Crime Analysis and Forecasting: Integrating Machine Learning with Population Density and Economy

By

Mahabub Alam Khan
011181216
Suriya Najnine Nisamoni
011181131
Ahm Emramul Pasha
011181243
Sumiya Tabussum Dristy
011181237
Raj Shekhar Karmaker
011193149
Fatema
011193055

Submitted in partial fulfilment of the requirements of the degree of Bachelor of Science in Computer Science and Engineering

May 31, 2024

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
UNITED INTERNATIONAL UNIVERSITY

Abstract

This paper reviews the application of machine learning techniques for analyzing and predicting crime rates in view of socioeconomic characteristics such as economic indicators and population density. The primary aim of this research project is the development of a prediction model that could be used by policy makers or law enforcement agencies in order to guide allocation of resources as well as crime prevention program planning. However extensively researched, the sphere of crime analysis, As of yet no research has been done on how the two variables of population type and size link with crime forecast. This paper seeks to establish this relationship by looking at the connection between crime rates and socio-economic status indicators. This information is sourced from different platforms such as World Bank or Macrotrends. Therefore our main aim is to fill this void with full understanding on how human concentration in an area tends to affect its economic standing as reflected by statistical evidences obtained from various sources including World Bank or Macrotrends in order to provide more comprehensive details on the causes of criminal activities. We are using ML techniques in analyzing crime rate and predicting it based on the traditional approach in criminology. We apply regression analysis to understand the relationships between crime rate and those social economic forces. In this way prediction models can be evolved which are able to give a clear insight on how crime is evolving in its connection with such factors like density or economic condition. In various ways this study could noticeably promote society. A more complex link between density of population and economic position achievement as well as crime is also understood better. Therefore, this will lead to better distribution of resources, increase in the efficiency of preventing strategies for crime and, lastly make communities safe from harm.

Index Terms: Bangladesh, crime prediction, analysis, Bangladesh police, ACLED, crime report

Acknowledgements

Thanks to Almighty Allah. This work would not have been possible without the input and support of many people over the last trimesters. We would like to express our gratitude to everyone who contributed to it in some way or another. First, we would like to thank our academic advisor, Iftekharul Abedeen. Our sincere gratitude goes to our honorable class teacher Prof. Dr. Al-Sakib Khan Pathan. We also thank our group members, seniors, and classmates. Last but not least, we owe our family, including our parents, for their unconditional love and immense emotional support.

Table of Contents

Ta	Table of Contents v						
Li	st of	Figures	⁄i				
\mathbf{Li}	st of	Tables	ii				
1	Intr	roduction	1				
	1.1	Project Overview	1				
	1.2	Motivation	2				
	1.3	Objectives	2				
	1.4	Methodology	3				
	1.5	Project Outcome	3				
	1.6	Organization of the Report	4				
2	Bac	kground	5				
	2.1	Preliminaries	5				
	2.2	Literature Review	6				
	2.3	Summary	0				
3	Pro	ject Design 1	1				
	3.1	Detailed Methodology and Design	1				
	3.2	Project Plan	5				
	3.3	Task Allocation	5				
	3.4	Summary	6				
4	Dat	a Set	7				
	4.1	Dataset Analysis	7				
		4.1.1 Year vs Population	7				
		4.1.2 Year vs GDP Per Capital	8				
		4.1.3 Year vs Dacoity	0				
		4.1.4 Year vs Robbery	1				
		4.1.5 Year vs Speed Trial	2				
		4.1.6 Year vs Riot	3				

	4.1.7 Year vs Women Abuse	24
	4.1.8 Year vs Kidnapping	25
	4.1.9 Year vs Police Assault	26
	4.1.10 Year vs Burglary	27
	4.1.11 Year vs Theft	28
	4.1.12 Year vs Other Cases	29
	4.1.13 Year vs Arms Act	80
	4.1.14 Year vs Explosive	31
	4.1.15 Year vs Narcotics	32
	4.1.16 Year vs Smuggling	3
4.2	Dataset Preprocessing	34
	4.2.1 Arms Act	34
	4.2.2 Burglary	34
	4.2.3 Dacoity	35
	4.2.4 Explosive	35
	4.2.5 Kidnapping	35
	4.2.6 Murder	86
	4.2.7 Narcotics	86
	4.2.8 Other Cases	86
	4.2.9 Police Assault	37
	4.2.10 Riot	37
	4.2.11 Robbery	37
	4.2.12 Smuggling	8
	4.2.13 Speed Trial	8
	4.2.14 Theft	8
	4.2.15 Women and child Repression	39
_		_
_		0
5.1	•	10
5.2		11
5.3		12
5.4	Summary	51
Cor	plex Engineering 5	2
		52
		53
		54
6.1		55
Cor		6
7.1	Summary	66
7.2	Limitation	66

5

6

7

Table of Contents			Γ	able	of	Cont	$\frac{\text{ents}}{}$						
7.3	Future Work												57
References								59					

List of Figures

3.1	Crime Analysis Overview	13
3.2	Task Allocation	15
4.1	Year vs Population	18
4.2	Year vs GDP Per Capital	19
4.3	Year vs Dacoity.	20
4.4	Year vs Robbery	21
4.5	Year vs Speed Trial	22
4.6	Year vs Riot	23
4.7	Year vs Women Abuse	24
4.8	Year vs Kidnapping	25
4.9	Year vs Police Assault	26
4.10	Year vs Burglary	27
4.11	Year vs Theft	28
4.12	Year vs Other Cases	29
4.13	Year vs Arms Act	30
4.14	Year vs Explosive	31
4.15	Year vs Narcotics	32
4.16	Year vs Smuggling	33
5.1	Arms Act	43
5.2	Explosives	43
5.3	Narcotics	44
5.4	Police Assault	44
5.5	Murder	44
5.6	Dacoity	44
5.7	Kidnapping	44
5.8	Burglary	45
5.9	Other Cases	45
5.10	Riot	45
5.11	Robbery	45
5 12	Smuggling	46

List of Figures List of Figures

5.13	SpeedyTrial	46
5.14	Theft	46
5.15	Decreasing crimes/Woman and Child Repression	46
5.16	Protest	47
5.17	Protest_Event	47
5.18	Battles	48
5.19	BattlEvent	48
5.20	Riots	48
5.21	RiotEvent	48
5.22	ExplosionRemoteViolence	49
5.23	$Explosion Remote Violent Event \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	49
5.24	RemoteViolence	49
5.25	RemoteViolenceEvent	49
5.26	Strategic Development	50
5.27	StrategicDevelopmentEvent	50
5.28	Violence Against Civilians	50
5.29	ViolenceAgainstCivilianseEvent	50
5.30	Heat Map	51

List of Tables

6.1	Mapping with complex problem-solving	53
6.2	Complex Engineering Activities	54

Chapter 1

Introduction

In a rapidly changing world, studying and reducing crime contribute to the enhancement of public safety and improvement of society. This paper is mainly concerned with the issues of crime analysis as predicted by machine learning in conjunction with two significant factors; namely population dynamics and economic development. The main objective in our homeland is therefore; to observe, study it fully; even foresee its trends. This research seeks to provide intelligence on how societies can be better secured through convergence of technology, demographic data and economic indices; thus enabling policymakers shape up responsive mechanisms against crime onset and haphazardness in neighborhoods in conjunction with members constituting such establishment.

