1 Section 3.1.3: Similarity by Contrast

The exact view construction algorithm for similarity by contrast views are:

TrueSkill Similarity connects answers authored by a specific user, where the difference in his skill over peers is greater than margin δ . Specifically, if the user authors answers a,a' to questions q,q', we create a link between a and a' if

$$|S_{u,a} - S_{u,b}| > \delta; \forall b \in \mathcal{A}_{\ell}(q)$$

$$|S_{u,a'} - S_{u,c}| > \delta; \forall c \in \mathcal{A}_{\ell}(q')$$

where $S_{u,a}$ is the skill value for the user who authored answer a. Similarly, a link is created for the opposite case when difference is less than $-\delta$.

We estimate the user skill values with the TrueSkill rating system (https://pypi.org/project/trueskill/) computed with their historic performance in the community. TrueSkill values are normally distributed among users (fig. 1).

Fig. 1: Distribution of the TrueSkill values of users and ArrivalRank of accepted answers and non-accepted answers for the movie StackExchange. Early answers are more likely to be accepted and variance of TrueSkill similarity across users is high.

Arrival Similarity The temporal arrival patterns of answers are correlated to their acceptance probabilities (fig. 1). For a specific user authoring answers a,a' to questions q,q', we establish a link between these answers if

$$|T_a - T_b| > \gamma \times \max(T_b); \forall b \in \mathcal{A}_{(q)}$$

 $|T_{q'} - T_c| > \gamma \times \max(T_c); \forall c \in \mathcal{A}_{(q')}$

where T_a represents the relative time-gap between answer a and the question q. Conversely, we create links when difference is less than $-\gamma \times \max(T_b)$. Our hypothesis is that a similar answering schedule indicates similar user confidence or skill across questions.

2 Section 4.2: Contrastive Convolution

In this section, we provide a theoretical analysis of our contrastive convolution. The ability of neural networks to perform classification in sparse high-dimensional manifolds has been studied in past work, especially in the context of adversarial learning [4]. We employ the ReLU activation function in our convolution layers and study the outputs of the kth layer, i.e. embeddings with k-order locality. This transformation breaks the input space into cells with smooth gradients within each cell, at whose boundaries the piecewise linear function changes (i.e. the likelihood of the two classes of answers).

We ask a specific question in the context of our Contrastive IR-GCN. What is the impact of the layerwise discriminative magnification induced by our formulation? Discriminative magnifications results in improved separability of the two classes in the later convolving layers, an effect we earlier demonstrated with a sample network in ??. This positively impacts the ability of the model to explain the observed data points (i.e create p-domains that are well aligned with the contrastive samples provided) and improve the generalizability of the learned model to unseen data points. However, it is important to maintain sufficient regularization with weight decay to prevent sparse regions exhibiting sharp gradients which could affect model performance.

The capacity of our model can also be quantified in terms of the VC dimension of the aggregated classifier against the individual learners. Gradient boosting with multiple relation learners (each of which captures a specific aspect of node locality via graph convolution on the induced relations) could boost the capacity of the joint model, enabling better generalization and a more accurate fit in the data manifold (i.e. higher capacity to fit regions to fine distinctions).

Let us denote the upper bound of the VC dimension or capacity of each individual learner as D (If the individual learners do not have identical capacity, the minimum can be used to compute a lower bound on the aggregated learner capacity). Then the gradient boosted learner with T classifiers has a bound on it's capacity [6] given by,

$$\mathcal{VC}_{Aqq} = T \times (D+1) \times (3\log(T.(D+1)) + 2)$$

Thus we identify two potential reasons for our performance gains, first the discriminative magnification effect which also supports the strong individual performance of the contrast view, and second the gain in capacity from boosting, which could explain it's advantage over competing aggregation methods.

3 Section 5: Aggregating Induced Views

The prior aggregation methods used in the literature were adapted for our GCN model as follows:

Neighborhood Aggregation: is a multi relational approach that aggregates neighbors of the nodes from all views. Thus, the final adjacency matrix is the sum of all the individual adjacency matrices of each view, i.e., $A = \sum_{S_i \in \mathbf{S}} A_i$. We, then, apply Graph Convolution Network to this updated Adjacency matrix.

