Cognome		
Nome		Non scrivere qui
MATRICOLA		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5 6

Università degli Studi di Parma

Dipartimento di Ingegneria e Architettura

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2018-2019 — PARMA, 8 GENNAIO 2019

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. Siano A, B e C gli insiemi definiti da

$$A = \{(x,y): x^2 - 1 < y < x^2\}; B = \{(x,y): (x-1)(y-1) < 0\}; C = \{(x,y): x > 0 \in x + |y| < 1\}.$$

Quale delle segenti affermazioni è vera?

- (a) $A \in \text{limitato}$:
- (b) B è connesso;
- (c) C è convesso.

Soluzione. L'insieme A è illimitato poiché contiene tutti i punti (x,y) con $y=x^2-1/2$ e l'insieme B non è connesso perché unione di

$$B_1 = \{(x,y): x > 1 \in y < 1\}$$
 e $B_2 = \{(x,y): x < 1 \in y > 1\}$

che sono aperti disgiunti. Infine, disegnando l'insieme C, si verifica facilmente che è convesso. La risposta corretta è quindi (c).

Esercizio 2. L'integrale curvilineo del campo $f \in C^{\infty}(\mathbb{R}^2)$ di componenti $f^1(x,y) = e^{3x}$ e $f^2(x,y) = 1$, $(x,y) \in \mathbb{R}^2$, lungo la curva parametrica $\gamma(t) = \log(\cos t)e_1 + te_2, t \in [0,\pi/4]$, è

(a)
$$\int_{\gamma} f \cdot dl = \frac{5 + 4\sqrt{2}}{6\sqrt{2}} + \frac{\pi}{4};$$
 (b) $\int_{\gamma} f \cdot dl = \frac{5 - 2\sqrt{2}}{6\sqrt{2}} + \frac{\pi}{4};$ (c) $\int_{\gamma} f \cdot dl = \frac{1 - 2\sqrt{2}}{6\sqrt{2}} + \frac{\pi}{4}.$

Soluzione. Poiché la curva γ è liscia, risulta

$$\int_{\gamma} f \cdot dl = \int_{0}^{\pi/4} \langle f(\gamma(t)) | \gamma'(t) \rangle dt = \int_{0}^{\pi/4} \left(-\sin t \cos^{2} t + 1 \right) dt = \left(\frac{1}{3} \cos^{3} t + t \right) \Big|_{0}^{\pi/4} = \frac{1 - 2\sqrt{2}}{6\sqrt{2}} + \frac{\pi}{4}.$$

La risposta corretta è quindi (c).

Sia $f \in C^1(\mathbb{R}^2)$ una funzione tale che f(0,0) = -1 e $\nabla f(0,0) = (2,-1/2)$. Allora, il Esercizio 3. gradiente di 1/f in (0,0)

- (a) non si può calcolare;
- (b) è $\nabla(1/f)(0,0) = (-2,1/2);$ (c) è $\nabla(1/f)(0,0) = (1/2,2).$

Soluzione. Poiché f è di classe C^1 con $f(0,0) \neq 0$, la funzione f è diversa da zero in un intorno di (0,0)e quindi 1/f risulta essere di classe C^1 in tale intorno e si ha

$$\nabla(1/f)(0,0) = -\frac{\nabla f(0,0)}{[f(0,0)]^2} = (-2,1/2).$$

La risposta corretta è quindi (b).

Esercizio 4. Sia

$$f(x,y) = x^2 - y^2, \qquad (x,y) \in \mathbb{R}^2,$$

e sia

$$K = \left\{ (x, y) : 7x^2 - 10\sqrt{3}xy + 13y^2 \le 4 \right\}.$$

Determinate

- (a) il minimo e il massimo globale di f su K;
- (b) l'insieme immagine f(K).

