

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Motorola Solutions, Inc.
Applicant Address	One Motorola Plaza Holtsville, NY 11742 USA
FCC ID	UZ7KHAP800
Manufacturer's company	Wistron NeWeb Corporation
Manufacturer Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308, Taiwan, R.O.C.

Product Name	802.11 a/b/g/n Module
Brand Name	MOTOROLA
Model No.	KHAP-800
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5350MHz / 5470 ~ 5725MHz
Received Date	Apr. 02, 2012
Final Test Date	Nov. 03, 2014
Submission Type	Class II Change
Operating Mode	Master

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart E, KDB789033 D01 v01r04, KDB662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CE	ERTIFICATE OF COMPLIANCE	
2. SU	UMMARY OF THE TEST RESULT	2
3. GE	ENERAL INFORMATION	3
3.1		
3.2	.2. Accessories	7
3.3	.3. Table for Filed Antenna	8
3.4	.4. Table for Carrier Frequencies	11
3.5	.5. Table for Test Modes	12
3.6	.6. Table for Testing Locations	16
3.7	.7. Table for Class II Change	16
3.8	.8. Table for Supporting Units	16
3.9	.9. Table for Parameters of Test Software Setting	17
3.1	.10. EUT Operation during Test	20
3.1	.11. Duty Cycle	21
3.1	.12. Test Configurations	22
4. TES	EST RESULT	23
4.1	.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement	23
4.2	.2. Maximum Conducted Output Power Measurement	120
4.3	.3. Power Spectral Density Measurement	138
4.4	.4. Radiated Emissions Measurement	185
4.5	.5. Band Edge Emissions Measurement	316
4.6	.6. Antenna Requirements	375
5. LIS	st of Measuring Equipments	376
6. ME	IEASUREMENT UNCERTAINTY	377
A DDE	ENDIV A TEST DUOTOS	A1 ~ A4

:Nov. 21, 2014

Issued Date

: ii of ii

:Nov. 21, 2014

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR240223-12AB	Rev. 01	Initial issue of report	Nov. 21, 2014

Certificate No.: CB10310202

1. CERTIFICATE OF COMPLIANCE

Product Name: 802.11 a/b/g/n Module

Brand Name : MOTOROLA

Model No. : KHAP-800

Applicant: Motorola Solutions, Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 02, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 377 Issued Date : Nov. 21, 2014

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E							
Part	Rule Section	Result	Under Limit					
4.1	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-				
4.2	15.407(a)	Maximum Conducted Output Power	Complies	0.01 dB				
4.3	15.407(a)	Power Spectral Density	Complies	0.01 dB				
4.4	15.407(b)	Radiated Emissions	Complies	1.01 dB				
4.5	15.407(b)	Band Edge Emissions	Complies	1.00 dB				
4.6	15.407(g)	Frequency Stability	Complies	-				
4.7	15.203	Antenna Requirements	Complies	-				

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description			
Product Type	WLAN (1/2/3TX, 3RX)			
Radio Type	Intentional Transceiver			
Power Type	powered by PC and DC power supply			
Modulation	see the below table for IEEE 802.11n			
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Data Rate (Mbps)	see the below table for IEEE 802.11n			
Frequency Range	5150 ~ 5350MHz / 5470 ~ 5725MHz			
Channel Number	16 for 20MHz bandwidth ; 7 for 40MHz bandwidth			
Channel Band Width (99%)	Mode 1 (Ant.6 Dipole antenna / 8dBi)			
	For Beamforming Mode			
	For 2TX			
	Band 1: MCS0 (HT20): 18.72 MHz ; MCS0 (HT40): 37.12 MHz			
	Band 2: MCSO (HT20): 18.88 MHz ; MCSO (HT40): 36.80 MHz			
	Band 3: MCS0 (HT20): 17.76 MHz ; MCS0 (HT40): 37.44 MHz			
	For 3TX			
	Band 1: MCS0 (HT20): 18.56 MHz ; MCS0 (HT40): 37.12 MHz			
	Band 2: MCS0 (HT20): 18.72 MHz ; MCS0 (HT40): 37.44 MHz			
	Band 3: MCS0 (HT20): 18.56 MHz ; MCS0 (HT40): 37.12 MHz			
	Mode 2 (Ant.16 Panel antenna / 3.5dBi)			
	For Beamforming Mode			
	For 2TX			
	Band 1: MCS0 (HT20): 18.72 MHz ; MCS0 (HT40): 36.48 MHz			
	Band 2: MCS0 (HT20): 20.00 MHz ; MCS0 (HT40): 37.12 MHz			
	Band 3: MCS0 (HT20): 25.92 MHz ; MCS0 (HT40): 36.80 MHz			
	For 3TX			
	Band 1: MCS0 (HT20): 18.88 MHz ; MCS0 (HT40): 37.12 MHz			
	Band 2: MCS0 (HT20): 18.72 MHz ; MCS0 (HT40): 37.44 MHz			
	Band 3: MCS0 (HT20): 18.88 MHz ; MCS0 (HT40): 37.12 MHz			
	Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1:			
	6.7, Chain 2: 4.3, Chain 3: 6.6dBi)			
	For Beamforming Mode			
	For 3TX			
	Band 1: MCS0 (HT20): 18.88 MHz ; MCS0 (HT40): 37.12 MHz			

 Report Format Version: Rev. 01
 Page No. : 3 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

Band 2: MCS0 (HT20): 19.04 MHz; MCS0 (HT40): 36.80 MHz

Band 3: MCSO (HT20): 18.56 MHz; MCSO (HT40): 37.12 MHz

For Non-Beamforming Mode

For 1TX

Band 1: MCSO (HT20): 18.59 MHz; MCSO (HT40): 37.18 MHz

Band 2: MCS0 (HT20): 30.38 MHz; MCS0 (HT40): 36.92 MHz

Band 3: MCSO (HT20): 33.46 MHz; MCSO (HT40): 37.44 MHz

For 2TX

Band 1: MCS0 (HT20): 18.72 MHz; MCS0 (HT40): 36.48 MHz

Band 2: MCSO (HT20): 19.68 MHz; MCSO (HT40): 37.44 MHz

Band 3: MCSO (HT20): 19.68 MHz; MCSO (HT40): 40.32 MHz

For 3TX

Band 1: MCSO (HT20): 19.04 MHz; MCSO (HT40): 37.12 MHz

Band 2: MCS0 (HT20): 18.88 MHz; MCS0 (HT40): 36.48 MHz

Band 3: MCS0 (HT20): 18.72 MHz; MCS0 (HT40): 37.12 MHz

Maximum Conducted Output

Power

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Band 1: MCSO (HT20): 11.97 dBm; MCSO (HT40): 11.85 dBm

Band 2: MCSO (HT20): 18.97 dBm; MCSO (HT40): 18.92 dBm

Band 3: MCSO (HT20): 18.85 dBm; MCSO (HT40): 18.76 dBm

For 3TX

Band 1: MCS0 (HT20): 10.21 dBm; MCS0 (HT40): 10.21 dBm

Band 2: MCSO (HT20): 15.61 dBm; MCSO (HT40): 16.26 dBm

Band 3: MCSO (HT20): 17.18 dBm; MCSO (HT40): 17.22 dBm

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Band 1: MCSO (HT20): 16.24 dBm; MCSO (HT40): 16.47 dBm

Band 2: MCSO (HT20): 23.11 dBm; MCSO (HT40): 18.40 dBm

Band 3: MCSO (HT20): 23.46 dBm; MCSO (HT40): 20.63 dBm

For 3TX

Band 1: MCSO (HT20): 14.59 dBm; MCSO (HT40): 14.46 dBm

Band 2: MCSO (HT20): 14.91 dBm; MCSO (HT40): 16.79 dBm

Band 3: MCSO (HT20): 21.49 dBm; MCSO (HT40): 20.22 dBm

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1:

6.7, Chain 2: 4.3, Chain 3: 6.6dBi)

For Beamforming Mode

For 3TX
Band 1: MCS0 (HT20): 11.97 dBm ; MCS0 (HT40): 11.96 dBm
Band 2: MCS0 (HT20): 19.13 dBm ; MCS0 (HT40): 14.42 dBm
Band 3: MCS0 (HT20): 19.14 dBm ; MCS0 (HT40): 18.61 dBm
For Non-Beamforming Mode
For 1TX
Band 1: MCS0 (HT20): 16.13 dBm ; MCS0 (HT40): 15.98 dBm
Band 2: MCS0 (HT20): 23.11 dBm ; MCS0 (HT40): 15.86 dBm
Band 3: MCS0 (HT20): 23.18 dBm ; MCS0 (HT40): 19.62 dBm
For 2TX
Band 1: MCS0 (HT20): 16.24 dBm ; MCS0 (HT40): 15.84 dBm
Band 2: MCS0 (HT20): 23.11 dBm; MCS0 (HT40): 22.29 dBm
Band 3: MCS0 (HT20): 22.92 dBm ; MCS0 (HT40): 22.96 dBm
For 3TX
Band 1: MCS0 (HT20): 15.37 dBm ; MCS0 (HT40): 16.29 dBm
Band 2: MC\$0 (HT20): 22.50 dBm ; MC\$0 (HT40): 16.51 dBm
Band 3: MCS0 (HT20): 22.37 dBm ; MCS0 (HT40): 19.28 dBm
Please refer to section 3.4
Please refer to section 3.3

IEEE 802.11a

Items	Description
Product Type	WLAN (1/2/3TX, 3RX)
	Note: PIFA Antenna (Model Name: RAI-INT-ANT and KAP-I INT ANT) only
	1TX1RX of 11a function
Radio Type	Intentional Transceiver
Power Type	powered by PC and DC power supply
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5350MHz / 5470 ~ 5725MHz
Channel Number	16
Maximum Conducted Output	Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1:
Power	6.7, Chain 2: 4.3, Chain 3: 6.6dBi)
	For Non-Beamforming Mode
	For 1TX
	Band 1: 16.13 dBm; Band 2: 22.73 dBm; Band 3: 23.15 dBm
	For 2TX
	Band 1: 16.23 dBm; Band 2: 22.84 dBm; Band 3: 22.92 dBm
	For 3TX
	Band 1: 15.54 dBm; Band 2: 22.54 dBm; Band 3: 22.51 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description				
Communication Mode		Frame Based			
TPC Function	With TPC	☐ Without TPC			
Weather Band (5600~5650MHz)	☐ With 5600~5650MHz	☑ Without 5600~5650MHz			
Beamforming Function	With beamforming	☐ Without beamforming			

Note: The product has beamforming function for 802.11n in 2.4GHz/5GHz.

