Data Science - A practical Approach

Lorenz Feyen

CONTENTS

Ι	1. Introduction	3
1	Introduction 1.1 Structured vs Unstructured	5 5 6 7
II	2. Data Preparation	9
2	Introduction 2.1 why Data Preparation?	11 11 14
3	Missing Data 3.1 Kamyr digester	15 15 17 22
4	Concatenation and deduplication 4.1 Concatenation	25 25 26
5	Outliers and validity5.1Silicon wafer thickness5.2Distillation column	31 31 34
6	String operations	37
7	Datetime operations	39
8	Categorical encoding 8.1 Raw Material Charaterization	49 49
9	Restaurant tips	53
10	Scaling and Normalization	59
11	Binning and ranking 11.1 Binning	63 65 68
12	Some practice	73

III 3. Data Preprocessing	75
13 Data Preprocessing	77
14 Indexing and slicing	79
15 Merge	83
16 Groupby	87
17 Pivot	95
IV 4. Data Exploration	101
18 Data Exploration	103
V 5. Data Visualisation	105
19 Data Visualisation	107
VI 6. Machine Learning	109
20 Machine Learning	111

pdf version can be found here.

CONTENTS 1

2 CONTENTS

Part I

1. Introduction

CHAPTER

ONE

INTRODUCTION

this is an introduction

1.1 Structured vs Unstructured

When performing data preparation an important aspect is to consider with the type of data we are working with. In general there are 2 types of data, but you could consider a third.

1.1.1 Structured data

Structured data is data that adheres to a pre-defined data model and is therefore straightforward to analyze. This data model is the description of our data, each record has to be conform to the model. A table in a spreadsheet is a good example of the concept of structured data however often no data types are enforced, meaning a column can contain e.g. both numbers and text. Later we will see that a mixture of data types is often problematic therefor the need of a data model.

1.1.2 Unstructured data

In contrast to structured data, there is no apparent data model but this does not mean the data is unusable or cluttered. Usually it means either no data model has yet been applied or we are dealing with data that is difficult to confine in a model. A great example of this would be images, or more general (binary) files. These obviously are hard to sort yet often data structures also contain metadata from these files, with data describing things as when the file was uploaded, what is shown in the file, ... In turn the metadata can be structured and a data model can be related to the unstructured data.

1.1.3 Semi-structured data

As an intermediate option, we have what is called semi-structured data. The reasoning behind this is that the concept of tables is not always applicable, in some occasions e.g. data lakes there is no complex structure present compared to a database. In a data lake files are stored similar to the folder structure in your computer, with no fancy infrastructure behind it, thus reducing operation costs. This implies that a data model can not be enforced and the data is stored in generic files.

1.2 Data Structures

There are several structures in which data can be stored and accessed, here we cover the 3 most important.

1.2.1 Data Lake

As mentioned earlier a data lake would be the most cost efficient method as it relies on the least infrastructure and can be serverless. The concept behind a data lake is straight-forward, the data is stored in simple files with a specific notation e.g. parquet, csv, xml,... What is important when designing a data lake would be partitioning, this can be achieved by using subfolders and saving parts of the data in different files. To make this more tangible, take a look at this symbolic example I provided. Instead of putting all data in one csv file, subfolder divide the data in Country, City and then the year. We could even further partition yet the data is here in daily frequency so that would create many small partitions. The difficulty for a data lake lies in the method of interacting, when adding new data one has to adhere to a agreed upon data model that is not enforced, meaning you could create incorrect data which then need to be cleaned. On the other hand efficiency of you data lake depends on good partitioning, as the order of divisioning of your folders. We could have also divided first on year and then on country and city. As a data scientist seeing the data lake might not be as common, as this is rather an engineering task, however using the concepts of a data lake in experimental projects can make a big difference.

1.2.2 Database

Another interesting data structure is the database, widely used for exceptional speeds and ease of use, yet costly in storage. Numerous implementations of servers using the SQL language are developed over the years with each their own dialect and advantages. The important take home message here is that you can easily perform queries on the database that prehandles the data to retrieve the information you need. these operations include filtering, grouping categories, joining tables, ordering and much more, as SQL is a complete language on its own. As a data scientist these databases are much more common, so SQL is a good asset to learn!

1.2.3 Data Warehouse

A next step towards data analysis is the data warehouse, where a database is composed of the most pragmatic method of storing your data a data warehouse consist of multiple views on your data. Based upon the data of a dataset the data warehouse transforms this data into a new format that displays the data in a new way. Let me illustrate with with a simple example, we have a database with a table that contains the rentals of books from multiple libraries. This table has a few columns: a timestamp, the library, the action (rent, return, ...), the client_id and the book_id. If you would want to know if a book is available this database is perfect for your needs as you just have to find the last event for that book and if its a return the book is (or should be) there. Now image we would want to know how many books are being rented per month this database is insufficient, yet our data warehouse might contain such a view! It is up to the data engineer/scientist to create a computation that displays the amount of books rented per month. If they also would like to subdivided it per category of books, you would need to incorporate another table of the database where information of the books is stored. More on these operations of a data warehouse will be seen in the data preprocessing chapter. One last remark about data warehousing, it is important to optimize between memory and computation. Tables in our data warehouse compared to database can be computed in place reducing memory costs yet increasing computation costs. If a visualization tool often queries a table in your warehouse it is favorable to create it as a table in your database.

1.3 OLTP and OLAP

From the previous section you might have deduced that a database and Data Warehouse serve 2 different purposes. These are denoted as OnLine Transaction Processing and OnLine Analytical Processing, as the names suggest these are used for transactional and analytical processes.

1.3.1 OLTP

For this method the database structure is optimal, let us review the example where we have libraries renting out books. Renting out a book would send a message to our OLTP system creating a new record stating that specific book is at this moment rented out from our library. OLTP handles day-to-day operational data that can be both written and read from our database.

1.3.2 OLAP

In the case we would like to analyse data from the libraries we would use the OLAP method, creating multi-dimensional views from our transactional data. Our dimensions would be the date (aggregated per month), the library and the category of book, the chapter of data preprocessing will use these operations practically. I could write a whole chapter on OLAP operations however they are well described in this wikipedia page.

1.3. OLTP and OLAP 7

Part II

2. Data Preparation

CHAPTER

TWO

INTRODUCTION

When performing data science, we often do not elaborate about the preparation that went into the dataset. It is considered tedious and irrelevant to the story of the analysis, however it is often the most important part of data analysis. Data Preparation is the metaphorical foundation of your construction, if you fail to prepare data, you prepare to fail your analysis.

Good data beats a fancy algorithm

If you would perform an analysis and insert unprepared data, you will mostly be disappointed with the result.

2.1 why Data Preparation?

Aside from metaphors let us make the reasoning behind this step more tangile, to explain the relevance of this step, we partitioned the answer into a few key points.

2.1.1 Accuracy

There is no excuse for incorrect data and accuracy is the most important attribute. Let us assume that we have a dataset where for some reason the result are not accurate. This would led us to an analysis where we conclude a result that contains a bias. An example would be a dataset of sold cars, where the listed price is that of the stock car without options. Options are not incorporated in the price and we are perhaps training an algorithm that predicts the stock price. If you as a data scientist fail to report/correct this, your predictions are making sense, but always underestimate!

2.1.2 Consistency

They usually say something such as 'consistency is key' and with data preparation that is likewise true. A dataset where we do not have consistent results will never converge towards a particular answer. Note however that it might not be a problem of consistency but rather you are missing crucial information. If we would have a dataset where local temperatures are logged, we would like to see a consistency each 24 hours. However we do see there are day to day fluctuations, so perhaps we need to keep track of cloud and rain data to make the dataset more complete. We could then see that the results are more consistent yet the possibility of outliers is still present. Equally possible would be that our temperature sensor is not sensitive enough or has large fluctuations in readings, it is the task of the data scientist to figure this out.

To get a visual about accuracy and consistency this picture might help:

2.1.3 Completeness

As hinted in the previous point, completeness is something you have to be aware of. Having 'complete' data is crucial for you narrative to give a correct answer, as you might otherwise lose detail. Note that you never will know if your data is complete as there might always be more data to mine. Yet you have to make a consideration between collecting more data and the effort required. This collecting can happen in multiple methods, as an example we use a survey where we asked several people 10 different questions, we could:

- gather new data, here our data grows 'longer' by asking the 10 question to more people. It might be that our sample of people were only students at a campus, so our data was not complete.
- gather new feature, by asking more questions to the same people (in case we could still find them). By doing this we get a better understanding of their opinion, again making our data more complete.
- fill missing values, by imputing the abstained questions with answers of similar records. When someone answered they did not want to answer we could figure out what they would have answered by looking at what persons answered that reply in a similar way.

