RACIOCÍNIO AUTOMÁTICO INTRODUÇÃO

Luís Morgado
ISEL-ADEETC

RESOLUÇÃO AUTOMÁTICA DE PROBLEMAS

DECISÃO SEQUENCIAL

- Saber o que fazer
- Resultado: Políticas de acção

PLANEAMENTO

- Saber como fazer
- Resultado: Planos

OPTIMIZAÇÃO

- Saber qual a melhor configuração de parâmetros perante um conjunto de restrições
- Resultado: Configurações de parâmetros

CLASSIFICAÇÃO

- Saber o que é
- Resultado: Conceitos, Relações

Raciocínio automático

Aprendizagem automática

PROBLEMAS DE OPTIMIZAÇÃO

PROBLEMAS DE PLANEAMENTO

$$y = c_0 + c_2 x^2 + c_4 x^4 + c_6 x^6 + \cdots$$

$$= c_0 + \frac{c_0}{2} x^2 + \frac{c_0}{2 \cdot 4} x^4 + \frac{c_0}{2 \cdot 4 \cdot 6} x^6 + \cdots$$

$$= c_0 \left(1 + \frac{1}{2} x^2 + \frac{1}{2 \cdot 4} x^4 + \frac{1}{2 \cdot 4 \cdot 6} x^6 + \cdots \right)$$

PROBLEMAS DE DECISÃO SEQUENCIAL

RACIOCÍNIO AUTOMÁTICO

- Capacidade de um sistema computacional resolver de forma automática um problema com base numa representação de conhecimento do respectivo domínio, produzindo uma solução a partir de diversas alternativas possíveis
- Processo computacional que tendo como entrada uma representação de conhecimento de um determinado domínio, produz como resultado conclusões baseadas nesse conhecimento
- O processo de manipulação da representação de forma a obter conclusões é normalmente designado *inferência*

Processo cognitivo

- Representação de conhecimento
- Exploração de alternativas
- Controlo de processamento

RACIOCÍNIO AUTOMÁTICO

Tomada de decisão

- Processo cognitivo que resulta na selecção de uma opção entre várias alternativas possíveis
- Deliberação

Tipos de raciocínio

- Raciocínio teórico
 - Orientado para o conhecimento
- Raciocínio prático
 - Orientado para acção

RACIOCÍNIO AUTOMÁTICO

- Aspectos principais
 - Representação do problema
 - Determinante para o processo de raciocínio
 - Eficiência
 - Eficácia
 - Método de raciocínio
 - Define método de exploração de alternativas (opções)
 - Define estratégia de controlo do raciocínio
 - Critérios de prioridade de exploração de alternativas

MÉTODOS DE RACIOCÍNIO AUTOMÁTICO

Exemplos

- Inferência lógica
- Inferência estatística
- Planeamento simbólico
- Procura em espaços de estados
- Processos de decisão sequencial

REPRESENTAÇÃO DO PROBLEMA

Exemplo: representação de uma rede de estradas

- A forma de representação deve ser adequada
 - Ao domínio do problema
 - Ao método de raciocínio

	Α	В	С	D
A		E 4	E 2	-
В	E 4		-	E 1
C	E 2	•		E 3
D	-	E 1	E 3	

EXEMPLO: MUNDO DOS BLOCOS

[Wooldridge, 2002]

- Robot
- Blocos
- Mesa

MUNDO DOS BLOCOS

Uma representação possível (simbólica)

 $-\operatorname{on}(x, y)$ Bloco x está sobre bloco y

 $-\operatorname{on_table}(x)$ Bloco x está sobre a mesa

 $-\operatorname{clear}(x)$ Bloco x está livre

- holding(x) Braço do robot tem x

arm_empty
 Braço do robot está livre

MUNDO DOS BLOCOS

• Exemplo de representação da situação do mundo

MUNDO DOS BLOCOS

• Exemplo de representação de acção

stack(x, y)

- Pré-condições: clear(y), holding(x)
- Remover: clear(y), holding(x)
- Adicionar: arm_empty, on(x, y)

unstack(x, y)

- Pré-condições: on(x, y), clear(x), arm_empty
- Remover: on(x, y), arm_empty
- Adicionar: clear(y), holding(x)
- Representação relacional

Raciocínio simbólico

A

B

ESPAÇO DE CONFIGURAÇÕES

- Configuração (problema, sistema)
 - Simbólica
 - Numérica
- Transformação de estado
 - Definição funcional
 - Definição procedimental
 - Definição relacional (simbólica)
- Exemplo: Problema das rainhas

RACIOCÍNO ATRAVÉS DE PROCURA

RACIOCÍNIO ATRAVÉS DE PROCURA

SIMULAÇÃO DE HIPÓTESES DE EVOLUÇÃO DE ESTADO

PROCURA EM ESPAÇOS DE ESTADOS

RACIOCÍNO ATRAVÉS DE PROCURA

RACIOCÍNO ATRAVÉS DE PROCURA

Método Gerar-e-Testar

- 1. Definir objectivo
- 2. Definir estado inicial
- 3. Repetir
- 4. Comparar estado com o objectivo
- 5. Se o objectivo tiver sido atingido então terminar
- 6. Aplicar uma transformação possível ao estado actual gerando um novo estado
- Viável para problemas simples
- Não viável no caso geral
 - Procura exaustiva
 - Problema da explosão combinatória

RACIOCÍNO ATRAVÉS DE PROCURA COMPLEXIDADE COMPUTACIONAL

FACTOR DE RAMIFICAÇÃO

b – branching factor

 Número máximo de sucessores para um qualquer estado

PROFUNDIDADE DA PROCURA

d – depth

 Dimensão do percurso entre o estado inicial e o estado objectivo

Evolução exponencial do número de alternativas

$$N = b^d$$

EVOLUÇÃO EXPONENCIAL

RACIOCÍNO ATRAVÉS DE PROCURA

Aspectos a considerar num método de procura

Completo

 O método de procura garante que, caso exista solução, esta será encontrada

Óptimo

 O método de procura garante que, existindo várias soluções, a solução encontrada é a melhor

Complexidade

- **TEMPO** (complexidade temporal)
 - Tempo necessário para encontrar uma solução
- ESPAÇO (complexidade espacial)
 - Memória necessária para encontrar uma solução

COMPLEXIDADE COMPUTACIONAL

Notação f = O(g)

f(x) é de ordem O(g(x)) se existirem duas constantes positivas x_0 e c tal que: $(x > x_0) : f(x) \le cg(x)$

Exemplo:

Funções de referência de complexidade computacional

RACIOCÍNIO ATRAVÉS DE PROCURA

ESTADO

Define configuração
 (de resolução do problema)

TRANSIÇÃO

- Representa uma transformação de estado
 - Operador (de transição de estado)
 - Vector (de transição de estado)

VALOR

• Função de valor de estado

SOLUÇÃO

- Estado
- Percurso (plano de acção)

BIBLIOGRAFIA

[Russel & Norvig, 2010]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2010

[Nilsson, 1998]

N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann 1998

[Luger, 2009]

G. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, 2009

[Jaeger & Hamprecht, 2010]

M. Jaeger, F. Hamprecht, *Automatic Process Control for Laser Welding*, Heidelberg Collaboratory for Image Processing (HCI), 2000

[Pearl, 1984]

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984

[Montemerlo, 2008]

M. Montemerlo et al., Junior: The Stanford Entry in the Urban Challenge, Stanford Artificial Intelligence Lab, 2008