## EP0294103

## Publication Title:

A sustained-release preparation and production thereof.

#### Abstract:

Abstract of EP0294103

10b6 The present invention concerns a sustained-release microcapsule preparation comprising an ion exchange resin with 6 to 16% crosslinking, containing a drug adsorbed to not less than 80% of its theoretical ion adsorption amount and coated with a water-permeable polymer. The sustained-release preparation of this invention contains a high concentration of an absorbed drug: it shows neither cracking nor breaking in its coat and exhibits good stained-release properties which enhance its dosage form design and makes it easy to take. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

## ② EUROPEAN PATENT APPLICATION

- (1) Application number: 88304778.9
- 9 int. Cl.4: A61K 9/18 , A61K 9/52

- 2 Date of filing: 26.05.88
- @ Priority: 02.06.87 JP 138781/87
- Date of publication of application:
   07.12.88 Bulletin 88/49
- Designated Contracting States:
  AT BE CH DE FR GB IT LI LU NL SE
- Applicant: Takeda Chemical Industries, Ltd. 27, Doshomachi 2-chome Higashi-ku Osaka-shi Osaka, 541(JP)
- (®) Inventor: Nonomura, Muneo 4-204, 6 Satsukigaoka-nishi Sulta Osaka 565(JP) Inventor: Suzzuk, Yasuyuki 50-1, Yamadaminami Sulta Osaka 565(JP) Inventor: Yamada, Masayuki 11-6, Dalwanishi 2-chome Kawanishi Hyogo 666-01(JP)
- Representative: Lewin, John Harvey et al Elkington and Fife High Holborn House 52/54 High Holborn London WCTV 6SH(GB)
- A sustained-release preparation and production thereof.
- The present invention concerns a sustained-release microcapsule preparation comprising an ion exchange
   result in the 1 to 16% crosslinking, containing a drug adsorbed to not less than 80% of its theoretical ion
   adsorption amount and coated with a containing a drug adsorption amount and coated with a containing the cont

The sustained-release preparation of this invention contains a high concentration of an absorbed drug; it shows neither cracking nor breaking in its coat and exhibits good sustained-release properties which enhance its dosage form design and makes it easy to take.

EP 0 294 103 A1

#### A Sustained-Release Preparation and Production Thereof

The present invention relates to a sustained-release preparation and the method of its production.

A variety of preparations which release the base drug so that the pharmacological effect of the drug lasts for a sustained period were produced and tested. Such preparations included sustained-release preparations using an ion exchange resin. It was reported that a drug-ion exchange resin complex is s effective in releasing the drug in the digestive tract for a sustained period (e.g., see the specification for US Patent No. 28090332). However, when prepared as fine particles suitable for oral administration, e.g., particles of less than 500 µm diameter, the said drug-resin complex shows almost no sustained-release properties because its drug-releasing rate is too high.

Attempts have been made to prepare sustained-release microcapsules by coating the drug-resin of complex with various materials to overcome this drawback and to thereby add a sustained-release property (e.g., see specifications for US Patient Nos. 3138525, 3499960, and 3594470).

When a sustained-release micro-apsule obtained by coating a drug-resin complex with the material which has sustained-release properties on is orally administered, the drug Is released by the exchange of ions in the digestive juice. The drug then passes through the sustained-release coat into the digestive juice 15 where it is absorbed by the digestive tract. Then, the drug-resin complex absorbs water to swell. In the digestive tract, as a result, cracks are formed and rupture occurs in the sustained-release coat and the sustained-release property disappears. Also when a sustained-release microcapsule is formulated in an orally administered suspension, a similar problem arises in the preparation. These drawbacks have long been serious problems.

In relation to these drawbacks, it has also been reported that it is effective to pretreat the drug-resin complex with a solvating agent, such as polyethylene glycol, prior to the formation of the sustained-release coat on the complex (See specifications for US Patient No. 4221778).

Taking note of the excellent characteristic of the sustained-release preparation using a drug-resin complex, the present inventors worked to eliminate its drawbacks, and showed that the swelling of the drug-resin complex due to water absorption is closely related to the degree of crosslinking of the lon exchange resin and to the concentration of the drug thereby adsorbed. Thus the swelling of the drug-resin complex can be prevented by selecting the degree of the crosslinking of the resin and the drug concentration, and no rupture will occur even when the sustained-release coat is formed without pretreatment with a solvating agent.

In consideration of the fact that drugs are normally prepared in the form of salts for stabilization and other purposes, the present inventors made further investigations in order to establish a method of producing a drug-restin complex which does not swell and which maintains the drug at a high concentration from a salt of the corresponding drug using a process which is favorable for drug preparation. They thereby developed the represent invention.

35 The present invention provides a sustained-release microcapsule preparation comprising an ion exchange resin of 8 to 16% of crosslinking, containing a drug adsorbed to not less than 80% of its theoretical ion adsorption amount (the drug-resin complex), and coated with a water-permeable polymer cost, a method of producing the sustained-release microcapsule preparation comprising coating an ion exchange resident of 8 to 16% crosslinking and containing a drug adsorbed to not less than 80% of its theoretical ion adsorption amount with a water-permeable polymer.

As for the ion exchange resin forming the above-mentioned drug-resin complex, ordinary synthetic insoluble porous polymers, (e.g., the polymer which is the copolymer of styrene and divinylbenzene) may be mentioned.

Said polymer, when it is an acidic ion exchange resin (H type), contains sulfonic groups, carboxylic groups, etc., and adsorbs the basic drug; when it is a basic lon exchange resin (OH type), it contains primary to quaternary amino groups, etc., and adsorbs acidic drugs. In the present invention, in particular, it is preferable to use a strongly acidic or strongly alkaline ion exchange resin. The degree of crosslinking for the ion exchange resin is determined depending upon the amount of divinylbenzene to be used; it is preferable that crosslinking is from 8 to 18%, specifically from 8 to 14%.

These ion exchange resins are commercially available under the trade names of Diaion (Mitsubishi Chemical Industries Ltd., Japan), Dows (Dow Chemical Co., USA), Amberitie (Röhm & Haas Co., USA), and others, and can be selected for use as appropriate.

It is preferable that the mean particle size of the ion exchange resin is from 5 to 1000 µm, specifically from 10 to 300 µm. If desired, a commercially available ion exchange resin may be crushed to fine particles before use by means of a mill such as an atomizer.

The theoretical ion adsorption amount (theoretical saturated adsorption amount, overall exchanging capacity) means the maximum amount of strongly basic ions (soddmin ions, etc.) or strongly acidic ions (chiorine ions, etc.) adsorbed by a given ion exchange resin. For the present invention, an ion exchange resin which has adsorbed a drug in a molar ratio of more than 80%, specifically from 85 to 100% of this 5 theoretical amount is preferred.

