On Equivariant Embedding of Hilbert C^* modules Debashish Goswami

AMS subject classification no.: 46L08

Key-words: Hilbert modules, Ergodic action, Equivariant triviality, Equivariant embedding.

Abstract

We prove that an arbitrary (not necessarily countably generated) Hilbert G- \mathcal{A} module on a G-C* algebra \mathcal{A} admits an equivariant embedding into a trivial G- \mathcal{A} module, provided G is a compact Lie group and its action on \mathcal{A} is ergodic.

1 Introduction

Let G be a locally compact group, \mathcal{A} be a C^* -algebra, and assume that there is a strongly continuous representation $\alpha: G \to Aut(\mathcal{A})$. Following the terminology of [8], we introduce the concept of a Hilbert C^* $G - \mathcal{A}$ -module as follows:

Definition 1.1 A Hilbert C^* $G - \mathcal{A}$ module (or $G - \mathcal{A}$ module for short) is a pair (E, β) where E is a Hilbert C^* \mathcal{A} -module and β is a map from G into the set of \mathbb{C} -linear (caution : **not** \mathcal{A} -linear !) maps from E to E, such that $\beta_q \equiv \beta(g), g \in G$ satisfies the following :

- (i) $\beta_{gh} = \beta_g \circ \beta_h$ for $g, h \in G$, $\beta_e = \text{Id}$, where e is the identity element of G;
- (ii) $\beta_q(\xi a) = \beta_q(\xi)\alpha_q(a)$ for $\xi \in E, a \in \mathcal{A}$;
- (iii) $g \mapsto \beta_q(\xi)$ is continuous for each fixed $\xi \in E$;
- (iv) $\langle \beta_g(\xi), \beta_g(\eta) \rangle = \alpha_g(\langle \xi, \eta \rangle)$ for all $\xi, \eta \in E$, where $\langle \cdot, \cdot \rangle$ denotes the \mathcal{A} -valued inner product of E.

When β is understood from the context, we may refer to E as a G-A module, without explicitly mentioning the pair (E,β) . Given two G-A modules (E_1,β) and (E_2,γ) , there is a natural G-action induced on $\mathcal{L}(E_1,E_2)$, given by $\pi_g(T)(\xi) := \gamma_g(T(\beta_{g^{-1}}(\xi)))$ for $g \in G, \xi \in E_1, T \in \mathcal{L}(E_1,E_2)$. $T \in \mathcal{L}(E_1,E_2)$ is said to be G-equivariant if $\pi_g(T) = T$ for all $g \in G$. It is clear that for each fixed $T \in \mathcal{L}(E_1,E_2)$ and $\xi \in E_1, g \mapsto \pi_g(T)\xi$ is continuous. We say that T is G-continuous if $g \mapsto \pi_g(T)$ is continuous with respect to the norm topology on $\mathcal{L}(E_1,E_2)$. We say that E_1 and E_2 are isomorphic as G - A-modules, or that they are equivariantly isomorphic if there is a G-equivariant unitary map $T \in \mathcal{L}(E_1,E_2)$. We call a (G-A) module of

the form $(A \otimes \mathcal{H}, \alpha_g \otimes \gamma_g)$ (where \mathcal{H} is some Hilbert space) a trivial G - A module. We say that (E, β) is *embeddable* if there is an equivariant isometry from E to $A \otimes \mathcal{H}$ for some Hilbert space \mathcal{H} with a G-action γ , or in other words, (E, β) is equivariantly isomorphic with a sub-G - A module of $(A \otimes \mathcal{H}, \beta \otimes \gamma)$. Note that $A \otimes \mathcal{H}$ is the closure of $A \otimes_{\text{alg}} \mathcal{H}$ under the norm inherited from $\mathcal{B}(\mathcal{H}_0, \mathcal{H}_0 \otimes \mathcal{H})$ where \mathcal{H}_0 is any Hilbert space such that A is isometrically embedded into $\mathcal{B}(\mathcal{H}_0)$. The following result on the embeddabiity is due to Mingo and Phillips ([8]).

Theorem 1.2 Let (E,β) be a Hilbert C^* $G-\mathcal{A}$ module and assume that E is countably generated as a Hilbert \mathcal{A} -module, that is, there is a countable set $S = \{e_1, e_2, ...\}$ of elements of E such that the right \mathcal{A} -linear span of E is dense in E. Assume furthermore that E is compact. Then E is embeddable.

When G is the trivial singleton group, the above result was proved by Kasparov.

