

Figure 1: (Upper)The number of parameters of each model (Lorenz-96, p=100, T=1000). (Bottom) The trend of KANGCI's parameter as the time series dimension increases.

Table 1: AUPRC of the Lorenz-96 dataset.

	AUROC			
Models	p = 10, F = 10 T = 1000	p = 40, F = 40 T = 1000	p = 40, F = 40 T = 500	
cMLP	0.968 ± 0.002	0.791 ± 0.012	0.685 ± 0.057	
cLSTM	0.964 ± 0.004	0.865 ± 0.015	0.726 ± 0.035	
TCDF	0.732 ± 0.012	0.524 ± 0.042	0.445 ± 0.122	
eSRU	$1.0 {\pm} 0.00$	0.943 ± 0.007	0.893 ± 0.023	
GVAR	$1.0{\pm0.00}$	0.925 ± 0.009	0.886 ± 0.036	
NAVAR (MLP)	0.989 ± 0.005	0.742 ± 0.041	0.631 ± 0.079	
NAVAR (LSTM)	0.991 ± 0.005	0.784 ± 0.037	0.682 ± 0.071	
$_{ m JGC}$	0.987 ± 0.004	0.923 ± 0.029	0.843 ± 0.044	
CUTS+	$1.0 {\pm} 0.00$	0.979 ± 0.003	0.925 ± 0.024	
JRNGC	$1.0 {\pm} 0.00$	0.966 ± 0.006	0.892 ± 0.035	
KANGCI	$1.0 {\scriptstyle \pm 0.00}$	$0.990 {\scriptstyle \pm 0.003}$	$\boldsymbol{0.953} {\scriptstyle \pm 0.021}$	

Table 2: AUPRC of the Dream-3 dataset, T=966, p=100 $\,$

Models			AUROC		
	Ecoli-1	Ecoli-2	Yeast-1	Yeast-2	Yeast-3
cMLP	0.023	0.019	0.020	0.015	0.014
cLSTM	0.017	0.017	0.015	0.023	0.031
TCDF	0.012	0.011	0.014	0.014	0.013
eSRU	0.036	0.034	0.041	0.052	0.044
GVAR	0.103	0.117	0.098	0.103	0.104
NAVAR (MLP)	0.102	0.107	0.073	0.105	0.089
NAVAR (LSTM)	0.013	0.012	0.030	0.038	0.052
$_{ m JGC}$	0.018	0.016	0.026	0.050	0.059
CUTS+	0.154	0.143	0.121	0.128	0.105
JRNGC	0.198	0.202	0.172	0.142	0.130
KANGCI	0.177	0.163	0.154	0.138	0.132

Table 3: AUPRC of the VAR dataset.

	AUROC			
Models	p = 10, T = 1000	p = 10, T = 1000	p = 10, T = 1000	
	sparsity = 0.2	sparsity = 0.3	sparsity = 0.2	
	lag = 3	lag = 3	lag = 5	
cMLP	1.0±0.00	0.832±0.006	0.973±0.004	
cLSTM	0.964 ± 0.005	0.854 ± 0.006	0.911 ± 0.006	
TCDF	0.812 ± 0.013	0.681 ± 0.012	0.734 ± 0.012	
eSRU	1.0 ± 0.00	0.989 ± 0.002	$\boldsymbol{1.0} {\pm} 0.00$	
GVAR	1.0 ± 0.00	0.985 ± 0.003	$\boldsymbol{1.0} {\pm} 0.00$	
NAVAR (MLP)	0.987 ± 0.003	0.943 ± 0.006	0.981 ± 0.004	
NAVAR (LSTM)	0.985 ± 0.003	0.957 ± 0.007	0.959 ± 0.003	
$_{ m JGC}$	1.0 ± 0.00	0.990 ± 0.002	1.0 ± 0.00	
CUTS+	1.0 ± 0.00	$1.0 {\pm} 0.00$	1.0 ± 0.00	
JRNGC	$1.0 {\pm 0.00}$	0.992 ± 0.002	1.0 ± 0.00	
KANGCI	1.0±0.00	0.987 ± 0.002	1.0±0.00	

