

Digital Research Alliance of Canada

High Performance Computing and software environments:

Install and/or use existing software and modules

Oct 26th-27th, 2022

Ali Kerrache

- Software distribution on HPC clusters
- Why modules? How to find modules?
- ★ Software stacks on Grex
- ★ How to build software from sources
 - R packages
 - Perl modules
 - configure/make
 - cmake/make
- ★ Singularity {now: apptainer}

Software distribution

Operating system package managers / repos:

- ★ Ubuntu: ~\$ sudo apt-get install <package>
- ★ CentOS: ~\$ sudo yum install <package>
- ★ On HPC: users do not have sudo! (NO NEED TO ASK FOR IT)

Local installation: usually to \$HOME {/home/\$USER} or \$PROJECT

- ★ Get the code: download the sources/binaries: wget, git clone, ... etc.
- ★ Settings: load dependencies, set environment variables, ... etc.
- ★ Build: ./configure {cmake ..} +opts; make; make test {check}; make install

Using a centralized HPC software stack:

- ★ Software distributed via CVMFS: CC software stack (CC clusters), ...
- ★ Local software: modules, legally restricted software (VASP, Gaussian, ...)

Software layers

User layer: Python packages, Perl and R modules, home made codes, ...

User

Software stacks: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level applications. Multiple architectures (sse3, avx, avx2, avx512)

Nix or gentoo: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all dependencies of OpenMPI) in Nix (or gentoo) layer, but can be overridden using PATH & LD_LIBRARY PATH.

OS: kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command): always local. Some legally restricted software too (VASP).

Why modules?

- Control different versions of the same program.
- Avoid conflicts between different versions and libraries.
- Set the right path to each program or library.

- module list; module avail
- module spider <soft>/<version>
- o module load soft/version; module unload {rm} <soft>/<version>
- module show soft/version; module help <soft>/<version>
- module purge; module --force purge
- module use ~/modulefiles; module unuse ~/modulefiles

[someuser@bison]\$ module list Currently Loaded Modules:

1) GrexEnv (S)

Where:

S: Module is Sticky, requires --force to unload or purge

Software stacks on Grex

- ★ Grex environment [default]: GrexEnv
 - no module loaded by default.
 - use module spider <name of the software> to search for modules
 - Compilers: {GCC, Intel}, MKL, PETSc, ... etc.
 - Gaussian, ANSYS, MATLAB, ... etc.
- ★ The Alliance (Compute Canada) environment [optional]: CCEnv
 - Switch to CCEnv; load a standard environment; choose the architecture[sse3, avx2, avx512], use module spider <soft>

module load CCEnv module load StdEnv/2020 module load arch/avx512

module load StdEnv/2016.4 module load arch/sse3 module load nixpkgs/16.09 gcc/5.4.0 geant4/10.05.p01

module load StdEnv/2020 gcc/9.3.0 geant4/10.7.3

Modules on Grex

- ★ More than 500 modules:
 - o GCC [5,7,9,11]; Intel [2014 2020].
 - Libraries: HDF5, PETSc, GSL, MKL, Libxc, Boost, ...
 - Gaussian, ANSYS, MATLAB, VASP, MCR, Java, ... etc.
 - LAMMPS, GROMACS, ABINIT, QE, VMD, Molden, ... etc.
- ★ Software maintenance on Grex:
 - We install programs and update modules on request from users.
 - Search for a program using "module spider <name of your program>"
 - If not installed, ask for support "<u>support@tech.alliancecan.ca</u>"
 - We will install the module or update the version.
 - For commercial software, contact us before you purchase the code:
 - to check license type.
 - see if it will run under Linux environment, ... etc.

