Introdução aos modelos DSGE

Modelo Novo Keynesiano

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Política Monetária

Evidência empírica

O que sabemos sobre os efeitos da política monetária na economia?

Evidência empírica

O que sabemos sobre os efeitos da política monetária na economia?

 A política monetária tem efeito em variáveis reais (Christiano, Eichenbaum, and Evans 1999).

Evidência empírica

O que sabemos sobre os efeitos da política monetária na economia?

 A política monetária tem efeito em variáveis reais (Christiano, Eichenbaum, and Evans 1999).

Que tipo de alteração/extensão precisamos fazer no modelo para (re)produzir esses efeitos?

Rigidez nominal de preços – Nakamura and Steinsson (2013)

Table 1 Frequency of price change in consumer prices

	Median		Mean	
	Frequency (% per month)	Implied duration (months)	Frequency (% per month)	Implied duration (months)
Nakamura & Steinsson (2008)			•	
Regular prices (excluding substitutions 1988–1997)	11.9	7.9	18.9	10.8
Regular prices (excluding substitutions 1998–2005)	9.9	9.6	21.5	11.7
Regular prices (including substitutions 1988–1997)	13.0	7.2	20.7	9.0
Regular prices (including substitutions 1998–2005)	11.8	8.0	23.1	9.3
Posted prices (including substitutions 1998-2005)	20.5	4.4	27.7	7.7
Klenow & Kryvtsov (2008)				
Regular prices (including substitutions 1988–2005)	13.9	7.2	29.9	8.6
Posted prices (including substitutions 1988–2005)	27.3	3.7	36.2	6.8

Não há rigidez na competição perfeita.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.
- Concorrência monopolística.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.
- Concorrência monopolística.
 - Empresas produzem bens diferenciados.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.
- Concorrência monopolística.
 - Empresas produzem bens diferenciados.
 - Substitutos imperfeitos.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.
- Concorrência monopolística.
 - Empresas produzem bens diferenciados.
 - Substitutos imperfeitos.
 - Vamos introduzir concorrência monopolística no mercado de bens finais.

- Não há rigidez na competição perfeita.
 - Empresas tomam preços como dados. Preços respondem à quantidade (total). Se muda a quantidade, mudam os preços.
- Concorrência monopolística.
 - Empresas produzem bens diferenciados.
 - Substitutos imperfeitos.
 - Vamos introduzir concorrência monopolística no mercado de bens finais. Portanto, isso se manifesta no problema das famílias.

Famílias

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_{i,s},h_s,b_s\}} \sum_{t=0}^{\infty} E_t [\sum_{s=t}^{\infty} \beta^{s-t} u(c_s,h_s)], \tag{1}$$

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_{i,s},h_{s},b_{s}\}} \sum_{t=0}^{\infty} E_{t} \left[\sum_{s=t}^{\infty} \beta^{s-t} u(c_{s},h_{s}) \right], \tag{1}$$

s.a.
$$\int_0^1 p_{it} c_{it} di + q_t b_t = w_t h_t + b_{t-1} + d_t, \tag{2}$$

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_{i,s},h_s,b_s\}} \sum_{t=0}^{\infty} E_t \left[\sum_{s=t}^{\infty} \beta^{s-t} u(c_s,h_s) \right], \tag{1}$$

s.a.
$$\int_0^1 p_{it} c_{it} di + q_t b_t = w_t h_t + b_{t-1} + d_t,$$
 (2)

e
$$c_t = \left[\int_0^1 C_{it}^{\frac{\epsilon-1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon-1}} \tag{3}$$

onde c_{it} é o consumo do bem do tipo i no período t, n_t representa a quantidade de títulos com preço q e d_t são os dividendos; b_0 é dado. Em t+1, os títulos pagam uma unidade aos seus detentores.

Como a função
$$c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$
 é uma CES, podemos "separar" as decisões em:

7

Como a função $c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$ é uma CES, podemos "separar" as decisões em:

Quanto gastar (c).

7

Como a função $c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$ é uma CES, podemos "separar" as decisões em:

- Quanto gastar (c).
- No que gastar (c_{it}) .

Como a função $c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$ é uma CES, podemos "separar" as decisões em:

- Quanto gastar (c).
- No que gastar (c_{it}) .

