An Introduction to the SAS® Survey Analysis PROCs

Xiuhua Chen and Paul Gorrell Social & Scientific Systems, Inc.

Abstract

This paper provides an introductory overview of the SAS survey analysis PROCS: SURVEYMEANS, SURVEYFREQ, SURVEYLOGISTIC and SURVEYREG. For all procedures we will discuss the STRATA, CLUSTER and WEIGHT statements with respect to specifying the sample design and generating weighted estimates. We will also discuss the importance of not deleting observations in order to analyze subpopulations, as well as analyzing data with missing values. Other PROC-specific statements will be discussed, e.g. TABLES in SURVEYFREQ, DOMAIN in SURVEYMEANS and MODEL in SURVEYLOGISTIC. In addition we will briefly discuss the Taylor linearization method for variance estimation used by SAS and how SAS (by default) handles situations where there is only one cluster in a stratum. Concrete examples will be used (with SAS 9.1.3). This paper will be of interest to SAS programmers who need to analyze the results of complex, i.e. not simple, random, surveys.

Introduction

Before the introduction of the survey procedures, SAS could not be used for variance estimation with complex survey data because the existing statistical procedures, e.g. FREQ, MEANS, did not have the functionality for incorporating the design properties of complex surveys into the analysis, i.e. they assumed the design to be a simple random sample of an infinite population. In our experience this assumption generally leads to an underestimation of variance. This introductory paper will not answer all the questions you may have about using SAS for analyzing complex surveys, but we hope that reading this paper will put you in a better position to know what questions to ask when you first need to use a SAS survey procedure,

For a paper on variance estimation, this paper has a notable lack of statistical formulae. This is because we have targeted SAS programmers rather than statisticians. We have taken a 'functional' approach to discussing the survey procedures. The SAS documentation contains excellent discussions of the statistical details which are built into the respective procedures.

Variance Estimation with Complex Surveys

A complex survey design is any design that is not a simple random sample (where each person in the target population has an equal chance of being selected in the survey). Complex designs involve dividing the population into groups and sampling the groups themselves (cluster sampling) and/or sampling from the groups (stratified sampling).

In SAS 9.1.3 the only available method for variance estimation is Taylor linearization. Replication methods (e.g. jackknife and balanced repeated measures) are available in SAS 9.2 but will not be discussed in this paper (but see Mukhopadhyay *et al*, 2008).

One important point to emphasize when analyzing data from complex surveys is that you should resist the normally efficient practice of subsetting to just those records that will be used in the analysis. This subverts the process of giving the procedures all the necessary survey design information with respect to strata and clusters. That is, if you are interested in a particular analysis of city-dwellers within a nationally-representative survey and subset to just this subpopulation before your analysis, you may be deleting information about the full design

properties of the survey. You are more or less likely to do this depending on the criteria for subsetting. For example, subsetting to males from a typical national survey population is unlikely to exclude all records in a particular PSU and remove it from the analysis (and if it did you'd really want to know why!). Below we discuss the DOMAIN option for analyzing subpopulations within a sample population. Examples are shown for PROCs SURVEYMEANS and SURVEYLOGISTIC.

All examples used in this paper use as input the Medical Expenditure Panel Survey (MEPS), discussed in the next section. No matter what data source is used as input, correct variance estimation for complex survey data requires knowing the design properties of the survey being analyzed.

The Household Component of the Medical Expenditure Panel Survey (MEPS HC)

The MEPS HC is a nationally representative survey of the U.S. civilian noninstitutionalized population. It collects medical expenditure data as well as information on demographic characteristics, access to health care, health insurance coverage, as well as income and employment data. MEPS is cosponsored by the Agency for Healthcare Research and Quality (AHRQ) and the National Center for Health Statistics (NCHS). For the comparisons reported here we used the MEPS 2005 Full Year Consolidated Data File (HC-097). This is a public use file available for download from the MEPS web site (http://www.meps.ahrq.gov). See also the MEPS Factsheet "Computing Standard Errors for MEPS Estimates", also available from the MEPS web site.

The MEPS is not a simple random sample, its design includes stratification, clustering, multiple stages of selection, as well as disproportionate sampling. The MEPS public use files (such as HC-097) include variables for generating weighted national estimates and for use of the Taylor method for variance estimation. These variables are: person-level weight (PERWT05F on HC-097); stratum (VARSTR on HC-097); and cluster/psu (VARPSU on HC-097).

PROC SURVEYMEANS

In this section we will first review the basic syntax of SURVEYMEANS. We will then generate some estimates and standard deviations and errors using the 2005 MEPS full year file (HC-097). Note that we used SAS 9.1.3 for the comparisons reported here.

SYNTAX

The following illustrates the relevant syntax and statements for PROC SURVEYMEANS:

```
(1) PROC SURVEYMEANS DATA= HC097 SUM STD MEAN STDERR;
STRATA VARSTR / LIST;
CLUSTER VARPSU;
WEIGHT PERWT05F;
VAR TOTEXP05;
RUN;
```

The options selected on the PROC SURVEYMEANS statement are SUM, STD (standard deviation of the sum), MEAN, and STDERR (standard error of the mean). The STRATA statement (you can also use "STRATUM" when you have one variable and you're fussy about your Latin) is where you list the strata variables if you have a stratified sample. The LIST option causes SAS to generate a *Stratum Information* table which lists the variables and sampling rates for each stratum, as well as the number of records and clusters for each stratum and analysis variable. This can be very handy information. For example, for the MEPS HC-097 file the Stratum

Information table shows that each stratum has at least 2 PSUs (clusters). The head of this table shows the following information.

(2)	Number	of Strata	203
. ,	Number	of Clusters	452
	Number	of Observations	33961
	Number	of Observations Used	32320
	Number	of Obs with Nonpositive Weights	1641
		Weights	296185002

The 1,641 records with non-positive weights are excluded prior to analysis. The N value that appears in the LST output will be 32,320 (number of observations used). For TOTEXP05 the NMISS value will be zero because all records have a non-missing value for this analysis variable.

The CLUSTER statement is where (you guessed it!) you list the cluster variables. For MEPS (as with all stratified samples), clusters are nested within strata.

This may be obvious but it's worth pointing out that SAS will not tell you the sample design of the data you're working with. You need to know the design of the survey that produced the data and how those design properties are to be specified in the survey procedures. The Federal agencies responsible for distributing public use files for data such as the MEPS do an excellent job of providing documentation of survey design and data file properties.

The WEIGHT statement is self-explanatory. Records with nonpositive or missing weight values are excluded from the analysis.

The VAR statement lists the analysis variables. Here TOTEXP05 is the 2005 MEPS total expenditure variable. The HC-097ile is a person-level file with 33,961cords. All records have a non-missing value for TOTEXP05 This is consistent with the situation described in (1a): all survey respondents are in the analytic population and all have a non-missing value for the analysis variable.

When we run (1) SAS generates the following output statistics (rounded values are given). The full output listing is given in the Appendix.

(3) SUM: 1,023,763,462,950 STD: 33,630,954,198 MEAN: 3,457 STDERR: 90

If we run (2) but omit the STRATA and CLUSTER statements, SAS generates the same SUM and MEAN, but the standard deviation and standard error are those given in the parentheses in (4).

(4) SUM: 1,023,763,462,950 STD: 33,630,954,198 (23,916,914,371) MEAN: 3,457 STDERR: 90 (79)

This comparison is consistent with our general experience that variance estimation where a simple random sample is assumed underestimates standard deviations and standard errors for complex samples.

DOMAIN (Subgroup) Analysis

In this section we show the use of the SURVEYMEAN'S DOMAIN statement. We will compute the mean and standard error again for the MEPS TOTEXP01 variable, but here we will also look at males and females as subgroups.

```
(5) PROC SURVEYMEANS DATA= HC097 MEAN STDERR;
STRATA VARSTR;
CLUSTER VARPSU;
WEIGHT PERWT05F;
VAR TOTEXP05;
DOMAIN SEX;
RUN;
```

The DOMAIN statement shows the categorical variable SEX. The output statistics are shown in (6).

(6)

			Data Summa	ry	
		Number of	f Strata		203
		Number of	f Clusters		452
		Number of	f Observations		33961
			f Observations		32320
				oositive Weights	
		Sum of We	eights		296185002
				Statistic	s
Variable				Mean	
TOTEXP01	3:			3456.500008 	
			Domain Analys	sis: SEX	
SEX	Variable	N	N Miss	Mean	Std Erro: of Mean
	TOTEXP05		0	2954.576843	105.91681!
MALE	TOTEXP05	17069	0	3938.646448	135.13680

Missing Values for the Analysis Variable (one PSU in some strata)

In this section we will first look at an example where records with missing values for the analysis variable create a situation where some strata only have one PSU (cluster) per stratum. We create this example by modifying the MEPS example from the previous section so we can run an analysis just for expenses paid by Medicare (the MEPS variable TOTMCR05). Further, for this analysis we are interested in computing the mean only for those persons with a workers' compensation expense, i.e. zero values are set to missing.

```
(7) PROC SURVEYMEANS DATA= HC097 MEAN STDERR;
STRATA VARSTR / LIST;
CLUSTER VARPSU;
WEIGHT PERWT05F;
VAR TOTMCR05;
RUN;
```

Running (7) generates the LOG note in (8) and the output statistics in (9):

(8) Only one cluster in a stratum for variable TOTWCP05. The variance in that stratum is estimated by zero.

(9) **MEAN:** 5331.97 **STDERR:** 255.53

The stratum information table would also show which of the strata have only one cluster (PSU). The NMISS value on the output statistics would be 28,168 and the N would be 4,152. NMISS indicates the number of records with a positive weight that have a missing value for the analysis variable TOTMCR05.

Note that if you run this type of analysis in a software package such as SUDAAN (using the default Taylor linearrization method settings), the generated standard error will be different. The reason for the difference in standard error values is the different assumptions made by SAS and SUDAAN concerning the treatment of missing values (see SAS FAQ # 1813 available online at SAS Technical Support). SAS survey analysis procedures assume that missing values for analysis variables are missing completely at random and delete them before running the analysis. In contrast, the SUDAAN default analysis assumes that these values are not missing completely at random and runs a domain analysis focused only on those records with non-missing values, i.e. the subset (or, domain) of respondents for the analysis variable. Note that this is a distinct situation from what we saw in the previous section. Here (as the stratum information table would show) all strata have at least 2 clusters.