Stacking: stacks all GCNs belonging to a view such that output of a lower GCN is fed as an input to the GCN directly above it. Thus, output from the last layer of GCN for view i, Z_i^K s.t. $S_i \in \mathbf{S}$ will act as input features, Z_j^0 for some other view j s.t. $S_j \in \{\mathbf{S} - S_i\}$ if view j is directly above the view i. In our experiments, we obtain the best performance by using the following order: Contrastive, Similarity by Contrast followed by Reflexive.

Fusion: treats each GCN as a separate model and appends the output from the final layer of each GCN i.e. $Z_i^K; \forall S_i \in \mathbf{S}$ to the input of all the other GCN's, i.e. $Z_j^0 \forall S_j \in \mathbf{S} - S_i$ along with the original features. Thus, the input of each GCN is linear in $|\mathbf{S}|$.

4 Section 6.1 : Dataset

The list of 50 StackExchange communities per category are;

- Technology: AskUbuntu, Server Fault, Unix, TEX, Electronics, Gis, Apple, Wordpress, Drupal, DBA
- Culture/Recreation: English, Travel, RPG, Judaism, Puzzling, Bicycles, German, Christianity, BoardGames, History
- Life/Arts: Scifi, DIY, Academia, Graphic Design, Money, Photo, WorldBuilding, Movies, Music, Law
- Science: Stat, Physics, MathOverflow, CS, Chemistry, Biology, Philosophy, CS Theory, Economics, Astronomy
- Professional/Business: Workplace, Aviation, Writers, Open source, Freelancing, CS Educators, Quant, PM, Parenting

5 Section 6.2.1 : Baselines

Dual GCN (DGCN) The mean squared error (MSE) between vertex representations of two views is defined as, for instance,

$$\mathcal{L}_{reg}(Z_c, Z_{ts}) = \frac{1}{n} \sum_{j \in 1, n} ||Z_c^j - Z_{ts}^j||$$

computes the MSE loss between Contrastive and TrueSkill Similarity GCN. [8] proposed the model for two GCN representations. We extend the original two GCN model [8] to four GCN, each representing our relational views between the nodes. We minimize the supervised loss with respect to the best performing GCN model (Contrastive), and its node representation's alignment with respect to all other GCN's node representations. The Contrastive view is seen to exhibit the best performance in isolation. Thus, the DualGCN loss can be given by:

$$\mathcal{L} = \mathcal{L}_0 + \lambda(t) \left(\sum_{S_i \in \mathbf{S}, S_i \neq c} \| \mathbf{Z}_c^K - \mathbf{Z}_i^K \| \right)$$

where \mathcal{L}_0 represents the supervised loss and \mathbf{Z}_c^K is the node representations of the Contrastive GCN.

Relational GCN (RGCN) [5] combines the output representations of previous layer of each view \mathbf{Z}_i^{k-1} of layer k-1 of each view to compute an aggregated input to layer k. Formally,

$$\mathbf{Z}_{rgcn}^{k} = \sigma \left(\sum_{S_i \in \mathbf{S}} \mathbf{Z}_i^{k-1} \right)$$

where Z_{rqcn} is final output of this model at layer k and σ is the activation function.

6 Section 6.3: Performance Analysis

The breakdown of the results by the StackExchange community are given in the tables below. (Technology: table 1, Culture: table 2, Life: table 3, Science: table 4, Business: table 5).

