3 α , β を $0<\alpha<\beta<\pi$ を満たす定数とし,t を変数とする.空間内の曲線 $(x(t),\,y(t),\,z(t))$ を

$$x(t) = \sin(t + \alpha),$$

$$y(t) = \sin(t + \beta),$$

$$z(t) = \sin t$$

で定める.ただしt は $0 \le t < 2\pi$ の範囲で動くこととする.

- (1) この曲線は原点を通る平面に含まれることを示し、その平面の方程式を求めよ.
- (2) $\alpha=\theta$, $\beta=2\theta$ とおき , θ を $0<\theta<\frac{\pi}{2}$ の範囲で動かすとき , (1) で求めた平面と点 $(-1,\,2,\,0)$ との距離の最大値を求めよ .