Sequences and Series

Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur - 603203.

CONTENTS

- Sequences
- Series
- Series of positive terms
- Problems
- Cauchy's Integral Test
- D' Alembert's Ratio Test
- Raabe's Test
- Cauchy's Root Test
- Alternating Series-Lebnitz's Test
- Absolute Convergence and Conditional Convergence

Definition:

A set of numbers $a_1, a_2, ... a_n$, ... such that to each positive integer n, there corresponds a number a_n of the set, is called a sequence and it is denoted by $\{a_n\}$. In otherwords, a sequence of real numbers is a function s from the set of natural numbers N into the set of real numbers R.

Examples:

- \square If $an = \frac{1}{n}$, then the sequence is $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$...
- \square If an = (-1)n, then the sequence is -1, 1, -1, ...
- \square If an = k, then the sequence is k, k, ...

Note:

- 1. A finite sequence has a finite number of terms.
- 2. A sequence which is not finite, is an infinite sequence.
- 3. Example 3 is a constant sequence.

Operations on Sequences:

```
If \{s_n\} and \{t_n\} are sequences then
\square \text{ Sum sequence is } \{s_n + t_n\} = \{s_n\} + \{t_n\}.
```

- \square Product sequence is $\{s_n t_n\} = \{s_n\}.\{t_n\}.$
- \square If $c \in R$, then $c\{s_n\} = \{cs_n\}$.
- \square $\{\frac{1}{s_n}\}$ is called the reciprocal of $\{s_n\}$.
- \square $\{\frac{s_n}{t_n}\}$ is defined as the quotient of sequence $\{s_n\}$ and $\{t_n\}$,

Bounded Sequence

A sequence $\{s_n\}$ is said to be bounded if there exist numbers m, M such that $m < a_n < M$ for all $n \in N$. Otherwise it is said to be unbounded.

Example:

- 1. $\{\frac{1}{n}\}$ which is bounded by 1.
- 2. $\{2^n\}$ which is unbounded.

eeja (4)

es and Series Dr. G. Sheeja

Monotonic Sequence:

A sequence $\{s_n\}$ is said to be

- (i) Monotonically increasing if $s_{n+1} \ge s_n$ for every $n, s_1 \le s_2 \le s_3$ $\leq s_n \leq s_{n+1} \leq \cdots$
- (ii) Monotonically decreasing if $s_{n+1} \le s_n$ for every $n, s_1 \ge s_2 \ge s_3$ $\geq s_n \geq s_{n+1} \geq \cdots$.
- (iii) Monotonic if it is either monotonically increasing or monoton- ically decreasing.

Example:

- \square 1,4,7,10,... is a monotonic sequence.
- \square 1, $\frac{1}{2}$, $\frac{1}{3}$... is monotonic sequence.
- \square 1,-1,1,-1,... is not a monotonic sequence.

Limit of a sequence:

Let $\{s_n\}$ be a sequence. l is said to be limit of the sequence $\{s_n\}$, if to each $\varepsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that $|s_n - l| < \varepsilon, \forall n \ge m$. That is $\lim_{n\to\infty} s_n = l$.

Convergent Sequence:

A sequence $\{s_n\}$ is said to be convergent if it has a finite limit. That is $\lim_{n\to\infty} s_n = l$.

Divergent Sequence:

If $\lim_{n \to \infty} s_n = \infty$, $\{s_n\}$ is divergent.

Oscillatory Sequence:

If $\lim_{n\to\infty}$ is not unique (oscillates finitely) or $\pm\infty$ (oscillates infinitely) then $\{s_n\}$ is oscillatory sequence.

Examples:

- \square $\{\frac{1}{n^2}\}$ is a convergent sequence.
- \square {*n*} is a divergent sequence.
- \square { $(-1)^n$ } oscillates finitely.
- \square { $(-1)^n n^2$ } oscillates infinitely.

Problems:

Which of the following sequence are convergent?

