General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-743-71-103

MSA TM X: 65570

AN ANALYSIS OF FLIGHT 4.272 UA

CHARLES F. MILLER, JR.

MARCH 1971

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

VEHICLE ATTITUDE AN ANALYSIS OF FLIGHT 4.272 UA

Charles F. Miller, Jr.

Instrumentation Branch Sounding Rockets Division

PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

This report gives a brief case history of the determination of sounding rocket attitude by means of solar aspect sensors and magnetometers, as applied to NASA Rocket Flight 4.272 UA.

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

<u>P</u>	age
ABSTRACT	iii
INTRODUCTION	1
DATA ACQUISITION	1
SOURCE OF ATTITUDE DATA	1
SENSORS	1
Magnetometer	3
RAW DATA	3
DATA REDUCTION	5
THEORY	5
STEPS IN REDUCTION OF DATA	5
COMPUTER PROGRAM DESCRIPTION	5
POLAR GRAPH	7
INTERPRETING THE TABULATED DATA	9
VEHICLE MOTION	9
SPIN RATE AND SPIN RATE CHANGE	11
CORRECTLY INTERPRETING THE TABULATED DATA 1	L1
PRECAUTIONS	13
ACKNOWLEDGEMENTS	13
REFERENCES	L 4
APPENDIX - TABULATED OUTPUT DATA	-2

ILLUSTRATIONS

Figure		Page
1	Sensor Orientation, NASA Rocket Flight 4.272 UA	2
2	Flow Diagram for Rocket Attitude Data Reduction	6
3	Mechanical Plot of Rocket Attitude Data	8
4	Vehicle Motion in Space	10
5	Reconstructed Attitude Data Plot	12
A-1	Oscillograph Record of Magnetometer Outputs	A-11
		,
	TABLES	
<u> </u>		Page
ľ	Sensor Orientation Specification, NASA Rocket Flight 4.272 UA	1
A-1	Computer Printout of Rocket Attitude Data	A-3

INTRODUCTION

Flight number 4.272 UA, an Aerobee 150 rocket, was fired February 4, 1969, at the Churchill Research Range in Canada. It was carrying equipment including two mass spectrometers, to perform an atmospheric composition experiment. The number of atmospheric particles detected by a mass spectrometer depends on the orientation of the spectrometer with respect to the direction of travel, or velocity vector. Consequently, value of spectrometer data depends on having accurate trajectory and attitude (direction of pointing) data over the period during which the measurements are being made. Trajectory data of Flight 4.272 UA were acquired by radar tracking, while the attitude data were provided by the methods described in this report.

DATA ACQUISITION

SOURCE OF ATTITUDE DATA

The source for attitude data depends on the type of sensors to be used. In this instance, the sun and the magnetic vector were used as sources and as reference points for the gathering of vehicle attitude data.

SENSORS

Two flux-gate magnetometers and two solar aspect sensors were mounted with the orientation illustrated in Figure 1, and specified in Table I. The orientation of the mass spectrometers are shown and specified in the same figure and table.

TABLE I
Sensor Orientation Specifications, NASA Rocket
Flight 4.272 UA¹

Sensor	Zenith ²	Azimuth ³
Mass Spectrometer 1	89°20'	181° 52'
Mass Spectrometers 2, 3	89° 14'	0° 00'
Adcole Solar Sensor 1	69° 52'	114° 18'
Adcole Solar Sensor 2	110°06'	249°30'
Lateral Magnetometer	90° 00'	70°34'
Longitudinal Magnetometer	179° 08'	320°23'

- 1. From reference 1
- 2. Zenith angle measured from nose of rocket
- 3. Azimuth angles measured counterclockwise from mass spectrometers 2 and 3

A. SENSOR CONFIGURATION LOOKING DOWN TOWARD PAYLOAD FROM TIP OF ROCKET

B. SIDE VIEW OF ROCKET SENSOR CONFIGURATION

Figure 1. Sensor Orientation, NASA Rocket Flight 4.272 UA (Reference 1)

MAGNETOMETER. The Schonstedt RAM-5C Magnetometer senses the angular relationship between its longitudinal axis and the earth's magnetic field.

$$E = \hat{E} \cos \theta + E_0 \tag{1}$$

Where:

E is the output voltage of the magnetometer;

 \hat{E} is the peak output voltage, the magnetometer output voltage when its longitudinal axis is aligned with the magnetic field. This peak output is adjusted to be ± 2.5 volts. One polarity of the voltage results from the pointing of one pole of the magnetometer in the direction of the south-seeking magnetic vector, who opposite polarity is the result of the opposite alignment;

 θ is the angle between the longitudinal axis of the magnetometer and the magnetic field;

and:

 ${\rm E}_0$ is a bias voltage, +2.5 volts, whose purpose is to shift the magnetometer output voltage to the 0-to-+5-volt range.

SOLAR ASPECT SENSOR. The Adcole Solar Aspect Sensor Model 135, used in conjunction with Shift Register Model 235, produces binary coded words indicating the angle and the time of arrival of the solar beams that strike the sensor.

RAW DATA

The data were telemetered by an FM-FM system; the raw data are in the form of oscillograph records. Figure A-1 in Appendix A shows the telemetry record of the two magnetometer outputs. The modulation observed on the trace representing the output of the lateral magnetometer is the result of vehicle spin, and shows the spin rate. The peak positive output, during the spin cycle, occurs when the probe axis of the lateral magnetometer reaches its point of nearest approach to alignment with the magnetic vector in one direction. When, during the spin cycle, the orientation has changed 180 degrees, the instantaneous voltage at the output is peak negative. The output of the longitudinal magnetometer is similar, except that it does not have the sine-wave modulation. Its output is

a function of the degree of alignment between the probe axis (which is parallel to the rocket longitudinal, or Z, axis) and the magnetic field. The magnetic aspect angle is equal to:

ARC SIN
$$\frac{\hat{B}_{LAT}}{B_{TOTAL}}$$
, (2)

$$ARC COS \frac{B_{LONG}}{B_{TOTAL}} , (3)$$

or

ARC TAN
$$\frac{\hat{B}_{LAT}}{B_{LONG}}$$
; (4)

Where:

 \hat{B}_{LAT} = lateral sensor, peak flux density reading, milligauss;

B_{LONG} = longitudinal sensor, flux density reading, milligauss;

and B_{TOTAL} = total flux density, milligauss.

The solar sensor output tracing contains a pulse-code modulation that gives the solar aspect angle in degrees, whenever the solar sensor is rotated through the plane containing the sun and the rocket longitudinal axis. The angle in "spin degrees" between the solar sensor readout and the lateral magnetometer peak reading, when corrected for sensor orientation*, is known as the phase angle. (Another definition of phase angle, in this application, is given in the "Theory" paragraph of the Data Reduction section, on page 5.) The first step in data reduction is to read the magnitude of each parameter at the point on the record representing a readout, one time during each rotation, and to record the readings as a function of time, in tabular form. These are the figures which are punched on cards for computer entry.

