贝叶斯网络

七月算法 **邹博** 2015年4月12日

复习: 换个角度看对偶

- □ 给定M个整数和某定值S,要求从M个数中选择若干个数(同一个整数不能多次选择),使得被选中的数的和为S。输出满足条件的选择数目。
 - 如:从1、2、3、4、5、6、7、8、9中选择若干数,使得它们的和为40。

对偶图: Voronoi图和Delaunay剖分

Delaunay三角剖分

4/69

julyedu.com

K近邻图的有趣结论

- □ K近邻图中,结点的度至少是K
- □ K互近邻图中, 结点的度至多是K

5/69

相对熵

- □ 相对熵,又称互熵,交叉熵,鉴别信息,Kullback 熵,Kullback-Leible散度等
- □ 设p(x)、q(x)是X中取值的两个概率分布,则p对q的相对熵是

$$D(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = E_{p(x)} \log \frac{p(x)}{q(x)}$$

- □ 说明:
 - 相对熵可以度量两个随机变量的"距离"
 - 一般的, $D(p||q) \neq D(q||p)$
 - - □ 提示: 凸函数中的Jensen不等式

相对熵的应用思考

- □ 假定已知随机变量P,求相对简单的随机变量Q, 使得Q尽量接近P
 - 方法:使用P和Q的K-L距离。
 - 难点: K-L距离是非对称的,两个随机变量应该谁在前谁在后呢?
- □ 假定使用KL(Q||P),为了让距离最小,则要求在P为 0的地方,Q尽量为0。会得到比较"窄"的分布曲 线;
- □ 假定使用KL(P||Q),为了让距离最小,则要求在P不为0的地方,Q也尽量不为0。会得到比较"宽"的分布曲线;

复习: 互信息

- □ 两个随机变量X,Y的互信息,定义为X,Y 的联合分布和独立分布乘积的相对熵。
- \square I(X,Y)=D(P(X,Y) \parallel P(X)P(Y))

$$I(X,Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

复习: 信息增益

- □ 信息增益表示得知特征A的信息而使得类X 的信息的不确定性减少的程度。
- □ 定义:特征A对训练数据集D的信息增益 g(D,A),定义为集合D的经验熵H(D)与特征 A给定条件下D的经验条件熵H(D|A)之差,即:
 - g(D,A)=H(D)-H(D|A)
 - 显然,这即为训练数据集D和特征A的互信息。

概率

□ 条件概率:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

□ 全概率公式:

$$P(A) = \sum_{i} P(A \mid B_{i}) P(B_{i})$$

□ 贝叶斯(Bayes)公式:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j} P(A|B_j)P(B_j)}$$

贝叶斯公式的应用

□ 8支步枪中有5支已校准过,3支未校准。一名射手用校准过的枪射击,中靶概率为0.8;用未校准的枪射击,中靶概率为0.3;现从8支枪中随机取一支射击,结果中靶。求该枪是已校准过的概率。

$$P(G=1) = \frac{5}{8} \qquad P(G=0) = \frac{3}{8}$$

$$P(A=1|G=1) = 0.8 \qquad P(A=0|G=1) = 0.2$$

$$P(A=1|G=0) = 0.3 \qquad P(A=0|G=0) = 0.7$$

$$P(G=1|A=1) = ?$$

$$P(G=1|A=1) = \frac{P(A=1|G=1)P(G=1)}{\sum_{i \in G} P(A=1|G=i)P(G=i)} = \frac{0.8 \times \frac{5}{8}}{0.8 \times \frac{5}{8} + 0.3 \times \frac{3}{8}} = 0.8163$$

一个实例

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

后验概率

- □ c1、c2表示左右两个信封。
- □ P(R), P(B)表示摸到红球、黑球的概率。
- □ P(R)=P(R|c1)*P(c1) + P(R|c2)*P(c2); 全概率公式
- $\square P(c1|R) = P(R|c1) * P(c1)/P(R)$
 - P(R|c1)=2/4
 - P(R|c2)=1/3
 - P(c1)=P(c2)=1/2
- □ 如果摸到一个红球,那么,这个信封有1美元的概率 是0.6
- □ 如果摸到一个黑球,那么,这个信封有1美元的概率 是3/7

