Divisibility

 $d \mid a$ and $d \mid b \implies d$ divides any linear combination of a, b

Euclid Theorem: there are an infinite number of primes

Division Algorithm: Let $a, b \in Z$ with b > 0. Then there exists unique $q, r \in Z$ such that a = bq + r with $0 \le r < b$

Ways of finding gcd(a, b)

- List all prime factors and take the largest factor
- Take a linear combination of a, b to find possible factors
- Euclidean Algorithm

Any common divisor of a, b divides gcd(a, b)

Bezout Theorem: gcd(a, b) = ax + by

If n is composite then $2^n - 1$ is composite

If m is NOT a power of 2, then $2^m + 1$ is composite

Linear Diophantine Equations

We want to be able to find integer solutions (x, y) to ax + by = c

• Solutions exist if and only if $gcd(a, b) \mid c$

General steps for solving Linear Diophantine problems

- 1. Verify $gcd(a, b) \mid c$
- 2. Divide the equation by $d = \gcd(a, b) \implies a'x + b'y = c'$ where $\gcd(a', b') = 1$
- 3. Use Extended Euclidean Algorithm to solve (x, y) for a'x + b'y = 1. Then multiply the solution by c'
- 4. If a solution variable (e.g. x) is negative, perform Extended Euclidean Algorithm with positive x then flip the sign at the end
- 5. General solutions will be $(x_0 + \frac{b}{d}t, y_0 \frac{a}{d}t)$

For relatively prime a, b and $a, b \ge 0$, there are no non-negative solutions to ax + by = ab - a - b

For relatively prime $a, b, a, b \ge 0$, and any n > ab - a - b, there is a non-negative solution to ax + by = n

Unique Factorization

Theorem 4.1: Let p be prime and $a, b \in Z$ such that $p \mid ab$. Then $p \mid a$ or $p \mid b$

Fundamental Theorem of Arithmetic: any positive integer greater than 1 can be uniquely factored into a product of primes

$$gcd(a,b) = 2^{d_2}3^{d_3}\cdots$$
 where $d_p = min(a_p,b_p)$

$$\operatorname{lcm}(a,b) = 2^{e_2} 3^{e_3} \cdots \text{ where } e_p = \max(a_p,b_p)$$

Applications of Unique Prime Factorization

Proposition 5.1: n is a kth power if and only if all exponents in its prime factorization are multiples of k

Example: Find A such that $\frac{2}{3}A$ is a cube

Let $A = 2^a 3^b 5^c \cdots$ be the prime factorization of A

Then $\frac{2}{3}A^2 = 2^{2a+1}3^{2b-1}5^{2c}\cdots$ means that each exponent is a multiple of 3 Thus

 $3 \mid 2a+1 \implies a=1$ $3 \mid 2b-1 \implies b=2$ $3 \mid 2c \implies c$ is a multiple of 3 (same for d, e, \ldots)

Thus $A = 18B^3$ for $B \ge 1$

Irrationality Proof

Show that $\sqrt{3}$ is irrational

BWOC suppose $\sqrt{3} = \frac{a}{b} \implies 3b^2 = a^2$

 $gcd(a,b) = 1 \implies 3 \mid a^2 \implies 3 \mid a \text{ by (UPF)}$

Thus $3b^2 = 9k^2$ for some $k \in \mathbb{Z} \implies b^2 = 3k^2 \implies 3 \mid b$. Contradiction thus $\sqrt{3} \notin \mathbb{Q}$

Theorem 5.3: *n* is not a perfect kth power $\implies \sqrt[k]{n}$ is irrational

Proof By contraposition: Suppose $\sqrt[k]{n} = \frac{a}{b} \implies nb^k = a^k$

Looking at prime factorization, $nb^k = p_1^{x_1+y_1k} \cdots = p_1^{z_1k} \cdots = a^k$

Thus $x_i + y_i k = z_i k \implies x_i = k(z_i - y_i) \implies n$ is a perfect kth power

Rational Root Theorem

Theorem 5.4: For $P(x) = a_n x^n + \cdots + a_1 x + a_0$ with $a_i \in Z$ and $a_n, a_0 \neq 0$, if $r = \frac{u}{v} \in Q$ and gcd(u, v) = 1 and P(u/v) = 0, then $u \mid a_0$ and $v \mid a_n$

Proof: $a_n(\frac{u}{v})^n + \dots + a_1(\frac{u}{v}) + a_0 = 0 \implies a_n u^n + \dots + a_1 u v^{n-1} + a_0 v^n = 0$

Because gcd(u, v) = 1, we have $v \mid a_n$ and $v \mid a_0$

Linear Congruence

 $a \equiv b \pmod{m} \implies m \mid a - b \text{ AND } a = b + km \text{ AND } \gcd(a, n) = \gcd(b, n)$

• Example gcd(1234, 10) = gcd(4, 10) since $1234 \equiv 4 \pmod{10}$

Linear Congruence problem $ax \equiv b \pmod{m}$ can be reduced to a Diophantine Problem with (a, -m, b)

• Let $d = \gcd(g, m)$. Then $d \mid b \implies$ the congruence problem has d distinct solutions mod m

Steps to solve $ax \equiv b \pmod{m}$ where gcd(a, m) = 1

- 1. Convert the problem into Linear Diophantine problem ax my = b
- 2. Use Extended Euclidean Algorithm to find x_0, y_0 such that $ax_0 my_0 = 1$
- 3. Compute $x = bx_0$

Steps to find an inverse of $a \pmod{m}$ with gcd(a, m) = 1

- 1. Convert the problem into Linear Diophantine problem ax my = b
- 2. Use Extended Euclidean Algorithm to find x_0, y_0 such that $ax_0 my_0 = 1$
- 3. $x_0 \pmod{m}$ is the inverse of $a \pmod{m}$

Chinese Remainder Theorem: Given $x \equiv a_i \pmod{m_i}$ for relatively pairwise prime m_i then

$$x \equiv \sum_{i=1}^{n} a_i n_i u_i \qquad n_i = \prod_{j \neq i} m_j \qquad u_i = n_i^{-1} \pmod{m_i}$$

• Can factor composite modulues m into distinct prime powers and solve the system of congruence