FCC TEST REPORT

FCC ID : WE7H-113

: SHENZHEN LONGHORN TECHNOLOGY CO., LTD. **Applicant**

Address : Longhorn Hi-Tech Estate, Dalang Street, Bao'an district, Shenzhen

City, Guandong Province, China

Equipment Under Test (EUT):

Product description :Parking Sensor

Model No. : H-113

Standards : FCC 15 Subpart C Paragraph 15.231

Date of Test : Dec.08,2010

Test Engineer

: Olic huang/Engineer Olic huang
: Philo zhong/Manager Thelo 2houf **Reviewed By**

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel: 86-755-27553488

Fax: 86-755-27553868

2 Contents

			Page
1	C	OVER PAGE	1
2	C	ONTENTS	2
3	TI	EST SUMMARY	4
4	G	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	5
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	TEST FACILITY	
	4.7	TEST LOCATION	6
5	E	QUIPMENT USED DURING TEST	7
6	C	ONDUCTED EMISSION TEST	10
	6.1	TEST EQUIPMENT	10
	6.2	TEST PROCEDURE	
	6.3	CONDUCTED TEST SETUP	
		EUT OPERATING CONDITION	
	6.5	CONDUCTED EMISSION LIMITS	
	6.6	CONDUCTED EMISSION TEST DATA	
7	R	ADIATION EMISSION TEST	13
	7.1	TEST EQUIPMENT	13
	7.2	MEASUREMENT UNCERTAINTY	
	7.3	TEST PROCEDURE	13
	7.4	RADIATED TEST SETUP	
	7.5	SPECTRUM ANALYZER SETUP	
	7.6	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.7	SUMMARY OF TEST RESULTS	
	7.8	EUT OPERATING CONDITION	
	7.9	RADIATED EMISSIONS LIMIT	
	7.10		
_		10.1 Radiated Emission Test Data	
8	Aſ	NTENNA REQUIREMENT	20
9	PI	ERIODIC OPERATION	21
10) BA	AND EDGE	24
	10.1	TEST PROCEDURE	24
	10.2	BAND EDGE	
	10.3	BAND EDGE TEST RESULT	

11 PH	IOTOGRAPHS OF TESTING	26
11.1	RADIATION EMISSION TEST VIEW FOR 30MHz-1000MHz	
11.2	RADIATION EMISSION TEST VIEW FOR 1GHZ-5GHZ	26
12 PH	IOTOGRAPHS - CONSTRUCTIONAL DETAILS	27
12.1	EUT - Front View	27
12.2	EUT - BACK VIEW	
12.3	PCB-Front View	28
12.4	PCB-BACK VIEW	28
13 FC	CC ID LABEL	29

3 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (30MHz to 5GHz)	FCC PART 15: 2008	ANSI C63.4: 2003	N/A	PASS
20dB_BandWidth	FCC PART 15: 2008	ANSI C63.4: 2003	N/A	PASS
Periodic Operation	FCC PART 15: 2008	ANSI C63.4: 2003	N/A	PASS
Conducted Emission (150KHz to 30MHz)	FCC PART 15: 2008	ANSI C63.4: 2003	N/A	N/A

4 General Information

4.1 Client Information

Applicant: SHENZHEN LONGHORN TECHNOLOGY CO., LTD. Address: Longhorn Hi-Tech Estate, Dalang Street, Bao'an district,

Shenzhen City, Guandong Province, China

Manufacturer: SHENZHEN LONGHORN TECHNOLOGY CO., LTD. Address: Longhorn Hi-Tech Estate, Dalang Street, Bao'an district,

Shenzhen City, Guandong Province, China

4.2 General Description of E.U.T.

Product description: Parking Sensor

Model No.: H-113

Working Frequency: 433.92MHz

4.3 Details of E.U.T.

Power Supply: DC 12.0V

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Parking Sensor. The standards used were FCC 15 Paragraph 15.231, Paragraph 15.205, Paragraph 15.31, Paragraph 15.33, Paragraph 15.35.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• IC – Registration No.:IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC7760, Aug. 03,2008.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, June 24, 2008. compliance

4.7 Test Location

All Emissions testswere performed at:-

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen518105, China.

