Savoir parler à la machine

MPSI/MP OPTION INFORMATIQUE - TP n°3 - Olivier Reynet

Objectifs d'apprentissage :
\Box Développer et d'exécuter un code simple dans un IDE (Pyzo par exemple)
\square Savoir invoquer un shell Python afin d'y tester simplement des instructions
\Box Connaître le concept de langage interprété et observer un bytecode généré (module Disassemble)
□ Connaître et comprendre les concepts qui détermine la syntaxe de Python (indentation significative, blocs, scripts, variables globales, module, fonction, main)

EXAMEN

Cours: MPSI/MP OPTION INFORMATIQUE

Date: 24-04-2022

Consignes:

- 1. Écrire de manière lisible et intelligible.
- 2. Préparer une réponse au brouillon avant de la reporter sur la feuille.
- 3. Répondre dans les espaces procurés à cet effet.
- 4. S'il ne reste plus de place, écrire au dos de la feuille.

Élève	Classe:
Nom :	
Prénom : _	

```
def rec_dyadic_decomp(a, d=0, aux=0, p=0, r=None):
    t = "String"
    # commentaire
    my_list = []
    my_dict = {}
    my_dict[key] = "Test"
    for k in my_dict:
        print(my_dict[k])
    else:
    if aux >= 1:
    aux = aux - 1
    return rec_dyadic_decomp(a, d, aux, p, r)
```

Algorithme 1 Illustration du pseudo-langage algorithmique

```
1: Fonction DYADIC DECOMP(a)
                                                                                                                                      \triangleright a = 0, d_1 d_2 d_3 \dots d_n
           r \leftarrow une nouvelle liste
           \alpha \leftarrow a
 3:
 4:
           p \leftarrow -1
 5:
           d \leftarrow 0
           tant que d < a faire
 6:
                \alpha \leftarrow 2 \times \alpha
 7:
                b \leftarrow \lfloor \alpha \rfloor
 8:
                ajouter b \ a \ r
 9:
10:
                p \leftarrow p - 1
                d \leftarrow d + b \times 2^p
11:
                si \alpha \geq 1 alors
12:
                      \alpha \leftarrow \alpha - 1
13:
           retourner r
                                                                                                                                             ⊳ la liste résultat
14:
```

```
def is_leap(y):
return (y%4==0 and not y%100==0) or y%400==0
```

Test du inline python return 3

- 1. Structures conditionnelles
 - (a) Que fait l'algorithme 2?

Algorithme 2 Illustration du pseudo-langage algorithmique

```
1: Fonction DYADIC_DECOMP(a)
                                                                                                                                                \triangleright a = 0, d_1 d_2 d_3 \dots d_n
           r \leftarrow une nouvelle liste
 3:
           \alpha \leftarrow a
           p \leftarrow -1
 4:
           d \leftarrow 0
 5:
           \mathbf{tant} \ \mathbf{que} \ d < a \ \mathbf{faire}
 6:
                 \alpha \leftarrow 2 \times \alpha
 7:
                 b \leftarrow |\alpha|
 8:
                 ajouter b \ a \ r
 9:
                 p \leftarrow p - 1
10:
                 d \leftarrow d + b \times 2^p
11:
12:
                 si \alpha \geq 1 alors
                       \alpha \leftarrow \alpha - 1
13:
           {\bf retourner} \ {\bf r}
                                                                                                                                                       ⊳ la liste résultat
14:
```

```
Solution: 10111110001 soit 1011111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}.
```

(b) Que fait le programme suivant?

```
def rec_dyadic_decomp(a, d=0, aux=0, p=0, r=None):
     t = "String"
3
     # commentaire
     my_list = []
4
     my\_dict = \{\}
5
     my\_dict[key] = "Test"
6
     for k in my_dict:
7
            print(my_dict[k])
8
     else:
9
10
        if aux >= 1:
         aux = aux - 1
11
     return rec_dyadic_decomp(a, d, aux, p, r)
12
```

Solution: 1011110001 soit $101111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}$.

(c) Que fait ce programme?

```
1 def is_leap(y):
2    return (y%4==0 and not y%100==0) or y%400==0
```

Solution: 1011110001 soit $101111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}$.

(d) Test du inline python return 3.

```
Solution: 10111110001 soit 1011111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}.
```

(e) Donner la représentation du nombre 47,0625 au format fixed<6,4>.

```
Solution: 1011110001 soit 101111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}.
```

(f) (1 point) Donner la représentation du nombre 47,0625 au format fixed < 6,4>.

```
Solution: 10111110001 soit 101111,0001 = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-4}.
```

Que fait le programme suivant?

```
def estbis(a):
   if (a%4==0 and a%100!=0) or (a%400==0):
     return True
   else:
     return False
```

Exercice 2

Essayer de prédire la valeur des booléens suivants, puis vérifier cette prédiction.

```
1. 2 < 3 or 8 <= 7
```

2. 1 > 4 and 5 != 6

3.
$$2 == 3$$
 and $(8 < 4 \text{ or } 7 >= 6)$

4.
$$(2 == 3 \text{ and } 8 < 4) \text{ or } (7 >= 6)$$

Exercice 3

Dans cet exercice, il est interdit d'utiliser les fonctions sqrt, exp et log!

- 1. Écrire une fonction racine_carree(n) prenant en entrée un entier strictement positif n et qui renvoie l'entier m maximal tel que $m^2 \le n$.
- 2. Écrire une fonction racine_pieme(n,p) prenant en entrée deux entiers strictement positifs n et p et qui renvoie l'entier m maximal tel que $m^p \leq n$.
- 3. Écrire une fonction nombre_chiffres(n) donnant le nombre de chiffres d'un entier.

Exercice 4: Suite de Syracuse

On considère la suite u définie par $u_0 \in \mathbb{N}^*$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \begin{cases} 3u_n + 1 & \text{si } u_n \text{ est impair} \\ \frac{u_n}{2} & \text{si } u_n \text{ est pair} \end{cases}$$

Compléter à la main :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
u_n	3													

On conjecture que quel que soit l'entier u_0 choisi, il existe un rang N tel que $u_N=1$.

Pour un entier u_0 donné, on nomme :

- durée du vol, l'entier défini par : $\min\{N \in \mathbb{N}^*, u_N = 1\}$
- altitude maximale du vol, l'entier défini par : $\max\{u_n, n \in \mathbb{N}\}\$
- durée de vol en altitude, l'entier défini par : $\max\{n \in \mathbb{N}, \forall k \in [0, n], u_k \ge u_0\}$
- 1. Que valent la durée du vol, l'altitude maximale et la durée de vol en altitude pour $u_0 = 3$?
- 2. Écrire une fonction suivant(u) prenant en entrée un entier u représentant un terme quelconque de la suite et renvoyant le terme suivant. Par exemple suivant(8) renverra 4 et suivant(3) renverra 10.
- 3. Écrire une fonction syracuse(u0,n) prenant en entrée le premier terme u_0 ainsi qu'un entier strictement positif n et renvoyant le $ni\`eme$ terme de la suite de Syracuse associée (utiliser la fonction précédente).
- 4. Écrire une fonction duree_vol(u0) prenant en entrée le premier terme et renvoyant la durée du vol de la suite de Syracuse associée.
- 5. Modifier la fonction précédente pour qu'elle renvoie également l'altitude maximale.
- 6. Écrire une fonction duree_vol_alt(u0) renvoyant la durée de vol en altitude.
- 7. Compléter:

u_0	7	26	27	28	703
Durée du vol					
Altitude maximale					
Durée de vol en altitude					

Figure 1