Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Факультет радиотехники и кибернетики Кафедра микропроцессорных технологий в интеллектуальных системах управления

Выпускная квалификационная работа бакалавра по направлению 010900 «Прикладные математика и физика»

Система анализа и контроля дорожного движения на базе 24 ГГц СВЧ радара с линейной частотной модуляцией сканирующего сигнала

Студент 516 группы Дорохин С. В.

Научный руководитель Бирюков М.Ю.

Аннотация

Данная работа посвящена проектированию и реализации анализатора дорожного движения на базе 24 ГГц однолучевого радара. Основной задачей является сбор статистики о количестве автомобилей, прошедших установленный участок дороги, и средней скорости дорожного потока. К устройству предъявляются требования по сохранению точности при различных погодных услвоиях. Кроме того, конечное изделие должно относиться к низкой ценовой категории на рынке подобных устройств. Совмещая последние алгоритмические достижения, удалось создать требуемый радар, справляющийся с поставленной задачей в пределах допустимой погрешности. Полученные результаты можно использовать при проектировании многолучевого автомобильного радара, решающего такие сложные задачи, как автономное экстренное торможение и адаптивный круиз-контроль.

Содержание

Aı	Аннотация	
1.	Вступление	1
2.	Принцип работы радара	3
3.	О форме сигнала	7
4.	Симулятор	11
5.	Актуальность работы	13
6.	Существующие методы	15
7.	Предлагаемый алгоритм	17
8.	Устройство радара	19
9.	Моделирование задачи	21
10	.Эскперимент	23
11	.Результаты	25
12	.Благодарности	27
Ст	исок литературы	27

Вступление

Статистические данные о дорожном потоке являются сведениями, необходимыми для реализации интеллектуальных транспортных систем (ИТС). Для эффективного управления транспортными потоками эти системы должны получать информацию о загруженности дорог в реальном времени. Наиболее важной информацией являются такие параметры, как средняя скорость потока, количество транспортных средств, прошедших установленный дорожный участок, классы автомобилией и статистика по полосам магистрали.

Для выполнения этих задач существуют разнообразные типы устройств, например, индуктивные датчики, системы, использующие данные с видеокамер и компьютерное зрение, акустические датчики и т.д. Перечисленные методы имеют существенные недостатки. Так, например, датчики на индуктивных петлях до недавнего времени не позволяли определять только колчиество транспортных средств на каждой полосе. С помощью методов машинного обучения, например, градиентного бустинга на решающих деревьях, удается производить классификацию объектов [2]. Тем не менее, информация о скорости потока и каждого транспортного средства в отдельности не может быть получена с применением таких сенсоров. Кроме того, такие устройства треубют сравнительно сложной и дорогостоящей процедуры установки, что объясняет их низкую популярность. Устройства, использующие видеокамеры, неустойчивы к погодным изменениям. Точность таких приборов резко снижается при тумане или сильном снегопаде, точность также серьёзно страдает в ночное время. Альтернативой является использование акустических датчиков, позволяющих измерять в том числе и скорость потока. Однако для достижения приемлимой точности необходима либо сеть сенсоров, как в [1], либо громоздкий массив сенсоров, как в работе [6]. В любом случае требуется объединение множества датчиков в одну сеть, что создаёт дополнительные трудности при установке.

Перспективным типом устройств, применяемых для решения поставленных задач, являются СВЧ радары с линейной частотной модуляцией (ЛЧМ). Радары достаточно просты в установке и эксплуатации, практически не чувствительны к погодным условиям и позволяют точно измерять скорость транспортных средств. Сложность в реализации алгоритмов обработки заключается в том, что частота сигнала, анализируемого радаром, пропорциональна как расстоянию до объекта, так и его скорости. Поэтому при простой пилообразной форме излучаемого сигнала невозмонжо достоверно оценить параметры цели. Для преодоления этой неоднозначности применяют сложные трегугольные формы сигнала с разными коэффициентами наклона как, например, в [3]. Такой подход оказывается применимым при небольшом (2-3) колчиестве целей, однако в реальных приложениях не всегда оказывается успешным. В последнее время набирает популярность подход, основанный на так называемых "быстрых пилах" (англ. fast ramps) и двумерном преобразовании Фурье. Как показывает практика (см. [4]), такой подход даёт хорошие результаты, однако требует сравнительно больших вычислительных ресурсов, что сказывается как на стоимости конечного изделия, так и на его токопотреблении.

