Lua for RePhone

(Xadow GSM+BLE)

Manual

Ver.: LuaRephone 0.9.2 Beta LoBo 07/2016

os module·····	
res = os.copy(from_file, to_file)······	3
res = os.mkdir(name)	
res = os.rmdir(name)	
res = os.exists(name)	
os.list(filespec)······	4
os.compile(name)·····	4
sys module·····	5
lv, fh, bd = sys.ver()	5
lua_used, lua_total, c_heap = sys.mem()······	5
bat = sys.battery()	5
lua_used, lua_total, c_heap = sys.mem()	5
led = sys.ledblink([led_id])	··· 6
res = sys.usb()	6
res = sys.wdg([wdg_tmo])	6
res = sys.noacttime([noact_tmo])	
sys.shutdown()······	7
sys.reboot()	
res = sys.wkupint([wkup_int])	7
sys.schedule(val)	7
sys.onshutdown(cb_func)	
sys.onreboot(cb_func)······	8
sys.onalarm(cb_func)	
sys.retarget(stdio_id)	8
gpio module	9
gpio.mode(pin, mode)······	
gpio.write(pin, level)··································	
gpio.toggle(pin)	
state = gpio.read(pin)	. 10
gpio.pwm_start(pin)	
gpio.pwm_stop(pin)	
gpio.pwm_clock(pin, clksrc, div)	11
gpio.pwm_count(pin, count, tresh)	11
gpio.pwm_freq(pin, freq, duty)	
res = gpio.eint_open(pin, [tpar])	
res = gpio.eint_close(pin)	
res = gpio.eint_mask(pin, mask)	
gpio.eint_on(cb_func)······	·· 13
res = gpio.adc_config(chan, [period, count])	13
res = gpio.adc_start(chan, [repeat], [cb_func])	14
res = gpio.adc_stop(chan)	14
net module	
net.ntptime(tz, [cb_func])	. 15

os module

All standard Lua os module functions are supported and some additional functions are added:

res = os.copy(from_file, to_file)

Copy file "from_file" to "to_file". If the destination file exists, it will be overwritten.

Params:

from_file: string, file name

to_file: string, name of the new file

Returns:

res: 0 on success, error code otherwise

res = os.mkdir(name)

Create new directory.

Params:

name: string, new directory name

Returns:

res: 0 on success, error code otherwise

res = os.rmdir(name)

Remove existing directory.

Params:

name: string, directory name

Returns:

res: 0 on success, error code otherwise

res = os.exists(name)

Check if the file exists.

Params:

name: string, file name

Returns:

res: 0 if file exists, error code otherwise

os.list(filespec)

List content of the fs directory to stdio

Params:

filespec: optional; string, file specification, can contain dir names and wildchars

("MRE*.vxp")

Returns: None

os.compile(name)

Compile lua source file to bytecode file. Creates ".lc" file with the same base name as lua source file

Params:

name: string, lua source file name, must have ".lua" extension

Returns: none

sys module

lv, fh, bd = sys.ver()

Returns version information.

Params: none Returns:

lv string, lua version

fh string, firmware host version bd string, firmware build date

lua_used, lua_total, c_heap = sys.mem()

Returns memory information.

Params: none Returns:

lua_used currently used memory for Lua stack in bytes total memory available for Lua stack in bytes c_heap total heap size available for C functions in bytes

bat = sys.battery()

Returns battery level in %. ADC module can be used to get precise battery voltage.

Params: none Returns:

bat battery level in % of full charge

lua_used, lua_total, c_heap = sys.mem()

Returns memory information.

Params: none Returns:

lua_used currently used memory for Lua stack in bytes total memory available for Lua stack in bytes c_heap total heap size available for C functions in bytes

led = sys.ledblink([led_id])

Set or get current system LED blink. System LED blinks once per second. Any of the RGB leds can be selected.

Params:

led_id optional; LED gpio pin,

predefined constants REDLED, BLUELED, GREENLED can be used

Value 0 can be used to disable LED blink Without parameter returns current led used.

Returns:

led currently used LED

res = sys.usb()

Returns the USB cable status, connected or not.

Params:

none Returns:

res USB cable status: 0 not connected; 1 connected

res = sys.wdg([wdg_tmo])

Set or get watchdog timeout.

Watchdog timer can be set to the values 10 ~ 3600 seconds. After setting the new value, system must be rebooted to take effect. If called without parameters, the current wdg timeout is returned.

Params:

wdg_tmo optional; watchdog timeout in seconds

Returns:

res current or new watchdog timeout in seconds

res = sys.noacttime([noact_tmo])

Set, reset or get no activity timeout.

If no activity is detected in Lua shell (no user input), the system is shutdown after no activity timer expires.

If called without parameters, the current no activity timeout is returned.

Params:

noact_tmo optional; > 0 set no activity timeout in seconds

0 reset no activity timeout

no parameter: return current value

Returns:

res current or new no activity timeout in seconds

sys.shutdown()

Shutdown system.

