Random Forest and AdaBoost (Warm-up Class)

Quang-Vinh Dinh Ph.D. in Computer Science

Random Forest

Quang-Vinh Dinh Ph.D. in Computer Science

Decision Tree

Petal_Length | Petal_Width | Label 0.2 0 1.3 0.6 0 0.9 0.7 0 1.7 0.5 1.8 0.9 1.2 1.3

***** Observation

https://www.fs.usda.gov/wildflowers/ beauty/iris/flower.shtml

Decision Tree

***** Observation

https://www.fs.usda.gov/wildflowers/beauty/iris/flower.shtml

Petal_Length	Petal_Width	Sepal_length	Label
1	0.2	5.1	0
1.3	0.6	4.9	0
0.9	0.7	4.7	0
1.7	0.5	4.8	1
1.8	0.9	6.6	1
1.2	1.3	5.2	1

Decision Tree

***** Observation

https://www.fs.usda.gov/wildflowers/beauty/iris/flower.shtml

Petal_Length	Petal_Width	Sepal_length	Sepal_Width	Label
1	0.2	5.1	3.5	0
1.3	0.6	4.9	3	0
0.9	0.7	4.7	3.2	0
1.7	0.5	4.8	2.8	1
1.8	0.9	6.6	3.3	1
1.2	1.3	5.2	2.4	1

Discussion

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
1	0.2	0
1.8	0.9	1
1.8	0.9	1
1.2	1.3	1

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Simple IRIS

Petal_Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label
1.3	0.6	0
1.3	0.6	0
0.9	0.7	0
0.9	0.7	0
1.8	0.9	1
1.2	1.3	1

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Width	Label
0.6	0
0.6	0
0.7	0
0.7	0
0.9	1
1.3	1

Simple IRIS

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
1.2	1.3	1
1.8	0.9	1
1.8	0.9	1
1.2	1.3	1

Simple IRIS

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Label
1	0
1.3	0
1.2	1
1.8	1
1.8	1
1.2	1

Simple IRIS

Petal_Length	Label
1	0
1.3	0
1.2	1
1.8	1
1.8	1
1.2	1

Simple IRIS

inference

 $Petal_Length = 1.7$

 $Petal_Width = 0.8$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Using sklearn

Another experiment

Using sklearn

Using all the training samples

Outlook	Temp	Humidity	Wind	Pl	ay Ten	nis
Sunny	Hot	High	Weak		No	
Sunny	Hot	High	Strong		No	
Overcast	Hot	High	Weak		Yes	
Rain	Mild	High	Weak		Yes	
Rain	Cool	Normal	Weak		Yes	
Rain	Cool	Normal	Strong		No	
Overcast	Cool	Normal	Strong		Yes	
Sunny	Mild	High	Weak		No	
Sunny	Cool	Normal	Weak		Yes	
Rain	Mild	Normal	Weak		Yes	
Sunny	Mild	Normal	Strong		Yes	
Overcast	Mild	High	Strong		Yes	
Overcast	Hot	Normal	Weak		Yes	
Rain	Mild	High	Strong		No	
Option_1						

Entropy:

$E(S) = -\sum_{c \in C} p_c log_2 p_c$

Information Gain

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

Decision Tree

$$S = \{9: Yes, 5: No\} \longrightarrow E(S) = -\frac{9}{14}log_2\left(\frac{9}{14}\right) - \frac{5}{14}log_2\left(\frac{5}{14}\right) = 0.94$$

$$S_{weak} = \{6: Yes, 2: No\} \longrightarrow E(S_{weak}) = -\frac{6}{8}log_2\left(\frac{6}{8}\right) - \frac{2}{8}log_2\left(\frac{6}{8}\right) = 0.811$$

$$S_{Strong} = \{3: Yes, 3: No\} \longrightarrow E(S_{Strong}) = -\frac{3}{6}log_2\left(\frac{3}{6}\right) - \frac{3}{6}log_2\left(\frac{3}{6}\right) = 1$$

$$\implies Gain(S, Wind) = E(S) - \frac{8}{14}E(S_{weak}) - \frac{6}{14}E(S_{Strong})$$

