LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Éducation nationale, de l'Enfance et de la Jeunesse

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2017**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Mathématiques 2	В	Durée de l'épreuve 4 heures Date de l'épreuve 24. 05. 2017
		Numéro du candidat

- I. a) On donne la fonction $g: x \mapsto x^2 2 \ln x$.
 - i. Déterminer la fonction dérivée de g et étudier le sens de variation de g.
 - ii. En déduire le signe de q.
 - b) On donne la fonction $f: x \longmapsto \frac{1 + \ln x}{x} + \frac{x}{2}$.
 - i. Etudier les variations de f [domaine de définition, limites et branches infinies, dérivée première, signe de la dérivée (on peut utilement se servir du signe de g étudié sous a)), tableau de variation, dérivée seconde et concavité, courbe représentative].
 - ii. Déterminer, si possible, le(s) point(s) de la courbe représentative C_f qui admet(tent) une tangente parallèle à la droite $\Delta : y = \frac{x}{2}$. Etablir, dans chaque cas, une équation cartésienne et tracer la tangente.
 - iii. Déterminer le point d'intersection de la courbe représentative C_f et de la droite $\Delta: y = \frac{x}{2}$.

Calculer l'aire du domaine D_{λ} délimité par C_f , la droite Δ et la droite d'équation $x = \lambda$ où $\lambda > 1$.

Déterminer la valeur de λ pour que l'aire de D_{λ} soit égale à 2 unités d'aire.

[(2+1)+(7+2+4)=16 points]

$\text{II.} \quad \text{On donne } f: x \longmapsto \left\{ \begin{array}{lll} e^{x-1} & \text{si} & x \leqslant 1 \\ b+a \ln x & \text{si} & x > 1 \end{array} \right. \qquad (a,b \in {\rm I\!R})$

- a) Déterminer les valeurs des paramètres réels a et b pour que la fonction f soit continue et dérivable sur IR .
- b) On prend a = 1 et b = 1.
 - i. Esquisser le graphe de la fonction f.
 - ii. Calculer l'aire de la partie D du plan délimitée par la courbe représentative de f, l'axe des abscisses, l'axe des ordonnées et la droite d'équation x = e;
 - iii. Calculer le volume engendré par la rotation autour de l'axe des abscisses de la partie D.

-[4+(2+3+5)=14 points]

III. a) Déterminer le nombre de solutions de l'équation d'inconnue x

$$(m+2) 3^x + (2m+3) 3^{-x} - 2m = 0$$

où m est un paramètre réel.

- b) Résoudre:
 - i. $(\log_3 x)^2 = 2\log_3 19683 + \log_3 (x^3)$
 - ii. $\ln(2e^x 5) > \ln(13e^{-x} 30e^{-2x})$.

-[6+(3+5)=14 points]

a) On donne la fonction $f: x \longmapsto \frac{1 - 2 \ln x - 2 \ln^2 x}{x^2}$ IV.

Trouver, si elles existent, les abscisses des points de la courbe représentative de f qui admettent une tangente passant par l'origine du repère.

- Calculer: b)
 - i. $\int_{1}^{\pi} \sin(\ln x) dx$
 - ii. $\int_0^1 x (1-x)^{2017} dx$
- On donne les fonctions

$$\begin{array}{ccc} f & : & x \longmapsto 2 - x^2 \\ g & : & x \longmapsto x^2 \end{array}.$$

Construire, dans un même repère orthonormé du plan, les représentations graphiques de f et de g.

Déterminer le volume du solide engendré par la rotation autour de l'axe des ordonnées de l'ensemble des points

$$D = \{M(x; y) \mid x \geqslant 0 \text{ et } y \geqslant 0 \text{ et } g(x) \leqslant y \leqslant f(x)\}.$$

[5+(4+3)+4=16 points]