Al6122 Text Data Management & Analysis

Topic: Event detection

Event detection

- Topic detection and tracking
- Event detection
 - Document-pivot techniques
 - Feature-pivot techniques
- Case study
 - Event detection on Twitter
 - Event detection by queries and documents
 - Event popularity prediction

A bit of history about event detection

- Topic Detection and Tracking (TDT) is a DARPA-sponsored initiative
 - to investigate the state of the art in finding and following new events in a stream of broadcast news stories.
 - TDT Pilot study ran from Sep 1996 to Oct 1997 by DARPA, CMU, Dragon Systems, UMass.
- Three tasks
 - Segmenting a stream of data, especially recognized speech, into distinct stories
 - Identifying those news stories that are the first to discuss a new event occurring in the news → New Event Detection
 - Given a small number of sample news stories about an event, finding all following stories in the stream → Event Tracking

TDT and Event

- TDT: detecting the appearance of new topics and for tracking the reappearance and evolution of them
 - Notion of a "topic" is modified to be an "event" during the study
- Event: some unique thing that happens at some point in time.
 - Emphasis more on the "topic" of the event and time, rather than spatial/temporal localization.
 - Example: the eruption of Mount Pinatubo on June 15th, 1991 is considered to be an event, whereas volcanic eruption in general is considered to be a class of events.
 - Events might be unexpected, such as the eruption of a volcano, or expected, such as a political election, or periodical like new year celebration

Where to detect events?

- TDT study assumes multiple sources of information, for example various newswires and various news broadcast programs
- The information flowing from each source is assumed to be divided into a sequence of stories, which may provide information on one or more events.
 - The general task is to identify the events being discussed in these stories, in terms of the stories that discuss them.
 - Stories that discuss unexpected events will of course follow the event,
 - Stories on expected events can both precede and follow the event.

TDT Tasks

- The Segmentation Task: the task of segmenting a continuous stream of text (including transcribed speech) into its constituent stories.
- The Detection Task: Retrospective Event Detection
 - The task of identifying all of the events in a corpus of stories.
 - Discovering previously unidentified events in an accumulated collection
 - Events are defined by their association with stories.
 - The task is to group the stories in the corpus into clusters. Each cluster represents an event, and the stories in the cluster discuss the event.
 - It will be assumed that each story discusses at most one event. Therefore each story may be included in at most one cluster

TDT Tasks

- The Detection Task: Online New Event Detection
 - The task of identifying new events in a stream of stories.
 - Each story is processed in sequence, and a decision is made whether or not a new event is discussed in the story after processing the story.
 - The decision is made before processing any subsequent stories (cannot access subsequent stories in online setting)
 - The first story to discuss an event should be flagged YES. If the story doesn't discuss any new events, then it should be flagged NO.
- The Tracking Task: associating incoming stories with events known to the system.
 - An event is defined ("known") by its association with stories that discuss the event. Thus each target event is defined by a list of stories that discuss it.

Event detection

- Event detection nowadays typically refers to the detection of new event and its subsequent stories (i.e., tracking)
 - Retrospective Event Detection vs Online New Event Detection
- Document-Pivot Techniques: event detection is to cluster documents into clusters (events)
 - A document is a data point; event is a cluster
 - Retrospective event detection can use clustering algorithms to access the entire document collection, and to organize the documents into topic clusters, e.g., hierarchical agglomerative clustering (HAC)
 - New event detection: incremental clustering algorithms to process the input streams sequentially,
 - Merge an event with the most similar one,
 - Create a new cluster if the similarity measure exceeds a predefined threshold

Document-Pivot Technique: Incremental clustering

- Take a document d from the document stream (information source)
 - Computer similarity between d and the known events $e \in E$ (i.e., document clusters)
 - If $sim(d, e) \ge \theta$, assign d to e with the highest similarity
 - If $sim(d, e) < \theta$, consider d as a new event (a new cluster with a single document for now)
 - Till all documents processed in the stream.
- Parameters to consider:
 - Similarity function, e.g., cosine similarity
 - Document and event representation
 - Tfidf vector? Recent documents in an event be given more weight?
 - Threshold θ
 - Filtering of events: only consider recent events when computing sim(d, e)?

