

陳先灝、盧佳妤、段寶鈞

課程:生物資訊概論與實務

2020/1/7

Outline

01 Introduction

02 Data

03 Preprocess

04 Models

05 Results

06 Others

Introduction & Data Format

Motivation

- While recognizing epithelial ovarian cancer(EOC), protein (CA125) detection is not convenient enough, and have some shortcomings.
 - 1. microRNA can detect more rare transcripts in the blood through PCR.
 - 2. All microRNA are in the same unit measurement, which is easier to incorporate into multiplexed panels.
 - 3. miRNAs play a critical role in ovarian cancer biology, whereas the function of CA125 is unknown.

Data Property & Format

- microRNA with elements "A", "T", "C", "G".
- Fastq format
 - We will use elements recorded in line 2, and maybe the quality values listed in line 4.
- It can be read easily.

Flowchart of study design

Flowchart

— Tool

- Paper
 - STATISTICA Data Miner 12.5 (It's not free.)
 - o Weka 3.9.0
- We want to use
 - O python
 - Numpy
 - Keras
 - pytorch
 - scikit-learn

Data Download

- Where to download?
 - NCBI <u>GEO Accession viewer (GSE94533)</u>
 Run Selector (PRJNA371423)
 - EBI <u>ENA Broswer (PRJNA371423)</u>
- How big in terms of GB? in terms of reads?
 - o sra 48.78GB
 - o fastq 1.29GB * 204
 - xlsx 4.89MB + 9.22MB

— Preprocess

- xlsx file GSE94533_Processed_file_Cohort1.xlsx
 GSE94533_Processed_file_Cohort2.xlsx
 - sample, 01_summary_all, mirna_rawcounts, mirna_tpm (Remap Name), smallrna_rawcounts, smallrna_tpm, putative_mirna
- Run Selector PRJNA371423
 - Run, BioSample, AvgSpotLen, Bases, Bytes, diagnosis, Experiment,
 GEO_Accession, Histology, MBases, MBytes, Sample Name, stage
- GEO Accession viewer (GSE94533)
 - 180 of Samples (Sample Name/Remap Name)

— Preprocess - Why mirna_tpm

- TPM (Transcript Per Million)
 - TPM is a unit used to measure expression in NGS experiments.
 - The number of reads for a particular miRNA is divided by the total number of mapped reads and multiplied by 1 million.

TPM

$$= \frac{\frac{\text{total exon reads}}{\text{exon length (KB)}}}{\frac{\text{Gene A mapped reads (millions)}}{\text{exon length (KB)}} + \frac{\text{Gene B mapped reads (millions)}}{\text{exon length (KB)}} + \frac{\text{Gene C mapped reads (millions)}}{\text{exon length (KB)}} + \cdots}\right)$$

— Feature Select

Significance	Correlation	Fold
Table 3. miRNA variables used in r	nodel building identified through univariate testing	
Significance-based selection	Correlation-based feature subset selection	Expression fold change selection
miR-29a-3p	miR-16-2-3p	miR-23b-3p
miR-30d-5p	miR-200a-3p	miR-29a-3p
miR-200a-3p	miR-200c-3p	miR-32–5 p
miR-200c-3p	miR-320b	miR-92a-3p
miR-320d	miR-320d	miR-150–5 p
miR-320c		miR-200a-3p
miR-450b-5p		miR-200c-3p
miR-203a		miR-203a
miR-486–3 p		miR-320c
miR-1246		miR-320d
miR-1307–5 p		miR-335–5 p
		miR-450b-5p
		miR-1246
		miR-1307-5 p

Split Training and Testing Set

Input & Output

- Input: A person with selected miRNA features.
- Output: 1 for cancer and 0 for benign/borderline/control.

