A nearly tight upper bound on tri-colored sum-free sets in characteristic 2

Robert Kleinberg
May 27, 2016

Abstract

A tri-colored sum-free set in an abelian group H is a collection of ordered triples in H^3 , $\{(a_i,b_i,c_i)\}_{i=1}^m$, such that the equation $a_i+b_j+c_k=0$ holds if and only if i=j=k. Using a variant of the lemma introduced by Croot, Lev, and Pach in their breakthrough work on arithmetic-progression-free sets, we prove that the size of any tri-colored sum-free set in \mathbb{F}_2^n is bounded above by $6\binom{n}{\lfloor n/3\rfloor}$. This upper bound is tight, up to a factor subexponential in n: there exist tri-colored sum-free sets in \mathbb{F}_2^n of size greater than $\binom{n}{\lfloor n/3\rfloor} \cdot 2^{-\sqrt{16n/3}}$ for all sufficiently large n.

1 Introduction

In a breakthrough paper, Croot et al. [2016] applied the polynomial method to prove that for sufficiently large n, every set of more than $(3.62)^n$ elements of $(\mathbb{Z}/4\mathbb{Z})^n$ contains a three-term arithmetic progression. This was the first such bound of the form c^n for a constant c < 4. Soon afterward, Ellenberg [2016] and, independently, Gijswijt [2016] extended the argument to prove an upper bound of the form $c(p)^n$ on the size of any subset of \mathbb{F}_p^n that is free of three-term arithmetic progressions, where p is any odd prime and c(p) is a constant strictly less than p. Gijswijt provides the explicit bound $c(p) < e^{-1/18}p$.

In all of the aforementioned results, the upper bound obtained using the new methods is of the form C^n and the best known lower bound on the size of arithmetic-progression-free sets is of the form c^n for some c < C. Thus, in all known cases, there is still an exponential gap between the best known upper and lower bounds for such sets. In this note, we present a variant of the problem of finding large sets that contain no three-term arithmetic progressions, and we prove upper and lower bounds that differ by a sub-exponential factor — i.e., an upper bound of the form $c^{n+o(n)}$ and a lower bound of the form $c^{n-o(n)}$, with the same constant c appearing as the base of the exponent in both bounds — when the problem is restricted to the group \mathbb{F}_2^n . The upper bound proof is an application of the lemma of Croot et al. [2016], while the lower bound follows from a construction due to Fu and Kleinberg [2014], which in turn utilizes a construction from Coppersmith and Winograd [1990].

Since vector spaces over a field of characteristic 2 have no three-term arithmetic progressions, it is not immediately clear how to generalize these questions to the case of characteristic 2. The following generalization was proposed and analyzed by Blasiak et al. [2016].

Definition 1. A tri-colored sum-free set in an abelian group H is a collection $\{(a_i, b_i, c_i)\}_{i=1}^m$ of ordered triples in H^3 such that the equation $a_i + b_j + c_k = 0$ holds if and only if i = j = k.

Note that if H is an abelian group of odd order and $A = \{a_1, \ldots, a_m\} \subseteq H$, then A contains no three-term arithmetic progressions if and only if the set $\{(a_i, a_i, -2a_i)\}$ is a tri-colored sum-free set. Thus, upper bounds on the size of tri-colored sum-free sets immediately yield upper bounds on sets with no three-term arithmetic progressions, but the definition of tri-colored sum-free sets is meaningful even when $H = \mathbb{F}_2^n$.

2 Upper Bound

To prove an upper bound on the size of tri-colored sum-free sets in \mathbb{F}_p^n , we will introduce another closely related definition.

Definition 2. A perfectly matched sequence in an abelian group H is a sequence of ordered pairs $\{(a_i,b_i)\}_{i=1}^m$ in H^2 such that the equation $a_i+b_i=a_j+b_k$ has no solutions with $j\neq k$. The set $T=\{a_i+b_i\mid i=1,\ldots,m\}$ is called the target set of the perfectly matched sequence.

Note that if $\{(a_i, b_i, c_i)\}$ is a tri-colored sum-free sequence of size m, then $\{(a_i, b_i)\}$ is a perfectly matched sequence whose target set $T = \{-c_i\}$ has m elements. The following theorem therefore yields an upper bound on the size of tri-colored sum-free sequences.

Theorem 1. Let L_n denote the linear subspace of $\mathbb{F}_p[x_1,\ldots,x_n]$ spanned by monomials of the form $\prod_{i=1}^n x_i^{\alpha_i}$, where $0 \le \alpha_i < p$ for all i, and let $L_{n,d}$ denote the subspace of L_n spanned by monomials of degree at most d. The target set of any perfectly matched sequence in \mathbb{F}_p^n has at most $3 \dim L_{n,d}$ elements, where $d = \lfloor \frac{1}{3}(p-1)n \rfloor$.

