

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Исследование динамики нелинейных дискретных и непрерывных динамических систем на плоскости»

Студент 315 группы А. А. Пилюшенок

 $\begin{tabular}{ll} $Pyководитель \\ {\it к.ф.-м.н., доцент П. A. Точилин} \end{tabular}$

Оглавление

1	Дис	хретные динамические системы 3
	1	Постановка задачи
	2	Исследование системы без запаздывания
		2.1 Поиск неподвижных точек
		2.2 Исследование неподвижных точек на устойчивость
		2.3 Исследование циклов длины 2 и 3
		2.4 Бифуркационная диаграмма
		2.5 Показатель Ляпунова
	3	Исследование системы с запаздыванием
		3.1 Поиск особых точек
		3.2 Исследование особых точек на устойчивость
		3.3 Исследование существования бифуркации Неймарка-Сакера 17
2	Нег	рерывная динамическая система
	1	Постановка задачи
	2	Биологическая интерпретация
	3	Введение безразмерных переменных
	4	Исследование положений равновесия
		4.1 Поиск положений равновесия
		4.2 Исследование положений равновесия на устойчивость
	5	Параметрический и фазовый портреты
	6	Предельные циклы
	7	Интерпретация результатов
	8	Решение поставленной залачи

Глава 1

Дискретные динамические системы

1 Постановка задачи

Даны две нелинейные дискретные системы: без запаздывания

$$u_{t+1} = \sqrt{bu_t}e^{r(1-u_t^2)} \tag{1.1}$$

и с запаздыванием

$$u_{t+1} = \sqrt{bu_t}e^{r(1-u_{t-1}^2)}, (1.2)$$

где $u_t \geqslant 0, \ \forall t = 0, 1, 2, \dots$ и b, r > 0.

Необходимо провести аналитическое исследование, подкрепляя результат иллюстрациями, полученными с помощью численного моделирования.

В ходе исследования системы без запаздывания 1.1 необходимо:

- Найти неподвижные точки и исследовать их на устойчивость.
- Проверить существование циклов длины 2 и 3.
- Построить бифуркационную диаграмму (в смысле предельного поведения траекторий) в зависимости от значения бифуркационного параметра (значения других параметров и значение u_0 следует зафиксировать при построении).
- Построить зависимость показателя Ляпунова от значения параметра.

В ходе исследования системы с запаздыванием 1.2 необходимо:

- Найти особые точки и исследовать их на устойчивость.
- Проверить существование бифуркации Неймарка-Сакера, если она присутствует построить инвариантную кривую.

2 Исследование системы без запаздывания

Проведём ряд преобразований для динамической системы 1.1: возведём обе части в четвертую степень, домножим обе части на $(4r)^2$.

$$u_{t+1}^4 = u_t^2 b^2 e^{4r - 4ru_t^2} \stackrel{\cdot 4r^2}{\Longrightarrow} (4ru_{t+1}^2)^2 = (4ru_t^2) \cdot 4rb^2 e^{4r} \cdot e^{-4ru_t^2}.$$

Обозначив $\alpha = 4rb^2e^{4r}$ и $v_t = 4ru_t^2$, получим

$$v_{t+1}^2 = \alpha v_t e^{-v_t}.$$

Возьмём квадратный корень из обеих частей и обозначим $w_t = v_t/2$.

$$w_{t+1} = \sqrt{\frac{\alpha}{2}} \cdot \sqrt{w_t} e^{-w_t}.$$

Все проделанные выше переходы эквивалентны при неотрицательных значениях u_t, b, r . Таким образом, получили топологически эквивалентную 1.1 систему. Отметим, что для сопоставления с данными наблюдений необходимо возвращаться к исходным переменным.

Переобозначим переменные $\sqrt{\alpha/2} \mapsto r, w_t \mapsto u_t$.

$$u_t = r\sqrt{u_t}e^{-u_t}, \quad u_t|_{t=0} = u_0, \quad u_t \geqslant 0, \ t = 0, 1, 2, \dots$$
 (1.3)

Далее исследуем 1.3 по намеченному плану.

2.1 Поиск неподвижных точек

Пусть дана динамическая система в общем виде

$$u_{t+1} = f(u_t), \quad u_t|_{t=0} = u_0, \quad f: \mathbb{R}^n \to \mathbb{R}^n.$$
 (1.4)

Определение. Неподвижной точкой отображения $f(u): \mathbb{R}^n \to \mathbb{R}^n$ называется решение уравнения u = f(u).

Решением уравнения $u=f(u)=r\sqrt{u}e^{-u}$ при $u\geqslant 0$ является

$$\begin{bmatrix}
 u = 0, \\
 \sqrt{u}e^u = r.
\end{bmatrix}$$

Обозначим первую неподвижную точку $u_1^*=0$, вторую — $u_2^*:\sqrt{u_2^*}e^{u_2^*}=r$. Всегда ли существует u_2^* ? Исследуем правую часть определяющего выражения для u_2^* при u>0 (далее считаем выполненным, если не оговорено иначе).

$$\frac{d}{du}\left(\sqrt{u}e^u\right) = \frac{1}{2\sqrt{u}}e^u + \sqrt{u}e^u > 0, \ \forall u > 0.$$

Функция $\sqrt{u}e^u$ возрастает, причём при u=0 равна нулю. Таким образом, всегда существует пересечение графика функции $\sqrt{u}e^u$ и горизонтальной прямой r. Неподвижная точка u_2^* существует $\forall r>0$. Других неподвижных точек нет.

Например, при r=1 получим две неподвижные точки: $u_1^*=0, u_2^*=1.$

Заметим, что при увеличении значения параметра r, u_2^* тоже увеличивается.

2.2 Исследование неподвижных точек на устойчивость

Для неподвижной точки динамической системы 1.4 введем понятие устойчивости по Ляпунову.

Определение. Неподвижная точка u^* отображения $f(u): \mathbb{R}^n \to \mathbb{R}^n$ — устойчива по Ляпунову, если

 $\forall \varepsilon > 0 \,\, \exists \delta(\varepsilon) \,\, \forall \text{начальных } \partial \text{анных } \widetilde{u}_0 : ||\widetilde{u}_0 - u^*|| < \delta \Rightarrow ||f(u_t; \widetilde{u}_0) - u^*|| < \varepsilon, \,\, \forall t = 0, 1, 2, \dots,$

при этом если дополнительно

$$\lim_{t \to \infty} f(u_t; \widetilde{u}_0) = u^*,$$

то u^* — асимптотически устойчивая неподвижная точка. Если выполняется отрицание определения устойчивости, то u^* — неустойчивая неподвижная точка.

Воспользуемся следующим достаточным условием.

