Exercise 5.1

Step 1: ϵ Rules

 $S \to \epsilon$ is the only occurrence of ϵ and S never occurs on the right-hand side. We don't have to do anything here.

Step 2: Chain Rules

Since the CMS can only have a terminal or two Variables on the right-hand side, we have to eliminate every Rule that has only a single Variable on the right.

Chains in G:

$$S \to Z \to bb$$

$$S \to Z \to Za$$

$$X \to Y \to bY$$

$$X \to Y \to bY$$
 $Y \to X \to aZb$

We eliminate the chains by linking the end result of the chain directly with the first Variable. Since $X \to Y$ and $Y \to X$, X = Y so we can just write them together as X that points to the results of X and Y.

$$S \rightarrow bb \mid Za \mid XX$$
 $Z \rightarrow bb \mid Za$ $X \rightarrow aZb \mid bX$

$$Z \rightarrow bb \mid Za$$

$$X \rightarrow aZb \mid bX$$

Step 3: Order

Now we have to eliminate all the rules that have terminals and Variables on the right-hand side. We do so by adding a new Variable for every terminal that points to only that terminal.

So we create: $A \to a$ and $B \to b$ and can now rewrite the Rules above to:

$$S \to BB \mid ZA \mid XX$$

$$Z \to BB \mid ZA$$

$$X \to AZB \mid BX$$

 $A \rightarrow a$

$$B \to b$$

Step 4: Shorten

To get our CNF we have to shorten the right-hand side to exactly two variables per rule. Since $X \to AZB$ is too long, we add $V \to ZB$ and get our final Grammar $G' = \langle S, V, X, Z, a, b, P, S \rangle$ with:

$$P: S \to BB \mid ZA \mid XX$$

$$Z \to BB \mid ZA$$

$$Z \to BB \mid ZA$$
 $X \to AV \mid BX$ $V \to ZB$

$$V \to ZB$$

 $A \to a$ $B \to b$

Exercise 5.2

Proof. In the case |w|=1 we can only have one terminal Rule $S\to a$ because $S\to AB$ would be replaced by at least two terminal rules and therefore be $|w|\geq 2$.

With $S \to AB$ we can generate any word w with $|w| \ge 2$ in the language G by replacing the A or B.

$$S \to AB \to ACD \to ACEF \to \dots \to X_1 \dots X_n$$

By the definition of the Chomsky Normal Form, the Grammar has either a terminal or two Variables on the right-hand side. Therefore with every Step, exactly one Variable can be added. So to generate $X_1 \dots X_n$ exactly n-1 steps are needed.

Now we have to replace every Variable X with a terminal symbol and because again by definition of the CNF, we can only replace one X at a time. Therefore we need n more steps to generate our final word w.

In total we need exactly 2n-1 steps and since n=|w| the statement is true.

Exercise 5.3

Σ	step	Stack
ϵ	$q_0 \rightarrow q_1$	#
a	$q_1 \rightarrow q_1$	#X
ϵ	$q_1 \rightarrow q_2$	#X
a	$q_2 \rightarrow q_2$	#XY
a	$q_2 \rightarrow q_2$	#XYY
d	$q_2 \rightarrow q_3$	#XYY
b	$q_3 \rightarrow q_4$	#XYY
\mathbf{a}	$q_4 \rightarrow q_3$	#XY
b	$q_3 \rightarrow q_4$	#XY
\mathbf{a}	$q_4 \rightarrow q_3$	#X
ϵ	$q_3 o q_5$	#X
\mathbf{c}	$q_5 o q_6$	#X
\mathbf{c}	$q_6 o q_5$	#
ϵ	$q_5 \rightarrow q_7$	ϵ
	ϵ a a a d b a c c c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(b)

This PDA accepts the following language: $w = \{a^x \ d \ (ba)^y \ (cc)^z \ | \ a = y + z, \quad x, y, z \in \mathbb{N}_0 \}$ The self-loops q_1 and q_2 stack a's. Then follows a single d and the loop $q_3 \to q_4 \to q_3$ (ab) which removes anything stacked by q_1 followed by the loop $q_5 \to q_6 \to q_5$ (cc) which removes anything stacked by q_2 . So in the end the visits of $q_1 + q_2$ have to equal the visits of $q_3 + q_5$.