Supplementary Methods 1 for 'Uncertain competition coefficients undermine inferences about coexistence'

J. Christopher D. Terry

Contents

1	Sun	nmary	1
2	Loa	ding and looking at data	1
	2.1	How much data?	2
	2.2	How much uncertainty in types of parameters	2
3	Plo	tting raw data with model best-fit	4
4	Fitt	ing set of models with different levels of parameterisation	5
	4.1	Model Comparison Tables	7
5	Full	Posteriors	8
	5.1	Plotting	9
	5.2	Determining fraction of pairs that follow identified pattern	11
	5.3	Repeating across the whole bootstrap sample	12
6	Sess	sion Info	16

1 Summary

This document is a knit .rmd file that works through the steps of the reanalysis of *Small rainfall changes drive substantial changes in plant coexistence* by Van Dyke et al 2022 (Nature), to support a 'Matters Arising' response. Original data from the authors is available at https://doi.org/10.5281/zenodo.7083314

Section 4 details the methods used to conduct a model comparison analysis to examine the level of statistical support for the treatment impacting the key model parameters and subsequent key coexistence quantities.

Section 5 propagates forward the authors original full bootstrap through to the final assessment of whether the predicted coexistence outcome species pair differs between treatments.

2 Loading and looking at data

2.1 How much data?

```
nrow(seed_data)
## [1] 1677
count(seed_data, background, focal, treat) %>% arrange(n) %>% head()
    background focal treat n
##
## 1
          FEMI URLI
## 2
          URLI SACO
                         W 10
## 3
          PLER HOMU
                         W 11
## 4
          URLI HOMU
                         D 11
## 5
          URLI PLER
                         W 11
## 6
          ACWR HOMU
                         D 12
```

2.2 How much uncertainty in types of parameters

```
### no lambda sd saved, so will need to reconstruct, following original code

spp_treat_boot_combos <-read.csv(paste0(Path_to_Orig, "output/final_output_nls_boot_1000.csv"))

#Data frame with medians and sds for parameters---

spp_list <- sort(na.omit( unique(seed_data$focal)))

treat_list <- sort( na.omit( unique(seed_data$Tr)))

spp_treat_combos <- expand.grid(species = spp_list, treatment = treat_list)

comp_labels <- sort( na.omit( unique(seed_data$background) ))</pre>
```

```
spp_treat_boot_combos$sp_pair <- paste(spp_treat_boot_combos$focal,</pre>
                                        spp_treat_boot_combos$competitor, sep = "_")
spp_treat_comp_combos <- expand.grid(focal = spp_list,</pre>
                                      competitor = comp_labels,
                                      treatment = treat_list)
boot NEW <- spp treat comp combos %>% mutate(alpha = 0, alpha sd = 0,
                                               lambda = 0, lambda sd = 0)
boot_NEW$sp_pair <- paste(boot_NEW$focal, boot_NEW$competitor, sep = "_")
for( i in 1:nrow(spp_treat_comp_combos)) {
  sp1 <- spp_treat_comp_combos[i, "focal"] %>% unlist
  sp2 <- spp_treat_comp_combos[i, "competitor"] %>% unlist
  treatt <- spp_treat_comp_combos[i , "treatment"] %>% unlist
  boot_NEW[i, "alpha"] <- median(with(spp_treat_boot_combos,</pre>
                                       alpha[treatment == treatt &
                                               focal == sp1 &
                                                competitor == sp2
                                       ]), na.rm=TRUE)
  boot_NEW[i, "alpha_sd"] <- sd(with(spp_treat_boot_combos,</pre>
                                      alpha[treatment == treatt &
                                              focal == sp1 &
                                              competitor == sp2
                                      ]), na.rm=TRUE)
  boot_NEW[i, "lambda"] <- median(with(spp_treat_boot_combos,</pre>
                                        lambda[focal == sp1 & competitor == sp2 &
                                                  treatment == treatt]), na.rm=TRUE)
  boot_NEW[i, "lambda_sd"] <- sd(with(spp_treat_boot_combos,</pre>
                                       lambda[focal == sp1 & competitor == sp2 &
                                                 treatment == treatt]), na.rm=TRUE)
}
boot_NEW %>%
  filter(focal==competitor ) %>%
  mutate(LamCV= lambda_sd/lambda) %>%
  summarise(mean(LamCV))
     mean(LamCV)
##
       0.3195691
## 1
boot_NEW %>%
  mutate(AlpCV= alpha_sd/alpha)%>%
  summarise(mean(AlpCV))
##
    mean(AlpCV)
```

