TUGAS KELOMPOK

ANALISIS DERET WAKTU NON LINIER

Analisis ARCH/GARCH

"Studi Kasus Data Harga Minyak Mentah Dunia Bulan Februari 1986 - Februari 2016"

Oleh:

Rauzan Sumara 135090501111014

Fairuz Shofinda 135090501111049

Kadek Laras

PROGRAM STUDI S1 STATISTIKA JURUSAN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS BRAWIJAYA

MALANG

2016

Studi Kasus

Data yang digunakan untuk tugas analisis deret waktu non linier adalah data mengenai harga minyak mentah dunia mulai bulan Februari 1986 sampai Februari 2016 (Satuan dolar AS per Barrel). Data (*terlampir*) diambil dari *http://www.indexmundi.com/commodities/*

Hasil dan Pembahasan

Berikut adalah plot data harga minyak mentah dunia dari bulan Februari 1986 – Februari 2016

Berdasarkan plot data diatas terlihat bahwa harga minyak mentah dunia berfluktuasi sepanjang waktu semakin lama semakin tinggi dan dari tahun 2008 – 2009 terjadi penurunan harga, lalu kembali meningkat dan mengalami penurunan harga sekitar tahun 2014. Karena data harga minyak mentah dunia memiliki volatilitas yang tinggi, maka akan dimodelkan dengan model ARCH/GARCH.

Selanjutnya akan dibentuk data return dengan rumus $Rt = \ln(Z_t) - \ln(Z_{t-1})$, berikut plot data return harga minyak mentah dunia dari bulan Februari 1986 – Februari 2016.

RHARGA_MINYAK

Dari plot data return harga harga minyak mentah dunia dari bulan Februari 1986 – Februari 2016 terlihat bahwa data sudah stasioner terhadap rata-rata karena berada disekitar nol (0), sedangkan ragam terlihat belum stasioner. Selanjutnya dilakukan identifikasi model ARIMA dari data return dengan menampilkan korelogram sebagai berikut

	Correlogram of RHARGA_MINYAK					
Date: 03/30/16 Time: 19:14 Sample: 1 361 Included observations: 360						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		10 11 12 13 14 15 16 17 18 19 20 21 22	0.286 0.044 0.033 -0.080 -0.129 -0.0158 -0.048 -0.024 0.099 0.121 0.040 -0.069 -0.059 -0.121 -0.103 0.002 0.003 0.003 0.005 0.0059	0.286 -0.042 0.035 -0.107 -0.083 -0.110 0.035 -0.021 0.094 0.051 -0.023 -0.099 -0.014 -0.098 -0.002 0.049 -0.016 0.073 -0.035 -0.016	29.743 30.441 30.847 33.186 39.294 48.492 49.352 49.474 49.690 53.375 58.847 68.016 72.034 72.036 72.040 72.496 77.052 78.391 78.518 79.221	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ı≬ı ı≬ı	 	24 25 26		-0.004 0.067	79.984 80.020 81.995	0.000 0.000 0.000

Berdasarkan korelogram dapat dilihat bahwa plot ACF dan PACF nyata pada lag pertama sehingga didapatkan orde AR(1) dan MA(1). Dengan begitu didapatkan model tentatif ARMA(1,1), AR(1), dan MA(1). Selanjutnya akan dilakukan pemilihan model terbaik berdasarkan nilai signifikansi dari masing-masing parameter, nilai AIC, dan SBC.

Dependent Variable: RHARGA_MINYAK

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/30/16 Time: 19:20

Sample: 2 361

Included observations: 360

Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) MA(1) SIGMASQ	0.085606 0.223800 0.006940	0.145467 0.154709 0.000369	0.588492 1.446585 18.80686	0.5566 0.1489 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.086206 0.081087 0.083658 2.498520 383.8068 1.987325	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.001776 0.087271 -2.115593 -2.083209 -2.102717
Inverted AR Roots	.09			

Dependent Variable: RHARGA_MINYAK

Method: ARMA Maximum Likelihood (OPG - BHHH)

-.22

Date: 03/30/16 Time: 18:54

Sample: 2 361

Inverted MA Roots

Included observations: 360

Convergence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) SIGMASQ	0.292640 0.006959	0.035992 0.000352	8.130693 19.78290	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.083751 0.081191 0.083653 2.505234 383.3273 1.960737	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001776 0.087271 -2.118485 -2.096896 -2.109901
Inverted AR Roots	.29			