Antenna and Band width

Antenna	Single	e (TX)	Two	(TX)	Three (TX)		
Band width Mode	20 MHz	40 MHz	20 MHz 40 MHz		20 MHz	40 MHz	
IEEE 802.11a	٧	Х	٧	Х	٧	Х	
IEEE 802.11n	٧	٧	٧	٧	٧	٧	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1, 2, 3	MC\$ 0-23
802.11n (HT40)	1, 2, 3	MC\$ 0-23

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

3.2. Accessories

N/A

Report Format Version: Rev. 01 Page No. : 7 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.3. Table for Filed Antenna

	Ant	Antenna	Antenna	Antenna		Cable loss		True Gain (dBi)	
Ant.	Model Name	Туре	Chip/Radio	Gai		z 2.4GHz 5GHz		2 4047 5047	
1	MI 2400 FURAC OLD	Dinala	Derdic 1/2 CU1/2/2				5GHZ		5GHZ
2	ML-2499-FHPA9-01R ML-2499-SD3-01R	Dipole Patch	Radio1/2-CH1/2/3 Radio1/2-CH1/2/3	10.5	-	1.5 1	-	9	-
	ML-2499-3D3-01R ML-2499-BPNA3-01R	Panel	Radio1/2-CH1/2/3		-	-	-		-
3			Radio1/2-CH1/2/3	15	-	1	-	14	-
4	ML-2499-BYGA2-01R KAP-FACADE-ANT	Yagi	Radio1/2-CH1/2/3	14.5 3.5	-	1	1.5	13.5	-
5		Facade Dipole	Radio1/2-CH1/2/3		4	1	1.5	2.5	2.5
6	ML-5299-FHPA10-01R	Patch	Radio1/2-CH1/2/3	-	10.5	-	2.5	-	8
7	ML-5299-PTA1-01R			-	3.8	-	1.5	-	2.3
8	ML-2452-PNA7-01R	Panel	Radio1/2-CH1/2/3	8	12	-	1.5	8	10.5
9	ML-5299-BYGA15-012	Yagi	Radio1/2-CH1/2/3	-	10.5	-	2.5	-	8
10	ML-2499-5PNL-72-N	Panel	Radio1/2-CH1/2/3	6.5	-	-	-	6.5	-
11	ML-2499-APA2-01	Dipole	Radio1/2-CH1/2/3	3.2	-	-	-	3.2	-
12	ML-2499-HPA3-01R	Dipole	Radio1/2-CH1/2/3	4	-	-	-	4	-
13	ML-5299-APA1-01R	Dipole	Radio1/2-CH1/2/3	-	4	-	-	-	4
14	ML-5299-HPA1-01R	Dipole	Radio1/2-CH1/2/3	-	6	-	-	-	6
15	ML-2452-APA2-01	Dipole	Radio1/2-CH1/2/3	3	5	-	-	3	5
16	ML-2452-PNA5-01R	Panel	Radio1/2-CH1/2/3	5.5	6	1.5	2.5	4	3.5
17	ML-2452-HPA5-036	Dipole	Radio1/2-CH1/2/3	3	5	-	-	3	5
18	ML-2452-APAG2A1-01	Dipole	Radio1/2-CH1/2/3	2.7	2	-	-	2.7	2
19	RAI-INT-ANT	PIFA	Radio1/2-CH1/2/3	4.3	-	1	-	4.3	-
20	ML-2499-HPA4-01	Dipole	Radio1/2-CH1/2/3	4.5	-	1.5	-	3	-
21	ML-2499-HPA8-01	Dipole	Radio1/2-CH1/2/3	8	-	1.5	-	6.5	-
22	ML-5299-HPA5-01	Dipole	Radio1/2-CH1/2/3	-	5.6	-	2.5	-	3.1
23	ML-5299-HPA10-01	Dipole	Radio1/2-CH1/2/3	-	10.5	-	2.5	-	8
24	ML-2452-HPAG5A8-01	Dipole	Radio1/2-CH1/2/3	5	8	1.5	2.5	3.5	5.5
25	ML-2499-HPA3-02R	Dipole	Radio1/2-CH1/2/3	5	-	1	-	4	-
26	ML-2452-HPAG4A6-01	Dipole	Radio1/2-CH1/2/3	4	7.3	1.5	2.5	2.5	4.8
27	ML-2452-HPA6X6-036	Dipole	Radio1/2-CH1/2/3	4	6	1	1.5	3	4.5
28	ML-2452-HPA6M6-072	Dipole	Radio1/2-CH1/2/3	2.8	6.5	1	1.5	1.8	5
29	ML-2452-PNL9M3-036	Panel	Radio1/2-CH1/2/3	11	10.7	1	1.5	10	9.2
30	ML-2452-PTA6M6-036	Panel	Radio1/2-CH1/2/3	5	6	1	1.5	4	4.5
31	KAP-I INT ANT	PIFA	Radio1/2-CH1/2/3	4.4	4.7	-	-	4.4	4.7

Page No. : 8 of 377 Issued Date : Nov. 21, 2014

Ant.	Model Name	Antenna	Chip/Radio	Anter Gai		Cable	loss	True Gai	n (dBi)
		Туре		2.4GHz	5GHz	2.4GHz	5GHz	2.4GHz	5GHz
		3-Port Dual-Band					_		
32	ML-2452-PNL3M3-1	Directional Panel	Radio1/2-CH1/2/3			Note	e I		

Note 1:

Antonna	Antenn	a Gain	Cabl	e loss	True Gain (dBi)		
Antenna	2.4GHz	5GHz	2.4GHz	5GHz	2.4GHz	5GHz	
Α	9.5	9.2	1.5	2.5	8	6.7	
В	6.6	6.8	1.5	2.5	5.1	4.3	
С	9.7	9.1	1.5	2.5	8.2	6.6	

Table of TX/RX Function in each antenna:

					Mod	dule			
	Item			in 1	Cho	in 2	Chain 3		
			TX	RX	TX	RX	TX	RX	
		11b	٧	٧	V	V	٧	٧	
Ant. 1	2.4GHz	11g	٧	٧	٧	٧	٧	٧	
		lln	٧	٧	٧	٧	٧	٧	
		11b	٧	٧	V	V	٧	٧	
Ant.3	Ant.3 2.4GHz	11g	٧	٧	٧	٧	٧	٧	
		11n	٧	٧	٧	٧	٧	٧	
Ant 6	5CU-	lla	٧	٧	٧	٧	٧	٧	
Ant.6	5GHz	lln	٧	٧	٧	٧	٧	٧	
A-114	5CU-	lla	٧	٧	V	V	٧	٧	
Ant.16	5GHz	11n	٧	٧	٧	٧	٧	٧	
		11b	٧	٧	V	V	٧	٧	
	2.4GHz	11g	٧	٧	٧	٧	٧	٧	
Ant.32		11n	٧	٧	٧	٧	٧	٧	
	5CU-	lla	٧	٧	٧	٧	٧	٧	
	5GHz	11n	٧	٧	٧	٧	٧	٧	

Note: Marked "-" on behalf of no function.

Page No. : 9 of 377

Issued Date : Nov. 21, 2014

Module	Required 1TX Port
2.4G / 5G	Chain 1

Module	Required 2TX Port
2.4G / 5G	Chain 1 and Chain 2

Module	Required 3TX Port
2.4G / 5G	Chain 1 and Chain 2 and Chain 3

Page No. : 10 of 377 FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.4. Table for Carrier Frequencies

The EUT has two bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140.

For 40MHz bandwidth systems, use Channel 38, 46, 54, 62, 102, 110, 134.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
8150~5250 MH2	38	5190 MHz	46	5230 MHz
bullu i	40	5200 MHz	48	5240 MHz
5250~5350 MHz	52	5260 MHz	60	5300 MHz
3250~3350 MH2 Band 2	54	5270 MHz	62	5310 MHz
build 2	56	5280 MHz	64	5320 MHz
	100	5500 MHz	116	5580 MHz
	102	5510 MHz	132	5660 MHz
5470~5725 MHz	104	5520 MHz	134	5670 MHz
Band 3	108	5540 MHz	136	5680 MHz
	110	5550 MHz	140	5700 MHz
	112	5560 MHz	-	-

Report Format Version: Rev. 01 Page No. : 11 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mod	de	Data Rate	Channel	Chain
Max. Conducted Output Power	For Beamforr	ming Mode			
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1+2
	1111 1120	bana 1-3	MCSU	/100/116/140	1+2+3
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1+2
	111111140	Baria 1-3	IVICSO	102/110/134	1+2+3
	For Non-Bea	mforming M	ode for Ant. 32	2 only	
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1 1+2
	111111120	balla 1-0	IVICOO	/100/116/140	1+2+3
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1 1+2
	111111140	bana i o		102/110/134	1+2+3
	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64	1 1+2
	1 Tay Di Git	Dana 1 0	- Civiopo	/100/116/140	1+2+3
Power Spectral Density	For Beamforr	ming Mode	T	T	
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1+2
				/100/116/140	1+2+3
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1+2
				102/110/134	1+2+3
	For Non-Bea	mforming M	ode for Ant. 32	2 only	
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1 1+2
		23.13 . 0		/100/116/140	1+2+3
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1 1+2
		Dana 1 0	11.500	102/110/134	1+2+3

Report Format Version: Rev. 01 Page No. : 12 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Spectrum Bandwidth	For Beamfor	mina Mode								
99% Occupied Bandwidth	TOT BOUTHOR			36/40/48/52/60/64	1.0					
Measurement Measurement	11n HT20	Band 1-3	MCS0	/100/116/140	1+2 1+2+3					
	11 - UT 40	Dave et 1.2	MCC0	38/46/54/62/	1+2					
	11n HT40	Band 1-3	MCS0	102/110/134	1+2+3					
	For Non-Beamforming Mode for Ant. 32 only									
	11- 11700	D1 1 0	14000	36/40/48/52/60/64	1					
	11n HT20	Band 1-3	MCS0	/100/116/140	1+2 1+2+3					
	11 m LIT 40	David 1.2	MCCO	38/46/54/62/	1					
	11n HT40	Band 1-3	MCS0	102/110/134	1+2 1+2+3					
Radiated Emission Above 1GHz	For Beamfor	ming Mode								
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1+2					
	111111120	Baria 1-5	IVICOU	/100/116/140	1+2+3					
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1+2					
	1111 1140	bana 1-5	IVIC30	102/110/134	1+2+3					
	For Non-Beamforming Mode for Ant. 32 only									
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1 1+2					
	111111120	bana 1-0	IVICOO	/100/116/140	1+2+3					
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1 1+2					
	111111140	bana 1-0	IVICOO	102/110/134	1+2+3					
Band Edge Emission	For Beamfor	ming Mode	T	<u>, </u>	_					
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64	1+2					
	111111120	barra 1-0	WICOO	/100/116/140	1+2+3					
	11n HT40	Band 1-3	MCS0	38/46/54/62/	1+2					
	111111140	bana 1-0	IVICOO	102/110/134	1+2+3					
	For Non-Bea	mforming M	ode for Ant. 32	2 only						
	11n HT20	Band 1-3	MC\$0	36/40/48/52/60/64	1 1+2					
	20	barra i c	111000	/100/116/140	1+2+3					
	11n HT40	Band 1-3	MC\$0	38/46/54/62/	1 1+2					
		54114 1 0		102/110/134	1+2+3					
	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64	1 1+2					
	113,5101	Jana i J	3,11,50	/100/116/140	1+2+3					
Frequency Stability	Un-modulation	on	-	40/60/100	1+2+3					

Page No. : 13 of 377 FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

The following test modes were performed for Radiated emission above 1GHz tests:

	Antenna/Radio Mode	11b 1TX	11b 2TX	11b 3TX	11a/g 1TX	11a/g 2TX	11a/g 3TX	1TX	H20/40 2TX (MCS0)	H20/40 3TX (MCS0)
Mode 1	For Beamforming Mode Dipole-5G, Antenna 6	-	-	-	-	-	-	-	V	V
Mode 2	For Beamforming Mode Patch-5G, Antenna 16	-	-	-	-	-	-	-	v	V
	For Beamforming Mode 3-Port Dual-Band Directional Panel-5G, Antenna 32	-	-	-	-	-	-	-	-	V
Mode 3	For Non-Beamforming Mode 3-Port Dual-Band Directional Panel-5G, Antenna 32	v	٧	٧	v	٧	٧	V	v	v

- Note 1: For Ant. 32's Non-Beamforming Mode 11g/a 1/2/3 TX just evaluate output power and bandedge, The other test items are covered by 802.11n HT20 1Tx/2TX/3TX MCS0 due to same modulation and bandwidth.
- Note 2: For Ant. 32's Maximum Conducted Output Power, Power Spectral Density and 6dB Spectrum Bandwidth tests, non-Beamforming 2TX covers beamforming 2TX due to the array gain is zero.
- Note 3: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802 11n in 2.4GHz/5GHz. Beamforming mode and non-beamforming mode have been tested and recorded in this test report for Ant. 32 only.

