Resolvendo

Lista 1

Universidade Federal de Minas Gerais

Departamento de Computação

Projeto e Análise de Algoritmos - 2024.2

Professor: Marcio Costa Santos

Lista 1

Exercício 1. Determine a função de complexidade do algoritmo abaixo e indique sua complexidade de melhor caso, caso médio e pior caso

- Pseudocódigo Q1
 - $\, \circ \,$ **Entrada**: Vetor de n inteiros a
 - \circ $cnt \leftarrow 0$;
 - \circ para todo $i \leftarrow 0$ até n-1 faça
 - $lacksquare se \ a[i]\%2=0 \ {
 m então}$
 - $cnt \leftarrow cnt + 1$;
 - o retorna cnt;

Contando a quantidade de passos:

- Pseudocódigo Q1
 - \circ Entrada: Vetor de n inteiros a [0]
 - $\circ cnt \leftarrow 0$; [C_1]
 - \circ para todo $i \leftarrow 0$ até n-1 faça [Inicial: C_2 ; por ciclo: C_3]
 - ullet se a[i]%2=0 então [Por ciclo: C_4]
 - $cnt \leftarrow cnt + 1$; [Caso verdadeiro: C_5]
 - o retorna cnt; [0]

Somando os passos:

- $ullet T(n) = C_1 + C_2 + \sum_{i=0}^{n-1} \left(C_3 + C_4 + P_5 * C_5
 ight) \ ullet T(n) = C_{1,2} + \sum_{i=0}^{n-1} \left(C_{3,4} + P_5 * C_5
 ight)$
- $T(n) = C_{1,2} + n * C_{3,4} + n * P_5 * C_5$
- $O(T(n)) = O(C_{1,2}) + O(n * C_{3,4}) + O(n * P_5 * C_5)$
- O(T(n)) = O(1) + O(n) + O(n)
- O(T(n)) = O(n)

Onde temos que:

- $C_1=1$ (1 atribuição)
- $C_2=2$ (1 atribuição; 1 comparação inicial)
- $C_3=2$ (1 comparação; 1 incremento)
- $C_4=3$ (1 índice; 1 divisão; 1 comparação)x
- $C_5=2$ (1 soma; 1 atribuição)
- ullet $P_5=0,5$ (chance de ser par) ou $rac{ ext{número de pares em }a}{ ext{n}}$
- $C_{1,2} = C_1 + C_2$
- $C_{3,4} = C_3 + C_4$

Temos então que sua função de complexidade é:

•
$$T(n) = C_{1,2} + n * C_{3,4} + n * P_5 * C_5$$

1.a. Melhor caso

Como o algoritmo em questão conta a quantidade de números pares, sua execução variará de acordo com a quantidade de números pares. Sendo assim, o melhor caso é quando não há números pares no vetor a.

Dessa forma, ele realizará todos os passos do algoritmo, porém não entrará no bloco condicional, ou seja, $n*P_5*C_5=0$.

```
 \begin{split} \bullet \  \, MelhorT(n) &= C_{1,2} + n * C_{3,4} + n * P_5 * C_5 \\ \bullet \  \, MelhorT(n) &= C_{1,2} + n * C_{3,4} \\ \bullet \  \, \Omega(T(n)) &= \Omega(C_{1,2}) + \Omega(n * C_{3,4}) \\ \bullet \  \, \Omega(T(n)) &= \Omega(1) + \Omega(n) \\ \bullet \  \, \Omega(T(n)) &= \Omega(n) \end{split}
```

1.b. Caso médio

Em média, teremos que a quantidade de números pares será exatamente a metade dos números do vetor a, ou seja, $P_5=0,5$. Dessa forma, temos que:

```
 \begin{split} \bullet & \  \, M\acute{e}dioT(n) = C_{1,2} + n*C_{3,4} + n*P_5*C_5 \\ \bullet & \  \, M\acute{e}dioT(n) = C_{1,2} + n*C_{3,4} + n*0, 5*C_5 \\ \bullet & \  \, \Theta(T(n)) = \Theta(C_{1,2}) + \Theta(n*C_{3,4}) + \Theta(n*0, 5*C_5) \\ \bullet & \  \, \Theta(T(n)) = \Theta(1) + \Theta(n) + \Theta(n) \\ \bullet & \  \, \Theta(T(n)) = \Theta(n) \end{split}
```

1.c. Pior caso

O pior caso é quando todos os números do vetor a são pares, ou seja, $P_5=1$. Dessa forma, temos que:

```
 \begin{split} \bullet \ PiorT(n) &= C_{1,2} + n * C_{3,4} + n * 1 * C_5 \\ \bullet \ PiorT(n) &= C_{1,2} + n * C_{3,4} + n * C_5 \\ \bullet \ O(T(n)) &= O(C_{1,2}) + O(n * C_{3,4}) + O(n * C_5) \\ \bullet \ O(T(n)) &= O(1) + O(n) + O(n) \\ \bullet \ O(T(n)) &= O(n) \end{split}
```

• $PiorT(n) = C_{1,2} + n * C_{3,4} + n * P_5 * C_5$

Exercício 2. Determine a função de complexidade do algoritmo abaixo e indique sua complexidade de melhor caso, caso médio e pior caso

```
 \begin{tabular}{ll} \bullet & \textit{Pseudocódigo Q2} \\ & \circ & \textit{Entrada: } \texttt{Matrizes } n \times n \ A \in B \\ & \circ & \texttt{C} \leftarrow \texttt{matriz vazia;} \\ & \circ & \textit{para todo } i \leftarrow 0 \ \texttt{at\'e} \ n-1 \ \texttt{faça} \\ & & \bullet & \textit{para todo } j \leftarrow 0 \ \texttt{at\'e} \ n-1 \ \texttt{faça} \\ & & \bullet & C[i,j] \leftarrow 0; \\ & \bullet & \textit{para todo } k \leftarrow 0 \ \texttt{at\'e} \ n-1 \ \texttt{faça} \\ & & \bullet & C[i,j] \leftarrow C[i,j] + A[i,k] * B[k,j]; \\ & \circ & \textit{retorna } C; \\ \end{tabular}
```