Теорема. Пусть u^* — неподвижная точка отображения $f(u): \mathbb{R} \to \mathbb{R} \ u \ f(\cdot)$ обратимо в малой окрестности u^* . Тогда

 $|ecnu||f'(u^*)| < 1, mo u^* - acumnmomuчески устойчивая неподвижная точка,$

 $|ecnu||f'(u^*)| > 1$, то $u^* - неустойчивая неподвижная точка,$

 $|f'(u^*)| = 1$, то об устойчивости неподвижной точки ничего нельзя сказать.

Имеем $f(u) = r\sqrt{u}e^{-u}$. Вычислим $\frac{d}{du}f(u)$.

$$\frac{d}{du}f(u) = \frac{r}{2\sqrt{u}}e^{-u} - r\sqrt{u}e^{-u} = \frac{r}{2\sqrt{u}}e^{-u}(1 - 2u).$$

Заметим, что $f'(0) = +\infty$. Значит, при любых значениях b, r найдётся малая окрестность точки u_1^* , выпущенные траектории из которой будут отдаляться от u_1^* . Таким образом, u_1^* — всегда неустойчивая.

Подставим в f'(u) определяющее выражение для u_2^* .

$$\frac{d}{du}f(u)|_{u=u_2^*} = \frac{1}{2}(1-2u_2^*).$$

Так как значение u_2^* задано неявно, и его трудоёмко вычислить аналитически, с помощью средств среды MATLAB численно найдём бифуркационное значение \overline{r} параметра r (при котором меняется характер устойчивости u_2^*) до 4 знака после запятой.

Имеем $\overline{r}\approx 5.4889,\ u_2^*(\overline{r})\approx 1.5000.$ При $r\in (0,5.4889)$ имеем $|f'(u_2^*)|<1$ и точка u_2^* —асимптотически устойчивая. При $r\in (5.4892,+\infty)$ имеем $|f'(u_2^*)|>1$. Для определённости будем считать $\overline{r}=5.4890.$

При помощи диаграммы Ламерея при N=100 (количество шагов, далее остаётся неизменным) на рисунке 1.1а наглядно показано, что при $r<\overline{r}$ и большом отклонении от u_2^* траектория сходится к u_2^* . На рисунке 1.1b аналогично показано, что при $r>\overline{r}$ и малом отклонении от u_2^* траектория отдаляется от u_2^* .

(b) $r = 6 > \overline{r}$, $u_0 = 1.55$, $u_2^* \approx 1.567$

Рис. 1.1: Устойчивость и неустойчивость u_2^* .

2.3 Исследование циклов длины 2 и 3

Дадим соответствующее определение.

Определение. Упорядоченный набор различных значений (u_1, u_2, \ldots, u_k) такой, что $f(u_1) = u_2, \ f(u_2) = u_3, \ \ldots, \ f(u_{k-1}) = u_k, \ f(u_k) = u_1,$ называется циклом длины k отображения $f(u): \mathbb{R}^n \to \mathbb{R}^n$.

Введём новое отображение $f^k(u), k \in \mathbb{N}$ как композицию действия $f(\cdot)$:

$$f^{k}(u) = \underbrace{(f \circ f \circ \cdots \circ f)}_{k}(u). \tag{1.5}$$

Определение устойчивого и неустойчивого цикла вводится аналогично прошлому подразделу. Заметим, что если (u_1, u_2, \ldots, u_k) — цикл длины k, то $u_i \, \forall i = \overline{1, k}$ являются неподвижными точками $f^k(u)$, определенного в смысле 1.5. Справедлива следующая теорема.

Теорема. Цикл (u_1, u_2, \dots, u_k) является устойчивым, если $f^k(u)$ устойчиво в каждой точке $u_i \, \forall i = \overline{1, k}$, что верно, если

$$|f'(u_1)| \cdot |f'(u_2)| \cdot \ldots \cdot |f'(u_k)| < 1,$$

и неустойчиво, если

$$|f'(u_1)| \cdot |f'(u_2)| \cdot \ldots \cdot |f'(u_k)| > 1,$$

Исследование 1.3 на существование циклов длины 2 и 3 сводится к поиску неподвижных точек отображений $f^2(u)$, $f^3(u)$. Каждая неподвижная точка f(u) также является неподвижной точкой для $f^k(u)$. Возникновение циклов неразрывно связано с появлением новых (в нашем случае отличных от u_1^* , u_2^*) неподвижных точек $f^k(u)$.

Теорема (Шарковского). Введём упорядочивание всех натуральных чисел особым образом:

$$3 \succ 5 \succ 7 \succ \cdots \succ$$

$$\succ 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \succ \cdots \succ$$

$$\succ 2^{2} \cdot 3 \succ 2^{2} \cdot 5 \succ 2^{2} \cdot 7 \succ \cdots \succ$$

$$\succ 2^{3} \cdot 3 \succ 2^{3} \cdot 5 \succ 2^{3} \cdot 7 \succ \cdots \succ$$

$$\succ \cdots \succ$$

$$\succ 2^{3} \succ 2^{2} \succ 2 \succ 1.$$

Такое упорядочиванием называется упорядочиванием по Шарковскому. Пусть функция f(u), задающая 1.4, является непрерывной. Если в такой системе присутствует цикл длины k, то в ней есть циклы длины $m: k \succ m$. Таким образом, если в системе есть цикл длины 3, то есть и цикл любой другой длины, что рождает хаос в системе. Если в системе нет циклов длины 2, то циклы в системе отсутствуют вовсе. Про устойчивость циклов ничего не известно.

При каких значениях параметра r существуют циклы длины два? Построим f(f(u)).

$$f^{2}(u) = r(r\sqrt{u}e^{-u})^{\frac{1}{2}}e^{-r\sqrt{u}e^{-u}} = r^{\frac{3}{2}}u^{\frac{1}{4}}e^{-\frac{u}{2}-r\sqrt{u}e^{-u}}.$$

Необходимо решить уравнение $f^2(u)=u$. Это трудоёмкая задача, вместо этого исследуем экстремумы функции $f^2(u)$.

$$\frac{d}{du}\left(f(f(u))\right) = \frac{d}{du}f(u) \cdot \frac{d}{du}f(f(u)) =$$

$$= \frac{r}{2\sqrt{u}}e^{-u}(1-2u) \cdot \frac{r}{2(r\sqrt{u}e^{-u})^{\frac{1}{2}}}e^{-r\sqrt{u}e^{-u}}(1-2r\sqrt{u}e^{-u}) =$$

$$= \frac{r^{\frac{3}{2}}}{4u^{\frac{3}{4}}}e^{-\frac{u}{2}-r\sqrt{u}e^{-u}}(1-2u)(1-2r\sqrt{u}e^{-u}).$$

Производная $f^2(u)$ обращается в ноль при $u=\frac{1}{2}$ и $u:\sqrt{u}e^{-u}=\frac{1}{2r}$. Вычислим производную функции $\sqrt{u}e^{-u}$:

$$\frac{d}{du}(\sqrt{u}e^{-u}) = \frac{1}{2\sqrt{u}}e^{-u} - \sqrt{u}e^{-u} = \frac{1}{2\sqrt{u}}e^{-u}(1-2u).$$

Данная функция возрастает до $u=\frac{1}{2},$ а затем убывает. Наибольшее значение достигается при $u=\frac{1}{2}.$ Таким образом при u>0

- при $\frac{1}{2r} \geqslant \sqrt{\frac{1}{2}}e^{-\frac{1}{2}}$, что равносильно $r \leqslant \sqrt{\frac{e}{2}}$ имеем одну точку экстремума $u = \frac{1}{2}$ отображения $f^2(u)$;
- при $\frac{1}{2r} < \sqrt{\frac{1}{2}}e^{-\frac{1}{2}}$, что равносильно $r > \sqrt{\frac{e}{2}}$ имеем три точки экстремума отображения $f^2(u)$, одна из них равна $\frac{1}{2}$.

