Option américaine Temps d'arrêt Arrêt optimal Preuve du théorème Un problème de recrutement (bio et biblio)graphie

Temps d'arrêt, Arrêt optimal

RECRUTEMENT OPTIMAL, OPTIONS AMÉRICAINES

Bernard Lapeyre

http://cermics.enpc.fr/~bl

2/37

PLAN

- Temps d'arrêt
- 2 Arrêt optimal
- Option américaine
- Preuve du théorème
- Un problème de recrutement
- 6 (bio et biblio)graphie

Un problème de recrutement Temps d'arrêt Arrêt optimal Option américaine Preuve du théorème (bio et biblio)graphie

Processus de Markov

Processus de Markov et propriété de Markov

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0)$$

= $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$.

▶ la matrice de transition : $(P(x, y), x, y \in E)$

$$P(x,y) = \mathbb{P}(X_{n+1} = y | X_n = x).$$

Loi de (X_0, \ldots, X_N) déterminée par P et la loi de X_0 (notée μ_0).

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \mu_0(x_0)P(x_0, x_1) \times \dots \times P(x_{n-1}, x_n).$$

Loi de X_N , μ_N donnée par $\mu_N = \mu_0 P^N$.

Loi de X_n : une autre façon d'écrire les choses

- ▶ $(X_n, n \ge 0)$ chaîne de Markov de matrice de transition P sur E.
- $ightharpoonup \mathbb{P}(X_0 = x_0) = 1$ (i.e. $\mu_0(x_0) = 1$, $\mu_0(x) = 0$ si $x \neq x_0$.)
- ▶ On sait exprimer $\mathbb{E}(f(X_N))$

$$\mathbb{E}(f(X_N)) = \mu_N f = \mu_0 P^N f = \sum_{x \in E} \mu_0(x) (P^N f)(x) = (P^N f)(x_0).$$

Une formulation alternative plus algorithmique.

Theorem 1

Soit $(u(n,x), n = 0, ..., N, x \in E)$ la solution unique de

(1)
$$\begin{cases} u(n,x) = \sum_{y \in E} P(x,y)u(n+1,y), & n < N \\ u(N,x) = f(x), \end{cases}$$

Alors $\mathbb{E}(f(X_N)) = u(0, \mathbf{x}_0).$

REMARQUES

▶ La première équation de (1) peut aussi s'écrire

$$u(n,x) = P[u(n+1,.)](x) = \sum_{y \in E} P(x,y)u(n+1,y)$$

 $\blacktriangleright u(n,x)$ peut s'interpréter comme

$$u(n,x) = \overbrace{P \times \cdots \times P}^{N-n \text{ fois}} f(x) = P^{N-n} f(x),$$

► Lorsque $\mathbb{P}(X_n = x) > 0$, on a

$$u(n,x) = \mathbb{E}\left(f(X_N)|X_n = x\right) = P^{N-n}f(x).$$

Preuve

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n, X_{n+1} = x_{n+1}, \dots, X_N = x_N)$$

$$= \mathbb{P}(X_0 = x_0) P(x_0, x_1) \times \dots \times P(x_n, x_{n+1}) \times P(x_{n+1}, x_{n+2}) \times \dots \times P(x_{N-1}, x_N)$$

en sommant sur toutes les valeurs de x_0 , \cdots , x_{n-1} et x_{n+1} , \cdots , x_{N-1} on obtient la loi de (X_n, X_N)

$$\begin{split} \mathbb{P}(X_{n} = x_{n}, X_{N} = x_{N}) &= \mathbb{P}(X_{n} = x_{n}) p^{N-n}(x_{n}, x_{N}) \\ \mathbb{E}\left(f(X_{N})\mathbf{1}_{\left\{X_{n} = x_{n}\right\}}\right) &= \mathbb{P}(X_{n} = x_{n}) \sum_{x_{N} \in E} p^{N-n}(x_{n}, x_{N})f(x_{N}) = \mathbb{P}(X_{n} = x_{n})(p^{N-n}f)(x_{n}) \end{split}$$

REMARQUES ET NOTATIONS

- ▶ (1) est une équation de programmation dynamique ¹
- ▶ *E* est fini, (1) est un *algorithme* qui termine.

