		40	
CL_{\bullet}	M.	пэ	ŏ

1. A process for producing crystalline poly-aolefins comprising the steps of

- (i) contacting an a-olefin monomer at a temperature and pressure sufficient to polymerize such monomer with a catalyst system comprising;
 - (A) an alumoxane, and
 - (B) a group IV-B transition metal component of the formula

wherein M is Zr, Hf or Ti in its highest formal oxidation state;

R is a substituent group with "x" denoting the degree of substitution (x = 0, 1, 2, 3 or 4) and each R is, independently, a radical selected from a group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical,

a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements, and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, alkylborido radicals or a radical containing Lewis acidic or basic functionality, or at least two adjacent R-groups are joined forming C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand.

(JR'₂₋₂) is a heteroatom ligand in which J is an element with a coordination number of three from Group V A or an element with a coordination number of two from Group VI A of the Periodic Table of Elements, and each R' is, independently a radical selected from a group consisting of C₁-C₂₀ hydrocarbyl radicals, substituted C₁-C₂₀ hydrocarbyl radicals where one or more hydrogen atom is replaced by a halogen radical, an amido radical, a phosphido radical, and alkoxy radical or a radical containing a Lewis acidic or basic functionality, and "z" is the coordination number of the element J;

each Q is, independently, any univalent anionic ligand, such as a halide, hydride, or a substituted or unsubstituted $C_1 \cdot C_{20}$ hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide or arylphosphide, or both Q together are an alkylidene, or a cyclometallated hydrocarbyl or any divalent anionic chelating ligand;

T is a covalent bridging group containing a Group/IV A or V A element;

L is a neutral Lewis base where "w" denotes a number from 0 to 3;

(ii) recovering a crystalline poly-u-

ólefin.

2. The process of claim 1, wherein the Group IV-B transition metal component is of the formula:

wherein R^1 and R^2 are, independently, a C_1 to C_{20} hydrocarbyl radicals, substituted C_1 to C_{20} hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R^1 and R^2 may also be joined forming a C_3 to C_{20} ring.

3. The processes of claims 1 or 2 wherein J is nitrogen.

4. The process of claim 3 wherein R is a C_1 to C_{20} hydrocarbyl radical, "x" is 1 and R' is a C_6 to C_{20} cyclohydrocarbyl radical or an aromatic radical.

5. The process of claim 1 wherein the Group IV-B transition metal component is of the formula:

- wherein R^1 and R^2 are independently a C_1 to C_{20} hydrocarbyl radicals, substituted C_1 to C_{20} hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R^1 and R^2 may also be joined forming a C_3 to C_{20} ring.
 - 6. The process of claim 5 where J is nitrogen.
- 7. The process of claim 6 wherein R' is an alkyl radical or cyclic radical.
- 8. The process of claim 1 wherein the Group IV-B transition metal component is of the formula

1

2

3

5

6

7

1

wherein R^1 and R^2 are independently a C_1 to C_{20} hydrocarbyl radicals, substituted C_1 to C_{20} hydrocarbyl radicals wherein one or more/hydrogen atom is replaced by a halogen atom; R^1 and R^2 may also be joined forming a C_3 to C_{20} ring.

- 9. The process of claim 8 wherein J is nitrogen.
- 10. The process of claim 9 wherein R' is a cycloalkyl radical.
- 11. The process of claim 2, 5, or 8 wherein M is titanium.
- 12. The process of claims 2 or 5 wherein M is hafnium or zirconium.
 - 13. The process of claim 1 wherein T is silicon, J is nitrogen and when R is an alkyl radical, R' is a cyclohydrocarbyl or aromatic radical, and when "x" is 2 or 4 and the R substituents form a polycyclic ring system, R' is an alkyl or cyclohydrocarbyl radical.

22650/116/1-1-1/5 14

B3