Chapter 3: Relationships Between Variables

DSCC 462 Computational Introduction to Statistics

> Anson Kahng Fall 2022

Plan for Today

Plan for Today

• Visualize relationships between variables

Plan for Today

- Visualize relationships between variables
- Determine whether variables are correlated

Recall that we have discussed summaries of center and spread for one variable

- Recall that we have discussed summaries of center and spread for one variable
- Suppose we wanted to summarize height by sex, or summarize the relationship between hip length and weight

- Recall that we have discussed summaries of center and spread for one variable
- Suppose we wanted to summarize height by sex, or summarize the relationship between hip length and weight
- Much of what we did for one variable can be extended to two variables

• If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group

- If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group
- Heights in Group A (in): 64, 66, 67, 69, 69, 71

- If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group
- Heights in Group A (in): 64, 66, 67, 69, 69, 71
- Heights in Group B (in): 61, 62, 64, 67, 69

- If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group
- Heights in Group A (in): 64, 66, 67, 69, 69, 71
- Heights in Group B (in): 61, 62, 64, 67, 69
- Mean for Group A: $\bar{x}_A = 67.7$

- If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group
- Heights in Group A (in): 64, 66, 67, 69, 69, 71
- Heights in Group B (in): 61, 62, 64, 67, 69
- Mean for Group A: $\bar{x}_A = 67.7$
- Mean for Group B: $\bar{x}_B = 64.6$

• We can make histograms for each group, or side-by-side boxplots

• We can make histograms for each group, or side-by-side boxplots

We can make histograms for each group, or side-by-side boxplots

• If we have two categorical variables, we want to make a *two-way table* to describe the results

- If we have two categorical variables, we want to make a *two-way table* to describe the results
 - Cross tabulation of two categorical variables

- If we have two categorical variables, we want to make a *two-way table* to describe the results
 - Cross tabulation of two categorical variables
- Extend the frequency table we made for one categorical variable and extend it to two variables

- If we have two categorical variables, we want to make a two-way table to describe the results
 - Cross tabulation of two categorical variables
- Extend the frequency table we made for one categorical variable and extend it to two variables
- Consider the variables group (A/B) and smoking status (smoker/non-smoker)

- If we have two categorical variables, we want to make a two-way table to describe the results
 - Cross tabulation of two categorical variables
- Extend the frequency table we made for one categorical variable and extend it to two variables
- Consider the variables group (A/B) and smoking status (smoker/non-smoker)

	Smoker	Non-Smoker
Group A	15	22
Group B	26	18

 From this table, we can determine the total number of people in Group A, people in Group B, smokers, and non-smokers

- From this table, we can determine the total number of people in Group A, people in Group B, smokers, and non-smokers
- These sub-totals are known as marginal values for each variable

- From this table, we can determine the total number of people in Group A, people in Group B, smokers, and non-smokers
- These sub-totals are known as marginal values for each variable
- The marginal distributions for each variable can be summarized exactly as we did for the one variable case; we can make a bar plot for each and calculate marginal frequencies

- From this table, we can determine the total number of people in Group A, people in Group B, smokers, and non-smokers
- These sub-totals are known as marginal values for each variable
- The marginal distributions for each variable can be summarized exactly as we did for the one variable case; we can make a bar plot for each and calculate marginal frequencies

	Smoker	Non-Smoker	Total
Group A	15	22	37
Group B	26	18	44
Total	41	40	81

• What is the probability of smoking given that you are in Group B?

	Smoker	Non-Smoker	Total
Group A	15	22	37
Group B	26	18	44
Total	41	40	81

• What is the probability of smoking given that you are in Group B?

	Smoker	Non-Smoker	Total
Group A	15	22	37
Group B	26	18	44
Total	41	40	81

What is the probability of smoking given that you are in Group B?

• What is the probability of being in Group A given that you smoke?

	Smoker	Non-Smoker	Total
Group A	15	22	37
Group B	26	18	44
Total	41	40	81

□ Non-Smoker

■ Smoker

Case QQ: Quantitative and Quantitative

Case QQ: Quantitative and Quantitative

• Suppose we are interested in examining the relationship between diabetic patients' weights and ages

Case QQ: Quantitative and Quantitative

- Suppose we are interested in examining the relationship between diabetic patients' weights and ages
- We can graphically display this relationship with a two-way scatterplot

Case QQ: Quantitative and Quantitative

- Suppose we are interested in examining the relationship between diabetic patients' weights and ages
- We can graphically display this relationship with a two-way scatterplot
- When we make a scatterplot, we have our two variables as our two axes, and points are plotted based on their corresponding values for each variable

Case QQ: Quantitative and Quantitative

- Suppose we are interested in examining the relationship between diabetic patients' weights and ages
- We can graphically display this relationship with a two-way scatterplot
- When we make a scatterplot, we have our two variables as our two axes, and points are plotted based on their corresponding values for each variable
- R code: plot (x=weight, y=age, xlab="Weight", ylab="Age")

• Want to discuss the direction, form, and strength

- Want to discuss the direction, form, and strength
 - Direction: positive, negative, or neither

- Want to discuss the direction, form, and strength
 - Direction: positive, negative, or neither
 - Form: linear, non-linear, or no relationship

- Want to discuss the direction, form, and strength
 - Direction: positive, negative, or neither
 - Form: linear, non-linear, or no relationship
 - Strength: strong, weak, or none

• From a scatterplot, we are able to visually identify unusual points and features of the data

- From a scatterplot, we are able to visually identify unusual points and features of the data
- Examine the scatterplot to see if there are any points that do not seem to follow the trend of the data

- From a scatterplot, we are able to visually identify unusual points and features of the data
- Examine the scatterplot to see if there are any points that do not seem to follow the trend of the data
 - These points are outliers

Outliers: Examples

• From a scatterplot, we can see the relationship between two variables

- From a scatterplot, we can see the relationship between two variables
- Correlation tells us the degree to which two random variables are (linearly)
 associated or related

- From a scatterplot, we can see the relationship between two variables
- Correlation tells us the degree to which two random variables are (linearly)
 associated or related
- Setup: two quantitative variables, X and Y; X is on the horizontal axis of the scatterplot and Y is plotted on the vertical axis

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

$$\sim Vw(X) \qquad vw(Y)$$

$$S_{XX}$$

$$S_{YY}$$

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

A quantity related to the correlation is the sample covariance:

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}}$$

A quantity related to the correlation is the sample covariance:

$$s_{xy} = \frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

A quantity related to the correlation is the sample covariance:

$$S_{xy} = \frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

 \bullet Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

• A quantity related to the correlation is the sample covariance:

$$s_{xy} = \frac{1}{(n-1)} \left[\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \right]$$

$$(x:-x)(y:-y)$$

• Both correlation and covariance measure the relationship between variables

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship
- Covariance indicates direction

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship
- Covariance indicates direction
- Correlation indicates direction and strength

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship
- Covariance indicates direction
- Correlation indicates direction and strength
- Correlation values are standardized between -1 and 1

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship
- Covariance indicates direction
- Correlation indicates direction and strength
- Correlation values are standardized between -1 and 1
- Covariance values are not standardized

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_y = \sum_{i=1}^{n} (y_i - \overline{y})^2 = (n-1)s_y^2$$

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_{y} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = (n-1)s_{y}^{2}$$

$$SS_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = (n-1)s_{xy}$$

• We can define Sums of Squares:

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_{y} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = (n-1)s_{y}^{2}$$

$$SS_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = (n-1)s_{xy}$$

• Rewriting the sample correlation:

• We can define Sums of Squares:

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_{y} = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = (n-1)s_{y}^{2}$$

$$SS_{xy} = \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) = (n-1)s_{xy}$$

• Rewriting the sample correlation:

$$r = \frac{SS_{xy}}{\sqrt{SS_x SS_y}}$$

• The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$

- The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y

- The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y
 - In the cases of $r = \pm 1$, pairs of outcomes (x, y) lie on a straight line

- The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y
 - In the cases of $r = \pm 1$, pairs of outcomes (x, y) lie on a straight line
- Any r > 0 indicates a positive relationship between X and $Y(x \uparrow \rightarrow y \uparrow)$

- The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y
 - In the cases of $r = \pm 1$, pairs of outcomes (x, y) lie on a straight line
- Any r > 0 indicates a positive relationship between X and $Y(x \uparrow \rightarrow y \uparrow)$
- Any r < 0 indicates a negative relationship between X and $Y(x \uparrow \rightarrow y \downarrow)$

- The correlation coefficient does not have units and is bounded: $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y
 - In the cases of $r = \pm 1$, pairs of outcomes (x, y) lie on a straight line
- Any r > 0 indicates a positive relationship between X and $Y(x \uparrow \rightarrow y \uparrow)$
- Any r < 0 indicates a negative relationship between X and $Y(x \uparrow \rightarrow y \downarrow)$
- When r = 0, X and Y have no linear relationship at all (could be non-linear)

Correlation can be sensitive to outliers

- Correlation can be sensitive to outliers
- A highly influential outlier can cause correlation to look strong when in fact not much of a relationship actually exists

- Correlation can be sensitive to outliers
- A highly influential outlier can cause correlation to look strong when in fact not much of a relationship actually exists

- Correlation can be sensitive to outliers
- A highly influential outlier can cause correlation to look strong when in fact not much of a relationship actually exists

Patient	Weight (lbs)	Age
1	220	68
2	215	58
3	179	43
4	145	37
5	145	20
6	177	58
7	136	36

Patient	Weight (lbs)	Age
1	220	68
2	215	58
3	179	43
4	145	37
5	145	20
6	177	58
7	136	36

Average weight:
$$\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$$

Patient	Weight (lbs)	Age
1	220 ⊀	68 *
2	215 🛧	58 4
3	179 🛧	43 -
4	145 -	37 -
5	145 -	20 -
6	177 +	58 +
7	136 -	36 -
	•	•

Average weight:
$$\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$$

Average age: $\bar{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$

Patient	Weight (lbs)	Age
1	220	68
2	215	58
3	179	43
4	145	37
5	145	20
6	177	58
7	136	36

Average weight:
$$\overline{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$$

Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$

$$\sum_{i=1}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$$

Patient	Weight (lbs)	Age
1	220	68
2	215	58
3	179	43
4	145	37
5	145	20
6	177	58
7	136	36

Average weight:
$$\overline{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$$

Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$

$$\sum_{i=1}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$$

$$\sum_{i=1}^{7} (x_i - \overline{x})^2 = \sum_{i=1}^{7} (x_i - 173.86)^2 = 6956.857$$

Patient	Weight (lbs)	Age	Average weight: $\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$
1	220	68	Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$
2	215	58	$\sum_{i=1}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$
3	179	43	i=1 $i=1$
4	145	37	$\sum_{i=1}^{7} (x_i - \overline{x})^2 = \sum_{i=1}^{7} (x_i - 173.86)^2 = 6956.857$
5	145	20	$\sum_{i=0}^{7} (y_i - \overline{y})^2 = \sum_{i=0}^{7} (y_i - 45.71)^2 = 1637.429$
6	177	58	i=1 $i=1$
7	136	36	

Correlation: Example

• Find the correlation between weight (X) and age (Y) for the following data

Patient	Weight (lbs)	Age	Average weight: $\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$		
1	220	68	Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$		
2	215	58	$\sum_{i=1}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$		
3	179	43	i=1 $i=1$ $i=1$		
4	145	37	$\sum_{i=1}^{7} (x_i - \bar{x})^2 = \sum_{i=1}^{7} (x_i - 173.86)^2 = 6956.857$		
5	145	20	$\sum_{i=0}^{7} (y_i - \overline{y})^2 = \sum_{i=0}^{7} (y_i - 45.71)^2 = 1637.429$		
6	177	58	$ \overline{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})} $ 2919.714		
7	136	36	$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sqrt{6956.857 \times 1637.429}} = 0.865$		

Correlation: Example

• Find the correlation between weight (X) and age (Y) for the following data

Patient	Weight (lbs	s) Age	Average weight: $\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$
1	220	68	Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$
2	215	58	$\sum_{i=0}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=0}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$
3	179	43	i=1 $i=1$ Strong positive
4	145	37	$\sum_{i=1}^{7} (x_i - \overline{x})^2 = \sum_{i=1}^{7} (x_i - 173.86)^2 = 6956.857$ Strong, positive, linear relationship between weight
5	145	20	$\sum_{i=1}^{7} (y_i - \overline{y})^2 = \sum_{i=1}^{7} (y_i - 45.71)^2 = 1637.429$ and age
6	177	58	$i=1$ $i=1$ $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ 2919.714
7	136	36	$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}} = \frac{\sum_{j=1}^{n} (x_j - \bar{x})^2}{\sqrt{6956.857 \times 1637.429}} = 0.865$

Correlation: Example

• Find the correlation between weight (X) and age (Y) for the following data

Patient	Weight (lbs)	Age
1	220	68
2	215	58
3	179	43
4	145	37
5	145	20
6	177	58
7	136	36

Correlation: Caveat

Correlation: Caveat

• Correlation does not imply causation (!!)

Correlation: Caveat

- Correlation does not imply causation (!!)
- We are only noting that a relationship exists; we are not specifying any cause-and-effect relationship

• Imagine we have two quantitative variables and one other variable (either Q or C)

- Imagine we have two quantitative variables and one other variable (either Q or C)
- We can augment our QQ approach (scatterplots) with color corresponding to the third variable

- Imagine we have two quantitative variables and one other variable (either Q or C)
- We can augment our QQ approach (scatterplots) with color corresponding to the third variable

Correlograms

• Correlograms: Visualize correlation coefficients between pairs of variables

Correlograms

- Correlograms: Visualize correlation coefficients between pairs of variables
- Very useful for looking at all pairwise relationships in large datasets

Correlograms

- Correlograms: Visualize correlation coefficients between pairs of variables
- Very useful for looking at all pairwise relationships in large datasets

• Imagine we have a dataset with many variables (far too many to visualize)

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information
- Principal Component Analysis (PCA):

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information
- Principal Component Analysis (PCA):
 - Principal components: Linear combinations of original variables

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information

• Principal Component Analysis (PCA):

- Principal components: Linear combinations of original variables
- All uncorrelated (i.e., orthogonal)

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information

• Principal Component Analysis (PCA):

- Principal components: Linear combinations of original variables
- All uncorrelated (i.e., orthogonal)
- The n^{th} principal component explains the n^{th} largest amount of variation in the data

