

V0.1 2306

性能特点

● 频率范围

整数模式: 0.2~26GHz 小数模式: 0.2~18GHz

归一化底噪:

整数模式: -235dBc/Hz 小数模式: -225dBc/Hz

● 最高鉴相频率:

整数模式: 300MHz 小数模式: 125MHz

- 3.3V供电
- QFN24 4*4的封装形式

概述

SIPL219SP4为一款集成整数N分频和小数N分频锁相环,支持0.2~26GHz射频带宽输入,最高鉴相频率300MHz(整数模式)/125MHz(小数模式)。

内部集成参考分频器、鉴相器、电荷泵、反馈分频器及delta-sigma小数分频 调制器模块。

典型应用

- 无线基础设施
- 点对点无线电
- 点对多无线电
- 测试设备和仪器

电性能表(TA=+25°C, VCC=VCC2=3.3V)

				指标参数	
测试参数	描述	单位	最小值	典型值	最大值
-		REF:	参数		
REF频率范围	输入正弦波	MHz	10		500
输入功率范围		dBm	-5		11
R分频器比			1		16383
	整数模式	MHz	1		300
鉴相频率范围	小数模式	MHz	5		125
		RF参	· 参数		-
	整数模式	GHz	0. 2		26
射频频率范围	小数模式	GHz	0. 2		18
	整数模式	dBm	-15		10
射频反馈功率	小数模式	dBm	-15		10
	整数模式		16		32767
N分频比	小数模式		23		32767
•		电荷泵	录参数		•
最小CP电流		mA		0. 03	
最大CP电流		mA		7. 6	
CP漏电流		mA		TBD	
		基本基	力能参数		
电源电流	3. 3V	mA		130	
关断电流	J. J¥	mA		11	

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2306

电性能表

	测试参数	描述	单位	指标参数			
州瓜			平14	最小值	典型值	最大值	
		PLL闭环	参数	•		•	
	归一化底噪	整数模式, PD=100MHz, VC0=10GHz	dBc/Hz		-235		
	归—化床噪	小数模式, PD=100MHz, VCO=10. 001GHz	dBc/Hz		-225		
	相位噪声@1kHz		dBc/Hz		-96		
↓□ / ∸	相位噪声@10kHz	PD=100MHz,	dBc/Hz		-106		
相位 噪声	相位噪声@100kHz	Pin=10dBm, Fout=10GHz 整数模式	dBc/Hz		-110		
	相位噪声@1MHz		dBc/Hz		-118		
	相位噪声@10MHz	VCO型号: SIV100SP4	dBc/Hz		-142		
	相位噪声@1kHz		dBc/Hz		-95		
10.42	相位噪声@10kHz	PD=100MHz,	dBc/Hz		-103		
相位 噪声	相位噪声@100kHz	Pin=10dBm, Fout=10.001GHz 小数模式	dBc/Hz		-106		
	相位噪声@1MHz	, , , , , ,			-119		
	相位噪声@10MHz	VCO型号: SIV100SP4	dBc/Hz		-140		
杂散	整数边界杂散	REF=100MHz, RF=10. 00001GHz	dBc/Hz		-45		
ハゖス	鉴相杂散	REF=100MHz, RF=10GHz	dBc/Hz		-95		
	锁定检测功能	锁定后拉高(锁定输出电压: 2.8V~VDD, 失锁输出电压: GND~0.4V)				~0. 4V)	

SIPL

锁相环和频综

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2306

测试曲线(整数模式 PRF=0dBm PREF=10dBm PD=100MHz 环路带宽=600KHz)

相位噪声 VS 频偏(Fout=2GHz)

相位噪声 VS 频偏(Fout=10GHz)

相位噪声 VS 频偏(Fout=20GHz)

相位噪声 VS 频偏(Fout=26GHz)

测试曲线(小数模式 PRF=0dBm PREF=10dBm PD=100MHz 环路带宽=300KHz)

相位噪声 VS 频偏(Fout=5.001GHz)

相位噪声 VS 频偏(Fout=10.001GHz)

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

测试曲线(小数模式 PRF=0dBm PREF=10dBm PD=100MHz)

相位噪声 VS 频偏(Fout=18,001GHz)

测试曲线(整数模式 PREF=10dBm PD=100MHz 环路带宽=900KHz)

相位噪声 VS 频偏(Fout=20GHz)

频率切换时间

频率切换 VS 时间(PD=10MHz)

频率切换 VS 时间(PD=10MHz)

