Exercícios Deep Learning Aula **1** - Introdu**çã**o a Computa**çã**o Diferenci**á**vel

February 19, 2024

1 Retas

- 1- Esboce num gráfico as seguintes retas:
- a) $2x_2 + x_1 = 0$
- **b)** $x_2 2x_1 + 1 = 0$
- **c)** $x_2 1 = 0$
- **d)** $x_1 1 = 0$
- **2-** Especifique uma reta que divide as duas categorias de itens no gráfico abaixo onde x_1 é o eixo abscissas e x_2 é o eixo das ordenadas.

3- Considere a reta $x_2=3+2x_1$. Obtenha a expressão analítica do conjunto de todas as retas paralelas e o conjunto de todas as retas perpendiculares à reta acima.

2 Álgebra Linear

4- Sejam $w=w_1,...w_n$ e $x=x_1,...,x_n$ vetores coluna de dimensão $n\times 1$. Expresse w'x em termos de um somatório.

5- Seja $x=(x_1,...,x_n)$ um vetor-coluna $n\times 1$ e A uma matriz $n\times n$. A' indica a matriz transposta de A. Verifique que as seguintes identidades matriciais estão corretas, checando se o lado direito é igual ao lado esquerdo.

a)
$$x'Ax = \sum_{i,j} x_i x_j A_{ij}$$

b)
$$x'x = \sum_{i} x_{i}^{2}$$

c) xx' é uma matriz simétrica $n \times n$ com elemento (i, j) dado por x_ix_j

3 Derivadas

6- Encontre a derivada F'(x) de

$$F(x) = \sqrt{x^2 + 1}$$

7- Encontre a derivada F'(x) de

$$F(x) = e^{\sin x}$$

8- Função sigmóide:

$$S(x) = \frac{1}{1 + e^{-x}}$$

- a) Esboce o gráfico de S(x).
- **b)** Mostre que S(-x) = 1 S(x)

c) Calcule a derivada em termos da própria sigmóide, isto é, mostre que S'(x) = S(x)(1 - S(x)). Esboce o gráfico da derivada.

d) Qual o valor máximo de S'(x)? Para qual valor de x ela atinge esse máximo?

e) Considere
$$S(z) = \frac{1}{1+e^{-z}}$$
, sendo que $z = b + W_1 x$ encontre $\frac{\partial S}{\partial b}$ e $\frac{\partial S}{\partial W_1}$.

f) Considere $S(h(x)) = \frac{1}{1+e^{-h(x)}}$, calcule $\frac{\partial S}{\partial x}$ em função de h(x).

9- Suponha que você tenha dados da forma $\mathbf{X}=(X_1,X_2,...,X_n)$, onde $X_i\in\mathbb{R}$ e que seu classificador seja da forma $\hat{Y}_i=\beta X_i$. Considerando o erro quadrático, ou seja, $L(\hat{Y},Y)=\sum_{i=1}^n(\hat{Y}_i-Y_i)^2$, qual o valor de β que minimiza o erro?

4 Grafos Computacionais

10- Seja f(x,y,z)=(x+y)z. Podemos quebrar essa função nas equações q=x+y e f(x,y,z)=qz. Utilizando essa notação, nós também podemos representar essas equações por meio de um grafo computacional:

- ${\bf a)}$ Calcule de forma símbolica (sem plugar valores para as variáveis) as derivadas parciais:
 - 1. $\frac{\partial f}{\partial q}$
 - 2. $\frac{\partial q}{\partial x}$
 - 3. $\frac{\partial q}{\partial y}$
 - 4. $\frac{\partial f}{\partial z}$
 - 5. $\frac{\partial f}{\partial x}$
 - 6. $\frac{\partial f}{\partial y}$
 - b) Preencha o grafo computacional para $x=-2,\,y=5,\,z=-4$ e $\frac{\partial L}{\partial f}=1$