SCORE: Approximating Curvature Information under Self-Concordant Regularization

Adeyemi D. Adeoye & Alberto Bemporad (IMT School for Advanced Studies, Lucca, Italy)

Problem

Data: $\{(\boldsymbol{x}_n,\boldsymbol{y}_n)\}_{n=1}^N$, $\boldsymbol{x}_n \in \mathbb{R}^{n_p}$, $\boldsymbol{y}_n \in \mathbb{R}^d$. Objective:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{n_w}} \mathcal{L}(\boldsymbol{\theta}) \triangleq \sum_{n=1}^{N} \ell(\boldsymbol{y}_n, \hat{\boldsymbol{y}}_n) + \lambda \sum_{j=1}^{n_w} r_j(\boldsymbol{\theta}_j). \quad (1)$$

- \blacktriangleright ℓ is the output-fit loss function.
- $ightharpoonup r_j$, define a regularization term on θ , $\lambda > 0$.

Assumptions

- ▶ f, h are respectively γ_l , γ_a -strongly convex.
- \blacktriangleright f, h have γ_u, γ_b -Lipschitz continuous first derivatives g_f , g_h , respectively.
- \blacktriangleright f, h have γ_f, γ_h -Lipschitz continuous second derivatives H_f , H_h , respectively.
- \blacktriangleright λh is M_h -self-concordant:

$$\left| \boldsymbol{u}^T \left(\partial^3 h(\boldsymbol{\theta})[\boldsymbol{u}] \right) \boldsymbol{u} \right| \leq 2 M_h \left(\boldsymbol{u}^T g_h \boldsymbol{u} \right)^{3/2},$$

for any $u \in \mathbb{R}^{n_w}$, $M_h > 0$. Examples are the ℓ^2 -norm and pseudo-Huber function.

Main Contributions

- ► We present the self-concordant regularization (SCORE) framework for (overparameterized) convex models of problem (1).
- ► SCORE extends the idea of *Newton decre*ment in [1] (or its extension in [2]) for selfconcordant functions, and requires only the regularization funtion to be self-concordant, which is less restrictive in practice.
- ► We employ a more general (than popular Woodbury) matrix identity to scale the generalized Gauss-Newton (GGN) computations.

Curvature Approximation

► Second-order (curvature) information in the data is highly desirable and highly expensive.

Newton update:

$$\underbrace{\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k}_{\delta \boldsymbol{\theta}} = -\rho (\underbrace{\boldsymbol{H}_f + \lambda \boldsymbol{H}_h}_{n_w \times n_w})^{-1} (\boldsymbol{g}_f + \boldsymbol{g}_h).$$

- ► Its GGN approximation is efficiently retrieved in SCORE.
- \blacktriangleright We choose a mini-batch size m < N so that $dm + 1 < n_w$ (possibly $dm \ll n_w$).

$$\delta oldsymbol{ heta} = -
ho oldsymbol{H}_h^{-1} oldsymbol{J}^T (\underbrace{\lambda I + Q J oldsymbol{H}_h^{-1} oldsymbol{J}^T}_{(dm+1) imes (dm+1)})^{-1} e^{i t}$$

$$J = \begin{bmatrix} \frac{\partial_{\theta} \hat{y}}{\lambda \partial_{\theta} r} \end{bmatrix}, Q = \begin{bmatrix} \frac{\partial_{\hat{y}\hat{y}}^2 \ell}{0} & 0 \\ 0 & 0 \end{bmatrix}, e = \begin{bmatrix} \frac{\partial_{\hat{y}} \ell}{1} \end{bmatrix}.$$
 Experimental Results

- $ightharpoonup H_h$ is always diagonal! \checkmark
- ▶ $Q(1,1) \equiv I$ if ℓ is the squared loss \checkmark

GGN with SCORE

▶ At each mini-batch sampling time $k \in [1, t_m]$, $t_m \triangleq \lceil \frac{N}{m} \rceil$, compute the update θ_{t+1} using GGN-SCORE algorithm.

Algorithm 1 GGN-SCORE (mini-batch step)

- variables vector θ_k , data 1: Input: $\{(\boldsymbol{x}_n,\boldsymbol{y}_n)\}_{n=1}^m$, \boldsymbol{H}_h , \boldsymbol{Q} , \boldsymbol{J} , \boldsymbol{e} , parameters $\alpha_k, M_h, \lambda > 0$
- 2: Output: variables vector θ_{k+1}
- 3: Compute $\boldsymbol{g}_h = \partial_{\boldsymbol{\theta}_k} h(\boldsymbol{\theta}_k)$
- 4: Choose $\eta_k = ({\bf g}_h^T {\bf H}_h^{-1} {\bf g}_h)^{1/2}$
- 5: Set $\rho_k = \frac{\alpha_k}{1 + M_h \eta_k}$
- 6: Set $G = H_h^{-1} J^T \left(\lambda I + Q J H_h^{-1} J^T \right)^{-1} e$
- 7: Compute $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k \rho_k \boldsymbol{G}$

Key Remark

There exist $\beta, \tilde{\beta}, K_1 > 0$, with $Q \leq K_1 I$, such that $\|e\| \leq \beta, \|J\| \leq \tilde{\beta}$, and hence

$$\|\boldsymbol{\lambda}\boldsymbol{I} + \boldsymbol{Q}\boldsymbol{J}\boldsymbol{H}_h^{-1}\boldsymbol{J}^T\| \leq \boldsymbol{\lambda} + (K/\gamma_a), \qquad K = K_1\tilde{\beta}^2.$$

Main Theorem (Local Convergence Rate)

If $\alpha_k = \alpha = \frac{\sqrt{\gamma_a}}{\beta_1}(K + \lambda \gamma_a)$, $\beta_1 = \beta \tilde{\beta}$, then the iterates of GGN-SCORE satisfy the following descent properties:

Encose a mini-batch size
$$m < N$$
 so that
$$-1 < n_w \text{ (possibly } dm \ll n_w).$$

$$\mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_{k+1})] \leq \mathcal{L}(\boldsymbol{\theta}_k) - \left(\frac{\lambda \omega(\zeta_k)}{M_h^2} + \frac{\gamma_l \omega''(\tilde{\zeta}_k)}{2\gamma_a} - \xi\right),$$

$$\mathbb{E}[\boldsymbol{\theta}_{k+1}] = \mathcal{E}[\boldsymbol{\theta}_{k+1}] = \mathcal{E}[\boldsymbol{\theta}_k] = -\rho \mathbf{H}_h^{-1} \mathbf{J}^T \underbrace{(\lambda \mathbf{I} + \mathbf{Q} \mathbf{J} \mathbf{H}_h^{-1} \mathbf{J}^T)^{-1} \mathbf{e}}_{(dm+1) \times (dm+1)},$$

$$\mathbb{E}[\boldsymbol{\theta}_{k+1}] = \mathcal{E}[\boldsymbol{\theta}_k] = \mathcal{E}[\boldsymbol$$

Figure 1: Convex, "overparameterized"

Figure 2: Nonconvex, "overparameterized"

References

- [1] Yurii Nesterov and Arkadii Nemirovskii. *Interior*point polynomial algorithms in convex programming. SIAM, 1994.
- [2] Wenbo Gao and Donald Goldfarb. Quasi-newton methods: superlinear convergence without line searches for self-concordant functions. Optimization Methods and Software, 34(1):194–217, 2019.

Contact Information

Web adeyemiadeoye.github.io Email adeyemi.adeoye@imtlucca.it