1.1 Project Overview

This project tries to look into how to analyse and forecast crime, with a focus on how to use machine learning techniques along with population change and economic growth as important factors in our country. We want to use complex algorithms to find hidden patterns in crime data and make prediction models that show how changes in population, the economy, and criminal activity are all connected in complex ways. Our goal is to give law enforcement and policymakers a full picture of crime patterns through time series analysis and creative data analysis. This will allow them to take proactive steps for public safety and community development. Our project aims to provide useful tools for dealing with and reducing crime problems in our specific social and economic setting by combining ideas from different fields.

1.2 Motivation

This study was inspired by a profound insight into the importance of coming to terms to deal with the sticky issues of crime in our society. As technology changes With more crime to record than ever, as well as the fact that the layout of streets and the way cities are patrolled are updated rapidly, the old criteria for appraising crime become obsolete. Using a predictive system based around crime typelikelihood, population change and economic growth as inputs using machine learning as main drivers can create a new era in attracting crime prevention and community development efforts to act proactively rather than reactively. We pick up on thoughts on how to keep the public safer from the way predictive modelling are going to allow us to prevent crime in advance. If crime patterns are studied other side of how the population and economy are changing so much so fast, and that we offer to information valuable to authorities and public policy. We are undertaking this study with the aim of not only enhancing scholarly endeavors but also, and of greater importance, creating functional instruments for our communities to address and lessen the menace of crime. It is our expectation that such an approach will yield tangible utility in strengthening safety and resilience in different societies.

1.3 Objectives

There are clear goals that this project aims to accomplish, which are:

- 1. Prediction of Crime Patterns: Applying population and economic data in the development of machine learning models that can forecast crime occurrences in the future.
- **2.** Temporal Trend Analysis: Employing regression modeling techniques that look into crimes across different timespans.
- 3. Visualization of Key Statistics: Consequently conducting exploratory data analysis aimed at making city-specific essential crime stats visually appealing when displayed on a screen.
- **4. Collection of Decision-making Information:** Making wise decisions on how crime can be stopped by law enforcers and policy makers prompted for provision of important knowledge.
- 5. Examination of Crime and Economic Development Relationship: Influence of crime patterns, population transformations, and economic developments to society progress. The objectives of these objectives are to provide a deeper insight into crime patterns and to offer people interested in community safety measures valuable information to improve on the situation.

1.4 Methodology

This research project explores crime patterns in Bangladesh through a systemic approach involving use of varied machine-learning techniques. The main steps include:

Collection of Data: Acquire a range of datasets from the Bangladesh Police website and ACLED which consist of crime records, population data or any other economic indices that are within the regions chosen.

Conducting Data Preprocessing: The gathered data should be cleaned and preprocessed in order to be consistent and dependable. This implies correcting any missing values or anomalies that could potentially affect how effectively the model performs.

Feature Engineering: Select pertinent parts of the dataset while excluding superfluous ones, concentrating on factors like crime rates, population growth rates and some indicators of Bangladeshi economic performance.

Train the models ready: Take the processed data set and train each selected model, ensuring that the tunable parameters are good enough for performance and accuracy.

Review the models: Use indexes such as R-square, Mean Square Error(MSE) and Mean Absolute Error(MAE) for measuring how each model works, and evaluate its ability to identify crime trends within Bangladesh with some confidence.

1.5 Project Outcome

Upon completion of our study, we have generated valuable findings which are useful for law enforcement as well as for people living in the developing countries who want to know why it matters so much to examine crime. Here are the expected results:

Advanced Predictive Models: Utilize sophisticated machine learning algorithms to investigate crimes the way they involve demographic movements together with economic changes. The function of these models is to empower police departments with advance information that will enable them plan strategies as well as allocate resources.

Informing Law-Enforcement Systems: Providing them with intelligence-driven actions which enable them prevent any form of crime. This is due to the fact that when machine learning is combined with demographic and economic factors in the law enforcement strategies, it works better.

Insights on community development: this aspects are such as crime patterns, population changes, and how they relate to the level of economic growth in the third world countries. The intention of this work is to offer practical data such as policy makers can apply in their community development processes which will eventually lead to the betterment of society's wellbeing.

Enhancing the security of members: Through application of machine learning methods, the project is targeted at advancing the safety of the community by proactively identifying criminality trends. This finding is of great significance in ensuring safety and improving people's living standards.

Fostering human capital in underdeveloped economies: Concentration on the development of crime analysis skills, by sharing wisdom gained regarding crime investigation. Consequently, the project aims at enabling these Nations adopt innovative methods of curbing crime through machine learning techniques by also presenting the benefits it get from combining this with demographical and economic information.

To put it briefly, the project conforms with the broader quest of employing machine learning for human welfare. The research wants to significantly and permanently change our perception and approach towards criminal activities. This is possible by educating developing nations on the potential changes brought by insights derived from statistics and assisting to prevent crimes in advance by the police.

1.6 Organization of the Report

There is a title page. Then there is the abstract and the acknowledgment. Then, there is a table of contents. In the table of contents, the first chapter, Introduction, has a section named Project overview, a section called Motivation, a section called Objectives, a section called Methodology, Chapter two is Background, and there is a Preliminaries section. Then, the literature review section. Inside the literature review section. The next chapter, the name is Dataset. Then there is the Complex engineering problem chapter. The last chapter is the conclusion chapter. Two sections are there which are a Summary and future work.

Chapter 2

Background

To fully understand the context and impact of this undertaking, preliminary study is required. The goal of this study is to look at historical crime and violence trends and patterns in order to better assess current data. When we investigate details such as historical events and socioeconomic conditions, we can better understand the results of regression analysis, showing their underlying causes. This basic information is necessary when developing crime-prevention tactics and policies.

2.1 Preliminaries

Regression: regression analysis helps to understand how changes in independent variables influence the dependent variable, enabling both explanation and prediction of outcomes.

Confusion Matrix: A confusion matrix is a table used to evaluate the performance of a classification algorithm. It summarizes the outcomes of the classification process by comparing the actual (true) labels with the predicted labels. Each entry in the matrix represents the number of occurrences of a specific combination of predicted and actual classifications. The confusion matrix provides a detailed breakdown of the performance of a classification model, allowing for the identification of specific types of prediction errors and guiding improvements in model accuracy. Here we use R-Square, MSE, MAE.

Population: A population is the comprehensive group that researchers are interested in studying and about which they aim to make generalizations or gather insights.

GDP: GDP is a crucial metric in economics that provides a comprehensive snapshot of a country's economic activity and health.

2.2 Literature Review

For our research, there are some related literature reviews which include the Author's Year Site, Study Description, Method Adopted, and Results.

