Particle Detection and Prediction using CNNs and **LSTMs**

Sophia Wagner Youssef Ait Haddou Rajkumar Patel

Data Generation

Method 1

Method 2

Particle Detection using CNNs

minimize weighted Cross-Entropy Loss

$$L_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \beta y_i log(\hat{y_i}) + (1 - \beta)(1 - y_i) log(1 - \hat{y_i})$$

Particle Detection - Results

Predicting Future Positions

LSTM: Long-Short Term Memory

- First proposed by Hochreiter and Schmidhuber (1997)
- Efficient for time series forecasting
- Extension of Recurrent Neural Networks
- Solves the problem of vanishing gradients.

Dropout

- Srivastava and colleagues (2014).
- Temporarily remove neurons, creating new network architecture
- Prevent overfitting

Layer (type)	Output Shape	Param #
cu_dnnlstm_128 (CuDNNLSTM)	(None, 10, 128)	67072
dropout_51 (Dropout)	(None, 10, 128)	9
cu_dnnlstm_129 (CuDNNLSTM)	(None, 10, 64)	49664
dropout_52 (Dropout)	(None, 10, 64)	0
flatten_33 (Flatten)	(None, 640)	9
dense_33 (Dense)	(None, 1)	641
 otal params: 117,377		

Predicting Future Positions

X-coordinates: MSE = 0.239565

Y-coordinates: MSE = 0.190686

Questions?

References

- 1. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- 2. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, *15*(1), 1929-1958.

