Aprendizaje Automático Segundo Cuatrimestre de 2018

Clasificadores

Aprendizaje Basado en Instancias

Vecino Más Cercano:

• Dada una nueva instancia, devolver la clase de la instancia más cercana en *D*.

Aprendizaje Basado en Instancias

K Vecinos Más Cercanos (KNN):

• Dada una nueva instancia, devolver la clase más frecuente entre las *K* instancias más cercanas en *D*.

Diagrama de Voronoi:

... ¿y si K=n?

Distance-Weighted KNN

Podríamos querer que los vecinos más cercanos tengan más influencia en la votación...

Cada vecino $x^{(i)}$ aporta $w^{(i)}$ votos (y no 1 como en KNN), donde

$$w^{(i)} = \frac{1}{d(x^{(q)}, x^{(i)})^2}$$

 $x^{(q)}$ es la instancia a clasificar, y $d(\cdot,\cdot)$ es la distancia entre dos instancias.

Quizá podemos usar *todas* las instancias en *D*, en lugar de sólo las *K* más cercanas.

KNN – Devolviendo Probabilidades

$$P(Y = y \mid X = x^{(q)}) \approx \sum_{x^{(i)} \in Vecinos(x^{(q)}, K, D)} I(y^{(i)} = y) \cdot \frac{1}{K}$$

Para la nueva instancia: P(amarillo) = 1/5P(negro) = 4/5

KNN - Devolviendo Probabilidades

$$P(Y = y \mid X = x^{(q)}) \approx \sum_{x^{(i)} \in Vecinos(x^{(q)}, K, D)} I(y^{(i)} = y) \cdot \frac{1}{K}$$

KNN

Técnica simple que a veces permite aproximar conceptos muy complejos.

El entrenamiento (¿entrenamiento?) es muy rápido.

Para pensar: La distancia se calcula con todos los atributos. ¿Qué pasa si algunos son irrelevantes? ¿Qué pasa si están en escalas muy distintas?

Bayes Classifier

 Dada una nueva instancia x, su clase más probable a posteriori k puede expresarse así:

$$k_{\mathrm{MAP}} = \operatorname*{argmax}_{k} \ P(Y = k \mid X = x)$$
 (Como vimos, KNN estima esta probabilidad en forma directa.)

$$k_{\text{MAP}} = \underset{k}{\operatorname{argmax}} \quad \frac{P(Y = k) \cdot P(X = x \mid Y = k)}{P(X = x)} \quad \xrightarrow{\text{n o depende de k}}$$

$$k_{\mathrm{MAP}} = \operatorname*{argmax}_{k} \ P(Y=k) \cdot P(X=x \,|\, Y=k)$$
 Bayes Classifier

- Entonces, para clasificar una nueva instancia x, alcanza con calcular P(Y = k) (prior de la clase k) y $P(X = x \mid Y = k)$ (distribución de instancias en la clase k), y listo...
- Problema: conocer $P(X = x \mid Y = k)$ es casi siempre imposible.
- Necesitamos estimar P(Y = k) y $P(X = x \mid Y = k)$.

Naive Bayes Classifier

$$k_{\text{MAP}} = \underset{k}{\operatorname{argmax}} \ P(Y = k) \cdot P(X = x \mid Y = k) \rightarrow \text{Bayes Classifier}$$

$$k_{\text{MAP}} = \underset{k}{\operatorname{argmax}} P(Y = k) \cdot P(X_1 = x_1 \land X_2 = x_2 \dots \land X_p = x_p | Y = k)$$

Suposición "naive": los *n* atributos son independientes.

$$k_{\mathrm{NB}} = \operatorname*{argmax}_{k} \ P(Y=k) \cdot \prod_{i=1}^{p} P(X_i = x_i \mid Y=k) \rightarrow \text{Naive Bayes Classifier}$$

- ¿Cómo podemos estimar $P(X_i = x_i \mid Y = k)$, con X_i categórico?
- ¿Y con X_i continuo?
- ¿Y cómo estimamos P(Y = k)?

¿De qué color serán a, b, c? Idea de LDA:

- 1)modelar la distribución (normal) de puntos de cada clase;
- 2) asignar nuevas instancias a la clase que tiene probabilidad máxima a posteriori (MAP).

La recta verde es la frontera de decisión entre las 2 clases (en este caso, es una recta).

• La tarea de clasificación consiste en encontrar la clase k que maximice:

$$P(Y = k | X = x) \stackrel{\forall}{=} \frac{P(Y = k)P(X = x | Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

$$P(Y = k) = \pi_k : \text{prior de la clase } k$$

$$P(X = x | Y = k) = f_k(x) : \text{función de densidad de } X \text{ para la clase } k$$

- Suponemos que $f_k(x)$ tiene distribución normal $N(\mu_k, \Sigma)$. Es decir, los puntos en cada clase fueron generados por una distribución con media particular, pero todos con la misma matriz de covarianza Σ .
- Con esta suposición, para modelar la distribución de instancias de cada clase, $P(X=x\mid Y=k)$, alcanza con estimar μ_k , Σ , π_k usando los datos de entrenamiento.
- Luego, encontrar la clase k con probabilidad máxima a posteriori sale directo.

