Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

19

20 21

22

23

24

25

31

32

35

37

38

This manuscript was compiled on June 8, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

Hodges–Lehmann inequality and γ -U-orderliness

The Hodges–Lehmann estimator stands out as a unique robust location estimator due to its definition being substantially dissimilar from conventional L-estimators, R-estimators, and M-estimators. In their landmark paper, Estimates of location based on rank tests, Hodges and Lehmann (1) proposed two methods for computing the H-L estimator: the Wilcoxon score R-estimator and the median of pairwise means. The Wilcoxon score R-estimator is a location estimator based on signed-rank test, or R-estimator, (1) and was later independently discovered by Sen (1963) (2, 3). However, the median of pairwise means is a generalized L-statistic and a trimmed U-statistic, as classified by Serfling in his novel conceptualized study in 1984 (4). Serfling further advanced the understanding by generalizing the H-L kernel as $hl_k(x_1,\ldots,x_n)=\frac{1}{k}\sum_{i=1}^k x_i$, where $k\in\mathbb{N}$ (4). Here, the weighted H-L kernel is defined as $whl_k(x_1,\ldots,x_n)=\frac{\sum_{i=1}^k x_i\mathbf{w}_i}{\sum_{i=1}^k \mathbf{w}_i}$, where \mathbf{w}_i s are the weights applied to each element.

By using the whl_k kernel and the L-estimator, it is now clear that the Hodges-Lehmann estimator is an LL-statistic, the definition of which is provided as follows:

$$LL_{k,\epsilon,\gamma,n}\coloneqq L_{\epsilon_{0},\gamma,n}\left(\operatorname{sort}\left(\left(whl_{k}\left(X_{N_{1}},\cdots,X_{N_{k}}\right)\right)_{N=1}^{\binom{n}{k}}\right)\right),$$

where $L_{\epsilon_0,\gamma,n}(Y)$ represents the L-estimator that uses the sorted sequence, sort $(whl_k(X_{N_1},\cdots,X_{N_k}))_{k=1}^{\binom{n}{k}}$, as input, the upper asymptotic breakdown point of the L-estimator is ϵ_0 , the lower asymptotic breakdown point is $\gamma\epsilon_0$. The upper asymptotic breakdown point of $LL_{k,\epsilon,\gamma}$ is $\epsilon=1-(1-\epsilon_0)^{\frac{1}{k}}$, as proven in another relevant paper. There are two ways to adjust the breakdown point: either by setting k as a constant and adjusting ϵ_0 , or by setting ϵ_0 as a constant and adjusting k. In the above definition, k is discrete, but the bootstrap method can be applied to ensure the continuity of k, also making the breakdown point continuous. Specifically, if $k \in \mathbb{R}$, let the bootstrap size be denoted by k, k be k, then first sampling the original sample k denoted by k, k be times with each sample size of k, and then subsequently sampling k times with each sample size of k.

Data Availability. Data for Figure ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.

 J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 34, 598–611 (1963). PK Sen, On the estimation of relative potency in dilution (-direct) assays by distribution-free methods. *Biometrics* pp. 532–552 (1963).
 M Ghosh, MJ Schell, PK Sen, A conversation with pranab kumar sen. *Stat. Sci.* pp. 548–564

41

42

43

44

45

(2008).

4. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984).

T.L. designed research, performed research, analyzed data, and wrote the paper.
The author declares no competing interest.

¹To whom correspondence should be addressed. E-mail: tl@biomathematics.org