# OPTIMIZATION

Lecture 5.2

M.EIC - 2021.2022



Linear Programming

THE TRANSPORTATION PROBLEM

### **Transportation Problems**

A company has two warehouses W1 and W2 that store 100 and 80 units, respectively, of a given product. From these two warehouses the company supplies three markets  $\mathbf{M_1}$ ,  $\mathbf{M_2}$  and  $\mathbf{M_3}$  consuming 80, 30 and 40 units of the product, respectively.



Decision variables

 $\boldsymbol{x}_{ij}\!\!:\!$  amount of product to send from origin i to destination j

#### **Transportation Costs**

|    | M1 | M2 | М3 |
|----|----|----|----|
| W1 | 5  | 3  | 2  |
| W1 | 2  | 2  | 1  |

## LP FORMULATION

$$\begin{aligned} & \text{min } z = \sum_{i} \sum_{j} c_{ij} \ x_{ij} \\ & \text{s.a } \sum_{j} x_{ij} = a_{i} \qquad (i = 1, ..., m) \quad \text{supply constraints} \\ & \sum_{i} x_{ij} = b_{j} \qquad (j = 1, ..., n) \quad \text{demand constraints} \\ & x_{ij} \geq 0, \qquad (i = 1, ..., m; j = 1, ..., n) \end{aligned}$$

The particular structure of the coefficient matrix is characterized by the following:

- it only has 1's and 0's
- each xij variable appears only in two constraints (one is a supply constraint, and the other is a demand constraint)

$$-\sum_{i} a_{i} = \sum_{j} b_{j} \Rightarrow \sum_{i} \sum_{j} x_{ij} = \sum_{j} \sum_{i} x_{ij}$$
 : one of the constraints is redundant because it is the linear combination of the others

- m x n variables
- m+n-1 basic variables (= number of independent constraints)
- $-(m \times n) (m+n-1)$  non-basic variables

= 30 Demand constraints

# FORMULATION



# EXAMPLE LP FORMULATION IN STANDARD FORM

|                  | min z             | $z = 5x_{11}$                       | +3x <sub>12</sub> +    | -2x <sub>13</sub> +    | $-2x_{21} +$      | 2 <b>x</b> <sub>22</sub> + 1 | X <sub>23</sub> |             |     |
|------------------|-------------------|-------------------------------------|------------------------|------------------------|-------------------|------------------------------|-----------------|-------------|-----|
|                  | s.a               |                                     |                        |                        |                   |                              |                 |             |     |
| u′ <sub>1</sub>  | X <sub>11</sub>   | + X <sub>12</sub> - X <sub>12</sub> | + X <sub>13</sub>      |                        |                   |                              | $\geq$          | 100         |     |
| u" <sub>1</sub>  | - X <sub>11</sub> | $- x_{12}$                          | $-x_{13}$              |                        |                   |                              | $\geq$          | -100        |     |
| u' <sub>2</sub>  |                   |                                     |                        | X <sub>21</sub>        | + X <sub>22</sub> | $+ X_{23}$                   | $\geq$          | 50          |     |
| u" <sub>2</sub>  |                   |                                     |                        | - X <sub>21</sub>      |                   | $- X_{23}$                   | $\geq$          | - 50        |     |
|                  | X <sub>11</sub>   |                                     |                        | <b>X</b> <sub>21</sub> |                   |                              | $\geq$          | 80          |     |
| v" <sub>1</sub>  | - X <sub>11</sub> |                                     |                        | - X <sub>21</sub>      |                   |                              | $\geq$          | -80         |     |
| v′ <sub>2</sub>  |                   | <b>X</b> <sub>12</sub>              |                        |                        | $+ X_2$           | 2                            |                 | $\geq$      | 30  |
| v'' <sub>2</sub> |                   | - X <sub>12</sub>                   |                        |                        | $-\mathbf{x}_2$   | 2                            |                 | $\geq$      | -30 |
| v' <sub>3</sub>  |                   |                                     | <b>X</b> <sub>13</sub> |                        |                   | $+ X_2$                      | 3               | $\geq$      | 40  |
| v' <sub>3</sub>  |                   |                                     | - X <sub>13</sub>      |                        |                   | $-x_2$                       | 3               | $\geq$      | -40 |
| -                | X <sub>11</sub> , | X <sub>12</sub> ,                   | X <sub>13</sub> ,      | X <sub>21</sub> ,      | X <sub>22</sub>   | , X <sub>23</sub>            |                 | <u>&gt;</u> | 0   |

