Energy conversion I

Lecture 14:

Topic 4: Synchronous Machines (S. Chapman ch. 5&6)

- Introduction
- Synchronous Generators Construction
- Steady state equivalent circuit
- Power and Torque
- Grid connected Synchronous machines
- Synchronous motors
- Power factor correction
- Start-up of synchronous motors

Steady state equivalent circuit

Rotating stator flux induces three phase voltages in stator three phase winding too (armature reaction).

This induced voltage is similar to the induced voltage in inductances.

Using Single phase equivalent circuit:

Using generator form for equivalent circuit:

$$V_a = E_a - jX_sI_a - R_aI_a$$

Think about equivalent circuit of Rotor in steady state!!

What about salient pole machines

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Phasor diagram of a synchronous generator

$$V_a = E_a - jX_sI_a - R_aI_a$$

jX_sI_a

 R_aI_a

Unity Power factor (Resistive load)

Lagging current (Inductive load)
Generator supplies reactive power

Leading current (Capacitive load)
Generator absorbs reactive power

Compare E_a (/ I_f) in these three cases!

Power and Torque of a synchronous generator

$$V_a = E_a - jX_sI_a - R_aI_a$$

Output power: Electrical delivered to the load (/ Grid) connected to the stator terminals:

$$P_{out} = V_a I_a \cos \phi$$
 (per phase)

 $Q_{out} = V_a I_a \sin \phi$ (per phase) (positive if current is lagging)

Power loss:

Copper loss = $R_a I_a^2$ (per phase)

Iron Loss: (not included in the equivalent circuit)

Where and why iron loss?

Converted Power: Mechanical power converted to electrical power (Generator)

$$P_{conv} = E_a I_a cos \gamma$$
 (per phase) (Electrical)

$$P_{conv} = T_{ind} \Omega_s$$
 (three phase) (Mechanical) $\Omega_s = \omega_s^* 2/p$

Mechanical power loss:

Friction and windage losses

Input Power: Mechanical Don't forget field power!

Load / Torque angle

Usually: $R_a \ll X_s$ and therefore: $V_a = E_a - jX_sI_a$

$$X_s I_a \cos \phi = E_a \sin \delta$$

$$p = \frac{V_a E_a}{X_s} \sin \delta$$
 (per phase)

$$p_{3ph} = 3 \frac{V_a E_a}{X_s} \sin \delta = T \Omega_s$$

$$T_{\text{ind}} = \frac{3}{2} \frac{p}{\omega} \frac{V_a E_a}{X_s} \sin \delta$$

 δ : Torque(/ Load) angle

 δ >0 T_{ind} > 0 : Generator

 δ <0 T_{ind} < 0 : Motor

E_a is induced by B_r V_a is induced by B_g(total flux density)

 δ is the angle between B_r and B_g

B_g follows B_r in generating mode B_r follows B_g in motoring mode

B

EE Course No: 25741 Energy Conversion I Sharif University of Technology $\mathbf{jX_sI_a}$

Power and Torque Characteristics

Synchronous Machine: Torque at Synchronous Speed (Torque-speed characteristics)

Energy Conversion I

Can machine work with $\delta > 90^{\circ}$ Or $\delta < -90^{\circ}$?

6

Example:

A three phase, 5kW, 208 V, four-pole, 60 Hz, synchronous machine has negligible stator winding resistance and a synchronous reactance of 8Ω . The machine is connected to a 3phase 208V, 60Hz power supply.

a- Determine the excitation voltage and torque angle when the machine is delivering rated kVA at 0.8 PF lagging.

$$V_a = \frac{208}{\sqrt{3}} = 120V$$

$$I_a = \frac{5000}{\sqrt{3} \times 208} \angle -\cos^{1}(0.8) = 139 \angle -369$$

$$E_a = V_a + jX_sI_a = 120 + j8 \times 139 \angle -369 = 2069 \angle 255$$

Excitation voltage: 206.9 V/phase

Power Angle: 25.5°

b- What is the maximum power can be delivered?

$$P_{\text{max}} = 3 \frac{V_a \times E_a}{X_s} = 3 \frac{120 \times 2069}{8} = 9.3 \, kW$$

c: If the field excitation is now increased by 20%(without changing the prime mover power), find the stator current, power factor and reactive kVA supplied by the machine.

Power is the same as before, therefore:

$$\frac{V_a E_{a1}}{X_s} \sin \delta_1 = \frac{V_a E_{a2}}{X_s} \sin \delta_2$$

$$E_{a1} \sin \delta_1 = E_{a2} \sin \delta_2$$

$$\sin \delta_2 = \frac{E_{a1}}{E_{a2}} \sin \delta_1$$

$$\delta_2 = 21^{\circ}$$

$$\delta_2 = 21^{\circ}$$

$$I_a = \frac{E_a - V_a}{jX_s} = \frac{2482 \angle 21 - 120}{j8}$$

= 17.86\angle -51.5°
Powefiacto\pmco\square \cos 1.5 = 0.62 \langle ag
Reactive \A=3V_a I_a \sin 51.5
= 5.03k VAR

Having E_{a2} and δ_2 current can be calculated:

Increasing field current has increased Reactive power delivered