Algoritmi e Strutture Dati

Programmazione dinamica – Parte 2

Alberto Montresor

Università di Trento

2021/03/02

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- 1 Zaino con memoization
- 2 Variante dello zaino, senza limiti
- 3 Sottosequenza comune massimale

Complessità computazionale

Qual è la complessità della funzione knapsack()?

$$T(n) = O(nC)$$

È un algoritmo polinomiale?

No, è un algoritmo pseudo-polinomiale, perchè sono necessari $k = \log C$ bit per rappresentare C e quindi la complessità è:

$$T(n) = O(n2^k)$$

Zaino ricorsivo

Qual è la complessità della funzione knapsack() ricorsiva?

```
\label{eq:continuous_problem} \begin{split} & \overline{\text{int knapsackRec(int[] $w$, int[] $p$, int $i$, int $c$)}} \\ & \overline{\text{if $c < 0$ then}} \\ & | \mathbf{return} \ -\infty \\ & \mathbf{else if $i = 0$ or $c = 0$ then} \\ & | \mathbf{return 0} \\ & \mathbf{else} \\ & | \mathbf{int } nottaken = \mathtt{knapsackRec}(w, p, i - 1, c) \\ & \mathbf{int } taken = \mathtt{knapsackRec}(w, p, i - 1, c - w[i]) + p[i] \\ & \mathbf{return } \max(nottaken, taken) \end{split}
```

int knapsack(int[] w, int[] p, int n, int C)

return knapsackRec(w, p, n, C)

Complessità computazionale

Qual è la complessità della funzione knapsack() ricorsiva?

$$T(n) = \begin{cases} 1 & n \le 1 \\ 2T(n-1) + 1 & n > 1 \end{cases}$$
$$T(n) = O(2^n)$$

È un algoritmo polinomiale?

Ovviamente no!

Possiamo fare meglio di così?

No, secondo l'opinione di quasi tutti gli informatici del mondo.

Osservazione

Osservazione

Non tutti gli elementi della matrice sono necessari alla risoluzione del nostro problema.

$$w = [4, 2, 3, 4]$$

$$p = [10, 7, 8, 6]$$
 $C = 9$

	c										
i	0	1	2	3	4	5	6	7	8	9	
0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	10	10	10	10	10	10	
2	0	0	7	7	10	10	17	17	17	17	
3	0	0	7	8	10	15	17	18	18	25	
4	0	0	7	8	10	15	17	18	18	25	

Memoization

Memoization (annotazione)

Tecnica che fonde l'approccio di memorizzazione della programmazione dinamica con l'approccio top-down di divide-et-impera

- ullet Si crea una tabella DP, inizializzata con un valore speciale ad indicare che un certo sottoproblema non è ancora stato risolto
- Quando si deve risolvere un sottoproblema, si controlla nella tabella se è già stato risolto:
 - SI: si usa il risultato della tabella
 - NO: si calcola il risultato e lo si memorizza
- In tal modo, ogni sottoproblema viene calcolato una sola volta e memorizzato come nella versione bottom-up

Zaino con memoization

```
\begin{split} & \underbrace{\mathsf{int}\;\mathsf{knapsack}(\mathsf{int}[\;]\;w,\;\mathsf{int}[\;]\;p,\;\mathsf{int}\;n,\;\mathsf{int}\;C)} \\ & DP = \mathbf{new}\;\;\mathsf{int}[1\ldots n][1\ldots C] \\ & \mathsf{for}\;i = 1\;\mathsf{to}\;n\;\mathsf{do} \\ & & \int \mathsf{for}\;c = 1\;\mathsf{to}\;C\;\mathsf{do} \\ & & \int DP[i][c] = -1 \\ & \mathsf{return}\;\mathsf{knapsackRec}(w,p,n,C,DP) \end{split}
```

- La tabella viene inizializzata esternamente, nella funzione wrapper
- Il valore -1 è scelto per indicare una cella non ancora calcolata

Zaino con memoization

```
int knapsackRec(int[] w, int[] p, int i, int c, int[][] DP)
if c < 0 then
   return -\infty
else if i == 0 or c == 0 then
   return 0
else
   if DP[i][c] < 0 then
       int nottaken = knapsackRec(w, p, i - 1, c, DP)
       int taken = knapsackRec(w, p, i - 1, c - w[i], \frac{DP}{DP}) + p[i]
       DP[i][c] = \max(nottaken, taken)
   return DP[i][c]
```

