A SIMPLE FPTAS FOR COUNTING EDGE COVERS

Chengyu Lin¹ Jingcheng Liu¹ Pinyan Lu²

¹Shanghai Jiao Tong University

²Microsoft Research Asia

ACM-SIAM Symposium on Discrete Algorithms, 2014

Overview

Introduction

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure : An edge cover for Petersen graph

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure : An edge cover for Petersen graph, with edges chosen being highlighted in red. Note that this is also a perfect matching.

Edge cover

Edge cover is related to many other problems such as:

- Matching problem.
- Rtw-Mon-CNF. (read twice monotone CNF)
- Holant problem.
-

Relation to Matching

The minimal edge cover could be found via a greedy algorithm based on a maximum matching.

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) ${\cal G}$ doesn't have a perfect matching.

Remark

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Relation to Matching

The minimal edge cover could be found via a greedy algorithm based on a maximum matching.

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) ${\cal G}$ doesn't have a perfect matching.

Remark

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Relation to Matching

The minimal edge cover could be found via a greedy algorithm based on a maximum matching.

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) G doesn't have a perfect matching.

Remark

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Relation to Rtw-Mon-CNF

TBA.

A list of problems in their search, optimization, and counting versions. **Search problems:**

- SAT.
- Find a (perfect)
- Find an edge
-

- MAX-SAT.
- Find a maximum
- Find a minimum
-

- - #SAT.
 - Counting
 - Counting edge
 -

A list of problems in their search, optimization, and counting versions. **Search problems:**

- SAT.
- Find a (perfect) matching.
- Find an edge
-

- MAX-SAT.
- Find a maximum
- Find a minimum
-

- - #SAT.
 - Counting
 - Counting edge
 -

A list of problems in their search, optimization, and counting versions. **Search problems:**

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum
- Find a minimum
-

- - Counting

• #SAT.

- Counting edge
-

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- #SAT.
- Counting matchings
- Counting edge covers.
-

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- #SAT.
- Counting matchings
- Counting edge covers.
-

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- #SAT.
- Counting matchings
- Counting edge covers.
-

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- #SAT.
- Counting matchings
- Counting edge covers.
-

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- #SAT.
- Counting matchings.
- Counting edge covers.
-

A list of problems in their search, optimization, and counting versions. **Search problems:** Optimizations:

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

- **Counting problems:**
 - Counting matchings.

#SAT.

- Counting edge covers.
-

- Partition function of Statistical physics.
- Graph polynomials
- Sampling, learning and inference.
- Query evaluations of probabilistic database.
-

- Partition function of Statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Query evaluations of probabilistic database.
-

- Partition function of Statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Query evaluations of probabilistic database.
- ·

- Partition function of Statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Query evaluations of probabilistic database.
-

Approximate Counting

Many interesting problems in the exact counting regimes, including counting edge cover, is hard (#P-complete). Instead we look for these two types of polynomial time approximation scheme:

Definition (FPTAS)

For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq\hat{N}\leq(1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

Definition (FPRAS)

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Approximate Counting

Many interesting problems in the exact counting regimes, including counting edge cover, is hard (#P-complete). Instead we look for these two types of polynomial time approximation scheme:

Definition (FPTAS)

For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq\hat{N}\leq(1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

Definition (FPRAS

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Approximate Counting

Many interesting problems in the exact counting regimes, including counting edge cover, is hard (#P-complete). Instead we look for these two types of polynomial time approximation scheme:

Definition (FPTAS)

For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq\hat{N}\leq(1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

Definition (FPRAS)

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Counting v.s. Marginal Probability

TBA.

j++į