EXTRAÇÃO E SELEÇÃO DE ATRIBUTOS

Maldição da dimensionalidade

- 2
- Maldição da dimensionalidade (ou Curse of dimensionality)
 - □ Termo que se refere a vários fenômenos que surgem na análise de dados em espaços com muitas dimensões (atributos)
 - Muitas vezes com centenas ou milhares de dimensões
 - Basicamente, adicionar características não significa sempre melhora no desempenho de um classificador

Maldição da dimensionalidade

- Suponha o seguinte problema
 - □ Um conjunto de dados é descrito por 20 atributos
 - Apenas 2 atributos são relevantes
 - Os demais são atributos ruins ou correlacionados
 - O resultado será um mau desempenho na classificação
 - O algoritmo K-NN é normalmente enganado quando o número de atributos é grande
 - Assim como outros classificadores também tem seu desempenho prejudicado

Maldição da dimensionalidade

- De modo geral, o desempenho de um classificador tende a se degradar a partir de um determinado nº de atributos
 - Mesmo que eles sejam atributos úteis

Maldição da dimensionalidade

- 1 atributo = 1 dimensão no espaço de características
 - Hiper-volume cresce exponencialmente com a adição de novos atributos
 - 1 atributo com 10 possíveis valores: 10 possíveis objetos
 - 5 atributos com 10 possíveis valores: 10⁵ possíveis objetos
 - Em espaços com muitas dimensões as amostras se tornan esparsas e pouco similares
 - Objetos muito distantes uns dos outros
 - Objetos parecem equidistantes

Maldição da dimensionalidade

- Mais dimensões = dados mais esparsos
 - Redução de dimensionalidade pode trazer vários benefícios

Redução da dimensionalidade

- 7
- Trata-se de uma etapa importante no projeto de um sistema de classificação
 - Consiste em utilizar um número pequeno de atributos no classificador
 - Para tanto, faz-se a seleção e/ou composição de atributos mais adequados a partir dos originalmente disponíveis

Redução da dimensionalidade

- Vantagens
 - Melhora a eficácia dos classificadores
 - Elimina atributos irrelevantes ou redundantes
 - Reduz o tamanho necessário da amostra
 - Melhora a eficiência computacional dos algoritmos
 - Menos atributos envolvidos
 - □ Simplifica modelo gerado e facilita interpretação
 - Facilita visualização dos dados

Redução da dimensionalidade

- 9
- Essencialmente, podemos reduzir a dimensionalidade de duas maneiras
 - Criação de "novos" atributos via transformação dos dados
 - Agregação de atributos
 - Extração de características
 - Seleção de atributos
 - Busca de um conjunto sub ótimo de atributos

Agregação de atributos

- 10
- Uma forma elementar de reduzir complexidade dos dados é agregar atributos
- □ Exemplo: dois atributos, "massa" e "volume"
 - Esses atributos podem ser agregados em um único atributo: "densidade"
 - densidade = massa / volume
 - Nesse caso, não há perda de informação relevante a um dado problema de interesse em particular

11

- □ Feature selection em inglês
 - Assume que os atributos existentes já estão em uma forma apropriada. No entanto
 - Alguns podem ser irrelevantes
 - Outros podem ser redundantes
 - Tais atributos podem ser descartados

Seleção de atributos

- Normalmente utiliza uma estratégia de busca que decide a maneira como as combinações de atributos são testadas de acordo com um certo critério de qualidade
 - Busca por ordenação
 - □ Seleção de subconjunto

13

□ Busca por ordenação

- Ordena os atributos de acordo com sua relevância
- Seleciona os mais relevantes segundo alguma medida
 - discriminação (para classificação)
 - prever uma saída (regressão)
- Relevância depende da natureza do problema e dos atributos envolvidos

Seleção de subconjunto

 Seleciona um subconjunto de atributos mutuamente relevantes

Seleção de atributos

- Exemplo: busca por ordenação
 - Ordenar os atributos mais importantes para o diagnóstico de pacientes

Febre	Enjoo	Mancha	Dor	Diagnóstico
1	1	0	1	0
0	1	0	0	1
1	1	1	0	1
1	0	0	1	0
1	0	1	1	1
0	0	1	1	0

