Fast and accurate regional effect plots for automated tabular data analysis TaDA Workshop @ VLDB 2024

Vasilis Gkolemis 1,2 Christos Diou 2 Eirini Ntoutsi 3 Theodore Dalamagas 1

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

³University of the Bundeswehr Munich

August 2024

Program

 $\textbf{1} \quad \mathsf{ML} + \mathsf{XAI} \rightarrow \mathsf{a} \; \mathsf{good} \; \mathsf{Data} \; \mathsf{Analysis} \; \mathsf{Pipeline} \; (5')$

- RegionalRHALE: a good XAI choice (4')
- 3 Effector a Python Package for Feature Effect (1')

Problem Statement

Tabular data

Data Understanding Pipeline

Data Understanding Decision Making

Black box ML model + XAI = a Data Analysis pipeline!

Global effects is a good XAI choice!

Regional effects is a better XAI choice!

Use RegionalRHALE if the black box model is differentiable!

Bike-sharing dataset

- hourly count of bike-rentals (2011, 2012)
- Design-matrix *X*:
 - year, month, day, hour
 - working day vs. non-working day
 - ▶ temperature
 - humidity
 - windspeed
- Target variable Y:
 - bike-rentals per hour
 - ★ $Y_{\mu} = 189.5$
 - ★ $Y_{\sigma} = 181.4$
- Decision Making: decide a discount policy
- Data Understanding: how bike rental market works

Proposed pipeline: Fit and Explain

- decide a discount policy
 - which hour of the day to apply the discount
 - how the feature x_{hour} relates to y_{bike_rentals}
- Step 1: Fit a black-box ML model
 - Could be any ML model
 - ▶ a Neural Network achieves RMSE \approx 45.35 counts (0.25 Y_{σ})
- Step 2: Use feature effect
 - Global effect: x_{hour} vs y_{bike_rentals} globally
 - ▶ Regional effect: x_{hour} vs $y_{\text{bike_rentals}}$ regionally

Let's see!

Global Effect: PDP and RHALE

PDP and RHALE (Gkolemis et al., 2023b) are global effect methods

Regional Effect: Regional-PDP

Regional Effect: Regional-RHALE

Program

1 ML + XAI \rightarrow a good Data Analysis Pipeline (5')

RegionalRHALE: a good XAI choice (4')

RegionalRHALE - How it works (a)

- RHALE plot (Gkolemis et al., 2023b)
- red bars express the heterogeneity

Regional RHALE - How it works (b)

- iterate over all other features
- select the split with the maximum heterogeneity reduction

Regional RHALE is fast

- ullet iterating over all other features o is slow
- needs fast evaluation of the heterogeneity
- if model is differentiable, regional RHALE is very fast
- regional RHALE treats well cases with correlated features

Program

RegionalRHALE: a good XAI choice (4')

3 Effector - a Python Package for Feature Effect (1')

Effector - a Python package for feature effect

- Implements:
 - many global effect methods (PDP, RHALE, SHAP-DP)
 - many regional effect methods (regionalPDP, regionalRHALE, regionalSHAP-DP)
- Work in progress
- If you are interested, please use it and give feedback
- Source: https://github.com/givasile/effector
- Documentation: https://xai-effector.github.io/

References I

- Apley, Daniel W. and Jingyu Zhu (2020). "Visualizing the effects of predictor variables in black box supervised learning models". In: Journal of the Royal Statistical Society. Series B: Statistical Methodology 82.4, pp. 1059–1086. ISSN: 14679868. DOI: 10.1111/rssb.12377. arXiv: 1612.08468.
- Friedman, Jerome H and Bogdan E Popescu (2008). "Predictive learning via rule ensembles". In: *The annals of applied statistics*. Publisher: JSTOR, pp. 916–954.
- Gkolemis, Vasilis, Theodore Dalamagas, and Christos Diou (Oct. 2022). "DALE: Differential Accumulated Local Effects for efficient and accurate global explanations". In: Asian Conference on Machine Learning (ACML).
 - Gkolemis, Vasilis et al. (2023a). "Regionally Additive Models: Explainable-by-design models minimizing feature interactions". In: arXiv preprint arXiv:2309.12215.

References II

- Gkolemis, Vasilis et al. (2023b). "RHALE: Robust and Heterogeneity-Aware Accumulated Local Effects". In: *ECAI 2023*. IOS Press, pp. 859–866.
- Goldstein, Alex et al. (Mar. 2014). Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. en. arXiv:1309.6392 [stat]. URL:
 - http://arxiv.org/abs/1309.6392 (visited on 01/23/2023).
- Herbinger, Julia, Bernd Bischl, and Giuseppe Casalicchio (Feb. 2022). REPID: Regional Effect Plots with implicit Interaction Detection. arXiv:2202.07254 [cs, stat]. DOI: 10.48550/arXiv.2202.07254. URL: http://arxiv.org/abs/2202.07254 (visited on 06/11/2023).
- (2023). "Decomposing Global Feature Effects Based on Feature Interactions". In: arXiv preprint arXiv:2306.00541.

References III

Lundberg, Scott M and Su-In Lee (2017). "A unified approach to interpreting model predictions". In: *Advances in neural information processing systems* 30.