Unbounded Orchestrations of Transducers for Manufacturing

Natasha Alechina, Tomáŝ Brázdil, Giuseppe De Giacomo, Paolo Felli, Brian Logan, Moshe Y. Vardi

> Presented by E.Puglisi, M.Persiani, F.Frattolillo Sapienza University

> > May 17,2019

Overview

- Introduction
- 2 Uni-Transducer
- Orchestration Problem
- Multi-Dimensional energy game
- **6** Orchestrator Synthesis
- 6 Example
- Multi-Transducer
- Orchestration Problem (Multi-Transducer)
- Orchestration Synthesis (Multi-Transducer)

Introduction

- Let's give some definitions:
 - process plan: specifies the specific manufacturing resources to be used for each manufacturing and assembly operations, and how materials and parts move between the various manufacturing resources
 - manufacturing resources: computer, robots etc.
 - process recipe: set of abstract manufacturing tasks.
- Reasons behind this study:
 - Process planning is traditionally carried out by manufacturing engineers and is largely a manual process.
 - Such process is uneconomic for the small batch sizes typical of the manufacturing as a service model.
 - There is an increasing interest in using synthesis to automate the synthesis of manufacturing process planning

Introduction

- Sometimes the products to be manufactured are not known in advance and are often produced in small batches to tight timescales.
- We consider the problem of whether a product can be manufactured given sufficient resources.
- Only the types of available manufacturing resources are given, and we want to know whether is possible to manufature a product using only resources of those types, and, if so, how many resources of each type are needed.

Uni-Transducers

A **Transducer** is a finite deterministic automaton with outputs.

A Uni-transducer take a single input and produce a single output in each state.

We consider tranducer which are *Mealy machine*.

Uni-Transducer

A (uni-)transducer $T=(\Sigma,\Delta,S,s_0,f,g)$ is a deterministic transition system with inputs and outputs, where Σ is the *input alphabet*, Δ is the *output alphabet*, S is the *set of states*, S0 is the *initial state*, S0 is the *transition function* and S0 is the *output function*.

We will consider both manufacturing resources and process recipes as uni-transducers.

Orchestration Problem

- We have a set of available transducer types $\{T_0, ..., T_m\}$
- Where $T_j = (\Sigma, \Delta, S_j, s_{0j}, f_j, g_j)$ represents a manufacturing resource and all T_j 's are over the same input and output alphabet.
- T represents a process recipe which is a transducer with the same input and output as the T_j's.

Unbounded Orchestration

The unbounded orchestration problem is to combine some numbers n_j of resources of each type T_j to be able to mach the *behavior* of T.

Orchestration Problem

Behaviour of T

The behaviour of T on input $\omega = a^0, a^1, ...$ is described by the following sequence of states and outputs:

$$T^{s}(a^{0}) = f(s_{0}, a^{0})$$

 $T^{o}(a^{0}) = g(s_{0}, a^{0})$

...

$$T^{s}(a^{0},...,a^{i}) = f(T^{s}(a^{0},...,a^{i-1}),a^{i})$$

 $T^{o}(a^{0},...,a^{i}) = g(T^{s}(a^{0},...,a^{i-1}),a^{i})$

The observable output sequence of T on input ω is:

$$\tau_{\omega,T}^o = T^o(a^0), ..., T^o(a^0, ..., a^i)...$$

Orchestration Problem

Controller

Consider the transducer corresponding to the whole production facility:

$$P = T_{1,1}x...xT_{1,n_1}x...xT_{m,1}x...xT_{m,n_m}$$

where n_j is the number of copies of every transducer type T_j .

