CS 136 - Elementary Algorithm Design and Data Abstraction

Instructors: Tim Brecht and Dan Holtby

Prerequisites: CS 135 or 85% or higher in CS 115 or CS 116

Programming Language: C

Web Page:

http://www.student.cs.uwaterloo.ca/~cs136/

Programming Language:

Racket (for reference and understanding the difference from Functional to Imperative programmin g language) and C (Imperative Paradigm)

Programming Environment:

Seashell - Created specifically for this course by university

Works with both C and Racket

Integrates with our submission and testing environment

Also helps to facilitae your own testing

Website: https://www.student.cs.uwaterloo.ca/~cs136/seashell-old/

Version: 3.0.3

Credentials to login-

Username: WatIAm username

Password: <Set for student.cs.uwaterloo.ca server>

Textbooks:

"C Programming: A Modern Approach" (CP:AMA) by K. N. King.

Course Notes are available on web page under the course notes section and printed coursepack can be bought at media.doc (MC 2018)

Styled Boxes:

Important information appears in a thick box

Comments and asides appear in a thinner bx. Content that appears in these asides will not appear on the exmas.

Addition "advanced" material appears in a dashed box in the course notes. The advance material enhances your learning and may be discussed in class and appear on assignments, but you are not responsible for this material on exams unless your einstructor explicitly states otherwise.

Marking Scheme:

Assignments: 20% (roughly weekly)

Participation: 5% Midterm: 25% Final: 50%

To pass this course you must pass both the assignment component and weighted exam component **Clicker Participation:**

i>Clickers are used in this class for participation marks. Purchasable at the bookstore.

Follow Assignment 0 for Clicker registration

To receive clicker credit please attend your own lectures.

Please be wary of not using someone els's clickers it an Academic Offense

Assignments

Assignments are weekly. Depending on the term, there may be upto 10 assignments. This term there were 8 assignments.

ADVICE: Please start assignment early and try to take help of ISA's. Also try coding on a paper first and then trace through and then code on the computer.

Unit 02: A Functional Introduction to C

Readings: CP: AMA 2.2 - 2.4, 2.6-2.8, 3.1, 4.1, 5.1, 9.1, 9.2, 10.1, 15.2

Histroy of C

Developed by Dennis Ritchie in 1969-73 to make the Unix OS more portable. A successor to B and its successor is C++. It was specifically designed for low-level access to memory which has been discussed in later topics of this course.

It easily translates into "machine codes" which is discussed in later sections.

NOTE: C99 standard is used for this course.

From Racket to C

Racket is one language that you learned in CS 135 and now we will use Racket code and compare it with C basic syntax so it helps you to understand C syatax and we build on that.

```
;Single Line Comments in Racket

#/Multi Line Comments in Racket/#

(define my_number 42) / constant definition in racket
```

```
//Single lineComments in C
/* Multi Line Comments in C */
const int my_number = 42; //Constant in C
```

Typing: 1. Racket is a dynamic typing based language which means you do need to define the data type of the variable and a variable can have different data types but it is determined during ruunntime

2. Where as C uses static typing, where the type of identifier must be known before the program is run.

```
const int stype = 42;
```

Initializing: C has a different way of initializing as even when we started with the constant declaration, those were also the intializing of the the variable.

Expressions: In CS 135 we did prefix notation where the operation was followed by two operands to computer the final expression, now in CS 135 we use the infix notaation which we regularly use in our daily life.

C-Operators: The following are the few operators in C and we will learn more as we proceed further +, -, *, /.

NOTE: The / operator is the division operator but it behaves as racket quotient function ad truncates down to closest integer, in layman terms rounds to zero

NOTE: The % operator is the remainder operator which works as the modulo operator as you all did in Math

Function Definitions: The function definitions in racket ad C are quite different but still very similar. Let us take an example and see for ourselves:

```
;Racket Function
;mysqr: Int -> Int
(define (my-sqr n)
    (* n n))
```

```
//C Function
int my_sqr (int n) {
  return n * n;
}
```

Hello, World!

The very first program that you write is the basic Hello World display in any language. To display output in C we use printf function.

```
//hello.c

//My first C program

#include <stdio.h>

int main (void) {
    printf("Hello, World!");
}
```

Printf command in particular uses placeholders for printing out the tyoe of data you want to display. For the decimals it is **%d**.

Boolean Operators

- 1. In C, we use **false and true** as the boolean values which are represented by the values **0 and 1** respectively.
- 2. The **equality** operator is represented by == .

- 3. The **not** equality operator is != .
- 4. The **not** operator is denoted by !
- 5. The and operator is denoted by &&.
- 6. The or operator is denoted by

The comparison operators are >, <, <=, >= .

Conditionals: There is no direct C equivalent of cond racket expression but we can use if...else

```
if (condition) {
    //code...block
}

if (condition) {
    //code...block
} else {
    //code...block
}

if (condition) {
    //code...block
} else if (condition) {
    //code...block
}
```

NOTE: Recurrsions behave the same way as in Racket. We also have a conditionals operator in C which is unlike to if statement.

To require a module, we use # include <module.h>

To require a my_module, we use #include "my_module.h"

Creating a module in C

We place the declarations of the functions in the interface .h file and we place the definitions in the implementation .c file.

#include is a pre-processor directive and they can modify a file before they run.

Scope is a local scope cncept in the C language which is the same as Racket but in the top-level values are all program scope in C.

Assert is a type of statement that allows you to assert things in your program and check if they are false then the program won't run .To use assert in your client, one should add **#include <assert.h>.**

Bool Types are also not built in and are added with the standard library #include <stdbool.h>

Floating Pointer Type is the C's data type to represent real non-integer number.

Structure are compound data types in C and are similar to the ones you saw in CS 135.

Unit 03: Modularizations & ADT

Modularization is to divide your program into small modules and an example of this is the helper functions we have been making since CS 135.

A module provides collection of functions that share a common aspect or purpose.

Modules can also provide elements that are not functions like data structures and variables

Modules Vs Files

Good style to store each module is to store it in a seperate file.

Terminology

Client that requires a function that requires a function that a module provides.

NOTE: The module dependancy graph cannot have any cycles

There must be a root or main file that acts only as a client.

Motivation

Advantages of Modularization

- 1. Re-Usability
- 2. Maintainabiltity
- 3. Abstraction

Modularization is also knoen in computer science as the seperation of concerns (SoC)

Example: fun number module

provide special form makes fun? function available to clients

```
//client.rkt
(require fun.rkt)
(fun? 4010) ;#t
(fun? 4011) ;#f
```

Unit 04: Imperative C

Unit 05: The C Model

Unit 06: Introduction to Pointers

Readings: CP: AMA 11, 17.7

Pointer is a type used for storing an address

It is defined by using a star (*) befire theidentifier and it is part of the declaration not the indentifier itself

```
int i = 5;
int *p = &i; /// p "points at" i
```

The type of a ointer is "int pointer" also written as "int *".

Unit 07: I/O & Testing

Unit 08: Arrays and Strings

Unit 09: Efficiency

Unit 10: Dynamic Memory & ADTs in C

Unit 11: Linked Data

Unit 12: Abstract Data Types

The following section is not covered in the course but is a information to CS 246

Unit 13: Beyond