Applications of Search

ndmarks

triangle inequality

 $\geq dist(a, w) - dist(a, v)$ $dist(v, w) \geq dist(v, b) - dist(w, b)$

ction that serves as a heuristic! This may be Euclidean Distance but it

computation

ter bounds (depending on landmark) than simple Euclidean ance

ending on the landmark, heuristic cost can be 0!!

Images from Goldberg (2011), R

each

iven a vertex v, calculate all the shortest paths through it.

• For a shortest path *P*, the reach of the vertex:

$$r_P(v) = \min(cost(s, v), cost(v, t))$$

• Total reach across all paths: $r(v) = max_p(r_P)$

une v when $r(v) < \min(dist(s, v), cost(v, t))$

orces you to prioritize highways

Images from Goldberg (2011), R

ortcuts

d in vertices to reduce the number of shortest paths through a length of the shortest paths are shortest paths.

Reduces the Reach of intermediate nodes

an prune more paths as a result

Images from Goldberg (2011), R

ipact of Landmark, Reach and Shortcuts

vest (1.6M vertices), random queries, 16 landmarks.

Reach+Short

Reach+Short+ALT

	preprocessi	ng query	query				
bd	minutes	MB avgscan maxso	an ms				
tional Dijkstra	_	28 518723 11976		•			
	4	North America (3	OM vertice	es), ra	ndom quer	ies, 16 land	dm
	1 100	preproce		essing	sing query		
		method	hours	GB	avgscan	maxscan	
+Short	17	Bidirectional Dijkstr	a —	0.5	10 255 356	27 166 866	76
+Short+ALT	21	ALT	1.6	2.3	250 381	3 584 377	3
		Reach	impract	impractical			

11.3

12.9

1.8

3.6

14684

1 5 9 5

24618

7 4 5 0

ore Resources

test version of slides explaining Landmarks, Reach, and Shortcuts test version of slides explaining Landmarks, Reach, and Shortcuts

iper Introducing Landmarks

:tp://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/GH05.pdf

iper Introducing Reach (http://www.siam.org/meetings/alenex04/abstacts/rgutman1.p

iper Comparing all of these algorithms (https://www.microsoft.com/en-/research/wp-content/uploads/2004/07/tr-2004-24.pdf)

ogle Maps – Transfer Patterns

dd time dependent nodes to your graph and precompute lowest st routes for disjoint subsets (http://ad-publications.informatik.uni- iburg.de/ESA transferpatterns BCEGHRV 2010.pdf)

ncode time domain data in frequency space and modify Dijkstra to ork in that sparse representation (http://ad-publications.informatik.uni-iburg.de/SIGSPATIAL frequency BS 2014.pdf)

uster nodes in subgraphs to minimize precomputation costs (http://blications.informatik.uni-freiburg.de/ALENEX scalable to BHS 2016.pdf)