Authors Year Site	Methodology	Dataset	Result
Bidun Christiana Obagbuwa and Ademola P. Abidoye Published 9 June 2021 [1]	The study uses the CRISP-DM methodology for data mining, including business understanding, data preparation, modeling, evaluation, and deployment	Crime data from South Africa's provinces, cov- ering 27 crime cate- gories, is utilized. Popu- lation and density infor- mation are included.	A linear regression model predicts crime occurrence based on population and density. The model explains 84. 7% of the variability in crime rates (R-squared = 0.847).
Luiz G.A. Alves a,, Haroldo V. Ribeiro b, Francisco A. Rodrigues 2018 [2]	The study employs the random forest algorithm for predicting crime and quantifying the influence of urban indicators on homicides. This machine learning approach is chosen due to its ability to handle nonlinear relationships and multicollinearity in urban data.	The dataset includes urban indicators from all Brazilian cities, such as child labor, elderly population, GDP, illiteracy, family income, population, sanitation, unemployment, traffic accidents, suicides, and the number of homicides in the year 2000. These indicators are used to predict the number of homicides 10 years later.	The random forest model achieved up to 97% accuracy in crime prediction. Unemployment and illiteracy were found to be the most important variables for describing homicides in Brazilian cities. The model's robustness was confirmed as the importance of urban indicators remained stable under slight changes in the dataset.
Sridharan S1, Srish N2, Vi- gneswaran S3 and Santhi P4 15 February 2024[3]	Statistical and machine learning models (K-NN, Naive Bayes, Regression) analyze crime patterns using demographic, economic, social, victim, and geographic variables.	Indian crime data (2001-2016) includes over 500 entries. Focus on women, children, and IPC cases.	"Indian Crime Analysis" predicts crime ratios (2017-2020) with K-NN accuracy, identifying trend-changing years.
Rabia Musheer Aziz, Aftab Hussain, Prajwal Sharma, Pavan Kumar 2022[4]	The paper proposes a machine learning-based soft computing regression analysis approach for predicting crime data in India1. It utilizes various regression algorithms like Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Support Vector Regression (SVR), and Random Forest Regression (RFR) to build predictive models 23.	The study used district-wise spatial-temporal crime data from 2001 to 2012, collected from the official website of the National Crime Records Bureau (NCRB)5. The data included various types of crimes such as murder, rape, kidnapping, abduction, riots, and more, across different regions and states in India.	The Random Forest Regression (RFR) model yielded the best fit for region-wise total Indian Penal Code (IPC) crime prediction with an adjusted R squared value of 0.9631551 and a Mean Absolute Percentage Error (MAPE) of 0.20274374. For region-wise theft crime count prediction, the RFR model also performed best with an adjusted R squared value of 0.966604 and a MAPE of 0.16571.

Authors Year Site	Methodology	Dataset	Result
Seema Aggarwal, Geeta Aggarwal and Manisha Bans2023 [5]	The study analyzes real-life data on crimes against women in India using statistical tests and visualization techniques.	The study analyzes real-life data on crimes against women in India using statistical tests and visualization techniques.	The study analyzes real-life data on crimes against women in India using statistical tests and visualization techniques.
Md Pavel Rahman, A.K.M Ifranul Hoque, Md. Faysal Ahmed, Iftekhirul, Ashraful Alam, Nahid Hossain 2022 [6]	Machine learning algorithms analyze crime patterns in Bangladesh using data from the Bangladesh Police website and ACLED. Decision Trees, Random Forest, and MLP models are used.	Crime statistics from 2010 to 2018 are collected from the Bangladesh Police website. ACLED data provides event types and geolocations	Successful crime trend predictions for 2019 using the Bangladesh Police dataset. Random Forest performs best for ACLED predictions in 2021. Law enforcement can benefit from this study.
MA Awal, J Rabbi, SI Hossain, MMA Hashem[7]	The paper provides an overview of the latest advancements in sentiment analysis. It covers preprocessing techniques, feature extraction methods, and classification techniques. The authors discuss machine learning, deep learning, and ensemble learning approaches.	The paper discusses widely used sentiment analysis datasets. Unfortunately, the specific datasets are not mentioned in the abstract. However, sentiment analysis datasets are commonly used for training and evaluating models.	The proposed hybrid semi-supervised method achieved the highest accuracy of 87.3% on the English SemEval 2017 dataset. The method was evaluated on three benchmark datasets using multiple classifiers, including machine learning, neural network, and ensemble learning. Overall, this paper provides valuable insights into sentiment analysis and serves as a resource for researchers and practitioners in the field
Amin Biswas ,Sarnali Basak (2019)[8]	The study employs a quantitative research approach. This means that it relies on statistical analysis and computational models to test hypotheses and predict outcomes. Researchers collect data from various sources, ensuring a diverse and comprehensive sample for robust findings.	The paper analyzes a large-scale dataset. This dataset likely contains information relevant to the research question. The dataset's size and diversity contribute to the study's validity.	The study concludes with significant findings. These findings could be related to accuracy, performance, or other relevant metrics.

Authors Year Site	Mathadalamı	Dataset	Result
Md. Abdul Awal, Jakaria Rabbi, Sk. Imran Hossain, and M. M. A. Hashem (2016)[7]	Methodology The study uses linear regression to forecast crime trends in Bangladesh12. It involves collecting crime data, training the linear regression model, and then using the model to predict future crime occurrences.	The dataset is sourced from the Bangladesh police website and contains aggregated counts of various crimes 4. It is divided into metropolitan and divisional region data, with 840 instances across the country.	The linear regression model was trained and used to forecast crimes like dacoit, robbery, murder, and others for 2016 The paper presents the accuracy of these forecasts and discusses the increase in crime rates alongside population growth.
Saqueeb Abdullah1, Farah Idid Nibir2, Suraiya Salam3, Akash Dey4, Md Ashra- ful Alam5 and Md Tanzim Reza (2020)[9]	The study applied machine learning algorithms (KNN, LR, RFC, DTC) to crime and victim data. It predicted criminal attributes like age, sex, race, and crime method.	Data were collected from the Bangladesh Police, including crime type, victim details, and area. Preprocessing handled missing values and encoded categorical data.	RFC achieved the highest accuracy (83.3%) for crime method prediction, while KNN had the lowest (58.2%) for criminal age range prediction. Further improvements are needed for a reliable system.
WAJIHA SAFAT, SOHAIL AS- GHAR, (Member, IEEE), AND SAIRA AN- DLEEB GILLANI (2021)[10]	The study applied various machine learning algorithms (e.g., logistic regression, SVM, Naïve Bayes, KNN, decision tree, MLP, random forest, XG-Boost) and deep learning techniques (e.g., LSTM, ARIMA) for crime data analysis and forecasting.	Utilized crime datasets from Chicago and Los Angeles, focusing on 35 different crime types and various attributes (e.g., date, location, type of crime). Data preprocessing handled cleaning and transformation.	Algorithms were evaluated using metrics like accuracy, precision, recall, and F1-score. XGBoost performed best for Chicago, while KNN excelled for Los Angeles. LSTM provided

2.3 Summary

Crime analysis and prediction using regression models involve understanding and forecasting crime patterns by analyzing the influence of various factors on criminal activities. Basically Regression analysis helps explain and predict outcomes by understanding how independent variables influence a dependent variable. A confusion matrix evaluates classification algorithms by comparing actual and predicted labels, providing detailed model performance and guiding improvements using metrics like R-Square, MSE, and MAE. Population refers to the comprehensive group of interest in a study, while GDP measures a country's economic activity and health. we have studied 15 papers and we can get see that Several studies have used machine learning to predict crime patterns. Obagbuwa and Abidoye (2021) achieved an R-squared of 0.847 using linear regression on South African data. Alves et al. (2018) used random forest on Brazilian data, reaching 97% accuracy in homicide predictions, with unemployment and illiteracy as key factors. Sridharan et al. (2024) applied K-NN, Naive Bayes, and regression to Indian data, effectively predicting crime ratios. Aziz et al. (2022) found Random Forest best for Indian Penal Code crime predictions with an adjusted R-squared of 0.966. Aggarwal et al. (2023) identified high-crime states in India. Rahman et al. (2022) used various models on Bangladeshi data, with Random Forest excelling. Awal et al. (2016) forecasted Bangladeshi crime rates using linear regression. Abdullah et al. (2020) achieved high accuracy with RFC on Bangladeshi data. Safat et al. (2021) used diverse techniques on US data, with XGBoost and KNN excelling for Chicago and Los Angeles, and LSTM and ARIMA providing trend insights.

