

Combinatorial Logic Design Multiplexers and ALUs

CS 64: Computer Organization and Design Logic
Lecture #14

Ziad Matni Dept. of Computer Science, UCSB

Administrative

• Remaining on the calendar... This supersedes anything on the syllabus

DATE	TOPIC	ASSIGNMENTS		
Thu. 3/1	Simplifying Digital Logic Functions	Lab 6 (due Fri. 3/2)		
Tue. 3/6	Combinatorial Logic			
Thu. 3/8	Sequential Logic	Lab 7 (due Fri. 3/9)		
Tue. 3/13	Finite State Machines			
Thu. 3/15	Ethics	Labs 8 and 9 (due Fri. 3/16)		

Lecture Outline

- Combinatorial Logic
- Selection using Multiplexers
- Basic ALU Design

Exercise 2

Given the following truth table, draw the resulting logic circuit

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Exercise 3

Given the following schematic of a circuit, (a)
 write the function and (b) fill out the truth

table:

$$X = A.B + (A.C)'$$

(note that also means: X = A.B + A' + C')

Α	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Exercise 3

Given the following schematic of a circuit, (a)
 write the function and (b) fill out the truth

table:

$$X = A.B + (A.C)'$$

(note that also means: X = A.B + A' + C')

Α	В	С	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer

(Mux for short)

- Typically has 3 groups of inputs and 1 output
 - IN: 2 data, 1 select
 - OUT: 1 data

- 1 of the input data lines gets selected to become the output, based on the 3rd (select) input
 - If "Sel" = 0, then I_0 gets to be the output
 - If "Sel" = 1, then I_1 gets to be the output
- The opposite of a Mux is called a **Demulitplexer** (or **Demux**)

Mux Configurations

Muxes can have I/O that are multiple bits

Or they can have more than two data inputs

The Use of Multiplexers

- Makes it possible for several signals (variables) to share one resource
 - Very commonly used in data communication lines

Mux Truth Table and Logic Circuit

1-bit Mux

I ₀	l ₁	S	0
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

	00	01	11	10
0			1	1
1		1	1	

$$O = S.I_1 + S'.I_0$$

• = lines are physically connected

Beyond 1-bit Muxes

- General mux form: N-bit, M-to-1
- Where: N = how wide the data bus is (in bits, min. 1)
 M = how many inputs to the mux (min. 2)
- The "select" input (S) has to be able to select
 1 out of M inputs
 - So, if M = 2, S should be at least 1 bit (S = 0 for one line, S = 1 for the other)
 - But if M = 3, S should be at least 2 bits (why?)
 - If M = 4, S should be at least ???
 - At least 2 bits
 - If M = 5, S will have to be ???
 - At least 3 bits

What Does This Circuit Do?

a0	a1	a2	a3	a4	a5
b0	b1	b2	b3	b4	b5
1	0	1	0	1	0
b0	a1	b2	a3	b4	a5

→ time

What Does This Circuit Do? Class Ex.

3/6/18

What Does This Circuit Do? Class Ex.

Arithmetic-Logic Unit (ALU)

 Recall: the ALU does all the computations necessary in a CPU

The previous circuit was a simplified ALU:

$$-$$
 When $S = 00$, $R = A + B$

$$-$$
 When S = 01, R = A $-$ B

$$-$$
 When S = 10, R = A AND B

$$-$$
 When S = 11, R = A OR B

Simplified ALU

 We can string 1-bit ALUs together to make bigger-bit ALUs (e.g. 32b ALU)

18

Abstract Schematic of the MIPS CPU

Combinatorial vs. Sequential Logic

The CPU schematic shows
 both combinatorial and sequential logic blocks

Combinatorial Logic

- Combining multiple logic blocks
- The output is a function only of the present inputs
- There is no memory of past "states"

Sequential Logic

- Combining multiple logic blocks
- The output is a function of both the present inputs and past inputs
- There exists a memory of past "states"

Your To-Dos

- Lab 7 will be due on Friday, 3/9
 - We will take attendance for this lab on Thursday
- Lab 8 will be due on Friday, 3/16
 - I'll issue it this week, but you have more time for it
 - Will contain info from next Monday's lecture
- Reminder: there's a Lab 9 as well!
 - Online "quiz" on the Ethics lesson, due Fri. 3/16

