Dowker dissimilarities

May 3, 2023

1 Introduction

In this note, we summarize our progress attempting to generalize the results in [1] replacing $[0, \infty)$ by a poset P.

Definition 1.1 (Poset stuff). For the following definitions, let P and Q be posets, and let [1] denote the poset $0 \le 1$.

- The product poset $P \times Q$ with $(p,q) \le (p',q') \iff p \le p'$ and $q \le q'$.
- The extended poset $P^* := hom(P, [1])$ with $\infty \equiv 1$.
- The *opposite poset* P^{op} with the same underlying set as P but with the reverse order. That is, $p \le p'$ in P^{op} if and only if $p' \le p$ in P.

Definition 1.2 (Dowker stuff). Some fundamental definitions related to Dowker dissimilarities.

- A *Dowker dissimilarity* Λ consists of two sets L and W, and a function $\Lambda: L \times W \to P^*$ where P is some poset.
- Given $l \in L$ and $p \in P$, define the *ball of radius p centred at l* to be the set $B_{\Lambda}(l,p) := \{w \in W \mid \Lambda(l,w)(p) = 1\}.$
- Given some p in P, define $\Lambda_p := \{(l, w) \in L \times W \mid w \in B_{\Lambda}(l, p)\}.$
- The *Dowker nerve* $N\Lambda$ of Λ is the collection of simplicial complexes indexed over P defined in degree p as

$$(N\Lambda)_p = \{ \sigma \subseteq L \mid \sigma \text{ is finite and } \exists w \in W \text{ with } w \in B_\Lambda(l,p) \text{ for all } l \in \sigma \}.$$

In other words, the Dowker nerve $(N\Lambda)_p$ is the nerve of the covering $\{B_{\Lambda}(l,p)\}_{l\in L}$.

Note that if $p \leq p'$ for $p, p' \in P$, then we have an inclusion $N\Lambda_{p \leq p'} : N\Lambda_p \hookrightarrow N\Lambda_{p'}$.

Example 1.2.1 (Čech filtration). Consider the poset $P = [0, \infty)$ and let $L \subset W = \mathbb{R}^d$. If we set $\Lambda: L \times W \to P^*$ to be the dissimilarity defined for $t \in P$ by

$$\Lambda(l, w)(t) := \begin{cases} 1 & \text{if } t \ge d(l, w) \text{ and} \\ 0 & \text{otherwise} \end{cases}$$

then we have $\sigma \in N\Lambda_t$ if and only if there exists some $w \in \mathbb{R}^d$ with $d(l,w) \le t$ for all $l \in \sigma$. The existence of such a w is equivalent to the intersection $\bigcap_{l \in L} B_t(l)$ being non-empty or in other words, the Dowker nerve of Λ is the usual ambient Čech complex of L.

Example 1.2.2 (Multicover filtration). Consider the poset $P = \mathbb{N}^{op} \times [0, \infty)$ and let $L = \mathcal{P}(X)$ where $X \subset W = \mathbb{R}^d$. Define the Dowker dissimilarity $\Lambda \colon L \times W \to P^*$ be the Dowker dissimilarity defined by

$$\Lambda(A, y)(k, t) := \begin{cases} 1 & \text{if } (k, t) \ge (|A|, d_H(\{y\}, A)) \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Since $d_H(\{y\}, A) = \max_{a \in A} d(y, a)$, we see that

$$B_{\Lambda}(A,(k,t)) := \begin{cases} \bigcap_{a \in A} B_t(a) & \text{if } k \le |A| \text{ and} \\ \emptyset & \text{otherwise.} \end{cases}$$

Following the notation in [2], let $\binom{X}{k}$ denote the set of all subsets $A \subseteq X$ with |A| = k, and define the lens $L_t(A)$ corresponding to $A \in \binom{X}{k}$ by $L_t(A) = \bigcap_{a \in A} B_t(a)$. The k-fold cover L(t,X) of X at scale t is defined as $L(t,X) = \bigcup_{A \in \binom{X}{k}} L_t(A)$. The kth order Čech complex with radius t over X, denoted by Čech $_t(X,k)$, is defined as the nerve of the covering $\{L_t(A)\}_{A \in \binom{X}{k}}$ of L(t,X). The Dowker nerve $N\Lambda_{(k,t)}$ is homotopy equivalent to the higher order Čech complex Čech $_t(X,k)$. By the nerve lemma, the Dowker nerve is homotopy

equivalent to the union

$$\bigcup_{A \in \mathcal{P}(X)} B_{\Lambda}(A, (k, t)) = \bigcup_{\substack{A \in \mathcal{P}(X) \\ |A| \ge k}} \bigcap_{a \in A} B_t(a) = \bigcup_{\substack{A \in \binom{X}{k}}} L_t(A) = L(t, X)$$

and $L(t,X) \simeq \operatorname{\check{C}ech}_t(X,k)$, again by application of the nerve lemma. (The second equality above follows from the fact that if |A| > k then we can remove points from A to obtain A' with |A'| = k and $B_{\Lambda}(A,(k,t)) \subset B_{\Lambda}(A',(k,t))$.) Note that $\operatorname{\check{C}ech}_t(X,k) \subseteq N\Lambda_{(k,t)}$ since the two complexes have different vertex sets $\binom{X}{k}$ and $\mathcal{P}(X)$, respectively.

