Pareto front

Compressibility & Aesthetic

Incompressibility & Aesthetic

Overtunning (single objective)

aesthetic/incompressibility with pretrained alignment

Multi-objective

aesthetic + incompressibility with pretrained alignment

Other results

Weight ω_i decides the ratio of different rewards.

Task set $T = \{(\pi_i, \omega_i)\}_{i=1}^n$ selected with improvement prediction model.

MOPG \rightarrow given T, update policy π_i using weight ω_i and generate n new policies.

Select new policies from the n policies.

Generate task set $\mathcal{T} = \{(\pi_i, \omega_i)\}_{i=1}^n$ by random initial policies and evenly distributed weight vectors. $\mathcal{P}' \leftarrow \text{MOPG}(\mathcal{T}, m_w, \mathcal{R})$ (Section 3.2) Update \mathcal{P} and EP with \mathcal{P}' .


```
for generation \leftarrow 1, 2, ..., M do

Fit improvement prediction models \{\Delta^i\} for each policy in \mathcal{P} from data in \mathcal{R}. (Section 3.3)

\mathcal{T} \leftarrow \text{Task-Selection}(n, \mathcal{P}, \{\Delta^i\}, \mathbb{R}) (Section 3.4)
```

 $\mathcal{T} \leftarrow \text{TaskSelection}(n, \mathcal{P}, \{\Delta^i\}, \text{EP}) \text{ (Section 3.4)}$ $\mathcal{P}' \leftarrow \text{MOPG}(\mathcal{T}, m_t, \mathcal{R}) \text{ (Section 3.2)}$

Update \mathcal{P} and EP with \mathcal{P}' .

end for