2007 PH 69-85

EE24BTECH11020 - Ellanti Rohith

1) In the circuit shown, the voltage at test point P is 12V and the voltage between gate and source is -2V. The value of R (in $k\Omega$) is [GATE 2007]

a) 42

b) 48

c) 56

d) 70

1

2) When an input voltage V_i , of the form shown, is applied to the circuit given below, the output voltage V_o is of the form [GATE 2007]

Common Data for Questions 71, 72, 73:

A particle of mass m is confined in the ground state of a one-dimensional box, extending from x = -2L to x = +2L. The wavefunction of the particle in this state is

$$\psi(x) = \psi_0 \cos\left(\frac{\pi x}{4L}\right)$$

where ψ_0 is a constant.

[GATE 2007]

3) The normalization factor ψ_0 of this wavefunction is

d) $\frac{1}{\sqrt{L}}$

4) The energy eigenvalue corresponding to this state is			
a) $\frac{\hbar^2\pi^2}{2mL^2}$	b) $\frac{\hbar^2 \pi^2}{4mL^2}$	c) $\frac{\hbar^2 \pi^2}{16mL^2}$	d) $\frac{\hbar^2 \pi^2}{32mL^2}$
5) The expectation value of p^2 (p is the momentum operator) in this state is			
a) 0		ħ ² π ²	
b) $\frac{\hbar^2\pi^2}{32L^2}$		c) $\frac{\hbar^2 \pi^2}{16L^2}$ d) $\frac{\hbar^2 \pi^2}{8L^2}$	
Common Data for Questions 74, 75: The Fresnel relations between the amplitudes of incident and reflected electromagnetic waves at an interface between air and a dielectric of refractive index μ_r are			
	$\frac{E_{\parallel}^{\text{reflected}}}{E_{\parallel}^{\text{incident}}} = \frac{\cos r - \mu \cos i}{\cos r + \mu \cos i}$	$\frac{E_{\perp}^{\text{reflected}}}{\mu \cos r - \cos r}$	os i
	$\frac{E_{\parallel}^{\text{incident}}}{\cos r + \mu \cos i}$	$\frac{1}{E_{\perp}^{\text{incident}}} - \frac{1}{\mu \cos r + \cos r}$	os i
The subscripts \parallel and \perp refer to polarization, parallel and normal to the plane of incidence respectively. Here, i and r are the angles of incidence and refraction respectively. [GATE 2007] 6) The condition for the reflected ray to be completely polarized is			
a) $\mu \cos i = \cos r$ b) $\cos i = \mu \cos r$		c) $\mu \cos i = -\cos r$ d) $\cos i = -\mu \cos r$	
7) For normal incidence at an air-glass interface with $\mu = 1.5$, the fraction of energy reflected is given by			
a) 0.40	b) 0.20	c) 0.16	d) 0.04
Statement for Linked Answer Questions 76 & 77: In the laboratory frame, a particle P of rest mass m_0 is moving in the positive x direction with a speed of $\frac{5c}{19}$. It approaches an identical particle Q , moving in the negative x direction with a speed of $\frac{2c}{5}$. [GATE 2007] 8) The speed of the particle P in the rest frame of the particle Q is			
a) $\frac{7c}{95}$	b) $\frac{13c}{85}$	c) $\frac{3c}{5}$	d) $\frac{63c}{95}$
9) The energy of the particle P in the rest frame of the particle Q is			
a) $\frac{1}{2}m_0c^2$	b) $\frac{5}{4}m_0c^2$	c) $\frac{19}{13}m_0c^2$	d) $\frac{11}{9}m_0c^2$

c) $\frac{1}{\sqrt{2L}}$

Statement for Linked Answer Questions 78 & 79:

b) $\frac{1}{\sqrt{4L}}$

a) $\frac{\sqrt{2}}{L}$

The atomic density of a solid is $5.85 \times 10^{28} \text{m}^{-3}$. Its electrical resistivity is $1.6 \times 10^{-8} \,\Omega$ m. Assume that electrical conduction is described by the Drude model (classical theory), and that each atom contributes one conduction electron. 10) The drift mobility (in $m^2V^{-1}s^{-1}$) of the conduction electrons is [GATE 2007]

a)
$$6.67 \times 10^{-3}$$

b)
$$6.67 \times 10^{-6}$$

c)
$$7.63 \times 10^{-3}$$

d)
$$7.63 \times 10^{-6}$$

11) The relaxation time (mean free time), in seconds, of the conduction electrons is

a)
$$3.98 \times 10^{-15}$$

c)
$$2.84 \times 10^{-12}$$

b)
$$3.79 \times 10^{-14}$$

d)
$$2.64 \times 10^{-11}$$

Statement for Linked Answer Questions 80 & 81:

A sphere of radius R carries a polarization $\mathbf{P} = k\mathbf{r}$, where k is a constant and \mathbf{r} is measured from the center of the sphere. [GATE 2007]

12) The bound surface and volume charge densities are given, respectively, by

a)
$$-k|r|$$
 and $3k$

c)
$$k|r|$$
 and $-4\pi kR$

b)
$$k|r|$$
 and $-3k$

d)
$$-k|r|$$
 and $4\pi kR$

13) The electric field **E** at a point **r** outside the sphere is given by

a)
$$E = 0$$

c)
$$\mathbf{E} = \frac{kR(R^2 - r^2)}{\varepsilon_0 r^3} \hat{r}$$

b)
$$\mathbf{E} = \frac{kR(R^2-r^2)}{6\varepsilon_0 r^3}\hat{r}$$

d)
$$\mathbf{E} = \frac{3k(r-R)}{4\pi\varepsilon_0 r^4}\hat{r}$$

Statement for Linked Answer Questions 82 & 83:

An ensemble of quantum harmonic oscillators is kept at a finite temperature $T = \frac{1}{k_B \beta}$. [GATE 2007]

14) The partition function of a single oscillator with energy levels $\left(n + \frac{1}{2}\right)\hbar\omega$ is given by

a)
$$Z = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$

c)
$$Z = \frac{1}{1-e^{-\beta\hbar\omega}}$$

b)
$$Z = \frac{e^{-\beta\hbar\omega/2}}{1+e^{-\beta\hbar\omega}}$$

d)
$$Z = \frac{1}{1 + e^{-\beta\hbar\omega}}$$

15) The average number of energy quanta of the oscillators is given by

a)
$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} - 1}$$

c)
$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} + 1}$$

b)
$$\langle n \rangle = \frac{e^{-\beta\hbar\omega}}{e^{\beta\hbar\omega}-1}$$

d)
$$\langle n \rangle = \frac{e^{-\beta\hbar\omega}}{e^{\beta\hbar\omega}+1}$$

Statement for Linked Answer Questions 84 & 85:

A $16 \mu A$ beam of alpha particles, having cross-sectional area $10^{-4} \,\mathrm{m}^2$, is incident on a rhodium target of thickness $1 \,\mu\mathrm{m}$. This produces neutrons through the reaction:

$$\alpha + {}^{100}Rh \rightarrow {}^{101}Pd + 3n$$

[GATE 2007]

16) The number of alpha particles hitting the target per second is

a)
$$0.5 \times 10^{14}$$

b)
$$1.0 \times 10^{14}$$

c)
$$2.0 \times 10^{20}$$

d)
$$4.0 \times 10^{20}$$

17) The neutrons are observed at the rate of $1.806 \times 10^8 \, \mathrm{s}^{-1}$. If the density of rhodium is approximated as $10^4 \, \mathrm{kg \, m}^{-3}$, the cross-section for the reaction (in barns) is

4

a) 0.1

b) 0.2

c) 0.4

d) 0.8