

Sistemas de Informação GSI016 Banco de Dados 1

Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional

Profa. Maria Camila Nardini Barioni

camila.barioni@ufu.br

Bloco B - sala 1B137

Roteiro aula

- Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional
- Exercício assíncrono

Modelo de Dados e o Projeto de BD

Mapeamentos

- Geram três tipos de relação:
 - relação entidade com a mesma informação que o tipo-entidade original
 - relação entidade com a chave estrangeira de um outro tipo-entidade
 - relação relacionamento com as chaves primárias de todos os tipos-entidade relacionados, além dos atributos do tipo-relacionamento

Passo 1: Tipo-Entidade Forte

- Modelo entidade-relacionamento
 - tipo-entidade E
 - atributos a₁, a₂, ..., a_n
- Modelo relacional
 - tabela de n colunas distintas, correspondendo aos n atributos de E

empregado (<u>CPF_empregado</u>, nome_empregado)

Passo 1: Tipo-Entidade Forte

Exemplo atributo composto

empregado (CPF_empregado, nome_empregado, rua, cep, cidade)

Passo 2: Tipo-Entidade Fraca

- Modelo entidade relacionamento
 - tipo-entidade forte E: chaves primárias b₁, b₂, ..., b_m
 - tipo-entidade fraca A: atributos a₁, a₂, ..., a_n
- Modelo relacional
 - tabela de n+m colunas distintas, correspondendo às m chaves de E e aos n atributos de A

- Modelo entidade relacionamento
 - tipo-relacionamento binário: E₁ relacionando-se com E₂
 - cardinalidade: 1:1
- Modelo relacional (3 opções para a <u>chave estrangeira</u>)
 - repete-se a chave primária de E₁ em E₂ e vice versa
 - repete-se a chave primária de E₁ em E₂
 - repete-se a chave primária de E₂ em E₁
- Chave estrangeira
 - chave primária de uma relação que é inserida em outra relação
 - utilizada para recuperar informações de outras relações

- não pode existir DEPARTAMENTO sem gerente
- pode existir EMPREGADO que não gerencia o DEPARTAMENTO

```
empregado (<u>CPF_empregado</u>, nome_empregado) departamento (<u>sigla_depto</u>, nome_depto, CPF_empregado)
```

- entidades de DEPARTAMENTO: participação total
- entidades de EMPREGADO: participação parcial

- Outras alternativas de mapeamento
 - Opção da relação unificada
 - Opção de referência cruzada (ou relação relacionamento)
- Exemplos?

- Outras alternativas de mapeamento
 - Opção da relação unificada
 - apropriada quando ambas as participações são totais

confcom (<u>nome</u>, <u>cod_comissão</u>, nro_membros, data_instalação)

É necessário definir uma restrição de vazio (null).

Não pode ser nulo.

- Outras alternativas de mapeamento
 - Opção de referência cruzada (ou relação relacionamento)

Mapeamento usual:

PESSOA1 (<u>nome</u>, idade)
PESSOA2 (<u>nome</u>, idade, <u>nomeP1</u>, tempo)Muitos valores nulos!

- Outras alternativas de mapeamento
 - Opção de referência cruzada (ou relação relacionamento)

PESSOA1 (<u>nome</u>, idade)
PESSOA2 (<u>nome</u>, idade)

namoro (<u>nomeP2</u>, nomeP1, tempo)

Qual é a chave de namoro?

Tanto faz. nomeP1 ou nomeP2. Uma é definida como primária e a outra como candidata

- Modelo entidade relacionamento
 - tipo-relacionamento binário: E₁ relacionando-se com E₂
 - cardinalidade: 1:n
- Modelo relacional

Repete-se a chave primária de E₁ em E₂

- a tabela de E₁ possuirá apenas os atributos de E₁
- a tabela de E₂ possuirá
 - os atributos de E₂
 - a chave primária de E₁ (chave estrangeira)
 - os atributos do tipo-relacionamento

Outras opções de mapeamento?

- Outra alternativa de mapeamento
 - Opção de referência cruzada

Qual é a chave de trabalha?

empregado (<u>CPF_empregado</u>, nome_empregado)
departamento (<u>sigla_depto</u>, nome_depto)
trabalha (<u>CPF_empregado</u>, sigla_depto)

Chave primária da relação que representa o tipo entidade participante do lado N

17

2019

- Outra alternativa de mapeamento
 - Opção de referência cruzada

Dica: boa opção quando poucas tuplas da relação que representa o tipo entidade do lado N participarem do relacionamento. Evita excessos de valores null.

empregado (CPF_empregado, nome_empregado)

departamento (sigla_depto, nome_depto)

trabalha (CPF_empregado, sigla_depto)

Atributo de Tipo-Relacionamento (1:1 e 1:n)

empregado (<u>CPF_empregado</u>, nome_empregado, sigla_depto, data_início) departamento (<u>sigla_depto</u>, nome_depto)

- Modelo entidade relacionamento
 - tipo-relacionamento binário: E₁ relacionando-se com E₂
 - cardinalidade: m:n
- Modelo relacional
 - a tabela de E₁ possuirá apenas os atributos de E₁
 - a tabela de E₂ possuirá apenas os atributos de E₂
 - a tabela R (relativa ao tipo-relacionamento) conterá:
 - a chave primária de E₁ (chave estrangeira)
 - a chave primária de E₂ (chave estrangeira)
 - os atributos do tipo-relacionamento
- Chave primária de R
 - chave primária de E₁ + chave primária de E₂


```
empregado (<u>CPF_empregado</u>, nome_empregado)

projeto (<u>nro_projeto</u>, nome_projeto)

desenvolve (<u>CPF_empregado</u>, <u>nro_projeto</u>, horas_trabalhadas)
```

