머신런닝 개요

Lecture 6: Neural Network

College of Information and Electronic Engineering

Kyung Hee University

Prof. Wonha Kim

(wonha@khu.ac.kr)

Contents

- 1. History of Neural Networks
- 2. Perceptions
- 3. Basics of Neural Network (NN)
 - Structure of NN
 - Graphical representation of NN
 - Matrix representation of NN
 - NN Computation : Forward Propagation
- 4. Neural Network Learning
 - Concept of NN Learning
 - Gradient Decent Optimization
 - Backward propagation
- 5. Issues of Neural Network
- 6. Verification

1. History of Neural Network (NN): Human perception

Case of human visual perception

- RGC : Local contrast, orientation, color, movement
- > LGN: Layout of scene, surface properties, global contours, etc.
- > High level object recognition (V1, V2,V4,IT)
 - Associated with frontal, parietal, temporal lobe and inter-cortical
 - Visual information is encoded and highly compressed.
 - Capacity of human visual perception is limited.
 - Gesture and motion modify the visual information.
 - Short– and long–term memories easily retrieve visual information.
- James J. Dicardo and et al, 'How does the brain solve Visual Object Recognition?' Neuron, vol. 73, pp.415~434, Feb. 2012

- Slow for mathematical logic, arithmetic, etc.
- Very fast for vision, language, reasoning, etc.
- Evolution: Light => Language=> Logic

Perception is very fast. Computing is slow.

Neural Network

Exploiting hardware computation, realize the human perception.

1. History of Neural Network (NN): Neuron

- Neuron is an electrically excitable cell that receives, processes, and transmits information through electrical and chemical signal.
- The smallest unit of information processing in the brain
- Cell body performs simple calculations, Dendrite[déndrait] receives signals, Axon[æksan] transmits computation results.
- Humans have about 10¹¹ neurons and a neuron connects with about 1000 other neurons. So there are about 10¹⁴ neuron connections.

1. History of Neural Networks

- 1943년: MCCulluch 과 Pitss 의 최초의 Neurocomputing
- 1949년 : Hebb가 학습 알고리즘 제안
- 1958년 : Mark I perceptron (F. Ronsenblatt)
 Widrow와 Hoff가 개선된 학습 알고리즘 (Adaline 과 Madaline) 발표
 Software was built on IBM 704 and then hardware was built.
- 1960년대 : Neuro Computing 과대 평가
- 1969년 : Mark Minsky와 Syemyour Papert 가 perceptron은 선형분류기에 불과하며 XOR의 문제조차 해결 못함을 검증 [in "Perceptrons"]
- 1970년대 : 신경망 연구 퇴조
- 1986년 : Rumbelhart suggested multi-layer perceptron (『Parallel Distributed Processing』)
 Backpropagation algorithm이 정립되고 Neural Computing 연구 부활.
- 1990년대 : Support Vector Machine (SVM)이 Neural Computing 보다 우수하다고 평가됨
- 2000년이후: Deep Learning 실현되어 신경망이 기계 학습의 주류 기술로 자리매김

Mark I Perceptron

2. Perceptron (1/5): Ronsenbaltt's Perceptron

- Artificial neuron is a mathematical function conceived as a model of biological neurons, a neural network.
- Artificial neurons are elementary units in an artificial neural network.
- The Perceptron is an algorithm for learning a binary classifier.

- Input vector : $\mathbf{x} = (x_1, x_2, \dots, x_d)^T$
- Weight vector : $\mathbf{W} = (w_0, w_1, w_2, \cdots, w_d)^{\mathrm{T}}$

Bias Perceptron for learning
$$y = \begin{cases} 1 & (w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d > 0) \\ 0 & (w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d \leq 0) \end{cases}$$

$$= \begin{cases} 1 & (\text{if } \mathbf{w} & \mathbf{x} + w_0 > 0) \\ 0 & (\text{otherwise}) \end{cases} \Rightarrow \text{Binary classifier}$$

