

Systèmes d'Exploitation Cours 9/12 : Stockage externe

Thomas Lavergne

Université Paris-Sud

Licence 3 - semestre S5

Plan

- Structure de disque
 - Rappels
 - Tampon
 - Codes correcteurs
 - Formatage
- Disques durs
- 3 Ordonnancement
- 4 Stockage sur bande
- Conclusion

Rappels

Système de fichiers

- Découpage des fichiers en blocs logiques
- Allocation des blocs sur le support physique

Géré au niveau de contrôleur de périphérique

Problèmes

- Accès aux blocs
 - Minimiser le temps de réponse du périphérique
 - Dépend du matériel et des algorithmes
- Garantir l'intégrité des données
 - Vérifier les secteurs

Tampon

Principe

Le disque est beaucoup plus lent que la RAM

• Ne pas bloquer le processeur pendant le chargement des blocs

→ tampon et transfert par bloc

Tampon

Principe

Le disque est beaucoup plus lent que la RAM

- Ne pas bloquer le processeur pendant le chargement des blocs
 - → tampon et transfert par bloc

Tampon

Espace de stockage plus petit mais plus rapide conservant les données les plus utilisées

Tampon

Principe

Le disque est beaucoup plus lent que la RAM

- Ne pas bloquer le processeur pendant le chargement des blocs
 - → tampon et transfert par bloc

Tampon

Espace de stockage plus petit mais plus rapide conservant les données les plus utilisées

Utilisation

- Gestion : cf. algos remplacement de pages
- Utilisé pour pages et blocs disques

Détection des secteurs défectueux

Secteur défectueux \rightarrow relecture \neq écriture

Détection des secteurs défectueux

Secteur défectueux \rightarrow relecture \neq écriture

Code d'erreur

Fonction de l'ensemble des données du bloc

- Stocké sur le secteur
- Comparé avec ϕ (données_secteur)

Détection des secteurs défectueux

Secteur défectueux \rightarrow relecture \neq écriture

Code d'erreur

Fonction de l'ensemble des données du bloc

- Stocké sur le secteur
- Comparé avec $\phi(donn\acute{e}s_secteur)$

Exemple : Somme de contrôle

- 2 bits de données \rightarrow 1 bit de parité de la somme
 - 0001 1011 0110 1100 \rightarrow^{ϕ} 0110 1100
 - Vérification : $000 \rightarrow \text{ok}$, $010 \rightarrow \text{erreur}$

Détection des secteurs défectueux

Secteur défectueux \rightarrow relecture \neq écriture

Code d'erreur

Fonction de l'ensemble des données du bloc

- Stocké sur le secteur
- Comparé avec $\phi(données_secteur)$

Exemple : Somme de contrôle

- 2 bits de données \rightarrow 1 bit de parité de la somme
 - 0001 1011 0110 1100 \rightarrow^{ϕ} 0110 1100
 - Vérification : 000 → ok, 010 → erreur
 mais on ne peut pas savoir lequel des 3 bits a été modifié...

Principe

- Code d'erreur → détecter secteur défectueux
- Code correcteur → détecter et réparer!

Principe

- Code d'erreur → détecter secteur défectueux
- Code correcteur → détecter et réparer!

Exemple

Tripler toute l'information :

$$0 \rightarrow 000$$
 $1 \rightarrow 111$

Principe

- Code d'erreur → détecter secteur défectueux
- Code correcteur → détecter et réparer!

Exemple

Tripler toute l'information :

$$0 \rightarrow 000$$
 $1 \rightarrow 111$

- 3 bits différents → erreur
- ullet Vote majoritaire o corriger

Principe

- Code d'erreur → détecter secteur défectueux
- Code correcteur → détecter et réparer!

Exemple

Tripler toute l'information :

$$0 \rightarrow 000$$
 $1 \rightarrow 111$

- 3 bits différents → erreur
- ullet Vote majoritaire o corriger

Très coûteux en espace $(\times 3)$!

