## ۱ جلسهی چهاردهم، دوشنبه

## ۱.۱ رابطهی همارزی

به رابطهای که ویژگیهای انعکاسی، تقارنی و تعدی داشته باشد، یک رابطهی همارزی گفته می شود. فرض کنید R یک رابطه ی همارزی روی مجموعه ی X باشد. فرض کنید X عنصری دلخواه باشد. تعریف میکنیم:

R تحت رابطهی x. کلاس همارزی عنصر x تحت رابطهی  $= \{ x. \}_R = \{ y \in X | yRx \} = \{ y \in X | xRy \}$ 

فرض کنید که R یک رابطهی همارزی باشد. خانوادهی زیر از مجموعهها را در نظر بگیرید:

 $\{[x]_R | x \in X\}$ 

قضیه ۱. فرض کنید  $x.\cancel{R}y$ . آنگاه

 $[x.] \cap [y.] = \emptyset$ 

اثبات. كافي است بنا به تاتولوژي

 $\neg q \rightarrow \neg p \iff p \rightarrow q$ 

ثابت کنیم که اگر  $[y.] \neq \emptyset$  آنگاه  $[x.] \cap [y.] + \emptyset$ . فرض کنید  $[x.] \cap [y.] \neq \emptyset$  فرض کنید  $[x.] \cap [y.] \neq \emptyset$  ثابت کنیم که اگر  $[x.] \cap [y.] \neq \emptyset$  نتیجه میگیریم که  $[x.] = \{y | y R x.\}$  و  $[x.] = \{y | y R x.\}$ 

z.Rx.(1)

و به طور مشابه، از اینکه  $z. \in [y.]$  نتیجه میگیریم که

z.Ry.

از آنجا که R تقارنی است از () نتیجه می شود که

x.Rz.

x, Ry.

بنا به متعدی بودن R از  $(\mathbf{Y})$  و  $(\mathbf{T})$  نتیجه می شود که

بیایید همین اثبات را بار دیگر به صورت استنتاجی بنویسیم:

 $() [x.] \cap [y.] \neq \emptyset \Rightarrow \exists z z \in [x.] \cap [y.]$ 

 $z. \in [x.] \cap [y.]$  فرضمی کنیم

$$(\mathbf{r})$$
  $z. \in [x.] \Rightarrow z.Rx.$ 

$$(\Delta)$$
  $z.Rx. \stackrel{\text{ridit}}{\Rightarrow} x.Rz.$ 

$$(\widehat{\mathbf{y}}) \quad (x.Rz.) \wedge (z.Ry.) \stackrel{\text{def}}{\Rightarrow} x.Ry.$$

$$(\mathbf{v})$$
  $[x.] \cap [y.] \neq \emptyset \Rightarrow x.Ry.$  9 بنا به ۱ تا

قضيه ۲. اگر

$$[x.] \cap [y.] = \emptyset$$

آنگاه

 $x.\cancel{R}y.$ 

اثبات. ثابت میکنیم که اگر ،x,Ry آنگاه

$$[x.] \cap [y.] \neq \emptyset$$

اگر [y.] آنگاه بنا به تعریف [y.] داریم

$$x. \in [y.]$$

همچنین از از آنجا که R انعکاسی است داریم

x.Rx.

پس

$$x. \in [x.]$$

از ۱ و ۲ نتیجه میگیریم که

$$x. \in [x.] \cap [y.]$$

بنابراين

$$[x.] \cap [y.] \neq \emptyset$$

نتيجه ٣.

$$x.\mathbb{R}y. \iff [x.] \cap [y.] = \emptyset$$

$$x.Ry. \iff [x.] \cap [y.] \neq \emptyset$$

قضیه ۴. اگر  $[y.] \neq \emptyset$  آنگاه

$$[x.] = [y.]$$

 $[y.]\subseteq[x.]\subseteq[x.]$  و  $[x.]\subseteq[y.]$  و  $[x.]\subseteq[y.]$  میخواهیم ثابت کنیم که در این صورت،  $[x.]\cap[y.]\neq\emptyset$  و  $z\in[x.]$  فرض کنید که  $z\in[x.]$ 

zRx. (1).

از آنجا که  $\emptyset \neq [x.] \cap [y.] \neq \emptyset$  از آنجا

x.Ry. (Y).

بنا به (۱)و(۲) و تعدی، نتیجه میگیریم که

zRy..

