Scalable constant k-means approximation via heuristics on well-clusterable data

Cheng Tang

tangch@gwu.edu
Department of Computer Science
George Washington University
Washington, DC, 22202

Claire Monteleoni

cmontel@gwu.edu
Department of Computer Science
George Washington University
Washington, DC, 22202

Supplementary of remaining proofs

Proof of Corollary 1

Proof. We first find a sufficient condition for Algorithm 1 to have a $1+\epsilon$ -approximation. Note, as in the proof of Theorem 1, the approximation guarantee is upper bounded by $(\frac{1}{1-4\gamma})^2$, where $\gamma \leq \frac{\sqrt{f}}{2f}$. So to have a $1+\epsilon$ -guarantee, it suffices to have $(\frac{1}{1-4\frac{\sqrt{f}}{2f}})^2 \leq 1+\epsilon$, which holds if $f=\Omega(\frac{1}{\epsilon^2})$. Now we find a sufficient condition for the success probability to be at least $1-\delta$. It suffices to require that $m\exp(-2(\frac{f}{4}-1)^2w_{\min}^2)\leq \frac{\delta}{2}$ and $k\exp(-mp_{\min})\leq \frac{\delta}{2}$. So we need $\frac{1}{p_{\min}}\log\frac{2k}{\delta}\leq m\leq \frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2)$. Note for this inequality to be possible, we also need $\frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2)\geq \frac{1}{p_{\min}}\log\frac{2k}{\delta}$, imposing an additional constraint on f. Taking \log on both sides and rearrange, we get $(\frac{f}{4}-1)^2\geq \frac{1}{2w_{\min}}\log(\frac{2\delta\log\frac{2k}{\delta}}{p_{\min}})$. Thus, it is sufficient for a $1+\epsilon$ -approximation to hold with probability at least $1-\delta$ if $f=\Omega\left(\sqrt{\log(\frac{1}{\delta\log\frac{k}{\delta}})}+\frac{1}{\epsilon^2}\right)$, and we choose m to be in the interval $[\frac{1}{p_{\min}}\log\frac{2k}{\delta},\frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2)]$.

Proof of Theorem 2

Proof. The proof mostly relies on our analysis of Lloyd's algorithm in [1]. First, Theorem 4 of [1], an analogous result to Theorem 3 here (the former holds w.r.t. $d_{rs}^*(f)$ -center separability [1] instead of the weak center separability here), implies the upper bound on seeding $\|\mu_r - \nu_r^*\| \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}} \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}}, \forall r \in [k]$, satisfies the condition in Theorem 1[1]. Let $\{\nu_r^{fin}\}$ denote the set of k centroids obtained by running Lloyd's algorithm until convergence with seeding $\{\nu_r^*\}$ obtained from Algorithm 1. Applying Theorem 1 [1] repeatedly, we get $\max_r \|\nu_r^{fin} - \mu_r\| \leq \frac{128}{9f} \sqrt{\frac{\phi_r}{n_r}}$. Now we can proceed using the proof of Theorem 1 in this paper, only substituting γ with a tighter bound, that is, $\gamma \leq \frac{128}{f} = O(\epsilon)$ when $f = \Omega(\frac{1}{\sqrt{\epsilon}})$, which guarantees $\frac{1}{(1-4\gamma)^2} \leq 1 + \epsilon$. So the dependence of f on ϵ is now $\Omega(\frac{1}{\sqrt{\epsilon}})$.

Proof of Lemma 1

Proof. $\|x-\mu_s\| \geq \|x-\nu_s^*\| - \|\mu_s-\nu_s^*\| \geq \frac{1}{2}\|\nu_s^*-\nu_r^*\| - \|\mu_s-\nu_s^*\|$, since x is closer to ν_r^* by the Voronoi partition induced by $\{\nu_i^*, i \in [k]\}$. Now $\|\nu_r^*-\nu_s^*\| = \|\nu_r^*-\mu_r+\mu_r-\mu_s+\mu_s-\nu_s^*\| \geq \|\mu_r-\mu_s\| - \|\nu_s^*-\mu_s\| - \|\nu_r^*-\mu_r\| \geq (1-2\gamma)\|\mu_r-\mu_s\|$, by definition of γ . This implies $\|x-\mu_s\| \geq (\frac{1}{2}-\gamma)\|\mu_r-\mu_s\| - \|\mu_s-\nu_s^*\| \geq (\frac{1}{2}-2\gamma)\|\mu_r-\mu_s\|$ where $\|\mu_r-\mu_s\| \geq \frac{1}{\gamma}\|\nu_s^*-\mu_s\|$

and
$$\|\mu_r - \mu_s\| \ge \frac{1}{\gamma} \|\nu_r^* - \mu_r\|$$
. Finally, $\|x - \mu_r\| \le \|\mu_r - \nu_r^*\| + \|x - \nu_r^*\| \le \|\mu_r - \nu_r^*\| + \|x - \nu_s^*\| \le \|\mu_r - \nu_r^*\| + \|x - \mu_s\| + \|\mu_s - \nu_s^*\| \le 2\frac{1}{\frac{1}{2\gamma} - 2} \|x - \mu_s\| + \|x - \mu_s\| = \frac{1}{1 - 4\gamma} \|x - \mu_s\|.$

Proof of Lemma 2

Proof. Consider G_{\max} obtained by adding all edges in E_{in}^* to G_0 . Clearly, G_{\max} has k connected components, where each component corresponds to a vertex set V_r^* for some $r \in k$. Adding any more edges from E_{out}^* to G_{\max} will reduce the number of components to k-1. Furthermore, any $e \in E_{out}^*$ can only be added to G_{SL} after all edges in E_{in}^* are added. This means the algorithm must stop before any edges in E_{out}^* are added. This in the final solution G_{SL} , if not equal to G_{\max} , can be obtained by removing edges in G_{\max} . Since removing edges can only maintain or disconnect existing connected components and G_{SL} has the same number of connected components as that of G_{\max} , G_{SL} must have exactly the same k connected components as those of G_{\max} , so each component V_{SL}^r of G_{SL} corresponds to exactly one cluster V_r^* for some r.

Proof of Lemma 3

Proof. We first show without any assumption, if we sample X i.i.d. uniformly at random, then for each optimal cluster T_r , if $\nu_i \in T_r$, then $\|\nu_i - \mu_r\|$ satisfies the bound in A with high probability. Let $q := \|\nu_i - \mu_r\|^2$, we have $0 \le q \le \max_{x \in T_r} \|x - \mu_r\|^2$ and $E[q|\nu_i \in T_r] = \frac{\sum_{x \in T_r} \|x - \mu_r\|^2}{n_r} = \frac{\phi_*^r}{n_r}$. Then applying Hoeffding's bound, we get, $Pr\{q - Eq \ge (\frac{f}{4} - 1)\frac{\phi_*^r}{n_r}|\nu_i \in T_r\} \le \exp\{-\frac{2[(\frac{f}{4} - 1)\frac{\phi_*^r}{n_r}]^2}{(\max_{x \in T_r} \|x - \mu_r\|^2)^2}\}$ Substituting w_{\min} for every r and applying union bound, we get $Pr(A^c) \le m \exp(-2(\frac{f}{4} - 1)^2 w_{\min}^2)$. Now the probability of a cluster T_r not being seeded after m trials is $(1 - p_r)^m \le \exp(-mp_r)$. Applying union bound again, we get $Pr(A \cap B) \ge 1 - m \exp(-2(\frac{f}{4} - 1)^2 w_{\min}^2) - k \exp(-mp_{\min})$. \square

Proof of Lemma 4

Proof. Let π(i) = π(j) = r. Then
$$\|\nu_i - \nu_j\| \le \|\nu_i - \mu_r\| + \|\nu_j - \mu_r\| \le 2\frac{\sqrt{f}}{2}\sqrt{\frac{\phi_*^r}{n_r}}$$
. Let π(p) = t, π(q) = s. Then $\|\nu_p - \nu_q\| \ge \|\mu_t - \mu_s\| - \|\nu_p - \mu_t\| - \|\nu_q - \mu_s\| \ge f\sqrt{\phi_1 + \phi_2}(\frac{1}{\sqrt{n_t}} + \frac{1}{\sqrt{n_s}}) - \frac{\sqrt{f}}{2}\sqrt{\frac{\phi_*^t}{n_t}} - \frac{\sqrt{f}}{2}\sqrt{\frac{\phi_*^s}{n_s}} > \frac{f}{2}\sqrt{\phi_1 + \phi_2}(\frac{1}{\sqrt{n_t}} + \frac{1}{\sqrt{n_s}})$, by center-separability. On the other hand, recall α := min_{r≠s} $\frac{n_r}{n_s}$, we get $\sqrt{\frac{1}{n_r}} \le \min\{\frac{1}{\sqrt{\alpha n_t}}, \frac{1}{\sqrt{\alpha n_s}}\}$, so $2\sqrt{f}\sqrt{\frac{\phi_*^r}{n_r}} \le \sqrt{f}\phi_*^r(\frac{1}{\sqrt{\alpha n_t}} + \frac{1}{\sqrt{\alpha n_s}})$. Since $f > \frac{1}{\alpha}$, we get $\|\nu_i - \nu_j\| \le \sqrt{f}\sqrt{\frac{\phi_*^r}{n_r}} \le \frac{f}{2}\sqrt{\phi_*^r}(\frac{1}{\sqrt{n_t}} + \frac{1}{\sqrt{n_s}}) < \frac{f}{2}\sqrt{\phi_1 + \phi_2}(\frac{1}{\sqrt{n_t}} + \frac{1}{\sqrt{n_s}}) < \|\nu_p - \nu_q\|$.

Proof of Theorem 3

Proof. Consider $A\cap B$. Under this event, we know that the optimal clustering T_* induces a non-degenerate k-clustering of $\{\nu_i, i\in [m]\}$, which we denote by $\{V_r^*, r\in [k]\}$ with $V_r^*:=T_r\cap \{\nu_i, i\in [m]\}, \forall r\in [k]\}$. In addition, Lemma 4 implies the bi-partite edge sets E_{in}^* and E_{out}^* induced by $\{V_r^*, r\in [k]\}$ satisfies $\forall e_1\in E_{in}^*, e_2\in E_{out}^*, \ w(e_1)< w(e_2)$. Thus, by Lemma 2, if we apply Single-Linkage on $G_0=(\cup_{r\in [k]}V_r^*,\emptyset)$ until k components remain, each returned connected component \tilde{S}_r corresponds to exactly one cluster V_r^* . In addition, with the seeding guarantee by event $A, \forall r\in [k], \|m(V_r^*)-\mu_r\|\leq \frac{1}{|V_r^*|}\sum_{\nu_i\in V_r^*}\|\nu_i-\mu_r\|\leq \frac{\sqrt{f}}{2}\sqrt{\frac{\phi_r^*}{n_r}}$. Noting $Pr(A\cap B)\geq 1-m\exp(-2(\frac{f}{4}-1)^2w_{\min}^2)-k\exp(-mp_{\min})$ by Lemma 3 and $m(V_r^*)=\nu_r^*$ completes the proof.

Theorem (Theorem 1 of [1]). Assume there is a dataset-solution pair (X, T_*) satisfying $d_{rs}^*(f)$ -center separability, with f > 32. If at iteration t, $\forall r \in [k], \Delta_r^t < \beta_t \frac{\sqrt{\phi_*}}{\sqrt{n_r}}$ with $\beta_t < \max\{\gamma \frac{f}{8}, \frac{128}{9f}\}$ with $\gamma < 1$, then $\forall r \in [k], \Delta_r^{t+1} < \beta_{t+1} \frac{\sqrt{\phi_*}}{\sqrt{n_r}}$, with $\beta_{t+1} < \max\{\frac{\gamma}{2} \frac{f}{8}, \frac{128}{9f}\}$.

Theorem (Theorem 4 of [1]). Assume (X,T_*) satisfies $d_{rs}^*(f)$ -center separability with $f>\frac{1}{\alpha}$. If we obtain seeds $\{\nu_r^*,r\in[k]\}$ by applying the Heuristic clustering algorithm (Algorithm 1 here) to X. Then $\forall \mu_r, \exists \nu_r^*$ s.t. $\|\mu_r - \nu_r^*\| \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}}$ with probability at least $1-m\exp(-2(\frac{f}{4}-1)^2w_{\min}^2)-k\exp(-mp_{\min})$.

References

[1] Anonymous Authors. On Lloyd's algorithm: new theoretical insights for clustering in practice. Submitted, 2015.