Consumer Bankruptcy: the Role of Financial Frictions

Tsung-Hsien Li University of Mannheim

Work in Progress
This version: November, 2021

Motivation — **Insurance-Efficiency Trade-Off**

- Welfare implication of bankruptcy laws hinges upon the trade-off between smoothing "across states" and "over time" (Zame, 1993)
 - ullet Across states o Partial insurance by defaulting
 - Over time \rightarrow Borrowing costs (default premium)
- Mostly focus on credit-demand factors and assuming "frictionless" financial intermediation on top of incomplete market
 - E.g., Athreya (2002), Livshits et al., (2007), Gordon (2015)

Motivation — Credit Supply Matters

- Financial frictions exist prevalently and do affect intermediation
 - E.g., Gertler and Karadi (2011), Gertler and Kiyotaki (2015)
- Solely default premium cannot explain borrowing premium on revolving credit card debts in data (Dempsey and Ionescu, 2021)
- Countercyclical shock to intermediation cost can help match business cycles of unsecured credit and number of bankruptcy (Nakajima and Ríos-Rull, 2014; Fieldhouse et al., 2016)

Research Questions

- What is the role of financial frictions when filing for bankruptcy is allowed in an incomplete market setting?
- Through what channels could financial frictions affect the welfare implication of a bankruptcy code?
- To what extent does the welfare conclusion of bankruptcy laws vary with the presence of financial frictions?

What I Do

- Incorporate financial frictions (FFs) into a consumer default model
 - HHs are allowed to file for bankruptcy to insure against shocks
 - Agency problem between banks and depositors introduces leverage constraint, thus limiting banks' loan granting ability
- Borrowing price captures not only individual-level default premium but also aggregate-level leverage premium
- Preliminary results suggest:
 - FFs affect the welfare implication of bankruptcy regimes via leverage and divestment channels
 - A stricter regime is favored with FFs, and vice versa

Related Literature — Optimal Bankruptcy

- Abolishing bankruptcy entirely: Athreya (2002), Li and Sarte (2006)
- Removal of flag: Chen and Corbae (2011)
- Means-testing: Athreya (2002), Chatterjee et al. (2007)
- Repayment plan: Livshits et al. (2007), Exler (2020)
- Wage garnishment: Exler (2019)
- All discuss welfare implications of various (forms of) bankruptcy strictness, albeit with "frictionless" financial intermediation

Model Environment

- Time is discrete
- Incomplete market
- Production economy with idiosyncratic labor productivity
- Households, banks, firms

Households

- Simplified version of Chatterjee et al. (2007)
- A unit continuum of infinitely-lived risk-averse HHs
- Three idiosyncratic shocks (e, v):
 - Persistent and transitory labor productivity $e = e_p + e_t$ [AR(1)/i.i.d.]
 - Patience/Preference *ν* [i.i.d.]
- Consume c, save/borrow a' at q, and supply labor inelastically $w \exp(e)$
- If filing for bankruptcy:
 - Debt discharge a = 0
 - Wage garnishment $(1 \eta)w \exp(e)$
 - Temporary exclusion a' = 0
- Retain the banking access next period (Livshits et al., 2007)

Household's Optimization

■ Choose to default d = 1:

$$V^{d}(a, e, \nu) = u((1 - \eta)w \exp(e)) + \nu \beta \mathbb{E}V(a' = 0, e', \nu')$$

■ Choose not to default d=0: Discount price and borrowing amount

$$V^{nd}(a,e,\nu) = \max_{a'} \left[u \left(w \exp(e) + a - q(a',e)a' \right) + \nu \beta \mathbb{E} V \left(a',e',\nu' \right) \right]$$

■ Hence, what to do depends on:

$$V(a,e,\nu) = \max_{d \in \{0,1\}} \left[dV^d(a,e,\nu) + (1-d)V^{nd}(a,e,\nu) \right]$$

Firms

- Perfect competition
- Homogeneous goods with Cobb-Douglas production technology

$$F(K, E) = K^{\alpha} E^{1-\alpha}$$

where aggregate labor endowment: $E = \int \exp(e) d\mu$ and μ denotes the cross-sectional distribution of HHs

