CURS #8

CONTINUTUL CURSULUI #8:

Interpolarea cu functii spline.

- V.1. Interpolare cu functii spline liniare.
- V.2. Interpolare cu funcții spline pătratice.
- V.3. Interpolare cu functii spline cubice.

Definitia (V.1. (continuare)) (b) S interpolează f în x_i, j = 1, n + 1:

(3)

$$S(x_j) = f(x_j), \quad j = \overline{1, n+1}$$

(c) S este continuă în odurile interioare, i.e.
$$x_{j+1}$$
, $j = \overline{1, n-1}$:
$$S_j(x_{j+1}) = S_{j+1}(x_{j+1}), \quad j = \overline{1, n-1}$$
(4)

$$S_j(x_{j+1}) = S_{j+1}(x_{j+1}), \quad j = \overline{1, n-1}$$

Relațiile (3)-(4) ne furnizează sistemul de ecuații liniare, i.e. 2n ecuații

Relaţiile (3)–(4) ne furnizează sistemul de ecuaţii liniare, i.e.
$$2n$$
 eculiniare pentru necunoscutele $a_j, b_j \in \mathbb{R}, j = \overline{1, n}$.

Conform condiției (b) și ținând cont de faptul că $x_i \in I_i, j = \overline{1, n}$ rezultă

$$S(x_j) = S_j(x_j) = f(x_j), \quad \text{deci} \quad a_j = f(x_j), \quad j = \overline{1,n}$$

Nodul $x_{n+1} \in I_n$, deci

Curs #8

$$S(x_{n+1}) = S_n(x_{n+1}) \Rightarrow a_n + b_n(x_{n+1} - x_n) = f(x_{n+1}) \Rightarrow$$

$$b_n = \frac{f(x_{n+1}) - f(x_n)}{x_n}$$
 (5)

$$a_j + b_j(x_{j+1} - x_j) = a_{j+1}, \quad j = \overline{1, n-1}$$

$$b_j = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}, \quad j = \overline{1, n-1}$$

 $(a_i + b_i(x - x_i))|_{x = x_{i+1}} = (a_{i+1} + b_{i+1}(x - x_{i+1}))|_{x = x_{i+1}}$

Rezultă următoarea schemă numerică de determinare a coeficientilor

rea schemă numerică de determinare a coeficienților
$$\begin{cases} a_j = f(x_j), & j = \overline{1,n} \\ b_j = \overline{f(x_{j+1}) - f(x_j)}, & j = \overline{1,n} \end{cases}$$
 (7

$$j+1-x_j$$
, $j=1,n-1$ (6)
numerică de determinare a coeficienților

$$\frac{j-r(x_j)}{1-x_j}, \quad j = \overline{1, n-1}$$
merică de determinare a coeficientilor

V. Interpolarea cu functii spline. V.1. Interpolare cu funcții spline liniare

 $I_n = \bar{I}_n = [x_n, x_{n+1}].$ Definitia (V.1.)

 $f: [a, b] \longrightarrow \mathbb{R} \ dacă$

unde

 $a_i, b_i, i = \overline{1, n}$:

(a) S este liniară pe portiuni:

Fie $f: [a, b] \to \mathbb{R}$ și $(x_i)_{i=1}$ o diviziune a intervalului [a, b], i.e. $a = x_1 < ... < x_{n+1} = b$. Fie $I_i = [x_i, x_{i+1})$ cu $\overline{I}_i = [x_i, x_{i+1}]$, $i = \overline{1, n-1}$,

Functia $S: [a,b] \longrightarrow \mathbb{R}$ s.n. functie spline liniară pentru functia

cu $a_i, b_i \in \mathbb{R}$, $i = \overline{1, n}$, ce trebuie determinate.

