EXAMEN GEOMETRIE COMPUTAȚIONALĂ IDD, 23.01.2021.

- 1. (10p) Fie $v = (\alpha, \beta, \gamma)$, w = (1, 0, -2). Alegeţi valori numerice pentru α, β, γ şi calculaţi produsul vectorial $v \times w$.
- 2. (10p) Dați un exemplu de mulțime \mathcal{M} din planul \mathbb{R}^2 pentru care, la final, \mathcal{L}_i are 4 elemente, dar, pe parcursul algoritmului, numărul maxim de elemente al lui \mathcal{L}_i este egal cu 6 (\mathcal{L}_i este lista vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew. Justificați!
- 3. (10p) Alegeți un poligon concav cu zece vârfuri din planul \mathbb{R}^2 . Aplicați metoda din Teorema Galeriei de Artă și justificați câte camere sunt suficiente pentru supravegherea poligonului.
- **4.** (10p) Dați exemplu de mulțime $\mathcal{M} = \{A, B, C, D, E\}$ din \mathbb{R}^2 astfel ca diagrama Voronoi asociată lui \mathcal{M} să conțină exact trei muchii de tip semidreaptă, iar diagrama Voronoi asociată lui $\mathcal{M} \setminus \{E\}$ să conțină exact patru muchii de tip semidreaptă. Justificați alegerea făcută.
- 5. (10p) Dați un exemplu de mulțime \mathcal{N} cu 6 elemente din \mathbb{R}^2 care să admită o triangulare ce conține 12 muchii. Precizați numărul de fețe din triangularea respectivă. Justificați.
- 6. (10p) Fie S o mulțime de segmente. Notăm cu N_n , respectiv N_o , numărul de modificări de statut al dreptei de baleiere, în cazul în care statutul este o mulțime neordonată, respectiv ordonată de segmente (dreapta de baleiere este orizontală). Dați exemplu de mulțime S cu patru segmente pentru care $N_n = N_o 2$. Justificați!
- 7. (10p) Considerăm un triunghi T, un dreptunghi D și un pentagon P astfel ca T să fie situat în interiorul lui D și D în interiorul lui P. Descrieți succint subdiviziunea planară asociată.
- 8. (5p) Fie $\mathcal{P} = (A_1, A_2, \dots, A_n)$ un poligon cu n laturi. Explicați cum poate fi găsită acoperirea convexă a mulțimii $\{A_1, A_2, \dots, A_n\}$ în timp liniar, adaptând Graham's scan.
- 9. (5p) Fie MNP un triunghi cu vârfurile $M=(x_M,y_M),\ N=(x_N,y_N),\ P=(x_P,y_P)$ și fie δ o dreaptă de ecuație ax+by+c=0. Stabiliți și justificați care este complexitatea algebrică a calculelor pentru:
 - a) a stabili dacă dreapta intersectează laturile triunghiului;
 - b) a stabili dacă dreapta trece prin centrul de greutate al triunghiului.