桂林电子科技大学试卷

2020-2021 学年第 2 学期

课程名称 - 高等數学 All (A卷 闭卷)适用班级(或年级、专业) ______2020 级

评卷人	得分	分 18	4		考试时间 120 分钟
			1	-	沖 班级
		14	N		
		12	TI.	4	
		12	>	-	与本
		4	-	+	
			11	1	
				71.	17 TX
				+	
				成绩	

- 、填空题(每小题3分,共18分)
- 1. 已知向量 $\vec{a} = (t, 1, -2), \ \vec{b} = (1, 3, 1), \ \text{扎 } \vec{a} \perp \vec{b}, \ \text{则} t = _1$
- 直线 $\frac{x+1}{4} = \frac{y+1}{-7} = \frac{z}{3}$ 和平面 x + y + z = 0 的关系为(填"平行"或"垂直")
- 3. 已知承数 $z = x^2 + y^2$,则 $dz = _____$
- 4. 数项级数 $\sum_{n=1}^{+\infty} \frac{1}{n^2+1}$ 的收敛性为 (其"收敛"或"发散") ____

5. 函数
$$f(x,y) = \begin{cases} \frac{\sin(x^2y)}{y}, & (x,y) \neq (1,0) \\ y & \text{ 化点}(1,0) 处 (填" 连续" 或" 间断") \\ 1, & (x,y) = (1,0) \end{cases}$$

- 6. 设光滑曲线L的弧长为 π ,则 $\int_{0}^{\infty} 3ds =$ ____
- 二、选择题(每小题 4 分, 共 16 分)
- 1. xOz 坐标面上的抛物线 $z^2=x$ 绕 x 轴旋转一周所得曲面的方程为().
- (A) $x^2 + y^2 = z$ (B) $y^2 + z^2 = x$ (C) $x^2 + z^2 = y$ (D) $y^2 + z^2 = x^2$
- 2. 若 f(x) 的周期为 2π ,在 $[-\pi,\pi)$ 上 $f(x)=2x^2$,则 f(x) 的傅里叶级数中的傅里叶系数 等于 ().
 (A) $\frac{\pi^2}{3}$ (B) $\frac{2\pi^2}{3}$ (C) $\frac{4\pi^2}{3}$ (D) $\frac{2\pi^2}{5}$

- 3. 已知l为 $f(x)=xy^2$ 在(1,1)处增加最快的方向,则f(x)在该点沿l的方向导数为(一).

- - (C) -3
 - (D) $\sqrt{5}$
- $\{A, \}$ 设函数 f(x,y) 的定义域为有界闭域 D ,点 $P_0 \in D$,以下说法中,错误的是(\bigvee \bigcup (A) 若 f 在 D 上连续,则 f 在 D 上一定有界

- (B) 若f的两个一阶偏导数都在 P_0 处连续,则f在 P_0 处也连续
- (C) 若f在 P_0 处连续,则它在 P_0 处沿任一方向的方向导数都存在
- (D) 若 f 在 D 上连续,则 f 在 D 上的二重积分一定存在
- 二、计算题一(每小题8分, 共24分)
- 1. 求过点(1,2,3) 且与两平面2x-z=1和3y-z=2都平行的直线方程
- 2. 已知二元函数 $z=xy+\frac{x}{y}$,计算偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x\partial y}$
- 3. $\Re x^2 y^2 + z^2 3z = 0, \quad \Re \frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y}.$
- 四、计算题二 (每小题7分, 共14分)
- 1. 计算二重积分 $\iint (x+y) d\sigma$,其中积分区域 D 是原点为 (0,0),(1,0),(1,1) 的三角形团
- 五、计算题 : (每小题 6 分, 共 12 分)
- 1. 计算曲面积分 $\iint xydS$, 其中 $\sum 为求面 x+y+z=1$ 任第一卦限中的部分.

(4) (1) (4) (4) (4) (4)

六、解答题(每小题 6分, 共 12分)

- A(0,0)到点 B(1,1) 的光滑曲线, 且可表示为y=f(x), 那么该积分的值是多少? 1. 曲线积分 $\int_{\mathbb{R}} 3x^2 y dx + (x^2 + 1) dy$ 是香与路径无关? 并说明理由. 岩上为一条从点
- 2. 将 $f(x) = \frac{1}{x+1}$ 展开成 (x-1) 的幂级数,并求该级数的收敛域.

- 的二阶导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛.