Results are obtained with h_0^P estimated

	$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS}, \ h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \ \textbf{WITH} \ \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \ \textbf{FROM MLE UNDER P}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	20	
ω	5.5653e - 06 $(1.8137e - 05)$	$3.1846e - 05 \\ (6.7466e - 05)$	4.1728e - 09 $(2.4287e - 08)$	6.6836e - 10 $(4.1701e - 09)$	$ \begin{array}{l} 1.2521e - 10 \\ (3.4804e - 10) \end{array} $	5.0176e - 08 $(2.3727e - 07)$	$ 2.2306e - 06 \\ (1.1338e - 05) $	$ 2.9310e - 11 \\ (4.3379e - 11) $	5.2549 (2.6010	
α	$2.7628e - 05 \\ (1.4333e - 05)$	2.8256e - 05 $(2.1615e - 05)$	$2.1205e - 05 \\ (6.7009e - 06)$	2.4167e - 05 $(6.1638e - 06)$	2.2086e - 05 $(5.2764e - 06)$	1.5516e - 05 $(6.3090e - 06)$	1.7227e - 05 $(8.5668e - 06)$	2.1659e - 05 (4.0113e - 06)	1.3895 (8.3185	
β	0.1441 (0.2597)	0.0708 (0.1733)	0.0886 (0.1780)	0.0266 (0.0987)	0.0209 (0.0886)	0.0639 (0.1432)	0.0851 (0.1893)	0.0000 (0.0000)	0.1 (0.2	
γ^*	189.1694 (123.8594)	191.9448 (157.0711)	189.3692 (36.8535)	159.3598 (33.9014)	162.6329 (52.4628)	269.3219 (235.2829)	233.1026 (281.6028)	111.4031 (37.9426)	334 (396	
h_0^Q	1.5139e - 04 $(2.0497e - 06)$	1.5528e - 04 $(4.7438e - 06)$	$ 1.5668e - 04 \\ (4.6952e - 06) $	1.4638e - 04 $(1.1105e - 06)$	$ \begin{array}{r} 1.4938e - 04 \\ (1.8748e - 06) \end{array} $	$0.0002 \\ (1.0674e - 06)$	1.5480e - 04 $(1.5528e - 06)$	$ \begin{array}{r} 1.4806e - 04 \\ (3.7445e - 06) \end{array} $	1.272 (1.436	
MSE	2.5101	6.9234	3.8345	5.4914	10.8165	8.2407	13.1889	32.4968	20.	
IVRMSE	0.1325	0.1588	0.1500	0.1307	0.1585	0.1403	0.1535	0.2131	0.	

Results are obtained with h_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS, $h_0^Q = h_t^P$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	20	
ω	1.6933e - 07 (5.2214e - 07)	1.2197e - 05 $(4.2154e - 05)$	3.9062e - 07 $(1.6612e - 06)$	9.6197e - 08 $(5.0833e - 07)$	1.2883e - 06 $(6.8510e - 06)$	4.1237e - 08 $(1.9931e - 07)$	1.4162e - 06 $(9.0575e - 06)$	8.5586e - 07 $(5.8910e - 06)$	5.2349 (3.646	
α	1.5344e - 05 $(1.2299e - 05)$	1.6926e - 05 $(2.9531e - 05)$	1.0201e - 05 $(9.7440e - 06)$	8.2157e - 06 $(8.1769e - 06)$	8.5287e - 06 $(5.7863e - 06)$	9.9197e - 06 $(5.1231e - 06)$	8.9311e - 06 $(6.7390e - 06)$	5.1339e - 06 $(4.0234e - 06)$	8.7178 (6.704	
β	0.5093 (0.2683)	0.2963 (0.3064)	0.4583 (0.3139)	0.4730 (0.3943)	0.2288 (0.3226)	0.1342 (0.2109)	0.2639 (0.3030)	0.2245 (0.3313)	0.2 (0.3	
γ^*	208.1077 (158.8750)	324.9735 (286.2481)	283.3442 (149.7349)	276.5847 (165.0374)	287.3818 (279.5211)	295.3576 (126.8535)	288.4852 (154.7652)	429.2057 (276.9374)	323 (198	
$h_0^Q = h_t^P$	$ 1.2843e - 04 \\ (8.7675e - 05) $	1.5885e - 04 (1.0228e - 04)	8.8858e - 05 $(4.2482e - 05)$	6.0313e - 05 $(3.1009e - 05)$	6.5265e - 05 $(3.7863e - 05)$	$ 1.1085e - 04 \\ (6.5832e - 05) $	9.9075e - 05 $(7.2668e - 05)$	4.0828e - 05 $(2.3485e - 05)$	1.1258 (8.8642	
MSE	3.8767	2.9339	1.0115	1.5067	2.8968	2.9700	5.3108	10.0934	6.0	
IVRMSE	0.1072	0.1256	0.1332	0.1144	0.1278	0.1247	0.1373	0.1546	0.1	

Results are obtained with \boldsymbol{h}_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED, CRITERION MSE								
θ	2010	2011	2012	2013	2014	2015	2016	2017	20
ω	1.0488e - 07 $(4.3237e - 07)$	5.8246e - 07 $(9.9623e - 07)$	2.5115e - 07 $(5.7761e - 07)$	1.6648e - 07 $(4.5215e - 07)$	2.3430e - 07 $(4.5167e - 07)$	7.7768e - 08 $(2.6235e - 07)$	1.1626e - 07 (2.7833e - 07)	8.2065e - 08 $(3.2339e - 07)$	7.6453 (3.3183
α	8.4165e - 06 $(6.7016e - 06)$	4.4508e - 06 $(2.4687e - 06)$	2.8014e - 06 $(1.4378e - 06)$	2.5121e - 06 $(1.4269e - 06)$	2.5227e - 06 $(2.2280e - 06)$	2.9788e - 06 $(1.3795e - 06)$	2.2257e - 06 $(9.4056e - 07)$	1.3120e - 06 $(7.8262e - 07)$	1.457 (7.294)
β	0.6871 (0.1397)	0.5490 (0.2245)	0.7000 (0.1376)	0.7605 (0.1253)	0.6585 (0.1859)	0.5583 (0.1226)	0.5809 (0.1377)	0.6908 (0.1482)	0.6
γ^*	197.5895 (79.0995)	347.0532 (210.7790)	349.9407 (182.3969)	311.1355 (155.5853)	419.7989 (230.8533)	397.9111 (128.9083)	439.0339 (115.1693)	454.7184 (207.7471)	502 (132
h_0^Q	$ \begin{array}{l} 1.2420e - 04 \\ (7.7985e - 05) \end{array} $	1.7303e - 04 $(1.3864e - 04)$	7.7115e - 05 $(3.0317e - 05)$	4.6121e - 05 $(2.5813e - 05)$	4.3171e - 05 $(3.8513e - 05)$	$0.0001 \\ (4.8647e - 05)$	6.1981e - 05 (4.8685e - 05)	1.7690e - 05 $(1.1101e - 05)$	6.704 (5.964
MSE	0.3344	0.4992	0.3164	0.1865	0.2756	0.4952	0.5942	0.8425	1.4
IVRMSE	0.0821	0.0916	0.1231	0.1047	0.1211	0.1351	0.1270	0.1390	0.1