Chapter 3

Project Design

The project's design is crucial since it establishes the methodology and specifies how the research will be carried out (systematically). A well-designed project will have well-defined objectives, a defined scope, appropriate data sources identified, and chosen analytical techniques. As a result, by carefully planning stronger controls, dependable and accurate data can be ensured, allowing for a more thorough analysis of relationships involving socioeconomic position and demographics, even though violent crimes are still classified as such.

3.1 Detailed Methodology and Design

Dataset: Machine learning depends on historical data for understanding past trends, patterns and relationships. In the case of crime analysis, predictions generated by different machine learning models are primarily based on past data related to crimes committed among other factors such as population demographics as well as economic factors. Past data is used in developing predictive models which are more precise compared to others when it comes to machine learning technologies. The utilization of historical data has enabled machine learning algorithms to unveil complex relationships and patterns within data. Through the examination of previous crime trends alongside socio-economic factors and population changes, patterns that have occurred before with potential impacts on future occurrences are identified using algorithms. We gathered historical crime data from the official website of the Bangladesh Police from 2010-2019. Demographics on Bangladesh came from "Worldometer" which also estimated population figures for the same years as mentioned earlier on demographic information above. World Bank database provided us with economic details such as GDP estimates. We also obtained information from the ACLED website. The dataset known as the Armed Conflict Location & Event Data Project(ACLED) is an itemized and regularly-employed one to the world for political violence and protest events. Bangladesh's homicide trends from 2001 up to 2020 have been scrutinized through using ACLED for this research. It has substantial coverage in terms of geographical area and specific types of incidents that occur, hence making it important in analyzing of crime data. The ACLED dataset is obtained from several credible sources, which include news articles, NGO reports and government security briefs. The subset that was used for the research is only about one country Bangladesh, with a total registered count of 30,645 cases. Hence there is enough data for study purposes. Once we have put together the datasets, we are given a total of fifteen separate crime datasets which run from 2010 through 2019 where the dataset features are years, population size and GDP, accompanied by the target variable being crime. Machine learning depends on historical data for understanding past trends, patterns and relationships. In the case of crime analysis, predictions generated by different machine learning models are primarily based on past data related to crimes committed among other factors such as population demographics as well as economic factors. Past data is used in developing predictive models which are more precise compared to others when it comes to machine learning technologies. The utilization of historical data has enabled machine learning algorithms to unveil complex relationships and patterns within data. Through the examination of previous crime trends alongside socio-economic factors and population changes, patterns that have occurred before with potential impacts on future occurrences are identified using algorithms. We gathered historical crime data from the official website of the Bangladesh Police from 2010-2019. Demographics on Bangladesh came from "Worldometer" which also estimated population figures for the same years as mentioned earlier on demographic information above. World Bank database provided us with economic details such as GDP estimates. We also obtained information from the ACLED website. The dataset known as the Armed Conflict Location & Event Data Project(ACLED) is an itemized and regularlyemployed one to the world for political violence and protest events. Bangladesh's homicide trends from 2001 up to 2020 have been scrutinized through using ACLED for this research. It has substantial coverage in terms of geographical area and specific types of incidents that occur, hence making it important in analyzing of crime data. The ACLED dataset is obtained from several credible sources, which include news articles, NGO reports and government security briefs. The subset that was used for the research is only about one country Bangladesh, with a total registered count of 30,645 cases. Hence there is enough data for study purposes. Once we have put together the datasets, we are given a total of fifteen separate crime datasets which run from 2010 through 2019 where the dataset features are years, population size and GDP, accompanied by the target variable being crime.

Dataset-1[Bangladesh Police Website]:

Variable Name	Description
Year	Time interval yearly (int)
Population	Total population of a country (int)
GDP	GDP per head (int)
Crime	Crime Crime rate of a specific crime(int)

Variable Name	Description
Year	The year in which the event occurred, ranging
	from 2001 to 2020.
BD_GDP	Bangladesh's Gross Domestic Product (GDP) for
	the corresponding year, providing an economic
	context for the analysis.
BD_GDP_GR	The growth rate of Bangladesh's GDP, which can
	indicate economic fluctuations and their potential
	impact on crime rates.
AvgPopulationdensity	The average population density, offering insights
	into the relationship between population concen-
	tration and crime incidents.
EVENT_TYPE	Event type, which categorizes the nature of each
	event.

Dataset-2[the Armed Conflict Location & Event Data Project (ACLED)]

The section serves as a foundation for precise assessment and construction of prediction models in criminology through the emphasis of historical data in machine learning and detailed overview of the corpus assembled. After creating and setting up the data we split it into two parts so as to gauge how well your models function when analyzing different datasets this way there is some part of information that could still remain fresh. In our research we have followed the standard division for any machine learning dataset where 80% is allocated as training dataset while 20% is for testing dataset

Figure 3.1: Crime Analysis Overview.

Machine learning models are trained using historical data which is the training set enabling them understand patterns and relationships between input features (for example crime events, population demographics, GDP) and the target variable such as crime rates. The test set is used to evaluate the generalization performance of trained models in isolation. Independent researchers can evaluate whether their models have the potential to make correct predictions from previously unknown data.

Proposed Model (Regression): In machine learning, multiple regression is a statistical technique that is used to establish links between more than one predictor factor and one target variable. This paper on crime analysis in Bangladesh has employed multiple regression in modeling relationships between crime rates and explanatory variables including population, GDP, and year. We selected Multiple regression for several reasons:

Numeric Data: The dataset consists of numeric variables (population, GDP, year) and aims to predict a numeric target (crime rate), making multiple regression an appropriate choice.

Establishing Relationships: Multiple regression allows for the examination of how changes in one or more predictor variables (e.g., population, GDP) are associated with changes in the target variable (crime rate). This helps in understanding the influence of socio-economic factors on crime dynamics.

Interpretability: The coefficients of multiple regression provide insights into the strength and direction of the relationships between predictor variables and the target variable, enabling interpretability of the model.

In multiple regression, the relationship between the predictor variables (X) and the target variable (Y) is represented by the following hyperplane equation:

$$Y = \omega_0 + \omega_1 X_1 + \omega_2 X_2 + \dots + \omega_n X_n$$

$$= \omega_0 + \sum_{i=1}^n \omega_i \cdot X_i$$
(3.1)

Where:

- Y is the target variable (crime rate).
- X_1, X_2, \dots, X_n are the predictor variables (year, population, GDP).
- ω_0 is the intercept term (constant).
- $\omega_1, \omega_2, \dots, \omega_n$ are the coefficients associated with each predictor variable, representing the change in the target variable for a one-unit change in the predictor variable, holding other variables constant.