2.1.4 Timeliness

For some datasets we are dealing with data that is time related. It can happen that data at specific timepoints is missing or delayed, resulting in a failure to use machine learning algorithms. A well-organised data pipeline utilises techniques of data preparation to circumvent these outages, usually this would be to retain the last successful datapoint. However in hindsight we could use more complex strategies to fill in these gaps or correct datetimes in our dataset,

In this example the data stream is interrupted and data preparation is there to handle these outages before we can perform analysis.

2.1.5 Believability

You could collect the most intricate dataset possible, but if the narrative that you are conducting contradicts itself, you will end up nowhere. During the process of data analytics it is important to apply a critical mind to what your dataset is telling you. Obviously this is not a reason to mask or mold the data so it agrees with your opinion. Rather you should be wary when conflicts happen and act accordingly, unfortunately it is impossible to write a generic tactic for this. As a data scientist your experience of the underlying subject should help create understanding of the topic, remember, gathering information from experts in the field is crucial here!

2.1.6 Interpretability

Another problem that might arise when you are diving deep into the data might be that you have created something no human could ever interpret. The Machine Learning algorithms outputs plausible and believable results, but it is impossible to understand the reasoning behind. For some this is perfectly acceptible, for some this is undesirable. It is your task as a data scientist to cater the wishes of the product operator and if they desire understanding as they would like to learn from the data driven process you need to unfold the process. Usually this comes down to which data transformations are used as some do produce an output that only makes mathematical sense.

2.1.7 In conclusion

There are multiple ways to deteriorate the quality of your data and raw formats of data often contain multiple. Before we can do anything with it these problems need to be resolved, if you fail to do so, the final output fails too.

2.2 Further reading

Towards Data Science

CHAPTER

THREE

MISSING DATA

In this notebook we will look at a few datasets where values from columns are missing. It is crucial for data science and machine learning to have a dataset where no values are missing as algorithms are usually not able to handle data with information missing.

For python, we will be using the pandas library to handle our dataset.

```
import pandas as pd
```

3.1 Kamyr digester

The first dataset we will be looking at is taken from a physical device equiped with numerous sensors, each timepoint (1 hour) these sensors are read out and the data is collected. Let's have a look at the general structure

```
Observation
               Y-Kappa
                         ChipRate
                                   BF-CMratio
                                                BlowFlow
                                                           ChipLevel4
     31-00:00
                  23.10
                           16.520
                                       121.717
                                                1177.607
                                                               169.805
     31-01:00
                  27.60
                           16.810
                                        79.022
                                                1328.360
                                                               341.327
1
                                                1329.407
2
     31-02:00
                  23.19
                           16.709
                                        79.562
                                                               239.161
3
     31-03:00
                  23.60
                           16.478
                                        81.011
                                                1334.877
                                                               213.527
4
     31-04:00
                  22.90
                           15.618
                                        93.244
                                                1334.168
                                                               243.131
   T-upperExt-2
                   T-lowerExt-2
                                    UCZAA
                                           WhiteFlow-4
                                                               SteamFlow-4
0
         358.282
                          329.545
                                   1.443
                                                 599.253
                                                                      67.122
                                                          . . .
         351.050
                          329.067
                                   1.549
                                                 537.201
                                                                      60.012
1
                                                          . . .
                                                                      61.304
2
         350.022
                          329.260 1.600
                                                549.611
3
                                   1.604
         350.938
                          331.142
                                                 623.362
                                                                      68.496
4
         351.640
                          332.709
                                     NaN
                                                 638.672
                                                                      70.022
   Lower-HeatT-3 Upper-HeatT-3
                                    ChipMass-4
                                                  WeakLiquorF
                                                                BlackFlow-2
0
         329.432
                          303.099
                                        175.964
                                                      1127.197
                                                                     1319.039
         330.823
                                                                     1297.317
                          304.879
                                        163.202
                                                       665.975
1
2
         329.140
                          303.383
                                        164.013
                                                       677.534
                                                                     1327.072
3
         328.875
                          302.254
                                        181.487
                                                       767.853
                                                                     1324.461
4
         328.352
                          300.954
                                        183.929
                                                       888.448
                                                                     1343.424
   WeakWashF
                SteamHeatF-3
                               T-Top-Chips-4
                                                 SulphidityL-4
0
      257.325
                       54.612
                                       252.077
                                                            NaN
      241.182
                       46.603
                                       251.406
                                                          29.11
1
```

2	237.272	51.795	251.335	NaN	
3	239.478	54.846	250.312	29.02	
4	215.372	54.186	249.916	29.01	
[5]	rows x 23 colum	mns]			

Interesting, there seem to be 22 sensor values and 1 timestamp for each record. As mechanical devices are prone to noise and dropouts of sensors we would be foolish to assume no missing values are present.

```
kamyr_df.isna().sum().divide(len(kamyr_df)).round(4)*100
```

Observation	0.00
Y-Kappa	0.00
ChipRate	1.33
BF-CMratio	4.65
BlowFlow	4.32
ChipLevel4	0.33
T-upperExt-2	0.33
T-lowerExt-2	0.33
UCZAA	7.97
WhiteFlow-4	0.33
AAWhiteSt-4	46.84
AA-Wood-4	0.33
ChipMoisture-4	0.33
SteamFlow-4	0.33
Lower-HeatT-3	0.33
Upper-HeatT-3	0.33
ChipMass-4	0.33
WeakLiquorF	0.33
BlackFlow-2	0.33
WeakWashF	0.33
SteamHeatF-3	0.33
T-Top-Chips-4	0.33
SulphidityL-4	46.84
dtype: float64	

As expected, the datapoint 'AAWhiteSt-4' even has 46% of data missing! It seems we only have 300 datapoints and presumably these missing values occur in different records our dataset will be decimated if we just drop all rows with missing values.

```
kamyr_df.shape
```

```
(301, 23)
```

```
kamyr_df.dropna().shape
```

```
(131, 23)
```

As we drop all rows with missing values, we are left with only 131 records. Whilst this might be good enough for some purposes, there are more viable options.

Perhaps we can first remove the column with the most missing values and then drop all remaining

```
kamyr_df.drop(columns=['AAWhiteSt-4 ','SulphidityL-4 ']).dropna().shape
```

```
(263, 21)
```

Significantly better, although we lost the information of 2 sensors we now have a complete dataset with 263 records. For purposes where those 2 sensors are irrelevant this is a viable option, keep in mind that this dataset is still 100% truthful, as we have not imputed any values.

Another option, where we retain all our records would be using the timely nature of our dataset, each record is a measurement with an interval of 1 hour. I have no knowledge of this dataset but one might make the assumption that the interval of 1 hour is taken as the state of the machine does not alter much in 1 hour. Therefore we could do what is called a forward fill, where we fill in the missing values with the same value of the sensor for the previous measurement.

This would solve nearly all nan values as there might be a problem where the first value is missing. This is shown below.

```
kamyr_df.fillna(method='ffill')['SulphidityL-4 ']
```

```
NaN
       29.11
1
2
       29.11
3
       29.02
4
       29.01
        . . .
296
       30.43
297
       30.29
298
       30.47
299
       30.47
300
       30.46
Name: SulphidityL-4 , Length: 301, dtype: float64
```

Although our dataset is not fully the truth, we can see that little to no changes occur in the sensor and using a forward fill is arguably the most suitable option.

3.2 Travel times

Another dataset from the same source contains a collection of recorded travel times and specific information about the travel itself as e.g.: the day of the week, where they were going, ...

