Sistemas Electrónicos 2018-19

NSS pt3

Noções de Sistemas e Sinais pt1:

- Generalidades sobre Sistemas.
- · Sinais:
- Contínuos e discretos.
- Periódicos:
- · Sinusoidais. Período, frequência, fase, valores médio e eficaz.
- · Rectangulares/quadrados. Amplitudes, tempos de comutação e atraso. Duty cycle.

Nocões de Sistemas e Sinais pt2:

- · Componentes passivos básicos revisitados: C e L.
- · Relações Tensão-Corrente.
- Energia Armazenada.
- · Associações em série e em paralelo.

Noções de Sistemas e Sinais pt3:

- Circuits RC e RL:
 - · análise no tempo.
 - · análise na frequência.

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 1

Circuito RC no tempo - descarga

Descarga de um condensador

Pressupostos:

- -t = 0, o interruptor fecha
- $-v_c(t_{0-}) = v_c(t_{0+}) = Vi$

Em t_{0+} a soma das correntes é nula:

$$C\frac{dv_C(t)}{dt} + \frac{v_C(t)}{R} = 0 \qquad RC\frac{dv_C(t)}{dt} + v_C(t) = 0$$

Equação diferencial de 1ª ordem e coeficientes constantes, cuja solução é dada por:

$$v_C(t) = V_i e^{-t/RC}$$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 3

CeL

$$c = C \frac{dv_c}{dt}$$

$$v_c(t) = \frac{1}{C} \int_{t_0}^{t} i_c dt + v_c(t_0)$$

$$p(t) = v(t)i(t)$$

$$w(t) = \frac{1}{2}Cv^2(t)$$

$$\begin{array}{c|c} i_L \downarrow & + \\ L & v_L = L \frac{di_L}{dt} & i_L\left(t\right) = \frac{1}{L} \int\limits_{t_0}^t v_L dt + i_L\left(t_0\right) & p(t) = v(t)i(t) \\ & - & w(t) = \frac{1}{2}Li^2(t) \end{array}$$

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 2

Circuito RC no tempo - descarga (2)

 $t = t_{0+} : v_c(t_{0+}) = Vi - valor inicial$

 $t = \infty : \nu_c(\infty) = 0$ - valor final

Constante de tempo: $\tau = RC$

 $e^{-1} \approx 0.368$

 $t = \tau : v_c(\tau) = 0.368 \text{ Vi}$

 $t = 5 \tau$: $v_c(5 \tau) = 0.0067 \text{ Vi} \approx \text{valor final}$

Regime transitório:

 $0 < t < 5 \tau$

Regime permanente:

 $t > 5\tau$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 4

Circuito RC no tempo - descarga (3)

$$v_C(t) = V_i e^{-t/RC}$$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 5

Circuito RC no tempo - carga (2)

$$v_C(t) = V_s - V_s e^{-t/RC}$$

Regime permanente Regime transitório Resposta forçada Resposta natural

 $t = t_{0+} : v_c(t_{0+}) = 0$ - valor inicial

 $\mathsf{t} = \infty : \nu_c(\infty) = \mathsf{Vs}$ - valor final

Constante de tempo: $\tau = RC$

 $e^{-1} \approx 0.368$

 $t = \tau : v_c(\tau) = 0.632 \text{ Vs}$

 $t = 5 \tau$: $v_c(5 \tau) = 0.993 Vs ≈ valor final$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 7

Circuito RC no tempo - carga

Carga de um condensador

Pressupostos:

- -t = 0, o interruptor fecha
- $-v_c(t_{0-}) = v_c(t_{0+}) = 0$

Em t_{0+} a soma das tensões na malha é nula:

$$RC\frac{dv_C(t)}{dt} + v_C(t) = V_s$$

Equação diferencial de 1ª ordem e coeficientes constantes e termo independente não nulo, cuja solução é dada por:

$$v_C(t) = V_s - V_s e^{-t/RC}$$

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 6

Resposta RC a onda quadrada

$$v_C(t) = V_i e^{-t/RC}$$
 $\tau = RC$ $v_C(t) = V_s - V_s e^{-t/RC}$

τ versus T

Para experimentar nas aulas práticas!

