

Projekt 2

Arbeiten mit CUDA

Fabian Miltenberger, Sébastien Thill, Thore Mehr | 07.02.2017

LEHRSTUHL FÜR RECHNERARCHITEKTUR UND PARALLELVERARBEITUNG (ITEC)

Gliederung

- Aufgabe 1 Getting started
- 2 Aufgabe 2 Datentransferraten
- 3 Aufgabe 3 Gauß-Seidel-Verfahren
- 4 Aufgabe 4 ILU-Zerlegung
- 5 Aufgabe 5 CG-Verfahren
- Aufgabe 6 Lattice-Blotzmann-Methode

Struktur nach Aufgaben, aber mit grobem Einblick in unsere Vorgehensweise

Aufgabe 1 – Getting started


```
Information for GeForce GTX 960 (device 0):
```

Total global memory: 2092957696 pprox 2 GB

Total const memory: 65536 \approx **64** KB

Shared memory per block: 49152 \approx 48 KB

Warp size: 32

Max threads per block: 1024

Max threads dimension: [1024, 1024, 64]
Max grid size: [2147483647, 65535, 65535]

 \rightarrow Damit haben wir gearbeitet

Aufgabe 2 – Datentransferraten

- CudaMemcpy
 - 2,4 GB per s im RAM
 - 2,4 GB per s Up
 - 40 GB per s Trans
 - 1,4 GB per s Down
- Copy and Add
 - 2 GB per s im RAM
 - bis 30 GB per s Trans
 - fast linear mit Blockgröße

Aufgabe 3 – Gauß-Seidel-Verfahren

Implementierung: Sehr geradlinig, Synchronisation durch Kernelaufrufe

Beschleunigung gegenüber CPU (32 Kerne):

1	$T_{CPU}[s]$	$T_{GPU}[s]$	Beschleunigung $S[s]$
2	0,123	1,15	0,107
3	0,348	1,16	0,3
4	1,42	1,17	1,21
7	7,14	1,54	4,64
8	25,3	3,27	7,74
9	177	20,6	8,59

Aufgabe 3 – Asynchrone Parallelisierung

Approximate Computing

Verzicht auf hohe Genauigkeit und im Gegenzug an Geschwindigkeit und/oder Energieersparnisse in den Berechnungen zu gewinnen.

Asynchronous Parallelization

Ein Thread kann alle seine Iterationen durchlaufen kann ohne auf die Ergebnisse der anderen Threads zu warten

→ eleminieren der Wartezeiten.

Relaxierte Parallelisierung

Unabhängig zwischen den entstandenen zeitlichen Unterteilungen Berechnungen durchführen.

Aufgabe 3 – Approximate Computing

Keine Verbesserung durch Flag -use-fast-math

Beschleunigung bei float anstatt double:

Fabian Miltenberger, Sébastien Thill, Thore Mehr - Projekt 2

1	$T_{\tt double}[s]$	$T_{\texttt{float}}[s]$	Beschleunigung $S[s]$
2	1,15	1,15	1,00
3	1,16	1,15	1,01
4	1,17	1,15	1,02
7	1,54	1,49	1,03
8	3,27	2,59	1,26
9	20,6	12,1	1,70

Weitere Beschleunigung für half möglich? (ab CUDA 7.7)

	Aufgabe 3 ○○●○○○	Aufgabe 4 000000	Aufgabe 5 0000000	Aufgabe 6	Fazit 000

Aufgabe 3 – Programmierfehler

Dieser Code bricht manchmal zu früh ab:

```
int smallErr;
cudaMemcpy(&smallErr, smallErr_d, 1, DeviceToHost);
if (smallError) break;
...
```

Aufgabe 3 – Programmierfehler

Dieser Code bricht manchmal zu früh ab:

```
...
int smallErr;
cudaMemcpy(&smallErr, smallErr_d, 1, DeviceToHost);
if (smallError) break;
...
```

→smallErr hat zu großen Datentyp, muss entweder initialisiert werden, oder von Datentyp char sein

→ → → → □ → ← □ →

Aufgabe 3 – Weitere Architekturen

Einsatz von Approximate Computing

→ kürzere Rechenzeit auf Kosten der Genauigkeit

In modernen CPUs Gleitkommazahlen intern mit 80 Bit verarbeitet

→ kein zeitlicher Unterschied zwischen double und float

Aufgabe 3 – Weitere Architekturen 2

Ein Unterschied bei sehr großen Datenmengen?

Speicherbandbreite möglicherweise bei double als Engpass Eher reine Multi-Core CPUs betroffen Many-Core- und MIC-Architekturen weniger:

- größere Caches
- mehrere Speicheranbindungen

Aufgabe 4 – Einführung

Gesucht: Dreiecksmatrizen L, U, sodass

 $L \cdot U \approx A$

Approximate Computing herangehensweise

→ Incomplete LU-Decomposition (ILU)

Algorithmus 1: Fixpunktiteration

Algorithmus 2: Gauß

11/29

Aufgabe 4 – ILU-Zerlegung

Algorithmus 1

- Einträge komplett unabhängig
 - \rightarrow Sehr gut parallelisierbar
- Pufferung zwischen Iterierten
- Iterativ

Algorithmus 2

- Starke Abhängigkeit der Einträge
 - \rightarrow Schlecht parallelisierbar

Aufgabe 4 – Mathematische Sicht

Algorithmus 1

- Stabil
- Anzahl an benötigten Schritten nicht bekannt

Algorithmus 2

- Keine Pivotwahl
 - → mögliche Stabilitätsprobleme
- Nach n Schritten fertig

000000

Aufgabe 4 – Speichermethodik

Nach Algorithmus 2: $a_{ij} = 0 \Rightarrow l_{ij} = 0$ und $U = L^T$ (S_U entsprechend) Belegung von L, U und A:

$$\mathcal{B} = \begin{pmatrix} * & * & 0 & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & * & 0 & 0 & 0 & 0 \\ 0 & * & * & 0 & 0 & * & 0 & 0 & 0 \\ * & 0 & 0 & * & * & 0 & * & 0 & 0 \\ 0 & * & 0 & * & * & * & 0 & * & 0 \\ 0 & 0 & * & 0 & * & * & 0 & 0 & * \\ 0 & 0 & 0 & * & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & 0 & * & * \end{pmatrix}$$

ightarrowSpeicherung möglich als Array der Größe 5n Speicherverschnitt in $\mathcal{O}(\sqrt{n})$

Aı O Αι

Aufgabe 6

Aufgabe 4 - Ergebnis

Stark abweichende Einträge in $L \cdot U$:

$$L \cdot U \approx \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0.25 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0.25 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0.27 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0.25 & 0 & 4 & -1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0.27 & -1 & 4 & -1 & 0.27 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0.28 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0.27 & 0 & 4 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0.29 & -1 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0.29 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix} \stackrel{!}{\approx} A$$

Für unsere folgende Vorkonditionierung hoffentlich vernachlässigbar

Gliederung Aufgabe 1 Aufgabe 2 Aufgabe 3 **Aufgabe 4** Aufgabe 5 Aufgabe 6

000000

Aufgabe 4 – OpenMP

Für Algorithmus 1: Für kleine n würde eine Parallelisierung in OpenMP – also auf der CPU – möglicherweise Sinn machen, aufgrund des Mehraufwandes der für die GPU-Ausführung erforderlich ist. Für große n hingegen erwarten wir, dass die CUDA-Implementierung einen Performance-Vorteil gegenüber der CPU-Implementierung hat. Dies schließen wir vor allem daraus, dass sich der Algorithmus sehr gut für die Grafikkarte parallelisieren lässt, da innerhalb einer Iteration Einträge unabhängig von einander sind.

Aufgabe 4

Aufgabe 5 – CG-Verfahren

Idee: Anstatt $B \approx A^{-1}$ berechnen wir LU = A durch unvollständige Zerlegung

Nun können wir Br = p bzw. r = LAp berechnen durch:

$$L\hat{p} = r, Up = \hat{p}$$

In unserem Fall: mittels GSV

Gefordert: $\epsilon_i \leq 10^{-5}$

Unsere Implementierung mit I = 9: $\epsilon_{max} = 1,257 \times 10^{-5}$

Gefordert: $\epsilon_i < 10^{-5}$

Unsere Implementierung mit
$$I = 9$$
: $\epsilon_{max} = 1,257 \times 10^{-5}$

Intention: I = 10 setzen

Würde $(2^{10} - 1)^3 \cdot 8$ Bytes ≈ 8 GB für Historie von *u* benötigen

→Speicherproblem

Gefordert: $\epsilon_i < 10^{-5}$

Unsere Implementierung mit I = 9: $\epsilon_{max} = 1,257 \times 10^{-5}$

Intention: I = 10 setzen

Würde $(2^{10} - 1)^3 \cdot 8$ Bytes ≈ 8 GB für Historie von u benötigen

→Speicherproblem

Lösung: Auf Historie verzichten

Speicherbedarf für $u: (2^{10} - 1)^2 \cdot 8$ Bytes ≈ 8 MB

Problem: Auswirkung unklar, aber funktioniert (Approximate Computing?)

Fehler jetzt: $\epsilon_{max} = 3,25 \times 10^{-6}$

Größere blocksize nötig?

