

Experimental Body-input Three-stage DC offset Calibration Scheme for Memristive Crossbar

Charanraj Mohan¹, L.A. Camuñas-Mesa¹, Elisa Vianello², Carlo Reita², José Manuel de la Rosa¹, Teresa Serrano-Gotarredona¹ & Bernabé Linares-Barranco¹

¹Instituto de Microelectrónica de Sevilla IMSE – CNM (CSIC, Universidad de Sevilla), Sevilla, Spain,

²CEA-LETI, Grenoble, France

2020 IEEE International Symposium on Circuits and Systems **Virtual, October 10-21, 2020**

OUTLINE

- Introduction (6 slides)
- Motivation of the work (1 slide)
- > Bulk-based DC offset calibration scheme for crossbars- design (3 slides)
- Different views of the packed chip & its layout (2 slides)
- Experimental set-up (1 slide)
- > Experimental results (1 slide)
- Conclusion & future work (1 slide)

Introduction

Pool of tech gaints & their neuromorphic chips [2, 3, 4, 5]

Brain-inspired computing [1]

Memristors- a favourable synapse [7, 8]

Properties of memristors

- [1] Carver Mead, 'Analog VLSI and Neural Systems', Addison Wesley, 1989.
- [2] www.web.stanford.edu/group/brainsinsilicon/neurogrid.html
- [3] http://paulmerolla.com/merolla_main_som.pdf (Truenorth)
- [4] www.brainscales.kip.uni-heidelberg.de/
- [5] www.apt.cs.manchester.ac.uk/projects/SpiNNaker/
- [6] O. Turel and K. Likharev, "Cross-nets possible neuromorphic networks based on nanoscale components", Int. J. Circuit Theory App., vol. 31, no. 1, pp. 37-53, January, 2003.
- [7] L. Chua, 'Memristors-the missing circuit element', Circuit Theory, IEEE Transactions on, vol. 18, no. 5, pp. 507-519, 1971.
- [8] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, 'The missing memristor found', Nature, vol. 453, no. 7191, pp. 80-83, 2008.

- ➤ Paradigm shift: Parallel elements with memory & co-localized computation
- ➤ Memristors as synapse → didn't solve
 Von Neumann bottleneck

Moore's Law [1]

Von Neumann bottleneck [2, 3]

- [1] Moore, Gordon E. (1965). "Cramming more components onto integrated circuits" (http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf)(PDF). Electronics Magazine. p. 4. . Retrieved 2006-11-11.
- [2] James M. Feldman and Charles T. Retter. Computer Architecture: A Designer's Text Based on a Generic RISC. McGraw-Hill, Inc., New York, 1994.
- [3] M. D. Godfrey and D. F. Hendry. The computer as von Neumann planned it. IEEE Annals of the History of Computing, 15(1):11{21, 1993.

4 × 4 1T1R crossbar with pre & post synaptic neurons

[1] Y. Cassuto, S. Kvatinsky and E. Yaakobi, "Sneak-path constraints in memristor crossbar arrays", Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on., 10.1109/ISIT.2013.6620207, October 2013.

- [1] B. Govoreanu, S. Kubicek, G. Kar, Y-Y, Chen, V. Paraschiv, M. Rakowski, R. Degraeve, L. Goux, S. Clima, N. Jossart et al., inExt. Abstr SSDM Conf., Nagoya, Japan, (*The Japan Society of Applied Physics*, 2011), p. 1005.
- [2] S.D. Ha, S. Ramanathan, 'Adaptive oxide electronics: a review', J. Appl. Physic, 110, 071101 (2011).

[1] D. Garbin et al., "Variability-tolerant Convolutional Neural Network for Pattern Recognition applications based on OxRAM synapses," 2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp. 28.4.1-28.4.4.

[2] D. Garbin et al., "HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks," IEEE Transactions on Electron Devices, vol. 62, pp. 2494–2501, August 2015.

(Microscopic Image courtesy: CEA-Leti)

Bulk-based DC offset calibration scheme for crossbar- design

4 × 4 1T1R crossbar with calibration of DC offset

Bulk-based DC offset calibration scheme for crossbar- design (Contin.)

