Distribusi Poisson

1 Tujuan

- 1. Mempelajari karakteristik statistik peluruhan radioaktif.
- 2. Menentukan aktivitas peluruhan preparat radioaktif.

2 Dasar Teori

Radioaktif adalah suatu atom yang tidak stabil yang selalu melepaskan energi dan atau partikel untuk mencapai kestabilan di dalam inti atomnya[1]. Proses pelepasan energi radiasi atau partikel ini dikenal dengan istilah peluruhan. Walaupun proses peluruhan ini bersifat acak, namun apabila jumlah partikel yang dilepaskan dalam selang waktu tertentu ternyata memiliki pola kecenderungan tertentu secara statistik.

Kemungkinan suatu preparat radioaktif akan meluruh dengan melepaskan n partikel dalam selang waktu Δt tertentu dapat diperkirakan melalui pendekatan distribusi Poisson sebagai berikut:

$$W_{\mu}(n) = \frac{\mu^n}{n!} \cdot e^{-\mu} \tag{1}$$

dimana:

 $W_{\mu}(n)$: probabilitas peluruhan n partikel

 μ : nilai rata-rata peluruhan

n: jumlah partikel yang meluruh

Secara teoritis nilai μ sangat dipengaruhi oleh ukuran preparat dan selang waktu Δt , serta berbanding terbalik dengan waktu paruh $T_{1/2}$ dari radioaktif tersebut[1].

Gambar 1. Distribusi Poisson hasil pengukuran dan perhitungan. Histogram: h(n) dan kurva: $N.W_{\mu}$

Standard deviasi atau simpangan baku untuk distribusi Poisson dapat dihitung dengan persamaan berikut:

$$\sigma = \sqrt{\mu} \tag{2}$$

3 Peralatan

- 1. 1 Unit komputer terkoneksi internet
- 2. 1 Unit sistem kontrol
- 3. 1 Set preparat radioaktif
- 4. 1 Pencacah Geiger Muller
- 5. 1 Sensor Cassy
- 6. 1 GM Box

4 Metode Eksperimen

Pada eksperimen ini, akan dihitung frekuensi dari sejumlah n partikel yang meluruh dalam selang waktu Δt tertentu. Pengukuran tersebut dilakukan terhadap 5 jenis preparat radioaktif yang berbeda yang dihitung dengan menggunakan pencacah Geiger Muller. Setiap preparat akan dilakukan pengambilan data sebanyak 500 data yang selanjutnya dapat ditampilkan dalam bentuk histogram.

Berdasarkan data tersebut, akan dihitung nilai rata-rata peluruhan μ dan simpangan bakunya σ dengan pendekatan distribusi Poisson. Untuk preparat yang memiliki nilai rata-rata μ yang besar, dilakukan pula pendekatan distribusi normal atau Gausssian sebagai pembanding untuk membuktikan pola distribusi yang paling sesuai.

5 Pengolahan Data

$$w = \frac{h}{i} \tag{3}$$

dengan:

 $\boldsymbol{w}=$ nilai probabilitas distribusi Poisson ternormalisasi

i = jumlah data (500 data)

h = nilai frekuensi pada histogram

kemudian, mengolah data menggunakan regresi linier dengan persamaan:

$$ln(w.n!) = ln(\mu).n - \mu \tag{4}$$

$$y = bx + a \tag{5}$$

dan, standar deviasinya adalah:

$$\sigma = \sqrt{\mu} = \sqrt{-a} \tag{6}$$

5.1 Na-22

Tabel Pengolahan Data:

No	n	n^2	n!	h	w	ln(w.n!)	$ln^2(w.n!)$	n.ln(w.n!)
1	0	0	1	85	0.17	-1.771956842	3.13983105	0
2	1	1	1	155	0.31	-1.171182982	1.371669576	-1.171182982
3	2	4	2	136	0.272	-0.608806032	0.370644785	-1.217612064
4	3	9	6	77	0.154	-0.079043207	0.006247829	-0.237129622
5	4	16	24	31	0.062	0.397432936	0.157952939	1.589731746
6	5	25	120	10	0.02	0.875468737	0.76644551	4.377343687
7	6	36	720	5	0.01	1.974081026	3.896995897	11.84448616
8	7	49	5040	1	0.002	2.310553263	5.33865638	16.17387284
$\overline{\Sigma}$	28	140	5914	500	1	1.926546899	15.04844397	31.35950977

