Exercice

- 1. Ecrire dans le langage des prédicats les énoncés suivants:
 - (a) On ne peut pas être amis et ennemis.
 - (b) Les ennemis des amis d'une personne sont ennemis de cette personne.
 - (c) Il y a une personne qui est amie de tout le monde et il y a une personne qui est ennemie de tout le monde.

On supposera que la relation Ami est symétrique.

- 2. Montrer à l'aide de la résolution que l'ensemble des énoncés $\{a,b,c\}$ auquel on ajoute la symétrie de la relation "Ami" est insatisfaisable (non satisfiable).
- N.B. Utilisez uniquement les symboles de prédicat A (ami) et E (ennemi).

Solution.

1. Formalisation

- (a) $\neg \exists x \exists y (A(x,y) \land E(x,y)).$
- **(b)** $\forall x \forall y \forall z (A(y,x) \land E(z,y) \Rightarrow E(z,x))$
- (c) $\exists x \forall y A(x,y) \land \exists x \forall y E(x,y)$.
- (d) $\forall x \forall y (A(x,y) \Rightarrow A(y,x)).$
- 2. On va montrer que $\{a, b, c, d\}$ est contradictoire. On trouve l'ensemble des clauses de l'ensemble $\{a, b, c, d\}$ et on montre que $\{a, b, c, d\} \vdash \bot$.

Première étape: Formes prénexes.

- (a) $\forall x \forall y \neg (A(x,y) \land E(x,y)).$
- **(b)** $\forall x \forall y \forall z (A(y,x) \land E(z,y) \Rightarrow E(z,x))$
- (c) $\exists x \exists z \forall y \forall w (A(x,y) \land E(z,w)).$
- (d) $\forall x \forall y (A(x,y) \Rightarrow A(y,x)).$

Deuxième étape: Skolémisation

- (a) $\forall x \forall y \neg (A(x,y) \land E(x,y)).$
- **(b)** $\forall x \forall y \forall z (A(y,x) \land E(z,y) \Rightarrow E(z,x))$
- (c) $\forall y \forall w (A(a,y) \land E(b,w)).$
- (d) $\forall x \forall y (A(x,y) \Rightarrow A(y,x)).$

Troisième étape: Forme clausale

 $C_1: \neg A(x,y) \vee \neg E(x,y)$).

 $C_2: \neg A(y,x) \vee \neg E(z,y) \vee E(z,x).$

 $C_3: A(a,y).$

 $C_4: E(b,w).$

 $C_5: \neg A(x,y) \vee A(y,x).$

Quatrième étape: Renommage

 $C_1: \neg A(x_1, y_1) \vee \neg E(x_1, y_1).$

 $C_2: \neg A(y_2, x_2) \vee \neg E(z_2, y_2) \vee E(z_2, x_2).$

 $C_3: A(a, y_3).$

 $C_4: E(b, w_4).$

 $C_5: \neg A(x_5, y_5) \lor A(y_5, x_5).$

Cinquième étape: Résolution (Instances)

 $C_{6}: \neg A(b,a) \lor \neg E(b,a).$ $C_{1}[b/x_{1};a/y_{1}]$ $C_{7}: A(a,b)$ $C_{3}[b/y_{3}]$ $C_{8}: E(b,a)$ $C_{4}[b/w_{4}]$ $C_{9}: \neg A(a,b) \lor A(b,a).$ $C_{4}[b/w_{4}]$ $C_{10}: \neg A(b,a)$ Res (C_{6},C_{8}) $C_{11}: A(b,a)$ $C_{12}: \bot.$

Par le théorème de correction de la résolution, on déduit que l'ensemble des clauses est insatisfaisable. Donc l'ensemble des formules $\{a, b, c, d\}$ est contradictoire. **Fin de la solution**

Remarque On peut faire la cinquième étape, en utilisant l'unification.

Cinquième étape: Résolution (Unification)

 $C_6: A(y_3, a)$ Res (C_5, C_3) MGU= $\{x_5 \leftarrow a; y_5 \leftarrow y_3\}$

 $C_7: \neg E(y_3, a)$ Res (C_6, C_1) MGU= $\{x_1 \leftarrow y_3; y_1 \leftarrow a\}$

 $C_8: \perp$. Res (C_7, C_4) MGU= $\{y_3 \leftarrow b; w_4 \leftarrow a\}$