

Role of mixing on microphytoplankton community structure

M. Villamaña¹, B. Mouriño-Carballido¹, E. Marañón¹, P. Cermeño², P. Chouciño¹, M. Estrada², B. Fernández-Castro¹, F.G. Figueiras³, J.L. Otero-Ferrer¹, B. Reguera⁴

- Universidade de Vigo
- 2. Institut de Ciències del Mar, CSIC-Barcelona
- 3. Instituto de Investigacións Mariñas, CSIC-Vigo
- 4. Instituto Español de Oceanografía-Vigo

What is turbulence?

ε = dissipation rate of turbulent kinetic energy (turbulence)

Kz = vertical diffusivity coefficient (mixing)

Margalef's Mandala (1978)

Margalef's Mandala (1978)

Diatoms are predominant in the mixing range of 2 - 100 cm² s⁻¹ and dinoflagellates in 0.02 - 1 cm² s⁻¹

Internal wave mixing and nutrient supply on the Ría de Vigo (NW Spain)

Villamaña et al. (L&O, in press)

Mixing and stratification: related but not the same

Nitrate flux versus surface nitrate concentration in oligotrophic regions

Mouriño-Carballido et al. (2011, L&O)

Changes in nutrient concentration can be disconnected from changes in nutrient supply

Our goal

To investigate the role of light and nutrient availability (derived from mixing) on the biomass of diatoms and dinoflagellates

Data set of microturbulence and microphytoplankton

76 Stations:

- Microstructure turbulence
- Nitrate concentration
- Microphytoplankton community composition

Light and nutrient availability derived from mixing

Light availability

$$LA = \frac{I_0}{k \cdot \langle LO \rangle_{pl}} (1 - e^{-k} \langle LO \rangle_{pl})$$

Nitrate supply

$$NO_3^-$$
 diffusive flux = $-\mathbf{Kz} \cdot \left(\frac{d[NO_3^-]}{dz}\right)$

$$NO_3^-$$
 advective $flux = \frac{I_W \times D}{A} \cdot [NO_3^-]_{bottom}$

Microstructure profiler

Diatoms and dinoflagellates biomass

C biomass = cell abundance x cell carbon

Variability in nitrate fluxes and surface Chl-a

Diatoms and dinoflagellates biomass vs. nitrate flux and LA

Ratio diatoms to dinoflagellates biomass vs. NO_3^- flux and LA

- Tropical & Subtropical
- NW Mediterranean
- Galician Upwelling

Dominance of diatoms vs. Kz, NO_3^- concentration and NO_3^- flux

Dominance of diatoms vs. Kz, NO_3^- concentration and NO_3^- flux

Conclusions

1. Mixing regimes for diatoms and dinoflagellates coincide with the values proposed by Margalef

 Nutrient supply was more important than light availability in controlling the biomass of diatoms and dinoflagellates

Thank you!

How do we quantify turbulence and mixing? Microstructure profiler

Shear
$$(\frac{du}{dz})$$
:

$$\frac{du}{dz} = \frac{dU}{dt} \times \frac{1}{2\sqrt{2}SG\rho V^2}$$

Dissipation rate of turbulent kinetic energy (ϵ):

$$\varepsilon = 7.5 \, \nu \, \left(\frac{\partial u}{\partial z} \right)^2$$

Vertical diffusivity coefficient (Kz):

$$Kz = e \frac{\varepsilon}{N^2}$$

Nutrient supply

$$NO_3^- diffusive flux = -Kz \cdot \left(\frac{d[NO_3^-]}{dz}\right)$$

$$NO_3^-$$
 advective $flux = \frac{I_W \times D}{A} \cdot [NO_3^-]_{bottom}$

Light availability (LA)

$$LA = \frac{I_0}{k \cdot \langle LO \rangle_{pl}} (1 - e^{-k \cdot \langle LO \rangle_{pl}})$$

I₀: Surface PAR (Photosynthetic Active radiation)

k: Light Attenuation Coefficient

LO _{pl}: Averaged photic layer Osmidov Scale

$$LO = (\varepsilon N^{-3})^{1/2}$$