AL.1.13 C.2						
		anua				
		90 Physics 30				30 Physics 30 Physics 30 1
						30 Physics 30
		Phys	ics 3	0		Physics 30 Pl
	Grade	12 Diplo			ion	30 Physics 30
Physics 30						30 Physics 30
						Physics 30 1
						30 Physics 30
						Physics 30 - F
						30 Physics 36
						Physics 30 — 1
						30 Physics 30
		Alt	EARNING			Physics 30 — f
			Physics 30			30 Physics 30

Copyright 2002, the Crown in Right of Alberta, as represented by the Minister of Learning, Alberta Learning, Learner Assessment Branch, 11160 Jasper Avenue, Edmonton, Alberta T5K 0L2. All rights reserved. Additional copies may be purchased from the Learning Resources Centre.

Special permission is granted to Alberta educators only to reproduce, for educational purposes and on a non-profit basis, parts of this examination that do not contain excerpted material only after the administration of this examination.

Excerpted material in this examination **shall not** be reproduced without the written permission of the original publisher (see credits page, where applicable).

January 2002

Physics 30

Grade 12 Diploma Examination

Description

Time: This examination was developed to be completed in 2.5 h; however, you may take an additional 0.5 h to complete the examination.

This is a **closed-book** examination consisting of

- 37 multiple-choice and 12 numericalresponse questions, of equal value, worth 70% of the examination
- 2 written-response questions, of equal value, worth a total of 30% of the examination

This examination contains sets of related questions. A set of questions may contain multiple-choice and/or numerical-response questions.

Tear-out data sheets are included near the back of this booklet. A Periodic Table of the Elements is also provided.

Note: The perforated pages at the back of this booklet may be torn out and used for your rough work. No marks will be given for work done on the tear-out pages.

Instructions

- You are expected to provide your own calculator. You may use any scientific calculator or a graphing calculator approved by Alberta Learning.
- You are expected to have cleared your calculator of all information that is stored in the programmable or parametric memory.
- Use only an HB pencil for the machinescored answer sheet.
- Fill in the information required on the answer sheet and the examination booklet as directed by the presiding examiner.
- Read each question carefully.
- Consider all numbers used in the examination to be the result of a measurement or observation.
- When performing calculations, use the values of constants provided on the tearout sheets.
- If you wish to change an answer, erase all traces of your first answer.
- · Do not fold the answer sheet.
- The presiding examiner will collect your answer sheet and examination booklet and send them to Alberta Learning.
- Now turn this page and read the detailed instructions for answering machinescored and written-response questions.

Multiple Choice

- Decide which of the choices **best** completes the statement or answers the question.
- Locate that question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

This examination is for the subject of

- A. science
- B. physics
- C. biology
- D. chemistry

Answer Sheet

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then filling in the corresponding circles.
- If an answer is a value between 0 and 1 (e.g., 0.25), then be sure to record the 0 before the decimal place.
- Enter the first digit of your answer in the left-hand box. Any boxes on the right that are not needed are to remain blank.

Examples

Calculation Question and Solution

If a 121 N force is applied to a 77.7 kg mass at rest on a frictionless surface, the acceleration of the mass will be $\frac{m}{s^2}$

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

$$a = \frac{F}{m}$$

 $a = \frac{121 \,\text{N}}{77.7 \,\text{kg}} = 1.557 \,\text{m/s}^2$

Calculation Ouestion and Solution

A microwave of wavelength 16 cm has a frequency, expressed in scientific notation, of $b \times 10^w$ Hz. The value of b is (Record your **two-digit answer** in the numerical-response section on the answer sheet.)

$$f = \frac{c}{\lambda}$$

$$f = \frac{3.00 \times 10^8 \text{ m/s}}{0.16 \text{ m}} = 1.875 \times 10^9 \text{ Hz}$$
Record 1.9 on the answer sheet

1.9

1.9

1.9

2.2 2 2 2
3.3 3 3 3
4.4 4 4 4
6.5 5 5
6.6 6
7.7 7 7 7

Correct-Order Question and Solution

When the following subjects are arranged in alphabetical order, the order is _____, ____, and ____.

- 1 physics
- 2 biology
- 3 science
- 4 chemistry

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: 2413

Scientific Notation Question and Solution

The charge on an electron is $-a.b \times 10^{-cd}$ C. The values of a, b, c, and d are _____, _____, and _____,

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: $q = -1.6 \times 10^{-19} \text{ C}$

Written Response

- Write your responses in the examination booklet as neatly as possible.
- For full marks, your responses must address **all** aspects of the question.
- Descriptions and/or explanations of concepts must include pertinent ideas, diagrams, calculations, and formulas.
- Your responses must be presented in a well-organized manner using complete sentences, correct units and correct significant digits, where appropriate.
- Relevant scientific, technological, and/or societal concepts and examples must be identified and made explicit.

