IB Geometry

Ishan Nath, Lent 2023

Based on Lectures by Prof. Gabriel Paternain

February 1, 2023

Page 1 CONTENTS

Contents

1	Surfaces	2
	1.1 Triangulation and Euler Characteristic	9
2	Abstract Smooth Surfaces	12
In	dex	14

Page 2 1 SURFACES

1 Surfaces

Definition 1.1. A topological surface is a topological space Σ such that

(a) for all $p \in \Sigma$, there is an open neighbourhood $p \in U \subset \Sigma$ such that U is homeomorphic to \mathbb{R}^2 , or a disc $D^2 \subset \mathbb{R}^2$, with its usual Euclidean topology.

(b) Σ is Hausdorff and second countable.

Remark. $\mathbb{R}^2 \simeq D(0,1) = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}.$

1. A space X is Hausdorff if for $p \neq q$ in X, there exist disjoint open sets U, V with $p \in U, q \in V$.

A space is second countable if it has a countable base, i.e there exist open sets $\{U_i\}_{i\in\mathbb{N}}$, such that every open set is a union of some of the U_i .

The key point of defining surfaces is point (a), point (b) is for ruling out surfaces that are too weird.

2. If X is Hausdorff or second countable, then so are subspaces of X. Moreover Euclidean space has these properties (to show it is second countable, consider open balls B(c,r) with $c \in \mathbb{Q}^n \subset \mathbb{R}^n$, and $r \in \mathbb{Q}_+ \subset \mathbb{R}_+$).

$\overline{\text{Example }}1.1.$

- (i) The plane \mathbb{R}^2 .
- (ii) Any open set in \mathbb{R}^2 is a surface, i.e. $\mathbb{R}^2 \setminus \mathbb{Z}$ where \mathbb{Z} is closed is a surface.
- (iii) Graphs of functions. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous. Then the graph of f is

$$\Gamma_f = \{(x, y, f(x, y)) \mid (x, y) \in \mathbb{R}^2\}.$$

This is a subspace of \mathbb{R}^3 , so we can endow it with the subspace topology. We claim it is a subspace homeomorphic to \mathbb{R}^2 .

Recall that if X, Y are topological spaces, then the product topology $X \times Y$ has a basis of open sets $U \times V$, where $U \subset X, V \subset Y$ are open

A feature is that if $g: Z \to X \times Y$ is continuous if and only if $\Pi_x \circ g: Z \to X$ and $\Pi_y \circ g: Z \to Y$ are continuous, where Π_x , Π_y are the canonical projectors.

We can now show that if $f: X \to Y$ is continuous, then $\Gamma_f \subset X \times Y$ is homeomorphic to X, as s(x) = (x, f(x)) is a continuous function from X to Γ_f , $\Pi_x|_{\Gamma_f}$ and s are inverse homeomorphisms.

Page 3 1 SURFACES

In particular, for our example $\Gamma_f \simeq \mathbb{R}^2$. So any $f : \mathbb{R}^2 \to \mathbb{R}$ continuous produces a surface Γ_f .

(iv) The sphere: $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ (with the subspace topology). To show this is a surface, we can consider the stereographic projection $\Pi_+: S^2 \setminus \{(0, 0, 1)\} \to \mathbb{R}^2$:

$$(x, y, z) \mapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$

Then Π_{+} is continuous and has an inverse

$$(u,v) \mapsto \left(\frac{2u}{u^2+v^2+1}, \frac{2v}{u^2+v^2+1}, \frac{u^2+v^2-1}{u^2+v^2+1}\right).$$

So Π_+ is a continuous bijection with continuous inverse, and hence a homeomorphism.

Similarly, taking a stereographic projection from the south pole Π_- : $S^2 \setminus \{(0,0,-1)\} \to \mathbb{R}^2$, by

$$(x, y, z) \mapsto \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

is another homeomorphism. Hence S^2 is a topological surface, as the open sets $S^2 \setminus \{(0,0,1)\}$ and $S^2 \setminus \{(0,0,-1)\}$ cover S^2 , and it is Hausdorff and second countable as it is a subspace of \mathbb{R}^3 .