A controller for P is a function

$$C: \Sigma^+ \mapsto \{(1,1),...,(m,n_m)\}$$

That, for each finite input string, picks a transducer in P to make a transition. The sequence of states generated by the controller on inputs ω is:

$$\tau^s_{\omega,T} = (S^0_{1,1},...,S^0_{m,n_j}),...,(S^i_{1,1},...,S^i_{m,n_j}),...$$

where only one of the local state changes in each transition:

$$s_h^{i+1} = f_h(s_h^i, a^i)$$
 if $C(a^0, ..., a^i) = h$
 $s_h^{i+1} = s_h^i$ if $C(a^0, ..., a^i) \neq h$

orchestration problem: check if there are numbers of copies of each transducer type such that there is a controller C for P which realizes T.

Multi-Dimensional energy game

The unbounded orchestration problem can be reduced to a decidable problem on multi-dimensional energy games.

multi-dimensional energy game

A multi-dimensional energy game is a tuple G = (Q, R)

Q: is a finite set of states

R: is a finite set of transitions of the form (q_1, op, q_2)

C: finite set of counters.

op: $\{0, -1, 1\}^n$ is an update vector for the value of the counters.

counter evalutation: $\nu: C \mapsto Z$ maps every counter to a set of integers.

configuration: γ is a pair (q,ν) , where $q \in Q$

transition: between two configuration $\gamma_1 \mapsto^t \gamma_2$ $(t \in R)$ is valid if

 $\nu_2 = \nu_1 + op$.

history: is a finite sequence of configurations

strategy: for a Player $i \in \{0,1\}$ is a function σ_i that assigns to each

history ending in a configuration γ a possible transition.

Multi-Dimensional energy game

Winning strategy

Player 0 wins the game in γ if it wins every play starting on γ .

Winning game: a configuration for a player is winning if $v_k(c) \ge 0$ for all $k \ge 1$ and $c \in C$.

Winning set: the set W(G,0) is the set of configurations γ in which the player 0 wins.

Pareto frontier: is min(W(G, 0)).

The Pareto frontier is computable in **doubly exponential time** and **pseudo-polynomial** assuming the number of counters is fixed. The maximum norm of the Pareto frontier are bounded by an exponential value in the number of counter n and polynomial in the number of states and transitions.

Pareto Frontier

Pareto Efficiency

State of allocation of resources in which it's impossible to re-allocate so to improve any individual evaluation criterion without worsening at least another one. (i.e. an optimal configuration)

Pareto Frontier

The set of all the pareto efficient allocations for a given set of resources.

In our case the resources to allocate are the transducer type counters stored in vector ν .

Orchestrator Synthesis

Let's see how to reduce the **orchestration problem to a multi-dimensional energy game**.

We are given m resource transducer types:

$$T_i = (\Sigma, \Delta, P_i, p_0^i, \alpha_i, \beta_i)$$

and a target process recipe:

$$T = (\Sigma, \Delta, S, s_0, f, g)$$

The realizability problem for $\prod T_i^{n_i} = T_{1,1}x...xT_{1,n_1}x...xT_{m,1}x...xT_{m,n_m}$ can be formulated as a game between Controller(player 0) and Adversary(player 1). The game starts with adversary choosing a symbol from the input alphabet Σ and the controller must choose a component $T_{i,j}$ where $i \in \{1,...,m\}$ and $j \in \{1,...,n\}$.

Controller must be able to keep playing forever without causing a mismatch of outputs between T and $\prod T_i^{n_i}$.

<ロ > 4 回 > 4 回 > 4 豆 > 4 豆 > り Q (^)

Orchestrator Synthesis

We can describe $\prod T_i^{n_i}$ as an integer vector $v=(v_0^1,...,v_{k_1-1}^1,...,v_0^m,...,v_{k_5-1}^m)$ where k_i is the cardinality of the set of states of T_i and $v_0^i+...+v_{k_i-1}^i=n_i$ Where v_q^i represents the number of copies of T_i in the state p_q^i . The game starts with all the copies of all the transducers in the state s_0 , hence for each transducer T_i the corresponding vector v_i is $(n_i,0)_i$

The vector v representing the counter evaluation is updated by adding the update vector $u=(u_0,...,u_{k_m-1}^m)$ where $u_q^i=-1$ and $u_q^i=1$ and all other components are 0. This operation represents the transition between two states of one of the available resource transducers.

