# PyCaret Using Google Drive

→ 3 cells hidden

### Generate Data

```
# Generating Dataframe for taxonomic level MANUAL
link = "https://drive.google.com/file/d/1U-Uir1CIiuqXudeng6Rq86CaWo9rSqUd/view?usp=s
# to get the id part of the file
id = link.split("/")[-2]
downloaded = drive.CreateFile({'id':id})
downloaded.GetContentFile("training.csv")
training df = pd.read csv('training.csv')
# training_df = training_df.drop(columns = 'Unnamed: 0')
print(training_df)
        Sublevel Name pp_magtropy pp_avg_magnitude entropy
                        54.822801
       Picornavirales
                                          75.778785 1.382249
  \cap
  1
      Picornavirales
                       54.752611
                                         75.747092 1.383443
      Picornavirales
                       57.295723
                                          79.198669 1.382279
      Picornavirales
                       57.290198
                                         79.048836 1.379797
                                         53.025828 1.369663
      Picornavirales
                       38.714513
  260 Sobelivirales 42.572952
                                         58.821615 1.381666
  261 Sobelivirales
                       41.679669
                                          57.657512 1.383349
  262 Sobelivirales
                       41.679669
                                         57.657512 1.383349
  263 Sobelivirales
                       43.562799
                                          60.146212 1.380678
  264 Sobelivirales
                       41.161828
                                         57.029920 1.385505
  [265 rows x 4 columns]
# Generating Dataframe for COVID-19 Sequences
testing link = "https://drive.google.com/file/d/1 SxcTlA9dDIergs seb-DbnifluBQF6/vi
sublevel = input("Sublevel of Testing Data: ")
# to get the id part of the file
id = testing link.split("/")[-2]
downloaded = drive.CreateFile({'id':id})
downloaded.GetContentFile('testing.csv')
testing_df = pd.read_csv('testing.csv')
testing_df = testing_df.drop(columns = 'Unnamed: 0')
tacting of - tacting dfitacting dfi'Cublaval Nama'l -- cublavall
```

```
restrind at - restrind attrestrind att santeset warme 1 -- santesett
print(testing df)
  Sublevel of Testing Data: Embecovirus
      Sublevel Name pp magtropy pp avg magnitude entropy
  112
                                  153.103733 1.339846
        Embecovirus
                   114.269624
  113
      Embecovirus 114.111031
                                    155.141480 1.359566
  114 Embecovirus 114.987320
                                    153.815693 1.337675
  115
      Embecovirus 114.226726
                                     153.062393 1.339988
  116 Embecovirus 114.320187
                                    153.136267 1.339538
  . .
                          . . .
                                            . . .
                                                    . . .
  207 Embecovirus 112.497193
                                    153.807531 1.367212
  208 Embecovirus 114.288491
                                     153.117355 1.339744
  209 Embecovirus 114.870606
                                     153.996769 1.340611
  210 Embecovirus 115.440977
                                    150.518479 1.303857
  211 Embecovirus 114.422743
                                     153.317131 1.339918
  [100 rows x 4 columns]
```

### Magtropy

# label encodings alphabetical

```
magtropy df = training df.drop(columns = ["pp avg magnitude", "entropy"])
print(magtropy df)
        Sublevel Name pp_magtropy
  0
       Picornavirales 54.822801
  1
      Picornavirales
                       54.752611
  2
      Picornavirales
                       57.295723
  3
      Picornavirales
                       57.290198
                       38.714513
      Picornavirales
  260 Sobelivirales 42.572952
  261 Sobelivirales
                       41.679669
  262 Sobelivirales
                       41.679669
  263 Sobelivirales
                       43.562799
  264 Sobelivirales 41.161828
  [265 rows x 2 columns]
experiment = setup(data=magtropy_df, target='Sublevel Name')
# if the error states target is not defined, change from Sublevel Name to Sublevel N
```

