Solubility Problems - Need to look at page 802 - Solubility constants

- 1. Write balanced chemical equations and the K_{sp} expressions for the dissolving of the following compounds in
 - a) sodium sulfide
 - b) calcium iodide
 - c) lithium carbonate

- d) iron(II) sulfate
- e) cobalt(II) nitrate
- f) barium phosphate
- 2. What are the concentrations of the resulting ions in saturated agueous solutions of the following compounds?
 - a) lead (II) sulfate
 - b) silver carbonate
 - c) magnesium hydroxide

- $[Pb^{2+}=1.3x10^{-4} M, SO_4^{2-}=1.3x10^{-4} M]$
- [Ag⁺=2.6x10⁻⁴ M, CO₃²= 1.3x10⁻⁴ M] [Mg²⁺=1.1x10⁻⁴ M, OH⁻= 2.2x10⁻⁴ M]
- 3. Calculate the K_{sp} values of the following substances from their solubilities in water.
 - a) silver chloride with a solubility of 1.6x10⁻³g/L

[1.2x10⁻¹⁰]

b) lithium carbonate with a solubility of 13.0 g/L

- [2.2x10⁻²]
- 4. Calculate the concentrations of ions in saturated aqueous solutions of the following.
 - a) silver iodide

[
$$Ag^{+}=9.2x10^{-17} M$$
, $I^{-}=9.2x10^{-17} M$]

b) strontium carbonate

- $[Sr^{2+}=2.4x10^{-5} M, CO_3^{2-}=2.4x10^{-5} M]$
- 5. What are the ion concentrations in saturated solutions of the following:
 - a) lead(II) iodide

$$[Pb^{2+}=1.3x10^{-3} M, I=2.6x10^{-3} M]$$

b) silver sulfate

$$[Ag^{+}=2.8x10^{-2} M, SO_{4}^{2}=1.4x10^{-2} M]$$

c) iron(III) hydroxide

- $[Fe^{3+}=9.9x10^{-11} M, OH^{-}=3.0x10^{-10} M]$
- 6. Calculate the K_{sp} values of the substances below from their solubilities in water:
 - a) thallium(I) chloride, 3.4 g/L at 25°C

 $[2.0x10^{-4}]$

b) silver bromide, 1.3x10⁻⁴ g/L at 20°C

[4.8x10⁻¹³]

c) calcium fluoride, 1.6x10⁻² g/L at 20°C

- $[3.4x10^{-11}]$
- 7. Calculate the maximum iodide ion concentration for lead(II) iodide dissolved in a 1.00x10⁻² M solution of [9.2x10⁻⁴ M] lead(II) nitrate.
- 8. Calculate the maximum barium ion concentration in a 0.010 M aqueous solution of sodium sulfate. The K_{sp} of barium sulfate is 1.1x10⁻¹¹. [1.1x10⁻⁹]
- 9. Calculate the maximum magnesium ion concentration in a 0.020 M aqueous solution of barium hydroxide. The K_{sp} of magnesium hydroxide is $1.2x10^{-11}$. [7.9x10⁻⁹]
- 10. Upon addition of hydroxide ions to sea water, Mg(OH)₂ precipitates. If the magnesium ion concentration in sea water is $5.3x10^{-2}$ M, calculate the maximum hydroxide ion concentration in sea water.
- 11. A sample of sea water contains 0.53 M of Cl ions and 8.4x10⁻⁴ M of Br ions. What concentration of added Ag⁺ ions would cause precipitation of AgCl and AgBr? Which of these two halides would precipitate first? The K_{sp} for AgCl is 1.6×10^{-3} and the K_{sp} for AgBr is 6.5×10^{-13} . [Cl⁻: 3.0×10^{-3} Br⁻: 7.7×10^{-10} , AgBr precipitates first]
- 12. How many mg of Pb²⁺ must be present in 10.0 mL of 0.135 M NaCl solution for PbCl₂ to precipitate? [1.4 mg]
- 13. Will a precipitate of CaF₂ form when 0.084 g of sodium fluoride is dissolved in 1.00 L of a 0.010 M aqueous solution of calcium chloride. K_{sp} for calcium fluoride is 3.9×10^{-11} . [Q=4.0x10⁻⁸, yes a ppt will form]

- 14. In which of the following reactions does a precipitate form?
 - a) $10.0 \text{ mL of } 0.010 \text{ M AgNO}_3 \text{ and } 10.0 \text{ mL of } 0.10 \text{ M Na}_2\text{SO}_4. \text{ (K}_{sp} \text{ for Ag}_2\text{SO}_4 = 1.2 \times 10^{-5}) [Q = 1.25 \times 10^{-6}]$
 - b) 1.0 mL of 0.10 M $Ca(NO_3)_2$ and 1.0 L of 0.010 M NaF.

 $[Q=1.0x10^{-8}]$

c) 5.0 mL of 0.0040 M AgNO₃ and 15 mL of a solution containing 1.5 mg of Br ions.