Koefisien Regresi, a = -1.81056461 b = 0.58610942

Error, $r^2 = 0.9892709672063679$ r = 0.9946210168734461

Grafik:

Gambar 2. Grafik Regresi Linier dari Preparat Na-22.

Grafik Histogram:

Gambar 3. Grafik Histogram dari Preparat Na-22.

Nilai rata-rata standar deviasi $\sigma=\sqrt{\mu}$ berdasarkan histogram: $\sigma=\sqrt{-(-1.81056461)}=1.345572223999886$

5.2 Co-60

Tabel Pengolahan Data:

No	n	n^2	n!	h	w	ln(w.n!)	$ln^2(w.n!)$	n.ln(w.n!)
1	0	0	1	129	0.258	-1.354795694	1.835471373	0
2	1	1	1	169	0.338	-1.084709383	1.176594447	-1.084709383
3	2	4	2	127	0.254	-0.677273831	0.458699843	-1.354547663
4	3	9	6	55	0.11	-0.415515444	0.172653084	-1.246546332
5	4	16	24	12	0.024	-0.551647618	0.304315095	-2.206590473
6	5	25	120	7	0.014	0.518793793	0.269147	2.593968967
7	6	36	720	1	0.002	0.364643114	0.1329646	2.187858682
$\overline{\Sigma}$	21	91	874	500	1	-3.200505063	4.349845442	-1.110566202

Koefisien Regresi, a = -1.36695954

b = 0.30324818

Error,

 $r^2 = 0.8920288182711459$

r = 0.9444727726468063

Grafik:

Gambar 4. Grafik Regresi Linier dari Preparat Co-60.

Grafik Histogram:

Gambar 5. Grafik Histogram dari Preparat Co-60.

Nilai rata-rata standar deviasi $\sigma=\sqrt{\mu}$ berdasarkan histogram: $\sigma=\sqrt{-(-1.36695954)}=1.169170449506829$

5.3 Sr-90Tabel Pengolahan Data:

No	n	n^2	n!	h	w	ln(w.n!)	$ln^2(w.n!)$	n.ln(w.n!)
1	40	1600	8.16E+47	2	0.004	104.7991788	10982.86788	4191.967152
2	42	1764	1.41E + 51	3	0.006	112.6558856	12691.34856	4731.547195
3	43	1849	6.04E + 52	2	0.004	116.0116206	13458.69611	4988.499686
4	45	2025	1.20E + 56	3	0.006	124.0079378	15377.96864	5580.357202
5	46	2116	5.50E + 57	1	0.002	126.7379669	16062.51226	5829.946479
6	47	2209	2.59E + 59	5	0.01	132.1975525	17476.19287	6213.284965
7	48	2304	1.24E+61	2	0.004	135.1524627	18266.18818	6487.318211
8	49	2401	6.08E + 62	11	0.022	140.7490311	19810.28976	6896.702525
9	50	2500	3.04E + 64	8	0.016	144.3426004	20834.78629	7217.13002
10	51	2601	1.55E + 66	8	0.016	148.274426	21985.30541	7561.995727
11	52	2704	8.07E + 67	7	0.014	152.0921384	23132.01855	7908.791194
12	53	2809	4.27E + 69	9	0.018	156.3137447	24433.98678	8284.628469
13	54	2916	2.31E + 71	16	0.032	160.8780929	25881.76077	8687.417016
14	55	3025	1.27E + 73	25	0.05	165.3317132	27334.57538	9093.244225
15	56	3136	7.11E + 74	16	0.032	168.9107778	28530.85084	9459.003555
16	57	3249	4.05E + 76	25	0.05	173.4001161	30067.60028	9883.80662
17	58	3364	2.35E + 78	22	0.044	177.3327258	31446.89563	10285.29809
18	59	3481	1.39E + 80	32	0.064	181.7849567	33045.77047	10725.31244
19	60	3600	8.32E + 81	16	0.032	185.186154	34293.91165	11111.16924
20	61	3721	5.08E + 83	23	0.046	189.6599334	35970.89034	11569.25594
21	62	3844	3.15E + 85	21	0.042	193.696096	37518.17761	12009.15795
22	63	3969	1.98E + 87	31	0.062	198.2286955	39294.61572	12488.40782
23	64	4096	1.27E + 89	25	0.05	202.1724672	40873.7065	12939.0379
24	65	4225	8.25E + 90	21	0.042	206.1725011	42507.10021	13401.21257
25	66	4356	5.44E + 92	25	0.05	210.5365092	44325.62171	13895.40961
26	67	4489	3.65E + 94	17	0.034	214.3555394	45948.29725	14361.82114
27	68	4624	2.48E + 96	16	0.032	218.5144224	47748.55282	14858.98073
28	69	4761	1.71E + 98	16	0.032	222.7485289	49616.90715	15369.6485
29	70	4900	1.20E + 100	17	0.034	227.0576488	51555.17588	15894.03542

