ECN 7060, cours 12

William McCausland

2022-12-04

Introduction, estimation par intervalle

- Estimateur par intervalle [L(X), U(X)], estimation par intervalle [L(x), U(x)].
- Les propriétés fréquentistes concernent la probabilité de couverture

$$P_{\theta}[L(X) \leq \theta \leq U(X)].$$

- \triangleright souvent une fonction de θ , pas toujours (idéalement non)
- restrictions sur le modèle pour obtenir cette non-dépendance
- ▶ le coefficient de confiance est $\inf_{\theta} P_{\theta}(L(X) \leq \theta \leq U(X))$.
- ▶ arbitrage : haute probabilité de couverture v. intervalle court
- Les propriétés bayésiennes concernent la probabilité

$$P[L(x) \le \theta \le U(x)|x]$$
 ou $P[I \le \theta \le u|x]$

- ▶ Deux façons populaires pour choiser L(x) et U(x):
 - ▶ L(x) et U(x) sont les quantiles $\alpha/2$ et $1 \alpha/2$ de θ , U(x) L(x) n'est pas forcément minimale
 - Intervalle de haute probabilité a posteriori : U(x) L(x) minimale sous la contrainte $P[L(x) \le \theta \le U(x)|x] = 1 \alpha$.

Régions de haute probabilité et intervalles interquantile

Estimation par ensemble

- ▶ Estimateur par ensemble C(X), où $C(X) \subseteq \Theta$.
- **E**stimation par ensemble C(x).
- ▶ Probabilité d'intérêt fréquentiste : $P_{\theta}(\theta \in C(X))$.
 - \triangleright θ est fixe
 - la région C(X) est aléatoire
 - analyse ex ante
- Probabilité d'intérêt bayésienne : $P(\theta \in C(x)|x)$.
 - x est fixe (l'échantillon observé)
 - ightharpoonup l'élément θ est aléatoire (la probabilité est conditionnelle)
 - analyse ex post

Inversion d'une statistique test

- Pour chaque θ_0 , soit $A(\theta_0)$ la région de non-rejet pour un test de niveau α de l'hypothèse nulle H_0 : $\theta = \theta_0$.
- ► Alors $A(\theta)$ vérifie $P_{\theta}[X \notin A(\theta)] \leq \alpha$.
- ▶ Définez, pour chaque $x \in \mathcal{X}$, $C(x) = \{\theta : x \in A(\theta)\}$.
- ▶ Notez que $x \in A(\theta) \Leftrightarrow \theta \in C(x)$.
- ▶ Résultat : C(X) est une région de confiance (1α) .
- Preuve :
 - Puisque le niveau du test est de α ,

$$P_{\theta}[X \notin A(\theta)] \leq \alpha.$$

Alors

$$P_{\theta}[\theta \in C(X)] = P_{\theta}[X \in A(\theta)] \ge (1 - \alpha).$$

Si on remplace la première inégalité par une égalité, la deuxième devient une égalité.

$C(\bar{x})$ et $A(\theta)$ pour un exemple gaussien, σ^2 connu

Exemple gaussien, σ^2 connu

- ▶ Supposons que $X_1, ..., X_n \sim \text{iid } N(\mu, \sigma^2), \sigma^2 \text{ connu.}$
- ► Encore, $\bar{X} \equiv n^{-1} \sum_{i=1}^{n} X_i$, $S^2 \equiv (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$.
- Statistique LRT pour H_0 : $\mu=\mu_0$ contre H_1 : $\mu\neq\mu_0$:

$$\lambda(x) = \frac{\exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_0)^2\right]}{\exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]}$$

Puisque
$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu_0)^2$$
, $\lambda(x) = \exp[-n(\bar{x} - \mu_0)^2/(2\sigma^2)]$.

- ▶ La loi de \bar{X} est connue : $\bar{X} \sim \textit{N}(\mu, \sigma^2/\textit{n})$
- Pour le test avec $A(\mu_0) = \{x : |\bar{x} \mu_0| \le z_{\alpha/2} \sigma / \sqrt{n} \}$, la probabilité de rejet quand $\mu = \mu_0$ est de α .
- Conditions équivalentes à $x \in A(\mu_0)$: $|\bar{x} \mu_0| \le z_{\alpha/2} \sigma / \sqrt{n} \Leftrightarrow -z_{\alpha/2} \sigma / \sqrt{n} \le \mu_0 \bar{x} \le z_{\alpha/2} \sigma / \sqrt{n}$ $\Leftrightarrow \bar{x} z_{\alpha/2} \sigma / \sqrt{n} \le \mu_0 \le \bar{x} + z_{\alpha/2} \sigma / \sqrt{n}$

Alors
$$P[\bar{X} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu_0 \le \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}] = 1 - \alpha$$
.