15

- Exemplo: busca por ordenação
 - Atributos binários: relevância de cada atributo é estimada de acordo com o diagnóstico (exemplo apenas pedagógico)

	Dor	Mancha	Enjoo	Febre
	1/6	4/6	4/6	3/6
Diagnóstico	Dor	Mancha	Enjoo	Febre
0	1	0	1	1
1	0	0	1	0
1	0	1	1	1
0	1	0	0	1
1	1	1	0	1
0	1	1	0	0

Seleção de atributos

- Exemplo: busca por ordenação
 - Atributos ordenados: 2 atributos (enjoo e mancha) classificam corretamente 4/6 dos casos

Enjoo	Mancha	Febre	Dor	
4/6	4/6	3/6	1/6	
Febre	Enjoo	Mancha	Dor	Diagnóstico
1	1	0	1	0
0	1	0	0	1
1	1	1	0	1
1	0	0	1	0
1	0	1	1	1
0	0	1	1	0

17

- Vantagem da busca por ordenação
 - A seleção dos atributos tem complexidade linear
 - Seleção, não a ordenação
 - Muito mais simples que combinar os atributos
 - Dado N atributos, o número de possíveis combinações de n atributos dentre N é

$$\binom{N}{n} = \frac{N!}{(N-n)! \, n!}$$

■ Para **N** = **40** e **n** = **5**, temos **658.008** combinações

Seleção de atributos

- Desvantagem da busca por ordenação
 - Ordenação é deficiente: despreza correlação e redundância entre atributos
 - Atributos inúteis sozinhos porém úteis em conjunto
 - Atributos são tão úteis sozinhos quanto em conjunto
 - Nem sempre os melhores n atributos constituem o melhor subconjunto
 - Atributos devem ser não correlacionados
 - O melhor subconjunto é o mais complementar

19

- Avaliar todos os subconjuntos de atributos é inviável
 - Por que não utilizar um critério de avaliação nessa busca?
- Busca heurística
 - Alguns subconjuntos são avaliados segundo algum critério até que um critério de parada seja satisfeito
 - Utiliza uma estratégia de busca para escolher os subconjuntos avaliados

Seleção de atributos

- Estratégias de Busca
 - Backward Elimination
 - Inicia com todos os atributos e remove um atributo por vez do conjunto
 - Forward Selection
 - Inicia com nenhum atributo e inclui um atributo por vez no conjunto
 - Bidirectional Search
 - A busca pode começar em qualquer ponto e atributos podem ser adicionados e removidos
 - Random Search
 - Ponto de partida da busca e atributos a serem removidos ou adicionados são decididos de forma estocástica

21

- Critérios de Avaliação
 - Inerente ao método de seleção de atributos
 - Critérios independentes
 - Medidas de correlação
 - Medidas de informação
 - Medidas de dependência
 - Medidas de consistência
 - Critérios dependentes
 - Algoritmo alvo usado para a tarefa de interesse

Seleção de atributos

- Critério de Parada
 - De modo geral, depende do método de busca utilizado
 - Algumas possibilidades
 - Número máximo de iterações
 - Valor do critério de avaliação obtido
 - Etc.

23

 Visão geral do processo de seleção de subconjunto

Seleção de atributos

- 24
- Existem diferentes maneiras de se fazer a seleção de atributos. Elas podem ser agrupadas em 3 categorias independentes
 - Filtros
 - Seleção de atributos é realizada a priori
 - Wrappers
 - O algoritmo de aprendizado é usado para guiar o processo de seleção
 - Embarcados (Embedded)
 - Processo de seleção faz parte do algoritmo de aprendizado

25

Filtros

- □ Seleção de atributos é realizada a priori
 - Basicamente, fazem uso de alguma heurística para executar uma busca nos atributos
 - Considera apenas as propriedades intrínsecas aos próprios dados
 - Processamento mais rápido