Proof. The proof is a recapitulation of the proof of Gijswijt [2016], Theorem 2, which corresponds to the special case when $a_i = b_i$ for all i. We reiterate the proof here to facilitate the task of verifying that Gijswijt's proof extends to the general case.

Let V denote the vector space of polynomials $f \in L_{n,(p-1)n-d-1}$ such that f(x) = 0 for all $x \notin T$. The dimension of $L = L_{n,(p-1)n-d-1}$ is equal to $p^n - \dim L_{n,d}$, and V is obtained from L by imposing an additional $p^n - |T|$ linear constraints, one for each $x \notin T$. Hence $\dim V \ge |T| - \dim L_{n,d}$.

The evaluation map $V \to \mathbb{F}_p^T$ is injective — see [Gijswijt, 2016], Proposition 1 — hence there is a set $S \subseteq T$ of cardinality $|S| = \dim V$ such that the evaluation map $V \to \mathbb{F}_p^S$ is bijective. Choose a polynomial $f \in V$ such that f(x) = 1 for all $x \in S$, and consider the (2n)-variate polynomial

$$q(x_1, \ldots, x_n, y_1, \ldots, y_n) = f(x + y).$$

For a pair of multi-indices $\alpha, \beta \in \{0, \dots, p-1\}^n$, let $C_{\alpha,\beta}$ denote the coefficient of the monomial $x^{\alpha}y^{\beta}$ in g. Our choice of $d = \left\lfloor \frac{1}{3}(p-1)n \right\rfloor$ ensures that $(p-1)n-d-1 \leq 2d+1$, so $f \in L_{n,2d+1}$ and, consequently, for every monomial $x^{\alpha}y^{\beta}$ occurring in g either x^{α} or y^{β} has degree at most d. Hence, the non-zero entries of C belong to the union of a set of rows and a set of columns each indexed by a set of dim $L_{n,d}$ monomials. Accordingly, rank $C \leq 2 \dim L_{n,d}$. On the other hand, the rank of C is bounded below by the rank of the matrix $M_{i,j} = f(a_i + b_j)$; see Gijswijt [2016], Lemma 2. By construction, $M_{i,j} = 0$ when $i \neq j$ and $M_{i,j} = 1$ when i = j and $a_i + b_i \in S$. Hence,

$$|S| \le \operatorname{rank} M \le \operatorname{rank} C \le 2 \dim L_{n,d}.$$

Recalling that $|S| = \dim V \ge |T| - \dim L_{n,d}$, we obtain the inequality $|T| \le 3 \dim L_{n,d}$ as claimed.

When p=2, we have $\dim L_{n,d}=\sum_{k=0}^{\lfloor n/3\rfloor}\binom{n}{k}<2\binom{n}{\lfloor n/3\rfloor}$. This bound, in conjunction with Theorem 1, implies the upper bound on tri-colored sum-free sets in \mathbb{F}_2^n stated in the abstract.

3 Lower Bound

Our lower bound on the size of tri-colored sum-free sets \mathbb{F}_2^n recapitulates a construction due to Fu and Kleinberg [2014] which, in turn, is based on a method originating in the work of Coppersmith and Winograd [1990] on fast matrix multiplication. We shall make use of the fact that the cyclic group $\mathbb{Z}/M\mathbb{Z}$, for large M, has subsets of size $M^{1-o(1)}$ which contain no three-term arithmetic progressions. The best known lower bound on the size of such subsets is the following theorem of Elkin [2011]; see also Green and Wolf [2010]. (In the theorem statement, the expression $\log(\cdot)$ denotes the base-2 logarithm.)

Theorem 2 (Elkin, 2011). For all sufficiently large M, the group $\mathbb{Z}/M\mathbb{Z}$ has a subset of size greater than $\log^{1/4}(M) \cdot 2^{-\sqrt{8 \log M}} \cdot M$ which contains no three distinct elements in arithmetic progression.

Assume for simplicity that n is divisible by 3. (When n is indivisible by 3, we may take a large tri-colored sum-free set in $\mathbb{F}_2^{n'}$ for $n' = 3\lfloor n/3 \rfloor$ and "pad" each vector with 0's to obtain an equally large tri-colored sum-free set in \mathbb{F}_2^n .) Let M be an odd integer greater than $4\binom{2n/3}{n/3}$. Our tri-colored sum-free set will be constructed as a subset of the set X of all triples $(a,b,c) \in (\{0,1\}^n)^3$ such that the vectors a,b,c have Hamming weights $\frac{n}{3},\frac{n}{3},\frac{2n}{3}$, respectively, and c=a+b. Note that for any $(a,b,c) \in X$, the equation c=a+b holds regardless of whether the left and right sides are interpreted as vectors over \mathbb{F}_2 or over \mathbb{Z} .

