Ordinary differential equations 1

Explicit techniques for ODEs

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2020-2021

Today's outline

Introduction

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 methods
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Overview

Introduction

Ordinary differential equations

An equation containing a function of one independent variable and its derivatives, in contrast to a *partial differential equation*, which contains derivatives with respect to more independent variables.

Main question

How to solve

$$\frac{d\mathbf{y}}{dx} = f(\mathbf{y}(x), x) \quad \text{with} \quad \mathbf{y}(x = 0) = \mathbf{y}_0$$

accurately and efficiently?

What is an ODE?

Introduction

• Algebraic equation:

$$f(y(x),x) = 0$$
 e.g. $-\ln(K_{eq}) = (1 - \zeta)$

First order ODE:

$$f\left(\frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\frac{dc}{dt} = -kc^n$

Second order ODE:

$$f\left(\frac{d^2y}{dx^2}(x), \frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\mathcal{D}\frac{d^2c}{dx^2} = -\frac{kc}{1 + Kc}$

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

More general

Introduction

Consider the second order ODE:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

Now define and solve using z as a new variable:

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

Importance of boundary conditions

The nature of boundary conditions determines the appropriate numerical method. Classification into 2 main categories:

Initial value problems (IVP)
 We know the values of all y_i at some starting position x_s, and it is desired to find the values of y_i at some final point x_f.

Boundary value problems (BVP)
 Boundary conditions are specified at more than one x. Typically, some of the BC are specified at x_s and the remainder at x_f.

Introduction

Introduction 000000

Initial value problems:

- Explicit methods
 - First order: forward Euler
 - Second order: improved Euler (RK2)
 - Fourth order: Runge-Kutta 4 (RK4)
 - Step size control
- Implicit methods
 - First order: backward Euler
 - Second order: midpoint rule

Boundary value problems

Shooting method

Today's outline

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 methods
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Fuler's method

Consider the following single initial value problem:

$$rac{dc}{dt} = f(c(t),t)$$
 with $c(t=0) = c_0$ (initial value problem)

Easiest solution algorithm: Euler's method, derived here via Taylor series expansion:

$$c(t_0 + \Delta t) \approx c(t_0) + \left. \frac{dc}{dt} \right|_{t_0} \Delta t + \frac{1}{2} \left. \frac{d^2c}{dt^2} \right|_{t_0} (\Delta t)^2 + \mathcal{O}(\Delta t^3)$$

Neglect terms with higher order than two: $\frac{dc}{dt}\Big|_{t_0}=\frac{c(t_0+\Delta t)-c(t_0)}{\Delta t}$ Substitution:

$$\frac{c(t_0 + \Delta t) - c(t_0)}{\Delta t} = f(c_0, t_0) \Rightarrow c(t_0 + \Delta t) = c(t_0) + \Delta t f(c_0, t_0)$$

Euler's method: graphical example

$$\frac{c(t_0 + \Delta t) - c(t_0)}{\Delta t} = f(c_0, t_0) \Rightarrow c(t_0 + \Delta t) = c(t_0) + \Delta t f(c_0, t_0)$$

Euler's method - solution method

Start with $t = t_0$, $c = c_0$, then calculate at discrete points in time: $c(t_1 = t_0 + \Delta t) = c(t_0) + \Delta t f(c_0, t_0).$

Pseudo-code Euler's method:
$$\frac{dy}{dx} = f(x,y)$$
 and $y(x_0) = y_0$.

- 1 Initialize variables, functions; set $h = \frac{x_1 x_0}{N}$
- **2** Set $x = x_0$, $y = y_0$
- **3** While $x < x_{end}$ do $x_{i+1} = x_i + h; \quad y_{i+1} = y_i + hf(x_i, y_i)$

Euler's method - example

First order reaction in a batch reactor:

$$\frac{dc}{dt} = -kc$$
 with $c(t=0) = 1 \operatorname{mol} m^{-3}$, $k = 1 \operatorname{s}^{-1}$, $t_{\text{end}} = 2 \operatorname{s}$

Time [s]	Concentration [mol m $^{-3}$]
$t_0 = 0$	$c_0 = 1.00$
$t_1 = t_0 + \Delta t$	$c_1 = c_0 + \Delta t \cdot (-kc_0)$
= 0 + 0.1 = 0.1	$= 1 + 0.1 \cdot (-1 \cdot 1) = 0.9$
$t_2 = t_1 + \Delta t$	$c_2 = c_1 + \Delta t \cdot (-kc_1)$
= 0.1 + 0.1 = 0.2	$=0.9+0.1\cdot(-1\cdot0.9)=0.81$
$t_3 = t_2 + \Delta t$	$c_3 = c_2 + \Delta t \cdot (-kc_2)$
= 0.2 + 0.1 = 0.3	$= 0.81 + 0.1 \cdot (-1 \cdot 0.81) = 0.729$
•••	•••
$t_{i+1} = t_i + \Delta t$	$c_{i+1} = c_i + \Delta t \cdot (-kc_i)$
$t_{20} = 2.0$	$c_{20} = c_{19} + \Delta t \cdot (-kc_{19}) = 0.121577$

Euler's method - example

Problems with Euler's method

The question is: What step size, or how many steps to use?

- **1** $Accuracy \Rightarrow$ need information on numerical error!
- Stability ⇒ need information on stability limits!

Reaction rate: $k = 50 \text{ s}^{-1}$

Accuracy

Comparison with analytical solution for $k = 1 \text{ s}^{-1}$:

$$c(t) = c_0 \exp(-kt) \Rightarrow \zeta = 1 - \exp(-kt) \Rightarrow \zeta_{\text{analytical}} = 0.864665$$

N	ζ	$\frac{\zeta_{\text{numerical}} - \zeta_{\text{analytical}}}{\zeta_{\text{analytical}}}$
20	0.878423	0.015912
40	0.871488	0.007891
80	0.868062	0.003929
160	0.866360	0.001961
320	0.865511	0.000979

Accuracy

For Euler's method: Error halves when the number of grid points is doubled, i.e. error is proportional to Δt : first order method.

