Отчет о выполнении лабораторной работы 3.7.1 Скин-эффект в полом цилиндре

Г. А. Багров

ФРКТ МФТИ, 12.11.2022

Цель работы: исследование проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Теоретические сведения:

В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида.

Рис. 1: Электрическое и магнитное поля в тонкостенном цилиндре

Все величины будем считать колеблющимися по гармоническому закону с частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда

$$H_z = H(r)e^{i\omega t}, \qquad E_\varphi = E(r)e^{i\omega t}.$$

Пусть длинный полый цилиндр имеет радиус a и толщину стенки h << a.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным: $H_z(r,t) = H_1 e^{i\omega t}$, где $H_1 = const$ - амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции, откуда получим связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}i\omega a\mu_0 H_1. \tag{1}$$

Рис. 2: Поле в стенке цилиндра

Соотношение (1) используем далее как дополнительное граничное условие для задачи о распределении поля внутри стенки.

Поле внутри тонкой стенки цилиндра («экрана») описывается уравнением скин-эффекта (диффузии поля) в плоской геометрии.

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H. \tag{2}$$

(для медного цилиндра можно положить $\mu \approx 1$).

Граничные условия для (2) зададим как:

$$H(0) = H_0, H(h) = H_1.$$
 (3)

Здесь значение H_0 определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Поля H_0 и H_1 не являются независимыми — они связаны соотношением (1).

Решение (2) ищем в виде

$$H(x) = Ae^{\alpha x} + Be^{-\alpha x},\tag{4}$$

где $A,\,B$ - определяемые из граничных условий константы,

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4} \tag{5}$$

- один из корней уравнения (2), а δ - глубина скин-слоя (глубина проникновения поля)

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}} \tag{6}$$

- характеристическое расстояние, на котором амплитуда поля уменьшается в e раз. Мы имеем дело с конечной областью в виде плоского слоя толщиной h, поэтому решение уравнения (2) должно содержать оба корня.

Из первого условия (3): $A + B = H_0$, что позволяет исключить A из (4):

$$H(x) = H_0 e^{-\alpha x} + 2B \operatorname{sh} \alpha x.$$

Из закона Ампера в одномерном случае, положив x=h, воспользуемся (1), и, исключив константу B, получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)}.$$
 (7)

Рассмотрим предельные случаи уравнения (7):

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta >> h$. Тогда $|\alpha h| << 1$, поэтому $\operatorname{ch} \alpha h \approx 1$, $\operatorname{sh} \alpha h \approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}. (8)$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при h << a возможна ситуация h << $\delta << a$. Отношение модулей амплитуд здесь будет равно

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + (\frac{ah}{\delta^2})^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}.$$
 (9)

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством $tg\psi=\frac{ah}{\delta^2}$. 2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta << h$. Тогда $|\alpha h|>>1$ и $|\alpha a|>>1$, а также $\mathrm{sh}(\alpha h)\approx \mathrm{ch}(\alpha h)\approx \frac{1}{2}e^{\alpha h}$. Выражение (7) с учетом (5) переходит в

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}e^{-i(\frac{\pi}{4} + \frac{h}{\delta})}}.$$
 (10)

Как видно из формулы (10), в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-h/\delta}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}}.$$
(11)

Экспериментальная установка:

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 4. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3.

Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки.

Измерение отношения амплитуд магнитного поля внутри и вне экрана. ${
m C}$ помощью вольтметра Vизмеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t},$$

где SN - произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1|.$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала $\nu = \omega/2\pi$. При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A, следовательно:

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I}. \tag{12}$$

Рис. 3: Экспериментальная установка для изучения скин-эффекта

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $U/\nu I$ при разных частотах. Неизвестная константа в соотношении (12) может быть определена по измерениям при малых частотах $\nu \longrightarrow 0$, когда, согласно (9) $|{\rm H_1}|/|H_0| \longrightarrow 1$.

