305 Lecture 7.5 - The Crashing Websites

Brian Weatherson

Plan

 This lecture will go over exercise 8.8 in the book, as an illustration of how to invert conditional probabilities in a slightly more complicated case.

Odds and Ends, Chapter 8

Odds and Ends 8.8

A company makes websites, always powered by one of three server platforms: Bulldozer, Kumquat, or Penguin. Bulldozer crashes 1 out of every 10 visits, Kumquat crashes 1 in 50 visits, and Penguin only crashes 1 out of every 200 visits.

Half of the websites are run on Bulldozer, 30% are run on Kumquat, and 20% are run on Penguin.

You visit one of their sites for the first time and it crashes. What is the probability it was run on Penguin?

Start with a Table

Crash No Crash
Bulldozer
Kumquat
Penguin

We will start by filling in the table - though really it is the left hand column that matters here

Crash	No Crash
$0.5 \times 0.1 = 0.05$	

The formular for Bulldozer-and-Crash is

 $Pr(Bulldozer) \times Pr(Crash|Bulldozer) = 0.5 \times 0.1 = 0.05$

	Crash	No Crash
Bulldozer	$0.5 \times 0.1 = 0.05$	
Kumquat Penguin	$0.3 \times 0.02 = 0.006$	
rongani		

The formula for Kumquat-and-Crash is

 $Pr(Kumquat) \times Pr(Crash|Kumquat) = 0.3 \times 0.02 = 0.006$

	Crash	No Crash
Bulldozer	$0.5 \times 0.1 = 0.05$	
Kumquat	$0.3 \times 0.02 = 0.006$	
Penguin	$0.2 \times 0.005 = 0.001$	

The formula for Penguin-and-Crash is

 $Pr(Penguin) \times Pr(Crash|Penguin) = 0.2 \times 0.005 = 0.001$

	Crash	No Crash
Bulldozer	0.05	
Kumquat	0.006	
Penguin	0.001	

Let's rewrite it without the workings.

	Crash	No Crash
Bulldozer	0.05	0.45
Kumquat	0.006	0.294
Penguin	0.001	0.199

We can fill in the right-hand column by noting that the rows have to add up to 0.5, 0.3 and 0.2 respectively; since those are the probabilities of the three server types.

Crash!

	Crash	No Crash
Bulldozer	0.05	0.45
Kumquat	0.006	0.294
Penguin	0.001	0.199

So the probability of a crash is

$$0.05 + 0.006 + 0.001 = 0.057$$

Penguin given Crash

So the probability of Penguin given Crash is

$$\frac{\text{Pr(Penguin-and-Crash)}}{\text{Pr(Crash)}} = \frac{0.001}{0.057} \approx 0.0175$$

Penguin given Crash

So the probability of Penguin given Crash is

$$\frac{\text{Pr(Penguin-and-Crash)}}{\text{Pr(Crash)}} = \frac{0.001}{0.057} \approx 0.0175$$

That's really low, because Penguin sites don't crash.

For Next Time

 We will look at a formula that some people find helpful for solving these kinds of problems.