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
0	1/6/2012	16:37	Friday	Home	51.29	127.4	78.3	
1	1/6/2012	08:20	Friday	GSK	51.63	130.3	81.8	
2	1/4/2012	16:17	Wednesday	Home	51.27	127.4	82.0	
3	1/4/2012	07:53	Wednesday	GSK	49.17	132.3	74.2	
4	1/3/2012	18:57	Tuesday	Home	51.15	136.2	83.4	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
202	7/13/2011	17:08	Wednesday	Home	51.96	132.6	57.5	
203	7/12/2011	17:51	Tuesday	Home	53.28	125.8	61.6	
204	7/11/2011	16:56	Monday	Home	51.73	125.0	62.8	
	AvgMovingS	Speed FuelE	conomy Tot	alTime	MovingTime	: Take407All	Comments	

(continues on next page)

3.2. Travel times 17

(continued	from	previous	page

0	84.8	NaN	39.3	36.3	No	NaN	
1	88.9	NaN	37.9	34.9	No	NaN	
2	85.8	NaN	37.5	35.9	No	NaN	
3	82.9	NaN	39.8	35.6	No	NaN	
4	88.1	NaN	36.8	34.8	No	NaN	
200	82.4	7.89	65.5	39.7	No	NaN	
201	95.1	7.89	40.1	32.1	Yes	NaN	
202	76.7	NaN	54.2	40.6	Yes	NaN	
203	87.6	NaN	51.9	36.5	Yes	NaN	
204	92.5	NaN	49.5	33.6	Yes	NaN	
[205 rows x 1	3 columns]						

we have a total of 205 records and we can already see that the FuelEconomy column seems pretty bad, let's quantify that.

```
travel_df.isna().sum().divide(len(travel_df)).round(4)*100
```

Date	0.00
StartTime	0.00
DayOfWeek	0.00
GoingTo	0.00
Distance	0.00
MaxSpeed	0.00
AvgSpeed	0.00
AvgMovingSpeed	0.00
FuelEconomy	8.29
TotalTime	0.00
MovingTime	0.00
Take407All	0.00
Comments	88.29
dtype: float64	

In the end, it doesn't seem that bad, but there are comments and nearly none of them are filled in. Which in perspective is understandable. Let's see what the comments look like

```
travel_df[~travel_df.Comments.isna()].Comments
```

```
15
                                     Put snow tires on
39
                                            Heavy rain
49
                                   Huge traffic backup
50
        Pumped tires up: check fuel economy improved?
52
                                   Backed up at Bronte
54
                                   Backed up at Bronte
60
                                                 Rainy
78
                                      Rain, rain, rain
91
                                      Rain, rain, rain
92
           Accident: backup from Hamilton to 407 ramp
110
132
                               Back to school traffic?
133
                   Took 407 all the way (to McMaster)
150
                                 Heavy volume on Derry
156
                            Start early to run a batch
158
       Accident at 403/highway 6; detour along Dundas
165
                                          Detour taken
166
                                        Must be Friday
```

```
Medium amount of rain

New tires

Turn around on Derry

Empty roads

Police slowdown on 403

Accident blocked 407 exit

Name: Comments, dtype: object
```

As you would expect, these comments are text based. Now imagine we would like to run some Natural Language Processing (NLP) on these, it would be a pain to perform string operations on it when it is riddled with missing values.

Here a simple example where we select all records containing the word 'rain', with no avail.

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

```
ValueError
                                          Traceback (most recent call last)
/tmp/ipykernel_6376/1298831137.py in <module>
----> 1 travel_df[travel_df.Comments.str.lower().str.contains('rain')]
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/

¬frame.py in __getitem__(self, key)
  3446
  3447
               # Do we have a (boolean) 1d indexer?
               if com.is_bool_indexer(key):
-> 3448
  3449
                    return self._getitem_bool_array(key)
  3450
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/

¬common.py in is_bool_indexer(key)

   137
                            # Don't raise on e.g. ["A", "B", np.nan], see
   138
                            # test_loc_getitem_list_of_labels_categoricalindex_with_
⇔na
--> 139
                            raise ValueError(na_msg)
   140
                        return False
   141
                    return True
ValueError: Cannot mask with non-boolean array containing NA / NaN values
```

The last line of the python error traceback gives us the reason it failed, because there were NaN values present.

Luckily the string variable has more or less it's on 'null' value, being an empty string, this way these operations are still possible, most of the comments will just contain nothing.

```
travel_df.Comments = travel_df.Comments.fillna('')
```

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
39	11/29/2011	07:23	Tuesday	GSK	51.74	112.2	55.3	
60	11/9/2011	16:15	Wednesday	Home	51.28	121.4	65.9	
78	10/25/2011	17:24	Tuesday	Home	52.87	123.5	65.1	
91	10/12/2011	17:47	Wednesday	Home	51.40	114.4	59.7	
110	9/27/2011	07:36	Tuesday	GSK	50.65	128.1	86.3	
172	8/9/2011	08:15	Tuesday	GSK	49.08	134.8	60.5	

(continues on next page)

3.2. Travel times 19

	AvgMovingSpeed FuelEco	nomy	TotalTime	MovingTime	Take407All	\
39	61.0	NaN	56.2	50.9	No	
60	71.8	9.35	46.7	42.1	No	
78	72.4	8.97	48.7	43.8	No	
91	65.8	8.75	51.7	46.9	No	
110	88.6	8.31	35.2	34.3	Yes	
172	67.2	8.54	48.7	43.8	No	
	Comments					
39	Heavy rain					
60	Rainy					
78	Rain, rain, rain					
91	Rain, rain, rain					
110	Raining					
172	Medium amount of rain					

Fixed! now we can use the comments for analysis.

We still have to fix the FuelEconomy, let us take a look at the non NaN values

```
travel_df[~travel_df.FuelEconomy.isna()]
```

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
6	1/2/2012	17:31	Monday	Home	51.37	123.2	82.9	
7	1/2/2012	07:34	Monday	GSK	49.01	128.3	77.5	
8	12/23/2011	08:01	Friday	GSK	52.91	130.3	80.9	
9	12/22/2011	17:19	Thursday	Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursday	GSK	49.15	129.4	74.0	
197	7/20/2011	08:24	Wednesday	GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tuesday	Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tuesday	GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
	ArraMarri nach	and EvolEa	onomi. Tot	olTimo i	MorringTime	Tale 40771	Commonta	
6	AvgMovingSp	seed ruelEC 37.3	OHOMY TOU	37.2	35.3	No		
7		35.9	_	37.2	34.3	NO No		
			-					
8		18.3	8.89	39.3	36.0	No		
9		8.1	8.89	43.5	39.3	No		
10		31.4	8.89	39.8	36.2	No		
			7.00			• • •		
197		37.3	7.89	38.5	33.3	Yes		
198		12.6	7.89	33.3	29.9	Yes		
199		06.4	7.89	37.2	31.7			
200		32.4	7.89	65.5	39.7	No		
201	9	5.1	7.89	40.1	32.1	Yes		
Г188	rows x 13 c	olumnsl						
[+00	10W5 X 15 C	.01 4111113]						

It seems that aside NaN values there are also other intruders, a quick check on the data type (Dtype) reveils it is not recognised as a number!

```
travel_df.info()
```

The column is noted as an object or string type, meaning that these numbers are given as '9.24' instead of 9.24 and numerical operations are not possible. We can cast them to numeric but have to warn pandas to coerce errors, meaning errors will be converted to NaN values. Later we'll handle the NaN's.

```
travel_df.FuelEconomy = pd.to_numeric(travel_df.FuelEconomy, errors='coerce')
travel_df.info()
```

Wonderful, now the column is numerical and we can see 2 more missing values have popped up! We could easily drop these 19 records and have a complete dataset.

```
travel_df.dropna()
```

8	Date 12/23/2011	DayOfWeek Friday	_	-	J 1	\
					(con	tinues on next page)

3.2. Travel times 21

							(continued fi	rom previous page)
9	12/22/2011	17:19	Thursd	ay Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursd	ay GSK	49.15	129.4	74.0	
11	12/21/2011	07:45	Wednesd	ay GSK	51.77	124.8	71.7	
12	12/20/2011	16:05	Tuesd	ay Home	51.45	130.1	75.2	
197	7/20/2011	08:24	Wednesd	ay GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tuesd	ay Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tuesd	ay GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Mond	ay GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursd	ay GSK	50.90	123.7	76.2	
	AvgMovingSpeed	FuelE	conomy	TotalTime	MovingTime	Take407All	Comments	
8	88.3		8.89	39.3	36.0	No		
9	78.1		8.89	43.5	39.3	No		
10	81.4		8.89	39.8	36.2	No		
11	78.9		8.89	43.3	39.4	No		
12	82.7		8.89	41.1	37.3	No		
197	87.3		7.89	38.5	33.3	Yes		
198	102.6		7.89	33.3	29.9	Yes		
199	96.4		7.89	37.2	31.7	Yes		
200	82.4		7.89	65.5	39.7	No		
201	95.1		7.89	40.1	32.1	Yes		
[186	rows x 13 colur	mns]						

However im leaving them as an excercise for you to apply a technique we will see in the next part

3.3 Material properties

Another dataset from the same source contains the material properties from 30 samples, this time there is not timestamp as the samples are not related in time with each other.

