

Group Time-based One-time Passwords and its Application to Efficient Privacy-Preserving Proof of Location

Zheng Yang¹, Chenglu Jin², Jianting Ning³

Zengpeng Li⁴, Dinh Tien Tuan Anh⁵, Jianying Zhou⁵

¹Southwest University, China

²CWI Amsterdam, Netherlands

³Fujian Normal University, China

⁴Shandong University, China

⁵Singapore University of Technology and Design, Singapore

• Background

- Background
- Group Time-based One-Time Passwords (GTOTP)

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location
- Evaluation

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location
- Evaluation
- Summary and Open Questions

• Time-based One-time Passwords

- Time-based One-time Passwords
- TOTP as an authentication factor:
 - Lightweight: very efficient to generate
 - Easy to use

- Time-based One-time Passwords
- TOTP as an authentication factor:
 - Lightweight: very efficient to generate
 - Easy to use
- TOTP can be realized using
 - Symmetric keys shared between the prover and the verifier
 - Asymmetric method: **hash-based** or digital signatures

- One key pair per user (x_0,x_N)
 - Asymmetric: verifier compromise resilience
 - No identity privacy: each *verify point* x_N is associated with one prover, and the verifier knows the identity of the prover

TOTP with Privacy?

TOTP with Privacy?

- Group Signature: privacy-preserving signatures
 - Computationally expensive: many exponentiations or pairings
 - Not fit for resource-constrained devices or applications

TOTP with Privacy?

- Group Signature: privacy-preserving signatures
 - Computationally expensive: many exponentiations or pairings
 - Not fit for resource-constrained devices or applications

How to efficiently and generically transform a traditional (asymmetric) TOTP into a GTOTP scheme?

Group Members (Provers)

Trusted Registration Authority (RA)

Verifier

Group Members (Provers)

Local Initialization

$$VP_a, VP_b, \dots$$

 VP_a, VP_b, \dots

Group Members (Provers)

 SK_a

 SK_b

Local Initialization

Trusted Registration Authority (RA)

Verifier

 VP_a, VP_b, \dots

Group Members (Provers)

 SK_a

 SK_b

Local Initialization

Trusted Registration Authority (RA)

hority (RA) Verifier

Group Verification State
Generation (K_{RA},VP_a, VP_b, ...) —

 VP_a, VP_b, \dots

Group Members (Provers)

 SK_a

 SK_b

Local Initialization

Trusted Registration Authority (RA)

 K_{RA}

Group Verification State Generation (K_{RA},VP_a, VP_b, ...) Verifier

VST_G

Group Members (Provers)

 SK_a

 SK_b

Local Initialization

Trusted Registration Authority (RA)

 K_{RA}

 VP_a, VP_b, \dots

Aux_a, Aux_b, ... Group Verification State Generation (K_{RA}, VP_a, VP_b, ...)

Verifier

VST_G

Group Members (Provers)

 $\begin{array}{cc} SK_a & SK_b \\ Aux_a & Aux_b \end{array}$

Local Initialization

Trusted Registration Authority (RA)

 K_{RA}

 VP_a, VP_b, \dots

 Aux_a , Aux_b , ...

Group Verification State
Generation (K_{RA}, VP_a, VP_b, ...)

Verifier

 VST_G

Verifier

VST_G

Group Members (Provers) Verifier **Trusted Registration Authority (RA)** SK_a SK_b VST_G K_{RA} Aux_b Aux_a VP_a, VP_b, \dots Local Initialization Aux_a , Aux_b , ... Group Verification State VST_G Generation (K_{RA}, VP_a, VP_b, ...) PW_i Password Gen (Sk_i, Aux_i, T) Verify (T, PW_i, VST_G)

If needed, Open Password (PW_i, K_{RA}), and reveal the identity of the password sender

Security Properties

Security Properties

• Traceability: adversary cannot create a password associated with an uncompromised secret seed of an uncorrupted member, such that the password is valid but cannot be opened as associated with the corresponding member

Security Properties

- Traceability: adversary cannot create a password associated with an uncompromised secret seed of an uncorrupted member, such that the password is valid but cannot be opened as associated with the corresponding member
- Anonymity: adversary cannot distinguish one group member's password from another's

$$\begin{aligned} C_{\mathsf{ID}_j}^i &= \mathsf{ASE}.\mathsf{Enc}(k_{\mathsf{RA}}, \mathsf{ID}_j) \\ \hat{vp}_{\mathsf{ID}_j}^i &:= \mathsf{H}_1(vp_{\mathsf{ID}_j}^i||C_{\mathsf{ID}_j}^i||i) \end{aligned}$$

Privacy-Preserving Proof of Location

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants

• Parties:

- Registration Authority: register for prover and witnesses
- **Prover**: prove she/he was at a location at time T
- Witness: testify the location of the prover based on its own location
- **Verifier**: verify the location proofs
- **Public Ledger**: record the location proofs and incentivize the witnesses

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants

• Parties:

- **Registration Authority**: register for prover and witnesses
- **Prover**: prove she/he was at a location at time T
- Witness: testify the location of the prover based on its own location
- **Verifier**: verify the location proofs
- **Public Ledger**: record the location proofs and incentivize the witnesses

Additional Building blocks:

- Commitment Scheme
- Privacy-Preserving Location Proximity (PPLP) Scheme

- 1 A prover broadcasts its GTOTP password and privacy-preserving location proximity (PPLP) request to nearby witnesses via a short-range communication channel.
- Witnesses who can testify for the prover will respond with both message and location commitments regarding the PPLP responses.
- 3 Witnesses and prover exchange the password for verifying the message commitment.
- The prover finally assembles the location proof based on the gathered proofs and publishes it to Public Ledger.
- (5) The verifier can obtain the location proof from either the Public Ledger or the prover.

Performance Evaluation

• Prover/witness: RPi3

• Verifier: PC with i7 CPU and 2GB RAM

• More detailed breakdown analysis in the paper

M	PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42/0.48	0.0018	3.19

Performance Evaluation

• Prover/witness: RPi3

• Verifier: PC with i7 CPU and 2GB RAM

• More detailed breakdown analysis in the paper

	Computation time (s)				
M	PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42 0.48	0.0018	3.19

Performance Evaluation

• Prover/witness: RPi3

• Verifier: PC with i7 CPU and 2GB RAM

• More detailed breakdown analysis in the paper

M	PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42 0.48	0.0018	3.19

• Extend traditional TOTP to a group setting

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction
- Demonstrate an application of GTOTP in privacy-preserving proof of location

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction
- Demonstrate an application of GTOTP in privacy-preserving proof of location

- Open question:
 - Dynamic group management