UNIT I: Introduction to Algorithms

- 1. Time Complexity and Space Complexity
- 2. Asymptotic Analysis
 - Growth rates
 - o Common bounds (constant, logarithmic, linear, polynomial, exponential)
- 3. Master Theorem
- 4. Substitution Method
- 5. Iteration Method
- 6. Time Complexity of Recursive Algorithms
- 7. Problem-solving and decision-making
- 8. Role of data structure in algorithm design
- 9. Basic algorithmic structures of problem-solving
- 10. **Optimization algorithms** (constraints, solution space, feasible regions)
- 11. Sorting Algorithms:
 - Selection Sort
 - Bubble Sort
 - Insertion Sort

12. Sorting in Linear Time:

Count Sort

13. Searching Algorithms:

Linear Search

UNIT II: Divide and Conquer & Greedy Algorithms

- 1. Overview of Divide and Conquer Algorithms
- 2. Quick Sort
- 3. Merge Sort
- 4. Heap Sort
- 5. Binary Search
- 6. Matrix Multiplication
- 7. Convex Hull and Searching
- 8. Closest Pair of Points
- 9. Greedy Algorithms:
 - Huffman Coding
 - Knapsack Problem
- 10. Minimum Cost Spanning Trees:
 - o Prim's Algorithm
 - Kruskal's Algorithm
- 11. Single Source Shortest Paths:
 - Dijkstra's Algorithm
 - Bellman Ford Algorithm