Error estimate:

$$\left. \frac{dx}{dt} \right|_{t_0} = \frac{x(t_0 + \Delta t) - x(t_0)}{\Delta t} + \frac{1}{2} \left. \frac{d^2x}{dt^2} \right|_{t_0} (\Delta t) + \mathcal{O}(\Delta t)^2$$

$$\frac{x(t_0 + \Delta t) - x(t_0)}{\Delta t} = f(x_0, t_0) - \frac{1}{2} \left. \frac{d^2 x}{dt^2} \right|_{t_0} (\Delta t) + \mathcal{O}(\Delta t)^2$$

Convergence rate (or: order of convergence) *r*

$$\epsilon = \lim_{\Delta x \to 0} c(\Delta x)^r$$

- A first order method reduces the error by a factor 2 when increasing the number of steps by a factor 2
- A second order method reduces the error by a factor 4 when increasing the number of steps by a factor 2

What to do when there is no analytical solution available? Compare to calculations with different number of steps: $\epsilon_1 = c(\Delta x_1)^r$ and $\epsilon_2 = c(\Delta x_2)^r$ and solve for r:

$$\frac{\epsilon_2}{\epsilon_1} = \frac{c(\Delta x_2)^r}{c(\Delta x_1)^r} = \left(\frac{\Delta x_2}{\Delta x_1}\right)^r \Rightarrow \log\left(\frac{\epsilon_2}{\epsilon_1}\right) = \log\left(\frac{\Delta x_2}{\Delta x_1}\right)^r$$

$$\Rightarrow r = \frac{\log\left(\frac{\epsilon_2}{\epsilon_1}\right)}{\log\left(\frac{\Delta x_2}{\Delta x_1}\right)} = \frac{\log\left(\frac{\epsilon_2}{\epsilon_1}\right)}{\log\left(\frac{N_1}{N_2}\right)} \text{ in the limit of } \Delta x \to 0 \quad \text{or} \quad N \to \infty$$

Today's outline

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 methods
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Errors and convergence rate

L_2 norm (Euclidean norm)

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2}$$

L_{∞} norm (maximum norm)

$$\|\mathbf{v}\|_{\infty} = \max(|v_1|,\ldots,|v_n|)$$

Absolute difference

$$\epsilon_{\mathsf{abs}} = \left\| \mathbf{y}_{\mathsf{numerical}} - \mathbf{y}_{\mathsf{analytical}} \right\|_{2,\infty}$$

Relative difference

$$\epsilon_{\mathsf{rel}} = \left\| \frac{\mathbf{y}_{\mathsf{numerical}} - \mathbf{y}_{\mathsf{analytical}}}{\mathbf{y}_{\mathsf{analytical}}} \right\|_{2,\infty}$$

Errors and convergence rate

Convergence rate (or: order of convergence) r

$$\epsilon = \lim_{\Delta x \to 0} c(\Delta x)^r$$

- A first order method reduces the error by a factor 2 when increasing the number of steps by a factor 2
- A second order method reduces the error by a factor 4 when increasing the number of steps by a factor 2

Computing the rate of convergence

When the analytical solution is available, choose 0 or 2 for a particular number of grid points N:

- **①** Compute the relative or absolute error vector $\overline{\varepsilon}$. Take the norm to compute a single error value ε following:
 - Based on L_1 -norm: $\epsilon = \frac{\|\overline{\varepsilon}\|_1}{N}$
 - Based on L_2 -norm: $\epsilon = \frac{\|\overline{\epsilon}\|_2}{\sqrt{N}}$
 - Based on L_{∞} -norm: $\epsilon = \|\overline{\epsilon}\|_{\infty}$
- 2 Compute the relative or absolute error at a single indicative points (e.g. middle of domain, outlet).

Compare to calculations with different number of steps: $\epsilon_1 = c(\Delta x_1)^r$ and $\epsilon_2 = c(\Delta x_2)^r$ and solve for r:

$$\frac{\epsilon_2}{\epsilon_1} = \frac{c(\Delta x_2)^r}{c(\Delta x_1)^r} = \left(\frac{\Delta x_2}{\Delta x_1}\right)^r \Rightarrow \log\left(\frac{\epsilon_2}{\epsilon_1}\right) = \log\left(\frac{\Delta x_2}{\Delta x_1}\right)^r$$

$$\Rightarrow r = \frac{\log\left(\frac{\epsilon_2}{\epsilon_1}\right)}{\log\left(\frac{\Delta x_2}{\Delta x_1}\right)} = \frac{\log\left(\frac{\epsilon_2}{\epsilon_1}\right)}{\log\left(\frac{N_1}{N_2}\right)} \text{ in the limit of } \Delta x \to 0 \text{ or } N \to \infty$$

When the analytical solution is **not** available:

- **1** Compute the solution with N+1, N, N-1 and N-2 grid points
- ② Select a single indicative grid point (e.g. middle of domain, outlet) that lies at exactly the same position in each computation

$$r = \frac{\log \frac{c_{N+1} - c_N}{c_N - c_{N-1}}}{\log \frac{c_N - c_{N-1}}{c_{N-1} - c_{N-2}}}$$

4 Alternative for simulations with 2N, N and $\frac{N}{2}$ grid points:

$$r = \frac{\log \left| \frac{c_{2N} - c_{N}}{c_{N} - c_{\frac{N}{2}}} \right|}{\log \left| \frac{N}{2N} \right|}$$

Example: Euler's method — order of convergence

N	ζ	$rac{\zeta_{ ext{numerical}} - \zeta_{ ext{analytical}}}{\zeta_{ ext{analytical}}}$	$r = \frac{\log\left(\frac{\epsilon_{i}}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_{i}}\right)}$
20	0.878423	0.015912	_
40	0.871488	0.007891	1.011832
80	0.868062	0.003929	1.005969
160	0.866360	0.001961	1.002996
320	0.865511	0.000979	1.001500

 \Rightarrow Euler's method is a first order method (as we already knew from the truncation error analysis)

Wouldn't it be great to have a method that can give the answer using much less steps? \Rightarrow Higher order methods

Today's outline

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 methods
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Runge-Kutta methods

Propagate a solution by combining the information of several Euler-style steps (each involving one function evaluation) to match a Taylor series expansion up to some higher order.

Euler: $y_{i+1} = y_i + hf(x_i, y_i)$ with $h = \Delta x$, i.e. $slope = k_1 = f(x_i, y_i)$.

