Aplicaciones de la Derivada — Parte I

Cálculo I R.M

Escuela de Matemáticas Facultad de Ciencias **UASD**

18 de octubre de 2025

Tabla de Contenidos

- Extremos
- Puntos Críticos
- Rolle y Teo. Valor Medio
- Monotonía y CPD
- Concavidad e Inflexión
- Límites al Infinito y Asíntotas
- Análisis de Graficas

- Extremos

Definición de Extremos

Definición

Sea $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Decimos que f tiene un máximo absoluto en $c\in D$ si $f(c)\geq f(x)$ para todo $x \in D$. Análogamente, f tiene un mínimo absoluto en c si $f(c) \leq f(x)$ para todo $x \in D$.

Aplicaciones de la Derivada I

Definición de Extremos

Definición

Sea $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Decimos que f tiene un máximo absoluto en $c\in D$ si $f(c)\geq f(x)$ para todo $x \in D$. Análogamente, f tiene un mínimo absoluto en c si f(c) < f(x) para todo $x \in D$.

Definición

Sea I un intervalo y $c \in I$. Diremos que f tiene un **máximo relativo** (o local) en c si existe un intervalo abierto \mathcal{U} de c tal que f(c) > f(x) para todo $x \in \mathcal{U} \cap I$. De forma análoga se define el mínimo relativo.

4 / 53

Ejemplo Gráfico de Máximo y Mínimo

f tiene un máximo relativo en (0, 0) y un mínimo relativo en (2, -4)

Figura 1: Libro Larson 9na. Edición

Cálculo I. R.M.

Extremos 0000

Teorema del Valor Extremo (TVE)

Teorema (Valor Extremo)

Si f es continua en un intervalo cerrado [a,b], entonces f alcanza un máximo absoluto y un mínimo absoluto en [a,b]; es decir, existen $x_{\min}, x_{\min} \in [a,b]$ tales que

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$
 para todo $x \in [a, b]$.

- Extremos
- Puntos Críticos
- Rolle y Teo. Valor Medie
- Monotonía y CPE
- Concavidad e Inflexión
- Límites al Infinito y Asíntotas
- Análisis de Grafica

Definición de Punto Crítico

Puntos Críticos 0000

Definición

Sea f definida en un intervalo abierto que contiene c. El número c es un punto crítico de f si f'(c) = 0 o si f' no existe en c.

Ejemplo

Para $f(x) = x^{2/3}$, se tiene $f'(x) = \frac{2}{3}x^{-1/3}$, que no existe en x = 0. Luego, 0 es punto crítico.

Ilustración Gráfica de Punto Crítico

Puntos Críticos 0000

Figura 2: Libro Larson 9na. Edición

Cálculo I. R.M.

Puntos Críticos

Teorema (Fermat: Los extremos relativos ocurren sólo en números o puntos críticos)

Si f tiene un mínimo relativo o un máximo relativo en x=c, entonces c es un punto crítico de f.

Teorema (Fermat: Los extremos relativos ocurren sólo en números o puntos críticos)

Si f tiene un mínimo relativo o un máximo relativo en x=c, entonces c es un punto crítico de f.

Demostración

Puntos Críticos

Caso 1: Si f no es derivable en x=c, entonces, por definición, c es un punto crítico de f y el teorema es válido.

Teorema (Fermat: Los extremos relativos ocurren sólo en números o puntos críticos)

Si f tiene un mínimo relativo o un máximo relativo en x=c, entonces c es un punto crítico de f.

Demostración

Puntos Críticos

Caso 1: Si f no es derivable en x=c, entonces, por definición, c es un punto crítico de f y el teorema es válido.

Caso 2: Suponga que f tiene un máximo relativo en c. Para h>0 suficientemente pequeño, $\frac{f(c+h)-f(c)}{h}\leq 0$; para h<0 suficientemente pequeño, $\frac{f(c+h)-f(c)}{h}\geq 0$. Si el límite existe, ambas cotas fuerzan f'(c)=0. El caso de mínimo es análogo.