Feature-Pivot Techniques

- Identify topic areas that were previously unseen or rapidly growing in importance within the corpus, bursty topics
- Feature-pivot techniques model an event in text streams as a bursty activity, with certain features rising sharply in frequency as the event emerges.
 - An event is therefore conventionally represented by a number of keywords showing burst in appearance counts
 - The underlying assumption is that some related words would show an increased usage as an event occurs.
- These techniques analyze feature distributions and discover events by grouping bursty features with identical trends.

Feature-Pivot Techniques

- "Bursty and hierarchical structure in streams" by Kleinberg (2002)
 - A formal approach for modeling such "bursts": An infinite-state automaton; Bursts appear as state transitions
 - A nested representation of the set of bursts that imposes a hierarchical structure on the overall stream.
- "Parameter free bursty events detection in text streams" by Fung et al. (2005)
 - Modeled word appearance as binomial distribution, identified the bursty words according to a heuristic-based threshold, and grouped bursty features to find bursty events.
- "Analyzing feature trajectories for event detection" by He, Chang, Lim, and Zhang (2007)
 - Use discrete Fourier transformation (DFT) to categorize features for different event characteristics (e.g., important or not, and periodic or aperiodic events).
 - DFT converts the signals from the time domain into the frequency domain, such that a burst in the time domain corresponds to a spike in the frequency domain

Feature-Pivot Event Detection

- Detect bursty features based on certain models or statistics.
- Events are then detected by maximizing the co-occurrences among documents and the consistence of the frequency distributions for all bursty features within an event.
- The timestamp for an event is calculated based on the bursty periods of the bursty features related to that event

What if a "major event" happens in social media?

Sub-forum: mobile communication technology (2009 – 2013)

Singapore launch date for iPhone 4 is July 30 ... - iMerlion www.imerlion.com/2010/07/singapore-launch-date-for-iphone-4-is.html ▼

iPhone 4S releases in Singapore on 28 Oct 2011 ... sgtransport.blogspot.com/.../iphone-4s-releases-in-singapore-on-28.html ▼

SingTel to offer iPhone 5 in Singapore on September 21 ...
info.singtel.com→ About Us→ NewsRoom ▼

Event detection applies to Twitter (social media)

- Feature-Pivot Event Detection
 - Identify the bursty words based on certain statistics or model.
 - Grouped burty words into events based on their co-occurrences.
- Document-Pivot Event Detection
 - Cluster tweets into events. The tweets similar to each other are grouped as events.
 - Certain terms like "named entities" could be assigned with high weights. Named entities need to be recognized by a Named Entity Recognizer
 - Efficient clustering can be achieved through locality sensitive hashing (LSH).
 Example LSH is MinHash algorithm.
 - The simplest version of the minhash scheme uses k different hash functions, where k is a fixed integer parameter, and represents each set S by the k values of $h_{min}(S)$ for these k functions.

Case study: Segment-based Event Detection from Tweets

- Twitter
 - A message written by the users, up to 140 characters with free writing styles
 - information updates/sharing at low cost
 - A real-time information network that connects you to the latest information in your world.
- Event detection in Twitter
 - Events attracted user attentions
 - Events can be more timely detected

Event detection in Twitter is challenging

Event detection in Twitter: Challenges

- Large data volume
 - 500 million tweets per day in 2019
- Diverse and fast changing topics
- Short and noisy content

PAP POSTERS ARE EVERYWHERE! AND FOR SOME LAMP POLES THERE ARE BOTH **NSP** AND **PAP** POSTERS! #whathappentosavingtheearth

ya la! some of them gg to potong pasir. I'm gg to yio chu kang

Principle of Least Effort [Zipf49]: People used to communicate information with the least context, especially in the situation where a short message with free style is allowed.

- Miss spellings
- Informal abbreviations

Event detection in Twitter: Our approach

- Tweet Segmentation → Informative keyphrases
 - Reduce noise for further processing.
- User Frequency
 - Robust to the negative impact of Spam & Self-Promotion tweets.
- External Knowledge Base (Wikipedia)
 - Resist to the adverse impact of Pointless Babble tweets.
 - Derive interpretable event descriptions.

