LABORATORIUM SYSTEMÓW WBUDOWANYCH I MIKROPROCESORÓW

Blok 2: Czujniki mikromechaniczne- wersja zdalna

Protokół wykonania ćwiczenia

Temat: Pomiar ziemskiego pola magnetycznego z wykorzystaniem czujników magnetorezystywnych.

Data	7.05.2021	Godzina	15:20	
Nazwisko i Imię			Numer indeksu	Grupa dziekańska
	Adryan Maciej		175854	III

AD. 3:

Czujnik magnetorezystywny opieraja swoje działanie na zjawisku magnetorezystywnym.

Pod wpływem (ziemskiego) pola magnetycznego, skierowanego pod pewnym kątem do kierunku przepływu prądu, wektor magnetyzacji zmienia kierunek o pewien kąt. Kąt ten jest zależny od siły pola magnetycznego, natomiast rezultatem działania jest zmiana rezystancji elementu rezystancyjnego. Kąt utworzony przez wektor magnetyzacji oraz kierunek przepływu prądu warunkuje rezystancję która określa położenie czujnika względem bieguna magnetycznego. Rezystancja jest największa, gdy wektor oraz kierunek są względem siebie równoległe, natomiast najmniejsza, gdy są prostopadłe.

Zaletami czujników magnetorezystywnych są:

- nielimitowana ilość cykli ,
- wysoka niezawodność dzięki solidnej konstrukcji,
- niski i stabilny offset,
- niska wrażliwość na uszkodzenia mechaniczne,
- wysoka temperatura pracy,
- możliwość użytkowania w trudnych warunkach
- niska cena
- niewielki rozmiar
- szybkość odpowiedzi.

Wadami czujników MR są:

- wrażliwość na zakłócające pola magnetyczne
- zależność pomiaru od temperatury otoczenia
- · ograniczony zakres liniowości
- możliwość uszkodzenia poprzez oddziaływanie mocnego pola magnetycznego.

AD. 6:

XMAGN_HIF, YMAGN_HIF, ZMAGN_HIF, XMAGN_SIF, YMAGN_ SIF oraz ZMAGN_ SIF są potrzebne do kalibracji magnetometru.

XMAGN_HIF, YMAGN_HIF, ZMAGN_HIF odpowiadają za i umożliwiają hard-iron correction, przechowują przesunięcie oraz dostosowują wyjście poprzez dodanie przesunięcia do danych wyjściowych.

Zakres: ±4 gauss.

XMAGN_SIF, YMAGN_ SIF, ZMAGN_ SIF odpowiadają za i umożliwiają soft iron correction, zapewniają możliwość zmiany współczynnika skali dla każdej osi.

Zakres: pomiędzy 0x0000 (0x) a 0x3FFF (2x).

AD. 8:

Wartości X_Magn (mG),Y_Magn (mG) ulegają zmianie:

- w zakresach 0:90 oraz 180:270 stopni wartości rozmiają się bądź przecinają w zależności od kierunku obrotu.
- W zakresach 90:180 oraz 270:360 obie wartości maleją lub rosną w zależności od kierunku obrotu a ich różnica pozostaje stała.

Wartość Z_Magn (mG) praktycznie nie ulega zmianie, utrzymuje wartość równą ~ 390 mG. Jest to spowodowane tym, że składowa Hz(Z_Magn) pokrywa się z osią Z wokół której obracamy, więc nie ma to wpływu na zmianę wartości.

Wartości H_x i H_y (X_Magn i Y_Magn) ponieważ w zależności od ułożenia układu w przestrzeni to właśnie zmiana ich wartości wynikająca z ułożenia czujników względem pola magnetycznego określa jednoznacznie położenie względem pola magnetycznego.

AD.9.

numer	X_Magn (mG)	Y_Magn (mG)	Kierunek	yaw [°]
1	>0	≈0	N	≈ 185
2	≈0	<0	W	≈ 79
3	<0	≈0	S	≈ 354
4	≈0	>0	Е	≈ 280

$H_x H_z H_y$ AD. 10.

```
 \begin{tabular}{ll} \be
```

AD.11.

Model czujnika	ADIS 16400			
Adres rejestru osi X	0x10	Zakres pomiarowy	±2.5 gauss	
Adres rejestru osi Y	0x12	Czułość czujnika	0.05 gauss	
Adres rejestru osi Z	0x14	Liczba bitów	14	
		danych	14	