Letting $W = (\mathbb{Z}/M\mathbb{Z})^{n+1}$ we now define three functions $h_0, h_1, h_2 : \{0, 1\}^n \times W \to \mathbb{Z}/M\mathbb{Z}$ as follows.

$$h_0(a, w) = \sum_{s=1}^n a_s w_s, \qquad h_1(b, w) = \frac{1}{2} \left(w_0 + \sum_{s=1}^n b_s w_s \right), \qquad h_2(c, w) = w_0 + \sum_{s=1}^n c_s w_s.$$

The function h_1 is well-defined because $\mathbb{Z}/M\mathbb{Z}$ is a cyclic group of odd order. By construction, whenever a, b, c are three vectors satisfying a + b = c (over \mathbb{Z}), the values $h_0(a, w), h_1(b, w), h_2(c, w)$ are either identical or they form an arithmetic progression in $\mathbb{Z}/M\mathbb{Z}$. Now, fix a set $B \subset \mathbb{Z}/M\mathbb{Z}$ that contains no three distinct elements in arithmetic progression. For any $w \in W$ define sets $Y(w), Y_0(w), Y_1(w), Y_2(w), Y_3(w), Z(w)$ as follows.

$$Y(w) = \{(a,b,c) \in X \mid h_0(a,w), h_1(b,w), h_2(c,w) \in B\}$$

$$Y_0(w) = \{(a,b,c) \in Y(w) \mid \exists (b',c') \neq (b,c) \text{ s.t. } (a,b',c') \in Y(w)\}$$

$$Y_1(w) = \{(a,b,c) \in Y(w) \mid \exists (a',c') \neq (a,c) \text{ s.t. } (a',b,c') \in Y(w)\}$$

$$Y_2(w) = \{(a,b,c) \in Y(w) \mid \exists (a',b') \neq (a,b) \text{ s.t. } (a',b',c) \in Y(w)\}$$

$$Z(w) = Y(w) \setminus (Y_0(w) \cup Y_1(w) \cup Y_2(w)).$$

We first claim that Z(w) is a tri-colored sum-free set. The equation a+b+c=0 holds in \mathbb{F}_2^n for every $(a,b,c)\in Z(w)$, by construction, so we need only verify conversely that for any three (not necessarily distinct) elements (a,b,c), (a',b',c'), (a'',b'',c'') of Z(w), if the equation a+b'+c''=0 holds in \mathbb{F}_2^n then all three of the given elements of Z(w) are equal to one another. Indeed, our hypotheses about (a,b,c), (a',b',c'), (a'',b'',c'') imply all of the following conclusions about (a,b',c''):

- 1. a and b' have Hamming weight n/3, while c'' has Hamming weight 2n/3;
- 2. c'' = a + b':
- 3. $h_0(a, w), h_1(b', w), h_2(c'', w) \in B$.

In other words, (a, b', c'') belongs to Y(w). The fact that $(a, b, c) \notin Y_0(w)$ now implies that (a, b, c) = (a, b', c''). Similarly, the facts that $(a', b', c') \notin Y_1(w)$ and $(a'', b'', c'') \notin Y_2(w)$ imply that (a', b', c') = (a'', b'', c'') = (a, b', c''). Thus, the three given elements of Z(w) are all equal to one another, as required by the definition of a tri-colored sum-free set.

Let us now prove a lower bound on the expected cardinality of Z(w) when w is chosen uniformly at random from $(\mathbb{Z}/M\mathbb{Z})^{n+1}$. For a given element $(a,b,c) \in X$, the values $h_0(a,w), h_1(b,w), h_2(c,w)$ must either be equal to one another or they must form an arithmetic progression. The set B contains no three elements in arithmetic progression, so the event that $h_0(a,w), h_1(b,w), h_2(c,w) \in B$ coincides with the event that there exists $\beta \in B$ such that $h_0(a,w) = h_1(b,w) = h_2(c,w) = \beta$; furthermore, if any two of $h_0(a,w), h_1(b,w), h_2(c,w)$ are equal to β , then so is the third. For w uniformly distributed in $(\mathbb{Z}/M\mathbb{Z})^{n+1}$, the values $h_0(a,w)$ and $h_2(c,w)$ are independent and uniformly distributed in $\mathbb{Z}/M\mathbb{Z}$, so the probability of the event $h_0(a,w) = h_2(c,w) = \beta$ is M^{-2} . Summing over all $\beta \in B$ and all $(a,b,c) \in X$, we find that the expected cardinality of Y(w) is

$$\mathbb{E}|Y(w)| = |X| \cdot |B| \cdot M^{-2} = \binom{n}{n/3} \cdot \binom{2n/3}{n/3} \cdot |B| \cdot M^{-2}. \tag{1}$$

