学号

教师签字》 2 15

实验日期 2024

2024.9.20 T5802

预习成绩

总成绩

分光计的调节及应用

一、预习

- 1. 分光计调节的主要步骤与要点;
- 2. 如何调整望远镜光轴与分光计的中心轴垂直,何为"各半调节法(对半调节法)"?
- 3. 衍射光栅测定光的波长工作原理是什么?
- 答:1.①调节望远镜目镜,直至能看到分划板上清晰的基准线;
 - ②调节望远镜物镜,从而使望远镜聚焦到无穷远处;
 - ③ 调节望远镜及载物台,使望远镜光轴与载物台转轴垂直(超调);
 - ④ 调节型远镜及载物台,使望远镜光袖与数物台转轴垂直(细调);
 - ⑤ 调节平行光管与望远镜光轴周轴。
 - 2. 调整过程中需要先粗调再细调。
 - ①粗调:放置双面反射镜,使其与载物台上一条刻伐重合,镜面正对望远镜。调节望远镜 俯仰调节螺钉和载物台的工颗螺钉,直至双面反射镜的两个反射面反射回来的绿色十字像都能被观察到。
 - ②细调:首先使用"各半调节运":先调节望远镜俯仰角,使十字像的水平伐与上基准线的高度 差减小一半,然后调整裁物台下方靠近望远镜的那颗螺钉,直至十字像的水平伐与 上基准伐对齐。然后再将载物台连同双面反射镜转过180°,利用"各半调节法"再调 节反射镜另一面,使之与望远镜光轴也保持垂直。
 - 3. 当光垂直入射列衍射光栅面上时,根据单缝行射和多光束平涉原理可知,透过狭缝的光发生行射,从而俗各方向传播,径透镜会聚后发生多光束平涉,并在其焦平面上形成一系列明纹。明纹的空间位置用衍射角火。表示,则有光栅方程

$$\delta = d\left[\sin(i) - \sin(\psi_k)\right] = k\lambda, k=0,\pm1,\pm2,\cdots$$

式中 d为光栅常数 , 即相邻决路的间距 , 入为光波波长 , i为光线入射角。在本实验中 , 通过调节使得 i=0 , 刷上式化为

$$\delta = d \sin(\psi_k) = k\lambda$$
, $k = 0, \pm 1, \pm 2, \cdots$

因此 在正入射情形下第十大级明仪与第一大级明仪相对于光栅法线对称,即行射角大小相等。故在已知光栅常数 d时,只需测量第十大级明仪对应的行射角水,即可通过公式

$$\lambda = \frac{d \sin(\psi_k)}{k}$$

求得波长入。

二、原始数据记录

表 1 用衍射光栅测定光的波长实验数据

	衍射级次	+		-		标准波长	
颜色	k	$ heta_1$	$ heta_2$	θ ' ₁	θ'2	(nm)	
	1	115°32′	295°34′	134°26′	314°26′		
绿	2	/05°52′	285°54′	144 ° 8′	324°8′	546.1	
	3	95°32′	275°35′	154°28′	334°26′		
, ,	1	115°0′	295°3′	134°59′	3/4°58′		
黄1	2	104°44′	2 81°4 7′	145°15′	325°15′	577.0	
1	3	93°35′	273 °3 9′	156°17′	336°17′	. *	
	1	114°59′	295°0′	135%′	315°0′		
黄 2	2	104°38′	284*40′	145°20′	325°20′	579.1	
	3	93°30′	273°30′	156°27′	336°25′	· ·	

表 2 测三棱镜材料折射率实验数据

操作	$oldsymbol{ heta_1}$	$ heta_2$	θ'_1	θ'2
测三棱镜顶角	124°56′	3 0 f*58′	1°56 ′	18 1° 57′
测三棱镜最小	180°10′	o*6′	128°47′	308 °48 ′
偏向角		(360°以右)		·

三、数据处理

- 1. 分别计算相应三种颜色的光(绿光、黄光 1、黄光 2)在衍射级次 k=1、2、3 时波长的测量值 λ , 并计算波长平均值 λ , 将 λ 与汞灯波长的标准值相比较,计算测量的相对误差。要求写出完整的计算过程,包括所用公式和代入实验数据后的表达式。
- 2. 计算衍射光栅对黄光 1 和黄光 2 在衍射级次 k=1、2、3 时的角色散率 D_k 。
- 3. 计算三棱镜的顶角、绿光对应的最小偏向角,计算三棱镜材料对绿光的折射率,双黄光的折射率测量为选做内容。