If the C^* algebra \mathcal{A} is replaced by a von Neumann algebra $\mathcal{B} \subseteq \mathcal{B}(h)$ for some Hilbert space h and G is a locally compact group with a strongly continuous unitary representation $g \mapsto u_g \in \mathcal{B}(h)$, one can define Hilbert von Neumann G- \mathcal{B} module (E,β) . The only difference is that E is now a Hilbert von Neumann \mathcal{A} -module equipped with the natural locally convex strong operator topology, and that we replace the norm-continuity in (iii) of the above definition by a weaker continuity: namely, the continuity of $g \mapsto \beta_g(\xi)$ (for fixed $\xi \in E$) with respect to the locally convex topology of E. We have a stronger version of the Theorem 1.2 (see [3] and [2]), namely without the condition of E being countably generated and without the compactness of G. It should be remarked here that the trivial Hilbert von Neumann $\tilde{\mathcal{A}}$ module $\tilde{\mathcal{A}} \otimes \mathcal{H}$ is defined to be the closure of $\tilde{\mathcal{A}} \otimes_{\text{alg}} \mathcal{H}$ with respect to the strong-operator-topology inherited from $\mathcal{B}(h, h \otimes \mathcal{H})$.

In Theorem 1.2, the assumption that E is countably generated restricts the applicability of the result, since it is not always easy to check the property of being countably generated. However, under some special assumption on the G-C* algebra \mathcal{A} , i.e. conditions on the group G, the C* algebra \mathcal{A} and also on the nature of the action, it may be possible to prove the embedability for an arbitrary Hilbert G- \mathcal{A} module. The aim of the present article is to give some such sufficient conditions.

2 Ergodic action and its implication

We say that the action α of G on a unital C^* -algebra \mathcal{A} is ergodic if $\alpha_g(a) = a$ for all $g \in G$ if and only if a is a scalar multiplie of 1. There is a considerable amount of literature on ergodic action of compact groups, and we shall quote one interesting structure theorem which will be useful for us.

Proposition 2.1 Let G be a compact group acting ergodically on a unital C^* -algebra \mathcal{A} . Then there is a set of elements t_{ij}^{π} , $\pi \in \hat{G}$, $i = 1, ..., d_{\pi}$, $j = 1, ..., m_{\pi}$ of \mathcal{A} , where \hat{G} is the set of equivalence classes of irreducible representations of G, d_{π} is the dimension of the irreducible representation space denoted by π , $m_{\pi} \leq d_{\pi}$ is a natural number, such that the followings hold: (i) There is a unique faithful G-invariant state τ on \mathcal{A} , which is in fact a trace,

- (ii) The linear span of $\{t_{ij}^{\pi}\}$ is norm-dense in \mathcal{A} ,
- (iii) $\{t_{ij}^{\pi}\}$ is an orthonormal basis of $h = L^2(\mathcal{A}, \tau)$,
- (iv) The action of u_g coincides with the π th irreducible representation of G on the vector space spanned by t_{ij}^{π} , $i = 1, ..., d_{\pi}$ for each fixed j and π ,
- (v) $\sum_{i=1,...d_{\pi}} (t_{ij}^{\pi})^* t_{ik}^{\pi} = \delta_{jk} d_{\pi} 1$, where δ_{jk} denotes the Kronecker delta symbol. Thus, in particular, $||t_{ij}^{\pi}|| \leq \sqrt{d_{\pi}}$ for all π, i, j .

The proof can be obtained by combining the results of [10],[5] and [1].

Let now $h = L^2(\mathcal{A}, \tau)$, where τ is the unique invariant faithful trace described in Proposition 2.1. Denoting by $\tilde{\mathcal{A}}$ the weak closure of \mathcal{A} in $\mathcal{B}(h)$, we have the following result due to Goswami and Sinha ([2]). However, we give a proof here for readers' convenience.

Proposition 2.2 Let u_g be the unitary in h induced by the action of G, that is, on the dense set $A \subseteq h$, $u_g(a) := \alpha_g(a)$, where α_g denotes the G-action on A. Denoting also by α the action $g \mapsto u_g.u_g^*$ on \bar{A} , we have that $\tilde{A} \bowtie_{\alpha} G$ is isomorphic with the von Neumann algebra generated by \bar{A} and $u_g, g \in G$.

Proof:

We shall use the notation of Proposition 2.1. The crossed product von Neumann algebra $\mathcal{C} := \tilde{\mathcal{A}} > \lhd G$ is by definition the von Neumann algebra generated by $\{(t_{ij}^{\pi} \otimes 1), \pi, i, j; (u_g \otimes L_g), g \in G\}$ in $L^2(\tau) \otimes L^2(G)$, where L_g is the regular representation of G in $L^2(G)$. Let ρ be the normal *homomorphism from \mathcal{C} onto $\{\tilde{\mathcal{A}}, u_g, g \in G\}'' \subseteq \mathcal{B}(L^2(\tau))$ which satisfies $\rho(t_{ij}^{\pi} \otimes 1) = t_{ij}^{\pi}$ and $\rho(u_g \otimes L_g) = u_g$. We have to show that this is an

