Predict Heart Disease Using Logistic Regression

Import Libraries

```
import joblib
In [1]:
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score, classification report
        df = pd.read_csv("heart.csv")
In [2]:
        df.head()
Out[2]:
           age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
        0
            52
                  1 0
                             125
                                  212
                                        0
                                                       168
                                                                0
                                                                       1.0
                                                                                  2
                                                                                               0
             53
                  1 0
                             140
                                  203
                                        1
                                                0
                                                       155
                                                                1
                                                                       3.1
                                                                               0 0
            70
                                  174
                                        0
                                                       125
                                                                       2.6
                                                                                               0
            61
                             148
                                  203
                                                       161
                                                                0
                                                                       0.0
                                                1
```

106

0

1.9

0

Step 1: Explore the Dataset

138

294

1

```
In [3]: df.info()
```

62

0 0

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns):

	COTAMILIS (II COIGIIII	<i>,</i> •
#	Column	Non-N	Null Count	Dtype
0	age	1025	non-null	int64
1	sex	1025	non-null	int64
2	ср	1025	non-null	int64
3	trestbps	1025	non-null	int64
4	chol	1025	non-null	int64
5	fbs	1025	non-null	int64
6	restecg	1025	non-null	int64
7	thalach	1025	non-null	int64
8	exang	1025	non-null	int64
9	oldpeak	1025	non-null	float64
10	slope	1025	non-null	int64
11	ca	1025	non-null	int64
12	thal	1025	non-null	int64
13	target	1025	non-null	int64
dtype	es: float64	4(1),	int64(13)	

dtype memory usage: 112.2 KB

In [4]: df.describe()

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000000	102
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336585	
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.472772	
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000000	
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	0.000000	
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000000	
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1.000000	
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	1.000000	

Step 2: Exploratory Data Analysis

```
In [5]: plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()

Correlation Heatmap

age - 1.00 -0.10 -0.07 0.27 0.22 0.12 -0.13 -0.39 0.09 0.21 -0.17 0.27 0.07 -0.23
```


Most Positively Correlated Features

```
corr_matrix = df.corr()
In [6]:
        target = 'target'
        corr_with_target = corr_matrix[target].sort_values(ascending=False)
        print("Most Positively Correlated Features:")
        print(corr_with_target.head(6))
      Most Positively Correlated Features:
                 1.000000
      target
                 0.434854
      ср
      thalach
                 0.422895
      slope
                 0.345512
                 0.134468
      restecg
      fbs
                -0.041164
      Name: target, dtype: float64
```

Most Negatively Correlated Features

Step 3: Prepare the Data

```
In [8]: # Split features and target
X = df[["cp","thalach","slope","restecg","fbs","sex","thal","ca","exang","oldpeak"]]
y = df["target"]
```

```
In [9]: # Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [10]: # Feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Step 4: Train the Model

```
In [11]: # Train Logistic regression
  model = LogisticRegression()
  model.fit(X_train_scaled, y_train)
```

Out[11]:

LogisticRegression

LogisticRegression()

III Step 5: Evaluate the Model

```
In [12]: # Predict
y_pred = model.predict(X_test_scaled)

In [13]: # Evaluate
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

In [14]: print("Accuracy:", accuracy)
print("\nClassification Report:\n", report)
```

Accuracy: 0.824390243902439

Classification Report:

	precision	recall	f1-score	support
0	0.89	0.74	0.81	102
1	0.78	0.91	0.84	103
accuracy			0.82	205
macro avg	0.83	0.82	0.82	205
weighted avg	0.83	0.82	0.82	205

III Step 6: Save the Model

```
In [15]: joblib.dump(model, 'heart_model.joblib')
Out[15]: ['heart_model.joblib']
```

☑ Done! You've built a working heart disease predictor!