1.2. **Kalman filtering.** The inference aim is to compute $K[X_n \mid Y_{1:n}]$, which we also call the *filter*, recursively in time for the state-space model in (1.4)-(1.5) which is repeated here for convenience:

$$Y_n = g_n X_n + V_n,$$

$$(1.11) X_{n+1} = f_n X_n + W_n, n = 1, 2, \dots$$

- 1 where $\{V_n\}_n \sim \mathrm{WN}\left(0, \{r_n\}_n\right), \{W_n\}_n \sim \mathrm{WN}\left(0, \{q_n\}_n\right)$. Furthermore,
- 2 X_1 , $\{V_n\}_n$ and $\{W_n\}_n$ are all mutually uncorrelated,

3
$$Cov(X_1, W_n) = Cov(X_1, V_n) = Cov(W_m, V_n) = 0$$

- 4 for all $n \ge 1$ and $m \ge 1$.
- 5 The derivation of the Kalman filter has two main components. We
- 6 commence by assuming we already have calculated $K[X_n \mid Y_{1:n}]$.

- The first step is to convert $K[X_n \mid Y_{1:n}]$ in to $K[X_{n+1} \mid Y_{1:n}]$.
- This is called the *prediction* step since we are using the obser-
- vations to infer the value of the state one step into the future.
- The second step is to convert $K[X_{n+1} \mid Y_{1:n}]$ in to $K[X_{n+1} \mid Y_{1:n+1}]$.
- This is called the *update* step which refines the estimate of X_{n+1}
- by incorporating the newly observed Y_{n+1} .
- 7 1.2.1. The Kalman prediction step. Using the properties (in Fact 1.1)
- 8 of the linear prediction $K[\cdot | \cdot]$, we can calculate $K[X_{n+1} | Y_{1:n}]$ straight-
- 9 forwardly.

Using Fact 1.1 and expanding the definition of X_{n+1} ,

$$K[X_{n+1} \mid Y_{1:n}] = K[f_n X_n + W_n \mid Y_{1:n}]$$

$$= f_n K[X_n \mid Y_{1:n}] + K[W_n \mid Y_{1:n}]$$

$$= f_n K[X_n \mid Y_{1:n}]$$

since $K[W_n \mid Y_{1:n}] = \mathbb{E}(W_n) = 0$ as $Cov(W_n, Y_i) = 0$ for $i \leq n$.

As a further demonstration, we calculate $K[Y_{n+1} | Y_{1:n}]$ which is an intermediate term we will need later in the Kalman update step. The exact same procedure as above gives

$$K[Y_{n+1} \mid Y_{1:n}] = K[g_{n+1}X_{n+1} + V_{n+1} \mid Y_{1:n}]$$

$$= g_{n+1}K[X_{n+1} \mid Y_{1:n}] + K[V_{n+1} \mid Y_{1:n}]$$

$$= g_{n+1}f_nK[X_n \mid Y_{1:n}]$$
(1.12)

- 1 since $K[V_{n+1} | Y_{1:n}] = \mathbb{E}(V_{n+1}) = 0$ as $Cov(V_{n+1}, Y_i) = 0$ for $i \leq n$.
- 2 Another important quantity we have to calculate sequentially to im-
- 3 plement the Kalman filter is the mean square error

$$\sigma_n = \mathbb{E}\left\{ \left(X_n - K \left[X_n \mid Y_{1:n} \right] \right)^2 \right\}.$$

- **Exercise.** Let the mean square error be $\sigma_n = \mathbb{E}\left\{ (X_n K[X_n \mid Y_{1:n}])^2 \right\}$.
- 6 Find $\mathbb{E}\left\{ \left(X_{n+1} K\left[X_{n+1} \mid Y_{1:n}\right]\right)^2 \right\}.$

- The solution is found by substituting the definition of X_{n+1} and
- ² $K[X_{n+1} \mid Y_{1:n}]$ and then expanding:

$$\mathbb{E}\left\{ (X_{n+1} - K[X_{n+1} \mid Y_{1:n}])^{2} \right\}$$

$$= \mathbb{E}\left\{ (f_{n}X_{n} - f_{n}K[X_{n} \mid Y_{1:n}] + W_{n})^{2} \right\}$$

$$= f_{n}^{2}\mathbb{E}\left\{ (X_{n} - K[X_{n} \mid Y_{1:n}])^{2} \right\} + \mathbb{E}\left\{ W_{n}^{2} \right\} + 2f_{n}\mathbb{E}\left\{ (X_{n} - K[X_{n} \mid Y_{1:n}]) W_{n} \right\}$$