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

地址:成都市高新西区百川路9号 网址:www.sicoresemi.com

锁相环和频综

SIPL

频率切换时间

频率切换 VS 时间(PD=100MHz)

频率切换 VS 时间(PD=100MHz)

绝对最大额定值

RF输入功率	+13dBm
VCC/VCC2	3. 6V
存储温度	−65°C~+150°C
工作温度	-40°C~+85°C
ESD (HBM)	TBD

封装信息

型号	封装材料	焊盘镀层	MSL等级[1]	封装标识[2]	环保要求
SIPL219SP4	绿色树脂化合物	NiPdAuAg	MSL 3	S219 XXXXX	符合RoHS

[1] 最高回流焊温度260°C

[2] XXXXX为批号

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2306

引脚定义

PIN号	名称	描述			
1	SCK	SPI 串行时钟输入, 3.3/1.8V TTL电平。			
2	RST	寄存器复位端口,内部集成80kΩ下拉,3.3/1.8V TTL电平			
3	LD_GP0	LD输出端口,也可作为内部部分信号的选通输出端口			
4、5	RF_INP/RF_INN	RF差分输入端口			
6	GND	射频地			
7	VCCHF	RF分频器模拟电路3.3V电源端口			
9	VCCPS	RF分频器数字电路3.3V电源端口			
11	VCCPD	鉴相器模块3.3V电源端口			
14	AVDD	基准电压3.3V端口			
15	VPPCP	电荷泵模块3.3V电源端口			
16	CP	电荷泵输出端口			
17	RVDD	参考分频器模块3.3V电源端口			
18	REF	参考信号输入端口			
19	DVDD	LD、GPO模块3. 3V电源端口			
20	SD0	SPI串行输出端口			
21	VccDIG	数字模块3. 3V电源端口			
22	CEN	芯片使能端口,内部集成80kΩ上拉,3.3/1.8V TTL电平。			
23	LE	SPI串-并转换控制信号,上升沿触发,内部集成80kΩ下拉, 3.3/1.8V TTL电平			
24	SDI	SPI串行数据输入, 3.3/1.8V TTL电平。			
8, 10, 12, 13	NC	悬空			
DAP	GND	芯片地			

封装装配图 **SIPL**

锁相环和频综

TOP VIEW D PART NUMBER 19 18 S219 13 6

12

LOT NUMBER

说明:

- 1. 单位: mm
- 2. 引线框架材料:铜合金
- 3. 封装表面翘曲: ≤0.05mm
- 4. 所有接地引脚请连接PCB射频地

SP4 Dimension Table								
(unit:mm)								
Symbol	MIN	NOM	MAX					
Α	0.70	0.75	0.80					
A1	0.00	0.02	0.05					
A2		0.20Ref						
ь	0.18	0.25	0.30					
D	3.90	4.00	4.10					
D2	2.41	2.56	2.66					
е		0.50BSC						
Ne		2.50BSC						
Nd		2.50BSC						
E	3.90	4.00	4.10					
E2	2.41	2.56	2.66					
K	0.20							
L	0.30	0.40	0.50					
aaa	0.08							

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

SPI控制说明

一. 功能描述

- 1. 支持 HMC 模式和 OPEN 模式:
- 2. 支持 3 线只写模式和 4 线读写模式; (sclk, sen, sdi, sdo)
- 3. HMC 模式和 OPEN 模式下的寄存器访问地址均为 6 比特, 地址范围为 00h~3Fh; 寄存器自身均为 24 比特, 未定义部分均 作为保留位处理;
- 4. 支持异常处理。
- a) HMC 模式下读写操作需要 SEN 信号一直为高,若 SEN 信号在读写操作过程中出现拉低,则读写状态机进入初始状态,等 待下一次读写操作。
- b) 若写入地址未定义的寄存器,则从机忽略该操作;
- c) 若要读取地址未定义的寄存器或者寄存器位未定义,则从机默认返回的寄存器值为全零

二. 时序描述

hmc模式

hmc模式: sen上升沿先于sclk上升沿出现。

hmc模式: 1个读写控制位, 6bit的地址位, 24bit的数据位。

模式	参数	描述	min	type	max	单位
	t1	sen上升沿至sclk建立时间		10		ns
	t2	sclk低电平持续时间		10		ns
hmc	t3	sclk高电平持续时间		10		ns
	t4	sclk频率		50		MHz
	t5	sclk上升沿至sen下降沿		15		ns
	t6	sen低电平保持时间		20		ns
	t1	sclk上升沿至sen建立时间		10		ns
	t2	sclk低电平持续时间		10		ns
open	t3	sdi数据建立时间		12		ns
	t4	sclk频率		50		MHz
	t5	sen高电平保持时间		10		ns
	t6	sclk到sen锁定数据时间		20		ns

