Wstęp do sztucznej inteligencji Sprawozdanie 5

Jan Kwiatkowski 299374 Dawid Ruciński 304212

Maj 2023

1 Treść zadania

W ramach piątych ćwiczeń będą Państwo musieli zaproponować architekturę, zaimplementować, wytrenować i przeprowadzić walidację sieci neuronowej do klasyfikacji ręcznie pisanych cyfr. Zbiór danych do użycia: MNIST - http://yann.lecun.com/exdb/mnist/. (zbiór ten dostępny jest też w ramach sklearn, co może być dla Państwa prostsze w pracy https://scikit-learn.org/0.19/datasets/mldata.html).

Należałoby uzyskane rezultaty porównać dla różnej liczby neuronów ukrytych i różnej liczby warstw (sprawdzić tylko kilka przypadków z uwagi na czas nauki sieci). Warto sprawdzić też wpływ współczynnika uczenia na pracę modelu. W raporcie warto opisać wygląd przykładowej sieci i przeprowadzić wstępną analizę zbioru danych. Pokazać jakie przykłady ze zbioru MNIST zostały sklasyfikowane poprawnie a jakie nie (dosłownie kilka obrazów np. że cyfry 1 i 7 są błędne albo że 2 jest wykrywane poprawnie).

2 Analiza zbioru danych

Badanym zbiorem jest MNIST - kolekcja monochromatycznych obrazów 28x28 przedstawiających pisane cyfry wraz z etykietami, co to są za cyfry. Obrazów jest 70 000, potem zostały one podzielone w zbiory testowy i uczący.

Dystrybucja poszczególnych klas w zbiorze prezentuje się następująco:

Tabela 1: Dystrybuca klas

0	1	2	3	4	5	6	7	8	9
690	3 7877	6990	7141	6824	6313	6876	7293	6825	6958

3 Implementacja

Celem rozwiązania jest klasyfikacja zbioru obrazów przedstawiających ręcznie pisane cyfry o wymiarach 28x28 pikseli. Etykietami są cyfry przedstawione na obrazach.

Została zaimplementowana sieć neuronowa o architekture MLP (multilayer perceptron). Pierwotna implementacja zakłada wykorzystanie trzech warstw: wejściowej o rozmiarze 784 neuronów (28x28), ukrytej o rozmiarze 128 neuronów, a także wyjściowej o rozmiarze 10 neuronów. W przypadku dwóch pierwszych warstw funkcją aktywacji jest funkcja sigmoidalna dana wzorem:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

, zaś w przypadku ostatniej warstwy jest to funkcja softmax:

$$\sigma(\overrightarrow{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \tag{2}$$

W ten sposób na wyjściu jest otrzymywany wektor liczb o rozmiarze takim, jak liczba neuronów warstwy wyjściowej. Ponieważ składowe tego wektora są unormowane, dają one w rezultacie zestaw liczb sumujących się do 1. Finalnie, wybierana jest etykieta reprezentująca najwyższą wartość.

Warstwy są w pełni połączone (fully-connected) między sobą. Oznacza to, że każdy poszczególny neuron z danej warstwy ma połączenie ze wszystkimi neuronami. Każde z nich jest scharakteryzowane w postaci jego wagi. Jest to możliwa do zmiany wartość liczbowa, przez którą mnoży się dane wejscie neuronu. W ten sposób można modyfikować odpowiedź sieci na zadane pobudzenie.

4 Trenowanie modelu

4.1 Parametry

- zbiór do trenowania,
- zbiór z danymi do przewidzenia,
- współczynnik uczenia,
- liczba i wielkość warstw,
- liczba epok.

4.2 Uczenie sieci

Algorytm składa się z dwóch głównych etapów: kroku w przód (metoda forward) i kroku wstecz (metoda backpropagation).

Metoda train wykonuje iteracje przez określoną liczbę epok. W każdej epoce, wykonuje metodę forward i następnie metodę wstecznej propagacji gradientu. Obliczane są metryki (accuracy oraz mse) na podstawie danych testowych, które są drukowane po każdej iteracji.

4.2.1 Metoda forward

Na początku, dla danego wejścia X, obliczane są wartości aktywacji dla każdej warstwy ukrytej i dla warstwy wyjściowej. Wyniki te są przechowywane w self.activations.

Dla każdej warstwy ukrytej, obliczane są wartości 'z' poprzez pomnożenie aktywacji z poprzedniej warstwy przez odpowiednie wagi, a następnie dodanie biasu. Wyniki te przechowywane są w liscie 'z_values' Funkcja sigmoidalna jest stosowana do obliczenia aktywacji dla danej warstwy.

Na końcu, dla warstwy wyjściowej, obliczane są wartości 'z_out' poprzez pomnożenie aktywacji ostatniej warstwy przez wagi warstwy wyjściowej, a następnie dodanie biasu. Funkcja softmax jest stosowana do uzyskania prawdopodobieństw przynależności do klas.

4.2.2 Metoda backpropagation

Na podstawie wartości wyjściowych i oczekiwanych wartości 'y', obliczane są błędy dla warstwy wyjściowej. Błędy te są mierzone za pomocą różnicy pomiędzy przewidywanymi a oczekiwanymi wartościami.