$$= f_{n}^{2}\sigma_{n} + q_{n}.$$

- This expression makes sense since the mean square error σ_n of the
- 4 estimate of X_n using $Y_{1:n}$ is inflated by the term q_n when the next state
- 5 X_{n+1} is estimated with the same observations. If the state process is
- static, $X_{n+1} = X_n$, then mean square error is unchanged
- 7 Lets consider why $\mathbb{E}\left\{\left(X_{n}-K\left[X_{n}\mid Y_{1:n}\right]\right)W_{n}\right\}=0$. Note that $X_{n}-X_{n}=0$
- 8 $K[X_n \mid Y_{1:n}]$ is a linear function of $(X_1, W_1, \dots, W_{n-1}, 1, Y_1, \dots, Y_n)$

- 1 and the expected value of the product of W_n and any one of these
- 2 terms is zero.
- 3 We have just derived the Kalman predictor.

Algorithm 1 Kalman prediction for a (non-Gaussian) state-space model

- 1: Given $\hat{X}_n = K[X_n \mid Y_{1:n}]$ and the mean square error $\sigma_n = \mathbb{E}\left\{\left(\hat{X}_n X_n\right)^2\right\}$.
- 2: $\bar{X}_{n+1} = K[X_{n+1} \mid Y_{1:n}] = f_n \hat{X}_n$.
- 3: $\bar{\sigma}_{n+1} = \mathbb{E}\left\{\left(\bar{X}_{n+1} X_{n+1}\right)^2\right\} = f_n^2 \sigma_n + q_n.$

- 4 An important point to remember here is that in linear prediction,
- 5 both the estimate and its mean square error must be computed.

1 1.2.2. The Kalman update step.

2 **Definition.** Define the *innovations*,

$$I_{n+1} = Y_{n+1} - K[Y_{n+1} \mid Y_{1:n}].$$

- Note that $K[Y_{n+1} \mid Y_{1:n}]$ has been calculated in (1.12). Think of I_{n+1}
- s as the unpredictable part of Y_{n+1} . To derive the Kalman filter, use the
- 6 following key relationship from Fact 1.1,

(1.13)

$$7 K[\cdot \mid Y_{1:n+1}] = K[\cdot \mid Y_{1:n}, I_{n+1}] = K[\cdot \mid Y_{1:n}] + K[\cdot \mid I_{n+1}] - \mathbb{E}(\cdot)$$

- 8 This equation is stating two important facts:
- That $K[\cdot \mid Y_{1:n+1}] = K[\cdot \mid Y_{1:n}, I_{n+1}]$ and there is no gain or
- loss in estimation when using either $(Y_{1:n}, Y_{n+1})$ or $(Y_{1:n}, I_{n+1})$.
- We know this to be true from Fact 1.1 because

$$(Y_{1:n}, I_{n+1})^{\mathrm{T}} = C(Y_{1:n}, Y_{n+1})^{\mathrm{T}} + \mathbf{b}$$

- through some invertible matrix C and vector \mathbf{b} . (Check this.)
- 2 An invertible linear transformation of the data does not change
- the best linear estimate it produces.
- $K[\cdot \mid Y_{1:n}, I_{n+1}]$ is "linear" in its second argument because I_{n+1}
- is uncorrelated with Y_i , $i \leq n$. This again follows from Fact 1.1.
- 6 Thus we have the following useful result for sequential estimation.

Fact. When
$$I_{n+1} = Y_{n+1} - K[Y_{n+1} \mid Y_{1:n}]$$
 then

$$\hat{X}_{n+1} = K \left[X_{n+1} \mid Y_{1:n+1} \right] = K \left[X_{n+1} \mid Y_{1:n} \right] + K \left[X_{n+1} \mid I_{n+1} \right] - \mathbb{E}(X_{n+1}).$$

- 7 Having calculated the first term $\bar{X}_{n+1} = K[X_{n+1} \mid Y_{1:n}]$, we only
- 8 need to calculate $K[X_{n+1} \mid I_{n+1}]$ to find $K[X_{n+1} \mid Y_{1:n+1}]$.
- 9 Fact 1.2. The estimate of X_{n+1} using I_{n+1} is

10
$$K[X_{n+1} \mid I_{n+1}] - \mathbb{E}(X_{n+1}) = \frac{g_{n+1}(f_n^2 \sigma_n + q_n)}{g_{n+1}^2(f_n^2 \sigma_n + q_n) + r_{n+1}} I_{n+1}.$$

