TD 2

TD - Intégrales à paramètre (suite)

Amphi A

Exercice 1: La fonction Γ d'Euler.

On définit

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- 1. Donnez le domaine de définition de Γ .
- **2.** Montrez que Γ est de classe \mathcal{C}^{∞} sur son domaine de défnition.
- 3. À l'aide d'une intégration par partie, montrez que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$. En déduire que pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.
- 4. Trouvez un équivalent de Γ en 0.
- 5. Montrez que Γ est convexe. Montrez que $\ln\Gamma$ est convexe.
- **6.** On donne $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. Calculez $\Gamma(\frac{1}{2})$ puis $\Gamma(\frac{3}{2})$ et $\Gamma(\frac{5}{2})$.
- 7. Tracez le graphe de Γ .

Exercice 2

On pose

$$f(x) = \int_0^{+\infty} \frac{dt}{t^x(1+t)}$$

- 1. Domaine de définition de f?
- 2. Sans calculer de dérivée, montrez que f est convexe.
- **3.** Continuité, dérivabilité de f?
- 4. En remarquant que

$$\frac{1}{t^x(1+t)} = \frac{1}{t^{x+1}} - \frac{1}{t^{x+1}(1+t)} \qquad \text{et} \qquad \frac{1}{t^x(1+t)} = \frac{1}{t^x} - \frac{t^{x-1}}{1+t}$$

trouvez des équivalents à f aux bords de son ensemble de définition.

Exercice 3

On pose

$$f(x) = \int_0^{+\infty} \frac{e^{-t^2 x}}{1 + t^2} dt$$

- 1. Domaine de définition de f?
- **2.** Montrez que f est continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* .
- 3. Tableau de variation de f et limite de f en $+\infty$.
- 4. Calculez f f'. On rappelle que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.
- 5. Trouvez un équivalent simple de f' en $+\infty$.
- **6.** Montrez que $f(x) = \frac{\sqrt{\pi}}{2\sqrt{x}} \frac{\sqrt{\pi}}{4x\sqrt{x}} + o_{x\to\infty}\left(\frac{1}{x\sqrt{x}}\right)$.
- **7.** Tracez la courbe de f.

Exercice 4

Soit $q \in \mathbb{R}^*$

1. En utilisant l'exponentielle complexe, montrer que si p > 0, alors

$$\int_0^{+\infty} e^{-px} \sin(qx) \, dx = \frac{q}{p^2 + q^2}.$$

2. En intégrant sous le signe intégrale, montrer que pour a, b > 0, on a

$$\int_0^\infty \frac{e^{-bx} - e^{-ax}}{x} \sin(qx) \, dx = \arctan \frac{a}{q} - \arctan \frac{b}{q}.$$

Exercice 5

Soient a, b > 0. On définit, pour $x \in \mathbb{R}$, la fonction F par :

$$F(x) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \cos(xt) dt.$$

- 1. Justifier l'existence de F(x).
- **2.** Prouver que F est C^1 sur \mathbb{R} et calculer F'(x).
- **3.** En déduire qu'il existe une constante $C \in \mathbb{R}$ telle que, pour tout $x \in \mathbb{R}$:

$$F(x) = \frac{1}{2} \ln \left(\frac{b^2 + x^2}{a^2 + x^2} \right) + C.$$

4. Justifier que, pour tout $x \in \mathbb{R}$, on a :

$$F(x) = -\frac{1}{x} \int_0^{+\infty} \psi'(t) \sin(xt) dt,$$

où
$$\psi(t) = \frac{e^{-at} - e^{-bt}}{t}$$
.

5. En déduire la valeur de C.

Exercice 6: Transformée de Laplace et équations différentielles.

Soit $\alpha \in \mathbb{R}$. On dit qu'une fonction $f: \mathbb{R}_+ \to \mathbb{C}$ est d'ordre exponentiel $\geq \alpha$ si il existe K > 0 tel que $\forall x \in \mathbb{R}_+, |f(x)| \leq Ke^{\alpha x}$.

Dans ce qui suit, on fixe $\alpha \in \mathbb{R}$ et on considère une fonction f, de classe \mathcal{C}^1 sur \mathbb{R}_+ et d'ordre exponentiels $\geq \alpha$. On note $\mathcal{L}f(x) = \int_0^{+\infty} f(t)e^{-xt}dt$ la transformée de Laplace de f.

- 1. Montrez que $\mathcal{L}f$ est bien définie sur $]\alpha, +\infty[$.
- **2.** Montrez que $\mathcal{L}(f')$ est bien définie sur $]\alpha, +\infty[$ et que pour tout $x>\alpha$

$$\mathcal{L}(f')(x) = x\mathcal{L}f(x) - f(0)$$

- 3. Soit $z \in \mathbb{C}$. Quel est l'odre exponentiel de $g: t \mapsto e^{zt}$? Calculez sa transformée de Laplace.
- 4. À l'aide de la transformée de Laplace, trouvez une solution particulière à

$$y'' + y = 0$$

vérfifiant y(0) = 0 et y'(0) = 1.