RB5: A Low-Cost Wheeled Robot for Real-Time Autonomous Large-Scale Exploration

Adam Seewald¹, Marvin Chancán¹, Connor M. McCann², Seonghoon Noh¹, Omeed Fallahi¹, Hector Castillo¹, Ian Abraham¹, and Aaron M. Dollar¹

Abstract—In this paper, we present a robotic system-of-systems involving a six-wheel mobile robot with resilient autonomy, as well as mapping, planning, and navigation capabilities to explore complex ground and underground environments.

Index Terms—Article submission, IEEE, IEEEtran, journal, Lagrange, template, typesetting.

I. Introduction

TX IDELY used in cluttered environments [1]–[4], mobile robots can both substitute [5] and outperform humans in, e.g., areas that are too far or too dangerous to navigate [6]-[9]. In these areas, robots are often required to identify their surroundings by sensing the environment [10] and planning and executing complex trajectories [11], [12] with little or no human intervention [13], a problem known as autonomous exploration [11]. Despite recent advancements, autonomy is limited and costly. There is a wide range of methodologies for autonomous exploration at present [14] nonetheless, which span from algorithmic foundations [14]–[16] to system-ofsystems frameworks where, e.g., a multitude of robots integrate existing algorithms with sensors for large-scale exploration [3], [7]–[9], [17]. While successful in challenging indoor and outdoor environments [14], [18], autonomous exploration is especially useful in dynamic environments with no priori knowledge of the space to be covered [5], [19]. Here, many approaches that tackle the problem integrate commercial robots with sensing equipment that is both prohibitively expensive and difficult to maintain [8], [9], [14], [16]–[18], [20], [21]. Recent efforts include low-cost robots for exploration [20], [22], [23] but lack terrain adaptability [20] and computational capabilities [22], [23].

Furthermore, in areas that are ambiguous or challenging to traverse–albeit autonomous–state-of-the-art approaches rely on humans for supervision and high-level decision-making [3], [7], [8]. As a result, robots often operate close to humans or require expensive network equipment, such as a mesh of communication devices [2], [3], [9], or existing network

Manuscript received: Month, Day, Year; Revised Month, Day, Year; Accepted Month, Day, Year.

This paper was recommended for publication by Editor Editor A. Name upon evaluation of the Associate Editor and Reviewers' comments.

¹A. S., C. M., S. N., O. F., H. C, I. A., and A. M. D. are with the Department of Mechanical Engineering and Materials Science, Yale University, CT, USA. Email: adam.seewald@vale.edu;

C. M. C. is with the School of Engineering and Applied Sciences, Harvard University, MA, USA.

Digital Object Identifier (DOI): see top of this page.

infrastructure [24]–[26], thereby restricting autonomous exploration to indoor settings only [12], [27]–[30]. Conversely, our methodology exploits LoRa–an inexpensive long-range and low-power communication technology [31] from the internet-of-things domain—with a customized communication protocol. Exploiting the protocol for human intervention in, e.g., the eventuality of the robot being unable to move with local sensory information, our approach further consists of RB5–a novel rocker-bogie-like mobile robot capable of traversing rough terrain—and of an open-source exploration framework.

The remainder of the letter is then structured as follows. Sec. II summarizes and compares existing literature, Sec. III formalizes the problem of autonomous exploration, Sec. IV describes RB5 from the mechanical standpoint, conversely to Sec. V, which discusses its methodology for autonomous exploration. Sec. VI describes indoors and outdoors "in the field" experiments, whereas Sec. VII drafts conclusions a proposes future directions.

