	프로젝트 보고서	작성일자	2024-03-12
국립부경대학교 지역산업맞춤형	ニエベニ エエベ	개정일자	2024-03-12
기력인급맞품성 인력양성사업단	디지털 트윈 - 시스템 개발	개정번호	1.0
	니시크 느낀 - 시스템 개글	PAGE	1

주제명	[디지털 트윈 활용] 신속한 구급차 최적 경로 안내 시스템			
	조이름	Team_3	조장	김동욱
참여 인원	조원	박재현	조원	이보윤
	조원	조재경	조원	최서유

	조원	조재경	조원	최서윤
개발 배경	□ 신속한 -□ 응급 환경	합 및 도로 조건으로 인한 응급 구급차 최적 경로 안내 시스템 5 하에게 빠르고 효율적인 의료 서 비스 효율성 및 품질 향상 목표	-입 필요성 대두	
개발 목적	□ 교통사고 - CCTV를 제공함으로 □ 환자의 (- 최적 경로 서비스를 제	신속 대응 통해 교통사고를 감지하고, 해당 로써 응급 상황에 신속하게 대응 안전과 치료 시간 단축 문를 통해 병원까지 효율적으로 공함으로써 환자의 안전 보장 및	이동하여 환자에	게 빠르고 정확한 응급 의료
	- 구급차의 적인 영향 최	로 인한 도로 혼잡 최소화 원활한 이동을 돕는 것을 통해 리소화		
일정	응급 의료 서비스의 효율성을 향상시키고 환자의 안전을 보장하는 데 기여 □ 2024.02.27. ~ 2024.03.12. (11일) - 계획 수립 및 역할 분담 (1일) - 필요 데이터 도출 및 수집 (2일) - 데이터 전처리 및 분석 (2일) - 프로그램 구축 (4일) - 결과물 도출 및 서류 정리 (2일)			
업무 분담	데이터 분 ▶시스템 개	·집 및 전처리 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	전원 -, 조재경, 최서윤 -, 박재현	
개발 환경	데이터베이스 IDE : Visua	: pandas, numpy, matplotlib : SQLite3 al Studio Code (Python 3.9.5)	· 	m, PyQt5, HTML
개발 자원		Gen Intel(R) Core(TM) i5-13 DIA GeForce RTX 3060 B	400	

	프로젝트 보고서	작성일자	2024-03-12
국립부경대학교 지역산업맞춤형	ニエベニ エエベ	개정일자	2024-03-12
기억선합됐품영 인력양성사업단	디지털 트윈 - 시스템 개발	개정번호	1.0
	니시크 드킨 - 시스템 개글	PAGE	2

		PAGE	۷	
	បៀក] អរៈ			
데이터 분석				
	□ 지역 선정을 위한 데이터			
	- 서울 사고 다발 지역 데이터			
	- 서울 응급실 위치 데이터			
데이터	- 서울 소방서 위치 데이터			
정의				
	□ 변수에 따른 도로 상황을 파악하기 위한 데이터			
	- 날씨 데이터			
	글씨 네이터 - 서울 교통량 조사 데이터			
	□ 공공 데이터 Open API			
	│ □ 서울 열린데이터광장			
데이터	□ KOSIS 국가통계포털			
확보				
	□ 도로교통공단			
	□ 기상청 □ 경향성 확인			
	- 서울시 내 사고 발생률이 높은 지역은 어디인가?			
	- 사고다발 예상 지역 선정			
	□ 변수 선정			
	- 사고 발생 지역에서 병원까지의 변수는 무엇인가?			
	- 도로 혼잡에 원인이 되는 변수 선정			
11 11 -1 -11	- 변수 간 관계성 확인			
분석 과제				
	□ 상관성 분석			
	- 변수 간 상관성이 있는가?			
	- 상관성 입증 변수 선정 (계절, 시간, 강수량)			
	- 데이터 일반화			
	- 기계의 현단의 			
	그 치저 겨구 서저			
	□ 최적 경로 선정 - 미드 조건은 마조하는 경로 선정			
	- 모든 조건을 만족하는 경로 선정 □ 사고 다발 구역 선정			
	┗ 시고 먹고 ㅜㅜ 천ㅎ - 사고 발생 지점 기준 반경 200m 이내에서 추가 사고 발생 시] 지저		
		ı ´`l Ö		
	- Clustering			
	- 사고 다발 지정 수가 많은 지역 4곳 선택			
분석 과정	□ 상관관계분석			
	- 변수 간 상관성 파악			
	- 상관성이 보이는 데이터 최종 변수로 선정			
	□ 변수 간 관계성 입증			
	- 데이터 일반화			
	- 강수량과 교통량 관계 도로별 라인으로 시각화			
	Ⅰ ○Ⅰ○커 ㅛㅇ○ 근계 ㅗㅗㄹ 먹근ㅡㅗ 끼ㅋㅋ			