TwEvent: System architecture

Tweets → Tweet segments → Event segments → Events

- Iphone 4g's coming out on 4th july as according t @zoewasabi hmm. My birthday's on the 10th july. I can use iphone as a present!!! :D iphone 4g |s |coming out |4th july |according |t |hmm |birthday |10th july |use |iphone |present |d
 - iPhone 4G is been officially announced today at WDC iphone 4g | officially announced | today | wdc

Iphone 4g, iphone, coming out

Tweet segmentation

- Each segment (unigram/multi-gram) may represent a semantic unit
 - Example segments: Steve Jobs, MTV Movie Awards
 - Implemented by maximizing the sum of stickiness of all segments
- External resources for calculating the stickiness of a segment.
 - Microsoft Web N-Gram: A prior probability for each segment in the index of English web pages
 - Wikipedia: the likelihood that a segment being an anchor text in Wikipedia pages.

Tweet segmentation: Example

Example Tweet Portion youth olympic games sailing competition Possible segmentation 1 (youth) | (olympic games) | (sailing competition) Possible segmentation 2 (youth olympic games) | (sailing competition) Possible segmentation 3 (youth) | (olympic games sailing competition)

Segment burstyness

- Bursty Segment: A segment s is a bursty segment in time window t if its tweet frequency $f_{s,t} > E[s|t]$
- Bursty Probability: $P_b(s,t) \in (0,1]$ indicates the degree of busrtyness of a segment s with frequency $f_{s,t}$.

$$- P_b(s,t) = 1$$

$$f_{s,t} \ge E[s|t] + 2\sigma[s|t]$$

$$- P_b(s,t) = sigmoid \left(10 \times \frac{f_{s,t} - (E[s|t] + \sigma[s|t])}{\sigma[s|t]}\right)$$
$$f_{s,t} \in (E[s|t], E[s|t] + 2\sigma[s|t])$$

Misspelling words and informal abbrev. are detected as bursty segments

Event segment detection

- User frequency
 - The number of users who post tweets containing segment s during the time window t.
- Weight each bursty segment: $w_b(s,t) = P_b(s,t)\log(u_{s,t})$
- Event segment: A bursty segment s is a potential event segment in time window t if it is ranked among top-K bursty segments by $w_b(s,t)$ where $K=\sqrt{N_t}$
 - $-N_t$ is number of tweets in time window t

Event segment similarity

- For each time window t, we further divide the period evenly into M subtime-window with a weight: $w_t(s,m) = \frac{f_t(s,m)}{\sum_{m'=1}^M f_t(s,m')}$
- A pseudo document $T_t(s, m)$ is built for each segment s at sub-time window m by concatenating all tweets containing s in that window
- The similarity between a pair of segments s_a and s_b is the weighted cosine similarity with tf.idf scheme.

$$sim_t(s_a, s_b) = \sum_{m=1}^{M} w_t(s_a, m) w_t(s_b, m) sim (T_t(s_a, m), T_t(s_b, m))$$

The semantic of a segment is defined by the tweets containing it.

Event segment clustering: k-Nearest Neighbor graph

- Two event segments are in the same cluster if they appear in each others' k-nearest neighbors.
 - An edge between two event segments is retained if and only if they appear in each others' k-nearest neighbors.
 - The resulted connected components are considered as Candidate Events.
- Event: "anything that happens, especially something important and unusual" --- Cambridge Dictionaries Online
 - Example candidate event: [Friday night, Friday, weekends, trip, enjoy] →
 plans or schedule for weekends
 - Important and unusual event?

Event newsworthiness

 Segment newsworthiness: the probability that a sub-phrase in the segment appear as anchor text in Wikipedia articles that containing the segment:

$$\mu(s) = \max_{l \in s} e^{Q(l)} - 1$$

-Q(l) is the prior probability that l appears as anchor text in Wikipedia articles that contain l, and l is any sub-phrase of s

Event newsworthiness:

- Often used as anchor text in Wikipedia (well known entities)
- Well connected

$$\mu(e) = \frac{\sum_{s \in e_s} \mu(s)}{|e_s|} \cdot \frac{\sum_{g \in E_e} sim(g)}{|e_s|}$$

Threshold-based event selection

 Events are selected based on event newsworthiness score from all candidate events in the time window

Experiments: Dataset

- Wikipedia:
 - English Wikipedia Dump 2010
- Tweets:
 - 4,331,937 tweets posted in June 2010 by Singapore-based Users.
- Realistic events in data collection period:
 - FIFA World Cup 2010;
 - WWDC 2010;
 - MTV Movie Awards 2010.