Classical second order Runge-Kutta (RK2) method

This method is also called Heun's method, or improved Euler method:

- **1** Approximate the slope at x_i : $k_1 = f(x_i, y_i)$
- ② Approximate the slope at x_{i+1} : $k_2 = f(x_{i+1}, y_{i+1})$ where we use Euler's method to approximate $y_{i+1} = y_i + hf(x_i, y_i) = y_i + hk_1$
- **3** Perform an Euler step with the average of the slopes: $y_{i+1} = y_i + h^{\frac{1}{2}}(k_1 + k_2)$

In pseudocode:

```
x = x_0, y = y_0

while x < x_{\text{end}} do

x_{i+1} = x_i + h

k_1 = f(x_i, y_i)

k_2 = f(x_i + h, y_i + hk_1)

y_{i+1} = y_i + h\frac{1}{2}(k_1 + k_2)

end while
```


$$\frac{dy}{dx} = f(x, y(x))$$

Using Taylor series expansion: $y_{i+1} = y_i + h \frac{dy}{dx} \Big|_1 + \frac{h^2}{2} \frac{d^2y}{dx^2} \Big|_1 + \mathcal{O}(h^3)$

$$\frac{dy}{dx}\bigg|_{i} = f(x_{i}, y_{i}) \equiv f_{i}$$

$$\frac{d^{2}y}{dx^{2}}\bigg|_{i} = \frac{d}{dx}f(x, y(x))\bigg|_{i} = \frac{\partial f}{\partial x}\bigg|_{i} + \frac{\partial f}{\partial y}\bigg|_{i} \frac{\partial y}{\partial x}\bigg|_{i} = \frac{\partial f}{\partial x}\bigg|_{i} + \frac{\partial f}{\partial y}\bigg|_{i} f_{i} \quad \text{(chain rule)}$$

Substitution gives:

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x} \Big|_i + \frac{\partial f}{\partial y} \Big|_i f_i \right) + \mathcal{O}(h^3)$$

$$y_{i+1} = y_i + \frac{h}{2} f_i + \frac{h}{2} \left(f_i + h \frac{\partial f}{\partial x} \Big|_i + hf_i \frac{\partial f}{\partial y} \Big|_i \right) + \mathcal{O}(h^3)$$

Note multivariate Taylor expansion:

$$f(x_{i} + h, y_{i} + k) = f_{i} + h \frac{\partial f}{\partial x} \Big|_{i} + k \frac{\partial f}{\partial y} \Big|_{i} + \mathcal{O}(h^{2})$$

$$\Rightarrow \frac{h}{2} \left(f_{i} + h \frac{\partial f}{\partial x} \Big|_{i} + h f_{i} \frac{\partial f}{\partial y} \Big|_{i} \right) = \frac{h}{2} f(x_{i} + h, y_{i} + h f_{i}) + \mathcal{O}(h^{3})$$

Concluding:

$$y_{i+1} = y_i + \frac{h}{2}f_i + \frac{h}{2}f(x_i + h, y_i + hf_i) + \mathcal{O}(h^3)$$

Rewriting:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + h, y_i + hk_1)$$

$$\Rightarrow y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2)$$

TECHNOLOGY

Generalization: $v_{i+1} = v_i + h(b_1 k_1 + b_2 k_2) + \mathcal{O}(h^3)$ with $k_1 = f_i$, $k_2 = f(x_i + c_2 h, v_1 + a_{2,1} h k_1)$ (Note that classical RK2: $b_1 = b_2 = \frac{1}{2}$ and $c_2 = a_{2,1} = 1$.)

Bivariate Taylor expansion:

$$f(x_{i} + c_{2}h, y_{i} + a_{2,1}hk_{1}) = f_{i} + c_{2}h \frac{\partial f}{\partial x}\Big|_{i} + a_{2,1}hk_{1} \frac{\partial f}{\partial y}\Big|_{i} + \mathcal{O}(h^{2})$$

$$y_{i+1} = y_{i} + h(b_{1}k_{1} + b_{2}k_{2}) + \mathcal{O}(h^{3})$$

$$= y_{i} + h\Big[b_{1}f_{i} + b_{2}f(x_{i} + c_{2}h, y_{1} + a_{2,1}hk_{1})\Big] + \mathcal{O}(h^{3})$$

$$= y_{i} + h\Big[b_{1}f_{i} + b_{2}\Big\{f_{i} + c_{2}h \frac{\partial f}{\partial x}\Big|_{i} + a_{2,1}hk_{1} \frac{\partial f}{\partial y}\Big|_{i} + \mathcal{O}(h^{2})\Big\}\Big] + \mathcal{O}(h^{3})$$

$$= y_{i} + h(b_{1} + b_{2})f_{i} + h^{2}b_{2}\Big[c_{2}\frac{\partial f}{\partial x}\Big|_{i} + a_{2,1}f_{i}\frac{\partial f}{\partial y}\Big|_{i}\Big] + \mathcal{O}(h^{3})$$

Comparison with Taylor:

 $y_{i+1} = y_i + hf_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x} \bigg|_i + \frac{\partial f}{\partial y} \bigg|_i f_i \right) + \mathcal{O}(h^3)$ $\underset{\text{Sing}}{\text{UNIFICESTITY OF}} \int_{0 \le h \le 1}^{\text{EINDHOVEN}} f_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x} \bigg|_i + \frac{\partial f}{\partial y} \bigg|_i f_i \right) + \mathcal{O}(h^3)$ $\underset{\text{Sing}}{\text{UNIFICESTITY OF}} \int_{0 \le h \le 1}^{\text{EINDHOVEN}} f_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x} \bigg|_i + \frac{\partial f}{\partial y} \bigg|_i f_i \right) + \mathcal{O}(h^3)$ $\underset{\text{Sing}}{\text{UNIFICESTITY OF}} \int_{0 \le h \le 1}^{\text{EINDHOVEN}} f_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x} \bigg|_i + \frac{\partial f}{\partial y} \bigg|_i f_i \right) + \mathcal{O}(h^3)$

$$y_{i+1} = y_i + h(b_1 + b_2)f_i + h^2 b_2 \left(c_2 \frac{\partial f}{\partial x}\Big|_i + a_{2,1}f_i \frac{\partial f}{\partial y}\Big|_i\right) + \mathcal{O}(h^3)$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2} \left(\frac{\partial f}{\partial x}\Big|_i + \frac{\partial f}{\partial y}\Big|_i f_i\right) + \mathcal{O}(h^3)$$

 \Rightarrow 3 eqns and 4 unknowns \Rightarrow multiple possibilities!

- ① Classical RK2: $b_1 = b_2 = \frac{1}{2}$ and $c_2 = a_{2,1} = 1$
- **9** Midpoint rule (modified Euler): $b_1 = 0$, $b_2 = 1$, $c_2 = a_{2,1} = \frac{1}{2}$

Second order Runge-Kutta methods

Classical RK2 method	Explicit midpoint rule
<pre>(= Heun's method, improved Euler method)</pre>	(modified Euler method)
$k_1 = f_i$	$k_1 = f_i$
$k_2 = f(x_i + h, y_i + hk_1)$	$k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1)$
$y_{i+1} = y_i + \frac{1}{2}h(k_1 + k_2)$	$y_{i+1} = y_i + hk_2$

Second order Runge-Kutta method — Example

First order reaction in a batch reactor: $\frac{dc}{dt} = -kc$ with $c(t = 0) = 1 \text{ mol m}^{-3}$, $k = 1 \text{ s}^{-1}$, $t_{\text{end}} = 2 \text{ s}$.

