ReLU: $\max(0,z)$, **Tanh:** $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ **Model Error Hinge loss** $\max(0, 1 - y\hat{f}(x))$ **Softmax** $p(1|x) = \frac{1}{1+e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1+e^{\hat{f}(x)}}$ **Empirical Risk** $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$ **Sigmoid:** $\frac{1}{1+\exp(-z)}$ Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$ is the empirical covari-**Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ ance. Closed form solution given by the princi-Universal Approximation Theorem: We can Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_j(x)}$ It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \leq R(\hat{f})$. We call $R(\hat{f})$ approximate any arbitrary smooth target funcpal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \ge \cdots \ge$ **Linear Classifiers** the generalization error. $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$ tion, with 1+ layer with sufficient width. $f(x) = w^{\top}x$, the decision boundary f(x) = 0. **Forward Propagation** Bias Variance Tradeoff: For k > 1 we have to change the normalization If data is lin. sep., grad. desc. converges to Pred. error = $Bias^2$ + Variance + NoiseInput: $v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$

$$\mathbb{E}_{D}[R(\hat{f})] = \mathbb{E}_{\mathbf{x}}[f^{*}(\mathbf{x}) - \mathbb{E}_{D}[\hat{f}_{D}(\mathbf{x})]]^{2} \\ + \mathbb{E}_{\mathbf{x}}[\mathbb{E}_{D}[(\hat{f}_{D}(\mathbf{x}) - \mathbb{E}_{D}[\hat{f}_{D}(\mathbf{x})])^{2}]] + \sigma$$
Maximum-Margin Solution:

$$w_{MM} = \operatorname{argmax \ margin}(w) \ \operatorname{with} \ ||w||_{2} = 1$$
Where $\operatorname{margin}(w) = \min_{i} y_{i} w^{\top} x_{i}$.

Support Vector Machines

 $\nabla_w L(w) = 2X^{\top}(Xw - y)$

 $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_1$

 $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_2^2$

large $\lambda \Rightarrow$ larger bias but smaller variance

- Train \hat{f}_i on $D' - D'_i$

• Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$

• Pick model with lowest CV error

 $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$

 $||w^t - w^*||_2 \le ||I - \eta X^\top X||_{op}^t ||w^0 - w^*||_2$

 $\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \operatorname{sgn}\hat{f}(x)}$

 $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$

 $\nabla_w L(w) = 2X^{\top}(Xw - y) + 2\lambda w$

- Val. error $R_i = \frac{1}{|D'|} \sum \ell(\hat{f}_i(x), y)$

Solution: $\hat{w} = (X^{\top}X)^{-1}X^{\top}y$

Lasso Regression (sparse)

Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$

• For all folds i = 1, ..., k:

Converges only for convex case.

Regularization

Ridge Regression

Cross-Validation

Gradient Descent

For linear regression:

 $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$

Logistic loss $\log(1 + e^{-y\hat{f}(x)})$

Classification

Variance: how much \hat{f} changes with DHard SVM Regression $\hat{w} = \min_{w} ||w||_2$ s.t. $\forall i \ y_i w^{\top} x_i \ge 1$ **Squared loss** (convex) **Soft SVM** allow "slack" in the constraints $\frac{1}{n}\sum (y_i - f(x_i))^2 = \frac{1}{n}||y - Xw||_2^2$

$$\hat{w} = \min_{\substack{w,\xi \\ W,\xi}} \frac{1}{2} ||w||_2^2 + \lambda \sum_{i=1}^n \underbrace{\max(0, 1 - y_i w^\top x_i)}_{\text{hinge loss}}$$

$$\text{Choose } +1 \text{ as the more important class.}$$

$$\text{True Class} \qquad \underbrace{\text{FP}}_{\text{TN}+F}$$

error₂/FNR:

Regularization; Early Stopping; Dropout: Precision ignore hidden units with prob. p, after train-TPR / Recall : $\frac{1 \text{ F}}{\text{TP} + \text{FN}}$ **AUROC**: Plot TPR vs. FPR and compare different ROC's with area under the curve. **F1-Score**: $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$

