Figure 1

Politikarion	4000	Dec. of		
SECTION OF SECTION	PLXX D. Resolini	Control Wighton	(Koxedur Phiania	
Valette S.,1987	Unknown	P doping	Been mad (1944)	
Valette S.,1988	Unknown	P doping	Not specified	
Grand G., 1990	Unknown		400°C	
Liu K., 1995	Unknown	P doping Content in Si, P	1000°C	
Ojha S., 1998	Unknown		Not specified	
Canning J., 1998	Unknown	Ge, B, or P doping	Not specified	
Bulla D., 1998	TEOS	Ge doping	Not specified	
Johnson C., 1998	SiH ₄ + O,	TEOS	Not specified	
Boswell R. W., 1997	SiH, + O,	Si ion Implantation	400°C	
Bazylenko M. V., 1995	SiH ₄ + O ₅ + CF ₄	SiH ₂ /O ₂ flow ratio	1000°C	
Bazylenko M. V., 1996	SiH, + O, + CF,	(SiH,+O,)/CF, flow ratio	Not specified	
Durandet A., 1996		(SiH ₄ +O ₂)/CF ₄ flow ratio	1000°C	
Kapser K., 1991	SiH ₄ + O ₂ + CF ₄	SiH_/O_/CF_ flow ratio	100°C	
Lai Q., 1992	SiH ₄ + N ₂ O	SiH ₄ /N ₂ O flow ratio	1060°C	
Lai Q.,1993	SiH ₄ + N ₂ O	SiH ₂ /N ₂ O flow ratio	1100°C	
Pereyra I., 1997	SiH ₄ + N ₂ O	SiH ₄ /N ₂ O flow ratio	1100°C	
Alayo M., 1998	SiH, + N,O	SiH ₂ /N ₂ O flow ratio	400°C	
Kenyon T., 1997	SiH ₄ + N ₂ O	SiH ₂ /N ₂ O flow ratio	1000°C	
Lam D. K. W., 1984	SiH ₄ + N ₂ O + Ar	SiH ₂ /N ₂ O/Ar flow ratio	1000°C	
	SiH, + N,O + NH,	SiH ₄ /N ₂ O/NH ₄ flow ratio	Not specified	
Bruno F., 1991	SiH, + N,O + NH,	SiH ₄ /N ₂ O/NH ₃ flow ratio	1100°C	
Yokohama S., 1995	SiH ₄ + N ₂ O + NH ₃	SiH ₄ /N,O/NH, flow ratio	Not specified	
Agnihotri O. P., 1997	$SiH_a + N_sO + NH_s$	SiH/N,O/NH, flow ratio	700-900°C	
Germann R., 1999	SiH ₄ + N ₂ O + NH ₄	Unknown	1100°C	
Offrein B., 1999	$SiH_4 + N_2O + NH_3$	Unknown	1150°C	
Hoffmann M., 1995	$SiH_a + N_2O + NH_3 + Ar$	SiH,/N,O/NH,/Ar flow ratio	Not specified	
Hoffmann M., 1997	$SiH_4 + N_2O + NH_3 + Ar$	SiH,/N,O/NH,/Ar flow ratio	Not specified	
Tu Y., 1995	$SiH_4 + N_2O + NH_3 + N_2$	N ₂ O/(N ₂ O + NH ₂) flow ratio	1050°C	
Poenar D., 1997	$SiH_4 + N_2O + NH_3 + N_2$	SiH,/N,O/NH,/N, flow ratio	850°C	
Ridder R., 1998	$SiH_4 + N_2O + NH_3 + N_2$	SiH,/N,O/NH,/Ar flow ratio	1100°C	
Worhoff K., 1999	SiH ₄ + N ₂ O + NH ₃ + N ₂	SiH,/N,O/NH,/N, flow ratio	1150°C	
Bulat E.S., 1993	SiH, + N, O + N, + O, + He + CF	SiH/(N,O/N,)/ O/CF, flow ratio	425°C	
This Patent Application	SiH ₄ + N ₂ O + PH ₃ + N ₃	Patented Pending Method	650°C	

