Index

Page
Accident prevention 325
Accident prevention conditions, Training workmen in improving 330
Alloy cast irons, Limits of strength of
Alloy cast steels
Alloy steel castings, Classification of
Alloy steel castings, Discussion
Alloy steels, Manufacturing costs of
Aluminum and its alloys, An open-flame stationary hearth-type furnace
for melting
Aluminum melting furnaces
Analyses of a high test cast iron
Annealing malleable castings, Powdered coal furnaces used in 297
Annealing ovens, Controlling the atmosphere in malleable295, 661
Apprentice training committee, Report of 541
Apprentices at Pettibone-Mulliken plant, Training foundry 5
Apprentices for training, Method of selecting 7
Apprentices, How we train
Apprentices, Probationary period for
Apprentices, Types of shop and school records for foundry
Apprentices, Why we train
Baking practice for oil-sand cores
Blast control instruments, Cupola
Blast furnace operation data
Blast pressure on increasing iron temperatures, Effect of cupola 44
Blast pressures in cupola melting, Effect of varying
Blow-holes in castings
Borings, tin, zinc and burned material on cupola charges, Effects of 60
Bettom boards used on conveyors, Types of
Brass and bronze, Casting temperatures for
Brass and bronze, Discussion of electric arc furnaces for melting305, 651
Brass foundry, Sand control in
Brass foundry, Some problems of the
Brass foundry using electric arc furnaces, Costs of producing cast-
ings in
Brass shop, Crucible life in electric furnace
Brinell hardness of a high test cast iron

P	age
British Engineering Standards Association specifications for gray cast	
iron	421
British foundry sand, Mold and core control of	433
Bronze alloy, Some troubles in producing phosphor	643
Bronze, Casting temperature for brass and	645
Bronze, Discussion of electric arc furnaces for melting brass and	651
Bronze, Ductile white	645
Bronze door, Casting ornamental	647
	407
Calcium silicide used in producing Meehan's high test cast iron	487
Carbon and silicon on shrinkage in white cast iron for malleable cast-	225
ings, Effects of	
Carbon content of cast iron, Influence of cooling speed on	
Carbon content of cast iron as affected by cupola blast pressures	
Carbon control in cupola operation, Total	
Carbon in cast iron, Effect of blast furnace operation on combined	
Casting design, Four principal considerations for efficient	166
Castings as affected by blast furnace practice, Quality of pig iron and	91
Castings, Blow-holes in	186
Castings, Sand holes in	188
Cast iron, Analysis of high test	500
Cast iron, Brinell hardness of high strength	479
Cast iron, British Engineering Standards Association specifications for	
gray	421
Cast iron, Calcium silicide used in producing Meehan's high test	487
Cast iron, Causes of oxidized	688
Cast iron, Change of volume during freezing	216
Cast iron, Chemical properties of	
Cast iron, Chill test for high strength	491
Cast iron, Chill test of	126
Cast iron, Constitution and strength diagram for chromium and nickel	
*	474
Cast iron, Corsalli process of producing high test	
Cast iron, Coulability definition as applied to	
Cast iron, Cupola high test	280
Cast iron, Cupola low carbon	
Cast iron, Cupola practice to obtain high test	485
Cast iron, Density of white	
Cast iron, Differences of structure shown under high magnification	
when examining	706
Cast iron, Discussion of high test	
Cast iron, Effect of blast furnace operation on combined carbon in	128
Cast iron, Electric furnace	
Cast iron, European developments of high test	
Cast iron Factors affecting the fluidity of	

	rage
Cast iron, Fatigue limits of high strength	
Cast iron, Fluidity test of	
Cast iron, Graphite, cementite and pearlite areas in constitution of	260
Cast iron, High test259, 469, 485	
Cast iron, Industrial application of high strength	481
Cast iron, Influence of cooling speed on carbon content of	263
Cast iron, Influence of phosphorus on	
Cast iron, Influence of silicon on properties of high test	264
Cast iron, Influence of sulphur on	267
Cast iron, Lanz, Krupp, Emmel and Schüz method of producing	414
Cast iron, Limits of strength in plain	470
Cast iron, Limits of strength of alloy	473
Cast iron, Machinability of133	480
Cast iron, Mauer constitutional diagram for	470
Cast iron, Melting and composition of gray	418
Cast iron, Melting gray	425
Cast iron, Microscopic structure of a high test	496
Cast iron, New method proposed for obtaining high strength	476
Cast iron, Physical constitution of	334
Cast iron, Physical properties of a high strength	478
Cast iron, Portevin diagram of constitution of	260
Cast iron, Report of sub-committee on properties of	331
Cast iron, Rigidity test of	
Cast iron, Scrap for electric	66
Cast iron, Status of tests of	339
Cast iron, Steel scrap size used in producing cupola	674
Cast iron, Strengths obtainable in a high test	498
Cast iron, Superheating molten	409
Cast iron, Tensile strength diagram for plain	471
Cast iron, Tensile tests for	471
Cast iron, Test method for determining shrinkage in	222
Cast iron, Tests of high strength	478
Cast iron, Tests of Meehan's high test	489
Cast iron, Tests to measure physical properties of	96
Cast iron, The duplexing process of producing	
Cast iron, Thyssen-Emmel process of producing high test	272
Cast iron, Uses of steel in producing	267
Cast iron, Wüst process of producing high test	407
Cast iron and pig iron, Dilation characteristics of	132
Cast iron as affected by blast furnace operation, Tensile strength of	140
Cast iron as affected by blast furnace practice, Discussion of pig iron and	683
Cast iron as affected by cupola blast pressures, Carbon content in	45
Cast iron as affected by rate of ore reduction in blast furnace, Shrink-	
age cavity of	129
Cast iron as affected by section size and silicon content Hardness of	136

1	age
Cast iron as affected by slagging the cupola, Sulphur in	
Cast iron by controlling cooling rate after casting, Producing high test.	
Cast iron by cupola operations, Essential factors in producing426,	
Cast iron due to coke, Causes of troubles in melting	
Cast iron for malleable castings, Shrinkage in white	
Cast iron foundry, Sand control in a	
Cast iron in a fifty-four inch cupola, Producing high test	
Cast iron mixtures, Desulphurization in relation to use of scrap in	
Cast iron mixtures, Scrap iron for	
Cast iron mixtures, Typical scrap mixture for	
Cast iron of interest to metallurgist, founder and engineer, Properties of	
Cast iron strength as affected by temperatures of cupola melting	
Cast iron test bars produced in core sand	
Cast iron to determine physical properties, Methods of conducting tests on	
Cast iron when casting hot or cold, Effects on hardness of	
Cast irons, Alloyed	
Cast irons, Patented	
Cast steels, Alloy	
Cast steels, Endurance limit curves for alloy	371
Casualty insurance risks, Consideration of possibilities of foundries	
carrying own	
Causes of troubles in melting cast iron due to coke	
Cementite and pearlite area in constitution of cast iron, Graphite	
Chart for determining thermal efficiencies of cupolas	
Chemical properties of cast iron	
Chill test for high strength cast iron	
Chrome, nickel and manganese-carbon steels, Comparison of	
Chrome steel, Effects of various heat treatments upon	
Chrome steel, Physical properties of normalized and drawn	3/3
Chromium and nicker cast from Constitution and strength diagram for	A7A
Chromium as an alloying element in steel castings.	
Chromium, nickel and molybdenum steel, Physical properties of manganese	
Chromium steel, Physical properties of nickel	
Classification of alloy steel castings	
Clay bonds for synthetic foundry sands	
Clay content of molding sand, Desirable	
Coke, Causes of troubles in melting cast iron due to	
Coke, Combustibility test for	
Coke, Effective heights of cupola bed charges of	
Coke, Method of sampling	
Coke and air for cupola operation, Theoretical calculation of	86
Coke consumption in cupolas	78
Cokes Combustibility of various	101

