CO130: Databases

Functional dependencies Tutorial I - Candidate Keys & Canonical Cover Valentin CLÉMENT - vec16@ic.ac.uk

Department of Computing

A **Relation** R(A, B, C, ...) can admit **functional dependencies** $A \rightarrow B$, $BC \rightarrow AD$,

Definition (Armstrong's axioms)

Reflexivity If $Y \subseteq X$, then $X \to Y$

Augmentation If $X \rightarrow Y$, then $XZ \rightarrow YZ$

Transitivity If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Corollary

Union If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Decomposition If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Pseudotransitivity If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

Composition If $X \rightarrow Y$ and $Z \rightarrow W$, then $XZ \rightarrow YW$

- Closure The *closure* of a set of attributes $S = \{X, Y, ...\}$, noted S^+ , is the set of all attribute which are functionally dependent on attributes in S. A *candidate key* of S is a set K of attributes such that $K^+ = S$
 - Cover a cover of a set of FDs *F* is a set of FDs *G* such that all elements of *F* can be derived from *G* using the axioms mentioned previously

Canonical cover A canonical cover is a *minimal* in the sense that:

- 1. No FD contains an extraneous attribute
- 2. Each LHS of a FD is unique

Algorithm Starting from the initial cover:

- 1. Merge FDs with the same LHS
- 2. Remove extraneous attributes
- 3. Repeat until convergence

Find a *candidate key*, for R(A, B, C, G, H, I), and:

- ► A → B
- ightharpoonup A
 ightharpoonup C
- **▶** *CG* → *H*
- ▶ $CG \rightarrow I$
- ightharpoonup B
 ightarrow H

Relation
$$R(A, B, C, G, H, I)$$

FDs $A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$

► ABCGHI is an obvious (and not very interesting) key

- ► ABCGHI is an obvious (and not very interesting) key
- ▶ $CG \rightarrow I$, and $CG \subset ABCGH$, so ABCGH is a key

- ► ABCGHI is an obvious (and not very interesting) key
- ▶ $CG \rightarrow I$, and $CG \subset ABCGH$, so ABCGH is a key
- ▶ $B \rightarrow H$, and $B \subset ABCG$, so ABCG is a key

- ► ABCGHI is an obvious (and not very interesting) key
- ▶ $CG \rightarrow I$, and $CG \subset ABCGH$, so ABCGH is a key
- ▶ $B \rightarrow H$, and $B \subset ABCG$, so ABCG is a key
- ▶ $A \rightarrow B$, $A \rightarrow C$, so $A \rightarrow BC$; $A \subset AG$, so AG is a key

- ► ABCGHI is an obvious (and not very interesting) key
- ▶ $CG \rightarrow I$, and $CG \subset ABCGH$, so ABCGH is a key
- ▶ $B \rightarrow H$, and $B \subset ABCG$, so ABCG is a key
- ▶ $A \rightarrow B$, $A \rightarrow C$, so $A \rightarrow BC$; $A \subset AG$, so AG is a key
- ▶ Neither A nor G are on the RHS, so no proper subkey exists

- ABCGHI is an obvious (and not very interesting) key
- ▶ $CG \rightarrow I$, and $CG \subset ABCGH$, so ABCGH is a key
- ▶ $B \rightarrow H$, and $B \subset ABCG$, so ABCG is a key
- \blacktriangleright $A \rightarrow B$, $A \rightarrow C$, so $A \rightarrow BC$; $A \subset AG$, so AG is a key
- ▶ Neither A nor G are on the RHS, so no proper subkey exists

Sanity check: $AG \rightarrow ABCG \rightarrow ABCGH \rightarrow ABCGHI$

Given the relation R(A, B, C, D, E, F), and the functional dependencies:

- ightharpoonup AB
 ightharpoonup CD
- **▶** *BD* → *EF*
- ► CE → AF
- ► AD → BEF

Find as many candidate key as possible

► Starting from *ABCDEF*

- ► Starting from *ABCDEF*
- ► AB → CD gives ABEF, nothing more to do

- ► Starting from *ABCDEF*
- ► AB → CD gives ABEF, nothing more to do
- ▶ $BD \rightarrow EF$ gives ABCD. Since $AB \rightarrow CD$, we have AB

- Starting from ABCDEF
- ► AB → CD gives ABEF, nothing more to do
- ▶ $BD \rightarrow EF$ gives ABCD. Since $AB \rightarrow CD$, we have AB
- ▶ $CE \rightarrow AF$ gives BCDE. $BD \rightarrow EF$ gives BCD

