Fonctions continues

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Définitions, généralités			2	
	1.1	Continuité :	: définitions	2	
		1.1.1 Thé	orème et définition de la continuité	2	
		1.1.2 Fond	etions lipschitziennes	2	
		1.1.3 Fond	ctions uniformément continues	3	
1.2 Continuité : théorèmes		Continuité :	: théorèmes	4	
		1.2.1 Thé	orème de Heine	4	
		1.2.2 Thé	orèmes généraux	4	
		1.2.3 Imag	ge d'une partie compacte	5	
2	Thé	Chéorème des valeurs intermédiaires		6	
2.1		Énoncés et	démonstrations	6	
		2.1.1 Énor	ncés	6	
		2.1.2 Dém	nonstrations	6	
2.2 Corollaires .		Corollaires		7	
		2.2.1 Imag	ge d'un segment par une application continue	7	
		2.2.2 Petit	t problème	7	
		2.2.3 Autr	re version du théorème des valeurs intermédiaires	8	
3	Cor	Complément : résultats sur la continuités des fonctions à variable complexe			
3.1 Généralités sur la continuité dans		Généralités	sur la continuité dans $\mathbb C$	8	
		3.1.1 Défi	nition de la continuité dans $\mathbb C$	8	
		3.1.2 Thé	orèmes	8	
	3.2	Théorème d	le D'Alembert-Gauss	8	

1 Définitions, généralités

Dans la suite, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1.1 Continuité : définitions

1.1.1 Théorème et définition de la continuité

Soit $D \in \mathbb{R}$, $f: D \longrightarrow \mathbb{K}$.

- (1) Soit $x_0 \in D$. f est continue au point x_0 si f vérifie au moins une des assertions équivalentes suivantes :
 - (a) $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, |x x_0| \leq \alpha \Rightarrow |f(x) f(x_0)| \leq \varepsilon$
 - (b) $\forall V \in \mathcal{V}_{\mathbb{K}}(f(x_0)), \exists U \in \mathcal{V}_{\mathbb{R}}(x_0), f(U \cap D) \subset V.$
 - (c) $\forall u \in D^{\mathbb{N}}$ convergente vers x_0 , $f(u_n)$ converge vers x_0 .
- (2) f est continue sur D si $\forall x \in D$, f est continue en x. On note $\mathcal{C}(D, \mathbb{K})$ l'ensemble des fonctions continue de D dans \mathbb{K} .

Démonstration On montrera que (a) \Rightarrow (b), puis que (b) \Rightarrow (c) et enfin que (c) \Rightarrow (a).

- (a) \Rightarrow (b) Soit $V \in \mathcal{V}_{\mathbb{K}}(f(x_0))$, $\exists \varepsilon > 0$, $V_{\mathbb{K}}(f(x_0), \varepsilon) \subset V$. On peut trouver d'après (a) un $\alpha > 0$ tel que $\forall x \in D$, $|x x_0| \leq \alpha \Rightarrow |f(x) f(x_0)| \leq \varepsilon$. Soit $U = [x_0 \alpha, x_0 + \alpha]$, alors $U \in \mathcal{V}_{\mathbb{R}}(x_0)$ et, pour tout $x \in U \cap D$, on a $x \in D$ et $|x x_0| \leq \alpha$ donc $|f(x) f(x_0)| \leq \varepsilon$. Ceci est équivalent à $f(x) \in V_{\mathbb{K}}(f(x_0), \varepsilon) \subset V$ donc $f(U \cap D) \subset V$.
- (b) \Rightarrow (c) Soit $u \in D^{\mathbb{N}}$ convergente vers x_0 . Montrons que $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(x_0)$. Soit $V \in \mathcal{V}_{\mathbb{K}}(f(x_0))$, on cherche $n_0 \in \mathbb{N}/\forall n \geq n_0, \ f(u_n) \in V$. D'après (b), il existe $U \in \mathcal{V}_{\mathbb{R}}(x_0)$ tel que $f(U \cap D) \subset V$. u converge vers x_0 donc $\exists n_0 \in \mathbb{N}/\forall n \geq n_0, \ u_n \in U$. Donc, pour $n \geq n_0, \ u_n \in U \cap D$ donc $f(u_n) \in V$.
- $(c) \Rightarrow (a)$ Montrons que $\neg (a) \Rightarrow \neg (c)$. Supposons donc que

$$\exists \varepsilon > 0, \forall \alpha > 0, \exists x \in D/|x - x_0| \leq \alpha \text{ et } |f(x_0) - f(x)| > \varepsilon$$

En particulier, $\forall n \in \mathbb{N}$, $\exists (u_n) \in D^{\mathbb{N}}$ tel que $|u_n - x_0| \leq 2^{-n}$ et $|f(u_n) - f(x_0)| > \varepsilon$ donc u est une suite de points de D qui converge vers x_0 telle que $f(u_n)$ ne converge pas vers x_0 , ce qui est impossible.

1.1.2 Fonctions lipschitziennes

Soit $f: D \subset \mathbb{R} \longrightarrow \mathbb{K}$. f est lipschitzienne a s'il existe $k \in \mathbb{R}_+$ tel que $\forall x, y \in D$,

$$|f(x) - f(y)| \le k|x - y|$$

On dit alors que f est k-lipschitzienne.

a. Quel nom à coucher dehors!

Remarque

- Toute fonction affine du type $f: \mathbb{R} \longrightarrow \mathbb{K}$ avec $\alpha, \beta \in \mathbb{R}$ est $|\alpha|$ -lipschitzienne : en effet, $\forall s, t \in \mathbb{R}$, $t \mapsto \alpha t + \beta$

$$|f(s) - f(t)| = |\alpha| |s - t|$$

- On dit que f est contractante si elle est lipschitzienne de rapport strictement plus petit que 1.

Théorème Toute application lipschitzienne est continue.

En effet, soit $f: D \subset \mathbb{R} \longrightarrow \mathbb{K}$ lipschitzienne de rapport $k \in \mathbb{R}_+$, et $x_0 \in D$. Montrons que f est continue en x_0 . Soit $\varepsilon > 0$, pour $x \in D$,

$$|f(x) - f(x_0)| \leqslant k |x - x_0|$$

Soit $\alpha > 0$. Si $|x - x_0| \le \alpha$, alors $|f(x) - f(x_0)| \le k\alpha$. Prenons donc $\alpha = \frac{\varepsilon}{k}$ si k = 0, et $\alpha = 42^a$ si k = 0. On a toujours $k\alpha \le \varepsilon$ donc si $x \in D \cap [x_0 - \alpha, x_0 + \alpha]$, $|f(x) - f(x_0)| \le \varepsilon$.

1.1.3 Fonctions uniformément continues

 $f:D\subset\mathbb{R}\longrightarrow\mathbb{K}$ est uniformément continue si

$$\forall \varepsilon > 0, \exists \alpha > 0 / \forall s,t \in D, |s-t| \leqslant \alpha \Rightarrow |f\left(s\right) - f\left(t\right)| \leqslant \varepsilon$$

Remarques

- Toute fonction lipschitzienne est uniformément continue.

En effet, soit $f: D \longrightarrow \mathbb{K}$ une application k-lipschitzienne et $\varepsilon > 0$. Soit $\alpha > 0$ tel que $k\alpha \le \varepsilon$ (ou $\alpha = 42$ si k = 0). Pour $s, t \in D$, vérifiant $|s - t| \le \alpha$, alors

$$|f(s) - f(t)| \le k|s - t|$$

 $\le k\alpha$
 $\le \varepsilon$

Montrons qu'il existe des fonctions uniformément continues mais pas lipschitziennes. Soit

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$t \mapsto \sqrt{t}$$

On a vu que $\forall u, v \in \mathbb{R}_+$,

$$\left|\sqrt{u} - \sqrt{v}\right| \leqslant \sqrt{|u - v|}$$

Soit $\varepsilon > 0$, $\alpha = \varepsilon^2$. Pour $u, v \in \mathbb{R}_+$,

$$|u-v| \leqslant \alpha = \varepsilon^2 \Rightarrow \left|\sqrt{u} - \sqrt{v}\right| \leqslant \sqrt{|u-v|} \leqslant \varepsilon$$

f est donc uniformément continue. Par contre, f n'est pas lipschitzienne. Supposons qu'elle l'est. Alors $\exists \lambda \in \mathbb{R}_+ / \forall s, t \in \mathbb{R}$,

$$\left| \sqrt{s} - \sqrt{t} \right| \leqslant \lambda \left| s - t \right|$$

En particulier pour t = 0, $|\sqrt{s}| \le \lambda |s|$. Ainsi, $\forall s > 0$,

$$\sqrt{\frac{1}{s^2}} \leqslant \frac{\lambda}{s^2} \implies \frac{1}{s} \leqslant \frac{\lambda}{s^2}$$
 $\implies s \leqslant \lambda$

Or s peut décrire tout \mathbb{R}_+^* donc la précédente inégalité est impossible.

Théorème Toute fonction uniformément continue est continue.

Soit $f: D \subset \mathbb{R} \longrightarrow \mathbb{K}$ uniformément continue et $x_0 \in D$. Montrons que f est continue en x_0 . Soit $\varepsilon > 0$, f est uniformément continue donc $\exists \beta > 0/\forall s, t \in D$,

$$|s-t| \le \beta \Rightarrow |f(s)-f(t)| \le \varepsilon$$

Pour $x \in D$ vérifiant $|x - x_0| \le \beta$, on a bien $|f(x) - f(x_0)| \le \varepsilon$.

a. Ou n'importe quoi pourvu que ce soit strictement positif.

Remarque Montrons qu'il existe des fonctions continues qui ne le sont pas uniformément. Soit

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$t \mapsto t^2$$

Montrons que f est continue. Soit $x_0 \in \mathbb{R}$ et $u \in D^{\mathbb{N}}$ qui converge vers x_0 . On sait que (u_n^2) tend vers x_0^2 donc $(f(u_n))$ tend vers $f(x_0)$ donc f est continue en x_0 . Supposons que f est uniformément continue, alors $\forall \varepsilon > 0, \exists \alpha > 0/\forall s, t \in \mathbb{R}, |s-t| \leq \alpha \Rightarrow |s^2-t^2| \leq \varepsilon$. Posons maintenant pour $n \in \mathbb{N}^*$, $x_n = n$ et $y_n = n + \frac{1}{n}$. Soit $n_0 \in \mathbb{N}$ tel que $\frac{1}{n_0} \leq \alpha$, alors pour $n \geq n_0$,

$$|x_n - y_n| \leq \frac{1}{n}$$

$$\leq \frac{1}{n_0}$$

$$\leq \alpha$$

On doit donc aussi avoir

$$\left|x_n^2 - y_n^2\right| \leqslant \varepsilon \Rightarrow \left|2 + \frac{1}{n^2}\right| \leqslant \varepsilon$$

Si $\varepsilon = 1$, la relation précédente est absurde donc c'est impossible.

1.2 Continuité : théorèmes

1.2.1 Théorème de Heine

Soit Δ une partie compacte de \mathbb{R} et $f:\Delta\longrightarrow\mathbb{K}$ continue. Alors f est uniformément continue.

Démonstration Supposons que f n'est pas uniformément continue. Alors :

$$\exists \varepsilon > 0 / \forall \alpha > 0, \exists s,t \in \Delta / \begin{cases} |s-t| \leqslant \alpha \\ |f\left(s\right) - f\left(t\right)| > \varepsilon \end{cases}$$

En particulier, $\forall n \in \mathbb{N}^*$, $\exists x_n, y_n \in \Delta$ avec $|x_n - y_n| \leq \frac{1}{n}$ et $|f(x_n) - f(y_n)| > \varepsilon$. Δ est compact donc il existe une sous suite $(x_{\varphi(n)})$ de x avec $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante qui converge vers un élément a de Δ . Alors, pour $n \in \mathbb{N}$:

$$|y_{\varphi(n)} - a| = |y_{\varphi(n)} - x_{\varphi(n)} + x_{\varphi(n)} - a|$$

$$\leq |y_{\varphi(n)} - x_{\varphi(n)}| + |x_{\varphi(n)} - a|$$

Or $|y_{\varphi(n)} - x_{\varphi(n)}| \le \frac{1}{\varphi(n)} \le \frac{1}{n}$ donc cette quantité tend vers 0, ainsi que $|x_{\varphi(n)} - a|$. Donc $(y_{\varphi(n)})$ converge aussi vers a. f et continue en a car $a \in \Delta$ donc $f(x_{\varphi(n)}) \longrightarrow f(a)$ et $f(y_{\varphi(n)}) \longrightarrow f(a)$ donc

$$|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \underset{n \mapsto +\infty}{\longrightarrow} 0$$

Ce qui est impossible car $\forall n \in \mathbb{N}^*, |f(x_{\varphi(n)}) - f(y_{\varphi(n)})| > \varepsilon$.