1 0.7400443

3 Plotting raw data with model best-fit

```
spp_list <- sort(na.omit( unique(seed_data$focal)))</pre>
set.seed(3)
AddPreds<- function(focalsp){
  focal_data <- filter(seed_data, focal == focalsp)</pre>
 fit<- nls(log(num_seeds)~log(lambda[Tr]/(1+a_ACWR[Tr]*N_acwr+a_FEMI[Tr]*N_femi+
                                               a_HOMU[Tr]*N_homu+a_PLER[Tr]*N_pler+
                                               a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
            data=focal_data,
            start=list('lambda'= c(100,100),
                        a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                        a_HOMU=c(0.1, 0.1), a_PLER=c(0.1, 0.1),
                        a_SACO=c(0.1, 0.1),a_URLI=c(0.1, 0.1)),
            lower = c(1, 1, rep(.001, 12)),
            upper = c(10000, 10000, rep(2, 12)),
            control = list(maxiter = 100000),
            algorithm = 'port')
  focal_data$Prediction <- predict(fit)</pre>
  return(focal_data)
data_predict <- map_df( spp_list,AddPreds)</pre>
```


ggsave('ExFig1_RawPredict.png', height = 8, width = 8, dpi = 200)

4 Fitting set of models with different levels of parameterisation

```
a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
               data=focal_data,
               start=list('lambda'= c(100,100),
                          a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                          a_HOMU=c(0.1, 0.1), a_PLER=c(0.1, 0.1),
                          a_SACO=c(0.1, 0.1),a_URLI=c(0.1, 0.1)),
               lower = c(1, 1, rep(.001, 12)),
               upper = c(10000, 10000, rep(2, 12)),
               control = list(maxiter = 100000),
               algorithm = 'port')
fit_test_nosplit<- nls(log(num_seeds)~log(lambda/(1+a_ACWR*N_acwr+a_FEMI*N_femi+
                                                     a_HOMU*N_homu+a_PLER*N_pler+
                                                     a_SACO*N_saco+a_URLI*N_urli)),
                       data=focal_data,
                       start=list('lambda'= c(100),
                                  a_ACWR=c(0.1), a_FEMI=c(0.1),
                                  a_{HOMU=c(0.1)}, a_{PLER=c(0.1)},
                                  a_SACO = c(0.1), a_URLI = c(0.1)),
                       lower = c(1, rep(.001, 6)),
                       upper = c(10000, rep(2, 6)),
                       control = list(maxiter = 100000),
                       algorithm = 'port')
fit test justA<- nls(log(num seeds)~log(lambda/(1+a ACWR[Tr]*N acwr+a FEMI[Tr]*N femi+
                                                  a HOMU[Tr]*N homu+a PLER[Tr]*N pler+
                                                  a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
                     data=focal data,
                     start=list('lambda'= c(100),a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                                a_HOMU=c(0.1, 0.1), a_PLER=c(0.1, 0.1),
                                a_SACO=c(0.1, 0.1), a_URLI=c(0.1, 0.1)),
                     lower = c(1, rep(.001, 12)),
                     upper = c(10000, rep(2, 12)),
                     control = list(maxiter = 100000),
                     algorithm = 'port')
fit_test_justLam<- nls(log(num_seeds)~log(lambda[Tr]/(1+a_ACWR*N_acwr+a_FEMI*N_femi+
                                                         a HOMU*N homu+a PLER*N pler+
                                                         a_SACO*N_saco+a_URLI*N_urli)),
                       data=focal data,
                       start=list('lambda'= c(100,100),a_ACWR=c(0.1), a_FEMI=c(0.1),
                                  a_HOMU=c(0.1), a_PLER=c(0.1),
                                  a SACO=c(0.1), a URLI=c(0.1),
                       lower = c(1,1, rep(.001, 6)),
                       upper = c(10000, 10000, rep(2, 6)),
                       control = list(maxiter = 100000),
                       algorithm = 'port')
XX <- data.frame(FocalSp = focalsp,
                 LogL_NoTre = logLik(fit_test_nosplit),
                 LogL_JustL = logLik(fit_test_justLam),
                 LogL_JustA = logLik(fit_test_justA),
                 LogL_Orig = logLik(fit_test)) %>%
```

