Team Challenge: Pipelines en Machine Learning

Miembros del equipo:

- Luis Tamayo
- Juan Manuel Gómez
- Lander Combarro
- Victor Manuel de Sousa Sánchez

MUSIC GENRE

Objetivo:

- Clasificar canciones por sus características técnicas
- Usar pipelines para tal fin

	instance_id	artist_name	track_name	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	obtained_date	valence	music_genre
	32894.0	Röyksopp	Röyksopp's Night Out	27.0	0.00468	0.652	-1.0	0.941	0.79200	A#	0.115	-5.201	Minor	0.0748	100.889	4-Apr	0.759	Electronic
	46652.0	Thievery Corporation	The Shining Path	31.0	0.01270	0.622	218293.0	0.890	0.95000	D	0.124	-7.043	Minor	0.0300	115.00200000000001	4-Apr	0.531	Electronic
2	30097.0	Dillon Francis	Hurricane	28.0	0.00306	0.620	215613.0	0.755	0.01180	G#	0.534	-4.617	Major	0.0345	127.994	4-Apr	0.333	Electronic
	62177.0	Dubloadz	Nitro	34.0	0.02540	0.774	166875.0	0.700	0.00253	C#	0.157	-4.498	Major	0.2390	128.014	4-Apr	0.270	Electronic
4	24907.0	What So Not	Divide & Conquer	32.0	0.00465	0.638	222369.0	0.587	0.90900	F#	0.157	-6.266	Major	0.0413	145.036	4-Apr	0.323	Electronic
50000	58878.0	BEXEY	GO GETTA	59.0	0.03340	0.913	-1.0	0.574	0.00000	C#	0.119	-7.022	Major	0.2980	98.02799999999999	4-Apr	0.330	Hip-Hop
50001	43557.0	Roy Woods	Drama (feat. Drake)	72.0	0.15700	0.709	251860.0	0.362	0.00000	В	0.109	-9.814	Major	0.0550	122.04299999999999	4-Apr	0.113	Нір-Нор
50002	39767.0	Berner	Lovin' Me (feat. Smiggz)	51.0	0.00597	0.693	189483.0	0.763	0.00000	D	0.143	-5.443	Major	0.1460	131.079	4-Apr	0.395	Hip-Hop
50003	57944.0	The-Dream	Shawty Is Da Shit	65.0	0.08310	0.782	262773.0	0.472	0.00000		0.106	-5.016	Minor	0.0441	75.88600000000001	4-Apr	0.354	Hip-Hop
50004 50005 rd	63470.0 ows × 18 colum		Hip Hop Hooray	67.0	0.10200	0.862	267267.0	0.642	0.00000	F#	0.272	-13.652	Minor	0.1010	99.20100000000001	4-Apr	0.765	Hip-Hop

El data set se compone de:

- 17 features
- 1 target → music_genre

Transformaciones NO implementadas en el pipeline:

Limitación transformaciones sobre el target → Eliminación instancias (filas) no posible.

Nota

No se opto por imputar la mediana debido a la gran desviación estándar y a que se disponía de 50.000 instancias para entrenar.

Se comprobó que al borrar estas instancias el target seguía balanceado.

Estructura del pipeline y sus transformaciones:

- 1) Elimina el símbolo "#" del string para dejar las categóricas de la columna de forma correcta.
- 2) a → Elimina las columnas que no van a ser necesarias para el entrenamiento.
- 2) b -> Aplica estandarización a las columnas numéricas para poder ser usado con modelos de sklearnt.
- 2) c → Aplica One Hot Encoder a las categóricas por el mismo motivo que el punto 2b.


```
# Función para limpiar la columna "key"
def clean key column(X):
    X = X.copy()
    X['key'] = X['key'].apply(lambda value: value.replace("#", "") if "#" in value else value)
    return X
 # ColumnTransformer
 preprocessor = ColumnTransformer(
                                             2 a
    transformers=[
        ('exclude', 'drop', columns_to_drop),
        ('num', StandardScaler() numeric columns)
         (cat', OneHotEncoder(), cat columns)
    remainder = 'passthrough'
♣ Pipeline principal
pipeline X = Pipeline steps=[
    ('clean_key', FunctionTransformer(clean_key_column, validate=False)), 1
    ('preprocessor', preprocessor)
```

