NP-hardness of Nuclear Norm for Tensors

Shmuel Friedland

Univ. Illinois at Chicago

Joint work with Lek-Heng Lim

November 11, 2014, Simons Institute, Berkeley

Overview

- Norms
- Spectral and nuclear norms for matrices and tensors
- Weak membership and weak validity problems in unit ball of norms
- Approximation of norms
- NP-hardness of tensor and nuclear norms

A primer on norms

$$\begin{split} \mathbb{F} &= \mathbb{C}, \mathbb{R}, \text{- basic fields, } \mathbb{F}^m \text{ column space of vectors } \mathbf{x} = (x_1, \dots, x_m)^\top \\ \nu : \mathbb{F}^n &\to [0, \infty) \text{ a norm if} \\ \nu(\mathbf{x}) &> 0 \text{ if } \mathbf{x} \neq \mathbf{0}, \, \nu(\mathbf{x} + \mathbf{y}) \leq \nu(\mathbf{x}) + \nu(\mathbf{y}), \, \nu(a\mathbf{x}) = |a|\nu(\mathbf{x}) \\ B_\nu :&= \{\mathbf{x} \in \mathbb{F}^n, \nu(\mathbf{x}) \leq 1\} \text{-unit ball, } S_\nu := \{\mathbf{x} \in \mathbb{F}^n, \nu(\mathbf{x}) = 1\} \text{-unit sphere} \\ \nu^\vee \text{-the dual norm: } \nu^\vee(\mathbf{x}) = \max\{\Re(\mathbf{y}^*\mathbf{x}), \mathbf{y} \in B_\nu\} = \max\{|\mathbf{y}^*\mathbf{x}|, \mathbf{y} \in S_\nu\} \\ &= \max\{Re(\mathbf{y}^*\mathbf{x}), \mathbf{y} \in \operatorname{Ext} B_\nu\}, \, \operatorname{Ext} B_\nu \text{-extreme points of } B_\nu \\ (\nu^\vee)^\vee &= \nu \\ \text{If } \nu(\mathbf{x}) = \max\{\Re\mathbf{y}^*\mathbf{x}, \mathbf{y} \in S\} \, \forall \mathbf{x} \in \mathbb{F}^n \text{ and a compact balanced } S \in \mathbb{F}^n \\ (aS = S \, \forall a \in \mathbb{F}, |a| = 1), \, \text{then } B_{\nu^\vee} = \operatorname{conv} S \end{split}$$

Eucledian norm
$$\|\mathbf{x}\| := \sqrt{\mathbf{x}^*\mathbf{x}}$$
 is self dual

$$B(\mathbf{x},r):=\{\mathbf{y}\in\mathbb{F}^n,\|\mathbf{y}-\mathbf{x}\|\leq r\},\,r\geq0$$

Spectral and Nuclear Norm for Matrices

$$\mathbb{F}^{m\times n} \text{ - space of } m\times n \text{ matrices } A = [a_{ij}]_{i=j=1}^{m,n}$$

$$\langle A,B\rangle := \operatorname{Tr}(AB^*), \ \|A\|_F = \sqrt{\operatorname{Tr} AA^*} \text{-Frobenius norm}$$

$$\|A\| = \sigma_1(A) := \max_{\|\mathbf{x}\| \le 1} \|A\mathbf{x}\| \text{ - spectral, or operator, or } \ell_2 \text{ norm of } A$$

$$\Omega_{m,n,\mathbb{F}} := \{\mathbf{u}\mathbf{v}^* \in \mathbb{F}^{m\times n}, \|\mathbf{u}\| = \|\mathbf{v}\| = 1\} \text{ balanced compact set}$$

$$\|A\| = \max\{\Re(\operatorname{Tr}(A\mathbf{v}\mathbf{u}^*)) = \Re(\mathbf{u}^*A\mathbf{v}), \mathbf{u}\mathbf{v}^* \in \Omega_{m,n,\mathbb{F}}\}$$

SVD decomposition:

$$A = U\Sigma V^*, UU^* = I_m, VV^* = I_n, \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})$$

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^*, \sigma_1 \ge \ldots \ge \sigma_r > 0, r = \text{rank } A$$

Nuclear norm:
$$||A||_1 := \sum_{i=1}^{\min(m,n)} \sigma_i(A)$$
, F-norm: $||A||_F^2 = \sum \sigma_i^2$

