Couver Optimization

(P) unin f(x) subject to $\begin{cases} f(x) \leq 0 & \lambda = \lambda = 0 \\ f(x) \leq 0 & \lambda = \lambda = 0 \end{cases}$ $\begin{cases} f(x) \leq 0 & \lambda = \lambda = 0 \\ f(x) \leq 0 & \lambda = \lambda = 0 \end{cases}$ $\begin{cases} f(x) \leq 0 & \lambda = \lambda = 0 \\ f(x) \leq 0 & \lambda = \lambda = 0 \end{cases}$ $\begin{cases} f(x) \leq 0 & \lambda = \lambda = 0 \\ f(x) \leq 0 & \lambda = \lambda = 0 \end{cases}$

S:= {x & C | {100 60 (1010) =0 カンハーPI プーPta...いろ

Goal: Derive condition, which allow to decide whether a point XES Dophuel or hot to basics for hany humerical recepts.

Assumptions:

(A1) CCIR GWEX ad CE Supply

(AZ) {1: R' -> IRU {+0} convex for i=1-p

(A3) fo: 12 -> 12 africe for j=pm... m

 $(Aconver) := (AA) \wedge (AZ) \wedge (AZ)$.

RET: (AN-(AZ) = S Grocy and furthernove of C doxed file, tile continues Complially Conventy) => S closed

(A4) a) 3 x E S n C 6) & &i, N=1...p, not affec 3 xi 6 S ; {(xi) <0

Assumption (AX) D called Slater cond. (Aslater) := (A4) a) 1 b)

The strategy will be based on the hyperplane separator LET:

LET: (Hyperplan separator) A + \$, O & A, A convex, A SIRMA => 3 2 E RHA, 2 = 6 s.f. x) 4 v € A : 2· v ≥ 0 18 3 5 E (18)

This ten alous to show for our ophustation program:

len:

Only Genteres Passumed V not 3 x & EC carr (0(1/2) = K)

(i) Let (P) Sulfill (Acourex) and let d:= inf fo(x) ER then:

> 3 2 6 Rm+1, 2+6, 2; 20 1=1-P Sud Kar VXEC: Zo [lo(K)-d] + \(\frac{1}{2} \frac{2}{3} \left(x) \(\frac{1}{3} \)

(Kn) If 9L addstrol (Aslater) 3 y E Rm, yi ≥ 0 1=1...p Sud Kab 4 x ∈ C: ((6(x) - x)) + [y, fi(x) ≥ 0

Implications

Let x* be an optimal solution of (P)

=> d = g(x*) and d=inf f(x)

(Acouses) = 7 2 CRMFA, 240, Zi20 for n=1...h st

≥6 [fo(x)-fo(x*)]+ \(\frac{m}{2} \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2}

Suppose fi for 1=1... are dot. it

(I) \(\frac{7}{5} \operatorname{\operatornam

(II) $f_1(x^*) \geq i = 0$, $f_1(x^*) \leq 6$, $f_2 \geq 0$ for $h = 1 \cdot ... p$ (III) $f_1(x^*) = 6$ for $f_2 = p + 1 \cdot ... m$

- Because: (I)

 \$\(\phi \) = \(\frac{1}{2} \) \(\frac{1}{2} \fr To convex a dot. A & (x*) & B
- · but (*) => \$(x) =0 => x* gives use to loc min. of &(5) => \(\psi_{\times} \phi(\times) \) \(\times_{\times} \phi(\times) \) \(\times_{\times} \pi \phi(\times) \) by Fernat & theore
- (I) (x) = 2, 20 4 1=1...p but si(x*) \(\operatorname{\lambda} \lambda \text{lor } \lambda = \lambda \cdot \rangle Assume Zu (k(x*) = 0 => Zu g((x+)< B =) \$ (x*) <0 \$ => 2n \((x*) =0

And In case (Aslater) holds, too, we may choose $y = \frac{3}{20}$ because 20 to:

Trin: Let (P) fulfill (Aconver) 1 (Aslater). If x ES & aptinal solution, fi are dolf at ** 7=1. m Um 3 y GRM, y, 20 c.t.

(EXT) $\begin{cases} (I) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (II) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum_{i=1}^{m} y_{i} f_{i}(x^{*}) + \nabla f_{o}(x^{*}) = 6 \\ (III) & \sum$

(II) druedly