

Dissipative Dynamical Systems

Andrea Brugnoli

28 June 2022

UNIVERSITY OF TWENTE.

Outline

Introduction

Definition and characterization of dissipativity

Outline

Introduction

Definition and characterization of dissipativity

Why dissipative dynamical systems?

All engineering systems exhibit dissipation.

- ► Electrical networks with resistors;
- Mechanical systems (viscoelastic or Coulomb friction);
- Thermodynamic systems: dissipation leads to an increase in entropy.

The notion of dissipativity establishes a natural link between the properties of input-output and state-space models. Many modern computational tools for the analysis and synthesis of control systems are based on it.

Jan C. Willems. "Dissipative dynamical systems Part I: General theory". In: *Archive for Rational Mechanics and Analysis* 45.5 (1972), pp. 321–351

Jan C. Willems. "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393

Asian was des Cabata 12 min and assistitute markets account Carinana 1

Arjan van der Schaft. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999

Some mathematical notation

 $\mathbb{R}_+ = [0, \infty)$ denotes the set of positive reals.

Let V be a finite dimensional normed liner space with norm $||\cdot||_V$.

(If $V = \mathbb{R}^n$ then the Euclidean norm is denoted by $||x||_2 = \sqrt{x^{\top}x}$)

Definition (L^p Banach spaces)

For each positive integer $p \in 1, 2, ...$, the set $L^p(\mathbb{R}_+, V)$ consists of all functions $f: \mathbb{R}_+ \to V$, which are measurable and satisfy

$$\int_0^\infty ||f(t)||_V^p \, \mathrm{d}t < \infty,$$

The case $p=\infty$ consists of all bounded measurable functions, i.e. $\sup_{t\in\mathbb{R}_+}f(t)<\infty$. The L^p spaces are Banach spaces (complete normed linear spaces) w.r.t. the norm

$$||f||_{L^p} = \left(\int_0^\infty ||f(t)||_V^p dt\right)^{\frac{1}{p}}, \quad q = 1, 2, \dots \qquad ||f||_{L^\infty} = \sup_{t \in \mathbb{R}^+} |f(t)|, \quad q = \infty.$$

Some mathematical notation

 $\mathbb{R}_+ = [0, \infty)$ denotes the set of positive reals.

Let V be a finite dimensional normed liner space with norm $||\cdot||_V$.

(If $V = \mathbb{R}^n$ then the Euclidean norm is denoted by $||x||_2 = \sqrt{x^\top x}$)

Definition (Extended L^p Banach spaces)

For each $T \in \mathbb{R}_+$ the function $f_T : \mathbb{R}_+ \to V$ defined by

$$f_T = \begin{cases} f(t), & 0 \le t < T, \\ 0, & t \ge T \end{cases}$$

is called the truncation of f.

For $q=1,2,\ldots,\infty$ the set $L^{pe}(\mathbb{R}_+,V)$ consists of all measurable functions $f:\mathbb{R}_+\to V$ such that $f_T\in L^p(\mathbb{R}_+,V),\quad \forall T,\ 0\leq T<\infty.$

The spaces L^{pe} are called the extended L^p spaces. It holds $L^p(\mathbb{R}_+,V)\subset L^{pe}(\mathbb{R}_+,V)$.

General setting

Consider the state-space system with inputs and outputs

$$\Sigma: \quad \begin{array}{ll} \dot{x} = f(x, u), & u(t) \in U, \\ y = h(x, u), & y(t) \in Y. \end{array}$$

- ▶ x(t) belong to the state manifold \mathcal{X} (dim $\mathcal{X} = n$ and $(x_1(t), \dots, x_n(t)) \in \mathbb{R}^n$ are local coordinates).
- ▶ U and Y are linear spaces with $\dim U = m$, $\dim Y = p$. For simplicity it is assumed that $U = \mathbb{R}^m$, $Y = \mathbb{R}^p$.

Assumption

There exists a unique solution trajectory $x(\cdot)$ on the infinite time interval $t \in \mathbb{R}^+$ of the differential equation $\dot{x} = f(x,u), \quad \forall \, x(0) \in \mathcal{X}, \, \forall \, u(\cdot) \in L^{2e}(U).$ Furthermore, it will be assumed that the thus generated output functions $y(\cdot) = h(x(\cdot), u(\cdot))$ are in $L^{2e}(Y)$.

Reachability and controllability

Notation: $\mathbb{R}^2_+ := \{(t_1, t_2) \in \mathbb{R}^2 | t_2 \ge t_1 \}$ (causal triangular sector of \mathbb{R}^2). Given two sets A, B the notation B^A indicates the set of functions $f: A \to B$.

Definition (State transition function)

Given a state space system $\Sigma,$ the state transition function ϕ is the map

$$\phi(t_1, t_0, x(t_0), u) : \mathbb{R}^2_+ \times \mathcal{X} \times U^{\mathbb{R}} \to \mathcal{X}$$

such that $x(t_1) = \phi(t_1, t_0, x(t_0), u)$.

