# Administración de la Información (FS)

- Objetivos
- Administración de archivos y espacios en dispositivos compartidos
- Administración de los accesos a los archivos
- Directorios

### Directorio

• Directorio (de 1er. Nivel)



• VTOC: Volume table of contents

#### Cada entrada del Directorio

- En la VTOC o Directorio se encuentra la información que caracteriza a cada archivo
  - el nombre,
  - ubicación,
  - longitud (cantidad de registros del archivo o unidad de almacenamiento),
  - longitud del registro lógico,
  - longitud del registro físico,
  - formato de registros (fijo, variable, etc.),
  - organización (secuencial, indexada, al azar, etc.),
  - fecha de creación,
  - fecha de expiración,
  - último cambio,
  - derechos de acceso, (permisos concurrencia)
  - extensiones.

## Ejemplo de Directorio



## Ocupación Espacio

- Sin extensión → Contigua
- Con extensiones (limitada) → ocupan más de una entrada
- Políticas
  - 1er. Lugar libre
  - Mejor lugar
    - → Compactación (volvimos ...)

## Ocupación Espacio

• Dinámica (por mapeo de bloques) (no más compactación)



### Estrucutura de Directorios



## Catálogo de Usuarios por Volumen

Volumen Usuarios

HD1 JOSE

**PEDRO** 

**JUAN** 

HD2 ANA

**MARIA** 

#### Modelo General de Acceso



Modelo jerárquico de un sistema de archivos.

## Evitar Múltiples Accesos

|           |                    |                                    | MEMORIA TNA               |
|-----------|--------------------|------------------------------------|---------------------------|
|           | NOMBRE             | IDENTIFICADOR UNICO                |                           |
| 1         | Marilyn            | 3                                  | TAA                       |
| 2         | Juan               | 5                                  | 1 § ∕                     |
| 3         | Ethel              | 6                                  | 1 <b>%/              </b> |
|           |                    | ← 4 bytes — →<br>s por entrada — → |                           |
| ) Directo | orio de archivo si | mbólico /                          | /                         |

| a) | Directorio | de | archivo | simbólico |
|----|------------|----|---------|-----------|
|----|------------|----|---------|-----------|

| ID | LONGITUD DE<br>REGISTRO<br>LOGICO | CANTIDAD DE<br>REGISTROS<br>LOGICOS | DIRECCION AL<br>PRIMER BLO-<br>QUE FISICO | DIRECTORIO Y<br>CONTROL DE<br>ACCESO |
|----|-----------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|
| 1  |                                   |                                     | 0                                         | Dir. Básico                          |
| 2  | 20                                | 3                                   | 1                                         | Dir. Simbólico                       |
| 3  | 80                                | 10                                  | 2                                         | Todos Leen                           |
| 4  | 1000                              | 3                                   | 3                                         | Libre                                |
| 5  | 500                               | 7                                   | 6                                         | Todos Leen                           |
| 6  | 100                               | 30                                  | 12                                        | MARTA Lee                            |
|    |                                   |                                     |                                           | JUAN Lee/Graba                       |
| 7  | 1000                              | 2                                   | 10                                        | Libre                                |
| 8  | 1000                              | 1                                   | 15                                        | Libre                                |

b) Directorio de archivo básico

#### Modelo General de Acceso

- Búsqueda en Catálogo (SAS y SAP o TNA TAA)
- Control de Accesos (VCA) (Permisos)
- Cálculo dirección Lógica (SAL)
- DL =  $(N \text{ Reg} 1) \times \text{Long. Lógica}$  (\*)
- Cálculo Dirección Física (\*\*)
- DF = [DL / Long Bloq] (Nro. de Bloque)
- Resto = [DL / Long Bloq] Byte dentro del Bloque

#### Cálculos

- Supongamos Reg Lóg de 100 Bytes
- Reg Físicos de 300 Bytes
- Buscamos Reg Lóg 3
- DL =  $(3-1) \times 100 = 200 (*)$
- DF = [200/300] = 0 (\*\*)
- Resto = [200 / 300] = 200

#### Método General de Acceso

- (\*) Es lo que llamamos Método de Acceso
- (\*\*) Verificamos si la Información ya está en memoria y si el buffer que contiene la información está en memoria (si no pagefault)
- Asignación de Espacio (MEA)
- Lanzamiento de E/S (MEP)

### TAA

| Identificación | Long Reg.<br>Iógico | . Long. Reg.<br>físico |          | Formato         | Organización |
|----------------|---------------------|------------------------|----------|-----------------|--------------|
| Permisos       | Concurrenc          | cia                    | Lista de | Procesos que la | están usando |

- Tabla de Archivos Activos (TAA).

