TTIC 31250 An Introduction to the Theory of Machine Learning

Learning from noisy data, intro to SQ model

Avrim Blum 05/04/20

<u>Learning when there is no perfect</u>
<u>predictor</u>

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need $O(1/\epsilon^2)$ samples versus $O(1/\epsilon)$.
- · What about polynomial-time algorithms? Seems harder.
 - Given data set S, finding apx best conjunction is NP-hard.
 - Can do other things, like minimize hinge-loss, but may be a big gap wrt error rate ("0/1 loss").
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.

•1

•2

Learning from Random Classification Noise

- PAC model, target $f \in C$, but assume labels from noisy channel.
- "noisy" oracle $EX^{\eta}(f,D)$. η is the noise rate. (think $\eta = \frac{1}{4}$)
 - Example x is drawn from D.
 - With probability 1- η see label $\ell(x) = f(x)$.
 - With probability η see label $\ell(x) = 1 f(x)$.
- E.g., if h has non-noisy error p, what is the noisy error rate? (If $\Pr[h(x) \neq f(x)] = p$, what is $\Pr[h(x) \neq \ell(x)]$?)
 - $p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta)$.

•3

Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification noise if for any $f \in C$, any distrib D, any $\eta < 1/2$, any $\epsilon, \delta > 0$, given access to $EX^{\eta}(f, D)$, A finds a hyp h that is ϵ -close to f, with probability $\geq 1-\delta$.

Want time poly($1/\epsilon$, $1/\delta$, $1/(1-2\eta)$, n, size(f))

- Q: is this a plausible goal? We are asking the learner to get closer to f than the data is.
- A: OK because noisy error rate is linear in true error rate (squashed by 1-2η)

•4

Notation

- Use "Pr[...]" for probability with respect to non-noisy distribution.
- Use " $Pr_{\eta}[...]$ " for probability with respect to noisy distribution.

<u>Learning OR-functions</u> (assume monotone)

- Let's assume noise rate η is known.
- Say $p_i = Pr[f(x)=0 \text{ and } x_i=1]$ (if x_i in target then $p_i = 0$)
- Any h that includes all x_i such that p_i =0 and no x_i such that $p_i > \varepsilon/n$ is good. (e.g., think of $f = x_1 \lor x_3 \lor x_5$)
- So, just need to estimate p_i to $\pm \frac{\epsilon}{2n}$.
 - Rewrite as $p_i = Pr[f(x)=0|x_i=1] \times Pr[x_i=1]$.
 - 2^{nd} part unaffected by noise (and if tiny, then p_i is small for sure). Define q_i as 1^{st} part.
 - Then $\Pr_{\eta}[\ell(x)=0|x_i=1] = q_i(1-\eta)+(1-q_i)\eta = \eta+q_i(1-2\eta)$.
 - So, enough to approx LHS to $\pm O\left(\frac{\epsilon}{2n}(1-2\eta)\right)$.

•5

•6

Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with smallest value of $Pr_n[\ell(x)=0|x_i=1]$.

(e.g., $f = x_1 \lor x_3 \lor x_5$)

Generalizing the algorithm

Basic idea of algorithm was:

- See how can learn in non-noisy model by asking about probabilities of certain events with some "slop".
- Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.

Let's formalize this in notion of "statistical query" (SQ) algorithm. Will see how to convert any SQ alg to work with noise.

•7

•8

The Statistical Query Model

- No noise.
- Algorithm asks: "what is the probability a labeled example will have property χ ? Please tell me up to additive error τ ." (e.g., $x_i=1$ and label is negative)
 - Formally, $\chi: X \times \{0,1\} \to \{0,1\}$. Must be poly-time computable. $\tau \ge 1/\text{poly}(...)$.
 - Let $P_{\chi} = \Pr_{\chi \in \mathcal{P}}[\chi(x,f(x))=1].$
 - World responds with $P'_{\chi} \in [P_{\chi} \tau, P_{\chi} + \tau]$. [can extend to $E[\chi]$ for [0,1]-valued or vector-valued χ]
- May repeat poly(...) times. Can also ask for unlabeled data. Must output h of error $\leq \epsilon$. No δ in this model.

•9

The Statistical Query Model

- Examples of queries:
 - What is the probability that x_i =1 and label is negative?
 - What is the error rate of my current hypothesis h? $[\chi(x,\ell)=1 \text{ iff } h(x) \neq \ell]$
- Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That's why need $\tau \ge 1/\text{poly}(...)$.]
- To learn OR-functions, ask for Pr[x_i=1 and f(x)=0] with $\tau = \frac{\epsilon}{2n}$.

 Produce OR of all x_i s.t. $P'_{\chi} \leq \frac{\epsilon}{2n}$.

•10

The Statistical Query Model

- Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for $E[f(x)x:h(x)\ne f(x)]$ (formally define vector-valued $\chi=f(x)x$ if $h(x)\ne f(x)$, and 0 otherwise. Then divide by $Pr[h(x)\ne f(x)]$.)
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
- Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.

SQ-learnable \Rightarrow (PAC+Noise)-learnable

- Given query χ , need to estimate from noisy data. Idea:
 - Break into part predictably affected by noise, and part unaffected.
 - Estimate these parts separately.
 - Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
- Running example: $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$.

•11

•12

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for " $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$ "?
- Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] +$ $Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in CLEAN$).
- What about the 2nd part?

•13

So, any SQ algorithm can automatically

be simulated in the presence of random

classification noise

Characterizing what's learnable using **SQ** algorithms

- Key tool: Fourier analysis of boolean functions.
- Sounds scary but it's a cool ideal
- Let's think of functions from $\{0,1\}^n \rightarrow \{-1,1\}$.
- View function f as a vector of 2^n entries: $(\sqrt{D[000]}f(000), \sqrt{D[001]}f(001), ..., \sqrt{D[x]}f(x), ...)$
- What is $\langle f, f \rangle$? What is $\langle f, g \rangle$?
- What is an orthonormal basis?

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for " $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$ "?
- Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] +$ $Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Can estimate $Pr[x \in NOISY]$.
- Also estimate $P_{\eta} \equiv Pr_{\eta}[\chi(x,\ell)=1 \mid x \in NOISY]$.
- Want $P \equiv Pr[\chi(x,f(x))=1 \mid x \in NOISY].$
- Write $P_{\eta} = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$. So, $P = (P_{\eta} \eta)/(1-2\eta)$.
- Just need to estimate P_{η} to additive error $\tau(1-2\eta)$.
- If don't know η, can have "guess and check" wrapper.

•14

Characterizing what's learnable using SQ algorithms

Say that f,g uncorrelated if $\Pr_{x \in \mathcal{P}}[f(x) = g(x)] = \frac{1}{2}$.

Def: the SQ-dimension of a class C wrt D is the size of the largest set $C' \subseteq C$ s.t. for all $f, g \in C'$,

$$\left| \Pr_{D}[f(x) = g(x)] - \frac{1}{2} \right| < \frac{1}{|C'|}.$$

(size of largest set of nearly uncorrelated functions in C)

- Theorem 1: if $SQDIM_D(C) = poly(n)$ then you can weak-learn C over D by SQ algs. [error rate $\leq \frac{1}{2} - \frac{1}{poly(n)}$]
- Theorem 2: if $SQDIM_D(C)$ > poly(n) then you can't weak-learn C over D by SQ algs.

•16

•17

•15