3.2 Project Plan

The duration of Fydp II is 17 weeks in total. Therefore, over these 17 weeks, we will primarily be working on six tasks: reviewing the literature; gathering relevant data sets for our model; pre-processing the data sets in order to train the model; developing the model; assessing the obtained results; and, finally, preparing the report. Therefore, in order to properly understand what has already been done in this sector, we must first read a large number of related articles that are similar to our own. Here, we spend four weeks, and everyone in our group contributes. We must gather our data for the dataset in order to proceed to the second phase. Meanwhile, to obtain further ideas, a few members of our team continue to analyze relevant works in this sector. Collecting data from different sources takes about 3 weeks. We then have to process the datasets we have collected. It requires around two weeks. Between weeks seven and eight, we pre-processed our data set. Next, we concentrated on building a model. One of the primary roles is this. It takes around five weeks to create the models for our data sets. Most of the time is spent on this step. Next, we put our model-derived results to the test. Between weeks 14 and 16, test results are completed in three weeks. Finally, after testing every outcome, we began writing the research report. Every member of our team participates in report authoring. We schedule many meetings with our helpful mentor along our whole journey to address any questions or concerns.

3.3 Task Allocation

We follow this gantt chart to complete our research properly.

Figure 3.2: Task Allocation.

3.4 Summary

The duration of Fydp II is 17 weeks in total. Therefore, over these 17 weeks, we will primarily be working on six tasks: reviewing the literature; gathering relevant data sets for our model; pre-processing the data sets in order to train the model; developing the model; assessing the obtained results; and, finally, preparing the report. Therefore, in order to properly understand what has already been done in this sector, we must first read a large number of related articles that are similar to our own. Here, we spend four weeks, and everyone in our group contributes. We must gather our data for the dataset in order to proceed to the second phase. Meanwhile, to obtain further ideas, a few members of our team continue to analyze relevant works in this sector. Collecting data from different sources takes about 3 weeks. We then have to process the datasets we have collected. It requires around two weeks. Between weeks seven and eight, we pre-processed our data set. Next, we concentrated on building a model. One of the primary roles is this. It takes around five weeks to create the models for our data sets. Most of the time is spent on this step. Next, we put our model-derived results to the test. Between weeks 14 and 16, test results are completed in three weeks. Finally, after testing every outcome, we began writing the research report. Every member of our team participates in report authoring. We schedule many meetings with our helpful mentor along our whole journey to address any questions or concerns.

Chapter 4

Data Set

4.1 Dataset Analysis.

Our dataset was compiled from the websites of the Bangladesh Police and ACLED. The data for the Bangladesh Police website spans the years 2010 to 2019 and includes 15 attributes. For ACLED, we obtained 30,000 samples.

4.1.1 Year vs Population

Year	Total Population
2000	129193327
2001	131670484
2002	134139826
2003	136503206
2004	138789725
2005	140912590
2006	142628831
2007	144135934
2008	145421318
2009	146706810
2010	148391139
2011	150211005
2012	152090649
2013	154030139
2014	155961299
2015	157830000
2016	159784568
2017	161793964
2018	163683958
2019	165516222
2020	167420951
2021	169356251
2022	171186372

Year and Population Graph

Figure 4.1: Year vs Population.

4.1.2 Year vs GDP Per Capital

Year	GDP Per Capital
2000	330
2001	310
2002	190
2003	290
2004	350
2005	490
2006	540
2007	590
2008	510
2009	410
2010	440
2011	520
2012	520
2013	470
2014	470
2015	530
2016	580
2017	530
2018	610
2019	670
2020	230
2021	570
2022	600

Figure 4.2: Year vs GDP Per Capital.

4.1.3 Year vs Dacoity

Year	Dacoity
2010	656
2011	650
2012	593
2013	613
2014	651
2015	492
2016	408
2017	336
2018	262
2019	32

Figure 4.3: Year vs Dacoity.

4.1.4 Year vs Robbery

2010 1059 2011 1069 2012 964 2013 1021 2014 1155 2015 933 2016 722 2017 657
2012 964 2013 1021 2014 1155 2015 933 2016 722
2013 1021 2014 1155 2015 933 2016 722
2014 1155 2015 933 2016 722
2015 933 2016 722
2016 722
2017
2017 657
2018 562
2019 68

Figure 4.4: Year vs Robbery.

4.1.5 Year vs Speed Trial

Year	Speed Trial
2010	1666
2011	1863
2012	1907
2013	1896
2014	1716
2015	1549
2016	1052
2017	1045
2018	922
2019	48

Speedy Trial

Figure 4.5: Year vs Speed Trial.

4.1.6 Year vs Riot

Year	Riot
2010	130
2011	109
2012	94
2013	172
2014	79
2015	93
2016	53
2017	23
2018	26
2019	1

Figure 4.6: Year vs Riot.

4.1.7 Year vs Women Abuse

Year	Women Abuse
2010	17752
2011	21389
2012	20947
2013	19601
2014	21291
2015	21210
2016	18446
2017	17073
2018	16253
2019	1139

Women and Child Repression

Figure 4.7: Year vs Women Abuse.

4.1.8 Year vs Kidnapping

Year	Kidnapping
2010	870
2011	792
2012	850
2013	879
2014	920
2015	805
2016	639
2017	509
2018	444
2019	46

Figure 4.8: Year vs Kidnapping.

4.1.9 Year vs Police Assault

Year	Police Assault
2010	473
2011	581
2012	659
2013	1257
2014	702
2015	634
2016	521
2017	543
2018	811
2019	69

Figure 4.9: Year vs Police Assault

4.1.10 Year vs Burglary

Year	Robbery
2010	3101
2011	3134
2012	2927
2013	2762
2014	2809
2015	2495
2016	2213
2017	2163
2018	2137
2019	174

Figure 4.10: Year vs Burglary

4.1.11 Year vs Theft

Year	Theft
2010	8529
2011	8873
2012	8598
2013	7882
2014	7660
2015	6821
2016	6110
2017	5833
2018	5561
2019	494

Figure 4.11: Year vs Theft

4.1.12 Year vs Other Cases

Year	Other Cases
2010	87139
2011	88355
2012	96112
2013	93930
2014	90400
2015	84117
2016	77747
2017	74645
2018	69736
2019	5428

Figure 4.12: Year vs Other Cases

4.1.13 Year vs Arms Act.

Year	Arms Act
2010	1575
2011	1269
2012	1511
2013	1517
2014	2023
2015	2079
2016	2291
2017	2208
2018	2515
2019	174

Figure 4.13: Year vs Arms Act

4.1.14 Year vs Explosive

2010 253 2011 207 2012 289 2013 1007	Year	Explosive
2012 289 2013 1007	2010	253
2013 1007	2011	207
	2012	289
2014	2013	1007
2014 520	2014	520
2015 725	2015	725
2016 487	2016	487
2017 362	2017	362
2018 1310	2018	1310
2019 30	2019	30

Figure 4.14: Year vs Explosive

4.1.15 Year vs Narcotics

Year	Narcotics
2010	29344
2011	31696
2012	37264
2013	35832
2014	42501
2015	47666
2016	62208
2017	98984
2018	112549
2019	9069

Narcotics

Figure 4.15: Year vs Narcotics

4.1.16 Year vs Smuggling

Year	Smuggling
2010	6363
2011	5714
2012	6578
2013	6437
2014	6788
2015	6179
2016	4680
2017	5599
2018	4501
2019	361

Figure 4.16: Year vs Smuggling

4.2 Dataset Preprocessing.

We split up the data and created a subset to determine the relationship between crime and population.