Table 4: AUPRC of the fMRI BOLD				
Dateset .		AUROC		
	CUTS+	JRNGC	KANGCI	
Sim1	0.704 ± 0.08	0.688 ± 0.07	0.672 ± 0.09	
Sim2	0.694 ± 0.07	$0.682{\scriptstyle\pm0.06}$	$\boldsymbol{0.701} {\pm 0.07}$	
Sim3	$0.638{\scriptstyle\pm0.07}$	$\boldsymbol{0.651} {\pm 0.08}$	$0.636{\scriptstyle\pm0.06}$	
Sim4	$0.643 {\pm} 0.06$	$0.632{\scriptstyle\pm0.06}$	0.601 ± 0.03	
Sim5	$0.728{\scriptstyle\pm0.05}$	$0.731 {\pm} 0.06$	$\boldsymbol{0.739} {\scriptstyle \pm 0.05}$	
Sim6	$0.734{\scriptstyle\pm0.06}$	$0.729{\scriptstyle\pm0.07}$	$\boldsymbol{0.748} {\scriptstyle\pm0.07}$	
$\operatorname{Sim} 7$	$0.744{\scriptstyle\pm0.07}$	$0.721{\scriptstyle\pm0.07}$	$\boldsymbol{0.793} {\scriptstyle\pm0.07}$	
Sim8	$0.635{\scriptstyle\pm0.08}$	$0.621{\scriptstyle\pm0.04}$	$\boldsymbol{0.654} {\scriptstyle\pm0.11}$	
Sim9	$0.698{\scriptstyle\pm0.05}$	$0.685 {\pm} 0.05$	$\boldsymbol{0.719} {\scriptstyle\pm0.08}$	
Sim10	$0.678{\scriptstyle\pm0.04}$	$0.663{\scriptstyle\pm0.08}$	$\boldsymbol{0.692} {\scriptstyle \pm 0.09}$	
Sim11	$0.695{\scriptstyle\pm0.05}$	$0.682{\scriptstyle\pm0.08}$	$0.621{\scriptstyle\pm0.07}$	
Sim12	$0.660{\scriptstyle\pm0.06}$	0.649 ± 0.07	$\boldsymbol{0.678} {\scriptstyle \pm 0.06}$	
Sim13	$0.696{\scriptstyle\pm0.05}$	0.720 ± 0.08	$\boldsymbol{0.744} {\scriptstyle\pm0.08}$	
Sim14	$0.657{\scriptstyle\pm0.04}$	0.642 ± 0.06	$\boldsymbol{0.686} {\scriptstyle \pm 0.09}$	
Sim15	0.641 ± 0.07	0.632 ± 0.09	$\boldsymbol{0.659} {\pm 0.07}$	
Sim16	$0.654{\scriptstyle\pm0.11}$	$0.668{\scriptstyle\pm0.12}$	$\boldsymbol{0.688} {\scriptstyle \pm 0.09}$	
Sim17	$\boldsymbol{0.724} \scriptstyle{\pm 0.04}$	$0.721{\scriptstyle\pm0.05}$	$0.714{\scriptstyle\pm0.05}$	
Sim18	0.710 ± 0.06	$0.696 {\pm} 0.08$	$\boldsymbol{0.725} {\scriptstyle\pm0.09}$	
Sim19	0.847 ± 0.07	$0.833 {\pm} 0.04$	$\boldsymbol{0.873} {\scriptstyle \pm 0.03}$	
Sim20	0.861 ± 0.07	$0.857{\pm0.05}$	$\boldsymbol{0.886} {\scriptstyle \pm 0.04}$	
Sim21	$0.696{\scriptstyle\pm0.08}$	$0.677{\pm0.06}$	$\boldsymbol{0.711} {\scriptstyle \pm 0.07}$	
Sim22	$0.727{\pm0.04}$	$0.722{\scriptstyle\pm0.06}$	$\boldsymbol{0.746} {\scriptstyle \pm 0.09}$	
Sim 23	$0.551{\scriptstyle\pm0.06}$	$0.544 {\pm} 0.08$	$0.527{\scriptstyle\pm0.11}$	
Sim24	$0.490{\scriptstyle\pm0.08}$	$0.504 {\pm} 0.08$	$0.476{\scriptstyle\pm0.09}$	
Sim25	$0.643 {\pm} 0.05$	0.649 ± 0.07	$\boldsymbol{0.661} {\pm 0.08}$	
Sim26	$0.561{\scriptstyle\pm0.09}$	$0.561{\scriptstyle\pm0.08}$	$\boldsymbol{0.632} {\scriptstyle \pm 0.12}$	
Sim 27	$0.661 {\pm} 0.07$	0.634 ± 0.09	$\boldsymbol{0.672} {\pm 0.08}$	
Sim28	$0.715{\scriptstyle\pm0.09}$	$0.709{\scriptstyle\pm0.10}$	$\boldsymbol{0.732} {\scriptstyle \pm 0.09}$	
AVG	0.681 ± 0.07	$0.675{\pm0.09}$	$0.691 {\pm} 0.09$	

Figure 2: The visualization of the spline(x) function during the causal inference.

Figure 3: The architecture of KANGCI.