UNE NOTATION COMMODE "À LA Scilab"

- $ightharpoonup x_{0:n}$ plutôt que (x_0, \ldots, x_n)
- ▶ $X_{0:n}$ plutôt que $(X_0, ..., X_n)$
- $X_{0:n} = x_{0:n}$ plutôt que $(X_0 = x_0, \dots, X_n = x_n)$

^{1.} Sur l'origine du terme programmation dynamique voir [Dreyfus(2002)]. "It was something not even a congressman could object to" selon Bellman.

PREUVE FORMELLE

On le sait déjà ... mais voici une autre méthode de preuve. On va montrer que

$$\mathbb{E}\left(u(n+1,X_{n+1})\right)=\mathbb{E}\left(u(n,X_n)\right).$$

Si cela est vrai:

$$u(0,x_0) = \mathbb{E}\left(u(0,X_0)\right) = \cdots = \mathbb{E}\left(u(N,X_N)\right) = \mathbb{E}\left(f(X_N)\right).$$

La loi de $X_{0:n+1} = (X_{0:n}, X_{n+1})$ est donnée par (c'est un façon d'exprimer la propriété de Markov)

$$\mathbb{P}(X_{0:n+1} = x_{0:n+1}) = \mathbb{P}(X_{0:n} = x_{0:n}, X_{n+1} = x_{n+1}) = \mathbb{P}(X_{0:n} = x_{0:n}) P(x_n, x_{n+1}).$$

$$\mathbb{E}(u(n+1, X_{n+1})) = \sum_{x_{0:n+1} \in E^{n+2}} u(n+1, x_{n+1}) \mathbb{P}(X_{0:n+1} = x_{0:n+1}),$$

$$= \sum_{x_{0:n} \in E^{n+1}, x_{n+1} \in E} u(n+1, x_{n+1}) \mathbb{P}(X_{0:n} = x_{0:n}) P(x_n, x_{n+1}),$$

$$= \sum_{x_{0:n} \in E^{n+1}} \mathbb{P}(X_{0:n} = x_{0:n}) u(n, x_n) = \mathbb{E}(u(n, X_n)).$$

 $= \sum P(X_{0:n} = x_{0:n}) \sum P(x_n, x_{n+1})u(n+1, x_{n+1}),$

LA QUESTION DU JOUR

- ▶ $(X_n, n \ge 0)$ une chaîne de Markov de matrice de transition P sur E. $\mathbb{P}(X_0 = x_0) = 1$.
- ▶ On cherche à calculer non pas $\mathbb{E}(f(X_N))$, mais $\sup_{\tau < N} \mathbb{E}(f(X_\tau))$.
- au appartenant à une famille de temps aléatoires, plus grand que les temps déterministes, mais plus petit que tous les temps aléatoires.
- ▶ *plus grand* que les temps déterministes : parce que l'on souhaite pouvoir tenir compte des valeurs de X_n au fil du temps.
- ▶ *plus petit* que tous les temps aléatoires : parce que à l'instant n on ne connait pas la trajectoire future X_{n+1}, \ldots, X_N .
- ▶ $\tau = \operatorname{Argmax}\{f(X_n), 0 \le n \le N\}$ est optimum, mais réclame de connaître le futur!
- ▶ Voir Pour la Sciences [Hill(2009)] pour une introduction à ce genre de problème.

TEMPS D'ARRÊT

La notion adéquate est celle de $temps\ d'arrêt$: on souhaite prendre la décision d'arrêter avec l'information que l'on a au temps n.

