第五册

大青花鱼

目录

第一章	圆	5
1.1	圆的基本性质	5
1.2	圆和旋转	7
1.3	圆心角和圆周角	8
1.4	点到圆的势	11
1.5	切线	13
第二章	圆和多边形	15
2.1	三角形的外接圆和内切圆	15
2.2	圆内接四边形	16
2.3	垂心组和外接圆	20
2.4	九点圆	20
2.5	圆内接多边形	20
第三章	三角函数	23

4			目录
	3.1	锐角的三角函数	23
	3.2	三角函数的图像和性质	23
	3.3	三角函数和三角形	23
第四	山章	从或许到确定	25
	4.1	事件和见知	25
	4.2	概率和分布	28
	4.3	二项分布和均匀分布	29
	4.4	组合和排列	31

第一章 圆

学习反比例函数和二次函数时,我们发现,就算是简单代数式定义的函数,它的图像也是我们无法手动画出的曲线。曲线是比直线更复杂的形状。为了给我们今后研究各种曲线打下基础,以下我们研究一种简单的曲线:圆。

1.1 圆的基本性质

我们已经学过圆的概念。公理体系中,我们这样定义圆:平面上到定点 O 距离为定长的点的集合,是一个圆。给定线段 XY,到 O 的距离和 AB 等长的点构成一个圆。O 叫做**圆心**,XY 叫做圆的**半径**,长度一般记为 r。不至于混淆的时候,半径的长也简称为半径。

圆心为 O、半径为 r 的圆,一般记为圆 (O,r) 或 $\odot_{(O,r)}$ 。圆心 O 和另一点 P 确定的圆,一般记为圆 (O,P) 或 $\odot_{(O,P)}$ 。如果不在意半径,在不至于混淆的情况下,也可以简记为圆 O。

平面上的点到 O 的距离小于 r, 就说它在圆内; 如果等于 r, 就说它在圆上; 如果大于 r, 就说它在圆外。

和引进直线等概念时一样,圆也有一条公理,规定它和直线的关系。

公理 1. 直线交圆公理 直线和圆有两个交点,当且仅当直线有部分在圆内。

从这个公理出发,我们可以整理直线和圆的位置关系。

考虑直线 l 和圆 $\odot_{(O,r)}$ 。过 O 作直线 $m \perp l$,记垂足为 P,|OP| = d。

- 1. 如果 d > r,那么 P 在圆外。根据垂距定理,l 上任意点都在圆外。我们说直线 l 与圆 O 相离。反之,如果直线与圆相离,那么 P 在圆外,因此 d > r。
- 2. 如果 d = r,那么 P 在圆上。根据垂距定理,l 上的点除了 P 都在圆外。直线和圆恰有一个公共点。我们说直线 l 与圆 O 相切,称 P 为切点。反之,如果直线与圆相切于点 Q,那么 |OQ| = r。l 上其他点都在在圆外,所以根据垂距定理的逆定理, $OQ \perp l$,d = r。
- 3. 如果 d < r, 那么 P 在圆内。根据直线交圆公理,直线和圆有两个交点 $A \times B$ 。我们说直线与圆**相交**,或直线**割圆**于 $A \times B$ 。反之,如果直线和圆有两个交点,那么根据直线交圆公理,直线有部分在圆内,这部分上的点到圆心距离小于 r,因此根据垂距定理,d < r。

设直线割圆于两点 A、B,我们说直线是圆的**割线**。根据直线交圆公理,线段 AB (除端点)在圆内。我们把线段 AB 称为圆的一条**弦**。如果 AB 过圆心 O,就说它是圆的直径,A、B 互为**对径点**。直径是过圆心的弦。它的长度是半径的两倍。不至于混淆的时候,直径的长也简称为直径。

考虑圆 O 上的弦 AB 的垂直平分线 m, 圆心 O 显然在 m 上。m \bot AB, 设垂足为 P, 那么 |AP| = |PB|。设 m 和圆交于两点 C, D, 则弦 CD 就是直径。所以我们说:**恰有一条直径平分每条弦**。

习题 1.1.1. 补充:

6

- 1. 设直线割圆于两点 $A \times B$, 证明线段 AB (除端点) 在圆内。
- 2. 证明: 同一个圆中, 直径是最长的弦。

1.2 圆和旋转 7

1.2 圆和旋转

怎么画一个圆?我们用圆规画圆。如果已知圆心和圆上一点,我们将圆规尖定在要画的圆心处,将笔头接触圆上的点,然后轻轻旋转,笔头就画出一个圆。如果已知圆心和半径线段,我们首先张开圆规,圆规尖和笔头分别对齐半径两端,然后保持圆规形状不变,将圆规尖定在要画的圆心处,让笔头接触纸面,轻轻旋转,笔头就画出一个圆。

可以看出,圆和旋转有天然的关系。旋转是由角定义的操作,把平面中的点映射到另一点。给定角 *AOB*,可以这样定义**旋转**:

定义 1.2.1. 给定角 AOB, 平面中一点 P 关于 $\angle AOB$ 旋转的结果,是唯一使得 $\angle POQ = \angle AOB$ 且 |OP| = |OQ| 的点 Q。

O 称为旋转的**中心**。任何点 P 绕中心旋转,结果都在圆 (O, P) 上。

可以看到,给定一个圆 (O,P),从点 P 出发,旋转不同的角度,就得到圆上其它的点。用圆规画圆时,从零角出发,随着角度不断增大,直到周角,我们沿逆时针经历了圆上所有的点(注意:这里约定角度的范围是 0° 到 369°)。也就是说,我们认为零角到周角的角按角度和圆上的点之间有一一映射。换句话说,数轴上 0 和 360 之间的数,和圆上的点之间有一一映射。我们把它称作**圆映射**,记为 $\gamma_{(O,P)}$ 。

通过 $\gamma_{(O,P)}$,我们可以把对圆的研究,改为对数轴上线段的研究。这样就把曲线上的问题转为了直线上的问题。比如,既然 [0,360) 对应整个圆,那么 [0,180] 就对应半个圆,[0,60] 就对应六分之一个圆,等等。我们把闭区间对应的圆的部分称为**圆弧**。

同一圆上两个圆弧分别对应 $[a_1, a_1 + x]$ 和 $[a_2, a_2 + x]$,这两个圆弧有什么不同吗? 观察圆的图像可知,并没有不同。也就是说,圆弧的形状只和它对应数轴上区间的长度有关,和它所在的位置无关。只要对应的区间一样长,那么圆弧就全等,可以相互覆盖。换句话说,圆弧只要等长,就是全