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug- 03-10	Aug- 02-11	Wws200 81596	±1dB
Trilog Broadband Antenne 30-3000 MHz	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug- 03-10	Aug- 02-11		±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug- 03-10	Aug- 02-11		f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug- 03-10	Aug- 02-11		±1.2dB
10m Coaxial Cable with N-male Connectors usable up to 25GHz,	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug- 03-10	Aug- 02-11		-
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length,usab le up to 3(5)GHz, Connector	SCHWARZB ECK MESS- ELEKTROM / AK 9513				Aug- 03-10	Aug- 02-11		
Positioning Controller	C&C LAB/ CC-C-IF				N/A	N/A		
Color Monitor	SUNSPO/ SP-14C				N/A	N/A		
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug- 03-10	Aug- 02-11	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931		9k-1GHz	Aug- 03-10	Aug- 02-11		
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug- 03-10	Aug- 02-11	Wws200 80941	±10%

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandance50 Ω loss : 17 dB	Aug- 03-10	Aug- 02-11	Wws200 80943	±1dB
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length,usab le up to 3(5)GHz, Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9514				Aug- 03-10	Aug- 02-11		
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0- 300V Freq_range: 10-80Hz	Aug- 03-10	Aug- 02-11	Wwd200 81185	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq: 10-80Hz				distinguish:0 .02Hz
Electrostati c Discharge Simulator	Em Test AG/Switzerla nd/DITO	V07451 03094	W2008005	Contact discharge: 500V-10KV Air diacharge: 500V-16.5KV	Aug- 03-10	Aug- 02-11	Wwc200 82400	7.5A current will be changed in V _m =1.5V
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug- 03-10	Aug- 02-11	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug- 03-10	Aug- 02-11	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug- 03-10	Aug- 02-11	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365			Aug- 03-10	Aug- 02-11	Wws200 81597	

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug- 03-10	Aug- 02-11	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311			Aug- 03-10	Aug- 02-11	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/ CDN 117	25627	W2008011	1.2/50μS	Aug- 03-10	Aug- 02-11	Wwc200 82399	-
AC Power Supply	TONGYUN/ DTDGC-4				Aug- 03-10	Aug- 02-11	Wws200 80944	-
Exposure Level Tester ELT-400	Narda Safety TEST Solutions/230 4/03	M-0155	w2008022	Test freq range: 1— 400kHz	Aug		Wwd200 81191	Test uncertainly: 1 — 120kHz:±1. 83%, 120 kHz-400 kHz: ±4.06%
Magnetic Field Probe 100cm ²	Narda Safety TEST Solutions/230 0/90.10	M-1070	w2008021	Test freq range: 1— 400kHz	Aug- 03-10	Aug- 02-11		Test uncertainly: : 1Hz-10Hz: ±16.2%, 10Hz - 120kHz:±2. 2%, 120 kHz-400 kHz: ±4.7%
Active Loop Antenna Charger 10kHz- 30MHz	Beijing Dazhi / ZN30900A	-	-	10kHz- 30MHz	Aug- 03-10	Aug- 02-11		±1dB
Memory product	Kingston	-	-	SN:9EAE4B7 0-0165508	-	-	-	-

6 Conducted Emission Test

Product Name: Parking Sensor

Test Requirement: FCC Part15 Paragraph 15.207

Test Method: Based on FCC Part15 Paragraph 15.207

Test Date:

Frequency Range: 150kHz to 30MHz

Class: Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

6.1 Test Equipment

Please refer to Section 5 this report.

