Notes on the function gsw_molality_from_SA(SA)

This function, **gsw_molality_from_SA**(SA) evaluates the molality of seawater m_{SW} from the definition given by Eqn. (3.40.10) of the TEOS-10 Manual (IOC *et al.* (2010))

$$m_{\rm SW} = \frac{S_{\rm A}}{(1 - S_{\rm A})M_{\rm S}} \ .$$
 (3.40.10)

Here M_S is the mole-weighted average atomic weight of the elements of sea salt. The paper which defines the Reference-Composition Salinity Scale, Millero *et al.* (2008), derives M_S to be the value

$$M_{\rm S} = 31.403\,821\,8...\,\,\text{g mol}^{-1} = 0.031\,403\,821\,8...\,\,\text{kg mol}^{-1},$$
 (1)

and this value can be found by calling $\mathbf{gsw_atomic_weight}$. In Eqn. (3.40.10) Absolute Salinity S_A must be in units of $\mathrm{kg} \ \mathrm{kg}^{-1}$ which means that M_S must be in units of $\mathrm{kg} \ \mathrm{mol}^{-1}$ in this equation.

Molality m_{SW} is given by the GSW function **gsw_molality_from_SA**(SA) in units of mol kg⁻¹.

Strictly speaking, Eqn. (3.40.10) applies only to seawater of Reference Composition because the value of $M_{\rm S}$ used in this equation is the value for Reference-Composition seawater. The value of the mole-weighted average atomic weight of the elements of seawater of arbitrary composition is unknown. If molality is required to an accuracy of better than 0.1% it is suggested that you contact the authors for further guidance.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008: The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, *Deep-Sea Res. I*, 55, 50-72.