BCPST2 2014-2015

TP Informatique n° 6 Révisions : méthode de Newton et simulations

1 Résolution d'équation à l'aide de la méthode de Newton

Soit f une fonction de classe C^2 sur un intervalle ouvert I, c un point de I tel que f(c) = 0 et $f'(c) \neq 0$. On admet la proposition suivante :

Proposition 1 Il existe un intervalle ouvert J contenant c tel que pour tout $x \in J$, la suite récurrente (x_n) définie par :

$$\begin{cases} x_0 = x \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

converge vers c.

On ne se préoccupera pas de la justification de la convergence de cette méthode mais on l'observera numériquement sur des exemples.

- Exemple 1 Ecrire l'équation de la tangente à la courbe C_f en un point d'abscisse $x_0 = 0.8$ et déterminer son intersection avec l'axe des abscisses. En déduire graphiquement le comportement des premiers termes de la suite.
- Exercice 1 Ecrire une fonction newton(f,df,x0,eps) prenant en paramètre une fonction f, sa dérivée df, une valeur initiale x_0 et un réel $\varepsilon > 0$, et qui renvoie une valeur approchée de la solution de l'équation f(x) = 0. On prendra comme condition d'arrêt : $|x_{n+1} x_n| \leq \varepsilon$.

Lycée Chaptal 1/3

BCPST2 2014-2015

■ Exercice 2 On souhaite programmer la méthode de Newton sans connaître l'expression de la dérivée.

1. Montrer à l'aide de la formule de Taylor Young que si f est de classe \mathcal{C}^3 , quand $h \to 0$:

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(x)}{2}h + o(h) \text{ et } f'(x) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + o(h)$$

2. Ecrire une fonction newtonbis(f,x0,h,eps) n'utilisant pas l'expression de f' pour le calcul.

Remarque 1 Comparer avec la fonction newton de la bibliothèque scipy.optimize.

2 Exercices de simulation

- **Exercice 3** Soit n un entier naturel non nul. Une urne contient 2n boules indiscernables au toucher:
 - -n sont numérotées 0
 - les autres sont numérotées de 1 à n

On effectue au hasard deux tirages successifs et sans remise d'une boule dans cette urne. On note X le plus grand numéro obtenu et Y le plus petit.

- 1. Déterminer les valeurs prises par X.
- 2. Proposer une représentation informatique de l'urne et écrire une fonction en Python permettant de simuler l'expérience aléatoire décrite, et renvoyant la liste [X,Y]. On testera la fonction pour plusieurs valeurs de n.
- 3. Proposer une fonction permettant de simuler m expériences et retournant la liste des résultats de ces m expériences. Tester la fonction pour différentes valeurs de m et de n.
- 4. Ecrire une fonction permettant d'évaluer la probabilité $\mathbf{P}(X=Y+1)$ à l'aide d'une fréquence. Que vaut la probabilité (théorique) $\mathbf{P}(X=Y+1)$?
- 5. Proposer une illustration graphique de la question précédente.

Lycée Chaptal 2/3

BCPST2 2014-2015

L		
tirag	ercice 4 On considère une urne contenant une boule rouge et une boule verte. On effectes successifs : on tire une boule de l'urne, que l'on remet avec une boule de la même coule X_N le nombre de boules rouges après ces N tirages.	
1.	. Ecrire en Python une fonction $X(\mathbb{N})$ qui renvoie la valeur de X_N .	
2.	. Prendre $N=10$ et effectuer 100 simulations de X_N . Afficher alors la moyenne des obtenues. Exécuter plusieurs fois ces instructions et comparer ces moyennes empirique devient cette moyenne lorsqu'on effectue 10000 simulations de X_N ?	
3.	. Conjecturer la loi de X_N . On pourra afficher les fréquences d'apparition en faisant un diag en bâtons.	gramm
		1

Lycée Chaptal $\ensuremath{3/\ 3}$