M (1 1	AskUb	untu	Server	fault	Uni	ix	TE	X	Electro	onics
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	64.63	0.668	68.38	0.648	70.90	0.597	64.93	0.717	67.69	0.699
FF [3]	68.49	0.789	68.29	0.769	73.14	0.730	65.43	0.795	68.26	0.797
DGCN [8]	70.25	0.794	72.01	0.768	75.16	0.749	69.02	0.788	70.62	0.783
RGCN [5]	55.24	0.636	58.04	0.689	64.14	0.610	56.22	0.750	53.18	0.640
AS-GCN	70.15	0.774	68.09	0.751	74.90	0.749	65.91	0.782	67.91	0.775
TS-GCN	69.49	0.782	67.15	0.752	73.95	0.748	64.67	0.777	66.58	0.777
C-GCN	72.27	0.792	72.42	0.772	76.44	0.761	69.10	0.794	72.45	0.797
IR-GCN	75.25	0.798	73.87	0.776	78.75	0.765	70.96	0.796	74.63	0.799
					·					
Mathad	GI	S	Арр	ole	Word	press	Druj	pal	DB	A
Method	Acc(%)	S MRR	App Acc(%)	ole MRR	Word _l Acc(%)	press MRR	Druj Acc(%)	pal MRR	DB Acc(%)	A MRR
Method RF [1,7]										
	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	Acc(%) 64.93	MRR 0.698	Acc(%) 70.13	MRR 0.644	Acc(%)	0.718	Acc(%)	0.727	Acc(%) 65.44	MRR 0.718
RF [1,7] FF [3]	Acc(%) 64.93 64.69	MRR 0.698 0.786	Acc(%) 70.13 68.86	MRR 0.644 0.785	Acc(%) 65.11 64.62	0.718 0.805	Acc(%) 65.65 64.88	0.727 0.799	Acc(%) 65.44 66.39	MRR 0.718 0.803
RF [1,7] FF [3] DGCN [8]	Acc(%) 64.93 64.69 68.51	MRR 0.698 0.786 0.775	Acc(%) 70.13 68.86 73.52	MRR 0.644 0.785 0.770	Acc(%) 65.11 64.62 70.11	0.718 0.805 0.808	Acc(%) 65.65 64.88 68.22	0.727 0.799 0.791	Acc(%) 65.44 66.39 69.58	0.718 0.803 0.793
RF [1,7] FF [3] DGCN [8] RGCN [5]	Acc(%) 64.93 64.69 68.51 50.30	MRR 0.698 0.786 0.775 0.671	70.13 68.86 73.52 49.48	MRR 0.644 0.785 0.770 0.627	Acc(%) 65.11 64.62 70.11 55.89	0.718 0.805 0.808 0.729	Acc(%) 65.65 64.88 68.22 51.26	0.727 0.799 0.791 0.688	65.44 66.39 69.58 50.30	0.718 0.803 0.793 0.686
RF [1,7] FF [3] DGCN [8] RGCN [5] AS-GCN	Acc(%) 64.93 64.69 68.51 50.30 64.82	MRR 0.698 0.786 0.775 0.671	Acc(%) 70.13 68.86 73.52 49.48 69.76	MRR 0.644 0.785 0.770 0.627 0.776	Acc(%) 65.11 64.62 70.11 55.89 65.00	MRR 0.718 0.805 0.808 0.729 0.791	Acc(%) 65.65 64.88 68.22 51.26 65.06	MRR 0.727 0.799 0.791 0.688 0.785	Acc(%) 65.44 66.39 69.58 50.30 65.95	MRR 0.718 0.803 0.793 0.686 0.793

Table 1: Accuracy and MRR values for StackExchange communities belonging to **Technology** category with state-of-the-art baselines.

7 Section 6.6 : Textual Features

Text Preprocessing: We first removed all code snippets, HTML tags, stopwords and URLs from the text of all questions and answers. We then tokenized the text using NLTK tokenizer followed by lemmatization using WordNetLemmatizer and finally converted it into lowercase.

We use torchtext to create vocabulary and limit the text of each question and answer to be 250 words long. We initialized the words in the vocabulary using 300-dimensional pretrained embeddings from Word2vec (https://code.google.com/archive/p/word2vec/). We randomly intialized words present in the vocabulary but not in word2vec.