Численно $\sqrt{\frac{e}{2}}\approx 1.1658$. На рисунке 1.2 наглядно показано появление дополнительных экстремумов $f^2(u)$. Красной линией проведена линия с абсциссой $u=\frac{1}{2}$.

Рис. 1.2: Увеличение числа экстремумов функции f(f(u)).

Для наличия цикла длины два необходимо наличие ещё двух отличных от u_1^* и u_2^* неподвижных точек. Это равносильно пересечению графиков функций $f^2(u)$ и u. Опираясь на проведенный экстремальный анализ $f^2(u)$, значение параметра r, при котором в системе возникает цикл длины два, строго больше $\sqrt{\frac{\varepsilon}{2}}$.

Вычислим \tilde{r} численно при помощи средств среды MATLAB. Алгоритм: при помощи fzero с начальными приближениями 1,1.5,2.0 соответственно находим решение уравнения f(f(u)) - u = 0. Ищем наименьшее значение r такое, что все три корня попарно различны. Обозначим его \tilde{r} .

Получили $\widetilde{r} \approx 5.491$ и $\{1.5456, 1.5003, 1.4553\}$ — неподвижные точки f(f(u)) при $r=\widetilde{r}$. Причём $u_2^*(\widetilde{r}) \approx 1.503$. Точки 1.5456, 1.4553 образуют цикл длины 2. На рисунке 1.3 изобразим графики функций f(u), f(f(u)) и полученный цикл при $r=\widetilde{r}$.

Рис. 1.3: Возникновение цикла длины 2 при $r = \tilde{r} = 5.491$.

Таким образом, при $r \in [5.491, +\infty)$ система 1.3 имеет цикл длины 2. Исследуем его на устойчивость. Для этого обозначим новые неподвижные точки функции $f^2(u)$ за $\widetilde{u}_1, \widetilde{u}_2$ и сравним выражение $|f'(\widetilde{u}_1) \cdot f'(\widetilde{u}_2)|$ с единицей.

Аналогично исследованию неподвижной точки u_2^* на устойчивость получим значение $\overline{r}_2=9.4636$, при котором меняется характер устойчивости цикла длины 2. Полученный цикл длины два состоит из точек $\widetilde{u}_1=0.3590, \widetilde{u}_2=3.9600.$

На рисунке 1.4а показана устойчивость цикла длины два при r=8: траектория с случайными начальными данными сошлась к циклу. На рисунке 1.4b показано, что из начальных данных с малым отклонением от точки цикла выходит траектория, отдаляющаяся от точек цикла. В наших обозначениях $\widetilde{u}_1, \widetilde{u}_2$ — цикл длины два, найденный численно при фиксированном r.

(a) $r = 8 < \overline{r}_2, \widetilde{u}_1 = 0.4800, \widetilde{u}_2 = 3.4296, u_0 = 1.5.$

Рис. 1.4: Устойчивость и неустойчивость цикла длины 2.

При каких значениях параметра r существуют циклы длины три? Найдем значение параметра r, при котором отображение $f^3(u)$ имеет 3 отличные от u_1^*, u_2^* неподвижные точки. Обозначим это значение за \overline{r}_3 . Для этого необходимо решить систему

$$\begin{cases} \frac{f^3(u)}{du} = 1, \\ f^3(u) = u. \end{cases}$$

В результате численное решение системы составляет $\overline{r}_3 \approx 29.4557$. Дополнительно было выявлено, что все циклы длины три являются неустойчивыми.

На рисунке 1.5 при $r=30>\overline{r}_3$ функция $f^3(u)$ имеет всего 6 неподвижных точек, включая $u_1^*,u_2^*.$

На рисунках 1.6а и 1.6а демонстрируется наличие двух различных циклов длины 3 при r=32. К тому же, они являются неустойчивыми.

Рис. 1.5: Возникновение новых неподвижных точек $f^3(u)$ при $r=\overline{r}_3=29.4557.$

Рис. 1.6: Возникновение двух циклов длины 3 при r=32.

Согласно приведенной ранее теореме Шарковского в рассматриваемой системе имеются циклы всех возможных длин при соответствующих им значениях параметра $r>\overline{r}_3$. В системе рождается хаос.

2.4 Бифуркационная диаграмма

Определение. Появление топологически неэквивалентных фазовых портретов при изменении вектора параметров рассматриваемой динамической системы называется бифуркацией.

Определение. Бифуркационной диаграммой динамической системы называется разбиение пространства параметров, индуцированное отношением топологической эквивалентности вместе с фазовыми портретами для каждого элемента разбиения.

Построим бифуркационную диаграмму в системе MATLAB по следующему алгоритму: имеем начальное значение u_0 , числа N (количество шагов для стабилизации траектории) и M (количество шагов для отображения траектории), перебираем r по линейной сетке отрезка $[r_1, r_2]$ с шагом $\frac{r_2-r_1}{N}$. Для каждого параметра сетки r_i последовательно вычисляем $u_{t+1} = r\sqrt{u_t}e^{-u_t}$. Далее M раз последовательно выводим точки на график.

Например, при $u_0 = 0.4532, r_{\min} = 4.12312, r_{\max} = 32.13413$ получим следующую диаграмму, см. рис. 1.7.

Рис. 1.7: Бифуркационная диаграмма при $u_0 = 0.4532, r \in [4.12312, 32.13413].$

Заметим, что при ранее вычисленных значениях $\widetilde{r}=5.491, \overline{r_3}=29.4557$ — возникновения циклов длины 2 и 3 соответственно, происходят ветвления: при \overline{r}_2 имеем бифуркацию удвоения периода, при \overline{r}_3 имеем ровно 3 неподвижные точки. При остальных значениях имеет место теорема Шарковского: присутствуют циклы различной длины в особом порядке.

2.5 Показатель Ляпунова

Определение. Показателем Ляпунова отображения $f(u): \mathbb{R} \to \mathbb{R}$ называется

$$p(u_1) = \lim_{n \to \infty} \left(\frac{\ln |f(u_1)| + \ln |f(u_2)| + \cdots + \ln |f(u_n)|}{n} \right),$$

где $f(u_1) = u_2$, $f(u_2) = u_3$, ..., $f(u_{n-1}) = u_n$, $f(u_n) = u_1$ — траектория дискретной динамической системы, если этот предел существует.