2. Perceptron (2/5): Linear Classifier

Matrix form with separated bias term

$$\mathbf{x} = (x_1, x_2, \cdots, x_d)^{\mathrm{T}},$$

$$\mathbf{w} = (w_1, w_2, \cdots, w_d)^{\mathrm{T}}$$

$$s = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0,$$

Matrix form including bias term

$$\mathbf{x} = (1, x_1, x_2, \cdots, x_d)^{\mathrm{T}}$$

$$\mathbf{w} = (w_0, w_1, w_2, \cdots, w_d)^{\mathrm{T}}$$

$$s = \mathbf{w}^{\mathrm{T}} \mathbf{x},$$

Activation function (τ)

$$y = \tau(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

- Geometric interpretation
 - Decision hyperplane (Classifier)

$$d(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + w_0 = 0$$

- d=2 (2 dimension): $d(\mathbf{x}) = d(x_1, x_2) = w_1x_1 + w_2x_2 + w_0 = 0$

- * d(x): Classifier separating +1 and -1 spaces
- * w_1 and w_2 determine direction, w_0 is the cut.
- * 2-D: decision line. More than 2-D: decision plane

2. Perceptron (3/5): Example-OR

예제 3-1

퍼셉트론의 동작

2차원 특징 벡터로 표현되는 샘플을 4개 가진 훈련집합 $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}, \mathbb{Y} = \{y_1, y_2, y_3, y_4\}$ 를 생각하자. [그림 3-4(a)]는 이 데이터를 보여준다.

$$\mathbf{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ y_1 = -1, \ \mathbf{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ y_2 = 1, \ \mathbf{x}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ y_3 = 1, \ \mathbf{x}_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ y_4 = 1$$

그림 3-4 OR 논리 게이트를 이용한 퍼셉트론의 동작 예시

샘플 4개를 하나씩 입력하여 제대로 분류하는지 확인해 보자.

$$\mathbf{x_1}: \ s = -0.5 + 0 * 1.0 + 0 * 1.0 = -0.5, \qquad \tau(-0.5) = -1$$

 $\mathbf{x_2}: \ s = -0.5 + 1 * 1.0 + 0 * 1.0 = 0.5, \qquad \tau(0.5) = 1$
 $\mathbf{x_3}: \ s = -0.5 + 0 * 1.0 + 1 * 1.0 = 0.5, \qquad \tau(0.5) = 1$
 $\mathbf{x_4}: \ s = -0.5 + 1 * 1.0 + 1 * 1.0 = 1.5, \qquad \tau(1.5) = 1$

결국 [그림 3-4(b)]의 퍼셉트론은 샘플 4개를 모두 맞추었다. 이 퍼셉트론은 훈련집합을 100% 성능으로 분류한다고 말할 수 있다.

2. Perceptron (4/5): Logical computation

Single layer perceptron : AND, NAND, OR

$$y = \begin{cases} 1 & (b + w_1 x_1 + w_2 x_2 > 0) \\ 0 & (b + w_1 x_1 + w_2 x_2 \le 0) \end{cases}$$

AND

x_1	x_2	y
0	0	0
1	0	0
0	1	0
1	1	1

$$(w_1, w_2, b) = (0.5, 0.5, -0.7)$$

NAND

x_1	x_2	y
0	0	1
1	0	1
0	1	1
1	1	0

$$(w_1, w_2, b) = (-0.5, -0.5, 0.7)$$

OR

x_1	x_2	у
0	0	0
1	0	1
0	1	1
1	1	1

$$(w_1, w_2, b) = (1.0, 1.0, -0.5)$$

2. Perceptron (5/5): Training

- How to determine w for the optimal classifier
 - Toy example

 In real word, there are hundreds to tens of thousands of samples in d-dimensional space.
 (Ex, MNIST has 784 dimension and sixty thousand samples.) Parameter Training

Estimate Data:
$$\mathbf{O} = [\hat{y}_1 \, \hat{y}_2 \, \cdots \, \hat{y}_n]^T$$
 $\hat{\delta}(y_k, o_k) = \begin{cases} 1 & : y_k \neq o_k \\ 0 & : y_k = o_k \end{cases}$

- J(W) > 0
- If W is perfect, I(W) = 0.
- More error samples, **J(W)** has larger value.

3. Multi-layer perceptron [1/5]: Background

• Linearly separable (OR)

Not linearly separable (XOR)

- 1969년 : Mark Minsky and Syemyour Papert 『Perceptrons』
 Pointed out the limitation of perceptron and suggest multi-layer structure. But not feasible at that time.
- 1974년 : Werbos suggested the error back-propagation
- 1986년 : Rumelhart, in his book "Parallel Distributed Processing", established mulit-layer perceptron theory to resurrect Neural network.