Time [s] C [mol m ⁻³] $k_1 = hf(x_i, y_i)$ $k_2 = hf(x_i + y_i)$	$\frac{1}{2}h, y_n + \frac{1}{2}k_1$
0 1.00 $0.1 \cdot (-1 \cdot 1) = -0.1$ $0.1 \cdot (-1 \cdot (1 - 1)) = -0.1$	$(0.5 \cdot 0.1)) = -0.095$
0.1 $1 - 0.095 = 0.905$ $0.1 \cdot (-1 \cdot 0.0905) = -0.0905$ $0.1 \cdot (-1 \cdot (0.905)) = -0.0905$	$(05 - 0.5 \cdot 0.0905)) = -0.085975$
2 0.1358225 -0.0135822 -0.0129031	

N	ζ	$rac{\zeta_{ ext{numerical}} - \zeta_{ ext{analytical}}}{\zeta_{ ext{analytical}}}$	$r = \frac{\log\left(\frac{\epsilon_i}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_i}\right)}$
20	0.864178	5.634×10^{-4}	_
40	0.864548	1.355×10^{-4}	2.056
80	0.864636	3.323×10^{-5}	2.028
160	0.864658	8.229×10^{-6}	2.014
320	0.864663	2.048×10^{-6}	2.007

⇒ RK2 is a second order method. Doubling the number of cells reduces the error by a factor 4!

Can we do even better?

RK4 method (classical fourth order Runge-Kutta method)

$$k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1)$$

$$k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_2)$$

$$k_4 = f(x_i + h, y_i + hk_3)$$

RK4 method — order of convergence

N	ζ	$rac{\zeta_{ m numerical} - \zeta_{ m analytical}}{\zeta_{ m analytical}}$	$r = \frac{\log\left(\frac{\epsilon_i}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_i}\right)}$
20	0.864664472	2.836×10^{-7}	_
40	0.864664702	1.700×10^{-8}	4.060
80	0.864664716	1.040×10^{-9}	4.030
160	0.864664717	6.435×10^{-11}	4.015
320	0.864664717	4.001×10^{-12}	4.007

 \Rightarrow RK4 is a fourth order method: Doubling the number of cells reduces the error by a factor 16!

Can we do even better?

Today's outline

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 method
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Adaptive step size control

The step size (be it either position, time or both (PDEs)) cannot be decreased indefinitely to favour a higher accuracy, since each additional grid point causes additional computation time. It may be wise to adapt the step size according to the computation requirements.

Globally two different approaches can be used:

- Step doubling: compare solutions when taking one full step or two consecutive halve steps
- Embedded methods: Compare solutions when using two approximations of different order

Adaptive step size control: step doubling

- RK4 with one large step of h: $y_{i+1} = y_1 + ch^5 + \mathcal{O}(h^6)$
- RK4 with two steps of $\frac{1}{2}h$: $y_{i+1} = y_2 + 2c(\frac{1}{2}h)^5 + \mathcal{O}(h^6)$

Adaptive step size control: step doubling

Estimation of truncation error by comparing y_1 and y_2 :

$$\Delta = y_2 - y_1$$

- If Δ too large, reduce step size for accuracy
- If Δ too small, increase step size for efficiency.
- Ignoring higher order terms and solving for c:

$$\Delta = \frac{15}{16}ch^5 \Rightarrow ch^5 = \frac{16}{15}\Delta \Rightarrow y_{i+1} = y_2 + \frac{\Delta}{15} + \mathcal{O}(h^6)$$
 (local Richardson extrapolation)

Note that when we specify a tolerance tol, we can estimate the maximum allowable step size

as:
$$h_{\text{new}} = \alpha h_{\text{old}} \left| \frac{\text{tol}}{\Delta} \right|^{\frac{1}{5}}$$
 with α a safety factor (typically $\alpha = 0.9$).

Adaptive step size control: embedded methods

Use a special fourth and a fifth order Runge Kutta method to approximate y_{i+1}

- The fourth order method is special because we want to use the same positions for the evaluation for computational efficiency.
- RK45 is the preferred method (minimum number of function evaluations) (this is built in Matlab as ode45).

Today's outline

- Introduction
- Euler's method
 - Forward Euler
- Rates of convergence
- Runge-Kutta methods
 - RK2 method
 - RK4 method
- Step size control
- Solving ODEs in Matlab

Solving ODEs in Matlab

Matlab provides convenient procedures to solve (systems of) ODEs automatically.

The procedure is as follows:

- **1** Create a function that specifies the ODE(s). Specifically, this function returns the $\frac{dy}{dx}$ value (vector).
- Initialise solver variables and settings (e.g. step size, initial conditions, tolerance), in a separate script
- 3 Call the ODE solver function, using a *function handle* to the ODE function described in point 1.
 - The ODE solver will return the vector for the independent variable, and a solution vector (matrix for systems of ODEs).

We solve the system: $\frac{dx}{dt} = -k_1x + k_2, k_1 = 0.2, k_2 = 2.5$

• Create an anonymous function handle:

$$\Rightarrow$$
 myEqn = @(t,x) (-0.2*x + 2.5)

• Solve with a call to ode45(function_handle, timespan, initial_condition):

```
>> ode45(myEqn, [0 40], 0);
```

• By omitting the output of this function, the graph is automatically drawn.

We solve the system:
$$\frac{dx}{dt} = \begin{cases} -\frac{k_1}{x^2} & t \le 10 \\ \frac{k_2}{x} - \frac{k_1}{x^2} & t > 10 \end{cases}$$
 with $k_1 = 0.5$, $k_2 = 1$, $x(0) = 2$

Create an ODE function

```
function [dxdt] = myEqnFunction(t,x)
k1 = 0.5;
k2 = 1;
dxdt = (t>10)*k2/x - k1/x^2;
```

Create a solution script

Plot the solution:

A few notes on working with ode45 and other solvers. If we want to give additional arguments (e.g. k1 and k2) to our ODE function, we can list them in the function line:

```
function [dxdt] = myEqn(t,x,k1,k2)
```

The additional arguments can now be set in the solver script by adding them after the options:

```
[t,x] = ode45(@myEqn,tspan,x_0,options,k1,k2);
```

• Of course, in the solver script, the variables do not have to be called k1 and k2:

```
[t,x] = ode45(@myODE,tspan,x_0,options,q,u);
```

• These variables may be of any type (vectors, matrix, struct). Especially a struct is useful to carry many values in 1 variable.

Solving systems of ODEs in Matlab: example

You have noticed that the step size in t varied. This is because we have given just the begin and end times of our time span:

```
tspan = [0 10];
```

You can also solve at specific steps, by supplying all steps explicitly, e.g.:

```
tspan = linspace(0,10,101);
```

This example provides 101 explicit time steps between 0 and 10 seconds.

