Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №2 з дисципліни: «Вакуумна та плазмова електроніка»

Дослідження тліючого розряду

Виконав:		
Студент 3-го курсу	(підпис)	Кузьмінський О.Р.
Перевірив:	(підпис)	Бевза О.М.

Мета завдання: дослідити роботу газорозрядної лампи, а також процеси, що приймають участь в передачі енергії в газорозрядних лампах.

Порядок виконання роботи

- 1) Запустіть програму «Неонова та інші газорозрядні лампи.jar» та ознайомтесь з елементами керування програмою
- 2) Виберіть закладку «Один атом». В списку, що розкривається, «Хімічний елемент» виберіть «Налаштовуваний».
- 3) Використовуючи даний інтерфейс, вкажіть які з перерахованих тверджень правда, а які ні.
 - а.Якщо відстань між двома електронними енергетичними рівнями в атомі А більше, ніж в атомі В, тоді довжина хвилі світла, випромінюваного атомом В, буде більше;
 - b.Якщо відстань між двома електронними енергетичними рівнями в атомі А менше, ніж в атомі В, тоді атом Б буде випромінювати фотони з меншою енергією;
 - с. Фотони випромінюються, коли електрони в атомі набувають енергію;
 - d.Кольори, які випромінює атом, залежать від того, скільки кінетичної енергії має вільний електрон, потрапляючи на атом;
 - е. Кольори, що випромінюються, залежать від кількості вільних електронів, що проходять через лампу;
 - f.Коли вільний електрон потрапляє на атом, атом завжди збуджується до максимально можливого енергетичного рівня;
 - g.Кінетична енергія вільного електрона в точці зіткнення зростає зі збільшенням напруги батареї;
 - h.Кінетична енергія вільного електрона в точці зіткнення вища, якщо атом знаходиться ближче до джерела електронів;

- і. Єдиний спосіб випромінювати ІЧ-фотони це якщо порожні електронні рівні енергії дійсно близькі до основного стану (найнижчий рівень енергії);
- ј.Коли атомні електрони збуджуються на більш високий рівень, вони завжди повертаються до свого найнижчого енергетичного рівня, стрибаючи по одному за раз.

k.Скільки можливих кольорів може випромінювати атом з 6 електронними рівнями енергії (основний стан – 6-й, найнижчий)?

- 4) Виберіть закладку «Багато атомів».
- 5) У вікні «Випроміненя електронів» виберіть «Неперервне». Діапазон у % можна встановити за вашим бажанням.
- 6) Праворуч на екрані, в списку, що розкривається, «Хімічний елемент», почніть з Водню.
- 7) У нижньому правому куті, у полі "Описання" натисніть на Спектрометр.
- 8) Тепер, коли вибрано всі потрібні налаштування, ви можете спостерігати, як «збуджуються» атоми водню всередині газорозрядної трубки. Дайте відповіді на наступні питання:
 - а) Що означає термін «збуджений»?
 - б) Як атоми в імітованій трубці збуджуються?
 - в) Що має статися, щоб збуджені атоми випускали фотони?
 - г) Чому фотони відображаються як різні кольори?
- 9) Запустивши процес моделювання, почекайте коли одна з ліній спектру набуде максимального значення і зафіксуйте спектр. Вкажіть лінії спектру (довжину випромінювання) і їх процентне співвідношення в загальному спектрі випромінювання водню.
- 10) Змінюючи напругу прискорення визначити мінімальну напругу виникнення світіння в газорозрядній трубці для водню. Як напруга прискорення впливає на спектр випромінювання газорозрядної трубки?
- 11) Повторити пункти 10 та 11 для Ртуті, Натрію та Неону.

