

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Tarea 5

INTEGRANTES

Torres Valencia Kevin Jair - 318331818 Aguilera Moreno Adrián - 421005200 Rivera Silva Marco Antonio - 318183583

PROFESORA

Karla Ramírez Pulido

AYUDANTES

Alan Alexis Martínez López Manuel Ignacio Castillo López Alejandra Cervera Taboada

ASIGNATURA

Lenguajes de Programación

6 de noviembre de 2022

1. Utiliza el paso de parámetros que se indica para evaluar la siguiente expresión.

a. Paso de parámetros por valor.

Se tiene la representación del ambiente como:

swap	$\{ \operatorname{fun}\{x\ y\} \{ \operatorname{with}\{ \{\operatorname{tmp}\ x\} \} \{ \operatorname{seqn}\{\operatorname{set}\ x\ y\} \{\operatorname{set}\ y\ \operatorname{tmp}\} \} \} \}$	0x12
b	-8	0x11
a	8	0x10

Evaluando {swap a b}, se tiene que:

Donde sus parámetros son:

- lacktriangle Parámetro Formales: $x\ y$
- Parámetro Reales: $0x10 \ a = 8 \ y \ 0x11 \ b = -8$

Ahora se puede evaluar $\{-a\{+b \ a\}\}\$, se tiene que:

$$\{-8\{+b 8\}\}\$$

 $\{-8\{+(-8) 8\}\}\$
 $\{-8\{0\}\}=8$

b. Paso de parámetros por referencia.

Se tiene la representación del ambiente como:

swap	$\{ fun\{x y\} \{ with\{ \{tmp x\} \} \{ seqn\{ set x y\} \{ set y tmp \} \} \} \}$	0x12
b	-8	0x11
a	8	0x10

Evaluando {swap a b}, se tiene que:

Por lo que modificamos el ambiente, quedando como:

swap	$ \{ fun\{x y\} \{ with\{\{tmp x\}\} \{ seqn\{set x y\} \{ set y tmp\} \} \} \} $	0x12
b	8	0x11
a	-8	0x10

Donde sus parámetros son:

- ullet Parámetro Formales: x y
- \blacksquare Parámetro Reales: 0x10 a=-8y 0x11 b=8

Ahora se puede evaluar $\{-a\{+b \ a\}\}\$, se tiene que:

2. Define la función recursiva ocurrencias que recibe dos listas y devuelve una lista de parejas, en donde cada pareja contiene en su parte izquierda un elemento de la segunda lista y en su parte derecha el número de veces que aparece dicho elemento en la primera lista. Por ejemplo:

```
1 >(ocurrencias '(2 6 8 6 2 1 2 2 0 3) '(2 6 9))
2 ' ((2 . 4) (6 . 1) (9 . 0))
```

Solución. Para este ejercicio, damos la función recursiva que resuelve el problema dado y escrita en el lenguaje Racket. Esto es

3. A partir del Ejercicio 2, muestra los registros de activación generados por la función con la siguiente llamada.

```
(ocurrencias '(1 2 3) '(1 2))
```

Solución. A continuación se muestran los registros de activación por llamada recursiva, estos son

Registro principal:

Resultado:	
'((1 . 1) (ocurrencias	
'(1 2 3) '(2)))	0x28
(ocurrencia	
'(1 2 3) 1)	0x13
Cuerpo/definición	0x12
'(1 2)	
'(1 2 3)	0x11
ocurrencias	0x10

Subregistro de activación 0x13

Subregistro de activación 0x17

Resultado: 1	0x27	Resultado:	
		(ocurrencia '() 1)	0x23
(+ 1 (ocurrencia '(2 3) 1))	0x17	Cuerpo/definición	0x22
Cuerpo/definición	0x16	1	
1		, (2)	001
'(1 2 3)	0x15	'(3)	0x21
ocurrencia	0x14	ocurrencia	0x20

Subregistro de activación 0x20

Subregistro de activación 0x23

Resultado:		Resultado:	
(ocurrencia '(3) 1)	0x20	0	0x26
Cuerpo/definición	0x19	Cuerpo/definición	0x25
1		1	
'(2 3)	0x18	,()	0x24
ocurrencia	0x17	ocurrencia	0x23

Segundo registro principal de la función ocurrencias:

- 4. Usando recursión de cola optimiza la función del Ejercicio 2. Toda función auxiliar ocupada debe ser optimizada.
- **5.** A partir del Ejercicio 4, muestra los registros de activación generados por la función con la siguiente llamada.

1 (ocurrencias '(1 2 3) '(1 2))

Solución.