

Essential Mathematical Methods for Engineers

Lecture 1a:
Signal representation and system response

Outline

- signal representation and system response
 - signals and systems
 - signal classification
 - Fourier series
 - the Fourier transform
 - Laplace transform
 - transform analysis of linear systems
 - transfer function

course text:

Digital Signal Processing: Concepts and Applications
Mulgrew, Grant and Thompson
Palgrave Macmillan

Signals and systems

- a familiar, simple example of a signal
- motion of a plucked guitar string alters pressure of surrounding air
- air pressure oscillates in sympathy
- pressure radiates to microphone and converted to electrical voltage

Signals and systems

- pressure waves radiate in all directions
- difference in path lengths can cause interference
- a simple example of a system
 - the input is the position signal, x(t)
 - the output is the electrical signal, y(t)

Signal classification

- many ways in which signal may be classified, i.e. periodic, when x(t) = x(t + T), where the smallest value of T defines the period
- we can also classify signals as either energy or power signals
- energy signals

finite energy = zero power finite power = infinite energy

- non-zero and finite total dissipated energy, E
- usually exist for a finite interval of time or have most of their energy concentrated in a finite interval of time

 $0 \le E \le \infty$, $E = \int_{-\infty}^{\infty} x^2(t) dt$

- power signals
 - non-zero and finite average delivered power, P, i.e. $0 < P < \infty$
 - an example is the unit step function u(t) and a periodic signal of period T such as $x(t)=\sin(2\pi t/T)$

$$\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x^2(t) dt \qquad P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^2(t) dt \qquad P = \frac{1}{T} \int_{0}^{T} x^2(t) dt$$

Example

Find the energy in the decaying exponential signal $x_1(t)=5\exp(-2t)$ if $t \ge 0$ and $x_1(t)=0$ if t < 0.

Fourier series Trigonometric Fourier series

we can represent any finite power periodic signal x(t) with a period T as a sum of sine and cosine waves:

 $x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t)$

• fundamental frequency: (b) $\omega_o = 2\pi/T \text{ rad/s}$ or 1/T Hz

harmonics are generally found at 2/T Hz, 3/T Hz ... (c) according to Fourier coefficients:

$$A_{n} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos(n\omega_{0}t) dt \quad n = 0, 1, 2, ...$$
(d)

$$B_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(n\omega_0 t) dt \quad n = 1, 2, 3, \dots$$

Example

Evaluate the Fourier series of the square wave (a)

(a)

(e)

Complex phasors

- sine and cosine waves may be described using complex phasors
- the complex phasor can be split into real and imaginary terms:

$$A\exp(j\omega_0 t) = A\cos(\omega_0 t) + jA\sin(\omega_0 t)$$

the complex phasor may be interpreted as a vector of length A rotating anticlockwise at w_0 rad/s

Euler's identify $e^{j\theta} = \cos\theta + j\sin\theta$

we may thus write

$$A\cos(n\omega_0 t) = \Re\{A\exp(j\omega_0 t)\}\$$

$$A\sin(n\omega_0 t) = \Im\{A\exp(j\omega_0 t)\}\$$

$$\cos(n\omega_0 t) = \frac{\exp(jn\omega_0 t) + \exp(-jn\omega_0 t)}{2}$$
$$\sin(n\omega_0 t) = \frac{\exp(jn\omega_0 t) - \exp(-jn\omega_0 t)}{2j}$$

Complex Fourier series

substituting the last two equations on the last slide into those for the trigonometric Fourier series gives us the complex Fourier series:

$$x(t) = \sum_{n=-\infty}^{+\infty} X_n \exp(jn\omega_0 t)$$

which we can interpret as a bank of phasor generators with increasing frequencies and amplitudes X_n

$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt \qquad \exp(-j\omega_0 t)$$

- one difference between the trigonometric and the complex Fourier series – the trigonometric Fourier series has three equations whereas the complex Fourier series has only two
 - but X_n s in the complex form are often complex

Fourier series Complex Fourier series

Example

Derive an expression for the complex Fourier coefficient, X_n , associated with

the periodic signal x(t):

Example magnitude and phase spectra for $T = 5\tau$

Relationship between Fourier series

 there is a simple relationship between the trigonometric and complex Fourier series coefficients

$$X_0 = \frac{A_0}{2}, \qquad X_n = \frac{A_n - jB_n}{2} \quad (n > 0), \qquad X_n = \frac{A_{-n} + jB_{-n}}{2} \quad (n < 0)$$

thus the complex Fourier series of a real signal exhibits complex conjugate (Hermitian) symmetry: $X_{-n} = X_n^*$ or $|X_{-n}| = |X_n|$

and the phase is asymmetrical: $\angle X_{-n} = -\angle X_n$

• we thus need never calculate X_n for negative n and we can easily move between the two representations

