Find similarity in Galaxy tools and predict next tools in workflows

(Master's thesis)

Anup Kumar

Find similarity in Galaxy tools

Similarity in tools using machine learning (ML) and natural language processing (NLP) approaches

Tool's attributes

Approach

Example

Attributes/ Tools	LinearRegression	LogisticRegression	Similarity
Input, output	'pdf', 'tabular'	'tabular'	?
Name, description	<pre>'regress', 'linear', 'perform'</pre>	'logist', 'regress', 'perform'	?
Help text	-	<pre>'vif','regress', 'glm','car','inflat', 'function','statist', 'logist'</pre>	?

Compute similarity

- Jaccard's distance for input/output
- Dense vector for name, description and helptext
- Example:
- ['regress', 'linear', 'perform'] = [0.98, 0.07, ..., 0.12]

Similarity matrix (for name, desc.)

Tools	LinearReg ression	LogisticRegres sion	BestSubsets Regression	lda_ana ly
LinearRegression	1	0.88	0.84	0.86
LogisticRegressio n	.88	1	0.82	0.65
BestSubsetsRegr ession	0.84	0.82	1	0.62
lda_analy	• • • •	••••	••••	1

How to combine?

- 3 similarity matrices, one for each attribute
- How to combine them? Take average?
- Optimal combination, learn weights for each tool
- Similarity:

$$\underset{(w_i,\ldots,w_n)}{\arg\max} \sum_{i=1}^{N} w_i \cdot s_i$$

Example

- Tool: LinearRegression
- Similarity for input/output: $sim_io = [0.33, 0.5, 1.0,]$
- Similarity for name, desc: **sim_nd** = [0.83, 0.09, 0.005,]
- Similarity for helptext: $sim_ht = [0.45, 0.36, 0.001]$
- Similarity =

```
argmax(w1 \times sim_io + w2 \times sim_nd + w3 \times sim_ht)

w1 + w2 + w3 = 1
```

Visualizer and References

- Static website: results for ~ 1000 tools
- https://rawgit.com/anuprulez/similar_galaxy_tools/master/viz/similarity_viz.html
- https://github.com/anuprulez/similar_galaxy_tools
- https://cs.stanford.edu/%7Equocle/paragraph_vector.pdf
- https://arxiv.org/pdf/1607.05368.pdf

Predict next tools in Galaxy workflows

Galaxy workflow

Next tools?

Workflow as a sequence

Data preprocessing

- fastq groomer, trim galore (Step 1)
- fastq_groomer, trim_galore, tophat2, fastqc (Step 2)
- fastq groomer, trim galore, tophat2, samtools rmdup (Step 3)
- fastq groomer, trim galore, tophat2, samtools rmdup, rseqc bam2wig (Step 4)

Data preprocessing

- Assign a unique index to each tool
- {'fastq_groomer': 1, 'trim_galore': 2, 'tophat2': 3, 'samtools_rmdup': 4, 'rseqc_bam2wig': 5, 'fastqc': 6}
- Training samples:

Training sample	Label (next tools)
fastq_groomer, trim_galore	tophat2, fastqc
1,2	3, 6
1,2,3	4

Classification

- Multi label, multi class classification
- Long range dependencies samples
- Long short term memory (LSTM) networks
- Topk accuracy
- # of top k tools in actual k next tools ÷ k actual next tools

Next tools (labels) pred. topk acc vs. train and test samples 70% accuracy) 0.6 Topk accuracy (0.7 and topic of the contract o Train samples Test samples 10 20 30 40 50 Training epochs

Next steps

- Convolution
- Balance the samples
- Different activations
- Compatibility constraint

References

- https://github.com/anuprulez/similar_galaxy_workflow
- https://arxiv.org/pdf/1511.03677.pdf
- https://arxiv.org/pdf/1604.04573.pdf
- https://arxiv.org/pdf/1506.00019.pdf

Thank you for your attention