$$= 0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1 = 0.048$$

Gain(S, Outlook) =
$$\max$$

$$\begin{cases}
IG(S, Option_1) = 0.102 \\
IG(S, Option_2) = 0.226 \\
IG(S, Option_3) = 0.003
\end{cases}$$

$$S_{Sunny} = \{2: Yes, 3: No\} \longrightarrow E(S_{Sunny}) = 0.97$$

 $S_{Overcast,Rain} = \{7: Yes, 2: No\} \longrightarrow E(S_{Overcast,Rain}) = 0.764$
 $IG(S, Option_1)$
 $= E(S) - \frac{5}{14}E(S_{Sunny}) - \frac{9}{14}E(S_{Overcast,Rain})$
 $= 0.94 - \frac{5}{14}*0.97 - \frac{9}{14}*0.764 = 0.102$

$$\underline{Gain}(S, Outlook) = 0.226$$

$$Gain(S, Temp) = 0.015$$

$$Gain(S, Humidity) = 0.151$$

$$Gain(S, Wind) = 0.048$$

Choose Outlook with highest Gain score for root node

Option_2 is used to split

Outlook	Temp	Humidity	Wind	Label
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Yes

Weak

Hot

Overcast

Normal

Test = <outlook=Sunny, temperature=Hot, humidity=High, Wind=Weak>

Using sklearn

Another run

Outlook	Temp	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Using sklearn

Another run

Outlook	Temp	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook

Decision Tree - Regression

Salary prediction

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

When Experience = 5.3,

Salary = **?**

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

 $\mu = \frac{1}{|S|} \sum_{i} S_i = 55.14$

 $mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2 = 1417.97$

Experience	Salary
1	0

_	
Experience	Salary
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$\mu_L = \frac{1}{|L|} \sum_i L_i = 0$$

$$mse_L = \frac{1}{|L|} \sum_i (L_i - \mu)^2 = 0$$

$$a_{mse} = \frac{|L|}{|S|} mse_L + \frac{|R|}{|S|} mse_R$$

$$= \frac{1}{14} * 0 + \frac{13}{14} * 1275.15$$

$$= 1184.07$$

$$\mu_R = \frac{1}{|R|} \sum_i R_i = 59.38$$

$$mse_R = \frac{1}{|R|} \sum_i (R_i - \mu)^2 = 1275.15$$

Experience	Salary	
1	0	
1.5	0	
2	0	
 2.5	0	
3	60	100 -
3.5	64	80 -
4	55	60 -
4.5	61	40 -
5	66	0
5.5	83	
6	93	
6.5	91	
7	98	
7.5	101	
$\mu = \frac{1}{ S } \sum_{i}$	$S_i = 55.14$	4

 $mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2 = 1417.97$

Experience	Salary
1	0
1.5	0
2	0
2.5	0

$\mu_L = \frac{1}{ L } \sum_i L_i = 0$	
$nse_L = \frac{1}{ L } \sum_{i} (L_i - \mu)^2 = 0$	

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$a_{mse} = \frac{|L|}{|S|} mse_L + \frac{|R|}{|S|} mse_R$$

$$= \frac{4}{14} * 0 + \frac{10}{14} * 282.35$$

$$= 201.68$$

$$\mu_{R} = \frac{1}{|R|} \sum_{i} R_{i} = 77.2$$

$$mse_{R} = \frac{1}{|R|} \sum_{i} (R_{i} - \mu)^{2} = 282.35$$

Decision Tree - Regression

Salary prediction

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

```
YearsExperience <= 2.75
squared_error = 1417.98
samples = 14
value = 55.143
```

```
squared_error = 0.0
samples = 4
```

value = 0.0

```
YearsExperience <= 5.25
squared_error = 282.36
samples = 10
value = 77.2
```

```
squared_error = 14.16
samples = 5
value = 61.2
```

```
squared_error = 38.56
samples = 5
value = 93.2
```

```
1  y_mean = y.mean()
2  print('Mean:', y_mean)
3
4  diff = (y - y_mean)**2
5  mse = diff.sum()/14
6  print('mse:', mse)
```

