Examenul național de bacalaureat 2022

Proba E. c)

Matematică *M_şt-nat*

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați termenul b_4 al progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1 = \sqrt{2}$ și $b_2 = 4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 2x + 1$, unde m este număr real nenul. Determinați numărul real nenul m pentru care axa Ox este tangentă graficului funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+2} 3^x 6 \cdot 3^{x-1} = 6$.
- **5p 4.** Se consideră mulțimea A, a numerelor naturale de două cifre. Determinați probabilitatea ca, alegând un număr n din mulțimea A, numărul 2n-60 să aparțină mulțimii A.
- **5.** În reperul cartezian xOy se consideră punctele A(-1,4), B(5,2) și C, mijlocul segmentului AB. Determinați ecuația dreptei d care trece prin punctul C și este perpendiculară pe dreapta AB.
- **5p 6.** Se consideră triunghiul isoscel ABC, cu măsura unghiului A egală cu 120° și AB = 6. Arătați că aria triunghiului ABC este egală cu $9\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ și $B(x) = xI_2 + iA$, unde x este număr real și $i^2 = -1$.
- **5p** a) Arătați că det A = 1.
- **5p b)** Determinați numărul real x pentru care $B(3) \cdot B(5) = 8B(x)$.
- **5p** c) Determinați perechile (m,n) de numere întregi pentru care matricea B(m)+iB(n) nu este inversabilă.
 - **2.** Pe mulțimea $M = [1, +\infty)$ se definește legea de compoziție $x * y = xy \sqrt{(x-1)(y-1)}$.
- **5p a)** Arătați că 2*5=8.
- **5p b)** Arătați că e = 1 este elementul neutru al legii de compoziție "*".
- **5p** c) Demonstrați că $(nx) * y \ge x(n * y)$, pentru orice $x, y \in M$ și orice număr natural $n, n \ge 2$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{4\sqrt{x}}{x^2+3}$.
- **5p** a) Arătați că $f'(x) = \frac{6(1-x^2)}{\sqrt{x}(x^2+3)^2}, x \in (0,+\infty).$
- **5p b)** Determinați $a \in (0, +\infty)$, știind că tangenta la graficul funcției f în punctul A(a, f(a)) este paralelă cu axa Ox.
- **5p** c) Demonstrați că $\frac{\sqrt{x}}{x^2+3} > \frac{\sqrt{x+\frac{1}{x}}}{x^2+\frac{1}{x^2}+5}$, pentru orice $x \in (1,+\infty)$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^x + 2x}{e^x}$.
- **a)** Arătați că $\int_{0}^{1} e^{x} f(x) dx = e.$ **b)** Arătați că $\int_{-1}^{0} f(x) dx = -1.$
- c) Determinați numărul real a pentru care $\int_{0}^{1} F(x) f''(x) dx = \frac{a(e+1)}{e^{2}}$, unde $F: \mathbb{R} \to \mathbb{R}$ este primitiva funcției f cu proprietatea F(0) = 0.