Model ARMA(1,1)

Model AR(1)

Dependent Variable: RHARGA_MINYAK

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/30/16 Time: 18:55

Sample: 2 361

Included observations: 360

Convergence achieved after 14 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1) SIGMASQ	0.305497 0.006943	0.041271 0.000367	7.402210 18.92970	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.085878 0.083325 0.083556 2.499415 383.7416 1.976355	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin	nt var terion rion	0.001776 0.087271 -2.120787 -2.099197 -2.112202
Inverted MA Roots	31			

Model	P-	Value	Keterangan	AIC	SBC	
ARMA(1,1)	AR	0.5566	Tidak Signifikan	-2.115593	-2.083209	
	MA	0.1489	Tidak Signifikan	-2.113393	-2.083209	
AR(1)		<mark>0.000 *</mark>	<mark>Signifikan</mark>	-2.118485	<mark>-2.096896</mark>	
MA(1)		* 0.000	Signifikan	-2.120787	-2.099197	

Berdasarkan pertimbangan signifikansi parameter, nilai AIC, dan SBC terkecil maka didapat model terbaik adalah AR(1) sebagai model untuk mean \widehat{Z}_t pada model ARCH/GARCH. Dilanjutkan dengan uji diagnostik model

Series: Residuals Sample 2 361 Observations 360				
Mean	0.001317			
Median	0.007189			
Maximum	0.421972			
Minimum	-0.269952			
Std. Dev.	0.083526			
Skewness	0.233925			
Kurtosis	5.386650			
Jarque-Bera	88.72470			
Probability	0.000000			

Model MA(1)

 H_0 : Sisaan menyebar secara normal $\alpha = 5\%$

H₁ : Sisaan tidak menyebar secara normal

Kesimpulan: Karena p-value $(0.000) < \alpha$, maka H_0 ditolak yang berarti bahwa sisaan model AR(1) tidak menyebar secara normal.

Karena galat tidak menyebar secara normal, maka dilanjutkan dengan menguji apakah terdapat efek ARCH/GARCH dari plot ACF dan PACF sisaan kuadrat

Correlogram of Residuals Squared

Date: 03/30/16 Time: 19:37

Sample: 1 361

Included observations: 360

_	included observations: 360								
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
			1	0.178	0.178	11.456	0.001		
	('Þ)	(ı þi)	2	0.093	0.064	14.635	0.001		
			3	0.059	0.033	15.887	0.001		
	ا آ	Į Ţi	4	0.036	0.016	16.358	0.003		
	' 	'	5	0.154	0.144	25.027	0.000		
	۱ ۱ ۱	' '	6	0.043	-0.010	25.718	0.000		
	1)1	' '	7	0.025	-0.003	25.940	0.001		
	1 1	' '	8	-0.004	-0.022	25.947	0.001		
	1 [] 1	'[['	9	-0.039	-0.043	26.516	0.002		
	1)1	' '	10	0.015	0.008	26.600	0.003		
	ı¶ι	'[['	11	-0.027	-0.031	26.880	0.005		
	141	'[['	12	-0.039	-0.033	27.454	0.007		
	1 1		13	-0.024	-0.005	27.668	0.010		
	ıψı		14	-0.029	-0.005	27.982	0.014		
	1 1		15	-0.006	0.003	27.994	0.022		
	ıψı	1 1	16	-0.026	-0.014	28.255	0.029		
	цu		17	-0.021	-0.003	28.422	0.040		
	ıψı	'[['	18	-0.044	-0.035	29.152	0.047		
	ıβı	1 1	19	-0.040	-0.019	29.751	0.055		
	ı j i	i jii	20	0.041	0.057	30.384	0.064		
	цu	1 1	21	-0.015	-0.022	30.467	0.083		
	ıβı	1 1	22	-0.025	-0.023	30.717	0.102		
	1)1		23	0.014	0.032	30.796	0.128		
	ı t ı	([24	-0.048	-0.047	31.703	0.135		
	ılı.	1 1	25	-0.018	-0.021	31.825	0.163		

