

Logistic regression: introduction

Final data structure

```
> str(training_set)
'data.frame': 19394 obs. of 8 variables:
 $ loan_status : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 ...
 $ loan_amnt : int 25000 16000 8500 9800 3600 6600 3000 7500 6000 22750 ...
                : Factor w/ 7 levels "A", "B", "C", "D", ...: 2 4 1 2 1 1 1 2 1 1 ...
 $ grade
 $ home_ownership: Factor w/ 4 levels "MORTGAGE","OTHER",..: 4 4 1 1 1 3 4 3 4 1 ...
 $ annual_inc
             : num 91000 45000 110000 102000 40000 ...
$ age
          : int 34 25 29 24 59 35 24 24 26 25 ...
 $ emp_cat : Factor w/ 5 levels "0-15","15-30",..: 1 1 1 1 1 2 1 1 1 1 ...
                : Factor w/ 5 levels "0-8","11-13.5",..: 2 3 1 4 1 1 1 4 1 1 ...
 $ ir_cat
```


What is logistic regression?

A regression model with output between 0 and 1

$$P(\text{loan_status} = 1 \mid x_1, \dots, x_m) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m)}}$$

$$x_1,\dots,x_m$$
 loan_amnt grade age home_ownership emp_cat

annual_inc ir_cat

$$\beta_0,\ldots,\beta_m$$
 Parameters to be estimated

$$\beta_0 + \beta_1 x_1 + \ldots + \beta_m x_m$$
 Linear predictor

Fitting a logistic model in R

$$P(\text{loan_status} = 1 \mid \text{age}) = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 age)}}$$

Probabilities of default

$$P(\text{loan_status} = 1 \mid x_1, \dots, x_m) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m)}} = \underbrace{\frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}}}$$

$$P(\text{loan_status} = 0 \mid x_1, \dots, x_m) = 1 - \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}} = \underbrace{\frac{1}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}}}_{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m}}$$

$$\frac{P(\text{loan_status} = 1 \mid x_1, \dots, x_m)}{P(\text{loan_status} = 0 \mid x_1, \dots, x_m)} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m} \longrightarrow \text{odds in favor of loan_status} = 1$$

Interpretation of coefficient

If variable x_j goes up by 1 \longrightarrow The odds are multiplied by e^{β_j}

$$\beta_j < 0$$
 \longrightarrow $e^{\beta_j} < 1$ \longrightarrow The odds decrease as x_j increases

$$\beta_j > 0$$
 \longrightarrow $e^{\beta_j} > 1$ \longrightarrow The odds increase as x_j increases

Applied to our model

If variable age goes up by 1 \longrightarrow The odds are multiplied by $e^{-0.009726}$

The odds are multiplied by 0.991

Let's practice!

Logistic regression: predicting the probability of default

An example with "age" and "home ownership"

```
> log_model_small <- glm(loan_status ~ age + home_ownership, family = "binomial", data = training_set)1
> log_model_small
Call: glm(formula = loan_status ~ age + home_ownership, family = "binomial",
    data = training_set)
Coefficients:
                                      home_ownershipOTHER
 (Intercept)
                                                              home_ownershipOWN
                                                                                  home_ownershipRENT
                         age
                      -0.009308
                                                                                       0.158581
                                            0.129776
                                                                 -0.019384
 -1.886396
Degrees of Freedom: 19393 Total (i.e. Null); 19389 Residual
Null Deviance:
                  13680
Residual Deviance: 13660
                         AIC: 13670
```

$$P(\text{loan_status} = 1 \mid \text{age}, \text{home_ownership}) = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 \text{age} + \hat{\beta}_2 \text{OTHER} + \hat{\beta}_3 \text{OWN} + \hat{\beta}_4 \text{RENT})}$$

Test set example

 $P(\text{loan_status} = 1 \mid \text{age} = 33, \text{home_ownership} = \text{RENT})$

$$= \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 * 33 + \hat{\beta}_2 * 0 + \hat{\beta}_3 * 0 + \hat{\beta}_4 * 1)}}$$

$$= \frac{1}{1 + e^{-(-1.886396 + (-0.009308) *33 + (0.158581) *1)}}$$

$$= 0.115579$$

Making predictions in R

$$\hat{\beta}_0 + \hat{\beta}_1 \text{age} + \hat{\beta}_2 \text{OTHER} + \hat{\beta}_3 \text{OWN} + \hat{\beta}_4 \text{RENT}$$

Let's practice!