Expected Array Gain Adjustment to Antenna Directivity for 2TX / 3TX Configurations and Supported Operational Modes

In the FCC regulatory domain, conducted testing of systems with multiple transmitters (2Tx transmitter configurations) was performed in accordance with KDB 662911 requires adjustment of antenna directivity by an array gain factor. The array gain factor is dependent on correlation of the multiple tx signals, and is therefore a function of operational mode.

The following table establishes the expected array gain for the 2Tx and 3TX transmitter configuration case for each supported operational mode.

Operational	11b	11a/g	HT20	HT40	HT20	HT40	HT20	HT40
Mode >	(DSSS-CCK)	(Legacy	1 Stream	1 Stream	2 Stream	2 Stream	3 Stream	3 Stream
Tx Config ^		OFDM)	(MCS0-7)	(MCS0-7)	(MCS8-15)	(MCS8-15)	(MCS16-23)	(MCS16-23)
2TX	3.01dB	3.01dB	3.01dB	3.01dB	NA	NA	NA	NA
3TX	4.77dB	4.77dB	4.77dB	4.77dB	3.01dB	3.01dB	NA	NA

Report Format Version: Rev. 01 Page No. : 14 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For MPE Test

The module (Model number: KHAP-800) is Limited Module Approval and only limited to install to the AP (MOTOROLA / AP-8132)、 (MOTOROLA / AP-8163)、 (MOTOROLA / AP-8232)、 (MOTOROLA / AP-8222) and (MOTOROLA / AP-8263), it verified MPE test.

1. MOTOROLA / AP-8132

The AP (MOTOROLA / AP-8132) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), Radio B (5G) RF module (FCC ID: UZ7KHAP800) and 2.4G/5G USB dongle (FCC ID: UZ7KHUSB600); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz, 5GHz WLAN function and 2.4G, 5G USB dongle.

2. MOTOROLA / AP-8122

The AP (MOTOROLA / AP-8122) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), and Radio B (5G) RF module (FCC ID: UZ7KHAP800); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz and 5GHz WLAN function.

3. MOTOROLA / AP-8163

The AP (MOTOROLA / AP-8163) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), Radio B (5G) RF module (FCC ID: UZ7KHAP800) and 2.4G/5G USB dongle (FCC ID: UZ7KHUSB601); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz, 5GHz WLAN function and 2.4G, 5G USB dongle.

4. MOTOROLA / AP-8232

The AP (MOTOROLA / AP-8232) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), Radio B (5G) RF module (FCC ID: UZ7RAAP800) and 2.4G/5G USB dongle (FCC ID: UZ7KHUSB600); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz, 5GHz WLAN function and 2.4G, 5G USB dongle.

5. MOTOROLA / AP-8222

The AP (MOTOROLA / AP-8222) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), and Radio B (5G) RF module (FCC ID: UZ7RAAP800); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

6. MOTOROLA / AP-8263

The AP (MOTOROLA / AP-8263) could be applied with Radio A (2.4G) RF module (FCC ID: UZ7KHAP800), Radio B (5G) RF module (FCC ID: UZ7RAAP800) and 2.4G/5G USB dongle (FCC ID: UZ7KHUSB601); therefore Maximum Permissible Exposure (Please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz, 5GHz WLAN function and 2.4G, 5G USB dongle.

Report Format Version: Rev. 01 Page No. : 15 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.6. Table for Testing Locations

	Test Site Location											
Address:	No.	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.										
TEL:	886	886-3-656-9065										
FAX:	886	5-3-656-9085										
Test Site N	lo.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No						
03CH01-0	03CH01-CB SAC Hsin Chu 262045 IC 4086D -											
TH01-CE	3	OVEN Room Hsin Chu										

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: 240223-04 Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
 Adding beamforming funiction for ceantenna (Model: ML-2499-FHPA9-01R ML-2499-BPNA3-01R, ML-5299-FHPA10 and ML-2452-PNA5-01R) at 802.11n. Adding an antenna (Model: ML-2452-PNL3M3-1). 	Measurement 2. Maximum Conducted Output Power Measurement 3. Power Spectral Density Measurement

Note:

The model name shall be same as before. There is no change in hardware or in existing RF relevant portion.

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Test Fixture	WNC	Express card adapter	N/A

Report Format Version: Rev. 01 Page No. : 16 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version	Art2-GUI 2.3									
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700	
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
MCS0 HT20	9	9	8.5	15.5	15.5	14	12.5	14.5	13	

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Art2-GUI 2.3									
Frequency	5190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 MHz										
MCS0 HT40	8	8.5	15	9.5	8.5	13.5	14.5				

For 3TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version	Art2-GUI 2.3										
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700		
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
MCS0 HT20	5	4.5	4.5	8	8	9.5	10.5	10	10		

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Art2-GUI 2.3									
Frequency	5190 MHz	5190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 MHz									
MCS0 HT40	5.5	5.5	11	8.5	4	10.5	11.5				

: 17 of 377 Page No. FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version	Art2-GUI 2.3									
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700	
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
MCS0 HT20	12	12	11.5	17.5	18.5	12.5	13.5	21.5	10.5	

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Art2-GUI 2.3									
Frequency	5190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 MHz										
MCS0 HT40	7	12	13.5	7	5	14.5	12				

For 3TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version		Art2-GUI 2.3									
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700		
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
MCS0 HT20	7.5	9	9	7.5	9	8.5	9	15.5	9		

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Art2-GUI 2.3									
Frequency	5190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 M										
MCS0 HT40	5	8.5	10.5	6	4.5	14	9				

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version		Art2-GUI 2.3										
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700			
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
MCS0 HT20	7.5	7	7	14	14	10	12	13	10.5			

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Art2-GUI 2.3									
Frequency	5190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 MHz										
MCS0 HT40	6	7	9	6	4	12	11				

Report Format Version: Rev. 01 Page No. : 18 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For Non-Beamforming Mode

For 1TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version	Art2-GUI 2.3								
Fraguanay	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
MCS0 HT20	15.5	15	14.5	23	22	16.5	15.5	25	13.5

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version	Art2-GUI 2.3						
Frequency	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5550 MHz	5670 MHz
MCS0 HT40	9.5	14.5	14	13	10	19	15

Power Parameters of IEEE 802.11a

Test Software Version	Art2-GUI 2.3								
Fraguenav	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
802.11a	15.5	15.5	15	23	23	17	16	25	14

For 2TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version	Art2-GUI 2.3								
- Fraguenov	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
MCS0 HT20	12	12	11.5	18	18.5	13.5	15	18	12.5

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version	Art2-GUI 2.3						
Frequency	5190 MHz	190 MHz 5230 MHz 5270 MHz 5310 MHz 5510 MHz 5550 MHz 5670 M					
MCS0 HT40	8	11	17	11	9.5	18.5	13.5

Power Parameters of IEEE 802.11a

Test Software Version	Art2-GUI 2.3								
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
802.11a	12	11.5	11.5	18	18	15	15.5	19	13

: 19 of 377 Page No. FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For 3TX

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version		Art2-GUI 2.3							
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
MCS0 HT20	11.5	10	10.5	16.5	17	12.5	13	17	11.5

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version	Art2-GUI 2.3						
Frequency	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5550 MHz	5670 MHz
MCS0 HT40	7	11	11	7	5	13	12

Power Parameters of IEEE 802.11a

Test Software Version	Art2-GUI 2.3								
Fraguency	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
802.11a	11.5	11	10.5	16.5	17	13.5	13	17	12

3.10.EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(2)=3.01dBi as worse case in beamforming mode.

The measured result was added array gain 10*log(3)=4.77dBi as worse case in beamforming mode.

For Radiated Mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(2)=3.01dBi as worse case in beamforming mode.

The measured result was added array gain 10*log(3)=4.77dBi as worse case in beamforming mode

Report Format Version: Rev. 01 Page No. : 20 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

3.11. Duty Cycle

Pand	Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Band	Wode	(ms)	(ms)	(%)	(dB)	(kHz)
	802.11n MC\$0 HT20	1.280	1.325	96.60	0.15	0.78
2.4G	802.11n MCS0 HT40	0.640	0.670	95.52	0.20	1.56
2.46	802.11b	8.220	8.240	99.76	0.01	0.01
	802.11g	1.370	1.415	96.82	0.14	0.73
	802.11n MC\$0 HT20	1.285	1.320	97.35	0.12	0.78
5G	802.11n MCS0 HT40	0.640	0.665	96.24	0.17	1.56
	802.11a	1.370	1.405	97.51	0.11	0.73

Page No. : 21 of 377

Issued Date : Nov. 21, 2014

3.12. Test Configurations

3.12.1. Radiation Emissions Test Configuration

Test Configuration: above 1GHz

Item	Connection	Shielded	Length(m)
1	Power cable	No	2.6m

 Report Format Version: Rev. 01
 Page No. : 22 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

4. TEST RESULT

4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

	26dB Bandwidth		
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 26dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW > RBW			
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
	99% Occupied Bandwidth		
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.1.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
 Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.1.5. Test Deviation

There is no deviation with the original standard.