Tipo-relacionamento Unário (1:1)


```
pessoa (<u>código pessoa</u>, nome_pessoa, código_cônjuge)
```

Tipo-relacionamento Unário (1:n)

empregado (código emp, nome emp, código supervisor)

Tipo-relacionamento Unário (m:n)

disciplina (<u>código_disc</u>, nome_disc)

pré_requisito (<u>código_disc</u>, <u>código_pré_requisito</u>)

Passo 6: Atributos Multivalorados

- Duas opções de mapeamento
- Para cada atributo multivalorado cria-se uma nova relação
- Para cada valor possível do atributo multivalorado cria-se um atributo monovalorado na mesma relação

Passo 6: Atributos Multivalorados

 Para cada atributo multivalorado cria-se uma nova relação

Passo 6: Atributos Multivalorados

 Para cada valor possível do atributo multivalorado cria-se um atributo monovalorado na mesma relação

aluno = {nro_matricula, nome, grau_direito, grau_esquerdo}

- Modelo entidade relacionamento
 - E₁ relacionando-se com E₂ e com E₃
 - cardinalidade: m:n:p
- Modelo relacional
 - a tabela de E₁ possuirá apenas os atributos de E₁
 - a tabela de E₂ possuirá apenas os atributos de E₂
 - a tabela de E₃ possuirá apenas os atributos de E₃
 - a tabela R (relativa ao tipo-relacionamento) conterá:
 - a chave primária de E₁
 - a chave primária de E₂
 - a chave primária de E₃
 - os atributos do tipo-relacionamento

tabelas relativas aos tipos-entidade

tipo-entidade_A (<u>chave-A</u>, atributos_A) tipo-entidade_B (<u>chave-B</u>, atributos_B)

tipo-entidade_C (chave-C, atributos_C)

Primeiro caso:

$$x = y = z = 1$$

- ABC (<u>chaves-A</u>, <u>chaves-B</u>, chaves-C)
- ABC (<u>chaves-A</u>, chaves-B, <u>chaves-C</u>)
- ABC (chaves-A, <u>chaves-B</u>, <u>chaves-C</u>)
 - chaves-A, chaves-B → chaves-C

Segundo caso:

$$x = m; y = n; z = p$$

ABC (<u>chaves-A</u>, <u>chaves-B</u>, <u>chaves-C</u>)

+ integridade referencial

+ integridade referencial

Terceiro caso:

$$x = 1; y = 1; z = m$$

- ABC (<u>chaves-A</u>, chaves-B, <u>chaves-C</u>)
- ABC (chaves-A, <u>chaves-B</u>, <u>chaves-C</u>)
 - chaves-A, chaves-C → chaves-B

• Quarto caso:

$$x = 1; y = m; z = n$$

- ABC (chaves-A, <u>chaves-B</u>, <u>chaves-C</u>)

+ integridade referencial

+ integridade referencial

Mapeamento ME-R → MRel Os 7 passos do procedimento

- 1. Mapear todos os tipos-entidade forte
- Mapear todos os tipos-entidade fraca
- 3. Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear todos os atributos multivalorados
- Mapear todos os tipos-relacionamento de grau > 2

Esquema do BD Relacional

```
empregado (CPF_empregado, nome_empregado,
             cod_supervisor, sigla_depto, data_início)
dependente (CPF_empregado, nome_dependente,
             sexo_dependente)
departamento (sigla_depto, nome_depto,
               CPF_empregado)
projeto (nro_projeto, nome_projeto)
controla (sigla_depto, nro_projeto)
desenvolve (CPF_empregado, nro_projeto,
             horas_trabalhadas)
```

Exemplo – Hospital

- Um hospital é organizado em setores (ex.: maternidade, prontosocorro, cirurgia, etc), cada um com um nome único, uma sigla e um médico responsável por gerenciá-lo. Uma data determina quando o médico iniciou suas atividades de gerência no setor.
- Um setor do hospital é responsável por realizar vários procedimentos (ex. do setor de cirurgia: cirurgia vascular, radiocirurgia, etc), cada um com um código único, um nome e um custo total.
- Um médico do hospital pode trabalhar em vários setores, sendo determinada a especialidade em que ele atua em cada setor.
- Para cada médico são armazenadas informações como: nome, CPF, endereço, telefone(s) de contato, salário e CRM. As buscas pelos médicos são sempre realizadas por meio de seu CRM.
- Para a realização de cada procedimento são utilizados vários materiais, cada um com um código único, um nome e a nacionalidade. Cada material pode ser usado em quantidades variadas em diversos procedimentos.

Atividade Assíncrona

- Realizar o mapeamento do Modelo ER do Hospital para o Modelo Relacional em papel
- Tirar uma foto ou escanear a resolução e gerar um .pdf
- Submeter o documento na Tarefa: "Atividade assíncrona sobre Mapeamento Modelo ER para Modelo Rel"
- Prazo para o envio: 30/03 até às 20:00h

Bibliografia

- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Material Didático produzido pelos professores Cristina Dutra de Aguiar Ciferri e Caetano Traina Júnior