Contando a quantidade de passos:

```
 \begin{array}{l} \bullet \textit{ Pseudocódigo Q2} \\ \circ \quad \textbf{Entrada: } \mathsf{Matrizes} \ n \times n \ A \in B \\ \circ \quad \mathsf{C} \leftarrow \mathsf{matriz \ vazia; } [C_1] \\ \circ \quad \mathsf{para \ todo} \ i \leftarrow 0 \ \mathsf{at\'e} \ n - 1 \ \mathsf{faça} \ \mathsf{[Inicial: } C_2; \ \mathsf{por \ ciclo: } C_3] \\ & \quad \bullet \ \mathsf{para \ todo} \ j \leftarrow 0 \ \mathsf{at\'e} \ n - 1 \ \mathsf{faça} \ \mathsf{[Inicial: } C_4; \ \mathsf{por \ ciclo: } C_5] \\ & \quad \bullet \ C[i,j] \leftarrow 0; [C_6] \\ & \quad \bullet \ \mathsf{para \ todo} \ k \leftarrow 0 \ \mathsf{at\'e} \ n - 1 \ \mathsf{faça} \ \mathsf{[Inicial: } C_7; \ \mathsf{por \ ciclo: } C_8] \\ & \quad \bullet \ C[i,j] \leftarrow C[i,j] + A[i,k] * B[k,j]; [C_9] \\ & \quad \circ \ \mathsf{retorna} \ C; \end{array}
```

Onde temos que:

Somando os passos:

```
• C_1=n^2 (Preenchimento de matriz com zeros)
• C_2=2 (1 atribuição; 1 comparação inicial)
• C_3=2 (1 comparação; 1 incremento)
• C_4=2 (1 atribuição; 1 comparação inicial)
• C_5=2 (1 comparação; 1 incremento)
• C_6=3 (2 acesso ao índice; 1 atribuição)
• C_7=2 (1 atribuição; 1 comparação inicial)
• C_8=2 (1 comparação; 1 incremento)
• C_9=5 (4*(2 acessos ao índice); 1 atribuição; 2 operações matemáticas)
```

$$ullet$$
 $T(n) = C_1 + C_2 + \sum_{i=0}^{n-1} \left(C_3 + C_4 + \sum_{j=0}^{n-1} \left(C_5 + C_6 + C_7 + \sum_{k=0}^{n-1} \left(C_8 + C_9
ight)
ight)
ight)$

Simplificando os limites do somatório pela quantidade de elementos:

$$ullet$$
 $T(n) = C_1 + C_2 + \sum_{i=1}^n \left(C_3 + C_4 + \sum_{j=1}^n \left(C_5 + C_6 + C_7 + \sum_{k=1}^n (C_8 + C_9)
ight)
ight)$

$$ullet T(n) = C_{1,2} + \sum_{i=1}^n \left(C_{3,4} + \sum_{j=1}^n \left(C_{5,6,7} + \sum_{k=1}^n (C_{8,9})
ight)
ight)$$

$$ullet$$
 $T(n) = C_{1,2} + \sum_{i=1}^n \left(C_{3,4} + \sum_{j=1}^n \left(C_{5,6,7} + n * C_{8,9}
ight)
ight)$

$$ullet$$
 $T(n) = C_{1,2} + \sum_{i=1}^{n} (C_{3,4} + n*C_{5,6,7} + n*n*C_{8,9})$

$$ullet T(n) = C_{1,2} + n * C_{3,4} + n * n * C_{5,6,7} + n * n * n * C_{8,9}$$

•
$$T(n) = C_{1.2} + n * C_{3.4} + n^2 * C_{5.6.7} + n^3 * C_{8.9}$$

Temos então que sua função de complexidade é:

$$ullet T(n) = C_{1.2} + n * C_{3.4} + n^2 * C_{5.6.7} + n^3 * C_{8.9}$$

E podemos considerar que é dominada assintoticamente por n^3

$$ullet O(T(n)) = O(C_{1,2}) + O(n*C_{3,4}) + O(n^2*C_{5,6,7}) + O(n^3*C_{8,9})$$

•
$$O(T(n)) = O(1) + O(n) + O(n^2) + O(n^3)$$

•
$$O(T(n)) = O(n^3)$$

2.a. Melhor caso

O melhor caso ocorre quando todos os elementos das matrizes são zero, pois a multiplicação de qualquer número por zero resultará em zero, então as somas podem ser feitas sem custo adicional (não há operação significativa de multiplicação ou soma). No entanto, como o número de operações ainda é $O(n^3)$ (devido aos três loops aninhados), a complexidade do melhor caso ainda é $O(n^3)$.

2.b. Caso médio

No caso médio, onde as matrizes contêm valores variados, a complexidade também será dominada pelas operações de multiplicação e soma nos três loops aninhados. Portanto, a complexidade do caso médio será também $O(n^3)$.

2.c. Pior caso

O **algoritmo 2** é um algoritmo de multiplicação de matrizes, onde a matriz resultante é preenchida com zeros e depois é feita a multiplicação de cada elemento da matriz resultante com os elementos das matrizes A e B.

De modo geral, o custo computacional desse algoritmo poderá variar de acordo com duas situações:

- A ordem da matriz;
- · O tamanho dos valores das matrizes.

É esperado que uma multiplicação entre números grandes tenha um custo computacional maior do que uma multiplicação entre números pequenos ou que sejam iguais a zero.

Ao desconsiderarmos essas duas situações, teremos que todos os três casos (melhor, médio e pior) terão o mesmo custo computacional, ou seja, $O(n^3)$. Isso porque em todos os casos, o algoritmo terá que percorrer todos os elementos das matrizes A e B e realizar a multiplicação de cada elemento da matriz resultante.

Exercício 3. Considere o seguinte algoritmo

- Pseudocódigo Q3
 - \circ Entrada: vetor de inteiros A, tamanho n de A
 - \circ para todo $i \leftarrow 2$ até n faça
 - $chave \leftarrow A[i];$
 - $i \leftarrow i 1$:
 - ullet enquanto j>0 e A[j]>chave faça
 - $A[j+1] \leftarrow A[j];$
 - $j \leftarrow j 1;$
 - $A[j+1] \leftarrow chave$;
 - o retorna A;

3.a. Simule a execução do algoritmo para o vetor [3, 5, 2, 8, 9]

Variáveis:

$$n = 5; A = [3, 5, 2, 8, 9]; i = 2; chave(A[i]) = 5; j = 1; A[j] = 3;$$

$$n = 5; A = [3, 5, 2, 8, 9]; i = 3; chave(A[i]) = 2; j = 2; A[j] = 5;$$

- A = [3, 5, 5, 8, 9];
- A = [3, 2, 5, 8, 9];

```
 \begin{array}{l} \circ \ n=5; A=[3,2,5,8,9]; i=3; chave(A[i])=2; j=1; A[j]=3; \\ \bullet \ A=[3,3,5,8,9]; \\ \bullet \ A=[2,3,5,8,9]; \\ \circ \ n=5; A=[2,3,5,8,9]; i=4; chave(A[i])=8; j=3; A[j]=5; \\ \circ \ n=5; A=[2,3,5,8,9]; i=5; chave(A[i])=9; j=4; A[j]=2; \\ \circ \ \mathrm{FIM}: A=[2,3,5,8,9]; \end{array}
```

3.b. O que esse algoritmo faz?

