EXPLORATORY DATA ANALYSIS USING PYTHON

Summary and Recommendations

Dataset Overview

The dataset used in this analysis comprises **1,284 records**, with each row representing data related to the usage of wellness centers across different cities. The data is clean, with **no missing values**. The primary columns of interest include:

- cityName: The city where the wellness center is located.
- card_type: The type of user accessing the center (e.g., Pensioner, Employee).
- **centre_name**: The name of the wellness center.
- **count**: Represents the number of times a center was accessed.

Initial Data Exploration

The initial exploration of the dataset was focused on understanding the data types, distributions, and basic statistics. Key findings include:

- The **count** variable has a wide range and shows potential outliers.
- The card_type field has multiple categories, with Pensioner being the most common.
- Several cities such as Ahmedabad, Mumbai, and Delhi dominate in terms of total usage count.

A variety of plots and charts were used to uncover hidden trends and distributions within the data:

1. Histogram of Count

• Revealed a **right-skewed distribution** of counts, indicating that while many centers have low activity, a few have significantly high usage.

2. Boxplot and Violin Plot

- **Boxplot** exposed outliers with extremely high usage counts.
- Violin plot provided a visual understanding of count distribution across different card types.

3. Bar Plot - Total Count per City

• Showed that **Ahmedabad**, **Mumbai**, and **Delhi** lead in terms of total user visits.

Other cities had significantly lower counts, showing disparity in service usage.

4. Top 10 Wellness Centres

 Identified wellness centers with the highest usage, allowing focus for resource allocation or case-specific study.

5. Heatmap - City vs Card Type

- Highlighted the relationship between different card types and their activity across cities.
- Some card types are more active in specific cities.

6. Scatter Plots

- Visualized individual centers against their count to highlight concentration and spread.
- A jittered version made overlapping points more visible.

7. Pie Chart - Top 6 Cities

Illustrated the proportional share of total visits by the most active cities.

8. KDE Plot with Log Scale

- Smoothed density plot showing that the count variable is heavily skewed.
- The log scale allowed better visibility into low-count areas.

9. Count Plot for Card Types

- Reinforced that Pensioners dominate usage.
- Helped quantify the distribution of different user categories.

Grouped Analysis

Two key groupings provided further insights:

Grouped by City and Card Type:

- Enabled a granular view of how different user types use services in each city.
- Useful for targeting interventions or campaigns.

Top Centre per Card Type:

- Identified which centers are most frequently used by each user category.
- Can inform improvements or promotions tailored to specific groups.

Final Summary and Recommendations

- The data is **clean and structured**, ready for deeper statistical or predictive analysis.
- **Pensioners** are the most frequent users, suggesting targeted services for this demographic.
- Ahmedabad, Mumbai, and Delhi are the highest traffic cities, and should be prioritized for quality improvements.
- Some centers are **outliers** in terms of usage and warrant individual attention.
- The overall **count distribution is right-skewed**, indicating a need to support underutilized centers.

Recommendations:

- 1. Investigate outlier centers to understand the reasons behind high traffic.
- 2. Focus on expanding successful center models to lower-traffic cities.
- 3. Develop city-wise and card_type-wise marketing or engagement strategies.
- 4. Use this data to inform future infrastructure investments and policy decisions.