In the Claims:

1	1. A method for estimating a selectivity of a query containing at least one
2	column-associated condition related to column attributes of a relational database
3	table, the method comprising:
4	(a) generating a dataset by sampling a plurality of queries applied against the
5	database, wherein the dataset includes a plurality of query conditions and information
6	related to combinations of said query conditions,
7	(b) determining at least one regression function that reflects correlations
8	between particular query conditions based on said dataset,
9	(c) determining a table-specific estimate of a cardinality of a query based upon
10	the regression function serving as a data mining model.
1	2. The method of claim 1, wherein step (c) further includes:
2	(c.1) selecting an access method for an incoming query from a plurality of
3	database access methods based upon the table-specific estimate for said incoming
4	query.
1	3. The method of claim 1, wherein said query includes column associated
2	conditions related to a plurality of tables, wherein step (c) further includes:
3	determining a table-combining cardinality estimate based upon said table-
4	specific estimate.
1	4. The method of claim 1, wherein step (a) further includes:
2	(a.1) generating a dataset including queries q _j , j= 1,N, wherein each query
3	includes a plurality of column-associated conditions c_{jk} , k = 1, M_j , N , M being integer
4	variables, wherein step (a.1) further includes:
5	(a.1.1) storing a cardinality C of an elementary operation associated with a
6	column-associated condition cjk,
7	(a.1.2) storing a count of query-qualifying database records reflecting the

8

correlation between the database table column attributes referred to in each

- 9 elementary operation,
- wherein step (c) further includes:
- (c.1) calculating a cardinality estimate CE of said query with the following
- 12 formula:

13
$$CE = \sum_{i=1,..L} f(Z_i)$$

- wherein $f(Z_i)$ is a regression function, CE is a total of correlations between the
- 15 plurality of combinations of elementary operations used in said sampled queries, and
- Z_i is a frequency of occurrence for one or more column-associated conditions c_{ik} , and
- 17 wherein step (b) further includes:
- 18 (b.1) generating said regression function using said data mining model.
- 1 5. The method of claim 4, wherein step (c) further includes:
- 2 (c.2) estimating the cardinality of each of the plurality of column-associated
- 3 conditions c_{ik} referring to the same column using the data mining model.
- 1 6. The method of claim 1, wherein step (c) further includes:
- 2 (c.1) training the model by using queries that include logical AND operators to
- 3 determine a correlation between corresponding column predicates.
- The method of claim 1, wherein step (c) further includes:
- 2 (c.1) transforming a query containing OR predicates to an equivalent query containing
- 3 AND predicates to simplify training of a model.
- 1 8. The method of claim 1, wherein step (c) further includes:
- 2 (c.1) normalizing the determined cardinality based upon a total number of
- 3 rows in the database table.
- 1 9. The method of claim 1, wherein step (c) further includes:
- 2 (c.1) normalizing the cardinality associated with a sampled query with a size
- 3 of the database table when the query is sampled, and
- 4 (c.2) denormalizing a cardinality associated with a query for which a

5 cardinality is to be predicted with the size of the database table when the selectivity 6 for that query is predicted. 1 10. The method of claim 1, wherein step (b) further includes: 2 (b.1) using a subset of frequently used queries to determine said regression 3 function. 1 11. The method of claim 1, wherein step (b) further includes: 2 (b.1) repeatedly training said regression function with updated sampled data. 12. The method of claim 1, wherein step (a) further includes: 1 2 (a.1) sampling said queries via a tool based on a database optimizer. 13. The method of claim 1, wherein step (a) further includes: 1 (a.1) determining cardinalities for individual table columns via a database 2 3 statistics tool, and 4 (a.2) mapping queries that include a plurality of logical AND operators to 5 corresponding cardinality based regression formulae. 1 14. The method of claim 1, wherein step (a) further includes: 2 (a.1) mapping queries that include at least one of an inner join and an outer 3 join to corresponding regression formulae based on at least one of cardinality and 4 selectively operations. 1 15. A method for determining an access plan for a database query 2 compatible with data mining based database access control comprising: 3 (a) selecting a regression function for use with said query, 4 (b) determining a number of qualifying records for said query via said 5 regression function, and 6 (c) selecting an access method for accessing the database from a plurality of

different access methods based upon the determined number of qualifying records.

