Opcodes

x means source register number, DD means look at the source register codes. n means constant number (B for 8-bit, W for 16-bit, D for 32-bit, Q for 64-bit). For arguments to ops, R means destination register, S means source register, K means constant, P means memory address.

mov

```
mov R S \Rightarrow 48 89 DD mov R K \Rightarrow 48 C7 Cx nQ
```

arithmetic

add

```
add R S \Rightarrow 48 01 DD add R (K < 127) \Rightarrow 48 83 Cx nB add rax K \Rightarrow 48 05 nQ add R K \Rightarrow 48 81 Cx nQ
```

\mathbf{sub}

```
sub R S \Rightarrow 48 29 DD sub R (K < 127) \Rightarrow 48 83 C(x+8) nB sub rax K \Rightarrow 48 2D nQ sub R K \Rightarrow 48 81 E(x+8) nQ
```

mul

```
mul R \Rightarrow 48 F7 Ex mul P \Rightarrow 48 F7 24 25 *
```

imul

```
imul R \Rightarrow 48 F7 E(x+8) imul P \Rightarrow 48 F7 2C 25 * imul R S \Rightarrow 48 OF AF DD
```

div

```
div R \Rightarrow 48 F7 Fx div P \Rightarrow 48 F7 34 25 *
```

idiv

```
idiv R \Rightarrow 48 F7 F(x+8) idiv P \Rightarrow 48 F7 3C 25 *
```

shift

rotate

```
\begin{array}{llll} & \texttt{ror[1]} & \texttt{R} \Rightarrow \texttt{48 D1 C(x+8)} \\ & \texttt{ror[n]} & \texttt{R} & \texttt{K} \Rightarrow \texttt{48 C1 C(x+8) nB} \\ & \texttt{rol[1]} & \texttt{R} \Rightarrow \texttt{48 D1 Cx} \\ & \texttt{rol[n]} & \texttt{R} & \texttt{K} \Rightarrow \texttt{48 C1 Cx nB} \end{array}
```

bitwise logic

```
not R \Rightarrow 48 F7 Dx or R S \Rightarrow 48 09 ... xor R S \Rightarrow 48 31 ... and R S \Rightarrow 48 21 ...
```

miscellaneous

 $\mathtt{nop}\Rightarrow\mathtt{90}$

Destination Registers

```
\begin{array}{l} \mathtt{rax} \Rightarrow \mathtt{0} \\ \mathtt{rbx} \Rightarrow \mathtt{3} \\ \mathtt{rcx} \Rightarrow \mathtt{1} \\ \mathtt{rdx} \Rightarrow \mathtt{2} \\ \mathtt{rdi} \Rightarrow \mathtt{7} \end{array}
```

Source Registers

```
x means source register number R rax \Rightarrow Cx R rbx \Rightarrow D(x+8) R rcx \Rightarrow C(x+8) R rdx \Rightarrow Dx R rdi \Rightarrow F(x+8)
```