Review of filtering methods for removal of resuscitation artifacts from human ECG signals

Ivan Markovsky

K.U.Leuven, ESAT-SISTA

Outline

Introduction

Filtering methods

Evaluation of the methods

Notation

$$y = v + \alpha c$$

$$v$$
 — measured signal v — desired signal c — "noise" signal, $\|c\|=1$ α — noise level

$$SNR(y, v) := 10 \log_{10} \left(\frac{\|v\|_2^2}{\|v - y\|_2^2} \right)$$
 — data SNR

The filtering problem

Given y, find in real-time an approximation \hat{v} of v.

$$y \longrightarrow \overline{\text{Filter}} \longrightarrow \widehat{v}$$

Choose the filter, so that the approx. error $\|v - \widehat{v}\|$ is "small".

$$SNR(\widehat{v}, v) = 10 \log_{10} \left(\frac{\|v\|_2^2}{\|v - \widehat{v}\|_2^2} \right)$$
 — restored SNR

Filtering methods

Filtering is based on prior knowledge about *v* and *c*.

- Bandpass filtering v and c are separated in frequency and the cutoff frequency f₀ is known
- Kalman filtering col(v,c) is modeled as an ARMA(X) process M and that model is known
- Adaptive filtering uses an additional signal u that is well correlated with c but uncorr. with v

Biomedical meaning of the signals

- v pure ECG signal
- c artifact on the ECG caused by resuscitation
- u arterial blood pressure signal

u is "well" correlated with c and is measured

A database of separately recorded v, c, u signals allows us to

- 1. design the methods: choose the cutoff f_0 and the model M
- 2. test the methods: construct y and check the SNR improvement $SNR(\hat{v})/SNR(y)$

Note: In realistic testing f_0 and M should be chosen from part of the data that is not used for testing.

Frequency separation of v and c ($f_0 = 0.075Hz$)

Band-pass filter

Notes:

- the arterial blood pressure signal u is not used
- the cutoff frequency f₀ is the only parameter
- f₀ doesn't change much from one pair of signals to another

Filtering based on a model $u \mapsto c$

u is well correlated with *c* and is measured $\implies \exists$ model *M*

such that \hat{c} is a "good" approximation of c. Then \hat{v} can be constructed as follows:

Actually, \hat{c} is computed by a Kalman filter and not by simulation.

Filtering based on a model $u \mapsto c$

M is a prior knowledge. However, it is not given in practice!

Contrary to f_0 , M differs a lot from one pair (u, c) to another

computing M from one part of the data and using it on another part is not an option.

Possible solution: use adaptive filter; it identifies M in real-time from the given data (y, c).

In the simulations, we identify M from the testing data (unrealistic) Reason: it is a candidate for a reference method, *i.e.*,

gives an upper bound for the achievable performance.

Outline

Introduction

Filtering methods

Evaluation of the methods

Comparison of band-pass and Kalman filters

Objectives/questions

- For SNR(y) < 0db, the band-pass filter performs better than the reference filter.
 - Surprising result, for which currently we have no explanation.
- Add on the same plot the results of other methods (e.g., the best methods from the literature).
 - The best methods are not implemented in a free software.

Conclusions

- The filter robustness is crucial for ECG artifact removal.
- Reference filter: computing a "good" model for u → c is challenging even when using the unknown c signal.
 - The optimization methods have convergence problems. Typically, the best model is unstable.
- Adaptive filtering: computing a good model from (u, y) online is of course harder than offline.
 - How realistic is it in view of the difficulties with designing the reference filter and of its performance at low SNR?
- Our simulation results suggest that the simplest method—low-pass filtering—is overall the best one.