On the geometry of line arrangements and polynomial vector fields

Juan VIU-Sos

(A joined work with J. CRESSON et B. GUERVILLE-BALLÉ)

Functional Equations in LIMoges 2015 XLIM, University of Limoges, Faculty of Sciences and Techniques

22 mars 2015

Table of contents

- Introduction
 - Logarithmic vector fields
 - Dynamical approach to geometry
- A dynamical approach to line arrangements in the plane
 - Line arrangements
 - Module of logarithmic vector fields in the plane
 - Finiteness of derivations and combinatorial data
 - Non combinatoriallity of the minimal finite derivations
- Conclusions and perspectives
 - Terao's conjecture in the plane
 - Perspectives and continuation

Part I

INTRODUCTION

- Introduced by K. Saito (~80) in order to study divisors in complex manifolds, generalizing P. Deligne. → study of Gauss-Manin connection.
- Dynamical interpretation: "Logarithmic vector fields are holomorphic vector fields tangent to the smooth locus of a divisor D of X".

- Introduced by K. Saito (~80) in order to study divisors in complex manifolds, generalizing P. Deligne. → study of Gauss-Manin connection.
- Dynamical interpretation: "Logarithmic vector fields are holomorphic vector fields tangent to the smooth locus of a divisor D of X".
- Gives topological information of the complement $X \setminus D$.

- Introduced by K. Saito (~80) in order to study divisors in complex manifolds, generalizing P. Deligne. → study of Gauss-Manin connection.
- Dynamical interpretation: "Logarithmic vector fields are holomorphic vector fields tangent to the smooth locus of a divisor D of X".
- Gives topological information of the complement $X \setminus D$.
- A sufficient regular object becomes an invariant set of the flow of the logarithmic vector field.

- Introduced by K. Saito (~80) in order to study divisors in complex manifolds, generalizing P. Deligne. → study of Gauss-Manin connection.
- Dynamical interpretation: "Logarithmic vector fields are holomorphic vector fields tangent to the smooth locus of a divisor D of X".
- Gives topological information of the complement $X \setminus D$.
- A sufficient regular object becomes an invariant set of the flow of the logarithmic vector field.

Darboux polynomial of a polynomial differential system in \mathbb{C}^2 .

- Introduced by K. Saito (~80) in order to study divisors in complex manifolds, generalizing P. Deligne. → study of Gauss-Manin connection.
- Dynamical interpretation: "Logarithmic vector fields are holomorphic vector fields tangent to the smooth locus of a divisor D of X".
- Gives topological information of the complement $X \setminus D$.
- A sufficient regular object becomes an invariant set of the flow of the logarithmic vector field.

Darboux polynomial of a polynomial differential system in \mathbb{C}^2 .

- IDEA: Dynamical approach to affine/projective geometry for $\mathbb{K} = \mathbb{R}, \mathbb{C}$.
 - Given a sufficiently regular geometric object O in $\mathbb{A}^n_{\mathbb{K}}$ or $\mathbb{P}^n_{\mathbb{K}}$, one can study the set denoted by $\mathcal{D}(O)$ of vector fields for which O is an invariant set.
- K. Saito: analytic class \leadsto H. Terao (\sim 82) for line arrangements: it suffices to consider the algebraic class.

- IDEA: Dynamical approach to affine/projective geometry for $\mathbb{K} = \mathbb{R}, \mathbb{C}$.
 - Given a sufficiently regular geometric object O in $\mathbb{A}^n_{\mathbb{K}}$ or $\mathbb{P}^n_{\mathbb{K}}$, one can study the set denoted by $\mathcal{D}(O)$ of vector fields for which O is an invariant set.
- K. Saito: analytic class → H. Terao (~82) for line arrangements: it suffices to consider the algebraic class.
- Classical problems of plane differential systems simplifying to algebraic vector fields fixing configurations of algebraic curves.

- IDEA: Dynamical approach to affine/projective geometry for $\mathbb{K} = \mathbb{R}, \mathbb{C}$.
 - Given a sufficiently regular geometric object O in $\mathbb{A}^n_{\mathbb{K}}$ or $\mathbb{P}^n_{\mathbb{K}}$, one can study the set denoted by $\mathcal{D}(O)$ of vector fields for which O is an invariant set.
- K. Saito: analytic class → H. Terao (~82) for line arrangements: it suffices to consider the algebraic class.
- Classical problems of plane differential systems simplifying to algebraic vector fields fixing configurations of algebraic curves.
 - Dulac's conjecture: "There is a finite number of (algebraic) limit cycles of plane polynomial vector fields".
 - Algebraic Hilbert's 16th Problem: "Is there a bound C on the number of algebraic limit cycles of a polynomial vector field such that $C \le d^q$ for q > 0".

