Chương 3. Đạo hàm và vi phân của hàm số một biến

Hoàng Anh Quân

Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội

Mục lục

- 1. Đạo hàm và vi phân cấp một
- 2. Đạo hàm một phía, đạo hàm theo tham số
- 3. Bài tập về nhà

Đạo hàm và vi phân cấp một

3b1b - Essence of calculus

https://www.youtube.com/watch?v=9vKqVkMQHKklist=PLO-GT3co4r2wlh6 Timestamp 5:33-5:34 and 8:08-8:41

Định nghĩa

Định nghĩa 1. Cho hàm số y = f(x) xác định trong khoảng (a, b). Hàm số f(x) khả vi tại điểm c thuộc (a, b) nếu tồn tại giới hạn (hữu hạn)

$$\lim_{x\to c}\frac{f(x)-f(c)}{x-c}=\lim_{\Delta x\to 0}\frac{\Delta f}{\Delta x}=A.$$

Khi đó, số A được gọi là đạo hàm của hàm số f(x) tại x = c, kí hiệu là f'(c) = A.

Định nghĩa 2. Nếu hàm số f(x) khả vi tại mọi điểm $x \in (a, b)$ thì ta nói f(x) khả vi trong khoảng (a, b).

Nhận xét. Nếu $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = \infty$, ta nói f(x) có đạo hàm vô cùng và tiếp tuyến của f(x) tại x=c vuông góc với trực hoành.

Luyện tập

Bài tập 1. Tính các đạo hàm của các hàm số sau

$$f(x) = c;$$
 $g(x) = 2x;$ $h(x) = x^2;$ $k(x) = \sin x;$ $p(x) = \frac{1}{x}$

4

Các công thức tính đạo hàm cơ bản

Cho f(x) và g(x) là hai hàm số khả vi tại điểm x. Khi đó

- $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- $\bullet \ (c \cdot f(x))' = cf'(x)$
- $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$
- $\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$

Nhận xét. Một mẹo để nhớ dấu cộng/trừ trong công thức $f \cdot g$ và $\frac{f}{g}$ là thay một vài hàm số đơn giản vào biểu thức, ví dụ f(x) = 1, g(x) = x.

5

Đạo hàm của hàm hợp

Đạo hàm của hàm hợp y = f(g(x)) được tính theo công thức

$$y_x' = f'(g(x)) \cdot g'(x)$$

Bài tập 2. Cho $f(t) = t^2$, g(t) = t + 5. Tính đạo hàm (theo biến x) của hàm số f(g(x)).

Đạo hàm của hàm ngược

Nếu hàm số y=y(x) có hàm ngược x=x(y) và $y_x'\neq 0$, ta suy ra

$$x_y' = \frac{1}{y_x'}$$

Bài tập 3. Tính đạo hàm của hàm số $m(t) = \arcsin t$ trên miền xác định E = (-1, 1).

Bài làm.

Nhận xét: hàm số m(t) có miền xác định E và miền giá trị $F=\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$. Do đó $m\in\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$, suy ra $\cos m>0$.

Hàm ngược của m(t) được xác định bởi công thức $t(m)=\sin m$. Chú ý rằng $t'(m)=\cos m\neq 0$ (cmt). Vậy nên đạo hàm của hàm số m(t) là

$$m'(t) = \frac{1}{t'(m)} = \frac{1}{\cos m} = \frac{1}{\sqrt{1 - \sin^2 m}} = \frac{1}{\sqrt{1 - t^2}}.$$

Một số đạo hàm cơ bản - giáo trình trang 126

Nhận xét. Ta đã biết $(x^{\alpha})' = \alpha x^{\alpha-1}$. Hãy tính đạo hàm (theo biến x) của hàm số $f(x) = u^{\alpha}$ với u là một hàm số theo biến x. Trả lời. Ta viết f(x) = m(u(x)) trong đó $m(t) = t^{\alpha}$. Áp dụng công thức đao hàm của hàm hợp, ta có

$$f'(x) = m'(u(x)) \cdot u'(x) = \alpha u^{\alpha - 1} u'$$

Luyện tập

Bài tập 4. Tính đạo hàm của các hàm số sau

a)
$$y = \sqrt{x^2 + 4x + 1}$$

b)
$$y = \ln(x^3 + 7x + 2)$$

c)
$$y = \sin(5 - x^2)$$

d)
$$y = \sin^4 (5 - x^2)$$

Mối quan hệ giữa tính khả vi và tính liên tục

Định lý 1. Cho hàm số f(x) khả vi tại x = c. Khi đó hàm f liên tục tại x = c.

