Logika obliczeniowa #2 - BDD -

Przygotował:

Dr inż. Jacek Tkacz

Agenda

- Diagram BDD
- Rozwinięcie Shannona
- Redukcja diagramów BDD
- Uporządkowanie diagramów BDD
- Heurystyki w uporządkowaniu diagramów
- Analogia do techniki cyfrowej

- Acykliczny Graf Skierowany zbudowany z:
 - korzenia (węzeł wyróżniony)
 - węzłów nieterminalowych: dwoje potomków oraz zmienna
 - węzłów terminalowych 0 i 1
 - łuków łączących węzeł z jego lewym i prawym następnikiem (lewy oznacza wartość zero zmiennej decyzyjnej a prawy wartość jeden)
- Najczęściej do konstrukcji diagramu przedstawiającego zadaną funkcje boolowską, stosuje się tzw. rozwinięcie Shannona

Rozwinięcie Shannona

Dana jest funkcja f n-zmiennych

$$f = \overline{x}_{i} f_{x_{i}=0} \lor x_{i} f_{x_{i}=1}$$

$$f_{x_{i}=0} = f(x_{1},..., x_{i-1}, 0, x_{i+1},..., x_{n})$$

$$f_{x_{i}=1} = f(x_{1},..., x_{i-1}, 1, x_{i+1},..., x_{n})$$

Dekompozycja Shannona w węźle

BDD - postać symboliczna

$$f = \overline{X}_{i} f_{X_{i}} = 0 \lor X_{i} f_{X_{i}} = 1$$

$$f_{X_{i}=0} = f(x_{1},..., x_{i-1}, 0, x_{i+1},..., x_{n})$$

$$f_{X_{i}=1} = f(x_{1},..., x_{i-1}, 1, x_{i+1},..., x_{n})$$

$$f = \overline{x}_1 x_2 \overline{x}_3 \vee x_1 \overline{x}_2 \overline{x}_3 \vee x_1 \overline{x}_3$$

$$f_{x1=0} = \overline{\mathbf{0}} x_2 \overline{x}_3 \vee \mathbf{0} \overline{x}_2 \overline{x}_3 \vee \mathbf{0} \overline{x}_3 = x_2 \overline{x}_3$$

$$f_{x1=1} = \overline{\mathbf{1}} x_2 \overline{x}_3 \vee \mathbf{1} \overline{x}_2 \overline{x}_3 \vee \mathbf{1} \overline{x}_3 = \overline{x}_2 \overline{x}_3 \vee \overline{x}_3$$

Przykład BDD

$$f = \overline{x}_1 \overline{x}_3 \vee x_1 \overline{x}_2 \vee x_2 x_3$$

Tabela prawdy a rozkład Shannona

x_3	f
0	0
1	0
0	1
1	0
	0 1 0

X_2	x_3	f_{-}
0	0	1
0	1	0
1	0	1
1	1	0

Diagram BDD i tabela prawdy

Redukcja

Przykład redukcji

OBDD i ROBDD

- Uporządkowanie: kolejność węzłów na ścieżkach jest taka sama
- Dekomponowane zmienne są ustawione zawsze w tej samej kolejności: xi1 < xi2 < xi3 < ... < xin
- Przykład: $y = \overline{a} + b \cdot \overline{c}$

Porządek alfabetyczny rosnacy (a,b,c) Porządek alfabetyczny malejący (c,b,a)

Kolejność zmiennych a rozmiar diagramu

$$f = x_1 x_2 \vee x_3 x_4 \vee x_5 x_6$$

Zasady empiryczne (heurystyki) wyboru kolejności zmiennych

- Zmienne wpływające na wartość funkcji w dużym stopniu powinny znajdować się blisko korzenia
- grupy zmiennych powiązanych ze sobą powinny zostać umiejscowione obok siebie

BDD z układu cyfrowego - AND

BDD z układu cyfrowego - OR

BDD z układu cyfrowego - XOR

BDD z układu cyfrowego – układ kombinacyjny

BDD z układu cyfrowego – układ kombinacyjny

Literatura

- R. Drechsler: Binary Decision Diagram. Theory and Implementation, Kluwer Academic Publishers, 1998
- R. E. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams, ACM Computing Surveys, Vol. 24, No. 3 (September, 1992), pp. 293–318.
- Sheldon B. Akers: Binary Decision Diagrams, IEEE
 Transactions on Computers, C-27(6):509–516, June 1978.
- S. Minato: Binary Decision Diagrams and Applications for VLSI CAD, Kluwer Academic Publishers, 1996

Koniec

http://willow.iie.uz.zgora.pl/~jtkacz

Dziękuję za uwagę!