Optimal Work-from-Home Policy Analysis

Mitchell Valdes-Bobes

Model Description

This document outlines a model for determining the optimal fraction of remote work (α^*) for firms based on their remote efficiency (ψ) . The model incorporates non-linear transitions in α^* as ψ increases.

Model Components

1. Production Function

The firm's productivity depends on:

- On-site work: $1-\alpha$
- Remote work: $\alpha(\psi \psi_0)^{\gamma}$, where:
 - $-\ \psi \in [0,1]:$ Firm's remote efficiency.
 - $-\psi_0$: Threshold efficiency below which remote work is unproductive.
 - $-\gamma > 0$: Curvature parameter for non-linearity.

The production function of a firm with remote efficiency ψ that adopts a fraction α of remote work is given by:

$$Y(\alpha \mid \psi) = A \left[(1 - \alpha) + \alpha (\psi - \psi_0)^{\gamma} \right]$$

2. Worker Utility and Wage

Workers incur a disutility from on-site work, compensated by wage w:

$$w = x + c(1 - \alpha)^{\chi}$$

- x: Baseline utility guaranteed by the firm.
- c > 0: Disutility scaling factor.
- $\chi > 1$: Curvature parameter for on-site work disutility.

3. Profit Function

Profit = Productivity - Wage:

$$\Pi(\alpha \mid \psi) = A \left[(1 - \alpha) + \alpha (\psi - \psi_0)^{\gamma} \right] - \left[x + c(1 - \alpha)^{\chi} \right]$$

Optimal α^* Derivation

To determine the optimal fraction of remote work $\alpha^*(\psi)$, we maximize the firm's profit function:

$$\Pi(\alpha \mid \psi) = A \left[(1 - \alpha) + \alpha (\psi - \psi_0)^{\gamma} \right] - \left[x + c (1 - \alpha)^{\chi} \right].$$

Taking the first-order condition:

$$\frac{\partial \Pi}{\partial \alpha} = -A(1-(\psi-\psi_0)^\gamma) + c\chi(1-\alpha)^{\chi-1} = 0.$$

Solving for $\alpha^*(\psi)$:

$$\alpha^*(\psi) = 1 - \left[\frac{A(1 - (\psi - \psi_0)^{\gamma})}{c\chi} \right]^{\frac{1}{\chi - 1}}.$$

Corner Solution Analysis

1. Full On-Site Work ($\alpha^*(\psi) = 0$ If the interior solution $\alpha^*(\psi)$ is negative, the firm prefers full on-site work ($\alpha^*(\psi) = 0$). This happens when:

$$1 - \left\lceil \frac{A(1-(\psi-\psi_0)^\gamma)}{c\chi} \right\rceil^{\frac{1}{\chi-1}} < 0,$$

which simplifies to:

$$\frac{A(1-(\psi-\psi_0)^{\gamma})}{c\gamma} > 1.$$

Rearranging:

$$A(1 - (\psi - \psi_0)^{\gamma}) > c\chi.$$

Solving for ψ :

$$\psi < \psi_0 + \left(1 - \frac{c\chi}{A}\right)^{\frac{1}{\gamma}}.$$

For this range of ψ , the firm opts for full on-site work.

2. Full Remote Work ($\alpha^*(\psi) = 1$)

Consider:

$$1 - \left[\frac{A(1 - (\psi - \psi_0)^\gamma)}{c\chi}\right]^{\frac{1}{\chi - 1}} > 1$$

Then:

$$\frac{A(1-(\psi-\psi_0)^\gamma)}{c\chi}<0 \qquad \implies \qquad \psi>\psi_0+1$$

Final Optimal Policy for $\alpha^*(\psi)$

$$\alpha^*(\psi) = \begin{cases} 0, & \text{if } \psi \leq \psi_c, \\ 1 - \left[\frac{A(1-(\psi-\psi_0)^\gamma)}{c\chi}\right]^{\frac{1}{\chi-1}}, & \text{if } \psi_c < \psi \leq \psi_0 + 1, \\ 1, & \text{if } \psi > \psi_0 + 1. \end{cases}$$

Figure 1: Optimal Work-From-Home (WFH) Fraction as a Function of Remote Efficiency