(v) The real projective plane. The group \mathbb{Z}_2 acts on S^2 by homeomorphisms, via the antipodal map

$$a: S^2 \to S^2$$
$$a(x, y, z) \mapsto (-x, -y, -z)$$

Definition 1.2. The real projective plane is the quotient of S^2 by identifying every point with its antipodal image:

$$\mathbb{RP}^2 = S^2/\mathbb{Z}_2 = S^2/\sim.$$

Lemma 1.1. As a set, \mathbb{RP}^2 is naturally in bijection with the set of straight lines through 0.

This is because any straight line through $0 \in \mathbb{R}^3$ intersects S^2 in exactly a pair of antipodal points, and each such pair determines a straight line.

Page 4 1 SURFACES

Lemma 1.2. \mathbb{RP}^2 is a topological surface with the quotient topology.

Recall the quotient topology: given the quotient map $q: X \to Y$, we say $V \subset Y$ is open if and only if $q^{-1}(V) \subset X$ is open in X.

Proof: First we show that \mathbb{RP}^2 is Hausdorff. If $[p] \neq [q] \in \mathbb{RP}^2$, then $\pm p$, $\pm q$ are distinct, antipodal pairs.

We take open discs centred on p and q and their antipodal images, such that no two discs intersect. The images of these discs give open images of [p] and [q] in \mathbb{RP}^2 . Indeed, $q(B_{\delta}(p))$ is open since $q^{-1}(q(B_{\delta}(p))) = B_{\delta}(p) \cup (-B_{\delta}(p))$.

Now we show \mathbb{RP}^2 is second countable. Let U be a countable base of S^2 , and let $\overline{U} = \{q(u) \mid u \in U\}$. Then q(u) is open, as $q(u) = u \cup (-u)$, and \overline{U} is clearly countable as U is.

Take $V \subset \mathbb{RP}^2$ open. By definition, $q^{-1}(V)$ is open, so let $q^{-1}(V) = \bigcup U_{\alpha}$, for $U_{\alpha} \in U$. Then

$$V = q(q^{-1}(V)) = q\left(\bigcup_{\alpha} U_{\alpha}\right) = \bigcup_{\alpha} q(U_{\alpha}).$$

Finally, let $p \in S^2$ and $[p] \in \mathbb{RP}^2$ be its image. Let \overline{D} be a small closed disc neighbourhood of $p \in S^2$, so that $q|_{\overline{D}}$ is injective and continuous, and has image a Hausdorff space.

Now recall that a countinuous bijection from a compact space to a Hausdorff space is a homeomorphism.

So $q|_{\overline{D}}: \overline{D} \to q(\overline{D})$ is a homeomorphism. This induces a homeomorphism

$$q|_D: D \to q(D) \subset \mathbb{RP}^2$$
,

where D is an open disc contained in \overline{D} . So $[p] \in q(D)$ has an open neighbourhood in \mathbb{RP}^2 homeomorphic to an open disc.

Example 1.2.

We continue looking at examples of surfaces.

(vi) Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. Then the *torus* is $S^1 \times S^1$ with the subspace topology of \mathbb{C}^2 (this is the same as taking the product topology).

Lemma 1.3. The torus is a topological surface.