En résumé

Un secteur contient

- Une en-tête utilisée par le contrôleur (ex : numéro de secteur détecté par la tête)
- Les données du bloc logique
- Une terminaison contenant le code correcteur

En résumé

Un secteur contient

- Une en-tête utilisée par le contrôleur (ex : numéro de secteur détecté par la tête)
- Les données du bloc logique
- Une terminaison contenant le code correcteur

Formatage

Opération de définition des secteurs et des blocs logiques

- Formatage bas niveau : taille des secteurs (et donc des blocs)
- Formatage haut niveau : partition, table FAT

Plan

- Structure de disque
- 2 Disques durs
 - Vitesse angulaire
 - Disque dur
 - Blocs et disques
- Ordonnancement
- 4 Stockage sur bande
- 5 Conclusion

Structures de stockage

Fiches perforées (années 50)

Structures de stockage

Fiches perforées (années 50)

X Capacité (nombre de trous)

Bandes magnétiques (années 60)

✓ Capacité

Structures de stockage

Fiches perforées (années 50)

Capacité (nombre de trous)

Bandes magnétiques (années 60)

- ✓ Capacité
- X Allocation contiguë

Disques/disquettes (années 70)

- ✓ Capacité
- ✓ Allocation libre
- Fragilité

Disque

Plaque circulaire

Vitesse angulaire Disque dur Blocs et disques

Principe

Disque

• Plaque circulaire $\rightarrow n$ pistes concentriques

Disque

- Plaque circulaire $\rightarrow n$ pistes concentriques
- m secteurs (cadre de blocs) par piste

Systèmes d'Exploitation Thomas Lavergne 10/36

Disque

- Plaque circulaire $\rightarrow n$ pistes concentriques
- m secteurs (cadre de blocs) par piste
- Tête de lecture mobile

Fonctionnement

• La tête lit 1 secteur à la fois

Disque

- Plaque circulaire $\rightarrow n$ pistes concentriques
- m secteurs (cadre de blocs) par piste
- Tête de lecture mobile

Fonctionnement

- La tête lit 1 secteur à la fois
- Rotation disque → lecture des secteurs de la piste

Disque

- Plaque circulaire $\rightarrow n$ pistes concentriques
- m secteurs (cadre de blocs) par piste
- Tête de lecture mobile

Fonctionnement

- La tête lit 1 secteur à la fois
- Rotation disque → lecture des secteurs de la piste
- Déplacement tête → lecture des autres pistes

Nombre de secteurs par piste

Les pistes concentriques sont toutes de taille différente!

→ Peut-on y mettre un nombre constant de secteurs?

Nombre de secteurs par piste

Les pistes concentriques sont toutes de taille différente!

→ Peut-on y mettre un nombre constant de secteurs?

Nombre de secteurs variable?

- X Difficile à gérer pour le contrôleur!
 Ex : conversion bloc logique → adresse physique (piste, secteur)
- Temps d'accès variable selon piste! (plus long pour secteurs extérieurs)

Nombre de secteurs par piste

Les pistes concentriques sont toutes de taille différente!

→ Peut-on y mettre un nombre constant de secteurs?

Nombre de secteurs variable?

- X Difficile à gérer pour le contrôleur!
 - $\mathsf{Ex} : \mathsf{conversion} \ \mathsf{bloc} \ \mathsf{logique} \to \mathsf{adresse} \ \mathsf{physique} \ \mathsf{(piste,secteur)}$
- Temps d'accès variable selon piste! (plus long pour secteurs extérieurs)
- → Le nombre de secteurs est le même pour toutes les pistes (ils sont plus ou moins espacés)

Vitesse de lecture/écriture

- La vitesse linéaire détermine le nombre de secteurs par unité de temps.
- La vitesse angulaire est la rotation du disque

Vitesse angulaire constante

- → Espacement entre secteurs variable
 - X Plus difficile pour le contrôleur
 - X Diminue la vitesse d'accès
- ✓ Rotation constante

Exemple: Disque dur

Vitesse de lecture/écriture

- La vitesse linéaire détermine le nombre de secteurs par unité de temps.
- La vitesse angulaire est la rotation du disque