■ Rates of return on physical capital and labor:

$$r_k = F_K(K, E)$$
$$w = F_E(K, E)$$

Banks

- Modification of Gertler and Kiyotaki (2015)
- lacktriangle Owned by foreign investors and fixed saving rate r_f
- Perfect competition, risk-neutrality, full information of HHs' types
- Maximize the sum of discounted future dividends
- Invest in physical capital K' and issue one-period defaultable unsecured loans L' using deposits D' and net worth N
 - Physical capital depreciates at δ
 - Loan issuance subject to transaction costs τ
 - ullet Earn profits π and face exogenous retention policy ψ
 - Accumulate *N* via retained earnings $\psi \pi$ net of dividends $(1 \psi)\pi$

Agency Problem b/w Banks and Depositors

- Banks can divert fraction θ of assets after determining K' and L', and then sell them in a frictionless secondary market
- For depositors to participate, the continuation value of banks W(N) must be greater than or equal to the diverting gain $\theta(K' + L')$
- Incentive constraint:

$$W(N) \ge \theta(K' + L') \to \xi N \ge \theta(K' + L') \to \frac{\xi}{\theta} \ge \left(\frac{K' + L'}{N}\right) \equiv LR'$$

where $W(N) = \xi N$ has been widely shown in the literature

■ This translates to an "endogenous leverage ratio constraint"

Bank's Optimization

$$\begin{split} W\left(N\right) &= \max_{K',\mathcal{A}'} \left[\beta_f(1-\psi)\pi' + \beta_f W\left(N'\right)\right] & \text{(lifetime dividends)} \\ \text{s.t.} \quad N' &= \psi\pi' & \text{(retained earnings)} \\ \pi' &= (1+r_k'-\delta)K' + (1+r_l')L' - (1+r_f)D' & \text{(profit)} \\ K' &+ (1+\tau)L' &= D' + N & \text{(balance sheet)} \\ W\left(N\right) &\geq \theta\left(K' + L'\right) & \text{(incentive constraint)} \end{split}$$

- $\beta_f(1+r_f) = 1$ (small open economy)
- r'_l : Rate of return on one-period defaultable unsecured loans Definition

No-Arbitrage Conditions

■ Excess returns are equal: • FOCs

$$r'_k - (\delta + r_f) = r'_l - (\tau + r_f) = \iota \equiv \frac{\lambda \theta}{\Lambda'} \ge 0$$

 ι : Leverage premium, λ : IC multiplier, Λ' : Adjusted discount factor

- \blacksquare *t* is determined by whether and how much IC is binding
 - $\iota = 0$ when IC is slack
 - $\iota > 0$ when IC is binding $\longrightarrow \iota \gg 0$ if IC becomes more binding

Discount Bond Price

■ For each loan contract A'(a' < 0, e),

$$\begin{split} q(a',e) &= \frac{\int_{e'} \left[(1-d'(a',e')) + d'(a',e') \left(\frac{\eta w' \exp(e')}{a'} \right) \right] \, dF(e'|e)}{1+\tau + r_f + \iota} \\ &= \frac{1 - \text{individual-level default premium}}{\text{opportunity cost} + \operatorname{aggregate-level leverage premium}} \end{split}$$

 \bullet $\theta = 0$ resembles the frictionless case (only default premium)

Suggestive Parameterization

Parameter		Value	Source
β	HH discount factor	0.94	Livshits et al. (2007)
η	Wage garnishment rate	0.355	Livshits et al. (2007)
$\overset{\cdot}{ au}$	Transaction cost	0.04	Livshits et al. (2007)
β_f	Bank discount factor	0.96	$r_f = 4.17\%$
$\overset{\circ}{\sigma}$	CRRA coefficient	2	common value
α	Capital share	0.33	common value
δ	Depreciation rate	0.08	common value
θ	Diverting fraction	0.381	Gertler and Karadi (2011)
ψ	Retention ratio	0.972	Gertler and Karadi (2011)
ρ_p	AR(1) of persistent labor productivity	0.963	Nakajima and Ríos-Rull (2014)
σ_p	S.D. of persistent labor productivity	0.13	Nakajima and Ríos-Rull (2014)
σ_t^r	S.D. of transitory labor productivity	0.35	Nakajima and Ríos-Rull (2014)
$v_{impatient}$	Impatient scale	0	Nakajima and Ríos-Rull (2014)
$\mathbb{P}_{ u}$	Prob. of being impatient	0.01	1 % impatient HHs

