Midterms Revision Guide

30.102 Electromagnetics & Applications, Term 5 2020

Wei Min Cher

16 Mar 2020

Contents

1	W 1:	waves and Fhasorss	3	
	1.1	Waves	3	
	1.2	Time-varying Sinusoidal Waves	3	
	1.3	Complex Numbers	4	
	1.4	Phasors	4	
	1.5	Phasor Analysis	5	
	1.6	Impedance	5	
2	W2:	: Antennas I	6	
	2.1	Properties	6	
	2.2	Antenna Field Regions	6	
	2.3	Far Field Approximation	6	
	2.4	Radiation Mechanism	7	
	2.5	Hertzian Dipole	7	
3	W3:	: Transmission Lines	8	
	3.1	Unbounded & Guided Waves	8	
	3.2	Transmission Lines	8	
	3.3	Distributed Transmission Line Model	9	
		3.3.1 Surface Resistance and Other Useful Relations	10	
		3.3.2 Summary for Distributed Transmission Line Model	10	
	3.4	Transmission Line Equations	10	
	3.5	Characteristic Parameters	10	
		3.5.1 Propagation Constant	10	
		3.5.2 Characteristic Impedance	11	
		3.5.3 Summary for Characteristic Parameters	11	
	3.6	Dispersion & Guided Wavelength	11	
	3 7	7 Standing Wayes & Standing Waye Pattern		

	3.8	Reflection Coefficient	13
	3.9	Wave Impedance	13
	3.10	Input Impedance	13
	3.11	Short-Circuited Line	14
	3.12	Open-Circuited Line	14
	3.13	Measuring Characteristic Impedance and Phase Constant	14
	3.14	Quarter and Half Wavelength TLs	14
	3.15	Instantaneous Power of a Lossless TL	15
	3.16	Time-Average Power of a Lossless TL	15
4	WE.	Mataking Naturauka	16
4		Matching Networks	16
	4.1		16
	4.2		16
	4.3		16
	4.4	Lumped Element Matching	16
5	W5:	Smith Chart	17
	5.1	How to Use the Smith Chart	17
6	W6:	Vector Algebra	18
	6.1	Basic Vector Operations	18
	6.2	Dot Product	18
	6.3	Cross Product	18
	6.4	Scalar Triple Product	19
	6.5	Vector Triple Product	19
A	6.5 App		19 20
A	App	endix	
A	App A.1	endix Derivatives	20
A	Appe A.1 A.2	endix Derivatives	20 20

1 W1: Waves and Phasorss

1.1 Waves

- At high f, the phase plays an important role.
- Carry energy through vacuum.
 - ∘ ✓: EM waves, ×: mechanical waves
- Types of waves:
 - o Transverse waves (displacement ⊥ direction of wave travel) e.g. EM waves
 - Longitudinal waves (displacement || direction of wave travel) e.g. sound waves
 - o Surface waves (circular motion) e.g. water, ocean waves

1.2 Time-varying Sinusoidal Waves

• General equation:

$$y(x,t) = Ae^{-\alpha x}\cos(\omega t - \beta x + \phi_0)$$

- Parameters:
 - 1. Amplitude, A: maximum extent of vibration
 - 2. Wavelength, λ : distance between 2 points with same displacement
 - 3. Time period, T: amount of time for particle to travel back to same position
 - 4. Frequency, f: number of periods in 1 second

$$f = \frac{1}{T} \quad (Hz)$$

5. Phase, ϕ :

$$\phi = \frac{2\pi t}{T} - \frac{2\pi x}{\lambda} + \phi_0$$
, where ϕ_0 is the initial/reference phase

6. Initial/reference phase, ϕ_0 :

$$\phi_0 = \arccos\left(\frac{y(0,0)}{A}\right)$$

- ϕ_0 < 0: phase leading
- $\phi_0 > 0$: phase lagging
- 7. Phase/propagation velocity, u_p :

$$u_p = f\lambda = \frac{\omega}{\beta}$$
 (m/s)

8. Angular frequency/velocity, ω :

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 (rad/s)

9. Wavenumber, β :

$$\beta = \frac{2\pi}{\lambda} \quad (\text{rad/m})$$

- 10. Direction of propagation:
 - Positive x-direction: $y(x, t) = Ae^{-\alpha x}\cos(\omega t \beta x + \phi_0)$
 - Signs of ωt and βx are opposite
 - Negative x-direction: $y(x, t) = Ae^{-\alpha x} \cos(\omega t + \beta x + \phi_0)$
 - Signs of ωt and βx are the same
- 11. Attenuation factor, $e^{-\alpha x}$: factor that amplitude decreases by
 - \circ Attenuation constant of medium, α
 - Units: Neper per meter (Np/m)

Solve for
$$\alpha$$
 using $\frac{Ae^{-\alpha x_1}}{Ae^{-\alpha x_1}} = \frac{y_1}{y_2}$.

1.3 Complex Numbers

- Rectangular form: z = x + jy (easier to perform addition and subtraction)
 - \circ where x = Re(z); y = Im(z)
- Polar form: $z = |z|e^{j\theta} = |z|/\theta$ (easier to perform multiplication and division)
 - \circ |z|: magnitude of z; θ : phase angle; $/\theta$: shorthand for $e^{j\theta}$
- **Euler's identity**: $e^{j\theta} = \cos \theta + j \sin \theta$

Similarly,
$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
; $\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$.

1.4 Phasors

• Any cosinusoidally time-varying function z(t) can be expressed as

 $z(t) = \text{Re}\left[\widetilde{Z}e^{j\omega t}\right]$, where \widetilde{Z} is the phasor of the instantaneous function z(t).

4

• Time domain voltage across resistors, inductors and capacitors

• Resistors:
$$v_R(t) = Ri(t)$$
 \Leftrightarrow $v_R(t) = R \cdot \text{Re} \left[\widetilde{I} e^{j\omega t} \right]$

$$\circ \text{ Inductors: } v_L(t) = L \frac{di(t)}{dt} \quad \Leftrightarrow \quad v_L(t) = L \cdot \text{Re} \left[j \omega \widetilde{I} e^{j \omega t} \right]$$

• Capacitors:
$$v_C(t) = \frac{1}{C} \int i(t) dt \quad \Leftrightarrow \quad v_C(t) = \frac{1}{C} \cdot \text{Re} \left[\frac{\widetilde{I}}{j\omega} e^{j\omega t} \right]$$

1.5 Phasor Analysis

1. Adopt a cosine reference.

• e.g.
$$v_S(t) = V_0 \sin(\omega t + \phi_0) = V_0 \cos(\frac{\pi}{2} - \omega t + \phi_0) = V_0 \cos(\omega t + \phi_0 - \frac{\pi}{2})$$

- 2. Express time-dependent variables as phasors.
- 3. Write equation in phasor form.
- 4. Solve phasor domain equation.
- 5. Find instantaneous value.

$$i(t) = \operatorname{Re}\left[\widetilde{I}e^{j\omega t}\right]$$

1.6 Impedance

- Ratio of phasor voltage across element to phasor current through element, $Z = \frac{\widetilde{V}}{\widetilde{I}}$
- Impedance of resistors, inductors and capacitors
 - Resistor: $Z_R = R$
 - Inductor: $Z_L = j\omega L$
 - Capacitor: $Z_C = \frac{1}{j\omega C}$

2 W2: Antennas I

Definition of antenna: a transducer that converts guided wave on TL ⇔ EM wave in free space

2.1 Properties

- 1. Reciprocity: Same radiation pattern for reception and transmission on 3 conditions:
 - (a) Materials used for the antennas are linear.
 - (b) Wave propogation medium is linear.
 - (c) Transmit and receive modes of antenna are polarization matched.
- 2. Transmission Line Equivalent Circuit

Figure 1: Transmission-line equivalent circuit of antenna from Balanis' Antenna Theory (2016)

3. Radiation efficiency, ξ

$$\xi = \frac{P_{\text{rad}}}{P_{\text{t}}}$$

- \circ where P_{rad} is the radiated power,
- \circ and P_t is the transmitter power.

2.2 Antenna Field Regions

Letting D be the largest dimension of the antenna and λ be the wavelength, they are:

- 1. Reactive near-field region: at a distance *R*, where $0 < R < 0.62 \sqrt{\frac{D^3}{\lambda}}$
- 2. Radiating near-field (Fresnel) region: at distance R, where $0.63 \sqrt{\frac{D^3}{\lambda}} < R < \frac{2D^2}{\lambda}$
- 3. Far-field (Fraunhofer) region: at a distance R, where $R > \frac{2D^2}{\lambda}$

2.3 Far Field Approximation

- Near radiation source: spherical wavefronts
- Far field: approximated as plane waves

2.4 Radiation Mechanism

- To create radiation, there must be:
 - o either a time-varying current,
 - o or an acceleration/deceleration of charge.
- Electric charges needed to excite fields but not sustain them.

2.5 Hertzian Dipole

- A thin, linear conductor with a length ℓ , where $\ell < \frac{\lambda}{50}$
- Current i(t) is constant along the wire
- Current i(t) = 0 at the ends of the wire

3 W3: Transmission Lines

3.1 Unbounded & Guided Waves

- Unbounded waves
 - o Propagate in a homogeneous medium
 - No obstacles
 - o No material interface
- Guided waves
 - o Propagate along a material surface/structure
 - o e.g. coax cable <30 GHz, waveguide 5-100 GHz

3.2 Transmission Lines

- Can be classified into 2 types:
 - 1. Transverse electromagnetic (TEM) transmission lines
 - Electric and magnetic fields transverse to direction of propagation
 - Non-transverse fields negligible
 - Common feature: 2 || conducting surfaces
 - e.g. coaxial line, two-wire line, parallel-plate line, strip line, microstrip line, coplanar waveguide, etc.
 - 2. Higher-order transmission lines
 - ≥ 1 significant field component in direction of propagation
 - e.g. rectangular waveguide, optical fibre, etc.

3.3 Distributed Transmission Line Model

• 4 transmission line parameters:

- 1. R': Resistance per unit length in Ω/m
- 2. L': Inductance per unit length in H/m
- 3. G': Conductance per unit length in S/m
- 4. C': Capacitance per unit length in F/m

• Geometric parameters

- o Coaxial line
 - a: Outer radius of inner conductor in m
 - b: Inner radius of outer conductor in m
- o Two-wire line
 - d: Diameter of each line in m
 - D: Spacing between the centers of the wires in m
- o Parallel-plate line
 - w: Width of each plate in m
 - h: Thickness of insulation between plates in m

• Constitutive parameters

- Conductors
 - μ_c : Magnetic permeability of conductors
 - σ_c : Electrical conductivity of conductors
- Insulators
 - ϵ : Electrical permittivity of insulating material
 - μ : Magnetic permeability of insulating material
 - ullet σ : Electrical conductivity of insulating material

3.3.1 Surface Resistance and Other Useful Relations

• Surface Resistance,
$$R_s = \sqrt{\frac{\pi f \mu_c}{\sigma_c}}$$

• Perfect conductor: $\sigma_c = \infty$, $\Rightarrow R_s$ and R' = 0.

• Perfect dielectric: $\sigma = 0, \Rightarrow G' = 0$.

• Air line: $\epsilon = \epsilon_0$, $\mu = \mu_0$, $\sigma = 0$, G' = 0.

• All TEM transmission lines have the following relationships:

$$L'C' = \mu \epsilon$$
$$\frac{G'}{C'} = \frac{\sigma}{\epsilon}$$

3.3.2 Summary for Distributed Transmission Line Model

Parameter	Coaxial	Two-Wire	Parallel-Plate	Unit
R'	$\frac{R_s}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$	$\frac{2R_s}{\pi d}$	$\frac{2R_s}{w}$	Ω/m
L'	$\frac{\mu}{2\pi} \ln \frac{b}{a}$	$\frac{\mu}{\pi} \ln \left[\frac{D}{d} + \sqrt{\left(\frac{D}{d}\right)^2 - 1} \right]$	$\frac{\mu h}{w}$	H/m
G'	$\frac{2\pi\sigma}{\ln\left(\frac{b}{a}\right)}$	$\frac{\pi\sigma}{\ln\left[\frac{D}{d} + \sqrt{\left(\frac{D}{d}\right)^2 - 1}\right]}$	$\frac{\sigma w}{h}$	S/m
C,	$\frac{2\pi\epsilon}{\ln\left(\frac{b}{a}\right)}$	$\frac{\pi\epsilon}{\ln\left[\frac{D}{d} + \sqrt{\left(\frac{D}{d}\right)^2 - 1}\right]}$	$\frac{\epsilon w}{h}$	F/m

3.4 Transmission Line Equations

$$-\frac{\partial v(z,t)}{\partial z} = R' \ i(z,t) + L' \frac{\partial i(z,t)}{\partial t} \quad \Leftrightarrow \quad -\frac{\partial \widetilde{V}(z)}{\partial z} = (R' + j\omega L')\widetilde{I}(z)$$

$$-\frac{\partial i(z,t)}{\partial z} = G' \ v(z,t) + C' \frac{\partial v(z,t)}{\partial t} \quad \Leftrightarrow \quad -\frac{\partial \widetilde{I}(z)}{\partial z} = (G' + j\omega C')\widetilde{V}(z)$$

3.5 Characteristic Parameters

3.5.1 Propagation Constant

$$\gamma = \sqrt{(R'+j\omega L')(G'+j\omega C')} = \alpha + j\beta$$

• γ : complex propagation constant

• α : attenuation constant in Np/m

• β: phase constant in rad/m

3.5.2 Characteristic Impedance

$$Z_0 = \frac{V_0^+}{I_0^+} = \frac{-V_0^-}{I_0^-} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$
 in units of Ω

3.5.3 Summary for Characteristic Parameters

	Propagation constant	Phase velocity	Characteristic impedance
	$\gamma = \alpha + j\beta$	u_p	Z_0
General case	$\sqrt{(R'+j\omega L')(G'+j\omega C')}$	$\frac{\omega}{\beta}$	$\sqrt{\frac{R'+j\omega L'}{G'+j\omega C'}}$
Lossless ($R' = G' = 0$)			$\sqrt{\frac{L'}{C'}}$
Lossless coaxial	$\omega\sqrt{\epsilon_r}$	С	$\frac{60}{\sqrt{\epsilon_r}} \ln \frac{b}{a}$
Lossless two wire	$\alpha = 0, \ \beta = \frac{\omega \sqrt{\epsilon_r}}{c}$	$\frac{c}{\sqrt{\epsilon_r}}$	$\frac{120}{\sqrt{\epsilon_r}} \ln \left[\frac{D}{d} + \sqrt{\frac{D^2}{d} - 1} \right]$
			If D \gg d, $\approx \frac{120}{\sqrt{\epsilon_r}} \ln \frac{2D}{d}$
Lossless plate			$\frac{120\pi}{\sqrt{\epsilon_r}} \frac{h}{w}$

3.6 Dispersion & Guided Wavelength

• Dispersion: phase velocity of wave depends on its frequency

∘ √: Dispersive media, ×: non-dispersive media

 \circ Degree of distortion \propto length of dispersive line

ullet Guided wavelength, λ_g : distance between two equal phase planes along the transmission line

$$\lambda_g = \frac{c}{f\sqrt{\epsilon_r}} = \frac{\lambda_0}{\sqrt{\epsilon_r}}$$

