ECE380 Digital Logic

Introduction to Logic Circuits:
Boolean algebra

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-1

Axioms of Boolean algebra

- Boolean algebra: based on a set of rules derived from a small number of basic assumptions (axioms)
- 1a 0.0=0
- 1b 1+1=1
- 2a 1·1=1
- $2b \ 0+0=0$

- 3a 0.1=1.0=0
- 3b 1+0=0+1=1
- 4a If *x*=0 then *x′*=1
- 4b If x=1 then x'=0

Electrical & Computer Engineering

Single-Variable theorems

- From the axioms are derived some rules for dealing with single variables
- 5a $x \cdot 0 = 0$
- 5b x+1=1
- 6a $x \cdot 1 = x$
- 6b x+0=x
- 7a x⋅x=x
- 7b x+x=x
- 8a x⋅x′=0
- 8b x+x'=1
- 9 *x''=x*

- Single-variable theorems can be proven by perfect induction
- Substitute the values x=0 and x=1 into the expressions and verify using the basic axioms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-3

Duality

- Axioms and single-variable theorems are expressed in pairs
 - Reflects the importance of *duality*
- Given any logic expression, its dual is formed by replacing all + with ·, and vice versa and replacing all 0s with 1s and vice versa

$$- f(a,b)=a+b$$
 dual of $f(a,b)=a\cdot b$
 $- f(x)=x+0$ dual of $f(x)=x\cdot 1$

• The dual of any true statement is also true

Electrical & Computer Engineering

Two & three variable properties

• 10a. $x \cdot y = y \cdot x$

Commutative

• 10b. x+y=y+x

• 11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ Associative • 11b. x + (y + z) = (x + y) + z

• 12a. $x \cdot (y+z) = x \cdot y + x \cdot z$ Distributive

• 12b. $x+y\cdot z=(x+y)\cdot (x+z)$

• 13a. $x+x\cdot y=x$

Absorption

• 13b. $x \cdot (x+y) = x$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-5

Two & three variable properties

• 14a. x·y+x·y′=x

Combining

• 14b. $(x+y)\cdot(x+y')=x$

• 15a. $(x \cdot y)' = x' + y'$ DeMorgan's

• 15b. $(x+y)'=x'\cdot y'$ Theorem

• 16a. $x+x'\cdot y=x+y$

• 16b. $x \cdot (x'+y) = x \cdot y$

Electrical & Computer Engineering

Induction proof of $x+x'\cdot y=x+y$

• Use perfect induction to prove $x+x'\cdot y=x+y$

	,	x'y	<i>x</i> + <i>x′y</i>	<i>x</i> + <i>y</i>
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

equivalent

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-7

Perfect induction example

• Use perfect induction to prove (xy)'=x'+y'

X	У	xy	(xy)'	x'	y'	x'+y'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

equivalent

Electrical & Computer Engineering

Proof (algebraic manipulation)

- Prove
 - -(X+A)(X'+A)(A+C)(A+D)X = AX
 - -(X+A)(X'+A)(A+C)(A+D)X
 - (X+A)(X'+A)(A+CD)X (using 12b)
 - -(X+A)(X'+A)(A+CD)X
 - (A)(A+CD)X (using 14b)
 - (A)(A+CD)X
 - AX (using *13b*)

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-9

Algebraic manipulation

- Algebraic manipulation can be used to simplify Boolean expressions
 - Simpler expression => simpler logic circuit
- Not practical to deal with complex expressions in this way
- However, the theorems & properties provide the basis for automating the synthesis of logic circuits in CAD tools
 - To understand the CAD tools the designer should be aware of the fundamental concepts

Electrical & Computer Engineering

Venn diagrams

- Venn diagram: graphical illustration of various operations and relations in an algebra of sets
- A set s is a collection of elements that are members of s (for us this would be a collection of Boolean variables and/or constants)
- Elements of the set are represented by the area enclosed by a contour (usually a circle)

Electrical & Computer Engineering

Notation and terminology

- Because of the similarity with arithmetic addition and multiplication operations, the OR and AND operations are often called the logical sum and product operations
- The expression
 - ABC+A'BD+ACE'
 - Is a sum of three product terms
- The expression
 - -(A+B+C)(A'+B+D)(A+C+E')
 - Is a product of three sum terms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-15

Precedence of operations

- In the absence of parentheses, operations in a logical expression are performed in the order
 - NOT, AND, OR
- Thus in the expression AB+A'B', the variables in the second term are complemented before being ANDed together. That term is then ORed with the ANDed combination of A and B (the AB term)

Electrical & Computer Engineering

Precedence of operations

- Draw the circuit diagrams for the following
 - f(a,b,c)=(a'+b)c
 - f(a,b,c)=a'b+c

Electrical & Computer Engineering