If A is real valued then ||A||, $||A||_1$ over real same as over complex

Complexity of computation of ||A||, $||A||_1$ is O(mn), $O(\min(m, n)mn)$

Importance of matrix nuclear norm in missing entry completion:

Netflex problem

Minimal characterization of matrix nuclear norm

$$B_{nuc} := \{ A \in \mathbb{F}^{m \times n} : \|A\|_1 = \sum_{i=1}^r \sigma_i \le 1 \}$$

$$A = ||A||_1 \sum_{i=1}^r \frac{\sigma_i}{||A||_1} \mathbf{u}_i \mathbf{v}_i^*$$

The set of extreme points of B_{nuc} is $\Omega_{m,n,\mathbb{F}}$

Characterization of spectral norm gives $\|\cdot\|^{\vee} = \|\cdot\|_1$

$$||A||_1 = \min\{\sum_{i=1}^N ||\mathbf{x}_i|| ||\mathbf{y}_i^*||, \sum_{i=1}^N \mathbf{x}_i \mathbf{y}_i^* = A\}$$

Proof
$$||A||_1 = ||\sum_{i=1}^N \mathbf{x}_i \mathbf{y}_i^*|| \le \sum_{i=1}^N ||\mathbf{x}_i \mathbf{y}_i^*||_1 = \sum_{i=1}^N ||\mathbf{x}_i||||\mathbf{y}_i^*||$$

Caratheodory: dim
$$\mathbb{F}^{m \times n} = mn \Rightarrow$$
 it is sufficinient $N = mn + 1$

Alternating Minimization Method (AMM) for computing $||A||_1$:

Choose
$$y_1, \dots, y_N \in \mathbb{F}^n \setminus \{\mathbf{0}\}$$
 in general position (at random)

$$L(A, \mathbf{y}_1, \dots, \mathbf{y}_N) := \{X := [\mathbf{x}_1 \dots \mathbf{x}_N] \in \mathbb{F}^{m \times N}, A = \sum_{i=1}^N \mathbf{x}_i \mathbf{y}_i^* \}$$

Find
$$\min_{X \in L(A, \mathbf{y}_1, ..., \mathbf{y}_N)} \|X\|_y = [\mathbf{x}_{1,1} \dots \mathbf{x}_{N,1}], \|X\|_y := \sum_{i=1}^n \|\mathbf{x}_i\| \|y_i\|$$

Now repeat this minization with respect to y_1, \dots, y_n and so on

Notations

Indices:
$$\mathbf{m} = (m_1, \dots, m_d) \in \mathbb{N}^d$$
, $[m] := \{1, \dots, m\}$

$$J = \{j_1, \dots, j_k\} \subset [d]$$
Tensors: $\bigotimes_{i=1}^d \mathbb{F}^{m_i} = \mathbb{F}^{m_1 \times \dots \times m_d} = \mathbb{F}^{\mathbf{m}}$
Contraction of $\mathcal{T} = [t_{i_1, \dots, i_d}] \in \mathbb{F}^{\mathbf{m}}$ with $\mathcal{X} = [x_{j_1, \dots, j_k}] \in \bigotimes_{j_p \in J} \mathbb{F}^{m_{j_p}}$:
$$\mathcal{T} \times \mathcal{X} = \sum_{j_p \in [m_{j_p}], j_p \in J} t_{i_1, \dots, i_d} x_{j_1, \dots, j_k} \in \bigotimes_{l \in [d] \setminus J} \mathbb{F}^{m_l}$$

is a vector in
$$\mathbb{F}^{m_k}$$

$$\|\mathcal{T}\| = \sqrt{\mathcal{T} \times \bar{\mathcal{T}}}$$
 - Hilbert-Schmidt norm of $\mathcal{T} \in \mathbb{C}^{\mathbf{m}}$

Example $\mathcal{T} \times (\mathbf{x}_1 \otimes \ldots \otimes \mathbf{x}_{k-1} \otimes \mathbf{x}_{k+1} \otimes \ldots \otimes \mathbf{x}_d) =$

$$\langle \mathcal{T}, \mathcal{S} \rangle := \mathcal{T} \times \bar{\mathcal{S}} \text{ inner product in } \mathbb{C}^{\boldsymbol{m}}$$

 $\sum_{i:\in[m_i],i\in[d]\setminus\{k\}} t_{i_1,\ldots,i_d} \prod_{j\in[d]\setminus\{k\}} x_{i_j,j}$

Tensor nuclear and spectral norms - 3-tensor

$$\mathcal{A} \in \mathbb{F}^{l \times m \times n}, \quad \Omega_{m,n,l,\mathbb{F}} := \{ \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \in \mathbb{F}^{m \times n \times l}, \|\mathbf{x}\| \|\mathbf{y}\| \|\mathbf{z}\| = 1 \}$$
$$\|\mathcal{A}\|_{\sigma,\mathbb{F}} := \max_{\mathbf{x},\mathbf{y},\mathbf{z} \neq 0} \frac{\Re \langle \mathcal{A},\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\| \|\mathbf{z}\|} =$$

 $\text{max}\{|\langle \mathcal{A}, \textbf{x} \otimes \textbf{y} \otimes \textbf{z} \rangle|, \textbf{x} \otimes \textbf{y} \otimes \textbf{z} \in \Omega_{\textit{m,n,l},\mathbb{F}}\} \text{ -spectral norm}$

$$\begin{split} \|\mathcal{A}\|_{*,\mathbb{F}} &:= \min \Big\{ \sum_{i=1}^{r} \|\mathbf{x}_{i}\| \|\mathbf{y}_{i}\| \|\mathbf{z}_{i}\| : \mathcal{A} = \sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}, \ r \in \mathbb{N} \Big\} \\ \|\cdot\|_{*,\mathbb{F}} &= \|\cdot\|_{\sigma,\mathbb{F}}^{\vee}, \operatorname{Ext} B_{\|\cdot\|_{*,\mathbb{F}}} = \Omega_{m,n,l,\mathbb{F}}. \end{split}$$

Hillar-Lim: Spectral norm is NP-hard to compute

Theorem: Nuclear norm is NP-hard to compute

Problem: For real tensors do we we have equalities (as for matrices)

$$\|\mathcal{A}\|_{\sigma,\mathbb{R}} = \|\mathcal{A}\|_{\sigma,\mathbb{C}}, \quad \|\mathcal{A}\|_{*,\mathbb{R}} = \|\mathcal{A}\|_{*,\mathbb{C}}?$$

For $A \ge 0$ first equality holds - triangle inequality

Tensor nuclear and spectral norms - d-tensor

$$\mathbb{F}^{m_1 \times ... \times m_d} = \bigotimes_{i=1}^d \mathbb{F}^{m_i}$$
 space of *d*-mode tensors

$$\textit{B}(\textit{m},\mathbb{F}) := \{ \textbf{x} \in \mathbb{F}^{\textit{m}}, \ \|\textbf{x}\| \leq 1 \}, \quad \textit{S}(\textit{m},\mathbb{F}) := \{ \textbf{x} \in \mathbb{F}^{\textit{m}}, \ \|\textbf{x}\| = 1 \}$$

$$\|\mathcal{A}\|_{\sigma,\mathbb{F}}:= \max\Bigl\{|\langle \mathcal{A}, \otimes_{j\in [d]} \mathbf{x}_j \rangle|, \ \mathbf{x}_j \in \mathcal{S}(m_j,\mathbb{F}^{m_j}), j \in [d]\Bigr\}$$

$$\|\mathcal{A}\|_{*,\mathbb{F}} := \text{min}\Big\{\textstyle\sum_{i=1}^r \prod_{j=1}^d \|\boldsymbol{x}_{i,j}\| : \mathcal{A} = \textstyle\sum_{i=1}^r \otimes_{j=1}^d \boldsymbol{x}_{i,j} \ r \in \mathbb{N}\Big\}$$

Spectral and nuclear norms are dual

$$\|\mathcal{A}\|_{\sigma} := \|\mathcal{A}\|_{\sigma,\mathbb{C}}, \|\mathcal{A}\|_* := \|\mathcal{A}\|_{*,\mathbb{C}}$$

$$\|\mathcal{A}\|_{\sigma,\mathbb{F}} \leq \|\mathcal{A}\|_{\sigma} \text{ for } \mathcal{A} \in \mathbb{R}^{m_1 \times ... \times m_d}, \quad \|\mathcal{A}\|_{*,\mathbb{F}} \geq \|\mathcal{A}\|_{\sigma,\mathbb{F}}$$

For
$$\mathbf{x} = (x_1, \dots, x_N)^T \in \mathbb{C}^N$$
 let $|\mathbf{x}| := (|x_1|, \dots, |x_N|)^T$.

