x \in A: x = x_0 \ \text{\'o} \ x \notin V^*(x_0, \varepsilon_1), \ \text{es decir}, \ x < x_0 - \varepsilon_1 \ \text{\'o} \ x > x_0 + \varepsilon_1$$

 $\exists \ \varepsilon_2: \forall x \in B: x = x_0 \ \text{\'o} \ x \notin V^*(x_0, \varepsilon_2), \ \text{es decir}, \ x < x_0 - \varepsilon_2 \ \text{\'o} \ x > x_0 + \varepsilon_2$

Tomando $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ se cumple

 $\exists \ \varepsilon = \min(\varepsilon_1, \varepsilon_2) : \forall x \in (A \cup B) : x = x_0 \text{ ó } x \notin V^*(x_0, \varepsilon), \text{ es decir, } x < x_0 - \varepsilon \text{ ó } x > x_0 + \varepsilon$ Entonces $x_0 \notin (A \cup B)'$, lo que sería una contradicción con la hipótesis del absurdo. Y, por tanto, $x_0 \in A'$ ó $x_0 \in B'$

Recomendación: Estudiar el ejercicio resuelto 3 pág. 73 LT Análisis Matemático, tomo I , Carlos Sánchez.

- 8. Se dice que un conjunto E ⊂ R es cerrado si todos los puntos de acumulación de E pertenecen a E y que es abierto si su complementario en R es cerrado. Diga si los conjuntos siguientes son cerrados, abiertos o ninguna de las dos cosas:
 - (i) [a, b]
 - (ii) (a, b)
 - (iii) [a, b)
 - (iv) Z
 - (v) Q
 - (vi) R
 - (vii) $\{x \in \mathbb{R}; x = \frac{1}{n}, n \in \mathbb{N}\}$
 - (viii) $\{x \in \mathbb{R}; x = (-1)^n + (-1)^m, n, m \in \mathbb{N}\}$
 - (ix) N
 - (x) φ

RESPUESTA

i) Cerrado, E' = [a, b], $E' \subseteq E$ No abierto, $E^c = (-\infty, a) \cup (b, +\infty)$, $Fr E^c = \{a, b\}$, $Fr E^c \notin E^c$, E^c no es cerrado.

- ii) No cerrado , $E'=[a,b], \ E'\not\in E$ Abierto, $E^c=(-\infty,a]\cup[b,+\infty), \ (E^c)'=(-\infty,a]\cup[b,+\infty), \ (E^c)'\subseteq E^c, \ E^c$ es cerrado.
- iii) No cerrado, $E' = [a, b], \ E' \not\subset E$ No abierto, $E^c = (-\infty, a) \cup [b, +\infty), \ (E^c)' = (-\infty, a] \cup [b, +\infty), \ (E^c)' \not\subset E^c, \ E^c$ no es cerrado.
- iv) Cerrado, $Fr \mathbb{Z} = \mathbb{Z}, \mathbb{Z}' = \emptyset$. Todos sus puntos son aislados. No abierto, $\mathbb{Z}^0 = \emptyset, \mathbb{Z}^0 \neq \mathbb{Z}$
- v) No cerrado, $\mathbb{Q}' = \mathbb{R}$, $\mathbb{Q}' \neq \mathbb{Q}$ Recomendación: Estudiar el ejercicio resuelto 2 pág. 73 LT Análisis Matemático, tomo I, Carlos Sánchez. No abierto, $\mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q} = \mathbb{I}$, $\mathbb{I}' = \mathbb{R}$, \mathbb{Q}^c no cerrado
- vi) Cerrado, $\mathbb{R}' = \mathbb{R}$ Abierto, $\mathbb{R}^c = \emptyset$, \emptyset cerrado porque no tiene puntos de acumulación
- vii) No cerrado, $E' = \{0\}$, $E' \not\subset E$ No abierto, $E^c = \mathbb{R} \setminus E$, $(E^c)' = \mathbb{R}$, $(E^c)' \not\subset E^c$, E^c no es cerrado.
- viii) $E = \{-2,0,2\}$ Cerrado , Fr E = E , $E' = \emptyset$, todos sus puntos son aislados. No abierto, $E^0 = \emptyset$
- ix) Cerrado, $Fr \mathbb{N} = \mathbb{N}, \mathbb{N}' = \emptyset$. Todos sus puntos son aislados. No abierto, $\mathbb{N}^0 = \emptyset, \mathbb{N}^0 \neq \mathbb{N}$
- x) Cerrado , $\emptyset' = \emptyset$ Abierto , $\emptyset^c = \mathbb{R}$, \mathbb{R} es cerrado