Note that the results are interpolated to these data points afterwards; you do not influence the efficiency and accuracy of the solver algorithm this way!

Ordinary differential equations 2

Implicit methods, systems of ODEs and boundary value problems

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2020-2021

Today's outline

Introduction

•000000000

- Introduction
 - Backward Eule
 - Implicit midpoint method
- Systems of ODEs
 - Solution methods for systems of ODEs
 - Solving systems of ODEs in Matlab
 - Stiff systems of ODEs
- Boundary value problems
 - Shooting method
- Conclusion

Problems with Euler's method: instability

Consider the ODE:

$$\frac{dy}{dx} = f(x, y(x)) \quad \text{with} \quad y(x = 0) = y_0$$

First order approximation of derivative: $\frac{dy}{dx} = \frac{y_{i+1} - y_i}{\Delta x}$.

Where to evaluate the function f?

- Evaluation at x_i : Explicit Euler method (forward Euler)
- 2 Evaluation at x_{i+1} : Implicit Euler method (backward Euler)

Problems with Euler's method: instability – forward Euler

Explicit Euler method (forward Euler):

- Use values at x:: $\frac{y_{i+1}-y_i}{A_{\sim}}=f(x_i,y_i)\Rightarrow y_{i+1}=y_i+hf(x_i,y_i).$
- This is an explicit equation for y_{i+1} in terms of y_i .
- It can give instabilities with large function values.

Consider the first order batch reactor:

$$\frac{dc}{dt} = -kc \Rightarrow c_{i+1} = c_i - k\frac{c_i}{c_i}\Delta t \Rightarrow \frac{c_{i+1}}{c_i} = 1 - k\Delta t$$

It follows that unphysical results are obtained for $k\Delta t \geq 1!!$

Stability requirement

 $k\Lambda t < 1$

(but probably accuracy requirements are more stringent here!)

Implicit Euler method (backward Euler):

- Use values at x_{i+1} : $\frac{y_{i+1}-y_i}{\Delta x} = f(x_{i+1}, y_{i+1}) \Rightarrow y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$.
- This is an implicit equation for y_{i+1} , because it also depends on terms of y_{i+1} .

Consider the first order batch reactor:

$$\frac{dc}{dt} = -kc \Rightarrow c_{i+1} = c_i - kc_{i+1}\Delta t \Rightarrow \frac{c_{i+1}}{c_i} = \frac{1}{1 + k\Delta t}$$

This equation does never give unphysical results! The implicit Euler method is *unconditionally stable* (but maybe not very accurate or efficient).

Semi-implicit Euler method

Usually f is a non-linear function of y, so that linearization is required (recall Newton's method).

$$\frac{dy}{dx} = f(y) \Rightarrow y_{i+1} = y_i + hf(y_{i+1}) \quad \text{using} \quad f(y_{i+1}) = f(y_i) + \frac{df}{dy} \Big|_i (y_{i+1} - y_i) + \dots$$

$$\Rightarrow y_{i+1} = y_i + h \left[f(y_i) + \frac{df}{dy} \Big|_i (y_{i+1} - y_i) \right]$$

$$\Rightarrow \left(1 - h \frac{df}{dy} \Big|_i \right) y_{i+1} = \left(1 - h \frac{df}{dy} \Big|_i \right) y_i + hf(y_i)$$

$$\Rightarrow$$
 $y_{i+1} = y_i + h \left(1 - h \frac{df}{dy}\Big|_i\right)^{-1} f(y_i)$

For the case that f(x,y(x)) we could add the variable x as an additional variable $y_{n+1}=x$. Or add one fully implicit Euler step (which avoids the computation of $\frac{\partial f}{\partial y}$):

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1}) \Rightarrow y_{i+1} = y_i + h\left(1 - h\frac{df}{dy}\Big|_i\right)^{-1} f(x_{i+1}, y_i)$$

Second order reaction in a batch reactor:

$$\frac{dc}{dt}=-kc^2$$
 with $c_0=1~\rm mol\,m^{-3},~k=1~m^3\,mol^{-1}\,s^{-1},~t_{\rm end}=2~\rm s$ Analytical solution: $c(t)=\frac{c_0}{1+kc_0t}$

Define
$$f = -kc^2$$
, then $\frac{df}{dc} = -2kc \Rightarrow c_{i+1} = c_i - \frac{hkc_i^2}{1+2hkc_i}$.

N	ζ	$rac{\zeta_{ ext{numerical}} - \zeta_{ ext{analytical}}}{\zeta_{ ext{analytical}}}$	$r = \frac{\log\left(\frac{\epsilon_i}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_i}\right)}$
20	0.654066262	1.89×10^{-2}	_
40	0.660462687	9.31×10^{-3}	1.02220
80	0.663589561	4.62×10^{-3}	1.01162
160	0.665134433	2.30×10^{-3}	1.00594
320	0.665902142	1.15×10^{-3}	1.00300

Introduction 0000000000

Second order implicit method: Implicit midpoint method

Implicit midpoint rule	Explicit midpoint rule
(second order)	(modified Euler method)
$y_{i+1} = y_i + hf\left(x_i + \frac{1}{2}h, \frac{1}{2}(y_i + y_{i+1})\right)$	$y_{i+1} = y_i + hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1)$

in case f(y) then:

$$f\left(\frac{1}{2}(y_i + y_{i+1})\right) = f_i + \frac{df}{dy}\Big|_i \left(\frac{1}{2}(y_i + y_{i+1}) - y_i\right) = f_i + \frac{1}{2} \left.\frac{df}{dy}\right|_i (y_{i+1} - y_i)$$

Implicit midpoint rule reduces to:

$$y_{i+1} = y_i + hf_i + \frac{h}{2} \left. \frac{df}{dy} \right|_i (y_{i+1} - y_i)$$

$$\Rightarrow \left(1 - \frac{h}{2} \left. \frac{df}{dy} \right|_i \right) y_{i+1} = \left(1 - \frac{h}{2} \left. \frac{df}{dy} \right|_i \right) y_i + hf_i$$

$$\Rightarrow y_{i+1} = y_i + h \left(1 - \frac{h}{2} \frac{df}{dy} \Big|_i \right)^{-1} f_i$$

Implicit midpoint method — example

Second order reaction in a batch reactor:

$$\frac{dc}{dt}=-kc^2$$
 with $c_0=1$ mol m⁻³, $k=1$ m³ mol⁻¹ s⁻¹, $t_{\rm end}=2$ s (Analytical solution: $c(t)=\frac{c_0}{1+kc_0t}$).

Define $f = -kc^2$, then $\frac{df}{ds} = -2kc$.