4.2.1 Arms Act

Year	Total Population	GDP Per Capital	Arms Act
2010	148391139	440	1575
2011	150211005	520	1269
2012	152090649	520	1511
2013	154030139	470	1517
2014	155961299	470	2023
2015	157830000	530	2079
2016	159784568	580	2291
2017	161793964	530	2208
2018	163683958	610	2515
2019	165516222	670	174

4.2.2 Burglary

Year	Total Population	GDP Per Capital	Burglary
2010	148391139	440	3101
2011	150211005	520	3134
2012	152090649	520	2927
2013	154030139	470	2762
2014	155961299	470	2809
2015	157830000	530	2495
2016	159784568	580	2213
2017	161793964	530	2163
2018	163683958	610	2137
2019	165516222	670	174

4.2.3 Dacoity

Year	Total Population	GDP Per Capital	Dacoity
2010	148391139	440	656
2011	150211005	520	650
2012	152090649	520	593
2013	154030139	470	613
2014	155961299	470	651
2015	157830000	530	492
2016	159784568	580	408
2017	161793964	530	336
2018	163683958	610	262
2019	165516222	670	32

4.2.4 Explosive

Year	Total Population	GDP Per Capital	Explosive
2010	148391139	440	253
2011	150211005	520	207
2012	152090649	520	289
2013	154030139	470	1007
2014	155961299	470	520
2015	157830000	530	725
2016	159784568	580	487
2017	161793964	530	362
2018	163683958	610	1310
2019	165516222	670	30

4.2.5 Kidnapping

Year	Total Population	GDP Per Capital	Kidnapping
2010	148391139	440	870
2011	150211005	520	792
2012	152090649	520	850
2013	154030139	470	879
2014	155961299	470	920
2015	157830000	530	805
2016	159784568	580	639
2017	161793964	530	509
2018	163683958	610	444
2019	165516222	670	46

4.2.6 Murder

Year	Total Population	GDP Per Capital	Murder
2010	148391139	440	3988
2011	150211005	520	3966
2012	152090649	520	4114
2013	154030139	470	4393
2014	155961299	470	4514
2015	157830000	530	4037
2016	159784568	580	3591
2017	161793964	530	3549
2018	163683958	610	3830
2019	165516222	670	351

4.2.7 Narcotics

Year	Total Population	GDP Per Capital	Narcotics
2010	148391139	440	29344
2011	150211005	520	31696
2012	152090649	520	37264
2013	154030139	470	35832
2014	155961299	470	42501
2015	157830000	530	47666
2016	159784568	580	62208
2017	161793964	530	98984
2018	163683958	610	112549
2019	165516222	670	9069

4.2.8 Other Cases

Year	Total Population	GDP Per Capital	Other Cases
2010	148391139	440	87139
2011	150211005	520	88355
2012	152090649	520	96112
2013	154030139	470	93930
2014	155961299	470	90400
2015	157830000	530	84117
2016	159784568	580	77747
2017	161793964	530	74645
2018	163683958	610	69736
2019	165516222	670	5428

4.2.9 Police Assault

Year	Total Population	GDP Per Capital	Police Assault
2010	148391139	440	473
2011	150211005	520	581
2012	152090649	520	659
2013	154030139	470	1257
2014	155961299	470	702
2015	157830000	530	634
2016	159784568	580	521
2017	161793964	530	543
2018	163683958	610	811
2019	165516222	670	69

4.2.10 Riot

Year	Total Population	GDP Per Capital	Riot
2010	148391139	440	130
2011	150211005	520	109
2012	152090649	520	94
2013	154030139	470	172
2014	155961299	470	79
2015	157830000	530	93
2016	159784568	580	53
2017	161793964	530	23
2018	163683958	610	26
2019	165516222	670	1

4.2.11 Robbery

Year	Total Population	GDP Per Capital	Robbery
2010	148391139	440	1059
2011	150211005	520	1069
2012	152090649	520	964
2013	154030139	470	1021
2014	155961299	470	1155
2015	157830000	530	1155
2016	159784568	580	722
2017	161793964	530	657
2018	163683958	610	562
2019	165516222	670	68

4.2.12 Smuggling

Year	Total Population	GDP Per Capital	Smuggling
2010	148391139	440	6363
2011	150211005	520	5714
2012	152090649	520	6578
2013	154030139	470	6437
2014	155961299	470	6788
2015	157830000	530	6179
2016	159784568	580	4680
2017	161793964	530	5599
2018	163683958	610	4501
2019	165516222	670	361

4.2.13 Speed Trial

Year	Total Population	GDP Per Capital	Speed Trial
2010	148391139	440	1666
2011	150211005	520	1863
2012	152090649	520	1907
2013	154030139	470	1896
2014	155961299	470	1716
2015	157830000	530	1549
2016	159784568	580	1052
2017	161793964	530	1045
2018	163683958	610	922
2019	165516222	670	48

4.2.14 Theft

Year	Total Population	GDP Per Capital	Arms Act
2010	148391139	440	8529
2011	150211005	520	8873
2012	152090649	520	8598
2013	154030139	470	7882
2014	155961299	470	7660
2015	157830000	530	6821
2016	159784568	580	6110
2017	161793964	530	5833
2018	163683958	610	5561
2019	165516222	670	494

4.2.15 Women and child Repression

Year	Total Population	GDP Per Capital	Women and child
			Repression
2010	148391139	440	17752
2011	150211005	520	21389
2012	152090649	520	20947
2013	154030139	470	19601
2014	155961299	470	21291
2015	157830000	530	21210
2016	159784568	580	18446
2017	161793964	530	17073
2018	163683958	610	16253
2019	165516222	670	1139

Chapter 5

Implementation and Results

The implementation phase is so important because it includes the use of statistical procedures and machine learning systems to examine the datasets for which they were intended to convert theories into intelligence that is tangible and can be acted upon. All of our work has been uploaded in here: https://github.com/KhanStack/Final-Year-Design-Project By doing regression analysis we are able to determine how much casual relationships there may be between different factors affecting crimes like GDP (Gross Domestic Product) rates or even population changes in certain areas.

5.1 Environment Setup

Using Google Colab, a cloud platform, this Crime analysis machine learning project was developed and implemented, being a cloud-based that provides the best and most flexible environment for doing data analysis and machine learning tasks. These are the steps for setting up and configuring the system:

Google Colab: Google Colab (Collaboratory) is a free, online-based Jupyter Note-book platform that permits its users to compose as well as to run Python programs within the confines of a web browser. It stands out in support of jobs on machine learning as a result of its compatibility with the major libraries, the capability of utilizing graphic processing units and a direct link to Google Drive so that users can store their data on the same platform.

Dataset Upload and Access: After we accomplish this step, our dataset will be safely stored in a special folder on Google Drive for future reference. Subsequent mounting of the Google Drive to the Google Colab environment was done as follows:

from google. colab import drive drive.mount('/content/drive')

When Google Drive has been successfully entered into, read all the files from the dataset into Colab. We are going to load the dataset.

data_path1='/content/gdrive/MyDrive/FYDP2_DATACode/Separate_Data/Burglary.xlsx' df = pd.read_excel(data_path1, header=None)

Libraries and Dependencies: Data analysis, preprocessing, and machine learning require many libraries are used. At the beginning of the notebook, all these were imported and installed. The key libraries were as follows:

Pandas: For data manipulation and analysis.

NumPy: For numerical computations.

Matplotlib and Seaborn: For data visualization.

Scikit-learn: For machine learning algorithms and evaluation metrics.

