UPPSALA UNIVERSITET

Matematiska institutionen

Gunnar Berg, Thomas Kragh, Ryszard Rubinsztein Prov i matematik

ES1, Geokand, GrundlärMa, gylärarma1, IT1, K1, KandDv1, KandKe1, KandMa1, Lärarmat, MatemA, STS1, W1, X1

LINJÄR ALGEBRA och GEOMETRI I 2013–08–29

Skrivtid: 8.00-13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara försedda med motiveringar. Varje korrekt löst uppgift ger högst 5 poäng. För betygen 3, 4, 5 krävs minst 18, 25 respektive 32 poäng.

1. Lös det linjära ekvationssystemet

$$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 = 2\\ 2x_1 + 2x_2 + 3x_3 + x_4 = 0\\ 4x_1 + 2x_3 + 2x_4 = c \end{cases}$$

för alla värden på $c \in \mathbb{R}$.

2. Låt

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad \text{och} \qquad B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{pmatrix}$$

Finn alla matriser X som uppfyller ekvationen

$$AX^{-1}B = I.$$

3. Lös ekvationen

$$\begin{vmatrix} x & 0 & 1 & x & 0 \\ 1 & x & x & 0 & 1 \\ 1 & 0 & x & 1 & 0 \\ x & 1 & 0 & 1 & x \\ 1 & 0 & 1 & x & 0 \end{vmatrix} = 0.$$

4. Ett plan π är vinkelrätt mot planet x+2y-z+1=0 och skärningslinjen mellan dessa två plan innehåller punkterna P=(2,1,5) och Q=(1,-1,0). Bestäm ekvationen för planet π . (ON-system)

5. En tetraeder (en pyramid med en triangel som botten) har hörnen

$$A = (2,0,1), B = (-1,3,5), C = (1,0,0) \text{ och } D = (-5,-4,7).$$

Finn ekvationen för det plan som innehållet punkterna A,B och C och bestäm den punkt där höjden från D skär detta plan. (ON-system)

- **6.** Låt $G \colon \mathbb{R}^3 \to \mathbb{R}^3$ vara den linjära avibildning som avbildar vektorn $\vec{u}_1 = (1,1,0)$ på vektorn $\vec{v}_1 = (-1,0,1)$, avbildar vektorn $\vec{u}_2 = (1,0,1)$ på vektorn $\vec{v}_2 = (3,1,1)$ och avbildar vektorn $\vec{u}_3 = (0,1,1)$ på vektorn $\vec{v}_3 = (1,0,2)$.
 - (a) Finn G:s standardmatris [G].
 - (b) Finn bilden av vektorn $\vec{w} = (1, 2, 3)$.
- **7.** Låt

$$\vec{u}_1 = (1, 2, 3), \quad \vec{u}_2 = (2, 3, 4) \quad \text{och} \quad \vec{u}_3 = (3, 4, 5)$$

vara tre vektorer i \mathbb{R}^3 .

- (a) Avgör om vektorerna \vec{u}_1 , \vec{u}_2 och \vec{u}_3 är linjärt beroende eller linjärt oberoende.
- (b) För vilka värden av $a \in \mathbb{R}$ tillhör vektorn $\vec{v} = (-2, -4, a)$ det linjära höljet span $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ av vektorerna \vec{u}_1, \vec{u}_2 och \vec{u}_3 ?
- 8. Visa att för alla vektorer \vec{u} och \vec{v} i \mathbb{R}^n gäller

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

(denna identitet kallas för parallellogramlagen).

LYCKA TILL!

Svar till tentamen i LINJÄR ALGEBRA och GEOMETRI I 2013–08–29

1. Inga lösningar för $c \neq 8$.

För c = 8 är lösningarna $(x_1, x_2, x_3, x_4) = (2 - \frac{s}{2} - \frac{t}{2}, -2 - s, s, t), \quad s, t \in \mathbb{R}.$

2.
$$X = BA = \begin{pmatrix} 2 & 5 & 2 \\ 2 & 7 & 5 \\ 0 & 4 & 3 \end{pmatrix}$$

- 3. $x_{1,2,3} = 1$ och $x_{4,5} = -1$.
- **4.** 2x y 3 = 0.
- **5.** Ekvationen för planen är -3x 7y + 3z = -3. Den närmaste punkten är (-2,3,4).

6.
$$[G] = \frac{1}{2} \begin{pmatrix} 1 & -3 & 5 \\ 1 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$
 och $G(\overrightarrow{w}) = (5, 1, 5)$.

7. (a) Linjärt beroende. (b) a = -6.

8.
$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle =$$

$$= \langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle + 2\langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle - 2\langle \vec{u}, \vec{v} \rangle =$$

$$= 2\langle \vec{u}, \vec{u} \rangle + 2\langle \vec{v}, \vec{v} \rangle =$$

$$= 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2.$$