人工智能技术与应用 Markov Decision Process

2019.5.28

So far: search problems

deterministic

state s, action a

state Succ(s, a)

Uncertainty in the real world

Applications

Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.

Resource allocation: decide what to produce, don't know the customer demand for various products

Agriculture: decide what to plant, but don't know weather and thus crop yield

Volcano crossing

	-50	20
	-50	
2		

Roadmap

Markov decision process

Policy evaluation

Value iteration

Dice game

Example: dice game-

For each round r = 1, 2, ...

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Rewards

If follow policy "stay":

Expected utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \cdots = 12$$

Rewards

If follow policy "quit":

Expected utility:

$$1(10) = 10$$

MDP for dice game

Example: dice game-

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Markov decision process

Definition: Markov decision process

States: the set of states

 $s_{\text{start}} \in \text{States}$: starting state

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

IsEnd(s): whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Search problems

Definition: search problem-

States: the set of states

 $s_{\text{start}} \in \text{States}$: starting state

Actions(s): possible actions from state s

Succ(s, a): where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s IsEnd(s):

whether at end

- Succ(s, a) \Rightarrow T(s, a, s')
- $Cost(s, a) \Rightarrow Reward(s, a, s')$

Transitions

Definition: transition probabilities -

The **transition probabilities** T(s, a, s') specify the probability of ending up in state s' if taken action a in state s.

Exa	mple:	transition	probabilities -
S	а	s'	T (s, a, s')
in	quit	end	1
in	stay	in	2/3
in	stay	end	1/3

Probabilities sum to one

For each state s and action a:

$$\sum_{s' \in \text{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in S$ tates to an action $a \in A$ ctions(s).

Roadmap

Markov decision process

Policy evaluation

Value iteration

Evaluating a policy

Definition: utility-

Following a policy yields a random path.

The **utility** of a policy is the (discounted) sum of the rewards on the path (this is a random quantity).

Path				
[in; stay, 4, end]	4			
[in; stay, 4, in; stay, 4, in; stay, 4, end]	12			
[in; stay, 4, in; stay, 4, end]				
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]	16			
•••				

Definition: value (expected utility)

The value of a policy is the expected utility.

Value: 12 33

Evaluating a policy: volcano crossing

Value: 3.73

Utility: -36.79

Discounting

Definition: utility-

Path: s_0 , $a_1r_1s_1$, $a_2r_2s_2$, ... (action, reward, new state).

The **utility** with discount γ is

$$u_1 = r_1 + yr_2 + y^2r_3 + y^3r_4 + \cdots$$

Discount y = 1 (save for the future):

[stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount y = 0 (live in the moment):

[stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay]: $4 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 4 = 7.5$

Policy evaluation

Definition: value of a policy

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Definition: Q-value of a policy

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .

Policy evaluation

Plan: define recurrences relating value and Q-value

$$V_{\pi}(s) = egin{cases} 0 & ext{if IsEnd}(s) \ Q_{\pi}(s,\pi(s)) & ext{otherwise}. \end{cases}$$

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

Dice game

Let π be the "stay" policy: π (in) = stay.

$$V_{\pi}(end) = 0$$

$$V_{\pi}(\text{in}) = \frac{1}{3}(4 + V_{\pi}(\text{end})) + \frac{2}{3}(4 + 1 \cdot V_{\pi}(\text{in}))$$

In this case, can solve in closed form:

$$V_{\pi}(in) = 12$$

Policy evaluation

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

Algorithm: policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state *s*:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s, \pi(s))}$$

Policy evaluation computation

$$V_{\pi}^{(t)}(s)$$

iteration t

state s	0	-0.1	-0.2	0.7	1.1	1.6	1.9	2.2	2.4	2.6	
	0	-0.1	1.8	1.8	2.2	2.4	2.7	2.8	3	3.1	•
	0	4	4	4	4	4	4	4	4	4	
S	0	-0.1	1.8	1.8	2.2	2.4	2.7	2.8	3	3.1	
	0	-0.1	-0.2	0.7	1.1	1.6	1.9	2.2	2.4	2.6	