4.1 Model Comparison Tables

```
AICTable<- map_df( spp_list, FindFourAICs) %>%
  left_join(count(seed_data, focal), c('FocalSp'='focal') )

AICTable %>%
  mutate(BIC_1NoTre = log(n)*k_NoTre - (2*LogL_NoTre),
        BIC_2JustL = log(n)*k_JustL - (2*LogL_JustL),
        BIC_3JustA = log(n)*k_JustA - (2*LogL_JustA),
        BIC_4Orig = log(n)*k_Orig - (2*LogL_Orig)) -> AICTable
knitr::kable(t(AICTable), digits = 1)
```

FocalSp	ACWR	FEMI	HOMU	PLER	SACO	URLI
LogL NoTre	-438.2903	-417.4120	-268.7606	-440.4331	-407.5359	-332.6062
LogL JustL	-436.6224	-413.6492	-268.5777	-432.7851	-397.2313	-331.9808
~ —						
$LogL_JustA$	-432.2594	-413.8134	-263.8901	-421.0175	-392.0230	-326.2338
$LogL_Orig$	-432.0466	-407.1755	-263.6904	-420.9895	-391.1440	-325.8967
k_{-} NoTre	7	7	7	7	7	7
k_JustL	8	8	8	8	8	8
k_JustA	13	13	13	13	13	13
k_Orig	14	14	14	14	14	14
aic_1NoTre	890.5807	848.8241	551.5213	894.8662	829.0719	679.2124
aic_2JustL	889.2448	843.2984	553.1553	881.5702	810.4626	679.9616
aic_3JustA	890.5187	853.6269	553.7802	868.0349	810.0460	678.4675
aic_4Orig	892.0933	842.3510	555.3809	869.9789	810.2881	679.7933
n	293	305	214	325	274	266
BIC_1NoTre	916.3419	874.8663	575.0831	921.3529	854.3637	704.2969
$\mathrm{BIC}_2\mathrm{JustL}$	918.6861	873.0609	580.0831	911.8408	839.3676	708.6295
BIC_3JustA	938.3610	901.9909	597.5379	917.2246	857.0167	725.0530
${\rm BIC_4Orig}$	943.6157	894.4353	602.5045	922.9525	860.8719	729.9623

```
knitr::kable(select(AICTable,FocalSp , starts_with('aic')), digits = 1)
```

			-
aic_1NoTre	aic_2JustL	aic_3JustA	aic_4Orig
890.6	889.2	890.5	892.1
848.8	843.3	853.6	842.4
551.5	553.2	553.8	555.4
894.9	881.6	868.0	870.0
829.1	810.5	810.0	810.3
679.2	680.0	678.5	679.8
	890.6 848.8 551.5 894.9 829.1	890.6 889.2 848.8 843.3 551.5 553.2 894.9 881.6 829.1 810.5	890.6 889.2 890.5 848.8 843.3 853.6 551.5 553.2 553.8 894.9 881.6 868.0 829.1 810.5 810.0

```
knitr::kable(select(AICTable,FocalSp , starts_with('BIC')), digits = 1)
```

