Determinante de una matrix aadrada AEN, (K Tetenianh A A -o det (A) o IAI Se define Si n=2, A=(a11) entonces el dele-minunte es esc off La suma y reta se va alternando DS 1>1 . dt (A) = and,, - and, + (-1) and an donde au es el determinante de la matriz de orden n-1 que x obtien al suprimir la primera fila y la donne i de de

Como alcder d'alerminente

$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$A_{11} := det \begin{pmatrix} a_{12} \end{pmatrix} := a_{12}$$

$$A_{12} := det \begin{pmatrix} a_{21} \end{pmatrix} := a_{22}$$

$$A := \begin{pmatrix} a_{21} & a_{21} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A := \begin{pmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \\ a_{32} & a_{33} \end{pmatrix} := a_{21}a_{32} - a_{22}a_{22}$$

$$A_{12} := det \begin{pmatrix} a_{21} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} := a_{21}a_{33} - a_{22}a_{22}$$

$$A_{13} := det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} := a_{21}a_{32} - a_{23}a_{22}$$

$$A_{13} := det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} := a_{21}a_{32} - a_{22}a_{22}$$

Peterminan & Vn≥1 det (A+) = det (A) Propiedades de los determinantes

D los exglares puede solir del determinantes det (v, ..., v; ..., vn) = det (A & Mn (1K) det (0, , ,) , v, = \dt (0, v; vn) $\begin{vmatrix} 1 & 2 \\ 4 & 4 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 \\ 4 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 \\ 10 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 \\ 10 & 2 \end{vmatrix}$ D Si una matris tiene 2 files o columnas son que l.1 el determinante es 0 Asi mismo si lier 2 files o dempos proporcionales, hambien es o

and PIEDADES D si una flu o colomna es consinación lineal es dra el deferminante es noto + [| 2 3 | 2 0 LD | 5 2 5 | 0 Si una fila o comma es una com inccion lincol & la otra det =0 DEI det no cambia si a una fila o columna le sumamo, la combinación linal sel resto

Algoro je menor complementerse 1. $A = (a_i)_{n \times n}$ $n \ge 2$ 2. Nos cargamos la fla i fla columna j As odledonos - In de ord - n-1 Minur co-ple-ctore de and es el deformacile
h la metro de order n-1 que Veryne-es co-o Lij Adjordo: Aig = (-2) its dig en el adjordo

di aig

(Si its par adjunto #> dig Si its infor adjusto = D - Lig Matris Adjuste de A: Matriz del mismo order 1 La original que hor co-o confront les organtes Aig de coda aig de

		latr								C,	-e-	-ŀ	le							
	J	A =	1 -1 0	3	> L	5) 2) 1/														
			/(-															1		
Aa	θ _λ (λ	()	- [-	0 S -11	1		0 "	5 1 .	7	,0-	6 1 3			-	-5	5 15	1 7	1 3		
			\ -	3 2	-		1 7	> [(-	_(3									

CALCULOS DETERMINANTES

A
$$\in \mathcal{U}_{n}(1K)$$
, $n \geq 2$

Whose determinante

 $\det(A) = \alpha_{1}A_{1} + \alpha_{2}A_{2} + \cdots + \alpha_{n}A_{n}$
 $\det(A) = \alpha_{3}A_{2} + \cdots + \alpha_{n}A_{n}$
 $\det(A) = \alpha_{1}A_{2} +$

Matriz Inversa con determinantes Siendo A, B matrices andredos n, A, B ENG (1K) A es invertible si det(A) ≠0 Det(AB) = det(A) det(B) → S: cuclquer & Co des · def (A) & B enfonces; D A-2 = (Ad (A)) + $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -3 & 5 \end{pmatrix}$ $det(A) = 4 \neq 0$ $Adj(A) = \begin{pmatrix} 10 & 10 & 6 \\ 2 & 2 & 2 \end{pmatrix} + \frac{16 \cdot 2 - 3}{6 \cdot 2 - 3} \begin{pmatrix} 16 \cdot 2 - 3 \\ 0 \cdot 3 - 5 \\ 6 \cdot 2 - 3 \end{pmatrix}$ $A^{-2} = \frac{1}{h+(A)}(A) + \frac{1}{L_1}(A) + \frac{1}{L_1$ con un ordendon no renta poesto QUE CRECE DE MANERA EXPONENCIAL

Aplicaciones Nango Determinantes 20 MA2 + A ∈ Mm×n (lK), K< m,n + Menor de orden k de D Determinante oskarde in premier mile glas of nik ali-e Dorlar un menor de and le completate hasta un menor de order k+1 Calculo rango Si se puede & llenor de order K no pulo \$ Tools 16+1 = 0 Enlonces rg (A) = K Si el determinde es grade de la la la la Lora A es de order Kerkeris rg(A)=K

Regla de Cramer

Ai,
$$i = 1, 2..., n$$

Ai = matrix resultati de

Sustituir columna i por

los determinati

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \quad x = \begin{pmatrix} A_{i} \\ X_{i} \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$det(A) = 1 \quad x_{1} = \begin{vmatrix} A_{1} \\ A_{1} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = 1 = 1$$

$$x_{2} = \begin{vmatrix} A_{2} \\ A_{3} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = 1 = 1$$

$$x_{3} = \begin{vmatrix} A_{3} \\ A_{3} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{vmatrix} = 0$$

Ejercicio / 1 1 1	Rega Cramer $ X = \begin{pmatrix} x_3 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} a \\ b \\ y \end{pmatrix} $	2U D D A 2
$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$ $0 - 1 + 1 - 0 - 1$		
14 = 1	$x_{2} = \frac{\begin{vmatrix} 0 & 0 & 1 \\ y & -1 & 0 \end{vmatrix}}{1} = 1 \cdot y - 2 \cdot (3 - (10)) = \frac{1}{1} \cdot (10) = \frac{1}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β) - 1 y ×2
	$x_3 = \frac{1-1-1}{2} = \alpha + \gamma$	

$$\begin{cases} 6_{1} + 8_{2} = 1 - 2_{2} \\ 2_{2} + 4_{2} = 2 - 4_{2} \end{cases}$$

$$\begin{array}{c}
y = 2x - \frac{3}{2} \\
\times = \left(\frac{x}{2} - \frac{3}{2}\right) & \cos x \in \mathbb{R} \\
\end{array}$$

$$\begin{array}{c}
z = 5 \\
4
\end{array}$$

0.1						,					,				
Sist	emas	Je	pend	ien t	נש	de	<u>.</u>	ρο	, ro	m e	tco	ת			