Principal component analysis for zero-inflated compositional data

Kipoong Kim, Jaesung Park, and Sungkyu Jung

Department of Statistics, Seoul National University

February 2, 2024

- Introduction
 - Microbiome
 - Compositional data
- The proposed method
 - Global compositional PCA
 - Compositional PCA
 - Approximated compositional PCA
- Theoretical properties
 - Existence
 - Consistency
- Simulation studies
- Real data analysis

Our motivating data

16s rRNA microbiome sequencing data

- Formation of the Human Microbiome
 - Initial Colonization: Begins at birth, influenced by delivery method (vaginal vs. C-section) and breastfeeding.
 - ullet Early Life (\sim 1000 days): Shaped by diet transition and environmental exposure, including family and pets.
 - Adulthood: Continuously influenced by diet, lifestyle, and medication.
 - Other Factors: Genetics, geography, health status, and age also play roles.

16s rRNA microbiome sequencing data NGS Technologies

■ Samples \rightarrow DNA extraction \rightarrow PCR+Library prep. \rightarrow Sequencing & Mapping \rightarrow Microbiome count data

16s rRNA microbiome sequencing data Sampling examples

Figure: A vs B: different library size; A vs C: different sampling fraction

16s rRNA microbiome sequencing data Challengies

- In analyzing such microbiome count data, many researchers encounter several challenges
 - Variability in Library Size: Differences in sequencing platforms and technical issues can cause significant variability in the number of reads across samples (Gloor et al., 2017).
 - ⇒ Normalization to compositional data
 - High Dimensionality: The vast number of microbial taxa in samples adds complexity to data analysis.
 - ⇒ Dimension reduction method
 - **Zero Inflation**: Insufficient sampling or specific sampling designs may lead to underrepresentation of rare taxa, resulting in data sparsity (Martíin-Fernaíndez et al., 2015).
 - \Rightarrow Dealing with the zero inflation.
- In this work, we aim to develop a new dimension reduction method for zero-inflated compositional data.

Microbiome compositional data

Compositional space (the sample space of compositional data):

$$\mathbb{C}^p = \left\{ (x_1, \dots, x_p) : \sum_{j=1}^p x_j = 1; x_j \ge 0 \text{ for all } j \right\}.$$

■ The compositional space can be thought of as p-1 dimensional convex hull embedded in \mathbb{R}^p .

Figure: (a) Simplex embedded in the positive orthant of \mathbb{R}^3 . (b) Ternary diagram.

- Compositional data that reside on a simplex does not admit the standard Euclidean geometry
 - e.g., not closed under addition and scalar multiplication

Microbiome compositional data

Existing methods

- There have been developments on compositional data analysis based on the so-called Aitchison geometry, which is based on the log-ratio transformation.
 - Additive log-ratio: $\operatorname{alr}(\boldsymbol{x}) = \log x_j \log x_J, \ J \in \{1, \dots, p\}$
 - Centered log-ratio: $\operatorname{clr}(\boldsymbol{x}) = \log x_j \frac{1}{p} \sum_{j=1}^p \log x_j$
 - etc.
- Log-ratio PCA (Aitchison, 1983) to cope with both linear and curved data patterns.

Figure: Ternary diagram with log-ratio principal axes

Log-ratio PCA

Dealing with zeros in log-ratio transformation

- Zero replacement strategies
 - Simple replacement

$$r_{j} = \begin{cases} \frac{1}{1 + \sum_{k:x_{k}=0}^{k} \delta_{j}}, & \text{if } x_{j} = 0, \\ \frac{1}{1 + \sum_{k:x_{k}=0}^{k} \delta_{j}}, & \text{if } x_{j} > 0, \end{cases}$$

Additive, Multiplicative, and etc. replacements.

where δ is a small zero-replacement value.

- Determination of δ
 - Count-level data: $\delta = 0.5$
 - Compositional-level data: $\delta = \frac{1}{2} \min\{x_j : x_j > 0\}.$

Limitation of log-ratio PCA

Sensitivity analysis for the zero replacement

However, the zero inflation may result in the distortion.

PCA for zero-inflated compositional data

Compositional reconstruction

- We want to propose a new dimension reduction method that prevents its low-rank reconstructions from being out of the composition space.
- Intuitive approach: compositional reconstruction PCA (crPCA)
 - Find the principal directions (classical PCA)
 - Project the principal scores into the compositional space

*Prot: Proteobacteria; Firm: Firmicutes; Actin: Actinobacteria; Bact: Bacteroidetes

Real data example

Rank-1 reconstruction

 Composition plots of the rank-1 reconstruction in urine dataset (in the order of log-ratio PCA, crPCA, and CPCA).