Seleção de atributos

26

¬ Filtros

- Critérios de busca
 - Medidas de correlação / informação mútua entre atributos
 - Medidas de relevância e redundância
 - Privilegiam conjuntos de atributos muito relacionados com a saída desejada e pouco relacionados entre si
- Desvantagem
 - Seleção de forma indireta, o que pode levar a resultados inferiores

27

Wrappers

- O algoritmo de aprendizado utilizado é usado para guiar o processo de seleção
 - Utilizam alguma heurística para executar uma busca
 - Uso do algoritmo de aprendizado: maximização do seu desempenho
- Implica, em geral, em tornar o método muito custoso em termos computacionais
 - Custo pode se tornar proibitivo

Seleção de atributos

28

Wrappers

29

- Embarcados (Embedded)
 - Processo de seleção faz parte do algoritmo de aprendizado
 - Parte interna e natural do algoritmo de aprendizado
 - Exemplo
 - Classificadores baseados em Árvores de Decisão

Extração de características

- Feature extraction em inglês
 - Consiste em extrair, a partir dos dados brutos, características de alto nível com grande riqueza de informação relevante sobre os dados
 - Exemplo:
 - Informações sobre bordas, contornos, sombras e formas geométricas em fotografias (pixels não são bons atributos)
 - Componentes harmônicas de frequência em sinais de áudio

Extração de características

31

Exemplo de extração de características

Extração de características

- 32
- Um exemplo é a Transformação do Espaço de Atributos
 - Gera um novo conjunto de atributos a partir da combinação de projeções dos atributos originais
 - Ex.: PCA (linear) ou Kernel PCA (não linear)
- Atributos são ortogonais (perpendiculares) e ordenados segundo a parcela de informação que conduzem
 - Podemos descartar os atributos menos representativos
 - Resultado é um espaço de dimensão menor que o original contendo a maior parcela possível da informação

Extração de características

33

- Vantagens
 - Simples e computacionalmente rápida em especial PCA linear
- Desvantagens
 - Técnica limitada a atributos numéricos
 - Novos atributos não podem ser interpretados como os originais
 - Atributos físicos deixam de ter um significado físico
 - Muito ruim para determinadas aplicações

Análise de Componentes Principais - PCA

- □ Principal Component Analysis em inglês
 - Forma de identificar padrões nos dados
 - Colocando em evidência suas relações, similaridades e diferenças
 - Especialmente importante para altas dimensões
 - Análise visual não é possível
 - Extrator de características
 - Uma vez encontrados os padrões, podemos comprimir os dados sem grande perda de qualidade

35

Histórico

- Pearson (1901)
 - Criou a Componente Principal (PC)
 - Procurava linhas e planos que melhor se adequavam a um conjunto de pontos em um espaço p-dimensional

□ Hotelling (1933)

- Procurava encontrar um pequeno conjunto de variáveis fundamentais que expressa p variáveis
- Hotelling procurou maximizar suas "componentes" no senso da variância das variáveis originais. Chamou de Componentes Principais

Análise de Componentes Principais - PCA

36

Histórico

- Pearson e Hotelling esbarraram no cálculo dos autovetores
 - Difícil de calcular para ordem > 4
 - PCA é mais eficiente para conjuntos de dados de alta dimensão. Sem aplicação na época
- Retomada nos anos 60
 - Primeiros computadores capazes de resolver o problema dos autovetores de maneira rápida

37

- Idéia básica
 - Um número p de atributos dependentes podem ser expressas como um número t de atributos independentes
 - Sendo *t* << *p*
 - □ Considere um conjunto de vetores x
 - Pode-se sempre gerar uma combinação linear que mapeia o vetor x no vetor y
 - Espaço definido por variáveis ortonormais (norma igual a 1)

Análise de Componentes Principais - PCA

- □ Combinação linear de *x* em *y*
 - □ Transformação sem perda de informação

$$x = \sum_{j=1}^{\infty} y_j e_j$$

- □ Considerando apenas t dimensões
 - Nesse caso, teremos alguma perda de informação

$$\hat{x} = \sum_{i=1}^{t} y_i e_i$$

39

- Definição matemática
 - Transformação linear ortogonal dos dados
 - Dados agrupados da seguinte forma
 - A maior variância por qualquer projeção dos dados fica ao longo da primeira coordenada (primeiro componente)
 - A segunda maior variância fica ao longo da segunda coordenada (segundo componente)
 - E assim por diante