^{*}Note: The data-reduction procedure is simplified if the magnetic axis of the lateral magnetometer probe and the optical axis of the solar sensor point in the same direction, or lie in the same longitudinal plane of the rocket.

DATA REDUCTION

THEORY

The plane containing the longitudinal, or Z, axis of the rocket plus the center of the solar sensor, spins about the Z axis. As the plane intercepts the sun, the sensor generates a word which is a seven-bit Gray-Code number designating the angle between the direction of the sun and the rocket Z axis. This angle is defined as the solar aspect angle. The angle between the rocket Z axis and the earth's magnetic flux vector, at the launch site, is the magnetic aspect angle. The plane formed by the rocket Z axis and the magnetic vector intersects the plane formed by the Z axis and the sun. This intersection of the two planes coincides with the Z axis. The dihedral angle formed by the intersection of the two planes is defined as the phase angle. When corrected for any necessary sensor orientation, it is shown on the oscillograph recording as the rocket spin angle between the solar sensor readout and the peak voltage point on the lateral magnetometer readout. With these data, along with the latitude, longitude, and altitude of the rocket, the attitude of the rocket can be determined.

STEPS IN REDUCTION OF DATA

Most of the data reduction was performed, under contract, by the Physical Science Laboratory of New Mexico State University, and the data reduction was the subject of a report (Reference 1). The sequence of steps used in the data reduction are illustrated in the block diagram, Figure 2. Separating the procedure into definite steps enables the weeding out of data which is obviously erroneous, and makes it easier to avoid the temptation of integrating the program in such a way that it is not certain where an error has occurred in the program.

COMPUTER PROGRAM DESCRIPTION

There are two computerized methods of finding the attitude of the vehicle by spherical triangulation. The first method uses the solar aspect angle and magnetic aspect angle, with the sun and magnetic vector positions on the celestial sphere, as input parameters. The sun, the magnetic vector or south magnetic point, and the rocket axis form the apices of a spherical triangle, the solution of whose dimensions yields the attitude of the vehicle. Both the sun's position and the south magnetic point require computer programs for their determination. With the computerized solution of the triangle dimensions, the phase angle may theoretically be determined as part of the output. Table A-1 in the Appendix shows the computerized solution by this first method.

Figure 2. Flow Diagram for Rocket Attitude Data Reduction (Reference 1)

The alternate, or second, computerized method for finding the attitude uses the solar-aspect angle and the phase angle as inputs. When the nose of the vehicle points between the sun and the magnetic vector, this second method yields better resolution than the first.

POLAR GRAPH

Figure 3 shows a polar graph which is a representation of the hemispherical sky. There are small 1/4-inch circles on the circle which represents the horizon, at the points representing the directions, north, east, south, and west. The zenith angle designation is given to circles smaller than the horizon in 20-degree increments, through 80 degrees. The azimuth angles are marked in 10-degree increments, from true north or 0 degrees to 360 degrees, around the circle representing the horizon. The early morning sun is shown as having an altitude of 2 degrees, or a zenith angle of 88 degrees, and an azimuth of 126 degrees. The south-seeking direction of the magnetic vector has a zenith angle of 7 degrees and an azimuth of 182 degrees. Expressed in more conventional terms, the geomagnetic dip angle is 83 degrees, and the variation, or declination (deviation from a north-south direction) is 2 degrees east. The two solutions given in the tabulated output data were plotted on the graph and were made part of the attitude data-reduction report (Reference 1). It was stated in that report that the second solution was the correct one.

ROCKET ATTITUDE AEROBEE 150 VEHICLE NUMBER 4.272 UA FORT CHURCHILL, MANITOBA, CANADA 4 FEBRUARY 1969

Figure 3. Mechanical Plot of Rocket Attitude Data (From Reference 1)

INTERPRETING THE TABULAR DATA

VEHICLE MOTION

Assuming that none of its parts move or oscillate with respect to one another, a spinning rocket can be mathematically represented in its motion. See Figure 4. During the early part of the flight the spin is imparted to the rocket by means of canted fins, for the purpose of stabilization of the vehicle, especially in the air, and while being propelled. It is usual to reduce spin rate, just before the gathering of the data. While falling freely in the vacuum of space, the vehicle spins and cones in a defined pattern about its center of gravity. The distribution of the masses within the vehicle determine its moment of inertia ellipsoid (a mathematical three-axis model for defining the motion of a body in terms of its absolute kinetic energy, T). If its linear velocity is defined as V, mass as M, spin angular velocity as ω_2 , spin moment of inertia as I_2 , coning angular velocity as ω_1 , and coning moment of inertia, I_1 , about the invariant line, then:

$$T = \frac{1}{2} MV^2 + \frac{1}{2} (I_1 \omega_1^2 + I_2 \omega_2^2).$$
 (5)

During the earlier portions of the powered flight, the invariant line will be close to the direction of the velocity vector (the direction of travel of the rocket). However, thrust asymmetry in the rocket motor, or a poor separation of the booster, could alter the invariant line in any direction. Also, as the vehicle approaches and passes through its apogee, the velocity vector changes in direction up to 180 degrees. However, this change has no effect on vehicle stability during free fall in a vacuum.

One easily monitored parameter, the spin period and spin decay of the rocket, will immediately indicate its stability. If the spin angular momentum term, $I_2\omega_2^2$, shows no change, there is no change in the coning, $I_1\omega_1^2$; therefore, the vehicle is stable. If the spin decays, the energy associated with the angular momentum of the spin will be transferred to the coning angular momentum, and the coning angle will increase, as:

$$I_2 \omega_2^2 \longrightarrow I_1 \omega_1^2. \tag{6}$$

Under these conditions, the vehicle is unstable. It will develop a flat spin, and the acceleration forces at the ends of the vehicle will increase, sometimes to a point that the payload is destroyed.

The center of gravity of the rocket moves along the velocity vector in free space, while the vehicle spins about its longitudinal axis, and cones about a momentum vector with a coning half-angle as shown, at a particular precession rate. The spin, coning angle, and precession rate are all mathematically related. For more detail, see reference 2.

Figure 4. Vehicle Motion in Free Space

SPIN RATE AND SPIN RATE CHANGE

The spin rate and its changes were determined by noting, on the telemetry record, the exact time of the beginning of each solar signal. The spin period and the spin period change were computed and tabulated during 18 seconds to 376 seconds after lift-off. The spin rate increased from 0.735 revolutions per second at 17.9 seconds to 2.82 revolutions per second at 53 seconds after lift-off, and remained at a constant 2.813 revolutions per second until despin at 80.85 seconds. The spin rate then settled to an almost constant 0.3735 revolutions per second until 376 seconds after lift-off. The rocket history, as previously noted, is a very good index to be used in determining the vehicle stability. The only changes in spin rate, up to 376 seconds of flight, were caused by external forces, such as the acceleration of the sustainer, and the despin. Thus, it would be expected that any coning motion would have remained substantially constant during the free-fall part of the flight.

