Summary | Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Section formula

Suppose O is the reference point, and P,Q are 2 points.

If R divides the line segment PQ in the ratio m:n (both are positive and $m\geq n$), the division can either be internal or external.

Internally

$$\overrightarrow{\mathrm{OR}} = \frac{\overrightarrow{m\mathrm{OQ}} + \overrightarrow{n\mathrm{OP}}}{m+n}$$

Externally

$$\overrightarrow{OR} = \frac{\overrightarrow{mOQ} - \overrightarrow{nOP}}{\overrightarrow{m} - n}$$

Direction Cosines

Suppose $\vec{p}=a\underline{i}+b\underline{j}+c\underline{k}$. Direction cosines of p are $\cos\alpha,\cos\beta,\cos\gamma$ where α,β,γ are the angles p makes with x,y,z axes.

Unit vector in the direction of $\vec{p}=\underline{i}\cos\alpha+\underline{j}\cos\beta+\underline{k}\cos\gamma$. Because of this:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Direction Ratio

Ratio of the direction cosines is called as direction ratio.

$$\cos \alpha : \cos \beta : \cos \gamma$$

Cross Product

$$a imes b = |a||b|sin(heta)n = \detegin{pmatrix} i & j & k \ a_x & a_y & a_z \ b_x & b_y & b_z \end{pmatrix}$$

n is the **unit normal vector** to a and b. Direction is based on the right hand rule.

$$a \times b = 0 \implies |a| = 0 \lor |b| = 0 \lor a \parallel b$$

Cross products between i, j, k are circular.

$$i \times j = k$$

$$j \times i = -k$$

$$j \times k = i$$

$$k \times i = j$$

$$k \times i = j$$

(i) Note

Area of a parallelogram $\overrightarrow{ABCD} = | \vec{AB} imes \vec{AD} |$

Scalar Triple Product

$$[a,b,c] = a \cdot (b imes c) = \det egin{pmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \end{pmatrix}$$

$$[a,b,c] = a \cdot (b \times c) = (a \times b) \cdot c$$

$$[a,b,c] = [b,c,a] = [c,a,b] = -[a,c,b]$$

 $\left[a,b,c
ight]=0$ iff a, b, c are coplanar. Swapping any 2 vectors will negate the product.

(i) Note

Volume of a parallelepiped with a, b, c as adjacent edges = [a,b,c]

Volume of a tetrahedron with a, b, c as adjacent edges $= rac{1}{6}[a,b,c]$

Vector Triple Product

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

Resulting vector lies in the plane that contains $oldsymbol{b}$ and $oldsymbol{c}$

Vector Equation of Straight Lines

Passes through a point & parallel to a vector

Equation for a line that:

- passes through $\,\underline{r_0} = \langle x_0, y_0, z_0
 angle \,$
- is parallel to $\underline{v}=a\underline{i}+b\underline{j}+c\underline{k}$

Parametric equation

$$\underline{r}=r_0+t\underline{v};\;t\in\mathbb{R}$$

Symmetric equation

$$rac{x-x_0}{a}=rac{y-y_0}{b}=rac{z-z_0}{c}$$

Passes through 2 points

Equation of a line passes through $A=(x_1,y_1,z_1)$, $B=(x_2,y_2,z_2)$. $\underline{r_A}$ and $\underline{r_B}$ are the position vectors of A and B.

Parametric equation

$$\underline{r}=(1-t)r_A+tr_B;\;t\in\mathbb{R}$$

Symmetric equation

$$rac{x-x_1}{x_2-x_1}=rac{y-y_1}{y_2-y_1}=rac{z-z_1}{z_2-z_1}$$

(i) Note

To show that two straight lines intersect in 3D space, it is **not** enough to show that the cross product of their parallel vectors is non-zero.

Also: Existence of a point which satisfies both lines must be proven.