Soluzione. (a) La funzione f è un polinomio e dunque è di classe C^{∞} in \mathbb{R}^2 e l'insieme K è la parte di piano delimitata dall'ellisse di equazione

$$7x^2 - 10\sqrt{3}xy + 13y^2 = 4$$

i cui assi sono le rette di equazione $(\sqrt{3} \pm 2\sqrt{7})x + 5y = 0$ con lunghezza dei corrispondenti semiassi $(5 \pm \sqrt{21})/2$. L'insieme K è chiuso perché controimmagine della semiretta chiusa $(-\infty, 4]$ mediante il polinomio $q(x,y) = 7x^2 - 10\sqrt{3}xy + 13y^2$, $(x,y) \in \mathbb{R}^2$, ed è limitato poiché la forma quadratica q che definisce l'ellisse è definita positiva e risulta

$$4 \ge q(x,y) \ge \frac{5 - \sqrt{21}}{2} (x^2 + y^2), \qquad (x,y) \in K.$$

Pertanto K è compatto e quindi f assume minimo e massimo globale su K per il teorema di Weierstrass. Per determinare tali punti osserviamo che l'unico punto critico di f è l'origine che risulta essere punto di sella. Conseguentemente, i punti di minimo e massimo globale x_m e x_M devono trovarsi sul bordo

$$\partial K = \left\{ (x, y) : 7x^2 - 10\sqrt{3}xy + 13y^2 = 4 \right\}$$

di K che è una curva regolare nel piano e possiamo quindi cercare il massimo e il minimo di f su ∂K con il metodo dei moltiplicatori di Lagrange. Il sistema dei moltiplicatori di Lagrange è

$$\begin{cases} 2x - \lambda(14x - 10\sqrt{3}y) = 0 \\ -2y - \lambda(26y - 10\sqrt{3}x) = 0 \\ 7x^2 - 10\sqrt{3}xy + 13y^2 = 4 \end{cases} \iff \begin{cases} (1 - 7\lambda)x + 5\sqrt{3}\lambda y = 0 \\ 5\sqrt{3}\lambda x - (13\lambda + 1)y = 0 \\ 7x^2 - 10\sqrt{3}xy + 13y^2 = 4. \end{cases}$$

Affinché il sistema lineare formato dalle prime due equazioni abbia altre soluzioni oltre alla soluzione x = y = 0, deve essere

$$\det\begin{pmatrix} (1-7\lambda) & 5\sqrt{3}\lambda \\ 5\sqrt{3}\lambda & -(13\lambda+1) \end{pmatrix} = 16\lambda^2 - 6\lambda - 1 = 0$$

e ciò avviene per $\lambda = -1/8$ e $\lambda = 1/2$.

Nel primo caso $\lambda = -1/8$, le soluzioni delle prime due equazioni del sistema dei moltiplicatori di Lagrange sono i punti (x,y) tali che $y=\sqrt{3}x$. Imponendo che tali punti stiano su ∂K , si trovano i punti di coordinate $P_{\pm}=(\pm 1/2,\pm \sqrt{3}/2)$.

Nell'altro caso $\lambda=1/2$, le soluzioni delle prime due equazioni del sistema dei moltiplicatori di Lagrange sono i punti (x,y) tali che $y=x/\sqrt{3}$ e, imponendo che tali punti stiano su ∂K , si trovano i punti di coordinate $Q_{\pm}=(\pm\sqrt{3},\pm1)$.

Risulta infine

$$f(P_{\pm}) = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$
 e $f(Q_{\pm}) = 3 - 1 = 2$.

e conseguentemente il minimo globale di f su K è assunto nei punti P_{\pm} mentre il massimo globale è assunto nei punti Q_{\pm} .

Gli insiemi di livello $\{f = -1/2\}, \{f = 2\}$ e il bordo di K sono rappresentati nella seguente figura.

(b) L'insieme K è convesso e quindi anche connesso cosicché per il teorema dei valori intermedi risulta

$$f(K) = [f(P_{\pm}), f(Q_{\pm})]$$

e dunque da (a) segue f(K) = [-1/2, 2].

Esercizio 5. Sia

$$K = \{(x, y, z) : 2x - y \le z \le 2y - x \text{ e } 0 \le x, y \le 1\}.$$

(a) Descrivete e disegnate l'insieme K.

(b) Calcolate
$$I = \int_K xy \, dV_3(x, y, z)$$
.

Soluzione. (a) L'insieme K è il poliedro di \mathbb{R}^3 individuato dai semispazi $x \geq 0, y \leq 1, z \geq 2x - y$ e $z \leq 2y - x$. Esso è rappresentato nella figura seguente.