Conform conditiei (c) se obtin succesiv următoarele relații:

 $S(x) = S_i(x), \forall x \in I_i, j = \overline{1, n}$

 $S_i: \overline{I_i} \longrightarrow \mathbb{R}, \quad S_i(x) = a_i + b_i(x - x_i), \quad i = \overline{1, n}$

(2)

ALGORITM (Interpolarea spline liniară) Date de intrare: X; Y; x;

Date de ieșire: y;

STEP 1: Determină n;

STEP 2: for
$$j=1:n$$
 do
$$a_j=Y_j; \quad b_j=\frac{Y_{j+1}-Y_j}{X_{j+1}-X_j};$$

endfor

endfor STEP 3: for
$$j=1:n$$
 do if $x \in [X_j, X_{j+1}]$ do $S=a_i+b_i(x-X_i);$

endif

endfor y = S;

de unde $a_1 = e^{-2}$, $a_2 = 1$, $a_2 + b_2 = e^2$, deci $b_2 = e^2 - 1$. Pe de altă parte. S este continuă în nodul $x_2 \in (-1,1)$, i.e.

 $S(x) = \begin{cases} e^{-2} + (1 - e^{-2})(x+1), & x \in [-1,0) \\ 1 + (e^2 - 1)x, & x \in [0,1] \end{cases}$

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 = a_2$, de unde rezultă $b_1 = 1 - e^{-2}$. Obţinem astfel, următoarea reprezentare $= \begin{cases} 1 + (1 - e^{-2})x, & x \in [-1, 0) \\ 1 + (e^{2} - 1)x, & x \in [0, 1] \end{cases}$

Exercitiu: (V.1.) Să se afle funcția spline liniară pentru funcția $f(x) = e^{2x}$ relativ la

diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$. Rezolvare

 $S(x) = \begin{cases} a_1 + b_1(x+1), & x \in [-1,0) \\ a_2 + b_2x, & x \in [0,1] \end{cases}$

Obs.: Vectorul X conține nodurile de interpolare x_1, \ldots, x_{n+1} , iar vectorul

Y contine valorile funcției în nodurile de interpolare, $f(x_1), \ldots, f(x_{n+1})$.

 $S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_3] \end{cases}$

unde $S_1(x) = a_1 + b_1(x - x_1)$ si $S_2(x) = a_2 + b_2(x - x_2)$. Se obtine astfel

Deoarece S interpolează f în cele trei noduri rezultă $S(x_1) = f(x_1), S(x_2) = f(x_2), S(x_3) = f(x_3)$

echivalent

$$S(-1) = e^{-2}, \ S(0) = 1, \ S(1) = e^{2}$$

V.2. Interpolare cu functii spline pătratice.

Definitia (V.2.) Functia $S:[a,b] \longrightarrow \mathbb{R}$ s.n. functie spline pătratică pentru funcția

 $f:[a,b]\longrightarrow \mathbb{R} \ dac \check{a}:$

(a) S este pătratică pe portiuni:

 $S(x) = S_i(x), \forall x \in I_i, j = \overline{1, n}$ (8)

ıınde

$$S_i: \overline{I}_i \longrightarrow \mathbb{R}$$
,

 $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2, j = \overline{1, n}$

cu $a_i, b_i, c_i \in \mathbb{R}$, $j = \overline{1, n}$, ce trebuie determinate.

(b) S interpolează f în x_i, j = 1, n+1:

 $S(x_i) = f(x_i), \quad i = \overline{1, n+1}$

(9)

