Výroková a predikátová logika - VI

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Predikátová logika

Zabývá se tvrzeními o individuích, jejich vlastnostech a vztazích.

"Je inteligentní a její otec zná pana rektora."

$$I(x) \wedge Z(o(x), r)$$

- x je proměnná, reprezentuje individuum,
- r je konstantní symbol, reprezentuje konkrétní individuum,
- o je funkční symbol, reprezentuje funkci,
- I, Z jsou relační (predikátové) symboly, reprezentují relace (vlastnost "být inteligentní" a vztah "znát").

"Každý má otce."

$$(\forall x)(\exists y)(y=o(x))$$

- (∀x) je všeobecný (univerzální) kvantifikátor (každé x),
- (∃y) je existenční kvantifikátor (nějaké y),
- = je (binární) relační symbol, reprezentuje identickou relaci.

Jazyk

Jazyk 1. řádu obsahuje

- proměnné $x, y, z, \ldots, x_0, x_1, \ldots$ (spočetně mnoho), množinu všech proměnných značíme Var,
- funkční symboly f, g, h, \ldots , včetně konstantních symbolů c, d, \ldots , což isou nulární funkční symboly,
- relační (predikátové) symboly P, Q, R, \ldots , případně symbol = (rovnost) jako speciální relační symbol,
- kvantifikátory $(\forall x)$, $(\exists x)$ pro každou proměnnou $x \in \text{Var}$,
- logické spojky \neg , \land , \lor , \rightarrow , \leftrightarrow
- závorky (,),[,],{,},...

Každý funkční i relační symbol S má danou *aritu* (*četnost*) $ar(S) \in \mathbb{N}$.

Poznámka Oproti výrokové logice nemáme (explicitně) výrokové proměnné, lze je zavést jako nulární relační symboly.

Signatura jazyka

- Logické symboly jsou proměnné, kvantifikátory, logické spojky a závorky.
- Mimologické symboly jsou funkční a relační symboly kromě rovnosti. Rovnost (obvykle) uvažujeme zvlášť.
- Signatura je dvojice (R, F) disjunktních množin relačních a funkčních symbolů s danými aritami, přičemž žádný z nich není rovnost. Signatura určuje všechny mimologické symboly.
- Jazyk je dán signaturou $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a uvedením, zda jde o jazyk s rovností či bez rovnosti. Jazyk musí obsahovat alespoň jeden relační symbol (mimologický nebo rovnost).

Poznámka Význam symbolů není v jazyce určen, např. symbol + nemusí reprezentovat standardní sčítání.

Příklady jazyků

Jazyk obvykle uvádíme výčtem mimologických symbolů s případným upřesněním, zda jde o funkční či relační symboly a jakou mají aritu.

Následující příklady jazyků jsou všechny s rovností.

- $L = \langle \rangle$ je jazyk čisté rovnosti,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$ je jazyk spočetně mnoha konstant,
- $L = \langle \leq \rangle$ je jazyk uspořádání,
- $L = \langle E \rangle$ je jazyk teorie grafů,
- $L = \langle +, -, 0 \rangle$ je jazyk teorie grup,
- $L = \langle +, -, \cdot, 0, 1 \rangle$ je jazyk teorie těles,
- $L = \langle -, \wedge, \vee, 0, 1 \rangle$ je jazyk Booleových algeber,
- $L = \langle S, +, \cdot, 0, \leq \rangle$ je jazyk aritmetiky,

kde c_i , 0, 1 jsou konstantní symboly, S, - jsou unární funkční symboly, +, \cdot , \wedge , \vee jsou binární funkční symboly, E, \leq jsou binární relační symboly.

Termy

Jsou výrazy reprezentující hodnoty (složených) funkcí.

Termy jazyka L jsou dány induktivním předpisem

- (i) každá proměnná nebo konstantní symbol je term,
- (ii) je-li f funkční symbol jazyka L s aritou n > 0 a t_0, \ldots, t_{n-1} jsou termy, pak je i výraz $f(t_0, \ldots, t_{n-1})$ term.
- (iii) každý term vznikne konečným užitím pravidel (i), (ii).
- Konstantní term je term bez proměnných.
- Množinu všech termů jazyka L značíme Term_L.
- Termu, jenž je součástí jiného termu t, říkáme podterm termu t.
- Strukturu termu můžeme reprezentovat jeho vytvořujícím stromem.
- U binárních funkčních symbolů často používáme infixního zápisu, např. píšeme (x + y) namísto +(x, y).

