Thomas Pattara STAT 560 Time Series Analysis

1.Calculate the weights ψ , $i = 1,2, \cdots$ for an ARIMA(1,1,0) model.

ARIMA (1,1,0) =
$$(\psi_0 + \psi_1 B + \psi_2 B^2 + ...)(1 - \phi_1 B)(1 - B) = 1$$

 $(\psi_0 - \psi_0 \phi_1 B + \psi_1 B - \psi_1 \phi_1 B^2 + \psi_2 B^2 - \psi_2 \phi_1 B^3 + ...)(1 - B) = 1$
 $(\psi_0 - \psi_0 B - \psi_0 \phi_1 B + \psi_0 \phi_1 B^2 + \psi_1 B - \psi_1 B^2 - \psi_1 \phi_1 B^2 + \psi_1 \phi_1 B^3 + \psi_2 B^2 - \psi_2 B^3 - ...) = 1$

Next we will calculate the weights for B⁰, B¹, and B².

$$B^0: \psi_0 = 1$$

$$B^{1}: -\psi_{0} - \psi_{0} \varphi_{1} + \psi_{1} = 0$$

$$-1 - \varphi_{1} + \psi_{1} = 0$$

$$\psi_{1} = \varphi_{1} + 1$$

B²:
$$\psi_0 \varphi_1 - \psi_1 - \psi_1 \varphi_1 + \psi_2 = 0$$

 $\varphi_1 - (\varphi_1 + 1) - (\varphi_1 + 1) \varphi_1 + \psi_2 = 0$
 $-1 - \varphi_1^2 - \varphi_1 + \psi_2 = 0$
 $\psi_2 = \varphi_1^2 + \varphi_1 + 1$

Therefore

$$\psi_{i} = \sum_{j=0}^{i} \varphi_{1}^{j}$$

- 2. Consider the data shown in Table E4.4 below.
- **2.1)** Fit an ARIMA model to this time series, excluding the last 12 observations.

TABLE E4.4 Data for Exercise 4.8

Period	y_t	Period	y_t	
1	315	5 13		
2	195	14	395	
3	310	15	390	
4	316	16	450	
4 5	325	17	458	
6	335	18	570	
7	318	19	520	
8	355	20	400	
9	420	21	420	
10	410	22	580	
11	485	23	475	
12	420	24	560	

Figure 1: Time series plot excluding the last 12 observations

Report Gra	ph Model	DF	Variance	AIC	SBC	RSquare	-2LogLH	Weights .2 .4 .6 .8	MAPE	MA
✓	- ARIMA(1, 3, 1)	6	7143.4894	112.45265	113.04432	-4.97	106.45265	0.638863	26.753480	92.1719
	- ARIMA(1, 2, 1)	7	2774.1204	114.88609	115.79385	-1.38	108.88609	0.189231	17.579141	59.2368
	ARIMA(1, 1, 1)	8	1453.6122	117.59395	118.78764	0.525	111.59395	0.048864	12.732458	35.2044
	— I(3)	8	26264.25	118.06452	118.26175	-6.35	116.06452	0.038619	33.063411	121.555
· 🗸	— IMA(1, 1)	9	1866.947	118.34682	119.14261	0.545	114.34682	0.033535	11.958768	33.4729
	- ARI(1, 1)	9	2136.4652	118.78429	119.58008	0.435	114.78429	0.026947	14.857633	42.7531
	- ARIMA(2, 2, 2)	5	3683.2933	120.68355	122.19647	-1.59	110.68355	0.010425	20.181871	67.1750
	ARIMA(2, 1, 2)	6	1761.2459	121.19162	123.18109	0.526	111.19162	0.008087	12.588455	34.3163
	— I(2)	9	11521.389	122.84477	123.14736	-2.19	120.84477	0.003538	21.228695	76.0000
	— I(1)	10	4267.2727	124.11427	124.51216	0.291	122.11427	0.001876	15.197573	46.2314
	— AR(1)	10	3743.7611	135.06135	136.03116	0.382	131.06135	0.000008	13.438281	40.3709
	— MA(1)	10	4292.6146	136.58098	137.55079	0.277	132.58098	0.000004	14.482680	43.8749
	- ARMA(1, 1)	9	4008.1165	136.74231	138.19703	0.395	130.74231	0.000003	13.291427	40.0942

Figure 2: Model comparison of time series in figure 1.

