SATRAJIT SUJIT GHOSH

Curriculum Vitae

satra@mit.edu http://satra.cogitatum.org

Degrees

PhD, Cognitive and Neural Systems, Boston University, 2005, Prof. Frank Guenther B.S. (Honors), Computer Science, National University of Singapore, 1997, Prof. Lonce L. Wyse

Employment

Research Scientist, McGovern Institute for Brain Research, MIT, 2011 – Current Research Scientist, Research Laboratory of Electronics, MIT, 2007 – 2011

 $Postdoctoral\ Associate,\ Research\ Laboratory\ of\ Electronics,\ MIT,\ 2004-2007,\ Dr.\ Joseph\ S.$

Perkell

Software Engineer, Kent Ridge Digital Labs, Singapore, 1997-1998

External Positions held

Speech and Hearing Biosciences and Technology, (now in) Division of Medical Sciences, Harvard Medical School, 2008 – Current, Member of the Faculty

Editorial board, Frontiers in Brain Imaging Methods, 2012 – Current, Associate Editor

Standards for Datasharing Taskforce, International Neuroinformatics Coordinating Facilities, 2010 – Current

Executive board, TankThink Labs, LLC, 2011 – Current

Department of Cognitive and Neural Systems, Boston University, 2005-2010, Research Fellow

Honors

Educational stipend, International Society for Magnetic Resonance in Medicine, 2008 Graduate Teaching Fellow Award, Boston University, 2000 Presidential University Graduate Fellowship, Boston University, 1998

UROP Students supervised

Alkhairy, Samiya, Fall, 2009, Spring 2010 Zhang, Mark, Spring 2012 Ung, William, Spring 2012

Teaching experience

6.541, Speech Communication – Course director 6.551, Acoustics of Speech and Hearing – Co-instructor

Service

Internal service:

Admissions committee, Speech and Hearing Biosciences and Technology Program (HST), 2010 – Current

Curriculum committee, Speech and Hearing Biosciences and Technology Program (HST), 2009 – Current

External service:

Associate Editor, Frontiers in Brain Imaging Methods, 2012 – Current Review editor, Frontiers in Neuroinformatics, 2011 - Current Ad hoc grant reviewer

National Science Foundation, 2008, 2010, 2013 National Medical Research Council, Singapore, 2007, 2009, 2011-2012 Department of Defense, 2011

Ad hoc editorial reviewer

Biological Psychiatry, Brain, Brain and Language, Current Biology, European Journal of Neuroscience, Frontiers in Computational Neuroscience, Frontiers in Systems Neuroscience, Frontiers in Neuroinformatics, Human Brain Mapping, Journal of the Acoustical Society of America, Journal of Neuroscience, Journal of Speech, Language and Hearing Research, Magnetic Resonance in Medicine, NeuroImage

Editorial board, Special Research Topic, Python in Neuroscience, Frontiers in Neuroscience Nipype teaching workshops, Edinburgh 2011, Magdeburg 2012

Speaker, Educational workshop, Organization for Human Brain Mapping, Seattle, 2013 Organizer, HBM Hackathon, Organization for Human Brain Mapping, Seattle, 2013 Local organizing committee, 4th Biennial Conference on Resting State Connectivity, Boston, 2014

Technological and Other Scientific Innovations

Nipype: Brain imaging analysis framework 2008-

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroimform. 5:13.

Nipype provides an environment that encourages interactive exploration of algorithms from different packages (e.g., SPM, FSL, FreeSurfer, Camino, MRtrix, AFNI, Slicer), eases the design of workflows within and between packages, and reduces the learning curve necessary to use different packages. I continue develop and oversee the development of the software, funded initially through an R03, as an opensource collaborative project.

MURFI: a realtime MR biofeedback software 2007-

Hinds, O., Ghosh, S., Thompson, T.W., Yoo, J.J., Whitfield-Gabrieli, S., Triantafyllou, C., Gabrieli, J.D. (2011) Computing moment-to-moment BOLD activation for real-time neurofeedback. Neuroimage. 54(1):361-8. PMID: 20682350.

This software framework allows biofeedback of activation based on the BOLD signal. I provided that testing and validation framework for the software and contributed to its design and implementation. We are now using this software for three ongoing projects and I have secured additional funding to continue its development.

