

3D게임프로그래밍 -CHAPTER4-

SOULSEEK

계층 구조(HIERARCHY)

、1. 계층 구조(HIERARCHY)

트리

- 자료구조 중에서 Tree로 구현 가능하다.
- 3D 그래픽스에서 가장 애용되는 자료구조이다.
- 내부 지형 처리 이진 트리
- 거대 지형 처리 쿼드 트리
- 거대 공간 처리 옥 트리

계층 구조의 구현

변환을 나타내는 공식

• $V_{world} = V_{local} * TM$

정점들로 이루어진 육면체가 계층 구조로 이루어져 있다면

• $V_{world} = V_{local} * TM_{child} * TM_{parent}$

。1. 계층 구조(HIERARCHY)

부모 메시는 원점에 있고 Y축 회전, 자식 메시는 Z축 회전을 하고 부모로부터 (3, 3, 3)의 거리에 있다고 했을 때,

부모 메시

• 기본 변환 TM_{parent} , Y축 회전 R_{parent}

자식 메시

• 기본 변환 TM_{child} , Y축 회전 R_{child} , 이동 변환 R_{child}

부모의 최종 행렬

• $M_{parent} = R_{parent} * TM_{parent}$

자식의 최종 행렬

• $M_{child} = R_{child} * TM_{child} * M_{parent}(R_{parent} * TM_{parent})$

1. 계층 구조(HIERARCHY)

변환 준비

D3DXMATRIXA16 g_matTMParent; //부모의 기본 행렬 D3DXMATRIXA16 g_matRParent; //부모의 회전 행렬

D3DXMATRIXA16 g_matTMChild; //자식의 기본 행렬 D3DXMATRIXA16 g_matRChild; //자식의 회전 행렬

변환을 적용

D3DXMatrixIdentity(&g_matTMParent); //부모의 메시는 원점에 있으므로 TM은 단위 행렬

D3DXMatrixRotationY(&g_matRParent, GetTickCount() / 500.0f); //부모 메시의 Y축 회전 행렬

D3DXMatrixRotationZ(&g_matRChild, GetTickCount() / 500.0f); //자식 메시의 z축 회전 행렬

D3DXMatrixTranslation(&g_matTMChild, 3, 3, 3); //자식 메시는 원점으로 부터 (3, 3, 3)의 거리에 있다.

//특정 vector를 축으로 하는 행렬
D3DXMatrixRotationAxis(&g_matRChild, nomalVec, Angle);

1. 계층 구조(HIERARCHY)

준비된 변환을 부모, 자식 객체에 적용해서 그린다

//부모의 변환을 만든다 - 회전 * 기본 변환 matWorld = g_matRParent * g_matTMParent;

//적용된 변환을 기반으로 부모 객체를 그린다. DrawMesh(&matWorld);

//자식의 변환을 만든다 - 자신의 회전 * 자신의 기본 변환 * 부모의 회전 * 부모의 기본변환 matWorld = g_matRChild * g_matTMChild * g_matRParent * g_matTMParent; //matWorld = g_matRChild * g_matTMChild * matWorld;

//적용된 변환을 기반으로 자식 객체를 그린다.
DrawMesh(&matWorld);