Page 5 1 SURFACES

Proof: We consider the map

$$\mathbb{R}^2 \stackrel{e}{\to} S^1 \times S^1 \subset \mathbb{C} \times \mathbb{C}$$
$$(s,t) \mapsto (e^{2\pi i s}, e^{2\pi i t}).$$

We can view this map using the following diagram:

$$\mathbb{R}^2 \xrightarrow{e} S^1 \times S^1$$

$$\downarrow^q \quad \stackrel{\hat{e}}{\longrightarrow} \stackrel{\nearrow}{\longrightarrow} \mathbb{R}^2/\mathbb{Z}^2$$

There is an equivalence relation on \mathbb{R}^2 given by translating by \mathbb{Z}^2 . Now consider the map

$$[0,1]^2 \hookrightarrow \mathbb{R}^2 \stackrel{q}{\to} \mathbb{R}^2/\mathbb{Z}^2$$

is onto, so $\mathbb{R}^2/\mathbb{Z}^2$ is compact. Now note that \hat{e} is a continuous bijection, so since it is onto a Hausdorff space, it is a homeomorphism.

Similar to \mathbb{RP}^2 , for $[p] \in q(p)$, take a small closed disc $\overline{D} \subset \mathbb{R}^2$ such that, for all $(m,n) \in \mathbb{Z}^2$, $\overline{D} \cap (\overline{D} + (m,n)) = \emptyset$.

Then $e|_{\overline{D}}$ and $q|_{\overline{D}}$ are injective. Now restricting to an open disc as before, we get an open disc as a neighbourhood of [p], so $S^1 \times S^1$ is a topological surface.

Another viewpoint for a torus is by imposing on $[0,1]^2$ the equivalence relations

$$(x,0) \sim (x,1),$$
 $(0,y) \sim (1,y).$

Figure 1: Identification of a Torus

Page 6 1 SURFACES

Example 1.3.

We look at yet another example of a surface.

(vii) Let P be a planar Euclidean polyon. Assume that the edges are oriented and paired, and for simplicity assume the Euclidean lengths of e and \hat{e} are equal if $\{e, \hat{e}\}$ are paired.

Label by letters, and describe the orientation by a sign of \pm relative to the clockwise orientation in \mathbb{R}^2 .

More precisely, if $\{e, \hat{e}\}$ are paired edges, there is a unique isometry from e to \hat{e} respecting their orientations, say

$$f_{e\hat{e}}:e\to\hat{e}.$$

These maps generate an equivalence relation on P, where we identify $x \in \partial P$ with $f_{e\hat{e}}(x)$ whenever $x \in e$.

Lemma 1.4. P/\sim (with the quotient topology) is a topological surface.

Figure 2: Orientation of Edges of a Hexagon

Proof: We begin by looking at a special case of the torus T^2 as $[0, 1]^2/\sim$. Then if p is an interior point, we pick $\delta > 0$ small such that $\overline{B_{\delta}(p)}$ lies in the interior of the polygon P. Now we argue as before: the quotient map is injective on $\overline{B_{\delta}(p)}$ and is a homeomorphism on its interior.

Now suppose p is on an edge of P, but not a vertex. The idea is to take the two points in $q^{-1}(p)$, take half discs around them, and join them up to form a disc.

Page 7 1 SURFACES

Say $p = (0, y_0) \sim (1, y_0) = p'$. Take δ small enough so the half discs of radius δ do not meet the vertices and don't intersect. Let U be the half disc around p and V the half disc around p'.

Define a map as follows:

$$U: (x,y) \xrightarrow{f_u} (x,y-y_0),$$

$$V: (x,y) \xrightarrow{f_v} (x-1,y-y_0).$$

We want to show these maps glue well together. To do this, we use the following fact:

If $X = A \cup B$, A and B are closed, and $f : A \to Y$ and $g : B \to Y$ are continuous and $f|_{A \cap B} = g|_{A \cap B}$, then they define a continuous map on X.

Now f_u and f_v are continuous on $U, V \subset [0, 1]^2$, so they induce continuous maps on q(U) and q(V).

In T^2 , the intersection of the discs overlap on the paired edges, but our maps agree, so they are compatible with the equivalence relation. Hence f_u and f_v give a continuous map on an open image of $[p] \in T^2$ to \mathbb{R}^2 . By the usual argument, we can show if $[p] \in T^2$ lies on an edge of P it has a neighbourhood homeomorphic to a disc.

Finally, we look at a vertex of $[0,1]^2$. In the image, there is really only one vertex. To find a homeomorphism to the open disc, we can take four quarter circles at each corner, and glue them appropriately.

For a general polygon, it is a similar idea. Interior and edge points are done analogously to T^2 . For vertices, it is a bit different. We have different equivalence classes of vertices caused by orienting the edges in different ways.

If v is a vertex of P with k vertices in its equivalence class, then we have k sectors in P. Any sector can be identified with out favourite sector in \mathbb{R}^2 , i.e. $(r,\theta) \in \mathbb{R}^2$ with $0 \le r < \delta$ and $\theta \in [0, 2\pi/k]$. Gluing these together, we get an open disc as a neighbourhood of v.

This works unless k = 1, in which case we have two paired edges coming into or out of a vertex in P. But this is homeomorphic to a cone, which is homeomorphic to a disc.

These neighbourhoods of points in P/\sim show that P is locally homeomorphic to a disc, and we can easily check that P/\sim is Hausdorff and second countable.

Page 8 1 SURFACES

Example 1.4.

One more example now.

(viii) We now consider connecting surfaces. Given topological surfaces Σ_1 and Σ_2 , we can remove an open disc from each, and glue the resulting boundary circles.

Explicitly, we take $\Sigma_1 \setminus D_1 \cup \Sigma_2 \setminus D_2$ as a disjoint union, and impose the quotient relation

$$\theta \in \partial D_1 \sim \theta \in \partial D_2$$
,

where θ parametrizes $S^1 = \partial D_i$.

The result $\Sigma_1 \sharp \Sigma_2$ is called the *connected sum* of Σ_1 and Σ_2 .

In principle, this depends on the choices of discs, and it takes some effort to prove that it is well-defined.

Lemma 1.5. The connected sum $\Sigma_1 \sharp \Sigma_2$ is a topological surface.

We will not prove this lemma in this course.

Figure 3: Octagon

As another example the octagon is homeomorphic to a double torus: cutting along the blue line reveals two copies of a torus, which are joined together.

Similarly, we can find \mathbb{RP}^2 as the quotient of a square: this can be seem by morphing it into a circle with antipodes identified, which is then homeomorphic to \mathbb{RP}^2 , seen by 'squishing down' \mathbb{RP}^2 or projecting it onto a plane.

Page 9 1 SURFACES

Figure 4: Identification of \mathbb{RP}^2

Figure 5: Squishing down \mathbb{RP}^2

1.1 Triangulation and Euler Characteristic

Definition 1.3. A subdivision of a compact topological surface Σ comprises of:

- (i) a finite set V of vertices,
- (ii) a finite collection of edges $E + \{e_i : [0,1] \to \Sigma\}$ such that
 - for all i, e_i is a continuous injection on its interior and $e_i^{-1}(V) = \{0, 1\}$,
 - ullet e_i and e_j have disjoint images except perhaps at their endpoints in V.
- (iii) We require that each connected component of

$$\Sigma \setminus \left(\bigcup_i e_i([0,1]) \cup V\right)$$

Page 10 1 SURFACES

is homeomorphic to an open disc, called a face.

Hence the closure of a face $\overline{F} \setminus F$ has boundary lying in

$$\bigcup_{i} e_i([0,1]) \cup V.$$

A subdivision is a *triangulation* if every closed face (closure of a face) contains exactly three edges, and two closed faces are disjoint, meet in exactly one edge or just one vertex.

Example 1.5.

A cube displays a subdivision of S^2 , and a tetrahedron displays a triangulation of S^2 .

Moreover figure 1 displays a subdivision of T^2 , with one vertex, two edges and one face.

In figure 6, only the right triangulation is a valid triangulation: in the left figure, the two triangles share more than one edge.

As well, figure 7 is a degenerate subdivision of the sphere, with one vertex, no edges and one face.

Figure 6: Triangulations of the Torus

Definition 1.4. The *Euler characteristic* of a subdivision is

$$|V| - |E| + |F|.$$

Theorem 1.1.

Page 11 1 SURFACES

Figure 7: Subdivision of S^2

- (i) Every compact topological surface admits subdivisions and triangulations.
- (ii) The Euler characteristic, denoted $\chi(\Sigma)$, does not depend on the subdivision and defined a topological invariant of the surface.

Remark. This is hard to prove, particularly (ii). There are cleaner approaches to this (seen in algebraic topology).

Example 1.6.

- 1. $\chi(S^2) = 2$.
- 2. $\chi(T^2) = 0$.
- 3. Let Σ_1, Σ_2 be compact topological spaces, and we form $\Sigma_1 \sharp \Sigma_2$. We remove open discs $D_i \subset \Sigma_i$ which is a face of a triangulation in each surface. Hence,

$$\chi(\Sigma_1 \sharp \Sigma_2) = \chi(\Sigma_1) + \chi(\Sigma_2) - 2.$$

In particular if Σ_g is a surface with g holes, i.e.

$$\Sigma_q = \sharp_{i=1}^g T^2,$$

then $\chi(\Sigma_g) = 2 - 2g$. g is called the genus.

2 Abstract Smooth Surfaces

Definition 2.1. A pair (U, φ) where $U \subset \Sigma$ is open and $\varphi : U \to V \subset \mathbb{R}^2$ is called a *chart*.

The inverse $\sigma = \varphi^{-1} : V \to U \subset \Sigma$ is called a *local parametrization* of Σ .

Definition 2.2. A collection of charts

$$\{(U_i, \varphi_i)_{i \in I}\}$$

such that

$$\bigcup_{i \in I} U_i = \Sigma$$

is called an *atlas* of Σ .

Example 2.1.

- 1. If $Z \subset \mathbb{R}^2$ is closed, then $\mathbb{R}^2 \setminus Z$ is a topological surface with an atlas with one chart: $(\mathbb{R}^2 \setminus Z, \varphi = id)$.
- 2. For S^2 we have an atlas with 2 charts: the two stereographic projections.

.....

Definition 2.3. Let (U_i, φ_i) for i = 1, 2 be two charts containing $p \in \Sigma$. The map

$$\varphi_2 \circ \varphi_1^{-1}|_{\varphi_1(U_1 \cap U_2)}$$

is called the transition map between charts.

Note that

$$\varphi_1(U_1 \cap U_2) \stackrel{\varphi_2 \circ \varphi_1^{-1}}{\to} \phi_2(U_1 \cap U_2)$$

is a homeomorphism.

Recall if $V \subset \mathbb{R}^n$ and $V' \subset \mathbb{R}^m$ are open, a map $f: V \to V'$ is called *smooth* if it is infinitely differentiable, so it has continuous partial derivatives of all orders.

A homeomorphism $f: V \to V'$ is called a diffeomorphism if it is smooth and it has a smooth inverse.

Definition 2.4. An abstract smooth surface Σ is a topological surface with an atlas of charts $\{U_i, \varphi_i\}$ such that all transition maps are diffeomorphisms.

Figure 8: Transition Map on S^2

Example 2.2.

- 1. The atlas of two charts with stereographic projections gives S^2 the structure of an abstract smooth surface.
- 2. The torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ is an abstract smooth surface. Recall that we obtained charts from (the inverses of) the projection restricted to small discs in \mathbb{R}^2 .

Here the transition maps are translations, so T^2 inherits the structure of a smooth surface.

Index

abstract smooth surface, 12

atlas, 12

chart, 12

connected sum, 8

diffeomorphism, 12

Euler characteristic, 10

face, 10

genus, 11

Hausdorff, 2

local parametrization, 12

real projective plane, 3

second countable, 2

smooth, 12 subdivision, 9

topological surface, 2

torus, 4

transition map, 12 triangulation, 10

vertex, 9