Figure: Left: the original data. Right: reconstructed data. The same sample orders were maintained between left and right panels for each method, based on its estimated first score.

Global Compositional PCA Main goal

- Denote the *i*-th row of **A** by a_i and the *k*-th column of **A** by A_k .
- Global compositional PCA (global CPCA) problem:

$$(\hat{\mathbf{U}}^{(r)}, \hat{\mathbf{V}}^{(r)}) = \underset{\mathbf{U} \in \mathbb{R}^{n \times r}, \ \mathbf{V} \in \mathbb{R}^{p \times r}}{\arg \min} \ \left\| \mathbf{X} - \mathbf{1} \boldsymbol{\mu}^T - \mathbf{U} \mathbf{V}^T \right\|_F^2, \tag{1}$$

subject to

- lack U and f V have orthogonal and orthonormal columns
- $\boldsymbol{\mu} \in \mathbb{C}^p$
- $\mu + \mathbf{V} \mathbf{u}_i \in \mathbb{C}^p$ for all $i = 1, \dots, n$.
- The mean vector ${\pmb \mu}$ was set to the sample mean $\bar{{\pmb x}} = \frac{1}{n} \sum_{i=1}^n {\pmb x}_i$ for simplicity.

Global Compositional PCA

Main goal

Compositional subspace, spanned by $\{\mathbf{V}_1,\ldots,\mathbf{V}_r\}$ at $\pmb{\mu}$:

$$\mathbb{CS}_{(\boldsymbol{\mu}:\{\mathbf{V}_1,\ldots,\mathbf{V}_r\})} := \mathbb{C}^p \cap \{\boldsymbol{\mu} + c_1\mathbf{V}_1 + \cdots + c_r\mathbf{V}_r : c_1,\ldots,c_r \in \mathbb{R}\}$$

- Alternatively, global CPCA finds an r-dimensional compositional subspace, where
 - the data is best approximated and
 - the low-rank reconstruction lies within the compositional subspace.
- e.g.

Compositional PCA

Sequential estimation procedure

- With the appropriate constraints,
 - Rank-1 case:

$$(\hat{\mathbf{U}}, \hat{\mathbf{V}}_1) = \underset{\mathbf{U}_1, \mathbf{V}_1}{\operatorname{arg\,min}} \ \|\mathbf{X} - \mathbf{1}\boldsymbol{\mu}^T - \mathbf{U}_1\mathbf{V}_1^T\|_F^2,$$

Rank-2 case:

$$(\hat{\mathbf{U}}, \hat{\mathbf{V}}_2) = \underset{(\mathbf{U}_1, \mathbf{U}_2), \mathbf{V}_2 \perp \hat{\mathbf{V}}_1}{\arg\min} \|\mathbf{X} - \mathbf{1}\boldsymbol{\mu}^T - \mathbf{U}_1\hat{\mathbf{V}}_1^T - \mathbf{U}_2\mathbf{V}_2^T\|_F^2,$$

:

■ Rank-*k* case:

$$(\hat{\mathbf{U}}, \hat{\mathbf{V}}_k) = \underset{(\mathbf{U}_1, \dots, \mathbf{U}_k), \ \mathbf{V}_k \perp \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}}{\arg \min} \|\mathbf{X} - \mathbf{1}\boldsymbol{\mu}^T - \mathbf{U}_1 \hat{\mathbf{V}}_1^T - \dots - \mathbf{U}_k \mathbf{V}_k^T \|_F^2,$$

for
$$k = 1, ..., r$$
.

Compositional PCA

The proposed methods

• Compositional PCA (CPCA): Given $\pmb{\mu}, \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}$,

$$\underset{\mathbf{U}_1,\dots,\mathbf{U}_k,\mathbf{V}_k}{\operatorname{arg \, min}} \|\mathbf{X} - \mathbf{1}\boldsymbol{\mu}^T - \mathbf{U}_1\hat{\mathbf{V}}_1^T - \dots - \mathbf{U}_{k-1}\hat{\mathbf{V}}_{k-1}^T - \mathbf{U}_k\mathbf{V}_k^T\|_F^2, \quad (2)$$

subject to

- $\mathbf{\mu} + \sum_{h=1}^{k-1} u_{ih} \hat{\mathbf{V}}_h + u_{ik} \mathbf{V}_k \in \mathbb{C}^p \ \forall i$
- $\mathbf{V}_k \perp \mathbf{1}_p, \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}$ and $\|\mathbf{V}_k\|_2 = 1$
- Approximated CPCA (aCPCA): Given μ , $(\hat{\mathbf{U}}_1, \hat{\mathbf{V}}_1), \dots, (\hat{\mathbf{U}}_{k-1}, \hat{\mathbf{V}}_{k-1})$,