6.2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4: 2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 2. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3 Conducted Test Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4: 2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

6.4 EUT Operating Condition

Operating condition is according to ANSI C63.4: 2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

6.5 Conducted Emission Limits

 $66\text{-}56~dB\mu V$ between 0.15MHz~&~0.5MHz $56~dB\mu V$ between 0.5MHz~&~5MHz $60~dB\mu V$ between 5MHz~&~30MHz

Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Data

Owing to the DC operation of EUT, this test is not performed.

7 Radiation Emission Test

Product Name: Parking Sensor

Test Requirement: FCC Part15 Paragraph 15.231

Test Method: Based on FCC Part15 Paragraph 15.33

Test Date: Dec.08,2010 Frequency Range: 30MHz to 5GHz

Measurement Distance: 3m

7.1 Test Equipment

Please refer to Section 5 this report.

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on ANSI C63.4: 2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is +/-5.03 dB.

7.3 Test Procedure

- 1. New battery was used in the equipment under test for radiated emissions test.
- 2. The radiation emission should be tested under 3-axes position(lying, side and stand), After pre-test, It was found that the worse radiation emission was get at the lying position.
- 3. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 4. All data was recorded in the peak detection mode.
- 5. The EUT was under working mode during the final qualification test and the configuration was used to represent the worst case results.

7.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi-Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003, The specification used in this report was the FCC Part15 Paragraph 15.231, Paragraph 15.209 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.231Rules, the system was tested to 5000 MHz. Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000 MHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	100 kHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

Above 1GHz

Start Frequency	1GHz
Stop Frequency	5GHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

7.7 Summary of Test Results

According to the data in section 7.10, the EUT complied with the FCC Part15 Paragraph 15.231 standards.

7.8 EUT Operating Condition

Same as section 6.4 of this report.

7.9 Radiated Emissions Limit

Fundamental frequency (MHz)	fundamental	Field strength of spurious emissions (microvolts/meter)
40. 66–40. 70	2, 250	225
70–130	1, 250	125
130-174	$1\ 1,250 to 3,750$	\1\ 125 to 375
174–260	3, 750	375
260-470	\1\ 3,750 to 12,500.	$\1\375$ to 1,250
Above 470	12, 500	1, 250

7.10 Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyer (which is set to read in units of dBuV) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

7.10.1 Radiated Emission Test Data

Test Item: Radiated Emission Test Data

Test Voltage: DC 3.0V
Test Mode: TX On
Temperature: 24 °C
Humidity: 52%RH
Test Result: PASS

Note:

 $AV = Peak + 20Log_{10}(duty cycle) = Peak - 8.82$

So the Radiated Emission Test Data as the table follow. For more details of the calculation, please refer the section 9 of the Periodic operation.

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	FCC 15 Subpart C Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntab le Angle (°)
433.92	Peak	Vertical	80.36	100.82	20.46	1.1	45
433.92	Peak	Horizontal	76.31	100.82	24.51	1.4	110
867.831	Peak	Vertical	53.34	80.82	27.48	1.1	120
1301.76	Peak	Vertical	42.32	74.00	31.68	1.2	45
1735.58	Peak	Vertical	41.03	74.00	32.97	1.2	90
2169.6	Peak	Vertical	35.36	74.00	38.64	1.2	130
2603.52	Peak	Vertical	35.69	74.00	38.31	1.3	40
3037.44	Peak	Vertical	36.54	74.00	37.46	1.4	60
3471.36	Peak	Vertical	35.98	74.00	38.02	1.2	60
3905.28	Peak	Vertical	36.96	74.00	37.04	1.5	45
867.831	Peak	Horizontal	49.65	80.82	30.17	1.1	45
1301.76	Peak	Horizontal	35.98	74.00	38.02	1.1	110
1735.58	Peak	Horizontal	42.36	74.00	31.64	1.2	90
2169.6	Peak	Horizontal	36.69	74.00	37.31	1.1	130
2603.52	Peak	Horizontal	35.21	74.00	38.79	1.1	40
3037.44	Peak	Horizontal	33.25	74.00	40.75	1.3	60
3471.36	Peak	Horizontal	33.72	74.00	40.28	1.3	110
3905.28	Peak	Horizontal	33.12	74.00	40.88	1.3	140
4339.2	Peak	Horizontal	31.23	74.00	42.77	1.2	90
433.92	AV	Vertical	71.54	80.82	9.28	1.1	90
433.92	AV	Horizontal	67.49	80.82	13.33	1.4	60
867.831	AV	Vertical	44.52	60.82	16.3	1.1	60
1301.76	AV	Vertical	33.5	54.00	20.5	1.2	135
1735.58	AV	Vertical	32.21	54.00	21.79	1.6	170
2169.6	AV	Vertical	26.54	54.00	27.46	1.5	20
2603.52	AV	Vertical	26.87	54.00	27.13	1.3	45
3037.44	AV	Vertical	27.72	54.00	26.28	1.4	50
3471.36	AV	Vertical	27.16	54.00	26.84	1.5	50