Report Format Version: Rev. 01 Page No. : 23 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.1.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 24 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao / YC Chen	Configurations	IEEE 802.11n/a

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	22.08	17.12
40	5200 MHz	24.32	18.72
48	5240 MHz	23.04	17.60
52	5260 MHz	26.24	18.88
60	5300 MHz	26.40	18.24
64	5320 MHz	22.72	18.24
100	5500 MHz	22.72	17.44
116	5580 MHz	23.36	17.76
140	5700 MHz	23.52	17.60

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	44.48	37.12
46	5230 MHz	45.12	37.12
54	5270 MHz	59.84	36.80
62	5310 MHz	43.52	36.80
102	5510 MHz	44.16	36.80
110	5550 MHz	50.24	37.44
134	5670 MHz	44.48	36.48

Report Format Version: Rev. 01 Page No. : 25 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For 3TX ${\it Configuration IEEE~802.11n~MCS0~HT20~/~Chain~1~+~Chain~2~+~Chain~3}$

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	23.52	18.02
40	5200 MHz	23.36	18.56
48	5240 MHz	21.44	17.12
52	5260 MHz	23.36	18.72
60	5300 MHz	24.32	18.72
64	5320 MHz	24.48	18.56
100	5500 MHz	23.68	18.08
116	5580 MHz	24.32	18.40
140	5700 MHz	23.52	18.56

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	44.16	36.48
46	5230 MHz	45.12	37.12
54	5270 MHz	42.56	35.84
62	5310 MHz	42.88	37.44
102	5510 MHz	45.44	37.12
110	5550 MHz	41.28	35.20
134	5670 MHz	46.40	36.48

 Report Format Version: Rev. 01
 Page No. : 26 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Comingaration IEEE COLITITIONS IN 125 / Chair I I Chair E			
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	22.72	17.44
40	5200 MHz	24.80	18.72
48	5240 MHz	25.12	18.72
52	5260 MHz	30.08	19.36
60	5300 MHz	31.68	20.00
64	5320 MHz	23.04	18.24
100	5500 MHz	24.96	19.04
116	5580 MHz	43.84	25.92
140	5700 MHz	22.24	17.44

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	44.48	36.48
46	5230 MHz	44.80	36.48
54	5270 MHz	50.24	37.12
62	5310 MHz	44.80	36.80
102	5510 MHz	46.00	36.80
110	5550 MHz	47.36	36.80
134	5670 MHz	44.48	36.80

 Report Format Version: Rev. 01
 Page No. : 27 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	23.20	18.88
40	5200 MHz	23.84	18.08
48	5240 MHz	24.16	18.88
52	5260 MHz	23.84	18.72
60	5300 MHz	24.00	18.72
64	5320 MHz	22.88	18.40
100	5500 MHz	23.52	18.88
116	5580 MHz	20.64	17.12
140	5700 MHz	24.16	18.08

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	42.88	37.12
46	5230 MHz	44.48	36.48
54	5270 MHz	44.80	37.44
62	5310 MHz	43.52	36.16
102	5510 MHz	46.72	36.80
110	5550 MHz	42.88	37.12
134	5670 MHz	45.12	36.80

 Report Format Version: Rev. 01
 Page No. : 28 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	24.48	18.88
40	5200 MHz	23.68	18.88
48	5240 MHz	23.36	18.08
52	5260 MHz	24.48	18.24
60	5300 MHz	23.20	19.04
64	5320 MHz	23.04	18.24
100	5500 MHz	23.20	18.40
116	5580 MHz	22.88	18.56
140	5700 MHz	23.04	18.08

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	46.72	36.80
46	5230 MHz	44.48	37.12
54	5270 MHz	43.84	36.48
62	5310 MHz	43.20	36.80
102	5510 MHz	43.84	37.12
110	5550 MHz	47.04	37.12
134	5670 MHz	43.52	36.80

Report Format Version: Rev. 01 Page No. : 29 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For Non-Beamforming Mode

For 1TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	25.89	18.58
40	5200 MHz	26.02	18.59
48	5240 MHz	20.96	18.24
52	5260 MHz	47.56	30.38
60	5300 MHz	44.62	24.49
64	5320 MHz	26.28	18.59
100	5500 MHz	25.38	18.46
116	5580 MHz	48.33	33.46
140	5700 MHz	25.26	18.59

Configuration IEEE 802.11n MCS0 HT40 / Chain 1

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	48.72	36.92
46	5230 MHz	49.74	37.18
54	5270 MHz	49.49	36.92
62	5310 MHz	48.72	36.92
102	5510 MHz	47.69	36.92
110	5550 MHz	68.72	37.44
134	5670 MHz	53.08	36.92

 Report Format Version: Rev. 01
 Page No. : 30 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

For 2TX ${\it Configuration IEEE~802.11n~MCS0~HT20~/~Chain~1~+~Chain~2}$

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	22.40	17.44
40	5200 MHz	24.32	18.72
48	5240 MHz	22.88	17.76
52	5260 MHz	29.76	19.52
60	5300 MHz	36.64	19.68
64	5320 MHz	24.00	18.24
100	5500 MHz	24.64	18.88
116	5580 MHz	29.76	19.68
140	5700 MHz	24.32	18.88

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	45.44	36.48
46	5230 MHz	43.84	36.48
54	5270 MHz	64.32	37.44
62	5310 MHz	44.48	36.48
102	5510 MHz	45.12	36.48
110	5550 MHz	76.16	40.32
134	5670 MHz	45.44	37.12

 Report Format Version: Rev. 01
 Page No. : 31 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

For 3TX ${\it Configuration IEEE~802.11n~MCS0~HT20~/~Chain~1~+~Chain~2~+~Chain~3}$

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	23.84	18.88
40	5200 MHz	24.16	19.04
48	5240 MHz	23.68	18.08
52	5260 MHz	27.36	18.40
60	5300 MHz	25.92	18.20
64	5320 MHz	24.16	18.88
100	5500 MHz	23.84	18.72
116	5580 MHz	29.12	18.24
140	5700 MHz	23.36	18.08

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	46.72	37.12
46	5230 MHz	44.16	37.12
54	5270 MHz	41.28	35.84
62	5310 MHz	42.88	36.48
102	5510 MHz	44.80	36.48
110	5550 MHz	42.88	37.12
134	5670 MHz	45.12	36.48

 Report Format Version: Rev. 01
 Page No. : 32 of 377

 FCC ID: UZ7KHAP800
 Issued Date : Nov. 21, 2014

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5180 MHz

Date: 23.OCT.2014 11:45:33

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5200 MHz

Date: 23.OCT.2014 11:46:14

Report Format Version: Rev. 01 Page No. : 33 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5240 MHz

Date: 23.OCT.2014 11:46:49

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Date: 23.OCT.2014 11:48:21

Report Format Version: Rev. 01 Page No. : 34 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5300 MHz

Date: 23.OCT.2014 11:49:08

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5320 MHz

Date: 23.OCT.2014 11:50:34

Report Format Version: Rev. 01 Page No. : 35 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5500 MHz

Date: 23.OCT.2014 11:53:55

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Date: 23.OCT.2014 11:54:55

Report Format Version: Rev. 01 Page No. : 36 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5700 MHz

Date: 23.OCT.2014 11:55:42

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5190 MHz

Date: 23.OCT.2014 12:00:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Date: 23.OCT.2014 12:01:52

Report Format Version: Rev. 01 Page No. : 38 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Date: 23.OCT.2014 12:02:37

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5310 MHz

Date: 23.OCT.2014 12:04:05

Report Format Version: Rev. 01 Page No. : 39 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5510 MHz

Date: 23.OCT.2014 12:00:05

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

Date: 23.OCT.2014 11:58:45

Report Format Version: Rev. 01 Page No. : 40 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5670 MHz

Date: 23.OCT.2014 11:57:04

Report No.: FR240223-12AB

For 3TX
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1
+ Chain 2 + Chain 3 / 5180 MHz

Date: 15.OCT.2014 21:26:03

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 15.OCT.2014 21:25:27

Report Format Version: Rev. 01 Page No. : 42 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Date: 15.OCT.2014 21:24:37

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Date: 15.OCT.2014 21:23:49

Report Format Version: Rev. 01 Page No. : 43 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Date: 15.0CT.2014 21:22:33

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Date: 15.OCT.2014 21:22:02

Report Format Version: Rev. 01 Page No. : 44 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5500 MHz

Date: 15.0CT.2014 21:18:45

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Date: 15.OCT.2014 21:20:00

Report Format Version: Rev. 01 Page No. : 45 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5700 MHz

Date: 15.OCT.2014 21:20:48

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Date: 15.OCT.2014 21:26:40

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Date: 15.OCT.2014 21:27:54

Report Format Version: Rev. 01 Page No. : 47 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Date: 15.0CT.2014 21:28:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5310 MHz

Date: 15.OCT.2014 21:29:10

Report Format Version: Rev. 01 Page No. : 48 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5510 MHz

Date: 15.OCT.2014 21:30:03

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Date: 15.OCT.2014 21:30:46

Report Format Version: Rev. 01 Page No. : 49 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5670 MHz

Date: 15.0CT.2014 21:32:19

Report Format Version: Rev. 01 Page No. : 50 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Report No.: FR240223-12AB

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5180 MHz

Date: 16.OCT.2014 17:39:50

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5200 MHz

Date: 16.OCT.2014 17:43:36

Report Format Version: Rev. 01 Page No. : 51 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5240 MHz

Date: 16.OCT.2014 17:45:35

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Date: 16.OCT.2014 17:45:52

Report Format Version: Rev. 01 Page No. : 52 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5300 MHz

Date: 16.OCT.2014 17:46:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5320 MHz

Date: 16.OCT.2014 17:47:35

Report Format Version: Rev. 01 Page No. : 53 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5500 MHz

Date: 16.OCT.2014 17:50:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Date: 16.OCT.2014 17:52:45

Report Format Version: Rev. 01 Page No. : 54 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5700 MHz

Date: 16.OCT.2014 17:53:46

Report Format Version: Rev. 01 Page No. : 55 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5190 MHz

Date: 16.OCT.2014 17:57:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Date: 16.OCT.2014 17:59:07

Report Format Version: Rev. 01 Page No. : 56 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Date: 16.OCT.2014 18:00:06

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5310 MHz

Date: 16.OCT.2014 18:00:57

Report Format Version: Rev. 01 Page No. : 57 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5510 MHz

Date: 16.OCT.2014 17:57:05

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

Date: 16.OCT.2014 17:56:14

Report Format Version: Rev. 01 Page No. : 58 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5670 MHz

Date: 16.OCT.2014 17:55:26

Report Format Version: Rev. 01 Page No. : 59 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Report No.: FR240223-12AB

For 3TX
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1
+ Chain 2 + Chain 3 / 5180 MHz

Date: 16.OCT.2014 15:23:56

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 16.OCT.2014 15:26:11

Report Format Version: Rev. 01 Page No. : 60 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Date: 16.OCT.2014 15:26:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Date: 16.OCT.2014 15:27:23

Report Format Version: Rev. 01 Page No. : 61 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Date: 16.OCT.2014 15:28:06

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Date: 16.OCT.2014 15:28:47

Report Format Version: Rev. 01 Page No. : 62 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5500 MHz

Date: 16.OCT.2014 15:29:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Date: 16.OCT.2014 15:30:27

Report Format Version: Rev. 01 Page No. : 63 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5700 MHz

Date: 16.OCT.2014 15:31:25

Report Format Version: Rev. 01 Page No. : 64 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Date: 16.OCT.2014 15:33:15

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Date: 16.OCT.2014 15:34:13

Report Format Version: Rev. 01 Page No. : 65 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Date: 16.OCT.2014 15:34:59

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5310 MHz

Date: 16.OCT.2014 15:35:45

Report Format Version: Rev. 01 Page No. : 66 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5510 MHz

Date: 16.0CT.2014 15:36:35

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Date: 16.OCT.2014 15:37:17

Report Format Version: Rev. 01 Page No. : 67 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5670 MHz