5.2 Testing and Evaluation

Evaluation Matrix for Regression Model:

The necessary metrics and measures have been calculated. These figures include:

R-square:

R-squared is a way to measure statistics, which tells us how well dependent variables are predicted using independent variables. Specifically, R-squared ranges from zero to one, zero implying that target variables cannot be explained by any model, while one suggests total explanation for any given model.

$$R^{2} = 1 - \frac{\text{Residual sum of squares}}{\text{total sum of squares}} = 1 - \frac{\sum_{i} (y_{i} - \bar{y})^{2}}{\sum_{i} e_{i}^{2}}$$
 (5.1)

Mean Squared Error (MSE):

The mean squared error (MSE) is the average of the squared differences between the actual values of the target variable and the projected values of the regression model. It provided quantifiable assessment of the model's accuracy with smaller numbers indicating more accurate predictions. This is derived as the average of squared residuals (difference between the actual and predicted values) in the dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 (5.2)

Mean Absolute Error (MAE):

Mean absolute error (MAE) is a close measure to MSE as it finds the average absolute gap between actual value and its predicted number, rather than squaring the difference. This measure will give one estimation average size of errors one can expect in his predictions irrespective of their accuracy. Lesser values mean better predictions in both cases with MAE having an edge over MSE due to its lower sensitivity on extreme cases.

MAE =
$$\frac{\sum_{i=1}^{n} |\hat{y}_{i} - y_{i}|}{n} \\
= \frac{\sum_{i=1}^{n} |e_{i}|}{n}$$
(5.3)

After performing the regression we obtain with these values for confusion matrix. These following values are only for Bangladesh Police website dataset.

Crime	R-Square	MSE	MAE
Dacoity	0.76	5957.65	77.04
Robbery	0.34	28111.87	167.24
Murder	-3.28	186105.60	388.20
Speedy Trial	0.94	9208.67	70.07
Riot	0.62	707.71	21.30
Woman and Child	0.54	2131812.04	1146.26
Repression			
Kidnapping	0.74	5260.92	56.75
Police Assault	-135.37	49227.99	200.78
Burglary	0.85	34438.09	182.11
Theft	0.97	63116.31	197.15
Other Cases	0.79	9705051.01	3099.81
Arms Act	0.69	67980.86	256.30
Explosive	-62.35	380488.02	478.94
Narcotics	0.97	39488639.12	5028.52
Smuggling	-53.26	179395.33	418.80

After performing the regression we obtain with these values for confusion matrix. These following values are only for ACLED dataset.

5.3 Results and Discussion

We applied two datasets in our study, one from the web portal of the Bangladesh Police and another one from the Armed Conflict Location & Event Data Project (ACLED). Regression analysis was carried out on both data to find out the trends and patterns in

EVENT_TYPE	R-Square	MSE	MAE
Battles	-1.33	2924.85	50.44
Riot	-0.66	501012.54	561.07
Protests	-23.36	129848.08	325.19
Remote Violence	0.00	1.85	1.28
Explosion Remote Violence	-5.14	304.94	14.48
Strategic Development	0.00	6.96	2.47
Violence Against Civilians	0.00	7343.37	80.41

different criminal offenses and occurrences throughout time.

Analysis of Dataset of Police Bangladesh (2010-2019): We have been analyzing the Bangladeshi Police data and concentrating on many categories of crimes such as Arms act, explosives, murder, narcotics, police assault, burglary, dacoity, kidnapping, other cases, riot, robbery, smuggling, speedy trial, theft and woman_and_child_repression in the country. From that research, it became apparent that trends are as follows:

Crime Rate Has Been Increasing: From 2010 to 2019, there was an upward trajectory in offenses such as arms act, explosives, murders, narcotics and police assault an indication that even though they have been made better in some spheres; it is only these kind of offences that have increased steadily.

Training Data Testing Data 1200 1000 Crime 600 400 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year vs Crime

Figure 5.2: Explosives

Figure 5.1: Arms Act

Decreasing crimes:Burglary, Kidnapping, other cases, riot, robbery, smuggling, speedy trial, theft, dacoity, woman and child repression—these have had decreasing trends across similar periods. It is worth noting that such offenses are usually done for money purposes. The dramatic fall in financial-driven crimes between 2010 and 2019 has been linked to an exceptional growth in GDP. People experienced higher living standards and economic stability as they became wealthier, which lowered their desire for financial vices. This decrease could also be due to increased reading and comprehension capabilities.

Figure 5.3: Narcotics

Figure 5.4: Police Assault

Figure 5.5: Murder

Figure 5.6: Dacoity

Figure 5.8: Burglary

Figure 5.10: Riot

Figure 5.12: Smuggling

Figure 5.14: Theft

ACLED Dataset Analysis (2001-2020): The ACLED dataset gave an overview on different violent events including battles, riots, violence against civilians, remote violence, explosion remote violence, and protests. Our regression analysis led to the following final results.

Increasing event: Protests have increased significantly throughout this period. The red dots on the geospatial map indicate areas where protests have been more common. Growing literacy rates and awareness among the population contribute to the rise in protests. When they are aware of their rights and become more educated, these people tend to take part in protests in order to ask for change or fair treatment. What emerges from this change is how crucial it is to engage politically and promote civic education thereby making it possible for citizens to fight for their own rights.

Figure 5.16: Protest.

Figure 5.17: Protest_Event.

Decreasing events: Battles, riots, violence against civilians, remote violence, and explosions. Remote Violence: From 2001 to 2020, these events exhibited a declining tendency. Green dots on the geospatial map indicate locations where violent occurrences have decreased in frequency.

Figure 5.18: Battles

Figure 5.20: Riots

 ${\bf Figure~5.22:~Explosion Remote Violence}$

 ${\bf Figure~5.24:~RemoteViolence}$

Figure 5.26: Strategic Development

Figure 5.28: Violence Against Civilians

Heatmap: The heatmap demonstrates how various types of events have been spread throughout the years between 2001 and 2020 regarding their prevalence. The number of times a given event occurred within a given year is what each cell in a heatmap symbolizes. More frequent events are represented by darker colors within cells whose color intensities correspond to how frequently they have taken place.

Figure 5.30: Heat Map.

5.4 Summary

The regression analysis of both datasets reveals substantial trends and patterns in criminal and violent activity during the study periods. The findings show that economic development and increasing literacy rates are critical in reducing financially motivated crimes. Conversely, the increase in protests demonstrates a more aware and active population fighting for their rights. These findings can help policymakers and law enforcement authorities focus on regions that need attention and promote a safer, more fair society.

Chapter 6

Complex Engineering

6.0.1 Knowledge Profile

This section will concentrate on the knowledge profile process, which compiles information on a project's qualities.

