NAME

CUTEST_cchprodsp - CUTEst tool to determine the sparsity structure used when forming the matrix-vector products of a vector with each of the Hessian matrices of the constraint functions.

SYNOPSIS

CALL CUTEST_cchprodsp(status, n, m, lchp, CHP_ind, CHP_ptr)

DESCRIPTION

The CUTEST_cchprodsp subroutine obtins the sparsity structure used when forming the product of a vector with each of the Hessian matrices of the constraint functions c(x) corresponding to the problem decoded from a SIF file by the script *sifdecoder* at the point x = X.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l \le c_i(x) \le c_i^u$. $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cchprodsp are as follows:

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

Ichp [in] - integer

a variable that specifies the declared lengths of CHP_val and CHP_ind. The precise length required may be found by calling *CUTEST_cdimchp* prior to *CUTEST_cchprodsp*,

CHP_ind [inout] - integer

an array that gives the indices of the nonzeros in the result obtained by multiplying the constraint Hessians by VECTOR. The indices for the i-th constraint are stored in $CHP_ind(CHP_ptr(i):CHP_ptr(i+1)-1)$, and will match the values stored in CHP_val from a cutest_cchprods(3M) call.

CHP ptr [inout] - integer

an array of length m+1 that gives pointers to the starting positions in CHP_ind for the indices of the nonzeros for the product with each Hessian. CHP_ptr(m+1)-1 gives the total space required by CHP ind.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization.

N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications 60:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment,

I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,

ACM TOMS, 21:1, pp.123-160, 1995.

 $cutest_cdimchp(3M), cutest_cchprods(3M), sifdecoder(1).$