▼ 第1章 ℝ³ 空间的向量分析

- ▼ 向量分析基本知识
 - 爱因斯坦求和约定
 - Kronecher delta 符号 δ_{ij}
 - 三阶单位全反对称张量 (三阶 Levi-Citita 符号) ε_{iik}
 - 一些简单算例
 - ▼ 梯度、散度、旋度
 - 梯度 (gradient) 的定义
 - 散度 (divergence) 的定义
 - 旋度 (curl) 的定义
 - 直角坐标系下的梯度、散度、旋度
 - ▼ 算子
 - ▼ 梯度与方向导数的关系
 - 方向导数
 - 梯度和方向导数的关系
 - 散度与高斯定理
 - 旋度与斯托克斯定理
- ▼ ℝ3 空间中向量分析常用公式
 - 分析工具
 - ▼ ℝ3 空间中重要微分恒等式
 - 与 \vec{r} 有关的公式
 - 从左往右证的公式
 - 需要注意力的公式
 - 从右往左证的公式
 - - 高斯定理
 - 斯托克斯定理
 - 格林第一恒等式
 - 格林第二恒等式
- ▼ 第2章 ℝ3 空间曲线坐标系中的向量分析
 - ▼ ▽ 算子
 - 直角坐标下的 ▽
 - 球坐标下的 ▽
 - 柱坐标下的 ▽
 - ∇^2 算子
 - 直角坐标下的 ∇^2
 - 球坐标下的 ∇^2
 - 柱坐标下的 ∇^2
- 第3章 线性空间
- ▼ 第4章 复变函数的概念
 - 欧拉公式

▼ 复变函数

- ▼ 常见复变函数
 - 有理函数
 - 指数函数
 - 对数函数
 - 幂函数
 - 三角函数
 - 双曲函数

▼ 第5章 解析函数

- ▼ 复变函数的导数
 - 复变函数的连续性
 - 复变函数的导数
 - 柯西-黎曼条件
 - 命题的证明
- ▼ 复变函数的解析性
 - 复变函数的解析性
 - ▼ 相关定理
 - 定理1
 - 定理2
 - 定理3
 - 定理4

▼ 例题

- ▼ 例1
 - 方法1 (积分法)
- 例2
- 例3

▼ 第6章 复变函数积分

- ▼ 复变函数积分
 - 复变函数积分的定义
 - 复变函数积分的性质
- ▼ 柯西积分定理
 - 单连通区域柯西积分定理
 - 多连通区域的柯西积分定理
- 柯西积分公式
- 解析函数高阶导数的积分表达式
- ▼ 第7章 复变函数的级数展开
 - 解析函数的泰勒展开
 - ▼ 解析函数的洛朗展开
 - 复变函数的零点
 - 复变函数的奇点
 - ▼ 奇点的分类
 - 孤立奇点

- 非孤立奇点
- 孤立奇点的分类
- 解析函数的洛朗展开定理
- ▼ 例题
 - 例1
 - 例2
- ▼ 第8章 留数定理及其在实积分中的应用
 - ▼ 留数定理
 - 留数的定义
 - ▼ 留数的求法
 - 定义法
 - 极限法
 - 特殊情况
 - ▼ 留数定理
 - 例1
 - ▼ 留数定理在实积分中的应用
 - 计算无穷限奇异积分的柯西主值
 - 利用 Jordan 引理计算一类带有三角函数的实积分问题
 - ▼ 计算一类被积函数为有理三角函数式的实积分
 - 例1
 - 例2
- ▼ 第9章 傅里叶变换
 - ▼ 傅里叶级数
 - 三角函数基的傅里叶级数
 - e 指数基的傅里叶级数
 - 傅里叶变换(to be continued)
- ▼ 第10章 拉普拉斯变换
 - 拉普拉斯变换的定义
 - ▼ 拉普拉斯变换的性质 (两种记号)
 - 线性定理
 - 延迟定理
 - 位移定理
 - 标度变换定理
 - 卷积定理
 - 微分定理
 - 积分性质
 - 周期函数变换定理
 - 常用拉普拉斯变换及反演
 - ▼ 拉普拉斯变换的应用
 - ▼ 解常微分方程
 - 例1
- ▼ 第11章 *δ* 函数

- δ函数的定义
- δ 函数的性质
- **▼** 三维 δ 函数
 - 三维直角坐标系
 - 三维球坐标系
 - 三维柱坐标系
- \blacksquare 不同形式的 δ 函数
- ▼ δ 函数的傅里叶展式和傅里叶变换
 - 一维
 - 三维
- ▼ 例题
 - 例1
- 第12章 小波变换初步
- 第13章 波动方程、输运方程、泊松方程及其定解问题
- 第14章 分离变量法
- 第15章 曲线坐标系下的分离变量
- 第16章 球函数
- 第17章 柱函数
- 第18章 格林函数法
- 第19章 其他方程求解
- 第20章 非线性数学物理方程初步
- 第21章 泛函的变分
- 第22章 变分原理

第1章 \mathbb{R}^3 空间的向量分析

向量分析基本知识

爱因斯坦求和约定

在同一代数项中见到两个重复指标 i 就自动进行求和(除非特别指出该重复指标不求和),我们称求和指标 i 为 "哑标"。

比如, \mathbb{R}^3 空间中的向量 $\vec{A} \in \mathbb{R}^3$ 在直角坐标下可表示为:

$$ec{A}=A_1ec{\mathrm{e}}_1+A_2ec{\mathrm{e}}_2+A_3ec{\mathrm{e}}_3\equiv\sum_iA_iec{\mathrm{e}}_i$$

其中, \vec{e}_1 , \vec{e}_2 , \vec{e}_3 分别是 x, y, z 轴正方向上的单位向量。

可利用爱因斯坦求和约定将 $ec{A} \in \mathbb{R}^3$ 简写为:

$$ec{A} = \sum_i A_i ec{\mathrm{e}}_i
ightarrow ec{A} = A_i ec{\mathrm{e}}_i$$

这样就省去了写求和符号的工作。

Kronecher delta 符号 δ_{ij}

$$\delta_{ij} = egin{cases} 1 &, i = j \ 0 &, i
eq j \end{cases}$$

三阶单位全反对称张量(三阶 Levi-Citita 符号) $arepsilon_{ijk}$

 $arepsilon_{ijk} = egin{cases} 1 &, ijk = 123, 231, 312, 即相邻两指标经过偶次对换能还原到123 \ -1 &, ijk = 132, 213, 321, 即相邻两指标经过奇次对换能还原到123 \ 0 &, ijk$ 中有相同指标

可以利用 ε_{ijk} 表示任何一个三阶行列式:

一些简单笪例

$$\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_j = \delta_{ij}$$

$$A_i \delta_{ij} = A_j$$

$$ec{A} \cdot ec{B} = A_i B_i$$

$$ec{A} \cdot ec{B} = (A_i ec{\mathbf{e}}_i) \cdot (B_j ec{\mathbf{e}}_j) = A_i B_j ec{\mathbf{e}}_i \cdot ec{\mathbf{e}}_j = A_i B_j \delta_{ij} = A_i B_i$$

$$ec{A} imesec{B}=arepsilon_{ijk}ec{\mathrm{e}}_iA_iB_k$$

$$ec{A} imesec{B}=egin{array}{ccc} ec{\mathrm{e}}_1 & ec{\mathrm{e}}_2 & ec{\mathrm{e}}_3 \ A_1 & A_2 & A_3 \ B_1 & B_2 & B_3 \ \end{array} = arepsilon_{ijk}ec{\mathrm{e}}_iA_jB_k$$

梯度、散度、旋度

梯度 (gradient) 的定义

设 $\psi(\vec{r})$ 是标量场, $\psi(\vec{r})$ 其梯度,记为 $\operatorname{grad} \psi(\vec{r})$,由下式定义:

$$\operatorname{grad} \psi(\vec{r}) \cdot d\vec{r} = d\psi(\vec{r})$$

其中, $\mathrm{d}\vec{r}$ 是位矢 \vec{r} 的微小变化, $\mathrm{d}\psi(\vec{r})$ 是标量场 $\psi(\vec{r})$ 因位矢 \vec{r} 变化 $\mathrm{d}\vec{r}$ 而引起的相应的变化。具体来说, $\mathrm{d}\psi(\vec{r})$ 的定义为:

$$\mathrm{d}\psi(\vec{r}) \equiv \psi(\vec{r} + \mathrm{d}\vec{r}) - \psi(\vec{r})$$

散度 (divergence) 的定义

向量场 \vec{A} 的散度, 记为 $\operatorname{div} \vec{A}$, 定义为:

$$\mathrm{div} \; ec{A} \equiv \lim_{V
ightarrow 0^+} rac{1}{V} \oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d} ec{S} \; .$$

旋度 (curl) 的定义

向量场 \vec{A} 的旋度,记为 $\operatorname{curl} \vec{A}$,由下式定义:

$$\left(\operatorname{curl}ec{A}
ight)\cdotec{n}=\lim_{\sigma o 0^+}rac{1}{\sigma}\oint\limits_{\partial\sigma^+}ec{A}\cdot\mathrm{d}ec{l}$$

其中, σ 是与 \vec{n} 垂直的面元。 \vec{n} 与面元 σ 的正绕行方向满足右手定则。

直角坐标系下的梯度、散度、旋度

这里直接给出结论。

$$\mathrm{grad}\ \psi = ec{\mathrm{e}}_i \partial_i \psi$$
 $\mathrm{div}\ ec{A} = \partial_i A_i$ $\mathrm{curl}\ ec{A} = arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j A_k$

▽ 算子

 ∇ 算子 (nabla 算子, 或 del 算子) 定义为:

$$\nabla \equiv \vec{\mathrm{e}}_i \partial_i$$

其中, ∂_i 的定义为:

$$\partial_i \equiv rac{\partial}{\partial x_i}$$

利用 ▽ 算子, 可将梯度、散度、旋度表示为:

$$egin{aligned} \operatorname{grad} \psi &= ec{\mathrm{e}}_i \partial_i \psi \equiv
abla \psi \ &\mathrm{div} \ ec{A} &= \partial_i A_i \equiv
abla \cdot ec{A} \ &\mathrm{curl} \ ec{A} &= arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j A_k \equiv
abla imes ec{A} \end{aligned}$$

