a point (x, y, z) in a torus is represented as $x(\theta, \eta) = R\cos\theta + r\cos\eta\cos\theta$ $y(\theta, \eta) = R \sin \theta + r \cos \eta \sin \theta$

Here, we consider an example of a space deforming from a sphere to a torus. For R > r > 0,

$$y(\theta,\eta)=R\sin\theta+r\cos\eta\sin\theta$$
 $z(\eta)=r\sin\eta$ are $\theta\in[-\pi,\pi]$ and $\eta\in[-\pi,\pi]$. For $R,r>0$, we consider the

different positive definite kernels, and Figure 6.6 are the results.

where $\theta \in [-\pi, \pi]$ and $\eta \in [-\pi, \pi]$. For R, r > 0, we consider the following space:

is a torus. On the other hand, if
$$R < r$$
, then the space $T_{R,r}$ is homotopy equivalent to a sphere S^2 , that is, topological properties of $T_{R,r}$ change before and after $R = r$ (Figure 6.5). We will characterize this topological change by the kernel PCA for the persistence diagrams.

 $T_{R,r} := \left\{ (x(\theta, \eta), y(\theta, \eta), z(\eta)) \middle| \begin{array}{l} \theta \in [-\pi, \pi], \\ \eta \in [-\pi + \arccos(\min\{1, R/r\}), \pi - \arccos(\min\{1, R/r\})] \end{array} \right\}$

Let $X_{R,r}$ denote a 500-point set of uniform sampling from $T_{R,r}$. If R > r, then the space $T_{R,r}$

Figure 6.5: Sampling from $T_{R,r}$ for R < r (left, sphere), R = r (middle), and R > r (right, torus).

Let $R_{\ell} := r(1/2 + \ell/40)$ ($\ell = 0, \dots, 40$) and X_{ℓ} denote $X_{R_{\ell},r}$. Then, a topological change of $\{X_\ell\}_{\ell=1}^{40}$ is considered to happen at $\ell=20$. We apply the kernel PCA to $\{D_1(\mathbb{B}(X_\ell))\}_{\ell=1}^{40}$ with