METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Image segmentation

Automatic image processing

Image classification

Other tasks

Automatic image processing

- Image classification
 - Does an image contain object X? [yes/no]
- Image detection and segmentation
 - Does an image contain object X? [yes/no]
 - Where is the object X? → Location of the object
 - □ Pixel-based granularity → semantic/instance segmentation
 - Object-based granularity → object detection
 - Which object does this image contain? [where?]
 - Aprox. localisation (Bounding box)
 - Accurate localisation (contour) → Segmentation

Problem

- Aim
 - Classify each pixel
- Tasks
 - How many segments?
 - How many objects in an image?

□ Problem → Tasks

- Semantic segmentation
 - Labels for every pixel
 - No differences across different instances of the same object

- Instance segmentation
 - Labels for every pixel
 - unique label to every instance of a particular object in the image
 - Special topic: Panoptic segmentation
 - Instance segmentation for background

Problem

- Challenges
 - Occlusion, Truncation, Scale, Illumination
 - Smooth boundaries
- Evaluation
 - TP #pixels correctly classified as belonging to class X
 - FP #pixels classified as belonging to class X, but they belong to other classes
 - FN #pixels that belong to class X, but are not classified as belonging to class X
 - \square IOU_{class} = TP / (TP + FP + FN) over all images

Problem

- Datasets
 - 2001 Berkeley
 - https://www2.eecs.berkeley.edu/Research/Projects/C S/vision/bsds/
 - Good for edge detection problem (also)
 - 2005 Pascal VOC
 - 20 classes
 - 2015 COCO dataset (detection and segmentation)
 - https://cocodataset.org/#detection-2015
 - 91 classes
 - 2015 CityScapes
 - https://www.cityscapes-dataset.com/
 - 30 classes grouped in 8 categories
 - CamVid
 - http://mi.eng.cam.ac.uk/research/projects/VideoRec/ CamVid/

□ How?

- Before Computer Vision
 - Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
 - Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)
 - "I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees." Max Wertheimer (1880-1943)
- Computer Vision's era
 - Segmentation as clustering (K-means, GAMMs and EM, Mean Shift, ...)
 - Segmentation as grouping by boundaries
 - Graph-based segmentation
 - Segmentation as energy minimization
 - Region-based segmentation (->Thresholding, Region growing)
 - Edge detection segmentation
 - Deep learning algorithms

- How? ->Computer Vision's era
 - Segmentation as clustering
 - Main idea
 - Group the "similar" pixels into clusters
 - Algorithms:
 - K-means, GAMMs and EM, Mean Shift, ...
 - https://scikit-learn.org/stable/modules/clustering.html

See

- Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. *IEEE Transactions* on pattern analysis and machine intelligence, 24(5), 603-619. https://courses.csail.mit.edu/6.869/handouts/PAMIMe anshift.pdf
- http://cs229.stanford.edu/notes2020spring/cs229notes8.pdf
- http://cs229.stanford.edu/notes2020spring/cs229notes7b.pdf
- + works well on a small dataset with convex clusters
- large computational time, shape of clusters

- How? ->Computer Vision's era
 - Segmentation as grouping by boundaries
 - Main idea
 - Edge-based methods
 - Algorithms:
 - Watershed good for hierarchical segmentation
 - the image is regarded as a topographic landscape with ridges and valleys
 - Level-sets
 - See
 - https://members.accu.org/index.php/journals/1469
 - https://hub.gke2.mybinder.org/user/scikit-imagescikit-imagelpeqi3jb/notebooks/notebooks/auto examples/segmen tation/plot watershed.ipynb
 - + Fast (apply filters)
 - if there are too many edges or less contrast objects

- How? ->Computer Vision's era
 - Graph-based segmentation
 - Main idea
 - Images as graphs (nodes pixels, weights (affinity matrix) location/intensity/color/textureFilters) and break graph in segments
 - Algorithms
 - Graph-Cut eigen values of affinity matrix
 - Min-cut
 - See
 - http://cs.brown.edu/people/pfelzens/segment/
 - Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8), 888-905.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=868688&casa_tok en=b23BGFlY2CwAAAAA:wbUB6ZhAc3vHP11li6cl2Nyjfpl0vAHGefdvKeg PJLacEiB332Xn0EnIF94R1qKk4MUdXgcFALPA&tag=1

