John C. Faver, PhD

Arlington, MA (352)-327-8314 <u>jfaver@posteo.net</u> http://johncfaver.com

EXPERIENCE

Relay Therapeutics
Principal Scientist, Computation

Cambridge, MA 2021-2025

- Built informatics platform (databases, web applications, analytical tools) to enable drug discovery with DNA-Encoded Chemical Libraries and Machine Learning (DEL+ML)
- Managed statistical and chemical data analysis for hundreds of DEL screens
- Developed software infrastructure for analyzing sequencing data from mRNA-Display to identify bioactive peptides
- Automated ETL pipelines to link data sources, build ML data sets, generate interactive project dashboards, and build structure-activity models to drive drug discovery projects
- Designed DEL screening libraries to sample unexplored 3D pharmacophore spaces

ZebiAl Therapeutics (acquired by Relay Therapeutics) *Principal Scientist*, *Scientific Computing and Informatics* Waltham, MA 2020-2021

- Designed high fidelity DEL encoding/decoding methodology with built-in error correction
- Built informatics platform and analytical pipeline for DEL+ML hit finding
- Built research informatics platform and web applications for project management and reporting to track millions of datapoints across multiple collaborations

Baylor College of Medicine Center for Drug Discovery Assistant Professor and Cheminformatics Leader

Houston, TX 2015-2020

- Developed computational infrastructure for DEL screening platform
- Led statistical and chemical data analysis and hypothesis generation from DEL screening data against dozens of therapeutic targets
- Developed novel statistics for normalized enrichment in analyzing DEL screening data
- Taught graduate courses in computational methods for biomedical research

Yale University Department of Chemistry *Postdoctoral Associate* with William Jorgensen

New Haven, CT 2012-2015

- Led compound design for two medicinal chemistry projects (virtual screening, molecular docking, FEP)
- Developed database and web application for tracking medicinal chemistry projects

TECHNICAL SKILLS

Software Development:

Experienced in developing scientific, statistical, data science, and web applications using Python (and common libraries including Django, pandas, scikit-learn, numpy, scipy, matplotlib, etc.), SQL, JavaScript, versioning (git), testing (pytest), workflow orchestration (prefect), infrastructure as code (pulumi), and deploying containerized (docker) applications in cloud environments (AWS).

Chemistry-related:

Experienced in developing and using cheminformatics methods including chemical fingerprints (2D/3D), molecular shape and pharmacophore-based modeling, virtual library enumeration and molecular diversity/property analysis, structure-based drug design, free energy calculations, quantum chemistry, Schrödinger, OpenEye, RDKit, Dotmatics/Vortex, Spotfire

EDUCATION

Yale University

Postdoctoral Associate Chemistry – Computer-aided drug design

New Haven, CT 2012-2015

University of Florida Gainesville, FL

BS Chemistry - Synthesis of natural product analogs

CONTRIBUTIONS

Co-organized symposium at the American Chemical Society National Meeting 2013 Developed the Biomolecular Fragment Database web application for benchmarking molecular models 2012 Reviewer for scientific journals 2012-Present

HIGHLIGHTED TALKS AND PRESENTATIONS

- "Drug Discovery with DNA-Encoded Chemical Libraries" Invited talk at SLAS2020 conference, San Diego, CA 2020.
- "Quantitative Comparisons of Enrichment from DNA-Encoded Library Selections" Poster presentation, 9th International Symposium on DNA-Encoded Chemical Libraries, Zurich, Switzerland 2019.
- "Development of a Cheminformatics Platform for DNA-Encoded Library Screening" Poster presentation. NICHD Contraceptive Development Meeting. Minneapolis, MN 2018.
- "Dotmatics and DNA-Encoded Chemical Libraries" Invited talk at Dotmatics User Group Meeting. Boston, MA 2017

HIGHLIGHTED PUBLICATIONS

ORCiD: https://orcid.org/0000-0002-0181-9283

https://scholar.google.com/citations?user=ngogSMgAAAAJ Google Scholar:

- 1. Faver, J. C., Sundersingh, F., Viarengo-Baker, L. A., Chen, Ying-Chu, Billings, K., Riley, P., Tsai, C., Kollmann, C. S., DNA-Encoded Chemical Library Screening with Target Titration Analysis: DELTA. Preprint online at ChemRxiv. 2025; doi:10.26434/chemrxiv-2025-tqmnj
- 2. Yu, Z., Ku, A.F., Anglin, J.L., Sharma, R., Ucisik, M.N., Faver, J. C., et al. Discovery and characterization of bromodomain 2-specific inhibitors of BRDT. Proceedings of the National Academy of Sciences. 2021 118(9), e2021102118.
- 3. Dawadi, S., Simmons, N., Miklossy, G., Bohren, K.M., Faver, J. C., et al. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Proceedings of the National Academy of Sciences. 2020 117(29) 16782-16789.
- 4. Taylor, D.M., Anglin, J., Park, S., Ucisik, M.N., Faver, J. C., et al. Identifying OXA-48 Carbapenemase Inhibitors using DNA-Encoded Chemical Libraries. ACS Infectious Diseases. 2020. 6(5) 1214-1227.
- 5. Newton, A. S., Faver, J. C., et al. Structure-Guided Identification of DNMT3B Inhibitors. ACS Medicinal Chemistry Letters 2020 11(5) 971-976.
- 6. Faver, J. C., Riehle, K., Lancia, D. R., Milbank, J. B. J., Kollmann, C. S., Simmons, N., Yu, Z., Matzuk, M. M. Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections, ACS Combinatorial Science 2019. 21(2) 75-82.
- 7. Burns, L., Faver, J. C., Zheng, Z., Marshall, M., Smith, D., Vanommeslaeghe, K., MacKerrell, A., Merz, K. M., Sherrill, C. D. The BioFragment Database (BFDb): An Open-Data Platform for Computational Chemistry Analysis of Noncovalent Interactions. Journal of Chemical Physics 2017. 147, 161727.
- Faver, J. C., Yang, W., Merz, K. M. The Effects of Computational Modeling Errors on the Estimation of Statistical Mechanical Variables. Journal of Chemical Theory and Computation 2012. 8(10), 3769–3776.
- 9. Faver, J. C., Zheng, Z., Merz, K. M. Statistics-based Model for Basis Set Superposition Error Correction in Large Biomolecules. Physical Chemistry Chemical Physics 2012. 14, 7795-7799.
- 10. Faver, J. C. et al. Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. Journal of Chemical Theory and Computation 2011. 7(3), 790-797.