Supporting Information for "The contribution of drifting snow to cloud properties and the atmospheric radiative budget over Antarctica"

Stefan Hofer¹, Charles Amory^{2,3}, Christoph Kittel², Tim Carlsen¹,

Louis Le Toumelin⁴ and Trude Storelymo¹

¹Department of Geosciences, University of Oslo, Oslo, Norway

²Department of Geography, SPHERES Research Unit, University of Liège, Liège, Belgium

³Univ. Grenoble Alpes, CNRS, Institut des Géosciences de l'Environnement, Grenoble, France

⁴Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Études de la Neige, Grenoble, France

Contents of this file

1. Figure S1

Corresponding author: Stefan Hofer, (stefan.hofer@geo.uio.no)

Figure S1. Complete statistical comparison of MAR to 20 in-situ weather stations over Antarctica. Mean bias (Wm⁻²) of the MAR simulations without drifting snow (e.g. "LWD") and MAR with drifting snow (e.g. "LWD_bs") compared to 20 Antarctic-wide in-situ weather observations.