Zaino con memoization

```
def knapsackRec(w, p, i, c, DP):
  if c < 0:
    return -math.inf
  elif i == 0 or c == 0:
    return 0
  else:
    if DP[i][c] < 0:
      nottaken = knapsackRec(w, p, i-1, c, DP)
      taken = knapsackRec(w, p, i-1, c-w[i-1], DP) + p[i-1]
      DP[i][c] = max(nottaken, taken)
    return DP[i][c]
def knapsack(w,p,C):
  n = len(w)
  DP = [[-1]*(C+1) \text{ for i in } range(n+1)]
  return knapsackRec(w,p,n,C,DP)
```

Esempio

$$w = [4, 2, 3, 4]$$

 $p = [10, 7, 8, 6]$
 $C = 9$

	c										
i	0	1	2	3	4	5	6	7	8	9	
0	0	0	0	0	0	0	0	0	0	0	
1	0	-1	0	0	10	10	10	10	-1	10	
2	0	-1	7	-1	-1	10	17	-1	-1	17	
3	0	-1	-1	-1	-1	15	-1	-1	-1	25	
4	0	-1	-1	-1	-1	-1	-1	-1	-1	25	

Dizionario vs tabella

Inizializzazione tabella

- Il costo di inizializzazione è pari a O(nC)
- Applicata in questo modo, non c'è alcun vantaggio nell'utilizzare la tecnica di memoization
- Permette tuttavia di tradurre in fretta le espressioni ricorsive

Dizionario vs tabella

Inizializzazione tabella

- Il costo di inizializzazione è pari a O(nC)
- Applicata in questo modo, non c'è alcun vantaggio nell'utilizzare la tecnica di memoization
- Permette tuttavia di tradurre in fretta le espressioni ricorsive

Utilizzo di un dizionario (hash table)

- Invece di utilizzare una tabella, si utilizza un dizionario
- Non è necessario fare inizializzazione
- Il costo di esecuzione è pari a $O(\min(2^n, nC))$

Zaino con dizionario (Python)

```
def knapsackRec(w, p, i, c, DP):
  if c < 0:
    return -math.inf
  elif i == 0 or c == 0:
    return 0
  else:
    if not (i,c) in DP:
      nottaken = knapsackRec(w, p, i-1, c, DP)
      taken = knapsackRec(w, p, i-1, c-w[i-1], DP) + p[i-1]
      DP[i,c] = max(nottaken, taken)
    return DP[i,c]
def knapsack(w,p,C):
 n = len(w)
  DP = \{\}
  return knapsackRec(w,p,n,C,DP)
```

Memoization automatica in Python

```
from functools import wraps

def memo(func):
    cache = {}
    @wraps(func)
    def wrap(*args):
        if args not in cache:
            cache[args] = func(*args)
        return cache[args]
    return wrap
```

Memoization automatica in Python

```
@memo
def knapsackRec(w, p, i, c):
  if c < 0:
    return -math.inf
  elif i == 0 or c == 0:
    return 0
  else:
    nottaken = knapsackRec(w, p, i-1, c)
    taken = knapsackRec(w, p, i-1, c-w[i-1]) + p[i-1]
    return max(nottaken, taken)
def knapsack(w, p, C):
  return knapsackRec(w, p, len(w), C)
```

Ricostruzione della soluzione

Per esercizio

Problema dello Zaino, senza limiti di scelta

Dato uno zaino di capacità C e n oggetti caratterizzati da peso w e profitto p, definiamo DP[i][c] come il massimo profitto che può essere ottenuto dai primi $i \leq n$ oggetti contenuti in uno zaino di capacità $c \leq C$, senza porre limiti al numero di volte che un oggetto può essere selezionato.

Come modificare la formula ricorsiva?

$$DP[i][c] = \begin{cases} 0 & i = 0 \text{ or } c = 0 \\ -\infty & c < 0 \\ \max(DP[i-1][c-w[i]] + p[i], DP[i-1][c]) & \text{otherwise} \end{cases}$$

Problema dello Zaino, senza limiti di scelta

Dato uno zaino di capacità C e n oggetti caratterizzati da peso w e profitto p, definiamo DP[i][c] come il massimo profitto che può essere ottenuto dai primi $i \leq n$ oggetti contenuti in uno zaino di capacità $c \leq C$, senza porre limiti al numero di volte che un oggetto può essere selezionato.