Метод быстрых пил становится затруднительным при создании бюджетных радаров. Эта дипломная работа посвящена созданию алгоритмов обработки сигналов ЛЧМ СВЧ радара, позволяющих совместить низкую вычилительную сложность и высокую точность работы.

Изложение построено следующим образом: в главе 2 описывается механизм работы радара и связанные с этим физические явления;

Принцип работы радара

Эта глава описывает приёмопередатчик и физические явления, на которых основывается работа ЛЧМ радаров. Этот вопрос подробно изложен в классической книге [5], здесь же приведена лишь необходимая для дальнейшего изложения часть.

Передатчик радара излучает гармонический сигнал с линейной частотной модуляцией:

$$s_i(t) = A\sin(\omega_0 t + \theta(t) + \phi_0),$$

где A – амплитуда сигнала, ω_0 – частота несущей, ϕ_0 – постоянная фаза сигнала, а $\theta(t)$ – мгновенная фаза, которую в случае радара с линейной частотной модуляцией можно считать равной

$$\theta(t) = 2\pi \frac{\Delta f t^2}{2T}, \qquad t \in \left[-\frac{T}{2}, \frac{T}{2}\right],$$

где T — период сигнала, Δf — частотная девиация. Отражённый сигнал можно записать как

$$s_r(t) = \alpha A \cos((\omega_0 + \omega_d)(t - t_d) + \theta(t - t_d) + \phi_0),$$

где α – коэффициент затухания,

 $t_d = \frac{2R}{c}$ – задержка распространения сигнала до цели и обратно,

 $\omega_d = 2\pi f_d = \frac{1}{2\pi} \frac{2v_r}{\lambda}$ — сдвиг частоты, обусловленный эффектом Допплера (v_r — радиальная скорость объекта, λ — длина волны). Отражённый сигнал достигает антенны приёмника и смешивается с локальным сигналом. Сингал после смесителя:

$$s_{mix}(t) = s_i(t) * s_r(t) = \frac{1}{2} \alpha A^2 \left[\cos(\omega_0 t_d - \omega_d(t - t_d) + \theta(t) - \theta(t - t_d)) + \cos(\omega_0 t + (\omega_0 + \omega_d)(t - t_d) + \theta(t) + \theta(t - t_d + 2\phi_0)) \right]$$
(1)

Этот сигнал проходит через фильтр нижних частот, и, таким образом, на вход АЦП

поступает сингал

$$s(t) = \frac{\alpha A^2}{2} \cos(\omega_d(t - t_d) - \omega_0 t_d + \theta(t - t_d) - \theta(t)) =$$

$$= \frac{\alpha A^2}{2} \cos(\omega_d t + \theta(t - t_d) - \theta(t) - t_d(\omega_0 + \omega_d)) \quad (2)$$

Отфильтрованный сигнал s(t) имеет частоту $f_b = \frac{1}{2\pi} \left(\frac{d\theta(t)}{dt} - \frac{d\theta(t-t_d)}{dt} \right) - f_d$, зависящую от двух факторов: задержки распространения t_d и допплеровского сдвига f_d . В случае, когда цель статична, частота биений пропорциональна только задержке распространения:

$$f_b = \frac{1}{2\pi} \left(\frac{d\theta(t)}{dt} - \frac{d\theta(t - t_d)}{dt} \right) = \frac{\Delta ft}{T} - \frac{\Delta ft}{T} + \frac{\Delta ft_d}{T} = \frac{\Delta ft_d}{T}, \qquad t_d = \frac{2R}{c}$$

$$f_b = \frac{2\Delta fR}{Tc} \Longrightarrow R = \frac{Tcf_b}{2\Delta f}$$
(3)