写状态:

- 1: sclk第一个上升沿写入读写控制位;(1 sclk cycle)
- 2: sclk上升沿写入6位地址位, MSB优先; (2-7 sclk cycle)
- 3: sclk上升沿写入24位的数据, MSB优先; (8-31 sclk cycle)
- 4: 第32个上升沿将数据写入相应的寄存器中; (32 sclk cycle)
- 5: 经过最小延迟时间ts, sen清零, 一次写周期完成。

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

SIPL

SPI控制说明

读状态:

- 1: sclk第一个上升沿写入读写控制位。(1 sclk cycle)
- 2: sclk上升沿写入6位地址位。(2-7 sclk cycle)
- 3: sclk上升沿读出相应寄存器的值(8-31 sclk cvcle)
- 4: 经过最小延迟时间ts, sen清零, 一次写周期完成。
- open模式
- open模式: sclk上升沿先于sen上升沿出现。 open模式: 24bit数据位, 6bit地址位。

写状态:

- 1: 在sclk上升沿写入24bit数据; (1-24 sclk cycle)
- 2: 在sclk上升沿写入6bit地址; (25-30 sclk cycle)
- 3: 在第32个上升沿之后置位sen;
- 4: 在sen上升沿更新对应的寄存器。

读状态:

open读寄存器1阶段

open读寄存器2阶段

- 一阶段:根据open模式的写状态写寄存器reg00; (地址: 6' b000000)。
- 二阶段: 1: sen清零。开始读状态的第二周期;
 - 2: 根据读状态的第一周期的地址(寄存器00h[5:0]所示地址的数据)放在rd out 上。

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2306

SPI控制说明

三. 寄存器表

二. 句仔記	110						
名字	地址	命名	功能	位号 bit	读写	默认值 dfault-dec	描述
读地址寄存器	00	read_addre ss	SPI读数据时的 地址	4:0	RW	0	仅在SPI为open模式下使用,写入需要读取的寄存器的地址,并在SDO读取该地址对应的寄存器中的数据
		PD_ALL	全局关断控制	0	RW	0	0: 全局正常工作 1: 全局关断
		PD_REF	开关参考通道	1	RW	0	1: 强制关断参考通道
		PD_RF	开关反馈分频	2	RW	0	1: 强制关断反馈分频
		PD_PFD	开关鉴频鉴相 器PFD	3	RW	0	1:强制关断PFD
全局关		PD_CP	开关电荷泵CP	4	RW	0	1: 强制关断电荷泵
断控制寄存器	01	PD_BIAS	开关电荷泵偏 置电流	5	RW	0	1: 强制关断电荷泵偏置电流
		PD_LD	开关锁定检测	6	RW	0	1: 强制关断锁定检测
		BLK_UVL0	屏蔽UVL0信号	7	RW	0	0: 关闭上电复位时的欠压锁存功能 1: 开启欠压锁存
		RESET	复位寄存器	8	RW	0	复位所有状态机和寄存器到默 认值 0: 正常工作 1: 复位
		rdiv	参考分频比	13:0	RW	1	分频比1——16383 (2^14-1)
参考分		Reserved	保留位	14	RW	0	保留位
频寄存 器	02	RST_REF	重置参考分频	15	RW	0	重置参考分频器,高有效
		en_ref2div	参考信号到数 字使能	16	RW	1	参考信号到数字使能,高有效
整数分频寄存	03	intg	反馈分频比	14:0	RW	100	整数模式:分频比16~32767 (2^15-1)
器	-	pd_rst_div	复位反馈分频	21	RW	0	复位反馈分频,高有效
小数分 频寄存 器	04	frac	小数分频比	23:0	RW	100	设置小数分频比NUM[23:0]

