### Distances between subspaces

Jackson Van Dyke

October 12, 2020

#### Motivation

- Start with k objects (images, text, etc.) with N features.
- I.e. a collection of k vectors of dimension N.

### Example

If we start with k images, we can split it into p squares and take the grayscale values to get k vectors in  $\mathbb{R}^p$ .

- Then we turn these vectors into some kind of subspace. The three types we will consider are:
  - linear subspaces (vector subspaces),
  - affine subspaces (shifted vector subspaces),
  - ellipsoids (higher-dimensional ellipses).
- Before doing anything else with these subspaces, we want to develop some notion of distance between them.

#### Table of contents

- Linear subspaces
  - Same dimension
  - Different dimensions
- 2 Affine subspaces
  - Same dimension
  - Different dimensions
- Ellipsoids
  - Same dimension
  - Different dimensions

## Review: linear subspaces

- Consider the real vector space  $\mathbb{R}^N$ .
- A *linear subspace of*  $\mathbb{R}^N$  is a subset which is also a vector space.
- In particular, it contains 0.

### Example

Linear subspaces of  $\mathbb{R}^2$  are lines through the origin.

#### Example

The 2-dimensional linear subspaces of  $\mathbb{R}^3$  are planes **through the origin**.





#### Distance

#### Question

What is the distance between two linear subspaces?

#### Example

For lines in  $\mathbb{R}^2$ , we just need to take the angle.



So now we want to formalize this in high dimensions.

# Higher-dimensional picture



distance (A,B) = blue.

## Higher-dimensional setup

Let  $a_1, \ldots, a_k \in \mathbb{R}^N$  and  $b_1, \ldots, b_k \in \mathbb{R}^N$  be (separately) linearly independent sets of vectors. Write their spans as:

$$A := \operatorname{\mathsf{Span}} \left\{ a_1, \ldots, a_k \right\} \subset \mathbb{R}^N \qquad B := \operatorname{\mathsf{Span}} \left\{ b_1, \ldots, b_k \right\} \subset \mathbb{R}^N \ .$$

Since the vectors were linearly independent, A and B are both k-dimensional linear subspaces of  $\mathbb{R}^N$ .

Therefore A and B are points of the Grassmannian.

$$A,B\in\operatorname{\sf Gr}(k,N)\coloneqq\left\{k-\operatorname{\sf dim'l\ linear\ subspaces\ of\ }\mathbb{R}^N
ight\}\ .$$

# Principal vectors and angles

• Write  $\hat{a}_1 \in A$  and  $\hat{b}_1 \in B$  for the vectors which

maximize 
$$a^T b$$
 such that  $\|a\| = \|b\| = 1$ 

for  $a \in A$ ,  $b \in B$ .

• Write  $\widehat{a}_2 \in A$  and  $\widehat{b}_2 \in B$  for the vectors which

maximize 
$$a^Tb$$
 such that 
$$\|a\| = \|b\| = 1$$
 
$$a^T\widehat{a}_1 = 0, \quad b^T\widehat{b}_1 = 0$$

for  $a \in A$  and  $b \in B$ .

• In general we ask for  $\hat{a}_j$  (resp.  $\hat{b}_j$ ) to be orthogonal to  $\hat{a}_i$  (resp.  $\hat{b}_i$ ) for all i < j.

#### Grassmann distance

- TI;dr:  $\widehat{a}_1$  and  $\widehat{b}_1$  are unit vectors which have minimal angle between them. The vectors  $\widehat{a}_i$  and  $\widehat{b}_i$  are defined the same way, except you insist that they are orthogonal to the previously chosen vectors.
- We can think of the principal vectors as forming a basis which is convenient for measuring angles.
- Define the principal angles  $\theta_i$  by

$$\cos\theta_j = \widehat{a}_j^T \widehat{b}_j \ .$$

Note that  $\theta_1 \leq \ldots \leq \theta_k$ .

• The *Grassmann distance* between the linear subspaces *A* and *B* is given by:

$$d_k(A,B) = \left(\sum_{i=1}^k \theta_i^2\right)^{1/2}.$$

# Computing principal angles

- For any basis of A (resp. B) we can store the vectors as columns, to represent A as a matrix  $M_A$  (resp.  $M_B$ ).
- Then we can compute the singular value decomposition (SVD):

$$M_A^T M_B = U \Sigma V^T$$

where

$$\Sigma = egin{pmatrix} \sigma_1 & & 0 \ & \ddots & \ 0 & & \sigma_k \end{pmatrix} \; .$$

The principal angles then satisfy

$$\cos \theta_i = \sigma_i$$
.

