DeepONet V/s ANN Model

DOUBLE INTEGRAL OPERATOR.

ABHINAV ADARSH
2021MEB1261
PROJECT UNDER- DR. MANISH AGARWAL

Parameters

- •We have trained the model on a dataset which we generate by using the Gaussian Random field.
- Vary the values of x=(0,1) and discretized it at 100 random values using linspace.
- m=100 -> sampling points for the function.
- p =100 -> points where output measured
- We have n=150 i.e different functions on which we trained the model to show difference between DeepONet and ANN model.
- •We trained the model on Double Integral Operator.

Graph depicts the different function and there output on which model is trained.

DeepONet

Model Architecture

ANN

Root Mean Square Error

Testing Result

Input function= cos(2*x)
Output function= 0.5*sin(x)**2

Epoch=100

Testing Results

Input function= 25*exp(5*x) + 2-25*cos(5*x)Output function= exp(5*x) + x**2 + cos(5*x)

DEEPONET MODEL

ANN MODEL

Testing Results

Input Function:20*x**3 -25*cos(5*x)

Output Function : $x^{**}5 + cos(5^*x)$

Root Mean Square

Conclusion

- For smaller number of epochs DeepONet model performs better.
- From MSE comparison we see that DeepONet model generalized well then Neural Network for epoch=100.
- DeepONet model performs far better for testing as you can see for three functions that we plotted above.