The gravitational potential energy, kinetic energy, and mechanical energy of a bungee jumper during the free-fall portion of a jump are graphed below.

- 1. Lines A, B, and C represent, respectively,
 - **A.** mechanical energy, gravitational potential energy, and kinetic energy
 - **B.** mechanical energy, kinetic energy, and gravitational potential energy
 - C. gravitational potential energy, mechanical energy, and kinetic energy
 - **D.** kinetic energy, gravitational potential energy, and mechanical energy
- 2. A truck with a mass of 4.00×10^4 kg is travelling at 100.0 km/h. If the driver reduces the truck's speed to 60.0 km/h, then the truck's kinetic energy has changed by

A.
$$-2.22 \times 10^4 \text{ J}$$

B.
$$-9.88 \times 10^6 \text{ J}$$

C.
$$-3.20 \times 10^7 \text{ J}$$

D.
$$-1.28 \times 10^8 \text{ J}$$

Numerical Response

A pump delivers 56.0 L/min of water from a well that is 20.0 m deep. A 1.00 L volume of water has a mass of 1.00 kg. The work done by the pump in 1.00 s is ______ J.

 $(Record\ your\ \textbf{three-digit}\ answer\ in\ the\ numerical-response\ section\ on\ the\ answer\ sheet.)$

After performing a trick above the rim of a skateboard ramp, a 56 kg skateboarder lands on the ramp 3.5 m above ground level with a downward velocity of 4.0 m/s.

Friction in the wheels of the skateboard and air resistance cause a loss of $9.0\times10^2\,\mathrm{J}\,$ of mechanical energy.

- 3. The skateboarder's speed at the bottom of the ramp will be
 - A. 6.0 m/s
 - **B.** 7.2 m/s
 - C. 9.2 m/s
 - **D.** 11 m/s
- **4.** A spring is compressed a distance of x. When the spring is released, it shoots a marble of mass m vertically upward from ground level. The maximum height reached by the marble is h. The magnitude of the marble's momentum at the highest point of the marble's trajectory is equivalent to
 - **A.** 0
 - B. mgh
 - C. $m\sqrt{2gh}$
 - **D.** $x\sqrt{2gh}$

During an archery competition, an arrow of mass $35.0 \, \mathrm{g}$ is fired horizontally with a speed of $1.10 \times 10^2 \, \mathrm{m/s}$ at a target fixed to a wall. The arrow does not drop significantly during its flight. The arrow penetrates the target to a depth of $5.00 \, \mathrm{cm}$ and is brought to a complete stop.

- 5. The kinetic energy of the arrow as it leaves the bow is
 - **A.** $4.24 \times 10^5 \text{ J}$
 - **B.** $2.12 \times 10^5 \text{ J}$
 - C. $4.24 \times 10^2 \,\mathrm{J}$
 - **D.** $2.12 \times 10^2 \,\mathrm{J}$

Numerical Response

2.	The magnitude of the average force exerted by the target on the arrow, expressed
	in scientific notation, is $a.bc \times 10^d$ N. The values of a, b, c , and d
	are,, and

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

- **6.** A 75.0 kg hockey player moving at +10.0 m/s crashes into a second, stationary hockey player. After the collision, the two skaters move as a unit at +4.50 m/s. In the collision, the impulse received by the second hockey player was
 - **A.** $+1.09 \times 10^3 \text{ kg} \cdot \text{m/s}$
 - **B.** $+7.50 \times 10^2 \text{ kg} \cdot \text{m/s}$
 - C. $+4.13 \times 10^2 \text{ kg} \cdot \text{m/s}$
 - **D.** $+3.38 \times 10^2 \text{ kg} \cdot \text{m/s}$

A student performs an experiment to investigate the time required to stop a toy van. In each of four trials, the student varies the speed and mass of the van. The toy van is brought to rest by a piston that applies a uniform force that is the same for each trial.

Numerical Response

3. When the trials above are listed in order from the trial that has the longest stopping time to the trial that has the shortest stopping time, the order is

	 	and	Marie A. M. S. S.	
longest			shortest	

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

A particular rocket consists of stage 1 $(m = 4.500 \ 0 \times 10^4 \ \text{kg})$ and stage 2 $(m = 1.200 \ 00 \times 10^5 \ \text{kg})$. Initially, the stages move together at $2.500 \ 0 \times 10^4 \ \text{km/h}$.

Later, a small explosion causes the stages to separate.

After separation, stage 1 moves $3.000~0 \times 10^1~\text{km/h}$ slower than it did before separation.

- 7. The speed, v_2 , of stage 2 immediately after separation is
 - **A.** 24 920 km/h
 - **B.** 24 989 km/h
 - C. 25 011 km/h
 - **D.** 25 080 km/h

Two identical metal pucks were made to collide on a frictionless surface. Before the collision, puck 1 was moving at 6.00 m/s and puck 2 was stationary. After the collision, the pucks moved as shown in the diagram below.

