# Visual Servoing With Deep Models

Xuchong Qiu Yang Xiao

### Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Deep Reinforcement Learning

### Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Reinforcement Learning

## Eye-in-hand and eye-to-hand configurations



**Figure 5.** Top: (a) Eye-in-hand system. (b) Eye-to-hand system. Bottom: Opposite image motion produced by the same robot motion.

[François Chaumette et al, 2007]

## Basic components of visual servoing

#### Goal:

Give controller motion commands to minimize the error according visual information

$$\mathbf{e}(t) = \mathbf{s}(\mathbf{m}(t), \mathbf{a}) - \mathbf{s}^*$$

**e**(t) Error of feature vector to minimize

**s**(**m**(t), **a**) measured k-dim feature vector according to visual information

**s**\* Desired feature vector

**m**(t) Visual information, e.g. image coordinates of interest point

**a** Additional information about system, e.g. camera intrinsic

## Example: camera motion controller

- Static desired camera pose s\* and image I of a motionless target
- Eye-in-hand system where camera is fixed at end-effector

$$\mathbf{v}_{c} = (v_{c}, \boldsymbol{\omega}_{c})$$

Motion command

Define: 
$$\dot{\mathbf{s}} = \mathbf{L}_{\mathbf{s}}\mathbf{v}_{c}$$

$$\mathbf{L_s} \in \mathbb{R}^{k \times 6}$$

$$\dot{\mathbf{e}} = \mathbf{L}_{\mathbf{e}} \mathbf{v}_{c}$$

where 
$$L_e = L_s$$

$$\dot{\mathbf{e}} = -\lambda \mathbf{e}$$

Desired exponential decreasing

$$\mathbf{v}_c = -\lambda \mathbf{L}_{\mathbf{e}}^{+} \mathbf{e}$$

$$\mathbf{L}_{\mathbf{e}}^{+} = (\mathbf{L}_{\mathbf{e}}^{\top} \mathbf{L}_{\mathbf{e}})^{-1} \mathbf{L}_{\mathbf{e}}^{\top}$$

$$\mathbf{v}_{\scriptscriptstyle \ell} = -\lambda \widehat{\mathbf{L}_{e}^{+}} \mathbf{e}$$

#### **Keypoints:**

- Definition of feature vector s, therefore Le
- Estimation of Le 's pseudo inverse or inverse(if k = 6 and Le nonsingular)

## Basic variants depending on s

Image-Based Visual Servoing (IBVS)

$$\mathbf{s} = \mathbf{x} = (x, y)$$

- Pose-Based Visual Servoing (PBVS)
   use the pose of the camera p with respect to some reference frame
   To define s, (t, R) relative to reference frame Fo or desired camera frame \*F
- Direct visual servoing (DVS, where **p** is camera pose)

$$\mathbf{s}(\mathbf{p}) = \mathbf{I}_{\mathbf{x}}(\mathbf{p}) = (\mathbf{I}_{1 \bullet}, \mathbf{I}_{2 \bullet}, \dots, \mathbf{I}_{N \bullet})$$
 $\mathbf{I}^*$ 
 $\mathbf{I}$ 
 $\mathbf{I} - \mathbf{I}^*$ 

## Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Reinforcement Learning

# Exploring Convolutional Networks for End-to-**End Visual Servoing**



# Exploring Convolutional Networks for End-to-End Visual Servoing

Our network takes in two monocular images I,  $I^*$  and outputs a pose vector  $\mathbf{p}$  comprising of a relative ( $I^*$  with respect to I) translation  $\mathbf{x}$  and rotation  $\mathbf{q}$  in quaternion form.

$$\mathbf{p} = [\mathbf{x}, \mathbf{q}] \tag{1}$$

To regress relative pose, we consider the following objective loss function similar to [12].

$$loss(I, I^*) = \|\hat{x} - x\|_2 + \beta \left\| \hat{q} - \frac{q}{\|q\|} \right\|_2$$
 (2)

 $\beta$  is chosen so as to keep the expected value of translation and rotation errors to be equal. We found  $\beta$  as 500,000 to be optimal for training. The motive behind deploying

## Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Reinforcement Learning

## What is Reinforcement Learning



In robotics, the state can be camera images or joint angles of the robot, and the action can be the robot commands.

## Learning visual servoing with RL







Current and goal image observation

Distance from the drone to desired position

## Reinforcement Learning Approaches



If we have access to the environment model

## Reinforcement Learning Approaches



$$Q_t = Q(s_t, u_t)$$

$$\hat{u} = \arg \max E[Q_t]$$



Learn a value-function

## Reinforcement Learning Approaches



Simple policy optimization requires supervision on optimal action

## Deep Reinforcement Learning



Deep neural networks can be used to approximate complex functions.

## Examples of Deep Reinforcement Learning



[Mnih et al, 2015]





[OpenAI, 2017]

## Examples of Deep Reinforcement Learning



[Gu\*, Holly\* et al, 2017 ICRA]



[Levine\*, Finn\* et al, 2017 JMLR]

### Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Reinforcement Learning
  - Learning visual servoing with deep features and fitted Q-iteration
  - Sim2Real View Invariant Visual Servoing by Recurrent Control

## Learning visual servoing with RL



## Combining Q-Value and Model Based RL

State-action value based RL:

$$\pi(\mathbf{s}_t) = \arg\min_{\mathbf{u}} -Q(\mathbf{s}_t, \mathbf{u})$$

**Visual Servoing:** 

$$\mathbf{e}(t) = \mathbf{s}(\mathbf{m}(t), \mathbf{a}) - \mathbf{s}^*$$

$$\pi(\mathbf{s}_t) = \arg\min_{\mathbf{u}} ||\mathbf{x}_* - f(\mathbf{x}_t, \mathbf{u}_t)||^2$$

$$-Q(\mathbf{s}_t, \mathbf{u})$$



 $\hat{x}_{t+1} = f(x_t, u_t)$  where  $x_t$  is the current image observation,  $x_t \in S_t$ 

## Representing the state as network activations



[VGG-16, 2015 ICLR]

## Bilinear Dynamics

$$\hat{\mathbf{y}}_{t+1,c}^{(l)} = \mathbf{y}_{t,c}^{(l)} + \sum_{j} \left( \mathbf{W}_{c,j}^{(l)} * \mathbf{y}_{t,c}^{(l)} + \mathbf{B}_{c,j}^{(l)} \right) \mathbf{u}_{t,j} + \left( \mathbf{W}_{c,0}^{(l)} * \mathbf{y}_{t,c}^{(l)} + \mathbf{B}_{c,0}^{(l)} \right)$$



## Servoing with Visual Dynamics Model

$$\pi(\mathbf{x}_t, \mathbf{x}_*) = \arg\min_{\mathbf{u}} \sum_{c} \sum_{l=0}^{L} \frac{\mathbf{w}_c^{(l)}}{|\mathbf{y}_{\cdot, c}^{(l)}|} \left\| \mathbf{y}_{*, c}^{(l)} - f_c^{(l)} \left( \mathbf{y}_{t, c}^{(l)}, \mathbf{u} \right) \right\|_2^2 + \sum_{j} \boldsymbol{\lambda}_j \mathbf{u}_j^2$$



Good results with only 20 trajectories while model-free approach needs 20k trajectories

### Outline

- Visual servoing
- Visual servoing with deep features
- Reinforcement Learning
- Visual servoing with Reinforcement Learning
  - Learning visual servoing with deep features and fitted Q-iteration
  - Sim2Real View Invariant Visual Servoing by Recurrent Control

## Reach objects from various viewpoints

- Uncalibrated camera
- Novel objects
- Unseen viewpoints



[Sadeghi et al, 2018 CVPR]

## Network training in simulation

- Simulation environment
- Texture variation
- Recurrent control



[Sadeghi et al, 2018 CVPR]

## Domain randomization



## Model free policy learning



The action is the end-effector movement in Cartesian space

## Implicitly learn the environment model



## Incorporating value-function learning



## Learning from Synthetic Demonstration



Demonstration in simulation environment

## Domain adaptation

#### Finetune on a small amount of real data



## Recap

 Visual Servoing can be combined directly with deep features or deep Reinforcement Learning

A network should implicitly learn the environment model when there
is no direct access to it

The network training should need only a few real robot hours

### Reference

- François Chaumette, S. Hutchinson. Visual servo control. In IEEE Robotics and Automation Magazine, 2007
- Quentin Bateux, Eric Marchand, Jürgen Leitner, François Chaumetter, Peter Corke. Training Deep Neural Networks for Visual Servoing. In ICRA, 2018
- Aseem Saxena, Harit Pandya, Gourav Kumar, Ayush Gaud, K. Madhava Krisshna. In ICRA, 2017
- Alex X.Lee, Sergey Levine and Pieter Abbeel. Learning visual servoing with deep features and fitted Q-Iteration. In ICLR, 2017.
- Fereshte Sadeghi, Alexander Toshev, Eric Jang, Sergey Levine. Sim2Real View Invariant Visual Servoing by Recurrent Control. In CVPR 2018