Teorema (Fermat: Los extremos relativos ocurren sólo en números o puntos críticos)

Si f tiene un mínimo relativo o un máximo relativo en x=c, entonces c es un punto crítico de f.

Demostración

0000

Caso 1: Si f no es derivable en x = c, entonces, por definición, c es un punto crítico de f y el teorema es válido.

Caso 2: Suponga que f tiene un máximo relativo en c. Para h > 0 suficientemente pequeño, $\frac{f(c+h)-f(c)}{h} \leq 0$; para h < 0 suficientemente pequeño, $\frac{f(c+h)-f(c)}{h} \geq 0$. Si el límite existe, ambas cotas fuerzan f'(c) = 0. El caso de mínimo es análogo.

Ejemplo

 $f(x) = x^3 - 3x$ tiene puntos críticos en $x = \pm 1$. Se verifica que x = -1 es máximo relativo y x = 1mínimo relativo.

- Puntos Crítico
- Rolle y Teo. Valor Medio
- Monotonía y CPI
- Concavidad e Inflexión
- Límites al Infinito y Asíntotas
- Análisis de Grafica

Teorema de Rolle

Teorema (Rolle)

Si f es continua en [a,b], derivable en (a,b) y f(a)=f(b), entonces existe $c\in(a,b)$ tal que f'(c)=0.

Teorema de Rolle

Teorema (Rolle)

Si f es continua en [a,b], derivable en (a,b) y f(a)=f(b), entonces existe $c\in(a,b)$ tal que f'(c)=0.

Demostración

Caso 1: Si f(x) = d para todo x en [a, b], f es constante en el intervalo y, por tanto, f'(x) = 0 para todo x en (a, b).

റമെറ്ററവ

Teorema de Rolle

Teorema (Rolle)

Si f es continua en [a,b], derivable en (a,b) y f(a)=f(b), entonces existe $c\in(a,b)$ tal que f'(c)=0.

Demostración

Caso 1: Si f(x) = d para todo x en [a, b], f es constante en el intervalo y, por tanto, f'(x) = 0 para todo x en (a,b).

Caso 2: Supposer que f(x) > d para algún x en (a,b). Por el teorema del valor extremo, se sabe que ftiene un máximo en algún punto c en el intervalo. Además, como f(c) > d, este máximo no puede estar en los puntos terminales. De tal modo, f tiene un máximo en el intervalo abierto (a,b). Esto implica que f(c) es un máximo relativo y, por el teorema de Fermat, c es un número crítico de f. Por último, como f es derivable en c, es posible concluir que f'(c) = 0.

Teorema de Rolle (continuación)

Demostración

Caso 3: Si f(x) < d para algún x en (a, b), se puede utilizar un argumento similar al del caso 2, pero implicando el mínimo en vez del máximo.

Ejemplo

$$f(x)=\cos x$$
 en $[0,2\pi]$: $f(0)=f(2\pi)=1$. Existe c con $f'(c)=-\sin c=0$, por ejemplo $c=\pi$.

Rolle y Teo. Valor Medio

14 / 53

Teorema de Rolle (continuación)

0000000

a) f es continua en [a, b] y derivable en (a, b)

Figura 3: Cálculo Larson 9na. Edición

Cálculo I. R.M.

Teorema del Valor Medio (TVM)

Teorema (Valor Medio)

Si f es continua en [a,b] y derivable en (a,b), entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema del Valor Medio (TVM)

0000000

Figura 4: Cálculo Larson 9na. Edición

Demostración

Considérese $g(x) = f(x) - \ell(x)$, donde ℓ es la recta que une (a, f(a)) y (b, f(b)). Entonces g(a) = g(b) = 0 y, por Rolle, existe $c \operatorname{con} g'(c) = 0$, es decir, $f'(c) = \ell'(x) = \frac{f(b) - f(a)}{t}$.

Monotonía v CPD •000000

- Monotonía v CPD

Funciones Crecientes y Decrecientes

Definición (Función Creciente)

f es creciente en I si para cualesquiera $x_1 < x_2$ en I se cumple $f(x_1) \le f(x_2)$. Es estrictamente creciente si $f(x_1) < f(x_2)$.