Dari korelogram sisaan kuadrat diatas dapat dilihat bahwa plot ACF dan PACF sisaan kuadrat nyata pada lag satu, sehingga kemungkinan terdapat efek ARCH/GARCH pada lag satu. Untuk lebih meyakinkan dapat digunakan uji ARCH LM yaitu sebagai berikut :

Heteroskedasticity Test: ARCH F-statistic 3.538032 Prob. F(4,351) 0.0076 Obs*R-squared 13.79742 Prob. Chi-Square(4) 0.0080

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 03/30/16 Time: 19:39 Sample (adjusted): 6 361

Included observations: 356 after adjustments

Variable	Coefficient	Std. Error	t-Statistic		Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4)	0.004964 0.174205 0.050007 0.020932 0.017383	0.000962 0.053289 0.054101 0.053991 0.052390	5.159943 3.269059 0.924330 0.387689 0.331795		0.0000 0.0012 0.3559 0.6985 0.7402
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038757 0.027802 0.014201 0.070781 1011.968 3.538032 0.007576	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0. -5. -5.	006747 014402 657125 602702 635477 008321

 H_0 : Tidak terdapat unsur ARCH/GARCH $\alpha = 5\%$

H₁: Terdapat unsur ARCH/GARCH

 $LM = TR^2 = 361(0,038757) = 13,99 \qquad \qquad \lambda_{0,025(4)} = 11,14$

Kesimpulan: Karena statistik uji LM > $\lambda_{0,025(4)}$ maka H₀ ditolak. Berdasarkan uji Lagrange-Multiplier Engle dapat disimpulkan bahwa terdapat unsur ARCH/GARCH pada lag pertama.

Karena asumsi normalitas sisaan tidak terpenuhi, hal ini mengakibatkan pendugaan parameter menggunakan Maximum Likelihood kurang tepat digunakan, sehingga pada kasus ini akan digunakan *Bollerslev-Wooldridge Heteroscedasticity Consistent Covariance Matrix* atau biasa dikenal dengan Quasi Maximum Likelihood (QML). Metode ini merupakan penduga yang konsisten tapi tidak dengan varian terendah. Karena sudah terbukti terdapat unsur ARCH/GARCH, selanjutnya dilakukan pembentukan model GARCH (1,1).

Pendugaan parameter menggunakan Maximum Likelihood Estimator (MLE)

Dependent Variable: RHARGA_MINYAK

Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)

Date: 03/30/16 Time: 19:44 Sample (adjusted): 2 361

Included observations: 360 after adjustments Convergence achieved after 34 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
AR(1)	0.246182	0.057923	4.250156	0.0000			
Variance Equation							
C RESID(-1)^2 GARCH(-1)	0.000894 0.290809 0.599055	0.000446 0.053748 0.080031	2.003150 5.410617 7.485303	0.0452 0.0000 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.081566 0.081566 0.083636 2.511208 409.5296 1.871080	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion rion	0.001776 0.087271 -2.252942 -2.209763 -2.235773			
Inverted AR Roots	.25						

Pendugaan parameter menggunakan Quasi Maximum likelihood (QML)

Dependent Variable: RHARGA_MINYAK

Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)

Date: 03/30/16 Time: 20:21 Sample (adjusted): 2 361

Included observations: 360 after adjustments Convergence achieved after 34 iterations

Coefficient covariance computed using Bollerslev-Wooldridge QML

sandwich with expected Hessian

Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
AR(1)	0.246182	0.062587	3.933446	0.0001				
	Variance Equation							
C RESID(-1)^2 GARCH(-1)	0.000894 0.290809 0.599055	0.000332 0.136300 0.132672	2.695621 2.133592 4.515314	0.0070 0.0329 0.0000				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.081566 0.081566 0.083636 2.511208 409.5296 1.871080	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var iterion rion	0.001776 0.087271 -2.252942 -2.209763 -2.235773				
Inverted AR Roots	.25							

Dari perbandingan kedua metode diatas ternyata tidak terdapat perbedaan hasil pendugaan parameter yang diperoleh, tetapi terdapat perbedaan nilai standar error dan nilai p-value. Sehingga didapatkan model dari penduga QML :

$$Z_t = 0.246182 Z_{t-1} + a_t$$

$$a_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = 0.000894 + 0.290809 \ a_{t-1}^2 + 0.599055 \ \sigma_{t-1}^2$$

$$\dim ana \ \varepsilon_t \sim IIDN(0.1)$$

Selanjutnya dilakukan uji diagnostik model dengan melihat ada atau tidaknya autokorelasi sisaan, berikut adalah plot sisaan GARCH (1,1) dan korelogram dari GARCH (1,1).

