

GEOESTADÍSTICA, TAREA 3

ESTIMACIÓN ESPACIAL DE DATOS DE POZOS DE AGUA VARIABLES: LITIO Y FLUOR

ESTIMACIÓN ESPACIAL

CONTENIDO:

- 1. INTRODUCCIÓN
- 2. ANÁLISIS EXPLORATORIO DE DATOS
- 3. ANÁLISIS ESTRUCTURAL
- 4. ANÁLISIS DE RESIDUOS
- 5. ESTIMACIÓN ESPACIAL CON KRIGING
- 6. ESTIMACIÓN ESPACIAL CON COKRIGING (DATOS DE LITIO)
- 7. CONCLUSIONES

ESTIMACIÓN ESPACIAL - INTRODUCCIÓN

Ubicación de los pozos estudiados

No	Li F		
Pozo	0.010	0.10	
	(mg/L)	(mg/L)	
1	0.030	0.17	
2	0.088 0.45		
3	0.077	0.41	
4	0.112	0.94	
5	0.140	1.16	
6	0.103	0.71	
7	0.103	0.75	
8	0.153	0.91	
9	0.149	0.91	
10	0.069	1.27	
11	0.148	2.20	
12	0.222	1.45	
13	0.098	0.80	
14	0.154	0.99	
15	0.140	0.96	
16	0.147	1.09	
17	0.135	1.02	
18	0.230	1.38	
19	0.064	0.60	
20	0.180	1.41	
21	0.042	0.26	
22	0.035	0.21	
23	0.030	0.22	
24	0.017	0.10	
25	0.024	0.17	

26	0.016	0.08	
27	0.014	0.39	
28	0.019	0.31	
29	0.146	0.68	
30	0.079	0.39	
31	0.023	0.41	
32	0.038	0.43	
33	0.036	0.65	
34	0.026	0.48	
35	0.040	0.75	
36	0.029	0.71	
37	0.098	0.13	
38	0.171	0.57	
39	0.029	0.16	
40	0.023	0.24	
41	0.039	0.32	
42	0.044	0.34	
43	0.045	0.26	
44	0.058	0.23	
45	0.040	0.00	
46	0.019	0.22	
47	0.029	0.10	
48	0.030	0.03	
49	0.023	0.13	
50	0.015	0.07	
51	0.022	0.71	
52	1.077	9.80	
53	0.018	0.38	

ANÁLISIS EXPLORATORIO DE DATOS

AED - DATOS DE LITIO

4

AED - DATOS DE LITIO

Proyección de los datos en X y Y. El valor atípico presenta un comportamiento diferente al grupo, por su magnitud y posición espacial.

AED - DATOS DE FLUORURO

Presenta Asimetría Grave Existen 2 Outliers distribucional Dispersión en 3 nubes

ı,

AED - DATOS DE FLUORURO

Proyección de los datos en X y Y. El valor atípico presenta un comportamiento diferente al grupo, por su magnitud y posición espacial.

ANÁLISIS ESTRUCTURAL

VARIOGRAMA ADIRECCIONAL – DATOS DE LITIO

Variograma de datos LI sin outlier I

Distancia máx=63km, lag=3.1km, dirección=0°, tolerancia=±90°

53 datos heterogéneamente dispersos

VARIOGRAMA ADIRECCIONAL – DATOS DE LITIO (sin outlier)

Distancia máx=55.5km, lag=2.7km, dirección=0°, tolerancia=±90

VARIOGRAMA ADIRECCIONAL – DATOS DE LITIO (sin outlier)

Se presume la existencia de tendencia, por lo que se requiere estimar residuos de 1er grado.

VARIOGRAMA ADIRECCIONAL – DATOS DE FLUORURO

Variograma de datos F sin outlier 1

Distancia máx=63km, lag=3.1km, dirección=0°, tolerancia=±90°

53 datos heterogéneamente dispersos

VARIOGRAMA ADIRECCIONAL – DATOS DE FLUORURO (sin outlier 1)

Distancia máx=55.5km, lag=2.7km, dirección=0°, tolerancia=±90

VARIOGRAMA ADIRECCIONAL – DATOS DE FLUORURO (sin outlier 1)

Se presume la existencia de tendencia, por lo que se requiere estimar residuos de 1er grado.

VARIOGRAMA ADIRECCIONAL – RESUMEN

- Los variogramas adireccionales presentan comportamientos anómalos (parabólicos), pues crecen rápidamente y no están acotados por la varianza.
- Debido a la cantidad y distribución de los datos, no existen suficientes argumentos para inferir presencia de anisotropía.
- Es necesario estimar los residuos para establecer la posibilidad de expresar dichos fenómenos de la forma: Z(x)=m(x)+R(x).

ANÁLISIS DE RESIDUOS

RESIDUOS 1ER GRADO – DATOS DE LITIO (sin outlier)

Coeficientes del polinomio de 1er grado:

- 1-) 1.7336362614E-01
- 2-) 1.1959557835E-03
- 3-) 2.8832165125E-03

RESIDUOS 1ER GRADO – DATOS DE LITIO (sin outlier)

Distancia máx=55.5km, lag=2.7km, dirección=0°, tolerancia=±90

Variograma obtenido mediante "prueba y error"

RESIDUOS 1ER GRADO – DATOS DE FLUORURO (sin outliers)

Coeficientes del polinomio de 1er grado:

- 1-) 1.2988220649E+00
- 2-) -1.4112985050E-02
- 3-) -1.7604455016E-02

RESIDUOS 1ER GRADO – DATOS DE FLUORURO (sin outliers)

Distancia máx=55.5km, lag=2.8km, dirección=0°, tolerancia=±90

Variograma de ajuste visual de menor AIC.

VALIDACIÓN CRUZADA – RESIDUOS DE PRIMER GRADO

LITIO FLUORURO

Valor Medio de Z-Z*=-4.97E-03 Varianza de Z-Z*=1.49E-03

Valor Medio de Z-Z*=-5.92E-04 Varianza de Z-Z*=5.07E-02

ESTIMACIÓN ESPACIAL CON KRIGING

ESTIMACIÓN ESPACIAL CON COKRIGING PARA LOS DATOS DE LITIO

MODELO DE CORREGIONALIZACIÓN LINEAL

Variables	Modelo	Nugget	Sill-Nugget	Alcance (Km)	RSS
Res 1°LI	Esférico	0,0009	0,0012	20->21	3.658E-6
Res 1°F	Esférico	0,015->0,025	0,65->0,050	22->21	5.003E-3
Res LI – Res F	Esférico	0,0005	0,007	21	6.889E-5

MODELO DE CORREGIONALIZACIÓN LINEAL

Variables	Modelo	Nugget	Sill-Nugget	Alcance (Km)	RSS
Res 1°LI	Esférico	0,0009	0,0012	20->21	3.658E-6
Res 1°F	Esférico	0,015->0,025	0,65->0,050	<mark>22->21</mark>	5.003E-3
Res LI – Res F	Esférico	0,0005	0,007	21	6.889E-5

$$\begin{bmatrix} \gamma_{LI}(h) & \gamma_{F-LI}(h) \\ \gamma_{LI-F}(h) & \gamma_{F}(h) \end{bmatrix} = \begin{bmatrix} \sigma_{LI}^{0} & \sigma_{F-LI}^{0} \\ \sigma_{LI-F}^{0} & \sigma_{F}^{0} \end{bmatrix} \gamma_{0}(h) + \begin{bmatrix} \sigma_{LI}^{S} & \sigma_{F-LI}^{S} \\ \sigma_{LI-F}^{S} & \sigma_{F}^{S} \end{bmatrix} \gamma_{1}(h)$$
sustituyendo =
$$\begin{bmatrix} 0,0009 & 0,0005 \\ 0,0005 & 0,025 \end{bmatrix} \gamma_{0}(h) + \begin{bmatrix} 0,0012 & 0,007 \\ 0,007 & 0,05 \end{bmatrix} \gamma_{1}(h)$$

$$\begin{vmatrix} 0,0009 & 0,0005 \\ 0,0005 & 0,025 \end{vmatrix} = 0,00002475 > 0 \begin{vmatrix} 0,0012 & 0,007 \\ 0,007 & 0,05 \end{vmatrix} = 0,000017 > 0$$

El modelo es válido ya que ambos determinantes son positivos!

COKRIGING RES LI

Comparación errores Kriging - Cokriging

CONCLUSIONES - ESTIMACIÓN ESPACIAL

- El AED y el análisis de estacionaridad nos condujeron a eliminar los valores atípicos que enmascaraban el comportamiento del resto de los datos.
- La presencia de "tendencia" en ambos grupos de datos nos llevó a estimar los respectivos residuos de 1er grado.
- No existieron suficientes argumentos para sostener la hipótesis de anisotropía, debido a la cantidad de datos y su distribución espacial.
- Se realizó la estimación espacial por kriging puntual en una malla regular para los residuos de ambas variables. La teoría de Kriging Universal permitió generar mapas de los valores estimados correspondientes.
- Se estimó por cokriging la variable Litio, lográndose mejores resultados respecto a la varianza del error en comparación a la obtenida por kriging.

GRACIAS