Experiments: statistics on segments

Experiments: example events detected

		v
Day	e_{ID}	[Event Segments]: Event Description
	e_1 .	[steve jobs, imovie, wwdc, iphone, wifi]: iPhone4 was released during WWDC 2010.
7	e_2 .	[mtv movie awards, mtv, new moon, twilight, robe]: The movie <i>The Twilight Saga: New Moon</i> was the biggest winner in
		MTV Movie Awards 2010; it took 4 out of 10 "Best" Awards.
	e_3 .	[yesung, yesung oppa, kyuhyun, oppa, kyu]: Korean popular band Super Junior's showcase was held on June 6, 2010 at
		Singapore. Yesung Oppa and Kyuhyun Oppa are members of Super Junior.
	e_4 .	[lady gaga, music video, gaga, mv, alejandro]: The music video Alejandro by Lady GaGa was premiered officially on
8		June 8, 2010.
	e_5 .	[ss501, indonesia, ariel, sama, trend]: No clear corresponding real-life event.
	e_6 .	[singapore, iphone 4g, iphone 3gs, iphone, coming out]: Related to event e_1 . People started to talk about the release
		date of iPhone 4 in Singapore.
	e_7 .	[lady gaga, youtube, youtube video, music video, gaga]: Related to event e_4 .
9	e_8 .	[twitter, whale, stupid, capacity, over again]: A number of users complained they could not use twitter due to over-
		capacity. A logo with whale is usually used to denote over-capacity.
	e_9 .	[ipad, iphone, apple, new]: Related to event e_1 .
	e_{10} .	[watching glee, glee, season finale, season, channel]: The season finale of the American TV series <i>Glee</i> was broadcasted
		on June 8, 2010.
	e_{11} .	[lady gaga, youtube, youtube video, music video, amber]: Related to event e_7 .
	e_{12} .	[justin bieber, try, pa, took, each]: Related to event e_{15} . The song Never Say Never by Justin Bieber serves as the theme
10		song for the movie <i>The Karate Kid</i> , which was released on June 10, 2010 in Singapore.
	e_{13} .	[yesung, tweeted]: Super Junior's Yesung posted a photo about his pet turtles.
	e_{14} .	[twitter, whale, stupid, capacity, over]: Related to event e_8 .
	e_{15}	[karate kid, watch movie, movie]: The movie <i>The Karate Kid</i> was released on June 10, 2010 in Singapore.
11	e_{16} .	[uruguay vs france, uruguay, france, vs]: A match between Uruguay and France in World Cup 2010.
11	e_{17} .	[south africa, vs mexico, mexico, goal, first goal]: A match between South Africa and Mexico in World Cup 2010. And
		the first goal of the 2010 World Cup was scored in the match.

Summary on event detection from Twitter

- Tweet Segmentation → Informative keyphrases
 - Reduce noise for further processing.
- User Frequency
 - Robust to the negative impact of Spam & Self-Promotion tweets.
- External Knowledge Base (Wikipedia)
 - Resist to the adverse impact of Pointless Babble tweets.
 - Derive interpretable event descriptions.

Case study: event detection of common interest

Example

 Top-15 popular searches from Technorati.com captured on December 28, 2007 and statistics on blog posts captured on January 2, 2008

Case study: event detection of common interest

- Events of common interest to many users
 - A large volume of event-related queries are issued to news/blog search engines, making them popular queries during the event period.
 - A large number of news articles and blog posts are published by journalists and bloggers containing updated facts, commentary or discussions about the event.
- From the updated information, web users may formulate new queries (e.g., another person involved in the event) which may subsequently become popular queries.
 - The changes in the queries at different time points become good indications of event evolution.

User in the loop

- Event detection to consider interactions between
 - query streams: what people search for
 - news streams: what are reported
 - blog streams: what are written by users
- Basically: what web users want to know about and what they talk about.
- Event detection guided by user queries

Challenges

- Not all popular queries issued by masses of web users are event-related.
 - Event-related queries increase dramatically when an event happens does not necessarily imply that all popular queries are event-related.
 - Many extremely popular queries are likely to be website names, such as Google, MySpace, and YouTube, and they are often not event-related.
- Multiple query keywords may be related to the same event.
 - The same query keyword Pakistan issued at different time points may refer to different events happened in that country.
- Computational cost
 - Consider the large number of news articles and blog posts accessible online

Top Searches

- bhutto
- benazir bhutto
- b pakistan
- benazir
- b laure manaudou
- 24c3
- b2k
- deducation
- 6 ron paul
- b noelia
- b anime
- d adobe
- b "liberal fascism"
- mario lopez
- 6 ooxml

Query profile

- Profile of a query q at time point t is the set of most recently published documents from news (or blog) stream that match q.
 - Consider to use the most recent 50 matching documents to define the meaning of a query term at the current time (in news search or web search)
- **Recency**: query profile *recency* is the averaged time difference between documents in the query profile to the query's issuing time
- Clarity: how indicative the words are in the query profile
 - If a query is event-related, its word features describing the event can often distinguish it from the background.

