Kindly add the following new claims:

90. A compound having the formula:

$$P - N - \begin{bmatrix} B^{1} - X^{1} \end{bmatrix} + CH - X^{2} - CH - B(Z^{1})(Z^{2})$$

$$R = \begin{bmatrix} R^{1} & R^{2} & R^{3} \end{bmatrix}$$
(1a)

or a pharmaceutically acceptable salt thereof; wherein

P is R^7 –C(O)– or R^7 –SO–, where R^7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl;

 X^2 is -C(O)-NH-;

R is hydrogen or alky

R² and R³ are independently hydrogen, alkyl, cycloalkyl, aryl, or -CH₂-R⁵;

R⁵, in each instance is one of aryl, aralkyl, alkaryl, cycloalkyl, quinolinyl, pyridyl, indolyl, or -W-R⁶, where W is a chalcogen and R⁶ is alkyl;

where the ring portion of any of said aryl, aralkyl, or alkaryl in R^2 , R^3 and R^5 can be optionally substituted by one or two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C_{1-6})alkoxy, trifluoromethyl, halogen, C_{1-6} alkoxy, C_{6-10} aryl, C_{6-10} aryl(C_{1-6})alkoxy, hydroxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, C_{6-10} arylthio, C_{6-10} arylsulfinyl, C_{6-10} arylsulfonyl, C_{6-10} aryl, C_{1-6} alkyl(C_{6-10})aryl, and halo(C_{6-10})aryl;

Subj

Z¹ and Z² are independently one of hydroxy, alkoxy, or aryloxy, or together Z¹ and Z² form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and A is zero.

91. A compound of claim 90, wherein:

P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl;

A is zero;

 X^2 is -C(O)-NH-;

R is hydrogen or C₁₋₈ alkyl;

 R^2 and R^3 are each independently one of hydrogen, $C_{1.8}$ alkyl, $C_{3.10}$ cycloalkyl, $C_{6.10}$ aryl, or $C_{6.10}$ ar($C_{1.6}$)alkyl; and

 Z^1 and Z^2 are both hydroxy. $C_{1.6}$ alkoxy, or $C_{6.10}$ aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

92. The compound of claim 91, wherein P is 2-pyrazinecarbonyl, 8-quinolinesulfonyl or N-morpholinoyl.

A LAT

19

A compound having the formula:

$$P - N - \begin{bmatrix} B^{1} - X^{1} \end{bmatrix} - CH - X^{2} - CH - B(Z^{1})(Z^{2})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

or a pharmaceutically acceptable salt thereof; wherein

P is R^7 –C(O)– and R^7 is pyrazinyl;

 X^2 is -C(O)-NH-;

R is hydrogen or alkyl;

R² and R³ are independently hydrogen, alkyl, cycloalkyl, aryl, or -CH₂-R⁵;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, or -W-R⁶, where W is a chalcogen and R⁶ is alkyl;

where the ring portion of any of said aryl, aralkyl, or alkaryl in R^2 , R^3 and R^5 can be optionally substituted by one or two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C_{1-6})alkoxy, trifluoromethyl, halogen, C_{1-6} alkoxy, C_{6-10} aryl, C_{6-10} aryl(C_{1-6})alkyl, C_{6-10} aryl(C_{1-6})alkoxy, hydroxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfinyl, C_{6-10} arylthio, C_{6-10} arylsulfinyl, C_{6-10} aryl, C_{1-6} alkyl(C_{6-10})aryl, and halo(C_{6-10})aryl;

 Z^1 and Z^2 are independently one of hydroxy, alkoxy, or aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups

Org

separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

A is zero.

94. A compound having the formula:

$$P - N - \begin{bmatrix} B^1 - X^1 \end{bmatrix} - CH - X^2 - CH - B(Z^1)(Z^2)$$

$$R \begin{bmatrix} I \\ R^1 \end{bmatrix} - R^2 \begin{bmatrix} R^3 \end{bmatrix}$$
(1a)

or a pharmaceutically acceptable salt/thereof;

wherein

A is zero;

P is one of R^7 –C(O)–, or R^7 – SO_2 –[, R^7 –NH–C(O)– or R^7 –O–C(O)–];

 R^7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl;

$$X^2$$
 is $-C(O)-NH R^2$ is:

where

 A^1 and A^2 are independently one of hydrogen, C_{1-6} alkyl, halogen, monohalo (C_{1-6}) alkyl or trifluoromethyl;

