Combinational & Sequential Circuit Design

Dr. Mahdi Abbasi
Bu Ali Sina University
Department of Computer Engineering

Outline

- Definitions
- Boolean Expansion Based on Orthonormal Basis
- Sum of Product (SOP) Simplification Procedure
- SOP Simplification Procedure using Don't Cares
- Iterative Arithmetic Combinational Circuits
- Sequential Circuit Model
- Sequential Circuit Design Procedure
- State Minimization
- State Encoding
- Retiming
- Sequential Circuit Timing

- A product term of a function is said to be an implicant.
- A Prime Implicant (PI) is a product term obtained by combining the maximum possible number of adjacent 1-squares in the map.
- A Prime Implicant is a product that we cannot remove any of its literals.
- If a minterm is covered only by one prime implicant then this prime implicant is said to be an Essential Prime Implicant (EPI).

- A cover of a Boolean function is a set of implicants that covers its minterms.
- Minimum cover
 - Cover of the function with minimum number of implicants.
 - Global optimum.
- Minimal cover or irredundant cover
 - Cover of the function that is not a proper superset of another cover.
 - No implicant can be dropped.
 - Local optimum.

- Let $f(x_1, x_2, ..., x_n)$ be a Boolean function of n variables.
- The *cofactor* of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{xi} = f(x_1, x_2, ..., x_i=1, ..., x_n)$
- The *cofactor* of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i' is $f_{xi'} = f(x_1, x_2, ..., x_i = 0, ..., x_n)$
- Theorem: Shannon's Expansion

Let
$$f: B^n \to B$$
. Then $f(x_1, x_2, ..., x_i, ..., x_n) = x_i.f_{x_i} + x_i'.f_{x_i'}$
= $(x_i + f_{x_i'}).(x_i' + f_{x_i}) \forall i = 1, 2, ..., n$

 Any function can be expressed as sum of products (product of sums) of n literals, minterms (maxterms), by recursive expansion.

A sample of Shanon

When we apply Shannon's expansion to a,

```
F(a,b,c,d,e,f) = (a+b+d)(a'+b+c)(b+c+d+e+f)
F(0,b,c,d,e,f) = (b+d) \cdot 1 \cdot (b+c+d+e+f) = (b+d)(1+c+e+f) = b+d
F(1,b,c,d,e,f) = 1 \cdot (b+c) \cdot (b+c+d+e+f) = (b+c)(1+d+e+f) = b+c
F(a,b,c,d,e,f) = (a+F(0,b,c,d,e,f)) \cdot (a'+F(1,b,c,d,e,f))
= (a+b+d)(a'+b+c)
```

- Another example: f = ab + ac + bc
 - $f_a = b + c$
 - $f_{a'} = bc$
 - $F = a f_a + a' f_{a'} = a (b + c) + a' (bc)$
- A Boolean function can be interpreted as the set of its minterms.
- Operations and relations on Boolean functions can be viewed as operations on their minterm sets
 - Sum of two functions is the Union (\cup) of their minterm sets
 - Product of two functions is the Intersection (∩) of their minterm sets
 - Implication between two functions corresponds to containment (⊆) of their minterm sets
 - $f_1 \rightarrow f_2 \equiv f_1 \subseteq f_2 \equiv f_1' + f_2 = 1$

Boolean Expansion Based on Orthonormal Basis

- Let ϕ_i , i=1,2, ...,k be a set of Boolean functions such that $\Sigma_{i=1 \text{ to } k}$ $\phi_i = 1$ and ϕ_i . $\phi_j = 0$ for $\forall i \neq j \in \{1,2,...,k\}$.
- An Orthonormal Expansion of a function f is

$$f = \sum_{i=1 \text{ to } k} f_{\phi i} \cdot \phi_i$$

- $f_{\phi i}$ is called the cofactor of f w.r.t. $\phi_i \forall i$.
- Example: f = ab+ac+bc; $\phi_1 = a$; $\phi_2 = a'$;
 - $f_{\phi 1} = b+c+bc=b+c$
 - $f_{d2} = bc$
 - $f = \phi_1 f_{\phi 1} + \phi_2 f_{\phi 2} = a (b+c) + a'(bc) = ab+ac+a'bc = ab+ac+bc$

Boolean Expansion Based on Orthonormal Basis

Theorem

- Let f, g, be two Boolean functions expanded with the same orthonormal basis ϕ . i=1.2 ...,k
- Let $f \otimes g = \sum_{i=1}^k \Phi_i \cdot (f_{\Phi_i} \otimes g_{\Phi_i})$ on two Boolean functions

Corollary

• Let f, g, be two Boolean functions with support variables $\{x_i, i=1,2, ..., n\}$.

$$f \otimes g = x_i.(f_{x_i} \otimes g_{x_i}) + x'_i.(f_{x'_i} \otimes g_{x'_i})$$
 functions

Boolean Expansion Based on Orthonormal Basis

• Example:

```
• Let f = ab + c; g=a'c + b; Compute f \oplus g
```

• Let
$$\phi_1$$
=a'b'; ϕ_2 =a'b; ϕ_3 =ab'; ϕ_4 =ab;

•
$$f_{\phi 1} = c$$
; $f_{\phi 2} = c$; $f_{\phi 3} = c$; $f_{\phi 4} = 1$;

•
$$g_{\phi 1} = c$$
; $g_{\phi 2} = 1$; $g_{\phi 3} = 0$; $g_{\phi 4} = 1$;

•
$$f = a'b' (c \oplus c) + a'b (c \oplus 1) + ab' (c \oplus 0) + ab (1 \oplus 1)$$

= $a'bc' + ab'c$

• F= (ab+c)
$$\oplus$$
 (a'c+b)= (ab+c)(a+c')b' + (a'+b')c'(a'c+b)
= (ab+ac)b' + (a'c+a'b)c' = ab'c +a'bc'

Sum of Product (SOP) Simplification Procedure

- 1. Identify all prime implicants covering 1's
 - Example: For a function of 3 variables, group all possible groups of 4, then groups of 2 that are not contained in groups of 4, then minterms that are not contained in a group of 4 or 2.
- 2. Identify all essential prime implicants and select them.
- 3. Check all minterms (1's) covered by essential prime implicants
- 4. Repeat until all minterms (1's) are covered:
 - Select the prime implicant covering the largest uncovered minterms (1's).

Don't Care Conditions

- In some cases, the function is not specified for certain combinations of input variables as 1 or 0.
- There are two cases in which it occurs:
 - 1. The input combination never occurs.
 - 2. The input combination occurs but we do not care what the outputs are in response to these inputs because the output will not be observed.
- In both cases, the outputs are called as unspecified and the functions having them are called as incompletely specified functions.
- In most applications, we simply do not care what value is assumed by the function for unspecified minterms.

Don't Care Conditions

- Unspecified minterms of a function are called as don't care conditions. They provide further simplification of the function, and they are denoted by X's to distinguish them from 1's and 0's.
- In choosing adjacent squares to simplify the function in a map, the don't care minterms can be assumed either 1 or 0, depending on which combination gives the simplest expression.
- A don't care minterm need not be chosen at all if it does not contribute to produce a larger implicant.

SOP Simplification Procedure using Don't Cares

- 1. Identify all prime implicants covering 1's & X's
 - Each prime implicant must contain at least a single 1
- 2. Identify all essential prime implicants and select them.
 - An essential prime implicant must be the only implicant covering at least a 1.
- 3. Check all 1's covered by essential prime implicants
- 4. Repeat until all 1's are covered:
 - Select the prime implicant covering the largest uncovered 1's.

Combinational Circuits Design Procedure

• 1. Specification (Requirement)

- Write a specification for what the circuit should do e.g. add two 4-bit binary numbers
- Specify names for the inputs and outputs

2. Formulation

- Convert the Specification into a form that can be Optimized
- Usually as a truth table or a set of Boolean equations that define the required relationships between the inputs and outputs

• 3. Logic Optimization

- Apply logic optimization (2-level & multi-level) to minimize the logic circuit
- Provide a logic diagram or a netlist for the resulting circuit using ANDs, ORs, and inverters

Combinational Circuits Design Procedure

4. Technology Mapping and Design Optimization

- Map the logic diagram or netlist to the implementation technology and gate type selected, e.g. CMOS NANDs
- Perform design optimizations of gate costs, gate delays, fan-outs, power consumption, etc.
- Sometimes this stage is merged with stage 3

5. Verification

- Verify that the final design satisfies the original specification- Two methods:
 - Manual: Ensure that the truth table for the final technology-mapped circuit is identical to the truth table derived from specifications
 - By Simulation: Simulate the final technology-mapped circuit on a CAD tool and test it to verify that it gives the desired outputs at the specified inputs and meets delay specs etc.

