Class4

Thm. *u**outer measure

Let $\boldsymbol{a} = \{u^* \text{-mesurable subsets}\}$

Then(i) \boldsymbol{a} is σ -algebra;

(ii) $u^* | \mathbf{a}$ is measure.

Ex. *X* set. (Ex.1.3.2)

Define
$$u^*(E) = \begin{cases} 0 & \text{if } E = \phi \\ 1 & \text{if } E \neq \phi \end{cases}$$
 for $E \subseteq X$.

Then u^* outer measure

$$\boldsymbol{\alpha} = \{\phi, X\}$$

$$u^*|\alpha \text{ is } \ni u^*(\phi)=0$$

$$u^{*}(X)=1.$$

Pf. of Thm.

(1) $\phi \in \boldsymbol{a}$

Check:
$$u^*(A) = u^*(A \cap \phi) + u^*(A \setminus \phi) \quad \forall A \subseteq X$$

$$u^*(\phi)$$
 $u^*(A)$

(2) $E \in \mathbf{a} \Rightarrow E^c \in \mathbf{a}$

Check:
$$u^*(A) = u^*(A \cap E^c) + u^*(A \setminus E^c)$$

$$u^*(A \setminus E)$$
 $u^*(A \cap E)$.

 $(3) E_1, E_2 \in \mathbf{a} \Rightarrow E_1 \cup E_2 \in \mathbf{a}.$

Check:
$$u^*(A) \ge u^*(A \cap (E_1 \cup E_2)) + u^*(A \setminus (E_1 \cup E_2))$$

Check:
$$u^*(A) \ge u^*(A \cap (E_1 \cup E_2)) + u^*(A \setminus (E_1 \cup E_2))$$

$$\parallel \qquad \qquad \parallel$$

$$u^*(\underline{(A \setminus E_1) \cap E_2}) \cup \underline{(A \cap E_1)} \qquad u^*(\underline{(A \setminus E_1) \setminus E_2}).$$
II

RHS
$$\leq \underline{\underline{u}^*((A \setminus E_1) \cap E_2)} + \underline{u}^*(A \cap E_1) + \underline{\underline{u}^*((A \setminus E_1) \setminus E_2)}$$

= $\underline{\underline{u}^*(A \setminus E_1)} + \underline{u}^*(A \cap E_1)$ $(\because E_2 \in \mathbf{a})$

$$= \underbrace{u^*(A \setminus E_1)}_{} + u^*(A \cap E_1)$$

$$(:: E_2 \in \boldsymbol{a})$$

 E_1

 E_2

A

Ι

$$=u^*(A). \qquad (:: E_1 \in \boldsymbol{a})$$

From Sec.1.1, a is an algebra.

 $\{E_k\}\subseteq \boldsymbol{a}$, mutually disjoint,

$$(4) S_n = \bigcup_{k=1}^n E_k$$

$$\Rightarrow u^* (A \cap S_n) = \sum_{k=1}^n u^* (A \cap E_k) \quad \forall A.$$

Pf: Trivial for n = 1.

Assume true for $\leq n$.

 $\boldsymbol{a} \ \sigma$ -algebra. &

countable

addition

 $u^*(A \cap S_{n+1}) = u^*((A \cap S_{n+1}) \cap S_n) + u^*((A \cap S_{n+1}) \setminus S_n) \quad (\because S_n = \bigcup_{k=1}^n E_k \in \boldsymbol{a} \text{ by (3)})$ $= u^*(A \cap S_n) + u^*(A \cap E_{n+1})$

$$= u^*(A \cap S_n) + u^*(A \cap E_{n+1})$$

$$= \sum_{k=1}^n u^*(A \cap E_k) + u^*(A \cap E_{n+1}) \quad \text{(by induction)}$$

$$= \sum_{k=1}^{n+1} u^*(A \cap E_k).$$
(5) Let $S = \bigcup_{k=1}^n E_k$. Then $u^*(A \cap S_k) = \sum_{k=1}^n u^*(A \cap E_k)$.