- IDEA: Dynamical approach to affine/projective geometry for $\mathbb{K} = \mathbb{R}, \mathbb{C}$.
 - Given a sufficiently regular geometric object O in $\mathbb{A}^n_{\mathbb{K}}$ or $\mathbb{P}^n_{\mathbb{K}}$, one can study the set denoted by $\mathcal{D}(O)$ of vector fields for which O is an invariant set.
- Classical problems of plane differential systems simplifying to algebraic vector fields fixing configurations of algebraic curves.
 - Dulac's conjecture: "There is a finite number of (algebraic) limit cycles of plane polynomial vector fields".
 - Algebraic Hilbert's 16th Problem: "Is there a bound C on the number of algebraic limit cycles of a polynomial vector field such that C ≤ d^q for q > 0".

ine arrangements Nodule of logarithmic vector fields in the plane initeness of derivations and combinatorial data Ion combinatoriallity of the minimal finite derivations

Part II

A DYNAMICAL APPROACH TO LINE ARRANGEMENTS

"Combinatorics of line arrangements and dynamics of polynomial vector fields." arXiv:1412.0137, 14 pages, with B. Guerville-Ballé. (Submitted)

Line arrangements
Module of logarithmic vector fields in the plane
Finiteness of derivations and combinatorial data
Non combinatoriallity of the minimal finite derivations

Let $\mathbb{K} = \mathbb{R}$, \mathbb{C} .

Definition

An affine (resp. projective) line arrangement \mathcal{A} is a finite collection $\{L_1,\ldots,L_n\}$ of lines in $\mathbb{A}^2_{\mathbb{K}}$ (resp. $\mathbb{P}^2_{\mathbb{K}}$).

• DEFINING POLYNOMIAL: $\mathcal{Q}_{\mathcal{A}} = \prod_{L \in \mathcal{A}} \alpha_L$ where α_L is an affine (resp. linear) form verifying $L = \ker \alpha_L$.

Let $\mathbb{K} = \mathbb{R}$, \mathbb{C} .

Definition

An affine (resp. projective) line arrangement \mathcal{A} is a finite collection $\{L_1, \ldots, L_n\}$ of lines in $\mathbb{A}^2_{\mathbb{K}}$ (resp. $\mathbb{P}^2_{\mathbb{K}}$).

- DEFINING POLYNOMIAL: $Q_A = \prod_{L \in A} \alpha_L$ where α_L is an affine (resp. linear) form verifying $L = \ker \alpha_L$.
- COMBINATORIAL DATA: encoded in the intersection poset

$$L(\mathcal{A}) = \{\emptyset \neq L_i \cap L_j \mid L_i, L_j \in \mathcal{A}\} \cup \mathcal{A}$$

(partially ordered by reverse inclusion of subsets).

Let $\mathbb{K} = \mathbb{R}$. \mathbb{C} .

Definition

An affine (resp. projective) line arrangement A is a finite collection $\{L_1,\ldots,L_n\}$ of lines in $\mathbb{A}^2_{\mathbb{K}}$ (resp. $\mathbb{P}^2_{\mathbb{K}}$).

- Defining Polynomial: $Q_A = \prod_{L \in A} \alpha_L$ where α_L is an affine (resp. linear) form verifying $L = \ker \alpha_L$.
- Combinatorial data: encoded in the intersection poset

$$L(\mathcal{A}) = \{\emptyset \neq L_i \cap L_j \mid L_i, L_j \in \mathcal{A}\} \cup \mathcal{A}$$

(partially ordered by reverse inclusion of subsets).

Let $\mathbb{K} = \mathbb{R}$. \mathbb{C} .

Definition

An affine (resp. projective) line arrangement \mathcal{A} is a finite collection $\{L_1, \ldots, L_n\}$ of lines in $\mathbb{A}^2_{\mathbb{K}}$ (resp. $\mathbb{P}^2_{\mathbb{K}}$).

- DEFINING POLYNOMIAL: $\mathcal{Q}_{\mathcal{A}} = \prod_{L \in \mathcal{A}} \alpha_L$ where α_L is an affine (resp. linear) form verifying $L = \ker \alpha_L$.
- COMBINATORIAL DATA: encoded in the intersection poset

$$L(\mathcal{A}) = \{\emptyset \neq L_i \cap L_j \mid L_i, L_j \in \mathcal{A}\} \cup \mathcal{A}$$

(partially ordered by reverse inclusion of subsets).

L(A)

What is the influence of the combinatorics on the embedding of ${\cal A}$?

- Topological invariants:
 - $\bullet \ \ \mathsf{Exterior} \colon \ E_{\mathcal{A}} = \mathbb{A}^2_{\mathbb{K}} \setminus \mathcal{A} \ \mathrm{or} \ \mathbb{P}^2_{\mathbb{K}} \setminus \mathcal{A}.$
 - Fundamental group: $\pi_1(E_{\mathcal{A}})$ (interesting when $\mathbb{K}=\mathbb{C}$)
 - Milnor fiber: $\mathcal{F}_{\mathcal{A}} = \mathcal{Q}_{\mathcal{A}}^{-1}(1)$

What is the influence of the combinatorics on the embedding of A?

- Topological invariants:
 - $\bullet \ \ \mathsf{Exterior} \colon \ E_{\mathcal{A}} = \mathbb{A}^2_{\mathbb{K}} \setminus \mathcal{A} \ \text{or} \ \mathbb{P}^2_{\mathbb{K}} \setminus \mathcal{A}.$
 - Fundamental group: $\pi_1(E_{\mathcal{A}})$ (interesting when $\mathbb{K}=\mathbb{C}$)
 - $\bullet \ \, \mathsf{Milnor} \ \, \mathsf{fiber:} \ \, \mathcal{F}_{\mathcal{A}} = \mathcal{Q}_{\mathcal{A}}^{-1}(1)$
- Algebraic geometrical objects:
 - Cohomological algebras: $H^{\bullet}(E_{\mathcal{A}})$, $H^{\bullet}(\mathcal{F}_{\mathcal{A}})$, . . .
 - Logarithmic differential forms: $\Omega^{\bullet}(\log A)$
 - \rightarrow Logarithmic vector fields: $\mathcal{D}(\mathcal{A}) = (\Omega^1(\log \mathcal{A}))^*$

What is the influence of the combinatorics on the embedding of A?

