EE2-08 Mathematics: Laplace Transforms

D. Nucinkis

d.nucinkis@ic.ac.uk

These notes are not identical word-for-word with my lectures which will be given on a BB/WB. Some of these notes may contain more examples than the corresponding lecture while in other cases the lecture may contain more detailed working. I will not be handing out copies of these notes – you are therefore advised to attend lectures and take your own.

There will be one **Handout** on Laplace Transforms.

1 Laplace Transforms

1.1 Introduction

For a function f(t) uniquely defined on $0 \le t \le \infty$, its Laplace transform (LT) is defined as

$$\mathcal{L}\left[f(t)\right] = \overline{f}(s) = \int_0^\infty e^{-st} f(t) dt, \qquad (1.1)$$

where s may be complex. The LT may not exist if f(t) becomes singular in $[0 \infty]$. The LT is a **one-sided transform** in that it operates on $[0 \infty]$ and not, like the FT, on $[-\infty \infty]$. For this reason, LTs are useful for initial value problems, such as circuit theory, where a function switches on at t=0 and where f(0) has been specified.

Because s is a complex variable the inverse transform

$$f(t) = \mathcal{L}^{-1}\left[\overline{f}(s)\right] = \oint_C e^{st}\,\overline{f}(s)\,ds \tag{1.2}$$

is more difficult to handle because the contour C is a tricky infinite rectangle in the right-hand-half of the s-plane. Referred to as 'Bromwich integrals' the evaluation of these is beyond our present course. To circumvent this difficulty we resort firstly to a **library of transforms** (see Handout 7) for the standard functions and secondly to ways of piecing combinations of these together for those not in the list.

1.2 Library of Laplace Transforms

1. The constant function f(t) = 1:

$$f(t) = 1; \overline{f}(s) = \frac{1}{s} \operatorname{Re} s > 0 (1.3)$$

Proof:

$$\overline{f}(s) = \int_0^\infty e^{-st} dt = \left[\frac{e^{-st}}{s} \right]_0^\infty = \frac{1}{s}, \qquad (1.4)$$

provided $\operatorname{Re} s > 0$.

2. The exponential-function $f(t) = e^{at}$:

$$f(t) = \exp(at);$$
 $\overline{f}(s) = \frac{1}{s-a};$ $\operatorname{Re} s > a$ (1.5)

Proof:

$$\overline{f}(s) = \int_0^\infty e^{-(s-a)t} dt = \left[-\frac{e^{-(s-a)t}}{s-a} \right]_0^\infty = \frac{1}{s-a},$$
 (1.6)

provided Re(s-a) > 0.

3. The sine function:

$$f(t) = \sin(at); \qquad \overline{f}(s) = \frac{a}{s^2 + a^2}; \qquad \text{Re } s > 0$$
(1.7)

Proof: Take both the sine and cosine functions in combination: $\cos at + i \sin at = e^{iat}$

$$\mathcal{L}(e^{iat}) = \int_0^\infty e^{-(s-ia)t} dt = \frac{1}{s-ia} = \frac{s+ia}{s^2 + a^2}$$
 (1.8)

provided Re(s) > 0. Then the imaginary (real) part gives the result for sine (cosine).

4. The cosine function

$$f(t) = \cos(at); \qquad \overline{f}(s) = \frac{s}{s^2 + a^2}; \qquad \text{Re } s > 0$$
(1.9)

5. The polynomial function $f(t) = t^n$:

$$f(t) = t^n; \quad \overline{f}(s) = \frac{n!}{s^{n+1}}; \qquad (n \ge 0); \qquad \text{Re } s > 0$$
 (1.10)

Proof: Define the LT as $\overline{f}(s) = I_n$ as

$$I_{n} = \int_{0}^{\infty} e^{-st} t^{n} dt = -\frac{1}{s} \int_{0}^{\infty} t^{n} d[e^{-st}]$$

$$= \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1} dt = \frac{n}{s} I_{n-1}$$
(1.11)

provided $\mathrm{Re}(s)>0.$ With n=0 and $\mathcal{L}[1]=s|^{-1}$ we obtain $I_1=s^{-2}$ and end up with

$$\overline{f}(s) = I_n = \frac{n!}{s^{n+1}}. (1.12)$$

6. The Heaviside function:

$$f(t) = H(t - t_0);$$
 $\overline{f}(s) = \frac{\exp(-st_0)}{s};$ $\text{Re } s > 0$ (1.13)