Goal: large recall and small FPR. **Kernels** Parameterize:
$$w = \Phi^{T} \alpha$$
, $K = \Phi \Phi^{T}$

and psd: $z^{\top}Kz \ge 0$

rbf: $k(x,z) = \exp(-\frac{||x-z||_{\alpha}}{\tau})$

 $\alpha = 1 \Rightarrow$ laplacian kernel $\alpha = 2 \Rightarrow$ gaussian kernel **Kernel composition rules** $k = k_1 + k_2$, $k = k_1 \cdot k_2$ $\forall c > 0$. $k = c \cdot k_1$, $\forall f \text{ convex. } k = f(k_1), \text{ holds for polynoms with Converges in exponential time.}$ pos. coefficients or exp function.

A kernel is **valid** if *K* is sym.: k(x,z) = k(z,x)

 $ho = ||I - \eta X^{\top} X||_{op}^{t}$ conv. speed for const. η . Opt. fixed $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \leq \frac{2}{\lambda_{\max}}$. **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \overline{\nabla \ell}(w^t)$ **Kern. Ridge Reg.** $\frac{1}{n}||y-K\alpha||_2^2 + \lambda \alpha^\top K\alpha$ Learning rate η_t guarantees convergence if **KNN Classification**

• For given x, find among $x_1, ..., x_n \in D$ the **Principal Component Analysis Zero-One loss** not convex or continuous k closest to $x \to x_{i_1}, ..., x_{i_k}$ • Output the majority vote of labels

Neural Networks

Non-convex optimization problem: $\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$ $\left(\nabla_{W^{(L-1)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$

Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$

Backpropagation

 $\left(\nabla_{W^{(L-2)}} \ell \right)^T = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$ Only compute the gradient. Rand. init. weights by distr. assumption for φ . ($2/n_{in}$ for Kernel PCA error₁/FPR : $\frac{\text{FP}}{\text{TN} + \text{FP}}$ ReLu and $1/n_{in}$ or $1/(n_{in} + n_{out})$ for Tanh) Overfitting

> $\alpha^{(i)} = \frac{1}{\sqrt{\lambda}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^\top, \lambda_1 \ge \cdots \ge 0$ ing use all units and scale weights by p; **Batch Normalization**: normalize the input data (mean A point x is projected as: $z_i = \sum_{i=1}^n \alpha_i^{(i)} k(x_i, x)$ 0, variance 1) in each layer **Autoencoders CNN** $\varphi(W * v^{(l)})$ We want to minimize $\frac{1}{n}\sum_{i=1}^{n}||x_i-\hat{x}_i||_2^2$. The output dimension when applying m different $f \times f$ filters to an $n \times n$ image with padding

Lin.activation func. & square loss => PCA p and stride s is: $l = \frac{n+2p-f}{s} + 1$ **Statistical Perspective** For each channel there is a separate filter. Assume that data is generated iid. by some **Unsupervised Learning** p(x,y). We want to find $f: X \mapsto Y$ that minilin.: $k(x,z) = x^{\top}z$, poly.: $k(x,z) = (x^{\top}z+1)^m$ k-Means Clustering mizes the **population risk**. Optimization Goal (non-convex):

> Lloyd's heuristics: Init.cluster centers $\mu^{(0)}$: Assign points to closest center • Update μ_i as mean of assigned points Initialize with **k-Means++**: • Random data point $\mu_1 = x_i$

• Add seq μ_2, \ldots, μ_k rand., with prob:

given $\mu_{1:j}$ pick $\mu_{j+1} = x_i$ where $p(i) = x_i$

 $\frac{1}{7} \min_{l \in \{1, \dots, i\}} ||x_i - \mu_l||_2^2$ Converges expectation $\mathcal{O}(\log k) * \text{opt.solution.}$ Find *k* by negligible loss decrease or reg.