$\textbf{MUSIC GENRE} \rightarrow \underline{\textbf{Clasificador multiclase}}$

Data set después de las transformaciones:

	num_popularity	num_acousticness	num_danceability	num_duration_ms	num_energy	num_instrumentalness	num_liveness	num_loudness	num_speechiness	num_tempo
0	-0.402080	-0.101859	1.188409	0.398996	-0.597768	-0.556029	0.781729	0.235331	-0.652215	-0.752957
1	1.013194	-0.769722	0.963710	0.511278	0.305498	-0.555319	0.472040	0.250627	-0.524218	-0.452904
2	1.077524	-0.873110	0.817655	-0.491243	0.638081	-0.556067	-0.364122	0.565484	-0.660092	-0.323030
3	0.369887	-0.866135	1.340081	0.052766	-0.457932	-0.555983	-0.813791	-0.770098	-0.561633	0.143558
4	0.112565	0.284968	-0.918144	-0.436768	-1.017276	-0.554658	-0.603202	0.111178	-0.620708	-0.254398

num_valence	cat_key_A	cat_key_B	cat_key_C	cat_key_D	cat_key_E	cat_key_F	cat_key_G	cat_mode_Major	cat_mode_Minor
0.624614	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0
-0.048400	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
1.163835	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
1.666568	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
-0.656544	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0

Modelo usados y cross validation para seleccionar el mejor:

```
# Modelos
models = {
    'RandomForest': RandomForestClassifier(class weight='balanced', random state=42),
    'XGBoost': XGBClassifier(eval_metric='mlogloss', random_state=42),
    'LightGBM': LGBMClassifier(random_state=42, verbose=-1),
    'CatBoost': CatBoostClassifier(verbose=0, random_state=42),
# Validación cruzada
recall scores = {}
for model_name, model in models.items():
   pipeline_full = Pipeline(steps=[
       ('data_cleaning', pipeline_X),
       ('classifier', model)
   skf = StratifiedKFold(n splits=5, shuffle=True, random state=42) # se hace StratifiedKFold para poder hacer shuffle
   cv scores = cross val score(pipeline full, X, y, cv=skf, scoring="balanced accuracy", error score="raise")
   mean_score = np.mean(cv_scores)
   recall_scores[model_name] = mean_score
   print(f"Modelo: {model_name}, Balanced Accuracy: {mean score:.4f}")
```

Nota

Los 4 modelos han dado un score muy parecido, por lo que no se descartara ninguno de ellos.

Modelo: RandomForest, Balanced Accuracy: 0.5494
Modelo: XGBoost, Balanced Accuracy: 0.5714
Modelo: LightGBM, Balanced Accuracy: 0.5785
Modelo: CatBoost, Balanced Accuracy: 0.5867

Han dado un recall medio muy bajo, luego se analizará la matriz de confusión para ver él porque.

Hiperparametros y Gridsearch:

```
# Hiperparámetros
param_grids = {
    'RandomForest': {
        'classifier n estimators': [50, 100, 200],
        'classifier_max_depth': [None, 10, 20, 30]
    'XGBoost': {
        'classifier__n_estimators': [100, 200],
        'classifier_learning_rate': [0.01, 0.1, 0.2],
        'classifier__max_depth': [3, 6, 10]
    'LightGBM': {
        'classifier n estimators': [100, 200],
        'classifier__learning_rate': [0.01, 0.1, 0.2],
        'classifier max depth': [-1, 10, 20]
    'CatBoost': {
        'classifier iterations': [100, 200],
        'classifier_learning_rate': [0.01, 0.1, 0.2],
        'classifier__depth': [4, 6, 10]
```


NOTA

Han mejorado sensiblemente, pero lejos de los esperado Modelo: RandomForest, Mejor Balanced Accuracy en validación: 0.5654 Modelo: XGBoost, Mejor Balanced Accuracy en validación: 0.5900 Modelo: LightGBM, Mejor Balanced Accuracy en validación: 0.5807 Modelo: CatBoost, Mejor Balanced Accuracy en validación: 0.5948

Evaluación contra test:

Modelo: XGBoost

Balanced Accuracy en el conjunto de prueba: 0.6556

NOTA

Se muestra el mejor modelo de todos.

