Quantization

Contents

- Background
- Preliminaries
- Quantization Basics
- Quantization Strategy
- Practice

- Why is Quantization Important?
 - Imbalance in the improvement of hardware resources

- Why is Quantization Important?
 - Imbalance in the improvement of hardware resources

1. Models are expanding rapidly, but **hardware resources** (particularly VRAM) **are not** keeping pace, primarily due to cost constraints.

- Why is Quantization Important?
 - Imbalance in the improvement of hardware resources

2. Hardware **compute power is increasing fast,** while **memory bandwidth** is growing at a **slower rate**.

- Why is Quantization Important?
 - <u>Imbalance in the improvement of hardware resources</u>
 - To maximize throughput/latency, we need to fully utilize the hardware.
 (We want our model to run faster on newer H/W)

- Why is Quantization Important?
 - Imbalance in the improvement of hardware resources
 - To maximize throughput/latency, we need to fully utilize the hardware.
 (We want our model to run faster on newer H/W)
 - Quantization is one of the most practical method to solve this problem.

Background – Techniques

Optimizing the NN architecture

- Designing efficient NN model architecture
- Co-designing NN architecture and hardware together

Lightweighting NN model

- Knowledge Distillation
- Pruning
- Quantization

Background – Techniques

Optimizing the NN architecture

- Designing efficient NN model architecture
- Co-designing NN architecture and hardware together

Lightweighting NN model

- Knowledge Distillation
- Pruning
- Quantization

What is Quantization?

Mapping continuous (Float) values into smaller set of discrete (Integer) values

Example (3-Bit Uniform Quantization)

Quantization inevitably have a negative impact on accuracy

How to overcome this problem?

Quantization inevitably have a negative impact on accuracy

How to overcome this problem?

1. Quantize everything and find way to restore accuracy

Quantization inevitably have a negative impact on accuracy

How to overcome this problem?

- 1. Quantize everything and find way to restore accuracy
- 2. Partially apply quantization to avoid affecting accuracy

Quantization inevitably have a negative impact on accuracy

How to overcome this problem?

- 1. Quantize everything and find way to restore accuracy
- 2. Partially apply quantization to avoid affecting accuracy
 - Quantizing a few operation would not change model output much
 - Find expensive operation with a long latency and quantize them

- Examples of expensive operations in DL
 - Convolution operation
 - Linear operation
- Examples of inexpensive operations in DL
 - Normalization Layer
 - Element-wise Operation (Residual add/concatenation)

$$FLOPs = Col_k \times Row_k \times C_{in} \times Col_{out} \times Row_{out} \times C_{out}$$

$$FLOPs = Col_k \times Row_k \times C_{in} \times Col_{out} \times Row_{out} \times C_{out}$$

$$FLOPs = Col_k \times Row_k \times C_{in} \times Col_{out} \times Row_{out} \times C_{out}$$

$$MEM = [Col_{in} \times Row_{in} \times C_{in}] + [Col_k \times Row_k \times C_{in} \times C_{out}]$$

$$MEM = [Col_{in} \times Row_{in} \times C_{in}] + [Col_k \times Row_k \times C_{in} \times C_{out}]$$

$$MEM = [Col_{in} \times Row_{in} \times C_{in}] + [Col_{k} \times Row_{k} \times C_{in} \times C_{out}]$$

Example with ResNet50 (middle layer)

$$FLOPs = 3 \times 3 \times 28 \times 28 \times 128 \times 128 = 115M$$

 $MEM = [28 \times 28 \times 128] + [3 \times 3 \times 128 \times 128] = 0.10M + 0.15M$

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

$$MEM = 0.10M + 0.15M$$

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

Suppose we are using FP16..

$$MEM = 0.10M + 0.15M = 0.5MB$$

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

So roughly assuming, our hardware need capability to process 115M computation while reading 0.5MB

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

So roughly assuming, our hardware need capability to process 115M computation while reading 0.5MB

This is called **Arithmetic intensity**: FLOPs / Bytes

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

Arithmetic intensity of A100 with FP16 : **208 FLOPs / Bytes**

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

Arithmetic intensity of A100 with FP16 : **208 FLOPs / Bytes**

Can process at most 208 Operation every 1 Byte Read.

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

Arithmetic intensity of A100 with FP16 : **208 FLOPs / Bytes**

Arithmetic intensity of example: **230 FLOPs / Bytes**

Example with ResNet50 (middle layer)

$$FLOPs = 115M$$

 $MEM = 0.10M + 0.15M = 0.5MB$

Arithmetic intensity of A100 with FP16 :

208 FLOPs / Bytes

Arithmetic intensity of example:

Going to suffer Compute bound!

