Network Intrusion Detection using GNNs

- Yash Malik (2001CS79)

1. Previous Work

XAI based approaches -

- Local Interpretable Model Agnostic Explanation (LIME)
- SHAP Values

"Why Should I Trust You?" **Explaining the Predictions of Any Classifier**

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu

Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Carlos Guestrin University of Washington Seattle, WA 98105, USA questrin@cs.uw.edu

(a) Original Image

(b) Explaining Electric quitar (c) Explaining Acoustic quitar

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

LIME step by step

Calculating shapley values

Previous Model Results

Node Embeddings

 Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

How to <u>learn</u> mapping function f?

Idea: Aggregate Neighbours

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbours

Intuition: Network neighborhood defines a computation graph

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

GraphSAGE Idea

Any differentiable function that maps set of vectors in N(u) to

INPUT GRAPH

$$\mathbf{h}_v^k = \sigma\left(\left[\mathbf{A}_k \cdot \operatorname{AGG}(\left\{\mathbf{h}_u^{k-1}, \forall u \in N(v)\right\}), \mathbf{B}_k \mathbf{h}_v^{k-1}\right]\right)$$

Apply L2 normalization for each node embedding at every layer

Neighbourhood Aggregation

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

Concatenate neighbor embedding and self embedding

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \operatorname{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\right\}\right), \mathbf{B}_{k} \mathbf{h}_{v}^{k-1}\right]\right)$$

Generalized aggregation

E-GraphSAGE

Algorithm 1: E-GraphSAGE edge embedding

```
input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E});
                                    input edge features \{e_{uv}, \forall uv \in \mathcal{E}\};
                                    input node features \mathbf{x}_v = \{1, \dots, 1\};
                                    depth K;
                                    weight matrices \mathbf{W}^k, \forall k \in \{1, \dots, K\};
                                    non-linearity \sigma;
                                    differentiable aggregator functions AGG_k;
                 output: Edge embeddings \mathbf{z}_{uv}, \forall uv \in \mathcal{E}
                 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V}
                 for k \leftarrow 1 to K do
                            for v \in \mathcal{V} do
                                    \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGG}_{k}\left(\left\{\mathbf{e}_{uv}^{k-1}, \forall u \in \mathcal{N}(v), uv \in \mathcal{E}\right\}\right)\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}\left(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k}\right)\right)
5
                 \mathbf{z}_v = \mathbf{h}_v^K
                 for uv \in \mathcal{E} do
                           \mathbf{z}_{uv}^{K} \leftarrow CONCAT(\mathbf{z}_{u}^{K}, \mathbf{z}_{v}^{K})
```

Model Parameters

Network Graph Construction

- BoT-IoT dataset with 6 types of attacks
- <Source_IP || Source_Port, Dest_IP || Dest_Port>

• E-GraphSAGE Training

- 2 Layered NN i.e. 2-hop neighbourhood
- AGG function used is element-wise Mean

$$\mathbf{h}_{\mathcal{N}(v)}^{k} = \sum_{\substack{u \in \mathcal{N}(v), \\ uv \in \mathcal{E}}} \frac{\mathbf{e}_{uv}^{k-1}}{|N(v)|_{e}}$$

Edge Classification

- Test samples passed to get edge embeddings
- Converted to class probabilities in final softmax layer
- Tested against true labels

Results

Classification Report on Test Set

	precision	recall	f1-score	support
DDoS	0.9999	1.0000	1.0000	115598
DoS	1.0000	0.9999	0.9999	99016
Normal	1.0000	0.9545	0.9767	286
Reconnaissance	0.9976	1.0000	0.9988	5464
Theft	1.0000	1.0000	1.0000	48
accuracy			0.9999	220412
macro avg	0.9995	0.9909	0.9951	220412
weighted avg	0.9999	0.9999	0.9999	220412

Dimension Reduction using UMAP

Conclusions and Future Scope

- Experimental evaluation based on Bot-IoT NIDS
 benchmark datasets shows that E-GraphSAGE-based NIDS
 performs exceptionally well and overall outperforms the
 state-of-theart ML-based classifiers.
- More work could be done to apply neighbourhood sampling techniques to improve the run-time of the E-GraphSAGE model, particularly exploring non-uniform sampling techniques.
- But How to combine XAI (previous work) based and GNN (current work) based approaches?

My Implementation

https://colab.research.google.com/drive/1kbc6hofWrtZj0-Ms9L

O--wnNegScSYD1?usp=sharing

GNNExplainer: Generating Explanations for Graph Neural Networks

Rex Ying†

Dylan Bourgeois^{†,‡}

Jiaxuan You[†]

Marinka Zitnik†

Jure Leskovec†

†Department of Computer Science, Stanford University

†Robust.AI
{rexying, dtsbourg, jiaxuan, marinka, jure}@cs.stanford.edu

GNN model training and predictions

Explaning GNN's predictions