CORRECTLY INTERPRETING THE TABULAR DATA

Although it is not clear from an examination of the tabular data, the true attitude of the rocket during flight was a composite of the two solutions presented. In the light of the discussion on vehicle motion, an examination of the polar graph shown in Figure 5, makes it apparent that such is the case. It is from this plot, using the methods given in Reference 3, that the composite solution is determined. If that portion of solution Number 2 from 50 seconds to 180 seconds is omitted, and those portions of solution Number 1, from about 100 seconds to 160 seconds, and from 180 to 380 seconds are used, it is found that these portions of the curves form a circle about a point having a zenith angle of 53 degrees, and an azimuth angle of 167 degrees. This point represents the invariant line or momentum vector of the coning motion. The coning half-angle was 44 degrees, and the direction of the coning angular velocity was the same as that of the spin angular velocity. The coning motion, despite its rather large coning half-angle (see Figure 5) was confined to approximately one circle. fact that the coning, once having begun, was almost unchanged throughout the remainder of the flight resulted from a good dynamic design of the payload. In other words, the distribution of the masses within the payload is critical to a good stable flight.

ROCKET ATTITUDE AEROBEE 150 VEHICLE NUMBER 4.272 UA FORT CHURCHILL, MANITOBA, CANADA 4 FEBRUARY 1969

LAUNCH DATA

TIME: 14H 35M 0.44 S GMT LATITUDE: 58° 44' N LONGITUDE: 93° 49' W LAUNCHER SETTINGS: ELEVATION: 82.6° AZIMUTH: 162.4° FLIGHT AZIMUTH: 166°

THE "+" AT 53 DEGREES ZENITH DISTANCE AND 167 DEGREES AZIMUTH IDENTIFIES THE DIRECTION OF THE MOMENTUM VECTOR, OR INVARIANT LINE. THE CONING HALF-ANGLE IS 44 DEGREES.

Figure 5. Reconstructed Attitude Data Plot (Adapted from Reference 1)

PRECAUTIONS

There are some precautions that apply especially to rocket flights using solar sensors and magnetometers for attitude data. The experimenter should:

- 1. Know precisely the orientation of all sensors
- 2. Calibrate all sensors
- 3. To the extent permitted by the mission and range requirements, launch the rocket at a time and in a direction in which both the solar and the magnetic aspect angles will be relatively large. Also, it is better if the direction of the sun and the orientation of the magnetic vector make a relatively large angle with respect to each other. (In other words, calculate the Solar Flight Window, or time during which the direction of the sun is favorable to the acquisition of good aspect data.)
- 4. Design a payload whose moments of inertia are symmetrical about the longitudinal, or Z, axis, for best use of spin stabilization. With known moments of inertia, the degree of rocket stability can be mathematically predicted. This applies whether attitude sensing is required or not.

ACKNOWLEDGEMENTS

Most of the data reduction was performed under contract at New Mexico State University, the largest contributers being Mr. John Ward and Mr. John Byers. (See Reference 1.)

Calibrations of sensors and documentation of sensor orientations were made by Dr. Alfred Nier and Mr. David Hickman, of the University of Minnesota. The excellent performance by the team from the University of Minnesota contributed to the accuracy of the data reduction by New Mexico State University.

REFERENCES

- 1. John J. Ward and John Byers. "Rocket Attitude Determination, with Data from NASA 4.272 UA." PR00663, Physical Science Laboratory, New Mexico State University, Las Cruces, New Mexico, 88001. Contract Number NAS5-21002. 28 January, 1970
- 2. Joseph Sweetman Ames and Francis D. Murnagham. "Theoretical Mechanics, and Introduction to Mathematical Physics." Dover Publications, 180 Varick Street, New York, New York 10014. 1929, 1958. Library of Congress Card Number 58-11269
- 3. Charles F. Miller, Jr. "A Graphic Method for Determining Absolute Attitude of Sounding Rocket Vehicles" NASA/GSFC TN D 5172. May, 1969

APPENDIX

TABULATED OUTPUT DATA

Table A-1, in the Appendix, shows the computer printout of the attitude data for Flight 4.272 UA. Columns 1 through 3 show the Greenwich mean time in hours, minutes and seconds. Column 4 gives the time in seconds after lift-off. Columns 5, 6, and 7 contain the positional data of the rocket: latitude, longitude, and altitude. These three parameters were used by the computer, in a subroutine, to calculate the local magnetic field vector at the rocket. This is one of the inputs required for the computation of the magnetic aspect angle. Column 8 is the solar aspect angle, and column 9 is the magnetic aspect angle.

Columns 10, 11, and 12 represent one solution of the vehicle attitude. Column 10 shows the zenith distance, or angle between the Z axis and straight up; column 11 shows the angle from true north on the horizon; and column 12 shows the phase angle, or angle between the plane containing the sun and the plane containing the magnetic vector, measured at the rocket. Columns 13, 14, and 15 contain an alternate solution of the rocket attitude, using the same parameters.

Table A-1

COMPUTER PRINTOUT OF ROCKET ATTITUDE DATA (REFERENCE 1)