В этом случае после преобразования Фурье по частоте биений можно однозначно определить расстояние до объекта. Несколько иная ситуация наблюдается, если объект движется с ненулевой радиальной (в системе отсчёта радара) скоростью v_r : на частоту биений оказывает влияние допплеровский сдвиг $f_d = \frac{2v_r}{\lambda}$ и при простой пилообразной форме сигнала однозначно определить расстояние до объекта не представляется возможным.

Рис. 1. Параметры переданного и принятого сингалов.

Для разрешения этой неоднозначности применяют треугольную форму сигнала. Пусть f_{b+} и f_{b-} – частота биений, полученных на возрастающем и спадающем участке

соответственно (см. рис. 1).

$$\begin{cases} f_{b+} = \frac{2\Delta fR}{Tc} + \frac{2v_r}{\lambda} \\ f_{b-} = \frac{2\Delta fR}{Tc} - \frac{2v_r}{\lambda} \end{cases}$$
$$\begin{cases} f_{b+} + f_{b-} = \frac{4\Delta fR}{Tc} \\ f_{b+} - f_{b-} = \frac{4v_r}{\lambda} \end{cases}$$
$$\begin{cases} R = \frac{Tc}{4\Delta f} (f_{b+} + f_{b-}) \\ v_r = \frac{\lambda (f_{b+} - f_{b-})}{\lambda}, \end{cases}$$

где отрицательной скорости соответсвует приближающаяся цель. То есть в случае, когда цель только одна, можно однозначно определить её скорость и расстояние до неё. Заметим, что на v-R диаграмме зависимость скорости от расстояния задаётся семейством прямых, параметром которого является частота биений. В самом деле, из уравнения (3) с учётом допплеровского сдвига можно получить

$$f_b = \frac{2\Delta fR}{Tc} + \frac{2v_r}{\lambda}$$

$$v_r = \frac{\Delta f\lambda R}{Tc} + \frac{\lambda f_b}{2}$$

$$v_r = \frac{\Delta fR}{Tf_0} + \frac{cf_b}{2f_0}$$
(4)

Причём для первого участка (см. рис. 1) $\Delta f > 0$, для второго $\Delta f < 0$. Каждой цели на каждом участке соответсвует одна прямая. Рассмотрим теперь случай, когда при форме зондирующего импульса как на рис. (1) под излучение попадают две цели. Соответствующая v-R диаграмма и графики спектра представлены на рис. (2)-(3).

Рис. 2. v-R диаграмма в случае двух целей

Рис. 3. Возможные варианты определения целей

Если зондирующий импульс состоит из N треугольных участков с разными коэффициентами наклона, то радар, вообще говоря, не может однозначно различить M целей при условии $M \geq N$. Более того, при большом количестве импульсов накладываются ограничения на скорости изменения частоты сигналов. Подробнее этот вопрос рассматривается в [7], здесь он не заслуживает более пристального внимания. Подход, связанный с увеличением количества треугольных сегментов имеет существенный недостаток: он существенно увеличивает длительность сигнала, что влечёт увеличение объёма требуемой памяти, ухудшает качество работы алгоритмов удаления статических целей и отслеживания траектории. В данной работе рассматривается более перспективная форма сигнала, обеспечивающая однозначное сопоставление целей и лишь незначительно увеличивающая период.

