Rec'd PCT/PTO 13 DEC 2004

10/517701

PCT/JP03/07606 16.06.03

日本 国特 許 JAPAN PATENT OFFICE 庁 REC'D 0 4 JUL 2003 #

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 6月14日

出 願 番 号 Application Number:

特願2002-174764

[ST.10/C]:

[JP2002-174764]

出 願 人 Applicant(s):

日本板硝子株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 5月 6日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-174764

【書類名】

特許願

【整理番号】

02P110

【提出日】

平成14年 6月14日

【あて先】

特許庁長官 殿

【国際特許分類】

G02B 6/32

【発明者】

【住所又は居所】

大阪府大阪市中央区北浜四丁目7番28号 日本板硝子

株式会社内

【氏名】

浜中 賢二郎

【特許出願人】

【識別番号】

000004008

【氏名又は名称】

日本板硝子株式会社

【代理人】

【識別番号】

100085257

【弁理士】

【氏名又は名称】

小山 有

【手数料の表示】

【予納台帳番号】

038807

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0102036

【プルーフの要否】

要

【発明の名称】 光デバイスユニット及び光デバイス

【特許請求の範囲】

【請求項1】 半透過型光素子を中心として左右両側の少なくとも一方の側に出射用光ファイバと入射用光ファイバが対をなして配置され、左右一方の側の出射用光ファイバから出射した光をレンズ手段で集光せしめ、この集光した光を半透過型光素子を透過させ又は同素子で反射させて左右の入射用光ファイバに選択的に入射せしめるようにした光デバイスユニットにおいて、前記レンズ手段は対をなす出射用及び入射用の光ファイバに対応した一対のレンズからなり、また前記対をなす出射用及び入射用の光ファイバの光軸間距離は前記一対のレンズの光軸中心間距離より大きく、且つ各光ファイバの光出射端または入射端と各光ファイバに対応するレンズの光軸中心と半透過型光素子の透過点または反射点は一直線状に配置されていることを特徴とする光デバイスユニット。

【請求項2】 請求項1に記載の光デバイスユニットにおいて、前記光ファイバは多モード光ファイバであり、出射用ファイバの光出射端と半透過型光素子の透過点または反射点、また入射用光ファイバの光入射端と半透過型光素子の透過点または反射点とがそれぞれ幾何光学的な共役関係にあることを特徴とする光デバイスユニット。

【請求項3】 請求項1に記載の光デバイスユニットにおいて、前記光ファイバは単一モード光ファイバであり、出射用光ファイバの光出射端、半透過型光素子の透過点または反射点、また入射用光ファイバの光入射端のいずれの位置にもガウシアンビームのビームウェストが形成されることを特徴とする光デバイスユニット。

【請求項4】 請求項1に記載の光デバイスユニットにおいて、前記レンズは軸外収差を補正する手段を備えていることを特徴とする光デバイスユニット。

【請求項5】 請求項4に記載の光デバイスユニットにおいて、前記軸外収差を補正する手段は、レンズの直交する2軸の光学的パワーを変化させた形状であることを特徴とする光デバイスユニット。

【請求項6】 請求項1に記載の光デバイスユニットにおいて、前記半透過

型光素子は分波フィルタまたは液晶シャッタなどの反射/透過切替素子であることを特徴とする光デバイスユニット。

【請求項7】 請求項1乃至請求項6に記載の光デバイスユニットが1次元 または2次元状に複数個連設されていることを特徴とする光デバイス。

【発明の詳細な説明】

. [0001]

【発明の属する技術分野】

本発明は光分波モジュール、光アッド・ドロップモジュール、利得等化器、パワーモニターなどとして用いられる光デバイスユニット、及びこの光デバイスユニットを複数個集合した光デバイスに関する。

[0002]

【従来の技術】

4端子モジュールの例として知られる光分波モジュールは、図15に示すように分波フィルタ100の両側に屈折率分布型ロッドレンズ101,102を配置し、更に屈折率分布型ロッドレンズ101,102の外側にそれぞれ対をなす出射用光ファイバ103,105と入射用光ファイバ104,106を配置している。

[0003]

そして、出射用光ファイバ103から出射した波長(21+22)の光を屈折率分布型ロッドレンズ101を介して分波フィルタ100に当て、波長(21)の光については分波フィルタ100で反射しロッドレンズ101を介して入射用光ファイバ104に入射せしめ、波長(22)の光については分波フィルタ100を透過しロッドレンズ102を介して光ファイバ106に入射せしめ、同様に出射用光ファイバ105から出射した波長(23+24)の光を屈折率分布型ロッドレンズ102を介して分波フィルタ100に当て、波長(24)の光については分波フィルタ100で反射しロッドレンズ102を介して入射用光ファイバ106に入射せしめ、波長(23)の光については分波フィルタ100を透過しロッドレンズ101を介して光ファイバ104に入射せしめる。