11

3.7 Standing Waves & Standing Wave Pattern

- Standing wave: formed when two waves on transmission line propagating in opposite directions
- Standing wave patterns: sinusoidal patterns caused by interference of two travelling waves

$$\widetilde{V}(z) = \widetilde{V}^+(z) + \widetilde{V}^-(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$\widetilde{I}(z) = \widetilde{I}^+(z) + \widetilde{I}^-(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

- Using either one of the two axes:
 - z-axis: load at z = 0, generator at z = -l
 - d-axis: load at d = 0, generator at d = l
- Affected by:
 - Relation of $\widetilde{V}^-(z)$ and $\widetilde{V}^+(z)$ at z=0
 - Relation of V_0^+ and V_0^-
- Magnitude of voltage, $|\widetilde{V}(d)| = |V_0^+| \left[1 + |\Gamma|^2 + 2|\Gamma|\cos(2\beta d \theta_r)\right]^{1/2}$
- Magnitude of current, $|\widetilde{I}(d)| = \frac{|V_0^+|}{Z_0} \left[1 + |\Gamma|^2 + 2|\Gamma|\cos(2\beta d \theta_r) \right]^{1/2}$
- Voltage maximum, d_{max} : distance from load where $|\widetilde{V}(d)|$ is a maximum

$$d_{max} = \frac{\theta_r}{4\pi} + \frac{n\lambda}{2}, \begin{cases} n = 1, 2, \dots & \text{if } \theta_r < 0 \\ n = 0, 1, 2, \dots & \text{if } \theta_r \ge 0 \end{cases}$$

• Voltage minimum, d_{min} : distance from load where $|\widetilde{V}(d)|$ is a minimum

$$d_{min} = \begin{cases} d_{max} + \frac{\lambda}{4}, & \text{if } d_{max} < \frac{\lambda}{4} \\ d_{max} - \frac{\lambda}{4}, & \text{if } d_{max} \ge \frac{\lambda}{4} \end{cases}$$

• Voltage standing wave ratio (VSWR), $S = \frac{|\widetilde{V}|_{max}}{|\widetilde{V}|_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$ (dimensionless)

3.8 Reflection Coefficient

• Ratio of reflected and incident voltages at the load.
$$\frac{I_0^-}{I_0^+} = -\frac{V_0^-}{V_0^+} = -\Gamma_L$$

• A complex quantity.
$$\Gamma_L = |\Gamma_L|e^{j\theta_r} = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{z_L - 1}{z_L + 1}$$
 (dimensionless)

• Normalized load impedance,
$$z_L = \frac{Z_L}{Z_0}$$
 (dimensionless)

Load	[$ heta_r$
$Z_L = (r + jx)Z_0$	$\sqrt{\frac{(r-1)^2 + x^2}{(r+1)^2 + x^2}}$	$\tan^{-1}\left(\frac{x}{r-1}\right) - \tan^{-1}\left(\frac{x}{r+1}\right)$
$Z_L = Z_0$	0	NA
Z_L = short-circuit	1	±180°
Z_L = open-circuit	1	0
$Z_L = jX = j\omega L$ (capacitor)	1	$\pm 180^{\circ} - 2 \tan^{-1}(X)$
$Z_L = jX = -\frac{j}{\omega C}$	1	$\pm 180^{\circ} + 2 \tan^{-1}(X)$

3.9 Wave Impedance

$$Z(d) = \frac{\widetilde{V}(d)}{\widetilde{I}(d)} = Z_0 \left(\frac{1 + \Gamma_d}{1 - \Gamma_d}\right)$$

• Phase-shifted voltage reflection coefficient $\Gamma_d = |\Gamma| e^{j(\theta_r - 2\beta d)}$