О форме сигнала

Форма сигнала определяет, прежде всего, разрещающую способность радара и максимальные скорость и расстояние, которые он может однозначно измерять. Ниже приведены соотвествующие вычисления для одного участка сигнала с рис. 2. Здесь и далее f_s — частота дискретизации АЦП радара, f_0 — частота несущей, Δf — девиация сигнала, f_b — частота биений, соответствующая локальному максимуму модуля спектра. Сигнал длительностью T после дискретизации будет представлен $N = f_s * T$ точками. После дискретного преобразования Фурье расстояние между соседними отсчётами состовляет $df = \frac{f_s}{N}$ Гц. С помощью формулы (3) можно перевести частоту в расстояние до цели:

$$\delta R = \frac{f_s T}{N} * \frac{df c}{2\Delta f} = \frac{Nc}{2N\Delta f} = \frac{c}{2\Delta f}$$
 (5)

Как известно, модуль спектра сигнала, дискретизированного с частотой f_s , является периодической функцией с периодом $N=f_s*T$. Если частота биений на входе АЦП превышает требуемую по теореме Котельникова $\frac{f_s}{2}$, то после дискретизации и применения алгоритма быстрого преобразования Фурье соответсвующий пик будет наблюдаться в области отрицательных частот. Таким образом, максимальная частота биений, при которой можно однозначно определить параметры цели есть $f_{max}=\frac{f_s}{2}$, откуда по той же формуле (3) получаем

$$R_{max} = \delta R * N = \frac{c}{2\Delta f} * f_s T = \frac{cf_s}{2\frac{\Delta f}{T}} = \frac{cf_s}{2S}, \tag{6}$$

где $S = \frac{\Delta f}{T}$ – крутизна модуляции.

Как уже говорилось в предыдущей главе, частота биений зависит не только от расстояния до объекта, но и от его скорости. Может получится так, что объект находится на близком расстоянии, но из-за большой скорости положение соответсвующего максимума модуля спектра перейдёт, в силу переодичности дискретного преобразования Фурье, в область отрицательных частот. Можно найти радиальную скорость объекта, при которой влияние эффекта допплера будет минимальным, т. е. составит один отсчёт:

$$\frac{2\Delta v_r}{\lambda} = f_d = df = \frac{f_s}{N}$$

$$\Delta v_r = \frac{f_s \lambda}{2N} = \frac{f_s \lambda}{2T f_s} = \frac{\lambda}{2T}$$
(7)

Как следует из формулы 7, чем короче импульс, тем меньшее влияние оказывает на частоту биений эффект допплера.

Эта идея, в частоности, нашла применение в методе так называемых "быстрых"пил, подробно описанном в статье [8]. Его суть состоит в следующем: в качестве зондирующего сигнала выбирается пилообразный сигнал с очень маленьким периодом, порядка $T=10\,$ мкс (см. рис.). При длине волны $\lambda=1,25\,$ см ($f_0=24\,$ ГГц) разрешение по скорости, согласно формуле (7), составит $\Delta v_r=\frac{1,25*10^{-2}}{2*10^{-5}}=0,625*10^3=625\,$, то есть влиянием эффекта допплера можно пренебречь. Информацию о

Рис. 4. Сигнал, использующийся в методе быстрых пил.

скорости же можно получить, анализируя изменения фазы. В самом деле, пусть $\theta_t(t)$ и $\theta_r(t)$ - мгновенные фазы переданного и принятого сигналов соответственно, $v_r \ll c$ - радиальная скорость объекта, $\tau = \frac{2(R+vt)}{c}$ - время распространения сигнала до объекта и обратно. В пределах одоного участка пилы частота f_t и фаза ϕ_t переданного сигнала могут быть записаны в виде

$$f_t(t_k) = f_0 + \frac{\Delta f}{T} * (t_k - kT), \qquad kT \le t_k \le (k+1)T$$
$$\phi_t(t_k) = 2\pi \int_0^{t_k} f_t(\zeta) d\zeta = 2\pi (f_0 t_k + \frac{\Delta f t_k^2}{2T} - \Delta f k t_k) - \phi_0$$

Откуда легко получить, что частота биений ϕ_b после смешения принятого сигнала с

копией переданного есть

$$\phi_b(t_k) = \phi_t(t_k) - \phi_t(t_k - \tau) = 2\pi f_0 \tau - \pi k \tau^2 - 2\pi \frac{\Delta f t_k}{T} \qquad \tau \le t_k \le T$$

