I Magnetism

1: Introduction

1.1 Gauss's Law of Magnetism

- The law related to the passage of the magnetic flux through a closed surface.
- No point source of M-fields.
- Flux must be circulate.
- For a fixed surface, the flux out is equal to that in.
- The M-pole cannot be enclosed.

1.2 The order of the magnitude for magnetic flux density, \vec{B} , in Tesla

- Surface of earth: 10^{-4}
- Interstellar space: 10^{-8}
- Iron magnet: 10^{-2}
- Strong magnet: 1
- ullet Superconducting solenoid: 1^1
- Neutron: 10^8

2: Magnetic fields

2.1: Empirical observations: Force in wires

- The same direction I affect each other.
- The different direction I reject each other.

2.2: Caparison with the electrical fields

- In electrical fields, $\vec{D}=\epsilon\vec{E}$,while the \vec{D} is material independent.
- In magnetic fields, $\vec{H}=\frac{1}{\mu}\vec{B}$, while \vec{H} is materials independent.

2.3: Gauss's Laws

- In E-fields, $\int_S ec{D}.dec{A} = Q_{enclosed}$, and $abla.ec{D} =
 ho$
- In magnetic,

$$\int_S .d ec{A} = 0$$
, and $abla . ec{B} = 0$

2.4: The Biot-Savart Law

- Biot-Savart Law -analogous to the principle of superposition
- $\vec{H} = \int \frac{id\vec{l} \times \vec{r}}{4\pi r^3}$
- An example:

a is the distance from a point to the wire with a current. The Biot-Savart shows that: $|\vec{H}|=rac{\imath}{2\pi a}$

And
$$|ec{B}|=rac{\mu_r\mu_0i}{2\pi a}$$

- Direction of the magnetic fields can be defined by the right hand screw rule.
- The geometric interpretation: i can be treated as the current passing the loop, and the $2\pi r$ is the length of the loop.

2.5: Ampere's Law

- $\oint_C \vec{H}.d\vec{l} = i$
- Just as the geometry interpretation above.
- The comparison of Gauss's Law and Ampere's Laws:
 - \circ Gauss's Law: $\oint_S ec{D}.dec{A} = q$
 - \circ Ampere's Law: $\oint_C ec{H}.dec{l}=i$

2.6: Magnetic field from a current loop

• The field at the centre is:

$$\int rac{idec{l} imesec{r}}{4\pi r^3}$$

- ullet r is the constant, and $dec{l} imesec{r}=rdl\hat{z}$
- $|\vec{H}| = \frac{i}{2\pi}$

2.7: An important application of Ampere's Law

- N is the total length of the turn of the solenoid, n is the turns density.
- $\oint_C \vec{H}.d\vec{l} = \int_B^C \vec{H}.d\vec{l} = HL_{AB} = N_{AB}i$

•
$$H=rac{N_{AB}}{L_{AB}}i=ni$$

2.7: Faraday's Law

2.7.1 Faraday's idea

- $i \rightarrow H$
- ullet Faraday surmised H o i
- · What we need is to change the magnetic fields

2.7.2 Induced e.m.f(voltage)

- The e.m.f is electromotive force.
- $\epsilon = -\frac{d\varPhi}{dt}$, where the φ is the flux passing the loop.
- The sign of the voltage can be inferred by Lenz's Law.
- · For coils,

$$\epsilon = -N\frac{d\Phi}{dt} = -\frac{d\Phi}{dt}$$

2.7.3 Application of Faraday 's Law

- Voltage and induction
 - $\circ~$ As we know above: arPhi=Li
 - $\circ~$ Apply Faraday's Law: $|V|=rac{darPhi}{dt}$
 - \circ i.e: $|V|=rac{dL}{dt}i+rac{di}{dt}L$
 - \circ L is a constant in time so $\dfrac{dL}{dt}=0$
 - $\circ |V| = L \frac{di}{dt}$
 - \circ Add the resistance: $|V| = Lrac{di}{dt} + iR$
 - \circ Now for the power: $P=i|V|=iLrac{di}{dt}+i^2R$
- Energy in the field

$$\circ~U_{ind}=\int_{t1}^{t2}P(t)dt$$
, i.e. $U_{ind}=rac{1}{2}Li_2^2-rac{1}{2}Li_1^2$

- $\circ\hspace{0.2cm}$ For an alternating current, the stored energy alternated.
- Inductive coupling: a two coil system
 - o A ring of metal forms a path for magnetic flux.

- · A coil of wire is wrapped around the ring.
- The coil-1 is connected to a power supply while the coil-2 is not.
- The changing flux from the first coil passes and interacts with the second coil, which generate the voltage.
- $\circ~$ The flux from coil-1 is: $arPhi=N_1\,arPhi_1=i_1L_1$
- \circ The flux passes through the coil-2: $arPhi_2=N_2\,arPhi_1=rac{N_2}{N_1}L_1i_1=M_{21}i_1$
- The quantity M_{21} is the mutual induction.

$$\circ \ \ U = \frac{1}{2} L_1 i_1^2$$

$$\circ \ arPhi_1 = i_1 L_1 + M_{12} i_2$$

$$\circ$$
 The total energy is $:\!U=rac{1}{2}L_1i_1^2+M_{12}i_1i_2+rac{1}{2}L_2i_2^2$

- · Coupled coils and voltage
 - \circ The alternating voltage in coil-1 generate a flux φ_1
 - Then in coil-2:

$$|V_2|=rac{darPhi_2}{dt}=rac{N_2}{N_1}V_1$$