-	Bir fonk	siyonun '	"Hessian	modrisi	" f(x	1,4,2	.) túm
îkinci	ksmi	turevleri	bir ma	triste c	lizenler	; Bu fo	orkli
		ndan H(f)			1 1 1	1 3 1 1 1	
	$\frac{\bigcirc^2 f}{\bigcirc x^2}$	O's Oy	0x05				
	027 040x	0 ² f	0,24				
f =	02f 020x	Ø2-¢ Ø2-Øy	<u></u>				
Burc	aore,	burner	-612				
	0	burada .					
	• Ku sod	ece staler	- deger	li fonks	iyonlar	iain ank	amlı
•	Hf sin	adan bir	motris	degil;	ancak	girdileri	
fonks	Hf sim	ece stater adan bir Ilan bir m) nokto	motristic	değilî; Boşka	ancak bir seki	girdileri Ide ifade	
fonks bir (Hf sim	adan bir m lan bir m nokto $\frac{\theta^2 f}{\theta}$	motristic notristic asında Xoryon	değil; Başka hesaplanı 024	ancak bir seki ak ic	girdileri Ide ifade Lindir	
fonks bir (Hf sim	adan bir Ilan bir m	motristic notristic asında Xoryon	değil; Başka hesaplanı 024	ancak bir seki ak ic	girdileri Ide ifade Lindir	
fonks bir (Hf sim	adan bir m lan bir m nokto $\frac{\theta^2 f}{\theta}$	motristic notristic asında Xoryon	değil; Başka hesaplanı 024	ancak bir seki ak ic	girdileri Ide ifade Lindir	

Soru: $f(x,y) = x^{3} - 2xy - y^{6} \text{inn} (1,2) \text{nok-tosinoble}; \text{hession'ini}$ hesoplayin $\frac{Co2!}{Co2!} \text{bise} f' \text{inn} \text{ikinci} \text{kismi} \text{turevlerinin} \text{tum'u} \text{gerekecek}$ $\text{once} \text{kismi} \text{turevlesin} \text{ikisini} \text{hesaployalim:}$ $f_{x}(x,y) = \frac{O}{O_{x}} \left(x^{3} - 2xy - y^{6}\right) = 3x^{2} - 2y$ $f_{y}(x,y) = \frac{O}{O_{x}} \left(x^{3} - 2xy - y^{6}\right) = -2x - 6y^{6}$ $\text{bunlarla} \text{ikinci} \text{kismi} \text{turevlesin} \text{dodono hesapla};$ $f_{xx}(x,y) = \frac{O}{O_{x}} \left(3x^{2} - 2y\right) = 6x$ $f_{xy}(x,y) = \frac{O}{O_{x}} \left(3x^{2} - 2y\right) = -2$ $f_{yy}(x,y) = \frac{O}{O_{x}} \left(-2x - 6y^{5}\right) = -2Oy^{4}$
hesoplayin Cross bise f'nin ikinci kismi türevlerinin tümü gerekecek arce kismi türevlerin ikisini hesoplayalım: $f_{x}(x,y) = \frac{0}{0x} (x^{3} - 2xy - y^{6}) = 3x^{2} - 2y$ $f_{y}(x,y) = \frac{0}{0y} (x^{3} - 2xy - y^{6}) = -2x - 6y^{5}$ bunlarla ikinci kismi türevlerin dördünü hesopla; $f_{xx}(x,y) = \frac{0}{0x} (3x^{2} - 2y) = 6x$ $f_{xy}(x,y) = \frac{0}{0x} (3x^{2} - 2y) = -2$ $f_{yx}(x,y) = \frac{0}{0x} (-2x - 6y^{5}) = -2$
hesoplayin Co2: bize f'nin ikinci kismi türevlerinin tümü gerekecek ace kismi türevlerin ikisini hesoplayalım: $f_{x}(x_{1}y) - \frac{0}{0x}(x^{3} - 2xy - y^{6}) = 3x^{2} - 2y$ $f_{y}(x_{1}y) = \frac{0}{0y}(x^{3} - 2xy - y^{6}) = -2x - 6y^{5}$ bunlarla ikinci kismi türevlerin dördünü hesopla; $f_{xx}(x_{1}y) = \frac{0}{0x}(3x^{2} - 2y) = 6x$ $f_{xy}(x_{1}y) = \frac{0}{0x}(3x^{2} - 2y) = -2$ $f_{yx}(x_{1}y) = \frac{0}{0x}(-2x - 6y^{5}) = -2$