Показатель Ляпунова $p(u_1)$ является количественной характеристикой близости выпущенных вблизи начальной точки u_1 траекторий: если $p(u_1) > 0$, то эти траектории близки к траектории (u_1, u_2, \dots) ; если $p(u_1) < 0$, то эти траектории отдаляются от (u_1, u_2, \dots) .

Вычислим показатель Ляпунова в системе МАТLAВ по следующему алгоритму: имеем начальное значение u_1 , числа N (достаточно большое, чтобы приблизить значение предела) и M (число точек разбиения сетки), перебираем r по линейной сетке отрезка $[r_1,r_2]$ с шагом $\frac{r_2-r_1}{M}$. Для каждого параметра сетки N последовательно считаем $p(u_1):=p(u_1)+\frac{\ln|f(u)|}{N}$. Далее выводим полученное значение на график. Например, при $u_1=2.235$ получим следующую меру близости, см. рис. 1.8. При

Например, при $u_1=2.235$ получим следующую меру близости, см. рис. 1.8. При $r\approx (2.7197,20.8715)$ начальное положение u_1 , в целом, приводит траекторию в особую точку. При значениях r>20.8715 характер сближения меняется на противоположный, причём по мере увеличения r показатель Ляпунова уменьшается. Вероятнее всего, что в системе возникает хаос.

Рис. 1.8: Показатель Ляпунова при $u_1 = 2.235, r \in [0.00633, 34.79313].$

3 Исследование системы с запаздыванием

Проведём ряд преобразований для динамической системы 1.2. Для начала положим

$$v_1(t) = u_t, v_2(t) = u_{t-1}, \quad f(v_1(t), v_2(t)) = \sqrt{bv_1(t)}e^{r(1-v_2^2(t))}.$$

Таким образом, имеем систему

$$\begin{cases}
v_1(t+1) = f(v_1(t), v_2(t)), \\
v_2(t+1) = v_1(t).
\end{cases}$$
(1.6)

Преобразуем первое уравнение системы

$$v_1^4(t+1) = b^2 v_1^2(t) e^{4r - 4rv_2^2(t)} \mid \cdot (4r)^2.$$
$$(4rv_1^2(t+1))^2 = 4rv_1^2(t) \cdot 4rb^2 e^{4r} \cdot e^{-4rv_2^2(t)}.$$

Обозначим $w_1(t) = 4rv_1^2(t), w_2(t) = 4rv_2^2(t), a^2 = 4rb^2e^{4r}$. Из условия $v_2(t+1) = v_1(t)$ имеем $w_2(t+1) = w_1(t)$. Возьмем квадратный корень из обеих частей и получим топологически эквивалентную 1.2 систему

$$\begin{cases} w_1(t+1) = a\sqrt{w_1(t)}e^{-\frac{1}{2}w_2(t)}, \\ w_2(t+1) = w_1(t). \end{cases}$$
 (1.7)

Далее исследуем систему 1.7 в зависимости от параметра a > 0.

3.1 Поиск особых точек

Определение. Неподвижной точкой $(u_1, u_2, \dots, u_n) = (u^*, u^*, \dots, u^*)$ системы с запаздыванием называются решения уравнения $u^* = f(u^*, u^*, \dots, u^*), f: \mathbb{R}^n \to \mathbb{R}^n$.

Решением уравнения w = f(w, w) является

$$\begin{cases}
 w = 0, \\
 \sqrt{w}e^{\frac{1}{2}w} = a.
\end{cases}$$

Как было доказано ранее, особые точки $w_1^*=0, w_2^*: \sqrt{w_2^*}e^{\frac{1}{2}w_2^*}=a$ существуют $\forall a>0.$

3.2 Исследование особых точек на устойчивость

Справедлива следующая теорема.

Теорема. Пусть $T \in \mathbb{N}$ — фиксированное число. Дана дискретная динамическая система с запаздыванием

$$u_{t+1} = f(u_t, u_{t-1}, u_{t-2}, \dots, u_{t-T}), \quad f: \mathbb{R}^{T+1} \to \mathbb{R}.$$
 (1.8)

Введём следующие обозначения

$$v_1(t) = u(t), v_2(t) = u(t-1), \dots, v_{T+1}(t) = u(t-T).$$

Таким образом, получим

$$\begin{cases} v_1(t+1) = f(v_1(t), v_2(t), \dots, v_{T+1}(t)), \\ v_2(t+1) = v_1(t), \\ \dots \\ v_{T+1}(t+1) = v_T(t). \end{cases}$$

Пусть $(v_1,\ldots,v_{T+1})=(v^*,\ldots,v^*)=v^*$ — положение равновесия данной системы и функция f непрерывно-дифференцируема по совокупности аргументов в малой окрестности v^* . Рассмотрим матрицу линеаризованной системы (Якоби)

$$J = \begin{pmatrix} \frac{\partial f}{\partial v_1} & \frac{\partial f}{\partial v_2} & \cdots & \frac{\partial f}{\partial v_T} & \frac{\partial f}{\partial v_{T+1}} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \ddots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

Пусть λ_i — собственные значения матрицы $J|_{v=v^*}$. Тогда

- если $|\lambda_i| < 1$, $\forall i = \overline{1, T+1}$, то v^* асимптотически устойчивое положение равновесия системы 1.8.
- ullet если $\exists i: |\lambda_i| > 1$, то v^* неустойчивое положение равновесия системы 1.8.

Для исследования системы 1.7 выпишем её матрицу Якоби.

$$J = \begin{pmatrix} \frac{\partial f}{\partial w_1} & \frac{\partial f}{\partial w_2} \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{2\sqrt{w_1}} e^{-\frac{1}{2}w_2} & -\frac{1}{2}a\sqrt{w_1}e^{-\frac{1}{2}w_2} \\ 1 & 0 \end{pmatrix}$$

Заметим, что

$$\left. \frac{\partial f}{\partial w_1} \right|_{(0,0)} = +\infty.$$

Таким образом, $(w_1, w_2) = (0, 0)$ — неустойчивое положение равновесия.

Рассмотрим (w^*, w^*) : $\sqrt{w^*}e^{\frac{1}{2}w^*} = a$. Тогда

$$J|_{(w^*,w^*)} = \begin{pmatrix} \frac{1}{2} & -\frac{a^2}{2}e^{-w^*} \\ 1 & 0 \end{pmatrix}$$

Найдём корни характеристического многочлена матрицы $J|_{(w^*,w^*)}$

$$\det(J - \lambda E) = \lambda^2 - \frac{1}{2}\lambda + \frac{a^2}{2}e^{-w^*} = \{a^2e^{-w^*} = w^*\} = \lambda^2 - \frac{1}{2}\lambda + \frac{1}{2}w^*.$$
$$\lambda_{1,2} = \frac{1}{4} \pm \frac{1}{4}\sqrt{1 - 8w^*}.$$

Функция $\sqrt{w}e^{\frac{1}{2}w}$ монотонно возрастает, абсцисса точки пересечения с горизонтальной прямой a возрастает при возрастании значении параметра a. Таким образом, при увеличении параметра a, увеличивается и w^* .

