LSTMs and GRUs

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Review: Questions

Question

• How to tackle the vanishing gradient problem in RNNs with solutions that don't change the architecture?

Review: Questions

Question

 How to tackle the vanishing gradient problem in RNNs with solutions that don't change the architecture? Use ReLU; Regularization; Better initialization of weights; Use only short time sequences

Long-Term Dependencies: The Problem

- RNNs connect previous information to present task which:
 - may be enough for predicting the next word for "the clouds are in the sky"

Long-Term Dependencies: The Problem

- RNNs connect previous information to present task which:
 - may be enough for predicting the next word for "the clouds are in the sky"

 may not be enough when more context is needed: "I grew up in France ... I speak fluent French"

Vineeth N B (IIT-H)

Recall: Training RNNs

Recommended method: Backprop Through Time (BPTT)

Recall: Training RNNs

- Recommended method: Backprop Through Time (BPTT)
- Limitations of BPTT
 - Vanishing Gradients
 - Exploding Gradients
- How to overcome by changes in RNN architecture?

Recall: Training RNNs

- Recommended method: Backprop Through Time (BPTT)
- Limitations of BPTT
 - Vanishing Gradients
 - Exploding Gradients
- How to overcome by changes in RNN architecture?
 - LSTMs (1997)
 - **GRUs** (2014)

 A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem

Credit: Christopher Manning, Stanford Univ

 $^{^{1}\}mathrm{Hochreiter}$ and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$

Credit: Christopher Manning, Stanford Univ

 $^{^{1}\}mathrm{Hochreiter}$ and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$
 - The cell stores long-term information

Credit: Christopher Manning, Stanford Univ

 $^{^{1}\}mathrm{Hochreiter}$ and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell

Credit: Christopher Manning, Stanford Univ

 $^{^{1}}$ Hochreiter and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding gates

Credit: Christopher Manning, Stanford Univ

 $^{^{1}}$ Hochreiter and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding gates
 - On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between

Credit: Christopher Manning, Stanford Univ

 $^{^{1}}$ Hochreiter and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the long-term dependency problem
- ullet On step t, there is a **hidden state** $h^{(t)}$ and a **cell state** $c^{(t)}$
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding gates
 - On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
 - The gates are dynamic, their value is computed based on current context

Credit: Christopher Manning, Stanford Univ

¹Hochreiter and Schmidhuber, Long Short-Term Memory, Neural Computation, 1997

LSTMs

- All RNNs have the form of a chain of repeating modules of neural network
- Repeating module in a vanilla RNN is a single layer with tanh activation

Credit: Christopher Olah

LSTMs

- All RNNs have the form of a chain of repeating modules of neural network
- Repeating module in an LSTM contains four interacting layers

Credit: Christopher Olah

LSTMs

Credit: Christopher Manning, Stanford Univ

• Cell state (C_t) :

• Cell state (C_t) :

Information can flow along cell state unchanged. Why is this important?

• Cell state (C_t) :

- Information can flow along cell state unchanged. Why is this important?
- Ability to remove or add information to cell state, regulated by gates

• Cell state (C_t) :

- Information can flow along cell state unchanged. Why is this important?
- Ability to remove or add information to cell state, regulated by gates

• Gates:

• Cell state (C_t) :

- Information can flow along cell state unchanged. Why is this important?
- Ability to remove or add information to cell state, regulated by gates

• Gates:

 Composed of a sigmoid neural net layer and a pointwise multiplication operation

• Cell state (C_t) :

- Information can flow along cell state unchanged. Why is this important?
- Ability to remove or add information to cell state, regulated by gates

• Gates:

- Composed of a sigmoid neural net layer and a pointwise multiplication operation
- Sigmoid layer outputs numbers between zero and one, describing how much of each component should be let through

Forget gate: controls what is kept vs what is forgotten, from previous cell state

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input gate: decides what information to throw away from the cell state

Cell content: new content to be written to cell

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate: controls what parts of cell are output to hidden state

Hidden state: read ("output") some content from cell

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$
$$h_t = o_t * \tanh(C_t)$$

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

 $h_t = o_t * \tanh(C_t)$

 What can you tell about cell $state(C_t)$, if forget gate is set to 1 and input gate set to 0?

