2.151 Final Project

Lucille Hosford, Chris Welch, Brian Wilcox, Manjinder Singh

Impedance Control in the Oil and Gas Industry

- Decommissioning is the dismantling of offshore structures
- Current state of practices uses ROVs and divers
 - ROVs = Very expensive operational costs
 - Divers = Very significant safety risks
- Replace with autonomy?
 - Autonomous decommissioning vehicles must demonstrate comparable ability to sense and manipulate
- Key tasks include scrubbing biofouling and testing valve functionality
 - Suggests impedance control!

Baxter and Dexter

- Long term goal: Dexter affords ability to investigate free-flight collisions, but Baxter's manipulator more realistically exemplifies desired dexterity of a light intervention AUV
 - Use Dexter's linear actuator to find range of impedances for acceptable collision characteristics
 - Demonstrate that Baxter's multi dof arm can reproduce those impedances

Dexter State Space Representation: Open Loop Model

State Space Representation

$$\begin{bmatrix} \frac{\mathrm{d}(x1)}{\mathrm{d}t} \\ \frac{\mathrm{d}^2(x1)}{\mathrm{d}t^2} \\ \frac{\mathrm{d}(x2)}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{-(b1+b2)}{m1+m2} & 0 \\ 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} x1 \\ \frac{\mathrm{d}(x1)}{\mathrm{d}t} \\ x2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ \frac{-b2}{m1+m2} & \frac{-m2}{m1+m2} & \frac{1}{m1+m2} \\ 1 & 0 & 0 \end{bmatrix} * \begin{bmatrix} \frac{\mathrm{d}(x2)}{\mathrm{d}t} \\ \frac{\mathrm{d}^2(x2)}{\mathrm{d}t^2} \\ \mathrm{Ft} \end{bmatrix}$$

Dexter Equations of Motion: Closed Loop Model

$$m_1 \ddot{x_1} = f_t - f_l - b_1 \dot{x_1}$$

 $m_2 \ddot{x_2} = f_l + f_e - b_2 \dot{x_2}$
 $x_2 = x_1 + x_{arm}$

$$\ddot{x} = -\frac{b_i}{m_i}\dot{x} - \frac{k_i}{m_i}x + \frac{1}{m_i}f_l$$

Dexter State Space Representation: Closed Loop Model

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \dot{x_1} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{k_i}{m_2 - m_i} & \frac{-(b_2 - b_i)}{m_2 - m_i} & \frac{-(b_2 - b_i)}{m_2 - m_i} \end{bmatrix} \begin{bmatrix} x \\ \dot{x_1} \\ \dot{x_2} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{m_2 - m_i} & \frac{k_i}{m_2 - m_i} & -1 & \frac{-k_i}{m_2 - m_i} & \frac{-b_i}{m_2 - m_i} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} [F_l]$$

$$\begin{bmatrix} F_t \\ \dot{x_a} \end{bmatrix} = \begin{bmatrix} \frac{m_1 k_i}{m_2 - m_i} & \frac{b_1 - \frac{m_1 (b_2 - b_i)}{m_2 - m_i}}{m_2 - m_i} & \frac{m_1 (b_2 - b_i)}{m_2 - m_i} & \frac{x}{m_2 - m_i} & \frac{m_1 k_i}{m_2 - m_i} & -m_1 & \frac{-m_1 k_i}{m_2 - m_i} & -m_1 b_i \\ \frac{k_i}{b_2 - b_i} & \frac{m_2 - m_i}{m_1 (b_2 - b_i)} - \frac{b_2}{b_2 - b_i} + \frac{b_i}{b_2 - b_i} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x_a} \end{bmatrix} + \begin{bmatrix} \frac{m_1 + m_2 - m_i}{m_2 - m_i} & \frac{m_1 k_i}{m_2 - m_i} & -m_1 & \frac{-m_1 k_i}{m_2 - m_i} & 0 \\ \frac{m_1 + m_2 - m_i}{m_2 - m_i} & \frac{k_i}{b_2 - b_i} & \frac{-(m_2 - m_i)}{b_2 - b_i} & \frac{k_i}{b_2 - b_i} & \frac{-(m_2 - m_i)}{m_1 (b_2 - b_i)} \end{bmatrix} \begin{bmatrix} F \\ \ddot{x_a} \end{bmatrix}$$

