Verilog 流水线 CPU 设计文档

一、模块

1. IM

(1) 介绍

取指令单元,内部包括指令存储器。

(2) 端口定义

端口	输入输出	位数	描述
PC	I	32	当前 PC
Instr	О	32	通过当前 PC 取出的指令

2. NPC

(1) 介绍

计算下一条指令的逻辑。

(2) 端口定义

端口	输入输出	位数	描述
PCBranch	I	32	分支对应 PC
PCJ	I	32	J、Jal 指令对应 PC
PCJr	I	32	Jr 指令对应 PC(GPR[rs])
PC	I	32	当前 PC
J	I	1	当前指令是否为J
Jal	I	1	当前指令是否为 Jal
В	I	1	当前指令是否满足跳转条件
NPC	0	32	下─ PC

(3) 功能定义

当满足跳转条件时,NPC=PCBranch; 否则,当当前指令为 J/Jal 时,NPC=PCJ; 否则,当当前指令为 Jr 时,NPC=PCJr; 否则,NPC=PC+4。

3. PCregF

(1) 介绍

PC 寄存器。

(2) 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
reset	I	1	重置信号
WE	I	1	使能信号,当 WE=1 时 PC 可以写入,否则冻结
NPC	I	32	下一个PC
PC	О	32	当前 PC

(3) 功能定义

序号	功能名称	功能描述
1	清零	当 reset 信号有效时,将 PC 置为 0x00003000
2	写入	当时钟信号位于上升沿且使能信号有效时,将 NPC 赋值到 PC

4. GRF

(1) 介绍

通用寄存器组,也称为寄存器文件、寄存器堆。可以存取32位数据。

端口	输入输出	位数	描述
PC	I	32	写入指令对应的 PC
A1	I	5	指定 32 个寄存器中的一个,输出其中数据到 R1
A2	I	5	指定 32 个寄存器中的一个,输出其中数据到 R2
A3	I	5	指定 32 个寄存器中的一个,写入 Data 数据
data	I	32	输入数据
WE	I	1	写入使能信号 1: 可写入 0: 不可写入

reset	I	1	异步复位信号 1: 复位 0: 无效
clk	I	1	时钟信号
R1	О	32	A1 指定寄存器中的数据
R2	О	32	A2 指定寄存器中的数据

(3) 功能定义

序号	功能名称	功能描述
1	复位	当复位信号有效时,所有寄存器的数据清零
2	读数据	读出 A1,A2 指定寄存器中数据到 R1,R2
3	写数据	当 WE 有效且时钟上升沿时,将 data 写入 A3 指定寄存器

5. CMP

(1) 介绍

比较器,比较 GRF[rs]和 GRF[rt]的大小并输出。

(2) 端口定义

端口	输入输出	位数	描述
data1	I	32	输入1
data2	I	32	输入2
equal	О	1	两者是否相等
greater	О	1	输入1是否大于输入2
less	О	1	输入1是否小于输入2

6. Controller

(1) 介绍

根据指令有关信息(opcode, func)判断指令类型,进而得到各个选择器、使能信号等的数据,决定各组件控制信号。

端口 輸入输出 位数	端口	输入输出 位数	描述
--------------	----	---------	----

instr	I	32	指令内容
grfWriteAddr	0	5	本条指令写入寄存器的下标(不存在则为0)
extOp	О	2	EXT 的选择信号
aluOp	О	3	ALU 的选择信号
memToReg	0	2	存入寄存器的数据来源选择信号
mem rokeg	O	2	0: from DM 1: from ALU 2: from PC+4
aluB	aluB O		ALU 的 B 端口数据来源选择信号
alub	O	1	0: from GRF[rt] 1:from EXT
aluA	0	1	ALU 的 A 端口数据来源选择信号
aluA	O		0: from GRF[rs]
jal	О	1	当前指令是否为 jal
jr	О	1	当前指令是否为 jr
j	О	1	当前指令是否为j
beq	О	1	当前指令是否为 beq
dmWE	О	1	DM 的使能信号

7. EXT

(1) 介绍

将16位立即数扩展为32位。

端口	输入输出	位数	描述
data	I	16	待扩展的 16 位立即数
			扩展方式选择信号
			00: 无符号扩展
sel	I	2	01: 有符号扩展
			10: 后面拼接两个 0 后符号扩展
			11: 加载至高位
out	О	32	扩展后的数

(3) 功能定义

表格 1 EXT 功能定义

序号	功能名称	功能描述
1	扩展	按照 sel 信号选择 out 为 data 做什么扩展得到的结果

8. ALU

(1) 介绍

算术逻辑单元,提供32位加、减、与、或、异或运算,不检测溢出。

(2) 端口定义

端口	输入输出	位数	描述
A	I	32	ALU 的输入 1
В	I	32	ALU 的输入 2
1			选择信号
sel	1	3	0: A+B 1: A-B 2: A&B 3: A B 4: A^B
out	О	32	运算结果

