

Géométrie dans l'espace²

Spécialité Maths

Bases et repère de l'espace

- ullet Une base de l'espace est un triplet $(\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ où $\overrightarrow{i},\overrightarrow{j}$ et \overrightarrow{k} sont 3 vecteurs non coplanaires.
- Tout vecteur \overrightarrow{s} s'écrit comme combinaison linéaire des vecteurs \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} : $\exists (a;b;c) \in \mathbb{R}^3$ tq $\overrightarrow{s} = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}$
- •Repère de l'espace : quadruplet $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$
- orthogonal : si \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont 2 à 2 orthogonaux
- orthonormé : si $||\overrightarrow{i}|| = ||\overrightarrow{j}|| = ||\overrightarrow{k}|| = 1$

 \overrightarrow{u} vecteur de l'espace : $\exists (x; y; z) \in \mathbb{R}^3, \overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ On note $\overrightarrow{u}(x;y;z)$ où (x;y;z) sont les coordonnées de \overrightarrow{u} dans ce repère. Coordonnées de M = coordonnées de $O\dot{M}$

$$\overrightarrow{u} = \overrightarrow{v} \iff \begin{cases} x = x' \\ y = y' ; \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} ; \overrightarrow{ku} \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$$

Équations de droites et de plans

Écriture vectorielle :

- $\Rightarrow \overrightarrow{AM} = t\overrightarrow{u}$: droite passant par A de vecteur direct. \overrightarrow{u}
- $\Rightarrow \overrightarrow{AM} = t\overrightarrow{u} + t'\overrightarrow{v}$: plan passant par A de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} non colinéaires
- $\Rightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$: plan passant par A de vecteurs normal \overrightarrow{n}

Représentations paramétriques :

• Droite (*d*) passant *A* et de vecteur directeur \overrightarrow{u} :

$$M \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in d \iff \exists t \in \mathbb{R} \text{ tq} \left\{ \begin{array}{l} x = x_A + ta \\ y = y_A + tb \\ z = z_A + tc \end{array} \right. \text{ avec } \overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

 \bullet Plan ${\mathcal P}$ passant par A dirigé par \overrightarrow{u} et \overrightarrow{v} :

$$\begin{cases} x = x_A + ta + t'a' \\ y = y_A + tb + t'b' \\ z = z_A + tc + t'c' \end{cases} \text{ avec } \overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \overrightarrow{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} t, t' \in \mathbb{R}$$

Equation cartésienne d'un plan de vecteur normal \overrightarrow{n} | bax + by + cz + d = 0

Distance dans un repère orthonormé

- $\Rightarrow \overrightarrow{u}.\overrightarrow{v} = xx' + yy' + zz'$
- $\Rightarrow ||\overrightarrow{u}|| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{x^2 + y^2 + z^2}$
- $\Rightarrow AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$

Positions relatives : 2 droites

• Soit $d_1//d_3$. Si $d_2//d_3$ alors $d_1//d_2$

Positions relatives : droite-plan

- Soit d dirigée par \overrightarrow{w} . On considère une base $(\overrightarrow{u}; \overrightarrow{v})$ de \mathcal{P} . Alors $\frac{d}{\mathcal{P}} \iff (\overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w})$ sont coplanaires.
- d parallèle à une droite $d' \subset \mathcal{P} \Rightarrow d$ est parallèle à \mathcal{P}
- Si $P_1//P_2$ et si $D//P_1$ alors $D//P_2$
- (2) Théorème du toit : Si \mathcal{P} et \mathcal{Q} sont sécants selon une droite δ et si $d//\mathcal{P}$ et $d//\mathcal{Q}$ alors $d//\delta$
- ullet Toit v2 : Soit \mathcal{P}_1 et \mathcal{P}_2 2 plans sécants selon une droite Δ avec $d_1 \subset \mathcal{P}_1$ et $d_2 \subset \mathcal{P}_2$. Alors, Δ est parallèle à d_1 et à d_2

Positions relatives : 2 plans

- 2 plans sont parallèles (ont la même direction) si toute base $(\overrightarrow{u_1}; \overrightarrow{v_1})$ de l'un est aussi une base de l'autre.
- (3) Si 2 droites sécantes d'un plan \mathcal{P} sont respectivement parallèles à 2 droites sécantes d'un plan Q, alors P//Q
- Soit $P_1//P_3$. Si $P_2//P_3$ alors $P_1//P_2$
- (4) Soit \mathcal{P} et \mathcal{Q} deux plans parallèles. Alors, tout plan \mathcal{R} sécant avec $\mathcal P$ l'est également avec $\mathcal Q$ et les droites d'intersection δ et d sont parallèles