



#### **Contents**

- 1. Hash Tables
- 2. Chaining
- 3. Linear Probing
- 4. Quadratic Probing
- 5. Double Hashing



# Learning Objectives

- 1. Define hash tables
- 2. List different approaches to solve collisions in hash tables
- 3. Calculate the indices of given elements using different hash functions
  - 4. Implement common operations in hash tables



#### Hash Tables

- A hash table is a data structure that stores unordered items by mapping (or hashing) each item to a location in an array (or vector).
- An item's **key** is the value used to map to an index.
- Each hash table array element is called a **bucket**. A **hash function** computes a bucket index from the item's key.



### Hash Tables

• Example in the textbook 6.1.1

Example of storing phone numbers





#### Collisions

- A **collision** occurs when an item being inserted into a hash table maps to the same bucket as an existing item in the hash table.
- **Chaining** is a collision resolution technique where each bucket has a list of items.



#### Collision resolution using linked Lists:

- Dynamically allocate space.
- Easy to insert/delete an item
- Need a link for each node in the hash table.





### Why Hash Tables?

- All search structures so far
  - Relied on a comparison operation
  - Performance O(n) or  $O(\log n)$
- Assume we have a function
  - $-f(key) \rightarrow integer$ 
    - i.e. function that maps a key to an integer
- What performance might we expect now?



#### Hash Tables – Structure

- Simplest case:
  - Assume items have integer keys in the range 1 .. m
  - Use the value of the key itself to select a slot (bucket) in a direct access table to store the item
- To search for an item with key, k, just look in slot k
  - If there's an item there,you've found it
  - If the tag is 0, it's missing.
- Constant time, O(1)





#### Hash Tables - Constraints

#### Constraints

- Keys must be unique
- Keys must be integers
- For storage efficiency, keys must be dense in the range
- If they're sparse (lots of gaps between values), a lot of (unnecessary) space is used to obtain speed



# Hash Tables - Relaxing the constraints

- "Keys are integers"
  - Need a hash function
  - h(key) → integer
     i.e. one that maps a key of a different type (e.g. char) to an integer
  - Applying this function to the key produces an address
  - If h() maps each key to a unique integer in the range
    0 .. m-1, then search is O(1)





# An Example: Perfect Hash

```
suppose: MagicNumber = 15
 int h(String s) {
    return ((s[0] + s[1])\% MagicNumber);
 suppose:
 typedef struct {
 String name;
 int numMoons;
 double sunDistance;
 } planet;
 planet solarSystem[MagicNumber];
```



# An Example: Perfect Hash

– Suppose:

```
solarSystem[h("Mercury")] = {"Mercury", 0, 36.0};
solarSystem[h("Venus")] = {"Venus", 0, 67.27};
solarSystem[h("Earth")] = {"Earth", 1, 93.0};
solarSystem[h("Mars")] = {"Mars", 2, 141.71};
solarSystem[h("Jupiter")] = {"Jupiter", 16, 483.88};
solarSystem[h("Saturn")] = {"Saturn", 12, 887.14};
solarSystem[h("Uranus")] = {"Uranus", 5, 1783.98};
solarSystem[h("Neptune")] = {"Neptune", 2, 2795};
solarSystem[h("Pluto")] = {"Pluto", 1, 3675};
```

Where are they located

```
"Ju" in ASCII are 74 and 117, 74 + 117 = 191;
   191 % 15 = 11;
   h("Mercury")
                      = 13
   h("Venus")
                      =7
   h("Earth")
                      = 1
   h("Mars")
                      =9
   h("Jupiter")
                      = 11
   h("Saturn")
                      =0
   h("Uranus")
                      =4
   h("Neptune")
                      = 14
   h("Pluto")
                      =8
```

Thus, our search function is simply:

planet search(String s){ return solarSystem[h(s)]; }

### Another Example

- We design a hash table for a dictionary storing items (Phone#, Name), where a Phone# is a ten-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x
- We use chaining to handle collisions



#### Hash Functions

- A hash function h() maps keys of a given type to integers in a fixed interval [0, N-1]
- Example:
  - $h(x) = x \mod N$  is a hash function for integer keys
- The integer returned by h(x) is called the hash value of key x
- The goal of a hash function is to uniformly disperse keys in the range [0, N-1]

### Linear Probing for handling collision

- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together. Future collisions may cause a longer sequence of probes

### Linear Probing for handling collision

- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell
- Example:
  - $-h(x) = x \mod 13$
  - Insert keys 18(5), 41(2), 22(9), 44(5), 59(7), 32(6), 31(5), 73(8), in this order





# Empty bucket

- An empty-since-start bucket has been empty since the hash table was created
- An empty-after-removal bucket had an item removed that caused the bucket to now be empty.



# Inserts using linear probing

• An **insert** algorithm uses the item's key to determine the initial bucket, linearly probes (or checks) each bucket, and inserts the item in the next empty bucket (the empty kind doesn't matter).

• If the probing reaches the last bucket, the probing continues at bucket 0.