230 FLOPs / Bytes

Example with ResNet50 (middle layer)

$$FLOPs = 115M \times 128 = 14.8B$$

 $MEM = 12.8M + 0.15M = 26.0MB$

Arithmetic intensity of A100 with FP16 : **208 FLOPs / Bytes**

Arithmetic intensity with 128 batch: 569 FLOPs / Bytes

Example with ResNet50 (middle layer)

$$FLOPs = 115M \times 128 = 14.8B$$

$$MEM = 12.8M + 0.15M = 26.0MB$$

Arithmetic intensity of A100 with FP16:

208 FLOPs / Bytes

Arithmetic intensity with 128 batch:

Very Compute bound! 569 FLOPs / Bytes

Example with ResNet50 (middle layer)

$$FLOPs = 115M \times 128 = 14.8B$$

 $MEM = 12.8M + 0.15M = 26.0MB$

Arithmetic intensity of A100 with INT8: 832 OPs / Bytes

Arithmetic intensity with 128 batch: **569 FLOPs / Bytes**

Example with ResNet50 (middle layer)

$$FLOPs = 115M \times 128 = 14.8B$$

 $MEM = 12.8M + 0.15M = 13.0MB$

Arithmetic intensity of A100 with INT8: 832 OPs / Bytes

Arithmetic intensity with 128 batch: **1139 OPs / Bytes**

Example with ResNet50 (middle layer)

$$FLOPs = 115M \times 128 = 14.8B$$

 $MEM = 12.8M + 0.15M = 13.0MB$

Arithmetic intensity of A100 with INT8:

832 OPs / Bytes

Arithmetic intensity with 128 batch:

We have chance to accelerate the layer with INT8 quantized computation!

1139 OPs / Bytes

$$FLOPs = (2 * C_{in} - 1) \times C_{out}$$

 $MEM = C_{in} + [C_{in} \times C_{out}]$

Example with AlexNet

$$FLOPs = (2 * 4096 - 1) \times 4096$$

 $MEM = 4096 + [4096 \times 4096]$

Example with AlexNet

$$FLOPs = 33.55M$$

 $MEM = 4K + 16.7M = 16.78M$

Example with AlexNet

$$FLOPs = 33.55M$$

 $MEM = 4K + 16.7M = 33.56MB$

Example with AlexNet

$$FLOPs = 33.55M$$

 $MEM = 4K + 16.7M = 33.56MB$

Arithmetic intensity of example: 1.0 FLOPs / Bytes

Can process 1 Operation every 1 Byte Read.

Example with AlexNet

$$FLOPs = 33.55M$$

 $MEM = 4K + 16.7M = 33.56MB$

Arithmetic intensity of example:

1.0 FLOPs / Bytes

Going to strongly suffer memory bound!

Example with AlexNet

$$FLOPs = 33.55M \times 128 = 4.3B$$

 $MEM = 0.5M + 16.7M = 34.60MB$

Arithmetic intensity with 128 batch: 124.1 FLOPs / Bytes

Example with AlexNet

$$FLOPs = 33.55M \times 128 = 4.3B$$

 $MEM = 0.5M + 16.7M = 34.60MB$

Arithmetic intensity with 128 batch : 124.1 FLOPs / Bytes

Still not enough!

Example with AlexNet

$$FLOPs = 33.55M \times 256 = 8.6B$$

 $MEM = 1.0M + 16.7M = 35.65MB$

Arithmetic intensity with 256 batch : 240.91 FLOPs / Bytes

Example with AlexNet

$$FLOPs = 33.55M \times 256 = 8.6B$$

 $MEM = 1.0M + 16.7M = 35.65MB$

Arithmetic intensity with 256 batch : 240.91 FLOPs / Bytes

Now compute bound!
But batch size might be too big for inference.

Example with AlexNet

If we quantize weight to INT8 with 128 batch

$$FLOPs = 33.55M \times 128 = 4.3B$$

 $MEM = 0.5M + 16.7M = 34.60MB$

Arithmetic intensity with 128 batch : 124.1 FLOPs / Bytes

Example with AlexNet

If we quantize weight to INT8 with 128 batch

$$FLOPs = 33.55M \times 128 = 4.3B$$

$$MEM = 0.5M + 16.7M = 17.8MB$$

Arithmetic intensity with 128 batch:

240.91 FLOPs / Bytes

Example with AlexNet

If we quantize weight to INT8 with 128 batch

$$FLOPs = 33.55M \times 128 = 4.3B$$

$$MEM = 0.5M + 16.7M = 17.8MB$$

Arithmetic intensity with 128 batch : 240.91 FLOPs / Bytes

Lowering memory pressure can increase arithmetic intensity, thus accelerate the layer!

