Ling – EC3303 Definition		
Causal effects	An action is said to have cause an outcome if the outcome is the direct result,	
Causai effects	or consequence, of that action	
Randomized controlled	with double-blinded, it's the gold standard for investigating the causal effects	
experiment	with double-billided, it's the gold standard for investigating the causal effects	
Treatment group	Group that undergo the treatment of interest	
Control group	Having a control group permits measurements of the treatment effect	
Randomized	Subject from the population are randomly assigned into treatment and control	
Kandonnized	groups	
Experimental Data	Comes from experiments designed to evaluate the policy/treatment effect	
Observational Data	Obtained by observing actual behaviour outside of a experiment setting	
Confounding factors	Other differences or factors contaminate estimation of the casual effects	
Cross sectional data		
	data on multiple entities for a single period	
Time series data	data for a single entity, collected at multiple time periods	
Panel/ Longitude data	Data on multiple entities, in which entity is observed for two or more time periods	
Random variable	A variable whose value is an outcome of a random phenomenon	
Discrete variable	Only takes on a discrete set of values	
Continuous variable	Takes on a continuum of possible values	
Probability distribution	Lists the values and the probability that each value will occur	
Normal distribution	$X \sim N(\mu, \sigma^2)$; 68-95-99.7 rule	
Statistical inference	Using statistical methods to draw inferences from random sample about the	
	full population	
Estimation	Computing a best guess numerical value for an unknown characteristic of a	
	population distribution, from a sample of data	
Hypothesis testing	Formulating a specific hypothesis about the population, then using sample	
	evidence to decide whether it is true	
Confidence intervals	Computing an interval for an unknown population characteristic, using a	
	sample of data	
Estimator	An estimator is a procedure or a formula used to obtain an estimate of the	
	parameter of interest.	
	It is a function of the randomly drawn sample of data	
	It is a Random Variable because it depends on a randomly selected sample	
Estimate	An estimate is a numerical value of the estimator when it is computed using	
	data from a specific sample	
	An estimate is just a number and so is non-random	
Simple random sampling (SRS)	Every sample has the equal probability of being chosen	
Independently and	i.i.d implies that distribution Y _i shares the same distribution as the population	
Identically distributed		
Bias	$bias = E(\hat{\theta}) - \theta$	
Central Limit Theorem	σ_{Y}^{2}	
	$\lim_{n\to\infty}Y\to N(\mu_Y,\frac{1}{n})$	
Law of large numbers	$bias = E(\widehat{\theta}) - \theta$ $\lim_{n \to \infty} \overline{Y} \to N(\mu_Y, \frac{\sigma_Y^2}{n})$ $\lim_{n \to \infty} \overline{Y} \xrightarrow{p} \mu_Y$	
Consistency	$\lim_{n \to \infty} \hat{\theta} \stackrel{p}{\to} \theta, bias = 0$	
	$\lim_{n\to\infty} \vec{r}(\hat{\theta}) = 0$	
Efficiency	$n \rightarrow \infty$	
Efficiency Desirable Proporties of	$ ilde{ heta}$ is more efficient if $var(ilde{ heta}) < var(\hat{ heta})$	
Desirable Properties of	Unbiased, Consistent, Efficient Visite BLUE (best linear unbiased estimator)	
Estimators	$ ec{Y} $ is the BLUE(best linear unbiased estimator)	