3 – stage calib. scheme [1] with opamp & I-pot [2]

[1] C. Mohan, L.A. Camuñas-Mesa, E. Vianello, L. Perniola, C. Reita, J.M. de la Rosa, T. Serrano-Gotarredona and B. Linares-Barranco, "Calibration of offset via bulk for low-power HfO2 based 1T1R memristive crossbar read-out system", Microelectronic Engineering, Elsevier, vol. 198, 15 October 2018, pages 35-47.

[2] R. Serrano-Gotarredona, L. A. Camuñas-Mesa, T. Serrano-Gotarredona, Juan.A. Leñero-Bardallo and B. Linares-Barranco,"The Stochastic I-Pot: A Circuit Block for Programming Bias Currents", IEEE Transactions on Circuits and Systems-II: Express Briefs., vol. 54, no. 9, pp. 760-764, September 2007.

Bulk-based DC offset calibration scheme for crossbars-design (Contin.)

Monte carlo variation of DC offset voltage of the opamp

Specifications	Proposed values	Actual designed value			
		With Cload With RC load			
		with Cload	R=2 kΩ	R=7 kΩ	R=225 kΩ
P-MOSFET Differential pair, $\left(\frac{W}{L}\right)_{1,2} = 80$	-	$\left(\frac{40\mu m}{2\mu m}\right)$ connected in 4 parallel numbers			
n-MOSFET Current mirror down to differential pair, $\left(\frac{W}{L}\right)_{3,4} = 2.5$	-	$\left(\frac{2.5\mu m}{2\mu m}\right)$ connected in 2 parallel numbers			
P-MOSFET Input current mirror, $\left(\frac{W}{L}\right)_{5,8} = 32.5$	-	$\left(\frac{32.5\mu m}{2\mu m}\right)$ connected in 2 parallel numbers			
Second stage P-MOSFET, $\left(\frac{W}{L}\right)_6 = 497.5$	-	$\left(\frac{49.75 \mu m}{2 \mu m}\right)$ connected in 20 parallel numbers			
Second stage N-MOSFET, $\left(\frac{W}{L}\right)_7 = 76.5$	-	$\left(\frac{30.6\mu m}{2\mu m}\right)$ connected in 5 parallel numbers			
Gain (Av) in dB	≥ 68	100.944	69.3312	79.6551	98.4536
Gain Bandwidth Product (GWB) in MHz	30	15.6501	13.2864	14.9	15.626
Phase Margin	60°	59.9955°	66.1448°	62.0176°	60.0652°
ICMR+ in V	4.3	4.5			
ICMR- in V	0.9	0.7			
Load Capacitor (CL) in pF	5	4.956			
Compensation Capacitor (CC) in pF	-	2.44181			
Slew rate (SR) in V/μs	20	15.53455	13.5063	14.7851	15.50825
Input current (I5) in μA	40	40.21154	40.21154	40.21154	40.21154
Second stage drain current (I6 or -I7) in μA	630-680	634.4841	623.7895	624.3674	631.2522
Total Power dissipation (Pdiss) in mW	≤ 4	3.2385	3.1872	3.18998	3.22303
DC component of the common mode voltage in AC analysis in μV	-	-14			
DC systematic offset from DC sweep analysis in μV	-	89.5937			
Parasitic capacitance reduction	-	para. capacitance Of 16 MOSFETs are reduced by 50 %			
DC offset by Monte carlo runs	-	Mean=-34.7937 μV Sigma=1.08097 mV for 300 runs	-	-	-
Total Input referred noise in V ²		8.34E-11			

Different views of the packed chip & its layout

Different views of the packed chip & its layout (Contin.)

Experimental set-up

Experimental results Control lines clock (2 kHz) data. Latch DC offset voltage $V_{\rm read} = 0.33 \,\mathrm{W}$ row Calibration _ loading 14-bit | 12-bit | 14-bit | 12-bit | 14-bit | 12-bit 14-bit 12-bit control control control control control for for for for for Calib. Calib. I-pot, I-pot, Calib. I-pot, Calib. circuit, circuit,

Digital and analog signals observed in oscilloscope during calibration

----- 104-bit control word

circuit,

circuit.

Experimental results of the 3 – stage calibration scheme [1]

Conclusion & Future work

- Design of a 2 stage PMOS- based differential pair opamp- used in buffer configuration for memristive crossbars.
- Bulk-based calibration of DC offset across rows of 1T1R crossbar-> Low power dissipation & scalability of crossbar.