Non-linear Equation Graphs Practice

- 1. The equations $y = \frac{6}{x+1}$ and $y = \frac{6}{x+1} 3$ are graphed in the xy-plane. Which of the following are true about the graphs of the two equations? (no calculator)
 - a. Both graphs have a vertical asymptote at x = 1
 - b. Both graphs have a vertical asymptote at x = -1
 - c. $y = \frac{6}{x+1}$ has a horizontal asymptote at y = 0, and $y = \frac{6}{x+1} 3$ has a horizontal asymptote at y = 3
 - d. $y = \frac{6}{x+1}$ has a vertical asymptote at x = 0, and $y = \frac{6}{x+1} 3$ has a vertical asymptote at x = 3
- 2. The system of equations represented by the graph in the xy -plane is:

$$y = 2x^2$$

II.
$$y = -2x^2 + 4$$

III.
$$y = 2x + 4$$

Which of the following lists all solutions to the system of equations? (no calculator)

a.
$$(-1,2)$$

c.
$$(-2,1)$$

d.
$$(-1,2)$$
 and $(0, 4)$

3. A system of two equations and their graphs in the xy-plane are shown below. Which of the following ordered pairs is a solution to the system of equations? (no calculator)

$$1.x^2 + y^2 = 100$$

II.
$$y = 2^{x-3}$$

c.
$$(-10, 0)$$

4. The system of equations represented by the graph at left is:

$$1. 16 = (x - 3)^2 + y^2$$

II.
$$y = x^2 - 5$$

III.
$$y = 4\sqrt{x-2}$$

How many solutions does the system have? (no calculator)

Non-linear Equation Graphs Practice

5. The system of equations represented by the graph in the xy -plane below is:

$$y = -4(x-3)^{2} + 10$$

$$y = 0.5^{x-3} + 4$$

Which of the following ordered pairs is a solution to the system of equations graphed above? (no calculator)

- a. (6,2)
- b. (4.5, 4.5)
- c. (4, 4)
- d. (2, 6)
- 6. In the xy-plane, if the parabola with equation $y = ax^2 + bx + c$, where a, b, c, are constants, passes through the point (-2,1), which of the following must be true? (no calculator)
 - a. a + b = 1
 - b. 4a 2b + c = 1
 - c. -4a 2b + c = 1
 - d. 4a + 2b + c = 1

7. A function is defined by the equation $f(x) = 2^{-x} + 1$. Which of the follow is the graph of y = f(-x) in the xy-plane? (no calculator)

a.

b.

C.

Non-linear Equation Graphs Practice

8. If the function f has four distinct zeros, which of the following could represent the complete graph of f in the xy-plane? (no calculator)

a.

b.

c.

d.

- 9. If $y = 2x^2 + 7x + 4$ is graphed in the xy -plane, which of the following characteristics of the graph is displayed as a constant or coefficient in the equation? (no calculator)
 - a. γ -coordinate of the vertex
 - b. x -intercept(s)
 - c. y -intercept
 - d. x -intercept of the line of symmetry
- 10. In the xy-plane, the graph of the $y = 2x^2 9x$ intersects the graph of y = x at the points (0,0) and (a, a), What is the value of a? (no calculator)
 - a. 6
 - b. 5
 - c. 4
 - d. 3