

Challenge 3 - Area Mesh Generation

Group AMG: Student Presentation

Tutor: Prof.Dr.Markus Ryll

Hang Li, Linya Ruan, Ziting Huang, Tiantian Wei

Date: 22.03.2023

Contents

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

- Project Introduction
- Task Overview
- Conclusion and Demo
- Futurework
- Reference

Project Introduction

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

Unity environment: slightly hilly terrain containing a polygon of n corners

Hardware: drone equipped with a set of down-pointing stereo RGB Cameras

Goal: Mesh Generation from the matching images captured by cameras

Prof. Dr. Markus Ryll

Chair of Autonomous Aerial Systems

trajectory generation perform feature-matching point-cloud generation use stereo_image_proc package point-cloud from features generation point cloud merging point cloud preprocessing mesh Generation from point cloud add color information to mesh

Prof. Dr. Markus Ryll

trajectory Generation

requirements:

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

- Cover the terrain areas with distinct features.
- Minimize overlap of the RGB images captured.
- Prevent drone shake at each target point from affecting image quality by pausing for a few seconds at each point to capture the images.

trajectory Generation

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

input parameters

Set maximum velocity and acceleration

```
BasicPlanner::BasicPlanner(){
    \max v = 5;
    max a = 5;
```

Set fixed height and goal positions

```
posx.push back(-17);
posy.push back(15);
posz.push back(12);
posx.push back(-32);
posy.push back(15);
posz.push back(12);
```


trajectory Generation

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

Prof. Dr. Markus Ryll

Display2

perform feature-matching

Fig.2. Principle of Binocular Stereo Imaging

Fig.3. binocular disparity map

perform feature-matching

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

```
sea: 214116
 stamp:
   secs: 8388
   nsecs: 720000000
 frame id: "Quadrotor/Sensors/DepthCamera"
neight: 240
width: 320
distortion model: "plumb bob"
D: [0.0, 0.0, 0.0, 0.0, 0.0]
  [120.0000000000001, 0.0, 160.0, 0.0, 120.000000000001, 120.0, 0.0, 0.0, 1.0]
  [120.000000000000001, 0.0, 160.0, 0.0, 0.0, 120.000000000001, 120.0, 0.0, 0.0, 0.0, 1.0, 0.0]
binning x: 0
binning y: 0
 x offset: 0
 y offset: 0
 height: 0
 width: 0
 do_rectify: False
```



```
width = 320
height = 240
FOV = 60
cx = width/2 = 160
cy = height/2 = 120
f x = 0.5* width/ tan(FOV/2)
f x = f y = 160
b = 0.2
```


perform feature-matching

Problem:

Fig.1. problem of binocular disparity map in a featureless environment

Prof. Dr. Markus Ryll

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

point-cloud generation use stereo_image_proc package

Prof. Dr. Markus Ryll

point cloud merging

Chair of Autonomous Aerial Systems

Prof. Dr. Markus Ryll

- Transform point cloud to world frame
- listener.lookupTransform obtain transformation matrix.
- pcl ros::transformPointCloud conduct transformation.
- Sum the point cloud in world frame

Prof. Dr. Markus Ryll

point cloud preprocessing

- Downsampling:
- reduce the number of points
- while keeping the essential features
- Filtering:
- outliers filter

Prof. Dr. Markus Ryll

mesh generation from point cloud

Greedy triangle reconstruction

- Construct triangles iteratively between nearest neighboring point in the cloud
- Advantages:
 - Simplicity
 - fast
- Disadvantages:
 - effect by noise

mesh generation from point cloud

Poisson surface reconstruction

- construct a scalar function over the input points to generate a continuous surface representation through a process of implicit surface reconstruction
- Advantages:
 - Handling noisy data, smooth surface
 - Filling in missing data
 - mesh without any holes
- Disadvantages:
 - computational expensive

Prof. Dr. Markus Ryll

add color information to mesh

Color from RGB Point Cloud

Assigning each vertex of the mesh the RGB value of the closest point in the original point cloud

add color information to mesh

Height Visulization

- Assigning distinct RGB values based on height.
- blue: low -> red: high

Demo

Conclusion and Futurework

- Biggest Problem: Fusion of Point Cloud
 - Reasons might be: Imprecise of TF transform, noise, unstable
- Can not do Point Cloud Register because no strong features
 - Test on other unity environment

26

Reference

- [1] https://johnwlambert.github.io/stereo/
- [2] http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html
- [3] http://wiki.ros.org/stereo_image_proc
- [4] https://learnopencv.com/depth-perception-using-stereo-camera-python-c/
- [5] http://wiki.ros.org/mesh_tools
- [6]http://wiki.ros.org/stereo_image_proc#stereo_image_proc.2Fdiamondback.stereo_image_proc.2Fpoint_cloud2

Thank you!

