Introduction to the Theory of Statistics Part 2 PM522b

Meredith Franklin

Division of Biostatistics, University of Southern California

Slides 1, 2015

M. Franklin (USC) PM522b

Course Details

- Book: Statistical Inference, 2nd Ed. Casella G and Berger RL. Wadsworth & Brooks, 2002
- Lecture slides will be posted on Blackboard
- Additional handouts will be posted as we go along
- Chapter 5 properties of random samples, order statistics Chapters 6-12
- More on the theory of regression than presented in CB
- We will use R for computation and visualization
- Grading: Homework (7 @5% each, 35%), Midterm Exam (25%), Final Exam (40%)

M. Franklin (USC)

Course Details

- Software: we will use R
- Intro to R posted on Blackboard
 - functions for distributions
 - writing custom functions
 - sampling data
 - simulating data
- Homework will mostly be handwritten solutions, but some computation
- Exams all handwritten, in preparation for the screening exam

Topics Covered

- Introduction to statistics and statistical inference
 - Review of cdf, pmf, pdf
 - Bridging from probability to inference
- Review of random variables, random samples, functions of random variables (CB Ch 5)
 - Relating samples to populations
 - Empirical distribution functions
 - Order statistics
 - Graphical representations of statistics

CDF

- First half of the PM522 series focused on probability and the development of cumulative distribution functions (cdf), probability mass functions (pmf), and probability distribution functions (pdfs).
- Recall the cumulative distribution function (cdf) for a discrete random variable:

$$F(x) = P(X \le x), \forall x$$

which has three conditions:

- $\lim_{x \to -\infty} F(x) = 0 \text{ and } \lim_{x \to \infty} F(x) = 1$
- F(x) is a non-decreasing function of x
- F(x) is right continuous
- For continuous random variables, F(x) is a continuous function of X
- We can say a random variable X is continuous if F(x) is a continuous function of x. Similarly a random variable X is discrete if F(x) is a step function of x.

M. Franklin (USC) PM522b Slides 1, 2015 5 / 38

◆□ > ◆圖 > ◆圖 > ◆圖 >

PMF

A probability mass function (pmf) evaluated at a value corresponds to the probability that a random variable takes that value.

• The pmf of a discrete random variable *X*:

$$f(x) = P(X = x), \forall x$$

To be a valid pmf, the probability must satisfy:

- $f(x) \ge 0 \forall x$
- 2 $\sum_{x} f(x) = 1$ (the sum is taken over all values of x)
- $P(X \in A) = \sum_{x \in A} f(x)$

Example

X is the result of flipping a coin where X=0 is tails and X=1 is heads. If the coin is fair, $P(x) = (1/2)^x (1/2)^{1-x}$ for x = 0, 1

If we do not know whether the coin is fair or not, $P(x) = \theta^x \theta^{1-x}$ for x = 0, 1

M. Franklin (USC) PM522b Slides 1, 2015 6 / 38

4日 > 4周 > 4 至 > 4 至 >

PDF

A probability density function (pdf) is a function associated with a continuous random variable. Areas under pdfs correspond to probabilities for a random variable.

• The pdf of a continuous random variable X is the function that satisfies:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

And hence,

$$\frac{dF(x)}{dx} = f(x)$$

- Using the fundamental theorem of calculus, the derivative of the cdf is the pdf (when f(x) is continuous).
- To be a valid pdf, the function f must satisfy
 - $f(x) \ge 0 \forall x$
 - 2 The area under f(x) is one

4 D > 4 A > 4 B > 4 B > 9 9 0

M. Franklin (USC)

Distributions and parameters

- In PM522a you learned specific types of discrete (Discrete Uniform, Hypergeometric, Binomial, Poisson, Negative Binomial, Geometric) and continuous (Uniform, Gamma, Exponential, Normal, Beta, Lognormal) distribution functions.
- The parameters of these functions were assumed to be known.