Drugs having various effects can be selected depending upon the purpose, but it is preferable that the basic drug is of a pKa from 8 to 10, specifically a pKa from 7.5 to 10, and the acidic drug is of a pKa from 2 to 5. These drugs are normally present in the form of salts, basic drugs being available as salts with acids and acidic drugs being available as salts with bases.

As specific examples, the following may be mentioned:

Drugs for the respiratory tract:

Antitussive expectorants such as dihydrocodeine phosphate, codeine phosphate, noscapine hydrochloride, phenylpropanolamine hydrochloride, potassium guidaeolisulfonate, cloperastine fendizoate, dextromethorphan hydrobromide and chloperastine hydrochloride; bronchoidlators such as d.t-methylephedrine hyto drochloride and d.t-methylephedrine saccharinate; and antihistamines such as d.t-chlorpheniramine malesta.

Drugs for the digestive tract:

Digestive tract antispasmodics such as scopolamine hydrobromide, metixene hydrochloride and dicyclomine hydrochloride.

Drugs for the central nervous system:

Antipsychotic drugs such as phenotiszine derivatives (chlorpromazine hydrochloride, etc.) and phenotihazine-like compounds (chlorprothixene hydrochloride, etc.); antianxiety drugs such as benzolfazepine derivatives (chlordiszepoxide hydrochloride, etc.); antidepressants such as impramine compounds (impramine hydrochloride, etc.); antipyretic analgesics such as sodium salicytate; and hypnotics such as shonobarbital sodium.

Drugs for the respiratory system:

Coronary dilators such as etafenone hydrochloride; antiarrhythmics such as procainamide hydrochloride; Ca antiagonists such as verapamil hydrochloride; hypotensive drugs such as hydrazine hydrochloride, propranolol hydrochloride and clonidine hydrochloride; and peripheral vasodilators/vasoconstrictors such as tolazoline hydrochloride.

Antibiotics:

20

50

Macrolides such as oleandomycin phosphate; tetracyclines such as tetrachline hydrochloride; streptomycins such as fradiomycin sudtae; and penicillin drugs such as dicloxacillin sodium, plymecillinam hydrochloride and carbenicillinindaryl sodium.

Chemotherapeutic drugs:

Sulfa drugs such as sulfisomidine sodium; antituberculosis drugs such as kanamycin sulfate; and antiprotozoan drugs such as amodiaquine hydrochloride.

In particular, an excellent sustained releasing effect is obtained in basic drugs for the respiratory tract such as dihydrocodeine phosphate, d1-methyl-ephedrine hydrochloride and phenylpropanolamine hydrochloride.

The water-permeable polymer coat is formed of a natural or non-natural biocompatible polymer. Examples of such polymers, include cellulose polymers such as ethyloelitulose, nitrocellulose, benzyloellulose, acetocellulose, hydroxyropyloelulose and cellulose acetate propionate; and non-natural polymers such as polyacrylale, polymethacrylate, polyamide and acrylate-methacrylate copolymers (e.g., aminoalkyl 4 methacrylate copolymer). For the present invention, in particular, aminoalkyl methacrylates (known as Eudraqit, etc.) are favorably used.

The sustained-release preparation of this invention can be, for example, produced as follows:

In an aqueous solvent capable of dissolving both salts and the free form of the drug, a drug in a salt form is reacted with an ion exchange resin to give an aqueous solution of the free form of the drug.

Examples of aqueous solvents include organic solvents which are freely soluble in water such as primary, lower (Cr-a) alcohols (e.g., methanol, ethanol, isopropanol) and aqueous solutions of ketones such as acetone and methyl ethu ketone.

Said aqueous solvents mentioned include aqueous solutions containing from 5 to 95%, preferably from 10 to 90%, of the organic solvent. In particular, when the salt is of a basic drug, it is preferable to use an saqueous solution of from 40 to 85% ethanol or isopropanol, and when the salt is of an acidic drug, to use an aqueous solution of from 5 to 30% ethanol.

The ion exchange resin to be used in the reaction may be those mentioned above, i.e. a basic iron exchange rein is used for a basic drug and an acidic ion exchange is used for an acidic drug to make

respective free forms.

The reaction with the ion exchange resin is carried out by adding an ion exchange resin as mentioned above to the sait of the drug in solution in the aqueous solvent and then stirring the mixture. In this case, it is preferable that the ion exchange resin is used in an amount from 1.0 to 2.0 times the necessary amount or the drug's sait. The reaction is normally carried out at room temperature or ambient temperature, but the mixture can be warmed to about 70°C. Reaction time is from 0.5 to 8 hours.

After the completion of reaction, the ion exchange resin is removed by ordinary means, then an aqueous solution of the free form of the drug is provided.

The drug-resin complex can be produced by adding an ion exchange resin of a given particle size and to degree of crossinking to the above ageous solution and causing a reaction between them. The reaction is normally carried out at room temperature with from 0.5 to 3 hours of stirring.

The above reaction will give a drug-lon exchange resin complex which has adsorbed the drug in an amount of more than 80% of the theoretical ion adsorption amount, and it is preferable that the complex wed contain the adsorbed drug in an amount of from 85 to 100% of the theoretical ion adsorption amount.

Said complex is then coated with a water-permeable polymer to produce the microcapsule preparation of this invention. For coating with the water-permeable polymer, organic solvents capable of dissolving polymers are used, such as ethanol, toluene, chloroform, methyl ethyl ketone, methylene chloride, isopropanol, cyclohexane, methanol, ethylene chloride, dimethylformamide, or ethyl acetate.

A plasticizer or a stabilizer, such as an antioxidant, may also be added in any amount. Examples of ap plasticizers include dibasic acid esters (phthalic acid esters, etc.), glycol esters, and fatty acid esters. Examples of antioxidants for stabilization include 2/31-butyl-4-hydroxyanisol(BHA), 3,5-di-t-butyl-4-hydroxyanisol(BHA), 3,5-di-t-butyl-4-hydroxyanisol(BHA).

When the water-permeable polymer is an acrylate-methacrylate copolymer, it is dissolved in methylene chloride or chloridor; the drug-resin complex then is added to and suspended in this solution. The resulting suspension is treated mechanically by the spray drying method to produce microcapsules; this can also be done by phase separation, a physico-chemical method. In this procedure the polymer is dissolved in a good solvent, a phase separating and anti-aggregating agent (chosen from polybutadiene, polydimethylstloxane, methacryl polymer, etc.) is added to it in any amount, and a non-solvent is added in item of the produced by a chemical method, i.e., the self-interfacial polymerization method. No matter which method is employed, it is preferable that the particle size of the sustained-release microcapsules thus obtained be from 5 to 1000 µm, or, more preferably, from 10 to 300 µm.

For producing oral suspension of the sustained-release microcapsules, purified water (as specified by the Pharmacopoea of Japan) can be used as the solvent. Usually, the total amount of about 0.2 g to 10 g of the microcapsule is suspended in 100 ml of purified water. Antiseptics, correctives, dispersing agents, wetting agents, thickening agents, etc., may be added as required.

As antiseptics, non-lonic methyl parahydroxybenzoate, ethyl parahydroxybenzoate, propyl parahydroxybenzoate, butyl parahydroxybenzoate, butyl parahydroxybenzoate, butyl parahydroxybenzoate, butyl parahydroxybenzoate, butyl parahydroxybenzoate, butyl parahydroxybenzoate, propyl parabydroxybenzoate, propyl para

The microcapsule preparation of this invention may be prepared as capsules in which the micro4s capsules are filled directly, as well as in which sustained-release suspension to be taken orally. I microcapsules may also be suspended in an oily substance such as olive oil or satilower oil to provide soft gelatin-like capsules. The microcapsule preparation may also be combined with lactose, sucrose, corn starch, hydroxyroprot/sellulose, etc., to provide granules, powders or tablets.

The sustained-release preparation of this invention is characterized as follows:

ne sustainet-releases preparation to this invention is circulated as blows.

(1) A drug-ion exchange resin complex is produced in a continuous process in which a salt of a basic drug (or a salt of an acidic drug) is reacted in an aqueous solvent with a basic ion exchange resin (or an acidic ion exchange resin in this way, a complex is obtained which has adsorbed the drug in an amount nearer to the exchange resin. In this way, a complex is obtained which has adsorbed the drug in an amount nearer to the residual control of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in an amount nearer to the second of the drug in a smount nearer to the second of the drug in an amount nearer to the second of the drug in an amount nearer to the second of the drug in an amount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the second of the drug in a smount nearer to the drug i

(2) In the present invention, the drug-resin complex can be produced with high efficiency because a higher drug adsorption rate is achieved as a result of the swelling of the ion exchange resin in the aqueous solvent, specifically a mixture of water and ethanol or methanol, to a higher degree than in the case in which water alone is used.

(3) Since the drug-resin complex which has adsorbed the drug in a high concentration is coated with a water-permeable polymer which has a sustained-release property, the coats of microcapsules show neither cracking nor breaking (rupture) even when they are dispersed or suspended in a solvent. The greater the molecular weight of the drug, or the sterically bulkier the structure of the drug, the less likely the rupture is to occur. Dosage form designing can be done efficiently without using additives such as 10 plasticizers in the coating materials as was previously done, thus ensuring the production of a preparation exhibiting an effective sustained-release property.

## Example

5

20

The present invention will now be illustrated in more detail by means of the following working and comparative examples.

#### Example 1

14 g of methylephedrine hydrochloride was dissolved in 150 mt of a 60% methanol solution. To the resulting solution, 70 g of an anion exchange resin [OH type; Diaion SAN1 (Mitsubishi Chemical Industries)] 25 was added followed by 1 hour of agitation. The slurry was then separated by filtration, and the ion exchange resin separated by filtration was washed with 300 mt of a 60% methanol solution. The washings were combined with the former filtrate, and diluted with a 60% methanol solution to 500 m1.

Determinations of the total content of the methylephodrine hydrochloride and the free base in this 500 m1 solution were made by high performance liquid chromatography. And the content of the free base was 30 determined by titration method, methylephedrine as a hydrochloride was not detected, i.e., 100% of the methylephedrine hydrochloride was converted to the free base. The content was calculated as 13.8 g methylephedrine hydrochloride, the recovery was 98.6%.

Then, to a 450 mt portion of this solution was added 24.3 g (the amount in which the degree of methylephedrine adsorption will be 90% of the theoretical saturated adsorption amount for the ion exchange resin) of a cation exchange resin containing 8% divinylbenzene (degree of crosslinking: 8%) [H type; Diaion SKNUPC (Mitsubishi Chemical Industries)], and the reaction was carried out for 1 hour while stirring the solution. After completion of reaction, the filtrate was assayed for methylephedrine but no methylephedrine was detected. This meant that the entire amount of methylephedrine in the form of the free base in the solution was bound to the ion exchange resin.

The methylephedrine resinate separated by filtration was dried, and this 2.8 g portion was dispersed in a solution of 1 g aminoalkyl methacrylate copolymer RS [Eudragit RS100 (Röhm Pharma) in 5 mt methylene chloride. The resulting slurry was subjected to spray drying to give microcapsules. The methylephedrine sustained-release property of the microcapsules thus obtained was evaluated by means of a dissolution test (JP XI Paddle Method, using 500 mt of a 0.2 M NaCl solution which contains 0.05% 45 Tween 80, as the eluant). The results are shown in Table 1. A good sustained-release property was exhibited, and no occurrence of rupture(such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test.

50

Table 1

| Time (hours) elapsed after initiation of the dissolution test | Rate (%) of methylephedrine<br>dissolution from the<br>microcapsules |
|---------------------------------------------------------------|----------------------------------------------------------------------|
| 0                                                             | 0                                                                    |
| 0.5                                                           | 18.4                                                                 |
| 1.0                                                           | 26.1                                                                 |
| 2.0                                                           | 39.9                                                                 |
| 3.0                                                           | 48.7                                                                 |
| 4.5                                                           | 57.1                                                                 |
| 6.0                                                           | 67.5                                                                 |
| 8.0                                                           | 74.8                                                                 |

## Example 2

12 g of methylephedrine hydrochlorido was dissolved in 150 m.t. of a 50% isopropyl alcohol solution. To the resulting solution, 70 g of the same anion exchange resin (OH type) as in Example 1 was added, and this was followed by 1 hour of agitation. Then, the sturry was separated by filtration, and the ion 2e exchange resin separated by filtration was washed with 300 m.t of a 50% isopropyl alcohol solution. The washings were combined with the former filtrate, and ditude with a 50% isopropyl alcohol solution to 500

Determinations of the total content of the methylephedrine hydrochloride and the free base in this 500 mt. solution were made by high performance liquid chromatography and the content of the free base was 30 determined by thation method; methylephedrine as a hydrochloride was not detected, i.e., 100% of the methylephedrine hydrochloride was converted to the free base. The content was calculated as 11.2 g methylephedrine hydrochloride, the recovery was 93.3%.