Esse é o algoritmo conhecido como Insertion Sort que ordena uma lista de números de forma crescente. Seu algoritmo consiste em percorrer toda a lista de números, sempre checando se o número atual é maior que todos os anteriores, assim colocando o novo número na posição correta para que a lista fique ordenada.

3.c. Qual sua complexidade de pior caso?

Calculando o custo de cada passo:

- Pseudocódigo Q3
 - \circ Entrada: vetor de inteiros A, tamanho n de A
 - \circ para todo $i \leftarrow 2$ até n faça [inicial: C_1 , por ciclo: C_2]
 - $chave \leftarrow A[i]; [C_3]$
 - $j \leftarrow i 1; [C_4]$
 - ullet enquanto j>0 e A[j]>chave faça [inicial: $C_5,$ por ciclo: $C_6]$
 - $A[j+1] \leftarrow A[j]; [C_7]$
 - $j \leftarrow j 1$; $[C_8]$
 - $A[j+1] \leftarrow chave; [C_9]$
 - o retorna A;

Gerando a equação:

- $T(n) = C_1 + \sum_{i=2}^n (C_2 + C_3 + C_4 + C_5 + C_9) + \sum_{i=i-1}^{j \geq 0 \wedge} (C_6 + C_7 + C_8)$
- ullet $T(n) = C_1 + \sum_{i=2}^n \left(C_{2,3,4,5,9} + \sum_{i=1}^{i-1} C_{6,7,8}
 ight)$
- $ullet T(n) = C_1 + (n-1) \cdot \left(C_{2,3,4,5,9} + \sum_{j=1}^{i-1} C_{6,7,8}^{'}
 ight)$
- $ullet T(n) = C_1 + n \cdot C_{2,3,4,5,9} C_{2,3,4,5,9} + (n-1) \cdot \left(\sum_{j=1}^{i-1} C_{6,7,8}
 ight)$

[JV: Figuei confuso quanto ao que fazer no caso do somatório que aumenta de acordo com a variação do i]

Descrevendo as constantes:

- ullet $C_1=2$ (1 atribuição; 1 comparação inicial)
- $C_2=2$ (1 comparação; 1 incremento)
- $C_3=2$ (1 atribuição; 1 acesso ao índice)
- $C_4=2$ (1 atribuição; 1 operação matemática)
- $C_5=3$ (2 comparações; 1 acesso ao índice)
- ullet $C_6=3$ (2 comparações; 1 acesso ao índice)
- ullet $C_7=3$ (2 acessos ao índice; 1 operação; 1 atribuição)
- $C_8=2$ (1 atribuição; 1 operação matemática)
- $C_9=3$ (1 operação matemática; 1 acesso ao índice; 1 atribuição)

Para esse algoritmo, o pior caso ocorre quando a comparação A[j]>chave sempre for verdadeira. Esse caso se dá quando a lista está ordenada de forma decrescente, pois sua chave sempre será menor que todos os itens percorridos pela variável j, assim fazendo a maior quantidade de trocas possíveis.

[JV: Sinto que houve um salto lógico aqui, não entendi ao certo como justificar alcançar o n^2]

Dessa forma, temos que a complexidade de pior caso é $O(n^2)$.

3.d. Qual sua complexidade de melhor caso?

O melhor caso ocorre quando a lista já está ordenada de forma crescente, pois a chave sempre será maior que o primeiro item verificado pela variável j, assim poupando a verificação com os demais.

[JV: eu precisaria explicar mais sobre a decomposição das constantes em O()?]

Nesse caso, o algoritmo percorrerá todos os elementos da lista, porém não realizará nenhuma troca, sendo assim, a complexidade de melhor caso é O(n).

Exercício 4. Considere o seguinte algoritmo

- Pseudocódigo Q4
 - $\,\circ\,$ Entrada: vetor de inteiros A, tamanho n de A

4.a. Simule a execução do algoritmo para o vetor [3, 5, 2, 8, 9]

```
• Variáveis: A=[3,5,2,8,9]; n=5; i=1; j=5; A[j]=9; A[j-1]=8;
• Variáveis: A=[3,5,2,8,9]; n=5; i=1; j=4; A[j]=8; A[j-1]=2;
• Variáveis: A=[3,5,2,8,9]; n=5; i=1; j=3; A[j]=2; A[j-1]=5; Troca
• Variáveis: A=[3,2,5,8,9]; n=5; i=1; j=2; A[j]=2; A[j-1]=3; Troca
• Variáveis: A=[2,3,5,8,9]; n=5; i=2; j=5; A[j]=9; A[j-1]=8;
• Variáveis: A=[2,3,5,8,9]; n=5; i=2; j=4; A[j]=8; A[j-1]=5;
• Variáveis: A=[2,3,5,8,9]; n=5; i=2; j=3; A[j]=5; A[j-1]=3;
• Variáveis: A=[2,3,5,8,9]; n=5; i=3; j=5; A[j]=9; A[j-1]=8;
• Variáveis: A=[2,3,5,8,9]; n=5; i=3; j=4; A[j]=8; A[j-1]=5;
• Variáveis: A=[2,3,5,8,9]; n=5; i=3; j=4; A[j]=9; A[j-1]=5;
• Variáveis: A=[2,3,5,8,9]; n=5; i=3; j=4; A[j]=9; A[j-1]=5;
```

4.b. O que esse algoritmo faz?

