GBCS SCHEME

BCS401

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Analysis and Design of Algorithms

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

solving. b. Develop an algorithm to search an element in an array using sequential search. Calculate the best case, worst case and average case efficiency of this algorithm. OR Q.2 a. Explain asymptotic notations with example. b. Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. Module - 2 Q.3 a. Explain Strassen's matrix multiplication approach with example and derive its time complexity. b. What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. OR Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module - 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of			Module – 1	M	L	C
search. Calculate the best case, worst case and average case efficiency of this algorithm. OR Q.2 a. Explain asymptotic notations with example. b. Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. Module – 2 Q.3 a. Explain Strassen's matrix multiplication approach with example and derive its time complexity. b. What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. OR Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm to sort all ist of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of	Q.1	a.	I V V I I A	10	L2	CO1
 Q.2 a. Explain asymptotic notations with example. b. Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. Module – 2 Q.3 a. Explain Strassen's matrix multiplication approach with example and derive its time complexity. b. What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. OR Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of 		b.	search. Calculate the best case, worst case and average case efficiency of	10	L3	CO1
b. Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. Module - 2		_				
algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth. Module - 2	Q.2	a.				CO1
 Q.3 a. Explain Strassen's matrix multiplication approach with example and derive its time complexity. b. What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of 		b.	algorithm. Develop recursive algorithm for computing factorial of a	10	L3	CO1
its time complexity. b. What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. OR Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of			Module – 2			
best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E. OR Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of	Q.3	a.		10	L3	CO2
 Q.4 a. Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of 		b.	best case. Make use of this algorithm to sort the list of characters:	10	L2	CO2
design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency. b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of			OR			
b. Define topological sorting. List the two approaches of topological sorting and illustrate with examples. Module – 3 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of	Q.4	a.	design techniques with block diagram. Develop insertion sort algorithm to	10	L3	CO2
 Q.5 a. Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of 		b.	Define topological sorting. List the two approaches of topological sorting	10	L2	CO2
on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation. b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of						
b. Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation. OR Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of	Q.5	a.	on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7	10	L3	CO3
Q.6 a. Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of		b.	Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using	10	L3	CO3
Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of			OR			
	Q.6	a.	Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of key insertion and node splits.	10	L3	CO3
b. Design Horspool algorithm for string matching. Apply this algorithm to 10 L3 (find the pattern BARBER in the text: JIM_SAW_ME_IN_A_BARBERSHOP		b.	find the pattern BARBER in the text:	10	L3	CO3
Module – 4						
Q.7 a. Apply Dijkstra's algorithm to find the single source shortest path for given graph [Fig.Q7(a)] by considering 's' as source vertex. Illustrate each step.	Q.7	a.	Apply Dijkstra's algorithm to find the single source shortest path for given graph [Fig.Q7(a)] by considering 's' as source vertex. Illustrate each step.	10	L3	CO4
1 of 2			1 of 2			

				BC	S401
	L	Define transitive closure. Write Warshall's algorithm to compute transitive	10	L3	CO4
	ь.	closure. Illustrate using the following directed graph.	10	LS	204
		Fig.Q7(b) OR			
Q.8	b.	Define minimum spanning tree. Write Kruskal's algorithm to find minimum spanning tree. Illustrate with the following undirected graph. Fig.Q8(a) Construct Huffman Tree and resulting code for the following: Character A B C D - Probability 0.4 0.1 0.2 0.15 0.15 (i) Encode the text: ABACABAD	10	L3	CO4
		(ii) Decode the text : 100010111001010 Module - 5			
Q.9	a.	Explain n-Queen's problem with example using backtracking approach.	10	L2	CO5
	b.	Solve the following instance of the knapsack problem by the branch-and-bound algorithm. Construct state-space tree. Item Weight Value 1 4 \$ 40	10	L3	COS
		2 7 \$ 42 3 5 \$ 25 4 3 \$ 12 The knapsack's capacity W is 10.			
0.10	0	OR		-	
Q.10	a.	Differentiate between Branch and Bound technique and Backtracking. Apply backtracking to solve the following instance of subset-sum problem $S = \{3, 5, 6, 7\}$ and $d = 15$. Construct a state space tree.	10	L3	CO5
	b.	Explain greedy approximation algorithm to solve discrete knapsack problem.	10	L2	CO5

* * * * *

Re: Madam, modifications of scheme and solutions

BCS 401

"Nirmala CR" <nirmala.cr@gmail.com>

August 23, 2024 8:09 AM

To: boe@vtu.ac.in

Dear Sir,

I have checked the scheme and found appropriat. Kindly proceed with further process

Thanks and regards

NIRMALA C R

On Thu, 22 Aug 2024 at 12:57 PM, <box or vivae:

"APPROVED

Registrac (Evaluation)
svesvaraya Tuchnological University
BELAGAVI - 590018

M

Jisvesva

Visvesvaraya Technological University

Belagavi, Karnataka - 590 018.

Scheme & Solutions

Signature of Scrutinizer

Subject Title: Analysis & Design of Algorithm Subject Code: BCS401

Question Number	Solution	Marks Allocated
1.a.	Aigonithm Definition -> 1	iM
	Diagran. Junanstand the problem!	
	Decide on computational means exact Vs approximate	
	Design an algorithm	
	Prove Correctness	
	Analyze the algorithm	No.
	Code the algorithm Figure ->	3 M
	· (+00-)	6 M
	explanation of each significant total >	101
1.b.		211
	Sequential Search Algorithm	4
APPRO	Efficiencies - best case (bast)=1.	M
Stranger	worst case (worst n)= n	-2m
LAGAVI - 59	Colonerage case efficiençane rage cuse c	
	$ \begin{array}{ll} \text{Cavo}(n) = [1 \cdot l'_{n} + 2 \cdot l'_{n} + \dots + n \cdot l'_{n}] + n(1-p) \\ = l'_{n} [1 + 2 + \dots + n] + n(1-p) \end{array} $	
	yn '	

Subject Title: Analysis and design of Algorithmy Subject Code: BC8401

Question Number	Solution	Marks Allocated
- Training	$z \frac{p}{n} n \frac{(n+1)}{2} + n (1-p) = \frac{p(n+1)}{2} + n (1-p)$	IM
	For sneess ful seeneh A P=1 (nt) Cang(n)= n+1-1	1 M
	for unsucessful seench	2M
	$-Carg(n) = \frac{n}{total}$	D
2.a.	Asymptotic notations: Big-oh (0) -> definition, il examples	201
	Big-omega (2)-définitorne examples	3 M
	Brg-Heta (0) - defrontion, & example.	AM
20b.	General plans listing:	
	1. Devide on a parameter & Indicating of an input size.	
	2. Identify the algorithm's basic operation 3. Cheele whether the no. of times the	2M
	basic operation executed can vary on different yps of same size.	
	5. Solve the recurrence, ascessous the older of growth	1M

Subject Title: Analysis & Design of Algorith Subject Code: BCS401

Question Number	Solution	Marks Allocated
	Alg. Recursive algorithm for computing factorical number Algorithm Fen) else return FCn-1)* n	2M
	Recurence relation: Mcm = Men-D+1 famo M(0) 20	3 2 M
	Boling Ausing brod substitutions?	3M
3.a.	grassen's Matrix Multiplication formula:.	*
	[coo coi] = [aoo 90i] x [boo boi] = [mi+my-ms+m] m3+ms m2+my m1+m3-m2+m6]	3M
	where $m_1 = (a_{00} + q_{11}) *(b_{00} + b_{11})$ $m_2 = (a_{10} + q_{11}) \times b_{00}$	
	$M_3 = a_{00} \times (b_{01} - b_{11})$ $M_4 = a_{11} \times (b_{10} - b_{00})$ $M_5 = (a_{00} + a_{01}) \times b_{11}$ $M_6 = (a_{10} - a_{00}) \times (b_{00} + b_{01})$ $M_7 = (a_{01} - a_{11}) \times (b_{10} + b_{11})$	

Subject Title: Analysis & Design of Algorithm Subject Code: BCS 401

Solution	Marks Allocated
explanation -	2M
Recurence relation of strassents	
The state of the s	2M
derivation with solution 9 $M(n) = 4^{\log_2 n} = n^{\log_2 7} \approx n$	3M
Definition of Divide and Conquer ->	IM
quieksort algo:	4M
· sorteng the list of characters>	4 M
Omiclesont best conte efficiency of	IM
Total -	LOM
Divide and Conquer technique: Decrease and conquer technique	3.M
Solution to subproblem 2 Solution to subproblem 2 Solution to subproblem 2 Solution to subproblem 2	
	Definition of Dinide and Conquer -> Onicksout best cont efficiency of Subproblem of Size n Decrease and conquer Dinide and Conquer technique Decrease and conquer Divide and Conquer technique Decrease and conquer Southern of Subproblem of Size n Subproblem of Subproblem of Size n Subproblem of Subproblem of Size n Subproblem of Size n Decrease and conquer Subproblem of Size n Decrease and conquer Subproblem of Size n Subp

Subject Title: Analysis & Desgn of Algorithy Subject Code: BCS 401

Subject Tit	le: Analysis & Desgn of Algorithy Subject Code: 15 (15 90)	26-1-
Question Number	Solution	Marks
	Decrease by harf conquer technque.	.,
	Problem of Size n	2001
	Subproblem of size $n/2$	
4	Solution to Sub problem	
	Soluton to subprob	
	Insertion sort algorithm	4M
	for PCI, to not do	
	8 -1	
	white j ≥ 0 and AGj]> v do AGj +1] CAGj)	
	G∈ j-1	
	A[j+i] C-V	
	Constant = Q(n2)	9 M
	Chest (n) = O(n)	313
	Cavq(n) = $\frac{n^2}{4}$ $\in \Theta(n^2)$	
4.6.	Definition of topological sorting:	M
	ust 2 approaches -1) source removal 3	2M
	Illustration with example (2 approaches)	7M

Subject Title: Analysis & Design of Algorthy Subject Code: BCSA01

Subject Tit	le: Analysis & Design of Algorithy Subject Code: BC375	
Question Number	Solution	Marks Allocated
5.a.	AVI definition with example -> wolst case efficiency = Octogn)	2 M 1 M
4	(a) Insert 6 (b) (c) (c) (d)	24
	insert 2 (6)	2 M
	300	
	1 meent 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2M
	Insert 7 (B) The sert 7 (B)	2M
		1 M
5.6.	Heap defondoon agonthm (hext page)	3 M
	2,9,7,6,58-) heap constanction (in array) Sorting the numbers (any rep)	3 M
w		

Subject Title: Analysis & Design of Algorithms Subject Code: BCS401

Subject Ti	tle: Analysis & Design of Algorithms Subject Code: BC 40	Marks
Question Number	Solution	Allocated
5.b	Bottom up heap construction algorithm:	
	for 9 < L/2 down to 2 do	
	leei NEH[k]	
	heapefalse	
	while not keap and 2*k < n	
	$f \in 2 \times k$	
	ý j <n ý Hej] < H[j+1] [€]+1</n 	
	y v≥ Hey > reapelone	
	else HPRJEHJJI; KEj	
		10
	H [1c] EV	
6.00	Defundoù 2-3-tree & example Norst Case efficiency	24,
	worst case efficiency	IM
	construction 2.3 role 9,5,03,2797	
	(9) (5,9) (5,8,9) note (8)	2.M
	9 (5,89) = 5	
	Insert 3 Insert 2	
	(8) \rightarrow (8)	2M
	85 9 (2,3,5) 9 Spht 2 (9)	\\
	mest 4 (3,5,8) Split (5)	
	=) (3,8) ment (3,5,8) split	3M
	2450 2000	

