虚拟内存——系统 Virtual Memory: Systems

课程名:计算机系统

主 讲 人 : 孟文龙

本课内容

- 一个小内存系统示例
- 案例研究: Core i7/Linux 内存系统

p p-1

VPO

符号回顾

- 基本参数
 - N = 2ⁿ: 虚拟地址空间中的地址数量
 - *M* = 2^m: 物理地址空间中的地址数量
 - *P* = 2^{*p*}: 页的大小(bytes)
- 虚拟地址组成部分

■ TLBI: TLB 索引

■ TLBT: TLB 标记

■ VPO: 虚拟页面偏移量(字节)

■ VPN: 虚拟页号

■ 物理地址组成部分

■ PPO: 物理页面偏移量(同 VPO)

■ PPN: 物理页号

■ CO: Cache 块内的字节偏移量

■ CI: Cache 索引

'CT: Cache 标记

VPN

p+t p+t-1

TLB索引 (TLBI)

n-1

TLB 标记 (TLBT)

一个小内存系统示例

- 地址假设
 - 14 位虚拟地址(n = 14)
 - 12 位物理地址(*m* = 12)
 - 页面大小 64 字节 (P = 64)

物理页号

物理页偏移

1. 小内存系统的 TLB

- 共含 16 个条目
- 4路组相联

组	标记	PPN	有效位									
0	03	-	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	-	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	_	0	03	_	0
3	07	_	0	03	0D	1	0A	34	1	02	_	0

2. 小内存系统的页表

- ■単级
- 共 256 项
- 只列出前 16 个 PTE:

VPN	PPN	有效位
00	28	1
01	I	0
02	33	1
03	02	1
04	I	0
05	16	1
06	-	0
07	_	0

VPN	PPN	有效位
80	13	1
09	17	1
0A	09	1
0B	ı	0
OC	ı	0
0 D	2D	1
0E	11	1
OF	0D	1

3. 小内存系统的 Cache

- 16 个组,每块 4 字节
- ■通过物理地址中的字段寻址
- ■直接映射

索引	标记	有效位	CO_0	CO_1	CO_2	CO_3
0	19	1	99	11	23	11
1	15	0	_	_	_	-
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

索引	标记	有效位	CO_0	CO_1	CO_2	CO_3
8	24	1	3A	00	51	89
9	2D	0	_	_	-	_
Α	2D	1	93	15	DA	3B
В	0B	0	-	-	-	_
С	12	0	_	-	-	-
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

地址翻译示例1

虚拟地址: 0x03D4

物理地址

CO 0

总结:

■ TLB 命中, 页表一定命中(不缺页)

TLB是页表的缓存,只存一部分页表项(快且小),页表存全部页表项(慢且大)

- 页表命中,TLB 不一定命中
- Cache命中,页必然命中

本课内容

- 一个小内存系统示例
- 案例研究: Core i7/Linux 内存系统

Intel Core i7 内存系统

处理器封装边界

符号回顾

- 基本参数
 - *N* = 2ⁿ : 虚拟地址空间中的地址数量
 - *M* = 2^m: 物理地址空间中的地址数量
 - *P* = 2^p: 页的大小(bytes)
- 虚拟地址组成部分
 - TLBI: TLB 索引
 - TLBT: TLB 标记
 - VPO: 虚拟页面偏移量(字节)
 - VPN: 虚拟页号
- 物理地址组成部分
 - PPO: 物理页面偏移量(同 VPO)
 - PPN: 物理页号
 - CO: Cache 块内的字节偏移量
 - CI: Cache 索引
 - CT: Cache 标记

Core i7 地址翻译(VA 48 位,PA 52 位)

Core i7 页表翻译

