Quantum Error Correction (2)

Hung-Wei Tseng

If qo gets wrong

 $\alpha |001\rangle + \beta |110\rangle$

01

 $|\otimes|\otimes X$

But, what if?

If q₁ gets wrong

Does this work for bit-flips?

9-qubit Shor code

Shor coding with error corrections

Correct measurement errors

Not only gates will have errors, measurements too!

Error mitigation in with linear algebra

```
00 \rightarrow '10': 96, '11': 1, '01': 94, '00': 9809

01 \rightarrow '10': 0, '11': 106, '01': 9784, '00': 110

10 \rightarrow '10': 9778, '11': 99, '01': 0, '00': 123

11 \rightarrow '10': 82, '11': 9831, '01': 87, '00': 0
```

$$M = \begin{pmatrix} 0.9809 & 0.0110 & 0.0123 & 0.0000 \\ 0.0094 & 0.9784 & 0.0000 & 0.0087 \\ 0.0096 & 0.0000 & 0.9778 & 0.0082 \\ 0.0001 & 0.0106 & 0.0099 & 0.9831 \end{pmatrix}$$

$$C_{\text{noisy}} = M C_{\text{ideal}}$$

Consider the state of | + >

$$\begin{pmatrix} 0.9809 & 0.0110 & 0.0123 & 0.0000 \\ 0.0094 & 0.9784 & 0.0000 & 0.0087 \\ 0.0096 & 0.0000 & 0.9778 & 0.0082 \\ 0.0001 & 0.0106 & 0.0099 & 0.9831 \end{pmatrix} \begin{pmatrix} 5000 \\ 0 \\ 0 \\ 5000 \end{pmatrix} = \begin{pmatrix} 4905. \\ 100.5 \\ 91.5 \\ 4903 \end{pmatrix}$$

How to recover?

$$C_{\text{noisy}} = M C_{\text{ideal}}$$

$$\rightarrow C_{\text{noisy}}M^{-1} = C_{\text{ideal}}$$

Recap on Quantum Teleportation

How to make a good quantum computer

What affects computing power?

- Qubit count Number of qubits (more is better)
- Readout errors Gate and readout errors (less is better)
- Connectivity Qubit-Qubit connectivity (more is better)
- Gate set Gate set (larger / more powerful is better)
- Software stack Compilers and software stack (more intelligent is better)

Qubit Technologies

Trapped Ion Qubits

- Optical Qubits
- Hyperfine Qubits

Figure 2.6: State transitions for two common types of trapped ion qubits: the optical qubit and the hyperfine qubit.

Measuring Qubits

Figure 2.7: Measurement outcome is observed by state-dependent flourescence.

Single-Qubit Gate: Raman or Microwave Transition

Figure 2.8: Single qubit gates via Raman transition or microwave transition.

Loading Qubits

Figure 2.9: Schematics for a RF Paul trap.

Trapped Ion Qubits

- Take about 1 ms to transport across a 30 mm chip (big enough to host 10-100 qubits)
- Entangling gates can be executed in 50-500 us
- With coherence times of about 60 s typical for atomic clock states - that's about 0.002% error on top of the entangling gate.
- 2019 estimates for Shor factoring of 2048-bit integers with superconducting qubits give an 8-hour run-time with physical error rates of 0.1% and a surface code cycle time of 1 us.

Superconducting Qubits

- Charge qubits
- Flux qubits

Figure 2.11: Types of superconducting qubits. Left: Circuit diagram for charge qubits (when $E_J \leq E_C$) and transmon qubit (when $E_J \gg E_C$), consisting of capacitor C and Josephson junction J. Center: Circuit diagram for a c-shunted flux qubit, where a junction is shunted with a number of junctions. Right: Circuit diagram for a phase qubit with current bias I_0 .

Figure 2.12: Left: Qubit frequencies as a function of external magnetic flux. The first three levels of the transmon, ω_{01} and ω_{12} , are plotted. Right: Circuit diagram for a frequency-tunable (asymmetric) transmon qubit (highlighted in black), consisting of a capacitor and two asymmetric Josephson junctions. Highlighted in gray are two control lines: the external magnetic flux control φ and microwave voltage drive line $V_d(t)$ for each transmon qubit.

Figure 2.13: Two-qubit interactions for two capacitively coupled transmons. Left: Two-qubit gates are implemented with resonance of qubit frequencies. Shown here are how qubit frequencies are tuned for *i* SWAP gate and CZ gate. Right: Circuit diagram of two capacitively coupled transmon qubits.

Qubit technologies

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Longevity (seconds) 0.00005

Logic success rate 99.4%

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

>1000

99.9%

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

0.03

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

N/A

N/A

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

10

99.2%

Announcement

 Assignment #1 available on website. Please submit through gradescope