(3) 功能定义

序号	功能名称	功能描述
1	运算	按照 sel 信号选择 C 为 A 和 B 做什么运算得到的结果
2	判零	判断 C 是否为 0

9. DM

(1) 介绍

存储数据。

端口	输入输出	位数	描述
address	I	5	待操作地址
data	I	32	待输入数据

WE	I	1	写入使能信号 1: 可写入 0: 不可写入
clk	I	1	时钟信号
reset	I	1	异步复位信号 1: 复位 0: 无效
PC	I	32	当前 PC
out	О	32	读出的数据
sign	I	1	load 是否有符号
width	I	3	输入位宽

(3) 功能定义

序号	功能名称	功能描述
1	写数据	当 WE 有效且时钟上升沿时,将 data 写入 address 地址
2	读数据	从 address 中读取数据,输出至 out
3	复位	当复位信号有效时,所有 ROM 的数据清零

8. IFID

(1) 介绍

IF/ID 之间的寄存器。

(2) 端口定义

表格 2 ALU 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
reset	I	1	重置信号
stall	I	1	暂停信号
instrIn	I	32	F 中当前指令
PCIn	I	32	F 中当前 PC
instrOut	О	32	输出到 D 中指令
PCOut	О	32	输出到F中PC

(3) 功能定义

表格 3 ALU 功能定义

序号 功能名称	功能描述
----------	------

1	t 上 \	当时钟信号处于上升沿且暂停信号无效时,指令和 PC 输出
1 传递		赋值为输入
2	清零	当重置信号有效时,将输出清零

9. IDEX

(1) 介绍

ID/EXE 之间的寄存器。

(2) 端口定义

表格 4 ALU 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
flush	I	1	重置信号
instrIn	I	32	F 中当前指令

另含有 grfRs、grfRt、grfWriteAddr、memToReg、dmWE、aluB、aluA、aluOp、extimm、PC、instr 的输入输出端口。

10. EXME

(1) 介绍

EXE/MEM 之间的寄存器。

(2) 端口定义

表格 5 ALU 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
reset	I	1	重置信号

另含有 grfWriteData、grfWriteAddr、memToReg、dmWE、extimm、PC、instr 的输入输出端口。

11. MEWB

(1) 介绍

MEM/WB 之间的寄存器。

(2) 端口定义

表格 6 ALU 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
reset	I	1	重置信号

另含有 dmData、ALUOut、grfWriteData、PC、memToReg、instr 的输入输出端口。

12. STALL

(1) 介绍

根据当前 D 级指令判断是否需要暂停。

(2) 端口定义

表格 7 ALU 端口定义

端口	输入输出	位数	描述
instrD	I	32	ID 中指令
instrE	I	32	EXE 中指令
instrM	I	32	MEM 中指令
instrW	I	32	WB 中指令
stall	О	1	当前状态是否需要暂停一周期
mulBusy	I	1	乘除块是否在运算

(3) 功能定义

根据当前状态的指令分类,分别处理出每一种类型指令对应必须暂停的情况。

13. FORWARD

(1) 介绍

处理转发对应的标记。

端口	输入输出	位数	描述
instrD	I	32	ID 中指令

instrE	I	32	EXE 中指令
instrM	I	32	MEM 中指令
instrW	I	32	WB 中指令
flagE	О	1	E中数据是否准备完毕
flagM	О	1	M 中数据是否准备完毕
flagW	О	1	W中数据是否准备完毕
addrE	О	5	E中数据要写入的寄存器
addrM	О	5	M 中数据要写入的寄存器
addrW	О	5	W中数据要写入的寄存器
dataE	О	2	E 中数据的来源 0: from PCE+8 1: from extimmE
dataM	О	2	M 中数据的来源
			0: from ALUOutM 1: from PCE+8 2: from extimmE

14. hi lo

(1) 介绍

乘除块。

(2) 端口定义

端口	输入输出	位数	描述
clk	I	1	时钟信号
reset	I	1	重置信号
A	I	32	输入1
В	I	32	输入2
instr	Ι	32	E中指令
out	О	32	结果
busy	О	1	是否在运算
start	О	1	是否刚进来一个 muldiv

(3) 功能定义

二、测试程序

见附件

三、思考题

1. 我们计组课程一本参考书目标题中有"硬件/软件接口"接口字样,那么到底什么是"硬件/软件接口"?

程序以及异常处理部分在软件、硬件中的约定

2. 在我们设计的流水线中, DM 处于 CPU 内部, 请你考虑现代计算机中它的位置应该在何处。

位于多个设备和 CPU 中

3. BE 部件对所有的外设都是必要的吗?

似乎不是,只有对可以字节/半字写入的才是必要的?

4. 请阅读官方提供的定时器源代码,阐述两种中断模式的异同,并分别针对每一种模式绘制状态转移图

方式 0: 持续中断,

方式 1: 中断产生一个周期, 在转到 IDLE 时清零

同:产生中断

异:第一种持续,第二种一个周期

5、 请开发一个主程序以及定时器的 exception handler。整个系统完成如下功能:定时器在主程序中被初始化为模式 0;定时器倒计数至 0 产生中断; handler 设置使能 Enable 为 1 从而再次启动定时器的计数器。2 及 3 被无限重复。主程序在初始化时将定时器初始化为模式 0,设定初值寄存器的初值为某个值,如 100 或 1000。

见附件

6. 请查阅相关资料,说明鼠标和键盘的输入信号是如何被 CPU 知晓的?

通过中断信号进入特定处理区