Chest X-Ray Pneumothorax images segmentation and classification

by Aleksandra Shchetinina (a.shchetinina@innopolis.ru) & Anastasia Pichka (a.pichka@innopolis.ru) BS17-RO

Intro

Pneumothorax

Collapse of the lung, occurs when the chest and lungs are injured, as well as certain lung conditions (eg, tuberculosis, pneumonia)

CV: Check Point, Fall 2020

Dataset

12,047 chest x-ray images 12,047 pneumothorax masks

Size - 1024x1024, in png format

Segmentation

Process of partitioning a digital image into multiple segments (sets of pixels, also known as image objects)

FCN - Fully Convolutional Network

Last fully connected layer of such network was replaced with a fully convolutional layer, produce a dense pixel-wise prediction

Related Work

Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges

by Mohammad Hesam Hesamian, Wenjing Jia1, Xiangjian He1, Paul Kennedy,

29 May 2019

One of network structures in this article - FCN (Fully Convolutional Network). Dice coefficient (statistic used to gauge the similarity of two samples) which can be obtained - of 0.885

$$Dice = \frac{2 \times TP}{(TP + FP) + (TP + FN)}$$

	FCN-	FCN-	FCN-	
	AlexNet	VGG16	GoogLeNet4	
mean IU	39.8	56.0	42.5	
forward time	50 ms	210 ms	59 ms	
conv. layers	8	16	22	
parameters	57M	134M	6M	
rf size	355	404	907	
max stride	32	32	32	

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long, Evan Shelhamer, Trevor Darrell

8 Mar 2015

AlexNet, VGG, GoogLeNet can be adopted using transfer learning by fine-tuning and used for segmentation

Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax

Karan Jakhar, Rohit Bajaj, Ruchika Gupta

16 Dec 2019

U-Net, which is built upon FCN. The problem domain of the article - pneumothorax X-Ray images segmentation. Transfer learning with ResNet is used, high results were achieved: IoU - 82.6%, Dice Coefficient - 84.3%

CV: Check Point, Fall 2020

Idea Explanation (partially Implemented)

	new_filename	Imageld	has_pneumo
0	0_train_0png	1.2.276.0.7230010.3.1.4.8323329.5597.151787518	0
1	1_train_0png	1.2.276.0.7230010.3.1.4.8323329.12515.15178752	0
2	2_train_1png	1.2.276.0.7230010.3.1.4.8323329.4904.151787518	1
3	3_train_1png	1.2.276.0.7230010.3.1.4.8323329.32579.15178751	1
4	4_train_1png	1.2.276.0.7230010.3.1.4.8323329.1314.151787516	1
5	5_train_0png	1.2.276.0.7230010.3.1.4.8323329.11364.15178752	0
6	6_train_0png	1.2.276.0.7230010.3.1.4.8323329.4541.151787518	0
7	7_train_1png	1.2.276.0.7230010.3.1.4.8323329.4440.151787518	1
8	8_train_1png	1.2.276.0.7230010.3.1.4.8323329.4982.151787518	1
9	9_train_0png	1.2.276.0.7230010.3.1.4.8323329.31759.15178751	0
10	10_train_1png	1.2.276.0.7230010.3.1.4.8323329.12743.15178752	1
11	11_train_1png	1.2.276.0.7230010.3.1.4.8323329.11633.15178752	1
12	12_train_0png	1.2.276.0.7230010.3.1.4.8323329.11512.15178752	0
13	13_train_1png	1.2.276.0.7230010.3.1.4.8323329.2663.151787517	1
14	14_train_0png	1.2.276.0.7230010.3.1.4.8323329.10206.15178752	0

Data Preparation

The data is taken from the dataset and prepared (normalized, resized, divided into test and train, etc). Masks (segmented image) is also prepared

Imbalanced data

Model

The basic idea behind a fully convolutional network is that it is "fully convolutional", so all of its layers are convolutional layers. FCNs don't have any of the fully-connected layers at the end, which are typically used for classification. Instead, FCNs use convolutional layers to classify each pixel in the image.

Transfer Learning

Research problem in machine learning (ML) that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem

Architecture

Architecture:

- Pre-trained classifier without fully-connected layers (transferred, frozen)
- Convolution layers
- Upsampling(Deconvolution)
- Softmax layer

Results, we've got

after some training

CV: Check Point, Fall 2020

Plans

- data augmentation
- train models
- choose metrics
- compare accuracy of the models