ЭДС индукции в измерительной катушке

$$\mathcal{E}_{i} = -SN \frac{dB_{0c}(t)}{dt} = -\mu_{0}SN \frac{dH_{1}(t)}{dt} = -i\mu_{0}SN\omega H_{1}e^{i\omega t},$$

где SN - произведение площади витка на количество витков измерительной катушки. Обозначим показания вольтметра V через U_{κ} , тогда

$$U_{\kappa} = \frac{mu_0 SN\omega}{\sqrt{2}} |H_1|.$$

Из этого соотношения следует, что абсолютная величина амплитуды магнитного поля внутри экрана:

$$|H_1| \sim \frac{U_{\scriptscriptstyle K}}{\omega} \sim \frac{U_{\scriptscriptstyle K}}{
u},$$

где ν частота генератора. Но поле внутри экрана пропорционально полю вне экрана H_0 , а $H_0 \sim I_A$, где I_A - показания амперметра A в цепи соленоида. Следовательно, амплитуда поля внутри экрана, приведенная к единичному току через соленоид,

$$|H_1| \sim rac{U_{ ext{\tiny K}}}{
u I_A}.$$

Обозначим величину, пропорциональную $|H_1|$, через ξ_1 :

$$\xi_1 = \frac{U_{\kappa}}{\nu I_{\Delta}}.\tag{13}$$

Нам теперь необходимо найти амплитуду поля вне экрана при том же единичном токе через соленоид. Для этого воспользуемся соотношением (27). Проведя измерения ξ_1 в диапазоне самых малых частот, мы построим график зависимости ξ_1 от ν^2 . Согласно (27) эта зависимость имеет вид прямой. Экстраполируя ее к f=0, мы получим $\xi_{0c}(0)=\xi_0$, которая пропорциональна амплитуде поля вне экрана при единичном токе через соленоид. Отношение амплитуд магнитного поля внутри экрана и вне при фиксированно частоте f будет равно

$$\frac{|H_1|}{|H_0|} = \frac{\xi_1(\nu)}{\xi_0} = \frac{U_{\kappa}}{\nu I_A \xi_0}.$$
 (14)

Такой способ измерения коэффициента ослабления магнитного поля проводящим экраном не требует поддерживать постоянный ток через соленоид при измерении частотной зависимости этого коэффициента.

Определение проводимости материала экрана. В установке в качестве экрана используется медная труба промышленного производства. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения. Для определения σ нашего экрана предлагается использовать частотную зависимость (11) фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. Как видно из выражения (11), в области больших частот $\omega >> 1/(h^2\sigma\mu_0)$ зависимость $\psi(\sqrt{\omega})$ аппроксимируется прямой, проходящей через точку $\psi(0) = \pi/4$. По наклону этой прямой можно вычислить проводимость материала экрана.

Заметим, что на схеме, изображённой на рис. 4, на входной канал II осциллографа подаётся сигнал с измерительной катушки, который пропорционален не полю внутри экрана, а его производной по времени, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому измеренный по экрану осциллографа сдвиг по фазе между двумя синусоидами будет на $\pi/2$ больше фазового сдвига между магнитными полями вне и внутри экрана.

Ход работы и обработка результатов

1) По известным параметрам установки (h = 1,5 мм, $d_{\text{внеш}} = 45$ мм), приняв проводимость меди для оценки равной $\sigma \sim 5 \cdot 10^7$ См/м, рассчитаем частоту ν_h , соответствующую равенству $h = \delta$ толщины стенок экрана скиновой длины, используя (6)

$$u_h = \frac{\omega}{2\pi} = \frac{1}{\sigma \mu_0 \pi h^2} \approx 2250 \, \Gamma$$
ц.

2) Установим начальную частоту сигнала генератора $\sim 0,01\nu_h\approx 22,5$ Гц. В области низких частот (от $\sim 0,01\nu_h$ до $0,05\nu_h\approx 112,5$ Гц) получим зависимость отношения $\xi=U/\nu I$ от частоты ν (см. рис. 4). Согласно (12) величина ξ прямо пропорциональна коэффициенту ослабления магнитного поля внутри экрана относительно поля снаружи:

$$\xi = \xi_0 |H_1| / |H_0|$$
.