为了书写方便,以后用 $\nabla \psi$, $\nabla \cdot \vec{A}$, $\nabla \times \vec{A}$ 分别来指代梯度、散度、旋度。

梯度与方向导数的关系

方向导数

标量场 ψ 在 \vec{r} 点处沿 \vec{v} 方向的方向导数,记为 $\left. \frac{\partial \psi(\vec{r})}{\partial l} \right|_{\vec{v}}$,定义为:

$$\left.rac{\partial \psi(ec{r})}{\partial l}
ight|_{ec{v}} \equiv \lim_{v o 0^+} rac{\psi(ec{r}+ec{v})-\psi(ec{r})}{v}$$

特别地,标量场 ψ 在曲面 Σ 上的 \vec{r} 点处沿曲面上 \vec{r} 点的外法向的方向导数简记为:

$$\frac{\partial \psi(\vec{r})}{\partial n}$$

梯度和方向导数的关系

标量场的梯度的定义:

$$\nabla \psi \cdot d\vec{r} = d\psi$$

设 $d\vec{r} = \vec{n}dr$, 其中 \vec{n} 是与 $d\vec{r}$ 同向的单位向量,则有:

$$(\nabla \psi) \cdot \vec{n} dr = d\psi$$

即:

$$(
abla\psi)\cdotec{n}=rac{\mathrm{d}\psi}{\mathrm{d}r}=rac{\psi(ec{r}+\mathrm{d}ec{r})-\psi(ec{r})}{\mathrm{d}r}=rac{\partial\psi(ec{r})}{\partial l}igg|_{ec{s}}$$

这就是说,标量场 ψ 的梯度 $\nabla \psi$ 在某一方向 \vec{n} 的投影恰等于标量场沿这一方向 \vec{n} 的方向导数 $\left. \frac{\partial \psi(\vec{r})}{\partial l} \right|_{\vec{n}}$.

散度与高斯定理

从散度的定义

$$abla \cdot ec{A} \equiv \lim_{V o 0^+} rac{1}{V} \oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d}ec{S} \,.$$

出发,可以导出高斯定理:

$$\oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d}ec{S} = \int\limits_V (
abla \cdot ec{A}) \mathrm{d}V$$

旋度与斯托克斯定理

从旋度的定义

$$\left(
abla imes ec{A}
ight) \cdot ec{n} = \lim_{\sigma o 0^+} rac{1}{\sigma} \oint\limits_{\partial \sigma^+} ec{A} \cdot \mathrm{d}ec{l}$$

出发,可以导出斯托克斯定理:

$$\oint\limits_{\partial \Sigma^+} ec{A} \cdot \mathrm{d}ec{l} = \int\limits_{\Sigma} (
abla imes ec{A}) \cdot \mathrm{d}ec{S}$$

\mathbb{R}^3 空间中向量分析常用公式

分析工具

$$\begin{cases} \vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_j = \delta_{ij} \\ \vec{A} = A_i \vec{\mathbf{e}}_i \\ A_i \delta_{ij} = A_j \\ \vec{A} \cdot \vec{B} = A_i B_i \\ \vec{A} \times \vec{B} = \varepsilon_{ijk} \vec{\mathbf{e}}_i A_j B_k \\ (\vec{A} \times \vec{B})_l = \varepsilon_{ljk} A_j B_k \\ \nabla \psi = \vec{\mathbf{e}}_i \partial_i \\ \nabla \cdot \vec{A} = \partial_i A_i \\ \nabla \times \vec{A} = \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j A_k \\ \partial_i \psi = (\nabla \psi)_i \\ \nabla^2 \equiv \nabla \cdot \nabla = \partial_i \partial_i \\ \nabla^2 \psi \equiv \nabla \cdot (\nabla \psi) = \partial_i \partial_i \psi \\ \nabla^2 \vec{A} \equiv (\nabla^2 A_i) \vec{\mathbf{e}}_i \\ \varepsilon_{ijk} = \varepsilon_{jki} = \varepsilon_{kij} \\ \varepsilon_{ijk} \varepsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl} \\ \partial_i x_j = \delta_{ij} \end{cases}$$

\mathbb{R}^3 空间中重要微分恒等式

与 \vec{r} 有关的公式

$$abla imesec{r}=ec{0}$$

$$abla imes ec{r} = arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j x_k = arepsilon_{ijk} ec{\mathrm{e}}_i \delta_{jk} = ec{0}$$

从左往右证的公式

$$abla(arphi\psi) = arphi
abla\psi + \psi
ablaarphi$$

$$egin{aligned}
abla(arphi\psi) &= ec{\mathrm{e}}_i\partial_i(arphi\psi) \ &= ec{\mathrm{e}}_iarphi\partial_i\psi + ec{\mathrm{e}}_i\psi\partial_iarphi \ &= arphiec{\mathrm{e}}_i\partial_i\psi + \psiec{\mathrm{e}}_i\partial_iarphi \ &= arphi
abla\psi + \psi
ablaarphi arphi \end{aligned}$$

$$abla \cdot (arphi ec{A}) = ec{A} \cdot (
abla arphi) + arphi
abla \cdot ec{A}$$

$$egin{aligned}
abla \cdot (arphi ec{A}) &= \partial_i (arphi ec{A})_i \ &= \partial_i (arphi A_i) \ &= arphi \partial_i A_i + A_i \partial_i arphi \ &= arphi
abla \cdot ec{A} + (ec{A} \cdot
abla) arphi \ &= (ec{A} \cdot
abla) arphi + arphi
abla \cdot ec{A} \end{aligned}$$

$$abla imes (arphiec{A}) = (
ablaarphi) imes ec{A} + arphi
abla imes ec{A}$$

$$egin{aligned}
abla imes (arphi ec{A}) &= arepsilon_{ijk} ec{\mathbf{e}}_i \partial_j (arphi ec{A})_k \ &= arepsilon_{ijk} ec{\mathbf{e}}_i \partial_j (arphi A_k) \ &= arepsilon_{ijk} ec{\mathbf{e}}_i (A_k \partial_j arphi + arphi \partial_j A_k) \ &= arepsilon_{ijk} ec{\mathbf{e}}_i (
abla arphi)_j A_k + arphi arepsilon_{ijk} ec{\mathbf{e}}_i \partial_j A_k \ &= (
abla arphi) imes ec{A} + arphi
abla imes ec{A} \end{aligned}$$

$$abla \cdot (\vec{A} imes \vec{B}) = \vec{B} \cdot (
abla imes \vec{A}) - \vec{A} \cdot (
abla imes \vec{B})$$

$$\nabla \cdot (\vec{A} \times \vec{B}) = \partial_i (\vec{A} \times \vec{B})_i$$

$$= \partial_i (\varepsilon_{ijk} A_j B_k)$$

$$= \varepsilon_{ijk} \partial_i (A_j B_k)$$

$$= \varepsilon_{ijk} B_k \partial_i A_j + \varepsilon_{ijk} A_j \partial_i B_k$$

$$= B_k \varepsilon_{kij} \partial_i A_j - A_j \varepsilon_{jik} \partial_i B_k$$

$$= B_k (\nabla \times \vec{A})_k - A_j (\nabla \times \vec{B})_j$$

$$= \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

$$abla imes (ec{A} imes ec{B}) = (ec{B} \cdot
abla) ec{A} - (ec{A} \cdot
abla) ec{B} + ec{A} (
abla \cdot ec{B}) - ec{B} (
abla \cdot ec{A})$$

$$\nabla \times (\vec{A} \times \vec{B}) = \varepsilon_{ijk} \vec{e}_i \partial_j (\vec{A} \times \vec{B})_k$$

$$= \varepsilon_{ijk} \vec{e}_i \partial_j \varepsilon_{klm} A_l B_m$$

$$= \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i \partial_j (A_l B_m)$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \vec{e}_i (B_m \partial_j A_l + A_l \partial_j B_m)$$

$$= \vec{e}_l B_j \partial_j A_l + \vec{e}_l A_l \partial_m B_m - \vec{e}_m B_m \partial_l A_l - \vec{e}_m A_j \partial_j B_m$$

$$= B_j \partial_j A_l \vec{e}_l + \vec{e}_l A_l \partial_m B_m - \vec{e}_m B_m \partial_l A_l - A_j \partial_j B_m \vec{e}_m$$

$$= (\vec{B} \cdot \nabla) \vec{A} + \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A}) - (\vec{A} \cdot \nabla) \vec{B}$$

$$= (\vec{B} \cdot \nabla) \vec{A} - (\vec{A} \cdot \nabla) \vec{B} + \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A})$$

$$abla imes (
abla imes ec{A}) =
abla (
abla \cdot ec{A}) -
abla^2 ec{A}$$

$$egin{aligned}
abla imes (
abla imes ec{A}) &= arepsilon_{ijk} ec{\mathbf{e}}_i \partial_j (
abla imes ec{A})_k \ &= arepsilon_{ijk} ec{\mathbf{e}}_i \partial_j arepsilon_{klm} \partial_l A_m \ &= arepsilon_{kij} arepsilon_{klm} ec{\mathbf{e}}_i \partial_j \partial_l A_m \ &= ec{\mathbf{e}}_l \partial_m \partial_l A_m - ec{\mathbf{e}}_m \partial_l \partial_l A_m \ &= ec{\mathbf{e}}_l \partial_l \partial_m A_m - \partial_l \partial_l A_m ec{\mathbf{e}}_m \ &=
abla (
abla imes ec{A}) -
abla^2 ec{A} \end{aligned}$$

需要注意力的公式

$$abla imes (
abla arphi) = ec{0}$$

$$egin{aligned}
abla imes (
abla arphi) &= arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j (
abla arphi)_k \ &= ec{\mathrm{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi \end{aligned}$$

由于我们只考虑性质比较好的函数,于是 $\partial_j\partial_k\varphi=\partial_k\partial_j\varphi$,再结合 $\varepsilon_{ijk}=-\varepsilon_{ikj}$,有:

$$egin{aligned} ec{\mathbf{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi &= -ec{\mathbf{e}}_i arepsilon_{ikj} \partial_k \partial_j arphi \ &= -ec{\mathbf{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi \end{aligned}$$