Inversion d'un test, Exemple 9.2.11

- Considérez la construction d'un intervalle pour p dans le modèle $X \sim \text{Bi}(n, p)$.
- ▶ Une idée raisonnable est de construire, pour α donné et pour chaque p, la région de non-rejet $A(p) \subseteq \{0, 1, ..., n\}$ avec le nombre minimal d'éléments....
- ▶ ... puis invertir A(p) pour obtenir C(X).
- ► Cependant, considerez le résultat quand n = 3 et $1 \alpha = 0.442$.

Inversion d'un test, Exemple 9.2.11 (cont.)

Quantités pivotales

- ▶ Une fonction $Q(X, \theta)$ est pivotale si sa loi ne dépend pas de θ .
- Interprétation bayésienne : sa loi ne dépend pas de $f(\theta)$
- Famille $f(x|\mu) = f_0(x \mu)$: $Q(X, \theta) = \bar{X} \mu$ est pivotale.
- Preuve :
 - ▶ Soit $Z_i \sim \operatorname{iid} f_0(z)$. Sa distribution ne dépend pas de μ .

$$(X_1,\ldots,X_n)\sim (Z_1+\mu,\ldots,Z_n+\mu)$$

$$\bar{X} - \mu \sim \frac{1}{n} \sum_{i=1}^{n} (Z_i + \mu) - \mu = \bar{Z}$$

- ▶ La loi de \bar{Z} (et de $Q(X, \theta) = \bar{X} \mu$) ne dépend pas de μ .
- ► Famille $f(x|\sigma) = \frac{1}{\sigma}f_0(x/\sigma)$: $Q(X,\sigma^2) = \bar{X}/\sigma$ est pivotale.
- Famille $f(x|\mu, \sigma^2) = \frac{1}{\sigma} f_0((x-\mu)/\sigma)$: $Q_1(X,\theta) = (\bar{X} \mu)/\sigma$, $Q_2(X,\theta) = (\bar{X} \mu)/S$, $Q_3(X,\theta) = S/\sigma$ sont pivotales.

Utiliser une quantité pivotale pour construire un ensemble de confiance

- Supposez que $Q(X, \theta)$ est une quantité pivotale, \mathcal{A} est un ensemble.
- ▶ $C(X) = \{\theta \colon Q(X, \theta) \in A\}$ est un estimateur par ensemble de θ dont la probabilité $P_{\theta}(\theta \in C(X))$ ne dépend pas de θ .
- Stratégie : trouver une quantité pivotale $Q(X, \theta)$ et un ensemble \mathcal{A} avec de bonnes propriétés (C(X)) petit, $P_{\theta}(\theta \in C(X))$ grand).

Exemples gaussiens I

- ▶ Supposons que $X_1, ..., X_n \sim \operatorname{iid} N(\mu, \sigma^2)$.
- Quantités pivotales :
 - $ightharpoonup Z = \sqrt{n}(\bar{X} \mu)/\sigma \sim N(0, 1),$
 - $T_{n-1} = \sqrt{n}(\bar{X} \mu)/S \sim t(n-1).$
 - $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$.
- ightharpoonup Cas où σ^2 est connu :

$$1-\alpha=P_{\theta}(-\mathsf{z}_{\alpha/2}\leq -\mathsf{Z}\leq \mathsf{z}_{\alpha/2})=P_{\theta}(\mu\in \mathsf{C}(\mathsf{X})).$$

où C(X) est l'estimateur par ensemble suivant

$$C(X) = \{\mu \colon \bar{X} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}\}.$$

Exemples gaussiens II

ightharpoonup Cas où σ^2 n'est pas connu, intervalle pour μ :

$$1-lpha=P_{ heta}(-t_{n-1,lpha/2}\leq -T_{n-1}\leq t_{n-1,lpha/2})=P_{ heta}(heta\in C(X)),$$
où

 $C(X) = \{ \mu \colon \bar{X} - t_{n-1,\alpha/2} S / \sqrt{n} \le \mu \le \bar{X} + t_{n-1,\alpha/2} S / \sqrt{n} \}.$

ightharpoonup Cas où σ^2 n'est pas connu, intervalle pour σ^2 :

$$1-\alpha = P_{\theta}(\chi_{n-1,1-\alpha/2} \le (n-1)S^2/\sigma^2 \le \chi_{n-1,\alpha/2}) = P_{\theta}(\theta \in C(X)),$$

οù

$$C(X) = \left\{ \sigma^2 : \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}} \right\}.$$

Un aparté

- Soit T une variable aléatoire avec fonction de répartion F inversible.
- ▶ F(t) est une fonction, F(T) est une variable aléatoire avec une loi sur [0,1].
- ▶ Proposition : $F(T) \sim U(0,1)$.
- Preuve :
 - ▶ Soit G la fonction de répartition de F(T).
 - ▶ Pour $u \in [0, 1]$,

$$G(u) = P[F(T) \le u] = P[T \le F^{-1}(u)] = F[F^{-1}(u)] = u.$$

▶ Alors $F(T) \sim U(0,1)$.

