

Sequence Listing

<110> Adams, Sean Pan, James Zhong, Alan

<120> UCP4

<130> P1626R1

<140> US 09/397,342

<141> 1999-09-15

<150> US 60/101,279

<151> 1998-09-22

<150> US 60/114,223

<151> 1998-12-30

<150> US 60/129,674

<151> 1999-04-16

<160> 18

<210> 1

<211> 323

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln
5 10 15

Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala 20 25 30

Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr 35 40 45

Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp
50 55 60

Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala $\,$ 65 $\,$ 70 $\,$ 75

Leu Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly 80 85 90

Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg 95 100 105

Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser 110 115 Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met 125 130 Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu 150 140 145 Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly 155 160 Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro 190 185 195 Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr 200 Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu 215 220 Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu 230 235 Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg 245 250 Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr 265 260 Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met 300 290 295 Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg 305 310 Glu Met Ser Gly Val Ser Pro Phe 320 323 <210> 2

<211> 1039

<212> DNA

<213> Homo sapiens

<400> 2

ccgagetegg atcccgttat cgtettgege tactgetgaa tgteegteee 50 ggaggaggag gagaggettt tgccgctgac ccagagatgg ccccgagcga 100 gcaaatteet actgteegge tgegeggeta eegtggeega getageaace 150 tttcccctgg atctcacaaa aactcgactc caaatgcaag gagaagcagc 200 tcttgctcgg ttgggagacg gtgcaagaga atctgccccc tataggggaa 250 tggtgcgcac agccctaggg atcattgaag aggaaggctt tctaaagctt 300 tggcaaggag tgacacccgc catttacaga cacgtagtgt attctggagg 350 tcgaatggtc acatatgaac atctccgaga ggttgtgttt ggcaaaagtg 400 aagatgagca ttatcccctt tggaaatcag tcattggagg gatgatggct 450 ggtgttattg gccagttttt agccaatcca actgacctag tgaaggttca 500 gatgcaaatg gaaggaaaaa ggaaactgga aggaaaacca ttgcgatttc 550 gtggtgtaca tcatgcattt gcaaaaatct tagctgaagg aggaatacga 600 gggctttggg caggctgggt acccaatata caaagagcag cactggtgaa 650 tatgggagat ttaaccactt atgatacagt gaaacactac ttggtattga 700 atacaccact tgaggacaat atcatgactc acggtttatc aagtttatgt 750 tctggactgg tagcttctat tctgggaaca ccagccgatg tcatcaaaag 800 cagaataatg aatcaaccac gagataaaca aggaagggga cttttgtata 850 aatcatcgac tgactgcttg attcaggctg ttcaaggtga aggattcatg 900 agtetatata aaggettttt accatettgg etgagaatga eeeettggte 950 aatggtgttc tggcttactt atgaaaaaat cagagagatg agtggagtca 1000 gtccatttta agaattctgc agatatccat cacactggc 1039

```
<210> 3
```

<211> 31

<212> DNA

<213> Artificial

<220>

<221> Misc-feature

<222> 1-31

<223> Sequence is synthesized

<400> 3 cgcggatccc gttatcgtct tgcgctactg c 31 <210> 4 <211> 34 <212> DNA <213> Artificial <220> <221> Misc-feature <222> 1-34 <223> Sequence is synthesized <400> 4 gcggaattct taaaatggac tgactccact catc 34 <210> 5 <211> 1248 <212> DNA <213> Artificial <220> <221> Misc-feature <222> 1-1248 <223> Sequence is synthesized <220> <221> unknown <222> 1231 <223> unknown base <400> 5 cgttatcgtc ttgcgctact gctgaatgtc cgtcccggag gaggaggaga 50 ggcttttgcc gctgacccag agatggcccc gagcgagcaa attcctactg 100 tccggctgcg cggctaccgt ggccgagcta gcaacctttc ccctggatct 150 cacaaaaact cgactccaaa tgcaaggaga agcagctctt gctcggttgg 200 gagacggtgc aagagaatct gccccctata ggggaatggt gcgcacagcc 250 ctagggatca ttgaagagga aggctttcta aagctttggc aaggagtgac 300 accegecatt tacagacaeg tagttattte tggaggtega atggteacat 350 atgaacatct ccgagaggtt gtgtttggca aaagtgaaga tgagcattat 400 cccctttgga aatcagtcat tggagggatg atggctggtg ttattggcca 450

gtttttagcc aatccaactg acctagtgaa ggttcagatg caaatggaag 500 gaaaaaggaa actggaagga aaaccattgc gatttcgtgg tgtacatcat 550 qcatttgcaa aaatcttagc tgaaggagga atacgaaggc tttgggcagg 600 ctgggtaccc aatatacaaa gagcagcact ggtgaatatg ggagatttaa 650 ccacttatga tacagtgaaa cactacttgg tattgaatac accacttgag 700 gacaatatca tgactcacgg tttatcaagt ttatgttctg gactggtagc 750 ttctattctg ggaacaccag ccgatgtcat caaaagcaga ataatgaatc 800 aaccacgaga taaacaagga aggggacttt tgtataaatc atcgactgac 850 tgcttgattc aggctgttca aggtgaagga ttcatgagtc tatataaagg 900 ctttttacca tcttggctga gaatgacccc ttggtcaatg gtgttctggc 950 ttacttatga aaaaatcaga gagatgagtg gagtcagtcc attttaaacc 1000 cctaaagatg caacccttaa agatacagtg ttcagtatta ttgaaatatg 1050 ggcatctgca acacataccc cctattattt ctacctcttt aggaagacac 1100 ctattccaca gagactgatt tatagggggc agcactttat ttttttctgg 1150 aaacccaagt tototttgac tootottttt gtocaaaagt gatotggtog 1200 gateteacaa ggeeateeaa tgagaeeeeg nacageattt tetaaaga 1248

<210> 6

<211> 58

<212> DNA

<213> Artificial

<220>

<221> Misc-feature

<222> 1-58

<223> Sequence is synthesized

<400> 6

cgcggatccg aaatggacta caaggacgac gatgacaagt ccgtcccgga 50

ggaggagg 58

<210> 7

<211> 35

<212> DNA

<213> Artificial

```
<220>
<221> Misc-feature
<222> 1-35
<223> Sequence is synthesized
<400> 7
 gcgaagcttg ccatggttgg actgaagcct tcaga 35
<210> 8
<211> 33
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-33
<223> Sequence is synthesized
 cgcgaattct caaaacggtg attcccgtaa cat 33
<210> 9
<211> 61
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-61
<223> Sequence is synthesized
<400> 9
 gcgaagcttg ccatggacta caaggacgac gatgacaagg ttggactgaa 50
 gccttcagac g 61
<210> 10
<211> 19
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-19
<223> Sequence is synthesized
 aatgcctatc gccgaggag 19
<210> 11
```

```
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-20
<223> Sequence is synthesized
<400> 11
gtaggaactt gctcgtccgg 20
<210> 12
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-22
<223> Sequence is synthesized
<400> 12
 tgctcgcgct cacgcagaga tg 22
<210> 13
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-24
<223> Sequence is synthesized
<400> 13
gaaatcgtgc gtgacatcaa agag 24
<210> 14
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-23
<223> Sequence is synthesized
<400> 14
```

ctccttctgc atcctgtcag caa 23

<210> 15 <211> 22 <212> DNA <213> Artificial														
<220> <221> Misc-feature <222> 1-22 <223> Sequence is synthesized														
<400> 15 cggttccgat gccctgaggc tc 22														
<210> 16 <211> 307 <212> PRT <213> Homo sapiens														
<400 Met 1		Gly	Leu	Thr 5	Ala	Ser	Asp	Val	His 10	Pro	Thr	Leu	Gly	Val 15
Gln	Leu	Phe	Ser	Ala 20	Pro	Ile	Ala	Ala	Cys 25	Leu	Ala	Asp	Val	Ile 30
Thr	Phe	Pro	Leu	Asp 35	Thr	Ala	Lys	Val	Arg 40	Leu	Gln	Val	Gln	Gly 45
Glu	Cys	Pro	Thr	Ser 50	Ser	Val	Ile	Arg	Tyr 55	Lys	Gly	Val	Leu	Gly 60
Thr	Ile	Thr	Ala	Val 65	Val	Lys	Thr	Glu	Gly 70	Arg	Met	Lys	Leu	Tyr 75
Ser	Gly	Leu	Pro	Ala 80	Gly	Leu	Gln	Arg	Gln 85	Ile	Ser	Ser	Ala	Ser 90
Leu	Arg	Ile	Gly	Leu 95	Tyr	Asp	Thr	Val	Gln 100	Glu	Phe	Leu	Thr	Ala 105
Gly	Lys	Glu	Thr	Ala 110	Pro	Ser	Leu	Gly	Ser 115	Lys	Ile	Leu	Ala	Gly 120
Leu	Thr	Thr	Gly	Gly 125	Val	Ala	Val	Phe	Ile 130	Gly	Gln	Pro	Thr	Glu 135
Val	Val	Lys	Val	Arg 140	Leu	Gln	Ala	Gln	Ser 145	His	Lėu	His	Gly	Ile 150
Lys	Pro	Arg	Tyr	Thr 155	Gly	Thr	Tyr	Asn	Ala 160	Tyr	Arg	Ile	Ile	Ala 165

Thr	Thr	Glu	Gly	Leu 170	Thr	Gly	Leu	Trp	Lys 175	Gly	Thr	Thr	Pro	Asn 180
Leu	Met	Arg	Ser	Val 185	Ile	Ile	Asn	Cys	Thr 190	Glu	Leu	Val	Thr	Tyr 195
Asp	Leu	Met	Lys	Glu 200	Ala	Phe	Val	Lys	Asn 205	Asn	Ile	Leu	Ala	Asp 210
Asp	Val	Pro	Cys	His 215	Leu	Val	Ser	Ala	Leu 220	Ile	Ala	Gly	Phe	Cys 225
Ala	Thr	Ala	Met	Ser 230	Ser	Pro	Val	Asp	Val 235	Val	Lys	Thr	Arg	Phe 240
Ile	Asn	Ser	Pro	Pro 245	Gly	Gln	Tyr	Lys	Ser 250	Val	Pro	Asn	Cys	Ala 255
Met	Lys	Val	Phe	Thr 260	Asn	Glu	Gly	Pro	Thr 265	Ala	Phe	Phe	Lys	Gly 270
Leu	Val	Pro	Ser	Phe 275	Leu	Arg	Leu	Gly	Ser 280	Trp	Asn	Val	Ile	Met 285
Phe	Val	Cys	Phe	Glu 290	Gln	Leu	Lys	Arg	Glu 295	Leu	Ser	Lys	Ser	Arg 300
Gln	Thr	Met	Asp	Суs 305	Ala	Thr 307								
<2103 <2113 <2123 <2133	> 309 > PRT	r	apier	ıs										
<400														
Met 1	Val	Gly		Lys 5		Thr	_	Val		Pro	Thr	Ala	Thr	Val 15
Lys	Phe	Leu	Gly	Ala 20	Gly	Thr	Ala	Ala	Cys 25	Ile	Ala	Asp	Leu	Ile 30
Thr	Phe	Pro	Leu	Asp 35	Thr	Ala	Lys	Val	Arg 40	Leu	Gln	Ile	Gln	Gly 45
Glu	Ser	Gln	Gly	Pro 50		Arg	Ala	Thr	Val 55	Ser	Ala	Gln	Tyr	Arg 60
Gly	Val	Met	Gly	Thr 65	Ile	Leu	Thr	Met	Val 70	Arg	Thr	Glu	Gly	Pro 75