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

<u>Cell state</u>: erase ("forget") some content from last cell state, and write ("input") some new cell content

<u>Hidden state</u>: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

 $h_t = o_t * \tanh(C_t)$

- What can you tell about cell state(C_t), if forget gate is set to 1 and input gate set to 0?
 - Information of that cell is preserved indefinitely

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh(C_t)$$

- What can you tell about cell $state(C_t)$, if forget gate is set to 1 and input gate set to 0?
 - Information of that cell is preserved indefinitely
- What happens if you fix input gate to all 1s, forget gate to all 0s, output gate to all 1s?

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\bullet o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$C_t = f_t * C_{t-1} + i_t * C$$

$$h_t = o_t * \tanh(C_t)$$

 $h_t = o_t * \tanh(C_t)$

- What can you tell about cell $state(C_t)$, if forget gate is set to 1 and input gate set to 0?
 - Information of that cell is preserved indefinitely
- What happens if you fix input gate to all 1s, forget gate to all 0s, output gate to all 1s?
 - Almost standard RNN:

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

<u>Cell state</u>: erase ("forget") some content from last cell state, and write ("input") some new cell content

<u>Hidden state</u>: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$\begin{array}{cccc}
 & \sigma_t & \sigma_t$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

 $h_t = o_t * \tanh(C_t)$

- What can you tell about cell state(C_t), if forget gate is set to 1 and input gate set to 0?
 - Information of that cell is preserved indefinitely
- What happens if you fix input gate to all 1s, forget gate to all 0s, output gate to all 1s?
 - Almost standard RNN; Why almost?

- What can you tell about cell state(C_t), if forget gate is set to 1 and input gate set to 0?
 - Information of that cell is preserved indefinitely
- What happens if you fix input gate to all 1s, forget gate to all 0s, output gate to all 1s?
 - Almost standard RNN; Why almost?
 - Tanh added here

Credit: Christopher Olah; Christopher Manning, Stanford University

LSTM: How does it solve the vanishing gradient problem?

Gradient "highway"

LSTM: How does it solve the vanishing gradient problem?

- Gradient "highway"
- ullet Gradient at C_t passed on to C_{t-1} unaffected by any other operations, but for forget gate; why does this not matter?

LSTM: How does it solve the vanishing gradient problem?

- Gradient "highway"
- Gradient at C_t passed on to C_{t-1} unaffected by any other operations, but for forget gate; why does this not matter?
- Forget gate is part of the design, it reduces the gradient where it should, does not ameliorate the gradient otherwise!

Variants of LSTM

• LSTM with peephole connections²

$$f_{t} = \sigma \left(W_{f} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [\boldsymbol{C_{t}}, h_{t-1}, x_{t}] + b_{o} \right)$$

Credit: Christopher Olah

²Gers and Schmidhuber, Recurrent nets that time and count, IJCNN 2000

Variants of LSTM

Coupled forget and input gates

Instead of separately deciding what to forget and what to add, make decisions together

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

Credit: Christopher Olah

- 1997 RTRL + BPTT (No forget gate)
 - Hochreiter and Schmidhuber, Long Short- Term Memory, Neural Computation, 1997

- 1997 RTRL + BPTT (No forget gate)
 - Hochreiter and Schmidhuber, Long Short- Term Memory, Neural Computation, 1997
- 1999 Introduced forget gate
 - Gers Schmidhuber and Cummins, Learning to forget: Continual prediction with LSTM, ICANN 1999

- 1997 RTRL + BPTT (No forget gate)
 - Hochreiter and Schmidhuber, Long Short- Term Memory, Neural Computation, 1997
- 1999 Introduced forget gate
 - Gers Schmidhuber and Cummins, Learning to forget: Continual prediction with LSTM, ICANN 1999
- 2000 Peephole connections
 - Gers and Schmidhuber, Recurrent nets that time and count, IJCNN 2000