(5) Let
$$S = \bigcup_{n} E_{n}$$
. Then $u^{*}(A \cap S) = \sum_{n} u^{*}(A \cap E_{n}) \quad \forall A$.
Pf: " \leq ": $u^{*}(A \cap S) = u^{*}(A \cap (\bigcup_{n} E_{n})) = u^{*}(\bigcup_{n} (A \cap E_{n})) \leq \sum_{n} u^{*}(A \cap E_{n})$.
" \geq ": $u^{*}(A \cap S) \geq u^{*}(A \cap S_{n}) = \sum_{k=1}^{n} u^{*}(A \cap E_{k}) \quad \forall n$. (by (4))

(6)
$$S \in \boldsymbol{a}$$

Pf: Check:
$$u^*(A) \ge u^*(A \cap S) + u^*(A \setminus S)$$
. $\forall A$.
Pf: LHS= $u^*(A \cap S_n) + u^*(A \setminus S_n)$ $(\because S_n \in \boldsymbol{a} \text{ by (3)})$

$$\parallel \leftarrow (4) \qquad \qquad \bigvee$$

$$\sum_{k=1}^n u^*(A \cap E_k) + u^*(A \setminus S).$$

$$\sum_{n} u^{*}(A \cap E_{n}) + u^{*}(A \backslash S) = u^{*}(A \cap S) + u^{*}(A \backslash S).$$
(5)

(7)
$$\{E_n\} \subseteq \boldsymbol{a} \Rightarrow \bigcup_n E_n \in \boldsymbol{a}$$

Pf: Let $F_1 = E_1$, $F_2 = E_2 \setminus E_1$, $F_3 = E_3 \setminus (E_1 \cup E_2)$,...
Then $\{F_n\} \leq \boldsymbol{a}$, disjoint
 $\therefore \bigcup_n E_n = \bigcup_n F_n \in \boldsymbol{a}$ by (b)
 $\Rightarrow \boldsymbol{a}$ σ -algebra.

 $: u^* \mid a$ satisfies $u^*(\phi)=0$ & countable additivity (letting A=X in (5)) $\Rightarrow u^* \mid a$ measure.

Homework: Ex.1.3.1, 1.3.3 &1.3.6

Sec.1.4. Constructing outer measure.

X set

$$K \subseteq \wp(X)$$

Def. *K*: sequential covering class if

(1) $\phi \in K$;

(2)
$$\forall A \subseteq X$$
, $\exists \{E_n\} \subseteq K \ni A \subseteq \bigcup_{n=1}^{\infty} E_n$.

Ex.
$$X = \mathbb{R}$$

$$K = \{ \text{bdd open intervals} \} \cup \{ \phi \}$$

or = {open intervals}
$$\cup \{\phi\}$$

or =
$$\{\text{bdd closed intervals}\} \cup \{\phi\}$$

or = $\{\text{closed intervals}\} \cup \{\phi\}$.

Let
$$\lambda: K \to [0,\infty] \& \lambda(\phi) = 0$$

Ex.
$$\lambda$$
 (interval)= its length

For
$$A \subseteq X$$
, let $u^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \lambda(E_n) : E_n \in K, A \subseteq \bigcup_n E_n \right\} : \wp(X) \to [0, \infty].$

Note: In general, u^* may not be extension of λ (cf. p.14)

(Reason: u^* monotone, but λ may not be)

Thm. u^* is an outer measure.

Pf: (1)
$$u^*(\phi) = 0$$

(2)
$$u^*(A) \le u^*(B)$$
 if $A \subseteq B$.

(3) Check: countable subadditivity

Let:
$$\{A_n\}\subseteq \wp(X)$$
.

Let:
$$\{A_n\} \subseteq \wp(X)$$
.
Check: $u^*(\bigcup_n A_n) \le \sum_n u^*(A_n)$. a_n
 $(\because a = \inf a_n \Leftrightarrow \begin{cases} a \le a_n \\ \forall \varepsilon > 0 \quad \exists a_n \to a_n \le a + \varepsilon \end{cases}$

For
$$\varepsilon > 0$$
, $\exists \{E_{nk}\} \subseteq K \to A_n \subseteq \bigcup_k E_{nk} \& \sum_k \lambda(E_{nk}) \le u^*(A_n) + \frac{\varepsilon}{2^n}$
 $\therefore \bigcup_n A_n \subseteq \bigcup_{n,k} E_{nk}$
 $\Rightarrow u^*(A_n) \le \sum_k \lambda(E_n) \le \sum_k (u^*(A_n) + \varepsilon) \le \sum_k u^*(A_n) + \varepsilon$

$$\Rightarrow u^*(\bigcup_n A_n) \le \sum_{n,k} \lambda(E_{n,k}) \le \sum_n (u^*(A_n) + \frac{\varepsilon}{2^n}) \le \sum_n u^*(A_n) + \varepsilon$$

Let $\varepsilon \to 0$