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 8

Circuito RL no tempo - carga

Carga de uma bobina

Pressupostos:

- -t=0, o interruptor fecha
- $-i_L(t_{0-})=i_L(t_{0+})=0$

Por dualidade, se trocarmos:

- C por L V por I R por G
- podemos usar uma expressão parecida com a do condensador:

$$i_L(t) = I_f - I_f e^{-tR/L}$$

$$v_C(t) = V_s - V_s e^{-t/RC}$$

Constante de tempo: $\tau = L/R$

 $t = \infty$: $i_L(\infty) = V_R/R$ - valor final (I_f)

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 9

Impedância complexa

Bobina
$$v_L = L \frac{di_L}{dt}$$

$$i_L(t) = I_m \sin(\omega t + \theta)$$

$$i_L(t) = I_m \sin(\omega t + \theta)$$
 \longleftrightarrow $I_L = I_m \angle \theta - 90^\circ$ $j I_L = I_m \angle \theta$

$$j \mathbf{I}_L = I_m \angle \theta$$

$$v_L(t) = \omega L I_m \cos(\omega t + \theta) \iff \mathbf{V}_L = \omega L I_m \angle \theta = V_m \angle \theta \qquad \mathbf{V}_L = j\omega L \times \mathbf{I}_L$$

$$\mathbf{V}_L = \omega L I_m \angle \theta = V_m \angle \theta$$

$$\mathbf{V}_L = j\omega L \times \mathbf{I}_L$$

$$Z_L = j\omega L = \omega L \ \underline{/90^{\circ}}$$

$Z_L = j\omega L = \omega L \ \underline{/90^\circ}$ Impedância da Bobina ideal

$$\mathbf{V}_L = Z_L \mathbf{I}_L$$

Lei de Ohm generalizada a complexos

Condensador (de modo similar):

$$\mathbf{V}_C = \mathbf{Z}_C \mathbf{I}_C$$

$$\mathbf{V}_C = \mathbf{Z}_C \mathbf{I}_C \qquad \mathbf{Z}_C = -j \frac{1}{\omega C} = \frac{1}{j\omega C} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$\mathbf{V}_C = \frac{\mathbf{I}_C}{j\omega C}$$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 11

Domínio da frequência

Números complexos $j^2 = -1$ z = a + jb

$$j^2 = -1$$

Módulo:
$$|z| = \sqrt{a^2 + b^2}$$

Argumento/fase: $\phi = \tan^{-1} \left(\frac{b}{a} \right)$

$$\phi = \tan^{-1} \left(\frac{b}{a} \right)$$

Representação fasorial de sinais sinusoidais

sinusoide
$$v_1(t) = V_1 \cos(\omega t + \theta_1)$$
 \longleftrightarrow $V_1 = V_1 \angle \theta_1$ vector no plano complexo: FASOR

$$v_2(t) = V_2 \sin(\omega t + \theta_2)$$
 $v_2(t) = V_2 \cos(\omega t + \theta_2 - 90^\circ)$ \longleftrightarrow $V_2 = V_2 / \theta_2 - 90^\circ$

$$\longleftarrow V_2 = V_2 \angle \theta_2 - 90^\circ$$

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 10

Circuito RC passa-baixo *

Filtro passa-baixo de 1ª ordem

$$\mathbf{v}_{\text{in}} \stackrel{\diamond}{=} \frac{\mathbf{v}_{\text{out}}}{\mathbf{V}_{\text{out}}} = \frac{1}{j2\pi fC} \times \frac{\mathbf{V}_{\text{in}}}{R + 1/j2\pi fC}$$

Função de Transferência
$$H(f) = \frac{\mathbf{V}_{\text{out}}}{\mathbf{V}_{\text{in}}} = \frac{1}{1 + j2\pi fRC}$$

Frequência de Corte (Corner/Break Frequency) $f_B = \frac{1}{2\pi RC}$ $H(f) = \frac{1}{1 + i(f/f_B)}$

$$f_B = \frac{1}{2\pi RC}$$

$$H(f) = \frac{1}{1 + j(f/f_B)}$$

$$\angle H(f) = -\arctan\left(\frac{f}{f_B}\right) \qquad |H(f)| = \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

* Fonte: Hambley - Electrical Engineering

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 12

 $|H(f)|_{dB} = 20\log|H(f)|$

H(f)	$ H(f) _{dB}$
100	40
10	20
2	6
$\sqrt{2}$	3
1	0
$1/\sqrt{2}$	-3
1/2	-6
0.1	-20
0.01	-40