(i)
$$\left\{\frac{n}{n^2+1}\right\}$$
 (ii) $\left\{(-1)^{n+1}\right\}$ (iii) $\left\{\frac{n}{n+1}\right\}$ (iv) $\left\{1+\frac{(-1)^n}{n}\right\}$ (v) $\left\{(\frac{1}{2})^n\right\}$

Solution: (i)

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n}{n^2 + 1}$$

$$= \lim_{n \to \infty} \frac{n}{n(n + \frac{1}{n})}$$

$$= \lim_{n \to \infty} \frac{n}{(n + \frac{1}{n})}$$

$$= 0$$

Hence the sequence is convergent.

(ii) $\{(-1)^{n+1}\} = \frac{1}{1} - \frac{1}{1} - 1$, is an oscillating sequence.

7

(iv)

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n}{n+1}$$

$$= \lim_{n \to \infty} \frac{n}{n(1+\frac{1}{n})}$$

$$= \lim_{n \to \infty} \frac{n}{(1+\frac{1}{n})}$$

$$= 1$$

Hence the sequence is convergent.

(iv)
$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} 1 + \frac{(-1)^n}{n+1} = 1$$

Hence the sequence is convergent.

(v)The sequence $\{(\frac{1}{2})^n\}$ is convergent.

Definition:

 u_1,u_2,\ldots,u_n ... is an infinite sequence. The expression $u_1+u_2+\cdots+u_n+\cdots$ is called the series. It is denoted by $\sum_{n=1}^{\infty}U_n$.

Note:

- 1.If the number of terms are finite in a series then the series is called a finite series.
- 2.If the number of terms are infinite in a series then the series is called an infinite series.

Definition:

The sum of a finite number of terms (the first n-terms) of a series is called the n^{th} partial sum of the series. $S_n = u_1 + u_2 + + u_n = \sum_{n=1}^{\infty} U_n$

- 1. If $\lim_{n\to\infty} s_n = S(\text{finite})$, then the series $\sum_{n=1}^{\infty} U_n$ un converges.
- 2. If $\lim_{n\to\infty} s_n = \pm \infty$, then the series $\sum_{n=1}^{\infty} U_n$ diverges.
- 3. If $\lim_{n\to\infty} s_n$ is more than one limit (or) $\pm \infty$, then $\sum_{n=1}^{\infty} U_n$ is oscillatory (or) non converges

G. Sheeja

es and Series Dr. G. Sheeja

SERIES

Problems:

1. Examine the nature of the series $1 + 3 + 5 + 7 + \cdots \infty$

Solution:

The n^{th} partial sum is $S_n = 1 + 3 + 5 + 7 + ... + n$. It is an arithmetic series with a = 1, d = 2, $s_n = \frac{n}{2}[2a + (n-1)d] = n^2$. It follows that $\lim_{n \to \infty} S_n = \infty$. Hence the series is divergent.

- 2. Show that the series $1 + r + r^2 + ... \infty$ (i) Converges if |r| < 1
- (ii) Diverges if $r \ge 1$ and (iii) Oscillatory if $r \le -1$

Solution:

- (i) If |r| < 1, the n^{th} partial sum is $S_n = 1 + r + r^2 + \dots + r^{n-1}$ = $\frac{1(1-r^n)}{1-r}$. $\lim_{n \to \infty} r^n = 0$, if |r| < 1. Thus the series is convergent.
- (ii) If r > 1, $\lim_{n \to \infty} r^n = \infty$. If r = 1, then $S_n = 1 + 1 + \cdot + 1 = n$. Hence $\lim_{n \to \infty} r^n = \infty$. Hence the series is divergent if $r \ge 1$.

(iii) If
$$r < -1$$
, then $\lim_{n \to \infty} r^n = \begin{cases} \infty, & \text{if n is odd} \\ -\infty, & \text{if n is even} \end{cases}$

10

SERIES

If
$$r = -1$$
, then $S_n = 1 - 1 + 1 - 1 + \dots + 1$. $S_n = \begin{cases} 1, & \text{if n is odd} \\ -1, & \text{if n is even} \end{cases}$