Subject Title: Analysis Desgn of Algorithm Subject Code: BCS401

Subject Ti	tle: Analysing Desgn of Algorithm Subject Code: BCS4	-0
Question Number	Solution	Marks Allocated
6. b.	Holspool's algorithm	4M
į	Holspool's algorithm 8 hiff table for BARBER A B C D E F - R - R - B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2M
Tg P:	BARBER BARBER BARBER BARBER BARBER BARBER BARBER BARBER BARBER Matched:	JAM
7.a.	Tree vertical Remaining Vertice & Illustrate	•
	Tree verticy Remaining Vertices Illustrate S(-,0) a(5,1) b(5,5) c(-16) (3) d(-,0) e(-,6)	LM ##
	a(s,1) $b(a,3)$ $c(a,3)$ $d(a,2)$ $b(a,3)$ $d(a,2)$ $b(a,3)$	2M
	b(a,3) (b or c) any thing can be celuted. to proceed as both one hars same distance b (a,3) c (a,3) d (a,2) e (-9 00)	2M
	cont next page.	
	1	

Subject Title: Analysin & Design of Algorithms Subject Code: BCS 40)

Subject Ti	tle: Analysin & Jesigh of Algoriths Subject Code: BCS AC	
Question Number	Solution	Marks Allocated
	d(q,2) c(q,3) e(d,4) (5) 2) (5) (2) (6)	2 M
	C(a,3) e (d, 4)	2M
	e(d,u)	1-M
	Shortest path S -> a => 1 S-> a -b is 3	τ
84.b	5-) 2-) 6 3 15-) 2-0	Im.
H°D.	frankt Warshall's algorithm	3 M
	Adjacency matrix (0) > (0) 000 (0) 0000 (0) 0000	
	$R^{(0)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad R^{(1)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	am
	$R^{(2)} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 \end{bmatrix} $ (3) $Q = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 \end{bmatrix}$	2 M

Subject Title: Analysis & Design of Algorithm Subject Code: BCS 40

Question Number	Solution	Marks Allocated
	R(u):	2M
	RCU) is the boanseture closure.	
	Efficiency is O(n3)	
8.a.	Definition of MST ->	IM
	algorithm	3 M
	Steps to derive MST	
a.b.	Cbc, ef, ab, bf, db édges)	6 M
	Fluffman tree	
	Cool 1 (0.25) (0.35) (0.35) (2 -) 100	4M
	B D > 101 D -> 101 D -> 110	27

Subject Title: Analycin & Design of Algorithms Subject Code: BCS 401

Subject Ti	tle: Analysin & Design of Algorithms Subject Code: BCSAO)	
Question Number	Solution	Marks Allocated
	Aug # of bite per symphol = 2.2 bits	1
-	Fixed length encoding require = 3 bits	M
	compression radio = 10 3-200 XI	2
	= (3-20) 100 %	
	= 5667%	
	Rneode text Decode text	200
9.a.	n-queen's problem explahon -	#M
	example with statespace	6M
	0	
9.6.	w=0 V=0 ub=100	2 M
	W=4 V=40 W=0 V=0	3 M
	ub=46	
	8	0.14
	w=11 $w=4$ $w=40$ $ub=40$	2M
	not peasible with 3	2M
	$w=4 \ V=40$ $ub=69$ $ub=64$,
	with 4 modes	IM
	w=12 w=9 v=65 >ophmal	
	x not feashy	

Subject Title: Analysis and design of Algorithis Subject Code: BCS 401

Subject Tit Question Number	Solution	Marks Allocated
lo.a	Difference -> Any 2 x LM	2 m
:	State space tree ?>	8M
	fer subset som probler	
10.b	discrete knapsade problems Algorithms	4m
	Explanation	6 M

"APPROVED"

Registres (Evaluation)
//svesveraye Recimological University
PELAGIM - 590018

M