3. Multi-layer perceptron [2/5]: XOR

Single perceptron is not possible.

XOR

x_1	x_2	у
0	0	0
1	0	1
0	1	1
1	1	0

Multi layer perceptions

	Input layer	Hidden layer (1 st layer)	Output layer			
•	1	1				
	$x_1 \longrightarrow$	s_1	y			
	$x_2 \leq$	$\rightarrow s_2$				

x_1	x_2	S_1	s ₂	у
0	0	1	0	0
1	0	1	1	1
0	1	1	1	1
1	1	0	1	0

3. Multi-layer perceptron [3/5]: XOR

Perceptron 1

• Convert space $\mathbf{x} = (x_1, x_2)^T$ to a new space $\mathbf{z} = (z_1, z_2)^T$.

3. Multi-layer perceptron [4/5]: Geometric interpretation

 Two perceptions separate 2–D space into two regions and map each region to a point at 2–D.

 Three perceptrons separate 2-D space into 7 regions and map each region to a point at 3-D.

- Comibnatin of P preceptrons
 - separate $1 + \sum_{i=1}^{p} i$ spaces
 - convert to p dimensional space

3. Multi-layer perceptron (5/5): Understanding MLP

- Hidden layers convert feature vectors into new feature spaces that are more efficient for classification.
- Modern machine learning names feature learning (Deep learning uses many layers.)

L-layer perceptron: Deep Neural Network (DNN)

$$\mathbf{o} = \mathbf{f}_L \left(\cdots \mathbf{f}_2 \left(\mathbf{f}_1(\mathbf{x}) \right) \right), L \ge 4$$

manifold

4. MLP computing [1/9]: Graphical Representation

 w_{ij}^l : weight from the i^{th} node at (l-1) layer to the j^{th} node at l layer.

L: Maximum layer depth

4. MLP computing [2/9]: Matrix Representation

- b_i^l : biased value to the j^{th} node at the l-layer.
- Biased values to nodes at l-layer: $\mathbf{b}^l = \begin{bmatrix} b_1^l & b_2^l & \dots & b_q^l \end{bmatrix}^T$
- w_{ij}^l : weight from the i^{th} node at (l-1) layer to the j^{th} node at l-layer.
- Weights from nodes at (l-1)-layer to the jth node at l-layer:

$$\mathbf{w}_{j}^{l} = \begin{bmatrix} w_{1j}^{l} & w_{2j}^{l} & \dots & w_{pj}^{l} \end{bmatrix}^{T} \quad (j = 1, \dots q)$$

- $\mathbf{w}_{j}^{l} = \begin{bmatrix} w_{1j}^{l} & w_{2j}^{l} & \dots & w_{pj}^{l} \end{bmatrix}^{T} \quad (j = 1, \dots q)$ Weights from (l-1)-layer to l-layer: $\mathbf{W}_{p \times q}^{l} = \begin{bmatrix} \mathbf{w}_{1}^{l}, \mathbf{w}_{2}^{l}, \dots, \mathbf{w}_{q}^{l} \end{bmatrix} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots & w_{1q}^{l} \\ \vdots & & & \ddots & \vdots \\ w_{p1}^{l}, & w_{p2}^{l}, & \dots, & w_{pq}^{l} \end{bmatrix}$ Node values at I-layer: $\mathbf{z}^{l} = \begin{bmatrix} z^{l} & z^{l} & z^{l} \end{bmatrix}^{T}$
- Node values at l-layer: $\mathbf{z}^l = \begin{bmatrix} z_1^l & z_2^l & \dots & z_d^l \end{bmatrix}^T$
- Matrix representation from (l-1)-layer to l-layer:

$$\mathbf{a}^l = \begin{bmatrix} a_1^l \\ a_2^l \\ \vdots \\ a_q^l \end{bmatrix} = \left(\mathbf{W}_{p \times q}^l \right)^T \cdot \mathbf{z}^{l-1} + \mathbf{b}^l = \begin{bmatrix} w_{11}^l, \ w_{21}^l, \ \dots, \ w_{p1}^l \\ \vdots \\ w_{1q}^l, \ w_{2q}^l, \ \dots, \ w_{pq}^l \end{bmatrix} \cdot \begin{bmatrix} z_1^{l-1} \\ z_2^{l-1} \\ \vdots \\ z_p^{l-1} \end{bmatrix} + \begin{bmatrix} b_1^l \\ b_2^l \\ \vdots \\ b_q^l \end{bmatrix} \quad \mathbf{b} \quad \mathbf{z}^l = \begin{bmatrix} z_l^l \\ z_2^l \\ \vdots \\ z_q^l \end{bmatrix} \left(= h(\mathbf{a}^l) \right) = \begin{bmatrix} h(a_l^l) \\ h(a_2^l) \\ \vdots \\ h(a_q^l) \end{bmatrix}$$

- Input layer : $\mathbf{x} (= \mathbf{z}^{(0)}) = [\mathbf{x}_1 \ \mathbf{x}_2 \cdots \ \mathbf{x}_d]^T$
- Output layer : $\mathbf{o}(=\mathbf{z}^{(L+1)}) = [\mathbf{o}_1 \ \mathbf{o}_2 \cdots \ \mathbf{o}_c]^T$

4. MLP computing [3/9]: Activation functions for hidden layers

- Activation function is to convert a input signal of a node to an output signal.
- In Hidden layer, the activation function should be non-linear to learn any arbitrary complex data and be differentiable for back-propagation optimization strategy.

$$h(x) = \frac{1}{1 + e^{-x}}$$

Rectified Linear Units (ReLU) function

$$h(x) = \begin{cases} x \ (x > 0) \\ 0 \ (x \le 0) \end{cases} = \max(0, x)$$

4. MLP computing [4/9]: Activation functions for hidden layer

Step	$\tau(s) = \begin{cases} 1 & s \ge 0 \\ -1 & s < 0 \end{cases}$	0 5 6 6 4 2 0 2 4 5	$\tau'(s) = \begin{cases} 0 & s \neq 0 \\ N/A & s = 0 \end{cases}$	-1 and 1
Logistic Sigmoid	$\tau(s) = \frac{1}{1 + e^{-as}}$	0.5	$\tau'(s) = a\tau(s)\big(1 - \tau(s)\big)$	(0,1)
Hyperbolic Tangent	$\tau(s) = \frac{2}{1 + e^{-as}} - 1$	0.5	$\tau'(s) = \frac{a}{2}(1 - \tau(s)^2)$	(-1,1)
Softplus	$\tau(s) = \log_e(1 + e^s)$		$\tau'(s) = \frac{1}{1 + e^{-s}}$	(0, ∞)
ReLU	$\tau(s) = \max(0, s)$	4	$\tau'(s) = \begin{cases} 0 & s < 0 \\ 1 & s > 0 \\ N/A & s = 0 \end{cases}$	[0, ∞)

3. Neural Network: Activation functions for output layer

Identify function

- Input = Output
- Key use of Identify function: Regression

Softmax function

$$o_1 = \frac{\exp(a_1)}{\sum_{i=1}^c \exp(a_i)} - o_k = \frac{\exp(a_k)}{\sum_{i=1}^c \exp(a_i)} - o_1 + o_2 + \dots + o_c = 1$$

$$o_2 = \frac{\exp(a_2)}{\sum_{i=1}^{c} \exp(a_i)}$$

$$o_c = \frac{\exp(a_c)}{\sum_{i=1}^{c} \exp(a_i)}$$

$$-o_k = \frac{\exp(a_k)}{\sum_{i=1}^{c} \exp(a_i)}$$

$$o_1 + o_2 + \dots + o_c = 1$$

- $o_2 = \frac{\exp(a_2)}{\sum_{i=1}^{c} \exp(a_i)}$ Key use of Softmax function : **Multiclass classification**
 - Key use of Sigmoid function: Binary class classification

Preventing overflow => Preventing too large values.

$$o_k = \frac{\exp(a_k)}{\sum_{i=1}^{c} \exp(a_i)} = \frac{C \exp(a_k)}{C \sum_{i=1}^{c} \exp(a_i)} = \frac{\exp(a_k + \log_e C)}{\sum_{i=1}^{c} \exp(a_i + \log_e C)} = \frac{\exp(a_k + C')}{\sum_{i=1}^{c} \exp(a_i + C')}$$
 where, usually, $C' = -\max(a_1, a_2, \dots, a_c)$.

