Linear Algebra & Convex Optimization – Lecture 1

Dr. Viswanath Gopalakrishnan IIIT-B

Course Outline

Lecture Topics (14 Lectures):

- Vector Operations,, Norms, Distances
- Clustering, Linear Dependence, Basis, Orthogonality
- Matrices, Matrix -Vector Product, Matrix Applications
- Matrix Inverses, Solving Linear Equations, Projection Spaces
- Least Squares, Data Fitting, Classification
- Eigen Analysis, PCA, Positive/Negative Definiteness
- Singular Value Decomposition and Applications
- Introduction to Functions, Derivatives and Matrix Calculus
- Convex Functions and Optimization Problems
- Optimality Criteria, Equivalent Convex Problems
- Lagrange Duality, Complementary Slackness, KKT conditions
- Constrained Optimization , Application to PCA
- Un-constrained Optimization, Gradient Descent Methods

Tutorials (2 Lectures):

Python Exercises (Vectors, Matrices, Least Squares)

Texts:

- 1. Introduction to Applied Linear Algebra, Stephen Boyd & Lieven Vandenberghe
- 2. Convex Optimization, Stephen Boyd

Evaluation Scheme – Part 1

Total (50)	
25 Marks	Mid-term Exam (Multiple Choice, 25 Questions of 1 mark each)
10 Marks	Assignment 1 (Pen and Paper)
10 Marks	Assignment 2 (Pen and Paper)
5 Marks	Attendance + Class Participation(Polls)

Outline

- Vector Representation
- Vector Operations
- Norms, Distances
- Vector Standardization

Textbook: Introduction to Applied Linear Algebra, S. Boyd: Chapters 1,2,3.

Vector Representation : Algebraic

Vector: Ordered set of numbers

$$\begin{bmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{bmatrix} \qquad \text{or} \qquad \begin{pmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{pmatrix} \qquad \text{or} \qquad (-1.1, 0.0, 3.6, -7.2).$$

Indexing:

n dimensional vector indexed from i = 1 to i = n

elements in a single vector : $a = [a_1, a_2 ..., a_n]$

elements in a group of vectors: j^{th} element in i th vector: $(a_i)_j$

Vector Representation : Geometric

Vector Representations

Stacked Vectors :
$$a = \begin{bmatrix} b \\ c \\ d \end{bmatrix} \qquad b \in \mathbb{R}^m \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \qquad c \in \mathbb{R}^n \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \qquad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \qquad d = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_p \end{bmatrix} \qquad (m+n+p) \times 1 \qquad b_m \\ c_1 \\ \vdots \\ c_n \\ d_1 \\ \vdots \\ d_p \end{bmatrix}$$

$$a \in \mathbb{R}^{(m+n+p)}$$

Transpose of Stacked Vectors:

$$a^{T} = [b^{T} c^{T} d^{T}]$$
 $a^{T} = [b_{1} b_{2} \dots b_{m} c_{1} \dots c_{n} d_{1} \dots d_{p}]$ $1 \times (m + n + p)$

Slicing Vectors:

$$a_{r:s} = (a_r, \dots, a_s)$$
 $b = a_{1:m}$ $c = a_{(m+1):(m+n)}$ $d = a_{(m+n+1):(m+n+p)}$

Unit Vectors

Unit Vector: All elements equal to zero except one element equal to one

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

j th element in i th unit vector :

$$(e_i)_j = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Examples: Data in Multi-Dimensional SPace

5 –Dimensional Space (\mathbb{R}^5)

(Do not bother to Imagine! Look only Algebraic way)

	լ17		۲0٦		[0]
	0		1		0
$a_1 = $	0	$a_2 =$	0	$a_3 =$	1
	0	-	0		0
	[0]		$\lfloor 0 \rfloor$		$\lceil 0 \rceil$

$$a_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad a_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Dimension	Meaning	Value
a ₁	Height (ft)	6
a ₂	Age	30
a ₃	Weight (kg)	70
a ₄	Waist-Size(in)	32
a ₅	Gender	1

$$a = [6, 30, 70, 32, 1]$$
 \Longrightarrow $a = 6a_1 + 30a_2 + 70a_3 + 32a_4 + a_5$

Example: Image Representation

 8×8 image

 8×8 image can be represented as 64 dimensional vector

$$x = [0.65 \ 0.05 \ 0.20 \ \dots \dots 0.28 \ 0.00 \ 0.90]$$

x is a point in 64-dimension space, $x \in \mathbb{R}^{64}$

Videos:

k frames in a video of resolution $m \times n$ can be represented as as $m \times n \times k$ vector

$$x \in \mathbb{R}^{m \times n \times k}$$

Poll: $x \in \mathbb{R}^{m \times n \times k} \& x \in \mathbb{R}^{m \times k \times n}$ represents the same video ?

Example: Document Representation

Word Count Histogram:

word	3
in	2
number	1
horse	0
the	4
document	2

Word – Preprocessing:

- 1) Tokenization
- 2) Normalization
- 3) Stop-word removal
- 4) Lemmatization

Vector Addition

How Vector Addition Looks Geometrically ?