Подставляя выражения для au и пренебрегая квадратичными членами, получаем

$$\phi_b(t_k) = 2\pi f_0 * \frac{2(R+vt)}{c} - \pi \frac{\Delta f}{T} * \frac{4}{c^2} * (R+vt)^2 - \frac{2\pi}{T} \Delta f t_k \approx \\ \approx 2\pi f_0 \frac{2R}{c} + 2\pi f_c \frac{2v_r}{c} t + \frac{\Delta f}{T} \frac{2R}{c} t_k = 2\pi f_0 \tau_0 + 2\pi f_d t + \frac{\Delta f}{T} \tau_0 t_k,$$

где $au_0 = rac{2R}{c}$, $f_d = f_0 rac{2v}{c}$. Абсолютное время t можно выразить через количество участков пилы k длительностью T и время внутри участка пилы t_k : $t = t_k + kT$. Используя это выражение, получаем:

$$\phi_b(t_k) = 2\pi (f_0 \tau_0 + f_d(t_k + kT) + \frac{\Delta f}{T} \tau_0 t_k) = 2\pi (f_0 \tau_0 + f_d kT + (\frac{\Delta f}{T} \tau_0 + f_d) t_k)$$

Полученная формула имеет ключевое значение. $\frac{\Delta f}{T} + f_d$ есть частота биений с учётом эффекта допплера (см. формулу 3). В ней заключена информация о расстоянии до объекта. Сигнал после первого преобразования Фурье:

$$s_b(t_k) = \sum_{k=0}^{K-1} e^{i\phi_b(t_k)}, \quad kT \le t_k \le (k+1)T,$$

где суммирование производится по K участкам. Пусть сигнал дискретизируется с периодом $T_s=\frac{1}{f_s}$. Тогда

$$s_b(nT_s) = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} \exp(2\pi i * (f_0 \tau_0 + f_d kT + (\frac{\Delta f}{T} \tau_0 + f_d) nT_s))$$

Преобразование Фурье выполняется для каждого участка пилы:

$$S_{b,1D}(k,p) = s_b(nT_s) * e^{-2\pi i \frac{np}{N}} = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} \exp\left[2\pi i (f_0 \tau_0 + f_d kT + (\frac{\Delta f}{T} \tau_0 + f_d) nT_s - \frac{np}{N})\right]$$

 $|S_{b,1D}(k,p)|$ имеет максимум при $p=NT_s(\frac{\Delta f}{T}\tau_0+f_d)$. В методе быстрых пил, как уже было показано, $f_d\ll \frac{\Delta f}{T}\tau_0$. Поэтому после первого преобразования Фурье можно получить информацию о расстоянии до объекта, как уже отмечалось в главе 2. Спектр $S_{b,1D}(k,p)$ является также функцией от k, так как частота $2\pi f_d k T$ зависит от k. Таким образом, второе преобразование Фурье позволяет получить информацию о

скорости объекта:

$$S_{b,2D}(m,p) = \sum_{k=0}^{K-1} e^{2\pi i (f_0 \tau_0 + f_d kT)} * e^{-2\pi i \frac{mk}{K}} = \sum_{k=0}^{K-1} e^{2\pi i (f_0 \tau_0 + f_d kT - \frac{mk}{K})}$$
(8)

В этом случае $|S_{b,2D}(m,p)|$ имеет максимум при $m=f_dTK$, что можно использовать для получения информации о скорости объекта и исключения влияния эффекта допплера на измеренное расстояние. Подход, основанный на двумерном преобразовании Фурье по праву занимает лидирующие позиции в современной практике. Однако этот метод имеет существенный недостаток: он требует сравнительно больших вычислительных ресурсов, что увеличивает стоимость оборудования.