Análise de Componentes Principais - PCA

- Etapas para o cálculo do PCA
 - Transformação dos dados envolve conceitos matemáticos relativamente simples
 - Subtrair a média dos dados (para cada atributo)
 - Calcular a matriz de covariâncias
 - Cálculo dos autovetores e autovalores da matriz de covariâncias
 - Ordenação dos autovetores por ordem de importância
 - Mapear os dados para o novo espaço

41

- Autovetores e autovalores
 - Um vetor **v** é um **autovetor** de uma matriz quadrada **M** se
 - Mv (multiplicação da matriz M pelo vetor v) resulta num múltiplo de v, ou seja, em λv (multiplicação de um escalar pelo vetor)
 - Nesse caso, λ é o chamado autovalor de M associado ao vetor v

Análise de Componentes Principais - PCA

42

Autovetores e autovalores

a matriz

$$A = \left[\begin{array}{rrr} 8 & 1 & 2 \\ -1 & 5 & 1 \\ 0 & 1 & 90 \end{array} \right],$$

tem como autovalores e respectivos autovetores,

$$\lambda_1 = 90,0115, \quad \lambda_2 = 7,6308, \quad \lambda_3 = 5,3577$$

$$x_1 = \begin{bmatrix} 0,0245 \\ 0,0115 \\ 0,9996 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -0,9353 \\ 0,3539 \\ -0,0043 \end{bmatrix}, \quad x_3 = \begin{bmatrix} -0,0043 \\ -0,0111 \\ 0,9996 \end{bmatrix}$$

 Vamos calcular o PCA para o seguinte conjunto de dados

х	у
2,5	2,4
0,5	0,7
2,2	2,9
1,9	2,2
3,1	3
2,3	2,7
2	1,6
1	1,1
1,5	1,6
1,1	0,9

Análise de Componentes Principais - PCA

- □ O primeiro passo é subtrair a média dos dados
 - □ Não fazer o zscore (precisamos da variância!)

х	у
0,69	0,49
-1,31	-1,21
0,39	0,99
0,09	0,29
1,29	1,09
0,49	0,79
0,19	-0,31
-0,81	-0,81
-0,31	-0,31
-0,71	-1,01

45

 Na sequência, obtemos a matriz de covariância dos dados

Análise de Componentes Principais - PCA

46

 A partir da matriz de covariância, obtemos os seus autovetores e autovalores

- Autovetores nos fornecem informações sobre os padrões nos dados
 - □ Um deles passa pelo meio dos pontos (quase

autovetores

Análise de Componentes Principais - PCA

autovetores

- Temos que o autovetor com o maior autovalor é o componente principal do conjunto dos dados
 - Ordenar do maior para o menor autovalores autovalores 0,0490 1,2840 1,2840 0,0490 -0,7351 -0,6778 -0,7351 -0,7351 -0,7351 0,6778

- 49
- Uma vez ordenados, podemos escolher os componentes que nos interessam
 - Podemos escolher todos
 - Podemos descartar os menos significantes
 - Reduzindo assim a dimensionalidade dos dados

autovalores			au	tovalor	es
1,2840 0,	,0490			1,2840	
		OU			
-0,6778 -0	,7351			-0,6778	
-0,7351 0,	,6778			-0,7351	
autoveto		au	tovetor	es	

Análise de Componentes Principais - PCA

- 50
- Para obter os dados transformados pelo PCA
 - Multiplicar os dados (com a média subtraída deles) pelos autovetores escolhidos
 - Dados transformados expressam os padrões entre eles
 - Os Componentes Principais são combinações lineares de todo os atributos, produzindo assim novos atributos não correlacionados

