常微分方程计算指南

Author: bilibili@jkjkil-jiang github@jkjkil4

Cooperator: bilibili@百里朝歌_

I. 写在前面 2
1. 注意事项 2
2. 使用方法 2
II. 初等积分法 3
1. 变量分离方程 3
2. 齐次方程5
3. 一阶线性方程 7
4. Bernoulli 方程 10
5. Riccati 方程 11
6. ╬恰当方程及积分因子法; 12
7. 分组求积分因子法15
8. 隐式微分方程 15
9. 可降阶的高阶方程15
III. 线性微分方程组 17
1. 齐次线性微分方程组17
2. 非齐次线性微分方程组 20
3. 常系数线性微分方程组22
IV. 高阶线性微分方程 23
1. 一般理论 23
2. 常系数高阶线性微分方程23
3. 非齐次线性方程——常数变易法 23
4. 非齐次线性方程——待定系数法 24
5. 非齐次线性方程——叠加原理 28
6. *非齐次线性方程——辅助方程法 29
7. Euler 方程 30
8. *Laplace 变换法 31
9. 幂级数解法 32
10. *变换法 37
11. *边值问题37

I. 写在前面

1. 注意事项

该讲义仅用于复习 ODE 计算方法,过度依赖可能导致缺失推导逻辑与思维.

2. 使用方法

定义 I.1: 这里书写的是定义, 会使用该框给出一些必要的定义说明

基本方法 I.1: 这里书写的是方法,参照这个框里的方法进行求解

注: 这里书写的是一些注意事项

例 I.1: 这里书写的是例题

定理 I.1: 这里书写的是定理(出现得比较少)

以上这些框的编号规则为:

章节号.该框在章节中的序号

例如
 基本方法 I.2:
 基本方法 I.3:
 基本方法 I.4:
 例 I.2:

II. 初等积分法

1. 变量分离方程

基本方法 II.1: 如果你能将某个方程改写成

$$X(x) dx + Y(y) dy = 0$$

的形式, 那么可以对两项分别积分求解

$$\int X(x) \, \mathrm{d}x + \int Y(y) \, \mathrm{d}y = C$$

说明:例如, $\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \cos x \, \text{if} \, y \neq 0$ 时可以改写为

$$\frac{1}{v^2} \, \mathrm{d}y = \cos x \cdot \mathrm{d}x$$

等号两边积分得到 $\int \frac{1}{y^2} dy = \int \cos x dx$,即 $-\frac{1}{y} = \sin x + C$

于是原方程的通解为

$$y = \frac{-1}{\sin x + C}$$

注意,由于我们一开始假定了 $y \neq 0$,进而求得**通解**;

所以,我们也要考虑当 y=0,由于它不符合通解表达式,于是 y=0 是一个特解

例 II.1: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy + 4y + 3x + 12$$

解: 方程可以改写成

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+4)(y+3)$$

当 $y+3\neq 0$ 时, 改写为

$$\frac{1}{y+3} \, \mathrm{d}y = (x+4) \, \mathrm{d}x$$

积分得到

$$\begin{split} \ln|y+3| &= \frac{(x+4)^2}{2} + C_1 \\ e^{\ln|y+3|} &= e^{(x+4)^2/2 + C_1} \\ y+3 &= +e^{C_1} \cdot e^{(x+4)^2/2} \end{split}$$

由于 C_1 是任意常数,所以不妨用新的常数 $C = \pm e^{C_1} (\neq 0)$ 简化,得到**通解**

$$y = -3 + Ce^{(x+4)^2/2}, \quad C \neq 0$$

由于 y+3=0 (即 y=-3) 时, 如果允许 C=0, 那么**特解** y=-3 也包含在上式中, 所以

$$y = -3 + Ce^{(x+4)^2/2}$$

即表示了方程的解

例 II.2: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{y(1+x^2)}$$

解:

$$y \, \mathrm{d}y = \frac{x^2}{1 + x^2} \, \mathrm{d}x$$

$$y \, \mathrm{d}y = \left(1 - \frac{1}{1 + x^2}\right) \mathrm{d}x$$

$$\frac{1}{2}y^2 = x - \arctan x + C$$

例 II.3: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + x + y^2 + xy^2$$

解:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + x + (1+x)y^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (1+x)(1+y^2)$$

$$\frac{1}{1+y^2} \, \mathrm{d}y = (1+x) \, \mathrm{d}x$$

$$\arctan y = \frac{1}{2}(1+x)^2 + C$$

2. 齐次方程

基本方法 II.2: 如果方程可以表示为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{P(x,y)}{Q(x,y)}$$

并且 P(x,y) 和 Q(x,y) 都是 x 和 y 的同次齐次函数 (举个例子,比如 x^3y 和 $x^2y^2 + y^4$ 都是 4 次齐次的)

那么,方程就可以表示为 $\frac{\mathrm{d}y}{\mathrm{d}x} = \Phi\left(\frac{y}{x}\right)$ 的形式,并通过换元 $u = \frac{y}{x}$,以及

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}(ux)}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} \cdot x + u \cdot \frac{\mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} \cdot x + u$$

(灰色部分是推导过程)

转为使用 基本方法 II.1 计算 u 与 x 的变量分离方程,解出后代入 $u = \frac{y}{x}$ 即可

说明:例如,求解方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{y/x} + \frac{y}{x}$$

该方程本身已经是 $\frac{\mathrm{d}y}{\mathrm{d}x} = \Phi\left(\frac{y}{x}\right)$ 的形式了,令 $u = \frac{y}{x}$,则

$$\frac{\mathrm{d}u}{\mathrm{d}x} \cdot x + u = e^u + u$$

得

$$e^{-u} \, \mathrm{d} u = \frac{1}{x} \, \mathrm{d} x$$

积分得

$$e^{-u} + \ln|x| = C$$

代回 $u = \frac{y}{x}$ 得**通解**

$$e^{-y/x} + \ln|x| = C$$

如果方程右侧不是 $\Phi\left(\frac{y}{x}\right)$ 的形式,例如 $3\frac{y^2-2x^2}{2xy+x^2}$,那么可以同除 x^2 得到 $3\frac{\left(\frac{y}{x}\right)^2-2}{2\frac{y}{x}+1}$,这样就可以进行换元然后求解了

例 II.4: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^6 - 2x^2}{2xy^5 + x^2y^2}$$

解: 虽然这个不是齐次方程,但是可以令 $z=y^3$,并且可知 $\frac{\mathrm{d}z}{\mathrm{d}x}=\frac{\mathrm{d}(y^3)}{\mathrm{d}x}=3y^2\frac{\mathrm{d}y}{\mathrm{d}x}$,于是

5

$$\frac{\mathrm{d}z}{\mathrm{d}x} = 3\frac{z^2 - 2x^2}{2xz + x^2}$$

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = 3 \frac{u^2 - 2}{2u + 1}$$

 $u^2 - u - 6 \neq 0$ 时,整理得

$$\frac{2u+1}{(u-3)(u+2)}\,\mathrm{d}u = \frac{1}{x}\,\mathrm{d}x$$

即

$$\left(\frac{\frac{5}{7}}{u-3} + \frac{\frac{3}{5}}{u+2}\right) du = \frac{1}{x} dx$$

积分得

$$\frac{7}{5} \ln \lvert u - 3 \rvert + \frac{3}{5} \ln \lvert u + 2 \rvert = \ln \lvert x \rvert + \tilde{C}$$

即

$$(u-3)^7(u+3)^3 = Cx^5, \quad C = \pm e^{5\tilde{C}}$$

将 $u = \frac{y^3}{x}$ 代入得**通解**

$$(y^3 - 3x)^7 (y^3 + 2x)^3 = Cx^{15}$$

可以发现 $u^2 - u - 6 = 0$ 所得的解也包含在其中,于是不用另外区分**特解**

基本方法 II.3: 当微分方程有类似

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{ax + by + c}{mx + ny + l}\right)$$

的形式时, 注意这里的常数项 c 和 l, 如果没有这两个, 那么就是齐次方程, 可以直接按 基本方法 II.2 的方法求解, 但是这里的 c 和 l 阻碍了我们.

为了使其齐次化, 我们可以通过换元消去常数项

具体来说,我们需要求出 $\begin{cases} ax+by+c=0\\ mx+ny+l=0 \end{cases}$ 的解 $\begin{cases} x=\alpha\\ y=\beta \end{cases}$ 从而通过 $\begin{cases} x=\xi+\alpha\\ y=\eta+\beta \end{cases}$ 得到 ξ 与 η 关联的方程

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = f\left(\frac{a\xi + b\eta}{m\xi + n\eta}\right)$$

这样就化为可以通过 基本方法 II.2 求解的齐次方程.

说明:可以具象为,虽然两个直线的交点不位于原点,但我们通过变换挪到原点的位置.

例 II.5: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y + 1}{x - 2y + 1}$$

解:由

$$\begin{cases} 2x - y + 1 = 0 \\ x - 2y + 1 = 0 \end{cases}$$
解得 $x = -\frac{1}{3}$, 所以令
$$\begin{cases} x = \xi - \frac{1}{3} \\ y = \eta + \frac{1}{3} \end{cases}$$
则原方程变为
$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = \frac{2\xi - \eta}{\xi - 2\eta}$$

不再赘述齐次方程的求解,得到

$$\xi^2 - \xi \eta + \eta^2 = C$$

代回原变量得到通解

$$\left(x+\frac{1}{3}\right)^2-\left(x+\frac{1}{3}\right)\!\left(y-\frac{1}{3}\right)+\left(y-\frac{1}{3}\right)^2=C$$

3. 一阶线性方程

定义 II.1: 一阶线性微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = q(x)$$

其中 p(x) 和 q(x) 是特定区间上的连续函数

定义 II.2: 一阶齐次线性微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = 0$$

其中 p(x) 和 q(x) 是特定区间上的连续函数

注:这里的"齐次"含义与前面"齐次方程"中的含义是不同的

基本方法 II.4: 我们可以认为"一阶齐次线性方程"是"一阶线性方程"的一种特殊情况,我们将首先考虑"一阶齐次线性方程"的求解方法,再进而求解"一阶线性方程",这种思维在之后的许多方程中都有用到.

首先求解"一阶**齐次**线性方程" $\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = 0$,显然这是一个变量分离方程

$$\frac{1}{u}\,\mathrm{d}y + p(x)\,\mathrm{d}x = 0$$

可解为

$$y = Ce^{-\int p(x) \, \mathrm{d}x}$$
 1.

这就是"一阶齐次线性方程"的通解.

现在考虑"一阶线性方程" $\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = q(x)$,

我们使用"常数变易法"将式1的常数C换成待定函数C(x)

$$y = C(x) \cdot e^{-\int p(x) \, \mathrm{d}x}$$

代入"一阶线性方程"中,可得

$$C'(x)e^{-\int p(x)\,\mathrm{d}x}-C(x)e^{-\int p(x)\,\mathrm{d}x}p(x)+p(x)\cdot y=q(x)$$

即

$$C'(x)e^{-\int p(x)\,\mathrm{d}x}-p(x)\cdot y+p(x)\cdot y=q(x)$$

于是

$$C'(x) = e^{\int p(x) \, \mathrm{d}x} q(x)$$

从而得

$$C(x) = \int q(x)e^{\int p(x) dx} dx + C$$

所以得到"一阶线性方程"的通解

$$\begin{split} y &= C(x) \cdot e^{-\int p(x) \, \mathrm{d}x} \\ &= e^{-\int p(x) \, \mathrm{d}x} \left(C + \int q(x) e^{\int p(x) \, \mathrm{d}x} \, \mathrm{d}x \right) \\ &= C e^{-\int p(x) \, \mathrm{d}x} + e^{-\int p(x) \, \mathrm{d}x} \cdot \int q(x) e^{\int p(x) \, \mathrm{d}x} \, \mathrm{d}x \end{split}$$

说明: 值得注意的是, 通解可以分为两个部分

- · 绿色部分,这其实就是"一阶齐次线性方程"的通解
- · 红色部分, 这部分是"一阶线性方程"的一个特解

"通解"+"特解"的结构在后面也经常会出现。这里暂时不作详细说明。

注:有时为了方便、常把通解式2中的不定积分写成变上限的定积分

$$y = e^{-\int_{x_0}^x p(t) \, dt} \left(C + \int_{x_0}^x q(s) e^{\int_{x_0}^x p(t) \, dt} \, ds \right)$$
$$= C e^{-\int_{x_0}^x p(t) \, dt} + e^{-\int_{x_0}^x p(t) \, dt} \cdot \int_{x_0}^x q(s) e^{\int_{x_0}^x p(t) \, dt} \, ds$$

利用这种形式容易得到初值问题的解

例 II.6: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = x^3, \quad x \neq 0$$

解:相应齐次线性方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = 0$$

的通解是 $y = \frac{C}{x}$,于是把 C 替换为待定函数 C(x),设原方程有如下形式的解

$$y = \frac{C(x)}{x}$$

将此形式代入原方程,得 $C'(x)=x^4$,即 $C(x)=\frac{1}{5}x^5+C$ 从而,所求的通解为

$$y = \frac{1}{5}x^4 + \frac{C}{x}, \quad x \neq 0$$

也可以试着直接代入最终表达式

$$y = e^{-\int p(x) dx} \left(C + \int q(x) e^{\int p(x) dx} dx \right)$$
$$= e^{-\ln x} \left(C + \int x^3 e^{\ln x} dx \right)$$
$$= x^{-1} \left(C + \frac{1}{5} x^5 \right)$$
$$= \frac{1}{5} x^4 + \frac{C}{x}, \quad x \neq 0$$

结果是一样的

4. Bernoulli 方程

基本方法 II.5: 考虑微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = q(x) \cdot y^n$$

当 n = 0 或者 n = 1 时,

该方程退化为前面提到的"一阶齐次线性微分方程"或者"一阶线性微分方程".

如果 $n \neq 0$ 和 1,

此时我们称之为 Bernoulli 方程, 我们也可以找到方法化为一阶线性微分方程进行求解.

对于 Bernoulli 方程, 两边同乘 $(1-n)y^{-n}$, 得到

$$(1-n)y^{-n}\frac{{\rm d}y}{{\rm d}x} + (1-n)p(x)\cdot y^{1-n} = (1-n)q(x)$$

(这是为了消掉 q(x) 旁的 y,并且凑系数)

由于
$$(y^{1-n})' = (1-n)y^{-n}$$
,所以

$$\frac{\mathrm{d}(y^{1-n})}{\mathrm{d}x} + (1-n)p(x)\cdot y^{1-n} = (1-n)q(x)$$

再令 $z=y^{1-n}$,就有

$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1-n)p(x) \cdot z = (1-n)q(x)$$

于是,我们就化为关于未知函数 z 的一阶线性方程,利用上节的常数变易法,再将 $z=y^{1-n}$ 代入即可得到方程的通解

$$y^{1-n} = e^{-(1-n)\int p(x)\,\mathrm{d}x}\cdot \left(C + (1-n)\int q(x)e^{(1-n)\int p(x)\,\mathrm{d}x}\,\mathrm{d}x\right)$$

例 II.7: 求解微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\frac{y}{x} - xy^3$$

解: 观察这个式子,不难发现他就是一个 n=3 的 Bernoulli 方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{6}{x}y = -xy^3$$

$$\mathbb{H} p(x) = -\frac{6}{x}, \ q(x) = -x$$

假设 $y \neq 0$,所以我们对方程两边同乘 $-2y^{-3}$,再令 $z = y^{-2}$,则

$$\frac{\mathrm{d}z}{\mathrm{d}x} = -\frac{12}{x}z + 2x$$

此时这个方程就变为了关于z的一阶线性微分方程,我们对他使用常数变易法,求解后将原变量y代入,可得**通解**

$$y^2 = 7\frac{x^{12}}{C + x^{14}}$$

因为 n=3>0,我们前面计算过程中乘上 $-2y^{-3}$ 时假设了 $y\neq 0$,所以我们也要考虑 y=0 的情况,即 y=0 是一个**特解**

5. Riccati 方程

基本方法 II.6: 考虑微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y^2 + q(x)y + r(x)$$

其中 p(x), q(x), r(x) 均为区间 I 上的连续函数,且 $p(x) \neq 0$,方程右边是一个关于 y 的二次多项式,我们称作 Riccati 方程。对于这样的形式我们一般无法用之前提到的初等积分法求解,但我们已知 Riccati 方程有一个特解 $\varphi_1(x)$,我们令 $y = z + \varphi_1(x)$,便可以消去方程不含 y 的项 r(x),从而通过初等积分法求出其通解。

一般来说, 消去后得到的是 Bernoulli 方程, 也有机会把 y 一次项也消掉得更简单的形式。

例 II.8: 求解方程

$$y'e^{-x} + y^2 - 2ye^x = 1 - e^{2x}$$

我们首先对这个方程进行变形为

$$y' + e^x y^2 - 2e^{2x} y = e^x - e^{3x}$$

然后我们与上面的 Riccati 方程的形式进行对比,发现这是一个 Riccati 方程。观察发现,这个方程有一个特解 $y=e^x$,之后我们令 $y=z+e^x$,则我们就可得到一个新的关于 z 的方程

$$z' + e^x z^2 = 0$$

这个方程刚好也消去了 y 的一次项, 对这个方程我们就可以运用初等积分法得其通解为

$$z = \frac{1}{e^x + C}$$

然后将 y 代入即可得原方程通解为

$$y = \frac{1}{e^x + C} + e^x$$

6. 计恰当方程及积分因子法计

前面我们讨论了很多种微分方程的求法,例如分离变量、齐次方程等,以下介绍的是"粗暴方法",适用于在没有发现前面结构的情况下使用,作为"通用方案".