FocalSp	BIC_1NoTre	BIC_2JustL	BIC_3JustA	BIC_4Orig
ACWR	916.3	918.7	938.4	943.6
FEMI	874.9	873.1	902.0	894.4
HOMU	575.1	580.1	597.5	602.5
PLER	921.4	911.8	917.2	923.0
SACO	854.4	839.4	857.0	860.9
URLI	704.3	708.6	725.1	730.0

5 Full Posteriors

5.0.1 Which pair-directions to plot?

5.0.2 Data Preparation

```
final_output_nls_boot <-read.csv(paste0(Path_to_Orig,</pre>
                                           "output/final_output_nls_boot_1000.csv"))
spp_treat_boot_combos <- final_output_nls_boot</pre>
#Data frame with medians and sds for parameters----
spp_list <- sort(na.omit( unique(seed_data$focal)))</pre>
treat_list <- sort( na.omit( unique(seed_data$Tr)))</pre>
spp_treat_combos <- expand.grid(species = spp_list, treatment = treat_list)</pre>
comp_labels <- sort( na.omit( unique(seed_data$background) ))</pre>
spp_treat_boot_combos$sp_pair <- paste(spp_treat_boot_combos$focal,</pre>
                                         spp treat boot combos$competitor, sep = " ")
spp_treat_comp_combos <- expand.grid(focal = spp_list,</pre>
                                       competitor = comp_labels,
                                       treatment = treat list)
nls_boot_pairs$sp_pair <- paste(nls_boot_pairs$focal, nls_boot_pairs$competitor, sep = "_")</pre>
nls_boot_pairs %>%
  filter(sp_pair %in% PairsToPlot) %>%
  mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY')) -> OriginalErrorBarsForAdding
```

5.0.3 Create coexistence area for plot - min/max fitness difference that permits coexistence

5.1 Plotting


```
ggsave('ExFig2_CoexistPlots.png', height = 10, width = 8, dpi = 200)
```

5.2 Determining fraction of pairs that follow identified pattern

```
(1-1/nls_boot_pairs_unique$fd_superior)),
                                          1, 0)
##Stabilizing niche and fitness differences: (Table ED3)
pars_boot <- nls_boot_pairs_unique %>%
  select(focal,competitor,treatment,snd,
         fd,fd_superior,coexist, fd_sup_sp)
pars_boot$species <- paste0(substr(pars_boot$focal, 1, 2),</pre>
                             "-".
                             substr(pars_boot$competitor, 1, 2))
pars_boot$outcome <- ifelse(pars_boot$coexist == 1, "coexist",</pre>
                             ifelse(pars_boot$fd_sup_sp == 2,
                                    paste0(substr(pars_boot$species, 4, 5), " wins"),
                                    paste0(substr(pars_boot$species, 1, 2), " wins")))
pair_labels <- pars_boot %>%
  filter(treatment == 1 ) %>%
  filter(fd > 1)
pair_labels <- unique(pair_labels$species)</pre>
pars_boot <- pars_boot %>% filter(species %in% pair_labels)
pars_boot <- subset(pars_boot, select = -c(focal, competitor, coexist,</pre>
                                              fd sup sp, fd superior))
pars_boot_wide<-pivot_wider(data = pars_boot,</pre>
                             names_from = treatment,
                             values_from = c(snd, fd, outcome))%>%
  arrange(species)
```