Remarque Soit $f: D \subset \mathbb{R} \longrightarrow \mathbb{K}$ continue en $x_0 \in D$. Supposons que $f(x_0) > 0$, et soit $\lambda \in]0, f(x_0)[$. Alors $V = [\lambda, +\infty[$ est un voisinage de x_0 dans \mathbb{R} donc $\exists U \in \mathcal{V}_{\mathbb{R}}(x_0)$ tel que $x \in U \cap D \Rightarrow f(x) \in V$. Ainsi, $f(x) \ge \lambda > 0$ donc f est strictement positive sur $D \cap U$. Ceci revient à dire que l'on peut trouver un voisinage de x_0 autour duquel f(x) est toujours positive.

1.2.2 Théorèmes généraux

Somme, produit, quotient, valeur absolue

Version locale Soient $f, g : D \subset \mathbb{R} \longrightarrow \mathbb{K}$ et $x_0 \in D$, on suppose f et g continues en x_0 . Soit $\alpha \in \mathbb{K}$, alors :

- $-\alpha f + g$ est continue en x_0 .
- -fg est continue en x_0 .
- Si $\forall t \in D, f(t) \neq 0, \frac{1}{f}$ est continue en x_0 .
- -|f| est continue en x_0 .

Version globale Soient $f, g \in \mathcal{C}(D, \mathbb{K})$ et $\alpha \in \mathbb{K}$. alors:

- $-\alpha f + g$ est continue sur D.
- -fg est continue sur D.
- Si $\forall t \in D, f(t) \neq 0, \frac{1}{f}$ est continue sur D.
- -|f| est continue sur D.

Démonstration Soit $u \in D^{\mathbb{N}}$ convergente vers x_0 . f et g sont continues en x_0 donc $f(u_n) \longrightarrow f(x_0)$ et $g(u_n) \longrightarrow g(x_0)$. D'après les théorèmes généraux sur les suites convergentes :

- $-\alpha f(u_n) + g(u_n) \longrightarrow \alpha f(x_0) + g(x_0)$
- $-f(u_n) g(u_n) \longrightarrow f(x_0) g(x_0)$ $-\operatorname{Si} \forall t \in D, f(t) \neq 0, \frac{1}{f(u_n)} \longrightarrow \frac{1}{f(x_0)}$ $-|f(u_n)| \longrightarrow |f(x_0)|$

Opérations spécifiques aux fonctions réelles Soient $f, g \in \mathcal{C}(D, \mathbb{R})$. Alors:

- $-\inf(f,g)$ est continue sur D.
- $-\sup(f,g)$ est continue sur D.
- $-f^+$ est continue sur D.
- $-f^-$ est continue sur D.

Opérations spécifiques aux fonctions à valeur dans \mathbb{C} Soient $f \in \mathcal{C}(D, \mathbb{C})$. Alors:

- $-\Im m(f)$ est continue sur D.
- $-\Re(f)$ est continue sur D.

Les démonstrations suivantes sont « laissées aux courageux lecteur! ».

Remarques

- (1) Soit $f: D \longrightarrow \mathbb{C}$. Alors f est continue si et seulement si $\Re e(f)$ et $\Im m(f)$ sont continues.
- (2) Soit $D \subset \mathbb{R}$, alors:
 - $-t \in D \longrightarrow t$ est continue donc par produit, pour $n \in \mathbb{N}^*$, $t \mapsto t^n$ est continue.
 - $-\forall \alpha \in \mathbb{K}, \forall n \in \mathbb{N}^*, t \mapsto \alpha t^n$ est continue donc par somme, toutes les fonctions polynômiales sont continues.
 - Par quotient, toute fonction rationnelle bien définie est continue.

Théorème sur la composition Soient D, Δ deux parties de $\mathbb{R}, f: D \longrightarrow \mathbb{R}$ telle que $f(D) \subset \Delta$ et $g: \Delta \longrightarrow \mathbb{K}$ toutes deux continues. Alors $g \circ f$ est continue sur D.

Démonstration Soit $x_0 \in D$. Montrons que $g \circ f$ est continue en x_0 .

Soit W un voisinage de $g(f(x_0))$ dans K. Or $f(x_0) \in \Delta$ et g est continue sur Δ donc on peut trouver un voisinage V de $f(x_0)$ dans \mathbb{R} tel que $g(\Delta \cap V) \subset W$. De même, $V \in \mathcal{V}_{\mathbb{R}}(f(x_0))$ et f est continue en x_0 donc $\exists U \in \mathcal{V}_{\mathbb{R}}(x_0) \text{ tel que } f(U \cap D) \subset V.$

Si $x \in U \cap D$, alors $f(x) \in V$ et $f(x) \in \Delta$ donc $f(x) \in V \cap \Delta$ donc $g(f(x)) \in W$ donc $g \circ f(U \cap D) \in W^a$.