- **8.** The magnitude of the **momentum** of puck 2 after the collision was
 - **A.** 1.33 kg⋅m/s
 - **B.** 0.970 kg⋅m/s
 - **C.** 0.705 kg·m/s
 - **D.** 0.570 kg⋅m/s
- 9. A conducting sphere X that has an initial charge of $+2.0 \times 10^{-8}$ C and an identical conducting sphere Y that has an initial charge of -3.0×10^{-8} C are touched together. After they are separated, the charge on sphere X is
 - **A.** -5.0×10^{-9} C
 - **B.** -1.0×10^{-8} C
 - C. -2.5×10^{-8} C
 - **D.** -5.0×10^{-8} C

- 10. The magnitude of the electrical force on an alpha particle that is 4.0×10^{-10} m from an electron is
 - **A.** $5.8 \times 10^{-19} \,\mathrm{N}$
 - **B.** $1.2 \times 10^{-18} \,\text{N}$
 - C. $1.5 \times 10^{-9} \,\mathrm{N}$
 - **D.** $2.9 \times 10^{-9} \,\mathrm{N}$

Two point charges of equal magnitude, +Q and -Q, are each placed at an equal distance, x, from point P, as shown below.

11. The direction of the resultant electric field at point P is

A.

B.

C.

D.

- 12. A unit combination that is equivalent to the joule is
 - \mathbf{A} . W·s
 - B. N/m
 - C. $kg \cdot m/s^2$
 - D. kg·m/s

A positively charged rod is placed near, but not touching, a neutral metal ball.

- 13. As a result of the rod's position, side X of the ball becomes relatively
 - A. negative and the ball is repelled from the rod
 - **B.** positive and the ball is repelled from the rod
 - C. negative and the ball is attracted to the rod
 - **D.** positive and the ball is attracted to the rod
- **14.** Which of the following statements describes a relationship between the forces described by Coulomb's Law and the forces described by Newton's Law of Universal Gravitation?
 - **A.** In atoms, gravitational forces are weaker than electrical forces.
 - **B.** Gravitational forces and electrical forces are attractive forces only.
 - **C.** Gravitational forces act at any distance; whereas, electrical forces act at very short distances only.
 - **D.** As the distance between objects increases, electrical forces increase, whereas gravitational forces decrease.

8

Use the following diagram to answer the next question.

Electron Flow in a Wire Loop

- **15.** In an apparatus such as the one shown above, the direction of the magnetic field at point *P* due to the electron flow would be
 - A. into the page
 - **B.** out of the page
 - C. toward the left side of the page
 - **D.** toward the right side of the page

Use the following information to answer the next question.

A long, straight wire carries a current of 2.00 A. The magnetic field strength around the current-carrying wire can be calculated using the equation

$$B = \frac{k'I}{r}$$

where $k' = 2.00 \times 10^{-7} \text{ T} \cdot \text{m/A}$

B = magnetic field strength (T)I = current in the wire (A)

r = distance from the centre of the wire (m)

Numerical Response

4. The magnetic field strength 15.0 cm from the centre of the wire, expressed in scientific notation, is $a.bc \times 10^{-d}$ T. The values of a, b, c, and d are _____, ____, and ____.

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

A mass spectrometer uses either a magnetic field or an electric field to deflect charged particles.

Magnetic Field Mass Spectrometer

Electric Field Mass Spectrometer

- **16.** In the magnetic field mass spectrometer shown above, the direction of the magnetic field is
 - A. into the page
 - **B.** out of the page
 - C. toward the left side of the page
 - **D.** toward the right side of the page

- 17. The energy gained by a proton as it moves from plate P to plate Q is
 - **A.** $1.00 \times 10^4 \text{ eV}$
 - **B.** $1.00 \times 10^4 \text{ J}$
 - **C.** $1.00 \times 10^4 \text{ V}$
 - **D.** $1.00 \times 10^4 \text{ N}$
- 18. A proton starts from rest at plate P. The speed of the proton as it passes through the hole in plate Q is
 - **A.** 6.92×10^5 m/s
 - **B.** 1.38×10^6 m/s
 - **C.** 2.96×10^7 m/s
 - **D.** 5.93×10^7 m/s

Use your recorded answer from Multiple Choice 18 to answer Numerical Response 5.*

Numerical Response

5. In the magnetic field mass spectrometer shown, the radius of curvature of a proton's path is 3.00 m. The magnetic field intensity, expressed in scientific notation, is $a.bc \times 10^{-d}$ T. The values of a, b, c, and d, are _____, _____, and _____.

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

^{*}You can receive marks for this question even if the previous question was answered incorrectly.

Use your recorded answer from Multiple Choice 18 to answer Numerical Response 6.*

Numerical Response

6. In the electric field mass spectrometer shown, the radius of curvature of a proton's path is 10.0 m. The proton experiences an electrostatic force, expressed in scientific notation, of $b \times 10^{-w}$ N. The value of b is ______.