Hence the series $1 + r + r^2 + \cdots \infty$ is oscillatory if $r \le -1$

3. Examine the converges of the following series.

(i)
$$5 - 4 - 1 + 5 - 4 - 1 + \dots \infty$$
 (ii) $1 + \frac{5}{4} + \frac{6}{4} + \dots \infty$ (iii) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ (iv) $1 + \frac{1}{2} + \frac{1}{2^2} \dots \infty$ (v) $1 + \frac{4}{3} + \left(\frac{4}{3}\right)^2 + \dots \infty$

Solution:

- (i) n^{th} partial sum is $S_n = 5$ or 1 or 0. Hence the series is oscillatory.
- (ii) The series is arithmetic series $a=1, d=\frac{1}{4}, S_n=\frac{n}{2}[2a+(n-1)d]$ = $\frac{n}{8}[7+n]$. Therefore $\lim_{n\to\infty}S_n=\infty$. Hence the series is divergent.
- (iii) $u_n = \frac{1}{n(n+2)}$. By using partial fractions $\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$. Which implies
- 1 = A(n+2) + Bn. When $n = 0, A = \frac{1}{2}$ and when $n = -2, B = \frac{-1}{2}$.

SERIES

Therefore $u_n=\frac{1}{\frac{n(n+2)}{2}}=\frac{1}{\frac{2n}{2}}-\frac{1}{2(n+2)}$. The n^{th} partial sum is $S_n=u_1+u_2+\cdots+u_n=\frac{1}{2}$. Hence the given series is convergent.

(iv) The n^{th} partial sum is $S_n = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}$. $S_n = \frac{1 - \frac{1}{2^n}}{\frac{1}{2}} = 2\left(1 - \frac{1}{2^n}\right)$. $\lim_{n \to \infty} S_n = 2$. Hence the given series is convergent.

(v) The n^{th} partial sum is $S_n = 1 + \frac{4}{3} + \left(\frac{4}{3}\right)^2 + \dots + \left(\frac{4}{3}\right)^{n-1}$. $S_n = \frac{\left(\frac{4}{3}\right)^n - 1}{\frac{1}{3}} = 3\left(\left(\frac{4}{3}\right)^n - 1\right)$. $\lim_{n \to \infty} S_n = \infty$. Hence the given series is divergent.

equences and Series Dr. G. Sheeja

SERIES OF POSITIVE TERMS

Properties of Series:

- 1. Convergence of a series remains unchanged by the replacement, inclusion or omission of a finite number of terms.
- 2.A series remains convergent, divergent or oscillatory when each term of it is multiplied by a fixed number other than zero.
- 3.A series of positive terms either converges or diverges to $+\infty$. That is omitting the negative terms the sum of first n terms tends to either a finite limit or $+\infty$
- 4. Every finite series is a convergent series.

Definition:

If all terms after few positive terms in an infinite series are posi-tive, such a series is a positive term series.

Example: $-10 - 6 - 1 + 5 + 12 + 20 + \cdots$

. Sheeja (13

Sequences and Series Dr. G. Sheeja

SERIES OF POSITIVE TERMS

Necessary Condition for Convergence:

If a positive term series $\sum_{n=1}^{\infty} u_n$ is convergent, then $\lim_{n\to\infty} u_n = 0$.

Note:

Converse of the above theorem is not true.

Example:

The series $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots$ is divergent eventhough $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$.

Test for Divergence:

If $\lim_{n\to\infty} u_n \neq 0$, the series $\sum_{n=1}^{\infty} u_n$ must be divergent.

Comparison Test for Convergence:

If two positive term series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be such that $\sum_{n=1}^{\infty} v_n$ converges and $u_n \leq v_n$ for all values of n, then $\sum_{n=1}^{\infty} u_n$ also converges.

(14)

SERIES OF POSITIVE TERMS

Comparison Test for divergence:

If two positive term series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be such that $\sum_{n=1}^{\infty} v_n$ diverges and $u_n \geq v_n$ for all values of n, then $\sum_{n=1}^{\infty} u_n$ also diverges.

Limit Comparision test:

If two positive term series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be such that $\lim_{n\to\infty} \frac{u_n}{v_n}$ = non zero finite value, then $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ converges or diverges together.

Auxiliary Series:

(a) p-series:

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1 and divergent for $p \le 1$.

