

PROPOSAL PROGRAM KREATIVITAS MAHASISWA JUDUL PROGRAM

PERANCANGAN DAN REALISASI BANDPASS FILTER PADA FREKUENSI 9GHz UNTUK RADAR CUACA

BIDANG KEGIATAN: PKM - PENELITIAN

Diusulkan oleh:

Sophia Agustina Suzanthi; 171344028; 2017 Sarah Muslimawati; 151344027; 2015 Toni Nur Hakim; 161344028; 2016

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAN PKM-PENELITIAN

Judul Kegiatan : Perancangan dan Realisasi Bandpass Filter

Pada Frekuensi 9GHz Untuk Radar Cuaca

Bidang Kegiatan : PKM-P

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Sophia Agustina Suzanthi

b. NIM : 171344028 c. Jurusan : Teknik Elektro

d. Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Jl. Kotabaru II No.16, RT.02 RW.04

Kel.Ciateul Kec.Regol, Bandung

No.HP 085896200697

f. Alamat email : sophiagsevani@gmail.com

Anggota Pelaksana Kegiatan/Penulis : 2 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Ir. Enceng Sulaeman, MT.

b. NIDN : 0010116404

c. Alamat Rumah : Komp. Giri Mekar Permai BlokA67

RT.02/RW.21 Bandung

d. No. Telp/HP : 081910346075

6. Biaya Kegiatan Total

Menyetujui, Ketua Jurusan,

a. Kemristekdikti : Rp 11.070.000,-

b. Sumber lain :-

7. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 2 Januari 2019

Ketua Pelaksana Kegiatan,

Malavusfi: BSEE,MT. Sophia Agustina Suzanthi

NIP. 19540101 198403 1001 NIM. 171344028

Direktur Politeknik Negeri Bandung, Dosen Pendamping,

r.Rachmad In bang Tritjahjono, M.T. Ir. Enceng Sulaeman, MT.

NIP. 19600316 198 10 1001 NIDN. 0010116404

DAFTAR ISI

COVERPENGESAHAN PKM-PENELITIAN	
DAFTAR ISI	
BAB 1 PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	
1.3 Tujuan	2
1.4 Luaran	3
BAB 2 TINJAUAN PUSTAKA	4
BAB 3 METODE PENELITIAN	5
3.1. Perancangan	5
3.2. Realisasi	5
3.3. Pengujian	5
3.4. Analisis	5
3.5. Evaluasi	6
BAB 4 BIAYA DAN JADWAL KEGIATAN	7
4.1. Anggaran Biaya	7
4.2. Jadwal Kegiatan	8
DAFTAR PUSTAKA	9
LAMPIRAN-LAMPIRAN	10
Lampiran 1. Biodata Ketua dan Anggota, Biodata Dosen Pendamping.	10
Lampiran 2. Justifikasi Anggaran Kegiatan	20
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	22
Lampiran 4. Surat Pernyataan Ketua Peneliti	23

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Radar merupakan sistem gelombang elektromagnetik yang digunakan untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat terbang, kendaraan bermotor dan informasi cuaca/hujan. Gelombang radio/sinyal yang dipancarkan dari suatu benda dapat ditangkap oleh radar kemudian dianalisa untuk mengetahui lokasi dan bahkan jenis benda tersebut. Walaupun sinyal yang diterima relatif lemah, namun radar dapat dengan mudah mendeteksi dan memperkuat sinyal tersebut.

Radar ialah kependekan dari Radio Detection and Ranging (Aliefien, 2012) yang merupakan salah satu produk telekomunikasi yang sangat berperan pada masa kini. Kegunaan radar sangatlah beragam, antara lain untuk membantu aktivitas manusia sehari-hari seperti transportasi, pengamatan fenomena cuaca dan alam, pengamatan wilayah negara, mendukung operasi militer, navigasi kapal laut dan pesawat udara.