Policy evaluation implementation

How many iterations (t_{PE})? Repeat until values don't change much:

$$\max_{s \in \text{States}} |V_{\pi}^{(t)}(s) - V_{\pi}^{(t-1)}(s)| \leq \epsilon$$

Don't store $V_{\pi}^{(t)}$ for each iteration t, need only last two:

$$V_{\pi}^{(t)}$$
 and $V_{\pi}^{(t-1)}$

Complexity

Algorithm: policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state *s*:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s, \pi(s))}$$

MDP complexity

S states

A actions per state

S' successors (number of s' with T(s, a, s') > 0)

Time: $O(t_{PE}SS')$

Policy evaluation on dice game

Let π be the "stay" policy: π (in) = stay.

$$V_{\pi}^{(t)}(\text{end}) = 0$$

$$V_{\pi}^{(t)}(in) = \frac{1}{3}(4 + V_{\pi}^{(t-1)}(end)) + \frac{2}{3}(4 + V_{\pi}^{(t-1)}(in))$$

$$V_{\pi}^{(t)} = 0.00 \text{ in}$$
 (t = 100 iterations)

Converges to $V_{\pi}(in) = 12$.

Summary so far

 MDP: graph with states, chance nodes, transition probabilities, rewards

Policy: mapping from state to action (solution to MDP)

Value of policy: expected utility over random paths

Policy evaluation: iterative algorithm to compute value of policy

Roadmap

Markov decision process

Policy evaluation

Value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value-

The **optimal value** $V_{opt}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\mathsf{opt}}(s) = egin{cases} 0 & \mathsf{if} \ \mathsf{lsEnd}(s) \ \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a) & \mathsf{otherwise}. \end{cases}$$

Optimal policies

Given Q_{opt}, read off the optimal policy:

$$\pi_{\text{opt}}(s) = \arg \max_{a \in \text{Actions}(s)} Q_{\text{opt}}(s, a)$$

Value iteration

Algorithm: value iteration [Bellman, 1957]

Initialize $V_{\text{opt}}^{(0)}(s) \leftarrow 0$ for all states s. For iteration $t = 1, \dots, t_{\text{VI}}$:

For each state s:

$$V_{\text{opt}}^{(t)}(s) \leftarrow \max_{a \in \text{Actions}(s)} \underbrace{\sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t-1)}(s')]}_{Q_{\text{opt}}^{(t-1)}(s, a)}$$

Time: $O(t_{VI}SAS')$

Value iteration: dice game

```
s end in V_{\text{opt}}^{(t)} 0.00 12.00 (t = 100 iterations) \pi_{\text{opt}}(s) - stay
```

Convergence

Theorem: convergence-

Suppose either

- discount γ < 1, or
- MDP graph is acyclic.

Then value iteration converges to the correct answer.

Summary of algorithms

• Policy evaluation: (MDP, π) $\rightarrow V_{\pi}$

• Value iteration: MDP \rightarrow ($V_{\text{opt}}, \pi_{\text{opt}}$)

Unifying idea

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- Value iteration computes optimal value $V_{\text{opt}}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = \cdots V_{\pi}(s^{j}) \cdots$)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)

Review: MDPs

Definition: Markov decision process

States: the set of states

 $s_{\text{start}} \in \text{States: starting state}$

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

IsEnd(s): whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Review: MDPs

• Following a **policy** π produces a path (**episode**)

$$s_0$$
; a_1, r_1, s_1 ; a_2, r_2, s_2 ; a_3, r_3, s_3 ; ...; a_n, r_n, s_n

• Value function $V_{\pi}(s)$: expected utility if follow π from state s

$$V_{\pi}(s) = egin{cases} 0 & ext{if IsEnd}(s) \ Q_{\pi}(s,\pi(s)) & ext{otherwise.} \end{cases}$$

- **Q-value** function $Q_{\pi}(s, a)$: expected utility if first take action a from state s and then follow π

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

Unknown transitions and rewards

Definition: Markov decision process

States: the set of states

 $s_{\text{start}} \in \text{States}$: starting state

Actions(s): possible actions from state s

IsEnd(s): whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

reinforcement learning!

