

功能描述

DK112 芯片是专用小功率开关电源控制芯片,广泛用于电源适配器、LED电源、电磁炉、 空调、DVD等小家电产品。

一、产品特点

- 采用双芯片设计,高压开关管采用双极型晶体管设计,以降低产品成本;控制电路采用大规模MOS数字电路设计,并采用E极驱动方式驱动双极型晶体芯片,以提高高压开关管的安全耐压值。内建自供电电路,不需要外部给芯片提供电源,有效的降低外部元件的数量及成本。
- 芯片内集成了高压恒流启动电路,无需外部加启动电阻。
- ◆ 内置过流保护电路,防过载保护电路,输出短路保护电路,温度保护电路及光藕失效保护电路。
- 内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。
- 内置PWM 振荡电路,并设有抖频功能,保证了良好的EMC 特性。
- 内置变频功能, 待机时自动降低工作频率, 在满足欧洲绿色能源标准(< 0.3W) 同时, 降低了输出电压的纹波。
- 内置高压保护, 当输入母线电压高于保护电压时, 芯片将自动关闭并进行延时重启。
- 内建斜坡电流驱动电路,降低了芯片的功耗并提高了电路的效率。
- 4KV 防静电ESD 测试。

二、功率范围

输入电压	$(85 \sim 264 Vac)$	$(85 \sim 145 Vac)$	$(180 \sim 264 Vac)$
最大输出功率	12W	18W	18W

三、封装与引脚定义

引脚	符号	功能描述
1	Gnd	接地引脚。
2	Gnd	接地引脚。
3	Fb	反馈控制端。
4	Vcc	供电引脚。
5678	Collector	输出引脚,连接芯片内高压开关管Collector 端,与开关变压器相连。

四、内部电路框图

DK112 高性能开关电源控制芯片

五、极限参数

供电电压Vcc -0.3V - -9V供电电流Vcc 100mA 引脚电压 -0.3V--Vcc+0.3V 开关管耐压 -0.3V - -780V峰值电流 800 mA总耗散功率 1000 mW..... 工作温度 0℃--125℃ 储存温度 -55°C--+150°C 焊接温度 +280°C/5S

六、电气参数

项目	测试条件	最小	典型	最大	单位
电源电压Vcc	AC 输入85V265V	4	5	6	V
启动电压	AC 输入85V265V	4.8	5	5. 2	V
关闭电压	AC 输入85V265V	3. 6	4	4.2	V
电源电流	Vcc=5V, Fb=2.2V	20	30	40	mA
启动时间	AC 输入85V			500	mS
Collector 保护电压	L=1.2mH	460	480	500	V
开关管耐压	Ioc=1mA	700			V
开关管电流	Vcc=5V, Fb=1.6 V3.6V	600	650	700	mA
峰值电流保护	Vcc=5V, Fb=1.6 V3.6V	650	720	800	mA
振荡频率	Vcc=5V, Fb=1.6 V2.8V	60	65	70	KHz
变频频率	Vcc=4.6V, Fb=2.8V3.6V	0.5		65	KHz
抖频步进频率	Vcc=4.6V, Fb=1.6 V2.8V	0.8	1	1.2	KHz
温度保护	Vcc=4.6V, Fb=1.6 V3.6V	120	125	130	$^{\circ}$
占空比	Vcc=4.6V, Fb=1.6 V3.6V	5		70	%
控制电压Fb	AC 输入85V265V	1.6		3. 6	V

七、工作原理

● 上电启动: 当外部电源上电时,直流高压经开关变压器传至芯片的COLLECTOR端 (5678 引脚),后经内建高压恒流启动电路将启动电流送至开关管Q1 的B极,通过开关管Q1 的电流放大 (约为20 倍放大)进入电源管理电路经D1为Vcc 外部电容C1 充电,同时为Fb 预提供一个3.6V 电压 (Fb 引脚对地应接入一只滤波电容),当Vcc 的电压逐步上升至5V 时,振荡器起振,电路开始工作,控制器为Fb 开启一个约为25uA 的对地电流源,电路进入正常工作。

上电原理图

上电时序图

正常工作: 电路完成启动后,振荡器开始工作,触发器的Q1,Q2 输出高电平,高压晶体管与功率MOS 管同时导通,开关电流经晶体管与功率MOS管接到40 Ω 电流取样电阻,并在电阻上产生与电流成正比的电压,(由于开关变压器分布电容的存在,在电路开通的瞬间有一个高的尖峰电流,为了不引起电路的误动作,在电路开通时启动一个前沿消隐电路将尖峰电流去除,消隐时间为250nS),控制端Fb 电压经斜坡补偿后与取样电阻上的电压相加后与0.6V 的基准电压相比较,当电压高于基准电压时比较器输出低电平,触发器的Q1,Q2 输出低电平,高压晶体管与功率MOS 管同时关断,COLLECTOR 端电压上升,电路进入反激工作,在下一个振荡周期到时,电路将重新开始导通工作。

