SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO–MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

Ovaj diplomski rad obranjen je dana renstvom u sastavu:	pred ispitnim povje-
1.	, predsjednik
2.	, član
3.	, član
Povjerenstvo je rad ocijenilo ocjenom	Potpisi članova povjerenstva:
	1
	2
	3.

Sadržaj

Sadržaj	iv
$\mathbf{U}\mathbf{vod}$	1
1 Rijetka rješenja 1.1 Rijetsko i sažetost vektora	3
Bibliografija	7

Uvod

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1,2,...,N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \backslash S$.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$supp(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := card(supp(\mathbf{x})) \le s$$

Primjetimo,

$$\|\mathbf{x}\|_{p}^{p} := \sum_{j=1}^{N} |x_{j}|^{p} \xrightarrow{p \to 0} \sum_{j=1}^{N} \mathbf{1}_{\{x_{j} \neq 0\}} = card(\{j \in [N] : x_{j} \neq 0\}) = \|\mathbf{x}\|_{0}$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j\neq 0\}}=1$ ako je $x_j\neq 0$ te $\mathbf{1}_{\{x_j\neq 0\}}=0$ ako je $x_j=0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$$

za neku konstantu $C \geq 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora, pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf \{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ \text{je s-rijedak} \}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima nenul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^{\mathbb{N}}$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

te postoji permutacije $\pi:[N] \to [N]$ takva da $x_j^* = |x_{\pi(j)}|$ za sve $j \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{1}{s^{1/p-1/q}} \|\mathbf{x}\|_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N.$ Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \leq (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p} \leq \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \leq \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p} = \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

Prva nejednakost slijedi iz činjenice da je $x_j^* \le x_s^*$ za svaki $j \ge s+1$. Druga nejednakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s 1/q slijedi tvrdnja.

Primjetimo da ako je \mathbf{x} iz jedinične ℓ_p -kugle za neki mali p > 0, onda prethodna propozicija garantira kovergenciju od $\sigma_s(\mathbf{x})_q$ u s, gdje ℓ_p -kuglu definiramo kao

$$B_p^N := \left\{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_p \le 1 \right\}$$

Vratimo se sada ocjeni iz propozicije 1.1.4. Sljedeći teorem daje najmanju konstantu $c_{p,q}$ takvu da vrijedi $\sigma_s(\mathbf{x})_q \leq c_{p,q} s^{-1/p+1/q} \|\mathbf{x}\|_p$ te zapravo predstavlja jaču tvrdnju.

Teorem 1.1.5. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{c_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_p$$

gdje je

$$c_{p,q} := \left[\left(\frac{p}{q} \right)^{p/q} \left(1 - \frac{p^{1-p/q}}{q} \right) \right]^{1/p} \le 1.$$

Istaknimo za česti odabir p = 1 i q = 2

$$\sigma_s(\mathbf{x})_2 \le \frac{1}{2\sqrt{s}} \|\mathbf{x}\|_1$$

Dokaz. Neka je \mathbf{x}^* nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ i $\alpha_j := (x_j^*)^p$. Dokazati ćemo ekvivaltenu tvrdnju

$$\left. \begin{array}{l} \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_N \geq 0 \\ \alpha_1 + \alpha_2 + \cdots + \alpha_N \leq 1 \end{array} \right\} \implies \alpha_{s+1}^{q/p} + \alpha_{s+2}^{q/p} + \cdots + \alpha_{s+N}^{q/p} \leq \frac{c_q^q}{s^{q/p-1}}$$

Stoga, za r := q/p > 1, problem se svodi na maksimizaciju konveksne funkcije

$$f(\alpha_1, \alpha_2, \dots, \alpha_N) := \alpha_{s+1}^r + \alpha_{s+2}^r + \dots + \alpha_N^r$$

na konveksnom mnogokutu

$$\mathcal{C} := \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N : \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\ i\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1 \right\}$$

Prema teoremu (todo) f postiže maksimum na nekom od vrhova mnogokutu \mathcal{C} , a vrhovi od \mathcal{C} su dani kao sjecišta N hiperplohi koje dobijemo pretvaranjem N+1 nejednakosti u jednakosti.

Bibliografija

Sažetak

Ukratko ...

Summary

In this \dots

Životopis

Dana ...