- Topological invariants:
 - $\bullet \ \ \mathsf{Exterior} \colon \ E_{\mathcal{A}} = \mathbb{A}^2_{\mathbb{K}} \setminus \mathcal{A} \ \mathrm{or} \ \mathbb{P}^2_{\mathbb{K}} \setminus \mathcal{A}.$
 - Fundamental group: $\pi_1(E_{\mathcal{A}})$ (interesting when $\mathbb{K}=\mathbb{C}$)
 - Milnor fiber: $\mathcal{F}_{\mathcal{A}} = \mathcal{Q}_{\mathcal{A}}^{-1}(1)$
- Algebraic geometrical objects:
 - Cohomological algebras: $H^{\bullet}(E_{\mathcal{A}}), H^{\bullet}(\mathcal{F}_{\mathcal{A}}), \ldots$
 - Logarithmic differential forms: $\Omega^{\bullet}(\log A)$
 - \rightarrow Logarithmic vector fields: $\mathcal{D}(\mathcal{A}) = (\Omega^1(\log \mathcal{A}))^*$

Let $S = \mathbb{K}[x, y]$, define the algebra of \mathbb{K} -derivations of S as

$$\mathsf{Der}_{\mathbb{K}}(S) = \{ \chi : S \to S \ \mathbb{K} - \mathsf{linear} \mid \chi(\mathit{fg}) = \chi(\mathit{f})\mathit{g} + \mathit{f}\,\chi(\mathit{g}), \forall \mathit{f}, \mathit{g} \in \mathit{S} \}$$

A derivation can be viewed as a polynomial vector field in the plane

$$\chi = P\partial_x + Q\partial_y, \quad \text{where } P,Q \in \mathcal{S}.$$

Definition

The S-module of logarithmic derivations of A

$$\mathcal{D}(\mathcal{A}) = \{ \chi \in \mathsf{Der}_{\mathbb{K}}(S) \mid \chi \mathcal{Q}_{\mathcal{A}} \in \mathcal{I}_{\mathcal{Q}_{\mathcal{A}}} \}$$

where $\mathcal{I}_{\mathcal{Q}_{\mathcal{A}}}$ is the ideal in S generated by $\mathcal{Q}_{\mathcal{A}}$.

Let $S = \mathbb{K}[x, y]$, define the algebra of \mathbb{K} -derivations of S as

$$\mathsf{Der}_{\mathbb{K}}(S) = \{ \chi : S \to S \ \mathbb{K} - \mathsf{linear} \mid \chi(\mathit{fg}) = \chi(\mathit{f})\mathit{g} + \mathit{f}\,\chi(\mathit{g}), \forall \mathit{f}, \mathit{g} \in \mathit{S} \}$$

A derivation can be viewed as a polynomial vector field in the plane

$$\chi = P\partial_x + Q\partial_y$$
, where $P, Q \in S$.

Definition

The S-module of logarithmic derivations of ${\cal A}$

$$\mathcal{D}(\mathcal{A}) = \{ \chi \in \mathsf{Der}_{\mathbb{K}}(\mathcal{S}) \mid \chi \mathcal{Q}_{\mathcal{A}} \in \mathcal{I}_{\mathcal{Q}_{\mathcal{A}}} \}$$

where $\mathcal{I}_{\mathcal{Q}_{\mathcal{A}}}$ is the ideal in S generated by $\mathcal{Q}_{\mathcal{A}}$.

Proposition

$$\chi \in \mathcal{D}(\mathcal{A}) \iff \exists K \in S \text{ such that } \chi \mathcal{Q}_{\mathcal{A}} = K \mathcal{Q}_{\mathcal{A}}$$

$$\iff \mathcal{A} \subset \mathbb{A}^2_{\mathbb{K}} \text{ is an invariant set of } \chi$$

Let $S = \mathbb{K}[x, y]$, define the algebra of \mathbb{K} -derivations of S as

$$\mathsf{Der}_{\mathbb{K}}(S) = \{ \chi : S \to S \ \mathbb{K} - \mathsf{linear} \mid \chi(\mathit{fg}) = \chi(\mathit{f})\mathit{g} + \mathit{f}\,\chi(\mathit{g}), \forall \mathit{f}, \mathit{g} \in \mathit{S} \}$$

A derivation can be viewed as a polynomial vector field in the plane

$$\chi = P\partial_x + Q\partial_y$$
, where $P, Q \in S$.

Definition

The S-module of logarithmic derivations of ${\cal A}$

$$\mathcal{D}(\mathcal{A}) = \{ \chi \in \mathsf{Der}_{\mathbb{K}}(\mathcal{S}) \mid \chi \mathcal{Q}_{\mathcal{A}} \in \mathcal{I}_{\mathcal{Q}_{\mathcal{A}}} \}$$

where $\mathcal{I}_{\mathcal{Q}_{\mathcal{A}}}$ is the ideal in S generated by $\mathcal{Q}_{\mathcal{A}}$.