4. MLP computing [5/9]: Examples

4. MLP computing [6/9]: Example-Detecting image direction (1/4)

- Detecting image direction (More sophisticated example)
- 2x2 gray scale image, 4-directions
- Label 4 directions with binary feature vector

Direction	Non	vertical	horizontal	diagonal
Imago				
Image				
Label	[1,0,0,0]	[0,1,0,0]	[0,0,1,0]	[0,0,0,1]

4. MLP computing [7/9]: Example -Detecting image direction (2/4)

• 1st Layer

4. MLP computing [8/9]: Detecting image direction (3/4)

• 2nd Layer

4. MLP computing [9/9]: Detecting image direction (4/4)

Output Layer

$W_{4\mathrm{x}4}^3$					_	\mathbf{Z}^3	_	\mathbf{b}^3		\mathbf{a}^3
	0.75	0.38	0.37	-0.61		0.73		-0.03		-0.44
-	-0.06	0.96	0.82	0.51		0.61		0.03		1.07
	0.71	-0.43	0.22	-0.31	×	0.37	+	0.01	_	0.24
_	0.91	-0.73	0.80	-0.16		0.37		0.02		-0.86

5. MLP Training [1/18]: Overview

• Training Data (number of features : d, number of output nodes : c, number of training data : n)

kth feature vector:
$$\mathbf{x}_k = \begin{bmatrix} x_1^k & x_2^k & \cdots & x_d^k \end{bmatrix}^T$$
 (k=1,..., n)

Feature data matrix:
$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n]^T = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^n \\ \vdots & \ddots & \vdots \\ x_d^1 & x_d^2 & \cdots & x_d^n \end{bmatrix}$$

kth label (target) vector :
$$\mathbf{y}_k = \begin{bmatrix} y_1^k & y_2^k & \cdots & y_c^k \end{bmatrix}^T$$
 (k=1,..., n)

Label data matrix:
$$Y = [y_1 \ y_2 \ ... \ y_n]^T = \begin{bmatrix} y_1^1 & y_1^2 & \cdots & y_1^n \\ \vdots & \ddots & \vdots \\ y_c^1 & y_c^2 & \cdots & y_c^n \end{bmatrix}$$

Estimate Data: O=f(X|W) ($O=[o_1 o_2 \dots o_n]^T$, $o_k=[o_1^k y_2^k \dots o_c^k]^T$)

Neural Network Training

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W)$$

Gradient Descent

$$\widehat{\mathbf{W}} = \mathbf{W} - \eta \cdot \nabla \mathbf{J}(\mathbf{W}) = \mathbf{W} - \eta \cdot \frac{J(\mathbf{W})}{\mathbf{W}}$$

5. MLP Training [2/18]: Neural Net Training

- For a given NN structure, determine the optimal weights.
- Recursively update weights to reduce loss at every iteration.
- Terminate the iteration when the loss of training data reaches at a saturation value.

Typical Loss functions

• Mean Squared Error (MSE)

$$\mathbf{J}(W^k) = \sum_{i}^{c} (y_i^k - o_i^k)^2$$

(Useful for regression)

• Cross Entropy Error (CEE)

$$\mathbf{J}(W^k) = -\sum_{i}^{c} y_i^k \ln o_i^k$$

(Useful for classification)

- Loss functions have the minimum for convergence.
- Function of weights W(not X).

5. MLP Training [3/18]: Gradient Descent (1/2)

- Gradient Descent
- Goal: Numerically determine the minimum of a smooth function $f(w_1, w_2, ..., w_L)$.

- Gradient descent is a first-order iterative optimization algorithm.

- Procedure:
 - ➤ Decide the direction that diminishes the function at most. (Steepest direction)
 - > Decide proper movement rate.

Movement = rate * slope

> Iterate until the function values saturate

or reaches at the minimum.

