Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:	

Esercizio 1

 \square Q(b,g(b))

Rispondere alle seguenti domande a risposta multipla segnando TUTTE le risposte

-	ette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).	
	Sia S una relazione binaria su un insieme non vuoto B . Se S è una relazione di equivalenza, allora è anche un preordine. Se S è simmetrica, allora non può essere anche antisimmetrica. Se S è irriflessiva, allora non può essere anche riflessiva. Se S è una relazione d'equivalenza e P è un'altra relazione binaria su B tale che $S \subseteq P$, allora P è riflessiva.	2 punti
	Quali delle seguenti sono formule che formalizzano correttamente " x è un numero primo" utilizzando il linguaggio \cdot , 1 e relativamente alla struttura $\langle \mathbb{N}, \cdot, 1 \rangle$	2 punti
	Consideriamo le funzioni $g: \mathbb{Q}^2 \to \mathbb{Q}, (y, z) \mapsto 3y^2 + z$ e $h: \mathbb{Q} \to \mathbb{Q}^2, y \mapsto (y, 3y)$. Allora	2 punti
	Sia $L = \{Q, g, h, b\}$ un linguaggio del prim'ordine con Q simbolo di relazione binario, g simbolo di funzione unario, h simbolo di funzione binario e h simbolo di costante. Quali dei seguenti sono L -termini?	2 punti

(e)) Siano C e D insiemi tali che $D\subseteq C$. Allora possiamo concludere con certezza che	2 punti
	\square se D è più che numerabile allora anche C lo è.	
	\square $C \setminus D \neq C$.	
	\square se C e D sono entrambi infiniti e numerabili allora $C \setminus D = \emptyset.$	
	$\square (C \cap D) \cup (C \setminus D) = C.$	
(f)) Sia Q la proposizione $\neg (B \land C \land \neg D)$. Allora	2 punti
	\square Q è una tautologia.	
	\square Se i è un'interpretazone tale che $i(D)=0$ allora necessariamente $i(B)=i(C)=0$.	
	□ Q è insoddisfacibile.	
	\square Q è conseguenza logica di B \rightarrow D.	
(g)) Siano $\varphi(y)$ e $\psi(y,z)$ formule del prim'ordine e σ un enunciato.	2 punti
	$\Box \forall y \neg \varphi(y) \models \exists y \varphi(y)$	
	$ \exists y \forall z \psi(z,y) \models \forall z \exists y \psi(z,y) $	
	\square Se \mathcal{C} è una struttura tale che $\mathcal{C} \models \exists z \neg \varphi(z)$, allora $\mathcal{C} \models \exists z (\neg \sigma \lor \neg \varphi(z))$.	
	□ Se \mathcal{B} è una struttura tale che $\mathcal{B} \models \forall y \neg \varphi(y)$, allora $\mathcal{B} \models \forall y (\varphi(y) \rightarrow \sigma)$.	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{Q, g, b\}$ con Q simbolo di relazione binaria, g simbolo di funzione binaria e b simbolo di costante. Consideriamo la L-struttura $\mathcal{B} = \langle \mathbb{Z}, >, \cdot, 3 \rangle$, dove \cdot è l'usuale funzione moltiplicazione.

Sia ϕ la formula

$$(Q(y,z) \wedge \exists w (g(b,w) = z))$$

e ψ la formula

$$(Q(y,z) \to \exists w (g(b,w) = z))$$

- 1. Determinare se:
 - $\mathcal{B} \models \varphi[y/-1000, z/-2000],$
 - $\mathcal{B} \models \varphi[y/-1000, z/-3000],$
 - $\mathcal{B} \models \exists z \, \varphi[y/-1000, z/-999].$
- 2. Determinare se $\mathcal{B} \models \forall y \exists z \varphi[y/0, z/0]$.
- 3. Determinare se:
 - $\mathcal{B} \models \psi[y/-1000, z/-2000],$
 - $\mathcal{B} \models \psi[y/-1000, z/-3000],$
 - $\mathcal{B} \models \forall z \psi[y/-1000, z/-998].$
- 4. Determinare se $\mathcal{B} \models \exists y \forall z \psi [y/-1, z/3]$.
- 5. Determinare se $\forall y \exists z \varphi \models \exists y \forall z \psi$.

Giustificare le proprie risposte.

Cognome, nome e matricola:	Versione 2

Esercizio 3 9 punti

Sia B un insieme non vuoto e $g\colon B\to B$ una funzione. Formalizzare relativamente alla struttura $\langle B,g\rangle$ mediante il linguaggio $L=\{g\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. g è iniettiva
- 2. se g è iniettiva, allora g è biettiva
- 3. $g\circ g$ è una funzione costante (ovvero il suo range contiene un solo punto)
- 4. ogni elemento ha almeno due preimmagini distinte.