等的。于是,线段所满足的公理,对同一个圆上的圆弧也成立。

和线段一样,圆弧也有起点和终点。比如 [0,60] 对应的圆弧,起点就是 P,终点是 60 度角 POQ 的终边和圆的交点 Q。如果圆弧对应的区间长度超过 180,就说它是**优弧**;如果圆弧对应的区间长度小于 180,就说它是**劣弧**;如果等于 180,就说它是**半圆**。优弧比半圆长,劣弧比半圆短。

从直线和圆相交的角度来看,圆上两点确定的直线将圆分为两个圆弧。 这两个圆弧并起来就是圆,所以要么一个是优弧、一个是劣弧,要么两者都 是半圆(这时直线过圆心)。我们说它们互为**补弧**。

同一个圆上,明确了起点 A 和终点 B,就唯一确定了圆弧 \widehat{AB} 。如果 只说了两点 A、B,那么 \widehat{AB} 一般指劣弧或起点为 A 终点为 B 的圆弧。

习题 1.2.1. 证明:

1. 任意线段经过旋转得到等长的线段。 2. 任意三角形经过旋转得到同角全等的三角形。

1.3 圆心角和圆周角

根据圆映射的定义,每个圆弧都对应一个顶点在圆心,大小介于零角和周角之间的角,称为它的**圆心角**。圆弧还可以对应另一类角。给定起点为A,终点为B的圆弧 \widehat{AB} 和圆上弧外一点P,则角 \widehat{APB} 称为一个**圆周角**。每个圆弧只对应一个圆心角,但可以对应很多个圆周角。

同一段圆弧的圆心角和圆周角之间,有什么关系呢?如右图,连接PO,延长交圆于对径点Q。由于 $\triangle AOP$ 是等腰三角形, $\angle OAP + \angle OPA = 0$,

同理, $\angle OBP + \angle OPB = 0$ 。于是

$$\angle AOB = \angle AOQ + \angle QOB$$

= $\angle OAP + \angle APO + \angle PBO + \angle OPB$
= $2\angle APO + 2\angle OPB = 2\angle APB$

也就是说, 圆心角是圆周角的两倍大小, 圆周角是圆心角的一半大小。

定理 1.3.1. 圆周角定理 给定圆 O 上的弧 \widehat{AB} 及圆上弧外的点 P, 如果 $P \notin \widehat{AB}$, 那么:

$$\angle APB = \frac{1}{2} \angle AOB,$$

如果点 P 在弧上, $\angle APB$ 和 $\angle AOB$ 是什么关系呢? 这时 $\angle APB$ 对应 \widehat{AB} 的补弧,于是它是 \widehat{AB} 对应的圆心角的一半大小。 \widehat{AB} 对应的圆心角是周角减去 $\angle AOB$,所以

$$\angle APB = 180^{\circ} - \frac{1}{2} \angle AOB.$$

对径点和圆心形成平角,因此,根据圆周角定理,对径点对应的圆周角是直角。或者说,半圆对应的圆周角是直角。

要注意的是,讨论圆心角时,我们约定角的范围是零角到周角。讨论圆周角和其他角时,为了方便,我们会切换到负平角到正平角的范围。

同一个圆里,圆上的点 A、B 对应的圆心角 $\angle AOB$ 和点 C、D 对应的圆心角 $\angle COD$ 相等,那么根据"边角边",圆心 O 和它们构成的三角形满足: $\triangle AOB \simeq \triangle COD$ 。弦 AB 和 CD 也等长。不仅如此,根据圆映射,圆弧 \widehat{AB} 和 \widehat{CD} 也等长。事实上, \widehat{CD} 就是 \widehat{AB} 关于某个角旋转的结果。我们把这个结论称为"等角对等弦"、"等角对等弧"。

反之,如果两个圆弧 \widehat{AB} 和 \widehat{CD} 等长,那么它们对应的区间也一样长。这说明它们对应的圆心角一样大。圆心角既然相等,那么弦 AB 和 CD

10 第一章 圆

也等长。更进一步,设 P 是圆上不属于两弧的点,那么圆周角 $\angle APB$ 和 $\angle CPD$ 一样大。我们把这个结论称为"等弧对等弦"、"等弧对等角"。

反过来,如果圆 O 上两条弦 AB 和 CD 等长,那么根据"边边边", $\triangle AOB \simeq \triangle COD$ 。于是圆心角相等,所以劣弧 \widehat{AB} 和 \widehat{CD} 等长。我们把 这个结论称为"等弦对等角"、"等弦对等弧"。

总的来说,在同一个圆里,两点对应的弦长相等当且仅当对应的(劣弧)弧长相等,当且仅当对应的圆心角相等,当且仅当对应的圆周角相等。弦、弧、圆心角、圆周角,都是用来描述圆的部分和整体关系的方法。

给定圆上两点 A、B,它们对应的垂直平分线 l 平分 $\angle AOB$,即把 $\angle AOB$ 分成两个相同大小的圆心角。因此,设 l 和圆交于 P、Q,则它们 也分别平分所在的圆弧(称为弧的中点)。我们把这一系列结论总称为垂径 定理:

定理 1.3.2. 垂径定理 给定圆上两点,则恰有圆的一条直径垂直平分两点对应的弦,同时平分对应的圆心角和两个圆弧。

垂径定理也可以说成: 过圆 O 的弦 AB 中点的直径与弦 AB 垂直,同时平分 $\angle AOB$ 和弧 \widehat{AB} 。

给定圆 (O,r), 弦 AB 中点记为 M, |MO| 称为弦 AB 的**弦心距**。由于 $MO \perp AB$, $\triangle OAM$ 是直角三角形,根据勾股定理,

$$|OM|^2 + |AM|^2 = |OA|^2 = r^2.$$

设直线 MO 与圆 O 交于 P、Q 两点,则

$$|MP| \cdot |MQ| = (r - |OM|)(r + |OM|) = r^2 - |OM|^2.$$

比较以上两式,可以得到:

$$|MA| \cdot |MB| = |MA|^2 = |MB|^2 = |MP| \cdot |MQ|.$$

这个推论也常常被称为垂径定理。

1.4 点到圆的势 11

1.4 点到圆的势

圆是到定点距离相同的点的集合,所以点对圆来说是关键的概念。一点和圆的关系,可以用它到圆的距离来理解。点 P 在圆 (O,r) 上,当且仅当它到圆心的距离为 r。

如果不知道圆心的位置,有没有办法理解点和圆的位置关系呢? 我们 引进点到圆的**势**的概念。

定义 1.4.1. 点 P 到圆 (O,r) 的势, 等于 $|OP|^2 - r^2$ 。

乍一看,点到圆的势,仍然和它到圆心的距离相关。点到圆心的距离 d 比 r 小的时候,点在圆内,这时它到圆的势小于 0 。 d > r 的时候,点在圆外,势也大于 0 。 d = r 的时候,点在圆上,势等于 0 。

