Deterministic (1/2 + ε)-Approximation for Submodular Maximization over a Matroid

We are given a matroid on a set N and there is a function $f: 2^{\mathcal{N}} \to \mathbb{R}_{\geq 0}$.

$$f: 2^{\mathcal{N}} o \mathbb{R}_{\geq 0}.$$

This function has two properties:

- Monotone (value in a set is at least the value in all subsets)
- Submodular, means: $f(S + u) f(S) \le f(T + u) f(T)$ if S is a subset of T (i.e. some generalization of a convex function)

We want to find the maximum value of the function for an independent set of a matroid.

Results

We will introduce a 0.5008 approximation, compared to the previous known 0.5.

This algorithm is more easy when it is probabilistic, but it is also possible to derandomize.

Split Algorithm

```
Algorithm 1: Split(f, \mathcal{M}, p)
1 Initialize: A_0 \leftarrow \emptyset, B_0 \leftarrow \emptyset.
2 for i = 1 to k do
       Let u_i^A = \arg \max_{u \in \mathcal{M}/(A_{i-1} \cup B_{i-1})} \{ f(u \mid A_{i-1}) \}.
3
     Let u_i^B = \arg\max_{u \in \mathcal{M}/(A_{i-1} \cup B_{i-1})} \{ f(u \mid B_{i-1}) \}.
5 | if p \cdot f(u_i^A \mid A_{i-1}) \ge (1-p) \cdot f(u_i^B \mid B_{i-1}) then
     A_i \leftarrow A_{i-1} + u_i^A.
      else
        B_i \leftarrow B_{i-1} + u_i^B.
9 return (A_k, B_k).
```

What is it for

Observation 3.1. The output sets A_k and B_k of Algorithm 1 are disjoint, and their union is a base of \mathcal{M} .

Our next objective is to lower bound the values of the output sets of Algorithm 1.

Lemma 3.2. Let T be a base of M and $\frac{1}{5} \leq \beta \leq \frac{4}{5}$, then for $p = \frac{\beta}{\beta + \sqrt{(1-\beta)\beta}}$, Algorithm 1 satisfies

$$\beta \cdot f(A_k) + (1-\beta) \cdot f(B_k) \ge \frac{2}{3} \left(1 - \sqrt{(1-\beta)\beta} \right) \cdot f(T)$$
.

Proof: straightforward counting, omitted

Lemma 3.3. For every base T of M, there exists a partition of T into two disjoint sets $T_A \cup T_B$

- such that • $A_k \cup T_A$ and $B_k \cup T_B$ are both bases of \mathcal{M} .
 - $f(A_k) + f(A_k \cup T_A) > f(T)$ and $f(B_k) + f(B_k \cup T_B) > f(T)$.

Residual Random Greedy

Algorithm 2: Residual Random Greedy – RRGreedy (f, \mathcal{M})

- 1 Initialize: $A_0 \leftarrow \emptyset$.
- 2 for i = 1 to k do
- Let M_i be a base of \mathcal{M}/A_{i-1} maximizing $\sum_{u \in M_i} f(u \mid A_{i-1})$. Let $A_i \leftarrow A_{i-1} + u_i$, where u_i is a uniformly random element from M_i .
- 5 Return A_k .

The best friend of our algorithm is this proposition, because here we get a comparison with some value involving other base! And that makes clear why the following algorithm makes at least some sense.

Main Algorithm

Algorithm 3: Matroid Split and $Grow(f, \mathcal{M})$

- $1 (A_1, B_1) \leftarrow Split(f, \mathcal{M}, p).$
- $\mathbf{2} \ A_2 \leftarrow \mathsf{RRGreedy}(f(\cdot \mid A_1), \mathcal{M}/A_1).$
- 3 B_2 ← RRGreedy($f(\cdot | B_1), \mathcal{M}/B_1$).
- 4 Return the better solution out of $A = (A_1 \cup A_2)$ and $B = (B_1 \cup B_2)$.

Samanoce. This is done in the proof of the next proposition

Proposition 4.3. The approximation ratio of Algorithm 3 is at least 0.5008.

Proposition 4.3. The approximation ratio of Algorithm 3 is at least 0.5008.

Proof. Let

$$\beta = \frac{2 - x - 2g(x)}{(2 - x - 2g(x)) + 2(1 - x)} = \frac{2 - x - 2g(x)}{4 - 3x - 2g(x)}.$$

Plugging this value of β into the guarantee of Lemma 3.2 for T = OPT, and choosing the value of p accordingly, we get

$$(2-x-2g(x))\cdot f(A_1)+2(1-x)f(B_1)\geq (4-3x-2g(x))\cdot w(\beta)\cdot f(OPT)$$
,

where $w(\beta) \triangleq \frac{2}{3} \left(1 - \sqrt{(1-\beta)\beta}\right)$. Combining this inequality with the guarantee of Lemma 4.2, we get

$$\max\{\mathbb{E}[f(A)], \mathbb{E}[f(B)]\} \ge \frac{3\mathbb{E}[f(A)] + 2(1-x) \cdot \mathbb{E}[f(B)]}{5 - 2x}$$
$$\ge \frac{1 + g(x) + (4 - 3x - 2g(x)) \cdot w(\beta)}{5 - 2x} \cdot f(OPT) .$$

Setting x = 0.9, the coefficient of f(OPT) in the last inequality becomes larger than 0.5008. Moreover, it can be verified that for this value of x, $\beta \approx 0.35$ which is in the range $\left[\frac{1}{5}, \frac{4}{5}\right]$, as required by Lemma 3.2.

Derandomization

Algorithm 4: Residual Parallel Greedy – RPGreedy (f, \mathcal{M}, B)

```
1 Initialize: A_0^j \leftarrow \emptyset and B_0^j \leftarrow B for every j = 1, \dots, k.
```

2 for
$$i=1$$
 to k do

5

- For every j = 1, ..., k, let M_i^j be a base of \mathcal{M}/A_{i-1}^j maximizing $\sum_{u \in M_i^j} f(u \mid A_{i-1}^j)$.
 - Construct a weighted bipartite (multi-)graph $G_i = (V_L, V_R, E, w)$ as follows.
 - $V_L \triangleq B$ and $V_R \triangleq \{1, \ldots, k\}$.
 - For each $u \in M_i^j$ and $v \in B$, add an edge e = (v, j) with weight $w_e = f(u \mid A_{i-1}^j)$ if

$$-v \in B_{i-1}^{j}$$
, and $(A_{i-1}^{j} + u) \cup (B_{i-1}^{j} - v)$ is a base of \mathcal{M} .

$$- f(u \mid A_{i-1}^j) \ge f(v \mid A_{i-1}^j).$$

Find a maximum weight perfect matching R_i in G_i .

for every
$$j = 1$$
 to k do

Let $e = (v_i^j, j)$ be the single edge in the matching R_i which hits j, and let $u_i^j \in M_i^j$ be the element that corresponds to this edge.

9 return the best set out of $A_k^1, A_k^2, \ldots, A_k^k$.

Algorithm 5: Matroid Split and Grow - Deterministic(f, \mathcal{M}) $1 (A_1, B_1) \leftarrow \text{Split}(f, \mathcal{M}, p).$

4 Return the better solution out of $A = (A_1 \cup A_2)$ and $B = (B_1 \cup B_2)$.

- $\mathbf{2} \ A_2 \leftarrow \mathsf{RPGreedy}(f(\cdot \mid A_1), \mathcal{M}/A_1, B_1).$
- 3 $B_2 \leftarrow \mathsf{RPGreedy}(f(\cdot \mid B_1), \mathcal{M}/B_1, A_1).$