# Inserts using linear probing

- Algorithm return
  - true
    - if the item was inserted
  - false
    - if all buckets are occupied

(textbook 6.3.4)

#### **Qtns**:

#### Hash table with linear probing: Insert.

Given hash function of key % 5, determine the insert location for each item.

1) HashInsert(numsTable, item 13)

| numsTable: | 0 |    |
|------------|---|----|
|            | 1 | 71 |
|            | 2 | 22 |
|            | 3 |    |
|            | 4 |    |

Bucket =

2) HashInsert(numsTable, item 41)

| numsTable: | 0 |    |
|------------|---|----|
|            | 1 | 21 |
|            | 2 |    |
|            | 3 |    |
|            | 4 |    |

Bucket =

3) HashInsert(numsTable, item 74)

| numsTable: | 0 | 20 |
|------------|---|----|
|            | 1 |    |
|            | 2 | 32 |
|            | 3 |    |
|            | 4 | 84 |

Bucket =



# Removals using linear probing

- A **remove** algorithm uses the sought item's key to determine the initial bucket.
- The algorithm probes each bucket until either a matching item is found, an empty-since-start bucket is found, or all buckets have been probed.
- If the item is found, the item is removed, and the bucket is marked empty-after-removal. (textbook 6.3.6)



# Searching using linear probing

- A search algorithm uses the sought item's key to determine the initial bucket. (textbook 6.3.8)
- The algorithm probes each bucket until either
  - the matching item is found (returning the item)
  - an empty-since-start bucket is found (returning null), or
  - all buckets are probed without a match (returning null).



# Searching using linear probing

• Why the searches algorithm only stops for empty-since-start, not the emptyafter-removal?



# Searching using linear probing

• Why the searches algorithm only stops for empty-since-start, not the emptyafter-removal?

 Item may have been placed in a subsequent bucket before this bucket's item was removed.

### Search with Linear Probing

- Consider a hash table A that uses linear probing
- findElement(k)
  - We start at cell h(k)
  - We probe consecutive locations until one of the following occurs
    - An item with key *k* is found, or
    - An empty cell is found, or
    - *N* cells have been unsuccessfully probed

```
function findElement(k){
   i = h(k);
   p = 0;
   repeat {
      c = A[i];
      if (c == \emptyset)
          return NO SUCH KEY;
       else if (c.key() == k)
          return c.element()
      else {
          i = (i + 1) \mod N;
         p = p + 1;
      \} until (p == N);
   return NO_SUCH_KEY;
```



# Quadratic probing

• To avoid collision, quadratic probing (QP) starts at the key's mapped bucket, and then quadratically searches subsequent buckets until an empty bucket is found.

$$h(\mathbf{x}) = (H + c_1 i + c_2 i^2) \bmod (\text{table size})$$

Hash table insertion using QP:  $c_1 = 1 \& c_2 = 1$ .

|                                                  | Hash function: k | •           |   |                          |               | 0 |   |  |  |  |  |  |
|--------------------------------------------------|------------------|-------------|---|--------------------------|---------------|---|---|--|--|--|--|--|
| Quadratic probing sequence: (H + i + i * i) % 10 |                  |             |   |                          |               |   |   |  |  |  |  |  |
| ı                                                | <b>0</b> "       |             |   | 5                        |               | 2 |   |  |  |  |  |  |
|                                                  | Operation        | H(key)      |   | Bucket index             | Bucket empty? | 3 |   |  |  |  |  |  |
|                                                  | Insert key 55    | 55 % 10 = 5 | 0 | (5 + 0 + 0 * 0) % 10 = 5 | Yes           | 4 |   |  |  |  |  |  |
|                                                  | Insert key 66    | 66 % 10 = 6 | 0 | (6 + 0 + 0 * 0) % 10 = 6 | Yes           | 5 | 5 |  |  |  |  |  |
|                                                  | Insert key 25    | 25 % 10 = 5 | 0 | (5 + 0 + 0 * 0) % 10 = 5 | No            | 6 | 6 |  |  |  |  |  |
|                                                  |                  |             | 1 | (5 + 1 + 1 * 1) % 10 = 7 | Yes           | 7 | 2 |  |  |  |  |  |
|                                                  |                  |             |   | Empty                    |               | 8 |   |  |  |  |  |  |
|                                                  |                  |             |   | Empty                    |               | 9 |   |  |  |  |  |  |

Occupied

hashTable: , [

```
QP
```

```
HashInsert(hashTable, item) {
 i = 0
 bucketsProbed = 0
 // Hash function determines initial bucket
 bucket = Hash(item—key) % N
 while (bucketsProbed < N) {
   // Insert item in next empty bucket
   if (hashTable[bucket] is Empty) {
     hashTable[bucket] = item
     return true
   // Increment i and recompute bucket index
   // c1 and c2 are programmer-defined constants for quadratic probing
   i = i + 1
   bucket = (Hash(item \rightarrow key) + c1 * i + c2 * i * i) \% N
   // Increment number of buckets probed
   bucketsProbed = bucketsProbed + 1
 return false
```

#### Class Exercise

• Assume a hash function returns key % 16 and quadratic probing is used with  $c_1 = 1 \& c_2 = 1$ . Refer to the table below.

| 0  | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|----|----|---|---|----|----|----|---|---|----|----|----|----|----|----|
| 32 | 49 | 16 | 3 |   | 99 | 64 | 23 |   |   | 42 | 11 |    |    |    |    |

- 1) 32 was inserted before 16? True or False?
- 2) Which value was inserted without collision?
- 3) What is the probing sequence when inserting 48 into the table?