下面,我们从垂径定理出发,给出一种不依赖圆心的方法,计算点到圆的势。

首先设点 P 在圆 (O,r) 内。连接 OP,延长为直径,交圆于 A,B 两点 (A, P) 在 O 同侧)。过 P 作该直径的垂线,交圆于 C,D 两点。弦 CD 的 垂直平分线过 O,而 $OP \perp CD$,所以 OP 就是弦 CD 的垂直平分线。根据垂径定理, $|PA| \cdot |PB| = |PC| \cdot |PD| = r^2 - |OP|^2$ 。这说明 $|PA| \cdot |PB|$ 、 $|PC| \cdot |PD|$ 是 P 的势的绝对值。

过 P 任意作一条直线,和圆交于两点 M,N,是否也有这个结论呢?

如右图,可以发现, $\angle NDC$ 和 $\angle NMC$ 都对应同一段弧,且 C,M 都在弧外,所以 $\angle NDC = \angle NMC$ 。又对顶角 $\angle DPN = \angle CPM$,所以 $\triangle DPN \hookrightarrow \triangle MPC$ 。也就是说,

$$\frac{|PD|}{|PN|} = \frac{|PM|}{|PC|}.$$

第一章 圆

换句话说, $|PC| \cdot |PD| = |PN| \cdot |PM|$ 。

12

对圆内一点 P 来说,即便不知道圆心,只要过 P 作直线与圆交于两点,那么 P 到两点的距离乘积就是它到圆的势的绝对值。

如果点在圆外,是否有类似的结论呢? 我们仍然连接 OP,直线 OP 割圆于两点: A, B (A 位于 O、P 之间)。可以算出:

$$|PA| \cdot |PB| = (|PO| - |AO|) \cdot (|PO| + |PB|) = |OP|^2 - r^2.$$

过 P 作直线 l 和圆交于两点 M,N, $|PM|\cdot|PN|$ 是否也等于 $|OP|^2-r^2$ 呢?

如右图,注意到 $\angle BNA$ 和 $\angle BMA$ 都对应半圆,所以都是直角。三角 形外角 $\angle PAN = \angle ABN + \angle BNA$,而 $\angle ABN$ 和 $\angle AMN$ 对应同一段弧 且都不在弧上,所以 $\angle ABN = \angle AMN$ 。于是,

$$\angle PAN = \angle ABN + 90^{\circ} = \angle AMN + \angle BMA = \angle BMN.$$

这说明 $\triangle PAN \sim \triangle PBM$,所以

$$\frac{|PA|}{|PN|} = \frac{|PM|}{|PB|},$$

换句话说, $|PM| \cdot |PN| = |PA| \cdot |PB|$ 。我们把这个性质总结为:

对圆内一点 P 来说,即便不知道圆心,只要过 P 作直线与圆交于两点,那么 P 到两点的距离乘积就是它到圆的势。

因此,无论在圆内还是圆外,经过一点 P 的直线与圆交于两点,则它到两点的距离乘积只与它和圆的远近关系有关。如果 P 在圆内,这个乘积等于 $r^2 - |PO|^2$; 如果 P 在圆外,这个乘积等于 $|PO|^2 - r^2$ 。或者说,这个乘积就是势的绝对值。至于 P 在圆上的情形,我们可以认为它与圆交于两点,其中一点就是它自身,所以到自身距离为 0,从而乘积总是 0,等于它的势。

定理 1.4.1. 圆势定理 过点 P 作直线与圆 (O,r) 交于两点: A、B, 那么

$$|PA| \cdot |PB| = \left| |PO|^2 - r^2 \right|.$$

1.5 切线

比起乘积 $|PA| \cdot |PB|$,点到圆的势多了正负号。如何理解这个正负号呢?如果过圆 (O,r) 的圆心作一条直线,在上面建立数轴。当我们把原点P 选在圆内的时候,A 和 B 就对应符号相异的数;如果把原点P 设在圆外,A 和 B 就代表同号的数了。所以,以P 为原点,PO 为正方向的数轴和圆交于两点,这两点代表的数的乘积就是P 到圆的势。或者说,圆势附带了P 和 A、B 的位置关系的信息。

1.5 切线

过一点作直线要与圆交于两点不难,与圆交于一点则不简单。根据直线交圆公理,过圆内的点,无法作和圆相切的直线。过圆外一点,可以作与圆相切的直线直观上,我们可以把直尺从和圆相交的状态逐渐移动,直到碰到圆的"边",作出大致和圆相切的直线。

直线和圆相切是一种特殊的状况。过圆外或圆上一点的直线 l 如果和圆 O 相切,就说它是点到圆的**切线**。切线和圆的(唯一)交点,称为**切点**。根据相切的性质,过圆心 O 作关于 l 的垂线,切点就是垂足。过圆上一点,只有一条切线,过圆外一点,可以作两条切线。

14 第一章 圆

第二章 圆和多边形

我们对圆上一点、两点引出的形状都有了初步了解,现在来看圆上多个点对应的形状。

2.1 三角形的外接圆和内切圆

首先来看三个点的情形。

设 A、B、C 是圆 (O,r) 上(相异的)三点,则线段 AB、BC、AC 的 垂直平分线都过圆心 O。因此,O 是 $\triangle ABC$ 的外心(这里附带说明了圆上相异三点必然不共线),|OA| = |OB| = |OC| = r。反之,设有(非退化的) $\triangle ABC$,以它的外心 O 为圆心,以 |OA| 为半径,就可以画出一个圆,过 顶点 A、B、C。这说明,**不共线的三点恰好对应一个圆**。或者说,**不共线的三点确定一个圆**。我们把这个圆称为三角形的**外接圆**("外心"即"外接圆圆心"的简称),把三角形称为圆的**内接三角形**。