Claim
$$\|A\|_{\sigma} \leq \||A|\|_{\sigma}$$

For $A \geq 0$ in characterization of $||A||_{\sigma,\mathbb{R}}$ use $\mathbf{x}_i \geq 0$

Even for matrices one may have $\|A\|_* > \||A|\|_*$

AMM for spectral and nuclear norms

Maximal characterization $\max\Bigl\{|\langle\mathcal{A},\otimes_{j\in[d]}\mathbf{x}_j\rangle|,\;\mathbf{x}_j\in S(m_j,\mathbb{F}^{m_j}),j\in[d]\Bigr\}$ applied to x; yields AMM algo, usually converges to a local minimum $(\mathbf{x}_1^{\star}, \dots, \mathbf{x}_d^{\star})$ - a fixed point of corresponding map yields Newton method: Friedland-Venu 2014 Let $N(>\prod_{i=1}^d m_i)$, $\mathbf{x}_{k,j} \in \mathbb{F}^{m_j} \setminus \{\mathbf{0}\}, k \in [N]$ in general pos. $j \in [d] \setminus \{i\}$ $L(\mathcal{A}, \mathbf{x}, i) := \{X_i = [\mathbf{x}_{1,i} \dots \mathbf{x}_{N,i}] \in \mathbb{F}^{m_i \times N}, \mathcal{A} = \sum_{k=1}^N \otimes_{i=1}^d \mathbf{x}_{k,j}\}$ Min. convex function $||X_i||_X := \sum_{k=1}^N ||\mathbf{x}_{k,i}|| \otimes_{i \in [d] \setminus \{i\}} ||\mathbf{x}_{k,i}||$ on $L(\mathcal{A}, \mathbf{x}, i)$

Alternate all variables

4-tensors and bi-partite density matrices

$$\mathbb{C}^{m\times m}\supset\mathbb{H}^{m\times m}\supset\mathbb{H}_{+}^{m\times m}\supset\mathbb{H}_{+,1}^{m\times m}$$

Hermitian, positive definite and density matrices

$$A = [a_{ij}] \in \mathbb{F}^{m \times n}$$
, $B = [b_{kl}] \in \mathbb{F}^{p \times q}$, Kronecker product $A \otimes B$

$$\begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \vdots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix} = [c_{(i,k)(j,l)}] \in \mathbb{F}^{(mp)\times(nq)}, c_{(i,k)(j,l)} = a_{ij}b_{kl}$$

Viewing
$$\mathcal{C} := [c_{(i,k)(j,l)}] \in \mathbb{F}^{m \times p \times n \times q}$$
 we get $\mathbb{F}^{m \times n} \otimes \mathbb{F}^{p \times q} \sim \mathbb{F}^{m \times p \times n \times q}$

$$\mathcal{C} = [\mathbf{c}_{i,k,j,l}] \in \mathbb{C}^{m \times n \times m \times n}$$
 is called:

Bi-symmetric:
$$c_{i,k,j,l} = c_{j,l,i,k}$$
 for all $i,j,k,l-C = [c_{(i,k)(j,l)}]$ symmetric

Bi-hermitian:
$$c_{i,k,j,l} = \bar{c}_{j,l,i,k}$$
 for all $i, j, k, l - C = [c_{(i,k)(j,l)}]$ hermitian

Positive definite: *C* is hermitian positive semi-definite,

bi-partite density matrix: Tr C = 1

Bi-partite separable states and nuclear norm

Separable states in $\mathbb{C}^{m \times n \times m \times n}$:

$$S(m,n) := \operatorname{conv} ((\mathbf{x} \otimes \mathbf{x}^*) \otimes (\mathbf{y} \otimes \mathbf{y}^*), \mathbf{x} \in S(m,\mathbb{C}), \mathbf{y} \in S(n,\mathbb{C})) \subset \mathbb{H}_{mn,+,1}$$

For
$$\mathcal{A} = [a_{ikjl}] \in \mathbb{C}^{m \times n \times m \times n}$$
 define $\operatorname{tr}(\mathcal{A}) := \sum_{i,j} a_{ijij}$ (= Tr \mathcal{C})