isomorphism, that is, the kernel of ρ is trivial. Clearly, the set of elements of the form $\sum c_{\pi ij} t_{ij}^{\pi} u_{g_{\pi ij}}$ (finitely many terms), with $c_{\pi ij} \in \mathbb{C}$; $g_{\pi ij} \in G$ is dense with respect to the strong-operator topology in $\{\tilde{A}, u_g, g \in G\}''$. Similarly, the set of elements of the form $\sum c_{\pi ij} (t_{ij}^{\pi} \otimes 1) (u_{g_{\pi ij}} \otimes Lg_{\pi ij})$ (finitely many terms) will be strongly dense in \mathcal{C} . Now, let $\mathcal{I} \equiv \{X \in \mathcal{C} : \rho(X) = 0\}$. We need to show that $\mathcal{I} = \{0\}$. Let $X \in \mathcal{I}$ and let $X_p = \sum c_{\pi ij}^{(p)} (t_{ij}^{\pi} \otimes 1) (u_{g_{\pi ij}^{(p)}} \otimes Lg_{\pi ij}^{(p)})$ be a net (indexed by p) of elements from the above dense algebra such that X_p converges strongly to X. Hence we have, $\sum |c_{\pi ij}^{(p)}|^2 = \|\rho(X_p)(1)\|^2 \to 0$. This implies that for any $\phi \in L^2(G)$, $\|X_p(1 \otimes \phi)\|^2 = \sum |c_{\pi ij}^{(p)}|^2 \|L_{g_{\pi ij}^{(p)}} \phi\|^2 \le \|\phi\|^2 \sum |c_{\pi ij}^{(p)}|^2 \to 0$, which proves that $X(1 \otimes \phi) = 0$ for every $X \in \mathcal{I}$. But since \mathcal{I} is an ideal in \mathcal{C} , this shows that for $a \in \mathcal{A}$, $X(a \otimes \phi) = (X(a \otimes 1))(1 \otimes \phi) = 0$, and by the fact that $\{a \otimes \phi : a \in \mathcal{A}, \phi \in L^2(G)\}$ is total in $h \otimes L^2(G)$ we conclude that $\mathcal{I} = \{0\}$. \square

Considering the C^* -algebra $\mathcal{A}^o := J\mathcal{A}J \subseteq \mathcal{A}' \subseteq \mathcal{B}(h)$, where J is the antilinear isometry on h given by $x \mapsto x^*$, and noting that $(\mathcal{A}^o)'' = \mathcal{A}'$, and that the action $\alpha_g(\cdot) = u_g \cdot u_g^*$ is ergogic on \mathcal{A}^o , we conclude from the Proposotion 2.2 the following:

Corollary 2.3 The crossed product $\mathcal{A}' > \lhd_{\alpha} G$ is isomorphic with the von Neumann algebra generated by \mathcal{A}' and $\{u_g, g \in G\}$ in $\mathcal{B}(h)$.

Let us now specialize to the case of a compact Lie group. If G is such a group, with a basis of the Lie algebra given by $\{\chi_1,...,\chi_N\}$, which has a strongly continuous action θ on a Banach space F, we can consider the space of 'smooth' or C^{∞} -elements of F, denoted by F^{∞} , consisting of all $\xi \in f$ such that $G \ni g \mapsto \theta_g(\eta)$ is C^{∞} . It is easy to prove that (see [2] and references therein) F^{∞} is dense in F, and it is a *-subalgebra if F is a locally convex *-algebra. Moreover, we equip E^{∞} with a family of seminorms $\|\cdot\|_{\infty,n}$, $n=0,1,\ldots$ given by

$$\|\xi\|_{\infty,n}:=\sum_{i_1,i_2,...i_k;k\leq n,i_t\in\{1,...,N\}}\|\partial_{i_1}\partial_{i_2}...\partial_{i_k}\xi\|,$$

with the convention $\|\cdot\|_{\infty,0} = \|\cdot\|$ and where $\partial_j(\xi) := \frac{d}{dt}|_{t=0}\theta_{\exp(t\chi_j)}(\xi)$. The space F^{∞} is complete under this family of seminorms, and thus is a Frechet space. When F is Hilbert space or a Hilbert module, we shall also consider a map d_j given by essentially the same expression as that of ∂_j , with χ_j replaced by $i\chi_j$, and the Hilbertian seminorms $\{\|\cdot\|_{2,n}\}$ are given

by

$$\|\xi\|_{2,n}^2 := \sum_{i_1,i_2,...i_k; k \le n, i_t \in \{1,...,N\}} \|d_{i_1}d_{i_2}...d_{i_k}\xi\|_2^2,$$

with $\|\cdot\|_2$ denoting the norm of the Hilbert space (or Hilbert module) F.