Příklady termů

- a) Vytvořující strom termu $(S(0) + x) \cdot y$ jazyka aritmetiky.
- *b*) Výrokové formule se spojkami \neg , \land , \lor , případně s konstantami \top , \bot lze chápat jako termy jazyka Booleových algeber.

Atomické formule

Jsou nejjednodušší formule.

- Atomická formule jazyka L je výraz $R(t_0, \ldots, t_{n-1})$, kde R je n-ární relační symbol jazyka L a t_0, \ldots, t_{n-1} jsou termy jazyka L.
- Množinu všech atomických formulí jazyka L značíme AFm_L.
- Strukturu atomické formule můžeme reprezentovat vytvořujícím stromem z vytvořujících podstromů jejích termů.
- U binárních relačních symbolů často používáme infixního zápisu, např. $t_1=t_2$ namísto $=(t_1,t_2)$ či $t_1\leq t_2$ namísto $\leq (t_1,t_2)$.
- Příklady atomických formulí

$$Z(o(x), r), \quad x \cdot y \le (S(0) + x) \cdot y, \quad \neg(x \land y) \lor \bot = \bot.$$

Formule

Formule jazyka L jsou výrazy dané induktivním předpisem

- (i) každá atomická formule jazyka L je formule,
- $(\it{ii})\,$ jsou-li $\varphi,\,\psi$ formule, pak i následující výrazy jsou formule

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$,

- (iii) je-li φ formule a x proměnná, jsou výrazy $((\forall x)\varphi)$ a $((\exists x)\varphi)$ formule.
- (iv) každá formule vznikne konečným užitím pravidel (i), (ii), (iii).
- Množinu všech formulí jazyka L značíme Fm_L.
- Formuli, jež je součástí jiné formule φ , nazveme *podformule* formule φ .
- Strukturu formule můžeme reprezentovat jejím vytvořujícím stromem.

Konvence zápisu

- Zavedení priorit binárních funkčních symbolů např. + , · umožňuje při infixním zápisu vypouštět závorky okolo podtermu vzniklého symbolem vyšší priority, např. x · y + z reprezentuje term (x · y) + z.
- Zavedení priorit logických spojek a kvantifikátorů umožňuje vypouštět závorky okolo podformule vzniklé spojkou s vyšší prioritou.

$$(1) \rightarrow, \leftrightarrow \qquad (2) \wedge, \vee \qquad (3) \neg, (\forall x), (\exists x)$$

- Okolo podformulí vzniklých ¬, (∀x), (∃x) lze závorky vypustit vždy.
- Můžeme vypustit závorky i okolo $(\forall x)$ a $(\exists x)$ pro každé $x \in \text{Var}$.
- Rovněž vnější závorky můžeme vynechat.

$$(((\neg((\forall x)R(x))) \land ((\exists y)P(y))) \rightarrow (\neg(((\forall x)R(x)) \lor (\neg((\exists y)P(y))))))$$
$$\neg \forall xR(x) \land \exists yP(y) \rightarrow \neg(\forall xR(x) \lor \neg \exists yP(y))$$

Příklad formule

Vytvořující strom formule $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$.

Výskyt proměnné

Nechť φ je formule a x je proměnná.

- *Výskyt* proměnné x ve φ je list vytvořujícího stromu φ označený x.
- Výskyt x ve φ je vázany, je-li součástí nějaké podformule ψ začínající kvantifikátorem $(\forall x)$ nebo $(\exists x)$. Není-li výskyt vázany, je volny.
- Proměnná x je volná ve φ, pokud má volný výskyt ve φ.
 Je vázaná ve φ, pokud má vázaný výskyt ve φ.
- Proměnná x může být zároveň volná i vázaná ve φ . Např. ve formuli

$$(\forall x)(\exists y)(x \leq y) \lor x \leq z.$$

• Zápis $\varphi(x_1, \ldots, x_n)$ značí, že x_1, \ldots, x_n jsou všechny volné proměnné ve formuli φ . (O nich formule φ něco tvrdí).

Poznámka Uvidíme, že pravdivostní hodnota formule (při dané interpretaci symbolů) závisí pouze na ohodnocení volných proměnných.

Otevřené a uzavřené formule

- Formule je otevřená, neobsahuje-li žádný kvantifikátor. Pro množinu OFm_L všech otevřených formulí jazyka L platí $AFm_L \subsetneq OFm_L \subsetneq Fm_L$.
- Formule je <u>uzavřená</u> (sentence), pokud nemá žádnou volnou proměnnou, tj. všechny výskyty proměnných jsou vázané.
- Formule může být otevřená i uzavřená zároveň, pak všechny její termy jsou konstantní.

$$\begin{array}{ll} x+y\leq 0 & \textit{otevřená}, \varphi(x,y) \\ (\forall x)(\forall y)(x+y\leq 0) & \textit{uzavřená (sentence)}, \\ (\forall x)(x+\textcolor{red}{y}\leq 0) & \textit{ani otevřená, ani uzavřená}, \varphi(y) \\ 1+0<0 & \textit{otevřená i uzavřená} \end{array}$$

Poznámka Uvidíme, že sentence má při dané interpretaci symbolů pevný význam, tj. její pravdivostní hodnota nezávisí na ohodnocení proměnných.

