Math 8100 Exam 1

Thursday the 13th of October 2022

Answer any THREE of the following four problems

1. Let $E \subseteq \mathbb{R}^n$. Recall that the definition of the Lebesgue outer measure of E, $m_*(E)$ is given by

$$m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$$

where the infimum is taken over all countable coverings $E \subseteq \bigcup_{j=1}^{\infty} Q_j$ by closed cubes.

(a) Prove that for any $E \subseteq \mathbb{R}^n$ and $\varepsilon > 0$ there exists an open set G with $E \subseteq G$ and

$$m_*(E) \le m_*(G) \le m_*(E) + \varepsilon.$$

Be sure to prove both of the inequalities above.

(b) i. Prove that $m_*(A \cup B) \leq m_*(A) + m_*(B)$ for any subsets A and B of \mathbb{R}^n .

ii. Give an example (no proofs required) of disjoint subsets A and B of \mathbb{R} for which

$$m_*(A \cup B) \neq m_*(A) + m_*(B).$$

2. Let X be a set equipped with a σ -algebra \mathcal{M} .

(a) Give the definition of a measure on \mathcal{M} .

(b) Prove that if μ is a measure on \mathcal{M} and $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$ and $E_1 \subseteq E_2 \subseteq \cdots$, then

$$\mu\Big(\bigcup_{j=1}^{\infty} E_j\Big) = \lim_{j \to \infty} \mu(E_j).$$

3. (a) Prove that if $E \subseteq \mathbb{R}^n$ is Lebesgue measurable, then for any $\delta > 0$ the dilated set

$$\delta E := \{ \delta x : x \in E \}$$

is also Lebesgue measurable and satisfies $m(\delta E) = \delta^n m(E)$.

(b) Carefully state Fatou's Lemma and deduce the Monotone Convergence Theorem from it.

(c) Prove that if f is a non-negative measurable function on \mathbb{R}^n and $\delta > 0$, then f_{δ} , defined by

$$f_{\delta}(x) = \delta^{-n} f(\delta^{-1} x)$$

is also a non-negative measurable function and

$$\int f(x) dx = \int f_{\delta}(x) dx.$$

4. Let (X, \mathcal{M}, μ) be a measure space and $L^1 = L^1(X, \mu)$.

(a) Prove that if $f \in L^1$, then $|f(x)| < \infty$ almost everywhere.

(b) Prove that $\{f_k\}_{k=1}^{\infty}$ is a sequence in L^1 with $\sum_{k=1}^{\infty} \|f_k\|_1 < \infty$, then $\sum_{k=1}^{\infty} f_k$ converges in L^1 . Hint: You may use, without proof, the fact that for any sequence $\{f_k\}_{k=1}^{\infty}$ in $L^+(X)$ one has

$$\int \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int f_k.$$

(c) Prove that if $\{f_k\}_{k=1}^{\infty}$ is a Cauchy sequence in L^1 , then there exists a function $f \in L^1$ such that $f_k \to f$ in L^1 .