Strengthening Fraud Detection, Building a Powerful Model for ASB's Digital Future

BUSINFO 740 - 2024 Quarter 3 Master of Business Analytics

GROUP 19:

Deepanjali Kumar - dkmu128 Guoer Li - gli182 Nathan Jing - pjin128 Nurroh Habibah - nhab751

Background

- ASB, a bank in New Zealand, is increasingly challenged by the need to detect fraudulent transactions as digital banking grows accurately
- The current fraud detection system has room for improvement, which may result in financial losses and a decline in customer trust
- This analysis aims to help ASB develop a robust model to accurately detect fraudulent transactions and provide actionable insights for improving fraud detection

Dataset Overview

Assumptions

- The team acts as in-house consultants for the bank
- The patterns in the data remain **stationary** over time
- The model is **scalable**
- The model prioritizes **key features**
- No multicollinearity between variables
- Imbalanced data addressed through model-building steps
- The classification cut-off set at 0.5
- **Leakage-free** between training and test sets

Methods

▶ 1 - Data preparation

- Data transformation
- Data inspection
- Exploratory Data Analysis (EDA) through statistical analysis (Chi-square and Ttest) and visualization
- Variable selection :

2 - Pre processing

Make the dataset ready for the machine learning model to learn effectively

Overcome the imbalance data

Splitting

 handling categorical variable (encoding)

10

K-Fold

Cross-

Validation

 upsampling and dummy Creating recipe

3 - Fitting model to training set

- Define model and workflow
- Fit the model to the folds
- Examine and compare results
- Choose the best model

curacy	Sensitivity	PPV	
.672	0.717	0.048	Logistic Regression
.747	0.771	0.066	Random Forest
0.761	0.780	0.070	LightGBM
.760	0.781	0.070	XGBoost

Focus on model selection by prioritizing sensitivity (sensitivity) and precision (PPV) to maximize fraud detection while minimizing false positives, ensuring customer financial security and trust without disrupting legitimate transactions[1]

The best model

4 - Fitting model to testing set

ROC

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

1 - specificity

- Apply the chosen model to the test dataset to validate its performance
- Review the final results to assess the model's effectiveness

5 - Interpret result

Provide insights and recommendations based on the model's predictions and performance

Conclusion & Recommendation

Two-Tier Fraud Flagging System

Implement a flagging system that categorizes transactions as lower-risk or higher-risk, triggering automated alerts for verification accordingly

Higher-risk Lower-risk

alerts (e.g., 2-factor

Strengthen Fraud Management and Customer Security

- Create a dedicated team to review flagged transactions with empathetic customer handling
- Implement automated reminders for security checkups or PIN renewal

Withdrawals and

• Implement Extra Verification Layers Introduce one-time passwords (OTPs) and biometric authentication for

Set Daily Limits

Establish limits on large withdrawals and transfers to control transaction

Offer clients a security delay for suspicious transactions (30 minutes to 1 hour) for customer confirmation and additional bank verification [2]

Results

Evaluation Metrics Prominent Factors Importance Sensitivity 77% Specificity Accuracy T. Type (Withdrawal) T. Day (Wednesday) 2.7% T. Day (Thursday) 0.1% ROC-AUC T. Type (Transfer) | 0.1% *) T. = Transaction 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8

ROC 0.75 -0.75 0.25 1 - specificity

Definitions of each metric and other statistical terms can be found in the glossary

Actual Non Fraud Fraud **Prediction** 2,584 33,376 True Positive False Positive False Negative True Negative 771 113,269

Confusion Matrix

Key Insights from the Model

- Strong performance and reliability
- Accurately identified fraudulent and nonfraudulent transactions, preventing potential financial losses
- High false positives, but it gives opportunity to enhance customer trust and efficiency
- Age is the most significant factor in predicting fraud, followed by transaction and transaction type (withdrawal), with other factors having minimal impact

Glossary

- Sensitivity: Measures the ability of the model to correctly identify actual fraud cases
- Specificity: Indicates how well the model correctly identifies legitimate transactions
- Accuracy: Reflects how often the model's overall predictions are correct
- Positive Predictive Value (PPV): Indicates the percentage of transactions flagged as fraud that
- · Negative Predictive Value (NPV): Shows the percentage of legitimate transactions that are correctly identified as non-fraudulent
- Receiver Operating Characteristic & Area Under the Curve (ROC-AUC): Represents the effectiveness of the model in discriminating between fraud and non-fraud at various thresholds
- True Positive: A correct identification where the model accurately flags a fraudulent transaction
- True Negative: A correct identification where the model correctly identifies a legitimate transaction as non-fraudulent
- False Positive: The model incorrectly identifies a legitimate transaction as fraudulent
- False Negative: The model fails to identify a fraudulent transaction, allowing it to be processed

Acknowledgment & References

The authors acknowledge the invaluable assistance of ChatGPT in brainstorming ideas, debugging code,

and refining grammar throughout this project - We would also like to thank the 704 Course Teaching Team and Aisling Gu from ASB for their valuable

advice and guidance in completing this project [1] Bentivegna, M. (2020). Precision Vs. Recall – Evaluating Model Performance in Credit Card Fraud Detection. Medium. https://towardsdatascience.com/precision-vs-recall-evaluating-model-performance-in-

credit-card-fraud-detection-bb24958b2723 [2] HSBC Innovation Banking. (2023). Cut-off times and value dates. HSBC Innovation Bank Limited. https://www.hsbcinnovationbanking.com/payments-and-fx-cutoff-times