Vitesse angulaire variable

- → Change à chaque piste
 - X Plus difficile pour le matériel

Exemple: CD (car on change moins souvent de piste)

Structure d'un disque dur

Cylindres

Plusieurs disques empilés, appelés plateaux

Les pistes de même rayon forment un cylindre

Structure d'un disque dur

Disque dur

- Un disque dur est composé de *n* cylindres
- Chaque cylindre est composé de m pistes
- Chaque piste est composée de k secteurs

Structure d'un disque dur

Disque dur

- Un disque dur est composé de *n* cylindres
- Chaque cylindre est composé de m pistes
- Chaque piste est composée de *k* secteurs

Tête de lecture

La tête de lecture est composée de :

- Un bras mobile en rateau
- *m* têtes fixes aux extrémités
- Un multiplexeur permettant de sélectionner la piste à lire
- → Chaque tête s'insère au dessus d'une piste

Secteurs et blocs

Secteurs

Un secteur peut contenir un seul bloc de données

Numérotation

- Le bloc 0 est sur le premier secteur de la première piste du cylindre superieur
- Par secteur croissant, puis par piste croissante, puis par cylindre

Secteurs et blocs

Secteurs

Un secteur peut contenir un seul bloc de données

Numérotation

- Le bloc 0 est sur le premier secteur de la première piste du cylindre superieur
- Par secteur croissant, puis par piste croissante, puis par cylindre

Bloc logique

- Adresse physique = (cylindre, piste, secteur)
- Bloc logique → adresse physique

Gestion des secteurs défectueux

Secteur défectueux

Dans tout support physique, certains secteurs deviennent inutilisables avec le temps

Gestion des secteurs défectueux

Secteur défectueux

Dans tout support physique, certains secteurs deviennent inutilisables avec le temps

Table des blocs

- Marquer le secteur inutilisable
- Modifier l'adresse physique associée au bloc logique
- \rightarrow II faut une table des blocs (association bloc \leftrightarrow secteur)

Méthodes de gestion

- Années 90 : disque IDE \rightarrow par l'OS + marquer secteurs défectueux dans la FAT
- Disgues SCSI : contrôleur du périphérique

Gestion des secteurs défectueux II

Structures de données

- Table des secteurs défectueux
- Réserver un ensemble de secteurs pour des remplacement lors du formatage du disque

Contrôleur de périphérique

- Vérification à l'écriture
- Prévient l'OS d'un secteur défectueux
- L'OS demande un remplacement (glissement)
- Accès transparent pour l'OS qui ne voit que des blocs logiques

Plan

- Structure de disque
- 2 Disques durs
- Ordonnancement
 - Problème
 - First Come, First Served
 - Shortest Seek Time First
 - Scan et Look
 - C-scan et C-Look
 - Performance
- 4 Stockage sur bande

Problème

Accès à un secteur

- Positionnement de la tête de lecture sur la piste donc sur le bon cylindre...
- Rotation du disque (maximum un tour d'attente)

Problème

Accès à un secteur

- Positionnement de la tête de lecture sur la piste donc sur le bon cylindre...
- Rotation du disque (maximum un tour d'attente)

Temps d'accès

- Le disque tourne en permanence
- Vitesse de rotation = caractéristique matérielle
- → On peut agir sur les déplacements d'un cylindre à l'autre

Problème

Accès à un secteur

- Positionnement de la tête de lecture sur la piste donc sur le bon cylindre...
- Rotation du disque (maximum un tour d'attente)

Temps d'accès

- Le disque tourne en permanence
- Vitesse de rotation = caractéristique matérielle
- → On peut agir sur les déplacements d'un cylindre à l'autre

Principe

Minimiser le temps de déplacement de la tête en parcourant les cylindres dans un ordre intelligent

Exemple

Caractéristique disque

- Vitesse de rotation fixée
- 256 cylindres

Exemple

Caractéristique disque

- Vitesse de rotation fixée
- 256 cylindres

Requêtes

Au temps 0, la tête est sur le cylindre 53.

