Słownik teorio-mnogościowy

Aksjomat Ekstensjonalności

Dwa zbiory są równe jeśli mają te same elementy.

Aksjomat Wyboru (AC)

Każda rozbicie ma selektor, czyli taki zbiór, który z każdym elementem rozbicia ma dokładnie jeden element wspólny.

AC jest zdaniem niezależnym od pozostałych aksjomatów teorii mnogości. Równoważnymi postaciami AC są LKZ oraz WO.

Alef zero

Moc zbioru liczb naturalnych. Oznaczenie: \aleph_0

Antytautologia

Zdanie rachunku zdań fałszywe dla dowolnej waluacji. Inna nazwa - zdanie sprzeczne.

Zdanie jest sprzeczne wtedy i tylko wtedy, gdy jego negacja jest tautologią.

Arytmetyka kardynalna

1.
$$|A| + |B| = |(A \times \{0\}) + (B \times \{1\})|$$

2.
$$|A| \cdot |B| = |A \times B|$$

3.
$$|A|^{|B|} = |A^B|$$

1.
$$\aleph_0 + \aleph_0 = 2 \cdot \aleph_0 = 3 \cdot \aleph_0 = \ldots = \aleph_0 \cdot \aleph_0 = \aleph_0^2 = \aleph_0^3 = \ldots = \aleph_0$$

$$2. 2^{\aleph_0} = \mathfrak{c}^{\aleph_0} = \mathfrak{c},$$

3.
$$\mathfrak{c}+\mathfrak{c}=2\cdot\mathfrak{c}=3\cdot\mathfrak{c}=\ldots=\aleph_0\cdot\mathfrak{c}=\mathfrak{c}\cdot\mathfrak{c}$$

4.
$$\mathfrak{c}^2 = \mathfrak{c}^3 = \ldots = \mathfrak{c}^{\aleph_0} = \mathfrak{c}$$

5.
$$leph_0 < 2^{leph_0} < 2^{2^{leph_0}} < \ldots$$

Bijekcja

Funkcja, która jest jednocześnie injekcją i surjekcją.

Złożenie bijekcji jest bijekcją. Fukcja odwrotna do bijekcji jest bijekcją.

Continuum

Moc zbioru liczb rzeczywistych. Oznaczenie: $\mathfrak{c}.$

$$\mathfrak{c}=2^{leph_0}$$

Częściowy porządek

Para (X,R) taka, że R jest relacją zwrotną na X, przechodnią i słabo antysymnetryczną.

Obcięcie częściowego porządku do podzbioru jest również częściowym porządkiem. Relacja odwrotna do częściowego porządku jest częściowym porządkiem.

Dobry porządek

Taki liniowy porządek, że każdy jego niepusty podzbiór ma element najmniejszy.

Element maksymalny

Jeśli (X,R) jest częściowym porządkiem, to element $a\in X$ jest R-maksymalny, jeśli $(\forall x\in X)(aRx\to x=a).$

Dualne pojęcie: "element minimalny".

Element minimalny

Jeśli (X,R) jest częściowym porządkiem, to element $a\in X$ jest R-minimalny, jeśli $(\forall x\in X)(xRa\to x=a).$

Dualne pojęcie: "element maksymalny".

Element najmniejszy

Jeśli (X,R) jest częściowym porządkiem, to element $a\in X$ jest R-najmniejszy, jeśli $(\forall x\in X)(aRx).$

Dualne pojęcie: "element najwiekszy".

Element najwiekszy

Jeśli (X,R) jest częściowym porządkiem, to element $a\in X$ jest R-najwiekszy, jeśli $(\forall x\in X)(xRa).$

Dualne pojęcie: "element najmniejszy".

Funkcja

Zbiór f jest funkcją, jeśli jest taką relacją, że $(\forall x,a,b)((x,a)\in f\wedge (x,b)\in f)\to a=b).$

Hipoteza Continuum (CH)

Zdanie: "jeśli $A\subseteq {f R}$ to $|A|=|{f R}|$ lub $|A|\le |{f N}|$ "

Hipoteza Continuum jest niezależna od pozostałych aksjomatów teorii mnogości.

Iloczyn kartezjański

Iloczynem kartezjańskim zbiorów A i B nazywamy zbiór $A \times B$ złożony ze wszystkich par uporządkowanych (a,b) takich, że $a \in A$ oraz $b \in B$.

Injekcja

Funkcja f:X o Y jest injekcją jeśli f(x)=f(y) o x=y dla dowolnych x,y.

Złożenie injekcji jest injekcją. Relacja odwrotna do funkcji f jest funkcją wtedy i tylko wtedy, gdy f jest injekcją.

Inkluzja

Zbiór A zawiera się w zbiorze B jeśli każdy element zbioru A należy do zbioru B.

Następujące zdania są równoważne:

- 1. $A \subseteq B$
- 2. $A \cup B = B$
- 3. $A\cap B=A$

Izomorfizm

Dwa częściowe porządki (X,R) i (Y,Q) są izomorficzne, jeśli istnieje bijekcja f:X o Y taka, że

$$(\forall x,y \in X)((xRy) \equiv (f(x)Qf(y))$$
.

Klasa abstrakcji

Klasą abstrakcji elementu a względem relacji równoważności R nazywamy zbiór $[a]_R=\{x:aRx\}.$

Krata

Częściowy porządek (X,R) w którym każdy niepusty skończony podzbiór ma kres górny oraz kres dolny.

Ważne przykłady krat: P(X) z inkluzją; dodatnie liczby naturalne z podzielnością

Krata zupełna

Częściowy porządek (X,R) w którym każdy niepusty podzbiór ma kres górny oraz kres dolny.

Ważne przykłady krat: P(X) z inkluzją;

Lemat Kuratowskiego-Zorna (LKZ)

Zdanie: w każdym częściowym porządku, który spełnia warunek "każdy łańcuch ma ograniczenie górne", istnieje element maksymalny.

LKZ jest równoważny <u>Aksjomatowi Wyboru</u>. LKZ jest naturalnym narzędziem do dowodzenia twierdzeń typu: każda przestrzeń liniowa ma bazę, w każdym pierścieniu z jednością istnieje ideał maksymalny.

Liczba algebraiczna

Liczba, która jest pierwiastkiem jakiegoś niezerowego wielomianu o współczynnikach wymiernych. Zbiór liczb algebraicznych jest przeliczalny. Przykłady: $\sqrt{2}$, $\sqrt{2}+\sqrt{3}$.

Liczba przestępna

Liczba rzeczywista, która nie jest liczbą algebraiczną.

Liczby e oraz π są liczbami przestępnymi.

Liniowy porządek

Taki częściowy porządek (X,R), że $(\forall x,y\in X)((xRy)\lor(x=y)\lor(yRx)).$

Podstawowe przykłady: liczby naturalne, liczby całkowite, liczby rzeczywiste, liczby wymierne (z naturalnym porządkiem)

Modus ponens

Następująca reguła wnioskowania: $\{p,p o q\}\models q$

Obraz zbioru przez relację

Obrazem zbioru A przez relację R nazywamy zbiór R[A] złożony z wszystkich takich elementow y, że $(\exists x \in A)(xRy)$.

Para elementów

Parą elementów x i y jest zbiór $\{x,y\}$, którego jedynymi elementami są x i y.

Zbiór $\{x\}$, równy $\{x,x\}$, nazywamy singletonem elementu x.

Para uporządkowana

Definicja Kuratowskiego: $(x, y) = \{\{x\}, \{x, y\}\}.$

Jej podstawowa własność: (a,b)=(c,d) wtedy i tylko wtedy, gdy $(a=c)\wedge(b=d)$

Prawa de Morgana

Kilka praw rachunku zdań, rachunku zbiorów, rachunku predykatów łączących własności spójników/operatorów dualnych:

1.
$$\neg (p \lor q) \equiv (\neg p \land \neg q), \neg (p \land q) \equiv (\neg p \lor \neg q)$$

2.
$$(A \cup B)^c = A^c \cap B^c$$
, $(A \cap B)^c = A^c \cup B^c$

3.
$$\neg(\exists x)\phi(x)\equiv(\forall x)(\neg\phi(x))$$
, $\neg(\forall x)\phi(x)\equiv(\exists x)(\neg\phi(x))$

Przechodniość

Relacja R jest przechodnia, jeśli $(\forall x,y,z)((xRy) \land (yRz) \rightarrow xRz)$. Relacja R jest przechodnia wtedy i tylko wtedy, gdy $R \circ R \subseteq R$.

Punkt stały odwzorowania

Punktem stałym odwzorowania f:X o X nazywamy taki element $a\in X$, że f(a)=a. Każda funkcja ciągła f:[0,1] o [0,1] ma punkt stały (łatwe). Każda funkcja ciągła $f:[0,1]^n o [0,1]^n$ ma punkt stały (tw. Brouwera).

Relacja

Zbiór par uporządkowanych.

Relacja odwrotna

Relacją odwrotną do relacji R nazywamy zbiór $R^{-1}=\{(x,y):(y,x)\in R\}.$ $(R^{-1})^{-1}=R$; $(R\circ S)^{-1}=S^{-1}\circ R^{-1}$

Relacja równoważności

Relacja zwrotna, symetryczna oraz przechodnia.

Relacja równoważności rozbija swoją dziedzinę na rozłączne klasy abstrakcji.

Rezolucja

Następująca reguła wnioskowania: $\{p \lor Q, \neg p \lor R\} \models Q \lor R$

Rodzina zbiorów

Zbiór, którego elementami są zbiory. W aksjomatycznych teoriach mnogości każdy zbiór jest rodziną zbiorów.

Rozbicie zbioru

Rozbiciem zbioru X nazywamy taką rodzinę podzbiorów zbioru X, że

- 1. jej suma jest równa zbiorowi X;
- 2. składa się ze zbiorów niepustych;
- 3. jej elementy są parami rozłączne.

Każda relacja równowazności generuje rozbicie swojej dziedziny. Każdemu rozbiciu odpowiada relacja równoważności, która ją generuje.

Równoliczność

Zbiory A i B są równoliczne ($\left|A\right|=\left|B\right|$), jeśli istnieje bijekcja między A i B.

Dla dowolnych zbiorów A, B i C mamy: |A|=|A|, |A|=|B|
ightarrow |B|=|A|,

$$|A|=|B|\wedge |B|=|C|\to |A|=|C|.$$

Różnica symetryczna

Binarne działanie mnogościowe zdefinowane wzorem $(A \setminus B) \cup (B \setminus A)$.

Różnica symetryczna jest przemienna, łączna. Zbiór pusty jest elementem neutralnym. Elementem odwrotnym do A jest A.

Supremum

Najmniejsze ograniczenie górne zbioru.

W częściowym porządku $(\mathbf{N},|)$ mamy $\sup\{a,b\}=NWW(a,b).$

Surjekcja

Funkcja f:X o Y jest surjekcją jeśli rng(f)=Y.

Złożenie surjekcji jest surjekcją.

Symbol Newtona

 $\binom{n}{k}$ = liczba k-elementowych podzbiorów zbioru $\{1,\ldots,n\}$

Podstawowe własności:

1.
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$
;

2.
$$\binom{n}{k} = \binom{n}{n-k}; \binom{n}{0} = \binom{n}{n} = 1;$$

3.
$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$
;
4. $\binom{n+1}{k+1} = \frac{n+1}{k+1} \cdot \binom{n}{k}$.

4.
$$\binom{n+1}{k+1} = \frac{n+1}{k+1} \cdot \binom{n}{k}$$
.

Symetria

Relacja R jest symetryczna, jeśli $(\forall x,y)(xRy \rightarrow yRx)$.

Relacja R jest symetryczna wtedy i tylko wtedy, gdy $R^{-1}=R$.

Słaba antysymetria

Relacja R jest słabo antysymetryczna, jeśli $(\forall x,y\in X)((xRy\wedge yRx) o x=y).$

Tautologia

Zdanie rachunku zdań prawdziwe dla każdej waluacji.

Dokładniej: zdanie φ jest tautologią, jeśli dla dowolnej waluacji π mamy $\pi(\varphi)$ = **TRUE**.

Twierdzenie Cantora

$$|A| < |P(A)|$$
.

Twierdzenie Cantora-Bernsteina

$$(|A| \leq |B| \wedge |B| \leq |A|) \rightarrow |A| = |B|.$$

Twierdzenie Kuratowskiego-Tarskiego

Jeśli L jest kratą zupełną oraz f:L o L jest monotoniczne (czyli $x\leq y o f(x)\leq f(y)$), to f ma punkt stały.

Twierdzenie Russell'a

Nie istnieje zbiór wszystkich zbiorów.

Waluacja

Dowolne przyporządkowanie zmiennym zdaniowym wartości logicznych.

Wartości logiczne

W klasyczym rachunku zdań jest to zbiór {FALSE,TRUE}.

Zasada Dirichletta

Jeśli m, n są liczbami naturalnymi, n < m oraz $f: \{1, \dots, m\} o \{1, \dots, n\}$ to f nie jest injekcją.

Jest to jedna z form Indukcji Matematycznej.

Zasada Indukcji Matematycznej

Następująca własność liczb naturalnych:

"jeśli A jest podzbiorem zbioru liczb naturalnych ${f N}$ takim, że

$$0 \in A \wedge (\forall n \in \mathbf{N}) (n \in A \rightarrow n+1 \in A) ,$$

to $A={f N}$ "

Zasadę Indukcji Matematycznej łatwo można wyprowadzić z nastepujących dwóch własności liczb naturalnych:

- 1. (\mathbf{N}, \leq) jest dobrym porządkiem
- 2. dla każdej liczby naturalnej n różnej od 0 istnieje liczba naturalna m taka, że n=m+1.

Zasada dobrego uporządkowania (WO)

Zdanie: "każdy zbiór można dobrze uporządkować".

Jest to jedna z form Aksjomatu Wyboru.

Zbiór mocy continuum

Zbiór równoliczny ze zbiorem liczb rzeczywistych.

Przykłady zbiorów mocy continnum: **R**, **R**x**R**, P(**N**), {0,1}^N, **R**^N, C(**R**,**R**)

Zbiór potęgowy

Zbiorem potęgowym zbioru X nazywamy zbiór P(X) wszystkich podzbiorów zbioru X.

$$P(0) = \{0\}; P(P(0)) = \{0, \{0\}\}; |P(A)| = 2^{|A|}$$

Zbiór przeliczalny

Zbiór A jest przeliczalny jeśli jest pusty lub istnieje surjekcja z liczb naturalnych na zbiór A. Przykłady zbiorów przeliczalnych: zbiory skończone, liczby naturalne, liczby wymierne, liczby algebraiczne, $\mathbf{N} \times \mathbf{N}$, zbiór wszystkich ciągów skończonych elementów z ustalonego skończonego zbioru, zbiór wszystkich algorytmów, zbiór wszystkich funkcji obliczalnych.

Zbiór pusty

Zbiór, który nie ma żadnego elementu.

Z Aksjomatu Ekstensjonalności wynika, że istnieje dokładnie jeden zbiór pusty.

Zbiór skończony

Zbiór równoliczny ze zbiorem $\{0,\dots,n-1\}$ dla pewnej liczby naturalnej n.

Zwrotność

Relacja R jest zwrotna na zbiorze X jeśli $(\forall x \in X)((x,x) \in R)$.

Złożenie relacji

Złożeniem relacji R i S nazywamy relacje $R\circ S$ taką, że dla wszystkich par (x,z) mamy

$$(x,z) \in R \circ S \equiv (\exists y) ((x,y) \in S) \wedge (y,z) \in R))$$

Złożenie relacji jest łączne. Nie jest przemienne.