2.4.1: SAS - Simultaneous Inference and Regression Through Origin

Dr. Bean – Stat 5100

```
/* Input Toluca data (recall Ch. 1 example) */
data toluca; input lotsize workhours @@; cards;
80 399
        30 121
                50 221
                        90 376
                                          60 224
120 546
       80 352 100 353
                       50 157
                                 40
                                    160
                                         70 252
90 389 20 113 110 435 100 420
                                    212
                                          50 268
                                 30
90 377 110 421 30 273 90 468 40 244
                                         80 342
70 323
 ;
run;
/* Simultaneous 95% interval estimation of betas */
proc reg data=toluca;
 model workhours = lotsize / clb alpha=.025;
 title1 'Simultaneous 95% confidence intervals on betas';
run;
```

Simultaneous 95% confidence intervals on betas

Parameter Estimates										
Variable	D F	Paramete r Estimate	Standar d Error	t Valu e	Pr > t	97.5% Confidence Limits				
Intercep t	1	62.36586	26.17743	2.38	0.0259	0.40436	125.1360 7			
lotsize	1	3.57020	0.34697	10.29	<.0001	2.73821	4.40220			

```
/* Simultaneous 90% interval estimation of mean workhours
   at lotsize levels 30, 65, 100 (using Working-Hotelling
   and Bonferroni)
 */
data dummy; input lotsize check; cards;
  30
     1
  65
     1
  100 1
data temp; set toluca dummy;
proc reg data=temp noprint;
  model workhours = lotsize;
  output out=out1 p=Yhat stdp=seYhat;
    /* KEY: stdp is SE of mean prediction */
data out1; set out1;
  alpha = 0.10; /* 1-alpha is simult. conf. level */
  p = 2;
                 /* # of beta's (including intercept) */
 n = 25;
                /* sample size */
                 /* number of simultaneous intervals */
  q = 3;
  W = sqrt(p*finv(1-alpha,p,n-p)); /* WH crit. val. */
                                   /* Bonf. crit. val. */
  t = tinv(1-alpha/(2*g), n-p);
  WH upper = Yhat + W*seYhat;
  WH lower = Yhat - W*seYhat;
 B upper = Yhat + t*seYhat;
  B lower = Yhat - t*seYhat;
proc print data=out1;
  where check = 1;
  var lotsize Yhat seYhat WH lower WH upper
      B lower B upper;
  title1
   'Simultaneous 90% interval estimation of mean response';
   'at three X-levels, using Working-Hotelling and
   Bonferroni';
run;
```

Simultaneous 90% interval estimation of mean response at three X-levels, using Working-Hotelling and Bonferroni

Ob s	lotsiz e	Yhat	seYhat	WH_lowe	WH_uppe r	B_lowe r	B_uppe r
26	30	169.47 2	16.969 7	131.154	207.790	131.057	207.887

27	65	294.42 9	9.9176	272.035	316.823	271.978	316.880
28	100	419.38 6	14.272	387.159	451.613	387.077	451.695

```
/* Simultaneous 95% prediction limits on next two lots,
  with sizes 80 and 100 units (using Scheffe and
  Bonferroni)
 */
data dummy; input lotsize check; cards;
  80 1
 100 1
data temp; set toluca dummy;
proc reg data=temp noprint;
  model workhours = lotsize;
  output out=out1 p=Yhat stdi=seYhatnew;
    /* KEY: stdi is SE of individual prediction */
data out1; set out1;
  alpha = 0.05; /* 1-alpha is simult. pred. level */
                 /* # of beta's (including intercept) */
  n = 25;
                /* sample size */
  q = 2;
                 /* number of simultaneous intervals */
  S = sqrt(g*finv(1-alpha,g,n-p)); /* Scheffe crit val */
                                   /* Bonf. crit. val. */
  t = tinv(1-alpha/(2*q), n-p);
  S upper = Yhat + S*seYhatnew;
  S_lower = Yhat - S*seYhatnew;
  B upper = Yhat + t*seYhatnew;
  B lower = Yhat - t*seYhatnew;
proc print data=out1;
  where check = 1;
  var lotsize Yhat seYhatnew S lower S upper
      B lower B upper;
  title1 'Simultaneous 95% interval estimation of
          individual prediction';
  title2 'at two X-levels, using Scheffe and Bonferroni';
run;
```

Simultaneous 95% interval estimation of individual prediction at two X-levels, using Scheffe and Bonferroni

Obs	lotsize	Yhat	seYhatnew	S_lower	S_upper	B_lower	B_upper
26	80	347.982	49.9110	217.407	478.557	228.302	467.662
27	100	419.386	50.8666	286.311	552.461	297.414	541.358

```
/* Regression through origin example: plumbing supplies
  company looking at relationship between number of
  work units (X) and labor costs (Y) at its 12 warehouses
*/
data warehouse; input work cost @@; cards;
20 114
        196 921 115 560
                          50 245
                                  122 575
                                           100 475
33 138
                                  182 828
        154 727 80 375
                         147 670
                                           160 762
 0 .
proc reg data=warehouse;
 model cost = work / noint;
 output out=out1 p=pred;
 title1 'Regression through origin';
run;
```

Regression through origin

Number of Observations Read	13
Number of Observations Used	12
Number of Observations with Missing Values	1

Note: No intercept in model. R-Square is redefined.

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	4191980	4191980	18762.5	<.0001			
Error	11	2457.65933	223.42358					
Uncorrected Total	12	4194438						

Root MSE	14.94736	R-Square	0.9994
Dependent Mean	532.50000	Adj R-Sq	0.9994
Coeff Var	2.80702		

Parameter Estimates								
		Parameter Estimate	Standard Error	t Value	Pr > t			
work	1	4.68527	0.03421	136.98	<.0001			

run;
/* Note forced inclusion of
 work=0 dummy observation
 for graphical purposes */