30	71	5041	8.50E + 101	13	0.026	231.0520647	53385.0566	16404.69659
31	72	5184	6.12E + 103	12	0.024	235.2486881	55341.94526	16937.90554
32	73	5329	4.47E + 105	5	0.01	238.6636788	56960.35159	17422.44855
33	74	5476	$3.31E{+}107$	7	0.014	243.3042161	59196.94159	18004.51199
34	75	5625	2.48E + 109	6	0.012	247.4675536	61240.19008	18560.06652
35	76	5776	1.89E + 111	8	0.016	252.085969	63547.33576	19158.53364
36	77	5929	1.45E + 113	8	0.016	256.4297744	65756.22921	19745.09263
37	78	6084	1.13E + 115	2	0.004	259.4001889	67288.45799	20233.21473
38	79	6241	8.95E + 116	7	0.014	265.0223997	70236.87234	20936.76958
39	80	6400	7.16E + 118	1	0.002	267.4585162	71534.05788	21396.68129
40	81	6561	5.80E + 120	3	0.006	272.9515776	74502.56373	22109.07779
41	82	6724	4.75E + 122	1	0.002	276.2596846	76319.41333	22653.29414
42	83	6889	3.95E + 124	2	0.004	281.3716724	79170.01802	23353.84881
$\overline{\Sigma}$	2621	169897	3.9981E + 124	500	1	8216.017408	1714952.005	538840.5294

Koefisien Regresi, a = -61.73789708

 $b=4.12400194\,$

Error, $r^2 = 0.9998862687766302$

r = 0.9999431327713743

Grafik:

Gambar 6. Grafik Regresi Linier dari Preparat Sr-90.

Grafik Histogram:

Gambar 7. Grafik Histogram dari Preparat Sr-90.

Nilai rata-rata standar deviasi $\sigma=\sqrt{\mu}$ berdasarkan histogram: $\sigma=\sqrt{-(-61.73789708)}=7.857346694654627$