Modules on Grex

		intel/14.0.2.144		ncl_ncarg/6.4.0		uofm/adf/2019.305-impi	
dmixture/1.23	(D)	intel/15.0.5.223		ncl_ncarg/6.5.0		uofm/adf/2020-impi	
nt/1.10.11		intel/2017.8		nodejs/4.4.7		uofm/adf/2020.103-impi	
ircos/0.69-6		intel/2019.5	(D)	nodejs/8.12.0		uofm/adf/2021-impi	
make/3.12.3		intel/2020.4		nodejs/13.2.0	(D)	uofm/adf/2021.102-impi	
make/3.14.0		j/j903		openbabel/2.3.2		uofm/adf/2021.106-impi	(D)
make/3.16.9		jags/3.4.0		openbabel/2.4.1		uofm/cfx/15.0	
make/3.23.2	(D)	jags/4.0.0		openbabel/3.0.0		uofm/cfx/16.2	
ns/1.3		jags/4.3.0	(D)	openbabel/3.1.1	(D)	uofm/cfx/18.2	
igen/3.3.7		java/jdk7u25		ovito/2.9.0		uofm/cfx/19.2	
astqc/0.11.9		java/jdk7u45		ovito/3.0.0-dev502	(D)	uofm/cfx/20.1	
aussian/g09.b01.unlim		java/jdk8u5		pandoc/2.9.2.1		uofm/cfx/20.2	
aussian/g09.b01		java/jdk8u66		per1/5.14.4		uofm/cfx/21.1	(D)
aussian/g09.e01.unlim		java/jdk8u92	(D)	per1/5.22.1	(D)	uofm/feko/2021.2	
aussian/g09.e01		java/jdk13.0.1		per1/5.28.1		uofm/gaussian/g03	
aussian/g16.b01		julia/1.3.0-bin		php/5.6.40		uofm/gaussian/g09.e01	
aussian/g16.c01.avx2.unlim		julia/1.5.4-bin		php/7.3.12	(D)	uofm/gaussian/g09	(D)
aussian/g16.c01.avx2		julia/1.6.1-bin		python/2.7.12-miniconda		uofm/mathematica/11.0	
aussian/g16.c01	(D)	julia/1.7.0-bin	(D)	python/3.6-miniconda	(D)	uofm/matlab/R2014A	
cc/4.8		libcerf/1.4		settarg		uofm/matlab/R2015B	
cc/5.2		lmod		singularity/3.5.2		uofm/matlab/R2017A	
cc/7.4	(D)	ls-prepost/4.7.13		smrtlink/6.0.0.47841		uofm/matlab/R2019B	
cc/9.2		mcr/mcr		stata/14.2-fagfs		uofm/matlab/R2020B2	(D)
cc/11.2		mk1/10.3.11	(D)	stata/15.0-fagfs	(D)	uofm/starccm/16.06.010	
it-lfs/3.2.0		mkl/11.1.0		tbb/14		uofm/starccm/17.02.008-R8	(D)
it/2.21.0		mk1/2019.5		tbb/2019.5	(D)	uofm/umcfd/2.4	
nuplot/5.2.7		molden/5.9		trimmomatic/0.39		vina/1.1.2	
0/1.10.4		multiwfn/3.8-gui		uofm/adf/2016-impi-test		vmd/1.9.3	
0/1.11.5		multiwfn/3.8-nogui	(D)	uofm/adf/2016-impi		vncworkspace/1.1	
0/1.12.12		nbo/6.0		uofm/adf/2017-impi		vtune/2019.4	
0/1.13		nbo/7.0	(D)	uofm/adf/2017.114-impi		vtune/2019.5	(D)
0/1.13.3	(D)	ncl_ncarg/6.2.1	(D)	uofm/adf/2018dev-impi		wine/3.0	
ntel/12.1.5.339		ncl_ncarg/6.3.0		uofm/adf/2019-impi		xtb/6.5.0-bin	

module avail

module spider python module spider java

module load gcc ompi module avail

module spider <soft> module spider <soft>/<ver>

module show <soft> module purge

If not available:

→ contact support support@tech.alliancecan.ca

Find and load Gaussian

Gaussian: restricted software; requires a registration

https://um-grex.github.io/grex-docs/docs/grex/software/specific/gaussian/

[someuser@bison] module spider gaussian

gaussian:

Versions:

gaussian/g09.e01 gaussian/g16.b01 gaussian/g16.c01.avx2 gaussian/g16.c01 [someuser@tatanka ~]\$ module load gaussian/g16.c01 Loading Gaussian version 16.c01

For detailed information about a specific "gaussian" package (including how to load the modules) use the module's full name. Note that names that have a trailing (E) are extensions provided by other modules. For example:

\$ module spider gaussian/g16.c01

Find and load ORCA

ORCA:

- restricted software
- requires a registration

[someuser@bison]\$ module spider orca

https://docs.alliancecan.ca/wiki/ORCA

[someuser@bison]\$ module spider orca/5.0.2

orca:

Versions:

orca/4.2.1

orca/5.0.1

orca/5.0.2

[someuser@bison]\$ module load gcc/4.8 ompi/4.1.1 orca/5.0.2

Loading module: gcc/4.8

Loading module: ORCA/5.0.2

For detailed information about a specific "orca" package (including how to load the modules) use the module's full name. Note that names that have a trailing (E) are extensions provided by other modules.

For example:

\$ module spider orca/5.0.2

Find and load LAMMPS

[someuser@bison]\$ module spider lammps

lammps:

[someuser@bison]\$ module spider lammps/29Sep21

Versions:

lammps/5Jun19 lammps/5Nov16 lammps/11Aug17 lammps/23Jun22 lammps/29Sep21 lammps/30jul16

[~@tatanka ~]\$ module load intel/2019.5 ompi/3.1.4 lammps/29Sep21 Lmod is automatically replacing "gcc/7.4" with "intel/2019.5".

Unloading module: qcc/7.4.0

Loading module: LAMMPS/29Sep21

For detailed information about a specific "lammps" package (including how to load the modules) use the module's full name. Note that names that have a trailing (E) are extensions provided by other modules. For example:

\$ module spider lammps/29Sep21

Building software

- Local installation (user's directory):
 - R packages; Julia packages
 - Python packages: virtual environment, conda
 - Perl modules
- Installation with:
 - make; make test {check}; make install
 - configure; make; make test {check}; make install
 - cmake; make; make test {check}; make install
- Java applications: jar files
- Singularity and/or Aptainer:
 - build the image and run the program from the container

Local installation

- R packages: minimal installation
 - R as modules: users can install the packages in their home directory.
- ★ Python as modules: python and scipy-stack
 - users can install the packages needed in their home directory.
- ★ Perl and bioperl as modules:
 - users can install the packages needed in their home directory.
- ★ Other software installed locally:
 - Home made programs
 - Restricted and licensed software that can not be distributed via CVMFS.
 - Custom software: patch from a user, changing parts of the code, ... etc. https://docs.alliancecan.ca/wiki/Installing_software_in_your_home_directory

Local installation: R packages

R packages: rgdal, adegenet, stats, rjags, dplyr, ... etc.

Choose a module version: module spider r

Load R and dependencies (gdal, geos, jags, gsl, udunits... etc):

module load gcc/7.3.0 r/3.6.0 gdal udunits

Launch R and install the packages:

~\$ R

> install.packages("sp")

'lib =/cvmfs/soft.computecanada.ca/easybuild/{..}/R/library''' is not writable Would you like to use a personal library instead? (yes/No/cancel) **yes**Would you like to create a personal library '~/R/{...}' to install packages into? (yes/No/cancel) **yes**

- --- Please select a CRAN mirror for use in this session ---
- > install.packages("dplyr")

Local installation: perl

Example: Hash::Merge; Logger::Simple; MCE::Mutex; threads ...