Le contrôleur reçoit une demande d'accès aux cylindres suivants :

98, 183, 37, 122, 14, 124, 65, 67

Exemple

Caractéristique disque

- Vitesse de rotation fixée
- 256 cylindres

Requêtes

Au temps 0, la tête est sur le cylindre 53.

Le contrôleur reçoit une demande d'accès aux cylindres suivants :

98, 183, 37, 122, 14, 124, 65, 67

Ordonnancement optimal

Pas d'autre demande \rightarrow trier et partir du plus petit (plus proche)

En pratique : la file est dynamique \rightarrow on reçoit d'autres demandes pendant qu'on traite !

Principe

Prendre les cylindres dans l'ordre

Principe

Prendre les cylindres dans l'ordre

Cylindre 53
$$+$$
 { 98, 183, 37, 122, 14, 124, 65, 67 }

temps

Principe

Prendre les cylindres dans l'ordre

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

45+

Principe

Prendre les cylindres dans l'ordre

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

45+85+

Principe

Prendre les cylindres dans l'ordre

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

45+85+146+

Principe

Prendre les cylindres dans l'ordre

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

45+85+146+85+

Principe

Prendre les cylindres dans l'ordre

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

45+85+146+85+108+

Principe

Prendre les cylindres dans l'ordre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

45+85+146+85+108+110+

Principe

Prendre les cylindres dans l'ordre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

45+85+146+85+108+110+59+

Principe

Prendre les cylindres dans l'ordre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

45+85+146+85+108+110+59+2=640 cylindres parcourus

Principe

PARIS

Aller vers le cylindre le plus proche

Principe

Aller vers le cylindre le plus proche

Cylindre 53
$$+$$
 $\{$ 98, 183, 37, 122, 14, 124, 65, 67 $\}$

femps

Principe

Aller vers le cylindre le plus proche

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

12 +

Principe

Aller vers le cylindre le plus proche

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

12 + 2 +

Principe

Aller vers le cylindre le plus proche

$$12+2+30+$$

Principe

Aller vers le cylindre le plus proche

Principe

Aller vers le cylindre le plus proche

Principe

Aller vers le cylindre le plus proche

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

Principe

Aller vers le cylindre le plus proche

Principe

Aller vers le cylindre le plus proche

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

12+2+30+23+84+24+2+59=236 cylindres parcourus

Avantages

PARIS SUD

Avantages

✓ Temps de traitement souvent très bon

Limites

PARIS SUD université

Shortest Seek Time First

Avantages

√ Temps de traitement souvent très bon

Limites

X Pas forcément optimal...

sur l'exemple, en servant 37 en premier, on aurait un meilleur temps

→ Il faut tenir compte de nouvelles arrivées possibles. . .

Avantages

√ Temps de traitement souvent très bon

Limites

- X Pas forcément optimal...
 - sur l'exemple, en servant 37 en premier, on aurait un meilleur temps
 - → Il faut tenir compte de nouvelles arrivées possibles...
- X Risque de famine!

Tant qu'il arrive des cylindres proches, on reste dans la zone et les autres cylindres ne sont pas servis!

Scan

Principe

Balayer dans un sens puis dans l'autre

Scan

Principe

Balayer dans un sens puis dans l'autre

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16 +

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16 + 23 +

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+65+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+65+2+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+65+2+31+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+65+2+31+24+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+14+65+2+31+24+2+

Principe

Balayer dans un sens puis dans l'autre

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

$$16+23+14+65+2+31+24+2+59 = 53 + 183 = 236$$

Avantages

Avantages

- √ Temps de traitement souvent très bon
- ✓ Pas de famine

Limites

Avantages

- ✓ Temps de traitement souvent très bon
- ✓ Pas de famine

Limites

- Parcours inutiles vers les bords
- X Lorsqu'on fait demi-tour, on vient de servir les cylindres près du bord → il est peu probable d'en avoir beaucoup à traiter par ici...

même en tenant compte de nouvelles arrivées!

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre
$$53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$$
 sur descendant

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16 +

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16 + 23 +

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$ sur descendant

16 + 23 + 51 +

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

16+23+51+2+

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

Principe

Repartir lorsqu'on a atteint le plus petit cylindre demandé

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 } sur descendant

$$16+23+51+2+31+24+2+59 = (53-14) + (183-14) = 208$$

Principe

Balayage circulaire : toujours dans le même sens

Principe

Balayage circulaire : toujours dans le même sens

Implémentation

Deux têtes de lecture espacées du rayon du disque

→ Tête 1 lit cylindre 0, secteur α pendant que tête 2 lit le secteur n, secteur $\alpha + \pi$

Principe

Balayage circulaire : toujours dans le même sens

Implémentation

Deux têtes de lecture espacées du rayon du disque

ightharpoonup Tête 1 lit cylindre 0, secteur α pendant que tête 2 lit le secteur n, secteur $\alpha+\pi$

■ Extérieur → intérieur

 \Rightarrow Tête 1 balaye de 0 à n-1

Principe

Balayage circulaire : toujours dans le même sens

Implémentation

Deux têtes de lecture espacées du rayon du disque

ightharpoonup Tête 1 lit cylindre 0, secteur α pendant que tête 2 lit le secteur n, secteur $\alpha+\pi$

- Extérieur → intérieur
 - \Rightarrow Tête 1 balaye de 0 à n-1
- ② Tête 1 = secteur n \Rightarrow Tête 2 = secteur 0

Principe

Balayage circulaire : toujours dans le même sens

Implémentation

Deux têtes de lecture espacées du rayon du disque

ightharpoonup Tête 1 lit cylindre 0, secteur α pendant que tête 2 lit le secteur n, secteur $\alpha+\pi$

- Extérieur → intérieur
 ⇒ Tête 1 balaye de 0 à n-1
- ② Tête 1 = secteur n⇒ Tête 2 = secteur 0
- Intérieur → extérieur
 ⇒ Tête 2 balaye de 0 à n-1

Principe

Balayage circulaire (ici, descendant)

Principe

Balayage circulaire (ici, descendant)

$$\mathsf{Cylindre} \ 53 \ + \ \{ \ 98, \ 183, \ 37, \ 122, \ 14, \ 124, \ 65, \ 67 \ \}$$

temps

Principe

Balayage circulaire (ici, descendant)

```
Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }
```


16 +

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16 + 23 +

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + $\{$ 98, 183, 37, 122, 14, 124, 65, 67 $\}$

16 + 23 + 14 +

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+72+

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+72+59+

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+72+59+2+

C-Scan

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+72+59+2+24+

C-Scan

Principe

Balayage circulaire (ici, descendant)

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+14+72+59+2+24+31+

C-Scan

Principe

Balayage circulaire (ici, descendant)

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

16+23+14+72+59+2+24+31+2=53+(255-65)=243

Principe

Même principe sans aller jusqu'au bord :

Principe

Même principe sans aller jusqu'au bord :

lacktriangledown Balayer intérieur ightarrow extérieur, tête 1

⇒ sens descendant

Principe

Même principe sans aller jusqu'au bord :

- $\textbf{ 0} \ \, \mathsf{Balayer} \,\, \mathsf{int\'{e}rieur} \, \to \mathsf{ext\'{e}rieur}, \, \mathsf{t\^{e}te} \, \, \mathsf{1} \\$
 - ⇒ sens descendant
- 2 Lorsque min est atteint, changer de tête
 - ⇒ sens montant

Info32b

C-Look

Principe

Même principe sans aller jusqu'au bord :

- Balayer intérieur → extérieur, tête 1
 ⇒ sens descendant
- ② Lorsque min est atteint, changer de tête ⇒ sens montant

Systèmes d'Exploitation

Ontinuer intérieur → extérieur jusqu'à max sauf si max < position courante</p>

Thomas Lavergne

29/36

Principe

Même principe sans aller jusqu'au bord :

- Balayer intérieur → extérieur, tête 1
 ⇒ sens descendant
- ② Lorsque min est atteint, changer de tête ⇒ sens montant
- Sontinuer intérieur → extérieur jusqu'à max sauf si max ≤ position courante
- Lorsque max est atteint, changer de sens
 ⇒ sens descendant à nouveau