We can simulate this approach in SURVEYMEANS by using the DOMAIN statement to explicitly distinguish missing and non-missing values for the analysis variable. First we need to create a categorical variable INDICATOR (see also the SURVEYMEANS documentation for analyzing data with missing values). Then we can run SURVEYMEANS with the code in (11).

```
(10) DATA HC0971;

SET HC097;

IF TOTMCR05 GT 0

THEN INDICATOR = 'NOT_MISSING';

ELSE INDICATOR = 'MISSING';

RUN;

(11) PROC SURVEYMEANS DATA= HC0971;

STRATA VARSTR;

CLUSTER VARPSU;

WEIGHT PERWT05F;

VAR TOTMCR05;

DOMAIN INDICATOR;

RUN;
```

This will produce the output in (12).

Statistics						
Variable	N	N Miss	Mean	Std Error of Mean		
TOTMCR05	4152	28168	5331.970280	255.529494		
		Domain Analys	sis: INDICATOR			
INDICATOR	Variable	N	N Miss	Mean	Std Error of Mean	
MISSING NOT MISSING	TOTMCR05	0 4152	28168 0	5331.970280	 255.424552	

The standard error in the first statistics row is the one SURVEYMEANS computes for the mean under the assumption that missing values are missing completely at random. The domain analysis section shows the standard error produced by the 'indicator' approach. The value of 255.424552 is exactly what is produced by SUDAAN's PROC DESCRIPT. Although intuitively the numeric difference between the two values is not great, it is important to understand that (i) the default assumptions which underlie the computation of standard errors in cases where there are cluster-level missing values, and (ii) that SURVEYMEANS, through the use of the DOMAIN statement, offers a way to incorporate into the analysis the non-default assumption that missing values are not missing completely at random.

The documentation for SURVEYMEANS lists the various keywords to be used for requesting additional statistical output, e.g. confidence limits for the mean or sum; coefficient of variation for the mean or sum. For example, the RATIO statement requests ratio analysis for means or proportions of analysis variables. These variables must also be listed on the VAR statement.

PROC SURVEYFREQ

If you are familiar with PROC FREQ then you have a clear jumpstart on using SURVEYFREQ. In addition to the STRATA and CLUSTER statements, which have the same function we discussed for SURVEYMEANBS, the TABLES, WEIGHT and FORMAT statements operate in a similar fashion to PROC FREQ. Example (13) shows a typical two-way frequency.

Here the variables on the TABLES statement are HISPANX (a demographic variable indicating self-reported race/ethnicity), and INSCOV05 (a variable indicating insurance status in 2005). The output of (13) is given in (14).

(14)

		The SURVEYFRE				
		1	Data Summary			
	Number	of Strata			203	
	Number	of Clusters			452	
		of Observation			33961	
		of Observation			32320	
		of Obs with N	onpositive Wei	-	1641	
	Sum of	Weights		29618	35002	
		Table of	HISPANX by IN	ISCOV05		
			Weighted	Std Dev of		Std Err of
HISPANX	INSCOV05	Frequency	Frequency	Wgt Freq	Percent	Percent
HISPANIC	ANY PRIVATE	2887			6.3839	
	PUBLIC ONLY	3512	12877938	733805	4.3479	0.2273
	UNINSURED	2591	11790097	825434	3.9807	0.2465
	Total	8990	43576335	2417073	14.7125	0.6899
BLACK	ANY PRIVATE		186356680			
	PUBLIC ONLY		41413223		13.9822	0.3970
	UNINSURED	2506	24838765	932800	8.3862	0.2512
	Total	23330	252608667	6097607	85.2875	0.6899
Total	ANY PRIVATE	18310	205264979	5264787	69.3030	0.5957
	PUBLIC ONLY	8913			18.3302	0.4523
	***********	5097	36628862	1371767	12.3669	0.3297
	UNINSURED					

One advantage of the default SURVEYFREQ output is that the table shows both unweighted and weighted frequencies. This was not possible with PROC FREQ, where you had to run the PROC with and without the WEIGHT statement to generate both frequencies.

There are a number of TABLES statement options for selecting different output. For example, if you want to generate confidence limits for weighted frequencies, you can use the CLWT option. In (15) below we illustrate the ROW option. The output is shown in (16).

```
(15) PROC SURVEYFREQ DATA= HC097;
TABLES HISPANX*INSCOV05 / ROW;
STRATA VARSTR;
CLUSTER VARPSU;
WEIGHT PERWT05F;
FORMAT HISPANX HISPF. INSCOV05 INSF.;
RUN;
```

(16)

