Grade 12 Chemistry

Energy Changes and Rates of Reaction
Class 9

Chemical Kinetics

- In chemical kinetics, we ask

 "How fast does the reaction go?"
- Chemical Kinetics: the speed or rate at which chemical reactions occur

Reaction Rates

Rate = Concentration change Time change

- Reaction rate is the change in the concentration of a reactant or product with time
- Units = mol/(L•s) or M/s
- Reactions rates are always positive by convention; rate of product increasing or reactant decreasing

For the reaction A \rightarrow B, we can express the rate as:

$$rate = -\frac{\Delta[A]}{\Delta t} \qquad rate = \frac{\Delta[B]}{\Delta t}$$

These rates are average rates because they are averaged over a certain time period.

How do we obtain rate of reaction?

- Experiments monitor the concentration of the reactant (or product) with time
 - Solution: concentration is measured by spectrophotometer due to colour differences
 - lons: concentration measured by electrical conductance measurements
 - Gases: concentration measured by pressure measurements

Solution	lons	Gases
• Colour changes • Condu	 Conductivity using a conductivity meter 	 Changes in pressure Amount of gas produced Amount of water
		displacedChange in mass

Average Rate of Reaction

 $Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$

average rate =
$$-\frac{\Delta[Br_2]}{\Delta t}$$
 = $-\frac{[Br_2]_{final} - [Br_2]_{initial}}{t_{final} - t_{initial}}$

Rates of the Reaction Between Molecular Bromine and Formic **TABLE 13.1** Acid at 25°C $k = \frac{\text{rate}}{[Br_2]} \text{ (s}^{-1}\text{)}$ Time (s) Rate (M/s) [Br₂] (M) 4.20×10^{-5} 3.50×10^{-3} 0.0 0.0120 3.52×10^{-5} 3.49×10^{-3} 50.0 0.0101 2.96×10^{-5} 3.50×10^{-3} 100.0 0.00846 2.49×10^{-5} 3.51×10^{-3} 150.0 0.00710 2.09×10^{-5} 3.51×10^{-3} 200.0 0.00596 1.75×10^{-5} 3.50×10^{-3} 250.0 0.00500 1.48×10^{-5} 3.52×10^{-3} 300.0 0.00420 1.23×10^{-5} 3.48×10^{-3} 350.0 0.00353 1.04×10^{-5} 3.51×10^{-3} 400.0 0.00296

average rate =
$$-\frac{(0.0101 - 0.0120)M}{50.0s}$$
 = $3.80 \times 10^{-5} M/s$

Average rate of a reaction is represented by the slope of a line that is drawn between two points on the curve = secant

Determine the average rate of the reaction from t = 0.0 s to t = 5.0 s.

Table 6.1 Concentration of C During a Reaction at Constant Temperature

Time (s)	[C] (mol/L)
0.0	0.00
5.0	3.12×10^{-3}
10.0	4.41×10^{-3}
15.0	5.40×10^{-3}
20.0	6.24×10^{-3}

Instantaneous Rate of Reaction

- By calculating the average reaction rate over shorter and shorter intervals, we obtain the rate for a specific instant in time
- Instantaneous rate is the rate of reaction at a certain point in time
- Instantaneous rate = slope of the tangent (line that touches the curve at one point)
- Instantaneous rate at t = 0 is the initial rate

Instantaneous rate of a reaction is represented by the slope of a line drawn to the curve = tangent

Rate Constant (k)

 If we plot a rate versus concentration graph, we obtain a straight line-relationship

rate
$$\infty$$
 [Br₂]
rate = k [Br₂]

$$k = \frac{\text{rate}}{[\text{Br}_2]}$$

- Rate Constant (k) is a constant of proportionality between the reaction rate and the concentration of reactant
- Using the Data on Table 13.1, at t = 50 s

$$k = \frac{\text{rate}}{[\text{Br}_2]} = \frac{3.52 \times 10^{-5} \,\text{M/s}}{0.0101 \,\text{M}} = 3.49 \times 10^{-3} \,\text{s}^{-1}$$

- The magnitude of *k*, indicates the speed of the reaction:
 - Small k = slow reaction (10⁻³ s⁻¹ = 2 hours)
 - Large k =fast reaction (10² s⁻¹ = 0.10 sec)
- The value of k remains constant under constant conditions; does not depend on the concentration of the reactants since the ratio of rate/[Br₂] remains the same under constant temperature
 - − *k* changes with changing temperature

Reaction Rates and Stoichiometry

$$2A \rightarrow B$$

$$rate = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} \qquad rate = \frac{\Delta[B]}{\Delta t}$$

$$aA + bB \rightarrow cC + dD$$

$$rate = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- For every O₂ that is produced, 4 moles of NO₂ is produced and 2 moles of N₂O₅ disappears
- Therefore:

$$\frac{\Delta[O_2]}{\Delta t} = \frac{1}{4} \left[\frac{\Delta[NO_2]}{\Delta t} \right] = -\frac{1}{2} \left[\frac{\Delta[N_2O_5]}{\Delta t} \right]$$

Given: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

If NO_2 is produced at a rate of 5.0 x 10^{-6} mol/L•s what is the corresponding rate of disappearance of N_2O_5 and the formation of O_2 ?

