Dark Matter Reinterpretation using Razor Variables and Simplified Models

Lingxin Meng

July 18, 2014

- Evidence: astrophysics
 - Rotating speed of galaxy spirals
 - Thickness of galaxy discs
 - Anisotropies in CMB
 - Gravitational lensing of Bullet Cluster
- Criteria
 - Lifetime
 - No electromagnetic interaction
 - Relic mass density
- Candidates
 - Primordial black holes
 - Axions
 - Sterile neutrinos
 - WIMPs

- Weakly Interacting Massive Particles (10 GeV 10 TeV)
- Produced in the early Universe's "freeze-out"
- MSSM prediction: weakly interacting particle with 100 GeV
 → "WIMP miracle"

DM detection:

- Direct Search: nuclear recoil spectrum
 - Low recoil energy
 - Backgrounds
 - Local DM density
- Indirect Search: annihilation & decay products
 - CR background
 - DM halo density variation

Collider

- Independent from astrophysical assumptions
- Complementary to direct and indirect searches
- If couple to g or q, DM could be produced
- Signature: missing transverse energy

Missing Energy

- ATLAS: nearly 4π
- No SM charge → escape
- Jet reconstruction
- $\not\!E_T = E_{tot} E_{rec}$

Effective Field Theory vs. Simplified Models

- Momentum transfer in order of direct & indirect searches
- Contact interaction

- Momentum transfer > M_{Med}
- Underlying interactions

Razor Analysis

- Razor analysis on simplified models and EFT
- Discriminate heavy pair productions from SM backgrounds
- No assumption on ∉_T
- Backgrounds follow clean exponential distributions
- \bullet Two reconstructed objects in the final state \rightarrow "megajets", equal and opposite in the beam direction
- "Hemisphere"-algorithm
- Complementary dataset to monojet search

Razor variables:

$$egin{aligned} M_{ ext{R}} &= \sqrt{(\mathcal{E}_{ ext{j}_1} + \mathcal{E}_{ ext{j}_2})^2 - (\mathcal{p}_{ ext{z}}^{ ext{j}_1} + \mathcal{p}_{ ext{z}}^{ ext{j}_2})^2} \ M_{ ext{R}}^{ ext{T}} &= \sqrt{\not\!\!E_{ ext{T}}(\mathcal{p}_{ ext{T}}^{ ext{j}_1} + \mathcal{p}_{ ext{T}}^{ ext{j}_2}) - \vec{\not\!E}_{ ext{T}} \cdot (\vec{\mathcal{p}}_{ ext{T}}^{ ext{j}_1} + \vec{\mathcal{p}}_{ ext{T}}^{ ext{j}_2})} \ R &= rac{M_{ ext{R}}^{ ext{T}}}{M_{ ext{R}}} \end{aligned}$$

- Trigger on ∉_T > 40 GeV
- Primary vertex and > 5 tracks
- ullet Jets: $p_{
 m T} >$ 60 GeV, $\mid \eta \mid <$ 3.0
- e (μ): $ho_T > 20(10)\, \text{GeV}, \mid \eta \mid < 2.5(2.1)$
- Include hadronically decaying τ that suffice jet definition
- Signal region: leading jet with high p_T and high $\not\!\!E_T$

- MadGraph 5 event generator
- Pythia 8 parton shower
- AToM Automated Testing of Models
 - PGS detector smearing
 - Rivet analysis & histograms

- Collaboration with other summer students
- Write a monojet analysis
 - Use both EFT and simplified models for modelling of DM
 - Compare the limits
- Check the impact of the Razor analysis on signal selection