Page	2
Committee on foundry refractories-Survey of gray iron foundry re-	
fractories—Report of joint	
Compensation laws, State	
Conveyor system in a brass foundry, Sand control for a 574	
Conveyors, Core oven	
Conveyors, Types of bottom boards used on 605	5
Conveyors for materials handling, Sliding 598	
Corsalli process of producing high test cast iron 411	l
Core control, British foundry sand, mold and	3
Core oil, Chemical specifications for 527	7
Core oil, Tests for 526	
Core oil, Uniformity in	5
Core oil loam mixtures 445	
Core oil specifications, Discussion of	3
Core oven conveyors 609)
Core practice factors 442	2
Core sand mixtures, Fineness and permeability tests for 444	ļ
Core sand tests, Report of committee on	3
Core sands, Compression tests of baked 555	5
Core sands, Tensile test for 559	9
Core testing, Status of work on 553	3
Cores, Baking practice for oil sand	
Cores, Discussion on baking practice for oil sand	5
Cores, Effects of temperature and time of baking on the strength of 291	l
Cores and molds, Factors in producing 432	2
Costs by materials handling, Reducing	J
Costs in preparing sand by handling equipment, Reducing 253	3
Costs of grinding steel castings, Comparison of	3
Costs of operating electric furnaces for melting brass 656	5
Costs of producing castings in brass foundry using electric arc furnaces	
	l
Coulability definition as applied to cast iron 335	
Crane in materials handling, The place of the portable 240	0
Crucible life in electric furnace brass shop 319	9
Cupola, A study of a thirty-six inch	ı
Cupola, Producing high test cast iron in a fifty-four inch 495	5
Cupola, Sulphur in cast iron as affected by slagging the 38	3
Cupola, The thermal efficiency effect on the temperature of molten	
iron from the 78	8
Cupola air supply 88	5
Cupola bed charges of coke, Effective heights of	2
Cupola bed heights, Data on effect of	
Cupola blast control instruments 420	8
Cupola blast pressure on increasing iron temperatures, Effect of 4	
Cupola blast pressures 677	7

y-	Page
Cupola blast pressure, Carbon content in cast iron as affected by	
Cupola cast iron, Steel scrap size used in producing	
Cupola changes in metal melted	
Cupola charges, Composition of mixtures obtained from	
Cupola charges, Effects of borings, tin, zinc and burned material on	
Cupola charges, Effects of limestone addition to	
Cupola charges, Materials handling for	
Cupola charges, Variations of analyses with varying scrap per cent	
Cupola charges, Weights of	
Cupola charges, on composition of melted metal, Effect of scrap in	
Cupola high test cast iron	280
Cupola iron, Effects of slagging	
Cupola low carbon cast iron	
Cupola metal, Critical temperature of superheating	39
Cupola melted iron, Sulphur increases in	
Cupola melting, Cast iron strength as affected by temperatures of	
Cupola melting, Effect of varying blast pressure in	
Cupola melting rate, The effect of boshed linings on	
Cupola operation, Discussion of a study of thirty-six inch	671
Cupola operation, Discussion of session on gray iron foundry practice and	
Cupola operation, Essential factors in producing cast iron by 426,	430
Cupola operation, Theoretical calculation of coke and air for	86
Cupola operation, Thermal efficiency of	80
Cupola operation, Total carbon control in	
Cupola practice to obtain high test cast iron	485
Cupola records, Information needed on	
Cupola refractories	462
Cupolas, An analysis of the performance of fifty-four inch71,	678
Cupolas, Chart for determining thermal efficiencies of	84
Cupolas, Coke consumption in	78
Cupolas, Steel scrap for	56
Cupolas, The value of a second row of tuyeres for	89
Cupolas, Tuyere area ratios for	22
Cupolas, straight lined to fifty-four inches, Performance of	74
Dilation characteristics of cast iron and pig iron	132
Dilation curves of pig iron	
Dust collection, Equipment for	256
Electric arc furnace in jobbing brass foundry, Melting with305,	
Electric arc furnaces, Costs of producing castings in brass foundry	
work	
Electric cast iron, Scrap for	66
Electric furnace cast iron	
Flectric furnaces for melting brass Cost of operating	656

	age
Electric steel mixtures, Scrap for	. 65
Emmel and Schüz method of producing cast iron, Lanz, Krupp	414
Endurance limit curves for alloy cast steels	371
Equipment, Inspection of foundry	252
Equipment, Foundry safety	324
Equipment for dust collection	
European developments of high test cast iron	405
Eutectic cast iron	
Fatigue limit of high strength cast iron	479
Federal Board for Vocational Education in foreman training, Place of	343
Fineness and permeability tests for core sand mixtures	444
Fluidity of cast iron, Factors affecting the	
Foreman, Qualities essential in a	385
Foreman training	610
Foreman training conferences	
Foreman training conferences on employee time	614
Foreman training, Place of Federal Board for Vocational Education in.	
Foreman training, Results of	538
Foreman training, Some notes on	539
Foreman training, Subjects for discussions in	537
Foreman training plans, Comparison of	454
Foreman training plans, National Metal Trades Association	452
Foremanship training	451
Foundry apprentices, Schedule of instruction for	
Foundry sand control shop practice session, Discussion of	573
Foundry sand research, Discussion on	562
Fuel efficiency and cost of melting aluminum in an open-flame hearth-	
type furnace	161
Furnace cast iron, Electric	273
Furnace for melting aluminum and its alloys, An open-flame stationary	
hearth-type	153
Furnaces, Costs of producing castings in brass foundry using electric	
arc	321
Furnaces for melting brass and bronze, Discussion of electric arc	651
Gating cause of some defects attributed to sand	196
Gating iron castings	177
Grading foundry sand	546
Graphite, cementite and pearlite area in constitution of cast iron	260
Graphite nuclei theory of Hanemann	
Gray iron castings, Some factors in the production of sound	163
Gray iron foundries, Materials handling in	
Gray iron foundry practice and cupola operation, Discussion of	669
Gray iron, malleable and electric steel mixtures, The use of scrap in .51,	619

	age
Grinding, Efficient steel castings	199
Grinding manganese steel castings	641
Grinding steel castings, Comparison of costs of	203
Grinding steel castings, Layouts for	200
Grinding wheel speeds	637
Grinding wheels, Tests of	636
Hanemann, Graphite nuclei theory of	
Hardness of a high test cast iron, Brinell	498
Hardness of cast iron as affected by section size and silicon content	
Heat treatment of cast iron, Possibilities of	
Heat treatment of high test cast iron	
Heat treatment on producing white fracture malleable, Factors of	400
Heat treatments upon steel castings, Effects of various	373
High test cast iron	
High test cast iron, Corsalli process of producing	
High test cast iron, Discussion on	
High test cast iron, European developments of	
High test cast iron, Influence of silicon on properties of	264
High test cast iron in a fifty-four inch cupola, Producing	495
Inspection of foundry equipment	
Insurance rates in foundry, Group	
Insurance risks, Consideration of possibilities of foundries carrying	
own casualty	
Iron castings, Gating	
Iron foundry refractories, Report of joint committee on foundry refrac-	
tories—Survey of gray	459
Krupp, Emmel and Schüz method of producing cast iron, Lanz	414
	-
Limestone, addition to cupola charges, Effects of	37
Machineability of cast iron	
Machineability tests of cast iron	
Magnets, Some applications of	
Malleable, Discussion on practical aspects of white fracture	
Malleable, Factors of heat treatment on producing white fracture	
Malleable, Furnace practice as affecting picture frame	
Malleable, Practical aspects of white fracture	
Malleable and electric steel mixtures, The use of scrap in gray iron51,	
Malleable annealing ovens, Controlling the atmosphere in295,	
Malleable castings, Effects of carbon and silicon on shrinkage in white	
cast iron for	
Malleable castings, Powdered coal furnaces used in annealing	297