朴素贝叶斯的假设

- □ 一个特征出现的概率,与其他特征(条件)独 立(特征独立性)
 - 其实是:对于给定分类的条件下,特征独立
- □ 每个特征同等重要(特征均衡性)

以文本分类为例

- □ 样本: 1000封邮件,每个邮件被标记为垃圾邮件或者非垃圾邮件
- □ 分类目标:给定第1001封邮件,确定它是垃圾邮件还是非垃圾邮件
- □ 方法: 朴素贝叶斯

分析

- \square 类别c: 垃圾邮件 c_1 , 非垃圾邮件 c_2
- □ 词汇表,两种建立方法:
 - 使用现成的单词词典;
 - 将所有邮件中出现的单词都统计出来,得到词典。
 - 记单词数目为N
- □ 将每个邮件m映射成维度为N的向量X
 - 若单词 w_i 在邮件m中出现过,则 x_i =1,否则, x_i =0。即邮件的向量化:m→ $(x_1,x_2,...,x_N)$
- □ 贝叶斯公式: P(c|x)=P(x|c)*P(c) / P(x)
 - $P(c_1|x)=P(x|c_1)*P(c_1) / P(x)$
 - $P(c_2|\mathbf{x}) = P(\mathbf{x}|c_2) * P(c_2) / P(\mathbf{x})$
 - □ 注意这里X是向量

分解

- \square $P(\mathbf{x}|c)=P(x_1,x_2...x_N|c)=P(x_1|c)*P(x_2|c)...P(x_N|c)$
 - 特征条件独立假设
- \square $P(\mathbf{x}) = P(x_1, x_2 ... x_N) = P(x_1) * P(x_2) ... P(x_N)$
 - 特征独立假设
- □ 帯入公式: P(c|x)=P(x|c)*P(c) / P(x)
- □ 等式右侧各项的含义:
 - $P(x_i|c_j)$: 在 c_j (此题目, c_j)要么为垃圾邮件1,要么为非垃圾邮件2)的前提下,第i个单词 x_i 出现的概率
 - P(x_i):在所有样本中,单词x_i出现的概率
 - P(c_i):在所有样本中,邮件类别c_i出现的概率

拉普拉斯平滑

- p(x1|c1)是指的:在垃圾邮件c1这个类别中,单词x1出现的概率。
 - X₁是待考察的邮件中的某个单词
- □ 定义符号
 - n₁: 在所有垃圾邮件中单词X₁出现的次数。如果X₁没有出现 过,则n₁=0。
 - n:属于c₁类的所有文档的出现过的单词总数目。
- 得到公式: $p(x_1|c_1) = \frac{n_1}{n}$ 拉普拉斯平滑: $p(x_1|c_1) = \frac{n_1+1}{n+N}$
 - 其中, N是所有单词的数目。修正分母是为了保证概率和为1
- 同理,以同样的平滑方案处理p(x₁)

对朴素贝叶斯的思考

- □ 拉普拉斯平滑能够避免0/0带来的算法异常
- □ 因为要比较的是 $P(c_1|\mathbf{x})$ 和 $P(c_2|\mathbf{x})$ 的相对大小,而根据公式 $P(c|\mathbf{x})$ = $P(\mathbf{x}|c)*P(c)/P(\mathbf{x})$,二者的分母都是除以 $P(\mathbf{x})$,实践时可以不计算该系数。
- □ 编程的限制:小数乘积下溢出怎么办?
- □ 问题: 一个词在样本中出现多次,和一个词在样本中出现一次, 形成的词向量相同
 - 由0/1改成计数
- □ 如何判断两个文档的距离
 - 夹角余弦
- □ 如何判定该分类器的正确率
 - 样本中: K个生成分类器, 1000-K个作为测试集
 - 交叉验证