3905.28	AV	Vertical	28.14	54.00	25.86	1.5	40
4339.2	AV	Vertical	27.16	54.00	26.84	1.6	120
867.831	AV	Horizontal	41.43	60.82	19.39	1.3	120
1301.76	AV	Horizontal	34.83	54.00	19.17	1.4	135
1735.58	AV	Horizontal	33.54	54.00	20.46	1.5	90
2169.6	AV	Horizontal	27.87	54.00	26.13	1.1	120
2603.52	AV	Horizontal	26.39	54.00	27.61	1.2	45
3037.44	AV	Horizontal	24.43	54.00	29.57	1.3	160
3471.36	AV	Horizontal	24.90	54.00	29.10	1.5	60
3905.28	AV	Horizontal	24.30	54.00	29.70	1.3	140
4339.2	AV	Horizontal	22.41	54.00	31.59	1.3	30

Where F is the frequency in MHz,The formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1). For the band 130-174MHz,uV/m at 3 meters=56.81818(F)-6136.3636;
- (2). For the band 260-470MHz,uV/m at 3 meters=41.6667(F)-7083.3333.

Sample calculation of limit @ 433.92MHz

41.6667 (433.92)- 7083.3333=10996.681uV/m

20log(10996.681)=80.82 dBuV/m(AV) limit @ 433.92MHz

And

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

 $AV = Peak + 20Log_{10}(duty cycle)$

8 Antenna Requirement.

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent antenna, fulfill the requirement of this section

9 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, The duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=

Total On interval in a complete pulse train/ Length of a complete pulse train * %

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle(%))

Pulse Train	Number of Pulse	T(ms)	Total Time(ms)
Long Pulse	11	0.7	7.7msec
Short Pulse	14	0.2	2.8msec

Total On interval in a complete pulse train	10.5msec 29.00msec	
Length of a complete pulse train		
Duty Cycle(%)	36.21%	
Duty Cycle Correction Factor(dB)	-8.82	

Refer to the duty cycle plot (as below), This device does meet the FCC requirement. Length of a complete pulse train:

Long Pulse

Short Pulse:

Refer to the plot (as below), We find a manually operated transmitter shall employ a switch that will automatically deactivate the transmitteri is 3.432 seconds, within not more than 5 seconds of being released.

10 Band Edge

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.231

Test Date: Dec.08,2010

Test mode: TX On
Temperature: 24 °C
Humidity: 52%RH

10.1 Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

10.2 Band Edge

Requirements: The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Frequency (MHz)	Bandwidth Emission (KHz)	Limit (KHz)	Result
433.92	364	1084.8	Pass

10.3 Band Edge Test Result

433.92MHz TX

11 Photographs of Testing

11.1 Radiation Emission Test View For 30MHz-1000MHz

11.2 Radiation Emission Test View For 1GHz-5GHz

12 Photographs - Constructional Details

12.1 EUT - Front View

12.2 EUT - Back View

12.3 PCB-Front View

12.4 PCB-Back View

13 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT
EUT Bottom View/proposed FCC Label Location