(Record your **three-digit** answer in the numerical-response section on the answer sheet.)

*You can receive marks for this question even if multiple-choice question 18

was answered incorrectly.

Use the following additional information to answer the next question.

A different electric field mass spectrometer is set up so that an electron would follow the same curved path that the proton travelled. In this mass spectrometer, plate P is \underline{i} , plate Q is \underline{ii} , and the electric field direction between the curved parallel plates is \underline{iii} .

19. The row that correctly completes the statement above is row

Row	i	ii	iii		
Α.	positive	negative	unchanged		
В.	positive	negative	reversed		
C.	negative	positive	unchanged		
D.	negative	positive	reversed		

- **20.** Charged particles moving toward Earth are trapped within a field near Earth, where they cause the aurora borealis (northern lights) and aurora australis (southern lights). The field in which the particles are trapped is
 - A. a gravitational field
 - B. an induction field
 - C. a magnetic field
 - D. an electric field
- 21. Magnetic levitation (maglev) trains "float" above the rails. A permanent magnet mounted on the train interacts with an electromagnet in the rail. If it is assumed that the permanent magnet in each of the diagrams below is identical and that the current is the same in each electromagnet, then which of the following designs would produce the **greatest** lift?

A planetary space probe can measure the magnetic field intensity near the surface of a planet by trailing a long wire perpendicular to the planet's magnetic field lines.

A space probe orbiting Jupiter travels at a speed of 2.94 km/s relative to the planet's magnetic field and trails a wire 30.0 m long that passes across the planet's magnetic field. The magnetic field intensity around Jupiter varies from about 0.300 mT at the equator to about 1.40 mT at the poles.

- 22. The potential difference, in millivolts, induced in the space probe's wire when the space probe orbits over Jupiter's equator is
 - **A.** $2.65 \times 10^1 \text{ mV}$
 - **B.** $1.23 \times 10^2 \,\text{mV}$
 - **C.** $2.65 \times 10^4 \text{ mV}$
 - **D.** $1.23 \times 10^5 \text{ mV}$

Use your recorded answer from Multiple Choice 22 to answer Numerical Response 7.*

Numerical Response

7. The electric circuit connected to the space probe's wire has a high resistance. When the current in the circuit is 1.42×10^{-4} A, the resistance of the circuit, expressed in scientific notation, is $b \times 10^{w} \Omega$. The value of b is ______.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.) *You can receive marks for this question even if the previous question was answered incorrectly.

An AC welding device contains a transformer that operates on an input 220 V AC circuit operating at 30.0 A. The output current is 180 A. The output voltage fluctuates during the welding process. The input and output voltages are measured by AC voltmeters on the welding device.

- **23.** In this welding device, the ratio of primary turns to secondary turns in the transformer is approximately
 - **A.** 6:1
 - **B.** 1:6
 - **C.** 7.3:1
 - **D.** 1:7.3

Numerical Response

8.	The reading on the voltmeter that measures the output voltage will	l be
	V.	

(Record your three-digit answer in the numerical-response section on the answer sheet.)

- 24. Electromagnetic radiation is always produced as a result of the
 - A. acceleration of electric charges
 - **B.** movement of electric charges
 - C. acceleration of masses
 - D. magnetic fields

Chlorophyll in plants absorbs photons of electromagnetic radiation and converts them into chemical potential energy. Chlorophyll a is one of the main types of chlorophyll. The graph below shows the relationship between the absorption of photons by chlorophyll a and the wavelength of the photons striking the plants.

Absorption Rate as a Function of Incident Wavelength

- **25.** To produce the maximum rate of photon absorption by chlorophyll *a*, photons should have an energy of
 - **A.** 1.77 eV
 - **B.** 1.88 eV
 - **C.** 2.48 eV
 - **D.** 3.40 eV
- **26.** Compared with the wavelength and frequency of visible light, the electromagnetic waves emitted during nuclear fission have
 - **A.** longer wavelengths but a lower frequency
 - **B.** longer wavelengths and a higher frequency
 - **C.** shorter wavelengths and a lower frequency
 - **D.** shorter wavelengths but a higher frequency

- **27.** An electromagnetic wave travels vertically upward, perpendicular to Earth's surface. If the magnetic field component of the wave oscillates in a north-south direction, then the electric field component will oscillate in
 - **A.** an east-west direction
 - **B.** a north-south direction
 - C. a vertically upward direction
 - **D.** a vertically downward direction
- **28.** Which of the following properties is a property of X-rays but not of radio waves?
 - A. Reflection
 - B. Refraction
 - C. Interference
 - D. Gas ionization
- **29.** If the charge-to-mass ratio of an ion with a 3+ charge is 1.4×10^7 C/kg, then the mass of the ion is
 - **A.** $1.1 \times 10^{-26} \text{ kg}$
 - **B.** $3.4 \times 10^{-26} \text{ kg}$
 - **C.** $1.0 \times 10^{-25} \text{ kg}$
 - **D.** $6.7 \times 10^{-12} \text{ kg}$

X-rays were discovered in 1895 by Roentgen. In the cathode ray tube that he used, a high electrical potential difference between the anode and the cathode accelerated the electrons. The electrons then collided with a copper target.

