ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ

HASHING

ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ

saltogiann@ceid.upatras.gr

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΥ

- Θέλουμε τα δεδομένα που διαθέτουμε να μπορούν να αποθηκευτούν σε κάποιο πίνακα ή άλλη δομή και να χωράνε στη μνήμη του υπολογιστή που χρησιμοποιούμε.
- Ένα προς ένα αντιστοίχιση στοιχείων Απευθείας διευθυνσιοδότηση
- Η διαθέσιμη μνήμη του υπολογιστή δεν μπορεί να ανταποκριθεί στον τεράστιο όγκο δεδομένων.

ΛΥΣΗ: Η μέθοδος του κατακερματισμού

Προσπαθεί να δώσει λύση στο πρόβλημα έλλειψης θέσεων σε μία δομή ή στη μνήμη του υπολογιστή, αντιστοιχίζοντας θέσεις της δομής/μνήμης στα δεδομένα με βάση κάποια συνάρτηση, ώστε να αποφεύγονται οι συγκρούσεις.

ΟΡΙΣΜΟΣ

Έστω:

- $\sigma \dot{\mathbf{u}} \mu \pi \alpha \mathbf{v} \ U = \{0,1,...,\ N-1\},\ |U| = N$
- πίνακας κατακερματισμού T[0,1,...,m-1], |T| = m
- συνάρτηση κατακερματισμού h:U → [0,1,...,m-1], |h| = m

Το στοιχείο x ε U θα αποθηκευτεί στην θέση T[h(x)]

ΕΙΔΗ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΎ

Κατακερματισμός με αλυσίδες

- Σε κάθε θέση του πίνακα υπάρχουν συνδεδεμένες αλυσίδες και μπορούν να επεκταθούν δυναμικά
- Τεχνική κλειστής διεύθυνσης

Κλειστός κατακερματισμός

- > Δεν χρησιμοποιεί δείκτες για το χειρισμό των πινάκων
- Τεχνική ανοικτής διεύθυνσης
- Γραμμική Δοκιμή, Τετραγωνική Δοκιμή, Διπλός κατακερματισμός

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ ΜΕ ΑΛΥΣΙΔΕΣ

- Στις αλυσίδες, υπάρχει μία δομή record όπου το πρώτο πεδίο χρησιμοποιείται για την αποθήκευση των δεδομένων ενώ το δεύτερο πεδίο, αποτελεί δείκτη προς το επόμενο ζευγάρι της αλυσίδας.
- π .χ. γ ια $h(x) = x \mod m$

- Search(x)
- Insert(x)
- Delete(x)

- Αντιμετωπίζει τις συγκρούσεις χωρίς να χρησιμοποιεί επιπλέον χώρο
- Το x ∈ U αντιστοιχίζεται σε σε μία ακολουθία θέσεων του πίνακα κατακερματισμού
- Πιο σύνθετη συνάρτηση κατακερματισμού
 - h(x,0), ..., h(x,m-1)
 - I = 0,...,m-1 → προσπάθεια εύρεσης κατάλληλης θέσης

ΓΡΑΜΜΙΚΗ ΔΟΚΙΜΗ

- εξετάζονται διαδοχικές θέσεις του πίνακα για την ανεύρεση ελεύθερης θέσης χρησιμοποιώντας συνάρτηση κατακερματισμού που δέχεται δύο ορίσματα, την τιμή έναρξης και το βήμα
- $h(x,i) = [h_1(x) + i] \mod x, i = 0,1,...,m-1$
- $> h_1(x) = x \mod m$

Παράδειγμα

- \Rightarrow S = {52, 12, 71, 56, 5, 10, 19, 90}

	0	1	2	3	4	5	6	7	8	9	10
(α)		12				71			52		

(0)							
(B)	12	56		71		52	
VI /		00				-	

ΤΕΤΡΑΓΩΝΙΚΗ ΔΟΚΙΜΗ

Η συνάρτηση κατακερματισμού είναι της μορφής:

$$(h_1(x) + c_1i^2 + c_2i^2) \bmod m$$

- Το i δηλώνει τις προσπάθειες για την εύρεση κενής θέσης και ισχύει i=0,1,2... και οι c_1,c_2 είναι σταθερές.
- Εξετάζεται η πρώτη θέση για i=0 και έπειτα αναζητούνται θέσεις σε αποστάσεις ανάλογες του τετραγώνου του i.
- Με αυτόν τον τρόπο, αποφεύγεται να καταλαμβάνονται συνεχόμενα μεγάλα τμήματα του πίνακα A στον οποίο εισάγονται τα κλειδιά.
- Μεγαλύτερη απόδοση από την γραμμικτή δοκιμή

ΤΕΤΡΑΓΩΝΙΚΗ ΔΟΚΙΜΗ

Παράδειγμα

- \Rightarrow S = {52, 12, 71, 56, 5, 10, 19, 90}
- $c_1 = 1, c_2 = 2.$

	0	1	2	3	4	5	6	7	8	9	10
(a)		12				71			52		

ΔΙΠΛΟΣ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ

- Πιο αποτελεσματική μέθοδος από τις άλλες 2.
- $h(x,i) = (h_1(x) + ih_2(x)) \bmod m$
- $h_1, h_2 \rightarrow κλασικές συναρτήσεις κατακερματισμού$
- Αν προκύψει νέα σύγκρουση, τότε υπολογίζεται η επόμενη θέση σε ίση απόσταση από τη δεύτερη θέση σύγκρουσης.
- Στην περίπτωση που το πηλίκο που προκύπτει είναι ίσο με ο, εξισώνεται με 1 ώστε αν κάποια κλειδιά συγκρούονται στην ίδια αρχική θέση, να μην συγκρουστούν σε επόμενη θέση.
- > Το μέγεθος του πίνακα να είναι πρώτος αριθμός, για να προσπελαστούν όλες οι θέσεις του πίνακα.

Παράδειγμα

Ας εισάγουμε στην παρακάτω δομή με m=11 και n=8, τα στοιχεία S = {52, 12, 71, 56, 5, 10, 19, 90} με $h_1(x) = x \mod m$ και $h_2(x) = (x \div m) \mod m$.

	0	1	2	3	4	5	6	7	8	9	10
(a)		12				71			52		
· · · · · · · ·											
(b)		12				71	56		52		
(g)		12				71	56	5	50		10
(g)		12				11	90	9	02		10
(d)		12	90			71	56	5	52	19	10

ΙΔΑΝΙΚΟΣ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ

- ΙΔΑΝΙΚΟΣ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ perfect hashing
- Μπορούμε κατά τη σχεδίαση μίας δομής να επιλέξουμε συνάρτηση κατακερματισμού που να αποφεύγει τις συγκρούσεις.
- Μία συνάρτηση h:U = [0,1,...,N-1] \rightarrow [0,1,...,m-1] είναι ιδανική συνάρτηση κατακερματισμού για το S \subseteq [0,1,...,N-1] αν για όλα τα x, y \in S ισχύει h(x) \neq h(y).

ΠΑΓΚΟΣΜΙΟΣ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ

- ΠΑΓΚΟΣΜΙΟΣ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ universal hashing
- Μπορούμε να επιλέξουμε για συνάρτηση κατακερματισμού μέσα από μία κλάση ομοιόμορφων συναρτήσεων.
- Μία συλλογή συναρτήσεων H={h : U =[0,1,...,N-1] \rightarrow =[0,1,...,m-1]} καλείται c-universal με c ∈ R αν για κάθε x, y ∈ U, x≠y, ισχύει:

$$|h: h \in H, h(x)=h(y)| \le \frac{c|H|}{m}$$