Iterative (Repetitive) Arithmetic Combinational Circuits

- An iterative array can be in a single dimension (1D) or multiple dimensions (spatially)
- Iterative array takes advantage of the regularity to make design feasible
- Block Diagram of a 1D Iterative Array

Iterative Design Example

- It is required to design a combinational circuit that computes the equation Y=3*X-1, where X is an n-bit signed 2's complement number
- This circuit can be designed by assuming that we have a borrow feeding first cell or by representing -1 in 2's complement as 11...11 and adding this 1 in each cell.
- We will follow the second approach. We need to represent carry-out values in the range 0 to 3. Thus, we need two signals to represent Carry out values.

Sequential Circuit Model

- A Sequential circuit consists of:
 - Data Storage elements: (Latches / Flip-Flops)
 - Combinatorial Logic:
 - Implements a multiple-output function
 - Inputs are signals from the outside
 - Outputs are signals to the outside
 - State inputs (Internal): Present State from storage elements
 - State outputs, Next State are inputs to storage elements

Sequential Circuit Model

- Combinatorial Logic
 - Next state function: Next State = f(Inputs, State)
 - 2 output function types : Mealy & Moore
 - Output function: Mealy Circuits Outputs = g(Inputs, State)
 - Output function: Moore Circuits Outputs = h(State)
- Output function type depends on specification and affects the design significantly

Sequential Circuit Model Mealy Circuit

Moore Circuit

Timing of Sequential Circuits Two Approaches

 Behavior depends on the <u>time</u>s at which storage elements 'see' their inputs and change their outputs (next state → present state)

Asynchronous

 Behavior defined from knowledge of inputs at any instant of time and the order in continuous time in which inputs change

Synchronous

- Behavior defined from knowledge of signals at discrete instances of time
- Storage elements see their inputs and change state only in relation to a timing signal (clock pulses from a clock)

1 - 24

Sequential Circuit Design Procedure

- 1. Specification e.g. Verbal description
- 2. Formulation Interpret the specification to obtain a state diagram and a state table
- 3. State Assignment Assign binary codes to symbolic states
- 4. Flip-Flop Input Equation Determination Select flip-flop types and derive flip-flop input equations from next state entries in the state table
- 5. Output Equation Determination Derive output equations from output entries in the state table
- 6. Verification Verify correctness of final design

State Initialization

- When a sequential circuit is turned on, the state of the flip flops is unknown (Q could be 1 or 0)
- Before meaningful operation, we usually bring the circuit to an initial known state, e.g. by resetting all flip flops to 0's
- This is often done asynchronously through dedicated direct S/R inputs to the FFs
- It can also be done synchronously by going through the clocked FF inputs

State Minimization

- Aims at reducing the number of machine states
 - reduces the size of transition table.
- State reduction may reduce
 - the number of storage elements.
 - the combinational logic due to reduction in transitions
- Completely specified finite-state machines
 - No don't care conditions.
 - Easy to solve.
- Incompletely specified finite-state machines
 - Unspecified transitions and/or outputs.
 - Intractable problem.

State Minimization for Completely-Specified FSMs

- Equivalent states
 - Given any input sequence the corresponding output sequences match.
- Theorem: Two states are equivalent iff
 - they lead to identical outputs and
 - their next-states are equivalent.
- Equivalence is *transitive*
 - Partition states into equivalence classes.
 - Minimum finite-state machine is unique.

State Minimization Algorithm

- Stepwise partition refinement.
- Initially
 - Π_1 = States belong to the same block when <u>outputs</u> are the same for any input.
- Refine partition blocks: While further splitting is possible
 - \prod_{k+1} = States belong to the same block if they were previously in the same block and their next-states are in the same block of \prod_k for any input.
- At convergence
 - Blocks identify equivalent states.

State Minimization Example

- $\Pi_1 = \{(s1, s2), (s3, s4), (s5)\}.$
- $\Pi_2 = \{(s1, s2), (s3), (s4), (s5)\}.$
- Π_2 = is a partition into equivalence classes
 - States (s1, s2) are equivalent.