1.2.3 Image d'une partie compacte

Soit Δ un compact de \mathbb{R} , $f:\Delta\longrightarrow\mathbb{K}$ continue. Alors $\Lambda=f(\Delta)$ est un compact de \mathbb{K} .

Démonstration Soit $y \in f(\Delta)^{\mathbb{N}}$. Montrons qu'il existe une sous-suite de y qui converge dans $f(\Delta)$. Pour $n \in \mathbb{N}, y_n \in f(\Delta) \text{ donc } \exists x_n \in \Delta \text{ tel que } y_n = f(x_n). \Delta \text{ est un compact donc } \exists \varphi : \mathbb{N} \longrightarrow \mathbb{N} \text{ strictement croissante}$ et $a \in \Delta$ tels que $(x_{\varphi(n)})$ converge vers a. f est continue en Δ donc $f(x_{\varphi(n)}) \longrightarrow f(a)$ donc $y_{\varphi(n)} \longrightarrow f(a)$ et $f(a) \in f(\Delta)$.

a. Les autres preuves de ce résultat utilisant respectivement les définitions séquentielles et epsilonnesques de la continuité sont elles aussi « laissées au courageux lecteur! » .

Corollaire Soit $f: \Delta \subset \mathbb{R} \longrightarrow \mathbb{R}$ continue sur Δ compact. Alors f est bornée et atteint ses bornes. La partie $\Omega = \{f(x) | x \in D\}$ est une partie bornée de \mathbb{R} donc $m = \inf \Omega$ et $M = \sup \Omega$ sont des valeurs prises par f. En d'autres termes, $\exists x, t \in \Delta / \forall t \in \Delta$, $f(x) \leqslant f(t) \leqslant f(y)$.

Démonstration $\Omega = f(\Delta)$ est un compact de \mathbb{R} donc il est bornée, d'où l'existence de $m = \inf \Omega$ et $M = \sup \Omega$. Il est aussi fermé, d'où $m, M \in \Omega$.

Cas particulier En particulier, pour $a, b \in \mathbb{R}$ avec a < b, si $f : [a, b] \longrightarrow \mathbb{R}$ est continue, alors f est bornée et atteint ses bornes.

2 Théorème des valeurs intermédiaires

2.1 Énoncés et démonstrations

2.1.1 Énoncés

Version n°1

Soient $a, b \in \mathbb{R}$ avec a < b et $f : [a, b] \longrightarrow \mathbb{R}$ continue. Si $f(a) f(b) \le 0$, alors il existe un point c du segment [a, b] tel que f(c) = 0.

Version n°2

Soit I un intervalle de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ continue. Si f prend sur I des valeurs positives et négatives, alors f doit s'annuler au moins une fois.

Version n°3

Soit I intervalle de \mathbb{R} , $f: I \longrightarrow \mathbb{R}$ continue. Alors J = f(I) est un intervalle de \mathbb{R} .

2.1.2 Démonstrations

Version n°1 Supposons par exemple $f(a) \le 0$ et $f(b) \ge 0$.

On construit par récurrence deux suites (a_n) et (b_n) telles que $\forall n \in \mathbb{N}$:

- $(1) \ a \leqslant a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n \leqslant b$
- (2) $b_{n+1} a_{n+1} = \frac{1}{2^n} (b a)$
- (3) $f(a_n) \leq 0 \text{ et } f(b_n) \leq 0$

On prend $a_0 = a$, $b_0 = b$, on a bien $f(a_0) \le 0$ et $f(b_0) \ge 0$. Soit $c_0 = \frac{a_0 + b_0}{2}$.

- Si $f(c) \leq 0$, on prend $a_1 = c_0$ et $b_1 = b_0$.
- Sinon on prend $a_1 = a_0$ et $b_1 = c_0$.

On a bien dans tous les cas:

- $(1) \ a \leqslant a_0 \leqslant a_1 \leqslant b_1 \leqslant b_0 \leqslant b$
- (2) $b_1 a_1 = \frac{1}{2} (b_0 a_0)$
- (3) $f(a_1) \leq 0 \text{ et } f(b_1) \geq 0$

Supposons avoir construit

$$a \leqslant a_0 \leqslant a_1 \leqslant \dots \leqslant a_n \leqslant b_n \leqslant \dots \leqslant b_1 \leqslant b_0 \leqslant b$$

Pour $n \in \mathbb{N}^*$ avec $\forall k \in [[0, n]], f(a_k) \leq 0$ et $f(b_k) \geq 0$. Soit $c_n = \frac{a_n + b_n}{2}$:

- Si $f(c_n) \leq 0$, alors on prend $a_{n+1} = c$, $b_{n+1} = b_n$.
- Si $f(c_n) \ge 0$, alors on prend $a_{n+1} = a_n$, $b_{n+1} = c_n$.