Pivot de la fonction de répartition

- ▶ Soit T une statistique avec fonction de répartition $F_T(t|\theta)$.
- \triangleright Si F_T est toujours inversible (c.-à-d. pour tous θ), $F_T(T|\theta) \sim U(0,1)$, une loi qui ne dépend pas de θ .
- \triangleright Supposons que T est stochastiquement croissante en θ . ightharpoonup C'est à dire que $F_T(t|\theta)$ est décroissante en θ .

Pour t donné, soit
$$\theta_L(t)$$
 est decroissante en θ .

From t doffile, soft
$$\theta_L(t)$$
 et $\theta_R(t)$ les solutions

- $F_T(t|\theta_U(t)) = \alpha_1, \quad F_T(t|\theta_L(t)) = 1 \alpha_2.$
- Pour tous t, θ ,
- $\theta > \theta_{II}(t) \Leftrightarrow F_T(t,\theta) < \alpha_1$
- $\theta < \theta_I(t) \Leftrightarrow F_T(t,\theta) > 1 \alpha_2$
- ► Considérer l'intervalle de confiance $[\theta_L(T), \theta_U(T)]$:

$$0 > 00(t) \Leftrightarrow T_1(t, 0) < \alpha_1$$

$$0 < 0.(t) \Leftrightarrow E_{-}(t, 0) > 1 \quad \alpha_2$$

 $\{t: \theta_{I}(t) < \theta < \theta_{II}(t)\} = \{t: \alpha_{1} < F_{T}(t|\theta) < 1 - \alpha_{2}\},\$

 $P_{\theta}[\theta_I(T) < \theta < \theta_{II}(T)] = P_{\theta}[\alpha_1 < F_T(T|\theta) < 1 - \alpha_2] = 1 - \alpha_1 - \alpha_2.$

Graphique, pivot de la fonction de répartition

Exemple gaussien (Question 5(e) de l'examen final 2021)

- ▶ Soit $X_1, \ldots, X_n \sim \operatorname{iid} N(\mu, 1)$.
- $T = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- ▶ Soit $\ddot{F}_T(t; \mu)$ la fonction de répartition de T pour μ donnée.
- P Question de l'examen 2021 : montrez que la quantité $F_T(T; \mu)$ est pivotale et utilisez-la pour construire un intervalle de confiance pour μ avec probabilité de couverture 1α .
- Réponse (première partie)
 - ightharpoonup Remarquez que la fonction de répartition de T est inversible.
 - ▶ Soit *G* la fonction de répartition de $F_T(T; \mu)$.
 - ▶ Pour $u \in [0, 1]$,

$$G(u) = P(F_T(T; \mu) \le u)$$

= $P(T \le F_T^{-1}(u; \mu))$
= $F_T(F_T^{-1}(u; \mu); \mu) = u$.

Exemple gaussien, cont.

- ▶ Réponse (deuxième partie) (soit $\alpha_1 = 0.025$, $\alpha_2 = 0.975$)
 - ► Remarquez que $F_T(t; \mu) = P(T \le t; \mu) = \Phi(\sqrt{n}(t \mu))$, où $\Phi(\cdot)$ est la fonction de répartition de la loi N(0, 1).
 - La solution de $\Phi(\sqrt{n}(t-\mu_U(t))) = \alpha_1 = 0.025$ est celle de

$$\sqrt{n}(t-\mu_U(t))=\Phi^{-1}(\alpha_1)=-z_{0.025}.$$

- Alors la solution est $\mu_U(t) = t + z_{0.025}/\sqrt{n}$.
- La solution de $\Phi(\sqrt{n}(t-\mu_L(t)))=\alpha_2=0.975$ est celle de

$$\sqrt{n}(t-\mu_L(t)) = \Phi^{-1}(\alpha_2) = z_{0.025}.$$

- Alors la solution est $\mu_L(t) = t z_{0.025}/\sqrt{n}$.
- ightharpoonup L'intervalle de confiance pour α_1, α_2 données est

$$[\mathit{T} - \Phi^{-1}(\alpha_2)/\sqrt{n}, \mathit{T} - \Phi^{-1}(\alpha_1)/\sqrt{n}] = [\mathit{T} - \mathit{z}_{0.025}/\sqrt{n}, \mathit{T} + \mathit{z}_{0.025}/\sqrt{n}].$$