Ling - EC3303

Ling – EC3303	
Hypothesis Testing	Hypothesis tests are based on a statistics which estimates the parameter of interest
Null Hypothesis H_0	A hypothesis to be tests, usually a statement of "no effect" or "no difference
Alternative Hypothesis H_a	A hypothesis we test the null against, this is the statement we hope is true
Simple/ Composites	A hypothesis test is simple if it specifics a value for the parameter tested $H_0=a$, else it's composite. $H_0>a$
Significance level	Fixed benchmark to reject H ₀
Type I error	Rejecting the null hypothesis when it is true
Type II error	Not rejecting the null hypothesis when it is false
Confidence interval	An interval that contains the true value of a parameter with a certain prespecified probability
Linear Regression Model	Measures the average relationship between factors and outcomes
Ordinary Least Squares (OLS)	OLS chooses the estimators so that the estimated regression line comes as close as possible to the data points, where "closeness" is measured by the sum of the squared mistakes made in predicting Y given X
Measure of Fit	How well the OLS regression line describes the data depends on two regression statistics: R ² and Standard error of the regression
R^2	Measures the fraction of the variances of Y that is explained by X. It is unitless and ranges between zero (no fit) and one (perfect fit)
SER	Standard Error of the Regression is a measure of the spread of the observations around the regression line (measure in units of Y). SER is the sample standard deviation of the OLS residuals.
Least Squares	1. Given X _i , the conditional distribution of the population error term u _i has a
Assumptions	mean zero 2. Samples are independently and identically distributed (i.i.d) 3. Large outliers are rare
Report Regression Results	$\widehat{Y} = \frac{\widehat{\beta_0}}{SE(\widehat{\beta_0})} + \frac{\widehat{\beta_1}}{SE(\widehat{\beta_1})} x, R^2, SER$
Regression when X is a Binary Variable	β_1 is the coefficient of X _i , which is the difference between mean outcome when X = 0 and X = 1 Note: Does not have graphical interpretation and β_1 is not the slope
Heteroskedasticity	Variance of error changes depending on the value of x_i $Var(u_i X_i=x) \neq \sigma_u^2$ In practice, always use heteroskedasiticity-robust standard errors (STATA: regress y x, robust)
Homoskedasticity	Variance of error does not depend on the value of x_i , has the same spread regardless of x_i $Var(u_i X_i=x)=\sigma_u^2$

Calculation		
Mean	A measure of the centre of a distribution	
	$E(X) = \mu_X = \sum_{i=1}^k x_i p_i$	
	l=1	
Sample Average	$E(a) = a; E(a + bX) = a + bE(X); E(X + Y) = E(X) + E(Y)$ $\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + + Y_n) = \frac{1}{n}\sum_{i=1}^{n} Y_i$	
$ar{Y}$	i = i = 1	
	$E(\overline{Y}) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{n\mu_Y}{n} = \mu_Y$	
	ι — ι-1 · · ·	
	$var(\overline{Y}) = \sigma_{\overline{Y}}^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} var(Y_{i}) = \frac{\sigma_{Y}^{2}}{n}$	
Variance/standard	Measures of the spread or dispersion of a distribution	
deviation	$var(x) = \sigma_X^2 = E[(X - \mu_X)^2] = \sum_{i=1}^k (x_i - \mu_X)^2 p_i$	
	$sd = \sigma_v = \sqrt{var(x)}^{i=1}$	
	$var(a) = 0, var(aX - bY) = a^2 var(x) + b^2 var(Y) - 2abcov(X, Y)$	
Covariance	covariance is a measure of how much two random variables vary together	
	$cov(X,Y) = \sum_{i=1}^{k} E((X_i - \bar{X})(Y_i - \bar{Y}))$ $Z = \frac{X - \mu}{\sigma} \sim N(1,0)$ $\frac{X - \mu_{Y,0}}{\sigma_{\bar{Y}}} = \frac{X - \mu_{Y,0}}{\sigma_{Y}/\sqrt{n}}$	
Standard normal	$X - \mu$	
distribution	$Z = \frac{1}{\sigma} \sim N(1,0)$	
Test statistic	$\frac{X - \mu_{Y,0}}{X - \mu_{Y,0}} = \frac{X - \mu_{Y,0}}{X - \mu_{Y,0}}$	
Sample standard	$\sigma_{ar{Y}} = \sigma_{Y}/\sqrt{n}$	
deviation	$s_y^2 = \frac{1}{m-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$	
Standard Error	n-1 $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$	
Standard Error	$s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ $\frac{s_y}{\sqrt{n}}$	
Linear Regression	$\beta y = \frac{\Delta x}{\Delta y}; y_i = \beta_0 + \beta_{x_i} x_i + u_i$	
Model	n	
Sum of squared prediction	$\min_{b_0, b_1} \sum_{i=1}^{min} [Y_i - (b_0 + b_1 X_i)]^2 = \sum_{i=1}^{min} \hat{u}^2$	
mistakes	l=1	
OLS estimators	where b_0 and b_1 are some estimators of eta_0 and eta_1 $eta_0 = \bar{y} - eta_1 \bar{x}$	
023 63411146013	$cov(x,y) \sum_{i=1}^{p_0} (x_i - \bar{x})(y_i - \bar{y})$	
	$\beta_1 = \frac{1}{var(x)} = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$	
R ²	$\beta_{1} = \frac{cov(x, y)}{var(x)} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}}$ $R^{2} = \frac{Explained\ sum\ of\ squares}{Total\ sum\ of\ squares} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$	
	Sum of Squared residuals $\sum (y_i - y)^2$	
	$= 1 - \frac{Sum \ of \ Squared \ residuals}{Total \ sum \ of \ squares} = 1 - \frac{\sum (\hat{u}_i)^2}{\sum (y_i - \bar{y})^2}$	
SER		
	$SER = \sqrt{\frac{1}{n-2}} \sum_{i} (\hat{u}_i - \bar{\hat{u}})^2 = \sqrt{\frac{1}{n-2}} \sum_{i} (\hat{u}_i)^2$	
	Since $\overline{\widehat{u}}$ =0, given by the definition of OLS, min sum of squared prediction mistakes	
Root Mean		
Squared Error	$RMSE = \sqrt{\frac{1}{n}\sum_{i}(\hat{u}_i)^2}$	
	Given that n is large (Law of large numbers)	