	Sample	size1	size2	size3	density1	density2	density3
0	X12558	0.696	2.69	6.38	41.8	17.18	3.90
1	X14728	0.636	2.30	5.14	38.1	12.73	3.89
2	X15468	0.841	2.85	5.20	37.6	13.58	3.98
3	X21364	0.609	2.13	4.62	34.2	11.12	4.02
4	X23671	0.684	2.16	4.87	36.4	12.24	3.92
5	X24055	0.762	2.81	6.36	38.1	13.28	3.89
6	X24905	0.552	2.34	5.03	41.3	16.71	3.86
7	X25917	0.501	2.17	5.09	NaN	NaN	NaN
8	X27871	0.619	2.11	5.13	NaN	NaN	NaN
9	X28690	0.610	2.10	4.18	35.0	12.15	3.86
10	X31385	0.532	2.09	4.93	NaN	NaN	NaN
11	X31813	0.738	2.29	5.47	NaN	NaN	NaN
12	X32807	0.779	2.62	5.59	NaN	NaN	NaN
13	X33943	0.537	2.23	5.41	35.2	11.34	3.99
14	X35035	0.702	2.05	5.10	34.2	10.54	4.02
15	X39223	0.768	2.51	5.09	34.9	12.55	3.90

								(commuted from previous puge)
16	X40503	0.714	2.56	6.03	35.6	12.20	4.02	
17	X41400	0.621	2.42	5.10	38.7	14.27	3.98	
18	X42988	0.726	2.11	4.69	37.1	13.14	3.98	
19	X44749	0.698	2.36	5.40	36.6	12.16	4.01	
20	X45295	NaN	NaN	NaN	38.1	13.34	3.89	
21	X46965	0.759	2.47	4.83	38.7	14.83	3.89	
22	X49666	0.535	2.13	5.23	NaN	NaN	NaN	
23	X50678	0.716	2.29	5.45	37.3	13.70	3.92	
24	X52894	0.635	2.08	4.94	NaN	NaN	NaN	
25	X53925	0.598	2.12	4.69	37.9	13.45	3.78	
26	X54254	0.700	2.47	5.22	38.8	14.72	3.92	
27	X54272	0.957	2.96	7.37	36.2	13.38	4.20	
28	X54394	0.759	2.66	5.36	35.2	12.19	3.98	
29	X55408	0.661	2.10	4.27	NaN	NaN	NaN	
30	X56952	0.646	2.38	4.51	40.1	15.68	3.86	
31	X57095	0.662	2.34	4.71	35.0	12.37	3.90	
32	X57128	0.749	2.43	5.16	37.3	13.04	3.92	
33	X61870	0.598	2.21	4.90	NaN	NaN	NaN	
34	X61888	0.619	2.59	5.81	NaN	NaN	NaN	
35	X72736	0.693	2.05	5.02	39.6	15.55	3.94	
11								

let us quantify the amount of missing data

```
material_df.isna().sum().divide(len(material_df)).round(4)*100
```

```
Sample 0.00

size1 2.78

size2 2.78

size3 2.78

density1 27.78

density2 27.78

density3 27.78

dtype: float64
```

Unfortunately that is a lot of missing data, covered in all records, dropping here seems almost impossible if we want to keep a healthy amount of records.

Here it would be wise to go for a more elaborate method of imputation, I opted for the K-nearest neighbours method, which looks at the K most similar records in the dataset to make an educated guess on what the missing value could be, this because we can assume that records with similar data are also similar over all the properties (columns).

Im using the sklearn library for this, which has more imputation techniques such as MICE. More info can be found here

```
from sklearn.impute import KNNImputer
```

im creating an imputer object and specify that i want to use the 5 most similar records and weigh them by distance from the to imputed record, meaning closer neighbours are more important.

```
imputer = KNNImputer(n_neighbors=5, weights="distance")
```

As the imputer only takes numerical values I had to do some pandas magic and drop the first column, which I then added again. The result is a fully filled dataset, you can recognise the new values as they are not rounded.

```
pd.DataFrame(
    imputer.fit_transform(material_df.drop(columns=['Sample'])),
    columns=material_df.columns.drop('Sample')
)
```

size1 size2 size3 density1 density2 density3 0 0.696000 2.690000 6.380000 41.8000000 17.180000 3.990000 1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.150000 5.200000 37.600000 13.580000 3.980000 3 0.69900 2.130000 4.62000 34.200000 11.20000 3.920000 5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552002 2.340000 5.030000 31.30000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 4.180000 35.00000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.930000 37.811132 13.66072 3.99364 11 0.733000 2.230000	_							
1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.850000 5.200000 37.60000 13.580000 3.980000 3 0.699000 2.130000 4.620000 34.200000 11.120000 4.020000 4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.762000 2.810000 6.360000 38.10000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 37.811132 13.646072 3.99364 11 0.738000 2.290000 5.470000 37.88833 13.255412 3.941654 12 0.779000 2.620000		size1		size3	_	density2		
2	0	0.696000	2.690000	6.380000	41.800000	17.180000	3.900000	
3	1	0.636000	2.300000	5.140000	38.100000	12.730000		
4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.752000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.00000 12.150000 3.943667 9 0.610000 2.100000 4.930000 35.000000 12.150000 3.980364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.100000 34.200000 10.540000 3.990000 14 0.702000 2.050000 5.100000 34.200000 12.550000 3.980000 15 0.768000 2.510000	2	0.841000	2.850000	5.200000	37.600000	13.580000	3.980000	
5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 5.470000 37.881132 13.646072 3.998364 11 0.738000 2.290000 5.470000 37.88133 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 34.200000 11.340000 3.990000 14 0.702000 2.510000 5.09000 34.90000 12.200000 3.990000 15 0.768000 2.510000	3		2.130000	4.620000	34.200000	11.120000	4.020000	
6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.08883 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.100000 38.700000 12.200000 4.020000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 18 0.726000 2.100000 <td>4</td> <td></td> <td>2.160000</td> <td>4.870000</td> <td>36.400000</td> <td>12.240000</td> <td>3.920000</td> <td></td>	4		2.160000	4.870000	36.400000	12.240000	3.920000	
7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779900 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.550000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.200000 12.200000 4.020000 16 0.714000 2.560000 5.100000 38.700000 14.270000 3.980000 19 0.698000 2.360000 <td>5</td> <td>0.762000</td> <td>2.810000</td> <td>6.360000</td> <td>38.100000</td> <td>13.280000</td> <td>3.890000</td> <td></td>	5	0.762000	2.810000	6.360000	38.100000	13.280000	3.890000	
8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.088833 13.256412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 3.990000 15 0.768000 2.510000 5.090000 34.200000 12.200000 3.990000 16 0.714000 2.560000 5.100000 37.100000 12.200000 4.020000 17 0.621000 2.420000 5.100000 37.100000 13.240000 3.980000 18 0.726000 2.100000 4.690000 37.100000 13.340000 3.980000 19 0.698000 2.470000 </td <td>6</td> <td>0.552000</td> <td>2.340000</td> <td>5.030000</td> <td>41.300000</td> <td>16.710000</td> <td>3.860000</td> <td></td>	6	0.552000	2.340000	5.030000	41.300000	16.710000	3.860000	
9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.08833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.09000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 13.140000 3.980000 18 0.726000 2.160000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 </td <td>7</td> <td>0.501000</td> <td>2.170000</td> <td>5.090000</td> <td>38.495282</td> <td>14.029399</td> <td>3.931180</td> <td></td>	7	0.501000	2.170000	5.090000	38.495282	14.029399	3.931180	
10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.890000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 5.230000 37.391815 13.089536 3.944335 23	8	0.619000	2.110000	5.130000	37.405275	13.157346	3.943667	
11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.70000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.30000 13.700000 3.92000 24 <td>9</td> <td>0.610000</td> <td>2.100000</td> <td>4.180000</td> <td>35.000000</td> <td>12.150000</td> <td>3.860000</td> <td></td>	9	0.610000	2.100000	4.180000	35.000000	12.150000	3.860000	
12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.2500000 4.020000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.40000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.350000 13.700000 3.780000 24	10		2.090000	4.930000	37.811132	13.646072	3.908364	
13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.700000 3.920000 24 0.635000 2.120000 4.690000 37.90000 13.450000 3.780000 25 </td <td>11</td> <td></td> <td>2.290000</td> <td>5.470000</td> <td></td> <td>13.255412</td> <td></td> <td></td>	11		2.290000	5.470000		13.255412		
14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.70000 3.93900 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 <td>12</td> <td>0.779000</td> <td>2.620000</td> <td>5.590000</td> <td>36.540567</td> <td>12.889902</td> <td>3.970973</td> <td></td>	12	0.779000	2.620000	5.590000	36.540567	12.889902	3.970973	
15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.90000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.980000 29<	13	0.537000	2.230000	5.410000	35.200000	11.340000	3.990000	
16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28	14	0.702000	2.050000	5.100000	34.200000	10.540000	4.020000	
17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.880000 29	15	0.768000	2.510000	5.090000	34.900000	12.550000	3.900000	
18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30	16		2.560000	6.030000	35.600000	12.200000		
19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 35.200000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.990000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34	17	0.621000	2.420000	5.100000	38.700000	14.270000	3.980000	
20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.920000 32	18	0.726000	2.110000	4.690000	37.100000	13.140000	3.980000	
21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.340000 4.710000 35.00000 12.370000 3.90000 31 0.662000 2.430000 5.160000 37.300000 13.040000 3.92000 32 <td>19</td> <td>0.698000</td> <td>2.360000</td> <td>5.400000</td> <td>36.600000</td> <td>12.160000</td> <td>4.010000</td> <td></td>	19	0.698000	2.360000	5.400000	36.600000	12.160000	4.010000	
22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.900000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.920000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34<	20	0.733097	2.653959	5.881504	38.100000	13.340000	3.890000	
23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.90000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	21	0.759000	2.470000	4.830000	38.700000	14.830000	3.890000	
24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	22	0.535000	2.130000	5.230000		13.089536	3.944335	
25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	23	0.716000	2.290000	5.450000	37.300000	13.700000	3.920000	
26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 35.932339 12.318210 3.989911	24	0.635000	2.080000	4.940000	37.254724	13.206262	3.933904	
27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	25	0.598000	2.120000	4.690000	37.900000	13.450000	3.780000	
28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.700000	2.470000	5.220000	38.800000	14.720000	3.920000	
29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911			2.960000	7.370000				
30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	28		2.660000	5.360000	35.200000	12.190000	3.980000	
31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.661000	2.100000	4.270000	36.172345	12.755632	3.887375	
32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.662000						
34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
35 0.693000 2.050000 5.020000 39.600000 15.550000 3.940000								
	35	0.693000	2.050000	5.020000	39.600000	15.550000	3.940000	