II. RELATED WORK
III. PROBLEM FORMULATION
IV. RB5 MECHANICAL DESIGN
V. LARGE-SCALE EXPLORATION
VI. FIELD EXPERIMENTS

VII. CONCLUSION AND FUTURE DIRECTIONS

REFERENCES

- S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O. von Stryk, "Hector open source modules for autonomous mapping and navigation with rescue robots," in *RoboCup 2013: Robot World Cup XVII*. Springer, pp. 624–631.
- [2] M. Kulkarni, M. Dharmadhikari, M. Tranzatto, S. Zimmermann, V. Reijgwart, P. De Petris, H. Nguyen, N. Khedekar, C. Papachristos, L. Ott, R. Siegwart, M. Hutter, and K. Alexis, "Autonomous teamed exploration of subterranean environments using legged and aerial robots," in *International Conference on Robotics and Automation (ICRA'22)*. IEEE, 2022, pp. 3306–3313. 1
- [3] M. Tranzatto, F. Mascarich, L. Bernreiter, C. Godinho, M. Camurri, S. Khattak, T. Dang, V. Reijgwart, J. Löje, D. Wisth, S. Zimmermann, H. Nguyen, M. Fehr, L. Solanka, R. Buchanan, M. Bjelonic, N. Khedekar, M. Valceschini, F. Jenelten, M. Dharmadhikari, T. Homberger, P. De Petris, L. Wellhausen, M. Kulkarni, T. Miki, S. Hirsch, M. Montenegro, C. Papachristos, F. Tresoldi, J. Carius, G. Valsecchi, J. Lee, K. Meyer, X. Wu, J. Nieto, A. Smith, M. Hutter, R. Siegwart, M. Mueller, M. Fallon, and K. Alexis, "CERBERUS: Autonomous legged and aerial robotic exploration in the tunnel aurban circuits of the DARPA Subterranean Challenge," Field Robotics, vol. 2, pp. 274–324, 2022. 1
- [4] H. Kim, H. Kim, S. Lee, and H. Lee, "Autonomous exploration in a cluttered environment for a mobile robot with 2d-map segmentation and object detection," *IEEE Robotics and Automation Letters*, vol. 7, no. 3, pp. 6343–6350, 2022.
- [5] F. Rubio, F. Valero, and C. Llopis-Albert, "A review of mobile robots: Concepts, methods, theoretical framework, and applications," *International Journal of Advanced Robotic Systems*, vol. 16, no. 2, p. 22, 2019.
- [6] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, "Learning robust perceptive locomotion for quadrupedal robots in the wild," *Science Robotics*, vol. 7, no. 62, p. 14, 2022.
- [7] T. Rouček, M. Pecka, P. Čížek, T. Petříček, J. Bayer, V. Šalanský, D. Heřt, M. Petrlík, T. Báča, V. Spurný, F. Pomerleau, V. Kubelka, J. Faigl, K. Zimmermann, M. Saska, T. Svoboda, and T. Krajník, "DARPA subterranean challenge: Multi-robotic exploration of underground environments," in *Modelling and Simulation for Autonomous Systems*. Springer, 2020, pp. 274–290. 1
- [8] W. Tabib, K. Goel, J. Yao, C. Boirum, and N. Michael, "Autonomous cave surveying with an aerial robot," *IEEE Transactions on Robotics*, vol. 38, no. 2, pp. 1016–1032, 2022.
- [9] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden, A. Thakur, N. Funabiki, B. Morrell, S. Wood, L. Carlone, and A.a. Agha-mohammadi, "LAMP: Large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments," in *International Conference on Robotics and Automation* (ICRA'20). IEEE, 2020, pp. 80–86.
- [10] Y. Mei, Y.-H. Lu, C. Lee, and Y. Hu, "Energy-efficient mobile robot exploration," in *International Conference on Robotics and Automation* (ICRA'06). IEEE, 2006, pp. 505–511.
- [11] R. Shrestha, F.-P. Tian, W. Feng, P. Tan, and R. Vaughan, "Learned map prediction for enhanced mobile robot exploration," in *International Conference on Robotics and Automation (ICRA'19)*. IEEE, 2019, pp. 1197–1204.
- [12] A. Eldemiry, Y. Zou, Y. Li, C.-Y. Wen, and W. Chen, "Autonomous exploration of unknown indoor environments for high-quality mapping using feature-based RGB-D SLAM," *Sensors*, vol. 22, no. 14, p. 16, 2022.
- [13] M. B. Alatise and G. P. Hancke, "A review on challenges of autonomous mobile robot and sensor fusion methods," *IEEE Access*, vol. 8, pp. 39 830–39 846, 2020.
- [14] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A. Castellanos, "A survey on active simultaneous localization and mapping: State of the art and new frontiers," *IEEE Transactions on Robotics*, p. 20, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2207.00254 1
- [15] B. Yamauchi, "A frontier-based approach for autonomous exploration," in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation', 1997, pp. 146–151.
- [16] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis, "Graph-based path planning for autonomous robotic exploration in subterranean environments," in 2019 IEEE/RSJ International Conference

