第二次作业

2025年4月1日

【注意】作业交纸质版,注明题号,不需要抄题。所有题目请写出详细求解步骤,如使用函数的对称性、傅里叶变换的性质等对求解过程进行化简,必须写出详细原因,例如:"由于该函数是偶函数/奇函数,可得……"、"依据傅里叶变换的某某性质,可得……"如果完全不写求解过程步骤,只是直接给出答案,那么即使答案正确也只能得2分,该原则适用于本课程的所有作业。作业的部分题干包含了解题的提示,考试不给提示。

1. 求题图 2-1 所示半波余弦信号的三角傅里叶级数。若 E = 10 V,f = 10 kHz,基于 c_n (提示: c_n 是正的,理解成 $|c_n|$ 亦可,以后不再解释)画出该信号的幅度谱,要求横轴对应频率的单位为 Hz。(20 分)

2. 求题图 2-2 所示的周期锯齿信号的指数形式傅里叶级数。基于复傅里叶系数,大致画出幅度谱(提示:结果如包含i,需要画 $|F_n|$)。(20f))

3. 对题图 2-3 所示波形,若已知 $\mathcal{F}[f_1(t)] = F_1(\omega)$,利用傅里叶变换的性质,求 $f_1(t)$ 以 $\frac{t_0}{2}$ 为轴翻转后所得 $f_2(t)$ 的傅里叶变换。(20 分)

题图 2-3

4. 已知一个如题图 2-4 所示的周期三角波信号f(t):

题图 2-4

- (1) 求f(t)的傅里叶级数系数 a_0 、 a_n 、 b_n ,给出步骤,写出完整的傅里叶级数表达式;
- (2)基于三角傅里叶级数画出频谱图,给出步骤,频谱图包含幅频 (c_n) 和相频 (φ_n) 。 (20分)

5. 利用傅里叶变换的定义或性质, 求题图 2-5 (a)、(b)所示信号的傅里叶变换。(20 分)

题图 2-5