7

l	16. A computer system for estimating a selectivity of a query containing at
2	least one column-associated condition related to column attributes of a relational
3	database table, the system comprising:
4	a sampling module for generating a dataset by sampling queries applied
5	against the database, wherein the dataset includes a plurality of query conditions and
6	information related to combinations of said query conditions,
7	a regression module for determining at least one regression function that
8	reflects correlations between particular query conditions based on said dataset,
9	a processing module for determining a table-specific estimate of a cardinality
10	of a query based upon the regression function serving as a data mining model.
1	17. The system of claim 16, wherein the processing module selects an
2	access method for an incoming query from a plurality of database access methods
3	based upon the table-specific estimate for said incoming query.
1	18. The system of claim 16, wherein said query includes column
2	associated conditions related to a plurality of tables, and wherein the processing
3	module determines a table-combining cardinality estimate based upon said table-
4	specific estimate.
1	19. The system of claim 16, wherein the sampling module further
2	comprises:
3	a dataset module for generating a dataset including queries q_j , $j=1,N$,
4	wherein each query includes a plurality of column-associated conditions c_{jk} , $k=1,M_{j}$.
5	N, M being integer variables, wherein said dataset module further comprises:
6	a first storage module for storing a cardinality C of an elementary operation
7	associated with a column-associated condition c _{jk} ,
8	a second storage module for storing a count of query-qualifying database
9	records reflecting the correlation between the database table column attributes

10 referred to in each elementary operation,

wherein the processing module further comprises:

- an estimation module for determining a cardinality estimate CE of said query
- with the following formula:

14
$$CE = \sum_{i=1,..L} f(Z_i)$$

- wherein $f(Z_i)$ is a regression function, CE is a total of correlations between the
- 16 plurality of combinations of elementary operations used in said sampled queries, and
- Z_i is a frequency of occurrence for one or more column-associated conditions c_{ik} , and
- wherein the regression module further comprises:
- a function module for generating said regression function using said data
- 20 mining model.

1

- 1 20. The system of claim 19, wherein the processing module estimates the
- 2 cardinality of each of the plurality of column-associated conditions cik referring to the
- 3 same column using the data mining model.
- 1 21. The system of claim 16, wherein the processing module trains the
- 2 model by using queries that include logical AND operators to determine a correlation
- 3 between corresponding column predicates.
- 1 22. The system of claim 16, wherein the processing module transforms a
- 2 query containing OR predicates to an equivalent query containing AND predicates to
- 3 simplify training of a model.

1	23. The system of claim 16, wherein the processing module normalizes the
2	determined cardinality based upon a current total number of rows in the database
3	table.
1	24. The system of claim 16, wherein the processing module normalizes the
2	cardinality associated with a sampled query with a size of the database table when the
3	query is sampled, and denormalizes a cardinality associated with a query for which a
4	cardinality is to be predicted with the size of the database table when the selectivity
5	for that query is predicted.
1	25. A program product apparatus having a computer readable medium with
2	computer program logic recorded thereon for estimating a selectivity of a query
3	containing at least one column-associated condition related to column attributes of a
4	relational database table, said program product apparatus comprising:
5	a sampling module for generating a dataset by sampling queries applied
6	against the database, wherein the dataset includes a plurality of query conditions and
7	information related to combinations of said query conditions,
8	a regression module for determining at least one regression function that
9	reflects correlations between particular query conditions based on said dataset,
10	a processing module for determining a table-specific estimate of a cardinality
11	of a query based upon the regression function serving as a data mining model.
1	26. The program product of claim 25, wherein the processing module
2	selects an access method for an incoming query from a plurality of database access
3	methods based upon the table-specific estimate for said incoming query.
1	27. The program product of claim 25, wherein said query includes column
2	associated conditions related to a plurality of tables, and wherein the processing
3	module determines a table-combining cardinality estimate based upon said table-
4	specific estimate.
1	78 The program product of claim 25, wherein the sampling module

further comprises:

2

a dataset module for generating a dataset including queries q_j , j=1,...N,

4 wherein each query includes a plurality of column-associated conditions c_{jk} , $k=1,...M_j$,

5 N, M being integer variables, wherein said dataset module further comprises:

a first storage module for storing a cardinality C of an elementary operation

7 associated with a column-associated condition c_{jk} ,

8 a second storage module for storing a count of query-qualifying database

9 records reflecting the correlation between the database table column attributes

10 referred to in each elementary operation,

wherein the processing module further comprises:

an estimation module for determining a cardinality estimate CE of said query

with the following formula:

$$CE = \sum_{i=1...L} f(Z_i)$$

11

wherein $f(Z_i)$ is a regression function, CE is a total of correlations between the

plurality of combinations of elementary operations used in said sampled queries, and

 Z_i is a frequency of occurrence for one or more column-associated conditions c_{jk} , and

wherein the regression module further comprises:

a function module for generating said regression function using said data

20 mining model.

- 1 29. The program product of claim 28, wherein the processing module
- 2 estimates the cardinality of each of the plurality of column-associated conditions cik
- 3 referring to the same column using the data mining model.
- 1 30. The program product of claim 25, wherein the processing module
- 2 trains the model by using queries that include logical AND operators to determine a
- 3 correlation between corresponding column predicates.