Занятие 5. Электрон в центрально-симметричном поле. Квантование момента импульса и магнитного момента электрона.

Ауд.: Л-5: задачи №№ 6.96 или Л-6: задачи №№ 5.144; Л-7: задачи №№ 47.9, 47.22, 47.24.

- 6.96. Определить энергию электрона атома водорода в состоянии, для которого волновая функция имеет вид $\psi(r) = A(1+ar)e^{-\alpha r}$, где A, a и α некоторые постоянные.
- 47.9. Атом водорода находится в основном состоянии. Вычислить: 1) вероятность ω_1 того, что электрон находится внутри области, ограниченной сферой радиуса, равного боровскому радиусу a; 2) вероятность ω_2 того, что электрон находится вне этой области; 3) отношение вероятностей ω_2/ω_1 . Волновую функцию считать известной: $\psi_{100}(r) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$.
- 47.22. Электрон в атоме находится в f-состоянии. Найти орбитальный момент импульса \mathcal{L}_{l} электрона и максимальное значение проекции момента импульса $\mathcal{L}_{lz\, \mathrm{max}}$ на направление внешнего магнитного поля.
- **47.24.** Вычислить полную энергию E, орбитальный момент импульса \mathcal{L}_l и магнитный момент μ_l электрона, находящегося в 2p-состоянии в атоме водорода.

Дома: Л-7: задачи №№ 47.10, 47.23; Л-5; Л-19.

- **47.10.** Зная, что нормированная собственная волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид $\psi(r) = \frac{1}{\sqrt{\pi a^3}} \, \mathrm{e}^{-r/a}$, найти среднее расстояние $<\!r>$ электрона от ядра.
- **47.23.** Момент импульса \mathcal{L}_l орбитального движения электрона в атоме водорода равен $1.83 \cdot 10^{-34}$ Дж · с. Определить магнитный момент μ_l , обусловленный орбитальным движением электрона.

Ответы:

6.96. $E = -k^2 m e^4/8\hbar^2$, т. е. уровень с главным квантовым числом n=2; $k=1/4\pi\epsilon_0$ (СИ), k=1 (СГС).

47.9. 0,324; 0,676; 2,09. **47.10.** 3/2a.

47.22. $\hbar \sqrt{12} = 3,46\hbar$; $3\hbar$. 47.23. 1,61·10⁻²³ Дж/Тл. 47.24. —3,4 эВ; 1,50× ×10⁻³⁴ Дж·с; 1,31·10⁻²³ Дж/Тл.