Generator Knows What Discriminator Should Learn in Unconditional GANs

Идея

- Используем GAN для генерации изображений
- Хотим улучшить качество путем изменения работы дискриминатора
- Вдохновляемся методом из условного генерирования
- Модифицируем и применяем

Условная и безусловная генерация

OASIS (Conditional image generation)

GGDR (Ours, Unconditional image generation)

План

- Показать, что использование карт семантических признаков в дискриминаторе позволяет добиться лучшего качества для безусловной генерации
- Показать, что карты признаков генератора являются альтернативой карте семантических признаков
- Предложение дискриминатора, регулируемого картой признаков генератора
- Демонстрация его эффективности

Добавление семантических карт в обучение дискриминатора

Генерация: StyleGan2 + adaptive discriminator augmentation на датасете ADE20K

Модифицированная задача дискриминатора:

Визуализация карт признаков генератора

- при использовании карт семантических признаков дискриминатор опирается на осмысленные представления
 - карты признаков генератора также их содержат
 - можем использовать их

(a) Generator feature map visualization

Обучение

$$\min_{G} \max_{D} \mathcal{L}_{adv}(G, D) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\max_{D} \mathcal{L}_{ggdr}(G, D) =$$

$$- \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[1 - \frac{F^{t}(G(\boldsymbol{z})) \cdot G(\boldsymbol{z})^{t}}{\|F^{t}(G(\boldsymbol{z}))\|_{2} \cdot \|G(\boldsymbol{z})^{t}\|_{2}} \right]$$

$$\mathcal{L}_{total} = \mathcal{L}_{adv} + \lambda_{reg} \mathcal{L}_{ggdr}$$

Результаты

Table 1. FID scores of ours and comparison methods on FFHQ. We run three training for each data and show their means and standard deviations. The numbers are largely brought from ADA [26] and we follow their evaluation protocol.

FFHQ	2k	10k	140k	
PA-GAN	PA-GAN 56.49±7.28		3.78±0.06	
WGAN-GP	79.19 ± 6.30	35.68 ± 1.27	6.43±0.37	
zCR	71.61 ± 9.64	23.02 ± 2.09	3.45±0.19	
AR	66.64 ± 3.64	25.37 ± 1.45	4.16±0.05	
StyleGAN2	78.80±2.31	30.73±0.48	3.66±0.10	
+GGDR	70.59 ± 5.16	24.44 ± 0.63	3.14 ± 0.03	
ADA	16.49±0.65	8.29±0.31	3.88±0.13	
+GGDR	18.28±0.77	6.11 ± 0.15	3.57±0.10	

Table 2. FID scores of ours and comparison methods on CIFAR-10. We run three training for mean and standard deviations. We brought the numbers of diffusion models from [54].

CIFAR-10	FID	IS
ProGAN	15.52	8.56±0.06
AutoGAN	12.42	8.55 ± 0.10
StyleGAN2	8.32±0.09	9.21 ± 0.09
ADA	2.92 ± 0.05	9.83 ± 0.04
FSMR	2.90	9.68
DDPM	3.17±0.05	9.46±0.11
NCSN++	2.2	9.89
ADA+GGDR	2.15±0.02	10.02±0.06

Результаты

Table 3. Comparision on FFHQ, LSUN Cat, LSUN Horse and LSUN Church. Our method improves StyleGAN2 [29] in large datasets in terms of FID and recall. P and R denote precision and recall. Lower FID and higher precision and recall mean better performance. The bold numbers indicate the best FID, P, R for each dataset.

Method	FFHQ			LSUN Cat		LSUN Horse		LS	UN Church			
Wellou	FID↓	P↑	R↑	FID	P	R	FID	P	R	FID	P	R
UT [4]	6.11	0.73	0.48	-	-			-		4.07	0.71	0.45
Polarity [19]	-	*	*	6.39	0.64	0.32	-	-		3.92	0.61	0.39
StyleGAN2	3.71	0.69	0.44	7.98	0.60	0.27	3.62	0.63	0.36	3.97	0.59	0.39
+GGDR	3.14	0.69	0.50	5.28	0.58	0.38	2.50	0.64	0.43	3.15	0.61	0.46

Table 4. Comparision on AFHQ Cat, Dog, Wild and Landscape. Our method improves ADA [26] in small datasets in terms of FID and recall. P and R denote precision and recall. The bold numbers indicate the best FID, P, and R of the models.

Method	A	FHQ C	at	Al	FHQ Do	g	A	AFHQ Wild Lan		andscap	ndscape	
Method	FID↓	P↑	R↑	FID	P	R	FID	P	R	FID	P	R
FastGAN [40]	4.69	0.78	0.31	13.09	0.75	0.38	3.14	0.76	0.20	16.44	0.77	0.16
ContraD [23]	3.82	-		7.16	-	-	2.54	-	~	-	_	2
ADA	3.55	0.77	0.41	7.40	0.76	0.48	3.05	0.76	0.13	13.87	0.72	0.20
+GGDR	2.76	0.74	0.52	4.59	0.79	0.53	2.06	0.80	0.27	10.38	0.69	0.29