For any 2D vectors a, b

$$\boldsymbol{a} + \boldsymbol{b} = [a_x + b_x , a_y + b_y]$$

Algebraic Definition

For Multi-dimensional vectors
$$\mathbf{a} = [a_1, a_2, \cdots, a_n] \ \& \ \mathbf{b} = [b_1, b_2, \cdots, b_n]$$

$$a + b = [a_1 + b_1, a_2 + b_2, ..., a_n + b_n]$$

Vector Subtraction

How Vector Subtraction Looks Geometrically ?

For any 2D vectors a, b

$$\boldsymbol{a} - \boldsymbol{b} = [a_x - b_x , a_y - b_y]$$

Algebraic Definition

For Multi-dimensional vectors
$$\mathbf{a} = [a_1, a_2, \cdots, a_n] \ \& \ \mathbf{b} = [b_1, b_2, \cdots, b_n]$$

$$\mathbf{a} - \mathbf{b} = [a_1 - b_1, a_2 - b_2, ..., a_n - b_n]$$

Vector Addition - Examples

1. Document Addition

x : word histogram of Document 1

y : word histogram of Document 2

x + y: word histogram of combined Document (Using Same Dictionary

2. Audio Addition

x: recording of voice between t_1 to t_2

y: recording of music between t_1 to t_2

x + y: Recording of Music and Voice together in same time

3. Image Addition

x: 1D representation of image I_1

y: 1D representation of image I_2

 $x + y : I_2$ overlaid on I_1

Vector Scaling

$$(-2)\begin{bmatrix} 1\\9\\6 \end{bmatrix} = \begin{bmatrix} -2\\-18\\-12 \end{bmatrix}$$

Linear Combination of unit vectors:

$$b = b_1 e_1 + \dots + b_n e_n$$

$$\begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Special Linear Combinations:

Sum

$$\beta_1 = \dots = \beta_m = 1 \implies a_1 + \dots + a_m$$

Average

$$\beta_1 = \dots = \beta_m = 1/m \implies (1/m)(a_1 + \dots + a_m)$$

Affine

$$\beta_1 + \dots + \beta_m = 1$$

Linear Combination: Examples

Audio Mixing:

 x_1 , x_2 x_n : n audio tracks

 eta_1 , eta_2 eta_n :

mixing ratio

 $\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$: mixed audio signal

Line and Segment:

$$c = \theta a + (1 - \theta)b$$

Dot Product : Geometric Definition

 \boldsymbol{a} . \boldsymbol{u} : Amount of \boldsymbol{a} in the direction of unit vector $u=b/\|b\|$

For any 2D vectors a, b

$$a \cdot b = ||a|| ||b|| \cos \theta$$

a . b : Amount of a in the direction of b scaled by the value of b

OR

Amount of \boldsymbol{b} in the direction of \boldsymbol{a} scaled by the value of \boldsymbol{a}

Dot Product (Inner Product): Algebraic Definition

Poll:

If a_1,b_1,a_2,b_2 are **any** 4 n-vectors, $a_1^Tb_1=a_2^Tb_2$ implies the angle between $a_1\ \&\ b_1$ is same as $a_2\ \&\ b_2$?

[Amount of **a** in the direction of unit vector]

$$a \cdot e_i = a_i \quad a \cdot e_j = a_j$$

$$a \cdot b = a \cdot \sum_{i} b_{i} e_{i}$$

$$= \sum_{i} b_{i} (a \cdot e_{i})$$

$$= \sum_{i} b_{i} a_{i} = \sum_{i} a_{i} b_{i}$$

Representations:

1.
$$a^Tb$$

$$2.\langle a,b\rangle$$

3.
$$\langle a|b\rangle$$

Inner Product : Examples

- 1. Unit Vector : $e_i^T a = a_i$
- 2. Sum : $\mathbf{1}^T a = a_1 + a_2 + \cdots + a_n$ where $\mathbf{1} = [1, 1, \cdots, 1]$
- 3. Average : $(1/n)^T a = (a_1 + a_2 + \cdots + a_n)/n$ where $1/n = [1/n, 1/n \cdot \cdots, 1/n]$
- 4. Sum of Squares : $a^{T}a = a_1^2 + a_2^2 + \cdots + a_n^2$
- 5. Block Vectors:

$$a^T b = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}^T \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix} = a_1^T b_1 + \dots + a_k^T b_k$$

Inner Product : Applications

1. Co-occurance:

a: indicates membership, Set A

b: indicates membership, Set B

 a^Tb : # of elements in A \cap B

$$a = (0, 1, 1, 1, 1, 1, 1)$$
 $b = (1, 0, 1, 0, 1, 0, 0)$ $a^T b = 2$

2. Score:

f: set of features of an object

w : weight of each feature

 $w^T f$: score for the object based on the importance of each feature

Example: Document Sentiment Analysis

f: histogram from vocabulary of size n

 $w: \{-1,0,1\}^n$

3. Polynomial Evaluation:

$$p(x) = c_1 + c_2 x + \dots + c_{n-1} x^{n-2} + c_n x^{n-1}$$

c: coefficients of the polynomial

$$z = (1, t, t^2, \dots, t^{n-1})$$

$$c^T z = p(t)$$