5.3 Repeating across the whole bootstrap sample

```
spp_treat_boot_combos %>%
 filter(sp_pair %in% PairsToPlot) %>%
 mutate(fd_superior = ifelse(fd < 1, 1/fd,fd) ,</pre>
         fd sup sp = ifelse(fd \leq 1, 1, 2),
         coexist = ifelse((snd > (1-1/fd_superior)), 1, 0 ),
         outcome = ifelse(coexist == 1, "coexist",
                          ifelse(fd_sup_sp == 2,
                                 pasteO(focal , " wins"),
                                 pasteO(competitor , " wins")))) %>%
  group_by(treatment, sp_pair) %>%
  count(outcome) %>%
  pivot_wider(id_cols = c(treatment, sp_pair), names_from = outcome,
              values_from = n, values_fill = 0) -> PosteriorResults
## Just looking at change in 'coexist' result
PosteriorResults %>%
 mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY'))%>%
```

```
mutate(coexist_frac = coexist/1000) %>%
  ungroup() %>%
  select(Treatment, sp_pair, coexist_frac) %>%
  pivot_wider(id_cols = sp_pair, names_from = Treatment, values_from = coexist_frac) %%
  mutate( AbsoluteChange = WET-DRY) %>%
  mutate(species = paste0(substr(sp_pair
                                            , 1, 2), ## For Joining with pars_boot_wide
                                            , 6, 7))) %>%
                           substr(sp pair
 left_join(pars_boot_wide, by = "species") -> JoinResults
JoinResults$OriginalFindsChange <- JoinResults$outcome_1 != JoinResults$outcome_2
## probability of each draw showing switch from coexistence = prob(coexist1) *prob
## Assuming just two outcomes: coexist, or something else
# If change from victory -> coexist, probability observe change = 1-prob(coexist1) * prob(coexist)
# If change from coexist -> victory, probability observe change = prob(coexist1) * 1-prob(coexist)
JoinResults %>%
  #filter(OriginalFindsChange) %>%
  mutate(LK_ObserveChange = ifelse(outcome_1 == 'coexist',
                                  WET *(1-DRY),
                                   (1-WET)*DRY),
         LK CoexistBoth = WET*DRY,
         LK NoCoexistBoth = (1-WET)*(1-DRY),
         LK ObserveInverseChange = ifelse(outcome 1 == 'coexist',
                                          (1-WET)*DRY,
                                          WET *(1-DRY)),
         CHECK= LK_ObserveChange+LK_CoexistBoth+LK_NoCoexistBoth+LK_ObserveInverseChange) %>%
  mutate( MostLikelyNonChange = ifelse( LK_CoexistBoth>LK_NoCoexistBoth,
                                        LK_CoexistBoth,LK_NoCoexistBoth ),
         MostLikelyChange = ifelse( LK_ObserveChange >LK_ObserveInverseChange,
                                    LK_ObserveChange, LK_ObserveInverseChange ))%>%
  arrange(desc(MostLikelyChange))%>%
  select(SpeciesPair =species, WET,DRY,
         # starts_with('LK'),
         MostLikelyChange, MostLikelyNonChange,
         outcome_Wet=outcome_1, outcome_Dry=outcome_2 )-> JoinResults2
knitr::kable(JoinResults2,digits =3)
```

SpeciesPair	WET	DRY	MostLikelyChange	${\it MostLikelyNonChange}$	outcome_Wet	outcome_Dry
UR-SA	0.092	0.800	0.726	0.182	SA wins	coexist
SA-PL	0.285	0.998	0.714	0.284	PL wins	coexist
AC-HO	0.715	0.004	0.712	0.284	coexist	HO wins
HO-FE	0.901	0.225	0.698	0.203	coexist	HO wins
UR-AC	0.191	0.830	0.671	0.159	AC wins	coexist
SA-AC	0.729	0.095	0.660	0.245	coexist	AC wins
PL-FE	0.005	0.551	0.548	0.447	FE wins	coexist
AC-PL	0.361	0.855	0.546	0.309	PL wins	coexist
AC- FE	0.554	0.069	0.516	0.415	coexist	FE wins