Analogamente ao problema das empresas na aula anterior, começaremos por "no que gastar".

Dado um nível de consumo (c_t) total, as famílias escolhem

$$\max_{\{c_{it}\}} c_t = \left[\int_0^1 c_{it}^{\frac{\varepsilon - 1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$
 (4)

s.a.

Dado um nível de consumo (c_t) total, as famílias escolhem

$$\max_{\{c_{it}\}} c_t = \left[\int_0^1 c_{it}^{\frac{\varepsilon - 1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$
 (4)

s.a.

$$\int_0^1 p_{it} c_{it} di = z_t \tag{5}$$

onde z_t é o orçamento que família dispõe para consumir.

$$\mathcal{L} = \left[\int_0^1 c_{it}^{\frac{\epsilon - 1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon - 1}} + \mu_t \left[z_t - \int_0^1 p_{it} c_{it} di \right]. \tag{6}$$

$$\mathcal{L} = \left[\int_0^1 c_{it}^{\frac{\epsilon - 1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon - 1}} + \mu_t \left[z_t - \int_0^1 p_{it} c_{it} di \right]. \tag{6}$$

As C.P.O. são:

$$\frac{\epsilon}{\epsilon - 1} \left[\int_{0}^{1} c_{it}^{\frac{\epsilon - 1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon - 1} - 1} \frac{\epsilon - 1}{\epsilon} c_{it}^{\frac{\epsilon - 1}{\epsilon} - 1} - \mu_{t} p_{it} = 0$$

$$\vdots$$

$$\mu_{t} p_{it} = \left(\frac{c_{it}}{c_{t}} \right)^{-1/\epsilon}, \forall i \in [0, 1].$$
(7)

Consideremos dois bens, i e j. A partir do resultado anterior, obtemos:

$$\frac{p_{it}}{p_{jt}} = \left(\frac{c_{it}}{c_{jt}}\right)^{-1/\epsilon} \iff c_{it} = c_{jt} \left(\frac{p_{it}}{p_{jt}}\right)^{-\epsilon}.$$
 (8)

Consideremos dois bens, i e j. A partir do resultado anterior, obtemos:

$$\frac{p_{it}}{p_{jt}} = \left(\frac{c_{it}}{c_{jt}}\right)^{-1/\epsilon} \iff c_{it} = c_{jt} \left(\frac{p_{it}}{p_{jt}}\right)^{-\epsilon}.$$
 (8)

Podemos substituir o resultado anterior na restrição orçamentária das famílias, $\int_0^1 p_{it} c_{it} di = z_t$ e obtemos:

$$c_{jt} = \frac{z_t p_{jt}^{-\epsilon}}{\int_0^1 p_{it}^{1-\epsilon} di}$$
 (9)

Substituindo o resultado anterior em
$$c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$
, temos que

Substituindo o resultado anterior em $c_t = \left[\int_0^1 c_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$, temos que

$$p_t c_t = z_t \tag{10}$$

onde $p_t \equiv \left[\int_0^1 p_{it}^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$ é o índice de preços compatível com a alocação ótima de $c_{it} \in [0,1]$.

Substituindo o resultado anterior em $c_t = \left[\int_0^1 c_{it}^{\frac{e-1}{e}} di\right]^{\frac{e}{e-1}}$, temos que

$$p_t c_t = z_t \tag{10}$$

onde $p_t \equiv \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}}$ é o índice de preços compatível com a alocação ótima de $c_{it} \in [0,1]$. Ao substituirmo as definições de z e p em $c_{jt} = \frac{z_t p_{jt}^{-\epsilon}}{\int_0^1 p_{it}^{1-\epsilon} di}$, temos, finalmente(!):

Substituindo o resultado anterior em $c_t = \left[\int_0^1 c_{it}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$, temos que

$$p_t c_t = z_t \tag{10}$$

onde $p_t \equiv \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}}$ é o índice de preços compatível com a alocação ótima de $c_{it} \in [0,1]$. Ao substituirmo as definições de z e p em $c_{jt} = \frac{z_t p_{jt}^{-\epsilon}}{\int_0^1 p_{it}^{1-\epsilon} di}$, temos, finalmente(!):

$$c_{it} = \left(\frac{p_{it}}{p_t}\right)^{-\epsilon} c_t \tag{11}$$

Voltando ao problema de maximização intertemporal, podemos escrever o seguinte Lagrangiano:

Voltando ao problema de maximização intertemporal, podemos escrever o seguinte Lagrangiano:

$$\mathcal{L} = \sum_{s=t}^{\infty} \beta^{s-t} E_t \left[u(c_s, h_s) + \lambda_s (w_s h_s + b_{s-1} + d_s - p_s c_s - q_s b_s) \right].$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{12}$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff \lambda_t w_t = -u_{h,t},\tag{13}$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff \lambda_t w_t = -u_{h,t},\tag{13}$$

$$\frac{\partial \mathcal{L}}{\partial b_s} = 0 \iff \lambda_t q_t = \beta E_t \left[\lambda_{t+1} \right]. \tag{14}$$

À partir das equações (12) e (13), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

À partir das equações (12) e (13), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (15)$$

À partir das equações (12) e (13), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (15)$$

E a **equação de Euler** pode ser obtida ao combinarmos as equações (12) e (14):

À partir das equações (12) e (13), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (15)$$

E a **equação de Euler** pode ser obtida ao combinarmos as equações (12) e (14):

$$q_t = \beta E_t \left[\frac{u_{c,t+1}}{u_{c,t}} \frac{p_t}{p_{t+1}} \right]$$
 (16)

Condição de transversalidade

Além das C.P.O., precisamos também da condição de transversalidade, que pode ser representada por:

$$\lim_{t \to \infty} \beta^t E_t \left[\lambda_t b_t \right] = 0. \tag{17}$$

Por definição, o preço de um título é dado por:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{18}$$

onde i é a taxa de juros do título.

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{18}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{\rho_t}{\rho_{t-1}} = 1 + \pi_t,\tag{19}$$

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{18}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{p_t}{p_{t-1}} = 1 + \pi_t, \tag{19}$$

então temos, pela equação de Fisher, que:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{18}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{\rho_t}{\rho_{t-1}} = 1 + \pi_t, \tag{19}$$

então temos, pela equação de Fisher, que:

$$1 + r_t = \frac{1 + i_t}{E_t \left[\Pi_{t+1} \right]} = \frac{1 + i_t}{1 + E_t \left[\pi_{t+1} \right]}.$$
 (20)

Equação de Euler

Assim, podemos reescrever a equação de Euler da seguinte forma:

Equação de Euler

Assim, podemos reescrever a equação de Euler da seguinte forma:

$$u_{c,t} = \beta E_t \left[u_{c,t+1} \left(1 + r_t \right) \right]$$
 (21)

Equação de Euler

Assim, podemos reescrever a equação de Euler da seguinte forma:

$$u_{c,t} = \beta E_t \left[u_{c,t+1} \left(1 + r_t \right) \right]$$
 (21)

Formas funcionais

Utilizemos uma função utilidade CRRA ($Constant\ Relative\ Risk\ Aversion$), separável em c_t e h_t , para representar as preferências das famílias:

Formas funcionais

Utilizemos uma função utilidade CRRA (*Constant Relative Risk Aversion*), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (22)

Formas funcionais

Utilizemos uma função utilidade CRRA (Constant Relative Risk Aversion), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (22)

Então, temos que $u_c = c_t^{-\sigma}$ e $u_h = -\psi h_t^{\varphi}$.

$$c_t^{-\sigma} = \beta E_t \left[\frac{c_{t+1}^{-\sigma}}{\Pi_{t+1}} \right] (1 + i_t)$$
 (23)

$$c_t^{-\sigma} = \beta E_t \left[\frac{c_{t+1}^{-\sigma}}{\Pi_{t+1}} \right] (1 + i_t)$$
 (23)

$$\frac{w_t}{p_t} = \psi c_t^{\sigma} h_t^{\varphi} \tag{24}$$

Como introduzir a rigidez nominal de preços no modelo?

• Calvo (1983)

- Calvo (1983)
 - Em cada período t, há uma probabilidade (exógena) $1-\theta$ de uma firma i ajustar os seus preços.

- Calvo (1983)
 - Em cada período t, há uma probabilidade (exógena) $1-\theta$ de uma firma i ajustar os seus preços.
- Rotemberg (1982)

- Calvo (1983)
 - Em cada período t, há uma probabilidade (exógena) $1-\theta$ de uma firma i ajustar os seus preços.
- Rotemberg (1982)
 - As empresas enfrentam "custos de menu" para ajustar os preços.