Mystery game

Example: mystery buttons

For each round r = 1, 2, ...

- You choose A or B.
- You move to a new state and get some rewards.

(Start

State: 5,0 Rewards: 0

Roadmap

Reinforcement learning

Monte Carlo methods

Bootstrapping methods

Covering the unknown

Summary

From MDPs to reinforcement learning

Markov decision process (offline)

- Have mental model of how the world works.
- Find policy to collect maximum rewards.

-Reinforcement learning (online) -

- Don't know how the world works.
- Perform actions in the world to find out and collect rewards.

Reinforcement learning framework

Algorithm: reinforcement learning template -

```
For t = 1, 2, 3, ...
Choose action a_t = \pi_{act}(s_{t-1}) (how?)
Receive reward r_t and observe new state s_t
Update parameters (how?)
```


Roadmap

Reinforcement learning

Monte Carlo methods

Bootstrapping methods

Covering the unknown

Summary

Model-based Monte Carlo

Data: s_0 ; a_1 , r_1 , s_1 ; a_2 , r_2 , s_2 ; a_3 , r_3 , s_3 ; . . . ; a_n , r_n , s_n

Estimate the MDP: T(s, a, s') and Reward(s, a, s')

Transitions:

$$T(s, a, s') = \frac{\text{# times } (s, a, s') \text{ occurs}}{\text{# times } (s, a) \text{ occurs}}$$

Rewards:

Reward(s, a, s') = average of r in (s, a, r, s')

Model-based Monte Carlo

Example: model-based Monte Carlo-

Data (following policy π):

S1; A, 3, **S2**; B, 0, **S1**; A, 5, **S1**; A, 7, **S1**

Estimates:

$$T(S1, A, S1) = \frac{2}{3}$$

 $T(S1, A, S2) = \frac{1}{3}$
Reward(S1, A, S1) = $\frac{1}{2}(5 + 7) = 6$
Reward(S1, A, S2) = 3

Estimates converge to true values (under certain conditions)

Problem

Data (following policy π):

S1; A, 3, **S2**; B, 0, **S1**; A, 5, **S1**; A, 7, **S1**

Problem: won't even see (s, a) if $a \neq \pi(s)$

Key idea: exploration

To do reinforcement learning, need to explore the state space.

Solution: need π to **explore** explicitly (more on this later)

From model-based to model-free

$$\hat{Q}_{\mathsf{opt}}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\widehat{\mathsf{Reward}}(s,a,s') + \gamma \hat{V}_{\mathsf{opt}}(s')]$$

All that matters for prediction is (estimate of) $Q_{opt}(s,a)$

Key idea: model-free learning Try to estimate $Q_{\mathrm{opt}}(s,a)$ directly.

Model-free Monte Carlo

Data (following policy π):

$$s_0$$
; a_1 , r_1 , s_1 ; a_2 , r_2 , s_2 ; a_3 , r_3 , s_3 ; . . . ; a_n , r_n , s_n

Recall:

 Q_{Π} (s, a) is expected utility starting at s, first taking action a, and then following policy π

Utility:

$$u_t = r_t + y \cdot r_{t+1} + y^2 \cdot r_{t+2} + \cdots$$

Estimate:

 $Q_{\Pi}(s, a) = \text{average of } u_t \text{ where } s_{t-1} = s, a_t = a$

Model-free Monte Carlo

Example: model-free Monte Carlo

Data:

Estimates (assume
$$y = 1$$
):
 $\hat{Q}_{\pi}(S1, A) = \frac{1}{3}(15 + 12 + 7) \approx 11.33$

Caveat: converges, but still need to follow π that explores

Note: we are estimating Q_{π} now, not Q_{opt}

total rewards resulting from (s, a)