 $[Q=9.5x10^{-7}]$

- 15. Would you expect a precipitate of silver bromate ($K_{sp}=1.2\times10^{-11}$) to form when 50.0 mL of 0.0020 M silver nitrate is added to 250.0 mL of 0.020 M potassium bromate. $[Q=5.6x10^{-6}]$
- 16. Will a precipitate of Mg(OH)₂ form when 1.00 mL of 0.010 M Ca(OH)₂ is added to 1.0 L of 0.20 M Mg(NO₃)₂. You may ignore the volume change caused by the addition of 1.00 mL. $[Q=8.0x10^{-11}]$
- 17. One litre of solution has 100.0 mg of Ba²⁺ and 10.0 g of Sr²⁺. Within what range must the [CrO₄²⁻] be to precipitate barium without precipitating strontium. $(K_{sp} SrCrO_4 = 3.6x10^{-5}) [1.6x10^{-7} M < [CrO_4^{2-}] < 3.2x10^{-4}M]$
- 18. A 0.010 M aqueous solution of Na_2SO_4 is added one drop at a time to 1.00 L of 0.0010 M lead(II) nitrate. What is the minimum volume of sodium sulfate that must be added to form a precipitate of lead(II) sulfate. The K_{sp} for lead(II) sulfate is $1.3x10^{-8}$. [1.3 mL]
- 19. Compare the molar solubility of Pbl₂ in a) pure water and b) in 0.10 M Nal.

[a) 1.3×10^{-3} , b) 8.5×10^{-7}]

20. How many grams of SrCO₃ will dissolve in 250 mL of 0.080 mol/L SrNO₃?

 $[2.6x10^{-7} g]$

21. For each of the following substances, calculate the milligrams per millilitre of metallic ion that can remain at equilibrium in a solution having a [OH⁻]=1.0x10⁻⁴.

a) $Zn(OH)_2$, $K_{sp}=4.3\times10^{-17}$

[2.8x10⁻⁷mg/mL]

b) Fe(OH)₃, $K_{sp}=2.6\times10^{-39}$

[1.5x10⁻²⁵ mg/mL]

c) Mg(OH)₂, $K_{sp}=5.6\times10^{-12}$

 $[1.4x10^{-2} \text{ mg/mL}]$

22. Calculate the [Ag⁺] needed to begin precipitation of each of the following anions from solutions containing 1 mg of anion per mL of solution.

c) BrO_3^- [6.8x10⁻³] d) CrO_4^{2-} [1.2x10⁻⁵]

a) Br $[4.3x10^{-11}]$ b) S²⁻ (K_{sp}=1.8x10⁻⁵⁰) $[7.6x10^{-25}]$

- 23. What is the solubility in mol/L of AgBr in a solution resulting from the addition of 50.0 mL of 0.010 CaBr₂ to 50.0 mL of 0.0080 M AgNO₃? $(K_{so}=5.4x10^{-13})$ [9.0x10⁻¹¹]
- 24. If 50.0 mL of 0.10 M AgNO₃ is added to 150 mL of 0.10 M CaCl₂, what is the resulting concentration of each ion in the final solution? $(K_{sp}=1.8\times10^{-10})$ $[Ag^{+} = 1.4 \times 10^{-9} \text{M}, Cl^{-} = 0.125 \text{ M}, NO_{3}^{-} = 0.025 \text{M}, Ca^{2+} = 0.075 \text{ M}]$
- 25. What volume of 0.10 M CaBr₂ must be added to 100.0 mL of 0.10 M of Pb(NO₃)₂, before a precipitate of PbBr₂ $(K_{so}=1.4\times10^{-8})$ starts to form. Assume the total volume remains at 100.0 mL. [0.19 mL]
- 26. How many litres of water at 25°C must be added to mercury(II) sulfide $(K_{sp}=3.0\times10^{-54})$ in order for 1 mercury atom to be present in solution? (HINT: You will need Avogadro's number) [1000 L]
- 27. A 100.0 mL sample of 1.00 M Na₂SO₄ is added to 200.0 mL of 1.00 M BaCl₂. Determine the mass of BaCl₂ that precipitates from solution and the concentration of all ions at equilibrium. [m=23.3 g, Ba²⁺ =0.333 M, Cl⁻=1.33 M, $SO_4^{2-} = 3.33 \times 10^{-10} \text{ M}$, $Na^+ = 0.667 \text{ M}$]
- 28. A 1.50 L sample of 0.250 M NaOH is added to 1.00 L of 0.150 M Mg(NO₃)₂. Calculate the mass of Mg(OH)₂ that precipitates and the concentration of all ions in solution at equilibrium. [m=8.75 g, $Mg^{2+}=6.22x10^{-9}$ M, OH $^{-}$ =0.0300 M, NO $_{3}^{-}$ = 0.120 M, Na $^{+}$ =0.150 M]