#### **TOY MONTE CARLO MACRO**

- Made a new ROOT macro, which produces a Toy Montecarlo file and applies our Kalman Filter to it
- This is now completely independent from the art infrostructure and can be run directly from my machine
- Also, while it produces the same final results it is structured differently so that the toy Montecarlo and Kalman filter application are not done in parallel anymore, but are done one after the other.
- This allows for both a simple file with just xyz info and a post kalman filter file with all the info to be produced quite naturally



### **TOY MONTE CARLO**

KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

• To check that the Macro is working properly I compare the original helix plots with the ones produced using the new macro







#### **TOY MONTE CARLO** KFTM: $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$

KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

To check that the Macro is working properly I compare the original helix plots with the ones produced using the new macro







#### **TOY MONTE CARLO**

KF<sup>TM</sup>:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 



#### **TOY MONTE CARLO MACRO**

- I produced Toy Montecarlo files with randomized *dx* step uniformely distributed between 0.02cm and 0.06cm and smeared coordinates
- Proceeded in order smearing first the coordinates individually, then two at a time than all 3 at the same time
- I applied Gaussian smearing to the three coordinates having sigmas:  $\sigma_{Gauss}^{\chi} = 0.04cm$  and  $\sigma_{Gauss}^{y} = \sigma_{Gauss}^{z} = 3cm$
- I applied our Kalman Filter<sup>TM</sup> with  $(\sigma_x, \sigma_y) = (0.5cm, 1cm)$



3D plot of the helix when all three coordinates are smeared

# **TOY MONTE CARLO: SMEARED X**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $\sigma_{Gauss}^{x} = 0.04cm$ 



### TOY MONTE CARLO: SMEARED X





KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$\sigma_{Gauss}^{x} = 0.04cm$$



# **TOY MONTE CARLO: SMEARED Y**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $\sigma_{Gauss}^{y} = 3cm$ 



### **TOY MONTE CARLO: SMEARED Y**







KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$\sigma_{Gauss}^{y} = 3cm$$



# TOY MONTE CARLO: SMEARED Z





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $\sigma_{Gauss}^{z} = 3cm$ 



#### TOY MONTE CARLO: SMEARED Z





KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss:  $\sigma_{Gauss}^{x} = 3cm$ 



# **TOY MONTE CARLO: SMEARED XY**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $(\sigma_{Gauss}^x, \sigma_{Gauss}^y) = (0.04cm, 3cm)$ 



### **TOY MONTE CARLO: SMEARED XY**



KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$(\sigma_{Gauss}^x, \sigma_{Gauss}^y) = (0.04cm, 3cm)$$



# **TOY MONTE CARLO: SMEARED YZ**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $(\sigma_{Gauss}^y, \sigma_{Gauss}^z) = (3cm, 3cm)$ 



#### **TOY MONTE CARLO: SMEARED YZ**



KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$(\sigma_{Gauss}^y, \sigma_{Gauss}^z) = (3cm, 3cm)$$



# **TOY MONTE CARLO: SMEARED XZ**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $(\sigma_{Gauss}^x, \sigma_{Gauss}^z) = (0.04cm, 3cm)$ 



### **TOY MONTE CARLO: SMEARED XZ**



KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$(\sigma_{Gauss}^x, \sigma_{Gauss}^z) = (0.04cm, 3cm)$$



# **TOY MONTE CARLO: SMEARED XYZ**





KFTM:  $(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$ 

Gauss:  $(\sigma_{Gauss}^x, \sigma_{Gauss}^y, \sigma_{Gauss}^z) = (0.04cm, 3cm, 3cm)$ 



FILTER PROPAGATION DIRECTION

### **TOY MONTE CARLO: SMEARED XYZ**



KFTM: 
$$(\sigma_x, \sigma_{yz}) = (0.5cm, 1cm)$$

Gauss: 
$$(\sigma_{Gauss}^x, \sigma_{Gauss}^y, \sigma_{Gauss}^z) = (0.04cm, 3cm, 3cm)$$