贝叶斯网络

- □ 把某个研究系统中涉及的随机变量,根据是否条件 独立绘制在一个有向图中,就形成了贝叶斯网络。
- □ 贝叶斯网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model,DAG),是一种概率图模型,根据概率图的拓扑结构,考察一组随机变量{X₁,X₂...X_n}及其n组条件概率分布(Conditional Probability Distributions, CPD)的性质。

贝叶斯网络

- □ 一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,它们可以是可观察到的变量,或隐变量、未知参数等。连接两个节点的箭头代表此两个随机变量是具有因果关系(或非条件独立)。若两个节点间以一个单箭头连接在一起,表示其中一个节点是"因(parents)",另一个是"果(children)",两节点就会产生一个条件概率值。
- □ 每个结点在给定其直接前驱时,条件独立于其非后继。
 - 稍后详细解释此结论

一个简单的贝叶斯网络

$$p(a,b,c) = p(c|a,b)p(b|a)p(a)$$

全连接贝叶斯网络

□每一对结点之间都有边连接

$$p(x_1, \dots, x_K) = p(x_K | x_1, \dots, x_{K-1}) \dots p(x_2 | x_1) p(x_1)$$

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i+1} = x_{i+1}, ..., X_n = x_n)$$

一个"正常"的贝叶斯网络

- □有些边缺失
- □ 直观上:
 - x1和x2独立
 - x6和x7在x4给定的条件下独立
- □ x1,x2,...x7的联合分布:

 $p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$

对一个实际贝叶斯网络的分析

 $1+2+2+4+4=13 \text{ vs } 2^5$

贝叶斯网络: 打印机故障诊断

- \square 2²⁶ = 67108864

贝叶斯网络: 警报

贝叶斯网络: 警报

□全部随机变量的联合分布

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

贝叶斯网络的形式化定义

- \square BN(G, Θ)
 - G:有向无环图
 - G的结点: 随机变量
 - G的边:结点间的有向依赖
 - P: 所有条件概率分布的参数集合
 - 结点X的条件概率: P(X|parent(X))

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

- □ 思考:需要多少参数才能确定上述网络呢?
 - lacksquare 每个结点所需参数的个数:结点的parent数目是M,结点和parent的可取值数目都是K: $K^{M*}(K-1)$
 - 为什么?
 - 考察结点的parent对该结点形成了多少种情况(条件分布)

特殊的贝叶斯网络

- □ M个离散结点形成一条链,每一个结点有K 个状态,则需要K-1+(M-1)K(K-1)个参数。 这是关于长度M的线性函数。
 - 别忘了,如果是全连接,需要KM-1个参数,是 关于M的指数函数。
- □这个网络被称作马尔科夫模型。

通过贝叶斯网络判定条件独立—1

- $\square P(a,b,c)=P(c)*P(a|c)*P(b|c)$
- 口则: P(a,b|c)=P(a,b,c)/P(c)
- □ 带入,得到:
- \square P(a,b|c)=P(a|c)*P(b|c)
- □即:在c给定的条件下,a,b被阻断 (blocked),是独立的。
 - 条件独立: tail-to-tail

通过贝叶斯网络判定条件独立—2

- □ 即:在c给定的条件下, a, b被阻断(blocked), 是独立的。
 - 条件独立: head-to-tail

通过贝叶斯网络判定条件独立—3

 $\square P(a,b,c) = P(a)*P(b)*P(c|a,b)$

$$\sum_{c} P(a,b,c) = \sum_{c} P(a) * P(b) * P(c \mid a,b)$$

$$\Rightarrow P(a,b) = P(a) * P(b)$$

举例说明这三种情况

将上述结点推广到结点集

- □ D-separation: 有向分离
- □ 对于任意的结点集A,B,C,考察所有通过A中任意结点到B中任意结点的路径,若要求A,B条件独立,则需要所有的路径都被阻断(blocked),即满足下列两个前提之一:
 - A和B的"head-to-tail型"和"tail-to-tail型"路径都通过C;
 - A和B的"head-to-head型"路径不通过C以及C的子孙;
- □ 如果A,B不满足D-separation, A,B有时被称为D-connected.