This concludes the part of missing values, perhaps you can try yourself and impute the missing values for the FuelEconomy using the SimpleImputer or even the IterativeImputer.

CONCATENATION AND DEDUPLICATION

In this notebook we are going to investigate the concepts of stitching data files (concatenation) and verifying the integrity of our data concercing duplicates

4.1 Concatenation

When dealing with large amounts of data, fractioning is often the only solution. Not only does this tidy up your data space, but it also benefits computation. Aside from that, appending new data to your data lake is independent of the historical data. However if you want to perform historical analysis this means you will need to perform additional operations.

In this notebook we have a setup of a very small data lake containing daily minimal temperatures. If you would look closely in the url you would see the following structure.

data/temperature/australia/melbourne/1981.csv

This is a straight-forward but perfect example on how fragmentation works, in our data lake we have: temperatures data fractioned by country, city and year. As we are working with daily temperatures further fractioning would not be interesting, but you could fraction e.g. per month.

In the cells below, we read our both 1981 and 1982 data and concatenate them using python.

```
import pandas as pd
```

```
melbourne_1981_df = pd.read_csv('https://raw.githubusercontent.com/LorenzF/data-

-science-practical-approach/main/src/c2_data_preparation/data/temperatures/australia/

-melbourne/1981.csv')
```

```
df = pd.concat(
    [
         melbourne_1981_df,
         melbourne_1982_df,
    ]
)
```

```
df
```

```
Date Temp
    1981-01-01 20.7
0
    1981-01-02 17.9
1
    1981-01-03 18.8
2
3
    1981-01-04 14.6
    1981-01-05 15.8
4
           . . .
360 1982-12-27 15.3
361 1982-12-28 16.3
362 1982-12-29 15.8
363 1982-12-30 17.7
364 1982-12-31 16.3
[730 rows x 2 columns]
```

And there you have it! we now have a dataframe containing both data from 1981 as 1982. Can you figure out what I calculated in the next cell? Do you think there might be a more 'clean' solution?

```
df[df.Date.str[5:7]== '01'].Temp.mean()
```

```
17.140322580645158
```

As an exercise I would ask you now to create a small python script that given a begin and end year (between 1981 and 1990) can automatically concatenate all the necessary data

```
for i in range(1982,1987):
    print(i)
```

```
1982
1983
1984
1985
1986
```

4.2 Deduplication

Another important aspect of data cleaning is the removal of duplicates. Here we fragment of a dataset from activity on a popular games platform. We can see which user has either bought or played specific games and how often. Unfortunately for some reason, entries might have duplicates which we have to deal with as otherwise users might have e.g. bought a game twice.

```
game action freq
       user_id
       11373749
                                  Sid Meier's Civilization IV purchase
                                                                         1.0
1
       11373749
                                  Sid Meier's Civilization IV
                                                                   play
                                                                          0.1
2
       11373749
                                  Sid Meier's Civilization IV purchase
                                                                          1.0
3
       11373749 Sid Meier's Civilization IV Beyond the Sword purchase
                                                                          1.0
4
      11373749
                Sid Meier's Civilization IV Beyond the Sword purchase
                                                                          1.0
. . .
                                                          . . .
                                                                          . . .
1834 112845094
                                                       Arma 2 purchase
                                                                          1.0
```

1836	112845094 112845094 112845094	Grand Theft Auto San Andreas Grand Theft Auto Vice City Grand Theft Auto Vice City	purchase	1.0
	112845094	Grand Theft Auto III	-	
[1839	rows x 4 columns]			

We have a dataframe with 1839 interactions, you can see that the freq either notes the amount they bought (which always 1 as there is not use in buying it more) or the amount in hours they played.

Let us straightforward ask pandas to remove all rows that have an exact duplicate

```
df.drop_duplicates()
```

	user id	gama	action	fnor	
_	_	game		freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
7	56038151	Tom Clancy's H.A.W.X. 2	purchase	1.0	
		• • •			
1831	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1832	112845094	Grand Theft Auto San Andreas	play	0.2	
1833	112845094	Grand Theft Auto III	purchase	1.0	
1834	112845094	Arma 2	purchase	1.0	
1836	112845094	Grand Theft Auto Vice City	purchase	1.0	
[1132	rows x 4 c	olumns]			

Alright! this seemed to have dropped 707 rows from our dataset, but we would like to know more about those. Let's ask which rows the algorithm has dropped:

```
df[df.duplicated()]
```

	user_id	game	action	freq	
2	11373749	Sid Meier's Civilization IV	purchase	1.0	
4	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
6	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
10	56038151	Grand Theft Auto San Andreas	purchase	1.0	
12	56038151	Grand Theft Auto Vice City	purchase	1.0	
		•••			
1827	39146470	Sid Meier's Civilization IV Warlords	purchase	1.0	
1830	48666962	Crysis 2	purchase	1.0	
1835	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1837	112845094	Grand Theft Auto Vice City	purchase	1.0	
1838	112845094	Grand Theft Auto III	purchase	1.0	
[707	rows x 4 co	lumns]			

Here we can see the duplicates, no particular pattern seems to be present, we could just for curiosity count the games that are duplicated

<pre>df[df.duplicated()].game.value_counts()</pre>	.value_counts()
--	-----------------

Grand Theft Auto San Andreas	172	
Grand Theft Auto Vice City	103	

(continues on next page)

4.2. Deduplication 27

```
Sid Meier's Civilization IV
                                                   98
Grand Theft Auto III
                                                   90
Sid Meier's Civilization IV Beyond the Sword
                                                   80
Sid Meier's Civilization IV Warlords
                                                   79
Sid Meier's Civilization IV Colonization
                                                   75
                                                   7
Crysis 2
Arma 2
                                                   1
Tom Clancy's H.A.W.X. 2
                                                    1
TERA
Name: game, dtype: int64
```

It seems there are some games which are very prone to being duplicated, at this point we could go and ask the IT department why these games are acting weird.