Proof: For Res > 0

$$\mathcal{L}[H(t-t_0)] = \int_0^\infty e^{-st} H(t-t_0) dt$$

$$= \int_{t_0}^\infty e^{-st} dt = \frac{e^{-st_0}}{s}.$$
(1.14)

7. The Dirac δ -function:

$$f(t) = \delta(t - t_0); \quad \overline{f}(s) = \exp(-st_0); \quad t_0 \ge 0$$
 (1.15)

Proof: t_0 needs to reside within the positive range of t

$$\int_0^\infty e^{-st} \delta(t - t_0) dt = \begin{cases} e^{-st_0} & t_0 \ge 0, \\ 0 & t_0 < 0. \end{cases}$$
 (1.16)

8. Shift theorem:

$$\mathcal{L}\left[\exp(at)f(t)\right] = \overline{f}(s-a)$$
(1.17)

Proof: Provided Re(s-a) > 0

$$\mathcal{L}\left[\exp(at)f(t)\right] = \int_0^\infty e^{-(s-a)t} f(t) dt$$
$$= \overline{f}(s-a). \tag{1.18}$$

9. Second shift theorem:

$$\mathcal{L}\left[H(t-a)f(t-a)\right] = \exp(-sa)\overline{f}(s)$$
(1.19)

Proof: let $\tau = t - a$. Then

$$\mathcal{L}\left[H(t-a)f(t-a)\right] = \int_0^\infty e^{-st}H(t-a)f(t-a)\,dt$$

$$= e^{-sa}\int_{-a}^\infty e^{-s\tau}H(\tau)f(\tau)\,d\tau$$

$$= e^{-sa}\int_0^\infty e^{-s\tau}f(\tau)\,d\tau = e^{-sa}\overline{f}(s)\,. \tag{1.20}$$

10. Convolution theorem:

$$\mathcal{L}\left\{f \star g\right\} = \overline{f}(s)\,\overline{g}(s) \tag{1.21}$$

where the convolution between two functions f(t) and g(t) is defined as

$$f \star g = \int_0^t f(u)g(t-u) \, du$$
. (1.22)

Note that the convolution is over [0, t] and not $[-\infty, \infty]$ as for the FT. The convolution integral on the RHS can also be written with f and g reversed: that is $\int_0^t f(t-u)g(u) \, du$.

Proof: The LT of the convolution product in (??) is written down and then the order of the integrals is exchanged, as in the figure, using $\tau = t - u$

The region of integration ($\mathbb R$ in the figure) is obtained from the original integral: for the inner integral, the u-integration is taken in the vertical direction in $\mathbb R$, with $u=0\ldots t$ and then the outer integral has $t=0\ldots\infty$. To cover the area $\mathbb R$ in the reverse order, the inner, t-integration is taken in the horizontal direction, with $t=u\ldots\infty$ and the outer integral has $u=0\ldots\infty$.

$$\mathcal{L}(f \star g) = \int_{0}^{\infty} e^{-st} \left(\int_{0}^{t} f(u)g(t-u) \, du \right) dt$$

$$= \int_{0}^{\infty} \left(\int_{t=u}^{t=\infty} e^{-st} g(t-u) \, dt \right) f(u) \, du$$

$$= \int_{0}^{\infty} e^{-su} \left(\int_{\tau=0}^{\tau=\infty} e^{-s\tau} g(\tau) \, d\tau \right) f(u) \, du$$

$$= \overline{f}(s) \, \overline{g}(s) \, . \tag{1.23}$$

11. Integral:

$$\mathcal{L}\left(\int_0^t f(u) \, du\right) = \frac{\overline{f}(s)}{s}$$
 (1.24)

Proof: The integral in (??) is a convolution product between f(t) and g(t) = 1. Thus $\overline{g}(s) = 1/s$, giving the result from (??).