Note
$$\operatorname{Tr} \otimes_{j=1}^4 x_j = (\mathbf{x}_3^{\top} \mathbf{x}_1) (\mathbf{x}_4^{\top} \mathbf{x}_1) \leq \prod_{i=1}^4 \|\mathbf{x}_i\|$$

THM:
$$|\operatorname{Tr} A| \leq ||A||_*$$
 equality iff $A = tB$, $B \in S(m, n)$

Cor. A bipartite density matrix is separable iff its nuclear norm is 1

Gurvits 2003: Weak membership in S(m, n) is NP-hard \Rightarrow :

Membership in the unit ball of nuclear norm on $\mathbb{C}^{m \times n \times m \times n}$ NP-hard

Friedland-Lim: Weak membership is NP-hard

Clique number and spectral norm of 4-tensors

G-graph on n vertices, A(G), $\kappa(G)$ -adjacency matrix, clique number

Motzkin-Strassen 1965: $1 - \frac{1}{\kappa(G)} = \max \mathbf{x}^{\top} A(G) \mathbf{x}$, \mathbf{x} probab. vector

COR: It is NP-hard to approximate $\kappa(G)$ up to order $\frac{1}{n^2}$

F-L: G induces 4-nonnegative symmetric positive definite tensor

 $\mathcal{B}(G) \in \mathbb{C}^{n \times n \times n \times n}$ whose spectral norm is $1 - \frac{1}{\kappa(G)}$

So spectral norm is NP-hard to approximate within arbitrary δ

- 1. We show that this is equivalent to NP-hardness of weak membership in unit ball of spectral norm
- 2. Weak membership in B_{ν} is polynomial iff weak membership in B_{ν} is polynomial

Unit ball of a norm

Norm
$$\nu: \mathbb{R}^n \to [0, \infty)$$
, $\nu\text{-ball } B_{\nu}:=\{x\in \mathbb{R}^M, \ \nu(x)\leq 1\}$ all norms in \mathbb{R}^n are equivalent : \exists rational $K(\nu)\geq k(\nu)>0$: $k(\nu)\|x\|\leq \nu(x)\leq K(\nu)\|x\|$ for all $\mathbf{x}\in \mathbb{R}^n$ $< k(\nu)>, < K(\nu)>$ number of bits encoding $k(\nu), K(\nu)$ $< B_{\nu}>:=< k(\nu)>+< K(\nu)>$ $\frac{1}{\prod_{i=1}^d m_i}\|A\|\leq \frac{1}{\sqrt{\prod_{i=1}^d m_i}}\|A\|\leq \|A\|$ $\sigma\leq \|A\|$, $A\in \mathbb{F}^{m_1\times \ldots \times m_d}$ $\|A\|\leq \|A\|_*\leq \sqrt{\prod_{i=1}^d m_i}\|A\|\leq \prod_{i=1}^d m_i\|A\|$ $< K(\|\cdot\|_\sigma)>+< k(\|\cdot\|_\sigma)>=< K(\|\cdot\|_*)>+< k(\|\cdot\|_*)><< \prod_{i=1}^d m_i>$ For $\epsilon>0$: $S(B_{\nu},\epsilon)$ closed ϵ -neighborhood of B_{ν}

 $S(B_{\nu}, -\epsilon)$ -a closed subset of B_{ν} s.t. $S(S(B_{\nu}, -\epsilon), \epsilon) = B_{\nu}$

Weak membership and validity problems

Given $\mathbf{y} \in \mathbb{R}^n$ and rational $\delta > 0, \gamma, \mathbf{c}$

Membership problem (MEM) for B_{ν} : determine if **y** in B_{ν}

Weak membership problem (WMEM) for B_{ν}

assert either $\mathbf{y} \in S(B_{\nu}, \delta)$ or $\mathbf{y} \not\in S(B_{\nu}, -\delta)$

(Membership implies weak membership)

Weak validity problem (WVAL) problem for B_{ν} :

assert either
$$\mathbf{c}^T \mathbf{x} \leq \gamma + \epsilon$$
 for all $\mathbf{x} \in \mathcal{S}(\mathcal{B}_{\nu}, -\epsilon)$,

or
$$\mathbf{c}^T \mathbf{x} \geq \gamma - \epsilon$$
 for some $\mathbf{x} \in S(B_{\nu}, \epsilon)$