• The principal vectors are the columns of:

$$M_A U$$

$$M_BV$$
 .

### An example

 By separating images into three regions and taking the grayscale values we get:

2 images of someone's face 
$$\rightsquigarrow v_1, v_2 \in \mathbb{R}^3$$

• If  $v_1$  and  $v_2$  are linearly independent, we get a plane:

$$F := \operatorname{\mathsf{Span}}(v_1, v_2) = \{ m_1 v_1 + m_2 v_2 \mid m_1, m_2 \in \mathbb{R} \} \subset \mathbb{R}^3 \ .$$

• For two new photos of someone, again we get a plane

2 images 
$$\sim$$
 plane

- and we can take the distance to F as a way to compare to the original photos.
- But what if I only have one picture of someone, and I want to compare it to the two I started with?

#### Question

How do we compare subspaces of different dimensions?

#### Schubert varieties

• For  $k \leq \ell$ , we would like a notion of distance between

$$A \in Gr(k, N)$$
  $B \in Gr(\ell, N)$ .

• Consider the set of  $\ell$ -planes containing A:

$$\Omega_{+}(A) := \{ P \in \operatorname{Gr}(\ell, N) \, | \, A \subseteq P \}$$

and the set of all k-planes containing B:

$$\Omega_{-}(B) := \{ P \in Gr(k, N) \mid P \subseteq B \}$$
.

E.g.

$$\begin{split} \Omega_+ \, & (\text{the line}) = \{ \text{planes containing the line} \} \\ \Omega_- \, & (\text{plane}) = \{ \text{lines contained in the plane} \} \ . \end{split}$$

• **Strategy:** measure distance from A to  $\Omega_{-}(B)$ , and B to  $\Omega_{+}(A)$  and compare.

# Distance between linear subspaces of different dimensions

The distance from A to  $\Omega_{+}(A)$  is given by:

$$\delta_{+} = \min \left\{ d_{\ell} \left( P, B \right) \mid P \in \Omega_{+} \left( A \right) \right\} .$$

and the distance from B to  $\Omega_{-}(B)$  is given by

$$\delta_{-} = \min \left\{ d_k(P, A) \,|\, P \in \Omega_{-}(B) \right\} .$$

### Theorem 1 (Ye-Lim 2016 [YL16])

 $\delta_+ = \delta_-$ , and the common value is:

$$\delta(A,B) = \left(\sum_{i=1}^{\min(k,\ell)} \theta_i^2\right)^{1/2}.$$

Now A is still a line, but B is a plane, both still in  $\mathbb{R}^3$ .



The distance is the only principal angle that can be defined: the first one. So

$$\delta(A, B) = green$$
.

# Digression: Schubert varieties

- In algebraic geometry, Schubert varieties primarily act as one of the most important (and well-studied) *singular varieties*.
- Classically, a *variety* is a subspace (of e.g.  $\mathbb{R}^N$ ) defined as the points where some polynomials vanish.
- These can be nice and smooth: e.g.  $y x^2 = 0$  in  $\mathbb{R}^2$ .



- Or not nice and *singular*: e.g.  $y^3 x^2 = 0$  in  $\mathbb{R}^2$ .
- So these Schubert varieties are actually the subset where some polynomials vanish inside of some huge  $\mathbb{R}^D$ .

# Affine subspaces

- Let  $A \in Gr(k, N)$  be a k-dimensional linear subspace and  $b \in \mathbb{R}^N$  to be thought of as the "shift away" from the origin.
- Write  $\{a_1, \ldots, a_k\}$  for some basis of A.
- The associated affine subspace is:

$$A+b \coloneqq \left\{ m_1 a_1 + \ldots + m_k a_k + b \in \mathbb{R}^N \,\middle|\, \lambda_i \in \mathbb{R} \right\} \subset \mathbb{R}^N.$$

In particular, they don't have to contain the origin.



