MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

2. april 2025

Vsebina

¶ Funkcija

2/24

Section 1

Funkcija

Jan Kastelic (GAA)

- 📵 Funkcija
 - Funkcija
 - Linearna funkcija
 - Predpis linearne funkcije
 - Graf linearne funkcije

4 / 24

5 / 24

Jan Kastelic (GAA)

Preslikava

2. april 2025

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

5 / 24

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

f :

2. april 2025

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

• množice \mathcal{X} , ki ji pravimo **domena**,

 $f: \mathcal{X}$

5 / 24

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice \mathcal{Y} , ki ji pravimo **kodomena** in

 $f: \mathcal{X} \to \mathcal{Y}$

5 / 24

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice ${\mathcal Y}$, ki ji pravimo **kodomena** in
- **prirejanja**, ki vsakemu elementu *x* domene priredi natanko en element *y* kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice ${\mathcal Y}$, ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element y kodomene.

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

5 / 24

Preslikava

Naj bosta \mathcal{X} in \mathcal{Y} neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- množice \mathcal{Y} , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

5 / 24

Preslikava

Naj bosta \mathcal{X} in \mathcal{Y} neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- množice \mathcal{Y} , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

Preslikavo lahko podamo s predpisom, puščičnim diagramom, besednim opisom ...

5/24

◄□▶
□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Funkcija

2. april 2025

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

6/24

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

6/24

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

6/24

Jan Kastelic (GAA) MATEMATIKA

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$

6/24

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$

x je neodvisna spremenjlivka, f(x) je od x odvisna spremenljivka.

6/24

7 / 24

Jan Kastelic (GAA)

• $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$ – realna funkcija realne spremenljivke;

7 / 24

- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;

7 / 24

- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$ naravna funkcija realne spremenljivke;

7 / 24

- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$ naravna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{N}$ naravna funkcija naravne spremenljivke.

7 / 24

8 / 24

2. april 2025

Jan Kastelic (GAA) MATEMATIKA

Definicijsko območje

8 / 24

2. april 2025

Jan Kastelic (GAA) MATEMATIKA

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

8 / 24

Funkciia

Definicijsko območje in zaloga vrednosti

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

8 / 24

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

8 / 24

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

Zaloga vrednosti preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh slik oziroma funkcijskih vrednosti. Oznaka: Z_f .

8 / 24

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

Zaloga vrednosti preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh slik oziroma funkcijskih vrednosti. Oznaka: Z_f .

Zaloga vrednosti Z_f je podmnožica kodomene \mathcal{Y} : $Z_f \subseteq \mathcal{Y}$.

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ □ ⟨○⟩

8 / 24

Naloga

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

9 / 24

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

Naloga

Tabelirajte funkcijo g(x) = 2x + |x| od -3 do 3 s korakom 1.

9 / 24

Funkcija

Zapišite definicijska območja funkcij.

$$f(x) = \frac{-7}{x+1}$$

•
$$g(x) = \frac{1}{(x+2)(x+6)}$$

•
$$h(x) = \frac{3x^2 + 1}{5}$$

•
$$i(x) = \sqrt{x-2}$$

•
$$j(x) = x^3 - \frac{2}{3}$$

•
$$k(x) = \sqrt{x^2 + 7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^2 + 1}{x^2 - 5x - 6}$$

Jan Kastelic (GAA)

MATEMATIKA

Funkcija

Ničla in začetna vrednost funkcije

11 / 24

Ničla funkcije

11 / 24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

11 / 24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

11/24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

11 / 24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

11 / 24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

Začetna vrednost funkcije $f: \mathcal{X} \to \mathcal{Y}$ je funkcijska vrednost pri x = 0, to je f(0).

11 / 24

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

Začetna vrednost funkcije $f: \mathcal{X} \to \mathcal{Y}$ je funkcijska vrednost pri x = 0, to je f(0).

Začetna vrednost obstaja le, če je 0 v definicijskem območju funkcije $f: 0 \in D_f$.