Preliminaries

- Major data types used in Deep Learning
 - Integer
 - Floating Point

- Major data types used in Deep Learning
 - Integer
 - Unsigned Integer: [0, 2ⁿ 1]

• Signed Integer: $[-2^{n-1}, 2^{n-1} - 1]$

- Major data types used in Deep Learning
 - Floating Point
 - Numerical Form: (-1)^s M 2^E
 - s (Sign bit) determines whether number is negative or positive
 - M (Significand) normally a fractional value in range [1.0,2.0)
 - **E (Exponent)** weights value by power of 2

- Major data types used in Deep Learning
 - Floating Point
 - Numerical Form: (-1)^s M 2^E
 - s (Sign bit) determines whether number is negative or positive
 - M (Significand) normally a fractional value in range [1.0,2.0)
 - **E (Exponent)** weights value by power of 2
 - Encoding
 - s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s exp frac

- Major data types used in Deep Learning
 - Floating Point
 - Single Precision: 32 bits
 - ≈ 7 decimal digits, max/min: $10^{\pm 38}$

S	ехр	frac
1	8-bits	23-bits

- $V = (-1)^s M 2^E$

- Major data types used in Deep Learning
 - Floating Point
 - Exponent coded as a biased value: E = exp − Bias
 - exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (**exp**: 1...254, E: -126...127)

- $V = (-1)^s M 2^E$

- Major data types used in Deep Learning
 - Floating Point
 - Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Get extra leading bit for "free"


```
- V = (-1)^s M 2^E
```

- E = exp - Bias

- Major data types used in Deep Learning
 - Floating Point Example (float32)

```
• Value = 15213.0 = 1.1101101101101_2 \times 2^{13}
```

Significand

```
• M = 1.1101101101101<sub>2</sub>
```

Exponent

```
• E = 13
```

•
$$Bias = 127$$

• $exp = 140 = 10001100_2$

Result

- Major data types used in Deep Learning
 - Floating Point Example
 - IEEE 754 Single Precision 32-bit Float (IEEE FP32)

Google Brain Float (BF16)

• IEEE 754 Half Precision 16-bit Float (IEEE FP16)

1	5	10
---	---	----

Preliminaries – Data Type

- Major data types used in Deep Learning
 - Floating Point Example
 - IEEE 754 Half Precision 16-bit Float (IEEE FP16)

- NVIDIA FP8 (E5M2)
 - 1 5 2
- NVIDIA FP8 (E4M3)
 - 1 4 3

Break

Quantization Basics

- Fundamentals
- Scheme
- Type

• **Example** (3-Bit Uniform Quantization)

• **Example** (3-Bit Uniform Quantization)

r -1.0 0 1.0 (Float32)

- r : real value

- q : quantized value

- [] : round

•
$$S = (Max_r - Min_r) / (2^n - 1)$$

$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- [] : round

•
$$S = (Max_r - Min_r) / (2^n - 1)$$

•
$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- [] : round

•
$$S = (1.0 - (-1.0)) / (2^3 - 1)$$

•
$$q = |r/S|$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- [] : round

•
$$S = (1.0 - (-1.0)) / (2^3 - 1)$$

= 0.28571

•
$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- [] : round

•
$$S = (1.0 - (-1.0)) / (2^3 - 1)$$

= 0.28571

•
$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.0 - (-1.0)) / (2^3 - 1)$$

= 0.28571

•
$$q = [-0.6/0.28571]$$

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.0 - (-1.0)) / (2^3 - 1)$$

= 0.28571

•
$$q = [-0.6 / 0.28571]$$

= -2

• **Example** (3-Bit Uniform Quantization)

(Float32) -0.6 0 1.4

- r : real value

- q : quantized value

- [] : round

•
$$S = (Max_r - Min_r) / (2^n - 1)$$

•
$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

(Float32) -0.6 0 1.4

- r : real value

- q : quantized value

- [] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

•
$$q = \lfloor r/S \rfloor$$

• **Example** (3-Bit Uniform Quantization)