Definición (Función Creciente)

f es creciente en I si para cualesquiera $x_1 < x_2$ en I se cumple $f(x_1) \le f(x_2)$. Es estrictamente creciente si $f(x_1) < f(x_2)$.

Definición (Función Decreciente)

f es Decreciente en I si para cualesquiera $x_1 < x_2$ en I se cumple $f(x_1) \ge f(x_2)$. Es estrictamente decreciente si $f(x_1) > f(x_2)$.

Criterio de Monotonía (con derivadas)

Teorema

Sea f derivable en un intervalo I.

- Si $f'(x) \ge 0$ para todo $x \in I$, entonces f es creciente en I.
- Si $f'(x) \le 0$ para todo $x \in I$, entonces f es decreciente en I.

Criterio de Monotonía (con derivadas)

Teorema

Sea f derivable en un intervalo I.

- Si $f'(x) \ge 0$ para todo $x \in I$, entonces f es creciente en I.
- Si f'(x) < 0 para todo $x \in I$, entonces f es decreciente en I.

Demostración

Sean $x_1 < x_2$ en I. Por el TVM, existe $c \in (x_1, x_2)$ con $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Si $f'(x) \ge 0$ en I, en particular $f'(c) \ge 0$, de donde $f(x_2) - f(x_1) \ge 0$. El caso decreciente es análogo.

20 / 53

Ilustración Gráfica de Crecimiento y Decrecimiento

Figura 5: Libro Larson 9na. Edición

Criterio de la Primera Derivada

Teorema

Sea c un punto crítico de f (es decir, f'(c) = 0), y sea f derivable en un intervalo abierto que contiene a c salvo quizá en c. Entonces:

 Si f' cambia de signo de positivo a negativo al pasar por c, entonces f tiene un máximo relativo en c.

Criterio de la Primera Derivada

Teorema

Sea c un punto crítico de f (es decir, f'(c) = 0), y sea f derivable en un intervalo abierto que contiene a c salvo quizá en c. Entonces:

- Si f' cambia de signo de positivo a negativo al pasar por c, entonces f tiene un máximo relativo en c.
- Si f' cambia de signo de negativo a positivo al pasar por c, entonces f tiene un mínimo relativo en c.

Criterio de la Primera Derivada

Teorema

Sea c un punto crítico de f (es decir, f'(c) = 0), y sea f derivable en un intervalo abierto que contiene a c salvo quizá en c. Entonces:

- Si f' cambia de signo de positivo a negativo al pasar por c, entonces f tiene un máximo relativo en c.
- Si f' cambia de signo de negativo a positivo al pasar por c, entonces f tiene un mínimo relativo en c.
- Si f' no cambia de signo al pasar por c, entonces f no tiene extremo relativo en c.

Cálculo I. R.M.

Demostración del Criterio de la Primera Derivada

Demostración

Supongamos que f'(c) = 0.

• Si f' pasa de positivo a negativo en c, entonces para x < c, f'(x) > 0 (la función crece) y para x > c, f'(x) < 0 (la función decrece). Así, f alcanza un máximo relativo en c.

23 / 53

Demostración del Criterio de la Primera Derivada

Demostración

Supongamos que f'(c) = 0.

- Si f' pasa de positivo a negativo en c, entonces para x < c, f'(x) > 0 (la función crece) y para x > c, f'(x) < 0 (la función decrece). Así, f alcanza un máximo relativo en c.
- Si f' pasa de negativo a positivo, entonces f decrece antes de c y crece después, por lo que f tiene un mínimo relativo en c.

Demostración del Criterio de la Primera Derivada

Demostración

Supongamos que f'(c) = 0.

- Si f' pasa de positivo a negativo en c, entonces para x < c, f'(x) > 0 (la función crece) y para x > c, f'(x) < 0 (la función decrece). Así, f alcanza un máximo relativo en c.
- Si f' pasa de negativo a positivo, entonces f decrece antes de c y crece después, por lo que f tiene un mínimo relativo en c.
- Si f' no cambia de signo, f es monótona antes y después de c, por lo que no hay extremo relativo.