Proposition

$$\chi \in \mathcal{D}(\mathcal{A}) \Longleftrightarrow \exists K \in S \text{ such that } \chi \mathcal{Q}_{\mathcal{A}} = K \mathcal{Q}_{\mathcal{A}}$$
 $\Longleftrightarrow \mathcal{A} \subset \mathbb{A}^2_{\mathbb{K}} \text{ is an invariant set of } \chi$

We can define an ascending filtration by degree of $\mathcal{D}(A)$ by vector spaces:

$$\mathcal{D}(\mathcal{A}) = \bigcup_{d \in \mathbb{N}} \mathcal{F}_d \mathcal{D}(\mathcal{A}) \quad \text{with} \quad \mathcal{F}_d \mathcal{D}(\mathcal{A}) \subset \mathcal{F}_{d+1} \mathcal{D}(\mathcal{A})$$

where

$$\mathcal{F}_d\mathcal{D}(\mathcal{A}) = \{P\partial_x + Q\partial_y \in \mathcal{D}(\mathcal{A}) \mid \deg P, \deg Q \leq d\}$$

Definition

We denote by

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{F}_d \mathcal{D}(\mathcal{A}) \setminus \mathcal{F}_{d-1} \mathcal{D}(\mathcal{A})$$

the set of polynomial vector fields of degree d fixing A.

We can define an ascending filtration by degree of $\mathcal{D}(A)$ by vector spaces:

$$\mathcal{D}(\mathcal{A}) = \bigcup_{d \in \mathbb{N}} \mathcal{F}_d \mathcal{D}(\mathcal{A}) \quad \text{with} \quad \mathcal{F}_d \mathcal{D}(\mathcal{A}) \subset \mathcal{F}_{d+1} \mathcal{D}(\mathcal{A})$$

where

$$\mathcal{F}_d\mathcal{D}(\mathcal{A}) = \{P\partial_x + Q\partial_y \in \mathcal{D}(\mathcal{A}) \mid \deg P, \deg Q \leq d\}$$

Definition

We denote by

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{F}_d \mathcal{D}(\mathcal{A}) \setminus \mathcal{F}_{d-1} \mathcal{D}(\mathcal{A})$$

the set of polynomial vector fields of degree d fixing A.

Efficiently characterization of line arrangements as invariant sets of polynomial vector fields.

When $\chi \in Der_{\mathbb{K}}(S)$ posses a <u>finite</u> family of invariant lines?

Figure: Phase portraits of $\chi_c = x \partial_x + y \partial_y$ and $\chi_p = (x+1) \partial_y$.

Efficiently characterization of line arrangements as invariant sets of polynomial vector fields.

When $\chi \in Der_{\mathbb{K}}(S)$ posses a <u>finite</u> family of invariant lines?

Figure: Phase portraits of $\chi_c = x \partial_x + y \partial_y$ and $\chi_p = (x+1) \partial_y$.

Line arrangements
Module of logarithmic vector fields in the plane
Finiteness of derivations and combinatorial data
Non combinatoriallity of the minimal finite derivations

Definition

Let χ be a polynomial vector field in the plane. We said that a line arrangement $\mathcal A$ is maximal fixed by χ if any invariant line $\mathcal L$ by χ belongs to $\mathcal A$.

Definition

We said that χ fixes only a finite set of lines if there exists a maximal arrangement fixed by χ . Conversely, we said that χ fixes an infinity of lines if there is no such maximal line arrangement.

Definition

Let χ be a polynomial vector field in the plane. We said that a line arrangement $\mathcal A$ is maximal fixed by χ if any invariant line $\mathcal L$ by χ belongs to $\mathcal A$.

Definition

We said that χ fixes only a finite set of lines if there exists a maximal arrangement fixed by χ . Conversely, we said that χ fixes an infinity of lines if there is no such maximal line arrangement.

Following this notion, we are interested to study the partition

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^f(\mathcal{A}) \cup \mathcal{D}_d^{\infty}(\mathcal{A})$$

and the number $d_f(A) = \min\{d \in \mathbb{N} \mid \mathcal{D}_d^f(A) \neq \emptyset\}$.

Definition

Let χ be a polynomial vector field in the plane. We said that a line arrangement $\mathcal A$ is maximal fixed by χ if any invariant line $\mathcal L$ by χ belongs to $\mathcal A$.

Definition

We said that χ fixes only a finite set of lines if there exists a maximal arrangement fixed by χ . Conversely, we said that χ fixes an infinity of lines if there is no such maximal line arrangement.

Following this notion, we are interested to study the partition

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^f(\mathcal{A}) \cup \mathcal{D}_d^{\infty}(\mathcal{A})$$

and the number $d_f(\mathcal{A}) = \min\{d \in \mathbb{N} \mid \mathcal{D}_d^f(\mathcal{A}) \neq \emptyset\}.$

Characterization of $\mathcal{D}_d^{\infty}(\mathcal{A})$

Theorem

If $\chi \in \mathcal{D}_d^{\infty}(\mathcal{A})$, then χ belongs to one of these classes of vector fields

- ① NULL.
- ② RADIAL: there exist a point $(x_0, y_0) \in \mathbb{A}^2_{\mathbb{K}}$ such that

$$(y_0 - y, x - x_0) \perp \chi(x, y), \quad \text{for any } (x, y) \in \mathbb{A}^2_{\mathbb{K}}.$$

3 PARALLEL: there exist a vector $\vec{v} \in \mathbb{A}^2_{\mathbb{K}}$ such that

$$\vec{v} \parallel \chi(x,y)$$
, for any $(x,y) \in \mathbb{A}^2_{\mathbb{K}}$.

