1

LINEAR SYSTEMS AND SIGNAL PROCESSING ASSIGNMENT 5

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/

EE3900_VECTORS_ASSIGNMENTS/blob/main/

QUADRATIC_FORMS_ASSIGNMENT5/ QUADRATIC_FORMS_ASSIGNMENT5.tex

Download all python codes from

https://github.com/VARSHITHAGANJI/

EE3900_VECTORS_ASSIGNMENTS/blob/main/

QUADRATIC_FORMS_ASSIGNMENT5/plot_code.py

QUESTION

Quadratic Forms 2.6

Find the area lying in the first quadrant and bounded by the circle $\mathbf{x}\mathbf{x}^{\top} = 4$ and the lines $\mathbf{x} = 0$ and $\mathbf{x} = 2$.

SOLUTION

The general equation of a circle is

$$\mathbf{x}\mathbf{x}^{\top} - 2\mathbf{O}^{\top}\mathbf{x} + \|O\|^2 - r^2 = 0 \tag{0.0.1}$$

Given equation of the circle is

$$\mathbf{x}\mathbf{x}^{\top} = 4 \tag{0.0.2}$$

Comparing (0.0.2) with (0.0.1), we get

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.0.3}$$

$$= 2$$
 (0.0.4)

Given lines are

$$L_1: \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0 \tag{0.0.5}$$

$$L_2: (1 \ 0) \mathbf{x} = 2$$
 (0.0.6)

The angle made by lines L_1 and L_2 with the x axis i.e $\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0$ is

$$\cos \theta = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} 0 & 1 \end{pmatrix}}{\| \begin{pmatrix} 1 & 0 \end{pmatrix} \| \| \begin{pmatrix} 0 & 1 \end{pmatrix} \|} \tag{0.0.7}$$

$$= 0$$
 (0.0.8)

$$\implies \theta = 90^{\circ} \tag{0.0.9}$$

The area of sector thus obtained is

$$\frac{\theta^{\circ}}{360^{\circ}}\pi r^2 = \frac{90^{\circ}}{360^{\circ}}\pi r^2 \tag{0.0.10}$$

$$=\frac{\pi}{4}2^2\tag{0.0.11}$$

$$=\pi \tag{0.0.12}$$

Fig. 1: Plotting the region bounded by circle and lines in first quadrant