■ Energy Signals

The **Average Energy** E_x of a signal x(t) is defined as,

$$E_{x}=\int\limits_{-\infty}^{\infty}\leftert x(t)
ightert ^{2}dt$$

If $0 < E_x < \infty$, then x(t) is an **Energy Signal.**

□ Power Signals

The **Average Power** P_x of a signal x(t) is defined as,

$$P_x = \lim_{T o\infty}rac{1}{T}\int\limits_{-rac{T}{2}}^{rac{T}{2}}\left|x(t)
ight|^2\!dt$$

If $0 < P_x < \infty$, then x(t) is a **Power Signal.**

NOTE: a signal cannot be both an energy and a power signal. It can, however, be neither.

Energy Spectral Density

The **Energy Spectral Density** $\Psi_x(f)$ of a signal x(t) is defined as,

$$\Psi_x(f) = \left| X(f) \right|^2$$

Power Spectral Density

The **Power Spectral Density** $S_x(f)$ of a signal x(t) is defined as,

$$S_x(f) = \lim_{T
ightarrow \infty} rac{1}{T} |X_T(f)|^2$$

where, $X_T(f)$ is the Fourier transform of $x_T(t)$ and,

$$x_T(t) = x(t)\Pi(rac{t}{T})$$

In other words, $x_T(t)$ is the function that has value x(t) for $-\frac{T}{2} < t < \frac{T}{2}$ and 0 for all other values of t:

$$x_T(t) = egin{cases} x(t), & if & -rac{T}{2} < t < rac{T}{2} \ 0, & otherwise \end{cases}$$

Periodic Signals

In the special case where x(t) is a periodic signal, the Average Power is defined as,

$$P_x = \sum_{n=-\infty}^{\infty} \left| X_n
ight|^2$$

and the Power Spectral Density is defined as

$$S_x(f) = \sum_{n=-\infty}^{\infty} |X_n|^2 \delta(f-rac{n}{T})$$

Linear Time-Invariant System

For a linear time-invariant system y(t) with input x(t) and impulse response h(t),

$$S_y(f) = S_x(f)|H(f)|^2$$

M Autocorrelation Function

The **Autocorrelation** $R_x(T)$ of a signal x(t) is defined as,

$$R_x(au) = \lim_{T o\infty}rac{1}{T}\int\limits_{-rac{T}{2}}^{rac{T}{2}}x^*(t)x(t+ au)dt$$

Periodic Signals

In the special case where x(t) is a periodic signal, the Autocorrelation is defined as,

$$R_x(au) = \sum_{n=-\infty}^{\infty} |X_n|^2 e^{jrac{2n\pi}{T} au}$$

Wiener-Khinchin Theorem

The inverse Fourier transform of the Power Spectral Density of signal x(t) is equal to the Autocorrelation of signal x(t):

$$R_x(au) = \mathcal{F}^{-1}\{S_x(f)\}$$

Linear Time-Invariant System

For a linear time-invariant system y(t) with input x(t) and impulse response h(t),

$$R_y(au) = R_x(au) * h(au) * h^*(- au)$$

Properties

H3 Symmetry

•
$$R_x^*(au) = R_x(- au)$$

H3 Mean-Squared Value

•
$$R_x(\tau)|_{\tau=0} = P_x$$

H3 Periodicity

• If x(t) is periodic with time period T , then $R_x(au+T)=R_x(au)$

H3 Maximum Value

• $|R_x(\tau)| \leq R_x(0)$

Crosscorrelation Function

The Crosscorrelation Function $R_{xy}(au)$ of two signals x(t) and y(t) is defined as,

$$R_{xy}(au) = \lim_{T o\infty}rac{1}{T}\int\limits_{-rac{T}{2}}^{rac{T}{2}}x^*(t)y(t+ au)dt$$

The Crosscorrelation Function measures the *similarity* between two signals. $R_{xy}(\tau)=0$ implies x(t) and y(t) are uncorrelated.