Principe

Même principe sans aller jusqu'au bord

Principe

Même principe sans aller jusqu'au bord

Cylindre 53
$$+$$
 { 98, 183, 37, 122, 14, 124, 65, 67 }

temps

Principe

Même principe sans aller jusqu'au bord

Cylindre
$$53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$$

16 +

Principe

Même principe sans aller jusqu'au bord

Cylindre
$$53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$$

16 + 23 +

Principe

Même principe sans aller jusqu'au bord

Cylindre $53 + \{ 98, 183, 37, 122, 14, 124, 65, 67 \}$

16+23+

Principe

Même principe sans aller jusqu'au bord

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+58+

Principe

Même principe sans aller jusqu'au bord

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+58+59+

Principe

Même principe sans aller jusqu'au bord

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+58+59+2+

Principe

Même principe sans aller jusqu'au bord

Cylindre 53 + { 98, 183, 37, 122, 14, 124, 65, 67 }

16+23+58+59+2+24+

Principe

Même principe sans aller jusqu'au bord

16+23+58+59+2+24+31+

Principe

Même principe sans aller jusqu'au bord

$$16+23+58+59+2+24+31+2 = (53-14) + (241-65) = 215$$

Performance

En pratique

- La plupart des OS et utilisent SSTF
- Les OS mobilisant beaucoup le disque utilisent C-LOOK

Ordonnancement optimal

Possible à calculer à chaque pas de temps mais très coûteux

Performance

En pratique

- La plupart des OS et utilisent SSTF
- Les OS mobilisant beaucoup le disque utilisent C-LOOK

Ordonnancement optimal

Possible à calculer à chaque pas de temps mais très coûteux

Rappel

Le temps de réponse dépend aussi de :

- La méthode d'allocation de fichiers (contiguë, indexée...)
- La position des répertoires et des blocs d'index
- Le temps de rotation du disque
- La priorité au niveau OS (pagination vs E/S)

Plan

- Structure de disque

- Stockage sur bande

Stockage sur bande magnétique

Avantages

- ✓ Coût : très peu cher au Tio! (facteur 5 à 10)
 - → Stockage préventif de données brutes (Big Data)
 - ✓ Ex : 15 To pour 40 EUR en 2020
- ✓ Coût de maintenance quasi nul
- ✓ Durée de vie (sans perte de données) plus élevée (CD = 5 ans, DD = 5 à 10 ans, Bande = 20 à 30 ans)
- ✓ Volume (ex : LTO-8 \rightarrow 150 Go/cm³)

Inconvénients

- X Temps d'accès aléatoire (lecture et écriture) très élevé
- → Réservé au stockage à froid ou application spécifiques

Structures

Pistes

• 9 pistes : 8 données + 1 parité

pistes hélicoïdales

Structures

Pistes

• 9 pistes : 8 données + 1 parité

Blocs

- Secteurs taille fixe
- Intervalles inter-enregistrement (IRG) (entre 2 secteurs)
 - → On s'arrête uniquement sur les IRG
 - → Interruption sur secteur → rembobiner à l'IRG précédent

34/36 Systèmes d'Exploitation Thomas Lavergne

Structures

Pistes

• 9 pistes : 8 données + 1 parité

Blocs

- Secteurs taille fixe
- Intervalles inter-enregistrement (IRG) (entre 2 secteurs)
 - → On s'arrête uniquement sur les IRG
 - → Interruption sur secteur → rembobiner à l'IRG précédent

Avantages

- Lecture possible dans les 2 sens
- Stockage en baies

Plan

- 1 Structure de disque
- 2 Disques durs
- 3 Ordonnancement
- 4 Stockage sur bande
- Conclusion

Ce qu'il faut retenir

- Stockage externe : pistes, secteurs
 Blocs logiques → secteurs
- Disque dur : cylindres, pistes, secteurs
- Gestion des blocs défectueux
- Codes d'erreur et codes correcteurs
- Ordonnancement d'accès aux secteurs
 - FCFS
 - SSTF
 - Scan et Look
 - C-scan et C-look
- Stockage sur bande