CSE 167 (WI 2025) Exercise 3

Andrew Onozuka A16760043

Exercise 3.1

Problem

Consider an orthonormal basis $(\vec{r}, \vec{u}, \vec{b})$, where the right vector \vec{r} points from left to right, the up vector \vec{u} points from bottom to top, and the back vector \vec{b} points from front to back.

The rotation operator $R_{\vec{r},\theta}$ rotates this basis by an angle θ about the right vector \vec{r} , producing a new orthonormal basis $(\vec{r}', \vec{u}', \vec{b}')$. The transformation is defined as:

$$R_{\vec{r},\theta}\vec{r} = \vec{r}', \quad R_{\vec{r},\theta}\vec{u} = \vec{u}', \quad R_{\vec{r},\theta}\vec{b} = \vec{b}'.$$

- (a) Write down the rotation matrix R in terms of θ and trigonometric functions.
- (b) Given a world basis $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$, suppose $\vec{r}, \vec{u}, \vec{b}$ have coefficients in the world basis:

$$\vec{r} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}, \quad \vec{u} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Find the transformation matrix M such that:

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = M \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}.$$

Solution

(a) The rotation matrix around the right vector \vec{r} is derived as follows: The standard rotation matrix for a rotation by angle θ around the x-axis (right vector) is:

$$R_{\vec{r},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}.$$

This matrix ensures that the \vec{r} vector remains unchanged, while \vec{u} and \vec{b} are rotated in the plane perpendicular to \vec{r} .

(b) To transform the rotated object into world coordinates: The given basis $(\vec{r}, \vec{u}, \vec{b})$ is represented in the world basis as matrix R:

$$R = \begin{bmatrix} \vec{r} & \vec{u} & \vec{b} \end{bmatrix}$$
.

The transformation matrix M is obtained as:

$$M = \begin{bmatrix} \vec{r} & \vec{u} & \vec{b} \end{bmatrix} \cdot R_{\vec{r},\theta}.$$

Exercise 3.2

Problem

Find the quaternion $q \in \mathbb{H}$ satisfying:

$$qiq^{-1} = j$$
, $qjq^{-1} = k$, $qkq^{-1} = i$, $Re(q) > 0$.

Solution

To solve for the quaternion q, we analyze the rotation properties:

- 1. The given transformations correspond to a 120-degree rotation about the axis (1,1,1).
- 2. The quaternion representation of a rotation by angle θ about a unit vector \hat{v} is:

$$q = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}(v_x i + v_y j + v_z k).$$

3. For a 120-degree rotation ($\theta = 120^{\circ}$) around (1, 1, 1), the unit vector is:

$$\hat{v} = \frac{1}{\sqrt{3}}(i+j+k).$$

4. Substituting $\theta = 120^{\circ}$:

$$q = \cos 60^{\circ} + \sin 60^{\circ} \frac{(i+j+k)}{\sqrt{3}}.$$

5. Simplifying using $\cos 60^{\circ} = \frac{1}{2}$ and $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$:

$$q = \frac{1}{2} + \frac{1}{2}i + \frac{1}{2}j + \frac{1}{2}k.$$

Thus, the required quaternion is:

$$q = \frac{1}{2} + \frac{1}{2}i + \frac{1}{2}j + \frac{1}{2}k.$$