

Electrical Engingeering, Signal Processing Systems group

Part 1: Random variables and Random Signals

Part 1

Random Variables and Random Signals

Lecture 1: Probability and Random Variables

Lecture 2: Random vectors, Random processes

and random signals

Lecture 3: Linear random signal models

Outline

- Introduction: random signal models
- Recap LTI systems
- LTI with random inputs
- Innovation representation of a random signal
- Spectral factorization
- Autoregressive moving-average models

Introduction

- A stochastic process can be described by a stochastic model governed by a set of parameters
- The stochastic model describes the statistical properties of the process
- Linear random signal models are a special class of stationary random sequences modeled by driving a linear, time-invariant system with white noise

H(z) rational polynomial

Autoregressive moving average (ARMA)

Recap: Linear-time invariant systems

Lecture 3

Linear-time invariant (LTI) systems

- System: any physical device or algorithm that transforms a signal (input) into another signal (output)
- System model: mathematical relationship between input and output

Properties LTI

$$x[n] = Ax_1[n] + Bx_2[n] \to y[n] = Ay_1[n] + By_2[n]$$
 A,B constants

Time-invariance

$$x[n] \rightarrow y[n] \implies x[n-n_0] \rightarrow y[n-n_0]$$

LTI systems

Time-domain analysis

$$y[n] = x[n] * h[n] \triangleq \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[n] * x[n]$$

h[n], **impulse response** of the system

Properties LTI

Causality: the output signal depends only on the present and/or past values of the input

$$h[n] = 0$$
, for $n < 0$

Stability: each bounded input produces a bounded output (BIBO-stability)

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

Transform-domain analysis

Z-transform (discrete-time)

$$Y(z) = H(z)X(z)$$

$$H(z) = Z\{h[n]\}$$
 system transfer function

If unit circle inside ROC of H(z), then the system is **stable** and $H(z=e^{j\theta})$ represents the **frequency response** of the system

LTI systems: pole-zero description

Describe H(z) as a rational polynomial

$$a_0 = 1$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{Q} b_k z^{-k}}{1 + \sum_{k=1}^{P} a_k z^{-k}} = G \frac{\prod_{k=1}^{Q} (1 - z_k z^{-1})}{\prod_{k=1}^{P} (1 - p_k z^{-1})} = \frac{B(z)}{A(z)}$$

Rational approximation of functions: <u>any continuous function</u> can be approximated by a rational polynomial as closely as we want by increasing the degree of the numerator and denominator

LTI systems: pole-zero description

Description system function by **poles** and **zeros**:

$$a_0 = 1$$

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}} = \frac{(1 - z_1 z^{-1})(1 - z_2 z^{-1})\dots(1 - z_Q z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})\dots(1 - p_P z^{-1})}$$

Zeros: $z_1, z_2, ..., z_Q$ zeros of numerator B(z)

Poles: $p_1, p_2, ..., p_P$ zeros of denominator A(z)

Example: pole-zero description

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)} = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{7}{12}z^{-1} + \frac{1}{12}z^{-2}}$$

LTI systems: pole-zero description

Description system function by poles and zeros:
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{p} b_k z^{-k}}{1 + \sum_{k=1}^{p} a_k z^{-k}} = G \frac{\prod_{k=1}^{p} (1 - z_k z^{-1})}{\prod_{k=1}^{p} (1 - p_k z^{-1})} = \frac{B(z)}{A(z)}$$

- Stable: all poles in |z| = 1
- Causal: #poles \geq #zeros (P \geq Q)
- Minimum phase: all poles and zeros inside |z|=1
- Maximum phase: all poles and zeros outside |z| = 1
- Stable all-pass:
 - all poles in |z| = 1
 - Poles and zeros "mirrored pairs"

LTI systems: difference equation

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}} = \frac{B(z)}{A(z)}$$

$$Y(z)(1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}) = X(z)(b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q})$$

$$1ZT$$
Time-shifting property: $z^{-n_0} X(z) \Leftrightarrow x[n - n_0]$

$$y[n] + a_1 y[n-1] + a_2 y[n-2] + ... + a_p y[n-P] = x[n] + b_1 x[n-1] + b_2 x[n-2] + ... + b_Q x[n-Q]$$

DE:
$$y[n] = x[n] + b_1 x[n-1] + b_2 x[n-2] + ... + b_Q x[n-Q] - a_1 y[n-1] - a_2 y[n-2] - ... - a_P y[n-P]$$

input

Linear combination of

Linear combination of

past **output** samples

LTI systems: deterministic signals

Input-output relationships

$$y[n] = x[n] * h[n] = h[n] * x[n]$$

$$Y(z) = H(z)X(z) = X(z)H(z)$$

LTI with random input

What happens when an LTI system is fed with a random input?

