MATH 601. HW 1 IAN JORQUERA

- (1.4) Let $\mathbb{C} \sqcup \mathbb{C} = \{(1,z)|z \in C\} \cup \{(z,1)|z \in C\}$. Consider the map $\pi_3 : \mathbb{C} \sqcup \mathbb{C} \to \operatorname{Set}(\mathbb{CP}^1)$ where (z,1) maps to the line spanned by (z,1), $\operatorname{span}(z,1)$ and likewise $(1,z) \mapsto \operatorname{span}(1,z)$. Notice that this map is surjective as for any line $\ell = \operatorname{span}(a,b)$ we can rescale the vector (a,b) to be either (a/b,1) or (1,0) which then maps to ℓ with π_3 . Finally we can look at the quotient space of $\mathbb{C} \sqcup \mathbb{C}$ where we identify inputs that share the same output, which is the equivalence relation (z,1)(1,1/z).
- (2.5) As shown in Exercise 2.4 we have that S^2 is homeomorphic to \mathbb{CP}^1 . Likewise by definition of the quotient topology we have a surjective continuous function $\pi_2: S^3 \to \mathbb{CP}^1 \cong S^2$. Let $\ell \in \mathbb{CP}^1 \cong S^2$ and consider an element of the preimage $p \in \pi_2^{-1}(\ell) \subseteq S^4 \subseteq \mathbb{C}^2$. We also know from 1.3 that any point $e^{i\theta}p \mapsto \ell$. And so the entire preimage $\pi_2^{-1}(\ell) \cong S^1$ by the map $e^{i\theta} \mapsto e^{i\theta}p$.