工作时序图

电路在t1 时间Vcc 电压上升到5V, 电路开启工作, Q2 输出PWM 信号, t2~t3 时间Vcc 电压高于6V, 电路停止输出, Q2 输出低电平, t3~t4 时间Vcc电压回到范围之内, 电路正常工作, t4~t5 时间Vcc 电压低于4V, 电路停止输出, Q2 输出低电平, t6 时间Fb 电压低于1.6V, 开路开启一个24mS 的定时器, PWM 以最大占空输出, 直到t7 时间Fb 电压还未能高于1.5V, 电路开始重新启动, t9 时间Vcc 电压上升到5V, 电路重新开启工作, t10 时间Fb 电压高于3.6V, 电路停止输出。

● 控制引脚Fb: Fb 引脚外部应当连接一只电容,以平滑Fb 电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定工作,典型应用可在10nF~100nF 之间选择; 当Fb 电压高于1.5V 而小于2.8V 时,电路将以65KHz 的频率工作,当Fb 电压高于2.8V 而小于3.6V 时,电路将随着Fb 的电压升高而降低频率,当Fb 电压高于3.6V 时,电路将停止振荡,当Fb 电压小于1.5V 时,电路将启动一个48mS 的延时电路,如在此期间Fb 电压回复到1.5V 以上,电路将继续正常工作,否则,芯片将进行重新启动,此电路完成了光藕失效的保护。

Is 与Fb 时序图

Fb 与工作频率 (PWM) 时序图

- 自供电电路: (已申请国家专利)芯片内建自供电电路,将电路的电源电压控制在5V 左右,以提供芯片本身的电流消耗,自供电电路只能提供自身的电流消耗,不能为外 部电路提供能量。
- 斜坡电流驱动:为了降低芯片的耗能及提高电路的效率,内部为高压晶体管的B极提供的基极电流采用了斜坡电流驱动技术,当开关电流Is 为0 时,基极电流约为40mA,随着开关电流的逐步增大,基极电流也逐步增大,当开关电流为600mA 时,基极电流为100mA。

lb 与ls 时序图

- 抖频电路: 为了能满足EMC 的要求,芯片内设有一个抖频电路,PWM 的频率将以65KHz 的频率为中心,以1KHz 的步进在8 个频率点上运行,这样有效的降低了EMC 的设计的复杂度及费用。
- 热保护:芯片的温度达到125℃时,芯片将进行重新启动,直至芯片的温度降低到 120℃以下,芯片才会重新进入正常工作状态。
- 峰值电流保护: 因外部的某种异常引起的电流过大时, 当电流达到720 mA 时, 芯片将进行重新启动。
- 电源异常:因外部的某种异常引起的电源电压高于6V 时,或电源电压低于4V时,芯片 将进行重新启动。
- 超压保护:芯片在完成启动后,芯片内部设定了一个电流的上升斜率检测电路,当外部的电压超高或者开关变压器的失效,都会引起电流的斜率变化,保护电路将会对电路进行重新启动,这样保证了高压晶体管的安全,同时对低频的浪涌电压进行了有效的保护。

斜率检测时序图

根据电感电流公式 $I = U/L * \Delta t$ 可知,在电感不变时,在一个固定的时间上检测电流可计算出电压,芯片利用该原理在350nS 时检测Is 电流,当Is 电流小于0.14V 时,电路正常工作,当Is 电流大于0.14V 时,芯片进入异常保护;同理,当外部的电感器的电感量变小,也会让芯片进入异常保护;这样即可以保护母线电压过高引起的开关管的击穿,也可以保护因外部变压器的饱和或者短路引起的电感量下降导致Is 电流过大,引起芯片的损坏。

直流母线保护电压与变压器电感量的关系图

八、芯片测试

8.1、耐压测试

8.2、电性能测试

九、典型应用一 (12V/1A 输出离线反激式开关电源)

9.1元器件清单

序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	F2A/AC250V	F1	1	
2	安规X 电容	104/AC275V	C1	1	
3	二极管	IN4007	D1~D4	4	
4		HER107	D5	1	
5		SR2100	D6	1	
6	稳压二极管	11V/0.5W	ZD1	1	
7	电解电容	33UF/400V	C2	1	
8		22UF/16V	C4	1	
9		1000UF/25V	C6	1	
10	瓷片电容	103/250V	СЗ	1	
11		103/25V	C5	1	
12	IC	DK112	IC1	1	
13		PC817	IC2	1	
14	色环电阻器	100K/0.25W	R1	1	
15		3K/0.25W	R2	1	
16		470R/0.25W	R3	1	
17	变压器	EE25	T1	1	

9.2 变压器设计 (只作参考)

9.2.1 参数确定:

变压器设计时,需要先确定一些参数,(1)输入电压范围,(2)输出电压、及电流,

- (3) 开关频率, (4) 最大占空比;
- (1) 输入电压范围 AC85~265V
- (2) 输出电压、电流 DC12V/1A
- (3) 开关频率 F=65KHz
- (4) 最大占空比 D=0.5

9.2.2 磁心的选择:

先计算出电源的输入功率 $P = Pout/\eta(\eta$ 指开关电源的效率,设为0.8),

Pout = Vout * Iout = 12V * 1A = 12W,P = 12/0.8 = 15W。我们可以通过磁心的制造商提供的图表进行选择,也可通过计算方式选择,我们查图表方式选择15W 电源可用EE20 或者EE25 磁心,我们选择EE25 磁心进行下一步的计算。

9.2.3 计算原边电压Vs

输入电压为AC85~265V, 计算最低电压下的最大功率, 最低电压为85V

Vs = 85 * 1.3 = 110V (考虑了线路压降及整流压降)

9.2.4 计算导通时间

Ton = 1/F * D = 1/65 * 0.5 = 7.7uS;

9.2.5 计算原边匝数Np

$$Np = \frac{VsTon}{\Delta Bac \cdot Ae}$$

Np ----原边匝数

Vs ----原边直流电压(最低电压值)

Ton ---导通时间

 Δ Bac ----交变工作磁密 (mT), 设为0.2

Ae ----磁心有效面积 (mm²) EE25 磁心为50mm²

 $Np = (110 * 7.7)/(0.2 * 50) = 84.7 \approx 85$

由于变压器不能取半匝,所以取85 匝。

9.2.6 计算副边匝数Ns

Ns ----副边匝数

Np ---原边匝数

Vout ----输出电压(包含线路压降及整流管压降, 12V+1V=13V)

Ns= (13*85) /100=11 匝

9.2.7 计算原边电感量Lp

Lp = (Vs * Ton)/Ip

Lp ----原边电感量

Ip ----原边峰值电流(芯片设定最大峰值电流720mA)

 $Lp= (100*7.7) /720=1.18\approx 1.2 (mH)$

9.2.8 变压器的设计验证

变压器的设计时最大磁感应强度不能大于0.4T, (铁氧体的饱和磁感应强度一般为0.4T 左右),由于单端反激电路工作在B-H 的第一象限,磁心又存在剩磁Br 约为0.1T, 所以最大的工作磁通Bmax 最大只有0.4-0.1=0.3T

Bmax = (Ip * Lp)/(Np * Ae)

Bmax = (800 * 1.2)/(85 * 50) = 0.225

Bmax < 0.3 证明设计合理

9.2.9 变压器的漏感

由于变压器不是理想器件,在制造过程中一定会存在漏感,漏感会影响到产品的稳定及安全,所以要减小,漏电感应控制在电感量的5%以内,三明治绕线方式可以减小漏感。

十、典型应用二(非离线式开关电源)

10.1 元器件清单

序号	元件名称	规格/型号	位号	数量	备注
					шт
1	保险丝	F2A/AC250V	F1	1	
2	安规电容	104/AC275V	C1	1	
3	二极管	IN4007	D1 D4	4	
4		HER107	D5, D6	2	
5	稳压二极管	16V/0.5W	ZD1	1	
6	电解电容	22UF/400V	C2	1	
7		22UF/16V	C4	1	
8		220UF/25V	C5	1	
9	瓷片电容	103/25V	C3	1	
10	IC	DK112	IC1	1	
11	色环电阻器	4. 7K/0. 25W	R1	1	
12	电感器	1.5mH	L1	1	

十一、设计注意事项

10. 1、功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与引脚5678 相连接,所以在PCB布线时,应该将引脚5678外接的铜箔的面积加大并作镀锡处理,以增大散热能力。

10. 2、芯片的5678引脚是芯片的高压部份,最高电压可达600V以上,所以在线路布置上要与低压部份保证1.5mm以上的安全距离,以免电路出现击穿放电现象。

十一、封装尺寸

	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0. 170
A1	0. 510		0. 020	
A2	3. 200	3. 600	0. 126	0.142
В	0. 380	0. 570	0.015	0. 022
B1	1. 524	(BSC)	0.060	O (BSC)
C	0. 204	0. 360	0.008	0.014
D	9. 000	9. 400	0. 354	0. 370
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
е	2. 540	(BSC)	0.10	O (BSC)
L	3. 000	3. 600	0. 118	0.142
E2	8, 400	9,000	0. 331	0, 354

十二、包装信息

12.1、芯片采用防静电管包装

代	最小值	额定值	最大值
号	(mm)	(mm)	(mm)
A	11	11.5	12
В	11.5	12	12. 5
С	10	10. 5	11
D	0.4	0.5	0.6
Е	3. 5	4	4. 5
F	5	5. 5	6

12.2、包装数量

包装	数量
单管	50
单包装箱	2000
大包装箱	20000