[0004]

【発明が解決しようとする課題】

図16は図15に示した光学系と等価な光学系を凸レンズを用いて示したものであり、斯かる光学系は、光ファイバ103、104、105, 106とレンズ101、102との距離、レンズ101、102と分波フィルタ100との距離がともにレンズの焦点距離fとなるように設定している。

光ファイバは多くの場合、シリコンやガラスで作製された断面がV字状の平行な溝(所謂、平行溝)に配列固定される。このように光ファイバ103,104が平行に配置されたとき、上記の光学系は反射光を最も効率よく光ファイバ104で受光するための構成、即ちテレセントリック光学系となっている。

[0005]

上述した従来の光学系において、光ファイバとレンズとの距離、レンズと分波フィルタ (光機能素子)との距離が焦点距離と異なる場合には、図17に示すように分波フィルタで反射した光の主光線がレンズの光軸に対して傾斜し、このため受光側の光ファイバをこれにしたがって傾斜させなければならないなどの不具合が生じる。

[0006]

即ち、反射光の主光線が傾斜するのを避けるためにテレセントリック光学系を構成しようとすると、光ファイバーレンズ間距離とレンズー光機能素子間距離をともにレンズの焦点距離にする必要があり、例えば、光機能素子の構造の都合などでレンズー光機能素子間距離を長くする必要がある場合、長い焦点距離をもつレンズはその直径も大きくなるため、光学系の寸法が大きくなってしまうという難点がある。

[0007]

【課題を解決するための手段】

上記課題を解決するため本発明に係る光デバイスユニットは、半透過型光素子を中心として左右両側に出射用光ファイバと入射用光ファイバが対をなして配置され、左右一方の側の出射用光ファイバから出射した光をレンズ手段で集光せしめ、この集光した光を半透過型光素子を透過させ、また同素子で反射させて左右の入射用光ファイバに選択的に入射せしめるようにした光デバイスユニットであ

[0008]

このように、従来1個のレンズで構成していた部分を2個のレンズで構成し、 これらレンズの光軸中心間距離と光ファイバの光軸間距離を適正に調整すること で、自由度をもった光学設計が可能になる。

[0009]

また、本発明に係る光デバイスユニットにおいて、光ファイバとして多モード 光ファイバを用いる場合には、第1の光ファイバの光出射端と反射型光素子の反 射点、また第2の光ファイバの光入射端と反射型光素子の反射点とがそれぞれ幾 何光学的な共役関係にあることが好ましく、また光ファイバとして単一モード光 ファイバを用いる場合には、第1の光ファイバの光出射端、反射型光素子の反射 点、また第2の光ファイバの光入射端のいずれの位置にもガウシアンピームのピ ームウェストが形成される構成にすることが好ましい。

[0010]

また、前記レンズは軸外収差を補正する手段を備えていることが好ましく、軸外収差を補正する手段としては、レンズの直交する2軸の光学的パワーを変化させた形状が考えられる。例えば、いわゆるトーリックレンズや、軸外の非点収差、コマ収差を補正するように設計、作製された回折光学素子(DOE)レンズなどが使用できる。

[0011]

尚、本発明における半透過型光素子としては、例えば分波フィルタまたは液晶 シャッタなどの反射/透過切替素子などが考えられる。

[0012]

また、本発明に係る光デバイスは上記の光デバイスユニットが1次元または2 次元状に複数個連設された構成であり、斯かる光デバイス或いは光デバイスユニ ットのレンズとしては、マイクロレンズアレイが好適である。マイクロレンズアレイは、ガラス基板などの透明基板の表面に多数の凸レンズを所定のパターンで形成したものであるが、本発明においては特に2つのレンズが対をなすように、その一部が切断され、切断された部分を突き合わせた形状のレンズ部とするのがより好ましい。

[0013]

【発明の実施の形態】

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る光デバイスユニットのうち4端子モジュールの構成図であり、光デバイスユニットは、半透過型光素子1を中心として左右両側にレンズ手段2、3が配置され、レンズ手段2の外側には出射用光ファイバ4と入射用光ファイバ5が対をなして配置され、レンズ手段3の外側には出射用光ファイバ6と入射用光ファイバ7が対をなして配置されている。