5.4 Cs-137Tabel Pengolahan Data:

No	n	n^2	n!	h	w	ln(w.n!)	$ln^2(w.n!)$	n.ln(w.n!)
1	0	0	1	2	0.004	-5.521460918	30.48653067	0
2	1	1	1	5	0.01	-4.605170186	21.20759244	-4.605170186
3	2	4	2	17	0.034	-2.688247574	7.226675018	-5.376495148
4	3	9	6	33	0.066	-0.926341068	0.858107774	-2.779023203
5	4	16	24	59	0.118	1.040983176	1.083645972	4.163932703
6	5	25	120	92	0.184	3.094672221	9.576996158	15.47336111
7	6	36	720	95	0.19	4.918520005	24.19183904	29.51112003
8	7	49	5040	65	0.13	6.484940533	42.05445371	45.39458373
9	8	64	40320	54	0.108	8.378978851	70.20728658	67.03183081
10	9	81	362880	27	0.054	9.883056248	97.67480079	88.94750623
11	10	100	3628800	19	0.038	11.83424345	140.0493181	118.3424345
12	11	121	39916800	24	0.048	14.46575358	209.2580266	159.1232894
13	12	144	479001600	3	0.006	14.87121869	221.1531452	178.4546242
14	13	169	6227020800	3	0.006	17.43616804	304.019956	226.6701846
15	14	196	87178291200	1	0.002	18.97661308	360.1118442	265.6725832
16	15	225	1.31E + 12	1	0.002	21.68466329	470.2246218	325.2699493
$\overline{\Sigma}$	120	1240	1.40393E+12	500	1	119.3285914	2009.38484	1511.294711

$$\label{eq:Koefisien Regresi} \begin{split} &\text{Koefisien Regresi,} \\ &a = -6.13748382 \\ &b = 1.8127361 \end{split}$$

Error,

 $r^2 = 0.9980493145499695$

r = 0.9990241811637842

Grafik:

Grafik persamaan untuk mencari nilai rata-rata pada Eksperimen Distribusi Poisson untuk preparat Cs-137

Gambar 8. Grafik Regresi Linier dari Preparat Cs-137.

Grafik Histogram:

Gambar 9. Grafik Histogram dari Preparat Cs-137.

Nilai rata-rata standar deviasi $\sigma=\sqrt{\mu}$ berdasarkan histogram: $\sigma=\sqrt{-(-6.13748382)}=2.477394562842181$

5.5 Am-241Tabel Pengolahan Data:

No	n	n^2	n!	h	\overline{w}	ln(w.n!)	$ln^2(w.n!)$	n.ln(w.n!)
1	0	0	1	75	0.15	-1.897119985	3.599064237	0
2	1	1	1	132	0.264	-1.331806176	1.77370769	-1.331806176
3	2	4	2	147	0.294	-0.531028331	0.281991088	-1.062056662
4	3	9	6	93	0.186	0.109750864	0.012045252	0.329252592
5	4	16	24	29	0.058	0.330741562	0.109389981	1.322966248
6	5	25	120	19	0.038	1.517322624	2.302267944	7.586613118
7	6	36	720	4	0.008	1.750937475	3.06578204	10.50562485
8	8	64	40320	1	0.002	4.389994804	19.27205438	35.11995843
$\overline{\Sigma}$	29	155	41194	500	1	4.338792837	30.41630261	52.4705524

Koefisien Regresi, a = -2.12815321 b = 0.73669029

 ${\bf Error},$

 $r^2 = 0.9645310150242827$ r = 0.9821053991422116

Grafik:

Gambar 10. Grafik Regresi Linier dari Preparat Am-241.

Grafik Histogram:

Gambar 11. Grafik Histogram dari Preparat Am-241.

Nilai rata-rata standar deviasi $\sigma=\sqrt{\mu}$ berdasarkan histogram: $\sigma=\sqrt{-(-2.12815321)}=1.458819114900816$

5.6 Perbandingan data antar preparat

Preparat	a	b	r^2	r	σ
Am-241	-2.128	0.736	0.964	0.982	1.458
Co-60	-1.366	0.303	0.892	0.944	1.169
Cs-137	-6.137	1.812	0.998	0.999	2.477
Na-22	-1.81	0.586	0.989	0.994	1.345
Sr-90	-61.737	4.124	0.999	0.999	7.857

6 Pembahasan

Pada praktikum kali ini, kami melakukan praktikum Distribusi Poisson secara remote (dikarenakan pandemi Covid-19) melalui TeamViewer. Praktikum kali ini dilakukan dengan mengkoneksikan komputer yang ada di lab ke alat pencacah Geiger Muller lalu mengontrolnya jarak jauh dengan menggunakan TeamViewer.