- The above state space model describes necessary actuation with respect to sensor inputs in order to achieve a desirable, user-defined endpoint impedance
- However, focus for Baxter is on the actuator's impedance characteristics

2.151 Final Project

Lucille Hosford, Chris Welch, Brian Wilcox, Manjinder Singh

Impedance Control in the Oil and Gas Industry

- Decommissioning is the dismantling of offshore structures
- Current state of practices uses ROVs and divers
 - ROVs = Very expensive operational costs
 - Divers = Very significant safety risks
- Replace with autonomy?
 - Autonomous decommissioning vehicles must demonstrate comparable ability to sense and manipulate
- Key tasks include scrubbing biofouling and testing valve functionality
 - Suggests impedance control!

Baxter and Dexter

- Long term goal: Dexter affords ability to investigate free-flight collisions, but Baxter's manipulator more realistically exemplifies desired dexterity of a light intervention AUV
 - Use Dexter's linear actuator to find range of impedances for acceptable collision characteristics
 - Demonstrate that Baxter's multi dof arm can reproduce those impedances

Dexter State Space Representation: Open Loop Model

State Space Representation

$$\begin{bmatrix} \frac{\mathrm{d}(x1)}{\mathrm{d}t} \\ \frac{\mathrm{d}^2(x1)}{\mathrm{d}t^2} \\ \frac{\mathrm{d}(xa)}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{-(b1+b2)}{m1+m2} & 0 \\ 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} x1 \\ \frac{\mathrm{d}(x1)}{\mathrm{d}t} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ \frac{-b2}{m1+m2} & \frac{-m2}{m1+m2} & \frac{1}{m1+m2} \\ 1 & 0 & 0 \end{bmatrix} * \begin{bmatrix} \frac{\mathrm{d}(xa)}{\mathrm{d}t} \\ \frac{\mathrm{d}^2(xa)}{\mathrm{d}t^2} \\ \mathrm{Ft} \end{bmatrix}$$

Dexter Equations of Motion: Closed Loop Model

$$m_1 \ddot{x_1} = f_t - f_l - b_1 \dot{x_1}$$

 $m_2 \ddot{x_2} = f_l + f_e - b_2 \dot{x_2}$
 $x_2 = x_1 + x_{arm}$

$$\ddot{x} = -\frac{b_i}{m_i}\dot{x} - \frac{k_i}{m_i}x + \frac{1}{m_i}f_l$$

Dexter State Space Representation: Closed Loop Model

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \dot{x_1} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{k_i}{m_2 - m_i} & \frac{-(b_2 - b_i)}{m_2 - m_i} & \frac{-(b_2 - b_i)}{m_2 - m_i} \end{bmatrix} \begin{bmatrix} x \\ \dot{x_1} \\ \dot{x_2} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{m_2 - m_i} & \frac{k_i}{m_2 - m_i} & -1 & \frac{-k_i}{m_2 - m_i} & \frac{-b_i}{m_2 - m_i} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} [F_l]$$

$$\begin{bmatrix} F_t \\ \dot{x_a} \end{bmatrix} = \begin{bmatrix} \frac{m_1 k_i}{m_2 - m_i} & \frac{b_1 - \frac{m_1 (b_2 - b_i)}{m_2 - m_i}}{m_2 - m_i} & \frac{m_1 (b_2 - b_i)}{m_2 - m_i} & \frac{x}{m_2 - m_i} & \frac{m_1 k_i}{m_2 - m_i} & -m_1 & \frac{-m_1 k_i}{m_2 - m_i} & -m_1 b_i \\ \frac{k_i}{b_2 - b_i} & \frac{m_2 - m_i}{m_1 (b_2 - b_i)} - \frac{b_2}{b_2 - b_i} + \frac{b_i}{b_2 - b_i} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x_a} \end{bmatrix} + \begin{bmatrix} \frac{m_1 + m_2 - m_i}{m_2 - m_i} & \frac{m_1 k_i}{m_2 - m_i} & -m_1 & \frac{-m_1 k_i}{m_2 - m_i} & 0 \\ \frac{m_1 + m_2 - m_i}{m_2 - m_i} & \frac{k_i}{b_2 - b_i} & \frac{-(m_2 - m_i)}{b_2 - b_i} & \frac{k_i}{b_2 - b_i} & \frac{-(m_2 - m_i)}{m_1 (b_2 - b_i)} \end{bmatrix} \begin{bmatrix} F \\ \ddot{x_a} \end{bmatrix}$$