Substitution:

$$c_{i+1} = c_i + h \left(1 - \frac{h}{2} \cdot (-2kc_i) \right)^{-1} \cdot (-kc_i^2)$$

$$= c_i - \frac{hkc_i^2}{1 + hkc_i} = \frac{c_i + hkc_i^2 - hkc_i^2}{1 + hkc_i} \Rightarrow c_{i+1} = \frac{c_i}{1 + hkc_i}$$

You will find that this method is exact for all step sizes h because of the quadratic source term!

Implicit midpoint method — example

Second order reaction in a batch reactor:

$$\frac{dc}{dt} = -kc^2$$
 with $c_0 = 1 \text{ mol m}^{-3}$, $k = 1 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$, $t_{\text{end}} = 2 \text{ s}$

Analytical solution: $c(t) = \frac{c_0}{1 + kc_0 t}$

$$c_{i+1} = \frac{c_i}{1 + hkc_i}$$

N	ζ	$rac{\zeta_{ ext{numerical}} - \zeta_{ ext{analytical}}}{\zeta_{ ext{analytical}}}$	$r = \frac{\log\left(\frac{\epsilon_i}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_i}\right)}$
20	0.6666666667	1.665×10^{-16}	_
40	0.6666666667	0	_
80	0.6666666667	0	_
160	0.6666666667	0	_
320	0.6666666667	0	_

Implicit midpoint method — example

Third order reaction in a batch reactor: $\frac{dc}{dt} = -kc^3$

Analytical solution: $c(t) = \frac{c_0}{\sqrt{1 + 2kc_0^2t}}$

$$c_{i+1} = c_i - \frac{hkc_i^3}{1 + \frac{3}{2}hkc_i^2}$$

N	ζ	$rac{\zeta_{ ext{numerical}} - \zeta_{ ext{analytical}}}{\zeta_{ ext{analytical}}}$	$r = \frac{\log\left(\frac{\epsilon_i}{\epsilon_{i-1}}\right)}{\log\left(\frac{N_{i-1}}{N_i}\right)}$
20	0.5526916174	1.71×10^{-4}	_
40	0.5527633731	4.17×10^{-5}	2.041
80	0.5527807304	1.03×10^{-5}	2.021
160	0.5527849965	2.55×10^{-6}	2.011
320	0.5527860538	6.34×10^{-7}	2.005

Today's outline

- Introduction
- Systems of ODEs
- Boundary value problems
- Conclusion

A system of ODEs is specified using vector notation:

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x, \mathbf{y}(x))$$

for

$$\frac{dy_1}{dx} = f_1(x, y_1(x), y_2(x)) \quad \text{or} \quad f_1(x, y_1, y_2)$$

$$\frac{dy_2}{dx} = f_2(x, y_1(x), y_2(x)) \quad \text{or} \quad f_2(x, y_1, y_2)$$

The solution techniques discussed before can also be used to solve systems of equations.

Systems of ODEs: Explicit methods

Forward Euler method

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h\mathbf{f}(\mathbf{x}_i, \mathbf{y}_i)$$

Improved Euler method (classical RK2)

$$y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2)$$
 using $k_1 = f(x_i, y_i)$
 $k_2 = f(x_i + h, y_i + hk_1)$

Modified Euler method (midpoint rule)

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h\mathbf{k}_2$$
 using $\mathbf{k}_1 = \mathbf{f}(x_i, \mathbf{y}_i)$
 $\mathbf{k}_2 = \mathbf{f}(x_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_1)$

Classical fourth order Runge-Kutta method (RK4)

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \left(\frac{\mathbf{k}_1}{6} + \frac{1}{3} (\mathbf{k}_2 + \mathbf{k}_3) + \frac{\mathbf{k}_4}{6} \right)$$

$$\boldsymbol{k}_1 = \boldsymbol{f}(\boldsymbol{x}_i, \boldsymbol{y}_i)$$

$$\boldsymbol{k}_2 = \boldsymbol{f}(x_i + \frac{h}{2}, \boldsymbol{y}_i + \frac{h}{2}\boldsymbol{k}_1)$$

using

$$\mathbf{k}_3 = \mathbf{f}(x_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_2)$$

$$\mathbf{k}_4 = \mathbf{f}(x_i + h, \mathbf{y}_i + h\mathbf{k}_3)$$

Solving systems of ODEs in Matlab

Solving systems of ODEs in Matlab is completely analogous to solving a single ODE:

- Create a function that specifies the ODEs. This function returns the $\frac{dy}{dx}$ vector.
- 2 Initialise solver variables and settings (e.g. step size, initial conditions, tolerance), in a separate script. Initial conditions and tolerances should be given per-equation, i.e. as a vector.
- Call the ODE solver function, using a function handle to the ODE function described in point 1.
 - The ODE solver will return the vector for the independent variable, and a solution matrix, with a column as the solution for each equation in the system.

Solving systems of ODEs in Matlab: example

```
We solve the system: \frac{dx_1}{dt} = -x_1 - x_2, \frac{dx_2}{dt} = x_1 - 2x_2
```

Create an ODE function

```
function [dxdt] = myODEFunction(t,x)
dxdt(1) = -x(1) - x(2);
dxdt(2) = x(1) - 2*x(2);
dxdt=dxdt': % Transpose to column vector
return
```

Create a solution script

```
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]);
[t,x] = ode45(@mvODEfunction.tspan.x.init.options):
```


Solving systems of ODEs in Matlab: example

Plot the solution:

Solving systems of ODEs in Matlab: repeated notes

A few notes on working with ode45 and other solvers. If we want to give additional arguments (e.g. a, b and c) to our ODE function, we can list them in the function line:

```
function [dxdt] = myODE(t,x,a,b,c)
```

The additional arguments can now be set in the solver script by adding them after the options:

```
[t,x] = ode45 (@myODE, tspan, x_0, options, a, b, c);
```

Of course, in the solver script, the variables do not need to be called a, b and c:

```
[t,x] = ode45(@mvODE,tspan,x_0,options,k1,phi,V);
```

- These variables may be of any type (vectors, matrix, struct). Especially a struct is useful to carry many values in 1 variable.
- Alternative way to define a function handle with more arguments than the default (t,x)required by ode45:

```
[t,x] = ode45(@(t,x) myode(t,x,k1,phi,V),tspan,x_0,options);
```

You may have noticed that the step size in t varied. This is because we have given the begin and end times of our time span, and ode45 uses adaptive step size for efficiency:

```
tspan = [0 10];
```

You can also retrieve the solution at specific steps, by supplying all steps explicitly as a vector, e.g.:

```
tspan = linspace(0,10,101);
```

This example provides 101 explicit time steps between 0 and 10 seconds.

Note that this is an interpolated result. The solver uses, in the background, still the adaptive step size functionality!