Together, the affine subspaces form the affine Grassmannian:

$$\mathsf{Graff}\left(\mathit{k},\mathit{N}\right) = \left\{\mathit{k}\text{-dim'l affine subspaces of }\mathbb{R}^\mathit{N}\right\} \;.$$

# Distance via embedding Graff in (bigger) Gr

$$\mathsf{Graff}\left(k,N
ight) \stackrel{i}{\longleftrightarrow} \mathsf{Gr}\left(k+1,N+1
ight)$$
 $A+b \longmapsto \mathsf{Span}\left(A \cup \{b+e_{n+1}\}\right)$ 

Under i, this red line in Graff (1,2) goes to the red plane in Gr(2,3).



We use this embedding to define the distance between two affine subspaces:

$$d_{\mathsf{Graff}(k,N)}\left(A+b,B+c\right) \coloneqq d_{\mathsf{Gr}(k+1,N+1)}\left(i\left(A+b\right),i\left(B+c\right)\right) \ .$$

#### Remarks about Graff distance

- If b = c = 0, this is just the usual Grassmannian distance.
- Just as the distance between linear subspaces was calculated using the principal angles, there are affine principal angles such that this distance is written as before.
- These angles are also computationally manageable.

### An example

- By separating images into three regions and taking the grayscale values we get  $v_1, v_2 \in \mathbb{R}^3$ .
- If linearly independent, we get an affine subspace (line) *L* which contains those points:

$$L := \{ m_1 v_1 + m_2 v_2 \mid m_1 + m_2 = 1, m_1, m_2 \in \mathbb{R} \} \subset \mathbb{R}^3.$$

This is called the affine span/hull of  $v_1$  and  $v_2$ , following e.g. [SR20].

- The affine hull is the smallest affine subspace containing the data. In particular, it is contained in the linear subspace F from before.
- For two new photos of someone, again we get a line

2 images 
$$\sim$$
 line

and we can take the distance to L to compare to the originals.

#### Question

How do we compare subspaces of different dimensions?

## Distance for inequidimensional affine subspaces

For  $k \leq \ell$ , we would like a notion of distance between

$$A + b \in \mathsf{Graff}(k, N)$$
  $B + c \in \mathsf{Graff}(\ell, N)$ .

As in the linear case, define

$$\Omega_{+}(A+b) := \{ P+q \in \mathsf{Graff}(\ell,N) \,|\, A+b \subseteq P+q \}$$

$$\Omega_{-}(B+c) := \{ P+q \in \mathsf{Graff}(k,N) \,|\, P+q \subseteq B+c \} .$$

### Theorem 2 (Lim-Wong-Ye 2018 [LWY18])

 $d_{\mathsf{Graff}(k,N)}(A+b,\Omega_{-}(B+c))=d_{\mathsf{Graff}(\ell,N)}(B+c,\Omega_{+}(A+b))$ , and it is explicitly given via the affine principle angles.

# **Ellipsoids**

- $M \in \mathbb{R}^{k \times k}$  is a real symmetric positive definite matrix  $\iff$  all eigenvalues of M are positive,  $\iff$   $\forall$  non-zero column vectors z we have  $z^T M z > 0$ .
- Such a matrix *M* determines an *ellipsoid*:

$$E_{M} \coloneqq \left\{ x \in \mathbb{R}^{k} \, \middle| \, x^{T} M x \leq 1 \right\} .$$

#### Example

If M is the identity matrix, then this is just the closed ball of dimension N.

• We will define a distance between  $E_A$  and  $E_B$  by finding one between the matrices A and B.

# PDS cone and distance between ellipsoids

 $\mathbb{S}_{++}^k$  = the cone of real symmetric positive definite matrices.

Good distance on  $\mathbb{S}_{++}^k$ :

$$\mathbb{S}_{++}^{k} \times \mathbb{S}_{++}^{k} \xrightarrow{\delta_{2}} \mathbb{R}_{+}$$

$$(A, B) \xrightarrow{\delta_{2}} \left( \sum_{j=1}^{n} \log^{2} \left( \lambda_{j} \left( A^{-1} B \right) \right) \right)^{1/2} .$$

This is good because it is very *invariant*. I.e. it satisfies:

$$\delta_{2}\left(XAX^{T}, XBX^{T}\right) = \delta_{2}\left(A, B\right)$$

$$\delta_{2}\left(XAX^{-1}, XBX^{-1}\right) = \delta_{2}\left(A, B\right)$$

$$\delta_{2}\left(A^{-1}, B^{-1}\right) = \delta_{2}\left(A, B\right) .$$

 $\delta_2$  has applications to computer vision, medical imaging, radar signal processing, statistical inference, and other areas.