Evaluating the logistic regression model result

Recap: model evaluation

	test_set\$loan_status	model_prediction
	•••	•••
[8066,]	1	1
[8067,]	0	0
[8068,]	0	0
[8069,]	0	0
[8070,]	0	0
[8071,]	0	1
[8072,]	1	0
[8073,]	1	1
[8074,]	0	0
[8075,]	0	0
[8076,]	0	0
[8077,]	1	1
[8078,]	0	0
[8079,]	0	1
	•••	•••

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	8	2
default (1)	1	3

In reality...

	test_set\$loan_status	model_prediction
	•••	•••
[8066,]	1	0.09881492
[8067,]	\odot	0.09497852
[8068,]	Θ	0.21071984
[8069,]	0	0.04252119
[8070,]	Θ	0.21110838
[8071,]	0	0.08668856
[8072,]	1	0.11319341
[8073,]	1	0.16662207
[8074,]	Θ	0.15299176
[8075,]	Θ	0.08558058
[8076,]	Θ	0.08280463
[8077,]	1	0.11271048
[8078,]	Θ	0.08987446
[8079,]	Θ	0.08561631
	•••	•••

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	?	?
default (1)	?	?

In reality...

	test_set\$loan_status	model_prediction
	•••	•••
[8066,]	1	0.09881492
[8067,]	Θ	0.09497852
[8068,]	Θ	0.21071984
[8069,]	Θ	0.04252119
[8070,]	0	0.21110838
[8071,]	0	0.08668856
[8072,]	1	0.11319341
[8073,]	1	0.16662207
[8074,]	Θ	0.15299176
[8075,]	Θ	0.08558058
[8076,]	0	0.08280463
[8077,]	1	0.11271048
[8078,]	0	0.08987446
[8079,]	0	0.08561631
_ , _	•••	•••

Cutoff or treshold value

between 0 and 1

Cutoff = 0.5

	test_set\$loan_status	model_prediction
	•••	•••
[8066,]	1	Θ
[8067,]	Θ	Θ
[8068,]	Θ	0
[8069,]	0	0
[8070,]	0	0
[8071,]	0	0
[8072,]	1	0
[8073,]	1	0
[8074,]	0	0
[8075,]	Θ	0
[8076,]	0	0
[8077,]	1	0
[8078,]	0	0
[8079,]	0	0
	•••	•••

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	10	0
default (1)	4	0

Accuracy =
$$10/(10+4+0+0) = 71.4\%$$

Sensitivity =
$$0/(4+0) = 0\%$$

Cutoff = 0.1

	test_set\$loan_status	model_prediction
	•••	•••
[8066,]	1	Θ
[8067,]	Θ	Θ
[8068,]	0	1
[8069,]	0	0
[8070,]	0	1
[8071,]	0	0
[8072,]	1	1
[8073,]	1	1
[8074,]	Θ	1
[8075,]	0	0
[8076,]	0	Θ
[8077,]	1	1
[8078,]	0	Θ
[8079,]	Θ	Θ
	•••	•••

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	7	3
default (1)	1	3

Accuracy = 10/(10+4+0+0) = 71.4%

Sensitivity =
$$3/(3+1) = 75\%$$

Let's practice!

wrap-up and remarks

best cut-off for accuracy?

Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$

best cut-off for accuracy?

Accuracy = 89.31 %

ACTUAL defaults in test set= 10.69 % = (100 - 89.31) %

Typical result for unbalance group. High accuracy is due that for cases with >51% all cases are classified as Non-default.

What about sensitivity or specificity?

Sensitivity = 1037 / (1037 + 0) = 100%

Specificity = 0/(0 + 864) = 0%

What about sensitivity or specificity?

Sensitivity =
$$0 / (0 + 1037) = 0\%$$

Specificity =
$$8640 / (8640 + 0) = 100\%$$

About logistic regression...

```
log_model_full <- glm(loan_status ~ ., family = "binomial", data = training_set)</pre>
```

is the same as

```
log_model_full <- glm(loan_status ~ ., family = binomial(link = logit),
data = training_set)</pre>
```

recall

$$P(\text{loan_status} = 1 \mid x_1, \dots, x_m) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m)}}$$

Other logistic regression models

```
log_model_full <- glm(loan_status ~ ., family = binomial(link = probit),
data = training_set)</pre>
```

```
log_model_full <- glm(loan_status ~ ., family = binomial(link = cloglog),
data = training_set)</pre>
```

- $\beta_j < 0$ The probability of default decreases as x_j increases
- $\beta_j > 0$ The probability of default decreases as x_j increases

BUT

$$P(\text{loan_status} = 1 \mid x_1, \dots, x_m) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m)}}$$

Let's practice!