При помощи функции fzero среды MATLAB получим, что $\operatorname{Im} \lambda_{1,2} = 0$ при $a \in (0, \overline{a}), \overline{a} \approx 0.3322$ и $\operatorname{Im} \lambda_{1,2} \neq 0$ при $a \in (\overline{a}, +\infty)$.

Рассмотрим $a \in (0, \overline{a})$. Тогда $\lambda_{1,2} \in (0, \frac{1}{4})$ — вещественные числа, и положение равновесия w^* является асимптотически устойчивым.

Рассмотрим $a \in (\overline{a}, +\infty)$. Имеем

$$\lambda_1 = \frac{1}{4} + \frac{1}{4}i\sqrt{8w^* - 1}, \quad \lambda_2 = \frac{1}{4} - \frac{1}{4}i\sqrt{8w^* - 1}.$$

Найдём такое значение параметра a, при котором $|\lambda_{1,2}|=1$.

$$\frac{1}{16} + \frac{1}{16}(8w^* - 1) = 1 \iff w^* = 2.$$

Такое возможно при

$$\sqrt{w}e^{\frac{1}{2}w} = a \iff a = e\sqrt{2}.$$

При этом

$$\lambda^2 - \frac{1}{2}\lambda + 1 = 0 \iff \lambda_{1,2} = \frac{1}{4} \pm i\frac{\sqrt{15}}{4}.$$

Следовательно, при $a \in (0, e\sqrt{2})$ положение равновесия w^* является асимптотически устойчивым, при $a \in (e\sqrt{2}, +\infty)$ — неустойчивым.

3.3 Исследование существования бифуркации Неймарка-Сакера

Рассмотрим систему 1.7. Для неё справедливо следующее определение.

Определение. Бифуркация положения равновесия, соответствующая появлению собственных значений $\lambda_1 = \overline{\lambda}_2, |\lambda_1| = |\lambda_2| = 1$, называется бифуркацицей Неймарка-Сакера.

Опираясь на проведённое исследование, сделаем вывод, что при прохождении параметром a значения $\sqrt{2}$ происходит смена устойчивости положения равновесия w^* . Исходя из теории, при прохождении параметром значения $\sqrt{2}$ в малой окрестности w^* должно происходить рождение замкнутой инвариантной кривой.

На рисунке 1.9 наглядно продемонстрировано наличие инвариантной замкнутой кривой в 0.01-окрестности точки $w^* = 2$ при бифуркационном значении $e\sqrt{2}$. На рисунках 1.10 продемонстрировано изменение траекторий при небольшом изменении параметра.

Рис. 1.9: Фазовый портрет 1.7 при $w_1^0=w_2^0=2.01, a=e\sqrt{2}.$

Рис. 1.10: Фазовые портреты при $w_1^0=w_2^0=2.01.$

Глава 2

Непрерывная динамическая система

1 Постановка задачи

Рассмотрим следующую систему дифференциальных уравнений в \mathbb{R}^3_+ .

$$\begin{cases}
\dot{u}(t) = r_1 u(t)(A_u - u(t)) - k_1 u(t)h(t), \\
\dot{v}(t) = r_2 v(t)(A_v - v(t)) - k_2 u(t)h(t), \\
\dot{h}(t) = -\gamma h(t) + R, \\
v(0) = 10, \ h(0) = 0, \ u(0) = 10^3,
\end{cases}$$
(2.1)

где $r_1 = 0.012, r_2 = 0.006, A_u = 10^{12}, A_v = 10^{10}, k_2 = 10^{-6}, k_1 = 4.25k_2, \gamma = 0.001.$

Требуется найти значение параметра R, при котором $v(t) \ge 10^5$.

Все параметры системы являются положительными числами.

Также необходимо

- 1. Дать биологическую интерпретацию характеристик системы.
- 2. Ввести новые безразмерные переменные, максимально уменьшив число входящих параметров. Выбрать два свободных параметра. Если число параметров больше двух, то считать остальные параметры фиксированными.
- 3. Найти неподвижные точки системы и исследовать их характер в зависимости от значений параметров. Результаты исследования представить в виде параметрического портрета системы.
- 4. Для каждой характерной области параметрического портрета построить фазовый портрет. Дать характеристику поведения системы в каждом из этих случаев.
- Исследовать возможность возникновения предельного цикла. В положительном случае найти соответствующее первое ляпуновское число. Исследовать характер предельного цикла.
- 6. Дать биологическую интерпретацию полученными результатам.

2 Биологическая интерпретация

В поставленной задаче переменные u, v, h имеют биологический смысл. Представим вирус, от которого попытаемся вылечиться. Для определенности представим чашку Петри, наполненную жидкостью с органическими зараженными организмами (клетками). Вирус будет распространяться в жидкости, которая наполнена некоторым количеством лекарственных клеток. Обозначим u — количество больных клеток, v — количество здоровых клеток, h — количество лекарства. Рассмотрим систему следующего вида

$$\begin{cases} \dot{u} = A(u) - B(u, h), \\ \dot{v} = C(v) - D(u, h), \\ \dot{h} = E(h) + R. \end{cases}$$

Положим $A(u) = r_1 u(A_u - u), B(u, h) = k_1 u h, C(v) = r_2 v(A_v - v), D(u, h) = k_2 u h, E(h) = k_2 u h$ $-\gamma h$. Такая запись описывает модель межвидовой конкуренции и взаимодействия с окружающей средой.

В записи функций A(u), C(v) добавлен элемент, ограничивающий рост популяции здоровых и больных клеток (т.е. модель учитывает внутривидовую конкуренцию здоровых и больных клеток).

Функция E(h) имеет смысл смертности (поглощения) клеток лекарства в зависимости от оставшегося количества лекарства, параметр R отвечает за рост количества лекарства (подкрепление). В лабораторных условиях это означает, что на протяжении всего эксперимента в жидкость поступает лекарство со скоростью R. В какой-то момент времени количество лекарства начинает убывать, не смотря на подкрепление. Это означает, что скорость поглощения и смертности лекарственных клеток больше, чем скорость подкрепления.

Функция B(u,h) учитывает исцеление больных клеток, за которым следует их погибель (ведь в данной модели количество больных клеток не зависит от количества здоровых клеток).

Функция D(u,h) учитывает аменсализм больных клеток по отношению к здоровым: чем больше больных клеток, тем больше здоровых клеток становятся инфицированными. При этом процесс инфекции может быть подавлен лекарством.

