ECON220B Discussion Section 5 Selection on Observables

Lapo Bini

Roadmap

1. From RCT to Selection on Observables

2. Inverse Probability Weighting

3. Regression Adjustment Estimator

4. Propensity Score and Heavy-Tailed Distributions

Potential Outcome Framework

- Treatment: $x_i = 1\{treated\}$
- Observed outcome: $y_i = x_i y_i(1) + (1 x_i) y_i(0)$
- RCT assumption: $x_i \perp (y_i(1), y_i(0))$

RCT: randomization equalizes everything other than the treatment in the treatment and control group. Fine for randomized experiment, what about observational studies?

Cancer & Smoking

"Considerable propaganda is now being developed to convince the public that cigarette smoking is dangerous." - Sir. Ronald Fisher (1958)

What was his argument?

"[...] run the risk of failing to recognize, and therefore failing to prevent, other and more genuine causes"

Different Identification Strategies

Starting point is conditional independence, or uncounfoundedness, or selection on observables:

$$x_i \perp (y_i(1), y_i(0))|w_i$$

i.e. all confounders have already been identified and accounted for by the set of covariates. Then two possible ways to estimate $\tau_{ATE} \equiv E[y_i(1) - y_i(0)]$

Inverse Probability Weighting (1/2)

- We model how the treatment take-up decision x_i is related with the covariates w_i , re-weighting each observation by the likelihood of receiving the treatment.
- Overlap condition: $0 < P(x_i = 1 | w_i = \mathbf{w}) < 1$, i.e. for a particular characteristic $w_i = \mathbf{w}$ if we observe some treated unit, then we should be able to observe some untreated unit as well.
- $E\left[\frac{x_iy_i}{e(w_i)}\right] =$

Inverse Probability Weighting (2/2)

• The propensity score $e(w_i) \equiv P(x_i = 1 | w_i = \mathbf{w})$ is a balancing score: after conditioning on the propensity score, the distribution of the treatment is the same for treated and untreated:

$$x_i \perp w_i | e(w_i)$$

• $e(w_i)$ is all you need to know: sufficient statistic for x_i .

More About Overlap Condition

Note:
$$0 < P(x_i = 1 | w_i = \mathbf{w}) < 1 \iff f_{w|x_i=1}(\mathbf{w}) > 0, f_{w|x_i=0}(\mathbf{w}) > 0$$

Proof

Regression Adjustment Estimator

Do we really need overlap condition? No \rightarrow linearity assumption: interaction effect of covariates and treatment

$$\tau_{ATE} = E[y_i(1) - y_i(0)] = E[y_i(1)] - E[y_i(0)]$$

$$\tau_{ATE} = E[E[y_i(1)|w_i] - E[y_i(0)|w_i]]$$

$$\tau_{ATE} = E[E[y_i(1)|w_i, x_i = 1] - E[y_i(0)|w_i, x_i = 0]]$$

$$\tau_{ATE} = E[E[y_i|w_i, x_i = 1] - E[y_i|w_i, x_i = 0]]$$

$$\tau_{ATE} = E[g_1(w_i) - g_0(w_i)] = E[w_i^T \delta_1 - w_i^T \delta_0] = \mu_w^T (\delta_1 - \delta_0)$$

Consider the inverse probability weighting estimator:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i y_i}{e(w_i)}$$

where x_i is the binary indicator of treatment status, y_i is the outcome variable, and w_i represents the covariates. For simplicity, we assume that the propensity score, $e(wi) = P[x_i = 1|w_i]$, is known. In addition, assume y_i is bounded

Heavy-Tailed Distributions

Some useful definitions:

- A distribution is heavy-tailed if $E[tX] = \infty \ \forall t > 0$
- A distribution is light-tailed if it is not heavy-tailed.
- A distribution is light-tailed if $E[X^k] < \infty \ \forall t > 0$

Q.1 - Assume strong overlap, show that
$$E\left[\left|\frac{x_iy_i}{e(w_i)}\right|^2\right] < \infty$$
 then conclude $\operatorname{Var}(\hat{\theta}) < \infty$.

Q.2 - Now assume the propensity score can be arbitrarily close to zero $P(e(w_i) \leq \delta) = \delta^{\gamma}$. What will happen if γ is small?

Q.3 - Take $\gamma = 2$. Plot the density function of the propensity score. Is this sufficient to show that $E\left[\left|\frac{x_iy_i}{e(w_i)}\right|^2\right] < \infty$?

Q.3 - Take $\gamma = 2$. Plot the density function of the propensity score. Is this sufficient to show that $E\left[\left|\frac{x_iy_i}{e(w_i)}\right|^2\right] < \infty$?

Q.4 - Discuss what will happen if $\gamma < 1$.