$$\underset{\mathbf{U}_k, \mathbf{V}_k}{\arg\min} \|\mathbf{X} - \mathbf{1}\boldsymbol{\mu}^T - \hat{\mathbf{U}}_1 \hat{\mathbf{V}}_1^T - \dots - \hat{\mathbf{U}}_{k-1} \hat{\mathbf{V}}_{k-1}^T - \mathbf{U}_k \mathbf{V}_k^T \|_F^2,$$
(3)

subject to

- $\mu + \sum_{h=1}^{k-1} \hat{u}_{ih} \hat{\mathbf{V}}_h + u_{ik} \mathbf{V}_k \in \mathbb{C}^p \quad \forall i$
- $\mathbf{V}_k \perp \mathbf{1}_p, \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}, \|\mathbf{V}_k\|_2 = 1$
- In each method, we use the alternating algorithm to estimate both scores and directions.

Computational Algorithm

Sub-problems: U-update for CPCA

■ The problem can be expressed as the individual problem for the i-th sample, $i=1,\ldots,n$:

$$\underset{u_{i_1,\dots,u_{i_k}}}{\arg\min} \|\boldsymbol{x}_i - \boldsymbol{\mu} - u_{i_1}\hat{\mathbf{V}}_1 - \dots - u_{i_k-1}\hat{\mathbf{V}}_{k-1} - u_{i_k}\mathbf{V}_k\|_2^2$$
subject to $\boldsymbol{\mu} + \sum_{h=1}^{k-1} u_{i,h}\hat{\mathbf{V}}_h + u_{i_k}\mathbf{V}_k \in \mathbb{C}^p$, (4)

where $\hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}, \mathbf{V}_k \perp \mathbf{1}_p$ are fixed.

Proposition 1

The problem (4) can be expressed as a quadratic programming problem:

$$\hat{\boldsymbol{u}}_i = \operatorname*{arg\,min}_{\boldsymbol{u}_i \in \mathbb{R}^n} \, \boldsymbol{u}_i^T (\tilde{\mathbf{V}}^T \tilde{\mathbf{V}}) \boldsymbol{u}_i - 2 \left\{ (\boldsymbol{x}_i - \boldsymbol{\mu})^T \tilde{\mathbf{V}} \right\} \boldsymbol{u}_i \ \, \text{subject to} \, \tilde{\mathbf{V}} \boldsymbol{u}_i \geq -\boldsymbol{\mu},$$

where
$$\tilde{\mathbf{V}} = (\hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}, \mathbf{V}_k)$$
.

Computational Algorithm

Sub-problems: U-update for aCPCA

■ The problem for the *i*-th sample can be expressed as:

$$\underset{u_{ik} \in \mathbb{R}}{\operatorname{arg \, min}} \|\boldsymbol{x}_i - \boldsymbol{c}_i - u_{ik} \mathbf{V}_k\|_2^2 \text{ subject to } \boldsymbol{c}_i + u_{ik} \mathbf{V}_k \in \mathbb{C}^p,$$
 (5)

where $c_i = \mu + \sum_{h=1}^{k-1} \hat{u}_{ih} \hat{\mathbf{V}}_h \in \mathbb{C}^p$ and $\mathbf{V}_k \perp \mathbf{1}_p, \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}$ are fixed.

Proposition 2

The solution of (5) is given by

$$\hat{u}_{ik} = egin{cases} m_k & ext{if } \langle oldsymbol{x}_i - oldsymbol{c}_i, oldsymbol{V}_k
angle \leq m_k, \ \langle oldsymbol{x}_i - oldsymbol{c}_i, oldsymbol{V}_k
angle \leq \langle oldsymbol{x}_i - oldsymbol{c}_i, oldsymbol{V}_k
angle \leq M_k, \ M_k & ext{if } \langle oldsymbol{x}_i - oldsymbol{c}_i, oldsymbol{V}_k
angle \geq M_k, \end{cases}$$

where $m_k = \max_{j} \{-\mu_j/v_{jk}\}\$ and $M_k = \min_{j} \{-\mu_j/v_{jk}\}.$

Computational Algorithm

Sub-problems: V-update

■ Both aCPCA and CPCA problems for V_k can be expressed as follows. For fixed (U_1, \ldots, U_k) ,

$$\underset{\mathbf{V}_{k} \in \mathbb{R}^{p}}{\operatorname{arg \, min}} \left\| \mathbf{X} - \mathbf{1} \boldsymbol{\mu}^{T} - \mathbf{U}_{1} \hat{\mathbf{V}}_{1}^{T} - \dots - \mathbf{U}_{k-1} \hat{\mathbf{V}}_{k-1}^{T} - \mathbf{U}_{k} \mathbf{V}_{k}^{T} \right\|_{F}^{2}$$
 (6)

subject to the appropriate constraints.