有向分离的举例

□ Gas和Radio是独立的吗? 给定Battery呢?
Ignition呢? Starts呢? Moves呢? (答: IIIDD)

再次分析链式网络

□有D-separation可知,在xi给定的条件下,xi+1的分布和x1,x2...xi-1条件独立。即:xi+1的分布状态只和xi有关,和其他变量条件独立,这种顺次演变的随机过程模型,叫做马尔科夫模型。

$$P(X_{n+1} = x | X_0, X_1, X_2, \dots, X_n) = P(X_{n+1} = x | X_n)$$

Markov Blanket

- □ 一个结点的Markov Blanket是一个集合,在 这个集合中的结点都给定的条件下,该结点 条件独立于其他所有结点。
- □ 即: 一个结点的Markov Blanket是它的 parents, children以及spouses(孩子的其他 parent)

Markov Blanket

[Breese & Koller, 97]

补充知识:Serum Calcium(血清钙浓度)高于2.75mmo1/L即为高钙血症。许多恶性肿瘤可并发高钙血症。以乳腺癌、骨肿瘤、肺癌、胃癌、卵巢癌、多发性骨髓瘤、急性淋巴细胞白血病等较为多见,其中乳腺癌约1/3 可发生高钙血症。

julyedu.com

贝叶斯网络的用途

□ 诊断: P(病因|症状)

□ 预测: P(症状 病因)

□ 分类: max_{class}P(类别|数据)

- □ 通过给定的样本数据,建立贝叶斯网络的拓扑结构和结点的条件概率分布参数。这往往需要借助先验知识和极大似然估计来完成。
- □ 在贝叶斯网络确定的结点拓扑结构和条件概率分布 的前提下,可以使用该网络,对未知数据计算条件 概率或后验概率,从而达到诊断、预测或者分类的 目的。

应用实例

APRI system developed at AT&T Bell Labs

learns & uses Bayesian networks from data to identify customers liable to default on bill payments

NASA Vista system

predict failures in propulsion systems
considers time criticality & suggests highest utility action
dynamically decide what information to show

- □ 由AT&T贝尔实验室开发的APRI系统
 - 从数据中学习和使用贝叶斯网络,用来识别那些有赖账倾向的客户
- □ NASA vista 系统
 - 预测推进系统的失败率
 - 分析更精确的时间窗口,提供高可靠度的行动
 - 动态决定显示哪些信息

贝叶斯网络的构建

- □ 依次计算每个变量的D-separation的局部测试结果, 综合每个结点得到贝叶斯网络。
- □ 算法过程:
 - 选择变量的一个合理顺序: X₁,X₂,...X_n
 - 对于i=1到n
 - □ 在网络中添加Xi结点
 - 口 在 $X_1, X_2, ... X_{i-1}$ 中选择 X_i 的父母,使得: $P(X_i | Parent(X_i)) = P(X_i | X_1, X_2 \cdots X_{i-1})$
- □ 这种构造方法, 显然保证了全局的语义要求: $P(X_1, X_2 \cdots X_n) = \prod_{i=1}^n P(X_i | X_1, X_2 \cdots X_{i-1}) = \prod_{i=1}^n P(X_i | Parent(X_i))$

贝叶斯网络的构建举例

Suppose we choose the ordering M, J, A, B, E

JohnCalls

$$P(J|M) = P(J)$$
?

Suppose we choose the ordering M, J, A, B, E

$$P(J|M)=P(J)$$
? No
$$P(A|J,M)=P(A|J)$$
? $P(A|J,M)=P(A)$?