Criterio de la Primera Derivada (continuación)

Ni mínimo relativo ni máximo relativo

Figura 6: Cálculo Larson 9na. Edición

Concavidad e Inflexión 0000000

- Concavidad e Inflexión

Rolle y Teo. Valor Medio Monotonía y CPD Concavidad e Inflexión Límites al Infinito y Asíntotas Análisis de Graficas Reference 0000000 000000000 0000000000 0

Definición de Concavidad

Definición

Sea f derivable en un intervalo abierto I. La gráfica de f es cóncava hacia arriba sobre I si f' es creciente en el intervalo y cóncava hacia abajo en I si f' es decreciente en el intervalo.

Concavidad e Inflexión 0000000

Ilustración Gráfica de Concavidad

a) La gráfica de f se encuentra sobre sus rectas tangentes

b) La gráfica de f se encuentra debajo de sus rectas tangentes

Figura 7: Libro Larson 9na. Edición

Cálculo I. R.M.

Escuela de Matemáticas Facultad de Ciencias UASD

Criterio de Concavidad

Teorema

Si f es dos veces derivable en I: f''(x) > 0 en I implica concavidad hacia arriba; f''(x) < 0 en I implica concavidad hacia abajo.

Demostración

Por el TVM aplicado a f' en subintervalos, si f''>0, entonces f' es creciente y, en consecuencia, las pendientes de las tangentes aumentan: la gráfica queda por encima de sus tangentes. El caso f''<0 es análogo.

Punto de Inflexión

Definición

Sea f una función continua en un intervalo abierto I y sea $c \in I$. Decimos que el punto (c, f(c)) es un punto de inflexión de la gráfica de f si la concavidad de f cambia de cóncava hacia arriba a cóncava hacia abajo, o viceversa, al pasar por c.

Teorema

Si (c, f(c)) es un punto de inflexión de la gráfica de f, entonces f''(c) = 0 o f'' no existe en x = c.

29 / 53

Punto de Inflexión (continuación)

Punto de Inflexión (continuación)

Punto de Inflexión (continuación)

Figura 8: Cálculo Larson 9na. Edición

Criterio de la Segunda Derivada

Teorema (Criterio de la Segunda Derivada)

Sea c un punto crítico de f con f''(c) existente.

• Si f''(c) > 0, f tiene un mínimo relativo en c.

Criterio de la Segunda Derivada

Teorema (Criterio de la Segunda Derivada)

Sea c un punto crítico de f con f''(c) existente.

- Si f''(c) > 0, f tiene un mínimo relativo en c.
- Si f''(c) < 0, f tiene un máximo relativo en c.

Criterio de la Segunda Derivada

Teorema (Criterio de la Segunda Derivada)

Sea c un punto crítico de f con f''(c) existente.

- Si f''(c) > 0, f tiene un mínimo relativo en c.
- Si f''(c) < 0, f tiene un máximo relativo en c.
- Si f''(c) = 0, entonces el criterio falla. Esto es, f quizá tenga un máximo relativo, un mínimo relativo o ninguno de los dos. En tales casos, se puede utilizar el criterio de la primera derivada.

- Puntos Crítico
- Rolle y Teo. Valor Medio
- Monotonía y CPI
- Concavidad e Inflexión
- 6 Límites al Infinito y Asíntotas
- Análisis de Grafica

Tabla Numérica: Comportamiento hacia el Infinito

Consideremos $f(x) = \frac{3x^2+1}{x^2+2}$. Se tiene $\lim_{x\to\pm\infty} f(x) = 3$.

x	f(x)
10 100 -10 -100	$\begin{array}{c} \frac{301}{102} \approx 2,951 \\ \frac{30001}{10002} \approx 2,999 \\ \frac{301}{102} \approx 2,951 \\ \frac{30001}{10002} \approx 2,999 \end{array}$

Aplicaciones de la Derivada I

Límites al Infinito: Definición

Definición

Sea L un número real.

