

FT64F0AX

TIM4_INTERRUPT Application note

目录

1.	基本定时器 TIM4				
	1.1.	特性	3		
	1.2.	TIM4 相关寄存器汇总	3		
	1.3.	TIM4 时钟源	5		
	1.4.	预分频器	5		
	1.5.	TIM4 中断	5		
2.	应用范例				
联系	信息		9		

FT64F0Ax TIM4_INTERRUPT 应用

1. 基本定时器 TIM4

1.1. 特性

- 8bit 自动重载向上计数器
- 计数时钟可编程预分频
- 计数器溢出中断

图 1-1 TIM4 原理框图

1.2. TIM4 相关寄存器汇总

名称	地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	复位值
PCKEN	0x9A	UART2EN	I2CEN	UART1EN	SPIEN	TIM4EN	TIM2EN	TIM1EN	ADCEN	0000 0000
CKOCON	0x95	SYSON	CCORDY	DTYSEL		CCOSEL[2:0]			CCOEN	0010 0000
TIM4CR1	0x111	T4ARPE	_	T4CKS[1:0]		T4OPM	T4URS	T4UDIS	T4CEN	0-00 0000
TIM4IER	0x112	-	_	-	-	-	-	-	T4UIE	0
TIM4SR	0x113	-	_	-	-	-	-	-	T4UIF	0
TIM4EGR	0x114	-	_	-	-	-	-	-	T4UG	0
TIM4CNTR	0x115		T4CNT[7:0]						0000 0000	
TIM4PSCR	0x116	-	_	T4PSC[2:0]			000			
TIM4ARR	0x117	T4ARR[7:0]					1111 1111			

表 1-1 Timer4 相关用户寄存器汇总

名称	状态	寄存器	地址	复位值		
TIM4EN	TIM4 模块时钟 1 = 使能 0 = 关闭		PCKEN[3]	0x9A	RW-0	
SYSON	睡眠模式下,系统时钟控制	1 = 使能 0 = <u>关闭</u>	CKOCON[7]	0x95	RW-0	
	<u>周期的自动预装载</u>					
T4ARPE	1 = 使能 (T4ARR 预装载值在 载)	TIM4CR1[7]		RW-0		
	0 = 禁止 (T4ARR 立即被加载)					
	Timer4 时钟	<u>源</u>			RW-00	
	00 = <u>Sysclk</u>	10 = LP ^(*)				
T4CKS	01 = HIRC	11 = XT ^(*)	TIM4CR1[5:4]			
	^(*) FOSC 应相应配置成 LP/XT 模式,否则振荡器将不会运行		0x111			
	<u>单脉冲模式</u>	TIM4CR1[3]				
T4OPM	1 = 使能 (下一次更新事件到来)			RW-0		
	0 = 关闭 (发生更新事件时,计	数器不停止)				
	当 T4UDIS = 0 时,更新事件中					
T4URS	1 = 计数器上溢		TIM4CR1[2]		RW-0	
	0 = 软件设置 T4UG 位或计数器					
	产生更新事件控制	TIM4CR1[1]		RW-0		
T4UDIS	1= 禁止					
	0 = <u>允许</u>					
TACEN	TINAA \$1.**	1 = 使能	TIMACDAIOL		RW-0	
T4CEN	TIM4 计数器	0 = <u>关闭</u>	TIM4CR1[0]			
	000 = <u>1</u>	100 = 16	TIM4PSCR[2:0]	0x116	RW-000	
	001 = 2	101 = 32				
T4PSC	010 = 4	110 = 64				
	011 = 8					
	注:必须产生更新事件或 T4C 频值才生效					
T4CNT	Timer4 计数值	TIM4CNTR[7:0]	0x115	RW-00000000		
T4ARR	周期的自动重装载寄存器(预装载 注:此值为 0 时,计数器不工作	TIM4ARR[7:0]	0x117	RW-1111 1111		

表 1-2 Timer4 相关用户控制寄存器

- 4 -

名称		状态	寄存器	地址	复位值
CIE	4 - 体化 /DCIC TAIL	INTCON[7]		RW-0	
GIE	1 = 使能 (PEIE, T4U 0 = <u>全局关闭</u> (唤醒7		Bank 首地址		
PEIE	外设总中断	1 = 使能 (T4UIE, T4UG 适用) 0 = <u>关闭</u> (无唤醒)	INTCON[6]	+0x0B	RW-0
T4UIE	允许更新中断	1 = 使能	TIM4IER[0]	0x112	RW-0
T4UG ¹	允许更新软件中断	0 = <u>关闭</u>	TIM4EGR[0]	0x114	WO-0
T4UIF ²	更新中断标志位	1 = 更新事件等待响应 0 = <u>无更新事件</u>	TIM4SR[0]	0x113	R_W1C-0

表 1-3 Timer4 中断使能和状态位

1.3. TIM4 时钟源

TIM4 有 4 种时钟源可选,由寄存器位 T4CKS 设置。在 TIM4 的被使能 (PCKEN.TIM4EN=1)的情况下,所选择的时钟源被自动使能。

注意:

- 1. 如果要选择 LP 晶体时钟,系统时钟配置寄存器位 FOSC 必须选择 LP 模式,否则对应的时钟源将不被使能;
- 2. 同理,如果要选择 XT 晶体时钟,系统时钟配置寄存器位 FOSC 必须选择 XT 模式,否则对应的时钟源将不被使能;

SLEEP 模式下, 如果 SYSON 为 1, 且 TIM4EN=1, 则所选择的时钟源将保持振荡, TIM4 将继续工作; 否则, 所选的时钟源取决于其他模块的设置情况。

