Project Restart

Ethan Allavarpu

8/2/2020

Contents

1	Import Data	1
2	Visuals	1
3	Statistical Testing	8

1 Import Data

```
endseason <- read.csv("endseason.csv")</pre>
names(endseason)[[1]] <- "Club"</pre>
endseason$rank <- 1:20
endseason <- endseason[order(endseason$Club), ]</pre>
seasonstop <- read.csv("seasonstop.csv")</pre>
names(seasonstop)[[1]] <- "Club"</pre>
seasonstop$rank <- 1:20</pre>
seasonstop <- seasonstop[order(seasonstop$Club), ]</pre>
endstats <- as.matrix(select(endseason, !Club))</pre>
stopstats <- as.matrix(select(seasonstop, !Club))</pre>
restartstats <- endstats - stopstats
projectrestart <- data.frame(endseason$Club[order(endseason$Club)], restartstats)</pre>
names(projectrestart)[[1]] <- "Club"</pre>
endseason$avgpts <- endseason %>% summarize(avgpts = P / GP) %>% as.matrix()
seasonstop$avgpts <- seasonstop %>% summarize(avgpts = P / GP) %>% as.matrix()
projectrestart$avgpts <- projectrestart %>% summarize(avgpts = P / GP) %>% as.matrix()
```

2 Visuals


```
plot(ptdiff ~ Start, data = averages, col = rainbow(20)[1:20])
```

```
0
                                        0
                                   0
0.5
                0
                                     0
                                   0
               0
0.0
                             0
                0
                           0
-0.5
                                       0
        0
                                                  0
                  1.0
                                     1.5
                                                        2.0
                                                                           2.5
                                              Start
```

```
summary(aov(abs(ptdiff) ~ Start, data = averages))
```

Chi-squared test for given probabilities

```
data: projectrestart$P
X-squared = 36.735, df = 19, p-value = 0.008563
```

```
chisqcontr <- with(clubperformance, (observed - expected)^2 / expected)
names(chisqcontr) <- projectrestart$Club
sort(chisqcontr, decreasing = TRUE)</pre>
```

Norwich City	Crystal Palace	Southampton
6.7878787879	5.8752913753	4.4715166370
Leicester City	Liverpool	Manchester United
3.8594970936	3.4086328221	2.8642045455
Tottenham Hotspur	Manchester City	West Ham United
1.7006959842	1.6874003190	1.2272727273
Brighton and Hove Albion	Arsenal	Sheffield United
0.7358063393	0.7292929293	0.6046585036
Newcastle United	Aston Villa	Burnley

```
Chelsea
                                                                   Watford
                                      Bournemouth
            0.3979640152
                                     0.3418560606
                                                              0.3418560606
Wolverhampton Wanderers
                                          Everton
            0.3175945502
                                     0.0001365001
hist(chisqcontr,
     breaks = seq(from = 0, to = max(chisqcontr) + 0.5, by = 0.5),
     main = "Chi-Square Contributions per Club",
     xlab = "Size of Chi-Square Contribution",
     col = "seagreen",
     las = 1)
abline(v = 2.25, col = "red")
```

0.4558080808

0.4546182984

0.4729527417

Chi-Square Contributions per Club


```
standings <- seasonstop %>% select(Club, rank)
names(standings)[[2]] <- "Stop"
standings$End <- endseason$rank
standings$Change <- standings %>% summarize(Stop - End) %>% as.matrix() %>% as.numeric()
standings
```

	Club	Stop	End	Change
9	Arsenal	9	8	1
19	Aston Villa	19	17	2
18	Bournemouth	18	18	0
15	Brighton and Hove Albion	15	15	0
10	Burnley	10	10	0
4	Chelsea	4	4	0

	Club	Stop	End	Change
11	Crystal Palace	11	14	-3
12	Everton	12	12	0
3	Leicester City	3	5	-2
1	Liverpool	1	1	0
2	Manchester City	2	2	0
5	Manchester United	5	3	2
13	Newcastle United	13	13	0
20	Norwich City	20	20	0
7	Sheffield United	7	9	-2
14	Southampton	14	11	3
8	Tottenham Hotspur	8	6	2
17	Watford	17	19	-2
16	West Ham United	16	16	0
6	Wolverhampton Wanderers	6	7	-1

sum(abs(standings\$Change))

[1] 20

```
standings <- standings[order(standings$Stop), ]</pre>
movement_col \leftarrow c(rgb(0, 0, 0, alpha = 0.5),
                  rgb(0.5, 0, 0, alpha = 0.5),
                  rgb(0, 0.5, 0, alpha = 0.5))
plot(1:20, 21 - standings$Stop, yaxt = "n", xaxt = "n", main = "Standings Before and After\nProject Res
     ylab = "",
     col = movement_col[(standings$Change != 0) + (standings$Change > 0) + 1], pch = 19)
arrows(1:20, 21 - standings$Stop, 1:20, 21 - standings$End, cex = 0.25,
       col = movement_col[(standings$Change != 0) + (standings$Change > 0) + 1], length = 0.1, angle =
points(1:20, 21 - standings$End, col = movement_col[(standings$Change != 0) + (standings$Change > 0) +
abline(h = 1:20, col = rgb(0, 0, 0, alpha = 0.1))
standings$abbreviations <- club_abbrev</pre>
axis(1, at = 1:20, labels = club_abbrev, las = 2, cex = 0.5)
abline(h = seq(from = 21, to = 21 - 4.5, by = -0.1), col = rgb(0,1,0, alpha = 0.2))
abline(h = seq(from = (21 - 17.5), to = 0, by = -0.1), col = rgb(1, 0, 0, alpha = 0.2))
abline(h = c(21 - 4.5, 21 - 5.5, 21 - 17.5), col = "grey")
abline(h = seq(from = 21 - 4.5, to = 21 - 5.5, by = -0.1), col = rgb(0, 1, 0, alpha = 0.1))
```

Standings Before and After Project Restart


```
club_abbrev <- c("LIV", "MCI", "LEI", "CHE", "MUN", "WOL", "SHU", "ARS",</pre>
                  "TOT", "BUR", "CRY", "EVE", "NEW", "SOU", "BHA", "WHU",
                  "WAT", "BOU", "AVL", "NOR")
averages <- averages[order(averages$Start, decreasing = TRUE), ]</pre>
averages[c(6:7, 16, 18), ] <- averages[c(7:6, 18, 16), ]
averages$Abbreviation <- club_abbrev</pre>
ppg <- matrix(c(averages$Start, averages$Restart), ncol = 2)</pre>
barplot(t(ppg), names.arg = averages$Abbreviation, las = 2,
        ylim = c(0,3),
        main = "Points Earned per Game Throughout\nthe 2019-2020 EPL Season",
        beside = TRUE,
        col = c(rgb(0.5,0,0,0.5),
                rgb(0,0,0.5,0.5)))
legend("topright",
       legend = c("Pre-COVID-19",
                  "Project Restart"),
       fill = c(rgb(0.5,0,0,0.5),
                rgb(0,0,0.5,0.5)),
       inset = 0.05,
       cex = 0.75)
```

Points Earned per Game Throughout the 2019–2020 EPL Season

3 Statistical Testing

```
pre_covid <- data.frame(Club = seasonstop$Club,</pre>
                          Successes = seasonstop$P,
                         Trials = seasonstop$GP * 3)
post_covid <- data.frame(Club = projectrestart$Club,</pre>
                           Successes = projectrestart$P,
                           Trials = projectrestart$GP * 3)
effects <- data.frame()</pre>
for (i in seq_len(nrow(pre_covid))) {
  z_test <- prop.test(c(post_covid[i, 2], pre_covid[i, 2]),</pre>
                       c(post_covid[i, 3], pre_covid[i, 3]),
                       conf.level = 1 - 0.05/20)
  effects <-rbind(effects,</pre>
                     c(z_test$estimate[1]-z_test$estimate[2],
                     z_test$conf.int[1],
                     z_test$conf.int[2],
                     z_test$p.value))
}
```

Warning in prop.test(c(post_covid[i, 2], pre_covid[i, 2]), c(post_covid[i, : Chi-squared approximation may be incorrect

Warning in prop.test(c(post_covid[i, 2], pre_covid[i, 2]), c(post_covid[i, : Chi-squared approximation may be incorrect

Shift in Proportion of Points Earned After Project Restart

Winners of the Restart: MUN, SOU Losers of the Restart: LIV, LEI, CRY, NOR

```
averages$pctptsbefore <- averages %>% summarize(pctptsbefore = Start / 3) %>% as.matrix() %>% as.numeri averages$pctptsafter <- averages %>% summarize(pctptsafter = Restart / 3) %>% as.matrix() %>% as.numeri
```