Métodos matemáticos para la ciencia e Ingeniería: Choque inelástico

Fernanda Pérez

1 de Octubre, 2015

1 Introducción

A partir de las ecuaciones de posición en el eje vertical para una partícula de masa m en presencia de gravedad y para un suelo que oscila sinusoidalmente con amplitud A y frecuencia ω , en adición con la regla de velocidades que sigue un choque inelástico, se busca encontrar la forma de las soluciones del sistema luego de un periodo de relajación, variando el parámetro ω .

2 Ecuaciones y valores fijos a utilizar

Ecuaciones de posición y velocidad para una partícula de masa m, con posición inicial y_0 , velocidad inicial v_0 y aceleración de gravedad g:

$$y_p(t) = y_0 + v_0 t - \frac{1}{2}gt^2 \tag{1}$$

$$v_p(t) = v_0 t - gt \tag{2}$$

Ecuaciones de posición y velocidad para un suelo que oscila sinusoidalmente con amplitud A y frecuencia ω :

$$y_s(t) = A\sin(\omega t) \tag{3}$$

$$v_s(t) = A\omega\cos(\omega t) \tag{4}$$

Variación de velocidad después de un choque inelástico:

$$v_p'(t^*) = (1+\eta)v_s(t^*) - \eta v_p(t^*)$$
(5)

En donde t^* corresponde al tiempo en que ocurre el choque, $v_p'(t^*)$ es la velocidad de la partícula después del choque, $v_p'(t^*)$ la velocidad de la partícula antes del choque y η es el coeficiente de restitución que va entre 0 y1.

Para la resolución del problema se utiliza $m=1,\,g=1,\,A=1,\,y_0=0,\,v_0=2,\,\eta=0.15.$

3
$$(y_{n+1}, v'_{n+1})$$
 a partir de (y_n, v'_n)

A partir de la posición y velocidad de la partícula luego del n-ésimo rebote (y_n, v_n) , se busca obtener (y_{n+1}, v_{n+1}) . Para esto se crea una función auxiliar, $f(t) = particula_menos_suelo(t)$, la cual nos entrega la resta entre la posición de la partícula y el suelo.

A partir de la Ecuación 1, podemos estima el tiempo en que ocurriría el rebote. Recordando que se utiliza $y_0 = 0$ y g = 1, buscamos el tiempo en que la partícula vuelve a la posición 0:

$$0 = v_0 t_{estimado} - \frac{1}{2} (t_{estimado})^2 \tag{6}$$

Lo que finalmente nos deja:

$$t_{estimado} = 2 \cdot v_0 \tag{7}$$

Se escoge un delta = 1, para luego hacer uso del método bisect de scipy.optimize en python con la función f(t) y extremos de adivinanza $a = t_{estimado} - delta$ y $b = t_{estimado} + delta$, y así se obtiene el tiempo de choque t_{choque} .

Finalmente, conocidos t_{choque} , y_n , v_n y dado que $\omega = 1.66$ y $\eta = 0.15$, es posible mediante las ecuaciones de movimiento calcular y_{n+1} y v'_{n+1} .

4 Relajación del sistema (N_{relax})

Se busca encontrar el número de botes necesarios para regalar el sistema. Para esto se crea una función en python que nos permite ingresar los valores de los parmetros del sistema y la cantidad de botes que queremos que se efectúen. Esta función nos entrega los vectores de $tiempo_choque$, y_n y v'_n . Luego se grafica n vs v'_n , con n el número de rebotes. A partir del gráfico se estima el N_{relax} , buscando el valor de n para el cual v'_n se ha estabilizado.

5 Post N_{relax}

Una vez conocidos los N_{relax} , finalmente es posible conocer la forma de las soluciones del sistema luego del periodo de relajación.

Para la visualización de esto se grafica v_n' vs ω , con ω entre 1.66 y 1.776 para 50 rebotes, partiendo de $n=2\cdot N_{relax_max}$, donde N_{relax_max} es el máximo N_{relax} de los existentes con ω entre 1.66 y 1.776. (Ver Figura 2).

6 Resultados

Variando el valor de ω se obtiene el gráfico de la Figura 1, en donde se aprecia que los N_{relax} para $\omega_1=1.66, \omega_2=1.685, \omega_3=1.7$ son aproximadamente 50, 3 y 3 respectivamente.

Figura 1: Gráfico n vs v_n' para distintos valores de w.

Figura 2: Gráfico n vs v_n' para distintos valores de ω .

7 Conclusiones

A partir de la Figura 1 vemos que existe una dependencia de ω para el N_{relax} del sistema. También se observa que en la situación estable del sistema la partícula puede tener más de un valor $v'_{p_estable}$, dependiendo del valor de ω . Esta dependencia se ve con mayor claridad en la figura 2, donde se aprecia que en $\omega=1.66$ hay un sólo valor para $v'_{p_estable}$, pero luego en $\omega\sim1.67$ hay una bifurcación en la gráfica, provocando que hayan dos valores $v'_{p_estable}$. Luego en $\omega\sim1.73$ vuelve a haber una bifurcación, habiendo entonces cuatro calores para $v'_{p_estable}$.