IC Engine HW 2 Results

Submitted by: NS Qazi Umer Jamil GC Mudassar Wajid

1. Reaction with 120% theoretical air:

Unit Settings: [kJ]/[K]/[bar]/[kmol]/[degrees]

a = 24.6 a_{stoic} = 20.5

b = 14.72 c = 1.277

d = 17 $\Delta G_1^0 = 83581 \text{ [kJ/kmol]}$

 $\Delta G_2^0 = 121979 \text{ [kJ/kmol]}$ e = 92.34 f = 0.5828 q = 0.3115

 $g_{CO}^{\circ} = -655084 \text{ [kJ/kmol]}$ $g_{CO2}^{\circ} = -1.021\text{E} + 06 \text{ [kJ/kmol]}$

 $g_{H20}^{0} = -784701 \text{ [kJ/kmol]}$ $g_{N2}^{0} = -529787 \text{ [kJ/kmol]}$

 $g_{NO}^{\circ} = -486666 \text{ [kJ/kmol]}$ $g_{O2}^{\circ} = -565524 \text{ [kJ/kmol]}$

HP = -452014 [kJ/kmol] HR = -452014 [kJ/kmol]

 $h_{CO} = -42053 \text{ [kJ/kmol]}$ $h_{CO2} = -282505 \text{ [kJ/kmol]}$

 $h_{f,C16H34} = -458300$ $h_{f,N2} = 53.61$ [kJ/kmol]

 $h_{f,O2} = 53.94 \text{ [kJ/kmol]}$ $h_{H2O} = -152376 \text{ [kJ/kmol]}$

 $h_{N2} = 67792 \text{ [kJ/kmol]}$ $h_{NO} = 159987 \text{ [kJ/kgmol]}$

 $h_{02} = 71475$ [kJ/kmol] $K_1 = 0.01318$ $K_2 = 0.001803$ $n_{tot} = 126.2$

P = 5 [bar] $P_{ref} = 1$ [bar]

R = 8.314 [kJ/kmole-K] T = 2322 [K]

 $y_{CO} = 0.01012$ $y_{CO2} = 0.1166$

 $y_{H20} = 0.1347$ $y_{N2} = 0.7315$

 $y_{ND} = 0.002468$ $y_{D2} = 0.004616$

2. Reaction with 90% theoretical air:

Unit Settings: [kJ]/[K]/[bar]/[kmol]/[degrees]

a = 18.45	a _{stoic} = 20.5	b = 3.899
c = 12.1	d = 17	$\Delta G_1^0 = 103026 \text{ [kJ/kmol]}$
$\Delta G_2^0 = 127899 \text{ [kJ/kmol]}$	e = 69.37	f = 0.00001492
g = 0.0008091	gCo = -593845 [kJ/kmol]	g _{CO2} =-947818 [kJ/kmol]
gH _{2O} = -721714 [kJ/kmol]	gN2=-470100 [kJ/kmol]	gNO = -422048 [kJ/kmol]
g ₀₂ =-501895 [kJ/kmol]	HP = -453586 [kJ/kmol]	HR = -453586 [kJ/kmol]
$h_{CO} = -50599 \text{ [kJ/kmol]}$	h _{CO2} = -296758 [kJ/kmol]	h _{f,C16H34} = -458300
$h_{f,N2} = 53.61 [kJ/kmol]$	$h_{f,O2} = 53.94 [kJ/kmol]$	h _{H20} = -164597 [kJ/kmol]
h _{N2} = 59301 [kJ/kmol]	h _{NO} = 151357 [kJ/kgmol]	$h_{02} = 62521 \text{ [kJ/kmol]}$
K ₁ = 0.002649	K ₂ = 0.0006325	n _{tot} = 102.4
P = 5 [bar]	P _{ref} = 1 [bar]	R = 8.314 [kJ/kmole-K]
T = 2088 [K]	$y_{CO} = 0.1182$	y _{CO2} = 0.03809
y _{H20} = 0.1661	y _{N2} = 0.6776	y _{NO} = 0.000007904
y ₀₂ = 1.458E-07		

Calculation time = 7.7 sec

Conclusion:

Clearly, amount of CO with 90% theoretical air is greater than the amount when the reaction was take place with 120% theoretical air.

Note: HW1 code was already submitted before.