Date: 16.OCT.2014 15:38:02

Report Format Version: Rev. 01 Page No. : 68 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Report No.: FR240223-12AB

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 + Chain 3 / 5180 MHz

Date: 14.OCT.2014 21:11:42

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 14.OCT.2014 21:12:12

Report Format Version: Rev. 01 Page No. : 69 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Date: 14.OCT.2014 21:12:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Date: 14.OCT.2014 21:13:21

Report Format Version: Rev. 01 Page No. : 70 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Date: 14.OCT.2014 21:13:45

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Date: 14.OCT.2014 21:14:16

Report Format Version: Rev. 01 Page No. : 71 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5500 MHz

Date: 14.OCT.2014 21:14:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Date: 14.OCT.2014 21:15:17

Report Format Version: Rev. 01 Page No. : 72 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5700 MHz

Date: 14.OCT.2014 21:15:45

Report Format Version: Rev. 01 Page No. : 73 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Date: 14.OCT.2014 21:16:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Date: 14.OCT.2014 21:17:15

Report Format Version: Rev. 01 Page No. : 74 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Date: 14.OCT.2014 21:17:42

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5310 MHz

Date: 14.OCT.2014 21:18:10

Report Format Version: Rev. 01 Page No. : 75 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5510 MHz

Date: 14.OCT.2014 21:18:44

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Date: 14.OCT.2014 21:19:18

Report Format Version: Rev. 01 Page No. : 76 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5670 MHz

Date: 14.OCT.2014 21:19:47

For Non-Beamforming Mode

For 1TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5180 MHz

Date: 14.OCT.2014 17:28:54

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5200 MHz

Date: 14.OCT.2014 17:29:42

Report Format Version: Rev. 01 Page No. : 78 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5240 MHz

Date: 3.NOV.2014 19:14:53

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5260 MHz

Date: 14.OCT.2014 17:31:16

Report Format Version: Rev. 01 Page No. : 79 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5300 MHz

Date: 14.OCT.2014 17:33:16

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5320 MHz

Date: 14.OCT.2014 17:34:19

Report Format Version: Rev. 01 Page No. : 80 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 $\,$ / 5500 MHz

Date: 14.OCT.2014 17:40:36

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5580 MHz

Date: 14.OCT.2014 17:41:28

Report Format Version: Rev. 01 Page No. : 81 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 $\,$ / 5700 MHz

Date: 14.OCT.2014 17:42:17

Report Format Version: Rev. 01 Page No. : 82 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5190 MHz

Date: 14.OCT.2014 17:44:03

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 $\,$ / 5230 MHz

Date: 14.OCT.2014 17:45:37

Report Format Version: Rev. 01 Page No. : 83 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5270 MHz

Date: 14.0CT.2014 17:47:16

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5310 MHz

Date: 14.OCT.2014 17:48:08

Report Format Version: Rev. 01 Page No. : 84 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5510 MHz

Date: 14.OCT.2014 17:49:41

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 $\,$ / 5550 MHz

Date: 14.OCT.2014 17:51:07

Report Format Version: Rev. 01 Page No. : 85 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 $\,$ / 5670 MHz

Date: 14.0CT.2014 17:52:31

Report Format Version: Rev. 01 Page No. : 86 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5180 MHz

Date: 14.OCT.2014 17:10:11

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5200 MHz

Date: 14.0CT.2014 17:17:00

Report Format Version: Rev. 01 Page No. : 87 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5240 MHz

Date: 14.0CT.2014 17:18:00

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5260 MHz

Date: 14.OCT.2014 17:19:40

Report Format Version: Rev. 01 Page No. : 88 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5300 MHz

Date: 14.OCT.2014 17:20:31

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5320 MHz

Date: 14.0CT.2014 17:22:49

Report Format Version: Rev. 01 Page No. : 89 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5500 MHz

Date: 14.OCT.2014 17:24:13

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5580 MHz

Date: 14.0CT.2014 17:26:09

Report Format Version: Rev. 01 Page No. : 90 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5700 MHz

Date: 14.OCT.2014 17:27:03

For 2TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5180 MHz

Date: 9.OCT.2014 23:44:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5200 MHz

Date: 9.OCT.2014 23:45:27

Report Format Version: Rev. 01 Page No. : 92 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5240 MHz

Date: 9.OCT.2014 23:45:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Date: 9.OCT.2014 23:46:24

Report Format Version: Rev. 01 Page No. : 93 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5300 MHz

Date: 9.OCT.2014 23:46:50

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5320 MHz

Date: 9.OCT.2014 23:47:19

Report Format Version: Rev. 01 Page No. : 94 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5500 MHz

Date: 9.OCT.2014 23:44:23

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Date: 9.OCT.2014 23:43:53

Report Format Version: Rev. 01 Page No. : 95 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5700 MHz

Date: 9.OCT.2014 23:43:20

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5190 MHz

Date: 9.OCT.2014 23:47:54

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Date: 9.OCT.2014 23:48:19

Report Format Version: Rev. 01 Page No. : 97 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Date: 9.OCT.2014 23:49:03

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5310 MHz

Date: 9.OCT.2014 23:49:40

Report Format Version: Rev. 01 Page No. : 98 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5510 MHz

Date: 9.OCT.2014 23:50:16

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

Date: 9.OCT.2014 23:50:44

Report Format Version: Rev. 01 Page No. : 99 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5670 MHz

Date: 9.OCT.2014 23:51:14

Report Format Version: Rev. 01 Page No. : 100 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5180 MHz

Date: 9.OCT.2014 23:38:27

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5200 MHz

Date: 9.OCT.2014 23:39:14

Report Format Version: Rev. 01 Page No. : 101 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5240 MHz

Date: 9.OCT.2014 23:39:42

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5260 MHz

Date: 9.OCT.2014 23:40:11

Report Format Version: Rev. 01 Page No. : 102 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5300 MHz

Date: 9.OCT.2014 23:40:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / $5320~\mathrm{MHz}$

Date: 9.OCT.2014 23:41:11

Report Format Version: Rev. 01 Page No. : 103 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5500 MHz

Date: 9.OCT.2014 23:41:43

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5580 MHz

Date: 9.OCT.2014 23:42:13

Report Format Version: Rev. 01 Page No. : 104 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5700 MHz

Date: 9.OCT.2014 23:42:47

For 3TX
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1
+ Chain 2 + Chain 3 / 5180 MHz

Date: 14.OCT.2014 00:28:00

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 14.OCT.2014 00:28:27

Report Format Version: Rev. 01 Page No. : 106 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Date: 14.OCT.2014 00:28:57

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Date: 14.OCT.2014 00:29:30

Report Format Version: Rev. 01 Page No. : 107 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Date: 14.OCT.2014 00:29:58

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Date: 14.OCT.2014 00:30:35

Report Format Version: Rev. 01 Page No. : 108 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5500 MHz

Date: 14.OCT.2014 00:27:28

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Date: 14.OCT.2014 00:26:55

Report Format Version: Rev. 01 Page No. : 109 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5700 MHz

Date: 14.OCT.2014 00:25:58

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Date: 14.OCT.2014 00:31:23

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Date: 14.OCT.2014 00:31:54

Report Format Version: Rev. 01 Page No. : 111 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Date: 14.OCT.2014 00:32:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5310 MHz

Date: 14.OCT.2014 00:33:27

Report Format Version: Rev. 01 Page No. : 112 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5510 MHz

Date: 14.OCT.2014 00:34:04

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Date: 14.OCT.2014 00:34:36

Report Format Version: Rev. 01 Page No. : 113 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5670 MHz

Date: 14.OCT.2014 00:35:09

Report Format Version: Rev. 01 Page No. : 114 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5180 MHz

Date: 14.OCT.2014 00:20:31

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 14.OCT.2014 00:21:22

Report Format Version: Rev. 01 Page No. : 115 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Date: 14.OCT.2014 00:21:49

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Date: 14.OCT.2014 00:22:19

Report Format Version: Rev. 01 Page No. : 116 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Date: 14.OCT.2014 00:22:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Date: 14.OCT.2014 00:23:21

Report Format Version: Rev. 01 Page No. : 117 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5500 MHz

Date: 14.OCT.2014 00:23:54

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Date: 14.OCT.2014 00:24:27

Report Format Version: Rev. 01 Page No. : 118 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5700 MHz

Date: 14.OCT.2014 00:25:17

Report Format Version: Rev. 01 Page No. : 119 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.470-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D01 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3) Measurement using a power meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.2.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 120 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(2)=3.01dBi as worse case in beamforming mode.

The measured result was added array gain 10*log(3)=4.77dBi as worse case in beamforming mode.

Report Format Version: Rev. 01 Page No. : 121 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	26℃	Humidity	63%
Test Engineer	Wen Chao / YC Chen	Configurations	IEEE 802.11n/a
Test Date	Oct. 09, 2014 ~ Nov. 03,	2014	

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Fraguency	Con	ducted Power (d	Max. Limit	Dogult	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
36	5180 MHz	7.85	9.85	11.97	11.99	Complies
40	5200 MHz	7.95	9.58	11.85	11.99	Complies
48	5240 MHz	8.05	9.15	11.65	11.99	Complies
52	5260 MHz	15.56	16.18	18.89	18.99	Complies
60	5300 MHz	15.15	16.65	18.97	18.99	Complies
64	5320 MHz	13.55	15.25	17.49	18.99	Complies
100	5500 MHz	12.78	14.45	16.71	18.99	Complies
116	5580 MHz	14.95	16.58	18.85	18.99	Complies
140	5700 MHz	13.97	14.95	17.50	18.99	Complies

Note: Ch36, 40, 48 =
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{ant}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=17-(11.01-6)=11.99dBm

Ch52, 60, 64, 100, 116, 140=
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=24-(11.01-6)=18.99dBm

Report Format Version: Rev. 01 : 122 of 377 Page No. FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40

Channel	Eroguanov	Con	ducted Power (d	Max. Limit	Result	
Charine	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
38	5190 MHz	7.56	9.02	11.36	11.99	Complies
46	5230 MHz	8.12	9.45	11.85	11.99	Complies
54	5270 MHz	15.53	16.25	18.92	18.99	Complies
62	5310 MHz	10.12	11.12	13.66	18.99	Complies
102	5510 MHz	8.92	11.76	13.58	18.99	Complies
110	5550 MHz	14.25	16.75	18.69	18.99	Complies
134	5670 MHz	15.35	16.12	18.76	18.99	Complies

Ch36, 46 = Directional Gain =
$$10 \cdot log \left[\frac{\sum_{j=1}^{N_{AM}} \left\{ \sum_{k=1}^{N_{AM}} g_{j,k} \right\}^2}{N_{AMT}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=17-(11.01-6)=11.99dBm

Ch54, 62, 102, 110, 134 =
$$_{DirectionalGain = 10 \cdot log} \left[\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2} \right] = 11.01 dBi > 6 dBi,$$

