User Manual of ERVcaller v1.0

May 27, 2018

Citation: Chen X and Li D. ERVcaller: Identifying and genotyping non-reference unfixed endogenous retroviruses (ERVs) and other transposable elements (TEs) using next-generation sequencing data. *Manuscript in submission*.

Download: www.uvm.edu/genomics/software/ERVcaller.html

Copyright: ERVcaller is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license. It may be used for non-commercial use only. For inquiries about a commercial license, please contact the corresponding author at dawei.li@uvm.edu or The University of Vermont Innovations at innovate@uvm.edu.

1. Introduction

ERVcaller is a tool designed to accurately detect and genotype non-reference unfixed endogenous retroviruses (ERVs) and other transposon elements (TEs) in the human genome using next-generation sequencing (NGS) data. We evaluated the tools using both simulated and real benchmark whole-genome sequencing (WGS) datasets. ERVcaller is capable to accurately detect various TE insertions of any lengths, particularly ERVs. It allows for use of a TE reference library regardless of sequence complexity, such as use of the entire RepBase database. It is easy to install and use with command lines.

Complementary to ERV caller, other bioinformatics tools designed to detect large deletions, such as Breakdancer, may be used to detect TEs that are present in the human reference genome but not in testing samples.

2. Obtaining and Compiling

- 2.1. Users need to successfully install the following software separately, and make them available in the default path, such as using the Linux command "export".
 - BWA-0.7.10
 - Bowtie2
 - Tophat-2.1.1
 - Samtools-1.6 (or later than 1.2)
 - Hydra-0.5.3
 - SE_MEI (Modified version)

2.2. Databases

- The human reference genome (hg38 by default)
- One TE reference database from these options: the human TE database, the HERVK reference sequence, ERV library or the entire RepBase (www.girinst.org/repbase/)

3. Running ERVcaller (more examples are shown in the help print page)

3.1. Print help page

\$ perl user_installed_path/ERVcaller.pl

3.2 TE detection

 $\$\ perl\ user_installed_path/ERV caller.pl\ -i\ sample_ID\ -f\ .bam\ -S\ -r\ -g\ -w\ 5000$

3.3. Parameters

Table 1 List of parameters and explanation

Parameter	Full name	Description
-i	input_sampleID	Sample ID (required)
-h	help	Print this help
-t	threads	The number of threads (default: 1)
-f	file_suffix	The suffix of the input data (default: .fq.gz)
-d	data_type	Data type, including WGS, and RNA-seq (default: WGS)
-S	sequencing_type	Type of sequencing data, including paired-end, and single-
		end (default: paired-end)
-H	Human_reference_genome	The FASTA file of the human reference genome
-T	TE_reference_genomes	The TE library (FASTA) used for screening
-1	length_insertsize	Insert size length (bp) (default: 500)
-S	Split	If the split reads is used for detection
-r	Reciprocal_alignment	Reciprocal align the supporting reads against the candidate
		genomic regions
-g	genotyping	Genotyping function
-W	window_size	Window size of selected genomic locations for genotyping
		(bp) (default: 5,000)

4 Output file

Table 2 Header of the final output file

Column	Header	Description
Col 1	Sample_ID	Sample ID
Col 2	Split_reads	Use split reads or not
Col 3	Genotyping	Use genotyping function or not
Col 4	Reciprocal_alignment	If the reads were reciprocal aligned back to the candidate genomic regions
Col 5	TE_sequence_name	Sequence name of the detected TE
Col 6	Chr.	Human chromosome ID
Col 7	Start	Start position of the span genomic region of all chimeric and split reads in the human reference genome
Col 8	End	End position of the span genomic region of all chimeric and split reads in the human reference genome
Col 9	Nochimeric_reads	Total count of chimeric reads of the integration
Col 10	Nosplit_reads	Total count of split reads of the integration
Col 11	Upstream_breakpoint_on_human	Upstream breakpoint detected in the human reference genome
Col 12	Downstream_breakpoint_on_human	Downstream breakpoint detected in the human reference genome
Col 13	Upstream_breakpoint_on_TE	Upstream breakpoint detected in the TE sequence
Col 14	Downstream_breakpoint_on_TE	Downstream breakpoint detected in the TE sequence
Col 15	Information_both_breakpoints	Upstream and downstream breakpoint information. Upstream and downstream breakpoints were separated by
		semicolon; "D" and "E" represent if this breakpoint is detected by split reads (D), or estimated by chimeric reads
		separately (E); "+" and "-", represent the forward and reverse direction for both human (left) and TE (right)
		genome in the square per breakpoint; "na" represent this breakpoint is not covered by any chimeric and split
		reads
Col 16	Genotype	Genotypes of the TE insertion
Col 17	Noreads_supporting_nonTE	No. reads support no TE insertion
Col 18	Noreads_supporting_TE	No. reads support TE insertion, including chimeric and split reads
Col 19	Average_alignment_score	Average alignment score (AS) of reads support TE insertion, including chimeric and split reads

Col 20	Read_depth_(Mean)_of_the_window	Mean value of the read count of randomly-selected genomic locations interspersed every 50 bp within a window
Col 21	Read_depth_(SD)_of_the_window	SD value of the read count of randomly-selected genomic locations interspersed every 50 bp within a window
Col 22	Nosampled_genomic_locations	The number of randomly-selected genomic locations interspersed every 50 bp within a window
Col 23	Read_depth_(Quantile =0.05)	The quantile value of (threshold =0.05)
Col 24	Paired-end_false_Chimeric_reads	The number of chimeric reads (mapped in proper paired) within the candidate genomic region
Col 25	Other_false_Chimeric_reads	The number of chimeric reads (both ends mapped but not in proper paired) within the candidate genomic region
Col 26	Average_(AS-	Average value of (AS – XS flag value) for chimeric reads on human
	XS)_for_chimeric_reads_on_human	
Col 27	Maximum_(AS-	Maximum value of (AS – XS flag value) for chimeric reads on human
	XS)_for_chimeric_reads_on_human	