- + Flexible to choice of affinity matrix
- + Generally works better than other methods
- Can be expensive, especially with many cuts.
- Bias toward balanced partitions
- Constrained by affinity matrix model

X₃ (X₄) Observed evidence

(X₁) (X₂) (Y₄) Hidden "true states"

(Neighborhood relations)

- How? ->Computer Vision's era
 - Segmentation as energy minimization
 - Main idea
 - Markov Random Fields (MRFs) and Conditional Random Fields (CRFs)
 - Rich probabilistic model for images
 - Built in local, modular way Get global effects from only learning/modeling local ones
 - After conditioning, get a Markov Random Field (MRF)
 - Algorithms
 - Grab-Cut (2004)
 - See
 - Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. *IEEE Transactions on pattern analysis and machine intelligence*, 23(11), 1222-1239.
 http://luthuli.cs.uiuc.edu/~daf/courses/Opt-2017/Combinatorialpapers/00969114 pdf
 - + Very powerful, get global results by defining local interactions
 - + Very general
 - + Rather efficient
 - Only works for sub modular energy functions (binary)
 - Only approximate algorithms work for multi-label case

■ How? ->Computer Vision's era

- Region-based segmentation (low-level methods)
 - Main idea
 - rely mainly on the assumption that the neighboring pixels within one region have similar values.
 - Algorithms
 - Thresholding (Otsu's algorithm), Region growing (GrowCut)
 - See
 - https://im.snibgo.com/growcut.htm
 - + simple, fast,
 - doesn't work if there are overlapped gray levels in image
- Machine learning algorithms (high-level methods)
 - + simple, general
 - high training time

- How? ->Computer Vision's era
 - Machine learning algorithms
 - Before deep learning
 - CRF + pixels/superpixels

- Jamie Shotton <u>https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0</u> 3a26b7066269523698278314ebf1143a175072f
- CRFs https://pub.ist.ac.at/~chl/papers/r
- Sliding window

- http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf
- https://ronan.collobert.com/pub/matos/2014 scene icml.pdf
- Deep learning era
 - Unet, Unet++, U2net &co
 - see https://causlayer.o
 - SegNet
 - DeepLab
 - FCN
 - DenseNet
 - •
 - Please check
 - https://github.com/mrgloom/awesome-semantic-segmentation

■ How? ->Computer Vision's era

- Deep learning algorithms
 - Main idea
 - Extract features -> encoding
 - Decoding and classify pixels
 - Algorithms
 - Fully Convolutional Networks
 - Convolutional Networks with Graphical Models (CRFs and MRFs)
 - Multi-scale and Pyramid Network based models
 - + simple, general
 - high training time

□ Problem (modern formulation)

Semantic segmentation

segmented

1: Person 2: Purse 3: Plants/Grass 4: Sidewalk

Input

Problem -> feature extraction

	Image	Conv1	Conv2	Conv3	Conv4
Width	M	M/2	M/4	M/8	W16
Height	N	N/2	N/4	N/8	N/16
Depth	3	64	128	256	512

Up-sampling

Learning same resolution feature maps

Learning same resolution feature maps

	Feature Map	Deconv1	Deconv2	Deconv3	Deconv4
Width	M/16	M/8	M/4	M/2	М
Height	N/16	N/8	N/4	N/2	N
Depth	512	512	256	128	64

Output computation

Fully convolutional networks

- Feature extraction by convolutions (down-sampling / encoder path)
 - Extract and interpret the context (what?)
- Segmentation map by recovering spatial information by convolutions (up-sampling / decoder part)
 - Enable precise location (where?)
 - Transform FC layers from a classification architecture into 1/more convolutions (deconvolutions or transposed convolutions) -> up-sampling

Skip connections

- Recover the fine-grained spatial information lost in pooling or down-sampling layers
- Merge (concatenate or sum) more feature maps from the down-sampling path with feature maps from the up-sampling path
 - Helps combining context information with spatial information

