Linear Algebra I HW3

B13902024 張沂魁

September 22, 2025

Sec 3.2

Problem. Let T be a linear transformation from \mathbb{R}^3 into \mathbb{R}^2 , and let U be a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 . Prove that the transformation UT is not invertible. Generalize the theorem.

Proof. Since by rank and nullity theorem, we know

$$3 = \nu(T) + \operatorname{rank}(T),$$

and rank $T \leq 2$, so $\nu(T) \geq 1$, which means T is not injective. Hence, there exists $a \neq b$ s.t. T(a) = T(b), and thus UT(a) = UT(b), which means UT is not injective. Hence, UT is not invertible. To generalize the theorem, we can say if m > n, and suppose $T: V \to W$ and $U: W \to U$ s.t. dim $V = \dim U = m$ and dim W = n, then UT is not invertible.

Problem. Find two linear operators T and U on \mathbb{R}^2 such that TU = 0 but $UT \neq 0$.

Proof. Suppose

$$U(x,y) = (x + y, 2x + 2y)$$
 $T(x,y) = (y - 2x, 0),$

which are two linear operators on \mathbb{R}^2 , then we know

$$TU(x,y) = (0,0)$$
 $UT(x,y) = (y-2x, 2y-4x).$

Problem. Let V be a vector space over the field F and T a linear operator on V. If $T^2 = 0$, what can you say about the relation of the range of T to the null space of T? Give an example of a linear operator T' on \mathbb{R}^2 such that $T'^2 = 0$ but $T' \neq 0$.

Proof. If $T^2 = 0$, then Im $T \subseteq \ker T$. Consider T'(x,y) = (x+y, -x-y), then

$$T'^{2}(x,y) = T'(x+y, -x-y) = (0,0) \quad \forall (x,y) \in \mathbb{R}^{2}.$$

Problem. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that TU = I. Prove that T is invertible and $U = T^{-1}$. Give an example which shows that this is false when V is not finite-dimensional. (Hint: Let T = D, the differentiation operator on the space of polynomial functions.)

Proof. Since for all $a \in V$, we have T(U(a)) = a, so T is surjective, and thus

$$\nu(T) + \operatorname{rank}(T) = \dim V$$

gives $\nu T = \dim V - \operatorname{rank} T = \dim V - \dim V = 0$, which means T is injective, so T is bijective and thus invertible. Now we claim $U = T^{-1}$, that is, the inverse is unique. Suppose not, then there exists $b \in V$ s.t. $U(b) \neq T^{-1}(b)$, so we have

$$T(U(b)) = b = T(T^{-1}(b)),$$

but this implies T is not injective, which is a contradiction. Now if $T: \mathbb{R} \to \mathbb{R}$ is a linear operator with T(f) = D(f), where D(f) means differentiating f, then in this case $V = \mathbb{R}[x]$, which is not finite dimensional. Note that we can pick $U: \mathbb{R}[x] \to \mathbb{R}[x]$ by $U(f) = \int f \, \mathrm{d}x$, which is the anti-derivative of f with constant term equal 0, then we know TU = I. However, T(x+1) = T(x) = 1, so T is not injective and thus cannot be invertible. Also, notice that there are infinitely many U' s.t. TU' = I since we can let U' = U + C for any constant C. Hence, this statement is not true for infinite-dimensional V.

Sec 3.3

Problem. Let W be the set of all 2×2 complex Hermitian matrices, that is, the set of 2×2 complex matrices A such that $A_{ij} = \overline{A_{ji}}$ (the bar denoting complex conjugation). As we pointed out in Example 6 of Chapter 2, W is a vector space over the field of real numbers, under the usual operations. Verify that the map

$$(x, y, z, t) \longmapsto \begin{bmatrix} t + x & y + iz \\ y - iz & t - x \end{bmatrix}$$

is an isomorphism of \mathbb{R}^4 onto W.

Proof. We first show this map is linear. Suppose this map is called T, then we know for all $\alpha \in \mathbb{R}$,

$$T\left(\alpha(x,y,z,t)+(x',y',z',t')\right) = \begin{bmatrix} \alpha t + t' + \alpha x + x' & \alpha y + y' + i(\alpha z + z') \\ \alpha y + y' - i(\alpha z + z') & \alpha t + t' - (\alpha x + x') \end{bmatrix},$$

which is equal to

$$\begin{bmatrix} \alpha t + \alpha x & \alpha y + i \alpha z \\ \alpha y - i \alpha z & \alpha t - \alpha x \end{bmatrix} + \begin{bmatrix} t' + x' & y' + i z' \\ y' - i z' & t' - x' \end{bmatrix} = \alpha T(x, y, z, t) + T(x', y', z', t').$$

Hence, T is linear. Now we show that it is bijective. Note that $\dim \mathbb{R}^4 = \dim W = 4$, so we just need to check T is injective. If there exists $(x, y, z, t) \neq (x', y', z', t')$ s.t. T(x, y, z, t) = T(x', y', z', t'), then

$$\begin{cases} t + x = t' + x' \\ y + iz = y' + iz' \\ y - iz = y' - iz' \\ t - x = t' - x' \end{cases}$$

and then by adding up the first equation and the last one, we will get t = t' and thus x = x', while adding up the second equation and the third one we have y = y' and z = z', so we know (x, y, z, t) = (x', y', z', t'), which means T is injective, and we're done.