name	hsa-let-7a-2-3
e1036	0
e1048	0
e1059	0
e1044	0
e1026	0
e1051	0
e1041	0
e1037	0
e1007	0
e1045	0
e1043	0

hsa-let-7a-5p
6031
3074
9341
5638
2518
4450
1678
4259
6718
1293
2901

— Reproduced Models

- 1. We reproduced several models in scikit-learn.
 - a. Linear discriminant analysis (LDA)
 - b. Logistic Regression (LR)
 - c. Support vector machine (SVM)
 - d. Random forest
 - e. Elastic net

1. We also reproduced the NN model using Keras.

— Neural network

— Another Model

— Linear discriminant analysis

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.80 (0.66–0.93)	0.76 (0.62–0.90)	0.78 (0.64–0.92)

	Significance	Correlation	Fold
AUC (95% CI)	0.67 (0.54-0.79)	0.63 (0.54-0.72)	0.75 (0.64-0.85)

Linear discriminant analysis

Logistic regression

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.81 (0.68–0.94)	0.75 (0.61–0.90)	0.82 (0.70–0.94)

	Significance	Correlation	Fold
AUC (95% CI)	0.61 (0.48-0.73)	0.71 (0.61-0.80)	0.70 (0.57-0.81)

— Logistic regression

— Support vector machine

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.77 (0.63–0.91)	0.73 (0.58–0.87)	0.77 (0.63–0.91)

	Significance	Correlation	Fold
AUC (95% CI)	0.61 (0.48-0.74)	0.71 (0.60-81)	0.70 (0.59-0.81)

— Support vector machine

— Random forest

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.78 (0.64–0.91)	0.71 (0.56–0.86)	0.76 (0.62–0.90)

	Significance	Correlation	Fold
AUC (95% CI)	0.66 (0.53-0.77)	0.69 (0.57-0.80)	0.59 (0.47-0.71)

Random forest

— Elastic net

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.80 (0.67–0.93)	0.76 (0.62–0.90)	0.79 (0.66–0.92)

	Significance	Correlation	Fold
AUC (95% CI)	0.71 (0.57-0.85)	0.72 (0.58-0.84)	0.72 (0.57-0.85)

— Elastic net

— Neural network (3-layer)

Paper

	Significance	Correlation	Fold
AUC (95% CI)	0.84 (0.72–0.96)	0.75 (0.60–0.89)	0.90 (0.81–0.99)

	Significance	Correlation	Fold
AUC (95% CI)	0.65 (0.58-0.72)	0.57 (0.45-0.69)	0.63 (0.51-0.76)

— Attention

	Significance	Correlation	Fold
AUC (95% CI)	0.75 (0.62-0.87)	0.59 (0.44-0.74)	0.63 (0.48-0.77)

— Attention

— Conclusion

- 1. The original authors uses STATISTICA and Weka to produce their models. Since these programs either required commercial licenses or is hare to use, we chose to use python to reproduce the results. However, we are not able to reproduce the results since STATISTICA and Weka provides some fine-tuning that we don't know.
- 2. We proposed a attention-baed model using PyTorch, and gained a good enough results. However, the results are still worse than the best models proposed by the original authors, maybe because of the lack of data complexity, witch cause our model easily to overfit the training data.

— Corporate

- (1) 資料下載及處理:段寶鈞、陳先灝、盧佳妤
- (2) 模型重現:
 - (a) 挑特徵值: 陳先灝
 - (b) 模型建構及結果:
 - LDA: 盧佳妤
 - LR: 段寶鈞
 - SVM: 盧佳妤
 - Random forest: 盧佳妤
 - Elastic net: 盧佳妤
 - NN: 陳先灝
- (3) 其他模型實作(attention): 盧佳妤

— References

* Paper

- Elias, K. M. et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife 6, (2017)
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

* Packages we use

- numpy (matrix utilities)
- scikit-learn (statistics routines)
- pytorch (attention model framework)
- keras (NN model framework)
- matplotlib (figure drawing)
- absl-py (flag management)
- coloredlogs (beautiful logging)

Thank You