Characterization of $\mathcal{D}_d^{\infty}(\mathcal{A})$

Theorem

If $\chi \in \mathcal{D}_d^{\infty}(\mathcal{A})$, then χ belongs to one of these classes of vector fields

- O NULL.
- **2** RADIAL: there exist a point $(x_0, y_0) \in \mathbb{A}^2_{\mathbb{K}}$ such that

$$(y_0 - y, x - x_0) \perp \chi(x, y), \quad \text{for any } (x, y) \in \mathbb{A}^2_{\mathbb{K}}.$$

3 PARALLEL: there exist a vector $\vec{v} \in \mathbb{A}^2_{\mathbb{K}}$ such that

$$\vec{v} \parallel \chi(x,y)$$
, for any $(x,y) \in \mathbb{A}^2_{\mathbb{K}}$.

Characterization of $\mathcal{D}_d^{\infty}(\mathcal{A})$

Influence of the combinatorics in $\mathcal{D}_d^\infty(\mathcal{A})$

Define the combinatorial data:

- $|\mathcal{A}|$ the number of lines in \mathcal{A} .
- m(A) the maximal multiplicity of the singularities in A.
- p(A) the maximal number of parallel lines in A.

Theorem

Let $0 \neq \chi \in \mathcal{D}_d(\mathcal{A})$:

- ① If d < m(A) 1 then χ is a radial vector field.
- ② If d < p(A) then χ is a parallel vector field.

Influence of the combinatorics in $\mathcal{D}_d^\infty(\mathcal{A})$

Define the combinatorial data:

- $|\mathcal{A}|$ the number of lines in \mathcal{A} .
- m(A) the maximal multiplicity of the singularities in A.
- p(A) the maximal number of parallel lines in A.

Theorem

Let $0 \neq \chi \in \mathcal{D}_d(\mathcal{A})$:

- If d < m(A) 1 then χ is a radial vector field.
- ② If d < p(A) then χ is a parallel vector field.

Corollary (1)

Define
$$\nu_{\infty}(A) = \max\{m(A) - 1, p(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^{\infty}(\mathcal{A}), \quad \forall d < \nu_{\infty}(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^{\infty}(\mathcal{A})$

Define the combinatorial data:

- $|\mathcal{A}|$ the number of lines in \mathcal{A} .
- m(A) the maximal multiplicity of the singularities in A.
- p(A) the maximal number of parallel lines in A.

Theorem

Let $0 \neq \chi \in \mathcal{D}_d(\mathcal{A})$:

- If d < m(A) 1 then χ is a radial vector field.
- **2** If d < p(A) then χ is a parallel vector field.

Corollary (1)

Define $\nu_{\infty}(A) = \max\{m(A) - 1, p(A)\}$. Then

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^{\infty}(\mathcal{A}), \quad \forall d < \nu_{\infty}(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^{\infty}(\mathcal{A})$

Corollary (2)

We have $d_f(A) \geq \nu_{\infty}(A)$.

Influence of the combinatorics in $\mathcal{D}_d^{\infty}(\mathcal{A})$

Corollary (2)

We have $d_f(A) \geq \nu_{\infty}(A)$.

Corollary (3)

Define
$$\eta_{\infty}(A) = \min\{m(A) - 1, p(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \emptyset, \quad \forall 0 < d < \eta_\infty(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^{\infty}(\mathcal{A})$

Corollary (2)

We have $d_f(A) \geq \nu_{\infty}(A)$.

Corollary (3)

Define
$$\eta_{\infty}(A) = \min\{m(A) - 1, p(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \emptyset, \quad \forall 0 < d < \eta_\infty(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^f(\mathcal{A})$

Theorem

- ① The minimal degree of a radial vector field in $\mathcal{D}(A)$ is |A| m(A) + 1.
- ② The minimal degree of a parallel vector field in $\mathcal{D}(A)$ is |A| p(A).

Influence of the combinatorics in $\mathcal{D}_d^f(\mathcal{A})$

Theorem

- **1** The minimal degree of a radial vector field in $\mathcal{D}(A)$ is |A| m(A) + 1.
- ② The minimal degree of a parallel vector field in $\mathcal{D}(A)$ is |A| p(A).

Corollary (1)

Define
$$\nu_f(\mathcal{A}) = \min\{|\mathcal{A}| - m(\mathcal{A}) + 1, |\mathcal{A}| - p(\mathcal{A})\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^f(\mathcal{A}), \quad \forall 0 < d < \nu_f(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^f(\mathcal{A})$

Theorem

- **1** The minimal degree of a radial vector field in $\mathcal{D}(A)$ is |A| m(A) + 1.
- ② The minimal degree of a parallel vector field in $\mathcal{D}(A)$ is |A| p(A).