Обробка результатів вимірювання

Табл. 1. Процентне співвідношення спектру водню

Водень		
15 B		
λ , HM	%	
UV_2	27,5	
UV_1	41,25	
410	12,5	
435	7,5	
485	3,75	
655	2,5	
IR	5	
$U_{min} = 10 \text{ B}$		

Рис. 1. Спектр випромінювання водню

Табл. 2. Процентне співвідношення спектру ртуті

Ртуть		
15 B		
λ , HM	%	
UV	39,29	
300	21,43	
310	9,52	
365	5,95	
410	1,19	
435	4,76	
545	7,14	
680	2,38	
IR	8,33	
$U_{min}=2,25~\mathrm{B}$		

Рис. 2. Спектр випромінювання ртуті

Табл. 3. Процентне співвідношення спектру натрію

Натрій		
3 B		
λ , нм	%	
590	73,33	
620	6,67	
800	2,22	
IR1	11,11	
IR2	6,67	
$U_{min} = 2.1 \text{ B}$		

Рис. 3. Спектр випромінювання натрію

Табл. 4. Процентне співвідношення спектру неону

Неон		
24,75 B		
λ , HM	%	
Uv	31,43	
540	14,29	
585	18,10	
595	0,95	
610	3,81	
620	4,76	
635	6,67	
650	4,76	
670	2,86	
700	6,67	
725	5,71	
$U_{min} = 17 \text{ B}$		

Рис. 4. Спектр випромінювання неону

Відповіді на питання

- а. Якщо відстань між двома електронними енергетичними рівнями в атомі А більше, ніж в атомі В, тоді довжина хвилі світла, випромінюваного атомом В, буде більше; **Так**
- b.Якщо відстань між двома електронними енергетичними рівнями в атомі А менше, ніж в атомі В, тоді атом В буде випромінювати фотони з меншою енергією;
 Hi
- с. Фотони випромінюються, коли електрони в атомі набувають енергію; Так
- d.Кольори, які випромінює атом, залежать від того, скільки кінетичної енергії має вільний електрон, потрапляючи на атом;**Hi**
- е.Кольори, що випромінюються, залежать від кількості вільних електронів, що проходять через лампу;**Hi**
- f.Коли вільний електрон потрапляє на атом, атом завжди збуджується до максимально можливого енергетичного рівня;**Так**
- g.Кінетична енергія вільного електрона в точці зіткнення зростає зі збільшенням напруги батареї;**Ні**
- h. Кінетична енергія вільного електрона в точці зіткнення вища, якщо атом знаходиться ближче до джерела електронів;**Hi**
- і.Єдиний спосіб випромінювати ІЧ-фотони це якщо порожні електронні рівні енергії дійсно близькі до основного стану (найнижчий рівень енергії);**Так**
- ј.Коли атомні електрони збуджуються на більш високий рівень, вони завжди повертаються до свого найнижчого енергетичного рівня, стрибаючи по одному за раз.**Ні**
- k.Скільки можливих кольорів може випромінювати атом з 6 електронними рівнями енергії (основний стан 6-й, найнижчий)? **6**

- 1) Що означає термін «збуджений»? Відповідь: збуджений атом- такий, електрон у якому набувши додадткової енергії, переходить у неосновний стан, на більш високий рівень
- 2) Як атоми в імітованій трубці збуджуються? Відповідь: атоми, які знаходилися близько до електроду, з якого емітували електрони, майже не збуджувались.
- 3) Що має статися, щоб збуджені атоми випускали фотони? Відповідь: електрон, який став збудженим, має повернутись назад у свій основний рівень енергії
- 4) Чому фотони відображаються як різні кольори? Відповідь: колір фотонів які випускає атом залежить від кількості енергетичних рівнів, які в ньому містяться.

Висновок

Отже, газорозрядні лампи працюють на принципі іонізації атомів газу лампи з подальшим випроміненням фотона певної довжини, що визначатиме колір світіння лампи. Підвищуючи напругу на джерелі виявлено, що електрони, емітуюючи с катоду прискорюються ⇒ іонізація атомів пришвидшується й відповідно електрони з більш високою енергією можуть зайняти інші рівні в атомі, й випускати таким чином фотони різної довжини.