基本方法 II.7: 考虑一阶微分方程

$$P(x,y) dx + Q(x,y) dy = 0$$

当恒等式 $\frac{\partial P}{\partial y}(x,y)\equiv \frac{\partial Q}{\partial x}(x,y)$ 成立(即 P 对 y 的偏导和 Q 对 x 的偏导相等)时,我们称该方程为**恰当方程**.

此时,该方程可以表示为某个函数 $\Phi(x,y)$ 的全微分 $\mathrm{d}\Phi(x,y) = P(x,y)\,\mathrm{d}x + Q(x,y)\,\mathrm{d}y$,并且 $\Phi(x,y) = C$ 就是该微分方程的解,于是我们的目标是求出该 $\Phi(x,y)$.

由于用符号描述方法比较晦涩, 于是这里直接给出计算例子

例 II.9: 求解微分方程

$$(y - 3x^2) dx + (x - 4y) dy = 0$$

解: $P(x,y)=y-3x^2$, Q(x,y)=x-4y, 由于 $\frac{\partial P}{\partial y}=1=\frac{\partial Q}{\partial x}$, 所以这是恰当方程! 因此我们就需要找出函数 $\Phi(x,y)$, 使得 $\frac{\partial \Phi}{\partial x}=P$ 且 $\frac{\partial \Phi}{\partial y}=Q$, 所以,我们先考虑前一个偏导数等式,对其求积分得

$$\Phi(x,y) = \int P(x,y) \,\mathrm{d}x = \int \bigl(y-3x^2\bigr) \,\mathrm{d}x = xy-x^3+\psi(y)$$

其中 $\psi(y)$ 是该积分的常数项,因为这是关于 x 的积分,自然会产生这一项.

于是, 再由后一个等式
$$\frac{\partial \Phi}{\partial u} = Q$$
 得

$$\frac{\partial (xy - x^3 + \psi(y))}{\partial y} = x - 4y$$

$$x + \psi'(y) = x - 4y$$

所以 $\psi'(y) = -4y$,即 $\psi(y) = -2y^2$,这样我们就求出了

$$\Phi(x,y) = xy - x^3 - 2y^2$$

于是恰当方程 $(y-3x^2) dx + (x-4y) dy = 0$ 的**通解**为

$$xy - x^3 - 2y^2 = C$$

基本方法 II.8: 如果方程

$$P(x,y) dx + Q(x,y) dy = 0$$

不是**恰当方程**,也就是 $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ 时,要怎么办呢?

此时我们需要找出一个函数 $\mu(x,y)$,使得原方程乘上该函数后

$$\mu(x,y)P(x,y)\,\mathrm{d}x + \mu(x,y)Q(x,y)\,\mathrm{d}y = 0$$

成为恰当方程, 进而可以使用前述方法进行计算.

于是我们这里讨论如何找出 $\mu(x,y)$ (我们称之为**积分因子**).

找出 $\mu(x,y)$ 使其成为恰当方程,也意味着,本来原方程 $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ 让我们无从下手,乘上 $\mu(x,y)$ 后,使得 $\frac{\partial (\mu P)}{\partial y} \equiv \frac{\partial (\mu Q)}{\partial x}$ 成立,展开得到

$$Q\frac{\partial \mu}{\partial x} - P\frac{\partial \mu}{\partial y} = \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\mu \qquad 3.$$

然而并不是所有情况都方便找出 $\mu(x,y)$, 这里我们讨论 μ 仅与 x 或 y 相关时的情况

当

$$G(x) \coloneqq \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q}$$

仅与x有关,与y无关时

$$\mu(x) = e^{\int G(x) \, \mathrm{d}x}$$

使得

$$\mu(x)P(x,y)\,\mathrm{d}x + \mu(x)Q(x,y)\,\mathrm{d}y = 0$$

是恰当方程

큐

$$H(y) \coloneqq \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{-P}$$

仅与 y 有关, 与 x 无关时

$$\mu(y) = e^{\int H(y) \, \mathrm{d}y}$$

使得

$$\mu(y)P(x,y) dx + \mu(y)Q(x,y) dy = 0$$

是恰当方程

说明: 可以通过假设 $\mu(x,y)$ 仅与 x 或 y 相关,化简 式 3 进而得到上面两个结论.

例 II.10: 求解微分方程

$$\left(3x^3+y\right)\mathrm{d}x+\left(2x^2y-x\right)\mathrm{d}y=0$$

解:因为

$$\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} = 2(1 - 2xy)$$

所以此方程不是恰当方程, 但是

$$G(x) \coloneqq \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} = -\frac{2}{x}$$

是仅与 x 有关的函数, 所以可以得到积分因子

$$\mu(x) = e^{\int -\frac{2}{x} \, \mathrm{d}x} = \frac{1}{x^2}$$

将其乘原方程,得到恰当方程

$$\frac{3x^3 + y}{x^2} dx + \frac{2x^2y - x}{x^2} dy = 0$$

于是就可以使用求解恰当方程的基本方法 II.7 来求解了,求出

$$\frac{3}{2}x^2 + y^2 - \frac{y}{x} = C$$

说明:该题的最后一步也可以通过观察凑全微分来求解,例如可以把式4写成

$$3x dx + 2y dy + \frac{y dx - x dy}{x^2} = 0$$

则得

$$d\left(\frac{3}{2}x^2 + y^2 - \frac{y}{x}\right) = 0$$

所以也可以得到原方程的通积分.

这种分组观察的方法需要我们记住一些二元函数的全微分公式:

$$y \, dx + x \, dy = d(xy)$$

$$\frac{y \, dx - x \, dy}{y^2} = d\left(\frac{x}{y}\right)$$

$$\frac{-y \, dx + x \, dy}{x^2} = d\left(\frac{y}{x}\right)$$

$$\frac{y \, dx - x \, dy}{xy} = d\left(\ln\frac{x}{y}\right)$$

$$\frac{x \, dy - y \, dx}{x^2 + y^2} = d\left(\arctan\frac{y}{x}\right)$$

例 II.11: 求解一阶线性方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x) \cdot y = q(x)$$

解:将方程改写为

$$(p(x) \cdot y - q(x)) dx + dy = 0$$
5.

此时 $P = p(x) \cdot y - q(x)$, Q = 1, 易见

$$\frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} = p(x)$$

是只依赖于 x,而与 y 无关的函数,于是 $\mu=e^{\int p(x)\,\mathrm{d}x}$ 就是 式 5 的积分因子. 进而同样可以求出和之前求解"一阶线性微分方程"时一样的结果

$$y = e^{-\int p(x) \, \mathrm{d}x} \bigg(C + \int q(x) e^{\int p(x) \, \mathrm{d}x} \, \mathrm{d}x \bigg)$$

注:事实上,用积分因子的观点可以统一前面所讲的各种初等积分法.但是比较粗暴,如果能发现先前的那些特殊结构,可以更方便地求解.

7. 分组求积分因子法

[TODO]

8. 隐式微分方程

[TODO]

9. 可降阶的高阶方程

本节只介绍三类高阶微分方程的解法,基本思路是降低微分方程的阶数.