Orchestrator Synthesis

Now we can define the following multi-dimensional energy game $G_{T_1,...,T_m,T}$:

- The state set of $G_{T_1,...,T_m,T}$ is $(Sx\Sigma) \cup S$ where $(Sx\Sigma)$ represent all the combination of input symbol and states of T (including the error states). $Q_0 = (Sx\Sigma)$ are the states of player 0 and $Q_1 = S$ are the states of player 1.
- For each transition (s, a, b, t) (initial state, input symbol, output, new state) of T, we have in $G_{T_1,...,T_m,T}$ the transition ((s, a), u, t) for all $u \in U_{a,b}$ (player 0's moves) and a transition (s, 0, (s, a)) (player 1's moves).

Given two metal objects, the manufacturing recipe require to:

- Position both the objects on the **cutting machine** and cut them.
- Position the objects on the **Filing machine** and file them.
- Position the objects on the **Welder machine** and weld them.
- Position the objects on the Paint machine and both paint and dry it.
- Release the object.

T1:Positioning Machine

Our process recipe is defined as a quintuple $T = (\Sigma, \Delta, S, s_0, f, g)$ where:

•
$$\Sigma = \{P_1, P_2, P_3, P_4, C, F, S, D, R, W\}$$

$$\bullet \ \Delta = \{P_1', P_2', P_3', P_4', C', F', S', D', R', W'\}$$

•
$$S = \{s_0, s_1, ..., s_{19}, s_{err}\}$$

•
$$f = \{f(s_0, P_1) = s_1, ..., f(s_{19}, R) = s_0\}$$

•
$$g = \{g(s_0, P_1) = P'_1, ..., g(s_{19}, R) = R'\}$$

Let's define the transducer corresponding to the whole production facility as:

$$P = \prod_{i}^{n_i} T_i = T_{1,1}x...xT_{1,n_1}x...xT_{5,1}x...xT_{5,n_5}$$
 where n_j is the number of copies of the transducer T_j .

Our controller will be a function $C: \Sigma^+ \mapsto \{(1, n_1), ..., (5, n_5)\}$ Now let's reformulate our problem as a multi-dimensional energy game. We are given:

- 5 resource transducers **types** $T_i = (\Sigma, \Delta, P_i, p_0^i, \alpha_i, \beta_i)$
- The process recipe as defined above.
- P = the transducer corresponding to the whole production facility. This game is played by two player:
 - Player 0: is the Controller.
 - Player 1: is the Adversary.

We can describe $\prod_i^{n_i} T$ as an integer vector $v = (v_0^1, ..., v_{k_1-1}^1, ..., v_0^5, ..., v_{k_5-1}^5)$ where k_i is the cardinality of the set of states of T_i and $v_0^i + ... + v_{k_i-1}^i = n_i$ Where v_q^i represents the number of copies of T_i in the state p_q^i . The game starts with all the copies of all the transducers in the state s_0 , hence for each transducer T_i the corresponding vector v_i is $(n_i, 0)_i$

- The game starts with adversary choosing an input symbol a ∈ Σ yielding output g(p,a) and changing the state of T to f(s,a).
- The controller must choose a copy of T_i in some state p_q^i and replacing it by a copy in state $p_r^i = \alpha_i(p_q^i, a)$. The output corresponding to this transition is $b = \beta_i(p_q^i, a)$.
- The previous transition is denoted by (p_q^i, a, b, p_r^i)
- The vector v representing the counter evaluation is updated by adding the *update vector* $u=(u_0,...,u_{k_m-1}^m)$ where $u_q^i=-1$ and $u_q^i=1$ and all other components are 0. $U_{a,b}$ is the set of such update vectors for transition with input $a\in\Sigma$ and output $b\in\Delta$.
- Controller must be able to play forever without causing a mismatch of outputs between T and $\prod_{i}^{n_i} T$. If controller has a **winning** strategy then $\prod_{i}^{n_i} T$ realizes T.

Multi-Transducer

Multi-transducer are used for modeling manufacturing resources that can take multiple input and output ports.

- A multi-transducer is a tuple $T = (\Sigma, S, s_0, f, g, k, I)$ where k is the number of input ports and I is the number of outputs port
 - $-f: Sx\Sigma^k \mapsto S$ transition function that takes n inputs and a state and return the successor state.
 - $-g: Sx\Sigma^k \mapsto \Sigma^l$ is the output function that returns the output associated to a transition

Ports can be *physical* (which accept physical object) or *virtual* (which accept signals). A physical output port can be bounded only to one physical port, while a virtual output port can be bounded to multiple virtual output port. In general an input port should not be bounded to more than one output ports.

- We have a set of multi-transducer types $T_1, ..., T_m$ where each $T_j = (\Sigma, S_j, s_{0,j}, f_j, g_j, k_j, l_j)$ representing manufacturing resources. We also have a recipe T that is a multi-transducer with the same alphabet as $T_j s$.
- The behaviour of T on input $\omega = a^0, a^1, ...$ (where $a^i \in \Sigma^k$) has the same definition as the uni-trasducer case.
- Define P as the multi-transducer corresponding to the whole production facility which is a composition of n_j copies of T_j.
- In addition to picking a transducer $x \in \{(1,1),...,(m,n_m)\}$, the controller is also in charge of changing the port binding .

- We denote $in_{x,y}$ the input port y of multi-transducer T_x , and by $out_{x,y}$ the output port y of T_x . We extend the notation by using index x=0 to represent inputs and outputs of the environment.
- Port binding c: is a pair (out_{x',y'}, in_{x,y}) which represent a
 connection between output port y' of multi-transducer x' and the
 input port y of multi-transducer x.
- Binding constraint B: is a boolean combinations of atoms of the form (out_{x',y'}, in_{x,y}), B is used to impose three kinds of requirements:
 - for all x,y there exists at most one x',y' such that $(out_{x',y'},in_{x,y}) \in c(\text{if for some outputs z, } in_{x,z} \text{ does not appear in c, its value is assumed empty: } val(in_{x,z}) = \epsilon$
 - all physical output ports $out_{x',y'}$ occur in at most one binding $(out_{x',y'},in_{x,y})\in c$
 - Others requirements specifying physical and virtual connection.

Controller

A **controller C** for P is a strategy $C: (\Sigma^k)^+ \mapsto Cntl$ (where Cntl is the set of all possible port binding set).

The sequence of (global) states and outputs generated by the controller on $\omega = a^0...a^i...$ is respectively:

$$\tau_{\omega,C} = (s_{1,1}^0, ..., s_{m,n_m}^0), ..., (s_{1,1}^i, ..., s_{m,n_m}^i)...$$

$$\tau_{\omega,C}^o = b^0, ..., b^i, ...$$

where:

 $C(a^0,...,a^i)=c^i$ and c^i is legal, where legal means that $c\models B$.

$$val^{i}(in_{x,y}) = val^{i}(out_{x',y'}) \in c^{i}.$$

$$s_x^{i+1} = f_x(s_x^{i+1}, val_i^i(in_x)).$$

$$val^{i}(out_{x}) = g_{x}(s_{x}^{i}, val_{i}(in_{x})).$$

C realizes T if $\tau^o(\omega,T)=\tau^o(\omega,C)$ for all ω While in the uni-transducer case, the controller select one transducer to make a move, in the multi-transducer case, the controller binds ports, and all transducers $T_{1,1},...,T_{m,n_m}$ get input(possibly empty) and move at every step.

Orchestrator Synthesis for multi-transducers

Unbounded Multi-Transducer

In the unbounded multi-transducer case, this problem is undecidable. The main reason for undecidability is the combination of multiple input and output ports and no bound on the number of transducers.

Undecidability example with Turing Machine

Proof:

Let's prove that the problem is undecidable by exibiting an example where such a controller exists if and only if a Turing machine M halts on empty input.

- Our target transducer is T which on input a outputs a. $T = (\Sigma, S, s_0, f, g, 1, 1)$ where $\Sigma = \{a\}$, $S = s_0$, $f(s_0, a) = s_0$, $g(s_0, a) = a$.
- We consider M as a single tape of TM with instruction of the form $qc \mapsto c'dq'$. Where $d \in \{-1,1\}$ which means , if in state q reading symbol c, write symbol c' and goes to left (d=-1) or to right(d=1).
- Between every two instructions M performs 2 actions:
 - It adds a cell to the right and write ω on the rightmost non blank cell.
 - it goes all the way left and then return on to the last state before the real instruction.

Undecidability example with Turing Machine

We have three type of transducer resources T_l , T_m , T_r representing leftmost, middle and rightmost cell. The alphabet of the resource transducer is $\Sigma' = q_0, ..., q_n$, a, err where $q_0, ..., q_n$ are the states of M.

left cell transducer:

It has two input ports, one receiving **a** from the environment and the other receiving the output of the cell on the right. It has one output to communicate with the cell to the right. T_I starts in state s_{init} (corresponding to containing α and being in state q_0) and on input a on input port 1 and blank on $2((a,\epsilon))$, it mimics the instruction of M: writes α again, and outputs the symbol q_i which is the state M goes into upon empty input. T_I then goes in state s_{α} . If T_I receives input q_j from the right $((\epsilon,q_j))$, in s_{α} , it again does what the instruction of M requires, and outputs the new state q'. On all other inputs it outputs err and goes in state s_{err} .

States of S_I are $\{s_{init}, s_{\alpha}, s_{err}\}$

middle cell transducer:

It has two outputs and two inputs connected to the cell on the left and the cell on the right. Input 1 and output 1 connect to the cell on the left, and input 2 and output 2 connect to the cell on the right. Input (q,ϵ) means receiving q from the left, and input (ϵ,q) means receiving q from the right. Similarly for outputs: the output (q',ϵ) corresponds to moving to the cell to the left in state q', and (ϵ,q') corresponds to moving to the cell to the right in state q'.

The states of T_m are s_ϵ (being blank, initial state), s_0 (containing 0), s_1 (containing 1), $s_\omega, s_{h_1}, ..., s_{h_t}, s_{err}$.

On input q when in state s_c the trasducer will go into state $s_{c'}$ and output q' on the left output port (if d=-1) or on the right (if d=1) output port. On all other inputs, for example input from the right when in state s_{ϵ} , it goes into s_{err} and outputs err.

right cell transducer:

It has one input port from the left cell and 2 output ports, one connected to the left cell and the other connected to the environment and can be used to output \mathbf{a} . This only happens when M would have gone into state q_n (so instead of outputting q_n , T_r outputs \mathbf{a}). Otherwhise T_r mimics M's transitions: when it is in state s_c and receives \mathbf{q} on the left, it goes into state $s_{c'}$ and outputs \mathbf{q} ' to the left. In all other cases, in particular when getting as input a state symbol which corresponds to moving one cell to the right to write ω in it, T_r goes into s_{err} and outputs err.

The states of T_r are $S_r = \{s_{err}, s_{\omega}, s_0, s_1, s_{h_1}, ..., s_{h_t}, s_{err}\}.$

Undecidability Proof

Let's prove that a controller for a correctly wired composition of length k realizing T exists if and only if M halts after using k cells. Suppose we have a correctly wired composition of length k. It has a free input port (T_l) and all the controller can do is to pass a to that port. On input a, T_l starts the imitation of a Turing machine M, passing symbols corresponding to the state of M back and forth along the composition, with cell transducers changing states to represent a new symbol on the tape of M. If M halts in the kth cell of the tape, eventually T_r gets input q_n , upon which it outputs a, and T is realized. If M does not halt, then T_r will get an input to the right to write ω in it, and T_r outputs err.

Thank you!