Project Description:

One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.

Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.

Data Description

This is the historical data that covers sales from 2010-02-05 to 2012-11-01, in the file Walmart_Store_sales. Within this file you will find the following fields:

- Store the store number
- Date the week of sales
- Weekly_Sales sales for the given store
- Holiday_Flag whether the week is a special holiday week 1 Holiday week 0 Nonholiday week
- Temperature Temperature on the day of sale
- Fuel_Price Cost of fuel in the region
- CPI Prevailing consumer price index
- Unemployment Prevailing unemployment rate

Importing the Library

```
In [1]:
        import pandas as pd
        import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
```

4

03-

2010

1554806.68

```
%matplotlib inline
         import datetime as dt
         import warnings
         warnings.filterwarnings('ignore')
         walmart_df = pd.read_csv("Walmart_Store_sales.csv")
In [2]:
         walmart_df.head()
In [3]:
            Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price
                                                                                       Unemployment
Out[3]:
                    05-
                                                 0
         0
                    02-
                                                          42.31
                1
                           1643690.90
                                                                     2.572 211.096358
                                                                                                 8.106
                   2010
                    12-
                                                 1
         1
                1
                    02-
                           1641957.44
                                                           38.51
                                                                      2.548 211.242170
                                                                                                 8.106
                   2010
                    19-
         2
                    02-
                           1611968.17
                                                 0
                                                           39.93
                                                                     2.514 211.289143
                                                                                                 8.106
                   2010
                    26-
                                                 0
                                                          46.63
                                                                      2.561 211.319643
                                                                                                 8.106
         3
                    02-
                           1409727.59
                   2010
                    05-
                                                 0
```

Basic Information about the dataset

```
# shape of the dataset
In [4]:
        walmart_df.shape
        (6435, 8)
Out[4]:
        *The Walmart dataset have 6435 records spread around 8 Features
```

46.50

2.625 211.350143

8.106

```
In [5]:
        # General info
        walmart_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6435 entries, 0 to 6434
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	Store	6435 non-null	int64
1	Date	6435 non-null	object
2	Weekly_Sales	6435 non-null	float64
3	Holiday_Flag	6435 non-null	int64
4	Temperature	6435 non-null	float64
5	Fuel_Price	6435 non-null	float64
6	CPI	6435 non-null	float64
7	Unemployment	6435 non-null	float64
dtvp	es: float64(5)	. int64(2), obie	ct(1)

memory usage: 402.3+ KB

- There are No Null value in the dataset
- We have 5 Float variable, 2 int and 1 obj
- Although Date should be the datetime variable, we'll see about that later

```
In [6]:
        # Descriptive statistics about the dataset
        walmart_df.describe()
```

		Unemploym
count 6435.000000 6.435000e+03 6435.000000 6435.000000 6435	5.000000 6435.000000	6435.000
mean 23.000000 1.046965e+06 0.069930 60.663782	3.358607 171.578394	7.999
std 12.988182 5.643666e+05 0.255049 18.444933 0	0.459020 39.356712	1.875
min 1.000000 2.099862e+05 0.000000 -2.060000 2	2.472000 126.064000	3.8790
25% 12.000000 5.533501e+05 0.000000 47.460000 2	2.933000 131.735000	6.8910
50% 23.000000 9.607460e+05 0.000000 62.670000	3.445000 182.616521	7.8740
75% 34.000000 1.420159e+06 0.000000 74.940000	3.735000 212.743293	8.6220
max 45.000000 3.818686e+06 1.000000 100.140000	1.468000 227.232807	14.3130

```
walmart_df['Holiday_Flag'].sum()
        450
Out[7]:
```

- weekly Sales have a means of 1.04million with min Sales reporting as 209982 and max Sales of \$3.8 mn
- Temperature ranges from -2 to 100 with mean temp as 60
- Fuel price ranges from 2.47 to 4.46 with mean fuel price of 3.3

EDA for Walmart dataset

```
In [8]: # Store with max_Sales
```

```
walmart_df.groupby(by='Store').agg({'Weekly_Sales':'sum'}).sort_values(by='Weekly_Sales':'sum'}).
plt.title("Store-wise Sales")
plt.savefig('Store-wise Sales.png')
plt.xlabel("Weekly Sales")
plt.show()
```


- As we can see that store# 20, 4,14, 13 have the highest sales
- And Store# 33,44,5,36,38 have lowest Sales

