

Olimpiada Națională de Matematică Etapa Națională, Piatra-Neamț, 16 aprilie 2022

CLASA a 12-a

Problema 1. Fie \mathcal{F} mulțimea funcțiilor $f: \mathbb{R} \longrightarrow \mathbb{R}$ cu proprietatea că f(2x) = f(x) pentru orice $x \in \mathbb{R}$.

- a) Determinați toate funcțiile din \mathcal{F} care admit primitive pe \mathbb{R} .
- b) Dați un exemplu de funcție $f \in \mathcal{F}$, integrabilă pe orice interval $[a,b] \subset \mathbb{R}$, neconstantă, cu proprietatea că pentru orice $a,b \in \mathbb{R}$ are loc egalitatea $\int_a^b f(x) \, dx = 0$.

Problema 2. Determinați toate inelele $(A, +, \cdot)$ cu proprietatea că $x^3 \in \{0, 1\}$ pentru orice element $x \in A$.

Problema 3. Fie $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ două funcții crescătoare.

a) Arătați că pentru orice $a \in \mathbb{R}$ și orice $b \in [f(a-0), f(a+0)]$ are loc inegalitatea

$$\int_{a}^{x} f(t) dt \ge b(x - a), \quad \text{pentru orice } x \in \mathbb{R}.$$

b) Dacă $[f(a-0),f(a+0)]\cap [g(a-0),g(a+0)]\neq \emptyset$ pentru orice $a\in \mathbb{R},$ arătați că

$$\int_a^b f(t) dt = \int_a^b g(t) dt, \quad \text{pentru orice } a, b \in \mathbb{R}, \ a < b.$$

(Prin u(a-0) și u(a+0) am notat limitele la stânga, respectiv la dreapta ale unei funcții u în punctul $a \in \mathbb{R}$.)

Problema 4. Fie $(R, +, \cdot)$ un inel, cu centrul $Z = \{a \in R | ar = ra, \forall r \in R\}$, cu proprietatea că grupul U = U(R) al elementelor sale inversabile este finit. Dacă G este grupul automorfismelor grupului aditiv (R, +), arătați că

$$|G| \ge \frac{|U|^2}{|Z \cap U|} \,.$$

(|M|reprezintă cardinalul mulțimii M.)

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.

Olimpiada Națională de Matematică Etapa Națională, Piatra-Neamţ, 16 aprilie 2022

CLASA a 12-a – soluții și bareme

Problema 1. Fie \mathcal{F} mulțimea funcțiilor $f: \mathbb{R} \longrightarrow \mathbb{R}$ cu proprietatea că f(2x) = f(x) pentru orice $x \in \mathbb{R}$.

- a) Determinați toate funcțiile din \mathcal{F} care admit primitive pe \mathbb{R} .
- b) Dați un exemplu de funcție $f \in \mathcal{F}$, integrabilă pe orice interval $[a,b] \subset \mathbb{R}$, neconstantă, cu proprietatea că pentru orice $a,b \in \mathbb{R}$ are loc egalitatea $\int_a^b f(x) \, dx = 0$.

Soluție.

a) Vom arăta ca singurele funcții din \mathcal{F} care admit primitive sunt funcțiile constante. Orice funcție constantă se găsește în mod evident în mulțimea \mathcal{F} și admite primitive.

$$F(x) = \lim_{n \to \infty} x \cdot \frac{F\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} = x \cdot f(0).$$

Rezultă că f(x) = F'(x) = f(0) pentru orice $x \in \mathbb{R}$ și funcția f este constantă............2p. b) Fie $M = \{2^k | k \in \mathbb{Z}\}$ și $f : \mathbb{R} \longrightarrow \mathbb{R}$ funcția definită prin

$$f(x) = \begin{cases} 1 & , \text{ dacă } x \in M \\ 0 & , \text{ dacă } x \in \mathbb{R} \setminus M. \end{cases}$$

Problema 2. Determinați toate inelele $(A, +, \cdot)$ cu proprietatea că $x^3 \in \{0, 1\}$ pentru orice element $x \in A$.

Solutie.

 Problema 3. Fie $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ două funcții crescătoare.

a) Arătați că pentru orice $a \in \mathbb{R}$ și orice $b \in [f(a-0), f(a+0)]$ are loc inegalitatea

$$\int_{a}^{x} f(t) dt \ge b(x - a), \quad \text{pentru orice } x \in \mathbb{R}.$$

b) Dacă $[f(a-0), f(a+0)] \cap [g(a-0), g(a+0)] \neq \emptyset$ pentru orice $a \in \mathbb{R}$, arătați că

$$\int_a^b f(t) dt = \int_a^b g(t) dt, \quad \text{pentru orice } a, b \in \mathbb{R}, \ a < b.$$

(Prin u(a-0) și u(a+0) am notat limitele la stânga, respectiv la dreapta ale unei funcții u în punctul $a \in \mathbb{R}$.)

Soluție.

a) Deoarece f este crescătoare, au loc inegalitățile

$$f(t) \le f(a-0) \le b$$
, pentru orice $t < a$,

respectiv

$$f(t) \ge f(a+0) \ge b$$
, pentru orice $t > a$,

$$y_k(x_{k+1} - x_k) \le \int_{x_k}^{x_{k+1}} f(t) dt, \int_{x_k}^{x_{k+1}} g(t) dt \le y_{k+1}(x_{k+1} - x_k),$$

$$(y_k - y_{k+1}) \cdot \frac{b-a}{n} \le \int_{x_k}^{x_{k+1}} f(t) dt - \int_{x_k}^{x_{k+1}} g(t) dt \le (y_{k+1} - y_k) \cdot \frac{b-a}{n}$$

și prin însumare obținem că

$$\left| \int_{a}^{b} f(t) dt - \int_{a}^{b} g(t) dt \right| \le \frac{b-a}{n} (y_{n} - y_{0}) \le$$

$$\le \frac{1}{n} \cdot (b-a) (\max(f(b+0), g(b+0)) - \min(f(a-0), g(a-0)).$$

Cum $n \in \mathbb{N}^*$ este oarecare, rezultă că

$$\int_a^b f(t) dt = \int_a^b g(t) dt,$$

Problema 4. Fie $(R, +, \cdot)$ un inel, cu centrul $Z = \{a \in R | ar = ra, \forall r \in R\}$, cu proprietatea că grupul U = U(R) al elementelor sale inversabile este finit. Dacă G este grupul automorfismelor grupului aditiv (R, +), arătați că

$$|G| \ge \frac{|U|^2}{|Z \cap U|} \,.$$

(|M| reprezintă cardinalul mulțimii M.)

Solutie.

Pentru orice element inversabil $a \in U$ putem defini funcțiile

$$s_a: R \longrightarrow R: x \mapsto s_a(x) = a \cdot x$$

și

$$d_a: R \longrightarrow R: x \mapsto d_a(x) = x \cdot a$$

$$|SD| = \frac{|S||D|}{|S \cap D|},$$

obținem

$$|G| \ge |H| = |SD| = \frac{|S||D|}{|S \cap D|} = \frac{|U|^2}{|Z \cap U|}.$$