5. MLP Training [4/18]: Gradient Descent (SDG) (2/3)

•
$$L = \mathbf{J}(\mathbf{W}) = \mathbf{J}(\mathbf{w}_1, \mathbf{w}_2)$$

From Taylor series

•
$$L + \Delta L = J(\mathbf{w}_1 + \Delta \mathbf{w}_1, \mathbf{w}_2 + \Delta \mathbf{w}_2) \approx \mathbf{J}(\mathbf{w}_1, \mathbf{w}_2) + \frac{\partial \mathbf{J}(\mathbf{w}_1, \mathbf{w}_2)}{\partial \mathbf{w}_1} \Delta \mathbf{w}_1 + \frac{\partial \mathbf{J}(\mathbf{w}_1, \mathbf{w}_2)}{\partial \mathbf{w}_2} \Delta \mathbf{w}_2$$

•
$$\Delta L \approx \frac{\partial J(\mathbf{W}_1, \mathbf{W}_2)}{\partial \mathbf{W}_1} \Delta \mathbf{W}_1 + \frac{\partial J(\mathbf{W}_1, \mathbf{W}_2)}{\partial \mathbf{W}_2} \Delta \mathbf{W}_2 = \left(\frac{\partial J(\mathbf{W}_1, \mathbf{W}_2)}{\partial \mathbf{W}_1}, \frac{\partial J(\mathbf{W}_1, \mathbf{W}_2)}{\partial \mathbf{W}_2}\right) \cdot (\Delta \mathbf{W}_1, \Delta \mathbf{W}_2) = \Delta \mathbf{J}(\mathbf{W}) \cdot \Delta \mathbf{W}_2$$

To decrease
$$\Delta L$$
 maximally, $\Delta W = -\eta \Delta J(W)$ (Learning rate: $\eta > 0$) negative of the gradient of the

Take steps proportional to the function at the current point.

The steepest direction: Direction of $\Delta J(\mathbf{W})$

Weight Update

$$w_M^{n+1} = w_M^n + \Delta w_M = w_M^n - \eta \frac{\partial \mathbf{J}(w_1, w_2, \dots, w_M)}{\partial w_M}$$

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W)$$

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W) \qquad \qquad \widehat{\mathbb{W}} = W - \eta \cdot \nabla J(W) = W - \eta \cdot \frac{J(W)}{\partial W}$$

5. MLP Training [4/18] : Chain Rule

Very simple network

$$J = (w_0 w_4 x_1 + w_2 w_4 x_2 + w_1 w_5 x_1 + w_3 w_5 x_2 - y)^2$$

$$\frac{\partial J}{\partial w_0} = \frac{\partial ((w_0 w_4 x_1 + w_2 w_4 x_2 + w_1 w_5 x_1 + w_3 w_5 x_2 - y)^2)}{\partial w_0}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial ((w_0 w_4 x_1 + w_2 w_4 x_2 + w_1 w_5 x_1 + w_3 w_5 x_2 - y)^2)}{\partial w_1}$$

$$\frac{\partial J}{\partial w_5} = \frac{\partial ((w_0 w_4 x_1 + w_2 w_4 x_2 + w_1 w_5 x_1 + w_3 w_5 x_2 - y)^2)}{\partial w_5}$$

Too complicated to be implemented in real systems.

• Using Chain rule: formula for computing the derivative of the composition of two or more functions.

$$\frac{\partial J}{\partial w_0} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_0}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_1}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_2}$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_3}$$

$$\frac{\partial J}{\partial w_4} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial w_4}$$

$$\frac{\partial J}{\partial w_5} = \frac{\partial J}{\partial o} \cdot \frac{\partial o}{\partial w_5}$$

$$o = w_0 w_4 x_1 + w_2 w_4 x_2 + w_1 w_5 x_1 + w_3 w_5 x_2$$

$$z_1 = w_0 x_1 + w_2 x_2, z_1 = w_1 x_1 + w_3 x_2$$

$$\frac{\partial J}{\partial o} = (o - y) : \text{Last layer}$$

$$\frac{\partial J}{\partial z_1} = \frac{\partial (w_4 z_1 + w_5 z_2)}{\partial z_1} = w_4 + w_5 z_2$$

$$\frac{\partial J}{\partial z_2} = \frac{\partial (w_4 z_1 + w_5 z_2)}{\partial z_2} = w_4 z_1 + w_5$$

$$\frac{\partial Z_1}{\partial w_0} = \frac{\partial (w_0 x_1 + w_2 x_2)}{\partial w_0} = x_1 + w_2 x_2$$

$$\frac{\partial Z_1}{\partial w_2} = \frac{\partial (w_0 x_1 + w_2 x_2)}{\partial w_2} = w_0 x_1 + x_2$$

$$\frac{\partial Z_2}{\partial w_1} = \frac{\partial (w_1 x_1 + w_3 x_2)}{\partial w_1} = x_1 + w_3 x_2 : \text{Input layer}$$

$$\frac{\partial Z_2}{\partial w_3} = \frac{\partial (w_1 x_1 + w_3 x_2)}{\partial w_3} = w_1 x_1 + x_2$$

5. MLP Training [6/18]: Backward propagation

• Implementation for the chain rule in a network.