Arg	Ser	Leu	Tyr	Asn 80	Gly	Leu	Val	Ala	Gly 85	Leu	Gln	Arg	Gln	Met 90
Ser	Phe	Ala	Ser	Val 95	Arg	Ile	Gly	Leu	Tyr 100	Asp	Ser	Val	Lys	Gln 105
Phe	Tyr	Thr	Lys	Gly 110	Ser	Glu	His	Ala	Ser 115	Ile	Gly	Ser	Arg	Leu 120
Leu	Ala	Gly	Ser	Thr 125	Thr	Gly	Ala	Leu	Ala 130	Val	Ala	Val	Ala	Gln 135
Pro	Thr	Asp	Val	Val 140	Lys	Val	Arg	Phe	Gln 145	Ala	Gln	Ala	Arg	Ala 150
Gly	Gly	Gly	Arg	Arg 155	Tyr	Gln	Ser	Thr	Val 160	Asn	Ala	Tyr	Lys	Thr 165
Ile	Ala	Arg	Glu	Glu 170	Gly	Phe	Arg	Gly	Leu 175	Trp	Lys	Gly	Thr	Ser 180
Pro	Asn	Val	Ala	Arg 185	Asn	Ala	Ile	Val	Asn 190	Cys	Ala	Glu	Leu	Val 195
Thr	Tyr	Asp	Leu	Ile 200	Lys	Asp	Ala	Leu	Leu 205	Lys	Ala	Asn	Leu	Met 210
Thr	Asp	Asp	Leu	Pro 215	Cys	His	Phe	Thr	Ser 220	Ala	Phe	Gly	Ala	Gly 225
Phe	Cys	Thr	Thr	Val 230	Ile	Ala	Ser	Pro	Val 235	Asp	Val	Val	Lys	Thr 240
Arg	Tyr	Met	Asn	Ser 245	Ala	Leu	Gly	Gln	Tyr 250	Ser	Ser	Ala	Gly	His 255
Cys	Ala	Leu	Thr	Met 260	Leu	Gln	Lys	Glu	Gly 265	Pro	Arg	Ala	Phe	Tyr 270
Lys	Gly	Phe	Met	Pro 275	Ser	Phe	Leu	Arg	Leu 280	Gly	Ser	Trp	Asn	Val 285
Val	Met	Phe	Val	Thr 290	Tyr	Glu	Gln	Leu	Lys 295	Arg	Ala	Leu	Met	Ala 300
Ala	Cys	Thr	Ser	Arg 305	Glu	Ala	Pro	Phe 309						

<210> 18 <211> 300 <212> PRT <213> Homo sapiens

<400> 18 Met Ala Val Lys Phe Leu Gly Ala Gly Thr Ala Ala Cys Phe Ala Asp Leu Val Thr Phe Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Ile Gln Gly Glu Asn Gln Ala Val Gln Thr Ala Arg Leu Val Gln 35 Tyr Arg Gly Val Leu Gly Thr Ile Leu Thr Met Val Arg Thr Glu 50 Gly Pro Cys Ser Pro Tyr Asn Gly Leu Val Ala Gly Leu Gln Arg Gln Met Ser Phe Ala Ser Ile Arg Ile Gly Leu Tyr Asp Ser Val Lys Gln Val Tyr Thr Pro Lys Gly Ala Asp Asn Ser Ser Leu Thr 95 Thr Arg Ile Leu Ala Gly Cys Thr Thr Gly Ala Met Ala Val Thr 115 Cys Ala Gln Pro Thr Asp Val Val Lys Val Arg Phe Gln Ala Ser 125 130 Ile His Leu Gly Pro Ser Arg Ser Asp Arg Lys Tyr Ser Gly Thr 140 145 Met Asp Ala Tyr Arg Thr Ile Ala Arg Glu Glu Gly Val Arg Gly 160 155 165 Leu Trp Lys Gly Thr Leu Pro Asn Ile Met Arg Asn Ala Ile Val Asn Cys Ala Glu Val Val Thr Tyr Asp Ile Leu Lys Glu Lys Leu 185 190 Leu Asp Tyr His Leu Leu Thr Asp Asn Phe Pro Cys His Phe Val 200 205 210

Ser Ala Phe Gly Ala Gly Phe Cys Ala Thr Val Val Ala Ser Pro

Val Asp Val Lys Thr Arg Tyr Met Asn Ser Pro Pro Gly Gln

215

230

220

235

Ţyr	Phe	Ser	Pro	Leu 245	Asp	Cys	Met	Ile	Lys 250	Met	Val	Ala	Gln	Glu 255
Gly	Pro	Thr	Ala	Phe 260	Tyr	Lys	Gly	Phe	Thr 265	Pro	Ser	Phe	Leu	Arg 270
Leu ·	Gly	Ser	Trp	Asn 275	Va _. l	Val	Met	Phe	Val 280	Thr	Tyr	Glu	Gln	Leu 285
Lys	Arg	Ala	Leu	Met 290	Lys	Val	Gln	Met	Leu 295	Arg	Glu	Ser	Pro	Phe 300