

VAIBHAV RASTOGI - CAPSTONE PROJECT

USING AI FOR SENTIMENT **ANALYSIS OF** CUSTOMER **REVIEWS**

Introduction & Background

Processing & Modelling

Neural Networks

Segmentation

AWS Deployment

Sentiment analysis is the process of determining the emotional tone behind a series of words, used to gain an understanding of the attitudes, opinions and 99 emotions expressed within an online mention.

DATA

Booking.com customer reviews data – 1 MILLION ++ RECORDS 53% Negative review – 47% Positive Reviews 19 Million Words – 227 MB Data

How can you mine vast stores of unstructured data to drive actionable insights

Introduction & Background

Processing & Modelling

Neural Networks

Segmentation

AWS Deployment

WORKFLOW AND APPROACH

Converting text data to numeric representation to enable modelling

NEURAL NETWORK CLASSIFICATION

Using a more complex model obtained a high accuracy of 96%

04

DEPLOYMENT

Prepared a web app architecture which would display sentiment using customer input

PROBLEM

Gaining Insights from large volume of unstructured customer input data

ML **CLASSIFICATION**

03

Using 3 separate models obtained accuracy between 86% to 92% in terms of predicting customer sentiment

SEGMENTATION

05

Categorized 1Million reviews into 7 negative and 3 positive groups using Unsupervised learning

Introduction & **Processing & Modelling** Background **Work Flow** We have to first classify reviews as positive or "good" reviews and negative or "bad" reviews. We follow these steps Input Data STEP 1 Million ++ reviews, consisting of 19M words and 227 MB of data **NLP Data** preparation Readying Text data for modelling using Natural Language Processing Modelling STEP Using three different 03 machine learning algorithms to classify reviews Good Reviews **Bad Reviews**

Neural Networks

Segmentation

AWS Deployment

Accuracy, Complexity

NLP Methods ->	Uni-grams	Bi-grams	TF-IDF
Modelling Methods ↓			
Logistic Regression	92.2	86.6	92.0
Multi NB	91.6	90.6	91.3
SVM	92.5	86.4	92.4

Confusion Matrix for SVM - unigrams

Predicted Label

Introduction & Background

Processing & Modelling

Neural Networks

Segmentation

AWS Deployment

With ML Classification models we were getting an classification accuracy between 86% to 92%. We will now build a model, a Neural Network and try to get even higher prediction accuracy. A Neural Network "learns" recursively from the error and tries to minimize it with each iteration called an epoch.

Model Name	Number of Hidden Layers	Hidden Nodes	Train Accuracy	Test Accuracy	Time Taken
Feedforward Neural Network 1	1	10	97.5	96.1	8678 seconds
Feedforward Neural Network 2	1	10	97.2	95.9	215 seconds

Introduction & Background

Processing & Modelling

Neural Networks

Segmentation

AWS Deployment

After building predictive models to classify 1M reviews as positive or negative, we segmented them into broader categories

We used TF-IDF and Count-vectorizer NLP and LDA-LSA methods for creating the cluster

Category	Words used	Category	Words used
Room size	Small room, small size, small bed, small bathroom	Room Service	Poor room service, order service, order late
Wifi	poor wifi, wifi didn't work	Swimming Pool	swimming pool small, pool cold, sauna
Aircon	AC not working, hot air, hot room, room cold	Value for Money	poor value for money, expensive
Breakfast	Breakfast Expensive, Small Breakfast, Breakfast poor	Other Reasons	

Introduction & Background

Processing & Modelling

Neural Networks

Segmentation

AWS Deployment

"Deployment to production is a method that integrates a machine learning model into an existing production environment so that the model can be used to make decisions or predictions based upon data input into the model."

ARCHITECTURE

- This architecture has been replicated on Amazon Web Services
 Sagemaker
- The prediction is the lambda functions, the data is sent through an API
- The model is our sagemaker notebook and the app is a web app

Is your review positive, or negative?

Enter your review below and click submit to find out.

Review:

I had a terrible experience at the hotel, my room was very uncomfortable because of ineffective cooling

WEB APP

This simple web app sends information to the model using API and receives information from the model using the lamba function

Submit

Your review was NEGATIVE!

QUESTIONS?

Appendix Slides