

Electrical and Electronic Circuits

chapter 7. RLC Circuits

Afarghadan@aut.ac.ir

Objectives of the Lecture

- > Application of RL and RC circuits
- > Second order circuits: RLC
 - > Parallel RLC circuit without source
 - > Series RLC circuit without source
 - > Complete response in the presence of source and initial conditions
 - ➤ How to calculate initial conditions

The Rl and RC Circuit

$$i_L(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L} \right) u(t)$$

Application in delay analysis of integrated circuits

- The parasitic resistance and capacitor of the wire connecting two logic gates increases the delay.
- ➤ Maximum allowed frequency:

$$f_{max} = \frac{1}{2 \times 5\tau} = 2Ghz$$

Application as a frequency filter

A low-pass filter

Application as a frequency filter: noise removal

The RLC circuit

- > An RLC circuit has both an inductor and a capacitor.
- > If it has only one inductor and one capacitor, the circuit will be second order.
- > Of course, a second-order circuit can be made with two capacitors or two inductors.
- > RLC circuits have many different applications:
- > Oscillator: A circuit that produces an alternating pulse (to make a clock)
- > Frequency filter: For example, to remove noise
- ➤ Analog radio receiver and...
- ➤ It is also possible to model the behaviour of car suspension system, elevator, airplane, temperature controller, etc. using an RLC circuit.

The Source-Free RLC Parallel Circuit

Applying KCL differentiate to show:

$$C\frac{d^{2}v}{dt^{2}} + \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v = 0$$

Solving the Differential Equation

To solve, assume $v = Ae^{st}$.

The solution must then satisfy:

$$Cs^2 + \frac{1}{R}s + \frac{1}{L} = 0$$

which is called the characteristic equation.

If s_1 and s_2 are the solutions, then the natural response is

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Exploring the Solution

The solutions to the characteristic equation are:

$$s_1, s_2 = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

Define ω_0 the resonant frequency:

$$\omega_0 = \sqrt{\frac{1}{\sqrt{LC}}}$$

and a the damping coefficient:

$$\alpha = \frac{1}{2RC}$$

Exploring the Solution

With these definitions, the solutions can be expressed as:

$$S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$S_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

The constants A_1 and A_2 are determined by the initial conditions.

Types of Responses

- ightharpoonup If $\alpha > \omega_0$ the solutions are real, unequal and the response is termed *overdamped*.
 - The response does not have an oscillatory state. Like dropping a pendulum in a container of grease, or dropping a very stiff spring.
- ightharpoonup If $\alpha = \omega_0$ the solutions are real and equal and the response is termed *critically damped*.
 - The circuit is on the verge of oscillating, but it is not yet oscillating.
- \triangleright If $\alpha < \omega_0$ the solutions are complex conjugates and the response is termed *underdamped*.
 - The response of the circuit is in the form of oscillatory damping. Like dropping a pendulum

Overdamped Parallel RLC $(\alpha > \omega_0)$

Both roots are real and distinct.

$$S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$S_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

The normal response form is as follows.

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Overdamped Parallel RLC

Show that $v(t) = 84(e^{-t} - e^{-6t})$ when $i(0^+)=10$ A and $v(0^+)=0$ V.

Graphing the Response

Example 2: overdamped RLC Circuit

Show that $v_C(t) = 80e^{-50,000t} - 20e^{-200,000t}$ V for t>0.

Critical Damping $(\alpha = \omega_0)$

A double real root:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

$$s_1 = s_2 = -\alpha$$

The normal response form is as follows:

$$v(t) = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

Critical Damping $(\alpha = \omega_0)$

Assumed that v(0) 2 V. Select a value for R1 and R2 such that the circuit of below figure will be characterized by a critically damped response for t > 0.

The Underdamped Response ($\alpha < \omega_0$)

If $\alpha < \omega_0$ define:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$s_1 = -\alpha + j\omega_d$$
$$s_2 = -\alpha - j\omega_d$$

and the solution is

$$v(t) = e^{-\alpha t} \left(A_1 e^{j\omega_d t} + A_2 e^{-\omega_d t} \right)$$

or equivalently

$$v(t) = e^{-\alpha t} \left(B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right)$$

Example: Underdamped Response

$$v(t) = 210\sqrt{2}e^{-2t}\sin\sqrt{2}t$$

Comparing the Responses

Determining the Response: Underdamped Example

Show for t>0

$$i_L = e^{-1.2t} (2.027 \cos 4.75t + 2.561 \sin 4.75t)$$

Source-Free Series RLC Circuit

For the series RLC circuit,

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = 0$$

This circuit is the dual of the parallel RLC circuit.

