Kernels

Cornell CS 4/5780 — Spring 2022

Handcrafted Feature Expansion. Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to incorporate non-linearities into most linear classifiers. We can make linear classifiers non-linear by applying basis function (feature transformations) on the input feature vectors. Formally, for a data vector $\mathbf{x} \in \mathbb{R}^d$, we apply the transformation $\mathbf{x} \to \phi(\mathbf{x})$ where $\phi(\mathbf{x}) \in \mathbb{R}^D$. Usually $D \gg d$ because we add dimensions that capture non-linear interactions among the original features.

Question: In the figure to the right, what would be a good transformation to use? What would be a bad transformation?

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage: $\phi(\mathbf{x})$ might be very high dimensional.

Consider the following example: $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_d \end{bmatrix}^T$, and define $\phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & \cdots & x_d & x_1x_2 & \cdots & x_{d-1}x_d & \cdots & x_1x_2\cdots x_d \end{bmatrix}^T$.

Quiz: What is the dimensionality of $\phi(\mathbf{x})$?

This new representation, $\phi(\mathbf{x})$, is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector $\phi(\mathbf{x})$ or ever computing the full vector \mathbf{w} . It is based on the following observation: If we use gradient descent with any one of our standard <u>loss functions</u>, the gradient is a linear combination of the input samples. For example, let us take a look at the squared loss: $\ell(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$. The gradient descent rule, with step-size/learning-rate s > 0 (we denoted this as a > 0 in our <u>previous lectures</u>), updates \mathbf{w} over time,

$$w_{t+1} \leftarrow w_t - s(rac{\partial \ell}{\partial \mathbf{w}}) \ ext{ where: } rac{\partial \ell}{\partial \mathbf{w}} = \sum_{i=1}^n \underbrace{2(\mathbf{w}^ op \mathbf{x}_i - y_i)}_{\gamma_i ext{: function of } \mathbf{x}_i, y_i} \mathbf{x}_i = \sum_{i=1}^n \gamma_i \mathbf{x}_i$$

We will now show that we can express \mathbf{w} as a linear combination of all input vectors,

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i.$$

Since the loss is convex, the final solution is independent of the initialization, and we can initialize \mathbf{w}^0 to be whatever we want. For convenience, let us pick $\mathbf{w}_0 = 0$ the all-0 vector. For this initial choice of \mathbf{w}_0 , the linear combination in $\mathbf{w} = \sum_{i=1}^n \alpha_i \mathbf{x}_i$ is trivially $\alpha_1 = \cdots = \alpha_n = 0$. Throughout the entire gradient descent optimization such coefficients $\alpha_1, \ldots, \alpha_n$ must always exist, as we can re-write the gradient updates entirely in terms of updating the α_i coefficients. Formally, the argument is by induction. \mathbf{w} is trivially a linear combination of our training vectors for \mathbf{w}_0 (base case). If we apply the inductive hypothesis for \mathbf{w}_t it follows for \mathbf{w}_{t+1} .

The update-rule for α_i^t is thus $\alpha_i^t = \alpha_i^{t-1} - s\gamma_i^{t-1}$, and we have $\alpha_i^t = -s\sum_{r=0}^{t-1}\gamma_i^r$. In other words, we can perform the entire gradient descent update rule without ever expressing \mathbf{w} explicitly. We just keep track of the n coefficients $\alpha_1, \ldots, \alpha_n$. Now that \mathbf{w} can be written as a linear combination of the training set, we can also express the inner-product of \mathbf{w} with any input \mathbf{x}_i purely in terms of inner-products between training inputs:

$$\mathbf{w}^{ op}\mathbf{x}_j = \sum_{i=1}^n lpha_i \mathbf{x}_i^{ op} \mathbf{x}_j.$$

Consequently, we can also re-write the squared-loss from $\ell(\mathbf{w}) = \sum_{i=1}^n (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$ entirely in terms of inner-product between training inputs:

$$\ell(lpha) = \sum_{i=1}^n \left(\sum_{j=1}^n lpha_j \mathbf{x}_j^ op \mathbf{x}_i - y_i
ight)^2$$

Quiz: How would you write the test-time classifier in terms of these α parameters?

Inner-Product Computation

Let's go back to the previous example, of feature map ϕ consisting of polynomials of degree-up-to-d in x and degree at most 1 in each x_i . The inner product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ can be formulated as:

$$\phi(\mathbf{x})^ op \phi(\mathbf{z}) = 1 \cdot 1 + x_1 z_1 + x_2 z_2 + \dots + x_1 x_2 z_1 z_2 + \dots + x_1 \dots x_d z_1 \dots z_d = \prod_{k=1}^d (1 + x_k z_k).$$

The sum of 2^d terms becomes the product of d terms. We can compute the inner-product from the above formula in time O(d) instead of $O(2^d)$! We define the function

$$\mathsf{k}(\mathbf{x}_i,\mathbf{x}_j) = \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j)$$

With a finite training set of n samples, inner products are often pre-computed and stored in a Kernel Matrix (a.k.a. Gram Matrix):

$$\mathsf{K}_{ij} = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j).$$

If we store the matrix K, we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm. During training in the new high dimensional space of $\phi(\mathbf{x})$ we want to compute α_i through kernels, without ever computing any $\phi(\mathbf{x}_i)$ or even \mathbf{w} .

How does this affect the computational cost of our linear regressor?

General Kernels

Below are some popular kernel functions:

Linear: $K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$. (The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality d of the data is high.)

Polynomial: $K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\top} \mathbf{z})^d$.

Radial Basis Function (RBF) (aka Gaussian Kernel): $K(\mathbf{x}, \mathbf{z}) = e^{\frac{-\|\mathbf{x} - \mathbf{z}\|^2}{\sigma^2}}$. The RBF kernel is the most popular Kernel! It is a <u>Universal approximator!!</u> Its corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see this paper).

Exponential Kernel: $\mathsf{K}(\mathbf{x},\mathbf{z}) = e^{\frac{-\|\mathbf{x}-\mathbf{z}\|}{2\sigma^2}}$

Laplacian Kernel: $\mathsf{K}(\mathbf{x},\mathbf{z}) = e^{\frac{-|\mathbf{x}-\mathbf{z}|}{\sigma}}$

Sigmoid Kernel: $K(\mathbf{x}, \mathbf{z}) = \tanh(\mathbf{a}\mathbf{x}^{\top} + c)$

Can any function $\mathsf{K}(\cdot,\cdot) o \mathcal{R}$ be used as a kernel?