ROCKET ATTITUDE

		Z SX													٥	0	o	0	2	ņ	7	, 0	۰ ۲	7	7	7	7	8	
	6961	R_PH_A2 (JEG)													0.0	0.0	0.0	0.0	227.78	255.12	255-00	254 74	256.37	254.43	254.26	254.08	260.88	259.57	
	4 FEBRUARY 1969	R_A22 (DE3)													0.0	0.0	0.0	0.0	175.44	192.71	195.61	192 30	193.75	192.14	192.00	191.85	197,36	196.42	
	DATE 4	8_202 (DEG)													0.0	0	0	0.0	17.16	16.99	16.90	16.72	17.78	16.52	16.41	16.30	19.56	19.50	
	Э	K_PH_A1 (DEG)	1	!!	1		!	1	!	!	1	! !	11	1	0.0	0.0	0.0	0.0	132.22	104.38	104.99	105 24	103.63	105.57	105.74	105.92	99.12	100.43	11
	CANADA	R_A21 (0EG)													0.0	0.0	0.0	0.0	112.05	97.44	87.96	200	45.94	90.42	31.14	91.92	71.84	13.73	
**272UA	CHILL,	R_201 (UEG)													0.0	0.0	0.0	0.0	11.09	1.99	1.93	2	8.53	7.68	19.7	7.54	69.6	9.14	
VEHICLE NO. 4.272UA	FRUM FURT CHURCHILL, CANADA	M_ASP (DEG)													11.08	11.01	10.04	10.86	10.78	10.69	10.60	10.41	11.51	10.20	10.09	16.6	13.40	13.30	
VEHIC	FROM	S_ASP (DEG)													73.37	73.37	73.37	73.37	77,89	82.37	82.31	82 27	82.37	82.37	82.37	82.37	82.90	82.61	
	HED AT 14H 35M 00.440S GMT	CM3									-				5868.0	6351.9	6855.0	7376.8	1916.6	8476.7	9059.9	10200	10962.7	11651.4	12364.5	13110.7	13890.9	14104.4	
ië 150	1 35M 00.	LONG									-			-	93.82	93.82	93.82	93.82	93.81	93.81	93.81	93 61	93.81	93.81	93.31	93.81	93.81	93.81	
LE: AEROBEE 150	D AT 141	LAT (DEG)													58.73	58.73	58.73	58.73	58.73	58.73	58.73	50 72	58.72	58.72	58.72	58.72	58.72	58.72	
MISSILE	LAUNCHE	FLT_TM (SEC)													18.000	19.000	20.000	21.000	22.000	23.000	24-000	2000	27.000	28.000	29.000	30.000	31.000	32,000	
		UNIVERSAL TIME													18.4375	19.4375	20.4385	21.4375	22.4375	3.4385	24.4375	24 4276	27.4375	28.4385	29.4375	30.4375	31.4385	32.4375	
		(GNT)													35H	35M	35M	35N	354	35	358	35.8	358	35	35M	35H	358	354	
		3													14H	141	H+1	141	141	141	# :		1	1	141	1	14T	#	

Table A-1 (Continued)

23.19 182.67 240.06 25.57 183.14 241.20 24.64 178.81 235.16 27.59 180.13 237.80 25.95 175.04 230.57
1119.94 22 1118.80 22 124.84 24 122.20 21
90.49 86.56 93.65 88.42
14.89 17.02 16.84 19.37
16.52 14.90 17.98 20.91 19.34
76.33 75.32 74.22 73.13
84861.5 86253.8 87640.5 89011.9
93.75 93.75 93.75 93.75
58.61 58.61 58.61 58.61 58.61
81.000 82.000 83.000 84.000
21.4375 22.4375 28.4385 24.4375 25.4385
14H 36H 14H 36H 14H 36H 14H 36H

223.69															220.34													215.45			212.56			221.66					215.16			.33 2	•	~			_	~
.01 223				6	Ŷ	•	_	•			_	_			•													.+	•		on a							N	N	m	_	.09 217	.+	.69 210.9	•00 214	78 215	42 211	45 214
021 1	113	174	110	165	0,1	~	~	5 170.7	169	7 164	7 167.39		165	_	_	_	4 164.24	_	_	1 155.66	_	_	_	_	_	4 156.27	-	8 154.2	_	-	151.6	-	12.001 2	-	7	_	-	_	6 149.3	-	4 140	3 149	144	145	+ 147	-	+	2 145.
25.6													38.54																		48.63								26.46			59.5						
136.31	129.93	127.92	133.11	140.01	132.47	134.75	139.63	130.78	131.91	139.68	133.85	140.37	136.20	139.67	139.66	135.00	135.99	140.49	138.08	147.44	141.75	141.75	139.57	141.81	140.22	145.49	139.64	144.55	144.67	140.62	147.44	71.241	146.06	138 . 34	144.27	144.92	141.27	150.43	144.84	145.14	1,48.93	142.66	151.45	149.07	145.76	144.95	149.00	145.42
103.46	75, 15	92.11	14.16	104.41	40.96	98.25	103.13	93.95	16.46	95.701	96.63	102.74	98.77	101.93	101.90	69.16	19.86	105.60	100.58	108.47	103.79	103.85	102.19	104.01	102.97	104.89	7.02.99	100.71	106.86	104.03	01.601	104.04	108.59	103.61	107.90	108.41	100.49	112.24	109.10	109.50	111.90	108.59	113.65	112.41	110.72	110.63	113.09	111.59
19.20	21.89	24.05	23.96	73.41	26.08	26.27	25.58	28.41	29.00	28.20	31.12	30.27	32.24	32.08	32.50	34.29	34 . 80	34.78	36.71	35.39	37.44	38.26	39.67	39.85	41.25	41.83	43.82	43.12	43.48	44.95	44.43	40.00	47.16	49.62	48.76	49.81	51.47	50.55	52.47	53.14	53.08	55.21	53.88	54.64	55.72	56.93	57.20	58.83
19.13	16.22	24.98	24.30	75.96	56.49	26.42	25.19	28.99	29.45	27.80	31.32	29.78	32.16	31.63	32.05	34.29	34.69	34.20	36.33	34.10	36.66	37.46	39.04	39.00	40.51	40.45	43.04	41.91	45.54	44.02	42.91	40.12	45.67	48.69	47.32	48.31	20.57	48.59	50.85	51.47	51.13	53.62	21.15	52.65	53.48	55.09	22.03	56.86
70.66	60.60	68.58	67.40	69.99	65.94	65.58	64.91	64.54	63.77	62.66	61.54	41.09	00.09	59.31	58.94	58.57	57.85	56.73	55.62	54.19	24.05	53.30	54.56	51.81	50.95	49.80	48.68	48.10	47.73	47.34	46.23	45.11	17. K7	43.50	45.64	41.53	40.41	39.65	38.90	38.16	37.41	36.67	36.14	35.77	35.40	34.35	33.23	32.28
93017.1	24331.2	95648.	86951 · o	98245,1	89525.3	100794.7	02056.6	103311.4	104558.8	9.161501	107026.1	108244.2	109451.0	110047.7	111836.9	113016.3	14184.7	115345.0	116495.4	117636.0	118770.3	119893.9	121008.8	122116.6	123212.7	124300.6	125379.4	1-6448.0	157506.9	128553.7	129591.1	21621 0	37638.1	33635.6	134626.3	135609.0	36583.4	137549.2	38504.5	39448.0	40378.9	41299.8	147511.2	43115.2	44011.8	44900.8	45780.8	46651.2
93.74	73.14	93.14	93.74	93.74	93.74	93.74	93.73	93.73	93.73	93.73	93.73	93.73	93.73	93.73	93.73	93.73	93.72	93.12	93.72	93.72	93.12	93.72	93.72	93.72	93.72	93.71					-			40.00		93.70	93.70	93.70	93.70	93.70	93.70	93.70	93.70	93.70	93.69	93.69 1	93.69	93.69
58.60	28.00	28.60	58.59	58.	58.55	54.59	58.58	58.58	58.58	58.58	58.58	58.57	58.57	58.57	58.57	58.50	58.56	58.56	28.56	58.56	58.55	58.55	58.55	58.55	58.54	58.54	58.54	58.54	58.54	58.53	58.53	20.00	58.52	58.52	58.52	58.52	58.55	58.51	58.51	58.51	58.51	58.50	58.50	58.50	58.50	58.49	58.49	58.49
87.000	2000-88	89.000	90.006	91.000	95.000	93.000	34.000	95.000	000-96	97.000	98 .000	000.66	000.00	01.000	05.000	03.000	000-90	000-50	000.90	01.000	08.000	000.60	10.000	11.000	15.000	13.000	14.000	12.000	16.000	17.000	18.000	20.000	21.000	22.000	23.000	24.000	25.000	26.000	27.000	28.000	29.000	30.000	31.000	32.000	33.000	34.000	35.000	36.000
4375	4383	4375	4375	*438S	32.4375	4388	.438S	43.75	.438S	4375	.437S	4385	43.75	S			44.4385 1	5.4385 1	46.4375 1	7.4385 1	8.4385 1	49.4385 1		4					56.4385 1		58.4385 1	1 4365 1	1.4375	2.4375 1	3.4375 1	1 5764.4	.4375	.4375	7.4375 1	8.4375 1	9.4375 I	10.4375 1	1.4375 1	2.4375 1		14.4375 1	.4375	· 43.75
		36M 29					36M 34										36M 44													51	36N 5	.,			37M 3		37M					37M 16		37M L	_	_	_	37M 16
		14H			14H			4H 3	-		-	H\$1					14H						-		-							- 17																E 14