| 0session_id74431TargetSublevel Name2Target TypeMulticlass      |
|----------------------------------------------------------------|
|                                                                |
| 2 Target Type Multiclass                                       |
|                                                                |
| 3 Label Encoded Nidovirales: 0, Picornavirales: 1, Sobeliviral |
| 4 Original Data (265, 2)                                       |
| 5 Missing Values False                                         |
| 6 Numeric Features 1                                           |
| 7 Categorical Features                                         |
| 8 Ordinal Features False                                       |
| 9 High Cardinality Features False                              |
| 10 High Cardinality Method None                                |
| 11 Transformed Train Set (185, 1)                              |
| 12 Transformed Test Set (80, 1)                                |
| 13 Shuffle Train-Test True                                     |
| 14 Stratify Train-Test False                                   |
| 15 Fold Generator StratifiedKFold                              |
| 16 Fold Number 10                                              |
| 17 CPU Jobs -1                                                 |
| 18 Use GPU False                                               |
| 19 Log Experiment False                                        |
| 20 Experiment Name clf-default-name                            |
| <b>21</b> USI c0d7                                             |
| 22 Imputation Type simple                                      |
| 23 Iterative Imputation Iteration None                         |
| 24 Numeric Imputer mean                                        |
| 25 Iterative Imputation Numeric Model None                     |
| 26 Categorical Imputer constant                                |
| 27 Iterative Imputation Categorical Model None                 |
| 28 Unknown Categoricals Handling least_frequent                |
| 29 Normalize False                                             |
| A1 P A4 H 1                                                    |

| 30 | Normalize Method             | None  |
|----|------------------------------|-------|
|    |                              |       |
| 31 | Transformation               | False |
| 32 | Transformation Method        | None  |
| 33 | PCA                          | False |
| 34 | PCA Method                   | None  |
| 35 | PCA Components               | None  |
| 36 | Ignore Low Variance          | False |
| 37 | Combine Rare Levels          | False |
| 38 | Rare Level Threshold         | None  |
| 39 | Numeric Binning              | False |
| 40 | Remove Outliers              | False |
| 41 | Outliers Threshold           | None  |
| 42 | Remove Multicollinearity     | False |
| 43 | Multicollinearity Threshold  | None  |
| 44 | Clustering                   | False |
| 45 | Clustering Iteration         | None  |
| 46 | Polynomial Features          | False |
| 47 | Polynomial Degree            | None  |
| 48 | Trignometry Features         | False |
| 49 | Polynomial Threshold         | None  |
| 50 | Group Features               | False |
| 51 | Feature Selection            | False |
| 52 | Features Selection Threshold | None  |

compare\_models()

|          | Model                              | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    | TT<br>(Sec) |
|----------|------------------------------------|----------|--------|--------|--------|--------|--------|--------|-------------|
| dt       | Decision<br>Tree<br>Classifier     | 0.9892   | 0.9916 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 | 0.021       |
| rf       | Random<br>Forest<br>Classifier     | 0.9892   | 0.9962 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 | 0.470       |
| gbc      | Gradient<br>Boosting<br>Classifier | 0.9892   | 0.9968 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 | 0.186       |
| et       | Extra Trees<br>Classifier          | 0.9892   | 1.0000 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 | 0.465       |
| catboost | CatBoost<br>Classifier             | 0.9892   | 1.0000 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 | 0.738       |
| lightgbm | Light<br>Gradient                  | 0.9839   | 0.9981 | 0.9869 | 0.9870 | 0.9838 | 0.9752 | 0.9771 | 0.050       |

estimator = create\_model('dt')

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.9474   | 0.9545 | 0.9167 | 0.9532 | 0.9452 | 0.9167 | 0.9209 |
| 1    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 3    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5    | 0.9444   | 0.9615 | 0.9524 | 0.9537 | 0.9448 | 0.9167 | 0.9209 |
| 6    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 9    | 1.0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Mean | 0.9892   | 0.9916 | 0.9869 | 0.9907 | 0.9890 | 0.9833 | 0.9842 |
| SD   | 0.0216   | 0.0169 | 0.0274 | 0.0186 | 0.0220 | 0.0333 | 0.0316 |

plot\_model(estimator, 'confusion\_matrix')

