

Towards Deep Attention in Graph Neural Networks: Problems and Remedies

Soo Yong Lee 1, Fanchen Bu 1, Jaemin Yoo 2, and Kijung Shin 1 ¹ KAIST, ² CMU

¹{syleetolow, boqvezen97, kijungs}@kaist.ac.kr, ²{jaeminyoo}@cmu.edu Code and Data: https://github.com/syleeheal/AERO-GNN

Baselines

Simple GNNs

Deep GNNs

Edge-Att. GNNs

Hop-Att. GNNs

Summary

Limitations in Building Deep Graph Attention

- We identify two problems that limit existing attention-based GNNs from remaining expressive at deep layers

Proposed Solution

- To mitigate the problems, we propose a novel GNN architecture, Attentive dEep pROpagation-GNN (AERO-GNN)

Theoretical and Empirical Results

- AERO-GNN provably mitigates the proposed problems
- AERO-GNN outperforms baselines models in node classification task by learning the most adaptive and less smooth attention

Introduction

Graphs

- Relational data that consists of nodes and edges
- Real-world networks can be expressed as graph

Graph Neural Networks (GNNs)

- Graph representation learning neural network
- Can solve various downstream tasks on graphs - To enhance it expressiveness:
- ☑ Graph Attention
- ☑ Deeper GNNs

Research Question

- Can existing attention-based GNNs remain expressive over deep layers?

Web

Networks Networks **Node: Region** Node: Webpage Edge: Hyperlinks Edge: Connection

Node: Product Edge: Co-Purchased

Transportation

Social **Networks**

Node: User **Edge: Follow**

1-hop neighbors of 🕡

2-hop neighbors of

3-hop neighbors of

 $m{a}_{ii}$ edge attention $m{a}_{ii}^{(k)}$

) hop attention $\gamma_i^{(k)}$

Edge Attention

Analysis of Graph Attention

Graph Attention

- Intuition: Relational importance among node pairs
- For GNNs, att. coefficient is the weight for feat. propagation

Edge-Attention GNNs

- Intuition: Learn neighbor importance within each hop
- Edge Attention Matrix: $A^{(k)} = \left(a_{ii}^{(k)}\right) \in \mathbb{R}^{n \times n}$
- \square $a_{ii}^{(k)}$ is an edge att. coef. btw. node i and j at layer k
- Feature Propagation: Weighted for direct neighbors
- Propagation Function: $H'^{(k)} = A^{(k)}H^{(k-1)}$
- $\square H'^{(k)}$ is an agg. of node feat. $H^{(k-1)}$, based on $A^{(k)}$
- Models: GATs, FAGCN, etc.

Hop-Attention GNNs

- Intuition: Learn neighbor importance of each hop

- Hop Attention Matrix: $\Gamma^{(k)} = diag\left(oldsymbol{\gamma}_{i}^{(k)}
 ight) \in \mathbb{R}^{\mathbf{n} imes n}$
- $\square \gamma_i^{(k)}$ is a hop att. coef. of node i for k-hop neighbors
- **Feature Propagation**: Weighted for k-hop neighbors
- Propagation Function: $Z^{(k)} = \sum_{\ell=0}^k \Gamma^{(\ell)} H^{(\ell)}$
 - $= \sum_{\ell=0}^k \Gamma^{(\ell)} A^\ell H^{(0)}$

- Models: DAGNN, GPRGNN, etc.

Proposed Model: AERO-GNN

Model Overview

$$H^{(k)} = \begin{cases} \text{MLP}(X), & \text{if } k = 0, \\ \mathcal{A}^{(k)} H^{(k-1)}, & \text{if } 1 \le k \le k_{max}, \end{cases}$$
$$Z^{(k)} = \sum_{l=0}^{k} \Gamma^{(l)} H^{(l)}, \forall 1 \le k \le k_{max},$$
$$Z^* = \sigma(Z^{(k_{max})}) W^*,$$

 $X \in \mathbb{R}^{n \times d}$ is input feat. $H \in \mathbb{R}^{n \times d}$ is hidden feat. $Z \in \mathbb{R}^{n \times d}$ is layer-aggregated feat. $\mathbf{Z}^* \in \mathbb{R}^{n \times c}$ is the final prediction $\underline{W}^* \in \mathbb{R}^{d \times c}$ is a learnable weight $\underline{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ is edge att. $\underline{\Gamma = diag(\gamma_i) \in \mathbb{R}^{n \times n}}$ is hop att. $\underline{\boldsymbol{k}}$ is #(layers), $\underline{\boldsymbol{n}}$ is #(nodes) \underline{d} is #(dimensions), \underline{c} is #(classes)

- AERO-GNN first transforms input feat. X with an MLP, then propagates the feat. $\underline{H^{(0)}}$ with edge att. $\underline{A^{(k)}}$ and hop att. $\underline{\Gamma^{(k)}}$ to learn the final node representation $\underline{Z}^{(k)}$.

