ErlRoadTraffic

Wojciech Grabis, Jakub Kudzia 24 marca 2017

1 Wstęp

Celem projektu jest implementacja programu, który po zintegrowaniu z udostępnionym nam programem, posłuży do symulacji ruchu drogowego w Krakowie.

2 Opis problemu

2.1 Problem

Udostępniony nam program służy do symulacji ruchu miejskiego zgodnie z modelem Nagela-Schreckenberga. Symulacje są przeprowadzana na mapie testowej, która została zapisana w kodzie źródłowym i nie odnosi się do żadnego rzeczywistego miejsca. Głównym problemem z jakim przyjdzie nam się zmierzyć będzie tworzenie modelu dróg w Krakowie, który jak najlepiej będzie odwzorowywał rzeczywistość.

2.2 Rozwiązanie problemu

Zaimplementowany przez nas program będzie tworzył model mapy dróg Krakowa na podstawie rzeczywistych danych (np. Open Street Map), dzięki czemu możliwe będzie przeprowadzenie symulacji, mających bezpośredni odwzorowanie w rzeczywistości i (potencjalnie) zastosowanie jej do np.:

- zmniejszenia liczby wypadków
- zwiększenia przepustowości na drogach
- lepszych inwestycji w infrastrukturę drogową w Krakowie

3 Opis użytkownika i zewnętrznych podsystemów

3.1 Opis użytkownika

Użytkownikiem jest osoba zlecająca wykonanie symulacji. Użytkownik może zmienić parametry symulacji w postaci np. natężenia ruchu, a oczekiwanym wynikiem symulacji jest jej przebieg w postaci informacji o zmianie pomiędzy iteracjami.

3.2 Zewnętrzne podsystemy

- Istniejący system do symulacji nasz system zostanie napisany w oparciu o istniejące rozwiązanie do symulacji, poszerzona zostanie funkcjonalność symulacji o wsparcie dla m.in. różnej ilości pasów, pasów do skrętu oraz rond
- OpenStreetMap system przechowujący mapy geograficzne, za pomocą którego zaimportujemy dane dróg w Krakowie w celu przeprowadzania symulacji

4 Opis produktu

Produktem będzie aplikacja napisana w języku erlang, pozwalająca na przeprowadzenie symulacji ruchu drogowego na mapie testowej, stworzonej na bazie miasta Krakowa.

5 Wymagania funkcjonalne

- konstruowanie modelu mapy dróg w Krakowie
- eksportowanie danych symulacji
- dzielenie modelu mapy na kawałki w celu zrównoleglenia symulacji
- model mapy powinien być jak najbliższy rzeczywistości, powinien uwzględniać m.in.:
 - jezdnie wielopasmowe
 - znikające, rozpoczynające się pasy
 - ronda
 - jezdnie jednokierunkowe
 - z których pasów można skręcać
 - światła/znaki

6 Inne wymagania dotyczące produktu

- Wymagania jakościowe
 - zastosowanie modelu Nagela-Schreckenberga do symulacji ruchu
- Wymagania systemowe i technologiczne
 - język programowania: Erlang
 - integracja z udostępnionym programem zrównoleglającym symulację

7 Wstępna analiza ryzyka

- problem z pobraniem tak dokładnych informacji jak opisano w założeniach
- duży poziom szczegółowości mapy może utrudnić zrównoleglanie (samochody wjeżdzająca i wyjeżdżające z "kawałka" mapy)
- konieczność modelowania mapy przy pomocy struktury mapy w Erlangu może wpłynąć na spadek wydajności (brak tablic w Erlangu)

8 Model danych

Jako model danych przyjęliśmy strukturę złożoną z zagnieżdżonych map. Pierwsza mapa reprezentuję zbiór dróg oraz skrzyżowań (skrzyżowania zostały wydzielone jako osobny typ struktury). Drogi przechowują mapę z poszczególnymi strukturami reprezentującymi odcinki o stałej ilości pasów ruchu, natomiast w odcinkach są już struktury pasów ruchu przechowujących mapy z komórkami, w których mogą znajdować się samochody, reprezentowane przez odpowiedni rekord.

Rys. 1. Model danych