Corollary (1)

Define
$$\nu_f(\mathcal{A}) = \min\{|\mathcal{A}| - m(\mathcal{A}) + 1, |\mathcal{A}| - p(\mathcal{A})\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^f(\mathcal{A}), \quad \forall 0 < d < \nu_f(\mathcal{A})$$

Corollary (2)

Let
$$\nu(A) = \min\{\nu_{\infty}(A), \nu_{f}(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \emptyset, \quad \forall 0 < d < \nu(\mathcal{A})$$

Influence of the combinatorics in $\mathcal{D}_d^f(\mathcal{A})$

Theorem

- **1** The minimal degree of a radial vector field in $\mathcal{D}(A)$ is |A| m(A) + 1.
- **2** The minimal degree of a parallel vector field in $\mathcal{D}(A)$ is |A| p(A).

Corollary (1)

Define
$$\nu_f(A) = \min\{|A| - m(A) + 1, |A| - p(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \mathcal{D}_d^f(\mathcal{A}), \quad \forall 0 < d < \nu_f(\mathcal{A})$$

Corollary (2)

Let
$$\nu(A) = \min\{\nu_{\infty}(A), \nu_f(A)\}$$
. Then

$$\mathcal{D}_d(\mathcal{A}) = \emptyset, \quad \forall 0 < d < \nu(\mathcal{A})$$

- STRONG COMBINATORICS: The poset L(A).
- WEAK COMBINATORICS: The tuple (|A|, S_A, P_A) where S_A = (s_m)_{m∈N} and P_A = (p_m)_{m∈N} with:
 - s_m being the number of singularities in A of multiplicity m.
 - p_m being the number of families of exactly m lines in A which are parallel.

- STRONG COMBINATORICS: The poset L(A).
- WEAK COMBINATORICS: The tuple $(|\mathcal{A}|, \mathcal{S}_{\mathcal{A}}, \mathcal{P}_{\mathcal{A}})$ where $\mathcal{S}_{\mathcal{A}} = (s_m)_{m \in \mathbb{N}}$ and $\mathcal{P}_{\mathcal{A}} = (p_m)_{m \in \mathbb{N}}$ with:
 - s_m being the number of singularities in A of multiplicity m.
 - p_m being the number of families of exactly m lines in A which are parallel.

- Strong combinatorics: The poset L(A).
- WEAK COMBINATORICS: The tuple $(|\mathcal{A}|, \mathcal{S}_{\mathcal{A}}, \mathcal{P}_{\mathcal{A}})$ where $\mathcal{S}_{\mathcal{A}} = (s_m)_{m \in \mathbb{N}}$ and $\mathcal{P}_{\mathcal{A}} = (p_m)_{m \in \mathbb{N}}$ with:
 - s_m being the number of singularities in \mathcal{A} of multiplicity m.
 - p_m being the number of families of exactly m lines in A which are parallel.

NO! Two explicit counter-examples.

- STRONG COMBINATORICS: The poset L(A).
- WEAK COMBINATORICS: The tuple $(|\mathcal{A}|, \mathcal{S}_{\mathcal{A}}, \mathcal{P}_{\mathcal{A}})$ where $\mathcal{S}_{\mathcal{A}} = (s_m)_{m \in \mathbb{N}}$ and $\mathcal{P}_{\mathcal{A}} = (p_m)_{m \in \mathbb{N}}$ with:
 - s_m being the number of singularities in \mathcal{A} of multiplicity m.
 - p_m being the number of families of exactly m lines in A which are parallel.

NO! Two explicit counter-examples.

Figure: The Pappus and Non-Pappus arrangements \mathcal{P}_1 and \mathcal{P}_2 .

Same weak combinatorics: 8 lines, 6 triple points, 7 double points and 3 couples of parallel lines.

Using a suite of functions coded in Sage in order to study the filtration of $\mathcal{D}(\mathcal{A})$ and using the previous results:

Figure: The Pappus and Non-Pappus arrangements \mathcal{P}_1 and \mathcal{P}_2 .

Same weak combinatorics: 8 lines, 6 triple points, 7 double points and 3 couples of parallel lines.

Using a suite of functions coded in Sage in order to study the filtration of $\mathcal{D}(\mathcal{A})$ and using the previous results:

Proposition

- 0 dim $\mathcal{F}_3(\mathcal{P}_1) = 0$, dim $\mathcal{F}_4(\mathcal{P}_1) > 0$ and $d_f(\mathcal{P}_1) = 4$.
- ② dim $\mathcal{F}_4(\mathcal{P}_2) = 0$, dim $\mathcal{F}_5(\mathcal{P}_2) > 0$ and $d_f(\mathcal{P}_2) = 5$.

Figure: The Pappus and Non-Pappus arrangements \mathcal{P}_1 and \mathcal{P}_2 .

Same weak combinatorics: 8 lines, 6 triple points, 7 double points and 3 couples of parallel lines.

Using a suite of functions coded in Sage in order to study the filtration of $\mathcal{D}(\mathcal{A})$ and using the previous results:

Proposition

- 0 dim $\mathcal{F}_3(\mathcal{P}_1) = 0$, dim $\mathcal{F}_4(\mathcal{P}_1) > 0$ and $d_f(\mathcal{P}_1) = 4$.
- \bigcirc dim $\mathcal{F}_4(\mathcal{P}_2) = 0$, dim $\mathcal{F}_5(\mathcal{P}_2) > 0$ and $d_f(\mathcal{P}_2) = 5$.

