EE24BTECH11021 - Eshan Ray

Question:

Solution:

Find the equation of tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x-2y+5=0 and also write the equation of the normal to the curve at the contact.

Variable	Description	value
V	Quadratic Form Matrix	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
и	Linear Coefficient Vector	$\begin{pmatrix} \frac{-3}{2} \\ 0 \end{pmatrix}$
f	Constant Term	2
n	normal vector of the line $4x - 2y + 5 = 0$	$\begin{pmatrix} -2\\1 \end{pmatrix}$
m	slope of the line $4x - 2y + 5 = 0$ parallel to the tangent	$\binom{1}{2}$
\overline{q}	constant for point of intersection of the curve and the tangent	_
p_1	The eigenvector corresponding to the zero eigenvalue	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

TABLE 0: Input parameters

Since, V is not invertible, the point of contact to is given by the matrix equation:

$$\binom{(u+kn)^{\mathsf{T}}}{V} q = \binom{-f}{kn-u}$$
 (1)

where,
$$k = \frac{p_1^\top u}{p_1^\top n}$$
 (2)

$$\implies k = \frac{3}{4} \tag{3}$$

$$\Longrightarrow \begin{pmatrix} \left(\begin{pmatrix} \frac{-3}{2} \\ 0 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right)^{\mathsf{T}} \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} q = \begin{pmatrix} -2 \\ \frac{3}{4} \begin{pmatrix} -2 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{-3}{2} \\ 0 \end{pmatrix} \end{pmatrix} \tag{4}$$

$$\Longrightarrow \begin{pmatrix} -3 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} q = \begin{pmatrix} -\frac{41}{16} \\ 0 \\ \frac{3}{4} \end{pmatrix} \tag{5}$$

l

The augmented matrix can be expressed as:-

$$\begin{pmatrix}
-3 & 0 \mid & -\frac{41}{16} \\
0 & 0 \mid & 0 \\
0 & 1 \mid & \frac{3}{4}
\end{pmatrix}$$
(6)

Performing row operations: $R_2 \leftrightarrow R_3, R_1 \rightarrow \frac{-R_1}{3}$

$$\begin{pmatrix}
-3 & 0 \mid & -\frac{41}{16} \\
0 & 0 \mid & 0 \\
0 & 1 \mid & \frac{3}{4}
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 \mid & \frac{41}{48} \\
0 & 1 \mid & \frac{3}{4} \\
0 & 0 \mid & 0
\end{pmatrix}$$
(7)

$$\implies q = \begin{pmatrix} \frac{41}{48} \\ \frac{3}{4} \end{pmatrix} \tag{8}$$

The equation of Tangent obtained is

$$n^{\mathsf{T}}\left(x-q\right) = 0\tag{9}$$

$$\implies \left(-2 \quad 1\right)x + \frac{23}{24} = 0\tag{10}$$

Similarly, the equation of normal from the point of contact is

$$m^{\mathsf{T}}(x-q) = 0 \tag{11}$$

Fig. 0: Tangent and normal to parabola