			The SU	RVEYFREQ Proce	edure			
Data Summary								
			Number of Str	ata		203		
			Number of Clu	sters		452		
			Number of Obs	ervations		33961		
			Number of Obs	ervations Used	l	32320		
				with Nonposit	ive Weights	1641		
			Sum of Weight	s		296185002		
Table of HISPANX by INSCOV05								
HISPANX	INSCOV05	Frequency	Weighted Frequency			Std Err of Percent		
HISPANIC	ANY DETYAME	2007	18908300	1242504	6 2020	0.3674	43.3912	1.3001
HISPANIC	ANY PRIVATE PUBLIC ONLY		12877938				29.5526	
	UNINSURED	2591		825434			27.0562	
	ONINGORED	2331	11750057	023434	3.3007	0.2403	27.0302	0.0011
	Total	8990	43576335	2417073	14.7125	0.6899	100.000	
BLACK	ANY PRIVATE	15423	186356680	4857520	62.9190	0.7401	73.7729	0.5635
	PUBLIC ONLY	5401	41413223	1445538	13.9822	0.3970	16.3942	0.4533
	UNINSURED	2506	24838765	932800	8.3862	0.2512	9.8329	0.2952
	Total	23330	252608667	6097607	85.2875	0.6899	100.000	
Total	ANY PRIVATE	18310	205264979	5264787	69.3030	0.5957		
	PUBLIC ONLY	8913	54291161	1755404	18.3302	0.4523		
	UNINSURED	5097	36628862	1371767	12.3669	0.3297		
	Total	32320	296185002	7072820	100.000			

In (16), in addition to the frequencies shown in (14), the use of the ROW option causes SAS to output withingroup percent estimates in the "Row Percent" column (the SEs for these estimates are shown in the "Std Err of Row Percent" column). For example, the first row of the table in (16), the "Percent" column shows that about 6.3% of the total population is Hispanic with Any Private insurance. The "Row Percent" column shows that about 43.3% of the Hispanic population has Any Private insurance.

The documentation for SURVEYFREQ shows additional options for requesting statistical tests (e.g. chi-square tests) and output (e.g. variances for weighted frequencies). Options for suppressing output (e.g. NOPERCENT, NOPRINT) are also listed.

PROC SURVEYLOGISTIC

In this section we will first review the basic syntax of PROC SURVEYLOGISTIC. We will then discuss selected options and statements.

The STRATA and CLUSTER statements should be familiar by now, as are the WEIGHT and FORMAT statements.

In the model below, the dependent variable is DENTAL_VISIT a binary variable indicating a visit to a dentist's office in 2005 (1= YES, 2 = NO). This variable is based on the MEPS variable DVTOT05, a count of number

of dental visits in 2005. The independent variables are: POVCAT05, a categorical variable with 5 values indicating poverty status (1= POOR – 5= HIGH INCOME); and INSCOV05, a categorical variable with three values indicating insurance-coverage status (1= ANY PRIVATE, 2= PUBLIC ONLY, 3= UNINSURED). INSCOV05 was used in the SURVEYFREQ examples above.

```
(17) PROC SURVEYLOGISTIC DATA=MEPS_H97;

STRATA VARSTR;

CLUSTER VARPSU;

WEIGHT PERWT05F;

CLASS POVCAT05 INSCOV05 (REF='1 ANY PRIVATE')

/ PARAM=REF ORDER=INTERNAL;

MODEL DENTAL_VISIT (EVENT='1') = POVCAT05 INSCOV05/VADJUST=NONE;

CONTRAST "Test poor, Near poor, and low income versus

Middle income" POVCAT05 0 0.5 0.5 -1 0;

FORMAT INSCOV05 INSCV05F. POVCAT05 POVCAT.;

RUN;
```

For the CLASS statement, the PARAM=REF (reference) option overrides the default PARAM=EFFECT. When using the reference method, the highest variable value is, by default, used as reference. This can be changed by the REF= option, as shown in (17). Here default reference for INSCOV05 would be '3 UNINSURED'. This is changed to '1 ANY PRIVATE' in the example.

Note also that, when the FORMAT statement is used, the SAS default is ORDER=FORMATTED. Here this is changed to ORDER=INTERNAL, i.e. unformatted.

The MODEL option EVENT= specifies the event category for the binary variable DENTAL_VISIT. The specification EVENT='1' specifies '1' as the event category value. By default, SURVEYLOGISTIC models the lowest value. The option VADJUST=NONE is used to suppress any variance adjustment associated with the Wald test. Adjusting by degrees of freedom (VADJUST = DF) is the default.

The CONTRAST statement (which must appear after the MODEL statement) tests the hypothesis that the combined poor/near poor/low income group is different from the middle income group. The ouput generated by this statement is shown in (18).

(18)

Contrast Test Results

Contrast	DF	Wald Chi-Square	Pr > ChiSq	
Test Negative/poor, Near poor, and low income versus middle income	1	35.517	<.0001	

PROC SURVEYLOGISTIC outputs 11 tables by default. Here we will illustrate the ODS statements necessary for outputting the subset of these you may be interested in. One prerequisite to using the ODS statement is knowing the names of the output tables (e.g. ODDSRATIOS and PARAMETERESTIMATES in (19)). Using the ODS TRACE ON/OFF statements before and after the program code for the relevant procedure will output these table names to the LOG. Table names are also listed with the procedure documentation.

By adding the following ODS statement to the PROC SURVEYLOGISTIC above, two permanent SAS data sets, Dent_Care_Odds and Denta_Care_Beta, are output to the OUT directory. ODDSRATIOS and PARAMETERESTIMATES are table names defined by SAS.

(19) ODS OUTPUT ODDSRATIOS = OUT.DENT_CARE_ODDS
PARAMETERESTIMATES = OUT.DENT_CARE_BETA;

The output below is from the output datasets DENT_VISIT_ODDS and DENT_VISIT_ODDS.

