QUiz 1 • Graded

Student

Manshi Sagar

Total Points

6 / 15 pts

Question 1

Q1 4 / 4 pts

✓ - 0 pts Correct

- 2 pts Example using overflow
- 3 pts Informal proof: No concrete example given
- **4 pts** Incorrect: $\frac{a+b}{2}$ lies in range [a,b]
- 4 pts Incorrect

Question 2

Q2 Resolved 2 / 4 pts

- + 0 pts Incorrect
- + 4 pts Correct U, Σ, V .
- **+ 2 pts** One (u, σ, v) combination correct.

 \checkmark + 1 pt Correct σ_1

- **✓** +1 pt Correct σ_2
 - + 0.5 pts Correct u_1
 - + 0.5 pts Correct u_2
 - + 0.5 pts Correct v_1
 - + 0.5 pts Correct v_2

C Regrade Request Submitted on: Mar 03

I was following the conventional approach for calculating SVD by calculating the eigen vectors of AAT and ATA, there is small calculation mistake. Please go through the solution and give some partial marks.

Regraded.

Reviewed on: Mar 11

Question 3 Q3(i)	0 / 2 pts
- 0 pts Correct	·
✓ - 2 pts Incorrect	
Question 4	
Q3(ii)	0 / 5 pts
- 0 pts Correct	

✓ - 5 pts Incorrect

Quiz 1 (COL 726)

Name Manshi Sagar

Entry No. 2020CS 50429

1. Let a < b be two floating point numbers (i.e., they can be represented in the finite precision number system). Give an example to show that computed value (a + b)/2 may not lie in the range [a, b]. This computation is done by first adding a and b and then dividing by 2.) You can assume that the extra precision digits are chopped during computation (Use decimal numbers for your example). (4 marks)

let =
$$a = 9.98 = fl(a)$$

 $b = 9.99 = fl(a)$

$$\frac{\text{fl(a+b)}}{2} = \frac{19.9}{2} = 9.95$$

$$f\left(\frac{f(a+b)}{2}\right) = 9.95$$
 does not lie in the lange [9.98,9.99]

2. Write an SVD of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -2 \\ 0 & 3 \end{bmatrix}$ (i.e., specify the matrices U, V, Σ in a singular value decomposition). (4 marks)

osition). (4 marks)

Entending A to make it squale matrin A = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 3 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

$$AA^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & +4 & -6 \\ 0 & -6 & 9 \end{bmatrix}$$
 2 columns are Linearly dep.

$$\det \begin{pmatrix} (1-\lambda) & 0 & 0 \\ (44-\lambda) & -6 \\ 0 & -6 & 9-\lambda \end{pmatrix} = 0 = (1-\lambda) ((4-\lambda)(9-\lambda)-36)$$

$$\lambda - 1 = 0$$
 = $\lambda = 1$
 $\lambda = 24$ $\lambda = 1$
 $\lambda = 13$ $\lambda = 13$ $\lambda = 13$ $\lambda = 13$

to get
$$V \rightarrow (AAT - \lambda I)(V) = 0$$

to get $U \rightarrow (ATA - \lambda I)(U) = 0$

- 3. Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots$. Let q_1 and q_2 be two orthonormal vectors in \mathbb{R}^n . Show that :
 - ectors in \Re^n . Show that : Let \mathcal{L} Let \mathcal{L} \mathcal{L}

- $|Aq_1|_2^2 + |Aq_2|_2^2 \le \sigma_1^2 + \sigma_2^2$. (5 marks)
 - 2, and 2 are orthonormal
 - =) 91.92 =0 (dot product)

| A21 | 2 = (A21) (A21) = A61, 2, 7) AT = AAT = 11 A1 | 2

similarly

|A91|2+ |A92|2 = A912|A|2 = 0 2x00 = 2 |2|2 = 201

A92=(5192100-

=)
$$|A91|^2 + |A92|^2 = 201^2 > 01^2 + 02^2$$

as 517,52