Definition (Reachability and controllability)

The state space $\mathcal X$ of system Σ is said to be reachable from x_{-1} if $\forall\,x\in\mathcal X,\;\exists\,t_{-1}\leq0,\;\exists u(\cdot)\in U^\mathbb R$ such that $x=\phi(0,t_{-1},x_{-1},u(\cdot)).$ It is said to be controllable to x_1 if for any $x\in\mathcal X,\;\exists t_1>0$ and $u(\cdot)\in\mathcal U$ such that $x_1=\phi(0,t_{-1},x_{-1},u(\cdot)).$

Outline

Introduction

Definition and characterization of dissipativity

The mathematical definition of dissipativity

On the combined space $U \times Y$ consider the supply rate function $s: U \times Y \to \mathbb{R}$.

Definition (Dissipative state space system)

A state space system Σ is said to be dissipative w.r.t. the supply rate s if there exists a function $S: \mathcal{X} \to \mathbb{R}_+$ (the storage function), such that $\forall \, x(t_0) \in \mathcal{X}$ at any time t_0 , and $\forall \, u(\cdot)$ and $\forall \, t_1 \geq t_0$ and the following inequality holds

$$S(x(t_1)) \leq S(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt,$$
 Dissipation Inequality.

It equality holds then the system is called conservative (w.r.t. the supply rate s).

Corollary (Convexity of the storage functions set)

Given two storage functions S_1 and S_2 then any convex combination $\alpha S_1 + (1-\alpha)S_2, \ \alpha = [0,1]$ is also a storage function.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (Passive system)

A system Σ with $U=Y=\mathbb{R}^m$ is passive if it is dissipative w.r.t. $s(u,y)=u^\top y$.

 Σ is input strictly passive if $\exists \delta>0$ such that Σ is dissipative w.r.t.

$$s(u,y) = u^{\top} y - \delta ||u||_2^2.$$

 Σ is output strictly passive if there exists $\varepsilon>0$ such that Σ is dissipative with respect to $s(u,y)=u^{\top}y-\varepsilon||y||_2^2$.

 Σ is lossless if it is conservative with respect to $s(u,y) = u^{\top}y$.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (L^2 finite gain)

A system Σ with $U=\mathbb{R}^m,\ Y=\mathbb{R}^p$ has L^2 -gain $\leq \gamma\ (\gamma\geq 0)$ if it is dissipative w.r.t.

$$s(u,y) = \frac{1}{2}\gamma||u||_2^2 - \frac{1}{2}||y||_2^2.$$

The L^2 -gain of Σ is defined as

$$\gamma(\Sigma) := \inf\{\gamma | \Sigma \text{ has } L^2\text{-gain} \le \gamma\}.$$

 Σ is said to have L^2 -gain $<\gamma$ if $\exists \tilde{\gamma} \leq \gamma$ such that Σ has L^2 -gain $\leq \tilde{\gamma}$.

 Σ is called inner if it is conservative with respect to $s(u,y) = \frac{1}{2}||u||_2^2 - \frac{1}{2}||y||_2^2$.

How to establish dissipativity?

Theorem (Necessary and sufficient conditions for dissipativity)

Consider system Σ and supply rate s(u,y). Σ is dissipative with respect to s iff

$$S_a(x) := \sup_{\substack{u(\cdot)\\T \ge 0}} - \int_0^T s(u(t), y(t)) \, \mathrm{d}t, \qquad x(0) = x$$

is finite $\forall x \in \mathcal{X}$. Furthermore, if S_a is finite $\forall x \in \mathcal{X}$ then S_a is a storage function, called the available storage, and all other possible storage functions S satisfy

$$S_a(x) \le S(x) - \inf_x S(x), \quad \forall x \in \mathcal{X}$$

Moreover $\inf_x S_a(x) = 0$.

9/12

Proof

 $lackbox{(}\Longrightarrow)$ Suppose S_a is finite. Then $S_a\geq 0$ (supremum of a set that contains 0). Given $u:[t_0,t_1]\to\mathbb{R}^m$ compare $S(x(t_0))$ and $S(x(t_1))-\int_{t_0}^{t_1}s(u(t),y(t))\;\mathrm{d}t.$ Since S_a is the supremum over all $u(\cdot)$ it follows

$$S_a(x(t_0)) \geq S_a(x(t_1)) - \int_{t_0}^{t_1} s(u(t), y(t)) dt \implies S_a$$
 is a storage function.

▶ (\iff) Suppose Σ dissipative. Then $\exists\, S \geq 0$ such that $\forall\, u(\cdot)$

$$S(x(t)) + \int_0^T s(u(t), y(t)) dt \ge S(x(T)) \ge 0.$$

This implies that

$$S(x(0)) \ge \sup_{\substack{u(\cdot) \\ T>0}} -\int_0^T s(u(t), y(t)) dt = S_a(x(0)) \implies S_a(x(0)) < \infty$$

Reachability and Storage functions

If the system is reachable from some state, then the finiteness of S_a needs only to be checked for this initial condition.

Theorem

Assume that Σ is reachable from $x^* \in \mathcal{X}$. Then Σ is dissipative iff $S_a(x^*) < \infty$.

Bibliography

Schaft, Arjan van der. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999.

Willems, Jan C. "Dissipative dynamical systems Part I: General theory". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 321–351.

- "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393.