Computing Edge Attention

- Edge Attention Function

$$\check{\alpha}_{ij}^{(k)} = \operatorname{softplus}((W_{edge}^{(k)})^{\mathsf{T}} \sigma(\tilde{Z}_i^{(k-1)} \| \tilde{Z}_j^{(k-1)}))$$

- Input: $Z^{(k)}$ enables att. function to consider node feat. $\underline{H}^{(\ell)}$ from all previous layers
- Non-linearity: MLP layer to compute att. coef.
- Softplus: Positively map att. coef.
- **Normalization**: Symmetric normalization used

Computing Hop Attention

- Hop Attention Function

Theoretical Results

$$\gamma_i^{(k)} = (W_{hop}^{(k)})^{\mathsf{T}} \sigma(H_i^{(k)} || \tilde{Z}_i^{(k-1)}) + b_{hop}^{(k)}$$

- Input: $\underline{Z}^{(k)}$ enables att. function to consider node feat. $\underline{H}^{(\ell)}$ from all previous layers
- Non-linearity: MLP layer to compute att. coef.

- **Problem 1**: Vulnerability to Over-Smoothing

- **Problem 2**: Smooth Cumulative Attention $T^{(k)}$

 \square Cumulative Attention Matrix $T^{(k)}$

 $ightharpoonup T^{(k)} = \Gamma^{(k)} \prod_{\ell=k}^1 A^{(\ell)} \in \mathbb{R}^{n \times n}$

- Negative Att.: Allows negative attention coefficient
- Node-Adaptive: Each node may have different hop att.

Theoretical Limitations to Deep Graph Attention

Edge Attention: Simplified Illustration

Hop Attention: Simplified Illustration

best perf. (**Higher** \bigstar)

Performance Over Layers

- AERO-GNN achieves higher

Experimental Results

Node Classification Performance

Node

Classification

Datasets

Citation Graphs

Co-Purchase Graphs

Webpage Graphs

- AERO-GNN significantly outperforms the baselines

• In each column, indicates ranking the first, and indicates ranking the second. A.R. denotes average ranking.

Mean Acc. Over Layers k

Evaluation

Measure: Accuracy

#(Trials): 100

Perf.: Mean ± StDev

- AERO-GNN's perf. Increases over layer k (RED line trend) Layer k

Post-Hoc Analysis of Att. - AERO-GNN (RED) learns the most adaptive att. coef., when stacked deep layers

- AERO-GNN's (RED) cumul. att. $T^{(k)}$ is the least smooth (high smoothness score), and often un-smoothes (increasing smoothness score)

Smoothness of Cumulative Att. Over Layers *k* Layer k

Discussion: Implications

Attention-Based GNNs

A larger focus has been placed on designing a more expressive layer

- with new designs
- with new loss terms - with more feat.

Making deeper GNNs have been an important setback to

over-correlation

over-smoothing over-squashing

We Bridged the Two

 deep graph attention - higher node cls. perf.

Properties of Attention Functions

- Att. function of AERO-GNN is the most flexible, with many desirable properties
- The properties allows <u>only AERO-GNN</u> to provably mitigate the proposed problems of deep graph att.

☑ (Informal) The att. coef. become identical for over-smoothed node feat.

 \square (Informal) Cumul. att. vectors $T_i^{(k)}$ become identical for nodes i at deep layer

► Intuition: Expresses att. at k^{th} layer, considering both edge and hop att.

Model	Edge & Hop Att.	Use Z as Input	Use MLP to Score Att.	Negative Att.	Node- Adaptive	Resistance to Over- Smoothing	Non- Smooth Cumul. Att.
GATv2	X	X	0	X	X	X	X
FAGCN	X	0	0	0	X	\triangle	X
GPRGNN	X	X	X	0	X	X	X
DAGNN	X	X	X	X	0	X	X
AERO-GNN	0	0	0	0	0	0	0