Câu hỏi. Biết rằng hàm g liên tục tại x=c, có thể suy ra g khả vi tại x=c hay không?

Câu hỏi nâng cao

- 1. Chỉ ra một hàm số không liên tục tại 1 điểm.
- 2. Chỉ ra một hàm số không liên tục tại 2 điểm.
- 3. Chỉ ra một hàm số không liên tục tại vô hạn điểm điểm.
- 4. Chỉ ra một hàm số không liên tục tại tất cả điểm.
- 5. Chỉ ra một hàm số liên tục trên $\mathbb R$ nhưng không khả vi tại 1 điểm.
- 6. Chỉ ra một hàm số liên tục trên $\mathbb R$ nhưng không khả vi tại 2 điểm.
- 7. Chỉ ra một hàm số liên tục trên $\mathbb R$ nhưng không khả vi tại vô hạn điểm điểm.
- 8. Chỉ ra một hàm số liên tục trên $\mathbb R$ nhưng không khả vi tại tất cả điểm.

Vi phân

Cho hàm số f. Tích số $f'(x)\Delta x$ xét tại điểm x được gọi là vi phân của f(x), kí hiệu là df. Ta có

$$df = f'(x)\Delta x$$
.

Xét hàm số g(x)=x, theo định nghĩa trên, ta có $dg=g'(x)\Delta x$ hay $dg=\Delta g$. Điều đó suy ra $dx=\Delta x$.

Vậy nên
$$df = f'(x)dx$$
 và $f'(x) = \frac{df}{dx}$.

theo tham số

Đạo hàm một phía, đạo hàm

Đạo hàm một phía

Định nghĩa 3.

Cho hàm số f(x). Hàm số f(x) tồn tại đạo hàm trái tại x=c nếu $f'_{-}(c) = \lim_{\Delta x \to 0^{-}} \frac{f(c+\Delta x) - f(c)}{\Delta x}$ tồn tại.

Cho hàm số f(x). Hàm số f(x) tồn tại đạo hàm phải tại x=c nếu $f'_+(c) = \lim_{\Delta x \to 0^+} \frac{f(c+\Delta x) - f(c)}{\Delta x}$ tồn tại.

Định lý 2. Hàm số f(x) khả vi tại x = c khi và chỉ khi $f'_-(c) = f'_+(c)$

Luyện tập

Bài tập 5. Cho hàm số f(x) thỏa mãn

$$f(x) = \begin{cases} x^3 & \text{n\'eu } x \le x_0 \\ ax + b & \text{n\'eu } x > x_0 \end{cases}$$

Tìm a, b sao cho hàm số f(x) liên tục và khả vi tại $x = x_0$.

Đạo hàm theo tham số

Cho x = f(t), y = g(t) trong đó t là một tham số. Khi đó ta có

$$y_x' = \frac{dy}{dx} = \frac{g'(t)}{f'(t)}.$$

Bài tập 6. Tính giá trị y'_x theo tham số t trong các ý sau đây

- a) $x = a \cos t, y = a \sin t$
- b) $x = a(1 \sin t), y = a(1 \cos t)$

Bài tập về nhà

BTVN buổi 05

Nội dung:

- Ý 1 đến ý 15 bài tập 3 trang 136 sách Nguyễn Đình Trí, Toán học cao cấp, tập 2, phép tính giải tích một biến số
- 20 bài trong bài tập 1 đến bài tập 33 trang 71 sách Nguyễn Thủy Thanh, Bài tập Toán Cao Cấp Tập 2

Yêu cầu:

- Tóm tắt đề bài và trình bày lời giải cho các bài toán
- Chụp hoặc scan tất cả phần bài làm, gộp vào một file pdf duy nhất (sử dụng app Lens, CamScanner, ...)
- Đặt tên file theo đúng format, một tên ví dụ là PhieuBaiTap05_HoangAnhQuan_17001234.pdf
- Nộp bài tập trên Google Classroom trước thời hạn