Figure 3: Summary Statistics for ARIMA(1,1,1)

Excluding the last 12 observations, we compare the remaining 12 observations to fit an ARIMA model. Comparing the AIC values of the different models in Figure 2, ARIMA(1,1,1) is the most suitable model. This can be confirmed from the ACF and PACF plot in Figure 1, PACF cut off at the first lag and ACF has an exponential decay, but AR(1) has a bigger AIC than ARIMA(1,1,1), hence we chose ARIMA(1,1,1).

2.2). Investigate model adequacy (Diagnostic Checking).

Figure 4: The sample ACF and PACF of the residuals for the ARIMA(1,1,1) model in Table E4.4.

Figure 5: Residual plots for the ARIMA(1,1,1) model in Table E4.4.

2.3). Forecast the last 12 observations.

Figure 6: ARIMA(1,1,1) Forecast of last 10 observation in Table E4.4

When looking at the ACF plot in Figure 4, we can see that the autocorrelation does not differ much from zero at any lags other than 1. Therefore we can conclude that our model is adequate.

2.4). In exercise 4.8, you were asked to use 2nd (double) exponential smoothing methods to smooth the data, and to forecast the last 12 observations. (Hint: The optimum smoothing constant is chosen by finding the value of \lambda that minimizes the error sum of squares

Reminder: use the error sum of squares after **2nd** smoothing, **not the 1st** smoothing. To simply the question, you can assume the smoothing lambda that used in the 1st and 2nd smoothing are same.)

Figure 7: Double exponential smoothing of data in Table E4.4

2.5). Compare the ARIMA and exponential smoothing forecasts. Which forecasting method do you prefer?

Figure 8: Exponential smoothing, ARIMA(1,1,1), and both together respectively.

In Figure 8 above, we are comparing exponential smoothing forecast with the lambada of 0.2 to the ARIMA(1,1,1) forecasting model. We prefer the ARIMA(1,1,1) forecasting model because the forecast seems to better fit the observations. Also when comparing the residual plots for both forecasting models the ARIMA(1,1,1) model seems to differ

from 0 less than the exponential smoothing forecast. Therefore we can conclude that the ARIMA(1,1,1) model is more adequate.

- **2.6).** How would prediction intervals be obtained for the ARIMA forecasts? Your answer should include three parts:
 - 2.6.1 Specify the ψ_r , $i = 1,2, \cdots$. You can use the results that you obtained from question 1 if you are using the same model as question 1. Write down the general formula of $var[e_{\tau}(\tau)]$ and $100(1 \alpha)$ percent prediction interval for

 $y_{r+\tau}$. You don't have to simplify your formula or plug ψ_r , i = 1,2, ··· into the formulas. You can do the calculation by R.

$$var[e_{T}(\tau)] = \sigma^{2} \sum_{i=0}^{\tau-1} \psi_{i}^{2}$$
$$= \sigma^{2} \sum_{i=0}^{\tau-1} \varphi_{1}^{2i}$$
$$= \sigma^{2} \left(\frac{1-\varphi_{1}^{2i}}{1-\varphi_{1}^{2}}\right)$$

Prediction interval for $\mathbf{y}_{\mathsf{T+r}} = \widehat{y}_{\mathsf{T+r}}(\mathsf{T}) \pm Z_{\alpha/2} \sqrt{var[e_T(\tau)]}$ $= \widehat{y}_{\mathsf{T+r}}(\mathsf{T}) \pm Z_{\alpha/2} \sqrt{\sigma^2 \left(\frac{1-\phi_1^{2i}}{1-\phi_1^2}\right)}$