April 23, 2018

Definiția (V.2. (continuare))		$a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = a_{i+1}, j = \overline{1, n-1}$ (15)
(c) S este continuă în nodurile interioare x_{j+1} , $j = \overline{1, n-1}$:		sau
$S_j(x_{j+1}) = S_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(11)	$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 = f(x_{j+1}), j = \overline{1, n-1}$ (16)
(d) S' este continuă în nodurile interioare x_{j+1} , $j = \overline{1, n-1}$:		Relațiile (14) și (16) pot fi cuplate și rescrise ca o singură relație pentru
$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(12)	$j=\overline{1,n}$. Cum $S_j'(x)=b_j+2c_j(x-x_j)$, atunci conform condiției (d) rezultă
(e) Una din următoarele condiții este satisfăcută		$b_j + 2c_j(x_{j+1} - x_j) = b_{j+1}, j = \overline{1, n-1}$ (17)
(e) ₁ : $S'(x_1) = f'(x_1)$ (e) ₂ : $S'(x_{n+1}) = f'(x_{n+1})$		Conform condiției (e) rezultă
Conform condiției (b) rezultă		$S_1'(x_1) = f'(x_1) \Rightarrow b_1 = f'(x_1)$ (18)
$a_j = f(x_j), j = \overline{1, n}$	(13)	sau $S'_n(x_{n+1}) = f'(x_{n+1}) \Rightarrow b_n + 2c_n(x_{n+1} - x_n) = f'(x_{n+1}) $ (19)
$a_n + b_n(x_{n+1} - x_n) + c_n(x_{n+1} - x_n)^2 = f(x_{n+1})$	(14)	Dacă în (19) considerăm $b_{n+1} = f'(x_{n+1})$ atunci relațiile (19) și (17) pot fi
Conform condiției (c) rezultă		cuplate și rescrise ca o singură relație pentru $j=\overline{1,n}$.
Fie $h_j=x_{j+1}-x_j, j=\overline{1,n}$ lungimea fiecărei subinterval $[x_j,x_{j+1}]$. Obținem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j,b_j :	118 9 / 24	Curs #8 April 23, 2018 10 / 24 Rezultă schemele numerice de calcul a coeficienților $b_j, c_i, j=\overline{1,n}$
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j,b_j : $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_1=f'(x_1)\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n-1} \end{cases}$	(20)	
Obținem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j , b_j :	(20)	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ sau
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j,b_j : $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_1=f'(x_1)\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_{n+1}=f'(x_{n+1})\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n} \end{cases}$ Din (20) $_1$ rezultă	,	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ sau
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j,b_j : $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_1=f'(x_1)\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n}-\overline{1} \end{cases}$ sau $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_{n+1}=f'(x_{n+1})\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n} \end{cases}$,	$\begin{cases} b_{1} = f'(x_{1}) \\ b_{j+1} = \frac{2}{h_{j}} (f(x_{j+1}) - f(x_{j})) - b_{j}, j = \overline{1, n - 1} \\ c_{j} = \frac{1}{h_{j}^{2}} (f(x_{j+1}) - f(x_{j}) - h_{j}b_{j}), j = \overline{1, n} \end{cases} $ (24)
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților a_j,b_j : $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_1=f'(x_1)\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j+b_jh_j+c_jh_j^2=f(x_{j+1}), & j=\overline{1,n}\\ b_{n+1}=f'(x_{n+1})\\ b_j+2c_jh_j=b_{j+1}, & j=\overline{1,n} \end{cases}$ Din (20) $_1$ rezultă	(21)	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ sau

Curs #8 April 23, 2018 12 / 24

Curs #8 April 23, 2018 11 / 24

Exercitiu: (V.2.)

Să se afle funcția spline pătratică pentru funcția $f(x) = e^{2x}$ relativ la

Rezolvare

$$S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_3] \end{cases}$$

diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$.

unde

e
$$S_1(x) = a_1 + b_1(x - x_1)c_1(x - x_1)^2$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

Se obține astfel

functiei spline pătratice S:

$$S(x) = \begin{cases} a_1 + b_1(x+1) + c_1(x+1)^2, & x \in [-1,0) \\ a_2 + b_2x + c_2x^2, & x \in [0,1] \end{cases}$$

