Sprawozdanie z drugiego projektu na metody numeryczne

Układy równań liniowych

Jan Stąsiek 197741

1. Wstęp

Projekt przedstawia trzy różne metody rozwiązywania układów równań liniowych: metodę Jacobiego, Gaussa-Seidla i metodę bezpośrednią (rozkład LU). Dane do zadania są wyznaczane na bazie numeru indeksu czyli 197741, $e=7,\,f=7,\,c=4,\,d=1$. Wszystkie przykłady, poza jednym wskazanym bazują na układzie Ax=b, gdzie A jest macierzą pasmową o wymiarach $N\times N$, dla N=1200+10c+d=1241 o wartościach $a_1=e+5=12,\,a_2=a_3=-1$. Wektor b ma długość N, gdzie n-ty element tego wektora wynosi sin(n+(f+1))=sin(8n).

2. Metody rozwiązywania - wstęp

Metody Jacobiego i Gaussa-Seidla są metodami iteracyjnymi rozwiązywania układów równań liniowych, czyli w pętli wyznaczają coraz dokładniejsze rozwiązania równania aż do osiągnięcia warunku stopu. Warunkiem stopu są maksymalna ilość iteracji oraz norma residuum będąca mniejsza od ustalonej wartości (w tym przypadku 10^{-9}). Norma residuum jest to norma euklidesowa wektora residuum, który w k-tej iteracji wynosi $r^k = Ax^k - b$. Metoda bezpośrednia LU wyznacza rozwiązanie równania poprzez rozbicie macierzy A na macierze górną trójkątną U i dolną trójkątną L, następnie podstawia je za macierz A i rozwiązuje poprzez podstawianie wprzód i wstecz.

3. Metody iteracyjne

Metoda Jacobiego iteracyjnie wyznacza wektor x, który początkowo ma długość N i same jedynki. W k+1 iteracji wektor wyznaczany jest z równania $x^{k+1} = -D^{-1}(L+U)x^k + D^{-1}b = M_j x^k + w_j \text{, gdzie D, L, U są kolejno}$ macierzą diagonalną, macierzą trójkątną dolną i macierzą trójkątną górną, takimi, że A=D+U+L. We wzorze na k+1 wektor x pojawia się odwrotność macierzy D, ale nie powinno się wyznaczać odwrotności tej macierzy bezpośrednio, ponieważ jest to bardzo kosztowne obliczeniowo. W ogólnym przypadku odpowiednie jest użycie metody np.solve(A,b) z biblioteki numpy (odpowiednik "\" z matlaba), jednak w tym przypadku można też wykorzystać fakt, że macierz D jest diagonalna i odwrócić w pętli jej elementy na przekątnej. Metoda Gaussa-Seidla działa analogicznie do metody Jacobiego, rozwiązując równanie

$$x^{k+1} = -(D + L)^{-1}(Ux^{k}) + (D + L)^{-1}b = M_{gs}x^{k} + W_{gs}$$
. W tym przypadku

również nie powinno się wyznaczać odwrotności D + L, a wykorzystać podstawienie w przód przy pomocy *np.solve()*.

Oba powyższe wykresy przedstawiają normę residuum w zależności od iteracji dla danych opisanych we wstępie. Jak widać na wykresie obie metody znalazły rozwiązanie zadowalający kryterium normy nieprzekraczającej 10⁻⁹ w podobnej ilości iteracji. Warto jednak zwrócić uwagę na fakt, który zostanie zobrazowany w późniejszym punkcie, czyli czas pracy programu. Wyznaczenie rozwiązań metodą Gaussa-Seidla zajęło znacznie więcej czasu, niż zajęło to metodą Jacobiego. Może to wynikać z większej ilości dzieleń potrzebnej by rozwiązać równanie w metodzie Gaussa-Seidla.

4. Metody iteracyjne - wady

Wydawać się może, że metody iteracyjne rozwiązywania równań liniowych są idealną implementacją tego problemu, jednak nie dla wszystkich danych możliwe jest uzyskanie dokładnego wyniku. Jeżeli w macierzy A zmienimy wartości na $a_1=3,\ a_2=a_3=-1$, zaobserwować można zmianę w wyniku działania programu.

Jak widać na powyższych wykresach metody dla zmodyfikowanych danych są rozbieżne, to znaczy norma residuum zamiast maleć z każdą iteracją to rośnie w nieskończoność i obliczenia kończą się dopiero na ograniczonej maksymalnej liczbie iteracji, czyli w tym przypadku 1000.

Iterations

5. Metoda bezpośrednia

Jeżeli metody iteracyjne potrafią zawieść, to intuicyjne może być użycie metod bezpośredniego rozwiązywania równań liniowych. Jedną z takich metod jest metoda faktoryzacji LU, która dzieli macierz A na macierze górną trójkątną U oraz dolną trójkątną L, takie, że A=U+L. Następnie tworzony jest pomocniczy wektor y=Ux. Za pomocą podstawienia w przód rozwiązujemy równanie Ly=b, a następnie rozwiązuje się Ux=y przy pomocy podstawienia wstecz. Metoda ta jest bardzo kosztowna obliczeniowo, ale z założenia zawsze da rozwiązanie równania. Podstawiając do niej dane ze wstępu otrzymujemy normę residuum wynoszącą 2.7538055337427207e-15. Jak widać rozwiązanie to jest bardzo dokładne, lecz jak pokażę nie jest warte czasu poświęconego na obliczenia.

6. Porównanie czasów pracy

Jak widać na powyższych wykresach metoda Jacobiego jest zdecydowanie najszybciej działającą metodą. Metoda Gaussa-Seidla jest o wiele mniej wydajna, jednak dalej jest znacznie szybsza niż metoda rozwiązywania bezpośredniego. Na wykresie w skali logarytmicznej można zaobserwować, że metoda Jacobiego w

przypadku macierzy 5000×5000 dalej wykonuje się mniej niż sekundę, gdzie metoda Gaussa-Seidla przekracza minutę, a metoda bezpośrednia dwie minuty.

7. Wnioski

Jak widać na powyższych wykresach metody iteracyjne Gaussa-Seidla jak i Jacobiego nie różnią się znacznie ilością iteracji podczas szukania rozwiązania równania macierzowego, jednak pomimo to w wyniku ilości obliczeń w jednej iteracji metoda Gaussa-Seidla wykonywała się o rząd wielkości dłużej. Metoda bezpośrednia bez dwóch zdań jest najmniej wydajna z trzech metod omówionych, jednak w przeciwieństwie do metod iteracyjnych gwarantuje one dokładne rozwiązanie równania liniowego. Metoda Gaussa-Seilda jak i metoda bezpośrednia cechują się znacznym wzrostem czasu obliczeń względem rozmiaru macierzy.