

\mathcal{H}_{∞} Optimal Estimation of Linear Coupled PDE Systems

Amritam Das, Sachin Shivakumar, Siep Weiland, Matthew Peet

CS Group, Eindhoven University of Technology CSCL Group, Arizona State University

\mathcal{H}_{∞} Optimal Synthesis of Luenberger Estimator for Linear Systems TU/e

Objective

Determine $\mathcal{L}: \mathcal{Y} \to \mathcal{X}$ and the smallest value of $\rho > 0$, such that

$$\sup_{w \in L_2, w \neq 0} \frac{||\hat{z} - z||_{L_2}}{||w||_{L_2}} < \mu$$

How to Synthesize \mathcal{H}_{∞} Optimal Estimator for ODEs ?

Optimization Problem with LMIs

$$\begin{split} & \underset{\mathcal{L}}{\text{minimize } \rho} \\ & \mathcal{P} \succ 0 \\ & \begin{bmatrix} \mathcal{P}\mathcal{A} + \mathcal{Z}\mathcal{C} + (\mathcal{P}\mathcal{A} + \mathcal{Z}\mathcal{C})^\top & -\mathcal{P}\mathcal{B} - \mathcal{Z}\mathcal{D} & \mathcal{E}^\top \\ -(\mathcal{P}\mathcal{B} + \mathcal{Z}\mathcal{D})^\top & -\rho\mathcal{I} & 0 \\ \mathcal{E} & 0 & -\rho\mathcal{I} \end{bmatrix} \prec 0. \\ & \mathcal{L} = \mathcal{P}^{-1}\mathcal{Z} \text{ achieves minimum } \sup_{w \in L_2, w \neq 0} \frac{||\hat{z} - z||_{L_2}}{||w||_{L_2}} < \rho \end{split}$$

• PDEs: For differential/unbounded operators on functions, there is no computational tractability

Develop a new computational framework for synthesizing estimator for PDEs

- Contribution 1: Linear PDEs are equivalent to Partial Integral Equations (PIEs)
- Contribution 2: Synthesizing estimator for PIEs amounts to solving LMIs
- Contribution 3: A scalable toolbox is developed to parse, manipulate and solving PIEs

Construction of PI operators are inspired by matrices

Construction of PI operators are inspired by matrices

Construction of PI operators are inspired by matrices

4-PI Operators on $\mathbb{R}^m \times L_2^n[a,b]$

$$\left(\mathcal{P}\begin{bmatrix}P, Q_1\\Q_2, \{R_i\}\end{bmatrix}\begin{bmatrix}x\\\mathbf{z}\end{bmatrix}\right)(s) := \begin{bmatrix}Px + \int\limits_a^b Q_1(s)\mathbf{z}(s)ds\\Q_2(s)x + \mathcal{P}_{\{R_i\}}\mathbf{z}(s)\end{bmatrix}$$

PIETOOLS: Parsing and Manipulation of PI Operators

$$\begin{split} P_{\{R_i\}}\mathbf{x}(s) &:= \int\limits_a^s R_1(s,\theta)\mathbf{x}(\theta)\mathrm{d}\theta + R_0(s)\mathbf{x}(s) + \int\limits_s^b R_2(s,\theta)\mathbf{x}(\theta)\mathrm{d}\theta \\ \left(\mathcal{P}\begin{bmatrix}P, & Q_1\\Q_2, \{R_i\}\end{bmatrix}\begin{bmatrix}x\\\mathbf{z}\end{bmatrix}\right)(s) &:= \begin{bmatrix}Px + \int\limits_a^b Q_1(s)\mathbf{z}(s)\mathrm{d}s\\Q_2(s)x + \mathcal{P}_{\{R_i\}}\mathbf{z}(s)\end{bmatrix} \end{split}$$

Declaring PI operators

- **1** pvar s th: declares the independent variables s, θ
- 2 opvar P: declares a PI operator object
- **3** P.P. A $m \times m$ matrix
- **4** P.Q1, P.Q2: A $m \times n$ and a $n \times m$ matrix valued polynomials in s, θ
- **5** P.R: A structure with entities R_0 , R_1 , and R_2
- **6** P.R.RO: A $n \times n$ matrix valued polynomial in s
- **7** P.R.R1, P.R.R2 : $n \times n$ matrix valued polynomials in s, θ

