Berman's theorem

ho boon suan

june 14, 2022

I learned this proof of Berman's theorem from Yuval Filmus: https://math.stackexchange.com/a/1416150/. Here I'm just writing it up to my satisfaction, as usual.

Theorem (Piotr Berman, 1978). *If there exists an NP-hard unary language* $U \subset \{1\}^*$, then P = NP.

Proof. Using the **NP**-hard unary language U, we define a polynomial-time algorithm for SAT that makes use of downward self-reducibility. The idea is that, since there exists a polynomial-time reduction $f: \mathsf{SAT} \leq_p U$ such that $\varphi \in \mathsf{SAT}$ if and only if $f(\varphi) \in U$, we have $f(|\varphi|) \leq |\varphi|^c$ for some constant c. Since U is unary and therefore sparse (that is, it has at most one string of any length), it follows that there are only m^c possible values for $f(\psi)$ whenever ψ is a satisfiable CNF of size at most m.

We now describe our algorithm for SAT. Given a CNF φ of size m on variables x_1, \ldots, x_n , we initialize a set with the single element $(\varphi, f(\varphi))$. If $f(\varphi)$ is not of the form 1^{*j*}, we immediately reject φ . Our algorithm will maintain the following invariants: after each step, the set has at most m^c elements, and the original formula φ is satisfiable if and only if our set contains some element $(\psi, f(\psi))$ for which ψ is satisfiable. For each element $(\psi, f(\psi))$ in the set, we replace it with two new elements $(\psi|_{x_1=\top}, f(\psi|_{x_1=\top}))$ and $(\psi|_{x_1=\bot}, f(\psi|_{x_1=\bot}))$. Finally, we remove all elements whose second entry is not of the form 1^{j} , and if there are multiple elements who both have second entry 1, we keep only one of them. Thus, after each step, we see that there are at most m^c elements in our set. After n steps, the formula φ will be satisfiable if and only if our set contains the element $(\top, f(\top))$. Since the reduction f is polynomial-time and each of the n steps makes at most $2m^c$ calls to f, we conclude that our algorithm for SAT runs in polynomial-time, which implies that P = NP as needed.

Some thoughts. Many statements of this result require the unary language in question to be *NP-complete*, but we only need it to be *NP-hard*. In fact, we only need a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that $f(\psi) \in \{1\}^*$ whenever ψ is a satisfiable CNF.

References

Berman, Piotr. *Relationship Between Density and Deterministic Complexity of NP-complete Languages*. Fifth International Colloquium on Automata, Languages and Programming, Italy (July 1978), Springer-Verlag Lecture Notes in Computer Science **62**, 63–71.

doi:10.1007/3-540-08860-1_6