The Future of Faust

Ondemand and Co.

Yann Orlarey, Stéphane Letz

IFC 2024

EMERAUDE (INRIA/INSA/GRAME)

Part 1: A brief History of

Multirate in Faust

2009: Semantics of multirate Faust

The always-active monorate model is simple, but not always sufficient.

2015: Mute, Enable and Control

- 2015: mute(x,y) like x*y but the computation of x can be suspend when y is 0.
- Later, mute was renamed to enable, and a control variant was added.
- 2021: extended to -vec mode.

2020: Ondemand

- 2020: Till Bovermann asks for demand-rate computations
- 2020: Specification of ondemand
- 2022: Proof of concept presented at IFC-22
- 2024: Ondemand officially introduced at IFC-24

Part 2 : Ondemand

Introduction

Objective

Provide *multirate* and *call-by-need* computation while preserving *efficiency* and *simple semantics*

Multirate Computation

- Frequency domain
- Upsampling
- Downsampling

call-by-need

- Pay for what you use
- Controlling when computations occur
- Music composition-style computation

call-by-need strategy

Computations are only performed when explicitly required

- The demand (red arrow) is propagated backwards, starting from the outputs and moving towards the inputs.
- In response, the computed values (green arrows) are propagated forwards, moving from the inputs to the outputs.
- The output values remain constant until the next demand.

Ondemand Semantics

ondemand (C) applies C to downsampled input signals $(S_i \downarrow H)$, producing upsampled results $(Y_j \uparrow H)$. Here, H is the clock signal.

Semantic rule

$$(\text{od}) \frac{ [\![C]\!] (S_1 \downarrow H, ..., S_n \downarrow H) = (Y_1, ..., Y_m) }{ [\![\![\text{ondemand}(C)]\!] (H, S_1, ..., S_n) = (Y_1 \uparrow H, ..., Y_m \uparrow H) }$$

Downsampling

The downsampled $S_i \downarrow H$ is computed from S_i , based on the clock signal H. t is the time observed outside C, and t' inside.

t	Si	Н	$S_i \downarrow H$	down[[<i>H</i>]]	t'
0	а	1	a	0	0
1	b	0			
2	С	0			
3	d	1	d	3	1
4	f	1	f	4	2
5	g	0			

Table 1: Example of downsampling

Semantic rule

$$(\mathsf{down}) \frac{\mathsf{down}\llbracket H \rrbracket = \{n \in \mathbb{N} \mid \llbracket H \rrbracket(n) = 1\}}{\llbracket S_i \downarrow H \rrbracket(t) = \llbracket S_i \rrbracket(\mathsf{down}\llbracket H \rrbracket(t))}$$

Upsampling

 $S_i \uparrow H$ is the upsampling of S_i according to clock signal H. t is the time observed outside C, and t' inside.

t'	Si	Н	$S_i \uparrow H$	up[[<i>H</i>]]	t
0	a	1	a	0	0
1	d	0	a	0	1
2	f	0	а	0	2
		1	d	1	3
		1	f	2	4
		0	f	2	5

Table 2: Example of upsampling

Semantic rule

$$(\mathsf{up}) \frac{ \mathsf{up} [\![H]\!](t) = \sum_{i=0}^t [\![H]\!](i) - 1}{[\![S_i \uparrow H]\!](t) = [\![S_i]\!](\mathsf{up} [\![H]\!](t))}$$

9

Example 1: Sample and Hold

ondemand simplifies the implementation of a *Sample and Hold* (SH)circuit. It is directly expressed as the ondemand version of the identity function _.

