1

Assignment 2

AI1110: Probability and Random Variables

Indian Institute of Technology, Hyderabad

Chittepu Rutheesh Reddy cs21btech11014

4)

5 [9 th NCERT Probability Exercise 15.1]:

An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table:

Monthly income	vehicles per family			
(in ₹)	0	1	2	Above 2
Less than 7000	10	160	25	0
7000-10000	0	305	27	2
10000-13000	1	535	29	1
13000-16000	2	469	59	25
16000 or more	1	579	82	88

TABLE I

Suppose a family is chosen. Find the probability that the family chosen is

- (i) earning ₹10000 ₹13000 per month and owning exactly 2 vehicles.
- (ii) earning ₹16000 or more per month and owning exactly 1 vehicle.
- (iii) earning less than ₹7000 per month and does not own any vehicle.
- (iv) earning ₹13000 ₹16000 per month and owning more than 2 vehicles.
- (v) owning not more than 1 vehicle.

Solution:

Random Variable	Description
X	denotes number of vehicles a family owns
Y	denotes the monthly income of a family

TABLE II

1) Total number of families is sum of values in all cells, which is = 2400

2)
$$\Pr\left(X = 2,10000 < Y < 13000\right) = \frac{29}{2400} \tag{2.1}$$

$$= 0.012 \tag{2.2}$$

3)
$$\Pr(X = 1, Y > 16000) = \frac{579}{2400} \qquad (3.1)$$
$$= 0.241 \qquad (3.2)$$

$$\Pr(X = 0, Y < 7000) = \frac{10}{2400}$$
 (4.1)
= 0.0042 (4.2)

5)
$$\Pr\left(X > 2,13000 < Y < 16000\right) = \frac{25}{2400} \tag{5.1}$$

$$= 0.0104 \tag{5.2}$$

6) For this case, the number of families is given by the sum of columns 0 and 1 in Table II. Hence,

$$Pr(X < 2) = \frac{2062}{2400}$$
 (6.1)
= 0.859 (6.2)