最后一步是因为 j,k 都是用于求和的哑标,因此可以交换。

上式说明:

$$\vec{\mathrm{e}}_i \varepsilon_{ijk} \partial_j \partial_k \varphi = \vec{0}$$

于是:

$$abla imes (
abla arphi) = ec{\mathrm{e}}_i arepsilon_{ijk} \partial_i \partial_k arphi = ec{0}$$

$$abla \cdot (
abla imes ec{A}) = 0$$

$$egin{aligned}
abla \cdot (
abla imes ec{A}) &= \partial_i (
abla imes ec{A})_i \ &= \partial_i arepsilon_{ijk} \partial_j A_k \ &= arepsilon_{ijk} \partial_i \partial_j A_k \end{aligned}$$

注意到:

$$\begin{split} \varepsilon_{ijk}\partial_i\partial_jA_k &= -\varepsilon_{jik}\partial_j\partial_iA_k \\ &= -\varepsilon_{ijk}\partial_i\partial_jA_k \end{split}$$

于是:

$$\varepsilon_{ijk}\partial_i\partial_j A_k = 0$$

这就是说:

$$abla \cdot (
abla imes ec{A}) = arepsilon_{ijk} \partial_i \partial_j A_k = 0$$

从右往左证的公式

$$\begin{vmatrix} \nabla(\vec{A} \cdot \vec{B}) = (\vec{B} \cdot \nabla)\vec{A} + (\vec{A} \cdot \nabla)\vec{B} + \vec{B} \times (\nabla \times \vec{A}) + \vec{A} \times (\nabla \times \vec{B}) \\ (\vec{B} \cdot \nabla)\vec{A} + (\vec{A} \cdot \nabla)\vec{B} + \vec{B} \times (\nabla \times \vec{A}) + \vec{A} \times (\nabla \times \vec{B}) \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{ijk} \vec{e}_i B_j (\nabla \times \vec{A})_k + \varepsilon_{ijk} \vec{e}_i A_j (\nabla \times \vec{B})_k \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{ijk} \vec{e}_i B_j \varepsilon_{klm} \partial_l A_m + \varepsilon_{ijk} \vec{e}_i A_j \varepsilon_{klm} \partial_l B_m \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i B_j \partial_l A_m + \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i A_j \partial_l B_m \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \vec{e}_i B_j \partial_l A_m + (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \vec{e}_i A_j \partial_l B_m \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \vec{e}_l B_m \partial_l A_m - \vec{e}_m B_l \partial_l A_m + \vec{e}_l A_m \partial_l B_m - \vec{e}_m A_l \partial_l B_m \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + B_m \vec{e}_l \partial_l A_m - B_l \partial_l A_m \vec{e}_m + A_m \vec{e}_l \partial_l B_m - A_l \partial_l B_m \vec{e}_m \\ = B_m \vec{e}_l \partial_l A_m + A_m \vec{e}_l \partial_l B_m \\ = B_m \nabla A_m + A_m \nabla B_m \\ = \nabla (A_m B_m) \\ = \nabla (\vec{A} \cdot \vec{B})$$

\mathbb{R}^3 空间中重要积分恒等式

高斯定理

$$\oint\limits_{\partial V^+}ec{A}\cdot\mathrm{d}ec{S}=\int\limits_V(
abla\cdotec{A})\mathrm{d}V$$

斯托克斯定理

$$\oint\limits_{\partial \Sigma^+} ec{A} \cdot \mathrm{d}ec{l} = \int\limits_{\Sigma} (
abla imes ec{A}) \cdot \mathrm{d}ec{S}$$

格林第一恒等式

$$\oint\limits_{\partial\Omega^+}\psi
abla\phi\cdot\mathrm{d}ec{S}=\int\limits_{\Omega}\left(\psi
abla^2\phi+
abla\phi\cdot
abla\psi
ight)\mathrm{d}V$$

注意到:

$$\nabla \cdot (\psi \nabla \phi) = \partial_i (\psi \nabla \phi)_i$$

$$= \partial_i (\psi \partial_i \phi)$$

$$= (\partial_i \phi)(\partial_i \psi) + \psi \partial_i \partial_i \phi$$

$$= (\nabla \phi)_i (\nabla \psi)_i + \psi \nabla^2 \phi$$

$$= (\nabla \phi) \cdot (\nabla \psi) + \psi \nabla^2 \phi$$

于是由高斯定理,有:

$$\begin{split} \oint\limits_{\partial\Omega^+} \psi \nabla \phi \cdot \mathrm{d}\vec{S} &= \int\limits_{\Omega} \nabla \cdot (\psi \nabla \phi) \mathrm{d}V \\ &= \int\limits_{\Omega} \left[(\nabla \phi) \cdot (\nabla \psi) + \psi \nabla^2 \phi \right] \mathrm{d}V \\ &= \int\limits_{\Omega} \left[\psi \nabla^2 \phi + (\nabla \phi) \cdot (\nabla \psi) \right] \mathrm{d}V \end{split}$$

格林第二恒等式

$$\oint\limits_{\partial\Omega^+} (\psi
abla\phi-\phi
abla\psi)\cdot\mathrm{d}ec{S} = \int\limits_{\Omega} (\psi
abla^2\phi-\phi
abla^2\psi)\mathrm{d}V$$

利用 $abla \cdot (\varphi \vec{A}) = \vec{A} \cdot (\nabla \varphi) + \varphi \nabla \cdot \vec{A}$ 可得:

$$\nabla \cdot (\psi \nabla \phi - \phi \nabla \psi) = \nabla \phi \cdot \nabla \psi + \psi \nabla \cdot (\nabla \phi) - (\nabla \psi \cdot \nabla \phi + \phi \nabla \cdot (\nabla \psi))$$
$$= \psi \nabla^2 \phi - \phi \nabla^2 \psi$$

于是由高斯定理可得:

$$egin{aligned} \oint\limits_{\partial\Omega^+} \left(\psi
abla\phi-\phi
abla\psi
ight)\cdot\mathrm{d}ec{S} &= \int\limits_{\Omega}
abla\cdot\left(\psi
abla\phi-\phi
abla\psi
ight)\mathrm{d}V \ &= \int\limits_{\Omega}\left(\psi
abla^2\phi-\phi
abla^2\psi
ight)\mathrm{d}V \end{aligned}$$

第2章 \mathbb{R}^3 空间曲线坐标系中的向量分析

▽ 算子

直角坐标下的 ▽

$$abla = ec{e}_x rac{\partial}{\partial x} + ec{e}_y rac{\partial}{\partial y} + ec{e}_z rac{\partial}{\partial z}$$

球坐标下的 ▽

$$abla = ec{e}_r rac{\partial}{\partial r} + ec{e}_ heta rac{1}{r} rac{\partial}{\partial heta} + ec{e}_arphi rac{1}{r \sin heta} rac{\partial}{\partial arphi}$$

柱坐标下的 ▽

$$abla = ec{e}_
ho rac{\partial}{\partial
ho} + ec{e}_arphi rac{1}{
ho} rac{\partial}{\partial arphi} + ec{e}_z rac{\partial}{\partial z}$$

∇^2 算子

直角坐标下的 $abla^2$

$$abla^2 = rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2} + rac{\partial^2}{\partial z^2}$$

球坐标下的 $abla^2$

$$abla^2 = rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r}
ight) + rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial}{\partial heta}
ight) + rac{1}{r^2\sin^2 heta}rac{\partial^2}{\partial arphi^2}$$

柱坐标下的 ∇^2

$$abla^2 = rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial}{\partial
ho}
ight) + rac{1}{
ho^2}rac{\partial^2}{\partialarphi^2} + rac{\partial^2}{\partial z^2}$$

第3章 线性空间

第4章 复变函数的概念

欧拉公式

$$e^{i\theta} = \cos\theta + i\sin\theta, \ \ \theta \in \mathbb{C}$$

复变函数

复变函数是黎曼面到复平面的映射,即:

$$f(z):\mathbb{C}^{\mathrm{R}}
ightarrow\mathbb{C}$$

常见复变函数

有理函数

$$f(z)=rac{a_0+a_1z+\cdots+a_nz^n}{b_0+b_1z+\cdots+b_nz^n}, \ \ a_i,b_i\in\mathbb{C}, \ \ m,n\in\mathbb{Z}$$

指数函数

$$f(z) = e^z$$

对数函数

$$f(z) = \ln z$$

幂函数

$$f(z)=z^a, \ \ a\in \mathbb{C}$$

三角函数

$$\cos z \equiv rac{\mathrm{e}^{\mathrm{i}z} + \mathrm{e}^{-\mathrm{i}z}}{2}$$

$$\sin z \equiv rac{\mathrm{e}^{\mathrm{i}z} - \mathrm{e}^{-\mathrm{i}z}}{2\mathrm{i}}$$

性质:

$$\begin{aligned} \cos(-z) &= \cos(z), \ \cos(z+2\pi) = \cos(z) \ \sin(-z) &= -\sin(z), \ \sin(z+2\pi) = \sin(z) \ \sin^2 z + \cos^2 z = 1 \end{aligned}$$

 $|\cos z|$, $|\sin z|$ 可以大于 1, 这与实三角函数不同。

双曲函数

$$\cosh z \equiv rac{\mathrm{e}^z + \mathrm{e}^{-z}}{2}$$
 $\sinh z \equiv rac{\mathrm{e}^z - \mathrm{e}^{-z}}{2}$ $anh z \equiv rac{\sinh z}{\cosh z} = rac{\mathrm{e}^z - \mathrm{e}^{-z}}{\mathrm{e}^z + \mathrm{e}^{-z}}$

双曲函数与三角函数的关系:

$$\sinh z = -i\sin(iz)$$
 $\cosh z = \cos(iz)$

双曲函数的性质:

$$\sinh(z + i2\pi) = \sinh z$$
 $\cosh(z + i2\pi) = \cosh z$
 $\cosh(-z) = \cosh z$
 $\sinh(-z) = -\sinh z$
 $\cosh^2 z - \sinh^2 z = 1$

第5章 解析函数

复变函数的导数

复变函数的连续性

复变函数 f(z) 在 z_0 点及其邻域内有定义。当自变量 z 以任何路径趋于 z_0 时,都有:

$$\lim_{z o z_0}f(z)=f(z_0)$$

则称 f(z) 在 z_0 点连续。

若 f(z) 在区域 Ω 内的所有点都连续,则称 f(z) 在 Ω 内连续。

复变函数的导数

当 z 以任何路径趋于 z_0 时,即 $\Delta z=z-z_0$ 以任何方式趋于 0 时,若极限:

$$\lim_{\Delta z o 0} rac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在且唯一,则称 f(z) 在 z_0 点可导,f(z) 在 z_0 点的导数记为 $f'(z_0)$