Результаты

Target	FID
None	7.98
8×8	7.57
16×16	6.56
32×32	5.98
64×64	5.28

Activation	FID
Linear	5.28
leaky ReLU	5.43
Kernel size	FID
1×1	5.28
3×3	5.25

(a) Target size

(b) Decoder design

Method	# params	time(s)
Baseline	4.87M	5.60
+ GGDR	5.05M	6.05
	(+3.7%)	(+8.0%)

(c) Calculation costs

Примеры

Примеры

(a) Worst sample comparison

Карты признаков энкодера в дискриминаторе

(b) Comparison of the encoder feature maps in the discriminators

Generator Knows What Discriminator Should Learn in Unconditional GANs

рецензент-исследователь

Что происходит в области

Изначально была OHA первая статья про GAN

Справка для интересующихся:

Вышла в 2014 году на конфе NIPS исследователями из Монреальского университета

Что происходит в области

enerative Adversa	erative Adversarial Networks with codes					
GAN model	Tiitle	conference	tensorflow code	pytorch code		
DCGAN	Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks	ICLR 2016		pytorch example		
WGAN	Wasserstein GAN			official		
WGAN-GP	Improved Training of Wasserstein GANs	NIPS 2017	official	unofficial		
BEGAN	BEGAN: Boundary Equilibrium Generative Adversarial Networks	arXiv 2017	unofficial	unofficial		
pix2pix	Image-to-Image Translation with Conditional Adversarial Networks	CVPR 2017		official		
CycleGAN	Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks	ICCV 2017		official		
GauGAN	Semantic Image Synthesis with Spatially-Adaptive Normalization	CVPR 2019 oral		official		
ProgressiveGAN	Progressive Growing of GANs for Improved Quality, Stability, and Variation	ICLR 2018	official	unofficial1, unofficial2		
StyleGAN	A Style-Based Generator Architecture for Generative Adversarial Networks	CVPR 2019	official	unofficial1, unofficial2		

Дальше пошел ряд статей и раз-два в год выходили статьи, которые предлагали достаточно полезные улучшения, что их выделило сообщество

Что происходит в области

А так на пике своей "популярности" на тему ганов выходило 100+ статей в год (2020 для примера). Из них большая часть была посредственной.

Топ статьи попадали на конференции

NIPS, ICML - Если у тебя general улучшение

CVPR - с уклоном в CV

(для примера списка: github.com/ysbsb/awesome-gan-papers, в основном отбираются по конфам, а там уже барьером выступают судьи)

Так что же из себя представляет эта статья

- Вышла в июле этого года (на arXiv она пролежала меньше полугода!)
- В октябре прошла конференция ECCV 2022 (Европейская про CV), куда эта статья прошла (списки публиковались еще в начале лета)
- Конференция считается "хорошим выбором для публикации", но на ступеньку ниже CVPR если говорить про Computer Vision

Что можно сказать про статью

- Показали космические показатели (FID в некоторых местах улучшается до 20% по сравнению со StyleGan2 / StyleGan3)

Method	P	FFHQ	
7,7041104	FID↓	P↑	R↑
UT [4]	6.11	0.73	0.48
Polarity [19]	-	ä	-
StyleGAN2	3.71	0.69	0.44
+GGDR	3.14	0.69	0.50

Что можно сказать про статью

Что было не супер (сравниваю со state of the art статьями на тему)

- Ablation studies слабый. Пробовали добавлять GGDR только к StyleGan2 и ADA.
- Не совсем понятно насколько хорошо давать информацию о внутренних представлениях дискриминатора -> генератору

Коротко - R&D team корейского Яндекса (поисковика под названием Naver)

Работа сразу с мыслями о статье. Наука на конвейере так сказать

Чуть глубже - лаба подразделения Naver -> Naver Ai Labs

Сложно оценить размер вклада, которые сделал каждый из участников, но насколько понимаю распределение +- следующее

Основные лица:

Gayoung Lee (выложила код, больше всех рабочего опыта)

У последующих 3х есть опыт работы с ГАНами, так что идея должна была идти от них:

Junho Kim (давно работает в различных R&D)

Yunjey Choi (предположительно тимлид)

Hyunsu Kim (совсем молодой 2021 masters)

Начальник лабы:

Jung-Woo Ha (в 2018 году был соавтором большой статьи по ганам - StarGan, которая уже была сильно принята интернационально)

???:

Seonghyeon Kim (Исследователь из соседней лабы: работает в другом отделении корпорации. Не совсем понятен его вклад в работу, но он тоже здесь есть. Увлекается ганами, так что можно попытаться объяснить горизонтальной мобильностью)

Фоточки (вот они слева направо):

Hyunsu Kim

Junho Kim

Jung-Woo Ha

Yunjey Choi

Gayoung Lee

Seonghyeon Kim

Что эта статья вообще забыла у нас на НИИС?

Или почему эта статья олицетворяет очень плохой феномен в современной науке (Массовое производство статей. Действительно хорошие статьи теряются в серийниках). Почему я считаю, что рано ее выбрали на НИИС:

Молодые еще не показавшие себя авторы

Супер новая статья без какого либо взрыва в области

С тем же успехом можно было взять любую статью из 1640 в этом году на ECCV

Есть вероятность, что через год вспомнят про нее только такие же серийные статьи в разделе "Related Work"