MATH SB - HWA, 3.7, Solution. Wi	10/26/09
A Theorem is usually, "Let X hold, then Y follows." To prove the Exostructively' (ie not by contradiction) you need to show hom Y follows of X. In our case X was "XEI, E>O", so your method must take X, HERE'S A NICE PROOF BY KYLE: (I've annotated too)	given any instance
3.7 Choose any x in T , choose any $e>0$ Substitutes of k symbols have legals 2^{-k} \Rightarrow	
what kgle didn't say here was: since 2-k has 0 as a limit, as k-100, there is a k such that 2-k < \(\geq \), for any given \$\(\sigma \cdot \) (constructively: choose any k layer than \(\limit \limit \geq \cdot \geq \).	Kyle Konrad
The s.t. $N_{\epsilon}(x) \stackrel{\text{contains}}{=} S_1 S_2 S_k \stackrel{\text{contains}}{=} S_1 S_2 S_k S_1 V$ the subinterval $S_1 S_2 S_k S_1 $ exists because T from it	tinerary of x: say
contains a Caxed point of Corollon, 5.18	Seventral, otherwise you night not
NE(x) contains a fixed pand to 2 by Corollary 3.18 (Follow from fixed pt. thun). Since & and x were arbitrary we have VXEI, E=0 Ne(x) contains a fixed point of T =) fixed points of T are descent T	1. elegant.
=) fixed points of T are dense in I	
Proving a theorem is a transaction: I those you amy x & I de .	any =>0,

Proving a theorem is a transaction: In them you amy xEI & any \(\varepsilon \) and you have to construct a periodic orbit in N\(\varepsilon(\varepsilon)\). I don't mind how you do it as long as you explain your steps. If the construction always works, the theorem is proved.