3 Введение безразмерных переменных

В исходной системе имеется 8 параметров. Исследование с системы с данным числом характеристик является трудоёмкой задачей. Уменьшим число параметров путём введения безразмерных переменных. Рассмотрим замену при A, B, C, T > 0.

$$t = T\tau$$
, $u(T\tau) = Af(\tau)$, $v(T\tau) = Bg(\tau)$, $h(T\tau) = Cp(\tau)$. \Rightarrow (2.2)

$$t = T\tau, \quad u(T\tau) = Af(\tau), \quad v(T\tau) = Bg(\tau), \quad h(T\tau) = Cp(\tau). \Rightarrow$$

$$\Rightarrow \frac{du}{dt} = \frac{A}{T}\frac{df}{d\tau}, \quad \frac{dv}{dt} = \frac{B}{T}\frac{dg}{d\tau}, \quad \frac{dh}{dt} = \frac{C}{T}\frac{dp}{d\tau}.$$

$$(2.2)$$

Подставим введённые значения в 2.1, подразумевая $f = f(\tau), g = g(\tau), p = p(\tau)$.

$$\begin{cases} \frac{A}{T}\dot{f}(\tau) = r_1 A_u A f(\tau) - r_1 A^2 f^2(\tau) - k_1 A C f(\tau) p(\tau), \\ \frac{B}{T}\dot{g}(\tau) = r_2 A_v B g(\tau) - r_2 B^2 g^2(\tau) - k_2 A C f(\tau) p(\tau), \\ \frac{C}{T}\dot{p}(\tau) = -\gamma C p(t) + R. \end{cases}$$

Преобразуем обе части уравнений.

$$\begin{cases} \dot{f}(\tau) = r_1 A_u T f(\tau) - r_1 A T f^2(\tau) - k_1 C T f(\tau) p(\tau), \\ \dot{g}(\tau) = r_2 A_v T g(\tau) - r_2 B T g^2(\tau) - k_2 \frac{ACT}{B} f(\tau) p(\tau), \\ \dot{p}(\tau) = -\gamma T p(t) + \frac{RT}{C}. \end{cases}$$

Получим ограничения на A, B, C, T из следующих соотношений.

$$\begin{cases} r_{1}A_{u}T = 1, \\ r_{2}BT = 1, \\ k_{1}CT = 1, \\ k_{2}\frac{ACT}{B} = 1. \end{cases} \iff \begin{cases} T = \frac{1}{r_{1}A_{u}}, \\ C = \frac{r_{1}A_{u}}{k_{1}}, \\ B = \frac{r_{1}A_{u}}{r_{2}}, \\ A = \frac{k_{1}}{k_{2}} \cdot \frac{r_{1}A_{u}}{r_{2}}. \end{cases}$$
(2.4)

Следовательно, имеем эквивалентную 2.1 систему:

$$\begin{cases} \dot{f}(\tau) = f(\tau)(1 - af(\tau)) - f(\tau)p(\tau), \\ \dot{g}(\tau) = g(\tau)(b - g(\tau)) - f(\tau)p(\tau), \\ \dot{p}(\tau) = -\alpha p(\tau) + \beta. \end{cases}$$
 (2.5)

где

$$a = \frac{r_1 k_1}{r_2 k_2}, \quad b = \frac{r_2 A_v}{r_1 A_u}, \quad \alpha = \frac{\gamma}{r_1 A_u}, \quad \beta = \frac{k_1 R}{r_1^2 A_u^2}.$$
 (2.6)

Получилось уменьшить количество свободных параметров с 8 до 4. Далее считаем $\tau = t$.

4 Исследование положений равновесия

4.1 Поиск положений равновесия

Определение. Пусть дана динамическая система с непрерывным временем

$$\dot{u}(t) = f(u(t)), u \in U \subseteq \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}^n.$$
(2.7)

Точка $u^* \in \mathbb{R}^n$ является особой точкой (положением равновесия) данной динамической системы, если $f(u^*) = 0$.

Исследуем положения равновесия системы 2.5. Для этого решим относительно вектора переменных (f, g, p) систему

$$\begin{cases}
0 = f(1 - af) - fp, \\
0 = g(b - g) - fp, \\
0 = -\alpha p + \beta.
\end{cases}
\iff
\begin{cases}
p = \frac{\beta}{\alpha}, \\
f(1 - af - p) = 0, \\
g(b - g) - fp = 0.
\end{cases}$$
(2.8)

Рассмотрим точки с координатой f = 0.

$$g(b-g) = 0 \iff \begin{bmatrix} g = 0, \\ g = b. \end{bmatrix}$$

Рассмотрим точки с координатой $f = \frac{1}{a}(1 - \frac{\beta}{\alpha})$. Потребуем неотрицательность данной координаты, т.е. $\beta < \alpha$. Третье уравнение эквивалентной системы 2.8 примет вид

$$g^{2} - bg + \frac{1}{a} \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha} = 0.$$

$$g_{1,2} = \frac{b}{2} \pm \sqrt{\frac{b^{2}}{4} - \frac{1}{a} \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha}}.$$

Следовательно, неподвижными точками системы 2.5 являются

$$O\left(0,0,\frac{\beta}{\alpha}\right), \quad M\left(0,b,\frac{\beta}{\alpha}\right),$$

$$P_1\left(\frac{1}{a}(1-\frac{\beta}{\alpha}),g_1,\frac{\beta}{\alpha}\right), \quad P_2\left(\frac{1}{a}(1-\frac{\beta}{\alpha}),g_2,\frac{\beta}{\alpha}\right),$$

где g_1 — корень со знаком "+", g_2 — корень со знаком "-".

Заметим, что при $\beta = \alpha$ имеем лишь одну пару особых точек: P_1 совпадает с точкой M, P_2 совпадает с точкой O.

Точки P_1, P_2 не всегда лежат в \mathbb{R}^3_+ . Заметим, что, если g_1 существует, то $g_1>0$. Для того, чтобы $g_2>0$, необходимо и достаточно, чтобы выполнялось (при условии, что корень g_2 существует) неравенство $1-\frac{\beta}{\alpha}>0$, что эквивалентно $\beta<\alpha$, ведь

$$\frac{b}{2} - \sqrt{\frac{b^2}{4} - \frac{1}{a} \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha}} > 0. \iff$$

$$\iff -\frac{1}{a} \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha} < 0. \iff \beta < \alpha.$$

Уже требовали выполнение полученного неравенства. Таким образом, для существования P_2 необходимо $\beta < \alpha$. Под существованием подразумеваем неотрицательность соответствующего дискриминанта, что влечёт неотрицательность координаты g.

Таким образом, для существования точек P_1, P_2 требуем

$$\frac{b^2}{4} - \frac{1}{a} \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha} \geqslant 0. \iff \frac{ab^2}{4} \geqslant \left(1 - \frac{\beta}{\alpha} \right) \frac{\beta}{\alpha} = \frac{1}{4} - \left(\frac{1}{2} - \frac{\beta}{\alpha} \right)^2.$$

В правой части неравенства находится парабола с ветвями вниз в зависимости от $p^* = \frac{\beta}{\alpha}$ (считаем α, β свободными).