Veamos el caso p=1 (es decir, las instancias tienen un único atributo).

$$\underset{k}{\operatorname{argmax}} \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)} = \underset{k}{\operatorname{argmax}} \pi_k \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{(x - \mu_k)^2}{-2\sigma^2}\right)$$
$$f_k(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{(x - \mu_k)^2}{-2\sigma^2}\right), \text{ porque } f_k(x) \sim N(\mu_k, \sigma^2)$$

• Es fácil ver (tomar log de todo, operar y reordenar \rightarrow ejercicio) que esto equivale a encontrar la clase k con máxima función discriminante $\delta_k(x)$:

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

• Los parámetros π_k , μ_k , σ^2 pueden estimarse así:

$$\hat{\pi}_k = n_k/n \qquad \rightarrow \text{proporción de instancias en la clase } k$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i \qquad \rightarrow \text{media de las instancias en la clase } k$$

$$\hat{\sigma}^2 = \frac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2 \quad \Rightarrow \text{promedio ponderado de las varianzas de las instancias en cada clase}$$

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log \hat{\pi}_k$$

Ejemplo simple:

p = 1 (una variable)

k = 2 (dos clases)

 $\pi_1 = \pi_2$ (clases equiprobables)

Para cada nueva instancia x, le asignamos la clase con máxima función discriminante.

La frontera de decisión puede calcularse con $\delta_1(x) = \delta_2(x)$ y así llegar (ejercicio) a:

$$x = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}$$

Caso general (p>1):

Ahora x, μ_k son vectores de p dimensiones; Σ es una matriz de $p \times p$.

Con el mismo razonamiento, llegamos a estas funciones discriminantes:

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

(versión vectorial/matricial de las que vimos antes).

Ejemplo:

$$p = 2$$
 (dos variables)
 $k = 3$ (tres clases)
 $\pi_1 = \pi_2 = \pi_3$ (clases equiprobables)

Otra idea: buscar una recta que separe las clases lo mejor posible, sin tener que modelar la distribución de los datos de cada clase.

¿Cómo podemos elegir esa recta?

Support Vector Machines

Margen M: Distancia de las instancias más cercanas a la recta (hiperplano) de decisión.

Instancias más cercanas: "support vectors".

SVM: Busca maximizar M.

Problema de optimización.

Solución eficiente: programación cuadrática (QP).

<u>Ejercicio:</u> ¿para qué sirve el hiperparámetro *C*?

Support Vector Machines

¿Qué hacemos si las instancias no son linealmente separables?

Datos originales:

Un único atributo X_1 . Instancias no linealmente separables.

Datos transformados:

Kernel Trick

- Transformación de vectores de atributos. Ej: $\Phi([X_1]) = ([X_1, X_1^2])$
- Expandir las transformaciones explícitamente es muy costoso.
- Lo evitamos mediante kernels.
 - Kernel: Generalización del producto interno que nos permite operar con nuevos atributos en forma implícita.

$$K(x^{(1)}, x^{(2)}) = \langle \Phi(x^{(1)}), \Phi(x^{(2)}) \rangle$$

donde $x^{(1)}$, $x^{(2)}$ son instancias.

- Si un algoritmo (ej. SVM) puede expresarse en términos de productos internos entre instancias, reemplazamos las apariciones de $\langle x^{(1)}, x^{(2)} \rangle$ por $K(x^{(1)}, x^{(2)})$.
- Así, ejecutamos SVM implícitamente en dimensiones superiores.

Support Vector Machines

- Kernels más usados: lineal, polinomial, sigmoideo, RBF.
 - Souza (2010), "Kernel Functions for Machine Learning Applications"

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

SVM - Clases múltiples

• Hasta ahora: clasificación binaria.

K clases:

- Para cada clase k, entrenar un SVM para discriminar k del resto (clasificación OVA: one-versus-all).
- Para una nueva instancia $x^{(q)}$, correr los K clasificadores y retornar la clase para la cual $x^{(q)}$ queda a mayor distancia del hiperplano de decisión (i.e., la clase con mayor confianza).

Atributos Categóricos

EstadoCivil: {Solterx, Casadx, Viudx, Divorciadx, Otro}

EstadoCivil_Solterx: {0, 1}

EstadoCivil_Casadx: {0, 1}

EstadoCivil_Viudx: {0, 1}

EstadoCivil_Divorciadx: {0, 1}

EstadoCivil_Otro: {0, 1}

Palabras: BagOfWords

Palabras_hola: N

Palabras_mundo: N

Palabras_la: N

Palabras_y: N

Palabras_cuando: N

• • •

Repaso

- Clasificadores:
 - K Vecinos más Cercanos (KNN)
 - Bayes Classifier
 - Naive Bayes Classifier
 - Linear Discriminant Analysis (LDA)
 - Support Vector Machines (SVM)
- Próximos temas:
 - Sesgo y varianza de algoritmos.
 - Ensambles de modelos.