Heal 277 13-000 13-00 13-00 14-310 13-30 13-30 13-40
378 18.4375 13.000 58.49 93.09 143386 53.50 00.41 110.04 111.00
37M 18.6.375 118.6.000 59.49 99.59 144398.6 31.53 58.50 00.48 110.04 144.10 37M 18.6.375 119.000 59.48 99.59 1501002-2 30.55 58.30 00.49 110.04 144.10 37M 21.6.375 14.0 50.48 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47 99.59 150100-2 30.47
37M 18.4375 118.000 58.49 93.59 148358.6 31.53 58.60 60.44 110.04 37M 16.4375 11.00 58.48 93.59 150026.2 28.50 58.50 60.49 115.44 37M 22.4375 14.00 58.48 93.59 150020.2 28.50 58.50 60.91 62.51 115.44 37M 22.435 14.00 58.48 93.59 150020.2 27.50 60.31 62.51 14.48 37M 22.438 14.00 58.47 93.68 15580.2 24.07 60.01 62.27 64.36 112.20 37M 22.438 14.00 58.47 93.68 15580.2 24.07 64.49 93.68 15780.2 14.49 96.51 14.48 96.51 14.48 96.51 14.48 96.51 14.48 96.51 96.51 96.51 96.51 96.51 96.51 96.51 96.51 96.51 96.51 96.51 96.51 <t< th=""></t<>
37M 18.4375 134.000 58.44 93.69 1481386.6 31.53 58.60 60.49 11.5 37M 26.4385 14.600 58.48 93.69 150025.9 27.55 60.39 11.5 37M 26.4375 14.000 58.48 93.69 150025.9 27.37 0.01 62.21 64.93 11.8 37M 26.4375 14.000 58.47 93.68 1525.00 27.37 0.01 62.21 64.93 11.8 37M 26.4375 14.000 58.47 93.68 1525.00 27.37 0.01 62.21 64.93 11.8 64.93 11.8 66.93 11.8 11.8 11.8 66.93 11.8
37M 18.4375 1345.000 58.48 93.69 149398.2 31.55 58.50 37M 20.4385 140.000 58.48 93.69 150229.9 30.55 58.50 37M 20.4385 140.000 58.48 93.69 150260.6 27.37 60.31 37M 21.4375 140.000 58.48 93.69 150260.6 27.37 60.31 37M 22.4385 142.000 58.47 93.68 15250.7 27.37 60.31 37M 22.4375 140.000 58.47 93.68 15250.7 27.37 60.31 37M 22.4375 140.000 58.47 93.68 152620.7 27.37 60.31 37M 22.4375 140.000 58.47 93.68 154022.2 27.40 64.49 37M 22.4375 140.000 58.47 93.68 154020.2 23.40 66.03 37M 22.4375 150.000 58.46 93.68 154020.2 24.91 64.49 37M 32.4375 150.000 58.46 93.68 154020.2 24.91 66.02 37M 32.4375 150.000 58.46 93.68 154020.2 24.91 66.02 37M 32.4375 150.000 58.46 93.68 15406.2 27.40 66.02 <
37M 18.4375 134.000 58.449 93.69 149188.6 31.53 37M 18.4375 134.000 58.448 93.69 149188.2 20.55 37M 22.4375 140.000 58.48 93.69 150020.1 27.56 37M 22.4375 142.000 58.48 93.69 150020.1 27.56 37M 22.4375 142.000 58.48 93.69 150020.1 27.56 37M 24.4375 142.000 58.47 93.68 15402.2 27.37 37M 24.4375 142.000 58.47 93.68 15402.2 27.15 37M 27.4375 142.000 58.47 93.68 15402.2 26.13 37M 27.4375 147.000 58.47 93.68 155250.7 27.15 37M 27.4375 147.000 58.46 93.68 155250.7 27.10 37M 27.4375 157.000 58.46 93.68 15782.5 28.41 37M 37.4385 157.000 58.46 93.68 15782.0 19.37 37M 37.4385 157.000 58.47 93.68 15782.0 19.37 37M 37.4385 157.000 58.44 93.68 15782.0 19.37 37M 47.4385 157.000 58.44 93.68 15782.0 19.37 37M 47.4385 157.000
37M 18.437S 139.000 58.48 93.69 148358.6 3 37M 19.437S 139.000 58.48 93.69 149198.2 3 37M 20.437S 141.000 58.48 93.69 15060.6 2 37M 22.437S 142.000 58.48 93.69 15160.6 2 37M 22.437S 144.000 58.47 93.68 152460.4 2 37M 22.437S 144.000 58.47 93.68 15240.4 2 37M 26.435 144.000 58.47 93.68 154812.2 2 37M 26.435 144.000 58.47 93.68 15581.2 2 37M 26.435 148.000 58.46 93.68 15581.2 2 37M 26.435 150.000 58.46 93.68 15832.6 1 37M 26.435 150.000 58.46 93.68 15832.6 1 37M 26.435 <th< th=""></th<>
37M 18.4375 134.000 58.49 93.69 37M 19.4375 134.000 58.48 93.69 37M 22.4375 140.000 58.48 93.69 37M 22.4375 142.000 58.47 93.69 37M 23.4385 143.000 58.47 93.68 37M 25.4385 145.000 58.47 93.68 37M 25.4385 145.000 58.47 93.68 37M 25.4385 145.000 58.47 93.68 37M 27.4375 149.000 58.47 93.68 37M 27.4375 149.000 58.47 93.68 37M 27.4375 150.000 58.45 93.67 37M 37.4385 151.000 58.45 93.67 37M 36.4385 152.000 58.45 93.67 37M 36.4385 152.000 58.45 93.67 37M 36.4385 156.000 58.45 93.67
37M 18.437S 118.000 58.48 93.69 37M 19.437S 140.000 58.48 93.69 37M 20.438S 140.000 58.48 93.69 37M 22.434S 142.000 58.47 93.68 37M 23.438S 143.000 58.47 93.68 37M 24.437S 144.000 58.47 93.68 37M 25.438S 145.000 58.47 93.68 37M 26.437S 149.000 58.47 93.68 37M 27.437S 149.000 58.47 93.68 37M 27.437S 150.000 58.46 93.68 37M 27.438S 152.000 58.46 93.68 37M 34.438S 152.000 58.46 93.68 37M 34.438S 152.000 58.46 93.67 37M 34.438S 156.000 58.46 93.67 37M 34.438S 156.000 58.46 93.67
37N 18.4375 134.000 37N 20.4385 140.000 37N 22.4385 140.000 37N 22.4385 141.000 37N 25.4385 142.000 37N 25.4385 142.000 37N 26.4375 147.000 37N 26.4375 147.000 37N 30.4375 140.000 37N 30.4375 160.000 37N 30.4375 150.000 37N 30.4375 160.000 37N 30.4385 160.000 37N 40.4385 170.000 37N 50.4385 170.000 38N 50.4385 170.000
377 18 43 18 43 18 5 43 18 8 18 8
377 18 43 18 43 18 5 43 18 8 18 8