[0014]

特に本発明にあっては、レンズ手段 2、3はそれぞれに対応する光ファイバに合わせて一対のレンズ 2 a, 2 b 及び 3 a, 3 b から構成され、また、前記対をなす出射用及び入射用の光ファイバ4、5 または 6、7の光軸間距離 L 1 は前記一対のレンズ 2 a, 2 b または 3 a, 3 b の光軸中心間距離 L 2 より大きく、且つ各光ファイバの光出射端または入射端と各光ファイバに対応するレンズの光軸中心と半透過型光素子の透過点または反射点は一直線状に配置されている。

つまり、各光ファイバ4、5、6、7の光出射端または光入射端と半透過型光 素子5の透過点または反射点とがそれぞれ幾何光学的な共役関係となる

[0015]

前記半透過型光素子 1 として、分波フィルタを用いた場合の作用を図 2 に基づいて説明すると、(a)に示すように、出射用光ファイバ(多モード光ファイバ) 4 から複数波長(λ 1 + λ 2)を含む光が分波フィルタに入射すると、特定の波長(λ 1)の光のみが透過し、入射用光ファイバ 7 に入射する。そして、分波フィルタが特定の波長(λ 2)を反射するように設計されている場合には、同時に反射光(λ 2)が入射用光ファイバ 5 に入射する。

[0016]

一方、単一モード光ファイバを用いる場合には、図3に示すように、各光ファイバ4、5、6、7の光出射端または光入射端、半透過型光素子1の透過点または反射点のいずれの位置にもガウシアンビームのビームウェストが形成されるように各要素間の距離を設定する。

[0017]

前記反射型光素子1としては、分波フィルタの他に液晶シャッタなどの反射/ 透過切替素子を用いてもよい。反射/透過切替素子を用いると、電気信号入力に よって光ファイバ4から出射した光を、光ファイバ5または光ファイバ7のいず れかに入射せしめる切替動作を行うことができる。

[0018]

尚、前記レンズ手段 2,3 は軸外収差を補正するために、レンズの直交する 2 軸の光学パワーを変化させた形状になっている。前述のトーリックレンズやDO E レンズがこれに相当する。

[0019]

図4は図1に示した光デバイスユニットを要素とする光デバイスの構成図であり、光デバイスは上記した光デバイスユニットを1次元または2次元状に複数個連設した構成となっている。光デバイスユニットは全て同一のものを連設してもよいが、異ならせてもよい。例えば、各光デバイスユニットの半透過型光素子1として、異なる分波特性をもつ分波フィルタを配列すれば、入射側の各光ファイバ4、5、6、7に異なる波長の光を入射させることができる。

[0020]

図5は本発明に係る光デバイスユニットのうち3端子モジュールの構成図であり、光デバイスユニットは、第1の光ファイバ4、第2の光ファイバ5、第1の

レンズ2 a、第2のレンズ2 b、半透過型光素子1及び第4の光ファイバ7から構成され、第1の光ファイバ4から出射した光が第1のレンズ2 aで集光されて半透過型光素子1方向に向い、この半透過型光素子1で前記第1の光ファイバ4から出射した光の一部(波長 λ 1)が反射され、この反射した光は第2のレンズ2 bで集光されて第2の光ファイバ5に入射し、また半透過型光素子1を透過した光(波長 λ 2)は第4の光ファイバ7に入射する。

[0021]

この実施例にあっても、第1及び第2の光ファイバ4、5の光軸間距離L1は第1及び第2のレンズ2a、2bの光軸中心間距離L2より大きく、且つ第1の光ファイバ4の光出射端と第1のレンズ2aの光軸中心と半透過型光素子1の反射点(透過点)は一直線状になり、また半透過型光素子1の反射点(透過点)と第2のレンズ2bの光軸中心と第2の光ファイバ5の入射端も一直線状になっている。そして、第3の光ファイバ6、第4の光ファイバ7の光入射端は半透過型光素子1を中心として第1の光ファイバ4、第2の光ファイバ5と対称位置にある。

[0022]

また、光ファイバとして多モード光ファイバを用いた場合、単一モード光ファイバを用いた場合の各要素間の距離の設定は、前記した実施例と同じであり、反射型光素子5の具合例も前記実施例と同一である。

[0023]