Another thing im interested about is the perspective of a single gamer, here we took a single user_id and printed all his games

```
df[df.user_id == 11373749]
```

	user_id	game	action	freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
2	11373749	Sid Meier's Civilization IV	purchase	1.0	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
4	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
6	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	

Ah, you can see all of his three games are somehow duplicated in purchase, also it seems he only played one of them for only 0.1 hours. Looks like he fell to the bait of a tempting summer sale but didn't realise he had no time to actually play it.

Another thing I would like to mention here is that this dataset would make a fine recommender system as it contains user ids and hours played. Add game metadata (description) and reviews to the mix and your data preparation is done!

We can remove all duplicates now by overwriting our dataframe

```
df = df.drop_duplicates()
```

One thing still bothers me, as hours played can change over time it might be that different snapshots have produced different values, therefore more duplicates might be present with different hours_played.

Time to investigate this by using a subset of columns in the drop_duplicates algorithm

```
df.drop_duplicates(subset=['user_id', 'game', 'action'])
```

	user_id	game	action	freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
7	56038151	Tom Clancy's H.A.W.X. 2	purchase	1.0	
		•••			
1831	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1832	112845094	Grand Theft Auto San Andreas	play	0.2	
1833	112845094	Grand Theft Auto III	purchase	1.0	
1834	112845094	Arma 2	purchase	1.0	

```
1836 112845094 Grand Theft Auto Vice City purchase 1.0
[1120 rows x 4 columns]
```

Seems we have shaved off another 12 records, so our intuition was right, again lets see which the duplicates are:

```
df[df.duplicated(subset=['user_id', 'game', 'action'])]
```

	user_id	game	action	freq
118	118664413	Grand Theft Auto San Andreas	play	0.2
458	50769696	Grand Theft Auto San Andreas	play	3.1
521	71411882	Grand Theft Auto III	play	0.2
607	33865373	Sid Meier's Civilization IV	play	2.0
898	71510748	Grand Theft Auto San Andreas	play	0.2
908	28472068	Grand Theft Auto Vice City	play	0.4
910	28472068	Grand Theft Auto San Andreas	play	0.2
912	28472068	Grand Theft Auto III	play	0.1
1506	59925638	Tom Clancy's H.A.W.X. 2	play	0.3
1553	148362155	Grand Theft Auto San Andreas	play	12.5
1709	176261926	Sid Meier's Civilization IV Beyond the Sword	play	0.4
1711	176261926	Sid Meier's Civilization IV	play	0.2

As expected the duplicates are all in the 'play' action, to complete our view we extract the data of a single user

```
df[df.user_id==118664413]
```

	user_id	game	action	freq
115	118664413	Grand Theft Auto San Andreas	purchase	1.0
116	118664413	Grand Theft Auto San Andreas	play	1.9
118	118664413	Grand Theft Auto San Andreas	play	0.2

It looks like we have a problem now, we know these are duplicates and should be removed, but which one? Personally I would argue here that we keep the highest value, as it is impossible to 'unplay' hours on the game. I will leave this as an exercise for you, but the solution is pretty tricky so i'll give a hint:

The algorithm always keeps the first record in case of duplicates, so you could sort the rows making sure the higher value is always encountered first, good luck!

4.2. Deduplication 29

CHAPTER

FIVE

OUTLIERS AND VALIDITY

When preparing data we have to be cautious with the accuracy of our set. Outliers and invalid data points are difficult to detect but should be handled with caution.

we start out by importing our most important library.

```
import pandas as pd
```

5.1 Silicon wafer thickness

Our first dataset contains information about the production of silicon wafers, each wafers thickness is measure on 9 different spots. More information on the dataset can be found here.

```
G1
           G2
                   G3
                          G4
                                  G5
                                          G6
                                                  G7
                                                         G8
                                                                 G9
0.175
        0.188 - 0.159
                       0.095
                               0.374 - 0.238 - 0.800
                                                      0.158 - 0.211
        0.075
0.102
               0.141
                       0.180
                               0.138 -0.057 -0.075
                                                      0.072
                0.879
                       0.765
                               0.592
0.607
        0.711
                                      0.187
                                              0.431
                                                      0.345
0.774
        0.823
                0.619
                       0.370
                               0.725
                                       0.439 -0.025 -0.259
                                                              0.496
0.504
        0.644
                0.845
                       0.681
                               0.502
                                      0.151
                                              0.404
                                                      0.296
                                                              0.260
```

we would like to investigate the distribution of measurements here, as we are early in this course using visualisation techniques would be too soon. This does not mean we can't use simple mathematics, introducing the InterQuartile Range. A reason for using IQR over standard deviation is that with IQR we do not assume a normal distribution. The IQR calculates the range between the bottom 'quart' or 25% and the top 25%, giving us an indication of the spread of our results, we calculate this IQR for each of the 9 measurements independently. For more info about IQR you can visit wikipedia.

```
iqr = wafer_df.quantile(0.75)-wafer_df.quantile(0.25)
iqr
```

```
G1 0.54425

G2 0.61000

G3 0.54075

G4 0.52475

G5 0.61175

G6 0.86750

G7 0.76175
```

you can see that the IQR spread for each measurement lays between 0.5 and 1 unit indicating that the 9 measurements of the wafer have a similar spread. With these IQR's we could calculate for each point relative to the spread of the measurement how far it is from the median.

```
relative_spread_df = (wafer_df-wafer_df.median())/iqr
relative_spread_df.head()
```

```
G2
                                                  G5
         G1
                             G3
                                        G4
                                                             G6
                                                                       G7
0 - 0.011024 - 0.077869 - 0.819233 - 0.367794
                                            0.176543 -0.352738 -1.029865
1 -0.145154 -0.263115 -0.264448 -0.205812 -0.209236
                                                     -0.144092 -0.078110
                                  0.909004
  0.782729
             0.779508
                       1.100324
                                            0.532897
                                                      0.137176
                                                                 0.586150
  1.089573
             0.963115
                       0.619510
                                 0.156265
                                            0.750306
                                                      0.427666 -0.012471
  0.593477
             0.669672
                       1.037448
                                 0.748928 0.385779
                                                      0.095677
                                                                 0.550706
         G8
                   G9
0 -0.130696 -0.254925
1 -0.229292 0.073001
   0.083692 0.206257
3 -0.608770
             0.564311
   0.027515 0.290846
```

You can now see that some points are close to the median, whilst others are much higher, both positive as negative. By defining a threshold, we quantify what deviation has to be there to flag a reading as an outlier. The high outliers are seperated, note that only a single measurement of the 9 can trigger and render the total measurement as an outlier. Yet judging from the setup where we would want to find wafers with varying thickness that approach is desirable.

```
relative_spread_df[(relative_spread_df>2).any(axis='columns')]
```

```
G1
                        G2
                                   G3
                                               G4
                                                          G5
                                                                     G6
8
      2.232430
                 2.009016
                             1.956542
                                        1.589328
                                                    1.843890
                                                              1.544669
38
     12.891135
                12.827049
                           12.832178
                                       13.913292
                                                  11.429506
                                                              9.500865
39
                 3.981148
                            3.774387
                                                              3.729107
      3.691318
                                        4.081944
                                                    3.248059
61
      2.010106
                 2.153279
                            1.987980
                                        1.863745
                                                    1.858602
                                                              1.274928
110
      3.678457
                 2.841803
                             3.204808
                                        3.180562
                                                    2.669391
                                                              0.518732
112
      2.361047
                 2.086066
                             2.363384
                                        2.107670
                                                    1.925623
                                                              1.238040
117
      1.475425
                 1.043443
                             2.154415
                                        2.582182
                                                    0.653862
                                                              1.823631
120
      1.791456
                 1.484426
                             2.583449
                                        1.440686
                                                    2.085819
                                                              0.990202
121
      1.791456
                 1.484426
                             2.583449
                                        1.440686
                                                              0.990202
                                                    2.085819
152
      2.610932
                 2.102459
                             2.387425
                                        2.549786
                                                    2.169187
                                                              1.730259
154
     -0.529169
                -0.538525
                            -0.404993
                                       -0.331586 -0.552513 4.565994
            G7
                      G8
8
      1.233344
                0.419604
                           1.582851
38
     10.305875
                9.927200
                           9.055620
39
      3.304890
                3.846374
                           3.149479
      1.237283
                0.825451
61
                           0.955968
110
      0.700361
                0.176555
                           0.727694
      1.766328
                0.890800
                          1.377752
112
117
      1.581227
                0.857552
                           1.188876
120
      1.782081 1.034107
                           1.822711
121
      1.782081 1.034107
                          1.822711
```

```
152 2.241549 1.713958 1.592121
154 -0.051854 -0.382918 -0.536501
```