Realtime voice modification setup 2005-2007 Cai, S, Boucek, M, Ghosh, S.S., Guenther, F.H., Perkell, J.S. (2008) A System for Online Dynamic Perturbation of Formant Trajectories and Results from Perturbations of the Mandarin Triphthong /iau/. International Seminar in Speech Production, Strassbourg, France.

This system was initially implemented on a Texas instruments DSP board and later transferred to a solution that involved commodity ASIO capable sound cards and a

standard software stack based on RtAudio.

Noise suppression for MRI patient microphone input 2004-2005 Two provisional patents were applied for but not pursued after expiry.

2007 Online noise suppression software for Magnetic Resonance Imaging

2007 Bidirectional noise suppressing communication setup for Magnetic

Resonance Imaging

The goal of this software was to provide a mechanism to suppress MR noise. This is still being used in research projects at MIT.

Carotid artery diameter estimation from ultrasound images 1999-2000 Current usage status is unknown. I built the graphical interface for the software to provide a semi-automated method for artery diameter estimation that reduced human intervention significantly and validated it against manual measurements.

FlexEffex: Interactive sound effects and music 1997-1998 I contributed to the development of the FlexEffex architecture and rewrote the internal sound effects plugin api and hardware libraries. The software was subsequently sold to a company, MindMaker Inc.

Publications

- 1. Guenther, F.H., Nieto-Castanon, A., Tourville, J.A. and **Ghosh, S.S.** (2001) The effects of categorization training on auditory perception and cortical representations. Proceedings of the Speech Recognition as Pattern Classification (SPRAAC) Workshop, Nijmegen, The Netherlands.
- 2. Guenther, F.H. and **Ghosh, S.S.** (2003) A model of cortical and cerebellar function in speech. Proceedings of the XVth International Congress of Phonetic Sciences (pp. 169-173). Barcelona, Spain: 15th ICPhS Organizing Committee.
- 3. Guenther, F.H., **Ghosh, S.S.** and Nieto-Castanon, A. (2003) A neural model of speech production. Proceedings of the 6th International Seminar on Speech Production. Sydney, Australia
- 4. Nieto-Castanon, A., **Ghosh, S.S.**, Tourville, J.A., Guenther, F.H. (2003) Region of interest based analysis of functional imaging data. Neuroimage. 19(4):1303-16. PMID: 12948689.
- 5. Guenther, F.H., Nieto-Castanon, A., Ghosh, S.S., Tourville, J.A. (2004) Representation of sound categories in auditory cortical maps. J Speech Lang Hear Res. 47(1):46-57. PMID: 15072527.
- 6. Max, L., Guenther, F.H., Gracco, V.L., **Ghosh, S.S.** and Wallace, M.E. (2004) Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: A theoretical model of stuttering. Contemporary Issues in Communication Science and Disorders. 31.
- 7. Klein, A., Mensh, B., **Ghosh, S.**, Tourville, J., Hirsch, J. (2005) Mindboggle: automated brain labeling with multiple atlases. BMC Med Imaging. 5:7. PMCID: PMC1283974.
- 8. Guenther, F.H., **Ghosh, S.S.**, Tourville, J.A. (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96(3):280-301. PMCID: PMC1473986.
- 9. Guenther, F.H., **Ghosh, S.S.**, Nieto-Castanon, A. and Tourville, J.A. (2006) A neural model of speech production. In: J. Harrington & M. Tabain (eds.), Speech Production: Models, Phonetic Processes, and Techniques. London: Psychology Press.
- 10. Tiede, M., Shattuck-Hufnagel, S., Johnson, B., **Ghosh, S.**, Matthies, M., Zandipour, M. and Perkell, J. (2007) Gestural phasing in /kt/ sequences contrasting within and cross word contexts. Proceedings of the XVIth International Congress of Phonetic Sciences. Saarbrücken, Germany.