2 Truncated nerves

Definition 2.1 (Translation function). A *translation function* $\alpha: P \to P$ is an order preserving function which satisfies $p \le \alpha(p)$ for all $p \in P$.

Example 2.1.1. Let $P = [0, \infty)$ and $a, b \in \mathbb{R}$ with a > 1 and $b \ge 0$. Then $\alpha: t \mapsto at + b$ is a translation function.

Definition 2.2 (Interleaving). Given a translation function $\alpha: P \to P$ and a morphism $G: C \to C'$ of filtered objects in some category \mathscr{C} , then G is said to be an α -interleaving if for every $p \in P$ there exists a morphism $F_p: C'_p \to C_{\alpha(p)}$ such that both triangles in the following diagram commute:

$$C_{p} \xrightarrow{G_{p}} C'_{p}$$

$$\downarrow^{F_{p}}$$

$$C_{\alpha(p)} \xrightarrow{G_{\alpha(p)}} C'_{\alpha(p)}$$

Definition 2.3 (Truncation). Given a dissimilarity $\Lambda \colon L \times W \to P^*$ and a translation function $\alpha \colon P \to P$, a function $T \colon L \to P$ is said to be an α -truncation function for Λ if for all $p \in P$ and all $l \in L$, there exists $l' \in L$ such that for all $w \in W$

$$w \in B_{\Lambda}(l, p) \implies w \in B_{\Lambda}(l', \alpha(p)) \cap B_{\Lambda}(l', T(l')).$$
 (1)

The *T-truncation* $\Gamma: L \times W \to P^*$ of a dissimilarity Λ is the dissimilarity defined by letting

$$\Gamma(l,w) := \begin{cases} \Lambda(l,w) & \text{if } w \in B_{\Lambda}(l,T(l)), \\ \infty & \text{otherwise.} \end{cases}$$

Proposition 2.3.1. Given a dissimilarity $\Lambda \colon L \times W \to P^*$, a translation function $\alpha \colon P \to P$, and an α -truncation function $T \colon L \to P$, let Γ be the T-truncation of Λ . The inclusion of $N\Gamma$ in $N\Lambda$ is an α -interleaving in the homotopy category of topological spaces.

Proof. Define the function $f_p: L \to L$ by picking for each $l \in L$ an element $l' \in L$ satisfying Equation (1) and set $f_p(l) = l'$. This induces a simplicial map $f_p: N\Lambda_p \to N\Gamma_{\alpha(p)}$. To see this, let $\sigma \in N\Lambda_p$ and pick some $w \in W$ such that $w \in B_{\Lambda}(l,p)$ for all $l \in \sigma$. By construction of f_p we have $w \in B_{\Lambda}(l',\alpha(p))$ and $w \in B_{\Lambda}(l',T(l'))$ and hence $w \in B_{\Gamma}(l',\alpha(p))$. In other words, $f_p(\sigma) \in N\Gamma_{\alpha(p)}$ by the definition of the T-truncation. What is left to show, is that the triangles in the following diagram commute up to homotopy:

$$N\Gamma_{p} \longleftrightarrow N\Lambda_{p}$$

$$\downarrow^{f_{p}}$$

$$N\Gamma_{\alpha(p)} \longleftrightarrow N\Lambda_{\alpha(p)}$$

Recall that two simplicial maps f, g: $K \to K'$ are homotopic if for all simplices $\sigma \in K$, the union $f(\sigma) \cup g(\sigma)$ is a simplex in K', and that this induces a homotopy on the level of geometric realizations. It is therefore enough to show that

- 1. for all $\sigma \in N\Lambda_p$ we have $f_p(\sigma) \cup \sigma \in N\Lambda_{\alpha(p)}$, and
- 2. for all $\sigma \in N\Gamma_p$ we have $f_p(\sigma) \cup \sigma \in N\Gamma_{\alpha(p)}$.
- 1. This follows from the fact that for all $l' \in f_p(\sigma)$ we have $w \in B_{\Lambda}(l', \alpha(p))$ and the fact that for all $l \in \sigma$ we have $B_{\Lambda}(l, p) \subseteq B_{\Lambda}(l, \alpha(p))$ since $p \le \alpha(p)$.

- 2. Similar argument.
 - check definition 4.5 in [1].
 - what does the farthest point sampling look like in the multicover case?

References

[1] Nello Blaser and Morten Brun. *Sparse Filtered Nerves*. 2019. arXiv: 1810. 02149 [math.AT].

[2] Mickaël Buchet, Bianca B. Dornelas, and Michael Kerber. *Sparse Higher Order Čech Filtrations*. 2023. arXiv: 2303.06666 [cs.CG].