Tan Jieqi

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

	05:00	07:00	10:00	14:00	18:00	7:00 pm	21:00
	Cloud	Cloud	Cloud	Cloud	PartlyCloud	Fog	Fog
Effective temperature	9 ° C	9°C	9 ° C	11 ° C	9 ° C	9 ° C	10 ° C
Perceived temperature	9 ° C	9°C	9 ° C	11 ° C	8 ° C	8 ° C	10 ° C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Humidity	96 %	96 %	97 %	95 %	99 %	99 %	97 %
Atmospheric pressure	1022 hPa	1021 hPa	1022 hPa	1019 hPa	1018 hPa	1018 hPa	1017 hPa
Wind intensity	1 km / h	2 km / h	3 km / h	6 km / h	6 km / h	6 km / h	4 km / h
Wind direction	^	\	t	—	>	>	^
Probability of fog	NEITHER 0 %	0 %	1 %	0 %	SELF 0 %	53 %	NEITHER 55 %
Dew point	8 ° C	8 ° C	9 ° C	10 ° C	9 ° C	9 ° C	9 ° C
Clouds	100 %	100 %	97 %	100 %	50 %	84 %	98 %
Low clouds	99 %	100 %	96 %	99 %	36 %	68 %	66 %
Medium clouds	87 %	9 %	29 %	95 %	34 %	48 %	97 %
High clouds	95 %	66 %	9 %	1 %	0 %	0 %	0 %

P = 1.022kPa

 $\phi = 96\%$

 $T = 9^{\circ}C$

A = 10 * 8 * 5

As we can see in the chart:

$$\omega = 0.0045$$

$$T_{wb} = 5^{\circ}C$$

when:
$$\omega = 0.0045 = 0.622 \frac{P_v}{P_a} = 0.622 \frac{P_v}{P - P_v}$$

$$P_{\rm v}=1.3584kPa$$

$$P_a = 101.456kPa$$

$$Then --> m = \frac{PV}{TRsp}$$

$$m_a = \frac{P_a V_a}{TRa} = 503.21 kg$$

$$m_v = \frac{P_v V_a}{TRv} = 4.19 kg$$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

$$\begin{aligned} & Q_{igsensible} = 136 + 2.2 A_{cf} + 22 N_{oc} = 620 W \\ & Q_{iglaten} = 20 + 0.22 A_{cf} + 12 N_{oc} = 88 W \end{aligned}$$

-->

$$\begin{split} A_{\rm ul} &= 1.4 \text{cm}^2/\text{m}^2 \\ A &= A_{\rm wall} + A_{\rm roof} = 344 \text{m}^2 \\ --> T_{\rm cooling} &= 24 ^{\circ}\text{C} --> \Delta T_{\rm cooling} = 7.1 K \\ --> T_{\rm heating} &= 20 ^{\circ}\text{C} --> \Delta T_{\rm cooling} = 24.1 K \\ DR &= 7.1 ^{\circ}\text{C} \end{split}$$
 Then

 $IDF_{cooling} = 0.33 \frac{L}{s * cm^2}$

$$IDF_{heating} = 0.073 \frac{L}{s * cm^2}$$

$$Q_{\text{inf-,heating}} = A * IDF_{\text{heating}} = 35.15 \frac{L}{s}$$

$$Q_{\text{inf-,cooling}} = A*IDF_{\text{cooling}} = 15.89 \frac{L}{s}$$

$$Q_v = 0.05 A_{cf} + 3.5(N_{br} + 1) = 17 \frac{L}{s}$$

$$Q_{\text{inf-v,heating}} = Q_{\text{inf-heating}} + Q_{\text{v}} = 52.15 \frac{L}{s}$$

$$Q_{\text{inf-v,cooling}} = Q_{\text{inf-cooling}} + Q_{\text{v}} = 32.89 \frac{L}{s}$$

So

$$C_{sensible} = 1.23$$

$$C_{latent} = 3010$$

$$\Delta\omega_{cooling} = 0.0039$$

$$\begin{split} q_{\text{inf-v,cooling, sensible}} &= C_{\text{sensible}} \mathbf{Q}_{\text{inf-v,cooling}} \Delta \mathbf{T}_{\text{cooling}} = 287.25 \text{w} \\ q_{\text{inf-v,cooling, latent}} &= C_{\text{latent}} \mathbf{Q}_{\text{inf-v,cooling}} \Delta \omega_{\text{cooling}} = 386.13 \text{w} \\ q_{\text{inf-v,heating, sensible}} &= C_{\text{sensiblet}} \mathbf{Q}_{\text{inf-v,heating}} \Delta \mathbf{T}_{\text{cooling}} = 1546 \text{w} \end{split}$$