Query Profile Clarify

- The word distribution of the query profile, compared to that of a general document collection, measured through Kullback–Leibler (KL) divergence.
 - Divergence between the language model of a query profile, and the language model of a general document collection (i.e., background collection)

$$KL(C_q, S) = \sum_{w \in C_q} P(w|C_q) \log_2 \frac{P(w|C_q)}{P(w|S)}$$

• Assuming query q is about a particular event, then the set of words that are frequently observed among documents in \mathcal{C}_q are likely to be describing the event.

Event detection process

Query profile → Event fragment → Event

- For each query in query stream, two query profiles are constructed from the news and blog streams, respectively
 - The event-related query profiles are further passed to event fragment detection.
 - The non-event related query profiles are dropped.
- An event fragment is a set of query profiles that is about the same event received from the same document stream within a predefined time window T.
 - Documents from different streams may demonstrate different properties (e.g., blog posts are noisier than news articles in general),
 - Event fragment detection may require different parameter settings for different document streams.
- Event fragments from both document streams are grouped into events.
 - An event is a sequence of event fragments from both news and blog streams. An
 event fragment contains query profiles that each contains documents.
 - A detected event contains queries and news articles/blog posts matching them.

Event Fragment Detection

- Given the query profiles in time window *T*, event fragment detection is to group the query profiles related to the same event into one event fragment (i.e., a small cluster).
- To perform the grouping
 - An appropriate distance metric between any pair of query profiles; and
 - an appropriate clustering algorithm
- Distance between two query profiles
 - Cosine similarity
 - Divergence between the language models of the two (sets of) documents (e.g., square root of Jensen-Shannon divergence or JSD)

Event fragment detection as clustering

- A clustering algorithm satisfying the following requirements:
 - The algorithm requires no prior knowledge on the number of event fragments to be detected from a set of query profiles,
 - It is unreasonable to guess how many events would happen in a given time window;
 - The algorithm should be able to filter away noise, as predicting whether a query is event-related can never be perfect;
 - The algorithm should be able to handle large data set with reasonable space and time complexity.
- DBSCAN is the choice here

Grouping event fragments into events

- Semantic distance
 - Event fragments in the same event show talk about similar things.

Query distance

- Semantic distance worked well for event fragments received from the same stream but not across streams
- Differences in vocabulary and writing style between news and blogs.
- Event fragments received within a short time period are likely related to the same event if they share common query keywords.

Temporal distance

- An event may last for a long time period and evolve at a fast pace, event fragments
 of the same event but are temporally far apart may not be similar to each other.
- Only compute the distance between a newly detected event fragment to those recently detected within 5 days.
- The timestamp of the event fragment is derived from its query profiles

Case study: Hashtag popularity prediction

- Predict the popularity of new hashtags in the near future (e.g., one day).
 - Popularity range: <25, [25, 50), [50, 100), [100, 200), >200
- Classification and feature engineering approach
 - Classifiers: NB, kNN, SVM, Logic Regression
 - Features: 7 content features and 11 context features
- Main findings
 - Context features are more effective than content features
 - More effective on bursty tags than continuous tags

