The 47th International Collegiate Programming Contest Asia Hong Kong Regional Contest

January 14 (Practice Session)

Problems

- A Classical Matching Problem
- B Race
- C Positive String

Problem A. Classical Matching Problem

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Grammy likes to play with intervals. She has n intervals on an axis, the i-th of them is $[l_i, r_i]$. She wants to calculate the following interesting characteristics of these intervals.

- 1. a_1 such that if you can take any number of pairwise intersecting intervals, then at most a_1 intervals can be taken.
- 2. a_2 such that if you can take any number of pairwise non-intersecting intervals, then at most a_2 intervals can be taken.
- 3. a_3 such that if you can take any number of pairwise intersecting intervals away each time, then at least a_3 times are needed to take all intervals away.
- 4. a_4 such that if you can take any number of pairwise non-intersecting intervals away each time, then at least a_4 times are needed to take all intervals away.

Two intervals $[l_1, r_1]$ and $[l_2, r_2]$ intersect if and only if there exists a real number x such that $l_1 \le x \le r_1$ and $l_2 \le x \le r_2$.

Input

The first line contains an integer n ($1 \le n \le 3 \times 10^5$), denoting the number of intervals.

In the *i*-th of the following n lines, there are 2 integers $l_i, r_i \ (1 \le l_i < r_i \le 2n)$

It is guaranteed that $l_1, l_2, \ldots, l_n, r_1, r_2, \ldots, r_n$ is a permutation of 1 to 2n.

Output

Output 4 lines. The *i*-th line contains a_i .

Example

standard output
2
2
2
2
2 2 2 2

Note

Hint: $11 \times 13 \times 17 =$

Problem B. Race

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Pigetown is a city with n crossings and m bidirectional roads. A huge race event is going to be held in Pigetown. There are k types of race tracks, and each road in the city can be viewed as a particular type of race track.

In the race, each participant should choose an integer i such that $1 \le i \le q$, start at crossing S_i , visit each type of race tracks the same number of times, and finally arrive at crossing T_i in order to finish the race.

Grammy wants to know if it is possible to finish the race when choosing each integer i. Write a program to help her solve the problem.

Input

The first line contains 4 integers $n, m, k, q (1 \le n, m, q \le 200\,000, 1 \le k \le 30)$, indicating the number of crossings, the number of roads, the number of race track types, the upper limit of chosen integer i, respectively.

In the next m lines, each line contains 3 integers $u, v, t (1 \le u, v \le n, 1 \le t \le k)$, indicating that there is a bidirectional road between crossing u and crossing v with type t.

In the next q lines, each line contains 2 integers S_i , $T_i (1 \le S_i, T_i \le n)$, indicating one possible combination of starting point and ending point.

Output

Output q lines.

In the i-th line, if it is possible to finish the race while choosing integer i, output "Yes", otherwise output "No" (Without quotes).

Example

standard input	standard output
7 9 3 4	Yes
1 2 1	No
2 3 1	Yes
3 1 2	No
1 4 3	
5 6 2	
6 7 1	
6 7 3	
7 7 2	
5 5 1	
6 7	
1 4	
2 4	
2 5	

Problem C. Positive String

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 mebibytes

Grammy had a unique insight about strings. She thinks that a string is *positive* if and only if it is lexicographically larger than its reversal.

Now you are given a string, please find out how many contiguous substrings of it are positive according to Grammy's insight.

Input

The single line contains a string S ($1 \le |S| \le 200\,000$), consisting of lowercase English letters only.

Output

Output a single integer denoting the number of positive substrings of S.

Examples

standard input	$standard\ output$
jjikkollp	4
pbpbppb	7