□ Obtendo os dados transformados

х	у					X	у
0,69	0,49					0,82	-0,17
-1,31	-1,21					-1,77	0,14
0,39	0,99					0,99	0,38
0,09	0,29		-0,6778	-0 7351		0,27	0,13
1,29	1,09	Χ			=	1,67	-0,20
0,49	0,79		-0,7351	0,6778		0,91	0,17
0,19	-0,31					-0,09	-0,34
-0,81	-0,81					-1,14	0,04
-0,31	-0,31					-0,43	0,01
-0,71	-1,01					-1,22	-0,16

Análise de Componentes Principais - PCA

Obtendo os dados transformados

PCA - Iris

PCA - Iris

- □ Classificação com Knn (k = 1)
 - Sem PCA
 - 4 atributos: 94,67%
 - Com PCA
 - 1 componente: 88,67%
 - **2** componentes: **94**,00%
 - 3 componentes: 90,67%
 - **4** componentes: 90,67%
 - Redução do conjunto de atributos pela metade com perda de apenas 0,67%

55

Problemas

- Voltado apenas para atributos numéricos
 - Não há sentido em trabalhar com atributos discretos, mesmo depois de uma etapa de conversão
- Caso os p atributos não tenham as mesmas unidades de medida, a combinação linear é insensata do ponto de vista "físico"
- Só é possível extrair uma projeção linear dos dados

Análise de Componentes Principais - PCA

- □ PCA = projeção linear dos dados
 - Para certos conjuntos de dados isso não funciona muito bem

Kernel PCA

57

■ Solução

- Encontrar uma transformação não linear, isto é, um *Kernel*
 - Essa transformação mapeia o espaço original dos padrões para um novo espaço de atributos
 - Nesse novo espaço, os padrões x passam a ser linearmente separáveis

Kernel PCA

58

Idéia básica

- Utilizar uma função Kernel não linear de forma a calcular o PCA em um espaço de maior dimensão
- Esse espaço é não linearmente relacionado ao espaço original

Kernel PCA

59

- Possível solução
 - □ Projetar os dados em um espaço de maior dimensão
 - Subtrair a média dos dados transformados (para cada atributo)
 - Calcular a matriz de covariâncias
 - Cálculo dos autovetores e autovalores da matriz de covariâncias
 - Ordenação dos autovetores por ordem de importância
 - Mapear os dados para o novo espaço

Kernel PCA

- Felizmente, Kernel PCA pode ser calculado de forma implícita
 - □ Sem necessidade de transformação dos dados

- 61
- Independent Component Analysis em inglês
 - É uma extensão da abordagem do PCA
 - Trata-se de um método computacional para a separação de um conjunto de dados em subcomponentes aditivos
 - Supõe a independência estatística ao invés da descorrelação dos dados

Análise de Componentes Independentes - ICA

- 62
- Descorrelação versus independência
 - □ PCA descorrelação dos dados
 - Se dois atributos são descorrelacionadas sua covariância é zero
 - Trabalha com média nula, o que leva a condição de ortogonalidade (perpendicularidade) da construção das direções de projeção dos componentes principais
 - Com isso, tem-se componentes de máxima variância
 - Descorrelação *linear* não implica na ocorrência de descorrelação *não linear*

- 63
- Descorrelação versus independência
 - □ ICA independência dos dados
 - Independência estatística acarreta toda e qualquer descorrelação não linear
 - Componentes independentes: componentes linear e não linearmente descorrelacionados
 - Preço disso tudo: para quantificar essa independência

Análise de Componentes Independentes - ICA

- 64
- Motivação: separação cega de fontes
 - □ Problema "cocktail party"
 - Separação de sinais de áudio
 - Duas pessoas conversando em uma sala fechada utilizando sensores (microfones) para capturar suas vozes
 - Como separar os sinais captados pelos microfones sabendo que os sinais estão agora correlacionados?