• **Assumption**: x[n] is WSS with zero-mean

LTI with random input

Can we calculate the **second-order statistics** of the output if we know the input second-order statistics and the system impulse response/transfer function?

$$P_x(e^{j\theta}), r_x[l] \longrightarrow h[n] \leftrightarrow H(z) \longrightarrow P_y(e^{j\theta}), r_y[l]$$
?

LTI with random input: autocorrelation

$$r_{yx}[l] = h[l] * r_x[l]$$

 $r_{xy}[l] = h[-l] * r_x[l]$

Proof...

$$r_{xy}[l] = E\{x[n]y[n-l]\} = E\{x[n+l]y[n]\}$$

$$E\{x[n+l]y[n]\} = E\{x[n+l]\sum_{k=-\infty}^{\infty} h[k]x[n-k]\}$$

Sum does not depend on n nor l, filter coefficients are deterministic

$$E\left\{x[n+l]\sum_{k=-\infty}^{\infty}h[k]x[n-k]\right\} = E\left\{\sum_{k=-\infty}^{\infty}h[k]x[n+l]x[n-k]\right\} = \sum_{k=-\infty}^{\infty}h[k]E\left\{x[n+l]x[n-k]\right\}$$

$$r_{xy}[l] = \sum_{x=-\infty}^{\infty}h[k]r_x[n+l-n+k] = \sum_{x=-\infty}^{\infty}h[k]r_x[l+k] = h[-l]*r_x[l]$$

$$r_{xy}[l] = h[-l] * r_x[l]$$

Proof...

$$r_{yx}[l] = E\{y[n]x[n-l]\}$$

$$E\{y[n]x[n-l]\} = E\left\{\sum_{k=-\infty}^{\infty} h[k]x[n-k]x[n+l]\right\}$$

Sum does not depend on n nor l, filter coefficients are deterministic

$$E\left\{\sum_{k=-\infty}^{\infty} h[k]x[n-k]x[n+l]\right\} = \sum_{k=-\infty}^{\infty} h[k]E\left\{x[n-k]x[n-l]\right\}$$

$$r_{yx}[l] = \sum_{k=-\infty}^{\infty} h[k] r_x[n-k-n+k] = \sum_{k=-\infty}^{\infty} h[k] r_x[l-k] = h[l] * r_x[l]$$

$$r_{yx}[l] = h[l] * r_x[l]$$

LTI with random input: autocorrelation

$$r_{yx}[l] = h[l] * r_x[l]$$

 $r_{xy}[l] = h[-l] * r_x[l]$

LTI with random input: autocorrelation

$$r_{yx}[l] = h[l] * r_x[l]$$

 $r_{xy}[l] = h[-l] * r_x[l]$
 $r_y[l] = h[-l] * r_{yx}[l]$

Proof...

$$r_{y}[l] = E\{y[n+l]y[n]\} = E\{y[n+l]x[n]*h[n]\} = E\{y[n+l]\sum_{k=-\infty}^{\infty} h[k]x[n-k]\}$$

filter coefficients h[k] are deterministic...

$$\sum_{k=-\infty}^{\infty} h[k] E\left\{ y[n+l] x[n-k] \right\} = \sum_{k=-\infty}^{\infty} h[k] r_{yx}[(n+l) - n + k] = \sum_{k=-\infty}^{\infty} h[k] r_{yx}[l+k]$$

$$r_{y}[l] = h[-l] * r_{yx}[l]$$

LTI with random input: autocorrelation

$$r_{yx}[l] = h[l] * r_x[l]$$

$$r_{xy}[l] = h[-l] * r_x[l]$$

$$r_y[l] = h[-l] * r_y[l] = h[-l] * h[l] * r_x[l] = r_h[l] * r_x[l]$$

LTI with random input: autocorrelation

$$r_{yx}[l] = h[l] * r_x[l]$$

 $r_{xy}[l] = h[-l] * r_x[l]$

$$r_{y}[l] = r_{h}[l] * r_{x}[l]$$

Autocorrelation function of the system

with
$$r_h[l] = \sum_{k=-\infty}^{\infty} h[k]h[k-l] = h[l] * h[-l]$$

LTI with random input: PSD

Taking the z-transform on the unit circle, and for real h[n]:

$$r_{yx}[l] = h[l] * r_{x}[l] \qquad \longleftrightarrow \qquad P_{yx}(e^{j\theta}) = H(e^{j\theta}) P_{x}(e^{j\theta})$$

$$r_{xy}[l] = h[-l] * r_{y}[l] \qquad \longleftrightarrow \qquad P_{xy}(e^{j\theta}) = H^{*}(e^{j\theta}) P_{x}(e^{j\theta})$$

$$r_{y}[l] = h[-l] * r_{yx}[l] = \qquad \longleftrightarrow \qquad P_{y}(e^{j\omega}) = H^{*}(e^{j\omega}) H(e^{j\omega}) P_{x}(e^{j\omega}) =$$

$$= h[-l] * h[l] * r_{x}[l] \qquad \longleftrightarrow \qquad P_{y}(e^{j\omega}) = H^{*}(e^{j\omega}) H(e^{j\omega}) P_{x}(e^{j\omega}) =$$

$$= |H(e^{j\omega})|^{2} P_{x}(e^{j\omega})$$

$$r_{y}[l] = r_{h}[l] * r_{x}[l]$$

$$P_{y}(e^{j\theta}) = |H(e^{j\theta})|^{2} P_{x}(e^{j\theta})$$

From amplitude-time plot

Frequency of occurrence of various signal amplitude (histogram)

From amplitude-time plot

Frequency of occurrence of various signal amplitude (histogram)

Central limit theorem

If the filter is long enough and filter's coefficients are of comparable values, then the output is Gaussian distributed, regardless of the distribution of the input

From amplitude-time plot

- Degree of dependence between signal samples (auto-correlation/covariance)
- Degree of dependence between two signals (cross-correlation/covariance)

From amplitude-time plot

- Degree of dependence between signal samples (auto-correlation/covariance)
- Degree of dependence between two signals (cross-correlation/covariance)

 $x[n] \sim \text{uniform}(-1,1)$

From amplitude-time plot

- Degree of dependence between signal samples (auto-correlation/covariance)
- Degree of dependence between two signals (cross-correlation/covariance)

 $h[n] = \frac{1}{3}(\delta[n] + \delta[n-1] + \delta[n-2])$

Spectral factorization

Lecture 3

Innovation representation

Most random processes with a continuous PSD can be described as the output of a causal filter driven by white noise, the so-called innovation representation of the random process

Innovation representation

Most random processes with a continuous PSD can be generated as the output of a causal filter driven by white noise, the so-called innovation representation of the random process

Wold's decomposition theorem:

Every wide sense stationary (WSS) signal can be written as the sum of two components, one deterministic and one stochastic

Innovation representation

Most random processes with a continuous PSD can be generated as the output of a causal filter driven by white noise, the so-called innovation representation of the random process

Synthesis or coloring filter [innovation filter]

 $L(z) \longrightarrow x[n]$ • Innovation i[n]: zero mean, white noise, variance σ_i^2

Innovation representation

Most random processes with a continuous PSD can be generated as the output of a causal filter driven by white noise, the so-called innovation representation of the random process

Synthesis or coloring filter [innovation filter]

 $L(z) \longrightarrow x[n]$ • Innovation i[n]: zero mean, white noise, variance σ_i^2

Analysis or whitening filter

$$x[n] \longrightarrow \Gamma(z) \longrightarrow i[n]$$

• Inverse system $\Gamma(z) = L^{-1}(z)$: causal and stable

Data compression

Data compression

$$x[n], 0 \le n < N$$

 $N = 10^9$
 $10^9 \cdot 64 \text{ bit } \sim 8 \text{ Gb}$

$$h_L$$
, $0 \le n < N$ $N = 100$ $i[n]$, zero-mean white noise, σ_i^2 $(100+1)\cdot 64$ bit < 0.1 Kb

Optimal (Wiener) filtering

(out of scope)

s[n]: original signal

 $\hat{s}[n]$: estimated signal

i[n]: white noise

x[n]: observed signal

W: filter to be designed

Parametric approach to spectral estimation

Modeling a random sequence y[n] as LTI driven by white noise, can we determine H(z) and σ^2 only knowing the second-order statistics of y[n]?