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

SPI控制说明

名字	地址	命名	功能	位号 bit	读写	默认值 dfauIt-dec	描述
		n_reset_ds m	复位小数分频	0	RW	1	初始复位信号,低电平复位
		dsm_en	开关小数分频	1	RW	1	0:关闭小数分频 1:开启小数分频
		mash2_en	mash模式的阶 数	4	RW	0	0: 三阶mash 1: 二阶mash
		int_en	开关整数模式	5	RW	0	0: 小数模式 1: 整数模式(小数分频失效)
		dither_en	开关抖动	6	RW	0	0: 无抖动 1: 自抖动或LFSR抖动
小数分 频控制 寄存器	06	dith- er_type	LFSR抖动模式	7	RW	1	仅当dither_en=1有效: 0: LFSR抖动 1: 自抖动
		mash_seed_ en	mash初始状态 使能	8	RW	0	0:初始状态为默认值0 1:初始状态可通过mash_seed设置
		NDiv_Clk_t o_dig_en	反馈分频到数 字的时钟使能	9	RW	1	0: 关断 1: 使能
		NDiv_Clk_p hase	反馈分频到数 字时钟相位控 制	10	RW	0	0: 同相 1: 反相
	Ndiv_Clk_d elay	反馈分频到数 字时钟延时控 制	12:11	RW	0	00: 延时1 10: 延时2 11: 延时3	
小数分 频seedA	07	mash_seed	小数分频初始 状态	23:0	RW	0	mash_seed[23:0]
锁定检测及总		LD_window	数字LD判定窗 口大小	2:0	RW	0	数字LD判定窗口大小: 000: 2ns 001: 5.5ns 010: 11ns 011: 21ns 100: 30ns 101: 58ns 110: 114ns 111: 224ns
并口输 出寄存 器	09	LD_wincnt	数字LD窗口判 定计数值	4:3	RW	0	PFD在窗口内的次数达到该设定值 后LD判定有效: 00: 64 01: 256 10: 1024 11: 4096
		LD_MODE	LD工作模式	5	RW	0	LD工作模式: 0:数字LD模式(PFD延时窗口模 式) 1:模拟LD模式(PFD占空比模式)

SIPL

锁相环和频综

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2306

SPI控制说明

	ı	I	<u> </u>		<u> </u>	mb >1 /4	1
名字	地址	命名	功能	位号	读写	默认值	描述
				bit		dfault-dec	LD占空比判定范围:
							000: 10%
							001: 15%
			模拟LD占				010: 20%
		LD_DCC	空比判定	10:8	RW	0	011: 25%
			范围		''''		100: 30%
			,5,4				101: 35%
							110: 40%
锁定检							111: 45%
测及总							LD_GPO_OUT引脚输出的模拟输出选择:
并口输	09						0000: 未连接NC
出寄存							0001:参考分频REF_DIV
器							
		000	全局并口	10.17	DW	0	0011: 电荷泵UP
		GP0	输出	19:16	RW	0	0100: 电荷泵DN
							0101: 调谐电压VCP_mir1
							0110: 调谐电压VCP_mir2
							0111: 欠压锁存VUVL0
							1000 - 1111:未连接NC
		GPO_EN	开关GP0	23	RW	0	0:关断GPO,采用LD模式
		di o_EN	71 X G O	23	1311	Ů	1: 关断LD, 采用GPO模式
							PFD重置延时:
			设置PFD			_	00: 0.6ns
		PD_tdelay	重置延时	1:0	RW	0	01: 1ns
							10: 1.4ns
							11: 1.8ns
		POL_INV	设置PFD	2	RW	1	PFD极性控制: 0: 极性正
		POL_INV	极性	2	KW	'	1: 极性反
							1: 极性及
115 115 115		Reverse	保留位	4:3	RW	0	保留位
鉴频鉴 相器和			强制使能				仅在PFD关断下有效
电荷泵	10	FUP_CP	PFD的UP	5	RW	0	0:强制关断PFD的UP输出
寄存器	10		输出				1:强制使能PFD的UP输出
A			强制使能				仅在PFD关断下有效
		FDN_CP	PFD的DN	6	RW	0	0:强制关断PFD的DN输出
			输出				1:强制使能PFD的DN输出
		Reverse	保留位	7	RW	0	保留位
			CP增益电				CP增益电流UP控制字(30uA/bit):
		CPGup	流UP控制	15:8	RW	255	电流计算: 30uA*CPGup
			字				CPGup范围: 0-255
			CP增益电				CP增益电流DN控制字(30uA/bit):
		CPGdn	流DN控制	23:16	RW	255	电流计算: 30uA*CPGdn
			字				CPGdn范围: 0-255

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

SPI控制说明

名字	地 址	命名	功能	位号 bit	读写	默认值 dfault-dec	描述
		CPOS_curren t	CP补偿电流 控制字	6:0	RW	0	CP补偿电流DN控制字(7.5uA/bit): 电流计算: 7.5uA*CPOS_current CPOS_current范围: 0-127
鉴频 鉴相		CPOS_UP_EN	开关CP的UP 补偿电流	8	RW	0	0:开启CP的UP补偿电流 1:关断CP的UP补偿电流
器和 电荷	11	CPOS_DN_EN	开关CP的DN 补偿电流	9	RW	0	0:开启CP的DN补偿电流 1:关断CP的DN补偿电流
泵寄		reseved	保留位	10	RW	0	
存器B		Ndiv BIAS	反馈分频电 流调节	13:11	RW	2	000: 电流最小 001: 电流+5% 010: 电流+10%

评估板电路图

Designator

Comment

Description

Footprint

Manufacture

Part Number

SOB Quantity

1 IPCB1 PCB ted Circuit Board Si Core EVAL-SIPL6SP4-A 1 IPCB1 2 C1, C2, C3, C4, C5, C6, C7, C8, C13, C14 3 C9, C10, C11, C12, C15, C17, C18, C19, C20, C28 10u 0805, 0805_4 TDK C2012X5R1E106K125AB 10 4.7u Capacitor 0805 TDK C2012X5R1E475K125AB Υ 10 4 C16 5 C21 6 C22, C23, C31, C43, C44, GRM155R71H104KE14D Capacitor Murata N Murata 470p Capacito GCM1555C1H471JA16D 10p Capacitor 0402 Murata GRM1555C1H100FA01D 8 C45, C46, C47 C24, C27, C30, C35, C36 100n 0402 7 (224, C27, C30, C35, C38, C39, C42, C48 8 (225, C33, C49 9 (226 10 (229 11 (232 12 (234 13 (237, R16 14 (240 15 (241 Capacitor Murata GRM155R71H104KE14D 0402 Murata 3RM155R71H103.IA88D Capacito GRM155R71C473KA01D Murata Murata GRM155R71E473JA88D Capacitor 1 4 1 220p NC 0402 Murata 3CM155R71H221JA37D GCM155R71H222JA37D Murata Capacitor Yageo Murata RC0402JR-070RL GRM1555C1H101FA01D Capacitor, F 0402 100p Capacitor 2 4 1 15 C41 4.7u Capacitor 0402 TDK C1005X5R1A475K050BC Murata 16 C50 17 C51 Capacitor Capac itor 0402 Murata WE GRM1555C1H102JA01D N 18 D1 19 E1, E2, E3 20 FB1, FB2, FB3, FB5 Red NC 471 EMI Filter NEM180 Murata NFM18CC223R1C3 N 21 FB4 Resisto 0603 Yageo RC0603JR-070RL 22 J1, J2, J3, J5 RF Connecter 傲文 D550B12E01-023 4 SMA DC Header, 5-Pin, Dua 23 J4 USB IDT IDC2.54-10 DC3-10P row 24 MH1, MH2, MH3, MH4 25 R1, R2, R3, R9 702932000 33k 702932000 0402 Resisto Yageo RC0402FR-0733KL 26 R4, R5 27 R6 100k NC 0402 RC0402FR-07100K N Resistor Yageo 28 R7, R8, R26 29 R10 N Resistor RC0402FR-07300RI Yageo 29 R10 30 R11 31 R12 R14 32 R13 33 R15 34 R17 Resistor 0402 RC0402FR-0743KL Yageo Yageo 5 1k 0402 Yageo RC0402FR-075K1I 35 R18 36 R19 10k Yageo Yageo RC0402FR-0710KI RC0402FR-07100R 37 R20, R21, R22, R23, R24 200F Resistor Yageo RC0402FR-07200RI N RC0603FR-072KI 38 R25 39 TP1, TP5, TP10 Yageo Test Poin Keystone 005 Keyston Kevstone5005 TP2, TP3, TP4, TP6, TP9 N 41 TP7, TP8 Black Test Point Keystone5006 Keystone Kevstone5006 TP11, TP12, TP13, TP14, 42 TP15, TP16, TP17, TP18, W hite Test Point Keystone5002 Keystone5002 10 Keystone TP19, TP20 43 U1, U2, U3, U4, U5 LT3045IDD DFN10 LT3045IDD PLDO for RF. 150mA 44 U6 TPS7A4901 SON-8 ΤI TPS7A4901DRBR Υ 1 output 45 U7 OPA211AIDGK er SOP8-1 OPA211AIDGKR Operational Am Si_Core 47 U9 SP4 SIPL219SP4 SIPL219SP4 48 U10 SIPS121SP4 SP4 Si_Core SIPS121SP4 Splitter/Combiner

SIPL

锁相环和频综

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

相环和频综

评估板电路图

锁相环