Сущесвтует ещё один подход, использующий частотную манипуляцию (англ. Frequency shift keying). Передающий сигнал содержит состоит из двух частот f_a и f_b , перключающихся с заданным периодом $T_c pi$ (от англ. coherent processing interval), как показано на рисунке N. Аналогично случаю с линейной частотной модуляцией сигнал проходит через смеситель и фильтр нижних частот. Скорость можно получить, положив в формуле $4 \Delta f = 0$. Информацию о расстоянии можно получить, анализируя разность фаз биений, соответствующих участкам A и B. Действительно, набег фазы, вызванный задержкой в распространении:

$$\begin{cases} \phi_a = 2\pi f_a \frac{2R}{c} \\ \phi_b = 2\pi f_b \frac{2R}{c} \end{cases}$$

$$\Delta \phi = \phi_a - \phi_b = 2\pi (f_a - f_b) \frac{2R}{c}$$

$$R = \frac{c\Delta \phi}{4\pi f_{sh}}, \tag{9}$$

где $f_{sh} = f_b - f_a$. Максимальная разность фаз равна 2π , поэтому максимальное расстояние, которое можно однозначно измерить таким методом, составляет

$$R = \frac{c * 2\pi}{4\pi f_{\circ} h} = \frac{c}{2f_{\circ h}} \tag{10}$$

Например, для того, чтобы однозначно измерять расстояние в 150 метров, необходимо, чтобы $f_{sh} = 1$ МГц. Этот метод также имеет существенный недостаток: с его помощью невозможно различить цели с одинаковой скоростью, но разным расстоянием. Например, с помощью такого метода невозможно вычилсить число машин в потоке, движущемся с одной скоростью.

Моделирование задачи

Процедура сбора данных довольно утомительна, требует больших временных затрат и вспомогательного оборудования. Поэтому в процессе разработки алгоритмов для радаров естественным образом возникает желание иметь возможность оценить эффективность определённых алгоритмов, не прибегая к непосредственному сбору данных. Подобную возможность предоставляет набор инструментов Phased Array System Toolbox ^{ТМ} для языка Matlab. С его помощью был создан симулятор, позволяющий произвольным образом задавать сценарий движения, форму зондирующего импульса и визуализировать обработку.

Актуальность работы

Это самая насущная проблема человечества.

Существующие методы

Быстрые пилы, сканирующий ортогонально дороге и т.д.

Предлагаемый алгоритм

I have быстрый чирп, і have трапеция Uuuughh Диплом Семёна

Устройство радара

Железные потроха

Моделирование задачи

Matlab-симулятор, ммммм..

Эскперимент

У дороги с матчтой

Результаты

Самый крутой радар

Благодарности

Благодарности идут тут.

Список литературы

- [1] B. Barbagli, G. Manes, R. Facchin. "Acoustic Sensor Network for Vehicle Traffic Monitoring". The First International Conference on Advances in Vehicular Systems, Technologies and Applications. 2012.
- [2] D. Honghui et al. "Improved Robust Vehicle Detection and Identification Based on Single Magnetic Sensor". *IEEE Access* 6 (2018).
- [3] E. Hyun, Woojin Oh, J.-H. Lee. "Two-step Moving Target Detection Algorithm for Automotive 77 GHz FNCW Radar". IEEE 72nd Vehicular Technology Conference -Fall. 2010.
- [4] E. Hyun и др. "Development of short-range ground surveillance radar for moving target detection". *IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar* (APSAR). 2015, с. 692—695.
- [5] M. Jankiraman. FMCW Radar Design. Artech House, 2018.
- [6] Y. Na, Y. Guo, Q. Fu. "An Acoustic Traffic Monitoring System: Design and Implementation". UIC-ATC-ScalCom-CBDCom-IoP. 2015, c. 119—126.
- [7] M. Reiher, B. Yang. "On the occurrence of ghost targets in linear FMCW radar: A worst case study". *International Radar Symposium*. 2008.
- [8] Andrzej Wojtkiewicz и др. "Two-dimensional Signal Processing in FMCW Radars". Окт. 1997.