More generally, if F is a complete locally convex space given by a family of seminorms $\{\|\cdot\|^{(q)}\}$, then we can consider the smooth subspace F^{∞} and the maps ∂_j as above, and make it a complete locally convex space with respect to a larger family of seminorms $\{\|\cdot\|_n^{(q)}\}$ where

$$\|\xi\|_n^{(q)} := \sum_{i_1, i_2, \dots i_k; k \le n, i_t \in \{1, \dots, N\}} \|\partial_{i_1} \partial_{i_2} \dots \partial_{i_k} \xi\|^{(q)}.$$

In case F is a von Neumann algebra equipped with the locally convex strong operator topology, the locally convex space F^{∞} is a topological *-algebra, strongly dense in F.

Lemma 2.4 [2] Let G be a compact Lie group acting ergodically on a unital C^* -algebra \mathcal{A} . Then $h^{\infty} = \mathcal{A}^{\infty}$ as Frechet spaces.

Proof:

We give a detailed proof taken essentially from [2]. Let us recall from the Proposition 2.1 that for π in \hat{G} , the set of irreducible representations of G (which is countable since G is a compact Lie group) with n_{π} the dimension of the space (also denoted by π) of the representation π , $\{t_{ij}^{\pi} \in \mathcal{A}, i = 1, 2, ...n_{\pi}; j = 1, 2, ...n_{\pi} \leq n_{\pi}; \pi \in \hat{G}\}$ is an orthonormal basis of h. Moreover, let $\{\lambda_{\pi}, \pi \in \hat{G}\}$ be the set of the eigenvalues, of multiplicity n_{π}^{2} , of the bi-invariant Laplacian (say Δ_{G}) on the compact manifold G (compact Lie group) of dimension N. Then by the Weyl asymptotics of the eigenvalues of the Laplacian (see [9]) we have that

$$\lambda_{\pi} = O(n_{\pi}^{\frac{2}{N}}),$$

so that for sufficiently large n,

$$\sum_{\pi} \frac{n_{\pi}^3}{\lambda_{\pi}^{2n}} \le C \sum_{\pi} n_{\pi}^{(3 - \frac{4n}{N})} < \infty (\text{ where } C \text{ is a positive constant}).$$

It is clear from the Proposition 2.1 that $\partial_k = id_k$ on each of the finite dimensional spaces \mathcal{H}_l^{π} spanned by $\{t_{il}^{\pi}, i = 1, \dots, n_{\pi}\}$. We also note that the bi-invariant Laplacian Δ_G can be expressed as a linear combination

of the form $\sum_{j,k=1}^{N} p_{jk} \chi_j \chi_k$ (where p_{jk} are real constants). Let us denote by \mathcal{L}_0 the unbounded operator $\sum_{j,k=1}^{N} p_{jk} d_j d_k$ on h, which coincides with $-\sum_{j,k=1}^{N} p_{jk} \partial_j \partial_k$ on each of the finite dimensional subspaces \mathcal{H}_l^{π} . It is also clear that $h^{\infty} \subseteq \text{Dom}(\mathcal{L}_0^n)$ for all nonnegative integer n. The G-action on the \mathcal{H}_l^{π} induces a homomorphism (say Ψ_l^{π}) of the universal enveloping algebra of the Lie algebra (see [6]), which sends the generator χ_j to id_j . In particular, $\Psi_l^{\pi}(\Delta_G) = -\mathcal{L}_0|_{\mathcal{H}_l^{\pi}}$. However, since the G-action on \mathcal{H}_l^{π} is the irreducible representation π , $\Psi_l^{\pi}(\Delta_G)$ is nothing but $\lambda_{\pi}I_{\mathcal{H}_l^{\pi}}$. Thus we have that

$$\mathcal{L}_0|_{\mathcal{H}_l^{\pi}} = -\lambda_{\pi} I_{\mathcal{H}_l^{\pi}}.\tag{1}$$

For proving that $h^{\infty} = \mathcal{A}^{\infty}$ as sets, it is sufficient to show that for every $k \in \{1, \dots, N\}$, one has $h^{\infty} \subseteq \text{Dom}(\partial_k)$ and $\partial_k(h^{\infty}) \subseteq h^{\infty}$. To this end let us consider an arbitrary element $v \in h^{\infty}$ given by an L^2 -convergent series $\sum_{\pi,i,j} c_{\pi,i,j} t_{ij}^{\pi}$. The fact that v is in $h^{\infty} \subseteq \text{Dom}(\mathcal{L}_0^n)$ implies that (by (1))

$$\sum_{\pi,i,j} \lambda_{\pi}^{2n} |c_{\pi,i,j}|^2 < \infty$$

for every positive integer n. Since by the Proposition 2.1, $||t_{ij}^{\pi}||_{\infty,0} \leq \sqrt{n_{\pi}}$, it follows that

$$\sum_{\pi,i,j} |c_{\pi,i,j}| ||t_{ij}^{\pi}||_{\infty,0} \le \left(\sum_{\pi,i,j} |c_{\pi,i,j}|^2 \lambda_{\pi}^{2n}\right)^{\frac{1}{2}} \left(\sum_{\pi} \frac{n_{\pi}^3}{\lambda_{\pi}^{2n}}\right)^{\frac{1}{2}} < \infty.$$