(b) Geometric series:

The geometric series $\sum_{n=1}^{\infty} r^{n-1}$ is convergent if r > 1 and divergent if $r \ge 1$.

eja **(15)**

1. Examine the series $\frac{1}{1.3.5} + \frac{2}{3.5.7} + \frac{3}{5.7.9} + \cdots$ for convergence.

Solution:

To find u_n :

1,2,3, ... is an arithmetic series where a = 1, d = 1,

$$t_n = a + (n-1)d = n$$

1,3,5, ... is an arithmetic series where a = 1, d = 2,

$$t_n = a + (n-1)d = 2n - 1$$

3,5,7, is an arithmetic series where a = 3, d = 2,

$$t_n = a + (n-1)d = 2n + 1$$

5,7,9, ... is an arithmetic series where a = 5, d = 2,

$$t_n = a + (n-1)d = 2n + 3$$

Therefore
$$u_n = \frac{n}{(2n-1)(2n+1)(2n+3)} = \frac{1}{n^2 \left(2 - \frac{1}{n}\right) \left(2 + \frac{1}{n}\right) \left(2 + \frac{3}{n}\right)}$$
.

Choose
$$v_n = \frac{1}{n^2}$$
.

$$\lim_{n \to \infty} \frac{u_n}{V_n} = \lim_{n \to \infty} \frac{1}{\left(2 - \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)\left(2 + \frac{3}{n}\right)} = \frac{1}{8} \neq 0$$
. By comparison

test, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, implies that $\sum_{n=1}^{\infty} \frac{n}{(2n-1)(2n+1)(2n+3)}$ is convergent.

2. Discuss the convergence or divergence of the series $\frac{2}{1p} + \frac{3}{2^p} + \frac{4}{3^p} + \cdots \infty$.

Solution:

$$u_n = \frac{(n+1)}{n^p}$$
. Choose $v_n = \frac{1}{n^{p-1}}$. We have

$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1 \neq 0$$
. The series $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ is con-

vergent if p > 2 and it is divergent if $p \le 2$. Hence the given

series $\sum_{n=1}^{\infty} \frac{(n+1)}{n^p}$ is convergent if p > 2 and it is divergent if $p \le 2$.

17

3. Determine whether the following series is convergent or divergent $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$.

Solution:
$$u_n = \frac{\sqrt{1+\frac{1}{n}} - \frac{1}{\sqrt{n}}}{(n+1)^3 - 1} = \frac{\sqrt{1+\frac{1}{n}} - \frac{1}{\sqrt{n}}}{\frac{5}{n^2} \left(\left(1+\frac{2}{n}\right)^3 - \frac{1}{n^3} \right)}$$
. Choose $v_n = \frac{1}{n^{\frac{5}{2}}}$. $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{n^{\frac{5}{2}}}$.

$$\lim_{n\to\infty} = \frac{\sqrt{1+\frac{1}{n}-\frac{1}{\sqrt{n}}}}{\left(\left(1+\frac{2}{n}\right)^3-\frac{1}{n^3}\right)} = 1 \neq 0. \text{ Since } \sum_{n=1}^{\infty} v_n \text{ is convergent.}$$

Hence by comparison test $\sum_{n=1}^{\infty} u_n$ is convergent.

Examine the nature of series $\sum_{n=1}^{\infty} \frac{1}{(a+n)^p(b+n)^q}$ where a, b, p, q all positive.

Solution:

$$u_n = \frac{1}{(a+n)^p(b+n)^q}$$

$$= \frac{1}{n^{p+q}\left(1+\frac{a}{n}\right)^p\left(1+\frac{b}{n}\right)^q}$$

$$\text{Choose }_n = \frac{1}{n^{p+q}}$$

$$\lim_{n\to\infty}\frac{u_n}{v_n} = \lim_{n\to\infty}\frac{1}{\left(1+\frac{a}{n}\right)^p\left(1+\frac{b}{n}\right)^q} = 1$$

$$\text{Since } \sum_{n=1}^{\infty}\frac{1}{n^{p+q}} \text{ is convergent if } p+q > 1 \text{ and is divergent if } p+q$$

< 1.