SpeciesPair	WET	DRY	MostLikelyChange	MostLikelyNonChange	outcome_Wet	outcome_Dry
UR-FE	0.032	0.521	0.504	0.464	FE wins	coexist
PL-HO	0.440	0.000	0.440	0.560	HO wins	HO wins
SA-HO	0.428	0.004	0.426	0.570	HO wins	HO wins
UR-HO	0.378	0.059	0.356	0.585	HO wins	HO wins
UR-PL	0.841	1.000	0.159	0.841	coexist	coexist
SA-FE	0.014	0.000	0.014	0.986	FE wins	FE wins

```
## NB the very small number of priority effects are being effectively ignored here (assigned to a win f
PosteriorResults %>%
 mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY'))%>%
 ungroup()%>%
 select( -treatment) %>%
 group_by(sp_pair, Treatment) %>%
 pivot_longer(names_to = 'Outcome', cols = `ACWR wins` : `FEMI wins` ) %>%
 ungroup()->Draws
Dry_Draws<- filter(Draws, Treatment == 'DRY', value>0) %>% rename( Dry_Outcome = Outcome, Dry_draws = v
Wet_Draws<- filter(Draws, Treatment == 'WET', value>0) %>% rename( Wet_Outcome = Outcome, Wet_draws = value>0)
full_join( Wet_Draws,Dry_Draws,
          by = 'sp_pair', relationship = "many-to-many") %>%
 select(-Treatment.x, -Treatment.y) %>%
 mutate( comb_prob = (Dry_draws/1000) * (Wet_draws/1000) )%>%
 arrange( sp_pair, desc(comb_prob)) -> All_OutcomePaths
All_OutcomePaths
## # A tibble: 80 x 6
##
              Wet_Outcome Wet_draws Dry_Outcome Dry_draws comb_prob
     sp_pair
##
     <chr>
                      <int> <chr>
                                            <int>
                                                              <dbl>
## 1 ACWR_FEMI coexist
                               554 ACWR wins
                                                      930 0.515
                               446 ACWR wins
## 2 ACWR FEMI ACWR wins
                                                     930 0.415
                                                     69 0.0382
## 3 ACWR FEMI coexist
                               554 coexist
## 4 ACWR_FEMI ACWR wins
                               446 coexist
                                                     69 0.0308
## 5 ACWR_FEMI coexist
                               554 FEMI wins
                                                      1 0.000554
                               446 FEMI wins
## 6 ACWR_FEMI ACWR wins
                                                      1 0.000446
                               715 ACWR wins
                                                    976 0.698
## 7 ACWR_HOMU coexist
                              222 ACWR wins
## 8 ACWR_HOMU ACWR wins
                                                    976 0.217
                                63 ACWR wins
                                                    976 0.0615
## 9 ACWR_HOMU HOMU wins
## 10 ACWR_HOMU coexist
                               715 HOMU wins
                                                      20 0.0143
## # i 70 more rows
All OutcomePaths %>%
 group_by(sp_pair) %>%
 mutate(rank = 1:n()) \%
 filter(rank <3) %>%
 select( -Wet_draws, - Dry_draws) %>%
 pivot_wider( id_cols = sp_pair,
              values_from = c(Wet_Outcome, Dry_Outcome, comb_prob ),
              names_from = rank) %>%
```

