Test di Calcolo Numerico

Ingegneria Informatica 01/07/2019

COGNO	ME		NOME	
MATRIC	COLA			
		RISPOS	STE	
1)				
2)				
3)				
4)				
5)				

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 01/07/2019

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{y}{x^2} \, .$$

2) La matrice

$$A = \frac{1}{10} \left(\begin{array}{rrrr} 1 & 0 & 7 & 8 \\ 18 & 5 & 11 & 59 \\ 0 & 0 & -6 & 0 \\ 0 & 0 & 80 & 7 \end{array} \right)$$

risulta convergente?

3) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{x^4 + 4x^2 + 10x - 12}{5x^2} \ .$$

4) È data la funzione $f(x) = -x^2 - x + 2$. Calcolare il polinomio $P_1(x)$ di interpolazione relativo ai punti $x_0 = 0$ e $x_1 = 1$. Posto $E_1(x) = f(x) - P_1(x)$, determinare

$$\max_{x \in [0,1]} |E_1(x)| .$$

5) Per approssimare l'integrale $I = \int_1^2 x f(x) dx$ si utilizza la formula di quadratura

$$J_0(f) = a_0 f(x_0).$$

Determinare il peso a_0 e il nodo x_0 in modo da ottenere il massimo grado di precisione algebrico.

Indicare il grado di precisione ottenuto.

SOLUZIONE

1) Seguendo l'algoritmo $r_1=x^2$ e $r_2=\frac{y}{r_1}$ si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 - 2\epsilon_x + \epsilon_y .$$

 $\mathbf{2}$) La matrice A ha autovalori

$$\lambda_1 = \frac{1}{10}$$
, $\lambda_2 = \frac{5}{10}$, $\lambda_3 = -\frac{6}{10}$, $\lambda_4 = \frac{7}{10}$.

Quindi $\rho(A)=\frac{7}{10}$ per cui la matrice risulta convergente.

3) I punti fissi sono le soluzioni dell'equazione $x = \phi(x)$. Risolvendo tale equazione si determinano quattro punti fissi

$$\alpha_1 = 2 \; , \quad \alpha_2 = 3 \; , \quad \alpha_{3,4} = \pm \sqrt{2} \; .$$

4) Il polinomio cercato è $P_1(x)=2(1-x)$. Segue $E_1(x)=-x^2+x$ che assume il suo massimo valore assoluto per x=1/2 e risulta

$$\max_{x \in [0,1]} |E_1(x)| = \frac{1}{4} .$$

5) Imponendo che la formula risulti esatta per f(x) = 1 e f(x) = x si ha $a_0 = 3/2$ e $x_0 = 14/9$.

La formula così ottenuta non è esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.