Which implies $\sum_{n=1}^{\infty} \frac{1}{(a+n)^p (b+n)^q}$ is convergent if p+q>1 and is divergent if $p + q \le 1$

5. Determine whether the following series is convergent or divergent $\sum_{n=1}^{\infty} (\sqrt{n^4 + 1} - \sqrt{n^4 - 1})$.

Solution:

$$u_n = \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1}\right) \left(\frac{\sqrt{n^4 + 1} + \sqrt{n^4 - 1}}{\sqrt{n^4 + 1} + \sqrt{n^4 - 1}}\right)$$

$$= \frac{(n^4 + 1) - (n^4 - 1)}{\sqrt{n^4 + 1} + \sqrt{n^4 - 1}} = \frac{2}{\sqrt{n^4 + 1} + \sqrt{n^4 - 1}}$$

$$= \frac{2}{n^2} \frac{1}{\sqrt{1 + \frac{1}{n^4}} + \sqrt{1 - \frac{1}{n^4}}}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2}{2} = 1.$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, $\sum_{n=1}^{\infty} (\sqrt{n^4 + 1} - \sqrt{n^4 - 1})$ is convergent.

6. Determine whether the following series is convergent or divergent

$$\sum_{n=1}^{\infty} \sqrt{\frac{3^{n}-1}{2^{n}+1}}$$

Solution:

$$\begin{split} U_n &= \sqrt{\frac{3^n - 1}{2^n + 1}} \\ &= \left(\sqrt{\frac{3}{2}}\right)^n \sqrt{\frac{1 - \frac{1}{3^n}}{1 + \frac{1}{2^n}}} \\ &\det V_n = \left(\sqrt{\frac{3}{2}}\right)^n \\ \lim_{n \to \infty} \frac{U_n}{V_n} &= \lim_{n \to \infty} \sqrt{\frac{1 - \frac{1}{3^n}}{1 + \frac{1}{2^n}}} = 1 \end{split}$$

Since $\sum_{n=1}^{\infty} V_n$ is divergent, $\sum_{n=1}^{\infty} \sqrt{\frac{3^{n}-1}{2^{n}+1}}$ is also divergent.

7. Examine the nature of the series $\sum_{n=1}^{\infty} sin\left(\frac{1}{n}\right)$

Solution:

$$u_n = \sin\left(\frac{1}{n}\right)$$
, choose $v_n = \frac{1}{n}$. $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. Hence $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ is also divergent.

Cauchy's Integral Test

If $\sum_{n=1}^{\infty} u_n$ is a series of positive terms and if u(x) = f(x) be such that

- \Box f(x) is continuous in $1 < x < \infty$
- \square f(x) decreases as x increases, then the series $\sum_{n=1}^{\infty} u_n$ is convergent or divergent according as the integral $\int_{1}^{\infty} f(x)dx$ is finite or infinite.

1. Apply Cauchy's integral test to discuss the nature of the har-monic series (pseries) $\sum_{n=1}^{\infty} \frac{1}{n^n}$.

Solution: Let
$$u_x = f(x) = \frac{1}{n^p}$$
. As x increases $f(x)$ decreases.

$$\int_{1}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{1}{n^{p}} dx$$

$$= \int_{1}^{\infty} x^{-p} dx$$

$$= \left[\frac{x^{-p+1}}{-p+1} \right]$$

$$= \begin{cases} \frac{1}{p-1} & \text{if } p > 1 \\ \infty & \text{if } p \le 1 \end{cases}$$

Therefore $\sum u_n$ is convergent if p > 1 and divergent if $p \le 1$.

2. Find the nature of the series Type equation here. $\sum_{n=2}^{\infty} \frac{1}{(logn)^p}$

Solution:

Let $u_x = f(x) = \frac{1}{x(\log n)^p}$. As x increases f(x) decreases.

$$\int_{2}^{\infty} \frac{1}{x(\log n)^{p}} = \int_{\log 2}^{\infty} \frac{dt}{t^{p}}$$
$$= \left[\frac{t^{-p+1}}{-p+1}\right]$$

$$= \begin{cases} \text{finite, if p=1} \\ \text{finite, if p>1} \\ \text{finite, if p } \leq 1 \end{cases}$$

Therefore $\sum u_n$ is convergent if p > 1 and divergent if $p \le 1$.