基本方法 II.9: 对于方程

$$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = f(x)$$

直接求积分 n 次即可

基本方法 II.10: 对于不显含未知函数 y 的微分方程

$$F\left(x, \frac{\mathrm{d}^k y}{\mathrm{d}x^k}, \cdots, \frac{\mathrm{d}^n y}{\mathrm{d}x^n}\right) = 0$$

令 $\frac{\mathrm{d}^k y}{\mathrm{d}x^k} = z$, 则将方程降低 k 阶, 此时方程变为

$$F\left(x, z, \cdots, \frac{\mathrm{d}^{n-k}z}{\mathrm{d}x^{n-k}}\right) = 0$$

说明:例如方程

$$\frac{\mathrm{d}^5 y}{\mathrm{d}x^5} - \frac{1}{x} \frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = 0$$

令
$$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = z$$
,则有

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{x}z$$

积分得
$$z = C_1^* x$$
 即 $\frac{\mathrm{d}^4 y}{\mathrm{d} x^4} = C_1^* x$

再积分,得**通解**

$$y = C_1 x^5 + C_2 x^3 + C_3 x^2 + C_4 x + C_5$$

基本方法 II.11: 对于 n 阶自治微分方程(不显含自变量 x)

$$F\left(y, \frac{\mathrm{d}y}{\mathrm{d}x}, \cdots, \frac{\mathrm{d}^n y}{\mathrm{d}x^n}\right) = 0$$

[TODO]

III. 线性微分方程组

微分方程组的一般形式是

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = f_1(x,y_1,\cdots,y_n) \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = f_2(x,y_1,\cdots,y_n) \\ \cdots \\ \frac{\mathrm{d}y_n}{\mathrm{d}x} = f_n(x,y_1,\cdots,y_n) \end{cases}$$

这里的特点是可以将微分 $\frac{dy_i}{dx}$ 表示成 $x = y_i$ 的函数 $f_i(x, y_1, \dots, y_n)$ 的形式

在数学的一些实际应用中,有许多设计非线性微分方程组的问题.通常对它们采用线性化的方法简化为线性微分方程组的问题,由此获得问题的答案.因而,研究线性微分方程组是进一步研究一般(非线性)微分方程组的基础.

在后续的几个小节, 我们会介绍**齐次线性微分方程组**以及**非齐次线性微分方程组**的求解方法. 与前面类似的思路, 我们会先研究**齐次**线性微分方程组的求解, 进而研究**非齐次**线性微分方程组的求解.

1. 齐次线性微分方程组

注:该小节涉及较多定理,这里简略叙述,具体请参阅原课本

定义 III.1: 齐次线性微分方程组

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = a_{11}(x)y_1 + a_{12}(x)y_2 + \dots + a_{1n}(x)y_n \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = a_{21}(x)y_1 + a_{22}(x)y_2 + \dots + a_{2n}(x)y_n \\ \dots \\ \frac{\mathrm{d}y_n}{\mathrm{d}x} = a_{n1}(x)y_1 + a_{n2}(x)y_2 + \dots + a_{nn}(x)y_n \end{cases}$$

这里的特点是可以将微分 $\frac{\mathrm{d}y_i}{\mathrm{d}x}$ 表示成若干 y_i 一次项的和,且每个 y_i 前有个关于 x 的系数 $a_{ij}(x)$

若记
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $A(x) = \begin{pmatrix} a_{11}(x) & \cdots & a_{1n}(x) \\ \vdots & & \vdots \\ a_{n1}(x) & \cdots & a_{nn}(x) \end{pmatrix}$,则齐次线性微分方程组可以表示为向量形式
$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = A(x)\mathbf{y}$$
 6.

其中 A(x) 称为**系数矩阵**

定理 III.1: 有很多 y 都满足 式 6,由书上的推导可以知道,我们一定能从中找出 n 个线性无关的解 ϕ_1, \cdots, ϕ_n ,并将 式 6 的通解 y 表示为

$$\mathbf{y} = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n$$

证明: 这里仅证明当 ϕ_1 和 ϕ_2 是解时, $y = c_1\phi_1 + c_2\phi_2$ 也是解因为 ϕ_1 和 ϕ_2 是解,即 $\frac{d\phi_1}{dx} = A(x)\phi_1$ 且 $\frac{d\phi_2}{dx} = A(x)\phi_2$,因此

$$\begin{split} \frac{\mathrm{d}(c_1\phi_1+c_2\phi_2)}{\mathrm{d}x} &= c_1 \frac{\mathrm{d}\phi_1}{\mathrm{d}x} + c_2 \frac{\mathrm{d}\phi_2}{\mathrm{d}x} \\ &= c_1 A(x)\phi_1 + c_2 A(x)\phi_2 \\ &= A(x)(c_1\phi_1 + c_2\phi_2) \end{split}$$

即有 $\frac{dy}{dx} = A(x)y$ 成立,于是 y 也是解

定义 III.2: 式 6 的基解矩阵(这是分块列向量形式)

$$\Phi(x) = \left(\phi_1(x) \, | \, \phi_2(x) \, | \, \phi_n(x)\right)$$

定理 III.1 可以写成

$$m{y} = \Phi(x)C, \quad C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

这里的 C 是一个常数向量

定理 III.2: 如果有一个常数矩阵 C

$$C = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix}$$

且 $\det C \neq 0$, 那么 $\Phi(x)C$ 也是基解矩阵

证明: 因为 $\frac{\mathrm{d}\Phi(x)}{\mathrm{d}x} = A(x)\Phi(x)$,所以

$$\frac{\mathrm{d}\big(\Phi(x)\cdot C\big)}{\mathrm{d}x} = \frac{\mathrm{d}\Phi(x)}{\mathrm{d}x}C = \Big(A(x)\Phi(x)\Big)C = A(x)\Big(\Phi(x)C\Big)$$

于是 $\Phi(x)C$ 也是基解矩阵

例 III.1: 试求微分方程组

$$\frac{\mathrm{d} oldsymbol{y}}{\mathrm{d} x} = egin{pmatrix} 1 & 1 \ 0 & rac{1}{x} \end{pmatrix} oldsymbol{y}, \quad oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \end{pmatrix}$$

 \mathbf{M} : 首先注意系数矩阵 A(x) 当 x=0 时无定义. 将方程组写成分量形式

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = y_1 + y_2\\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = \frac{1}{x}y_2 \end{cases}$$

由第二式求得 $y_2=C_2x$,代入第一式得

$$\frac{\mathrm{d}y_1}{\mathrm{d}x} = y_1 + C_2 x$$

它是一阶线性方程, 可求得

$$y_1 = C_1 e^x - C_2(x+1)$$

所以, 通解是

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = C_1 \begin{pmatrix} e^x \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -(x+1) \\ x \end{pmatrix}, \quad x \neq 0$$

2. 非齐次线性微分方程组

定义 III.3: 非齐次线性微分方程组

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = a_{11}(x)y_1 + a_{12}(x)y_2 + \dots + a_{1n}(x)y_n + f_1(x) \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = a_{21}(x)y_1 + a_{22}(x)y_2 + \dots + a_{2n}(x)y_n + f_2(x) \\ \dots \\ \frac{\mathrm{d}y_n}{\mathrm{d}x} = a_{n1}(x)y_1 + a_{n2}(x)y_2 + \dots + a_{nn}(x)y_n + f_n(x) \end{cases}$$

若记

$$\boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{A}(x) = \begin{pmatrix} a_{11}(x) & \cdots & a_{1n}(x) \\ \vdots & & \vdots \\ a_{n1}(x) & \cdots & a_{nn}(x) \end{pmatrix}, \quad \boldsymbol{f}(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

则齐次线性微分方程组可以表示为向量形式

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = A(x)\boldsymbol{y} + \boldsymbol{f}(x)$$

这里与**齐次**线性微分方程组的区别在于,多了一个**非齐次项** f(x)

在前面章节讨论**齐次一阶线性方程**和**一阶线性方程**时,我们注意到非齐次方程的通解有类似于 齐次方程通解+<mark>非齐次方程特解</mark>的形式,在方程组中也有类似的特点,这里我们具体说明。

注: 为了方便以下叙述,这里再写一遍我们将要讨论的方程组的定义

· 非齐次线性微分方程组

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = A(x)\boldsymbol{y} + \boldsymbol{f}(x)$$
 7.

· 齐次线性微分方程组

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = A(x)\boldsymbol{y} \tag{8}$$

定理 III.3: 如果 $\phi(x)$ 是 式 7 的解, $\psi(x)$ 是 式 8 的解, 那么 $\phi(x) + \psi(x)$ 是 式 7 的解

证明: 这是因为

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} [\phi(x) + \psi(x)] &= \frac{\mathrm{d}\phi(x)}{\mathrm{d}x} + \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} \\ &= A(x)\phi(x) + f(x) + A(x)\psi(x) \\ &= A(x) [\phi(x) + \psi(x)] + f(x) \end{split}$$

于是 $\phi(x) + \psi(x)$ 满足 式 7, 是它的解, 证毕

基本方法 III.1:由于我们在上一小节已经讨论了**齐次线性微分方程** 式 8 的求解方法。于是,为了求解**非齐次线性微分方程** 式 7,我们只要再找出 式 7 的一个<mark>特解</mark>就好了,我们使用常数变易法。

若我们已经求出基解矩阵,我们在上一小节已经知道,齐次线性微分方程式8的通解是

$$m{y} = \Phi(x)C, \quad C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

这里的 C 是常数向量,为了求**非齐次线性微分方程** 式 7 的通解,我们将常数向量 C 替换为待定向量 C(x) 即

$$\phi(x) = \Phi(x)C(x), \quad C(x) = \begin{pmatrix} c_1(x) \\ c_2(x) \\ \vdots \\ c_n(x) \end{pmatrix} = 9.$$

把这个待定解代入非齐次线性微分方程 式 7 中

$$\frac{\mathrm{d}\Big(\Phi(x)C(x)\Big)}{\mathrm{d}x} = A(x)\Big(\Phi(x)C(x)\Big) + \boldsymbol{f}(x)$$

$$\Phi'(x)C(x) + \Phi(x)C'(x) = A(x)\Phi(x)C(x) + \boldsymbol{f}(x)$$

因为 $\Phi(x)$ 是**齐次线性微分方程** 式 8 的基解矩阵,有 $\Phi'(x) = A(x)\Phi(x)$,于是画下划线的那两项可以消掉,从而得到

$$\Phi(x)C'(x) = \boldsymbol{f}(x)$$

由此求得

$$C(x) = \int \Phi^{-1}(x) \boldsymbol{f}(x) \, \mathrm{d}x$$

于是代回式 9,得到非齐次线性微分方程式 7的一个特解

$$\phi(x) = \Phi(x) \int \Phi^{-1}(x) \boldsymbol{f}(x) \, \mathrm{d}x$$

于是,使用通解+特解的形式,得到非齐次线性微分方程的通解

$$egin{aligned} m{y} &= \Phi(x)C + \Phi(x)\int \Phi^{-1}(x)m{f}(x)\,\mathrm{d}x \ \\ &= \Phi(x)igg(C + \int \Phi^{-1}(x)m{f}(x)\,\mathrm{d}xigg) \end{aligned}$$

3. 常系数线性微分方程组

[TODO]

IV. 高阶线性微分方程

1. 一般理论

2. 常系数高阶线性微分方程

3. 非齐次线性方程——常数变易法

基本方法 IV.1: 高阶微分方程

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$$

有对应的齐次线性方程

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

根据特征根求出齐次线性方程的基本解组

$$\phi_1(x), \quad \phi_2(x), \quad \cdots \quad \phi_n(x)$$

于是齐次线性方程有通解

$$y^*=C_1\phi_1(x)+C_2\phi_2(x)+\cdots+C_n\phi_n(x)$$

将这些常数 C_1, \cdots, C_n 替换为 $C_1(x), \cdots, C_n(x)$,

也就是设 $y=C_1(x)\phi_1(x)+C_2(x)\phi_2(x)+\cdots+C_n(x)\phi_n(x)$

并求解方程组(该方程组由 $\Phi(x)C'(x) = f(x)$ 得)

$$\begin{cases} C_1'(x)\phi_1(x)+\cdots+C_n'(x)\phi_n(x)=0\\ C_1'(x)\phi_1'(x)+\cdots+C_n'(x)\phi_n'(x)=0\\ \cdots\\ C_1'(x)\phi_1^{(n-2)}(x)+\cdots+C_n'(x)\phi_n^{(n-2)}(x)=0\\ C_1'(x)\phi_1^{(n-1)}(x)+\cdots+C_n'(x)\phi_n^{(n-1)}(x)=f(x) \end{cases}$$

(注意观察,这里每往下一行, ϕ 就多导一次,并且只有最后一行是 = f(x))

解得 $C'_1(x), \dots, C'_n(x)$ 的表达式,再求积分即得 $C_1(x), \dots, C_n(x)$,

代回 $y = C_1(x)\phi_1(x) + C_2(x)\phi_2(x) + \dots + C_n(x)\phi_n(x)$ 就得到了原方程的**通解**

例 IV.1: 求解方程

$$y'' + y = 1 - \frac{1}{\sin x}$$

解: 特征方程 $\lambda^2+1=0$ 解得 $\lambda_1=\mathrm{i},\ \lambda_2=-\mathrm{i},\$ 得到对应齐次线性方程的基本解组

$$\phi_1(x) = \cos x, \quad \phi_2(x) = \sin x$$

于是齐次线性方程有通解

$$y^* = C_1 \cos x + C_2 \sin x$$

使用常数变易法,把 C_1 和 C_2 替换为待定函数 $C_1(x)$ 和 $C_2(x)$,也就是设 $y=C_1(x)\cos x+C_2(x)\sin x$

由
$$\begin{cases} C_1'(x)\phi_1(x) + C_2'(x)\phi_2(x) = 0\\ C_1'(x)\phi_1'(x) + C_2'(x)\phi_2'(x) = f(x) \end{cases}$$
,并且在该题中非齐次项 $f(x) = 1 - \frac{1}{\sin x}$,得到

$$\begin{cases} C_1'(x)\cos x & + C_2'(x)\sin x = 0 \\ C_1'(x)(-\sin x) + C_2'(x)\cos x = 1 - \frac{1}{\sin x} \end{cases}$$

解得

$$C_1'(x)=1-\sin x,\quad C_2'(x)=\cos x-\frac{\cos x}{\sin x}$$

积分得

$$C_1(x) = x + \cos x + C_1, \quad C_2(x) = \sin x - \ln |\sin x| + C_2$$

从而原方程的通解为

$$\begin{split} y &= C_1(x)\cos x + C_2(x)\sin x \\ &= C_1\cos x + C_2\sin x + x\cos x + 1 - \sin x\ln|\sin x| \end{split}$$

注: 我们指出: 对常系数非齐次线性微分方程, 用常数变易法总能将通解表达出来, 这是具有一般性的方法. 但在用常数变易法求特解的过程中, 还需要计算积分.

有时积分并不容易表达出来,因此对具有某些特殊形式的 f(x) 的微分方程,还可以用其它的方法求其特解,在后续的几节展开介绍.

4. 非齐次线性方程——待定系数法

现在我们讨论非齐次项 f(x) 的两种特殊形式,以便求解对应的高阶微分方程

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$$
10.

基本方法 IV.2: 若 f(x) 具有这样的形式:

$$f(x) = P_m(x)e^{\mu x}$$

其中 μ 为实常数, $P_m(x)$ 表示 x 的 m 次多项式,如 $f(x) = (x^2 - 2x - 1)e^x$, $f(x) = e^{2x}$ 等那么 式 10 有如下形式的特解:

$$\phi^*(x) = \begin{cases} Q_m(x)e^{\mu x}, & \text{if } \mu \text{ 不是特征根时} \\ x^kQ_m(x)e^{\mu x}, & \text{if } \mu \text{ 是 } k \text{ 重特征根时} \end{cases}$$

其中 $Q_m(x)$ 是 m 次待定多项式,我们可以把 $\phi^*(x)$ 代回 式 10 从而得出 $Q_m(x)$ 的表达式.

说明: 这里将 $\phi^*(x)$ 分为 μ 是否是特征根进行讨论,不妨思考一下,如果把"不是特征根"的情况看成"0 重特征根"呢?

例 IV.2: 求解微分方程

$$y'' + 6y' + 5y = e^{2x}$$

 \mathbf{M} : 特征方程 $\lambda^2 + 6\lambda + 5 = 0$ 解得 $\lambda_1 = -1$, $\lambda_2 = -5$, 得对应齐次线性方程的基本解组:

$$\phi_1(x) = e^{-x}, \qquad \phi_2(x) = e^{-5x}$$

现在用 基本方法 IV.2 求原方程的一个特解, 因为 $\mu = 2$ 不是特征根,故可设特解:

* A

$$y^* = A \cdot e^{2x}$$

(这里的系数 A 即为方法中提到的 $Q_m(x)$,因为这里 $P_m(x)=1$,所以只需设一个常数 A) (举个例子,如果 $P_m(x)=x+3$ 就得设 $Q_m(x)=Ax+B$ 了)

代入原方程, 得到

$$\left(A \cdot e^{2x}\right)'' + 6 \left(A \cdot e^{2x}\right)' + 5 \left(A \cdot e^{2x}\right) = e^{2x}$$

即 $4A \cdot e^{2x} + 12A \cdot e^{2x} + 5A \cdot e^{2x} = e^2x$,解得 $A = \frac{1}{21}$,所以原方程的一个特解为

$$y^* = \frac{1}{21}e^{2x}$$

于是原方程的通解(齐次方程通解 + 原方程特解)为

$$y = C_1 e^{-x} + C_2 e^{-5x} + \frac{1}{21} e^{2x}$$

基本方法 IV.3: 若 f(x) 具有这样的形式:

$$f(x) = \left[A_{m_1}(x)\cos(\beta x) + B_{m_2}(x)\sin(\beta x)\right]e^{\alpha x}$$

其中 $A_{m_1}(x)$ 和 $B_{m_2}(x)$ 分别是 x 的 m_1 次和 m_2 次多项式,那么式 10 有如下形式的特解:

$$\phi^*(x) = \begin{cases} [C_n(x)\cos(\beta x) + D_n(x)\sin(\beta x)]e^{\alpha x}, & \text{$ \preceq \alpha + \mathrm{i}\beta$ π-$E}特征根时} \\ x^k[C_n(x)\cos(\beta x) + D_n(x)\sin(\beta x)]e^{\alpha x}, & \text{$ \preceq \alpha + \mathrm{i}\beta$ } \not \to k \text{ \sharp-$E} \text{$\sharp$-$E}} \end{cases}$$

其中 $C_n(x)$ 和 $D_n(x)$ 是 n 次待定多项式, $n = \max\{m_1, m_2\}$

说明: 因为这里的 $C_n(x)$ 和 $D_n(x)$ 是待定项,所以需要 $n = \max\{m_1, m_2\}$,取最大的次数以便保证可以代入原方程求解,因为我们无法保证更小的数是"足够"的.

