Homework 2. Based on Chapter 3 of Trosset's textbook. Due Thursday, September 9th. For questions that require R code, you must turn in your R code on Canvas. Your should comment your code using # to at least denote the problem if not the reason you are doing what you are doing.

Handwritten questions:

Question 1: Define the sample space S by $S = \{A, B, C, D\}$ and the field (algebra) \mathcal{C} of subsets of S by $\mathcal{C} = \mathcal{P}(S)$ where $\mathcal{P}(S)$ is the powerset of S (the set of all subsets of S). Define the probability function P by $P(\{A\}) = P(\{B\}) = 0.3$ and $P(\{C\}) = P(\{D\}) = 0.2$ and extending to all of \mathcal{C} using the sum and complement rules.

- a. What are $P(\{A, B\})$ and $P(\{B, C\})$? Justify your answers.
- b. Is the event $\{A, B\}$ independent of the event $\{B, C\}$? Justify your answer.
- c. Is the event $\{A,C\}$ independent of the event $\{C,D\}$? Justify your answer.
- d. Is the event $\{A, B, C\}$ independent of the event $\{B, C, D\}$? Justify your answer.

Question 2: Define the sample space S by $S = \{A, B, C\} \times \{1, 2, 3\}$, which is a collection of pairs of the form (Letter, Number) for Letter $\in \{A, B, C\}$ and Number $\in \{1, 2, 3\}$. Define the field (algebra) \mathcal{C} of subsets of S by $\mathcal{C} = \mathcal{P}(S)$ where $\mathcal{P}(S)$ is the powerset of S (the set of all subsets of S). Define the probability function P by

```
P(\{(A,1)\}) = 0.20
P(\{(A,2)\}) = 0.09
P(\{(A,3)\}) = 0.10
P(\{(B,1)\}) = 0.20
P(\{(B,2)\}) = 0.09
P(\{(B,3)\}) = 0.05
P(\{(C,1)\}) = 0.10
P(\{(C,2)\}) = 0.12
P(\{(C,3)\}) = 0.05
```

and extending to all of \mathcal{C} using the sum and complement rules.

- a. Let *D* be the event $D = \{(A, 1), (A, 2), (A, 3), (B, 1), (B, 2), (B, 3)\}$. Compute P(D) and $P(\{s\}|D)$ for all $s \in S$. Justify your answers.
- b. Is the event $\{(A, 1), (A, 2), (A, 3)\}$ independent of the event $\{(A, 3), (B, 3)\}$ when conditioning on D? Justify your answer.
- c. Let E be the event $E = \{(A, 1), (A, 2), (B, 1), (B, 2)\}$. Compute P(E) and $P(\{s\}|E)$ for all $s \in S$. Justify your answers.
- d. Is the event $\{(A, 1), (A, 2)\}$ independent of the event $\{(A, 1), (B, 1)\}$ when conditioning on E? Justify your answer.
- e. Let F be the event $F = \{(A,1), (A,2), (B,1), (B,2), (C,1), (C,2)\}$. Compute P(F) and $P(\{s\}|F)$ for all $s \in S$. Justify your answers.

f. Is the event $\{(A, 1), (A, 2)\}$ independent of the event $\{(A, 1), (B, 1), (C, 1)\}$ when conditioning on F? Justify your answer.

Question 3: Define the sample space S by S = (0,1), which is the open the interval from 0 to 1. Define the σ -field (σ -algebra) \mathcal{C} as being the smallest σ -field containing all sets of the form (a,b) for 0 < a < b < 1. In the following, the notation [(a,b)] means an interval that is open or closed on either side (formally, it represents the indifference of the definition of the probability to the sets (a,b), [a,b), (a,b], and [a,b] - the probability is defined as being the same for any of these sets). The collection of sets \mathcal{C} contains all such sets.

- a. Does defining the function P by P([(a,b)]) = b a for 0 < a < b < 1 (and extending to all of C using the sum and complement rules) define a probability measure on (S, C)? Explain your reasoning.
- b. Does defining the function P by $P([(a,b)]) = \frac{1}{b-a}$ for 0 < a < b < 1 (and extending to all of \mathcal{C} using the sum and complement rules) define a probability measure on (S,\mathcal{C}) ? Explain your reasoning.
- c. Does defining the function P by $P([(a,b)]) = \frac{2(b-a)}{a+b}$ for 0 < a < b < 1 (and extending to all of \mathcal{C} using the sum and complement rules) define a probability measure on (S,\mathcal{C}) ? Explain your reasoning.
- d. Does defining the function P by P([(a,b)]) = 0.5(b-a)(b+a) for 0 < a < b < 1 (and extending to all of C using the sum and complement rules) define a probability measure on (S, C)? Explain your reasoning.
- e. Does defining the function P by $P([(a,b)]) = \frac{2b}{b+1} \frac{2a}{a+1}$ for 0 < a < b < 1 (and extending to all of \mathcal{C} using the sum and complement rules) define a probability measure on (S,\mathcal{C}) ? Explain your reasoning.
- f. Does defining the function P by $P([(a,b)]) = \frac{1-a}{a+1} \frac{1-b}{b+1}$ for 0 < a < b < 1 (and extending to all of $\mathcal C$ using the sum and complement rules) define a probability measure on $(S,\mathcal C)$? Explain your reasoning.

Hint: To determine whether P is a probability function check non-negativity, bounded above by 1, and that P behaves correctly for intersections, unions, and complements of intervals of the form [(a,b)] and [(c,d)].

Computational questions:

Question 4: Define the sample space S in R as the vector S=c(1:12) and define the probability vector p on the singletons $\{1\},\ldots,\{12\}$ by the vector $p=c(1/2^c(1:11),1/2^11)$. Use this p to extend to a probability measure on $C=\mathcal{P}(S)$ where $\mathcal{P}(S)$ is the powerset of S (the set of all subsets of S). Use these R objects to answer the following questions.

- a. Is the event $\{3,6,9\}$ independent of the event $\{3,6,10,11,12\}$?
- b. Is the event $\{3, 6, 9\}$ independent of the event $\{1, 6, 9, 11, 12\}$?
- c. Is the event $\{1,6,9\}$ independent of the event $\{1,6,9,11,12\}$?

- d. What is the conditional probability $P(\{s \in S : s < 9\} | \{s \in S : s > 5\})$?
- e. What is the conditional probability $P(\{s \in S : 3 < s < 9\} | \{s \in S : s < 6\})$?
- f. What is the conditional probability $P(\{s \in S : 3 < s < 9\} | \{s \in S : s \ge 2\})$?

Hints: We can subset S by using lines like S[S>3] (which pulls out the values of S that are larger than 3). Multiple conditions can be combined using & (for logical and) and | (for logical or). For instance, if I wanted to subset S to its values between larger than 3 and less than 7, then I could use the line S[S>3 & S<7]. If I wanted to subset S by its values less than or equal to 3 or greater than or equal to 7, then I could use the line S[S<=3 | S>=7]. I could similarly use these logicals to pull out the corresponding values in S. For example, S is S if I wanted the sum of these probabilities, then I could use the sum function. For example, S is S is S is S in S if S is S is S is S if S is S is S in S is S in S in S in S is S in S in