Furthermore we can calculate E(X) = np and V(X) = np(1-p)

 \bullet Using a pdf with known parameters, we can say something about a random variable X

Example

 $X \sim f_X(x|\theta), x \in R$ and $\theta \in \Theta$ are parameters If $f_X(x|\theta)$ is the binomial distribution then we know $X \sim \text{binomial}(n,p)$ where n and p are our parameters $\theta = (n,p)$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

8 / 38

M. Franklin (USC) PM522b Slides 1, 2015

Distributions and random samples

A Numerical Example

What is the probability that a family of 3 children will have 2 girls given that the probability of having a girl is 1/2?

In R: choose(3, 2) * $0.5^2*0.5^1$ OR dbinom(2,3,1/2) =0.375

A Less Obvious Example

Suppose we toss a coin 10 times and observe 8 heads. What is the probability of heads?

If the coin was perfectly fair, then we could assume $\theta=1/2$. But a) we don't know anything about the coin, and b) having flipped 8/10 heads does not support that P(heads)=1/2.

M. Franklin (USC)

Distributions and random samples

- \bullet The examples above illustrate a sequence of n Bernoulli trials
- The distribution is often denoted Bernoulli(p) meaning there is only one parameter in the distribution because we known n
- The normal distribution has two parameters

Example

 $X \sim f_X(x|\theta), x \in R$ and $\theta \in \Theta$ are parameters

If $f_X(x|\theta)$ is the normal distribution then we know $X \sim N(\mu, \sigma^2)$ where μ and σ are our parameters

$$\theta = (\mu, \sigma^2)$$

Furthermore we can find properties of these parameters $E(X)=\mu$ and $V(X)=\sigma^2$

M. Franklin (USC)

PM522b

Statistical Inference

- We need to bridge from probability to (inferential) statistics
- Populations to samples: data
- Experiments are performed to collect information (data) from which we can (imperfectly) understand the population
- A random sample is drawn from our population and we need a suitable function to describe the population from the sample
- We want to make inference about a population based on information contained in this random sample
- Always remember: the sample is NOT the population

M. Franklin (USC) PM522b Slides 1, 2015 11 / 38

Random Samples

- ullet In statistics and statistical inference, we have random samples of X
- We don't know the pdf of X but want to be able to say something about its distribution
- A random variable could be represented by any possible pdf, however one model will be more probable than the others
- $\mathbf{X} = (X_1, X_2, ..., X_n)$ is a set of iid random variables with an unknown distribution function
- $X \sim f_X(x|\theta), x \in R$ and $\theta \in \Theta$ and we further define $\Theta \in R^d$ as the parameter space
- We regard $f_X(x|\theta)$ as the parametric model function

4□ > 4□ > 4 = > 4 = > = 90

Slides 1, 2015

Random Samples

- ullet The objective of statistical inference is thus to assess aspects of our unknown parameters heta given random samples
- Notation: X and X_i represent random variables; x and x_i represent observed values of the random variable X
- Notation: boldface denotes multiple variates where **X** represents random variables $(X_1, X_2, ..., X_n)$, and **x** represents observations $(x_1, x_2, ..., x_n)$
- There are three major components to statistical inference: point estimation, confidence/interval estimation, and hypothesis testing
- ullet Point estimation is a single value estimate of $heta_i$ computed from the data x
- Confidence estimation provides a set of values having a probability of including the true (but unknown) value of θ_i
- Hypothesis testing involves setting up a hypothesis about θ_i and assessing the plausibility of the hypothesis using the data x
- We will also focus on the theory of linear regression and anova in the second half of the term

M. Franklin (USC) PM522b Slides 1, 2015 13 / 38

《中》《圖》《意》《意》

Frequentist vs Bayesian Inference

Two types of inference exist: Frequentist and Bayesian In the context of understanding the unknown parameter θ given random samples, we can describe the two approaches. Suppose the unknown parameter of interest is the mean μ of a normal distribution and we have observations $x_1, x_2, ... x_n$:

- Frequentist approach:
 - We do not make any further probabilistic assumptions on the parameter
 - Treat μ as a fixed but unknown constant
 - Use data reduction techniques to summarize the information in the sample (i.e. sample mean). This summary is a function which is also known as a statistic.
 - The data are a repeatable random sample. That is, sampling is infinite.
 - Assessment of the suitability of the estimate for our unknown parameter is based in how it would perform if done repeatedly (frequency interpretation)
 - ullet That is, uncertainty in the estimate for μ

M. Franklin (USC) PM522b Slides 1, 2015 14 / 38

Frequentist vs Bayesian Inference

Two types of inference exist: Frequentist and Bayesian In the context of understanding the unknown parameter θ given random samples, we can describe the two approaches. Suppose the unknown parameter of interest is the mean μ of a normal distribution and we have observations $x_1, x_2, ... x_n$:

- Bayesian approach:
 - Treat μ as having a probability distribution, not fixed
 - The prior distribution on the unknown parameter is either known, assumed on some information, or drawn from thin air
 - \bullet The uncertainty in μ is taken into account with the prior, without using the observations
 - Use Bayes' theorem to modify the probability of our unknown parameter given the observations
 - ullet The posterior distribution is the modified prior distribution of the unknown μ

M. Franklin (USC) PM522b Slides 1, 2015 15 / 38

Random Variables, Functions, and Samples

- The classical, frequentist approach is concerned with experiments that are replicated a fixed number of times
- Replication means that each repetition is performed under identical conditions and is mutually independent (iid)
- We use the sample to extract information used to draw inferences about the population

Slides 1, 2015

Empirical Distribution Function

 For discrete probability distributions we can define the empirical distribution function (edf)

Empirical Distribution Function (edf)

Let our sample $x_1, x_2, ... x_n$ be iid random variables with cdf F_n

The edf associated with the sample \hat{F}_n is the discrete distribution function defined by assigning probability 1/n to each x_i

Example edf: A fair die is rolled n=20 times resulting in the sample x=1,2,3,6,3,4,5,2,5,1,2,4,4,2,3,5,6,1,2,6 the edf \hat{P}_{20} assigns the probabilities:

x_i	$\#x_i$	$\hat{P}_{20}(x_i)$
1	3	0.15
2	5	0.25
3	3	0.15
4	3	0.15
5	3	0.15
6	3	0.15

M. Franklin (USC) PM522b Slides 1, 2015 17 / 38

Empirical Distribution Function

- The true probabilities are 1/6 but the empirical probabilities range from 0.15 to 0.25
- The fact that the empirical probabilities \hat{P}_n differ from P_n is sampling variation
- $\hat{P}_n(A) = \#\{x_i \in A\}\frac{1}{n}$
- \bullet The empirical cumulative distribution function associated with \hat{P}_n is denoted \hat{F}_n

Definition: Empirical cdf

$$\hat{F}_n(a) = \hat{P}_n(X \le a) = \frac{\#\{x_i \le a\}}{n}$$

4□ > 4□ > 4 □ > 4 □ > □ 900

M. Franklin (USC)

PM522b

Empirical CDF

M. Franklin (USC)

Empirical CDF

M. Franklin (USC)

Relating samples to populations: Mean

- Expected values are another common estimate of the population from our random sample
- Let $E(X_i) = \mu$ denote the population mean
- We can use the plug-in principle to estimate the mean
- For our sample $x_1, x_2, ... x_n$, $\hat{\mu}_n = \sum_{i=1}^n \frac{x_i}{n}$

Example: mean of the empirical distribution

A fair die is rolled n = 20 times resulting in the sample

 $x = \{1, 2, 3, 6, 3, 4, 5, 2, 5, 1, 2, 4, 4, 2, 3, 5, 6, 1, 2, 6\}$ the population mean is:

$$\mu = E(X_i) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

But the sample mean is 3.35

$$\hat{\mu}_{20} \neq \mu$$

400 400 400 400 000

Relating samples to populations: Variance

- Variance is another common estimate of the population from our random sample
- Let $V(X_i) = \sigma^2$ denote the population variance
- We can use the plug-in principle to estimate the variance of the empirical distribution
- For our sample $x_1, x_2, ... x_n$, $\hat{\sigma}_n^2 = \sum_{i=1}^n \frac{(x_i \hat{\mu}_n)^2}{n}$