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> ₃	1
1	s_1	s_5	1
0	s_2	s_3	1
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	84	84	0
1	84	s_5	1
0	s_5	84	1
1	s_5	s_1	0

State Minimization Example **Original FSM** **Minimal FSM**

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> ₃	1
1	s_1	s_5	1
0	s_2	s_3	1
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	84	84	0
1	s_4	s_5	1
0	s_5	84	1
1	s_5	s_1	0

INPUT	STATE	N-STATE	OUTPUT
0	s ₁₂	<i>s</i> ₃	1
1	<i>s</i> ₁₂	s_5	1
0	s_3	s_{12}	0
1	s_3	s_{12}	1
0	s_4	84	0
1	84	s_5	1
0	s_5	84	1
1	s_5	s ₁₂	0

Another State Minimization Example

• Sequence Detector for codes of symbols 010 or 110 assuming that

sapheave	nbol <mark>rcode i</mark> :	saleits=in l	ength1	X=0	X=1
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S6	0	0
00	S3	S0	S0	0	0
01	S4	S0	S0	1	0
10	S5	S0	S0	0	0
11	S6	S0	S0	1	0

Another State Minimization Example

Input		Next State		Output	
Sequence	Present State	X =0	X=1	X=0	X=1
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	O
1	S2	S5	S6	0	0
00	S3	S0	<i>S0</i>	0	0
01	S4	S0	S0	1	0
10	S5	S0	<i>S0</i>	0	O
11	S6	S0	<i>S0</i>	1	0

```
      (S0 S1 S2 S3 S4 S5 S6)

      (S0 S1 S2 S3 S5) (S4 S6)
      S1 is equivalent to S2

      (S0 S3 S5) (S1 S2) (S4 S6)
      S3 is equivalent to S5

      (S0) (S3 S5) (S1 S2) (S4 S6)
      S4 is equivalent to S6
```

Another State Minimization Example

mState minimized sequence detector for 010 out 10							
Sequence	Present State	X=0	X=1	X=0	X=1		
Reset	S0	S1'	S1'	0	0		
0 + 1	S1'	S3'	<i>S4</i> '	0	0		
X0	S3'	S0	S0	0	0		
X1	S4'	S0	<i>S0</i>	1	0		

Multiple Input Example

present		nex	output		
state	00	01	10	11	•
S0	S0	S1	S2	S3	1
<i>S1</i>	S0	S 3	S1	S4	O
S2	S1	S 3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

Implication Chart Method

Cross out incompatible states based on outputs

• Then cross out more cells if indexed that entries are already crossed

state	<i>00</i>	<i>U1</i>	10	11	•
S0	S0	S1	S2	S 3	1
S1	S0	S 3	S1	S4	0
S2	S1	S 3	S2	S4	1
S3	S1	S 0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S 0	S5	0

present	1	nex	e	output	
state	00	01	10	11	
<i>S0'</i>	<i>S0'</i>	S1	S2	S3'	1
S1	S0'	S3'	S1	SO'	0
S2	S1	S3'	S2	S0'	1
S3'	S1	S0'	<i>S0'</i>	S3'	0

minimized state table (S0==S4) (S3==S5)

State Minimization Computational Complexity

- Polynomially-bound algorithm.
- There can be at most |S| partition refinements.
- Each refinement requires considering each state
 - Complexity O(|S|²).
- Actual time may depend upon
 - Data-structures.
 - Implementation details.

State Encoding

- Determine a binary encoding of the states ($|S|=n_s$) that optimize machine implementation
 - Area
 - Cycle-time
 - Power dissipation
 - Testability
- Assume D-type registers.
- Circuit complexity is related to
 - Number of storage bits n_b used for state representation
 - Size of combinational component
- There are $2^{n_b}!/(2^{n_b}-n_s)!$ ssible encodings
- Implementation Modeling
 - Two-level circuits.
 - Multiple-level circuits.

State Encoding Example

Table 1. An example of an FSM.

Present State	Next State		Output	
	X=0	X=1	X=0	X=1
S0	S2	S2	0	0
S1	S2	S0	O	1
S2	S4	S3	O	1
S3	S1	S2	1	O
S4	S1	S4	1	O

Table 2. State assignments with resulting area cost.

State	Ass. 1	Ass. 2
S0	101	111
S1	001	000
S2	100	011
S3	111	101
S4	110	100
Area (No. of Literals)	10	20

State Encoding Example

(a) Circuit resulting from "Ass. 1".

(b) Circuit resulting from "Ass. 2".

- Minimize cycle-time or area by changing register positions.
- Do not modify combinational logic.
- Preserve network structure
 - Modify weights.
 - Do not modify graph structure.