(24)

3. Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{nlogn}$

Solution:

let $u_x = f(x) = \frac{1}{x \log x}$. As x increase f(x) decreases.

$$\int_{2}^{\infty} f(x)dx = \int_{2}^{\infty} \frac{1}{x(\log x)} dx$$
$$= \int_{\log 2}^{\infty} \frac{dt}{t}$$

= infinite

Therefore $\sum u_n$ is divergent.

Sequences and Series Dr. G. Sheeja

4. Examine the convergence of the series $1 + \frac{1}{4^{\frac{2}{3}}} + \frac{1}{\frac{2}{9^{\frac{2}{3}}}} + \frac{1}{16^{\frac{2}{3}}} + \frac{1}{16^{\frac{2}{3}}}$

Solution:

Let
$$u_x = f(x) = \frac{1}{x^{\frac{4}{3}}}$$
. As x increases $f(x)$ decreases.
$$\int_{1}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{1}{x^{\frac{4}{3}}} dx$$

$$= \int_{1}^{\infty} x^{\frac{-4}{3}} dx$$

$$= -3\left[x^{\frac{-1}{3}}\right]_{1}^{\infty}$$

$$= 3 \text{ (finite)}$$

Therefore $\sum u_n$ is convergent.

D'ALEMBERT'S RATIO TEST:

D'Alembert's Ratio Test

The series $\sum_{n=1}^{\infty} u_n$ of positive terms is convergent if $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} < 1$

1 is divergent if $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} > 1$. If $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 1$, the test fails.

1. Test the convergence of the series $1 + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(1+2\alpha)}{(1+\beta)(1+2\beta)} + \frac{(1+\alpha)(1+2\alpha)}{(1+\beta)(1+2\beta)}$

Solution:

Let
$$u_n = \frac{(1+\alpha)(1+2\alpha)...(1+(n)\alpha)}{(1+\beta)(1+2\beta)....(1+(n)\beta)}$$
 then
$$(1+\alpha)(1+2\alpha)....(1+(n)\alpha)(1+(n+1)\alpha)$$

$$u_{n+1} = \frac{(1+\alpha)(1+2\alpha)...(1+(n)\alpha)(1+(n+1)\alpha)}{(1+\beta)(1+2\beta)...(1+(n)\beta)(1+(n+1)\beta)}.$$
 It follows that

$$\frac{u_{n+1}}{u_n} = \frac{(1+(n+1)\alpha)}{(1+(n+1)\beta)} \Rightarrow \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \frac{\alpha}{\beta}.$$
 Thus the series con-

verges if
$$\frac{\alpha}{\beta} < 1$$
 and diverges if $\frac{\alpha}{\beta} > 1$. If $\frac{\alpha}{\beta} = 1$, then $\alpha = \beta$.

Therefore the series $\sum_{n=1}^{\infty} u_n = 1 + 1 + 1 + \cdots$ is a divergent series.

D'ALEMBERT'S RATIO TEST:

2. Test the convergence of the series $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \cdots$...

Solution:

Let
$$u_n = \frac{x^n n^n}{n!}$$
 then $u_{n+1} = \frac{x^{n+1}(n+1)^{(n+1)}}{(n+1)!}$. It follows that $u_{n+1} = x^{\binom{n+1}{n}} = x^{\binom{n+1}{n}} = x^n$. Then

$$\frac{u_{n+1}}{u_n} = x \left(\frac{n+1}{n}\right)^n \Rightarrow \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = x \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = xe. \text{ Thus}$$

the series converges if ex < 1 and diverges if ex > 1. If ex = 1, then the ratio test fails.

