Analysis

Jonathan Mayer

12.01.2023

1 Begriffe

Tabelle 1: Grundbegriffe

Symbol	Bedeutung		
R	Relation		
∈ / ∉	Element / kein Element von		
\forall/ \nexists	für alle / für kein		
3	Existenzquantor, mindestens ein		
∃!	Anzahlquantor, genau ein echte Teilmenge, $a \in A \land a, b \in B : \exists b \notin A$		
$A \subset B$			
$A \subseteq B$	Teilmenge $a \in A \land a, b \in B$		
{1,3}	x = 1, 3, die Zahlen 1 und 3		
]1,3[, (1,3)	1 < x < 3		
[1,3]	$1 \le x \le 3$		
\Rightarrow	genau dann wenn		
\Leftrightarrow	aus Aussage A folg B und umgekehrt		
\rightarrow	Abbildungsvorschrift für Mengen		
\mapsto	Abbildungsvorschrift für Elemente		
0	Komposition / Verkettung von Funktionen		
∧ / ∨	und / oder		
Lemma	Hilfssatz		
\overline{z}, z^*	konjungiert komplexe Zahl		
<u></u> ≼	beliebiges Symbol		
₹	zu zeigen		
<u>!</u>	soll erfüllt sein um zu zeigen		
:=,≡	definiere		
\cup,\cap,\setminus	Vereinigung, Durchschnitt, Subtrahiert		
disjunkt	$A \cap B = \{\}$		

Continued on next page

Tabelle 1: Grundbegriffe (Continued)

Symbol	Bedeutung
infimum	
supremum	
notwendiges Kriterium	muss immer erfüllt sein, reicht aber nicht aus
hinreichendes Kriterium	wenn erfüllt dann
Nullfolge	$(a_k)_k$ ist eine Nullfolge wenn $\lim_{k\to\infty} a_k = 0$
surjektiv	$\forall y \in Y : \exists \ x \in X : f(x) = y \ 3.0.1$
injektiv	$\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ 3.0.2$
bijektiv	$\forall y \in Y : \exists ! \ x \in X : f(x) = y \ 3.0.3$
beschränkte Folge	$\exists b, c : \forall n : b < a_n < c$
nach oben beschränkte Folge	$\exists b : \forall n : a_n < b$
nach unten beschränkte Folge	$\exists b : \forall n : b < a_n$
$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	

Zwischenwertsatz:

Eine im Intervall [a, b] stetige Funktion nimmt jeden Wert zwischen f(a) und f(a) mindestens einmal an.

Satz von Rolle:

Es sei $u, v \in \mathbb{R}$ mit u < v und $f : [u, v] \to \mathbb{R}$ eine differenzierbare Funktion mit f(u) = f(v). fann gibt es ein $x \in]u, v[\to \mathbb{R}$ mit f'(x) = 0.

Mittelwertsatz der Differentialrechnung:

Es sei $u, v \in \mathbb{R}$ mit u < v und $f : [u, v] \to \mathbb{R}$ eine differenzierbare Funktion. Dann gibt es ein $x \in]u, v[$ mit $f'(x) = \frac{f(v) - f(u)}{v - u}$.

veralgemeinerter Mittelwertsatz der Differentialrechnung:

Es sei $u,v \in \mathbb{R}$ mit u < v und $f,g: [u,v] \to \mathbb{R}$ eine differenzierbare Funktionen und $\forall x: g'(x) \neq 0$. Dann gibt es ein $x \in]u,v[$ mit $\frac{f'(x)}{g'(x)} = \frac{f(v)-f(u)}{g(v)-g(u)}$.

2 Mengen

explizite Angabe: $A = \{1, 2, 3, 4, ...\}$

spezifikation über charakteristische Eigenschften: $B = \{a \in A : \varphi(a)\}$

 $\{b \in A' : \text{ es gibt ein } a \in A \text{ mit } b = t(a)\}: \{t(a) : a \in A\}$

Definition 1.1.4:

- 1. Zwie Mengen A und B sehen wir als gleich an, wenn sie dieselben Elemente enthalten.
- 2. Eine Menge A heißt Teilmenge einer Menge B $(a \subseteq B)$ falls $\forall a : a \in B$. Echte Teilmenge $(A \subseteq B)$: $\{\exists b \in B : b \notin A\}$
- 3. Die Menge aller Tielmengen einerm Menge A heißt Potenzmenge von A und wird mit P(a) bezeichnet.