Profile	Description	Status
K1	Natural Sciences applicable to our project	No
K2	Required Mathematical or Computational analysis	Yes
K3	Engineering Fundamentals that need to be sustained	Yes
K4	Specialist in-depth knowledge required	Yes
K5	Engineering Design and Front-end work	Yes
K6	Engineering practices required to be upheld	Yes
K7	Comprehensive Engineering Ethics and real-life impacts and Im-	Yes
	plications	
K8	Literature and website research on related projects	Yes

6.0.2 Complex Problem Solving

Attribute	Status	ping with complex problem-solving. Problem Description
P1 (Depth of Knowledge)	Yes	The Mathematical terms & data analysis are included (k2). Implementation of work matching and searching (k3,k4). Web-based front end, interface and database management (K5) and keeping the project safe and cost-efficient (K6). (K8) helps us find the limitation and need to improve our paper.
P2 (Range of Conflicting Requirements)	Yes	Wide-ranging or conflicting technical, engineering, and other issues are common is many fields and require careful consideration to find a solution that satisfies all stakehold ers. It may involve trade-offs, compromises and a deep understanding of the various factors to arrive at a satisfactory answer.
P3 (Depth of Analysis)	Yes	This project integrates multi-variable sociole economic information and models crime patterns and their association with GDP and population metrics using advanced regression analysis and machine learning algorithms guaranteeing robust forecasting accuracy and actionable insights.
P4 (Familiarity of issues)	Yes	A thorough spatial-temporal analysis is provided by the application of geospatial data visualization techniques, such as heatmaps and scatter plots with regression lines, which improve the interpretability of the intricate relationships between socioeconomic factors and crime patterns.
P5 (Extent of applicable codes)	Yes	Professional engineering codes and maintai standards for their projects. They continuously evolve to keep pace with changes in ir dustry and society, resulting in engineerin projects that are safe, dependable, and so cially responsible.
P6 (Extent of stakeholder involvement and conflicting requirements)	Yes	SThe research demonstrates the application of sophisticated data engineering technique to generate significant correlations by methodically processing and analyzing large scale datasets from various sources. This supports the development of data-driven policies and strategic planning in the field of crim prevention.
P7 (Interdependence)	Yes	In order to ensure a multifaceted study that takes into account temporal, spatial, and economic dimensions, the project integrated data from numerous sources in a comprehensive manner to examine the socio-economic drivers of crime. This integration enables the creation of evidence-based interventions and

policy decisions by facilitating a comprehensive understanding of criminal dynamics

6.0.3 Engineering Activities

Table 6.2: Complex Engineering Activities.

	Table 6.2: Co	omplex Engineering Activities.
Attribute	Status	Complex Engineering Problems have characteristics
		P1 and some or all of P2 to P7:
A1	Yes	Define and identify the important socioeconomic
(Range of resources)		factors (GDP, population, and crime statistics) to
		guarantee that the goals and scope of the project
		are understood.
A2	Yes	Create a pipeline for data processing that will clean,
(Interaction Level)		preprocess, and merge datasets from ACLED and
		Bangladesh Police while preserving consistency and
		integrity of the data.
A3	Yes	Establish relationships between socioeconomic
(Innovation)		characteristics and crime rates using regression
		analysis and machine learning models; validate the
		models using pertinent statistical indicators.
P4	Yes	Use heatmaps, regression lines, and scatter plots to
(Familiarity of issues)	visually represent the data so that trends in crime
		patterns and findings may be communicated clearly.
A5	Yes	To make sure the predictive insights obtained from
(Consequences for		the study are accurate and reliable, assess the mod-
society and the		els' performance using R-square, MSE, and MAE.
environment)		
A6	Yes	Provide thorough reports and graphical summaries
(Familiarity)		that capture the research findings and provide
		stakeholders and policymakers with useful informa-
		tion to guide crime prevention initiatives.

6.1 Summary

In order to simulate the relationship between crime trends and socioeconomic variables like GDP and population, this project makes use of sophisticated regression analysis and machine learning techniques. It combines multi-variable data with extensive datasets from Bangladesh Police and ACLED to produce a strong forecasting framework. In order to provide a thorough spatial-temporal study of crime patterns, the project applies geospatial data visualization techniques including heatmaps and scatter plots. These approaches guarantee a sophisticated comprehension of the variables impacting criminal activity, facilitating data-driven policy development and tactical planning for successful crime prevention.

Chapter 7

Conclusion

Our primary objective was to determine the connections between GDP, crime, and population, and we were successful in visualizing these relationships in our research. The data revealed that while crimes like protests have grown due to more understanding of rights, economic progress and increased literacy are connected with a drop in financially motivated crimes. The heatmap, which showed the temporal and spatial variations in crime occurrences, provided an additional level of comprehension. Policymakers and other stakeholders can benefit greatly from these findings, which can be used to help build focused measures to reduce crime and enhance public safety.

7.1 Summary

In our study, we used statistics from the Bangladesh Police and ACLED to investigate the relationships between population, GDP, and crime rates. Regression analysis was used to find trends in different types of crimes and how they related to socioeconomic variables. According to our data, some crimes with financial motivations have decreased, but others have increased as a result of socioeconomic shifts. Additionally, we used heatmaps, regression lines, and scatter plots to illustrate our findings, giving us a thorough insight of the patterns of crime over time and across various geographies.

7.2 Limitation

The project is mostly about crime patterns that are related to general illegal activities. It doesn't look into specific areas like money laundering or trafficking people. The analysis is not as complete because these specific crimes were not included. The project doesn't look at digital crimes like cyberbullying and other cyber offences. Because these crimes are so complicated, they need more in-depth analysis than what the project is doing now, which is mainly looking at common crime patterns.

7.3 Future Work

To make room for future research, studying digital crimes like cybercrime and online bullying is still uncharted territory that needs special care. The accuracy and reliability of crime predictions could be improved by adding more socioeconomic variables to predictive models and using a larger dataset. Additionally, working with law enforcement to use machine learning in the real world and keep testing it against changing crime patterns is a promising way to make it a practical part of crime prevention strategies.

References

- [1] Ibidun Christiana Obagbuwa and Ademola P Abidoye. South africa crime visualization, trends analysis, and prediction using machine learning linear regression technique. Applied Computational Intelligence and Soft Computing, 2021:1–14, 2021.
- [2] Luiz GA Alves, Haroldo V Ribeiro, and Francisco A Rodrigues. Crime prediction through urban metrics and statistical learning. *Physica A: Statistical Mechanics and its Applications*, 505:435–443, 2018.
- [3] S Sridharan, N Srish, S Vigneswaran, and P Santhi. Crime prediction using machine learning. *EAI Endorsed Transactions on Internet of Things*, 10, 2024.
- [4] Rabia Musheer Aziz, Aftab Hussain, Prajwal Sharma, and Pavan Kumar. Machine learning-based soft computing regression analysis approach for crime data prediction. Karbala International Journal of Modern Science, 8(1):1–19, 2022.
- [5] Seema Aggarwal, Geeta Aggarwal, and Manisha Bansal. Crime against women and girls in indian states: Analysis, visualization and prediction.
- [6] Md Pavel Rahman, AK M Ifranul Hoque, Md Faysal Ahmed, Iftekhirul Iftekhirul, Ashraful Alam, and Nahid Hossain. Bangladesh crime reports analysis and prediction. In 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), pages 453–458. IEEE, 2021.
- [7] Md Abdul Awal, Jakaria Rabbi, Sk Imran Hossain, and MMA Hashem. Using linear regression to forecast future trends in crime of bangladesh. In 2016 5th international conference on informatics, electronics and vision (ICIEV), pages 333–338. IEEE, 2016.
- [8] Al Amin Biswas and Sarnali Basak. Forecasting the trends and patterns of crime in bangladesh using machine learning model. In 2019 2nd international conference on intelligent communication and computational techniques (ICCT), pages 114–118. IEEE, 2019.
- [9] Saqueeb Abdullah, Farah Idid Nibir, Suraiya Salam, Akash Dey, Md Ashraful Alam, and Md Tanzim Reza. Intelligent crime investigation assistance using machine learn-

References

ing classifiers on crime and victim information. In 2020 23rd International Conference on Computer and Information Technology (ICCIT), pages 1–4. IEEE, 2020.

[10] Wajiha Safat, Sohail Asghar, and Saira Andleeb Gillani. Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques. *IEEE* access, 9:70080–70094, 2021.