#### DecisionTreeClassifier Confusion Matrix



plot\_model(estimator, 'class\_report')



magtropy\_testing\_df = testing\_df.drop(columns = ["pp\_avg\_magnitude", "entropy"])
print(magtropy\_testing\_df)

|     | Sublevel Name | pp_magtropy |
|-----|---------------|-------------|
| 112 | Embecovirus   | 114.269624  |
| 113 | Embecovirus   | 114.111031  |
| 114 | Embecovirus   | 114.987320  |
| 115 | Embecovirus   | 114.226726  |
| 116 | Embecovirus   | 114.320187  |
|     |               |             |

```
207
     Embecovirus
              112.497193
 208
    Embecovirus 114.288491
 209 Embecovirus 114.870606
 210 Embecovirus 115.440977
 211 Embecovirus 114.422743
 [100 rows x 2 columns]
X test = magtropy testing df.drop(columns = ["Sublevel Name"])
predict = estimator.predict(X test)
print(predict)
print(len(predict))
 100
unique_elements, count_elements = np.unique(predict, return_counts = "True")
results = np.asarray((unique elements, count elements))
print(results)
 [[ 0]]
  [100]]
```

# Magnitude avg

```
avg magnitude df = training df.drop(columns = ["pp magtropy", "entropy"])
print(avg magnitude df)
        Sublevel Name pp avg magnitude
  0
      Picornavirales
                           75.778785
  1
                            75.747092
      Picornavirales
  2
      Picornavirales
                            79.198669
      Picornavirales
                            79.048836
     Picornavirales
                            53.025828
  260 Sobelivirales
                            58.821615
  261 Sobelivirales
                            57.657512
  262 Sobelivirales
                            57.657512
  263 Sobelivirales
                            60.146212
  264 Sobelivirales
                            57.029920
  [265 rows x 2 columns]
experiment = setup(data=avg magnitude df, target='Sublevel Name')
compare models()
```

|      | Accuracy | AUC | Recall | Prec. | F1  | Карра | MCC |
|------|----------|-----|--------|-------|-----|-------|-----|
| 0    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 1    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 2    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 3    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 4    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 5    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 6    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 7    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 8    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| 9    | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| Mean | 1.0      | 1.0 | 1.0    | 1.0   | 1.0 | 1.0   | 1.0 |
| SD   | 0.0      | 0.0 | 0.0    | 0.0   | 0.0 | 0.0   | 0.0 |

plot\_model(estimator, 'confusion\_matrix')



plot\_model(estimator, 'class\_report')



magnitude\_avg\_testing\_df = testing\_df.drop(columns = ["pp\_magtropy", "entropy"])
print(magnitude\_avg\_testing\_df)

```
Sublevel Name pp avg magnitude
112
     Embecovirus
                       153.103733
113
     Embecovirus
                        155.141480
                        153.815693
114 Embecovirus
115
     Embecovirus
                        153.062393
116
     Embecovirus
                        153.136267
. .
207
    Embecovirus
                        153.807531
208
    Embecovirus
                        153.117355
209
     Embecovirus
                        153.996769
210 Embecovirus
                        150.518479
211
     Embecovirus
                        153.317131
```

[100 rows x 2 columns]

```
unique_elements, count_elements = np.unique(predict, return_counts = "True")
results = np.asarray((unique_elements, count_elements))
```

```
print(results)
[[ 0]
[100]]
```

## Entropy

```
entropy_df = training_df.drop(columns = ["pp_magtropy","pp_avg_magnitude"])
print(entropy df)
        Sublevel Name entropy
       Picornavirales 1.382249
  0
      Picornavirales 1.383443
      Picornavirales 1.382279
  3
      Picornavirales 1.379797
      Picornavirales 1.369663
  260 Sobelivirales 1.381666
  261 Sobelivirales 1.383349
  262 Sobelivirales 1.383349
  263 Sobelivirales 1.380678
  264 Sobelivirales 1.385505
  [265 rows x 2 columns]
experiment = setup(data=entropy df, target='Sublevel Name')
```