Three Types of Energy

- 1 electrical potential energy
- 2 electromagnetic energy
- 3 kinetic energy

Numarical	Dag	
Numerical	V62	DOMPE

9.		production of X-rays, the three types of energy listed above occur in order to to to
	(Record	d all three digits of your answer in the numerical-response section on the answer sheet.)
Nur	nerical	Response
10.	wavele The va	sinimum accelerating voltage necessary to produce an X-ray with a length of 6.25×10^{-11} m, expressed in scientific notation, is $a.bc \times 10^d$ V alues of a, b, c , and d are,, and all four digits of your answer in the numerical-response section on the answer sheet.)
30.	A. h B. s C. s	namage to biological organisms that X-rays can cause is a result of their nigh speed small mass short wavelength nigh radioactivity

In 1997, the Mars Pathfinder Mission included a robotic rover called Sojourner. Sojourner carried a variety of instruments to analyze the Martian soil, rocks, and air.

One of Sojourner's instruments bombarded rocks with alpha particles to produce an "alpha-proton" reaction. One example of an alpha-proton reaction occurs when an alpha particle enters a sodium atom and knocks a proton out of its nucleus. The nuclear reaction equation can be written as follows.

$${}_{2}^{4}\text{He} + {}_{11}^{23}\text{Na} \rightarrow {}_{1}^{1}\text{p} + {}_{cd}^{ab} X$$

Scientists on Earth sent instructions to Sojourner via radio waves. Because it took 10 min for the signals to reach the robot, the scientists instructed it to move only a few centimeters at a time.

Numerical Response

11.	In the nuclear reaction equation above, the values of a, b, c , and d
	are,, and

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

- 31. In the nuclear reaction equation above, element X is
 - **A.** Al
 - B. Mg
 - C. Ne
 - D. Fe

Numerical Response

When the signals were sent to Sojourner, the distance between Earth and Mars, expressed in scientific notation, was $a.b \times 10^{cd}$ m. The values of a, b, c, and d are _____, ____, and ____.

 $(Record\ all\ \textbf{four\ digits}\ of\ your\ answer\ in\ the\ numerical-response\ section\ on\ the\ answer\ sheet.)$

- 32. If the stopping potential of a photocell is $5.60~\rm{V}$, then the maximum kinetic energy of the photoelectrons emitted is
 - **A.** $3.50 \times 10^{19} \,\text{J}$
 - **B.** 5.60 J
 - **C.** $8.96 \times 10^{-19} \text{ J}$
 - **D.** $2.90 \times 10^{-20} \text{ J}$
- 33. If a metal with a threshold frequency of 1.1×10^{15} Hz is illuminated by light with a wavelength of 1.7×10^{-7} m, then the maximum kinetic energy of the emitted photoelectrons will be
 - **A.** $4.4 \times 10^{-19} \text{ J}$
 - **B.** $7.3 \times 10^{-19} \text{ J}$
 - **C.** $1.2 \times 10^{-18} \text{ J}$
 - **D.** $1.5 \times 10^{-18} \text{ J}$

To demonstrate the development of Rutherford's atomic model, a teacher lined up five students at arm's length from each other. She then tossed bean bags toward them. Most of the bean bags went past the line of students without coming into contact with any of them. Occasionally, a bean bag would hit a student and the bean bag would drop to the floor.

- 34. In this demonstration, the bean bags and the students represent, respectively,
 - **A.** alpha particles and electrons
 - **B.** electrons and alpha particles
 - C. nuclei and alpha particles
 - D. alpha particles and nuclei
- 35. In hydrogen, the radius of the fourth Bohr orbital is
 - **A.** 3.31×10^{-12} m
 - **B.** 1.32×10^{-11} m
 - C. 2.12×10^{-10} m
 - **D.** $8.46 \times 10^{-10} \text{ m}$

Observation

The value of q/m for a cathode-ray particle is about 1800 times greater than the value of q/m for a hydrogen ion.

Conclusions That May Be Supported by the Observation

- I The charge on a cathode-ray particle is 1800 times greater than the charge on a hydrogen ion.
- II The charge on a cathode-ray particle is $\frac{1}{1800}$ of the charge on a hydrogen ion.
- III The mass of a cathode-ray particle is 1800 times greater than the mass of a hydrogen ion.
- IV The mass of a cathode-ray particle is $\frac{1}{1800}$ of the mass of a hydrogen ion.
- **36.** The observation supports conclusions
 - A. I and III
 - B. I and IV
 - C. II and III
 - **D.** II and IV

- **37.** According to the spectra above, the unknown gas mixture contains
 - A. hydrogen, helium, and sodium gases
 - **B.** hydrogen and sodium gases
 - **C.** hydrogen and helium gases
 - **D.** helium and sodium gases

A teacher provides his students with the equipment shown below.