If wakeup interval is defined, system wakeup will be automatically scheduled to next interaval.

Warning: if USB is connected, the system will automatically reboot after shutdown!

Params

none

Returns:

none

sys.reboot()

Reboot system.

In Lua shell Ctrl+D can be also used to reboot.

Short pres on power button can be also used to reboot.

Params:

none

Returns:

none

res = sys.wkupint([wkup_int])

Set or get wakeup interval.

Wake up interval can be set to enable automatic wakeup in regular intervals.

Params:

wkup int optional; wakeup interval in minutes (values > 0 are accepted)

no parameter: return current value

Returns:

res current or new wakeup interval in minutes

sys.schedule(val)

Schedule next wakeup or alarm.

Params:

val wakeup or alarm time

0: wakeup or alarm on next wakeup interval

> 0 wakeup or alarm after 'val' seconds

table wakeup or alarm on specific time, table format:

{year=yyyy, month=mm, day=dd, hour=hh, min=mn, sec=ss}

Returns:

none (logs info if enabled)

sys.onshutdown(cb_func)

Set callback function to be executed before shutdown. If called without parameter, disables the callback.

Params:

cb_func lua function to be executed on shutdown, prototype

function cb_func(res)

res integer, shutdown reason

Returns:

sys.onreboot(cb_func)

Set callback function to be executed before reboot. If called without parameter, disables the callback.

Params:

cb_func lua function to be executed on reboot, prototype

function cb_func(res)

res integer, reboot reason

Returns:

none

sys.onalarm(cb_func)

Set callback function to be executed on RTC alarm. If called without parameter, disables the callback.

Params:

cb_func lua function to be executed on RTC alarm, prototype

function cb_func(res)

res integer, always 0

Returns:

none

sys.retarget(stdio_id)

Change stdio (input/output device). All input and output will be redirected to the new device.

Params:

stdio_id id of the new device

0 redirect to usb serial port (/dev/ttyACM0 on Linux)

1 redirect to hw UART port

2 redirect to bluetooth SPP (must be configured)

Returns:

none

gpio module

GPI0	Function in gpio module	Voltage (V)	Connector			
			11	35	6(0.1")	Breakout
0	IO, EINTO, UART3_RX	2.8	-	-	-	(*)
1	IO, EINT1, ADC15, UART3_TX	2.8		3		D1
2	IO, EINT2, PWM0, ADC13	2.8		2		E2
3	IO, PWM1, ADC	2.8		5		B1
18	IO, EINT13	2.8, 3.3	5,7		4	
13	IO, EINT11, PWM0	2.8, 3.3	6		5	
46	IO, EINT20	1.8		1		D6
30	IO, EINT16	2.8		25		
27	IO, SPI_SCK	2.8		4		C1
28	IO, SPI_MOSI	2.8		8		E2
29	IO, SPI_MISO	2.8		7		A1
43	IO, I2C_SCL	2.8, 3.3	3,9	30	2	В6
44	IO, I2C_SDA	2.8, 3.3	4,8	32	1	B5
10	IO, UART1_Rx	2.8		33		A5
11	IO, UART1_TX	2.8		34		A6
17	IO, RED LED	2.8				
15	IO, GREEN LED	2.8				
12	IO, BLUE LED	2.8				
19	IO, PWM1	2.8		31		D5
47	IO, TFT LSCK0	1.8		19		D4
48	IO, TFT LSDA0	1.8		21		B4
49	IO, TFT LSA0	1.8		22		A4
50	IO, TFT LPTE, EINT22	1.8		20		C4
52	I, EINT23	2.8		35		

^(*) ADC, Battery voltage

gpio.mode(pin, mode)

Set the operating mode for selected GPIO pin.

Params:

pin: GPIO pin number, see GPIO table for available pins

mode: pin mode, use global constants:

INPUT, OUTPUT, INPUT_PULLUP, INPUT_PULLDOWN

Returns:

none, error if not valid pin or mode

gpio.write(pin, level)

Set the pin output to HIGH (1) or LOW (0). Pin mode must be set to output.

Params:

pin: GPIO pin number, see GPIO table for available pins

level: pin level, use global constants: HIGH or LOW

Returns:

none, error if not valid pin or mode

gpio.toggle(pin)

Toggle the pin output HIGH -> LOW or LOW -> HIGH. Pin mode must be set to output.

Params:

pin: GPIO pin number, see GPIO table for available pins

Returns:

none, error if not valid pin or mode

state = gpio.read(pin)

Set the pin output to HIGH (1) or LOW (0). Pin mode must be set to output.

Params:

pin: GPIO pin number, see GPIO table for available pins

Returns:

state: pin state: 0 or 1

error if not valid pin or mode

gpio.pwm_start(pin)

Configure selected GPIO pin for PWM operation.

