## **Fundamental Particles**

Elementary/fundamental particle: Particle not known to be made up of smaller particles. It has no substructure; other particles are made from it.

Why proton/neutron not elementary: Can't explain why the electrical repulsion of positively charge protons don't split nucleus or the forces involved in radioactive decay producing alpha, beta and gamma radiation.

Standard Model: classification of particles based on properties as either gauge bosons, leptons, or hadrons.

| <u>Force</u> | What it does                                         | <u>Strength</u>      | <u>Range</u>                                  | Gauge boson                      |
|--------------|------------------------------------------------------|----------------------|-----------------------------------------------|----------------------------------|
| Strong       | Holds nucleus together                               | 1                    | $1x10^{-15}m \sim \text{diameter of nucelus}$ | Gluons                           |
| EM           | Attractive/repulsive force between charged particles | $\sim \frac{1}{150}$ | Infinite                                      | Photon                           |
| Weak         | Induces beta decay                                   | 1x10 <sup>-6</sup>   | $1x10^{-18}m \sim \text{diameter of proton}$  | W and Z bosons $(W^+, W^-, Z^0)$ |
| Gravity      | Attractive force between masses                      | $\sim 1x10^{-39}$    | Infinite                                      | Graviton<br>(theoritical)        |

Electrons not affected by strong interaction as its range is too short so only acts on hadrons in the nucleus

**Leptons**: Fundamental. Muons, tau, electron. Not affected by strong interaction. Charged leptons affected by electromagnetic force. Affected by weak interaction. Leptons w/ mass affected by gravity. **Particles** have charge of -1 and lepton number of 1. **Antiparticles** have a charge of 1 and lepton number of -1. **Neutrinos** have no mass or charge and symbol v

**Hadrons**: Not fundamental. Affected by strong interaction. **Baryons** (neutrons and protons). **Mesons** (pions). Mesons consist of a quark-antiquark doublet whereas baryons consist of a triplet.

| <u>Leptons</u>                     | <u>Hadrons</u>                   |  |
|------------------------------------|----------------------------------|--|
| Not affected by strong interaction | Affected by strong interaction   |  |
| Fundamental (no quark structure)   | Composite (have quark structure) |  |

Baryons: particles have a baryon number of 1, anti-particles have a baryon number of -1

Mesons: particles and anti-particles have a baryon number of 0

**Equations:** Charge, baryon number and lepton number are all conserved in interactions.

**Gauge bosons**: exchange particles which mediate the force between the fundamental particles involved in the four fundamental forces

**In research**: Electrons, unlike protons and neutrons are not affected but the strong nuclear force and so may be used to bombard nuclei.

Beta minus Decay: result of the weak nuclear interaction

$${}^1_0 n + \to \, {}^1_1 p \, + \, {}^0_1 e^- \, + \, {}^0_0 \overline{v_e} \hspace{1cm} udd \, + \, \to \, uud \, + \, {}^0_{-1} e^- \, + \, {}^0_0 \overline{v_e} \hspace{1cm} d \, \to \, u \, + W^- \, followed \, by \, W^- \, \to \, e^- \, + \, \overline{v_e}$$

**Quark Models:** p uud, n udd,  $\pi^0$  u ar u,  $\pi^+$  u ar d,  $\pi^-$  d ar u,  $\overline{\pi^0}$  u ar u

Anti-quarks have oppposite charge and baryon number



|              |                 | 0-25          |
|--------------|-----------------|---------------|
| <u>Quark</u> | <u>Charge</u>   | <u>Baryon</u> |
| u            | $+\frac{2}{3}e$ | $\frac{1}{3}$ |
| d            | $-\frac{1}{3}e$ | $\frac{1}{3}$ |