Instance

Když do formule <mark>za volnou proměnnou x</mark> dosadíme term t, požadujeme, aby vzniklá formule říkala (nově) o termu t "totéž", co předtím říkala o proměnné x.

$$\varphi(x) \qquad \qquad (\exists y)(x+y=1) \qquad \text{"existuje prvek } 1-x" \\ \text{pro } t=1 \text{ lze } \varphi(x/t) \qquad (\exists y)(1+y=1) \qquad \text{"existuje prvek } 1-1" \\ \text{pro } t=y \text{ nelze} \qquad (\exists y)(y+y=1) \qquad \text{"1 je dělitelné 2"}$$

- Term t je substituovatelný za proměnnou x ve formuli φ , pokud po současném nahrazení všech volných výskytů x za t nevznikne ve φ žádný vázaný výskyt proměnné z t.
- Pak vzniklou formuli značíme $\varphi(x/t)$ a zveme ji instance formule φ vzniklá substitucí termu t za proměnnou x do φ .
- t není substituovatelný za x do φ , právě když x má volný výskyt v nějaké podformuli φ začínající $(\forall y)$ nebo $(\exists y)$ pro nějakou proměnnou y z t.
- Konstantní termy jsou substituovatelné vždy.

Varianty

Kvantifikované proměnné lze (za určitých podmínek) přejmenovat tak, že vznikne ekvivalentní formule.

Nechť $(Qx)\psi$ je podformule ve φ , kde Q značí \forall či \exists , a y je proměnná, tž.

- 1) y je substituovatelná za x do ψ , a
- 2) y nemá volný výskyt v ψ .

Nahrazením podformule $(Qx)\psi$ za $(Qy)\psi(x/y)$ vznikne *varianta* formule φ *v podformuli* $(Qx)\psi$. Postupnou variací jedné či více podformulí ve φ vznikne *varianta* formule φ . *Např.*

```
(\exists x)(\forall y)(x \leq y) \qquad \qquad \text{je formule } \varphi, \\ (\exists u)(\forall v)(u \leq v) \qquad \qquad \text{je varianta } \varphi, \\ (\exists y)(\forall y)(\underbrace{y} \leq y) \qquad \qquad \text{není varianta } \varphi, \text{ neplatí } 1), \\ (\exists x)(\forall x)(x < x) \qquad \qquad \text{není varianta } \varphi, \text{ neplatí } 2).
```

Struktury

- $S = \langle S, \leq \rangle$ uspořádaná množina, kde \leq je reflexivní, antisymetrická, tranzitivní binární relace na S,
- $G = \langle V, E \rangle$ neorientovaný graf bez smyček, kde V je množina vrcholů, E je ireflexivní, symetrická binární relace na V (sousednost),
- $\mathbb{Z}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$ grupa sčítání celých čísel modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel.
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ potenční algebra nad množinou X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ standardní model aritmetiky (přirozených čísel),
- konečné automaty a další modely výpočtu,
- relační databáze, . . .

Struktura pro jazyk

Nechť $L=\langle \mathcal{R},\mathcal{F} \rangle$ je jazyk a A je neprázdná množina.

- Realizace (interpretace) relačního symbolu $R \in \mathcal{R}$ na A je libovolná relace $R^A \subseteq A^{\operatorname{ar}(R)}$. Realizace rovnosti na A je relace Id_A (identita).
- Realizace (interpretace) funkčního symbolu $f \in \mathcal{F}$ na A je libovolná funkce $f^A \colon A^{\operatorname{ar}(f)} \to A$. Realizace konstantního symbolu je tedy prvek z A.

Struktura pro jazyk L (L-struktura) je trojice $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, kde

- ullet A je neprázdná množina, zvaná doména (univerzum) struktury ${\mathcal A}$,
- $\mathcal{R}^A = \langle R^A \mid R \in \mathcal{R} \rangle$ je soubor realizací relačních symbolů (relací),
- $\mathcal{F}^A = \langle f^A \mid f \in \mathcal{F} \rangle$ je soubor realizací funkčních symbolů (funkcí).