Ammeter

Box 1

Posts

9V battery

The teacher tells the students that one of the boxes contains two resistors that are placed in parallel and the other box contains two resistors that are placed in series. All four resistors are identical, and the boxes cannot be opened.

Box 2

Students can connect any pieces of the equipment by attaching alligator clips to their respective posts. They may use some or all of this equipment, but they cannot use any additional equipment.

Written Response—15%

- 1. Design an experiment that would allow the students to determine which box contains the resistors in series and which box contains the resistors in parallel. Your design should include
 - clearly labelled schematic diagrams showing the placement of the individual resistors inside the boxes
 - meter placement and measurements

Alligator clips

 a description of the analysis that must be done to determine the placement of the resistors in each box

NOTE: Marks will be awarded for the physics used to solve this problem and for the effective communication of your response.

Written-response question 2 begins on the next page.

Iodine-131 is a radioactive element used in the medical diagnosis and treatment of thyroid problems. Iodine-131 undergoes simultaneous beta and gamma decay and has a half-life of 8.00 days.

Written Response—15%

- Write the complete decay equation for iodine-131.
 - Complete the table below by entering the amount of iodine-131 remaining over 40 days.
 - Explain how you obtained data for the table.
 - Provide a graph of the theoretical decay of 2.00 g of iodine-131.

Time (days)	0	8	16	24	32	40
Mass (g)	2.00					

Use the following additional information to answer the next parts of the question.

The thyroid gland uses iodine to make hormones that the human body needs. The thyroid gland is the only tissue in the human body that collects iodine. An overactive thyroid gland that causes medical problems can be treated with a high dose of iodine-131, which destroys the thyroid gland only.

- A treatment centre receives a shipment of 5.00 g of iodine-131. The treatment centre stores the iodine-131. What is the amount of iodine-131 remaining after 3.00 days?
- Identify at least two risks and one benefit of using radioactive isotopes in medical treatments.

Clearly communicate your understanding of the physics principles that you are using to solve this question. You may communicate this understanding mathematically, graphically, and/or with written statements.

You may continue your answer on the next page.

You have now completed the examination. If you have time, you may wish to check your answers.

Fold and tear along perforation.

Periodic Table of the Elements

	o r	유			Se			Ar			호		_	×e			R	3	_			
18	VIIIA or O	2	4.00	helium	10	20.17	neon	18	39.95	argon	36	83.80	krypton	54	131.30	xenon	98	(222.02)	radon			
11	VIIA				出	19.00	fluorine	17 CI	35.45	chlorine	35 Br	79.90	bromine	53 I	126.90	iodine	85 At	(209.98)	astatine			
16	VIA				0 8	16.00	oxygen	16 S	32.06	sulphur	34 Se	78.96	selenium	52 Te	127.60	tellurium	84 Po	(208.98)	polonium			
15	۸A				Z	14.01	nitrogen	15 P	30.97	phosphorus	33 As	74.92	arsenic	51 Sb	121.75	antimony	83 Bi	208.98	bismuth			
14	IVA				C	12.01	carbon	14 Si	28.09	silicon	32 Ge	72.59	germanium	50 Sn	118.69	tin	82 Pb	207.19	lead			
13	IIIA				Be	10.81	boron	13 AI 1	26.98	aluminum	31 Ga 3	69.72	gallium	49 In 5	114.82	indium	F	204.37	thallium le			
12	BII				Symbol	S 2	D				Zu	65.38 69		P O	112.41	cadmium in	0 Hg 81	200.59 20	mercury th			
11	8				Key	j	6.94	lithium 12 0	() Indicates mass of the most stable isotope		9 Cu 30	63.55 65	copper zinc	7 Ag 48	107.87	silver	9 Au 80	196.97 20	gold me			
10	VIIIB				Atomic number — 3		1	Name	pul()		3 Ni 29	58.71 63	nickel	5 Pd 47	106.40	palladium silv	3 Pt 79	195.09	platinum go			
6	VIIIB				Atomic		Atomic molar mass				7 Co 2	58.93 58.	cobalt nic	5 Rh 46	102.91	rhodium pal	7 Ir 78	192.22	iridium pla	109 Une	(266)	unnilennium
8											Cr 25 Mn 26 Fe 27 Co 28	55.85 58.		⁴⁵ Ru 45	101.07	ruthenium rho	77 SO 8	190.20	osmium irid		(265) (26	unnitoctium
7	VIIB										Mn 26		manganese iron	TC 44	(101) 101	technetium ruth	Re 76	186.21	rhenium osr	104 Ung 105 Unp 106 Unh 107 Uns 108 Uno	(262.12) (26	unnilseptium
9	VIB											54.94	chromium mai	42 Mo 43		molybdenum tech	W 75		tungsten rhe	3 Unh	(263.12) (26	unnilhexium unn
5											V 24	1 52.00		9	95.94		Ta 74	183.85		Unp 100		entium unnil
	_										Ti 23	50.94	m vanadium	Y 40 Zr 41 NI	92.91	um niobium	Hf 73	180.95	m tantalum	Jnq 105	1) (262.11)	unnilquadium unnilpentium
4	IVB										21 Sc 22	47.90	m titanium	Υ 40	91.22	zirconium	72	178.49	hafnium	-	(266.11)	nunildus
3	BIII				(I)			<u>C</u>		F	3 21 5	44.96	scandium	39	88.91	yttrium	1 57-71			89-103		
2	HA				4 Be	9.01	beryllium	11 Na 12 Mg	24.31	magnesium	20 Ca	40.08	calcinm	38 Sr	87.62	strontium	56 Ba	137.33	barium	88 Ra	(226.03)	radium
-	Α	- H	1.01	hydrogen	3 Li	6.94	lithium	11 Na	22.99	sodium	19 K	39.10	potassium	37 Rb	85.47	rubidium	55 Cs	132.91	cesium	87 Fr	(223.02)	francium