Then, to a 450 mt portion of this solution was added 22.1 g (the amount in which the degree of methylephedrine adsorption wilb e 85% of the theoretical subtraited adsorption amount for the ion exchange resin of a cation exchange resin containing 10% divinylbenzene (degree of crosslinking: 10%) [H type; Daion SK110 (Missubshi Chemical Industries)], and the reaction was carried out for 1 hour white stirring the solution. Aft off Missubshi Chemical Industries (in the reaction was carried out for 1 hour white stirring the solution was detected. This meant that the entire amount of methylephedrine in the form of the free base in the solution was bound to the ion exchange resin.

The methylephedrine resinate separated by filtration was dried, and this 3.1 g portion was dispersed in a solution of 0.7 g aminoally/l methacrylate copolymer R8 [Eudragit R5100. (R8hm Pharmas)] and 0.3 g aminoalky/l methacrylate copolymer RL [Eudragit R5100. (R8hm Pharmas)] in 4 m.f. chlorotorm. Then, 10 m.f. cyclohexane was slowly added to this sturry to induce coacevation to such a degree that no coagulation would occur. This sturry was then subjected to spray dyring to give microcapsules. The summitted the substanced to spray dyring to give microcapsules. The summitted in the standard release property of the microcapsules thus obtained was evaluated by means of a dissolution test (JR VI Raddle Method, using 500 m.f. of a 0.2 M NaCl solution which contains 0.05%. Tween 80, as the eluant). The results are shown in Table 2. A good sustained-release property was exhibited, and no occurrence of rupture (such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test.

50

5

10

15

20

m£.

Table 2

| Time (hours) elapsed after<br>initiation of the dissolution<br>test | Rate (%) of methylephedrine dissolution from the microcapsules |
|---------------------------------------------------------------------|----------------------------------------------------------------|
| 0                                                                   | 0                                                              |
| 0.5                                                                 | 10.5                                                           |
| 1.0                                                                 | 30.8                                                           |
| 2.0                                                                 | 49.5                                                           |
| 3.0                                                                 | 64.8                                                           |
| 4.5                                                                 | 77.7                                                           |
| 6.0                                                                 | 87.4                                                           |
| 8.0                                                                 | 96.5                                                           |

## Example 3

10 g of dihydrocodeine phosphate was dissolved in 250 mt of a 50% ethanol solution. To the resulting solution, 30 g of the same anion exchange resin (OH type) as in Example 1 was added, and this was followed by 2 hours of agitation. Then, the sturry was separated by filtration, and the ion exchange resin as separated by filtration was washed with 300 mt of a 50% ethanol solution. The washings were combined with the former filtrate, and dultied with a 50% ethanol solution to 500 mt.

Determinations of the total content of the dihydrocodeine phosphate and the free base in this 500 mt solution were made by high performance liquid chromatography and the content of the free base was determined by thration method, dihydrocodeine as a phosphate was not detected, i.e., 100% of the 3d dihydrocodeine phosphate was converted to the free base. The content was calculated as 9.8 g dihydrocodeine phosphate, the recovery was 98.0%.

Then, to a 450 mt portion of this solution was added 25.69 g (the amount in which the degree of dihydrocodeline adsorption will be 85% of the theoretical saturated adsorption amount for the ion exchange resin) of a cation exchange resin containing 8% diviny/benzone (degree of crosslinking; 8%) | If type; Diaion 85 KRVIPC (Mitsubish Chemical industries)], and the reaction was carried out for 1 hour while stirring the solution. After the completion of the reaction, the filtrate was assayed for dihydrocodeine, but no dihydrocodeine was detected. This meant that the entire amount of the dihydrocodeine in the form of the free base in the solution was bound to the lone exchange resin.

The dihydrocodeine resinate separated by filtration was dried, and a 3.3 g portion was dispersed in a solution of 0.8 g aminoalkyl methacrylate copolymer RS (Eudrapti RS100. (Röhm Pharma)) and 0.5 g aminoalkyl methacrylate copolymer RL (Eudrapti RS100. (Röhm Pharma)) in 8 mt acetone. This sturry was subjected to spray drying to give microcapsules. The dihydrocodeine sustained-release property of the microcapsules thus obtained was evaluated by means of a dissolution test (JP R Paddie Method, using 500 mt of a 0.2 M NaCl solution which contains 0.05% Tween 80, as the eluant). The results are shown in 45 Table 3.4 good sustained-release property was exhibited, and no occurrence of rupture (such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test.

55

50

R

10

15

Table 3

| Time (hours) elapsed after<br>initiation of the dissolution<br>test | Rate (%) of dihydrocodeine dissolution from the microcapsules |
|---------------------------------------------------------------------|---------------------------------------------------------------|
| 0                                                                   | 0                                                             |
| 0.5                                                                 | 10.7                                                          |
| 1.0                                                                 | 24.8                                                          |
| 2.0                                                                 | 46.8                                                          |
| 3.0                                                                 | 59.1                                                          |
| 4.5                                                                 | 74.5                                                          |
| 6.0                                                                 | 80.2                                                          |
| 8.0                                                                 | 88.3                                                          |

10

20

SO

## Example 4

10 g of dihydrocodeline phosphate was dissolved in 250 mL of a 50% ethanol solution. To the resulting solution, 30 g of the same anion exchange resin (OH type) as in Example 1 was added, and this was followed by 2 hours of agitation. Then, the sturry was separated by filtration, and the lon exchange resin as separated by filtration was washed with 300 mL of a 50% ethanol solution. The washings were combined with the former fittrate, and ditude with a 50% ethanol solution to 500 mL.

Determinations of the total content of the phosphate and the free base in this 500 mt solution were made by high performance liquid chromatography, and the content of the free base was determined by litration method; dihydrocodeline as a phosphate was not detected, i.e., 100% of the dihydrocodeline phosphate was converted to the free base. The content was calculated as 9.8 g dihydrocodeline phosphate, the recovery belong 98.0%.

Then, to a 450 mt portion of this solution was added 28.0 g the amount in which the degree of dihydrocodeine adsorption will be 90% of the theoretical saturated adsorption amount for the ion exchange restin of a cation exchange restin of a cation exchange restin of a cation exchange restin containing 6% diviny/benzene (degree of crosslinking; 6%) If type: Diation 39 SK106 (Mitsublishi Chemical Industries)], and the reaction was carried out for 1 hour while stirring the solution. After the completion of the reaction, the filtrate was assayed for dihydrocodeine, but no dihydrocodeine was detected. This meant that the entire amount of dihydrocodeine in the form of the free base in the solution was bound to the lone exchange resin.

