

CAMPUS UBERLÂNDIA

CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL TRABALHO – ETAPA 2

COMPONENTE: TECNOLOGIA E CIÊNCIA DOS MATERIAIS PROF.: MSc. GABRIEL HENRIQUE ARRUDA TAVARES DE LIMA

Aluno (a):	RA:	Turma:
Valor: 5,0 pontos Nota:	<u> </u>	
 INSTRUÇÕES A leitura e interpretação fazem parte da avaliação; As questões podem ser resolvidas a lápis, mas as respostas deven Considerar nas questões: 3 (três) casas decimais. A ENTREGA deve ser realizada PRESENCIALMENTE no Discontinuarior 		
Questão 1 (1 ponto): Calcule a energia para a formado	ção de lacunas no níquel	(Ni), sabendo que o número
de lacunas em equilíbrio a 700°C (973 K) é de 4,8 %	$\times 10^{22} m^{-3}$. O peso atôn	nico e a massa específica (a
700°C) para o Ni são, respectivamente, 58,69 g/mo	1 e 8,80 g/cm ³ . ($k = 8,6$	$62 \times 10^{-5} \text{eV/atomo}, N_A =$
$6,022 \times 10^{23} \text{ átomos/mol})$		
		_
Questão 2 (1 pontos): Para um metal hipotético, o 1000° C é de $2,33 \times 10^{25} m^{-3}$. Se a massa específico 85,5 g/mol, respectivamente, calcule a fração $8,62 \times 10^{-5} \text{eV/atomo}$, $N_A = 6,022 \times 10^{23}$ átomos	a e o peso atômico dess de lacunas para es	se metal são de 7,40 g/cm³ e
Questão 3 (1 pontos): Dentre os tipos de imperfe	rições nos sólidos, dest	aca-se o defeito pontual de
lacuna (ou vacância). Nesse sentido, em que consist	e o defeito de lacuna?	
Questão 4 (2 pontos): A respeito do processo de d	ifusão. Explique o que	é difusão e qual sua relação
com os defeitos pontuais presentes nos sólidos.		