

Introdução ao estudo dos conjuntos

Resumo

Apesar de não haver uma definição formal para conjuntos, podemos entender que um conjunto é uma reunião de elementos que pertencem a um grupo em comum. Assim, já podemos entender que, para estudar conjuntos, devemos ter em mente os **elementos** que formam um conjunto.

Um conjunto pode ser representado de duas formas, perceba:

Através de Chaves: Quando queremos representar um conjunto por extenso, colocamos seus elementos entre chaves e assim se entende que essa reunião de elementos formam um conjunto. Exemplo: Q = {a, b, c, d}.

Através de um Diagrama: Podemos representar um conjunto através de um diagrama onde seus elementos estão presentes em seu interior. Exemplo:

Em ambos os exemplos acima temos um conjunto Q, onde seus elementos são a, b, c e d.

Relação entre um elemento e um conjunto

Para relacionar um elemento e um conjunto, utilizamos os símbolos ∈ (Pertence) e ∉ (Não pertence).

Exemplo: Considere o conjunto Q = $\{a, b, c, d\}$. Podemos dizer que $a \in Q$, porém $t \notin Q$.

Relação entre dois conjuntos

Para relacionar dois conjuntos entre si, utilizamos os símbolos \subset (Está contido) e $\not\subset$ (Não está contido), \supset (Contém) e \nearrow (Não contém).

Exemplo: Considere o conjunto Q = {a, b, c, d}. Perceba as seguintes relações:

- {a,b} ⊂ Q
- {a,b,x} ⊄ Q
- $\{d\} \subset Q$
- Q [⊅] {b, u, c}
- $-Q \supset \{a,b\}$

Subconjuntos de um conjunto

Um subconjunto de um conjunto Q é todo conjunto que está contido em Q. Assim, usando como exemplo o conjunto Q = { a, b, c, d}, temos que seus subconjuntos são:

{}, {a}, {b}, {c}, {d}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d} e {a,b,c,d}.

Perceba que nesse conjunto de 4 elementos, existem $16 = 2^4$ subconjuntos. Analogamente, a grosso modo, podemos dizer que num conjunto de **n** elementos, teremos 2^n subconjuntos desse conjunto.

Quando tratamos de conjuntos, temos algumas operações que podemos efetuar entre eles.

União entre conjuntos (U): Na união entre dois conjuntos, representada pelo símbolo "U", temos que, literalmente, unir os elementos de todos envolvidos na operação em um único conjunto só.

Exemplo: Sejam os conjuntos $S = \{1, 2, 3, 4\}$ e $T = \{1, 3, 5, 7\}$, dizemos que a união $S U T = \{1, 2, 3, 4, 5, 7\}$, ou seja, todos os elementos reunidos no conjunto união.

Interseção entre conjuntos (∩): Na interseção entre dois conjuntos, representada pelo símbolo "∩", temos que o conjunto interseção será aquele que contém todos os elementos presentes em todos os conjuntos envolvidos, ou seja, todos os elementos em comum entre os conjuntos.

Exemplo: Sejam os conjuntos $S = \{1, 2, 3, 4\}$ e $T = \{1, 3, 5, 7\}$, dizemos que a interseção $S \cap T = \{1,3\}$, ou seja, todos os elementos presentes nos dois conjuntos.

Subtração ou diferença entre conjuntos: Na subtração entre dois conjuntos, o conjunto subtração é aquele que contém os elementos do primeiro conjunto que NÃO estão presentes no segundo conjunto.

Exemplo: Sejam os conjuntos $S = \{1, 2, 3, 4\}$ e $T = \{1, 3, 5, 7\}$, dizemos que a subtração $S - T = \{2, 4\}$, ou seja, o que tem em S e não tem em S.

Conjunto complementar. Seja A e B dois conjuntos quaisquer com A⊂B. O conjunto diferença é chamado de complementar de A com relação a B.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- **1.** Sejam os conjuntos $A = \{x \in \mathbb{R} \mid 0 < x \le 5\}, \ B = \{x \in \mathbb{R} \mid x \ge -5\} \ e \ C = \{x \in \mathbb{R} \mid x \le 0\}.$ Pode-se afirmar que
 - a) $(A-B) \cup C = C$
 - **b)** $(A-C) \cap B = \emptyset$
 - c) $(B \cup C) \cap A = \mathbb{R}$
 - **d)** $(B \cap C) \cap A = A$
- 2. Os conjuntos X e Y são tais que $X = \{2, 3, 4, 5\}$ e $X \cup Y = \{1, 2, 3, 4, 5, 6\}$. É necessariamente verdade que
 - **a)** $\{1, 6\} \subset Y$.
 - **b)** $Y = \{1, 6\}.$
 - **c)** $X \cap Y = \{2, 3, 4, 5\}.$
 - d) $X \subset Y$.
 - e) $4 \in Y$.
- 3. Se $A = \{x \in \mathbb{N} \mid x \text{ \'e divisor de 60}\}$ e $B = \{x \in \mathbb{N} \mid 1 \le x \le 5\}$, então o número de elementos do conjunto das partes de $A \cap B$ é um número
 - a) múltiplo de 4, menor que 48.
 - **b)** primo, entre 27 e 33.
 - c) divisor de 16.
 - d) par, múltiplo de 6.
 - e) pertencente ao conjunto $\{x \in \mathbb{R} \mid 32 < x \le 40\}$.
- **4.** Considerando-se os conjuntos $A = \{1, 2, 4, 5, 7\}$ e $B = \{0, 1, 2, 3, 4, 5, 7, 8\}$, assinale a alternativa correta.
 - a) $B \supset A$, logo $A \cap B = B$.
 - **b)** $A \cup B = A$, pois $A \subset B$.
 - c) $A \in B$.
 - **d)** 8 ⊂ B.
 - e) $A \cup B = B$, pois $A \subset B$.

