PROBLEM STATEMENT

Reduce losses by bidding correctly

Predict popularity based on characteristics of music

Bid valid if popularity predicted is higher or equal to actual

POPULARITY	BID PRICE	EXPECTED REVENUE (in 10k \$)
VERY LOW	1	2
Low	2	4
AVERAGE	3	6
HIGH	4	8
VERY HIGH	5	10

Acounsticness	Mode
Danceability	Release Date
Instrumentalness	Speechiness
Key	Tempo
Energy	Valence
Liveliness	Year
Explicit	Duration min
Loudness	Popularity

DATASET

1	
1	•

NUMBER 0	12227	
	NUMBER OF FEATURES	16
	CATEGORICAL FEATURES	2
	NUMERIC FEATURES	14
	MISSING VALUES	NONE
	OUTLIERS	NONE REMOVED
	NONE	

Oversampling (SMOTE)

Danceability v/s Popularity

HEATMAP

acousticness -	1	-0.28	-0.75	0.23	0.27	-0.017	-0.025	-0.58	-0.06	-0.028	-0.2	-0.17	-0.56	-0.074	-0.56	-0.15	-0.41	-1.0
danceability -	-0.28	1	0.21	-0.25	-0.26	0.029	-0.12	0.29	0.065	0.22	-0.021	0.49	0.21	-0.1	0.2	-0.09	0.22	- 0.8
energy -	-0.75	0.21	1	-0.13	-0.22	0.033	0.13	0.78	0.058	-0.078	0.23	0.33	0.49	0.049	0.49	0.14	0.33	0.0
explicit -	0.23	-0.25	-0.13	1	0.15	-0.01	-0.023	-0.18	-0.081		-0.034	0.055	-0.27	0.037	-0.26	0.02	-0.26	- 0.6
instrumentalness -	0.27	-0.26	-0.22	0.15	1	-0.018	-0.019	-0.38	0.047	-0.11	-0.088	-0.2	-0.2	0.086	-0.2	0.038	-0.32	0.0
key -	-0.017	0.029	0.033	-0.01	-0.018	1	-0.0092	0.026	0.14	0.017	0.017	0.031	0.014	-0.0079	0.012	0.00093	0.014	- 0.4
liveness -	-0.025	-0.12	0.13	-0.023	-0.019	-0.0092	1	0.047	-0.0093	0.11	0.015	0.0012	-0.046	0.029	-0.047	0.034	-0.1	
loudness -	-0.58	0.29	0.78	-0.18	-0.38	0.026	0.047	1.	0.034	-0.15	0.2	0.28	0.5	0.012	0.5	0.094	0.41	- 0.2
mode -	-0.06	0.065	0.058	-0.081	0.047	0.14	-0.0093	0.034	1	0.037	-0.0069	-0.0092	0.066	0.028	0.064	0.025	0.039	
speechiness -	-0.028	0.22	-0.078	-0.34	-0.11	0.017	0.11	-0.15	0.037	1	-0.008	0.042	-0.16	-0.089	-0.16	-0.085	-0.12	- 0.0
tempo -	-0.2	-0.021	0.23	-0.034	-0.088	0.017	0.015	0.2	-0.0069	-0.008	1	0.14	0.12	-0.021	0.12	0.36	0.077	
valence -	-0.17	0.49	0.33	0.055	-0.2	0.031	0.0012	0.28	-0.0092	0.042	0.14	1	-0.091	-0.15	-0.091	-0.083	-0.0053	0.2
year -	-0.56	0.21	0.49	-0.27	-0.2	0.014	-0.046	0.5	0.066	-0.16	0.12	-0.091	1	0.053	0.99	0.1	0.64	
duration-min -	-0.074	-0.1	0.049	0.037	0.086	-0.0079	0.029	0.012	0.028	-0.089	-0.021	-0.15	0.053	1	0.058	0.9	-0.0094	0.4
decade -	-0.56	0.2	0.49	-0.26	-0.2	0.012	-0.047	0.5	0.064	-0.16	0.12	-0.091	0.99	0.058	1	0.1	0.63	
total_beats -	-0.15	-0.09	0.14	0.02	0.038	0.00093	0.034	0.094	0.025	-0.085	0.36	-0.083	0.1	0.9	0.1	1	0.021	0.6
popularity -	-0.41	0.22	0.33	-0.26	-0.32	0.014	-0.1	0.41	0.039	-0.12	0.077	-0.0053	0.64	-0.0094	0.63	0.021	1	
	acousticness -	danceability -	energy -	explicit -	instrumentalness -	key -	liveness -	loudness -	- әрош	speechiness -	- odwat	valence -	year -	duration-min -	decade -	total beats -	popularity -	