3.10 Input Impedance

$$Z_{\text{in}} = Z_0 \left(\frac{z_L \cos \beta l + j \sin \beta l}{\cos \beta l + j z_L \sin \beta l} \right)$$
$$= Z_0 \left(\frac{z_L + j \tan \beta l}{1 + j z_L \tan \beta l} \right)$$
$$V_0^+ = \left(\frac{\widetilde{V}_g Z_{\text{in}}}{Z_g + Z_{\text{in}}} \right) \left(\frac{1}{e^{j\beta l} + \Gamma e^{-j\beta l}} \right)$$

3.11 Short-Circuited Line

•
$$\Gamma = -1$$
, $S = \infty$

•
$$\widetilde{V}_{sc}(d) = V_0^+ \left(e^{j\beta d} - e^{-j\beta d} \right) = 2jV_0^+ \sin\beta d$$

•
$$\widetilde{I}_{sc}(d) = \frac{V_0^+}{Z_0} \left(e^{j\beta d} + e^{-j\beta d} \right) = \frac{2V_0^+}{Z_0} \cos \beta d$$

•
$$Z_{\rm sc}(d) = \frac{\widetilde{V}_{\rm sc}(d)}{\widetilde{I}_{\rm sc}(d)} = jZ_0 \tan \beta d$$

• By choosing ℓ , can make L and C of any reactance.

$$\circ If \tan \beta l \ge 0, jZ_0 \tan \beta l = j\omega L_{eq}.$$

$$\circ \text{ If } \tan \beta l \le 0, \ jZ_0 \tan \beta l = \frac{1}{j\omega C_{\text{eq}}}.$$

3.12 Open-Circuited Line

•
$$\Gamma = 1, S = \infty$$

$$\bullet \ \widetilde{V}_{\rm oc}(d) = V_0^+ \left(e^{j\beta d} + e^{-j\beta d} \right) = 2V_0^+ \cos\beta d$$

•
$$\widetilde{I}_{\text{oc}}(d) = \frac{V_0^+}{Z_0} \left(e^{j\beta d} - e^{-j\beta d} \right) = \frac{2jV_0^+}{Z_0} \sin\beta d$$

•
$$Z_{\text{oc}}(d) = \frac{\widetilde{V}_{\text{oc}}(d)}{\widetilde{I}_{\text{oc}}(d)} = -jZ_0 \cot \beta d$$

• By choosing ℓ , can make L and C of any reactance.

$$\circ \text{ If } Z_{in}^{\text{oc}} \ge 0, -jZ_0 \cot \beta l = j\omega L_{\text{eq}}.$$

$$\circ \text{ If } Z_{in}^{\text{oc}} \ge 0, -jZ_0 \cot \beta l = \frac{1}{j\omega C_{\text{eq}}}.$$

3.13 Measuring Characteristic Impedance and Phase Constant

$$Z_0 = \sqrt{Z_{\rm in}^{\rm sc} Z_{\rm in}^{\rm oc}}$$

$$\tan \beta l = \sqrt{\frac{-Z_{\rm in}^{\rm sc}}{Z_{\rm in}^{\rm oc}}}$$
 can be used to find β

14

3.14 Quarter and Half Wavelength TLs

• For a half wavelength TL, where
$$l = \frac{n\lambda}{2}$$
, $Z_{in} = Z_{L}$.

• For a quarter wavelength TL, where
$$l = \frac{\lambda}{4} + \frac{n\lambda}{2}$$
, $Z_{\rm in} = \frac{Z_0^2}{Z_{\rm L}}$.