- 11. **Ghosh, S.S.**, Tourville, J.A., Guenther, F.H. (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. J Speech Lang Hear Res. 51(5):1183-202. PMCID: PMC2652040.
- 12. Cai, S, Boucek, M, **Ghosh, S.S.**, Guenther, F.H., Perkell, J.S. (2008) A System for Online Dynamic Perturbation of Formant Trajectories and Results from Perturbations of the Mandarin Triphthong /iau/. International Seminar in Speech Production, Strassbourg, France.
- 13. Balci, S.K., Sabuncu, M.R., Yoo, J., **Ghosh, S.S.**, Whitfield-Gabrieli, S., Gabrieli, J.D., Golland, P. (2008) Prediction of Successful Memory Encoding from fMRI Data. Med Image Comput Comput Assist Interv. 2008(11):97-104. PMCID: PMC2855196.
- 14. Perkell, J.S., Lane, H., **Ghosh, S.S.**, Matthies, M.L., Tiede, M., Guenther, F., Ménard, L. (2008) Mechanisms of Vowel Production: Auditory Goals and Speaker Acuity. International Seminar in Speech Production, Strassbourg, France.
- 15. Klein, A., **Ghosh, S.S.**, Avants, B., Yeo, B.T., Fischl, B., Ardekani, B., Gee, J.C., Mann, J.J., Parsey, R.V. (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage. 51(1):214-20. PMCID: PMC2862732.
- 16. Cai, S., **Ghosh, S.S.**, Guenther, F.H., Perkell, J.S. (2010) Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization. J Acoust Soc Am. 128(4):2033-48. PMCID: PMC2981117.
- 17. **Ghosh, S.S.**, Kakunoori, S., Augustinack, J., Nieto-Castanon, A., Kovelman, I., Gaab, N., Christodoulou, J.A., Triantafyllou, C., Gabrieli, J.D., Fischl, B. (2010) Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage. 53(1):85-93. PMCID: PMC2914629.
- 18. **Ghosh, S.S.**, Matthies, M.L., Maas, E., Hanson, A., Tiede, M., Ménard, L., Guenther, F.H., Lane, H., Perkell, J.S. (2010) An investigation of the relation between sibilant production and somatosensory and auditory acuity. J Acoust Soc Am. 128(5):3079-87. PMCID: PMC3003728.
- 19. Golfinopoulos, E., Tourville, J.A., Bohland, J.W., **Ghosh, S.S.**, Nieto-Castanon, A., Guenther, F.H. (2011) fMRI investigation of unexpected somatosensory feedback perturbation during speech. Neuroimage. 55(3):1324-38. PMCID: PMC3065208
- 20. Silver, A.L., Nimkin, K., Ashland, J.E., **Ghosh, S.S.**, Van der Kouwe, A.J., Brigger, M.T., Hartnick, C.J. (2011) Cine magnetic resonance imaging with simultaneous audio to evaluate pediatric velopharyngeal insufficiency. Arch Otolaryngol Head Neck Surg. 137(3):258-63.
- 21. Brunner, J., **Ghosh, S.**, Hoole, P., Matthies, M., Tiede, M., Perkell, J. (2011) The influence of auditory acuity on acoustic variability and the use of motor equivalence during adaptation to a perturbation. J Speech Lang Hear Res. 54(3):727-39. PMID: 20966388.
- 22. Cai, S., **Ghosh, S.**, Guenther, F., Perkell, J. (2011). Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing. J Neurosci 31: 45. 16483-16490. PMID: 22072698.
- 23. Hinds, O., **Ghosh, S.**, Thompson, T.W., Yoo, J.J., Whitfield-Gabrieli, S., Triantafyllou, C., Gabrieli, J.D. (2011) Computing moment-to-moment BOLD activation for real-time neurofeedback. Neuroimage. 54(1):361-8. PMID: 20682350.
- 24. Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., **Ghosh, S.S.** (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. *Front. Neuroinform.* **5**:13.
- 25. Perrachione, T.K., Del Tufo, S.N., **Ghosh, S.S.**, Gabrieli, J.D.E. (2011) "Phonetic variability in speech perception and the phonological deficit in dyslexia." 17th Meeting of the International Congress of Phonetic Sciences, (Hong Kong, August 2011).