r T		E	۲	£	ncium
71	174.97	Iutetium	103	(260.11)	lawrencium
70 Yb	173.04	ytterbium	102 No	(259.10)	nobelium
69 Tm	168.93	thulium	101 Md	(258.10)	mendelevium nobelium
68 Er	167.26		100Fm	(257.10)	fermium
67 Ho	164.93	holmium	99 Es	(252.08) (257.10)	californium einsteinium fermium
66 Dy	162.50	dysprosium holmium erbium	98 Cf	(242.06)	californium
es Tb	158.93	terbium	97 BK	(247.07) (2	berkelium
64 Gd	157.25	gadolinium	96 Cm	(247.07)	curium
63 Eu	151.96	europium	95 Am	(243.06) (247.07)	americium curium
62 Sm	150.35	praseodymium neodymium promethium samarium europium gadolinium terbium	94 Pu	(244.06)	plutonium
61 Pm	(144.91)	promethium	dN ε6	(237.05)	protactinium uranium neptunium plutonium
PN 09	144.24	neodymium	92 U	238.03	uranium
59 Pr	140.91	praseodymium	91 Ра	(231.04) 238.03	protactinium
58 Ce	140.12		89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 BK 98 Cf 99 Es 100Fm 101Md 102 No 103 Lr	(232.04)	thorium
57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu	138.91	lanthanum cerium	89 Ac	(277.03)	actinium

PHYSICS DATA SHEET

CONSTANTS

Gravity, Electricity, and Magnetism

C	$a_{\rm g}$ or $g = 9.81 \text{ m/s}^2$ or 9.81 N/kg	$G = 6.67 \times 10^{-11} \mathrm{N \cdot m^2 / kg^2}$
Acceleration Due to Gravity or	Gravitational Field Near Earth	Gravitational Constant

Coulomb's Law Constant......
$$k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$

$$1 \text{ eV} = 1.60 \times 10^{-19}$$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$n = 1.00$$

Elementary Charge.....

Atomic Physics

Energy of an Electron in the 1st Bohr Orbit of Hydrogen
$$E_1 = -2.18 \times 10^{-18}$$
 J or -13.6 eV Planck's Constant $h = 6.63 \times 10^{-34}$ J·s or 4.14×10^{-15} eV·s

Rydberg's Constant for Hydrogen
$$R_{\rm H} = 1.10 \times 10^7 \frac{1}{\rm m}$$

Particles

T at trees	
	Rest Mass
Alpha Particle	$m_{\alpha} = 6.65 \times 10^{-27} \mathrm{kg}$
Electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
Neutron	$m_{\rm n} = 1.67 \times 10^{-27} \mathrm{kg}$
Proton	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$

0 u

Trigonometry and Vectors

$$\sin \theta = \frac{opposite}{hypotenuse}$$

For any Vector R

 $R = \sqrt{R_x^2 + R_y^2}$

$$\cos \theta = \frac{adjacent}{hypotenuse}$$

$$\tan \theta = \frac{opposite}{adjacent}$$

$$\tan \theta = \frac{r_F cons}{adjacent}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$R_{y} = R \sin \theta$$

 $R_x = R\cos\theta$

 $\tan\theta = \frac{R_y}{R_x}$

Graphing Calculator Window Format

 $c^2 = a^2 + b^2 - 2ab\cos C$

clJ	
*	
x_{max}	
[xmin,	

y: [ymin, ymax, yscl]