Example: variance of the empirical distribution

A fair die is rolled n=20 times resulting in the sample $x=\{1,2,3,6,3,4,5,2,5,1,2,4,4,2,3,5,6,1,2,6\}$ the population variance is: $\sigma^2=E(X_i^2)-(E(X_i))^2=\frac{1^2+2^2+3^2+4^2+5^2+6^2}{6}-3.5^2=2.92$ But the sample variance is 1.73

 $\hat{\sigma}_{20}^2 \neq \sigma^2$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

M. Franklin (USC) PM522b Slides 1, 2015 22 / 38

Relating samples to populations: Quantiles

- Quantiles are another common estimate of the population from our random sample
- The estimate of the population quantile is the corresponding quantile of the empirical distribution (e.g. median (2nd quantile or 50%) and interquartile range (3rd-1st quntile or 75%-25%))
- We can use the plug-in principle to estimate the quantiles of the empirical distribution

Example: quantiles of the empirical distribution

If we take n=20 draws from a Uniform distribution $X\sim U(1,5)$ resulting in the sample x={4.92, 4.89, 1.93, 2.25, 3.08, 2.58, 3.91, 3.11, 2.56, 1.16, 3.55, 3.57, 1.16, 1.02, 2.20, 4.80, 4.94, 4.99, 2.68, 4.58} the population quantiles are: $Pr[X\leq x]\geq q$ and $Pr[X\geq x]\geq 1-q$ where q is the qth quantile, 0< q<1 For a continuous r.v., F(x)=q, so for $X\sim U(1,5)$, F(x)=1/2 when x=3

M. Franklin (USC) PM522b Slides 1, 2015 23 / 38

◆□ > ◆圖 > ◆圖 > ◆圖 >

Relating samples to populations: Quantiles and the Uniform Distribution

Order Statistics

- Sample (empirical) quantiles are determined through order statistics.
- The order statistic of a random sample is denoted $X_{(1)}, X_{(2)}, ... X_{(n)}$ and satisfies $X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$ where $X_{(1)} = \min_{1 \leq i \leq n} X_i$
- For any number q between 0 and 1, the qth quantile is the observation that approximately nq of the observations are less than this observation and n(1-q) are greater
- If nq is an integer, then the qth quantile is any real number such that $X_{(nq)} \leq X \leq X_{(nq+1)}$
- if nq is not an integer, then the qth quantile is $X_{\lceil nq \rceil}$ where $\lceil nq \rceil$ is the ceiling (smallest integer greater or equal to nq)
- The percentile is often used and is defined as the 100qth sample percentile

→□▶→□▶→■▶→■ 990

Order Statistics

Example con't: quantiles of the empirical distribution

Recall our (ordered) random sample $x=\{1.02, 1.16, 1.16, 1.93, 2.20, 2.25, 2.56, 2.58, 2.68, 3.08, 3.11, 3.55, 3.57, 3.91, 4.58, 4.80, 4.89, 4.92, 4.94, 4.99\}$

The median, q=0.5 is any number between $x_{(10)}=3.08$ and $x_{(11)}=3.11$ The 25%ile, q=0.25 is any number between $x_{(5)}=2.20$ and $x_{(6)}=2.25$ The 75%ile, q=0.75 is any number between $x_{(15)}=4.58$ and $x_{(16)}=4.80$ The 99%ile q=0.99 is $x_{(19.8)}$ which is $x_{(20)}=4.99$ since $\lceil nq \rceil = \lceil 19.8 \rceil = 20$

Note: the population median (3) is not equal to the sample median q=0.5 which is the mean of $x_{(10)}=3.08$ and $x_{(11)}=3.11$, x=3.095

26 / 38

M. Franklin (USC) PM522b

Order Statistics

- Note what we can have a non-unique median when nq is an integer
- This is commonly dealt with by the following:
- When *n* is odd then the empirical median is: $x_{\lceil n/2 \rceil}$
- When n is even then the empirical median is: $\frac{\chi_{(n/2)} + \chi_{n/2+1}}{2}$

