Exercise 2. Determine which of the following statements are true for all sets A, B, C, D.

(a)
$$A \subset B$$
 and $A \subset C \iff A \subset (B \cup C)$

(b)
$$A \subset B$$
 or $A \subset C \iff A \subset (B \cup C)$

(c)
$$A \subset B$$
 and $A \subset C \iff A \subset (B \cap C)$

(d)
$$A \subset B$$
 or $A \subset C \iff A \subset (B \cap C)$

(e)
$$A - (A - B) = B$$

(f)
$$A - (B - A) = A - B$$

(g)
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

(h)
$$A \cup (B - C) = (A \cup B) - (A \cup C)$$

(i)
$$(A \cap B) \cup (A - B) = A$$

(j)
$$A \subset C$$
 and $B \subset D \implies A \times B \subset C \times D$

- (k) The converse of (j)
- (1) The converse of (j), assuming that A and B are nonempty

(m)
$$(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$$

(n)
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

(o)
$$A \times (B - C) = (A \times B) - (A \times C)$$

(p)
$$(A - B) \times (C - D) = (A \times C - B \times C) - A \times D$$

(q)
$$(A \times B) - (C \times D) = (A - C) \times (B - D)$$

Proof.

(a) False.

 $A \subset B$ and $B \subset B \cup C$, so $A \subset (B \cup C)$, and we have $(A \subset B)$ and $A \subset C \implies A \subset (B \cup C)$. Take $A = \{1, 2, 3\}, B = \{1, 2\}, C = \{3\}$. Then $A \subset (B \cup C)$, but neither $A \subset B$ nor $A \subset C$, so the converse is false.

(b) False.

 $A \subset B$ and $B \subset B \cup C$, so $A \subset (B \cup C)$, and we have $(A \subset B)$ or $A \subset C \Longrightarrow A \subset (B \cup C)$. The same counter-example shows that the converse is false here too.

(c) True.

Let $x \in A$. From $A \subset B$ we deduce $x \in B$. From $A \subset C$ we deduce $x \in C$. From both previous statements, we deduce $x \in B \cap C$. This being true for all $x \in A$, we deduce $(A \subset B \text{ and } A \subset C \implies A \subset (B \cap C))$. Conversely, from $A \subset (B \cap C)$ and $B \cap C \subset B$, we deduce $A \subset B$. From $A \subset (B \cap C)$ and $B \cap C \subset C$, we deduce $A \subset C$. From both, we deduce $(A \subset B \cap C) \implies A \subset B$ and $A \subset C$.

(d) False.

Take $A = \{1\}, B = \{1\}, C = \{2\}$. We have $(A \subset B \text{ or } A \subset C)$, but $A \not\subset B \cap C$ since $B \cap C = \emptyset$ and $A \neq \emptyset$. The converse is true, though. From $A \subset B \cap C$ and $B \cap C \subset B$ we deduce $A \subset B$. From it, we deduce $A \subset B$ or $A \subset C$.

(e) False.

Take $A = \{1, 2\}, B = \{2, 3\}$. Then $A - B = \{1\}$ and $A - (A - B) = \{2\} \neq B$. However $A - (A - B) \subset B$. Let $x \in A - (A - B)$. This is equivalent to $x \in A$ and $x \notin A - B$. Also, $x \notin A - B$ is equivalent to $x \notin A$ or $x \in B$. From both of these, we deduce that $A - (A - B) = A \cap B \subset B$.

(f) False.

Let $x \in B - A$. By definition of B - A, $x \in B$ and $x \notin A$. From this we deduce that $A \cap (B - A) = \emptyset$. Since the sets A and B - A are disjoint, A - (B - A) = A. Noting that $A - B \subset A$, we deduce that $A - B \subset A - (B - A)$.

(g) True.

Let $x \in A \cap (B - C)$. This is equivalent to $x \in A$ and $x \in B$ and $x \notin C$, so $A \cap (B - C) = (A \cap B) - C$. Let $x \in (A \cap B) - (A \cap C)$. This is equivalent to $x \in A$ and $x \in B$ and $(x \notin A)$ or $(x \notin C)$, which simplifies to $(x \in A)$ and $(x \in C)$ and $(x \in C)$ which is again $(x \in C)$.

(h) False.

Let $x \in (A \cup B) - (A \cup C)$. This is equivalent to $(x \in A \text{ or } x \in B)$ and $(x \notin A \text{ and } x \notin C)$, which simplifies to $x \in B$ and $x \notin A$ and $x \notin C$, so that $(A \cup B) - (A \cup C) = (B - C) - A \subset A \cup (B - C)$. Taking $A = \{1\}, B = \{2,3\}, C = \{3\}$, we have $A \cup (B - C) = \{1,2\}$ and $(A \cup B) - (A \cup C) = \{1,2,3\} - \{1,3\} = \{2\}$, so the reverse inclusion is false.

(i) True.

Both $A \cap B$ and A - B are subsets of A, so their union is, too, and we have $(A \cap B) \cup (A - B) \subset A$. Conversely, let $x \in A$. If we also

have $x \in B$, then $x \in A \cap B$. Otherwise, we have $x \in A$ and $x \notin B$, so that $x \in (A - B)$. It follows that $A \subset (A \cap B) \cup (A - B)$. With both inclusions, we conclude that $(A \cap B) \cup (A - B) = A$.