Correlogram of Standardized Residuals							
Date: 03/30/16 Time: 19:46 Sample: 1 361 Included observations: 360 Q-statistic probabilities adjusted for 1 ARMA term							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
Autocorrelation	Patual Contention	3 4 5 6 7 8 9 10 11 12 13 14 15	0.034 -0.042 0.035 -0.046 -0.074 -0.075 -0.003 -0.013 -0.037 0.120 0.125 0.028 -0.080	0.034 -0.043 0.038 -0.051 -0.068 -0.077 -0.001 -0.018 0.110 0.108 0.029 -0.088 -0.047 -0.105	0.4136 1.0411 1.4794 2.2583 4.2748 6.3680 6.3720 6.4384 12.272 18.106 18.399 20.775	0.308 0.477 0.521 0.370 0.272 0.383 0.490 0.543 0.053 0.073 0.054 0.062 0.024	
1 1 1 1 1 1 1 1 1 1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 18 19 20 21 22 23	0.034 -0.011 0.002 0.108 0.036 0.040	0.046 -0.014 0.001 0.083 -0.010 0.013 -0.047	29.511 29.556 29.558 34.010 34.513 35.134	0.016 0.021 0.030 0.042 0.018 0.023 0.027 0.032 0.034	

Selanjutnya dilakukan uji efek ARCH

Correlogram of	Standardized	Residuals Square	d
----------------	--------------	------------------	---

Date: 03/30/16 Time: 19:47 Sample: 1 361 Included observations: 360

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
ı)ı	1 1	1 0.013	0.013	0.0586	0.809
1(1	1 1	2 -0.021	-0.022	0.2243	0.894
ı d ı	10 -	3 -0.055	-0.054	1.3182	0.725
1(1)	10 1	4 -0.038	-0.038	1.8604	0.761
ı j a		5 0.071	0.070	3.7280	0.589
ıdı	14	6 -0.054	-0.061	4.8040	0.569
1(1	1 1/1	7 -0.012	-0.012	4.8592	0.677
ı j ı	ı <u>þ</u> ı	8 0.058	0.063	6.0856	0.638
ı d ı	14	9 -0.055	-0.059	7.2144	0.615
ı j ı	ı <u>þ</u> ı	10 0.049	0.044	8.1208	0.617
ı (ı	10 1	11 -0.047	-0.037	8.9300	0.628
ıdı	10 1	12 -0.054	-0.056	10.013	0.615
1)1	1 1	13 0.012	0.005	10.067	0.688
1(1	1 1	14 -0.032	-0.022	10.458	0.728
ı j i	ı <u>þ</u> ı	15 0.062	0.044	11.915	0.685
ıţı	10 1	16 -0.031	-0.031	12.268	0.725
1 1	1 1	17 -0.005	0.007	12.275	0.783
1 1	1 1	18 -0.005	-0.019	12.285	0.832
1(1	1 1	19 -0.008	0.005	12.312	0.872
ı j a	ı <u>þ</u> ı	20 0.073	0.063	14.377	0.811
1 1	1 1	21 -0.000	0.001	14.377	0.853
101	1 1/1	22 -0.026	-0.020	14.639	0.877
ı þ		23 0.109	0.109	19.245	0.687
101	141	24 -0.039	-0.034	19.830	0.706
1 1	1 10	25 -0.000	-0.016	19.830	0.756

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(4,351)	0.7752
Obs*R-squared	Prob. Chi-Square(4)	0.7724
•		

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 03/30/16 Time: 19:48
Sample (adjusted): 6 361

Included observations: 356 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4)	1.103963 0.010794 -0.021499 -0.054374 -0.037977	0.140952 0.053343 0.053309 0.053379 0.053429	7.832190 0.202346 -0.403297 -1.018630 -0.710788	0.0000 0.8398 0.6870 0.3091 0.4777
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005058 -0.006280 1.709256 1025.467 -693.4612 0.446094 0.775240	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	1.001648 1.703914 3.923939 3.978363 3.945588 1.994427

