Малая теорема Ферма, бинарное возведение в степень, деление по простому и составному модулю

Урок 2.4

На этом уроке_

- Возведение в степень по модулю
- Деление по модулю
- Деление по простому и по составному модулю

Возведение в степень по модулю: актуальность_

- При умножении по модулю MOD результат не превосходит MOD-1
- Значит, задача «возведите в большую степень по модулю» решается в стандартных типах данных
- Но если показатель степени превосходит 10⁹, соответствующее количество умножений не укладывается по времени
- Надо оптимизировать

Загадка про количество умножений_

• За сколько умножений можно возвести x в 8 степень? Обычное возведение в степень:

• А если быстрее?

Можно за 3:

$$x^2 = x * x$$
, satem $x^4 = x^2 * x^2$, satem $x^8 = x^4 * x^4$

• А если в 10 степень?

Можно за 4:

$$x^2 = x * x$$
, satem $x^4 = x^2 * x^2$, satem $x^5 = x^4 * x \times x^{10} = x^5 * x^5$

Быстрое возведение в степень: описание_

0.
$$f(0) = 1$$

1. Если
$$n = 2k + 1$$
, то $f(n) = a * f(n - 1)$

2. Если
$$n = 2k$$
, то $f(n) = f(n/2) * f(n/2)$

А какая сложность?

 После шага 1 всегда следует шаг 2 (переход к чётному аргументу), аргумент уменьшается не менее чем вдвое за любые два подряд идущих шага — сложность O(log(n))

Быстрое возведение в степень: код_

```
if ( n == OLL ) return 1LL;
if ( n % 2 == 1) // нечётное
return ( a * fastpow (a, n-1, MOD) ) % MOD;
long long tmp = fastpow (a, n/2, MOD); // чётное - сначала считаем an/2
return (tmp * tmp) % MOD; // затем возводим в квадрат по модулю МОD.

8 }
```

1 long long fastpow (long long a, long long n, long long MOD)

Деление по модулю: определение_

Обычное умножение и деление: x = a/b обозначает, что b * x = a

В случае действий по модулю М:

- Разделить а на b найти такое 0 ≤ x < M, что умножение b на x по модулю M даёт тот же остаток, что и а, то есть bx = a (mod M)
- Так как остатки периодичны, a, b и х можно заменить остатками от их деления на M, то есть можно считать, что a и b тоже остатки

Деление по простому модулю: свойства_

- Докажем, что при простом P и (b,P) = 1 существует такой x, что bx \equiv a (mod P)
- Лемма: если P простое, (k,P) = 1, x ≠ y (mod P),
 то kx ≠ ky (mod P).
 - Пусть это не так, тогда kx ky = k(x y) делится на Р. Но k не делится на Р по условию леммы 0 < |x-y| < P и тоже не делится на Р. Противоречие.
- Рассмотрим остатки от деления на P чисел b*0, b*1, ..., b*(P-1). Согласно лемме, все они попарно различны. Всего различных остатков P, значит, это полный набор остатков. Включающий и тот, что получится от деления а на P

Малая теорема Ферма_

```
Пусть Z = 1 * 2 * ... * (P-1).
Так как 1, 2 ... P - 1 не делятся на P, то (Z,P) = 1
```

- Р 1 ненулевой остаток
- Любые два числа вида bx, где x разные ненулевые остатки, различны по модулю Р
- bx также пробегает Р 1 ненулевое значение
- Произведение даёт такой же остаток при делении на P, как и Z

```
(B^{p-1}-1)Z-Z делится на P, Z(b^{p-1}-1) делится на P, (Z,P)=1, значит: B^{p-1}\equiv 1\pmod P
```


Деление по простому модулю_

- Согласно Малой Теоремы Ферма, b^{p-1} имеет остаток 1 при делении на P, или же b^{p-2} * b имеет остаток 1 при делении на P
- Но тогда $b^{p-2} \mod P$ результат деления 1 на b по модулю P, то есть $1/b \equiv b^{p-2} \pmod P$. Домножим на а и получим, что $a/b \equiv a * b^{p-2} \pmod P$

Деление по простому модулю: код_

Мы используем уже реализованные ранее функции умножения по модулю и возведения в степень. Параметр модуля (РМОD) обязан быть простым

Обратное по произвольному модулю_

- Запишем bx ≡ a (mod M) в виде bx + My = a.
 Это диофантово уравнение относительно x и y
- Если а не делится на (M,b), решений нет
- Иначе запустим расширенный алгоритм Евклида, находим x_0 такое, что $bx_0 + My_0 = (M,b)$, затем умножим x_0 на a/(M,b) по модулю М

Обратное по произвольному модулю: код_

Расширенный алгоритм Евклида должен быть реализован для long long

Подведем итог_

- Научились выполнять все арифметические действия по модулю
- Вычислили НОД
- Изучили расширенный алгоритм Евклида

