Fonctions exponentielles

Terminale STMG2

1 Définition de l'exponentielle de base a

On représente ci-contre les valeurs de la suite géométrique $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=a^n$, avec a>0.

Définition 1. Le prolongement aux réels de la suite u_n est appelée **fonction exponentielle de base** a. Pour tout x réel, l'image de x par cette fonction est notée a^x . En particulier, si x < 0, alors cette image est définie par :

$$a^x = \frac{1}{a^{-x}}$$

Exemple. À l'aide d'une calculatrice, donner la valeur des image de fonctions exponentielles suivantes :

- a) $2^{3,5} =$
- b) 10, 2^{0,2} =
- c) $0,6^{-5,4} =$

2 Représentation graphique

On représente ci-dessous la courbe représentative d'une fonction exponentielle de base a. Elle correspond au prolongement des points de coordonnées $(n; a^n)$.

3 Sens de variation

Proposition 1. Soit a > 0 un nombre réel. Alors,

- La fonction exponentielle de base a est strictement croissante si et seulement si a > 1.
- La fonction exponentielle de base a est strictement décroissante si et seulement si a < 1.
- La fonction exponentielle de base a est constante si et seulement si a=1.

Exemple.

- a) Comparer 3, 4¹² et 3, 4¹⁵:
- b) Comparer 0, 7³ et 0, 7⁹:

Proposition 2. Soit une fonction de la forme $f: x \mapsto ka^x$ avec k un nombre réel et a > 0, alors le sens de variation de f est donné grâce au tableau suivant.

	a > 1	a < 1
k > 0	Croissante	Décroissante
k < 0	Décroissante	Croissante