This proves that the series $\sum_{\pi,i,j} c_{\pi,i,j} t_{ij}^{\pi}$ converges in the norm of \mathcal{A} , hence $v \in \mathcal{A}$. Since \hat{G} is countable, let us identify \hat{G} with $I\!N$ without loss of generality for the rest of the proof. Denoting by v_n the element $\sum_{l=1}^n \sum_{i,j} c_{l,i,j} t_{ij}^l$, we observe that v_n converges to v in the norm of \mathcal{A} . Moreover, since the finite dimensional space h_n spanned by $\{t_{ij}^l, i=1,\cdots,n_l,\ j=1,\cdots,m_l; l=1,\cdots,n\}$, is invariant under d_k , d_k commutes with the projection P_n on h_n . Thus, $d_k v = \lim_{n\to\infty} P_n d_k v = \lim_{n\to\infty} d_k v_n$. If we write $d_k v_n$ as a sum of the form $\sum_{l=1}^n \sum_{i,j} b_{l,i,j} t_{ij}^l$, then it follows similarly that the (a-priori L^2 -convergent) series $d_k v = \sum_{l=1}^\infty \sum_{i,j} b_{l,i,j} t_{ij}^l$ converges in the norm of \mathcal{A} . Therefore, $d_k v_n$ converges to $d_k v$ in the norm of \mathcal{A} . But d_k coincides with $-i\partial_k$ on h_n , hence $\partial_k v_n = id_k v_n$, which converges in the norm of \mathcal{A} to $id_k v$. Thus, both v_n and $\partial_k v_n$ converge in the \mathcal{A} -norm, from which it follows by using the fact that ∂_k is closed that v is in the domain of ∂_k and $\partial_k v = id_k v \in h^{\infty}$. Moreover, since the trace τ is finite, the Fréchet topology of \mathcal{A}^{∞} is stronger than that of h_{∞} . This implies that the identity map I,

viewed as a linear map from the Fréchet space h^{∞} to the Fréchet space \mathcal{A}^{∞} is closable, hence continuous. This completes the proof that the two Fréchet topologies on $\mathcal{A}^{\infty}=h^{\infty}$ are equivalent, i.e. $\mathcal{A}^{\infty}=h^{\infty}$ as topological spaces. \square

Lemma 2.5 We have $(\tilde{\mathcal{A}} \otimes \mathcal{H})^{\infty} = (\mathcal{A} \otimes \mathcal{H})^{\infty}$ for every Hilbert space \mathcal{H} with a trivial G representation.

Proof :-

We shall denote by $\|\cdot\|_p$ $(p \geq 1)$ the L^p -norm coming from the trace τ on \mathcal{A} . It is enough to prove the nontrivial inclusion $(\tilde{\mathcal{A}} \otimes \mathcal{H})^{\infty} \subseteq (\mathcal{A} \otimes \mathcal{H})^{\infty}$ Fix an orthonormal basis $\{e_{\alpha}, \alpha \in T\}$ of \mathcal{H} (which need not be separable). Fix $\eta \in (\tilde{\mathcal{A}} \otimes \mathcal{H})^{\infty}$. Clearly, each η_{α} is in $\tilde{\mathcal{A}}^{\infty} = \mathcal{A}^{\infty} \subset \mathcal{A}$. For $k \in \{1, ..., N\}$, let $\eta' = \partial_k \eta = \sum_{\alpha} \eta'_{\alpha} \otimes e_{\alpha}$, say. It is easy to argue that $\eta'_{\alpha} = \partial_k (\eta_{\alpha})$ for all α . There will be at most countable sets I, J of T such that $1 \otimes e_{\alpha}, \eta > = 1 \otimes e_{\alpha}, \eta' > = 0$ for all $\alpha \in T - I \cup J$. So, we can choose a countable set $\{e_i\}$ such that $\eta = \sum_i \eta_i \otimes e_i, \ \eta' = \sum_i \eta'_i \otimes e_i, \ \text{where both the series are convergent in the strong operator topology. Let <math>\eta_{m,n} := \sum_{j=m}^n \eta_j \otimes e_j, \ \text{for } m \leq n$. Since each $\eta_{m,n}$ belongs to $\mathcal{A} \otimes \mathcal{H}$, for proving $\eta \in \mathcal{A} \otimes \mathcal{H}$ it is enough to prove that $\eta_{m,n} \to 0$ in the topology of $\mathcal{A} \otimes \mathcal{H}$, i.e. $x_{mn} := \langle \eta_{m,n}, \eta_{m,n} \rangle = \sum_{j=m}^n \eta_j^* \eta_j \to 0$ in the norm-topology of \mathcal{A} . We shall prove that $x_{mn} \to 0$ in the Frechet topology of \mathcal{A}^{∞} , which will prove that it converges to 0 also in the topology of \mathcal{A}^{∞} .