柯西-黎曼条件

设复变函数 f(z) = u(x,y) + iv(x,y),若 f(z) 在 z 点可导,则必定有:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

上面两条等式就是柯西-黎曼条件(C-R条件)。

命题的证明

设 z = x + iy, f(z) = u(x, y) + iv(x, y), 则:

$$\lim_{\Delta z o 0} rac{f(z+\Delta z) - f(z)}{\Delta z} = \lim_{\Delta z o 0} rac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y}$$

由于 f(z) 在 z 点可导, 故极限

$$\lim_{\Delta z o 0} rac{f(z+\Delta z)-f(z)}{\Delta z}$$

存在且与 Δz 趋于 0 的方式无关。

特别地,

(1) 令:

$$i\Delta y = 0, \Delta x \rightarrow 0$$

此时,

$$\lim_{\Delta z \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y} = \lim_{\Delta x \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x} = \frac{\partial u}{\partial x} + \mathrm{i} \frac{\partial v}{\partial x}$$

(2) 令:

$$\Delta x = 0, \mathrm{i}\Delta y \to 0$$

此时,

$$\lim_{\Delta z \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y} = -\mathrm{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

由于 f(z) 在 z_0 点可导,则这两个导数值应该相等,于是:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

C-R 条件是 f(z) 在 z 点可导的必要条件,但不是充分条件。也就是说,可导必定满足 C-R 条件,但满足 C-R 条件不一定可导。

复变函数的解析性

复变函数的解析性

若复变函数 f(z) 在 z_0 的邻域内每一点都可导,则称 f(z) 在 z_0 点是解析的。

若复变函数 f(z) 在 Ω 内每一点都可导,则 f(z) 在 Ω 内是解析的,或称为全纯的。

相关定理

定理1

复变函数 $f(z)=u(x,y)+\mathrm{i} v(x,y)$ 在区域 Ω 为解析函数 \Longleftrightarrow 在与复平面 Ω 相应的实平面区域内 u(x,y),v(x,y) 可微,且 u(x,y),v(x,y) 满足 C-R 条件。

特别地,若 f(z) 为 Ω 上的连续函数,则 f(z) 是 Ω 上的解析函数 \Longleftrightarrow f(z) 满足 C-R 条件。

定理2

若 f(z) 为区域 Ω 上的解析函数,且 f(z) 为实函数,即 $f(z)=f^*(z)$,则 f(z) 为常数。

定理3

若 f(z) 为区域 Ω 上的解析函数,则在 Ω 上有 $\dfrac{\partial f(z,z^*)}{\partial z}=0$,即 $f(z,z^*)$ 不依赖于 z^*

定理4

在复平面区域 Ω 内解析的函数 $f(z)=u(x,y)+\mathrm{i} v(x,y)$,其实部 u(x,y) 和虚部 v(x,y) 都是平面区域 Ω 内的调和函数(即满足二维拉普拉斯方程 $\nabla^2 u(x,y)=0, \nabla^2 v(x,y)=0$ 的函数)。

例题

例1

已知解析函数的实部 $u=x^3-3xy^2$,求该解析函数。

方法1 (积分法)

$$f(z) = u(x,y) + \mathrm{i} v(x,y)$$

解析函数应满足柯西-黎曼条件:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 3x^2 - 3y^2, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 6xy$$

$$dv(x,y) = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy = 6xy dx + (3x^2 - 3y^2) dy$$
(1)

选择积分路径为: $\underbrace{(0,0) \to (x,0)}_{C_1}$, $\underbrace{(x,0) \to (x,y)}_{C_2}$, 两边积分:

$$egin{align} v(x,y)-v(0,0)&=\int\limits_{C_1}6xy\mathrm{d}x+(3x^2-3y^2)\mathrm{d}y+\int\limits_{C_2}6xy\mathrm{d}x+(3x^2-3y^2)\mathrm{d}y\ &=0+\int_{y=0}^{y=y}(3x^2-3y^2)\mathrm{d}y\ &=3x^2y-y^3 \end{gathered}$$

$$v(x,y) = 3x^2y - y^3 + v(0,0) = 3x^2y - y^3 + C$$

于是:

$$f(z) = u(x, y) + iv(x, y)$$

= $x^3 - 3xy^2 + i(3x^2y - y^3 + C)$

例2

请证明: 柱坐标系下的解析函数 $f(z) = u(\rho, \varphi) + iv(\rho, \varphi)$ 满足的 C-R 方程:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \end{cases}$$

直角坐标下的 C-R 条件:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \Longrightarrow \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \tan \varphi = \frac{y}{x} \end{cases}$$

注意到:

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x} \frac{\partial \tan \varphi}{\partial x}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \left(\frac{\partial \tan \varphi}{\partial \varphi} \right)^{-1} \frac{\partial \tan \varphi}{\partial x}
= \frac{\partial u}{\partial \rho} \frac{x}{\sqrt{x^2 + y^2}} + \frac{\partial u}{\partial \varphi} \left(\frac{1}{\cos^2 \varphi} \right)^{-1} \left(-\frac{y}{x^2} \right)
= \frac{\partial u}{\partial \rho} \cos \varphi + \frac{\partial u}{\partial \varphi} \left(-\frac{\sin \varphi}{\rho} \right)
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial y}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial y}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \left(\frac{\partial \tan \varphi}{\partial \varphi} \right)^{-1} \frac{\partial \tan \varphi}{\partial y}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \left(\frac{\partial \tan \varphi}{\partial \varphi} \right)^{-1} \frac{\partial \tan \varphi}{\partial y}
= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \left(\frac{\partial \tan \varphi}{\partial \varphi} \right)^{-1} \frac{\partial \tan \varphi}{\partial y}
= \frac{\partial u}{\partial \rho} \sin \varphi + \frac{\partial u}{\partial \varphi} \left(\frac{\cos \varphi}{\rho} \right)$$

_ _ _ _ _

$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \frac{\partial \varphi}{\partial x}
= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial x}
= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi}\right)^{-1} \frac{\partial \tan\varphi}{\partial x}
= \frac{\partial v}{\partial \rho} \frac{x}{\sqrt{x^2 + y^2}} + \frac{\partial v}{\partial \varphi} \left(\frac{1}{\cos^2\varphi}\right)^{-1} \left(-\frac{y}{x^2}\right)
= \frac{\partial v}{\partial \rho} \cos\varphi + \frac{\partial v}{\partial \varphi} \left(-\frac{\sin\varphi}{\rho}\right)
= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \frac{\partial \varphi}{\partial y}
= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial y}
= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi}\right)^{-1} \frac{\partial \tan\varphi}{\partial y}
= \frac{\partial v}{\partial \rho} \frac{y}{\sqrt{x^2 + y^2}} + \frac{\partial v}{\partial \varphi} \left(\frac{1}{\cos^2\varphi}\right)^{-1} \left(\frac{1}{x}\right)
= \frac{\partial v}{\partial \rho} \sin\varphi + \frac{\partial v}{\partial \varphi} \left(\frac{\cos\varphi}{\rho}\right)$$

全部代入直角坐标下的 C-R 方程:

$$\frac{\partial u}{\partial \rho} \cos \varphi + \frac{\partial u}{\partial \varphi} \left(-\frac{\sin \varphi}{\rho} \right) = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{\partial v}{\partial \varphi} \left(\frac{\cos \varphi}{\rho} \right) \tag{1}$$

$$\frac{\partial u}{\partial \rho} \sin \varphi + \frac{\partial u}{\partial \varphi} \left(\frac{\cos \varphi}{\rho} \right) = -\left[\frac{\partial v}{\partial \rho} \cos \varphi + \frac{\partial v}{\partial \varphi} \left(-\frac{\sin \varphi}{\rho} \right) \right] \tag{2}$$

 $(1) imes \cos \varphi + (2) imes \sin \varphi$ 得到:

$$\frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi}$$

 $(2) \times \cos \varphi - (1) \times \sin \varphi$ 得到:

$$\frac{1}{\rho}\frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho}$$

例3

已知解析函数的虚部 $v=rac{y}{x^2+y^2}$,求该解析函数。

$$rac{\partial v}{\partial x} = rac{-2xy}{\left(x^2 + y^2
ight)^2}, rac{\partial v}{\partial y} = rac{x^2 - y^2}{\left(x^2 + y^2
ight)^2}$$

函数解析, 故满足 C-R 条件, 即满足:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2}$$

于是:

$$\mathrm{d}u = rac{\partial u}{\partial x} \mathrm{d}x + rac{\partial u}{\partial y} \mathrm{d}y \ = rac{x^2 - y^2}{\left(x^2 + y^2
ight)^2} \mathrm{d}x + rac{2xy}{\left(x^2 + y^2
ight)^2} \mathrm{d}y$$

极坐标变换:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \Longrightarrow \begin{cases} \mathrm{d}x = \frac{\partial x}{\partial \rho} \mathrm{d}\rho + \frac{\partial x}{\partial \varphi} \mathrm{d}\varphi = \cos \varphi \mathrm{d}\rho - \rho \sin \varphi \mathrm{d}\varphi \\ \mathrm{d}y = \frac{\partial y}{\partial \rho} \mathrm{d}\rho + \frac{\partial y}{\partial \varphi} \mathrm{d}\varphi = \sin \varphi \mathrm{d}\rho + \rho \cos \varphi \mathrm{d}\varphi \end{cases}$$

于是:

$$\mathrm{d}u = rac{x^2 - y^2}{\left(x^2 + y^2
ight)^2} \mathrm{d}x + rac{2xy}{\left(x^2 + y^2
ight)^2} \mathrm{d}y$$

$$= rac{\cos arphi}{
ho^2} \mathrm{d}
ho + rac{\sin arphi}{
ho} \mathrm{d}arphi$$

$$= \mathrm{d}\left(rac{-\cos arphi}{
ho}
ight)$$

于是:

$$u = \frac{-\cos\varphi}{\rho} + C = -\frac{x}{x^2 + y^2} + C$$

综上,

$$f(z) = u + iv$$

$$= \left(-\frac{x}{x^2 + y^2} + C\right) + i\left(\frac{y}{x^2 + y^2}\right)$$

第6章 复变函数积分

复变函数积分

复变函数积分的定义

复变函数的积分是指复变函数 f(z) 在其有定义的区域 Ω 中,沿某一曲线 C 的**有向**的**线积分**,记为 $\int\limits_C f(z)\mathrm{d}z$,其定义为:

$$\int\limits_C f(z)\mathrm{d}z = \lim_{\substack{n o \infty \ |z_j-z_{j-1}| o 0}} \sum_{j=1}^n f(\xi_j)(z_j-z_{j-1})$$

把 C 分成 n 段, ξ_i 是 C 上 z_{i-1} 点到 z_i 点的中的某一点。

复变函数积分的性质

$$\left|\int\limits_C f(z)\mathrm{d}z
ight|\leqslant \int\limits_C |f(z)|\,|\mathrm{d}z|$$

柯西积分定理

单连通区域柯西积分定理

设 f(z) 在单连通区域 Ω 上解析,当积分路径为 Ω 内的任一闭合曲线 C 时,有:

$$\oint\limits_{C^+} f(z) \mathrm{d}z = 0$$

多连通区域的柯西积分定理

设 f(z) 在具有 k 个内边界 C_1,C_2,\cdots,C_k 的回路 C 内的复连通区域内解析,规定 $C;C_1,C_2,\cdots,C_k$ 的正方向为逆时针,则:

$$\oint\limits_{C^+} f(z) \mathrm{d}z = \oint\limits_{C_1^+} f(z) \mathrm{d}z + \oint\limits_{C_2^+} f(z) \mathrm{d}z + \cdots + \oint\limits_{C_h^+} f(z) \mathrm{d}z$$

柯西积分公式

若 f(z) 在闭合回路 C 所包围的区域上解析, z_0 是此区域中的一点,则:

$$\oint\limits_{C_+^+}rac{f(z)}{z-z_0}\mathrm{d}z=2\pi\mathrm{i}f(z_0)$$

解析函数高阶导数的积分表达式

设 f(z) 在区域 Ω 内解析, C 为 Ω 内的任一闭合回路, 对于 C 所包围的区域内的任一点 z, 有:

$$f^{(n)}(z)\equivrac{\mathrm{d}^n}{\mathrm{d}z^n}f(z)=rac{n!}{2\pi\mathrm{i}}\oint\limits_{C^+}rac{f(\zeta)}{(\zeta-z)^{n+1}}\mathrm{d}\zeta$$

第7章 复变函数的级数展开

解析函数的泰勒展开

设 z_0 为函数 f(z) 解析区域 Ω 内的一点,以 z_0 为圆心的圆周 C 在 Ω 内,则 f(z) 可以在 C 内展成泰勒级数:

$$f(z) = \sum_{n=0}^\infty a_n (z-z_0)^n$$

其中,展开系数为:

$$a_n = rac{f^{(n)}(z_0)}{n!} = rac{1}{2\pi \mathrm{i}} \oint\limits_{C^+} rac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z$$

解析函数的洛朗展开

复变函数的零点

若复变函数 f(z) 在 z_0 点的函数值 $f(z_0)=0$,则称 z_0 为 复变函数 f(z) 的零点。

复变函数的奇点

若复变函数 f(z) 在 z_0 点**不解析**,即 f(z) 在 z_0 点的导数不存在或不唯一,则称 z_0 为复变函数 f(z) 的奇点。

奇点的分类

孤立奇点

若 z_0 为函数 f(z) 的奇点,而在 z_0 点任意小的邻域内,函数 f(z) 解析,则称 z_0 为 f(z) 的孤立奇点。

非孤立奇点

若 z_0 为函数 f(z) 的奇点,而在 z_0 点任意小的邻域内,除 z_0 点外存在 f(z) 的其他奇点,则称 z_0 为 f(z) 的非孤立奇点。

孤立奇点的分类

极点:设 z_0 是 f(z)的孤立奇点,若存在一个正整数 k,使得 $(z-z_0)^k f(z)$ 为非零的解析函数,则称 z_0 为 f(z)的 k 阶极点。

本性奇点:设 z_0 是 f(z) 的孤立奇点,若**不存在**一个正整数 k,使得 $(z-z_0)^k f(z)$ 为非零的解析函数,则称 z_0 为 f(z) 的本性奇点。

可去奇点:设 z_0 为函数 f(z) 的孤立奇点,f(z) 在 z_0 点没有定义,但在 z_0 的去心邻域内解析,此时可定义 $f(z_0) \equiv \lim_{z \to z_0} f(z)$ 使 f(z) 在 z_0 点解析,则称 z_0 为 f(z) 的可去奇点。

解析函数的洛朗展开定理

若函数 f(z) 在以 z_0 为圆心,半径为 R_1, R_2 的两个圆周 C_1, C_2 所包围的环形区域 $R_2 < |z-z_0| < R_1$ 上解析,则在此区域内 f(z) 可展成 Laurent 级数:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

其中,

$$a_n = rac{1}{2\pi \mathrm{i}} \oint\limits_{C^+} rac{f(\zeta)}{(\zeta-z_0)^{n+1}} \mathrm{d}\zeta$$

C 是任一条在环形区域内把 C_2 包围在内的闭曲线。

例题

例1

求
$$f(z)=rac{1}{z(z-1)}$$
 在环形区域 $0<|z|<1$ 和 $|z|>1$ 内,在 $z_0=0$ 处的展开式。

0<|z|<1 区域在 $z_0=0$ 处展开 f(z):

由于 |z| < 1,于是有几何级数:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= -\frac{1}{1-z} - \frac{1}{z}$$

$$= -\sum_{n=0}^{\infty} z^n - z^{-1}$$

$$= -\sum_{n=0}^{\infty} z^n$$

|z| > 1 区域在 $z_0 = 0$ 处展开 f(z):

注意到 |z| > 1,则 |1/z| < 1,于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= \frac{1}{z(1-\frac{1}{z})} - z^{-1}$$

$$= \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} - z^{-1}$$

$$= \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - z^{-1}$$

$$= \sum_{n=0}^{\infty} z^{-n-1} - z^{-1}$$

$$= \sum_{n=1}^{\infty} z^{-n-1}$$

例2

求
$$f(z)=rac{1}{z(z-1)}$$
 在 $z_1=0$ 和 $z_2=1$ 附近的展开式。

f(z) 在 $z_1=0$ 附近的展开式:

由于 0 < |z - 0| < 1,于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= -\frac{1}{1-z} - z^{-1}$$

$$= -\sum_{n=0}^{\infty} z^n - z^{-1}$$

$$= \sum_{n=-1}^{\infty} -z^n$$

f(z) 在 $z_2=1$ 附近的展开式:

由于 0 < |z-1| < 1, 于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= (z-1)^{-1} - \frac{1}{1-(1-z)}$$

$$= (z-1)^{-1} - \sum_{n=0}^{\infty} (1-z)^n$$

$$= (z-1)^{-1} - \sum_{n=0}^{\infty} (-1)^n (z-1)^n$$

$$= (z-1)^{-1} + \sum_{n=0}^{\infty} (-1)^{n+1} (z-1)^n$$

$$= \sum_{n=-1}^{\infty} (-1)^{n+1} (z-1)^n$$

第8章 留数定理及其在实积分中的应用

留数定理

留数的定义

设 z_0 是函数 f(z) 的孤立奇点,设 f(z) 在其孤立奇点 z_0 附近的环形区域中的洛朗展开式为:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

f(z) 在 z_0 点的留数,记为 $\mathrm{Res} f(z_0)$,定义为:

$$\operatorname{Res} f(z_0) \equiv a_{-1}$$

其中, a_{-1} 是 f(z) 在 z_0 点的洛朗展开式中 $(z-z_0)^{-1}$ 项的系数

留数的求法

定义法

直接把 f(z) 在其孤立奇点 z_0 点作洛朗展开,找到 $(z-z_0)^{-1}$ 前的系数 a_{-1} ,由留数的定义可知:

$$\mathrm{Res}f(z_0)\equiv a_{-1}$$

极限法

当 z_0 为 f(z) 的 m 阶极点时, f(z) 可在其孤立奇点 z_0 点作如下的洛朗展开:

$$f(z) = \sum_{n=-m}^{\infty} a_n (z-z_0)^n, \;\; a_{-m}
eq 0$$

则:

$$\mathrm{Res} f(z_0) = rac{1}{(m-1)!} \lim_{z o z_0} rac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} [(z-z_0)^m f(z)]$$

特殊情况

若 $f(z)=rac{h(z)}{g(z)},z_0$ 为 g(z) 的一阶极点,即 $g(z_0)=0$,且 h(z) 和 g(z) 在 z_0 点及其邻域内解析,则:

$$\mathrm{Res} f(z_0) = rac{h(z_0)}{g'(z_0)}$$

留数定理

若 f(z) 在回路 C 所包围的区域内除有限个孤立奇点 z_1,z_2,\cdots,z_k 外解析,则 f(z) 沿 C^+ 的回路积分值等于 f(z) 在 z_1,z_2,\cdots,z_k 的留数之和乘 $2\pi i$,即:

$$\oint\limits_{C^+} f(z) \mathrm{d}z = 2\pi \mathrm{i} \sum_{j=1}^k \mathrm{Res} f(z_j)$$

例1

计算回路积分
$$I=\oint\limits_{l^+}rac{\mathrm{d}z}{(z^2+1)(z-1)^2}$$
,其中回路 l 的方程为 $x^2+y^2-2x-2y=0$

$$\Leftrightarrow f(z) = \frac{1}{(z^2+1)(z-1)^2} = \frac{1}{(z+\mathrm{i})(z-\mathrm{i})(z-1)^2}$$

在回路 $l:(x-1)^2+(y-1)^2=\sqrt{2}$ 内的孤立奇点有: $z_1=\mathrm{i}, z_2=1, z_1$ 为一阶极点, z_2 为二阶极点。 计算 f(z) 在回路内孤立奇点处的留数:

$$\begin{aligned} \operatorname{Res} f(z_1) &= \frac{1}{0!} \lim_{z \to i} \frac{\mathrm{d}^0}{\mathrm{d}z^0} (z - \mathrm{i}) \cdot \frac{1}{(z + \mathrm{i})(z - \mathrm{i})(z - 1)^2} \\ &= \lim_{z \to i} \frac{1}{(z + \mathrm{i})(z - 1)^2} \\ &= \frac{1}{2\mathrm{i}(\mathrm{i} - 1)^2} \\ &= \frac{1}{4} \end{aligned}$$

$$\operatorname{Res} f(z_2) &= \frac{1}{1!} \lim_{z \to 1} \frac{\mathrm{d}^1}{\mathrm{d}z^1} (z - 1)^2 \cdot \frac{1}{(z + \mathrm{i})(z - \mathrm{i})(z - 1)^2} \\ &= \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{z^2 + 1} \right) \\ &= \lim_{z \to 1} \frac{-2z}{(z^2 + 1)^2} \\ &= -\frac{1}{2} \end{aligned}$$