The dihydrocodeine resinate separated by filiration was dried, and this 3.3 g portion was dispersed in a solution of 1.0 g aminosity i methacrystae copolymer RS [Eudragit R8100 (Röhm Pharman)] and 0.5 g polyisobutyjene (MV: 400,00) in 5 m t. olirorform. Then, to this surry, a solution of 2.5 g polyisobutyjene in 40 mt cyclohaxane was added by drops while stirring the slurry. After this solution was added, microcapsules were separated by filtration. The polyisobutyjene was washed away with cyclohaxane, and the microcapsules were dried. The dihydrocodeine sustained-release property of the microcapsules was evaluated by means of a dissolution test (JP XI Paddie Method, using 500 m1 of a 0.2 M NaCl solution which contains 0.05% Tween 80, as the eluant). The results are shown in Table 4. A good sustained-release property was exhibited, and no occurrence of rupture (such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test of the scanning electron microscopy following the dissolution test.

Table 4

| Time (hours) elapsed after initiation of the dissolution test | Rate (%) of dihydrocodeine dissolution from the microcapsules |
|---------------------------------------------------------------|---------------------------------------------------------------|
| 0                                                             | 0                                                             |
| 0.5                                                           | 5.3                                                           |
| 1.0                                                           | 10.2                                                          |
| 2.0                                                           | 16.8                                                          |
| 3.0                                                           | 32.5                                                          |
| 4.5                                                           | 40.1                                                          |
| 6.0                                                           | 52.0                                                          |
| 8.0                                                           | 65.1                                                          |

10

16

20

#### Example 5

31 g of dextromethorphan hydrobromide was dissolved in 800 mt of a 85% ethanol solution. To the resulting solution, 75 g of the same anion exchange resin (OH type) as in Example I was added, and this was followed by 2 hours of agitation. The slurry was then separated by filtration, and the ion exchange resin as separated by filtration was washed with 200 mt. of a 85 % ethanol solution. The washings were combined with the former filtrate, and dultided with a 85% ethanol solution to 1000 mt.

Determinations of the total content of the dextramethorphan hydrobromide and the free base was made by high performance liquid chromatography, and the content of free base was determined by titration method; destramethorphan as the hydrobromide was not detected, i.e., 100% of the destromethorphan byhdrobromide was converted to the free base. The content was calculated as 30.2 g dextromethorphan hydrobromide, the recovery was 97.4%.

Then, to a 440 mt portion of this solution was added 18.25 of the amount in which the degree of dextromethorphan adsorption will be 82% of the theoretical saturated adsorption amount for the ion exchange resin) of a cation exchange resin containing 8% diviny/bianzane (degree of crosslinking: 8%) [H 35 type: Dialon SKNUPC (Mistubishi Chemical Industries)], and the reaction was carried out for 1 hour while stirring the solution. After the completion of the reaction, the filtrate was assayed for dextromethorphan, but no dextromethorphan was detected. This meant that the entire amount of dextromethorphan in the form of the free base in the solution was bound to the ion exchange result.

The dextomethorphan resinate separated by filtration was dried, and this 3.3 g portion was dispersed in a solution of 1.0 g ethylcellulose 100 cp in 20 mt of methylene chloride. This slury was then subjected to spray drying. The dextomethorphan sustained-release property of the microcapsules thus obtained was evaluated by means of a dissolution test (IP XI Paddle Method, using 500 mt. of 2.2 M NaCl solution which contains 0.05% Tween 80, as the elaund). The results are shown in Table 5. A good sustained-release property was exhibited, and no occurrence of rupture (such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test of the dissolution test.

Table 5

| Rate (%) of dextromethorphan<br>dissolution from the<br>microcapsules |
|-----------------------------------------------------------------------|
| 0                                                                     |
| 38.3                                                                  |
| 56.2                                                                  |
| 79.1                                                                  |
| 88.7                                                                  |
| 95.0                                                                  |
| 100.0                                                                 |
|                                                                       |

10

15

20

50

55

## Example 6

20 g of chlorpheniramine maleate was dissolved in 1000 mt of a 55% ethanol solution. To the resulting solution, 35 g of the same arion exchange resin (OH type) as in Example 1 was added, and the was followed by 2 hours of agitation. Then, the sturry was separated by filtration, and the ion exchange resin separated by filtration was washed with 300 mt of a 55% ethanol solution. The washings were combined as with the former filtrate, and dultid with a 55% ethanol solution to 1500 mt.

Determinations of the total content of the chlorphenitramine maleate and the free base in this 1500 mt. solution were made by high performance liquid chromatography, and the content of the free base was determined by titration method; chlorpheniramine as the maleate was not detected, i.e., 100% of the chlorpheniramine maleate was converted to the free base. The content was calculated as 19.5 g chlorpheniramine maleate the recovery being 97.5%.

Then, to a 1000 mt portion of this solution was added 17.88 g (the amount in which the degree of chlorpheniramine adsorption will be 80% of the theoretical saturated adsorption amount for the ion exchange resin) of a cation exchange resin containing 8% diviny/benzene (degree of crosslinking: 6%) [H type; Dialon SK106 (Mitsubishi Chemical Industries)], and the reaction was carried out for 1 hour while satiring the solution. After the completion of the reaction, the filtrate was assegsed for chlorpheniramine, but no chlorpheniramine was detected. This meant that the entire amount of chlorpheniramine in the form of free base in the solution was bound to the lone exchange resin.

The chiopheniramine resinate separated by filtration was dried, and this 2.8 g portion was dispersed in a solution of 0.7 g aminosally methacylate copolymer RB [Eudragit RS100L (Röhm Pharma)], 0.2 g aminosally methacylate copolymer RL [Eudragit RS100L (Röhm Pharma)], and 0.05 g medium-chain fatty acid triglyceride in 8 mt. methyl ethyl tection. This situry was then subjected to spray drying. The chiopheniramine sustained-release property of the microcapsules thus obtained was evaluated by means of a dissolution test (JP XI Paddie Method, using 500 mt of a 0.2 M NACI solution which contains 0.05% Tween 80, as the eluanth. The results are shown in Table 6. A good sustained-release property was serviced and the scanning electron microscopy following the dissolution to freaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution the dissolution might be dissolution the dissolution which are solved to the scanning electron microscopy following the dissolution the dissolution was set to the scanning electron microscopy following the dissolution the dissolution which are statement and the scanning electron microscopy following the dissolution the dissolution which are statement and the scanning electron microscopy following the dissolution the scanning and the scanning and the scanning electron microscopy following the scanning the scanning and the sc

Table 6

| Time (hours) elapsed after<br>initiation of the dissolution<br>test | Rate (%) of chlorpheniramine dissolution from the microcapsules |
|---------------------------------------------------------------------|-----------------------------------------------------------------|
| 0                                                                   | 0                                                               |
| 0.5                                                                 | 19.3                                                            |
| 1.0                                                                 | 38.5                                                            |
| 2.0                                                                 | 57.9                                                            |
| 3.0                                                                 | 72.2                                                            |
| 4.5                                                                 | 84.0                                                            |
| 6.0                                                                 | 88.5                                                            |
| 8.0                                                                 | 92.4                                                            |

5

10

15

20

50

55

#### Example 7

35 g of phenyloropanolamine hydrochloride was dissolved in 400 m.l. of a 50% ethanol solution. To the resulfing solution, 200 g of the same anion exchange resin (OH type) as in Example 1 was added, and this was followed by 2 hours of agitation. The slurry was then separated by filtration, and the ion exchange resin 25 thus separated was washed with 100 mt of a 50% ethanol solution. The washings were combined with the former filtrate, and diluted with a 50% ethanol solution to 500 unit.