Series RLC Differential Equation

The characteristic equation is:

$$Ls^2 + Rs + \frac{1}{C} = 0$$

Where:

$$s_1, s_2 = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Series RLC Circuit Solution

Define
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 and $\alpha = \frac{R}{2L}$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

Then if

$$\alpha > \omega_0$$
 (overdamped):

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$\alpha = \omega_0$$
 (critically damped):

$$v(t) = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

 $\alpha < \omega_0$ (underdamped):

$$v(t) = e^{-\alpha t} \left(B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right)$$

Underdamped (
$$R=100 \Omega$$
) $C = 100nF$, $L = 7\mu H$

critically damped ($R=100 \Omega$) C = 100nF, $L = 7\mu H$

Overdamped (
$$R=100 \Omega$$
) $C = 100nF$, $L = 7\mu H$

Summary of Source free RLC Circuits

نوع	وضعیت	شرط	α	$\boldsymbol{\omega_0}$	فرم پاسخ طبیعی
موازی	Overdamped	$\alpha > \omega_0$	$\frac{1}{2RC}$	1	$A_1 e^{s_1 t} + A_2 e^{s_2 t}$ $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$
سرى			$\frac{R}{2L}$	\sqrt{LC}	
موازی	Critically damped	$\alpha = \omega_0$	$\frac{1}{2RC}$	1	$e^{-\alpha t}(A_1t + A_2)$
سرى			$\frac{R}{2L}$	\sqrt{LC}	
موازی	Underdamped	$\alpha < \omega_0$	$\frac{1}{2RC}$	$\frac{1}{\sqrt{LC}}$ e^{-}	$e^{-\alpha t}(B_1 cos \omega_d t + B_2 sin \omega_d t)$
سرى			$\frac{R}{2L}$		$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$

The Complete response

The response of RLC circuits with DC sources and switches will consist of the natural response and the forced response:

$$v(t) = v_f(t) + v_n(t)$$

The complete response must satisfy both the initial conditions $v(0^+)$ and $\frac{dv}{dt}(0^+)$ or the forced response.

For example in the presence of DC sources:

A natural response: $v_n(t) = Ae^{s_1t} + Be^{s_2t}$

 $v(t) = K + Ae^{S_1t} + Be^{S_2t}$

Full answer:

Applying the basic conditions: $v(0^+) = V_f + A + B$, $\frac{dv}{dt}(0^+) = As_1 + Bs_2$

Example: Initial Conditions

Find the labeled voltages and currents at $t=0^-$ and $t=0^+$.

Answer:

$$\mathbf{i}_{R}(0^{-}) = -5 \text{ A}$$
 $\mathbf{v}_{R}(0^{-}) = -150 \text{ V}$ $\mathbf{i}_{R}(0^{+}) = -1 \text{ A}$ $\mathbf{v}_{R}(0^{+}) = -30 \text{ V}$ $\mathbf{i}_{L}(0^{-}) = 5 \text{ A}$ $\mathbf{v}_{L}(0^{-}) = 0 \text{ V}$ $\mathbf{i}_{L}(0^{+}) = 5 \text{ A}$ $\mathbf{v}_{L}(0^{+}) = 120 \text{ V}$ $\mathbf{i}_{C}(0^{-}) = 0 \text{ A}$ $\mathbf{v}_{C}(0^{-}) = 150 \text{ V}$ $\mathbf{v}_{C}(0^{+}) = 150 \text{ V}$

Example: Initial Slopes

Find the first derivatives of the labeled voltages and currents at $t=0^+$.

Answer:

$$\begin{split} di_R/dt(0^+) &= -40 \text{ A/s} & dv_R/dt(0^+) = -1200 \text{ V/s} \\ di_L/dt(0^+) &= 40 \text{ A/s} & dv_L/dt(0^+) = -1092 \text{ V/s} \\ di_C/dt(0^+) &= -40 \text{ A/s} & dv_C/dt(0^+) = 108 \text{ V/s} \end{split}$$

Example: Complete Response

Show that for t>0

$$v_C(t) = 150 + 13.5(e^{-t} - e^{-9t})$$
 volts

The Lossless LC Circuit

- The resistor in the RLC circuit serves to dissipate initial stored energy.
- When this resistor becomes 0 in the series RLC or infinite in the parallel RLC, the circuit will oscillate.

Example: for t>0, if $i(0) = -\frac{1}{6}A$ and v(0) = 0V

$$v(t) = 2 \sin 3t$$

Practice 1

Show that:

$$v_C(t) = -e^{-0.8t} (5\cos 9.97t + 0.4\sin 9.97t)V$$

Practice 2

The key is closed at time t=0. Find R, L and C such that:

$$v(t) = 5e^{-400t}\cos(300t)$$

Practice 3

Find vc(t).

Thanks