

Inventory Management

Summer 2025

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

This work is protected under copyright law. Any translation, copy, duplication, presentation, extraction of figures or tables, upload to public or private online repositories or websites, also in part, is strictly prohibited. Any copyright infringement will be persecuted based on the sanctions by the copyright law (Urheberrechtsgesetz).

Table of contents

- 1. Introduction
- 2. Lot-sizing and safety stocks revisited
- 3. Inventory analytics: Demand modelling
- 4. Basic inventory control models
- 5. Supply chain inventory control
- 6. Multi-product inventory control

Learning objectives

 Understand inventory management as an integral part of logistics and supply chain management solutions

 Know the strategies, concepts and methodologies for an effective working capital management

 Apply and develop quantitative decision support for real world inventory management in different industries

Obtain knowledge for successful project and research work

Literature

No obligatory books, the course material will cover the exam material.

Main texts

- Vandeput, N. (2020). Inventory Optimization: Models and Simulations, de Gruyter
- Silver, E.A., Pyke, D.F., and Thomas, D.J. (2016), Inventory and Production Management in Supply Chains, 4th ed., CRC Press
- Muckstadt, J.A., Sapra, A., (2010), Principles of Inventory Management, Springer
- Axsäter, S. (2015), Inventory control, 3rd ed., Springer

Additional texts

- Zipkin, P.H. (2000), Foundations of inventory management, McGraw-Hill
- Makridakis et al. (1998), Forecasting: Methods and Applications, Wiley
- Chopra (2018), Supply Chain Management: Strategy, Planning, and Operation, 7th ed., Pearson.

Organizational

Lectures

- All materials provided on Moodle
- Slides, Excel sheets, Python codes

Exercise Sessions

- Exercise sheets are uploaded to be discussed on predefined sessions.
- Students are expected to present solutions and discuss them in these sessions.
- Please prepare the solutions in this way before coming to the session.
- Exercises which were not prepared will not be discussed.
- Trial Exam: An additional exercise session with a sample exam
- Q&A: Final session to clarify remaining questions
- Final exam: July 16, 2025, 11:30am 1pm, open book and computer format, 3 out of 4 questions

1. Introduction Silver et al. (2017), Chapter 1-2

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

Gartner Analytics Trends

Business News

Impressions

Motivation

Top inventory management

- Increase service levels
- Reduce costs
- Academic roots!

Inventory Management Software

- SAP APO
- ORACLE NetSuite
- SAS
- ZoHo Inventory
- Asset Panda
- SlimStock
- •

Impact, U.S., Nov. 2018

- 10% of GDP in inventories (2 billion US\$)
- Increasing
- For every 1\$ of sales, 1.35\$ of inventory
- Not only commercial sales!

Consulting statements

Eight ways to reduce your inventory:

- 1. Reduce demand variability
- 2. Improve forecast accuracy
- 3. Re-examine service levels
- 4. Address capacity issues
- 5. Reduce order sizes
- 6. Reduce manufacturing lot sizes
- 7. Reduce lead times
- 8. Reconfigure the supply chain

https://www.industryweek.com/companies-amp-executives/12-ways-reduce-inventories

Motivation: balance sheets

All numbers in millions Source: https://finance.yahoo.com

Company:	Wal-Mart Inc. Jan-21		Boeing Co. Dec-20		Siemens AG Sep-20		Google Inc. Dec-20	
Period 2020/21								
Assets								
Current Assets								
Cash And Cash Equivalent	17,741	7.03%	7,752	5.10%	14,041	11.33%	26,465	8.28%
Short Term Investments	0	0.00%	17,838	11.73%	2,680	2.16%	110,229	34.49%
Net Receivables	6,516	2.58%	10,051	6.61%	26,046	21.02%	31,384	9.82%
Inventory	44,949	17.80%	81,715	53.71%	7,795	6.29%	728	0.23%
Other Current Assets	20,861	8.26%	4,286	2.82%	2,406	1.94%	5,490	1.72%
Total Current Assets	90,067		121,642		52,968		174,296	
Net Property Plant and Equipment	109,848	43.50%	11,820	7.77%	10,250	8.27%	96,960	30.34%
Goodwill	28,983	11.48%	10,924	7.18%	20,449	16.50%	22,620	7.08%
Long-Term Investments	0	0.00%	1,016	0.67%	10,155	8.20%	20,703	6.48%
Accounts Receivable, Long Term	0	0.00%	1,936	1.27%	0	0.00%	0	0.00%
Loans Receivable, Long Term	0	0.00%	0	0.00%	0	0.00%	0	0.00%
Deferred Tax Assets, Long Term	0	0.00%	86	0.06%	0	0.00%	1,084	0.34%
Other Long-Term Assets	23,598	9.35%	4,712	3.10%	30,075	24.27%	3,953	1.24%
Total Assets	252,496		152,136		123,897		319,616	
Logistics & SCM Inventory Management	Summer 2025							

The flow of goods and information

- → The right flow of goods decreases inventories and increases service levels.
- → The right flow of information is needed for the right flow of goods.

Inventory management in a nutshell

Main questions:

- Frequency of stock reviews and order decisions
- When should an order be placed?
- How much should be ordered?

Recent developments and research

- Digitalization: Data-driven inventory management
- Non-stationary demands in inventory management
- Behavioral inventory management human judgments

Applications and challenges

- Manufacturing parts and consumer goods
- Perishable items
- Spare parts
- Reverse logistics
- Health-Care operations
- Disruption risk and multiple suppliers
- Marketing-Operations interface

Types of inventory

Locations

- Finished goods inventory
- Work in process
- Raw materials

Purpose of inventory

Cycle stock

Amount of inventory that is planned to be used in a certain cycle

Congestion stock

Inventory piled up because e.g. a machine is disrupted

Safety stock

Inventory kept to account for supply and demand uncertainty

Anticipation inventories

Extra inventory to anticipate on e.g. a peak in demand

Pipeline inventories

Finished goods that have not yet reached the customers

Decoupling stock

Inventory buffer between different stages of the supply chain

Performance measures

Strategic

Annual inventory turnover ratio: (cost of goods sold in year) / (average inventory)

Operational

- Quantity measures
 - Days of supply: total inventory value / average daily sales value
- Cost measures
 - Ordering cost
 - Inventory holding cost
 - Backorder and lost sales penalty cost
- Service measures
 - Availability α -service
 - Fill rate (item, product, customer order) β -service
 - Cycle service level: probability of no stock-out during an order cycle

Calculation example

Annual turnover ratio =
$$\frac{Avg. COGS^*}{Avg. Inventory}$$
Inventory days =
$$\frac{365}{Annual turnover ratio}$$

2020 All numbers in billions	Average COGS*	Average Inventory	Annual turnover ratio	Inventory days
BASF	40.2	10.0	4.0	90.8
Bayer	14.9	11.0	1.4	269.2
BMW	67.7	14.9	4.5	80.3
Daimler	110.5	26.4	4.2	87.4
Siemens	33.9	7.8	4.3	84.0

^{*}COGS = Cost Of Goods Sold

Cost categories

Ordering cost

- Administration of order, transportation cost
- Setup cost (change tools, opportunity cost for capacity loss)
- Handling cost

Inventory holding cost

- Cost of capital (opportunity cost)
- Payments for renting warehouse space, insurance, warehouse operations

Backorder and lost sales penalty cost

How to estimate?

		Begin Inv		End Inv	Fulfilled	Fulfilled
		= Order_t		= Begin Inv_t	Frequency	Quantity
Period	Demand	+ End Inv_t-1	Order	- Demand_t	(Alpha Lv)	(Beta Lv)
1	15	50		35	Υ	15
2	15	35		20	Υ	15
3	15	20		5	Υ	15
4	18	5		-13	N	5
5	4	37	50	33	Υ	4
6	6	33		27	Υ	6
7	6	27		21	Υ	6
8	10	21		11	Υ	10
9	7	11		4	Υ	7
10	10	54	50	44	Υ	10
11	15	44		29	Υ	15
12	12	29		17	Υ	12
13	7	17		10	Υ	7
14	15	10		-5	N	10
15	9	45	50	36	Υ	9
16	7	36		29	Υ	7
17	12	29		17	Υ	12
18	12	17		5	Υ	12
19	8	55	50	47	Υ	8
20	8	47		39	Υ	8
Total	211				18	193

Service Levels

"availability" (α -service): fraction of time with positive stock on hand

"fill-rate" (β-service): fraction of demand that can be satisfied immediately

Cycle service level: Fraction of order cycles without a stock-out

$$\frac{18}{20}$$
 = 90.0%

$$\frac{193}{211} \approx 91.4\%$$

$$\frac{2}{4}$$
 = 50.0%

Calculating inventory holding cost (illustrative example)

Average Inventory (Investment) Value

€32,000

Annual Inventory Costs

- Storage € 800
- Handling € 400
- Obsolescence € 600
- Damage €800
- Administration € 600
- Total € 3,200

Inventory Costs divided by Average Inventory Value:

• € 3,200 / €32,000 = **10**%

Summary

- Opportunity Cost of Capital: 8%
- Insurance: 5%
- Total: 23%

ABC / XYZ Analyses

ABC Analysis

Categorization of items with high, middle, low importance

XYZ Analysis

 Categorization of items for which good, medium or bad forecasts can be obtained

Combining ABC and XYZ

- -3×3 matrix
- Goal: Segmentation by ABC and XYZ to determine which products to focus on

ABC-Analysis

Rank all items based on "importance"

- Consumption value
- Revenue
- Profit

Pareto principle:

A small number of items account for a large part of profit (e.g. 80/20)

Vilfredo Pareto 1848-1923 Italian economist

Example ABC-Analysis based on value

Item	Value (T €)	%	Cumulative %	Classification	Proportion of items	Proportion of value
7	34000	46.7	46.7	Class A		
1	25000	34.3	81.0	(e.g., engine, gear drive)	20%	81%
9	4500	6.2	87.2	Class B		
5	3360	4.6	91.8	(e.g., plastic	40%	17 F0/
2	2200	3	94.8	parts, metal	40%	17.5%
6	1950	2.7	97.5	sheets)		
3	640	0.9	98.4			
4	560	0.8	99.2	Class C	400/	2 50/
10	480	0.6	99.8	(e.g., glue, bolts)	40%	2.5%
8	120	0.3	100	,		

Source: Jonsson (2008), p. 426, Domschke (2005), p. 139.

XYZ-Analysis

Ranking on **demand pattern / forecast requirements** Example:

X: regular demand

- Few periods without demand
- Coefficient of variation ≤ 0.5
- Normal distribution

Y: irregular demand

- Small fraction of periods without demand
- Coefficient of variation > 0.5
- Negative binomial distribution

Z: sporadic demand

- Large fraction of periods without demand
- Compound Poisson demand models

Example XYZ based on coefficient of variation

t	1	2	3	4	5	6	7	8	9	10
Product 1	95	127	55	81	70	151	101	73	51	48
Product 2	83	192	0	36	0	271	102	9	0	0
Product 3	4	8	0	3	0	0	0	0	0	0
t	11	12	13	14	15	16	17	18	19	20
Product 1	139	115	102	75	33	148	167	70	137	88
Product 2	229	151	107	18	0	258	324	2	223	61
Product 3	0	7	0	0	0	10	0	2	0	0

	Mean	Standard deviation	Coefficient of variation	Classification
Product 1	96.30	38.57	0.40	X
Product 2	103.30	109.44	1.06	Υ
Product 3	1.70	3.11	1.83	Z

$$cv = \frac{\sigma}{\mu}$$

Problem

- Service parts criticality
- Volatile demand
- ABC classification
- Inadequate inventory policy

Approach

- Extended classification : XYZ
- Service level oriented inventory policy
- Different, class specific models

Article	9	AX	ВХ	СХ	AY	ВҮ	СҮ	AZ	BZ	CZ
SL Old		100 %	97.4 %	100 %	89.5 %	100 %	39.0 %	76.5 %	100 %	90.5 %
SL New		100 %	100 %	98.8 %	100 %	100 %	92.7 %	100 %	100 %	85.7 %
Doviction	SS	-25 %	-29 %	-40 %	+100 %	+150 %	+233 %	+100 %	0 %	0 %
Deviation	SL	0 %	+2.6 %	-1.2 %	+10.5 %	0 %	+53.7 %	+23.5 %	0 %	-4.8 %

Service levels

ABC groups the **importance** of different items

XYZ groups their **demand patterns and forecastability**

Classical view: Service level A > B > C

But: achieving a certain service level requires more safety stock for Z than for Y than for X

			<u> </u>
	A	В	C
	high value,	medium value,	low value,
X	high predictability	high predictability	high predictability
	continuous demand	continuous demand	continuous demand
	high value,	medium value,	low value,
Y	medium predictability	medium predictability	medium predictability
	fluctuating demand	fluctuating demand	fluctuating demand
	high value,	medium value,	low value,
Z	low predictability	low predictability	low predictability
	irregular demand	irregular demand	irregular demand

Modern view: cost analysis per item

Pros and cons of ABC and XYZ Analysis

Pro:

- Categorization of a lot of stock keeping units (SKUs) into three clear groups
- Simple application
- Easy graphical visualization

Con:

- Why three groups? Why these group sizes?
- What to classify on? (ABC: value/revenue/profit? XYZ: CV/forecast accuracy?)
- Are C-parts also less important from an inventory perspective?

State-of-the-art research: machine learning SKU classification