 H_0 : Tidak terdapat unsur ARCH $\alpha = 5\%$

H₁: Terdapat unsur ARCH

$$LM = TR^2 = 361(0.005058) = 1.825$$
 $\lambda_{0.025(4)} = 11.14$

Kesimpulan: Karena statistik uji LM $< \lambda_{0,025(4)}$ maka H $_0$ diterima. Berdasarkan uji Lagrange-Multiplier Engle dapat disimpulkan bahwa tidak terdapat unsur ARCH, pada korelogram diatas telihat bahwa sisaan kuadrat menunjukkan perilaku white noise.

Selanjutnya dilakukan pengujian efek volatilitas, pengujian ini untuk memeriksa efek asimetris dalam volatilitas yang dikenal dengan *Sign Bias Test* (SBT). ini ditujukan untuk menentukan apakah sisaan positif dan negatif memberikan pengaruh yang berbeda pada volatilitas.

Dependent Variable: RESID1²

Method: Least Squares Date: 03/30/16 Time: 20:33 Sample (adjusted): 3 361

Included observations: 359 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C S(-1) S(-1)*RESID1(-1) (1-S(-1))*RESID1(-1)	0.807935 0.306965 -0.075206 0.040081	0.206002 0.297195 0.204546 0.214846	3.921985 1.032872 -0.367672 0.186556	0.0001 0.3024 0.7133 0.8521
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.010429 0.002067 1.695846 1020.943 -697.0050 1.247145 0.292482	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.999133 1.697601 3.905320 3.948589 3.922526 2.021941

dengan menyimpan nama model diatas menjadi "sb test".

scalar lm=sb_test.@regobs*sb_test.@r2 scalar lm_pval=1-@cchisq(lm,3)

Kemudian running sintax di atas pada commond line Eviews sehingga didapat :

	Value		Value
LM_PVAL	0.290452	LM	3.744130

 $H_0: \pi_1 = 0$ (tidak terdapat efek asimetris dalam volatilitas)

 $H_1: \pi_1 \neq 0$ (terdapat efek asimetris dalam volatilitas)

 $\alpha = 0.05$

Keputusan : Karena *LM P-value* > 0.05, maka terima H_0

Kesimpulan : Sehingga dapat disimpulkan bahwa tidak terdapat efek asimetris dalam volatilitas.

Kesimpulan

Berdasarkan pengujian diatas didapatkan kesimpulan bahwa model GARCH(1,1) merupakan model yang tepat untuk memodelkan data harga minyak mentah dunia dari bulan Februari 1986 – Februari 2016.

Model yang didapatkan yaitu :

$$Z_t = 0.246182 Z_{t-1} + a_t$$

$$a_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = 0.000894 + 0.290809 \ a_{t-1}^2 + 0.599055 \ \sigma_{t-1}^2$$

$$\dim ana \ \varepsilon_t \sim IIDN(0.1)$$

Lampiran. Data harga minyak mentah dunia dari bulan Februari 1986 – Februari 2016

Month	Price
Feb-86	16,38
Mar-86	12,77
Apr-86	11,89
Mei-86	13,49
Jun-86	11,95
Jul-86	9,88
Agust-86	13,42
Sep-86	14,03
Okt-86	14,01
Nop-86	14,47
Des-86	15,44
Jan-87	18,1
Feb-87	17,28
Mar-87	17,74
Apr-87	18,05
Mei-87	18,41
Jun-87	18,71
Jul-87	19,62
Agust-87	18,88
Sep-87	18,32
Okt-87	18,63
Nop-87	17,87
Des-87	16,77
Jan-88	16,5
Feb-88	15,9
Mar-88	14,86
Apr-88	16,42
Mei-88	16,36
Jun-88	15,49
Jul-88	14,47
Agust-88	14,57
Sep-88	13,22
Okt-88	12,23
Nop-88	12,53
Des-88	14,68
Jan-89	16,45
Feb-89	16,52
Mar-89	18,1
Apr-89	19,39

