

# ■ 결합분포와 주변분포

⊙ 동전 세 번 던지기

 $\circ$  X: 앞면의 수, Y: 앞면과 뒷면의 수의 차이



### ㅇ 두 변수를 동시에 고려한 확률분포?

| Y $X$ | 0 | 1 | 2 | 3 |
|-------|---|---|---|---|
| 1     | ? | ? | ? | ? |
| 3     | ? | ? | ? | ? |



# ○ 결합분포(joint distribution)

- 두 개 이상의 확률변수들을 동시에 고려한 확률분포
- 두 이산확률변수 *X*와 *Y*에 대해

$$f(x, y) = P(X=x, Y=y)$$

- $\circ$  f(x,y): 결합확률질량함수
- n 개의 이산확률변수  $X_1, ..., X_n$ 에 대해

$$f(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$



#### ⊙ 동전 세 번 던지기

| X | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|
| Y | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |

| Y $X$ | 0             | 1             | 2             | 3             |
|-------|---------------|---------------|---------------|---------------|
| 1     | 0             | $\frac{3}{8}$ | $\frac{3}{8}$ | 0             |
| 3     | $\frac{1}{8}$ | 0             | 0             | $\frac{1}{8}$ |

$$0 \quad 0 \le f(x,y) \le 1, \quad \forall \, x, \, y$$

$$\circ \sum_{x} \sum_{y} f(x,y) = 1$$



• 두 연속확률변수 X와 Y에 대해, 결합확률밀도함수 f(x,y)는 x,y에서의 밀도를 나타내며 아래의 성질을 만족

$$0 \le f(x,y), \quad \forall x, y$$

$$\circ$$
  $\int_x \int_y f(x,y) \, dy \, dx = 1$   $\Leftrightarrow$  부피 = 1

• 
$$(X, Y) \sim U((0, u), (0, v))$$

$$f(x,y) = \frac{1}{uv}, \quad 0 < x < u, \ 0 < y < v$$



# ○ 주변분포(marginal distribution)

ullet 표본공간이 사건  $B_1, ..., B_n$ 로 분할될 때 사건 A의 확률은

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

이 사건 
$$A$$
가  $X=x$ ,  $B_i$ 가  $Y=y_i$ 라고 하면 
$$P(A\cap B_i)=P(X=x,\ Y=y_i)$$



• 
$$P(X=x) = P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(X=x, Y=y_i)$$

$$\Rightarrow f_X(x) = \sum_{y} f(x,y), \quad f_Y(y) = \sum_{x} f(x,y)$$

- $\circ$   $f_X(x)$ : X의 주변확률질량함수
- $\circ$   $f_{Y}(y)$ : Y의 주변확률질량함수
- 연속확률변수: 주변확률밀도함수

$$f_X(x) = \int f(x,y) \, dy$$
,  $f_Y(y) = \int f(x,y) \, dx$ 



#### ⊙ 동전 세 번 던지기

|     | X |     | <b>-</b> |     |     |     |
|-----|---|-----|----------|-----|-----|-----|
| Y   |   | 0   | 1        | 2   | 3   | 합   |
|     | 1 | 0   | 3/8      | 3/8 | 0   | 3/4 |
| y   | 3 | 1/8 | 0        | 0   | 1/8 | 1/4 |
| - E | 타 | 1/8 | 3/8      | 3/8 | 1/8 | 1   |

$$\bullet$$
  $(X, Y) \sim U((0, u), (0, v))$ 

$$f_X(x) = \int_0^v \frac{1}{uv} dy = \frac{1}{uv} y \Big|_0^v = \frac{1}{u}, \ 0 < x < u$$



## ○ 독립 확률변수

- 사건 A와 B는 독립  $\Longrightarrow P(A \cap B) = P(A)P(B)$
- 두 확률변수 X와 Y는 독립  $\leftrightarrows$  모든 x,y에 대해,  $f(x,y) = f_X(x)f_Y(y)$
- $X_1, ..., X_n$ 이 서로독립(상호독립)  $\hookrightarrow$  모든  $x_1, ..., x_n$ 에 대해,

$$f(x_1, ..., x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

⊙ 동전 세 번 던지기



$$f(1,1) = 3/8 \neq f_X(1)f_Y(1) = (3/8)(3/4) = 9/32$$

 $\Rightarrow$  X와 Y는 독립이 아님



• 
$$f(x,y) = \frac{xy}{36}$$
,  $x = 1,2,3$ ,  $y = 1,2,3$ 

| Y $X$ | 1    | 2    | 3    | $f_{Y}$ |
|-------|------|------|------|---------|
| 1     | 1/36 | 2/36 | 3/36 | 1/6     |
| 2     | 2/36 | 4/36 | 6/36 | 2/6     |
| 3     | 3/36 | 6/36 | 9/36 | 3/6     |
| $f_X$ | 1/6  | 2/6  | 3/6  | 1       |

 $\circ$  모든 x, y에 대해  $f(x,y) = f_X(x) f_Y(y)$  성립

• f(x,y) = g(x)h(y)이고 x와 y의 값이 별개인 경우  $\Rightarrow$  독립



# ■ 요약

 $\circ$  두 이산확률변수 X와 Y에 대해, 결합확률질량함수

$$f(x, y) = P(X=x, Y=y)$$

- $0 \le f(x,y) \le 1$ ,  $\forall x, y$
- $\sum_{x} \sum_{y} f(x,y) = 1$
- o 주변확률질량함수

$$f_X(x) = \sum_y f(x,y) , \quad f_Y(y) = \sum_x f(x,y)$$

 $\circ$  두 확률변수 X와 Y는 독립  $\Longrightarrow$  모든 x, y에 대해,

$$f(x, y) = f_X(x) f_Y(y)$$