Relatorio PPC – Atividade1 DNA Search

Henrique Barata fc54387

How did you parallelize the problem?

Para resolver este problema em paralelo, dividi a sequência de ADN pelo numero de cores. Teria de ter atenção para quando esta divisam fosse feita, não separar nenhum padrão que pudesse existir, por exemplo o padrão "ac" na sequencia dividida "aaaccc" em duas partes, "aaa" e "ccc", não seria contabilizado, mas a função dada (isln) já resolvia esse problema.

Did you have concurrency issues? Why or why not?

Para guardar os diferentes resultados das diferentes threads, criei uma matriz onde cada linha seria para cada thread e as colunas seriam as posições onde a frequência de cada padrão seria guardado. No fim somei os valores todos. Assim não encontrei nenhum problema de concorrência, pois este já tinha sido previsto.

Resultados Obtidos

Threads	1	2	4	8	Media(ns)
Seq (ns)	8450	7957,143	7630	6360	7599,2857
Par (ns)	454700	685490	1007140	2166800	1078532,5
Speed-up	0,018584	0,011608	0,007576	0,002935	
Occupancy	0,018584	0,005804	0,001894	0,000367	

What was the speed-up with 4 cores? And with 8 cores?

Com o programa a correr sequencialmente, não houve grande diferença, o que foi o esperado devido ao código ter sido corrido apenas com a main thread.

Com o programa a correr em paralelo, em comparação a correr sequencialmente, foi mais demorado. Assim nesta situação não seria indicado correr o programa em paralelo, pois a criação de threads e o resto do código necessário para a sua execução, consome mais tempo de processamento do que o sequencialmente.

Excluiu-se o primeiro resultado, pois deu um valor muito diferente dos outros para 1 core.

What was the occupancy with 4 cores? And with 8 cores?

Para 4 cores = 0,001894 e para 8 cores = 0,000367.

Funçao P3Huge

Criei uma função onde aumentei o número de padrões e a dimensão do número de elementos na sequência de ADN, e aí já notei uma diferença significativa e mais rápida no processamento em paralelo. Para este caso já compensa resolver o problema em paralelo, sendo a mais rápida com 4 Threads.

Threads	1	2	4	8
Par (ns)	4385436550	2977022001	2664169600	2776399499