<ロト < 個ト < 重ト < 重ト < 重 り < @

11/24

Funkcija

Izračunajte ničle funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

•
$$j(x) = x^2 + 1$$

•
$$k(x) = x^2 - 3x^2 - 4x + 12$$

•
$$I(x) = \sqrt{x+7}$$

$$m(x) = \frac{3}{x}$$

Funkcija

Izračunajte začetne vrednosti funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

•
$$j(x) = x^2 - 3x^2 - 4x + 12$$

•
$$k(x) = \sqrt{x+7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^3 - 2x^2 - 4}{x^4 + 2x^3 + 3}$$

Jan Kastelic (GAA)

MATEMATIKA

Graf funkcije

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice Γ_f lahko upodobimo v koordinatnem sistemu. Vsakemu elementu (x, f(x)) iz zgornje množice priprada natanko ena točka v koordinatnem sistemu, katere abscisa je enaka x, ordinata pa je njegova slika f(x).

14 / 24

Funkcija

15 / 24

Zapišite in narišite grafe funkcij ter zapišite začetne vrednosti in ničle, če jih funkcija ima.

•
$$f(x) = x$$
 $D_f = \mathbb{R}$

•
$$g(x) = -2x + 1$$
 $D_g = \mathbb{R}$

•
$$i(x) = \frac{1}{x^2}$$
 $D_i = \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2\right\}$

•
$$j(x) = \frac{x+2}{x-3}$$
 $D_j = \{-2, -1, 0, 1, 2\}$

15 / 24

Naraščanje in padanje

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$; $x_1 < x_2$, velja $f(x_1) \le f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za vsaka $x_1, x_2 \in (a, b)$; $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

Padajoča funkcija

Funkcija f je na intervalu (a, b) **padajoča**, če za poljubna $x_1, x_2 \in (a, b)$; $x_1 < x_2$, velja $f(x_1) \ge f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo padajoča**, če za vsaka $x_1, x_2 \in (a, b)$; $x_1 < x_2$, velja $f(x_1) > f(x_2)$.

4 D > 4 P > 4 B > 4 B > 9 Q

16 / 24

Injektivnost in surjektivnost

Jan Kastelic (GAA) MATEMATIKA

Predpis linearne funkcije

2. april 2025

Jan Kastelic (GAA) MATEMATIKA

Linearna funkcija

Ugotovite, ali je dana funkcija linearna. Linearnim funkcijam določite smerni koeficient in začetno vrednost.

•
$$f(x) = \frac{1}{7x} - \frac{3}{4}$$

•
$$g(x) = \frac{2}{3} - \pi x$$

•
$$h(x) = \frac{8+6x}{24}$$

•
$$i(x) = 0.\overline{3}x + 1$$

•
$$j(x) = \frac{x^2 - 3}{5}$$

•
$$k(x) = -\sqrt{2}x + \frac{2}{3}$$

•
$$I(x) = 2$$

2. april 2025

19 / 24

Jan Kastelic (GAA) MATEMATIKA

Linearna funkcija

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

20 / 24

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

Naloga

Dana je linearna funkcija f(x) = 3x - 4. Izračunaj f(-2), f(0); f(5) in $f(\sqrt{2})$.

20 / 24

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

Naloga

Dana je linearna funkcija f(x) = 3x - 4. Izračunaj f(-2), f(0); f(5) in $f(\sqrt{2})$.

Naloga

Zapišite predpis linearne funkcije, za katero je u(-2) = 10 in u(0) = 2.

20 / 24

Linearna funkcija

21 / 24

Ali je funkcija naraščajoča ali padajoča?.

•
$$f(x) = 3x + 5$$

•
$$g(x) = -2x + 7$$

•
$$h(x) = 10 - \frac{1}{2}x$$

$$i(x) = \frac{x-1}{2}$$

$$i(x) = \frac{5-2x}{3}$$

$$k(x) = \frac{-\sqrt{3}x + 1}{3}$$

•
$$I(x) = -\frac{2-4x}{17}$$

21 / 24

Linearna funkcija

Izračunajte ničlo linearne funkcije.

•
$$f(x) = 6x + 12$$

•
$$g(x) = 5x + 2$$

•
$$h(x) = 3x - 12$$

•
$$i(x) = -4x + 8$$

•
$$j(x) = -3x + 2$$

•
$$k(x) = -x - 7$$

$$I(x) = \frac{1}{4}x - \frac{1}{4}$$

•
$$m(x) = -\frac{2x+3}{6}$$

$$n(x) = \frac{1-4x}{2}$$

•
$$o(x) = \frac{\pi x + 4}{3}$$

•
$$p(x) = \sqrt{2}x + 1$$

•
$$r(x) = 4$$

Predpis linearne funkcije

2. april 2025

23 / 24

Jan Kastelic (GAA) MATEMATIKA

Graf linearne funkcije

2. april 2025

Jan Kastelic (GAA)

MATEMATIKA