پس  $z \in [y.]$  از آنجا که z به صورت دلخواه انتخاب شده است، نتیجه میگیریم که

 $[x.] \subseteq [y.].$ 

 $[y.]\subseteq [x.]$  به طور مشابه شما ثابت کنید که

فرض کنید که R یک رابطه ی همارزی روی مجموعه ی X باشد. تعریف میکنیم:

 $X/R = \{ [x] | x \in X \}.$ 

توجه کنید که X/R در تعریف بالا یک خانواده از مجموعههاست؛ زیرا برخی از اعضای آن میتوانند تکراری باشند. همان طور که دیدیم اگر xRy آنگاه [x]=[y]. با این حال، این خانواده، در واقع یک مجموعه هم هست زیرا میتوان تکرارها را در آن نادیده گرفت. در ادامهی درس X/R را یک مجموعه در نظر گرفته ایم.

قضيه ۵.

$$\bigcup X/R = X$$

توجه ۶. یادآوری میکنیم که اگر A یک مجموعه باشد آنگاه

 $\bigcup A = \{x | \exists y \in A \quad x \in y\}$ 

همچنین اگر  $\{A_i\}_{i\in I}$  خانوادهای از مجموعهها باشد، آنگاه

 $\bigcup_{i \in I} A_i = \{x | \exists i \in I \quad x \in A_i\}$ 

در قضیهی بالا از نمادگذاری اولی استفاده کردهایم.

اثبات. ابتدا نشان می دهیم که

$$X \subseteq \bigcup X/R$$
.

فرض کنید که  $x, \in X$ . از آنجا که رابطه ی R انعکاسی است داریم  $x, \in X$ ؛ به بیان دیگر

 $x \in [x].$ 

 $x.\in\bigcup X/R$ . از آنجا که  $[x.]\in X/R$  و  $[x.]\in X$  بنا به توجه بالا نتیجه می شود که از  $[x.]\in X/R$  حال ثابت می کنیم که

$$\bigcup X/R\subseteq X$$

اگر  $x,\in[y]=\{x\in X|xRy\}\subseteq X$  چنان موجود است که  $y\in X$  آنگاه  $x,\in\bigcup X/R$  پس معلوم است که  $x,\in X$ .

توجه کنید که

- ست. X/R مجموعهای از زیرمجموعههای X است.
  - هیچ دو عضو از X/R با هم اشتراک ندارند.
    - $. \bigcup X/R = X \bullet$

به بیان دیگر، X/R یک افراز برای مجموعه ی X است. پس از هر رابطه ی همارزی R روی یک مجموعه ی X به یک افراز برای آن دست مییابیم. در درسهای آینده (پس از تعریف دقیق افراز) خواهیم دید که در واقع از هر افراز برای یک مجموعه ی برای آن دست میابیم. در درسهای آینده (پس از تعریف دقیق افراز) خواهیم دید که در واقع از هر افراز برای یک مجموعه ی که به یک رابطه ی همارزی R روی این مجموعه می رسیم به طوری که X/R همان افراز را به دست بدهد. یعنی دو مفهوم افراز و رابطه ی همارزی با هم همارزند.

به بیان دیگر، افرازهای یک مجموعه ی X در تناظر یک به یک با روابط همارزی روی آن هستند؛ یعنی، فرض کنید A مجموعه ی همه ی افرازهای مجموعه ی X باشد. تابع A مجموعه ی همه ی روابط همارزی روی مجموعه ی X باشد. تابع A باشد و A مجموعه ی مهه ی روابط همارزی روی مجموعه ی X باشد. تابع A مجموعه ی نید:

$$f(R) = X/R$$

تابع بالا، یک به یک و پوشاست. (فعلاً نگران سختی این گفته نباشید. مفاهیم تابع، یکبهیک و پوشا را در درسهای آینده خواهیم دید.)

مثال ۷. روی مجموعه ی اعدادِ صحیح،  $\mathbb Z$ ، رابطه ی R را به صورت زیر تعریف کنید:

$$xRy \Leftrightarrow x \equiv_{\mathbf{r}} y \Leftrightarrow \exists k \in \mathbb{Z} \quad y - x = \mathbf{r}k$$

نشان دهید که رابطه یR یک رابطه ی همارزی است و X/R را مشخص کنید.