To this end, first note that $\langle \eta, \eta \rangle = \sum_{j} \eta_{j}^{*} \eta_{j} \in \tilde{\mathcal{A}}$, so in particular, $\|x_{mn}\| \leq \|\eta\|^{2}$ for all m, n. Moreover, since $\eta_{mn} \to 0$ in the strong operator topology, we have $\sum_{j=m}^{n} \|\eta_{j}\|_{2}^{2} = \|\eta_{m,n}1\|_{2}^{2} \to 0$, and since x_{mn} are nonnegative elements, it follows that $\|x_{mn}\|_{1} = \tau(x_{mn}) = \sum_{j=m}^{n} \tau(\eta_{j}^{*}\eta_{j}) \to 0$ as $m, n \to \infty$. Thus $\|x_{mn}\|_{2}^{2} \leq \|x_{mn}\| \|x_{mn}\|_{1} \leq \|\eta\|^{2} \|x_{mn}\|_{1} \to 0$. Note that for $\xi_{1}, \xi_{2} \in (\tilde{\mathcal{A}} \otimes \mathcal{H})^{\infty}$, we have

$$\| < \xi_1, \xi_2 > \|_2^2 = \tau(\xi_2^* \xi_1 \xi_1^* \xi_2) \le \|\xi_1\|^2 \tau(\xi_2^* \xi_2),$$

hence $\| < \xi_1, \xi_2 > \|_2 \le \|\xi_1\| \| < \xi_2, \xi_2 > \|_1^{\frac{1}{2}}$. Moreover, $\| < \xi_2, \xi_1 > \|_2 = \| < \xi_1, \xi_2 >^* \|_2 = \| < \xi_1, \xi_2 > \|_2$ (since $\tau(x^*x) = \tau(xx^*)$, we have $\|x\| = \|x^*\|$). Using this, we have

$$\begin{aligned} \|\partial_{k}x_{mn}\|_{2} &= \| < \partial_{k}\eta_{m,n}, \eta_{m,n} > + < \eta_{m,n}, \partial_{k}\eta_{m,n} > \|_{2} \\ &\leq 2\| < \partial_{k}\eta_{m,n}, \eta_{m,n} > \|_{2} \\ &\leq 2\|\partial_{k}\eta_{m,n}\| \|x_{mn}\|_{1}^{\frac{1}{2}}, \end{aligned}$$

which goes to 0 as $m, n \to \infty$ since $\lim_{m,n\to\infty} \|x_{mn}\|_1 = 0$ and for every (m,n), $\|\partial_k \eta_{m,n}\| = \|\sum_{j=m}^n {\eta'_j}^* {\eta'_j}\|^{\frac{1}{2}} \le \|\partial_k \eta\|$. Proceeding similarly, we can prove that $\partial_{k_1}...\partial_{k_l} x_{mn} \to 0$ as $m, n \to \infty$ in the L^2 -norm, for every fixed $(k_1,...,k_l)$, i.e. x_{mn} is Cauchy in the Frechet topology of h^∞ , hence in that of \mathcal{A}^∞ . \square

3 Main results on equivariant embedding of Hilbert modules

Let (E, β) be a G - A module, where A and G are as in the previous section, i.e. G is a compact Lie group acting ergodically on the C^* algebra A. In this final section, we shall prove that any such (E, β) is embeddable.

Theorem 3.1 We can find a Hilbert space K, a strongly continuous unitary representation $g \mapsto V_g \in \mathcal{B}(K)$ and a A-linear isometry $\Gamma_0 : E \to \mathcal{B}(h, K)$, such that $\Gamma_0\beta_g(\xi) = V_g(\Gamma_0\xi)u_g^{-1}$, and moreover, the complex linear span of elements of the form $\Gamma \xi w$ where $\xi \in E$ and $w \in h$ is dense in K.