(20) DENT_VISIT_BETA

Variable	ClassVal0	DF	Estimate	StdErr	WaldChiSq	ProbChiSq
Intercept		1	0.367	0.035	111.120	5.57E-26
-	1					
POVCAT05	POOR/NEGATIVE	1	-0.870	0.064	183.497	8.36E-42
POVCAT05	2 NEAR POOR	1	-0.966	0.090	114.868	8.41E-27
POVCAT05	3 LOW INCOME	1	-0.839	0.059	200.187	1.90E-45
	4 MIDDLE					
POVCAT05	INCOME	1	-0.520	0.046	128.661	8.04E-30
INSCOV05	2 PUBLIC ONLY	1	-0.429	0.054	63.944	1.28E-15
INSCOV05	3 UNINSURED	1	-1.356	0.067	411.707	1.56E-91

(21) DENT_CARE_ODDS

Effect	OddsRatioEst	LowerCL	UpperCL
POVCAT05 1 POOR/NEGATIVE vs 5 HIGH			
INCOME	0.419	0.369	0.475
POVCAT05 2 NEAR POOR vs 5 HIGH INCOME	0.380	0.319	0.454
POVCAT05 3 LOW INCOME vs 5 HIGH INCOME	0.432	0.385	0.486
POVCAT05 4 MIDDLE INCOME vs 5 HIGH			
INCOME	0.594	0.543	0.650
INSCOV05 2 PUBLIC ONLY vs 1 ANY PRIVATE	0.651	0.586	0.723

As discussed above with PROC SURVEYMEANS, the DOMAIN statement should be used for subpopulation, or domain analysis. The formation of these domains may be unrelated to the sample design. Therefore, the sample sizes for the domains are random variables. Domain incorporates this variability into the variance estimation.

The DOMAIN statement is different than a BY statement. The BY statement treats the sample sizes as fixed in each subpopulation, subsets the input data to each subpopulation group, and perform analysis within each BY group separately. If the subpopulation do not include all strata and clusters (PSUs), the BY statement uses fewer degree of freedom for significance testing.

The code below would analyze how dental visits are associated with family income for each insurance category (DOMAIN INSCOV05). The output for this is not shown.

```
PROC SURVEYLOGISTIC DATA=MEPS_H97;
STRATA VARSTR;
CLUSTER VARPSU;
WEIGHT PERWT05F;
DOMAIN INSCOV05;
CLASS POVCAT05 INSCOV05 (REF='1') /PARAM=REF ORDER=INTERNAL;
MODEL DENTAL_VISIT (EVENT= '1') = POVCAT05/VADJUST=NONE;
RUN;
```

PROC SURVEYREG

The SURVEYREG procedure performs regression analysis for sample survey data. The procedure fits linear models for survey data and computes regression coefficients and their variance-covariance matrix. The procedure also provides significance tests for the model effects and for any specified estimable linear functions of the model parameters. Using the regression model, the procedure can compute predicted values for the sample survey data.

The example below uses the MEPS data to illustrate how total dental expenditures are associated with family income and insurance coverage. Variable DVTEXP05 is an expenditure variable indicating the amount spent per person in 2005. The ODS statement requests two output datasets: D_EXP_TEST (from the EFFECTS table) and D_EXP_COEFFICIENTS (from the PARAMETERESTIMATES table). This output is shown in (24) and (25), respectively.

```
(23) PROC SURVEYREG DATA=MEPS_H97;

STRATA VARSTR;

CLUSTER VARPSU;

WEIGHT PERWT05F;

CLASS POVCAT05 INSCOV05;

MODEL DVTEXP05 = POVCAT05 INSCOV05/SOLUTION;

CONTRAST "Test low income versus middle income"

POVCAT05 0 0 1 -1 0;

ODS OUTPUT PARAMETERESTIMATES = out.d_exp_coefficient

EFFECTS = Out.D_Exp_test CONTRASTS = Econtrast;

RUN;
```

As we have seen in previous examples, the poverty-status (POVCAT05) and insurance-coverage (INSCOV05) are used. As we saw with the SURVEYLOGISTIC procedure, optional CLASS statement requests that they be used as classification variables. The MODEL statement describes the requested linear model. The SOLUTION option requests the regression coefficient estimates. The CONTRAST statement requests hypothesis tests for linear combinations of the regression parameters (see (25) below for the output generated by this statement.

(24) D_EXP_TEST

Effect	NumDF	DenDF	FValue	ProbF
Model	6	249	97.0779	0
Intercept	1	249	834.929	0
POVCAT05	4	249	13.2345	8.62E-10
INSCOV05	2	249	100.651	0

(25) D_EXP_COEFFICIENT

Parameter	Estimate	StdErr	DenDF	tValue	Probt
Intercept	166.508	14.965	249	11.126	0
POVCAT05 1 POOR/NEGATIVE	-124.285	18.569	249	-6.693	1.44E-10
POVCAT05 2 NEAR POOR	-124.623	27.873	249	-4.471	1.18E-05
POVCAT05 3 LOW INCOME	-126.037	20.286	249	-6.213	2.17E-09
POVCAT05 4 MIDDLE					
INCOME	-67.282	15.272	249	-4.406	1.57E-05
POVCAT05 5 HIGH INCOME	0.000	0.000	249		
INSCOV05 1 ANY PRIVATE	177.040	13.079	249	13.536	0
INSCOV05 2 PUBLIC ONLY	83.982	12.444	249	6.749	1.04E-10
INSCOV05 3 UNINSURED	0.000	0.000	249		

(26) CONTRAST Statement Output

ContrastLabel	NumDF	DenDF	FValue	ProbF
Test low income versus middle				
income	1	249	11.8716	0.000669

Summary

The SAS survey procedures are an important addition to the SAS statistical PROCS. In addition to providing for variance estimation which incorporates the properties of complex surveys, they have the added benefit of allowing convenient output as SAS data sets.

