

基于客观指标的音视频 质量测试的自动化实

X-Live RTC·进阶实战高手课

回樂

- 2
- 音视频质量评估
- 4

基于客观指标的自动化测试

音视频客观评价标准

ω

- 5
- 音视频质量评价的挑战与未来

为什么需要质量评估

音视频通话的基本流程

为什么需要质量评估

- · 影响质量的环节多, 场景复杂, 问题定位困难。
- · 缺少评价手段和统一标准,没法衡量效果。
- · 开发人员和测试人员对质量的理解差异, 导致沟通成本高。
- · 传统测试, 测试流程长, 效率低。

为什么需要质量评估

音视频质量评估

基于客观指标的自动化测试

音视频客观评价标准

ω

音视频质量评价的挑战与未来

评估维度:

	可懂度、卡顿、回声、噪音
观感	清晰度、流畅度
综合体验	端到端延时、音画同步等
QoS	码率、视频分辨率、音频采样率、CPU、内存、发热耗电

评估方法:

1. 主观质量评估

在国际标准中,统一使用 MOS 值来评价 音视频的主观体验。 MOS 值按主观感受从1-5打分。

#SOM	主观体验
5分	非常好
4分	好
3分	—般
2分	差
1分	不可用

主观质量评估一般流程:

- 选取测试音视频
- 衡量音视频质量的方案
- 设计主观评估实验
- · 看视频打分 (MOS 分)

主观质量评估标准:

- P.800 《传输质量的主观评定办法》
- P.830 《话带和宽带数字语音编码器的主观评价方法》
- BT.500 《电视图像质量的主观评估方法》
- P.910 《多媒体应用的主观性视频质量评价方法》

2. 客观质量评估

利用数学模型模拟主观评估结果,输入参数不变,评估出的结果一样。

客观质量评估分类

- 全参考评估:原始图像/音频和有损图像/音频各个层面比较,输出结果。
- 部分参考评估:原始图像/音频和有损图像/音频中提取一些特征值作比较,输出结果。
- 无参考评估:不需要原始图像/音频,直接使用有损图像/音频的一些特征值,输出结果。

主各观质量评估比较

美世界以	方法说明	方法特点
主观评估	利用人的感官对音视频进行质量评 判并得到 MOS 分值。	准确性高 实施成本高 可重复性差 无法大批量评估
客观评估	利用数学模型,通过一些评估标准来量化音视频质量。	准确性依赖于评估的数学模型 可重复性高 可大批量评估

- 1 为什么需要质量评估
- 2) 音视频质量评估
- 3 音视频客观评价标准
- 基于客观指标的自动化测试
- 音视频质量评价的挑战与未来

1. 音频客观评价标准

有参考:

P.862 PESQ、P.863 POLQA 和 ViSQOL。

无参考:

P.563 和 G.107 E-Model

2. 视频客观指标评价标准

有参考:

PSNR, SSIM, VMAF

无参考:

BRISQUE, RankIQA, DIQA

PESQ 算法流程

POLQA

	DESQ	PO	POLQA
Codecs	AMR EFR	AMR-WB	iLBC AMB+
		EVRC-B EVRC-WB	AAC Skype / SILK G.711 G.729
Reference Speech (sampling frequency)	8 kHz	8 kHz 48 kHz	
Applications	POTS VolP 3G	HD Voice Voice Enhancement Devices	Skype Calls Benchmarking CDMA and GSM

PSNR

$$PSNR = 10 * log_{10} \quad (\frac{MAX_I^2}{\sqrt{MSE}})$$

SSIM

$$SSIM(x,y) = rac{(2\mu_x\mu_y + c_1)(\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

PSNR/SSIM 分数和 DMOS 关系图:

VMAF 分数和 DMOS 关系图:

- 1 为什么需要质量评估
- 音视频质量评估
- 3 音视频客观评价标准
- 4 基于客观指标的自动化测试

5 音视频质量评价的挑战与未来

去帧的影响

音频语音频率特征:

音视频对齐方案:

多端时钟对齐问题:

1v1通话500ms延 时就会影响交互体

熠

需要同步多端的时

不同设备的时钟差

异在秒级别

钟误差100ms内

分辨率变化问题:

- 传输过程中,由于网络状况变化以及端侧性能等问题,会导致端上的 SDK 发 送低于原始视频分辨率的视频。
- VMAF 要求对比的接收视频和原始视频分辨率必须一致,这就需要把接收分 辨率上采样到原始分辨率,或者把原始分辨率下采样到接收分辨率。
- 计算 VMAF 的正确方法是将接收分辨率上采样到原始分辨率。