Load Perl module: module load perl

Install the the first package using cpan or cpanm:

~\$ cpan install YAML

Would you like to configure as much as possible automatically? [yes] yes

What approach do you want? (Choose 'local::lib', 'sudo' or 'manual')

[local::lib] local::lib

Would you like me to append that to /home/\$USER/.bashrc now? [yes] yes

Install the rest of the packages using cpan or cpanm:

~\$ cpan install Hash::Merge

~\$ cpan install Logger::Simple

~\$ cpan install MCE::Mutex

Installation with make: **STAR**

- ★ Download the code {wget; curl; git clone; ...}:
 wget https://github.com/alexdobin/STAR/archive/refs/tags/2.7.8a.tar.gz
- ★ Unpack the code: tar -xvf 2.7.8a.tar.gz
- ★ Load GCC compiler: module load gcc
- ★ Compile the code: cd STAR-2.7.8a/source make

~/.bash_profile

PATH=\$PATH:\$HOME/bin:\$HOME/software/star/2.7.8a/bin export PATH

★ Copy the binaries and set the path:

mkdir -p ~/software/star/2.7.8a/bin cp STAR ~/software/star/2.7.8a/bin export PATH=\$PATH:~/software/star/2.7.8a/bin

Installation with configure/make

- ★ Download and unpack the code: wget, ... gunzip, ... etc.
- ★ Load the modules and dependencies: module load gcc ompi fftw
- ★ Configure the program
 - If configure not included, run: autoreconf -fvi [to generate it].
 - ./configure --help [to see the different options].
 - ./configure --prefix=<path to install dir> {+other options}
- ★ Compile and test:
 - make; make -j4
 - make check; make test
- ★ Install the program:
 - make install

Example: PETSc

```
./configure --with-blas-lapack-dir=$MKLROOT/lib/intel64 --prefix=${instdir} --with-cxx-dialect=C++11
--download-scalapack=yes --download-blacs=yes --download-superlu dist=yes
--download-mumps=yes --download-parmetis=yes --download-metis=yes --download-spooles=yes
--download-cproto=yes --download-prometheus=yes --with-mkl pardiso=1
--with-mkl pardiso-dir=$MKLROOT --with-mkl-sparse-optimize=1 --with-scalar-type=complex
--with-debugging=0 --with-hdf5=yes --with-hdf5-dir=$HDF5HOME --download-suitesparse=yes
--download-fftw=${fftsrc} --download-amd=yes --download-adifor=yes --download-superlu=yes
--download-triangle=yes --download-generator=yes --with-64-bit-pointers=no --with-cc=mpicc
--CFLAGS='-O2 -msse4.2 -xSSE4.2 -mp1 -I$MKLROOT/include -mkl -fPIC ' --with-cxx='mpicxx'
--CXXFLAGS='-O2 -msse4.2 -xSSE4.2 -mp1 -I$MKLROOT/include -mkl -std=c++11 -fPIC '
--with-fc='mpif90' --FFLAGS='-O2 -msse4.2 -xSSE4.2 -mp1 -I$MKLROOT/include -mkl -fPIC '
--with-single-library=yes --with-shared-libraries=yes --with-shared-ld=mpicc
--sharedLibraryFlags="-fpic -mkl -fPIC" --with-mpi=yes --with-mpi-shared=yes --with-mpirun=mpiexec
--with-mpi-compilers=yes --with-x=yes
```


Example: ABINIT

module load intel ompi gsl netcdf instdir=<path to the installation directory>

```
../configure --prefix=$\{instdir\} --enable-mpi --enable-mpi-io --with-fft-flavor=fftw3-mkl
--with-linalg-flavor=mkl --with-math-flavor=gsl --enable-debug="no"
--enable-optim="standard" --enable-64bit-flags --with-linalg-libs="-L$MKLROOT/lib/intel64
-lmkl scalapack lp64 -lmkl blacs openmpi lp64 -lmkl intel lp64 -lmkl sequential
-lmkl_core -lm" --with-fft-incs="-l$MKLROOT/include/fftw -l$MKLROOT/interfaces/fftw3xf"
--with-fft-libs="-L$MKLROOT/interfaces/fftw3xf -lfftw3xf intel lp64"
--with-dft-flavor="atompaw+libxc+wannier90" --with-trio-flavor="netcdf" --enable-lotf
--enable-macroave --enable-gw-dpc CC=mpicc CXX=mpic++ FC=mpif90 F77=mpif77
F90=mpif90
```


