

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

FUNDAMENTALS OF OPTIMIZATION

Integer Linear Programming

CONTENT

- Relaxation and Bound
- · Branch and Bound
- Cutting plan
- Gomory Cut
- Branch and Cut

Given an Integer Program (IP)

$$z = \max\{cx: x \in X \subseteq Z^n\}$$

Find decreasing sequence of upper bounds

$$\overline{z_1} > \overline{z_1} > \ldots > \overline{z_s} \geq Z$$

Find increasing sequence of lower bounds

$$\underline{Z_1} < \underline{Z_1} < \ldots < \underline{Z_t} \le Z$$

• Algorithm stop when $\overline{z_s} - \underline{z_t} \le \varepsilon$

- Primal bounds
 - Every feasible solution $x^* \in X$ provides a lower bound of the maximization problem: $\underline{z} = cx^* \le z$
 - Example: in TSP, every close tour is a upper bound of the objective function (as TSP is a minimization problem)

- Dual bounds
 - Finding upper bounds for a maximization problem (or lower bounds for a minimization problem) gives dual bounds of the objective
- **Definition** A problem (*RP*) $z^R = \max\{f(x): x \in T \subseteq R^n\}$ is a relaxation of (*IP*) $z = \max\{cx: x \in X \subseteq Z^n\}$ if:
 - *X* ⊂ *T*
 - $f(x) \ge cx$, $\forall x \in X$
- **Proposition** RP is a relaxation of IP, $z^R \ge z$

- Linear Relaxation
 - $Z^{LP} = \max\{cx: x \in P\}$ with $P = \{x \in R^n: Ax \le b\}$ is a linear relaxation program of the $IP \max\{cx: x \in P \cap Z^n\}$

Branch and Bound

• Feasible region of P_0 is divided into feasible regions of P_1 and P_2 : $X(P_0) = X(P_1) \cup X(P_2)$

Branch and Bound

Branch and Bound

LP-based Branch and Bound

```
Initial problem S with formulation P on a list L
Incumbent x^* is initialized with primal bound z = -INF
while L not empty do{
  Select a problem S^i with formulation P^i from L
  Solve LP relaxation over P^i got dual bound \overline{z}^i and solution x^i(LP)
  if \overline{z}^i \leq z then continue; // prune by dual bound
  if x^{i}(LP) integer then{
      z = \overline{z}^i
      x^* = x^i(LP)
  }else{
      select a component x_i of x^i(LP) whose value \lambda_i is fractional
      P_1^i = P^i \cup (x_i \leq \lfloor \lambda_i \rfloor), P_2^i = P^i \cup (x_i \geq \lceil \lambda_i \rceil)
      add P_1^i and P_2^i to L
Return x*
```


Cutting Plane

- Given a MIP max{cz: z ∈ X}
- Inequality $\pi z \le \pi_0$ is called a valid inequality if $\pi z \le \pi_0$ is true for all $z \in X$
- Finding valid inequalities allows us to narrow the search space, transform MIP to corresponding LP in which an optimal solution to LP is an optimal solution to the original MIP

Cutting Plane

- Example, consider a MIP with X = $\{(x_1, x_2): x_1 \le 10x_2, 0 \le x_1 \le 14, x_2 \in Z^1_+\}$
- Red lines represent X
- $x_1 \le 6 + 4x_2$ is a valid inequality (dashed line)

Example Integer Rounding

- Consider feasible region $X = P \cap Z^3$ where $P = \{x \in \mathbb{R}^3_+ : 5x_1 + 9x_2 + 13x_3 \ge 19\}$
- From $5x_1 + 9x_2 + 13x_3 \ge 19$ we have $x_1 + \frac{9}{5}x_2 + \frac{13}{5}x_3 \ge \frac{19}{5}$

$$\rightarrow x_1 + 2x_2 + 3x_3 \ge \frac{19}{5}$$

As x₁, x₂, x₃ are integers, so we have

$$x_1 + 2x_2 + 3x_3 \ge \lceil \frac{19}{5} \rceil = 4$$
 (this is a valid inequality for X)

- (IP) max {cx: Ax = b, $x \ge 0$ and integer}
- Solve corresponding linear programming relaxation (LP) max {cx: Ax = b, x ≥ 0}
- Suppose with an optimal basis, the LP is rewritten in the form

$$\overline{a_{00}} + \sum_{j \in JN} \overline{a_{0j}} x_j \rightarrow \max$$

$$x_{B_u} + \sum_{j \in JN} \overline{a_{uj}} x_j = \overline{a_{u0}}, \ u = 1, 2, ..., m$$
 $x \ge 0$ and integer

with $\overline{a_{0j}} \le 0$ (as these coefficients corresponds to a maximizer), and $\overline{a_{u0}} \ge 0$