PIETOOLS: Parsing and Manipulation of PI Operators

$$\begin{split} P_{\{R_i\}}\mathbf{x}(s) &:= \int\limits_a^s R_1(s,\theta)\mathbf{x}(\theta) \mathsf{d}\theta + R_0(s)\mathbf{x}(s) + \int\limits_s^b R_2(s,\theta)\mathbf{x}(\theta) \mathsf{d}\theta \\ \left(\mathcal{P}\begin{bmatrix} P, & Q_1 \\ Q_2, \{R_i\} \end{bmatrix} \begin{bmatrix} x \\ \mathbf{z} \end{bmatrix}\right)(s) &:= \begin{bmatrix} Px + \int\limits_a^b Q_1(s)\mathbf{z}(s) ds \\ Q_2(s)x + \mathcal{P}_{\{R_i\}}\mathbf{z}(s) \end{bmatrix} \end{split}$$

PI operators are closed under

• Composition.

$$\begin{bmatrix} P, & Q_1 \\ Q_2, \{R_i\} \end{bmatrix} = \begin{bmatrix} A, & B_1 \\ B_2, \{C_i\} \end{bmatrix} \times \begin{bmatrix} M, & N_1 \\ N_2, \{S_i\} \end{bmatrix}$$

- $\bullet \ \mathsf{Adjoint.} \ \begin{bmatrix} \hat{P}, \ \hat{Q}_1 \\ \hat{Q}_2, \left\{ \hat{R}_i \right\} \end{bmatrix} = \begin{bmatrix} P, \ Q_1 \\ Q_2, \left\{ R_i \right\} \end{bmatrix}^*$
- Addition and concatenation

Operation on PI operators

opvar P1 P2

- Composition: Pcomp = P1*P2
- Adjoint: Padj = P1'
- Addition: Padd = P1+P2
- Concatenation: Pconc = [P1 P2] or Pconc = [P1; P2]

The Positivity of PI Operators as LMIs

Theorem

Let a self adjoint 4-PI operator be defined as

$$\bullet \begin{bmatrix} P, & Q \\ Q^\top, \{R_i\} \end{bmatrix} := \begin{bmatrix} I, & 0 \\ 0, \{Z_i\} \end{bmatrix}^* \times \begin{bmatrix} P_{11}, & P_{12} \\ P_{12}^\top, \{Q_i\} \end{bmatrix} \times \begin{bmatrix} I, & 0 \\ 0, \{Z_i\} \end{bmatrix}, \qquad \{Q_i\} := \{P_{22}, 0, 0\},$$

$$\bullet \{Z_i\} := \left\{ \begin{bmatrix} \sqrt{g(s)}Z_{d1}(s) \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{g(s)}Z_{d2}(s,\theta) \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ \sqrt{g(s)}Z_{d2}(s,\theta) \end{bmatrix} \right\},\,$$

where
$$g(s) = (s-a)(b-s)$$
 or $g(s) = 1$ and $Z_{d1} : [a,b] \to \mathbb{R}^{d_1 \times n}, Z_{d2} : [a,b] \times [a,b] \to \mathbb{R}^{d_2 \times n}$.

Then, the 4-PI operator is positive if and only if the matrix $\begin{bmatrix} P_{11} & P_{12} \\ P_{12}^{\top} & P_{22} \end{bmatrix}$ is positive

By choosing the basis Z_{d1}, Z_{d2} , the positivity of PI operators is equivalent to the positivity of a matrix

Command in PIETOOLS

» [prog,P] = sos_posopvar(prog,dim,interval,s,th,deg);

Linear PDEs on $s \in [a, b]$

$$\frac{\partial}{\partial t} \begin{bmatrix} \mathbf{x}_1(s,t) \\ \mathbf{x}_2(s,t) \\ \mathbf{x}_3(s,t) \end{bmatrix} = A_0(s) \begin{bmatrix} \mathbf{x}_1(s,t) \\ \mathbf{x}_2(s,t) \\ \mathbf{x}_3(s,t) \end{bmatrix} + A_1(s) \frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2(s,t) \\ \mathbf{x}_3(s,t) \end{bmatrix} + A_2(s) \frac{\partial^2}{\partial s^2} \mathbf{x}_3(s,t) + B(s)w(t)$$

Boundary Conditions: $B_c x_b(t) = 0$

$$x_b = \operatorname{col}\left(\mathbf{x}_2(a), \mathbf{x}_2(b), \mathbf{x}_3(a), \mathbf{x}_3(b), \frac{\partial}{\partial s} \mathbf{x}_3(a), \frac{\partial}{\partial s} \mathbf{x}_3(b)\right), \operatorname{rank}(B_c) = n_2 + 2n_3$$

Solution Space: $\mathbf{x} := \mathsf{col}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ belongs to Hilbert or Sobolev space

Can We Represent PDEs Using PI Operators?