- ► Starting from *ABCDEF*
- ► *AB* → *CD* gives *ABEF*, nothing more to do
- ▶ $BD \rightarrow EF$ gives ABCD. Since $AB \rightarrow CD$, we have AB
- ▶ $CE \rightarrow AF$ gives BCDE. $BD \rightarrow EF$ gives BCD
- AD → BEF, ACD, nothing more to do {EDIT: As pointed out during tutorial, we can actually compose AD → BEF and AB → CD to give AD → C, from which we get AD as the candidate key. Sorry, my mistake !}

- Starting from ABCDEF
- ► *AB* → *CD* gives *ABEF*, nothing more to do
- ▶ $BD \rightarrow EF$ gives ABCD. Since $AB \rightarrow CD$, we have AB
- ▶ $CE \rightarrow AF$ gives BCDE. $BD \rightarrow EF$ gives BCD
- AD → BEF, ACD, nothing more to do {EDIT: As pointed out during tutorial, we can actually compose AD → BEF and AB → CD to give AD → C, from which we get AD as the candidate key. Sorry, my mistake !}

The **smallest** one would be AB

Example 3 Canonical Cover

Find a *canonical cover* of:

- ► *A* → *BC*
- **▶** *B* → *C*
- ► A → B
- ightharpoonup AB
 ightharpoonup C

Reminder: An attribute X is extraneous if

$$X \in LHS RHS \subseteq \{LHS - X\}^+$$
 under FDs

 $X \in RHS$ $X \in LHS^+$ under FDs with X removed from RHS

Solution 3 Canonical Cover

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$
Extraneous LHS $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

Solution 3 Canonical Cover

FDs $A \rightarrow BC$, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$ Extraneous LHS $RHS \subseteq \{LHS - X\}^+$ under FDs Extraneous RHS $X \in LHS^+$ under modified FDs

▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \rightarrow C$, $(A)B \rightarrow C$ into $B \rightarrow C$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \to C$, $(A)B \to C$ into $B \to C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \rightarrow C$, $(A)B \rightarrow C$ into $B \rightarrow C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS
- ▶ Is *B* extraneous in $B \to C$? No, because $\emptyset^+ = \emptyset$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \rightarrow C$, $(A)B \rightarrow C$ into $B \rightarrow C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS
- ▶ Is *B* extraneous in $B \to C$? No, because $\emptyset^+ = \emptyset$
- ▶ Is *C* extraneous in $B \to C$? No, because $\{B\}^+ = \{B\}$ then

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \rightarrow C$, $(A)B \rightarrow C$ into $B \rightarrow C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS
- ▶ Is *B* extraneous in $B \to C$? No, because $\emptyset^+ = \emptyset$
- ▶ Is *C* extraneous in $B \to C$? No, because $\{B\}^+ = \{B\}$ then
- ▶ Is *B* extraneous in $A \rightarrow BC$? No, because $\{A\}^+ = \{A, C\}$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \rightarrow C$, $(A)B \rightarrow C$ into $B \rightarrow C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS
- ▶ Is *B* extraneous in $B \to C$? No, because $\emptyset^+ = \emptyset$
- ▶ Is *C* extraneous in $B \to C$? No, because $\{B\}^+ = \{B\}$ then
- ▶ Is B extraneous in $A \to BC$? No, because $\{A\}^+ = \{A, C\}$
- ▶ Is C extraneous in $A \rightarrow BC$? Yes, because $\{A\}^+ = \{A, B\}^+ = \{A, B, C\}$

FDs
$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$, $AB \rightarrow C$

Extraneous RHS $X \in LHS^+$ under modified FDs

- ▶ Merge $A \rightarrow BC$, $A \rightarrow B$ into $A \rightarrow BC$
- ▶ *A* is extraneous in $AB \rightarrow C$, as $C \subseteq \{B\}^+$, since $B \rightarrow C$
- ▶ Merge $B \to C$, $(A)B \to C$ into $B \to C$
- ▶ Is A extraneous in $A \rightarrow BC$? No, never appears on the RHS
- ▶ Is *B* extraneous in $B \to C$? No, because $\emptyset^+ = \emptyset$
- ▶ Is *C* extraneous in $B \to C$? No, because $\{B\}^+ = \{B\}$ then
- ▶ Is B extraneous in $A \to BC$? No, because $\{A\}^+ = \{A, C\}$
- ▶ Is C extraneous in $A \rightarrow BC$? Yes, because $\{A\}^+ = \{A, B\}^+ = \{A, B, C\}$

