Problem Set 4

- 1. (Continuation of question 2 of Problem Set 3) For the Cass-Koopmans model with full depreciation ($\delta = 1$), Cobb-Douglas aggregate production ($f(k) = k^{\alpha}$) and logarithmic utility ($u(c) = \ln c$), suppose the horizon goes to infinity $T \to \infty$.
 - (a) Find the limit as $T \to \infty$ of the policy function for capital

$$k_{t+1} = \alpha \beta \frac{1 - (\alpha \beta)^{T-t}}{1 - (\alpha \beta)^{T-t+1}} k_t^{\alpha} \text{ for } t = 0, 1, ..., T$$

- (b) Assuming that the limit of the solutions to the finite horizon problem is the solution to the infinite horizon problem we now focus on the infinite horizon case:
 - i. Plot the optimal policy function of capital (i.e. k_{t+1} versus k_t). Plot the 45 degree line on the same graph. Is there a steady state? Is it unique? What are the dynamics of capital outside the steady state?
 - ii. Solve for the steady state (k^* , i^* , c^*) in terms of parameters. How does it compare to the Solow model's golden rule steady state?
 - iii. Go back to the variable $z_t = \frac{k_{t+1}}{k_t^{\alpha}}$ we used as a transformation. What is the economic meaning of this variable? Repeat part i for z instead of k, i.e. plot the optimal policy for z_{t+1} as a function of z_t , plot also the 45 degree line and describe the steady state and the dynamics of this variable starting from any z_0 .
- 2. A firm owns capital K_t and uses it to generate revenue according to the production function $F(K_t)$, where F(0) = 0, F' > 0, F'' < 0 and $\lim_{K\to 0} F'(K) = \infty$. The firm decides on investment I_t and on how much dividend D_t to pay to its shareholders. Investment and dividends can be financed using current revenue $F(K_t)$ or by issuing new equity E_t , but equity issuance is costly; the cost of issuing equity is given by a function $C(E_t)$. The firm's constraints are thus

$$D_t + I_t = F(K_t) + E_t - C(E_t)$$

$$K_{t+1} = (1 - \delta) K_t + I_t$$

In addition, the firm cannot pay negative dividends or issue negative equity, i.e. $D_t \geq 0$ and $E_t \geq 0$. The firm's objective is

$$\sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t \left(D_t - E_t \right)$$

where r > 0 is an exogenously given interest rate.

- (a) Obtain necessary conditions for maximization of the firm's objective.
- (b) Suppose first that $C(E_t) = 0$ for all E_t .
 - i. Show that the two non-negativity constraints $D_t \geq 0$ and $E_t \geq 0$ will never bind.
 - ii. Characterize the dynamics of capital, i.e. what is the steady state K^* , what happens in the transition from any initial K_0 ?
 - iii. Explain how the capital path differs from the standard Cass-Koopmans model and provide intuition for the difference.
 - iv. Given a K^* , find the payout $D_t E_t$ for all t. Can you determine D_t and E_t separately?
- (c) Now let $C(E_t)$ be such that $0 \le C(E) < E$ with C(0) = 0. In addition, assume 0 < C'(E) < 1 and C''(E) > 0. Show that the firm will never issue equity and pay dividends in the same period.