于是:

$$I = \oint\limits_{l} rac{\mathrm{d}z}{(z^2+1)(z-1)^2}
otag \ = 2\pi\mathrm{i}\left[\mathrm{Res}f(z_1) + \mathrm{Res}f(z_2)
ight]
otag \ = 2\pi\mathrm{i}\left(rac{1}{4} - rac{1}{2}
ight)
otag \ = -rac{\pi\mathrm{i}}{2}$$

留数定理在实积分中的应用

计算无穷限奇异积分的柯西主值

利用 Jordan 引理计算一类带有三角函数的实积分问题

计算一类被积函数为有理三角函数式的实积分

考虑如下形式的积分:

$$I = \int_0^{2\pi} f(\cos heta, \sin heta) \mathrm{d} heta$$

其中, $f(\cos\theta,\sin\theta)$ 为不包含有孤立奇点 $\cos\theta$ 和 $\sin\theta$ 的有理函数。

$$z = \cos \theta + i \sin \theta$$
, $z^{-1} = e^{-i\theta} = \cos \theta - i \sin \theta$

于是:

$$\cos \theta = \frac{z + z^{-1}}{2}, \ \sin \theta = \frac{z - z^{-1}}{2i}$$

$$dz = ie^{i\theta}d\theta = izd\theta$$

$$d\theta = \frac{dz}{iz}$$

于是:

$$egin{aligned} I &= \int_0^{2\pi} f(\cos heta,\sin heta)\mathrm{d} heta \ &= \oint\limits_{C^+} f\left(rac{z+z^{-1}}{2},rac{z-z^{-1}}{2\mathrm{i}}
ight)rac{1}{\mathrm{i}z}\mathrm{d}z \end{aligned}$$

其中,C 是以复平面原点为圆心的单位圆周,即 C:|z|=1

例1

计算定积分
$$I=\int_0^{2\pi} rac{\mathrm{d} heta}{1+arepsilon \cos heta}$$
,其中 0

令:

$$z=\mathrm{e}^{\mathrm{i} heta},\;\;z^{-1}=\mathrm{e}^{-\mathrm{i} heta},\;\;\mathrm{d}z=\mathrm{i}\mathrm{e}^{\mathrm{i} heta}\mathrm{d} heta\Longrightarrow\mathrm{d} heta=rac{\mathrm{d}z}{\mathrm{i}\mathrm{e}^{\mathrm{i} heta}}=rac{\mathrm{d}z}{\mathrm{i}z},\;\;\cos heta=rac{1}{2}\left(z+z^{-1}
ight)$$

于是:

$$I = \int_0^{2\pi} rac{\mathrm{d} heta}{1+arepsilon\cos heta} \ = rac{2}{\mathrm{i}} \oint\limits_{C^+} rac{1}{arepsilon z^2 + 2z + arepsilon} \mathrm{d}z$$

其中,C 是复平面上以原点为圆心的单位圆。

令 $f(z) = \frac{1}{\varepsilon z^2 + 2z + \varepsilon}$, 被积函数的两个一阶极点为:

$$z_1 = rac{-1 + \sqrt{1 - arepsilon^2}}{arepsilon}, \ \ z_2 = rac{-1 - \sqrt{1 - arepsilon^2}}{arepsilon}$$

被积函数 f(z) 可写为:

$$f(z)=rac{1}{arepsilon(z-z_1)(z-z_2)}$$

只有 z_1 在积分回路内。

计算 f(z) 在回路内孤立奇点 z_1 处的留数:

$$egin{aligned} \operatorname{Res} &f(z_1) = rac{1}{0!} \lim_{z o z_1} rac{\operatorname{d}^0}{\operatorname{d} z^0} (z - z_1) f(z) \ &= \lim_{z o z_1} rac{1}{arepsilon (z - z_2)} \ &= rac{1}{arepsilon (z_1 - z_2)} \ &= rac{1}{2\sqrt{1 - arepsilon^2}} \end{aligned}$$

由留数定理,有:

$$egin{aligned} \oint\limits_{C^+} rac{1}{arepsilon z^2 + 2z + arepsilon} \mathrm{d}z &= 2\pi \mathrm{i} \mathrm{Res} f(z_1) \ &= 2\pi \mathrm{i} \cdot rac{1}{2\sqrt{1-arepsilon^2}} \ &= rac{\pi \mathrm{i}}{\sqrt{1-arepsilon^2}} \end{aligned}$$

于是积分为:

$$egin{aligned} I &= rac{2}{\mathrm{i}} \oint\limits_{C^+} rac{1}{arepsilon z^2 + 2z + arepsilon} \mathrm{d}z \ &= rac{2}{\mathrm{i}} \cdot rac{\pi \mathrm{i}}{\sqrt{1 - arepsilon^2}} \ &= rac{2\pi}{\sqrt{1 - arepsilon^2}} \end{aligned}$$

例2

计算定积分:
$$I = \int_0^{2\pi} \frac{1}{3 - 2\cos\theta + \sin\theta} d\theta$$

$$z=\mathrm{e}^{\mathrm{i} heta},\;\;z^{-1}=\mathrm{e}^{-\mathrm{i} heta},\;\;\mathrm{d}z=\mathrm{i}\mathrm{e}^{\mathrm{i} heta}\mathrm{d} heta\Longrightarrow\mathrm{d} heta=rac{\mathrm{d}z}{\mathrm{i}\mathrm{e}^{\mathrm{i} heta}}=rac{\mathrm{d}z}{\mathrm{i}z},\;\;\cos heta=rac{1}{2}\left(z+z^{-1}
ight),\;\;\sin heta=rac{1}{2\mathrm{i}}\left(z-z^{-1}
ight)$$

设C是复平面上的单位圆,

$$I = \int_0^{2\pi} rac{1}{3-2\cos heta+\sin heta} \mathrm{d} heta
onumber \ = 2 \oint\limits_{C^+} rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}$$

令 $f(z)=rac{1}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}$,f(z) 有两个一阶极点 $z_1=2-\mathrm{i}, z_2=rac25-rac15\mathrm{i}$,只有 z_2 在单位圆C 内。

由于 z_1,z_2 是 $(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}=0$ 的两根,于是 f(z) 可表达为:

$$f(z) = rac{1}{(1-2\mathrm{i})(z-z_1)(z-z_2)}$$

f(z) 在 z_2 处的留数:

$$egin{aligned} ext{Res} f(z_2) &= rac{1}{0!} \lim_{z o z_2} rac{ ext{d}^0}{ ext{d}z^0} (z-z_2) f(z) \ &= \lim_{z o z_2} rac{1}{(1-2 ext{i})(z-z_1)} \ &= rac{1}{(1-2 ext{i})(z_2-z_1)} \ &= rac{1}{4 ext{i}} \end{aligned}$$

于是由留数定理,有:

$$egin{aligned} \oint\limits_{C^+}rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}} &= 2\pi\mathrm{i}\mathrm{Res}f(z_2) \ &= rac{\pi}{2} \end{aligned}$$

于是:

$$egin{aligned} I &= 2 \oint\limits_{C^+} rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}} \ &= 2\cdotrac{\pi}{2} \ &= \pi \end{aligned}$$

第9章 傅里叶变换

傅里叶级数

设 \mathcal{H} 是一个希尔伯特空间,其元素是周期为 2l 的函数, $\forall f_1,f_2\in\mathcal{H}$, \mathcal{H} 上两个元素的内积,记为 $\langle f_1,f_2\rangle$,定义为:

$$\langle f_1,f_2
angle \equiv \int_{x=-l}^{x=l} f_1^*(x)f_2(x)\mathrm{d}x, \ \ x\in\mathbb{R}$$

其中,x 是参数,而内积与参数无关。有时为了指明参数,也将内积写为:

$$\langle f_1(x), f_2(x)
angle \equiv \int_{x=-l}^{x=l} f_1^*(x) f_2(x) \mathrm{d}x$$

若 f(x) 是实函数,则内积可简化为:

$$\langle f_1,f_2
angle \equiv \int_{x=-l}^{x=l} f_1(x)f_2(x)\mathrm{d}x, \;\; x\in\mathbb{R}$$

三角函数基的傅里叶级数

容易验证如下结论:

$$\begin{cases} \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{2l}} dx' = 1 \\ \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x dx = 0 \\ \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x dx = 0 \\ \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x' \cdot \frac{1}{\sqrt{l}} \sin \frac{m\pi}{l} x' dx' = \delta_{n,m}, \quad n = 1, 2, \dots, m = 0, 1, 2, \dots \\ \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x' \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x' dx' = 0, \quad n = 1, 2, \dots, m = 0, 1, 2, \dots \\ \int_{x'=-l}^{x'=l} \frac{1}{\sqrt{l}} \cos \frac{n\pi}{l} x' \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x' dx' = \delta_{n,m}, \quad n, m = 0, 1, 2, \dots \end{cases}$$

函数系 $\left\{\frac{1}{\sqrt{2l}},\ \frac{1}{\sqrt{l}}\sin\frac{n\pi}{l}x,\ \frac{1}{\sqrt{l}}\cos\frac{m\pi}{l}x;\ n,m=1,2,\cdots\right\}$ 是一个完备的正交归一函数族,它们可作为基张成 \mathcal{H} 。

这个函数系具体写出来是:

$$\left\{\frac{1}{\sqrt{2l}}, \frac{1}{\sqrt{l}}\sin\frac{\pi}{l}x, \frac{1}{\sqrt{l}}\cos\frac{\pi}{l}x, \frac{1}{\sqrt{l}}\sin\frac{2\pi}{l}x, \frac{1}{\sqrt{l}}\cos\frac{2\pi}{l}x, \cdots\right\}$$