$$P_{x}(e^{j\theta}) = \sigma^{2},$$

$$r_{x}[l] = \sigma^{2}\delta[n]$$

$$H(z)? \qquad P_{y}(e^{j\theta}), r_{y}[l]$$

• Problem: we only know the magnitude response $|H(e^{j\theta})|^2$

$$P_{y}(e^{j\theta}) = \sigma_{x}^{2} \left| H(e^{j\theta}) \right|^{2}$$

Spectral factorization: example

Spectral factorization: example

$$\stackrel{i_1[n]}{\longrightarrow} H(z) = 1 - \frac{1}{2} z^{-1} \stackrel{x_1[n]}{\longrightarrow}$$

$$\stackrel{i_2[n]}{\longrightarrow} H(z) = 1 - 2z^{-1} \stackrel{x_2[n]}{\longrightarrow}$$

$$\xrightarrow{i_2[n]} H(z) = 1 - 2z^{-1} \xrightarrow{x_2[n]} \sigma_{i_2}^2 = \frac{1}{4} \Rightarrow P_{x_2}(e^{j\theta}) = \frac{1}{4} \left| 1 - 2e^{-j\theta} \right|^2 = \frac{5}{4} - \cos(\theta)$$

Spectral factorization: example

$$\frac{i_1[n]}{\longrightarrow} H(z) = 1 - \frac{1}{2}z^{-1} \longrightarrow \sigma_{i_1}^2 = 1 \implies P_{x_1}(e^{j\theta}) = \left|1 - \frac{1}{2}e^{-j\theta}\right|^2 = \frac{5}{4} - \cos(\theta)$$

$$\frac{i_2[n]}{\longrightarrow} H(z) = 1 - 2z^{-1} \longrightarrow \sigma_{i_2}^2 = \frac{1}{4} \implies P_{x_2}(e^{j\theta}) = \frac{1}{4}\left|1 - 2e^{-j\theta}\right|^2 = \frac{5}{4} - \cos(\theta)$$

• Additional constraint: minimum-phase system

<u>Spectral factorization</u>: determination of a minimum-phase system from its magnitude response or from its autocorrelation function

If P(z) is rational, the it can be factored as

$$P(z) = \sigma_i^2 L(z) L(z^{-1}),$$

with L(z) causal, stable, minimum-phase

- Note:
 - No poles on the unit circle
 - Innovation filter L(z) causal: $L(z) = \frac{B(z)}{A(z)} = \sum_{k=0}^{\infty} l_k z^{-k}$
 - L(z) stable, minimum-phase: all poles and zeros within |z|=1
 - To overcome ambiguity we choose σ_i^2 such that l[0]=1

What is the spectral factorization of $P_{\chi}(e^{j\theta})$? $P_{\chi}(e^{j\theta}) = \frac{5}{4} - \cos(\theta)$

(1)
$$\sigma_i^2 = 1$$
, $L(z) = 1 - \frac{1}{2}z^{-1}$

(2)
$$\sigma_i^2 = \frac{1}{4}$$
, $z(z) = 1 - 2z^{-1}$ Zero outside unit circle \rightarrow not minimum phase

What is the spectral factorization of $P_{\chi}(e^{j\theta})$? $P_{\chi}(e^{j\theta}) = \frac{5}{4} - \cos(\theta)$

(1)
$$\sigma_i^2 = 1$$
, $L(z) = 1 - \frac{1}{2}z^{-1}$

(2)
$$\sigma_i^2 = \frac{1}{4}$$
, $z(z) = 1 - 2z^{-1}$ Zero outside unit circle \rightarrow not minimum phase

$$P_{x}(e^{j\theta}) = \frac{5}{4} - \cos(\theta) = 1 \cdot \left(1 - \frac{1}{2}e^{-j\theta}\right) \left(1 - \frac{1}{2}e^{j\theta}\right) \Rightarrow P(z) = 1 \cdot \left(1 - \frac{1}{2}z^{-1}\right) \left(1 - \frac{1}{2}z\right)$$

$$\sigma_{i}^{2} L(z) L(z^{-1})$$

What is the spectral factorization of $P(e^{j\theta})$? $P_x(e^{j\theta}) = \frac{5}{4} - \cos(\theta)$

$$i[n], \sigma_i^2 = 1$$

$$L(z) = 1 - \frac{1}{2} z^{-1}$$
 $X[n]$

$$P_{x}(e^{j\theta}) = \frac{5}{4} - \cos(\theta) = 1 \cdot \left(1 - \frac{1}{2}e^{-j\theta}\right) \left(1 - \frac{1}{2}e^{j\theta}\right) \Rightarrow P(z) = 1 \cdot \left(1 - \frac{1}{2}z^{-1}\right) \left(1 - \frac{1}{2}z\right)$$

$$\sigma_{i}^{2} L(z) L(z^{-1})$$

Autoregressive moving-average models

Lecture 3

Introduction

Linear random signal models: random signals described as the output of an LTI driven by