A

R⁹ is one of hydrogen, C₁₋₈alkyl, phenyl, benzyl, phenethyl or pyridylmethyl;

R3 is C1-6alkyl; and

R is hydrogen or alkyl;

 Z^1 and Z^2 are both by thoxy, C_{1-6} alkoxy, or C_{6-10} aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

Kindly amend claims 2, 5, 11-18, 20-24 and 63-66 as follows:

Kindly amend claims 2, 5, 11, 13, 14, 15, 16, 20, 21 and 23, line 1 of each claim, by deleting "claim 1" and inserting -- claim 90 -- therefor.

(amended)

The compound of claim [1] 90, wherein:

[R¹, at each occurrence, and] R² and R³ are each independently one of hydrogen, C_{1-8} alkyl, C_{3-10} cycloalkyl, or C_{6-10} aryl, [a 5-, 6-, 9- or 10- membered heteroaryl group,] or $-CH_2-R^5$;

 R^5 , in each instance, is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, C_{3-10} cycloalkyl, C_{1-8} alkoxy, or C_{1-8} alkylthio [or a 5-, 6-, 9- or 10- membered heteroaryl group];

where the ring portion of any of said aryl, aralkyl, or alkaryl [or 5-, 6-, 9- or 10-membered heteroaryl] groups of [R¹,] R², R³ and R⁵ can be optionally substituted by one or two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino,

AS

ASIA

$$\begin{split} &\text{di}(C_{1\text{-}6})\text{alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo}(C_{1\text{-}6})\text{alkoxy,}\\ &\text{trifluoromethyl, halogen, $C_{1\text{-}6}$alkoxy, $C_{6\text{-}10}$aryl, $C_{6\text{-}10}$aryl($C_{1\text{-}6}$)$alkyl, $C_{6\text{-}10}$aryl($C_{1\text{-}6}$)$alkoxy,}\\ &\text{hydroxy, $C_{1\text{-}6}$alkylthio, $C_{1\text{-}6}$alkylsulfinyl, $C_{1\text{-}6}$alkylsulfonyl, $C_{6\text{-}10}$arylthio, $C_{6\text{-}10}$arylsulfinyl,}\\ &C_{6\text{-}10}$arylsulfonyl, $C_{6\text{-}10}$aryl, $C_{1\text{-}6}$alkyl($C_{6\text{-}10}$)$aryl, and halo($C_{6\text{-}10}$)$aryl.} \end{split}$$

17. (amended) The compound of claim [1] 90, wherein R² is one of isobutyl, 1-naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6-quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluoroberzyl, 4-hydroxybenzyl, [4-(2'-pyridylmethoxy)benzyl,] 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl.

(amended) The compound of claim [1] 90, wherein Z^1 and Z^2 are independently one of [C₁₋₆alkyl,] hydroxy, C₁₋₆alkoxy, or C₆₋₁₀aryloxy.

22. (amended) The compo

The compound of claim [1] 90, wherein:

P is one of 8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl, 2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 2-pyrazinesulfonyl, 3-pyridinecarbonyl, 3-fyransulfonyl or N-morpholinecarbonyl;

A is zero;

 X^2 is -C(O)-NH-;

R is hydrogen or C/8 alkyl;

R³ is isobutyl;

R² is one of sobutyl, 1-naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl, 6-quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluorobenzyl,

113

4-hydroxybenzyl, [4-(2'-pyridylmethoxy)benzyl, 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl; and

 Z^1 and Z^2 are independently one of hydroxy, C_{1-6} alkoxy, C_{6-10} aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol,

1,2-cyclobexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

The compound [of claim 23, wherein said compound is]

N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid, or a [an isostere,]

pharmaceutically acceptable salt or boronate ester thereof.

A pharmaceutical composition, comprising a compound of [claims 1, 25, 33, 43, 51, 58 or 61,] claim 90, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

A pharmaceutical composition, comprising a compound of [claims 22, 28, 41, 49, 55, 60 and 62] claims 25, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

65. (amended) A pharmaceutical composition, comprising a compound of [claims 23, 32, 42, 50, 56 and 57] claim 94, or a [an isostere,] pharmaceutically acceptable salt [or boronate ester] thereof, and a pharmaceutically acceptable carrier or diluent.

AS

AG

113