Solitoner; MEK4320.

Geir Pedersen

Seksjon for Mekanikk, Matematisk institutt, UiO.

October 27, 2014

Historie

Solitær bølge = enkeltbølge

J. Scott Russel (1834): Observasjoner i kanaler, eksperimenter

$$c = \sqrt{g(h+A)}$$

der g er tyngdens akselerasjon, h dypet ved likevekt og A amplituden.

J. Boussinesq (1871): Første fullstendige teoretiske beskrivelse.

1960-1980: Solitoner og deres egenskaper er mote-tema i fysikk – Kollisjonsegenskaper (partikkelanalogi) Generering fra initialbetingelser

Solitærbølge-løsningen.

KdV likningen (lengdeskala: likevektsdyp)

$$\eta_t + (1 + \frac{3}{2}\eta)\eta_x + \frac{1}{6}\eta_{xxx} = 0$$
(1)

Solitær bølge av permanent form

$$\eta(x,t)=\alpha Y(x-ct),$$

 $\operatorname{der} \, \max Y = Y(0) = 1 \, \operatorname{og} \, Y(\xi), \, Y'(\xi)... \to 0 \, \operatorname{når} \, \xi \to \pm \infty.$

Dvs. α er amplitude/dyp og utstrekning er begrenset.

Bølgehastigheten, c, er ukjent.

Innsetting i (1)

$$-cY' + (1 + \frac{3}{2}\alpha Y)Y' + \frac{1}{6}Y''' = 0,$$

Siste likning integreres til

$$(1-c)Y + \frac{3}{4}\alpha Y^2 + \frac{1}{6}Y'' = K_1.$$

 $Y(\xi)... \to 0$ når $\xi \to \pm \infty$ gir $K_1 = 0$.

Multiplisering med integrerende faktor Y'

$$(1-c)YY' + \frac{3}{4}\alpha Y^2Y' + \frac{1}{6}Y''Y' = 0,$$

og

$$\frac{1}{2}(1-c)Y^2 + \frac{1}{4}\alpha Y^3 + \frac{1}{12}(Y')^2 = K_2.$$

Betingelse i uendelig $\Rightarrow K_2 = 0$ og $\max Y = Y(0) = 1 \Rightarrow c = 1 + \frac{1}{2}\alpha$. Antar vi 0 < Y < 1 følger (- etter rotutdragning forkastes)

$$Y' = Y\sqrt{3\alpha(1-Y)}.$$

Separabel med enekel løsning

Solitærbølgeløsning av KdV likningen

$$\eta = \alpha \operatorname{sech}^{2}\left(\frac{1}{2}\sqrt{3\alpha}(x-ct)\right), \quad c = (1+\frac{1}{2}\alpha).$$
(2)

 $der \operatorname{sech} \equiv 1/\cosh$.

- (2) eksakt bare for KdV likningen
- Solitærbølger finns for alle Boussinesq-type likninger, men oftest ikke i lukket analytisk form.
- Eksistens krever samvirkning av dispersjon og ikkelinearitet.
- Full potensialteori: perturbasjonsteknikker eller numerisk løsning maksimal amplitude 0.83× equlibium depth,
- (2) ledende tilnærmelse for alle solitonsløsninger for tyngdebølger
- Solitærbølger finnes for andre likninger/fysiske systemer.

Boussinesq soliton

Soliton-profiler fra Boussinesq likningen Lengde avtar med amplitude. Hvorfor ?

Boussinesq soliton vs. full potensialteori

Solitoner fra Boussinesq likninger (stiplet) og full potensialteori (hel linje) for $\alpha=0.15,0.4$. Potensialløsning for $\alpha=0.82$ nær maksimum; topp nærmer seg 120° vinkel.

Kollisjonsegenskaper

To solitærbølger med α_1 og α_2 ; samme retning.

Definerer $f_i = e^{-\sqrt{3\alpha_i}(x-\hat{x}_i-(1+\frac{1}{2}\alpha_i)t)}$ der \hat{x}_i er referanseposisjoner

Eksakt interaksjonsløsning av KdV likning

$$\frac{\eta}{4} = \frac{\alpha_1^2 f_1 + \alpha_2^2 f_2 + 2(\alpha_1 - \alpha_2)^2 f_1 f_2 + \left(\frac{\alpha_2 - \alpha_1}{\alpha_2 + \alpha_1}\right)^2 (\alpha_2^2 f_1^2 f_2 + \alpha_1^2 f_1 f_2^2)}{\left(1 + f_1 + f_2 + \left(\frac{\alpha_2 - \alpha_1}{\alpha_2 + \alpha_1}\right)^2 f_1 f_2\right)^2}$$
(3)

- ullet Analyse for $o \pm \infty$: bølger gjenoppstår etter kollisjon
- Denne egenskap ⇒ soliton betegnelse
- Eksakte kollisjonsegenskaper bare vist for KdV likning; eller ledende ordens oppførsel i pertubasjonsutviklinger.

Interaksjon; stor forskjell i amplitude

$$\alpha_1 = 0.05, \ \alpha_2 = 0.2$$

- Propagering mot venstre. Stor solitærbølge tar igjen liten.
- Betydelig forskjell i hastighet ⇒ interaksjon av begrenset varighet ⇒ begrenset tid for svake ikke-lineære effekter å virke

$\alpha_1 = 0.05 \text{ og } \alpha_2 = 0.2$

Soliton-interaksjoner

Største amplitude: faseskift i forplantningsretningen

Minste amplitude: faseskift mot forplantningsretningen; motsatt av

forventet fra ikke-lineære effekter

Interaksjon; liten forskjell i amplitude

$$\alpha_1 = 0.15, \ \alpha_2 = 0.2$$

- Propagering mot venstre. Stor solitærbølge tar igjen liten.
- Liten forskjell i hastighet ⇒ lengre tid for svake ikke-lineære effekter å virke

$\alpha_1 = 0.15$ og $\alpha_2 = 0.2$

Soliton-interaksjoner

B olgene går ikke gjennom hverandre; de bytter amplitude Analogi til partikler i elastisk støt \Rightarrow soliton