Dengan menggunakan 5 preparat isotop radioaktif yaitu: Sr-90, Na-22, Co-60, Am-241 dan Cs-137 kita melakukan perhitungan frekuensi dari cacahan preparat radioaktif pada Geiger Muller. Sehingga, di setiap detik selama 500 detik kita dapat mengetahui jumlah cacahan dari isotop tersebut yang kemudian akan dibuat sebuah histogram dan akan diketahui jumlah frekuensinya melalui histogram tersebut

Kemudian selanjutnya setelah dibuat histogramnya kita akan mendapatkan sebuah data yang kemudian akan diolah dengan menggunakan metode least square untuk menemukan μ nya atau nilai rata-ratanya dari frekuensi cacahan dari setiap preparat tersebut

Setelah ditemukan μ nya atau nilai rata-ratanya, kemudian kita bandingkan dengan grafik histogram nya untuk mengetahui apakah ada kecocokan dari data yang sudah kita olah dengan data asli nya.

Sehingga setelah diketahui μ nya kita dapat mengetahui aktivitas peluruhan preparat radioaktif dengan mengetahui rata-rata dari nilai peluruhannya per satuan detik, sehingga akan didapatkan karakteristik dari peluruhan preparat radioaktif tersebut

Setelah itu, kita akan mengetahui berapa banyak jumlah dari preparat radioaktif tersebut yang meluruh per satuan detik selama 500 detik

Contohnya adalah untuk preparat Na-22, kita akan mendapati nilai rata-ratanya berada di

rentang n=1.8, yang berarti isotop tersebut banyak yang meluruh di rentang n=2 (dengan frekuensi di rentang 130-an) dengan standar deviasi nya adalah 1.34

Kedua adalah untuk preparat Co-60, kita akan mendapati nilai rata-ratanya berada pada rentang n=1.36, yang berarti isotop tersebut banyak yang meluruh di rentang n=1 (dengan frekuensi di rentang 160-an) dengan standar deviasi nya adalah 1.169

Ketiga adalah untuk preparat Sr-90, kita akan mendapat nilai rata-ratanya berada pada rentang n=61.7, yang berarti isotop tersebut banyak yang meluruh di rentang n=50-60 an (dengan frekuensi di rentang 10-30 an) dengan standar deviasi nya adalah 7.85

Keempat adalah untuk preparat Cs-137, kita akan mendapat nilai rata-ratanya berada pada rentang n=6.137, yang berarti isotop tersebut banyak yang meluruh di rentang n=6.7 (dengan frekuensi di rentang 90-an) dengan standar deviasi nya adalah 2.47

Kelima adalah untuk preparat Am-241, kita akan mendapat nilai rata-ratanya berada pada rentang n=2.128, yang berarti isotop tersebut banyak yang meluruh di rentang n=2-3 (dengan frekuensi di rentang 130-an) dengan standar deviasi nya adalah 1.458

Sehingga inti dari praktikum ini adalah kita dapat mengetahui serta dapat membuktikan karakteristik statistik radioaktif dengan metode Distribusi Poisson dengan preparat radioaktif sebagai objek atau media nya. Serta dapat mengetahui aktifitas dari peluruhan preparat radioaktif tersebut dengan cara mengetahui berapa banyak isotop yang meluluh pada rentang waktu 500 detik dengan membaca frekuensi dari histogram dari isotop tersebut

7 Kesimpulan

- 1. Disini kita sudah mengetahui tentang karakteristik statistik dari peluruhan radioaktif yaitu salah satunya dengan menggunakan metode distribusi Poisson. Sebaran data nya diolah dengan menggunakan frekuensi dari histogram untuk didapati jumlah isotop radioaktif yang meluruh.
- 2. Aktifitas dari peluruhan radioaktif disini dapat diketahui dengan menggunakan metode least square untuk mendapatkan a nya dimana a adalah μ atau rata-rata isotop tersebut meluruh

References

[1] Priambodo, dkk. Modul Laporan Praktikum Jarak Jauh Eksperimen Fisika II. PLT UIN Jakarta, Jakarta, 2020.