Model-free Monte Carlo (equivalences)

Data (following policy π):

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n$$

-Original formulation-

$$\hat{Q}_{\pi}(s,a) = ext{average of } u_t ext{ where } s_{t-1} = s, a_t = a$$

-Equivalent formulation (convex combination) \neg

On each
$$(s, a, u)$$
:

On each
$$(s,a,u)$$
:
$$\eta = \frac{1}{1+(\# \text{ updates to } (s,a))}$$

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

Interpolation view

Model-free Monte Carlo (equivalences)

-Equivalent formulation (convex combination) \neg

On each
$$(s,a,u)$$
:
$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

–Equivalent formulation (stochastic gradient)— $\,$

On each
$$(s,a,u)$$
:
$$\hat{Q}_{\pi}(s,a) \leftarrow \hat{Q}_{\pi}(s,a) - \eta [\hat{Q}_{\pi}(s,a) - u]$$
 prediction target

Implied objective: least squares regression

$$(\hat{Q}_{\pi}(s,a) - u)^2$$

stochastic gradient descent view

Roadmap

Reinforcement learning

Monte Carlo methods

Bootstrapping methods

Covering the unknown

Summary

SARSA

Data (following policy π):

$$s_0$$
; a_1, r_1, s_1 ; a_2, r_2, s_2 ; a_3, r_3, s_3 ; ...; a_n, r_n, s_n

Algorithm: model-free Monte Carlo updates-

When receive (s, a, u):

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{\text{data}}$$

Algorithm: SARSA

When receive (s, a, r, s', a'):

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta \underbrace{r}_{\text{data}} + \gamma \underbrace{\hat{Q}_{\pi}(s', a')}_{\text{estimate}}$$

Comparison

$$s_0$$
, a_1 , r_1 , s_1 , a_2 , r_2 , s_2 , a_3 , r_3 , s_3 , ..., a_n , r_n , s_n

Key idea: bootstrapping

SARSA uses estimate $Q_{\Pi}(s, a)$ instead of just raw data u.

- u is only based on one path, so could have large variance, need to wait until end
- $Q_{\Pi}(s', a')$ based on estimate, which is more stable, update immediately

Question

Which of the following algorithms allows you to estimate $Q_{opt}(s, a)$ (select all that apply)?

model-based Monte Carlo				
model-free Monte Carlo				
SARSA				

Q-learning

Problem: model-free Monte Carlo and SARSA only estimate Q_{π} , but want Q_{opt} to act optimally

Output	MDP	reinforcement learning	
Q_{π}	policy evaluation	model-free Monte Carlo, SARSA	
Q opt	value iteration	Q-learning	

Q-learning

MDP recurrence:

$$Q_{\mathsf{opt}}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathsf{opt}}(s')]$$

Algorithm: Q-learning [Watkins/Dayan, 1992]

$$\begin{aligned} \text{On each } (s, a, r, s') : \\ \hat{Q}_{\text{opt}}(s, a) \leftarrow (1 - \eta) \underbrace{\hat{Q}_{\text{opt}}(s, a)}_{\text{prediction}} + \eta \underbrace{(r + \gamma \hat{V}_{\text{opt}}(s'))}_{\text{target}} \end{aligned}$$

Recall:
$$\hat{V}_{\mathsf{opt}}(s') = \max_{a' \in \mathsf{Actions}(s')} \hat{Q}_{\mathsf{opt}}(s', a')$$

Roadmap

Reinforcement learning

Monte Carlo methods

Bootstrapping methods

Covering the unknown

Summary

Exploration

Algorithm: reinforcement learning template 7

```
For t = 1, 2, 3, ...
Choose action a_t = \pi_{act}(s_{t-1}) (how?)
Receive reward r_t and observe new state s_t
Update parameters (how?)
```

 s_0 ; a_1 , r_1 , s_1 ; a_2 , r_2 , s_2 ; a_3 , r_3 , s_3 ; . . . ; a_n , r_n , s_n

Which **exploration policy** π_{act} to use?