R باسخ. نخست ثابت میکنیم که R انعکاسی است. برای هر  $X \in \mathbb{Z}$  میدانیم که  $x \equiv_{\mathbb{T}} x$  پس روشن است که رابطه ی  $x \equiv_{\mathbb{T}} x$  انعکاسی است. حال ثابت میکنیم که R تقارنی است. اگر  $x \equiv_{\mathbb{T}} y$  آنگاه  $x \equiv_{\mathbb{T}} x$  برای یک عدد  $x \in_{\mathbb{T}} x$  و از این رو  $x \equiv_{\mathbb{T}} x$  با عنی عدد  $x \in_{\mathbb{T}} x$  موجود است که  $x =_{\mathbb{T}} x$  پس  $x =_{\mathbb{T}} x$  با موجود است. فرض کنید  $x =_{\mathbb{T}} x$  پس اعداد صحیح  $x \in_{\mathbb{T}} x$ 

$$y - x = \Upsilon k$$
  $z - y = \Upsilon k'$ 

پس

$$z - x = \Upsilon(k + k')$$

يعني

xRz.

تا اینجا ثابت کردهایم که رابطه ی R یک رابطه ی همارزی است. حال ادعا میکنیم که این رابطه، تنها دارای سه کلاس همارزی است؛ به بیان دیگر ادعا میکنیم که

$$X/R = \{ [\cdot], [\cdot], [\Upsilon] \}$$

فرض کنید که x یک عدد صحیح دلخواه باشد. می دانیم که باقی مانده ی x بر x یکی از x و x است. پس  $x \in [x] = [x] = [x]$  یا  $x \in [x] = [x] = [x]$  پس  $x \in [x] = [x]$  یا  $x \in [x] = [x]$  پس

$$X/R\subseteq\{[\,\boldsymbol{\cdot}\,],[\,\boldsymbol{\cdot}\,],[\,\boldsymbol{\cdot}\,]\}.$$

همچنین واضح است که

$$\{[\cdot], [\cdot], [\cdot]\} \subseteq X/R$$

پس

$$X/R = \{[\boldsymbol{\cdot}], [\boldsymbol{\cdot}], [\boldsymbol{\cdot}]\}.$$

توجه کنید که از آنجا که هیچ دو عدد از میان ۰ و۱ و۲ با هم به پیمانهی ۳ همنهشت نیستند، اعضای

$$[\cdot],[1],[7]$$

هر سه با هم متمایزند؛ یعنی

$$[\mathbf{1}] \cap [\mathbf{Y}] = \emptyset, [\mathbf{1}] \cap [\mathbf{1}] = \emptyset, [\mathbf{1}] \cap \mathbf{Y} = \emptyset$$

يعنى مجموعهى

دقیقاً دارای سه عضو است. مینویسیم:

$$X/R = X/ \equiv_{\mathbf{Y}} = \{[\:\raisebox{-1pt}{\text{$\bullet$}}\:], [\:\raisebox{-1pt}{\text{$\bullet$}}\:], [\:\raisebox{-1pt}{\text{$\bullet$}}\:]\} = \{\overline{\:\raisebox{-1pt}{\text{$\bullet$}}}\:, \overline{\:\raisebox{-1pt}{\text{$\bullet$}}}\:, \overline{\:\raisebox{-1pt}{\text{$\bullet$}}}\:\}$$

Ζ



توجه کنید که در مثال بالا، با استفاده از رابطهی همنهشتی به پیمانهی ۳، مجموعهی اعداد صحیح را به ۳ قسمت افراز کردیم. همهی اعدادی را که باقیماندهی آنها بر ۳ برابر با ۱ است با [۱] نشان دادیم؛ همهی اعدادی را که باقیماندهی آنها بر ۳ برابر با ۲ است با [۱] نشان دادیم؛ و همهی اعدادی را که باقیماندهی آنها بر ۳ برابر با ۲ است با [۲] نشان دادیم.

تعمیم ۸. برای عدد دلخواهِ  $n\in\mathbb{N}$  روی  $\mathbb{Z}$  رابطه ی R را به صورت زیر تعریف کنید:

 $xRy \Leftrightarrow x \equiv_n y \Leftrightarrow \exists k \in \mathbb{Z} \quad y - x = nk$ 

نشان دهید که رابطه ی بالا یک رابطه ی همارزی با n کلاس است و

$$\mathbb{Z}/R = \{ [\cdot], \dots, [n-1] \}.$$

مثال ۹. فرض کنید که  $\mathbb{R}^{\mathsf{Y}} o \mathbb{R}$  یک تابع دومتغیره با دامنهی D باشد. روی D رابطهی زیر را تعریف کنید:

$$(x,y)R(x',y') \Leftrightarrow f(x,y) = f(x',y')$$

نشان دهید که رابطه ی بالا یک رابطه ی همارزی است و کلاسهای همارزی آن دقیقاً همان منحنی های تراز تابع f هستند (یعنی رابطه ی بالا، دامنه ی تابع را با استفاده از منحنی های تراز افراز می کند.)