- 26. Poline, J., Breeze, J.L., **Ghosh, S.S.**, Gorgolewski, K., Halchenko, Y.O., Hanke, M., Haslegrove, C., Helmer, K.G., Marcus, D.S., Poldrack, R.A., Schwartz, Y., Ashburner, J. and Kennedy, D.N. (2012). Data sharing in neuroimaging research. *Front. Neuroinform.* **6:**9.
- 27. **Ghosh**, **S.S.**, Klein, A., Avants, B. and Millman, K.J. (2012). Learning from open source software projects to improve scientific review. *Front. Comput. Neurosci.* **6:**18
- 28. Cai, S., Beal, D.S., **Ghosh, S.S.**, Tiede, M.K., Guenther, F.H., Perkell, J.S. (2012) Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation. PLoS One.
- 29. * Doehrmann, O., * **Ghosh, S.S.**, Polli, F.P., Reynolds, G., Horn, F., Keshavan, A., Whitfield-Gabrieli, S., Hofmann, S.G., Pollack, M., Gabrieli, J.D. (2013) Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry.
- 30. Hinds, O., Thompson, T., **Ghosh, S.S.**, Yoo, J., Whitfield-Gabrieli, S., Triantafyllou, C., Gabrieli, J. (2013) Roles of Default-Mode Network and Supplementary Motor Area in Human Vigilance Performance: Evidence from Real-Time fMRI. Journal of Neurophysiology.
- 31. Tustison NJ, Johnson HJ, Rohlfing T, Klein A, **Ghosh SS**, Ibanez L and Avants B (2013). Instrumentation bias in the use and evaluation of scientific software: Recommendations for reproducible practices in the computational sciences. Front. Neurosci. 7:162.
- 32. **Ghosh, S.S.**, Keshavan, A., Langs, G (2013). Predicting Treatment Response from Resting State fMRI Data: Comparison of Parcellation Approaches. 3rd International Workshop on Pattern Recognition in NeuroImaging (Philadelphia, June 2013).
- 33. Perrachione, T.K. and **Ghosh, S.S.** (2013). Optimized design and analysis of sparse-sampling fMRI experiments. Front. Neurosci. 7:55. doi: 10.3389/fnins.2013.00055
- 34. Cai, S., Beal, D.S., **Ghosh, S.S.**, Guenther, F.H., Perkell, J.S. (In press) Impaired timing adjustments in response to time-varying auditory perturbation during connected speech production in persons who stutter. Brain and Language.
- 35. Cai, S., Tourville, J.A., Beal, D.S., Perkell, J.S., Guenther, F.H. and **Ghosh, S.S.** (2014). Diffusion Imaging of Cerebral White Matter in Persons Who Stutter: Evidence for Network-Level Anomalies. Front. Hum. Neurosci. 8:54
- 36. Stoeckel, L.E., Garrison, K.A., **Ghosh, S.**, Wighton, P., Hanlon, C.A., Gilman, J.M., Greer, S., Turk-Browne, N.B., deBettencourt, M.T., Scheinost, D., Craddock, C., Thompson, T., Calderon, V., Bauer, C.C., George, M., Breiter, H.C., Whitfield-Gabrieli, S., Gabrieli, J.D., LaConte, S.M., Hirshberg, L., Brewer, J.A., Hampson, M., Van Der Kouwe, A., Mackey, S., Evins, A.E. (In Press). Optimizing real time fMRI neurofeedback for therapeutic discovery and development, NeuroImage: Clinical (* Joint first authors)

Conference abstracts (available upon request)

Invited Presentations

Linking Knowledge and Reproducible Research Via Standardized Provenance Models

Tools for Integrating and Planning Research in Neuroscience, UCLA, Los Angeles, USA, 2014

A Neuroinformatics Bridge to Personalized Healthcare
Boston University, Hearing research seminar, Boston, USA, 2014
Vanderbilt University, Nashville, USA, 2014

Enabling knowledge generation and reproducible research by embedding provenance models in metadata stores

Neuroinformatics Congress, Stochkholm, Sweden, 2013

Python Tools for Reproducible Research in Brain Imaging PyData conference, Boston, USA, 2013

Nipype: Opensource platform for unified and replicable interaction with existing neuroimaging tools

Brigham and Womens Hospital, Boston, USA, 2009

Massachusetts General Hospital, Boston, USA, 2010, 2012, 2013

Radiology, U of Washington, Seattle, USA, 2011,

PICSL, U of Pennsylvania, Philadelphia, USA, 2011

Scientific Python Conference in India, Hyderabad, India, 2010

INCF Datasharing Workshop, Quebec, Canada, 2011

Python in Neuroscience Workshop, Paris, France, 2011

Leveraging scientific computation to bridge neuroimaging and clinical applications

Radiology, U of Pennsylvania, Philadelphia, USA, 2011

Haskins Laboratories, New Haven, Connecticut, USA 2012

Datasharing and reproducible research: Barriers and solutions

Janelia Farm Bioimage Informatics II Conference, Washington DC, USA, 2011 University de Montreal, Montreal, Canada, 2013

Using high-resolution fMRI to identify individual-specific speech motor regions
Surgical Brain-Mapping laboratory, Brigham and Womens Hospital, Boston, USA, 2010