Deoarece S interpolează f în cele trei noduri rezultă

Considerăm în plus satisfăcută conditia $S'(x_1) = f'(x_1)$ sau

 $S_1'(-1) = f'(-1)$, de unde $b_1 = 2e^{-2}$. Din relația (27) rezultă

$$S(x_1) = f(x_1), S(x_2) = f(x_2), S(x_3) = f(x_3)$$

 $c_1 = 1 - 3e^{-2}$, iar din (28) rezultă $b_2 = 2 - 4e^{-2}$. În final, din relatia (26)

rezultă $c_2 = e^2 + 4e^{-2} - 3$. Obtinem astfel, următoarea reprezentare a

 $S(x) = \begin{cases} e^{-2} + 2e^{-2}(x+1) + (1-3e^{-2})(x+1)^2, & x \in [-1,0) \\ 1 + (2-4e^{-2})x + (e^2+4e^{-2}-3)x^2, & x \in [0,1] \end{cases}$

echivalent

 $S(-1) = e^{-2}$, S(0) = 1, $S(1) = e^{2}$

$$b_2+c_2=e^2-1. \eqno(26)$$
 Pe de altă parte, S este continuă în nodul $x_2\in (-1,1)$, i.e.

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 + c_1 = a_2$, de unde rezultă $b_1 + c_1 = 1 - e^{-2}$

Derivatele functiilor S₁ si S₂ sunt: $S_1'(x) = b_1 + 2c_1(x - x_1), S_2'(x) = b_2 + 2c_2(x - x_2).$ Functia S' se exprimă prin formula

de unde $a_1 = e^{-2}$, $a_2 = 1$, $a_2 + b_2 + c_3 = e^2$, deci

$$S'(x) = \begin{cases} b_1 + 2c_1(x+1), & x \in [-1,0) \\ b_2 + 2c_2x, & x \in [0,1] \end{cases}$$
Derivata S' a functiei spline pătratice este continuă în nodul interior x_2 .

i.e. $S_1'(x_2) = S_2'(x_2)$ sau $S_1'(0) = S_2'(0)$ de unde rezultă $b_1 + 2c_1 = b_2$ (28)

Definitia (V.3.)

unde

 $f: [a, b] \longrightarrow \mathbb{R} \ dacă:$

(a) S este cubică pe portiuni:

V.2. Interpolare cu functii spline cubice.

$$S(x) = S_j(x), \quad \forall \ x \in I_j, \quad j = \overline{1, n}$$
 (29)

$$S_j: \overline{I_j} \longrightarrow \mathbb{R},$$

$$S_i(x) = a_i + b_i (x - x_i) + c_i (x - x_i)^2 + d_i (x - x_i)^3, j = \overline{1, n}$$

Funcția $S:[a,b] \longrightarrow \mathbb{R}$ s.n. funcție spline cubică pentru funcția

cu $a_i, b_i, c_i, d_i \in \mathbb{R}$, $j = \overline{1, n}$, ce trebuie determinate. (b) S interpolează f în x_i, j = 1, n+1:

(30)

