# Chapitre: Variations et courbes représentatives des fonctions

# 1. Lien entre le sens de variation d'une fonction dérivable sur un intervalle et le signe de sa fonction dérivée

## 1.1. Du sens de variation d'une fonction au signe de la dérivée

Propriété: Soit f une fonction dérivable sur un intervalle I et sa dérivée f' sur L

- Si f est <u>croissante</u> sur I, alors pour tout nombre réel x de I,  $f'(x) \ge 0$ .
- Si f est décroissante sur I, alors pour tout nombre réel x de I,  $f'(x) \le 0$ .

Idée graphique de la démonstration pour f croissante :



Dans la figure ci-dessus, Gest la courbe représentative d'une fonction f croissante sur I, a et a+h sont deux réels quelconques de l'intervalle I avec h réel strictement positif. On s'intéresse à la droite passant par les points

A(a; 
$$f(a)$$
) et M(a + h;  $f(a + h)$ ). Son coefficient directeur est égal à : 
$$\frac{f(a + h) - f(a)}{h}$$

On appelle  $\varphi(h)$  ce coefficient directeur. Lorsque f est croissante sur I, cette sécante (AM) a un coefficient directeur positif et  $\varphi(h)$  semble rester positif lorsque le point M se rapproche aussi près que l'on veut du point A, c'est-à-dire lorsque h s'approche aussi près que l'on veut de 0.

De plus, lorsque h s'approche aussi près de 0 que l'on veut, on sait que  $\varphi(h)$  s'approche de f'(a); on admet ainsi que, si f est croissante sur L alors f'(a) est positif pour tout réel a de L

### 1.2. Du signe de la dérivée au sens de variation de la fonction

Propriété: Soit f une fonction dérivable sur un intervalle I et sa dérivée f' sur I.

- Si, pour tout réel x de I,  $f'(x) \ge 0$  sur I, alors f est croissante sur I.
- Si, pour tout réel x de  $I, f'(x) \le 0$  sur I, alors f est <u>décroissante</u> sur I.

Les énoncés «  $f'(x) \ge 0$  pour tout réel x de I » et « f est croissante sur I » sont donc des énoncés équivalents.

Lorsque f'(x) ne s'annule pas sur I ou bien seulement en quelques points de I, on dit que f est strictement croissante sur I.

Exemple: Soit la fonction f définie sur IR par  $f(x) = -x^2 + 6x + 1 \Rightarrow f'(x) = -2x + 6$ .

On construit un tableau de variation donnant à la fois le signe de f'(x) et le sens de variation de f:

| x     | - ∞ | 3    |   | + ∞                 |
|-------|-----|------|---|---------------------|
| f'(x) | +   | - 0  | _ |                     |
| f(x)  |     | 7 10 | \ | $\nearrow$ $\alpha$ |

Tobleau de variation

## 1.3. Caractérisation des fonctions constantes

Propriété: Une fonction f est constante sur un intervalle I, si et seulement si, pour tout nombre réel x de I, on a: f'(x) = 0. Démonstration :

- Si f est constante sur I, alors f'(x) = 0 pour tout réel x de I, d'après la formule de dérivation.
- Réciproquement, si f'(x) = 0 pour tout réel x de I, alors  $f'(x) \ge 0$  sur I et donc f est croissante sur I d'après la propriété précédente.

De même, si f'(x) = 0 pour tout réel x de I, alors  $f'(x) \le 0$  sur I et donc f est décroissante sur I d'après la même propriété. Puisque f est à la fois croissante et décroissante sur I, elle est constante sur I.

# 2. Nombre dérivé en un extremum d'une fonction

#### 2.1. Extremum local d'une fonction

Définition: f est une fonction définie sur un intervalle I et c est un nombre réel de I.

Dire que f(c) est un <u>maximum local</u> (respectivement <u>minimum local</u>) de f signifie qu'il existe un intervalle <u>ouvert J</u> inclus dans I et contenant c tel que, pour tout nombre réel x de J,  $f(x) \le f(c)$  (respectivement  $f(x) \ge f(c)$ ).

On parle d'extremum local pour désigner soit un maximum local, soit un minimum local.

Exemple: f st une fonction définie sur I = [-2; 5].



f(1) = 3 est un maximum local de f car, pour tout  $x \in J = ]-2$ ;  $4[\subset I, f(x) \le 3; f(4) = 1$  est un minimum local  $\operatorname{de} f \operatorname{car}$ , pour tout  $x \in J' = ]1$ ;  $5[\subset I, f(x) \ge 1$ .

Remarque: si f est monotone, les extremums sont atteints aux bornes de l'intervalle.

#### 2.2. Extremum local et dérivée

Propriété (admise): f est une fonction dérivable sur un intervalle I et c est un nombre réel de I.

Si f(c) est un extremum local de f, alors f'(c) = 0.