Suppose we choose the ordering M, J, A, B, E

$$\begin{array}{ll} P(J|M) = P(J) ? & {\sf No} \\ P(A|J,M) = P(A|J) ? & P(A|J,M) = P(A) ? & {\sf No} \\ P(B|A,J,M) = P(B|A) ? & \\ P(B|A,J,M) = P(B) ? & \end{array}$$

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No

P(B|A, J, M) = P(B|A)? Yes

P(B|A, J, M) = P(B)? No

P(E|B, A, J, M) = P(E|A)?

P(E|B, A, J, M) = P(E|A, B)?

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)$$
? No

$$P(A|J,M) = P(A|J)$$
? $P(A|J,M) = P(A)$? No

$$P(B|A, J, M) = P(B|A)$$
? Yes

$$P(B|A, J, M) = P(B)$$
? No

$$P(E|B, A, J, M) = P(E|A)$$
? No

$$P(E|B, A, J, M) = P(E|A, B)$$
? Yes

压缩条件分布参数数目

- □ Noisy-OR分布模型
- □ 节点 $U_1,U_2,...U_k$ 是X的所有父节点;
- □ 有如下等式:

$$P(X|U_1, \dots U_j, \neg U_{j+1}, \dots \neg U_k) = 1 - \prod_{i=1}^{j} q_i$$

□该模型的参数是关于父节点个数线性的。

NoisyOR分布模型举例

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
T	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	T	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

$$P(X|U_1, \dots U_j, \neg U_{j+1}, \dots \neg U_k) = 1 - \prod_{i=1}^{j} q_i$$

混合(离散+连续)网络

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

- 1) Continuous variable, discrete+continuous parents (e.g., Cost)
- 2) Discrete variable, continuous parents (e.g., Buys?)

孩子结点是连续的

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c | Harvest = h, Subsidy? = true)$$

$$= N(a_t h + b_t, \sigma_t)(c)$$

$$= \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$$

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of Harvest is narrow

孩子结点是离散的,父节点是连续的

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x) dx$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$$

孩子结点是离散的, 父节点是连续的

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:

贝叶斯网络的推导

P (smoking| dyspnoea=yes) = ?

贝叶斯网络的推导

$$P(s|d=1) = \frac{P(s,d=1)}{P(d=1)} \propto P(s,d=1) =$$

$$\sum_{d=1,b,x,c} P(s)P(c|s)P(b|s)P(x|c,s)P(d|c,b) =$$

$$P(s)\sum_{d=1}^{\infty} \sum_{b} P(b|s)\sum_{x} \sum_{c} P(c|s)P(x|c,s)P(d|c,b)$$
Variable Elimination
$$f(s,d,b,x)$$

因子图

$$p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)$$

Forney-style factor graph.

Original factor graph [FKLW 1997].

Markov random field.

因子图的构造

- □ 由贝叶斯网络构造因子图的方法:
 - 一个因子对应因子图中的一个结点
 - 贝叶斯网络中的每一个变量在因子图上对应边 或者半边
 - 结点g和边x相连当且仅当变量x出现在因子g中 $f(x_1, x_2, x_3, x_4, x_5) = f_A(x_1, x_2, x_3) \cdot f_B(x_3, x_4, x_5) \cdot f_C(x_4)$

因子图举例

□马尔科夫模型

$$p_{XYZ}(x, y, z) = p_X(x) p_{Y|X}(y|x) p_{Z|Y}(z|y)$$

$$p_X$$
 $p_{Y|X}$ $p_{Z|Y}$

因子图举例

□ 隐马尔科夫模型

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = p(x_0) \prod_{k=1}^n p(x_k | x_{k-1}) p(y_k | x_{k-1})$$

试给出该贝叶斯网络的因子图

上述贝叶斯网络的因子图

P(A,B,C,D,E)=P(A)*P(C|A)*P(B|A)*P(D|C)*P(E|B,C)

 $\stackrel{\text{def}}{=}$ f1(A)*f2(A,C)*f3(A,B)*f4(C,D)*f5(B,C,E)