Data v.s. Model Moments

Moment	Data	Model
default rate (%)	0.99	0.32
debt-to-income ratio	0.35	0.23
average loan rate (%)	12.87	14.51
share in debt (%)	10.43	15.89

- Data moments taken from Chatterjee et al. (2020)
- Uncalibrated; yet, aligned roughly with data moments

Intuition

- - \longrightarrow Less borrowing (more saving) in equilibrium
 - → Banks become more leveraged
 - → Banks more likely to divert assets
 - → Higher leverage premium incurred
 - → Borrowing costs increase further
- Bankruptcy strictness governed by wage garnishment rate η
 - Lower $\eta \to \text{Less punishment} \to \text{More lenient}$

Bankruptcy Leniency leads to Higher Leverage

Stricter Code is Favored with Financial Frictions

- CEV Relative to $\eta = 0.1$
- Dotted vertical line: Highest case
- Welfare conclusions are distinct.
 - $\eta = 0.70$ is preferred w/ FFs
 - $\eta = 0.50$ is preferred w/o FFs

Leverage and Divestment Channels

- [Direct] Leverage channel
 - $\eta \downarrow \rightarrow LR' \uparrow \rightarrow \iota \uparrow \rightarrow q \downarrow$
 - Increased borrowing costs
 - Harder to smooth "over time"
- [Indirect] Divestment channel

Leverage and Divestment Channels (cont.)

- [Direct] Leverage channel
- [Indirect] Divestment channel
 - $\eta \downarrow \rightarrow \iota \uparrow \rightarrow r'_{\iota} \uparrow \rightarrow K' \downarrow \rightarrow w \downarrow$
 - Earnings decrease "across states"
 - Only can banks invest in *K*′

Concluding Remarks

- Build a framework featuring consumer default and leverage frictions
- Welfare outcome of bankruptcy regimes depends additionally on leverage and divestment channels
- In this setting, a lenient bankruptcy regime is not necessarily optimal even when households face significant idiosyncratic risks

Appendix: Bankruptcy Regimes in US

■ Chapter 7

- Most unsecured debts are discharged in exchange for non-exempt assets
- Filers do not have to use future income to repay debts
- Filers must pay filing and legal fees
- Such record stays on credit report for 10 years
- In 2017, the non-business bankruptcy filings under Ch. $7 \approx 60\%$

■ Chapter 13

- It involves reorganization
- Filers have to make a plan to repay debtors over 3 to 5 years
- Filers can keep property
- Such record stays on credit report for 7 years

Appendix: Higher Earner has Greater Credit Access

■ Back

Appendix: Return on Unsecured Loans

■ It is defined as:

$$1 + r'_{l} = \frac{-\sum_{a' < 0, e} \left[\int_{e'} R(a', e') \, dF(e'|e) \right] \mathcal{A}'(a', e)}{L'}$$

Numerator consists of full repayment and wage garnishment

$$R(a',e') = (1 - d'(a',e'))a' + d'(a',e')\eta w' \exp(e')$$

Denominator denotes aggregate discount loans

$$L' = -\sum_{a'<0,e} \left[q(a',e)a' \right] \mathcal{A}'(a',e)$$

Appendix: FOCs

■ Necessary and sufficient conditions are:

$$\Lambda' \left[r'_k - (\delta + r_f) \right] = \lambda \theta$$

$$\Lambda' \left[\int_{e'} R(a', e') \, dF(e'|e) \right] = \left[\Lambda' (1 + \tau + r_f) + \lambda \theta \right] q(a', e)$$

$$\lambda \left[\xi N - \theta \left(K' + L' \right) \right] = 0$$

where $\Lambda' = \beta_f (1 - \psi + \psi \xi')$ is the adjusted discount factor and λ denotes the multiplier on the incentive constraint

Appendix: Effects of Strategic Default

	Good Faith	Baseline w/o FFs	Baseline w/ FFs
leverage ratio	1.90	2.93	2.99
default rate (%)	1.32	0.29	0.32
average loan rate (%)	7.86	14.17	14.51
share in debt (%)	36.51	16.04	15.89
debt-to-income ratio	1.73	0.23	0.23

- Good Faith: Only involuntary default (empty budget set) allowed
- Inclusion of strategic default pushes up borrowing prices
- Such effects amplified by financial frictions