```
In [9]:
         # Which store has maximum standard deviation
         Store_sales = walmart_df.groupby(by='Store')['Weekly_Sales'].agg(['std', 'mean']).rese
         Store_sales
In [10]:
```

7:44 PM				
Out[10]:		Store	std	mean
	0	1	155980.767761	1.555264e+06
	1	2	237683.694682	1.925751e+06
	2	3	46319.631557	4.027044e+05
	3	4	266201.442297	2.094713e+06
	4	5	37737.965745	3.180118e+05
	5	6	212525.855862	1.564728e+06
	6	7	112585.469220	5.706173e+05
	7	8	106280.829881	9.087495e+05
	8	9	69028.666585	5.439806e+05
	9	10	302262.062504	1.899425e+06
	10	11	165833.887863	1.356383e+06
	11	12	139166.871880	1.009002e+06
	12	13	265506.995776	2.003620e+06
	13	14	317569.949476	2.020978e+06
	14	15	120538.652043	6.233125e+05
	15	16	85769.680133	5.192477e+05
	16	17	112162.936087	8.935814e+05
	17	18	176641.510839	1.084718e+06
	18	19	191722.638730	1.444999e+06
	19	20	275900.562742	2.107677e+06
	20	21	128752.812853	7.560691e+05
	21	22	161251.350631	1.028501e+06
	22	23	249788.038068	1.389864e+06
	23	24	167745.677567	1.356755e+06
	24	25	112976.788600	7.067215e+05
	25	26	110431.288141	1.002912e+06
	26	27	239930.135688	1.775216e+06
	27	28	181758.967539	1.323522e+06
	28	29	99120.136596	5.394514e+05
	29	30	22809.665590	4.385796e+05
	30	31	125855.942933	1.395901e+06
	31	32	138017.252087	1.166568e+06

32

33 24132.927322 2.598617e+05

	Store	std	mean
33	34	104630.164676	9.667816e+05
34	35	211243.457791	9.197250e+05
35	36	60725.173579	3.735120e+05
36	37	21837.461190	5.189003e+05
37	38	42768.169450	3.857317e+05
38	39	217466.454833	1.450668e+06
39	40	119002.112858	9.641280e+05
40	41	187907.162766	1.268125e+06
41	42	50262.925530	5.564039e+05
42	43	40598.413260	6.333247e+05
43	44	24762.832015	3.027489e+05
44	45	130168.526635	7.859814e+05

```
Store_sales['coef_mean_to_std'] = Store_sales['std']/Store_sales['mean']
```

Store_sales.head()

0

ut[12]:		Store	std	mean	coef_mean_to_std
	0	1	155980.767761	1.555264e+06	0.100292
	1	2	237683.694682	1.925751e+06	0.123424
	2	3	46319.631557	4.027044e+05	0.115021
	3	4	266201.442297	2.094713e+06	0.127083
	4	5	37737 965745	3 180118e+05	0 118668

```
Store_sales.sort_values(by=['std'],ascending=False)[['Store','std']]
```

Out[13]:

	Store	std
13	14	317569.949476
9	10	302262.062504
19	20	275900.562742
3	4	266201.442297
12	13	265506.995776
22	23	249788.038068
26	27	239930.135688
1	2	237683.694682
38	39	217466.454833
5	6	212525.855862
34	35	211243.457791
18	19	191722.638730
40	41	187907.162766
27	28	181758.967539
17	18	176641.510839
23	24	167745.677567
10	11	165833.887863
21	22	161251.350631
0	1	155980.767761
11	12	139166.871880
31	32	138017.252087
44	45	130168.526635
20	21	128752.812853
30	31	125855.942933
14	15	120538.652043
39	40	119002.112858
24	25	112976.788600
6	7	112585.469220
16	17	112162.936087
25	26	110431.288141
7	8	106280.829881
33	34	104630.164676
28	29	99120.136596

	Store	std
15	16	85769.680133
8	9	69028.666585
35	36	60725.173579
41	42	50262.925530
2	3	46319.631557
37	38	42768.169450
42	43	40598.413260
4	5	37737.965745
43	44	24762.832015
32	33	24132.927322
29	30	22809.665590
36	37	21837.461190