Region of interest analysis of functional Magnetic Resonance Imaging data

New York State Psychiatric Institute, Columbia University, New York, USA, 2007

Singapore General Hospital, Singapore, Singapore, 2007

Exploring speech motor control through computational modeling and neuroimaging Center for Life Sciences, National University of Singapore, Singapore, 2007

Research contracts and grants

Past

2008-2010 Dissemination of cross-platform software for artifact detection and region of interest

analysis of fMRI data

NIH/NIBIB/R03 EB008673

ΡI

Current

2011-2015 Using Real-Time Functional Brain Imaging and Computer Training To Enhance Recovery

from Traumatic Brain Injury (TBI) (PI: John Gabrieli)

DOD/Clinical trial award PT100120

Investigator

2012 - 2014 Learned regulation of the limbic network via combined EEG and fMRI (PI: John Gabrieli)

NIH/NIMH/R21 MH092564

Investigator

2012 – 2015 A randomized controlled trial of intranasal oxytocin as an adjunct to behavioral therapy for

autism spectrum disorder (PI: John Gabrieli)

	DOD/Clinical Trial Award AR110329
	Sub-contract PI
2012 - 2015	MURFI: An Optimized Platform for Realtime fMRI Neurofeedback
	MIT McGovern Institute Neurotechnology Program
	Co-PI
2012 - 2016	Blast Induced Traumatic Brain Injury
	DOD/Institute for Soldier NanoTechnologies
	Investigator
2014 - 2015	Brain basis for voice-based tracking of neurological disorders
	MIT McGovern Institute Neurotechnology Program
	MIT Lincoln Lab Funds
	Co-PI

Summary:

Research

My primary research contributions have spanned understanding speech motor control and speech perception in normative populations as well as persons who stutter, clinical datamining to create predictive models for treatment outcome in psychiatric disorders, enhancing the efficiency of brain imaging analysis and establishing community standards for organizing, querying and processing neuroscientific data.

I created the first speech motor control acquisition model that takes into account transmission latencies in the human brain, making it a much more realistic model to simulate a variety of speech disorders [3, 4]. Using synthetic stimuli I help demonstrate that people with better perceptual (somatosensory and auditory) acuity produced sounds with greater contrast [8] and lower effort [11]. I helped develop a software program that has allowed researchers to manipulate voice characteristics and feed the modified voice back to individuals in near real-time (< 12ms delay). This system has allowed us to probe how the speech system responds to static [6] and dynamic [12] auditory feedback perturbations, thereby giving us insight into operational characteristics of the brain. I also validated the realtime fMRI biofeedback setup at MIT [27, 15], a system that is being used for a clinical trial to help people with mild traumatic brain injury. I have received a 1-year grant to help improve this system. In a recent paper, I reported the outcome of a model for predicting treatment outcome using functional MRI in social anxiety disorder that substantially exceeds behavior-based predictions [14, 32]. We are applying similar methods to elucidate deviant brain mechanisms in stuttering and major depressive disorder. I continue to lead an international team of developers to improve analysis of brain imaging data [28, 16] and to define standards for storing, communicating and querying data and results from brain imaging experiments [30].

Education

Since 2007 I have taught core courses as a member of the Speech and Hearing Biosciences and Technology (SHBT) program, now in the Division of Medical Sciences at Harvard Medical School. These courses, also listed under Electrical Engineering and Computer Science at MIT, are "Acoustics of Speech and Hearing" (SHBT.200; co-instructor; 2007 - present) and "Speech Communication" (SHBT.204; course director 2009 - present). Prof. Kenneth Stevens, the leading authority in the field of acoustic phonetics, formerly taught these courses. I have revised them to be more current with research work being done in the area of speech communication, especially with regards to brain imaging, which is providing novel insights into the neural mechanisms of speech. I also engage other faculty members in the course to expose students to the breadth of speech research being carried out in the area.

Service

I serve as a member of an international taskforce for defining metadata standards for datasharing on behalf of the International Neuroinformatics Coordinating Facilities (INCF). I am an Associate Editor of Frontiers in Brain Imaging Methods, an independent subsidiary of the Nature Publishing Group. I also serve on the admissions and curriculum committee of the SHBT program.

I continue to expand my research and teaching to embrace scientific computation, open-access standards and cross-disciplinary efforts to ensure that we, as scientists, can work together to achieve the goals of creating effective options for understanding and treatment of medical disorders.