Strukturu pro jazyk L nazýváme také model jazyka L. Třída všech modelů jazyka L se značí M(L). Např. struktury pro jazyk $L = \langle \leq \rangle$ jsou $\langle \mathbb{N}, \leq \rangle, \ \langle \mathbb{Q}, > \rangle, \ \langle X, E \rangle, \ \langle \mathcal{P}(X), \subseteq \rangle$ pokud $X \neq \emptyset$.

Hodnota termu

Nechť t je term jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ je struktura pro L.

- Ohodnocení proměnných v množině A je funkce $e: Var \rightarrow A$.
- *Hodnota t*^A[e] termu t ve struktuře \mathcal{A} při ohodnocení e je daná předpisem $x^{A}[e] = e(x)$ pro každé $x \in \text{Var}$, $(f(t_0, \dots, t_{n-1}))^{A}[e] = f^{A}(t_0^{A}[e], \dots, t_{n-1}^{A}[e])$ pro každé $f \in \mathcal{F}$.
- Speciálně, pro konstantní symbol c je $c^A[e] = c^A$.
- Je-li t konstantní term, jeho hodnota v A nezávisí na ohodnocení e.
- Hodnota termu v A závisí pouze na ohodnocení jeho proměnných.

Např. hodnota termu x+1 ve struktuře $\mathcal{N}=\langle\mathbb{N},+,1\rangle$ při ohodnocení e s e(x)=2 je $(x+1)^N[e]=3$.

Hodnota atomické formule

Nechť φ je atomická formule tvaru $R(t_0,\ldots,t_{n-1})$ jazyka $L=\langle \mathcal{R},\mathcal{F}\rangle$ a $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ je struktura pro L.

• Hodnota $H_{at}^A(\varphi)[e]$ formule φ ve struktuře A při ohodnocení e je

$$H^A_{at}(R(t_0,\ldots,t_{n-1}))[e] = \left\{ \begin{array}{ll} 1 & \quad \mathsf{pokud}\; (t_0^A[e],\ldots,t_{n-1}^A[e]) \in R^A, \\ 0 & \quad \mathsf{jinak}. \end{array} \right.$$

přičemž $=^A$ je Id_A , tj. $H_{at}^A(t_0=t_1)[e]=1$ pokud $t_0^A[e]=t_1^A[e]$, jinak 0.

- Je-li φ sentence, tj. všechny její termy jsou konstantní, její hodnota v \mathcal{A} nezávisí na ohodnocení e.
- Hodnota φ v A závisí pouze na ohodnocení jejích (volných) proměnných,

Např. hodnota formule φ tvaru $x+1\leq 1$ ve struktuře $\mathcal{N}=\langle \mathbb{N},+,1,\leq \rangle$ při ohodnocení e je $H^N_{at}(\varphi)[e]=1$ právě když e(x)=0.

Hodnota formule

 $\operatorname{Hodnota} H^{A}(\varphi)[e]$ formule φ ve struktuře $\mathcal A$ při ohodnocení e je

$$\begin{split} H^A(\varphi)[e] &= H^A_{at}(\varphi)[e] \text{ pokud } \varphi \text{ je atomická,} \\ H^A(\neg\varphi)[e] &= -_1(H^A(\varphi)[e]) \\ H^A(\varphi \wedge \psi)[e] &= \wedge_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \vee \psi)[e] &= \vee_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \to \psi)[e] &= \to_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A((\forall x)\varphi)[e] &= \min_{a \in A}(H^A(\varphi)[e(x/a)]) \\ H^A((\exists x)\varphi)[e] &= \max_{a \in A}(H^A(\varphi)[e(x/a)]) \end{split}$$

kde -1, $\wedge 1$, $\vee 1$, $\rightarrow 1$, $\leftrightarrow 1$ jsou Booleovské funkce dané tabulkami a e(x/a) pro $a \in A$ značí ohodnocení získané z e nastavením e(x) = a.

Pozorování $H^A(\varphi)[e]$ závisí pouze na ohodnocení volných proměnných ve φ .

Platnost při ohodnocení

Formule φ je splněna (platí) ve struktuře A při ohodnocení e, pokud $H^A(\varphi)[e]=1$. Pak píšeme $A\models\varphi[e]$, v opačném případě $A\not\models\varphi[e]$. Platí

$$\begin{array}{llll} \mathcal{A} \models \neg \varphi[e] & \Leftrightarrow & \mathcal{A} \not\models \varphi[e] \\ \mathcal{A} \models (\varphi \land \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ a } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \lor \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ nebo } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \to \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ implikuje } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \leftrightarrow \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ právě když } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\forall x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro haždé } a \in A \\ \mathcal{A} \models (\exists x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro nějaké } a \in A \end{array}$$

Pozorování Nechť t je substituovatelný za x do φ a ψ je varianta φ . Pak pro každou strukturu $\mathcal A$ a ohodnocení e platí

- 1) $A \models \varphi(x/t)[e]$ právě když $A \models \varphi[e(x/a)]$ pro $a = t^A[e]$,
- 2) $A \models \varphi[e]$ právě když $A \models \psi[e]$.

