Non-linear optics

Anders Aspegren Søndergaard Kristoffer Theis Skalmstang Michael Munch Steffen Videbæk Fredsgaard

February 26, 2014

Contents

Contents		1
1	Introduction	1
2	The Kerr effect	2
3	Wave mixing References	3 4

1 Introduction

During the better part of the course we have studied linear phenomena, that is the interaction between matter and light described by the wave equation

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \frac{1}{\epsilon_0 c^2} \frac{\partial^2 \mathbf{P}}{\partial t^2},\tag{1}$$

where the polarization **P** is linear wrt. the electric field of the light **E**, as described by $\mathbf{P} = \epsilon_0 \chi \mathbf{E}$, where χ is electric suscpetibility of the medium. The course has touched upon non-linear phenomena, where the polarization can be expanded as $\mathbf{P} = \epsilon_0 (\chi^{(1)} \mathbf{E} + \chi^{(2)} \mathbf{E}^2 + \dots)$.

In this project we describe and discuss two such effects, namely beam self-focusing using the Kerr effect, and wave mixing.

2 The Kerr effect

3 Wave mixing

References

[1] P.W. Milonni and J.H. Eberly. *Laser Physics*. Wiley, 2010. ISBN: 978-0-470-38771-9