

TEMA 5: APLICACIONES PROYECTIVAS

Problema 1. Dadas $f: \mathbb{P}(V) \dashrightarrow \mathbb{P}(V')$ y $g: \mathbb{P}(V)' \dashrightarrow \mathbb{P}(V'')$ aplicaciones afines con aplicaciones lineales asociadas $\hat{f}: V \longrightarrow V'$ y $\hat{g}: V' \longrightarrow V''$, demuestra que im $f \not\subset Z(g)$ equivale a $\hat{g} \circ \hat{f} \neq 0$ que es la condición para que la composición $g \circ f$ esté definida.

Problema 2. Demuestra las igualdades

$$f(X \setminus Z(f)) = \mathbb{P}(\widehat{f}(\widehat{X}))$$

$$f^{-1}(Y) \cup Z(f) = \mathbb{P}(\widehat{f^{-1}}(\widehat{Y})).$$

Problema 3. Sea $f: \mathbb{P}^4_{\mathbb{R}} \dashrightarrow \mathbb{P}^4_{\mathbb{R}}$ una aplicación proyectiva definida en todo $\mathbb{P}^3_{\mathbb{R}}$ excepto una recta proyectiva L

- a) Calcula la dimensión de su imagen.
- b) Dada otra recta proyectiva $M \neq L$ tal que $L \cap M \neq \emptyset$, calcula la dimensión de f(M).

Problema 4. Sea $f: \mathbb{P}^4_{\mathbb{R}} \dashrightarrow \mathbb{P}^3_{\mathbb{R}}$ una aplicación proyectiva cuya aplicación lineal asociada sobreyectiva. Calcula la dimensión de su centro.

Problema 5. Comprueba que

$$\mathcal{R} := \{ P_0 := [0:1:0], P_1 := [-1:0:1], P_2 := [1:-1:1]; P_3 := [0:1:2] \},$$

у

$$\mathcal{R}' := \{Q_0 := [1:0:1], Q_1 := [2:0:1], Q_2 := [-1:-1:1]; Q_3 := [1:-1:0]\}.$$

son referencias proyectivas en $\mathbb{P}^2_{\mathbb{R}}$. Obtén la matriz de la única homografía f tal que $f(P_i) = Q_i$, i = 0, 1, 2, 3, respecto de la referencia canónica en $\mathbb{P}^2_{\mathbb{R}}$.

Problema 6. Demuestra que la completación proyectiva de una homotecia restringida a la carta afín A, $\overline{\eta}|_A$, tiene un único punto fijo y calcula sus coordenadas.

Problema 7. Sea $f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^3_{\mathbb{R}}$ la traslación de vector $\overrightarrow{v} = (-1, 1, 2)$.

- a) Obtén la matriz de su completación proyectiva $f: \mathbb{P}^3_{\mathbb{R}} \longrightarrow \mathbb{P}^3_{\mathbb{R}}$ respecto de la referencia proyectiva estándar en $\mathbb{P}^3_{\mathbb{R}}$.
- b) Describe de qué aplicación proyectiva se trata y calcula sus puntos fijos y sus subespacios invariantes.

Problema 8. Sea $f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^3_{\mathbb{R}}$ la homotecia de razón $\lambda = 2$ y centro C = (0, 2, -1).

- a) Obtén la matriz de su completación proyectiva $f: \mathbb{P}^3_{\mathbb{R}} \longrightarrow \mathbb{P}^3_{\mathbb{R}}$ respecto de la referencia proyectiva estándar en $\mathbb{P}^3_{\mathbb{R}}$.
- b) Describe de qué aplicación proyectiva se trata y calcula sus puntos fijos y sus subespacios invariantes.

Problema 9. Sea $L := \{x_2 - x_1 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ y consideremos los puntos $P_0 := [1:0:1]$, $P_1 := [1:-1:1]$ y Q := [2:-1:2].

- a) Calcula la razón de la homotecia $\eta: \mathbb{P}^2_{\mathbb{R}} \backslash L \longrightarrow \mathbb{P}^2_{\mathbb{R}} \backslash L$ de centro P_0 y que transforma P_1 en Q.
- b) Obtén una matriz de su completación proyectiva respecto de la referencia proyectiva estándar.

Problema 10. Dada la recta $L := \{x_0 + x_1 + x_2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ y los puntos P := [1:0:1] y Q := [1:2:1]:

- a) Calcula el vector de traslación de la homotecia $\tau: \mathbb{P}^2_{\mathbb{R}} \backslash L \longrightarrow \mathbb{P}^2_{\mathbb{R}} \backslash L$ que transforma P en Q.
- b) Obtén una matriz de su completación proyectiva respecto de la referencia proyectiva estándar.

Problema 11. Dada la homografía $f: \mathbb{P}^2_{\mathbb{R}} \longrightarrow \mathbb{P}^2_{\mathbb{R}}$

$$f([x_0:x_1:x_2]=[x_1+x_2:x_0+x_2,x_0+x_1]),$$

representa matricialmente f respecto de la referencia proyectiva canónica y calcula sus puntos fijos y sus subespacios invariantes.

