Metamorphic Testing of Cross-Language Sentiment Analysis

Boyang

June 20, 2018

Contents

1	Introduction	1
2	Test Data	1
3	Normalization	2
4	Assessing Machine translation tool quality 4.1 Method	2 3
5	Assessing Sentiment analysis tool quality 5.1 Google Chinese sentiment analysis boxplot	4
6	Method for better compound mode for sentiment analysis tool and machine translation tool	8

1 Introduction

The purpose of this research is assessing the quality of translation tool and quality of sentiment analysis tool. Finally, we will achieve a method, finding which translation tool conbining with which sentiment analysis tool together, for getting better sentiment analysis result. Currently, most of sentiment analysis tool only support English. We want to find a method for let non-English people using English Sentiment Analysis tool with Machine translation tool, analysis their non-English text. In the lit review I will include Metamorphic Testing Method and Machine translated. Currently, I have not found

2 Test Data

Total have 46180 movies reviews.

Ranking	Number of Test Data	Percentage
Ranking 10	7353	15.92 %
Ramking 20	11209	24.27 %
Ranking 30	16223	35.13~%
Ranking 40	7663	16.59 %
Ranking 50	3732	8.08~%

3 Normalization

v = (v-min)/(max-min) * (newmax-newmin) + newmin

4 Assessing Machine translation tool quality

Google Sentiment Analysis ----- Google Sentment Analysis

correlation

4.1 Method

- 1. Compare correlation coefficient between Chinese sentiment analysis results and English sentiment analysis results by each
 - (a) Using Google, Baidu, Yandex translation tools, translated original Chinese data to English data
 - (b) Using same sentiment analysis tool analysis original chinese dataset and translated dataset
 - (c) Calculate correlation coefficient between Chinese sentiment analysis results and English sentiment analysis results
 - (d) Compare correlation coefficient values. if value is bigger than others, we can say this translation tool, which use in original dataset to English dataset, can achieve better results than others.

4.1.1 Result

• Base on Google sentiment analysis tool

	Google Score for Google translated data	Google Score for Yandex trans
Gooogle Score for origin data	0.512 (Pearson Correlations) p-value: 0.0	0.506 (Pearson Correlations) p
Google Score for origin data	0.381 (Kendall Correlations) p-value: 0.0	0.375 (Kendall Correlations) p
Google Score for origin data	0.504 (Spearman Correlations) p-value: 0.0	0.497 (Spearman Correlations)
Gooogle Score for origin data	0.512 (Point Biserial) p-value: 0.0	0.506 (Point Biserial) p-value:

- Google translation tool quality > Yandex translation tool quality > Baidu translation tool quality
- Base on Baidu sentiment analysis tool

	Baidu Positive Probability for Google translated data	Baidu I
Baidu Positive Probability for origin data	0.288 (Pearson Correlations) p-value: 0.0	0.280 (I
Baidu Positive Probability for origin data	0.188 (Kendall Correlations) p-value: 0.0	0.174 (1
Baidu Positive Probability for origin data	0.271 (Spearman Correlations) p-value: 0.0	0.249(3
Baidu Positive Probability for origin data	0.288 (Point Biserial) p-value: 0.0	0.280

 Google translation tool quality Yandex translation tool quality Baidu translation tool quality

2.Divide the sentiment analysis scores between [-1,1] into 5 regions, and then calculate the correlation and draw the heatmaps between the user rating (i.e., 10, 20, , 50) and sentiment analysis scores (for heatmap, use higher resolutions by dividing the region [-1,1] into 20 subregions to give a 20x5 heatmap).

