Exam 1 is in the books

- If you have any questions or comments on the grading, please let me know, office hours tomorrow at 10
- Grading scale to the right
- Test was out of 105, graded on 100 scale
- No curve
- Planned next exam for early March
- You should have received a survey this morning, please fill out
- Exam solutions posted to the drive

Letter Grade	Percent Grade	
A+	98-100	
А	93-97	
A-	90-92	
B+	87-89	
В	83-87	
B-	80-82	
C+	77-79	
С	73-76	
C-	70-72	
D+	67-69	
D	63-66	
D-	60-62	
F	Below 60	

Fuel Mechanics

NE 591

Solid mechanics

- When a load is applied to a body, it changes shape and perhaps size
- Motions throughout a body are called displacements
 u(r, t)
- Rigid body displacements do not change the shape and/or size
- Changes in shape and/or size are call deformations
- The objective of Solid Mechanics is to relate loads to deformation

Ideal springs

- It can be instructive to view solids as a spring
- When we apply some force F, we get some displacement x

$$-F = kx$$

- When the spring is displaced by x, there is force that responds in the opposite direction equal to kx
- Due to the displacement, there is a stored energy $E = \frac{1}{2} k x^2$

Observed deformation due to a force

- Solid mechanics is similar to the behavior of an ideal spring but throughout a body
- An applied load results results in deformation.
- The internal strain is like the displacements x
- The internal stress is like the internal force F

Elasticity

- Elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed
- In elastic deformation, we are stretching the atomic bonds
- The more we stretch the bonds, the more force it takes to stretch
- When we release the load, the atoms spring back into their lattice sites

Plasticity

- Plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces
- Plastic deformation is observed in most materials
- The transition from elastic behavior to plastic behavior is known as yielding

Stress

- Stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other
- Stress is a force per unit area with SI units of Pa = N/m²
- The stress is a 2nd order tensor (a 3 by 3 matrix): Cauchy stress tensor
- $\sigma_{ij} = F_{ij}/A_i$
 - i is the face the force is applied and j is the direction it is applied
- Sigmas are normal stress components, taus are shear stress components

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \equiv \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \equiv \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix}$$

Stress as a response

- The stress in a material is the RESPONSE to an applied load (force) or an applied displacement
- Uniaxial tension or compression
 - Only one non-zero stress: σ_{ii} (σ_{11} , σ_{22} , σ_{33})
 - Tension means positive stress, compression negative
 - Examples: Cables, tension tests
- Pure shear
 - Only one non-zero stress: $(\sigma_{12}, \sigma_{13}, \sigma_{23})$
 - Examples: drive shaft
- Biaxial tension
 - Two non-zero stress (e.g. $\sigma_{11} = 1$, $\sigma_{22} = 2$)
 - Examples: Pressure cylinder or vessel
- Hydrostatic compression (pressure)
 - $\sigma_{11} = \sigma_{22} = \sigma_{33} = -p$
 - Anything underwater

Strain

- Strain is a geometrical measure of deformation representing the relative displacement between particles in a material body
- The strain in a tensile test is the deformation divided by a representative length $e = \frac{\Delta L}{I} = \frac{\ell L}{I}$
- Strain is a second order tensor, like the stress and is computed using gradients
 - Let u be a vector of the displacements
 - The small strain tensor is

$$\boldsymbol{\epsilon} = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$$

 The common strain states are the same as the stress (uniaxial tension, etc.)

Strain produces stress

- A deformation (strain) results in stress within a material
- $\sigma = F(\epsilon)$
- For small strains, the stress is elastic and is a linear function of the strain

$$oldsymbol{\sigma} = \mathcal{C}(oldsymbol{\epsilon})$$

 For larger deformation, some of the strain is elastic and increases the stress. The rest is plastic and does NOT contribute to the stress.

$$oldsymbol{\epsilon} = oldsymbol{\epsilon}_e + oldsymbol{\epsilon}_p \ oldsymbol{\sigma} = oldsymbol{\mathcal{C}} oldsymbol{\epsilon}_e$$

• The elastic energy density in a material is a scalar quantity equal to $E_{el} = \frac{1}{2} \epsilon_e \cdot \sigma$

In actual materials, the stress and the strain change throughout the material

Tensile testing

- The most common means of determining mechanical properties is a uniaxial tension test
- Apply a uniaxial load until failure
- Properties that are directly measured via a tensile test include ultimate tensile strength, maximum elongation, etc., which can be utilized to determine Young's modulus, Poisson's ratio, etc.

Stress/strain from a tensile test

- A_0 = Initial cross section area
- A =deformed cross section area

	Engineering	True
stress σ	$\frac{P}{A_o}$	$\frac{P}{A}$
strain ε	$\frac{l-l_o}{l_o}$	$\int_{l_o}^{l} \frac{dl}{l} = ln \left(\frac{l}{l_o} \right)$

Stress vs strain curves

Using stress/strain curves

- In the elastic portion of the stress-strain curve, the stress varies linearly with strain
- The slope of the line is Young's Modulus, E: $\sigma = E \epsilon$
- Young's modulus is an elastic constant
- Another elastic constant is Poisson's ratio, v
- Poisson's ratio is the ratio of the shrinkage in cross section due to the extension in the pulling direction

$$G = \frac{E}{2(1+\nu)}$$

Using stress/strain curves

• The shear modulus, *G*, defines the stress to strain ratio in shear

$$\sigma_{12} = G\epsilon_{12}$$

- For isotropic materials, G = E / (2(1 + v))
- In matrix form, Hooke's law for isotropic materials can be written as

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 + 2\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 + 2\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 + 2\nu \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix}$$

$$arepsilon_{yy} = rac{1}{E} \left[\sigma_{yy} -
u \left(\sigma_{xx} + \sigma_{zz}
ight)
ight]$$

Isotropic and Anisotropic

- Isotropic materials deform the same way no matter in what direction you deform them.
 - They have 2 unique elastic constants, C₁₁ and C₁₂
- Anisotropic materials behave differently in different directions
 - The elasticity tensor can have 21 unique components defining anisotropy
 - Cubic structured materials have 3 unique elastic constants (UO₂)
 - Hexagonal structured materials have 5 unique elastic constants
- Polycrystalline anisotropic materials can behave as isotropic, because the various grains average out

Isotropic elastic constants for some materials

Material	E (Gpa)	ν
Aluminum	70.3	0.345
Gold	78.0	0.44
Iron	211.4	0.293
Nickel	199.5	0.312
Tungsten	411.0	0.28
Zircaloy	80.0	0.41
UO ₂	200.0	0.345

Elastic constants are not "constant"

- Properties change with temperature
- Softening can be referred to as the decrease in elastic constants with temperature
- Young's modulus is typically a function of temperature, decreasing with increasing temperature
- Shear Modulus and Poisson's ratio can also change with T

Summary

- Solid mechanics predicts the deformation of a body from its applied load
- The strain defines the deformation
- The stress defines the material's response to the strain
- Materials can have recoverable and permanent deformation
 - Elastic deformation is recoverable and occurs due to the stretching of the atomic lattice
 - Plastic deformation is permanent and results form the breaking of bonds