Radar sangat membantu manusia sebagai sarana untuk mendeteksi keadaan sekitar yang sebelumnya tidak kita ketahui. Adapun wilayah Negara Kesatuan Republik Indonesia yang sangat luas dan tidak dapat dipungkiri memiliki memiliki cuaca yang beragam, maka kebutuhan akan radar sangat besar untuk mengawasi iklim di wilayah Indonesia. Salah satu sistem yang penting untuk mendukung pengamatan meteorologi adalah dengan penggunaan Radar Cuaca (*Weather Radars*) (Khairullah, 2009). Pemanfaatan data hasil pengamatan meteorologi di permukaan, pengamatan Synoptik udara atas dengan Radiosonde/Radiowind dan Pilot Balon serta pengamatan khusus dengan Radar Cuaca dan Satelit Cuaca secara bersama-sama akan dapat membantu dan mempermudah pekerjaan seorang ahli meteorologi/forecaster dalam memberikan pelayanan dan informasi bagi pengguna jasa meteorologi seperti pelayanan penerbangan, peningkatan produksi tanaman pangan, klaim asuransi, peringatan banjir dan lain sebagainya. Radar cuaca memiliki kemampuan untuk mendeteksi intensitas curah hujan dan cuaca buruk, misalnya badai.

Sistem radar pada awalnya hanya mampu mendeteksi target dan membuat pengukuran kasar dari jarak ke target. Saat teknologi radar berkembang, sistem radar bisa mendeteksi lebih rinci lagi. Teknologi modern memungkinkan sistem radar untuk menggunakan frekuensi yang lebih tinggi, dan membuat pengukuran yang lebih baik dari arah target dan lokasi. Radar canggih dapat mendeteksi setiap fitur dari target dan menunjukkan gambaran rinci. Untuk memisahkan clutter dan object, radar itu sendiri membutuhkan filter.

Oleh karena itu, diperlukan sebuah modul *Band Pass Filter* yang berperan dalam melewatkan data yang diambil. *Filter* ini berfungsi untuk meloloskan frekeunsi yang diinginkan dan mem-blok frekeunsi yang bukan pada rentang frekeunsi kerjanya atau frekuensi yang tidak diperlukan. Adapun *filter* yang akan dirancang dan direalisaikan ini akan menggunakan metode *fraktal*. Metode ini dipilih karena dapat mengurangi frekuensi resonansi dan *bandwidth* pada filter yang akan dibuat (R.N. BARAL, 2018).

Sehubungan dengan pengurangan ukuran, dalam makalah ini, geometri Koch fraktal diterapkan untuk narrowband hairpin bandpass filter (BPF) untuk karakterisasinya. Geometri Koch fraktal yang biasanya diterapkan untuk meminimalkan dimensi antena, pada dasarnya adalah pengulangan dari beberapa bentuk geometri yang serupa (Munir, et al., 2014). Dengan menerapkan geometri fraktal Koch, struktur hairpin fraktal BPF dapat lebih kompak dibandingkan dengan yang konvensional sehingga dimensinya dapat diminimalkan mengurangi kebutuhan material.

Dalam hal ini kami akan lebih memperdalam tentang *Band Pass Filter* pada radar cuaca yang akan dikembangkan menggunakan mikrostrip agar desain dan bentuk dari BPF sendiri lebih simple, efisien dan memiliki nilai efisiensi yang baik sehingga mempermudah dalam penyesuaian dengan kondisi sistem radar cuaca.

Dalam pengerjaanya, proyek ini dikerjakan oleh 3 orang mahasiswa di antaranya Sophia Agustina Suzaanthie pada bagian Mencari Literatur Terkait dengan Metode *fraktal*, Toni Nurhakim pada bagian Mencari Literatur Terkait mengenai Radar Cuaca, dan Sarah Muslimawati pada bagian perancangan realisasi modul filter tersebut.

1.2 Rumusan Masalah

- 1. Bagaimana cara merancang dan merealisasikan sebuah bandpass filter mikrostrip yang bekerja pada frekuensi 9GHz?
- 2. Bagaimana cara merancang dan merealisasikan sebuah bandpass filter dengan menggunakan metode *fraktal* yang dapat mengurangi frekuensi resonansi dan *bandwidth* pada filter?