Prefixes Used With SI Units

	Exp	Exponential		Ex	Exponential
Prefix Sy	Symbol	Value	Prefix Sy	Symbol	Value
pico	d	10 ⁻¹²	tera	T 10^{12}	10 ¹²
nano	$n = 10^{-9}$.10-9	giga	G10 ⁹	109
micro	μ 10 ⁻⁶	.10-6	mega	M10 ⁶	106
milli	m10 ⁻³	.10-3	kilo	k	10 ³
centi	c10 ⁻²	10^{-2}	hecto	h	10 ²
deci	d10 ⁻¹	10^{-1}	deka	da10 ¹	10 ¹

Charge α^{2+}

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\vec{d}}{t}$$

$$\vec{a} = \frac{\vec{v}_{\rm f} - \vec{v}_{\rm i}}{t}$$

$$\vec{a} = \frac{\vec{v_f} - \vec{v_i}}{t}$$

 $\vec{d} = \left(\frac{\vec{v_f} + \vec{v_i}}{2}\right)t$

$$\vec{d} = \vec{v_1}t + \frac{1}{2}\vec{a}t^2$$

 $v_{\rm f}^2 = v_{\rm i}^2 + 2ad$

$$v = \frac{2\pi r}{T}$$

Dynamics

$$\vec{F} = m\vec{a}$$

$$\vec{F}\Delta t = m\Delta \vec{v}$$

$$\vec{F} = m\vec{g}$$

 $g = \frac{Gm_1}{r^2}$

$$F_{
m f} = \mu F_{
m N}$$

 $F_{\rm c} = \frac{mv^2}{}$

$$\vec{F}_{\rm s} = -k\vec{x}$$

$$\vec{F}_{\rm s} = -k\vec{x}$$

$$=-k\vec{x}$$

 $F_{\rm c} = \frac{4\pi^2 mr}{}$

$$\frac{1}{s} = -k\vec{x}$$

Momentum and Energy

$$\vec{p} = m\vec{v}$$

 $E_{\rm k} = \frac{1}{2} m v^2$

$$W = Fd$$

$$W = \Delta E = Fd \cos \theta$$

$$P = \frac{W}{t} = \frac{\Delta E}{t}$$

Waves and Light

$$T = 2\pi\sqrt{\frac{m}{k}}$$

 $\vec{d} = \vec{v}_{\rm f} t - \frac{1}{2} \vec{a} t^2$

$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = \frac{1}{f}$$

 $\lambda = \frac{d\sin\theta}{n}$

4 ||

$$v = f\lambda$$

$$\frac{\lambda_1}{2} = l; \frac{\lambda_1}{4} = l$$

$$\frac{\lambda_1}{2} = l; \frac{\lambda_1}{4} = l$$

 Gm_1m_2

$$m = \frac{h_{i}}{h_{0}} = \frac{-d_{i}}{d_{0}}$$

$$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

Atomic Physics

$$hf = E_{k_{\text{max}}} + W$$

$$W = hf_0$$

 $\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$

$$^{<}_{\max} = qV_{\text{stop}}$$

$$E = hf = \frac{hc}{\lambda}$$

 $r_n = n^2 r_1$

$$N = N_0 \left(\frac{1}{2}\right)^{1/2}$$

Quantum Mechanics and Nuclear Physics

$$E = mc^2$$

 $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$

$$p = \frac{h}{\lambda}$$
$$p = \frac{hf}{c}; E = pc$$

Electricity and Magnetism

$$F_{\rm e} = \frac{kq_1q_2}{r^2}$$

V = IR

$$|\vec{E}| = \frac{kq_1}{r^2}$$

P = IV

$$|ec{E}| = rac{V}{d}$$

$$F_{\rm m} = IlB_{\perp}$$

$$F_{\rm m}=q$$

$$F_{\rm m} = q v B_{\perp}$$

$$V = lvB_{\perp}$$

$$V = lvB_{\perp}$$

$$V = lvB_{\perp}$$

 $R = R_1 + R_2 + R_3$

$$\frac{N_{\rm s}}{N_{\rm s}} = \frac{P_{\rm s}}{V_{\rm s}} = \frac{I_{\rm s}}{I_{\rm p}}$$

$$V_{\rm eff} = 0.707 \ V_{\rm max}$$

 $I_{\rm eff} = 0.707 I_{\rm max}$

Fold and tear along perforation.

No marks will be given for work done on this page.

No marks will be given for work done on this page.

Physics 30 January 2002

Nam

Apply Label With Student's Name

Physics 30

(Last Name)	(Legal First Name)	Y Date of Birth:	Y M D Sex:
Permanent Mailing Address:			
	(Apt./Street/Ave./P.O. Box)	(Village/Town/City)	(Postal Code)
School Code: School:	Signature:	ture:	

No Name

Apply Label Without Student's Name