- on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 3105–3112.
- [17] D. Tardioli, L. Riazuelo, D. Sicignano, C. Rizzo, F. Lera, J. L. Villarroel, and L. Montano, "Ground robotics in tunnels: Keys and lessons learned after 10 years of research and experiments," *Journal of Field Robotics*, vol. 36, no. 6, pp. 1074–1101, 2019.
- [18] I. Lluvia, E. Lazkano, and A. Ansuategi, "Active mapping and robot exploration: A survey," Sensors, vol. 21, no. 7, 2021.
- [19] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, "Receding horizon "next-best-view" planner for 3D exploration," in *International Conference on Robotics and Automation (ICRA'16)*. IEEE, 2016, pp. 1462–1468.
- [20] M. Müller and V. Koltun, "OpenBot: Turning smartphones into robots," in *International Conference on Robotics and Automation (ICRA'21)*. IEEE, 2021, pp. 9305–9311.
- [21] H. Surmann, A. Nüchter, and J. Hertzberg, "An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments," *Robotics and Autonomous Systems*, vol. 45, no. 3, pp. 181–198, 2003. 1
- [22] B. Zhou, Z. Wu, and X. Liu, "Smartphone-based robot indoor localization using unertial sensors, encoder and map matching," in *International Conference on Automation, Control and Robots (ICACR'21)*. IEEE, 2021, pp. 145–149.
- [23] S. M. F. Faisal, T. Rahman, and M. A. Kabir, "A low-cost rough terrain explorer robot fabrication using rocker bogie mechanism," in *Interna*tional Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2'21), 2021, pp. 1–4.
- [24] K. Ismail, R. Liu, J. Zheng, C. Yuen, Y. L. Guan, and U.-X. Tan, "Mobile robot localization based on low-cost LTE and odometry in GPSdenied outdoor environment," in *International Conference on Robotics and Biomimetics (ROBIO'19)*. IEEE, 2019, pp. 2338–2343.
- [25] "ROS-based unmanned mobile robot platform for agriculture," Applied Sciences, vol. 12, no. 9, p. 13, 2022.
- [26] F. Voigtländer, A. Ramadan, J. Eichinger, C. Lenz, D. Pensky, and A. Knoll, "5G for robotics: Ultra-low latency control of distributed robotic systems," in *International Symposium on Computer Science and Intelligent Controls (ISCSIC'17)*. IEEE, 2017, pp. 69–72. 1
- [27] C. Delgado, L. Zanzi, X. Li, and X. Costa-Pérez, "OROS: Orchestrating ROS-driven collaborative connected robots in mission-critical operations," in *International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM'22)*. IEEE, 2022, pp. 147–156.
- [28] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, "Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age," *IEEE Transactions on Robotics*, vol. 32, no. 6, pp. 1309–1332, 2016. 1
- [29] M. Corah, C. O'Meadhra, K. Goel, and N. Michael, "Communication-efficient planning and mapping for multi-robot exploration in large environments," *IEEE Robotics and Automation Letters*, vol. 4, no. 2, pp. 1715–1721, 2019.
- [30] C. Papachristos, S. Khattak, and K. Alexis, "Uncertainty-aware receding horizon exploration and mapping using aerial robots," in *International Conference on Robotics and Automation (ICRA'17)*. IEEE, 2017, pp. 4568–4575.
- [31] J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, "A survey on LoRa networking: Research problems, current solutions, and open issues," *IEEE Communications Surveys & Tutorials*, vol. 22, no. 1, pp. 371– 388, 2020.