A Quick/Terse Intro to Efficient Frontier Mathematics

Ashwin Rao

ICME, Stanford University

November 21, 2018

Overview

- Setting and Notation
- Derivation of Efficient Frontier Curve
- Interesting Efficient Portfolios
- 4 Linearity of Covariance Vector w.r.t. Mean Returns (a.k.a. CAPM)
- 5 Efficient Set with a Risk-Free Asset

Setting and Notation

- *n* assets in the economy with usual regularity/idealistic conditions
- Their mean returns denoted by column *n*-vector *R*
- Their covariance of returns denoted by V ($n \times n$ non-singular matrix)
- Column *n*-vector X_p denotes proportions of *n* assets in portfolio *p*
- Denote 1_n as a column *n*-vector of all 1's

$$X_p^T \cdot 1_n = 1$$

We drop subscript p whenever the reference to portfolio p is clear

Portfolio Returns

- A single portfolio's mean return is $X^T \cdot R$
- A single portfolio's variance of return is the quadratic form $X^T \cdot V \cdot X$
- \bullet Covariance between portfolios p and q is the bilinear form $X_p^T \cdot V \cdot X_q$
- Covariance of assets with a single portfolio is $V \cdot X$ (n-vector)

Derivation of Efficient Frontier Curve

- Efficient frontier is defined for a world with no risk-free assets
- It is the set of portfolios with minimum variance of return for each level of portfolio mean returns
- So, minimize portfolio variance $X^T \cdot V_p \cdot X$ subject to constraints:

$$X^T \cdot 1_n = 1$$

$$X^T \cdot R = r_p$$

where r_p is the mean return for efficient portfolio p.

- ullet Set up the Lagrangian and solve to express X in terms of R,V,r_p
- ullet Substituting for X gives us the efficient frontier parabola:

$$\sigma_p^2 = \frac{a - 2br_p + cr_p^2}{ac - b^2}$$
 where

$$a = R^T \cdot V^{-1} \cdot R, b = R^T \cdot V^{-1} \cdot 1_n, c = 1_n^T V^{-1} 1_n$$

The Efficient Frontier with 16 assets

Global Minimum Variance Portfolio (GMVP)

- Global minimum variance portfolio (GMVP) is the tip of the curve
- It has mean $r_0 = \frac{b}{c}$
- It has variance $\sigma_0^2 = \frac{1}{c}$
- It has investment proportions $X_0 = \frac{V^{-1} \cdot 1_n}{c}$
- GMVP is positively correlated with all portfolios and assets
- GMVP's covariance with all assets and all portfolios is a constant σ_0^2 (which is also equal to its own variance)

Orthogonal Efficient Portfolios

For every efficient portfolio p (other than GMVP), there exists a unique orthogonal efficient portfolio z (i.e. Covariance(p, z) = 0) with finite mean

$$r_z = \frac{a - br_p}{b - cr_p}$$

- z always lies on the opposite side of p on the efficient frontier
- In mean-variance space, the straight line from p to GMVP intersects the mean axis at r_z
- In mean-stdev space, the tangent to the efficient frontier at p intersects the mean axis at r_z
- All portfolios on one side of the efficient frontier are positively correlated with each other

Two-fund Theorem

- The X vector of any efficient portfolio is a linear combination of the X vectors of two other efficient portfolios
- Notationally, $X_p = \alpha X_{p_1} + (1-\alpha) X_{p_2}$ for some scalar α
- ullet The range of lpha from $-\infty$ to $+\infty$ traces the efficient frontier
- So to construct all efficient portfolios, we just need to identify two canonical efficient portfolios
- One of them is GMVP
- The other is a portfolio we call Special Efficient Portfolio (SEP) with:
 - Mean $r_1 = \frac{a}{b}$
 - Variance $\sigma_1^2 = \frac{a}{b^2}$
 - Investment proportions $X_1 = \frac{V^{-1} \cdot R}{b}$
- The orthogonal portfolio to SEP has mean $r_z=rac{a-brac{\dot{a}}{\dot{b}}}{b-crac{\dot{a}}{\dot{b}}}=0$

Linearity of Covariance Vector w.r.t. Mean Returns

Important Theorem: The covariance vector of individual assets with a portfolio (= V X) can be expressed as an exact linear function of the individual mean returns vector iff the portfolio is efficient. If the efficient portfolio is p (and its orthogonal portfolio z), then:

$$R = r_z 1_n + rac{r_p - r_z}{\sigma_p^2} Covariance Vector_p$$

$$= r_z 1_n + rac{r_p - r_z}{\sigma_p^2} (V \cdot X_p) = r_z 1_n + (r_p - r_z) \beta_p$$

where $\beta_p = \frac{CovarianceVector_p}{\sigma_p^2}$ is the vector of slope coefficients of regressions where the explanatory variable is the portfolio return and the n dependent variables are the asset returns.

The linearity of β s w.r.t. mean returns is the (in)famous CAPM banner.

Useful Corollaries

- If p is SEP, $r_z=0$ which would mean: $R=r_p\beta_p=rac{r_p}{\sigma_p^2}V\cdot X_p$
- So, in this case, covariance vector and β_p are just scalar multiples of asset mean vector
- The investment proportion *X* in a given individual asset changes monotonically along the efficient frontier
- Covariance = $V \cdot X$ is also monotonic along the efficient frontier
- But β is not monotonic \Rightarrow For every individual asset, there is a unique pair of efficient portfolios that result in max and min β s for that asset

Cross-Sectional Variance

- The cross-sectional variance in β s (variance in β s across assets for a fixed efficient portfolio) is zero when efficient portfolio is GMVP and when efficient portfolio has infinite mean
- The cross-sectional variance in β s is maximum for the two efficient portfolios with means: $r_0 \pm \sigma_0^2 \sqrt{|A|}$ where A is the 2 \times 2 matrix consisting of a,b,b,c
- These two portfolios lie symmetrically on opposite sides of the efficient frontier (their β s are equal and of opposite signs), and are the only two orthogonal efficient portfolios with the same variance ($=2\sigma_0^2$)

Efficient Set with a Risk-Free Asset

- If we have a risk-free asset with return r_F , V is singular
- First form the efficient frontier without the risk-free asset
- The efficient set (with a risk-free asset) is the tangent to the efficient frontier (without the risk-free asset) in mean-stdev space from $(0, r_F)$
- Let tangency point portfolio be T with return r_T
- If $r_F < r_0, r_T > r_F$
- If $r_F > r_0, r_T < r_F$
- All portfolios on this efficient set are perfectly correlated
- Homework: How is T related to SEP?