The N-gram Language Model

We covered a lot of concepts in the previous video. You have seen:

- Count matrix
- Probability matrix
- Language model
- Log probability to avoid underflow
- Generative language model

In the count matrix:

- Rows correspond to the unique corpus N-1 grams.
- Columns correspond to the unique corpus words.

Here is an example of the count matrix of a **bigram**.

Bigram count matrix

"study I" bigram

Corpus: <s>I study I learn</s>

	<s></s>		ı	study	learn
<s></s>	0	0	1	0	0
<s> </s>	0	0	0	0	0
l	0	0	0	1	1
study	0	O	1	0	0
learn	0	1	0	0	0

To convert it into a probability matrix, you can use the following formula:

•
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}, w_n)}{C(w_{n-N+1}^{n-1})}$$

•
$$\operatorname{sum}(row) = \sum_{w \in V} C(w_{n-N+1}^{n-1}, w) = C(w_{n-N+1}^{n-1})$$

Now given the probability matrix, you can generate the language model. You can compute the sentence probability and the next word prediction.

To compute the probability of a sequence, you needed to compute:

$$P\left(w_{1}^{n}\right)\approx\prod_{i=1}^{n}P\left(w_{i}\mid w_{i-1}\right)$$

To avoid underflow, you can multiply by the log.

$$\log (P(w_1^n)) \approx \sum_{i=1}^n \log (P(w_i \mid w_{i-1}))$$

Finally here is a summary to create the generative model:

Corpus:

<s> Lyn drinks chocolate </s>

<s> John drinks tea </s>

<s> Lyn eats chocolate </s>

- 1. (<s>, Lyn) or (<s>, John)?
- 2. (Lyn,eats) or (Lyn,drinks)?
- 3. (drinks,tea) or (drinks,chocolate)?
- 4. (tea,</s>) always

Algorithm:

- 1. Choose sentence start
- 2. Choose next bigram starting with previous word
- 3. Continue until </s> is picked