Figure 2

		25000	100-200-00	Tan York	Serve as	REQUESTS:	SERVICE STATE	I Described	Post Company	Sometimen.	Insuratio-ras	Contractivity of	In the second
	主	主	Ξ.	т Ż	,,			<u></u>	Ø.		4	v	7
	H-OH	SIO.H	T-VIS		H-IS	Sied	Ž	S O	ő	Š.	皇	o ·	ě.
			, "	Ø				ம்	σ,	S	· · · · ·	5	#
Min	3550	3470	3380	3300	2210	1800	1530	1080	1000	910	860	740	410
Ave	3650	3510	3420	3380	2260	1875	1555	1180	1080	950	885	810	460
Max	3750	3550	3460	3460	2310	1950	1580	1280	1160	990	910	880	510
Min	2.817	2.882	2.959	3.030	4.525	5.556			10.000	10.989	11.628	13.514	24.390
Ave	2.740	2.849	2.924	2.959	4.425	5.333	6.431	8.475	9.259	10.526	11.299	12.346	21.739
Max	2.667	2.817	2.890	2.890	4.329	5.128	6.329	7.813	8.621	10.101	10.989	11.364	19.608
Min	1.408	1.441	1,479	1.515	2.262	2.778	3.268	4.630	5.000	5.495	5.814	6.757	12.195
Ave	1.370	1.425	1.462	1.479	2.212	2.667	3.215		4.630	5.263	5.650	6.173	10.870
Max	1.333	1.408	1.445	1.445	2.165		3.165	3.906	4.310	5.051	5,495	5.682	9.804
Min	0.939	0.961	0.986	1.010	1.508	1.852	2.179	3.086	3.333	3.663	3.876	4.505	8.130
Ave	0.913	0.950	0.975	0.986	1.475	1.778	2.144	2.825	3.086	3.509	3.766	4.115	7.246
Max	0.889	0.939	0.963	0.963	1.443	1.709	2.110	2.604	2.874	3.367	3.663	3.788	6.536
Min	0.704	0.720	0.740	0.758	1.131	1.389	1.634	2.315	2.500	2.747	2.907	3.378	6.098
Ave	0.685	0.712	0.731	0.740	1.106	1.333	1.608	2.119	2.315	2.632	2.825	3.086	5.435
Max	0.667	0.704	0.723	0.723	1.082	1.282	1.582	1.953	2.155	2.525	2.747	2.841	4.902
Min	0.563	0.576	0.592	0.606	0.905	1.111	1.307	1.852	2.000	2.198	2.326	2.703	4.878
Ave	0.548	0.570	0.585	0.592	0.885	1.067	1.286	1.695	1.852	2.105	2:260	2.469	4.078
Max	0.533	0.563	0.578	0.578	0.866	1.026	1.266	1.563	1.724	2.020	2.198	2.273	3.922
Min	0.469	0.480	0.493	0.505	0.754	0.926	1.089	1.543	1.667	1.832	1.938	2.252	4.065
Ave	0.457	0.475	0.487	0.493	0.737	0.889	1.072	1.412	1.543	1.754	1.883	2.058	3.623
Max	0.444	0.469	0.482	0.482	0.722	0.855	1.055	1.302	1.437	1,684	1.832	1.894	3.268
Min	0.402	0.412	0.423	0.433	0.646	0.794	0.934	1.323	1.429	1,570	1.661	1.931	3.484
Ave	0.391	0.407	0.418	0.423	0.632	0.762	0.919	1.211	1.323	1.504	1,614	1.764	3,106
Max	0.381	0.402	0.413	0.413	0.618	0.733	0.904	1.116	1.232	1.443	1.570	1.623	2.801
Min	0.352	0.360	0.370	0.379	0.566	0.694	0.817	1.157	1.250	1.374	1.453	1.689	3.049
Ave	0.342	0.356	0.365	0.370	0.553	0.667	0.804	1.059	1.157	1.316	1.412	1.543	2.717
Max	0.333	0.352	0.361	0.361	0.541	0.641	0.791	0.977	1.078	1.263	1.374	1,420	2.451

Figure 3a

Figure 3b

Figure 3c

Figure 3d

Figure 4a

Figure 4b

Figure 4c

Figure 4d

Figure 5c

Figure 5d

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Figure 8a

Figure 8b

Figure 8c

Figure 8d

Figure 9a

Figure 9b

Figure 9c

Figure 9d

Figure 10

Figure 11

Figure 12

Tensile stress Core
(Core wants to contract)

Desired vertical deep elebed profile

Compressive stress Buffer (Clad) (Buffer (Clad) wants to expand)

> Tensile stress Core (Core wants to contract)

Compressive stress Burier (Clad)
(Buller (Clad) wants in expand)

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