7 Content Features and 11 Context Features

Feature		Description				
F_{c1}	ContainingDigits	Binary attribute checking whether or not a hashtag contains digits				
F_{c2}	<i>SegWordNum</i>	Number of segment words from a hashtag				
F_{c3}	URLFrac	Fraction of tweets containing URL in T_t^h				
F_{c4}	SentimentVector	3-dimension vector: ratio of neutral, positive and negative tweets in T_t^h				
F_{c5}	<i>TopicVector</i>	20-dimension topic distribution vector derived from T_t^h using Topic Model				
F_{c6}	HashtagClarity	KL-divergence of word distribution between T_t^h and tweets collection \mathcal{T}				
F_{c7}	SegWordClarity	KL-divergence of word distribution between tweets containing any segment				
		word in h and tweet collection \mathcal{T}				
F_{x1}	UserCount	Number of users $ U_t^h $				
F_{x2}	TweetsNum	Number of tweets $ T_t^h $				
F_{x3}	ReplyFrac	Fraction of tweets containing mention @				
F_{x4}	RetweetFrac	Fraction of tweets containing <i>RT</i>				
F_{x5}	AveAuthority	Average authority of users in G_t^h				
F_{x6}	TriangleFrac	Fraction of users forming triangles in G_t^h				
F_{x7}	GraphDensity	Density of G_t^h				
F_{x8}	ComponentRatio	Ratio between number of connected components and number of nodes in G_t^h				
F_{x9}	AveEdgeStrength	Average edge weights in G_t^h				
F_{x10}	BorderUserCount	Number of border users				
F_{x11}	ExposureVector	15-dimension vector of exposure probability $P(k)$				

The most and least effective 15 features

Rank	Feature	Rank	Feature
1	F_{x1} : UserCount	39	F_{c5} : $TopicVector - T(2)$
2	F_{x10} : BorderUserCount	40	F_{c5} : $TopicVector - T(14)$
3	F_{x2} : TweetsNum	41	F_{x9} : AveEdgeStrength
4	F_{c6} : HashtagClarity	42	F_{c5} : $Topic Vector - T(17)$
5	F_{x6} : TriangleFrac	43	F_{x8} : ComponentRatio
6	F_{x11} : Exposure Vector – $P(15)$	44	F_{c5} : $Topic Vector - T(20)$
7	F_{x11} : Exposure Vector – $P(14)$	45	F_{c5} : $TopicVector - T(9)$
8	F_{x11} : Exposure Vector – $P(9)$	46	F_{c5} : $TopicVector - T(1)$
9	F_{x11} : Exposure Vector – $P(10)$	47	F_{c4} : PosRatio
10	F_{c5} : Topic Vector – $T(13)$	48	F_{x5} : Ave Authority
11	F_{x11} : Exposure Vector – $P(11)$	49	F_{c4} : NegRatio
12	F_{x11} : Exposure Vector – $P(5)$	50	F_{c7} : SegWordClarity
13	F_{x11} : Exposure Vector – $P(8)$	51	F_{c4} : NeuRatio
14	F_{x11} : Exposure Vector – $P(7)$	52	F_{c2} : SegWordNum
15	F_{x11} : Exposure Vector – $P(12)$	53	F_{c1} : Containing Digits

The most and least effective 15 features

Rank	Feature	Rank	Feature		
1	F_{x1} : UserCount	39	F_{c5} : TopicVector	-T(2)	
2	F_{x10} : BorderUserCount	40	F_{c5} : TopicVector	-T(14))
3	F_{x2} : TweetsNum	41	F_{x9} : AveEdgeStre	ngth	
4	F_{c6} : HashtagClarity	12	Tonia Waston	T(17)	`
5	F_{x6} : TriangleFrac	(7	7)		
6	F_{x11} : Exposure Vector –				
7	F_{x11} : Exposure Vector –		<u>'</u>		User adopted hashtag
8	F_{x11} : Exposure Vector –	tria	ngle	_	
9	F_{x11} : Exposure Vector –	2	3		Border user
10	F_{c5} : Topic Vector – $T(1)$	Compo	onent1	•	
11	F_{x11} : Exposure Vector –	4	(6) /(12)		Component
12	F_{x11} : Exposure Vector –		Component2/		
13	F_{x11} : Exposure Vector – 9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Component		
14	F_{x11} : Exposure Vector –	_			
15	F_{x11} : Exposure Vector –	(10)	(11)		

Event detection

- Topic detection and tracking
- Event detection
 - Document-pivot techniques
 - Feature-pivot techniques
- Case study
 - Event detection on Twitter
 - Event detection by queries and documents
 - Event popularity prediction

Reference

- Topic Detection and Tracking Pilot Study Final Report <u>http://ciir.cs.umass.edu/pubfiles/ir-137.pdf</u>
- A Survey of Techniques for Event Detection in Twitter. https://doi.org/10.1111/coin.12017
- Case studies:
 - Twevent: segment-based event detection from tweets
 - Query-Guided Event Detection From News and Blog Streams
 - On predicting the popularity of newly emerging hashtags in Twitter