	프로젝트 보고서	작성일자	2024-03-12
국립부경대학교	ニエベニ エエベ	개정일자	2024-03-12
지역산업맞춤형 인력양성사업단	디지털 트윈 - 시스템 개발	개정번호	1.0
	니시글 드전 - 시끄럼 개글	PAGE	3

	□ 최종 경로 선정 - 시간, 날씨 등 변수에 따라 발생하는 상황 변화에 대응되는 최적 경로 제시 □ 알고리즘 및 모델 개선
분석 결과 활용 방안	- 분석 결과를 기반으로 경로 최적화 알고리즘 및 모델 개선 - 교통 상황 분석 결과를 활용하여 더 정확하고 효율적인 경로를 계산하는 알고리즘 개발
	□ 실시간 경로 업데이트 - 교통 상황 및 다른 요소의 변화에 따라 실시간으로 경로를 업데이트하는 기능 개발 - 최적의 경로로 응급실 신속 도달 가능
	□ 사용자 인터페이스 개선 - 사용자 경험 분석 결과를 바탕으로 사용자 인터페이스 개선 - 직관적이고 사용하기 쉬운 인터페이스 제공으로 구급차 운전자가 시스템을 효과적으로 사용 가능
	□ 데이터 정확성 및 신뢰성 강화 - 데이터 정확성 및 신뢰성 분석 결과를 바탕으로 데이터 수집 및 처리 과정 개선 - 신뢰할 수 있는 데이터 활용으로 보다 정확한 경로 제공
	□ 비용 효율성 향상 - 비용 효율성 분석 결과를 활용하여 시스템의 운영 및 유지 보수 비용을 최소화 - 클라우드 기반 서비스를 활용하여 인프라 비용 절감
	□ 확장성 고려 - 분석 결과를 기반으로 시스템 확장이 가능하도록 설계 - 향후 요구사항에 대비하여 시스템을 유연하게 조정할 수 있는 구조 구축

	프로젝트 보고서	작성일자	2024-03-12
국립부경대학교 지역산업맞춤형	ニエベニ エエベ	개정일자	2024-03-12
기억선합됐품영 기억양성사업단	디지털 트윈 - 시스템 개발	개정번호	1.0
	니시크 드킨 - 시스템 개글	PAGE	4

	프로젝트 보고서	작성일자	2024-03-12
국립부경대학교 지역산업맞춤형	ニエベニ エエベ	개정일자	2024-03-12
기억선합됐품영 인력양성사업단	디지털 트윈 - 시스템 개발	개정번호	1.0
	니시크 느낀 - 시스템 개글	PAGE	5

	□ 실시간 모니터링 및 대응 - 시스템이 제공하는 실시간 정보를 활용하여 응급 상황을 모니터링하고 즉각적으로 대응 - 응급 상황에 빠르게 대응함으로써 환자 생명 보호 및 치료 시간 단축 가능
	□ 향상된 응급 의료 서비스 - 최적 경로 안내 시스템을 통해 구급차가 빠르게 응급실에 도착하고, 응급 의료 서비스를 제공함으로써 환자의 치료 및 회복 과정 개선
	□ 교통 흐름 개선 - 구급차 경로 최적화를 통한 교통 혼잡 최소화 - 효율적인 도로 이용을 장려함으로써 도시 교통 흐름 개선
	□ 정책 수립에 활용 - 시스템이 제공하는 데이터 및 분석 결과를 기반으로 도시의 응급 의료 서비스 정책 수립및 개선 - 구급차 운행 규제, 응급 의료 시설 위치 결정 등
· · · · · · · · · · · · · · · · · · ·	□ 통신망 구축 - 스마트 관제 시스템 구축으로 인한 효과적 통신 ☞ 긴급상황 대응 개선 효과 - 긴급상황 시 신속한 정보 전달은 생명 구조 및 손상 최소화
	□ 기상청 정보 협약 - 실시간 기상 정보 자동화로 인한 속도 강화 및 정확도 향상 효과