Следовательно, при $\beta < \alpha$ получим дополнительные ограничения на пространство параметров:

- если $ab^2 > 1$, то P_1, P_2 существуют и различны при всех $\beta < \alpha$;
- если $ab^2=1$, то P_1,P_2 существуют, различны при $\frac{\beta}{\alpha}\neq \frac{1}{2}$, совпадают при $\frac{\beta}{\alpha}=\frac{1}{2}$, при этом $P_1=P_2=P(\frac{1}{2a},\frac{b}{2},\frac{1}{2});$
- если $ab^2 < 1$, то P_1, P_2 не существуют при $\frac{\beta}{\alpha} \in \left(\frac{1}{2} \frac{\sqrt{1 ab^2}}{2}, \frac{1}{2} + \frac{\sqrt{1 ab^2}}{2}\right)$, существуют и различны при остальных значениях $\beta < \alpha$.

4.2 Исследование положений равновесия на устойчивость

Понятие устойчивости (асимптотической устойчивости, неустойчивости) положения равновесия по Ляпунову эквивалентны понятиям, введённым для динамических систем с дискретным временем.

Определение. Пусть дана динамическая система с непрерывным временем 2.7, u^* — положение равновесия u f — непрерывно-дифференцируема по совокупности аргументов в малой окрестности u^* . Положим $J=(\frac{\partial f_i}{\partial u_j}), i,j=\overline{1,n}$ — её матрица Якоби, $\lambda_i,i=\overline{1,n}$ — собственные значения матрицы $J|_{u=u^*},\,n_+,n_0,n_-$ — количество собственных значений (с учетом их кратности) с положительной, нулевой, отрицательной вещественной частью соответственно. Будем называть u^* гиперболическим положением равновесия если $n_0=0$.

Сформулируем следующее достаточное условие.

Теорема (Ляпунова-Пуанкаре). *Пусть дана динамическая система с непрерывным временем*

$$\dot{u}(t) = f(u(t)), u \in U \subseteq \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}^n.$$

Пусть u^* — гиперболическое положение равновесия и f — непрерывно-дифференцируема по совокупности аргументов в малой окрестности u^* . Положим $J=(\frac{\partial f_i}{\partial u_j}), i,j=\overline{1,n}$ — $e\ddot{e}$ матрица Якоби. Тогда

- если $n_+ = 0$, то $u^* acumnmomuчески устойчиво;$
- если $n_{+} > 0$, то u^{*} неустойчиво.

Выпишем матрицу Якоби системы 2.5.

$$J = \begin{pmatrix} 1 - 2af - p & 0 & -f \\ -p & b - 2g & -f \\ 0 & 0 & -\alpha \end{pmatrix}.$$

Подставим точки $O(0,0,\frac{\beta}{\alpha}), M(0,b,\frac{\beta}{\alpha})$ в матрицу Якоби.

$$J\bigg|_O = \begin{pmatrix} 1 - \frac{\beta}{\alpha} & 0 & 0 \\ -\frac{\beta}{\alpha} & b & 0 \\ 0 & 0 & -\alpha \end{pmatrix}, \qquad J\bigg|_M = \begin{pmatrix} 1 - \frac{\beta}{\alpha} & 0 & 0 \\ -\frac{\beta}{\alpha} & -b & 0 \\ 0 & 0 & -\alpha \end{pmatrix}.$$

Корнями характеристического многочлена $\det(J-\lambda E)$ при подстановке точек O и M соответственно являются

$$O: \ \lambda_1 = -\alpha, \lambda_2 = b, \lambda_3 = 1 - \frac{\beta}{\alpha};$$
$$M: \ \lambda_1 = -\alpha, \lambda_2 = -b, \lambda_3 = 1 - \frac{\beta}{\alpha}.$$

Согласно теореме Ляпунова-Пуанкаре

- при $\beta < \alpha$ имеем $n_+ > 0$ и O, M неустойчивые;
- при $\beta = \alpha$ имеем $n_0 = 1$, положения равновесия не являются гиперболическими;
- \bullet при $\beta > \alpha$ имеем O неустойчивая, M асимптотически устойчивая.

Подставим точки $P_i(\frac{1}{a}(1-\frac{\beta}{\alpha}),g_i,\frac{\beta}{\alpha}),i=1,2$ в матрицу Якоби.

$$J\Big|_{P_i} = \begin{pmatrix} \frac{\beta}{\alpha} - 1 & 0 & \frac{1}{a}(\frac{\beta}{\alpha} - 1) \\ -\frac{\beta}{\alpha} & b - 2g_i & \frac{1}{a}(\frac{\beta}{\alpha} - 1) \\ 0 & 0 & -\alpha \end{pmatrix}$$

где

$$b - 2g_1 = -\sqrt{b^2 - \frac{4}{a}(1 - \frac{\beta}{\alpha})\frac{\beta}{\alpha}},$$

$$b + 2g_1 = \sqrt{b^2 - \frac{4}{a}(1 - \frac{\beta}{\alpha})\frac{\beta}{\alpha}}.$$

Найдём корни характеристического многочлена для P_i , i = 1, 2.

$$\lambda_1 = \frac{\beta}{\alpha} - 1, \quad \lambda_2 = b - 2g_i, \quad \lambda_3 = -\alpha.$$

Для классификации характера устойчивости считаем $ab^2 < 1, \ \frac{\beta}{\alpha} \in (0,1)$ и $|\frac{\beta}{\alpha} - \frac{1}{2}| \geqslant \frac{\sqrt{1-ab^2}}{2}$. Как было показано ранее, это условие эквивалентно существованию и различности P_1, P_2 . Далее воспользуемся теоремой Ляпунова-Пуанкаре для положений равновесия P_1, P_2 в указанной области пространства параметров: P_1 является асимптотически устойчивой особой точкой $(\lambda_2 < 0), P_2$ — неустойчивой $(\lambda_2 > 0)$.

Отметим, что при $\beta=\alpha$ положения равновесия O,M не являются гиперболическими. При изменении параметров на малые значения может происходить перестройка фазового портрета. Другими словами, в окрестностях данных точек найдутся траектории, которые они притягивают, также как траектории, которые они отталкивают. Более подробное исследование нельзя провести методами линейного анализа.

5 Параметрический и фазовый портреты

Зависимость конфигурации устойчивых точек от параметров хорошо иллюстрирует параметрический портрет системы на рисунке 2.1. Без ограничения общности считаем $ab^2 > 1$. Действительно, иначе на параметрическом портрете отсутствует дополнительная

область, в которой существуют P_1, P_2 . При точном равенстве $ab^2 = 1$ появляется прямая $\beta = \alpha/2$, которая соответствует возникновению положения равновесия $P(\frac{1}{2a}, \frac{b}{2}, \frac{1}{2})$.