FEATURE ENGINEERING

SUPPORT VECTOR CLASSIFICATION

Baseline Accuracy:

- Removed ID and Release Date
- Trained with default parameter
- Kernel used Linear

Cross Validation Accuracy: 54.62 %

Class Imbalancing

- Applied SMOTE
- Trained with default parameter.
- Kernel used-Polynomial

Cross Validation Accuracy: 57 %

FEATURE SELECTION

Features Dropped	1.id 2.release_date 3.key 4.model
Features Added	total _beats (tempo*duration)

HYPERPARAMETER TUNING

	Kernel	Polynomial
>	Degree of Polynomial	8
	С	1
	Cross Val Accuracy	64%

SUPPORT VECTOR CLASSIFICATION

f1-score

0.44

0.57

0.57

0.00

0.71

0.57

XGBOOST

Baseline Accuracy:

- Removed ID and Release Date
- No oversampling

Cross Val Accuracy : 62.75 %

Class Imbalancing

- Applied SMOTE
- Removed ID, release date

Cross Val Accuracy: 63.47 %

FEATURE SELECTION

Features Dropped	1.id 2.release_date 3.key 4.model
Features Added	-total _beats (tempo*duration) -decade

HYPERPARAMETER TUNING

colsample_bytree	0.7
gamma	0.3
learning_rate	0.15
max_depth	15
n_estimators	1000
min_child_weight	1
Cross Val Accuracy	69.86%

XGBOOST

	precision	recall	f1-score
0	0.817	0.802	0.809
1	0.542	0.658	0.594
2	0.523	0.501	0.512
3	0.683	0.534	0.599
4	0.869	0.936	0.901
Accuracy			0.686

LightGBM

Baseline Accuracy:

- Removed ID and Release Date
- boosting type : gdbt

Cross Val Accuracy: 62.00 %

Class Imbalancing

- Applied SMOTE
- Removed ID, Release Date
- boosting type : dart

Cross Val Accuracy: 62.09 %

FEATURE SELECTION

Features	1.id
Dropped	2.release_date
	3.key
	4.model
	5.explicit

HYPERPARAMETER TUNING

learning_rate	0.01	
early_stopping	30	
lambda_l1	1.0	
lambda_l2	1.0	
num_boost_rounds	2000	
Cross Val Accuracy=64.66%		

LightGBM

1.0

0.8

0.4 0.6 False Positive Rate

0.2

0.0

0.0

0.2

Class	Precision	Recall	f1-score
Very Low	0.816	0.800	0.810
Low	0.571	0.683	0.622
Average	0.510	0.480	0.495
High	0.602	0.410	0.488
Very High	0.283	0.652	0.604

ADABOOST

Baseline Accuracy:

- Removed ID and Release Date
- No oversampling

Cross Val Accuracy: 59 %

Class Imbalancing

- Applied SMOTE
- Removed ID, Release Date

Cross Val Accuracy: 57.4 %

FEATURE SELECTION

Features Dropped	1.id 2.release_date 3.key 4.model 5.explicit
Features Added	total _beats (tempo*duration)