При этом $\sigma_{\xi} = \xi \sqrt{(\frac{\sigma_U}{II})^2 + (\frac{\sigma_I}{I})^2}$.

ν, Гц	I, MA	σ_I, мA	U, MB	σ_U, мВ	ξ, Ом/кГц	σ_ξ, Ом/кГц
22,5	440,7		157,4	σ_U, мВ 0,1	15,874	0,011
32,5	436,8		222,6		15,680	0,008
42,5	432,06		284		15,466	0,007
52,5	426,62		340,8		15,216	0,006
62,5	420,57		392,5		14,932	0,005
72,5	414,19	0,1	439,1	0,1	14,623	0,005
82,5	407,78		480,6		14,286	0,005
92,5	401,44		517,4	-,-	13,934	0,004
102,5	395,29		549,9		13,572	0,004
112,5	389,46		578,5		13,203	0,004
122,5	383,92		603,6		12,834	0,004

Рис. 4: Зависимость отношения $\xi = U/\nu I$ от частоты ν

3) Теперь аналогичным образом исследуем зависимость величины ξ и фазового сдвига ψ от частоты ν при высоких частотах в диапазоне от $0,2\nu_h$ до $\sim 20\nu_h$ (см. рис. 5). При этом $\psi=\frac{x}{x_0}\cdot\pi$, где x_0 - фазовый масштаб осциллограммы.

ν, кГц	I, MA	σ_I, мA	U, MB	σ_U, мВ	ξ, Οм/κΓц	_ξ, Οм/κΓι	x_0	X	ψ, π	ψ	σ_ψ
0,12	383,8		597,3		12,970	0,004	21	6	0,29	0,90	0,08
0,14	374,7		639,8		12,197	0,004	35	10	0,29	0,90	0,05
0,16	365,9		672,6		11,490	0,004	31	8	0,26	0,81	0,05
0,18	358,3		697,8		10,818	0,003	28	7	0,25	0,79	0,06
0,2	351,9		717,4		10,192	0,003	25	5	0,20	0,63	0,06
0,22	346,4		732,6		9,613	0,003	23	5	0,22	0,68	0,07
0,24	341,7		744,5		9,078	0,003	21	4	0,19	0,60	0,08
0,34	325,5		774		6,994	0,002	15	2	0,13	0,42	0,11
0,44	315,3		780,1		5,624	0,002	29	3	0,10	0,32	0,05
0,54	307,1		776,5		4,683	0,002	24	2	0,08	0,26	0,07
0,64	299,8		766,9	1	3,997	0,001	20	1	0,05	0,2	0,08
0,74	292,5		755	1	3,489	0,001	25	1	0,04	0,13	0,06
0,84	285,3	0,1	740,6	1	3,090	0,001	30	1	0,03	0,1	0,05
0,94	277,9		723,7	1	2,770	0,001	27	0	0,00	0	0
1,04	270,5		706,3	1	2,510	0,001	24	0	0,00	0	0
1,14	263,3		688,5	1	2,293	0,001	22	0	0,00	0	0
1,24	255,9		669,8	1	2,110	0,001	21	-1	-0,05	0	0,07
1,47	239,3		626,6	1	1,781	0,001	17	-1	-0,06	0	0,09
1,74	221,4		579,4	0,1	1,504	0,001	29	-2	-0,07	-0,22	0,05
2,07	201,3		526		1,262	0,001	25	-2	-0,08	-0,25	0,06
2,45	181,1		471,5	1	1,063	0,001	21	-2	-0,10	-0,30	0,08
2,90	160,9		416,4		0,893	0,001	18	-2	-0,11	-0,35	0,09
3,44	141,0		362,2		0,747	0,001	15	-2	-0,13	-0,42	0,11
4,08	122,4		310,9	1	0,622	0,001	31	-5	-0,2	-0,51	0,05
4,83	106		264,2	1	0,518	0,001	26	-5	-0,19	-0,60	0,06
5,73	90,3		221,4	1	0,428	0,001	45	-11	-0,24	-0,77	0,04
6,8	77		183,4	1	0,352	0,0005	37	-11	-0,30	-0,93	0,04
8,05	64,9		150,5	1	0,288	0,0005	31	-11	-0,35	-1,11	0,05
9,54	54,4	0,01	121,8	1	0,235	0,0005	26	-11	-0,42	-1,33	0,07
11,3	45,2		97,6	1	0,191	0,0005	23	-11	-0,48	-1,50	0,08
13,4	36,44		76,8		0,157	0,0005	19	-10	-0,53	-1,65	0,09
15,9	29,13		60,7	1	0,131	0,0005	31	-19	-0,61	-1,93	0,06
18,8	22,55		48,4		0,114	0,001	27	-18	-0,67	-2,09	0,07
22,3	16,26		39,1		0,108	0,001	23	-17	-0,74	-2,32	0,08
26,5	10,13		32,2		0,120	0,001	19	-23	-1,21	-3,80	0,13
30,0	5,827		28,6	1	0,164	0,003	16	-19	-1,19	-3,73	0,15
37,2	3,779	0,001	23,9	1	0,170	0,005	13	-9	-0,69	-2,17	0,15