QA-LSTM/CNN: In this baseline, we use a biLSTM model with hidden dimension = 300 followed by 50 1D convolutional filters with a kernel size of 3. We then compute the final embeddings by applying 1D maxpooling on the output of the convolution layer. We also used Tanh nonlinearity and dropout of 0.3 on the final embeddings. We finally use these embeddings to compute a cosine similarity score between a question and its answers. This score is used to rank the candidate answers for evaluation. We implemented the baseline in Pytorch.

Mathad	Engl	ish	Trav	vel	RP	G	Juda	ism	Puzz	ling
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	73.98	0.564	70.94	0.655	73.29	0.590	70.16	0.665	73.94	0.548
FF [3]	73.36	0.755	73.70	0.802	72.92	0.765	67.96	0.780	73.90	0.738
DGCN [8]	77.03	0.750	76.05	0.796	74.47	0.738	72.68	0.752	75.74	0.738
RGCN [5]	60.70	0.621	61.95	0.546	60.45	0.639	57.59	0.670	60.35	0.621
AS-GCN	74.52	0.736	72.66	0.791	74.60	0.752	70.24	0.754	75.09	0.722
TS-GCN	73.97	0.736	71.44	0.794	73.20	0.752	69.57	0.763	74.15	0.727
C-GCN	76.67	0.752	76.49	0.802	77.07	0.767	73.31	0.783	77.47	0.745
IR-GCN	78.74	0.761	78.96	0.810	79.13	0.773	75.58	0.798	79.75	0.747
IN-GCN	70.74	0.701	70.90	0.010	17.13	0.775	75.50	0.770	17.70	0., .,
	Bicyc		Gern		Christi		Board		Histo	
Method			I							ory
	Bicy	cles	Gern	nan	Christi	anity	BoardC	Fames	Histo	
Method	Bicyc Acc(%)	cles MRR	Gern Acc(%)	nan MRR	Christi Acc(%)	anity MRR	Board(Sames MRR	Histo Acc(%)	MRR 0.683
Method RF [1,7]	Bicyc Acc(%) 74.09	MRR 0.604	Gern Acc(%) 69.85	MRR 0.675	Christi Acc(%) 74.67	MRR 0.607	Board@ Acc(%) 71.49	Games MRR 0.677	Histo Acc(%) 72.83	MRR 0.683 0.806
Method RF [1,7] FF [3]	Bicyc Acc(%) 74.09 73.86	0.604 0.789	Gern Acc(%) 69.85 69.56	man MRR 0.675 0.781	Christi Acc(%) 74.67 72.26	MRR 0.607 0.791	Board (6) Acc(%) 71.49 72.01	MRR 0.677 0.814	Histo Acc(%) 72.83 72.69	ory MRR
Method RF [1,7] FF [3] DGCN [8]	Bicyc Acc(%) 74.09 73.86 76.38	0.604 0.789 0.769	Gern Acc(%) 69.85 69.56 72.28	nan MRR 0.675 0.781 0.773	Christi Acc(%) 74.67 72.26 74.23	0.607 0.791 0.775	Board 0 Acc(%) 71.49 72.01 76.71	MRR 0.677 0.814 0.814	Histo Acc(%) 72.83 72.69 76.73	MRR 0.683 0.806 0.810
Method RF [1,7] FF [3] DGCN [8] RGCN [5]	Bicyc Acc(%) 74.09 73.86 76.38 59.74	0.604 0.789 0.769 0.651	Gern Acc(%) 69.85 69.56 72.28 58.47	0.675 0.781 0.675 0.773	Christi Acc(%) 74.67 72.26 74.23 60.78	0.607 0.791 0.775 0.685	Board(6) Acc(%) 71.49 72.01 76.71 60.74	0.677 0.814 0.686	Histo Acc(%) 72.83 72.69 76.73 63.21	0.683 0.806 0.810 0.661
Method RF [1,7] FF [3] DGCN [8] RGCN [5] AS-GCN	Bicyc Acc(%) 74.09 73.86 76.38 59.74 74.74	0.604 0.789 0.769 0.651	Gern Acc(%) 69.85 69.56 72.28 58.47 69.25	0.675 0.781 0.773 0.675 0.757	Christi Acc(%) 74.67 72.26 74.23 60.78	0.607 0.791 0.775 0.685	Board (6) Acc(%) 71.49 72.01 76.71 60.74 71.23	0.677 0.814 0.814 0.686 0.785	Histor Acc(%) 72.83 72.69 76.73 63.21 74.14	0.683 0.806 0.810 0.661 0.805

