In the term =
$$a + (n-1)d \rightarrow common difference$$

Term no. First term
$$d = Next - Previous$$

2 SUM OF FIRST N TERM:

$$S_{n} = \frac{n}{2} \left(a + l \right) > l = last term$$

$$a + (n-1)d$$

IF LAST TERM IS NOT AVAILABLE,

$$\frac{S_{n}=n}{2}\left[\frac{2\alpha+(n-1)d}{2}\right]$$

GEOMETRIC PROGRESSION (GP)

$$\square$$
 nth term = $a \cdot r^{n-1}$

2 SUM OF FIRST & TERMS.

$$\frac{S_{n}}{n} = \frac{a(h^{n}-1)}{h-1} = \frac{a(1-h^{n})}{1-h}$$

$$\frac{h>1}{h} = \frac{a(1-h^{n})}{h}$$

NOTE: USE THE VARIATION WHICH GIVES A POSITIVE DENOMINATOR WHEN WE PUT IN VALUE OF L.

3 SUM TO INFINITY:

ONLY POSSIBLE FOR CONVERGING SERIES:

$$-1 < h < 1$$

$$\frac{S}{\infty} = \frac{a}{1 - h}$$

EXAM TIP

	ARITHEMATIC (AP)	GEOMETRIC (GP)
FIRST TERM	α	æ
SECOND TERM	a + d	ar
THIRD TERM	a + 2d	a h ²
y the TERM	a + 3d	ar ³
5th TERM	a + 4d	a r
10 th TERM	a + 9d	ar ⁹
15th TERM	a + 14d	ah''
20th TERM.	a + 19d	ar 19

IN AP d = common difference CANNOTBEZERO

IN GP a	= First term	CANNOT BE	RERO.
n .	= common ratio	CANNOT BE	RERD
·		CANNOT BE	1
		LANNOT BE	-1.

TYPE1: FORMULA BASED QUESTIONS.

- 9 The first term of a geometric progression is 81 and the fourth term is 24. Find
 - (i) the common ratio of the progression,

[2]

(ii) the sum to inf nity of the progression.

[2]

$$ah^3 = 24$$

$$8/h^3 = 24$$

$$h^3 = \frac{24}{81}$$

$$h^3 = \frac{8}{27}$$

$$(ii) \qquad \int_{\infty} = \frac{\alpha}{1 - h}$$

$$=\frac{81}{1-\frac{2}{3}}=243$$

(ii) the sum of the f rst ten terms.

[2]

$$\alpha = 64$$

$$S_{\infty} = 256$$

$$\frac{\alpha}{1-b} = 256$$

$$h = \frac{3}{4} = 0.75$$

$$S_{0} = \frac{64(1-0.75^{10})}{1-0.75}$$

- (i) the sum of the first ten terms of the geometric progression 81, 54, 36, ...,
- [3]

[3]

(ii) the sum of all the terms in the arithmetic progression 180, 175, 170, ..., 25.

$$\frac{S_{0}}{1-\kappa} = \frac{\alpha(1-\kappa^{n})}{1-\kappa} = \frac{81(1-(\frac{2}{3})^{n})}{1-\frac{2}{3}} = 238.786.$$

$$d = N - P = 175 - 180$$

$$S_n = \frac{n}{2} (a+l)$$

$$S_n = \frac{?}{2} (180 + 25)$$

$$=\frac{32}{2}(180+25)$$

$$= 3260.$$

TO FIND n, APPLY nth term

FORMULA ON LAST TERM.

$$25 = 180 + (n-1)(-5)$$

$$25 = 180 - 5n + 5$$

$$5n = 160$$

(a) Find the sum of all the integers between 100 and 400 that are divisible by 7.

[4]

Integers between 100 and 400, Divisible by T.

$$\frac{S_n = n (\alpha + \ell)}{2}$$

$$nth tern = a + (m-1)d$$

$$399 = 105 + (n-1)(7)$$

$$399 = 105 + 7m - 7$$

$$n = 43$$

AP	GP
	n-/
nth term = a + (n-1)d	$n + n + n + n = a \cdot h^{n-1}$ $(x^n - 1) = a(1 - n^n)$
$S_n = \frac{n}{2} (\alpha + l)$	$S_n = \frac{\alpha(r^n - 1)}{h - 1} = \frac{\alpha(1 - \lambda^n)}{1 - \lambda}$
$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	S _w = <u>a</u> 1-2
7	1ール