Proposition 3

The problem (6) is equivalent to a quadratic programming problem given by

$$\operatorname*{arg\,min}_{\mathbf{V}_k \in \mathbb{R}^p} \mathbf{V}_k^T (\mathbf{U}_k^T \mathbf{U}_k) \mathbf{V}_k - 2 \left(\sum_{i=1}^n u_{ik} (\boldsymbol{x}_i - \boldsymbol{\mu}) \right)^T \mathbf{V}_k$$
 subject to $(\mathbf{1}, \hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1})^T \mathbf{V}_k = \mathbf{0}$ and $u_{ik} \mathbf{V}_k \geq -\boldsymbol{c}_i \ \forall i,$

where
$$c_i = \mu + u_{i1}\hat{\mathbf{V}}_1 + \cdots + u_{i,k-1}\hat{\mathbf{V}}_{k-1}$$
.

Computational Algorithm CPCA

Algorithm 1: Rank-k approximation for CPCA

```
Input: \mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^T and (\hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}).
Initialize \mathbf{V}_{t}^{(0)} \perp \mathbf{1}_{n}.
Repeat for \tilde{t} = 0, 1, 2, \ldots:
      1 U-update: obtain \boldsymbol{u}_{i}^{(t+1)} by (4) with \boldsymbol{\mu} = \bar{\boldsymbol{x}} and \mathbf{V}_{k} = \mathbf{V}_{k}^{(t)} \ \forall i.
      2 U-shrinkage: \boldsymbol{u}_{i}^{(t+1)} \leftarrow (1 - \frac{\gamma}{t+1}) \boldsymbol{u}_{i}^{(t+1)}.
      3 V-update: obtain \mathbf{V}_h^{(t+1)} by (6) with \boldsymbol{\mu} = \bar{\boldsymbol{x}} and \mathbf{U} = (\mathbf{U}_1^{(t+1)}, \dots, \mathbf{U}_h^{(t+1)})
      4 V-scaling: \mathbf{V}_{h}^{(t+1)} \leftarrow \mathbf{V}_{h}^{(t+1)} / ||\mathbf{V}_{h}^{(t+1)}||_{2}.
until convergence: \|\mathbf{V}_{h}^{(t+1)} - \mathbf{V}_{h}^{(t)}\|_{F}^{2} < \epsilon.
Re-estimation of U: estimate u_i^{(t+1)} without the shrinkage \forall i.
Output: (\mathbf{U}_1^{(t+1)}, \dots, \mathbf{U}_k^{(t+1)}) and (\hat{\mathbf{V}}_1, \dots, \hat{\mathbf{V}}_{k-1}, \mathbf{V}_{L}^{(t+1)}).
```

Computational Algorithm Approximated CPCA

Algorithm 2: Rank-k approximation for aCPCA

until convergence: $\|\mathbf{V}_{k}^{(t+1)} - \mathbf{V}_{k}^{(t)}\|_{F}^{2} < \epsilon$.

Input: $X = (x_1, ..., x_n)^T$, $(\hat{U}_1, ..., \hat{U}_{k-1})$ and $(\hat{V}_1, ..., \hat{V}_{k-1})$.

Re-estimation of U: estimate $u_{ik}^{(\hat{t}+1)}$ without the shrinkage $\forall i$. Output: $(\hat{\mathbf{U}}_1,\ldots,\hat{\mathbf{U}}_{k-1},\mathbf{U}_k^{(t+1)})$ and $(\hat{\mathbf{V}}_1,\ldots,\hat{\mathbf{V}}_{k-1},\mathbf{V}_k^{(t+1)})$.

```
Initialize \mathbf{V}_k^{(0)}. Repeat for t=0,1,2,\ldots:

1 U-update: obtain u_{ik}^{(t+1)} by (5) with \mathbf{c}_i = \bar{\mathbf{x}} + \sum_{h=1}^{k-1} \hat{u}_{ih} \hat{\mathbf{V}}_h and \mathbf{V}_k = \mathbf{V}_k^{(t)} \ \forall i.

2 U-shrinkage: u_{ik}^{(t+1)} \leftarrow (1 - \frac{\gamma}{t+1}) u_{ik}^{(t+1)}.

3 V-update: obtain \mathbf{V}_k^{(t+1)} by (6) with \boldsymbol{\mu} = \bar{\mathbf{x}} and \mathbf{U} = (\hat{\mathbf{U}}_1, \ldots, \hat{\mathbf{U}}_{k-1}, \mathbf{U}_k^{(t+1)}).

4 V-scaling: \mathbf{V}_k^{(t+1)} \leftarrow \mathbf{V}_k^{(t+1)} / \|\mathbf{V}_k^{(t+1)}\|_2.
```