図1に示したように、光デバイスユニットを構成する一対のレンズ2a、2b の近接する部分はレンズとして有効に利用されていない。そこで、図6(4端子)、図7(3端子)及び図6のA方向矢視図である図8に示すように、マイクロレンズアレイを作製する場合には、近接した部分を除去した形状、具体的には、光軸方向から見て対をなすレンズ2a、2bの中心を結ぶ線分の垂直2等分線に沿って切除し、この切除された部分を突き合わせた形状にするようにしてもよい

[0024]

上記の光デバイスを構成するマイクロレンズアレイとしては、図9に示すよう

[0025]

図9に示す構造のマイクロレンズアレイを製造するには、例えばガラスなどの 透明基板10の表面に高屈折率樹脂を盛り付け、盛り付けた高屈折率樹脂をガラ ス型などでプレス成形し、この後、紫外線あるいは熱によって高屈折率樹脂を硬 化せしめる。

また、図10に示す構造のマイクロレンズアレイを製造するには、例えばガラスなどの透明基板10の表面にマスクを介してエッチングを施して凹部を形成し、この凹部に高屈折率樹脂を充填し、この後、紫外線あるいは熱によって高屈折率樹脂を硬化せしめる。

尚、マイクロレンズアレイを製造する方法は上記に限定されず、イオン交換法などでも可能である。

[0026]

次に、具体的な設計数値例を挙げて本発明に係る光デバイスを説明する。ここで、図11(a)は光ファイバ間距離を125 μ mとした場合の設計値の表、(b)は光ファイバ間距離を250 μ mとした場合の設計値の表、(c)は設計値の説明に供する図、図12(a)は図11に示した設計値のうち倍率とレンズ径の関係を示すグラフ、(b)は倍率と開口率の関係を示すグラフ、(c)は倍率とレンズー光機能素子間距離の関係を示すグラフであり、また図13(a)は従来のテレセントリック光学系によって光ファイバ間距離を125 μ mとした場合の設計値の表、(b)は同じく光ファイバ間距離を250 μ mとした場合の設計値の表、(c)は設計値の説明に供する従来のテレセントリック光学系の図、図14(a)は図13に示した設計値のうちレンズ径と開口率との関係を示すグラフ、(b)はレンズ径とレンズー光機能素子間距離との関係を示すグラフ、(c)はレンズ径とビームウェスト径との関係を示すグラフである。

[0027]

[0028]

また、図11において、光ファイバ間距離を250μmとすると、図12(c)に示すように、同じ倍率でレンズー光機能素子間距離L/2を約2倍に延ばすことができる。このことも光デバイスの設計における自由度が高くなることにつながる。

[0029]

一方、図13、図14に示すように、テレセントリック光学系の場合には、レンズー光機能素子間距離 L/2-=f、光ファイバーレンズ間距離もfに固定され、設計の自由度が小さくなり、また、光ファイバ間距離 125μ mの光学系で、L/2-=1 mmとするとレンズ径は約 500μ m、L/2-=2.5 mmではレンズ径は約1 mmとなり 2 倍も大きくする必要があり、装置全体の大型化につながる。

[0030]

【発明の効果】

以上に説明したように本発明によれば、結像光学系であるので、光学要素間の 距離の設定の自由度が大きく、利用範囲が広い。

また、光学要素間の間隔を等間隔且つ髙精度に形成しやすく、髙度な調芯技術が不要となる。

特に、対をなすレンズの近接する部分を切除しレンズとして有効に作用する部分のみを集合させたマイクロレンズアレイとすることで、デバイスの小型化を達成することが可能になる。

【図面の簡単な説明】

【図1】

本発明に係る光デバイスユニットのうち4端子モジュールの構成図 【図2】

(a) 及び(b) は図1に示した光デバイスユニットの作用を説明した図 【図3】

単一モードの光ファイバを用いた場合の作用を説明した図 【図4】

図1に示した光デバイスユニットを要素とする光デバイスの構成図 【図5】

別実施例に係る光デバイスユニットの作用を説明した図

【図6】

別実施例に係る光デバイスの構成図

[図7]

別実施例に係る光デバイスの構成図

【図8】

図6のA方向矢視図

【図9】

図6に示した光デバイスを構成するマイクロレンズアレイの断面図

【図10】

マイクロレンズアレイの別実施例を示す断面図

【図11】

(a) は光ファイバ間距離を 125μ mとした場合の設計値の表、(b) は光ファイバ間距離を 250μ mとした場合の設計値の表、(c) は設計値の説明に供する図

(a) は図11に示した設計値のうち倍率とレンズ径の関係を示すグラフ、(b) は倍率と開口率の関係を示すグラフ、(c) は倍率とレンズー光機能素子間 距離の関係を示すグラフ