					Tak	Table A-1	(Continued)	(pen					
388	9.4375	189.000	58.37	93.04	-	18.08	85.31	87.07	107.70	46.14	11.06	143.66	273.86
38M	10.4375	190.000	58.37	43.64	-	18.63	85.05	86.74	107.17	96.98	90.50	144.24	273.04
39 M	11.4375	191.000	58.37	93.04	-	19.17	84.79	96.42	106.65	87.72	90.29	144.82	272.28
38M	12.4375	192.000	58.37	93.64	_	19.61	87.11	07-88	11.901	11.18	79.76	98-44	276 13
384	13.4375	193	58.30	93.04	180/30.1	86.67	20.00	67.50	105.60	04.00	71.57	145.90	275 70
E NX	15.4375	195-000	58.36	43.64	181374.7	71.47	87.63	89.00	104-33	80.46	93.27	146.63	279.54
384	16.4375	•	58.30	93.64	181687.6	22.59	86.34	87.56	103.19	83.98	92.08	148.03	276.02
388	17.4385	197.000	58.35	93.64	-	23.48	87.89	89.02	102.33	80.54	93.07	148.62	279.46
38M	18.4375	198.000	58.35	93.03	7	23.86	87.89	88.94	101.95	80.66	93.70	143.00	279.34
38M	19.4375	199.000	58.35	93.03	-	24.23	87.37	14.00	101.57	81.93	93.22	149.50	278.07
38M	20.4385	200.000	58.35	93.63	-	25.08	69.68	90.06	100.86	17.10	95.57	149.78	282.90
38M	21.4375	201,000	54.35	93.63	-	76.20	87.63	88.43	99.66	81.86	93.61	151.44	278.14
384	22.4375	202.000	58.34	93.63	-	27.33	88.66	89.34	98.52	80.10	94.10	152.35	279.90
38M	23.4385	203.000	58.34	93.63	183609.6	27.73	89.69	90.34	48.Ly	78.21	95.74	152.50	281.78
38M	24.4375	204-000	58.34	93.63	183844.9	28.10	88.40	88.99	97.13	80.80	94.50	153.20	219.20
38M	25.4385	205.000	58.34	13.63	184062.9	28.69	89.43	96.68	97.20	19.04	95.55	153.56	280.96
388	26.4375	206.000	58.33	93.63	184268.3	29.81	89.43	89.82	10.96	19.40	95.62	154.71	280.60
SEM	27.4375	207.000	58.33	93.63	184408.5	30.93	88.40	88.63	94.40	81.48	19.46	156.08	278.52
38M	28-4-385	208.000	58.33	93.63	184668.7	31.82	14.06	30.06	94.12	78.28	96.76	156.51	281.72
388	29.4375	209.000	58.33	93.62	184867.9	32.57	89.18	89.21	93.29	d0.58	95.53	157.59	279.42
38M	30.4375	210.000	58.33	93.62	185061.9	33.32	89.69	89.65	42.51	79.95	80.96	158.24	280.05
388	31.4385	211.000	58.32	93.62	185246.4	34.06	90.73	96.61	91.69	74.57	97.14	158.75	281.43
38M	32.4375	212.000	58.32	93.62	185412.9	34.81	89.18	88.94	31.05	81.06	95.54	159.87	278.94
38M	33.4385	213.000	58.32	93.62	~	35.55	49.95	69.69	40.34	80.11	96.45	160.47	279.89
38M	34.4385		58.35	93.62		36.30	90.73	90.33	89.64	19.20	97.26	161.06	280.80
3AM	35.4375		58.32	33.62	7	37.05	89.14	88.60	59.65	81.48	95.75	162.16	278.52
SAM	36.4385		58.31	93.62	7	37.79	91.25	19.06	83.17	78.49	97.84	162.47	281.11
38M	37.4375	2:7.000	58.31	93.62	186079.3	38.54	60.68	99.00	31.34	81.07	96.33	163.58	278.93
38M	38.4375	218.000	58.31	93.62	180197.6	39.29	89.68	38.91	86.60	81.20	96.36	164.34	278.80
38M	39.4345	-	58.31	93.62	186303.0	40.36	91.25	90.36	45.59	79.53	66.16	165.12	280.47
38M	40.4375		58.30	93.61	180396.8	41.48	90.21	39.17	84.42	86.08	96.96	100.48	279.02
MRF	41.4385		58.30	93.61	180473.0	45.44	90.21	89.05	83.45	81.14	97.00	167.47	278.86
38M	45.4385	•	58.30	93.61	186526.9	45.82	90.73	89.53	83.10	80.63	97.53	167.75	279.37
38M	43.4375		58.30	33.6L	186568.4	43.19	89.68	48.43	95.70	81.81	16.96	168.33	278.19
388	+4.438S	224.000	58.29	93.61	186612.2	43.76	91.25	89.94	82.19	80.24	98.07	19.891	279.76
38M	45.4385	225.000	58.29	19.56	186663.8	44.50	90.73	89.32	41.42	80.92	97.58	169.48	279.08
38M	46.4375	226.000	58.29	93.61	186715.2	45.25	60.68	88.19	30.65	85.08	15.96	170.43	277.92
3 8 M	47.4385	227.000	58.29	93.01	186744.6	40.31	92.55	30.95	17.62	44.62	44.66	170.97	280.56
38M	48.4385	228.000	58.29	93.61	186744.9	47.43	89.43	97.66	18.47	85.58	96.37	172.69	277.42
38M	49.4335	229.000	58.28	93.61	180731.1	49.43	24.06	88.29	17.49	81.75	97.42	173.54	278.25
38 M	50.4385	230.000	58.28	93.61	186719.1	48.80	90.73	88.81	71.13	81.57	69.16	173.88	278.43
38M	51.4375	231.000	58.28	93.60	186713.5	49.17	89.68	87.72	76.73	82.52	96.66	174.43	277.48
38M	52.4385		58.28	93.60	186703.6	49.72	24.06	88.44	76.20	81.91	97.45	174.87	278.09
SAM	53.4385	233.000	58.28	93.00	136677.1	20.47	89.69	95.78	72.44	82.65	89.06	175.75	277.35
38M	54.4375	234.000	58.27	93.60	186636.4	51.21	81.68	86.95	74.70	83.13	96.18	176.58	275-87
38M	55.4385	235.000	58.27	93.60	186586.2	51.96	90.73	44.89	73.98	81.96	97.75	177.12	273.04
38M	56.4385	236.000	58.27	93.00	186529.1	52.70	88.40	86.00	73.22	83.83	95.43	178.20	27: 1.7
38M	57.4385		58.27	93.60	_	53.49	89.43	46.95	72.43	83.10	14.96	178.87	276.
38M	58.4385	238,000	58.27	93.00	186375.5	24.61	69.68	87.34	72.32	82.81	97.00	179.94	2:1:19
38M	59.4388	239.000	58.26	93.60	_	55.73	41.85	85.39	70.20	84.14	95.20	181.29	275.86

