Entropy, Free Energy, and Equilibrium

Chemical Thermodynamics

để biết 1 pứ có khả năng xảy ra hay không

Gibbs Free Energy and Chemical Equilibrium

Spontaneous process: Equilibrium process:

Spontaneous Physical and Chemical Processes

- A waterfall runs downhill
- A lump of sugar dissolves in a cup of coffee
- At 1 atm, water freezes below 0 °C and ice melts above 0 °C
- Heat flows from a hotter object to a colder object
- A gas expands in an evacuated bulb
- Iron exposed to oxygen and water forms rust

nonspontaneous

- Một thác nước chảy xuống đồi
- Một miếng đường tan trong một tách cà phê
- Ó 1 atm, nước đóng băng dưới 0 oC và băng tan trên 0 oC
- Nhiệt chảy từ vật nóng hơn sang vật lanh hơn
- Khí mở rộng trong bóng thủy tinh được bơm chân không
- Sắt tiếp xúc với oxy và nước tạo thành gỉ

spontaneous

nonspontaneous

Does a decrease in enthalpy mean a reaction proceeds spontaneously?

Spontaneous reactions

$$CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(f) \quad \Delta H^{0} = -890.4 \text{ kJ/mol}$$

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(f) \quad \Delta H^{0} = -56.2 \text{ kJ/mol}$$

$$H_{2}O(s) \longrightarrow H_{2}O(f) \quad \Delta H^{0} = 6.01 \text{ kJ/mol}$$

$$NH_{4}NO_{3}(s) \xrightarrow{H_{2}O} NH_{4}^{+}(aq) + NO_{3}^{-}(aq) \quad \Delta H^{0} = 25 \text{ kJ/mol}$$

Entropy (S) is a measure of the randomness or disorder of a system.

order
$$\int S \int disorder \int S \int \Delta S = S_f - S_i$$

If the change from initial to final results in an increase in randomness

$$S_f > S_i$$
 $\Delta S > 0$

For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state

$$S_{\text{solid}} < S_{\text{liquid}} << S_{\text{gas}}$$
 $H_2O(s) \longrightarrow H_2O(l) \qquad \Delta S > 0$

Entropy

$$S = k \ln W$$
 $W = \text{number of microstates}$

$$\Delta S = S_f - S_i$$
 $\Delta S = k \ln \frac{W_f}{W_i}$ (k is the Boltzmann constant)
 $W_f > W_i$ then $\Delta S > 0$ $W_f < W_i$ then $\Delta S < 0$

Distributing four particles among two boxes will result in 2⁴ = 16 different microstates

"most probable distribution"

Third Law of Thermodynamics

The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

 $S = k \ln W$

W = 1

S = 0

Processes that lead to an increase in entropy ($\Delta S > 0$)

Example: $Br_2(I) \longrightarrow Br_2(g)$ Example: $I_2(s) \longrightarrow I_2(g)$

 $\Delta S > 0$

How does the entropy of a system change for each of the following processes?

- (a) Condensing water vapor
 - Randomness decreases

- Entropy decreases ($\Delta S < 0$)
- (b) Forming sucrose crystals from a supersaturated solution
 - Randomness decreases
- Entropy decreases ($\Delta S < 0$)
- (c) Heating hydrogen gas from 60 °C to 80 °C
 - Randomness increases

Entropy increases ($\Delta S > 0$)

- (d) Subliming dry ice
 - Randomness increases

Entropy increases ($\Delta S > 0$)

Entropy

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

Examples:

energy, enthalpy, pressure, volume, temperature, entropy

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

TABLE 18.1

Standard Entropy Values (S°) for Some Substances at 25°C

Substance	S° (J/K · mol)
$H_2O(l)$	69.9
$H_2O(g)$	188.7
$\mathrm{Br}_2(l)$	152.3
$Br_2(g)$	245.3
$I_2(s)$	116.7
$I_2(g)$	260.6
C (diamond)	2.4
C (graphite)	5.69
CH ₄ (methane)	186.2
C ₂ H ₆ (ethane)	229.5
He(g)	126.1
Ne(g)	146.2

First Law of Thermodynamics

Energy can be converted from one form to another but energy cannot be created or destroyed.

Second Law of Thermodynamics

The entropy of the **universe** increases in a spontaneous process and remains unchanged in an equilibrium process.

Spontaneous process: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$

Equilibrium process: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$

Entropy Changes in the System (ΔS_{sys})

The **standard entropy of reaction** (ΔS_{rxn}^0) is the entropy change for a reaction carried out at 1 atm and 25 $^{\circ}$ C.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta S_{\text{rxn}}^{0} = [cS^{0}(C) + dS^{0}(D)] - [aS^{0}(A) + bS^{0}(B)]$$

$$\Delta S_{\text{rxn}}^0 = \Sigma n S^0 \text{(products)} - \Sigma m S^0 \text{(reactants)}$$

What is the standard entropy change for the following reaction at 25 $^{\circ}$ C? 2CO $(g) + O_2(g) \longrightarrow 2CO_2(g)$

$$S^{0}(CO) = 197.9 \text{ J/K+mol}$$
 $S^{0}(CO_{2}) = 213.6 \text{ J/K+mol}$ $S^{0}(O_{2}) = 205.0 \text{ J/K+mol}$ $\Delta S^{0}_{rxn} = 2 \text{ x } S^{0}(CO_{2}) - [2 \text{ x } S^{0}(CO) + S^{0}(O_{2})]$ $\Delta S^{0}_{rxn} = 427.2 - [395.8 + 205.0] = -173.6 \text{ J/K+mol}$ 14

Entropy Changes in the System (ΔS_{sys})

When gases are produced (or consumed)

- If a reaction produces more gas molecules than it consumes, $\Delta S^0 > 0$.
- If the total number of gas molecules diminishes, $\Delta S^0 < 0$.
- If there is no net change in the total number of gas molecules, then ΔS^0 may be positive or negative BUT ΔS^0 will be a small number.

What is the sign of the entropy change for the following reaction? $2Zn(s) + O_2(g) \longrightarrow 2ZnO(s)$

The total number of gas molecules goes down, ΔS is negative.

Entropy Changes in the Surroundings (ΔS_{surr})

Exothermic Process $\Delta S_{\text{surr}} > 0$

Endothermic Process $\Delta S_{\text{surr}} < 0$

Entropy Changes in the System and Surroundings

Why does crystallization of a solute occur?

- 1. Entropy of system: $\Delta S_{sys} < 0$ 'solute disorder(initial) > solute disorder(final)'
- 2. Entropy of surrounding: $\Delta S_{\text{surr}} > 0$ 'solvent disorder(initial) < solvent disorder(final)'
- 3. Entropy of universe: $\Delta S_{\text{surr}} + \Delta S_{\text{sys}} > 0$

$$[Cl(H_2O)_6]^-_{(aq)} \longrightarrow Cl^-_{(in solid lattice)} + 6H_2O_{(free, not solvating)}$$

$$H_2O$$
 H_2O
 H_2O

Mobile aquo ion

Ion immobilized within a 3-D repeat lattice

Mobile water molecules

Entropy Changes in the System and Surroundings

Why is burning hydrogen gas in air (to form liquid water) a spontaneous reaction?

$$O_{2(g)} + 2H_{2(g)} \longrightarrow 2H_2O_{(1 \text{ and } g)}$$

- 1. Entropy of system: $\Delta S_{\text{sys}} < 0$, easily quantified
- Three gas molecules (intial) > Two molecules (final)
- 2. Entropy of surrounding: $\Delta S_{\text{surr}} > 0$
- Surrounding air absorbs the energy (heat and sound) liberated during the reaction:
- Quantification of the influence of the surroundings on the reaction is usually not a trivial problem.
- 3. Entropy of universe: $\Delta S_{\text{surr}} + \Delta S_{\text{sys}} > 0$

Gibbs Free Energy

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$$

$$\Delta S_{\text{surr}} = -\Delta H_{\text{sys}}/T$$
 $\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + -\Delta H_{\text{sys}}/T$

$$T\Delta S_{univ} = T\Delta S_{sys} + -\Delta H_{sys}$$

$$\Delta G = -T\Delta S_{univ} = \Delta H_{sys} - T\Delta S_{sys}$$

Spontaneous process: $\Delta S_{univ} > 0$

$$\Delta G = -T\Delta S_{univ} = \Delta H_{sys} - T\Delta S_{sys} < 0$$

Nonspontaneous process: $\Delta S_{univ} < 0$

$$\Delta G = -T\Delta S_{univ} = \Delta H_{sys} - T\Delta S_{sys} > 0$$

Nonspontaneous process: $\Delta S_{univ} = 0$, $\Delta G = 0$

Gibbs Free Energy

For a constant temperature and constant pressure process:

$$\Delta G = \Delta H_{\text{sys}} - T\Delta S_{\text{sys}}$$

- $\Delta G < 0$ The reaction is spontaneous in the forward direction.
- $\Delta G > 0$ The reaction is nonspontaneous as written. The reaction is spontaneous in the reverse direction.
- $\Delta G = 0$ The reaction is at equilibrium.

The **standard free-energy of reaction (\triangle G_{rxn}^0)** is the free-energy change for a reaction when it occurs under standard-state conditions.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta G_{\text{rxn}}^{0} = [c\Delta G_{f}^{0}(C) + d\Delta G_{f}^{0}(D)] - [a\Delta G_{f}^{0}(A) + b\Delta G_{f}^{0}(B)]$$

$$\Delta G_{\text{rxn}}^0 = \sum n \Delta G_f^0$$
 (products) - $\sum m \Delta G_f^0$ (reactants)

Standard free energy of formation ($\triangle G_f^0$) is the free-energy change that occurs when 1 mole of the compound is formed from its elements in their standard states.

 ΔG_f^0 of any element in its stable form is zero.

TABLE 18.2

Conventions for Standard States

State of Matter	Standard State
Gas	1 atm pressure
Liquid	Pure liquid
Solid	Pure solid
Elements*	$\Delta G_{\rm f}^{\circ} = 0$
Solution	1 molar con- centration

^{*}The most stable allotropic form at 25°C and 1 atm.

What is the standard free-energy change for the following reaction at 25 °C?

$$2C_6H_6(h) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(h)$$

$$\Delta G_{rxn}^0 = \Sigma n \Delta G_f^0$$
 (products) - $\Sigma m \Delta G_f^0$ (reactants)

$$\Delta G_{rxn}^0 = [12\Delta G_f^0 (CO_2) + 6\Delta G_f^0 (H_2O)] - [2\Delta G_f^0 (C_6H_6)]$$

$$\Delta G_{rxn}^0 = [12x-394.4 + 6x-237.2] - [2x124.5] = -6405 \text{ kJ/mol}$$

Is the reaction spontaneous at 25 °C?

$$\Delta G^0 = -6405 \text{ kJ/mol} < 0$$

spontaneous

• When ΔG is negative, a process will proceed spontaneously and is referred to as **exergonic**.

• The spontaneity of a process can depend on the temperature.

$$\Delta G = \Delta H - T \Delta S$$

TABLE	ABLE 18.3 Factors Affecting the Sign of ΔG in the Relationship $\Delta G = \Delta H - T \Delta S$		
ΔH	ΔS	ΔG	Example
+	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2\text{HgO}(s) \longrightarrow 2\text{Hg}(l) + \text{O}_2(g)$
+	_	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3O_2(g) \longrightarrow 2O_3(g)$
_	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$
_	_	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$

Temperature and Spontaneity of Chemical Reactions

$$CaCO_3$$
 (s) \longrightarrow CaO (s) + CO_2 (g)

Equilibrium Pressure of CO₂

$$\Delta H^0 = 177.8 \text{ kJ/mol}$$

$$\Delta S^0 = 160.5 \text{ J/K-mol}$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

At 25 °C, $\Delta G^0 = 130.0 \text{ kJ/mol}$

$$\Delta G^0 = 0$$
 at 835 °C

Gibbs Free Energy and Phase Transitions

$$\Delta G^0 = 0 = \Delta H^0 - T \Delta S^0$$

$$H_2O$$
 (1) \longrightarrow H_2O (g)

$$\Delta S = \frac{\Delta H}{T} = \frac{40.79 \text{ kJ/mol}}{373 \text{ K}}$$

 $= 1.09 \times 10^{-1} \text{ kJ/K-mol}$

= 109 J/K-mol

Time

Gibbs Free Energy and Chemical Equilibrium

$$\Delta G = \Delta G^0 + RT \ln Q$$

R is the gas constant (8.314 J/K·mol)

T is the absolute temperature (K)

Q is the reaction quotient

At Equilibrium

$$\Delta G = 0$$
 $Q = K$

$$0 = \Delta G^0 + RT \ln K$$

$$\Delta G^0 = -RT \ln K$$

Free Energy Versus Extent of Reaction

$\Delta G^0 = -RT \ln K$

TABLE 18.4

Relation Between ΔG° and K as Predicted by the Equation $\Delta G^{\circ} = -RT \ln K$

K	In <i>K</i>	ΔG°	Comments
> 1	Positive	Negative	Products are favored over reactants at equilibrium.
= 1	0	0	Products and reactants are equally favored at equilibrium.
< 1	Negative	Positive	Reactants are favored over products at equilibrium.

Coupled Reactions

Example: Alanine + Glycine → Alanylglycine

$$\Delta G^0 = +29 \text{ kJ}$$
 $K < 1$

ATP + H_2O + Alanine + Glycine \longrightarrow ADP + H_3PO_4 + Alanylglycine

$$\Delta G^0 = -2 \text{ kJ} \qquad K > 1$$

Mechanical Analog of Couple Reactions

Make the smaller weight move upward (a nonspontaneous process) by coupling it with the falling of a larger weight.

The Structure of ATP and ADP in Ionized Forms

Adenosine triphosphate (ATP)

Adenosine diphosphate (ADP)