Następnie, błędy są propagowane wstecz przez warstwy ukryte. Dla każdej warstwy, błąd jest obliczany jako iloczyn błędu z poprzedniej warstwy i pochodna funkcji sigmoidalnej z wartości 'z'. To przekazywanie błędów pozwala na aktualizację wag w celu minimalizacji błędu.

Ostatecznie, wagi i biasy są aktualizowane na podstawie obliczonych gradientów i współczynnika uczenia (learning_rate) za pomocą wzorów:

- waga -= learning_rate * gradient
- bias -= learning_rate * gradient_bias

5 Eksperymenty

Eksperymenty przeprowadzono dla poniższych ustawień:

- różnych wartości współczynnika uczenia 0,1; 0,2; 0,3; 0,4,
- różnych ilości warstw: [784,128,10], [784,256,64,10]
- zbiór trenujący i testowy podzielony w proporcji 85% do 15%,
- 1000 epok,
- pomiar accuracy oraz mse po każdej epoce.

Tabela 2: Porównanie wyników dla sieci 3 warstwowej po 1000 epokach

	Eksperyment 1		Eksperyment 2		
Współczynnik uczenia	Accuracy	Error	Accuracy	Error	
0,1	0,825	2,840	0,829	2.893	
0,2	0,869	2,224	0,868	2.213	
0,3	0,887	1,942	0,890	1.922	
0,4	0,878	2,060	0,901	1,668	

Tabela 4: Porównanie wyników dla sieci 3 warstwowej po 1000 epokach

Współczynnik uczenia	Neurony w warstwie ukrytej	Accuracy	Error
0,1	64	0,817	3,021
0,2	64	0,868	2,122
0,3	64	0,887	1,850
0,4	64	0,893	1,792
0,1	128	0,831	2,784
0,2	128	0,873	2,119
0,3	128	0,892	1,762
0,4	128	0,904	1,592
0,1	256	0,835	2,787
0,2	256	0,871	2,119
0,3	256	0,890	1,765
0,4	256	0,902	1,532

Tabela 3: Porównanie wyników dla sieci 4 warstwowej po 1000 epokach

	Eksperyment 1		
Współczynnik uczenia	Accuracy	Error	
0,1	0,765	3,711	
0,2	0,845	2,471	
0,3	0,878	1,946	
0,4	0,895	1,661	

Rys. 1: Przykładowe poprawnie sklasyfikowane obrazy dla lr=0,2

Rys. 2: Przykładowe błędnie sklasyfikowane obrazy dla lr=0,2

Rys. 3: Przykładowe błędnie sklasyfikowane obrazy dla lr=0,4

Rys. 4: MSE dla lr=0,1 i 3 warstw sieci

Rys. 5: MSE dla lr=0,2 i 3 warstw sieci

Rys. 6: MSE dla lr=0,3 i 3 warstw sieci

Rys. 7: MSE dla lr=0,4 i 3 warstw sieci

Rys. 8: Accuracy dla lr=0,1 i 3 warstw sieci

Rys. 9: Accuracy dla lr=0,2 i 3 warstw sieci

Rys. 10: Accuracy dla lr=0,3 i 3 warstw sieci

Rys. 11: Accuracy dla lr=0,4 i 3 warstw sieci

Rys. 12: MSE dla lr=0,1 i 4 warstw sieci

Rys. 13: MSE dla lr=0,2 i 4 warstw sieci

Rys. 14: MSE dla lr=0,3 i 4 warstw sieci

Rys. 15: MSE dla lr=0,4 i 4 warstw sieci

Rys. 16: Accuracy dla lr=0,1 i 4 warstw sieci

Rys. 17: Accuracy dla lr=0,2 i 4 warstw sieci

Rys. 18: Accuracy dla lr=0,3 i 4 warstw sieci

Rys. 19: Accuracy dla lr=0,4 i 4 warstw sieci

6 Wnioski

Wraz ze wzrostem współczynnika uczenia uczenie zachodzi szybciej co widać na przebiegach dla obu architektur sieci (Rysunki 8-11 oraz 16 - 19) . Jednakże, dla wysokich wartości przebieg uczenia jest mniej stabilny. W naszej ocenie najlepiej sprawdziła się sieć o trzech warstwach i 128 neuronach w warstwie ukrytej, jednakże różnice miedzy wynikami sa niewielkie.

W kwestii oceny wizualnej, niektóre obrazy są nieczytelne lub przypominają inne, niekompletne cyfry. Najczęściej dochodziło do pomyłek między 4 a 1, prawdopodobnie z powodu występowania ukośnej kreski, a także 3 i 7 z powodu występowania trzech poziomych kresek (Rysunek 2 oraz 3). Dochodziło też do pomyłek przy rozpoznawaniu cyfr posiadających łuki lub pętle, szczególnie, gdy były one niekompletne.

Porównując naszą implementację z siecią z biblioteki tensorflow (plik 'tensorflowNN'), można stwierdzić, że mimo uzyskania względnie wysokiej precyzji i małego błądu na wyjściu w stworzonej przez nas sieci gotowa implementacja działa dużo skuteczniej (accuracy na poziomie 0,9995 po 1000 epokach). Nasz program wykonuje się jednak szybciej.

7 Podział prac

- Dawid: Ogólny zarys projektu (sieci), eksperymenty i zbieranie wyników do pliku,
- Jan: Rysowanie wykresów i obrazów, metoda backpropagation,
- Wspólnie: Sprawozdanie i końcowe dostosowanie algorytmu.