3. Find the nature of the series $\frac{2}{1} + \frac{2.5.8}{1.5.9} + \frac{2.5.8.11}{1.5.9.13} + \cdots$

Solution:

$$\begin{array}{l} u_n = \frac{2.5 \cdot 8 \dots (3n-1)}{1 \cdot 5 \cdot 9 \dots (4n-3)} \text{ and } u_{n+1} = \frac{2 \cdot 5 \cdot 8 \dots (3n-1)(3n+2)}{1 \cdot 5 \cdot 9 \dots (4n-3)(4n+1)}. \text{ Thus} \\ \frac{u_{n+1}}{u_n} = \frac{3n+2}{4n+1}. \text{ Hence } \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3+\frac{2}{n}}{4+\frac{1}{n}} = \frac{3}{4} < 1. \text{ Hence} \end{array}$$

the given series is convergent.

RAABE'S TEST:

Raabe's Test

The positive termed series $\sum_{n=1}^{\infty} u_n$ is convergent or deivergent according as $\lim_{n\to\infty} n\left(\frac{u_{n+1}}{u_n}\right) - 1 > 1$ or < 1. If D'Alemberts test fails then use Raabe's test.

1. Test the convergence of the series $\frac{2}{3.4} + \frac{2.4}{3.5.6} + \frac{2.4.6}{3.5.7.8} + \cdots$

Solution:

Let
$$u_n = \frac{2 \cdot 4 \cdot 6 \cdot 8 \dots 2n}{3 \cdot 5 \cdot 7 \dots (2n+1)} \frac{1}{2n+2}$$
 then $u_{n+1} = \frac{2 \cdot 4 \cdot 6 \cdot 8 \dots 2n \cdot 2(n+1)}{3 \cdot 5 \cdot 7 \dots (2n+1) \cdot (2n+3)} \frac{1}{2n+4}$. It follows that $\frac{u_{n+1}}{u_n} = \frac{\left(1 + \frac{1}{n}\right)}{\left(1 + \frac{3}{2n}\right)\left(1 + \frac{4}{2n}\right)} \Rightarrow \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 1$. Hence the ratio test fails. $n\left(\frac{u_{n+1}}{u_n}\right) - 1 = n\left[\frac{(2n+3)(2n+4)}{(2n+2)^2} - 1\right] \to \frac{3}{2}$ as $n \to \infty$.

Therefore by Raabe's test the given series is convergent.

RAABE'S TEST:

2. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.3 \cdot 5....(2n-1)}{2 \cdot 4.6....(2n)} x^n$.

Solution:

$$\frac{u_{n+1}}{u_n} = x\left(\frac{2n+1}{2n+2}\right) \Rightarrow \lim_{n\to\infty} \frac{u_{n+1}}{u_n} = x$$
. Thus the series con-

verges if 0 < x < 1 and diverges if x > 1. If x = 1, then the D'Alemberts ratio test fails. Apply Raabe's test.

$$n\left(\frac{u_n}{u_{n+1}}-1\right)=\frac{n}{2n+1}\to\frac{1}{2}$$
 as $n\to\infty$. Therefore when $x=1$ the given series is divergent.

CAUCHY'S ROOT TEST:

Cauchy's root Test

If $\sum_{n=1}^{\infty} u_n$ is a series of positive terms, then the series is convergent or deivergent according as $\lim_{n\to\infty} u_n^n < 1$ or > 1.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}$.

Solution:

Let
$$u_n = \frac{1}{(\log n)^n}$$
. By Cauchy's root test $u_n^{\frac{1}{n}} = \frac{1}{(\log n)^n}^{\frac{1}{n}} = \frac{1}{\log n}$. It follows

that $u_n \frac{1}{n} \to 0$ as $n \to \infty$. By Cauchy's root test the given series is convergent.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}$.

Solution:

Let $u_n = \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}$. By Cauchy's root test $u_n^{\frac{1}{n}} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$. It follows that $u_n \frac{1}{n} \to \frac{1}{e} < 1$ as $n^{\frac{1}{n}} \to \infty$. By Cauchy's root test the given series is convergent.

ALTERNATING SERIES-LEBNITZ'S TEST:

Alternating Series

A series in which the terms are alternatively positive or negative is called an alternating series.

Lebnitz's Rule

An alternating series $u_1 - u_2 + u_3 - u_4 + \cdots$ converges if $u_n - u_{n-1}$ < 0 and $\lim_{n\to\infty} u_n = 0$. The alternating series is not convergent if one of the condition is satisfied. If $\lim_{n\to\infty} u_n \neq 0$, then the given series is oscillatory.

