MAST30001 2013, Recommended Problems, Chapter 7 Lecturer: Nathan Ross

Instructions: Answer the following questions. Justify all work and give clear, concise explanations, using prose when appropriate. Clarity, neatness and style count.

- 1. $(M/M/\infty)$ queue) Assume that in a queuing system customers arrive according to a rate λ Poisson process, customers are always served immediately (for example, customers making purchases on the internet), and the service time of a customer is exponential with rate μ , independent of arrival times and other service times.
 - (a) Model this queue as a birth-death chain and write down its generator.
 - (b) Describe the long run behaviour of the chain.
 - (c) When the queue is in stationary (i.e., after its been running a long time), what is the expected number of customers in the system, number of customers in the queue, number of busy servers, and service time for an arriving customer?
 - (d) Let X_t be the number of customers in the system (including those being served) at time t and set $X_0 = 0$. What is $\mathbb{E}X_t$? [Hint: if $m(t) = \mathbb{E}X_t$, consider m'(t).] You should check your formula makes sense as t tends to infinity.
- 2. $(M/G/\infty \text{ queue})$ In a certain communications system, information packets arrive according to a Poisson process with rate λ per second and each packet is processed in one second with probability p and in two seconds with probability 1-p, independent of the arrival times and other service times. Let N_t be the number of packets that have entered the system up to time t and X_t be the number of packets in the system (including those being served) at time t.
 - (a) Is $(X_t)_{t>0}$ a Markov chain?
 - (b) If $X_0 = 0$, what is the distribution of X_2 ?
 - (c) If $X_0 = 0$, is there a "stationary" limiting distribution $\pi_k = \lim_{t \to \infty} \mathbb{P}(X_t = k)$? If so, what is it?
 - (d) If $X_0 = N_0 = 0$, what is the joint distribution of X_t and N_t ?