1.3 Tujuan

Tujuan pengerjaan merancang dan merealisasikan bandpass filter dengan menggunakan teknologi mikrostrip dengan metode fraktal. Filter yang direalisasikan memiliki spesifikasi sebagai berikut:

- 1. Rentang frekuensi 8750 MHz 9250 MHz
- 2. Frekuensi tengah sebesar 9 GHz.

- 3. Return loss $\geq 18 \text{ dB}$
- 4. Insertion loss < 3 dB.

1.4 Luaran

Luaran yang diharapkan dari pembuatan proposal ini adalah suatu filter yang beroperasi pada frekuensi X-band yang merupakan komponen pendukung untuk sistem radar cuaca yang digunakan untuk dapat membantu dan mempermudah pekerjaan seorang ahli meteorologi/forecaster dalam memberikan pelayanan dan informasi bagi pengguna jasa meteorologi seperti mendeteksi intensitas curah hujan dan cuaca buruk, misalnya badai.

BAB 2

TINJAUAN PUSTAKA

Radar mempunyai kegunaan yang sangat luas dan tersebar pada berbagai bidang. Dari kepentingan militer seperti untuk pengawasan, kendali peluru ataupun untuk kepentingan sipil seperti navigasi, pengindraan jarak jauh, pemantauan cuaca maupun apliksi untuk dunia industri. Salah satu bagian yang penting dalam meningkatkan unjuk kerja sistem radar adalah filter (Fauzi, 2014). Filter merupakan suatu perangkat transmisi yang memiliki fungsi untuk melewatkan frekuensi tertentu dengan meloloskan frekuensi yang diinginkan (passband) dan meredam frekuensi yang tidak diinginkan (stopband).

Dalam jurnal yang dibuat oleh Rizky Maulana Putra, Bambang Setia Nugroho, Yuyu Wahyu akan merancang dan merealisasikan sebuah bandpass filter menggunakan metode ring square resonator berbasis mikrostrip untuk radar FM-CW pengawas pantai (Putra, et al., 2018). Radar ini menggunakan sebuah Bandpass filter yang bekerja pada frekuensi X-band, dimana frekuensi X-band itu sendiri berada pada rentang 8GHz sampai 12 GHz.

Filter yang akan digunakan berbasis mikrostrip yang merupakan salah satu jenis filter yang berbentuk papan tipis dan mampu bekerja pada frekuensi yang sangat tinggi (Intan Nuraeni Agfah, 2017). Filter mikrostrip terbuat dari tiga lapisan bahan, yaitu lapisan resonator (konduktor), substrat dielektrik, dan groundplane.

Pandangan berikutnya yang terkait dengan proyek ini yaitu perancangan Band PassFilter dengan menggunakan filter *hairpin* yang dibuat oleh Bekti Utami Suryaningsih dan Achmad Ali Muayyadi (Suryaningsih, 2017). Kelebihan dari metode yang mereka gunakan yaitu akan menghasilkan *bandwidth* yang lebar dan mempunyai struktur yang tersusun rapi. Namun metode ini memiliki kekurangan karena tidak dapat diminiaturisasi. Sama halnya yang diusulkan oleh Noviandi, Donny, Hero, Wijayantoe dan Yuyu Wahyu dengan menggunakan filter *hairpin* (Noviandi, et al., 2015). Namun, berbeda dalam hal frekuensi kerja dari filter tersebut.

Baru-baru ini, penggunaan fraktal dalam desain filter telah menarik banyak perhatian untuk mencapai tujuan seperti mengurangi frekuensi resonansi dan mengurangi bandwidth. (R.N. BARAL, 2018) Fraktal pertama kali didefinisikan oleh Benoit Mandelbrot pada tahun 1975 sebagai cara mengklasifikasikan struktur yang dimensinya bukan bilangan bulat. Fraktal berarti pecahan atau pecahan tidak teratur yang memiliki kemiripan yang melekat dalam struktur geometrisnya. Sampai saat ini beberapa geometri fraktal seperti Hilbert curve, Sierpinski carpet, Koch curve, dll. telah digunakan untuk mengembangkan berbagai perangkat microwaye

BAB 3

METODE PENELITIAN

3.1. Perancangan

Pada tahap ini yaitu dengan melalui beberapa tahapan dari mulai tahap menentukan spesifikasi, perhitungan hingga proses simulasi. Dalam penentuan spesifikasi meliputi penentuan frekuensi kerja, frekuensi tengah, nilai *bandwidth*, *insertion loss, return loss*, penggunaan respon frekuensi serta metode yang akan digunakan dalam merancang filter ini.

Setelah itu, dilakukan proses perhitungan untuk membuat desain filter sesuai spesifikasi yang telah ditentukan. Perhitungan tersebut meliputi penentuan orde filter, lebar saluran catu, panjang resonator, dan jarak antar resonator.

Setelah dilakukan perhitungan, maka dapat membuat sebuah desain yang nantinya akan disimulasikan menggunakan perangkat lunak *ADS* (*Advanced Desain System 2011*). secara berulang-ulang agar mendapatkan hasil yang sesuai dengan spesifikasi.

Studi literatur dilakukan berdasarkan dari buku teks, jurnal, dan website yang terkait dengan bandpass filter.

3.2. Realisasi

Pada tahapan ini akan merealisasikan desain filter pada printed circuit board (PCB) jika hasil yang telah berulang-ulang disimulasikan dengan menggunakan software ADS (Advanced Desain System 2011) yang telah sesuai atau mendekati dengan spesifikasi yang telah ditentukan.

3.3. Pengujian

Tahap selanjutnya yaitu melalukan proses pengukuran karakteristik filter bandpass dengan menggunakan *Vector Network Analyzer (VNA)*. Adapun parameter pengukuran tersebut meliputi respon frekuensi, *bandwidth*, *insertion loss*, *return loss* serta impedansi.

3.4. Analisis

Pada tahap ini, hasil pengukuran dapat dianalisa dengan cara membandingkanya antara hasil simulasi dengan hasil realisasi yang merujuk pada spesifikasi yang sudah ditentukan dan hasil pengukuran.

3.5. Evaluasi

Untuk tahap evaluasi ini, diharapkan bandpass filter yang telah dirancang sesuai dengan spesifikasi yang telah ditentukan melalui proses perhitungan dan simulasi dengan toleransi kesalahan yaitu sebesar 5%.

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Untuk pembuatan perangkat filter bandpass ini, diperlukan:

Tabel 4.1 Anggaran biaya perangkat filter band pass

No	Jenis Biaya	Biaya (Rp)
1	Biaya Penunjang PKM	Rp 445.000,-
2	Biaya Bahan Habis Pakai	Rp 6.000.000,-
2	(Material, Komponen Pendukung dan Pengujian)	Кр 0.000.000,-
4	Biaya Perjalanan	Rp 1.450.000,-
5	Lain-lain	Rp 3.175.000,-
	JUMLAH	Rp 11.070.000,-

4.2. Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan PKM-P

No	Agenda		Jan	uari]	Febr	uari	i		N	/Iare	et		April		April			Mei			
110	rigenua	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Survey pasar, material bahan PCB dan komponen																						
2	Pemilihan dan pembelian bahan PCB serta komponen pendukung																						
3	Perancangan Filter Band Pass Mikrostrip dengan Frekuensi Kerja 9GHz																						
4	Pencetakan skema rangkaian pada PCB																						
5	Pengujian spesifikasi filter																						
6	Perancangan dan pembuatan casing																						
7	Analisis dan pemecahan masalah																						
8	Proses perbaikan dan penyempurnaan																						
9	Penulisan laporan PKM-P							_															

DAFTAR PUSTAKA

Aliefien, 2012. Radar dan Telekomunikasi Harus Berperan Menyuplai Kebutuhan Lokal. [Online]

Available at: http://technology-indonesia.com/teknologi-a-z/astronomi/radar-dan-telekomunikasi-harus-berperan-menyuplai-kebutuhan-lokal/
[Diakses 2 Januari 2019].

Fauzi, Y., 2014. *Rancang bangun bandpass filter untuk aplikasi radar XBand.* Jakarta: Universitas Indonesia.

Intan Nuraeni Agfah, H. W. B. S., 2017. BANDPASS FILTER MIKROSTRIP X-BAND UNTUK RADAR CUACA DENGAN METODE SQUARE RING RESONATOR. Agustus, p. 1718.

Khairullah, 2009. *Pentingnya Radar Cuaca*. [Online] Available at: https://ustadzklimat.blogspot.com/2009/12/pentingnya-radar-cuaca.html [Diakses 2 Januari 2019].

Munir, A., Praludi, T. & Effendi, M. R., 2014. *Characterization of Narrowband Hairpin Bandpass Filter Composed of Fractal Koch Geometry*. Guangzhou, Electromagnetics Research Symposium Proceedings.

Noviandi, et al., 2015. Perancangan dan Realisasi Filter Hairpin Bandpass Chebyshev Orde 8 Untuk Synthetic Aperture Radar 1.27GHz.

Putra, R. M., Nugroho, B. S. & Wahyu, Y., 2018. Perancangan Dan Realisasi Bandpass Filter Mikrostrip Ring Square Resonator Pada Frekuensi X-band (9.4 Ghz) Untuk Radar Fm-cw Pengawas Pantai. Volume 3, p. 344.

R.N. BARAL, P. S., 2018. Design of Microstrip Band Pass Fractal Filter for Suppression of Spurious Band.

Suryaningsih, M. A. A. d. B. U., 2017. Perancangan dan Realisasi Bandpass Filter yang Bekerja pada Frekuensi 3GHz menggunakan metode hairpin.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota, Biodata Dosen Pendamping

1. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Sophia Agustina Suzanthi
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	171344028
5	Tempat dan Tanggal Lahir	Cimahi, 23 Agustus 1999
6	E-mail	sophiagsevani@gmail.com
7	Nomor Telepon/HP	085896200697

B. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

C. Penghargaan yang pernah diterima

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Pentas Pelajar Kreasi Karya Pemuda (Membatik Nyere)	Dispora	2016

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian.

Bandung, 2 Januari 2019 Pengusul,

Sophia Agustina Suzanthi

2. Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Sarah Muslimawati
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	151344027
5	Tempat dan Tanggal Lahir	Bandung, 26 April 1997
6	E-mail	muslimawatisarah26@gmail.com
7	Nomor Telepon/HP	085892562434

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

		Status Dalam	Waktu dan
No.	Jenis Kegiatan	Kegiatan	Tempat
	Workshop Fiber Optic	Peserta	18 November
1	Technician Bekerjasama		2017
	dengan PT. Commtech		Polban
	Workshop Ciaco	Peserta	09 September
2	Workshop Cisco		2017
	Networking Fundamental		Polban
3	Seminar Telco	Peserta	09 Januari 2016
	Knowledge III		Polban
4	BTO POLBAN 2015	Peserta	Desember 2015
	(Basic Training		Polban
	Organization)		
5	ESQ Character Building	Peserta	4 – 5 September
			2015
			Polban
	Program Pengenalan	Peserta	16 – 20 Agustus
	Kehidupan Kampus 2015		2015
6	dan LKMM Pra Dasar		Polban
	dengan Tema "The Power		
	Of Doing Good"		
	Butterfly Act Learning	Peserta	17 – 18 Agustus
7	Re- Creation The Power		2015
/	Of Doing Good PPKK		Polban
	POLBAN 2015		
	Pelatihan Bela Negara dan	Peserta	Tahun 2015
8	Kedisiplinan Mahasiswa		Polban
	POLBAN		
9	Kegiatan Pendidikan	Peserta	Tahun 2015
9	Karakter Melalui		Polban

	Mentoring Agama		
	Semester Genap Tahun		
	Akademik 2015/2016		
	POLBAN		
	National Taipei	MC&Peserta	Tahun 2017
10	University of Technology		Polban
10	(Taipei tech) Taiwan		
	Education Exhibition		
11	Career Path	MC&Peserta	Tahun 2017
11	Telekomunikasi		Polban
	Pelatihan Fisik dan	Peserta	Tahun 2012
12			Pusdikhub TNI
	Mental (SECAPA AD)		AD
	TERIAKI 2		2016 SDN 2
13	(Telekomunikasi berbagi	MC	
	aksi 2)		Cipanas

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian.

Bandung, 2 Januari 2019 Pengusul,

Sarah Muslimawati

3. Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Toni Nur Hakim
2	Jenis Kelamin	Laki - laki
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	161344028
5	Tempat dan Tanggal Lahir	Sumedang, 22 Juni 1998
6	E-mail	toninh22@gmail.com
7	Nomor Telepon/HP	085322947530

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jania Vagiatan	Status Dalam	Waktu dan
NO.	Jenis Kegiatan	Kegiatan	Tempat
	Program Pengenalan	Peserta	8 – 12 Agustus
	Kehidupan Kampus 2016		2016
1	dan LKMM Pra Dasar		Polban
	dengan Tema "The Power		
	Of Doing Good"		
		Peserta	10-11 Agustus
2	MOTIVATION DAY		2016
			Polban
3	Pelatihan Bela Negara dan	Peserta	14-20 Agustus
	Kedisiplinan Mahasiswa		2016
	POLBAN		PUSDIKJAS
4	ESQ Character Building	Peserta	29 – 30 Agustus
			2016
			Polban
5	Workshop Cisco	Peserta	Oktober 2016
	Networking Fundamental		Polban
6	Salman Spiritual Camp	Peserta	4-5 Februari
0	(SSC) ke – 10		2017
	Butterfly Act Learning	Peserta	17 – 18 Agustus
7	Re- Creation The Power		2015
/	Of Doing Good PPKK		Polban
	POLBAN 2015		
	Kreatifitasku Dimulai dari		11 Maret 2017
8	Seragam Putih Merah	Panitia	SDN Indragiri 1
	Seragain i unii Meran		Rancabali
	Kegiatan Pendidikan	Peserta	11 Maret – 21
9	Karakter Melalui		Mei 2017
	Mentoring Agama		Polban

	Semester Genap Tahun		
	Akademik 2016/2017		
	POLBAN		
	Studi Banding Himpunan	Peserta	April 2017
10	HIMATEL POLBAN		Telkom
10	dengan HMDT Telkom		University
	University		
11	Workshop Arduino	Peserta	20 Mei 2017
11	Workshop Arduino		Polban
	Workshop Fiber Optic	Peserta	18 November
12	Technician Bekerjasama		2017
	dengan PT. Commtech		Polban
13	Career Path	Peserta	6 Oktober 2018
13	Telekomunikasi		Polban
	Studi Banding Akademik	Peserta	10 November
14	dan Himpunan HIMATEL		2018
14	POLBAN dengan HMTT		Telkom
	Telkom University		University
	Seminar Nasional SDN &	Peserta	17 November
15	NFV		2018 Telkom
	INI' V		University
		Peserta	15-16
16	SEINTEK FEST 2018		Desember 2018
			Polban

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian.

Bandung, 2 Januari 2019 Pengusul,

Toni Nur Hakim

4. Biodata Dosen Pembimbing

A. Identitas Diri

Nama Lengkap	Ir. Enceng Sulaeman MT.
Jenis Kelamin	Laki-laki
Program Studi	Telekomunikasi
NIDN	0010116404
Tempat dan Tanggal Lahir	Bandung, 10 Nopember 1964
E-mail	enceng_s@yahoo.com
Nomor Telepon/HP	081320704592

B. Riwayat Pendidikan

Gelar Akademik	S-1	S-2
Nama Institusi	Institut	Institut
	Teknologi	Teknologi
	Bandung	Bandung
Jurusan/Prodi	Teknik Elektro- Telekomunikasi	Teknik Elektro- Sistem Telekomunikasi dan Informasi
Tahun Masuk-Lulus	1985-1992	1995-1999

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/pengajaran

NO	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Saluran Transmisi dan Serat Optik	Wajib	4
2	Teknik HF dan Gelombang Mikro	Wajib	6

C.2 Pengalaman Penelitian

No.	Tahun	Judul	Sumber	Jumlah (Rp)
1.	2012	Perancangan dan Implementasi Digital Microwave Radio Link	DIPA	25.000.000,-
2.	2013	PerancangandanImplementasi Model Infrastruktur Telekomunikasi BerbasisTeknologi PDH Standar ITU G.703	DIPA	62.250.000,-
3.	2014	PerancangandanImplementasi Model Infrastruktur Telekomunikasi BerbasisTeknologi PDH Standar ITU G.703	DIPA	70.000.000,-

4.	2016	Perancangan dan Realisasi Sirkulator		
		Saluran Strip Sebagai Duplekser Pada	DIPA	3.500.000,-
		Frekuensi 3 GHz		ŕ
5.	2017	Perancangan BPF Dualband Mikrostrip Pada Frekuensi Tengah 2,4 dan 3,5 GHz berbasis SIR	DIPA	4.500.000,-

C.3 Pengalaman Pengabdian Kepada Masyarakat

1.		
2.		
3.		
4.		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian.

> Bandung, 2 Januari 2019 Pembimbing,

Ir. Enceng Sulaeman, MT.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan penunjang

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Software	Simulasi	1 Set	445.000	445.000
	dalam			
	perancangan			
SUB TOTAL (Rp)	445.000			

2. Bahan Habis Pakai

Alat dan Bahan	Jumlah (Rp)
Material PCB • Substrate Roger tipe Duroid Roger 5880	4.000.000
Komponen Pendukung	
Konektor SMA	
Timah	500,000
Baud	500.000
• Lotfet	
Pencetakan dan Pengujian	
Pencetakan PCB/Etching	
Pengukuran/Pengujian Alat	1.500.000
Pembuatan Casing	
SUB TOTAL (Rp)	6.000.000

3. Perjalanan

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Transport Ke Jaya	Survey	1 Kali	150.000	450.000
Plaza (3 orang)	Komponen			
Biaya pengiriman PCB	Biaya ongkos kirim PCB	1 Kali	1.000.000	1.000.000
SI	UB TOTAL (R _l	p)		1.450.000

4. Lain-lain

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah (Rp)		
Kertas A4 80 gr	Penunjang proposal dan Laporan	1 Rim	45.000	45.000		
Tinta Printer	Penunjang Laporan dan Proposal	1 Set	120.000	120.000		
Seminar Nasional (3 Orang)	1	Tim	1.000.000	3.000.000		
	SUB TOTAL (Rp)					

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/ Nim	Program	Bidang	Alokasi Waktu	Uraian Tugas
		Studi	Ilmu	(jam/minggu)	
1.	Sophia	D4	Teknik	20 jam	Simulasi pada
	Agustina		Telekomu		Software
	Suzanthi		nikasi		
	(171344028)				
2.	Sarah	D4	Teknik	20 jam	Realisasi
	Muslimawati		Telekomu		Perancangan
	(151344027)		nikasi		Bandpass Filter
3.	Toni Nur	D4	Teknik	20 jam	Pengukuran/Pengujia
	Hakim		Telekomu		n Alat
	(161344028)		nikasi		

Lampiran 4. Surat Pernyataan Ketua Peneliti

Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN KETUA PENELITI

Saya yang menandatangani Surat Pernyataan ini: Nama : Sophia Agustina Suzanthi

NIM : 171344028

Program Studi : D4-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal Program Kreativitas Mahasiswa Penelitian saya dengan judul:

"Perancangan dan Realisasi Bandpass Filter Pada Frekuensi 9GHz Untuk Radar Cuaca"

yang diusulkan untuk tahun anggaran 2019 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-

Bandung, 2 Januari 2019

Yang menyatakan,

Sophia Agustina Suzanthi NIM. 171344028

Malayusfi, BSEE,MT.

Mengetahui Ketua Jurusan,

DISEL TEXNOLOGY

NIP. 19540101 198403 1001