HYPERPARAMETER TUNING

n_estimators	learning _rate	Accuracy
500	0.1	60.88
100	0.2	60.57
100	0.3	61.01
100	0.4	68.60
Cross Val Accuracy=64%		

ADBOOST

Class	Precision	Recall	f1-score
Very Low	0.845	0.781	0.812
Low	0.557	0.653	0.601
Average	0.522	0.507	0.514
High	0.688	0.619	0.652
Very High	0.907	0.945	0.926

RANDOM FOREST CLASSIFIER

Accuracy of baseline model = ~50%

HYPERPARAMETER TUNING

NO. OF ESTIMATORS	MEAN ACCURACY
100	~68%
500	~70%
500-900	~70%(run time was increasing)

HANDLING CLASS IMBALANCE

TOOLS USED	MEAN ACCURACY
Cost-sensitive learning	~50%
Default SMOTE oversampling	~68%

OVERSAMPLING STRATEGY

NO. OF EXAMPLES IN EACH CLASS	MEAN ACCURACY
3700	~72%
4000	~74%
5000	~77%

RANDOM FOREST CLASSIFIER

	precision	recall	f1-score
0	0.657	0.660	0.658
1	0.794	0.700	0.744
2	0.666	0.760	0.710
3	0.931	0.954	0.942
4	0.895	0.856	0.875

FINAL HYPERPARAMETERS

HYPERPARAMETER S	TUNED VALUE
Estimators	100
Splits	10
Repeats	3
Cross Val Accuracy	~79%

NEURAL NETWORK

MODEL 1

Features removed	Explicit, release_date, tempo, key, year
New Features	Total Beats, Duration-min
Scaling	Standard Scaler
Oversampling	SMOTE

Number of hidden layers	3 (5->32->16->8->5)
Activation in hidden layers	relu
Activation in output layer	softmax
Loss function	Categorical cross entropy
optimizer	Adam
batch size	5
epochs	2000
Cross validation accuracy	53%

NEURAL NETWORK

MODEL 2

Features removed	Explicit, release_date, tempo, key, year
New Features	Total Beats, Duration-min
Scaling	Standard Scaler
Oversampling	SMOTE

Number of hidden layers	5 (5->128->64->32->16->8->5)
Activation in hidden layers	relu
Activation in output layer	softmax
Loss function	Categorical cross entropy
optimizer	Adam
batch size	5
epochs	2000
Cross validation accuracy	65%

- Kernel Trick
- Don't need to hand-perform complex transformation - Can capture no
- Can capture non linear relationships due to this

- -Boosting
- Has been observed to give excellent accuracy
- Minimal data preprocessing required
 Faster runtime

- Very fast execution
- compared to XGB
- Leaf wise growth, can lead to better

accuracy

- Boosting has been
- observed to give
- superior performance

- The basis is Bagging
- Bagging reduces variance and solves
- overfitting

- Neural Networks are great at capturing patterns and generating decision boundaries
- Might eliminate the need to hand engineer features

WHY DON'T THESE WORK WELL?		
SVM	Impacted greatly by correct choice of hyperparameters Hyperparameter tuning is tricky and time consuming Overfitting due to Oversampling Possibly due to presence of outliers	
Boosting Algorithms	Boosting algorithms are prone to overfitting Overfitting due to Oversampling	
Neural Networks	Overfits due to oversampling and relatively smaller dataset	

WHY DOES RANDOM FOREST WORK WELL?

- Random forest Bagging algorithm
- Biggest problem overfitting due to oversampling
- Bagging reduces variance model less prone to overfitting
- Robust to outliers, requires min preprocessing
- Faster runtime allows extensive hyperparameter tuning

FUTURE WORK

1	Alternate methods for dealing with class imbalance
2	Data about song artists and producers
3	Careful removal of univariate and multivariate outliers
4	Meticulous hyperparameter tuning, especially for SVM

THANK YOU!