Fall 2023 - Data Structures

- Array is good for data which is accessed randomly and it is easy to implement.
- Linked Lists are ideal for applications which has frequent operations such as:
 - o add, delete, update
- However, searching in these data structures are slow.
 - Because they are linear
 - Can we use something else?

- Do we have a data structure which has multiple relations among its nodes?
 - We call those a tree
- A tree is a collection of nodes connected by directed or undirected edges.
- It is a nonlinear data structure compared to arrays, linked lists, stacks and queues.
 - They are linear.

- Non-linear, hierarchical data structure
- Comprises a collection of entities known as nodes
- Connects each node in the data structure by using edges
 - Can be directed or undirected.

Why use it?

- Linear data structures store data in sequential order.
 - (This doesn't mean they are sequentially stored in the memory)
- Time complexity increases when you want to perform operations.

Node

- A node is a structure that contains a key or value and pointers in its child node.
- Each node can have an arbitrary number of children and it is not known in advanced.
 - The general tree can be implemented using a **first child/next sibling** method.
 - Each node will have two points.
 - One to leftmost child, and one to rightmost sibling.

Root

- Root is the first node of the tree.
- It is the initial node.
- In a tree, there can only be one root node.

Edge

- The connecting link of any two nodes is called an edge.
- If there are **N** number of nodes, there are **N-1** edges.

Parent

- A node which is predecessor of any node is known as a parent node.
- A node with a branch from itself to any other successive node is also called a parent node.

Child

- A descendant of any node is known as child node.
- Every node other than the **root** node is a **child** node.
 - o Why?
- Any number of parent nodes can have any number of child nodes.

Siblings

Nodes that belong to the same parent are called siblings.

Leaf

- The node with no child is known as a **leaf** node.
- Also called external nodes or terminal nodes.

Internal nodes

- Trees have at least one child node known as internal nodes
- Nodes other than leaf nodes (external nodes) are internal nodes.

Degree

- Total number of children of a node is called the degree of the node.
- Highest degree of the node among all the nodes in a tree is the Degree of
 Tree

Level

- Root node is at level 0.
- Root node's children are at level 1
- Children of them are at level 2

• ...

Height

- Number of edges from the leaf node to the particular node in the longest path is known as the height of that node
- The height of root node is called Height of Tree
- Tree height of all leaf nodes are 0.

Depth

- Depth of a node refers to its distance from the root node.
 - Root node is depth 0
 - Any node connected directly to root is 1.
- Depth of a tree is the maximum level any node is situated at the tree.
 - Length of the longest path from the root node to the furthest leaf node.
 - Each step from a node to immediate child counts as 1.

Depth vs Level

- When we talk about a specific node, depth and level will be the same.
 - Try to find an example where they are not the same.
- However, they do not exactly mean the same thing.
- Depth:
 - Used when discussing the position of a single node
 - We say a tree hasa depth of 3
 - Means there are three edges from the root node to the deepest node.
- Level
 - Used in the context of all nodes that lie at the same distance from the root.
 - We say nodes at level 2
 - Refers to all nodes that are two steps away from the root, regardless of their individual path.

Path

- Sequence of nodes and edges from one node to another node is called the path between the two nodes.
- Length of a path is the total number of nodes in a path.

Types of Trees

General Tree

- When there are no constraints on the hierarchical structure.
- A node can have any number of nodes.
 - Which means a node can have any number of children they want.

Binary Tree

- A node can have at most two child nodes.
- These are called **left child** and **right child**

Binary Trees

- A binary tree in which each node has exactly zero or two children is called a full binary tree (Left)
 - There are no nodes with exactly one child.
- A complete binary tree is a tree which is completely filled. (Right)

Binary Search Tree (BST)

- More constricted extension of binary tree
- Has a unique property
 - Binary search property
 - Meaning: the value of a left child node should be less than or equal to the parent node
 - Value of right node should be greater than or equal to the parent value.

Left node value<= root node <= right node value

BST

- Binary tree != BST
- All BST are binary trees but not all binary trees are BST
- Key difference is how the nodes are organized
 - Binary tree is a more general concept with no specific ordering
 - BST is a specialized tree that maintains a specific order
 - To allow efficient searching and sorting operations
- Binary Trees are used in scenarios where data hierarchy is important but order is not.
 - They are the foundational structure of BST
- BST are used in scenarios where quick search, insertion and deletion are required.
 Useful for operations like lookup, addition and removal.
 - The special property of it allows us to skip half of the tree at each step.

