Now we use the above result for checking the goodness of the linear fit. ANOVA for checking the goodness of $Y = X\beta + \epsilon$, or $y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_{i(p-1)} + \epsilon_i$, or equivalently for testing $H_0: \beta_1 = \cdots = \beta_{p-1} = 0$ is what is needed. Intuitively, if X_1, \ldots, X_{p-1} provide no useful information, then the appropriate model is $y_i = \beta_0 + \epsilon_i$, so \bar{y} is the only quantity that can help in predicting y. Then $RSS_{H_0} = \sum_{i=1}^n (y_i - \bar{y})^2$ is the sum of squares unexplained, and it has n-1 d.f. If X_1, \ldots, X_{p-1} are also used in the model, then $(Y - X\hat{\beta})'(Y - X\hat{\beta}) = RSS$ is the unexplained part with n-r d.f. How much better is RSS compared to RSS_{H_0} ? Let SS_{reg} denote the sum of squares due to X_1, \ldots, X_{p-1} and without an intercept. Then,

$$RSS_{H_0} = RSS + SS_{reg}$$

 $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + SS_{reg}$

In other words,

$$Y'Y - \frac{1}{n}Y'1'1Y = Y'(I-P)Y + SS_{reg}, \text{ or}$$

$$Y'Y = Y'(I-P)Y + \left(SS_{reg} + \frac{1}{n}Y'1'1Y\right), \text{ or}$$

$$SSR = \hat{\beta}'X'X\hat{\beta} = \hat{\beta}'X'Y = \left(SS_{reg} + \frac{1}{n}Y'1'1Y\right),$$

since $Y'Y = Y'(I-P)Y + Y'PY = Y'(I-P)Y + \hat{\beta}'X'X\hat{\beta}$. Now, $\mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}' = \frac{1}{n}\mathbf{1}\mathbf{1}' = P_{\mathcal{M}(\mathbf{1})} = P_{\mathcal{M}(X_0)}$, so that $SSR = n\bar{y}^2 + SS_{reg}$ is the orthogonal decomposition of SSR into components attributed to $\mathcal{M}(\mathbf{1})$ and $\mathcal{M}(X_1, \dots, X_{p-1})$. Therefore SS_{reg} with r-1 d.f. is the quantity to measure the merit of the regressors, X_1, \dots, X_{p-1} .

ANOVA with mean

source of	d.f.	sum of	mean	F-ratio
variation		squares	squares	
mean	1	SSM =	MSM =	$F_{mean} =$
		$n\bar{y}^2$	SSM/1	MSM/MSE
regression	r-1	$SS_{reg} =$	$MS_{reg} =$	$F_{reg} =$
on $X_1,, X_{p-1}$		$\hat{\beta}' X' Y - n \bar{y}^2$	$SS_{reg}/(r-1)$	MS_{reg}/MSE
residual	n-r	SSE = RSS =	MSE =	
error		$Y'Y - \hat{\beta}'X'Y$	SSE/(n-r)	
Total	n	SST = Y'Y		

source of	d.f.	sum of	mean	F-ratio
variation		squares	squares	
regression	r-1	$SS_{reg} =$	$MS_{reg} =$	$F_{reg} =$
(corrected)		$\hat{\beta}' X' Y - n \bar{y}^2$	$SS_{reg}/(r-1)$	MS_{reg}/MSE
residual	n-r	SSE = RSS =	MSE =	
error		$Y'Y - \hat{\beta}'X'Y$	SSE/(n-r)	
Total	n-1	SST(Corrected) =		
(corrected)		$\sum (y_i - \bar{y})^2$		

How good is the linear fit? There are two things to consider here.

- (i) The ANOVA F-test: Under $H_0: \beta_1 = \cdots = \beta_{p-1} = 0$, the F-ratio, $F_{reg} \sim F_{r-1,n-r}$ and large values of the statistic provide evidence against H_0 , or equivalently indicate that the regressors are useful.
- (ii) The proportion of variability in y not explained by the actual regressors is: RSS/SST (corrected), so the proportion of variability in y around its mean, explained by the actual regressors is

$$1 - \frac{\text{RSS}}{\text{SST (corrected)}} \equiv R^2 = \text{ Coefficient of determination.}$$

In other words,

$$R^{2} = 1 - \frac{\text{RSS}}{\text{SST (corrected)}} = 1 - \frac{Y'(I - P)Y}{Y'(I - \frac{1}{n}\mathbf{1}\mathbf{1}')Y}$$

$$= \frac{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2} - Y'(I - P)Y}{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2}} = \frac{\sum_{i=1}^{n}y_{i}^{2} - n\bar{y}^{2} - Y'(I - P)Y}{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2}}$$

$$= \frac{Y'Y - n\bar{y}^{2} - Y'Y + Y'PY}{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2}} = \frac{Y'PY - n\bar{y}^{2}}{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2}}$$

$$= \frac{\text{SSR} - n\bar{y}^{2}}{\sum_{i=1}^{n}(y_{i} - \bar{y})^{2}} = \frac{\text{SS}_{reg}}{\text{SST (corrected)}}$$

$$= \text{proportion of variability explained by regressors.}$$

Also,

$$R^{2} = \frac{SS_{reg}}{SST \text{ (corrected)}} = \frac{SS_{reg}}{RSS + SS_{reg}}$$
$$= \frac{SS_{reg}/RSS}{1 + SS_{reg}/RSS} = \frac{(\frac{r-1}{n-r})F_{reg}}{1 + (\frac{r-1}{n-r})F_{reg}}$$

is an increasing function of the F-ratio.

Note that to interpret the F-ratio, normality of ϵ_i is needed. R^2 , however, is a percentage with a straightforward interpretation.