3.15 Instantaneous Power of a Lossless TL

•
$$v(d, t) = |V_0^+| \left[\cos(\omega t + \beta d + \phi^+) + |\Gamma| \cos(\omega t - \beta d + \phi^+ + \theta_r) \right]$$

•
$$i(d,t) = \frac{|V_0^+|}{Z_0} \left[\cos(\omega t + \beta d + \phi^+) - |\Gamma| \cos(\omega t - \beta d + \phi^+ + \theta_r) \right]$$

•
$$P(d,t) = \frac{|V_0^+|^2}{Z_0} \left[\cos^2(\omega t + \beta d + \phi^+) - |\Gamma|^2 \cos^2(\omega t - \beta d + \phi^+ + \theta_r) \right]$$

• The instantaneous power oscillates at twice the rate of the voltage or current.

• Incident power
$$P^{i}(d,t) = \frac{|V_0^+|^2}{2Z_0} \left[1 + \cos(2\omega t + 2\beta d + 2\phi^+) \right]$$

• Reflected power
$$P^{r}(d,t) = -|\Gamma|^{2} \frac{|V_{0}^{+}|^{2}}{2Z_{0}} \left[1 + \cos(2\omega t - 2\beta d + 2\phi^{+} + 2\theta_{r})\right]$$

3.16 Time-Average Power of a Lossless TL

- Time-average incident power, $P_{\text{av}}^{\text{i}} = \frac{|V_0^+|^2}{2Z_0}$ is measured in W.
- Time-average reflected power, $P_{\rm av}^{\rm r} = -|\Gamma|^2 \frac{|V_0^+|^2}{2Z_0} = -|\Gamma|^2 P_{\rm av}^{\rm i}$ is measured in W.
 - Average reflected power is average incident power diminished by $|\Gamma|^2$.

4 W5: Matching Networks

4.1 Concept of Matching Networks

- Eliminate reflections for waves incident from source
- All power goes to load
- May consist of lumped elements i.e. capacitors and inductors, or sections of TLs

4.2 Matching Networks in Series

- 1. In-series $\lambda/4$ transformer inserted in front of Z_L (if Z_L is real)
- 2. In-series $\lambda/4$ transformer inserted at $d = d_{\text{max}}$ or $d = d_{\text{min}}$ (if Z_L is complex)

4.3 Matching Networks in Parallel

- 1. In-parallel insertion of capacitor at distance d_1
- 2. In-parallel insertion of inductor at distance d_2
- 3. In-parallel insertion of a short-circuited stub

4.4 Lumped Element Matching

• To achieve matched condition, $y_{in} = y_d + y_s + g_d + j(b_d + b_s) = 1 + j0$. As such,

$$g_d = 1$$
 (real condition)
 $b_d = -b_s$ (imaginary condition)

5 W5: Smith Chart

- 1. Complex unit circle
- 2. Concentric r_L circles
- 3. x_L curves
- 4. Wavelengths toward generator (WTG) scale (clockwise)
- 5. Wavelengths toward load (WTL) scale (counterclockwise)

5.1 How to Use the Smith Chart

- Read off Γ_L from z_L : $\Gamma_L = |\Gamma_L|e^{j\theta_r}$
- Constant Γ_L /SWR circle, move towards WTG/WTL directions
- Read off to find distance d
- Find *Y* from *Z*
 - \circ y opposite from z in SWR circle
 - $\circ \Rightarrow Y_{L} = y_{L} \cdot Y_{0} \text{ in units of } S$

6 W6: Vector Algebra

6.1 Basic Vector Operations

• Unit vector
$$\hat{a} = \frac{\overrightarrow{A}}{|\overrightarrow{A}|} = \frac{\hat{x}A_x + \hat{y}A_y + \hat{z}A_z}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

- Position vector: $\overrightarrow{R_1} = \overrightarrow{OP_1}$
- Distance vector: $\overrightarrow{R_{12}} = \overrightarrow{P_1P_2} = \overrightarrow{R_2} \overrightarrow{R_1}$
 - Distance $d = |\overrightarrow{R_{12}}|$
- Vector addition
 - o Done graphically using parallelogram or head-to-tail method.
 - \circ Commutative: $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$

