8.4.5 Likelihood Ratio Tests

So far we have focused on specific examples of hypothesis testing problems. Here, we would like to introduce a relatively general hypothesis testing procedure called the *likelihood ratio test*. Before doing so, let us quickly review the definition of the likelihood function, which was previously discussed in <u>Section 8.2.3</u>.

Review of the Likelihood Function:

Let X_1 , X_2 , X_3 , ..., X_n be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1$, $X_2 = x_2$, ..., $X_n = x_n$.

- If the X_i 's are discrete, then the **likelihood function** is defined as

$$L(x_1,x_2,\cdots,x_n;\theta)=P_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n;\theta).$$

- If the X_i 's are jointly continuous, then the likelihood function is defined as

$$L(x_1,x_2,\cdots,x_n;\theta)=f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n;\theta).$$

Likelihood Ratio Tests:

Consider a hypothesis testing problem in which both the null and the alternative hypotheses are simple. That is

$$H_0$$
: $\theta = \theta_0$,

$$H_1$$
: $\theta = \theta_1$.

Now, let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n$. One way to decide between H_0 and H_1 is to compare the corresponding likelihood functions:

$$l_0 = L(x_1, x_2, \cdots, x_n; \theta_0), \qquad l_1 = L(x_1, x_2, \cdots, x_n; \theta_1).$$

More specifically, if l_0 is much larger than l_1 , we should accept H_0 . On the other hand if l_1 is much larger, we tend to reject H_0 . Therefore, we can look at the ratio $\frac{l_0}{l_1}$ to decide between H_0 and H_1 . This is the idea behind *likelihood ratio tests*.

Likelihood Ratio Test for Simple Hypotheses

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$. To decide between two simple hypotheses

$$H_0$$
: $\theta = \theta_0$,

$$H_1$$
: $\theta = \theta_1$,

we define

$$\lambda(x_1,x_2,\cdots,x_n)=rac{L(x_1,x_2,\cdots,x_n; heta_0)}{L(x_1,x_2,\cdots,x_n; heta_1)}.$$

To perform a **likelihood ratio test (LRT)**, we choose a constant c. We reject H_0 if $\lambda < c$ and accept it if $\lambda \geq c$. The value of c can be chosen based on the desired α .

Let's look at an example to see how we can perform a likelihood ratio test.

Example 8.30

Here, we look again at the radar problem ($\underline{\text{Example 8.23}}$). More specifically, we observe the random variable X:

$$X = \theta + W$$
.

where $W \sim N(0, \sigma^2 = \frac{1}{9}).$ We need to decide between

$$H_0$$
: $\theta = \theta_0 = 0$,

$$H_1$$
: $\theta = \theta_1 = 1$.

Let X=x. Design a level 0.05 test ($\alpha=0.05$) to decide between H_0 and H_1 .

Solution

If $\theta = \theta_0 = 0$, then $X \sim N(0, \sigma^2 = \frac{1}{9})$. Therefore,

$$L(x; heta_0) = f_X(x; heta_0) = rac{3}{\sqrt{2\pi}} e^{-rac{9x^2}{2}}.$$

On the other hand, if $\theta=\theta_1=1$, then $X\sim N(1,\sigma^2=\frac{1}{9})$. Therefore,

$$L(x; heta_1) = f_X(x; heta_1) = rac{3}{\sqrt{2\pi}}e^{-rac{9(x-1)^2}{2}}.$$

Therefore,

$$\lambda(x) = rac{L(x; heta_0)}{L(x; heta_1)} = \exp\left\{-rac{9x^2}{2} + rac{9(x-1)^2}{2}
ight\}$$
 $= \exp\left\{rac{9(1-2x)}{2}
ight\}.$

Thus, we accept H_0 if

$$\exp\left\{\frac{9(1-2x)}{2}\right\} \ge c,$$

where c is the threshold. Equivalently, we accept H_0 if

$$x \le \frac{1}{2} \left(1 - \frac{2}{9} \ln c \right).$$

Let us define $c'=\frac{1}{2}\Big(1-\frac{2}{9}\ln c\Big)$, where c' is a new threshold. Remember that x is the observed value of the random variable X. Thus, we can summarize the decision rule as follows. We accept H_0 if

$$X \leq c'$$
.

How to do we choose c'? We use the required α .

$$egin{aligned} P(ext{type I error}) &= P(ext{Reject } H_0 \mid H_0) \ &= P(X > c' \mid H_0) \ &= P(X > c') \quad \left(ext{where } X \sim N\left(0, rac{1}{3}
ight)
ight) \ &= 1 - \Phi(3c'). \end{aligned}$$

Letting $P(\text{type I error}) = \alpha$, we obtain

$$c' = \frac{1}{3}\Phi^{-1}(1-\alpha).$$

Letting $\alpha = 0.05$, we obtain

$$c' = \frac{1}{3}\Phi^{-1}(.95) = 0.548$$

As we see, in this case, the likelihood ratio test is exactly the same test that we obtained in <u>Example 8.23</u>.

How do we perform the likelihood ratio test if the hypotheses are not simple? Suppose that θ is an unknown parameter. Let S be the set of possible values for θ and suppose that we can partition S into two disjoint sets S_0 and S_1 . Consider the following hypotheses:

$$H_0$$
: $\theta \in S_0$,

$$H_1$$
: $\theta \in S_1$.

The idea behind the general likelihood ratio test can be explained as follows: We first find the likelihoods corresponding to the most likely values of θ in S_0 and S_1 respectively. That is, we find

$$l_0 = \max\{L(x_1, x_2, \dots, x_n; \theta) : \theta \in S_0\},\ l = \max\{L(x_1, x_2, \dots, x_n; \theta) : \theta \in S\}.$$

(To be more accurate, we need to replace \max by \sup .) Let us consider two extreme cases. First, if $l_0=l$, then we can say that the most likely value of θ belongs to S_0 . This indicates that we should not reject H_0 . On the other hand, if $\frac{l_0}{l_1}$ is much smaller than 1, we should probably reject H_0 in favor of H_1 . To conduct a likelihood ratio test, we choose a threshold $0 \le c \le 1$ and compare $\frac{l_0}{l}$ to c. If $\frac{l_0}{l} \ge c$, we accept H_0 . If $\frac{l_0}{l} < c$, we reject H_0 . The value of c can be chosen based on the desired α .

Likelihood Ratio Tests

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$. Define

$$\lambda(x_1,x_2,\cdots,x_n)=rac{\sup\{L(x_1,x_2,\cdots,x_n; heta): heta\in S_0\}}{\sup\{L(x_1,x_2,\cdots,x_n; heta): heta\in S\}}.$$

To perform a **likelihood ratio test (LRT)**, we choose a constant c in [0,1]. We reject H_0 if $\lambda < c$ and accept it if $\lambda \geq c$. The value of c can be chosen based on the desired α .