IN THE U.S. PATENT AND TRADEMARK OFFICE.

Applicant: Takeshi IMANISHI et al. Conf.; 3122

Appl. No.; 10/569,949 Group: UNKNOWN

Filed: February 28, 2006 Examiner: UNKNOWN

For: NOVEL ARTIFICIAL NUCLEIC ACIDS OF N-O BOND

CROSSLINKAGE TYPE

REQUEST UNDER 37 C.F.R. §1.221(b)

Commissioner for Patents P.O. BOX 1450 Alexandria, VA 22313-1450

Sir:

Applicants respectfully request that a material mistake made by the Office in the pre-Grant Publication (US Publication No. 2007/0167387 A1) be corrected.

At page 22, paragraph [0214] of US 2007/0167387 [Chemical Formula 8] there are four chemical formulas, and each one of the four formulas at page 22 contains errors as described below:

- each one of the four formulas should have a "T" as the substituent at the top right hand side
 position of the formula;
- the formula at the bottom of the first column at page 22 of US 2007/0167387, and the second
 formula in the second column of page 22, each have an error in the representation of the
 bond connecting the phosphate group to the ring.

A marked up copy of page 22 of US 2007/0167387 is attached. Applicants also attach a copy of page 76 of the specification which correctly shows the four figures.

Application No. 10/569,949

Applicants submit that the figures provide support under 35 U.S.C. §112, in part, for claim 1.

Accordingly, the above described errors constitute a material mistake by the Office. Applicants

therefore respectfully request the Office to republish the document under 37 C.F.R. 1.221(b).

Conclusion

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. § 1.16 or under 37 C.F.R. § 1.17; particularly, extension of time fees.

Respectfully submitted.

Gerald M. Murphy, Jr., #28/917

BIRCH, STEWART, KOLASCH & BIRCH, LLP 8110 Gatehouse Road Suite 100 East P.O. Box 747 Falls Church, VA 22040-0747 (703) 205-8000 Attorney for Applicant

Attachments: Marked-up copy of page 22 of US 2007/0167387 \.M. Copy of page 76 of specification

[0209] As shown in Table 5, the oligonucleotide analogues (6) to (11) and (18) to (21) of the present invention were found to have an excellent triplex-forming capacity. Their sequence selectivity was also superior to that of the natural antisense strand. Thus, they are believed to be very useful for the antigene method as well.

Experimental Example 3

Measurement of Enzyme Resistance

[0210] Natural (DNA oligonucleotide) and nonnatural oligonucleotides shown below were examined for resistance to exonuclease which degrades the oligonucleotide from the 3'-side.

[0211] 1) Each oligonucleotide and snake venom phosphodiesterase (Boehringer Mannheim) as 3'-exonuclease were added, at concentrations of 25 mg/mL and 0.5 mg/mL. into 400 mL of 50 mM Tris-HCl buffer (pH 8.0) containing 10 mM MgCl2, and the mixture was held at 37° C.

[0212] 2) After a constant period of time, the survival rate of each oligonucleotide was measured by HPLC.

[0213] The sequences of the oligonucleotides used in the measurement are shown below.

[Chemical Formula 8]

[0214] 5'-TTTTTTTTXT-3'

2', 4'-BNANC

[0215] where when X is a DNA monomer, the oligonucleotide is a completely natural DNA oligonucleotide, and the oligonucleotide containing other nucleotide analogue is a partially nonnatural oligonucleotide; moreover, the oligonucleotide analogue with X being 2',4'-BNANC (N-Me) is the oligonucleotide analogue of the present invention.

[0216] Changes over time in the survival rates of the respective oligonucleotides, measured by HPLC, are shown in Table 6 and FIG. 1.

[0217] In Table 6 and FIG. 1, "% of intact oligonucleotide" refers to the survival rate (%) (HPLC determination) of the undegraded oligonucleotide at measurement time points to the undegraded oligonucleotide at 0 time point.

TABLE 6

oligomucleotide	Evaluation of enzyme resistance					
	% of intact oligonucleotide					
	0 min	5 min	10 min	20 min	40 min	90 min
D-oligo	100	0	0	0	0	0
2',4'-BNA	100	37	24	5	1	0
5-oligo	100	94	92	91	83	70
2',4'-BNA ^{NC}	100	100	99	98	94	80

[0218] The results of Table 6 and FIG. 1 show that the oligonucleotide analogue of the present invention had excellent enzyme resistance as compared with natural and other nonnatural oligonucleotides.

[0148] where when X is a DNA monomer, the oligonucleotide is a completely natural DNA oligonucleotide, and the oligonucleotide containing other nucleotide analogue is a partially nonnatural oligonucleotide; moreover, the oligonucleotide analogue with X being 2',4'-BNA^{NC}(N-Me) is the oligonucleotide analogue of the present invention.

Changes over time in the survival rates of the

10 respective oligonuclectides, measured by HFLC, are shown in

Table 6 and Fig. 1.

[0149] In Table 6 and Fig. 1, "% of intact oligonucleotide" refers to the survival rate (%) (HPLC determination) of the undegraded oligonucleotide at

15 measurement time points to the undegraded oligonucleotide at 0 time point.

[0150] [Table 6]