- The above state space model describes necessary actuation with respect to sensor inputs in order to achieve a desirable, user-defined endpoint impedance
- However, focus for Baxter is on the actuator's impedance characteristics

Turning a Non-Backdrivable Linear Actuator Into a Passive System

- Creating a controller for the linear actuator based desired impedance parameters allows for:
 - A closed-loop system that promotes robust and stable interactions due to passivity
 - Achievable design constraints (e.g., Peak impact force, Settling time)
 - Definitive impedance values for Baxter to reproduce

Determining Desirable Impedance Characteristics

- A reduction in peak force provides a buffer for a controller to react to any unforeseen collisions
 - Alleviates significant risks for valuable equipment on hard-to-reach AUVs
- A sharp reduction in settling time suggests a smaller influence by external disturbances, such as underwater currents
 - Minimizes unpredictable disturbances during any on going contact tasks
- Feed impedance values to Baxter!

Baxter Research Robot

For the purposes of the experiment, Baxter was constrained to planar motion by only allowing joints S1, E1, and W1 to move.

Baxter Research Robot: Open loop model

Neglecting SEA dynamics, Equations of Motion

$$(M(q) + I_r)\ddot{q} + C(\dot{q}, q) + D\dot{q} + g(q) = \tau_{motors}$$

Simplifies to

$$(M(q) + I_r)\ddot{q} + D\dot{q} = \tau_{motors}$$

State space representation

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 - (M(q) + I_r)^{-1} D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \\ (M(q) + I_r)^{-1} \end{bmatrix} \tau_{motors}$$

$$\dot{x} = \begin{bmatrix} 0 J \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \tau_{motors}$$

Baxter Research Robot: Closed loop model

$$F_{motor} = K(x_d - x) - B\dot{x}$$
 $\tau_{motor} = J^T(F_{motor})$

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -(M(q) + I_r)^{-1} J^T K J & -(M(q) + I_r)^{-1} (D + J^T B J) \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \\ (M(q) + I_r)^{-1} J^T K J \end{bmatrix} q_d$$

$$\dot{x} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} q \\ \dot{a} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} q_d$$

Baxter Research Robot: Real Data

- What if we want to specify performance criteria for the states?
 - Max actuator force
 - Stroke Length
- Use LQR to optimize performance and control effort

$$\min_{\mathbf{u}(t)} V = \int_{\tau=t}^{\tau=T} (\mathbf{x}^t \mathbf{Q} \mathbf{x} + \mathbf{u}^t \mathbf{R} \mathbf{u}) d\tau$$

Bryson's Rule

$$Q = \begin{bmatrix} \frac{\alpha_1^2}{(x_1)_{\max}^2} & & & \\ & \frac{\alpha_2^2}{(x_2)_{\max}^2} & & & \\ & & \ddots & & \\ & & \frac{\alpha_n^2}{(x_n)_{\max}^2} \end{bmatrix}$$

$$R = \rho \begin{bmatrix} \frac{\beta_1^2}{(u_1)_{\max}^2} & & & & \\ & \frac{\beta_2^2}{(u_2)_{\max}^2} & & & & \\ & & \ddots & & & \\ & & & \frac{\beta_m^2}{(u_m)_{\max}^2} \end{bmatrix}$$

- Baxter system criteria:
 - o x1max (x position) = 0.5214 m
 - u1max (shoulder torque) = 50 Nm
 - u2max(elbow torque) = 15 Nm
 - u3max(wrist torque) = 15 Nm

0.0044

0

0.0044

0

Closed Loop: Expensive

blue - cheap
orange - expensive
yellow - equal

Baxter Research Robot: LQR Discussion

- Expensive control is realistic given good performance results and less control (actuator effort)
- Choosing relative weighting of states/inputs may be significant
- Can we design performance criteria around impact collision response?
- Can we combine impedance into cost function for LQR design?

Criteria:

Max Thrust=10 Nm

Max Stroke length=10 in

Different Designs:

- Cheap
- Expensive
- Equal
- Weighting xa vs x1

Open-Loop

yellow - cheap

red - expensive

blue - equal

blue- different weighting for state_variables

Future Work

Dexter

 Implement the MIMO system on the raft. Determine how robust it is to the nonlinear damping of the surrounding fluid

Baxter

Determine how delays in system affect achievable range of impedances.