5. Considere os conjuntos

$$A = \{0, 1, 3, 5, 9\}$$

$$B = \{3, 5, 7, 9\}$$

 $X = \{x \in \mathbb{N}; x \le 13\}$, onde N é o conjunto dos números inteiros não-negativos.

O conjunto $C_x^{A \cup B}$ é igual a

- **a)** {0, 1, 3, 5, 7, 8, 9}.
- **b)** {2, 4, 6, 7, 8, 9, 10, 11, 12, 13}.
- **c)** {2, 4, 6, 8, 10, 11, 12, 13}.
- **d)** {2, 5, 7, 8, 12, 13}.
- **e)** {0, 1, 7, 8, 9, 10, 12, 13}.
- **6.** Sendo N o conjunto dos inteiros positivos, considere os seguintes conjuntos:

$$A = \left\{ x \in N; \frac{12}{x} \in N \right\} \quad e \quad B = \left\{ x \in N; \frac{x}{3} \in N \right\}.$$

É verdade que:

- a) A possui mais elementos que B.
- **b)** A e B não possuem elementos em comum.
- c) A é um subconjunto de B.
- d) $B \in \text{um}$ subconjunto de A.
- e) A e B possuem exatamente três elementos em comum.
- 7. Sejam A, B e C conjuntos tais que: A = {1, {1, 2},{3}}, B = {1, {2},3} e C = {{1},2,3}. Sendo X a união dos conjuntos (A C) e (A B), qual será o total de elementos de X?
 - **a)** 1
 - **b)** 2
 - **c)** 3
 - **d)** 4
 - **e)** 5
- **8.** Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas. Inicialmente são formadas sete colunas com as cartas. A primeira coluna tem uma carta, a segunda tem duas cartas, a terceira tem três cartas, a quarta tem quatro cartas, e assim sucessivamente até a sétima coluna, a qual tem sete cartas, e o que sobra forma o monte, que são as cartas não utilizadas nas colunas. A quantidade de cartas que forma o monte é
 - a) 21.
 - **b)** 24.
 - c) 26.
 - **d)** 28
 - **e)** 31.

- 9. Indique qual dos conjuntos abaixo é constituído somente de números racionais.
 - **a)** $\{-1,2, \sqrt{2}, \pi\}$
 - **b)** $\{-5, 0, \frac{1}{2}, \sqrt{9} \}$
 - **c)** $\{-2,0, \pi, \frac{2}{3}\}$
 - **d)** $\{\sqrt{3}, \sqrt{64}, \pi, \sqrt{2}\}$
 - **e)** $\{-1,0,\sqrt{3},\frac{1}{3}\}$
- **10.** Sejam os conjuntos: $A = \{2n, n \in Z\}$ e $B = \{2n-1, n \in Z\}$. Analise as sentenças abaixo:
 - I. $A \cap B = \{\};$
 - II. A e o conjunto dos números pares;
 - III. $A \cup B = Z$

Está correto o que se afirma em:

- a) I e II, apenas
- b) II, apenas
- c) II e III, apenas
- d) III, apenas
- e) I, II e III

Gabarito

1. A

Representamos os conjuntos A, B e C na reta numérica.

Análise das alternativas:

a) Verdadeira: $(A-B) \cup C = \emptyset \cup C = C$

b) Falsa: $(A-C) \cap B = A \cap B = A$

c) Falsa: $(B \cup C) \cap A = \mathbb{R} \cap A = A$

d) Falsa: $(B \cap C) \cap A = [-5,0] \cap A = \emptyset$

2. A

Como $\{1,6\}$ não está contido em X e está contido em $X \cup Y = \{1,2,3,4,5,6\}$, concluímos que $\{1,6\} \subset Y$.

3. A

Tem-se que $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ e $B = \{1, 2, 3, 4, 5\}$. Logo, como $A \cap B = B$, segue-se que o resultado pedido é $2^5 = 32 = 4 \cdot 8$, isto é, um múltiplo de 4, menor do que 48.

4. E

Construindo os diagramas de Venn-Euler, temos: $A \cup B = B$, pois $A \subset B$.

5. C

$$A \cup B = \{0, 1, 3, 5, 7, 9\}.$$

 $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}.$

Complementar de A \cup B em relação a x: $C_X^{A \cup B} = \{2, 4, 6, 8, 10, 11, 12, 13\}.$

6. E

Conjunto A: Divisores naturais de 12: {2,3,4,6,12}.

Conjunto B: Múltiplos naturais de 3: {0,3,6,9,12,...}.

 $A \cap B = \{3, 6, 12\}.$

Portanto, A e B possuem exatamente três elementos em comum.

7. C

$$X = (A - C) \cup (A - B).$$

$$A - C = \{1, \{1, 2\}, \{3\}\} - \{\{1\}, 2, 3\} = A.$$

$$A - B = \{1, \{1, 2\}, \{3\}\} - \{1, \{2\}, 3\} = \{\{1, 2\}, \{3\}\}.$$

$$X = (A - C) \cup (A - B) = A \cup \{\{1, 2\}, \{3\}\} = A.$$

Portanto, o número de elementos de X é n(X) = n(A) = 3.

8. E

9. B

Como $\sqrt{3}$, $\sqrt{2} \in \pi$ são irracionais só sobra a letra B que tem apenas números racionais

10. E

Testando qualquer número inteiro no lugar de n, por exemplo 1, conclui que A é o conjunto dos números pares e B dos ímpares. Com isso, as assertivas I,II e III são verdadeiras.