Dans tous les cas on a bien:

- $(1) \ a \leqslant a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n \leqslant b$
- (2) $b_{n+1} a_{n+1} = \frac{1}{2} (b_n a_n) = \frac{1}{2^{n+1}} (a b)$
- (3) $f(a_{n+1}) \leq 0$ et $f(b_{n+1}) \geq 0$

Il est clair que les suites a et b sont adjacentes donc elles convergent vers une limite commune $x \in [a, b]$. f est continue en x donc les suites (a_n) e (b_n) convergent toutes les deux vers x donc $(f(a_n))$ et $(f(b_n))$ convergent vers f(x). Or, $\forall n \in \mathbb{N}, f(a_n) \leq 0$ donc $f(x) \leq 0$. De même, $\forall n \in \mathbb{N}, f(b_n) \geq 0$ donc $f(x) \geq 0$. Ainsi, f(x) = 0.

Version n°2 Par hypothèse, $\exists a, b \in I \text{ avec } f(a) \leq 0 \text{ et } f(b) \geq 0.$

- Si a = b, alors f(a) = 0.
- Si $a \neq b$, alors f est continue sur $[a,b] = [\min{(a,b)}, \max{(a,b)}]$ et $f(a) f(b) \leq 0$. D'après la version n°1 du théorème, f s'annule au moins une fois sur $[a,b] \subset I$.

Version n°3 Soit J = f(I), montrons que J est une partie convexe de \mathbb{R} et donc un intervalle.

Soit $c, d \in J$ tels que $c \leq d$. Montrons que $[c, d] \subset J$. Soit $\gamma \in [c, d]$, $c, d \in f(I)$ donc $\exists a, b \in I/f(a) = c$ et f(b) = d. Soit

$$g: [a,b] \longrightarrow \mathbb{R}$$

$$t \mapsto f(t) - \gamma$$

g est continue car f est continue et

$$g(a) g(b) = (c - \gamma) (d - \gamma) \le 0 \quad \text{car } c \le \gamma \le d$$

D'après la version n°1 du théorème, $\exists Adrien \in [a,b]^a$ tel que $g\left(Adrien\right) = 0 \Leftrightarrow \gamma = f\left(Adrien\right)$ donc $\gamma \in J$ car $Adrien \in I$. Donc J est une partie convexe de \mathbb{R} .

2.2 Corollaires

2.2.1 Image d'un segment par une application continue

Soient $a, b \in \mathbb{R}$ avec a < b et $f : [a, b] \longrightarrow \mathbb{R}$ continue. Alors f([a, b]) est un segment [M, n] avec $m \leq M$.

Démonstration [a,b] est un intervalle et un compact et f et continue sur [a,b] donc f est bornée et atteint ses bornes. Soit $m = \inf_{[a,b]} f$ et $M = \sup_{[a,b]} f$, alors $\exists x,y \in [a,b]$ tels que m = f(x) et M = f(y). Alors, $\forall t \in [a,b]$, $m \le f(t) \le M$ donc $f([a,b]) \subset [m,M]$.

Or $m, M \in f([a, b])$ donc f([a, b]) est un intervalle de \mathbb{R} d'après le théorème des valeurs intermédiaires donc $[m, M] \subset [a, b]$ donc

$$f([a,b]) = [\min f, \max f]$$

2.2.2 Petit problème

Un marcheur parcourt 20 km en 4 h pour une vitesse moyenne de 5 km/h^b . Montrons qu'il y a un intervalle de temps de 1 h pendant lequel il a parcouru exactement 5 km.

On admet que la fonction qui à t associe d(t) la distance parcourue est continue. Alors $f: t \in [0, 3h] \longrightarrow d(t+1h) - d(t)$ est continue. De plus :

$$f(0) + f(1) + f(2) + f(3) = 20$$

Alors $\exists k \in [[0,3]]$ tel que $f(k) \leq 5$ et $\exists l \in [[0,3]]$ tel que $f(l) \leq 5$. Donc $t \longrightarrow f(t) - 5$ est continue et prend des valeurs positives et négatives donc doit s'annuler donc $\exists t \in [0,3]$ tel que $f(t) = 5 \Leftrightarrow d(t+1) - d(t) = 5$.