任意一个周期为 2l 的,满足狄利克雷条件的函数 f(x) 可写成这些基函数的线性组合,即 f(x) 可展成傅里叶级数:

$$f(x) = a_0 \cdot rac{1}{\sqrt{2l}} + \sum_{k=1}^{\infty} \left(a_k \cdot rac{1}{\sqrt{l}} \cos rac{k\pi}{l} x + b_k \cdot rac{1}{\sqrt{l}} \sin rac{k\pi}{l} x
ight)$$

为求出线性组合的系数,只需要利用"这组基是正交归一完备的"这一性质:

$$a_0 = \left\langle \frac{1}{\sqrt{2l}}, f(x) \right\rangle = \int_{-l}^{l} \frac{1}{\sqrt{2l}} \cdot f(x) dx = \frac{1}{\sqrt{2l}} \int_{-l}^{l} f(x) dx$$

$$a_k = \left\langle \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x, f(x) \right\rangle = \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x \cdot f(x) dx = \frac{1}{\sqrt{l}} \int_{x=-l}^{x=l} f(x) \cos \frac{k\pi}{l} x dx$$

$$b_k = \left\langle \frac{1}{\sqrt{l}} \sin \frac{k\pi}{l} x, f(x) \right\rangle = \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \sin \frac{k\pi}{l} x \cdot f(x) dx = \frac{1}{\sqrt{l}} \int_{x=-l}^{x=l} f(x) \sin \frac{k\pi}{l} x dx$$

e 指数基的傅里叶级数

注意到:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{\mathrm{i}(m-n)x} \mathrm{d}x = \delta_{m,n}$$

函数系 $\left\{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{\mathrm{i}mx}, m\in\mathbb{Z}\right\}$ 可作为以 2π 为周期的函数为元素的希尔伯特空间 $\mathcal H$ 中的一组正交完备归一基,以 2π 为周期的函数 f 在这组基上的展开式为:

$$f(x) = \sum_{m=-\infty}^{\infty} C_m \cdot rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i} m x}$$

利用正交归一条件:

$$\left\langle \frac{1}{\sqrt{2\pi}} e^{inx}, \frac{1}{\sqrt{2\pi}} e^{imx} \right\rangle \equiv \int_{-\infty}^{+\infty} \left(\frac{1}{\sqrt{2\pi}} e^{inx} \right)^* \cdot \left(\frac{1}{\sqrt{2\pi}} e^{imx} \right) dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(m-n)x} dx$$
$$= \delta_{m,n}$$

内积可得系数:

$$\left\langle rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}nx}, f(x) \right
angle = \left\langle rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}nx}, \sum_{m=-\infty}^{\infty} C_m \cdot rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}mx} \right
angle$$

$$= \sum_{m=-\infty}^{\infty} C_m \left\langle rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}nx}, rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}mx} \right
angle$$

$$= \sum_{m=-\infty}^{\infty} C_m \delta_{m,n}$$

$$= C_n$$

即系数 C_m 可通过内积求得:

$$C_m = \left\langle rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i} m x}, f(x)
ight
angle = \int_{-\pi}^{\pi} \left(rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i} m x}
ight)^* \cdot f(x) \mathrm{d} x = rac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} m x} \mathrm{d} x$$

傅里叶变换(to be continued)

第10章 拉普拉斯变换

拉普拉斯变换的定义

对于定义在实变数 $t\in[0,+\infty)$ 上的实函数或复函数 f(t),定义 f(t) 的拉普拉斯变换为:

$$\mathcal{L}\{f(t)\}(p)\equiv F(p)\equiv \int_{t=0}^{t=+\infty}f(t)\mathrm{e}^{-pt}\mathrm{d}t$$

其中, $p=s+\mathrm{i}\sigma,s\in\mathbb{R},\sigma\in\mathbb{R}$, e^{-pt} 称为拉普拉斯变换核,F(p) 称为像函数,也记为:

$$F(p) = f(t), \ f(t) = F(p)$$

拉普拉斯变换的性质 (两种记号)

线性定理

若 $\alpha_1, \alpha_2 \in \mathbb{C}$,则:

$$\mathcal{L}\{\alpha_1 f_1(t) + \alpha_2 f_2(t)\}(p) = \alpha_1 \mathcal{L}\{f_1(t)\}(p) + \alpha_2 \mathcal{L}\{f_2(t)\}(p)$$

设 $f_1(t) = F_1(p), f_2(t) = F_2(p)$, 则:

$$\alpha_1 f_1(t) + \alpha_2 f_2(t) = \alpha_1 F_1(p) + \alpha_2 F_2(p)$$

延迟定理

设 $\tau > 0$,则:

$$\mathcal{L}\{f(t-\tau)H(t-\tau)\}(p) = e^{-\tau p}\mathcal{L}\{f(t)\}(p)$$

设 $f(t) = F(p), \tau > 0$, 则:

$$f(t-\tau)H(t-\tau) = e^{-p\tau}F(p)$$

其中, 定义了阶跃函数 H:

$$H(t) \equiv egin{cases} 1 & , t > 0 \ 0 & , t \leqslant 0 \end{cases}$$

位移定理

设 $\lambda \in \mathbb{C}$,则:

$$\mathcal{L}\left\{\mathrm{e}^{-\lambda t}f(t)
ight\}(p)=\mathcal{L}\{f(t)\}(p+\lambda)$$

设 $f(t) = F(p), \lambda \in \mathbb{C}$,则:

$$e^{-\lambda t}f(t)\coloneqq F(p+\lambda)$$

标度变换定理

设 a > 0,则:

$$\mathcal{L}{f(at)}(p) = \frac{1}{a}\mathcal{L}{f(t)}\left(\frac{p}{a}\right)$$

设 f(t) = F(p), 则:

$$f(at) = \frac{1}{a}F\left(\frac{p}{a}\right), a > 0$$

卷积定理

$$\mathcal{L}\{f_1(t) * f_2(t)\}(p) = \mathcal{L}\{f_1(t)\}(p) \cdot \mathcal{L}\{f_2(t)\}(p)$$

其中, 卷积的定义为:

$$f_1(t)*f_2(t) \equiv \int_{ au=0}^{ au=t} f_1(au) f_2(t- au) \mathrm{d} au$$

设 $f_1(t) = F_1(p), f_2(t) = F_2(p)$, 则:

$$f_1(t) * f_2(t) = F_1(p)F_2(p)$$

微分定理

$$\mathcal{L}\left\{f^{(n)}(t)\right\}(p) = p^{n}\mathcal{L}\{f(t)\}(p) - p^{n-1}f^{(0)}(0) - p^{n-2}f^{(1)}(0) - \dots - p^{1}f^{(n-2)}(0) - p^{0} \cdot f^{(n-1)}(0)$$

设f(t) = F(p),则:

$$f^{(n)}(t) \coloneqq p^n F(p) - p^{n-1} f^{(0)}(0) - p^{n-2} f^{(1)}(0) - \dots - p^1 f^{(n-2)}(0) - p^0 f^{(n-1)}(0)$$

特别地:

$$f^{(1)}(t) \coloneqq p^1 F(p) - p^0 f^{(0)}(0)$$
 $f^{(2)}(t) \coloneqq p^2 F(p) - p^1 f^{(0)}(0) - p^0 f^{(1)}(0)$

积分性质

$$\mathcal{L}igg\{\underbrace{\int_0^t \mathrm{d}t \int_0^t \mathrm{d}t \cdots \int_0^t \mathrm{d}t}_{n \ \text{if } \mathbb{R}^d \ \mathcal{O}} f(t)igg\}(p) = rac{1}{p^n} \mathcal{L}\{f(t)\}(p)$$

$$\underbrace{\int_0^t \mathrm{d}t \int_0^t \mathrm{d}t \cdots \int_0^t \mathrm{d}t}_{n \equiv \mathcal{H} \mathcal{D}} f(t) \coloneqq \frac{1}{p^n} \mathcal{L}\{f(t)\}(p)$$

周期函数变换定理

若 f(t) = f(t+T), 则:

$$\mathcal{L}\{f(t)\}(p) = rac{\int_0^T f(au) \mathrm{e}^{-p au} \mathrm{d} au}{1 - \mathrm{e}^{-pT}}$$

若 f(t) = f(t+T), 则:

$$f(t) \coloneqq rac{\int_0^T f(au) \mathrm{e}^{-p au} \mathrm{d} au}{1 - \mathrm{e}^{-pT}}$$

常用拉普拉斯变换及反演

$$\mathcal{L}\{1\}(p) = \frac{1}{p}, \ \operatorname{Re} p > 0$$

$$\mathcal{L}\{e^{at}\}(p) = \frac{1}{p-a}, \ \operatorname{Re} p > a$$

$$\mathcal{L}\{t^n\}(p) = \frac{\Gamma(n+1)}{p^{n+1}}$$

$$\mathcal{L}\{t^n e^{at}\}(p) = \frac{\Gamma(n+1)}{(p-a)^{n+1}}$$

$$\mathcal{L}\{\sin at\}(p) = \frac{a}{p^2 + a^2}$$

$$\mathcal{L}\{\sin at\}(p) = \frac{p}{p^2 + a^2}$$

$$\mathcal{L}\{\sinh at\}(p) = \frac{a}{p^2 - a^2}$$

$$\mathcal{L}\{\cosh at\}(p) = \frac{p}{p^2 - a^2}$$

$$\mathcal{L}\{t \sin at\}(p) = \frac{2ap}{(p^2 + a^2)^2}$$

$$\mathcal{L}\{t \cos at\}(p) = \frac{p^2 - a^2}{(p^2 + a^2)^2}$$

$$\frac{1}{p} \stackrel{.}{=} 1, \quad \frac{1}{p^2} \stackrel{.}{=} t, \quad \frac{n!}{p^{n+1}} \stackrel{.}{=} t^n$$

$$\frac{1}{p-\alpha} \stackrel{.}{=} e^{\alpha t}, \quad \frac{n!}{(p-n)^{n+1}} \stackrel{.}{=} t^n e^{\alpha t}$$

$$\frac{\alpha}{p^2 + \alpha^2} \stackrel{.}{=} \sin \alpha t, \quad \frac{p}{p^2 + \alpha^2} \stackrel{.}{=} \cos \alpha t$$

$$\frac{\alpha}{p^2 - \alpha^2} \stackrel{.}{=} \sinh \alpha t, \quad \frac{p}{p^2 - \alpha^2} \stackrel{.}{=} \cosh \alpha t$$

