

T-TEST

THE T-TEST

Compares two group means to see if there is a difference

- Compares one group mean to the population mean
- Compares one group mean to that same group's mean at a later time
- Compares one group mean to another group's mean

THE T-TEST

The one-sample t-test

• Compares the mean of the sample to the population mean

The paired-samples t-test (repeated samples)

• Compares mean of one group and time 1 to mean of that group at time 2

The independent samples t-test (two samples)

Compares mean of one group to mean of another

EDIT: LOGIC OF T-TEST

Total variation across all groups is divisible into two components

- Variation between groups
 - Deviation of group means from one another

- Variation within groups
 - Deviation of raw scores from their group mean

THE T-TEST

But when we substitute Standard Error of the Difference, the distribution becomes a t-distribution, making this a t-test:

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{SD_{\bar{X}_1} - \bar{X}_2} = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\left(\frac{SD_1^2}{N_1}\right) + \left(\frac{SD_2^2}{N_2}\right)}}$$

THE T-TEST

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\left(\frac{SD_1^2}{N_1}\right) + \left(\frac{SD_2^2}{N_2}\right)}}$$

Numerator: difference between means of group 1 and group 2

Denominator: standard error of the difference between means, standardizing the mean difference to see if it is above and beyond chance

LOGIC OF T-TEST

Just like t-test...

- Variation between groups
 - Deviation of group means from one another
- Variation within groups
 - Deviation of raw scores from their group mean

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{SD_{\bar{X}_1} - \bar{X}_2}$$

- t indicates the size of the difference <u>between</u> groups relative to the size of the variation <u>within</u> each group
- Larger t means there is greater variation between groups, and increase the likelihood of rejecting the null hypothesis
- Larger t means extreme group differences, beyond what expected by the null hypothesis

INDEPENDENT SAMPLES 7-TEST (RESEARCH QUESTION)

Is there a mean difference in Y by categories of X?

Does the mean (Y) vary by group (X)?

INDEPENDENT SAMPLES 7-TEST (VARIABLE TYPES)

IV: nominal, ordinal (e.g. categorical/discrete)

- Grouping variable
 - Only two groups/samples compared

DV: interval-ratio (e.g. continuous)

INDEPENDENT SAMPLES 7-TEST (HYPOTHESES)

 H_0 : No mean difference between two groups / mean of the DV does NOT vary by group

$$^{\bullet}H_0$$
: $\mu_1 = \mu_2$

H₁: Mean difference between two groups / mean of the DV DOES vary by group

•
$$H_1$$
: $\mu_1 \neq \mu_2$

H₀: NULL HYPOTHESIS

Any observed difference between samples is small and therefore due to chance/sampling error and doesn't represent a true difference between populations

H₁: ALTERNATIVE HYPOTHESIS

Any observed difference between samples is not due to chance/sampling error and does represent a true difference between populations

Reject the null hypothesis (aka accept the research hypothesis)

Says the difference between samples is **TOO BIG/TOO EXTREME** to be the result of sampling error

T-TEST ASSUMPTIONS (CANNOT BE VIOLATED)

1. Independence of Observations

• Groups are not related or dependent upon each other. Case can't be in more than one group. No ties between observations

2. Equal Sample (Group) Sizes

- The number of cases in each group should be relatively similar.
 - If violated, use "pooled variance" t-test formula

3. Homogeneity of Variance

- Both groups have approximately equal variances (SD²). The distributions (or spread) for the groups are approximately equal. Keppel & Zedeck (1989) suggest that variance comparison should not exceed 10:1 ratio.
 - Examine variances/SD in summary table of output

4. Normality of Distribution

- Distribution must be relatively normal
 - Visual inspection using
 - Histogram
 - Normality (Q-Q) plots
 - Box-and-Whiskers plots
 - If violated, use "unequal variances assumed" formula, otherwise, use "equal variances assumed"

7-TEST AND THE 7-DISTRIBUTION

The <u>t-distribution</u> (sort of like normal distribution) <u>has multiple curves</u>

- Each curve based on <u>sample size</u> or <u>degrees of freedom</u>
 - T and Z distributions are equal if sample size is large enough (N \geq 30 or \geq 15 per group)

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\left(\frac{SD_1^2}{N_1}\right) + \left(\frac{SD_2^2}{N_2}\right)}}$$

$$\textit{Of} = N_1 + N_2 - 2$$

Recall:

- If $|Z_{calculated}| \ge |Z_{critical}|$, then...
 - Difference between mean of group 1 and mean of group 2 is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - Z_{calculated} is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant difference

So, applied to *t*-Test:

- If $|t_{\text{calculated}}| \geq |t_{\text{critical}}|$, then...
 - Difference between mean of group 1 and mean of group 2 is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - $t_{\text{calculated}}$ is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant difference

So, applied to *t*-Test:

- If $|t_{\text{obtained}}| \geq |t_{\text{critical}}|$, then...
 - Difference between mean of group 1 and mean of group 2 is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - $t_{\rm obtained}$ is in rejection region
 - Reject H₀
 - $p \leq \alpha$
 - Statistically significant difference

Also recall for Z, if we select $\alpha = .05$:

- If $|Z_{calculated}| \ge |\pm 1.96|$, then...
 - Difference between mean of group 1 and mean of group 2 is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - Z_{calculated} is in rejection region
 - Reject H₀
 - p ≤ .05
 - Statistically significant difference

However because t has multiple distributions, based on df, if we select $\alpha = .05$:

- We must refer to a table (Appendix T) to figure out what t_{critical} is.
 - Use your chosen \underline{H}_1 (directional one-tailed; non-directional two-tailed)
 - Your $\underline{\alpha}$
 - Your <u>df</u>
- Then, evaluate to see if $|t_{\text{obtained}}| \geq |t_{\text{critical}}|$

REPORTING T

Report

- The test used
- If you reject or fail to reject the null hypothesis
- The variables used in the analysis
- The degrees of freedom, calculated value of the test, and p-value
 - $t(\underline{df}) = \underline{t}_{obtained}$, <u>p-value</u>
- "Using an independent samples t-test, I <u>reject/fail to reject</u> the null hypothesis that there is no difference between <u>group 1's mean</u> and <u>group 2's mean</u>, in the population, t(?) = ?, p ? .05"

EXAMPLE: BEERS IN THE HOME FRIDGE FOR UNDERGRADS VS. GRADS

Undergrads: (list of 5 observations below)

• 3, 0, 2, 1, 5

Grads: (list of 5 observations below)

1, 6, 17, 9, 2

T-TEST AND CONFIDENCE INTERVALS

We can modify the CI formula to create a confidence interval around the mean difference

$$ullet$$
 CI = $(ar{X}_1 - ar{X}_2) \pm t_{ ext{critical}}(SD_{ar{X}_1 - ar{X}_2})$