BST Operations - Inserting a node

- Remember that BST is a special tree. In order for it to be BST, it needs to satisfy some conditions.
- Therefore, for every node N, all nodes in its left subtree have values less than
 N, all nodes in its right subtree have values greater than N.
- We want to add X.
 - Starting from the root, compare X with the value of the current node.
 - o If **X** is smaller go left child. Else, go right child.
 - Repeat this process until you reach the leaf node and insert the value as left or right depending on its value.

BST Operations - Searching for a node

- Similar to insertion
- Start from the root and compare the value to be searched with the current node's value.
- If they match, it means you've found the node.
- If the value is smaller, search in the left subtree, else in the right.
- Continue until the value is found or a leaf node is reached without finding the value.
 - It means that value is not in the tree.

BST Operations - Deleting a node

- More complex compared to other operations.
- You need to maintain the BST property after removal.
- Three cases to consider:
 - Node with No children:
 - Just remove the node
 - Node with One Child
 - Remove the node and replace it with its child
 - Node with Two Children
 - Find the node's in-order successor or in-order predecessor.
 - Replace the node's value with the in-order successor/predecessor value
 - Delete the in-order successor/predecessor.
 - In-order successor: The smallest node in its right subtree
 - In-order Predecessor: The largest node in its left subtree

Usage

- Often used in databases for indexing.
- Allows for quick search, insertion and deletion of records.
- Used in autocomplete features
- File system and Hierarchical Structure Representation
 - File systems can be represented as such. Pre or post-order can be used for operations like displaying directory contents, calculating folder sizes, etc.
- Expression tree evaluation
 - Used to represent arithmetic expressions.
 - Post-order traversal is used to evaluate these expressions. (Reverse Polish notation [4 5 +])
- etc.

Tree traversal

- Traversal of the tree is the process of visiting each node and printing their value.
- Traversing a linked list or an array is easy, but in BST; not so much.
 - Traversals can also be applied to regular trees.
- Three ways:
 - Pre-order traversal
 - Root, Left, Right
 - Useful for creating a copy of the tree
 - In-order traversal
 - Left, Root, Right
 - Retrieves elements in sorted order
 - Post-order traversal
 - Left, Right, Root
 - Useful for deleting the tree

In-order traversal

- The idea is that we visit the nodes in the order left-root-right
- Hint:
 - It should always be sorted!
 - In-order traversal **for BST** gives us the sorted result in ascending order (increasing)

Pre-Order Traversal

- Root Left Right
- Processed as the node is visited.
- Primary Use
 - Visits the root before the subtrees, making it useful for operations where you need to visit ancestors before descendants.

Applications

 Copying a tree, expressing it in a way that it can be reconstructed (serialization), prefix notation in expression trees, creating a prefix expression (Polish Notation), and tree traversals in graph algorithms.

Post-Order Traversal

- Left Right Root
- Node is not processed until the children are.
- Primary Use
 - Root is visited last after its subtrees, making it suitable for post-processing subtrees before processing the parent.
- Applications
 - Useful in deleting or freeing nodes and subtrees, postfix expression evaluation (Reverse Polish Notation), solving certain dynamic programming problems, etc.

InOrder(root) visits nodes in the following order: 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90

A Pre-order traversal visits nodes in the following order: 25, 15, 10, 4, 12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order: 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

Example

Write it in array form for 3 traversals

- In-order: 1, 5, 8, 0, 13, 15, 38, 45, 46
- Pre-order: 38, 5, 1, 9, 8, 15, 13, 45, 47, 46
- Post-order: 1, 8, 13, 15, 9, 5, 46, 45, 38

Exercise

- In-order
- 6, 7, 8, 10, 12, 15, 16, 17, 20, 22, 25, 27
- Remember, in-order is sorted order.

- Pre-order
- 15 10 8 7 6 12 20 17 16 25 22 27

- Post-order traversal
- 7 6 8 12 10 16 17 22 27 25 20 15

Example

- Array: 45, 10, 7, 90, 12, 50, 13, 39, 57
- Draw a BST
- At every element, check for the elements before. If it is smaller go left, if larger go right.

Example

Add another number to the previous BST after creating it.

Example (delete leaf node)

- Delete 12
- Since it is a leaf node we can delete it.

Example (delete one child)

- Delete 90
- There is a single child of 90.
- We copy the value
- Delete 90
- Paste copied there

Example (Node with 2 children)

- Delete 45
- If right subtree is not empty, replace root with minimum node in right subtree.