Come modificare la formula ricorsiva?

$$DP[i][c] = \begin{cases} 0 & i = 0 \text{ or } c = 0 \\ -\infty & c < 0 \\ \max(DP[i / 1][c - w[i]] + p[i], DP[i - 1][c]) & \text{otherwise} \end{cases}$$

Semplificazione formula

In un caso come questo, è possibile semplificare la formula riducendo lo spazio occupato

Valore della soluzione

Dato uno zaino senza limiti di scelta di capacità C e n oggetti caratterizzati da peso w e profitto p, definiamo DP[c] come il massimo profitto che può essere ottenuto da tali oggetti in uno zaino di capacità $c \leq C$.

$$DP[c] = \begin{cases} ? & c = 0 \\ ? & c > 0 \end{cases}$$

Semplificazione formula

In un caso come questo, è possibile semplificare la formula riducendo lo spazio occupato

Valore della soluzione

Dato uno zaino senza limiti di scelta di capacità C e n oggetti caratterizzati da peso w e profitto p, definiamo DP[c] come il massimo profitto che può essere ottenuto da tali oggetti in uno zaino di capacità $c \leq C$.

$$DP[c] = \begin{cases} 0 & c = 0 \\ ? & c > 0 \end{cases}$$

Semplificazione formula

In un caso come questo, è possibile semplificare la formula riducendo lo spazio occupato

Valore della soluzione

Dato uno zaino senza limiti di scelta di capacità C e n oggetti caratterizzati da peso w e profitto p, definiamo DP[c] come il massimo profitto che può essere ottenuto da tali oggetti in uno zaino di capacità $c \leq C$.

$$DP[c] = \begin{cases} 0 & c = 0\\ \max_{w[i] \le c} \{DP[c - w[i]] + p[i]\} & c > 0 \end{cases}$$

```
\begin{split} & \underbrace{\mathbf{int} \; \mathsf{knapsack}(\mathbf{int}[\;] \; w, \; \mathbf{int}[\;] \; p, \; \mathbf{int} \; n, \; \mathbf{int} \; C)} \\ & \mathbf{int}[\;] \; DP = \mathbf{new} \; \mathbf{int}[0 \dots C] \\ & \mathbf{for} \; i = 0 \; \mathbf{to} \; C \; \mathbf{do} \\ & \bigsqcup DP[i] = -1 \\ & \mathsf{knapsackRec}(w, p, n, C, DP) \\ & \mathbf{return} \; DP[C] \end{split}
```

```
int knapsackRec(int[] w, int[] p, int n, int c, int[] DP)
if c == 0 then
    return 0
if DP[c] < 0 then
    maxSoFar = 0
    for i = 1 to n do
         if w[i] \leq c then
             \begin{aligned} & \textbf{int} \ val = \mathsf{knapsackRec}(w, p, n, c - w[i], DP) + p[i]) \\ & maxSoFar == \max(maxSoFar, val) \end{aligned}
    DP[c] = maxSoFar
return DP[c]
```

Complessità computazionale?

Qual è la complessità della funzione knapsack()?

```
int knapsackRec(int[] w, int[] p, int n, int c, int[] DP)
if c == 0 then
    return 0
if DP[c] < 0 then
    maxSoFar = 0
    for i = 1 to n do
         if w[i] \leq c then
            \begin{aligned} & \text{int } val = \mathsf{knapsackRec}(w, p, n, c - w[i], DP) + p[i]) \\ & maxSoFar == \max(maxSoFar, val) \end{aligned}
    DP[c] = maxSoFar
return DP[c]
```

Complessità computazionale?

Qual è la complessità della funzione knapsack()?

$$T(n) = O(nC)$$

- ullet Nel caso pessimo, è necessario riempire ognuno dei C elementi del vettore DP
- Riempire un elemento costa O(n)

Riduzione dello spazio occupato

Vantaggi

- \bullet La complessità in spazio è pari a $\Theta(C)$
- Non è detto che tutti gli elementi debbano essere riempiti

Svantaggi

Questo approccio rende più difficile ricostruire la soluzione.