6.2 Dot Product

$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta_{AB}, \quad \theta_{AB} = \cos^{-1} \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\sqrt{\overrightarrow{A} \cdot \overrightarrow{A}} \cdot \sqrt{\overrightarrow{B} \cdot \overrightarrow{B}}} \right)$$

• Commutative and distributive.

$$\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A} \text{ (commutative)}$$

$$\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \overrightarrow{C}$$
 (distributive)

• Can be used to find magnitude of vector.

$$A = |\overrightarrow{A}| = \sqrt{\overrightarrow{A} \cdot \overrightarrow{A}}$$

6.3 Cross Product

$$\overrightarrow{A} \times \overrightarrow{B} = \hat{n} AB \sin \theta_{AB}$$
, \hat{n} in direction of right hand rule

• Anti-commutative and distributive.

$$\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$$
 (anti-commutative)

$$\overrightarrow{A} \times (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \times \overrightarrow{B} + \overrightarrow{A} \times \overrightarrow{C}$$
 (distributive)

• Can be re-expressed as a determinant.

$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

18

6.4 Scalar Triple Product

$$\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A}) = \overrightarrow{C} \cdot (\overrightarrow{A} \times \overrightarrow{B}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

6.5 Vector Triple Product

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})$$

• Not associative.

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) \neq (\overrightarrow{A} \times \overrightarrow{B}) \times \overrightarrow{C}$$

• Follows the "bac-cab" rule.

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B}(\overrightarrow{A} \cdot \overrightarrow{C}) - \overrightarrow{C}(\overrightarrow{A} \cdot \overrightarrow{B})$$

A Appendix

A.1 Derivatives

$$\frac{d}{dt}$$

$$\sin \to \cos$$
, $\cos \to -\sin$, $\tan \to \sec^2$, $x^n \to nx^{n-1}$, $e^{ax} \to ae^{ax}$, $\ln x \to \frac{1}{x}$

A.2 Integrals

$$\int$$

$$\sin \to -\cos$$
, $\cos \to \sin$, $\sec^2 \to \tan$, $x^n \to \frac{1}{n}x^{n+1}$, $e^{ax} \to \frac{1}{a}e^{ax}$, $\frac{1}{x} \to \ln|x|$

A.3 Integration by Parts

$$\int u \, dv = uv - \int v du$$

Priority of choosing *u*:

- 1. Logarithmic terms
- 2. Inverse trigonometric terms
- 3. Algebraic terms
- 4. Trigonometric terms
- 5. Exponential terms

A.4 Phasors

- Identities: $\sin x = \cos\left(\frac{\pi}{2} x\right)$; $\cos(-x) = \cos x$
- Voltage across capacitor, $v_C(t)$:

$$\int i(t) = \operatorname{Re}\left[\frac{\widetilde{I}e^{j\omega t}}{j\omega}\right] = \operatorname{Re}\left[\frac{-j\widetilde{I}e^{j\omega t}}{\omega}\right] = \operatorname{Re}\left[\frac{-\widetilde{I}j\cos\omega t + \widetilde{I}\sin\omega t}{\omega}\right]$$
$$= \frac{\widetilde{I}\sin\omega t}{\omega}$$
$$\Rightarrow v_C(t) = \frac{\int i(t)}{C} = \frac{\widetilde{I}\sin\omega t}{\omega C}$$

• Voltage across inductor, $v_L(t)$:

$$\frac{di(t)}{dt} = \operatorname{Re}\left[j\omega\widetilde{I}e^{j\omega t}\right] = \operatorname{Re}\left[j\omega\widetilde{I}\cos\omega t - \widetilde{I}\omega\sin\omega t\right] = -\widetilde{I}\omega\sin\omega t$$

$$\Rightarrow v_L(t) = L\frac{di(t)}{dt} = -L\omega\widetilde{I}\sin\omega t$$