4 > 4 > 4 \(\) 4 \(\) 5 \(\) 4 \(\) 5

Aufgabe 5 – Vergleich

1	Impl.	Iterationen	T[s]	$T_{iteration}[s]$	Fehler ϵ_i
7	CPU	243	1,7	7×10^{-3}	$2,01 \times 10^{-4}$
	GPU	91	1,83	$2,01 \times 10^{-2}$	$2,01 \times 10^{-4}$
8	CPU	483	2	$4,14 \times 10^{-3}$	$5,02 \times 10^{-5}$
	GPU	153	7,04	$4,60 \times 10^{-2}$	$5,21 \times 10^{-5}$
9	CPU	961	2,5	$2,6 \times 10^{-3}$	$1,26 \times 10^{-5}$
	GPU	285	71,0	$2,49 \times 10^{-1}$	$1,31 \times 10^{-5}$

ightarrow Weniger Iterationen, aber mehr Zeitaufwand

Aufgabe 5 00000000

Aufgabe 5 – Genauigkeit

Stellschrauben: ε_{cg} , ε_{ILU} , ε_{GSV}

Auswirkung auf den Fehler:

$arepsilon_{ extit{cg}}$	arepsilonILU	$arepsilon_{ extit{GSV}}$	Fehler $\epsilon_{\it max}$	$\Delta\epsilon_{ extit{max}}$
-10^{-3}	10^{-3}	10^{-3}	$2,20 \times 10^{-4}$	0
10^{-6}	10^{-3}	10^{-3}	$5,14 \times 10^{-5}$	$-1,69 \times 10^{-4}$
10^{-3}	10^{-6}	10^{-3}	$1,97 \times 10^{-4}$	$-2,30 \times 10^{-5}$
10^{-3}	10^{-3}	10^{-6}	$2,14 \times 10^{-4}$	$-6,02 \times 10^{-7}$
10^{-12}	10^{-3}	10^{-3}	$5,02 \times 10^{-5}$	$-1,70 \times 10^{-4}$
10^{-12}	10^{-12}	10^{-12}	$5,02 \times 10^{-5}$	$ -1,70 \times 10^{-4}$

 $ightarrow arepsilon_{\it cg}$ hat größte Relevant; naheliegend, da Rest Approximation

Gliederung Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 **Aufgabe 5** Aufgabe 6 Faz

Aufgabe 5 – Beschleuniger

Bisher: Alles (außer Berechnung von Br (2×GSV)) auf CPU per OpenMP

Wenig sinnvoll, da:

- Overhead durch Datenaustausch
- Keine gleichzeitige Auslastung
- GPU vermutlich schneller in den CPU-Aufgaben (Vektoroperationen)

Aufgabe 5 – Beschleunigung

1	$oxed{S_{CPU ightarrow GPU_a}[s]}$	$S_{GPU_a ightarrow GPU_c}[s]$
7	0,929	1,06
8	0,284	1,14
9	0,0352	1,11

Vorteil geringer als gedacht... Br teuerster Berechnungsschritt

Aufgabe 5 – Skalarprodukt auf der GPU

Möglich mittels atomic-Operationen, aber nicht optimal

Bessere Lösung: Reduction (wie auch in OpenMP)

Aufgabe 6 – Lattice-Blotzmann-Methode

Maximale Größe des Gitters? Verfügbarer Speicherplatz auf der GPU \approx 2 GB

25/29

Aufgabe 6 – Lattice-Blotzmann-Methode

Maximale Größe des Gitters? Verfügbarer Speicherplatz auf der GPU \approx 2 GB

Speicherbedarf für rawdata1, rawdata2 und u_0 :

$$M(\text{rawdata1}) = M(\text{rawdata2})$$

= $max_x \cdot max_y \cdot max_z \cdot 19 \cdot 8 \text{ Bytes}$
 $M(\text{u}_0) = max_x \cdot max_y \cdot 8 \text{ Bytes}$

Aufgabe 6 – Lattice-Blotzmann-Methode

Maximale Größe des Gitters? Verfügbarer Speicherplatz auf der GPU \approx 2 GB

Speicherbedarf für rawdata1, rawdata2 und u_0 :

$$M(\texttt{rawdata1}) = M(\texttt{rawdata2})$$

= $max_x \cdot max_y \cdot max_z \cdot 19 \cdot 8 \text{ Bytes}$
 $M(\texttt{u}_0) = max_x \cdot max_y \cdot 8 \text{ Bytes}$

Bedingung: $M(\text{rawdata1}) + M(\text{rawdata2}) + M(\text{u}_0) \le 2.092.957.696$ Lösung: $max_x = max_y = max_z = 190$

Gliederung Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufg

Au OC

Aufgabe 5

Aufgabe 6

Aufgabe 6 – Große Würfel

Würfel noch größer → passt nicht mehr in VRAM

Überblick - Projekt 1

- OpenMP
- Testtools (Intel Thread Checker, OpenMP Profiler)
- Quantitative Maßzahlen im Kontext von Parallelrechner
- Vorteile und Gefahren der Parallelisierung
- Verschiedene Architekturen und ihre Unterschiede
- Gauß-Seidel-Verfahren
- Partielle Differenzialgleichungen
- Methode der Finiten Elemente
- Krylow-Unterraumverfahren
- CG-Verfahren

Überblick – Projekt 2

- CUDA GPU Architektur
- Datentransfer zwischen Host und Device
- Verschiedene Parallelisierungsmethoden
- Gelerntes auf CPU-Architekturen übertragen
- Vorkonditionierung
- ILU-Zerlegung
- Kondition und Stabilität

Fazit

Mit *OpenMP* und *CUDA* lässt es sich parallelisieren.