Tutorial 3 Sets and Functions

Huan Jin 10/12/2023

Sets

Power sets

How many elements does each of these sets have where a and b are distinct elements?

- **a**) $\mathcal{P}(\{a, b, \{a, b\}\})$
- **b**) $\mathcal{P}(\{\emptyset, a, \{a\}, \{\{a\}\}\})$
- c) $\mathcal{P}(\mathcal{P}(\emptyset))$

Let A be a set, and the elements of A be sets.

Define
$$\bigcup A = \{x \mid \exists y \in A, x \in y\}.$$

- 1) Calculate $\bigcup \{\{a,b,c\},\{a,d,e\},\{a,f\}\};$
- 2) Prove that $\bigcup P(A) = A$;
- 3) Whether $P(\bigcup A) = A$?

$$\bigcup A = \{x \mid \exists y \in A, x \in y\}.$$

Answer:

1). Calculate $\bigcup \{\{a,b,c\},\{a,d,e\},\{a,f\}\};$

Solution:
$$\bigcup \{\{a,b,c\}, \{a,d,e\}, \{a,f\}\}\}$$

= $\{a,b,c\} \bigcup \{a,d,e\} \bigcup \{a,f\}$
= $\{a,b,c,d,e,f\}$

$$\bigcup A = \{x \mid \exists y \in A, x \in y\}.$$

2). Prove that $\bigcup P(A) = A$;

Proof: \subseteq : $\forall x \in \bigcup P(A)$, there exists y such that $y \in P(A)$ and $x \in y$; $\sin ce \ y \in P(A)$,

 $y \subseteq A$ (by definition of power set)

Given $x \in y$, $x \in A$, we have $\bigcup P(A) \subseteq A$;

 \supseteq : $\forall x \in A$, let $y = \{x\}$, then $y \subseteq A$ by definition of subset $y \in P(A)$ by definition of power set so $x \in \bigcup P(A)$ by definition of \bigcup , we prove $A \subseteq \bigcup P(A)$.

$$\bigcup A = \big\{ x \mid \exists y \in A, x \in y \big\}.$$

3). Whether $P(\bigcup A) = A$?

Answer: No!

Counter example:

$$A = \{\{a,b,c\}, \{a,d,e\}, \{a,f\}\}\}$$

$$\bigcup A = \{a,b,c,d,e,f\}$$

$$\{a,e\} \in P(\bigcup A), \text{ but } \{a,e\} \notin A$$
so $P(\bigcup A) \neq A$

• Let A and B be sets, prove

$$A \cap B = A \subseteq \overline{B}$$

We split task into two subtasks.

The **first** is to prove that $A \cap B = \emptyset \to A \subseteq \overline{B}$.

By way of contradiction, suppose $A \cap B = \emptyset$ and $A \not\subseteq \overline{B}$.

If $A \not\subseteq \overline{B}$, we can find an x, such that $x \in A$ and $x \not\in \overline{B}$.

But,

$$x\in A \land x \not\in \overline{B}$$

therefore, $x \in A \land x \in B$ (by definition of complement)

therefore, $x \in A \cap B$ (by definition of intersection) $\rightarrow A \cap B \neq \emptyset$

This leads to a contradiction.

The **second** task is to prove that $A \subseteq \overline{B} \to A \cap B = \emptyset$

Again, by way of contradiction, suppose $A \subseteq \overline{B}$ and $A \cap B \neq \emptyset$

If $A \cap B \neq \emptyset$ there exists an x, such that, $x \in A \cap B$.

But,

$$x \in A \cap B$$

therefore, $x \in A \land x \in B$ (by definition of intersection)

therefore, $x \in A \land x \not\in \overline{B}$ (by definition of complement) $\to A \not\subseteq \overline{B}$

This leads to a contradiction.

Finally, we have proved: $A \cap B = \emptyset$ if and only if $A \not\subseteq \overline{B}$

• Let A, B, and C be any sets, show that

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

We can prove X = Y by showing that if $a \in X$ then $a \in Y$, and if $a \notin X$ then $a \notin Y$. Let a = (x, y), and suppose $a \in A \times (B \cup C)$. $(x,y) \in A \times (B \cup C)$ therefore, $x \in A \land y \in (B \cup C)$ (by definition of Cartesian Products) therefore, $x \in A \land (y \in B \lor y \in C)$ (by definition of union) therefore, $(x \in A \land y \in B) \lor (x \in A \land y \in C)$ (by distributive law) therefore, $(x,y) \in A \times B \vee (x,y) \in A \times C$ (by definition of Cartesian Products) therefore, $(x,y) \in (A \times B) \cup (A \times C)$ (by definition of union) Therefore, $a \in (A \times B) \cup (A \times C)$ Let a = (x, y), and suppose $a \notin A \times (B \cup C)$. $=(x,y) \not\in A \times (B \cup C)$ therefore, $x \notin A \lor y \notin (B \cup C)$ (by definition of Cartesian Products) therefore, $x \notin A \lor (y \notin B \land y \notin C)$ (by definition of union) therefore, $(x \not\in A \lor y \not\in B) \land (x \not\in A \lor y \not\in C)$ (by distributive law) therefore, $(x,y) \not\in A \times B \wedge (x,y) \not\in A \times C$ (by definition of Cartesian Products) therefore, $(x,y) \not\in (A \times B) \cup (A \times C)$ (by definition of union) Therefore, $a \notin (A \times B) \cup (A \times C)$ We have finally proved that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Functions and Sequences

Functions

• Show that the function f(x) = |x| from the set of real numbers to the set of nonnegative real numbers is not invertible, but if the domain is restricted to the set of non-negative real numbers, the resulting function is invertible.

Answer:

For a function to be invertible, it needs to be bijective. Therefore, we need to check if this is one-to-one (injective) and onto (surjective).

(a)-Injective: No:

For some $x_1 \neq x_2$, say $x_1 = -x_2$, we have $f(x_1) = f(x_2)$, by definition of injective, the function is not injective.

If the domain is restricted to the set of nonnegative real numbers, f(x) is injective because

Assume $f(x_1)=f(x_2)$, we have $x_1=x_2$

Therefore, on the restricted domain f(x) is injective.

(b).Surjective

For some element $b \in rng(f)$, that b=|a|, with $a \in R$, b must be positive. Thus, the range is the set of all nonnegative real numbers. Because the range and codomain are the same, we can conclude that f is surjective.

- (c) Bijective: No, because it is not injective. Though, on the restricted domain, it is bijective because it is both injective and surjective.
 - d) Invertible: Again, only on the restricted domain.

• How can we produce the terms of a sequence if the first 10 terms are 1,3,4,7,11,18,29,47,76,123?

• How can we produce the terms of a sequence if the first 10 terms are 1,3,4,7,11,18,29,47,76,123?

• Solution:

 $L_n = L_{n-1} + L_{n-2}$, with initial condition $L_1 = 1$, $L_2 = 3$

Additional exercises on the textbook

- Section 2.1: 7 11 13 21-27 33 39 43
- Section 2.2 : 5-10 21-23 29-31 37-43
- Section 2.3: 7,15,23-27, 33,35,41,45-47,53,59,71,73
- Section 2.4: 1-4,6-7,9