Orthogonality

- the Fourier series is an orthogonal expansion
- we say two signals $f_1(t)$ and $f_2(t)$ are orthogonal if $\frac{1}{T} \int_{-T/2}^{T/2} f_1(t) f_2^*(t) dt = 0$

and for the complex Fourier series the basis functions are mutually orthogonal:

$$\frac{1}{T} \int_{-T/2}^{T/2} \exp(jn\omega_0 t) \exp^*(jm\omega_0 t) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

Example

Note the benefit of othogonality in calculating the power in the simple periodic signal x(t) where:

$$x(t) = a_1 \sin(\omega_0 t) + a_2 \sin(2\omega_0 t)$$

Parseval's theorem for periodic signals

- a consequence of orthogonality
- the power in a signal may be calculated from either the trigonometric or complex Fourier coefficients:

$$P = \frac{A_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(A_n^2 + B_n^2 \right)$$

$$P = \sum_{n=-\infty}^{\infty} |X_n|^2$$

- applicable to non-periodic signals
- consider what happens when the period of a periodic signal increases
- as the period is doubled the frequency spacing and magnitude halves
- the shape doesn't change

- perhaps we can determine the Fourier representation of a single pulse by letting T get very large?
 - but if it gets too large the representation will disappear
 - Fourier coefficients are calculated from $X_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} x(t) \exp(-jn\omega_0 t) dt$
 - as $T \to \infty$ the $X_n \to 0$
- we could avoid this problem by defining the Fourier coefficients

$$X'_{n} = T X_{n}$$

$$= \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_{0}t) dt$$

the Fourier series is then given by

$$x(t) = \sum_{n=-\infty}^{+\infty} \frac{X_n^{'}}{T} \exp(jn\omega_0 t)$$
$$= \sum_{n=-\infty}^{+\infty} X_n^{'} \exp(jn\omega_0 t) \frac{\omega_0}{2\pi}$$

now as $T \to \infty$

- the spectral lines get closer together and the separation between ω_0 becomes the differential $d\omega$
- the harmonic frequency $n\omega_0$ becomes the continuous frequency variable ω
- the discrete spectrum X_n ' becomes a continuous spectrum $X(\omega)$
- the summation of all discrete frequency components becomes an integration over all possible frequencies:

$$X(\omega) = \lim_{T \to \infty} X_n'$$

$$= \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt$$

therefore we have

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

$$x(t) = \lim_{T \to \infty} \sum_{n = -\infty}^{+\infty} X_n' \exp(jn\omega_0 t) \frac{\omega_0}{2\pi}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega$$

and we can represent most finite energy signals in this way

Example

Evaluate the Fourier transform of the finite energy signal x(t)

Sinc and sampling functions

 this last result occurs frequently so we assign it a convenient abbreviation

$$\operatorname{sa}(x) = \frac{\sin(x)}{x}$$

which is known as the sampling function

an alternative better suited to Hz than rad/s

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

Physical interpretation and Parseval's theorum

- we have seen how we can represent an aperiodic signal as a sum of cosine waves at all possible frequencies
 - the signal is not periodic thus it cannot have harmonics
- the signal x(t) has a component with
 - small frequency band ω to $\omega + d\omega$ rad/s
 - magnitude $|X(\omega)|d\omega/(2\pi)$
 - phase $\angle X(\omega)$

$$\frac{|X(\omega)|d\omega}{2\pi}\cos(\omega t + \angle X(\omega))$$

- Parseval's theorem for finite energy signals $E = \int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$
- $|X(\omega)|^2/(2\pi)$
 - defines how the energy is distributed in frequency
 - is known as the energy spectral density

The Laplace transform

the Fourier transform only exists for finite energy signals – for u(t) (a power signal): $U(0) = \int_{0}^{\infty} u(t) \exp(-j0t) dt$

$$=\int_{0}^{\infty}dt$$

• the solution is to multiply x(t) by a convergence factor $\exp(-\sigma t)$

$$x_{\sigma}(t) = \exp(-\sigma t)x(t)$$

so that

$$X_{\sigma}(\omega) = \int_{-\infty}^{\infty} x_{\sigma}(t) \exp(-j\omega t) dt$$
$$= \int_{-\infty}^{\infty} x(t) \exp(-(\sigma + j\omega)t) dt$$

which we rewrite using $s = \sigma + j\omega$ to give us the two-sided or bilateral Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t) \exp(-st) dt$$