Рис. 5: Зависимость отношения $\xi = U/\nu I$ и сдвига фаз ψ от частоты ν

Обработка результатов

4) По результатам измерений в области низких частот построим график в координатах $1/\xi^2 = f(\nu^2)$ (рис.6).

Рис. 6: Зависимость $1/\xi^2 = f(\nu^2)$

Убедимся, что зависимость линейна. Определим параметры, характеризующие данную прямую на графике. Из них найдём величину ξ_0 - коэффициент пропорциональности между ξ и коэффициентом ослабления магнитного поля $|H_1|/|H_0|$, экстраполируя зависимость к точке $\nu=0$, где $|H_1|/|H_0|=1$:

$$\xi_0 = \sqrt{\frac{1}{\xi^2}(0)} = \sqrt{\frac{1}{3,916}10^3 \frac{\mathrm{Om}^2}{\kappa \Gamma \pi^2}} = (15,98 \pm 0,01) \; \frac{\mathrm{Om}}{\kappa \Gamma \pi}.$$

А по угловому коэффициенту зависимости рассчитаем проводимость меди (исп. формулу (9)):

$$\frac{\xi^2}{\xi_0^2} = \frac{H_1^2}{H_0^2} = \frac{1}{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2} \Longrightarrow \frac{\xi_0^2}{\xi^2} = 1 + \pi^2 a^2 h^2 \sigma^2 \mu_0^2 \nu^2,$$

$$k_1 = (0, 144 \pm 0, 001) \frac{1}{\text{Om}^2}.$$

Так как $\frac{1}{\xi^2} = k_1 \nu^2 + \frac{1}{\xi_0^2}$:

$$k_1 = \frac{\pi^2 a^2 h^2 \sigma^2 \mu_0^2}{\xi_0^2} \Longrightarrow \sigma = \frac{\sqrt{k_1} \xi_0}{\pi a h \mu_0} \approx (4,77 \pm 0,02) \cdot 10^7 \frac{\mathrm{Cm}}{\mathrm{m}},$$

где $a=\frac{d}{2}=22,5$ мм, h=1,5 мм.

5) Теперь в координатах $\psi(\sqrt{\nu})$ построим частотную зависимость фазового сдвига:

Рис. 7: Частотная зависимость фазового сдвига

При построении частотной зависимости фазового сдвига не забудем вычесть из данных дополнительный сдвиг фаз $\pi/2$. Через точку ($\psi=\pi/4,\ \nu=0$) проведем прямую, которая будет касаться экспериментальной кривой при больших частотах. По наклону этой прямой - $k_2=0,215\frac{\pi}{\sqrt{\kappa\Gamma_{\Pi}}}$ (из формулы (11)) вычислим значение проводимости σ материала экрана:

$$k_2 = h\sqrt{\pi\sigma\mu_0},$$

$$\sigma = \frac{k_2^2}{h^2 \pi \nu \mu_0} = 6,83 \cdot 10^7 \frac{\text{CM}}{\text{M}}$$

Результаты для значения проводимости меди, полученные в разных пунктах, отличаются, а также они оба не сходятся с табличным значением для меди: $\sigma_{\text{теор}} = 5,96 \cdot 10^7 \frac{\text{См}}{\text{M}}$.

