Exercise 3.2

Q1. the fol	Find the common lowing numbers.	logar	ithm of	Q2.	Hence $\log 0.3206$ If $\log 31.09 = 1$		1.5060 find the
i)	232.92 can be rounded off as 232.9			values of following:			
				i)	log 3.109		
	Characteristic	=	2	Sol:	log 3.109		
	Mantissa	=	.3672		Characteristic	=	0
	Hence log 232.92	=	2.3672		Mantissa	=	.4926
ii)	29.326				So log 3.109	=	0.4926
•	29.326 can be rounded off as 29.33			ii)	log 310.9		
	Characteristic	=	1	Sol:	log 310.9		
	Mantissa	=	.4673		Characteristic	=	2
	Hence log 29.326.	=	1.4673		Mantissa	=	.4926
iii)	0.00032		Ì		So log 310.9	=	2.4926
	Characteristic	=	<u>-</u>	iii)	log 0.003109		
	Mantissa	=	.5051	Sol:	log 0.003109		
	Hence log 0.0032	=	4.5051		Characteristic	=	$\bar{3}$
iv)	0.3206	_	7.5051		Mantissa	=	.4926
·	Characteristic	=	<u>ī</u> .		So log 0.003109	=	$\bar{3}.4926$
	Mantissa	=	.5060	iv)	log 0.3109		

Characteristic = .4926 Mantissa

1.4926 So log 0.3109

=

ī

Q3. Find the numbers whose common logarithms are:

i) 3.5621

let the number be x

 $\log x = 3.5621$

Characteristic 3

Mantissa .5621

x = antilog 3.56213648

x = 3648

Hence 3648 is the required number

1.7427 ij)

Let the number be x

Log x = 1.7427

ī Characteristic

.7427 Mantissa

x = antilog 1.74270.5530

x = 0.5530

Hence 0.5530 is the required number

04. What replacement the for unknown in each of following will make the statement true?

i) $\log_3 81 = L$

In exponential form

$$3^{L} = 81$$

$$3^{L} = 3^{4}$$

Bases equal \Rightarrow |L=4|are so exponents are equal

 $\log_{a} 6 = 0.5$ ii)

In exponential form

$$a^{0.5} = 6$$

$$a^{\frac{1}{2}} = 6$$

Squaring both side

$$\left(\mathbf{a}^{\frac{1}{2}}\right)^2 = (6)^2$$

$$\mathbf{a} = 36$$

iii) $\log_{2} n = 2$

In exponential form

$$5^2 = n$$

$$\Rightarrow \qquad \boxed{n = 25}$$

 $10^{P} = 40$ iv)

In logarithmic form

$$Log_{10} 40 = P$$

log 40 = P OF

Characteristic = 1

Mantissa = .6021

P = 1.6021So.

Q5. Evaluate

 $\log_2 \frac{1}{128}$ i)

Let
$$x = \text{Log}_2 \frac{1}{128}$$

In exponential form

$$2^{x} = \frac{1}{128}$$
$$2^{x} = \frac{1}{2^{7}}$$
$$2^{x} = 2^{-7}$$

x = -7

 $\log 512$ to the base $2\sqrt{2}$ ii)

 $\log_{2\sqrt{2}} 512$ Sol:

Let $x = \log_{1.5} 512$

In exponential form

$$\left(2\sqrt{2}\right)^{x} = 512$$

$$\left(2\times2^{\frac{1}{2}}\right)^{x} = 2^{9}$$

$$\left(2^{\frac{3}{2}}\right)^{x} = 2^{9}$$

$$\left(2^{\frac{3}{2}}\right)^{x} = 2^{9}$$

$$2^{\frac{3}{2}x} = 2^{9}$$

$$\Rightarrow \frac{3}{2}x = 9$$

$$x = {}^{3}9 \times \frac{2}{3}$$

$$x = 6$$

Q6. Evaluate the value of 'x' from the following statements.

$$i) \qquad \log_2 x = 5$$

In exponential form

$$2^5 = x$$

$$x = 32$$

$$\log_{81} 9 = x$$

In exponential form

$$81^{x} = 9$$

$$(9^{2})^{x} = 9$$

$$9^{2x} = 9^{1}$$

$$\Rightarrow 2x = 1$$
or
$$x = \frac{1}{2}$$

iii)
$$\log_{64} 8 = \frac{x}{2}$$

In exponential form

$$(64)^{\frac{x}{2}} = 8$$

$$(8^{2})^{\frac{x}{2}} = 8$$

$$8^{\frac{2x-\frac{x}{2}}{2}} = 8$$

$$8^{x} = 8^{1}$$

$$\Rightarrow \boxed{x=1}$$

iv) $\log_x 64 = 2$

In exponential form $x^2 = 64$

$$x^2 = 8^2$$

$$\Rightarrow x = 8$$

 $\mathbf{v)} \qquad \log_3 x = 4$

In exponential form

$$\Rightarrow \frac{3^4 = x}{x = 81}$$