Extremophiles

Alice Chen

Schedule

3:05 - 3:35 Presentation

3:35 - 4:00 Research

4:00 - 4:25 Present findings + Fill out our table

4:25 - 4:35 Break

4:35 - 4:40 Introduce Skype

4:40 - 5:00 Group Discussion

5:00 - 5:35 Skype Dr. Carlos Mariscal

Background

Big Picture:

- 1. What are the definition and limits of life?
- 2. What are the molecular mechanisms of adaptation?

http://wishart.biology.ualberta.ca/BacMap/cg i/getSpeciesCard.cgi?accession=NC_00355 1&ref=index_12.html

https://en.wikipedia.org/wiki/Upis_ceramboides

https://en.wikipedia.org/wiki/Deinococcus radiodurans

Paper Summary - Kashefi and Lovley

- Upper temperature limit for life gives us information on origin of life on hot, early
 Earth and life elsewhere in the universe
- Lots of Fe(III) in hydrothermal vents
- Fe(III) as the final electron acceptor in the ETC was the first form of respiration
- Their experiment -
 - Microorganisms on Fe(III) in water from an active black smoker vent
 - Monitor cell growth and reduction of Fe(III)
- Found strain 121 (Geogemma barossii) from the experiment
 - \circ Grows optimally in a temperature range of 85 to 121 $^{\circ}$ C
 - Uses Fe(III) as electron acceptor

Paper Summary - Rothschild

- Extremophiles help with life outside
 Earth findings, origin of life
 hypothesis, biotech industry
- Different types of extremophiles and their mechanisms of adaptation
 - Temperature
 - o Pressure
 - o Dryness
 - Salinity
 - o pH

- Various extreme environments on Earth and in space
 - o Deep sea
 - o Desserts
 - o Snow, ice
 - o Mars
 - o Space
- Extremophiles have contributed tremendously to many fields: evolutionary biology, molecular biology, chemical synthesis, agriculture, detergents, health, etc.

Adapting Rothschild's Table 1

Extreme Limits and Adaptive Mechanisms of Extremophiles

Extremophile	Limits (Examples)	Mechanisms of Adaptation
Thermophiles		
Psychrophiles		
Halophiles		
Piezophiles (barophiles)		

Environmental parameter	Туре	Definition	Examples
Temperature	Hyperthermophile Thermophile Mesophile Psychrophile	Growth >80 °C Growth 60–80 °C 15–60 °C <15 °C	Pyrolobus fumarii, 113°C Synechococcus lividis Homo sapiens Psychrobacter, some insects
Radiation			Deinococcus radiodurans
Pressure	Barophile Piezophile	Weight-loving Pressure-loving	Unknown For microbe, 130 MPa
Gravity	Hypergravity Hypogravity	>1g <1g	None known None known
Vacuum		Tolerates vacuum (space devoid of matter)	Tardigrades, insects, microbes, seeds
Desiccation	Xerophiles	Anhydrobiotic	Artemia salina; nematodes, microbes, fungi, lichens
Salinity	Halophile	Salt-loving (2–5 M NaCl)	Halobacteriaceae, Dunaliella salina
pН	Alkaliphile	pH > 9	Natronobacterium, Bacillus firmus OF4, Spirulina spp. (all pH 10.5)
	Acidophile	low pH-loving	Cyanidium caldarium, Ferroplasma sp. (both pH 0)

Rothschild 2001

Thermophiles

- Upper temperature limit of life has been pushed
 - Pyrolobus fumarii (Rothschild 2001)
 - Strain 121 (Kashefi and Lovley 2003)
 - Methanopyrus kandleri (Takai 2008)
 - o Possible!
- Extremozyme, proteins that can function in the extreme environments, allow for extremophiles to thrive
- Classification:

Simply Thermophiles	50–64 °C
Extreme thermophiles	65–79 °C
Hyperthermophiles	>80 °C

Obligate thermophiles	Require high temperature
Facultative thermophiles	Thrive in high and lower temperatures

Thermophiles

In order to adapt to high temperatures,

- Membrane fluidity
 - Monolayer better than bilayer
 - Saturated better than unsaturated lipids
- Protein function
 - Charged amino acids form ion pairs
- Cell liquid
 - High pressure
- DNA stability

Thermophiles

Nucleic Acid Stability

- GC content
- Salt screens
- Reverse DNA Gyrase
 - Overwinds DNA
 - Only found in thermophiles
- Extensive methylation of DNA

http://www.sciencedirect.com/science/article/pii/S0962892414001044

Research in Pairs

Extremophile	Limits (Examples)	Mechanisms of Adaptation
1. Thermophiles	122°C with Methanopyrus kandleri	Saturated lipids membrane, ion pairs, reverse DNA gyrase
2. Psychrophiles		
3. Piezophiles (barophiles)		
4. Halophiles		

- 1. What are the known possible metabolisms in thermophiles?
- 2. How do various psychrophiles withstand freezing temperatures?
- 3. What is the current research on the upper pressure limit of life and the mechanisms of adaptation?
- 4. What is the current research on the upper limit with salinity and the mechanisms of adaptation?

BIO BREAK

Skype: Carlos Mariscal

- Professor in the Philosophy Department at the University of Nevada
- Member of the Ecology, Evolution, and Conservation Biology Program
- Got his PhD from Duke with Prof. Daniel McShea
- His work and interests
 - o philosophy, biology, astrobiology, microbiology, how philosophy plays its role in those fields
 - o life in the Universe, origins of life on Earth
 - o journalism
- One of the only philosophers of astrobiology

http://carlosmariscal.com/

Group Discussion Questions

- 1. What do you think extremophiles can tell us about the origin of life hypotheses?
- 2. If the idea of extremophiles makes life existing elsewhere in space more plausible, how do we discover this life and what do we do when we discover this life?
- 3. Dr. Mariscal's work on the definition of life

Skype!

