An Introduction to MT-DNN:

Multi-Task Deep Neural Networks for Natural Language Understanding

GUO YAWEN

04/14/2019

Backgrounds

- · ELMo、 OpenGPT、 BERT、 MT-DNN
- · Learning vector-space representations of text, e.g., words and sentences, is fundamental to many natural language understanding (NLU) tasks.
- · MTL provides an effective way of leveraging supervised data from many related tasks.
- · The use of multi-task learning profits from a regularization effect via alleviating overfitting to a specific task, thus making the learned representations universal across tasks.

Why MT- DNN?

- · MT- DNN to combine *multi-task learning* and *language model pre-training* for language representation learning.
- · MT-DNN obtains new state-of- the-art results on ten NLU tasks across three popular benchmarks: SNLI, SciTail, and GLUE. MT- DNN also demonstrates an exceptional generalization capability in domain adaptation experiments.

BERT – Masked LM

BERT – NextSentence Prediction

BERT-Bidirectional Encoder Representations from Transformers

Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

Multi- task Learning

Multi-task Learning (shared representation)

MT-DNN Model

MT-DNN Model (Lower layers)

MT- DNN Model (Top layers)

Datasets

MT-DNN obtains new stateof- the-art results on ten NLU tasks across three popular benchmarks: SNLI, SciTail, and GLUE.

Corpus	Task	#Train	#Dev	#Test	#Label	Metrics				
Single-Sentence Classification (GLUE)										
CoLA	Acceptability	8.5k	1k	1k	2	Matthews corr				
SST-2	Sentiment	67k	872	1.8k	2	Accuracy				
Pairwise Text Classification (GLUE)										
MNLI	NLI	393k	20k	20k	3	Accuracy				
RTE	NLI	2.5k	276	3k	2	Accuracy				
WNLI	NLI	634	71	146	2	Accuracy				
QQP	Paraphrase	364k	40k	391k	2	Accuracy/F1				
MRPC	Paraphrase	3.7k	408	1.7k	2	Accuracy/F1				
Text Similarity (GLUE)										
STS-B	Similarity	7k	1.5k	1.4k	1	Pearson/Spearman corr				
Relevance Ranking (GLUE)										
QNLI	QA/NLI	108k	5.7k	5.7k	2	Accuracy				
Pairwise Text Classification										
SNLI	NLI	549k	9.8k	9.8k	3	Accuracy				
SciTail	NLI	23.5k	1.3k	2.1k	2	Accuracy				
						-				

Table 1: Summary of the three benchmarks: GLUE, SNLI and SciTail.

Tasks

Single-Sentence Classification

CoLA: to predict whether an English sentence is grammatically plausible.

SST-2: whether the sentiment of a sentence extracted from movie reviews is positive or negative.

Text Similarity

The model predicts a real-value score indicating the semantic similarity of the two sentences

Tasks

Pairwise Text Classification

Given a pair of sentences, the model determines the relationship of the two sentences based on a set of pre-defined labels.

Relevance Ranking

Given a query and a list of candidate answers, the model ranks all the candidates in the order of relevance to the query

Results - GLUE

Model	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score
	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634		
BiLSTM+ELMo+Attn	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4/76.1	79.9	56.8	65.1	26.5	70.5
Singletask Pretrain Transformer	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1/81.4	88.1	56.0	53.4	29.8	72.8
GPT on STILTs	47.2	93.1	87.7/83.7	85.3/84.8	70.1/88.1	80.8/80.6	87.2	69.1	65.1	29.4	76.9
BERT _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	91.1	70.1	65.1	39.6	80.4
MT-DNN	61.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	98.0	75.5	65.1	40.3	82.2

Result – SNLI & SciTail

Model	MNLI-m/mm	QQP	MRPC	RTE	QNLI	SST-2	CoLA	STS-B
BERTBASE	84.5/84.4	90.4/87.4	84.5/89.0	65.0	88.4	92.8	55.4	89.6/89.2
ST-DNN	84.7/84.6	91.0/87.9	86.6/89.1	64.6	94.6	-	-	-
MT-DNN	85.3/85.0	91.6/88.6	86.8/89.2	79.1	95.7	93.6	59.5	90.6/90.4

Results - Domain Adaptation

Conclusion

- MT- DNN combines multi-task learning and language model pre-training for language representation learning. MT-DNN obtains new state-of- the-art results on ten NLU tasks across three popular benchmarks: SNLI, SciTail, and GLUE. MT- DNN also demonstrates an exceptional generalization capability in domain adaptation experiments.
- There are many future areas to explore to improve MT-DNN, including a deeper understanding of model structure sharing in MTL, a more effective training method that leverages relatedness among multiple tasks, and ways of incorporating the linguistic structure of text in a more explicit and controllable manner.

Thank you!

GUO YAWEN 04/14/2019