Theorem Fatou's Lemma	If f_n are all μ -measurable, then $\int \liminf_n f_n d\mu \leq \liminf_n \int f_n d\mu.$
Definition A measure	$ \bullet \ \mu(\emptyset) = 0, \text{positive} $ $ \bullet \ \text{monotonicity} $ $ \bullet \ \text{subadditivity} $
Definition Borel measure	Borel sets are measurable. (The measure splits)
Definition Regular measure	"Every set is μ -almost a measurable set."

Definition Borel-regular measure	"Every set is μ -almost a Borel set, and μ is Borel."
Definition Radon measure	"Compact sets have finite μ -measure, and μ is Borel-regular."
Тнеогем Radon-Nikodym Theorem	Let μ,ν be Radon measures on \mathbb{R}^n , with $\nu<<\mu$. Then $\nu(A)=\int_A D_\mu \nud\mu$ for all μ -measurable $A\subseteq\mathbb{R}^n$.
Theorem Young's Inequality	If $a,b\geq 0$ and $p,q>1$ such that $\frac{1}{p}+\frac{1}{q}=1,$ then $ab\leq \frac{a^p}{p}+\frac{b^q}{q}.$

Theorem Holder Inequality	If $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$ where p,q conjugate exponents, then $ fg _{L^1} \leq f _{L^p} g _{L^q} , \text{that is,}$ $\int_{\Omega} f(x)g(x) dx \leq \left(\int_{\Omega} f(x) ^p dx\right)^{\frac{1}{p}} \left(\int_{\Omega} g(x) ^q dx\right)^{\frac{1}{q}}$ This can be thought of a "sort of" a Cauchy-Schwarz for Banach Spaces.
Definition Lipschitz Continuity	A function $f: X \to Y$ is Lipschitz continuous if there exists $M > 0$ such that for all $x_1, x_2 \in X$, $ f(x_1) - f(x_2) _Y \le M x_1 - x_2 _X .$ If $f: X \to X$ and $M < 1$, then f is in particular a contraction.
Definition Baire First Category	A set A is if it is a countable union of nowhere dense sets.
Definition Nowhere dense set	A set A is if \overline{A} has empty interior.

Definition	
Sequentially compact space	A topological space X is if every sequence in X has a convergent subsequence (to a point in X).