#### Directorio de 2 niveles



### Directorios de 2 Niveles



# Lista de Control de Accesos (LCA)



- Sistema de Lista de Control de Acceso (LCA).

# Lista de Control de Usuarios (LCU)



- Sistema de Lista de Control de Usuario (LCU).

#### Simbólico

• CALL SAS (READ, "JUAN", 4, 1200)

- Donde estamos pidiendo que se lea el registro lógico número 4 del archivo "JUAN", para colocar su contenido en la dirección 1200 de memoria principal.
- Debe devolver un 5 (ID JUAN)

#### Básico

- CALL SAB (READ, 5, 4, 1200)
- Donde todos los parámetros son iguales a la llamada del módulo SAS, a excepción del segundo parámetro que constituye el identificador que le pasó el SAS.

# VCA (Verificación de control de Acceso)

- Supongamos que la entrada del archivo Juan (que era la 2da entrada en la TNA y que estaba almacenada como 5ta entrada del DAB) fue guardada en la entrada número 67 de la TAA (tabla de archivos activos)
- La invocación al módulo de Verificación de Control de Acceso será entonces de la siguiente forma:
- CALL VCA (READ, 67, 4,1200)
- El 67 corresponde a la entrada de la TAA del archivo "JUAN" y los demás son exactamente los mismos parámetros de la llamada al módulo anterior.

## SAL (Sistema Archivos Lógicos)

- CALL SAL (READ, 67, 4,1200)
- El Sistema de Archivo Lógico convierte el pedido de un registro lógico en el pedido de una secuencia de bytes lógicos, la cual se entrega al Sistema de Archivo Físico (SAF).

#### SAF – MEA - MEP

- SAF (determina dirección física o sea número de bloque
- MEA (determina si la dirección obtenida está dentro de los límites del archivo)
- MEP (si la información no está en le buffer de memoria prepara la información para lanzar la operación de E/S física, (Nro de RF, Dir del Buffer de memoria)

#### Resumen

- 1) Sistema de archivos simbólicos (SAS): transforma el nombre del archivo en el identificador único del Directorio de archivos. Utiliza la Tabla de nombres activos (TNA) y el directorio de archivos simbólico (DAS).
- 2) **Sistema de archivos básico (SAB)**: copia la entrada de la VTOC en memoria. Utiliza el directorio de archivos básicos (DAB) y la Tabla de archivos activos (TAA).
- 3) Verificación de control de acceso (VCA): verifica los permisos de acceso al archivo.

#### Resumen

- 4) Sistema de archivo lógico (SAL): transforma el pedido lógico en un hilo de bytes lógicos.
- 5) Sistema de archivo físico (SAF): calcula la dirección física.
- 6) Módulo de estrategia de asignación (MEA): consigue espacio disponible en el periférico (casos de grabación).
- 7) **Módulo de estrategia de periférico**: transforma la dirección física según las características exactas del periférico requerido

## Ejemplo con JCL

- \* Trab1 Pedro
- \* Archivo 8, volumen 1, JOSE/ALFA, G
- \* Ejectuar Prog1
- Prog1
- •
- Read 8
- •

## Ejemplo

```
• BCP
```

```
• Trab1 ...SS... Dispositivo Archivo
```

• volumen1 8

JOSE/ALFA
apunt. TNA
buffer (nro RF)

## Ejemplo

- 1. Se busca en dispositivos volumen1
- Si está se asocia a Trab1
- 2.Se busa en TNA/TAA JOSE/ALFA
- Si está se controla permiso
- Sino se busca JOSE y luego ALFA y se cargan TNA/TAA
- Se asocia 8 con JOSE/ALFA

## Ejemplo Ejecución

- Open (puede hacer todo lo anterior y asocia buffer a BCP
- Controla Permisos
- READ
- CDL
- CDF (si está pasa puntero)
- Sino Lanzamiento de E/S Física

