

עבודת הגשה מס' 3

- הגשת עבודות בזוגות.
- הגשת עבודה בכתב קריא בקובץ PDF אחד בלבד דרך המודל.
 - (אין לשלוח עבודה במייל!) •
 - כל יום איחור בהגשת עבודה מוריד 5 נקודות מהציון.
 - <u>אין קבלת עבודות באיחור של יותר מ-3 ימים.</u>
- <u>שאלות בנוגע לעבודה למתרגל אבישי במייל avishka@ac.sce.ac.il</u> או בשעות הקבלה. אין לפנות למרצה בשאלות!

קבוצת דקדוקים (SLR ,LR(0, דקדוקים

1. בעבור כל אחד מהדקדוקים הבאים, יש לענות על הסעיפים א'-ג':

:1 דקדוק

- (1) $S \rightarrow C D$
- (2) $C \rightarrow p C$
- (3) $C \rightarrow \epsilon$
- (4) $D \rightarrow q D$
- (5) D $\rightarrow \epsilon$

:2 דקדוק 2

- (1) $S \rightarrow X Y Z$
- (2) $X \rightarrow u$
- (3) $Y \rightarrow V Y$
- (4) $Y \rightarrow v$
- $(5) Z \rightarrow W$
- א. להרחיב את הדקדוק ע"י הוספת כלל: $S' oldsymbol{ oldsymbol{ oldsymbol{S}'}} S'$ ולחשב את הקבוצות של פריטי א. LR(0). (יש לבנות טבלת ניתוח).
 - ב. האם הדקדוק מתאים ל- (LR(0)? אם כן, יש להריץ מילה שמתקבלת על ידי הדקדוק
- ג. האם יתכן שהדקדוק SLR ? יש להראות ולנמק ואם כן, יש להריץ מילה שמתקבלת על ידי הדקדוק.

- (1) $S \rightarrow C D$
- (2) $C \rightarrow p C$
- 2) O → p
- (3) $C \rightarrow \epsilon$
- (4) $D \rightarrow q D$
- (5) D $\rightarrow \epsilon$

ג. האם יתכן שהדקדוק SLR ? יש להראות ולנמק ואם כן, יש להריץ מילה שמתקבלת על ידי הדקדוק.

(יש לבנות טבלת ניתוח). LR(0).

items:

א. להרחיב את הדקדוק ע"י הוספת כלל: $S' \to S$ (0) ולחשב את הקבוצות של פריטי

ב. האם הדקדוק מתאים ל- (LR(0)? אם כן, יש להריץ מילה שמתקבלת על ידי הדקדוק

$$0. \qquad S \rightarrow S \qquad S' \rightarrow .S \qquad , S' \rightarrow S.$$

$$e. \qquad S \rightarrow C \rho \qquad S \rightarrow C \rho, S \rightarrow C \rho.$$

(718)17 S/R 1017 13 28/0) -5 2" e 16 7197.80 : SLA 10 7.92] S, C, D 3/8 Follow NG 200 SLR - 57"C NG 71328 33 Follow(S) = } \$ } Follow(C) = {(Fids}(0)-E) + follow(S) } = {q\$} Follow(0) = \$ \$ 3 . follow -S 020), X '2010 JUNE (' PE -: Follow '710 3 7,750 E B Firs € (ih) x -200 22.6d 500 6. PIC -X-110 360 11 h Follow 310 P10-

input SJack action Pg \$ t3, gofo (6) 0 p3 12, godd) Op, Lb 062 0 Cz 95 ds, g. 20(7) tn, godo (4) 0 ls g 507 \$ J. ,9020 CI) 0 4 0 5, acc \$

- $(1) S \rightarrow X Y Z$
- (2) $X \rightarrow u$
- (3) $Y \rightarrow v Y$
- $(4) Y \rightarrow V$
- (5) $Z \rightarrow w$

- o. s'-> s
- 1. S -> XYZ
- 2. X -> u
- $3. \qquad Y \rightarrow V$
- 4. Y-7 V
- 5. Z-7w

- .2, 2.
- .XYZ, X.YZ, XY.Z, XYZ.
- .u ,u.
- •vY , v, Y , u Y.
- . v , v.
- ω , ω .

$$-60$$
 $= I_3 = \{ \times -7 u \}$

=
$$600(I_5, v) = I_5$$

u v w \$ $ X $ 2 S	
1. S ₃ γ γ γ 2 5	
I. Acc	
II SS H	
\mathcal{I}_3 \mathcal{R}_2	
14 S7 6	
Is S ₅ R ₄ 8	
T7	
I_8 A_3	

Fix & (Y) = V

Fix57 (2) = w

inpuz Steck Action avw\$ S₃ 04/3 VW S ts, godo(2) OX2 vw J 5-OXZV3 1-4, go 20(4) W 1 w & 0 x 2 Y 4 52 OX2 Y4 W7 کے, عام (b) 0 X 2 Y 4 Z G H, g. f. (1) o S, Acc

.2	בעבור כל אחד מהדקדוקים הבאים, יש לבנות טבלת ניתוח (LR(1 ולקבוע אם הדקדוק
	מתאים לזה. במידה וכן, יש להריץ מילה עם 3 טוקנים לפחות. במידה ולא, יש להראוח
	מדוע.

