Fiche d'exercices: questions sur un tableau de variations

Exercice 1:

On donne le tableau de variations suivant :

x	-7	-2	3	5	8
f(x)	-4	1	-3	2	-6

- 1) Quel est l'ensemble de définition de f?
- **2)** a) Quel est le minimum de f?
 - **b)** Quel est le maximum de f?
- **a)** Sur quel(s) intervalle(s) f est-elle croissante?
 - **b)** Sur quel(s) intervalle(s) f est-elle décroissante?
- **4) a)** Comparer f(-1) et f(1)
 - **b)** Comparer f(3,4) et f(4,2)
 - c) Comparer f(6) et f(7)
 - **d)** Comparer f(-4) et f(-3)
 - **e)** Comparer f(x) et f(3) sur [-2; 5]
 - **f)** Comparer f(x) et f(-2) sur [-2; 3]
 - **g)** Comparer f(x) et 2 sur [3; 8]
 - **h)** Comparer f(x) et -6 sur [-7; 8]
- 5) Compléter:
 - **a)** Si $x \in [-2; 5]$ alors $f(x) \in$
 - **b)** Si $x \in [-7; 3]$ alors $f(x) \in$
 - c) Si $x \in [3; 8]$ alors $f(x) \in$
 - **d)** Si $x \in [-7; 8]$ alors $f(x) \in$

Solutions:

Exercice 1:

- 1) $D_f = [-7; 8]$
- 2) a) Le minimum de f est -6.
 - **b)** Le maximum de f est 2.
- **3) a)** f est croissante sur $[-7; -2] \cup [3; 5]$
 - **b)** f est décroissante sur $[-2; 3] \cup [5; 8]$
- 4) a) -1 < 1 or f est <u>décroissante</u> sur [-2; 3] donc f(-1) > f(1)
 - b) 3,4 < 4,2 or f est $\underline{\text{croissante}}$ sur [3;5] $\begin{cases} f(4,2) \\ f(4,2$
 - c) 6 < 7 or f est <u>décroissante</u> sur [5; 8] donc f(6) > f(7)
 - d) -4 < -3 or f est <u>croissante</u> sur [-7; -2] donc f(-4) < f(-3)
 - e) Sur [-2; 5], f(3) = -3 est le minimum donc $f(x) \ge f(3)$ sur [-2; 5]
 - **f)** Sur [-2; 3], f(-2) = 1 est le maximum donc $f(x) \le f(-2)$ sur [-2; 5]
 - **g**) Sur [3; 8], 2(=f(5)) est le maximum donc $f(x) \le 5$ sur [3; 8]
 - **h)** Sur [-7; 8], -6 (= f(8)) est le minimum donc $f(x) \ge -6$ sur [-7; 8]
- **5) a)** Si $x \in [-2; 5]$ alors $f(x) \in [-3; 2]$
 - **b)** Si $x \in [-7; 3]$ alors $f(x) \in [-4; 1]$
 - c) Si $x \in [3; 8]$ alors $f(x) \in [-6; 2]$
 - **d)** Si $x \in [-7; 8]$ alors $f(x) \in [-6; 2]$

Exercice 2:

On donne le tableau de variations suivant :

x	-6	-4	-1	2	4
f(x)	3	0	1	-2	6

- 1) Quel est l'ensemble de définition de f?
- **2) a)** Quel est le minimum de f?
 - **b)** Quel est le maximum de f?
- **a)** Sur quel(s) intervalle(s) f est-elle croissante?
 - **b)** Sur quel(s) intervalle(s) f est-elle décroissante?
- **4) a)** Comparer f(-3) et f(-2)
 - **b)** Comparer f(0) et f(1)
 - **c)** Comparer f(2,5) et f(3,5)
 - **d)** Comparer f(-5) et f(-5,5)
 - **e)** Comparer f(x) et f(2) sur [-1; 4]
 - **f)** Comparer f(x) et f(-1) sur [-4; 2]
 - **g)** Comparer f(x) et 0 sur [-6; -1]
 - **h)** Comparer f(x) et 6 sur [-6; 4]
- 5) Compléter:
 - **a)** Si $x \in [-4; 2]$ alors $f(x) \in$
 - **b)** Si $x \in [-6; -1]$ alors $f(x) \in$
 - c) Si $x \in [-4; 4]$ alors $f(x) \in$
 - **d)** Si $x \in [-6; 2]$ alors $f(x) \in$

Solutions:

Exercice 2:

1)
$$D_f = [-6; 4]$$

- 2) a) Le minimum de f est -2.
 - **b)** Le maximum de f est 6.
- **3) a)** f est croissante sur $[-4; -1] \cup [2; 4]$
 - **b)** f est décroissante sur $[-6; -4] \cup [-1; 2]$