### An example

- Assume we are given k articles written about Halloween, and we count the occurrences of the terms
  - pumpkins,
  - skeletons, and
  - trick-or-treating

to yield k vectors in  $\mathbb{R}^3$ .

- Write E for the smallest ellipsoid in  $\mathbb{R}^3$  containing these vectors. If they are linearly independent, it is k-dimensional.
- For some other collection of k articles, we can count the same three
  words and form a second ellipsoid. Then we can measure the distance
  to E.
- The inverse of the distance gives the likelihood that the new articles are about Halloween.
- If we wanted to compare fewer than k articles to the originals, we would have needed to compare E to an ellipsoid of dim  $\leq k$ .

### Sub-ellipsoids

• There is a partial order on  $\mathbb{S}_{++}^k$  given by:

$$A \preceq B \qquad \iff \qquad B - A \in \mathbb{S}_+^k$$
,

where  $\mathbb{S}_{+}^{k}$  consists of real symmetric positive semi-definite matrices.

- $A \preceq B$  iff  $E_B \subseteq E_A$ .
- If I want to compare  $A \in \mathbb{S}^k_{++}$  to  $M \in \mathbb{S}^\ell_{++}$  (for  $k \leq \ell$ ) then I can write

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{pmatrix} , \qquad (1)$$

where  $M_{11}$  is the upper left  $k \times k$  block of M, and compare A to  $M_{11}$ .

 We will use this notion of containment to define the analogues of Schubert varieties.

## Analogue of Schubert varieties

For  $k \leq \ell$ , we would like a notion of distance between

$$A \in \mathbb{S}_{++}^k$$
  $B \in \mathbb{S}_{++}^\ell$ .

Define the convex set of ellipsoids containing/contained in  $E_A/E_B$ :

$$\Omega_{+}(A) := \left\{ M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^{T} & M_{22} \end{pmatrix} \in \mathbb{S}_{++}^{\ell} \middle| M_{11} \leq A \right\}$$

$$\Omega_{-}(B) := \left\{ M \in \mathbb{S}_{++}^{k} \middle| B_{11} \leq M \right\}$$

where  $B_{11}$  is the upper left  $k \times k$  block of B,  $M_{11}$  is the upper left  $k \times k$  block of M.

# Distance between inequidimensional ellipsoids

## Theorem 3 (Lim-Sepulchre-Ye 2019 [LSY19])

$$\delta_{2}\left(A,\Omega_{-}\left(B\right)\right)=\delta_{2}\left(B,\Omega_{+}\left(A\right)\right)$$
. The common value is

$$\delta_2^+(A, B) = \left(\sum_{j=1}^k \log^2 \lambda_j \left(A^{-1}B_{11}\right)\right)^{1/2}$$

where k is such that

$$\lambda_j\left(A^{-1}B_{11}\right)\leq 1$$

for j = k + 1, ..., m.

#### Future directions

- A category is (roughly) a collection of objects and arrows between the objects which satisfy some conditions.
- In [DHKK13], the authors define a notion of distance between any two objects of a category.

### Example

The collection of half-dimensional subspaces of a given even-dimensional manifold<sup>a</sup> fit naturally into a category called the *Fukaya category*. Roughly, we have an object for every subspace, and an arrow whenever they intersect.

#### Question

Is this a useful distance for our purposes? Is it computable?

<sup>&</sup>lt;sup>a</sup>Technically they're Lagrangians in a symplectic manifold.

### References

- George Dimitrov, Fabian Haiden, Ludmil Katzarkov, and Maxim Kontsevich, *Dynamical systems and categories*, 2013.
- L. Lim, R. Sepulchre, and K. Ye, *Geometric distance between positive definite matrices of different dimensions*, IEEE Transactions on Information Theory **65** (2019), no. 9, 5401–5405.
- Lek-Heng Lim, Ken Sze-Wai Wong, and Ke Ye, *The grassmannian of affine subspaces*, 2018.
- K. Sharma and R. Rameshan, *Image set classification using a distance-based kernel over affine grassmann manifold*, IEEE Transactions on Neural Networks and Learning Systems (2020), 1–14.
- Ke Ye and Lek-Heng Lim, Schubert varieties and distances between subspaces of different dimensions, SIAM J. Matrix Anal. Appl. **37** (2016), no. 3, 1176–1197. MR 3543155