- If the basic optimal solution x^* is not integer, then there exists some row u with $\overline{a_{u0}}$ is not integer
- ightarrow Create a Gomory cut $x_{B_u} + \sum_{j \in JN} \lfloor \overline{a_{uj}} \rfloor x_j \leq \lfloor \overline{a_{u0}} \rfloor$ (1)
- \rightarrow Rewriting this inequality (as x_{B_u} is integer)

$$\sum_{j \in IN} (\overline{a_{uj}} - \lfloor \overline{a_{uj}} \rfloor) x_j \geq \overline{a_{u0}} - \lfloor \overline{a_{u0}} \rfloor$$

or

$$\sum_{j \in JN} f_{u,j} x_j \ge f_{u,0} \tag{2}$$

with $f_{u,j} = \overline{a_{uj}} - \lfloor \overline{a_{uj}} \rfloor$ and $f_{u,0} = \overline{a_{u0}} - \lfloor \overline{a_{u0}} \rfloor$

• As $0 \le f_{u,j} < 1$ and $0 < f_{u,0} < 1$ and $x_j^* = 0$, $\forall j \in J_N \rightarrow (2)$ cuts off x^* .

Difference between the left-hand side (LHS) and right-hand side (RHS) of (1) is integral (as x is integral) → the difference between LHS and RHS of (2) is also integral

 \rightarrow rewrite (2) in the form $s = \sum_{j \in JN} f_{u_j} x_j - f_{u_j} 0$ where the slack variable s is nonnegative integer

Consider the Integer Program (IP)

$$f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = x_{1} + x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} + x_{3} = 8$$

$$3x_{1} + 4x_{2} + x_{4} = 24$$

$$x_{1} - x_{2} + x_{5} = 2$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0 \text{ and integer}$$

Solve the LP relaxation

$$f(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 \rightarrow \max$$

$$2x_1 + x_2 + x_3 = 8$$

$$3x_1 + 4x_2 + x_4 = 24$$

$$x_1 - x_2 + x_5 = 2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

 \rightarrow Optimal solution (1.6, 4.8, 0, 0, 5.2) with JB = (1,2,5) and JN = (3, 4) Rewrite the original IP

$$f(x_1, x_2, x_3, x_4, x_5) = 6.4 - 0.2x_3 - 0.2x_4 \rightarrow max$$

$$x_1 + 0.8x_3 - 0.2x_4 = 1.6$$

$$x_2 - 0.6x_3 + 0.4x_4 = 4.8$$

$$x_5 - 1.4x_3 + 0.6x_4 = 5.2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0 \text{ and integer}$$

We obtain an equivalent IP

$$f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}) = x_{1} + x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} + x_{3} = 8$$

$$3x_{1} + 4x_{2} + x_{4} = 24$$

$$x_{1} - x_{2} + x_{5} = 2$$

$$0.8x_{3} + 0.8x_{4} - x_{6} = 0.6$$

$$0.4x_{3} + 0.4x_{4} - x_{7} = 0.8$$

$$0.6x_{3} + 0.6x_{4} - x_{8} = 0.2$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \ge 0 \text{ and integer}$$

Solve the corresponding LP relaxation

$$f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}) = x_{1} + x_{2} \rightarrow max$$

$$2x_{1} + x_{2} + x_{3} = 8$$

$$3x_{1} + 4x_{2} + x_{4} = 24$$

$$x_{1} - x_{2} + x_{5} = 2$$

$$0.8x_{3} + 0.8x_{4} - x_{6} = 0.6$$

$$0.4x_{3} + 0.4x_{4} - x_{7} = 0.8$$

$$0.6x_{3} + 0.6x_{4} - x_{8} = 0.2$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \ge 0$$

- \rightarrow Optimal solution $x^* = (0, 6, 2, 0, 8, 1, 0, 1)$ which is integer.
- \rightarrow So (0,6,2,0,8) is an optimal solution to the original problem with the objective value = 0+6 = 6

Branch and Cut [Wolsey, 98]

INITIALIZATION $z = max\{cx: x \in X\}$ with formulation P, z = -INF, incumbent x^* empty, init Nodelist NODE if Nodelist empty, goto EXIT else choose and remove node i from Nodelist and goto RESTORE RESTORE formulation P_i of the set X^i , set k = 1 and $P^{i,1} = P^i$ LP RELAXATION Iteration k. Solve $\bar{z}^{i,k} = \max\{cx: x \in P^{i,k}\}$. If infeasible, prune and goto NODE Else solution $x^{i,k}$ and goto CUT CUT Iteration k. Try to cut off $x^{i,k}$. If not cuts found, goto PRUNE Else add cuts to $P^{i,k}$ giving $P^{i,k+1}$. Increase k by 1, and goto LP RELAXATION PRUNE If $\bar{z}^{i,k} \le z$, goto NODE. If $x \in X$, set $z = \bar{z}^{i,k}$, update incumbent $x^* = x^{i,k}$ and goto NODE Else goto BRANCHING BRANCHING Create two or more new problems and add them to the Nodelist EXIT Incumbent x* with optimal value z

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

