Refer to the array below to answer each question.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
13	15	18	29	32	36	41	49	53	57	59	60	61	63	68	70	71	73	75	80	83	84	86	89	94

Question 1. How many comparisons will be performed by an iterative binary search algorithm (as seen on the slides) if searching for 49? (Show your work.)

$$0 + 24 = 24 / 2 = 12$$
 [12] = 61 > 49

$$0 + 11 = 11 / 2 = 5$$
 [5] = 36 < 49

$$6 + 11 = 17 / 2 = 8$$
 [8] = 53 > 49

$$6 + 7 = 13 / 2 = 6$$
 [6] = 41 < 49

$$7 + 7 = 14 / 2 = 7$$
 [7] = 49 found

Number of comparisons: 5

Question 2. How many comparisons will be performed by an iterative binary search algorithm (as seen on the slides) if searching for 64? (Show your work.)

14 + 13 ← Start is greater than end; function will stop.

Number of comparisons: 5