As the paper by Mukhopadhyay *et al* shows, enhancements for SAS 9.2 will only add to the usefulness of these procedures for analysts working with data from complex surveys.

References

"Calculating Nationwide Inpatient Sample Variance," available at: http://www.hcup-us.ahrq.gov/db/nation/nis/reports/NISVariance2001_Revised%20031904.pdf.

"Computing Standard Errors for MEPS Estimates," available at: http://www.meps.ahrq.gov/FactSheets/FS StandardErrors.HTM.

"Overview of Survey Data Analysis Using SAS Software". Tony An. Proceedings of NESUG 16 (2003).

"What assumptions are made about the treatment of missing values (nonresponse)? How are missing values handled," available at http://support.sas.com/faq/018/FAQ01813.html.

An, Anthony B. (2004). "Performing logistic regression on survey data with the new SURVEYLOGISTIC procedure." *Proceedings of the Twenty-Seven Annual SAS Users Group International Conference*, Paper 258.

Chen, X. (2006). "Survey logistic regression: some SAS®-SUDAAN comparisons." Proceedings of NESUG 19, Paper po12.

Chen, X. and Gorrell, P. (2004). "Variance estimation with complex surveys: some SAS®-SUDAAN comparisons." Proceedings of NESUG 17, Paper an02.

Binder, D.A (1983). "On the variances of asymptotically normal estimators from complex surveys," International Statistical Review, 51, 279-292.

Heeringa, S., and Liu, J. (1997), Complex sample design effects and inference for mental health survey data, International Journal of Methods in Psychiatric Research, 7, Whurr Publishers Ltd. – Pages 221 – 230

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, London: Chapman Hall.

Mukhopadhyay, P.K., An, A.B., Tobias, R.D., and Watts, D.L. (2008). "Try, Try Again: Replication-Based Variance Estimation Methods for Survey Data Analysis in SAS 9.2. Proceedings of SAS Global Forum 2008, Paper 367-2008.

Morel, G. (1989). "Logistic Regression under Complex Survey Designs," Survey Methodology, 15, 203–223.

Rust, K., (1985), Variance Estimation for Complex Estimators in Sample Surveys, Journal of Official Statistics, 1 (4), Statistics Sweden Publishing Service. Pages 381 –397.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. [®] indicates USA registration. Other brand and product names are registered trademarks or trademarks of their respective companies.

SUDAAN® is a registered trademark of Research Triangle Institute.

Acknowledgements

We have benefited greatly from discussions with our colleagues at Social & Scientific Systems, Inc., as well as from questions and comments from audiences at NESUG 2004 and 2006, where earlier versions of some of this material were presented.

Contact Information

Xiuhua Chen Paul Gorrell Social & Scientific Systems, Inc. 8757 Georgia Avenue Silver Spring, MD 20910 xchen@s-3.com pgorrell@s-3.com

Appendix

$\label{eq:proc_survey} \textbf{PROC SURVEYMEANS Output for the Program Code in Example (1)}$

TheSURVEYMEANS Procedure

Data Summary

Number of Strata	203
Number of Clusters	452
Number of Observations	33961
Number of Observations Used	32320
Number of Obs with Nonpositive Weights	1641
Sum of Weights	296185002