Table 2: Accuracy and MRR values for StackExchange communities belonging to **Culture** category with state-of-the-art baselines.

Textual Similarity (T-GCN) We extract the updated embeddings of the question and answer text from the learnt QA-LSTM model. We then compute cosine similarity between the embeddings of each question and its answers. Specifically, we connect answers authored by a specific user, where the difference in cosine similarity of the answer with the other competing answers is greater than margin λ . Specifically, if the user authors answers a,a' to questions q,q', we create a link between a and a' if

$$\begin{aligned} |C_{q,a} - C_{q,b}| &> \lambda; \forall b \in \mathcal{A}_{\ell}(q) \\ |C_{q,a'} - C_{q,c}| &> \lambda; \forall c \in \mathcal{A}_{\ell}(q') \end{aligned}$$

where $C_{q,a}$ is the cosine similarity of the answer a with respect to question q. Similarly, a link is created for the opposite case when difference is less than $-\lambda$. In our experiments, we assign $\lambda=0.4$. The hypothesis is that irrelevant(dissimilar) answers will more likely be rejected and vice versa.

8 Reddit Experiments

Reddit¹ is another popular CQA platform with subreddits similar to StackExchange communities. In particular, we focus on Ask* subreddits as they are primarily used to seek help from a community of experts and non-experts. In particular, we crawled data from /r/askscience (science forum), /r/AskHistorians (history forum), and /r/AskDocs (medical forum) until October 2017. We performed basic preprocessing and removed posts or comments with single word/URLs or missing author/title information. We also removed infrequent users who posted less than two comments. Table 6 shows the final data statistics.