No exploration, all exploitation

Attempt 1: Set
$$\pi_{\mathsf{act}}(s) = \arg\max_{a \in \mathsf{Actions}(s)} \hat{Q}_{\mathsf{opt}}(s, a)$$

Problem: $\hat{Q}_{opt}(s, a)$ estimates are inaccurate, too greedy!

	-50	20
	-50	
2		

No exploitation, all exploration

Attempt 2: Set $\pi_{act}(s)$ = random from Actions(s)

Problem: average utility is low because exploration is not guided

Exploration/exploitation tradeoff

Need to balance exploration and exploitation.

Algorithm: epsilon-greedy policy—

$$\pi_{\mathsf{act}}(s) = \begin{cases} \arg\max_{a \in \mathsf{Actions}} \hat{Q}_{\mathsf{opt}}(s, a) & \mathsf{probability} \ 1 - \epsilon, \\ \mathsf{random} \ \mathsf{from} \ \mathsf{Actions}(s) & \mathsf{probability} \ \epsilon. \end{cases}$$

Examples from life: restaurants, routes, research

Generalization

Problem: large state spaces, hard to explore

Q-learning

Stochastic gradient update:

$$\hat{Q}_{\mathrm{opt}}(s,a) \leftarrow \hat{Q}_{\mathrm{opt}}(s,a) - \eta [\underbrace{\hat{Q}_{\mathrm{opt}}(s,a)}_{\mathrm{prediction}} - \underbrace{(r + \gamma \hat{V}_{\mathrm{opt}}(s'))}_{\mathrm{target}}]$$

This is **rote learning**: every $\hat{Q}_{opt}(s, a)$ has a different value

Problem: doesn't generalize to unseen states/actions

Function approximation

Key idea: linear regression model

Define **features** $\varphi(s, a)$ and **weights w**: $Q_{\text{opt}}(s, a; \mathbf{w}) = \mathbf{w} \cdot \varphi(s, a)$

$$Q_{\text{opt}}(s, a; \mathbf{w}) = \mathbf{w} \cdot \boldsymbol{\varphi}(s, a)$$

$$\varphi_1(s,a) = \mathbf{1}[a = W] \qquad \varphi_7(s,a) = \mathbf{1}[s = (5,*)]$$

Example: features for volcano crossing
$$\varphi_1(s, a) = \mathbf{1}[a = W]$$
 $\varphi_7(s, a) = \mathbf{1}[s = (5, *)]$ $\varphi_2(s, a) = \mathbf{1}[a = E]$ $\varphi_8(s, a) = \mathbf{1}[s = (*, 6)]$

Function approximation

Algorithm: Q-learning with function approximation ¬

On each
$$(s, a, r, s')$$
:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta [\hat{Q}_{\text{opt}}(s, a; \mathbf{w}) - \underbrace{(r + \gamma \hat{V}_{\text{opt}}(s'))}] \phi(s, a)$$
prediction target

Implied objective function:

$$(\underbrace{\hat{Q}_{\mathsf{opt}}(s, a; \mathbf{w})}_{\mathsf{prediction}} - \underbrace{(r + \gamma \hat{V}_{\mathsf{opt}}(s'))}_{\mathsf{target}})^2$$

Covering the unknown

Epsilon-greedy: balance the exploration/exploitation tradeoff

Function approximation: can generalize to unseen states

Summary so far

Online setting: learn and take actions in the real world!

Exploration/exploitation tradeoff

 Monte Carlo: estimate transitions, rewards, Q-values from data (approximating an expectation with a sample)

 Bootstrapping: update towards target that depends on estimate rather than just raw data

(using the model predictions to update itself)

Roadmap

Reinforcement learning

Monte Carlo methods

Bootstrapping methods

Covering the unknown

Summary

Amount of supervision

Supervised learning (e.g., Perceptron)

input x, output y

offline: get all data

Reinforcement learning (e.g., Q-learning)

state-action-reward-state (s, a, r, s')

online: actively choose actions to get data

Unsupervised learning (e.g., k-means)

inputs x

offline: get all data

more supervision

less supervision

Challenges in reinforcement learning

Binary classification (sentiment classification, SVMs):

Stateless, full feedback

Reinforcement learning (flying helicopters, Q-learning):

Stateful, partial feedback

Key idea: partial feedback

Only learn about actions you take.