- Calvo (1983)
 - Em cada período t, há uma probabilidade (exógena) $1-\theta$ de uma firma i ajustar os seus preços.
- Rotemberg (1982)
 - As empresas enfrentam "custos de menu" para ajustar os preços.
- Para aproximações de primeira ordem, os resultados são semelhantes.

Como introduzir a rigidez nominal de preços no modelo?

- Calvo (1983)
 - Em cada período t, há uma probabilidade (exógena) $1-\theta$ de uma firma i ajustar os seus preços.
- Rotemberg (1982)
 - As empresas enfrentam "custos de menu" para ajustar os preços.
- Para aproximações de primeira ordem, os resultados são semelhantes.

Vamos utilizar o modelo de Calvo (1983).

Para qualquer empresa, a probabilidade de mudar preços apenas daqui a n períodos é igual a

Para qualquer empresa, a probabilidade de mudar preços apenas daqui a n períodos é igual a

$$P(X = n) = (1 - \theta)\theta^{n-1}, \tag{25}$$

onde X é o número de períodos até a mudança.

Para qualquer empresa, a probabilidade de mudar preços apenas daqui a n períodos é igual a

$$P(X = n) = (1 - \theta)\theta^{n-1}, \tag{25}$$

onde X é o número de períodos até a mudança. Ou seja, $X \sim \textit{Geo}(\theta).$

Para qualquer empresa, a probabilidade de mudar preços apenas daqui a n períodos é igual a

$$P(X = n) = (1 - \theta)\theta^{n-1}, \tag{25}$$

onde X é o número de períodos até a mudança. Ou seja, $X\sim Geo(\theta).$ Sabemos, portanto, que o tempo esperado é igual a

Para qualquer empresa, a probabilidade de mudar preços apenas daqui a n períodos é igual a

$$P(X = n) = (1 - \theta)\theta^{n-1}, \tag{25}$$

onde X é o número de períodos até a mudança. Ou seja, $X\sim Geo(\theta)$. Sabemos, portanto, que o tempo esperado é igual a

$$E[X] = \frac{1}{1 - \theta} \tag{26}$$

$$\max_{\{p_t^*\}} \sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} \left(p_t^* y_{i,t+k|t} - c \left(y_{i,t+k|t} \right) \right) \right], \qquad (27)$$

$$\max_{\{p_t^*\}} \sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} \left(p_t^* y_{i,t+k|t} - c \left(y_{i,t+k|t} \right) \right) \right], \qquad (27)$$

s.a.
$$y_{i,t+k|t} = \left(\frac{p_t^*}{p_{t+k}}\right)^{-\epsilon} c_{t+k}. \tag{28}$$

onde $\Lambda_{t,t+k}$ é o fator de desconto estocástico das famílias entre t e t+k:

$$\max_{\{\rho_t^*\}} \sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} \left(p_t^* y_{i,t+k|t} - c \left(y_{i,t+k|t} \right) \right) \right], \quad (27)$$

s.a.
$$y_{i,t+k|t} = \left(\frac{p_t^*}{p_{t+k}}\right)^{-\epsilon} c_{t+k}. \tag{28}$$

onde $\Lambda_{t,t+k}$ é o fator de desconto estocástico das famílias entre t e t+k:

$$\Lambda_{t,t+k} \equiv \lambda_{t+k}/\lambda_t
= \beta^k \frac{u_c(c_{t+k})}{u_c(c_t)} \frac{p_t}{p_{t+k}}$$
(29)

 $y_{i,t+k|t}$ é a demanda no período t+k dado o nível de preços em t+k e p_t^* fixo; $\mathcal{C}(\cdot)$ representa o custo total.

A função de produção é dada por:

$$y_{it} = A_t h_{it}^{1-\alpha}, (30)$$

onde $\alpha \in [0,1)$ e A_t são iguais para todas as empresas.

A função de produção é dada por:

$$y_{it} = A_t h_{it}^{1-\alpha}, (30)$$

onde $\alpha \in [0,1)$ e A_t são iguais para todas as empresas. Dado que as empresas apenas utilizam o fator trabalho, o custo total é dado por:

$$C(y_{it}) = w_t h_{it} = w_t \left(\frac{y_{it}}{A_t}\right)^{\frac{1}{1-\alpha}}$$
(31)

$$cmg_{i,t} \equiv rac{\mathcal{C}'\left(y_{it}
ight)}{p_t}$$

$$cmg_{i,t} \equiv rac{\mathcal{C}'\left(y_{it}
ight)}{
ho_{t}} = rac{w_{t}}{\left(1-lpha
ight)A_{t}
ho_{t}}\left(rac{y_{it}}{A_{t}}
ight)^{rac{lpha}{1-lpha}}$$

$$cmg_{i,t} \equiv \frac{C'(y_{it})}{p_t} = \frac{w_t}{(1-\alpha)A_tp_t} \left(\frac{y_{it}}{A_t}\right)^{\frac{\alpha}{1-\alpha}}$$
$$= \frac{w_t}{p_t(1-\alpha)A_th_{it}^{-\alpha}}$$
(32)

O custo marginal (cmg_{it}) da empresa i no tempo t é dado por:

$$cmg_{i,t} \equiv \frac{C'(y_{it})}{p_t} = \frac{w_t}{(1-\alpha)A_tp_t} \left(\frac{y_{it}}{A_t}\right)^{\frac{\alpha}{1-\alpha}}$$
$$= \frac{w_t}{p_t(1-\alpha)A_th_{it}^{-\alpha}}$$
(32)

Note que $(1-\alpha)A_th_{it}^{-\alpha}$ é a produtividade marginal do trabalho.

O custo marginal (cmg_{it}) da empresa i no tempo t é dado por:

$$cmg_{i,t} \equiv \frac{C'(y_{it})}{p_t} = \frac{w_t}{(1-\alpha)A_tp_t} \left(\frac{y_{it}}{A_t}\right)^{\frac{\alpha}{1-\alpha}}$$
$$= \frac{w_t}{p_t(1-\alpha)A_th_{it}^{-\alpha}}$$
(32)

Note que $(1-\alpha)A_th_{it}^{-\alpha}$ é a produtividade marginal do trabalho.

Podemos substituir a curva de demanda da empresa i com $c_t = y_t$ para obter:

$$cmg_{i,t} = \frac{w_t}{(1-\alpha)A_t p_t} \left(\frac{p_{it}}{p_t}\right)^{-\frac{\epsilon \alpha}{1-\alpha}} \left(\frac{Y_t}{A_t}\right)^{\frac{\alpha}{1-\alpha}}$$
(33)

Como para cada empresas i a escolha ótima é a mesma (i.e. equilíbrio simétrico), trabalhemos sem o subscrito i:

Como para cada empresas i a escolha ótima é a mesma (i.e. equilíbrio simétrico), trabalhemos sem o subscrito i:

$$\max_{\{p_t^*\}} \sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} \left(p_t^* y_{t+k|t} - \mathcal{C} \left(y_{t+k|t} \right) \right) \right]$$
(34)

s.a.

$$y_{t+k|t} = \left(\frac{p_t^*}{p_{t+k}}\right)^{-\epsilon} c_{t+k} \tag{35}$$

C.P.O.:

$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} \left(y_{t+k|t} - \epsilon p_{t}^{*} \frac{Y_{t+k|t}}{P_{t}^{*}} - \mathcal{C}' \left(y_{t+k|t} \right) \left(-\epsilon \right) \frac{y_{t+k|t}}{p_{t}^{*}} \right) \right] = 0$$

C.P.O.:

$$\begin{split} &\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} \left(y_{t+k|t} - \epsilon p_{t}^{*} \frac{Y_{t+k|t}}{P_{t}^{*}} - \mathcal{C}' \left(y_{t+k|t} \right) \left(-\epsilon \right) \frac{y_{t+k|t}}{p_{t}^{*}} \right) \right] = 0 \\ &\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t} \left(1 - \epsilon + \epsilon \frac{\mathcal{C}' \left(y_{t+k|t} \right)}{p_{t}^{*}} \right) \right] = 0 \end{split}$$

C.P.O.:

$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} \left(y_{t+k|t} - \epsilon p_{t}^{*} \frac{Y_{t+k|t}}{P_{t}^{*}} - \mathcal{C}' \left(y_{t+k|t} \right) \left(-\epsilon \right) \frac{y_{t+k|t}}{p_{t}^{*}} \right) \right] = 0$$

$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t} \left(1 - \epsilon + \epsilon \frac{\mathcal{C}' \left(y_{t+k|t} \right)}{p_{t}^{*}} \right) \right] = 0$$

$$\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t} \left(p_{t}^{*} - \frac{\epsilon}{\epsilon - 1} \mathcal{C}' \left(y_{t+k|t} \right) \right) \right] = 0$$

O preço ótimo é dado por:

O preço ótimo é dado por:

$$P_{t}^{*} = \frac{\epsilon}{\epsilon - 1} \frac{\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t} C' \left(y_{t+k|t} \right) \right]}{\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t|} \right]}.$$
(36)

O preço ótimo é dado por:

$$P_{t}^{*} = \frac{\epsilon}{\epsilon - 1} \frac{\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t} C' \left(y_{t+k|t} \right) \right]}{\sum_{k=0}^{\infty} \theta^{k} E_{t} \left[\Lambda_{t,t+k} y_{t+k|t|} \right]}.$$
(36)

Ao utilizarmos o custo marginal real, temos:

O preço ótimo é dado por:

$$P_t^* = \frac{\epsilon}{\epsilon - 1} \frac{\sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} y_{t+k|t} C' \left(y_{t+k|t} \right) \right]}{\sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} y_{t+k|t|} \right]}.$$
(36)

Ao utilizarmos o custo marginal real, temos:

$$\rho_t^* = \frac{\epsilon}{\epsilon - 1} \frac{\sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} y_{t+k|t} cm g_{t+k|t} p_{t+k} \right]}{\sum_{k=0}^{\infty} \theta^k E_t \left[\Lambda_{t,t+k} y_{t+k|t} \right]}$$
(37)

 O preço ótimo é definido com base em um markup sobre a espectativa (média ponderada) do custo marginal em todos os períodos à frente.

- O preço ótimo é definido com base em um markup sobre a espectativa (média ponderada) do custo marginal em todos os períodos à frente.
- Por que uma média ponderada?

- O preço ótimo é definido com base em um markup sobre a espectativa (média ponderada) do custo marginal em todos os períodos à frente.
- Por que uma média ponderada? Porque considera (i) os preços caso opssam ser reajustados com base nas variações dos custos

- O preço ótimo é definido com base em um markup sobre a espectativa (média ponderada) do custo marginal em todos os períodos à frente.
- Por que uma média ponderada? Porque considera (i) os preços caso opssam ser reajustados com base nas variações dos custos e (ii) a probabilidde (que dá o peso da ponderação) de (não) alterar o preço.

O índice de preços compatível com o custo de vida é dado por:

$$p_t = \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \tag{38}$$

À partir da definição acima, temos:

O índice de preços compatível com o custo de vida é dado por:

$$p_t = \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \tag{38}$$

À partir da definição acima, temos: $\rho_t^{1-\epsilon} = \int_0^1 \rho_{it}^{1-\epsilon} \mathit{d}i = \int_0^\theta \rho_{i,t-1}^{1-\epsilon} \mathit{d}i + \int_\theta^1 (\rho_t^*)^{1-\epsilon} \mathit{d}i$

O índice de preços compatível com o custo de vida é dado por:

$$p_t = \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \tag{38}$$

À partir da definição acima, temos: $\begin{aligned} \rho_t^{1-\epsilon} &= \int_0^1 \rho_{it}^{1-\epsilon} di = \int_0^\theta \rho_{i,t-1}^{1-\epsilon} di + \int_\theta^1 \left(\rho_t^*\right)^{1-\epsilon} di \\ &= \theta \int_0^1 \rho_{i,t-1}^{1-\epsilon} di + \left(1-\theta\right) \left(\rho_t^*\right)^{1-\epsilon} \end{aligned}$

O índice de preços compatível com o custo de vida é dado por:

 $=\theta p_{t-1}^{1-\epsilon}+\left(1-\theta\right)\left(p_{t}^{*}\right)^{1-\epsilon}$

$$p_t = \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \tag{38}$$

 $\hat{\mathbf{A}} \text{ partir da definição acima, temos:} \\ \boldsymbol{p}_t^{1-\epsilon} = \int_0^1 p_{it}^{1-\epsilon} di = \int_0^\theta p_{i,t-1}^{1-\epsilon} di + \int_\theta^1 \left(p_t^* \right)^{1-\epsilon} di \\ = \theta \int_0^1 p_{i,t-1}^{1-\epsilon} di + (1-\theta) \left(p_t^* \right)^{1-\epsilon}$

O índice de preços compatível com o custo de vida é dado por:

$$p_t = \left[\int_0^1 p_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \tag{38}$$

À partir da definição acima, temos:

$$\begin{aligned} p_t^{1-\epsilon} &= \int_0^1 \rho_{it}^{1-\epsilon} di = \int_0^\theta \rho_{i,t-1}^{1-\epsilon} di + \int_\theta^1 (\rho_t^*)^{1-\epsilon} di \\ &= \theta \int_0^1 \rho_{i,t-1}^{1-\epsilon} di + (1-\theta) (\rho_t^*)^{1-\epsilon} \\ &= \theta \rho_{t-1}^{1-\epsilon} + (1-\theta) (\rho_t^*)^{1-\epsilon} \end{aligned}$$

Se dividirmos os dois lados da equação acima por $P_{t-1}^{1-\epsilon}$ e utilizarmos a definição de Π_t , obtemos:

$$\Pi_t^{1-\epsilon} = \theta + (1-\theta) \left(\frac{\rho_t^*}{\rho_{t-1}}\right)^{1-\epsilon} \tag{39}$$

Agregação

No mercado de bens e serviços, temos:

$$c_{it} = y_{it}, \forall i \in [0, 1], \therefore c_t = y_t$$

Agregação

No mercado de bens e serviços, temos:

$$c_{it} = y_{it}, \forall i \in [0, 1], \therefore c_t = y_t$$

No mercado de trabalho, temos:

$$h_{t} = \int_{0}^{1} h_{it} di$$

$$h_{t} = \int_{0}^{1} \left(\frac{y_{it}}{A_{t}}\right)^{\frac{1}{1-\alpha}} di$$

$$= \left(\frac{y_{t}}{A_{t}}\right)^{\frac{1}{1-\alpha}} \int_{0}^{1} \left(\frac{p_{it}}{p_{t}}\right)^{-\frac{\epsilon}{1-\alpha}} di$$

Dinâmica

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right) \tag{41}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{t}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right) \tag{41}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right) \tag{41}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

$$\hat{\pi}_t = \lambda \hat{m}c_t + \beta E_t \left[\hat{\pi}_{t+1} \right] \tag{43}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right) \tag{41}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

$$\hat{\pi}_t = \lambda \hat{m} c_t + \beta E_t \left[\hat{\pi}_{t+1} \right] \tag{43}$$

$$c\hat{m}g_t = \hat{w}_t - \hat{p}_t + \frac{\alpha}{1-\alpha} \left(\hat{y}_t - \hat{a}_t \right) \tag{44}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right) \tag{41}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

$$\hat{\pi}_t = \lambda \hat{m} c_t + \beta E_t \left[\hat{\pi}_{t+1} \right] \tag{43}$$

$$\hat{\textit{cmg}}_t = \hat{\textit{w}}_t - \hat{\textit{p}}_t + \frac{\alpha}{1 - \alpha} \left(\hat{\textit{y}}_t - \hat{\textit{a}}_t \right) \tag{44}$$

$$\hat{i}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t \tag{45}$$

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

 $\hat{\pi}_t = \lambda \hat{m}_{Ct} + \beta E_t \left[\hat{\pi}_{t+1} \right]$

 $\hat{y}_t = E_t \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_t - E_t \left[\hat{\pi}_{t+1} \right] \right)$

$$\hat{cmg}_t = \hat{w}_t - \hat{p}_t + \frac{\alpha}{1-\alpha} \left(\hat{y}_t - \hat{a}_t \right)$$

$$\hat{l}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

(41)

(43)

(44)

(45) $\hat{x}_t = \hat{y}_t - \hat{y}_t^n$ (46)