Order Statistics: Discrete Distributions

• For a random sample $X_1, ..., X_n$ from a **discrete** distribution with pmf $f_X(x_i) = p_i$ and the possible values of X are in ascending order $x_1 < x_2 < ... < x_i$ then

$$P_0 = 0$$
 $P_1 = p_1$
 $P_2 = p_1 + p_1$
 \vdots
 $P_i = p_1 + p_2 + ... + p_i$

• The order statistics from the sample are $X_{(1)}, X_{(2)}, ... X_{(n)}$, so:

$$P(X_{(j)} \le x_i) = \sum_{k=j}^{n} {n \choose k} P_i^k (1 - P_i)^{n-k}$$

and

$$P(X_{(j)} = x_i) = \sum_{k=j}^{n} \binom{n}{k} [P_i^k (1 - P_i)^{n-k} - P_{i-1}^k (1 - P_{i-1})^{n-k}]$$

M. Franklin (USC)

Order Statistics: Discrete Distributions

- To prove $P(X_{(j)} \le x_i)$, fix i and define Y to be a random variable that is the count of the number of $X_1, ..., X_n$ that are less than or equal to x_i
- Thus, the event $\{X_{(j)} \le x_i\}$ can be thought of as a success and $\{X_{(j)} > x_i\}$ can be thought of as a failure
- With these definitions of success and failures, Y is defined as the number of successes in n trials. In other words, $Y \sim Bin(n,P_i)$
- Relating back to our X's, the event $\{X_{(j)} \leq x_i\}$ is equivalent to the event $\{Y \geq j\}$ and we express this with the Binomal probability
- $P(X_{(j)} \le x_i) = P(Y \ge j)$ and following this, the equality $P(X_{(j)} = x_i) = P(X_{(j)} \le x_i) P(X_{(j)} \le x_{i-1})$. Thus the two equations are established.

M. Franklin (USC)

Order Statistics: Discrete Distributions

Example: Probability of a discrete order random variable

Suppose we roll a dice 15 times (independent rolls), $P(X_i = x) = 1/6$. What is the probability that the third largest roll is at least 5?

We have the ordered random variables $X_{(1)},...,X_{(15)}$ with the third largest being the 13th of the 15 rolls. Thus, we want to find $P(X_{(13)} \ge 5)$.

From the definition $P_i = p_1 + p_2 + ... + p_i$, We have $P_i = P(x < 5) = 4/6$

$$P(X_{(13)} \le 5) = \sum_{k=13}^{15} {15 \choose k} (4/6)^k (1 - 4/6)^{15-k}$$

= 105(2/3)^{13} (1/3)^2 + 15(2/3)^{14} (1/3) + (2/3)^{15}
= 0.07936

Thus $P(X_{(13)} \ge 5) = 1 - P(X_{(13)} \le 5) = 1 - 0.07936 = 0.92064$

4□ > 4□ > 4□ > 4 = > 4 = > 4 =

Order Statistics: Continuous Distributions

• For a random sample with order statistics $X_{(1)}, X_{(2)}, ... X_{(n)}$ from a **continuous** distribution with cdf $F_X(x)$ and pdf $f_X(x)$. The CDFthe pdf of $X_{(i)}$ is:

$$f(X_{(j)}(x)) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$$

- The proof of this lies in taking the derivative of the cdf of $X_{(i)}$ to obtain the pdf (see CB theorem 5.4.4)
- As in the discrete case, define Y to be a random variable that is the count of the number of $X_1, ..., X_n$ that are less than or equal to x
- Thus, the event $\{X_{(i)} \leq x\}$ can be thought of as a success
- With this definition of success, Y is defined as the number of successes in n trials. In other words, $Y \sim Bin(n,F_x(x))$
- Although X is continuous, by this definition Y is a counting variable and is discrete

M. Franklin (USC) PM522h Slides 1, 2015 31 / 38

(미) (리) (리) (리) (리)

