

LDO for a DPLL Chip

Project Number: 24-1-1-3097

Names: Arsen Arutyunov, Or Fahima

Advisor: Tal Elazar

DPLL 2024/25

Results

The following table summarizes three critical performance metrics of the LDO:

Metric	Definition	Requirement	Achieved
Temperature Coefficient	$\frac{dV_{\rm out}}{dT}~({\rm ppm/^{\circ}C})$ Stability against temperature variation	< 60	5.8 (†10.3×)
Line Regulation	$rac{\Delta V_{ m out}}{\Delta V_{ m DD}}$ (V/V) Stability against supply variation	< 0.01	0.001 (†10×)
Load Regulation	$rac{\Delta V_{ m out}}{\Delta I_{ m load}} \ ({ m mV/mA})$ Stability against load current variation	< 0.1	0.0044 (†22.7×)

Table 1: Summary of the three critical performance metrics of the LDO.

Our LDO maintains excellent voltage output stability against variations in load current, supply voltage, and temperature:

Motivation & Objective

To ensure low phase noise and precise timing, the DPLL needs a stable, low-noise supply. Our LDO is designed to provide a consistent output voltage across supply and temperature variations, tailored specifically for DPLL requirements.

Operating Principle

Internal architecture of the LDO:

The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_1}{R_2} \right)$$

Miller OTA as an Error Amplifier:

In BGR, forces $V_A = V_B$ to generate a temperature-independent current.

In LDO, used as a current regulator that stabilizes V_{out} . High gain ($\sim 80dB$) improves accuracy and regulation.

The Bandgap Reference

The bandgap reference generates a precise, temperature-independent

Implementation

The LDO, designed in TSMC 28nm with a two-stage OTA and modified bandgap (0.72V), reliably regulates 0.9V across varying loads and

supply levels with improved temperature stability.

Layout Phase

Layout was optimized using dummy devices and