- Possiamo ispezionare tutti gli elementi per capire da dove deriva il massimo
- Conviene tuttavia memorizzare l'indice da cui deriva il massimo

```
int knapsackRec(int[] w, int[] p, int n, int c, int[] DP, int[] pos)
if c == 0 then
   return 0
if DP[c] < 0 then
   DP[c] = 0
   for i = 1 to n do
       if w[i] \leq c then
           int val = \mathsf{knapsackRec}(w, p, n, c - w[i], DP, pos) + p[i]
          if val \geq DP[c] then
          DP[c] = val
pos[c] = i
return DP[c]
```

```
\begin{split} & \underline{\text{List solution}(\text{int}[\ ]\ w,\ \text{int}\ c,\ \text{int}[\ ]\ pos)} \\ & \text{if}\ c = 0\ \text{or}\ pos[c] < 0\ \text{then} \\ & |\ \text{return List}() \\ & \text{else} \\ & |\ List\ L = \text{solution}(w,c-w[pos[c]],pos) \\ & |\ L.\text{insert}(L.\text{head}(),pos[c]) \\ & |\ \text{return}\ L \end{split}
```

- Restituisce una lista di indici selezionati
 (multinsieme, gli indici possono comparire più volte)
- Se c = 0, lo zaino è stato riempito perfettamente
- Se pos[c] < 0, lo zaino non può essere riempito interamente (e.g., pesi pari con capacità dispari).

Problema generale

DNA

Una stringa di molecole chiamate basi (Adenina, Citosina, Guanina, Timina)

Problema

Date due sequenze di DNA, trovare quanto siano "simili"

Esempi

- Una sottostringa dell'altra?
 CCTT ⊆ AGACCCTTAA
- Distanza di edit:

AGACCCTTAA può essere trasformata in AGACTCTTAA sostituendo una T con una C

Sottosequenza comune massimale

Definizione: sottosequenza

- \bullet Una sequenza P è una sottos
equenza di T se P è ottenuto da
 Trimuovendo uno o più dei suoi elementi
- Alternativamente: P è definito come il sottoinsieme degli indici $\{1, \ldots, n\}$ degli elementi di T che compaiono anche in P
- I rimanenti elementi sono elencati nello stesso ordine, senza essere necessariamente contigui

Esempi

- P = "AAATA"
- \bullet T = "AAAATTGA"

Note

La sequenza vuota \emptyset è sottosequenza di ogni altra sequenza

Sottosequenza comune massimale

Definizione: sottosequenza comune

Una sequenza X è una sottosequenza comune (common subsequence) di due sequenze $T,\,U,\,$ se è sottosequenza sia di T che di U

• Scriviamo $X \in \mathcal{CS}(T, U)$

Definizione: sottosequenza comune massimale

Una sequenza $X \in \mathcal{CS}(T,U)$ è una sottosequenza comune massimale (longest common subsequence) di due sequenze T,U, se non esiste altra sottosequenza comune $Y \in \mathcal{CS}(T,U)$ tale che Y sia più lunga di X (|Y| > |X|).

• Scriviamo $X \in \mathcal{LCS}(T, U)$

Definizione del problema

Problema: LCS

Date due sequenze T e U, trovare la più lunga sottosequenza comune di T e U.

Esempio

- \bullet T= "AAAATTGA"
- U = "TAACGATA"
- Output?

Come risolvereste questo problema?

Una soluzione di "forza bruta"

```
\label{eq:local_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_cont
```

return maxsofar

Complessità computazionale

Domande

ullet Data una sequenza T lunga n, quante sono le sottosequenze di T?

Domande

- Data una sequenza T lunga n, quante sono le sottosequenze di T? 2^n
- Quanto costa verificare se una sequenza è sottosequenza di un'altra?

Domande

- Data una sequenza T lunga n, quante sono le sottosequenze di T? 2^n
- Quanto costa verificare se una sequenza è sottos
equenza di un'altra? O(m+n)
- Qual è la complessità computazionale di LCS()?

Domande

- Data una sequenza T lunga n, quante sono le sottosequenze di T? 2^n
- Quanto costa verificare se una sequenza è sottos
equenza di un'altra? O(m+n)
- Qual è la complessità computazionale di LCS()? $T(n) = \Theta(2^n(m+n))$
- Possiamo fare meglio di così?