- Global optimization technique [Leiserson].
- Changes register positions
 - affects area
 - changes register count.
 - affects cycle-time
 - changes path delays between register pairs.
- Solvable in polynomial time.
- Assumptions
 - Vertex delay is constant: No fanout delay dependency.
 - Graph topology is invariant: No logic transformations.
 - Synchronous implementation
 - Cycles have positive weights.
 - Edges have non-negative weights.

Fig. 2. An example of a backward retiming move across a single-output combinational gate.

Fig. 3. An example of a forward retiming move across a fanout stem.

Retiming Example

- Consider the sequential circuit given below having 4 inputs {A, B, C, D} and one output {X}.
- Assume that the delay of an inverter is 1 unit delay, the delay of a 2-input NAND gate is 2 unit delays, the delay of a 2-input NOR gate is 2 unit delays and the delay of a 2-input XOR gate is 3 unit delays.
- Using only the Retiming transformation, <u>minimize</u> the critical path of this circuit with the r

Retiming Example

- The maximum propagation delay is 12 and there are two critical paths as follows:
 - {G5, G6, G7, G8, G1}, {G4, G6, G7, G8, G1},
- We can apply the following retiming transformations to reduce the critical path:
 - Retime G5 by -1 (forward retiming); Retime G4 by -1 (forward retiming);
 Retime G1 by +1 (backward retiming); Retime G8 by +1 (backward retiming);
 Retime the stem on fanout of G2 by +1 (backward retiming)
- The resulting retiming circuit is as follows which has a maximum propagation delay of 6 with only 4 FFs.

Sequential Circuit Timing \mathbf{FF} $\mathbf{F}\mathbf{F}$ Q2 D2 D1 Q1 Combinational Combinational Logic Logic #1 #2 CLK CLK T_D Tck Clock Tck-q1 Tsuri Tsu2 \mathbf{Q}_1 T_{D} 1-52

Timing Constraints

- T_D = worst case delay through combinational logic
- T_{SU} = FF set up time Minimum time before the clock edge where the input data must be ready and stable
- T_{clk→Q} = Clock to Q delay Time between clock edge and data appearing at the output of the FF
- T_{Hold} = FF hold time Minimum time after the clock edge where data has to remain stable (held stable)
- Based on the FF & combinational logic timing parameters, the following timing constraints are obtained for correct operation of the circuit: $T_{clk} \ge T_{clk \to a1} + T_D + T_{su}$

Timing Constraints

- The previous equation assumes that the clock arrives at all FFs, at exactly the same time!
- Clock Skew (T_{skew}) is the delay between clocks at different chip locations.
- To take Clock Skew into account: $T_{clk} \ge T_{clk \to g1} + T_D + T_{su} + T_{skew}$
- Clock Signals will have random variations in their Periods and Frequencies, called <u>Jitter</u>.
- The latest arrival time minus the earliest arrival time during an observed period of time is called the "peak to peak jitter amplitude".
- We have to take the <u>Peak to Peak Jitter</u> (T_{P-P Jitter}) into account

$$T_{clk} \ge T_{clk \rightarrow q1} + T_D + T_{su} + T_{skew} + T_{P-P Jitter}$$

Timing Constraints

- Another Timing Constraint arises in situations where T_D is "Zero" or very small when the output of a FF is fed directly to the input of another (e.g. in Shift Registers).
- In such situation, we need to make sure that the data does not pass through two FFs (during the transparency window of the FF where both master and slave are enabled).
- Hence to avoid Hold Time violation:

$$T_{\text{skew}} + T_{\text{P-P Jitter}} + T_{\text{hold2}} \le T_{\text{ck} \rightarrow \text{q1}} + T_{\text{D}}$$

where T_{hold2} is the hold time of the 2nd FF

Metastability

- Whenever there are setup and hold time violations in any flip-flop, it enters a state where its output is unpredictable: this state is known as metastable state (quasi stable state)
- At the end of metastable state, the flip-flop settles down to either '1' or '0'. This whole process is known as metastability.
- When a flip-flop is in metastable state, its output oscillates between '0' and '1'. How long it takes to settle down, depends on the technology of the flip-flop.
- Metastability occurs when the input signal is an asynchronous signal.

Metastability

- The most common way to tolerate metastability is to add one or more successive synchronizing flip-flops to the synchronizer.
- This approach allows for an entire clock period (except for the setup time of the second flip-flop) for metastable events in the first synchronizing flip-flop to resolve themselves.
- This does, however, increase the latency in the synchronous logic's observation of input changes.