So Limit=24-(11.01-6)=18.99dBm

Page No. : 123 of 377 Issued Date : Nov. 21, 2014

For 3TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Fraguanay		Conducted	Power (dBm)		Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
36	5180 MHz	4.68	6.38	5.05	10.20	10.23	Complies
40	5200 MHz	5.03	5.79	4.98	10.05	10.23	Complies
48	5240 MHz	5.47	5.98	4.77	10.21	10.23	Complies
52	5260 MHz	8.82	9.63	8.42	13.76	17.23	Complies
60	5300 MHz	9.12	9.92	8.22	13.91	17.23	Complies
64	5320 MHz	10.84	11.52	10.02	15.61	17.23	Complies
100	5500 MHz	11.80	13.32	11.64	17.09	17.23	Complies
116	5580 MHz	11.61	13.42	11.98	17.18	17.23	Complies
140	5700 MHz	11.87	13.02	11.48	16.94	17.23	Complies

Note:

Ch36, 40, 48 = Directional Gain =
$$10 \cdot \log \left| \frac{\sum_{i=1}^{N} \left\{ \sum_{k=1}^{N} g_{i,k} \right\}^{2}}{N_{ANT}} \right| = 12.77 \text{dBi} > 6 \text{dBi}$$

So Limit=17-(12.77-6)=10.23dBm

Ch52, 60, 64, 100, 116, 140 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{AMT}} \left(\sum_{k=1}^{N_{AMT}} g_{j,k} \right)^{2}}{N_{AMT}} \right] = 12.77 \text{dBi} > 6 \text{dBi},$$

So Limit=24-(12.77-6)=17.23dBm

Page No. : 124 of 377 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40

Channel Frequency			Conducted	Max. Limit	Result		
Chame	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
38	5190 MHz	4.95	6.35	4.85	10.21	10.23	Complies
46	5230 MHz	5.56	5.95	4.65	10.19	10.23	Complies
54	5270 MHz	11.45	12.25	10.62	16.26	17.23	Complies
62	5310 MHz	9.32	10.18	8.63	14.19	17.23	Complies
102	5510 MHz	4.16	6.96	3.88	10.01	17.23	Complies
110	5550 MHz	11.35	13.75	11.23	17.04	17.23	Complies
134	5670 MHz	12.25	13.02	12.02	17.22	17.23	Complies

Ch36, 46 = Directional Gain =
$$10 \cdot log \left[\frac{\sum_{j=1}^{Na} \left\{ \sum_{k=1}^{Nakr} g_{j,k} \right\}^2}{N_{ANT}} \right] = 12.77 dBi > 6 dBi,$$

So Limit=17-(12.77-6)=10.23dBm

Ch54, 62, 102, 110, 134 =
$$_{DirectionalGain = 10 \cdot log} \left[\frac{\sum_{j=1}^{N_{sat}} \left\{ \sum_{k=1}^{N_{sat}} g_{j,k} \right\}^{2}}{N_{shrt}} \right] = 12.77 dBi > 6 dBi,$$

So Limit=24-(12.77-6)=17.23dBm

Page No. : 125 of 377

Issued Date : Nov. 21, 2014

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Eroguanov	Con	ducted Power (d	dBm)	Max. Limit	Dogult
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
36	5180 MHz	12.42	13.89	16.23	16.49	Complies
40	5200 MHz	12.32	13.98	16.24	16.49	Complies
48	5240 MHz	12.33	13.64	16.04	16.49	Complies
52	5260 MHz	18.54	19.69	22.16	23.49	Complies
60	5300 MHz	19.36	20.73	23.11	23.49	Complies
64	5320 MHz	12.98	14.75	16.96	23.49	Complies
100	5500 MHz	14.04	15.96	18.12	23.49	Complies
116	5580 MHz	19.98	20.87	23.46	23.49	Complies
140	5700 MHz	11.98	12.75	15.39	23.49	Complies

Note:

Ch36, 40, 48 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 6.51 \text{ dBi} > 6 \text{ dBi},$$

So Limit=17-(6.51-6)=16.49dBm

Ch52, 60, 64, 100, 116, 140= Directional Gain =
$$10 \cdot \log \left| \frac{\sum_{j=1}^{N_{abs}} \left(\sum_{k=1}^{N_{abs}} g_{j,k} \right)^{2}}{N_{abs}} \right| = 6.51 \text{dBi} > 6 \text{dBi},$$

So Limit=24-(6.51-6)=23.49dBm

Report Format Version: Rev. 01 Page No. : 126 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40

Channel	Frequency	Con	ducted Power (d	Max. Limit	Result	
Charine	riequericy	Chain 1	Chain 2	Total	(dBm)	Kesuli
38	5190 MHz	7.52	8.73	11.18	16.49	Complies
46	5230 MHz	13.12	13.77	16.47	16.49	Complies
54	5270 MHz	15.11	15.65	18.40	23.49	Complies
62	5310 MHz	8.71	9.37	12.06	23.49	Complies
102	5510 MHz	5.26	8.56	10.23	23.49	Complies
110	5550 MHz	16.41	18.56	20.63	23.49	Complies
134	5670 MHz	13.28	14.05	16.69	23.49	Complies

Note:

Note:
Ch36, 46 = DirectionalGain =
$$10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 6.51 dBi > 6dBi,$$

So Limit=17-(6.51-6)=16.49dBm

Ch54, 62, 102, 110, 134 =
$$_{DirectionalGain = 10 \cdot log} \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2} \\ N_{ANT} \end{bmatrix} = 6.51 dBi > 6 dBi,$$

So Limit=24-(6.51-6)=23.49dBm

For 3TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Channel Frequency		Conducted	Max. Limit	Result		
Charine	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
36	5180 MHz	7.66	9.07	7.59	12.93	14.73	Complies
40	5200 MHz	9.19	10.73	9.36	14.59	14.73	Complies
48	5240 MHz	9.31	10.54	9.29	14.53	14.73	Complies
52	5260 MHz	8.16	8.67	7.82	13.00	21.73	Complies
60	5300 MHz	10.13	11.01	9.04	14.91	21.73	Complies
64	5320 MHz	9.18	10.35	8.65	14.22	21.73	Complies
100	5500 MHz	9.56	11.26	9.99	15.10	21.73	Complies
116	5580 MHz	16.23	17.56	16.21	21.49	21.73	Complies
140	5700 MHz	11.26	11.14	10.75	15.83	21.73	Complies

Note:

Ch36, 40, 48 = Directional Gain =
$$10 \cdot \log \left| \frac{\sum_{j=1}^{N} \left\{ \sum_{k=1}^{N} g_{j,k} \right\}^2}{N_{ANT}} \right| = 8.27 \text{dBi} > 6 \text{dBi}$$

So Limit=17-(8.27-6)=14.73dBm

Ch52, 60, 64, 100, 116, 140=
$$Directional Gain = 10 \cdot log \left[\sum_{j=1}^{N_{obs}} \left\{ \sum_{k=1}^{N_{obs}} g_{j,k} \right\}^{2} \right] = 8.27 dBi > 6 dBi,$$

So Limit=24-(8.27-6)=21.73dBm

Page No. : 128 of 377 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40

Channel	Fraguenav	-	Conducted	Max. Limit	Result		
Charmer	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
38	5190 MHz	5.71	6.41	5.29	10.60	14.73	Complies
46	5230 MHz	9.47	10.35	9.16	14.46	14.73	Complies
54	5270 MHz	12.27	12.67	10.94	16.79	21.73	Complies
62	5310 MHz	7.66	8.38	6.89	12.46	21.73	Complies
102	5510 MHz	4.81	7.83	5.04	10.89	21.73	Complies
110	5550 MHz	14.65	16.89	14.34	20.22	21.73	Complies
134	5670 MHz	10.21	10.51	10.11	15.05	21.73	Complies

So Limit=17-(8.27-6)=14.73dBm

Ch54, 62, 102, 110, 134 =
$$_{DirectionalGain = 10 \cdot log} \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 8.27 dBi > 6 dBi,$$

So Limit=24-(8.27-6)=21.73dBm

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

Configuration IEEE 802.11n MCS0 HT20

Channal	Channel Frequency		Conducted	Max. Limit	Result		
Charine	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
36	5180 MHz	6.65	7.86	6.72	11.88	15.24	Complies
40	5200 MHz	6.85	8.05	6.48	11.95	15.24	Complies
48	5240 MHz	6.92	7.98	6.56	11.97	15.24	Complies
52	5260 MHz	14.65	14.95	13.32	19.13	22.24	Complies
60	5300 MHz	13.92	15.32	13.57	19.11	22.24	Complies
64	5320 MHz	10.25	11.55	9.95	15.41	22.24	Complies
100	5500 MHz	12.25	14.35	13.23	18.13	22.24	Complies
116	5580 MHz	13.43	15.35	14.12	19.14	22.24	Complies
140	5700 MHz	11.45	12.32	11.56	16.57	22.24	Complies

Note:

Ch36, 40, 48 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{ch}} \left(\sum_{k=1}^{N_{ch}} g_{j,k} \right)^{2}}{N_{ANT}} \right] = 7.76 \text{dBi} > 6 \text{dBi},$$

So Limit=17-(7.76-6)=15.24dBm

Ch52, 60, 64, 100, 116, 140=
$$DirectionalGain = 10 \cdot log \left[\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2} \right] = 7.76 dBi > 6 dBi,$$

So Limit=24-(7.76-6)=22.24dBm

Report Format Version: Rev. 01 Page No. : 130 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40

Channel Frequence			Conducted	Max. Limit	Result		
Chamb	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
38	5190 MHz	5.45	6.95	5.25	10.72	15.24	Complies
46	5230 MHz	7.03	7.95	6.45	11.96	15.24	Complies
54	5270 MHz	9.32	10.53	8.92	14.42	22.24	Complies
62	5310 MHz	6.53	7.35	5.95	11.42	22.24	Complies
102	5510 MHz	4.13	7.02	3.75	10.00	22.24	Complies
110	5550 MHz	13.05	15.08	13.07	18.61	22.24	Complies
134	5670 MHz	11.75	12.53	11.68	16.78	22.24	Complies

Note:
Ch36, 46 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^2}{N_{abs}} \right] = 7.76 \text{dBi} > 6 \text{dBi},$$

So Limit=17-(7.76-6)=15.24dBm

Ch54, 62, 102, 110, 134 =
$$_{DirectionalGain = 10 \cdot log} \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 7.76 dBi > 6 dBi,$$

So Limit=24-(7.76-6)=22.24dBm

For Non-Beamforming Mode

For 1TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Frequency	Conducted Power (dBm) Chain 1	Max. Limit (dBm)	Result
36	5180 MHz	16.13	16.30	Complies
40	5200 MHz	16.06	16.30	Complies
48	5240 MHz	15.93	16.30	Complies
52	5260 MHz	23.11	23.30	Complies
60	5300 MHz	21.95	23.30	Complies
64	5320 MHz	17.27	23.30	Complies
100	5500 MHz	16.16	23.30	Complies
116	5580 MHz	23.18	23.30	Complies
140	5700 MHz	14.98	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi>6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Configuration IEEE 802.11n MCS0 HT40