Systems of ODEs: Implicit methods

Backward Euler method

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \left(\mathbf{I} - h \left. \frac{d\mathbf{f}}{d\mathbf{y}} \right|_i \right)^{-1} \mathbf{f}(\mathbf{y}_i)$$

Implicit midpoint method

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \left(\mathbf{I} - \frac{h}{2} \left. \frac{d\mathbf{f}}{d\mathbf{y}} \right|_i \right)^{-1} \mathbf{f}(\mathbf{y}_i)$$

Stiff systems of ODEs

A system of ODEs can be stiff and require a different solution method. For example:

$$\frac{dc_1}{dt} = 998c_1 + 1998c_2$$
 $\frac{dc_2}{dt} = -999c_1 - 1999c_2$

with boundary conditions $c_1(t=0)=1$ and $c_2(t=0)=0$.

The analytical solution is:

$$c_1 = 2e^{-t} - e^{-1000t}$$
 $c_2 = -e^{-t} + e^{-1000t}$

For the explicit method we require $\Delta t < 10^{-3}$ despite the fact that the term is completely negligible, but essential to keep stability.

> The "disease" of stiff equations: we need to follow the solution on the shortest length scale to maintain stability of the integration, although accuracy requirements would allow a much larger time step.

Forward Euler (explicit)

$$\begin{split} &\frac{c_{1,i+1}-c_{1,i}}{dt} = 998c_{1,i} + 1998c_{2,i} \\ &\frac{c_{2,i+1}-c_{2,i}}{dt} = -999c_{1,i} - 1999c_{2,i} \\ &\Rightarrow \frac{c_{1,i+1} = (1+998\Delta t)c_{1,i} + 1998\Delta tc_{2,i}}{c_{2,i+1} = -999\Delta tc_{1,i} + (1-1999\Delta t)c_{2,i}} \end{split}$$

Backward Euler (implicit)

$$\frac{c_{1,i+1} - c_{1,i}}{\Delta t} = 998c_{1,i+1} + 1998c_{2,i+1}$$

$$\frac{c_{2,i+1} - c_{2,i}}{\Delta t} = -999c_{1,i+1} - 1999c_{2,i+1}$$

$$\Rightarrow \frac{(1 - 998\Delta t)c_{1,i+1} - 1998\Delta tc_{2,i} = c_{1,i}}{999\Delta tc_{1,i+1} + (1 + 999\Delta t)c_{2,i+1} = c_{2,i}}$$

$$= c_{1,i} + c_{2,i} + c_{2,i} + c_{2,i} + c_{2,i} + c_{2,i} + c_{2,i}$$

$$Ac_{i+1} = c_i$$
 with $A = \begin{pmatrix} 1 - 998\Delta t & -1998\Delta t \\ 999\Delta t & 1 + 1999\Delta t \end{pmatrix}$ and $b = \begin{pmatrix} c_{1,i} \\ c_{2,i} \end{pmatrix}$

Demonstration with example

Backward Euler (implicit)
$$A c_{i+1} = c_i$$
 with $A = \begin{pmatrix} 1 - 998\Delta t & -1998\Delta t \\ 999\Delta t & 1 + 1999\Delta t \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} c_{1,i} \\ c_{2,i} \end{pmatrix}$

Cramers rule:

$$c_{1,i+1} = \frac{\begin{vmatrix} c_{1,i} & -1998\Delta t \\ c_{2,i} & 1+1999\Delta t \end{vmatrix}}{\det |A|} = \frac{(1+1999\Delta t)c_{1,i}+1998\Delta tc_{2,i}}{(1-998\Delta t)(1+1999\Delta t)+1998\cdot999\Delta t^2}$$

$$c_{2,i+1} = \frac{\begin{vmatrix} 1-998\Delta t & c_{1,i} \\ 999\Delta t & c_{2,i} \end{vmatrix}}{\det |A|} = \frac{-999\Delta tc_{1,i}+(1-998\Delta t)c_{2,i}}{(1-998\Delta t)(1+1999\Delta t)+1998\cdot999\Delta t^2}$$

Forward Euler: $\Delta t \leq 0.001$ for stability

Backward Euler: always stable, even for $\Delta t > 100$ (but then not very accurate!)

Cure for stiff problems: use implicit methods! To find out whether your system is stiff: check whether one of the eigenvalues have an imaginary part

Implicit methods in Matlab

Matlab offers a stabilized solver, ode15s, for stiff problems.

$$\frac{dc_1}{dt} = 998c_1 + 1998c_2 \quad \frac{dc_2}{dt} = -999c_1 - 1999c_2, c_1(0) = 1, c_2(0) = 0$$

Create the ode function

```
function [dcdt] = stiff ode(t.c)
dcdt = zeros(2.1); % Pre-allocation
dcdt(1) = 998 * c(1) + 1998*c(2):
dcdt(2) = -999 * c(1) - 1999*c(2):
return
```

Compare the resolution of the solutions

```
subplot (2.1.1):
ode45(@stiff_ode, [0 1], [1 0]);
subplot(2,1,2);
ode15s(@stiff_ode, [0 1], [1 0]):
```


Implicit methods in Matlab

How to make a generic Backward Euler implementation? Recall the update formula:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \left(\mathbf{I} - h \left. \frac{d\mathbf{f}}{d\mathbf{y}} \right|_i \right)^{-1} \mathbf{f}(\mathbf{y}_i)$$

- Set up input: Number of steps, end time, initial conditions
- Preallocate and calculate: create a full time vector, calculate the step size h, preallocate y with zeros and store the initial condition as the first y.
- Loop over the number of iterations:
 - Compute the Jacobian: calculate the function both for y_i as well as for $y_i + s$, where s is a very small number. Recall:

$$\frac{df}{dy} = \frac{f(y+s) - f(y)}{s}$$

• Compute the update formula for y_{i+1} . Use eye, inv.

Boundary value problems •0000000000

Today's outline

- Introduction
- Systems of ODEs
- Boundary value problems
- Conclusion

Importance of boundary conditions

The nature of boundary conditions determines the appropriate numerical method. Classification into 2 main categories:

 Initial value problems (IVP) We know the values of all y_i at some starting position x_s , and it is desired to find the values of y_i at some final point x_f .

Boundary value problems

 Boundary value problems (BVP) Boundary conditions are specified at more than one x. Typically, some of the BC are specified at x_s and the remainder at x_f .