Descrizione matematica della soluzione ottima

Prefisso (Prefix)

Data una sequenza T composta dai caratteri $t_1t_2...t_n$, T(i) denota il prefisso di T dato dai primi i caratteri, i.e.:

$$T(i) = t_1 t_2 \dots t_i$$

Esempi

- \bullet T= "ABDCCAABD"
- T(0) = ""
- T(3) = "ABD"
- T(6) = "ABDCCA"

Descrizione matematica della soluzione ottima

Goal

Date due sequenze T e U di lunghezza n e m, scriviamo una formula ricorsiva LCS(T(i), U(j)) che restituisca la LCS dei prefissi T(i) e U(j).

$$LCS(T(i), U(j)) = \begin{cases} ? & \text{Caso base} \\ ? & \text{Casi ricorsivi} \end{cases}$$

Caso 1

Considerate due prefissi T(i) e U(j) tali per cui l'ultimo loro carattere coincide: $t_i = u_j$. Come calcolereste la LCS di T(i) e U(j)?

• Esempio: T(i) = "ALBERTO", U(j) = "PIERO"

Caso 1

Considerate due prefissi T(i) e U(j) tali per cui l'ultimo loro carattere coincide: $t_i = u_j$. Come calcolereste la LCS di T(i) e U(j)?

• Esempio: T(i) = "ALBERTO", U(j) = "PIERO"

Soluzione

$$LCS(T(i), U(j)) = LCS(T(i-1), U(j-1)) \oplus t_i$$

dove \oplus è l'operatore di concatenazione.

• $LCS("ALBERTO", "PIERO") = LCS("ALBERT", "PIER") \oplus "O"$

Caso 2

Considerate due prefissi T(i) e U(j) tali per cui l'ultimo loro carattere è differente: $t_i \neq u_j$. Come calcolereste la LCS di i e j?

• Esempio: T(i) = "ALBERT", U(j) = "PIER"

Soluzione

${\rm Caso}\ 2$

Considerate due prefissi T(i) e U(j) tali per cui l'ultimo loro carattere è differente: $t_i \neq u_j$. Come calcolereste la LCS di i e j?

• Esempio: T(i) = "ALBERT", U(j) = "PIER"

Soluzione

$$LCS(T(i),U(j)) = longest(LCS(T(i-1),U(j)),LCS(T(i),U(j-1)) \\$$

• LCS("ALBERT", "PIER") = longest(LCS("ALBERT", "PIER"), LCS("ALBERT", "PIE"))

Casi base

Casi base

Qual è la più lunga sottosequenza di T(i) e U(j), quando uno dei prefissi è vuoto, i.e. se i=0 or j=0?

• Esempio: $T(i) = "ALBERTO", U(0) = \emptyset$

Casi base

Casi base

Qual è la più lunga sottosequenza di T(i) e U(j), quando uno dei prefissi è vuoto, i.e. se i=0 or j=0?

• Esempio: $T(i) = "ALBERTO", U(0) = \emptyset$

Soluzione

$$LCS(T(i), U(0)) = \emptyset$$

• $LCS("ALBERTO", \emptyset) = \emptyset$

La formula completa

$$LCS(T(i),U(j)) = \begin{cases} \emptyset & i=0 \text{ or } j=0 \\ LCS(T(i-1),U(j-1)) \oplus t_i & i>0 \text{ and } j>0 \text{ and } t_i=u_j \\ longest(LCS(T(i-1),U(j)), \\ LCS(T(i),U(j-1)) & i>0 \text{ and } j>0 \text{ and } t_i \neq u_j \end{cases}$$

Dimostrazione

Il fatto che la formula sia corretta dovrebbe essere provato. La dimostrazione è per assurdo.