无向环

- □可以发现,若贝叶斯网络中存在"环"(无向),则因此构造的因子图会得到环。而使用消息传递的思想,这个消息将无限传输下去,不利于概率计算。
- □ 解决方法:
 - 删除贝叶斯网络中的若干条边,使得它不含有 无向环
 - 重新构造没有环的贝叶斯网络

原贝叶斯网络的近似树结构

True distribution P(X)

Tree-approximation P'(X)

$$D(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = E_{p(x)} \log \frac{p(x)}{q(x)}$$

将两图的相对熵转换成变量的互信息

Theorem [Chow and Liu, 1968]

Given a joint PDF P(x), the KL-divergence D(P,P') is minimized by projecting P(x) on a *maximum-weight spanning tree* (MSWT) over nodes in X, where the weight on the edge (X_i, X_j) is defined by the mutual information measure

$$I(X_{i}; X_{j}) = \sum_{x_{i}, x_{j}} P(x_{i}, x_{j}) \log \frac{P(x_{i}, x_{j})}{P(x_{i})P(x_{j})}$$

最大权生成树MSWT的建立过程

- □ 1. 对于给定的分布P(x), 对于所有的 $i \neq j$, 计算联合分布 P(xi|xj);
- □ 2.使用第1步得到的概率分布,计算任意两个结点的互信息 I(Xi,Yj),并把I(Xi,Yj)作为这两个结点连接边的权值;
- □ 3.计算最大权生成树(Maximum-weight spanning tree)
 - a. 初始状态: n个变量(结点), 0条边
 - b. 插入最大权重的边
 - C. 找到下一个最大的边,并且加入到树中;要求加入后,没有环生成。否则,查找次大的边;
 - d. 重复上述过程c过程直到插入了n-1条边(树建立完成)
- □ 4. 选择任意结点作为根,从根到叶子标识边的方向;
- □ 5. 可以保证,这课树的近似联合概率P'(x)和原贝叶斯网络的联合概率P(x)的相对熵最小。

附: Chow-Liu算法

- 1. From the given distribution P(x) (or from data generated by P(x)), compute the joint distribution $P(x_i \mid x_j)$ for all $i \neq j$
- 2. Using the pairwise distributions from step 1, compute the mutual information $(X_i; X_j)$ for each pair of nodes and assign it as the weight to the corresponding $\operatorname{edg}(X_i, X_j)$.
- 3. Compute the maximum-weight spanning tree (MSWT):
 - a. Start from the empty tree over n variables
 - Insert the two largest-weight edges
 - c. Find the next largest-weight edge and add it to the tree if no cycle is formed; otherwise, discard the edge and repeat this step.
 - Repeat step (c) until n-1 edges have been selected (a tree is constructed).
- Select an arbitrary root node, and direct the edges outwards from the root.
- 5. Tree approximation P'(x) can be computed as a projection of P(x) on the resulting directed tree (using the product-form of P'(x)).

参考文献

- □ Pattern Recognition and Machine Learning Chapter 8, M. Jordan, J. Kleinberg, ect, 2006
- An Introduction to Factor Graphs, Hans-Andrea Loeliger, MLSB 2008
- ☐ Factor graph and sum-product algorithm, Frank R. Kschischang, Brendan J.Frey, ect, 1998
- ☐ A Tutorial on Inference and Learning in Bayesian Networks, Irina Rish
- ☐ A Tutorial on Learning With Bayesian Networks, David Heckerman, 1996
- http://en.wikipedia.org/wiki/Factor_graph(factor graph)
- http://www.eng.yale.edu/pjk/eesrproj_02/luckenbill_html/node4.html(sum-product)

我们在这里

- □ 更多算法面试题在 7 七月算法官网
 - http://www.julyedu.com/
 - □ 免费视频
 - □ 直播课程
 - □ 问答社区
- □ contact us: 微博
 - @研究者July
 - @七月问答
 - @邹博_机器学习

感谢大家! 恳请大家批评指正!