	Page
Malleable castings, Shrinkage in white cast iron for225,	
Malleable foundry, Sand control in a	
Malleable iron, Discussion at session on	
Malleable iron scrap	56
Malleable mixtures, Scrap iron in	63
Manganese-carbon steels, Comparison of chrome, nickel and	
Manganese, chromium, nickel and molybdenum steel, Physical proper-	
ties of	
Manganese in semi-steel mixtures	670
Manganese steel, Physical properties of	634
Manganese steel castings, Grinding	641
Manganese, vanadium and molybdenum as alloying element in steel cast-	
ings	
Materials handling, Factors to be studied in	237
Materials handling, Sliding conveyors for	
Materials handling, The place of the portable crane in	
Materials handling for cupola charging	
Materials handling in gray iron foundries	
Materials handling in semi-continuous foundries	356
Materials handling session, Discussion of	597
Mauer constitutional diagram for cast iron	
Meehan's high test cast iron, Calcium silicide used in producing	
Meehan's high test cast iron, Tests of	
Mixtures obtained from cupola charges, Composition of	
Mold handling in foundries, Mechanical	
Mold handling phase of foundry materials handling	
Molybdenum as alloying element in steel castings, Manganese, vanadium	
and	
Molybdenum steel, Physical properties of manganese, chromium, nickel	
and	3/8
National Metal Trades Association foreman training plans	452
Nickel and manganese-carbon steels, Comparison of chrome	
Nickel and molybdenum steel, Physical properties of manganese,	
chromium	
Nickel as an alloying element in steel castings	
Nickel cast iron, Constitution and strength diagram for chromium	
and	474
Nickel-chromium steel, Physical properties of	
Non-ferrous metals session, Discussion at	643
Oil and cores, Baking practice for	625
Ovens, Controlling the atmosphere in malleable annealing	
Oxidized cast iron, Causes of	688

	age
Pearlite area in constitution of cast iron, Graphite, cementite and	
Permeability tester, Sand mold	
Phosphor-bronze alloy, Some troubles in producing	
Phosphorus and sulphur in steel, Report of representative on committee	
on investigation of	
Phosphorus on cast iron, Influence of	266
Physical constitution of cast iron	
Physical properties of a high strength cast iron	
Pig iron, Dilation characteristics of cast iron and	132
Pig iron, Dilation curves of	116
Pig iron, Report of sub-committee on	467
Pig iron, Sample data sheet of blast furnace operation producing foundry	95
Pig iron and cast iron as affected by blast furnace practice, Discussion on	683
Pig iron and castings as affected by blast furnace practice, Quality of	91
Portevin diagram of constitution of cast iron	260
Powdered coal furnaces used in annealing malleable castings	297
Rebonding molding sand	198
Reclamation of foundry sand, Report of committee on conservation	170
and	562
Refractories, Cupola	
Refractoriness of molding sand	
Refractoriness of molding sands, Tests for determining the	
Report of apprentice training committee	541
Report of committee on conservation and reclamation of foundry sand	***
Report of committee on core sand tests	
Report of committee on standard tests for foundry sands	
Report of committee on steel castings	626
Report of joint committee on foundry refractories-Survey of gray iron	
foundry refractories	459
Report of representative on committee on investigation of phosphorus	
and sulphur in steel	628
Report of sub-committee on pig iron	467
Report of sub-committee on properties of cast iron	331
Report of technical director of foundry sand research	543
Safety and sanitation in the foundry, Discussion on	624
Safety considerations for foundries	323
Safety, Equipment and foundry	324
Sampling coke, Method of	150
Sand, Blowability test for foundry	
Sand, Combination permeability-tensile test for foundry	179
Sand, Composition of molding	505
Sand, Conditions affecting refractoriness of a molding	

	-6-
Sand, Control tests for foundry	
Sand, Desirable clay content of molding	193
Sand, Dry strength of molding	
Sand, Effect of moisture on strength and permeability of foundry	168
Sand, Effect of ramming on green strength and permeability of foundry	169
Sand, Gating cause of some defects attributed to	196
Sand, Grading foundry	546
Sand, History of early investigations of refractoriness of	
Sand, Hot and cold permeability tests on foundry	-
Sand, Moisture content of foundry	
Sand, Mold and core control of British foundry	
Sand, Permeability test of foundry	
Sand, Rebonding molding	
Sand, Refractoriness of molding.	
Sand, Removal of fines from used foundry	
Sand, Report of committee on conservation and reclamation of foundry	
Sand, Saeger sintering test of refractoriness of	
Sand, Sag test for refractoriness of	
Sand, Sea coal in molding	
Sand, Vibratory test for foundry	
Sand addition to molding heaps, New	
Sand and mold handling equipment, Factors in	
Sand as a control method, Vibratory test of foundry	
Sand by handling equipment, Reducing costs in preparing	
Sand control, Some experiences in	
Sand control for a conveyor system in a brass foundry	574
Sand control in a brass foundry	573
Sand control in a cast iron foundry	585
Sand control in a malleable foundry	577
Sand control in reducing foundry scrap	589
Sand control shop practice session, Discussion of foundry	573
Sand cores, Baking practice for oil	447
Sand holes in castings	188
Sand mixtures, Fineness and permeability tests for core	
Sand moisture meter, Foundry	
Sand mold hardness tester	
Sand mold permeability tester	
Sand mold specifications, Green	
Sand research, Discussion at session on foundry	
Sand research, Report of technical director of foundry	
Sand testing apparatus, Foundry	
Sand tests, Report of committee on core.	
Sands, Chemical analyses of molding.	
Sands Clay bonds for synthetic foundry	

	T age
Sands, Compression tests of baked core	555
Sands, Discussion of refractoriness of foundry	
Sands, Report of committee on standard tests for foundry	552
Sands, Status of work on tests of foundry	
Sands, Tensile test for core	559
Sands, Tests for determining the refractoriness of molding	509
Sanitation in the foundry, Discussion of safety and	
Schuz method of producing cast iron, Lanz, Krupp, Emmel and	414
Science hand in hand with labor	417
Scrap, Malleable iron	56
Scrap, Sand control in reducing foundry	589
Scrap causes, Analysis of	
Scrap for electric cast iron	66
Scrap for electric steel mixtures	
Scrap in cast iron mixtures, Desulphurization in relation to use of	66
Scrap in cupola charges on composition of melted metal, Effect of	41
Scrap in gray iron, malleable and electric steel mixtures, The use of 51,	
Scrap iron, Sorting	
Scrap iron economic situation	
Scrap iron for cast iron mixtures	55
Scrap iron in malleable mixtures	
Scrap iron specifications	
Scrap mixtures, Effect of soda ash on all	
Sea coal in molding sand	
Semi-steel mixtures, Manganese in	
Shrinkage cavity of cast iron as affected by rate of ore reduction in	
blast furnace	
Shrinkage in malleable cast iron, Discussion of	
Shrinkage in white cast iron for malleable castings	
Silicon content, Hardness of cast iron as affected by section size and	
Silicon on properties of high test cast iron, Influence of	
Silicon on shrinkage in white cast iron for malleable castings, Effects	
of carbon and	
Sintering test for refractoriness of sand, Saeger	
Slagging cupola iron, Effects of	
Slagging the cupola, Sulphur in cast iron as affected by	
Soda ash on all scrap mixtures, Effect of	
Specifications, Discussion of core oil	
Specifications for core oil, Chemical	527
Specifications for gray cast iron, British Engineering Standards Asso-	19
ciation	421
Specifications for steel castings for valves, flanges and fittings for high	
temperature service	
Specifications, Green sand mold	
Confignations Cours iron	5.4