```
Store_sales.sort_values(by=['std'],ascending=False)[['Store','std']].plot(kind='barh',
In [14]:
         plt.title("Store with Standard deviation")
         plt.xlabel("Standard deviation in $")
         plt.ylabel("Store#")
         plt.savefig('Store-wise Std')
         plt.show()
```


As we can see that Store 13 have the maximum Standard deviation which we can check with the original dataset

```
# Which store/s has good quarterly growth rate in Q3'2012
In [15]:
           walmart df['Date'] = pd.to datetime(walmart df['Date'])
In [16]:
           from datetime import date
In [17]:
           walmart_df['Quarter'] = pd.PeriodIndex(walmart_df['Date'], freq='Q')
In [18]:
In [19]:
           quarter_wise_sales = walmart_df.groupby(['Store','Quarter']).agg({'Weekly_Sales':'sum
           Q3_sales = quarter_wise_sales[quarter_wise_sales['Quarter'] == '2012Q3'].groupby('Stor
In [20]:
           Q2 sales = quarter wise sales[quarter wise sales['Quarter'] == '2012Q2'].groupby('Stor
          Q3_sales = pd.merge(Q3_sales,Q2_sales, on=Q3_sales['Store'])
In [21]:
          Q3 sales.head()
In [22]:
Out[22]:
              key_0 Store_x Weekly_Sales_x Store_y Weekly_Sales_y
          0
                  1
                          1
                                18633209.98
                                                  1
                                                        21036965.58
           1
                  2
                          2
                                22396867.61
                                                  2
                                                        25085123.61
          2
                  3
                          3
                                 4966495.93
                                                  3
                                                         5562668.16
          3
                          4
                                25652119.35
                                                  4
                                                        28384185.16
           4
                  5
                          5
                                 3880621.88
                                                  5
                                                         4427262.21
          Q3_sales = Q3_sales.drop(['Store_x', 'Store_y'], axis=1)
In [23]:
           #Q3_sales = Q3_sales.rename({'Weekly_Sales_x':'Q3_Sales'},axis=1)
           #Q3_sales = Q3_sales.rename({'Weekly_Sales_y':'Q2_Sales'},axis=1)
          Q3_sales = Q3_sales.rename({'Weekly_Sales_x':'Q3_Sales'},axis=1)
In [24]:
           Q3_sales = Q3_sales.rename({'Weekly_Sales_y':'Q2_Sales'},axis=1)
In [25]:
          Q3_sales.head()
Out[25]:
              key_0
                       Q3_Sales
                                    Q2_Sales
          0
                  1 18633209.98
                                 21036965.58
                  2 22396867.61
                                 25085123.61
           2
                     4966495.93
                                  5562668.16
           3
                  4 25652119.35
                                 28384185.16
           4
                  5
                      3880621.88
                                  4427262.21
          Q3_sales['perc_growth'] = np.round((Q3_sales['Q3_Sales'] - Q3_sales['Q2_Sales'])/Q3_sales['Q3_sales['Q3_sales['Q3_sales['Q3_sales['Q3_sales]'])/Q3_sales['Q3_sales['Q3_sales['Q3_sales['Q3_sales]']]
In [26]:
```

Q3_sales.sort_values(by='perc_growth', ascending=False).head() In [27]:

Out[27]:		key_0	Q3_Sales	Q2_Sales	perc_growth
	15	16	6441311.11	6626133.44	-2.79
	6	7	7322393.92	7613593.92	-3.82
	34	35	10252122.68	10753570.97	-4.66
	25	26	12417575.35	13218289.66	-6.06
	38	39	18899955.17	20191585.63	-6.40

As we can see that we saw a dip in 2012Q3 and all the store captures the negetive growth rate over previous quarter but least neg growth rate was done by Store# 15