(c) S este continuă în x_{j+1} , $j=\overline{1,n-1}$:			$\begin{cases} a_j = f(x_j), & j = \overline{1, n} \\ a_n + b_n(x_{n+1} - x_n) + c_n(x_{n+1} - x_n)^2 + d_n(x_{n+1} - x_n)^3 = f(x_{n+1}) \end{cases}$ Din (c) resultă	
$S_j(x_{j+1}) = S_{j+1}(x_{j+1}),$	$j=\overline{1,n-1}$	(32)	$(a_n + b_n(x_{n+1} - x_n) + c_n(x_{n+1} - x_n)^2 + d_n(x_{n+1} - x_n)^3 = f(x_{n+1})$	(37)
(d) S' este continuă în x_{j+1} , $j = \overline{1, n-1}$:			(-)	
$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}),$	$j=\overline{1,n-1}$	(33)	$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3 = a_{j+1}, j = \overline{1, n-1}$ Relațiile (37) și (38) se rescriu	(38)
(e) S'' este continuă în x_{j+1} , $j = \overline{1, n-1}$:			$\int a_i = f(x_i), j = \overline{1, n}$	(00)
$S_j''(x_{j+1}) = S_{j+1}''(x_{j+1}),$	$j=\overline{1,n-1}$	(34)	$\begin{cases} a_j = f(x_j), & j = \overline{1,n} \\ b_j h_j + c_j h_j^2 + d_j h_j^3 = f(x_{j+1}) - f(x_j), & j = \overline{1,n} \end{cases}$	(39)
(f) Unul dintre următoarele seturi de condiți	ii este îndeplinit		Deoarece $S_j'(x) = b_j + 2c_j(x-x_j) + 3d_j(x-x_j)^2$ din (d) rezultă	
$(f)_1: S'(x_1) = f'(x_1),$	$S'(x_{n+1})=f'(x_{n+1})$	(35)	$b_j + 2c_j(x_{j+1} - x_j) + 3d_j(x_{j+1} - x_j)^2 = b_{j+1}, j = \overline{1, n-1}$	(40)
$(f)_2: S''(x_1) = f''(x_1),$	$S''(x_{n+1}) = f''(x_{n+1})$	(36)	sau	
			$b_j + 2c_jh_j + 3d_jh_j^2 = b_{j+1}, j = \overline{1, n-1}$	(41)
Curs #8	April 23, 2018	17 / 24	Curs #8 April 23, 2018	18 / 24
Decarece $S_j''(x) = 2c_j + 6d_j(x - x_j)$, atunci	conform (e) rezultă		Dacă cuplăm relațiile (45) ₂ și (45) ₃ obținem sistemul	
$c_j + 3d_jh_j = c_{j+1}, j =$	= 1, n − 1	(42)	Daca cupiam relaține (45)2 și (45)3 obținem sistemul	
Din condițiiile (f) ₁ și ținând cont că $S'(x_1)$ = rezultă	$= S'_1(x_1), S'(x_{n+1}) = S_n(x_n)$	(n+1)	$\begin{cases} c_j h_j + d_j h_j^2 = \frac{f(x_{j+1}) - f(x_j)}{h_j} - b_j, & j = \overline{1, n} \\ 2c_j h_j + 3d_j h_j^2 = b_{j+1} - b_j, & j = \overline{1, n} \end{cases}$	(46)
$b_1 = f'(x_1)$		(43)	$2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1} - b_{j}, j = \overline{1, n}$	` ′

Vom trata doar cazul $(f)_1$, cazul $(f)_2$ se abordează după acelasi

raționament. Conform condiției (b) rezultă

coeficientii, b_i , $j = \overline{1, n+1}$

În urma rezolvării sistemului de mai sus se obțin coeficienții $d_i, c_i, j = \overline{1, n}$ exprimați în raport cu coeficienții b_i , $j = \overline{1, n+1}$,

(44)

(45)

 $\begin{cases} d_j = -\frac{2}{h_j^3} (f(x_{j+1}) - f(x_j)) + \frac{1}{h_j^2} (b_{j+1} + b_j), & j = \overline{1, n} \\ c_j = \frac{3}{h_2^2} (f(x_{j+1}) - f(x_j)) - \frac{b_{j+1} + 2b_j}{h}, j = \overline{1, n} \end{cases}$ (47)

Dacă se introduc coeficienții c_i , d_i în relația (45)₅ ($c_{i-1} + 3d_{i-1}h_{i-1} = c_i$, $i = \overline{2,n}$) se obtine un sistem de n+1 ecuații, având drept necunoscute

 $\begin{cases} a_j = f(x_j), & j = \overline{1, n} \\ b_j h_j + c_j h_j^2 + d_j h_j^3 = f(x_{j+1}) - f(x_j), & j = \overline{1, n} \\ b_j + 2c_j h_j + 3d_j h_j^2 = b_{j+1}, & j = \overline{1, n} \\ b_1 = f'(x_1), & b_{n+1} = f'(x_{n+1}) \\ c_j + 3d_j h_j = c_{j+1}, & j = \overline{1, n-1} \end{cases}$

Relatia (44) poate fi înglobată în relațiile (41) dacă adoptăm notația

 $b_{n+1} = f'(x_{n+1})$. Se obține sistemul complet de determinare a

coeficienților funcției spline cubice S

necunoscute a_i , c_i , d_i , $j = \overline{1, n}$; b_i , $j = \overline{1, n + 1}$.