4) a)
$$-3 < -2$$
 or f est croissante sur $[-4; -1]$ donc $f(-3) < f(-2)$

b)
$$0 < 1$$
 or f est décroissante sur $[-1; 2]$ donc $f(0) > f(1)$

c)
$$2,5 < 3,5$$
 or f est croissante sur $[2;4]$ donc $f(2,5) < f(3,5)$

d)
$$-5 > -5,5$$
 or f est décroissante sur $[-6; -4]$ donc $f(-5) < f(-5,5)$

- e) Sur [-1; 4], f(2) = -2 est le minimum donc $f(x) \ge f(2)$ sur [-1; 4]
- **f)** Sur [-4; 2], f(-1) = 1 est le maximum donc $f(x) \le f(-1)$ sur [-4; 2]
- **g**) Sur [-6; -1], 0 = f(-4) est le minimum donc $f(x) \ge 0$ sur [-6; -1]
- **h)** Sur [-6; 4], 6 = f(4) est le maximum donc $f(x) \le 6$ sur [-6; 4]
- **5) a)** Si $x \in [-4; 2]$ alors $f(x) \in [-2; 1]$
 - **b)** Si $x \in [-6; -1]$ alors $f(x) \in [0; 3]$
 - c) Si $x \in [-4; 4]$ alors $f(x) \in [-2; 6]$
 - **d)** Si $x \in [-6; 2]$ alors $f(x) \in [-2; 3]$

Exercice 3:

On donne le tableau de variations suivant :

x	-7	-3	0	2	4	8
f(x)	5	-4	3	-2	7	0

- 1) Quel est l'ensemble de définition de f?
- **2) a)** Quel est le minimum de f?
 - **b)** Quel est le maximum de f?
- **a)** Sur quel(s) intervalle(s) f est-elle croissante?
 - **b)** Sur quel(s) intervalle(s) f est-elle décroissante?
- **4) a)** Comparer f(-2) et f(-1)
 - **b)** Comparer f(0,5) et f(1)
 - **c)** Comparer f(2,5) et f(3,5)
 - **d)** Comparer f(-5) et f(-6)
 - e) Comparer f(x) et f(2) sur [0; 4]
 - **f)** Comparer f(x) et f(0) sur [-3; 2]
 - **g)** Comparer f(x) et -4 sur [-7; 0]
 - **h)** Comparer f(x) et 7 sur [-7; 8]
- 5) Compléter:
 - **a)** Si $x \in [-3; 2]$ alors $f(x) \in$
 - **b)** Si $x \in [0; 4]$ alors $f(x) \in$
 - c) Si $x \in [-7; 4]$ alors $f(x) \in$
 - **d)** Si $x \in [0; 8]$ alors $f(x) \in$

Solutions:

Exercice 3:

1)
$$D_f = [-7; 8]$$

- 2) a) Le minimum de f est -4.
 - **b)** Le maximum de f est 7.
- 3) **a)** f est croissante sur $[-3; 0] \cup [2; 4]$
 - **b)** f est décroissante sur $[-7; -3] \cup [0; 2] \cup [4; 8]$

4) a)
$$-2 < -1$$
 or f est croissante sur $[-3; 0]$ donc $f(-2) < f(-1)$ b)
$$0,5 < 1$$
 or f est décroissante sur $[0; 2]$

c)
$$2,5 \le 3,5$$
 or f est croissante sur $[2;4]$ donc $f(2,5) \le f(3,5)$

d)
$$-5 > -6$$
 or f est décroissante sur $[-7; -3]$
$$\begin{cases} donc \ f(-5) < f(-6) \end{cases}$$

- e) Sur [0; 4], f(2) = -2 est le minimum donc $f(x) \ge f(2)$ sur [0; 4]
- f) Sur [-3; 2], f(0) = 3 est le maximum donc $f(x) \le f(0)$ sur [-3; 2]
- g) Sur [-7; 0], -4(= f(-3)) est le minimum donc $f(x) \ge -4$ sur [-7; 0]
- **h)** Sur [-7; 8], 7 = f(4) est le maximum donc $f(x) \le 7$ sur [-7; 8]
- **5) a)** Si $x \in [-3; 2]$ alors $f(x) \in [-4; 3]$
 - **b)** Si $x \in [0; 4]$ alors $f(x) \in [-2; 7]$
 - c) Si $x \in [-7; 4]$ alors $f(x) \in [-4; 7]$
 - **d)** Si $x \in [0; 8]$ alors $f(x) \in [-2; 7]$