Supervised machine learning for Quantitative Structure-Activity Relationship modeling

Manpreet Kaur

Contents

- Introduction & objectives
- Data Collection
- Data Preprocessing
- Data preparation I
- Data set description
- Data Exploration
- Data preprocessing-II
- Feature selection/comparison
- Model complexity comparison
- Model evaluation and metrics
- Prediction
- Links and references

Introduction

- Quantitative structure-activity relationship (QSAR)
- machine learning relationship between the chemical structure and the biological activity.
- The diagram here shows the workflow of the QSAR process
- Collection of molecules
- Calculation of molecular descriptors physical and chemical properties
- prediction biological activity
- features important for biological activity
- biologists & chemists design molecules- robust properties.

Objectives

- Creating different supervised machine learning models for classification of chemical compounds based on bioactivity data and molecular descriptors
- Comparison of the above models to find the best among them

Data Collection

Raw data source: https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL1615382/

Target search: Breast cancer

Filters: organism type(Homo Sapiens), target_type(Single protein)

Chosen Target ID: CHEMBL5393

Sub-filters for the target: retrieve only bioactivity data that were reported as IC50 values in nM (nanomolar)

unit.

Raw data collected above saved to bioactivity_data_raw.csv file

Data Preprocessing

- Preprocessing of raw data
 - handling missing values
 - Labeling compounds as either being active, inactive or intermediate bioactivity_class

The bioactivity data is in the IC50 unit. Compounds having values of less than 1000 nM will be considered to be active while those greater than 5,000 nM will be considered to be inactive. As for those values in between 1,000 and 5,000 nM will be referred to as intermediate.

- Combine the 3 columns from raw data (molecule_chembl_id,canonical_smiles,standard_value) and bioactivity_class into a DataFrame
- Saved preprocessed above data to a bioactivity_data_preprocessed.csv file

Data preparation-I

- Calculation of Lipinski Descriptors
 - Christopher Lipinski, a scientist at Pfizer, came up with a set of rule-of-thumb for evaluating the druglikeness of compounds. Such druglikeness is based on the Absorption, Distribution, Metabolism and Excretion (ADME) that is also known as the pharmacokinetic profile. Lipinski analyzed all orally active FDA-approved drugs in the formulation of what is to be known as the Rule-of-Five or Lipinski's Rule.
- The Lipinski's Rule stated the following
 - Molecular weight < 500 Dalton
 - Octanol-water partition coefficient (LogP) < 5
 - Hydrogen bond donors < 5
 - Hydrogen bond acceptors < 10

Data preparation-I

- Combine the data frame of the above 4 Lipinski descriptor with preprocessed bioactivity data into single data frame
- Convert IC50 values (standard_value column) to pIC50 uniform distribution negative logarithmic scale (the standard values needs to be normalized before converting to pIC50 values)
- Removing the 'intermediate' bioactivity class
- Saved data to bioactivity_data_preprocessed_2-class.csv

Data set description

Data features: 850 rows, 8 columns

- molecule_chembl_id
- canonical_smiles
- MW
- LogP
- NumHDonors
- NumHAcceptors
- pIC50 active 558
- bioactivity_class (target) inactive 292

Data Exploration (Chemical Space Analysis)

Data preprocessing-II

Removing non-essential / redundant features:

molecule_chembl_id
 only an identifier, index can be used

canonical_smiles structural information

0

- Data transformation:
 - Converting categorical data to numerical data
 Modify bioactivity_class Inactive- 0; Active 1
 - Convert object data type to int

Feature selection/comparison

The correlation of various features with the target feature (Bioactivity_class) looks as below:

	Correlation with target
bioactivity_class	1.000000
pIC50	0.151300
NumHDonors	0.075819
LogP	0.071472
MW	0.037330
NumHAcceptors	0.003464

Decreasing correlation

Model complexity comparison

Models under consideration:

- Logistic Regression
- Random Forest
- Support Vector Machine
- KNeighbors
- Decision Tree
- XGBoost

Number of features compared:

- All 5
- Top 4 highly correlated
- Top 3 highly correlated
- Top 2 highly correlated
- 2 statistically significant features (pIC50, LogP)
- Lipinski descriptor features

Order of correlation w.r.t target:

pIC50> NumHDonors > LogP > MW > NumHAcceptors

Model comparison using 5-fold cross validation - for a combination of 36 different models

Test accuracy comparison

Logistic Regression	0.671362					
		0.661972	0.671362	0.666667	0.657277	0.671362
Random Forest	0.661972	0.708920	0.694836	0.633803	0.657277	0.699531
Support Vector Machine	0.666667	0.666667	0.685446	0.685446	0.690141	0.666667
KNeighbors	0.680751	0.676056	0.690141	0.661972	0.680751	0.666667
Decision Tree	0.661972	0.643192	0.629108	0.582160	0.586854	0.680751
XGBoost	0.704225	0.704225	0.643192	0.690141	0.661972	0.723005

Train accuracy comparison

	All features train	4 features train	3 features train	2 features train	2 statistical train	lipinski train
Logistic Regression	0.657776	0.660913	0.667200	0.667200	0.654626	0.653051
Random Forest	0.690760	0.682911	0.676612	0.577621	0.675074	0.687685
Support Vector Machine	0.659338	0.657776	0.670337	0.676624	0.679774	0.657776
KNeighbors	0.637586	0.643775	0.635814	0.637352	0.653125	0.624951
Decision Tree	0.634203	0.646690	0.599692	0.593418	0.591905	0.648388
XGBoost	0.665625	0.678199	0.635790	0.609104	0.653051	0.689210

Model evaluation - metrics*

	LR	RFC	SVM	KNN	DT	XGB
Accuracy	0.6714	0.662	0.667	0.6808	0.6526	0.7042
Precision	0.6667	0.7329	0.6635	0.7338	0.75	0.773
Recall	1.0	0.7643	1.0	0.8071	0.7071	0.7786
F1-score	0.8	0.7483	0.7977	0.7687	0.7279	0.7758
AUC	0.83	0.62	0.83	0.64	0.62	0.67

Model with best metrics- Logistic Regression

*metrics are calculated mathematically from the scores in the confusion matrix

Prediction

	Predicted	Actual			
	Tredicted	Actual		Predicted	Actual
0	0	0	0	1	0
1	0	0	1	1	0
2	0	1	5	1	0
3	1	1	8	1	0
4	1	1	10	1	0
208	1	1	197	1	0
209	1	1	198	1	0
210	1	1	199	1	0
211	1	1	207	1	0
212	1	0	212	1	0

213 rows × 2 columns 70 rows × 2 columns

- XGBoost
 - Total number of wrongly predicted = 63 (out of 213~ 29.6%)
- LR
 - Total number of wrongly predicted = 70 (out of 213~ 32.86%)

LR Model equation

$$Y = -0.8327 - 0.0021(x1) + 0.1491(x2) - 0.0616(x3) + 0.07204(x4) + 0.2327(x5)$$

where, $Y = bioactivity_class \\ x1 = MW$

x2 = LogP

x3 = NumHDonors

x4 = NumHAcceptors

x5 = pIC50

Thank you!

Special thanks - Prof. Travis Millburn

References

https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL1615382/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728118/

https://www.semanticscholar.org/paper/A-practical-overview-of-quantitative-relationship-Nantasenamat-

<u>Isarankura-Na-Ayudhya/57832ea3bafae3f8e862c5da1ce5698b7627c47e</u>

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

https://scikit-learn.org/0.18/auto_examples/model_selection/plot_confusion_matrix.html