Se aprecia como hay géneros musicales que podríamos llamar parecidos, que el modelo los confunde:

- Hip-Hop vs Rap
- Jazz vs Blues
- Country vs Rock

El genero que mejor identifica es:

Classical

WINE CLASS

Objetivo:

Clasificador binario

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	quality
3369	5.8	0.32	0.20	2.6	0.027	17.0	123.0	0.98936	3.36	0.78	13.9	7
1935	6.1	0.27	0.43	7.5	0.049	65.0	243.0	0.99570	3.12	0.47	9.0	5
4860	5.6	0.19	0.47	4.5	0.030	19.0	112.0	0.99220	3.56	0.45	11.2	6
1997	7.2	0.62	0.06	2.7	0.077	15.0	85.0	0.99746	3.51	0.54	9.5	5
3258	9.0	0.60	0.29	2.0	0.069	32.0	73.0	0.99654	3.34	0.57	10.0	5

El data set se compone de:

- 12 features
- 5,197 entradas
- Target: class

WINE CLASS → **CLASIFICADOR**

Estructura del pipeline y sus transformaciones:

- 1. Aplicación de logaritmo
 1.bis Generación de Escalado a valores
- 2. Excluir columnas
- 3. Generación de modelos

```
columns_to_exclude=['total sulfur dioxide']
columnas = list(X train.columns)
columnas.remove('total sulfur dioxide')
# Escalado de valores numéricas
num_pipeline = Pipeline(
     ("Logaritmo", FunctionTransformer(func = np.tanh)),
     ("SScaler", StandardScaler())
# Preprocesado completo
preprocessing = ColumnTransformer(
     ("Process Numeric", num_pipeline, columnas),
     ("Exclude", "drop", columns_to_exclude)
    ], remainder = "passthrough")
# Modelos a utilizar
logistic_pipeline = Pipeline(
    [("Preprocessing),
     ("Modelo", LogisticRegression())
random pipeline = Pipeline(
    [("Preprocessing), preprocessing),
     ("Modelo", RandomForestClassifier())
xgb_pipeline = Pipeline(
    [("Preprocessing),
     ("Modelo", XGBClassifier())
```

WINE CLASS → **CLASIFICADOR**

```
# Aplicamos los gridsearch sobre los modelos
pipe_reg_log_param = {
                 "Modelo__penalty": [None, "12"],
                 "Modelo_C": np.logspace(0, 4, 10)
pipe rand forest param = {
    'Modelo_n_estimators': [10, 100, 200, 400],
    'Modelo max_depth': [1,2,4,8],
    'Modelo_max_features': [1, 2, 3]
pipe_xgb_param = {
    'Modelo__n_estimators': [10, 100, 200, 400],
    'Modelo__max_depth': [1,2,4,8],
    'Modelo_learning_rate': [0.1,0.2,0.5,1.0]
cv = 5
gs_reg_log = GridSearchCV(logistic_pipeline,
                            pipe reg log param,
                            cv=cv,
                            scoring="accuracy",
                            verbose=1.
                            n jobs=-1)
gs_rand_forest = GridSearchCV(random_pipeline,
                            pipe_rand_forest_param,
                            cv=cv.
                            scoring="accuracy",
                            verbose=1,
                            n_jobs=-1)
gs_xgb = GridSearchCV(xgb_pipeline,
                        pipe_xgb_param,
                        cv=cv,
                        scoring="accuracy",
                        verbose=1.
                        n jobs=-1)
pipe_grids = {"gs_reg_log":gs_reg_log,
         "gs_rand_forest":gs_rand_forest,
         "gs_xgb":gs_xgb}
```


- 1. Generación GridSearch pipelines
- 2. Selección best score
- 3. Predicción
- 4. Confusion matrix

CALIFORNIA HOUSING

Objetivos:

- Regresor del precio de las casas
- Clustering no supervisado de categorías en las viviendas

	longit	ıde l	atitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
	-122	.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122	.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122	.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122	.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY

El data set se compone de:

- 10 features
- 20,640 entradas
- Target (para el regresor): median_house_value

CALIFORNIA HOUSING

Estructura del pipeline y sus transformaciones:

- 1. Crear tres nuevas *features* más descriptivas
- 1.bis Eliminar features no representativas
- 2. Imputar valores missings
- 3. Modificar la distribución de las features numéricas a una más Gaussiana
- 4. Estandarizar los datos.
- 5. Ordinal Encoder de la feature "ocean proximity"

```
create extra feaatures function
def create extra features(X):
    Create new features for the dataset that offer greater explainability than the original DataFrame.
    X = X.copy()
    X['rooms per house'] = X['total rooms'] / X['households']
    X['bedrooms_ratio'] = X['total_bedrooms'] / X['total_rooms']
    X['income_cat'] = pd.cut(X['median_income'],
                             bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
                             labels=[0, 1, 2, 3, 4])
    return X
# pipeline to create new features with greater explainability. Returns a DataFrame
pipeline create features = Pipeline(steps=[
    ('features_creator', FunctionTransformer(create_extra_features, validate=False))
# pipeline for numerical features. Imputes the median (for missing values),
# transforms the data to be more Gaussian-like, and standardizes it
    ('median_imputer', SimpleImputer(strategy='median')),
    ('power_transformer', PowerTransformer(method='yeo-johnson', standardize=True))
    ('mode_imputer', SimpleImputer(strategy='most_frequent'))
# pipeline para hacer Ordinal Encoding sobre la feature: "ocean proximity". Con un orden pre-escogido
    ('mode imputer', SimpleImputer(strategy='most frequent')).
    ('ordinal encoder', OrdinalEncoder(categories=[['INLAND', '<1H OCEAN', 'NEAR BAY', 'NEAR OCEAN', 'ISLAND']],
                                       handle unknown='use encoded value',
                                       unknown value=-1))
# pipeline to perform Ordinal Encoding on the feature: "ocean proximity" with a predefined order
preprocessor = ColumnTransformer()
    ('exclude', 'drop', feats to exclude),
    ('process num', pipeline_num, feats_num),
    ('process_cat', pipeline_cat, ['income_cat']),
    ('ord_encoder', pipeline_oh, ['ocean_proximity'])
                                                            1-5
    remainder='passthrough'
```

CALIFORNIA HOUSING → **REGRESOR**

PowerTransformer()

funtion for pipelines creation


```
def create pipeline with target transform(model):
 define models
models = {
                                                                                Create pipelines with TransformedTargetRegressor for the different models.
    'linear': LinearRegression(),
                                                                                This time, there's no need to apply StandardScaler to the target transformation.
    'random forest': RandomForestRegressor(random state=random state),
    'XGBoost': XGBRegressor(random state=random state),
                                                                                    ('create_feats', pipeline_create_features),
    'ridge': Ridge(),
                                                                                   ('preprocessor', preprocessor),
    'lasso': Lasso(),
                                                                                   ('model', TransformedTargetRegressor(
    'elastic net': ElasticNet(),
                                                                                       transformer=PowerTransformer(method='box-cox', standardize=False)))
    'gradient_boosting': GradientBoostingRegressor(),
    'SVR': SVR(),
    'k_neighbors': KNeighborsRegressor(),
    'catboost': CatBoostRegressor(random state=random state, verbose=0)
 define pipelines for each model
pipelines = {name: create pipeline with target transform(model) for name, model in models.items()}
kwargs = {
    'cv': 10.
    'scoring': 'neg root mean squared error',
    'n jobs': -5
for name, pipe in pipelines.items():
    result = -cross_val_score(pipe, X_train, y_train, error_score='raise', **kwargs)
    print(f'{name}: {np.mean(result):.4f}')
```

GridSearchCV()

```
# RandomForest, XGBoost and CatBoost hyperparameters
param_grids = {
    'random forest': {
        'model regressor n estimators': [100, 200],
        'model__regressor__max_depth': [3, 6, 9],
        'model__regressor__min_samples_split': [5, 10],
        'model regressor min samples leaf': [2, 4],
        'model regressor max features': ['sqrt', None],
    'XGBoost': {
        'model regressor_n_estimators': [100, 200],
        'model__regressor__max_depth': [3, 6, 9],
        'model__regressor__learning_rate': [0.01, 0.05, 0.1],
        'model_regressor_subsample': [0.8, 1.0],
        'model regressor colsample bytree': [0.8, 1.0],
        'model__regressor__gamma': [0, 0.3, 0.5],
    'catboost': {
        'model regressor_iterations': [100, 200],
        'model__regressor__depth': [3, 6, 9],
        'model_regressor_learning_rate': [0.01, 0.05, 0.1],
        'model__regressor__bagging_temperature': [0, 0.5, 1],
        'model_regressor_random_strength': [1, 1.5, 2],
```

CALIFORNIA HOUSING → <u>CLUSTERING K-Mean</u>

		kmeans_cluster	0	1	2
	longitude	mean	-119.578177	-120.354875	-118.915373
	latitude	mean	35.351218	37.144071	34.641403
ho	using_median_age	mean	26.613434	28.002572	31.0045
	total_rooms	mean	3224.533586	1919.382353	2690.903905
	total_bedrooms	mean	531.162039	393.867609	662.655957
	population	mean	1433.094419	1012.958695	1758.290404
	households	mean	499.719365	353.95982	619.270285
	median_income	mean	5.832559	2.806307	2.965051
me	edian_house_value	mean	300422.237797	113257.698811	198943.32773
	ocean_proximity	top	<1H OCEAN	INLAND	<1H OCEAN

Gracias

https://github.com/elecomexp/pipelines_team_challenge