Discuss the convergence of the series $1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \cdots$...

Solution:

$$u_n = \frac{1}{n}$$
, $u_{n-1} = \frac{1}{n-1}$. Then $u_n - u_{n-1} = \frac{-1}{n(n-1)} < 0$. $\lim_{n \to \infty} u_n = 0$.

Therefore by Lebnitz's Rule the given series is convergent.

ALTERNATING SERIES-LEBNITZ'S TEST:

2. Examine the nature of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}x^n}{n(n-1)}$, 0 < x < 1. Solution:

$$u_n = \frac{x^n}{n(n-1)}$$
, $u_{n-1} = \frac{x^{n-1}}{(n-2)(n-1)}$. $u_n - u_{n-1}$ is less than zero.

Also $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{x^n}{n(n-1)} = 0$. Thus the Lebnitz's Conditions are satisfied. Hence the given series is convergent.

3. Examine the nature of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \left[\sqrt{n^2 + 1} - n \right]$. Solution:

$$u_n = \sqrt{n^2 + 1} - n$$
, $u_{n-1} = \sqrt{n^2 - 2n + 2} - n + 1$. Also $u_n - u_{n-1} < 0$.

$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}\left[\sqrt{n^2+1}-n\right]=\lim_{n\to\infty}\left[\frac{\left(\sqrt{n^2+1}\right)^2-n^2}{\sqrt{n^2+1}+n}\right]=0.$$

Thus the Lebnitz's Conditions are satisfied. Hence the given series is convergent.

(33)

ABSOLUTE CONVERGENCE AND CONDITIONAL CONVERGENCE:

Absolute Convergence: If the series of arbitrary terms $u_1 + u_2 + \cdots + u_n$ $+ \cdots$ be such that the series $|u_1| + |u_2| + \cdots + |u_n| + \cdots$ is convergent, then then series $\sum_{n=1}^{\infty} u_n$ is absolutely convergent. Conditional Convergence: If the series $\sum_{n=1}^{\infty} |u_n|$ is divergent but $\sum_{n=1}^{\infty} u_n$ is convergent, then then series $\sum_{n=1}^{\infty} u_n$ is conditionally convergent.

Test the series $1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \cdots$ for (i) Absolute Convergence (ii) Conditional Convergence.

Solution:

(i)
$$\sum_{n=1}^{\infty} u_n = 1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \cdots$$
. Thus $\sum_{n=1}^{\infty} |u_n| = \sum_{n=1}^{\infty} \frac{1}{\frac{3}{n^2}}$.

Which harmonic p-series with $p=\frac{3}{2}>1$. Hence the series $\sum_{n=1}^{\infty}|u_n|$ is convergent which implies $\sum_{n=1}^{\infty}u_n$ is absolutely convergent. (ii) $\sum_{n=1}^{\infty}u_n=1-\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}-\frac{1}{4\sqrt{4}}+\cdots$ is an alternating series.

 $u_n=\frac{1}{n\sqrt{n}}$ and $u_{n-1}=\frac{1}{n-1\sqrt{n-1}}$. Also $u_n-u_{n-1}<0$ and $\lim_{n\to\infty}u_n=0$. Hence $\sum_{n=1}^\infty u_n$ is also convergent. Hence the given series is not conditionally convergent.

ABSOLUTE CONVERGENCE AND CONDITIONAL CONVERGENCE:

Absolute Convergence:

Prove that the exponential series $1 + \frac{x}{1!} + \frac{x}{2!} + \dots + \frac{x}{n!} + \dots$ is absolutely convergent and hence convergent for all values of x. 2. Solution:

Let
$$u_n=rac{x^{n-1}}{(n-1)!}$$
, $u_{n+1}=rac{x^n}{n!}$. Thus $rac{u_{n+1}}{u_n}=rac{x}{n}$. $\lim_{n o\infty}\left|rac{u_{n+1}}{u_n}\right|=$

 $\lim_{n\to\infty}\frac{|x|}{x}=0<1$, $\forall x$. Hence the series is absolutely convergent and hence convergence for all real x.

Thank You

heeja (3)