

COLLEGE OF ENGINEERING, DESIGN, ART & TECHNOLOGY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Assignment 1

Smith Charts

Submitted by

Patrick Odong 16/U/1012 216000495

Group Members

Name	Reg. No.
Odong Patrick	16/U/1012
Kirabo Doreen Zawedde	$16/{\rm U}/6074/{\rm PS}$
Gore Richard	$16/\mathrm{U}/4845/\mathrm{PSA}$
Iradukunda Silvan	16/U/4938/PS

Solution

1.

$$Z_{\mathbf{L}} = 20 + j50\Omega$$

$$\bar{Z_{\mathbf{L}}} = \frac{20 + j50}{50}$$

$$\bar{Z}_{\mathbf{L}} = 0.4 + j1$$

(i)

$$SWR = 5.2$$

(ii) Given that $l=0.3\lambda$, we move towards the generator $(0.135+0.3)\lambda=0.435\lambda$ position

$$\bar{Y_i}n = 0.75 + j1.2$$

...

$$Y_{in} = \frac{0.75 + j1.2}{50}$$

$$Y_i n = 0.015 + j0.024S$$

(iii) $l_{min}=0.365\lambda$ (from open circuit towards the load) $l_{max}=0.25\lambda-0.135\lambda=0.115\lambda$ (from ∞ towards the load)