### Оптимизация вычислений нейронных сетей на графических процессорах для мобильных устройств

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Оплачко Николай Алексеевич 420 группа

Научный руководитель:

д.ф.-м.н., профессор, академик РАН Аветисян Арутюн Ишханович

### Введение (1)

Нейронные сети применяются при решении задач в различных областях, например:

- Работа с изображениями и видеопоследовательностями
- Обработка естественного языка
- Распознавание речи

Настоящая работа относится к оптимизации вычислений нейронных сетей на уровне программной платформы

### Введение (2)

Пример свёрточной нейронной сети для классификации изображений



#### Постановка задачи

- Исследовать методы оптимизации используемой памяти и затраченного времени при вычислении предсказаний нейронных сетей
- Разработать метод одновременной оптимизации памяти и времени
- Реализовать и интегрировать метод в программноаппаратную часть библиотеки искусственного интеллекта MindSpore
- Эмпирически исследовать разработанный метод, сравнить его с другими существующими подходами

#### Библиотека MindSpore

Реализуемая программно-аппаратная часть библиотеки MindSpore использует прикладной программный интерфейс Vulkan, который предполагает низкоуровневую работу с памятью графического процессора

• Синхронизация вычислений осуществляется посредством размещения барьеров памяти в очереди команд

### Пример ациклического графа вычислений



Вершины— операции Рёбра— тензоры

#### Время жизни тензоров

Одна из возможных топологических сортировок

|            | split                                 | conv  | linear | add     | tanh | mul |  |  |  |  |  |  |
|------------|---------------------------------------|-------|--------|---------|------|-----|--|--|--|--|--|--|
| $t_1$      |                                       |       |        |         |      |     |  |  |  |  |  |  |
| $t_2$      |                                       |       |        |         | ı    |     |  |  |  |  |  |  |
| ° <u>Z</u> | $t_3$                                 |       |        |         |      |     |  |  |  |  |  |  |
|            |                                       |       | $t_4$  |         |      |     |  |  |  |  |  |  |
|            |                                       | $t_5$ |        |         |      |     |  |  |  |  |  |  |
|            |                                       |       |        | $t_{6}$ |      |     |  |  |  |  |  |  |
| _          | — тензор непосредственно используется |       |        |         |      |     |  |  |  |  |  |  |

7/21

— тензор нужно хранить для дальнейших вычислений

# Задача оптимального распределения памяти (1)

- Хотим выделить для каждого тензора блок в памяти
- Минимизируем суммарный объем памяти при следующем ограничении:

Тензоры с пересекающимися временами жизни не могут использовать одну и ту же память

# Задача оптимального распределения памяти (2)

Данную задачу можно эффективно решить приближённо различными эвристическими алгоритмами, например: [1], [2].

- 1. Profile-guided memory optimization for deep neural networks / T. Sekiyama [и др.] // arXiv preprint arXiv:1804.10001. 2018.
- 2. *Pisarchyk Y.*, *Lee J.* Efficient memory management for deep neural net inference // arXiv preprint arXiv:2001.03288. 2020.

# Задача параллельных вычислений (1)



Пример ациклического графа вычислений, в котором возможно параллельное вычисление некоторых вершин

Пунктирными линиями обведены подмножества независящих друг от друга вершин

10/21

## Задача параллельных вычислений (2)



$$L_i = \{v \mid maxdist(v) = i\}$$
 — слои [1]

Node-level parallelization for deep neural networks with conditional

1. independent graph / F. Zhou [и др.] // Neurocomputing. — 2017. — июнь. —

т. 267.

#### Проблема

Подходы к решению рассмотренных задач конфликтуют между собой:

параллелизация вычислений накладывает дополнительные ограничения на повторное использование памяти и может потребовать больший объем памяти для вычислений

#### Предложенный метод (1)

- 1) Каждый слой разбивается на некоторое количество групп
- 2) Между вычислениями групп размещаются барьеры памяти
- 3) Вершины в группах вычисляются параллельно
- Задействованные одной и той же группой тензоры не могут использовать общую память

#### Предложенный метод (2)



### Предложенный метод (3)



15/21

#### Предложенный метод (4)



#### • 1 группа

$$Mem = \max\{w(t_1) + w(t_2) + w(t_3) + w(t_4),$$
$$w(t_5) + w(t_6) + w(t_7) + w(t_8)\}$$

#### • 2 группы

$$Mem = \max\{w(t_1) + w(t_2),$$
  
 $w(t_3) + w(t_4),$   
 $w(t_5) + w(t_6) + w(t_7) + w(t_8)\}$ 

#### Экспериментальная установка



17/21

#### Результаты (1)

| Метод       |             | ResNeXt     | GoogLeNet  | MobileNetV2 | Xception    | InceptionV3 |
|-------------|-------------|-------------|------------|-------------|-------------|-------------|
| Базовая     | время, мс   | $234 \pm 5$ | $80 \pm 3$ | $81 \pm 3$  | $291 \pm 2$ | $369 \pm 4$ |
| реализация  | память, Мб  | 393.7       | 67.9       | 78.3        | 268.5       | 198.1       |
| Минимизация | я время, мс | $235 \pm 6$ | $82 \pm 1$ | $85 \pm 4$  | $293 \pm 2$ | $370 \pm 3$ |
| памяти      | память, Мб  | 108.8       | 42.4       | 30.3        | 113.2       | 122.6       |
| Послойное   | время, мс   | $228 \pm 2$ | 77 ± 1     | $80 \pm 3$  | $290 \pm 2$ | $361 \pm 3$ |
| вычисление  | память, Мб  | 393.7       | 67.9       | 78.3        | 268.5       | 198.1       |
| Мой метод   | время, мс   | $227 \pm 2$ | $78 \pm 2$ | $82 \pm 3$  | $290 \pm 2$ | $361 \pm 4$ |
| (1 группа)  | память, Мб  | 111.8       | 42.4       | 30.3        | 113.2       | 122.6       |
| Мой метод   | время, мс   | $219 \pm 2$ | 78 ± 1     | $83 \pm 4$  | $291 \pm 2$ | $364 \pm 3$ |
| (2 группы)  | память, Мб  | 108.8       | 42.4       | 30.3        | 113.2       | 122.6       |

Для результатов замеров времени приведено: среднее значение по выборке ± два среднеквадратичных отклонения 18/21

#### Результаты (2)



Результаты применения предложенного метода к сети ResNeXt 19 Оплачко Николай · 420 группа

#### Заключение (1)

- Рассмотрены существующие подходы к решению задач оптимизации времени и памяти
- Предложен метод, объединяющий эвристику оптимизации памяти с параллелизацией вычислений
- Метод реализован и протестирован в программно-аппаратной части библиотеки MindSpore с использованием Vulkan API

### Заключение (2)

- Проведено сравнение предложенного метода с другими на разных моделях нейронных сетей на мобильном устройстве
- Эмпирически показано, что организация обращений в память при различных конфигурациях метода может оказывать существенное влияние на время вычислений
- Для свёрточной нейронной сети ResNeXt получено ускорение на **6.85**% при экономии памяти на **72.4**%