# Distribution-Free, Risk-Controlling Prediction Sets

Ramya Ramalingam

Department of Computer and Information Science University of Pennsylvania

April 13th, 2022





#### Table of Contents

Definitions / Set-up

#### Procedure

Concentration Inequalities for Upper-Confidence Bounds Generating Parametric Set-Predictors

#### Experiments

Classification Multi-Label Classification Image Segmentation

Further Work



#### **Definitions**

Goal: Generate prediction sets with high-probability guarantees.

**Definition 1** (Risk-Controlling Prediction Set): Let  $\mathcal{T}$  be a function which takes values in  $\mathcal{X} \to \mathcal{Y}'$ .  $\mathcal{T}$  is  $(\alpha, \delta)$ -risk-controlling if:

$$\mathbb{P}(R(\mathcal{T}) \le \alpha) \ge 1 - \delta$$



## Set-Up

- Given a dataset  $((X_1, Y_1), (X_2, Y_2), \cdots (X_m, Y_m))$  split into training (size m n) and calibration data (size n).
- User uses training data to train a predictive model  $\hat{f}$ .
- Define loss function on prediction-sets  $L(y, S) : \mathcal{Y} \times \mathcal{Y}' \to \mathbb{R}_{\geq 0}$  which satisfies a nesting property:

$$S \subset S' \implies L(y,S) \ge L(y,S')$$

 $lue{}$  Use calibration data to select best prediction-set model  ${\cal T}$  from a parametric set of such models.



#### **Basic Procedure**

1. Assume a collection of functions  $\{\mathcal{T}_{\lambda}\}_{{\lambda}\in\Lambda}$  with the following nesting property:

$$\lambda_1 < \lambda_2 \implies \mathcal{T}_{\lambda_1}(x) \subset \mathcal{T}_{\lambda_2}(x)$$

2. Assume a point-wise *upper confidence bound* (UCB)  $\hat{R}^+$  for risk so that for all  $\lambda$ :

$$\mathbb{P}(R(\lambda) \le \hat{R}^+(\lambda)) \ge 1 - \delta \tag{1}$$

3. Choose  $\hat{\lambda}$  as:

$$\hat{\lambda} = \inf\{\lambda \in \Lambda \mid \hat{R}^+(\lambda') < \alpha \quad \forall \lambda' \ge \lambda\}$$
 (2)



Figure 3: Visualization of UCB calibration.



**Theorem 1** (validity of UCB calibration): Let R be a continuous non-increasing function such that  $R(\lambda) \leq \alpha$  for some  $\alpha$ . For  $\hat{\lambda}$  as defined above,  $\mathcal{T}_{\hat{\lambda}}$  is a  $(\alpha, \delta)$ -risk controlled prediction set.

*Proof.* Define  $\lambda^*$  as:

$$\lambda^* = \inf\{\lambda \in \Lambda \mid R(\lambda) \le \alpha\}$$

If  $R(\hat{\lambda}) > \alpha$ , then  $\hat{\lambda} < \lambda^*$ . Then by definition,  $\hat{R}^+(\lambda^*) < \alpha$ . Since  $R(\lambda^*) = \alpha$ , this happens will probability less than  $\delta$  (due to the UCB guarantee). So,

$$\mathbb{P}(R(\hat{\lambda}) \le \alpha) \ge 1 - \delta$$





#### Simple Hoeffding Bound (Bounded Loss)

Define empirical risk  $\hat{R}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} L(Y_i, \mathcal{T}_{\lambda}(X_i))$ .

Assuming  $L(y, S) \in [0, 1]$  for all  $y \in \mathcal{Y}, S \in \mathcal{Y}'$ , use Hoeffding's inequality:

$$\mathbb{P}(\hat{R}(\lambda) - R(\lambda) \le -x) \le \exp\{-2nx^2\}$$

which gives us the following UCB:

$$\hat{R}^+_{\mathsf{sHoef}}(\lambda) = \hat{R}(\lambda) + \sqrt{rac{1}{2n}\log\left(rac{1}{\delta}
ight)}$$



**Proposition 2:** Let g(t; R) be a non-decreasing function in  $t \in \mathbb{R}$  for every R, and:

$$\mathbb{P}(\hat{R}(\lambda) \leq t) \leq g(t; R(\lambda))$$

Then  $\hat{R}^+(\lambda) = \sup\{R \mid g(\hat{R}(\lambda); R) \geq \delta\}$  is a valid UCB.

Proof. Note that:

$$\mathbb{P}(R(\lambda) > \hat{R}^{+}(\lambda)) \leq \mathbb{P}(g(\hat{R}(\lambda); R(\lambda)) < \delta) \leq \mathbb{P}(G(\hat{R}(\lambda)) < \delta)$$

where G is the CDF for  $\hat{R}(\lambda)$ . Define  $G^{-1}(\delta) = \sup\{x : G(x) \le \delta\}$ . Then,

$$\mathbb{P}(G(\hat{R}(\lambda)) < \delta) \leq \mathbb{P}(\hat{R}(\lambda) < G^{-1}(\delta)) \leq \delta$$

and so

$$\mathbb{P}(R(\lambda) > \hat{R}^+(\lambda)) \le \delta$$

as desired.