Ling - EC3303

Ling LC3303	
Unit Change in	$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_i x_i$
regression	$\hat{y}_i \text{ to } \widehat{ay}_i : \widehat{ay}_i = a\hat{\beta}_0 + a\hat{\beta}_i x_i$ $x_i \text{ to } bx_i : \hat{y}_i = \hat{\beta}_0 + \frac{\hat{\beta}_i}{h}(bx_i)$
	\hat{eta}_i .
	$x_i \text{ to } bx_i : \hat{y}_i = \beta_0 + \frac{1}{b}(bx_i)$
LSA #1	$E(u_i X_i=x)=0$
	$Cov(u_i, X_i) = 0$
	therefore $E(\widehat{\beta_1}) = \beta_1$ and $E(\widehat{\beta_0}) = \beta_0$
$E(\widehat{\beta_1})$	therefore $E(\widehat{\beta_1}) = \beta_1$ and $E(\widehat{\beta_0}) = \beta_0$ $E(\widehat{\beta_1}) = E(\frac{cov(x,y)}{var(x)}) = \beta_1$ $Var(\widehat{\beta_1}) = Var(\frac{cov(x,y)}{var(x)}) = \frac{1}{n} \times \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$ $\widehat{\beta_1} \sim N(\beta_1, \frac{1}{n} \times \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2})$
	$E(p_1) = E(var(x)) - p_1$
$\overline{Var(\widehat{eta_1})}$	$Var(\widehat{R}) = Var(cov(x,y)) = 1 \vee Var[(X_i - \mu_x)u_i]$
	$Var(p_1) = Var(\frac{1}{var(x)}) = \frac{1}{n} \times \frac{1}{[Var(X_i)]^2}$
Normal	$\widehat{Q} = N(Q - 1) Var[(X_i - \mu_x)u_i]$
approximation of	$\beta_1 \sim N(\beta_1, \frac{\pi}{n} \times \frac{ Var(X_i) ^2}{ Var(X_i) ^2})$
$\widehat{\beta_1}$	
$SE(\widehat{\beta_1})$	$ \qquad \qquad 1 \qquad \sqrt{Var[(X_i - \mu_x)u_i]}$
	$SE(\widehat{\beta_1}) = \sqrt{var(\widehat{\beta_1})} = \frac{1}{\sqrt{n}} \times \frac{\sqrt{Var[(X_i - \mu_x)u_i]}}{Var(X_i)}$
Regression when	$\beta_1 = E(Y_i X_i=1) - E(Y_i X_i=0)$
X is a Binary	where
Variable	$Y_i = \beta_0 + \beta_1 X_i + u_i$
	$E(Y_i X_i = 1) = \beta_0 + \beta_1 + u_i$
	$E(Y_i X_i=0) = \beta_0 + u_i$
	$E(Y_i X_i=1) - E(Y_i X_i=0) = \beta_1$
Homoskedastic	Given
	$Var(u_i X_i=x)=\sigma_u^2$
	then
	$V_{an}(\rho) = \sigma_u^2$
	$Var(\beta_1) = \frac{{\sigma_u}^2}{n{\sigma_x}^2}$ $SE(\widehat{\beta_1}) = \frac{1}{\sqrt{n}} \times \frac{\sqrt{Var(u_i)}}{Var(X_i)}$
	$1 \sqrt{Var(u_i)}$
	$SE(\beta_1) = \frac{\sqrt{n}}{\sqrt{n}} \times \frac{\sqrt{n}}{Var(X_1)}$
i	yıı yar (Al)