#### Class Exercise

• Assume a hash function returns key % 16 and quadratic probing is used with  $c_1 = 1 \& c_2 = 1$ . Refer to the table below.

| 0  | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|----|----|---|---|----|----|----|---|---|----|----|----|----|----|----|
| 32 | 49 | 16 | 3 |   | 99 | 64 | 23 |   |   | 42 | 11 |    |    |    |    |

4) How many bucket index computations were necessary to insert 64 into the table?

5) If 21 is inserted into the hash table, what would be the insertion index?

Search & ◆ 6.4.3: Search and removal with quadratic probing:  $c_1 = 1 \& c_2 = 1$ . removal

| 0  | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|----|----|---|---|----|----|----|---|---|----|----|----|----|----|----|
| 32 | 49 | 16 | 3 |   | 99 | 64 | 23 |   |   | 42 | 11 |    |    |    |    |



### 6.4.4: HT w QP: search and remove

• Consider the following hash table, a hash function of key % 10, and QP with  $c_1 = 1 \& c_2 = 1$ :

| 0  | 1 | 2   | 3 | 4   | 5  | 6  | 7 | 8 | 9 |
|----|---|-----|---|-----|----|----|---|---|---|
| 60 |   | 110 |   | 364 | 75 | 66 |   |   |   |

Occupied Empty after deletion

**Empty** 

- 6) HashSearch(valsTable, 75) probes \_\_\_\_\_ buckets.?
- 7) HashSearch(valsTable, 110) probes \_\_\_\_\_ buckets.
- 8) After removing 66 via

  HashRemove(valsTable, 66),

  HashSearch(valsTable, 66) probes buckets.



# Double Hashing

### Double Hashing for handling collision

Double hashing uses a secondary hash function h<sub>2</sub>(k) and handles collisions by placing an item in the first available cell of the series

$$(h_1(k) + ih_2(k)) \mod N$$
  
for  $i = 0, 1, ..., N-1$ 

- The secondary hash function  $h_2(k)$  cannot have zero values
- The table size N must be a prime to allow probing of all the cells

 Common choice of compression map for the secondary hash function:

$$h_2(k) = q - k \bmod q$$

where

- -q < N
- q is a prime
- The possible values for  $h_2(k)$  are 1, 2, ..., q

Hash tables 35



# Example of Double Hashing

 Consider a hash table storing integer keys that handles collision with double hashing

$$-N = 13$$

$$- h(k) = k \mod 13$$

$$- d(k) = 7 - k \mod 7$$

$$hash(k) = (h_1(k) + ih_2(k)) \mod N$$

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

| k              | h(k) | d(k) | Prob | es |   |
|----------------|------|------|------|----|---|
| 18             | 5    | 3    | 5    |    |   |
| 41             | 2    | 1    | 2    |    |   |
| 22             | 9    | 6    | 9    |    |   |
| 22<br>44<br>59 | 5    | 5    | 5    | 10 |   |
| 59             | 7    | 4    | 7    |    |   |
| 32             | 6    | 3    | 6    |    |   |
| 31             | 5    | 4    | 5    | 9  | 0 |
| 73             | 8    | 4    | 8    |    |   |





| 31 |   | 41 |   |   | 18 | 32 | 59 | 73 | 22 | 44 |    |    |
|----|---|----|---|---|----|----|----|----|----|----|----|----|
| 0  | 1 | 2  | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |



### Exercises

6.5.2: Double hashing.

Given: hash1(key) = key % 11; hash2(key) = 5 - key % 5 and a hash table with a size of 11. Determine the index for each item after the following insertions in order: 16, 77, 55, 41, 63.

1) Item 16

Bucket:

1) Item 55

Bucket:

1) Item 63

Bucket: \_\_\_\_\_



### DH: Insertion, search, and removal

Read Section 6.5 of text



# Performance of Probing:

• Let N be the number of slots of a hash table, n be the number of items in the table, we define load factor as:

$$\alpha = n/N$$

• If the hash function randomly distributes keys through the table, then the expected length of a successful search path is:

length<sub>succ</sub> = 
$$\frac{1}{2} (1 + \frac{1}{(1 - \alpha)})$$



# Performance of Probing:

• The expected length of an unsuccessful search is approximately:

length<sub>unsucc</sub> = 
$$\frac{1}{2}$$
 ( 1 +  $\frac{1}{(1 - \alpha)^2}$ )