65

Discursos misturados

Análise de Componentes Independentes - ICA

66

- Modelo de mistura
 - Os dados observados x consistem de uma combinação linear de n atributos estatisticamente independentes, s

$$x(i) = a_1(i)s_1(i) + a_2(i)s_2(i) + ... + a_n(i)s_n(i)$$

■ Em forma matricial

$$x = As$$

□ Onde A são os coeficientes de misturas

67

- Modelo de mistura
 - Os componentes independentes podem ser obtidos pela inversa de A, W

s = Wx

- Problema
 - A matriz A é, em geral, desconhecida
 - Porém, podemos fazer uma boa estimativa dela

Análise de Componentes Independentes - ICA

- Etapas para o cálculo do ICA
 - Transformação dos dados envolve conceitos matemáticos relativamente simples
 - Subtrair a média dos dados (para cada atributo)
 - Branqueamento ou whitening
 - Cálculo da matriz de mistura ortogonal
 - Mapear os dados para o novo espaço

 Vamos calcular o ICA para o seguinte conjunto de dados

х	у
2,5	2,4
0,5	0,7
2,2	2,9
1,9	2,2
3,1	3
2,3	2,7
2	1,6
1	1,1
1,5	1,6
1,1	0,9

Análise de Componentes Independentes - ICA

□ O primeiro passo é subtrair a média dos dados

□ Não fazer o zscore (precisamos da variância!)

X	у
0,69	0,49
-1,31	-1,21
0,39	0,99
0,09	0,29
1,29	1,09
0,49	0,79
0,19	-0,31
-0,81	-0,81
-0,31	-0,31
-0,71	-1,01

71

- Branqueamento ou whitening
 - Dado uma amostra x centralizada (média zero), esse processo torna os atributos descorrelacionados e com variância igual a 1
 - Sua matriz de correlação fica igual a matriz identidade

Análise de Componentes Independentes - ICA

- Branqueamento ou whitening
 - Esse processo é obtido com a seguinte transformação linear
 - z = xV
 - - E é a matriz ortogonal dos autovetores da matriz de covariância
 - D é a matriz diagonal dos autovalores da matriz de covariância

73

- Branqueamento ou whitening
 - Obtendo os dados transformados

Х	у					Χ	у
0,69	0,49					1,0764	0,0013
-1,31	-1,21					-1,5374	-0.7161
0,39	0,99					-0,6819	,
0,09	0,29		0.0454	4 0000		-0,2687	
1,29	1,09	Χ	2,8451	-1,8096	=	1,6976	0,4462
0,49	0,79		-1,8096	2,5511		-0,0355	,
0,19	-0,31					,	-1,1346
-0,81	-0,81					-0,8387	
-0,31	-0,31					·	-0,2298
-0,71	-1,01					-0,1923	

Análise de Componentes Independentes - ICA

- Matriz de mistura ortogonal
 - A partir dos dados "branqueados" podemos obter a matriz de misturas que dá origem aos componentes independentes s

$$s = Wx$$

- Existem várias abordagens para se obter essa matriz
 - Maximização da Não Gaussianidade (kurtosis)
 - Usando PCA: P-ICA
 - Estimativa da Máxima Probabilidade
 - Minimização da Informação Mútua
 - Métodos Tensoriais
 - Entre outros

75

- □ Usando PCA: P-ICA
 - □ PCA e ICA
 - Transformação linear dos dados
 - Exploram os dados de formas diferentes
 - PCA
 - Utiliza a distribuição conjunta gaussiana para ajustar os dados
 - Busca uma transformação ortogonal que faz a distribuição conjunta gaussiana fatorável independente da verdadeira distribuição dos dados

Análise de Componentes Independentes - ICA

- □ Usando PCA: P-ICA
 - ICA
 - Busca uma transformação linear que faz a verdadeira distribuição conjunta dos dados transformados fatorável, de modo que as saídas são mutuamente independentes.

- 77
- □ Usando PCA: P-ICA
 - Como fazer?
 - Branqueamento do conjunto **x** de dados: **v**
 - Transformação z = //v//v
 - Obter a matriz ortogonal *U* usando PCA em *z*
 - A matriz de separação é dada por W = UV

Análise de Componentes Independentes - ICA

- Exemplo
 - Dados originais

Exemplo

Dados misturados

Análise de Componentes Independentes - ICA

Exemplo

Dados separados

- Agradeço ao professor
 - □ Prof. Ricardo J. G. B. Campello ICMC/USP
- □ E ao doutorando
 - □ Nielsen Castelo Damasceno UFRN
- pelo material disponibilizado