PRESIDENT'S OFFICE

REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

JOINT EXAMINATION SOUTHERN ZONE (MTWARA AND LINDI)

131/1

PHYSICS 1

(For Both School and Private Candidates)

TIME: 3:00 HOURS

Monday, 04th, July, 2022 a.m

Instructions

- 1. This paper consists of section A and B with a total of **ten** (10) questions.
- 2. Answer all questions in section A and two (2) questions from section B.
- 3. Section A carries seventy (70) marks and section B carries thirty (30) marks.
- 4. Mathematical tables and non-programable calculators may be used.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- 6. The following information may be useful
 - (a) Acceleration due to gravity, $g = 9.8 \text{m/s}^2$
 - (b) Pi, $\pi = 3.14$
 - (c) Mass of Earth $M_E = 6.02 \times 10^{24} \text{kg}$
 - (d) Universal gas constant, R = 8.3J/mol K
 - (e) Charge on electron, $e = 1.6 \times 10^{-19} C$
 - (f) Gravitational constant, $G = 6.67 \times 10^{-11} \text{Nm}^{-2} \text{kg}^{-2}$

Page 1 of 4 acsee0001

SECTION A (70 marks)

Answer all questions in this section.

- 1. (a) (i) We normally use square brackets around M, L and T, why? (02 marks)
 - (ii) Identify the physical quantity X defined as $X = \frac{IFV^2}{wL}$, where I is moment of inertia, F is force, v is velocity, w is a work done and L is length

(03 marks)

- (b) the equation of a wave is given by the ratio $y = a \sin \left[\frac{2\pi}{\lambda} (ct b) \right]$, where t is time, λ is a wavelength of the wave motion. What are the dimensions of c and b. (05 marks)
- 2. (a) A person takes 10 observations in an experiment. If he repeats the same experiment by taking 50 observations, how is the probable error affected?

(02 marks)

- (b) (i) A man measured the height of his brother and obtained (190 ± 0.3) cm. However his shoes were found to increase the height by (2 ± 0.35) cm. What is his true height? (04 marks)
 - (ii) The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt{\frac{\ell}{g}}$. In finding the value of g, which quantity should be measured most accurately and why? (04 marks)
- 3. (a) (i) How does projectile motion differ from uniform circular motion? (02 marks)
 - (ii) A boy wants to throw a letter wrapped over a stone to his friend across the street 40m wide. The boy's window is 10m below friend's window. how should he throw the stone? (04 marks)
 - (b) (i) In long jumping, what factors determine the span of jump? (02 marks)
 - (ii) In projectile motion, what is the relation between the direction of acceleration and velocity? (02 marks)
- 4. (a) (i) Why do the dry leaves and fruits fall when we shake the tree?(02 marks)
 - (ii) If several forces act simultaneously on a body, which direction will it move? (02 marks)
 - (b) A wooden block moving to the East with velocity of 4m/s is hit by bullet travelling North-East with the velocity of 150m/s. If the mass of the block is 1.5kg and that of bullet is 200g and if the bullet remain embedded in the block. Determine;
 - (i) the velocity and direction of the bullet after impact. (04 marks)
 - (ii) the amount of heat liberated in the collision. (02 marks)

Page 2 of 4 acsee0001

- 5. (a) (i) Briefly describe two practical examples of uniform circular motion. (02 marks)
 - (ii) The moon's nearly orbit about the earth has a radius of about 3.85×10^8 m and a period of 27.3 days. Determine the acceleration of the moon toward
 - the earth. (03 marks)

 (b) A particle of mass 0.3kg moves with angular velocity of 10rad/s in a horizontal circle of radius 20cm inside a smooth hemispherical below. Find
 - (i) Reaction of the bowl of the particle.

(03 marks)

(ii) Radius of the top of the bowl

(02 marks)

- 6. (a) (i) Why do velocity and acceleration of a body executing S.H.M are out of phase? (02 marks)
 - (ii) Can simple pendulum experiment be done inside a satellite? Briefly explain your answer. (03 marks)
 - (b) A simple pendulum is executing S.H.M with a time period T. If the length of the pendulum is increases by 21%. Calculate the increase in the time period.

(05 marks)

- 7. (a) (i) You use a thumb and finger to open a bottle cork but turn the door by a single finger. Why? (02 marks)
 - (ii) Energy of 484J is spent in increasing the speed of a flywheel from increasing the speed of flywheel from 60r.p.m to 360r.p.m. Find the moment of inertia of the wheel. (03 marks)
 - (b) (i) State the principle of conservation of angular momentum. (02 marks)
 - (ii) If the earth were to suddenly contract to half its presence radius (without any external torque acting on it), by how much would the day be decreased? (03 marks)

SECTION B (30 marks)

Answer any **two (02)** questions in this section.

8. (a) (i) State Newton's law of universal gravitation and write its expression.

(02 marks)

- (ii) The escape velocity from the earth for a single piece of 1.20g is 11.2km/s. What would it be for a piece of 11.17g? (03 marks)
- (b) (i) A satellite of mass 200kg orbits the earth at a height 400km above the earth's surface. What will be its binding energy? (04 marks)
 - (ii) A small satellite revolves around a planet in an orbital just above the surface of the planet. The mean density of the planet is $8 \times 10^3 \text{kgm}^{-3}$, find the time period of the satellite. (03 marks)

Page 3 of 4 acsec 0001

(c) Determine the speed with which the earth would have to rotate on its axis so that a person on the equator would weight $\frac{3}{5}$ as much as at present.

(03 marks)

- 9. (a) (i) What is the meaning of temperature scale as applied in thermodynamic? (01 marks)
 - (ii) A scientist from TANZANIA called Mapunda designed a thermometer scale called Mapunda scale. Each division is called degree Mapunda (°M). On this scale, the ice point is marked 15°M and the steam point is marked as 230°M. Derive an expression for the relationship between mapunda scale and Celsius scale (04 marks)
 - (b) A liquid in glass thermometer uses a liquid volume which varies with temperature according to the equation, $V_{\theta} = V_{o}(1+a\theta+b\theta^{2})$, where V_{θ} and V_{o} are the volume of the gas at θ° and 0° C respectively, \mathbf{a} and \mathbf{b} are constant. If $a=b\times10^{3}$, what will be the reading of the liquid in glass scale when the actual temperature is 60° C? (05 marks)
 - (c) Show that the radial heat flow across the coaxial cylinder is given by $H = \frac{2\pi\kappa\ell(T_2 T_1)}{\ln\left(\frac{r_2}{r_1}\right)}, \text{ where } \kappa \text{ is the thermal conductivity, } \ell \text{ is the length of the } ln\left(\frac{r_2}{r_1}\right)$

cylinder, r_1 and r_2 are radii of inner and outer parts of the cylinder.

(05 marks)

- 10. (a) (i) Briefly explain why it is not possible to cool a room by leaving the door of the refrigerator open. (03 marks)
 - (ii) What happen to the temperature of the room in which an air conditioner is left running an a table in the middle of the room? (03 marks)
 - (b) A one mole of an ideal mono atomic gas is carried around the thermodynamic cycle. The cycle consist of three parts:

An isothermal expansion from A, pressure 5 atm to B 1 atm at 300k.

An isobaric compression from B to C and

A constant volume increase in pressure from C to A.

(i) Sketch the PV diagram.

(02 marks)

(ii) Determine the temperature of the gas at C

(02 marks)

(iii) Determine the work done by the gas per cycle.

(03 marks)

(c) How can you differentiate isothermal process from adiabatic process based on the slope of their curves? (02 marks)

Page 4 of 4 acsee 0001