¹ https://www.reddit.com/

Method	Scil	Fi	DI	Y	Acade	emia	Graphic	Design	Mon	ney
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	77.15	0.675	71.52	0.651	74.37	0.560	69.82	0.638	72.19	0.608
FF [3]	76.57	0.826	70.76	0.795	73.62	0.767	69.79	0.795	71.06	0.777
DGCN [8]	79.27	0.818	74.67	0.794	76.92	0.757	74.43	0.792	74.80	0.770
RGCN [5]	59.56	0.651	58.08	0.690	64.36	0.672	59.11	0.712	60.58	0.652
AS-GCN	74.67	0.816	70.18	0.778	75.26	0.732	70.01	0.784	72.19	0.755
TS-GCN	61.13	0.793	69.40	0.788	74.20	0.740	69.17	0.782	70.98	0.751
C-GCN	79.77	0.824	74.68	0.798	77.75	0.759	74.51	0.800	75.18	0.771
IR-GCN	81.60	0.834	76.83	0.805	79.62	0.772	76.13	0.804	77.11	0.784
	<u> </u>		ı		1		!		1	
M-4l d	Pho	to	WorldB	uilding	Mov	ies	Mus	sic	La	w
Method	Pho Acc(%)	to MRR	WorldB	uilding MRR	Mov Acc(%)	ries MRR	Mus Acc(%)	sic MRR	Lav	w MRR
Method RF [1,7]				8						
	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	Acc(%) 69.27	MRR 0.580	Acc(%) 84.34	MRR 0.455	Acc(%) 70.91	MRR 0.704	Acc(%) 70.33	MRR 0.628	Acc(%) 67.27	MRR 0.787
RF [1,7] FF [3]	Acc(%) 69.27 73.66	MRR 0.580 0.747	Acc(%) 84.34 83.77	MRR 0.455 0.720	Acc(%) 70.91 73.75	MRR 0.704 0.824	70.33 76.07	MRR 0.628 0.773	Acc(%) 67.27 66.89	MRR 0.787 0.821
RF [1,7] FF [3] DGCN [8]	Acc(%) 69.27 73.66 75.78	MRR 0.580 0.747 0.752	Acc(%) 84.34 83.77 84.72	MRR 0.455 0.720 0.710	70.91 73.75 77.62	MRR 0.704 0.824 0.839	70.33 76.07 76.81	MRR 0.628 0.773 0.785	Acc(%) 67.27 66.89 72.31	MRR 0.787 0.821 0.823
RF [1,7] FF [3] DGCN [8] RGCN [5]	Acc(%) 69.27 73.66 75.78 56.12	MRR 0.580 0.747 0.752 0.624	Acc(%) 84.34 83.77 84.72 68.73	MRR 0.455 0.720 0.710 0.546	Acc(%) 70.91 73.75 77.62 61.97	MRR 0.704 0.824 0.839 0.649	70.33 76.07 76.81 53.95	MRR 0.628 0.773 0.785 0.614	Acc(%) 67.27 66.89 72.31 57.34	MRR 0.787 0.821 0.823 0.735
RF [1,7] FF [3] DGCN [8] RGCN [5] AS-GCN	Acc(%) 69.27 73.66 75.78 56.12 74.60	MRR 0.580 0.747 0.752 0.624 0.751	Acc(%) 84.34 83.77 84.72 68.73 84.18	MRR 0.455 0.720 0.710 0.546 0.701	Acc(%) 70.91 73.75 77.62 61.97 74.02	MRR 0.704 0.824 0.839 0.649 0.836	Acc(%) 70.33 76.07 76.81 53.95 76.62	MRR 0.628 0.773 0.785 0.614 0.790	Acc(%) 67.27 66.89 72.31 57.34 66.14	MRR 0.787 0.821 0.823 0.735 0.822

Table 3: Accuracy and MRR values for StackExchange communities belonging to **Life** category with state-of-the-art baselines.

Reddit has a hierarchical comment structure. For this paper, we treat first-level comments as potential answers to the question. Users in these subreddits can get verified by providing anonymized verification documents including certification numbers, contact information, etc. to the moderators. We denote these verified users as experts. We treat an expert's comment as equivalent to an accepted answer and only consider posts which have an expert answer for our experiments. We discard posts with multiple experts' comment as it is hard to objectively choose a winner.

We employ 12 basic features for the Reddit dataset:

Activity features: ArrivalRank of the answer, Number of subsequent comments on the answer, Number of other answers to the question, Upvotes and downvotes for both, question and answer.

Text features: Word count of the question and answer

We employ post-vote features here as [2] showed that there is widespread under-provision of voting on Reddit, partially due to long comment threads. It can act as a weak signal for answer quality. Unlike the StackExchange, Reddit voting is not biased by publicly visible acceptance of answers to a question. Thus, votes ideally represent the independent judgment of the crowd.

Table 7 shows performance gains over the state-of-art baselines for the Reddit dataset. All results are reported after 5-fold cross validation. Our model improves by 16% on average in accuracy over the baselines for Reddit. The improvement in MRR is again higher for Reddit at an average increase of 7% than the baseline.

Among individual views, for Reddit, there is a huge difference in performance for each GCN. TrueSkill Similarity performs much better followed by Arrival Similarity and Contrastive. Reflexive GCN performs the worst for Reddit as it predicts each node's label independent of answers to the same question.