Sottostruttura ottima

Teorema – Sottostruttura ottima

Date le due sequenze $T=(t_1,\ldots,t_n)$ e $U=(u_1,\ldots,u_m)$, sia $X=(x_1,\ldots,x_k)$ una LCS di T e U. Sono dati tre casi:

1.
$$t_n = u_m$$
 $\Rightarrow x_k = t_n = u_m \text{ and } X(k-1) \in \mathcal{LCS}(T(n-1), U(m-1))$

- 2. $t_n \neq u_m \land x_k \neq t_n \Rightarrow X \in \mathcal{LCS}(T(n-1), U)$
- 3. $t_n \neq u_m \land x_k \neq u_m \Rightarrow X \in \mathcal{LCS}(T, U(m-1))$

Dimostrazione – Punto 1 – Parte A

$$t_n = u_m \Rightarrow x_k = t_n = u_m$$

- Per assurdo: $x_k \neq t_n = u_m$.
- Si consideri $Y = Xt_n$.
- Allora $Y \in \mathcal{CS}(T, U)$ e |Y| > |X|, contraddizione.

Dimostrazione – Punto 1 – Parte B

$$t_n = u_m \Rightarrow X(k-1) \in LCS(T(n-1), U(m-1))$$

- Per assurdo: $X(k-1) \notin \mathcal{LCS}(T(n-1), U(m-1))$.
- Allora $\exists Y \in \mathcal{LCS}(T(n-1), U(m-1))$ tale che |Y| > |X(k-1)|.
- Quindi $Yt_n \in \mathcal{CS}(T,U)$ e $|Yt_n| > |X(k-1)t_n| = X$, contraddizione.

Dimostrazione – Punto 2 (Punto 3 simmetrico)

$$t_n \neq u_m \land x_k \neq t_n \Rightarrow X \in \mathcal{LCS}(T(n-1), U)$$

- Per assurdo: $X \notin \mathcal{LCS}(T(n-1), U)$.
- Allora $\exists Y \in \mathcal{LCS}(T(n-1), U)$ tale che |Y| > |X|.
- Quindi è anche vero che $Y \in \mathcal{LCS}(T, U)$.
- ullet Quindi X non è una LCS di T e U, assurdo.

Lunghezza della LCS

$$DP[i][j] = \begin{cases} ? \\ ? \\ ? \end{cases}$$

$$i = 0$$
 or $j = 0$
 $i > 0$ and $j > 0$ and $t_i = u_j$
 $i > 0$ and $j > 0$ and $t_i \neq u_j$

Lunghezza della LCS

$$DP[i][j] = \begin{cases} 0 \\ ? \\ ? \end{cases}$$

$$i = 0$$
 or $j = 0$
 $i > 0$ and $j > 0$ and $t_i = u_j$
 $i > 0$ and $j > 0$ and $t_i \neq u_j$

Lunghezza della LCS

$$DP[i][j] = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ DP[i-1][j-1] + 1 & i > 0 \text{ and } j > 0 \text{ and } t_i = u_j\\ ? & i > 0 \text{ and } j > 0 \text{ and } t_i \neq u_j \end{cases}$$

Lunghezza della LCS

$$DP[i][j] = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ DP[i-1][j-1] + 1 & i > 0 \text{ and } j > 0 \text{ and } t_i = u_j \\ \max\{DP[i-1][j], DP[i][j-1]\} & i > 0 \text{ and } j > 0 \text{ and } t_i \neq u_j \end{cases}$$

Lunghezza della LCS

Due due sequenze T e U di lunghezza n e m, scrivere una formula ricorsiva DP[i][j] che restituisca la lunghezza della LCS dei prefissi T(i) e U(j).

$$DP[i][j] = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ DP[i-1][j-1] + 1 & i > 0 \text{ and } j > 0 \text{ and } t_i = u_j \\ \max\{DP[i-1][j], DP[i][j-1]\} & i > 0 \text{ and } j > 0 \text{ and } t_i \neq u_j \end{cases}$$

Dove si trova l'informazione relativa al problema originale?

Lunghezza della LCS

Due due sequenze T e U di lunghezza n e m, scrivere una formula ricorsiva DP[i][j] che restituisca la lunghezza della LCS dei prefissi T(i) e U(j).

$$DP[i][j] = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ DP[i-1][j-1] + 1 & i > 0 \text{ and } j > 0 \text{ and } t_i = u_j \\ \max\{DP[i-1][j], DP[i][j-1]\} & i > 0 \text{ and } j > 0 \text{ and } t_i \neq u_j \end{cases}$$

Dove si trova l'informazione relativa al problema originale?

DP[n][m] contiene la lunghezza della LCS del problema originale.

