

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Inhalte

- Grundlagen
- 2 Spezielle Graphen
- Strukturen in Graphen
- Königsberger Brückenproblem
- Ende

Spezielle Graphen

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K \subseteq E \times E$ die Kantenmenge bezeichnet.

Synonyme

Knoten ⇔ Ecken

Spezielle Graphen

Modellierung, Flüsse, Netzwerke

Karten

Good Will Hunting

Martin Thoma - Graphentheorie I

Isomorphe Graphen

Spezielle Graphen

martin-thoma.de/uni/graph.html

Grad einer Ecke

Grad einer Ecke

Der Grad einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecke

Hat eine Ecke den Grad 0, so nennt man ihn isoliert.

Grundlagen 000000000 Martin Thoma - Graphentheorie I

Spezielle Graphen

Strukturen in Graphen

Königsberger Brückenproblem

Zeichnen Sie alle Graphen mit genau vier Ecken.

Zeichnen Sie alle Graphen mit genau vier Ecken.

Spezielle Graphen

Strukturen in Graphen

Königsberger Brückenproblem

Ende

2. Juli 2013

10/54

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Martin Thoma - Graphentheorie I

Bipartiter Graph

Bipartiter Graph

Sei G = (E, K) ein Graph und $A, B \subset E$ zwei disjunkte Eckenmengen $mit E \setminus A = B.$

G heißt bipartit

 $\Leftrightarrow \forall_{k=\{e_1,e_2\}\in K}: (e_1\in A \text{ und } e_2\in B) \text{ oder } (e_1\in B \text{ und } e_2\in A)$

Vollständig bipartiter Graph

Vollständig bipartiter Graph

Sei G = (E, K) ein bipartiter Graph und $\{A, B\}$ bezeichne die Bipartition.

G heißt vollständig bipartit : $\Leftrightarrow A \times B = K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

2. Juli 2013

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

Ecken: m+n (1)

Kanten: $m \cdot n$ (2)

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1, k_2, \ldots, k_s von Kanten, zu denen es Ecken $e_0, e_1, e_2, \ldots, e_s$ gibt, so dass

- $k_1 = \{e_0, e_1\}$
- $k_2 = \{e_1, e_2\}$
-
- $k_s = \{e_{s-1}, e_s\}$

gilt ein Kantenzug, der e_0 und e_s verbindet und s seine Länge.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G=(E,K) ein Graph und $A=(e_0,e_1,\ldots,e_s)$ ein Kantenzug. A heißt **geschlossen** : $\Leftrightarrow e_s=e_0$.

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt $\mathbf{Weg}:\Leftrightarrow \forall_{i,j\in 1,...,s}: i\neq j\Rightarrow k_i\neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

19/54

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Martin Thoma - Graphentheorie I

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Martin Thoma - Graphentheorie I

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow A ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2, \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Martin Thoma - Graphentheorie I

20/54

Zeigen Sie:

Wenn in einem Graphen G=(E,K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge >0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_j , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_j = e_i$ bilden also eine Kreis

Martin Thoma - Graphentheorie I

Zeigen Sie:

Wenn in einem Graphen G=(E,K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge >0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_j , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_j = e_i$ bilden also eine Kreis \blacksquare

Martin Thoma - Graphentheorie I

Zeigen Sie:

Wenn in einem Graphen G=(E,K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge >0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_j , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_j = e_i$ bilden also eine Kreis \blacksquare

Zeigen Sie:

Wenn in einem Graphen G = (E, K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge > 0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_i , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_i = e_i$ bilden also eine Kreis ■

Martin Thoma - Graphentheorie I

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (E, K) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall e_1, e_2 \in E$: Es ex. ein Kantenzug, $\operatorname{der} e_1$ und e_2 verbindet

Königsberg heute

Königsberger Brückenproblem

Übersetzung in einen Graphen

Übersetzung in einen Graphen

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{k \in K} : k \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Hamiltonkreis

ACHTUNG, VERWECHSLUNGSGEFAHR:

Hamiltonkreis

Sei G ein Graph und A ein Kreis in G.

A heißt **Hamilton-Kreis** : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{k \in K} : k \in A$.

0000000000000000

Eulerkreis, kein HK

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$, also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus $\Rightarrow \operatorname{Grad}(e) \equiv 0 \mod 2$

Beh.: G ist eulersch $\Rightarrow \forall e \in E : Grad(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$

also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus

 $\Rightarrow \mathsf{Grad}(e) \equiv 0 \mod 2$

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus

 $\Rightarrow \mathsf{Grad}(e) \equiv 0 \mod 2$

2. Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

Martin Thoma - Graphentheorie I

34/54

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

Martin Thoma - Graphentheorie I

34/54

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei de iede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

. . .

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. $\ensuremath{\checkmark}$

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

. . .