三角形不仅可以内接于圆,圆也可以内接于三角形。考虑三角形 *ABC* 的内心,它到三角形三边的距离相等。以内心为圆心,以它到三边的距离为半径作圆,这个圆和三角形三边都相切。我们把这个圆叫做三角形的**内切圆**("内心"即"内切圆圆心"的简称),把三角形称为圆的**外切三角形**。

除了内心, 三角形还有旁心。旁心到三角形三边的距离也相等。因此,

以每个旁心为圆心,以它到三遍的距离为圆心,各可以得到一个圆。每个圆都与三角形一边和另两边的延长线相切。这三个圆称为三角形的旁切圆("旁心"即"旁切圆圆心"的简称),把三角形称为它们的**旁切三角形**。

2.2 圆内接四边形

在三个点的基础上再加一个点 D,四个点 A、B、C、D 能否恰好对应一个圆呢?显然, $\triangle ABC$ 和 $\triangle BCD$ 的外接圆未必是同一个圆。所以,四个点不总是在同一个圆上。换句话说,要让四个点共圆,这四个点必须满足一定的条件。

如右图上情形,设 A、B、C、D 圆 (O,r) 上 (相异的) 四点,考察它们对应的圆弧。我们发现, \widehat{ABC} 和 \widehat{CDA} 是整个圆的两部分,因此,它们对应的圆心角之和是周角。根据圆周角定理, $\angle ABC + \angle CDA = 180^\circ$ 。同理, $\angle BCD + \angle DAB = 180^\circ$ 。

我们还可以发现,圆周角 $\angle BAC$ 和 $\angle BDC$ 都对应 \widehat{BC} ,因此根据"等弧对等角", $\angle BAC = \angle BDC$ 。同理可得: $\angle ACB = \angle ADB$, $\angle CAD = \angle CBD$, $\angle DBA = \angle DCA$ 。

如果 A、B、C、D 顺序改变,如右图下情形,那么 \overrightarrow{ABC} 和 \overrightarrow{CDA} 对应同一段圆弧 \overrightarrow{AC} 。这时 $\angle ABC + \angle CDA = 0^\circ$,或者说 $\angle ABC = \angle ADC$ 。同理, $\angle BAD = \angle BCD$ 。我们把这样的四边形 ABCD 称为**凹四边形**,把前一种情况中的四边形 ABCD 称为**凸四边形**。凸四边形包含我们学过的平行四边形、梯形和筝形,它的内角都是正的。凹四边形的内角总有负的。无论是凸四边形还是凹四边形,内角和总是零角。

综合两种情况,**圆内接凸四边形对角之和是平角**,**圆内接凹四边形对 角相等**。

四边形 ABCD 有一对边相交,像一只蝴蝶。我们把这样的四边形叫做

蝶形。可以看到,如果把相交的对边 AB、CD 看作对角线,把对角线 AC、BD 看作对边,我们就得到一个凸四边形 ACBD。因此,观察相同的圆弧对应的圆周角可以发现,我们仍然有 $\angle BAC = \angle BDC$ 、 $\angle ACB = \angle ADB$, $\angle CAD = \angle CBD$, $\angle DBA = \angle DCA$ 。如果对角线 AC 和 BD 交于点 P,仍然有 $\triangle APB \hookrightarrow \triangle CPD$ 、 $\triangle BPC \hookrightarrow \triangle DPA$ 。换句话说,即便圆内接四边形不是凸四边形,用它的顶点也能画出圆内接凸四边形,并且不妨碍我们讨论相关的性质。所以,我们也可以把圆内接四边形相关的问题简称为四点共圆的问题。

以上是圆内接四边形边和角的性质,反过来,满足什么性质的四边形是圆内接四边形呢?或者说,满足什么条件的四个点共圆呢?

定理 2.2.1. 如果凸四边形 ABCD 中的一对内角 $\angle ABC$ 与 $\angle CDA$ 的和是平角,那么 ABCD 是圆内接四边形。

证明. $\angle ABC + \angle CDA = 180^{\circ}$,所以要么两个角都是直角,要么一个是钝角,一个是锐角。

如果两个角都是直角,作对角线 AC,取它的中点 O。 $\triangle ABC$ 是直角三角形, AC 是斜边,根据直角三角形的中线定理,|AO|=|BO|=|CO|。同理, $\triangle CDA$ 是直角三角形,AC 是斜边,于是 |AO|=|DO|=|CO|。因此 A,B,C,D 四点都在 $\bigcirc_{(O,A)}$ 上。

如果两个角一个是钝角,一个是锐角。不妨设 $\angle ABC > 90^{\circ} > \angle CDA$ 。作对角线 AC,则 B、D 在 AC 两侧。作对角线 AC 的垂直平分线 l。显然, $\triangle ABC$ 和 $\triangle CDA$ 的外心都在 l 上,只需证明两者是同一点。

设 $\triangle ABC$ 的外接圆为 $\bigcirc_{(O_1,B)}$ 。 $\angle ABC$ 是钝角,因此它的圆心角对应优弧。于是, O_1 和 B 在直线 AC 两侧。 $\angle CO_1A=360^\circ-2\angle ABC$ 。

另一方面,设 $\triangle CDA$ 的外接圆为 $\bigcirc_{(O_2,D)}$ 。 $\angle CDA$ 是锐角,因此它的圆心角对应劣弧。于是, O_2 和 D 在直线 AC 同一侧。 $\angle CO_2A = 2\angle CDA$ 。

以上两个结论说明, O_1 和 O_2 都和 D 在直线 AC 同一侧,且 $\angle CO_1A = \angle CO_2A$ 。而 $\triangle CO_1A$ 和 $\triangle CO_2A$ 都是等腰三角形,所以两者同角全等。这说明 O_1 和 O_2 是同一点。A,B,C,D 四点都在 $\bigcirc_{O_1,A}$ 上。

从这个定理可以推出,矩形、等腰梯形和正方形都是圆内接四边形。

定理 2.2.2. 如果凸四边形 ABCD 中, $\angle ACB = \angle ADB$,那么 ABCD 是 圆内接四边形。

证明. ABCD 是凸四边形,所以 C 和 D 在直线 AB 同侧。作边 AB 的垂直平分线 l,显然, $\triangle ABC$ 和 $\triangle ABD$ 的外心都在 l 上,只需证明它们是同一点。