Determinations of the total content of the phenylipropanolamine hydrochloride and the free base in this 500 mt. solution were made by high performance liquid chromatography, and the content of the free base was determined by titration method phenylipropanolamine as a hydrochloride was not detected, i.e., 100% so of the phenylipropanolamine hydrochloride was converted to the free base. The content was calculated as 34.8 g phenylipropanolamine hydrochloride, the recovery was 99.5%.

Then, to a 300 mt portion of this solution was added 38.1 g the amount in which the degree of phenylpropanolamine adsorption will be 100% of the theoretical saturated adsorption amount for the ion exchange resin) of a cation exchange resin containing 8% diviny/benzane (degree of crosslinking: 8%) [H 15 type: Diaton SRNUPE (Mitsubishi Chemical Industries)], and the reaction was carried out for 1 hour while stirring the solution. After completion of the reaction, the filter was assayed for phenylpropanolamine, but no phenylpropanolamine was detected. This meant that the entire amount of phenylpropanolamine in the form of the free base in the solution was bound to the ion exchange resin.

The phenyloropanolamine resinate separated by filtration was dried, and this 3.0 g portion was dispersed in a solution of 0.7 g aminoally/i methacrylate copolymer RS [Eudragit RS100 (Röhm Pharmal)] in 6 mt. methylene chloride. This sturry was then subjected to spray drying. The phenyloropanolamine sustained-release property of the microcapsules thus obtained was evaluated by means of a dissolution test (JP XI Padide Method, using 500 mt of a 0.2 M NaCl solution which contains 0.05% Twene 8.0 as the eluant). The results are shown in Table 7. A good sustained-release property was exhibited, and no 45 occurrence of rupture (such as cracking or breaking) in the microcapsule coat was noted in the scanning electron microscopy following the dissolution test.

Table 7

| Time (hours) elapsed after<br>initiation of the dissolution<br>test | Rate (%) of phenylpropanolamine dissolution from the microcapsules |
|---------------------------------------------------------------------|--------------------------------------------------------------------|
| 0                                                                   | 0                                                                  |
| 0.5                                                                 | 33.7                                                               |
| 1.0                                                                 | 45.6                                                               |
| 2.0                                                                 | 61.5                                                               |
| 3.0                                                                 | 71.0                                                               |
| 4.5                                                                 | 76.5                                                               |
| 6.0                                                                 | 80.6                                                               |
| 8.0                                                                 | 84.2                                                               |

6

10

15

20

40

50

55

#### Example 8

3.3 g the dihydrocodeline resinate prepared in Example 3 (the degree of dihydrocodeline adsorption onto the cation exchanger resin containing 8% divinylbenzene (degree of crossinking; 8%) (if hype, Dialon SKNUPC Mitsubishi Chem. Ind.)) was 85% of the theoretical saturated adsorption amount for the lon 26 exchange resid) was dispersed into a solution of 0.8 g aminically in enthacrylate copolymer RS [Eudviger RS100. (Röhm Psima)] in 5 m.1 of methylene chloride. To this resulting sturry, 2 m.1 of 50% ethand solution was added, and this sturry was well-aptitate. This final sturry was subjected to spray drying to produce emforcascules.

On the other hand, the mothylephodrine resinate was prepared from the methylephodrine free base solution the same as in Example 1 and the cation exchanger resin containing 12% divilybearces (degree of crosslinking: 12%) [H type Dialon SK-112 (Mitsubishi chemical Industries)]. This resinate was 82% of the theoretical saturated adsorption amount for the lon exchanger resin. 3g of this methylephedrine resinate was dispersed into a solution of 1.0 g aminosely in methocylate copolymer RS [Euderigh RSI00 (R6Nm Pharmai)] in 5 m.t. of methylene chloride. To this resulting slurry, 2 m.t. of 50% ethanol solution was added, and this 3 surry was well-agitated. This final slurry was subjected to spray dyring to produce microcapsules.

## Example 9

Two above sustained-release microcapsules in Example 8, dihydrocodeine-microcapsule and methylephedrine microcapsule, and chlopheniramine microcapsule in Example 6 were used to produce the syrup of a sustained-release suspension to be taken orally as an antitussive expectrorant preparation, the formula I of which was following below.

| formula I                                                         |                  |
|-------------------------------------------------------------------|------------------|
| dihydrocodeine SR-microcapsule<br>methylephedrine SR-microcapsule | 12.5 g<br>45.0 g |
| chlorphenyramine SR-microcapsule                                  | 4.9 g            |
| guaiacol glyceryl ether                                           | 8.0 g            |
| caffein anhydrate                                                 | 10.0 g           |
| D-sonbitol                                                        | 1.0 kg           |
| sucrose                                                           | 1.0 kg           |
| locust bean gum                                                   | 10.0 g           |
| benzoic acid                                                      | 3.0 g            |
| butyl p-oxybenzoate                                               | 0.25 g           |
| Tween 80                                                          | 0.5 g            |
| Total (added purified water)                                      | 5.0 L            |

The procedure making above syrup was detailed below.

10

15

30

50

2.01 of purified water was heated to about 85°C and 3 g of benzolc acid and 0.25 g butyl poxybenzoate were dissolved into above for water. Then after cooling, 0.5 g Tween 80 was added following addition of 10 g locust bean gum. Then, 10 g of caffein anhydrate, 8 g of gualacol glycenylether were dissolved, and 1 kg of D-sorbitol and 1 kg of Sucrose were added and dissolved. Three kinds of SR-microcapsule were wetted and suspended into 11 purified water containing 0.5 g Tween 80. Above syrup and suspended into 11 purified water containing 0.5 g Tween 80. Above syrup and suspends into the purified water addition.

The obtained suspension is administered to an adult in an amount of 10 mt each per day.

#### Comparative example 1

5 g of potassium gualacolsulfonate was dissolved in 500 mt of distilled water. To the resulting solution, 6.08 g of an anion exchange resin containing 8% divinylbenzene (degree of crosslinking; 8%) [OH type; Dialon SAN1 (Mitsubisti Chemical Industries!) was added, and this was followed by 3 hours of agitation (the mixing ratio was such that the amount of potassium gualacolsulfonate was 200% of the equivalent of the ion exchange resin). The resulting surry was then filtrated, and the filtrate was assayed for potassium gualacolsulfonate; it was found that 38.3% of the initial amount was bound to the resin and 83.7% of the initial amount remained in the filtrate.

