Efficient Wind Speed Nowcasting with GPU-Accelerated Nearest **Neighbors Algorithm**

Arnaud Pannatier, Ricardo Picatoste, François Fleuret

April 28, 2022

Contributions

- Trajectory Nearest Neighbors (TNN) Algorithm.
- An extensive comparison with traditional approaches (linear search, KDTrees [Bentley, 1975].)
- Application: high-altitude wind nowcasting.
- Code and datasets are available at github.com/idiap/tnn

SKYSOFT ATM MALAT Wind Speed Dataset

Figure: Measurements

Figure: Wind Speed

SKYSOFT ATM MALAT Wind Speed Dataset

- Measures broadcasted every 4s
- Non-regular structure
- https://www.idiap.ch/en/ dataset/skysoft

Wind Nowcasting

Last Hour Average

Context prediction

- Forecasts 30min ahead based on a context
- Here the context corresponds to the last hour of measure at our disposal
- E.g. all the measures taken between 9:00 and 10:00 \rightarrow forecast at 10:30

Figure: results

k Nearest-Neighbors (KNN)

Figure: KNN Figure: results

Gaussian Kernel Averaging (GKA)

Figure: GKA Figure: results

GKA-MLP [Pannatier et al., 2021]

Figure: GKA - MLP

Figure: results

	RMSE [kn]			Epoch duration	
Model Mean wind	Day #1 95 [kn]	Day #2 49 [kn]	Day #3 39 [kn]	1 day dataset hh:mm:ss	5 weeks dataset hh:mm:ss
Day Average	27,87	20,19	13,86	_	_
Hour Average	26,19	17,51	12,67	_	_
Particles [Sun et al., 2017]	9,98	10,07	7,84	_	_
GKA	9,07	9,64	7,66	_	_
k-NN Persistence	9,02	9,86	7,57	_	_
GKA - TNN	8,71	9,19	7,55	_	_
GKA - MLP - TNN	8,01	8,51	6,87	_	_

	RMSE [kn]			Epoch duration	
Model Mean wind	Day #1 95 [kn]	Day #2 49 [kn]	Day #3 39 [kn]	1 day dataset hh:mm:ss	5 weeks dataset hh:mm:ss
Day Average	27,87	20,19	13,86	0:03	2:05
Hour Average	26,19	17,51	12,67	0:34	20:00
Particles [Sun et al., 2017]	9,98	10,07	7,84	6:57:15	1121:54:30
GKA	9,07	9,64	7,66	2:39:18	481:47:20
k-NN Persistence	9,02	9,86	7,57	4:31:47	558:37:05
GKA - TNN	8,71	9,19	7,55	_	_
GKA - MLP - TNN	8,01	8,51	6,87	_	_

	RMSE [kn]			Epoch duration	
Model Mean wind	Day #1 95 [kn]	Day #2 49 [kn]	Day #3 39 [kn]	1 day dataset hh:mm:ss	5 weeks dataset hh:mm:ss
Day Average	27,87	20,19	13,86	0:03	2:05
Hour Average	26,19	17,51	12,67	0:34	20:00
Particles [Sun et al., 2017]	9,98	10,07	7,84	6:57:15	1121:54:30
GKA	9,07	9,64	7,66	2:39:18	481:47:20
k-NN Persistence	9,02	9,86	7,57	4:31:47	558:37:05
GKA - TNN	8,71	9,19	7,55	_	_
GKA - MLP - TNN	8,01	8,51	6,87	_	_

We need to speed this up!!

TNN algorithm

How to select relevant context?

- Restrict the set of measures to be efficient
- Should be *valid*, and *relevant*

TNN algorithm

Algorithm 1: Trajectory Nearest Neighbors

```
Data: A batch of point, informations about the segments
Result: k-Nearest Neighbors
Distances = compute distances to segments :
Distances = sort distances:
Furthest neighbors = \infty;
Next distance = Distances[:, 0]:
i = 1:
d = 0:
while Furthest neighbors > Next distance or d = M do
     Fetch F segments of K points for the remaining
      (M-d) points in the batch:
     Compute distance from batch points to segments
      points:
     Current nearest neighbors = sort previous (k) and
      new points (FK):
     Furthest neighbor = Current nearest neighbors[:, k];
     d = nb of completed lines:
     Put completed lines (d) at the end of the batch :
     Next distances = Distances[:, i * F]:
     i += 1:
end
return k-Nearest Neighbors
```