说明: $f(x) = \left[A_{m_1}(x)\cos(\beta x) + B_{m_2}(x)\sin(\beta x)\right]e^{\alpha x}$ 的结构是否有点晦涩?

其实你可以思考一下,这个结构和使用 Euler 公式展开复数幂次

$$e^{(\alpha+i\beta)x} = [\cos(\beta x) + i\sin(\beta x)]e^{\alpha x}$$

有异曲同工之处.

例 IV.3: 求解微分方程

$$y'' + y = \sin x$$

解: 特征方程 $\lambda^2 + 1 = 0$ 解得 $\lambda_1 = i, \lambda_2 = -i$,得对应齐次线性方程的基本解组:

$$\phi_1(x) = \cos x, \qquad \phi_2(x) = \sin x$$

现在用基本方法 IV.3 求原方程的一个特解,

 $\alpha = 0$, $\beta = 1$, 因为 $\alpha + i\beta$ 是特征根, 故可设特解:

$$y^* = x(A\cos x + B\sin x)e^{0x}$$
$$= Ax\cos x + Bx\sin x$$

于是可以计算

$$(y^*)' = (A + Bx)\cos x + (B - Ax)\sin x$$

 $(y^*)'' = (2B - Ax)\cos x - (2A + Bx)\sin x$

所以代入原方程,得到

$$2B\cos x - 2A\sin x = \sin x$$

比较系数得

$$B = 0, \quad A = -\frac{1}{2}$$

所以原方程的一个特解为

$$y^* = -\frac{1}{2}x\cos x$$

于是原方程的通解(齐次方程通解+原方程特解)为

$$y = C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x$$

例 IV.4: 求解微分方程

$$y'' + y = \sin \omega x, \quad \omega > 0$$

解:由于 $1 \cdot i$ 是特征根,所以该题需要考虑 $\omega = 1$ 与 $\omega \neq 1$ 的情况.

当 $\omega = 1$ 时,即为例 IV.3 的情况,不再赘述

当 $\omega \neq 1$ 时,可以设方程有形如

$$y^* = (A\cos\omega x + B\sin\omega x)e^{0x}$$
$$= A\cos\omega x + B\sin\omega x$$

的特解, 可以计算

$$(y^*)' = -A\omega \sin \omega x + B\omega \cos \omega x$$
$$(y^*)'' = -A\omega^2 \cos \omega x - B\omega^2 \sin \omega x$$

代入原方程得

$$A(1-\omega^2)\cos\omega x + B(1-\omega^2)\sin\omega x = \sin\omega x$$

比较系数得

$$A = 0, \quad B = \frac{1}{1 - \omega^2}$$

由此得出特解

$$y^* = \frac{1}{1 - \omega^2} \sin \omega x$$

于是原方程的通解(齐次方程通解+原方程特解)为

$$y = C_1 \cos x + C_2 \sin x + \frac{1}{1 - \omega^2} \sin \omega x$$

综上所述

$$y = \begin{cases} C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x, & \omega = 1 \\ C_1 \cos x + C_2 \sin x + \frac{1}{1 - \omega^2} \sin \omega x, & \omega \neq 1 \end{cases}$$

5. 非齐次线性方程——叠加原理

基本方法 IV.4: 为了叙述方便,设(线性微分算子)

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y$$

对于前一节所述类型的两个微分方程 $L[y] = f_1(x)$ 和 $L[y] = f_2(x)$, 如果

$$y_1(x) \not = L[y] = f_1(x)$$
 的解

 $y_2(x)$ 是 $L[y] = f_2(x)$ 的解

那么

$$y_1(x) + y_2(x) \not\in L[y] = f_1(x) + f_2(x)$$
 的解

我们称之为**叠加原理**,通过这一原理,我们可以将 $L[y] = f_1(x) + f_2(x)$ 拆分成两个方程 $L[y] = f_1(x)$ 和 $L[y] = f_2(x)$ 进行求解,并进而得到原方程的解

说明: 这表明,我们通过 L[x]=0 求出齐次线性方程通解,并且通过 $L[x]=f_1(x)$ 和 $L[x]=f_2(x)$ 分别求出两个特解,就可以将原方程 $L[x]=f_1(x)+f_2(x)$ 的**通解**表示为

y = 齐次方程通解 + <mark>特解 1</mark> + <mark>特解 2</mark>

例 IV.5: 求解微分方程

$$y'' - 4y' + 8y = e^{2x} + \sin 2x$$

 \mathbf{M} : 特征方程 $\lambda^2-4\lambda+8=0$ 解得 $\lambda_1=2+2\mathrm{i},\ \lambda_2=2-2\mathrm{i}$ 于是得基本解组:

$$e^{2x}\cos 2x$$
, $e^{2x}\sin 2x$

对于方程

$$y'' - 4y' + 8y = e^{2x}$$

设其特解

$$y_1 = A \cdot e^{2x}$$

代入解得 $A=\frac{1}{4}$,于是得特解 $y_1=\frac{1}{4}e^{2x}$

对于方程

$$y'' - 4y' + 8y = \sin 2x$$

设其特解

$$y_2 = A\cos 2x + B\sin 2x$$

代入解得 $A = \frac{1}{10}$, $B = \frac{1}{20}$, 于是得特解 $y_2 = \frac{1}{10}\cos 2x + \frac{1}{20}\sin 2x$

所以,原方程的通解为

$$y = C_1 e^{2x} \cos 2x + C_2 e^{2x} \sin 2x + \frac{1}{4} e^{2x} + \frac{1}{10} \cos 2x + \frac{1}{20} \sin 2x$$

6. *非齐次线性方程——辅助方程法

例 IV.6: 求解微分方程

$$y'' + y = \frac{1}{2}\cos x$$

解:利用待定系数法可以求出上面方程的特解,下面再介绍利用辅助方程求特解的方法.引入辅助方程

$$y'' + y = \frac{1}{2}e^{ix}$$
 11.

因为 i 是一重特征根, 故 式 11 有如下形式的特解:

$$\phi(x) = A_1 x e^{ix}$$

将其代入方程,得 $A_1 = -\frac{\mathrm{i}}{4}$,于是 式 11 有特解

$$\phi(x) = -\frac{\mathrm{i}}{4}xe^{\mathrm{i}x} = \frac{x}{4}\sin x - \frac{\mathrm{i}}{4}x\cos x$$

因为原方程的右端 $\frac{1}{2}\cos x$ 是方程 式 11 的右端 $\frac{1}{2}e^{\mathrm{i}x}$ 的实部,所以原方程有特解

$$\psi(x) = \frac{x}{4}\sin x$$

所以原方程的通解为(这里省略求解基本解组的过程)

$$y = C_1 \cos x + C_2 \sin x + \frac{x}{4} \sin x$$

7. Euler 方程

基本方法 IV.5: Euler 方程具有如下形式

$$x^{n} \frac{\mathrm{d}^{n} y}{\mathrm{d} x^{n}} + a_{1} x^{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \dots + a_{n-1} x \frac{\mathrm{d} y}{\mathrm{d} x} + a_{n} y = 0$$

我们有办法将这个"变系数线性微分方程"化为"常系数线性微分方程"进行求解.

