Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Белгородский государственный технологический университет им. В. Г. Шухова"

(БГТУ им. В.Г. Шухова)

Институт энергетики, информационных технологий и управляющих систем

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 1.2 по дисциплине дискретная математика тема: Нормальные формы Кантора

Выполнил: студент группы ПВ-223 Игнатьев Артур Олегович Проверил: доцент Рязанов Юрий Дмитриевич старший преподаватель Бондаренко Татьяна Владимировна

Лабораторная работа № 1.2

Тема: Нормальные формы Кантора

Цель работы: изучить способы получения различных нормальных форм Кантора множества, заданного произвольным теоретикомножественным выражением.

Задания

- 1. Представить множество, заданное исходным выражением (см. табл. 1), в нормальной форме Кантора.
- 2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.
- 3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.
- 4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Вариант 3

$$(\overline{A\Delta C} - B\Delta(C - A)\Delta B) \cap D$$

Решение заданий:

1. Представить множество, заданное исходным выражением (см. табл. 1), в нормальной форме Кантора.

$$(\overline{(A \Delta C)} - B \Delta (C - A) \Delta B) \cap D =$$

$$= ((\overline{A} \cup C) \cap (\overline{C} \cup A)) \cap \overline{B} \Delta (C \cap \overline{A}) \Delta B) \cap D =$$

$$= ((\overline{A} \cap \overline{C} \cup A \cap C) \cap \overline{B} \Delta (C \cap \overline{A}) \Delta B) \cap D =$$

$$= ((\overline{A} \cap \overline{C} \cap \overline{B} \cup A \cap C \cap \overline{B}) \Delta (C \cap \overline{A}) \Delta B) \cap D =$$

$$= ((\overline{A} \cap \overline{C} \cap \overline{B} \cup A \cap C \cap \overline{B}) \Delta (C \cap \overline{A} \cap \overline{B} \cup \overline{C} \cap B \cup A \cap B)) \cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B} \cup A \cap C \cap \overline{B}) \Delta (C \cap \overline{A} \cap \overline{B} \cup \overline{C} \cap B \cup A \cap B)) \cup ((C \cap \overline{A} \cap \overline{B} \cup \overline{C} \cap B \cup A \cap B)) \cup ((C \cap \overline{A} \cap \overline{B} \cup \overline{C} \cap B \cup A \cap B)) \cup ((C \cap \overline{A} \cap \overline{B} \cup \overline{C} \cap B \cup A \cap C \cap \overline{B})))$$

$$\cap D =$$

$$= ((((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B})) \cup (\overline{C} \cap A \cup B) \cap (C \cup \overline{B}) \cap (\overline{A} \cup \overline{C} \cup B)) \cap (A \cup C \cup B)) \cap (A \cup C \cup B)) \cap (A \cup C \cup B) \cap (\overline{A} \cup \overline{C} \cup B))) \cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (\overline{C} \cap B) \cup (A \cap B)) \cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B) \cup (A \cap B)) \cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B) \cup (A \cap B)) \cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B) \cup (A \cap B))$$

$$\cap D =$$

$$= (((\overline{A} \cap \overline{C} \cap \overline{B}) \cup (A \cap C \cap \overline{B}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B) \cup (A \cap B))$$

2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.

 $\cup \overline{A} \cap \overline{B} \cap C \cap \overline{D} \cap \emptyset$

 $\cup \overline{A} \cap \overline{B} \cap C \cap D \cap U$

 $\cup \overline{A} \cap B \cap \overline{C} \cap \overline{D} \cap \emptyset$

 $\cup \overline{A} \cap B \cap \overline{C} \cap D \cap U$

 $\cup \overline{A} \cap B \cap C \cap \overline{D} \cap \emptyset$

 $\cup \overline{A} \cap B \cap C \cap D \cap \emptyset$

 $\cup A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap \emptyset$

 $\cup A \cap \overline{B} \cap \overline{C} \cap D \cap \emptyset$

 $\cup A \cap \overline{B} \cap C \cap \overline{D} \cap \emptyset$

 $\cup A \cap \overline{B} \cap C \cap D \cap U$

 $\cup A \cap B \cap \overline{C} \cap \overline{D} \cap \emptyset$

 $\cup A \cap B \cap \overline{C} \cap D \cap U$

 $\cup A \cap B \cap C \cap \overline{D} \cap \emptyset$

 $\cup \ A \cap B \cap C \cap D \cap U =$

 $= \overline{A} \cap \overline{B} \cap \overline{C} \cap D \cup \overline{A} \cap \overline{B} \cap C \cap D \cup \overline{A} \cap B \cap \overline{C} \cap D \cup A \cap \overline{B} \cap C \cap D \cup A$ $\cap B \cap \overline{C} \cap D \cup A \cap B \cap C \cap D$

3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.