An illustrative comparison

Theoretical properties

- Consider that X is a \mathbb{C}^p -valued random element defined on the probability space $(\Omega, \mathcal{A}, \mathcal{P})$. We denote i.i.d. copies of X by $\mathcal{X}_n := (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n)$.
- Let $\Pi_{\mathcal{Z}}(\boldsymbol{x}) = \arg\min_{\boldsymbol{z} \in \mathcal{Z}} \|\boldsymbol{x} \boldsymbol{z}\|_2^2$ be an Euclidean projection of $\boldsymbol{x} \in \mathbb{R}^p$ onto a nonempty closed convex subset $\mathcal{Z} \subset \mathbb{C}^p$.
 - $lue{}$ This projection is unique because $\mathcal Z$ is a nonempty closed convex subset and the norm is strictly convex and differentiable.
- For a nonempty closed convex subset $CS \subset \mathbb{C}^p$, let us define the population risk and empirical risk with respect to CS by

$$R(\mathsf{CS}) := \mathbb{E} \|X - \Pi_{\mathsf{CS}}(X)\|_2^2 \quad \text{and} \quad R_n(\mathsf{CS}; \mathcal{X}_n) := \frac{1}{n} \sum_{i=1}^n \|\boldsymbol{x}_i - \Pi_{\mathsf{CS}}(\boldsymbol{x}_i)\|_2^2,$$
 respectively.

Theoretical properties

- Let us denote by $\mathbb{CS}_{k,\mathcal{Z}}$ the set of all k-dimensional compositional subspaces containing a subset \mathcal{Z} of \mathbb{C}^p with $\dim(\operatorname{span}(\mathcal{Z})) < k$.
- Then, we can write the proposed CPCA problem as

$$\hat{F}_k = \operatorname*{arg\,min}_{\mathsf{CS} \in \mathbb{CS}_{k,\hat{F}_{k-1}}} R_n(\mathsf{CS}; \mathcal{X}_n) = \frac{1}{n} \sum_{i=1}^n \|\boldsymbol{x}_i - \Pi_{\mathsf{CS}}(\boldsymbol{x}_i)\|_2^2$$

for a given $\mathcal{X}_n = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$, and its population version as

$$F_k = \mathop{\arg\min}_{\mathsf{CS} \in \mathbb{CS}_{k,F_{k-1}}} \, R(\mathsf{CS}) = \mathbb{E} \|X - \Pi_{\mathsf{CS}}(X)\|_2^2$$

: Forward Principal Compositional Subspace

- Using this framework, we will show
 - the **existence** of F_k , \hat{F}_k and their directions (V_k, \hat{V}_k) ,
 - the **consistency** of \hat{F}_k to F_k and \hat{V}_k to V_k in an adequate topology using the generalized Fréchet mean framework introduced in Park and Jung (2023+).

Theoretical properties: Existence

- To show the existence of F_k , we utilize the fact that the continuous function on a compact set has a minimizer.
 - Recall that F_k is a minimizer of $R(\cdot)$ among $\mathbb{CS}_{k,F_{k-1}}$.
 - We first give a topology to $\mathbb{CS}_{k,F_{k-1}}$ so that $R(\cdot):\mathbb{CS}_{k,F_{k-1}}\to [0,\infty)$ is a continuous function on a compact set.
 - We utilize the Hausdorff distance (Beer, 1993) to measure a discrepancy between two compositional subspaces, defined by

$$h(A, B) := \max \left(\sup_{a \in A} \inf_{b \in B} \|a - b\|_2, \sup_{b \in B} \inf_{a \in A} \|a - b\|_2 \right)$$

for nonempty closed subsets A and B of \mathbb{C}^p .

■ Let us denote by $\mathcal{H}(\mathbb{C}^p)$ the collection of all nonempty closed subsets of \mathbb{C}^p endowed with Hausdorff distance h.

Theoretical properties: Existence

■ Then, we can check the continuity of the risk function $R(\cdot)$ with respect to the Hausdorff distance h through the following lemma.

Lemma 1

For any distribution of X, $R(\cdot):\mathcal{H}(\mathbb{C}^p)\to [0,\infty)$ is continuous with respect to h.