我们需要换元令 $x = e^t$ 即有 $t = \ln x$, (x > 0)

则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = e^{-t} \frac{\mathrm{d}y}{\mathrm{d}t}$$
$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = e^{-2t} \left(\frac{\mathrm{d}^2y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t}\right)$$

.....

$$\frac{\mathrm{d}^k y}{\mathrm{d} x^k} = e^{-kt} \left(\frac{d^k y}{\mathrm{d} t^k} + \beta_1 \frac{\mathrm{d}^{k-1} y}{\mathrm{d} t^{k-1}} + \dots + \beta_{k-1} \frac{\mathrm{d} y}{\mathrm{d} t} \right)$$

使用以上代换可以将 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 替换为 $\frac{\mathrm{d}y}{\mathrm{d}t}$ 并消去 x^k 系数,其中, $\beta_1,\cdots,\beta_{k-1}$ 是某些常数.

事实上,用归纳法可以证明,对于 $x = e^t$,有关系式

$$x^k \frac{\mathrm{d}^k y}{\mathrm{d} x^k} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\mathrm{d}}{\mathrm{d} t} - 1 \right) \cdots \left(\frac{\mathrm{d}}{\mathrm{d} t} - k + 1 \right) y$$

于是,我们就可以依次消去原方程 式 12 中的 x^k 系数,得到换元后的方程 式 13,并直接得到其特征方程 式 14

$$x^{n} \frac{\mathrm{d}^{n} y}{\mathrm{d}x^{n}} + a_{1} x^{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d}x^{n-1}} + \dots + a_{n-1} x \frac{\mathrm{d}y}{\mathrm{d}x} + a_{n} y = 0$$
 12.

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}}{\mathrm{d}t}-1\right)\cdots\left(\frac{\mathrm{d}}{\mathrm{d}t}-n+1\right)y+a_1\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}}{\mathrm{d}t}-1\right)\cdots\left(\frac{\mathrm{d}}{\mathrm{d}t}-n+2\right)y+\cdots+a_{n-1}\frac{\mathrm{d}}{\mathrm{d}t}y+a_ny=0$$
13.

$$\lambda(\lambda-1)\cdots(\lambda-n+1) \\ + a_1\lambda(\lambda-1)\cdots(\lambda-n+2) \\ + \cdots + a_{n-1}\lambda \\ + a_1\lambda(\lambda-1)\cdots(\lambda-n+2) \\ + \cdots + a_{n-1}\lambda \\ + \cdots$$

通过特征方程,解出 y-t 方程的解,代回 $t = \ln x$,从而得到原方程的解.

对 x < 0, 令 $x = -e^t$, 结果也一样.

例 IV.7: 求解微分方程

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

解: 令 $x = e^t$,根据以上方法,可得特征方程

$$\lambda(\lambda - 1) + 3\lambda + 1 = 0$$

即 $\lambda^2 + 2\lambda + 1 = 0$,解得特征根 $\lambda_1 = \lambda_2 = -1$,从而得到 y-t 方程的通解

$$y = e^{-t}(C_1 + C_2 t)$$

如果也考虑到变换 $x = -e^t$,则得原方程的通解为

$$y = \frac{1}{x}(C_1 + C_2 \ln|x|)$$

例 IV.8: 求解微分方程

$$x^2y'' + 3xy' + 5y = 0$$

解:该方程是 Euler 方程,可知特征方程

$$\lambda(\lambda - 1) + 3\lambda + 5 = 0$$

解得特征根 $\lambda_1=-1+2\mathrm{i},\ \lambda_2=-1-2\mathrm{i},$ 注意到

$$|x|^{-1+2\mathrm{i}} = e^{(-1+2\mathrm{i})\ln|x|} = \frac{1}{|x|} \Big[\cos(2\ln|x|) + \mathrm{i}\sin(2\ln|x|) \Big]$$

因而,原方程的通解为

$$y = \frac{1}{x} \Big[C_1 \cos(2\ln\lvert x\rvert) + C_2 \sin(2\ln\lvert x\rvert) \Big]$$

注: 对更一般的方程

$$(ax+b)^n \frac{\mathrm{d}^n y}{\mathrm{d} x^n} + a_1 (ax+b)^{n-1} + \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \dots + a_{n-1} (ax+b) \frac{\mathrm{d} y}{\mathrm{d} x} + a_n y = 0$$

此时的变换是令 $ax + b = e^t$ 或 $ax + b = -e^t$

8. *Laplace 变换法

[TODO]

9. 幂级数解法

通过前面的讨论知道, 能用初等函数的有限形式求解的微分方程只局限于某些特殊的类型, 欲扩大微分方程的求解范围, 应该放弃解的"有限形式", 而转向寻求"无限形式"的解.

幂级数解法对一般的齐次或非齐次线性微分方程都是适用的. 为了说明幂级数解法的思想, 本节仅讨论二阶齐次线性微分方程, 即考虑

$$A(x)y'' + B(x)y' + C(x)y = 0$$
15.

其中 A(x), B(x) 和 C(x) 都在区间 $|x-x_0| < r$ 内解析,也就是可以展开成 $(x-x_0)$ 的幂级数

$$A(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n, \quad |x-x_0| < r$$

前面在讨论线性微分方程的基本理论时,要求方程的最高阶导数项的系数是 1. 因而我们需要考虑 A(x) 的零点. 如果 $A(x_0) \neq 0$,则称 x_0 为方程的**常点**. 如果 $A(x_0) = 0$,则称 x_0 为方程的**奇点**.

基本方法 IV.6: 常点情形 (幂级数解法)

若 x_0 是常点 $(A(x_0) \neq 0)$, 则 式 15 可写成

$$y'' + p(x)y' + q(x)y = 0$$
16.

其中系数函数

$$p(x) = B(x)/A(x),$$
 $q(x) = C(x)/A(x)$

在 x_0 附近是解析的. 此时,式 16 在区间 $|x-x_0| < r$ 内有收敛的**幂级数解**

$$y = \sum_{n=0}^{\infty} C_n (x - x_0)^n$$

把这个解代入原方程即可求出各项系数 C_n 的递推公式. 具体来说,其中 C_0 和 C_1 是两个任意常数,而 C_n $(n \ge 2)$ 可以从 C_0 和 C_1 出发依次由递推公式确定.

注: 依据初值条件求解时, C_0 和 C_1 可以通过在 x_0 点的初值条件来决定,即 $C_0=y_0$ 和 $C_1=y_0'$

例 IV.9: 求解 Legendre 方程(勒让德, 1752-1833, 法国数学家)

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

其中 n 是常数

解: 方程可改写成

$$y'' - 2\frac{x}{1 - x^2}y' + \frac{n(n+1)}{1 - x^2}y = 0$$

其中 $p(x) = -\frac{2x}{1-x^2}$, $q(x) = \frac{n(n+1)}{1-x^2}$, 可知原方程在 |x| < 1 (即|x-0| < 1) 时有幂级数解

$$y=\sum_{k=0}^{\infty}C_kx^k$$
 ($\Pr\sum_{k=0}^{\infty}C_k(x-0)^k$)

代入原方程得

$$\underbrace{(1-x^2) \left(\sum_{k=0}^{\infty} C_k x^k\right)'' - 2x \left(\sum_{k=0}^{\infty} C_k x^k\right)'}_{} + n(n+1) \left(\sum_{k=0}^{\infty} C_k x^k\right) = 0$$

$$(1-x^2) \left(\sum_{k=0}^{\infty} k(k-1) C_k x^{k-2}\right) \qquad 2x \left(\sum_{k=0}^{\infty} k C_k x^{k-1}\right)$$

$$\sum_{k=0}^{\infty} k(k-1) C_k x^{k-2} - \sum_{k=0}^{\infty} k(k-1) C_k x^k \qquad \sum_{k=0}^{\infty} 2k C_k x^k$$

$$\sum_{k=0}^{\infty} k(k-1) C_k x^{k-2} - \sum_{k=0}^{\infty} k(k-1) C_k x^k$$

$$\sum_{k=0}^{\infty} (k+2)(k+1) C_{k+2} x^k - \sum_{k=0}^{\infty} k(k-1) C_k x^k$$

整理得

$$\sum_{k=0}^{\infty} \left[(k+2)(k+1)C_{k+2} - (k-1)kC_k - 2kC_k + n(n+1)C_k \right] x^k = 0$$

即

$$\sum_{k=0}^{\infty} \left[(k+2)(k+1)C_{k+2} + (n+k+1)(n-k)C_k \right] x^k = 0$$

由此得递推公式 $(k+2)(k+1)C_{k+2} + (n+k+1)(n-k)C_k = 0$ 即

$$C_{k+2} = -\frac{(n-k)\cdot(n+k+1)}{(k+2)(k+1)}C_k$$

还记得我们设的幂级数解是 $y=\sum_{k=0}^{\infty}C_kx^k$ 吗? $k=0,1,2,\cdots$

所以我们可以基于 C_0 和 C_1 ,将其余的 C_k 用 C_0 或 C_1 表示.