Page
Speeds of grinding wheels for steel castings 204
Standard tests for foundry sands, Report of committee on 552
Standards Association specifications for gray cast iron, British Engi-
neering
Steel, Effects of various heat treatments upon chrome
Steel, Physical properties of manganese
Steel, Physical properties of manganese, chromium, nickel and molyb-
denum
Steel, Physical properties of nickel-chromium
Steel, Physical properties of normalized and drawn chrome 373
Steel, Report of representative on committee on investigation of phos-
phorus and sulphur in
Steel casting grinding, Efficient
Steel casting production 1916-1927, Alloy
Steel castings, Classification of alloy
Steel castings, Chromium as an alloying element in
Steel castings, Comparison of costs of grinding
Steel castings, Discussion of alloy
Steel castings, Grinding manganese
Steel castings, Layouts for grinding
Steel castings, Manganese, vanadium and molybdenum as alloying ele-
ments in
Steel castings, Nickel as an alloying element in
Steel castings, Report of committee on
Steel castings, Report of committee on
Steel castings, Speeds of grinding wheels for
ice, Discussion on specifications for
Steel founding session, Discussion
Steel in producing cast iron, Uses of
Steel mixtures, The use of scrap in gray iron, malleable and electric 51
Steel scrap for cupolas
Steel scrap size used in producing cupola cast iron
Steels, Alloy cast
Steels, Comparison of chrome-nickel and manganese-carbon 375
Steels, Effects of alloying elements on structure of
Steels, Endurance limit curves for alloy cast
Steels, Manufacturing costs of alloy
Strength in plain cast iron, Limits of
Strengths obtainable in a high test cast iron
Structure of a high test cast iron, Microscopic
Sulphur in cast iron as affected by slagging the cupola
Sulphur increase in cupola melted iron
Sulphur on cast iron, Influence of

Page	
Superheating cupola metal, Critical temperature of 39)
Superheating molten cast iron)
Tensile strength of cast iron as affected by blast furnace operation 140)
Tensile test for core sands	
Test bars produced in core sand, Cast iron	
Test for coke, Combustibility	
Test for core sands, Tensile	
Test for foundry sand, Blowability	
Test for foundry sand, Combination permeability-tensile 179	
Test for foundry sand, Vibratory 183	
Test for refractoriness of sand, Saeger sintering 517	7
Test for refractoriness of sand, Sag	
Test method for determining shrinkage in cast iron	2
Test of cast iron, Chill	5
Test of cast iron, Fluidity	1
Test of cast iron, Rigidity	
Test of foundry sand as a control method, Vibratory	
Test of foundry sand, Permeability	
Tester, Sand mold hardness	
Tester, Sand mold permeability 437	
Testing apparatus, Foundry sand	
Testing apparatus, Foundry sand)
Tests for cast iron, Tensile	
Tests for core oil	
Tests for core sand mixtures, Fineness and permeability 444	
Tests for determining the refractoriness of molding sands 509	
Tests for foundry sand, Control	
Tests for foundry sands, Report of committee on standard 552	
Tests of baked core sands, Compression 555	,
Tests of cast iron, Machinability	
Tests of cast iron, Status of)
Tests of foundry sands, Status of work on 544	-
Tests of grinding wheels	
Tests of high strength cast iron	3
Tests of Meehan's high test cast iron	
Tests on cast iron to determine physical properties, Methods of con-	
ducting	
Tests on foundry sand, Hot and cold permeability 185	
Tests, Report of committee on core sand	
Tests to measure physical properties of cast iron	
Thermal efficiencies of cupola operation	,
Thyssen-Emmel process of producing high test cast iron	
Training, Discussion on foreman	
Training, Foreman	
Training committee Report of apprentice 541	

Index	74
-------	----

	Page
Training conferences, Foreman	. 533
Training foremen conference leaders for metal working plants	. 343
Training workmen in improving accident prevention conditions	. 330
Trucks in the foundry, Tractor	. 241
Tuyere area ratios for cupolas	. 22
Tuyeres for cupolas, The value of a second row of	. 89
Vanadium and molybdenum as alloying elements in steel castings, Man	
Vibratory test of foundry sand as a control method	592
Vocational education in foreman training, Place of Federal Board for.	. 343
4 1-	
Wheels for steel castings, Speed of grinding	. 204
Wüst process of producing high test cast iron	. 407