答: 1. 根据光栅方程可得波长的表达式为

$$\lambda = \frac{d\sin\psi_k}{k}$$

其中,d 为光栅常量(本实验中为 $\frac{1}{300}$ mm),k 为衍射级次, ψ_k 为第 k 级衍射条纹对应的 衍射角。实验中为测衍射角 ψ_k ,测量的是 $\pm k$ 级衍射条纹对应的角度数据,而且为了避免 偏心差,每条衍射条纹对应的角度都从两个间隔 180° 的游标各读取一个数值,分别计算每个游标两次读数之差,再取平均值,这样就得到去除偏心差后的 $\pm k$ 级衍射条纹之间的张角,将其再除以 2,就得到 $\pm k$ 级衍射条纹相对于中心明纹的衍射角 ψ_k 。用公式表示即为

$$\psi_{k} = \frac{\frac{1}{2} \left[\left(\theta_{1} - \theta_{1}' \right) + \left(\theta_{2} - \theta_{2}' \right) \right]}{2} = \frac{\left[\left(\theta_{1} - \theta_{1}' \right) + \left(\theta_{2} - \theta_{2}' \right) \right]}{4}$$

同时,有相对误差 E 计算公式

$$E = \frac{\overline{\lambda} - \lambda_0}{\lambda_0} \times 100\%$$

根据实验数据(见原始数据记录表),按照上述公式,计算结果如下:

颜色	衍射级 次 k	$\psi_k = \frac{\left[\left(\theta_1 - \theta_1' \right) + \left(\theta_2 - \theta_2' \right) \right]}{4}$	$\lambda_k = \frac{d \sin \psi_k}{k}$ (nm)	波长平 均值 	标准波 长(nm)	相对误 差 <i>E</i>
	1	9°26′	546.81			
绿	2	19°7′	546.05	546.36	546.1	0.0479%
	3	29°26′	546.22			

黄 1	1	9°58′	577.39		577.0	0.0542%
	2	20°14′	576.75	577.31		
	3	31°20′	577.80			
	1	10°0′	579.06	579.48 579.1		0.0651%
黄 2	2	20°20′	579.36			
	3	31°28′	580.00			

2. 衍射光栅对某波长为 λ 的光束在衍射级次k时的角色散率 D_k 可通过下式计算得出

$$D_k = \frac{k}{d\cos\psi_k}$$

根据实验数据,按照上述公式,可以计算得出衍射光栅对黄光 1 和黄光 2 在衍射级次 k=1、2、3 时的角色散率 D_k 如下:

颜色 衍射级次 k		$\psi_k = \frac{\left[\left(\theta_1 - \theta_1' \right) + \left(\theta_2 - \theta_2' \right) \right]}{4}$	$D_k = \frac{k}{d\cos\psi_k} (\text{rad/nm})$	
	1	9°58′	304.60	
黄 1	2	20°14′	639.51	
	3	31°20′	1053.67	
	1	10°0′	304.63	
黄 2	2	20°20′	639.91	
	3	31°28′	1055.17	

3. (1) 计算三棱镜顶角的公式为

$$A = \pi - \frac{\left|\theta_1 - \theta_1'\right| + \left|\theta_2 - \theta_2'\right|}{2}$$

根据实验数据,按照上述公式,计算结果如下:

操作	$ heta_{\scriptscriptstyle 1}$	$\theta_{\scriptscriptstyle 2}$	$ heta_{1}^{\prime}$	$ heta_2'$	A
测三棱镜顶角	124°56′	304°58′	4°56′	184°57′	59°59′

(2) 计算绿光对应的最小偏向角的公式为

$$\delta_{\min} = \frac{\left|\theta_1 - \theta_1'\right| + \left|\theta_2 - \theta_2'\right|}{2}$$

根据实验数据(数据记录表格中的 0°6′在计算时作为 366°6′进行处理),按照上述公式,计算结果如下:

操作	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	$ heta_{\!\scriptscriptstyle 1}'$	$ heta_2'$	$\delta_{ ext{min}}$
测三棱镜最小偏向角	180°10′	0°6′	128°47′	308°48′	54°20′

即绿光对应的最小偏向角为 54°20′, 根据公式

$$n = \frac{\sin\frac{\delta_{\min} + A}{2}}{\sin\frac{A}{2}}$$

可以计算出三棱镜材料对绿光的折射率为

$$n = \frac{\sin\frac{\delta_{\min} + A}{2}}{\sin\frac{A}{2}} \approx 1.681$$

四、讨论题

- 1. 应用分光计进行测量之前,应调节到何种状态?
- 2. 按游标原理,读出下图中的角度数。

答: 1. (1)望远镜聚焦于无穷远,使其能接收平行光; (2)经过粗调和细调,使望远镜光轴与载物台转轴垂直; (3)平行光管发射出平行光,并使其与望远镜光轴同轴。

2. 上图中角度的读数为 5°24′。