Similar reasoning allows us to derive an upper bound the expected cardinality of $Y_0(w)$. If (a, b, c) belongs to $Y_0(w)$ it means that there is some other element $(a, b', c') \in X$ and some $\beta \in B$ such that

$$h_0(a, w) = h_1(b, w) = h_2(c, w) = h_1(b', w) = h_2(c', w) = \beta.$$
 (2)

For w uniformly distributed in $(\mathbb{Z}/M\mathbb{Z})^{n+1}$, the values $h_0(a, w), h_2(c, w)$, and $h_2(c', w)$ are independent and uniformly distributed in $\mathbb{Z}/M\mathbb{Z}$; this is most easily verified by checking that $h_0(a, w), h_2(c, w)$ and $h_2(c, w) - h_2(c', w)$ are independent and uniformly distributed. Furthermore, if $h_0(a, w) = h_2(c, w) = h_2(c', w) = \beta$ then $h_1(b, w) = h_1(b', w) = \beta$, so the probability of the event indicated in (??) is $|M|^{-3}$. Summing over all pairs of distinct elements $(a, b, c), (a, b', c') \in X$ that share the same first coordinate, and all $\beta \in B$, we find that the expected cardinality of $Y_0(w)$ is at most

$$\mathbb{E}|Y_0(w)| \le |X| \cdot \left(\binom{2n/3}{n/3} - 1 \right) \cdot |B| \cdot M^{-3} = \mathbb{E}|Y(w)| \cdot \frac{1}{M} \left(\binom{2n/3}{n/3} - 1 \right) < \frac{1}{4} \mathbb{E}|Y(w)| \tag{3}$$

where the last inequality is justified by our choice of $M > 4\binom{2n/3}{n/3}$. Analogous reasoning yields the bounds $\mathbb{E}|Y_1(w)|, \mathbb{E}|Y_2(w)| < \frac{1}{4}\mathbb{E}|Y(w)|$, and hence

$$\mathbb{E}|Z(w)| \ge \mathbb{E}|Y(w)| - \mathbb{E}|Y_0(w)| - \mathbb{E}|Y_1(w)| - \mathbb{E}|Y_2(w)| > \frac{1}{4}\mathbb{E}|Y(w)| = \frac{1}{4} \cdot \frac{1}{M} \binom{2n/3}{n/3} \cdot \frac{|B|}{M} \cdot \binom{n}{n/3}.$$

If n is sufficiently large, then for $M = 4\binom{2n/3}{n/3} + 1$ and $B > \log^{1/4}(M) \cdot 2^{-\sqrt{8\log M}} \cdot M$ we have

$$\frac{1}{4} \cdot \frac{1}{M} \binom{2n/3}{n/3} \cdot \frac{|B|}{M} > 2^{-\sqrt{16n/3}},$$

hence

$$\mathbb{E}|Z(w)| > \binom{n}{n/3} \cdot 2^{-\sqrt{16n/3}} > \binom{n}{n/3}^{1-o(1)}$$

as claimed.

References

- Blasiak, J., Church, T., Cohn, H., Grochow, J. A., and Umans, C. (2016). On cap sets and the group-theoretic approach to matrix multiplication. arXiv:1605.06702 [math.CO].
- Coppersmith, D. and Winograd, S. (1990). Matrix multiplication via arithmetic progressions. *J. Symbolic Computation*, 9(3):250–280.
- Croot, E., Lev, V., and Pach, P. (2016). Progression-free sets in \mathbb{Z}_4^n are exponentially small. arXiv:1605.01506 [math.NT].
- Elkin, M. (2011). An improved construction of progression-free sets. Israeli J. Math., 184:93–128.
- Ellenberg, J. S. (2016). On large subsets of \mathbb{F}_3^n with no three-term arithmetic progression. Manuscript.
- Fu, H. and Kleinberg, R. (2014). Improved lower bounds for testing triangle-freeness in boolean functions via fast matrix multiplication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 17th International Workshop, APPROX 2014, and 18th International Workshop, RANDOM 2014. arXiv:1308.1643 [cs.CC].
- Gijswijt, D. (2016). Asymptotic upper bounds on progression-free sets in \mathbb{Z}_p^n . arXiv:1605.05492 [math.CO].
- Green, B. and Wolf, J. (2010). A note on Elkin's improvement of Behrend's construction. In *Additive number theory*, pages 141–144. Springer.