Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Кафедра электродинамики Отчет по лабораторной работе №2 Электромагнитное экранирование

Выполнили студенты 440 группы Карусевич А.А., Шиков А.П.

Цель работы: Экспериментальное наблюдение явления экранирования переменного магнитного поля металлическими оболочками и выяснение роли основных физических факторов (свойств материала экрана, а именно - проводимости и магнитной проницаемости; толщины его стенок; частоты поля), определяющих степень проникновения поля через экран, а также теоретический расчет экранирующих свойств металлических оболочек на простой модели и сопоставление экспериментальных и теоретических данных.

1. Теоретическая часть

1.1. Введение

Под электромагнитным экранированием понимается изоляция некоторой области пространства от проникновения электромагнитных полей, существующих в соседних областях. В статических или переменных квазистационарных полях (которым соответствуют длины волн, много большие характерных размеров используемых приборов и устройств) такая изоляция осуществляется обычно с помощью замкнутых металлических оболочек - экранов.

Общей физической причиной ослабления поля внутри экрана является то обстоятельство, что наведенные в нем внешнем полем токи (или заряды) создают во внутренней области поле, противоположное внешнему. В результате суммарное поле в этой области, складывающееся из полей внешних и наведенных источников, уменьшается.

1.2. Расчет экранирующего действия металлических оболочек

В работе используются оболочки цилиндрической формы. Для получения качественных оценок ослабления поля в экранированной области и установления характера его зависимости от параметров можно ограничиться изучением более простых моделей, допускающих точное решение задачи в из-

вестных аналитических функциях. Поскольку высота и диаметр внутренней полости используемых в работе экранирующих цилиндров одинаковы и весьма малы по сравнению с длиной волны в свободном пространстве $lambda_0$, наиболее подходящей моделью следует считать сферический слой, который имеет тот же объем внутренней полости и внешний радиус $a \ll \lambda_0$. Последнее условие означает, что вне металла (как во внешней, так и в экранируемой областях) поле можно рассматривать как квазистатическое. Приведем основные результаты решения задачи об экранирующих свойствах сферического слоя по отношению к переменному магнитному полю.

Если замкнутая однородная сферическая оболочка помещена в квазистатическое внешнее поле с комплексным вектором напряженности $\vec{H}_0 e^{i\omega t}$, которое в ее отсутствие является однородным, то поле в ограничиваемой ею области $\vec{H}_1 e^{i\omega t}$ также однородно. Эффективность экранирования удобно характеризовать величиной отношения комплексных амплитуд этих полей:

$$\eta_m = \frac{H_0}{H_1} \tag{1}$$

Безразмерная величина $|\eta_m|$ показывает, в какое число раз ослабляется поле в экранированной области, и может быть названа **коэффициентом ослабления**. Она сильно зависит от соотношения между толщиной экрана d и толщиной скин-слоя $\delta = \frac{c}{\sqrt{2\pi\sigma\mu\omega}}$ (c - скорость света в вакууме, σ - проводимость, μ - магнитная проницаемость экрана). Рассмотрим два предельных случая:

В пределе $\delta \ll d$ (сильный скин-эффект)

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (2)

При $\mu=1$

$$\eta_m = \frac{1}{6}(1+i)\frac{a}{\delta} \exp\left[(1+i)\frac{d}{\delta}\right] \tag{3}$$

Область отсутствия скин-эффекта (в пределе $\delta\gg d$):

$$\eta_m = 1 + \frac{2}{3} \frac{d}{a} \frac{(\mu - 1)^2}{\mu} + i \frac{2}{3} \frac{ad}{\mu \delta^2}$$
 (4)

При
$$\mu = 1$$

$$\eta_m = 1 + i \frac{2ad}{3\delta^2} \tag{5}$$

Для приближенных оценок величины η_m (с точностью $\sim 10\%$) выражения (2)-(5) можно использовать и в промежуточном случае ($\delta \simeq d$), разграничивая области применимости формул (2), (3), с одной стороны, и (4), (5), с другой стороны, точкой $\delta = d$.

2. Экспериментальная часть

Лабораторная установка предусматривает проведение измерений коэффициентов ослабления для трех латунных и трех стальных экранов цилиндрической формы.

Схема измерения $|\eta_m|$ заключалась в следующем: переменное магнитное поле создается внутри соленоида, подключенного к выходу генератора. Внутренние размеры всех экранов одинаковы (высота и радиус основания h=R=5 см), а толщина стенок различна (d=0.2 см, 0.5 см, 1 см).

Сталь: $\sigma \simeq 0.7 \cdot 10^{17} \, c^{-1}, \mu \sim 10^2 \div 10^3$ при $H \sim 10$ эрстед.

Латунь: $\sigma \simeq 1.5 \cdot 10^{17} \, c^{-1}$, $\mu \cong 1$ при $H \sim 10$ эрстед.

Схема установки:

Рис. 1: Схема установки

Переменное магнитное поле создается внутри соленоида, подключенного к выходу звукового генератора. В качестве индикатора поля используется второй соленоид, с выхода которого переменное напряжение может подаваться на усилитель вольтметра. Надевая больший (генераторный) соленоид сначала на открытый (неэкранированный) индикатор, а затем на индикатор, закрываемый экраном, и измеряя, как изменяются при этом показания вольтметра, можно (при неизменности амплитуды тока в цепи внешнего соленоида) определить коэффициент ослабления. Поскольку внесение металлического экрана внутрь внешнего соленоида изменяет его коэффициент самоиндукции, а следовательно, и его импеданс, сила тока в цепи внешнего соленоида и создаваемое этим током магнитное поле \mathbf{H}_0 при наличии экрана и в его отсутствие могут быть различными. Это нужно учитывать. В используемой схеме предусмотрено измерение относительных изменений токов как во внутреннем, так и во внешнем соленоидах. С этой целью в цепь внешнего соленоида введено сопротивление R, напряжение с которого подается на вертикальный усилитель осциллографа. Тогда:

$$|\eta_m| = \frac{V_0 U_e}{V_e U_0},\tag{6}$$

где V и U - соответственно показания вольтметра и осциллографа, индексы о и е относятся соответственно к величинам, измеренным без экрана и с экраном.

3. Экспериментальные результаты

3.1. Измерение $|\eta_m|$ латунных и стальных экранов

При использовании каждого экрана производилась подстройка напряжения на генераторном соленоиде, чтобы при отсутствии экрана значение напряжения на вольтметре было равно $V_0 = 1000 \text{ мB}$ для всех экспериментов.

По результатам измерений (см. таблицы 1 и 2) для всех частот и экранов рассчитан $|\eta_m|$ и построены графики в логарифмическом масштабе.

3.2. Латунные экраны

Рис. 2: Экспериментальные и теоретические (пунктир) графики для экранов из латуни. Значения для теоретических графиков: $\sigma \simeq 1.5 \cdot 10^{17} c^{-1}, \mu \simeq 1.$

Для построения теоретических графиков, необходимо определить границы применимости формул (2) и (4). Решая уравнение вида $\delta(f^*) = d$, можно

найти такую частоту f^* , что при частотах $f > f^*$, можно считать справедливой формулу (2), а при $f < f^*$ - формулу (4).

Значения f^* для латуни при разных значениях d:

d, mm	2	5	10	
f^* , Гц	4000	628	156	

Принимая в качестве модели цилиндрического экрана сферический слой той же толщины d и с тем же объемом внутренней полости $V=(4\pi/3)(a-d)^3=\pi R^2 h$ (отсюда, ввиду $a\gg d$, имеем $a\cong (3R^2h/4)^{1/3}$), построили для исследуемых экранов графики теоретической зависимости $|\eta_m(f)|$.

Как видно из 2, наблюдается достаточно хорошее совпадение теории и эксперимента, однако теоретические кривые нарастают быстрее экспериментальных с ростом частоты.

3.3. Оценка μ для стальных экранов по результатам измерений

Для стальных экранов почти всюду выполняется $\delta \ll d$, поэтому оценка производится из формулы

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (7)

Взяв модуль от этого выражения, получим:

$$|\eta_m| = \frac{\exp\left[\frac{d}{\delta}\right]}{6} \sqrt{\left(\frac{\mu\delta}{a} + 3 + \frac{a}{\mu\delta}\right)^2 + \left(\frac{a}{\mu\delta} - \frac{\mu\delta}{a}\right)^2}$$
(8)

Для определения μ по известным значениям $|\eta_m|$ использовался графический метод для уравнения (8). Для наглядности, стрроились правая и левая

части следующего вида:

$$LHS: y(\mu) = |\eta_m(f)| \exp\left[-\frac{d}{\delta}\right]$$

$$RHS: x(\mu) = \frac{1}{6}\sqrt{\left(\frac{\mu\delta}{a} + 3 + \frac{a}{\mu\delta}\right)^2 + \left(\frac{a}{\mu\delta} - \frac{\mu\delta}{a}\right)^2}$$
(9)

Рис. 3: Графическое решение для значения μ для стали

Для 2 мм полученное таким методом значение на частоте 500 Γ ц дает $\mu=152.$

Для 5 мм (500 Γ ц) $\mu = 154$, для 10 мм (200 Γ ц) $\mu = 126$.

Расхождение теоретического графика (который уходит в значительно большие по сравнению с практическими $|\eta_m|$) и практического, можно объяснить частотным насыщением магнитной проницаемости стали: из-за инертной природы перестроения доменной структуры, она не успевает изменяться вслед за частотой поля, и μ начинает падать с ростом частоты.

Рис. 4: Экспериментальные и теоретические (пунктир) графики для экранов из стали.

3.4. Таблицы измерений

Характеристика экрана			Латунь 2 мм		Латунь 5 мм		Латунь 10 мм	
f, Гц	V_0 , мВ	U, дел	V_e , мВ	U, дел	V_e , мВ	U, дел	V_e , мВ	U, дел
20	1000	13.2	940	13.1	910	13.1	870	13.1
50	1000	5.67	870	5.5	810	5.34	700	5.3
100	1000	3.18	790	3.18	650	3.05	500	3.24
200	1000	1.67	640	1.77	510	1.87	350	2.05
500	1000	0.92	520	1.15	320	1.31	180	1.63
1000	1000	0.484	390	0.66	225	0.746	100	0.96
2000	1000	0.54	260	0.74	105	0.82	3	1.13
5000	1000	0.328	90	0.54	28	0.57	3.6	0.856
10000	800	0.112	42	0.12	5.9	0.17	0.22	0.328

Таблица 1

Характеристика экрана			Сталь 2 мм		Сталь 5 мм		Сталь 10 мм	
f, Гц	V_0 , мВ	U, дел	V_e , мВ	U, дел	V_e , мВ	U, дел	V_e , мВ	U, дел
20	1000	9.68	45	9.11	18	8.8	6.3	8.47
50	1000	5.67	49	4.15	11	3.98	1	3.62
100	1000	3.18	47	1.96	5.8	1.75	0.24	1.6
200	1000	1.67	35	0.94	1.8	0.86	0.048	0.74
500	1000	0.92	22	0.56	0.2	0.5	0.009	0.42
1000	1000	0.484	10	0.328	0.24	0.288	0.003	0.24
2000	1000	0.54	2.6	0.416	-	-	-	-
5000	1000	0.328	0.22	0.3	-	-	-	-
10000	800	0.112	-	-	-	-	-	-

Таблица 2