1. Исследовать на линейную зависимость:

$$f_1(x) = e^x, f_2(x) = 1, f_3(x) = x + 1, f_4(x) = x - e^x.$$

$$f_4(x) = f_3(x) + (-f_2(x)) + (-f_1(x)) = x + 1 - 1 - e^x = x - e^x$$

Вектор $f_4(x)$ - линейная комбинация векторов $f_1(x)$ $f_2(x)$ и $f_3(x)$. Векотра линейно зависимы.

2. Исследовать на линейную зависимость:

$$f_1(x) = 2, f_2(x) = x, f_3(x) = x^2, f_4(x) = (x+1)^2$$

$$f_4(x) = f_3(x) + f_1(x) * f_2(x) + 1 = x^2 + 2x + \frac{1}{1} = (x+1)^2$$

Вектора линейно не зависимы.

3. Найти координаты вектора $x=(2,3,5)\in\mathbb{R}^3$ в базисе $b_1=(0,0,10)$, $b_2=(2,0,0)$, $b_3=(0,1,0)$.

Координаты = (4, 3, 50)

- ullet 4. Найти координаты вектора $3x^2-2x+2\in\mathbb{R}^3[x]$:
 - а) в базисе $1, x, x^2$;
 - б) в базисе x^2 , x 1. 1.
- а) a = (3, -2, 2). В новом базисе = $(3, -2/x, 2/x^2)$
- б) a = (3, -2, 2). В новом базисе $= (3/x^2, -2/(x-1), 2/x^2)$
 - 5. Установить, является ли линейным подпространством:
 - а) совокупность всех векторов трехмерного пространства, у которых по крайней мере одна из первых двух координат равна нулю;
 - б) все векторы, являющиеся линейными комбинациями данных векторов $\{u_1,u_2,\ldots,u_n\}$.

совокупность всех векторов трехмерного пространства, у которых по крайней мере одна из первых двух координат равна нулю <u>является линейный подпространством так как</u> <u>соблюдаются условия</u>

б) совокупность всех линейных комбинаций векторов $\{u_1, u_2, ... u_n\}$ образует некоторое подпространство исходного линейного пространства $\{u_1, u_2, ... u_n\}$ и является линейной оболочкой этого множества - $L\{u_1, u_2, ... u_n\}$.