H(z) rational polynomial

Autoregressive moving average (ARMA)

Autoregressive (AR) models

Autoregressive

Predict future values from past values of the **same** signal

predicting some values from other values

- Demand of goods
- Weekly/Monthly sales
- Model pendulum oscillation in viscous medium
- ...

$$x[n] = w[n] - a_1 x[n-1] - a_2 x[n-2] - \dots - a_p x[n-p]$$
Unpredictable part
(error term)

Linear combination of past
output samples

LTI systems: difference equation

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}} = \frac{B(z)}{A(z)} \qquad \xrightarrow{x[n]} \qquad H(z) = \frac{B(z)}{A(z)} \qquad \xrightarrow{y[n]}$$

$$x[n] = w[n] - a_1 x[n-1] - a_2 x[n-2] - \dots - a_p x[n-p]$$
Unpredictable part
(error term)

Linear combination of past
output samples

AR(1):
$$x[n] = w[n] - a_1 x[n-1]$$

$$x[n] = w[n] - a_1 x[n-1] - a_2 x[n-2] - \dots - a_p x[n-p]$$
Unpredictable part
(error term)

Linear combination of past
output samples

AR(2):
$$x[n] = w[n] - a_1x[n-1] - a_2x[n-2]$$

$$x[n] = w[n] - a_1 x[n-1] - a_2 x[n-2] - \dots - a_p x[n-p]$$
Unpredictable part
(error term)

Linear combination of past
output samples
$$a_1^2 x[n-2]$$

$$a_1^2 x[n-2]$$

$$a_1^2 x[n-2]$$

$$= w[n] - a_1 (w[n-1] - a_1 x[n-2])$$

$$= w[n] - a_1 (w[n-1] - a_1 (w[n-2] - a_1 x[n-3])$$

$$a_1^3 x[n-3]$$

 $|p_1| < 1$ for stability

$$|a_1| < 1$$

"decaying" memory

$$a_1^3 < a_1^2 < a_1$$

AR models: long memory models

AR(1):
$$a_1 = \frac{1}{2}$$

AR(2):
$$a_1 = a_2 = \frac{1}{2}$$

System autocorrelation

AR models: autocorrelation

modified Yule-Walker equations

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} - \sum_{k=1}^{p} a_{k} r_{x}[|l| - k] & \text{for } l = 0\\ -\sum_{k=1}^{p} a_{k} r_{x}[|l| - k] & \text{for } l > 0 \end{cases}$$

$$\begin{array}{c} \textbf{Model} \\ \textbf{parameters} \end{array} \begin{cases} \sigma_w^2 \\ a_1,...,a_p \end{cases}$$

In practice, the autocorrelation of ARMA processes can be calculated in two different ways:

- 1. Using modified Yule-Walker equations
- 2. Using difference equation and definition of autocorrelation

Example AR(1)

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} - \sum_{k=1}^{p} a_{k} r_{x}[|l| - k] & \text{for } l = 0\\ -\sum_{k=1}^{p} a_{k} r_{x}[|l| - k] & \text{for } l > 0 \end{cases}$$

Via Yule-Walker

$$x[n] = w[n] - \frac{1}{2}x[n-1]$$

$$\sigma_w^2 = 1, a_1 = \frac{1}{2}$$

$$r[0] = \sigma_w^2 - a_1 r[-1] = 1 - \frac{1}{2} r[1]$$

$$r[1] = -a_1 r[0] = -\frac{1}{2} r[0]$$

$$r[0] = \frac{4}{3}, \ r[1] = -\frac{2}{3}$$

$$r[l] = \frac{4}{3} \left(-\frac{1}{2}\right)^{|l|}$$

AR models: Power spectral density

$$\begin{array}{c|c}
x[n] \\
\hline
 & h[n] \leftrightarrow H(z)
\end{array}
\qquad y[n] \\
P_y(e^{j\theta}) = |H(e^{j\theta})|^2 P_x(e^{j\theta})$$