1.4. 预分频器

计数时钟可以进行 3bit 的时钟预分频:

$$f_{CK CNT} = f_{CK PSC}/2^{(PSCR[2:0])}$$

预分频支持分频自动更新,即在更新事件发生后,能够自动改变预分频值。当 T4CEN 为 0 时,写入预分频寄存器的值也能直接加载实际应用的预分频寄存器中。

1.5. TIM4 中断

TIM4 只有一个中断请求源:

● 更新中断 (计数器上溢或计数器初始化)

在用这些中断之前需要提前打开 TIM4IER 寄存器中的中断使能位 (T4UIE)。

不同的中断源还可以配置通过 TIM4EGR 寄存器来产生 (软件产生中断 T4UG)

_

¹ 软件置 1, 硬件自动清 0。

 $^{^2}$ 写 1 清 0, 写 0 无效。建议只使用 STR、MOVWI 指令进行写操作,而不要用 BSR 或 IOR 指令。

2. 应用范例

```
/* 文件名: TEST 64F0Ax TIM4 INTERRUPT.c
* 功能:
       FT64F0Ax TIM4 INTERRUPT 功能演示
* IC:
       FT64F0Ax TSSOP20
* 内部:
       16M
* 说明:
        程序通过 TIM4 中断在 RB3 输出频率为 4K 的方波
        FT64F0AX TSSOP20
* NC-----|1(PA5)
                 (PA4)20|----NC
* NC-----|2(PA6)
                 (PA3)19|-----NC
* NC-----|3(PA7)
                 (PA2)18|-----NC
* NC-----|4(PC0)
                 (PA1)17|----NC
* NC-----|5(PC1)
                 (PA0)16|----NC
* NC-----|6(PB7)
                 (PB0)15|-----NC
* GND-----|7(GND)
                 (PB1)14|----NC
* NC-----|8(PB6)
                 (PB2)13|-----NC
* VDD-----|9(VDD)
                 (PB3)12|--DemoPortOut
* NC-----|10(PB5)
                 (PB4)11|-----NC
//*********************************
#include "SYSCFG.h";
#include "FT64F0AX.h";
#define
       uchar unsigned char
#define
       uint
           unsigned int
#define
       ulong unsigned long
#define DemoPortOut
                 PB3
* 函数名: interrupt ISR
* 功能:
       定时器 4 中断
* 输入:
        无
* 输出:
        无
*/
void interrupt ISR(void)
{
  //定时器 4 的中断处理程序
  if(T4UIE&&T4UIF)
      T4UIF=1;
                          //写 1 清零标志位
      DemoPortOut=~DemoPortOut; //翻转电平
```

- 6 - 2021-11-02


```
}
}
* 函数名: POWER INITIAL
* 功能: 上电系统初始化
* 输入:
        无
* 输出: 无
void POWER INITIAL(void)
   OSCCON=0B01110001;
                           //系统时钟选择为内部振荡器 16MHz.分频比为 1:1
   INTCON=0;
                             //禁止所有中断
   PORTA=0B000000000;
   PORTB=0B000000000;
   PORTC=0B000000000:
   WPUA=0B00000000:
                             //弱上拉的开关, 0-关, 1-开
   WPUB=0B00000000;
   WPUC=0B00000000;
   WPDA=0B00000000;
                             //弱下拉的开关, 0-关, 1-开
   WPDB=0B00000000;
   WPDC=0B00000000;
   TRISA=0B00000000;
                             //输入输出设置, 0-输出, 1-输入
   TRISB=0B00000000;
                             //RB3-输出
   TRISC=0B000000000:
   PSRC0=0B11111111;
                             //源电流设置最大
   PSRC1=0B11111111;
   PSRC2=0B00001111;
   PSINK0=0B11111111;
                             //灌电流设置最大
   PSINK1=0B11111111;
   PSINK2=0B00000011;
   ANSELA=0B00000000;
                       //设置对应的 IO 为数字 IO
}
* 函数名: TIM4_INITIAL
* 功能:
        初始化 TIM4
* 输入:
        无
* 输出:
        无
```

- 7 - 2021-11-02


```
----*/
void TIM4_INITIAL(void)
   PCKEN|=0B00001000;
                          //使能 TIMER4 模块时钟
                          //允许自动装载,使能计数器
   TIM4CR1=0B00000101;
   TIM4IER=0B00000001;
                           //允许更新中断
   TIM4SR=0B000000000;
   TIM4EGR=0B00000000;
   TIM4CNTR=0;
   TIM4PSCR=0B00000100;
                           //预分频器的值
   TIM4ARR=124;
                           //自动装载值
   INTCON|=0B11000000;
                           //开总中断和外设中断
}
/*-----
* 函数名: main
* 功能:
        主函数
* 输入:
        无
* 输出:
        无
void main(void)
                        //系统初始化
   POWER_INITIAL();
   TIM4 INITIAL();
   while(1)
      NOP();
  }
}
```

- 8 - 2021-11-02

联系信息

Fremont Micro Devices Corporation

#5-8, 10/F, Changhong Building Ke-Ji Nan 12 Road, Nanshan District, Shenzhen, Guangdong, PRC 518057

Tel: (+86 755) 8611 7811 Fax: (+86 755) 8611 7810

Fremont Micro Devices (HK) Limited

#16, 16/F, Block B, Veristrong Industrial Centre, 34–36 Au Pui Wan Street, Fotan, Shatin, Hong Kong SAR

Tel: (+852) 2781 1186 Fax: (+852) 2781 1144

http://www.fremontmicro.com

- 9 -

2021-11-02

^{*} Information furnished is believed to be accurate and reliable. However, Fremont Micro Devices Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent rights of Fremont Micro Devices Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Fremont Micro Devices Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of Fremont Micro Devices Corporation. The FMD logo is a registered trademark of Fremont Micro Devices Corporation. All other names are the property of their respective owners.