1: without ondemand

```
SH = (X,_:select2) \sim _ with { X = _,_ <: !,_,_,!; };
```

2: with ondemand

```
SH = ondemand(_);
```

Example 1: Generated code

1: without ondemand

2: with ondemand

```
for (int i=0; i<count; i++) {
   fTempOSE = (float)input1[i];
   if ((float)input0[i]) {
      fPermVarOSE = fTempOSE;
   }
   output0[i] = (FAUSTFLOAT)(fPermVarOSE);
}</pre>
```

Example 2: downsampled noise, without ondemand


```
Faust code
process = ba.beat(100), no.noise : SH;
```

Example 2: downsampled noise, with ondemand


```
Faust code
process = ba.beat(100) : ondemand(no.noise);
```

Example 2: Generated code, without ondemand

```
Code generated for ba.beat(100), no.noise : SH
for (int i=0; i<count; i++) {</pre>
    iVecOSI[0] = ((iVecOSI[1] + 1) \% 100);
    iVec3SI[0] = ((1103515245 * iVec3SI[1]) + 12345);
    fVec2SI[0] = (((iVec0SI[0] == 0)) ?
                  (4.656613e-10f * float(iVec3SI[0]))
                  : fVec2SI[1]):
    output0[i] = (FAUSTFLOAT)(fVec2SI[0]);
    fVec2SI[1] = fVec2SI[0];
    iVec3SI[1] = iVec3SI[0];
    iVecOSI[1] = iVecOSI[0];
```

Example 2: Generated code, with ondemand

```
Code generated for ba.beat(100) : ondemand(no.noise)
for (int i=0; i<count; i++) {</pre>
    iVecOSI[0] = ((iVecOSI[1] + 1) \% 100);
    if ((iVecOSI[0] == 0)) {
        iVec2SI[0] = ((1103515245 * iVec2SI[1]) + 12345);
        fPermVarOSI = (4.656613e-10f * float(iVec2SI[0]));
        iVec2SI[1] = iVec2SI[0];
    output0[i] = (FAUSTFLOAT)(fPermVarOSI);
    iVecOSI[1] = iVecOSI[0];
```

Part 3: ondemand variants

Oversampling

oversampling(C)

Circuit C is run N times faster than the surrounding circuit. The sampling frequency observed by C, is adjusted proportionally to the oversampling factor.

Undersampling

undersampling(C)

Circuit C is run N times slower than the surrounding circuit. The sampling frequency observed by C, is adjusted proportionally to the undersampling factor.

Switch

switch(C0,C1,...,Ck)

Activate one of the Ci circuits according to the control input c. All the circuits must have the same type $n \to m$.

Interleave

interleave(C)

Assuming C is of type $n \to n$, interleave(C) is of type $1 \to 1$ and operates as follows:

- The incoming samples are distributed sequentially to each of the n inputs of C,
- C is then executed once, producing *n* output values.
- These *n* output values are interleaved back into a single output signal.

Conclusion

Ondemand and its variants introduce new perspectives

- Frequency domain computation
- Oversampling and undersampling
- Composition-style, call-by-need computation

While maintaining

- Code efficiency
- Simple semantics
- Native integration as circuit primitives.

Additional Examples

Euclidian Rythms

```
euclidian(n) = vgroup("%n.EUCLID", er(pulses, steps)
    with {
        // UI: pulses < steps
        steps = vslider("steps[style:knob]", 16, 2, 16, 1)+0.5:i
        pulses = vslider("pulses[style:knob]", 1, 1, 16, 1)+0.5:
        // Implementation
        er(B,P,C) =
            C * ondemand (
                (+(1): %(P)) ~
                : *(B)
                : %(P)
                : decr
               )(upfront(C));
        decr(x) = x < x';
        upfront(x) = x > x';
                                                               21
```

Loop

```
key(n) = vgroup("%n.KEY",
        trig : ondemand(irnd(k1,k2):loop(rn,ln):ba.midikey2hz) )
with \{ \text{ random} = +(12345) \sim *(1103515245): \}
        noise = random / 2147483647:
        irnd(x,y) = x+(noise+1)/2*(y-x);
        upfront(x) = x>x';
        loop(n,m) = select2(every(n)|for(m)) \sim O(m-1)
        with { every(n) = ((+(1):\%(n))^{-})^{-} == 0;
                for(n) = 1-10n: }:
        k1 = vslider("[1]key[style:knob]", 60, 0, 127, 1);
        k2 = k1+vslider("[2]delta[style:knob]", 0, 0, 24, 1);
        ln = vslider("[3]len[style:knob]", 3, 2, 64, 1);
        rn = vslider("[4]renew[style:knob]", 11, 2, 127, 1);
        trig = button("[5]trig") : upfront;
    };
```