Query Equivalent

(Query processing Engine)

Adapted from

Chapter 14 – Database System Concept, Silberschatz, Korth, Sudarshan, 5th ed.

Chapter 15 – Database Management System, Ramakrishnan, Gehrke, 3rd ed

Query Evaluation Engine

Sailors(sid: integer, sname: string, rating: integer, age: real) Database Reserves(sid: integer, bid: integer, day: dates, rname: string) SELECT S.sname Query Reserves R. Sailors S WHERE R.sid = S.sidAND R.bid = 100 AND S.rating > 5 $\pi_{sname}(\sigma_{bid=100 \land rating>5}(Reserves \bowtie_{sid=sid} Sailors))$ **Relational Algebra** (On-the-fly) [◯] bid=100 \wedge rating > 5 (Simple nested loops) eid-eid \sim sid=sid (File scan) Sailors (File scan) Reserves Sailors Reserves

Relational Algebra tree

Query Evaluation Plan

An **evaluation plan** defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

A query can be served with multiple transformations (execution rules) providing the same results

A query can be served with various execution plans providing the same results

 $\Pi_{customer_name} (\sigma_{branch_city} = \text{``Brooklyn''} (branch \bowtie (account \bowtie depositor)))$

- Cost difference between evaluation plans for a query can be enormous
 - E.g. seconds vs. days in some cases
- Steps in cost-based query optimization
 - 1. Generate logically equivalent expressions using equivalence rules
 - 2. Annotate resultant expressions to get alternative query plans
 - 3. Choose the cheapest plan based on **estimated cost**

Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
 - order of tuples is irrelevant
- In SQL, inputs and outputs are multisets of tuples
 - Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance.
- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections (cascading of selection).

$$\sigma_{c_1 \wedge c_2 \wedge \dots c_n}(R) \equiv \sigma_{c_1}(\sigma_{c_2}(\dots(\sigma_{c_n}(R))\dots))$$

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections (cascading of selection).

$$\sigma_{\theta_1 \wedge \theta_2}(R) = \sigma_{\theta_1}(\sigma_{\theta_2}(R))$$

EiD	Name	Salary	Age					
01	Ram	30000	35	(2)		T.,		
02	Shyam	10000	25	→ O _{Salary>20000 AND Age < 40} (R)	EiD	Name	Salary	Age
03	Kumar	25000	30		01	Ram	30000	35
04	Ram	50000	45		03	Kumar	25000	30
_						•		
05	John	75000	50					
05	Jack	5000	20					

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections (cascading of selection).

$$\sigma_{\theta_1 \wedge \theta_2}(R) = \sigma_{\theta_1}(\sigma_{\theta_2}(R))$$

2. Selection operations are **commutative**.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_2}(\sigma_{\theta_1}(R))$$

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the others can be omitted (cascading of projection).

$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

4. Selections can be combined with Cartesian products and theta joins.

a.
$$\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$$

b.
$$\sigma_{\theta 1}(E_1 \bowtie_{\theta 2} E_2) = E_1 \bowtie_{\theta 1 \land \theta 2} E_2$$

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

Cartesian Product also holds the following

 $R \times S \equiv S \times R$

6. (a) Natural join operations are **associative**:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

6. (a) Natural join operations are **associative**:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

Natural Join also holds the following

$$R \bowtie (S \bowtie T) \equiv (T \bowtie R) \bowtie S$$

6. (a) Natural join operations are **associative**:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

Cartesian Product also holds the following

$$R \times (S \times T) \equiv (R \times S) \times T$$

Natural Join also holds the following

$$R \bowtie (S \bowtie T) \equiv (T \bowtie R) \bowtie S$$

6.(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

Also true for Cartesian Product

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1}(\mathsf{E}_1)) \bowtie_{\theta} (\sigma_{\theta_2}(\mathsf{E}_2))$$

$$\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$$

$$\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$$
 Yes, if c is included in a

$$\prod_{\theta_1,\theta_2} (\mathsf{E_1} \bowtie_{\theta} \mathsf{E_2}) = (\prod_{\theta_1} (\mathsf{E_1})) \bowtie_{\theta} (\prod_{\theta_2} (\mathsf{E_2}))$$

$$\prod_{\theta_1,\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\prod_{\theta_1} (\mathsf{E}_1)) \bowtie_{\theta} (\prod_{\theta_2} (\mathsf{E}_2))$$

$$\prod_{\theta_1,\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\prod_{\theta_1,\theta_2} (\mathsf{E}_1)) \bowtie_{\theta} (\prod_{\theta_1,\theta_2} (\mathsf{E}_2))$$

- 8. The projection operation distributes over the theta join operation as follows:
 - (a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = (\prod_{L_1} (E_1)) \bowtie_{\theta} (\prod_{L_2} (E_2))$$

- (b) Consider a join $E_1 \bowtie_{\theta} E_2$.
 - Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
 - Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
 - let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$.

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \bowtie_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$$

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 = E_2 \cup E_1$$

$$E_1 \cap E_2 = E_2 \cap E_1$$

10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

 $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$

11. The selection operation distributes over \cup , \cap and -.

$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - \sigma_{\theta}(E_2)$$

and similarly for \cup and \cap in place of $-$

Also: $\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$ and similarly for \cap in place of -, but not for \cup 12. The projection operation distributes over union

$$\Pi_{\mathsf{L}}(E_1 \cup E_2) = (\Pi_{\mathsf{L}}(E_1)) \cup (\Pi_{\mathsf{L}}(E_2))$$

Example:

```
branch(branch_name, branch_city, assets),
account(account_number, branch_name, balance)
depositor(customer_name, account_number)
```

• Query: Find the names of all customers who have an account at some branch located in Brooklyn.

```
\Pi_{customer\_name}(\sigma_{branch\_city = "Brooklyn"} (branch \bowtie (account \bowtie depositor)))
```

Transformation using rule 7a.

```
\Pi_{customer\_name} \\ ((\sigma_{branch\_city = "Brooklyn"} (branch)) \\ \bowtie (account \bowtie depositor))
```

Can also be transformed as

```
\sigma_{branch\_city = \text{``Brooklyn''}} (\Pi_{customer\_name, branch\_city} (branch \bowtie (account \bowtie depositor)))
```

Example with Multiple Transformations

• Query: Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

```
\Pi_{customer\_name}(\sigma_{branch\_city = "Brooklyn" \land balance > 1000} \\ (branch \bowtie (account \bowtie depositor)))
```

• Transformation using join associatively (Rule 6a):

```
\Pi_{customer\_name}((\sigma_{branch\_city = "Brooklyn" \land balance > 1000} \\ (branch \bowtie account)) \bowtie depositor)
```

 Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression

```
\sigma_{branch \ city = \text{"Brooklyn"}} (branch) \bowtie \sigma_{balance > 1000} (account)
```

Multiple Transformations (Cont.)

$$\Pi_{customer_name}(\sigma_{branch_city = "Brooklyn"}(branch \bowtie (account \bowtie depositor)))$$

$$\Pi_{customer_name}((\sigma_{branch_city = "Brooklyn"} (branch) \bowtie account) \bowtie depositor)$$

$$\Pi_{\textit{customer_name}} ((\sigma_{\textit{branch_city} = \textit{``Brooklyn''}} (\textit{branch}) \bowtie \textit{account})) \\ \bowtie \textit{depositor})$$