(b) L'insieme K è evidentemente compatto ed è misurabile poiché è un poliedro. Inoltre, la funzione

$$f(x, y, z) = xy,$$
 $(x, y, z) \in \mathbb{R}^3,$

è un polinomio e quindi è integrabile su ogni insieme misurabile e compatto.

Calcoliamo l'integrale di f su K mediante la formula di riduzione per fili. La proiezione di K sul piano xy è il triangolo

$$T = \big\{(x,y): \ 0 \le x \le y \le 1\big\}$$

e le corrispondenti sezioni sono i segmenti [2x - y, 2y - x] per $(x, y) \in T$. Poiché la proiezione T e ogni sezione di K sono insiemi misurabili, per la formula di riduzione si ha

$$I = \int_{T} \left(\int_{2x-y}^{2y-x} xy \, dz \right) dV_{2}(x,y) = \int_{T} 3xy(y-x) \, dV_{2}(x,y)$$

e, riapplicando nuovamente la formula di riduzione al triangolo T, risulta infine

$$\int_{T} 3xy(y-x) dV_{2}(x,y) = \int_{0}^{1} \left(\int_{x}^{1} 3xy(y-x) dy \right) dx =$$

$$= \int_{0}^{1} \left(xy^{3} - \frac{3}{2}x^{2}y^{2} \right) \Big|_{x}^{1} dx = \int_{0}^{1} \left(x - \frac{3}{2}x^{2} + \frac{1}{2}x^{4} \right) dx = \frac{1}{10}.$$

Esercizio 6. Considerate il problema di Cauchy

$$\begin{cases} x''(t) - x'(t) = 6e^{2t} - 3t^2 + 8t - 6\\ x(0) = 3 e x'(0) = 18. \end{cases}$$

- (a) Determinate tutte le soluzioni dell'equazione differenziale.
- (b) Determinate la soluzione del problema di Cauchy.

Soluzione. (a) L'equazione proposta è una equazione differenziale lineare del secondo ordine a coefficienti costanti. L'equazione caratteristica è $\lambda^2 - \lambda = 0$ e le sue soluzioni sono $\lambda_1 = 0$ e $\lambda_2 = 1$. Quindi, le funzioni

$$x_1(t) = 1$$
 e $x_2(t) = e^t$

con $t \in \mathbb{R}$ sono un sistema fondamentale di soluzioni dell'equazione omogenea e tutte le soluzioni dell'equazione omogenea sono le funzioni

$$x(t) = C_1 + C_2 e^t, \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

Poiché il termine non omogeneo dell'equazione è somma di un esponenziale che non è soluzione dell'equazione omogenea e di un polinomio di secondo grado ed il coefficiente del termine proporzionale a x(t) è nullo, cerchiamo una soluzione dell'equazione completa $x_n(t)$, $t \in \mathbb{R}$, della forma

$$x_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt, \qquad t \in \mathbb{R},$$

ove $A, B, C, D \in \mathbb{R}$ sono costanti da determinare. Si ha allora

$$x_p''(t) - x_p'(t) = 2Ate^{2t} - 3Bt^2 + 2(3B - C)t + (2C - D), \qquad t \in \mathbb{R},$$

cosicché la funzione x_p è soluzione dell'equazione completa per $A=3,\,B=1,\,C=-1$ e D=4. Pertanto tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 + C_2 e^t + 3e^{2t} + t^3 - t^2 + 4t, \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

(b) Scegliamo le costanti $C_i \in \mathbb{R}$ (i = 1, 2) in modo che la soluzione x(t) definita in (a) sia tale che x(0) = 3 e x'(0) = 18. Si ha

$$\begin{cases} x(0) = C_1 + C_2 + 3 = 3 \\ x'(0) = C_2 + 10 = 18 \end{cases}$$

da cui segue $C_1 = -8$ e $C_2 = 8$. La soluzione cercata è dunque la funzione

$$x(t) = 8e^{t} + 3e^{2t} + t^{3} - t^{2} + 4t - 8, \qquad t \in \mathbb{R}.$$