											11				
14H	39M	5.4375		58.25	93.59	185563.6	59.41	87.62	94.48	96.94	84.53	89.46	185.08	275.47	ς,
14H	39M	6.4375		58.25	93.59	185391.4	91.09	88.18	84.64	62.59	84.39	94.94	185.81	275.61	7
14	38M	7.4375	247.000	58.24	93.59	185220.9	06.09	86.33	83.00	65.08	85.26	93.38	186.70	274.74	7
H+1.	39M	8.4375	248.000	58.24	93.59	185064.1	99.19	87.63	84.22	64.31	84.54	19.46	187.35	275.46	7
141	39M	9.4375	249.000	58.24	93.59	184912.0	65.39	86.85	83.36	63.58	84.95	93.89	188.16	275.05	2
14H	39M	10.4375	250.000	58.24	93.59	184744.1	63.13	85.56	86.18	02.86	85.59	92.58	189.00	274.41	7
141	39M	11.4375	251.000	58.24	93.59	184545.2	63.62	86.07	82.45	62.36	85.31	93.09	189.46	274.69	7
14H	39M	12.4375		58.24	93.59	184319.9	00.49	45.04	81.37	62.02	85.79	92.05	189.91	274.21	7
14.	39M	13.4375		58.23	93.59	184091.7	64.38	85.30	81.59	61.63	85.64	92,31	190.28	274.36	7
14H	39M	14.4375	254-000	58.23	93.58	183876.0	65.50	85.30	24.18	75.00	85.59	92.29	191:41	274.41	7
H\$1	39M	15.4375		58.23	93.58	183660.9	66.62	83.48	79.53	59.44	86.31	90.44	192.63	273,69	7
14H	39M	16.4375		58.23	93.58	183425.2	64.19	84.78	80.75	58.52	85.69	91.73	193.44	274.31	7
141	39M	17.4385		58.22	93.58	183161.6	67.86	83.74	19.05	53.18	86.08	90.68	193.87	273.92	4
141	39M	18.4375		58.22	93.58	182881.2	68.23	83.48	76.97	57.81	86.15	14.06	194.26	273.85	7
14H	39M	19.4375	259.000	58.22	93.58	182602.1	68.85	83.74	19.51	57.19	85.99	99.06	194.87	274.01	7
14H	39M	20.4385		58.22	93.58	182329.2	69.59	82.17	17.92	56.49	86.50	89.07	195.68	273.50	7
14H	394	21.43.75		58.22	93.58	182050.6	70.34	82-17	77.85	55.73	86.41	89.05	196.43	273.59	7
14H	39M	22.4375		58.21	93.58	181752.2	71.08	82.70	78.30	54.96	86.14	89.55	197.16	273.86	7
144	394	23.4385		58.21	93.58	181431.6	71.83	90.08	76.13	54.27	86.73	87.43	197.98	273.27	7
144	39M	24.4375		58.21	93.58	181105.4	72.54	81.39	76.85	53.48	86.37	88.20	198.71	273.63	7
14H	39M	25.4385		58.21	93.58	180784.3	73.32	80.87	76.25	52.74	86.42	87.65	199.48	273.58	7
14H	39M	26.4375		58.20	93.58	180462.2	10.47	80.35	15.66	51.99	86.45	87.10	200.24	273.55	7
14H	38M	27.4375	267.000	58.20	93.57	180119.1	74.59	81.40	16.66	51.43	86.09	88.13	200.74	273.91	7
141	39M	28.4385	263.000	5 8. 20	93.57	179747.8	14.96	79.30	74.53	51.11	86.58	86.02	201.17	273.42	7
14 1	394	29.4375	269.000	58.20	93.57	179365.9	75.34	78.78	13.97	50.75	86.04	85.48	201.56	273.36	7
14H	35M	30.4375	270.000	28.20	93.57	174989.6	75.71	80.35	15.51	26.04	86.18	87.04	201.90	273.82	7
141	394	31.4385	271-000	58.19	93.57	178625.2	76.08	76.95	72.07	50.05	86.92	83.62	202.35	273.08	7
14H	39.M	32.4375	272.000	58.19	ë	178258.2	16.54	18.79	13.81	49.51	86.40	85.44	202.78	273.60	7
₹.	39M	39.4388	273.000	58.19	93.57	177866.7	77.29	17.74	72.75	48.76	86.48	84.30	203.56	273.52	7
14H	35W	34.4385	274.000	58.19	93.57	177445.2	78.04	75.38	70.31	48.06	86.19	81.95	204.35	273.21	7
14H	39W	35.4375	275.000	58.19	93.57	177007.9	18.18	76.70	11.57	47.23	86.36	83.24	205.09	273.64	7
H.	39M	36.4385	276,000	58.18	93.57	176572.6	79.53	74.85	69.69	40.50	86.50	81.30	205.87	273.50	7
-	398	37.43.75	277-000	58.18	93.56	176143.3	80.27	74.32	90.69	45.72	86.39	80.79	206.63	273.61	7
1	200	38.43.13	270.000	24.18	93.50	5.807671	80.37	14.59	69.33	79.64	86.31	81.05	206.13	2/3.69	7
-	100	34.4382	200.000	20.48	93.50	7.567611	80.37	13.51	90.80	45.00	80.51	71.61	2007	64.617	V (
	-	40.40	200.000	11.00	75.00	7.701611	10.00	14.33	60.60	40.4	16.00	61.00	2002	60.612	7 (
	29.8	*I-+385	281-000	28.17	93.56	174303.6	81.25	13.01	91.99	17.44	86.28	19.42	201.61	213.12	7
T.	35	42.4385	282.000	58.17	93.56	173824.4	85.00	70.86	65.44	43.95	86.31	17.22	208.45	273.69	7
H\$1	39M	49-43.75	283.000	58.17	93.56	173345.1	82.56	72.75	67.29	43.31	85.91	19.08	209.01	514.09	7
141	354	44.4385	284.000	58.17	•	172855.7	85.93	11.41	26.59	45.93	85.93	17.72	209.41	274.07	7
Į,	398	45.4385	285.000	58.16	93.56	172347.1	83.30	40.07	64.53	45.54	85.93	76.35	209.82	274.07	7
141	39M	46.4375	286.000	28,16	ë	171822.2	83.68	71.15	65.59	42.12	85.70	77.42	210.19	274.30	7
¥.	38	47.4385	287.000	58.16	93.56	171276.0	84.05	69.53	63.94	41.72	85.70	15.11	210.60	274.30	7
141	39M	48.4385	288.000	58.16	93.56	170710.9	84.48	69.53	63.91	41.24	85.53	75.75	211.05	274.47	7
¥.	* m	48.4382	289.000	58.15	•	170155.5	85.22	68.72	63.03	40.41	85.30	74.89	211.84	274.70	7
14H	38W	50.4385	290.000	58.15	93.56	169614.5	85.97	67.08	61.33	39.56	85.07	73.19	217.65	274.93	7