Definition 1.1.7:

- 1. **Durchschnitt:** $A \cap B = \{x \in U : x \in A \land x \in B\}$
- 2. Vereinigung: $A \cup B = \{x \in U : x \in A \lor x \in B\}$
- 3. Differenz: $A \setminus B = \{x \in U : x \in A \land x \notin B\}$
- 4. Komplement: $CA = U \setminus A$

disjunkt: $a \cap B = \{\}$

Kartesisches Produkt: $A \times B = A^2 = \{(a, b) : a \in A \text{ und } b \in B\}$ Die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$.

3 Relationen und Funktionen

3.0.1 surjektivität:

 $\forall y \in Y: \exists \ x \in X: f(x) = y$

wenn es für jedes y aus Y **mindestens** ein $x \in X$ mit f(x) = y gibt.

3.0.2 injektivität

 $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

 $\forall b \in B : \exists \text{ h\"{o}chstens ein } a \in A : f(a) = b$

wenn es für jedes $y \in \text{vom Wertebereich } Y \text{ h\"ochstens} \text{ ein } x \in \text{der Definitionsmenge } X \text{ gibt.}$

3.0.3 bijektivität

 $\forall y \in Y : \exists ! \ x \in X : f(x) = y$

Injektiv und surjektiv

wenn es für jedes $y \in Y$ genau ein $x \in X$ gibt.

3.1 Relationen

Definition Relation: Es seien $A_1, ..., A_n, n \geq 1$ Mengen, dann heißt die Teilmenge von $R \subseteq A_1 \times ... \times A_n$ eine Relation zwischen den Mengen $A_1, ..., A_n$.

zweistellige Relation: n=2

binäre Relation: $A = A_1 = A_2$ dann wird meist a_1Ra_2 oder $R(a_1, a_2)$ geschrieben.

Typen von Relationen:

- 1. R heißt **reflexiv**, falls aRa für alle $a \in A$ gilt.
- 2. R heißt **irreflexiv**, falls aRa für kein $a \in A$ gilt.
- 3. R heißt symmetrisch, falls für $a, b \in A$ aRb genau dann gilt, wenn bRa.
- 4. R heißt antisymmetrisch, falls für $a, b \in A$ aus aRb und bRa stets a = b folgt.
- 5. R heißt **transitiv**, falls für $a, b, c \in A$ aus aRb und bRc stets aRc folgt.

Komposition von Relationen: (Hintereinanderausführung) $S \circ R = \{(a, c) \in A \times C : \text{es gibt ein } b \in B \text{ mit } aRb \text{ und } bSc\}$ (mit $R \subseteq A \times B \text{ und } S \subseteq B \times C \text{ zweistellingen Relationen}$)

inverse Relation:
$$R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$$

 $(R^{-1})^{-1} = R, (S \circ R)^{-1} = R^{-1} \circ S^{-1}$

3.2 Funktionen

Definition: $\{ \forall a \in A : \exists! b \in B : \min(a, b) \in f \}$

Definition 1.4.1

- 1. Die Menge $f(A) = \{f(a) : a \in A\}$ heißt das Bild von f
- 2. Die Menge $f(B) = \{a \in A : f(a) \in B\}$ heißt das Urbild

Lemma: $(g \circ f)(a) = g(f(a)) : \forall a \in A \ f : A \to B \ \text{und} \ g : B \to C \ \text{Funktionen}$ Daraus kann man zeigen: $(h \circ g) \circ f = h \circ (g \circ f) \ \text{mit} \ f : A \to B, g : B \to C, h : C \to D \ (g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Umkehrfunktion/Inverse: $a = f^{-1}(f(a))$ Vorraussetzung für die Umkehrbarkeit ist die bijektivität der Funktion.

Ist f bijektiv, so auch f^{-1}

Satz 1.4.7 Sind f und q injektiv/ surjektiv, so auch $f \circ q$

Identität (identische Abbildung) $id_A = a \rightarrow A, \ a \mapsto a$

Bei stetigen Funktionen darf der Grenzwert und die Funktion vertauscht werten $(\lim_{x\to 0} e^{x\cdot \ln(x)} = e^{\lim_{x\to 0} x\cdot \ln(x)})$.

3.3 Äquivalenzrelationen und Ordnungsrelationen

Äquivalenzrelation: eine reflexive, transitive und symmetrische binäre Relation.

Ordnungsrelation: eine reflexive, transitive und antisymmetrische binäre Relation.

lineare Ordnung / **totale Ordnung** eine Ordnungsrelation für die $\forall a, b \in P : a \leq b \lor b \leq a$ gilt. $(P; \leq)$ wird partiell/linear geordnete Menge genannt.

