Planche 1.

Question de cours. N domine N' si et seulement si toute suite convergeant vers 0 pour N converge également vers 0 pour N'.

Exercice 1. Soient E un espace vectoriel normé, A un fermé de E et B un compact de E. Montrer que A+B est fermé.

Planche 2.

Question de cours. $f \in L(E, F)$ est continue si et seulement si il existe un réel $k \geq 0$ tel que $||f(x)|| \leq k||x||$ pour tout $x \in \mathbb{R}$.

Exercice 1. Soit E un espace vectoriel normé et F un sous-espace vectoriel de F. Montrer que \bar{F} est aussi un espace vectoriel.

Planche 3.

Question de cours. L'image réciproque d'un ouvert par une application continue est ouverte.

Exercice 1. On considère $E = \mathbb{C}[X]$ muni de la norme $N(P) = \max_{k \in \mathbb{N}} |a_k|$. On définit f(P) = P' où $P \in \mathbb{C}[X]$. Étudier la continuité de f.

Solutions - Planche 1.

Exercice 1. Utilisons la caractérisation séquentielle des fermés. Soit (x_n) une suite de A+B qui converge vers $x \in E$. On pose $x_n = a_n + b_n$ avec des $a_n \in A$ et $b_n \in B$. Comme B est compact, alors il existe une sous-suite $b_{\varphi(n)}$ qui converge vers $b \in B$. Or $a_{\varphi(n)} = x_{\varphi(n)} - b_{\varphi(n)}$ converge vers x-b. Or A est fermée donc $x-b \in A$. On note a=x-b. On a donc $x=a+b \in A+B$. On en déduit que A+B est fermé.

Solutions - Planche 2.

Exercice 1. Soit x et $y \in \bar{F}$. Montrons que $x + y \in \bar{F}$. Or par définition il existe (x_n) une suite de F qui converge vers x et (y_n) une suite de F qui converge vers y. On en déduit que $x_n + y_n$ converge vers x + y. Or $x_n + y_n \in F$ pour tout n. Donc $x + y \in \bar{F}$.

On fait de même pour montrer que si $x \in \bar{F}$ et $\lambda \in \mathbb{R}$, alors $\lambda x \in \bar{F}$.

On a donc montré que \bar{F} est un sous-espace vectoriel de E.

Solutions - Planche 3.

Exercice 1. Déjà il s'agit bien d'une norme. En effet $N(P) \ge 0$ pour tout P. Si N(P) = 0, alors tous les coefficients de P sont nuls en particulier sont coefficient dominant. Ce qui est impossible à moins que P = 0. On a $N(\lambda P) = |\lambda| N(P)$ pour tout polynôme P et tout $\lambda \in \mathbb{R}$. De plus par inégalité triangulaire de |.| on a $N(P+Q) \le N(P) + N(Q)$ pour tous polynômes P et Q.

Étudions maintenant la continuité de f. Il semble difficile de majorer N(P') par N(P). Est-ce qu'il n'y a pas de polynômes tels que N(P') est grand et N(P) est petit? Il suffit de prendre $P(X) = X^n$. On a alors N(P') = n et N(P) = 1. Donc il ne peut exister de constante C telle Question

$$N(P') \le CN(P)$$

Car sinon on aurait $n \leq C$ pour tout n. Ce qui est exclu. Donc f n'est pas continue.