Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

INPT - 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural
 Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

- The Big Picture of ML!
- Terminologies
- How can I Apply?
- How can I Learn?

Forbes: "The Top 10 AI And Machine Learning Use Cases Everyone Should Know About"

- 1. Data Security,
- 2. Personal Security,
- 3. Financial Trading,
- 4. Healthcare,
- 5. Marketing personalization,
- 6. Fraud Detection,
- 7. Recommendations,
- 8. Online Search,
- 9. Natural Language Processing (NLP),
- 10. Smart Cars

Programming

Machine Learning

Machine Learning

Machine Learning

Machine Learning

Data

- Example x⁽ⁱ⁾
 - Row/Instance/Input/Observation/Record/Point/Sample/Entity
- Feature $x^{(i)}_{j}$
 - Columns/Variable/Predictor/Characteristic/Field/Attribute
 - Quantitative (numeric, continue)
 - Qualitative (textual, category)
- Dimension, Visualization
 - m Examples: i = 1..m
 - n Features: j = 1..n
- Output : $y_i = x^{(i)}_k (k \text{ in } 1..n)$
 - target/class/output
 - For each example (0/1)

Features

Abdelhak Mahmoudi 12

Examples

Data

- Structured
 - CSV, XML, JSON, XLSX, etc.
- Unstructured
 - DOC, HTML, PDF, PNG, MP3, MP4, etc.

Text, Image, son

Types of Learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Dimensionality Reduction
 - Clustering
- Semi-supervised
 - Little supervised data
- Reinforcement

Supervised Learning

15

Unsupervised Learning (y absent)

Terminologies

- Artificial Intelligence
- Machine Learning, Deep Learning
- Statistical Learning
- Data Mining
- Deep Learning

Artificial Intelligence (1943)

- "The first work that is now generally recognized as AI was <u>McCullouch</u> and <u>Pitts</u>' 1943 formal design for <u>Turing-complete</u> "artificial neurons". Wikipedia
- Intelligent Machines mimics Natural Intelligence (NI)
- Natural Intelligence (General Intelligence)
 - Reasoning, Problem solving,
 - Knowledge representation, Learning,
 - Planning, Perception, Motion and manipulation, Natural Language
 - Etc.

Machine Learning (1959)

- <u>"Arthur Samuel</u>, an American pioneer in the field of <u>computer</u> gaming and <u>artificial intelligence</u>, coined the term "Machine Learning" in 1959 while at IBM". Wikipedia
- A subfield of Computer Science and Artificial Intelligence which deals with building systems that can learn from data, instead of explicitly programmed instructions.
- Artificial Neural Networks (1975)
 - Begin in 1943, stagnated in 1969, relaunched in 1975 by the Backpropagation algorithm,
- Book: "Machine Learning". Tom M. Mitchell. 1997

Statistical Learning (1968)

- VC Theory. "On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities". Vapnik, V. N.; Chervonenkis, A. Ya, 1968
- A subfield of Mathematics which deals with finding relationship between variables to predict an outcome
- Support Vector Machines (1995)
 - Much simpler, overtook ANN, Vapnik V. N.
- Book
 - "An introduction to statistical learning with applications in R" (1st Edition 2013). Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

Data Mining (1990)

Appeared in the database and financial community to recognize customer and products trends

Definition: "The process of automatically discovering useful information in large repositories".

- Automatically
 - Stats: correlation between 2 variables, what is the problem?
 - DM: parallel correlation between 1000 variables, send and email if two variables are correlated in some way.
- Discovering useful information
 - Stats: answer a specific question
 - DM: look for any specific reason
- Large Repositories
 - Stats: Collect data to answer a specific question
 - DM: Collect all, you don't know the reason yet!

Book:Introduction to Data Mining (2nd edition 2018, 1st Edition in 2005). Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar

Deep Learning

How can I Learn?

- Math
 - Statistics, Probabilistic Graphical Models, Algebra, Optimization
- Programming Languages
 - Python, R,
- Books
 - Ian Goodfellow et al. "Deep Learning". 2016
 - Aurélien Géron. "Hands on ML with sklearn". 2017
 - Gareth James et al., "An introduction to statistical learning with R". 2013
 - Tom M. Mitchell. "Machine Learning". 1997
 - Etc.

How can I Learn?

- MOOCs
 - Coursera.org, Udemy.com, ocw.mit.edu, etc.
- StackOverflow
- Research Papers
 - Read and rewrite algorithms from scratch
- Follow People:
 - Androw Ng, Yann LeCun, Jeff Hinton, Sebastian Thrun, etc.

How can I Apply?