Next, we can show the compactness of the minimizing domain $\mathbb{CS}_{k,F_{k-1}} \subset \mathcal{H}(\mathbb{C}^p)$, except that the subspace F_{k-1} lies completely on a simplex boundary.

Lemma 2

Let us denote the simplex boundary by $\partial \mathbb{C}^p := \{ \boldsymbol{x} \in \mathbb{C}^p : x_j = 0 \text{ for some } j \}$. Then, the following holds:

- (1) $\mathcal{H}(\mathbb{C}^p)$ is compact.
- (2) $\mathbb{CS}_{k,\mathcal{Z}}$ is compact for all $k=1,\ldots,p$ and for $\mathcal{Z}\in\mathbb{CS}_{k-1}$ such that $\mathcal{Z}\not\subset\partial\mathbb{C}^p$.

Theoretical properties: Existence

■ Together with Lemma 1 and 2, the existence of F_k and V_k is immediately established as described in Theorem 3.

Theorem 3

For any distribution of X with $P(X_j = 0) < 1$ for all j = 1, ..., p, the forward principal compositional subspace F_k and its direction V_k exist for all k = 1, ..., p.

- The empricial estimators \hat{F}_k and \hat{V}_k can be regarded as a special case of F_k and V_k derived from a distribution that assigns probability 1/n to each of $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n$, for a fixed \mathcal{X}_n .
- Since each $\boldsymbol{x}_i \in \mathbb{C}^p \backslash \partial \mathbb{C}^p$ with probability 1, we have $\bar{\boldsymbol{x}} \in \mathbb{C}^p \backslash \partial \mathbb{C}^p$ almost surely. Thus, for any distribution of X with $P(X_j = 0) < 1 \ \forall j$, \hat{F}_k and \hat{V}_k exist almost surely.

Theoretical properties: Consistency

The generalized Fréchet mean framework (Park and Jung, 2023+)

- By applying the generalized Fréchet mean framework to our CPCA problem, we will show that \hat{F}_k converges almost surely to F_k under an assumption.
 - In the generalized Fréchet mean framework, a nonempty closed subset defined on a more general metric space (M,d) is considered.
 - Let $\mathcal{H}(M)$ be the collection of all nonempty closed subsets of M endowed with Hausdorff distance h.
 - Subsequently, the minimizers of population risk and empirical risk with different minimizing domains are defined as

$$E_0 = \underset{m \in M_0}{\operatorname{arg\,min}} \ \mathbb{E}[\mathfrak{c}(X, m)]$$

and

$$\hat{E}_n = \underset{m \in M_n}{\operatorname{arg \, min}} \ \frac{1}{n} \sum_{i=1}^n \mathfrak{c}(X_i, m),$$

where $\mathfrak{c}: T \times M \to \mathbb{R}$ is a loss function (T is the data space), $M_0 \in \mathcal{H}(M)$, and $M_n: (\Omega, \mathcal{A}, \mathcal{P}) \to \mathcal{H}(M)$ is a sequence of closed random subsets of M.

Theoretical properties: Consistency

Regularity conditions

For almost all $\omega \in \Omega$, $M_n(\omega)$ converges to M_0 in the following sense of Kuratowski (Beer, 1993):

For $P_0\in\mathcal{H}(M)$ and $P_n\in\mathcal{H}(M)$, we say that P_n converges to P_0 in the sense of Kuratowski if P_n and P_0 satisfies the following:

- (i) If an arbitrary sequence $m_n \in P_n$ has an accumulation point, then that point is in P_0 .
- (ii) For an arbitrary $m_0 \in P_0$, there exist a sequence $m_n \in P_n$ that converges to m_0 .

(M,d) is a separable and complete metric space. In other words, M is a polish metric space.

 $\mathfrak{c}(t,\cdot):M\to\mathbb{R}$ is continuous for each $t\in T.$

Let B(m,r) be the open ball in M with center m and radius r>0. For every $m\in M$, there exists $r=r_m>0$ such that $\pi_{m,r}(X)$ and $\Pi_{m,r}(X)$ are integrable, where $\pi_{m,r}(t):=\inf_{m'\in B(m,r)}\mathfrak{c}(t,m')$ and $\Pi_{m,r}(t):=\sup_{m'\in B(m,r)}\mathfrak{c}(t,m')$ for $m\in M, r>0, t\in T$ are the local infimum and supremum of the loss function \mathfrak{c} in the neighborhood of m.

 $\cup_{n\geq N}\hat{E}_n$ is compact for some $N\in\mathbb{N}$ almost surely, where \overline{E} indicates the closure of a set E.

Theoretical properties: Consistency Main theorem of Park and Jung (2023+)

Theorem 4

Suppose $E_0=\{m_0\}$ is a singleton set. Under regularity conditions on the loss function and on the metric space M, all sequences $m_n\in \hat{E}_n$ converge almost surely to m_0 .

 Our CPCA problem is a special case of the generalized Fréchet mean framework with

$$\begin{split} T &= \mathbb{C}^p, \quad \mathfrak{c}(\cdot, \bullet) = \ell(\cdot, \bullet), \quad E_0 = F_k, \quad \hat{E}_n = \hat{F}_k, \\ M &= \mathcal{H}(\mathbb{C}^p), \quad M_0 = \mathbb{CS}_{k, F_{k-1}}, \text{ and } M_n = \mathbb{CS}_{k, \hat{F}_{k-1}}, \end{split}$$

where
$$\ell(\boldsymbol{x}, \mathsf{CS}) = \|\boldsymbol{x} - \Pi_{\mathsf{CS}}(\boldsymbol{x})\|_2^2$$
.

In addition, the regularity conditions are all satisfied.

Theoretical properties: Consistency

Consistency for the principal compositional subspace

By Theorem 4, we can show the almost sure convergence of the principal compositional subspace to its population counterpart.

Assumption 1

 F_k uniquely exists for all $k = 1, \ldots, p$.

Corollary 5

Under Assumption 1, for any distribution of X with $P(X_j = 0) < 1 \ \forall j$, the following holds for all k = 1, ..., p almost surely:

$$\lim_{n \to \infty} h(\hat{F}_k, F_k) = 0.$$

Theoretical properties: Consistency Consistency for the principal compositional direction

- This result also leads to the almost sure convergence of \hat{V}_k to V_k , since the k-th principal compositional direction is uniquely determined (up to sign changes) for a given sequence of principal compositional subspaces.
- Finally, we obtain the following result on the consistency of the proposed principal compositional direction.

Corollary 6

Under Assumption 1, for any distribution of X with $P(X_j=0)<1 \ \forall j$, the direction $\hat{V}_k(\mathcal{X}_n)$ converges almost surely to V_k for all $k=1,\ldots,p$ in the following sense:

$$\lim_{n\to\infty} \|\hat{V}_k(\mathcal{X}_n) - V_k\|_2 = 0.$$

Simulation studies

Scenario 1: Linear pattern

- We consider the model $\boldsymbol{x}_i = \Pi_{\mathbb{C}^p}(\boldsymbol{\mu} + \mathbf{V}\boldsymbol{u}_i + \boldsymbol{e}_i) \in \mathbb{C}^p$ for $i = 1, \dots, n$.
 - The mean vector $\mu \sim \text{Dir}(10, \dots, 10)$.
 - The directions $\mathbf{V} = \mathsf{Orth}(\mathbf{V}^*)$ with $\mathbf{V}^* = \{v_{jk}^*\}$ and $v_{jk}^* \sim N(0,1)$ such that $[\mathbf{1}_p, \mathbf{V}]^T[\mathbf{1}_p, \mathbf{V}] = \mathbf{I}_{r+1}$, for $j = 1, \ldots, p$ and $k = 1, \ldots, r$.
 - The scores $u_{ik} \sim TN(0, (d/k)^2; a_k \frac{\eta}{\log(p)}, b_k + \frac{\eta}{\log(p)})$, where $[a_k, b_k]$ is the confined support which ensures any vectors within $[\boldsymbol{\mu} + a_k \mathbf{V}_k, \boldsymbol{\mu} + b_k \mathbf{V}_k]$ to be inside \mathbb{C}^p .
 - The error term $\mathbf{e}_i = (\mathbf{I}_p \frac{1}{p} \mathbf{1}_p \mathbf{1}_p^T) \mathbf{e}_i^*$ with $e_{ij}^* \sim U(-\delta, \delta)$.

Simulation studies

Scenario 2: Curved pattern

- We consider the following log-normal model $\boldsymbol{x}_i^* = \mathcal{C}\left[\exp(\boldsymbol{\mu} + \mathbf{V}\boldsymbol{u}_i + \boldsymbol{e}_i)\right] \in \mathbb{C}^p$ for $i = 1, \dots, n$, where $\mathcal{C}(\cdot)$ is a closure operator.
 - The mean vector $\boldsymbol{\mu}$ was set to $(0, \dots, 0)$.
 - The directions V were generated in the same way to Scenario 1.
 - The scores $u_{ik} \sim N(0, (d/k)^2)$
 - The errors $e_{ij} \sim N(0, \sigma_e^2)$.
 - We apply the hard-thresholding and closure operators again to \boldsymbol{x}_i^* , with threshold of $0.01/\log(p)$ ($0.01/\log(p)$ is 0.00217 for p=100).

Simulation studies

Parameters

- $n \in \{50, 100, 500, 1000\}, p = 100, and r = 5$
- Scenario 1
 - \blacksquare SNR = 2
 - $\eta = 0.1$
 - Prop. of 0's = 14 16% empirically.
- Scenario 2
 - \blacksquare SNR = 5 in a centered log-ratio scale
 - d = 3
 - Prop. of 0's = 0.2 0.6% empirically.

Simulation studies Evaluation criterion

 The out-of-sample reconstruction error on an independent test data was calculated as

$$\sqrt{\frac{1}{n_{\mathsf{test}}p}\sum_{i=1}^{n_{\mathsf{test}}}\|\boldsymbol{x}_i^{\mathsf{test}} - \mathsf{Proj}_{(\bar{\boldsymbol{x}};\{\hat{\mathbf{V}}_1,\ldots,\hat{\mathbf{V}}_r\})}(\boldsymbol{x}_i^{\mathsf{test}})\|_2^2}$$

where $n_{\rm test}=1000$, ${\pmb x}_i^{\rm test}$ is the i-th observation vector of the test data.

All results are presented as averages over 100 simulated replicates

Simulation results

Convergence

- The proportion of cases that converged over 100 simulation replicates
 - We choose the shrinkage parameter $\gamma=0.1$ as an optimal.

Simulation results Out-of-sample reconstruction error

Simulation results

Out-of-sample reconstruction error

Real data analysis: microbiome data

- Microbiome counts of reads were measured at four different body sites (urine, serum, stool-s, stool-p) for n=293 individuals.
- The counts of reads were amalgamated to the phylum level, resulting in data dimensions of p = 40, 44, 46, and 32, respectively.

Figure: Taxonomic hierarchy

Real data anlysis

Rank-1 and rank-5 results

- 10-fold cross-validated (CV) reconstruction error
 - Top: r = 1; Bottom: r = 5:
 - Methods: crPCA, aCPCA, CPCA, and IrPCA with $\delta_{(-2)}, \delta_{(0)}, \delta_{(+2)}$.

Real data analysis

Rank-2 result: PC scores

■ The first two PC scores estimated in the urine dataset:

- The red points is the samples out of a simplex in PCA reconstruction.
- In log-ratio PCA, the proportion of variance explained was calculated in a centered log-ratio scale.

Real data analysis

Rank-2 result: PC directions

■ The first two PC directions estimated in the urine dataset:

Taxa	\hat{v}_{j1}				\hat{v}_{j2}			
	IrPCA	crPCA	aCPCA	CPCA	IrPCA	crPCA	aCPCA	CPCA
Proteobacteria	-0.130	0.865	0.863	0.863	-0.063	-0.266	0.275	0.275
Bacillariophyta	0.060	0.010	0.005	0.005	-0.562	0.013	-0.011	-0.020
Elusimicrobia	-0.080	< 0.001	< 0.001	< 0.001	-0.029	< 0.001	< 0.001	< 0.001
Xanthophyceae	-0.072	< 0.001	< 0.001	< 0.001	-0.030	< 0.001	< 0.001	< 0.001
Rhodophyta	-0.076	< 0.001	< 0.001	< 0.001	-0.028	< 0.001	< 0.001	< 0.001
:								
Verrucomicrobia	0.546	-0.092	-0.055	-0.055	-0.210	0.246	-0.277	-0.255
Streptophyta	0.321	-0.074	-0.065	-0.065	0.037	0.391	-0.328	-0.302
Actinobacteria	-0.094	-0.066	-0.072	-0.072	0.038	-0.141	0.197	0.220
Bacteroidetes	0.047	-0.145	-0.150	-0.150	-0.002	0.414	-0.453	-0.476
Firmicutes	-0.045	-0.461	-0.469	-0.469	-0.010	-0.723	0.702	0.699

The direction of IrPCA is in a centered log-ratio scale.

Summary

- In this work, we proposed three types of compositional PCA based on the Euclidean projection onto the principal compositional subspace.
- These methods outperformed the existing log-ratio PCA when linear patterns are present in zero-inflated data, and they demonstrated comparable performance in scenarios with curved patterns.
- Although the proposed optimization problems are inherently non-convex, we empirically guaranteed their convergence by utilizing the shrinkage parameter.
- We also established the existence and consistency of the forward principal compositional subspace and its direction.
 - We are also interested in robust compositional PCA as future research.

Thank you for your attention!