Multidisciplinary Design Optimization of a Series Hybrid Electric Vehicle (HEV) Powertrain

Houshmand, Arian

Chakradeo, Sarvesh

Nachnolkar, Rohan

<u>Introduction</u>

- A Hybrid Electric (HEV) is a type of vehicle that combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system
- HEVs are becoming increasingly common among the automakers
- HEVs can reduce the fuel consumption as well as emissions
- A HEV is a large-scale, complex system in which each of the components may have a large impact on the overall performance of the system.
- A system level optimization is needed to improve the overall performance of the design.

Photo: chevrolet.com

Overall System Decomposition:

Overall System Objective

System Level Objective:

 Minimizing the mass of the car (motor, engine, and battery)

Tradeoffs:

- Subsystems are connected to each other through the voltage (output voltage of the generator is a function of the engine power, and voltage is the input to the motor and battery)
- System level objective conflicts with the subsystem objective (mass of the system and power of the engine)

Series HEV architecture

Series hybrid electric veicle (Ehsani, Mehrdad, Yimin Gao, and John M. Miller. "Hybrid electric vehicles: architecture and motor drives." *Proceedings of the IEEE* 95.4 (2007): 719-728.)

Subsystem: Electric Motor

- Motor Type: AC Permanent Magnet Synchronous Motor (PMSM)
- Objective: Maximizing the Efficiency while minimizing the mass and volume
- Challenges: Complicated equations, large number of design variables, effect of topology on the performance of the system, and nonlinearities.

AC permanent-magnet motor cutaway

SMPM machine geometry parameters

Subsystem: Electric Motor

Objective:

$$\min f = 0.33 * mass + 0.33 * (1 - eff) + 0.33*Vol$$

s.t: $g1: D - 300 \le 0$ $g2: L - 200 \le 0$ $g3: h_m - 12 \le 0$ $g4: -D \le 0$ $g5: -L \le 0$ $g6: -h_m \le 0$

Design Variables				
D	Stator diameter on the airgap side			
L	machine axial length			
h	thickness of the permanent magnet in the radial direction			

Design Parameter	Chosen Value
Slot opening B _{s0}	2mm
Slot tip height H _{s0}	1mm
Steel lamination factor	1
Slot fill factor	40%
Power	15000 w
Air gap	1mm

Subsystem: Electric Motor

Monotonicity Analysis

	D	L	h _m
f	N/A	N/A	N/A
g1	+	NA	NA
	NA	+	NA
g3	NA	NA	+
g4	-	0	0
g2 g3 g4 g5	0	-	0
g6	0	0	-

By MP2: g1 and g4 are active w.r.t D By MP2: g2 and g5 are active w.r.t L By MP2: g3 and g6 are active w.r.t h_m

Results:

Numerical methods used in the model to solve and find some of the unknowns. As a result a derivative free algorithm (PSO) was implemented to solve the Optimization problem.

Design	Optimum	Objective	Optimum Value	
Variables	Value	Function	Optimum value	
D(mm)	112	Weight(kg)	36.5	
L(mm)	90.7	Eff	95.7%	
h _m (mm)	5.6	Volume	0.0047	
		Output Equation	01.2	
		(objective)	91.2	

Optimal design found by PSO

Summary Model- Subsystem: Battery

Minimize

(f)
$$W_{pack} = k * n * m * w_{cell}$$

Subject to

$$(\mathbf{g_1}) \qquad 201 - k * n * 1.2 \le 0$$

$$(\mathbf{g_2}) \qquad 6500 - m * 232 \le 0$$

$$(\mathbf{g_3}) \ 38.15 - k * n * m * 0.2784 \le 0$$

Design Variables:

Variables=3 # Constraints=3

g1: $V_{pack} = n * k * V_{cell}$ (voltage constraint)

g2: $I_{pack} = m * I_{cell}$ (current constraint) g3: $P_{pack} = V_{pack} * I_{pack}$ (power constraint)

Design Parameters

 w_{cell} - weight of each cell

 V_{cell} – Output Voltage of individual cell

 I_{cell} – Current rating of individual cell

 P_{pack} – Output power of battery pack

 W_{pack} – weight of battery pack

V_{pack} – Output Voltage of battery pack

 I_{pack} – Current rating of battery pack

Xue, Nansi, et al. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method." Applied Energy 115 (2014): 591-602.

Solution Process- Subsystem: Battery

	k	n	m
f	+	+	+
9 ₁	_	-	X
g_2	X	X	-
g_3	-	-	-

Monotonicity Table

- Function is always increasing, but constraints are decreasing, so problem is well bounded.
- Potentially all constraints can be active, but difficult to say which is dominant.
- Used fmincon to obtain solution.

Summary Model- Subsystem: Engine

Objective

$$\min_{b,w,dI} f(b, w, dI) = K_0 * w * [p_{me} - P_0 * \eta_t \eta_v]$$

Constraints

$$g_1(b) = b - P_1 < 0$$

$$g_2(w, dI) = P_3 * w - dI^2 < 0$$

$$g_3(w) = w - K7 < 0$$

$$g_4(cr, b) = cr - 13.2 + 0.045 * b < 0$$

$$g_5(dI) = K4 * dI - 30 < 0$$

Multidisciplinary Robust Design Optimization of an Internal Combustion Engine, Charles D. McAllister, Timothy W. Simpson, Vol. 12, MARCH 2003. ASME.

Variables (3):

Cylinder Bore, Engine rpm, Intake valve diameter

Design Variable	Lower Bound	Upper Bound
b (cylinder bore)	70 mm	90 mm
dI (intake valve	25 mm	50 mm
diameter)		
w (rpm at peak power)	5000 rpm	12000 rpm

Parameters

$$\begin{aligned} P_{o} &= \rho * \frac{Q}{A_{f}} \\ P_{1} &= \frac{L_{1}}{K_{1}} * N_{c} \\ P_{2} &= 9.428 * 10^{-5} \left(4 \frac{V}{\pi} N_{c} \right) K_{6} C_{s} \end{aligned}$$

Subsystem: Engine

	b	dI	W
f	+	N/A	+
g1	+	N/A	N/A
g3	N/A	-	+
g4	N/A	N/A	+
g5	+	N/A	N/A
g6	N/A	+	N/A

SQP fmincon implemented for optimization study.

w = 6061 rpm, b = 36.1 mm, dI = 76.9 mm, Power = 173 kW, Mass = 104.1261 kg

System Level

Objective:

Minimize

(f) $M = M_E + M_B + M_M$

Subject to

(g1) $100 \le V_{Gen} \le 300$

and all subsystem constraints for engine, battery and motor

Design Variables:

M_E Mass of Engine

 $M_B Mass of Battery$

 M_M Mass of Motor

Variables=10, # Constraints=2, and all variables have bounds

System level design flowchart

Cincinnati

PSO Algorithm:

System Level Results:

W	b	di	k	1	m	D	lst	h	Nc	Mass
5000	31.02	87.64	10	10	31	144.83	73.08	11.43	30	249.65
6061	36.1	76.9	13	13	28	112	90.6	5.6	72	316.41

Optimal design variables and objective

Trial	Mass
1	249.64
2	257.26
3	214.09
4	253.68
5	218.48
Mean	238.63
SD	20.63

Optimal mass over iterations

Key Learnings:

- How to break down a complex system into subsystems
- How to optimize a complex system
- Importance of the linking variables on the overall system's objective
- The conflicts that the subsystem objectives may have with the overall system objective
- Using the penalty function