Using concentration inequalities:

**Tight Hoeffding Bound** [Hoeffding, 1963]: For any  $t \leq R(\lambda)$ ,

$$\mathbb{P}(\hat{R}(\lambda) \le t) \le \exp\{-nh_1(t; R(\lambda))\}$$

where 
$$h_1(t; R) = t \log(t/R) + (1-t) \log((1-t)/(1-R))$$
.

**Bentkus Inequality** [Bentkus, 2004]: If loss is bounded above by one, then:

$$\mathbb{P}(\hat{R}(\lambda) \leq t) \leq e\mathbb{P}(\mathsf{Binom}(n, R(\lambda)) \leq \lceil nt \rceil)$$

where Binom(n, p) is a binomial random variable with sample size n and success probability p.





**Prop 5** [Waudby-Smith and Ramdas, 2020]: Let  $L_i(\lambda) = L(Y_i, T_{\lambda}(X_i))$  and

$$\hat{\mu}_i(\lambda) = \frac{1/2 + \sum_{j=1}^i L_j(\lambda)}{1+i}, \ \hat{\sigma}_i^2(\lambda) = \frac{1/4 + \sum_{j=1}^i (L_j(\lambda) - \hat{\mu}_j(\lambda))^2}{1+i},$$

$$\nu_i(\lambda) = \min\left\{1, \sqrt{\frac{2\log(1/\delta)}{n\hat{\sigma}_{i-1}^2(\lambda)}}\right\}, \quad \mathcal{K}_i(R; \lambda) = \prod_{j=1}^i \{1 - \nu_j(\lambda)(L_j(\lambda) - R)\}$$

Then,

$$\hat{R}_{\mathsf{WSR}}^+(\lambda) = \inf \left\{ R \geq 0 \mid \max_{i \in [n]} \mathcal{K}_i(R; \lambda) \geq \frac{1}{\delta} \right\},\,$$

is a  $(1 - \delta)$  UCB.





*Proof Sketch.* Define  $K_i = K_i(R(\lambda), \lambda)$  and the set of  $\sigma$ -fields  $\mathcal{F}_i = \sigma(L_1(\lambda), L_2(\lambda), \cdots L_i(\lambda))$ .

Show  $\{K_i : i \in [n]\}$  is a non-negative martingale with respect to filtration  $\{F_i : i \in [n]\}$ .

$$\mathbb{E}[\mathcal{K}_i \mid \mathcal{F}_{i-1}] = \mathcal{K}_{i-1}\mathbb{E}[1 - \nu_i(\lambda)(L_i(\lambda) - R(\lambda)) \mid \mathcal{F}_{i-1}] = \mathcal{K}_{i-1}$$

Use Ville's maximal inequality:

$$\mathbb{P}\left(\max_{i\in[n]}\mathcal{K}_i\geq\frac{1}{\delta}\right)\leq\delta.$$



## Greedy Algorithm for Set-Predictors

Define conditional risk density  $\rho_x$  as  $\rho_x(y,\mathcal{S}) = L(y,\mathcal{S})p_{Y|X=x}(y)$ . Then,

#### Algorithm 1:

**Input:**  $\lambda$ , estimate of conditional risk density  $\hat{\rho}_x$ , and stepsize  $d\zeta$ .

$$\begin{split} \mathcal{T} &\leftarrow \emptyset \\ \zeta &\leftarrow \mathsf{C} \\ \text{while } \zeta > -\lambda \quad \text{do} \\ &\quad \zeta \leftarrow \zeta - d\zeta \\ &\quad \mathcal{T} = \mathcal{T} \cup \ \{ y' \in \mathcal{T}^{\mathsf{C}} \mid \hat{\rho}_x(y', \mathcal{T}) > \zeta \} \\ \text{return } \quad \mathcal{T} \end{split}$$



## Optimality of Greedy Set-Predictors

Consider loss of the form:  $L(y, S) = L_y \mathbb{1}_{y \notin S}$ . Then,

$$T_{\lambda}(x) = \{ y' \in \mathcal{Y} \mid \hat{\rho}(y', \emptyset) \ge \zeta(\lambda) \}$$



**Theorem 7** (Optimality of greedy set-predictors): Let  $\mathcal{T}'$  be any set-predictor such that  $R(\mathcal{T}') \leq R(\mathcal{T}_{\lambda})$ . Then for the given loss, and assuming knowledge of the true probability density  $p_{Y|X=x}(y)$ , it follows that:

$$\mathbb{E}[|\mathcal{T}_{\lambda}(X)|] \leq \mathbb{E}[|\mathcal{T}'(X)|].$$



*Proof.* Since  $R(T') \leq R(T_{\lambda})$ ,

$$\int_{X} \int_{\mathcal{T}'(x)} \rho_{x}(y) dy dP(x) \ge \int_{X} \int_{\mathcal{T}_{\lambda}(x)} \rho_{x}(y) dy dP(x)$$

$$\implies \int_{X} \int_{\mathcal{T}'(x) \setminus \mathcal{T}_{\lambda}(x)} \rho_{x}(y) dy dP(x) \ge \int_{X} \int_{\mathcal{T}_{\lambda}(x) \setminus \mathcal{T}'(x)} \rho_{x}(y) dy dP(x)$$