$$P_{y}(e^{j\theta}) = |H(e^{j\theta})|^{2} P_{x}(e^{j\theta})$$

$$W[n] \qquad H(z) \qquad x[n] \qquad P_{x}(e^{j\theta}) = \frac{\sigma_{w}^{2}}{\left|1 + \sum_{k=1}^{P} a_{k} e^{-jk\theta}\right|^{2}}$$

$$H(z) = \frac{B(z)}{A(z)} = \frac{1}{1 + a_{1}z^{-1} + \dots + a_{p}z^{-p}}$$

$$P_{x}(e^{j\theta}) = \frac{\sigma_{w}^{2}}{\left|1 + \sum_{k=1}^{P} a_{k} e^{-jk\theta}\right|^{2}}$$

AR models: PSD examples

Moving average (MA) models

- Smoothing: filtering out the noise from random short-term fluctuations
- Prediction: estimating future values based on previous <u>input</u> samples

$$x[n] = w[n] + b_1 w[n-1] + b_2 w[n-2] + \ldots + b_q w[n-q]$$

$$unpredictable$$

$$part$$

$$Linear combination of$$

$$past input samples$$

LTI systems: difference equation

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}} = \frac{B(z)}{A(z)} \qquad \xrightarrow{x[n]} \qquad H(z) = \frac{B(z)}{A(z)} \qquad \xrightarrow{y[n]}$$

$$x[n] = w[n] + b_1 w[n-1] + b_2 w[n-2] + \ldots + b_q w[n-q]$$
 unpredictable part Linear combination of past input samples

$$MA(1): x[n] = w[n] + b_1 w[n-1]$$

$$x[n] = w[n] + b_1 w[n-1] + b_2 w[n-2] + \ldots + b_q w[n-q]$$
 unpredictable part
$$\lim_{n \to \infty} \sum_{\substack{\text{Linear combination of past input samples}}}$$

MA(2):
$$x[n] = w[n] + b_1 w[n-1] + b_2 w[n-2]$$

MA models: Autocorrelation

$$r_{x}[l] = \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} b_{k-|l|}$$

$$\begin{array}{c} \textbf{Model} \\ \textbf{parameters} \end{array} \begin{cases} \sigma_w^2 \\ b_1,...,b_q \end{cases}$$

Autocorrelation of MA models has finite length determined by the number of zeros

$$r_x[l] = 0$$
 for $|l| > Q$

Length: 2Q + 1

MA models: short-range correlation

MA(1): $b_1 = \frac{1}{2}$

MA(2):
$$b_1 = \frac{1}{4}$$
; $b_2 = -\frac{1}{2}$

System autocorrelation

MA models: Power spectral density

$$W[n] \longrightarrow H(z) \longrightarrow P_{y}(e^{j\theta}) = |H(e^{j\theta})|^{2} P_{x}(e^{j\theta})$$

$$= \int_{w}^{2} |H(z)|^{2} P_{x}(e^{j\theta}) = 1$$

$$H(z) = \frac{B(z)}{A(z)} = b_{0} + b_{1}z^{-1} + ... + b_{Q}z^{-Q} = 1 + b_{1}z^{-1} + ... + b_{Q}z^{-Q}$$

$$P_{x}(e^{j\theta}) = \sigma_{w}^{2} \left| 1 + \sum_{k=1}^{Q} b_{k} e^{-jk\theta} \right|^{2}$$

MA models: PSD examples

MA models: PSD examples

Autoregressive moving average (ARMA) models

Autoregressive Moving Average

Models a "memory" that decades with time

Smooths the input by linear combination of the present and previous samples

$$x[n] = w[n] + b_1 w[n-1] + b_2 w[n-2] + \ldots + b_q w[n-q] - a_1 x[n-1] - a_2 x[n-2] - \ldots - a_p x[n-p]$$

$$unpredictable$$

$$part$$

$$Linear combination of$$

$$past input samples$$

$$Linear combination of$$

$$past output samples$$

modified Yule-Walker equations

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} h[k-|l|] - \sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } 0 \leq |l| \leq q \\ -\sum_{k=1}^{p} a_{k} r_{x}[|l|-k]. & \text{for } |l| > q \end{cases}$$

$$egin{aligned} extbf{Model} \ extbf{parameters} \ extbf{parameters} \ extbf{d} \ a_{1,}...,a_{p} \ b_{1},...,b_{q} \end{aligned}$$

