

Module 1 Unit 1 PRINCIPLES OF LASERS - FORMULAS

(As per Revised Curriculum SVU R-2023)

Parameter	Formula
1. Energy of radiation;	$E = \frac{hc}{\lambda}$
Wavelength of laser emitted	$\lambda = \frac{hc}{E_2 - E_1}$
2. Number of photons emitted/sec;	$n_{t} = \frac{P_{\text{optical}} \times \lambda}{hc}$
Number of photons emitted	$n = n_t \times \Delta t$
3. Beam Intensity	$I = \frac{P}{A}$
4. Efficiency of laser (electrical pumping/direct conversion)	$\eta = \frac{P_{\text{optical}}}{V_{\text{operating}} \times I_{\text{operating}}}$
5. Coherence length	$l_{coh} = \frac{\lambda^2}{\Delta \lambda}$
6. Divergence	$\Phi = \frac{d_1 - d_2}{Z_1 - Z_2}$
7. Ratio of population of two energy levels	$\frac{N_1}{N_2} = e^{(E_2 - E_1)/kT}$
8. Ratio of rates of spontaneous to stimulated emission	
9. Ratio of Einstein's A and B coefficients	$\frac{A_{21}}{B_{21}} = \frac{8\pi h \nu^3}{c^3}$
10. Threshold condition for lasing	$\gamma = \alpha_{\rm C} + \frac{1}{2L} \ln \frac{1}{R_1 R_2}$