Stratum Information

Stratum Index	VARIANCE ESTIMATION STRATUM - 2005	N Obs	Variable	Label	N	Clusters
1	1	127	TOTEXP05	TOTAL HEALTH CARE EXP 05	122	3
2	2	118	TOTEXP05	TOTAL HEALTH CARE EXP 05	112	2
3	3	110	TOTEXP05	TOTAL HEALTH CARE EXP 05	104	2
4	4	183	TOTEXP05	TOTAL HEALTH CARE EXP 05	172	3
5	5	434	TOTEXP05	TOTAL HEALTH CARE EXP 05	414	2
6	6	198	TOTEXP05	TOTAL HEALTH CARE EXP 05	187	2
7	7	123	TOTEXP05	TOTAL HEALTH CARE EXP 05	123	2
8	8	175	TOTEXP05	TOTAL HEALTH CARE EXP 05	166	2
9	9	106	TOTEXP05	TOTAL HEALTH CARE EXP 05	104	2
10	10	87	TOTEXP05	TOTAL HEALTH CARE EXP 05	84	3
11	11	178	TOTEXP05	TOTAL HEALTH CARE EXP 05	169	2
12	12	212	TOTEXP05	TOTAL HEALTH CARE EXP 05	196	2
13	13	133	TOTEXP05	TOTAL HEALTH CARE EXP 05	123	2
14	14	332	TOTEXP05	TOTAL HEALTH CARE EXP 05	309	2
15	15	111	TOTEXP05	TOTAL HEALTH CARE EXP 05	110	2
16	16	88	TOTEXP05	TOTAL HEALTH CARE EXP 05	85	2
17	17	210	TOTEXP05	TOTAL HEALTH CARE EXP 05	196	3
18	18	107			107	2
19	19	163	TOTEXP05	TOTAL HEALTH CARE EXP 05	160	2
20	20	182	TOTEXP05		173	3
21	21	81	TOTEXP05	TOTAL HEALTH CARE EXP 05	77	3
22	22	100	TOTEXP05	TOTAL HEALTH CARE EXP 05	94	3
23	23	196	TOTEXP05	TOTAL HEALTH CARE EXP 05	189	2
24	24	71	TOTEXP05	TOTAL HEALTH CARE EXP 05	70	2
25	25	222	TOTEXP05	TOTAL HEALTH CARE EXP 05	213	2
26	26	243	TOTEXP05	TOTAL HEALTH CARE EXP 05	231	3
27	27	103	TOTEXP05	TOTAL HEALTH CARE EXP 05	100	3
28	28	116	TOTEXP05	TOTAL HEALTH CARE EXP 05	112	2
29	29	105	TOTEXP05	TOTAL HEALTH CARE EXP 05	99	2
30	30	204	TOTEXP05	TOTAL HEALTH CARE EXP 05	193	2
31	31	141	TOTEXP05	TOTAL HEALTH CARE EXP 05	137	2
32	32	165	TOTEXP05	TOTAL HEALTH CARE EXP 05	157	2
33	33	236	TOTEXP05	TOTAL HEALTH CARE EXP 05	228	2
34	34	201	TOTEXP05	TOTAL HEALTH CARE EXP 05	193	2
35	35	161	TOTEXP05	TOTAL HEALTH CARE EXP 05	151	2
36	36	156	TOTEXP05	TOTAL HEALTH CARE EXP 05	150	2
37	37	87	TOTEXP05		84	3
38	38	83	TOTEXP05		82	2
39	39	112			98	3
40	40	91	TOTEXP05	TOTAL HEALTH CARE EXP 05	84	2
41	41	203			185	2
42	42	129			118	3
43	43	184			174	2
44	44	162		TOTAL HEALTH CARE EXP 05	158	2
45	45	208	TOTEXP05	TOTAL HEALTH CARE EXP 05	198	3

46	46	606	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	575	2
47	47	37	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	34	2
48	48	109	TOTEXP05		HEALTH				102	2
49	49	196	TOTEXP05		HEALTH				183	2
50	50	106	TOTEXP05		HEALTH				101	2
51 52	51 52	171 249	TOTEXP05		HEALTH				165 238	2
53	53	62	TOTEXP05		HEALTH				58	2
54	54	64	TOTEXP05		HEALTH				61	3
55	55	274	TOTEXP05		HEALTH				258	2
56	56	115	TOTEXP05		HEALTH				112	2
57	57	115	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	106	2
58	58	116	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	111	3
59	59	202	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	186	2
60	60	103	TOTEXP05		HEALTH				102	2
61	61	108	TOTEXP05		HEALTH				97	2
62	62	345	TOTEXP05		HEALTH				323	2
63 64	63 64	212 159	TOTEXP05		HEALTH HEALTH				208 149	2
65	65	152	TOTEXP05		HEALTH				149	2
66	66	96	TOTEXP05		HEALTH				94	2
67	67	103	TOTEXP05		HEALTH				97	2
68	68	150	TOTEXP05		HEALTH				145	2
69	69	181	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	175	3
70	70	117	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	110	2
71	71	152	TOTEXP05		HEALTH				144	2
72	72	147	TOTEXP05		HEALTH				138	3
73	73	507	TOTEXP05		HEALTH				478	2
74	74	84	TOTEXP05		HEALTH				82	2
75 76	75	139	TOTEXP05		HEALTH				128	2
76 77	76 77	154 183	TOTEXP05		HEALTH				131 178	2
78	78	157	TOTEXP05		HEALTH				151	2
79	79	99	TOTEXP05		HEALTH				92	2
80	80	446	TOTEXP05		HEALTH				429	2
81	81	149	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	147	2
82	82	197	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	188	3
83	83	148	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	140	2
84	84	130	TOTEXP05		HEALTH				122	2
85	85	216	TOTEXP05		HEALTH				205	3
86	86	126	TOTEXP05		HEALTH				123	3
87 88	87 88	152 119	TOTEXP05		HEALTH HEALTH				148 116	2
89	89	99	TOTEXP05		HEALTH				98	2
90	90	139	TOTEXP05		HEALTH				134	2
91	91	256	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	248	3
92	92	139	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	133	2
93	93	130	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	129	2
94	94	136	TOTEXP05		HEALTH				128	2
95	95	633	TOTEXP05		HEALTH				602	2
96	96	137			HEALTH				135	2
97 98	97 98	126	TOTEXP05		HEALTH				125	2
99	99	134 96	TOTEXP05		HEALTH HEALTH				124 92	2
100	100	123	TOTEXP05		HEALTH				114	3
101	101	154	TOTEXP05		HEALTH				147	2
102	102	175	TOTEXP05		HEALTH				171	2
103	103	66	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	59	2
104	104	178	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	163	2
105	105	76	TOTEXP05		HEALTH				71	2
106	106	84	TOTEXP05		HEALTH				79	2
107	107	473	TOTEXP05		HEALTH				452	2
108	108	144	TOTEXP05		HEALTH				131	2
109 110	109 110	97 132	TOTEXP05		HEALTH HEALTH				95 130	3 2
111	110	132	TOTEXP05		HEALTH				132	2
112	112	100			HEALTH				100	2
113	113	225	TOTEXP05		HEALTH				209	2
114	114	227			HEALTH				209	2
115	115	145	TOTEXP05	TOTAL	HEALTH	CARE	EXP	05	137	2