-
led
tint
Con
\sim
A-1 (
able
Н

						Tab	le A-1	Table A-1 (Continued)	(per						
14H	40M	42.4385	342.000	58.04	93.52	127800.3	92.93	35.47	28.83	25.92	74.85	40.55	223.75	285.15	2
14H	40M	43.4375		58.04	93.52	126734.1	92.18	33.74	27.18	26.90	75.22	38.47	222.89	284.78	7
14H	40M	44.4385		58.03	93.52	125646.4	91.43	31.92	25.40	27.96	75.63	37.12	221.99	284.37	7
144	P O	45.4385		58.03	93.52	124549.0	91.37	32.44	55.9%	28.29	75.95	37.66	221.80	284.05	7
14H	40M	46.4375		58.03	93.52	123458.9	91.37	30.56	24.02	27.59	15.10	35.73	222.14	284.90	7
¥,	404	47.4385	347.000	58.03	93.52	122380.9	91.37	30.12	23.56	27.41	74.88	35.27	222.24	285.12	7
14H	40M	48.4385		58.02	93.51	121307.2	91.37	30.17	23.62	27.43	14.90	35.32	222.24	285.10	7
14H	404	49.4385		58.02	93.51	120219.0	91.37	28.14	21.54	26.50	73.82	33.22	222.66	286.18	7
144	40M	50.4385		58.02	93.51	119110.1	91.37	30.17	24.24	21.06	75.17	35.93	222.14	284.83	7
H+1	40W	51.4375	351.000	58:05	93.51	117983.4	91.37	30.33	23.79	27.48	74.95	35.48	222.24	285.05	7
14H	40H	52.4385		58.01	15.56	116843.0	91.37	25.51	18.84	24.98	72.14	30.49	223.31	287.86	7
#\$T	40H	58.4385		58.01	93.51	115701.3	91.04	28.37	21.82	27.52	74.56	33.51	222.04	285.44	7
14H	40M	54.4375	354.000	58.01	93.51	114546.1	99.06	25.64	10.61	27.30	73.75	30.76	221.88	286.25	7
THE	40H	55.4385	355.000	58.01	93.51	113371.0	90.40	25.71	19.17	28.14	74.34	30.87	221.36	285.66	7
14H	40H	56.43.85		58.01	93.51	6.161711	90.59	25.19	18.62	27.28	73.60	30.30	221.85	286.39	7
H	40H	57.4385	357.000	58.00	93.51	9.600111	90.78	24.66	18.05	26.35	72.83	29.71	222.36	287.17	7
14H	40M	58.4385		58.00	93.51	6.918601	96.06	22.86	16.16	24.41	71.00	27.73	223.24	289.00	7
¥	404	59.4385	359.000	58.00	93.51	108624.6	91.15	22.28	15.54	23.19	10.07	27.13	223.84	289.99	7
14H	4TH	0.4385		58.00	93.51	107425.2	91.34	23.02	16.28	23.13	70.18	27.86	224.04	289.82	7
¥.	414	1.43.75	361.000	57.99	93.50	106203.7	90.10	23.73	17.18	28.11	73.73	28.87	221.19	286.27	7
14H	4IH	2.4375	362.000	57.99	93.50	104976.5	88.61	21.86	15.48	32.76	76.22	27.23	218.27	283.78	7
14H	41W	3.4375	363.000	57.99	93.50	103745.5	87.30	23.26	17.14	37.60	80.07	28.89	215.41	279.93	7
14H	41M	4.4375		57.99	93.50	102502.7	86.93	22.69	16.64	34.91	80.75	28.38	214.64	279.25	7
14H	41H	5.4375	365.000	57.99	93.50	101248.8	86.56	17.65	11.61	41.51	79.70	23.33	213.57	280.30	7
											!				
											!				
H+1	41H	11.4375		57.97	93.50	93562.3	91.37	17.49	10.55	15.10	63.41	21.90	226.49	296.59	7
14H	41W	12.4375		57.97	93.50	92241.4	91.37	17.61	10.68	15.35	63.59	22.02	226.44	296.41	7
1¢H	41H	13.4375		57.97	93.50	6.90608	91.37	15.97	8.98	11.02	60.09	20.20	227.40	299.34	7
141	4.1M	14.4375		21.97	93.50	895568	69.16	17.84	10.90	13.91	62.79	22.18	227.27	297.21	7
Ŧ	¥.	15.4375		57.96	93.49	88205.0	92.44	15.30	8.27	359.77	54.52	19.00	231.53	305.48	7
14H	41H	16.4375	376.000	57.96	93.49	86846.4	93.18	19.65	12.66	3.82	60.70	23.71	230.35	299.30	2

Figure A-1. Oscillograph Record of Magnetometer Outputs