 $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{i \in \{1, \dots, k\}} ||x_i - \mu_j||_2^2$

Opt. Predictor for the Squared Loss f minimizing the population risk: $f^*(x) = \mathbb{E}[y \mid X = x] = \int y \cdot p(y \mid x) dy$ Estimate $\hat{p}(y \mid x)$ with MLE:

 $= \operatorname{argmin} - \sum \log p(y_i \mid x, \theta)$ The MLE for linear regression is unbiased and has minimum variance among all unbiased esti-

 $\theta^* = \operatorname{argmax} \hat{p}(y_1, ..., y_n \mid x_1, ..., x_n, \theta)$

 $\hat{w} = \operatorname{argmax}_{||w||_2 = 1} w^{\top} \Sigma w$

to $W^{\top}W = I$ then we just take the first k princi-

• The first k col of V where $X = USV^{\top}$.

first principal component eigenvector of

• covariance matrix is symmetric \rightarrow all

data covariance matrix with largest eigen-

principal components are mutually or-

linear dimension reduction method

pal eigenvectors so that $W = [v_1, \dots, v_k]$.

 $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = X^{\top} X \Rightarrow \text{ kernel trick:}$

 $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$

 $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$

PCA through SVD

thogonal

Closed form solution:

mators. However, it can overfit.

Ex. Conditional Linear Gaussian Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^{\top}x$:

 $\hat{p}(y \mid x, \theta) = \mathcal{N}(y; w^{\top}x, \sigma^2)$

Optimization goal: argmin $\sum_{i=1}^{n} ||x_i - z_i w||_2^2$ The optimal \hat{w} can be found using MLE: $\hat{w} = \operatorname{argmax} p(y|x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$ The optimal solution is given by $z_i = w^{\top} x_i$.

 $\forall f. k(x, y) = f(x)k_1(x, y)f(y)$ Mercers Theorem: Valid kernels can be decomposed into a lin. comb. of inner products.

• Pick k and distance metric d

activation function: $\phi(x, w) = \phi(w^{\top}x)$

w are the weights and $\varphi : \mathbb{R} \to \mathbb{R}$ is a nonlinear Substituting gives us:

Maximum a Posteriori Estimate Introduce bias to reduce variance. The small weight assumption is a Gaussian prior $w_i \sim y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot \prod p(x_i \mid \hat{y})$

 $\mathcal{N}(0, \beta^2)$. The posterior distribution of w is given by: $p(w \mid x, y) = \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x, w)}$ Now we want to find the \widehat{MAP} for w: $\hat{w} = \operatorname{argmax}_{w} p(w \mid \bar{x}, \bar{y})$

$$= \underset{w}{\operatorname{argmin}}_{w} P(w \mid x, y)$$

$$= \underset{w}{\operatorname{argmin}}_{w} - \underset{\beta}{\operatorname{log}} \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)}$$

$$= \underset{w}{\operatorname{argmin}}_{w} \frac{\sigma^{2}}{\beta^{2}} ||w||_{2}^{2} + \sum_{i=1}^{n} (y_{i} - w^{\top} x_{i})^{2}$$
Regularization can be understood as MAP inference, with different priors (= regularizers) and likelihoods (= loss functions).

Statistical Models for Classification

f minimizing the population risk: $f^*(x) = \operatorname{argmax}_{\hat{v}} p(\hat{y} \mid x)$

the 0-1 loss. Assuming iid. Bernoulli noise, the

 $p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$ Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. Using MLE we get:

conditional probability is:

Using MLE we get:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$
Which is the logistic loss. Instead of MLE we

 $\hat{w} = \operatorname{argmin} \lambda ||w||_2^2 + \sum_{i=1}^n \log(1 + e^{-y_i w^{\top} x_i})$ **Bayesian Decision Theory** Given $p(y \mid x)$, a set of actions A and a cost $C: Y \times A \mapsto \mathbb{R}$, pick the action with the max-

$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_{y}[C(y, a) \mid x]$ Can be used for asymetric costs or abstention.

Generative Modeling

imum expected utility.