El enunciado $\lim_{x \to +\infty} f(x) = L$ significa que para cada $\varepsilon > 0$ existe un M > 0 tal que

$$|f(x) - L| < \varepsilon$$
 siempre que $x > M$.

34 / 53

Límites al Infinito: Definición

Definición

Sea L un número real.

 ${\color{blue} \mathbb O} \ \, \mbox{El enunciado} \ \lim_{x\to +\infty} f(x) = L \ \mbox{significa que para cada} \ \varepsilon > 0 \ \mbox{existe un} \ M>0 \ \mbox{tal que}$

$$|f(x) - L| < \varepsilon$$
 siempre que $x > M$.

@ El enunciado $\lim_{x \to -\infty} f(x) = L$ significa que para cada $\varepsilon > 0$ existe un N < 0 tal que

$$|f(x) - L| < \varepsilon$$
 siempre que $x < N$.

Asíntota Horizontal

Definición

La recta y = L es una asíntota horizontal de la gráfica de f si

$$\lim_{x \to \infty} f(x) = L \quad \text{o} \quad \lim_{x \to -\infty} f(x) = L.$$

Teorema de Límites al Infinito

Teorema

Si r es un número racional positivo y c es cualquier número real, entonces

$$\lim_{x \to \infty} \frac{c}{x^r} = 0.$$

Además, si x^r se define cuando x < 0, entonces

$$\lim_{x \to -\infty} \frac{c}{x^r} = 0.$$

Ejemplo

Calcule el siguiente límite:

$$\lim_{x \to \infty} \frac{5x^3 - 2x}{x^3 + 1}$$

Antes de aplicar el método, notamos que al sustituir $x\to\infty$, tanto el numerador $5x^3-2x$ como el denominador x^3+1 tienden a infinito. Es decir, la expresión tiene la forma indeterminada $\frac{\infty}{\infty}$.

Cálculo I R.M

Ejemplo

Calcule el siguiente límite:

$$\lim_{x \to \infty} \frac{5x^3 - 2x}{x^3 + 1}$$

Antes de aplicar el método, notamos que al sustituir $x \to \infty$, tanto el numerador $5x^3 - 2x$ como el denominador x^3+1 tienden a infinito. Es decir, la expresión tiene la forma indeterminada $\frac{\infty}{\infty}$. **Desarrollo:** Dividimos numerador y denominador entre x^3 :

$$\frac{5x^3 - 2x}{x^3 + 1} = \frac{5 - \frac{2}{x^2}}{1 + \frac{1}{x^3}}$$

Cuando $x \to \infty$, $\frac{2}{\pi^2} \to 0$ y $\frac{1}{\pi^3} \to 0$:

$$\lim_{x \to \infty} \frac{5 - \frac{2}{x^2}}{1 + \frac{1}{x^3}} = \frac{5 - 0}{1 + 0} = 5$$

Ejemplo

Calcule el siguiente límite:

$$\lim_{x \to -\infty} \frac{2x^2 + 7}{-x^2 + 3}$$

Antes de aplicar el método, note que al sustituir $x \to -\infty$, el numerador $2x^2+7$ y el denominador $-x^2+3$ tienden a infinito $(2x^2 \text{ y } -x^2 \text{ son dominantes y de grado mayor que las constantes}), así que la expresión resulta en la forma indeterminada <math>\frac{\infty}{-\infty}$.