Simplified version – 3 neighbors, no batch

Starting with a query point and all the measurements

Simplified version – 3 neighbors, no batch

Consider trajectories as lines

Simplified version – 3 neighbors, no batch

Approximate lines as segments

Simplified version – 3 neighbors, no batch

Measure the error made by the approximation

Simplified version – 3 neighbors, no batch

Measure the error made by the approximation

Simplified version – 3 neighbors, no batch

Select the closest segment

Simplified version – 3 neighbors, no batch

In the considered segment – take the *k*-nearest points

Simplified version – 3 neighbors, no batch

Select segments that are still closer than the farthest neighbor that we have seen

Simplified version – 3 neighbors, no batch

Search for neighbors

Simplified version – 3 neighbors, no batch

Continue

Simplified version – 3 neighbors, no batch

Until no segments can contain neighbors

Simplified version – 3 neighbors, no batch

If all remaining segments are too far – we are over

	RMSE [kn]			Epoch duration		
Model Mean wind	Day #1 95 [kn]	Day #2 49 [kn]	Day #3 39 [kn]	1 day dataset hh:mm:ss	5 weeks dataset hh:mm:ss	
Day Average	27,87	20,19	13,86	0:03	2:05	
Hour Average	26,19	17,51	12,67	0:34	20:00	
Particles [Sun et al., 2017]	9,98	10,07	7,84	6:57:15	1121:54:30	
GKA	9,07	9,64	7,66	2:39:18	481:47:20	
k-NN Persistence	9,02	9,86	7,57	4:31:47	558:37:05	
GKA - TNN	8,71	9,19	7,55	4:13	1:35:30	
GKA - MLP - TNN	8,01	8,51	6,87	4:21	1:37:39	

Details

How to vectorize it?

$$P_s = A + \max\left(0, \min\left(\frac{\langle \overrightarrow{AP}, \overrightarrow{AB}\rangle}{\|\overrightarrow{AB}\|_2^2}, 1\right)\right) \overrightarrow{AB}$$

How to vectorize it?

Data Structure

Algorithm 2: Distance from point P to a segment

```
Data: P, t, \vec{\sigma}, A, t_A, B, t_B, U, E, t_w

Result: Distance from P to segment with error if t_A > t - t_w then return \infty; \delta = \operatorname{clamp}((P-A) \cdot U, 0, 1); P_s = A + \delta * (B - A); D = \|P_s - P\|_{\sigma_{xyz}}^2 + \sigma_t \max(t_B - t, 0)^2; D = D - E \max(\sigma_{xy}, \sigma_z); return \operatorname{clamp}(D, 0)
```

Allow to filter based on a coordinate (here time)

Details: Scalable metric

$$\begin{split} \|\vec{x_1} - \vec{x_2}\|_{\vec{\sigma}}^2 = & \sigma_{xy}[(x_1 - x_2)^2 + (y_1 - y_2)^2] \\ & + \sigma_z(z_1 - z_2)^2 + \sigma_t(t_1 - t_2)^2 \end{split}$$

Bibliography

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517.

Pannatier, A., Picatoste, R., and Fleuret, F. (2021). Efficient wind speed nowcasting with gpu-accelerated nearest neighbors algorithm.

Sun, J., Vû, H., Ellerbroek, J., and Hoekstra, J. (2017). Ground-based wind field construction from mode-s and ads-b data with a novel gas particle model. In Proceedings of the Seventh SESAR Innovation Days. 7th SESAR Innovation Days, SIDs.