once kismi türevlerin ikisini hesoployolim: $f_{x}(x_{1}y) = \frac{0}{0x} (x^{3} - 2xy - y^{6}) = 3x^{2} - 2y$ $f_{y}(x_{1}y) = \frac{0}{0y} (x^{3} - 2xy - y^{6}) = -2x - 6y^{5}$ bunlarla ikinci kismi türevlerin dördünü hesopla; $f_{xx}(x_{1}y) = \frac{0}{0x} (3x^{2} - 2y) = 6x$ $f_{xy}(x_{1}y) = \frac{0}{0y} (3x^{2} - 2y) = -2$ $f_{yy}(x_{1}y) = \frac{0}{0x} (-2x - 6y^{5}) = -2$
ance kismi türevlerin ikisini hesoployalim: $f_{x}(x,y) = \frac{0}{0x} (x^{3} - 2xy - y^{6}) = 3x^{2} - 2y$ $f_{y}(x,y) = \frac{0}{0y} (x^{3} - 2xy - y^{6}) = -2x - 6y^{5}$ bunlarla ikinci kismi türevlerin dadunu hesopla; $f_{xx}(x,y) = \frac{0}{0x} (3x^{2} - 2y) = 6x$ $f_{xy}(x,y) = \frac{0}{0y} (3x^{2} - 2y) = -2$ $f_{yy}(x,y) = \frac{0}{0x} (-2x - 6y^{5}) = -2$
$f_{x}(x,y) = \frac{0}{0x} (x^{3}-2xy-y^{6}) = 3x^{2}-2y$ $f_{y}(x,y) = \frac{0}{0y} (x^{3}-2xy-y^{6}) = -2x-6y^{6}$ $bunlarla ikinci kismi turevlerin dirdunu hesapla;$ $f_{xx}(x,y) = \frac{0}{0x} (3x^{2}-2y) = 6x$ $f_{xy}(x,y) = \frac{0}{0x} (3x^{2}-2y) = -2$ $f_{yx}(x,y) = \frac{0}{0x} (-2x-6y^{5}) = -2$
$fy(x,y) = \frac{0}{8y}(x^3 - 2xy - y^6) = -2x - 6y^5$ bunlarla ikinci kısmi türevlesin dördünü hesapla; $f(x,y) = \frac{0}{8y}(3x^2 - 2y) = 6x$ $f(x,y) = \frac{8}{8y}(3x^2 - 2y) = -2$ $f(x,y) = \frac{8}{8y}(x,y) = \frac{8}{8x}(-2x - 6y^5) = -2$
$f_{y}(x,y) = \frac{0}{0y}(x^{3}-2xy-y^{6} = -2x-6y^{5})$ bunlarla ikinci kısmi türevlerin dördünü hesapla; $f_{xx}(x,y) = \frac{0}{0x}(3x^{2}-2y) = 6x$ $f_{xy}(x,y) = \frac{0}{0y}(3x^{2}-2y) = -2$ $f_{yy}(x,y) = \frac{0}{0x}(-2x-6y^{5}) = -2$
bunlarla ikinci kısmi türevlesin dördünü hesapla; $f_{xx}(x,y) = \frac{9}{\sigma_{x}}(3x^{2}-2y) = 6x$ $f_{xy}(x,y) = \frac{8}{\sigma_{y}}(3x^{2}-2y) = -2$ $f_{yx}(x,y) = \frac{8}{\sigma_{x}}(-2x-6y^{5}) = -2$
$f_{xx}(x,y) = \frac{Q}{\Theta_x}(3x^2 - 2y) = 6x$ $f_{xy}(x,y) = \frac{Q}{\Theta_y}(3x^2 - 2y) = -2$ $f_{yx}(x,y) = \frac{Q}{\Theta_x}(-2x - 6y^5) = -2$
$f_{xx}(x,y) = \frac{Q}{Q_x}(3x^2 - 2y) = 6x$ $f_{xy}(x,y) = \frac{Q}{Q_y}(3x^2 - 2y) = -2$ $f_{yx}(x,y) = \frac{Q}{Q_x}(-2x - 6y^5) = -2$
$f \times g(x,y) = \frac{a}{\theta y} (3x^2 - 2y) = -2$ $f \times g(x,y) = \frac{a}{\theta x} (-2x - 6y^5) = -2$
$f_{yx}(x,y) = \frac{3}{8x}(-2x-6y^5) = -2$
0 0 0
bu durumda Hossian Matrisi 2x2 bir matristir ve fonk girdibri;
$Hf(x,y) = \begin{cases} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{cases} = \begin{cases} 6x - 2 \\ -2 - 30y^{4} \end{cases}$
bie de $(x,y) = (1,2)$ noktasında hesaplanmasını istedik
Hf(1,2) = 6 -2
$Hf(1,2) = \begin{bmatrix} -2 & -680 \end{bmatrix}$