Channel	Frequency	Conducted Power (dBm) Chain 1	Max. Limit (dBm)	Result
38	5190 MHz	10.03	16.30	Complies
46	5230 MHz	15.98	16.30	Complies
54	5270 MHz	15.86	23.30	Complies
62	5310 MHz	14.64	23.30	Complies
102	5510 MHz	11.05	23.30	Complies
110	5550 MHz	19.62	23.30	Complies
134	5670 MHz	16.21	23.30	Complies

Note:

Ch38, 46 = Max Gain 6.7dBi > 6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch54, 62, 102, 110, 134 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Report Format Version: Rev. 01 Page No. : 132 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11a

Channel	Frequency	Conducted Power (dBm) Chain 1	Max. Limit (dBm)	Result
36	5180 MHz	16.09	16.30	Complies
40	5200 MHz	16.13	16.30	Complies
48	5240 MHz	16.06	16.30	Complies
52	5260 MHz	23.12	23.30	Complies
60	5300 MHz	22.73	23.30	Complies
64	5320 MHz	17.82	23.30	Complies
100	5500 MHz	16.53	23.30	Complies
116	5580 MHz	23.15	23.30	Complies
140	5700 MHz	15.46	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi > 6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Page No. : 133 of 377 Issued Date : Nov. 21, 2014

For 2TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Eroguanav	Con	ducted Power (d	Max. Limit	Dogult	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
36	5180 MHz	12.42	13.89	16.23	16.30	Complies
40	5200 MHz	12.32	13.98	16.24	16.30	Complies
48	5240 MHz	12.33	13.64	16.04	16.30	Complies
52	5260 MHz	19.38	20.36	22.91	23.30	Complies
60	5300 MHz	19.36	20.73	23.11	23.30	Complies
64	5320 MHz	14.67	15.98	18.38	23.30	Complies
100	5500 MHz	15.25	17.53	19.55	23.30	Complies
116	5580 MHz	19.32	20.43	22.92	23.30	Complies
140	5700 MHz	13.84	14.67	17.29	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi>6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Configuration IEEE 802.11n MCS0 HT40

Channel	Eroguanov	Con	ducted Power (d	Max. Limit	Result	
Charine	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
38	5190 MHz	9.06	10.15	12.65	16.30	Complies
46	5230 MHz	12.38	13.24	15.84	16.30	Complies
54	5270 MHz	18.76	19.75	22.29	23.30	Complies
62	5310 MHz	12.42	13.87	16.22	23.30	Complies
102	5510 MHz	10.46	12.75	14.76	23.30	Complies
110	5550 MHz	19.33	20.49	22.96	23.30	Complies
134	5670 MHz	15.52	16.47	19.03	23.30	Complies

Note:

Ch38, 46 = Max Gain 6.7dBi > 6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch54, 62, 102, 110, 134 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Report Format Version: Rev. 01 Page No. : 134 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11a

Channel	Eroguanov	Con	ducted Power (d	Max. Limit	Result	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Resuli
36	5180 MHz	12.46	13.86	16.23	16.30	Complies
40	5200 MHz	12.56	13.56	16.10	16.30	Complies
48	5240 MHz	12.63	13.48	16.09	16.30	Complies
52	5260 MHz	19.24	20.35	22.84	23.30	Complies
60	5300 MHz	19.18	20.34	22.81	23.30	Complies
64	5320 MHz	15.82	17.28	19.62	23.30	Complies
100	5500 MHz	15.78	17.87	19.96	23.30	Complies
116	5580 MHz	19.26	20.48	22.92	23.30	Complies
140	5700 MHz	14.57	15.02	17.81	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi>6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Page No. : 135 of 377 Issued Date : Nov. 21, 2014

For 3TX

Configuration IEEE 802.11n MCS0 HT20

Channel	Fraguanay		Conducted	Power (dBm)	Max. Limit	Dogult	
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Result
36	5180 MHz	10.16	11.65	10.23	15.51	16.30	Complies
40	5200 MHz	10.34	11.16	10.23	15.37	16.30	Complies
48	5240 MHz	10.56	11.42	9.40	15.31	16.30	Complies
52	5260 MHz	17.26	18.17	17.06	22.30	23.30	Complies
60	5300 MHz	17.56	18.69	16.71	22.50	23.30	Complies
64	5320 MHz	14.13	15.46	13.91	19.33	23.30	Complies
100	5500 MHz	12.84	15.32	13.25	18.72	23.30	Complies
116	5580 MHz	16.42	18.88	17.12	22.37	23.30	Complies
140	5700 MHz	11.66	13.41	12.06	17.21	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi>6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Configuration IEEE 802.11n MCS0 HT40

Channel	Eroguenev		Conducted Power (dBm)			Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
38	5190 MHz	6.95	7.51	6.77	11.86	16.30	Complies
46	5230 MHz	11.39	12.12	10.97	16.29	16.30	Complies
54	5270 MHz	11.59	12.36	11.19	16.51	23.30	Complies
62	5310 MHz	7.83	8.96	7.76	12.99	23.30	Complies
102	5510 MHz	4.42	8.31	5.15	11.08	23.30	Complies
110	5550 MHz	12.89	16.14	13.84	19.28	23.30	Complies
134	5670 MHz	12.29	13.68	12.76	17.72	23.30	Complies

Note:

Ch38, 46 = Max Gain 6.7dBi > 6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch54, 62, 102, 110, 134 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Report Format Version: Rev. 01 Page No. : 136 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11a

Channel	Fraguanay	Conducted Power (dBm)				Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
36	5180 MHz	10.76	11.27	9.85	15.44	16.30	Complies
40	5200 MHz	10.74	11.14	9.72	15.34	16.30	Complies
48	5240 MHz	11.01	11.23	9.96	15.54	16.30	Complies
52	5260 MHz	17.90	18.23	17.06	22.53	23.30	Complies
60	5300 MHz	17.52	18.56	17.09	22.54	23.30	Complies
64	5320 MHz	14.15	15.32	13.72	19.22	23.30	Complies
100	5500 MHz	12.86	15.36	13.34	18.77	23.30	Complies
116	5580 MHz	16.77	19.02	17.08	22.51	23.30	Complies
140	5700 MHz	12.37	13.76	12.40	17.66	23.30	Complies

Note:

Ch36, 40, 48 = Max Gain 6.7dBi > 6dBi, So Limit=17-(6.7-6)=16.30dBm

Ch52, 60, 64, 100, 116, 140 = Max Gain 6.7dBi > 6dBi, So Limit=24-(6.7-6)=23.30dBm

Page No. : 137 of 377 Issued Date : Nov. 21, 2014

4.3. Power Spectral Density Measurement

4.3.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.2.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.15~5.25 GHz	4
5.25-5.35 GHz	11
5.470-5.725 GHz	11

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D01 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Peak power spectral density (PPSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

Report Format Version: Rev. 01 Page No. : 138 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(2)=3.01dBi as worse case in beamforming mode.

The measured result was added array gain 10*log(3)=4.77dBi as worse case in beamforming mode.

: 139 of 377

4.3.7. Test Result of Power Spectral Density

Temperature	26 ℃	Humidity	63%			
Test Engineer	Wen Chao / YC Chen	Configurations	IEEE 802.11n			
Test Date	Oct. 09, 2014 ~ Nov. 03, 2014					

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	-1.69	-1.01	Complies
40	5200 MHz	-1.02	-1.01	Complies
48	5240 MHz	-1.34	-1.01	Complies
52	5260 MHz	5.89	5.99	Complies
60	5300 MHz	5.44	5.99	Complies
64	5320 MHz	4.96	5.99	Complies
100	5500 MHz	4.03	5.99	Complies
116	5580 MHz	5.62	5.99	Complies
140	5700 MHz	2.85	5.99	Complies

Note:

Note: CH36, 40, 48 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=4-(11.01-6)=-1.01dBm/MHz

CH52, 60, 64, 100, 116, 140 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=11-(11.01-6)=5.99dBm/MHz

Report Format Version: Rev. 01 : 140 of 377 Page No. FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-4.29	-1.01	Complies
46	5230 MHz	-3.65	-1.01	Complies
54	5270 MHz	4.46	5.99	Complies
62	5310 MHz	-1.58	5.99	Complies
102	5510 MHz	-2.69	5.99	Complies
110	5550 MHz	2.44	5.99	Complies
134	5670 MHz	2.35	5.99	Complies

Note:

CH38,
$$46 = DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=j}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=4-(11.01-6)=-1.01dBm/MHz

CH54, 62, 102, 110, 134 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 11.01 dBi > 6 dBi,$$

So Limit=11-(11.01-6)=5.99dBm/MHz

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	-2.78	-2.77	Complies
40	5200 MHz	-2.86	-2.77	Complies
48	5240 MHz	-3.17	-2.77	Complies
52	5260 MHz	0.80	4.23	Complies
60	5300 MHz	1.18	4.23	Complies
64	5320 MHz	2.03	4.23	Complies
100	5500 MHz	3.30	4.23	Complies
116	5580 MHz	3.33	4.23	Complies
140	5700 MHz	2.51	4.23	Complies

Note:

CH36, 40, 48 = Directional Gain =
$$10 \cdot \log \frac{\sum_{j=1}^{N} \left\{\sum_{k=1}^{N} g_{j,k}\right\}^{2}}{N_{ANT}}$$
 = 12.77dBi>6dBi,

So Limit=4-(12.77-6)=-2.77dBm/MHz

CH52, 60, 64, 100, 116, 140 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{Na} \left\{ \sum_{k=1}^{Nasq} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 12.77 dBi > 6 dBi,$$

So Limit=11-(12.77-6)=4.23dBm/MHz

Report Format Version: Rev. 01 Page No. : 142 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-4.35	-2.77	Complies
46	5230 MHz	-4.50	-2.77	Complies
54	5270 MHz	1.83	4.23	Complies
62	5310 MHz	-1.07	4.23	Complies
102	5510 MHz	-5.68	4.23	Complies
110	5550 MHz	0.93	4.23	Complies
134	5670 MHz	1.36	4.23	Complies

Note:

CH38, 46 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 12.77 \text{dBi} > 6 \text{dBi},$$

So Limit=4-(12.77-6)=-2.77dBm/MHz

CH54, 62, 102, 110, 134 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 12.77 dBi > 6 dBi,$$

So Limit=11-(12.77-6)=4.23dBm/MHz

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.76	3.49	Complies
40	5200 MHz	3.22	3.49	Complies
48	5240 MHz	2.63	3.49	Complies
52	5260 MHz	8.64	10.49	Complies
60	5300 MHz	10.15	10.49	Complies
64	5320 MHz	3.42	10.49	Complies
100	5500 MHz	4.88	10.49	Complies
116	5580 MHz	10.39	10.49	Complies
140	5700 MHz	1.66	10.49	Complies

Note:

CH36, 40, 48 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{MAX}} \left\{ \sum_{k=1}^{N_{MAX}} g_{j,k} \right\}^{2}}{N_{MAX}} \right] = 6.51 \text{ dBi} > 6 \text{ dBi},$$

So Limit=4-(6.51-6)=3.49dBm/MHz

CH52, 60, 64, 100, 116, 140 = Directional Gain =
$$10 \cdot \log \left| \frac{\sum_{j=1}^{N_{abs}} \left(\sum_{k=1}^{N_{abs}} g_{j,k} \right)^{2}}{N_{abs}} \right| = 6.51 \text{dBi} > 6 \text{dBi},$$

