H29問3 $(1) \|\cdot\| : C[0,1] \rightarrow \mathbb{R}$ $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$ · ||ax| = |a||x|| · ||x+y|| \[||x|| + ||y|| (2) ([0,1] = x , P. 9 PC ([0,1], VP, 2 € P $P = \sum_{i=1}^{n} a_{i}x^{i} \qquad f = \sum_{j=1}^{m} b_{j}x^{j} \qquad (a_{n} \neq 0, b_{m} \neq 0)$ $\times dP + \beta g = \sum_{i=1}^{n} (a_{i} + b_{i})x^{i} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{i=1}^{n} (a_{i} + b_{i})x^{i} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{i=1}^{n} (a_{i} + b_{i})x^{i} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{i})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ $\times dP + \beta g = \sum_{j=1}^{n} (a_{i} + b_{j})x^{j} + \sum_{j=1}^{n} \frac{2}{n}$ ap+ /8 2 = 5 (dai+ / b)) > C; + 5 dai + 0; + P. (3) $|\chi_{\mu}(x)| = |+\frac{\alpha}{2} + (\frac{\alpha}{2})^2 + \dots + (\frac{\alpha}{2})^{n-1}$ Xは完備な11Lの空間であるから、Unかつーツー列であることを元せばより (n>m) $= \left\| \sum_{n=1}^{\infty} \left(\frac{2}{2} \right)^n \right\| = \max \left| \sum_{n=1}^{\infty} \left(\frac{x}{2} \right)^n \right| \leq \sum_{n=1}^{\infty} \max \left| \left(\frac{x}{2} \right)^n \right|$ $= \sum_{n=1}^{N-1} (\frac{1}{2})^{n} = \sum_{n=0}^{N-1} (\frac{1}{2})^{n} = \sum_{n=0}^{N-1} (\frac{1}{2})^{n}$ E DE MAN UNIL 2-2-0 " $(4)(3) \pm 11$. $\exists u_{\infty} \in X$, $\lim_{n \to \infty} u_n = u_{\infty}$, $\sum_{n=0}^{\infty} (\frac{x}{2})^n = \frac{\frac{x}{2}}{\frac{1-\frac{x}{2}}{2}} = \frac{x}{2-x} = \frac{(2-x)+2}{2-x}$.

2 Sept &P

(5,5,5,m); toon)