Proof:

The proof of this theorem is adapted from [3] and [2]. We shall give only a brief sketch of the arguments involved, omitting the details. We consider first the formal vector space (say \mathcal{V}) spanned by symbols (ξ, w) , with $\xi \in E$ and $w \in h$, and define a semi-inner product on this formal vector space by setting

$$<(\xi, w), (\xi', w')> = < w, <\xi, \xi'> w'>,$$

where $\langle \xi, \xi' \rangle$ denotes the \mathcal{A} -valued inner product on E. By extending this semi-inner product by linearity and then taking quotient by the subspace (say \mathcal{V}_0) consisting of elements of zero norm we get a pre-Hilbert space, and its completion under the pre-inner product is denoted by \mathcal{K} . We also define $\Gamma_0: E \to \mathcal{B}(h, \mathcal{K})$ by setting

$$(\Gamma_0(\xi))w := [\xi, w],$$

where $[\xi, w]$ represents the equivalence class of (ξ, w) in $\mathcal{S} \equiv \mathcal{V}/\mathcal{V}_0 \subseteq \mathcal{K}$. That it is an isometry is verified by straightforward calculations. Next, we define V_g on \mathcal{S} by

$$V_g[\xi, w] := [\beta_g(\xi), u_g w],$$

and verify that it is indeed an isometry, and since its range clearly contains a total subset, V_g extends to a unitary on \mathcal{K} . Furthermore, $V_gV_h=V_{gh}$

and $V_e = \operatorname{Id}$ (where e is the identity of G) on S,and hence on the whole of K. The strong continuity of $g \mapsto V_g$ is also easy to see. Indeed, it is enough to prove that $g \mapsto V_g X$ is continuous for any X of the form $[\xi, v]$, $\xi \in E, v \in h$. But $\|V_g([\xi, v]) - [\xi, v]\|^2 = 2\langle [\xi, v], [\xi, v] \rangle - \langle V_g([\xi, v]), [\xi, v] \rangle - \langle [\xi, v], V_g([\xi, v]) \rangle$, and we have, $\langle V_g([\xi, v]), [\xi, v] \rangle - \langle [\xi, v], [\xi, v] \rangle = \langle (u_g v - v)\langle \beta_g(\xi), \xi \rangle v \rangle + \langle v, \langle (\beta_g(\xi) - \xi), \xi \rangle v \rangle$. By assumption $\lim_{g \to e} (\beta_g(\xi) - \xi) = 0$ in the norm topology of E, so $\langle (\beta_g(\xi) - \xi)v, \xi v \rangle \to 0$ as $g \to e$. Furthermore, $g \mapsto u_g v$ is continuous. This completes the proof of strong continuity of V_g . \square

In view of the above result, we assume without loss of genetrality that $E \subset \mathcal{B}(h,\mathcal{K})$ (with the natural Hilbert module structure inherited from that of $\mathcal{B}(h,\mathcal{K})$), and $\beta_g(\cdot) = V_g \cdot u_g^{-1}$. Consider the strong operator closure of \tilde{E} of E in $\mathcal{B}(h,\mathcal{K})$. It is a Hilbert von Neumann \mathcal{A}'' module (where \mathcal{A}'' is the weak closure of \mathcal{A} in h). Moreover, the G-action $\beta_g = V_g \cdot u_g^{-1}$ can be extended to the whole of $\mathcal{B}(h,\mathcal{K})$, and denoted again by β_g . Clearly, this action leaves \tilde{E} invariant, hence (\tilde{E},β) is a Hilbert von Neumann G- \mathcal{A}'' module. Let us recall that by \tilde{E}^{∞} we denote the locally convex space of elements ξ in \tilde{E} such that $g \mapsto \beta_g(\xi)$ is C^{∞} in the strong operator topology of \tilde{E} .

Theorem 3.2 There exist a Hilbert space k_0 and an isometry Σ from K to $h \otimes k_0$ such that

- (i) Σ is equivariant in the sense that $\Sigma V_g = (u_g \otimes I)\Sigma$ for all g;
- (ii) $\Sigma \xi \in \mathcal{A} \otimes k_0$ for all $\xi \in E$.

Proof:

We shall appeal to the theory of crossed product von Neumann algebras. Construct a representation $\rho: \mathcal{A}' \to \mathcal{B}(\mathcal{K})$ by setting $\rho(a')[\xi, v] := [\xi, a'v]$, for $a' \in \mathcal{A}' \subseteq \mathcal{B}(h)$. It is easy to verify that

$$||a'||^{2} ||\sum_{i=1}^{n} [\xi_{i}, v_{i}]||^{2} - ||\rho(a')(\sum_{i=1}^{n} [\xi_{i}, v_{i}])||^{2}$$

$$= \sum_{i,j} \langle v_{i}, (||a'||^{2} \langle \xi_{i}, \xi_{j} \rangle - a'^{*} \langle \xi_{i}, \xi_{j} \rangle a')v_{j} \rangle$$

$$= \sum_{i,j} \langle v_{i}, (||a'||^{2} 1 - a'^{*} a') \langle \xi_{i}, \xi_{j} \rangle v_{j} \rangle$$

$$= \sum_{i,j} \langle v_{i}, c^{*} \langle \xi_{i}, \xi_{j} \rangle cv_{j} \rangle \quad (\text{where } c = (||a'||^{2} 1 - a'^{*} a')^{\frac{1}{2}})$$