- a. Une petite dédicace de la part de M. Sellès à celui qu'on ne présente plus, aussi connu sous le nom d'AMÉNOFIS.
- b. Ou km.h⁻¹ pour parler comme les physiciens!

2.2.3 Autre version du théorème des valeurs intermédiaires

Soit $f: I \longrightarrow \mathbb{R}$ continue, si c et d avec $c \le d$ sont deux valeurs prises par f, alors f prend toutes les valeurs comprises entre c et d.

3 Complément : résultats sur la continuités des fonctions à variable complexe

3.1 Généralités sur la continuité dans $\mathbb C$

3.1.1 Définition de la continuité dans \mathbb{C}

Soit $\Delta \subset \mathbb{C}$, on dit que $f: \Delta \longrightarrow \mathbb{C}$ est continue en z_0 si (les définitions suivantes sont équivalentes):

- (1) $\forall \delta_n \in \Delta^{\mathbb{N}}$ convergente vers z_0 , alors $(f(\delta_n))$ converge vers $f(z_0)$.
- (2) $\forall V \in \mathcal{V}_{\mathbb{C}}(f(z_0)), \exists U \in \mathcal{V}_{\mathbb{C}}(z_0) \text{ tel que } f(U \cap \Delta) \subset V.$
- (3) $\forall \varepsilon > 0, \exists \alpha > 0 / \forall \delta \in \Delta, |\delta z_0| \leq \alpha \Rightarrow |f(\delta) f(z_0)| \leq \varepsilon.$

3.1.2 Théorèmes

On montre de la même façon que pour les théorèmes analogues concernant les fonctions à variable réelle les résultats suivants :

- Théorèmes généraux.
- Image d'un compact par une fonction continue.

En particulier, toute fonction polynômiale sur \mathbb{C} est continue.

3.2 Théorème de D'Alembert-Gauss

Soit $P:\mathbb{C}\longrightarrow\mathbb{C}$ polynômiale de degré nPartérieur ou égal à 1. Alors P possède une racine dans \mathbb{C} .

Démonstration

Montrons que |P(z)| est minorée. On écrit alors :

$$P(z) = \sum_{k=0}^{n} a_k z^k \quad \text{avec } a_n \neq 0$$

On peut supposer $a_n=1$ car P s'annule si et seulement si $\frac{P}{a_n}$ s'annule. Alors, pour $z\in\mathbb{C}$:

$$|P(z)| = \left| z^n + \sum_{k=0}^{n-1} a_k z^k \right|$$

$$\geqslant \left| |z|^n - \left| \sum_{k=0}^{n-1} a_k z^k \right| \right|$$

$$\geqslant |z|^n - \left| \sum_{k=0}^{n-1} a_k z^k \right|$$

$$\geqslant |z|^n - \sum_{k=0}^{n-1} |a_k| \left| z^k \right|$$

$$\geqslant |z|^n \left[1 - \sum_{k=0}^{n-1} \frac{|a_k|}{|z^{n-k}|} \right]$$

Prenons z tel que $|z| \ge 1$, soit $M = \max(|a_0|, |a_1|, \dots, |a_{n-1}|)$. Si $j \in \mathbb{N}^*$, alors $|z|^j \ge |z| \ge 1$ donc

$$\frac{1}{|z|^j} \leqslant \frac{1}{|z|}$$

Donc pour $k \in [0, n-1]$, $\frac{|a_k|}{|z|^{n-k}} \leqslant \frac{M}{|z|}$, donc

$$\sum_{k=0}^{n-1} \frac{|a_k|}{|z|^{n-k}} \leqslant \frac{nM}{|z|}$$

Pour z-espace $v|z| \ge \max(1, 2nM)$, on a :

$$\sum_{k=0}^{n-1} \frac{|a_k|}{|z|^{n-k}} \leqslant \frac{nM}{|z|}$$

$$\leqslant \frac{nM}{2nM}$$

$$\leqslant \frac{1}{2}$$

C'es

$$|P(z)| \ge |z|^n \left[1 - \sum_{k=0}^{n-1} \frac{|a_k|}{|z^{n-k}|} \right]$$

$$\ge |z|^n \left(1 - \frac{1}{2} \right)$$

$$\ge \frac{|z|^n}{2}$$

Pour $R = \max(1, 2nM, |P(0)|)$, si |z| > R, alors $|P(z)| \ge \frac{|z|}{2} \ge |P(0)|$. Soit $\Delta = \overline{\mathcal{D}}(0, R)$ un compact de \mathbb{C} , donc Δ est fini et borné. Soit l'application