Example with cmake/make

- ★ Download and unpack the code: wget, ... gunzip, ... etc.
- ★ Load the modules and dependencies: module load gcc ompi fftw
- ★ Configure the program: you may need to load cmake module
 - mkdir build && cd build
 - cmake .. --help [to see the different options].
 - cmake .. -DCMAKE_INSTALL_PREFIX=installdir {+other options}
- ★ Compile and test:
 - make; make -j8
 - make check; make test
- ★ Install the program:
 - make install

Using the GUI:

ccmake .. {+ options}

Cmake options for GROMACS

- Download and unpack the source files
- ★ Load modules: module load intel/15.0 ompi/3.1.4 fftw cmake
- configure; compile; install cd gromacs-5.1.4; mkdir build; cd build cmake -DCMAKE INSTALL PREFIX=<path to install dir> -DBUILD SHARED LIBS=off -DBUILD TESTING=off -DREGRESSIONTEST DOWNLOAD=off -DCMAKE C COMPILER='which mpicc' -DCMAKE CXX COMPILER='which mpicxx' -DGMX BUILD OWN FFTW=on -DGMX SIMD=SSE4.1 -DGMX DOUBLE=off -DGMX EXTERNAL BLAS=on -DGMX EXTERNAL LAPACK=on -DGMX FFT LIBRARY=fftw3 -DGMX GPU=off -DGMX MPI=on -DGMX OPENMP=off -DGMX X11=on ../gromacs-5.1.4 make -j4; make install

Cmake options for CERN-ROOT

- Download and unpack the source files
- Load modules:

module load gcc/9.2 tbb/2019.5 gsl/2.7.1 python/3.7.5 fftw/3.3.8 module load cfitsio/4.0.0 mkl/2019.5 cmake/3.16.9 git export FFTW DIR=/global/software/cent7/fftw/3.3.8-gcc92-ompi314

★ configure; compile; install

```
mkdir build && cd build
```

- cmake -DCMAKE_INSTALL_PREFIX=<path to install dir> -DGCC_INSTALL_PREFIX=/global/software/cent7/gcc-9.2.0-rpath-76/\
- -DPYTHON_EXECUTABLE=`which python` -DGSL_CONFIG_EXECUTABLE=/global/software/cent7/gsl/2.7.1-gcc92/bin/gsl-config \
- -DGSL INCLUDE DIR=/global/software/cent7/gsl/2.7.1-gcc92/include
- -DGSL_LIBRARY=/global/software/cent7/gsl/2.7.1-gcc92/lib/libgsl.so \
- -DGSL_ROOT_DIR=/global/software/cent7/gsl/2.7.1-gcc92/ -DCMAKE_C_COMPILER=`which gcc` \
- -DCMAKE_CXX_COMPILER=`which g++` -DCMAKE_FORTRAN_COMPIER=`which gfortran` \
- -DCFITSIO_INCLUDE_DIR=/global/software/cent7/cfitsio/4.0.0-gcc92/include \
- -DCFITSIO_LIBRARY=/global/software/cent7/cfitsio/4.0.0-gcc92/lib/libcfitsio.so \
- -DJEMALLOC ROOT DIR=/usr -Dpython3=ON -Dpcre=ON -Dzlib=ON Dunuran=ON -Dexplicitlink=ON -Dminuit2=ON -Droofit=ON \
- -DCMAKE_SKIP_RPATH=ON -Dxrootd=OFF -Dmysql=OFF -Dkrb5=OFF -Dodbc=OFF -Doracle=OFF \
- -DQT_QMAKE_EXECUTABLE=/usr/bin/qmake-qt4 <path to source directory>

Java applications

- Download and unpack the code
- ★ Load java module: module load java
- ★ Run the code
- ★ Example: Trimmomatic
 - wget http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.39.zip
 - unzip Trimmomatic-0.39.zip
- ★ Run the code module load java java -jar <path to>/trimmomatic-0.39.jar {+options if any}

Singularity

Resources: Github, DockerHub, SingularityHub, Aptainer.