Este é o algoritmo de ordenação conhecido como Bubble Sort. Ele percorre toda a lista de números, começando à esquerda e colocando todos os menores números à esquerda e os maiores à direita, ou seja, ordenando de forma crescente. Ele faz isso percorrendo a lista e sempre que o número na posição verificada for menor que o anterior, ele troca. Em cada uma das iterações de i ele encontrará o i-ésimo menor número e o colocará na posição i do vetor.

4.c. Qual sua complexidade de pior caso?

O pior caso é quando a lista está ordenada de forma decrescente, precisando então realizar a maior quantidade de trocas possíveis.

Como são dois loops, um dentro do outro, ambos percorrendo aproximadamente n elementos, temos que a complexidade de pior caso é $O(n^2)$.

[JV: preciso depois descobrir qual é a função f(n)?]

[JV: Talvez usaria aquela ideia de $rac{n*(n-1)}{2}$, mas que igualmente seria $O(n^2)$]

4.d. Qual sua complexidade de melhor caso?

O seu melhor caso ocorre quando a lista já está ordenada de forma crescente.

Mesmo que o algoritmo não precise fazer troca alguma, ainda assim ele percorre aproximadamente n^2 elementos, sendo assim, a complexidade de melhor caso segue sendo $O(n^2)$.

Exercício 5. Determine um limite superior assintótico para as funções abaixo (de preferência o mais apertado possível)

Para essa questão é importante considerarmos que:

- O: Limite Superior
- ullet o: Limite Superior estrito
- Θ : Equivalência
- ω : Limite Inferior estrito
- + Ω : Limite Inferior
- $O(n!) > O(2^n) > O(n^2) > O(n \log n) > O(n) > O(\log n) > O(1)$

```
Limite Superior (O) f=O(g) Existem n_0 e c tal que: f(n) \leq c \cdot g(n) para todo n \geq n_0
```

5.1.
$$2n^3 + n^4 - 1$$

$$ullet f(n) = 2n^3 + n^4 - 1 \ ullet O(f(n)) = O(2n^3 + n^4 - 1)$$

 $ullet f = o(g); f(n) < c * g(n); n \geq n_0$

• $O(f(n)) = O(n^4)$

```
5.2. 2^{\overline{n}} + 5\log n + n^2
 • f(n) = 2^n + 5\log n + n^2
 • O(f(n)) = O(2^n + 5\log n + n^2)
 ullet O(f(n)) = O(2^n)
5.3. \log_{10} n + \log_3 10
```

```
• f(n) = \log_{10} n + \log_3 10
• O(f(n)) = O(\log_{10} n + \log_3 10)
• O(f(n)) = O(\log_{10} n)
• O(f(n)) = O(\log n)
```

5.4. $n + n \log n + \log n$

```
• f(n) = n + n \log n + \log n
• O(f(n)) = O(n + n \log n + \log n)
• O(f(n)) = O(n \log n)
```

5.5. $4^n + 2^n + n$

```
• f(n) = 4^n + 2^n + n
• O(f(n)) = O(4^n + 2^n + n)
• O(f(n)) = O(4^n)
oldsymbol{\bullet} \ \overline{O(f(n))} = \overline{O(2^{2+n})}
• O(f(n)) = O(2^n)
```

Tabela resumindo as respostas das questões 5 e 6

# Equação	Função	Limite Superior (O) (Q 5, 6)
.1	$2n^3+n^4-1$	n^4
.2	$2^n + 5\log n + n^2$	2^n
.3	$\log_{10}n+\log_310$	$\log n$
.4	$n + n \log n + \log n$	$n\log n$
.5	4^n+2^n+n	2^n

Exercício 6. Determine um limite superior assintótico para as funções abaixo (de preferência o mais apertado possível) - [IGNORADA POR SER EXATAMENTE IGUAL AO EXERCÍCIO 5]

```
• 6.1. 2n^3 + n^4 - 1
• 6.2. 2^n + 5 \log n + n^2
• 6.3. \log_{10} n + \log_3 10
• 6.4. n + n \log n + \log n
• 6.5. 4^n + \overline{2^n + n}
```

Exercício 7. Determine um limite superior assintótico restrito para as funções abaixo (de preferência o mais apertado possível)

Para essa questão é importante considerarmos que:

- O: Limite Superior
- *o* : Limite Superior estrito
- Θ : Equivalência
- ω : Limite Inferior estrito
- Ω : Limite Inferior
- $O(n!) > O(2^n) > O(n^2) > O(n \log n) > O(n) > O(\log n) > O(1)$

Limite Superior Estrito (o)

f = o(g) para todo c>0 existe n_0 tal que: f(n) < c * g(n) para todo $n \geq n_0$

- $f = o(g); f(n) < c * g(n); n \geq n_0$
- $\overline{$ 7.1. $\overline{2}\overline{n^3+n^4-1}$
- $f(n) = 2n^3 + n^4 1$
- $ullet o(f(n)) = o(2n^3+n^4-1)$
- $o(f(n)) = o(n^4)$

Achando uma função g(n) que seja maior que f(n):

•
$$g(n) = n^5$$

Se considerarmos que o $n_0=1$ e c=1, temos então que:

- g(n) > c * f(n)
- $n^5 > 2n^3 + n^4 1$

Sabemos que para todos os valores de $n \geq 1$ a função f(n) é menor que g(n), sendo assim, $n^5 = o(f(n))$.

7.2. $2^n + 5 \log n + n^2$

- $\bullet \ \ f(n) = 2^n + 5\log n + n^2$
- $\bullet \ o(\overline{f(n)}) = o(2^n + 5\log n + n^2)$
- $o(f(n)) = o(2^n)$

Achando uma função g(n) que seja maior que f(n):

•
$$g(n)=3^n$$

Se considerarmos que o $n_0=1$ e c=1, sabemos que para todos os valores de $n\geq 1$ a função f(n) é menor que g(n), sendo assim, $3^n=o(f(n))$.

7.3. $\log_{10} n + \log_3 10$

- $\bullet \ f(n) = \log_{10} n + \log_3 10$
- $o(f(n)) = o(\log_{10} n + \log_3 10)$
- $\bullet \ o(f(n)) = o(\log_{10} n) + C_1$
- $o(f(n)) = o(\log n)$

Achando uma função g(n) que seja maior que f(n):

•
$$g(n) = n$$

Se considerarmos que o $n_0=10$ e c=1, sabemos que para todos os valores de $n\geq 10$ a função f(n) é menor que g(n), sendo assim, n=o(f(n)).