Yudin-Nemirovski: If there exists a deterministic algorithm solving

WMEM problem for
$$B_{
u}, \mathbf{y}, \delta$$
 in Poly($< B_{
u} > + < \delta >$)

then there exists a deterministic algorithm solving WVAL problem for

$$B_{
u}, \mathbf{c}, \gamma, \delta$$
 in Poly $(\langle B_{
u} \rangle + \langle \mathbf{c} \rangle + \langle \gamma \rangle + \langle \delta \rangle)$

Equivalence of weak membership in B_{ν} and $B_{\nu^{\vee}}$ in \mathbb{R}^n

For compact
$$K \subset \mathbb{R}^n$$
, $\mathbf{c} \in \mathbb{R}^n$ set $M(K, \mathbf{c}) := \max_{\mathbf{x} \in K} \mathbf{c}^T x$.

$$u(\mathbf{x}) = M(B_{
u^{\vee}}, \mathbf{x}), \quad K_{
u^{\vee}} = \frac{1}{k_{
u}}, \quad k_{
u^{\vee}} = \frac{1}{K_{
u}}$$

$$(1+k_{\nu}\delta)B_{\nu}\subseteq S(B_{\nu},\delta)\subseteq (1+K_{\nu}\delta)B_{\nu} \text{ for } 0<\delta\in\mathbb{Q}$$

$$(1 - K_{\nu}\delta)B_{\nu} \subseteq S(B_{\nu}, -\delta) \subseteq (1 - k_{\nu}\delta)B_{\nu}$$
 for $K_{\nu}\delta < 1$

$$\left(1-rac{\delta}{\mathcal{K}_{
u}}
ight)
u(\mathbf{x})\geq extit{M}(extit{S}(extit{B}_{
u^ee},-\delta),\mathbf{x})\geq \left(1-rac{\delta}{\mathcal{K}_{
u}}
ight)
u(\mathbf{x})\quad ext{for }rac{\delta}{\mathcal{K}_{
u}}<1$$

$$\left(1 + \frac{\delta}{K_{\nu}}\right) \nu(\mathbf{x}) \leq M(\mathcal{S}(B_{\nu^{\vee}}, \delta), \mathbf{x}) \leq \left(1 + \frac{\delta}{K_{\nu}}\right) \nu(\mathbf{x})$$

LEM: For $k_{\nu} \geq 2$ WVAL in $B_{\nu^{\vee}}$ implies WMEM in B_{ν}

PRF Let
$$x \in \mathbb{Q}^n$$
, $\delta \in (0, \frac{1}{2})$, $\gamma = 1$

If
$$\mathbf{x}^{\top}\mathbf{y} \leq 1 + \delta \ \forall \mathbf{y} \in S(B_{\nu^{\vee}}, -\delta) \Rightarrow \mathbf{x} \in S(B_{\nu}, \delta)$$

If
$$\mathbf{x}^{\top}\mathbf{y} > 1 - \delta$$
 for some $y \in S(B_{\nu_*}, \delta)$ then $\mathbf{x} \notin S(B_{\nu}, -\delta)$

WMEM in $B_{\nu^{\vee}} \Rightarrow$ WVAL in $B_{\nu^{\vee}} \Rightarrow$ WMEM in $B_{\nu} \Rightarrow$ WMEM in B_{ν}

Weak membership and norm approximation I

DEF: ν is polynomially approximable if for all $\|\mathbf{x}\| = 1, \epsilon \in (0, \kappa_{\nu}) \cap \mathbb{Q}$

 \exists pol. time algo in $n + \langle \delta \rangle + \langle K_{\nu} \rangle + \langle k_{\nu} \rangle$ for $\omega(\mathbf{x})$:

$$\omega(\mathbf{X}) - \epsilon < \nu(\mathbf{X}) < \omega(\mathbf{X}) + \epsilon$$

THM: THAE

- (1) ν is polynomially approximable
- (2) Weak membership in B_{ν} is polynomial

