

Machine Learning - Coding Challenge - Spring 2023

Fabian Gubler | Sven Schnydrig

Our team Tensor Gone Wild

Fabian Gubler

Sven Schnydrig

The Challenge

Preprocessing and our Approach

Network Details and Results

Learnings and Outlook

The Challenge – Domain Shift from L1 to L2

Remote Sensing Setup

Channels (= features)

- RGB \rightarrow 3 channels
- Multispectral (e.g. 13 channels)
- Hyperspectral (e.g. 200 channels)

Goal

Training Set

- 13 Bands
- GeoTiff

train model that learns correlations of Level 1C Training set that

Test Set

- 12 Bands
- npy files

... can then **generalize** its training to the Level 2A Test set

Unique Challenges

Doman Adaptation - ...

Preprocessing - ...

• • •

Preprocessing and Hyperparameter Configuration

Preprocessing & Normalization

- Delete B1 & B9
- Reorder train bands in same order as test bands
- Add NDBI & NDMI index as additional bands
- Standard scaling (except for NDBI & NDMI)

Other things we tried

- Various other normalization techniques
- Correlation Alignment (CORAL) & Maximum Mean Discrepancy for domain adaptation
- Use only RGB channels with same preprocessing as ImageNet
- Try to convert L1C to L2A data
- Engineer additional features & band indices

Hyperparameter Tuning

Parameter	Range	Final
Dense Layers	1-4	1
Neurons	256-4'096	1024
Dropout rate	0-0.5	0.5
L2 regularization	0.001-0.2	0.1
Scheduler	None, Decay, 1Cycle	Decay
Optimizer	SGD, RMSprop, Adagrad, Adam	SGD
Learning rate	0.0001-0.1	0.003
Batch size	16-512	128

Our Approaches

Learning from Scratch

Transfer Learning

(Pseudo) Self-Supervised

Description

- Network structure with randomly initialized weights
- Training of complete network on training dataset

- 1. Network structure with **pretrained** weights
- Training of selected layers on the training dataset (= fine tuning)

- 1. Network initially trained on labeled data
- Model uses its own predictions for further self-supervised training

Characteristics

- **slow** convergence
- lots of training data necessary
- easy implemented for every kind of input data

- much **faster** convergence
- less training data necessary
- mostly implemented for RGB
- modifications for MS necessary
- Iteratively improves performance
- risks reinforcing wrong bias
- · requires careful monitoring

Learning from scratch - Network Configuration

ResNet-50 model, adapted to our task and input dimensions

2 Configuration

Regularization and data augmentation applied

3 Randomized Weights

We start the ResNet-50 model with randomly initialized weights, learning dataset specific features

Outcome Analysis: From-Scratch approach

What we tried ...

Validation Accuracy: > 98 %

Current Outcome

- Achieved high validation accuracy (~98%)
- good fit on our training data.

Problem Encountered

- Significant domain shift and lack of generalization
- bad fit on our testing data

Why it didn't work out ...

Submission Accuracy: 58 %

- Spent too much time on **overengineering** current approach
- Experienced tunnel vision, overlooking the big picture

- Realization: Continuing current approach will not yield better results
- **Decision:** Time to rethink our approach and explore other strategies

Adapt Transfer learning for MS Data

What?

Transfer Learning

 Fine-tune preexisting models to mitigate domain shift.

How?

ImageNet

 Utilize suitable pretrained weights for the EuroSAT challenge

Decreasing Domain Shift even further...

Pseudo Self-Supervised Learning

- Counteract Domain Shift through Pseudo-labeling
- Unique solution when dealing with unlabeled test set

Pro

Test Domain Familiarity: The model learns from the test data, improving its generalization.

Leverages Unlabeled Data: Exploits abundant unlabeled data, extending training data.

Iterative Refinement: Model can progressively improve pseudo labels, boosting performance.

Contra

Reinforces Errors: Incorrect pseudo labels propagate errors, reinforcing biases.

Overfitting Risk: Model can overfit to its own generated labels.

Result accuracy gain of 2%

Overview of Results

Model	Train Accuracy	Val Accuracy	Kaggle Accuracy
ResNet-50 training from scratch	98.2%	97.6%	55.8%
ResNet-50 training from scratch & SVL ¹ with PL ²	90.0%	92.7%	57.8%
ResNet-50V2 with transfer learning	98.3%	97.2%	60.9%
ResNet-50V2 with transfer learning & SVL with PL	90.8%	92.2%	63.1%

¹ SVL: Self-supervised learning

² PL: Pseudo labels

²² May 2023

Key Takeaways

Learnings

Scientist Before Engineer: Prioritize understanding over complex solutions. Simplicity can often outperform complexity.

Address Domain Shift: Aim for models that generalize well to the test set.

Overfitting to training data is a pitfall.

Embrace Creativity: Unconventional methods like pseudo labeling can offer unexpected insights and breakthroughs.

Outlook