(Modified) Yule-Walker equations

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} h[k-|l|] - \sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } 0 \leq |l| \leq q \\ \text{MA} & \text{AR} \\ -\sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } |l| > q \end{cases}$$

$$\text{Model parameters} \begin{cases} \sigma_{w}^{2} \\ a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{cases}$$

For lags up to the number of zeros, both MA and AR contribute to AC function

modified Yule-Walker equations

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} h[k-|l|] - \sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } 0 \leq |l| \leq q \\ -\sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } |l| > q \end{cases}$$

$$\text{Model parameters} \begin{cases} \sigma_{w}^{2} \\ a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{cases}$$

For lags larger than the number of zeros, only AR contributes to AC function

recursive (decaying) structure

modified Yule-Walker equations

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} h[k-|l|] - \sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } 0 \leq |l| \leq q \\ -\sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } |l| > q \end{cases}$$

$$\text{Model parameters} \begin{cases} \sigma_{w}^{2} \\ a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{cases}$$

h[k], impulse response of the system

$$H(z) = \frac{B(z)}{A(z)} = \frac{1 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}}$$

By polynomial division...

$$H(z) = \frac{B(z)}{A(z)} = \frac{1 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_P z^{-P}} = 1 + h_1 z^{-1} + h_2 z^{-2} + \dots$$

IZT

Impulse response

$$h[k] = \delta[k] + h_1 \delta[k-1] + h_2 \delta[k-2] + \dots$$

MA: finite

AR, ARMA: infinite

——→ MA: FIR filter

AR, ARMA: IIR filter

$$r_{x}[l] = \begin{cases} \sigma_{w}^{2} \sum_{k=|l|}^{q} b_{k} h[k-|l|] - \sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } 0 \le |l| \le q \\ -\sum_{k=1}^{p} a_{k} r_{x}[|l|-k] & \text{for } |l| > q \end{cases}$$

AC: h[k] coefficients needed only for number of lags equal to number of zeros

ARMA models: system autocorrelation

ARMA(1,2):

$$b_1 = \frac{1}{4}$$
, $b_2 = -\frac{1}{4}$, $a_1 = \frac{3}{4}$

System autocorrelation

ARMA models: Power spectral density

$$W[n] \longrightarrow H(z) \longrightarrow P_{y}(e^{j\theta}) = |H(e^{j\theta})|^{2} P_{x}(e^{j\theta})$$

$$H(z) = \frac{B(z)}{A(z)} = \frac{1 + b_{1}z^{-1} + b_{2}z^{-2} + \dots + b_{Q}z^{-Q}}{1 + a_{1}z^{-1} + a_{2}z^{-2} + \dots + a_{P}z^{-P}}$$

$$P_{x}(e^{j\theta}) = \sigma_{w}^{2} \frac{|1 + b_{1}e^{-j\theta} + \dots + b_{q}e^{-jq\theta}|^{2}}{|1 + a_{1}e^{-j\theta} + \dots + a_{p}e^{-jp\theta}|^{2}}$$

ARMA models: PSD examples

Wrap-up (I)

- Linear-time invariant systems are described in the time domain by the impulse response, h[n], and in the z-domain by the transfer function, H(z)
- Systems represented by a rational H(z) are described by their poles and zeros, from which properties as causality, stability, and minimum-phase can be easily determined
- For deterministic signals, the output of a LTI system can be fully determined by the input-output relationships in the time- and z-domains
- For stochastic signals, input-output relationships can be found for the first and second order statistics (focus on WSS)

Wrap-up (II)

- Spectral factorization allows to model any WSS process as a LTI driven by white noise, based on its second-order statistics
- When we choose a rational polynomial for the LTI system function, the resulting process is auto-regressive moving average
- Autoregressive models use a linear combination of past output samples: useful to model a variety of time series
- AR autocorrelation function shows a decaying memory structure
- AR power spectral density is useful to model sharp peaks

Wrap-up (III)

- Moving average models use a linear combination of past input samples: they filter out short-term fluctuations
- MA autocorrelation has finite length determined by the order of the model (number of zeros)
- MA power spectral density presents smoother peaks and sharper valleys
- Autoregressive moving-average models present the characteristics of both AR and MA models: more flexible

Electrical Engingeering, Signal Processing Systems group