Factors Affecting Reaction Rate

- The rate of a reaction can be increased by increasing the temperature
- Increasing the concentration of the reactants usually increases the rate of the reaction
- A catalyst is a substance that increases the rate of the reaction
- Increasing the available surface area of a reactant increases the rate of reaction
- The rate of a chemical reactions depends on what the reactants are

The Rate Law

 The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentration of the reactants raised to some powers

$$a A + b B \rightarrow c C + d D$$

Rate =
$$k[A]^m[B]^n$$

Where:

m = the order of the reaction with respect to A
 n = the order of the reaction with respect to B
 k = rate constant
 (m+n) = the overall order of the reaction

^{*}Rate law can only be determined experimentally

- Exponent of 0 = 0th order
 - Rate is independent of the concentration of the reactant present
- Exponent of 1 = 1st order
- Exponent of 2 = 2nd order

If Rate = $k[A]^2[B]$, what is the order of A, B and the overall reaction?

Experimental Determination of the Rate Law

- Chemists find the rate law by conducting a series of experiments with different initial concentrations
 - All other factors (i.e. temperature) remain constant
- Ex: $2N_2O_5(g) \rightarrow 2NO_2(g) + O_2(g)$ Rate = $k[N_2O_5]^m$

Table 6.2 Data for Rate Experiments

Experiment	Initial [N ₂ O ₅] ₀ (mol/L)	Initial rate (mol/(L • s))
1	0.010	4.8×10^{-6}
2	0.020	9.6×10^{-6}
3	0.030	1.5×10^{-5}

Table 6.2 Data for Rate Experiments

Experiment	Initial [N ₂ O ₅] ₀ (mol/L)	Initial rate (mol/(L • s))
1	0.010	4.8×10^{-6}
2	0.020	9.6×10^{-6}
3	0.030	1.5×10^{-5}

Rate =
$$k[N_2O_5]^m$$

Create a ratio to compare the two rates.

$$\frac{\mathrm{Rate_1}}{\mathrm{Rate_2}} = \frac{k(0.010 \ \mathrm{mol/L})^m}{k(0.020 \ \mathrm{mol/L})^m} = \frac{4.8 \times 10^{-6} \ \mathrm{mol/(L \cdot s)}}{9.6 \times 10^{-6} \ \mathrm{mol/(L \cdot s)}}$$

Since k is a constant for reactions that occur at a constant temperature, you can cancel out k.

$$\frac{k(0.010 \text{ mol/L})^m}{k(0.020 \text{ mol/L})^m} = \frac{4.8 \times 10^{-6} \text{ mol/(L} \cdot \text{s})}{9.6 \times 10^{-6} \text{ mol/(L} \cdot \text{s})}$$
$$(0.5)^m = 0.5$$
$$m = 1 \text{ (by inspection)}$$

 Once you know the rate law equation, you calculate the rate constant using the results from the experiment

Rate =
$$k[N_2O_5]^1$$

 $4.8 \times 10^{-6} \text{ mol/(L} \cdot \text{s}) = k(0.010 \text{ mol/L})$
 $k = \frac{4.8 \times 10^{-6} \text{ mol/(L} \cdot \text{s})}{0.010 \text{ mol/L}}$
= $4.8 \times 10^{-4} \text{ s}^{-1}$

Checkpoint

When heated, ethylene oxide decomposes to produce methane and carbon monoxide.

$$C_2H_4O_{(g)}\rightarrow \,CH_{4(g)}+CO_{(g)}$$

At 415°C, the following initial rate data were recorded.

Experiment	[C ₂ H ₄ O] ₀ (mol/L)	Initial rate (mol/(L·s))	
1	0.002 85	5.84×10^{-7}	
2	0.004 28	8.76×10^{-7}	
3	0.005 70	1.17×10^{-6}	

Determine the rate law equation and the rate constant at 415°C.

Chlorine dioxide, ClO_2 , reacts with hydroxide ions to produce a mixture of chlorate and chlorite ions.

$$2ClO_{2(aq)} + 2OH^{-}_{(aq)} \rightarrow ClO_{3}^{-}_{(aq)} + ClO_{2}^{-}_{(aq)} + H_{2}O_{(\ell)}$$

The rate data in the table below were determined at a constant temperature. Find the rate law equation and the value of k.

Experiment	Initial [CIO ₂] (mol/L)	Initial [OH ⁻] (mol/L)	Initial rate of formation of products (mol/(L •s))
1	0.0150	0.0250	1.30×10^{-3}
2	0.0150	0.0500	2.60×10^{-3}
3	0.0450	0.0250	1.16×10^{-2}