绍兴一中 NOIP 模拟赛

中文题目名称	四分图匹配	不科学的激光炮	小游戏		
子目录名	quadripartite	laser	game		
可执行文件名	quadripartite	laser	game		
输入文件名	quadripartite.in	laser.in	game.in		
输出文件名	quadripartite.out	laser.out	game.out		
时间限制	1s	4s	2s		
内存限制	512MB	512MB	512MB		
测试点数目	5	10	10		
每个测试点分值	20	10	10		
附加样例文件	有	有	有		
结果比较方式	全文比较(忽略行末空格及文末回车)				
题目类型	传统	传统	传统		
编译命令	不含优化开关	不含优化开关	不含优化开关		

本次评测在 Windows 下进行。

四分图匹配

题目描述

一天晚上,zzh 在做梦,忽然梦见了她。

见到她,zzh 也不去看她,只顾低头自语......

- "噫, OI 这个东西, 真是无奇不有。"
- "嘿,你又学了什么?"
- "嗯,学到了一种算法,"zzh 装作很神秘的样子,"在生活中有着广泛的应用,这个算法由匈牙利数学家 Edmonds 于 1965 年提出……"
 - "哦,那是二分图匹配?"
 - "咦, 你不学 OI, 你怎么知道?"

她微微一笑。

- "哼!你又不学OI,你说的什么二分图匹配,只是道听途说而已吧?"
- "既然你这么说,那就给你出一道题。听好咯!"

定义四分图,为能将其点集分成四部分,各部分内部没有边的特殊无向图。 定义环的长度,为环中的边数。

定义四分图的一个匹配,为在四分图的边集中提取出一个子集,使得集合中的边连起来之后,能够构成若干(设为 K)个长度为四的环,每个点最多属于一个环,并且环上的四个顶点恰好依次取自四分图的四个子点集。其中 K 定义为四分图的匹配数。

定义四分图的最大匹配, 为匹配数最大的匹配方案。

定义四分图的两个匹配是不同的,仅当至少有一条边在一个匹配中是匹配边, 在另一个匹配中不是匹配边。

定义四分图的最大匹配方案数 S. 为四分图最大匹配集合的元素个数。

现在对于一张的四分图,要求求其最大匹配数,与其最大匹配方案数。

图的总点数、总边数均不超过100。

zzh 听完,好不容易记住了定义,结果发现并不会做……于是他只好低下头: "唉,这题太难了……"

"好吧,那我把这题弱化一下,我把图改成一张特殊的四分图。"

记四个点集分别为 A、B、C、D, 给出的四分图按如下规则构造: 点编号(均为整数)范围:

A集: 1..N B集: 1..N C集: 1..2N-1 D集: 1..2N-1 连边情况:

对于所有满足 $1 \le i,j \le N$ 的数字对,均有边

"既然图已经满足特殊性了,那么我也应该拿掉一个限制。"她笑着说,"我把边数不超过 100 这个条件去掉。点数的范围就不更改了。"

zzh 又开始苦思冥想,他想了好多好多,想了好久好久,但是最终……

- "我不会做……" zzh 低下了头,声音压得很低很低。
- "服不服?"
- "不服!"
- "好吧,看你不服,我把问题再弱化一下!我把点数限制设为不超过 7,这下,你总应该能做出来了吧?"

zzh 又想了好久好久,结果发现仍然是不会做······这时,床头的闹铃划破了梦的喧嚣······

现在,zzh 只想问问大家,这题弱化版的弱化版,到底怎么做?

输入描述

一行一个数字,N。

输出描述

第一行输出 K 的最大值, 第二行输出 S。

输入样例

2

输出样例

2

4

数据范围

测试点编号	N=
1	3
2	4
3	5
4	6
5	7

某不科学的迷你激光炮

题目描述

身为课代表的她,下课总愿意帮老师发作业。老师的作业好多好多啊,一天下来,她下课休息时间也无几了······

要是天花板上有一只激光炮该多好啊!把作业塞到激光炮里面,轰——一排同学该都拿到作业了吧?如果激光炮装在了一排同学的中间,转来转去很不方便,改装成同时往相对的两个方向发射不是更好吗?(嗯,抵消反冲力)这样发作业该有多快啊,她能多省心啊!

可是因为激光炮太重了,转不动也移不动——嗯,没错,该在天花板上装上轨道!嗯——这样,激光炮就可以平移了,可是······呃——还是不能转起来!那只好把它移到最佳的位置了·····可是,最佳的位置在哪里呢?

输入描述

一行一个整数 N (1≤N≤10)。

之后 N 行,每行两个数 X,Y (-10^9 \leq X,Y \leq 10^9,且 X \neq 0,Y \neq 0)描述方向。如果把教室抽象成平面直角坐标系,那么当激光炮在坐标轴原点时,能够射到点 (X, Y)。

又一行一个整数 M $(1 \le M \le 100000)$, 教室里共有 M 个同学的书包。

之后 M 行,每行两个数 X,Y $(-10^{9} \le X, Y \le 10^{9})$,依次描述每个同学书包的位置。

再一行一个整数 Q (1≤Q≤100000), 共有 Q 个询问。

之后 Q 行,每行两个数 X,Y(-10^9≤X,Y≤10^9),描述一组询问。

输出描述

对于每组询问给出的 X, Y, 输出当激光炮移到 (X, Y) 时,能够把作业射进多少个同学的书包。当然,如果在 (X, Y) 上有某个同学放着书包,激光炮同样能把作业射进去。

输入样例

3

1 1

12

13

3

11

12

13

3

0 0

-10

-20

输出样例

3

1

1

数据范围

测试点编号	N=	M≤	Q	χ, γ∈	
1	5	5	5		
2	8	100	100	[-20,20]	
3	8	200	200		
4	8	500	500	[-50,50]	
5	10	1000	1000	[-100,100]	
6	10	5000	5000		
7	10	100000	100000	[-1000,1000]	
8	10	10000	10000	[-10000,10000]	
9	10	100000	100000	[-10000,10000]	
10	10		100000	[-10^9,10^9]	

小游戏

题目描述

有一个简单的小游戏。游戏的主人公是一个勇士,他要穿过一片黑森林,去解救公主。黑森林的地图可以用一张 V 个点、E 条边的无向图来描述,起点是 1 号点,终点是 V 号点。勇士从起点出发,出发时 HP 为 M,每单位时间可以选择一条连接当前点的边,到达另一个点。图的边上有荆棘毒刺,而点上有供休憩的小木屋,勇士每经过一条边会损失一定的 HP,每到达一个点则会回复一定的HP。当 $HP \leqslant 0$ 时,勇士死亡;HP 的上限为 M,当某一次休憩后 HP > M 时,HP 将只能保留 M。勇士要在保证存活的前提下,尽快地到达目的地。

zzh 玩着这个小游戏,脑海里又浮现出她的微笑……他决定,一定要把游戏玩通关!可是,随着关卡的进行,游戏的地图越来越大了……

输入格式

第一行三个整数, V、E、M。

第二行 V 个整数,第 i 个数表示第 i 个点每经过一次增加的 HP 值 R[i]。接下来 E 行,每行三个整数 x、y、z,表示 x 号点到 y 号点有一条边,每经过一次消耗 z 的 HP。

输出格式

一行一个整数,表示到达终点的最少时间。若无法到达,则输出-1。

输入样例

5 5 3

32323

154

121

2 3 2

3 4 1

452

输出样例

4

样例解释

走路径1---2--3---4---5。

数据范围

测试点编号	V=	E=	M=	z∈	R[i]∈
1					
2	5	10	10	[0,20]	[0,3]
3					
4	20	50	20	[0,40]	[0,10]
5	100	500	20		
6	500	1000	500	[0,500] [0,3000]	[0,200]
7	1000	5000	1000		
8	10000	50000	10000	[0,10000]	
9	30000	100000	20000	[0,20000]	[0,100]
10	30000	100000	20000	[0,20000]	

对于 100%的数据,保证图结构随机生成,保证 z 和 R[i]在对应范围内随机生成。