4 Zahlenbereiche

4.1 Induktionsbeweis

- 1. Induktionsanfang/Indunktionsvorraussetzung (IV) wir zeigen dass $\varphi(0)$ gilt
- 2. Induktionsannamhe (IA) wir nehmen an, dass $\forall m \geq 0 : \varphi(m)$ gilt
- 3. Induktionsschritt (IS) wir beweisen dass $\varphi(m)$ auch für alle $\varphi(m+1)$ gilt.
- 4. Induktionsschluss Wir schließen, dass $\varphi(n) \forall b \in \mathbb{N}_0$ gilt

4.2 Mächtigkeit von Mengen (card)

Mächtigkeit: Anzahl der Elemente in einer Menge. Geschrieben als card A, #A, |A|

mit A, B endliche Mengen:

- 1. $\operatorname{card}(A \cup B) = \operatorname{card}A + \operatorname{card}B \operatorname{card}(A \cap B)$
- 2. $\operatorname{card}(A \times B) = \operatorname{card}A \cdot \operatorname{card}B$
- 3. $\operatorname{card} P(A) = 2^{\operatorname{card} A}$

Eine **bijektive** Funktion zwischen zwei Mengen existiert genau dann, wenn sie gleich **mächtig** sind. Das heißt in der Umkehrung, wenn es eine bijektive Funktion zwischen zwei Mengen gibt, sind diese gleich mächtig.

abzählbar \mathbb{N} ist abzählbar. Operationen (Vereinigung, Kreuzprodukt, Kompliment) zwischen zwei abzählbaren Mengen, ergiebt wieder eine abzählbare Menge.

Definition 2.5.1 Es sei $(P; \leq)$ eine partiell geordnete Menge und $A \subseteq P$.

- 1. untere Schranke $\{ \forall a \in A : \exists p \in P : p \leq a \}, p...$ untere Schranke, A... nach unten beschränkt
- 2. **obere Schranke** wie oberes nur umgedreht
- 3. **Infimum** größte untere Schranke.
- 4. **Supremum** kleinste obere Schranke
- 5. sei A nach oben beschränkt gilt: $\sup\{ca: a \in A\} = c \cdot \sup A$

5 Metrische Räume

5.1 Metrik

Eine Metrik auf M ist eine Funktion $d: M \times M \to \mathbb{R}_0^+$ wenn für alle $x, y, z \in M$ folgendes gilt:

- 1. Definitheit d(x,y) = 0 g.d.w. x = y
- 2. Symmetrie d(x,y) = d(y,x)
- 3. Dreiecksungleichung $d(x,z) \le d(x,y) + d(y,z)$

Wenn dies erfüllt ist, nennen wir M einen metrischen Raum.

5.2topologische Grundbegriffe

- 1. innerer Punkt $a \in A$ ist ein innerer Punkt wenn $\exists \epsilon > 0 : U_{\epsilon}(a) \subseteq A$
- 2. offene Menge jedes Element der Menge ist ein innerer Punkt
- 3. Berührungspunkt $m \in M$ ist ein Berührungspunkt wenn $\forall \epsilon > 0 : U_{\epsilon}(m) \cap A \neq \{\}$
- 4. abgeschlossene Menge jeder Berührungspunkt ist auch Teil der Menge
- 5. isolierter Punkt a ist ein isolierter Punkt wenn $U_{\epsilon}(a) \cap (A \setminus \{a\}) =$

Folgen 6

Folge in M ist eine Funktion von \mathbb{N}_0 nach M $f: \mathbb{N}_0 \to M, n \mapsto f(n)$

beschränkte Folge: $(a_n)_n$ ist beschränkt wenn $\exists b, c : \forall n : b < a_n < c$. nach oben beschränkte Folge: $(a_n)_n$ ist nach oben beschränkt wenn $\exists b : \forall n : a_n < b$. nach unten beschränkte Folge: $(a_n)_n$ ist nach unten beschränkt wenn $\exists b : \forall n : b < a_n$.

7 Reihen

Definition: Eine Reihe ist eine Partialsumme einer Folge

$$(p_n)_n = \left(\sum_{i=0}^n a_i\right)_n, p_n...$$
 Reihe, $a_i...$ Folge

geometrische Reihe: $\sum_{i=0}^{\infty} q^i$ mit |q| < 1 konvergent, $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$

harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ ist divergent

... Reihe
$$\sum\limits_{k=1}^{\infty} \frac{1}{k^r}$$
 konvergiert für $r \geq 2$

Rechenregeln für konvergente Reihen:
$$\sum_{i=0}^{\infty}(a_i+b_i)=\sum_{i=0}^{\infty}a_i+\sum_{i=0}^{\infty}b_i$$

$$\sum_{i=0}^{\infty}\gamma a_i=\gamma\sum_{i=0}^{\infty}a_i$$

7.1Konvergenzkriterien für Reihen

absolute Konvergenz: Eine Reihe $\sum_{i=0}^{\infty} a_i$ in \mathbb{R} oder \mathbb{C} heißt absolut konvergent, falls $\sum_{i=0}^{\infty} |a_i|$ konvergiert. i=0 |ai| konvergiert. Es gilt: $|\sum_{i=0}^{\infty} a_i| \leq \sum_{i=0}^{\infty} |a_i|$.

