INTRODUCTION TO MACHINE LEARNING

EVALUATION

Mingon Kang, PhD
Department of Computer Science @ UNLV

^{*} Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington

Evaluation for Classification

Evaluation Metrics

- Confusion Matrix: shows performance of an algorithm, especially predictive capability.
 - rather than how fast it takes to classify, build models, or scalability.

	Predicted Class						
Actual Class		Class = YES	Class = No				
	Class = Yes	True Positive	False Negative				
	Class = No	False Positive	True Negative				

Evaluation Metrics

		Predicted condition			
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	True negative rate (TNR), $Specificity (SPC)$ $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$
	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$	Diagnostic odds ratio
		False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$

Type I and II error

Evaluation Metrics

- Sensitivity or True Positive Rate (TPR)
 - TP/(TP+FN)
- Specificity or True Negative Rate (TNR)
 - TN/(FP+TN)
- Precision or Positive Predictive Value (PPV)
 - TP/(TP+FP)
- □ Negative Predictive Value (NPV)
 - TN/(TN+FN)
- Accuracy
 - \Box (TP+TN)/(TP+FP+TN+FN)

Limitation of Accuracy

- Consider a binary classification problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 - □ If predict all as 0, accuracy is 9990/10000=99.9%
- Precision
- Recall

- Receiver Operating Characteristic
 - Graphical approach for displaying the tradeoff between true positive rate(TPR) and false positive rate (FPR) of a classifier
 - TPR = positives correctly classified/total positives
 - FPR = negatives incorrectly classified/total negatives
 - TPR on y-axis and FPR on x-axis

- Points of interests (TP, FP)
 - (0, 0): everything is negative
 - (1, 1): everything is positive
 - □ (1, 0): perfect (ideal)
- Diagonal line
 - Random guessing (50%)
- Area Under Curve (AUC)

100

100

80

60

40

20

- Measurement how good the model on the average
- Good to compare with other methods

Evaluation

- Model Selection
 - How to evaluate the performance of a model?
 - How to obtain reliable estimates?
- Performance estimation
 - How to compare the relative performance with competing models?

Motivation

- We often have a finite set of data
 - If using the entire training data for the best model,
 - The model normally overfits the training data, where it often gives almost 100% correct classification results on training data
- Better to split the training data into disjoint subsets
- □ Note that test data is not used in any way to create the classifier → Cheating!

Methods of Validation

- Holdout
 - \square Use 2/3 for training and 1/3 for testing
- Cross-validation
 - Random subsampling
 - K-Fold Cross-validation
 - Leave-one-out
- Stratified cross-validation
 - Stratified 10-fold cross-validation is often the best
- Bootstrapping
 - Sampling with replacement
 - Oversampling vs undersampling

Holdout

- Split dataset into two groups for training and test
 - Training dataset: used to train the model
 - Test dataset: use to estimate the error rate of the model

- Drawback
 - When "unfortunate split" happens, the holdout estimate of error rate will be misleading

Random Subsampling

- Split the data set into two groups
 - Randomly selects a number of samples without replacement
 - Usually, one third for testing, the rest for training

K-Fold Cross-validation

- K-fold Partition
 - Partition K equal sized sub groups
 - Use K-1 groups for training and the remaining one for testing

K-fold cross-validation

- \square Suppose that E_i is the performance in the *i*-th experiment
- □ The average error rate is

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Leave-one-out cross-validation

- Use N-1 samples for training and the remaining sample for testing (i.e., there is only one sample for testing)
- □ The average error rate is

$$E = \frac{1}{N} \sum_{i=1}^{N} E_i$$

where N is the total sample number.

How many folds?

- If a large number of folds
 - Bias to the true estimator will be small.
 - The estimator will be accurate
 - Computationally expensive
- If a small number of folds
 - Cheap computational time for experiments
 - Variance of the estimator will be small
 - Bias will be large
- 5 or 10-Fold CV is a common choice for K-fold CV

Stratified cross-validation

 When randomly selecting training or test sets, ensure that class proportions are maintained in each selected set.

- Stratify instances by class
- 2. Randomly select instances from each class proportionally

Bootstrapping

- Oversampling
 - Amplifying the minor class samples so that the classes are equally distributed

Bootstrapping

- Undersampling
 - Consider less numbers of samples in the major class so that the classes are equally distributed

Cross-validation with normalization

- Cross-validation with normalization
 - The model is optimized to the normalized data rather than the original data
 - How to evaluate via CV with normalization (e.g., z-score normalization)?
 - Normalize the training data (obtain mean and std)
 - Normalize the validation or test data with the mean and std obtained from the training data
 - Otherwise, the test data are not independent from the training data. Weak cheating.