CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 20: GNN for Molecular Structure

Yunan Luo

Protein Folding & Protein Design

- **Protein folding** (protein structure prediction)
 - Sequence -> Structure

Amino acid sequence

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

Protein structure

Protein design

Structure -> Sequence

Protein structure

Algorithm / Model

Amino acid sequence

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

Two GNN papers today

- Paper #1: Invariant GNN
- Paper #2: Equivariant GNN

Invariance & Equivariance

- The analogy in image domain
 - Classification: invariant label
 - Segmentation: equivariant pixel coordinates

Paper #1: GNN for structure-based protein design

Ingraham et al. "Generative models for graph-based protein design", NeurIPS, 2019

Structure-based PLM

Traditional PLM (sequence-based)

Structure-based PLM

Invariant GNN

3D considerations For a rigid-body design problem, the structure for conditioning is a fixed set of backbone coordinates $\mathcal{X} = \{x_i \in \mathbb{R}^3 : 1 \leq i \leq N\}$, where N is the number of positions¹. We desire a graph representation of the coordinates $\mathcal{G}(\mathcal{X})$ that has two properties:

- *Invariance*. The features are invariant to rotations and translations.
- Locally informative. The edge features incident to v_i due to its neighbors N(i), i.e. $\{e_{ij}\}_{j\in N(i)}$, contain sufficient information to reconstruct all adjacent coordinates $\{x_j\}_{j\in N(i)}$ up to rigid-body motion.

Molecule structure

Molecule

1D representation (SMILES string)

CC1(C)[C@H](C(O)=O)N2[C@@H](CC2)S1

3D representation (coordinates)

• 2D representation (graph)

Surface representation (mesh)

Deep learning for molecule structure (1D)

SMILES string: linear representation of a molecule

Example: RNN-based models

Deep learning for molecule structure (2D)

Example: Graph neural network (GNN)

Deep learning for molecule structure (3D)

Example: Equivariant Graph neural network

Why invariance and equivariance?

- Invariance
 - $\circ F(T(X)) = F(X)$
 - Output remains the same no matter how the input is rotated, shifted, etc
 - Motivation: many molecular descriptors are invariant to the rotation and translation of the molecular representation

- Equivariance
 - $\circ F(T(X)) = TF(X)$
 - Output changes in the same way as the input
 - Motivation: some property changes following a symmetry transformation (e.g., chiral properties that change under reflection of the molecule)

- X: input molecule
- **F**: neural network
- *T*: transformation (e.g., rotation, translation, reflection)

Atz et al., Nature Machine Intelligence, 2021