12. Derivative:

$$\mathcal{L}\left[f'(t)\right] = s\overline{f}(s) - f(0) \tag{1.25}$$

Proof: Noting that f(0) means f(t=0)

$$\mathcal{L}[\dot{f}] = \int_0^\infty e^{-st} \dot{f} dt$$

$$= \int_0^\infty e^{-st} df = \left[e^{-st} f(t) \right]_0^\infty + s \int_0^\infty e^{-st} f dt$$

$$= s \overline{f}(s) - f(0)$$
(1.26)

provided $\operatorname{Re} s > 0$.

13. **Second derivative:** Noting that f'(0) means f'(t=0)

$$\mathcal{L}\left[f''(t)\right] = s^2 \overline{f}(s) - sf(0) - f'(0)$$
(1.27)

Proof:

$$\mathcal{L}[f''] = \int_{0}^{\infty} e^{-st} f'' dt$$

$$= \int_{0}^{\infty} e^{-st} df' = \left[e^{-st} f'(t) \right]_{0}^{\infty} + s \int_{0}^{\infty} e^{-st} f' dt$$

$$= s \mathcal{L}[f'] - f'(0)$$

$$= s^{2} \overline{f}(s) - s f(0) - f'(0), \qquad (1.28)$$

provided $\operatorname{Re} s > 0$.

1.3 Using the Convolution Theorem to find inverses

If we are given an inverse LT as a function $\overline{F}(s)$ which is too complicated to appear in the Library above but can be split into composite functions $\overline{F}(s) = \overline{f}(s)\,\overline{g}(s)$ where $\overline{f}(s)$ and $\overline{g}(s)$ do belong to the Library, then the Convolution Theorem allows us to write

$$F(t) = \mathcal{L}^{-1}\left(\overline{f}(s)\,\overline{g}(s)\right) = f(t) \star g(t). \tag{1.29}$$

Example 1: Find $\mathcal{L}^{-1}\left[\frac{1}{s(s^2+1)}\right]$. We identify $f(s)=s^{-1}$ and $g(s)=(s^2+1)^{-1}$. The Library tell us that f(t)=1 and $g(t)=\sin t$. Thus

$$F(t) = 1 \star \sin t = \int_0^t \sin u \, du = 1 - \cos t \,. \tag{1.30}$$

Example 2: Find $\mathcal{L}^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$. Identify

$$\overline{f}(s) = \frac{s}{s^2 + a^2}$$
 $\overline{g}(s) = \frac{1}{s^2 + a^2}$ (1.31)

The Library tell us that $f(t) = \cos at$ and $g(t) = a^{-1}\sin at$, and so

$$F(t) = a^{-1} \sin at \star \cos at = a^{-1} \int_0^t \sin(au) \cos a(t - u) du.$$
 (1.32)

Using $\sin(A+B) + \sin(A-B) = 2\sin A\cos B$ we find

$$\sin(au)\cos a(t-u) = \frac{1}{2}[\sin at + \sin a(2u-t)]$$
 (1.33)

and so from (??)

$$F(t) = \frac{1}{2a} \int_0^t \left[\sin(at) + \sin a(2u - t) \right] du$$

$$= \frac{1}{2a} \left[t \sin at - \frac{1}{2a} \left\{ \cos at - \cos at \right\} \right]$$

$$= \frac{t}{2a} \sin at. \qquad (1.34)$$

Example 3: Find $\mathcal{L}^{-1}\left[\frac{a^2}{(s^2+a^2)^2}\right]$. Identify $F(s)=|\overline{f}(s)|^2$ where

$$\overline{f}(s) = \frac{a}{s^2 + a^2} \qquad \overline{g}(s) = \overline{f}(s). \tag{1.35}$$

The Library tell us that $f(t) = g(t) = \sin at$ so $\sin at$ is convolved with itself

$$F(t) = \sin at \star \sin at$$

$$= \int_0^t \sin au \sin a(t - u) du$$

$$= \frac{1}{2a} [\sin at - at \cos at] . \tag{1.36}$$

having used the trig-identity $\cos(A-B) - \cos(A+B) = 2\sin A\sin B$.