#### Remarques:

• Si f(c) est un extremum local, alors la tangente à la courbe représentative de f admet au point d'abscisse c est parallèle à l'axe des abscisses (on dit aussi horizontale). On schématise souvent cette tangente horizontale de la façon suivante :



• <u>La réciproque de cette propriété est fausse.</u> Par exemple, la fonction cube f a une dérivée qui s'annule en 0 car  $f'(x) = 3x^2$  et donc  $f'(0) = 3 \times 0^2 = 0$  mais f(0) = 0 n'est pas un extremum local de f.



Le fait que la dérivée s'annule est une condition nécessaire mais pas suffisante pour qu'une fonction admette un extremum local.

<u>Propriété (admise)</u>: f est une fonction dérivable sur un intervalle <u>ouvert</u> I et c est un nombre réel de I qui n'est pas une extrémité de I.

Si f' s'annule en c changeant de signe, alors f(c) est un extremum local de f.

### Exemples:

La fonction carré fa une dérivée qui s'annule en 0 en changeant de signe puisque f'(x) = 2x.
Donc f admet un extremum local en 0.

• 
$$f(x) = x^3 - 6x^2 + 2 \Rightarrow f'(x) = 3x^2 - 12x = 3x(x - 4)$$
.

| x     | - 00 |   | 0                       | 1902-0,259.17 | 4      | + 00                   |
|-------|------|---|-------------------------|---------------|--------|------------------------|
| f'(x) |      | + | 0                       | -             | 0      | +                      |
| f(x)  | - 00 | / | <b>▼</b> <sup>2</sup> \ | \ <u>\</u>    | _ 30 ´ | <b>≠</b> <sup>+∞</sup> |

f' s'annule en 0 en changeant de signe  $\Rightarrow f(0) = 2$  est un extremum local et, d'après le tableau, il s'agit d'un maximum local.

f' s'annule en 4 en changeant de signe  $\Rightarrow f(4) = -30$  est un extremum local et, d'après le tableau, il s'agit d'un minimum local.

Sur un intervalle ]a; b[ contenant c, on peut se trouver dans l'une des situations ci-dessous.

| x     | а | - | С |   | ь |
|-------|---|---|---|---|---|
| f'(x) |   |   | ø | + |   |
| f(x)  |   | _ |   |   | * |

f(c) est un minimum local.



f(c) est un maximum local.

### 3. Fonctions polynômes du second degré

### 3.1. Sens de variation de la fonction $x \mapsto ax^2 + bx + c$ (avec $a \neq 0$ )

f est une fonction polynôme du second degré définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$  où a, b et c sont des nombres réels et  $a \neq 0$ . La fonction f est dérivable sur  $\mathbb{R}$  et, pour tout nombre réel x, f'(x) = 2ax + b. Le signe d'une fonction affine permet de dire que

f'(x) s'annule en  $-\frac{b}{2a}$  en changeant de signe. Donc fadmet un extremum en  $-\frac{b}{2a}$ 

# Propriété:

### · Cas où a > 0



#### · Cas où a < 0

| х             |      | <u>b</u><br>2a                | +∞ |
|---------------|------|-------------------------------|----|
| <b>f</b> '(x) | +    | 0                             | -  |
| f(x)          | <br> | $f\left(-\frac{b}{2a}\right)$ |    |

<u>Définition</u>: Dans un repère orthogonal, la courbe représentative  $\mathcal{F}$  de la fonction définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$ 

(avec  $a \neq 0$ ) est une **parabole de sommet** S  $\left(-\frac{b}{2a}; f(-\frac{b}{2a})\right)$ . On rappelle que  $f(-\frac{b}{2a}) = -\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a}$ .

Propriété: Cette parabole admet la droite d'équation  $x = -\frac{b}{2a}$  pour <u>axe de symétrie</u>.

<u>Démonstration</u>: Pour tout nombre réel x,  $f(x) = a(x + \frac{b}{2a})^2 - \frac{\Lambda}{4a}$  (forme canonique de f(x)). On note h un nombre réel.

M est le point de  $\mathscr{P}$  d'abscisse  $-\frac{b}{2a} + h$ . Son ordonnée est  $f(-\frac{b}{2a} + h) = a((-\frac{b}{2a} + h + \frac{b}{2a})^2 - \frac{\Delta}{4a} = ah^2 - \frac{\Delta}{4a}$ 

M' est le point de  $\mathcal{F}$  d'abscisse  $-\frac{b}{2a} - h$ . Son ordonnée est  $f(-\frac{b}{2a} - h) = a((-\frac{b}{2a} - h + \frac{b}{2a})^2 - \frac{\Delta}{4a} = ah^2 - \frac{\Delta}{4a}$ 

Les points M et M' sont donc symétriques par rapport à la droite d'équation  $x = -\frac{b}{2a}$ 

Comme c'est le cas pour tout nombre réel h, cette droite est axe de symétrie de la parabole  $\mathcal{F}$ .





# Cas où a < 0</li>

