ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ

dr Joanna Jureczko

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń, przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu

WYKŁAD 15

Wzajemne położenie płaszczyzn i prostych Odległość punktu od prostej i od płaszczyzny Rzut punktu na prostą i na płaszczyznę

Niech dane będa dwie płaszczyzny

$$Q_1: A_1x + B_1y + C_1z + D_1 = 0,$$

$$Q_2: A_2x + B_2y + C_2z + D_2 = 0$$

i niech $\overline{n_1}=[A_1,B_1,C_1],\overline{n_2}=[A_2,B_2,C_2]$ będą odpowiadającymi im wektorami normalnymi. Wtedy:

a) płaszczyzny są równoległe

$$Q_1 \parallel Q_2 \Leftrightarrow \overline{n_1} \parallel \overline{n_2}$$

b) płaszczyzny pokrywają się

$$Q_1 \equiv Q_2 \Leftrightarrow \exists_{k \in \mathbb{R}} \ k \cdot Q_1 = Q_2.$$

c) **płaszczyzny przecinają się** pod kątem, którego cosinus wyrażony jest wzorem

$$\cos\angle(Q_1,Q_2)=\cos\angle(\overline{n_1},\overline{n_2})$$

d) płaszczyzny są prostopadłe

$$Q_1 \perp Q_2 \Leftrightarrow \overline{n_1} \perp \overline{n_2}$$
.

Niech dane beda dwie proste

$$I_1: \frac{x-a_1}{x_1} = \frac{y-b_1}{y_1} = \frac{z-c_1}{z_1}$$
$$I_1: \frac{x-a_2}{x_2} = \frac{y-b_2}{y_2} = \frac{z-c_2}{z_2}$$

oraz odpowiadające im punkty $M_1 = (a_1, b_1, c_1)$, $M_2 = (a_2, b_2, c_2)$ oraz wektory kierunkowe $v_1 = [x_1, y_1, z_1]$, $v_2 = [x_2, y_2, z_2]$. Wtedy a) **proste są równoległe**

$$I_1 \parallel I_2 \Leftrightarrow V_1 \parallel V_2$$

b) proste pokrywają się

$$I_1 \equiv I_2 \Leftrightarrow \exists_{k \in \mathbb{R}} \ k \cdot I_1 = I_2$$

c) **proste przecinają się**, tzn. nie są równoległe i leżą w tej samej płaszczyźnie, oznacza to, że wektory $v_1, v_2, \overline{M_1 M_2}$, gdzie $M_1 \in I_1, M_2 \in I_2$ są współpłaszczyznowe. Wtedy iloczyn mieszany $(v_1, v_2, \overline{M_1 M_2}) = 0$, a kąt między tymi prostymi jest równy $\cos \angle (I_1, I_2) = \cos \angle (v_1, v_2)$. d) **proste są prostopadłe**

$$l_1 \perp l_2 \Leftrightarrow v_1 \perp v_2$$

e) **proste są skośne**, tzn. nie wyznaczają płaszczyzny. Wtedy

$$(v_1, v_2, \overline{M_1 M_2}) \neq 0.$$

Niech dana będzie prosta / i płaszczyzna Q

$$I: \frac{x - x_0}{x_1} = \frac{y - y_0}{y_1} = \frac{z - z_0}{z_1}$$

$$Q: Ax + By + Cz + D = 0$$

i odpowiadające im wektory $v=[x_1,y_1,z_1],\overline{n}=[A,B,C]$ oraz $M_0=(x_0,y_0,z_0)\in I.$ Wtedy

b) prosta / leży w płaszczyźnie Q

$$I \subset Q \Leftarrow \left\{ \begin{array}{l} x_1 A + y_1 B + z_1 C = 0 \\ Ax_0 + By_0 + Cz_0 + D = 0 \end{array} \right.$$

 $I \parallel Q \Leftrightarrow v \perp \overline{n}$.

c) **prosta** / **przecina płaszczyznę** Q pod kątem, którego sinus jest równy $\sin \angle (I,Q) = |\cos \angle (v,\overline{n})|$

 $I \perp Q \Leftrightarrow v \parallel \overline{n}$

Jeżeli równanie prostej / dane jest w postaci krawędziowej

$$I: \left\{ \begin{array}{ll} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{array} \right. \ \mathrm{gdzie} \ \overline{n_1} \times \overline{n_2} \neq 0,$$

Q: Ax + By + Cz + D = 0,

to w celu określenia **wzajemnego położenia prostej i płaszczyzny** można zbadać zbiór rozwiązań układu

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ Ax + By + Cz + D = 0 \end{cases}$$

Jeżeli układ jest oznaczony, to prosta z płaszczyzną ma jeden punkt wspólny i rozwiązaniem są współrzędne tego punktu. Jeżeli układ jest nieoznaczony, to prosta leży w płaszczyźnie Jeżeli układ jest sprzeczny, to prosta jest równoległa do płaszczyzny, ale się w niej nie zawiera.

Niech dane będą punkty $A_1 = (a_1, b_1, c_1), A_2 = (a_2, b_2, c_2).$

Odległość punktów
$$A_1$$
, A_2 jest równa długości wektora $\overline{A_1 A_2}$:

 $d(A,B) := |\overline{A_1 A_2}| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}$

Niech dana będzie płaszczyzna Q: Ax + By + Cz + D = 0 oraz punkt $M_0 = (x_0, y_0, z_0) \notin Q$. Odległość punktu M_0 od

punkt
$$M_0 = (x_0, y_0, z_0) \notin Q$$
. Odległość punktu M_0 od płaszczyzny Q jest równa

 $d(M_0,Q) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

Niech dana będzie prosta

$$I: \frac{x-x_0}{x_1} = \frac{y-y_0}{y_1} = \frac{z-z_0}{z_1}$$

oraz punkt $M=(a,b,c) \notin I$. Jeżeli $N=(a_0,b_0,c_0)$ jest dowolnym punktem należącym do I, natomiast $v=(x_1,y_1,z_1)$ wektorem kierunkowym, to **odległość punktu** M **od prostej** I wynosi

$$d(M,I) = \frac{|\overline{MN} \times v|}{|v|}.$$

Niech dane beda płaszczyzny

$$Q_1: Ax + By + Cz + D_1 = 0$$

$$Q_0: Ax + By + Cz + D_0 = 0$$

$$Q_2: Ax + By + Cz + D_2 = 0.$$

 $d(Q_1, Q_2) = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$

Odległość płaszczyzn Q_1, Q_2 jest równa

ODLEGŁOŚĆ PROSTYCH RÓWNOLEGŁYCH

ODLEGŁOŚĆ PROSTYCH SKOŚNYCH

Budujemy płaszczyznę Q prostopadłą do kierunku prostych I_1, I_2 . Rozwiązując układ równań prostej I_1 i płaszczyzny Q otrzymujemy współrzędne punktu M_1 . Analogicznie wyznaczamy współrzędne punktu M_2 będącego punktem wspólnym prostej I_2 oraz płaszczyzny Q. **Odległość prostych równoległych** jest równa

$$d(I_1,I_2)=\overline{M_1M_2}.$$

Niech dane będą proste skośne

$$I_1: \frac{x-a_1}{x_1} = \frac{y-b_1}{y_1} = \frac{z-c_1}{z_1}$$

$$l_2: \frac{x-a_2}{x_2} = \frac{y-b_2}{y_2} = \frac{z-c_2}{z_2}$$

gdzie $M_1=(a_1,b_1,c_1)\in I_1, M_2=(a_2,b_2,c_2)\in I_2$ są dowolnymi punktami oraz $v_1=(x_1,y_1,z_1), v_2=(x_2,y_2,z_2)$ są odpowiadającymi prostym wektorami kierunkowymi. Wtedy

$$d(l_1, l_2) = \frac{|(v_1, v_2, \overline{M_1 M_2})|}{|v_1 \times v_2|}.$$

RZUT PUNKTU NA PŁASZCZYZNĘ RZUT PUNKTU NA PROSTĄ

Rzutem prostokątnym punktu M na prostą / nazywamy

Rzutem prostokątnym punktu M na płaszczyznę Q

punkt M' tej płaszczyzny taki, że $\overline{MM'} \perp I$.

nazywamy punkt M' tej płaszczyzny taki, że $\overline{MM'} \perp Q$.