Predicting Business Needs Through Time Series Analysis

Nicole-Marie Farley, Ph.D.

About Me

Biomedical Background

- B.A. Neuroscience
- Ph.D. Cellular and Molecular Biology

The Problem

WellPsyche: provider of mental health services

- *Thanks to Vincent Serpico

Given historical data, can we anticipate future demand for mental healthcare providers?

Project Objective: predict the number of providers in each category that will be needed to meet future demand with 3 months lead time.

- Provider categories: doctors/psychiatrists, RN/PAs, therapists

Approach

Step 1: Model Demand

Step 2: Determine the number of providers needed to meet that demand

Modeling Demand:

How much time (Appointment Hours) will be needed?

A Simple Model: Linear Regression

Simple Model: Linear Regression

Not a good fit!!!

Variation Due to Time of Year

Example: Major Holidays

Modeling Supply

Supply and Demand

Supply and Demand

Number of providers needed = Predicted number of hours (demand) / average hours per provider (supply)

Modeling Weekly Demand for Psychiatrists

Linear Regression (not good)

AR: AutoRegressive / MA: Moving Average (getting better)

ARIMA/ARIMAX: AutoRegressive Integrated Moving Average/with Explanatory

Variable

Prophet: new forecasting library from Facebook

ARIMAX

ARIMAX

	Predicted_Hours	Predicted_Num_Providers
2018-06-25	313.0	16.0
2018-07-02	313.0	16.0
2018-07-09	314.0	16.0
2018-07-16	316.0	16.0
2018-07-23	317.0	16.0
2018-07-30	317.0	16.0
2018-08-06	317.0	16.0
2018-08-13	319.0	16.0
2018-08-20	320.0	16.0

8-16 week forecast

Prophet

Prophet

	Predicted_Hours	Est_Num_Providers
8	307.0	16.0
9	305.0	16.0
10	303.0	15.0
11	302.0	15.0
12	300.0	15.0
13	298.0	15.0
14	296.0	15.0
15	295.0	15.0
16	293.0	15.0

8-16 week forecast

Conclusions

ARIMAX Predictions: 16 psychiatrists needed 8 to 16 weeks in the future

Prophet Predictions: 15-16 psychiatrists over the same interval

Conclusions

ARIMAX Predictions: 16 psychiatrists needed 8 to 16 weeks in the future

Prophet Predictions: 15-16 psychiatrists over the same interval

Which model is better?

Conclusions

ARIMAX Predictions: 16 psychiatrists needed 8 to 16 weeks in the future

Prophet Predictions: 15-16 psychiatrists over the same interval

Which model is better?

Mean squared error for test data (March & April 2018) was lower for Prophet model than ARIMAX

 LSTM: Long Short-Term Memory Recurrent Neural Network

 LSTM: Long Short-Term Memory Recurrent Neural Network

- LSTM: Long Short-Term Memory Recurrent Neural Network
- Add additional features/variables to existing models

- LSTM: Long Short-Term Memory Recurrent Neural Network
- Add additional features/variables to existing models
- Breakdown by different types appointments

Tools/Libraries Used

Forecasting at scale.

Machine Learning with Scikit-Learn

Thank you!!!!

nicole.m.h.farley@gmail.com

https://www.linkedin.com/in/nicole-farley-ph-d/

https://github.com/nicolemhfarley