Ejemplo

Calcule el siguiente límite:

$$\lim_{x \to -\infty} \frac{2x^2 + 7}{-x^2 + 3}$$

Antes de aplicar el método, note que al sustituir $x\to -\infty$, el numerador $2x^2+7$ y el denominador $-x^2+3$ tienden a infinito $(2x^2 \text{ y } -x^2 \text{ son dominantes y de grado mayor que las constantes}), así que la expresión resulta en la forma indeterminada <math>\frac{\infty}{-\infty}$. **Desarrollo:** Dividimos numerador y denominador entre x^2 :

$$\frac{2x^2+7}{-x^2+3} = \frac{2+\frac{7}{x^2}}{-1+\frac{3}{x^2}}$$

Cuando $x \to -\infty$, $\frac{7}{x^2} \to 0$ y $\frac{3}{x^2} \to 0$:

$$\lim_{x \to -\infty} \frac{2 + \frac{7}{x^2}}{-1 + \frac{3}{x^2}} = \frac{2}{-1} = -2$$

Ejemplo

Calcule el siguiente límite:

$$\lim_{x \to \infty} \frac{4x+1}{x^2+3}$$

Antes de aplicar el método, observamos que al sustituir $x\to\infty$, el numerador 4x+1 tiende a infinito y el denominador x^2+3 también tiende a infinito, por lo tanto la expresión tiene la forma indeterminada ∞ . **Desarrollo:** Dividimos numerador y denominador entre x^2 :

$$\frac{4x+1}{x^2+3} = \frac{\frac{4}{x} + \frac{1}{x^2}}{1 + \frac{3}{x^2}}$$

Cuando $x \to \infty$, $\frac{4}{x} \to 0$ y $\frac{1}{x^2} \to 0$, $\frac{3}{x^2} \to 0$:

$$\lim_{x \to \infty} \frac{\frac{4}{x} + \frac{1}{x^2}}{1 + \frac{3}{x^2}} = \frac{0 + 0}{1 + 0} = 0$$

Límites Infinitos y Asíntotas Oblicuas

Definición

Decimos que $\lim_{x\to a} f(x) = \pm \infty$ si para todo M>0 existe $\delta>0$ tal que $0<|x-a|<\delta$ implica |f(x)|>M.

Definición

Una asíntota oblicua es una recta y=mx+b tal que $\lim_{x\to\infty}[f(x)-(mx+b)]=0$ (o al menos para $x\to-\infty$). En funciones racionales propias, si deg numerador = deg denominador + 1, entonces existe y se obtiene por división sintética.

- Análisis de Graficas

Análisis: Dominio e intersecciones de $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$

1. Dominio:

El denominador se anula en $x^2 - 4 = 0$, es decir, en x = 2 v x = -2.

Dominio: $\mathbb{R} \setminus \{-2, 2\}$

2. Intersecciones con los ejes:

• Intersecciones con el eje x: Se resuelve f(x) = 0:

$$2(x^2 - 9) = 0 \implies x^2 - 9 = 0 \implies x^2 = 9 \implies x = 3, x = -3$$

Por lo tanto, interseca al eje x en x=-3 y x=3.

Intersección con el eje y:

$$f(0) = \frac{2(0^2 - 9)}{0^2 - 4} = \frac{2(-9)}{-4} = \frac{-18}{-4} = \frac{9}{2}.$$
 Interseca al eje y en $(0, 9/2)$.

Asíntotas de $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$

3. Asíntotas:

Asíntotas verticales: Denominador nulo y numerador no nulo:

$$x^2 - 4 = 0 \implies x = -2, x = 2$$

Asíntotas verticales: x = -2, x = 2

Asíntotas horizontales: Calculamos el límite cuando $x \to \pm \infty$:

$$\lim_{x \to \pm \infty} \frac{2(x^2 - 9)}{x^2 - 4} = \lim_{x \to \pm \infty} \frac{2 - \frac{18}{x^2}}{1 - \frac{4}{x^2}} = 2$$

Asíntota horizontal: y = 2

44 / 53

Comportamiento final y derivada de f(x)

4. Primera Derivada:

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

Derivada por cociente:

$$f'(x) = \frac{2 \cdot 2x(x^2 - 4) - 2(x^2 - 9) \cdot 2x}{(x^2 - 4)^2} = \frac{4x(x^2 - 4) - 4x(x^2 - 9)}{(x^2 - 4)^2}$$

Expandimos:

$$4x(x^2-4)-4x(x^2-9) = 4xx^2-16x-(4xx^2-36x) = [4x^3-16x]-[4x^3-36x] = (4x^3-16x)-4x^3+36x = 26x^3-16x$$

Por lo tanto:

$$f'(x) = \frac{20x}{(x^2 - 4)^2}$$

Puntos críticos y segunda derivada

5. Puntos críticos:

Resolvemos f'(x) = 0:

$$\frac{20x}{(x^2-4)^2} = 0 \implies x = 0$$

0 está en el dominio $(0 \neq \pm 2)$.