- 1 We will now derive this result. Using the characterisation of the
- solution in Fact 1.1 and that $\mathbb{E}(I_{n+1}) = 0$,

3 (1.14)
$$K[X_{n+1} \mid I_{n+1}] = \mathbb{E}(X_{n+1}) + \frac{\mathbb{E}(X_{n+1}I_{n+1})}{\mathbb{E}(I_{n+1}^2)}I_{n+1}.$$

Expand I_{n+1} using the method for equation (1.12),

$$I_{n+1} = g_{n+1}X_{n+1} + V_{n+1} - K \left[g_{n+1}X_{n+1} \mid Y_{1:n} \right] - \underbrace{K \left[V_{n+1} \mid Y_{1:n} \right]}_{=0}$$

$$= g_{n+1} \left(X_{n+1} - K \left[X_{n+1} \mid Y_{1:n} \right] \right) + V_{n+1}.$$

The denominator of (1.14) is

$$\mathbb{E}(I_{n+1}^2) = g_{n+1}^2 \mathbb{E}\left\{ (X_{n+1} - K [X_{n+1} \mid Y_{1:n}])^2 \right\} + \mathbb{E}\left(V_{n+1}^2\right) + \text{cross terms}$$

$$= g_{n+1}^2 \left(f_n^2 \sigma_n + q_n \right) + r_{n+1}$$

- 4 where the bracketed expression is given in the derivation of the Kalman
- predictor and cross-term, $\mathbb{E}\left\{\left(X_{n+1}-K\left[X_{n+1}\mid Y_{1:n}\right]\right)V_{n+1}\right\}$, has zero

- 1 expectation. Recall that $K[X_{n+1} \mid Y_{1:n}]$ is a linear function of $(1, Y_1, \dots, Y_n)$
- 2 and the expected value of the product of V_{n+1} and any one of these
- 3 terms is zero. Likewise, X_{n+1} is a linear function of (X_1, W_1, \ldots, W_n)
- 4 and the expected value of the product of V_{n+1} and any one of these
- terms is also zero. These facts imply $\mathbb{E}\left\{\left(X_{n+1}-K\left[X_{n+1}\mid Y_{1:n}\right]\right)V_{n+1}\right\}=$
- 6 0.
- 7 The numerator of (1.14) is

$$\mathbb{E}(X_{n+1}I_{n+1})$$

$$= g_{n+1}\mathbb{E}\left\{X_{n+1}\left(X_{n+1} - K\left[X_{n+1} \mid Y_{1:n}\right]\right)\right\} + \underbrace{\mathbb{E}\left(X_{n+1}V_{n+1}\right)}_{=0}$$

$$= g_{n+1}\mathbb{E}\left\{\left(X_{n+1} - K\left[X_{n+1} \mid Y_{1:n}\right]\right)^{2}\right\}$$

$$+ g_{n+1}\mathbb{E}\left\{K\left[X_{n+1} \mid Y_{1:n}\right]\left(X_{n+1} - K\left[X_{n+1} \mid Y_{1:n}\right]\right)\right\}$$

$$= g_{n+1}\mathbb{E}\left\{\left(X_{n+1} - K\left[X_{n+1} \mid Y_{1:n}\right]\right)^{2}\right\}$$

1 noting that $\mathbb{E}(X_{n+1}V_{n+1}) = 0$ and

$$\mathbb{E}\left\{ \left(X_{n+1} - K\left[X_{n+1} \mid Y_{1:n}\right]\right) K\left[X_{n+1} \mid Y_{1:n}\right] \right\} = 0$$

since the error of the prediction has mean zero and is orthogonal to all the random variables from the set $\{Y_1, \ldots, Y_n\}$. (Remember that $K[X_{n+1} \mid Y_{1:n}]$ is a linear function of $(1, Y_1, \ldots, Y_n)$.) Thus

$$\mathbb{E}(X_{n+1}I_{n+1}) = g_{n+1}\mathbb{E}\left\{ (X_{n+1} - K[X_{n+1} \mid Y_{1:n}])^2 \right\}$$
$$= g_{n+1} \left(f_n^2 \sigma_n + q_n \right).$$

- 3 This concludes the verification of Fact 1.2.
- The final step is to calculate the filter's mean square error.
- 5 Fact 1.3. The mean square error of the updated estimate \hat{X}_{n+1} , which
- 6 we denote as

$$\sigma_{n+1} = \mathbb{E}\left\{ \left(X_{n+1} - \hat{X}_{n+1} \right)^2 \right\}$$