Mean: 55.142857142857146 mse: 1417.9795918367347

Decision Tree Regression

YearsExperience

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

Experience	Salary
1	0
1.5	0
2	0
2.5	0

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66

Experience	Salary
5.5	83
6	93
6.5	91
7	98
7.5	101

Random Forest Regression

Salary prediction

Random Forest

& Bernoulli Random variables

A numerical description of the outcome of a statistical experiment

$$p(x) = p\{X = x\} = \begin{cases} p & when x = 1\\ 1 - p & when x = 0 \end{cases}$$

Toss a coin

Sample space: $S = \{ tail, head \}$

$$X = \{0, 1\}$$

$$p(x, n, k) = C_n^k \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}$$

Adaptive Boosting (Warm-up Class)

Quang-Vinh Dinh Ph.D. in Computer Science

Discussion

- 1) Are a wide range of features used to build a forest?
- 2) How to create a new dataset?

How to balance the two groups' values?

Create a new dataset

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label	Evaluation
1	0.2	0	T
1.3	0.6	0	F
0.9	0.7	0	T
1.7	0.5	1	T
1.8	0.9	1	F
1.2	1.3	1	T

Petal_Length	Petal_Width	Label	Evaluation
1	0.2	0	T
0.9	0.7	0	T
1.7	0.5	1	T
1.2	1.3	1	T

Petal_Length	Petal_Width	Label	Evaluation
1.3	0.6	0	F
1.3	0.6	0	F
1.8	0.9	1	F
1.8	0.9	1	F

Ideas from Genetic Algorithms

- Roulette Wheel Selection
 - The probability of selecting a given chromosome is proportional to its fitness
- Tournament Selection
 - **Combine the fitness proportional concept with the random selection**

Create a new dataset

Add more randomness

normalize

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label	Evaluation
1	0.2	0	T
1.3	0.6	0	F
0.9	0.7	0	Т
1.7	0.5	1	T
1.8	0.9	1	F
1.2	1.3	1	T

Petal_Length	Petal_Width	Label	Evaluation	Score	Probability
1	0.2	0	T	1	0.125
1.3	0.6	0	F	2	0.25
0.9	0.7	0	T	1	0.125
1.7	0.5	1	T	1	0.125
1.8	0.9	1	F	2	0.25
1.2	1.3	1	T	1	0.125

Create a new dataset

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label	Evaluation	Score	Probability
1	0.2	0	T	1	0.125
1.3	0.6	0	F	2	0.25
0.9	0.7	0	T	1	0.125
1.7	0.5	1	T	1	0.125
1.8	0.9	1	F	2	0.25
1.2	1.3	1	T	1	0.125

4	

\sim	4
Case	
Case	ш

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
1.2	1.3	1
1.7	0.5	1
1.8	0.9	1
1.8	0.9	1

Petal_Length	Petal_Width	Label	Evaluation	Score	Probability
1	0.2	0	T	1	0.142
1.3	0.6	0	T	1	0.142
1.2	1.3	1	F	2	0.29
1.7	0.5	1	T	1	0.142
1.8	0.9	1	T	1	0.142
1.8	0.9	1	Т	1	0.142

Create a new dataset

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Petal_Length	Petal_Width	Label	Evaluation	Score	Probability
1	0.2	0	T	1	0.125
1.3	0.6	0	F	2	0.25
0.9	0.7	0	T	1	0.125
1.7	0.5	1	T	1	0.125
1.8	0.9	1	F	2	0.25
1.2	1.3	1	T	1	0.125

Case	1
Case	4

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
1.2	1.3	1
1.7	0.5	1
1.8	0.9	1
1.8	0.9	1

Petal_Length	Petal_Width	Label	Evaluation	Score	Probability
1	0.2	0	T	1	0.142
1.3	0.6	0	F	2	0.29
1.2	1.3	1	T	1	0.142
1.7	0.5	1	T	1	0.142
1.8	0.9	1	T	1	0.142
1.8	0.9	1	T	1	0.142

Problem and solution?

