Tutorato Geometria e Algebra Informatica

Andrea Pizzi

12 Aprile 2023

Esercizio 1. Dimostrare che $Fun(S, \mathbb{R})$, l'insieme delle funzioni $f: S \to \mathbb{R}$, è un \mathbb{R} -spazio vettoriale con le seguenti operazioni:

Moltiplicazione per scalare :
$$(k \cdot f)(x) := k \cdot f(x) \quad k \in \mathbb{R} , \ f \in Fun(S, \mathbb{R})$$

Somma : $(f + g)(x) := f(x) + g(x) \quad f, g \in Fun(S, \mathbb{R})$

Esercizio 2. In virtù dell'esercizio 1, commentare se l'insieme dei polinomi a coefficienti in \mathbb{R} , denotato con $\mathbb{R}[x]$, è uno spazio vettoriale su \mathbb{R} .

Denotiamo con $\mathbb{R}[x]_{\leq n}$ l'insieme dei polinomi a coefficienti in \mathbb{R} di grado minore o uguale ad $n \in \mathbb{N}$. Dimostrare che è un sottospazio vettoriale dell'insieme delle funzioni $Fun(S,\mathbb{R})$. E' anche un sottospazio vettoriale di $\mathbb{R}[x]$?

Trovare un insieme di generatori di $\mathbb{R}[x]_{\leq n}$. Sono un numero finito?

Trovare un insieme di generatori di $\mathbb{R}[x]$. Sono un numero finito?

A conclusione di tutto l'esercizio considerare $\mathbb{R}[x]_{\leq 2}$:

- a) Esistono 3 vettori linearmente indipendenti?
- b) Esistono 4 vettori linearmente indipendenti?
- c) Lo spazio vettoriale dato puo' essere scritto come span di 4 vettori?
- d) Lo spazio vettoriale dato puo' essere scritto come span di 2 vettori?

Dimostrare la veridicità delle domande sopra oppure mostrare un controesempio.

Esercizio 3. Si considerino i seguenti sottoinsiemi di \mathbb{R}^2

- $S_1 = \{(x, y) \in \mathbb{R}^2 : x \neq y\} \subset \mathbb{R}^2$.
- $S_2 = \{(x, y) \in \mathbb{R}^2 : x 3y = 0\} \subset \mathbb{R}^2$.
- $S_3 = \{(x,y) \in \mathbb{R}^2 : \text{esiste } t \in \mathbb{R} \text{ tale che } x = 2t, \ y = -3t\} \subset \mathbb{R}^2.$
- $S_4 = \{(x, y) \in \mathbb{R}^2 : y = 1\} \subset \mathbb{R}^2$.
- $S_5 = \{(x, y) \in \mathbb{R}^2 : 3x + 4y = 0\} \subset \mathbb{R}^2$.
- $S_6 = \{(x, y) \in \mathbb{R}^2 : 3x + 4y = 1\} \subset \mathbb{R}^2$.
- $S_7 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\} \subset \mathbb{R}^2$.

Quali sono sottospazi vettoriali di \mathbb{R}^2 ?

Esercizio 4. Verificare che il sottoinsieme di \mathbb{R}^3

$$W = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{cases} 2x - 3y + z = 0 \\ x - z = 0 \end{cases} \right\}$$

è un sottospazio vettoriale di \mathbb{R}^3 ed è generato da (1,1,1), cioè $W=Span\{(1,1,1)\}$.

Esercizio 5. Verificare che il sottoinsieme di \mathbb{R}^3

$$U = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{cases} x - y = 0 \\ x + y = 0 \end{cases} \right\}$$

è un sottospazio vettoriale di \mathbb{R}^3 . Determinare un insieme di generatori, una base e la dimensione di U.

Esercizio 6. a) Si dica per quali valori di k si ha $w = (2,5) \in Span\{(k,1),(1,-2)\}.$

- b) Si dica per quali valori di k (se esistono), $\{(k,1),(1,-2)\}$ e' un insieme digeneratori di \mathbb{R}^2 .
- c) Si dica per quali valori di k (se esistono), $\{(k,1),(1,-2)\}$ e' un insieme divettori linearmente indipendenti di \mathbb{R}^2 .