|    | Description                            | Value                                          |
|----|----------------------------------------|------------------------------------------------|
| 0  | session_id                             | 5571                                           |
| 1  | Target                                 | Sublevel Name                                  |
| 2  | Target Type                            | Multiclass                                     |
| 3  | Label Encoded                          | Nidovirales: 0, Picornavirales: 1, Sobeliviral |
| 4  | Original Data                          | (265, 2)                                       |
| 5  | Missing Values                         | False                                          |
| 6  | Numeric Features                       | 1                                              |
| 7  | Categorical Features                   | 0                                              |
| 8  | Ordinal Features                       | False                                          |
| 9  | High Cardinality Features              | False                                          |
| 10 | High Cardinality Method                | None                                           |
| 11 | Transformed Train Set                  | (185, 1)                                       |
| 12 | Transformed Test Set                   | (80, 1)                                        |
| 13 | Shuffle Train-Test                     | True                                           |
| 14 | Stratify Train-Test                    | False                                          |
| 15 | Fold Generator                         | StratifiedKFold                                |
| 16 | Fold Number                            | 10                                             |
| 17 | CPU Jobs                               | -1                                             |
| 18 | Use GPU                                | False                                          |
| 19 | Log Experiment                         | False                                          |
| 20 | Experiment Name                        | clf-default-name                               |
| 21 | USI                                    | 7844                                           |
| 22 | Imputation Type                        | simple                                         |
| 23 | Iterative Imputation Iteration         | None                                           |
| 24 | Numeric Imputer                        | mean                                           |
| 25 | Iterative Imputation Numeric Model     | None                                           |
| 26 | Categorical Imputer                    | constant                                       |
| 27 | Iterative Imputation Categorical Model | None                                           |
| 28 | Unknown Categoricals Handling          | least_frequent                                 |
| 29 | Normalize                              | False                                          |
|    | KI P KA O I                            | A.1                                            |

| 30 | Normalize Method            | None  |
|----|-----------------------------|-------|
| 31 | Transformation              | False |
| 32 | Transformation Method       | None  |
| 33 | PCA                         | False |
| 34 | PCA Method                  | None  |
| 35 | PCA Components              | None  |
| 36 | Ignore Low Variance         | False |
| 37 | Combine Rare Levels         | False |
| 38 | Rare Level Threshold        | None  |
| 39 | Numeric Binning             | False |
| 40 | Remove Outliers             | False |
| 41 | Outliers Threshold          | None  |
| 42 | Remove Multicollinearity    | False |
| 43 | Multicollinearity Threshold | None  |

compare\_models()

estimator = create\_model('knn')

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.6316   | 0.8336 | 0.6548 | 0.6288 | 0.6281 | 0.4292 | 0.4310 |
| 1    | 0.6842   | 0.7884 | 0.6548 | 0.7059 | 0.6874 | 0.5043 | 0.5111 |
| 2    | 0.5789   | 0.7315 | 0.5238 | 0.6474 | 0.5614 | 0.3122 | 0.3236 |
| 3    | 0.5789   | 0.7621 | 0.5893 | 0.5405 | 0.5353 | 0.3667 | 0.3878 |
| 4    | 0.6842   | 0.8411 | 0.6905 | 0.7018 | 0.6832 | 0.5128 | 0.5195 |
| 5    | 0.6667   | 0.7859 | 0.6429 | 0.6883 | 0.6692 | 0.4783 | 0.4855 |
| 6    | 0.5556   | 0.7307 | 0.5119 | 0.5278 | 0.5346 | 0.3043 | 0.3090 |
| 7    | 0.6111   | 0.7063 | 0.5595 | 0.6944 | 0.5954 | 0.3731 | 0.3924 |
| 8    | 0.5556   | 0.7493 | 0.5833 | 0.5889 | 0.5593 | 0.3333 | 0.3396 |
| 9    | 0.6667   | 0.8185 | 0.6429 | 0.6782 | 0.6695 | 0.4857 | 0.4880 |
| Mean | 0.6213   | 0.7747 | 0.6054 | 0.6402 | 0.6123 | 0.4100 | 0.4187 |
| SD   | 0.0495   | 0.0440 | 0.0576 | 0.0634 | 0.0592 | 0.0775 | 0.0756 |
|      |          |        |        |        |        |        |        |

ıvıacı III I<del>c</del>

plot\_model(estimator, 'confusion\_matrix')





entropy\_testing\_df = testing\_df.drop(columns = ["pp\_avg\_magnitude", "pp\_magtropy"])
print(entropy\_testing\_df)

```
Sublevel Name entropy
112
     Embecovirus 1.339846
113
     Embecovirus 1.359566
114
    Embecovirus 1.337675
115 Embecovirus 1.339988
116
     Embecovirus 1.339538
. .
                       . . .
207
     Embecovirus 1.367212
208
    Embecovirus 1.339744
209
     Embecovirus 1.340611
210
     Embecovirus 1.303857
211
     Embecovirus 1.339918
```

[100 rows x 2 columns]

```
unique_elements, count_elements = np.unique(predict, return_counts = "True")
results = np.asarray((unique_elements, count_elements))
print(results)

[[ 0    1]
       [97    3]]
```