例如,对于从 C_0 开始的k 为偶数的项而言:

$$\begin{split} C_2 &= -\frac{n \cdot (n+1)}{2!} C_0 \\ C_4 &= -\frac{(n-2) \cdot (n+3)}{4 \cdot 3} C_2 = (-1)^2 \frac{\left[(n-2) \ n \right] \cdot \left[(n+1) (n+3) \right]}{4!} C_0 \end{split}$$

$$C_{2m} = (-1)^m \frac{\left[(n-2m+2)\cdots(n-2)n\right]\cdot \left[(n+1)(n+3)\cdots(n+2m-1)\right]}{(2m)!} C_0$$

对于从 C_1 开始的k 为奇数的项而言:

$$\begin{split} C_3 &= -\frac{(n-1)\cdot(n+2)}{3\cdot 2}C_1\\ C_5 &= -\frac{(n-3)\cdot\frac{(n+4)}{5\cdot 4}C_3}{5\cdot 4}C_3 = (-1)^2\frac{\left[(n-3)(n-1)\right]\cdot\left[(n+2)(n+4)\right]}{5!}C_1 \end{split}$$

$$C_{2m+1} = (-1)^m \frac{\left[(n-2m+1)\cdots(n-3)(n-1)\right]\cdot \left[(n+2)(n+4)\cdots(n+2m)\right]}{(2m+1)!} C_1$$

因此,Legendre 方程的幂级数解为

$$y = \sum_{k=0}^{\infty} \left(C_{2k} x^{2k} + C_{2k+1} x^{2k+1} \right)$$

注: 若记

$$\begin{split} y_1(x) &= 1 - \frac{n(n+1)}{2!} x^2 + \frac{(n-2)n(n+1)(n+3)}{4!} x^4 - \cdots \\ y_2(x) &= x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^5 - \cdots \end{split}$$

易见, $y_1(x)$ 和 $y_2(x)$ 是线性无关的, Legendre 方程的幂级数解可以写成

$$y = C_0 y_1(x) + C_1 y_2(x), \quad -1 < x < 1$$

注:还有关于 Legendre 多项式、Rodrigues 公式 等内容,请参阅原教材

基本方法 IV.7: 奇点情形(广义幂级数解法)

若 x_0 是奇点($A(x_0) = 0$),A(x)y'' + B(x)y' + C(x)y = 0 一般不再具有幂级数形式的通解,而且在奇点 x_0 的初值问题可能是无解的,但我们可以考虑这样的形式:

$$(x - x_0)^2 y'' + (x - x_0)P(x)y' + Q(x)y = 0$$
17.

其中 P(x), Q(x) 在 x_0 点附近可展成 $(x-x_0)$ 的幂级数

(即在常点情形的 式 16 中, $(x-x_0)p(x)$ 和 $(x-x_0)^2q(x)$ 可展成 $(x-x_0)$ 的幂级数)

则方程式17有收敛的广义幂级数解

$$y = \sum_{k=0}^{\infty} C_k (x-x_0)^{k+\rho} \quad (C_0 \neq 0)$$

其中**指标** ρ 和系数 C_k $(k \ge 1)$ 可以用代入法确定

(可以发现,相比常点情形中需要用代入法确定 C_k ,在奇点情形中多了一个需要确定的 ρ)

例 IV.10: 求解 Bessel 方程(贝塞尔, 1784-1846, 德国天文学家)

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$$
18.

其中常数 $n \ge 0$

解: 与 式 17 比较, $x_0 = 0$; P(x) = 1 与 $Q(x) = x^2 - n^2$ 可在区间 $-\infty < x < \infty$ 上展成 x 的幂级数. 由方法可知该方程 式 18 有广义幂级数解

$$y = \sum_{k=0}^{\infty} C_k x^{k+\rho} \quad (C_0 \neq 0)$$

其中系数 C_k $(k \ge 1)$ 和指标 ρ 待定. 将该待定解代入原方程 式 18 得

$$\frac{x^2 \bigg(\sum_{k=0}^{\infty} C_k x^{k+\rho}\bigg)''}{\downarrow} + \frac{x \bigg(\sum_{k=0}^{\infty} C_k x^{k+\rho}\bigg)'}{\downarrow} + \underbrace{(x^2 - n^2) \sum_{k=0}^{\infty} C_k x^{k+\rho}}_{\downarrow} = 0}{\downarrow}$$

$$\sum_{k=0}^{\infty} (k+\rho)(k+\rho-1)C_k x^{k+\rho} \qquad \sum_{k=0}^{\infty} (k+\rho)C_k x^{k+\rho} \qquad -n^2 \sum_{k=0}^{\infty} C_k x^{k+\rho} + \sum_{k=0}^{\infty} C_k x^{k+\rho+2}$$

$$-n^2 \sum_{k=0}^{\infty} C_k x^{k+\rho} + \sum_{k=2}^{\infty} C_{k-2} x^{k+\rho}$$

$$\text{Spic } C_{-1} = C_{-2} = 0$$

$$\text{Florith} \text{The probability } k = 2 \text{ for } k = 0$$

$$-n^2 \sum_{k=0}^{\infty} C_k x^{k+\rho} + \sum_{k=0}^{\infty} C_{k-2} x^{k+\rho}$$

整理得

$$\sum_{k=0}^{\infty} \left[(k+\rho)(k+\rho-1)C_k + (k+\rho)C_k - n^2C_k + C_{k-2} \right] x^{k+\rho} = 0$$

它可改写成

$$\sum_{k=0}^{\infty} \bigl[(\rho+n+k)(\rho-n+k)C_k + C_{k-2}\bigr] x^{k+\rho} = 0$$

由此得递推公式

$$(\rho + n + k)(\rho - n + k)C_k + C_{k-2} = 0, \quad k = 0, 1, 2, \cdots$$

可令 k=0 推得指标方程

$$(\rho + n)(\rho - n) = 0$$

由此得到两个**指标根**: $\rho_1 = n$ 和 $\rho_2 = -n$

(1). 当 $\rho = \rho_1 = n$ 时, 递推公式成为

$$(2n+k)kC_k + C_{k-2} = 0, \quad (k=1,2,\cdots)$$
 19.

由此可依次确定 C_k , 具体来说, 对于下标 k 为奇数的情况:

$$(2n+1)C_1 + C_{-1} = 0$$

因此可得 $C_1=0$,进一步可以得到 $C_3=C_5=\cdots=C_{2k+1}=\cdots=0$

对于下标 k 为偶数的情况, 考虑 式 19 递推公式的变形

$$C_k = \frac{-1}{2^2 \left(n + \frac{k}{2}\right) \frac{k}{2}} C_{k-2}$$

得到

$$C_2 = \frac{-1}{2^2(n+1)}C_0$$

$$C_4 = \frac{(-1)^2}{2^4(n+1)(n+2)2!}C_0$$

.....

$$C_{2m} = \frac{(-1)^m}{2^{2m} \left \lceil (n+1)(n+2) \cdots (n+m) \right \rceil m!} C_0$$

我们可以想办法用阶乘的"形式"简化以上表达式,但由于这里 n 可取任意非负数,不一定是整数,因此我们这里引入 Γ 函数的记号

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt \quad (p > 0)$$

可以认为它是阶乘在非整数的推广, 具有性质

$$\begin{split} &\Gamma(p+1)=p\Gamma(p)\\ &\Gamma(n+k+1)=\left[(n+k)\cdots(n+2)(n+1)\right]\cdot\Gamma(n+1)\\ &\Gamma(k+1)=k! \end{split}$$

并取

$$C_0=rac{1}{2^n\Gamma(n+1)}$$

编者注:我并未理解为什么要有这一项
也许只是为了到后面能和 x^{2k+n} 整在一起

于是可把上面 C_{2k} 的表达式改写成

$$\begin{split} C_{2k} &= \frac{(-1)^k}{\left[(n+1)(n+2)\cdots(n+k)\cdot\Gamma(n+1)\right]k!\cdot 2^{2k}\cdot 2^n} \\ &= \frac{(-1)^k}{\Gamma(n+k+1)\Gamma(k+1)}\cdot \frac{1}{2^{2k+n}} \end{split}$$

于是,对应于指标根 $\rho_1=n$,我们得到 Bessel 方程的一个广义幂级数解

$$y=J_n(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{\Gamma(n+k+1)\Gamma(k+1)}\Big(\frac{x}{2}\Big)^{2k+n}$$

它在 $-\infty < x < \infty$ 上收敛, 称为第一类 Bessel 函数

(2). 当 $\rho = \rho_2 = -n \ (n > 0)$ 时 累了,这里分类讨论太多了,自己看书吧

10. *变换法

[TODO]

11. *边值问题

[TODO]