如下图,当上采样到原分辨率计算 VMAF 时,可以轻松的识别出不同分辨率曲线之间的交点。相反,如果下采样到编码分辨率计算 VMAF,则低分辨率编码将产生不匹配的高分,并且曲线之间不会出现相交。

弱网模拟:

- 可通过模拟不同的网络环境,一方面验证 SDK 优化的各项性能指标是否合格,另 一方面验证弱网环境下的音视频质量。
- 实践中,客户端使用 HoloWan 弱网模拟环境;媒体服务器采用 Docker 部署, 使用 tc/netem 命令直接模拟。

分析方式:

发送方

进制	1634401400	5
二进制	1634401300	4
二进制	1634401200	3
11 进制	1634401100	2
二进制	1634401000	
图像	器间码	号 弹

接收方

进制	1634401500	6	
二进制	1634401400	5	
		4	
	•	3	
二进制	1634401100	2	
二进制	1634401000	_	
图像	时间戳	号姠	

分析结果

指标 丢帧情况 帧率,流畅度 全参考图像质量	
指标 丢帧情况 帧率,流畅度 全参考图像质量	延迟
指标 丢帧情况 帧率,流畅度	全参考图像质量
指标 丢帧情况	帧率,流畅度
描标	丟帧情况
	指标

结果展示:

自动化测试结果分析完成后,可以通过 Web 页面访问任务列表,并在任务列表中按照客户端唯一标识查看对应的分析结果图。

普	2021-09-22 18:34:41	403c23a1-7dcd-4532-8c99-e236750d3a67	832b1531-2017-4c14-8b84-276fb25b5a8e
查看结果	2021-09-23 01:32:31	4967931c-9446-4d42-b89c-aed182e6808a	9d3917d6-856a-447a-93fb-3e5e8bdeb3be
查看结果	2021-09-23 05:13:06	05ba7967-fa16-4b19-a8e4-7d2789a9a7f4	5e55797b-aba6-47ea-9816-cb14e40ba7bd
查看结果	2021-09-23 05:51:58	e3839090-4021-4d95-af0c-af0b571ddc69	b53787c9-d3b0-45b4-93f6-e4ae28ea5ef0
查看结果	2021-09-23 06:55:36	7da3d926-5333-4719-886b-aa4123c9369a	36cdf47f-afe6-4f5f-a197-ac05db96640b
查看结果	2022-01-10 06:40:28	f59d5f0e1ef34b5dbaeec054f0a75f4d	9bff6102-5e4e-451b-9d75-6c4e87b2a134
查看结果	2022-01-10 06:44:09	8e5/65c4d0f14b4da85b6b10074c6c88	9bff6102-5e4e-451b-9d75-6c4e87b2a134
查看结果	2022-01-10 09:22:29	e7f5a3fecdc44362a1ef0a94a0d240a2	9c1056c7-7adb-40f8-bc8f-0637133058ac
部	2022-01-10 09:29:55	bce945/d58aa40689b7637906829ee34	9c1056c7-7adb-40f8-bc8f-0637133058ac
操作	创建时间	用户ID	房间ID
			Room ID 用户 ID 查询
			× 書等pp.此些異態 → 書等pp.性學具態 ◆

X-Live RTC·进阶实战高手课

基于客观指标的自动化测试框架

结果指标:

资源工具和清单:

WebRTC: <u>www.webrtc.org</u>

PESQ: https://www.itu.int/rec/T-REC-P.862

POLQA: http://www.polqa.info/products.html

ViSQOL: https://github.com/google/visqol

FFmpeg: https://ffmpeg.org

SoX: http://sox.sourceforge.net

OpenCV: https://opencv.org

- 1 为什么需要质量评估
- 2) 音视频质量评估
- 音视频客观评价标准

ω

- · 基于客观指标的自动化测试
- 5 音视频质量评价的挑战与未来

音视频质量评价的挑战与未来

面临的挑战

音视频质量评价在业界经历了十几年的发展,但它的应用依然不多。原因主要有:

- ・ 算力成本高
- 方法本身应用场景限制
- 核心问题不在于评价
- · 投入产出比低

音视频质量评价的挑战与未来

结合当前的现状,个人认为未来发展的一些可能的方向:

- · 在 PSNR 和 SSIM 基础上构建新指标
- ·视听质量评估
- 非参考质量评估

融云【RTC 进阶实战高手课】 六群