Fully convolutional networks

- Most common architectures
 - FCN
 - https://www.cvfoundation.org/openaccess/content_cvpr_2015/pap ers/Long Fully Convolutional Networks 2015 CVP R_paper.pdf
 - Non-symmetric paths
 - #feature maps = #classes (down-sampling)

Up-samples only once (one layer for decoding +

bilinear interpolation)

Skip connections by sum

- Fully convolutional networks
 - Most common architectures
 - Unet
 - https://arxiv.org/pdf/1505.04597.pdf
 - a symmetric architecture
 - Larger #feature maps
 - Multiple up-sampling layers (=> learnable weight filters for interpolation)
 - Skip connections by concatenation

- SegNet
 - https://arxiv.org/pdf/1511.00561.pdf
 - Similar to Unet

Fully convolutional networks

- Most common architectures
 - DeepLab
 - https://github.com/tensorflow/models/tree/master/research/deeplab
 - New elements
 - Spatial pyramid pooling
 - Dilated (atrous) convolutions
 - Depthwise separable convolutions
 - Improving outputs with CRF

- DenseNet and many others
 - https://github.com/mrgloom/awesome-semanticsegmentation

Unet / SegNet vs DeepLab

Mask R-CNN

- Faster R-CNN

 RolAlign

 Instance segmentation
- https://arxiv.org/pdf/1703.06870.pdf
- Similar to Faster R-CNN, but predict masks as well as BBs
 - □ a Fully CNN (on top of feature map) for determining a binary mask (object or not) for each RoI 15.15 point Region of Interest in the original image.
 - RoI Alignment -> bilinear interpolation
 - Loss = Loss(classific) + Loss(bb) + Loss(mask)
 - Loss(mask) = cross-entropy

Feature Map (2.93 x 2.93)

Detectron

- Feature extraction
 - Feature pyramid network
 - Different backbones (ResNet)
- Proposal generator
 - Region proposal network

- BB prediction
- BB classification
- Pixel-level classification inside a BB (segmentation)
- Loss = Loss(classific) + Loss(bb) + Loss(mask)
 - Loss(mask) = cross-entropy
 - Focal loss
- Non-local NN https://arxiv.org/pdf/1711.07971.pdf
 - Long-range dependencies
 - Recurrent operations (repeated convolutions = local neighbourhood)
 - Non-local operations
 - Mean of all positions of an input =a very large receptive field
 - Self-attention (machine translation)
 - CRF (graphical models)

□ YOLACT (You Only Look At CoefficienTs)

- https://github.com/dbolya/yolact
- https://arxiv.org/pdf/1904.02689.pdf

Vision Transformers (ViT)

- reducing architecture complexity
- exploring scalability and training efficiency
- An Image is Worth 16x16 Words
 - https://arxiv.org/pdf/2010.11929.pdf
 - https://ai.facebook.com/research/publications/end-to-endobject-detection-with-transformers
 - NLP transformers http://jalammar.github.io/illustrated-transformer/
- https://github.com/googleresearch/vision transformer

More details

- https://arxiv.org/pdf/2001.05566.pdf
- https://heartbeat.fritz.ai/a-2019-guide-to-semanticsegmentation-ca8242f5a7fc
- https://paperswithcode.com/sota/instancesegmentation-on-coco
- https://link.springer.com/article/10.1007/s13735-020-00195-x

Fig. 32. The timeline of DL-based segmentation algorithms for 2D images, from 2014 to 2020. Orange, green, andn yellow blocks refer to semantic, instance, and panoptic segmentation algorithms respectively.

Segmentation

- partitioning an image into meaningful segments, which share a common representation.
- Dense pixel prediction -> it classifies each pixel into one of a few classes

Semantic segmentation

 Segment all interest objects (by different classes = semantic classes)

Instance segmentation

- Segment all interest objects (by different classes = semantic classes)
- Predict an instance label for each object of interest

Panoptic segmentation

 Instance segmentation of all interest objects (by classes) and the background