Calcolare la lunghezza della LCS

```
int lcs(ITEM[] T, ITEM[] U, int n, int m)
int[][] DP = new int[0...n][0...m]
for i = 0 to n do
   DP[i][0] = 0
for j = 0 to m do
   DP[0][j] = 0
for i = 1 to n do
   for j = 1 to m do
      if T[i] == U[j] then
      DP[i][j] = DP[i-1][j-1] + 1
      else
        DP[i][j] = \max(DP[i-1][j], DP[i][j-1])
```

return DP[n][m]

Esempio 1

- TACCBT
- ATBCBD
- ↓ deriva da *i*-1,*j*
- → deriva da *i,j*-1

	j	0	1	2	3	4	5	6
i			A	T	В	C	В	D
0		0	0	0	0	0	0	0
1	T	0	↓0	^ 1	→1	→1	→1	→1
2	A	0	~ 1	↓ 1	↓ 1	↓ 1	↓ 1	↓ 1
3	C	0	↓ 1	↓ 1	↓ 1	× 2	→2	→2
4	C	0	↓ 1	↓ 1	↓ 1	^ 2	↓ 2	→2
5	В	0	↓ 1	↓ 1	^ 2	↓ 2	~ 3	→3
6	T	0	↓ 1	~ 2	↓ 2	↓ 2	↓ 3	↓ 3

Ricostruire la soluzione

- ACGGCT
- CTCTGT
- ↓ deriva da *i*-1,*j*
- → deriva da *i,j*-1

	j	0	1	2	3	4	5	6
i			C	T	C	T	G	T
0		0	0	0	0	0	0	0
1	A	0	↓ 0	↓ 0	↓ 0	↓ 0	↓ 0	↓ 0
2	C	0	^ 1	→1	^ 1	→1	→1	→1
3	G	0	↓ 1	↓ 1	↓ 1	↓ 1	^ 2	→2
4	G	0	↓ 1	↓ 1	↓ 1	↓ 1	x 2	↓ 2
5	C	0	^ 1	↓ 1	\ 2	→2	↓ 2	↓ 2
6	T	0	↓ 1	^ 2	↓ 2	~ 3	→3	× 3

Ricostruire la sottosequenza comune

```
int lcs(ITEM[] T, ITEM[] U, int n, int m)
return subsequence(DP, T, U, n, m)
subsequence(int[][] DP, ITEM[] T, ITEM[] U, int i, int j)
if i == 0 or j == 0 then
   return List()
if T[i] == U[j] then
   S = \mathsf{subsequence}(DP, T, U, i - 1, j - 1)
   S.insert(S.tail(), T[i])
   return S
else
   if DP[i-1][j] > DP[i][j-1] then
       return subsequence(DP, T, U, i - 1, j)
   else
       return subsequence(DP, T, U, i, j - 1)
```

Qual è la complessità computazionale di subsequence()?

Qual è la complessità computazionale di subsequence()?

$$T(n) = O(m+n)$$

Qual è la complessità computazionale di LCS()?

Qual è la complessità computazionale di subsequence()?

$$T(n) = O(m+n)$$

Qual è la complessità computazionale di LCS()?

$$T(n) = O(mn)$$

Commenti finali

Take-home message (prendi e porta a casa)

Non sempre è necessario memorizzare informazioni aggiuntive per ricostruire la soluzione.

Reality check – LCS e diff

diff

- Esamina due file di testo, evidenziondone le differenze a livello di riga.
- Lavorare a livello di riga significa che i confronti fra simboli sono in realtà confronti fra righe, e che n ed m sono il numero di righe dei due file

Ottimizzazioni

- diff è utilizzato soprattutto per codice sorgente; è possibile applicare euristiche sulle righe iniziali e finali
- Per distinguere le righe utilizzo di funzioni hash

Reality check – LCS e diff

Questo è il testo originale alcune linee non dovrebbero cambiare mai altre invece vengono rimosse altre vengono aggiunte Questo è il testo nuovo alcune linee non dovrebbero cambiare mai altre invece vengono cancellate altre vengono aggiunte come questa

- Questo è il testo originale
- + Questo è il testo nuovo alcune linee non dovrebbero cambiare mai altre invece vengono
- rimosse
- + cancellate altre vengono aggiunte
- + come questa

Figura 13.4: Il file original.txt (a sinistra); il file new.txt (al centro); l'output di diff original.txt new.txt (a destra).