Eine Komplexe Reihe $\sum_{i=0}^{\infty} a_i$ konvergiert/konvergiert absolut wenn $\sum_{i=0}^{\infty} \Re(a_i)$ und $\sum_{i=0}^{\infty} \Im(a_i)$ konvergieren/absolut konvergieren.

konvergiert die Reihe $\sum_{i=0}^{\infty} a_i$ muss $(\lim_{i\to\infty} a_i = 0)$ sein (notwendiges aber nicht hinreichendes Kriterium).

 $\sum_{k=0}^{\infty}a_k$ konvergiert genau dann, wenn die Folge von Partialsummen beschränkt ist.

7.1.1 Leibnitz Kriterium

Sei $(a_k)_k$ eine monoton fallende Nullfolge positiver reeller Zahlen dann konvergiert

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

zeigt Konvergenz aber nicht absolute Konvergenz.

7.1.2 Minoranten- Majoranten Kriterium

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} b_i$ konvergent, dann konvergiert auch $\sum_{i=0}^{\infty} a_i$

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} a_i$ divergent, dann divergiert auch $\sum_{i=0}^{\infty} b_i$

7.1.3 Quotientenkriterium

Sei $(a_n)_n$ eine Folge in $\mathbb R$ oder $\mathbb C$ und $\forall n: a_n \neq 0$ dann ist $\sum_{i=0}^{\infty} a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$$

divergent wenn obiges > 1 ist.

7.1.4 Wurzelkriterium

Sei $(a_n)_n$ eine beschränkte Folge in $\mathbb R$ oder $\mathbb C$ dann ist $\sum_{i=0}^\infty a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} < 1$$

divergent wenn obiges > 1.

8 Stetigkeit

Definition Stetigkeit:

 $\forall \epsilon > 0 : \exists \delta > 0 : |x - a| < \delta : |f(x) - f(a)| < \epsilon$

 $\forall \epsilon > 0 : \exists \delta > 0 : f(U_{\delta}(a) \subseteq U_{\epsilon}(f(a)))$

 $\forall \epsilon > 0 \; \exists \delta > 0 : \text{sodass aus } |x - a| < \delta \text{ stets } |f(x) - f(a)| < \epsilon \text{ folgt}$

Definition Unstetigkeit: $\exists \epsilon > 0 \forall \ \delta > 0 : \exists x \in D : |x - x_0| < \delta \land |f(x) - f(x_0)| > \epsilon$

8.1 links-rechtsseitiger Grenzwetz:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

 x_0 wird von rechts und links angenähert. Sind beide Grenzwerte gleich, ist die Funktion stetig.

8.2 $\epsilon - \delta$ Kriterium

Abbildung 5.1: Stetigkeit einer Funktion $f: \mathbb{R} \to \mathbb{R}$ an der Stelle a: Zu jeder (noch so kleinen) ε -Umgebung von f(a) gibt es eine δ -Umgebung von a, dessen Bild vollständig in ersterer liegt.

Stetigkeit zeigen:

- $|f(x) f(a)| < \epsilon$ aufstellen
- alle x rausbringen $(x-a=\delta, \text{ manchmal einfügen einer geschickten Null } (+a-a))$
- Formel auf δ = umformen
- ullet das berechnete δ in d
ne Beweis einsetzen
- Wahre Aussage

9 l'Hospital

	Funktion $\varphi(x)$	$\lim_{x \to x_0} \varphi\left(x\right)$	Umformung
(A)	$u\left(x\right)\cdot v\left(x\right)$	$0\cdot\infty$	$\frac{u(x)}{1/v(x)} \text{ oder } \frac{v(x)}{1/u(x)}$
(B)	$u\left(x\right)-v\left(x\right)$	$\infty - \infty$	$\frac{1/v(x) - 1/u(x)}{1/(u(x) \cdot v(x))}$
(C)	$u\left(x\right)^{v\left(x\right)}$	$0^0, \infty^0, 1^\infty$	$\exp(v(x)\ln(u(x)))$

Abbildung 1: Umformung für l'Hospital

this is a test to test