יש להראות את כל השלבים.

:1 דקדוק

(1)S
$$\rightarrow$$
 x A z

(2)S
$$\rightarrow$$
 x z

(4)A
$$\rightarrow \epsilon$$

:2 דקדוק

(1)S
$$\rightarrow$$
 X r

(2)S
$$\rightarrow$$
 p r

$$\textbf{(3)}X \rightarrow p Y$$

$$\textbf{(4)}X \rightarrow \epsilon$$

(5)
$$Y \rightarrow q$$

$$\textbf{(6)}Y \rightarrow \epsilon$$

:3 דקדוק

(1)S
$$\rightarrow$$
 S S

בהצלחה!!!

2. בעבור כל אחד מהדקדוקים הבאים, יש לבנות טבלת ניתוח (LR(1 ולקבוע אם הדקדוק מתאים לזה. במידה וכן, יש להריץ מילה עם 3 טוקנים לפחות. במידה ולא, יש להראות

יש להראות את כל השלבים.

דקדוק 1:

(1)S
$$\rightarrow$$
 x A z

(3)A
$$\rightarrow$$
 y

$$(1)S \to X A$$

$$\textbf{(2)}S \to x \ z$$

$$(3)A \rightarrow 3$$

$$\textbf{(4)} A \to \epsilon$$

Clousal(A) =
$$A \rightarrow .9$$
, $A \rightarrow .$

o. s' → s

1. S -> x Az

 $2. S \rightarrow XZ$

 $3 \rightarrow y$

4. A -> E

$$I_{o} = \left\{ (S' \rightarrow S, \$), (S \rightarrow XA_{2}, \$), (S \rightarrow XZ_{2}, \$) \right\}$$

$$g_{o} \downarrow_{o} (I_{o}, S) = I_{1} = \left\{ (S' \rightarrow S, \$) \right\}$$

$$Acc$$

$$g_{o} \downarrow_{o} (I_{o}, X) = I_{2} = \left\{ (S \rightarrow XZ_{2}, \$), (S \rightarrow XA_{2}, \$), (A \rightarrow Y_{1}, 2), (A \rightarrow Y_{2}, 2) \right\}$$

$$g_{o} \downarrow_{o} (I_{2}, X) = I_{3} = \left\{ (S \rightarrow XZ_{2}, \$) \right\}$$

$$g_{o} \downarrow_{o} (I_{2}, A) = I_{4} = \left\{ (S \rightarrow XA_{2}, \$) \right\}$$

$$g_{o} \downarrow_{o} (I_{2}, Y) = I_{5} = \left\{ (A \rightarrow Y_{1}, 2) \right\}$$

$$g_{o} \downarrow_{o} (I_{4}, X) = I_{6} = \left\{ (S \rightarrow XA_{2}, \$) \right\}$$

$$g_{o} \downarrow_{o} (I_{4}, X) = I_{6} = \left\{ (S \rightarrow XA_{2}, \$) \right\}$$

$$g_{o} \downarrow_{o} (I_{4}, X) = I_{6} = \left\{ (S \rightarrow XA_{2}, \$) \right\}$$

In	X	y	2	*	5	A	
1.	Sa				-		
I,				Acc			
12		55	53/A4			4	
13				P2			
14			56				
15			P-3				
14				A,			

$$G. \quad Y \rightarrow \mathcal{E}$$

(1)S
$$\rightarrow$$
 X r

(3)
$$X \rightarrow p Y$$

(4)
$$X \rightarrow \epsilon$$

(6)Y
$$\rightarrow \epsilon$$

Firs
$$\neq$$
 (S) = $\{\rho, +\}$
Firs \neq (X) = $\{\rho, \epsilon\}$
Firs \neq (Y) = $\{q, \epsilon\}$

$$\begin{split} &\mathbf{1}_{o} = \underbrace{\partial \left(\mathbf{S}^{'} - \mathbf{P}_{o} \cdot \mathbf{S}^{'}, \mathbf{S}^{'} \right), \left(\mathbf{S} - \mathbf{P}_{o} \cdot \mathbf{S}^{'} \right), \left(\mathbf{S} - \mathbf{P}$$

(1)S
$$\rightarrow$$
 S S

$$o. S \rightarrow S$$