米田引理

假如知道 $F: C \xrightarrow{c} Set$ 则

反变米田引理的陈述如下:

反变米田引理的证明如下:

1. \leftarrow : 考虑任意 $(c_2 F)$ 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_2} , 于是便可构建一个完整的 n_2 。 易知 n_2 是一个自然变换 。

2. \Rightarrow : 考虑任意等式左侧的 η_1 : 若上述交换图成立 则可对任意 η_1 指派 $\mathrm{etc} = \frac{1}{|\mathbf{c}_1|}\mathrm{id}(\mathbf{c}^{\eta_1})$ 为 $\mathbf{c}_2 \mathbf{F}$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_2 唯一地确定了 η_2 , 反之 η_2 页唯一确定了 c_2 。

协变米田引理的陈述如下:

•
$$((c_1 \to C) \xrightarrow{C \to Set} F) \cong (c_1 F)$$

— 堆自然变换

协变米田引理的证明如下:

1. \leftarrow : 考虑任意 $(c_1 F)$ 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_1} , 于是便可构建一个完整的 η_1 。 易知 η_1 是一个自然变换。

2. \Rightarrow : 考虑任意等式左侧的 η_1 : 若上述交换图成立 则可对任意 η_1 指派 $\mathrm{etc} = \inf_{\mathbf{c}_1} \mathrm{id}(\mathbf{c}^{\eta_1})$ 为 $\mathrm{c}_1 F$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_1 唯一地确定了 η_1 ,反之 η_1 页唯一确定了 c_1 。

米田嵌入

根据前面的内容我们可知

构成一个函子,称作预层 构成一个函子间映射,即自然变换

构成一个完全忠实函子,该函子称作是米田嵌入。

证明如下:

よ是函子,因为

$$\begin{array}{l} \bullet \quad \underset{:c_2}{\overset{\mathsf{C}}{\mathrm{id}}\, \gimel} = \underbrace{(_\, \circ \, _{:c_2}\mathrm{id})} = \underset{:(c_2\, \gimel)}{\overset{\mathsf{C}}{\mathrm{id}}} \mathrm{id} \\ \bullet \quad \underbrace{(f_2\, \circ \, f_2')\, \gimel} = \underbrace{(_\, \circ \, (f_2\, \circ \, f_2'))}_{} = \underbrace{(_\, \circ \, f_2)}_{} \underbrace{(_\, \circ \, f_2')}_{} \underbrace{(_\, \circ \, f_2')}_{} , \\ \end{array}$$

由于函子具有保持对象/映射性质的能力,

故便可知 f_2 よ 为同构当且仅当 f_2 为同构 。

よ 是完全忠实的 , 因为

将协变米田引理中的 $c_1 / C / F$ 分别换成 $c_2 / \mathbb{C}^{op} / (c_2' \longrightarrow _)$

也就是

$$((c_2 \downarrow) \xrightarrow{C \to Set} (c_2' \downarrow)) \cong (c_2(c_2' \downarrow))$$

一堆自然変換
 $-$ 堆元素

问题来了: 既然 是完全忠实的 , 那么是否意味着如果 $\frac{c_2}{c_2} : c_2 \xrightarrow{c_2} c_2'$ 是同构则上式左侧部分与之对应

的自然变换一定就是自然同构呢?

根据前面的内容我们可知

构成一个完全忠实函子,该函子称作是尤达嵌入。

证明如下:

• 尤是函子,因为

•
$$\underbrace{[c_1]}_{:c_1}id\mathcal{H} = \underbrace{[-\circ : c_1]}_{:(c_1\mathcal{H})}id$$
• $\underbrace{(f_1 \circ f_1')}_{:c_1}\mathcal{H} = \underbrace{[-\circ (f_1 \circ f_1'))}_{:(c_1\mathcal{H})} = \underbrace{[-\circ f_1]}_{:(c_1\mathcal{H})}id$

尤 是完全且忠实的 , 因为

将协变米田引理中的 F

换成 $(\mathbf{c}_1' \rightarrow _)$

即可获得下述公式:

$$\underbrace{ \left(\left(\begin{matrix} \mathsf{c}_1 \to \mathsf{L} \end{matrix} \right) \xrightarrow{\mathsf{C}} \underbrace{ \begin{matrix} \mathsf{c}_1 \to \mathsf{c}_1 \\ \mathsf{C} \to \mathsf{Set} \end{matrix}} \left(\begin{matrix} \mathsf{c}_1' \to \mathsf{L} \end{matrix} \right) \right) }_{\text{-堆自然变换}} \cong \underbrace{ \begin{matrix} \mathsf{c}_1' \to \mathsf{c}_1 \\ \mathsf{C}_1' \to \mathsf{c}_1 \end{matrix} \right) }_{\text{-堆元素} }$$

也就是

$$((c_1 \mathring{\mathcal{T}}) \xrightarrow{\overset{\mathsf{Cat}}{\longleftrightarrow} \mathsf{Set}} (c_1' \mathring{\mathcal{T}})) \cong (c_1(c_1' \mathring{\mathcal{T}}))$$
 $-$ 堆自然变换 $-$ 堆元素

i Note

问题来了: 既然 尤 是完全忠实的, 那么是否意味着 如果 $f_1: \overrightarrow{c_1} \to \overrightarrow{c_1}$ 是同构则上式左侧部分与之对应 的自然变换一定就是自然同构呢?