

Computer Architecture IN 2320

Chamalka Rajapaksha

Computer Memory

- Why it needs a memory?
- Different types of memory

- Location
- Capacity
- Unit of transfer
- Access method
- Performance
- Physical type
- Physical characteristics
- Organisation

Characteristics

Location

- **CPU**
- Internal
- External

Capacity

- Word size
 - The natural unit of organization
- Number of words
 - or Bytes

Unit of transfer

Internal

Usually governed by data bus width

External

• Usually a block which is much larger than a word

Addressable unit

- Smallest location which can be uniquely addressed
- Word internally

Access Methods

Sequential

- Start at the beginning and read through in order
- Access time depends on location of data and previous location
- e.g. tape

Direct

- Individual blocks have unique address
- Access is by jumping to vicinity plus sequential search
- Access time depends on location and previous location
- e.g. disk

Random

- Individual addresses identify locations exactly
- Each location
 physically wired in addressing
 mechanism
- Access time is independent of location or previous access
 - e.g. RAM (Main memory and some caches)

Associative

- Data is located by a comparison with contents of a portion of the store
- E.g. within words
- Access time is independent of location or previous access
 - e.g. cache

Memory Hierarchy

- Registers
 - In CPU
- Internal or Main memory
 - May include one or more levels of cache
 - "RAM"
- External memory
 - Backing store

Performance

- Access time (latency)
 - Time between presenting the address and getting the valid data
- Memory Cycle time
 - Time may be required for the memory to "recover" before next access
 - Cycle time is access + recovery
- Primarily applied to random access memory
- Transfer Rate
 - Rate at which data can be moved
- 1/(cycle time), for random access memory
- TN=TA+N/R, For non-random access memory
 - TN-Average time to read or write N bits
 - TA-Average access time
 - N –Number of bits
 - R –Transfer rate, in bits per seconds

Physical types

- Semiconductor
 - SRAM, caches
- Magnetic
 - Disk & Tape
- Optical
 - CD & DVD
 - Others
 - Bubble

Physical Characteristics

- Decay
- Volatility
- Erasable
- Power consumption

Memory Hierarchy

Memory Issues

- Capacity
- Latency
- Bandwidth

Memory Access Latency

- What does memory access latency depend on?
 - Size of the memory
 - Larger is the size, slower it is
 - Number of ports
 - More are the ports, slower is the memory
 - Technology used
 - SRAM, DRAM, flip flops

Cell Type	Area	Typical Latency
Master Slave D flip flop	$0.8 \ \mu m^2$	Fraction of a cycle
SRAM cell in a cache	$0.08 \ \mu m^2$	1-5 cycles
DRAM cell in an array	$0.005 \ \mu m^2$	50-200 cycles

Tradeoffs

- Area | Power | Latency
- Increase Area —> Reduce Latency, Increase Power
- Reduce Latency —> Increase Area, Increase Power
- Reduce Power —> Reduce Area, Increase Latency

What do we do?

- We can't create a memory of just flip flops
 - We will hardly be able to store anything
- We can't create a memory of just SRAM cells
 - We need more storage, and we will not have a 1 cycle latency
- We can't create a memory of just DRAM cells
 - We can't afford 50+ cycles per access

Example in real life - Protocol 1

Idea - She tends to read the same set of books, over and over again, in the same window of time

Example in real life - Protocol 1

Example in real life - Protocol 2

- If Amali takes a Computer Architecture module
 - She has Computer Architecture books in her desk
- After the module is over
 - The architecture books go back to the shelf.
 - OOAD books come on to the desk
 - Idea Bring all the OOAD books in one go. If she requires one, in high likelihood she may require similar books in near future.

Locality of reference

- Temporal coherence There is a higher probability of repeated access to any data item that has been accessed in the recent past
- Spatial coherence: There is a higher probability of access to any data item that is physically closer to any other data item that has been access in the recent past

Memory Access Time

Memory Access Time

- Protocol
 - First comes L1 cache. If the memory location is present, we have a cache hit
 - Perform the access (read/write)
 - Otherwise we have a cache miss
 - Fetch the values from the lower levels of the memory system, and populate the cache.
 - Follow this protocol recursively

Memory Access Time

- Ave access time, $Ts = H \times T1 + (1-H) \times (T1 + T2)$
- H-fraction of all memory accesses that are found in the faster memory (Hit ratio)
- T1 –Access time to level 1
- T2 –Access time to level 2
- Access efficiency = T1/Ts

Semiconductor Memory

- Basic element of a semiconductor memory is the memory cell
 - Cell is able be in one of two states
 - Read/write

RAM

- Misnamed as all semiconductor memory is random access
- Read/Write
- Volatile
- Temporary storage
- Static or dynamic

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- cycle time traditionally longer than the access time
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory

DRAM

SRAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache

Types of ROM

- Written during manufacture
- Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

Synchronous DRAM

- Currently on DIMMs
- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock,
- CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in block
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)
- SDRAM includes an on-chip burst counter that can be used to increment column addresses for very fast burst accesses.

Questions?