```
In[.]:= Needs["TensorBases`"]
    Mathematica package TensorBases loaded
    Authors: Andreas Geißel, Franz Richard Sattler
    Version: 1.0
    Year: 2024
    For a list of available bases, call TBInfo[]. For further
       information on a particular basis, call TBInfo["BasisName"].
    This package provides the methods TBGetBasisElement, TBGetInnerProduct, TBGetMetric,
       TBGetInverseMetric, TBGetProjector for every tensor basis available.
    For closer explanations, please
       call their usage messages, e.g. TBGetProjector::usage.
    FormTracer package loaded.
    To see all (user-defined and package-defined)
       FormTracer definitions, call TBInfo["FormTracer"].
    Furthermore, TensorBases extends
       FormTracer. To see all extensions, call TBInfo["Extensions"]
    Lorentz group undefined, using default names.
    Group with name color undefined, using default names.
    Group with name flavor undefined, using default names.
In[.]:= TBInfo::usage
    TBInfo[]
    TBInfo["transAqbq"]
Out[*]= TBInfo[_String]
    Return information on a given object.
     TBInfo[] prints all available bases with some usage information.
     TBInfo[BasisName] prints detailed information provided by this basis.
    TBInfo["FormTracer"] prints all defined
       groups and identites which FormTracer currently knows.
    TBInfo["Extensions"] prints all extensions
       to FormTracer, defined by the TensorBases package.
```

Name	Vertex	Indices	Inner	Comment	Author
			product		
FierzComplete- Nf2Nc3Phen- o	<u>ব</u> িব <u>ব</u> িব	p1 d1 A1 F1 p2 d2 A2 F2 p3 d3 A3 F3 p4 d4 A4 F4	2 Tensor1[1,2, 3,4] Tensor2[2,1, 4,3] -2 Tensor1[1,2, 3,4] Tensor2[2,3, 4,1]	Fierz-complete, phenomenologically inspired basis for N _f =2, N _c =3	FR Satt- ler
transAqbq	Aqq	p1 mu a1 p2 d2 A2 F2 p3 d3 A3 F3	Tensor1[1,2,3] Tensor2[1,3, 2]	Transversal quark-gluon vertex basis	FR Satt- ler

Indices:

A: $\{p_1, \mu, a_1\}$

 \overline{q} : {p₂,d₂,A₂,F₂}

q: $\{p_3, d_3, A_3, F_3\}$

We use the general form

 $\mathcal{L} = (2\pi)^{d} \delta(p_1 + p_2 + p_3) \delta_{F_2 F_3} T^{a_1} [\tau_i]_{\mu_1}$

and the τ_{i} are listed in the following:

	Tensor
1	$\Pi^{\perp}_{\ \mu\nu}(p_1)\cdot i\gamma_{\nu}$
2	$\Pi^{\perp}_{\mu\nu}(p_1)\cdot(p_2-p_3)_{\nu}$
3	$\Pi^{\perp}_{\ \mu\nu}(p_1)\cdot i\sigma_{\!\nu\rho}(p_2\!-\!p_3)_{\rho}$
4	$i \sigma_{\mu \nu}(p_1)_{\nu}$
5	$i(p_1)_\mu(p_1)_ u \gamma_ u$
6	$\Pi^{\perp}_{\ \mu\nu}(p_1,p_2-p_3)\cdot i\gamma_{\!_{\!\ell}}\ p_1\cdot (p_2-p_3)\ -\ (p1\cdot p3-p1\cdot p2)\cdot \Pi^{\perp}_{\ \mu\nu}(p_1)\cdot i\gamma_{\!_{\!\ell}}$
7	$\frac{1}{3} \{ \sigma_{\alpha\beta} \gamma_{\mu} + \sigma_{\beta\mu} \gamma_{\alpha} + \sigma_{\mu\alpha} \gamma_{\beta} \}$
8	$\Pi^{\perp}_{\mu\nu}(p_1,p_2-p_3)\cdot p_1\cdot (p_2-p_3)i\sigma_{\nu\rho}(p_1)_{\rho}$

In[*]:= TBGetBasisElement::usage

TBGetBasisElement["transAqbq", 1, {p1, mu, a}, {p2, d2, A2, F2}, {p3, d3, A3, F3}]

Out[*]= TBGetBasisElement[BasisName_String,n_Integer,indices___] Obtains the n-th element of the specified basis. The given indices must match the ones specified by the basis, see TBInfo[].

Out[*]= i deltaFundFlav[F2, F3] × gamma[nu\$9417, d2, d3] × TCol[a, A2, A3] × transProj[p1, mu, nu\$9417]

In[*]:= TBGetInnerProduct::usage TBGetInnerProduct["transAqbq"][TBGetBasisElement, 1, TBGetBasisElement, 1] // FormTrace // Simplify Out[*]= TBGetInnerProduct[BasisName_String] Returns the bilinear operator o that represents the inner product of the specified basis. It can be called as O[Tensor1, n, Tensor2, m], where Tensor1 and Tensor2 are functions with signatures Tensor[BasisName_String, n_Integer, indices__]. For example, ⊘[TBGetBasisElement, 1, TBGetBasisElement, 1] returns <ei,ei>.

 $Out[\circ] = -6(-1 + Nc^2) Nf$

In[o]:= TBGetMetric::usage

TBGetMetric["transAqbq"][[1, 1]

Out[*]= TBGetMetric[BasisName_String]

Returns the metric of the specified basis, i.e. the matrix $g_{ij} = \langle e_i, e_i \rangle$, where the e_i are the basis elements of the basis.

 $Out[\circ] = -6(-1 + Nc^2) Nf$

In[*]:= TBGetInverseMetric::usage

TBGetInverseMetric["transAqbq"][1, 1]

Out[*]= TBGetInverseMetric[BasisName_String]

Returns the inverse of the metric of the specified basis, i.e. the matrix $g_{ij}^{-1} = (\langle e_i, e_i \rangle)^{-1}$, where the e_i are the basis elements of the basis.

Out[•]= 6 Nf - 6 Nc² Nf

In[.]:= TBGetProjector::usage

TBGetProjector["transAqbq", 1, {p1, mu, a}, {p2, d2, A2, F2}, {p3, d3, A3, F3}] TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 1] // FormTrace //

TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 8] // FormTrace // Simplify

Out[*]= TBGetBasisProjector[BasisName_String,n_Integer,indices___] Returns the n-th projector, which is defined by $\mathsf{g_{ni}}^{-1}\mathsf{e_i}$.

ideltaFundFlav[F2, F3]×gamma[nu\$11898, d2, d3]×TCol[a, A2, A3]×transProj[p1, mu, nu\$11898] Out[o]= $6 \text{ Nf} - 6 \text{ Nc}^2 \text{ Nf}$

Out[-]= 1

Out[-]= 0