Punto crítico: x = 0 (calculamos f(0) = 9/2).

Segunda derivada de f(x)

6. Segunda Derivada:

$$f'(x) = \frac{20x}{(x^2 - 4)^2}$$

Aplicando la regla del cociente:

$$f''(x) = \frac{20(x^2 - 4)^2 - 20x \cdot 2(x^2 - 4)2x}{(x^2 - 4)^4}$$

Primero, $[g(x)]' = 2(x^2 - 4)2x = 4x(x^2 - 4)$ Luego,

$$f''(x) = \frac{20(x^2 - 4)^2 - 40x[2x(x^2 - 4)]}{(x^2 - 4)^4} = \frac{20(x^2 - 4)^2 - 80x^2(x^2 - 4)}{(x^2 - 4)^4}$$

Simplificación de f''(x)

Factorizamos x^2-4 :

$$f''(x) = \frac{20(x^2 - 4)[x^2 - 4 - 4x^2]}{(x^2 - 4)^4} = \frac{20(x^2 - 4)[-3x^2 - 4]}{(x^2 - 4)^4}$$
$$f''(x) = \frac{20(x^2 - 4)(-3x^2 - 4)}{(x^2 - 4)^4}$$

Podemos cancelar un factor x^2-4 en el numerador y en el denominador (siempre que $x\neq\pm2$), lo que reduce la expresión a:

$$f''(x) = \frac{20(-3x^2 - 4)}{(x^2 - 4)^3}$$

Puntos de inflexión de f(x)

7. Puntos de inflexión (posibles):

Para hallar los posibles puntos de inflexión, igualamos la segunda derivada obtenida anteriormente a cero:

$$f''(x) = \frac{20(-3x^2 - 4)}{(x^2 - 4)^3} = 0$$

El numerador se anula cuando $-3x^2 - 4 = 0$:

$$-3x^2 - 4 = 0 \implies x^2 = -\frac{4}{3}$$

Esta ecuación no tiene soluciones reales, ya que x^2 no puede ser negativo. Note que también el denominador se anula en $x=\pm 2$, pero esos puntos no pertenecen al dominio de la función. Por lo tanto, no hay puntos de inflexión reales para esta función.

Conclusión: No hay puntos de inflexión reales.

Crecimiento y decrecimiento de f(x)

8. Intervalos de prueba (crecimiento/decrecimiento): Consideramos los siguientes intervalos de prueba según el dominio de la función y las asíntotas verticales en x=-2 y x=2:

$$(-\infty, -2),$$
 $(-2, 0),$ $(0, 2),$ $(2, \infty)$

En cada intervalo analizaremos el signo de f'(x) y f''(x).

Tabla

Intervalo	f'(x)	f"(x)	Característica de la gráfica
$-\infty < x < -2$	_	_	Decreciente, cóncava hacia abajo
x = -2	Indef.	Indef.	Asíntota vertical
-2 < x < 0	_	+	Decreciente, cóncava hacia arriba
x = 0	0	0	Mínimo relativo
0 < x < 2	+	+	Creciente, cóncava hacia arriba
x = 2	Indef.	Indef.	Asíntota vertical
$2 < x < \infty$	+	_	Creciente, cóncava hacia abajo

Cuadro 1: Signos de f'(x) y f''(x) y características de la gráfica de f(x).

Figura 9: Gráfica de f(x)

Bibliografía

Ron Larson, *Cálculo de una Variable*, secciones sobre aplicaciones de la derivada: extremos, TVE, Rolle, TVM, pruebas con derivadas, concavidad e inflexión, y comportamiento asintótico.