seems we have a few high outliers, you can clearly see the measurements are mostly all across the board high, but in some cases (e.g. id 154) only one measurement was an outlier. We can do the same for the low outliers.

```
relative_spread_df[(relative_spread_df<-2).any(axis='columns')]
```

```
G1
                     G2
                               G3
                                         G4
                                                   G5
                                                             G6
                                                                       G7
54
   -1.550758 -1.525410 -1.843736 -2.082897 -1.659174 -1.203458 -1.184772
56 -1.732660 -1.510656 -2.121128 -2.122916 -1.781774 -1.521614 -1.909419
59 -1.971520 -1.310656 -2.328248 -1.175798 -2.067838 -0.915274 -1.783394
64 -1.234727 -1.361475 -0.736015 -1.055741 -2.224765 -0.839193 -0.679357
   -2.226918 -1.194262 -2.117429 -2.161029 -2.043318 -0.190202 -1.004923
102 -2.484153 -2.330328 -1.568192 -2.808957 -1.945239 -1.340634 -0.846078
           G8
   -1.650903 -1.245655
   -1.782746 -1.159907
   -1.304672 -1.514484
64 -0.865578 -0.663963
65 -0.270565 -0.794902
102 -1.691029 -0.887601
```

For a simple mathematical equation these result look promising, yet it can always be more sophisticated. Not going to deep into the subject we could perform some Machine Learning, using a unsupervised method. Here we use the sklearn library which contains the Isolation forest algorithm. More info about the algorithm here.

```
from sklearn.ensemble import IsolationForest
```

We first create the classifier and train (fit) it with the generic wafer data. Then for each record of the wafer data we make a prediction, if it thinks its an outlier, we keep them

```
clf = IsolationForest(random_state=0).fit(wafer_df)
wafer_df[clf.predict(wafer_df) ==-1]
```

```
G1
              G2
                    G3
                                  G5
                                        G6
                                               G7
                                                            G9
                           G4
                                                      G8
                                           0.924
8
    1.396 1.461 1.342 1.122 1.394 1.408
                                                  0.638 1.375
20
   -0.558 -0.705 -0.526 -0.412 -0.753 -0.998 -0.270
                                                  0.598 - 1.416
    7.197 8.060 7.223 7.589
                              7.258 8.310
                                            7.835
    2.190 2.664 2.325 2.430 2.253 3.303 2.502 3.627 2.727
   -0.663 -0.695 -0.713 -0.805 -0.749 -0.976 -0.918 -1.168 -1.066
   -0.762 -0.686 -0.863 -0.826 -0.824 -1.252 -1.470 -1.283 -0.992
   -0.892 -0.564 -0.975 -0.329 -0.999 -0.726 -1.374 -0.866 -1.298
          1.549 1.359 1.266
                              1.403 1.174
    1.275
                                            0.927
                                                  0.992 0.834
   -1.031 -0.493 -0.861 -0.846 -0.984 -0.097 -0.781
                                                  0.036 - 0.677
102 -1.171 -1.186 -0.564 -1.186 -0.924 -1.095 -0.660 -1.203 -0.757
106 -0.659 -0.451 -0.692 -0.708 -0.595 -0.726 -1.031 -0.877 -1.080
    2.183 1.969 2.017 1.957
                              1.899 0.518 0.518
110
                                                  0.426 0.637
    1.466 1.508 1.562 1.394
                              1.444 1.142 1.330
                                                  1.049 1.198
112
    0.984 0.872 1.449 1.643 0.666 1.650 1.189
117
                                                  1.020 1.035
120 1.156 1.141 1.681 1.044
                              1.542 0.927 1.342
                                                  1.174 1.582
    1.156 1.141 1.681 1.044
                              1.542 0.927 1.342
                                                  1.174 1.582
121
152 1.602 1.518 1.575 1.626 1.593 1.569 1.692 1.767 1.383
```

Comparing the results with our IQR approach we see a lot of similarities, here the id 154 record did not show up as we

already realised this was perhaps not a strong enough outlier. You could enhance our IQR technique by checking the amount of measurements that are above the threshold and respond accordingly, I will leave you a little hint.

```
(relative_spread_df>2).sum()
G1
       7
G2
       7
G3
       8
G4
       6
G5
G6
       3
       3
G7
G8
       2
G9
       2
```

5.2 Distillation column

dtype: int64

As an exercise you can try the same technique to this dataset and see what you would find, good luck! Be mindful that you do not incorporate the date as a variable in your outlier algorithm.

```
Date
                             FlowC1
                                        Temp2
                                                  TempC1
                                                                      TempC2
                    Temp1
                                                             Temp3
     2000-08-21 139.9857
                           432.0636 377.8119
                                              100.2204
                                                          492.1353
                                                                    490.1459
1
     2000-08-23 131.0470
                          487.4029 371.3060 100.2297
                                                          482.2100
                                                                    480.3128
                                                         488.7266 487.0040
     2000-08-26 118.2666 437.3516 378.4483 100.3084
2
3
     2000-08-29 118.1769 481.8314 378.0028
                                                95.5766
                                                         493.1481
                                                                    491.1137
     2000-08-30 120.7891
                           412.6471 377.8871
                                                 92.9052
                                                          490.2486
4
                                                                    488.6641
            . . .
                      . . .
                                . . .
                                                               . . .
     2003-01-26 130.8138
                           212.6385
                                     341.5964
                                               121.4354
                                                          468.3401
                                                                    467.0299
248
249
     2003-01-28
                 128.9673
                           225.1412
                                     349.8965
                                                118.8604
                                                          479.7665
                                                                    478.4652
250
     2003-01-31
                130.5328
                           223.5965
                                     345.9366
                                                120.4027
                                                          474.5378
                                                                    473.1145
     2003-02-03
                128.5248 213.5613 343.4950
                                                119.6989
                                                          469.3802
2.51
                                                                    467.9954
252
    2003-02-04 131.0491 217.4117
                                     346.1960
                                               119.0825
                                                          474.6599
                                                                    473.0381
       TempC3
                  Temp4 PressureC1
                                             Temp10 FlowC3
                                                              FlowC4
                                                                       Temp11
                                     . . .
0
     180.5578
              187.4331
                           215.0627
                                     . . .
                                          513.9653 8.6279
                                                             10.5988
                                                                      30.8983
              179.5089
                                                    8.7662
1
     172.6575
                           205.0999
                                     . . .
                                          504.5145
                                                             10.7560
                                                                      31.9099
2
     165.9400 172.9262
                           205.0304
                                          508.9997
                                                    8.5319
                                                             10.5737
                                                                      29.9165
                                     . . .
                                           514.1794 8.6260
3
     167.2085 174.2338
                           205.2561
                                                            10.6695
                                                                      30.6229
                                     . . .
4
     167.0326 173.9681
                           205.0883
                                           511.0948 8.5939 10.4922
                                     . . .
                                                                      29.4977
                                 . . .
                                      . . .
                                                . . .
                                                                 . . .
248
    174.7639
               180.7649
                           229.7393
                                          479.0290
                                                     5.5590
                                                              6.4470
                                                                      16.4131
                                      . . .
     176.2176
               182.3646
                           230.5049
2.49
                                          491.2362
                                                     5.6342
                                                              6.4360
                                                                      17.2385
                                      . . .
250
    176.3310
              182.2578
                           230.6638
                                      . . .
                                           485.8786
                                                     5.4810
                                                              6.3575
                                                                      16.9866
    174.6435
              180.5093
                           230.5226
                                          480.2879
                                                    5.4727
                                                              6.4175
                                                                      16.6778
2.51
                                     . . .
252
    177.1088 183.1810
                           225.6420
                                          486.0253 5.4597
                                                              6.3291
                                                                      16.8766
                                     . . .
       Temp12
               InvTemp1
                         InvTemp2 InvTemp3
                                             InvPressure1
                                                            VapourPressure
0
     489.9900
                 2.0409
                           2.6468
                                     2.1681
                                                    4.3524
                                                                   32.5026
                                                    4.5497
1
     480.2888
                 2.0821
                           2.6932
                                     2.2207
                                                                   34.8598
```

2	486.6190	2.0550	2.6424	2.1796	4.5511	32.1666				
3	491.1304	2.0361	2.6455	2.1620	4.5464	30.4064				
4	487.6475	2.0507	2.6463	2.1704	4.5499	30.9238				
248	466.3347	2.1444	2.9274	2.2127	4.0911	38.8507				
249	477.8816	2.0926	2.8580	2.1620	4.0783	34.2653				
250	472.3176	2.1172	2.8907	2.1855	4.0756	36.5717				
251	467.0001	2.1413	2.9113	2.2090	4.0780	38.1054				
252	472.2701	2.1174	2.8885	2.1844	4.1608	35.6298				
[253	[253 rows x 28 columns]									

5.2. Distillation column 35

CHAPTER	
SIX	

STRING OPERATIONS

DATETIME OPERATIONS

When our dataset contains time-related data, datetime operations are a great asset to our data science toolkit. For this exercise we obtain a public covid dataset containing A LOT of information on infection cases, deaths, tests and vaccinations.