Década: f2 = 10 f1 Oitava: f2 = 2 f1

number of decades = $\log \left(\frac{f_2}{f_1} \right)$								
 		ne cade	→			ne ave 🛌	log f — (Hz)	
10	20	50	100	200	500	1000	— (Hz)	

$$V_{\text{in}} = \frac{V_{\text{out}}}{T_{\text{c}}} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{V_{\text{out}}}{1 + j2\pi fRC}$$
 $f_B = \frac{1}{2\pi RC}$ $f_B = \frac{1}{1 + j(f/f_B)}$

$$f = f_B, |H(f)| = 1/\sqrt{2} \approx 0.707 = -3 \text{ dB}$$

$$|H(f)| = \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

$$|H(f)|_{dB} = 20 \log \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

$$|H(f)|_{dB} = 20 \log \sqrt{1 + \left(\frac{f}{f_B}\right)^2}$$

$$|H(f)|_{dB} = -20 \log \sqrt{1 + \left(\frac{f}{f_B}\right)^2}$$

$$|H(f)| = \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

$$|H(f)|_{dB} = 20 \log \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

$$|H(f)|_{dB} = 20 \log(1) - 20 \log \sqrt{1 + \left(\frac{f}{f_B}\right)}$$

$$|H(f)|_{dB} = -20\log\sqrt{1 + \left(\frac{f}{f_B}\right)^2}$$

$$f << f_{B^{-}} |H(f)|_{dB} \cong 0$$

$$f << f_B \quad |H(f)|_{\mathrm{dB}} \cong 0$$
 $f >> f_B \quad |H(f)|_{\mathrm{dB}} \cong -20 \log \left(\frac{f}{f_B}\right)$

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 13

Circuito RC passa-baixo (4)

$$\begin{array}{c|c}
\stackrel{+\circ}{\mathbf{V}_{\text{in}}} & \stackrel{\circ}{\xrightarrow{\mathsf{T}}_{c}} & \stackrel{\circ}{\mathbf{V}_{\text{out}}} \\
\hline
 & \mathbf{V}_{\text{in}}
\end{array} = \frac{\mathbf{V}_{\text{out}}}{\mathbf{V}_{\text{in}}} = \frac{1}{1 + j2\pi fRC} \quad f_{B} = \frac{1}{2\pi RC} \quad H(f) = \frac{1}{1 + j(f/f_{B})}$$

$$H(f) = \frac{1}{1 + 1}$$

$$\angle H(f) = -\arctan\left(\frac{f}{f_B}\right)$$

Diagrama de Bode (fase)

- **1.** A horizontal line at zero for $f < f_B/10$.
- **2.** A sloping line from zero phase at $f_B/10$ to -90° at $10f_B$.
- 3. A horizontal line at -90° for $f > 10 f_B$.

Aproximação: - 45° / década

 $\Phi (f_B) = -45^{\circ}$

Máximo desvio de fase = - 90°

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 15

Circuito RC passa-baixo (3)

$$v_{\text{in}} = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{1}{1 + j2\pi fRC}$$
 $f_B = \frac{1}{2\pi RC}$ $f_B = \frac{1}{1 + j(f/f_B)}$

$$f_B = \frac{1}{2\pi RC}$$

$$H(f) = \frac{1}{1 + j(f/f_B)}$$

$$|H(f)|_{\mathrm{dB}} = 20\log|H(f)|$$

$$|H(f)| = \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

Diagrama de Bode (amplitude)

$$|H(f)|_{\mathrm{dB}} = -20\log\sqrt{1 + \left(\frac{f}{f_{\mathrm{B}}}\right)^2}$$

$$f << f_B \quad |H(f)|_{dB} \cong 0$$

$$f >> f_B \mid H(f) \mid_{dB} \cong -20 \log \left(\frac{f}{f_B} \right)$$

cai 20dB/década

$$|H(f_B)|_{dB}=-3 dB$$

f	$ H(f) _{dI}$
	122 0 7101
f_B	-3
$2f_B$	− 6
$10f_B$	-20
$100f_{B}$	-40
$1000f_{B}$	-60

DETI-UA (JEO) SE 2018-19

Noções de Sistemas e Sinais pt3 - 14

Circuito RC passa-alto

Filtro passa-alto de 1ª ordem

$$f_B = \frac{1}{2\pi BC}$$

Low-frequency-

$$H(f) = \frac{V_{out}}{V_{in}} = \frac{j(f/f_B)}{1 + j(f/f_B)}$$

$$|H(f)| = \frac{f/f_B}{\sqrt{1 + (f/f_B)^2}} \quad \underline{/H(f)} = 90^\circ - \arctan\left(\frac{f}{f_B}\right)$$

$$|H(f)|_{dB} \cong 0$$
 for $f >> f_B$

$$|H(f)|_{\mathrm{dB}} \cong 20 \log \left(\frac{f}{f_B}\right) \quad \text{for } f << f_B$$

|H (f)|dB

DETI-UA (JEO) SE 2018-19

Nocões de Sistemas e Sinais pt3 - 16