116	116	198	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	184	3
117	117	182	TOTEXP05	TOTAL H					170	2
118 119	118 119	195 123	TOTEXP05	TOTAL H					185 115	2 2
120	120	113	TOTEXP05	TOTAL H					105	2
121	121	150	TOTEXP05	TOTAL H					140	2
122	122	146	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	142	3
123	123	143	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	139	2
124	124	111	TOTEXP05	TOTAL H					106	2
125	125	121	TOTEXP05	TOTAL H					114	2
126 127	126 127	174 135	TOTEXP05	TOTAL H					154 128	2 3
128	128	182	TOTEXP05	TOTAL H					176	2
129	129	120	TOTEXP05	TOTAL H					110	2
130	130	90	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	87	2
131	131	147	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	140	2
132	132	68	TOTEXP05	TOTAL H					67	2
133	133	140	TOTEXP05	TOTAL H					123	3
134 135	134 135	100 380	TOTEXP05	TOTAL H					99 363	3 2
136	136	198	TOTEXP05	TOTAL H					193	2
137	137	168	TOTEXP05	TOTAL H					165	2
138	138	72	TOTEXP05	TOTAL H	EALTH	CARE	EXP	05	63	3
139	139	116	TOTEXP05	TOTAL H					112	2
140	140	422	TOTEXP05	TOTAL H					408	3
141	141	182	TOTEXP05	TOTAL H					172	3
142 143	142 143	75 209	TOTEXP05	TOTAL H					73 193	2 2
144	144	97	TOTEXP05	TOTAL H					93	2
145	145	218	TOTEXP05	TOTAL H					200	2
146	146	177	TOTEXP05	TOTAL H	EALTH	CARE	EXP	05	170	2
147	147	199	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	193	2
148	148	97	TOTEXP05	TOTAL H					91	2
149	149	142	TOTEXP05	TOTAL H					130	2
150 151	150 151	176 514	TOTEXP05	TOTAL H					164 490	2 2
152	152	133	TOTEXP05	TOTAL H					127	2
153	153	138	TOTEXP05	TOTAL H					137	2
154	154	127	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	121	3
155	155	224	TOTEXP05	TOTAL H					217	3
156	156	119	TOTEXP05	TOTAL H					115	2
157 158	157 158	192 100	TOTEXP05	TOTAL H					179 91	2 3
159	159	74	TOTEXP05	TOTAL H					74	2
160	160	198	TOTEXP05	TOTAL H					190	3
161	161	95	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	94	2
162	162	211	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	207	2
163	163	116	TOTEXP05	TOTAL H					113	3
164	164	130	TOTEXP05	TOTAL H					128	2
165 166	165 166	131 58	TOTEXP05	TOTAL H					122 53	2 2
167	167	248	TOTEXP05	TOTAL H					229	2
168	168	146	TOTEXP05	TOTAL H					145	2
169	169	178	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	166	2
170	170	129	TOTEXP05	TOTAL H					121	3
171	171	102	TOTEXP05	TOTAL H					93	2
172 173	172 173	325 88	TOTEXP05	TOTAL H					301 83	2 3
174	174	178	TOTEXP05	TOTAL H					176	2
175	175	268	TOTEXP05	TOTAL H					262	2
176	176	143	TOTEXP05	TOTAL H					134	2
177	177	725	TOTEXP05	TOTAL H					677	2
178	178	172	TOTEXP05	TOTAL H					161	2
179	179	281	TOTEXP05	TOTAL H					267	2
180 181	180 181	280 72	TOTEXP05	TOTAL H					257 70	3 2
182	182	219	TOTEXPUS	TOTAL H					214	2
183	183	180	TOTEXP05	TOTAL H					170	2
184	184	187	TOTEXP05	TOTAL H					182	2
185	185	160	TOTEXP05	TOTAL H	HEALTH	CARE	EXP	05	157	2

186	186	126	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	124	3
187	187	199	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	197	3
188	188	134	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	133	2
189	189	208	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	194	2
190	190	164	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	161	3
191	191	113	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	110	2
192	192	202	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	195	2
193	193	115	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	103	2
194	194	99	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	90	2
195	195	110	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	107	3
196	196	185	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	179	3
197	197	224	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	216	2
198	198	60	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	58	2
199	199	175	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	172	2
200	200	145	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	140	2
201	201	80	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	80	2
202	202	115	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	112	3
203	203	147	TOTEXP05	TOTAL HEALTH	CARE	EXP	05	142	2

Statistics

Variable	Label	Mean	of Mean
TOTEXP05	TOTAL HEALTH CARE EXP 05	3456.500008	90.433709