Order Statistics: Continuous Distributions

- From the pdf of $X_{(j)}$, $f(X_{(j)}(x))$ we can dissect it into three terms of interest:
 - $[F_X(x)]^{j-1}$ representing the j-1 sample items below x_i
 - $[1 F_X(x)]^{n-j}$ representing the n-j sample items above x_i
 - f_X (x) representing the sample item near x_i

Example: Uniform Order Statistic

Suppose we have $X_{(1)}, X_{(2)}, ... X_{(5)}$ from a Uniform distribution on [0,1], what is the pdf of the the second order statistic? For Unif[0,1]:

$$f_X(x) = \begin{cases} 1, 0 \le x \le 1 \\ 0, \text{ otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0, x < 0 \\ x, 0 \le x \le 1 \\ 1, x > 1 \end{cases}$$

4□ > 4回 > 4 至 > 4 至 > 至 り 9 0 ○

Order Statistics: Continuous Distributions

Example: Uniform Order Statistic, con't

$$f_{X_{(2)}}(x_2) = \frac{5!}{(2-1)!(5-2)!} f_X(x_2) [F_X(x_2)]^{2-1} [1 - F_X(x_2)]^{5-2}$$

$$= \begin{cases} 20x_2(1-x_2)^3, 0 \le x_2 \le 1\\ 0, \text{ otherwise} \end{cases}$$

We also note that the jth order statistic from a uniform [0,1] has a beta(j, n-j+1) distribution

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} x^{j-1} (1-x)^{n-j}$$
$$= \frac{\Gamma(n+1)}{\Gamma(j)\Gamma(n-j+1)} x^{j-1} (1-x)^{(n-j+1)-1}$$

From which the expected value and variance for the uniform order statistics can be defined: $E(X_{(j)}) = \frac{j}{n+1}$ and $Var(X_{(j)}) = \frac{j(n-j+1)}{(n+1)^2(n+2)}$

M. Franklin (USC) PM522b Slides 1, 2015 33 / 38

Graphical Representations

- Graphical uses of quantiles can be useful in determining aspects of the population from our random sample
- Box plots: gives an indication of symmetry of distribution
 - create a box around the 1st and 3rd quartile (25% and 75%)
 - add a line at the median (50%)
 - extend whiskers to extreme values (1.5 iqr or 5%-95%)
 - add outliers as points beyond the whiskers

Random Sample Chi-Sq Distribution n=100

4 D > 4 D > 4 E > 4 E > E = 900

Graphical Representations

- Graphical uses of quantiles can be useful in determining aspects of the population from our random sample
- QQ plots: gives an indication of how close the ditribution of your random sample is to a theoretical distribution
 - called a normal QQ or normal probability plot when you compare to normal quantiles
 - QQ plot is similar to the EDF

M, Franklin (USC)

Theoretical Crumilies

PM522b

Slides 1, 2015

Graphical Representations

QQ plot Uniform

M. Franklin (USC)

Sampling from the Normal Distribution

Under the assumption of normality, there are a few properties of \bar{X} and S^2 that are important. First, recall for our sample,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})}{n-1}$$

For $X \sim (\mu, \sigma^2)$

- $oldsymbol{0}$ $ar{X}$ and S^2 are independent
- ② $\bar{X} \sim N(\mu \sigma^2/n)$, namely $E(\bar{X}) = \mu$ and $Var(\bar{X}) = \sigma^2/n$
- 3 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

For 2, we recall that the sum of independently normally distributed random variables also has a normal distribution. Also, a linear transformation of a normally distributed variable is also normally distributed.

Sampling from the Normal Distribution

Proving 1, the independence between \bar{X} and S^2 , we look at n-1 deviations $(X_1 - \bar{X}, X_2 - \bar{X}, ..., X_{n-1} - \bar{X})$ and show that \bar{X} is independent of $X_i - \bar{X}$ by showing $\text{Cov}(\bar{X}, X_i - \bar{X}) = 0$. Since S^2 is a function of $X_i - \bar{X}$ then it is independent of \bar{X} .

38 / 38

M. Franklin (USC) PM522b Slides 1, 2015