```
In [28]:
         #Some holidays have a negative impact on sales.
         #Find out holidays which have higher sales than the mean sales in non-holiday season f
         mean_non_holiday_sales = np.round(walmart_df[walmart_df['Holiday_Flag'] == 0]['Weekly]
         mean_non_holiday_sales
In [29]:
         1041256.38
Out[29]:
In [30]:
         holiday_sales = walmart_df[walmart_df['Holiday_Flag']==1]
         holiday_sales
In [31]:
```

7:44 PM					Retails a	analysis with Waln	nart		
Out[31]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	8.106
	31	1	2010- 10-09	1507460.69	1	78.69	2.565	211.495190	7.787
	42	1	2010- 11-26	1955624.11	1	64.52	2.735	211.748433	7.838
	47	1	2010- 12-31	1367320.01	1	48.43	2.943	211.404932	7.838
	53	1	2011- 11-02	1649614.93	1	36.39	3.022	212.936705	7.742
	•••								
	6375	45	2011- 09-09	746129.56	1	71.48	3.738	186.673738	8.625
	6386	45	2011- 11-25	1170672.94	1	48.71	3.492	188.350400	8.523
	6391	45	2011- 12-30	869403.63	1	37.79	3.389	189.062016	8.523
	6397	45	2012- 10-02	803657.12	1	37.00	3.640	189.707605	8.424
	6427	45	2012- 07-09	766512.66	1	75.70	3.911	191.577676	8.684
	450 ro	ws × 9	columi	ns					
•)
Tn [32]:	holid	dav sa	les gro	oupby(by='Dat	e')['Weeklv	Sales'l.agg	'Avg='mean	').index.to	olist()

```
In [32]: holiday_sales.groupby(by='Date')['Weekly_Sales'].agg(Avg='mean').index.tolist()
         [Timestamp('2010-10-09 00:00:00'),
Out[32]:
          Timestamp('2010-11-26 00:00:00'),
          Timestamp('2010-12-02 00:00:00'),
          Timestamp('2010-12-31 00:00:00'),
          Timestamp('2011-09-09 00:00:00'),
          Timestamp('2011-11-02 00:00:00'),
          Timestamp('2011-11-25 00:00:00'),
          Timestamp('2011-12-30 00:00:00'),
          Timestamp('2012-07-09 00:00:00'),
          Timestamp('2012-10-02 00:00:00')]
In [33]:
         holiday_sales.groupby(by='Date')['Weekly_Sales'].agg(Avg='mean').plot(kind='bar',leger
         plt.axhline(y=mean_non_holiday_sales)
         plt.savefig("holiday season sales.png")
         plt.show()
```


As per above graph Following holidays have more sales than the non holiday mean

- ThanksGiving 2010
- Superbowl 2010
- ThanksGiving 2011
- Labour Day 2012
- Superbowl 2012

```
In [34]:
         #Provide a monthly and semester view of sales in units and give insights
         walmart_df['Month'] = walmart_df.Date.dt.month
         walmart_df['Year'] = walmart_df.Date.dt.year
         walmart_df.head()
In [35]:
```

Out[35]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment	Q
	0	1	2010- 05-02	1643690.90	0	42.31	2.572	211.096358	8.106	21
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	8.106	21
2	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	8.106	21
	3	1	2010- 02-26	1409727.59	0	46.63	2.561	211.319643	8.106	21
	4	1	2010- 05-03	1554806.68	0	46.50	2.625	211.350143	8.106	21

walmart_df[walmart_df['Year'] == 2010].groupby('Month')['Weekly_Sales'].agg(Average_Sa In [36]: plt.title("Month wise Average Sales for 2010") plt.savefig("2010_Month_avg_sales.png") plt.show()

In [37]: walmart_df[walmart_df['Year'] == 2011].groupby('Month')['Weekly_Sales'].agg(Average_Sa plt.title("Month wise Average Sales for 2011") plt.savefig("2011_Month_avg_sales.png") plt.show()

walmart_df[walmart_df['Year'] == 2012].groupby('Month')['Weekly_Sales'].agg(Average_Sa In [38]: plt.title("Month wise Average Sales for 2012") plt.savefig("2012_Month_avg_sales.png") plt.show()

In 2010 and 2011 we see that Sales peak at the feb and nov and dec during the holiday season and superbowl

Statistical Model

In [39]:	wa	walmart_df.head()									
Out[39]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment	Q	
	0	1	2010- 05-02	1643690.90	0	42.31	2.572	211.096358	8.106	21	
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	8.106	21	
	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	8.106	21	
	3	1	2010- 02-26	1409727.59	0	46.63	2.561	211.319643	8.106	21	
	4	1	2010- 05-03	1554806.68	0	46.50	2.625	211.350143	8.106	21	
4										•	

Utilize variables like date and restructure dates as 1 for 5 Feb 2010 (starting from the earliest date in order). Hypothesize if CPI, unemployment, and fuel price have any impact on sales.