5. MLP Training [7/18]: Backward propagation- Numerical example

 Buy two apples of 100 won per one, three oranges of 150 won per one.
 Sales tax is 10%.

Decide the price change with the changes of each item.

5. MLP Training [8/18]: Backward propagation - Toy Example (1/2)

Gradient calculation with chain rule

5. MLP Training [9/18]: Backward propagation - Example in very detail

5. MLP Training [10/18]: Backward propagation –Activation functions in hidden layer

 Backward propagation of ReLU function

$$h(x) = \begin{cases} x & (x > 0) \\ 0 & (x \le 0) \end{cases}$$
$$= \max(0, x)$$

• Backward propagation of Sigmoid function $h(x) = \frac{1}{1 + e^{-x}}$

5. MLP Training [11/18]: Backward propagation - Mean Square Error in output layer

Backward propagation of Identify function and Mean Square Error

5. MLP Training [11/18]: Backward propagation - Softmax in output layer

5. MLP Training [12/18]: Detecting image direction (1/5)

- Back propagation learning for image direction detection network
- Loss function: Cross entropy error
- Learning rate : $\eta = 0.5$
- Optimizer : Gradient Descent

- Weight update:
$$W^k(i,j) = W^k(i,j) - \eta \times \frac{\partial L}{\partial a^k(i)} \times z^{k-1}(j)$$

$$b^k(i) = b^k(i) - \eta \times \frac{\partial L}{\partial a^k(i)} \xrightarrow{\text{(From chain rule)}} (z^3 = y, z^0 = x)$$

5. MLP Training [14/18]: Detecting image direction (2/5)

The Output Layer

5. MLP Training [15/18]: Detecting image direction (3/5)

• The 2nd Layer

	W	·2 4x4				W	72 4x4			$\frac{\partial f}{\partial a^2}$		\mathbf{b}^2		\mathbf{b}^2		$\frac{\partial f}{\partial a^2}$
-0.21	-0.34	-0.75	-0.78		-0.21	-0.34	-0.75	-0.78		0.01	\mathbf{z}^{T}	-0.01		-0.01		0.01
-0.61	0.63	-0.52	-0.14		-0.64	-0.61	-0.54	-0.19		-0.31	Z .	0.03		-0.03	20. \	-0.31
0.28	1.01	-0.94	0.79	=	0.27	1.00	-0.95	0.77	$-\eta \times$	-0.05	X 0.39 0.24 0.36 0.72	0.01	=	-0.01	$-\eta \times$	-0.05
0.27	0.97	0.23	0.13		0.25	0.96	0.21	0.10		-0.09		0.10		0.05		-0.09

5. MLP Training [16/18]: Detecting image direction (4/5)

The 1st Layer

5. MLP Training [17/18]: Detecting image direction (5/5)

Training: 7 iteration

Prediction(y)

Iteration	1	2	3	4	5	6	7	t
Predic-	0.12 0.55 0.24 0.08	0.09 0.70 0.15 0.06	0.06 0.81 0.09 0.04	0.04 0.88 0.05 0.03	0.03 0.92 0.03 0.02	0.02 0.94 0.02 0.02	0.01 0.96 0.01 0.01	0 1 0

Loss Decreasing

5. MLP Training [18/18]: Computation Load

Forward Computation

Addition : dp+pc

- Multiplication : dp+pc

Backward Propagation (BP) Computation

– Addition : c+2cp+dp

- Multiplication: c+3cp+2dp

• BP needs only $1.5\sim2$ times more computation than Forward.

Learning computation : O((dp+pc)nq)
 where n : # of samples, # of iterations : q

- Num. of input nodes (features) : d
- Num. of internal nodes : p
- Num. of output nodes : c

43