### DUAL FORMULATION IN STANDARD FORM

$$\begin{aligned} \max g &= 100u_{1}^{'} - 100u_{1}^{''} + 50u_{2}^{'} - 50u_{2}^{''} + \\ &+ 80v_{1}^{'} - 80v_{1}^{''} + 30v_{2}^{'} - 30v_{2}^{''} + 40v_{3}^{'} - 40v_{3}^{''} \\ s.a. \\ u_{1}^{'} - u_{1}^{''} + v_{1}^{'} - v_{1}^{''} &\leq 5 \\ u_{1}^{'} - u_{1}^{''} + v_{2}^{'} - v_{2}^{''} &\leq 3 \\ u_{1}^{'} - u_{1}^{''} + v_{3}^{'} - v_{3}^{''} &\leq 2 \\ u_{2}^{'} - u_{2}^{''} + v_{1}^{'} - v_{1}^{''} &\leq 2 \\ u_{2}^{'} - u_{2}^{''} + v_{2}^{'} - v_{2}^{''} &\leq 2 \\ u_{2}^{'} - u_{2}^{''} + v_{3}^{'} - v_{3}^{''} &\leq 1 \\ u_{1}^{'} - u_{1}^{''} + v_{3}^{'} - v_{3}^{''} &\leq 1 \\ u_{1}^{'} - u_{1}^{''} + v_{3}^{'} - v_{3}^{''} &\leq 1 \\ u_{1}^{'} - u_{1}^{''} + v_{3}^{'} - v_{3}^{''} &\leq 1 \end{aligned}$$

# DUAL FORMULATION IN STANDARD FORM (SIMPLIFIED)

```
Let
                                                   \max g = 100u_1 + 50u_2 +
u_{i} = u'_{i} - u''_{i}, i = 1,...,2

v_{j} = v'_{j} - v''_{j}, j = 1,...,3
                                                                    +80v_1 + 30v_2 + 40v_3
                                                    s.a.
                                                   \mathbf{u}_1 + \mathbf{v}_1 \le 5
                                                   u_1 + v_2 \le 3
                                                   \mathbf{u}_1 + \mathbf{v}_3 \le 2
                                                   u_2 + v_1 \le 2
                                                  u_2 + v_2 \le 2
                                                  \mathbf{u}_2 + \mathbf{v}_3 \le 1
                                                   u_1, u_2, v_1, v_2, v_3 \in \Re
```

$$U_{i} = U_{i}^{'} - U_{i}^{"}, i = 1,..., m$$
  
 $V_{j} = V_{j}^{'} - V_{j}^{"}, j = 1,..., n$ 

$$\begin{array}{ll} \text{max } a_1 U_1 + \ldots + a_m U_m + b_1 V_1 + \ldots + b_n V_n \\ \\ \text{s.a} \quad U_i + V_j & \leq c_{ij} \\ \\ U_i \,, \, V_j & \in \ |R \end{array}$$

#### **Primal formulation**

#### **Dual formulation**

min z = 
$$\sum_{i} \sum_{j} c_{ij} x_{ij}$$
  
s.a  $\sum_{j} x_{ij} = a_{i}$  (i = 1,...,m)  

$$\sum_{i} x_{ij} = b_{j}$$
 (j = 1,...,n)  

$$x_{ij} \ge 0,$$
 (i = 1,...,m; j = 1,...,n)

$$\begin{array}{lll} \text{max } a_1 U_1 + \ldots + a_m U_m + b_1 V_1 + \ldots + b_n V_n \\ \\ \text{s.a} & U_i + V_j & \leq c_{ij} \\ \\ & U_i \;,\; V_j & \in & |R| \\ \\ & \text{i=1,...m, j=1..n} \end{array}$$

Dual in canonic form:  $\max \ a_1 U_1 + ... + a_m U_m + b_1 V_1 + ... + b_n V_n$ s.a  $U_i + V_j + S_{ij} = c_{ij}$   $U_i \ , \ V_j \in |R|$  i=1,...m, j=1..n