设 $\triangle ABC$ 的外接圆为 $\bigcirc_{(O_1,C)}$, $\triangle ABD$ 的外接圆为 $\bigcirc_{(O_2,D)}$ 。 如果 $\angle ACB$ 是钝角,那么它的圆心角对应优弧。于是, O_1 和 C 在直线 AB 两侧,且 $\angle BO_1A=360^\circ-2\angle ACB$ 。这时, $\angle ADB=\angle ACB$ 也是钝角,所以同样有 O_2 和 D 在直线 AB 两侧,且 $\angle BO_2A=360^\circ-2\angle ADB$ 。如果 $\angle ACB$ 是锐角,那么它的圆心角对应劣弧。于是, O_1 和 C 在直线 AB 同侧,且 $\angle BO_1A=2\angle ACB$ 。这时, $\angle ADB=\angle ACB$ 也是锐角,所以同样有 O_2 和 D 在直线 AB 同侧,且 $\angle BO_2A=2\angle ADB$ 。

因此, O_1 和 O_2 总在直线 AB 同侧,且 $\angle BO_1A = \angle BO_2A$ 。而 $\triangle BO_1A$ 和 $\triangle BO_2A$ 都是等腰三角形,所以两者同角全等。这说明 O_1 和 O_2 是同一点。A,B,C,D 四点都在 \bigcirc_{O_1A} 上。

定理 2.2.3. 过一点 P 的两条直线 m, n 上各有两点: $A, C \in m$ 和 $B, D \in n$, 分别各在 P 两侧。如果

$$|PA| \cdot |PC| = |PB| \cdot |PD|,$$

那么四边形 ABCD 是圆内接四边形。

证明. 考虑 $\triangle APB$ 和 $\triangle DPC$ 。对顶角 $\angle APB = \angle DPC$ 。而 $|PA| \cdot |PC| = |PB| \cdot |PD|$ 等于说

$$\frac{|PA|}{|PB|} = \frac{|PD|}{|PC|}.$$

因此根据"边角边", $\triangle APB \sim \triangle DPC$ 。于是有 $\angle ABP = \angle DCP$, $\angle BAP = \angle CDP$ 。因此,根据定理 2.2.2,四边形 ABCD 是圆内接四边形。

2.2 圆内接四边形

19

这个定理也可以理解为:两条线段相交,如果交点把每条线段分成的两部分长度之积相等,那么线段端点共圆。也就是说,这两条线段实际上是圆的两条相交的弦。

反之,圆的两条弦 AC 和 BD 相交于 P,则"等弦对等角"说明 $\angle ACD = \angle ABD$ 、 $\angle BAC = \angle BDC$ 。因此 $\triangle ABP \sim \triangle DCP$, $|PA| \cdot |PC| = |PB| \cdot |PD|$ 。

定理 2.2.4. 相交弦定理 圆的两条弦 AC 和 BD 相交于 P, 则

$$|PA| \cdot |PC| = |PB| \cdot |PD|.$$

习题 2.2.1.

给定圆内接凸四边形 ABCD。E 是对角线 AC 上一点。 $\angle CDE = \angle BDA$ 。

- 1. 证明: $\triangle CDE \sim \triangle BDA$ 。
- 2. 证明: $\triangle CDB \sim \triangle EDA$ 。
- 3. 证明: $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$.

给定凸四边形 ABCD, 作射线 CE 使得 $\angle ECD = \angle ABD$, 作射线 DE 使得 $\angle CDE = \angle BDA$ 。两射线交于点 E。

- 1. 证明: $\triangle CDE \sim \triangle BDA$ 。
- 2. 证明: $\triangle CDB \sim \triangle EDA$ 。
- 3. 证明: $|AC| \cdot |BD| \geqslant |AB| \cdot |CD| + |BC| \cdot |DA|$.
- 4. 证明,凸四边形 ABCD 是圆内接四边形,当且仅当 $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$.
- 5. 证明: A,B,C,D 四点共圆,当且仅当 $|AC|\cdot |BD|=|AB|\cdot |CD|+|BC|\cdot |DA|$.

2.3 垂心组和外接圆

2.4 九点圆

2.5 圆内接多边形

从四边形的情况来看,顶点的位置顺序对形状很重要。如果顶点 $A \times B \times C \times D$ 按顺时针或逆时针顺序排列,那么四边形 ABCD 是凸四边形,否则,四边形 ABCD 可能是凹四边形。

对一般的圆内接多边形,我们只研究最简单的一类: 顶点按逆时针顺序排列的多边形。具体来说,设圆 O 上有 n 个点: A_1, A_2, \cdots, A_n ,从 A_1 出发构造圆映射 $\gamma_{(O,A_1)}$,把 [0,360) 映射到圆周,那么 0 对应 A_1 。设 t_1, t_2, \cdots, t_n 分别对应 n 个点,那么 $0 = t_1 < t_2 < \cdots < t_n$ 。这样定义的圆内接多边形: $A_1A_2 \cdots A_n$ 就是我们研究的对象。这样定义的多边形,每个内角都在零角和平角之间。这样的多边形叫做**凸多边形**。

对于大于等于 3 的整数 n, 凸 n 边形 $A_1A_2\cdots A_n$ 有 $\frac{n(n-3)}{2}$ 条对角线。 具体来说,每个顶点和相邻两个顶点的连线是 n 边形的边,和其余 n-3个顶点的连线是对角线。因此每个点是 n-3 条对角线的端点。另一方面, 每条对角线对应两个顶点,因此一共有 $\frac{n(n-3)}{2}$ 条对角线。

凸多边形的内角和是否有规律呢? 我们知道三角形的内角和是平角,凸四边形的内角和是两个平角(或者说周角,如果把角度约定在负平角和正平角之间,则减去一个周角变成零角)。边数继续增多时,我们定义凸n边形 $A_1A_2\cdots A_n$ 的内角和为:

 $\angle A_1 A_2 A_3 + \angle A_2 A_3 A_4 + \dots + \angle A_{n-2} A_{n-1} A_n + \angle A_{n-1} A_n A_1 + \angle A_n A_1 A_2$

如果凸多边形是圆内接多边形,我们可以这样证明: n 个顶点把圆分为 n 段圆弧。每个顶点张成的内角,对应了其中 n-2 段圆弧。如果考虑所有 n 个内角对应的圆弧,则每段圆弧计入 n-2 次(圆弧两端是内角顶点的时候不计入,其它情况下都计入)。也就是说,n 个内角和对应 n-2 个整圆。这些内角都是圆周角,因此它们的和是 n-2 个整圆对应的圆周角,即 n-2 个平角。我们的猜想至少对圆内接多边形是正确的。