```
walmart_df['days'] = pd.DatetimeIndex(walmart_df['Date']).day
In [40]:
         walmart_df.head()
```

Out[40]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment	Q
,	0	1	2010- 05-02	1643690.90	0	42.31	2.572	211.096358	8.106	21
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	8.106	21
	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	8.106	21
	3	1	2010- 02-26	1409727.59	0	46.63	2.561	211.319643	8.106	21
	4	1	2010- 05-03	1554806.68	0	46.50	2.625	211.350143	8.106	21

```
# Checking for outliers in target variable
In [41]:
         sns.boxplot(walmart_df['Weekly_Sales'])
```

<AxesSubplot:xlabel='Weekly_Sales'> Out[41]:

As we can see that there are many outliers that lie outside of the range

```
In [42]: sns.distplot(walmart_df.Weekly_Sales)
```

Out[42]: <AxesSubplot:xlabel='Weekly_Sales', ylabel='Density'>

Now let's see the outliers in feature variables

As we can see that there are many outliers in unemployment and temprature data which might affect the predictions Lets remove these outliers

```
In [45]:
         # Removing outliers
         def remove_out(feature):
              p25 = walmart_df[feature].quantile(0.25)
              p75 = walmart_df[feature].quantile(0.75)
              iqr = p75 - p25
              upper_limit = p75 + 1.5 * iqr
              lower_limit = p25 - 1.5 * iqr
              new_df = walmart_df[(walmart_df[feature] > lower_limit) & (walmart_df[feature] < ι
              return new df
In [46]:
         for feature in features_list:
              walmart_df = remove_out(feature)
         walmart_df.shape
In [47]:
          (5951, 12)
Out[47]:
         walmart_df.head()
In [48]:
```

25, 7.44 FWI												
Out[48]:	9	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment	Q		
	0	1	2010- 05-02	1643690.90	0	42.31	2.572	211.096358	8.106	21		
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	8.106	21		
	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	8.106	21		
	3	1	2010- 02-26	1409727.59	0	46.63	2.561	211.319643	8.106	21		
	4	1	2010- 05-03	1554806.68	0	46.50	2.625	211.350143	8.106	21		
4										•		
	lets look at the correlation matrix											
In [84]:	<pre>corr_matrix = walmart_df.corr()</pre>											
In [85]:	<pre>corr_matrix['Weekly_Sales']</pre>											
Out[85]:	Holi Temp Fuel CPI Uner Mont Year days	cly_S iday_ perat l_Pri mploy th	Flag ure ce ment	-0.322210 1.000000 0.036672 -0.062210 0.011150 -0.087470 -0.074868 0.066132 -0.034154 -0.012670 ales, dtype:	float64							
In [117	<pre>features = 'Temperature, Fuel_Price, CPI, Unemployment, days, Holiday_Flag'.split(", ' target = 'Weekly_Sales'</pre>											
	lets seperate the dataset into predictor features and predictor											

```
In [118... X = walmart_df[features]
y = walmart_df[target]
In [119... X
```

Out[119]:		Temperature	Fuel_Price	СРІ	Unemployment	days	Holiday_Flag
	0	42.31	2.572	211.096358	8.106	2	0
	1	38.51	2.548	211.242170	8.106	2	1
	2	39.93	2.514	211.289143	8.106	19	0
	3	46.63	2.561	211.319643	8.106	26	0
	4	46.50	2.625	211.350143	8.106	3	0
	•••						
	6430	64.88	3.997	192.013558	8.684	28	0
	6431	64.89	3.985	192.170412	8.667	10	0
	6432	54.47	4.000	192.327265	8.667	10	0
	6433	56.47	3.969	192.330854	8.667	19	0
	6434	58.85	3.882	192.308899	8.667	26	0

5951 rows × 6 columns

Lets scale the features before putting it into the modeling

```
In [120... from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
          sc.fit(X)
          x_sc = sc.transform(X)
In [121... X_SC
          array([[-0.97801381, -1.67807955, 0.92662167, 0.31023429, -1.56294503,
Out[121]:
                  -0.27485764],
                 [-1.18438849, -1.73055089, 0.93035802, 0.31023429, -1.56294503,
                   3.63824712],
                 [-1.10726953, -1.80488529, 0.93156169, 0.31023429, 0.38166837,
                  -0.27485764],
                 [-0.31761484, 1.44396518, 0.44567293, 0.76170611, -0.64783284,
                  -0.27485764],
                 [-0.20899659, 1.3761897, 0.4457649, 0.76170611, 0.38166837,
                  -0.27485764],
                 [-0.07974087, 1.18598109, 0.4452023, 0.76170611, 1.18239153,
                  -0.27485764]])
```

Now lets split the data into train/test split