(Float32) -0.6 0 1.4

- r : real value

- q : quantized value

- [] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

= 0.28571

•
$$q = \lfloor r/S \rfloor$$

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

= 0.28571

•
$$q = [-0.6 / 0.28571]$$

= -2

• **Example** (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

= 0.28571

•
$$q = [0.8 / 0.28571]$$

= 3

• **Example** (3-Bit Uniform Quantization)

(Float32)

-0.6
0
1.4
(Float32)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

= 0.28571

•
$$q = [1.4/0.28571]$$

= 5

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

•
$$S = (1.4 - (-0.6)) / (2^n - 1)$$

= 0.28571

•
$$q = clamp([1.4 / 0.28571])$$

= 3

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- [] : round

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

Example (3-Bit Uniform Quantization)

- r : real value

- q : quantized value

- |] : round

- S : scaling factor

•
$$S = (Max_r - Min_r) / (2^n - 1)$$

•
$$Z = Min_q - (Min_r / S)$$

•
$$q = \lfloor r/S \rfloor + Z$$

Quantized Matrix Multiplication

*j*j=0 j=1 j=2 j=3

r : real value
q : quantized value
S : scaling factor
Z : zero point

$$r_C^{(i,k)} = \sum_j r_A^{(i,j)} \times r_B^{(j,k)}$$

Quantized Matrix Multiplication

*j*j=0 j=1 j=2 j=3

: real value

$$S_C\left(q_C^{(i,k)} - Z_C\right) = \sum_i S_A\left(q_A^{(i,j)} - Z_A\right) S_B(q_B^{(j,k)} - Z_B)$$

Quantized Matrix Multiplication

- r : real value

- q : quantized value

- S : scaling factor

$$S_C\left(q_C^{(i,k)} - Z_C\right) = \sum_j S_A\left(q_A^{(i,j)} - Z_A\right) S_B(q_B^{(j,k)} - Z_B)$$

Quantized Matrix Multiplication

- r : real value

- q : quantized value

- S : scaling factor

$$S_C\left(q_C^{(i,k)} - Z_C\right) = \sum_j S_A\left(q_A^{(i,j)} - Z_A\right) S_B(q_B^{(j,k)} - Z_B)$$

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \sum_{j} \left(q_A^{(i,j)} - Z_A \right) \left(q_B^{(j,k)} - Z_B \right)$$

Quantized Matrix Multiplication

- r : real value

- q : quantized value

- S : scaling factor

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \sum_{i} \left(q_A^{(i,j)} - Z_A \right) \left(q_B^{(j,k)} - Z_B \right)$$

Quantized Matrix Multiplication

- r : real value

- q : quantized value

- S : scaling factor

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \sum_{j} \left(q_A^{(i,j)} - Z_A \right) \left(q_B^{(j,k)} - Z_B \right)$$

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \left[N Z_A Z_B - Z_B \sum_{i=1}^{n} q_A^{(i,j)} - Z_A \sum_{i=1}^{n} q_B^{(i,j)} + \sum_{i=1}^{n} q_A^{(i,j)} q_B^{(i,j)} \right]$$

Quantized Matrix Multiplication

- q : quantized value

- S : scaling factor

- Z : zero point

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \sum_{j} \left(q_A^{(i,j)} - Z_A \right) \left(q_B^{(j,k)} - Z_B \right)$$

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \left[N Z_A Z_B - Z_B \sum q_A^{(i,j)} - Z_A \sum q_B^{(j,k)} + \sum q_A^{(i,j)} q_B^{(j,k)} \right]$$

Integer Matmul Operation

Quantized Matrix Multiplication

: real value

q : quantized value S : scaling factor

Z: zero point

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \sum_{j} \left(q_A^{(i,j)} - Z_A \right) \left(q_B^{(j,k)} - Z_B \right)$$

$$q_C^{(i,k)} = Z_C + \frac{S_A S_B}{S_C} \left[N Z_A Z_B - Z_B \sum q_A^{(i,j)} - Z_A \sum q_B^{(j,k)} + \sum q_A^{(i,j)} q_B^{(j,k)} \right]$$

If we don't use **Zero Point**, we can get rid of a lot of computations

Asymmetric Quantization

- Use Zero Point
- Relatively Slow

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

Asymmetric Quantization

- Use Zero Point
- Relatively Slow
- Can utilize any possible range

- Do not use Zero Point
- Relatively Fast

- Uniform Quantization
- Non-uniform Quantization

Uniform Quantization

Uniform Quantization

Non-uniform Quantization

Non-uniform Quantization

Logarithmic Quantization (a.k.a Weighted Quantization)

