You know what to do.

Bias Current (mA)	Total Harmonic Distortion (% THD)			Totala	Augusta
	Q_1	Q ₂	Q ₃	Totals	Averages
5.0	0.12	0.15	0.10	0.37	0.1233
10.0	0.080	0.067	0.10	0.247	0.0823
15.0	0.072	0.051	0.083	0.206	0.06867
				0.823	0.09144

$$\sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^{2} = 0.082463$$

Use Analysis of Variance (ANOVA) to test the null hypothesis that the treatment means are equal at the α = 0.05 level of significance. Fill in the ANOVA table.

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	f o
Treatments	0.004856	2	0,002428	6,202
Error	0.002348	. 6	0.0003913	60
Total	0.007204	18	-	-

$$SST = 0.082463 - \frac{0.923}{9} = 0.007204 + \frac{1}{10}$$

$$SST_{r} = \frac{0.37 + 0.247 + 0.206}{3} - \frac{0.823}{9} = 0.004856$$

$$SS_{F} = SS_{F} - SS_{F}$$

$$= 0.607204 - 0.004856$$

$$= 0.602348 + \frac{1}{10}$$

$$MS_{F} = \frac{0.004856}{2002348} = 0.002428 + \frac{1}{10}$$

$$MS_{F} = \frac{0.004856}{2002348} = 0.003433 + \frac{1}{10}$$

$$\frac{1}{10} = \frac{0.004856}{2002348} = 0.003433 + \frac{1}{10}$$

$$\frac{1}{10} = \frac{0.004856}{2002348} = 0.003433 + \frac{1}{10}$$

Use Fisher's Least Significant Difference to determine which, if any, pairs of bias currents significantly affect total harmonic distortion $\alpha = 0.05$.

$$t_{.025,3(3-1)} = 2.447$$

$$LSD = 2.447 \sqrt{2.0.0003913}$$

$$= 0.03952$$

5.0 Vs. 10.0:
$$|.1233 - .0823| = 0.041 > LSD$$
 $|.0.0 \ Vs. 15.0 : |.0.823 - .06867| = 0.01363 < LSD$

5.0 Vs. 15.0: $|.1233 - .06867| = 0.05463 > LSD$

(pairs listed)

(differences)

All bias current pairs show significance

except 10.0 Vs. 15.0 mA