Выбор интерпретируемых сверточных моделей глубокого обучения

A Preprint

Тимур Мурадов МФТИ Олег Бахтеев МФТИ Константин Яковлев $M\Phi T U$

Вадим Стрижов МФТИ

Abstract

В статье рассматривается задача построения интерпретируемой сверточной нейронной сети. Под интерпретируемостью модели понимается выделение наиболее важных признаков, а также определение кластеров схожих объектов. Для улучшения интерпретируемоси в статье вводится модификация метода OpenBox работающего с кусочно-линейными нейронными сетями. В нём модель представляется в виде набора интерпретируемых линейных классификаторов, при этом каждый из них определен на выпуклом многограннике, что позволяет классифицировать схожие объекты одним и тем же классификатором. Метод обобщается на работу с более широким классом нейронных сетей: сверточными нейронными сетями. Предлагается математически эквивалентная замена слоев свёрточной сети на линейные модели, что позволяет значительно улучшить интепретируемость. Вычислительный эксперимент проводится на выборках изображений рукописных цифр MNIST и изображений CIFAR-10.

Keywords Model interpretability \cdot Deep Learning \cdot OpenBox \cdot Convolutional neural networks

1 Introduction

В данном исследовании стоит задача улучшения интерпретируемости модели, где под интерпретируемостью понимается простота выделения важных признаков на выборке данных и способность относить схожие объекты выборки к одним и тем же кластерам.

Проблемой является в целом высокая сложность интерпретации сверточных нейронных сетей, требующая комплексного подхода. На данный момент существует множество различных решений проблемы интерпретации. В статье [1] описан метод LIME, предлагащий линейную апроксимацию предсказаний модели в некоторой небольшой окрестности вокруг объектов из тестовой выборки. Такой подход позволяет получить простую для интерпретации модель, являясь при этом "model-agnostic", то есть никак не использующий информацию о строении модели изнутри. Но он весьма неустойчив к выбросам и сильно зависим от адекватности апроксимации. В статье [2] предлагается другой подход SHAP, заключающийся в рассмотрении вклада каждого признака в результат работы модели. Таким образом удается выделять даже скрытые, но значимые признаки. Однако применимость данного подхода ограничена ввиду высоких вычислительных затрат, требуется многократное обучение модели, а также он весьма зависим от выборки данных. Ещё один подход к интерпретации OpenBox, описываемый в статье [3] предлагает построение математически эквивалентных линейных моделей для линейных нейронных сетей. Он показал более высокую эффективность по сравнению с LIME и весьма перспективен для дальнейшей работы.

В данной работе предлагается адаптация метода OpenBox для работы со свёрточными нейронными сетями: математически эквивалентно представить в виде линейных моделей такие слои как свёртка, пулинг и нормализация. И доказательство конкурентоспособности по сравнению с другими существующими методами интепретации CNN.

Для анализа качества предложенного метода проводится вычислительный эксперимент на выборках изображений рукописных цифр MNIST и изображений CIFAR-10.

2 Problem Definition

Для CNN \mathcal{N} содержащей L слоев назовем l слой \mathcal{L}_l . Так \mathcal{L}_1 - входной слой, а \mathcal{L}_L - выходной слой. Слои со 2 по L-1 - это скрытые слои. На вход сети \mathcal{N} подается $x \in \mathcal{X}$, где $X \subseteq \mathbb{R}^d$, то есть из пространства размерности d.

Слои с 2 по L-1 свёрточной сети $\mathcal N$ представляют собой свёртки, пулинги и нормализации. Каждый из которых по своей сути можно представить в виде линейных операций. Также между слоями применяются кусочно линейные функции активации.

На выходе сети \mathcal{N} получается вектор $a \in \mathcal{Y}$, где $Y \subseteq \mathbb{R}^{n_L}$, то есть пространство размерности n_L . Выходной слой сети \mathcal{L}_l применяет функцию softmax для получения выходного вектора.

CNN работает как классификатор $F: \mathcal{X} \to \mathcal{Y}$, сопоставляющий элементам из множества \mathcal{X} элементы из множества \mathcal{Y} . При этом F представляет собой сложную систему с трудом понимаемую человеком.

Таким образом перед работой стоит задача построить интерпретацию CNN $\mathcal N$ в виде линейной модели $\mathcal M$, хорошо поддающейся интерпретации. Где под интерпретацией понимается выделение важных признаков и классификация близких объектов одним и тем же классификатором. Таким образом для $\mathcal M$ выдвигаются два требования:

- 1. Точность: Модель $\mathcal M$ математически эквивалента модели $\mathcal N.$
- 2. Консистентность: Модель ${\cal M}$ даёт близкие интерпретации для близких объектов выборки.

Список литературы

- [1] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the predictions of any classifier, 2016.
- [2] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.
- [3] Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. Exact and consistent interpretation for piecewise linear neural networks: A closed form solution, 2019.