Non-uniform Quantization

Binary-Code Quantization

Non-uniform Quantization

Binary-Code Quantization

Example of quantizing 2x2 weight

Non-uniform Quantization

Example of quantizing 2x2 weight 1-bit quantization

Non-uniform Quantization

Example of quantizing 2x2 weight 2-bit quantization

Non-uniform Quantization

Example of quantizing 2x2 weight n-bit quantization

Non-uniform Quantization

Binary-Code Quantization

Very hard to optimize this method

- 1. Reconstruction is expensive
 - a lot of elementwise operations
- 2. Need special optimization for integer MM
 - BiQGEMM
 - LUT-GEMM

Non-uniform Quantization

Binary-Code Quantization

Uniform Quantization

Dynamic Quantization

Done in advance

Done in runtime

→ Quantize → Dequantize → Integer Operation

Dynamic Quantization

Dynamic Quantization

Static Quantization

Done in advance
Done in runtime

Bono in rantimi

Static Quantization

Static Quantization

- Static Quantization
 - Post Training Quantization (PTQ)
 - Quantization Aware Training (QAT)

- Static Quantization
 - Post Training Quantization (PTQ)
 - Quantize model after training
 - Calibrate range statistics with only a small subset of data
 - Quantization Aware Training (QAT)

- Static Quantization
 - Post Training Quantization (PTQ)
 - Quantization Aware Training (QAT)
 - Quantize with training/fine-tuning
 - Computation is done in FP, but fake quantize to simulate integer operation

Static Quantization

- Post Training Quantization (PTQ)
- Quantization Aware Training (QAT)
 - Quantize with training/fine-tuning
 - Computation is done in FP, but fake quantize to simulate integer operation
 - However, we can't naively implement the fake quantization due to existence of operation (ex. round) that does not have a gradient function

Quantization Aware Training: Fake Quantization

Quantization Aware Training: Fake Quantization

Quantization Aware Training: Fake Quantization

Break

- Quantization Optimization Strategies
 - How can we calculate proper scaling factor?
 - What are the common considerations when using quantization?

- How can we calculate proper scaling factor?
 - 1. Simply use Min/Max value

Symmetric quantization

- How can we calculate proper scaling factor?
 - 2. Use Exponential Moving Averages (EMA)

$$r_{min}^t = \alpha \cdot \min(x_t) + (1 - \alpha) \cdot r_{min}^{t-1}$$

$$r_{max}^t = \alpha \cdot \max(x_t) + (1 - \alpha) \cdot r_{max}^{t-1}$$

$$\alpha = 0.01$$

- How can we calculate proper scaling factor?
 - 3. Remove Outlier
 - Observe statistics from calibration samples and clamp the range properly.

How can we calculate proper scaling factor?

3-1. Entropy Calibration

find proper clamping value which minimize KL-divergence score.

How can we calculate proper scaling factor?

3-1. Entropy Calibration

• find proper clamping value which **minimize KL-divergence score**.

- How can we calculate proper scaling factor?
 - 4. Quantization Granularity
 - Layer-wise Quantization
 - Calculate scaling factor per-tensor

Convolution Weight filters

- How can we calculate proper scaling factor?
 - Quantization Granularity
 - Layer-wise Quantization
 - Calculate scaling factor per-tensor
 - Channel-wise Quantization
 - Calculate scaling factor per-channel

Convolution Weight filters

- Guideline for Quantization
 - Check the precision supported by hardware acceleration operations

Educators, Students, Makers

Commercial product developers

JETSON NANO 2GB EW | 10W 0.5 TFLOPS (FP16)

Guideline for Quantization

- Quantizing all layers may not be optimal
 - It is necessary to consider the trade-off between computational cost and accuracy loss of the model.
 - Example : Compute amount only 0.1% of total inference; <u>Accuracy drop</u>
 <u>significant</u> (Depthwise-Convolution in MobileNetV3)

Guideline for Quantization

- Input and weight must have the **same precision** for correct

computation

- Guideline for Quantization
 - Specific operations require special handling
 - Non-Linear Activation (GeLU, Softmax, etc.): FP16
 - Normalization Layer: Minimum 16-bit or FP16 or BN Folding
 - Residual Connection: Match scaling factor or use INT16, FP16

- Guideline for Quantization
 - Challenges of Extremely Low-Bitwidth Quantization
 - Changes in Output Distribution (Norm-layer statistics become inaccurate)
 - Necessity of Quantization Aware Training (QAT)

Break