Platnost ve struktuře

Nechť φ je formule jazyka L a \mathcal{A} je struktura pro L.

- φ je pravdivá (platí) ve struktuře A, značeno $A \models \varphi$, pokud $A \models \varphi[e]$ pro každé ohodnocení e: Var $\to A$. V opačném případě píšeme $A \not\models \varphi$.
- φ je *lživá v A*, pokud $\mathcal{A} \models \neg \varphi$, tj. $\mathcal{A} \not\models \varphi[e]$ pro každé $e \colon \mathrm{Var} \to A$.
- Pro každé formule φ, ψ , proměnnou x a strukturu A platí
 - (1) $\mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
 - (2) $\mathcal{A} \models \varphi \wedge \psi \Leftrightarrow \mathcal{A} \models \varphi \text{ a } \mathcal{A} \models \psi$
 - (3) $\mathcal{A} \models \varphi \vee \psi \iff \mathcal{A} \models \varphi \text{ nebo } \mathcal{A} \models \psi$
 - $(4) \qquad \mathcal{A} \models \varphi \qquad \Leftrightarrow \quad \mathcal{A} \models (\forall x)\varphi$
- Je-li φ sentence, je φ pravdivá v $\mathcal A$ či lživá v $\mathcal A$ a tedy implikace (1) platí i obráceně. Je-li navíc ψ sentence, také implikace (3) platí i obráceně.
- Z (4) plyne, že $\mathcal{A} \models \varphi$ právě když $\mathcal{A} \models \psi$, kde ψ je generální uzávěr φ , tj. formule $(\forall x_1) \cdots (\forall x_n) \varphi$, v níž x_1, \ldots, x_n jsou všechny volné proměnné φ .

Platnost v teorii

- Teorie jazyka L je libovolná množina T formulí jazyka L (tzv. axiomů).
- Model teorie T je L-struktura A taková, že $A \models \varphi$ pro každé $\varphi \in T$, značíme $A \models T$.
- Třída modelů teorie T je $M(T) = \{ A \in M(L) \mid A \models T \}$.
- Formule φ je pravdivá v T (platí v T), značíme $T \models \varphi$, pokud $A \models \varphi$ pro každý model A teorie T. V opačném případě píšeme $T \not\models \varphi$.
- Formule φ je *lživa v T*, pokud $T \models \neg \varphi$, tj. je lživá v každém modelu T.
- Formule φ je *nezávislá v T*, pokud není pravdivá v T ani lživá v T.
- Je-li $T=\emptyset$, je M(T)=M(L) a teorii T vynecháváme, případně říkáme "v logice". Pak $\models \varphi$ značí, že φ je pravdivá ((logicky) platí, tautologie).
- Důsledek T je množina $\theta^L(T)$ všech sentencí jazyka L pravdivých v T, tj. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ a } \varphi \text{ je sentence} \}.$

Příklad teorie

Teorie uspořádání T jazyka $L = \langle \leq \rangle$ s rovností má axiomy

$$x \le x$$
 (reflexivita)
 $x \le y \land y \le x \rightarrow x = y$ (antisymetrie)
 $x < y \land y < z \rightarrow x < z$ (tranzitivita)

Modely T jsou L-struktury $\langle S, \leq_S \rangle$, tzv. uspořádané množiny, ve kterých platí axiomy T, např. $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ nebo $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ pro $X = \{0, 1, 2\}$.

- Formule φ ve tvaru $x \leq y \vee y \leq x$ platí $v \mid \mathcal{A}$, ale neplatí $v \mid \mathcal{B}$, neboť např. $\mathcal{B} \not\models \varphi[e]$ při ohodnocení $e(x) = \{0\}, e(y) = \{1\}$, je tedy nezávislá v T.
- Sentence ψ ve tvaru $(\exists x)(\forall y)(y \leq x)$ je pravdivá v \mathcal{B} a lživá v \mathcal{A} , je tedy rovněž nezávislá v T. Píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$.
- Formule χ ve tvaru $(x \le y \land y \le z \land z \le x) \to (x = y \land y = z)$ je pravdivá v T, píšeme $T \models \chi$, totéž platí pro její generální uzávěr.