The conventional notion of states $\mathbf{x} := \operatorname{col}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

Using Fundamental Theorem of Calculus

$$\begin{aligned} \mathbf{x}_2(s) &= \mathbf{x}_2(a) + \int_a^s \frac{\partial \mathbf{x}_2}{\partial s}(\eta) d\eta \\ &= \left(\mathcal{P} \frac{\partial \mathbf{x}_2}{\partial s} \right) (s) \\ &\frac{\partial \mathbf{x}_3}{\partial s}(s) = \frac{\partial \mathbf{x}_3}{\partial s}(a) + \int_a^s \frac{\partial^2 \mathbf{x}_3}{\partial s^2}(\eta) d\eta \\ &= \left(\mathcal{Q} \frac{\partial^2 \mathbf{x}_3}{\partial s^2} \right) (s) \\ &\mathbf{x}_3(s) &= \mathbf{x}_3(a) + s \frac{\partial \mathbf{x}_3}{\partial s}(a) + \int_a^s (s - \eta) \frac{\partial^2 \mathbf{x}_3}{\partial s^2}(\eta) d\eta \end{aligned} = \left(\mathcal{R} \frac{\partial^2 \mathbf{x}_3}{\partial s^2} \right) (s)$$

What did we gain?

- $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ are 3-PI operators
- Boundary conditions got included inside the 3-PI operators

Can We Represent PDEs Using PI Operators?

The conventional notion of states $\mathbf{x} := \operatorname{col}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

Using Fundamental Theorem of Calculus

$$\mathbf{x}_{2}(s) = \mathbf{x}_{2}(a) + \int_{a}^{s} \frac{\partial \mathbf{x}_{2}}{\partial s}(\eta) d\eta \qquad \qquad = \left(\mathcal{P}\frac{\partial \mathbf{x}_{2}}{\partial s}\right)(s)$$

$$\frac{\partial \mathbf{x}_{3}}{\partial s}(s) = \frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta \qquad \qquad = \left(\mathcal{Q}\frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}\right)(s)$$

$$\mathbf{x}_{3}(s) = \mathbf{x}_{3}(a) + s\frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} (s - \eta)\frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta \qquad \qquad = \left(\mathcal{R}\frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}\right)(s)$$

What did we gain?

- \mathcal{P} , \mathcal{Q} , \mathcal{R} are 3-PI operators
- Boundary conditions got included inside the 3-PI operators

Can We Represent PDEs Using PI Operators?

Introducing
$$\mathbf{x}_f := \operatorname{col}\left(\mathbf{x}_1, \frac{\partial \mathbf{x}_2}{\partial s}, \frac{\partial^2 \mathbf{x}_3}{\partial s^2}\right)$$
 as a new state instead of $\mathbf{x} := \operatorname{col}\left(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\right)$

Partial Differential Equations(PDEs):

Partial Integral Equations(PIEs):

$$\frac{\partial}{\partial t} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = A_0 \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + A_1 \frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + A_2 \frac{\partial^2}{\partial s^2} \mathbf{x}_3 + Bw$$

$$\mathcal{T}\dot{\mathbf{x}}_f = \mathcal{A}_f \mathbf{x}_f + \mathcal{B}_f w$$

$$B_c x_b = 0$$

$$y = F x_b + \int_a^b B(s) \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds + \int_a^b C(s) \frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds + Dw$$

$$y = C_f \mathbf{x}_f + \mathcal{D}_f w$$

$$z = G x_b + \int_a^b H(s) \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds + \int_a^b J(s) \frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds$$

$$z = \mathcal{E}_f \mathbf{x}_f$$

Both representations are behaviourally equivalent under the transformation $\mathbf{x} = \mathcal{T}\mathbf{x}_f$

\mathcal{H}_{∞} Optimal Estimator Synthesis for PDEs: Using PIEs

Linear PI Inequalities (LPIs)

subject to $\mathcal{P} \succ 0 \leftarrow$ **3-PI Operator**

$$\begin{bmatrix} \mathcal{T}^*(\mathcal{P}\mathcal{A}_f + \mathcal{Z}\mathcal{C}_f) + (\mathcal{P}\mathcal{A}_f + \mathcal{Z}\mathcal{C}_f)^*\mathcal{T} & -\mathcal{T}^*(\mathcal{P}\mathcal{B}_f + \mathcal{Z}\mathcal{D}_f) & \mathcal{E}_f^* \\ -(\mathcal{P}\mathcal{B}_f + \mathcal{Z}\mathcal{D}_f)^*\mathcal{T} & -\rho\mathcal{I} & 0 \\ \mathcal{E}_f & 0 & -\rho\mathcal{I} \end{bmatrix} \prec 0 \leftarrow \textbf{4-PI Operator}$$

Then,
$$\mathcal{L} = \mathcal{P}^{-1} \mathcal{Z}$$
 achieves minimum value of ρ for which $\sup_{w \in L_2, w} u \in L_2, w$

minimize ρ

How To Implement The Estimator in Hardware?

Estimator

$$\mathcal{T}\dot{\hat{\mathbf{x}}}_f(t) = \mathcal{A}_f \hat{\mathbf{x}}_f(t) + \mathcal{P}^{-1} \mathcal{Z}(\mathcal{C}_f \hat{\mathbf{x}}_f(t) - y(t))$$
$$\hat{z}(t) = \mathcal{E}_f \hat{\mathbf{x}}_f(t)$$

It is difficult to derive analytical formula for inversion of 3-PI Operators if $R_1 \neq R_2$

By pre-multiplying with \mathcal{P}

$$\mathcal{P}\mathcal{T}\dot{\hat{\mathbf{x}}}_f(t) = \mathcal{P}\mathcal{A}_f\hat{\mathbf{x}}_f(t) + \mathcal{Z}(\mathcal{C}_f\hat{\mathbf{x}}_f(t) - y(t))$$
$$\hat{z}(t) = \mathcal{E}_f\hat{\mathbf{x}}_f(t)$$

Digital Implementation on a gird: Approximate the integration by using numerical discretization

* In case of $R_1=R_2$, find the inversion formula in : 'A Convex Solution of the H_∞ Optimal Controller Synthesis Problem for Multi-Delay Systems'- (M. Peet, SICON)

PDE: Wave Equation in [0, L]

$$\frac{\partial^2 u(s,t)}{\partial t^2} = \frac{\partial^2 u(s,t)}{\partial s^2} + (s^2 - s)w(t)$$

Boundary Conditions

$$u(0,t) = 0,$$

$$\frac{\partial u(s,t)}{\partial s} \mid_{s=L} = -0.5 \frac{\partial u(s,t)}{\partial t} \mid_{s=L}$$

Minimize the effect of w(t) on the estimation error $z_e(t) = \hat{z}(t) - z(t)$

By changing variables

$$u_1 = \frac{\partial u}{\partial t}, u_2 = \frac{\partial u}{\partial s}$$

$$\frac{\partial}{\partial t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} s^2 - s \\ 0 \end{bmatrix} w$$

Measurement Regulated Output $y(t) = u_2(0,t) + D_1 w(t)$ $z(t) = u_1(L,t)$

Boundary Conditions

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} u_1(0) \\ u_2(0) \\ u_1(L) \\ u_2(L) \end{bmatrix} = 0$$

Minimize the effect of w(t) on the estimation error $z_e(t) = \hat{z}(t) - z(t)$

1. Using Fundamental Theorem of Calculus

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \int_0^s \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} u_1(\theta) \\ u_2(\theta) \end{bmatrix} d\theta + \int_s^L \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} u_1(\theta) \\ u_2(\theta) \end{bmatrix} d\theta$$

2. Defining new states $\mathbf{x}_f := \frac{\partial}{\partial s} \begin{bmatrix} u_1(s) \\ u_2(s) \end{bmatrix}$

$$\mathbf{x} = \mathcal{T}\mathbf{x}_f, \mathcal{T} = \left\{ 0, \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \right\}$$

3. PIE Representation

$$\mathcal{T}\dot{\mathbf{x}}_{f} = \mathcal{A}_{f}\mathbf{x}_{f} + \mathcal{B}_{f}w,$$

$$\mathcal{A}_{f} = \left\{ \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, 0, 0 \right\}, \quad \mathcal{B}_{f} = \left\{ \begin{bmatrix} s^{2} - s\\ 0 \end{bmatrix}, 0, 0 \right\}$$

Using PIETOOLS, determine $\mathcal{P},\mathcal{Z},\rho$ that achieves minimum

The estimator is implemented on 100 grid points

Figure: $z_e(t) = \hat{z}(t) - z(t)$ with respect to disturbance w(t)

In summary

We have presented a computational tool to apply LMI-based methods for Synthesizing \mathcal{H}_∞ optimal estimator for Linear PDEs

- Coupled linear PDEs are represented using PI operators
- \bullet \mathcal{H}_{∞} optimal estimator is synthesized by solving PI operator inequalities using LMIs
- PIETOOLS offers a generic and scalable toolbox(plug the model, execute the result)

Perspective

- Same framework in case of boundary disturbance
- Easily extendable for PDE-ODE coupled systems, linear time delay systems
- Extension to higher spatial dimension- more book-keeping
- Extendable to take robustness into account (in terms of parametric uncertainty, unmodeled dynamics)

Thank You!

