

TOPIC OF CURRENT INTEREST – II Deep Learning

"Object Detection Using YOLO algorithm"

Group Members:

Muhammad Ahmer Khan B 18158029

Muhammad Khubaib Irfan B 18158034

Topic

Object Detection by YOLO v3, YOLO v5 Algorithm with the help of image dataset for Predicting the vehicles on the road.

Abstract

YOLO is an algorithm that uses neural networks to provide real-time object detection. YOLO ("you only look once") is a popular algorithm because it achieves high accuracy while also being able to run in real-time, almost clocking 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the map of other real-time detectors. This algorithm "only looks once" at the image in the sense that it requires only one forward propagation pass through the network to make predictions.

Content

The dataset contains media of cars in all views, and we apply the yolo v3, v5 algorithm to detect them.

Dataset

train_solution_bounding_boxes.csv sample_submission.csv

Folder Path

EVALUATION & EXPLAINATION

Importing all necessary libraries:

```
import os, time, random
import numpy as np
import pandas as pd
import cv2, torch
from tqdm.auto import tqdm
import shutil as sh
```

Read the dataset and mounted in Google Drive with Colab:

```
df = pd.read_csv('/content/drive/MyDrive/data/train_solution_bounding_boxes (1).csv')
```

Display first five rows to check the dataset:

Because we are using a public repo, so we clone it from the links:

```
!git clone https://github.com/ultralytics/yolov5 # clone repo
!pip install -U pycocotools
!pip install -qr yolov5/requirements.txt # install dependencies
!cp yolov5/requirements.txt ./
```

For labelling rows and columns in training_images folder we apply logic:

```
training_images'
   for fold in [0]:
       val_index = index[len(index)*fold//5:len(index)*(fold+1)//5]
        for name,mini in tqdm(df.groupby('image_id')):
            if name in val_index:
                path2save = 'val2017/'
                path2save = 'train2017/'
            if not os.path.exists('/tmp/convertor/fold{}/labels/'.format(fold)+path2save):
                os.makedirs('/tmp/convertor/fold{}/labels/'.format(fold)+path2save)
           with open('/tmp/convertor/fold{}/labels/'.format(fold)+path2save+name+".txt", 'w
                row = mini[['classes','x_center','y_center','w','h']].astype(float).values
                row = row.astype(str)
                for j in range(len(row)):
                    text = ' '.join(row[j])
                    f.write(text)
                    f.write("\n")
            if not os.path.exists('/tmp/convertor/fold{}/images/{}'.format(fold,path2save)):
                os.makedirs('/tmp/convertor/fold{}/images/{}'.format(fold,path2save))
            sh.copy("/content/drive/MyDrive/data/{}/{}.jpg".format(source,name), '/tmp/convert
100%
                                             355/355 [00:01<00:00, 191.77it/s]
```

Applying The YoloV5 algorithm to detect vehicles:

RESULT

Using random image selector for random images:

By using YOLO V5 Algorithm we can predict that a particular vehicle is car and its accuracy is 0.91 percent.