Esercizio 7. Consideriamo lo spazio vettoriale delle matrici 2 x 2, Mat(2,2), con le operazioni viste a lezione. Una matrice quadrata A si dice simmetrica se è uguale alla sua trasposta A^T (La i-esima riga della matrice A diventa la i-esima colonna della nuova matrice A^T , in formule $a_{ij} = a_{ji}$). Per le 2 x 2 abbiamo che deve valere

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = A^T$$

Mostrare che il sottoinsieme delle matrici 2×2 simmetriche, denotato con Sym(2,2) è un sottospazio vettoriale di Mat(2,2).

E' vero anche per le matrici $n \times n$, M(n, n)?

Determinare una base di Sym(2,2).

Esercizio 8. Consideriamo lo spazio vettoriale delle matrici 2 x 2, Mat(2,2), con le operazioni viste a lezione. Una matrice quadrata A, n x n, si dice triangolare superiore se $a_{ij} = 0$ per ogni i > j. Per le 2 x 2 abbiamo matrici del tipo

$$A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$$

Mostrare che il sottoinsieme delle matrici 2×2 triangolari superiori è un sottospazio vettoriale di Mat(2,2). E' vero anche per le matrici $n \times n$?

Determinare una base del sottospazio delle matrici 2 x 2 triangolari superiori.

Esercizio 9. Dimostrare che l'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ non è un sottospazio vettoriale di \mathbb{R}^2 .

Esercizio 10. Provare le la collezione di vettori numerici $e_i = (0, \dots, 0, 1_i, 0 \dots, 0) \in \mathbb{R}^n$ sono una base per l' \mathbb{R} -spazio vettoriale \mathbb{R}^n .

Consideriamo ora i seguenti vettori in \mathbb{R}^4 :

$$v_1 = (1, 1, 1, 1)$$
 $v_1 = (3, 1, 0, 0)$ $v_1 = (1, -1, 0, 0)$ $v_1 = (0, 0, 0, 1)$

Verificare che sono una base di \mathbb{R}^4 .

Esercizio 11. Siano U e W due spazi vettoriali con operazioni di somma $+_U$ e $+_W$ e prodotto per scalari \cdot_U e \cdot_W rispettivamente. Si consideri l'insieme prodotto cartesiano $V = U \times W$, definito così:

$$U \times W = \{(u, w) : u \in U, w \in W\}$$

Su V definisco somma $+_V$ e prodotto per gli scalari \cdot_V nel seguente modo:

$$(u, w) +_V (u', w') = (u +_U u', w +_W w')$$

$$\lambda \cdot_V (u, w) = (\lambda \cdot_U u, \lambda \cdot_W w)$$

Dimostrare che il prodotto cartesiano V con queste operazioni di somma e prodotto per gli scalari è uno spazio vettoriale.

Esercizio 12. * Sia (v_1, v_2, v_3, v_4) una base dello spazio vettoriale V. Dimostrare che per ogni $v \in V$ la lista di vettori (v_1, v_2, v_3, v_4, v) è un sistema di generatori per V ma non è linearmente indipendente.

Esercizio 13. * Siano $v_1, v_2, ..., v_n \in V$ dei vettori linearmente indipendenti e sia $v \in V$. Dimostrare che $v_1, v_2, ..., v_n, v$ sono linearmente indipendenti se e solo se $v \notin Span\{v_1, v_2, ..., v_n\}$.

Esercizio 14. ** Sia V un \mathbb{K} -spazio vettoriale e $v_1, v_2, v_3 \in V$ tali che:

```
i v_1 \neq 0

ii v_2 \notin Span(v_1)

iii v_3 \notin Span(v_1, v_2)
```

Dimostrare che v_1, v_2, v_3 sono linearmente indipendenti.

Esercizio 15. *** Si consideri l'insieme $V = \{x \in \mathbb{R} : x > 0\}$ con le seguenti operazioni di somma: $x +_V y = xy$, e di prodotto per scalari: $\lambda \cdot_V x = x^\lambda$, $\lambda \in \mathbb{R}$. Verificare se è uno spazio vettoriale verificando tutti gli assiomi oppure dimostrare che non lo è trovando un controesempio.