ConvNets, continued

Generic Image-to-Image Translation

First – Two "Wrong" Ways

It's helpful to see two "wrong" ways to do this.

Why Not Stack Convolutions?

n 3x3 convs have a receptive field of 2n+1 pixels

How many convolutions until >=200 pixels?

100

Why Not Stack Convolutions?

Suppose 200 3x3 filters/layer, H=W=400

Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*

*100 layers, batch size of 20 = 238GB of memory!

ldea #2

Crop out every sub-window and predict the label in the middle.

Image credit: PASCAL VOC, Everingham et al.

ldea #2

Meet "Gabor". We extract NxN patches and do independent CNNs. How many times does Gabor filter the red pixel?

Gabor

Answer: (2n-1)*(2n-1)

Image credit: PASCAL VOC, Everingham et al.

The Big Issue

We need to:

- 1. Have large receptive fields to figure out what we're looking at
- 2. Not waste a ton of time or memory while doing so

These two objectives are in total conflict

Encoder-Decoder

Key idea: First **downsample** towards middle of network. Then **upsample** from middle.

How do we downsample?

Convolutions, pooling

Where Do We Get Parameters?

Convnet that maps images to vectors

Recall that we can rewrite any vector-vector operations via 1x1 convolutions

Where Do We Get Parameters?

Convnet that maps images to vectors

Convnet that maps images to images

What if we make the input bigger?

Where Do We Get Parameters?

Convnet that maps images to vectors

Convnet that maps images to images

How Do We Upsample?

Do the opposite of how we downsample:

- 1. Pooling → "Unpooling"
- 2. Convolution →"Transpose Convolution"

Recall: Pooling

Now: Unpooling

Putting it Together

Convolutions + pooling downsample/compress/encode Transpose convs./unpoolings upsample/uncompress/decode

Putting It Together – Block Sizes

- Networks come in lots of forms
- Don't take any block sizes literally.
- Often (not always) keep some spatial resolution

Encode to spatially smaller tensor, then decode.

Encode to 1D vector then decode

Missing Details

While the output *is* HxW, just upsampling often produces results without details/not aligned with the image.

Why?

Information about details lost when downsampling!

Missing Details

Where is the useful information about the high-frequency details of the image?

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014

Missing Details

How do you send details forward in the network?
You copy the activations forward.
Subsequent layers at the same resolution figure out how to fuse things.

U-Net Extremely popular architecture, was originally used for biomedical image segmentation.

Evaluating Pixel Labels

How do we convert final HxWxF into labels?

argmax over labels

Evaluating Semantic Segmentation

Given predictions, how well did we do?

Input

Prediction (\hat{y})

Ground-Truth (y)

What about continuous labels?

Grayscale image: L channel

Zhang, Isola, Efros. *Colorful Image Colorization*. In *ECCV*, 2016.

Color information: ab channels

Grayscale image: L channel

$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$

Concatenate (L,ab) channels $(\mathbf{X}, \widehat{\mathbf{Y}})$

$$\begin{array}{c|c} L & \longrightarrow & \begin{array}{c} \\ \end{array} & \begin{array}{c}$$

Zhang, Isola, Efros. *Colorful Image Colorization*. In *ECCV*, 2016.

Regressing to pixel values doesn't work ®

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

Slide by Richard Zhang

Better Loss Function

Colors in ab space

(discrete)

$$\theta^* = \arg\min_{\theta} \ell(\mathcal{F}_{\theta}(\mathbf{X}), \mathbf{Y})$$

Regression with L2 loss inadequate

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

• Use per-pixel multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

Slide by Richard Zhang

Designing pixel loss functions

Input

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

Designing pixel loss functions

Image colorization

Cross entropy loss, with colorfulness term

[Zhang et al. 2016]

Super-resolution

[Johnson et al. 2016]

"semantic feature loss" (VGG feature covariance matching objective)

Universal loss?

Generated images Generative Adversarial Network (GANs) Generated vs Real (classifier) Real photos [Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

G tries to synthesize fake images that fool D

D tries to identify the fakes

$$\operatorname{arg\,max}_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

G tries to synthesize fake images that fool D:

$$\arg\min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

G's perspective: D is a loss function.

Rather than being hand-designed, it is learned.

$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

$$\operatorname{arg\,min}_{G} \operatorname{max}_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1-D(\mathbf{y}))]$$

 $\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(\mathbf{x},G(\mathbf{x})) + \log(1 - D(\mathbf{x},\mathbf{y}))]$

BW --> Color

Data from [Russakovsky et al. 2015]

BW --> Color

Data from [Russakovsky et al. 2015]

Data from [maps.google.com]

Input Output Groundtruth

Data from [maps.google

Labels — Facades

Input Output

Labels --> Facades

Data from [Tylecek, 2013]

Day --> Night

Data from [Laffont et al., 2014]

Thermal --> RGB

Edges -- Images

Sketches -- Images

Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

Scott Eaton (http://www.scott-eaton.com/)

Capturing Statistics: Fast Activations and Slow Parameters

Deep nets are data transformers

- Deep nets transform datapoints, layer by layer
- Each layer is a different representation of the data
- We call these representations embeddings

Two different ways to represent a function

Two different ways to represent a function

Data transformations for a variety of neural net layers

Wiring graph

Equation

Mapping 1D

Mapping 2D

$$\mathbf{x}_{\mathtt{out}} = \mathbf{W}\mathbf{x}_{\mathtt{in}} + \mathbf{b}$$

$$x_{\mathtt{out}_i} = \max(x_{\mathtt{in}_i}, 0)$$

Layer 1 representation

Layer 6 representation

[DeCAF, Donahue, Jia, et al. 2013]

[Visualization technique: t-sne, van der Maaten & Hinton, 2008]

- structure, construction
- covering
- commodity, trade good, good
- conveyance, transport
- invertebrate
- bird
- hunting dog

Can be used as a generic feature

("CNN code" = 4096-D vector before classifier)

query image

nearest neighbors in the "code" space