## Fractions, racines, puissances

**Proposition 1.** Soit 
$$(a, b, c, d) \in (\mathbb{R}^*)^3$$
.On a

$$\frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

$$c\frac{a}{b} = \frac{ac}{b}$$

$$\frac{ca}{cb} = \frac{c}{c}\frac{a}{b} = \frac{a}{b}$$

$$\frac{\frac{a}{b}}{c} = \frac{a}{bc} \quad \text{et} \quad \frac{a}{\frac{b}{c}} = \frac{ac}{b}$$
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

$$\frac{a\frac{1}{c}}{b\frac{1}{c}} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{a}{b}$$

**Proposition 2.** Pour tout  $(x,y) \in \mathbb{R}^2$ , non nuls si besoin, pour tout  $n, m \in \mathbb{Z}$  on a :

- $\bullet (xy)^n = x^n y^n$
- $x^n \times x^m = x^{n+m}$  et  $\frac{x^n}{x^m} = x^{n-m}$
- $\bullet (x^n)^m = x^{nm}$

**Proposition 3.** Soit  $(a,b) \in \mathbb{R}^+$ :

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{a^2} = |a|$$
 Donc vaut  $a \text{ si } a > 0$