Singularity examples: https://github.com/singularity/ware/singularity/tree/master/examples

- ★ **Documentation:** http://singularity.lbl.gov/user-guide
- ★ DockerHub: https://hub.docker.com/explore/
- ★ SingularityHub: https://www.singularity-hub.org/
- ★ Aptainer: https://apptainer.org/

https://docs.alliancecan.ca/wiki/Singularity/en https://um-grex.github.io/grex-docs/

Access to Singularity:

- ★ Connect to cluster: Grex, cedar, graham, beluga or narval:
- ★ Load a module: module load singularity
- ★ Build the image: convert the image from Docker to Singularity
- ★ Note: You may need to use your own Linux machine or VM to build the image

Singularity

- ★ Alternative for running software: difficult to build from source
- ★ Possibilite to convert Docker images to singularity.
- ★ Singularity installed on all clusters {no Docker for security reasons}
- ★ Build the image:

module load singularity singularity build qiime2-2021.11.sif docker://quay.io/qiime2/core:2021.11

- ★ Run the code via singularity:
 - singularity exec -B \$PWD:/home -B /global/scratch/someuser:/outputs \
 - -B /global/scratch/someuser/path/to/inputs:/inputs <path to qiime2-2021.11.sif> \qiime feature-classifier fit-classifier-naive-bayes \
 - --i-reference-reads /outputs/some_output_feature.qza \
 - --i-reference-taxonomy /outputs/some_output_ref-taxonomy.qza \
 - --o-classifier /outputs/some_output_classifier.qza

The Alliance [Compute Canada] wiki

- Systems and services
- Guides

- Links to specific documentation by disciplines
- Links to the documentation from regional partners

Discipline guides [edit] Al and Machine Learning Bioinformatics Biomolecular simulation Computational chemistry Computational fluid dynamics (CFD) Geographic information systems (GIS) Humanities Subatomic physics

Regional partners and services [edit] • WestGrid & • SHARCNET & • SciNet & • Centre for Advanced Computing & • Calcul Québec & • ACENET & • ownCloud & storage service

Grex documentation

Search

Notes of Grex Changes

Accessing Compute Canada resources

Grex HPC Documentation

Access and Usage conditions
Connecting / Transferring data

Storage and Data

Running Jobs

Software

Frequently Asked Questions

Local IT Resources

Support and Training

Disclaimer

User documentation for HPC resources at University of Manitoba

Since you have found this Website, you may be interested in Grex documentation. Grex is the University of Manitoba's High-Performance Computing system.

User documentation for HPC resources at University of Manitoba

For experienced Grex users

For new Grex users

A Very Quick Start guide

Useful links

- Updating the documentation after adding the new hardware.
- Hosted on GitHub
- The link is available as MOTD when login to Grex.

https://um-grex.github.io/grex-docs/

University Grex documentation: new website

Online soon!

Useful links

- ★ FAQ: https://docs.alliancecan.ca/wiki/Frequently_Asked Questions
- ★ Jobs:
 - https://docs.alliancecan.ca/wiki/Running_jobs
 - https://docs.alliancecan.ca/wiki/Job scheduling policies
 - https://docs.alliancecan.ca/wiki/Advanced MPI scheduling
 - https://docs.alliancecan.ca/wiki/Using GPUs with Slurm
- ★ Storage:
 - https://docs.alliancecan.ca/wiki/Storage_and_file_management
 - https://docs.alliancecan.ca/wiki/Transferring_data/en
- **★** Software:
 - https://docs.alliancecan.ca/wiki/Available_software
 - https://docs.alliancecan.ca/wiki/Utiliser_des_modules/en
 - https://docs.alliancecan.ca/wiki/Installing software in your home directory
- ★ Grex: https://um-grex.github.io/grex-docs/

Upcoming WestDRI trainings

https://training.westdri.ca/

https://autumnschool2022.westdri.ca/info/