In the produced gualacolsulfonic acid resinate, 71.3% of the ion exchange resin's exchange groups had gualacolsulfonic acid bound thereto.

The produced resinate was then separated by filtration and dried. This 2.5 g portion was dispersed in a solution of 1.0 g aminoalkyl methacrylate RS [Eudragit RS100 (Röhm Pharma)] in 5.0 m.t methylene chloride. The sturry thus obtained was syaved for coating; the resulting microapsules were dried. Gualecolsulfonic acid dissolution from the microcapsules was tested at 37°C using the dissolution test as appearatus of the UP XI. As the eluant, 500 m.t of a 0.2 M NaCl solution which contains 0.05% Tween 0.0 was used. The results are shown in Table 8. Bursting due to rupture was noted immediately after initiation of the test, and also the sustained-release property was not good, in scanning electron microcapsule coat due to the swelling of the resinate.

Table 8

| Time (hours) elapsed after<br>initiation of the dissolution<br>test | Rate (%) of gualacolsulfonic acid dissolution from the microcapsules |
|---------------------------------------------------------------------|----------------------------------------------------------------------|
| 0                                                                   | 0                                                                    |
| 0.25                                                                | 60.5                                                                 |
| 0.5                                                                 | 82.5                                                                 |
| 1.0                                                                 | 92.2                                                                 |
| 2.0                                                                 | 95.3                                                                 |
| 3.0                                                                 | 97.0                                                                 |
| 5.0                                                                 | 98.0                                                                 |

#### Comparative example 2

5 g of potassium gualacolsulfonate was dissolved in 500 m.t of distilled water. To the resulting solution was added 23.9 g of an anion exchange resid nontaining 8% divinylbenance (degree of crosslinking; 8%) (OH type; Dialon SANT (Mitsubish) Chemical Industries)), and this was followed by 3 hours of agitation (the mixing ratio was such that the amount of potassium gualacolsulfonate was 50.6% of the equivalent of the 28 ion exchange resin). The resulting stury was then filtrated, and the filtrate was assayed for potassium gualacolsulfonate; it was found that 92.1% of the initial amount was bound to the resin, 7.9% of the initial amount remained in the filtrate.

In the produced gualacolsulfonic acid resinate, 46.8% of the ion exchange resin's exchange groups had gualacolsulfonic acid bound thereto.

The produced resinate was then separated by filtration and dried. This 2.0 g portion was dispersed in a solution of 1.0 g of aminosalty methacryste RS (Eudragis (1800 (R8hm Pharmas)) in 5.0 m. methylene chloride. The sturry thus obtained was sprayed for coating; the resulting microcapsules were dried. Guadacolautionic acid dissolution from the microcapsules was tested at 37°C using the dissolution test apparatus of the JP XI. As the eluant, 500 mt of a 0.2 M NaCl solution which contains 0.03% Tween 50 59 was used. The results are shown in Table 9. Bursting due to rupture was noted immediately after initiation of the test, and also the sustained-release property was not opoul in scanning electron microscopy following the test, the occurrence of ruptures such as cracking and breaking was noted in the microcapsule coat due to the swelling of the resination.

Table 9

| Time (hours) elapsed after initiation of the dissolution test | Rate (%) of guaiacolsulfonic acid dissolution from the microcapsules |
|---------------------------------------------------------------|----------------------------------------------------------------------|
| 0                                                             | 0                                                                    |
| 0.25                                                          | 92.5                                                                 |
| 0.5                                                           | 95.5                                                                 |
| 1.0                                                           | 96.0                                                                 |
| 2.0                                                           | 97.3                                                                 |
| 3.0                                                           | 98.0                                                                 |
| 5.0                                                           | 99.3                                                                 |

50

10

15

#### Comparative example 3

10 g of phenyloropanolamine hydrochloride was dissolved in 500 mt of distilled water. To the resulting solution was added 25.81 g of a cation exchange resin containing 8% divinylbanzens (degree of crosslinking: 8%) [H type: Diation SKNUPC (Misubishi Chemical Industries)], and this was followed by 3 hours of agitation (the mixing ration was such that the amount of phenylpropanolamine hydrochloride was 74.2% of the equivalent of the lon exchange resin). The resulting siurry was filtered, and the filtrate was assayed for phenylpropanolamine hydrochloride; it was found that 84.0% of the initial amount remained in the filtrate.

In the produced phenylpropanolamine resinate, 62.3% of the ion exchange resin's exchange groups had phenylpropanolamine bound thereto.

The produced resinate was then separated by filtration and dried. This 2.8 g portion was dispersed in a solution of 1.0 g aminoally methacrystate RS [Eudragit RS100 (Röhm Pharma]) in 5.0 mt of methylene recholide. The slurry thus obtained was sprayed for coating; the resulting microcapsules were dried. Phenylpropanolamine dissolution from the microcapsules was tested at 37 °C using the dissolution test apparatus of the JP XI. As the eluant, 800 mt of a 0.2 M NaCl solution which contains 0.05% Tween 80 was used. The results are shown in Table 10. Bursting due to rupture was noted immediately after initiation of the test, and also the sustained-release property was not good. In scanning electron microscopy following at the test, the occurrence of ruptures such as cracking and breaking was noted in the microcapsule coat due to the swelling of the resistance.

Table 10

25

30

40

| Time (hours) elapsed after<br>Initiation of the dissolution<br>test | Rate (%) of phenylpropanolamine dissolution from the microcapsules |
|---------------------------------------------------------------------|--------------------------------------------------------------------|
| 0                                                                   | 0                                                                  |
| 0.25                                                                | 46.8                                                               |
| 0.5                                                                 | 61.2                                                               |
| 1.0                                                                 | 79.5                                                               |
| 2.0                                                                 | 90.1                                                               |
| 3.0                                                                 | 95.0                                                               |
| 5.0                                                                 | 98.3                                                               |

#### Comparative example 4

10 g of methylephedrine hydrochloride was dissolved in 500 mt of distilled water. To the resulting solution was added 34.6 g of a cation exchange resin containing 34 of dishriylbenzane (degree of crossfirking; 45 8%) [H type; Dialon SKNUPC (Missubsist) Chemical Industries)], and this was followed by 3 hours of agitation (the mixing ratio was such that the amount of methylephedrine hydrochloride was 48.4% of the equivalent of the ion exchange resin); it was found that \$3.0% of the initial amount was bound to the resin, 7.0% of the initial amount remaining in the fiftate.

