

Q What to do when your dataset doesn't fit in memory?

... especially if you don't have access to a large data cluster.

What?

- Q What to do when your dataset doesn't fit in memory?
- A Train on smaller chunks and then combine models / parameters

What?

- Q What to do when your dataset doesn't fit in memory?
- A Train on smaller chunks and then combine models / parameters

Parallel approach

- appears superior
- received a lot of attention
- needs a cluster of many machines (and infrastructure etc)
- feasible for large companies

Out-of-core approach

this talk

- appears inferior
- hasn't received the attention it deserves
- runs on a single machine
- fits small startups *and* large companies

Questions.

What is **out-of-core** learning?

What is **online** learning?

How do we apply it to ordinary **batch** learning?

Why would we expect this to work?

Can we do **better** than the naive approach?

Online-to-batch learning spotted **in the wild**?

→ Vowpal Wabbit

Program.

Out-of-core learning

Online learning

Online-to-batch conversion - naive

FTRL - Follow The (Regularized) Leader

Online-to-batch conversion - a closer look

Business applications at Booking.com

pseudo code

```
for x, y in chunks:
    model.update(x, y)
```

Dataset

Suppose we have a fixed distribution:

$$\mathcal{D} = X \times Y$$

Training data consists of i.i.d. samples from *D*:

$$(x,y) \sim \mathcal{D}$$

Therefore, training data set is an unordered sequence:

$$\mathcal{D}_{\text{train}} = (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Objective

Minimize expected loss:

$$L(\theta) = \mathbb{E}_{x,y \sim \mathcal{D}} \ell(x, y, \theta)$$

where $m{l}$ is the **single-datapoint loss**, e.g. for linear regression:

$$\ell(x, y, \theta) = \frac{1}{2} (\theta \cdot x - y)^2$$

Gradient descent

$$\theta \leftarrow \theta - \eta g(\theta)$$

$$g(\theta) = \mathbb{E}_{x,y \sim \mathcal{D}} \nabla_{\theta} \ell(x, y, \theta)$$

Ordinary (batch) gradient descent

$$g(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \ell(x_i, y_i, \theta)$$

Stochastic gradient descent

$$g(\theta) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell(x_i, y_i, \theta)$$

Online learning set-up.

The data

- Data is **no longer i.i.d.**
- Sequence of observations is **ordered**

$$\mathcal{O}_t = (x_1, y_1), (x_2, y_2), \dots, (x_{t-1}, y_{t-1})$$

The objective

- Predict the next \boldsymbol{y}_t given the next \boldsymbol{x}_t as well as all observations $\boldsymbol{\theta}_t$ so far:

$$\hat{y}_t = h(x_t, \theta_t)$$

Online learning.

Remember batch loss:

$$Loss(\theta) = \frac{1}{N} \sum_{n=1}^{N} \ell(x_n, y_n, \theta)$$

Instead, we minimize Regret (assume game "not too unfair")

Regret
$$(\theta, \theta_*) = \sum_{t=1}^{T} \left(\ell(x_t, y_t, \theta_t) - \ell(x_t, y_t, \theta_*) \right)$$

where

$$\vartheta = \{\theta_1, \dots, \theta_T\}$$

$$\theta_* = \arg\min_{\theta} \sum_{t=1}^T \ell(x_t, y_t, \theta)$$

Online learning.

Simplest approach: Online Gradient Descent

$$\theta_{t+1} = \theta_t - \eta g_t$$

$$g_t = \nabla_{\theta} \ell(x_t, y_t, \theta_t)$$

where η can be simple learning rate schedule:

$$\eta = \frac{\alpha}{\sqrt{t}}$$

or adaptive per-coordinate learning rate (AdaGrad):

$$\eta_i = \frac{\alpha}{\sqrt{\sum_{s=1}^t g_{i,t}^2}}$$

Online learning.

When to use online learning?

- when consecutive observations are not i.i.d.
- when you care about errors you make early in the learning process
- underlying "state of the environment" changes over time

e.g. binary classification for **spam detection**

Online-to-batch conversion - naive.

Simplest approach: **Take the last iterate**

- treat the i.i.d. dataset as an ordered sequence
- train as you would do for online learning
- take weights at round t=T and treat them as optimal set of weights

However

- why would final weights at t=T also be optimal for full dataset (at all previous t< T)?
- too much variance in weight updates?

Remember: Online Gradient Descent

$$\theta_{t+1} = \theta_t - \eta g_t$$

$$g_t = \nabla_{\theta} \ell(x_t, y_t, \theta_t)$$

$$\ell_s(\theta) = \ell(x_s, y_s, \theta)$$

The idea

- Adjust course "now", but in a way that would also minimize prior loss
- Update based on total loss so far

$$\theta_{t+1} = \arg\min_{\theta} \sum_{s=1}^{t} \ell_s(\theta)$$

- Add regularization:

$$\theta_{t+1} = \arg\min_{\theta} \sum_{s=1}^{t} \ell_s(\theta) + \frac{1}{2\eta} \|\theta\|^2$$

e.g. for least squares:

$$g_t = x_t \left(\theta_t \cdot x_t - y_t \right)$$

Useful simplification: linearization

Recall power-series expansion (Taylor):

$$f(a) = f(b) + (a - b) f'(b) + \frac{1}{2} (a - b)^2 f''(b) + \dots$$

Use subgradient formulation (i.e. "linear upper bound")

$$\operatorname{Regret}_{T}(\vartheta, \theta_{*}) = \sum_{t=1}^{T} \left(\ell_{t}(\theta_{t}) - \ell_{t}(\theta_{*}) + \frac{\|\theta_{t}\|^{2} - \|\theta_{*}\|^{2}}{2\eta} \right) \\
\leq \sum_{t=1}^{T} \left((\theta_{t} - \theta_{*}) \cdot g_{t} + \frac{\|\theta_{t}\|^{2} - \|\theta_{*}\|^{2}}{2\eta} \right)$$