对一般凸多边形的情况,我们可以通过不断"裁剪"三角形来证明。我们还记得,凸四边形可以裁成两个三角形,因此它的内角和是两个三角形的内角和。从另一个角度来看,我们通过裁掉一个三角形,把凸四边形变成了三角形。对一般的凸 n 边形 $A_1A_2\cdots A_n$ 来说,由于它的每个内角都介于零角和平角之间,我们可以考虑裁掉某个角,把它变成 n-1 边形。比如,沿着线段 A_1A_3 剪一刀,就把 $A_1A_2\cdots A_n$ 分成了三角形 $A_1A_2A_3$ 和 n-1 边形 $A_1A_3\cdots A_n$ 。

定理 2.5.1. 凸 n 边形的内角和是 n-2 个平角。

证明. 用归纳法证明。命题 P(n): 凸 n+2 边形的内角和是 n 个平角。我们要证明 P(n) 对所有正整数 n 成立。

n=1 时,由于三角形内角和是平角,P(1) 成立。

假设 P(n) 成立,下面证明 P(n+1) 成立。

设有凸 n+3 边形 $A_1A_2A_3\cdots A_n$,将它裁成三角形 $A_1A_2A_3$ 和 n-1 边形 $A_1A_3\cdots A_n$ 。前者的内角和是平角。根据 P(n),后者的内角和是 n 个平角,因此, $A_1A_2A_3\cdots A_n$ 的内角和是 n+1 个平角。于是 P(n+1) 成立。因此对所有正整数 n,命题 P(n) 成立。

满足什么条件时,凸多边形是圆内接多边形呢?最直接的条件,自然是平面上有一个圆,使多边形顶点都在圆上。或者说,能找到一点,到多边形各个顶点距离相等。

如果难以直接找到这样的点,可以查看多边形各边和各条对角线的垂直平分线。如果多边形是圆内接多边形,它的边和对角线都是圆的弦,垂径定理说明其垂直平分线过圆心。具体来说,可以考察两条边(或对角线)的垂直平分线的交点。这点如果到各个顶点距离相等,那么多边形内接于以它为圆心的圆,否则多边形不是圆内接多边形。

有一种特殊的凸多边形必然是圆内接多边形: **正多边形**。正多边形是各边等长,各内角相等的多边形。正三角形、正方形都是正多边形。正多边形各个的内角角度是 $\frac{180(n-2)}{n}$ °。

习题 2.5.1.

- 1. 平行四边形、矩形、正方形、梯形、筝形,哪些总是圆内接多边形?哪些可以是圆内接多边形?要满足什么条件?
- 2. 设有整数 $1 \leq i, j, k, l \leq n$, 圆内接 n 边形 $A_1 A_2 \cdots A_n$ 中, $\angle A_i A_k A_j$ 和 $\angle A_i A_l A_j$ 有什么关系?

第三章 三角函数

- 3.1 锐角的三角函数
- 3.2 三角函数的图像和性质
- 3.3 三角函数和三角形

第四章 从或许到确定

预测未来,是人类社会的重要活动。合理有效地预测未来,是社会文明 进步的标志。中华文明作为农耕文明,很早就懂得预测未来的重要性。历 法、史书、节气,都是我们的祖先为了后人更好地预测未来,留下的经验总 结。

生产活动中,预测尤其重要。比如,农牧业、渔业、运输业等行业需要 预测天气,销售行业需要预测产品的市场需求。科学研究和工程制造中,如 果能够提前知道产品在各种各样的情境和场景下的性能,可以节约大量人 力物力。社会要发展,就需要更高的预测水平。

4.1 事件和见知

如何判断某件事情将来会不会发生? 我们要依赖已有的知识和经验。日常生活中,我们会说"明天大概要下雨"、"今年冬天肯定很冷"、"我明天大概去不了了"。根据已有条件,有些事情必然发生,有些事情或许会发生,有些事情不可能发生。事情发生与否,取决于某些条件。我们把这样的事情叫作随机事件,简称事件。在已知条件下,如果某事件必然发生,就说它是必然事件; 如果某事件必然不发生,就说它是不可能事件; 如果某事件或许会发生,就说它是或然事件。数学中,研究这些事情的理论叫作概率论。

概率论假定, 我们关心的随机事件有某些恒定的内在规律, 受某些固

有未知因素的影响。概率论通过研究这些内在规律和因素,预测事件是否 会发生。

如何描述一个事件? 从客观的角度,我们可以把"发生一件事"看成事物状态、形势局面的改变。一件事是否发生,可以用改变后的状态或局面表示。我们也许无法确定未来事物发展成哪个状态、形势走向哪个局面,但我们可以事先确定事物未来所有可能的状态、所有可能出现的局面。

比如,我们无法确定明天杭州是否下雨,但我们知道,在明天杭州是否下雨这个问题上,只可能出现两个结局:下雨或不下雨。又比如,我们投一个骰子前,无法确定朝上一面的点数,但我们知道,投出的骰子最终只有六个状态:朝上一面是1,2,3,4,5或6点。这些最终状态、局面是**互斥**的。比如明天杭州不可能既下雨又不下雨,骰子停下之后不可能既是1点朝上又是2点朝上。

我们把所有可能的最终状态或局面看成一个集合,集合中的每个元素 称为事情的**终态**或结局。比如,考虑明天杭州是否下雨这个问题时,所有结局构成 {下雨,不下雨} 这个集合,每次投骰子时,骰子的终态构成 {1,2,3,4,5,6} 这个集合。我们把这个集合叫作**终集**,即终态的全集。我们可以把相关的事件用终集的子集表示。比如,"明天杭州下雨"对应 {下雨} 这个子集,"骰子点数是偶数"对应 {2,4,6} 这个子集。事物发展的终态如果在子集里,就说明事件发生了,否则事件没有发生。

单元集也对应着事件。我们把单元集对应的事件叫做**基本事件**。比如 {1} 对应的"骰子点数是 1"就是基本事件。基本事件之间是互斥事件,它们是终集的分划。

终集可以是有限的,也可以是无限的。目前我们只讨论有限的情况。要注意的是,随着问题的条件、环境、思考问题的角度发生变化,终集也会变化。比如,我们考虑明天杭州下雨的问题时,可能要把准备经过杭州的台风"凤凰"也考虑在内。台风"凤凰"也许继续靠近,也许转向。这时,我们

4.1 事件和见知 27

的终集是:

{台风靠近且下雨,台风靠近且不下雨,台风转向且下雨,台风转向且不下雨}

而"明天杭州下雨"对应子集 {台风靠近且下雨,台风转向且下雨}。

对于随机事件,如果我们知道得更多,就能作出更准确的预测。比如,如果我们不知道台风的情况,那么即便我们把终集依照"台风是否继续靠近"划分,我们能把握的也只是{台风靠近且下雨,台风转向且下雨}、{台风靠近且不下雨,台风转向且不下雨}两个事件,与{下雨},{不下雨}并没有不同。如果我们掌握了台风的动向,我们就希望把{下雨}分成{台风靠近且下雨}和{台风转向且下雨}来讨论了。可以说,随着我们对事物、形势的认知增加,我们的终集会越来越"细"。

为了描述认知增加的过程,我们从最"细"的终集出发,定义每个阶段的**知集**,代替不同阶段的终集。知集是最"细"终集的子集构成的集合,满足:

- 1. 空集属于知集;
- 2. 如果集合 A 属于知集, 那么 A 的补集也属于知集;
- 3. 如果集合 A 和 B 属于知集,那么它们的并集也属于知集。

知集表示我们每个阶段的认知。我们根据当前的认知来讨论各种事件。 比如,在杭州下雨的例子里,可以有两个知集,分别是:

$$S_1 = \{\emptyset, \{AR, DR\}, \{AN, DN\}, \{AR, AN, DR, DN\}\}$$

和

 $S_2 = \{\emptyset, \{AR\}, \{AN\}, \{DR\}, \{DN\}, \{AR, AN\}, \{AR, DR\}, \{AR, DN\}, \{AN, DR\}, \{DN, AN\}, \{DR, DN\}, \{AR, AN, DR\}, \{AR, AN, DN\}, \{AR, DR, DN\}, \{AN, DR, DN\}, \{AR, AN, DR, DN\}\}$

其中 AR, AN, DR, DN 分别表示"台风靠近且下雨"、"台风靠近且不下雨"、"台风转向且下雨"和"台风转向且不下雨"。可以看出, S_1 是 S_2 的子集。 S_1 到 S_2 的过程,就是对台风认知加深的过程。

这种描述下,不同的知集就对应不同"粗细"的终集。每个知集都对应自己的基本事件。比如, $\{AR, DR\}$ 在 S_1 中是基本事件,在 S_2 中就不是基本事件了。

习题 4.1.1. 写出以下问题的终集和知集。

- 1. 我国朱鹮从东北省份向南迁徙的路线有三条:西线、中线和东北线。 小明想知道黑龙江省的某只朱鹮沿哪条路线南迁。
- 2. 某航空公司规定:作为补偿,飞机晚点一小时以上,返还全票票价的 40%;如果晚点三小时以上,返还全票票价的 75%。乘客实际购票价低于前述返还价格的,返还乘客实际购票价。航班因晚点取消,且乘客自愿接受转乘下一班机的,公司协助补票,实施"就低返利"政策:按照下一班机实时票价和乘客最初购票价的较低者计算新票价,多则退还差价;并另外补偿新票价的 30%。某乘客购票后,在候机时被告知飞机可能晚点,他试着分析可能得到的晚点补偿。

4.2 概率和分布

预测随机事件时,我们除了关心会发生什么事情,还关心事情有多大可能发生。当我们说"这事百分之百能成","他八成还在路上","他的话只有三分准头",我们认为某些事情比另一些事情更可能发生。习惯上,我们用数来描述事情有多大可能发生。在数学中,我们把这个做法称为**事件的概率**。

我们用不大于 1 的非负实数表示事件的概率。约定不可能事件的概率 是 0,必然事件的概率是 1。事件的概率越大,越有可能发生。此外,事件 的概率应当和事件之间的关系相符。两个互斥事件同时发生的概率应该是 0,至少有一个发生的概率应该是它俩概率的和。用集合的语言来说,空集的概率应该是 0,终集的概率应该是 1;两个集合不相交,那么它们的并集的概率等于它们概率的和。

我们习惯用映射 \mathbb{P} 来记录概率。把事件 A 的概率记为 $\mathbb{P}(A)$ 。比如,我们说明天八成会下雨,可以写成 $\mathbb{P}(\{\text{下雨}\}) = 0.8$ 。不至于混淆时,也可以省略表示集合的大括号,写成: $\mathbb{P}(\text{下雨}) = 0.8$ 。

基本事件两两互斥,并集是终集(全集)。所以,基本事件的概率之和 等于 1。

举例来说,投骰子的时候,我们一般认为投出 1,2,3,4,5,6 点的可能性都一样大,即每个基本事件的概率都相等。于是它们各自的概率是六分之一。据此,可以算出任何事件的概率。比如,"投出 5 点或以上"的概率是"投出 5 点"的概率加上"投出 6 点"的概率,也就是三分之一。如果我们知道骰子有问题,比如投出 6 点的可能性是其他任一点数的 2 倍,那么"投出 6 点"的概率是七分之二;投出其他点数,比如"投出 3 点"的概率是七分之一;而"投出 5 点或以上"的概率是七分之三。

终集是有限集合的时候,对每个知集来说,只要知道了其中每个基本 事件分配到的概率(称为**概率分布**),就可以推出知集里其他事件的概率。

思考 4.2.1. 同一个终集下的不同知集中,同一个事件的概率是否相同?

4.3 二项分布和均匀分布

我们来看两种简单的概率分布。

考虑只有两个终态 a,b 的终集,两个基本事件 $\{a\}$, $\{b\}$ 概率之和是 1。设其中一个的概率是 p,则另一个的概率是 1-p。我们把这样的概率分布叫作二**项分布**。举例来说,如果我们认为明天杭州下雨的概率是 0.7,不下雨的概率就是 1-0.7=0.3。我们说,我们认为明天杭州下雨的问题服从二

项分布。

又比如: 抛一枚硬币,我们认为正面朝上的概率是 0.52,那么反面朝上的概率就是 1-0.52=0.48。我们说,我们认为抛这枚硬币的问题服从二项分布。为了好说话,我们会在两个基本事件中选一个我们更关心的,称为**正面事件**,把另一个称作**反面事件**。如果正面事件的概率是 p,就说问题服从系数为 p 的二项分布。

终集为 $\{a,b\}$ 的二项分布,包括四个事件,分别对应 \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$ 四个子集。设 $\{a\}$ 是正面事件,概率为 p,那么这四个事件的概率分别是 0、p、1-p 和 1。

对于元素更多的终集,情况更加复杂。我们考虑一种简单情形:每个基本事件的概率相等。这样的概率分布称为**等概率分布**或**均匀分布**。比如,投骰子时,如果我们认为每面朝上的概率都相等,就说投骰子服从均匀分布。

假设终集有n个终态,那么每个基本事件的概率就是 $\frac{1}{n}$ 。对于任意事件,我们可以数一下事件包含了几个终态,用终态个数除以所有终态的个数,就是它的概率。我们把这个性质写作:

$$\mathbb{P}(A) = \frac{|A|}{|S|}$$

其中 |A| 表示事件 A 作为集合的元素个数,|S| 表示终集 S 的元素个数。比如,服从均匀分布的投骰子问题中,要求"大于 2 点"的概率,我们数一下事件 $\{3,4,5,6\}$,它包含了 4 个终态,所以"大于 2 点"的概率是 $4 \times \frac{1}{6} = \frac{2}{3}$ 。

习题 4.3.1.

- 1. 把 1 到 100 分别写在小纸条上放入黑箱里,随意抽取一张,抽到的数是素数的概率是多少? 完全平方数的概率是多少? 各位数字乘积大于 10的概率是多少?
 - 2. 有没有以全体自然数为终集的均匀分布? 为什么? 说说你的理由。

4.4 排列和组合 31

4.4 排列和组合

例子 4.4.1. 将编号为 1,2,3 的 3 个小球排成一列,最左边的球是 1 的概率 是多少?

首先考虑所有终态的个数:将编号为 1,2,3 的 3 个小球排成一列,有 多少种方法?

不妨设三个球从左到右排列。无论排列方式如何,三个球分别占据"左"、"中"、"右"三个位置。从左边开始,把球一个个放到位置上。左边的位置可以放三个球中任何一个,因此有 3 种方法。按任一种方法放好左边的球以后,中间的位置可以放剩余两个球中任何一个,因此有 2 种方法。按任一种方法放好中间的球以后,右边的位置可以放最后一个球,只有 1 种方法。于是一共有 3×2×1=6 种方法。

如果最左边的球是 1, 有多少种方法? 这时左边的位置已经放好了 1 号球, 因此中间的位置还有两种放法。任一种方法放好中间的球以后, 右边的位置放最后一个球, 只有 1 中方法。因此, 一共有 2×1=2 种方法。

综上所述,"最左边的球是1"的概率是:

$$\mathbb{P}($$
最左边的球是 $1) = \frac{2}{6} = \frac{1}{3}.$

我们把 n 个互不相同的物品排成一列的方法数目称为 n 排列数,记作

 P_n 。比如,编号为 1,2,3 的 3 个小球排成一列的方法数目就叫做"3 排列数",记作 P_3 。

对于一般的自然数 n, n 排列数是 n-1 排列数的 n 倍。这是因为,如果把 n 个互不相同的物品排成一列,第一个位置总可以放 n 个物品中的任何一个,有 n 种方法。按任一种方法放好第一个位置后,剩下的 n-1 个位置摆放剩下的 n-1 个物品的方法数目,恰好就是 n-1 排列数。

因此,用归纳法可以证明,n 排列数就是 n 乘以 n-1 乘以 n-2…… 直到乘以 1 的乘积。比如,5 排列数就是 $5 \times 4 \times 3 \times 2 \times 1 = 120$ 。

如果我们把从 n 乘到 1 的计算看成关于 n 的函数的话,这个函数叫做 (n b) **阶乘**,记作 n!。n 排列数就是 n 的阶乘。

例子 4.4.2. 将 3 个红球和 2 个白球组成一列,最左边的球是红球的概率是 多少?

我们仍然先计算 3 个红球和 2 个白球组成一列的方法数。这里球只有红白两种颜色的分别。同色的球没有差别。如果我们把球编号,1,2,3 号球是红球,4,5 号球是白球,那么,按照编号排列,有 5!=120 种方法。不过,1-2-3-4-5 和 2-3-1-4-5 其实是同一种方法。因为 1,2,3 号球都是红球,并没有差别。把 1-2-3-4-5 里的 3 个红球任意改变次序,都不影响结果。同理,把 1-2-3-4-5 里的 2 个白球任意改变次序,都不影响结果。3 个红球的排列方法有 3!=6 种,2 个白球的排列方法有 2!=2 种,于是这 $6\times 2=12$ 种方法都对应同一种结果。也就是说,带编号的 12 个排列方法对应一种不带编号的排列方法。因此,实际上只有 $\frac{5!}{3!2!}=10$ 种排列方法。

我们把不带编号的排列方法称为**组合数**或**选列数**。比如,3个红球和2个白球组成一列的方法数目叫做"3,2组合数",或"5选3"(因为也可以看作从5个位置里选3个放红球),记作 C_5^3 或 $\binom{5}{3}$ 。

如果最左边的球是红球,那么剩下的4个位置要放2个红球、2个白

4.4 排列和组合 33

球。于是,一共有 C_4^2 种方法。计算可知:

$$C_4^2 = \frac{4!}{2! \times 2!} = \frac{24}{2 \times 2} = 6.$$

即一共有6种方法。因此最左边的球是红球的概率是:

$$\mathbb{P}($$
最左边的球是红球 $)=rac{C_4^2}{C_5^3}=rac{6}{10}=rac{3}{5}.$

一般来说, "n 选 m"也可以用阶乘计算:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

容易发现: "n 选 m" 等于 "n 选 n-m"。比如, 5 选 3 等于 5 选 2。用红球和白球的例子,可以理解为: 3 个红球和 2 个白球组成一列的方法数目,等于 3 个白球和 2 个红球组成一列的方法数目。

掌握了排列数和组合数,我们就可以计算一些复杂问题里终态的个数。

习题 4.4.1.

- 1.5个红球和3个白球排成一列,有多少种方法?
- 2.2 个红球、3 个白球和 2 个黄球排成一列,有多少种方法?
- 3. 从编号 1,2,3,4,5 的 5 个球中选出 3 个排成一列,有多少种方法? 这个数目叫做 5,3 排列数。试求一般情况下 n,m 排列数(从编号为 1 到 n 的 n 个球中选出 m 个排成一列的方法数目)的公式。
 - 4. 设有两个正整数 m < n, 证明: m! 整除 n!。