In the produced methylephedrine resinate, 45.0% of the ion exchange resin's exchange groups had methylephedrine bound thereto.

The produced resinate was then separated by filtration and dried. This 2.2 g portion was dispersed in a solution of 1.0 g aminoalkylmethacrylate RS [Eudragit RS100 (Röhm Pharma)] in 5.0 mt of methylene chloride. The slurry thus obtained was sprayed for coating; the resulting microcapsules were dried. Methylephedrine dissolution from the microcapsules was tested at 37 °C using the dissolution test supparatus of the JP XL As the eluant, 500 mt of a 0.2 M NaCl solution which contains 0.05% Tween 80

was used. The results are shown in Table 11. Bursting due to rupture was noted immediately after initiation of the test, and also the sustained-release property was not good. In scanning electron microscopy following the test, the occurrence of ruptures such as cracking and breaking was noted in the microcapsule coat due to the swelling of the resinate.

Table 11

| Time (hours) elapsed after initiation of the dissolution test | Rate (%) of methylephedrine dissolution from the microcapsules |
|---------------------------------------------------------------|----------------------------------------------------------------|
| 0                                                             | 0                                                              |
| 0.25                                                          | 72.1                                                           |
| 0.5                                                           | 87.3                                                           |
| 1.0                                                           | 92.1                                                           |
| 2.0                                                           | 97.0                                                           |
| 3.5                                                           | 98.3                                                           |
| 5.0                                                           | 99.1                                                           |
|                                                               |                                                                |

#### Claims

10

15

- A sustained-release microcapsule preparation comprising an ion exchange resin of 8 to 16% containing, containing a drug adsorbed to not less than 80% of its theoretical ion adsorption amount, and coated with a water-permeable polymer.
- 2. The preparation according to claim 1, wherein the ion exchange resin is a synthetic insoluble porous 30 polymer.
  - 3. The preparation according to claim 2, wherein the polymer is a copolymer of styrene and divinylbenzene.
    - 4. The preparation according to claim 1, wherein the ion exchange resin is an acidic ion exchange resin.

      5. The preparation according to claim 1, wherein the drug has a pKa from 6 to 10 or from 2 to 5 with a
- The preparation according to claim 1, wherein the drug has a pKa from 6 to 10 or from 2 to 5 with staricallybulky structure.
   The preparation according to claim 1, wherein the drug is for respiratory tract.
  - The preparation according to claim 1, wherein the drug is a free form derived from the corresponding
  - salt form.

    8. The preparation according to claim 6, wherein the drug is dihydrocodein, phenylpropanolamine or di-
- 40 methylephedrin.
  9. The preparation according to claim 1, wherein the ion exchange resin complex is coated with non
  - natural polymer.

    10. The preparation according to claim 1, wherein the mean particle size of the microcapsule is from 5
  - to 1,000 µm.

    11. A suspension for oral administration containing the preparation according to claim 1 in suspension
  - in a purified water.

    12. A method of producing the preparation according to claim 1, which comprises coating an ion exchange resin of 6 to 16% crosslinking and containing a drug adsorbed to not less than 80% of its
  - exchange resin of 6 to 16% crosslinking and containing a drug adsorbed to not less than 80% of its theoretical ion adsorption amount with a water-permeable polymer.

    13. The method according to claim 12, wherein the drug-ion exchange resin complex is produced by
  - 3.1. The method according to claim 12, wherein the drugs-ine xerrange resin complex is produced by adding an ion exchange resin of 8 to 16% crosslinking to an aqueous solution of a drug in a free form prepared by reacting a salt of the drug with an ion exchange resin in an aqueous solvent capable of dissolving both the salt and the free form of the drug.

# EUROPEAN SEARCH REPORT

EP 88 30 4778

|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  | EP 88 30 477                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
|                                                                                                                                                                                          | DOCUMENTS CONSI                                                               | DERED TO BE RELEVA                                     | NT                                                                                                                                                                                               |                                                  |  |
| Category                                                                                                                                                                                 | Citation of document with it<br>of relevant pa                                | ndication, where appropriate,                          | Relevant<br>to claim                                                                                                                                                                             | CLASSIFICATION OF THE<br>APPLICATION (Int. Cl.4) |  |
| Χ                                                                                                                                                                                        | DE-A-2 246 037 (TA<br>* Whole document *                                      |                                                        | 1-12                                                                                                                                                                                             | A 61 K 9/18                                      |  |
| Y                                                                                                                                                                                        | whore document                                                                |                                                        | 1-13                                                                                                                                                                                             | A 61 K 9/52                                      |  |
| X                                                                                                                                                                                        | DE-A-1 908 946 (N. GLOEILAMPENFABRIEKE * Page 4, line 1 - claims; in particul | N)<br>page 10, line 8;                                 | 1-12                                                                                                                                                                                             |                                                  |  |
| D,X                                                                                                                                                                                      | US-A-4 221 778 (RA<br>* Columns 11-13, ex                                     | GHUNATHAN)<br>ample 16 *                               | 1-12                                                                                                                                                                                             |                                                  |  |
| Y                                                                                                                                                                                        | US-A-3 313 686 (BR<br>* Whole document *                                      | YAN et al.)                                            | 1-12                                                                                                                                                                                             |                                                  |  |
| Y                                                                                                                                                                                        | EP-A-0 154 009 (EU<br>* Pages 35-40, exam                                     | RO-CELTIQUE S.A.) ple 2 *                              | 1-13                                                                                                                                                                                             |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  | TECHNICAL FIELDS<br>SEARCHED (Int. Cl.4)         |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  | A 61 K                                           |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
|                                                                                                                                                                                          |                                                                               |                                                        |                                                                                                                                                                                                  |                                                  |  |
| The present search report has been drawn up for all claims                                                                                                                               |                                                                               |                                                        | -                                                                                                                                                                                                |                                                  |  |
| Place of search Date of completion of the search                                                                                                                                         |                                                                               |                                                        |                                                                                                                                                                                                  | Econiser                                         |  |
| THE HAGUE                                                                                                                                                                                |                                                                               | 15-09-1988                                             | BEN                                                                                                                                                                                              | Z K.F.                                           |  |
| THE HAGUE  CATEGORY OF CITED DOCUMENTS  X: particularly relevant if taken alone V: particularly relevant if combined with another document of the same category O: non-writer disclosure |                                                                               | E : earlier paten after the fill other D : document ci | T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document circl in the application L: document circl for other reasons |                                                  |  |
| A : technological background O : non-written disclosure P : intermediate document                                                                                                        |                                                                               | & : member of t                                        | & : member of the same patent family, corresponding document                                                                                                                                     |                                                  |  |