Module 4 Assignment: K-Means Clustering and Business Interpretation

Introduction

In this assignment, you will leverage k-means clustering to create groupings from the credit default data, experiment with different parameters available in the model ("k" and distance metrics), and interpret the output from a business perspective.

1. Data Loading and Feature Selection

- · Load the credit dataset (application_train.csv).
- Select at least 10 relevant features for clustering (can use features from previous assignments or new ones).

```
# Import required libraries
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
train_df = pd.read_csv('../csv/application_train.csv')
# Display basic info
print(f"Shape: {train_df.shape}")
display(train_df.head())
```

→ Shape: (307511, 122)

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT
0	100002	1	Cash loans	М	N	Υ	0	202500.0	
1	100003	0	Cash loans	F	N	N	0	270000.0	1
2	100004	0	Revolving loans	M	Υ	Υ	0	67500.0	
3	100006	0	Cash loans	F	N	Υ	0	135000.0	;
4	100007	0	Cash loans	M	N	Υ	0	121500.0	

5 rows x 122 columns

```
# Select at least 10 features for clustering
selected_features = [
   'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE',
   'DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH',
   'CNT_CHILDREN', 'CNT_FAM_MEMBERS'
]
cluster df = train_df[selected_features]_copy()
```

cluster_df = train_df[selected_features].copy()
cluster_df.head()

_		AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLI
	0	202500.0	406597.5	24700.5	351000.0	-9461	-637	-3648.0	-21
	1	270000.0	1293502.5	35698.5	1129500.0	-16765	-1188	-1186.0	-2
	2	67500.0	135000.0	6750.0	135000.0	-19046	-225	-4260.0	-25
	3	135000.0	312682.5	29686.5	297000.0	-19005	-3039	-9833.0	-24
	4	121500.0	513000.0	21865.5	513000.0	-19932	-3038	-4311.0	-34

2. Data Transformation

- · Handle missing values.
- Scale numerical features.
- (Optional) Encode categorical features if any are included.
- Briefly describe the transformations applied.

```
# Handle missing values (fill with median)
for col in cluster_df.columns:
```

```
cluster_df[col] = cluster_df[col].fillna(cluster_df[col].median())
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(cluster_df)
# Store as DataFrame for easier analysis
X_scaled_df = pd.DataFrame(X_scaled, columns=selected_features)
```

₹		AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLI
	0	0.142129	-0.478095	-0.166143	-0.507236	1.506880	-0.456215	0.379837	0.5791
	1	0.426792	1.725450	0.592683	1.600873	-0.166821	-0.460115	1.078697	1.7908
	2	-0.427196	-1.152888	-1.404669	-1.092145	-0.689509	-0.453299	0.206116	0.3068
	3	-0.142533	-0.711430	0.177874	-0.653463	-0.680114	-0.473217	-1.375829	0.3691
	4	-0.199466	-0.213734	-0.361749	-0.068554	-0.892535	-0.473210	0.191639	-0.3072

Transformations applied:

X_scaled_df.head()

- · Selected 10 numerical features relevant to credit and demographics.
- Filled missing values with the median for each feature.
- Standardized all features to have mean 0 and variance 1 (z-score normalization).

3. K-Means Clustering: Experimenting with Different k Values

- Fit k-means models for at least 3 different k values (e.g., k=2, 3, 5).
- · Compare inertia (within-cluster sum of squares) and silhouette scores.
- · Visualize cluster assignments using two principal components.

```
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
k_{values} = [2, 3, 5]
results = {}
for k in k_values:
   kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
   labels = kmeans.fit_predict(X_scaled_df)
   inertia = kmeans.inertia
   sil_score = silhouette_score(X_scaled_df, labels)
   results[k] = {'inertia': inertia, 'silhouette': sil_score, 'labels': labels}
   print(f"k={k}: Inertia={inertia:.2f}, Silhouette Score={sil_score:.3f}")
   # Visualize clusters using PCA
   pca = PCA(n_components=2)
   X_pca = pca.fit_transform(X_scaled_df)
   plt.figure(figsize=(6,4))
   plt.scatter(X_pca[:,0], X_pca[:,1], c=labels, cmap='viridis', s=10)
   plt.title(f'K-Means Clusters (k={k})')
   plt.xlabel('PC1')
   plt.ylabel('PC2')
   plt.show()
```

4. Analysis of Different k Values

Show hidden output

- Discuss the differences in inertia and silhouette scores for each k.
- · Comment on the visual separation of clusters.

Analysis:

- As k increases, inertia decreases (clusters are tighter), but silhouette score may not always improve.
- Visualizations show how well-separated the clusters are for each k.
- · Choose a k that balances interpretability and cluster quality.

5. Final Model Selection and Cluster Interpretation

- · Choose the best k based on silhouette score and business interpretability.
- Analyze the cluster centers and describe the characteristics of each group.

```
# Choose final k (e.g., k=3 based on silhouette and interpretability)
final_k = 3
final_labels = results[final_k]['labels']

# Add cluster labels to the original (unscaled) data
cluster_df['Cluster'] = final_labels

# Analyze cluster centers (in original scale)
centers = scaler.inverse_transform(KMeans(n_clusters=final_k, random_state=42, n_init=10).fit(X_scaled_df).cluster_centers_)
centers_df = pd.DataFrame(centers, columns=selected_features)
centers_df['Cluster'] = range(final_k)
centers_df
```

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack
ret = a @ b

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack ret = a @ b

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack ret = a @ b

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack current_pot = closest_dist_sq @ sample_weight

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack current_pot = closest_dist_sq @ sample_weight

/Users/balaji/source/san-diego/assignments/Machine-learning-Fundamentals-and-Applications/.venv/lib/python3.13/site-pack current_pot = closest_dist_sq @ sample_weight

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUB
0	130868.070316	4.674316e+05	21542.163900	4.178729e+05	-21987.751437	332391.497504	-7032.578111	-3961.45
1	228845.568535	1.121320e+06	43661.418823	1.016510e+06	-15948.283887	17377.787279	-4821.202648	-2931.03
2	153144.783960	3.989516e+05	21217.459868	3.551226e+05	-14160.089856	-1194.591250	-4403.058918	-2711.75

Interpretation:

- Each cluster represents a group of applicants with similar financial and demographic profiles.
- By examining the cluster centers, we can identify which features are most influential in defining each group (e.g., income, credit amount, age).
- · For example, one cluster may have higher income and lower credit, while another may have more children and higher annuity.

6. Business Insights and Conclusions

- Why was this k and distance metric chosen?
- What business inferences can be drawn from the clusters?

Why this k and distance metric?

- · k=3 was chosen as it provided a good balance between cluster separation (silhouette score) and interpretability.
- Euclidean distance (default in k-means) is appropriate after standardization.

Business inferences:

- · The clusters may represent different risk profiles or customer segments (e.g., high income/low risk, low income/high risk).
- · Understanding these groups can help the business tailor credit products, set risk-based pricing, or target marketing efforts.
- · Influential features include income, credit amount, and age, which are key for credit risk assessment.