Key idea: state-

Rewards depend on previous actions ⇒ can have delayed rewards.

States and information

	stateless	state
full feedback	supervised learning (binary classification)	supervised learning (structured prediction)
partial feedback	multi-armed bandits	reinforcement learning

Deep reinforcement learning

just use a neural network for $Q_{opt}(s, a)$

Playing Atari [Google DeepMind, 2013]:

- last 4 frames (images) ⇒ 3-layer NN ⇒ keystroke
- ϵ -greedy, train over 10M frames with 1M replay memory
- Human-level performance on some games (breakout), less good on others (space invaders)

Breakout Game Description

Formally:

Actions

- move_paddle_left
- o move_paddle_right
- do_not_move_paddle

Rewards

- If ball hits brick, reward = 1
- Otherwise, reward = 0

End condition

 If ball falls off the screen, game ends

Finding a state representation

Consider this frame.

- Can you capture information like direction of the ball?
- Can you capture velocity?

Use a small number of consecutive frames for each state.

Neural Networks as Q(s, a) approximators

- State and action pair passed as inputs to a neural network.
- Neural network predicts the Q-value for the input action.

Can we make this even more efficient?

Neural Networks as Q(s, a) approximators

- State is the only input into the neural network.
- Network outputs a
 Q-value for every
 possible action.
- Action corresponding to the highest Q-value is chosen.

Training Deep-Q-Networks

- Initialize weights randomly.
- Loop:
 - Obtain current state (s)
 - Run Neural Network on s to obtain Q-value for every action.
 - Execute action (a) that maximizes Q-value.
 - Obtain reward (r) and new state (s').
 - Perform gradient descent on Q-learning loss using (s, a, r, s')

Training Deep-Q-Networks

- Initialize weights randomly.
- Loop:
 - Obtain current state (s)
 - Run Neural Network on s to obtain Q-value for every action.
 - Execute action (a) that maximizes Q-value.
 - Obtain reward (r) and new state (s').
 - Perform gradient descent on Q-learning loss using (s, a, r, s')
 Unstable and inefficient under current data ordering!

Training DQNs can be difficult

- State_t is highly correlated to State t+1
- Gradient descent after consecutive steps ⇒ correlated updates

How do we fix this? Randomly sample states for updates.

Training Deep-Q-Networks

Experience Replay

- Initialize weights randomly.
- Initialize memory (D) with capacity N.
- Loop:
 - Obtain current state (s)
 - Run Neural Network on s to obtain Q-value for every action.
 - Execute action (a) that maximizes Q-value.
 - Obtain reward (r) and new state (s').
 - Store (s, a, r, s') in D
 - Randomly sample (s, a, r, s') from D
 - Perform gradient descent on Q-learning loss using (s, a, r, s')_D

Comparison of the DQN agent with the best RL methods in the literature

The performance of DQN is normalized w.r.t. A professional human games tester (that is, 100% level) and random play (that is, 0% level).

Source: Mnih et al. (2015)

Deep reinforcement learning

- Policy gradient: train a policy $\pi(a \mid s)$ (say, a neural network) to directly maximize expected reward
- Google DeepMind's AlphaGo (2016)

Andrej Karpathy's blog post

http://karpathy.github.io/2016/05/31/rl

Applications

Autonomous helicopters: control helicopter to do maneuvers in the air

Backgammon: TD-Gammon plays 1-2 million games against itself, human-level performance

Elevator scheduling; send which elevators to which floors to maximize throughput of building

Managing datacenters; actions: bring up and shut down machine to minimize time/cost