Problem Set 2 Solution

March 17, 2020

Question 1

a.

b. Let $k, n \in \mathbb{Z}^+$, and $p \in \mathbb{N}$. Assume Prime(p), and $p^k < n < p^k + p$.

Then, p^k can either be divided by 1 or p by fact 3.

Since, $p^k < n < p^k + p$, n cannot be written in multiples of p.

Then, it follows from the definition of divisibility that $p \nmid n$.

Since $p \nmid n$, but $1 \mid p^k$ and $1 \mid n$, $gcd(p^k, n) = 1$.

c. Predicate Logic: $\forall m \in \mathbb{Z}, \, \forall n_0 \in \mathbb{N}, \, \exists n \in \mathbb{N} \, \, n > n_0 \wedge gcd(n,n+m) = 1$

Since there are infinitely many primes by fact 4, let Prime(n) and n > m.

Since Prime(n), by fact 3, n can either be divided by 1 or p.

Since $n \mid n$, but $n \nmid m$, $n \nmid (n+m)$.

Since $n \nmid (n+m)$ but $1 \mid n$ and $1 \mid (n+m)$, gcd(n, n+m) = 1.

Question 2

Question 3