Shooting method

How to solve a BVP using the shooting method:

- Define the system of ODEs
- Provide an initial guess for the unknown boundary condition
- Solve the system and compare the resulting boundary condition to the expected value
- Adjust the guessed boundary value, and solve again. Repeat until convergence.
 - Of course, you can subtract the expected value from the computed value at the boundary. and use a non-linear root finding method

Boundary value problems 00000000000

BVP: example in Excel

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D}\frac{d^2c}{dx^2} = k_R c \text{ with } c(x=0) = C_{A,i,L} = 1$$
 (interface concentration)
$$c(x=\delta) = 0$$
 (bulk concentration)

Question: compute the concentration profile in the film layer.

Step 1: Define the system of ODEs

This second-order ODE can be rewritten as a system of first-order ODEs, if we define the flux q as:

$$q = -\mathcal{D}\frac{dc}{dx}$$

Now. we find:

$$\frac{dc}{dx} = -\frac{1}{\mathcal{D}}q$$

$$\frac{dq}{dx} = -k_R c$$

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D}\frac{d^2c}{dx^2} = k_R c \text{ with } c(x=0) = C_{A,i,L} = 1$$
 (interface concentration)
$$c(x=\delta) = 0$$
 (bulk concentration)

Question: compute the concentration profile in the film layer.

Step 2: Set the boundary conditions

The boundary conditions for the concentrations at x = 0 and $x = \delta$ are known.

The flux at the interface, however, is not known, and should be solved for.

BVP: example in Excel

Solving the two first-order ODEs in Excel. First, the cells with constants:

	А	В	С
1	CAiL	1	mol/m3
2	D	1e-8	m2/s
3	kR	10	1/s
4	delta	1e-4	m
5	N	100	
6	dx	=B4/B5	

Now, we program the forward Euler (explicit) schemes for c and g below:

		Α	В	С
	10	X	С	q
	11	0	=B1	10
Ī	12	=A11+\$B\$6	=B11+\$B\$6*(-1/\$B\$2*C11)	=C11+\$B\$6*(-\$B\$3*B11)
	13	=A12+\$B\$6	=B12+\$B\$6*(-1/\$B\$2*C12)	=C12+\$B\$6*(-\$B\$3*B12)
Ī				
	111	= <u>A110+</u> \$B\$6	=B110+\$B\$6*(-1/\$B\$2*C110)	=C110+\$B\$6*(-\$B\$3*B110)
۲	111	UNIVERSITY OF	=B110+3B30*(-1/3B32*C110)	=C110+2B20(-2B23B110)

BVP: example in Excel

- We now have profiles for c and q as a function of position x.
- The concentration $c(x = \delta)$ depends (eventually) on the boundary condition at the interface q(x=0)
- We can use the solver to change q(x=0) such that the concentration at the bulk meets our requirement: $c(x = \delta) = 0$

We first program the system of ODEs in a separate function:

$$\frac{dc}{dx} = -\frac{1}{\mathcal{D}}q$$
$$\frac{dq}{dx} = -k_R c$$

```
function [dydx] = diffReactSystem(t,y,ps)
c = v(1):
q = y(2);
dcdx = -q/ps.D;
dadx = -ps.kR*c:
dydx = [dcdx; dqdx];
end
```

Boundary value problems 00000000000

Note that we pass a variable (type: struct) that contains required parameters: ps.

Let's first try to solve the ODE system using ode45:

```
%% Set up parameters
ps.D = 1e-8; % Diffusion constant [m2/s]
ps.kR = 10; % Reaction rate [1/s]
ps.delta = 1e-4; % Film thickness [m]
ps.q0 = 1e-3; % Initial guess for flux at x=0 [mol/m2/s]
%% Solve ODE system
[t,y] = ode45(@diffReactSystem, [0 ps.delta], [ps.C_a_L ps.q0],[],ps);
%% Postprocessing
c = v(:,1):
q = y(:,2);
plot(t,c):
xlabel('Position in film layer [m]');
vlabel('Concentration value'):
vvaxis right % We can use 2 v axes to plot data on different scales
plot(t,q);
vlabel('Flux')
```


That seems to work! Now we want to fit the value for q at x = 0 (defined below as bcq), such that the concentration at $x = \delta$ equals zero. We create a function with the output defined as the deviation from the target value:

Boundary value problems

```
function f = diffReactCrit(bcg, ps)
% Solve ODE using fitting parameter bcq (boundary condition for q),
% other parameters are defined in ps
[t,y] = ode45(@diffReactSystem, [0 ps.delta], [ps.C_a_L bcq],[],ps);
% Extract concentration and flux for clarity
c = v(:,1);
q = y(:,2);
% We subtract the desired value from the concentration at x=delta (0 in this case)
f = c(end) - 0:
end
```

Note the following:

- We use the interval $0 < x < \delta$
- Boundary conditions are given as: c(x=0)=1 and $q(x=0)=\log_q$, which is given as an argument to the function (i.e. changable from 'outside'!)
- The function returns f, the difference between the computed and desired concentration at

Finally, we should solve the system so that we obtain the right boundary condition q = bcq such that $c(x = \delta) = 0$. We can use the built-in function fzero to do this:

Boundary value problems 00000000000

```
%% Set up parameters
ps.D = 1e-8; % Diffusion constant
ps.kR = 10; % Reaction rate
ps.delta = 1e-4; % Film thickness
ps.q0 = 2e-4; % Initial guess for q(x=0)
%% Fit boundary condition for g on x=0 such that c(end)=0
fitted_q = fzero(@diffReactCrit,ps.q0,[],ps)
%% Solve ODE once more such that we can plot the final data
[t.v] = ode45(@diffReactSystem, [0 ps.delta], [ps.C_a_L fitted_q],[],ps);
```

Postprocessing of the data can be done similar to the example in slide 472.

BVP example: analytical solution

Compare with the analytical solution:

$$q=k_L E_A C_{A,i,L}$$
 with $E_A=rac{\mathsf{Ha}}{\mathsf{tanh}\,\mathsf{Ha}}$ (Enhancement factor) $\mathsf{Ha}=rac{\sqrt{k_R \mathcal{D}}}{k_L}$ (Hatta number) $k_L=rac{\mathcal{D}}{\delta}$ (mass transfer coefficient)

- Introduction
- Systems of ODEs
- Boundary value problems
- Conclusion

Other explicit methods:

Bulirsch-Stoer method (Richardson extrapolation + modified midpoint method)

Other implicit methods:

- Rosenbrock methods (higher order implicit Runge-Kutta methods)
- Predictor-corrector methods

- Several solution methods and their derivation were discussed:
 - Explicit solution methods: Euler, Improved Euler, Midpoint method, RK45
 - Implicit methods: Implicit Euler and Implicit midpoint method
 - A few examples of their spreadsheet implementation were shown
- We have paid attention to accuracy and instability, rate of convergence and step size
- Systems of ODEs can be solved by the same algorithms. Stiff problems should be treated with care.
- An example of solving ODEs with Matlab was demonstrated.

