数字电路 与 逻辑设计

Digital circuit and logic design

● 第二章 逻辑代数基础

主讲教师 于俊清

■提纲

逻辑代数的基本概念

逻辑代数的基本定理和规则

逻辑函数表达式的形式与变换

逻辑函数化简

■ 卡诺图化简法特点

方便、直观、容易掌握

受到变量个数的约束

当变量个数大于6时,画图以及对图形的识别都变得相当复杂

■逻辑函数化简

代数化简法

卡诺图化简法

列表化简法

列表化简法

奎恩-麦克拉斯基(Quine-McCluskey)法, 是一种系统化简法,简称为Q-M化简法

通过约定的表格形式,按照一定规则完成化简过程

通过找出函数F的全部质蕴涵项、必要质蕴涵 项以及最简质蕴涵项集来求得最简表达式

列表化简法

📆 第1步: 将函数表示成 "最小项之和"形式,并用二进制码表示每一个最小项

第2步: 做出质蕴涵项产生表, 找出函数的全部质蕴涵项

📆 第3步:做出必要质蕴涵项产生表,找出函数的必要质蕴涵项

第4步: 当必要质蕴涵项不能覆盖所有最小项时,借助所需的质蕴涵项产生表,找出函

数的最小覆盖

用列表法化简逻辑函数

$$F(A,B,C,D) = \sum m(0,5,7,8,9,10,11,14,15)$$

第1步:将函数中的每一个最小项用二进制代码表示

最小项的二进制代码

项号	ABCD		项号	ABCD
0	0 0 0 0	1	10	1 0 1 0
5	0 1 0 1	10	_11	1 0 1 1
7	0 1 1 1	Н	14	1 1 1 0
8	1000		15	1111
9	1001			

第二步:做出质蕴涵项产生表

	(I)	最小项		(Ⅱ) (n-1)个变量的 "与"项				(皿) (n-2)个变量的 "与"项			
组号	m _i	ABCD	P_i	组号	$\sum m_i$	ABCD	P_i	组号	$\sum m_i$	ABCD	P_i
0	0	0000	7	0	0,8	-000	p ₅	1	8, 9, 10, 11	10	\mathbf{p}_{2}
1	8	1000	1	1	8, 9 8, 10	100- 10-0	77	2	10, 11, 14, 15	1-1-	\mathbf{p}_1
2	5 9 10	0101 1001 1010	777	2	5, 7 9, 11	01-1 10-1	p ₄	11/2			111
3	7 11 14	0111 1011 1110	イイト		10, 11 10, 14 7, 15						
4	15	1111	1	3	11, 15 14, 15	NA 2007	1				

质蕴涵项产生表

	(II) (n-1) "与)个变量 "项	的	(皿) (n-2)个变量 "与"项				
组 号	$\sum m_i$	ABCD	P_i	组号	$\sum m_i$	ABCD	P_i	
0	0,8	-000	p ₅	1	8, 9, 10, 11	10	p ₂	
			N.	2	10, 11, 14, 15	1-1-	\mathbf{p}_1	
2	5, 7	01-1	p ₄	-	•			
	0-0-			*				
3	7, 15	-111	p_3					

$$P_{1} = \sum m(10,11,14,15) = AC$$
 $P_{2} = \sum m(8,9,10,11) = A\overline{B}$
 $P_{3} = \sum m(7,15) = BCD$
 $P_{4} = \sum m(5,7) = \overline{ABD}$
 $P_{5} = \sum m(0,8) = \overline{B}C\overline{D}$

第3步: 做出必要质蕴涵项产生表,找出函数的必要质蕴涵项

必要质蕴涵项产生表

pi	m _i									
	0	5	7	8	9	10	11	14	15	
p ₁ *	3		-69	1//		×	×	8	×	
p ₂ *				×	8	×	×	_		
p ₄ *	/	⊗								
p ₅ *	8	W	×	×						
覆盖 情况	4	√	1							

$P_1 = \frac{1}{2}$	$\sum m(10,11,14,15) = AC$
$P_2 = \frac{1}{2}$	$\sum m(8,9,10,11) = A\bar{B}$
$P_3 = \frac{1}{2}$	$\sum m(7,15) = BCD$
$P_4 = $	$\sum m(5,7) = ABD$
$P_5 =$	$\sum m(0,8) = \bar{B}\bar{C}\bar{D}$

列表化简法

第4步:找出函数的最小覆盖

本例选取必要质蕴涵项P₁,P₂, P₄, P₅ 后即可覆盖函数的全部最小项

该函数化简的最终结果为:

$$F(A, B, C, D) = P_1 + P_2 + P_4 + P_5$$
$$= AC + A\overline{B} + \overline{ABD} + \overline{B}C\overline{D}$$

当给定函数的必要质蕴涵项集不能覆盖该函数的全部最小项时,还需进一步从剩 余质蕴涵项集中找出所需质蕴涵项,以构成函数的最小质蕴涵项集

● 优点

规律性强,对变量数较多的函数,可经过反复比较、合并,得到最简结果

● 适用

计算机处理

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

