Skriftlig innlevering 3

Marcus Lexander

C.2

The invertible matrix theorem says that if an $n \times n$ matrix **A** is invertible then the columns of the **A** span \mathbb{R}^n , that is the column space of **A** is \mathbb{R}^n . The theorem also says that the columns of **A** are linearly independent, which means that the columns form a basis for \mathbb{R}^n if and only if **A** is invertible which is true if and only if the determinant of **A** is non zero.

C.3

$$f(x) = a_0 + a_1 x + a_2 x^2 \Rightarrow f(0) = a_0$$

$$f(0) = 0 \Rightarrow a_0 = 0$$

$$W = \{ f : \mathbb{R} \to \mathbb{C} \mid f(x) = a_0 + a_1 x + a_2 x^2, x \in \mathbb{R}, a_0 = 0, a_1, a_2 \in \mathbb{C} \}$$

$$f(x) = a_1 x + a_2 x^2$$

$$f(10) = 10a_1 + 100a_2 = 0$$

$$a_1 = -10a_2$$

$$Y = \{ f : \mathbb{R} \to \mathbb{C} \mid f(x) = a_0 + a_1 x + a_2 x^2, x \in \mathbb{R}, a_2 \in \mathbb{C}, a_1 = -10a_2, a_0 = 0 \}$$