MATH-112 Homework 2

Problem 2

- (a) Let (X, d) be a metric space. Prove that X and \emptyset are both open and closed.
- (b) For $x, y \in \mathbb{R}$, define:

$$d_1(x,y) = |x-y|^3$$
, $d_2(x,y) = |x^2 - y^2|$, $d_3(x,y) = \frac{|x-y|}{1 + |x-y|}$.

Determine for each of these functions whether it defines a metric on \mathbb{R} .

(2.a): Below is a proof of each without relying on complements (which halves the problem):

- (i) For every point $x \in X$ and epsilon-neighborhood $N(x, \varepsilon)$ of x, it must be that $N(x, \varepsilon) \subseteq X$ since X contains all points, meaning $X = \mathring{X}$.
- (ii) Since X is the entire set it must contain all of its limit points, meaning $X = \overline{X}$.
- (iii) Since \emptyset contains no non-interior points, it is vacuously true that $\emptyset = \mathring{\emptyset}$.
- (iv) Since \emptyset contains no points, for any $x \in X$ and $y \in N(x, \varepsilon)$, we have $y \notin \emptyset$. Thus, the emptyset has no limit points, meaning $\emptyset = \overline{\emptyset}$.

We are done.

(2.b): Consider each function:

(i) Let x = 0, y = 1, z = 2. Then:

$$d_1(x,z) = |0-2|^3 = 8 \le 2 = |0-1|^3 + |1-2|^3 = d_1(x,y) + d_1(y,z),$$

failing the triangle inequality. Thus, d_1 is not a metric on \mathbb{R} .

(ii) Let x = 1, y = -1. Then:

$$d_2(x,y) = |(1)^2 - (-1)^2| = 0,$$

but $x \neq y$. Thus, d_2 is not a metric on \mathbb{R} .

(iii) First, since $|x-y| \ge 0$, $1+|x-y| \ge 1$, we have $d_3(x,y) \ge 0$ for all x,y. Also, we see:

$$d_3(x,y) = 0 \Longleftrightarrow \frac{|x-y|}{1+|x-y|} = 0 \Longleftrightarrow |x-y| = 0 \Longleftrightarrow x = y,$$

since |x-y| is a metric on \mathbb{R} . Thus, the first property of a metric holds for d_3 . Now, since |x-y| is a metric on \mathbb{R} , we know |x-y|=|y-x|, giving us:

$$d_3(x,y) = \frac{|x-y|}{1+|x-y|}$$

$$= \frac{|y-x|}{1+|y-x|}$$

$$= d_3(y,x).$$

Thus, the second property of a metric holds for d_3 . Finally, since |x-y| is a metric on \mathbb{R} , we know:

$$|x-z| \leq |x-y| + |y-z| \Longleftrightarrow \frac{1}{|x-z|} \geq \frac{1}{|x-y| + |y-z|} \Longleftrightarrow 1 - \frac{1}{|x-z|} \leq 1 - \frac{1}{|x-y| + |y-z|}.$$

We now observe:

$$\begin{split} d_3(x,z) &= \frac{|x-z|}{1+|x-z|} \\ &= 1 - \frac{1}{1+|x-z|} \\ &\leq 1 - \frac{1}{1+|x-y|+|y-z|} \\ &= \frac{|x-y|+|y-z|}{1+|x-y|+|y-z|} \\ &= \frac{|x-y|}{1+|x-y|+|y-z|} + \frac{|y-z|}{1+|x-y|+|y-z|} \\ &\leq \frac{|x-y|}{1+|x-y|} + \frac{|y-z|}{1+|y-z|} \\ &= d_3(x,y) + d_3(y,z), \end{split}$$

which gives us:

$$d_3(x,z) \le d_3(x,y) + d_3(y,z).$$

Thus, the third (and final) property of a metric holds for d_3 , meaning d_3 is a metric on \mathbb{R} . We are done.