

Galactica: A large language model for science

By Taylor et al. (Meta AI), 2022

Spring 2023 02/17/2023

- > Introduction
- > Dataset & Methods
- > Results
- > Further analysis

- > Introduction
- > Dataset & Methods
- > Results
- > Further analysis

Information overload: a long time predicted burden

A problem already known decades ago...

« Publication has been extended far beyond our present ability to make real use of the record »

Vannevar Bush, As We May Think, 1945

AS WE MAY THINK

A TOP U. S. SCIENTIST FORESEES A POSSIBLE FUTURE WORLD
IN WHICH MAN-MADE MACHINES WILL START TO THINK

... reaching a point of no return

- A publication rate way above the capabilities of scientists to read them: an average of 516 publications submitted per day on ArXiv (May 2022)
- An overload not only limited to publication: for instance, NCBI GenBank contained almost 1.5×10^{12} nucleotide bases in August 2022

Technology: a potential solution

Computers, instrument to reach Licklider's paradigm

- > The rise of information technology and computers: invention of the transistor in 1947 (by Bardeen, Shockley and Brattain), of microprogramming in 1955 (by Maurice Wilkes)...
- > A source of hope to tackle the issue: in Licklider's paradigm, computer would "prepare the way for insights and decisions in scientific thinking" (Licklider, Man-Computer Symbiosis, 1960)

... but still needing too much human contributions

- > The current "symbiotic" relationship between human and computer still need a lot of human contribution when information need to be found (search engines)
- A task, even with the use of computers, that is still time-consuming

Large Language Models: a breakthrough in NLP

Large Language Models (LLM)

- LLMs have achieved breakthrough performance on NLP tasks in last year.
- Some argue that Language Models can be considered as a convenient implicit knowledge bases

Galactica: a new LLM for organizing science

- A dataset of more than 48 millions papers, textbooks... but also proteins, DNA sequences...
- > A particular focus on the dataset, « high-quality and highly curated »
- A model that beat previous LM on several benchmarks (MMLU, MATH...)

- > Introduction
- > Dataset & Methods
- > Results
- > Further analysis

Galactica's dataset: heart of the model (1/2)

A large scientific corpus

- More than 60 million documents coming from 6 main data source used to train Galactica
- All document converted in Markdown to unify knowledge coming from all kind of documents
- > Text sequence only, but many scientific phenomena described

Total dataset size = 106 billion tokens				
Data source	Documents	Tokens	Token %	
Papers	48 million	88 billion	83.0%	
Code	2 million	7 billion	6.9%	
Reference Material	8 million	7 billion	6.5%	
Knowledge Bases	2 million	2 billion	2.0%	
Filtered CommonCrawl	0.9 million	1 billion		
Prompts	1.3 million	0.4 billion	0.3%	
Other	0.02 million	0.2 billion		

Modality	Entity	Sequence	
Text	Abell 370	Abell 370 is a cluster	
FALEX	Schwarzschild radius	$r_{s} = \frac{2GM}{c^2}$	$r_s = rac{2GM}{c^2}$
Code	Transformer	class Transformer(nn.Module)	
SMILES	Glycine	C(C(=0)0)N	H'O N'H
AA Sequence	Collagen α -1(II) chain	MIRLGAPQTL	00000000000000
DNA Sequence	Human genome	CGGTACCCTC	

Galactica's dataset: heart of the model (2/2)

Prompt Pre-Training

- PPT can boost performance (lower models beating larger ones on specifics tasks)
- > Be able to gives correct performances even for the smallest version of the model
- Almost 800k prompts given on different tasks (summarization, entity extraction, binary QA...)
- PPT create a distinction between in-domain knowledge and out-domain knowledge

Tokenization: break data into understandale items

Specialized tokenization: a choice for the dataset design

Special type of data	Choice of tokenization
Step-by-step reasoning	Wrapping with <work></work>
Citations	Wrapping with [START_REF] / [END_REF]
SMILES formula, DNA sequences and Amino acid sequences	Wrapping with [START_SMILES] / [END_SMILES] ([START_DNA] / [END_DNA] or [START_AMINO] / [END_AMINO]) and character-based tokenization
Mathematics and numbers	Splitting digits and operations into individual characters

Recurrent neural networks, long short-term memory [START_REF]Long Short-Term Memory, Hochreiter[END_REF] and gated recurrent [START_REF]Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, Chung [END_REF] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [START_REF]Sequence to Sequence Learning with Neural Networks, Sutskever [END_REF] [START_REF]Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau [END_REF] [START_REF] Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation, Cho [END_REF].

Transformers: Galactica's architecture (1/2)

Transformers: current state-of-the-art models

- > Transformer architecture was introduced in June 2017, mainly to work on translation task
- > Two main blocks: an encoder to receive inputs and build a representation of them, and a decoder using encoder representation and others inputs to generate a target sequence
- > Each block can be used without the other, hence three main types of models.