Mei-89	18,22
Jun-89	17,8
Jul-89	17,67
Agust-89	16,87
Sep-89	17,69
Okt-89	18,41
Nop-89	18,38
Des-89	19,37
Jan-90	20,59
Feb-90	19,68
Mar-90	18,12
Apr-90	16,32
Mei-90	16,21
Jun-90	14,93
Jul-90	16,81
Agust-90	26,54
Sep-90	33,62
Okt-90	34,85
Nop-90	31,54
Des-90	26,61
Jan-91	22,81
Feb-91	18,53
Mar-91	18,21
Apr-91	18,49
Mei-91	18,72
Jun-91	17,78
Jul-91	19,02
Agust-91	19,3
Sep-91	19,95
Okt-91	21,56
Nop-91	20,41
Des-91	17,63
Jan-92	17,52
Feb-92	17,65
Mar-92	17,35
Apr-92	18,65
Mei-92	19,52
Jun-92	20,88
Jul-92	20,18
Agust-92	19,62
-	

0.00	20.10
Sep-92	20,19
Okt-92	20,04
Nop-92	18,9
Des-92	17,93
Jan-93	17,24
Feb-93	18,23
Mar-93	18,5
Apr-93	18,44
Mei-93	18,17
Jun-93	17,37
Jul-93	16,37
Agust-93	16,43
Sep-93	15,8
Okt-93	16,44
Nop-93	15,09
Des-93	13,36
Jan-94	14,17
Feb-94	13,75
Mar-94	13,69
Apr-94	15,15
Mei-94	16,43
Jun-94	17,23
Jul-94	18,04
Agust-94	16,98
Sep-94	16,13
Okt-94	16,48
Nop-94	17,2
Des-94	16,13
Jan-95	16,88
Feb-95	17,44
Mar-95	17,35
Apr-95	18,77
Mei-95	18,43
Jun-95	17,33
Jul-95	16,06
Agust-95	16,49
Sep-95	16,77
Okt-95	16,18
Nop-95	16,82
Des-95	17,93
	1 . ,- 0

Jan-96	17,79
Feb-96	17,69
Mar-96	19,46
Apr-96	20,78
Mei-96	19,12
Jun-96	18,56
Jul-96	19,56
Agust-96	20,19
Sep-96	22,14
Okt-96	23,43
Nop-96	22,25
Des-96	23,51
Jan-97	23,29
Feb-97	20,54
Mar-97	19,42
Apr-97	17,98
Mei-97	19,47
Jun-97	18,02
Jul-97	18,45
Agust-97	18,79
Sep-97	18,73
Okt-97	20,12
Nop-97	19,16
Des-97	17,24
Jan-98	15,07
Feb-98	14,18
Mar-98	13,24
Apr-98	13,39
Mei-98	13,97
Jun-98	12,48
Jul-98	12,72
Agust-98	12,49
Sep-98	13,8
Okt-98	13,26
Nop-98	11,88
Des-98	10,41
Jan-99	11,32
Feb-99	10,75
Mar-99	12,86
Apr-99	15,73
Mei-99	16,12
14101-33	10,12

1 1 00	1604
Jun-99	16,24
Jul-99	18,75
Agust-99	20,21
Sep-99	22,37
Okt-99	22,19
Nop-99	24,22
Des-99	25,01
Jan-00	25,21
Feb-00	27,15
Mar-00	27,49
Apr-00	23,45
Mei-00	27,23
Jun-00	29,62
Jul-00	28,16
Agust-00	29,41
Sep-00	32,08
Okt-00	31,4
Nop-00	32,33
Des-00	25,28
Jan-01	25,95
Feb-01	27,24
Mar-01	25,02
Apr-01	25,66
Mei-01	27,55
Jun-01	26,97
Jul-01	24,8
Agust-01	25,81
Sep-01	25,03
Okt-01	20,73
Nop-01	18,69
Des-01	18,52
Jan-02	19,15
Feb-02	19,98
Mar-02	23,64
Apr-02	25,43
Mei-02	25,69
Jun-02	24,49
Jul-02	25,75
Agust-02	26,78
Sep-02	28,28
Okt-02	27,53
•	