- 1997 RTRL + BPTT (No forget gate)
 - Hochreiter and Schmidhuber, Long Short- Term Memory, Neural Computation, 1997
- 1999 Introduced forget gate
 - Gers Schmidhuber and Cummins, Learning to forget: Continual prediction with LSTM, ICANN 1999
- 2000 Peephole connections
 - Gers and Schmidhuber, Recurrent nets that time and count, IJCNN 2000
- 2005 Vanilla LSTM (as we know today) Used BPTT
 - Graves and Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, 2005

LSTMs: Real-world success

- 2013-2015: LSTMs started achieving state-of-the-art results
 - Successful tasks include: handwriting recognition, speech recognition, machine translation, parsing, image captioning

LSTMs: Real-world success

- 2013-2015: LSTMs started achieving state-of-the-art results
 - Successful tasks include: handwriting recognition, speech recognition, machine translation, parsing, image captioning
- Now (2020), other approaches (e.g. Transformers) have become more dominant for certain tasks
 - Transformers use the idea of self-attention
 - In WMT 2019 ((a MT conference + competition), summary report contains "RNN" 7 times, "Transformer" 105 times

Credit: Christopher Manning, Stanford University

Proposed in 2014 as a simpler alternative to LSTM

²Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

- Proposed in 2014 as a simpler alternative to LSTM
- Combines forget and input gates into a single update gate

²Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

- Proposed in 2014 as a simpler alternative to LSTM
- Combines forget and input gates into a single update gate
- Merges cell state and hidden state

²Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

- Proposed in 2014 as a simpler alternative to LSTM
- Combines forget and input gates into a single update gate
- Merges cell state and hidden state

 $^{^2}$ Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$

$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

²Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

• What happens if reset gate is set to all 1s and update gate to all 0s?

²Chung et al, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, NeurIPS-W 2014

• Input and forget gates of LSTMs are coupled by an update gate in GRUs; reset gate (GRUs) is applied directly to previous hidden state

- Input and forget gates of LSTMs are coupled by an update gate in GRUs; reset gate (GRUs) is applied directly to previous hidden state
- GRU has two gates, an LSTM has three gates; what does this tell you?

- Input and forget gates of LSTMs are coupled by an update gate in GRUs; reset gate (GRUs) is applied directly to previous hidden state
- GRU has two gates, an LSTM has three gates; what does this tell you? Lesser parameters to learn!

- Input and forget gates of LSTMs are coupled by an update gate in GRUs; reset gate (GRUs) is applied directly to previous hidden state
- GRU has two gates, an LSTM has three gates; what does this tell you? Lesser parameters to learn!
- In GRUs:
 - ullet No internal memory (c_t) different from exposed hidden state
 - No output gate as in LSTMs

- Input and forget gates of LSTMs are coupled by an update gate in GRUs; reset gate (GRUs) is applied directly to previous hidden state
- GRU has two gates, an LSTM has three gates; what does this tell you? Lesser parameters to learn!
- In GRUs:
 - ullet No internal memory (c_t) different from exposed hidden state
 - No output gate as in LSTMs
- LSTM a good default choice (especially if data has long-range dependencies, or if training data is large); Switch to GRUs for speed and fewer parameters

Homework

Readings

- Deep Learning book: Sections 10.1-10.7, 10.10-10.11
- Understanding LSTM Networks
- Illustrated Guide to LSTMs and GRUs: A step by step explanation
- (Optional) Recurrent Neural Network Tutorial—Implementing a GRU/LSTM RNN with Python and Theano
- (Optional) Training LSTMs using BPTT: Alex Graves' book on RNN (Sec 4.6, pg 36-38)

Questions

• How does GRU address vanishing gradients?

References

S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". In: *Neural Computation* 9 (1997), pp. 1735–1780.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks". In: ICML, 2013.

Junyoung Chung et al. "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling". In: *CoRR* abs/1412.3555 (2014). arXiv: 1412.3555.

Li, Fei-Fei; Johnson, Justin; Serena, Yeung; CS 231n - Convolutional Neural Networks for Visual Recognition (Spring 2019). URL: http://cs231n.stanford.edu/2019/ (visited on 08/28/2020).

Manning, Christopher, CS 224n Natural Language Processing with Deep Learning (Winter 2019). URL: http://cs224n.stanford.edu/ (visited on 08/28/2020).