EECStol Homework 5 Yuzhan JIANG

PI. (A) "Vec trick" vec(AXBT) = (BBA) vec(X) Show that $S_x = F_m x F_N^T$ is > 0 DFT of xfloof. For GFMXM and For GFMXM are OFT matrix. Fn'Fn = MIn FN'FN = NIN \Rightarrow implies that $Fin' Fin = \begin{cases} M, i=1\\ 0, i+1 \end{cases}$ $Vec(S_K) = Vec(F_M X F_N^T)$ where $X \in F^{MKN}$, $X = [x_1 \ x_2 \dots x_n]$, $x_i \in C^{mK}$ = (FN & FM) Vec (X) FM & FN T & F NWXAW VEC(K) & F : , VEL (Sx) = Fun Vecx) Where Fun is the MYXMN DFT Matrix = MN IM 1. X = m Fm Sx Fn

:. It can computes the 20 inverse DFT of Sx

(a) Find solutions that $arg_{min_{x \in P}} ||Ax - b||_2$ when A = [] || and b = [] ||

We find 10 m/c(A) = (2 N = 2) then there are multiple minimizers. All minimizers are given by &= V, 5, U, b + Vo Zo Y Z & f2-1

Let's find SVD of A first.

 $A^{T}A = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$

det (ATA-XI2)=0 => (2-x)2-4=0

Then we need to find eigenvector of ATA

 $\begin{bmatrix} 2^{-4} & 2 \\ 2 & 2^{-4} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = 0 = 0 \quad -2V_1 + 2V_2 = 0 \quad V_1 = V_2 \; .$

·. VI= Vr= = [[] V2= V0= = []

12= JAVI

= 4[|] \text{\text{\text{c}}[]}

= 岩门

.. Overall, X = Vr Ir Ur b + Vo Zo

= 点[()[注] 点[(]] [] + 点[-(]] 2.

= 4[1][2] + [2[4] 2. = 4[3] + 1/2[-1] 20 4206f2-1

(b) argmin: |/Ax-b1/2

X=4[3]+ =[1] zo, 420 EC

P3:

Wr = Wb - WAXLet $\widetilde{b} = Wb$ $\widetilde{A} = WA$

= argmin
$$||\tilde{b} - \tilde{A} \times 1|^2$$

$$\begin{array}{lll}
\stackrel{\wedge}{X} &= & \stackrel{\sim}{A} + \stackrel{\leftarrow}{b} \\
&= & \stackrel{\sim}{V} \stackrel{\sim}{\Sigma} + \stackrel{\sim}{U}' \text{ Wb} \qquad \text{where} \quad \stackrel{\sim}{A} &= & \stackrel{\sim}{U} \stackrel{\sim}{\Sigma} \stackrel{\sim}{V}'
\end{array}$$

P4.

(b)

 $|X_K - \hat{X}|$ decreases monotonically with k as the result shown.

(a)
$$\chi(S) = \underset{\times}{\text{org anin}} \frac{1}{2} ||Ax - b||_{2}^{2} + S^{2} \frac{1}{2} ||X||_{2}^{2}$$

$$\frac{1}{2} ||Ax - b||_{2}^{2} + \int_{2}^{2} ||X||_{2}^{2} = \frac{1}{2} (Ax - b)' (Ax + b) + \int_{2}^{2} ||X||_{2}^{2}$$

$$= \frac{1}{2} |(xA'Ax - 2b'Ax + b'b + S^{2}x'x)$$

$$= \frac{1}{2} (x||S^{2}||X| - 2Eb' o) ||S^{2}||X + Eb' o|| ||S^{2}||X + Eb' o||X + Eb' o|| ||S^{2}||X + Eb' o||X +$$

$$= \frac{1}{2} \left| \left| \begin{bmatrix} A \\ SI \end{bmatrix} \times - \begin{bmatrix} b \\ O \end{bmatrix} \right|_{2}^{2}$$
 (New asst function)
$$\hat{X} = \begin{bmatrix} A \\ SI \end{bmatrix}^{+} \begin{bmatrix} b \\ O \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix}^{\dagger} = \begin{bmatrix} A \end{bmatrix}^{\dagger} \begin{bmatrix} A \end{bmatrix}^{\dagger} \begin{bmatrix} A \end{bmatrix}^{\dagger}$$

(b)
$$\chi(\delta) \longrightarrow 0$$
 as $\delta \longrightarrow \infty$.

This ancher makes sense since $8\!\to\!\infty$, the $S^1\|x\|_2^2$ term dominates the ast function

(c)
$$X_{k+1} = X_k - \mu \begin{bmatrix} A \\ \delta L \end{bmatrix}' \begin{bmatrix} A \\ \delta L \end{bmatrix} X_k - \begin{bmatrix} b \\ 0 \end{bmatrix}$$

$$= X_k - \mu \begin{bmatrix} A' \\ \delta L \end{bmatrix} \begin{bmatrix} A \times k - b \\ \delta L \times k \end{bmatrix}$$

 $= X_{K} - \mu(A'AX_{K} - A'b + \int_{-1}^{2} X_{K})$ This iteration will converge to \hat{X} Whenever $\mu < \frac{2}{\sigma_{1}(\tilde{A})^{2}}$ Where $\hat{A} = \begin{bmatrix} A \\ \delta I \end{bmatrix}$

d)
$$G_1([S_1]) = NG_1^2(A) + S^2$$

: the nonge of step size:

= -

= \((1+1)^2 + (0-\frac{1}{5})^2

(a) the plane
$$\{(x,y,\ge) \in \mathbb{R}^3: 0x + by + C \ge 0\}$$

=> $[a \ b \ c] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax + bx + cz = 0$

.. We can see that
$$\begin{bmatrix} \hat{y} \\ \hat{z} \end{bmatrix} \in N([abc])$$

Compact SVD of $[abc] = [1] \sqrt{a^2tb^2+c^2} = [abc] = [1] \sqrt{a^2tb^2+c^2}$
Whose $a_1=[1] = [a^2tb^2+c^2] = [$

$$\begin{aligned}
\sigma_{i} &= \sqrt{a^{2}b^{2}c^{2}}, \\
\tau &= \frac{\tau a b c}{\sqrt{a^{2}b^{2}c^{2}}}
\end{aligned}$$

Full SVD of
$$[a b c]$$
 will have $3x3$ matrix V $\{v, v, v_3\}$ which $N([a b c]) = span $\{v_2, v_3\}$ Since v_2, v_3 are orthonormal, therefore $\{v_2, v_3\}$ are the orthonormal basis for the plane.$

(b) Given point
$$(J, \beta, \gamma) \in \mathbb{R}^3$$

The point that is closest to this point
$$\Pr_{R \leq V_3, V_3 \neq 0} \left[\begin{array}{c} \beta \\ \gamma \end{array} \right] = \left(V_3 V_3^{\mathsf{T}} + V_3 V_3^{\mathsf{T}} \right) \left[\begin{array}{c} \beta \\ \gamma \end{array} \right]$$

$$x+2y+32 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow 1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow$$

 $= \frac{1}{13} \begin{bmatrix} 12 & -2 & -3 & 7 & 7 & 4 \\ -2 & 9 & -6 & 7 & 5 \\ -3 & -6 & 4 & 6 \end{bmatrix}$

 $=\frac{1}{13}\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 1 & 9 \end{bmatrix}$

$$=\frac{1}{1}\begin{bmatrix} 1\\ 1\\ -(8) \end{bmatrix}$$

