

Iris Flowers as a Serverless ML System

Iris Flower, blue and yellow, ultra-wide-angle created with **Midjourney**

Course Material: Prof Jim Dowling

Source Code for Lab 1

Source Code Github
 https://github.com/ID2223KTH/id2223kth.github.io/tree/master/src/server
 less-ml-intro

 Use Conda or virtual environments to manage your python dependencies on your laptop

Iris as a serverless ML system with Modal, Hopsworks, and Hugging Face Spaces

What will we cover in this part

Case Study: Iris Flower Dataset

First Steps

- a. Create a free account on hopsworks.ai
- b. Create a free account on modal.com
- c. Create a free account on huggingface.com

Tasks

- a. Build and run a feature pipeline on Modal
- b. Build and run a training pipeline on Modal
- c. Build and run an inference pipeline with a Gradio UI on Hugging Face Spaces.

Register and Login to the Hopsworks Feature Store

Register to Modal and Set up HOPSWORKS_API_KEY environment variable

Register and Create a Hugging Face Space

Add a HOPSWORKS_API_KEY as a secret in your "iris" Space

Iris Flower Dataset

Prediction Problem:

Predict the *variety*, given the length and width of the petal and sepal.

This column is the Pandas Index

Tabular Data

Features

- sepal length
- sepal width
- petal length
- petal width

Target (label)

variety

7	sepal_length	sepal_width	petal_length	petal_width	variety		
133	6.3	2.8	5.1	1.5	Virginica		
48	5.3	3.7	1.5	0.2	Setosa		
26	5.0	3.4	1.6	0.4	Setosa		
134	6.1	2.6	5.6	1.4	Virginica		
115	6.4	3.2	5.3	2.3	Virginica		
15	5.7	4.4	1.5	0.4	Setosa		
52	6.9	3.1	4.9	1.5	Versicolor		

Classify Iris Flowers with K-Nearest Neighbors

As we can see here two features (sepal_length and sepal_width) is not enough features to separate the three different varieties (setosa, versicolor, virginica).

Communicate the value of your model with a UI (Gradio)

- Communicate the value of your model to stakeholders with an app/service that uses the ML model to make value-added decisions
- Here, we design a UI in Python with Gradio
 - Enables "predictive analytics"
 where a user can use the
 model to as "what-if" i had an
 Iris Flower with this sepal/petal
 width/length?

Task 1: Run the Feature, Training, Online/Batch Inference Pipelines

Task 2: Build a Serverless ML system for the Titanic Dataset

Titanic Survival Dataset - Needs some Feature Engineering

Passer	ngerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

The raw Titanic dataset has a mix of numerical and categorical variables. You will need to do some data cleaning and feature engineering, including possibly some of these steps:

- Fill missing data with either random data or a category corresponding to "Unknown"
- Transform categorical variables into numerical variables
- Drop columns that do not have predictive power
- Write the features to the feature store as a Feature Group
- Read the features split the data into training and testing sets

Task 2: Serverless Titanic Survival Tasks

- 1. The Titanic Dataset:
 - a. https://raw.githubusercontent.com/ID2223KTH/id2223kth.github.io/master/assignments/lab1/titanic.csv
- 2. Write a feature pipeline that registers the titantic dataset as a Feature Group with Hopsworks. You are free to drop or clean up features with missing values.
- 3. Write a training pipeline that reads training data with a Feature View from Hopsworks, trains a **binary classifier model** to predict if a particular passenger survived the Titanic or not. Register the model with Hopsworks.
- 4. Write a Gradio application that downloads your model from Hopsworks and provides a User Interface to allow users to enter or select feature values to predict if a passenger with the provided features would survive or not.
- 5. Write a synthetic data passenger generator and update your feature pipeline to allow it to add new synthetic passengers.
- 6. Write a batch inference pipeline to predict if the synthetic passengers survived or not, and build a Gradio application to show the most recent synthetic passenger prediction and outcome, and a confusion matrix with historical prediction performance.

References: https://www.kaggle.com/competitions/titanic/data https://www.ritchieng.com/pandas-scikit-learn/

Deliverables

- Deliver your source code as a Github Repository
- Deliver your lab description as a README.md file in the root of your Github repository
- Deliver a Hugging Face Spaces public URL for the 2 Gradio Applications

 (1) Interactive UI for entering feature values and predicting if a passenger would survive the titanic or not
 - (2) Dashboard UI showing a prediction of survival for the most recent passenger added to the Feature Store and the outcome (label) if that passenger survived or not. Include a confusion matrix to show historical model performance.