Алгоритм Евклида и линейные уравнения

Листок №21

Задача 1°. Даны целые числа a>b>0. Алгоритм Евклида можно описать так: делим a на b, получаем остаток $r_1< b$, затем делим b на r_1 , получаем остаток $r_2< r_1$, делим r_1 на r_2 , получаем остаток $r_3< r_2$, и т. д. Докажите, что какой-то остаток r_{n-1} разделится нацело на r_n , и $r_n=(a,b)$.

Задача 2[©]. Найдите **а)** (525, 231); **б)** (7777777, 7777); **в)** (10946, 17711); **г)** $(2^m - 1, 2^n - 1)$.

Задача 3. а) В обозначениях задачи 1 докажите, что каждое из чисел r_1, r_2, \ldots можно представить в виде ax + by, подобрав подходящие целые x и y.

- **б)** Как с помощью алгоритма Евклида найти такие целые числа x и y, что ax + by = (a, b)?
- в) Докажите, что (a, b) делится на любой общий делитель чисел a и b.

Задача 4^{\varnothing} . С помощью пункта б) предыдущей задачи докажите, что если (a,b)=1 и ac : b, то c : b.

Задача 5. Какие расстояния можно отложить от данной точки на прямой, пользуясь двумя шаблонами (без делений) длины a см и b см (где (a,b)=d)?

Задача 6. Решите в целых числах x, y уравнения **a)** 12x = 42y; **б)** ax + by = 0, где (a, b) = d; **в)** 2x + 3y = 1; **г)** 4x + 6y = 2; **д)** 4x + 6y = 5; **e)** 20x + 19y = 2019.

Задача 7^{\varnothing} . а) Докажите, что уравнение ax+by=c имеет решение в целых числах x,y если и только если c:(a,b). б) Как найти одно из решений? в) Зная одно решение (x_0,y_0) , докажите, что остальные получаются по формуле $\left(x_0+\frac{b}{(a,b)}t,y_0-\frac{a}{(a,b)}t\right)$, когда t пробегает все целые числа.

Задача 8. Рассмотрим на координатной плоскости множество $\{(x,y) \mid x, y - \text{целые}, ax + by = c\}$, то есть все целые точки (x,y), дающие решения уравнения ax + by = c. **a)** Докажите, что все эти точки лежат на одной прямой и делят её на равные отрезки. **б)** Найдите длину этих отрезков.

Задача 9°. (Китайская теорема об остатках) а) Пусть натуральные числа a и b взаимно просты, r_1 и r_2 — целые неотрицательные числа, меньшие a и b соответственно. Докажите, что найдётся число, дающее при делении на a остаток r_1 , а при делении на b — остаток r_2 . б) Как найти остальные такие числа? в)* Обобщите теорему на случай, когда надо найти все числа, дающее данные остатки r_1, \ldots, r_n при делении на данные попарно взаимно простые натуральные числа a_1, \ldots, a_n .

Задача 10[©]. Решите в целых числах уравнение 2x + 3y + 5z = 1.

Задача 11. а) В фирме 28 служащих с большим стажем и 37 — с маленьким. Хозяин фирмы выделил некую сумму для подарков служащим на Новый год. Бухгалтер подсчитал, что есть только один способ разделить деньги так, чтобы все служащие с большим стажем получили поровну и все с маленьким — тоже поровну (все получают целое число рублей, большее 0). Какую наименьшую и какую наибольшую сумму мог выделить хозяин на подарки? б)* А если ещё требуется, чтобы служащий с большим стажем получил больше денег, чем служащий с маленьким стажем?

Задача 12. Натуральные числа a и b взаимно просты. Докажите, что уравнение ax + by = c

- а) при любом целом c имеет такое решение в целых числах x и y, что $0 \leqslant x < b$;
- **б)** имеет решение в *целых неотрицательных* числах x и y, если c целое, большее ab-a-b;
- в)* при целых c от 0 до ab-a-b ровно в половине случаев имеет целое неотрицательное решение, причём если для $c=c_0$ такое решение есть, то для $c=ab-a-b-c_0$ таких решений нет.

Задача 13*. Слонопотам типа (p,q) ходит по бесконечной клетчатой доске, сдвигаясь за ход на p клеток по любому направлению «горизонталь-вертикаль» и на q клеток по оставшемуся. (Шахматный конь — слонопотам типа (1,2).) Какие слонопотамы могут попасть на соседнее с собой поле?

Задача 14*. Натуральные числа m и n взаимно просты. Известно, что дробь $\frac{m+179n}{179m+n}$ можно сократить на число k. Каково наибольшее возможное значение k?

Задача 15*. Есть шоколадка в форме равностороннего треугольника со стороной n, разделенная бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломить от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок — треугольник со стороной 1, — победитель. Тот, кто не может сделать ход, досрочно проигрывает. Кто выигрывает при правильной игре?

1	2 a	2 6	2 B	2 г	3 a	3 6	3 B	4	5	6 a	6	6 B	6 г	6 д	6 e	7 a	7 6	7 B	8 a	8	9 a	9	9 B	10	11 a	11 б	12 a	12 б	12 B	13	14	15