## Ejemplo en Cluster

- #PBS -N TEST MPI
- #PBS -1 nodes=40:ppn=2
- #PBS -S /bin/bash
- #PBS -q verylong
- #PBS -m ae
- cd /home/robevi/test intelmpich
- echo 'hostname'
- echo 'date'
- echo 'pwd'
- echo `cat \$PBS\_NODEFILE`
- cat \$PBS\_NODEFILE > \$PBS\_O\_WORKDIR/machines
- /opt/mpich/intel/bin/mpirun -nolocal -np 80 -machinefile \$PBS\_NODEFILE xhpl

## Algunso FS

- FAT (DOS)
- UNIX
- LINUX
- NTFS
- HPFS

#### FAT

- DOS formatea
  - Area Reservada
  - 1era. Copia FAT
  - Copias adicionales FAT (opcional)
  - Directorio \
  - Area de Datos

### FAT



#### UNIX

• FS y swap



#### Unix

- FS tiene Archivos (sin formato) Directorios (con formato)
- Inodo
  - Id usuario id grupo permisos tiempos –
  - # hard. Links –
  - Tipo archivo (archivo directorio link simbólico – disp c ó b – sockets ...
  - 15 apuntadores a bloques de disco

## Unix (15 apuntadores)

- 12 bloques directos (4K→ 48K ref. directamente
- 13 indirecto 1024 bloques (4bytes → 4 MB
- 14 doble indirección 4GB 2^32
- 15 triple indirección 4 TB

# Unix (15 apuntadores)



### UNIX

#### Directorio

- Sus contenidos están guardados en bloques de datos y están representados por inodos
- Estrucutura (n bytes nombre arch/direct y 2 para inumber
- Los 1eros. dos nombres son . y ..
- Se busca dentro de él en forma secuencial

### UNIX

- Unix busca por FS/inodo
- Cuando un archivo se abre se carga su inodo en memoria
- Sync cada (30 seg.) y se guarda info de memoria a disco (info y superblock)
- Ext3 → journaling

# UNIX – File descriptor



## Linux

- Soporta distintos FS
- (ext, ext2, ext3, minix, msdos, ufs, etc.)
- Tiene VFS

## Linux VFS

- VFS superblock
  - Device: tipo(/dev/hda1) indentificador 0X301
  - Inode pointer: apunta al 1er. Inodo montado
  - Blocksize: tamaño bloque en bytes (1024)
  - Superblock-operations: punteros a rutinas que manejan el superblock
  - FS type: puntero a estructuras de datos del FS específico
  - FS specific: puntero a la info del FS específico

## Linux VFS

#### VFS inode

- Device = VFS
- Inode number = inodo
- Modo = describe este inode-VFS
- Userid = propietario
- Times
- Blocksize = tamaño bloque
- Inode operations: puntero a rutinas específicas de este FS
- Count = # de usos de este indo (=0 puede eliminarse
- Lock = bloquea inodos en operaciones concurrentes
- Dirty = inodo modificado
- FS specific = VFS

## NTFS

- Unidad de almacenamiento físico 2<sup>n</sup> (sector 512k)
- Agrupamiento: Cluster de sectores contiguos en la misma pista (2^n)
- Volumen: Partición Lógica (uno o más discos. Tamaño máximo 2^64 bytes
- Los archivos pueden usar agrupamientos no contiguos. Soporta hasta 2^32 agrupamientos aprox. 2^48 bytes

- Partición sector de arranque
  - Información del volumen
  - Estrucutura FS
  - Código de arranque

- MFT (Master File Table)
  - Información sobre directorios y archivos
  - Espacio libre
  - Está organizado por filas como una base de datos relacional

- Archivos del Sistema
  - MFT2 espejo de algunas filas de MFT
  - Registros (transacciones para recuperar NTFS)
  - Mapa de bits de agrupamientos (libres ocupados)
- Area de datos

- MFT está compuesto por filas de longitud variable
  - Cada fila describe un directorio o archivo
  - (incluye a la MFT que se trata como un archivo
  - Un archivo pequeño queda en la MFT
  - Si el archivo es grande desborda sobre otro agrupamiento (ubicados por punteros)
  - El MFT también puede desbordar por ser un archivo

# HPFS (High Performance File System)



# HPFS (High Performance File System)