7.4. $n + n \log n + \log n$

- $f(n) = n + n \log n + \log n$
- $o(f(n)) = o(n + n \log n + \log n)$
- $o(f(n)) = o(n \log n)$

Achando uma função g(n) que seja maior que f(n):

•
$$g(n) = n^2$$

Se considerarmos que o $n_0=10$ e c=1, sabemos que para todos os valores de $n\geq 2$ a função f(n) é menor que g(n), sendo assim, $n^2=o(f(n))$.

7.5. $4^n + 2^n + n$

- $f(n)=4^n+2^n+n$
- $o(f(n)) = o(4^n + 2^n + n)$

• $o(f(n)) = o(4^n)$

Achando uma função g(n) que seja maior que f(n):

• $g(n) = 5^n$

Se considerarmos que o $n_0=1$ e c=1, sabemos que para todos os valores de $n\geq 1$ a função f(n) é menor que g(n), sendo assim, $5^n=o(f(n))$.

Exercício 8. Determine um limite inferior assintótico para as funções abaixo (de preferência o mais apertado possível)

Para essa questão é importante considerarmos que:

- \bullet O: Limite Superior
- o : Limite Superior estrito
- Θ : Equivalência
- ω : Limite Inferior estrito
- Ω : Limite Inferior
- $O(n!) > O(2^n) > O(n^2) > O(n \log n) > O(n) > O(\log n) > O(1)$

Limite Inferior (Ω)

 $f = \Omega(q)$ Existem n_0 e c tal que: $f(n) \ge c * q(n)$ para todo $n \ge n_0$

• $f = \Omega(g); f(n) \geq c * g(n); n \geq n_0$

8.1. $2n^3 + n^4 - 1$

- $f(n) = 2n^3 + n^4 1$
- $\Omega(f(n))=\Omega(2n^3+n^4-1)$
- $\Omega(f(n)) = \Omega(n^4)$

Achando uma função g(n) que seja maior ou igual que f(n):

• $g(n) = n^4$

Se considerarmos que o $n_0=1$ e c=1, sabemos que para todos os valores de $n\geq n_0$ a função f(n) é maior ou igual que g(n), sendo assim, $5^n=\Omega(f(n))$.

8.2. $2^n+5\log n+n^2$

- $f(n) = \overline{2^n + 5 \log n + n^2}$
- $ullet \ \Omega(f(n)) = \Omega(2^n + 5\log n + n^2)$
- $\Omega(f(n)) = \Omega(2^n)$

Achando uma função g(n) que seja maior ou igual que f(n):

•
$$g(n)=2^n$$

Se considerarmos que o $n_0=1$ e c=1, sabemos que para todos os valores de $n\geq n_0$ a função f(n) é maior ou igual que g(n), sendo assim, $2^n=\Omega(f(n))$.

8.3. $\log_{10} n + \log_3 10$

- $f(n) = \log_{10} n + \log_3 10$
- $\Omega(f(n)) = \Omega(\log_{10} n + \log_3 10)$
- $\Omega(f(n)) = \Omega(\log_{10} n + C_1)$
- $\Omega(f(n)) = \Omega(\log n)$

Achando uma função g(n) que seja maior ou igual que f(n):

•
$$g(n) = \log n$$

Se considerarmos que o $n_0=10$ e c=1, sabemos que para todos os valores de $n\geq n_0$ a função f(n) é maior ou igual que g(n), sendo assim, $\log n=\Omega(f(n))$.

8.4. $n + n \log n + \log n$

- $f(n) = n + n \log n + \log n$
- $\Omega(f(n)) = \Omega(n + n \log n + \log n)$
- $\Omega(f(n)) = \Omega(n \log n)$

Achando uma função g(n) que seja maior ou igual que f(n):

•
$$g(n) = n \log n$$

Se considerarmos que o $n_0=10$ e c=1, sabemos que para todos os valores de $n\geq n_0$ a função f(n) é maior ou igual que g(n), sendo assim, $n\log n=\Omega(f(n))$.

8.5. $4^n + 2^n + n$

- $\bullet \ \ f(n)=4^n+2^n+n$
- ullet $\Omega(f(n))=\Omega(4^n+2^n+n)$
- $\Omega(f(n)) = \Omega(4^n)$

Achando uma função g(n) que seja maior ou igual que f(n):

•
$$g(n) = 4^n$$

Se considerarmos que o $n_0=1$ e c=1, sabemos que para todos os valores de $n\geq n_0$ a função f(n) é maior ou igual que g(n), sendo assim, $4^n=\Omega(f(n))$.

Exercício 9. Determine um limite inferior assintótico restrito para as funções abaixo (de preferência o mais apertado possível)

Para essa questão é importante considerarmos que:

$$ullet O(n!) > O(2^n) > O(n^2) > O(n \log n) > O(n) > O(\log n) > O(1)$$

Limite Inferior Assintótico Estrito (ω)

 $f=\omega(g)$ Para todo c>0 existe n_0 tal que: f(n)>c*g(n) para todo $n\geq n_0$

•
$$f = \omega(g) \forall c > 0 \exists n_0 | f(n) > c * g(n) \forall n \geq n_0$$

9.1. $2n^3+n^4-1$ || $\omega(n^3)$ com c=4 e $n_0=10$

- Limite inferior restrito: $\omega(n^3)$.
- Constantes: c = 4, $n_0 = 10$.

• Cálculo para
$$n=10$$
:

$$f(10) = 2 \cdot 10^3 + 10^4 - 1 = 2000 + 10000 - 1 = 11999,$$

$$c \cdot g(10) = 4 \cdot 10^3 = 4000.$$

Resultado: 11999 > 4000.

Resposta: $\left|\omega(n^3)
ight|$ com c=4 e $n_0=10$.

9.2. $2^n+5\log n+n^2$ || $\omega(2^{n/2})$ com c=2 e $n_0=10$

- Limite inferior restrito: $\omega(2^{n/2})$.
- Constantes: c = 2, $n_0 = 10$.
- $\bullet \ \ {\rm C\'alculo\ para}\ n=10 :$

$$f(10) = 2^{10} + 5\log 10 + 10^2 = 1024 + 5 \cdot 1 + 100 = 1129,$$

$$c \cdot g(10) = 2 \cdot 2^{10/2} = 2 \cdot 32 = 64.$$

Resultado: 1129 > 64.

Resposta: $\left| \omega(2^{n/2})
ight|$ com c=2 e $n_0=10$.

9.3. $\log_{10} n + \log_3 10$ || $\omega(1)$ com c=3 e $n_0=10$

- Limite inferior restrito: $\omega(1)$.
- Constantes: c = 3, $n_0 = 10$.
- $\bullet \ \ {\rm C\'alculo\ para}\ n=10 {:}$

$$f(10) = \log_{10} 10 + \log_3 10 = 1 + 2.095 \approx 3.095,$$

$$c \cdot g(10) = 3 \cdot 1 = 3.$$

Resultado: 3.095 > 3.

Resposta: $|\omega(1)|$ com c=3 e $n_0=10$.

9.4.
$$n + n \log n + \log n$$
 || $\omega(n)$ com $c = 2$ e $n_0 = 100$

- Limite inferior restrito: $\omega(n)$.
- Constantes: c = 2, $n_0 = 100$.
- Cálculo para n=100:

$$f(100) = 100 + 100 \log 100 + \log 100 = 100 + 200 + 2 = 302,$$

$$c \cdot g(100) = 2 \cdot 100 = 200.$$

 $\label{eq:Resultado: 302 > 200.} \label{eq:Resultado: 302 > 200.}$

Resposta: $ig|\omega(n)ig|$ com c=2 e $n_0=100$.

```
• Limite inferior restrito: \omega(2^n).
 • Constantes: c = 2, n_0 = 10.
 • Cálculo para n=10:
     \circ \ f(10) = 4^{10} + 2^{10} + 10 = 1048576 + 1024 + 10 = 1049610
     \circ \ c \cdot g(10) = 2 \cdot 2^{10} = 2 \cdot 1024 = 2048
        Resultado: 1049610 > 2048.
Resposta: |\omega(2^n)| com c=2 e n_0=10.
```

Exercício 10. Determine uma equivalência assintótica para as funções abaixo

$$f=\Theta(g)$$
Existem $n_0,\,c_1$ e c_2 tal que:
• $c_1\cdot g(n)\leq f(n)\leq c_2\cdot g(n)$ para todo $n\geq n_0$

9.5. 4^n+2^n+n || $\omega(2^n)$ com c=2 e $n_0=10$

10.1.
$$2n^3+n^4-1$$
 || R: $\Theta(n^4)$

- Equivalência: $\Theta(n^4)$.
- Constantes:

$$\circ \ c_1=1, c_2=3, n_0=2.$$

- Cálculo para n=2:

 - $f(2) = 2 \cdot 2^3 + 2^4 1 = 16 + 16 1 = 31$
 - $c_2 \cdot n^4 = 3 \cdot 2^4 = 48.$

Desigualdade: $16 \le 31 \le 48 \checkmark$.

Resposta:
$$\boxed{\Theta(n^4)}$$
 com $c_1=1$, $c_2=3$, $n_0=2$.

10.2.
$$2^n + 5\log n + n^2$$
 || R: $\Theta(2^n)$

- Equivalência: $\Theta(2^n)$.
- Constantes:

$$\circ \ c_1=1, c_2=2, n_0=5.$$

- Cálculo para n=5:
 - $\circ c_1 \cdot 2^n = 1 \cdot 2^5 = 32$
 - $\circ \ f(5) = 2^5 + 5 \log 5 + 5^2 = 32 + 5 \cdot 2.321 + 25 \approx 32 + 11.605 + 25 = 68.605,$
 - $c_2 \cdot 2^n = 2 \cdot 2^5 = 64.$

Ajuste: Para $n \geq 6$, $f(n) \leq 2 \cdot 2^n$.

Resposta:
$$\boxed{\Theta(2^n)}$$
 com $c_1=1, \, c_2=2, \, n_0=5$.

10.3.
$$\log_{10} n + \log_3 10$$
 || R: $\Theta(\log n)$

- Equivalência: $\Theta(\log n)$.
- Constantes:

$$\circ \ c_1 = 1, c_2 = 3, n_0 = 100.$$

- Cálculo para n=100:
 - $\circ c_1 \cdot \log n = \log_{10} 100 = 2,$
 - $f(100) = \log_{10} 100 + \log_3 10 = 2 + 2.095 \approx 4.095,$
 - $c_2 \cdot \log n = 3 \cdot \log_{10} 100 = 6.$

Designaldade: $2 \le 4.095 \le 6 \checkmark$.

Resposta:
$$\boxed{\Theta(\log n)}$$
 com $c_1=1, c_2=3, n_0=100.$

10.4. $n + n \log n + \log n$ || R: $\Theta(n \log n)$

• Equivalência: $\Theta(n \log n)$.

• Constantes:

 $\circ \ c_1=1, c_2=4, n_0=2.$

 $\bullet \ \ {\rm C\'alculo\ para}\ n=2{\rm :}$

 $\circ \ c_1 \cdot n \log n = 2 \log 2 pprox 1.386,$

 $f(2) = 2 + 2 \log 2 + \log 2 \approx 2 + 1.386 + 0.693 \approx 4.079,$

 $\circ c_2 \cdot n \log n = 4 \cdot 2 \log 2 \approx 5.545.$

Desigualdade: $1.386 \le 4.079 \le 5.545$ \checkmark .

Resposta: $\boxed{\Theta(n\log n)}$ com $c_1=1, c_2=4, n_0=2$.

10.5.
$$4^n+2^n+n$$
 || R: $\Theta(4^n)$

• Equivalência: $\Theta(4^n)$.

Constantes:

$$\circ c_1 = 1, c_2 = 2, n_0 = 1.$$

• Cálculo para n=1:

$$c_1 \cdot 4^n = 4$$

$$f(1) = 4 + 2 + 1 = 7$$
,

 $c_2 \cdot 4^n = 2 \cdot 4 = 8.$

Desigualdade: $4 \le 7 \le 8$ \checkmark .

Resposta: $\left|\Theta(4^n)
ight|$ com $c_1=1$, $c_2=2$, $n_0=1$.

Tabela resumindo as respostas das questões 5 a 10

# Equação	Função	Limite Superior Estrito (o) (Q 7)	Limite Superior (O) (Q 5, 6)	Equivalência (⊖) (Q 10)	Limite Inferior (Ω	Limite Inferior Estrito (ω) (Q 9)
.1	$2n^3+n^4-1$	n^5	n^4	n^4	n^4	n^5
.2	$2^n + 5\log n + \\ n^2$	3^n	2^n	2^n	2^n	3^n
.3	$\log_{10}n + \log_3 10$	n	$\log n$	$\log n$	$\log n$	n
.4	$n + n \log n + \log n$	n^2	$n \log n$	$n \log n$	$n \log n$	n^2
.5	4^n+2^n+n	5^n	2^n	4^n	4^n	5^n

Exercício 11. Dadas funções $f(n),\,h(n)$ e g(n) prove que

11.1. Se
$$f(n) = O(g(n))$$
 e $g(n) = O(h(n))$ então $f(n) = O(h(n))$

- Prova:
 - Por definição:
 - a. f(n)=O(g(n)) implica que existem $c_1>0$ e $n_1\geq 0$ tais que $f(n)\leq c_1\cdot g(n)$ para $n\geq n_1$.
 - b. g(n)=O(h(n)) implica que existem $c_2>0$ e $n_2\geq 0$ tais que $g(n)\leq c_2\cdot h(n)$ para $n\geq n_2$.
 - \circ Escolha $n_0 = \max(n_1, n_2)$. Para $n \geq n_0$:
 - $\bullet \ f(n) \leq c_1 \cdot g(n) \leq c_1 \cdot (c_2 \cdot h(n)) = (c_1c_2) \cdot h(n)$
 - \circ Portanto, f(n) = O(h(n)) com $c = c_1c_2$ e $n_0 = \max(n_1, n_2)$.

```
• Prova:
    o Por definição, f(n)=O(f(n)) se existem c>0 e n_0\geq 0 tais que f(n)\leq c\cdot f(n) para n\geq n_0.
    o Escolha c=1 e n_0=0. Então, para todo n\geq 0:
    f(n)\leq 1\cdot f(n)
```

11.3. Se
$$f(n) = \Omega(g(n))$$
 e $g(n) = \Omega(h(n))$ então $f(n) = \Omega(h(n))$

Prova:

```
    Por definição:
```

11.2. f(n) = O(f(n))

 \circ Portanto, f(n) = O(f(n)).

```
a. f(n)=\Omega(g(n)) implica que existem c_1>0 e n_1\geq 0 tais que f(n)\geq c_1\cdot g(n) para n\geq n_1.
```

b.
$$g(n)=\Omega(h(n))$$
 implica que existem $c_2>0$ e $n_2\geq 0$ tais que $g(n)\geq c_2\cdot h(n)$ para $n\geq n_2$.

 \circ Escolha $n_0 = \max(n_1, n_2)$. Para $n \geq n_0$:

$$\bullet \ f(n) \geq c_1 \cdot g(n) \geq c_1 \cdot (c_2 \cdot h(n)) = (c_1c_2) \cdot h(n)$$

 \circ Portanto, $f(n) = \Omega(h(n))$ com $c = c_1 c_2$ e $n_0 = \max(n_1, n_2)$.

11.4.
$$f(n) = \Omega(f(n))$$

• Prova:

- \circ Por definição, $f(n)=\Omega(f(n))$ se existem c>0 e $n_0\geq 0$ tais que $f(n)\geq c\cdot f(n)$ para $n\geq n_0$.
- \circ Escolha c=1 e $n_0=0$. Então, para todo $n\geq 0$:
 - $f(n) \geq 1 \cdot f(n)$
- \circ Portanto, $f(n) = \Omega(f(n))$.

11.5. $f(n) \neq o(f(n))$

Prova:

- o Por definição, f(n) = o(f(n)) se, para **todo** c > 0, existe $n_0 \ge 0$ tal que $f(n) < c \cdot f(n)$ para $n \ge n_0$.
- $\circ \,$ Dividindo ambos os lados por f(n) (assumindo f(n)>0):
 - \bullet 1 < ϵ
- Essa desigualdade **não é válida** para c=1, pois $1 \not< 1$.
- \circ Portanto, $\overline{f(n)}
 eq o(f(n))$.

11.6. $f(n) \neq \omega(f(n))$

• Prova:

- \circ Por definição, $f(n)=\omega(f(n))$ se, para **todo** c>0, existe $n_0\geq 0$ tal que $f(n)>c\cdot f(n)$ para $n\geq n_0$.
- \circ Dividindo ambos os lados por f(n) (assumindo f(n) > 0):
 - 1 > c
- \circ Essa desigualdade **não é válida** para c=1, pois $1 \not > 1$.
- \circ Portanto, $f(n)
 eq \omega(f(n))$.

Exercício 12. Prove que $n^3 eq O(n^2)$

Definição de O: f(n) = O(g(n)) se existem c>0 e $n_0 \geq 0$ tais que $f(n) \leq c \cdot g(n)$ para $n \geq n_0$.

- Hipótese para contradição: Suponha que $n^3 = O(n^2)$.
- Desigualdade derivada: Então, existem c>0 e n_0 tais que:
 - $n^3 \le c \cdot n^2$ para todo $n \ge n_0$.
- Simplificação: Divida ambos os lados por n^2 (para n>0):
 - \circ $n \leq c$
- Contradição: A desigualdade $n \le c$ não pode ser verdadeira para todo $n \ge n_0$, pois n cresce indefinidamente. Enquanto que c é constante.

Conclusão: Não existem c e n_0 que satisfaçam a definição. Portanto: $\left|n^3
eq O(n^2)
ight|$

Exercício 13. Prove que $n eq O(\log n)$

Definição de O: f(n) = O(g(n)) se existem c>0 e $n_0 \geq 0$ tais que $f(n) \leq c \cdot g(n)$ para $n \geq n_0$.

- Hipótese para contradição: Suponha que $n = O(\log n)$.
- **Desigualdade derivada:** Então, existem c>0 e n_0 tais que:
 - $\circ n \leq c \cdot \log n$ para todo $n \geq n_0$
- Análise de crescimento:
 - $\circ n$ cresce linearmente, enquanto $\log n$ cresce logaritmicamente
 - $\circ~$ Para $n o \infty$, $\log n$ é insignificante comparado a n
- Limite assintótico: Calcule o limite: $\lim_{n o \infty} rac{n}{\log n} = \infty$
 - \circ Isso mostra que n ultrapassa $c \cdot \log n$ para qualquer c > 0
- Contradição: Para n suficientemente grande, $n>c\cdot \log n$, violando a suposição.

Conclusão: Não existem c e n_0 que satisfaçam a definição. Portanto: $n
eq O(\log n)$

Exercício 14. Prove que $\sum_{i=1}^n i = \Theta(n^2)$, utilizando uma prova por indução

Para provar por indução, primeiro precisamos provar o $\sum_{i=1}^n i = O(n^2)$ e depois o $\sum_{i=1}^n i = \Omega(n^2)$

Para provar que $\sum_{i=1}^n i = \Omega(n^2)$, pela definição do Ω , temos que:

- $f = \Omega(g)$ Existem n_0 e c tal que: $f(n) \geq c \cdot g(n)$ para todo $n \geq n_0$
- ullet Caso base: $n_0=1$ e $c=rac{1}{10}$ ullet $\sum_{i=1}^1 i \geq rac{1}{10} \cdot 1^2$ ullet $1 \geq rac{1}{10}$

- Hipótese de indução: n=k• $\sum_{i=1}^k i \geq \frac{1}{10} \cdot k^2$ Passo indutivo: n=k+1• $\sum_{i=1}^{k+1} i \geq \frac{1}{10} \cdot (k+1)^2$ Resolvendo então indutivamente, partindo da hipótese de indução e alcançando o passo indutivo:

 - $\begin{array}{l} \circ \ \sum_{i=1}^k i \geq \frac{1}{10} \cdot k^2 \\ \circ \ \sum_{i=1}^k i + (k+1) \geq \frac{1}{10} \cdot k^2 + (k+1) \\ \bullet \ \ \text{Provando que} \ \frac{1}{10} \cdot k^2 + (k+1) \geq \frac{1}{10} \cdot (k+1)^2 \colon \\ \bullet \ \ \frac{1}{10} \cdot k^2 + (k+1) \geq \frac{1}{10} \cdot k^2 + \frac{1}{10} \cdot (2k+1) \\ \bullet \ \ k+1 \geq \frac{2k+1}{10} \end{array}$

Exercício 15. Prove que $\sum_{i=1}^n rac{1}{k} = \Theta(\log n)$

Definição de Θ

Precisamos encontrar $c_1>0, c_2>0$ e $n_0\geq 1$ tais que:

- $c_1 \cdot \log n \le H(n) \le c_2 \cdot \log n$ para todo $n \ge n_0$ \$
- Passo 1: Limite Inferior ($H(n) \ge c_1 \cdot \log n$)
 - Estratégia: Agrupar os termos em blocos que dobram de tamanho e mostrar que cada bloco contribui com pelo menos $\frac{1}{3}$.
 - - lacksquare Para $n \geq 1$, escreva n como 2^m-1 (onde $m = \lfloor \log_2(n+1)
 floor$).

 - Divida a soma em blocos: $\underbrace{1}_{\text{Bloco }0} + \underbrace{\frac{1}{2}}_{\text{Bloco }0} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\text{Bloco }0} + \underbrace{\frac{1}{5} + \dots + \frac{1}{8}}_{\text{Bloco }0} + \dots$
 - - Cada bloco i contém 2^i termos, todos menores ou iguais a $\frac{1}{2^i}$. Por exemplo:
 - Bloco 0: $1 \ge \frac{1}{5}$

 - Bloco 1: $\frac{1}{2} \ge \frac{1}{2}$. Bloco 2: $\frac{1}{3} + \frac{1}{4} \ge \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$. Bloco i: $\sum_{k=2^i}^{2^{i+1}-1} \frac{1}{k} \ge 2^i \cdot \frac{1}{2^{i+1}} = \frac{1}{2}$.
 - Total de blocos:
 - ullet Se $n \geq 2^m-1$, existem m blocos completos. Como $m \geq \log_2(n+1)-1$, temos:

- ullet $H(n) \geq rac{1}{2} \cdot m \geq rac{1}{2} \cdot (\log_2 n 1)$.
- lacksquare Convertendo para logaritmo natural ($\log_2 n = rac{\ln n}{\ln 2}$):
- $H(n) \geq \frac{1}{2\ln 2} \cdot \ln n \frac{1}{2}.$ Para $n \geq 4$, $\frac{1}{2\ln 2} \cdot \ln n \frac{1}{2} \geq \frac{1}{4} \cdot \ln n.$
- \circ Escolha: $c_1 = rac{1}{4}; n_0 = 4$
- Passo 2: Limite Superior ($H(n) \leq c_2 \cdot \log n$)
 - Estratégia: Comparar a soma com uma série telescópica.
 - Desigualdade telescópica:
 - Observe que para $k \geq 1$:
 - ullet $\leq \int_{k-1}^k rac{1}{x} dx$ (opcional, mas evitamos integrais na prova final).
 - Alternativa sem integrais:
 - ullet Agrupe os termos de forma que cada bloco tenha soma ≤ 1 .
 - Agrupamento alternativo:
 - lacksquare Para $n\geq 1$, divida a soma em blocos de tamanho 2^i :
 - $\blacksquare \underbrace{1}_{\text{Bloco }0} + \underbrace{\frac{1}{2} + \frac{1}{3}}_{\text{Bloco }1} + \underbrace{\frac{1}{4} + \dots + \frac{1}{7}}_{\text{Bloco }2} + \dots$
 - Limite por bloco:
 - lacksquare Cada bloco i contém 2^i termos, todos maiores ou iguais a $\frac{1}{2^{i+1}}$. Por exemplo:
 - Bloco 0: $1 \le 1$.
 - Total de blocos:
 - ullet Se $n \leq 2^m-1$, existem m blocos. Portanto:

•
$$H(n) \le 1 + 1 + 1 + \dots + 1 = m \le \log_2 n + 1$$
.

- Convertendo para logaritmo natural:
- $H(n) \leq \frac{\ln n}{\ln 2} + 1.$ Para $n \geq 2, \frac{\ln n}{\ln 2} + 1 \leq 2 \cdot \ln n.$
- Escolha: $c_2 = 2$; $n_0 = 2$
- Conclusão
 - $\circ~$ Existem constantes $c_1=rac{1}{4},$ $c_2=2$ e $n_0=4$ tais que:
 - $\circ \frac{1}{4} \cdot \ln n \le H(n) \le 2 \cdot \ln n \text{ para todo } n \ge 4.$
 - \circ Portanto: $\sum_{k=1}^n rac{1}{k} = \Theta(\log n)$.