1.4 Examples involving partial fractions and the Shift theorem

Example 1: Find f(t) when

$$\overline{f}(s) = \frac{6s^2 + 10s + 2}{s(s^2 + 3s + 2)}. (1.37)$$

Noting that $s^2+3s+2=(s+1)(s+2)$ (??) can be split by Partial Fractions (PFs) into

$$\overline{f}(s) = \frac{6s^2 + 10s + 2}{s(s+1)(s+2)} = \frac{1}{s} + \frac{2}{s+1} + \frac{3}{s+2}.$$
 (1.38)

Thus, using the Library

$$f(t) = \mathcal{L}^{-1} \left(\frac{1}{s} + \frac{2}{s+1} + \frac{3}{s+2} \right)$$

= 1 + 2e^{-t} + 3e^{-2t}. (1.39)

Example 2: Find f(t) when

$$\overline{f}(s) = \frac{2}{s(s-2)}$$
 (1.40)

in which case

$$\overline{f}(s) = -\frac{1}{s} + \frac{1}{s-2},$$
 (1.41)

and so

$$f(t) = -1 + e^{2t} \,. (1.42)$$

Example 3: Find f(t) when $\overline{f}(s) = (s-1)^{-4}$. From the Library,

$$\mathcal{L}\left[t^{3}\right] = \frac{3!}{s^{4}} \tag{1.43}$$

therefore $\mathcal{L}^{-1}[s^{-4}] = t^3/6$. With the application of the Shift Theorem with a=1 we have

$$\mathcal{L}^{-1}[(s-1)^{-4}] = \frac{1}{6}t^3e^t.$$
 (1.44)

1.5 Solving ODEs using Laplace Transforms

Many textbook methods are given to solve 2nd order ODEs of the type

$$\ddot{x} + \alpha \dot{x} + \omega_0^2 x = f(t), \qquad (1.45)$$

but only the LT-method can handle those cases when the forcing function is not smooth. Examples might be voltage inputs of the square wave or saw-tooth type. To approach this using LTs, the transform is taken of (??)

$$\left(s^2\overline{x}(s) - sx_0 - \dot{x}_0\right) + \alpha\left(s\overline{x}(s) - x_0\right) + \omega_0^2 \,\overline{x}(s) = \overline{f}(s). \tag{1.46}$$

where $x_0 = x(0)$ and $\dot{x}_0 = \dot{x}(0)$. This re-organizes into

$$\left(s^2 + \alpha s + \omega_0^2\right) \overline{x}(s) = \overline{f}(s) + (s + \alpha)x_0 + \dot{x}_0. \tag{1.47}$$

Note that the final expression for $\overline{x}(s)$ divides conveniently into two parts corresponding to the Complementary Function and the Particular Integral

$$\overline{x}(s) = \underbrace{\frac{\overline{f}(s)}{s^2 + \alpha s + \omega_0^2}}_{PL} + \underbrace{\frac{(s+\alpha)x_0 + \dot{x}_0}{s^2 + \alpha s + \omega_0^2}}_{CF}$$
(1.48)

The initial conditions appear in x_0 and \dot{x}_0 as part of the Complementary Function. How to take the inverse depends on whether the denominator has real or complex roots. These we consider by example.

Example 1: Solve $\ddot{x} + \dot{x} - 2x = e^t$ with $x_0 = 3$ and $\dot{x}_0 = 0$.

(??) becomes

$$(s^2 + s - 2)\overline{x}(s) = \frac{1}{s - 1} + 3(s + 1). \tag{1.49}$$

Noting that $s^2 + s - 2 = (s - 1)(s + 2)$ we have

$$\overline{x}(s) = \underbrace{\frac{1}{(s-1)^2(s+2)}}_{P.L} + \underbrace{\frac{3(s+1)}{(s-1)(s+2)}}_{C.F.}$$
(1.50)

Using PFs

$$\overline{x}(s) = \frac{1}{3(s-1)^2} + \frac{17}{9(s-1)} + \frac{10}{9(s+2)}$$
(1.51)

and so the Library gives us

$$x(t) = \frac{1}{3}te^t + \frac{17}{9}e^t + \frac{10}{9}e^{-2t}.$$
 (1.52)

Example 2: Solve $\ddot{x} + 16x = \sin 2t$ with $x_0 = 0$ and $\dot{x}_0 = 1$.