Nop-02	24,79
Des-02	27,89
Jan-03	30,77
Feb-03	32,88
Mar-03	30,36
Apr-03	25,49
Mei-03	26,06
Jun-03	27,91
Jul-03	28,59
Agust-03	29,68
Sep-03	26,88
Okt-03	29,01
Nop-03	29,12
Des-03	29,95
Jan-04	31,4
Feb-04	31,32
Mar-04	33,67
Apr-04	33,71
Mei-04	37,63
Jun-04	35,54
Jul-04	37,93
Agust-04	42,08
Sep-04	41,65
Okt-04	46,87
Nop-04	42,23
Des-04	39,09
Jan-05	42,89
Feb-05	44,56
Mar-05	50,93
Apr-05	50,64
Mei-05	47,81
Jun-05	53,89
Jul-05	56,37
Agust-05	61,87
Sep-05	61,65
Okt-05	58,19
Nop-05	54,98
Des-05	56,47
Jan-06	62,36
Feb-06	59,71
Mar-06	60,93

Apr-06	68
Mei-06	68,61
Jun-06	68,29
Jul-06	72,51
Agust-06	71,81
Sep-06	61,97
Okt-06	57,95
Nop-06	58,13
Des-06	61
Jan-07	53,4
Feb-07	57,58
Mar-07	60,6
Apr-07	65,1
Mei-07	65,1
Jun-07	68,19
Jul-07	73,67
Agust-07	70,13
Sep-07	76,91
Okt-07	82,15
Nop-07	91,27
Des-07	89,43
Jan-08	90,82
Feb-08	93,75
Mar-08	101,84
Apr-08	109,05
Mei-08	122,77
Jun-08	131,52
Jul-08	132,55
Agust-08	114,57
Sep-08	99,29
Okt-08	72,69
Nop-08	54,04
Des-08	41,53
Jan-09	43,91
Feb-09	41,76
Mar-09	46,95
Apr-09	50,28
Mei-09	58,1
Jun-09	69,13
Jul-09	64,65

A great 00	71.62
Agust-09	71,63
Sep-09 Okt-09	68,38
	74,08
Nop-09	77,56
Des-09	74,88
Jan-10	77,12
Feb-10	74,72
Mar-10	79,3
Apr-10	84,14
Mei-10	75,54
Jun-10	74,73
Jul-10	74,52
Agust-10	75,88
Sep-10	76,11
Okt-10	81,72
Nop-10	84,53
Des-10	90,07
Jan-11	92,66
Feb-11	97,73
Mar-11	108,65
Apr-11	116,32
Mei-11	108,18
Jun-11	105,85
Jul-11	107,88
Agust-11	100,45
Sep-11	100,83
Okt-11	99,92
Nop-11	105,36
Des-11	104,26
Jan-12	106,89
Feb-12	112,7
Mar-12	117,79
Apr-12	113,75
Mei-12	104,16
Jun-12	90,73
Jul-12	96,75
Agust-12	105,28
Sep-12	106,32
Okt-12	103,39
Nop-12	101,17

Des-12	101,17
Jan-13	105,04
Feb-13	107,66
Mar-13	102,61
Apr-13	98,85
Mei-13	99,35
Jun-13	99,74
Jul-13	105,21
Agust-13	108,06
Sep-13	108,78
Okt-13	105,46
Nop-13	102,58
Des-13	105,49
Jan-14	102,25
Feb-14	104,82
Mar-14	104,04
Apr-14	104,94
Mei-14	105,73
Jun-14	108,37
Jul-14	105,22
Agust-14	100,05
Sep-14	95,89
Okt-14	86,13
Nop-14	76,96
Des-14	60,55
Jan-15	47,45
Feb-15	54,93
Mar-15	52,83
Apr-15	57,42
Mei-15	62,5
Jun-15	61,3
Jul-15	54,43
Agust-15	45,72
Sep-15	46,29
Okt-15	46,96
Nop-15	43,13
Des-15	36,56
Jan-16	29,92
Feb-16	31,05

Daftar Pustaka

- Seminar 5 : A GARCH analysis of the excess returns on the Financial Times Stock Exchange (FTSE) All Share Index.
 - www.51 lunwen.org/UploadFile/org201102150953085327/20110215095308564.pdf~,~diakses~pada~tanggal~27~Maret~2016,~pukul~12.36
- Harga minya mentah dunia mulai bulan Februari 1986 februari 2016 (Satuan dolar AS per Barrel) http://www.indexmundi.com/commodities/?commodity=crude-oil&months=360. diakses pada tanggal 30 Maret 2016, pukul 19.01