## EECS 16A Designing Spring 2020

# Designing Information Devices and Systems I Discussion $9\mathrm{A}$

## 1. Equivalence

Find the Thévenin and Norton equivalents across terminals a and b for the circuits given below.

(a)



(b)



(c)



(d)



(e) (Practice)



(f) (Practice)



### 2. Thevenin equivalence

(a) You are given the following  $I_{out} - V_{out}$  characteristic of the Thevenin model of a circuit. Find the Thevenin voltage and the Thevenin resistance.





(b) You are given a voltage divider as shown below. Find  $R_1$  and  $R_2$  such that the Thevenin equivalent model is the same as that of (a). You are given that  $V_S = 10V$ .



#### 3. Charge Sharing

Consider the circuit shown below. In phase  $\phi_1$ , the switches labeled  $\phi_1$  are on while the switches labeled  $\phi_2$  are off. In phase  $\phi_2$ , the switches labeled  $\phi_2$  are on while the switches labeled  $\phi_1$  are off.



- (a) Redraw the circuit in phase  $\phi_1$ . Label the voltages across each capacitor and find the charge on and voltage across each capacitor as a function of  $V_{\rm in}$ ,  $C_1$ , and  $C_2$ . Assume the capacitors are uncharged before phase  $\phi_1$ .
- (b) Redraw the circuit in phase  $\phi_2$ . Label the voltages across each capacitor and find the charge on and voltage across each capacitor as a function of  $V_{\text{out}}$ ,  $C_1$ , and  $C_2$ .
- (c) Find  $V_{\text{out}}$  as a function of  $V_{\text{in}}$ ,  $C_1$ , and  $C_2$ .
- (d) How will the charges be distributed in phase  $\phi_2$  if we assume  $C_1 \gg C_2$ ?