Params:

pin: GPIO pin number, see GPIO table for available pins

Returns:

none, error if PWM mode not available on pin

gpio.pwm_stop(pin)

Stop PWM on selected pin.

Params:

pin: GPIO pin number, see GPIO table for available pins

Returns:

none, error if pin not opened for PWM

gpio.pwm_clock(pin, clksrc, div)

Set the main PWM clock source.

Main PWM clock (pwm_clk) is set to 13000000 / div or 32768 / div !!

Params:

pin: GPIO pin number, see GPIO table for available pins clksrc: PWM clock source: 0 -> 13MHz; 1 -> 32.768 kHz

div: division 0->1, 1->2, 2->4, 3->8

Returns:

none, error if pin not opened for PWM

gpio.pwm_count(pin, count, tresh)

Set PWM in count mode.

PWM FREQUENCY is: pwm_clk / count

Params:

pin: GPIO pin number, see GPIO table for available pins

count: the pwm cycle: 0 ~ 8191

tresh: <u>treshold</u>: value at which pwm gpio goes to LOW state: 0 ~ count

Returns:

none, error if pin not opened for PWM

gpio.pwm_freq(pin, freq, duty)

Set PWM in frequency mode. PWM FREQUENCY is: freq

Params:

pin: GPIO pin number, see GPIO table for available pins

freq: the pwm frequency in Hz: 0 ~ pwm_clk

duty: PWM duty cycle: 0 ~ 100

Returns:

none, error if pin not opened for PWM

res = gpio.eint_open(pin, [tpar])

Configure selected GPIO pin for external interrupt (EINT) operation.

Not all parameters have to be present in tpar, is some parameter is missing, default value is used.

Note: use gpio.mode() to configure the pin as input and if pullup/pulldown is used.

Params:

pin: GPIO pin number, see GPIO table for available pins

tpar: optional; Lua table with eint parameters

autounmask: 1: unmask after callback; default 0

autopol:
 sensitivity:
 polarity:
 1: auto change polarity after callback; default 0
 level sesitive; 1: edge sensitive; default 0
 polarity:
 0: high->low trigger; 1: low->high trigger; default 0

deboun: enable HW debounce; default 0

debountime: HW debounce time in msec; default 10

Returns:

res: 0 if OK, negative number on error

res = gpio.eint_close(pin)

Close selected GPIO pin as external interrupt (EINT) pin.

Params:

pin: GPIO pin number, see GPIO table for available pins

Returns:

res: 0 if OK, negative number on error

res = gpio.eint_mask(pin, mask)

Mask selected GPIO pin EINT.

Params:

pin: GPIO pin number, see GPIO table for available pins

mask: 0: mask (disable) EINT operation; 1: unmask (enable) EINT operation

Returns:

res: mask value if OK, negative number on error

gpio.eint_on(cb_func)

Set Lua callback function to be executed on external interrupt (EINT). If called without parameter, disables the callback.

Params:

cb_func lua function to be executed on EINT, prototype

function cb_func(pin, value)

pin integer, pin number on which interrupt occurred

level pint level

Returns:

none

res = gpio.adc_config(chan, [period, count])

Configure selected ADC channel pin for ADC operation.

ADC channel must be configured before start function can be used.

Available channels are:

0: Battery voltage

1: ADC value on GPIO-1 (ADC15)

2: ADC value on GPIO-2 (ADC13)

3: ADC value on GPIO-3

Params:

chan: adc channel

period: optional; measurement period in msec; default 5 msec

Count: optional; how many measurement to take before issuing the result,

time between measurements is 'period'; default 1

time between results is 'period' * 'count'

Returns:

res: 0 if OK, negative number if error

res = gpio.adc_start(chan, [repeat], [cb_func])

Start ADC measurement on selected channel and return result if no callback function is given..

Params:

chan: adc channel configured with gpio.adc_configure repeat: optional; repeat the measurement 'repeat' times;

1: measure only once

>1000: continuous measurement

default 1; only valid when callback function is given

cb_func: optional; Lua callback function to be executed on adc result

function cb_func(ival, fval, chan)
ival integer ADC value
fval float ADC result

chan channel on which the measurement is taken

Returns:

res: negative number if error

float ADC result if no callback function is given in V

0 if callback function given and no error

res = gpio.adc_stop(chan)

Stop ADC measurement on selected channel if the channel was configured for continuous/repeat measurement.

Params:

chan: adc channel configured with gpio.adc configure

Returns:

Res: 0 if ok, negative number if error

2 channel was not configured for repeat measurement

net module

net.ntptime(tz, [cb_func])

Update RTC date-time from ntp server.

GPRS must be configured. The function runs in background until it gets the time from ntp server or timeout (30 sec) expires. If callback function is given, it is executed after the time is set or error. If no callback function is given, debug info is printed.

Params:

tz: time zone, -12 <= tz <= 14

cb_func: optional; Lua callback function, prototype:

function cb_func(res)

res integer, 0 if time updated, -1 on error

Returns:

none