Definitia (V.3. (continuare))

 $b_n + 2c_n + 3d_nh_n^2 = f'(x_{n+1})$

Obs.: Relațiile (45) formează un sistem de 4n + 1 ecuații și 4n + 1

Curs #8

$$\begin{cases} b_1 = f'(x_1) \\ \left(\frac{3}{h_j} - \frac{2}{h_{j-1}}\right) b_{j-1} + \left(\frac{5}{h_j} - \frac{1}{h_{j-1}}\right) b_j + \frac{1}{h_j} b_{j+1} \\ = -\frac{3}{h_{j-1}^2} f(x_{j-1}) + \left(\frac{3}{h_{j-1}^2} - \frac{3}{h_j^2}\right) f(x_j) + \frac{3}{h_j^2} f(x_{j+1}), \quad j = \overline{2, n} \\ b_{n+1} = f'(x_{n+1}) \end{cases}$$
(48)

În cazul unei diviziuni $(x_j)_{j=\overline{1,n+1}}$ echidistante cu pasul h sistemul de mai sus se rescrie sub forma

$$\begin{cases} b_1 = f'(x_1) \\ b_{j-1} + 4b_j + b_{j+1} = \frac{3}{h} (f(x_{j+1}) - f(x_{j-1})), \quad j = \overline{2, n} \\ b_{n+1} = f'(x_{n+1}) \end{cases}$$
(49)

cu matricea asociată, B, diagonal dominantă

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 4 & 1 & 0 & \dots & 0 \\ 0 & 1 & 4 & 1 & \dots & 0 \\ 0 & 0 & 1 & 4 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$(50)$$

 $\ensuremath{\tilde{\wp}}$ se poate rezolva, de exemplu, prin metoda Jacobi pentru matrice diagonal dominante pe linii.

Exercițiu:

Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă.

a) Să se construiască în Matlab procedura SplineC având sintaxa y = SplineC(X, Y, fpa, fpb, x), conform metodei de interpolaree spline cubice. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i)$, $i = \overline{1, n+1}$; derivata funcției f în capetele intervalului, fpa = f'(a) și fpb = f'(b); variabila scalară $x \in [a, b]$. Obs.: Pentru rezolvarea sistemului din care se determină coeficienții b_i , $i = \overline{1, n+1}$ se va apela metoda Jacobi pentru matrice diagonal dominante. Se va considera $\varepsilon = 10^{-8}$. Datele de ieșire: Valoarea numerică y reprezentănd valoarea funcției spline cubice S(x) conform procedurii SplineC.

Curs #8

Exercițiu: (V.1. (continuare))

- b) Fie datele: $f(x) = e^x$, $x \in [-1,1]$; n = 2; X o diviziune echidistantă a intervalului [-1,1] cu n+1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X,Y) și funcția S determinată conform procedurii $\overline{\mathbf{SplineC}}$, corespunzător unei discretizări x a intervalului [-1,1] cu 100 de noduri. Ind.: $S_i = \mathbf{SplineC}(X,Y,x_i)$, $i = \overline{1,100}$.
- c) Într-o altă figură să se construiască grafic derivata funcției spline și derivata funcției f calculate numeric cu ajutorul funcției predefinite diff.
- d) Într-o altă figură să se construiască grafic derivata a doua a funcției spline și a funcției f calculate numeric cu ajutorul funcției predefinite diff.
- e) Să se modifice procedura y = SplineC(X, Y, fpa, fpb, x), astfel încât parametrii de intrare/iesire x si respectiv v să poată fi vectori.

Curs #8

Soluție: a) Temă; b)-d) Vezi Program V.1.; e) Temă