Singular Value Decomposition

Ground Truth

Any $m \times n$ real matrix A can be factored into

$$A = Q_1 \Sigma Q_2^T,$$

where Q_1 is an $m \times m$ orthogonal matrix, Q_2 is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ matrix whose diagonal entries are non-negative and its off diagonal entries are 0.

Moreover, the non-zero entries in Σ are the square roots of the eigenvalues of both AA^T and A^TA .

Implications of SVD

- $AQ_2 = Q_1\Sigma$
- $AA^T = Q_1\Sigma\Sigma^TQ_1^T$, and $A^TA = Q_2\Sigma^T\Sigma Q_2^T$. Therefore Q_1 is the eigenvector matrix of AA^T . Similarly, Q_2 is the eigenvector matrix of A^TA .

The eigenvalues for AA^T is the diagonal entries of $\Sigma\Sigma^T$, which are σ_i^2 and 0.

(Proof by) Construction of SVD

 A^TA is a symmetric matrix so it has a complete set of orthonormal eigenvectors $\{x_1, \ldots, x_n\}$ (going into Q_2) and eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$.

$$A^{T}Ax_{j} = \lambda_{j}x_{j} \Rightarrow x_{j}^{T}A^{T}Ax_{j} = \lambda_{j}x_{j}^{T}x_{j}$$
$$\Rightarrow ||Ax_{j}||^{2} = \lambda_{j} \geq 0$$

Suppose $\lambda_1, \ldots, \lambda_r$ are positive and the rest are 0. Let $\sigma_j = \sqrt{\lambda_j}$ and $q_j = \frac{Ax_j}{\sigma_j}$. These $q_j's$ are orthonormal. Furthermore, they can be expanded to a basis for R^m and go into Q_1 . The ij-entry of Q_1AQ_2 is

$$q_i^T A x_j = \begin{cases} 0, & j > r \\ 0, & j \le r \text{ and } i \ne j \Rightarrow \Sigma = Q_1^T A Q_2 \Rightarrow A = Q_1 \Sigma Q_2^T \\ q_i^T \sigma_j q_j, & j \le r \text{ and } i = j \end{cases}$$

