Bestemmelse af ascorbinsyres syrestyrkekonstant og syreeksponent

OSCAR 2.BX

Introduktion

Formål

Formålet med eksperimentet er at bestemme syrestyrkekonstanten, K_s , og styrkeeksponenten, pK_s , for ascorbinsyre vha. pH-målinger.

Teori

Ascorbinsyre er en dihydron syre, men opfører sig i praksis som en monohydron syre. Vi følger ascorbinsyres reaktion med vand:

$$C_6H_8O_6 \text{ (aq)} + H_2O \text{ (l)} \Longrightarrow C_6H_7O_6^- \text{ (aq)} + H_3O^+ \text{ (aq)}$$

 pK_s er defineret som $-\log_{10}{(K_s)}$, hvor K_s er ligevægtsbrøken for reaktionen, hvor vands koncentration udelades, da vi sætter vands stofmængdebrøk til 1:

$$K_s = \frac{[\mathrm{C_6H_7O_6}^-] \cdot [\mathrm{H_3O}^+]}{[\mathrm{C_6H_8O_6}]}$$

$$[K_s] = \mathrm{M}$$

Metode

Vi vil bestemme K_s og pK_s på 2 forskellige måder. Først vil vi udføre pH-målinger på tre opløsninger og ud fra deres reaktionsbrøker forsøge at bestemme K_s og pK_s . Bagefter vil vi lave en titrering på 0.1 M ascorbinsyre, og aflæse pK_s vha. af en titreringskurve.

Hypotese

Vi forventer, at de to metoders målinger vil resultere i nogenlunde ens resultater.

Udstyr

- pH-meter med pH-elektrode
- Magnetomrører
- Magnet
- Pipette, 10 mL
- Pipettesuger
- 2 målekolber med prop, 100 mL
- 2 bægerglas, 25 mL
- Stativ
- Buretteholder

- 0,100 M ascorbinsyre
- 0,100 m natriumhydroxid
- Kalibreringspuffere
- Dråbetæller
- Dråbetæller kolbe, 10 mL
- \bullet LabPro enhed
- Autoburette
- Computer

Del 1

Udførelse

Først hentede vi en frisk fremstillet 0,1 M ascorbinsyre opløsning, og så fremstilte vi en 0,01 M ascorbinsyre opløsning ved at fortynde 1 mL af 0,1 M ascorbinsyre med 9 mL demineraliseret vand. Bagefter gentog vi fortyndingen, hvor vi tog 1 mL af vores 0,01 M ascorbinsyre, som vi så fortyndede med 9 mL demineraliseret vand, så resultatet var 0,001 M ascorbinsyre.

Så skulle vi kalibrere pH-elektroden vha. pufferopløsningerne, som vi brugte til at måle pH-værdierne for vores tre opløsninger.

Målinger

Alle pH-målinger er indskrevet i nedenstående tabel.

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
рН	2,64	3,1	3,45

Databehandling

For at beregne K_s og pK_s vil vi opskrive reaktionsbrøker for hver af vores opløsninger. Dette kræver, at vi kender koncentrationerne af reaktanterne og produkterne med undtagelse af vand. Først beregner vi koncentrationen af H_3O^+ , hvilket vi gør ved at vende pH om:

$$pH = -\log_{10}[\mathrm{H_3O}^+]$$

$$\updownarrow$$

$$[\mathrm{H_3O}^+] = 10^{-pH}$$

Dernæst finder vi mængden af $C_6H_7O_6^-$, som må være lig koncentrationen af H_3O^+ , eftersom der bliver dannet lige mange for hver reaktion.

Til sidst må koncentrationen af $C_6H_8O_6$ være sin start koncentration $[C_6H_8O_6]_{start}$, hvor vi trækker $[C_6H_7O_6^{-}]$ fra, da det er den mængde, der er blevet omdannet, derfor:

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
pН	2,64	3,1	3,45
$[\mathrm{H_3O}^+]/\mathrm{M}$	0,00229	0,000794	0,000345
$[{\rm C_6H_7O_6}^-]/{\rm M}$	0,00229	0,000794	0,000345
$[C_6H_8O_6]/M$	0,097	0,0092	0,00065

Nu kan vi opstille reaktionsbrøken fra teori afsnittet for hver enkel koncentration:

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
K_s/M	0,000054	0,000069	0,00018

Vi vælger at se bort fra K_s for 0,001 M ascorbinsyre, da K_s for 0,1 M og 0,01 M er relativt meget tættere på hinanden.

For at afslutte vores estimering af K_s , så tager vi gennemsnittet af de 2 værdier:

$$K_{s,gennemsnit} = \frac{0{,}000054~\mathrm{M} + 0{,}000069~\mathrm{M}}{2} = 0{,}0000615~\mathrm{M}$$

Nu kan vi forholdsvist let beregne pKs ved at tage $-\log_{10}(K_s)$:

$$pK_s = -\log_{10}(0,0000615) = 4,21$$

Hvilket virker fornuftigt ift. databogens $pK_s=4,\!17,$ hvilket vi
 vender tilbage til.

Del 2

Forsøgsopstilling

Først anbringes en magnetomrører, som bruges til at røre puffer opløsningerne, mens pH-elektroden kalibreres. Henover opsættes en dråbetæller, som også skal kalibreres, med pH-elektroden ned langs. Ovenfor placeres en autoburette fyldt op med en vis mængde titrator, i vores tilfælde ca. 15 mL NaOH. Når alting er kalibreret kan man sætte titranten under, og da vi brugte autotitrering, så kan man bare trykke saml data.

Udførelse

Vi opsatte jævnfør forsøgsopstillings afsnittet med titranten $0,\!1$ M ascorbinsyre og trykkede saml data.

Databehandling

Titrering gav en flot titrerkurve, som ses nedenfor. Midt på kurvens stejleste stykke kan vi aflæse pH-værdien for ækvivalenspunktet, som er markeret med rød på kurven, til at være ca. 8,7. Da pH-værdien er 8,7, er det fordi, at et af produkterne er ${\rm C_6H_7O_6}^-$, som er en amfolyt, er mere en base end en syre.

Derudover kan vi også aflæse pK_s ud fra kurven, som er markeret med et grønt punkt, og det kan aflæses til ca. 4,6. Grunden til, at vi kan aflæse pK_s ud fra titrerkurven er, at pufferligningen $pH = pK_s + \log \frac{1-x_s}{x_s}$ består af to led, det sidste led er, hvor man tager log til syrebrøken, som giver procentdelen, der er syre. Dvs. at syrebrøken er 50% halvvejs mod ækvivalenspunktet, derved giver leddet 0 og $pH = pK_s$. Derfor går vi ud til halvdelen af ækvivalenspunktets xværdi.

Til sidst kan vi udregne K_s ved at gøre det omvendte af $-\log_{10}$:

$$K_s = 10^{-pK_s} = 10^{-4.6} \text{ M} = 2.51 \cdot 10^{-5} \text{ M}$$

Opsamling

Sammenligning

Kigger vi på værdierne fra del 1 og 2 og databogen, ses i nedenstående tabel, har vi helt sikkert ramt tæt på. Værdierne for pK_s ligger alle sammen på omkring 4.

Del	1	2	Databog
K_s/M	$6,15 \cdot 10^{-5}$	$2,51 \cdot 10^{-5}$	$6,76 \cdot 10^{-5}$
pK_s	4,21	4,6	4,17

For K_s værdierne er det lidt anderledes, de afviger nemlig en smule mere. Umiddelbart ud fra værdierne er det sikkert at sige, at del 1 evt. er en bedre metode til at bestemme K_s og pK_s .

Fejlkilder

Der er ingen tvivl om, at vi har lavet en fejl, da vi fortyndede opløsningerne i Del 1. For delforsøg 2 er der også en måleusikkerhed, da vi aflæser manuelt fra titrerkurven. Automatisk aflæsning ville nok føre til resultater, der ville afvige mindre fra tabel-værdierne.

Konklusion

Vha. pH-målinger kan det sluttes, at ascorbinsyre, hvis man regner den som en monohydronsyre, har $pK_s \approx 4{,}21$ og tilsvarende $K_s \approx 6{,}15 \cdot 10^{-5}$ M.