拉普拉斯变换的应用

解常微分方程

例1

用拉普拉斯变换解下列 RL 串联电路方程, 其中 L, R, E 为常数:

$$\begin{cases} L \frac{\mathrm{d}i(t)}{\mathrm{d}t} + Ri(t) = E\\ i(0) = 0 \end{cases}$$

设i(t) = F(p)

微分定理给出:

$$rac{\mathrm{d}i(t)}{\mathrm{d}t}\coloneqq p^1F(p)-p^0i^{(0)}(0)=pF(p)-i(0)=pF(p)$$

常用拉普拉斯变换:

$$\mathcal{L}\{1\}(p)=rac{1}{p}, \ \operatorname{Re} p>0, \ \operatorname{or1}\coloneqq rac{1}{p}$$

对方程 $L \frac{\mathrm{d}i(t)}{\mathrm{d}t} = +Ri(t) = E$ 两边同时作拉普拉斯变换,得:

$$LpF(p)+RF(p)=rac{E}{p}$$

解出 F(p):

$$egin{aligned} F(p) &= rac{E}{Lp^2 + Rp} \ &= rac{E}{R} \left(rac{1}{p} - rac{p}{p + R/L}
ight) \end{aligned}$$

常用拉普拉斯变换的反演:

$$\frac{1}{p-\alpha} = e^{\alpha t}$$

于是:

$$\frac{1}{p} = 1, \quad \frac{1}{p + R/L} = e^{-\frac{R}{L}t}$$

对方程 $F(p)=rac{E}{R}\left(rac{1}{p}-rac{p}{p+R/L}
ight)$ 两边同时作拉普拉斯逆变换,得:

$$i(t) = rac{E}{R} \left(1 - \mathrm{e}^{-rac{R}{L}t}
ight)$$

第11章 δ 函数

δ 函数的定义

 δ 函数是一个定义在 \mathbb{R} 上的广义函数, 其满足:

$$\delta(x-x_0) = egin{cases} 0 &, x
eq x_0 \ +\infty &, x = x_0 \end{cases}, oxtless \int_a^b \delta(x-x_0) \mathrm{d}x = egin{cases} 1 &, x_0 \in (a,b) \ 0 &, x_0
otin (a,b) \end{cases}$$

δ 函数的性质

(1) 设 f(x) 为连续函数,则:

$$\int_{-\infty}^{+\infty} f(x) \delta(x-x_0) \mathrm{d}x = f(x_0)$$

(2) $\delta(x)$ 是偶函数:

$$\delta(-x) = \delta(x)$$

(3):

$$f(x)\delta(x-x_0) = f(x_0)\delta(x-x_0)$$

(4) :

$$x\delta(x) = 0$$

(5):

$$\int_{-\infty}^{+\infty} \delta(x-x_2)\delta(x-x_1)\mathrm{d}x = \delta(x_1-x_2)$$

(6) :设 $\{x_i\}$ 为 $\varphi(x)$ 的单根,即 $\varphi(x_i)=0$ 且 $\varphi'(x_i)
eq 0$,则:

$$\delta(arphi(x)) = \sum_i rac{1}{|arphi'(x_i)|} \delta(x-x_i)$$

简单例子:

$$\delta(ax)=rac{1}{|a|}\delta(x)$$
 $\delta(x^2-a^2)=rac{1}{2|a|}\left[\delta(x+a)+\delta(x-a)
ight]$

三维 δ 函数

$$\delta(ec{r}-ec{r}_0) = egin{cases} 0 &, ec{r}
eq ec{r}_0 \ +\infty &, ec{r} = ec{r}_0 \end{cases}, oxtlus \int\limits_V \delta(ec{r}-ec{r}_0) \mathrm{d}^3 ec{r} = 1, ec{r}_0 \in V$$

三维直角坐标系

$$\mathrm{d}^3ec{r}=\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
 $\delta(ec{r}-ec{r}_0)\equiv\delta(x-x_0)\delta(y-y_0)\delta(z-z_0)$

三维球坐标系

$$\mathrm{d}^3ec{r}=r^2\sin heta\mathrm{d}r\mathrm{d} heta\mathrm{d}arphi$$
 $\delta(ec{r}-ec{r}_0)=rac{1}{r^2\sin heta}\delta(r-r_0)\delta(heta- heta_0)\delta(arphi-arphi_0)$

三维柱坐标系

$$\mathrm{d}^3 ec{r} =
ho \mathrm{d}
ho \mathrm{d} arphi \mathrm{d} z$$
 $\delta(ec{r} - ec{r}_0) = rac{1}{
ho} \delta(
ho -
ho_0) \delta(arphi - arphi_0) \delta(z - z_0)$

不同形式的 δ 函数

$$\delta(x) = \lim_{n o \infty} \sqrt{rac{n}{\pi}} \mathrm{e}^{-nx^2} \ \delta(ec{r}) = -rac{1}{4\pi}
abla^2 rac{1}{r}$$

δ 函数的傅里叶展式和傅里叶变换

一维

$$\delta(x-x_0) = rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k$$

其中,系数 C(k) 就是 $\delta(x-x_0)$ 的傅里叶变换 $\mathscr{F}\{\delta(x-x_0)\}(k)$,即:

$$egin{aligned} C(k) &= \mathscr{F}\{\delta(x-x_0)\}(k) \ &= \int_{k=-\infty}^{k=+\infty} \delta(x-x_0) \mathrm{e}^{-\mathrm{i}kx} \mathrm{d}x \ &= \mathrm{e}^{-\mathrm{i}kx_0} \end{aligned}$$

代回 $\delta(x-x_0)$ 的傅里叶展式,可得:

$$egin{aligned} \delta(x-x_0) &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \ &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \mathrm{e}^{-\mathrm{i}kx_0} \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \ &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \mathrm{e}^{\mathrm{i}k(x-x_0)} \mathrm{d}k \end{aligned}$$

$$oxed{\delta(x-x_0)=rac{1}{2\pi}\int_{k=-\infty}^{k=+\infty}\mathrm{e}^{\mathrm{i}(x-x_0)k}\mathrm{d}k}$$

三维

$$\begin{split} \delta(\vec{r} - \vec{r}_0) &= \delta(x - x_0) \delta(y - y_0) \delta(z - z_0) \\ &= \left(\frac{1}{2\pi} \int_{k_x = -\infty}^{k_x = +\infty} \mathrm{e}^{\mathrm{i}(x - x_0)k_x} \mathrm{d}k_x\right) \left(\frac{1}{2\pi} \int_{k_y = -\infty}^{k_y = +\infty} \mathrm{e}^{\mathrm{i}(y - y_0)k_y} \mathrm{d}k_y\right) \left(\frac{1}{2\pi} \int_{k_z = -\infty}^{k_z = +\infty} \mathrm{e}^{\mathrm{i}(z - z_0)k_z} \mathrm{d}k_z\right) \\ &= \frac{1}{(2\pi)^3} \int_{k_x = -\infty}^{k_x = +\infty} \int_{k_y = -\infty}^{k_y = +\infty} \int_{k_z = -\infty}^{k_z = +\infty} \mathrm{e}^{\mathrm{i}(x - x_0)k_x} \mathrm{e}^{\mathrm{i}(y - y_0)k_y} \mathrm{e}^{\mathrm{i}(z - z_0)k_z} \mathrm{d}k_x \mathrm{d}k_y \mathrm{d}k_z \\ &= \frac{1}{(2\pi)^3} \int_{\vec{k}_z = 0}^{\pi} \mathrm{e}^{\mathrm{i}(\vec{r} - \vec{r}_0) \cdot \vec{k}} \mathrm{d}^3 \vec{k} \end{split}$$

$$oxed{\delta(ec{r}-ec{r}_0)=rac{1}{\left(2\pi
ight)^3}\int\limits_{ec{k}\in\mathbb{R}^3}\mathrm{e}^{\mathrm{i}(ec{r}-ec{r}_0)\cdotec{k}}\mathrm{d}^3ec{k}}$$

例题

例1

证明:
$$\delta(ec{r}) = -rac{1}{4\pi}
abla^2rac{1}{r}$$

当 $\vec{r} \neq \vec{0}$,有:

$$\nabla \frac{1}{r} = -\frac{1}{r^2} \nabla r = -\frac{1}{r^2} \frac{\vec{r}}{r} = -\frac{\vec{r}}{r^3}$$

$$\nabla^2 \frac{1}{r} = \nabla \cdot \left(\nabla \frac{1}{r} \right)$$

$$= \nabla \cdot \left(-\frac{\vec{r}}{r^3} \right)$$

$$= -\left(\vec{r} \cdot \nabla \frac{1}{r^3} + \frac{1}{r^3} \nabla \cdot \vec{r} \right)$$

$$= -\left(\vec{r} \cdot \left(-3r^{-4} \frac{\vec{r}}{r} \right) + \frac{1}{r^3} \cdot 3 \right)$$

$$= 0$$

 $abla^2rac{1}{r}$ 在 $ec{r}=ec{0}$ 处无定义,但可人为定义其在 $ec{0}$ 处的函数值为 $+\infty$

取以坐标原点为球心,半径为 R 的一个球体 V ,

$$\begin{split} \int\limits_{\vec{r}\in V} -\frac{1}{4\pi} \nabla^2 \frac{1}{r} \mathrm{d}^3 \vec{r} &= -\frac{1}{4\pi} \int\limits_{\vec{r}\in V} \nabla \cdot \left(\nabla \frac{1}{r}\right) \mathrm{d}^3 \vec{r} \\ &= -\frac{1}{4\pi} \oint\limits_{\partial V^+} \nabla \frac{1}{r} \cdot \mathrm{d} \vec{S} \\ &= -\frac{1}{4\pi} \oint\limits_{\partial V^+} -\frac{\vec{r}}{r^3} \cdot \mathrm{d} \vec{S} \\ &= \frac{1}{4\pi} \cdot \frac{1}{R^2} \oint\limits_{\partial V^+} \mathrm{d} S \\ &= \frac{1}{4\pi R^2} \cdot 4\pi R^2 \\ &= 1 \end{split}$$

第12章 小波变换初步

第13章 波动方程、输运方程、泊松方程及其定解 问题

第14章 分离变量法

第15章 曲线坐标系下的分离变量

第16章 球函数

第17章 柱函数

第18章 格林函数法

第19章 其他方程求解

第20章 非线性数学物理方程初步

第21章 泛函的变分

第22章 变分原理