Appendix: Series Elastic Actuators: Open loop model

Equations of motion

$$M(q)\ddot{q} + C\dot{q} = \tau_{measured} + \tau_{ext}$$
 $I_r\ddot{\theta} + D\dot{\theta} = \tau_{motor} - \tau_{measured}$
 $\tau_{measured} = K_{SEA}(\theta - q)$

State space representation

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 \\ -M^{-1}K_{SEA} & -M^{-1}C & M^{-1}K_{SEA} & 0 \\ 0 & 0 & 0 & I \\ I_r^{-1}K_{SEA} & 0 & -I_r^{-1}K_{SEA} -I_r^{-1}D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ I_r^{-1} \end{bmatrix} \tau_{motor}$$

$$\dot{x} = \begin{bmatrix} 0 & J & 0 & 0 \end{bmatrix} \begin{vmatrix} q \\ \dot{q} \\ \dot{\theta} \end{vmatrix} + \begin{bmatrix} 0 \end{bmatrix} \tau_{motor}$$

Appendix: Baxter Research Robot: Real System

Can achieve a fairly broad range of impedances using this approach.

There is a limit to how high the gains can be turned up that is not accounted for in this "simplified" model.

two likely reasons:

- 1. Delay in the system→ not a "state space" problem
- 2. The model does not account for all the dynamics of the system

Appendix: Single SEA

- Acts like a second order model until about 100 rad/s (far above Baxter's operating frequency)
- The second pair of poles not accounted for in the simplified model can still be driven into the RHP at high gains

Appendix: Series Elastic Actuators: Closed loop model

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 \\ -M^{-1}K_{SEA} & -M^{-1}C & M^{-1}K_{SEA} & 0 \\ 0 & 0 & 0 & I \\ I_r^{-1}K_{SEA} - I_r^{-1}J^TKJ & -I_r^{-1}J^TBJ & -I_r^{-1}K_{SEA} & -I_r^{-1}D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ I_r^{-1}J^TKJ \end{bmatrix} q_d$$

$$\dot{x} = \begin{bmatrix} 0 & J & 0 & 0 \end{bmatrix} \begin{vmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{vmatrix} + \begin{bmatrix} 0 \end{bmatrix} q_d$$

Turning a Non-Backdrivable Linear Actuator Into a Passive System

- Creating a controller for the linear actuator based desired impedance parameters allows for:
 - A closed-loop system that promotes robust and stable interactions due to passivity
 - Achievable design constraints (e.g., Peak impact force, Settling time)
 - Definitive impedance values for Baxter to reproduce

Determining Desirable Impedance Characteristics

- A reduction in peak force provides a buffer for a controller to react to any unforeseen collisions
 - Alleviates significant risks for valuable equipment on hard-to-reach AUVs
- A sharp reduction in settling time suggests a smaller influence by external disturbances, such as underwater currents
 - Minimizes unpredictable disturbances during any on going contact tasks
- Feed impedance values to Baxter!

Baxter Research Robot

For the purposes of the experiment, Baxter was constrained to planar motion by only allowing joints S1, E1, and W1 to move.

Baxter Research Robot: Open loop model

Neglecting SEA dynamics, Equations of Motion

$$(M(q) + I_r)\ddot{q} + C(\dot{q}, q) + D\dot{q} + g(q) = \tau_{motors}$$

Simplifies to

$$(M(q) + I_r)\ddot{q} + D\dot{q} = \tau_{motors}$$

State space representation

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 - (M(q) + I_r)^{-1} D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \\ (M(q) + I_r)^{-1} \end{bmatrix} \tau_{motors}$$

$$\dot{x} = \begin{bmatrix} 0 J \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \tau_{motors}$$

Baxter Research Robot: Closed loop model

$$F_{motor} = K(x_d - x) - B\dot{x}$$
 $\tau_{motor} = J^T(F_{motor})$

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -(M(q) + I_r)^{-1} J^T K J & -(M(q) + I_r)^{-1} (D + J^T B J) \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \\ (M(q) + I_r)^{-1} J^T K J \end{bmatrix} q_d$$

$$\dot{x} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} q \\ \dot{a} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} q_d$$