(??) becomes

$$(s^2 + 16)\overline{x}(s) = 1 + \frac{2}{s^2 + 4}, \qquad (1.53)$$

and so

$$\overline{x}(s) = \frac{1}{s^2 + 16} + \frac{2}{(s^2 + 4)(s^2 + 16)}$$

$$= \frac{5}{6(s^2 + 16)} + \frac{1}{6(s^2 + 4)}$$

$$= \frac{5}{24} \left(\frac{4}{s^2 + 4^2}\right) + \frac{1}{12} \left(\frac{2}{s^2 + 2^2}\right). \tag{1.54}$$

Therefore, from the Library

$$x(t) = \frac{5}{24}\sin 4t + \frac{1}{12}\sin 2t. \tag{1.55}$$

Example 3 (real roots): Solve $\ddot{x} + 3\dot{x} + 2x = f(t)$ with $x_0 = 1$ and $\dot{x}_0 = -2$. In this example f(t) has not been specified although it must be assumed that its LT exists.

We obtain

$$\overline{x}(s) = \frac{\overline{f}(s)}{s^2 + 3s + 2} + \frac{x_0(s+3) + \dot{x}_0}{s^2 + 3s + 2}$$
(1.56)

so from (??) with the specified initial conditions

$$\overline{x}(s) = \frac{\overline{f}(s)}{(s+1)(s+2)} + \frac{1}{s+2}.$$
 (1.57)

Using PFs we find

$$\overline{x}(s) = \frac{\overline{f}(s)}{s+1} - \frac{\overline{f}(s)}{s+2} + \frac{1}{s+2}$$

$$\equiv \overline{f}(s)\overline{g}_1(s) - \overline{f}(s)\overline{g}_2(s) + \overline{g}_2(s) \tag{1.58}$$

where $\overline{g}_1(s)=(s+1)^{-1}$ and $\overline{g}_2(s)=(s+2)^{-1}$. From these definitions it is clear that $g_1(t)=e^{-t}$ and $g_2(t)=e^{-2t}$. From the Convolution Theorem we have

$$x(t) = \underbrace{\int_{0}^{t} \left[e^{-(t-u)} - e^{-2(t-u)} \right] f(u) \, du}_{P.I.} + \underbrace{e^{-2t}}_{C.F.}.$$
 (1.59)

The power of the LT-method can be seen here in that it solves, in principle, an ODE with any forcing, provided $\overline{f}(s)$ exists.

Example 4 (complex roots): Solve $\ddot{x} + 2\dot{x} + 2x = f(t)$ with $x_0 = 1$ and $\dot{x}_0 = 0$. In this example f(t) has not been specified although it must be assumed that its LT exists.

From (??) the next step comes out to be

$$\overline{x}(s) = \frac{\overline{f}(s)}{(s+1)^2 + 1} + \frac{s+2}{(s+1)^2 + 1}$$
 (1.60)

where it has been noted that $s^2 + 2s + 2$ does not have real roots. Now define

$$\overline{g}_1(s) = \frac{1}{(s+1)^2 + 1}$$
 $\overline{g}_2(s) = \frac{s+1}{(s+1)^2 + 1}$. (1.61)

Therefore $\overline{x}(s)$ can be re-expressed as

$$\overline{x}(s) = \overline{f}(s)\overline{g}_1(s) + \overline{g}_2(s) + \overline{g}_1(s). \tag{1.62}$$

Inverse transforms can be found from the Shift Theorem and the Library

$$g_1(t) = e^{-t} \sin t$$
 $g_2(t) = e^{-t} \cos t$. (1.63)

The Convolution Theorem gives the final result

$$x(t) = \int_0^t f(t - u)e^{-u}\sin u \, du + e^{-t} \left[\cos t + \sin t\right]. \tag{1.64}$$