Problema 12. Estudia los puntos fijos de la homografía $f: \mathbb{P}^2_{\mathbb{R}} \longrightarrow \mathbb{P}^2_{\mathbb{R}}$ con matriz

$$M_{\mathcal{R}_c \mathcal{R}_c}(f) = \begin{pmatrix} 0 & -1 & 1 \\ 10 & 7 & -5 \\ 6 & 3 & -1 \end{pmatrix}.$$

respecto de la referencia proyectiva canónica en $\mathbb{P}^2_{\mathbb{R}}$. Averigua y describe de qué aplicación afín puede f ser completación proyectiva.

Problema 13. Estudia los puntos fijos de la homografía $f: \mathbb{P}^2_{\mathbb{R}} \longrightarrow \mathbb{P}^2_{\mathbb{R}}$ con matriz

$$M_{\mathcal{R}_c \mathcal{R}_c}(f) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ -1 & 2 & 3 \end{pmatrix}.$$

respecto de la referencia proyectiva canónica en $\mathbb{P}^2_{\mathbb{R}}$. Averigua y describe de qué aplicación afín puede f ser completación proyectiva.

Problema 14. Considera los $P_1 = [0:1:0]$, $P_2 = [1:2:1]$, $Q_1 = [-1:1:0]$, $Q_2 = [-1:-1:2]$ en el plano proyectivo $\mathbb{P}^2_{\mathbb{R}}$. Sea L la recta que pasa por P_1 y P_2 y M la recta que pasa por Q_1 y Q_2 .

- a) Describe la perspectividad entre L y M con centro R = [0:0:1].
- b) Obtén referencias proyectivas de L y M que compartan el primer punto y la matriz de la perspectividad respecto de estas referencias sea la identidad.

Problema 15. Sean el punto P=(2,1) en el plano afín real $\mathbb{A}^2_{\mathbb{R}}$ y las rectas vectoriales $W=\mathcal{L}\{(-1,1)\}$ y $U=\mathcal{L}\{(0,1)\}$ de \mathbb{R}^2 . Sea π la proyección afín sobre B:=P+W con dirección U. Estudia su completación proyectiva obteniendo su matriz, sus puntos fijos y subespacios invariantes en $\mathbb{P}^2_{\mathbb{R}}$.

Problema 16. Considera en $\mathbb{A}^3_{\mathbb{R}}$ el punto P = (0,1,3) y los subespacios vectoriales $W = \mathcal{L}\{(-1,1,1),(0,1,0)\}$ y $U = \mathcal{L}\{(1,1,0)\}$ de \mathbb{R}^3 . Sea σ la simetría afín respecto de B := P + W con dirección U. Estudia su completación proyectiva obteniendo su matriz, sus puntos fijos y subespacios invariantes en $\mathbb{P}^3_{\mathbb{R}}$.

Problema 17. Determina los puntos fijos P y Q de la homografía de la recta proyectiva

$$f([x_0:x_1]) = [-x_1:2x_0+3x_1]$$

y calcula la razón doble [P, Q, R, f(R)], donde R := [2:5].

Problema 18. Prueba que dados cuatro puntos distintos P, Q, R, S de una recta proyectiva se cumple que las siguientes razones dobles son inversas:

$$[P, Q, R, S] \cdot [Q, P, R, S] = 1.$$

Problema 19. Demuestra que dados cinco puntos distintos P, Q, R, S, T de una recta proyectiva se cumple la propiedad multiplicativa

$$[P, Q, R, S] \cdot [P, Q, S, T] = [P, Q, R, T].$$

Problema 20. Sean P := [1:1], Q := [2:1] y R := [-1:2] puntos de la recta proyectiva real.

- a) Calcula la matriz respecto de la referencia proyectiva canónica de la única homografía $f: \mathbb{P}^1_{\mathbb{R}} \longrightarrow \mathbb{P}^1_{\mathbb{R}}$ que cumple f(P) = [0:1], f(Q) = [1:0] y f(R) = [1:1].
- b) Calcula el cuarto armónico S de P, Q y R y su imagen por f.
- c) Comprueba que f preserva la razón doble de estos cuatro puntos y, por tanto, f(S) es el cuarto armónico de f(P), f(Q) y f(R).

Problema 21. Sean los puntos P := [1:-1], Q := [3:-1] y R := [1:0] en $\mathbb{P}^1_{\mathbb{R}}$.

- a) Dado un escalar $\lambda \in \mathbb{R}$, halla el punto $S_{\lambda} \in \mathbb{P}^{1}_{\mathbb{R}}$ tal que $[P, Q, R, S_{\lambda}] = \lambda$.
- b) Usa a) para obtener el cuarto armónico S de P, Q y R.
- c) Ahora supón que los puntos P, Q, R pertenecen a la recta proyectiva compleja $\mathbb{P}^1_{\mathbb{C}}$ y responde a los apartados a) y b).

Problema 22. Dados los puntos P = [1:0:0], Q = [1:1:1], R = [0:1:1] y S = [-2:1:1] de $\mathbb{P}^2_{\mathbb{K}}$

- a) Comprueba que están alineados.
- b) Calcula la razón doble [P, Q, R, S].
- c) Halla un punto T tal que Q, R, S, T, en este orden, forman una cuaterna armónica.

Problema 23. Calcula el cuarto armónico de los puntos P = [1:i], Q = [-i:2] y R = [0:-i], en la recta proyectiva compleja $\mathbb{P}^1_{\mathbb{C}}$.