```
from sklearn.model_selection import train_test_split
In [122...
          X_train, X_test, y_train, y_test = train_test_split(x_sc, y, test_size=0.2, random_sta
In [123...
          print(X_train.shape)
          print(X_test.shape)
```

```
print(y_train.shape)
          print(y_test.shape)
          (4760, 6)
          (1191, 6)
          (4760,)
          (1191,)
In [124... X_train
          array([[ 0.85546227,
                                1.42210212, -1.17511779, 0.77780136, 0.49605739,
Out[124]:
                  -0.27485764],
                  [ 0.65614778, 1.01544923, 0.85318808, -0.34886628, 0.95361348,
                  -0.27485764],
                 [0.61487285, -0.11924349, 1.09359113, -1.14316696, -0.64783284,
                   -0.27485764],
                 [-0.98996182, 0.57818807, -0.98516911, -2.65612065, 1.41116958,
                  -0.27485764],
                  [ 0.33137921, -0.63302536, -1.24185282, 1.45138766, 0.83922446,
                   -0.27485764],
                 [-0.413742 , -1.45507636, 0.37113792, 0.99991584, 0.26727934,
                   -0.27485764]])
          from sklearn.linear model import LinearRegression
In [125...
          from sklearn.metrics import mean absolute error, mean squared error
In [126... linreg = LinearRegression()
          linreg.fit(X_train, y_train)
In [127...
          linreg pred = linreg.predict(X test)
In [128...
          lin_mae = mean_absolute_error(y_test, linreg_pred)
          lin_rmse = mean_squared_error(y_test, linreg_pred)
In [129...
          print("Linear Regression MAE: {}" .format(lin_mae))
          print("Linear Regression RMSE: {}" .format(lin_rmse))
          linreg.score(X_train, y_train)
          Linear Regression MAE: 489419.9102388284
          Linear Regression RMSE: 343472748204.1259
          0.019367074288056618
Out[129]:
In [130...
          sns.scatterplot(linreg_pred, y_test)
          <AxesSubplot:ylabel='Weekly_Sales'>
Out[130]:
```


Now lets train the data on Decision Tree regressor

```
In [131...
          from sklearn.tree import DecisionTreeRegressor
          tree_reg = DecisionTreeRegressor()
          tree_reg.fit(X_train, y_train)
          tree_pred = tree_reg.predict(X_test)
          tree_mae = mean_absolute_error(y_test, tree_pred)
          tree_rmse = mean_squared_error(y_test, tree_pred)
          print("Decision Tree MAE: {}" .format(tree_mae))
          print("Decision Tree RMSE: {}" .format(tree_rmse))
          Decision Tree MAE: 416497.7151315421
          Decision Tree RMSE: 408181632831.0881
In [134...
          sns.scatterplot(x= y_test, y=tree_pred)
          plt.xlabel("Actual value")
          plt.ylabel("Predicted Value")
          plt.show()
            2.5
            2.0
          Predicted Value
            1.5
            1.0
            0.5
                                                            3.5
                     0.5
                           1.0
                                        2.0
                                               2.5
                                                      3.0
                                  1.5
                                                                le6
                                     Actual value
```

Decision tree performs a little bit better than normal linear regression. Let's try this problem

with Random forest regressor

```
In [137...
         from sklearn.ensemble import RandomForestRegressor
          forest_reg = RandomForestRegressor()
          forest reg.fit(X train, y train)
          forest_pred = forest_reg.predict(X_test)
          forest_mae = mean_absolute_error(y_test, forest_pred)
          forest_rmse = mean_squared_error(y_test, forest_pred)
          print("Decision Tree MAE: {}" .format(forest_mae))
          print("Decision Tree RMSE: {}" .format(forest_rmse))
         Decision Tree MAE: 383592.7955718071
         Decision Tree RMSE: 292778826385.7607
         sns.scatterplot(x=y_test, y=forest_pred)
In [138...
          <AxesSubplot:xlabel='Weekly_Sales'>
```

Out[138]:

As we saw that none of the regressor performed as well as we would like it to. but Decision tree and random forest does performed better than the Linear regression

In []: