Proseminar zu Grundkonzepten: Blatt 1

H. Ritsch

27.11.2017

Quantum dynamics of a single field mode

Consider a single optical field mode of frequency ω of the electromagnetic field inside an optical resonator described by a harmonic oscillator

• Real space oscillator dynamics:

Open the QO-toolbox homepage (https://www.qojulia.org/) and look through the harmonic oscillator example (copy it in your notebook). Plot the position distribution of superposition states of the field.

• Dynamics in a Fock-basis:

- 1. Introduce a finite Fock-basis and define the ladder operators a, a^{\dagger} and the Hamiltonian H for $n < N_0$ photons (i.e. a maximal energy of $E_{max} = \hbar \omega (N + 1/2)$).
- 2. Check the commutation relations of (a, a^{\dagger}, H) . (Is there a problem?) Use the ladder operator to construct the eigenstates of H and check their energies.
- 3. Define the translation operator $D(\alpha) = exp(\alpha a^{\dagger} \alpha^* a)$ and construct a coherent state. Calculate mean values and variances of their field and energy.
- 4. Do the same for the squeezing operator $S(\epsilon) = exp(\epsilon(a^{\dagger})^2 \epsilon^* a^2)$.
- 5. Plot photon number distributions and Q-function **Hinweis:** Verwenden Sie (qfunc,wfunc)
- 6. Calculate the approximate time evolution of a squeezed state by repeatably applying the operator $U(dt) = expm(-i * H * dt/\hbar)$. Plot the field mean values and variances as function of time.
- 7. Use the build in function time evolution_schroedinger to redo this. For fun: create a movie of Q(t).

• Master equation:

Let us add cavity decay now.

- 1. Define the jump operator J and jump rate κ and use the build in function time evolution_master to add the effect of cavity decay. Plot again mean values and uncertainties in the field as function of time.
- 2. Add a driving field η to the Hamiltonian and calculate time evolution and steady states.