Précipitation et oxydoréduction

/7 1 On ajoute $n = 10^{-5}$ mol d'ions Cl⁻ dans $V_0 = 10$ mL de nitrate d'argent (Ag⁺,NO₃⁻) à $c_0 = 10^{-3}$ mol·L⁻¹. On donne p K_s (AgCl) = 9,8. Obtient-on un précipité de chlorure d'argent AgCl? Trouver la valeur limite pCl_{lim} du début de précipitation de ce solide; tracer alors son diagramme d'existence en fonction de pCl.

FIGURE 21.1 – Diagramme d'existence de AgCl (1)

/6 2 La solubilité de $\operatorname{AgCl}_{(s)}$ dans l'eau pure est $s_{\text{pur}} \approx 1,3 \times 10^{-5} \, \text{mol} \cdot \text{L}^{-1}$. Calculer sa solubilité s'il y a déjà $c = 0,1 \, \text{mol} \cdot \text{L}^{-1}$ de Cl^- en solution, et comparer à la situation pure. Comment s'appelle cet effet? On donne p $K_s(\operatorname{AgCl}) = 9,8$.

1	É quation 1		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Initial	$\xi = 0$	n	0	cV
	Final	$\xi_f = \xi_{\rm eq}$	$n-\xi_{\rm eq}$	$\xi_{ m eq}$	$cV + \xi_{eq}$

C'est l'effet d'ions communs (1)

$$\begin{array}{ccc}
\boxed{2} & n_{\text{dis,max}} = \xi_{\text{eq}} = sV & \stackrel{\frown}{\Rightarrow} & \begin{cases} [Ag^+]_{\text{eq}} = s \\ [Cl^-]_{\text{eq}} = \frac{cV + \xi_{\text{eq}}}{V} = c + s \end{cases} \\
\boxed{3} & K_s = \frac{s(c+s)}{(c^\circ)^2} & \stackrel{s}{\Leftrightarrow} & c \\ \hline & c^{\circ 2}K_s \approx s \times c \Leftrightarrow \boxed{s \approx \frac{1}{s} K_s c^{\circ 2}} \\
\Rightarrow s = 1,8 \times 10^{-9} \, \text{mol} \cdot L^{-1} \boxed{1} \ll c
\end{array}$$

 $\sqrt{3}$ Pour une demi-équation

$$\alpha \text{Red} + \beta H_2 O_{(1)} = \gamma Ox + \delta H_{(aq)}^+ + \text{ne}^-$$

Donner l'expression du potentiel de NERNST en fonction de la température, puis sa forme simplifiée à 25 °C.

$$E(\text{Ox}/\text{Red}) = E^{\circ}(\text{Ox}/\text{Red}) + \frac{RT}{n\mathcal{F}} \ln \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}} \Rightarrow \boxed{E(\text{Ox}/\text{Red}) = E^{\circ}(\text{Ox}/\text{Red}) + \frac{0.06}{n} \log \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}}}$$

/4 4 Donner les potentiels des couples suivants :

$$\begin{array}{c} \diamond \ \ \mathrm{Fe_{(aq)}^{2+}/Fe_{(s)}} : \ \ \mathrm{Fe_{(s)}} = \mathrm{Fe_{(aq)}^{2+}} + 2\,\mathrm{e^{-}} \\ \hline \\ E = E^{\circ} \left(\mathrm{Fe^{2+}/Fe}\right) + \frac{0.06}{2}\log\frac{\left[\mathrm{Fe^{2+}}\right]}{c^{\circ}} \\ \\ \diamond \ \ \mathrm{Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}} \quad \ \mathrm{Fe_{(aq)}^{2+}} = \mathrm{Fe_{(aq)}^{3+}} + \mathrm{e^{-}} \\ \hline \\ E = E^{\circ} \left(\mathrm{Fe^{3+}/Fe^{2+}}\right) + 0.06\log\left(\frac{\left[\mathrm{Fe^{3+}}\right]}{\left[\mathrm{Fe^{2+}}\right]}\right) \end{array}$$