MATEMÁTICA DISCRETA I - 2020 - 1^{ER} SEMESTRE

Práctico 7 - Soluciones

Ejercicio 1.

	reflexiva	irreflexiva	simétrica	antisimétrica	asimétrica	transitiva
a)	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V
b)	\mathbf{F}	V	\mathbf{F}	V	V	V
c)	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
d)	\mathbf{F}	V	V	V	V	V
e)	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V
f) i)	\mathbf{F}	V	V	\mathbf{F}	\mathbf{F}	\mathbf{F}
f) ii)	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V
g) i)	\mathbf{F}	\mathbf{F}	\mathbf{F}	V	\mathbf{F}	V
g) ii)	\mathbf{F}	V	\mathbf{F}	V	V	V

Ejercicio 2.

```
Todas son R sobre \{1, 2, 3\}
                                    P \setminus T \\ P
          T
          Ø
                                                       \{(1,2),(2,3)\}
      {reflexiva}
                           {simétrica, transitiva}
                                                       \{(1,2),(2,3),(1,1),(2,2),(3,3)\}
                           {reflexiva, transitiva}
     {simétrica}
                                                       \{(1,2),(2,3),(2,1),(3,2)\}
     {transitiva}
                           {reflexiva, simétrica}
                                                       \{(1,2),(2,3),(1,3)\}
{reflexiva, simétrica}
                                                       \{(1,2),(2,3),(2,1),(3,2),(1,1),(2,2),(3,3)\}
                                 {transitiva}
{reflexiva, transitiva}
                                 {simétrica}
                                                       \{(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)\}
{simétrica, transitiva}
                                  {reflexiva}
                                                       \{(1,2),(2,1),(1,1),(2,2)\}
                                                       \{(1,1),(2,2),(3,3)\}
                                      Ø
```

Ejercicio 3.

- a. Que la matriz se simétrica;
- b. \overline{R} sí, R^{-1} sí, RS no necesariamente, por ejemplo $R=\{(1,1),(1,2),(2,1)\}$ y $S=\{(2,3),(3,2)\}$ son simétricas pero $RS=\{(1,3)\}$ que no lo es, $R\cup S$ sí , $R\cap S$ sí.

c.

- 1. reflexiva: \overline{R} no, R^{-1} sí, RS sí, $R \cup S$ sí, $R \cap S$ sí.
- 2. irreflexiva: \overline{R} no, R^{-1} sí, RS no necesariamente, ejemplo $R=S=\{(1,2),(2,1)\},\,R\cup S$ sí , $R\cap S$ sí .
- 3. antisimétrica: \overline{R} no necesariamente, ejemplo $R=\emptyset$ en $A=\{1,2\},\,R^{-1}$ sí, RS no necesariamente, ejemplo $R=\{(1,2),(3,1)\}$ y $S=\{(2,3),(1,1)\}$ son antisimétricas pero $RS=\{(1,3),(3,1)\}$ no lo es, $R\cup S$ no necesariamente, ejemplo $R=\{(1,2)\}$ y $S=\overline{R}$, $R\cap S$ sí.

- 4. asimétrica: \overline{R} no, R^{-1} sí, RS no necesariamente, ejemplo $R=\{(1,2),(2,3)\}$ y $S=R^{-1}$, $R\cup S$ no necesariamente, ejemplo $R=\{(1,2)\}$ y $S=\bar{R}$, $R\cap S$ sí.
- 5. transitiva: \overline{R} no necesariamente, ejemplo $R = \{(3,1)\}$ en $A = \{1,2,3\}$, R^{-1} sí, RS no necesariamente, ejemplo $R = \{(1,2),(3,4)\}$ y $S = \{(2,3),(4,5)\}$, $R \cup S$ no necesariamente, ejemplo $R = \{(1,2)\}$ y $S = \{(2,3)\}$, $R \cap S$ sí.

Ejercicio 4. Hay $2^8=256$ relaciones en el conjunto A que verifican las condiciones.

Si consideramos, por ejemplo, la relación $R = \{(c, c), (a, b), (b, a), (b, d), (d, b)\}$, la matriz que la representa es:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

y el diagrama es:

Ejercicio 5.

- a. 2^{n^2-n}
- b. $2^n 2^{\frac{n^2-n}{2}}$
- c. $3^{\frac{n^2-n}{2}}$
- d. $2^n 3^{\frac{n^2-n}{2}}$

Ejercicio 6.

- a. Verdadero.
- b. Verdadero.

Ejercicio 7 (Obs. se asume siempre que R es compatible)

 R^{-1} es compatible? Sí.

 ξR^{-1} es un orden parcial? No necesariamente. Por ejemplo si $A=\{1,2,3\}$ y $R=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$ R es compatible y simétrica, y $R^{-1}=R$, por lo tanto R no es un orden parcial (reflexiva, antisimetrica y transitiva).

iS es simétrica? Sí.

$$iR \subseteq S$$
? Sí.

Ejercicio 8.

- a. Sí, ejemplo $A=\{1,2\},\ R=\{(1,2),(1,1),(2,2)\},\ S=\{(2,2)\},$ entonces $RS=\{(1,2),(2,2)\}$ que es una función, pero ni R ni S lo son.
 - b. Sí, por ejemplo la relación $R = \{(1, 2), (1, 1)\}$ en $A = \{1, 2\}$.
 - c. Sí, por ejemplo $A = \{1, 2\}$ $R = \{(1, 2)\}, S = \{(1, 1)\}.$

Ejercicio 9.

- a. Verdadero.
- b. Verdadero.
- c. Falso.
- d. Verdadero.
- e. Si T es simétrica entonces T^2 también lo es, pero si T^2 es simétrica no necesariamente T lo es.

Ejercicio 10.

- a. $R\cap R^{-1}$ es reflexiva si y sólo si R es reflexiva. Por otro lado, $R\cap R^{-1}$ simpre es simétrica aunque R no lo sea.
 - b. Falso.