【図13】

(a) は従来のテレセントリック光学系によって光ファイバ間距離を 125μ mとした場合の設計値の表、(b) は同じく光ファイバ間距離を 250μ mとした場合の設計値の表、(c) は設計値の説明に供する従来のテレセントリック光学系の図

【図14】

(a) は図13に示した設計値のうちレンズ径と開口率との関係を示すグラフ、(b) はレンズ径とレンズー光機能素子間距離との関係を示すグラフ、(c) はレンズ径とビームウェスト径との関係を示すグラフ

【図15】

従来の光分波モジュールの構成図

【図16】

図15に示した光学系と等価な光学系を凸レンズを用いて示した図

【図17】

従来の光分波モジュールの問題点を説明した図

【符号の説明】

1…半透過型光素子、2、3…レンズ手段、2 a, 2 b、3 a, 3 b…レンズ、4、6…出射用光ファイバ、5、7…入射用光ファイバ、10…透明基板、L1…対をなす光ファイバ4、5(6、7)の光軸間距離、L2…対をなすレンズ2a, 2 b(3 a, 3 b)の光軸中心間距離。

図面

[図1]

【図4】

【図5】

【図6】

[図7]

[図8]

[図9]

マイクロレンズアレイ

【図10】

マイクロレンズアレイ

【図11】

pitch = 125μ m

(a)	β	PL	dO	L/2	f	NA	θ
	3	94	247	740	185	0.253	3.6
	4	100	263	1053	211	0.238	2.7
	5	104	274	1371	228	0.228	2.2
	6	107	282	1692	242	0.222	1.8
	7	109	288	2015	252	0.217	1.6
	8	111	292	2339	260	0.214	1.4
	9	113	296	2664	266	0.211	1.2

pitch = $250 \,\mu$ m

	β	PL	d0	L/2	f	NA	θ
	3	188	493	1480	370	0.253	3.6
	4	200	526	2105	421	0.238	2.7
(b)	5	208	548	2741	457	0.228	2.2
	6	214	564	3383	483	0.222	1.8
	7	219	576	4030	504	0.217	1.6
	8	222	585	4678	520	0.214	1.4
	9	225	592	5329	533	0.211	1.2

[図12]

【図13】

pitch = $125 \,\mu$ m

(a)

f(μ m)	PL(µm)	NA .	θ (deg)	L/2(μ m)	2w1(μm)
360	250	0.347	9.85	360	67.7
720	375	0.260	4.96	720	135.3
1080	500	0.231	3.31	1080	203.0
1440	625	0.217	2.49	1440	270.7
1800	750	0.208	1.99	1800	338.3
2160	875	0.203	1.66	2160	406.0
2520	1000	0.198	1.42	2520	473.6

pitch = 250μ m

(b)

f(µm)	PL(µm)	NA .	θ (deg)	L/2(µm)	2w1(μm)
360	375	0.521	19.15	360	67.7
720	500	0.347	9.85	720	135.3
1080	625	0.289	6.60	1080	203.0
1440	750	0.260	4.96	1440	270.7
1800	875	0.243	3.97	1800	338.3
2160	1000	0.231	3.31	2160	406.0
2520	1125	0.223	2.84	2520	473.6

【図14】

【図15】

【図16】

【図17】

要約書

【課題】 光学要素間の距離の設定の自由度が大きく、高度な調芯技術が不要な 光デバイス (ユニット) を提供する。

【解決手段】 半透過型光素子1を中心として左右両側にレンズ手段2、3が配置され、レンズ手段2の外側には出射用光ファイバ4と入射用光ファイバ5が対をなして配置され、レンズ手段3の外側には出射用光ファイバ6と入射用光ファイバ7が対をなして配置され、レンズ手段2、3はそれぞれに対応する光ファイバに合わせて一対のレンズ2a,2b及び3a,3bから構成され、また、前記対をなす出射用及び入射用の光ファイバ4、5または6、7の光軸間距離L1は前記一対のレンズ2a,2bまたは3a,3bの光軸中心間距離L2より大きく、且つ各光ファイバの光出射端または入射端と各光ファイバに対応するレンズの光軸中心と半透過型光素子の透過点または反射点は一直線状に配置されている

【選択図】

図 1

出願人履歴情報

識別番号

[000004008]

1. 変更年月日

2000年12月14日

[変更理由]

住所変更

住 所

大阪府大阪市中央区北浜四丁目7番28号

氏 名

日本板硝子株式会社