The Laplace transform

the inverse Laplace transform

$$x(t) = \exp(\sigma t)x_{\sigma}(t)$$

$$= \exp(\sigma t)\frac{1}{2\pi} \int_{-\infty}^{\infty} X_{\sigma}(\omega) \exp(j\omega t)d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{\sigma}(\omega) \exp((\sigma + j\omega)t)d\omega$$

therefore

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$

if we assume causality we have the one-sided Laplace transform

$$X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$$

The Laplace transform

Applicability and physical interpretation

- the basis functions of the Laplace transform are growing or decaying complex phasors
- $A \exp(st) = A \exp(\sigma t) \cos(\omega t) + jA \exp(\sigma t) \sin(\omega t)$

- the signal x(t) has components with
 - frequency ω
 - magnitude $|X(s)|d\omega/(2\pi)$
 - growth or decay determined
 by σ
 - phase $\angle X(s)$

$$\frac{|X(s)|d\omega}{2\pi}\exp(\sigma t)\cos(\omega t + \angle X(s))$$

Example

Evaluate the Laplace transform of a one-sided signal $x(t) = \exp(-\alpha t)$

- the transforms all represent signals as weighted sums (integrals) of exponential orthogonal basis functions
 - e.g. for the complex Fourier series we have weights X_n and mutually orthogonal basis functions $\exp(jn\omega_0 t)$
- this representation is fundamental to the analysis of linear systems and to evaluating the response of such systems to a wide range of inputs
 - superposition: a system with a number of inputs has an output equal to the sum of the output of each input

Linear ordinary differential equations

many linear systems can be modelled with linear ordinary differential equations

 $a_0 y + a_1 \frac{dy}{dt} + \dots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \dots + b_m \frac{d^m x}{dt^m}$

where the input, x(t), defines the output, y(t), according to system parameters $a_0...a_n$ and $b_0...b_m$

Example

Evaluate the response $y_n(t)$ of the following circuit to the n^{th} harmonic, i.e. the complex phasor $\exp(jn\omega_0 t)$

$$\begin{array}{c|c}
R \\
+ \bullet & \bullet \\
\exp(jn\omega_0 t) \\
- \bullet & \bullet \\
x (t) & y (t)
\end{array}$$

$$a_0 y_n(t) + a_1 \frac{dy_n}{dt} = b_0 \exp(jn\omega_0 t)$$

$$y_n(t) + RC \frac{dy_n}{dt} = \exp(jn\omega_0 t)$$

Transform analysis of linear systems Linear ordinary differential equations

• the response of the circuit to the nth basis function is characterised by the system transfer function H_n

$$y_n(t) = H_n \exp(jn\omega_0 t)$$

where for the given system

$$H_n = \frac{b_0}{a_0 + (jn\omega_0)a_1}$$
$$= \frac{1}{1 + (jn\omega_0)RC}$$

Response of a linear system to a periodic input

- what if we want to calculate more generally the output y(t) to any periodic input x(t)?
- according to the principle of superposition:

Response of a linear system to a periodic input

- the system is linear so we can perform the multiplication by X_n at the input or equivalently at the output
- H_n characterises the system response to the n^{th} complex phasor

Response of a linear system to a periodic input

- the diagrams are equivalent in structure
- in the second diagram H_n and X_n have been bought together
 - these are the complex Fourier coefficients of the output, y(t)
 - this is the Fourier series representation, Y_n

Response of a linear system to a periodic input

• there is thus a simple relationship between the complex Fourier coefficients of the input, X_n and those of the output, Y_n

$$Y_n = H_n X_n$$

- since each basis function is scaled by X_n to form the input x(t)
- the response of the system to each Fourier component $X_n \exp(jn\omega_0 t)$ is given by

$$X_n H_n \exp(jn\omega_0 t)$$

using superposition we thus have

$$y(t) = \sum_{n=-\infty}^{\infty} H_n X_n \exp(jn\omega_0 t)$$

and $Y_n = H_n X_n$ is a complex Fourier coefficient of the output

General approach

- to evaluate the response y(t) of a linear system to an input x(t)
 - represent the input signal as a weighted sum of exponential basis functions
 - obtain the appropriate linear differential equation which characterises the system
 - obtain the response of the system to each basis function
 - apply principles of superposition to determine the output

- we have considered periodic input signals and hence steady-state responses
 - the Laplace transform applies equally to steady-state and transient responses to non-periodic signals

Laplace transfer function

defined in the same way as for the Fourier transfer function

$$H_s = \frac{L[\text{output}]}{L[\text{input}]} = \frac{Y(s)}{X(s)}$$

and completely specifies system characteristics

 with knowledge of the transfer function we can calculate the response of the system to any input

Example

Evaluate the transfer function of the following circuit:

Summary

You should be able to:

- recognise both signals and systems;
- evaluate the complex Fourier series of simple waveforms and know what the complex weights signify;
- evaluate the Fourier and Laplace transforms of simple waveforms and know what the transforms signify;
- understand the role of these transforms in evaluating the response of a linear system to a particular signal;
- calculate the response of a simple system to a simple waveform using transform techniques.