Table 1

•								
	Actual y_t	Period	Predicted y_t	Std Err Pred y_t	Residual y_t	Upper CL (0.95) y_t	Lower CL (0.95) y_	
1	315	1	•	•	•	•		
2	195	2	326.09102373	56.232074449	-131.0910237	436.30386442	215.8781830	
3	310	3	268.52047589	56.232074449	41.479524106	378.73331659	158.307635	
4	316	4	297.9326138	56.232074449	18.067386195	408.1454545	187.7197731	
5	325	5	313.18847422	56.232074449	11.811525784	423.40131491	202.9756335	
6	335	6	326.49615407	56.232074449	8.503845935	436.70899476	216.2833133	
7	318	7	338.92942285	56.232074449	-20.92942285	449.14226354	228.7165821	
8	355	8	345.73711007	56.232074449	9.2628899316	455.94995076	235.5242693	
9	420	9	359.20344798	56.232074449	60.79655202	469.41628868	248.9906072	
10	410	10	379.53839315	56.232074449	30.461606852	489.75123384	269.3255524	
11	485	11	392.64279382	56.232074449	92.357206179	502.85563452	282.4299531	
12	420	12	415.09267507	56.232074449	4.907324928	525.30551577	304.8798343	
13	460	13	422.97187121	56.232074449	37.028128787	533.18471191	312.7590305	
14	395	14	438.26385148	56.232074449	-43.26385148	548.47669217	328.0510107	
15	390	15	442.66908149	56.232074449	-52.66908149	552.88192218	332.4562407	
16	450	16	449.50707253	56.232074449	0.4929274688	559.71991323	339.2942318	
17	458	17	462.95386535	56.232074449	-4.953865348	573.16670604	352.7410246	
18	570	18	473.60823788	56.232074449	96.391762121	583.82107857	363.3953971	
19	520	19	494.82207787	56.232074449	25.177922129	605.03491857	384.6092371	
20	400	20	504.32703808	56.232074449	-104.3270381	614.53987877	394.1141973	
21	420	21	503.99549693	56.232074449	-83.99549693	614.20833762	393.7826562	
22	580	22	511.5291942	56.232074449	68.470805797	621.7420349	401.3163535	
23	475	23	532.79766123	56.232074449	-57.79766123	643.01050193	422.5848205	
24	560	24	535.867589	56.232074449	24.132411001	646.08042969	425.654748	
25	•	25	551.4736271	56.232074449	•	661.6864678	441.2607864	
26		26	561.63203201	56.295682952	•	671.96954308	451.2945209	
27	•	27	572.67871867	56.295831408	•	683.01652071	462.3409166	
28		28	583.7676346	76346 56.295832011 • 694.105437		694.10543782	473.4298313	
29		• 29 594.858		56.295832066	•	705.19636145	484.5207547	
30		30	605.94957708	56.29583211	•	716.2873805	495.6117736	
31		31	617.04060058	56.295832153	•	727.37840408	506.7027970	
32		32	628.1316243	56.295832196	•	738,46942788	517.7938207	
33		33	639.22264803	56.295832239	•	749.56045169	528.8848443	
34		34	650.31367175	56.295832282		760.65147551	539.97586	

The above table displays the 95% CI for the next 10 observations.

2.6.3 Plot the time series plot and forecasts.

Figure 9: Time series plot of data in Table E4.4

Figure 10: Forecast of data in Table E4.4

Appendix

E4.4 <- read_excel("/Users/Thomas/Documents/E4_4.xlsx")

```
firstsmooth<-function(y,lambda,start=y[1]){
  ytilde<-y
  ytilde[1]<-lambda*y[1]+(1-lambda)*start
  for (i in 2:length(y)){
    ytilde[i]<-lambda*y[i]+(1-lambda)*ytilde[i-1]
  }
  ytilde
```

```
}
measacc.fs<- function(y,lambda){</pre>
 out1<- firstsmooth(y,lambda) #first smoothing
 out2<- firstsmooth(out1,lambda) # second smoothing
 out <- 2*out1-out2 # forecast
 T<-length(y)
 #Smoothed version of the original is the one step ahead prediction
 #Hence the predictions (forecasts) are given as
 pred<-c(y[1],out[1:(T-1)])
 prederr<- y-pred
 SSE<-sum(prederr^2)
 MAPE<-100*sum(abs(prederr/y))/T
 MAD<-sum(abs(prederr))/T
 MSD<-sum(prederr^2)/T
 ret1<-c(SSE,MAPE,MAD,MSD)
 names(ret1)<-c("SSE","MAPE","MAD","MSD")
 return(ret1)
}
lambda.vec<-seq(0.1, 1, 0.05)
sse.speed<-function(sc){measacc.fs(E4.4$y,sc)[1]}
sse.vec<-sapply(lambda.vec, sse.speed)
opt.lambda<-lambda.vec[sse.vec == min(sse.vec)]
plot(lambda.vec, sse.vec, type="b", main = "SSE vs. lambda\n",
   xlab='lambda\n',ylab='SSE')
abline(v=opt.lambda, col = 'red')
mtext(text = paste("SSE min = ", round(min(sse.vec),2), "\n lambda
           = ", opt.lambda))
```

