Solving Modular Linear Equations via Automated Coppersmith and its Applications

Yansong Feng Zhen Liu Abderrahmane Nitaj Yanbin Pan

- Background
- Lattice-based Cryptanalysis: Coppersmith's method
- Implicit Factorization Problem

Background

RSA Cryptosystem

$$ed \equiv 1 \mod \phi(N) \quad \phi(N) = (p-1)(q-1)$$

Eve wants to get the SECRET KEY!!!

Lucky Eva got enough MSBs of p...

Now he just needs to solve a linear polynomial equation:

$$f(x) = x + C \equiv 0 \mod p \text{ with a small root } x_0 = \widetilde{p} < N^{\frac{1}{4}}$$

How to solve polynomials equations with small roots?

Coppersmith's method

Coppersmith's method

Let $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \in \mathbb{R}^m$, the lattice \mathscr{L} is

$$\mathcal{Z} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \sum_{i=1}^n a_i \mathbf{v_i}, a_i \in \mathbb{Z} \right\}.$$

Give bound X_j and $f \in \mathbb{Z}[x_1, ..., x_k]$ and modulus M, the goal is to find the small root $\mathbf{u} = (u_1, ..., u_k)$ with $u_i < X_j$, such that $f(\mathbf{u}) \equiv 0 \mod M$.

- 1. Use the coefficient vector of $g_j(x_1X_1, ..., x_kX_k)$ to construct \mathscr{L}
- 2. Using Lattice Reduction find Shorter vectors h_1, \ldots, h_k

$$h_j(\mathbf{u}) \equiv 0 \mod M \longrightarrow h_j(\mathbf{u}) = 0$$

 \mathscr{L} MUST satisfied $\det(\mathscr{L}) < M^{m \dim(\mathscr{L})}$.

$$\det(\mathcal{L}) < p^{\frac{1}{2}m\dim(\mathcal{L})}$$

 $f(x) = x + C \equiv 0 \mod p$ with a small root $x_0 = \tilde{p} < N^{\frac{1}{4}}$

N^4		0	0	0	0	0	0	0
1	0	U	U	U	0	U	U	0
*	N^3X	0	0	0	0	0	0	0
*	*	N^2X^2	0	0	0	0	0	0
*	*	*	NX^3	0	0	0	0	0
*	*	*	*	X^4	0	0	0	0
*	*	*	*	*	X^5	0	0	0
*	*	*	*	*	*	X^6	0	0
*	*	*	*	*	*	*	X^7	0
*	*	*	*	*	*	*	*	$\mid X^{8} \mid$

$$\dim(\mathcal{L}) = m + o(m)$$

$$\dim(\mathcal{L}) = m + o(m)$$

$$\det(\mathcal{L}) = N^{\frac{1}{8}m^2 + o(m^2)} X^{\frac{1}{2}m^2 + o(m^2)}$$

 $X < N^{\frac{1}{4}} \to \det(\mathcal{L}) < p^{m\dim(\mathcal{L})} \to f$ can be solved with Coppersmith's method.

Implicit Factorization Problem

IFP (MSBs case)

 p_1 share the same MSBs with p_2

$$N_1 + (p_2 - p_1)q_1 = p_2q_1 \equiv 0 \mod p_2$$

Solving
$$f(x_1, x_2) = x_1 x_2 + N_1 \equiv 0 \mod p_2$$
 with $(p_2 - p_1, q_1)$

IFP (Middle case)

IFP (Generalized case)

EIFP (MSBs case) $N_1=p_1q_1$ and $N_2=p_2q_2$ p_1 p_2 p_1 share the same MSBs with p_2 a_1p_1 share the same MSBs with a_2p_2

How about EIFP with Generalized case? G-EIFP!

 a_1p_1 share some continuous bits with a_2p_2 , which can be located in different positions.

Suppose that a_1p_1 and a_2p_2 share γn -bits so that

$$a_1 p_1 = x_1 + 2^{\beta_1 n} R + x_2 2^{(\beta_1 + \gamma)n},$$

 $a_2 p_2 = x_3 + 2^{\beta_2 n} R + x_4 2^{(\beta_2 + \gamma)n},$

$$f(x, y, z) = x + ay + N_2 z$$
 with $(x_0, y_0, z_0) = (2^{(\beta_2 - \beta_1)n} x_1 q_2 - x_3 q_2, x_2 q_2 - x_4 q_2, a_2)$.

Using Coppersmith's method, compute $dim(\mathcal{L})$ and $det(\mathcal{L})$:

Manual Calculation such as calculating $\sum_{k=0}^{\infty} \sum_{i=k}^{\infty} (i - \min(s, i))$? NO!

Theorem: $\dim(\mathcal{L})$ and $\det(\mathcal{L})$ are polynomials in m.

Now,

Manual Calculation

Lagrange Interpolation

Lagrange Interpolation

(s,m_i)	(0, 0)	(0, 1)	(1, 1)	(0, 2)	(1, 2)	(2, 2)	(0, 3)	(1, 3)	(2, 3)	(3, 3)
$\overline{p_w(s,m_i)}$	0	1	0	4	1	0	10	4	1	0
$p_v(s,m_i)$	0	0	2	0	3	8	0	4	11	20

$$\mathbf{1} \begin{aligned}
\mathbf{p}_{y} &= \frac{1}{6}m^{3} + o\left(m^{3}\right), \\
p_{z} &= \frac{1}{6}m^{3} + o\left(m^{3}\right), \\
p_{w} &= \frac{1}{6}(1 - \tau_{2})^{3}m^{3} + o\left(m^{3}\right), \\
p_{v} &= \frac{1}{6}\left(-\tau_{2}^{3} + 3\tau_{2}^{2}\right)m^{3} + o\left(m^{3}\right), \\
p_{\mathcal{F}_{1}} &= \frac{1}{6}\tau_{1}^{2}(3 - \tau_{1})m^{3} + o\left(m^{3}\right), \\
p_{\mathcal{F}_{2}} &= \frac{1}{3}m^{3} + o\left(m^{3}\right), \\
p_{\mathcal{M}} &= m|\mathcal{M}| = \frac{1}{2}m^{3} + o\left(m^{3}\right). \\
\mathbf{dim}(\mathcal{L}) \text{ and } \mathbf{det}(\mathcal{L})
\end{aligned}$$

 $p_x = \frac{1}{6}m^3 + o\left(m^3\right),$

$$n: \log_2 N_i$$
, $\alpha: \log_2 q_i$, $\delta: \log_2 a_i$, $\gamma: \frac{\text{shared bits}}{n}$

Theorem: G-EIFP $(n, \alpha, \gamma, \delta)$ can be solved in polynomial time when

$$\gamma > 4\alpha \left(1 - \sqrt{\alpha}\right) + 2\delta,$$

provided that $\alpha + \gamma \leq 1$.

Thanks for listening!

Code: https://github.com/fffmath/CombeelFP