5 Assessing Sentiment analysis tool quality

linear regression

liner regression

slope

slope

5.1 Google Chinese sentiment analysis boxplot

```
language=Python,label=,caption=,captionpos=b,numbers=none import numpy
as np from openpyxl import load_w orkbook import matplot libas mpl
        agg backend is used to create plot as a .png file mpl.use('agg')
        import matplotlib.pyplot as plt
        def drawBoxPlots(title, data_to_nlot, ax):
        Create the boxplot bp = ax.boxplot(data_to_plot, patch_artist = True, showmeans =
True) change outline color, fill color and line width of the boxes for box in bp ['boxes']:
change outline color box. set (color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face col
1b9e77')
        change color and linewidth of the whiskers for whisker in bp['whiskers']:
whisker.set(color='7570b3', linewidth=2)
        change color and linewidth of the caps for cap in bp['caps']: cap.set(color='7570b3',
linewidth=2)
        change color and linewidth of the medians for median in bp['medians']: me-
dian.set(color='b2df8a', linewidth=2)
        change the style of fliers and their fill for flier in bp['fliers']: flier.set(marker='o',
markerfacecolor='red', markersize=5, markeredgewidth=0.0, alpha=0.5)
        for mean in bp['means']: mean.set(marker = 's', markerfacecolor='red')
        Custom x-axis labels ax.set<sub>x</sub>ticklabels(['Rankinq10',' Rankinq20',' Rankinq30',' Rankinq40',' Rankinq50']
        Create data "'np.random.seed(10) ranking10 = np.random.normal(100, 10,
200) ranking 20 = \text{np.random.normal}(80, 30, 200) ranking 30 = \text{np.random.normal}(90, 30, 200)
20, 200) ranking40 = np.random.normal(70, 25, 200) ranking50 = np.random.normal(70,
```

```
\operatorname{np.array}([]) \operatorname{ranking} 40 = \operatorname{np.array}([]) \operatorname{ranking} 50 = \operatorname{np.array}([]) \operatorname{wb} = \operatorname{load}_w \operatorname{orkbook}(filename = '
good.xlsx', read_only = True)ws = wb['Sheet1']
      for row in range(1, 46181): for row in range(1, 10): ranking = ws.cell(row=row,
column=20).value) value = ws.cell(row=row, column=17) if ranking == 10:
ranking10 = np.append( ranking10 , value) elif ranking == 20: ranking20
= np.append (ranking20, value) elif ranking == 30: ranking30 = np.append
(ranking30, value) elif ranking == 40: ranking40 = np.append (ranking40,
value) elif ranking == 50: ranking50 = np.append (ranking50, value) " rank-
ing20.append([0]) ranking30.append([1]) ranking40.append([3]) ranking50.append([4])
"' combine these different collections into a list data_t o_p lot = [ranking 10, ranking 20, ranking 30, ranking 40, ranking
      fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(9, 4)) Create a fig-
ure instance fig = plt.figure(1, figsize=(9, 6)) Create an axes instance ax =
fig.add_subplot(111)addpatch_artist = Trueoptiontoax.boxplot()togetfillcolor
      drawBoxPlots("google chinese sentiment analysis", <math>data_to_plot, ax)Savethe figure fig. savefig("google Chine
tight'
      File "<stdin>", line 1, in <module> File "/tmp/babel-MzHCZL/python-
Me3jED", line 64 ranking = ws.cell(row=row, column=20).value) ^ Syntax-
Error: invalid syntax]] File "<stdin>", line 1, in <module> File "/tmp/babel-
MzHCZL/python-foVeeD", line 64 ranking = ws.cell(row=row, column=3).value)
  SyntaxError: invalid syntax] [[Python 3.6.4 (default, Jan 5 2018, 02:35:40)
[GCC 7.2.1 20171224] on linux Type "help", "copyright", "credits" or "license"
for more information. Traceback (most recent call last): File "<stdin>", line
1, in <module> File "/tmp/babel-MzHCZL/python-kKjo78", line 64 ranking =
ws.cell(row=row, column=3).value) ^ SyntaxError: invalid syntax python.el:
native completion setup loaded] File "<stdin>", line 1, in <module> File
"/tmp/babel-Xbwqve/python-4683rz", line 63, in <module> print (ws.cell(row=row,
column=7).value) File "/usr/lib/python3.6/site-packages/openpyxl/worksheet/worksheet.py".
line 307, in cell raise ValueError("Row or column values must be at least 1")
ValueError: Row or column values must be at least 1] [[Python 3.6.4 (de-
fault, Jan 5 2018, 02:35:40) [GCC 7.2.1 20171224] on linux Type "help", "copy-
right", "credits" or "license" for more information. Traceback (most recent call
last): File "<stdin>", line 1, in <module> File "/tmp/babel-Xbwqye/python-
3h66Xh", line 63, in <module> print (ws.cell(row=row, column=7).value) File
"/usr/lib/python3.6/site-packages/openpyxl/worksheet/worksheet.py", line 306.
in cell if row < 1 or column < 1: TypeError: '<' not supported between in-
stances of 'tuple' and 'int' python.el: native completion setup loaded]
```

Google translated data

baidu tra

25, 200) "' ranking 10 = np.array([]) ranking 20 = np.array([]) ranking 30 = np.array([

Linear regression slope

chinese origin data

6 Method for better compound mode for sentiment analysis tool and machine translation tool