数值分析(电子与通信类)

第一次作业

姓名:魏子继 学号:202318019427048

一、Ch1: 7

解: f(x)对于微小的x值, $3x\left(1-\frac{x}{2}\right)$ 最精确。

将 $f(x) = -e^{-2x} + e^x$ 在x = 0附近泰勒展开,得到该函数的近似函数:

$$f(x) = 3x - \frac{3}{2}x^2 + \frac{3}{2}x^3 + o(x^3)$$

因此,对于微小量x,将f(x)的泰勒展开式与题目中各量做差,有:

x时, 误差为f(x) - x = 3x - x = 2x;

3x时,误差为 $f(x) - 3x = -\frac{3}{2}x^2$;

$$3x\left(1-\frac{x}{2}\right)$$
时,误差为 $f(x)-3x\left(1-\frac{x}{2}\right)=\frac{3}{2}x^3$ 。

其中,更高次项的误差相对于题中所给量值过小,可忽略不计。综上,即可得出 $3x(1-\frac{x}{2})$ 最精确,以及各量的误差。

二、Ch1: 8

解:易知,当 $\sqrt{x^2+1}$ 与1接近时,二者做减法易产生抵消现象,造成精度上的损失。二者越接近,丢失的精度越多。至多损失两位精度,也就是二者相减后,有效位数的减少最多 2 位。考虑被减数减少最多的有效位数,得到最小y值的情况,则可得出y=0.01,此时 $\sqrt{x^2+1}$ 的有效位数减少 2 位,最小为1+0.01=1.01。由此可得, $\sqrt{x^2+1}$ 位的限制范围如下:

$$\sqrt{x^2 + 1} \ge 1.01$$

解该方程组,可得出x的限制范围:

$$x \ge 0.14177$$

或

$$x \le -0.14177$$

即|x| ≥ 0.14177.

三、Ch2: 1

解: 1. 由题意,在初值 $x_0 = 1.5$ 附近,取该方程的有根区间为[1.4,1.6]. 在有根区间内: 对于(1),有 $\varphi(x) = 1 + \frac{1}{x^2}$,于是有 $\varphi'(x) = -\frac{2}{x^3}$ 。由此可知,在有根区间内, $|\varphi'(x)| < |\varphi'(1.4)| < 1$ 。结合 $\varphi(x)$ 在有根区间内连续,可知 $\varphi(x)$ 在有根区间内收敛,即

该迭代公式在 $x_0 = 1.5$ 附近收敛;

对于(2),有 $\varphi(x) = \frac{1}{\sqrt{x-1}}$,于是有 $\varphi'(x) = -\frac{1}{2}(x-1)^{-\frac{3}{2}}$ 。由此可知,在有根区间内, $|\varphi'(1.5)| = 1.414213562 > 1$,因此可以看出, $\varphi(x)$ 在有根区间内不收敛,即该迭代公式在 $x_0 = 1.5$ 附近不收敛;

对于 (3),有 $\varphi(x) = \sqrt[3]{1+x^2}$,于是有 $\varphi'(x) = \frac{2x}{3}(x^2+1)^{-\frac{2}{3}}$ 。由此可知,在有根区间内, $|\varphi'(x)| < |\varphi'(1.6)| < 1$ 。结合 $\varphi(x)$ 在有根区间内连续,可知 $\varphi(x)$ 在有根区间内收敛,即该迭代公式在 $x_0 = 1.5$ 附近收敛;

综上,可知在 $x_0 = 1.5$ 附近,迭代公式(1)、(3)收敛,(2)不收敛。

2. 选取迭代公式(3) 求解该方程的近似根。计算过程如下:

$$x_0 = 1.5;$$

$$x_1 = \varphi(x_0) = \sqrt[3]{1 + x_0^2} = \sqrt[3]{1 + 1.5^2} = 1.4812;$$

$$x_2 = \varphi(x_1) = \sqrt[3]{1 + x_1^2} = \sqrt[3]{1 + 1.4812^2} = 1.4727;$$

$$x_3 = \varphi(x_2) = \sqrt[3]{1 + x_2^2} = \sqrt[3]{1 + 1.4727^2} = 1.4688;$$

$$x_4 = \varphi(x_3) = \sqrt[3]{1 + x_3^2} = \sqrt[3]{1 + 1.4688^2} = 1.4670;$$

$$x_5 = \varphi(x_4) = \sqrt[3]{1 + x_4^2} = \sqrt[3]{1 + 1.4670^2} = 1.4662;$$

$$x_6 = \varphi(x_5) = \sqrt[3]{1 + x_5^2} = \sqrt[3]{1 + 1.4662^2} = 1.4659;$$

$$x_7 = \varphi(x_6) = \sqrt[3]{1 + x_6^2} = \sqrt[3]{1 + 1.4659^2} = 1.4657;$$

$$x_8 = \varphi(x_7) = \sqrt[3]{1 + x_7^2} = \sqrt[3]{1 + 1.4657^2} = 1.4656;$$

$$x_9 = \varphi(x_8) = \sqrt[3]{1 + x_8^2} = \sqrt[3]{1 + 1.4656^2} = 1.4656;$$

$$x_{10} = \varphi(x_9) = \sqrt[3]{1 + x_9^2} = \sqrt[3]{1 + 1.4656^2} = 1.4656;$$

从上述计算结果来看, x_8 、 x_9 和 x_{10} 的前五位有效数字均为 1. 4656,则可认为迭代结果已收敛至 1. 4656,即方程的近似跟。取四位有效数字,即为 1. 466.

综上,(1)、(3) 迭代公式是收敛的,(2) 迭代公式不是收敛的; 计算迭代公式(3) 可计算出具有 4 位有效数字的近似根为 1.466.

四、Ch2: 4

解: (1) 由题意, $f'(x) = 3x^2 - 3$ 。当使用牛顿法时, 有:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
$$= x_k - \frac{x_k^3 - 3x_k - 1}{3x_k^2 - 3}$$

$$=\frac{2x_k^3+1}{3x_k^2-3}$$

当 $x_0 = 2$ 时,代入得:

$$x_1 = \frac{2x_0^3 + 1}{3x_0^2 - 3} = \frac{2 \cdot 2^3 + 1}{3 \cdot 2^2 - 3} = 1.8889$$

$$x_2 = \frac{2x_1^3 + 1}{3x_1^2 - 3} = \frac{2 \cdot 1.889^3 + 1}{3 \cdot 1.889^2 - 3} = 1.8794$$

$$x_3 = \frac{2x_2^3 + 1}{3x_2^2 - 3} = \frac{2 \cdot 1.8794^3 + 1}{3 \cdot 1.8794^2 - 3} = 1.8794$$

从上述计算结果来看, x_2 与 x_3 的计算结果在保留 5 位有效数字的情况下相同,则可认为该结果已收敛至1.8794,则保留 4 位有效数字的计算结果为 1.879。

(2) 由题意,根据割线法,有:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

$$= x_k - \frac{x_k^3 - 3x_k - 1}{x_k^3 - 3x_k - x_{k-1}^3 + 3x_{k-1}} (x_k - x_{k-1})$$

$$= \frac{x_k^2 x_{k-1} + x_k x_{k-1}^2 + 1}{x_k^2 + x_k x_{k-1} + x_{k-1}^2 - 3}$$

当 $x_0 = 2, x_1 = 1.9$ 时,代入得:

$$x_{2} = \frac{x_{1}^{2}x_{0} + x_{1}x_{0}^{2} + 1}{x_{1}^{2} + x_{1}x_{0} + x_{0}^{2} - 3} = \frac{1.9^{2} * 2 + 1.9 * 2^{2} + 1}{1.9^{2} + 2 * 1.9 + 2^{2} - 3} = 1.8811$$

$$x_{3} = \frac{x_{2}^{2}x_{1} + x_{2}x_{1}^{2} + 1}{x_{2}^{2} + x_{2}x_{1} + x_{1}^{2} - 3} = \frac{1.8811^{2} * 1.9 + 1.8811 * 1.9^{2} + 1}{1.8811^{2} + 1.8811 * 1.9 + 1.9^{2} - 3} = 1.8794$$

$$x_{4} = \frac{x_{3}^{2}x_{2} + x_{3}x_{2}^{2} + 1}{x_{3}^{2} + x_{3}x_{2} + x_{2}^{2} - 3} = \frac{1.8794^{2} * 1.8811 + 1.8794 * 1.8811^{2} + 1}{1.8794^{2} + 1.8794 * 1.8811 + 1.8811^{2} - 3} = 1.8794$$

$$x_{5} = \frac{x_{4}^{2}x_{3} + x_{4}x_{3}^{2} + 1}{x_{4}^{2} + x_{4}x_{3} + x_{3}^{2} - 3} = \frac{1.8794^{2} * 1.8794 + 1.8794 * 1.8794^{2} + 1}{1.8794^{2} + 1.8794 * 1.8794^{2} - 3} = 1.8794$$

从上述计算结果来看, x_3 、 x_4 与 x_5 得计算结果在保留 5 位有效数字的情况下相同,则可认为该结果已收敛至1.8794,则保留 4 位有效数字的计算结果为 1.879.

五、Ch2: 2(上机作业)

解:(1)两种方法求解:

- 1. 在 Matlab 中将x设为变量,键入函数p(x)后,使用 Matlab 内置函数展开;
- 2. 多项式相乘求系数的过程可视为卷积的过程,依据此可求解系数值。通过上机计算,得到两种方法计算系数的结果相同,如表 1 所示:

表 1: p(x)展开项各系数计算值

系数	值
a_0	3628800
a_1	-10628640
a_2	12753576
a_3	-8409500

系数	值
a_4	3416930
a_5	-902055
a_6	15773
a_7	-18150
a_8	1320
a_{9}	– 55

魏子继

(2)利用 Matlab 的求根函数,可求出当对方程添加不同程度的扰动后各方程根的 计算结果,如表 2 所示:

表 2: 未添加扰动与添加扰动后的方程根的计算结果

$\varepsilon = 0$	$\varepsilon = 10^{-6}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-10}$
10.000000003407	10.000000003148	10.000000003387	10.000000003407
8.99999999849376	8.99999999858988	8.99999999850435	8.99999999849376
8.00000000275128	8.00000000257952	8.00000000272884	8.00000000275128
6.99999999732048	6.99999999756445	6.99999999734609	6.99999999732048
6.0000000150679	6.00000000118642	6.00000000148863	6.00000000150679
4.99999999949438	4.99999999982177	4.99999999950375	4.99999999949438
4.0000000010747	3.99999999988143	4.00000000010346	4.00000000010747
2.99999999998356	3.00000000008205	2.99999999998485	2.99999999998356
2.00000000000165	1.9999999997694	2.0000000000140	2.00000000000165
0.99999999999950	1.00000000000270	0.99999999999975	0.99999999999950

由此,可计算添加扰动后的误差。以 $\varepsilon = 10^{-6}$ 为例,误差的计算方法如下:

$$e(x_{\varepsilon=10^{-6}}) = |x_{\varepsilon=10^{-6}} - \hat{x}|$$

依据该式,得到各扰动下根的计算结果误差如表 3 所示,其中每个结果乘以系数 10^{-9} ,以方便展示。

表 3: 各扰动下根的计算结果误差

The state of the s			
$\varepsilon = 10^{-6}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-10}$	
0.0258	0.0020	0	
0.0961	0.0106	0	
0.1718	0.0224	0	
0.2440	0.0256	0	
0.3204	0.0182	0	
0.3274	0.0094	0	
0.2260	0.0040	0	
0.0985	0.0013	0	
0.0247	0.0003	0	
0.0027	0.0000	0	

由表 3 能够看出,各扰动对方程根计算的扰动均非常小,最大的误差出现在 $\varepsilon=10^{-6}$ 时,其中最大误差值约为 $3.274*10^{-10}$ 。其次,随着扰动量级的减小,扰动对该方程根的计算结

果的影响也越来越小,这在表 3 中能够直观看出,如对比 $\varepsilon=10^{-6}$ 与 $\varepsilon=10^{-8}$ 时的计算误差能够发现,后者计算结果的误差已明显小于前者,这说明较小的扰动对方程根计算的影响相对较小。同时当扰动 $\varepsilon=10^{-10}$ 时,其计算结果与未加扰动的方程根计算结果相同,可认为该扰动对方程根计算已无影响。

魏子继

(3) Matlab 代码:

```
clc;clear;
% Ch2-2
% 2023/10/1
% 计算 P(x)各系数的值(a0 至 a9)
% syms x; % 将 x 设为变量
% px=(x-1)*(x-2)*(x-3)*(x-4)*(x-5)*(x-6)*(x-7)*(x-8)*(x-9)*(x-10);% 列出 px
% expand(px) % 将 px 展开
x=[1,-1];
for i=2:10
   xi=[1,-i];
   x=conv(x,xi); % 卷积
end
% disp(x)
%-----
% 比较分析不同扰动对计算方程根的影响
x 6=x; x 8=x; x 10=x;
x_6(11)=x_6(11)+10^-6; %添加相应的扰动
x_8(11)=x_8(11)+10^-8;
x_10(11)=x_10(11)+10^-10;
r=roots(x); % 未添加扰动时方程的根
r_6=roots(x_6); % 添加扰动后方程的根
r_8=roots(x_8);
r_10=roots(x_10);
rc_6=abs(r_6-r)./10^-9; % 计算添加扰动后误差的大小
rc_8=abs(r_8-r)./10^-9;
rc_10=abs(r_10-r)./10^-9;
```