Přednáška 3.

- Další příklady věty o transformaci
- ► Teorie odhadů
- Nestranný odhad
- MVUE

Další příklady transformace hustot

1. Součet dvou nezávislých normálně rozdělených náhodných veličin (a naopak?)

$$X + Y = Z \sim N(\mu, \sigma^2)$$

2. Jak generovat náhodnou veličinu s Cauchyho rozdělení?

$$X = F_X^{-1}(Y)$$
, $kde\ Y \sim U(0,1)$

Teorie odhadů

Definice:

Odhadem neznámého parametru θ nazveme libovolnou funkci $\hat{\theta} = g(X_1, X_2, ..., X_n)$, která nezávisí na skutečné hodnotě θ .

Poznámka: Odhad parametru může záviset i na jiných parametrech, pokud jsou známé.

Příklady odhadů:

Uvažujme náhodný výběr X_1, X_2, \ldots, X_n , který vznikl měřením zašuměného stejnosměrného proudu. Matematicky lze model popsat jako $X_i = A + w_i$, kde A je konstantní a $w_i \sim N(0,1)$, tzv. bílý šum. Úkolem je odhadnout hodnotu A.

- Varianta 1: $\hat{A} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Varianta 2: $\check{A} = X_1$

Teorie odhadů: Kvalita odhadu

Definice:

Odhad neznámého parametru θ nazveme **nestrann**ý, jestliže platí: $E[\widehat{\theta}] = \theta$.

Poznámka: Pokud odhad není nestranný, tzn. $E[\hat{\theta}] = \theta + b(\theta)$, pak $b(\theta)$ nazveme **bias**, neboli **vychýlení** odhadu.

MVUE (= minimum variance unbiased estrimator) nazveme nestranný odhad s minimálním rozptylem. Pro ten platí

- Nemusí vždy existovat,
- Pokud existuje, může být obtížné ho najít,
- Rozptyl nestranného odhadu nemůže být menší než Cramérova-Raova dolní mez (CRLB)

Cvičení 3

- Generujte pozorování z Cauchyho rozdělení a pokuste se odhadnout střední hodnotu.
- 2. Je odhad $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ nestranný, pokud $X_i \sim N(\mu, \sigma^2)$, kde
 - 1. $\mu = 0$,
 - 2. μ je známé, ale nenulové,
 - μ je neznámé a nahradíme výběrovým průměrem.
- 3. Chceme-li odhadnout podíl stejnosměrného proudu a bílého šumu z naměřených pozorování $X_1, X_2, ..., X_n$, tzn. při modelu $X_i = A + w_i$, $w_i \sim N(0,1)$, který z odhadů je lepší:
 - $\hat{A} = \frac{1}{n} \sum_{i=1}^{n} X_i$ a nebo
 - $\hat{A} = \frac{1}{n+2} \left(2X_1 + \sum_{i=2}^{n-1} X_i + 2X_n \right) ?$

Cvičení 3

4. Mějme náhodnou veličinu $X = F_X^{-1}(U)$, kde $U \sim (0,1)$ a F_X je distribuční funkce náhodné veličiny X. Ukažte pomocí věty o transformaci hustot, že $f_X(x)$ je skutečně hustota pravděpodobnosti X.