Author's Index

I	age
Anderson, M. B., with Hughes, G. E., and Anderson, R. J., An Open-	
Flame Stationary Hearth-Type Furnace for Melting Aluminum	
and Its Alloys	153
Anderson, R. J., with Hughes, G. E., and Anderson, M. B., An Open-Flame Stationary Hearth-Type Furnace for Melting Aluminum	
and Its Alloys	153
Boegehold, A. L., Quality of Pig Iron and Castings as Affected by	
Blast Furnace Practice	91
Bull, R. A., Report of A. F. A. Representative on Joint Committee on	
the Investigation of Phosphorus and Sulphur in Steel	628
Campbell, H. L., Baking Practice for Oil Sand Cores	289
Clow, K. S., and Kurtz, R. W., Some Factors in the Production of	
Sound Gray Iron Castings	163
Coleman, W. F., Some Notes on Foreman Training	539
Cornell, A. M., How We Train Apprentices	5
Coyle, F. B., A Study of a Thirty-Six Inch Cupola	21
Coyle, F. B., and Houston, D. M., High Strength Cast Iron	469
Crosby, V. A., and Wysong, R. D., Uniformity in Core Oil-How	
Obtained	
Davies, J. A., Why We Train Apprentices	1
Elam, F. H., Safety Considerations for Foundries	
Forbes, D. P., Practical Aspects of White Fracture Malleable	
Freund, C. J., Report of Apprenticeship Committee	541
Graham, W. F., Controlling the Atmosphere in Malleable Annealing	205
Ovens	
•	573
Harrington, R. F., Report of the Committee on Conservation and	F 40
Reclamation	
Sand Control in a Gray Iron Foundry	
Heisserman, R. J., Mold Handling	
,,	469
Hudson, F., Science Hand in Hand with Labor	417
Hughes, G. E., with Anderson, R. J., and Anderson, M. B., An Open-	
Flame Stationary Hearth-Type Furnace for Melting Aluminum	150
and Its Alloys	
Jameson, A. H., Report of Committee on Steel Castings	020

	age
	age
Kurtz, R. W., and Clow, K. S., Some Factors in the Production of Sound Gray Iron Castings	163
Lemoine, R. P., High Test Cast Iron	
Lorenz, F. A., Jr., Efficient Steel Casting Grinding	100
Lynch, A. D., Foreman Training.	385
MacKenzie, J. T., Properties of Cast Iron of Interest to the Metallurg-	
ist, Founder and Engineer	
Report of Joint Committee on Refractories—Sub-Committee Survey	
of Gray Iron Foundry Refractories	
MacPherran, R. S., High Test Cast Iron.	
Report of Sub-Committee on Pig Iron	
Marbaker, E. E., An Analysis of the Performance of Fifty-Four Inch	
Cupolas Based Upon Records of Practical Operation	71
High Test Cast Iron—European Developments	
McGarvey, G. A., Training Foremen Conference Leaders for Metal	403
Working Plants	242
McMahon, J. F., Refractoriness of Molding Sands	
Meier, J. B., Practical Melting with Electric Arc Furnace in General	
Jobbing Brass Foundry—With Special Emphasis on Operation,	
Maintenance and Cost	
Mellen, M. H., Foremen's Conferences at the River Works, General	303
Electric Company, Lynn, Mass	E22
Peirce, A. B., Foremanship Training.	
Ranis, W., Sand Control in a Malleable Foundry	
Ries, H., Foundry Sand Research Report of the Technical Director—	
Report of Committee on Standard Tests	
	334
Riggan, F. B., and Smith, E. K., The Use of Scrap in Gray Iron,	E1
Malleable and Electric Steel Mixtures	
Schwartz, H. A., Shrinkage in White Cast Iron	
Smalley, O., High Test Cast Iron.	
Smith, E. K., and Riggan, F. B., The Use of Scrap in Gray Iron,	400
Malleable and Electric Steel Mixtures	51
Smith, E. W., Theoretical vs. Practical Studies of Foundry Sands	
Walton, A., Materials Handling in Gray Iron Foundries	
Wilson, E. F., Some Experiences in Sand Control	
Wysong, R. D., and Crosby, V. A., Uniformity in Core Oil—How	100
	526
Obtained	
Zuege, D., Alloy Cast Steels	
Luege, D., Alloy Cast Steels	301