1 is given by

$$\sigma_{n+1} = \bar{\sigma}_{n+1} \left(1 - \frac{g_{n+1}^2 \bar{\sigma}_{n+1}}{g_{n+1}^2 \bar{\sigma}_{n+1} + r_{n+1}} \right).$$

3 (Verification.) Subtract X_{n+1} from both sides of

$$\hat{X}_{n+1} = K [X_{n+1} \mid Y_{1:n}] + K [X_{n+1} \mid I_{n+1}] - \mathbb{E}(X_{n+1})$$

to get

$$X_{n+1} - \hat{X}_{n+1} + (K[X_{n+1} \mid I_{n+1}] - \mathbb{E}(X_{n+1})) = X_{n+1} - K[X_{n+1} \mid Y_{1:n}].$$

4 Now square both sides and take the expectation to get

$$\mathbb{E}\left\{ \left(X_{n+1} - \hat{X}_{n+1} \right)^{2} \right\} + \mathbb{E}\left\{ \left(K \left[X_{n+1} \mid I_{n+1} \right] - \mathbb{E}(X_{n+1}) \right)^{2} \right\} + \operatorname{ct} \right\}$$

$$= \mathbb{E}\left\{ \left(X_{n+1} - K \left[X_{n+1} \mid Y_{1:n} \right] \right)^{2} \right\}$$

- where ct denotes the cross term which is zero since $\mathbb{E}\left\{\left(X_{n+1} \hat{X}_{n+1}\right)I_{n+1}\right\} =$
- 2 0; in fact $X_{n+1} \hat{X}_{n+1}$ has zero mean and is orthogonal to all the terms
- 3 $Y_1, \ldots, Y_n, I_{n+1}$ that were used to define \hat{X}_{n+1} .
- 4 Since

$$K[X_{n+1} \mid I_{n+1}] - \mathbb{E}(X_{n+1}) = \frac{\mathbb{E}(X_{n+1}I_{n+1})}{\mathbb{E}(I_{n+1}^2)}I_{n+1},$$

$$7 \quad \mathbb{E}\left\{ \left(K\left[X_{n+1} \mid I_{n+1} \right] - \mathbb{E}(X_{n+1}) \right)^2 \right\} = \frac{\mathbb{E}(X_{n+1}I_{n+1})^2}{\mathbb{E}(I_{n+1}^2)^2} \mathbb{E}(I_{n+1}^2) = \frac{g_{n+1}^2 \bar{\sigma}_{n+1}^2}{g_{n+1}^2 \bar{\sigma}_{n+1} + r_{n+1}}.$$

8 Combining gives

9
$$\sigma_{n+1} = \bar{\sigma}_{n+1} \left(1 - \frac{g_{n+1}^2 \bar{\sigma}_{n+1}}{g_{n+1}^2 \bar{\sigma}_{n+1} + r_{n+1}} \right) = \frac{\bar{\sigma}_{n+1} r_{n+1}}{g_{n+1}^2 \bar{\sigma}_{n+1} + r_{n+1}}.$$

- All the calculations that have been performed in the Kalman update
- 11 step are now summarised.

Algorithm 2 Kalman update for a (non-gaussian) state-space model

1: Given
$$\bar{X}_{n+1} = K[X_{n+1} \mid Y_{1:n}] = f_n \hat{X}_n$$
 and $\bar{\sigma}_{n+1} = \mathbb{E}\left\{\left(\bar{X}_{n+1} - X_{n+1}\right)^2\right\}$.

2:
$$I_{n+1} = Y_{n+1} - g_{n+1} \bar{X}_{n+1}$$
.

3:
$$\hat{X}_{n+1} = \bar{X}_{n+1} + \frac{g_{n+1}\bar{\sigma}_{n+1}}{g_{n+1}^2\bar{\sigma}_{n+1} + r_{n+1}} I_{n+1}$$
.

4:
$$\sigma_{n+1} = \bar{\sigma}_{n+1} \left(1 - \frac{g_{n+1}^2 \bar{\sigma}_{n+1}}{g_{n+1}^2 \bar{\sigma}_{n+1} + r_{n+1}} \right)$$
.

FIGURE 1.1. The Kalman filter for the state-space model in (1.11) with $f_n = g_n = 1$ and noises having unit variance. Solid line is the true state, crosses are the observations and the dashed line is the Kalman estimate of the state using Algorithm 2.