Models	Tasks	Exemple of models
Auto-Encoding	Sentence classification, NER	BERT
Auto-Regressive	Text Géneration	GPT
Sequence-to-Sequence	Translation, summarization	BART / T5

Transformers: Galactica's architecture (2/2)

Galactica's architecture : a modified version of the original architecture

- Only a decoder part (like GPT)
- > Use of GELU activation function for all model in last feed forward layer
- > No biases
- > Use of Learned Position Embedding
- > Creation of a 50k token vocabulary using BPE

<work> : a working memory token

A simple observation leading to this token

Transformers

Understanding of natural language

> Chain-of-thought

Accuracy on task like multiplication

Classic computers

Arithmetic tasks

Chain-of-thought

Process behind the creation of the token

Instruction

Single-forw of model limitations

Offloading

```
Question: A needle 35 mm long rests on a water surface at 20° C. What force over and above the needle's weight
is required to lift the needle from contact with the water surface? \sigma = 0.0728 \text{m}.
<work>
                                                 \sigma = 0.0728 \, \text{N/m}
                                                 \sigma = F/L
                                            0.0728 = F/(2 \times 0.035)
                                                 F = 0.0728(2 \times 0.035)
calculate.py
f = 0.0728*(2*0.035)
with open("output.txt", "w") as file:
     file.write(str(round(f, 5)))
«run: "calculate.py">
«read: "output.txt"»
0.0051
</work>
Answer: F = 0.0051 \text{ N}
```


- > Introduction
- > Dataset & Methods
- > Results
- > Further analysis

Model	n_{params}	n_{layers}	d_{model}	n_{heads}	d_{heads}	Batch Size	Max LR	Warmup
GAL 125M	125M	12	768	12	64	0.5M	6×10^{-4}	375M
GAL 1.3B	1.3B	24	2,048	32	64	1.0M	2×10^{-4}	375M
GAL 6.7B	6.7B	32	4,096	32	128	2.0M	1.2×10^{-4}	375M
GAL 30B	30.0B	48	7,168	56	128	2.0M	1×10^{-4}	375M
GAL 120B	120.0B	96	10,240	80	128	2.0M	0.7×10^{-5}	1.125B

Knowledge probes					
Tasks Galactica Others models					
LaTeX equations probes	68.2%	49% (GPT-3)			
Domain probes	8 – 43.1%	9.7 – 35.1%			
Reasoning	41.3%	35.7% (Chinchilla)			

Downstream scientific NLP				
Galactica Others models				
In-domain 5 0				
Out-domain 6 14				
Numbers of dataset where models has best performance				

Citation prediction					
Tasks Galactica Others models					
PWC Citations	51.9%	30.9%			
Extended Citations	69.1%	17.3%			
Contextual Citations	36.6%	8.2%			

General capabilities

Model	Params (bn)	Accuracy weighted	Accuracy unweighted
OPT 30B	30	39.6%	38.0%
BLOOM 176B	176	42.6%	42.2%
OPT 175B	175	43.4%	42.6%
GAL 30B	30	46.6%	42.7%
GAL 120B	120	48.7%	45.3%

BIG-bench 57 task results

Chemical understanding

- > IUPAC Name Prediction: accuracy of 39.2%
- MoleculeNet: Uni-Mol performs better

- > Introduction
- > Dataset & Methods
- > Results
- > Further analysis

Generating content: a potential open door for toxicity

- > Meta AI aware of the potential toxicity coming from LLM
- Use of benchmarks on toxicity and stereotypes to ensure Galatica's ability to detect stereotypes
- Galactica demo was shut down few days after its launch due many users retrieving biased, offensive or false answers to their questions

		StereoSet		
Category		text-davinci-002	OPT 175B	Galactica 120B
	LMS (†)	78.4	74.1	75.2
Prof.	$SS(\downarrow)$	63.4	62.6	57.2
	ICAT (↑)	57.5	55.4	64.3
	LMS (↑)	75.6	74.0	74.6
Gend.	$SS(\downarrow)$	66.5	63.6	59.1
	ICAT (\uparrow)	50.6	53.8	61.0
	LMS (↑)	80.8	84.0	81.4
Reli.	$SS(\downarrow)$	59.0	59.0	55.1
	ICAT (↑)	66.3	68.9	73.1
	LMS (↑)	77.0	74.9	74.5
Race	$SS(\downarrow)$	57.4	56.8	54.8
	ICAT (\uparrow)	65.7	64.8	67.3
	LMS (↑)	77.6	74.8	75.0
Overall	$SS(\downarrow)$	60.8	59.9	56.2
	ICAT (↑)	60.8	60.0	65.6

StereoSet Results

Limitations and Potential work

Limitations highlighted

- Limitations coming from corpus
- Distinguishbility of corpus effects and prompt effects
- Bias for highly-cited papers
- Text as only modality
- ...

Several ideas mentionned

- Use of larger context window
- Extending to images
- Create more examples for the working memory token
- Enforce a verification layer
- · Develop a continual learning
- ...