Online Gradient Descent from FTRL

$$\theta_{t+1} = \arg\min_{\theta} \operatorname{Regret}_{t}(\theta, \theta_{*})$$

$$\approx \arg\min_{\theta} \sum_{s=1}^{t} \theta \cdot g_{s} + \frac{1}{2\eta} \|\theta\|^{2} + \operatorname{const}$$

$$= -\eta \sum_{s=1}^{t} g_{s}$$

$$= \theta_{t} - \eta g_{t}$$

In short,

- FTRL attempts to minimize Regret *explicitly*, albeit greedy
- FTRL is a general framework that encompasses many algorithms (incl. OGD)
- FTRL picks weights at each round to get closer to the optimum θ_* (thus good candidate for batch optimization)

If there's time, will explain the well-known Adaptive FTRL-Proximal algorithm

Online-to-batch conversion.

arxiv.org/abs/1109.5647
arxiv.org/abs/1212.1824

Some choices:

Standard averaging:

$$\theta = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

Take the last $k = \alpha T$ iterates:

$$\theta = \frac{1}{k} \sum_{t=1}^{k} \theta_{t+T-k}$$

Or simply the last iterate:

$$\theta = \theta_T$$

$$Loss(\theta) - Loss(\theta_*) = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$$

$$Loss(\theta) - Loss(\theta_*) = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

$$Loss(\theta) - Loss(\theta_*) = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$$

Online-to-batch conversion.

Take-home message:

Taking the last iterate $\theta = \theta_T$ is sub-optimal ... but only **marginally** so.

Ask yourself:

Is it worth the trouble to do a proper online-to-batch conversion?

... or will I train my model slightly longer?

Paid search results on Google.

Paid search results on Google.

Context

- Compute bids for Google AdWords
- We have a **very large number** of distinct keywords
- Runs daily

Old setup

- ML framework: pyspark.ml
- Training time: 90 minutes
- Prediction time: **2 hours**

Current setup

- ML framework: Vowpal Wabbit
- Training time: **10 minutes** (single instance)
- Prediction time: **2 minutes** (parallelized on Hadoop)

Spam detection.

Context

- Customer Care
- Detect spam specific to Booking.com (e.g. auto-replies, receipt notification, etc.)
- Want to maximize precision/recall at fixed human capacity

Approach

- bag-of-words
- ML framework: Vowpal Wabbit
- feature engineering done by Vowpal Wabbit (n-grams, skip-grams, "tf-idf", etc.)

Context

30% of the searches done by 'Family with children' guests do not specify number of children!

Hypothesis

They forgot their children

Actions taken

Target

At the Stay Review Form users tell us if they are a Family, a Group, Solo or a Couple

Build a Machine Learning Model that guesses the Traveller Type

Use information like Location, Destination, Filter Usage, etc.

Application

Apply the treatment only when the model says the user is most likely a Family.

Some details

Multiclass classification problem

Used 1 year data (200M examples / 200k features)

Outcome

A/B experiment a big success

Bonus material Adaptive FTRL-proximal - "the FTRL optimizer" **Booking.com**

Adaptive FTRL-proximal

ordinary L1 regularization

$$z_t = \sum_{s=1}^t g_s - \sigma_s \theta_s \quad \eta_t = \frac{1}{\sum_{s=1}^t \sigma_s}$$

$$\eta_t = \frac{1}{\sum_{s=1}^t \sigma_s}$$

Adaptive FTRL-proximal

$$\theta_{t+1} = \arg\min_{\theta} \sum_{s=1}^{t} \theta \cdot g_s + \lambda_1 \|\theta\|_1 + \frac{\sigma_s}{2} \|\theta - \theta_s\|_2^2$$

$$= \arg\min_{\theta} \theta \cdot z_s + \lambda_1 \|\theta\|_1 + \frac{1}{2\eta_t} \|\theta\|_2^2 + \text{const}$$

$$= \begin{cases} -\eta_t \left(z_t - \text{sign}(z_t) \lambda_1\right) & \text{for } |z_t| > \lambda_1 \\ 0 & \text{otherwise} \end{cases}$$

Adaptive learning rate schedule

- Adagrad:

$$\eta_{t,i} = \frac{\alpha}{\sqrt{\sum_{s=1}^{t} g_{s,i}^2}}$$

- FTRL-proximal:

$$\eta_{t,i} = \frac{\alpha}{\sqrt{\sum_{s=1}^{t} g_{s,i}^2 + \beta + \alpha \lambda_2}}$$

increases the power