Baxter Research Robot: Real Data

- What if we want to specify performance criteria for the states?
 - Max actuator force
 - Stroke Length
- Use LQR to optimize performance and control effort

$$\min_{\mathbf{u}(t)} V = \int_{\tau=t}^{\tau=T} (\mathbf{x}^t \mathbf{Q} \mathbf{x} + \mathbf{u}^t \mathbf{R} \mathbf{u}) d\tau$$

Bryson's Rule

$$Q = \begin{bmatrix} \frac{\alpha_1^2}{(x_1)_{\max}^2} & & & \\ & \frac{\alpha_2^2}{(x_2)_{\max}^2} & & & \\ & & \ddots & & \\ & & \frac{\alpha_n^2}{(x_n)_{\max}^2} \end{bmatrix}$$

$$R = \rho \begin{bmatrix} \frac{\beta_1^2}{(u_1)_{\max}^2} & & & & \\ & \frac{\beta_2^2}{(u_2)_{\max}^2} & & & & \\ & & \ddots & & & \\ & & & \frac{\beta_m^2}{(u_m)_{\max}^2} \end{bmatrix}$$

- Baxter system criteria:
 - o x1max (x position) = 0.5214 m
 - u1max (shoulder torque) = 50 Nm
 - u2max(elbow torque) = 15 Nm
 - u3max(wrist torque) = 15 Nm

0.0044

0

0.0044

0

Closed Loop: Expensive

blue - cheap
orange - expensive
yellow - equal

Baxter Research Robot: LQR Discussion

- Expensive control is realistic given good performance results and less control (actuator effort)
- Choosing relative weighting of states/inputs may be significant
- Can we design performance criteria around impact collision response?
- Can we combine impedance into cost function for LQR design?

Criteria:

Max Thrust=10 Nm

Max Stroke length=10 in

Different Designs:

- Cheap
- Expensive
- Equal
- Weighting xa vs x1

Open-Loop

yellow - cheap

red - expensive

blue - equal

blue- different weighting for state_variables

Future Work

Dexter

 Implement the MIMO system on the raft. Determine how robust it is to the nonlinear damping of the surrounding fluid

Baxter

Determine how delays in system affect achievable range of impedances.

Appendix: Series Elastic Actuators: Open loop model

Equations of motion

$$M(q)\ddot{q} + C\dot{q} = \tau_{measured} + \tau_{ext}$$
 $I_r\ddot{\theta} + D\dot{\theta} = \tau_{motor} - \tau_{measured}$
 $\tau_{measured} = K_{SEA}(\theta - q)$

State space representation

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 \\ -M^{-1}K_{SEA} & -M^{-1}C & M^{-1}K_{SEA} & 0 \\ 0 & 0 & 0 & I \\ I_r^{-1}K_{SEA} & 0 & -I_r^{-1}K_{SEA} -I_r^{-1}D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ I_r^{-1} \end{bmatrix} \tau_{motor}$$

$$\dot{x} = \begin{bmatrix} 0 & J & 0 & 0 \end{bmatrix} \begin{vmatrix} q \\ \dot{q} \\ \dot{\theta} \end{vmatrix} + \begin{bmatrix} 0 \end{bmatrix} \tau_{motor}$$

Appendix: Baxter Research Robot: Real System

Can achieve a fairly broad range of impedances using this approach.

There is a limit to how high the gains can be turned up that is not accounted for in this "simplified" model.

two likely reasons:

- 1. Delay in the system→ not a "state space" problem
- 2. The model does not account for all the dynamics of the system

Appendix: Single SEA

- Acts like a second order model until about 100 rad/s (far above Baxter's operating frequency)
- The second pair of poles not accounted for in the simplified model can still be driven into the RHP at high gains

Appendix: Series Elastic Actuators: Closed loop model

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 \\ -M^{-1}K_{SEA} & -M^{-1}C & M^{-1}K_{SEA} & 0 \\ 0 & 0 & 0 & I \\ I_r^{-1}K_{SEA} - I_r^{-1}J^TKJ & -I_r^{-1}J^TBJ & -I_r^{-1}K_{SEA} & -I_r^{-1}D \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ I_r^{-1}J^TKJ \end{bmatrix} q_d$$

$$\dot{x} = \begin{bmatrix} 0 & J & 0 & 0 \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} q_d$$