sp_pair	$Wet_Outcome_1$	Dry_Outcome_1	$comb_prob_1$	$Wet_Outcome_2$	Dry_Outcome_2	$comb_prob_2$
SACO_PLER	SACO wins	coexist	0.714	coexist	coexist	0.284
URLI_SACO	URLI wins	coexist	0.702	URLI wins	SACO wins	0.158
$HOMU_FEMI$	coexist	FEMI wins	0.698	coexist	coexist	0.203
ACWR_HOMU	coexist	ACWR wins	0.698	ACWR wins	ACWR wins	0.217
$SACO_ACWR$	coexist	SACO wins	0.659	SACO wins	SACO wins	0.245
URLI_ACWR	URLI wins	coexist	0.621	coexist	coexist	0.159
$PLER_FEMI$	PLER wins	coexist	0.548	PLER wins	PLER wins	0.447
ACWR_PLER	ACWR wins	coexist	0.546	coexist	coexist	0.309
ACWR_FEMI	coexist	ACWR wins	0.515	ACWR wins	ACWR wins	0.415
URLI_FEMI	URLI wins	coexist	0.493	URLI wins	URLI wins	0.453
SACO_FEMI	SACO wins	SACO wins	0.984	coexist	SACO wins	0.014
URLI_PLER	coexist	coexist	0.841	URLI wins	coexist	0.091
SACO_HOMU	SACO wins	SACO wins	0.568	coexist	SACO wins	0.425
PLER_HOMU	PLER wins	PLER wins	0.557	coexist	PLER wins	0.440
URLI_HOMU	URLI wins	URLI wins	0.550	coexist	URLI wins	0.356

```
TopTwoMostLikelyOutcomes %>%
  filter( ChangeIdentified) %>%
  mutate(RelProb = comb_prob_1 /comb_prob_2 ) %>%
  ungroup %>%summarise( mean(RelProb), mean(comb_prob_1))
```

Checker:

All_OutcomePaths %>%group_by(sp_pair) %>%summarise(sum(comb_prob))

```
## # A tibble: 15 x 2
##
     sp_pair 'sum(comb_prob)'
##
      <chr>
                         <dbl>
## 1 ACWR_FEMI
## 2 ACWR_HOMU
                              1
## 3 ACWR PLER
## 4 HOMU_FEMI
## 5 PLER_FEMI
## 6 PLER_HOMU
                             1
## 7 SACO_ACWR
## 8 SACO_FEMI
```

```
## 9 SACO_HOMU 1
## 10 SACO_PLER 1
## 11 URLI_ACWR 1
## 12 URLI_FEMI 1
## 13 URLI_HOMU 1
## 14 URLI_PLER 1
## 15 URLI_SACO 1
```

6 Session Info

sessionInfo()

```
## R version 4.3.0 (2023-04-21 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8
## [2] LC_CTYPE=English_United Kingdom.utf8
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.utf8
## time zone: Europe/London
## tzcode source: internal
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
## [1] lubridate_1.9.2 forcats_1.0.0
                                        stringr_1.5.0
                                                        dplyr_1.1.2
## [5] purrr_1.0.1
                        readr_2.1.4
                                        tidyr_1.3.0
                                                        tibble_3.2.1
## [9] ggplot2_3.4.2
                       tidyverse_2.0.0
## loaded via a namespace (and not attached):
## [1] utf8_1.2.3
                         generics_0.1.3
                                            xm12_1.3.4
                                                              stringi_1.7.12
## [5] hms_1.1.3
                          digest_0.6.31
                                            magrittr_2.0.3
                                                              evaluate_0.21
## [9] grid_4.3.0
                         timechange_0.2.0 fastmap_1.1.1
                                                              httr_1.4.6
## [13] rvest_1.0.3
                          fansi_1.0.4
                                            viridisLite_0.4.2 scales_1.2.1
## [17] textshaping_0.3.6 cli_3.6.1
                                            rlang_1.1.1
                                                              munsell_0.5.0
## [21] withr_2.5.0
                          yaml_2.3.7
                                            tools_4.3.0
                                                              tzdb_0.4.0
## [25] colorspace_2.1-0 webshot_0.5.5
                                            kableExtra_1.3.4 vctrs_0.6.2
## [29] R6_2.5.1
                          lifecycle_1.0.3
                                            ragg_1.2.5
                                                              pkgconfig_2.0.3
## [33] pillar 1.9.0
                          gtable 0.3.3
                                            glue 1.6.2
                                                              systemfonts 1.0.4
                         tidyselect_1.2.0 highr_0.10
                                                              rstudioapi_0.14
## [37] xfun_0.39
## [41] knitr 1.43
                          farver_2.1.1
                                            htmltools_0.5.5
                                                              svglite_2.1.1
## [45] rmarkdown_2.22
                          labeling_0.4.2
                                            compiler_4.3.0
```