Normal to 2 lines

Let α, β be two lines.

$$lpha:rac{x-x_1}{a_1}=rac{y-y_1}{b_1}=rac{z-z_1}{c_1};\;\;eta:rac{x-x_2}{a_2}=rac{y-y_2}{b_2}=rac{z-z_2}{c_2}$$

Here $v_1=\langle a_1,b_1,c_1
angle$, $v_2=\langle a_2,b_2,c_2
angle$ are 2 vectors parallel to lpha,eta respectively.

Normal to both lines: $v_1 imes v_2$. Unit normal to both lines can be found by:

$$rac{v_1 imes v_2}{|v_1 imes v_2|}$$

Angle between 2 straight lines

Using the α, β lines mentioned above:

$$\cos heta = rac{v_1 \cdot v_1}{|v_1| \cdot |v_2|} = rac{(a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}) \cdot (a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k})}{|a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}| \cdot |a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}|}$$

Here v_1, v_2 are 2 vectors parallel to lpha, eta respectively.

Shortest distance to a point

Suppose x_1 and x_2 lie on a line. Shortest distance to the point P is:

$$d^2 = rac{\left| (\underline{x_2} - \overrightarrow{OP}) imes (\underline{x_1} - \overrightarrow{OP})
ight|^2}{\left| \underline{x_2} - \underline{x_1}
ight|^2}$$

Vector Equation of Planes

Contains a point and parallel to 2 vectors

Suppose a plane:

- is parallel to both $\, \underline{a} \,$ and $\, \underline{b} \,$
- contains $\underline{r_0} = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$

Equation for the plane is:

$$\underline{r}=\underline{r_0}+s\underline{a}+t\underline{b}\;;\;s,t\in\mathbb{R}$$

Contains a point and normal is given

Suppose a plane:

- contains $\underline{r_0} = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$
- has a normal $m{n}$

Equation for the plane is:

$$(\underline{r}-r_0)\cdot\underline{n}=0$$

Contains 3 points

Suppose a plane contains r_0, r_1, r_2 ($\underline{r_0}, \underline{r_1}, \underline{r_2}$ are the position vectors of respectively).

$$(\underline{r} - \underline{r_1}) \cdot \left[(\underline{r_1} - \underline{r_0}) \times (\underline{r_1} - \underline{r_2}) \right] = 0$$

Normal to a plane

Suppose ax+by+cz=d is a plane. $\underline{n}=a\underline{i}+b\underline{j}+c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $\cdot \ \ A: a_1x + a_2y + a_3z = d$
- $B: b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is given by:

$$\cos(\phi) = rac{n_A \cdot n_B}{|n_A| \cdot |n_B|} = rac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}$$

Here $\underline{n_A},\underline{n_B}$ are normal to the planes A,B.

Shortest distance to a point

Considering a plane ax + by + cz = d.

$$ext{distance} = rac{|(\underline{r_1} - \underline{r_0}) \cdot \underline{n}|}{|\underline{n}|}$$

- \underline{n} is a normal to the plane
- ${\it r}_0$ is the position vector of a point on the plane
- ${\it r}_{1}$ is the position vector to the arbitrary point

Skew Lines

Two non-parallel lines in a 3-space that do not intersect.

Normal to 2 skew lines

Let l_1, l_2 be 2 skew lines.

$$l_1:rac{x-x_0}{a_0}=rac{y-y_0}{b_0}=rac{z-z_0}{c_0}\;;\;\; l_2:rac{x-x_1}{a_1}=rac{y-y_1}{b_1}=rac{z-z_1}{c_1}$$

The unit normal to both lines \underline{n} is:

$$\underline{n} = rac{\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle}{|\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle|}$$

Distance between 2 skew lines

$$\operatorname{distance} = |\overrightarrow{AB} \cdot \underline{n}|$$

Here

- \underline{n} is the normal to both l_1, l_2
- $m{A}$ and $m{B}$ are points lying on each line

This PDF is saved from https://s1.sahithyan.dev