Definition 2

 τ est un *temps d'arrêt*, si, pour tout n, il existe $A_n \subset E^{n+1}$ tel que

$$\{\tau = n\} = \{(X_0, X_1, \dots, X_n) \in A_n\}$$

- "Je peux déterminer si $\tau = n$ en ne considérant que la portion de trajectoire avant n".
- ► Argmax $\{f(X_n), 0 \le n \le N\}$ ne peut pas être un temps d'arrêt (sauf cas particulier).
- ▶ Le temps d'atteinte d'un point *z* de *E* est un temps d'arrêt

$$\tau = \inf \left\{ n \geq 0, X_n = z \right\}.$$

En effet $\{\tau = n\} = \{X_0 \neq z, X_1 \neq z, \dots, X_{n-1} \neq z, X_n = z\}.$

FORMULATION D'UN PROBLÈME D'ARRÊT OPTIMAL

- ▶ On se donne une chaîne de Markov $(X_n, n \ge 0)$ sur E, de matrice de transition P, issue de x_0 en 0.
- f(n,x) donné, on cherche à calculer le sup suivant

$$\sup_{\tau \text{ t.a.} \leq N} \mathbb{E}(f(\tau, X_{\tau}))$$

- ightharpoonup et aussi à identifier un au qui réalise ce sup.
- ... on sait répondre complétement à ces deux questions.

Les données : P, x_0 , f.

SOLUTION DU PROBLÈME D'ARRÊT OPTIMAL

Theorem 3

Si $(u(n, x), n = 0, ..., N, x \in E)$ est la solution unique de

(2)
$$\begin{cases} u(n,x) = \max \left\{ \sum_{y \in E} P(x,y) u(n+1,y), f(n,x) \right\}, n < N, x \in E \\ u(N,x) = f(N,x), x \in E. \end{cases}$$

Alors

- ▶ $\tau_0 = \inf\{n \ge 0, u(n, X_n) = f(n, X_n)\}$ est un temps d'arrêt optimal.
- Lorsque la matrice de transition dépend de n il faut remplacer P par P_n (la matrice de transition entre les instants n et n + 1) dans l'équation.
- ▶ τ_0 est bien un temps d'arrêt $\leq N$.

$$\{\tau_0 = n\} = \{u(0,X_0) \neq f(0,X_0), \cdots, u(n-1,X_{n-1}) \neq f(n-1,X_{n-1}), u(n,X_n) = f(n,X_n)\}$$

▶ Preuve formelle du théorème : transparent 18.

Temps d'arrêt Un problème de recrutement Arrêt optimal Option américaine Preuve du théorème (bio et biblio)graphie

COMMENTAIRES

▶ (2) est une équation de *programmation dynamique* proche de celle qui permet de calculer $\mathbb{E}(f(X_N))$.

- $u(n,x) = \sup_{n < \tau < N} \mathbb{E}(f(\tau, X_{\tau})|X_n = x).$
- Preuve informelle ("Principe d'optimalité") :

En n, si $X_n = x$ soit j'exerce en n et je gagne f(n, x) soit j'attends n + 1 où je peux gagner $u(n + 1, X_{n+1})$, dont je dois calculer l'espérance en n sachant que $X_n = x$ qui est donnée par

$$\sum_{y \in E} P(x, y) u(n+1, y).$$

▶ On l'utilise (2) pour écrire un algorithme (pas beaucoup plus compliqué (il suffit de rajouter le max) que celui qui permet de calculer $\mathbb{E}(f(X_N))$). Voir TD.

- Temps d'arrê
- 2 Arrêt optima
- Option américaine
- 4 Preuve du théorème
- 5 Un problème de recrutemen
- 6 (bio et biblio)graphie

EXEMPLE 1 : CALCUL DU PRIX D'OPTIONS AMÉRICAINES

- ▶ $(X_n, 0 \le n \le N)$ une chaîne de Markov de matrice de transition P décrivant l'évolution des prix des actifs (e.g. modèle de Cox-Ross).
- ▶ J'ai la possibilité si j'"exerce" en $n \le N$ de gagner $f(n, X_n)$.
- Que vaut ce droit et à quel moment dois-je exercer ce droit pour maximiser mon gain?
- ▶ Pour calculer le prix (i.e. la valeur de ce droit), il est naturel 2 de chercher à maximiser l'espérance du flux actualisé $\mathbb{E}(f(\tau, X_{\tau}))$ parmi tous les temps d'arrêt de X.

^{2.} pour une justification compléte cf. cours de Mathématiques Financière (2A) ou [Lamberton and Lapeyre(1997)].

Problème classique : put américain

- ▶ On cherche à calculer $\sup_{\tau \le N} \mathbb{E}(f(\tau, X_{\tau}))$, le prix de l'option et à determiner le moment d'exercice optimum.
- ▶ $(X_n, 0 \le n \le N)$ est le processus de Cox-Ross

$$X_0 = 1, X_{n+1} = X_n \left(u \mathbf{1}_{\{U_{n+1} = P\}} + d \mathbf{1}_{\{U_{n+1} = F\}} \right).$$

 $(U_n, n > 1)$ une suite de tirage à pile ou face indépendant,

$$0 \le p \le 1$$
, $\mathbb{P}(U_n = P) = p = 1 - \mathbb{P}(U_n = F)$.

r le taux d'intérêt sur une période, K le strike, d < 1 + r < u.

$$f(n,x) = \frac{1}{(1+r)^n} (K-x)_+$$

SOLUTION

Temps d'arrêt

▶ On commence par calculer (cf TD) $(u(n,x), n = 0, ..., N, x \in E)$ la solution de l'équation (2) du théorème 3, ici

(3)
$$\begin{cases} u(n,x) = \max\left(p \ u(n+1,xu) + (1-p) \ u(n+1,xd), \frac{(K-x)_{+}}{(1+r)^{n}}\right), \\ u(N,x) = \frac{(K-x)_{+}}{(1+r)^{N}}. \end{cases}$$

- ► Souvent on calcule $v(n,x) = (1+r)^n u(n,x)$ plutot que u(n,x).
- $u(0,x) = v(0,x) = \sup_{\tau \le N} \mathbb{E}\left(f(\tau, X_{\tau})\right)$
- ▶ un temps d'arrêt optimal $\tau_0 = \inf \{ n \ge 0, v(n, X_n) = (K X_n)_+ \}$.

- Temps d'arrêt
- 2 Arrêt optima
- 3 Option américaine
- Preuve du théorème
- 5 Un problème de recrutement
- 6 (bio et biblio)graphie

Preuve du théorème $3:\tau$ temps d'arrêt Quelconque

- ▶ *u* solution (2), on va voir que, pour tout τ t.a., $\mathbb{E}(u(n \wedge \tau, X_{n \wedge \tau}))$ **décroît en** *n*.
- En admettant ceci, on obtient

$$u(0, x_0) = \mathbb{E}\left(u(0, X_0)\right) = \mathbb{E}\left(u\left(0 \wedge \tau, X_{0 \wedge \tau}\right)\right)$$

$$\geq \mathbb{E}\left(u\left(N \wedge \tau, X_{N \wedge \tau}\right)\right) = \mathbb{E}\left(u\left(\tau, X_{\tau}\right)\right) \geq \mathbb{E}\left(f\left(\tau, X_{\tau}\right)\right).$$

Ce qui permet d'obtenir $\sup_{0 \le \tau \le N, t.a.} \mathbb{E}(f(\tau, X_{\tau})) \le u(0, x_0).$

Pour montrer la décroissance annoncée, on remarque que

$$\Delta_{n+1} = \mathbb{E}\left(u\left((n+1) \wedge \tau, X_{(n+1) \wedge \tau}\right)\right) - \mathbb{E}\left(u(n \wedge \tau, X_{n \wedge \tau})\right)$$
$$= \mathbb{E}\left[\left(u(n+1, X_{n+1}) - u(n, X_n)\right) \mathbf{1}_{\{\tau \geq n+1\}}\right].$$

Preuve du théorème $3:\tau$ temps d'arrêt Quelconque

- ▶ au est un temps d'arrêt, $\{\tau \ge n+1\} = \{\tau \le n\}^c$, s'écrit sous la forme $\{\tau \ge n+1\} = \{X_{0:n} \in \bar{A}_n\}.$
- La loi de $(X_{0:n}, X_{n+1})$ est donnée par (c'est la propriété de Markov)

$$\mathbb{P}(X_{0:n} = x_{0:n}, X_{n+1} = x_{n+1}) = \mathbb{P}(X_{0:n} = x_{0:n}) P(x_n, x_{n+1}).$$

$$\begin{split} \Delta_{n+1} &= \mathbb{E}\left[\left(u(n+1,X_{n+1}) - u(n,X_n)\right)\mathbf{1}_{\left\{X_{0:n} \in \bar{A}_n\right\}}\right], \\ &= \sum_{x_{0:n} \in \bar{A}_n, x_{n+1} \in E} \left(u(n+1,x_{n+1}) - u(n,x_n)\right) \mathbb{P}\left(X_{0:n} = x_{0:n}\right) P(x_n,x_{n+1}), \\ &= \sum_{x_{0:n} \in \bar{A}_n} \mathbb{P}\left(X_{0:n} = x_{0:n}\right) \left(\sum_{x_{n+1} \in E} u(n+1,x_{n+1}) P(x_n,x_{n+1}) - u(n,x_n)\right). \end{split}$$

u sol. de (2), $\sum_{x_{n+1} \in E} u(n+1, x_{n+1}) P(x_n, x_{n+1}) \le u(n, x_n)$, d'où $\Delta_{n+1} \le 0$.

Preuve du théorème $3:\tau_0$ temps d'arrêt optimal

- $\tau_0 = \inf \{ n \ge 0, u(n, X_n) = f(n, X_n) \}.$
- On va montrer que $\mathbb{E}\left(u\left(n \wedge \tau_0, X_{n \wedge \tau_0}\right)\right)$ est constant en n (i.e. $\Delta_{n+1} = 0$).
- ► En admettant ceci, il est facile de conclure

$$u(0, x_0) = \mathbb{E}\left(u(0, X_0)\right) = \mathbb{E}\left(u\left(0 \wedge \tau_0, X_{0 \wedge \tau_0}\right)\right),$$

= $\mathbb{E}\left(u\left(N \wedge \tau_0, X_{N \wedge \tau_0}\right)\right) = \mathbb{E}\left(u\left(\tau_0, X_{\tau_0}\right)\right),$

Mais, par définition de τ_0 , $u(\tau_0, X_{\tau_0}) = f(\tau_0, X_{\tau_0})$, donc

$$u(0,x_0) = \mathbb{E}\left(f\left(\tau_0,X_{\tau_0}\right)\right).$$

- Ce qui finit la démonstration puisque τ_0 réalise alors le sup.
- ▶ Il nous reste à montrer que, pour ce temps d'arrêt $\Delta_{n+1} = 0$.

Preuve du théorème $3:\tau_0$ temps d'arrêt optimal

▶ τ_0 est un temps d'arrêt, $\{\tau_0 \ge n+1\} = \{X_{0:n} \in \bar{A}_n^0\}$ où

$$\bar{A}_n^0 = \{u(0, x_0) \neq f(0, x_0), \dots, u(n, x_n) \neq f(n, x_n)\}.$$

► Sur l'événement $\{\tau_0 \ge n+1\}$, on a $u(n,X_n) \ne f(n,X_n)$ et comme u sol. de (2)

$$\sum_{x_{n+1}\in E} u(n+1,x_{n+1})P(X_n,x_{n+1}) = u(n,X_n).$$

On termine alors comme tout à l'heure, mais en tenant compte de cette égalité :

$$\Delta_{n+1} = \mathbb{E}\left[\left(u(n+1, X_{n+1}) - u(n, X_n)\right) \mathbf{1}_{\left\{X_{0:n} \in \bar{A}_{n}^{0} \right\}}\right],$$

$$= \sum_{x_{0:n} \in \bar{A}_{n}^{0}, x_{n+1} \in E} \left(u(n+1, x_{n+1}) - u(n, x_{n})\right) \mathbb{P}\left(X_{0:n} = x_{0:n}\right) P(x_{n}, x_{n+1}),$$

$$= \mathbb{E}\left(\mathbf{1}_{\left\{X_{0:n} \in \bar{A}_{n}^{0}\right\}}\left(\sum_{x_{n+1} \in E} u(n+1, x_{n+1}) P(X_{n}, x_{n+1}) - u(n, X_{n})\right)\right) = 0.$$

Temps d'arrêt

- Temps d'arrêt
- 2 Arrêt optima
- 3 Option américaine
- 4 Preuve du théorème
- 5 Un problème de recrutement
- 6 (bio et biblio)graphie

EXEMPLE 2: UN PROBLÈME DE RECRUTEMENT

- ▶ Je reçois, consécutivement, *N* candidats à un poste. Les circonstances m'imposent de décider tout de suite du recrutement (soit je recrute la personne que je viens de recevoir, soit je la refuse définitivement).
- ▶ La seule information que j'ai sur les candidats est leur classement.
- Je souhaite maximiser la probabilité de recruter le meilleur candidat.
- Quelle est la meilleure façon de s'y prendre?

LE RÉSULTAT

- ▶ Il faut recevoir (environ) 37% des candidats, puis choisir le premier candidat qui suit qui est meilleur que tous les précédents (le dernier si cela n'arrive jamais).
- On obtient ainsi un temps d'arrêt optimal.
- La probabilité d'obtenir le meilleur candidat est (environ) de 37%.
- ► Les transparents qui suivent expliquent comment arriver à ces résultats à l'aide de la théorie précédente.

Un problème de recrutement Temps d'arrêt Arrêt optimal Option américaine Preuve du théorème (bio et biblio)graphie

LE MODÈLE

- \bullet $\omega = (\omega_1, \dots, \omega_N)$ une permutation de $(1, \dots, N)$.
- \triangleright ω_k le classement du #k-ième individu dans la permutation.

Indice
$$(\#1 \ \#2 \ \dots \ \#k \ \dots \ \#N)$$

Rang $(\omega_1 \ \omega_2 \ \dots \ \omega_k \ \dots \ \omega_N)$

- $ightharpoonup \Omega_N$ l'ensemble des permutations de $(1,\ldots,N)$ muni de la probabilité uniforme.
- \triangleright B_n l'évenement "le n-ième candidat est le meilleur".
- ▶ On cherche un temps d'arrêt τ qui maximise $\mathbb{P}(B_{\tau})$.

Où est la chaîne de Markov?

- ▶ Un temps d'arrêt mais pour quel processus de Markov?
- ▶ $R_k(\omega)$ le rang du #k-ième individu parmi les k premiers individus.
- $B_n = \{R_n = 1, R_{n+1} > 1, \dots, R_N > 1\}.$
- Quelle est la loi de (R_1, \ldots, R_N) ?

Temps d'arrêt Un problème de recrutement (bio et biblio)graphie Arrêt optimal Option américaine Preuve du théorème

Un exemple de calcul de R

- $\omega = (2\ 3\ 1\ 4)$ donne $R = (1\ 2\ 1\ 4)$.
- $ightharpoonup R = (1\ 2\ 1\ 4) \text{ donne } \#3 \le \#1 \le \#2 \le \#4$

$$\begin{array}{ll} (1) \rightarrow (\#1) & \#1 \text{ est le premier puisqu'il est tout seul!} \\ (1\ 2) \rightarrow (\#1 \leq \#2) & \#2 \text{ est le deuxième parmi les 2 premiers} \\ (1\ 2\ 1) \rightarrow (\#3 \leq \#1 \leq \#2) & \#3 \text{ est le premier parmi les 3 premiers} \\ (1\ 2\ 1\ 4) \rightarrow (\#3 \leq \#1 \leq \#2 \leq \#4) & \#4 \text{ est le quatrième parmi les 4 premiers} \end{array}$$

On obtient la permutation de départ $\omega = (2 \ 3 \ 1 \ 4)$

Temps d'arrêt Arrêt optimal Option américaine Un problème de recrutement (bio et biblio)graphie Preuve du théorème

EN Scilab

Si vous avez un doute voici, deux fonctions Scilab qui font le job.

```
function [R] = Omega2R(omega)
 // Calcule les rang d'insertion pour un omega donne
 for n=[1:length(omega)] do
    // classe le vecteur omega(1:n) en croissant
   y=gsort (omega(1:n),'g','i');
   // R(n) = le classement de omega(n) parmi les n premiers
    R(n) = find(omega(n) == v);
 end
endfunction
function [omega] = R2Omega(R)
 // Calcule omega connaissant les rangs d'insertion
 // J'insére n à l'indice R(n)
 for n=[1:length(R)] do
    omega=[omega(1:R(n)-1);n;omega(R(n):n-1)];
 end:
 // On inverse la permutation
 for n=[1:length(R)] do temp(omega(n))=n;end;
 omega=temp;
endfunction
```

CALCUL DE LOIS

ightharpoonup À un R correspond un et un seul ω , **donc**, pour $\alpha_k \in \{1, \ldots, k\}$

$$P(R_1 = \alpha_1, \dots, R_N = \alpha_N) = \mathbb{P}(\{\omega\}) = \frac{1}{N!}.$$

- (Par contraction) les R_k suivent des lois uniformes sur $\{1, \ldots, k\}$. Elles sont indépendantes.
- $S_k = \mathbf{1}_{\{R_k = 1\}}$ sont aussi des variables aléatoires indépendantes. Elles suivent des lois de Bernouilli de paramêtre $p_k = \mathbb{P}(S_k = 1) = 1/k$.
- La suite de variable (S_1, \ldots, S_N) suffira pour traiter le problème.

LE CRITÈRE

 $ightharpoonup B_n$ l'évenement "le n-ième candidat est le meilleur".

$$B_n = \{R_n = 1, R_{n+1} > 1, \dots, R_N > 1\} = \{S_n = 1, S_{n+1} = 0, \dots, S_N = 0\}.$$

- ▶ τ un temps d'arrêt par rapport au processus $R = (R_1, ..., R_N)$. À l'instant n, $(R_1, ..., R_n)$ "contient toute l'information disponible".
- ▶ Pour un temps d'arrêt 3 τ , on va voir que

$$\mathbb{P}(B_{\tau}) = \mathbb{E}\left(\frac{\tau}{N}S_{\tau}\right).$$

ce qui permettra de mettre le problème "sous forme markovienne".

3. Ce n'est plus vrai sinon ... Exercice : trouver un contre-exemple.

PREUVE

$$\{\tau = n\} = \{(R_1, \dots, R_{n-1}, R_n) \in A_n\} = \{R_{1:n} \in A_n\}.$$

Notation:
$$R_{1:n} = (R_1, \dots, R_{n-1}, R_n)$$
.

$$\mathbb{P}(\tau = n, B_{\tau}) = \mathbb{P}(\tau = n, B_{n}).$$

$$= \mathbb{P}(\tau = n, R_{n} = 1, R_{n+1} > 1, \dots, R_{N} > 1)$$

$$= \mathbb{P}(R_{1:n} \in A_{n}, R_{n} = 1, R_{n+1} > 1, \dots, R_{N} > 1)$$

$$= \mathbb{P}(R_{1:n} \in A_{n}, R_{n} = 1) \mathbb{P}(R_{n+1} > 1, \dots, R_{N} > 1)$$

car indépendance des vecteurs $R_{1:n}$ et $R_{n+1:N}$, puis par indépendance des R_n entre eux

$$\mathbb{P}(R_{n+1} > 1, \dots, R_N > 1) = \frac{n}{n+1} \frac{n+1}{n+2} \times \dots \times \frac{N-1}{N} = \frac{n}{N}$$

PREUVE

$$\mathbb{P}(\tau = n, B_{\tau}) = \frac{n}{N} \mathbb{P}(R_{1:n} \in A_n, R_n = 1) = \frac{n}{N} \mathbb{P}(\tau = n, R_n = 1)$$
$$= \frac{n}{N} \mathbb{E}\left(\mathbf{1}_{\{\tau = n, R_n = 1\}}\right) = \mathbb{E}\left(\mathbf{1}_{\{\tau = n\}} \frac{n}{N} S_n\right)$$
$$= \mathbb{E}\left(\mathbf{1}_{\{\tau = n\}} \frac{\tau}{N} S_{\tau}\right).$$

En sommant pour n variant de 1 à N

$$\mathbb{P}(B_{\tau}) = \mathbb{E}\left(\frac{\tau}{N}S_{\tau}\right).$$

Un problème de recrutement Temps d'arrêt Arrêt optimal Option américaine Preuve du théorème (bio et biblio)graphie

RÉSUMONS NOUS!

 \triangleright (S_1, \ldots, S_N) est une suite de variables aléatoires indépendantes de Bernouilli 1/k, **donc** une chaîne de Markov sur l'espace $E = \{0, 1\}$, non homogène, de matrice de transition, dépendant du temps, P_n

$$P_n(0,0) = P_n(1,0) = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
$$P_n(0,1) = P_n(1,1) = \frac{1}{n+1}$$

• On chercher à maximiser $\mathbb{P}(B_{\tau}) = \mathbb{E}\left(\frac{\tau}{N}S_{\tau}\right) = \mathbb{E}\left(f(\tau,S_{\tau})\right)$ parmi tous les temps d'arrêt.

RÉSOLUTION

- On peut résoudre le problème grâce à (2)
- ► On calcule (cf TD) $(u(n, 0 \text{ ou } 1), 0 \le n \le N)$

$$\begin{cases} u(n,x) = \max\left\{\frac{n}{n+1}u(n+1,0) + \frac{1}{n}u(n+1,1), \frac{n}{N}x\right\}, n < N, \\ u(N,x) = x, \end{cases}$$

Une fois ceci fait, un temps d'arrêt optimal est obtenu par

$$\tau = \inf \left\{ n \ge 0, u(n+1, S_n) = \frac{n}{N} S_n \right\}.$$

▶ Dans ce cas, on peut mener des calculs explicites (voir [Delmas and Jourdain(2006)] et TD) pour obtenir les résultats annoncés.

- Temps d'arrêt
- 2 Arrêt optima
- 3 Option américaine
- 4 Preuve du théorème
- 5 Un problème de recrutemen
- 6 (bio et biblio)graphie

SNELL, JAMES LAURIE

- ► La théorie de l'arrêt optimal porte le nom d'enveloppe de Snell (voir [Snell(1952)]), "so named by the Russian mathematician, Kolmogorov".
- Snell (1925-2011), mathématicien américain, élève de Doob.
- ▶ Il utilise la théorie des martingales pour traiter le problème d'arrêt optimal.

BIBLIOGRAPHIE

Jean-François Delmas and Benjamin Jourdain.

Modèles aléatoires.

Mathématiques & Applications. Springer-Verlag, Berlin, 2006.

Stuart Dreyfus.

Richard bellman on the birth of dynamic programming.

Operations Resarch, 50(1):48–51, 2002.

Theodore Hill.

Savoir quand s'arrêter.

Pour La Science, 381, Juillet 2009.

Damien Lamberton and Bernard Lapeyre.

Introduction au calcul stochastique appliqué à la finance.

Ellipses, Édition Marketing, Paris, second edition, 1997.

J. L. Snell.

Applications of martingale system theorems.

Trans. Amer. Math. Soc., 73:293-312, 1952.