Math

$$\|\vec{x_1} - \vec{x_2}\|_{\tilde{\sigma}}^2 = \sigma_{xy}[(x_1 - x_2)^2 + (y_1 - y_2)^2] + \sigma_z(z_1 - z_2)^2 + \sigma_t(t_1 - t_2)^2 \tag{1}$$

$$\|P_1 - P_2\|_{\sigma_{xyz}}^2 = \sigma_{xy}[(x_1 - x_2)^2 + (y_1 - y_2)^2] + \sigma_z(z_1 - z_2)^2$$
(2)

$$||t_1 - t_2||_{\sigma_t}^2 = \sigma_t (t_1 - t_2)^2$$
 (3)

with
$$\vec{\sigma} = \left(\sigma_{xy}, \sigma_z, \sigma_t\right)$$
 sets: $T_j = \{\vec{x}_{j,1}, \ldots, \vec{x}_{j,K}\}$, $j \in \{1, \ldots, \frac{N}{K}\}$

$$d = \mathsf{dist}((P,t),s) = \|P - P_s\|_{\sigma_{XUZ}}^2 + \|t - t_s\|_{\sigma_t}^2 \tag{4}$$

$$P_s = A + \max\left(0, \min\left(\frac{\langle \overline{AP}, \overline{AB} \rangle}{\|\overline{AB}\|_2^2}, 1\right)\right) \overline{AB}$$
 (5)

$$t_s = \max(t_A, \min(t, t_B)) \tag{6}$$

$$E_{\mathsf{app}} = \max_{i \in 1, \dots, K} \mathsf{dist}(\vec{x_i}, s) = \max_i \|P_i - P_{s_i}\|_{\sigma_{xyz}}^2 + \underbrace{\|t_i - t_{s_i}\|_{\sigma_t}^2}_{0} \leq \sigma_{max} \max_i \|P_i - P_{s_i}\|_2^2$$

with $\sigma_{max} = \max(\sigma_{xy}, \sigma_z)$, $t_A < t_i < t_B$ by construction.

$$t_{s}^{w} = \begin{cases} \infty & \text{if } t_{A} > t - t_{w} \\ \min(t, t_{B}) & \text{otherwise} \end{cases}$$
 (7)

$$d_w = \|P - P_s\|_{\sigma_{TUS}}^2 + \|t - t_s^w\|_{\sigma_t}^2$$
(8)

Complexity analysis

Method	Steps	Time Complexity	Space Complexity
Linear search	Distance Matrix Top-k	$\begin{array}{c} O(N^2D) \\ O(N^2) \end{array}$	$\frac{M(2N+1)}{2Mk}$
TNN	Distance Segments Sort	$O(\frac{N^2}{K}D) \\ O(\frac{N^2}{K}\log(\frac{N}{K}))$	$M\frac{N}{K}D$ $2M\frac{N}{K}$
	Distance to points Top-k Total	$\begin{array}{c} O(Nn_fFKD) \\ O(Nn_f(k+FK)) \\ O(\frac{N^2}{K}\log(\frac{N}{K}) + Nn_fFKD) \end{array}$	$M(k+FK)D$ $2M(k+FK)$ $M\frac{N}{K}D+M(k+FK)$

Comparison with linear search

Comparison with linear search

Comparison with linear search

Data set	Device	Algorithm	Comparisons	Query [ms]	Total duration
	OPU	Lin. Search	811'372	9.03	2:30:32
Original Data set	CPU	TNN	28'579	1.03	17:08
Original Data set	GPU	Lin. Search	811'372	2.55	42:28
	GPU	TNN	81'611	0.16	2:43
SRW Data set	CPU	Lin. Search	1'000'000	11.95	3:19:09
		TNN	58'408	1.60	26:35
	GPU	Lin. Search	1'000'000	2.51	41:48
		TNN	93'555	0.39	6:28
Boot down and the	CPU	Linear Search	1'000'000	7.43	2:03:51
		TNN	999'940	15.51	4:18:34
Random points	CDII	Linear Search	1'000'000	1.72	28:42
	GPU	TNN	998'588	1.36	22:40

Comparison with KDTrees

Comparison with KDTrees

Method	Creation [s]	Query [ms]	Total duration
Linear search CPU	_	9.03	2:30:32
TNN CPU	1.00	1.03	17:08
Scaled masked KDTree	0.11	9.25	2:35:06
Scaled masked cKDTree	0.03	0.70	11:35
TNN GPU	7.00	0.16	2:43
Linear search GPU	-	2.55	42:28

Acknowledgement

Arnaud Pannatier was supported by the Swiss Innovation Agency Innosuisse under grant number 32432.1 IP-ICT – "MALAT: Machine Learning for Air Traffic."