PRF: (1)
$$\Rightarrow$$
(2). $\mathbf{x} \in \mathbb{R}^n$, $0 < \delta \in \mathbb{Q}$ given

$$\|\mathbf{x}\| \leq \frac{1}{K_{\nu}} \Rightarrow \nu(\mathbf{x}) \leq 1 \Rightarrow \mathbf{x} \in \mathcal{S}(\mathcal{B}_{\nu}, \delta)$$

$$\|\mathbf{x}\| \geq \frac{1}{k_{\nu}} \Rightarrow \nu(\mathbf{x}) \geq 1 \Rightarrow \mathbf{x} \not\in S(B_{\nu}, -\delta)$$

$$\|\mathbf{x}\| \in (\frac{1}{K_{\nu}}, \frac{1}{k_{\nu}}), \mathbf{y} = \frac{1}{\|\mathbf{x}\|}\mathbf{x}, \epsilon = \frac{k_{\nu}^2 \delta}{2}$$

$$\|\mathbf{x}\|\omega(\mathbf{y}) \leq 1 + rac{k_{
u}\delta}{2} \Rightarrow \mathbf{x} \in \mathcal{S}(B_{
u}, \delta) \text{ otherwise } \mathbf{x}
otin \mathcal{S}(B_{
u}, -\delta)$$

Weak membership and norm approximation II

(2)
$$\Rightarrow$$
 (1). **x** given, $\|\mathbf{x}\| = 1 \to \nu(\mathbf{x}) \in [k_{\nu}, K_{\nu}]$
Set $K_{\nu,0} = K_{\nu}, k_{\nu,0} = k_{\nu}, i = 0$ and assume $\nu(\mathbf{x}) \in [k_{\nu,i}, K_{\nu,i}]$
 $a_i = \frac{k_{\nu,i} + K_{\nu,i}}{2}, \quad \delta_i = \frac{K_{\nu,i} - k_{\nu,i}}{2K_{\nu,i}(K_{\nu,i} + k_{\nu,i})}, \quad \mathbf{y} = \frac{1}{a_i}\mathbf{x}$
If $\mathbf{y} \in S(B_{\nu}, \delta_i) \Rightarrow \nu(\mathbf{x}) = \leq \frac{3}{4}K_{\nu,i} + \frac{1}{4}k_{\nu,i}$
set $k_{\nu,i+1} = k_{\nu,i}, K_{\nu,i+1} = \frac{3}{4}K_{\nu,i} + \frac{1}{4}k_{\nu,i}$
If $\mathbf{y} \notin S(B_{\nu}, -\delta_i) \Rightarrow \nu(\mathbf{x}) = \geq \frac{3}{4}k_{\nu,i} + \frac{1}{4}K_{\nu,i}$
set $k_{\nu,i+1} = \frac{3}{4}k_{\nu,i} + \frac{1}{4}k_{\nu,i}, K_{\nu,i+1} = K_{\nu,i}$

Repeat this procedure
$$O(\log \delta)$$
 times to get $\omega(\mathbf{x}) = \frac{1}{2}(K_{\nu,i} + k_{\nu,i})$

Observe $\nu(\mathbf{x}) \in [k_{\nu,i+1}, K_{\nu,i+1}]$ and $K_{\nu,i+1} - k_{\nu,i+1} = \frac{3}{4}(K_{\nu,i} - k_{\nu,i})$

WMEM for nuclear tensor norm is NP-hard

Finding an ϵ approximation to spectral norm is NP-hard

Equivalent to WMEM in the unit ball of nuclear norm

Finding an WMEM in the uni spectral norm is NP-hard

WMEM for nuclear norm is NP-hard

WMEM of nuclear norm is equivalent to approximation of nuclear norm

Approximation of nuclear norm is NP-hard

References 1

- S. Banach, Über homogene polynome in (*L*²), *Studia Math.* 7 (1938), 36–44.
- B. Chen, S. He, Z. Li, and S, Zhang, Maximum block improvement and polynomial optimization, *SIAM J. Optimization*, 22 (2012), 87–107
- S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric, *Front. Math. China*, 8 (1) (2013), 19–40.
- S. Friedland and L.-H. Lim, Computational Complexity of Tensor Nuclear Norm, arXiv:1410.6072.
- S. Friedland and V. Tammali, Low-rank approximation of tensors, arXiv:1410.6089.

References 2

- Grötschel, M., Lovàsz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
- L. Gurvits. Classical deterministic complexity of Edmonds problem and quantum entanglement, Proc. of the 35th ACM symp. on Theory of comp., pages 10–19, New York, 2003. ACM Press.
- G.J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard," Journal of the ACM, 60 (2013), no. 6, Art. 45, 39 pp.
- L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach. *Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing* (CAMSAP '05), 1 (2005), 129-132.