Report for the Markov model (cohort state-transition model)

2020.12.20

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2	691	233	194
strategy3	654	105	1108

 Table 2: Prevent CVD events

 est
 LB
 UB

 strategy1
 298
 155
 441

 strategy2
 374
 181
 567

 strategy3
 346
 154
 538

Parameters

```
<- 0.63
HR_l_stg1
           <- 1.56
HR_m_stg1
           <- 1.6
HR_h_stg1
HR_1_stg2
           <- 0.43
           <- 0.97
HR_m_stg2
           <- 2.06
HR_h_stg2
HR_1_stg3
           <- 0.45
HR_m_stg3 <- 1.09
           <- 2.11
HR_h_stg3
HR smk cvd \leftarrow 0.85
HR_smk_cvdth <- 0.72
HR_salt_cvd <- 0.81</pre>
HR_salt_cvdth <- 0.66
HR_wtc_cvd \leftarrow 0.93
HR wtc dth <- 0.93
HR_hpt_lip_cvd <- 0.7</pre>
HR_hpt_lip_cvdth <- 0.82</pre>
HR_cvdhistory_cvd <-</pre>
HR_cvdhistory_cvdth <- 3.12</pre>
HR_high_live_cvdth <- 1.17</pre>
```

Markov model

Model input

```
library(readr)
rate_data <- read_csv("data/ghdx_data.csv")
xtable(data.frame(rate_data),digits=c(0,0,0,6,6,6))</pre>
```

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Fri Dec 18 14:55:53 2020

Model input MARKOV MODEL

	Index	sex	$rate_incidence_CVD$	$rate_death_CVD$	$rate_death_nonCVD$
1	40	male	0.003888	0.000819	0.002494
2	45	male	0.006729	0.001340	0.003399
3	50	male	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	male	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
_14	70	female	0.033907	0.013398	0.014907

```
out_trans_to_cvd <- -0.038  # TODO

p_live_oth_death <- rate_to_prob(r=rate_data$rate_death_nonCVD,t = n_t)
p_live_cvd <- rate_to_prob(r=rate_data$rate_incidence_CVD,t = n_t)
p_live_cvdth <- rate_to_prob(r=rate_data$rate_death_CVD,t = n_t)

# transition probability from S1 to S2
p_live_cvd_1 <- ProbFactor(p_live_cvd,HR_1_stg1)
p_live_cvd_m <- ProbFactor(p_live_cvd,HR_m_stg1)
p_live_cvd_h <- ProbFactor(p_live_cvd,HR_h_stg1)

# transition probability from S1 to S3
p_live_cvdth_1 <- ProbFactor(p_live_cvdth,1)
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1.7)
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1)
# transition probability from S2 to S3
p_ccvd_acvd <- ProbFactor(p_live_cvd,HR_cvdhistory_cvd)
p_ccvd_cvdth <- ProbFactor(p_live_cvdth,HR_cvdhistory_cvdth)</pre>
```

Item		CVD incidence	CVD cause-specific mortality
	Low risk	0.63	1
Strategy 1	Medium risk	1.56	1
	High risk	1.6	1.7
	Low risk	0.43	1
Strategy 2	Medium risk	0.97	1
	High risk	2.06	1.7
	Low risk	0.63	1
Strategy 3	Medium risk	1.09	1
	High risk	2.11	1.7
	Weight control	0.93	0.93
Intervention	Smoke cession	0.85	0.72
	Salt reduction	0.81	0.66
Medication	Statin and antihypertensive		

The component of a Markov model: A transition probability matrix, P_t

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,n_s,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,n_s,t]} \\ \dots & & & \\ p_{[n_s,1,t]} & p_{[n_s,2,t]} & p_{[n_s,n_s,t]} \end{cases}$$