(j) True.

Let $(x, y) \in A \times B$. Then we have $x \in A$ and $y \in B$. From $x \in A$ and $A \subset C$ we deduce $x \in C$. From $y \in B$ and $B \subset D$ we deduce $y \in D$. From both, we deduce that $(x, y) \in C \times D$, so that $A \times B \subset C \times D$.

(k) False.

The converse of proposition (i) is $A \times B \subset C \times D \implies A \subset C$ and $B \subset D$. Take $A = \{a, b\}, B = \emptyset, C = \{a\}, D = \{1\}$. Then $A \times B = \emptyset$, $C \times D = \{(a, 1)\}$, so that $A \times B \subset C \times D$. However, $A \not\subset C$.

(l) True.

Suppose $A \times B \subset C \times D$, and that neither A nor C are empty. Let $(x,y) \in A \times B$. Then $x \in A$ and $y \in B$. From $A \times B \subset C \times D$ we deduce that $(x,y) \in C \times D$, so that $x \in C$ and $y \in D$. Summing up, we have $x \in A \implies x \in C$ and $y \in B \implies y \in D$, which is the definition of $A \subset C$ and $B \subset D$.

(m) False.

Since $A \subset A \cup C$ and $B \subset B \cup D$, we have $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$ Take $A = \{a\}, B = \{1\}, C = \{a, b\}, D = \{1, 2\}$. Then $(b, 1) \in (A \cup C) \times (B \cup D)$, but it is not an element of $(A \times C) \cup (B \times D)$.

(n) True.

Note that if any of the sets A, B, C, or D is empty, then the formula reduces to $\emptyset = \emptyset$, which is trivially true. Let $(x,y) \in (A \times B) \cap (C \times D)$. From $(x,y) \in A \times B$, we deduce $x \in A$ and $y \in B$. From $(x,y) \in C \times D$ we deduce $x \in C$ and $y \in D$. From both, we deduce $x \in A \cap C$ and $y \in B \cap D$, so that $(A \times B) \cap (C \times D) \subset (A \cap C) \times (B \times D)$.

Conversely, let $(x,y) \in (A \cap C) \times (B \cap D)$. We have $x \in A \cap C$ and $y \in B \cap D$. From $A \cap C \subset A$ and $B \cap D \subset B$, we deduce $x \in A$ and $y \in C$, so that $(x,y) \in A \times B$. From $A \cap C \subset C$ and $B \cap D \subset D$, we deduce $x \in C$ and $y \in D$, so that $(x,y) \in C \times D$. From both, we deduce $(A \cap C) \times (B \cap D) \subset (A \times B) \cap (C \times D)$.

(o) True.

If $A=\varnothing$ or $B=\varnothing$, the left-hand side is \varnothing , and the right-hand side translates to $\varnothing-D$ for some $D\subset X$. This expression is again equal to \varnothing since $\forall x\in X,\ x\notin\varnothing$. So the equality is true.

If $C = \emptyset$, then $A \times C = \emptyset$ and B - C = B, so the equality is again trivially true.

Otherwise, let $x \in A \times (B-C)$. This is equivalent to having $x \in A$ and $x \in B$ and $x \notin C$, and since $x \in A$ is again equivalent to $(x \in A$ and $x \in A)$, we have, by commutativity of "and", $(x \in A \text{ and } x \in B)$ and $(x \in A \text{ and } x \notin C)$. So the equality is true.

(p) True.

Let $(x, y) \in (A \times C - B \times C) - A \times D$. We have $(x, y) \in (A \times C - B \times C)$ and $(x, y) \notin A \times D$. $(x, y) \notin A \times D$ gives $(x \notin A \text{ or } y \notin D)$. $(x, y) \in (A \times C - B \times C)$ gives $x \in A$ and $x \notin B$ and $y \in C$.

Combining both, we get: $(x \notin A \text{ or } y \notin D)$ and $x \in A$ and $x \notin B$ and $y \in C$, which simplifies to $y \notin D$ and $x \in A$ and $x \notin B$ and $y \in C$, so that $(x,y) \in (A-B) \times (C-D)$

All the above transformations are equivalences, so $(A-B)\times(C-D)=(A\times C-B\times C)-A\times D$

(q) False.

Take $A = \{a\}, B = \{1, 2\}, C = \emptyset, D = \{1\}$. Then $A \times B - C \times D = \{(a, 1), (a, 2)\}$, but $(A - C) \times (B - D) = \{a\} \times \{2\} = \{(a, 2)\}$.

Let $(x, y) \in (A - C) \times (B - D)$. We have $x \in A$ and $x \notin C$ and $y \in B$ and $y \notin D$, from which we deduce $x \in A$ and $y \in B$ and $x \notin C$ and $y \notin D$. From $x \notin C$ and $y \notin D$, we deduce $(x, y) \notin C \times D$. Putting both parts together we get $(A - C) \times (B - D) \subset (A \times B) - (C \times D)$.