Student Learning Outcomes Assessment Summary—Mathematics MS

Department of Mathematics and Statistics

Fall 2012 – Spring 2014

The following summary assessment of the MS, MAT, and PhD in Mathematics covers the time period from Fall 2012–Spring 2014, and was developed in conjunction with the SLOA Plan for M.S., M.A.T., and Ph.D. dated February 20, 2010.

During the time covered in this assessment, three students graduated with an M.S. in Mathematics (one in August 2012, one in May 2013, and one in August 2013), and three more are expected to finish in Spring 2014.

For Fall 2012, 10 students applied to the MS; of these, 5 were admitted and 3 attended. One of these students left after the first year, one is graduating in Spring 2014, and one is expected to finish by December 2014.

In Fall 2013, 11 students applied to the MS in Math. Of these, 8 were admitted, 5 attended, and one postponed after acceptance.

Two additional students applied in Spring 2014; one was withdrew the application after admittance and one was not admitted.

Outcome 1

From the SLOA Plan:

Intended outcomes	Assessment criteria and	Implementation
	procedures	
Our curriculum will meet na-	Comparison of UAF program	Every three years, the Grad-
tional standards	to University of Idaho, Uni-	uate Mathematics Commit-
	versity of Wyoming, and Uni-	tee will compare our program
	versity of North Dakota	to the three specified institu-
		tions and report their findings
		in its annual assessment re-
		port.

Structure of the MS program

University	Number of credits	exams	required core courses
UAF	30 credits minimum;	three 1.5 hour written	Algebra I, Real Anal-
	all four core courses	exams covering 3 sub-	ysis, Complex Analy-
		jects and at least two	sis, Topology
		core courses	
Idaho	30 credits; at least	4.5-hour written ex-	at least six 500-level
	18 credits (6 courses)	amination covering	courses in mathemat-
	in mathematics at the	six courses, 5 at	ics
	500 level	graduate level	
Wyoming	30 hours of formal	Exam in multivariate	Core courses: Real
	course work at the	calculus and linear al-	Variables I, Complex
	5000 level or above; 6	gebra at the level of	Variables I, Methods
	core courses	upper- division under-	of Applied Mathemat-
		graduate courses.	ics I, Computational
			Methods I, Advanced
			Linear Algebra, Grad-
			uate Abstract Algebra
North Dakota	30 (thesis) or 32	no exam	Core sequences:
	(non-thesis) credits;		Analysis; Applied
	Two full graduate		Mathematics; Al-
	sequences of the five		gebra; Topology;
	available		Probability and
			Statistics

Departmental Demographics

University	number of FT faculty	number of students	PhD?
UAF	10 TT, 2 lecturers (exclud-	10 graduate students	yes
	ing statistics)		
Idaho	14 TT faculty, plus an as-	11 MS students and 5 PhD	yes
	sociate dean and 2 research	students	
	associate professors; one in-		
	structor; one director of		
	math lab		
Wyoming	25 TT, 7 lecturers	27 graduate students and 3	yes
		post-docs	
North Dakota	18 TT faculty, 8 lecturers (3	10 graduate TAs	no
	PT)		

Our MS is in line with those offered by the comparator institutions. Our comprehensive exams are harder than Wyoming and North Dakota, but similar in aggregate to Idaho. We have fewer choices in the required core courses, but we also don't require as many core courses to be taken; we require 4, while Idaho and Wyoming require 6. Everyone requires 30 credits and graduate courses are 3 credits.

We have fewer faculty than any of the comparator institutions and a similar number of masters students as Idaho and North Dakota; it is not apparent how many of Wyoming's 27 graduate students are masters students.

Outcome 2

Intended outcomes	Assessment criteria and	Implementation
	procedures	
Our students will master core	All students are required to	Every spring, comprehensive
mathematical concepts	pass four core courses and	exams will be given, graded,
	pass a collection of exams	and discussed by the math
	(which depend on degree ar-	faculty. A summary of the re-
	eas) in core areas	sults will be prepared by the
		Graduate Committee and in-
		cluded in its annual assess-
		ment report.

Graduate core courses in Real Analysis, Complex Analysis, Algebra and Topology were all offered on the usual schedule.

MS comprehensive exams were given in June 2011, May 2012, May 2013, October 2013, and March 2014.

In June 2011, two students took exams for the first time; topics offered were Algebra, Topology, Numerical Linear Algebra, Complex Analysis and Mathematical Physics. One student passed all three exams, and one student passed two of the three; that student retook and passed one exam in May 2013.

In May 2012, one student took and passed the comprehensive exams; topics offered were Real Analysis, Complex Analysis, and Optimization.

In May 2013, four students took comprehensive exams; topics offered were Topology, Algebra, Graph theory, Numerical PDEs, Complex Analysis, and Numerical Linear Algebra. Two students passed all three exams, one student passed two of the three and retook and passed the third in October 2013. The final student failed all three exams in May 2013; the student retook and passed all three exams in March 2014.

Outcome 3

Intended outcomes	Assessment criteria and	Implementation
	procedures	
Our students will have oppor-	alumni survey	Every three years, alumni sur-
tunities to develop the skills		veys will be sent to all stu-
necessary to achieve their ca-		dents who earned a graduate
reer goals in mathematics		degree in mathematics 2, 3
		or 4 years prior. The Grad-
		uate Committee will summa-
		rize responses in its annual re-
		port.

No alumni surveys were available.

Of the three students who graduated during the time of this report, one is working on a Ph.D. in mathematics at UW-Madison, one will be adjuncting for DMS in the fall, and one is pursuing a Ph.D. in geophysics at UAF.