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

 $\hat{\pi}_t = \lambda \hat{m}_{Ct} + \beta E_t \left[\hat{\pi}_{t+1} \right]$

 $\hat{y}_t = E_t \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_t - E_t \left[\hat{\pi}_{t+1} \right] \right)$

$$\hat{cmg}_t = \hat{w}_t - \hat{p}_t + \frac{\alpha}{1-\alpha} \left(\hat{y}_t - \hat{a}_t \right)$$

$$\hat{l}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

(41)

(43)

(44)

(45) $\hat{x}_t = \hat{y}_t - \hat{y}_t^n$ (46)

$$\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t \tag{40}$$

$$\hat{w}_t - \hat{p}_t = \sigma \hat{y}_t + \varphi \hat{n}_t \tag{42}$$

 $\hat{y}_t = E_t \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_t - E_t \left[\hat{\pi}_{t+1} \right] \right)$

$$\hat{cmg}_t = \hat{w}_t - \hat{p}_t + \frac{\alpha}{1 - \alpha} \left(\hat{y}_t - \hat{a}_t \right)$$

 $\hat{\pi}_t = \lambda \hat{m}_{Ct} + \beta E_t \left[\hat{\pi}_{t+1} \right]$

$$\hat{i}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

$$\hat{\mathbf{x}}_t = \hat{\mathbf{y}}_t - \hat{\mathbf{y}}_t^n \tag{46}$$

(41)

(43)

(44)

(45)

Curva de Phillips Novo Keynesiana

$$c\hat{m}g_{t} = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right)\hat{y}_{t} - \frac{1 + \varphi}{1 - \alpha}\hat{a}_{t}$$

$$0 = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right)\hat{y}_{t}^{n} - \frac{1 + \varphi}{1 - \alpha}\hat{a}_{t}$$
(49)

A subtração leva a

$$c\hat{m}g_t = \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right)\hat{x}_t \tag{50}$$

Ao substituir na equação da inflação, temos:

$$\hat{\pi}_{t} = \kappa \hat{X}_{t} + \beta E_{t} \left[\hat{\pi}_{t+1} \right]$$
 onde $\kappa \equiv \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right)$ (51)

Curva IS

A partir das equações de Euler para a economia com e sem fricções, temos:

$$\hat{y}_{t} = E_{t} \left[\hat{y}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] \right)$$
 (52)

$$\hat{y}_{t}^{n} = E_{t} \left[\hat{y}_{t+1}^{n} \right] - \frac{1}{\sigma} r_{t}^{n}$$
 (53)

onde $r_t^n=\rho+\sigma\psi_{ya}E_t\left[\Delta a_{t+1}\right]$. A diferença entre elas resulta na curva IS Novo-Keynesiana:

$$\hat{x}_{t} = E_{t} \left[\hat{x}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_{t} - E_{t} \left[\hat{\pi}_{t+1} \right] - r_{t}^{n} \right)$$
 (54)

Modelo de 3 equações

O modelo Novo-Keynesiano pode ser sintetizado em três equações (Clarida, Gali, and Gertler 1999):

$$\hat{X}_t = E_t \left[\hat{X}_{t+1} \right] - \frac{1}{\sigma} \left(\hat{i}_t - E_t \left[\hat{\pi}_{t+1} \right] - r_t^n \right) \tag{IS}$$

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \left[\hat{\pi}_{t+1} \right] \tag{NKPC}$$

$$\hat{i}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t \tag{MR}$$

Referências i

Calvo, Guillermo A. 1983. "Staggered Prices in a Utility-Maximizing Framework." *Journal of Monetary Economics* 12 (3): 383–98.

Christiano, Lawrence J, Martin Eichenbaum, and Charles L Evans. 1999. "Monetary Policy Shocks: What Have We Learned and to What End?" *Handbook of Macroeconomics* 1: 65–148.

Clarida, Richard, Jordi Gali, and Mark Gertler. 1999. "The Science of Monetary Policy: A New Keynesian Perspective." *Journal of Economic Literature* 37 (4): 1661–1707.

Nakamura, Emi, and Jón Steinsson. 2013. "Price Rigidity: Microeconomic Evidence and Macroeconomic Implications." *Annu. Rev. Econ.* 5 (1): 133–63.

Referências ii

Rotemberg, Julio J. 1982. "Sticky Prices in the United States." *Journal of Political Economy* 90 (6): 1187–1211.