So Limit=11-(6.51-6)=10.49dBm/MHz

Report Format Version: Rev. 01 Page No. : 144 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-4.66	3.49	Complies
46	5230 MHz	0.30	3.49	Complies
54	5270 MHz	3.12	10.49	Complies
62	5310 MHz	-4.14	10.49	Complies
102	5510 MHz	-5.59	10.49	Complies
110	5550 MHz	3.08	10.49	Complies
134	5670 MHz	0.20	10.49	Complies

Note:

Note:
CH38,
$$46 = DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 6.51 dBi > 6 dBi,$$

So Limit=4-(6.51-6)=3.49dBm/MHz

CH54, 62, 102, 110, 134 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 6.51 dBi > 6 dBi,$$

So Limit=11-(6.51-6)=10.49dBm/MHz

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	-1.28	1.73	Complies
40	5200 MHz	1.12	1.73	Complies
48	5240 MHz	1.41	1.73	Complies
52	5260 MHz	-0.22	8.73	Complies
60	5300 MHz	1.90	8.73	Complies
64	5320 MHz	0.63	8.73	Complies
100	5500 MHz	1.42	8.73	Complies
116	5580 MHz	7.80	8.73	Complies
140	5700 MHz	1.25	8.73	Complies

Note:

CH36, 40, 48 = Directional Gain = 10-log
$$\frac{\sum_{i=1}^{N} \left\{\sum_{j=1}^{N} g_{j,k}\right\}^{2}}{N_{ANT}}$$
 =8.27dBi>6dBi,

So Limit=4-(8.27-6)=1.73dBm/MHz

CH52, 60, 64, 100, 116, 140 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{MAT}} \left(\sum_{k=1}^{N_{MAT}} g_{j,k} \right)^{2}}{N_{MAT}} \right] = 8.27 dBi > 6 dBi,$$

So Limit=11-(8.27-6)=8.73dBm/MHz

Report Format Version: Rev. 01 Page No. : 146 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-5.43	1.73	Complies
46	5230 MHz	-1.92	1.73	Complies
54	5270 MHz	1.13	8.73	Complies
62	5310 MHz	-3.62	8.73	Complies
102	5510 MHz	-5.65	8.73	Complies
110	5550 MHz	3.61	8.73	Complies
134	5670 MHz	-1.56	8.73	Complies

Note:

Note:
CH38, 46 = DirectionalGain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 8.27 \text{dBi} > 6 \text{dBi},$$

So Limit=4-(8.27-6)=1.73dBm/MHz

CH54, 62, 102, 110, 134 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 8.27 dBi > 6 dBi,$$

So Limit=11-(8.27-6)=8.73dBm/MHz

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	-1.33	2.24	Complies
40	5200 MHz	-1.10	2.24	Complies
48	5240 MHz	-1.22	2.24	Complies
52	5260 MHz	5.68	9.24	Complies
60	5300 MHz	6.03	9.24	Complies
64	5320 MHz	1.63	9.24	Complies
100	5500 MHz	4.53	9.24	Complies
116	5580 MHz	5.87	9.24	Complies
140	5700 MHz	2.90	9.24	Complies

Note:

CH36, 40, 48 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{MAX}} \left\{ \sum_{k=1}^{N_{MAX}} g_{j,k} \right\}^{2}}{N_{MAX}} \right] = 7.76 \text{dBi} > 6 \text{dBi},$$

So Limit=4-(7.76-6)=2.24dBm/MHz

CH52, 60, 64, 100, 116, 140 = Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 7.76 dBi > 6 dBi,$$

So Limit=11-(7.76-6)=9.24dBm/MHz

Report Format Version: Rev. 01 Page No. : 148 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-3.94	2.24	Complies
46	5230 MHz	-2.74	2.24	Complies
54	5270 MHz	0.20	9.24	Complies
62	5310 MHz	-2.94	9.24	Complies
102	5510 MHz	-5.88	9.24	Complies
110	5550 MHz	1.87	9.24	Complies
134	5670 MHz	0.44	9.24	Complies

Note:

CH38,
$$46 = DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 7.76dBi > 6dBi,$$

So Limit=4-(7.76-6)=2.24dBm/MHz

CH54, 62, 102, 110, 134 =
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{abs}} \left\{ \sum_{k=1}^{N_{abs}} g_{j,k} \right\}^{2}}{N_{abs}} \right] = 7.76 dBi > 6 dBi,$$

So Limit=11-(7.76-6)=9.24dBm/MHz

For Non-Beamforming Mode

For 1TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.75	3.30	Complies
40	5200 MHz	2.66	3.30	Complies
48	5240 MHz	2.50	3.30	Complies
52	5260 MHz	8.55	10.30	Complies
60	5300 MHz	8.49	10.30	Complies
64	5320 MHz	3.77	10.30	Complies
100	5500 MHz	2.92	10.30	Complies
116	5580 MHz	9.97	10.30	Complies
140	5700 MHz	1.64	10.30	Complies

Note:

CH36, 40, 48 = Max Gain = 6.7dBi > 6dBi, So Limit=4-(6.7-6)=3.30dBm/MHz

CH52, 60, 64, 100, 116, 140 = Max Gain = 6.7dBi > 6dBi, So Limit=11-(6.7-6)=10.30dBm/MHz

Configuration IEEE 802.11n MCS0 HT40 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-5.83	3.30	Complies
46	5230 MHz	-0.29	3.30	Complies
54	5270 MHz	-0.31	10.30	Complies
62	5310 MHz	-1.58	10.30	Complies
102	5510 MHz	-5.21	10.30	Complies
110	5550 MHz	3.53	10.30	Complies
134	5670 MHz	0.14	10.30	Complies

Note:

CH38, 46 = Max Gain = 6.7dBi > 6dBi, So Limit=4-(6.7-6)=3.30dBm/MHz

CH54, 62, 102, 110, 134 = Max Gain = 6.7 dBi > 6 dBi, So Limit=11-(6.7-6)=10.30 dBm/MHz

Report Format Version: Rev. 01 Page No. : 150 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For 2TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.87	3.30	Complies
40	5200 MHz	2.44	3.30	Complies
48	5240 MHz	2.63	3.30	Complies
52	5260 MHz	9.68	10.30	Complies
60	5300 MHz	9.65	10.30	Complies
64	5320 MHz	5.07	10.30	Complies
100	5500 MHz	6.11	10.30	Complies
116	5580 MHz	9.57	10.30	Complies
140	5700 MHz	3.94	10.30	Complies

Note:

CH36, 40, 48 = Max Gain = 6.7dBi > 6dBi, So Limit=4-(6.7-6)=3.30dBm/MHz

CH52, 60, 64, 100, 116, 140 = Max Gain = 6.7dBi > 6dBi, So Limit=11-(6.7-6)=10.30dBm/MHz

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-3.50	3.30	Complies
46	5230 MHz	-0.42	3.30	Complies
54	5270 MHz	6.13	10.30	Complies
62	5310 MHz	0.13	10.30	Complies
102	5510 MHz	-1.48	10.30	Complies
110	5550 MHz	6.71	10.30	Complies
134	5670 MHz	2.89	10.30	Complies

Note:

CH38, 46 = Max Gain = 6.7 dBi > 6 dBi, So Limit=4-(6.7-6)=3.30 dBm/MHz

CH54, 62, 102, 110, 134 = Max Gain = 6.7dBi > 6dBi, So Limit=11-(6.7-6)=10.30dBm/MHz

Report Format Version: Rev. 01 Page No. : 151 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

For 3TX

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.18	2.24	Complies
40	5200 MHz	2.16	2.24	Complies
48	5240 MHz	2.19	2.24	Complies
52	5260 MHz	9.22	9.24	Complies
60	5300 MHz	9.21	9.24	Complies
64	5320 MHz	4.37	9.24	Complies
100	5500 MHz	5.34	9.24	Complies
116	5580 MHz	9.21	9.24	Complies
140	5700 MHz	3.52	9.24	Complies

Note:

CH36, 40, 48 = Max Gain = 7.76dBi > 6dBi, So Limit=4-(7.76-6)=2.24dBm/MHz

CH52, 60, 64, 100, 116, 140 = Max Gain = 7.76dBi > 6dBi, So Limit=11-(7.76-6)=9.24dBm/MHz

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-3.77	2.24	Complies
46	5230 MHz	2.16	2.24	Complies
54	5270 MHz	1.56	9.24	Complies
62	5310 MHz	-2.66	9.24	Complies
102	5510 MHz	-5.05	9.24	Complies
110	5550 MHz	3.30	9.24	Complies
134	5670 MHz	1.12	9.24	Complies

Note:

CH38, 46 = Max Gain = 7.76dBi > 6dBi, So Limit=4-(7.76-6)=2.24dBm/MHz

CH54, 62, 102, 110, 134 = Max Gain = 7.76dBi > 6dBi, So Limit=11-(7.76-6)=9.24dBm/MHz

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 152 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Mode 1 (Ant.6 Dipole antenna / 8dBi)

For Beamforming Mode

For 2TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5200 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Page No. : 154 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Page No. : 155 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

For 3TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5320 MHz

Page No. : 157 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Page No. : 158 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5670 MHz

Page No. : 160 of 377 Issued Date : Nov. 21, 2014

Mode 2 (Ant.16 Panel antenna / 3.5dBi)

For Beamforming Mode

For 2TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5200 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5300 MHz

Report Format Version: Rev. 01 Page No. : 161 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Page No. : 162 of 377

Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Page No. : 163 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

For 3TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Page No. : 165 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Page No. : 168 of 377 Issued Date : Nov. 21, 2014

Mode 3 (Ant.32 3-Port Dual-Band Directional Panel antenna / Chain 1: 6.7, Chain 2: 4.3, Chain 3: 6.6dBi) For Beamforming Mode

For 3TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5300 MHz

Report Format Version: Rev. 01 Page No. : 169 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Page No. : 171 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Page No. : 172 of 377 Issued Date : Nov. 21, 2014

For Non-Beamforming Mode

For 1TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5260 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 / 5580 MHz

Page No. : 174 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5270 MHz

Page No. : 175 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 / 5550 MHz

Page No. : 176 of 377 Issued Date : Nov. 21, 2014

For 2TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Page No. : 177 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Page No. : 178 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Page No. : 179 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

For 3TX

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5260 MHz

Page No. : 181 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 + Chain 3 / 5580 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5270 MHz

Page No. : 183 of 377 Issued Date : Nov. 21, 2014

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 + Chain 3 / 5550 MHz

Page No. : 184 of 377 Issued Date : Nov. 21, 2014

4.4. Radiated Emissions Measurement

4.4.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP	
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP	

Report Format Version: Rev. 01 Page No. : 185 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.4.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 186 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014

4.4.4. Test Setup Layout

For Radiated Emissions: Above 1GHz

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(2)=3.01dBi as worse case in beamforming mode.

The measured result was added array gain 10*log(3)=4.77dBi as worse case in beamforming mode.

Report Format Version: Rev. 01 Page No. : 187 of 377
FCC ID: UZ7KHAP800 Issued Date : Nov. 21, 2014