which proves that $\rho(a')$ admits a bounded (in fact contractive) extension. It is also easy to prove that that ρ thus defined is a normal representation. By Corollary 2.3, we have that $\mathcal{A}'_G \equiv \mathcal{A}' > \lhd_{\alpha} G$ is the weak closure of the set $\{u_g, b, g \in G, b \in \mathcal{A}'\} \subseteq \mathcal{B}(h)$, and thus, there is an extension of ρ , which is a normal *-representation $\tilde{\rho}: \mathcal{A}'_G \to \mathcal{B}(\mathcal{K})$ satisfying $\tilde{\rho}(b) = \rho(b)$ and $\tilde{\rho}(u_g) = V_g$. By the structure theorem for normal *-homomorphism of von Neumann algebras (see [4]), we can find some Hilbert space k_0 and an isometry (as $\tilde{\rho}$ is clearly unital) $\Sigma: \mathcal{K} \to h \otimes k_0$ such that $\Sigma^*(X \otimes 1_{k_0})\Sigma = \tilde{\rho}(X)$, for all $X \in \mathcal{A}'_G$. We claim that this Σ satisfies the properties mentioned in the statement of the Theorem, thereby completing the proof.

Note that $P:=\Sigma\Sigma^*$ commutes with $X\otimes 1_{k_0}$ for all $X\in\mathcal{A}_G'$, so in particular with $(u_g\otimes 1),g\in G$. So, $\Sigma V_g\Sigma^*=P(u_g\otimes 1)P=(u_g\otimes 1)\Sigma\Sigma^*$. So, $\Sigma V_g=(u_g\otimes 1)\Sigma$. Thus, $\Sigma\beta_g(\xi)=\Sigma V_g\xi u_g^*=(u_g\otimes 1)\Sigma\xi u_g^*=(\alpha_g\otimes 1)(\Sigma(\xi))$, hence $\Sigma\beta_g\Sigma^*=(\alpha_g\otimes 1)\Sigma\Sigma^*=(\alpha_g\otimes 1)P$. Furthermore, it is easy to see that for $b\in\mathcal{A}'$ and $\xi\in E$, we have

$$(b \otimes 1)\Sigma \xi = \Sigma \rho(b)\xi = (\Sigma \xi)b.$$

This proves that $\Sigma \xi \in (\mathcal{A}')' \otimes k_0 = \tilde{\mathcal{A}} \otimes k_0$. Since Σ is a bounded equivaraint operator from \tilde{E} to $\tilde{\mathcal{A}} \otimes k_0$, it must map \tilde{E}^{∞} to $(\tilde{\mathcal{A}} \otimes k_0)^{\infty} = (\mathcal{A} \otimes k_0)^{\infty} \subset \mathcal{A} \otimes k_0$. \square

It follows from the above theorem that E can be equivariantly embedded in the trivial $G - \mathcal{A}$ module $(\mathcal{A} \otimes k_0, \alpha \otimes \mathrm{id})$. In particular, we have that

Theorem 3.3 If a compact Lie group G has an ergodic action on a C^* -algebra A, then every G - A module (E, β) is embeddable.

References

- [1] S. Albeverio and R. Hoegh-Krohn, Ergodic actions by compact groups on C^* -algebras, $Math.\ Z.\ 174$ (no. 1) (1980), 1-17.
- [2] D. Goswami and K. B. Sinha, Quantum Stochastic Calculus and Noncommutative Geometry, Cambridge University Press (to appear).

- [3] P. S. Chakraborty, D. Goswami and K. B. Sinha, A covariant quantum stochastic dilation theory, *Stochastics in finite and infinite dimensions*, pp. 89-99, Trends Math., Birkhäuser Boston, Boston, MA, 2001.
- [4] J. Dixmier, von Neumann Algebras, North Holland Publishing Company, 1981.
- [5] R. Hoegh-Krohn, M. B. Landstad and E. Stormer, Compact ergodic groups of automorphisms, *Ann. Math.* (2) **114** (no. 1) (1981), 75-86.
- [6] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972.
- [7] E. C. Lance, *Hilbert C*-modules : A toolkit for operator algebraists*, London Math. Soc. Lect. Note Ser. Vol. 210, Cambridge University Press, 1995.
- [8] J. A. Mingo and W. J. Philips, Equivariant triviality theorems for Hilbert C*-modules, Proc. Amer. Math. Soc. 91, no. 2 (1984), 225-230.
- [9] S. Rosenberg, *The Laplacian on a Riemannian Manifold*, Cambridge Univ. Press, 1997.
- [10] K. Shiga, Representations of a compact group on a Banach space, J. Math. Soc. Japan 7 (1955), 224-248.

Stat-Math Unit, Indian Statistical Institute 203, B. T. Road, Kolkata 700108, India.

E-mail: goswamid@isical.ac.in