- The 4 singularities of maximal multiplicity 3 in Z₁ are contained in a conic C.
- We construct a line arrangement \mathcal{Z}_2 by a perturbation displacing the triple point $L_1 \cap L_3 \cap L_7$ outside the conic, and such that $L(\mathcal{Z}_1) \simeq L(\mathcal{Z}_2)$.

Figure: The Ziegler arrangement \mathcal{Z}_1 .

Again, studying the filtration with Sage and with the previous results:

- The 4 singularities of maximal multiplicity 3 in Z₁ are contained in a conic C.
- We construct a line arrangement \mathcal{Z}_2 by a perturbation displacing the triple point $L_1 \cap L_3 \cap L_7$ outside the conic, and such that $L(\mathcal{Z}_1) \simeq L(\mathcal{Z}_2)$.

Figure: The Ziegler arrangement \mathcal{Z}_1 .

Again, studying the filtration with Sage and with the previous results:

Proposition

- \bigcirc dim $\mathcal{F}_4(\mathcal{Z}_1) = 0$, dim $\mathcal{F}_5(\mathcal{Z}_1) > 0$ and $d_f(\mathcal{Z}_1) = 5$.
- ② dim $\mathcal{F}_5(\mathcal{Z}_2) = 0$, dim $\mathcal{F}_6(\mathcal{Z}_2) > 0$ and $d_f(\mathcal{Z}_2) = 6$.

- The 4 singularities of maximal multiplicity 3 in Z₁ are contained in a conic C.
- We construct a line arrangement \mathcal{Z}_2 by a perturbation displacing the triple point $L_1 \cap L_3 \cap L_7$ outside the conic, and such that $L(\mathcal{Z}_1) \simeq L(\mathcal{Z}_2)$.

Figure: The Ziegler arrangement \mathcal{Z}_1 .

Again, studying the filtration with Sage and with the previous results:

Proposition

- \bullet dim $\mathcal{F}_4(\mathcal{Z}_1) = 0$, dim $\mathcal{F}_5(\mathcal{Z}_1) > 0$ and $d_f(\mathcal{Z}_1) = 5$.
- \bigcirc dim $\mathcal{F}_5(\mathcal{Z}_2) = 0$, dim $\mathcal{F}_6(\mathcal{Z}_2) > 0$ and $d_f(\mathcal{Z}_2) = 6$.

Part III

CONCLUSIONS AND PERSPECTIVES

Consider $\mathcal{A}, \mathcal{A}' \subset \mathbb{A}^n_{\mathbb{K}}$ be two hyperplane arrangements containing the origin such that $L(\mathcal{A}) \simeq L(\mathcal{A}')$:

Consider $\mathcal{A}, \mathcal{A}' \subset \mathbb{A}^n_{\mathbb{K}}$ be two hyperplane arrangements containing the origin such that $L(\mathcal{A}) \simeq L(\mathcal{A}')$:

- ① In this setting: $\mathcal{D}(\mathcal{A}) = \bigoplus_{d \in \mathbb{N}} \mathcal{D}_d(\mathcal{A})$ by homogeneous components.
- ② We said that A is *free* if $\mathcal{D}(A)$ is a free S-module.

Consider $\mathcal{A}, \mathcal{A}' \subset \mathbb{A}^n_{\mathbb{K}}$ be two hyperplane arrangements containing the origin such that $L(\mathcal{A}) \simeq L(\mathcal{A}')$:

- **1** In this setting: $\mathcal{D}(\mathcal{A}) = \bigoplus_{d \in \mathbb{N}} \mathcal{D}_d(\mathcal{A})$ by homogeneous components.
- ② We said that A is free if $\mathcal{D}(A)$ is a free S-module.

Conjecture (Weak Terao's conjecture)

If A is free then A' is also free.

Consider $\mathcal{A}, \mathcal{A}' \subset \mathbb{A}^n_{\mathbb{K}}$ be two hyperplane arrangements containing the origin such that $L(\mathcal{A}) \simeq L(\mathcal{A}')$:

- **1** In this setting: $\mathcal{D}(\mathcal{A}) = \bigoplus_{d \in \mathbb{N}} \mathcal{D}_d(\mathcal{A})$ by homogeneous components.
- ② We said that A is free if $\mathcal{D}(A)$ is a free S-module.

Conjecture (Weak Terao's conjecture)

If A is free then A' is also free.

Conjecture (Strong Terao's conjecture

If A is free then $\mathcal{D}(A)$, $\mathcal{D}(A')$ are isomorphic graded modules.

Consider $\mathcal{A}, \mathcal{A}' \subset \mathbb{A}^n_{\mathbb{K}}$ be two hyperplane arrangements containing the origin such that $L(\mathcal{A}) \simeq L(\mathcal{A}')$:

- **1** In this setting: $\mathcal{D}(\mathcal{A}) = \bigoplus_{d \in \mathbb{N}} \mathcal{D}_d(\mathcal{A})$ by homogeneous components.
- ② We said that A is free if $\mathcal{D}(A)$ is a free S-module.

Conjecture (Weak Terao's conjecture)

If A is free then A' is also free.