Martin Thoma - Graphentheorie I

34/54

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. $\ensuremath{\checkmark}$

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Martin Thoma - Graphentheorie I

Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. $\ensuremath{\checkmark}$

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad $2. \stackrel{A.5}{\Longrightarrow} \text{ Es gibt einen Kreis } C \text{ in } G.$

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

I.S.: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von G

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

<u>I.S.</u>: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von G hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

2. Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

<u>I.S.</u>: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von Ghat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

Spezielle Graphen

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

<u>I.S.</u>: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von Ghat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\overset{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \ldots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^{\ast} haben geraden Grad
- $\overset{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_r
- $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh

Juli 2013

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

 \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad

 $\stackrel{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n

 $\Rightarrow C_1, \ldots, C_n$ können in C "eingehängt" werden

 $\Rightarrow G$ ist eulersch \Rightarrow Beh

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

 \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad

 $\stackrel{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n

 $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\stackrel{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \ldots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

 \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad

 $\stackrel{IV}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n

 $\Rightarrow C_1, \ldots, C_n$ können in C "eingehängt" werden

 $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Offene eulersche Linie

Sei G ein Graph und A ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G:\Leftrightarrow$ lede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis " \Rightarrow '

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\mathsf{Satz} \ \mathsf{von} \ \mathsf{Euler}} \mathsf{In} \ G^* \ \mathsf{hat} \ \mathsf{jede} \ \mathsf{Ecke} \ \mathsf{geraden} \ \mathsf{Grad}$

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \dots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\stackrel{\mathsf{Satz} \text{ von Euler}}{\Longrightarrow}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heiße

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\stackrel{\mathsf{Satz} \text{ von Euler}}{\longleftrightarrow}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heiß

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒"

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{\,e_s,e_0\,\})$. Es gibt einen Eulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grac

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heiße

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒"

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen Fulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup \{\,e_s,e_0\,\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0,e_s . lacksquare

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup \{\,e_s,e_0\,\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\operatorname{Satz\ von\ Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen $e_0,e_s.$ \blacksquare

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup \{\,e_s,e_0\,\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen $e_0,e_s.$ \blacksquare

Rückrichtung analog

Aufgabe 3

Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.

Idee: Knoten abwechselnd färben

Spezielle Graphen

Idee: Knoten abwechselnd färben

40/54

Spezielle Graphen

Idee: Knoten abwechselnd färben

40/54

Idee: Knoten abwechselnd färben

40/54

Idee: Knoten abwechselnd färben

ldee: Knoten abwechselnd färben

Königsberger Brückenproblem

Spezielle Graphen

ldee: Knoten abwechselnd färben

Spezielle Graphen

Aufgabe 4

Zeigen Sie: Ein Graph ${\cal G}$ ist genau dann bipartit, wenn er nur Kreise gerade Länge hat.

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

 $\overline{\mathsf{Annahme}}$: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge lacktriangle

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

 $\Rightarrow G$ hat keinen Kreis ungerader Länge

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\mathsf{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

- $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit
- \Rightarrow Widerspruch zu "G ist bipartit"
- $\Rightarrow G$ hat keinen Kreis ungerader Länge lacktriangle

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\mathsf{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

 $\underline{\mathsf{Annahme}}$: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge \blacksquare

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\operatorname{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\operatorname{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge \blacksquare

Martin Thoma - Graphentheorie I

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\mathsf{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

- \Rightarrow Widerspruch zu "G ist bipartit"
- $\Rightarrow G$ hat keinen Kreis ungerader Länge lacktriangle

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche

 $\underline{\text{Vor.:}}\ \text{Sei}\ G=(E,K)\ \text{ein zus.}\ \text{Graph}.$

 $\underline{\mathsf{Beh.:}}\ G$ hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche ■

Spezielle Graphen

Martin Thoma - Graphentheorie I

Aufgabe 9, Teil 1

Im folgenden sind die ersten drei Graphen G_1, G_2, G_3 einer Folge (G_n) aus Graphen abgebildet. Wie sieht G_4 aus?

Aufgabe 9, Teil 1 (Lösung)

Aufgabe 9, Teil 1 (Lösung)

Aufgabe 9, Teil 1 (Lösung)

Grundlagen Spezielle Graphen 00000000 0000 Martin Thoma – Graphentheorie I

Strukturen in Graphen

Ende

2. Juli 2013

48/54

Aufgabe 9, Teil 2

Wie viele Ecken und wie viele Kanten hat G_i ?

Aufgabe 9. Teil 2: Antwort

(3)

Ecken:

$$|E_n| = |E_{n-1}| + (n+1) = \sum_{i=1}^{n+1} = \frac{n^2 + 2n + 2}{2}$$

Kanten:

$$|K_{n}| = |K_{n-1}| + \underbrace{((n+1)-1)+2}_{\text{auBen}} + (n-1) \cdot 2$$

$$= |K_{n-1}| + n + 2 + 2n - 2$$

$$= |K_{n-1}| + 3n$$

$$= \sum_{i=1}^{n} 3i = 3 \sum_{i=1}^{n} i$$

$$= 3 \frac{n^{2} + n}{2}$$
(5)
$$(6)$$

(7)

Aufgabe 9, Teil 3

Gebe G_i formal an.

Königsberger Brückenproblem

Aufgabe 9, Teil 3 (Lösung)

Gebe G_n formal an.

$$E_n = \{ e_{x,y} \mid y \in 1, \dots, n; \ x \in y, \dots, 2 \cdot n - y \text{ mit } x - y \equiv 0 \mod 2 \}$$

$$E_n = \{ e_{x,y} \mid y \in 1, \dots, n; \ x \in y, \dots, 2 \cdot n - y \text{ mit } x - y \equiv 0 \mod 2 \}$$

$$K_n = \left\{ \left\{ e_{x,y}, e_{i,j} \right\} \in E_n^2 \mid (x+2 = i \land y = j) \lor (x+1 = i \land y \pm 1 = j) \right\}$$

$$G_n = (E_n, K_n)$$

52/54

Königsberger Brückenproblem

Spezielle Graphen

Bildquelle

- http://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
- http://commons.wikimedia.org/wiki/File:Unit_disk_graph.svg
- Google Maps (Grafiken ©2013 Cnes/Spot Image, DigitalGlobe)

Literatur

 A. Beutelspacher: Diskrete Mathematik für Einsteiger, 4. Auflage, ISBN 978-3-8348-1248-3