$$\varphi: \ \Delta \longrightarrow \mathbb{R}$$
$$z \mapsto |P(z)|$$

continue, $\varphi(\Delta)$ est un compact de \mathbb{R} donc φ est bornée et atteint ses bornes. En particulier, φ atteint un minimum : $\exists z_0 \in \Delta / \forall z \in \Delta$, $|P(z)| \ge |P(z_0)|$. De plus $0 \in \Delta$ donc $|P(0)| \ge |P(z_0)|$. Ainsi :

- $-\operatorname{Si}|z| \leq R, \operatorname{alors}|P(z)| \geq |P(z_0)|.$
- Si |z| > R, alors $|P(z)| \ge |P(0)| \ge |P(z_0)|$.

Dans tous les cas, $|P(z)| \ge |P(z_0)|$.

Soit $Q = \frac{1}{P(z_0)}P$. Alors $Q(z_0) = 1$ et, $\forall z \in \mathbb{C}$, $|Q(z)| \ge 1$. On note que Q est polynômiale de degré n comme P.

Soit pour tout $z \in \mathbb{C}$, $T(z) = Q(z + z_0)$, alors T est aussi polynômiale de degré n; T(0) = 1 et, $\forall z \in \mathbb{C}$, $|T(z)| \ge 1$.

Montrons que cette dernière assertion est impossible T s'écrit $T(z) = \lambda_0 + z\lambda_1 + \cdots + \lambda_n z^n$ avec $n \ge 1$ et $\lambda_n \ne 0$. Or $T(0) = \lambda_0$ donc $\lambda_0 = 1$. Soit $j = \min\{k \in [1, n] | \lambda_k \ne 0\}$. Alors

$$T(z) = 1 + \lambda_j z^j + \sum_{k=j+1}^n \lambda_k z^k$$

On sait que $\lambda_j \neq 0$ donc on peut écrire $\lambda_j = r e^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$. De plus, pour tout réel t > 0,

$$T\left(te^{i\left(-\frac{\theta}{j}+\frac{\pi}{j}\right)}\right) = \underbrace{1 + re^{i\theta} \cdot t^{j}e^{i(-\theta+\pi)}}_{-rt^{j}} + \underbrace{\sum_{k=j+1}^{n} \lambda_{k}t^{k}e^{i\left(-\frac{\theta}{j}+\frac{\pi}{j}\right)}}_{Z_{t}}$$

Or $|Z_t| \leq \sum_{k=j+1}^n |\lambda_k| t^k$, de plus pour $t \leq 1$ on $\forall k \in [j+1,n]$, $t^k \leq t^{j+1}$ donc

$$|Z_t| \leq \sum_{k=j+1}^n |\lambda_k| t^{j+1}$$

$$\leq M' t^{j+1} \text{ avec } M' = \sum_{k=j+1}^n |\lambda_k|$$

Ainsi,

$$\left| T \left(t e^{i \left(-\frac{\theta}{j} + \frac{\pi}{j} \right)} \right) \right| = \left| 1 - r t^j + Z_t \right|$$

$$\leq \left| 1 - r t^j \right| + \left| Z_t \right|$$

Supposons de plus que $t \leqslant \frac{1}{r} \Leftrightarrow t \in \left[0, \min\left(1, \frac{1}{r}\right)\right]$. Alors

$$t^{j} \leqslant t \leqslant \frac{1}{r} \Rightarrow 1 - rt^{j} \geqslant 0$$

$$\operatorname{Donc} \left| T \left(t e^{i \left(-\frac{\theta}{j} + \frac{\pi}{j} \right)} \right) \right| \leq 1 - r t^j + M' t^{j+1} \text{ et } r t^j - M t^{j+1} > 0 \text{ pour } t \in \left] 0, \min \left(1, \frac{1}{r}, \frac{r}{M'} \right) \right[. \text{ On a donc} \right|$$

$$\left| T \left(t e^{i \left(-\frac{\theta}{j} + \frac{\pi}{j} \right)} \right) \right| \leq 1 - \left(r t^j - M t^{j+1} \right) < 1$$

Ce qui entre en contradiction avec l'hypothèse de départ.