APPENDIX A

List of Selected Formulae

$$\xi = \frac{1}{q} \frac{dE}{dx}, \quad E_{ph} = hv = \frac{hc}{\lambda}, \quad \frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2E}{dk^2}, \quad E_n = -\frac{q^4}{2 \left(4\pi \, \hbar\right)^2} \left(\frac{m_n^{\ *}}{\varepsilon_r^{\ 2} \varepsilon_0^{\ 2}}\right) \frac{1}{n^2},$$

$$f(E) = \frac{1}{1 + \exp\left[\frac{E - E_F}{k_B T}\right]}, \quad g_c(E) = \frac{4\pi \left(2m_n^*\right)^{3/2}}{h^3} \sqrt{E - E_c} \; , \quad g_v(E) = \frac{4\pi \left(2m_p^*\right)^{3/2}}{h^3} \sqrt{E_v - E} \; ,$$

$$n_0 = N_c \exp\left[-\frac{E_c - E_F}{k_B T}\right], \quad N_c = 2\left(\frac{2\pi \, m_n^* \, k_B T}{h^2}\right)^{3/2},$$

$$p_0 = N_v \exp\left[-\frac{E_F - E_v}{k_B T}\right], \quad N_v = 2\left(\frac{2\pi \, m_p^* \, k_B T}{h^2}\right)^{3/2},$$

$$p_0 + N_d = n_0 + N_a, \quad E_{thermal \, (3-D)} = \frac{3}{2} k_B T, \quad v_{dp} = \mu_p \, \xi, \quad \mu_p = \frac{q \, \tau_{cp}}{m_p^*} \, ,$$

$$v_{dn} = -\mu_n \, \xi \, , \quad \mu_n = \frac{q \, \tau_{cn}}{m_n^*} \, , \quad J_{p \, drift} = q \, p \, \mu_p \, \xi \, , \quad J_{n \, drift} = q \, n \, \mu_n \, \xi \, ,$$

$$J_{drift} = J_{n \ drift} + J_{p \ drift} = \sigma \ \xi, \quad \sigma = q \ \mu_n \ n + q \ \mu_p \ p \ , \quad \rho = \frac{1}{\sigma}, \quad J = \frac{I}{A}, \quad \xi = \frac{V}{l},$$

$$R_R = \rho \frac{l}{A}, \quad l = v_{th} \ \tau_{cn} \ , \quad v_{th} \ l = D_n \ , \quad J_{n \ diff} = q \ D_n \frac{dn}{dx} \ , \quad J_{p \ diff} = -q \ D_p \frac{dp}{dx},$$

$$J_n = J_{n \; drift} + J_{n \; diff} \; , \quad J_p = J_{p \; drift} + J_{p \; diff} \; , \quad J_{total} = J_n + J_p \; , \label{eq:Jn}$$

$$D_n = \frac{k_B T}{q} \mu_n, \quad D_p = \frac{k_B T}{q} \mu_p$$

$$n_0 = n_i \exp\left(\frac{E_F - E_i}{k_B T}\right), \quad p_0 = n_i \exp\left(\frac{E_i - E_F}{k_B T}\right)$$

$$n_0 p_0 = n_i^2$$

List of Selected Formulae (cont'd)

$$\begin{split} R &= \alpha_{t} n p, \quad G_{\text{th}} = \alpha_{t} n_{t}^{2}, \quad \tau_{n} = \frac{1}{\alpha_{t} p_{0}}, \quad \tau_{p} = \frac{1}{\alpha_{t} n_{0}} \\ \frac{dn}{dt} &= \frac{d \Delta n}{dt} = G_{\text{L}} + G_{\text{th}} - R = G_{\text{L}} - \frac{\Delta n}{\tau_{n}}, \quad \Delta n_{ss} = G_{\text{L}} \tau_{n}, \quad \Delta n(t) = \Delta n(t = 0) \exp\left(-\frac{t}{\tau_{n}}\right) \\ \frac{\partial n(x,t)}{\partial t} &= \frac{1}{q} \frac{\partial J_{n}(x,t)}{\partial x} + G_{\text{L}} - \frac{\Delta n}{\tau_{n}}, \quad \Delta n(x) = \Delta n(x = 0) \exp\left(-\frac{x}{L_{n}}\right), \quad L_{n} = \sqrt{D_{n}} \tau_{n} \\ \frac{dp}{dt} &= \frac{d \Delta p}{dt} = G_{\text{L}} + G_{\text{th}} - R = G_{\text{L}} - \frac{\Delta p}{\tau_{p}}, \quad \Delta p_{ss} = G_{\text{L}} \tau_{p}, \quad \Delta p(t) = \Delta p(t = 0) \exp\left(-\frac{t}{\tau_{p}}\right) \\ \frac{\partial p(x,t)}{\partial t} &= -\frac{1}{q} \frac{\partial J_{p}(x,t)}{\partial x} + G_{\text{L}} - \frac{\Delta p}{\tau_{p}}, \quad \Delta p(x) = \Delta p(x = 0) \exp\left(-\frac{x}{L_{p}}\right), \quad I_{p} = \sqrt{D_{p}} \tau_{p} \\ \frac{d^{2}V(x)}{dx^{2}} &= -\frac{d\xi(x)}{dx} - \frac{C_{c}}{C_{c}C_{0}} = -\frac{q}{C_{c}C_{0}}(p - n + N_{d} - N_{a}) \\ \frac{\partial D^{2}V(x)}{\partial x^{2}} &= -\frac{d\xi(x)}{dx} - \frac{C_{c}C_{0}}{C_{c}C_{0}} = -\frac{q}{C_{c}C_{0}}(p - n + N_{d} - N_{a}) \\ \frac{\partial D^{2}V(x)}{\partial x^{2}} &= -\frac{d\xi(x)}{dx} - \frac{C_{c}C_{0}}{C_{c}C_{0}} = -\frac{q}{C_{c}C_{0}}(p - n + N_{d} - N_{a}) \\ \frac{\partial D^{2}V(x)}{\partial x^{2}} &= -\frac{d\xi(x)}{dx} - \frac{D^{2}V(x)}{dx} - \frac{D^{2}V(x)}{d$$

List of Selected Formulae (cont'd)

$$\begin{split} &I\left(x\right) = I_0 \exp\left(-\alpha x\right), \quad G = R_1 R_2 \exp(2(k-\gamma)L), \quad k_{th} = \gamma + \frac{1}{2L} \ln\left(\frac{1}{R_1 R_2}\right) \\ &\frac{n\lambda}{2} = L, \quad f = \frac{nc}{2L}, \quad \Delta f = \frac{\Delta nc}{2L}, \quad \frac{hc}{\lambda} = E_{ph} \\ &\text{Reflectivity, } \mathbf{r} = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2, \quad I_t = (1-r)I_0, \quad I = RP, \quad R = \eta \frac{e}{E_{ph}}, \quad \eta = \frac{N_e}{N_p} \\ &i_C = \frac{-eD_n A_{BE}}{x_B} \times n_{B0} \exp\left(\frac{ev_{BE}}{kT}\right), \quad \frac{i_C}{i_E} = \alpha \;, \quad \frac{i_C}{i_B} = \beta \;, \quad \frac{1}{\alpha} = \frac{1}{\beta} + 1 \;, \end{split}$$

APPENDIX B

Table of Physical Constants

	Symbol	Value	Unit
Planck's constant	h	6.626×10^{-34}	J-s
Speed of light	С	3.0×10^{8}	m/s
Electronic charge	<i>e</i> (or <i>q</i>)	1.6×10^{-19}	С
Boltzmann's constant	k_B (or k)	1.38×10^{-23}	J/K
Free electron rest mass	m_0	9.1×10^{-31}	kg
Proton rest mass	m_p	1.67×10^{-27}	kg
Avogadro's number	N_A	6.02×10^{23}	mol ⁻¹
Permeability of free space	μ_0	$4\pi \times 10^{-7}$	H/m
Permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F/m
Rydberg constant	R_d	1.097×10^{7}	m ⁻¹
Bohr radius	a_0	5.292×10^{-11}	m
Gas constant	R	8.31	Jmol ⁻¹ K ⁻¹
Electron-volt	1 eV	1.6×10^{-19}	J
Thermal voltage ($T = 300 \text{ K}$)	k _B T/q	0.0259	V

APPENDIX C

Properties of Silicon, Gallium Arsenide, and Germanium (T = 300 K)

Property	Si	GaAs	Ge
Atomic density (cm ⁻³)	5.00×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	Si: 11.7 SiO ₂ : 3.8	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_v (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm ² /V-s) Electron, μ_n Hole, μ_p	1350 480	8500 400	3900 1900