M 4 1	Sta	ıt	Phys	sics	MathOv	erflow	CS	<u> </u>	Chem	istry
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	67.97	0.706	67.75	0.679	67.22	0.649	66.23	0.700	68.04	0.759
FF [3]	67.97	0.817	67.41	0.803	66.76	0.767	65.56	0.794	68.31	0.836
DGCN [8]	70.53	0.799	70.27	0.774	67.38	0.713	69.49	0.806	73.52	0.826
RGCN [5]	53.16	0.661	62.05	0.650	71.88	0.644	57.15	0.701	57.46	0.729
AS-GCN	67.84	0.801	67.85	0.788	56.80	0.743	65.71	0.779	67.82	0.823
TS-GCN	66.48	0.805	67.20	0.790	57.32	0.744	64.45	0.781	64.99	0.832
C-GCN	72.41	0.815	65.08	0.803	62.23	0.762	69.76	0.796	73.52	0.845
IR-GCN	74.78	0.818	74.68	0.802	71.88	0.768	73.12	0.809	76.58	0.848
Mathad	Biolo	ogy	Philos	ophy	CS Th	eory	Econo	mics	Astror	omy
Method	Biolo Acc(%)	ogy MRR	Philose Acc(%)	ophy MRR	CS Th	eory MRR	Econo Acc(%)	mics MRR	Astror	omy MRR
Method RF [1,7]	!	~				•	1			•
	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	Acc(%) 65.81	MRR 0.730	Acc(%) 73.32	MRR 0.601	Acc(%) 70.15	MRR 0.643	Acc(%) 65.14	MRR 0.713	Acc(%) 69.27	MRR 0.743
RF [1,7] FF [3]	Acc(%) 65.81 65.74	MRR 0.730 0.831	73.32 73.69	MRR 0.601 0.752	Acc(%) 70.15 68.88	MRR 0.643 0.775	65.14 65.53	MRR 0.713 0.807	Acc(%) 69.27 68.83	MRR 0.743 0.816
RF [1,7] FF [3] DGCN [8]	Acc(%) 65.81 65.74 70.77	MRR 0.730 0.831 0.823	73.32 73.69 75.84	MRR 0.601 0.752 0.761	70.15 68.88 71.61	MRR 0.643 0.775 0.782	Acc(%) 65.14 65.53 72.42	0.713 0.807 0.810	Acc(%) 69.27 68.83 72.67	MRR 0.743 0.816 0.820
RF [1,7] FF [3] DGCN [8] RGCN [5]	Acc(%) 65.81 65.74 70.77 56.87	MRR 0.730 0.831 0.823 0.731	73.32 73.69 75.84 61.36	MRR 0.601 0.752 0.761 0.609	70.15 68.88 71.61 58.46	0.643 0.775 0.782 0.688	Acc(%) 65.14 65.53 72.42 55.88	MRR 0.713 0.807 0.810 0.730	Acc(%) 69.27 68.83 72.67 61.05	MRR 0.743 0.816 0.820 0.682
RF [1,7] FF [3] DGCN [8] RGCN [5] AS-GCN	Acc(%) 65.81 65.74 70.77 56.87 65.87	MRR 0.730 0.831 0.823 0.731 0.802	Acc(%) 73.32 73.69 75.84 61.36	MRR 0.601 0.752 0.761 0.609 0.754	70.15 68.88 71.61 58.46	MRR 0.643 0.775 0.782 0.688 0.763	Acc(%) 65.14 65.53 72.42 55.88 65.06	MRR 0.713 0.807 0.810 0.730	Acc(%) 69.27 68.83 72.67 61.05 67.79	MRR 0.743 0.816 0.820 0.682 0.827

Table 4: Accuracy and MRR values for StackExchange communities belonging to **Science** category with state-of-the-art baselines.

Out of the baseline graph ensemble approaches, DualGCN and RelationalGCN, similar to StackExchange, DualGCN consistently performs better than RelationalGCN by an average of around 3% for Reddit.

References

- Burel, G., Mulholland, P., Alani, H.: Structural normalisation methods for improving best answer identification in question answering communities. In: International Conference on World Wide Web, WWW (2016)
- Gilbert, E.: Widespread underprovision on reddit. In: Conference on Computer Supported Cooperative Work. CSCW '13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2441776.2441866
- 3. Jenders, M., Krestel, R., Naumann, F.: Which answer is best?: Predicting accepted answers in MOOC forums. In: International Conference on World Wide Web (2016)
- Lu, J., Issaranon, T., Forsyth, D.A.: Safetynet: Detecting and rejecting adversarial examples robustly. In: ICCV. pp. 446–454 (2017)
- Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: European Semantic Web Conference. Springer (2018)
- Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to algorithms. Cambridge university press (2014)
- 7. Tian, Q., Zhang, P., Li, B.: Towards predicting the best answers in community-based question-answering services. In: International Conference on Weblogs and Social Media, ICWSM (2013)
- 8. Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-based semi-supervised classification. In: World Wide Web Conference (2018)

Method	Workplace		Aviation		Writers		Open Souce		Freelancing	
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR
RF [1,7]	76.27	0.546	72.79	0.691	75.68	0.502	67.97	0.706	75.08	0.634
FF [3]	75.77	0.726	74.65	0.819	75.91	0.726	69.43	0.837	72.19	0.760
DGCN [8]	77.21	0.725	78.57	0.818	78.22	0.732	72.77	0.775	74.31	0.756
RGCN [5]	62.98	0.590	60.57	0.722	65.76	0.629	59.42	0.714	62.23	0.722
AS-GCN	76.91	0.699	72.44	0.815	77.26	0.707	69.42	0.783	71.08	0.762
TS-GCN	76.02	0.709	72.99	0.808	76.72	0.717	68.45	0.806	71.13	0.744
C-GCN	78.94	0.726	78.62	0.822	78.73	0.746	71.88	0.794	74.44	0.781

Method	CS Edu	cators	Qua	nt	PN	Л	Paren	Parenting	
Method	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	Acc(%)	MRR	
RF [1,7]	80.88	0.528	68.61	0.671	80.18	0.572	75.04	0.507	
FF [3]	81.95	0.702	68.87	0.805	75.95	0.745	76.97	0.717	
DGCN [8]	82.63	0.661	73.34	0.804	77.94	0.740	76.79	0.748	
RGCN [5]	70.23	0.599	57.36	0.710	65.69	0.647	62.97	0.578	
AS-GCN	82.75	0.677	70.15	0.788	76.35	0.732	78.56	0.720	
TS-GCN	81.72	0.706	67.41	0.796	75.16	0.732	77.96	0.704	
C-GCN	84.65	0.759	73.43	0.806	78.52	0.728	78.91	0.751	
IR-GCN	85.20	0.770	76.92	0.817	81.14	0.757	81.61	0.771	

Table 5: Accuracy and MRR values for StackExchange communities belonging to **Business** category with state-of-the-art baselines.

Dataset	$ \mathcal{Q} $	$ \mathcal{A} $	$ \mathcal{U} $	$\mu(\mathcal{A}_q)$
AskDocs	11189	29207	4530	2.61
AskHistorians	15425	45586	11761	2.96
AskScience	37990	121278	32117	3.19

Table 6: Dataset statistics for the Ask* Reddit communities. |Q|: number of questions; $|\mathcal{A}|$: number of answers; |U|: number of users; $\mu(|\mathcal{A}_q|)$: mean number of answers per question.

Method	AskD	ocs	AskHis	torians	AskScience		
Method	Acc (%)	MRR	Acc(%)	MRR	Acc(%)	MRR	
RF	59.35	0.698	65.62	0.709	65.87	0.706	
FF	62.30	0.715	67.89	0.730	68.99	0.713	
DGCN	77.54	0.790	80.49	0.805	75.57	0.821	
RGCN	57.98	0.667	64.56	0.684	62.42	0.642	
AS-GCN	76.53	0.794	80.7	0.781	78.14	0.797	
TS-GCN	84.44	0.861	90.95	0.8289	87.61	0.822	
C-GCN	67.39	0.753	70.57	0.7441	71.11	0.769	
IR-GCN	87.60	0.896	93.81	0.851	89.11	0.837	

Table 7: Accuracy and MRR values for Ask Reddits. Our model significantly outperforms by 16% in Accuracy and 7% in MRR. TrueSkill Similarity performs best among individual IR-GCNs.