Canonical Cover: $A \rightarrow B$, $B \rightarrow C$

Find a *canonical cover* of:

- A → BC
- ightharpoonup BC
 ightarrow D
- ightharpoonup AC
 ightarrow D

Reminder: An attribute *X* is extraneous if

 $X \in LHS RHS \subseteq \{LHS - X\}^+$ under FDs

 $X \in RHS$ $X \in LHS^+$ under FDs with X removed from RHS

Solution 4 Canonical Cover

FDs
$$A \rightarrow BC$$
, $BC \rightarrow D$, $AC \rightarrow D$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

► C extraneous in $AC \rightarrow D$: $\{A\}^+ = \{A, B, C\}^+$

Solution 4 Canonical Cover

FDs
$$A \rightarrow BC$$
, $BC \rightarrow D$, $AC \rightarrow D$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

- C extraneous in $AC \rightarrow D$: $\{A\}^+ = \{A, B, C\}^+$
- ▶ Merge $A \rightarrow BC$ and $A \rightarrow D$ into $A \rightarrow BCD$

FDs
$$A \rightarrow BC$$
, $BC \rightarrow D$, $AC \rightarrow D$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

- C extraneous in $AC \rightarrow D$: $\{A\}^+ = \{A, B, C\}^+$
- ▶ Merge $A \rightarrow BC$ and $A \rightarrow D$ into $A \rightarrow BCD$
- ▶ *D* extraneous in $A \to BCD$: $\{A\}^+ = \{A, B, C\}^+ = \{A, B, C, D\}^+$

FDs
$$A \rightarrow BC$$
, $BC \rightarrow D$, $AC \rightarrow D$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

- C extraneous in $AC \rightarrow D$: $\{A\}^+ = \{A, B, C\}^+$
- ▶ Merge $A \rightarrow BC$ and $A \rightarrow D$ into $A \rightarrow BCD$
- ▶ *D* extraneous in $A \to BCD$: $\{A\}^+ = \{A, B, C\}^+ = \{A, B, C, D\}^+$
- ► Nothing more we can do

FDs
$$A \rightarrow BC$$
, $BC \rightarrow D$, $AC \rightarrow D$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

- C extraneous in $AC \rightarrow D$: $\{A\}^+ = \{A, B, C\}^+$
- ▶ Merge $A \rightarrow BC$ and $A \rightarrow D$ into $A \rightarrow BCD$
- ▶ *D* extraneous in $A \to BCD$: $\{A\}^+ = \{A, B, C\}^+ = \{A, B, C, D\}^+$
- ► Nothing more we can do

Conclusion: $A \rightarrow BC$, $BC \rightarrow D$

Find a *canonical cover* of:

- ightharpoonup AB
 ightarrow C
- **▶** *BD* → *EF*
- **▶** *AD* → *GH*
- \rightarrow $A \rightarrow I$
- ► H → J

Reminder: An attribute X is extraneous if

$$X \in LHS RHS \subseteq \{LHS - X\}^+ \text{ under FDs}$$

 $X \in RHS$ $X \in LHS^+$ under FDs with X removed from RHS

Solution 5 Canonical Cover

FDs
$$AB \rightarrow C$$
, $BD \rightarrow EF$, $AD \rightarrow GH$, $A \rightarrow I$, $H \rightarrow J$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

Solution 5 Canonical Cover

FDs
$$AB \rightarrow C$$
, $BD \rightarrow EF$, $AD \rightarrow GH$, $A \rightarrow I$, $H \rightarrow J$
Extraneous LH $RHS \subseteq \{LHS - X\}^+$ under FDs
Extraneous RHS $X \in LHS^+$ under modified FDs

It was a trap!

This is already minimal
We can't do anything there

- Candidate Keys Start from trivial key (all attributes), and iteratively eliminate some using FDs
 - All Keys Do the above for all possible combinations of FDs (many can be trivially skipped)
- Canonical cover Apply the following algorithm:
 - Merge any similar LHS
 - Remove any extraneous attributes:

$$X \in LHS \ RHS \subseteq \{LHS - X\}^+$$
 under FDs $X \in RHS \ X \in LHS^+$ under modified FDs

Questions?