By construction of the greedy set-predictors, for any  $y \in T_{\lambda}(x)$ ,  $\rho_x(y) \ge \zeta(\lambda)$  and vice-versa for  $y \notin T_{\lambda}(x)$ . So,

$$\int_X \int_{\mathcal{T}'(x) \setminus \mathcal{T}_{\lambda}(x)} 1 dy dP(x) \ge \int_X \int_{\mathcal{T}_{\lambda}(x) \setminus \mathcal{T}'(x)} 1 dy dP(x)$$

which proves that  $\mathbb{E}[|\mathcal{T}_{\lambda}(X)|] \leq \mathbb{E}[|\mathcal{T}'(X)|]$ .





## Experiments - Classification with class-varying loss

**Loss:**  $L(y,S) = L_y \mathbb{1}_{y \notin S}$ 

Parametric Set of Functions:  $\mathcal{T}_{\lambda}(x) = \{y \mid \hat{\pi}_{x}(y) > -\lambda\}$  for some trained classifier  $\hat{\pi}_{x} : \mathcal{Y} \to [0,1]$  and  $\lambda \in [-1,0]$ .



Figure: Plots of risk and prediction-set sizes across 100 different splits of data.



#### Experiments - Multi-Label Classification

Since each image can take several labels at once, both y and  $\mathcal{S}$  have the same domain  $\mathcal{D}=2^{\{1,2,\cdots,K\}}$ .

**Loss:** 
$$L(y, S) = 1 - \frac{|y \cap S|}{|y|}$$

#### **Parametric Set of Functions:**

 $\mathcal{T}_{\lambda}(x) = \{z \in \{1, 2, \cdots K\} \mid \hat{\pi}_{x}(z) > -\lambda\}$  for some trained classifier  $\hat{\pi}_{x} : \mathcal{Y} \to [0, 1]$ , and  $\lambda \in [-1, 0]$ .







# Experiments - Multi-Label Classification



Figure: Plots of risk and prediction-set sizes across 1000 different splits of data.



### **Experiments - Image Segmentation**

Define a connected components function  $h: \mathcal{Y} \to 2^{\mathcal{Y}}$ .

**Loss:** 
$$L(y, S) = \frac{\sum_{y' \in h(y)} |y' \setminus S|/|y'|}{|h(y)|}$$

Parametric Set of Functions:  $\mathcal{T}_{\lambda} = \{(i,j) \mid | \hat{f}(x)_{i,j} \geq -\lambda \}$  for a learned model  $\hat{f}: \mathbb{R}^{d_1 \times d_2} \to [0,1]^{d_1 \times d_2}$ , and  $\lambda \in [-1,0]$ .



Figure: Examples of generated prediction sets for image segmentation.

### **Experiments - Image Segmentation**



Figure: Plots of risk and (normalized) prediction-set sizes across splits of data.



### Extensions / Further Work

- Ranking define loss as a function of several points.
  - Learn ranking rule  $\hat{r}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  from training data.
  - For  $y_1, y_2 \in \{1, 2, \cdots K\}$  and  $S \in 2^{\mathbb{R}}$ ,

$$\textit{L}(\textit{y}_{1}, \textit{y}_{2}, \mathcal{S}) = \mathbb{1}_{\{\sup \mathcal{S} < 0\}} \, \mathbb{1}_{\{\textit{y}_{1} > \textit{y}_{2}\}} + \mathbb{1}_{\{\inf \mathcal{S} > 0\}} \, \mathbb{1}_{\{\textit{y}_{1} < \textit{y}_{2}\}}$$

- Select  $T_{\lambda}: \mathcal{X} \times \mathcal{X} \to 2^{\mathbb{R}}$  from some parametrized collection of set-predictors.
- Adversarial Robustness
  - Encode possible error due to perturbations into loss function.
  - $\bullet \ \ R^{(\text{rob})}(\mathcal{T}) = \mathbb{E}\left[\sup_{x' \in \mathcal{B}_{\epsilon}(X)} L(Y, \mathcal{T}(x'))\right]$



#### References

Bates S., Angelopoulos A., Lei L., Malik J., and Jordan M. I., "Distribution-Free, Risk-Controlling Prediction Sets."

W. Hoeffding, "Probability inequalities for sums of bounded random variables."

V. Bentkus, "On Hoeffding's inequalities."

I. Waudby-Smith and A. Ramdas, "Variance-adaptive confidence sequences by betting."

V. Vovk, "Conditional Validity of inductive conformal predictors."