- Start small projects and use Framworks
 - Scikit-learn, TensorFlow, Keras, Pytorch, Caffe, Microsoft Cognitive Toolkit (CNTK), MXNet, Spark MLlib, etc.
- Challenge your self
 - Find data: Web, UCI Machine Learning Repo
 - Go for competitions: Kaggle, DrivenData, Zindi
- Github
 - Find codes
 - Share your code
- Softwares (for non-pro!)
 - Knime, IBM SPSS Modeler

Supervised Learning

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Trees (Decision and Regression)
- Random Forests
- Boosting
- Artificial Neural Networks

- The output *y* is continuous
- Fit X with a line $y = w_0 + w_1 x$
- The best line is the line with minimum loss L(w)
- Solved using Normal Equations
 - $\bullet W = (X^T X)^{-1} X^T y$
 - But not for big X!
- Find W iteratively using gradient descent

Gradient Descent

```
(Batch) GD

X = data_input

Y = data_output

W = initialize_parameters()

for it in range(num_iterations):

Yhat = h(X, W)

L = loss(Yhat, Y)

dW = gradient(L(W))

W = W - \alpha \ dW
```


Feature Scaling

Problem: features are not on a

similar scale

Solution: Mean Normalization

$$\frac{x_j - \mu_j}{\sigma_j} \qquad -1 \le x_j \le 1$$

Gradient Descent: Debugging

- How to make sure gradient descent is working correctly?
- How to choose learning rate
- Solution: Declare convergence if L(w) decreases by less than 10^{-3} in one iteration.

Abdelhak Mahmoudi

42

Gradient Descent: Debugging

- For sufficiently small α , L(w) should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Abdelhak Mahmoudi

43

Gradient Descent: Debugging

- If α is too small: slow convergence.
- If α is too large: L(w) may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$, 0.01, , 0.1, , 1, \dots$$

$$, 1, \dots$$

Other Optimization Methods

Polynomial Regression

Overfitting vs. Underfitting

Bias-Variance Tradeoff

Expected error (Human or Bayes optimal): 0%	Train set error	1%	15%	15%	0.5%
	Validation set error	11%	16%	30%	1%
		High variance	High bias	High bias High variance	Low bias Low variance

Address Overfitting

- Detect Overfitting
 - Performance analysis (Cross-Validation)
- Avoid Overfitting
 - Fewer features (Feature Selection, Dimensionality Reduction)
 - Constraint the model (Regularization: minimum loss $L(w) + \lambda ww^T$)
 - Model Selection (Tune hyper-parameters using Grid Search)

Performance Analysis

Training set

Validation set

Test (Blind) set

Performance Measures

- Measure of distance between predictions $\hat{y} = h(x)$ and targets y
- L2 norm: Root Mean Square Error (RMSE)
 - Sensitive to outliers!

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2}$

- L1 norm: Mean Absolute Error (MSE)
 - Derivability!

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

Feature Selection

Best Subset Selection

Fit a separate least squares regression for each possible combination of the n features: 2ⁿ possibilities!

Forward Stepwise Selection

Begins with a model containing no feature, and then adds the feature that gives the greatest improvement (smallest cost) to the model, one-at-a-time.

Backward Stepwise Selection

Begins with a model containing all feature, and then removes the feature that gives the smallest improvement (highest cost) to the model, one-at-a-time.

Dimensionality Reduction

Reducing or extracting features

2/14/20 Abdelhak Mahmoudi 53

Regularization

- See regularization as a penalty against complexity. Increasing the regularization strength penalizes "large" W
- The goal is to prevent the model from picking up "peculiarities," "noise," or "imagines a pattern where there is none."

Regularization: Ridge Regression (L₂ norm)

Linear Regression

$$\hat{y} = h_w(x) = w_0 + w_1 x_1 + w_2 x_2$$

if λ is set to be extremely large, then w_j have to be very small.

- → Algorithm results in underfitting
- → Gradient Descent will fail to converge

minimize
$$L(y, \hat{y})$$
 W
 $L_2 \text{ norm}$

minimize $L(y, \hat{y}) + \lambda \sum_{i=1}^{n} w_i^2$

Do not regularize for j=0

Training
$$w_0 = 1, w_1 = 2, w_2 = 0.01$$

Test
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Regularization: Ridge Regression (L₂ norm)

Tradeoff

Regularization: LASSO Regression (L₁ norm)

Linear Regression

$$\hat{y} = h_w(x) = w_0 + w_1 x_1 + w_2 x_2$$

- LASSO: Least Absolute Shrinkage and Selection Operator
- LASSO is not differentiable for every value of w, but performs best feature selection

minimize
$$L(y, \hat{y})$$

w

 $L_1 \text{ norm}$

minimize $L(y, \hat{y}) + \lambda \sum_{j=1}^{n} |w_j|$

Do not regularize for j=0

Training
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Test
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Model Selection

- Hyper-Parameters Tuning
 - λ : regularization hyper-parameter
 - *d*: degree of polynomial
 - Etc.
- Grid Search
- Randomized search