Create a new dataset

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166

How much?

Error < 0.5

For incorrect samples

When a model is good (small error), scaled weights should increase/decrease slightly/significantly?

For incorrect samples

When a model has a small error, increase significantly

For correct samples

$$k(x) = \frac{1}{f(x)} = \frac{x}{1 - x}$$

Decrease significantly

$$h(x) = \frac{1}{g(x)} = \sqrt{\frac{x}{1-x}}$$

Create a new dataset

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166
	I		

Update

g(E) =	$\frac{1-E}{E}$
$p_i = p_i$	g(E)
= 0.	166 * 1.41 = 2.347

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	1.17
1.3	0.6	0	2.347
0.9	0.7	0	1.17
1.7	0.5	1	1.17
1.8	0.9	1	2.347
1.2	1.3	1	1.17

	$h(E) = \sqrt{\frac{E}{1 - E}}$
†	$p_i = p_i h(E)$
	= 0.166 * 0.707 = 1.17

Create a new dataset

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166
	1		

False

a(F) -	1-E
g(E) =	\overline{E}
$p_i = p_i$	$_{i}g(E)$

$$= 0.166 * 1.41 = 2.347$$

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.124
1.3	0.6	0	0.25
0.9	0.7	0	0.124
1.7	0.5	1	0.124
1.8	0.9	1	0.25
1.2	1.3	1	0.124

Normalized

Update

Create a new dataset

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166

1.2	1.3	1	0.166	
$g(E) = \frac{1}{2}$,
$p_i =$	$p_ig(E)=p$	$\rho_i e^{\ln(g)}$	g(E)	
= 7	$p_i e^{\ln\left(\sqrt{\frac{1-E}{E}}\right)}$	$\left(\frac{\overline{z}}{z}\right) = p$	$e^{\frac{1}{2}\ln\left(\frac{1-R}{E}\right)}$	$\frac{E}{}$

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.166
1.3	0.6	0	0.166
0.9	0.7	0	0.166
1.7	0.5	1	0.166
1.8	0.9	1	0.166
1.2	1.3	1	0.166
		ļ	

Petal_Length	Petal_Width	Label	Probability
1	0.2	0	0.124
1.3	0.6	0	0.25
0.9	0.7	0	0.124
1.7	0.5	1	0.124
1.8	0.9	1	0.25
1.2	1.3	1	0.124

Update

True

False

For incorrect samples

Increase significantly

For correct samples

Decrease significantly

$$h(x) = \frac{1}{g(x)} = \sqrt{\frac{x}{1-x}}$$

$$h(x) = e^{-\frac{1}{2}\ln\left(\frac{1-x}{x}\right)}$$

Implementation

using sklearn

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

dt_classifier = AdaBoostClassifier(n_estimators=3)
dt_classifier.fit(x_data, y_train)

Petal_Length <= 1.5 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.375 samples = 4 value = [0.5, 0.167] gini = 0.0 samples = 2 value = [0.0, 0.333] Petal_Width <= 0.8 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.0 samples = 4 value = [0.5, 0.0] gini = 0.0 samples = 2 value = [0.0, 0.5] Petal_Length <= 1.5 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.0 samples = 4 value = [0.5, 0.0]

gini = 0.0 samples = 2 value = [0.0, 0.5]

For incorrect samples

Increase

For correct samples

Decrease

Implementation

using sklearn

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

dt_classifier = AdaBoostClassifier(n_estimators=3)
dt_classifier.fit(x_data, y_train)

How to do inference?

Petal_Length <= 1.5 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.375 samples = 4 value = [0.5, 0.167] gini = 0.0 samples = 2 value = [0.0, 0.333] Petal_Width <= 0.8 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.0 samples = 4 value = [0.5, 0.0] gini = 0.0 samples = 2 value = [0.0, 0.5] Petal_Length <= 1.5 gini = 0.5 samples = 6 value = [0.5, 0.5]

gini = 0.0 samples = 4 value = [0.5, 0.0] gini = 0.0 samples = 2 value = [0.0, 0.5]