Aim to estimate p(x,y) for complex situations using Bayes' rule: $p(x,y) = p(x|y) \cdot p(y)$

Naive Baves Model

helps estimating $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y_i)$. Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussians features. Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{x}$ data point: MLE for feature distribution: Where: $p(x_i \mid y) = \mathcal{N}(x_i; \hat{\mu}_{y,i}, \sigma_{y,i}^2)$

where:
$$\mu_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} x_{j,i}$$
$$\sigma^2 := \frac{1}{\sigma^2} \sum_{j \mid y_j = y} x_{j,i} \sum_{j \mid y_j = y} x_{j,i}$$

 $\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} (x_{j,i} - \hat{\mu}_{y,i})^2$ Predictions are made by:

$$\sum_{j \mid y_j = y} (x_{j,i} - \mu_{y,i})^2$$
 Y :

spherical covariances is equivalent to k-Means Equivalent to decision rule for bin. class.:

 $y = \operatorname{sgn}\left(\log \frac{p(Y=+1 \mid x)}{p(Y=-1 \mid x)}\right)$ Where f(x) is called the discriminant function.

No independence assumption, model the w_j^(t) = $\frac{1}{n}\sum_{i=1}^{n}\gamma_{j}^{(t)}(x_{i})$ $\mu_{j}^{(t)} = \frac{\sum_{i=1}^{n}x_{i}\cdot\gamma_{j}^{(t)}(x_{i})}{\sum_{i=1}^{n}\gamma_{j}^{(t)}(x_{i})}$ features with a multivariant Gaussian $\mathcal{N}(x; \mu_{y}, \Sigma_{y})$: $\mu_{y} = \frac{1}{\text{Count}(Y=v)}\sum_{i \mid v_{i}=v}x_{i}$ $\Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{n}\gamma_{j}^{(t)}(x_{i})(x_{i}-\mu_{j}^{(t)})(x_{i}-\mu_{j}^{(t)})^{\top}}{\sum_{i=1}^{n}\gamma_{j}^{(t)}(x_{i})}$ $\mu_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_{j}=y} x_{j}$ $\Sigma_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_{j}=y} (x_{j} - \hat{\mu}_{y}) (x_{j} - \hat{\mu}_{y})^{\top}$

$$p(y) = \frac{1}{2}$$
, Outlier detection: $p(x) \le \tau$.

Avoiding Overfitting

MLE is prone to overfitting. Avoid this by restricting model class (fewer parameters, e.g. (equiv. to a Wishart prior or the property of the proper

Discriminative models: p(y|x), can't detect outliers, more robust can estimate MAP, e.g. with a Gaussian prior: **Generative models:** p(x,y), can be more powerful (dectect outliers, Giving highly complex decision boundaries: missing values) if assumptions are met, are typ-

GNB) or using priors (restrict param. values).

Generative vs. Discriminative

ically less robust against outliers **Gaussian Mixture Model** Assume that data is generated from a convex-

combination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{i=1}^{k} w_i \mathcal{N}(x; \mu_i, \Sigma_i)$ We don't have labels and want to cluster this data. The problem is to estimate the param. for

the Gaussian distributions. $\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{j=1}^{k} w_{j} \cdot \mathcal{N}(x_{i} \mid \mu_{j}, \Sigma_{j})$

This is a non-convex objective. Similar to train-GM for classification tasks. Assuming for a ing a GBC without labels. Start with guess for class label, each feature is independent. This our parameters, predict the unknown labels and then impute the missing data. Now we can get a closed form update.

Hard-EM Algorithm E-Step: predict the most likely class for each M-Step: Compute MLE / Maximize:

 $z_i^{(t)} = \operatorname{argmax} p(z \mid x_i, \boldsymbol{\theta}^{(t-1)})$ = $\underset{\sim}{\operatorname{argmax}} p(z \mid \boldsymbol{\theta}^{(t-1)}) \cdot p(x_i \mid z, \boldsymbol{\theta}^{(t-1)})$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC. Problems: labels if the model is uncertain, tries

to extract too much inf. Works poorly if clus-

with Lloyd's heuristics. Soft-EM Algorithm **E-Step**: calculate the cluster membership

ters are overlapping. With uniform weights and therefore we need a different loss.

converges to saddle point with if G, D have weights for each point $(w_i = \pi_i = p(Z = j))$: enough capacity. For a fixed G, the optimal dis- $\gamma_j^{(t)}(x_i) = p(Z = j \mid D) = \frac{w_j \cdot p(x_i; \theta_j^{(t-1)})}{\sum_k w_k \cdot p(x_i; \theta_k^{(t-1)})}$ criminator is:

M-Step: compute MLE with closed form:
$$w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i) \qquad \mu_j^{(t)} = \frac{\sum_{i=1}^n x_i \cdot \gamma_j^{(t)}(x_i)}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$$
$$\Sigma_{i=1}^{(t)} \gamma_j^{(t)}(x_i) (x_i - \mu_j^{(t)}) (x_i - \mu_j^{(t)})^{\top}$$

Init. the weights as uniformly distributed, rand. or with k-Means++ and for variances use spher-This is called the Bayes' optimal predictor for This is also called the quadratic discriminant ical init. or empirical covariance of the data. analysis (QDA). LDA: $\Sigma_+ = \Sigma_-$, Fisher LDA: Select k using cross-validation. **Various**

GMMs can overfit with limited data. Avoid this by add v^2I to variance, so it does not collapse (equiv. to a Wishart prior on the covariance matrix). Choose v by cross-validation. $\nabla_x b^\top A x = A^\top b \quad \nabla_x x^\top x = 2x \quad \nabla_x x^\top A x = 2Ax$ trix). Choose v by cross-validation.

Gaussian-Mixture Bayes Classifiers Assume that $p(x \mid y)$ for each class can be mod-

elled by a GMM.
$$p(x \mid y) = \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$$

GMMs for Density Estimation Can be used for anomaly detection or data imputation. Detect outliers, by comparing the es-

 $p(y \mid x) = \frac{1}{z} p(y) \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$

FP rate. Use ROC curve as evaluation criterion and optimize using CV to find τ . General EM Algorithm **E-Step**: Take the expected value over latent 0: $L(\lambda w + (1 - \lambda)v) \le \lambda L(w) + (1 - \lambda)L(v)$

variables z to generate likelihood function Q: $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_Z[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$ $= \sum_{i=1}^{\kappa} \sum_{z_i=1}^{\kappa} \gamma_{z_i}(x_i) \log p(x_i, z_i \mid \theta)$ with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

 $\theta^{(t)} = \operatorname{argmax} O(\theta; \theta^{(t-1)})$

iteration increases the data likelihood. GANS Learn f: "simple" distr. \mapsto non linear distr.

Computing likelihood of the data becomes hard,

The prob. of being fake is $1 - D_G$. Too

 $\min \max \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$

 $+\mathbb{E}_{z\sim p_z}[\log(1-D(G(z,w_G),w_D))]$

Training requires finding a saddle point, always

powerful discriminator could lead to memorization of finite data. Other issues are oscillations/divergence or mode collapse.

One possible performance metric:

$$DG = \max_{w_D'} M(w_G, w_D') - \min_{w_G'} M(w_G', w_D)$$
 Where $M(w_G, w_D)$ is the training objective.

Derivatives: $\nabla_{\mathbf{x}} \mathbf{x}^{\top} A = A \quad \nabla_{\mathbf{x}} a^{\top} \mathbf{x} = \nabla_{\mathbf{x}} \mathbf{x}^{\top} a = a$

Bayes Theorem: $p(y \mid x) = \frac{1}{p(x)} \underbrace{p(y) \cdot p(x \mid y)}_{}$

 $\mathcal{N}(x;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp(-\frac{(x-\mu)^\top \Sigma^{-1} (x-\mu)}{2})$ Other Facts

 $\operatorname{Tr}(AB) = \operatorname{Tr}(BA), \operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2, X \in$

 $\mathbb{R}^{n\times d}: X^{-1} \to \mathscr{O}(d^3) X^{\top} X \to \mathscr{O}(nd^2), \binom{n}{k} =$

 $\frac{n!}{(n-k)!k!}$, $||w^{\top}w||_2 = \sqrt{w^{\top}w}$ timated density against τ . Allows to control the $\operatorname{Cov}[X] = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}]$ $p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$

Convexity 1: $L(w) + \nabla L(w)^{\top}(v - w) < L(v)$

2: Hessian $\nabla^2 L(w) \geq 0$ (psd)

• $\alpha f + \beta g$, $\alpha, \beta \ge 0$, convex if f, g convex

• $f \circ g$, convex if f convex and g affine or f non-decresing and g convex

• $\max(f,g)$, convex if f,g convex

We have monotonic convergence, each EM-