Рис. 2.1: В областях I,II существуют только точки O — неустойчивая, M — устойчивая. В областях II,III точки O,M — неустойчивые. В областях II дополнительно существуют P_1 — устойчивая, P_2 — неустойчивая. На прямой $\beta=\alpha$ имеем $O=P_2,M=P_1$. Если $ab^2=1$, то на прямой $\beta=\alpha/2$ имеем $\beta=\alpha/2$ имеем

На рисунках 2.2, 2.3, 2.4 приведены фазовые портреты при a=1,b=0.9. В данном случае область III находится в пределах $\frac{\beta}{\alpha}\approx [0.2821,0.7179]$. На рисунке 2.2 имеем $\beta>\alpha$, что соответствует области I; на 2.3 $\frac{\beta}{\alpha}=0.8>0.7179$, что соответствует области II; на 2.4 $\frac{\beta}{\alpha}=0.7\in[0.2821,0.7179]$, что соответствует области III.

Рис. 2.2: Фазовый портрет при $\alpha = 1, \beta = 1.1.$

Рис. 2.3: Фазовый портрет при $\alpha = 1, \beta = 0.8.$

Рис. 2.4: Фазовый портрет при $\alpha = 1, \beta = 0.7$.

6 Предельные циклы

Для динамической системы 2.7 введём следующие понятия.

Определение. Кривая Γ — предельный цикл 2.7, если Γ — траектория системы 2.7, Γ — замкнутая кривая и в малой окрестности Γ нет других замкнутых траекторий системы.

Определение. Бифуркацией положения равновесия, соответствующая появлению чисто мнимых комплексносопряженных собственных значений матрицы Якоби, называется бифуркацией Пуанкаре-Андронова-Хопфа или бифуркацией рождения цикла.

Как было показано ранее, матрица Якоби системы 2.5 в точках O, M имеет вещественные собственные значения. Для подстановок в точках P_1, P_2 наличие чисто мнимых собственных значений эквивалентно комплекснозначности координат точек P_1, P_2 . Таким образом, в поставленной задаче нет бифуркации Пуанкаре-Андронова-Хопфа, следовательно, нет предельных циклов.

7 Интерпретация результатов

В результате проведенного теоретического исследования можно сказать, что количество лекарства всегда стабилизируется на значении

$$\frac{\beta}{\alpha} = \frac{k_1 r_1 A_u}{\gamma r_1^2 A_u^2} R.$$

При этом в зависимости от начальных значений траектории стягиваются либо в точку M, либо в точку P_1 . Точка M соответствует случаю, когда не осталось инфицированных клеток, лекарство поглощается так, что здоровые клетки остаются здоровыми. Точка P_1 соответствует устойчивому количеству здоровых и больных клеток, при котором их значения остаются постоянными.

Таким образом, в жидкости, наполненной клетками, в некоторый момент времени наступает стабилизация в одном из двух существенно разных состояниях.

8 Решение поставленной задачи

Дополнительно, при фиксированных $r_1=0.012, r_2=0.006, A_u=10^{12}, A_v=10^{10}, k_2=10^{-6}, k_1=4.25k_2, \gamma=0.001$ требуется найти значение параметра R, при котором $v(t)\geqslant 10^5$.

Для того, чтобы воспользоваться полученными результатами, произведём замену 2.2 с учётом 2.4 и 2.6.

$$\begin{split} a &= \frac{r_1 k_1}{r_2 k_2} = 8.5, \quad b = \frac{r_2 A_v}{r_1 A_u} = 0.005, \\ \alpha &= \frac{\gamma}{r_1 A_u} = \frac{1}{12} \cdot 10^{-12}, \quad \beta = \frac{k_1 R}{r_1^2 A_u^2} = \frac{425}{144} \cdot 10^{-26} R. \\ A &= \frac{k_1}{k_2} \cdot \frac{r_1 A_u}{r_2} = 8.5 \cdot 10^{12}, \quad B &= \frac{r_1 A_u}{r_2} = 0.5 \cdot 10^{12}, \quad C &= \frac{r_1 A_u}{k_1} = \frac{6}{2125} \cdot 10^{18}, \\ T &= \frac{1}{r_1 A_u} = \frac{250}{3} \cdot 10^{-12}. \\ u(t) &= A f(t), \quad v(t) = B g(t), \quad h(t) = C p(t), \quad t = T \tau. \end{split}$$

Таким образом, нужно найти $\tau^*: g(\tau^*) \geqslant 2 \cdot 10^{-7}$. Затем учесть сдвиг по времени: $t^* = T\tau^*$.

В данном случае

$$ab^2 = 2.125 \cdot 10^{-4} < 1, \quad \frac{\beta}{\alpha} = \frac{425}{12} \cdot 10^{-14} R.$$

Следовательно, существуют все области I,II и III, можем управлять значением β/α .

Стабилизация системы при значении $g(t)\geqslant 10^5$ эквивалентна стабилизации в одной из двух точек: $M,\,P$ с координатами

$$M\left(0,b,\frac{\beta}{\alpha}\right), \quad P_1\left(\frac{1}{a}(1-\frac{\beta}{\alpha}),\frac{b}{2}-\sqrt{\frac{b^2}{4}-\frac{1}{a}(1-\frac{\beta}{\alpha})\frac{\beta}{\alpha}},\frac{\beta}{\alpha}\right).$$

Заметим, что координата $g=b=0.005>2\cdot 10^{-7}$. В области $\beta>\alpha$ система имеет единственную устойчивую точку M. Следовательно, подходят значения

$$R > \frac{12}{425} 10^{14}. \tag{2.9}$$

Обозначим $p = \frac{\beta}{\alpha}$. В случае $\beta < \alpha$ требуем

$$\frac{b}{2} - \sqrt{\frac{b^2}{4} - \frac{1}{a}(1 - p)p} \geqslant 2 \cdot 10^{-7}. \iff$$

$$\iff \left(\frac{b}{2} - 2 \cdot 10^{-7}\right)^2 \geqslant \frac{b^2}{4} - \frac{1}{a}(p - p^2). \iff$$

$$\iff \underbrace{4a \cdot 10^{-14} - ab \cdot 10^{-7}}_{\equiv -M} \geqslant p - p^2. \iff$$

$$\iff p^2 - p - M \geqslant 0.$$

где $M=4a\cdot 10^{-14}-4.25\cdot 10^{-16}$. Неравенству удовлетворяют все значения 0< p<1 такие, что $p\leqslant \frac{1}{2}-\frac{\sqrt{1+4M}}{2}<0, p\geqslant \frac{1}{2}+\frac{\sqrt{1+4M}}{2}>1$. Имеем пустое множество решений. Таким образом, неравенство 2.9 является ответом для поставленной дополнительной

задачи.

Литература

- [1] Абрамова В. В. Лекции по динамическим системам и биоматематике. 2024.
- [2] Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и методы в биологии.—М.: ФИЗМАТЛИТ, 2010.