6) Построим теоретическую зависимость $\frac{|H_1|}{H_0}(\ln \nu)$, используя формулу (9) (см. рис. 8-9).

Зависимость коэффициента ослабления от частоты

Рис. 8: Зависимость $\frac{|H_1|}{|H_0|}(\ln \nu)$

Как можно видеть из графика, экспериментальные данные согласуются с теорией.

Выволы

В данной работе было получено значение проводимости меди двумя способами: $\sigma_1 = 4,77 \cdot 10^7 \frac{C_M}{M}, \ \sigma_2 = 6,83 \cdot 10^7 \frac{C_M}{M}$. Табличное значение для проводимости меди составляет $\sigma_0 = 5,9 \cdot 10^7 \frac{C_M}{M}$, что находится примерно посередине относительно полученных значений. Также была получена зависимость коэффициента ослабления магнитного поля от частоты.

In(v)	ν, Гц	экспериментальн. ξ/ξο	In(ξ/ξ0)
6,9351	32,5	0,9983	-0,0017
7,2034	42,5	0,9862	-0,0139
7,4147	52,5	0,9727	-0,0277
7,5890	62,5	0,9570	-0,0440
7,7375	72,5	0,9391	-0,0628
7,8667	82,5	0,9197	-0,0837
7,9811	92,5	0,8985	-0,1071
8,0837	102,5	0,8763	-0,1320
8,1768	112,5	0,8536	-0,1583
8,2620	122,5	0,8304	-0,1858
8,3955	140,0	0,8157	-0,2037
8,5291	160,0	0,7671	-0,2651
8,6468	180,0	0,7227	-0,3248
8,7522	200,0	0,6804	-0,3851
8,8475	220,0	0,6410	-0,4447
8,9345	240,0	0,6046	-0,5032
9,2828	340,0	0,5710	-0,6604
9,5407	440,0	0,4399	-0,8213
9,7454	540,0	0,3537	-1,0393
9,9153	640,0	0,2945	-1,2224
10,0605	740,0	0,2514	-1,3808
10,1873	840,0	0,2194	-1,5168
10,2998	940,0	0,1944	-1,6381
10,4009	1040,0	0,1742	-1,7474
10,4927	1140,0	0,1579	-1,8459
10,5767	1240,0	0,1442	-1,9363
10,7469	1470,0	0,1327	-2,0194
10,9155	1740,0	0,1120	-2,1891
11,0892	2070,0	0,0946	-2,3580
11,2577	2450,0	0,0794	-2,5336
11,4263	2900,0	0,0668	-2,7056
11,5971	3440,0	0,0561	-2,8800
11,7677	4080,0	0,0470	-3,0586
11,9365	4830,0	0,0391	-3,2406
12,1073	5730,0	0,0326	-3,4241
12,2786	6800,0	0,0269	-3,6148
12,4473	8050,0	0,0221	-3,8115
12,6171	9540,0	0,0181	-4,0104
12,7864	11300,0	0,0148	-4,2154
12,9569	13400,0	0,0120	-4,4207
13,1280	15900,0	0,0099	-4,6160
13,2955	18800,0	0,0082	-4,7985
13,4662	22300,0	0,0072	-4,9366
13,6388	26500,0	0,0068	-4,9935
13,7628	30000,0	0,0075	-4,8869
13,9779	37200,0	0,0103	-4,5766

Рис. 9: Зависимость $\frac{|H_1|}{|H_0|}(\ln \nu)$