Conjecture (Strong Terao's conjecture)

If A is free then $\mathcal{D}(A)$, $\mathcal{D}(A')$ are isomorphic graded modules.

What happens for affine line arrangements in the plane ?

Theorem (Seshadri'58

Any projective module over $\mathbb{K}[x,y]$ is free.

• What happens for affine line arrangements in the plane ?

Theorem (Seshadri'58)

Any projective module over $\mathbb{K}[x,y]$ is free.

 $\Rightarrow \mathcal{D}(\mathcal{A})$ is always free for affine line arrangements!

• What happens for affine line arrangements in the plane ?

Theorem (Seshadri'58)

Any projective module over $\mathbb{K}[x,y]$ is free.

 $\Rightarrow \mathcal{D}(\mathcal{A})$ is always free for affine line arrangements!

• Two line arrangements $\mathcal{A}, \mathcal{A}'$ with the same combinatorics have isomorphic $\mathcal{D}(\mathcal{A}) \simeq \mathcal{D}(\mathcal{A}')$ respecting the filtration?

• What happens for affine line arrangements in the plane ?

Theorem (Seshadri'58)

Any projective module over $\mathbb{K}[x,y]$ is free.

- $\Rightarrow \mathcal{D}(\mathcal{A})$ is always free for affine line arrangements!
- Two line arrangements $\mathcal{A}, \mathcal{A}'$ with the same combinatorics have isomorphic $\mathcal{D}(\mathcal{A}) \simeq \mathcal{D}(\mathcal{A}')$ respecting the filtration?

$$\leadsto$$
 No! We showed that $L(\mathcal{Z}_1) \simeq L(\mathcal{Z}_2)$ but $\mathcal{F}_5(\mathcal{Z}_1) \neq \{0\} = \mathcal{F}_5(\mathcal{Z}_2)$.

What happens for affine line arrangements in the plane ?

Theorem (Seshadri'58)

Any projective module over $\mathbb{K}[x,y]$ is free.

- $\Rightarrow \mathcal{D}(\mathcal{A})$ is always free for affine line arrangements!
- Two line arrangements $\mathcal{A}, \mathcal{A}'$ with the same combinatorics have isomorphic $\mathcal{D}(\mathcal{A}) \simeq \mathcal{D}(\mathcal{A}')$ respecting the filtration?
 - \leadsto No! We showed that $L(\mathcal{Z}_1) \simeq L(\mathcal{Z}_2)$ but $\mathcal{F}_5(\mathcal{Z}_1) \neq \{0\} = \mathcal{F}_5(\mathcal{Z}_2)$.

- (also with J. Vallés) Use this approach to study the Terao's conjecture for projective line arrangements $\mathbb{P}^2_{\mathbb{K}}$ and central plane arrangements in $\mathbb{A}^3_{\mathbb{K}}$ via projectivization and taking cones from affine line arrangements.
 - Study the meaning of freeness condition in the affine restriction.

- (also with J. Vallés) Use this approach to study the Terao's conjecture for projective line arrangements $\mathbb{P}^2_{\mathbb{K}}$ and central plane arrangements in $\mathbb{A}^3_{\mathbb{K}}$ via projectivization and taking cones from affine line arrangements.
 - Study the meaning of freeness condition in the affine restriction.
- Investigate $(D(A), [\cdot, \cdot])$ seen as a Lie sub-algebra of $Der_{\mathbb{K}}(S)$.

- (also with J. Vallés) Use this approach to study the Terao's conjecture for projective line arrangements $\mathbb{P}^2_{\mathbb{K}}$ and central plane arrangements in $\mathbb{A}^3_{\mathbb{K}}$ via projectivization and taking cones from affine line arrangements.
 - Study the meaning of freeness condition in the affine restriction.
- Investigate $(D(A), [\cdot, \cdot])$ seen as a Lie sub-algebra of $Der_{\mathbb{K}}(S)$.
- Developing of a complete package for Sage in order to study the module of logarithmic forms of line arrangements.

- (also with J. Vallés) Use this approach to study the Terao's conjecture for projective line arrangements $\mathbb{P}^2_{\mathbb{K}}$ and central plane arrangements in $\mathbb{A}^3_{\mathbb{K}}$ via projectivization and taking cones from affine line arrangements.
 - Study the meaning of freeness condition in the affine restriction.
- Investigate $(D(A), [\cdot, \cdot])$ seen as a Lie sub-algebra of $Der_{\mathbb{K}}(S)$.
- Developing of a complete package for Sage in order to study the module of logarithmic forms of line arrangements.
- A mixed approach to the Algebraic Hilbert's 16th Problem.

- (also with J. Vallés) Use this approach to study the Terao's conjecture for projective line arrangements $\mathbb{P}^2_{\mathbb{K}}$ and central plane arrangements in $\mathbb{A}^3_{\mathbb{K}}$ via projectivization and taking cones from affine line arrangements.
 - Study the meaning of freeness condition in the affine restriction.
- Investigate $(D(A), [\cdot, \cdot])$ seen as a Lie sub-algebra of $Der_{\mathbb{K}}(S)$.
- Developing of a complete package for Sage in order to study the module of logarithmic forms of line arrangements.
- A mixed approach to the Algebraic Hilbert's 16th Problem.