 $\overline{A} \cap \overline{B} \cap \overline{C} \cap D \cup \overline{A} \cap \overline{B} \cap C \cap D \cup \overline{A} \cap B \cap \overline{C} \cap D \cup A \cap \overline{B} \cap C \cap D \cup A \cap B$ $\cap \overline{C} \cap D \cup A \cap B \cap C \cap D$ $= 0001 \cup 0011 \cup 0101 \cup 1011 \cup 1101 \cup 1111$

Номер группы							
0	1	2	3	4			
	0001+	0011+	1011+	1111+			
		0101+	1101+				
	00-1	-011	1-11				
	0-01	-101	11-1				

Сокращенная НФК:

 $\overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D \cup A \cap C \cap D$

4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Простые	Конституенты						
импликанты	0001	0011	0101	1011	1101	1111	
a = 00-1	+	+					
b = 0-01	+		+				
c = -011		+		+			
d = -101			+		+		
e = 1-11				+		+	
f = 11-1					+	+	

Следуя таблице, составим и упростим выражение:

$$(a \cup b) \cap (a \cup c) \cap (b \cup d) \cap (c \cup e) \cap (d \cup f) \cap (e \cup f) =$$

$$= (a \cup a \cap b \cup a \cap c \cup b \cap c) \cap (b \cup d) \cap (c \cup e) \cap (f \cup f \cap d \cup f \cap e)$$
$$\cup d \cap e) =$$

$$= (a \cap b \cup a \cap b \cap c \cup b \cap c \cup a \cap d \cup a \cap b \cap d \cup a \cap c \cap d \cup b \cap c \cap d)$$

$$\cap (c \cap f \cup c \cap d \cap f \cup c \cap e \cap f \cup c \cap d \cap e \cup e \cap f \cup e \cap d$$

$$\cap f \cup d \cap e) =$$

 $= a \cap b \cap c \cap f \cup a \cap b \cap c \cap d \cap f \cup a \cap b \cap c \cap e \cap f \cup a \cap b \cap c \cap d$ $\cap e \cup a \cap b \cap e \cap f \cup a \cap b \cap d \cap e \cap f \cup a \cap b \cap d \cap e \cup a$ $\cap b \cap c \cap d \cap e \cap f \cup b \cap c \cap d \cap f \cup b \cap c \cap d \cap e \cup a$ $\cap f \cup b \cap c \cap d \cap e \cup b \cap c \cap d \cap e \cap f \cup a \cap d \cap e \cup a \cap d \cap e$ $\cap f \cup a \cap d \cap e$

Получили наборы объединений простых импликант:

$$a \cup b \cup c \cup f = \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap C \cap D$$

$$a \cup b \cup c \cup d \cup f$$

$$= \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap C$$

$$\cap D$$

 $a \cup b \cup c \cup e \cup f$

 $= \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap B \cap D \cup A \cap C$ $\cap D$

 $a \cup b \cup c \cup d \cup e$

 $= \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B$ $\cap D$

 $a \cup b \cup e \cup f = \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup A \cap B \cap D \cup A \cap C \cap D$ $a \cup b \cup d \cup e \cup f$

 $= \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D \cup A \cap C$ $\cap D$

 $a \cup b \cup d \cup e = \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D$ $a \cup b \cup c \cup d \cup e \cup f$

 $= \overline{A} \cap \overline{B} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B$ $\cap D \cup A \cap C \cap D$

 $b \cup c \cup f = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap C \cap D$ $b \cup c \cup d \cup f = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap C \cap D$ $b \cup c \cup e \cup f = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap B \cap D \cup A \cap C \cap D$ $b \cup c \cup d \cup e = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap B \cap D \cup A \cap C \cap D$ $b \cup c \cup e \cup f$

 $= \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D \cup A \cap C$ $\cap D$

 $b \cup c \cup d \cup e \cup f = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D$ $a \cup c \cup d \cup f = \overline{A} \cap \overline{B} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap C \cap D$

 $a \cup c \cup d \cup e \cup f$

$$= \overline{A} \cap \overline{B} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D \cup A \cap C$$

$$\cap D$$

$$a \cup c \cup d \cup e = \overline{A} \cap \overline{B} \cap D \cup \overline{C} \cap B \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D$$

$$a \cup d \cup e \cup f = \overline{A} \cap \overline{B} \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D \cup A \cap C \cap D$$

$$a \cup d \cup e = \overline{A} \cap \overline{B} \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D$$

Следуя свойству того, что из тупиковых НФК нельзя исключать импликанты, получим:

$$a \cup d \cup e = \overline{A} \cap \overline{B} \cap D \cup C \cap \overline{B} \cap D \cup A \cap B \cap D$$
$$b \cup c \cup f = \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap B \cap D \cup A \cap C \cap D$$

Вывод: на этой лабораторной работе я изучил способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением.