Consumer Choice: Further Extensions

Consumer's problem

- How does a consumer value different goods?
- The basis of determining use-value
- Marginalist revolution and diminishing marginal utility
- The basic marginalist calculus (equating marginal benefit and marginal cost)
- Choice and rationality
- Necessary conditions for rationality- completeness and transitivity
- Additional condition of monotonicity or non-satiation to formulate the choice problem
- Visual example of a typical utility maximization problem (2 dimensional)

Subjective valuation of wellbeing and utility

- Can utility me measured?
- Cardinal vs. ordinal understanding of utility
- Preference ordering expressed in terms of utility function vs. revealed preference

The idea of revealed preference

- Motivated by the ordinal nature of utility theory where utility numbers could not be interpreted numerically (utility value of 2 is not necessarily twice that of utility value of 1!)
- Problems of testability
- The revealed preference approach does away with the utility foundation of choice and focusses on choices made under different price income combinations i.e. preferences as <u>revealed</u> in choice

Axioms of revealed preference

- WARP (weak axiom of reveled preference) : if a bundle x_i is chosen when x_i is available, then x_i cannot be chosen whenever x_i is available
- WARP is a necessary condition for the existence of a utility function representation of preference ordering
- GARP (generalized axiom of reveled preference): If x_i is revealed preferred to x_j and x_j is revealed preferred to x_k then x_i is revealed preferred to x_k (the axiom of transitivity)
- GARP is both a necessary and sufficient condition for utility representation of preference ordering

Expected utility theory

- Theorization of choice under uncertainty
- Consider a choice problem over two uncertain events or lotteries
- Event A: p' probability of payoff of M and (1-p') probability of payoff N

 Event B: p'' probability of payoff of M and (1-p'') probability of payoff N
- Under some basic axioms of rational behaviour (completeness, continuity, transitivity and independence of irrelevant alternatives), the expected utility theorem (credited to Von Neumann and Morgenstein) states that

$$U(A) = p'U(M) + (1-p')U(N)$$
 and $U(B) = p''U(M) + (1-p'')U(N)$