Nom:

Question de cours :

- Rappeler la définition d'une matrice inversible.
- Donner une critère d'inversibilité des matrices d'ordre 2.

Exercice:

Résoudre les systèmes suivants :

$$(S1) \begin{cases} 2x + 3y - z = 1 \\ 5x + 2y + 3z = 0 \\ -x + y + z = 5 \end{cases}$$

$$(S2) \begin{cases} x + 2y - z = 1 \\ 3x + 4y - z = 2 \\ x + 3y + z = 10 \end{cases}$$

$$(S3) \begin{cases} x - y + z - t = 1 \\ x + y - z - t = -1 \\ x + y + z - t = 0 \\ x - y - z + t = 2 \end{cases}$$

Exercice:

Pour les matrices suivantes, dire si elles sont inversibles. Lorsqu'elles les sont, donner leur inverse.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 5 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Exercice:

Soient
$$A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$.

- 1) Déterminer que P est inversible et calculer P^{-1} .
- 2) Calculer $D = P^{-1}AP$. Que remarque-t-on? Montrer sans calcul que $A = PDP^{-1}$.
- 3) Montrer que pour tout $n \in \mathbb{N}$, on a : $A^n = PD^nP^{-1}$.
- 4) Donner l'expression de D^n pour tout $n \in \mathbb{N}$. En déduire celle de A^n pour tout $n \in \mathbb{N}$.

Commentaire :

Nom:

Question de cours :

- Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices inversibles. AB est-elle inversible? Si oui, que vaut $(AB)^{-1}$.
- À quelle condition une matrice triangulaire est elle inversible?

Exercice:

Résoudre les systèmes suivants :

$$(S1) \begin{cases} x+y+2z &= 3 \\ x+2y+z &= 1 \\ 2x+y+z &= 0 \end{cases}$$

$$(S2) \begin{cases} x+y-z &= 2 \\ 3x+5y-z &= 1 \\ 2x+2y+z &= 1 \end{cases}$$

$$(S3) \begin{cases} 2x+2y+z+t &= 1 \\ x+y+3z+t &= 2 \\ 3x+y+2z+2t &= -1 \\ 3x+y+2z+3t &= 5 \end{cases}$$

Exercice:

Pour les matrices suivantes, dire si elles sont inversibles. Lorsqu'elles les sont, donner leur inverse.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 2 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{pmatrix}$$

Exercice:

1) Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

- a) Montrer que A est inversible et donner son inverse.
- b) En déduire l'unique $X \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que AX = B.

2) Soient
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 4 & 3 \\ 0 & 3 & 3 \end{pmatrix}$. Calculer AB et AC . Que pouvez-vous en

déduire?

Commentaire:

Nom:

Question de cours :

• Soit A une matrice inversible. Son inverse A^{-1} est-elle inversible? Si oui, donner son inverse.

• La matrice
$$D=\begin{pmatrix}1&0&0\\0&2&0\\0&0&3\end{pmatrix}$$
 est-elle inversible? Si oui, donner son inverse.

Exercice:

Résoudre les systèmes suivants :

$$(S1) \begin{cases} x+2z &= 1 \\ -y+z &= 2 \\ x-2y &= 1 \end{cases} \qquad (S2) \begin{cases} x+y-z &= 0 \\ 3x-y &= 0 \\ x+y+z &= 0 \end{cases} \qquad (S3) \begin{cases} 2x+y+z+t &= 1 \\ x-y+2z-3t &= 2 \\ 2x+4z+4t &= 0 \\ 2x+2y+3z+8t &= 2 \end{cases}$$

Exercice:

Pour les matrices suivantes, dire si elles sont inversibles. Lorsqu'elles les sont, donner leur inverse.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 4 & -6 \\ -2 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Exercice:

On pose
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & 4 \\ 1 & -2 & 1 \end{pmatrix}$$
. Calculer $A^3 - 4A^2 + 8A - 15I_n$. En déduire que A est inversible et donner une expression

de son inverse.

Commentaire: