Лекция 10

Ilya Yaroshevskiy

January 12, 2021

Contents

1 Гомотопия путей

1

1 Гомотопия путей

• Гомотопия связанная, если $\gamma_0(a)=\gamma_1(a),\ \gamma_0(b)=\gamma_1(b),\ \forall u\in[0,1]\quad \Gamma(a,u)=\gamma_0(a),\ \Gamma(b,u)=\gamma_0(b)$

• Гомотопия петельная $\gamma_0(a)=\gamma_0(b), \gamma_1(a)=\gamma_1(b)$ $\forall u\in[0,1]$ $\Gamma(a,u)=\Gamma(b,u)$

Теорема 1. V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$ γ_0, γ_1 — связанно гомотопные пути Тогда $\int_{\gamma_0} V_i dx_0 = \int_{\gamma_1} \sum V_i dx_i$

Примечание. То же самое выполнено для петельных гомотопий

Ргооf. $\gamma_u(t) := \Gamma(t,u), \ t \in [a,b] \ u \in [0,1]$ $\Phi(u) = \int_{\gamma_u} \sum V_i dx_i$ Проверим: Φ - локально постоянна $\forall u_0 \in [0,1] \ \exists W(u_0) : \forall u \in W(u_0) \cap [0,1] \ \Phi(u) = \Phi(u_0)$ Γ - непрерывна на $[a,b] \times [0,1]$ - компакт ⇒ Γ - равномерно непрерывна $\forall \delta > 0 \ \exists \sigma > 0 \ \forall t,t' \ |t-t'| < \sigma \ \forall u,u' \ |u-u'| < \sigma \ |\Gamma(t,u) - \Gamma(t',u')| < \frac{\delta}{2}$

Лемма $3 \gamma : [a, b] \rightarrow O$ Тогда $\exists \delta > 0$ со свойством Если $\tilde{\gamma}, \tilde{\tilde{\gamma}}$ — близки к γ T.e. $\forall t \in [a, b]$

- $|\tilde{\gamma}(t) \gamma(t)| < \delta$
- $|\tilde{\tilde{\gamma}} \gamma(t)| < \delta$

то $\gamma, \tilde{\gamma}, \tilde{\tilde{\gamma}} - V$ - похожие

Возьмем параметр δ из Леммы 3 для пути γ_{u_0}

Если $|u-u_0|<\sigma$ $|\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2},$ при $t\in[a,b],$ т.е. γ_u и γ_{u_0} — похожи по Лемме 3

Построим кусочно гладкий путь $\tilde{\gamma}_{u_0}$ $\frac{\delta}{4}$ - близкий к γ_{u_0} $\forall t \in [a,b] \quad |\gamma_{u_0}(t) - \tilde{\gamma}_{u_0}| < \frac{\delta}{4}$

и кусочно гладкий путь $\tilde{\gamma}_u$ $\frac{\delta}{4}$ - близкий к γ_u Тогда $\tilde{\gamma}_{u_0}$ и $\tilde{\gamma}_u-\delta$ - близкие к $\gamma_{u_0}\Rightarrow$ они V - похожие \Rightarrow

$$\Rightarrow \int_{\gamma_u} \sum V_i dx_i \xrightarrow{\text{def}} \int_{\tilde{\gamma}_u} \dots = \int_{\tilde{\gamma}_{u_0}} \dots \xrightarrow{\text{def}} \int_{\gamma_{u_0}} \dots$$
т.е. $\Phi(u) = \Phi(u_0)$, при $|u - u_0| < \delta$

Определение. Область $O \subset \mathbb{R}^m$ - называется **односвязной** если в ней любой замкнутый путь гомотопен постоянному пути

Примечание. Выпуклая облать — одновязна

Примечание. Гомеоморфный образ однозвязного множества односвязный

 $\Phi: O \to O'$ — гомеоморфизм, γ - петля в $O', \, \Phi^{-1}$ — петля в O

 $\Gamma:[a,b] \to [0,1] \to O$ - гомотопия $\Phi^{-1}(\gamma)$ и постоянного пути $\tilde{\gamma} \equiv A$

 $\Phi \circ \Gamma$ — гомотопия γ с постоянным путем $\Phi(A)$

Теорема 2. $O \subset \mathbb{R}^m$ — односвязная область

V — локально потенциальное векторное поле в O

Tогда V — потенциальное в O

Proof. Теорема. Эквивалентны:

- 1. V потенциальное
- 2. ...
- 3. \forall кусочно гладкой петли γ : $\int_{\gamma} \sum V_i dx_i = 0$

$$V$$
 - локально постояно, γ_0 — кусочно гладкая петля, тогда γ_0 гомотопна постоянному пути $\gamma_1 \Rightarrow \int_{\gamma_0} = \int_a^b \langle V(\gamma_1|t|), \underbrace{\gamma_1'(t)}_{\equiv 0} \rangle dt = 0 \Rightarrow V$ — потенциально

Следствие 1. Теорема Пуанкаре верна в односвязной области

Дифференциальный критерий:

$$\frac{\partial V_i}{\partial x_j} = \frac{\partial V_j}{\partial x_j} \tag{1}$$

Лемма Пуанкаре: (1) $\Rightarrow V$ — локально потенциально

Теорема 3 (о веревочке). • $O = \mathbb{R}^2 \setminus \{(0,0)\}$

• $\gamma:[0,2\pi]\to O$ $t \mapsto (\cos t, \sin t)$

Тогда эта петля не стягиваема

 $\textit{Proof. } V(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$ — векторное поле в \mathbb{R}^2

Проверим что $\frac{\partial V_1}{\partial u} = \frac{\partial V_2}{\partial x}$:

$$\frac{\partial V_1}{\partial y} = \frac{-(x^2 + y^2) + 2y^2}{(x^2 + y^2)^2}, \quad \frac{\partial V_2}{\partial x} = \frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2}$$
(2)

Равенство частных производных выполняется если $(x,y) \neq (0,0) \Rightarrow V$ — локально потенциально При этом

$$\int_{\gamma} \sum V_i dx_i = \int_0^{2\pi} \left(\frac{-\sin t}{\cos^2 t + \sin^2 t} \cdot (-\sin t) + \frac{\cos t}{\cos^2 t + \sin^2 t} \cdot \cos t \right) dt = \int_0^{2\pi} 1 dt = 2\pi$$
 (3)

(3) ⇒ петля не стягиваема(Если бы была стягиваема, to интеграл изначально должен был быть равен 0, т.к. интеграл при гомотопиях не меняется), а поле V — не потенциально