

INFORME ENSAYO CURVAS CARACTERÍSTICAS DE UNA BOMBA CENTRÍFUGA

ICM557 Laboratorio de Maquinas

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: 2665

Fecha: 9 diciembre de 2020

1. INTRODUCCIÓN

A través de una experiencia de laboratorio se dará a conocer el comportamiento de una bomba centrífuga bajo el efecto de distintas velocidades. Se contestará una serie de preguntas y usado los gráficos obtenidos se concluirá la dirección que toma el funcionamiento de sistemas como este.

Todo esto se hará basado en lo aprendido en clases y apoyado de algunos libros detallados en el presente informe.

2. ÍNDICE

Introducción	2
Índice	3
Objetivos	4
Procedimientos / Parámetros	4
Resultados	5
Preguntas	9
Conclusiones	12

3. OBJETIVOS

- Comprender el funcionamiento y comportamiento de una bomba centrífuga.
- Determinar y explicar los gráficos relacionados al sistema.

4. PROCEDIMIENTO / PARÁMETROS

Una vez puesto en marcha el sistema de deben corroborar y medir ciertos parámetros.

Las mediciones que se deben medir son:

- Velocidad del ensayo: n [rpm]
- Presión atmosférica: Patm [mmHg]
- Temperatura del agua del estanque: ta [°C]
- Fuerza medida en la balanza: F_x [kp]
- Presión de descarga: pdx [%]
- Presión de aspiración: pax [%]
- Velocidad de la bomba: nx [rpm]

Se mantiene la velocidad constante y se repiten las mediciones reiteradas veces (todas estas tabuladas), para así poder trazar las curvas. Se realiza esto para 3 velocidades presentes en el ensayo.

4. RESULTADOS

Primero se señalará la tabla de valores medidos en el práctico:

- Para una velocidad de 3070 [rpm]:

It	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	T	P _{atm}
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

Tabla 1: Valores medidos para una velocidad de 3070 [rpm]

- Para una velocidad de 2900 [rpm]:

It	n	cpax	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

Tabla 2: Valores medidos para una velocidad de 2900 [rpm]

- Para una velocidad de 2700 [rpm]:

It		cnov.	cpdx		201	n du	Δhx	Fx	Т	D
10	n	cpax	срах	nx	pax	pdx	ΔΠΧ	FX		P _{atm}
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Tabla 3: Valores medidos para 2700 [rpm]

Luego se sigue con los valores calculados usando conocimiento y fórmulas:

- Primero para una velocidad de 3070 [rpm]:

It	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	$\eta_{\rm gl}$	U ₂	cm ₂	Ф	Ψ
1	108	107,824	-1,165	2,765	3,93	3,9172	3,483	3,466	1,150	33,174	21,701	2,906	0,134	0,163
2	100,8	100,603	-0,915	5,605	6,52	6,4946	3,801	3,779	1,779	47,071	21,701	2,712	0,125	0,270
3	97,2	97,010	-0,635	7,925	8,56	8,5266	4,050	4,026	2,252	55,930	21,701	2,615	0,120	0,355
4	93,6	93,417	-0,415	9,965	10,38	10,3395	4,185	4,161	2,629	63,191	21,701	2,518	0,116	0,431
5	86,4	86,203	-0,175	11,805	11,98	11,9256	4,277	4,248	2,799	65,875	21,701	2,323	0,107	0,497
6	79,2	78,994	0,055	13,925	13,87	13,7980	4,324	4,290	2,967	69,158	21,701	2,129	0,098	0,575
7	64,8	64,632	0,405	16,685	16,28	16,1955	4,347	4,313	2,849	66,069	21,701	1,742	0,080	0,675
8	57,6	57,450	0,645	18,645	18	17,9066	4,279	4,245	2,800	65,964	21,701	1,548	0,071	0,746
9	46,8	46,678	0,885	19,845	18,96	18,8616	4,143	4,111	2,397	58,305	21,701	1,258	0,058	0,786
10	32,4	32,326	1,135	21,925	20,79	20,6955	3,825	3,799	1,821	47,943	21,701	0,871	0,040	0,862
11	21,6	21,544	1,315	22,925	21,61	21,4978	3,509	3,482	1,261	36,212	21,701	0,581	0,027	0,895
12	0	0,000	1,935	25,005	23,07	22,9502	2,558	2,538	0,000	0,000	21,701	0,000	0,000	0,956

Tabla 4: Valores calculados para una velocidad de 3070 [rpm]

- Luego para una velocidad de 2900 [rpm]:

It	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	Φ	Ψ
1	104,4	104,292	-0,965	2,645	3,61	3,603	2,925	2,916	1,023	35,074	20,499	2,811	0,137	0,168
2	100,8	100,696	-0,725	5,245	5,97	5,958	3,139	3,129	1,633	52,193	20,499	2,714	0,132	0,278
3	97,2	97,100	-0,485	6,725	7,21	7,195	3,309	3,299	1,902	57,645	20,499	2,617	0,128	0,336
4	93,6	93,503	-0,245	8,725	8,97	8,951	3,459	3,448	2,278	66,077	20,499	2,520	0,123	0,418
5	86,4	86,311	-0,065	10,605	10,67	10,648	3,523	3,512	2,502	71,234	20,499	2,326	0,113	0,497
6	75,6	75,548	0,225	12,365	12,14	12,123	3,586	3,578	2,493	69,675	20,499	2,036	0,099	0,566
7	64,8	64,711	0,445	14,365	13,92	13,882	3,610	3,595	2,445	68,026	20,499	1,744	0,085	0,648
8	57,6	57,560	0,695	16,245	15,55	15,529	3,586	3,578	2,433	67,997	20,499	1,551	0,076	0,725
9	50,4	50,348	0,885	17,885	17	16,965	3,416	3,406	2,325	68,274	20,499	1,357	0,066	0,792
10	32,4	32,367	1,115	19,405	18,29	18,252	3,181	3,172	1,608	50,707	20,499	0,872	0,043	0,852
11	18	17,975	1,345	20,645	19,3	19,247	2,926	2,914	0,942	32,319	20,499	0,484	0,024	0,898
12	0	0,000	1,835	22,605	20,77	20,713	2,008	1,999	0,000	0,000	20,499	0,000	0,000	0,967

Tabla 5: Valores calculados para una velocidad de 290 [rpm]

- Finalmente para una velocidad de 2700 [rpm]

16	Qx	0	xed	m also	Нх	н	Nex	Ne	Nh	1200	U ₂	1222	Ф	Ψ
IL.	ЦX			pdx		п	ivex	ive	INTI	$\eta_{\rm gl}$		cm ₂	Ψ	
1	100,8	100,725	-0,685	2,485	3,17	3,165	2,305	2,300	0,868	37,733	19,085	2,715	0,142	0,170
2	97,2	97,092	-0,435	4,365	4,8	4,789	2,465	2,457	1,266	51,521	19,085	2,617	0,137	0,258
3	93,6	93,496	-0,265	5,965	6,23	6,216	2,584	2,576	1,582	61,421	19,085	2,520	0,132	0,335
4	90	89,900	-0,115	7,405	7,52	7,503	2,664	2,655	1,836	69,159	19,085	2,423	0,127	0,404
5	82,8	82,739	0,125	9,205	9,08	9,067	2,743	2,736	2,042	74,626	19,085	2,230	0,117	0,488
6	75,6	75,516	0,365	10,925	10,56	10,537	2,783	2,774	2,166	78,082	19,085	2,035	0,107	0,567
7	64,8	64,728	0,595	13,005	12,41	12,382	2,783	2,774	2,182	78,653	19,085	1,745	0,091	0,667
8	57,6	57,557	0,795	14,605	13,81	13,790	2,743	2,736	2,161	78,957	19,085	1,551	0,081	0,743
9	50,4	50,363	1,015	16,125	15,11	15,088	2,584	2,578	2,068	80,243	19,085	1,357	0,071	0,812
10	43,2	43,152	1,245	17,565	16,32	16,284	2,346	2,338	1,913	81,812	19,085	1,163	0,061	0,877
11	25,2	25,172	1,375	18,285	16,91	16,872	2,087	2,081	1,156	55,571	19,085	0,678	0,036	0,909
12	0	0,000	1,845	19,805	17,96	17,920	1,551	1,546	0,000	0,000	19,085	0,000	0,000	0,965

Tabla 6: Valores calculados para una velocidad de 2700 [rpm]

A continuación, se presentarán las gráficas de rendimiento y potencia v/s caudal.

RENDIMIENTO V/S CAUDAL

Gráfico 1: Gráfico de rendimiento y potencia v/s caudal

Y luego:

POTENCIA V/S CAUDAL

Gráfico 2: Gráfico de Potencia v/s caudal

5. PREGUNTAS

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Cuando la bomba opera a 2700 [rpm] y un caudal de 43 [m3/h], y se da un rendimiento máximo cercano al 82%.

¿Las curvas tienen la forma esperada?

Las curvas siguen la forma espera, según catálogos y lo aprendido en clases de laboratorio. Se admite, como siempre, variaciones dado errores instrumentales o humanos al momento de medir.

¿Cuál es la potencia máxima consumida?

La potencia máxima consumida por el eje se aprecia a los 3070 [rpm] y tiene un valor de 4.4 [kW].

¿Qué tipo de curvas son?

Ambas ascienden y descienden de forma curva, asemejándose a una parábola. Curvas parabólicas.

A continuación:

¿La nube de puntos que conforman esta curva son muy dispersos?

Los puntos tienden a alejarse en la curva de los 2700 [rpm]. Los datos no son dispersos.

¿Al observar todas las bombas anteriores, que tipo de bomba centrífuga es?

Según lo conversado en los grupos de clases (por zoom), puede ser una bomba de tipo Francis.

Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta.

1			
	Ns	Ns	Ns
	3070 rpm	2900 rpm	2700 rpm
	135,40	125,79	115,09
	130,79	123,60	113,00
	128,43	121,37	110,89
	126,03	119,10	108,73
	121,06	114,43	104,31
	115,89	107,06	99,65
	104,83	99,08	92,26
	98,83	93,45	87,00
	89,09	87,40	81,38
	74,14	70,07	75,33
	60,52	52,22	57,54
1	98	50000	950

Tabla 7: Velocidades específicas para distintos [rpm]

En la décima iteración se da un punto óptimo a los 2700 rpm, y la velocidad específica es de 75.33 (iteración n° 10). Según la información aprendida y conversada en los grupos de clases, es una característica para pensar que es bomba tipo Francis y helicoidal.

5. CONCLUSIONES

Se logra comprender el funcionamiento de bombas centrífugas. Mediante la alteración de velocidades en rpm. Se concluye de forma experimental que se trata de una bomba de tipo Francis.

Se evidencia la coherencia con lo aprendido en la asignatura de Turbomáquinas.