Let's start by importing the data, as the dataset is about 60MB at the time of writing, this might take some time. Perhaps you could think of a method to make this more efficient, do we always need all of the data?

More info about the data can be found here

```
import pandas as pd
```

	iso_code contine	ent locat	ion	date	total_cases	new_cases	\
0	AFG As	sia Afghanis	tan 2	2020-02-24	5.0	5.0	
1	AFG As	sia Afghanis	tan 2	2020-02-25	5.0	0.0	
2	AFG As	sia Afghanis	tan 2	2020-02-26	5.0	0.0	
3	AFG As	sia Afghanis	tan 2	2020-02-27	5.0	0.0	
4	AFG As	sia Afghanis	tan 2	2020-02-28	5.0	0.0	
	new_cases_smoot	hed total_c	leaths	new_death	s new_deaths	_smoothed	\
0		NaN	NaN	Nai	N	NaN	
1		NaN	NaN	Nai	N	NaN	
2		NaN	NaN	Nai	N	NaN	
3		NaN	NaN	Nai	N	NaN	
4		NaN	NaN	Nai	N	NaN	
	female_smokers	male_smoker	s han	ndwashing_f	acilities \		
0	NaN	Na	ıN		37.746		
1	NaN	Na	ıN		37.746		
2	NaN	Na	ıN		37.746		
3	NaN	Na	ıN		37.746		
4	NaN	Nā	ıN		37.746		
	hospital_beds_p		life_		human_devel	_	
0		0.5		64.83		0.51	
1		0.5		64.83		0.51	
2		0.5		64.83		0.51	
3	0.5			64.83		0.51	11
4		0.5		64.83		0.51	11
	excess_mortalit	y_cumulative	_absol	ute exces	s_mortality_c	umulative	\
							(continues on next page)

```
NaN
                                                                  NaN
1
                                    NaN
                                                                  NaN
2
                                    NaN
                                                                  NaN
3
                                    NaN
                                                                  NaN
4
                                    NaN
                                                                  NaN
   {\tt excess\_mortality\_cumulative\_per\_million}
0
                NaN
1
                NaN
                                                         NaN
2
                NaN
                                                         NaN
3
                NaN
                                                         NaN
4
                NaN
                                                         NaN
[5 rows x 65 columns]
```

As mentioned a lot of information is present here, about 65 columns. yet for this exercise my main objective is the 'date' column. If we would print out the data types using the info method, we can see that the date is recognized as an 'object' stating that it is an ordinary string, not a datetime.

```
covid_df.info()
```

<clas< th=""><th>ss 'pandas.core.frame.DataFrame'></th><th></th><th colspan="10"><pre><class 'pandas.core.frame.dataframe'=""></class></pre></th></clas<>	ss 'pandas.core.frame.DataFrame'>		<pre><class 'pandas.core.frame.dataframe'=""></class></pre>									
Range	eIndex: 121744 entries, 0 to 121743											
Data	columns (total 65 columns):											
#	Column	Non-Null Count	Dtype									
0	iso_code	121744 non-null	2									
1	continent	116202 non-null	object									
2	location	121744 non-null	object									
3	date	121744 non-null	object									
4	total_cases	115518 non-null	float64									
5	new_cases	115515 non-null	float64									
6	new_cases_smoothed	114500 non-null	float64									
7	total_deaths	104708 non-null	float64									
8	new_deaths	104863 non-null	float64									
9	new_deaths_smoothed	114500 non-null	float64									
10	total_cases_per_million	114910 non-null	float64									
11	new_cases_per_million	114907 non-null	float64									
12	new_cases_smoothed_per_million	113897 non-null	float64									
13	total_deaths_per_million	104113 non-null	float64									
14	new_deaths_per_million	104268 non-null	float64									
15	new_deaths_smoothed_per_million	113897 non-null	float64									
16	reproduction_rate	98318 non-null	float64									
17	icu_patients	14443 non-null	float64									
18	icu_patients_per_million	14443 non-null										
19	hosp_patients	16504 non-null										
20	hosp_patients_per_million	16504 non-null	float64									
21	weekly_icu_admissions	1268 non-null	float64									
22	weekly_icu_admissions_per_million	1268 non-null	float64									
23	weekly_hosp_admissions	2088 non-null	float64									
24	weekly_hosp_admissions_per_million	2088 non-null										
25	new_tests	52248 non-null	float64									
26	total_tests	52352 non-null	float64									
27	total_tests_per_thousand	52352 non-null	float64									
28	new_tests_per_thousand	52248 non-null	float64									
29	new_tests_smoothed	62816 non-null	float64									
			(continues on next page)									

```
62816 non-null
                                                               float64
30 new_tests_smoothed_per_thousand
31 positive_rate
                                             58959 non-null
                                                              float64
32 tests_per_case
                                             58319 non-null float64
33 tests_units
                                             64746 non-null object
34 total_vaccinations
                                             28115 non-null float64
                                             26746 non-null float64
35 people_vaccinated
                                            23714 non-null float64
36 people_fully_vaccinated
37
    total_boosters
                                             3057 non-null
                                                              float64
38 new_vaccinations
                                             23298 non-null float64
39 new_vaccinations_smoothed
                                            50221 non-null float64
40 total_vaccinations_per_hundred
41 people_vaccinated_per_hundred
                                            28115 non-null float64
                                            26746 non-null float64
42 people_fully_vaccinated_per_hundred 23714 non-null float64
                                            3057 non-null float64
43 total_boosters_per_hundred
44 new_vaccinations_smoothed_per_million 50221 non-null float64
                                            101767 non-null float64
45 stringency_index
                                             120880 non-null float64
46 population
                                             112501 non-null float64
47
    population_density
                                             107423 non-null float64
48 median_age
                                             106229 non-null float64
106834 non-null float64
49 aged_65_older
50 aged_70_older
51 gdp_per_capita
                                             108055 non-null float64
52 extreme_poverty
                                             72482 non-null float64
53 cardiovasc_death_rate
                                            107695 non-null float64
54 diabetes_prevalence
                                            111063 non-null float64
55 female_smokers
                                            84078 non-null float64
56 male_smokers
                                            82858 non-null float64
57 handwashing_facilities
                                            54111 non-null float64
58 hospital_beds_per_thousand
                                            97911 non-null float64
59 life_expectancy
                                            115458 non-null float64
                                            107790 non-null float64
60 human_development_index
60 human_deveropment_index
61 excess_mortality_cumulative_absolute 4317 non-null
62 excess_mortality_cumulative 4317 non-null
                                                              float64
62 excess_mortality_cumulative
                                                              float64
63 excess_mortality
                                             4317 non-null
                                                              float64
64 excess_mortality_cumulative_per_million 4317 non-null
                                                              float64
dtypes: float64(60), object(5)
memory usage: 60.4+ MB
```

We would like to change that, as we can only perform datetime operations if pandas recognises the datetime format used. Good for us, pandas has a method to automatically infer the date format, we do that now.

```
covid_df.date = pd.to_datetime(covid_df.date)
covid_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 121744 entries, 0 to 121743
Data columns (total 65 columns):
   Column
#
                                           Non-Null Count Dtype
                                            _____
0
   iso_code
                                           121744 non-null object
1
    continent
                                           116202 non-null object
2
    location
                                           121744 non-null object
                                           121744 non-null datetime64[ns]
3
    date
                                           115518 non-null float64
   total_cases
 4
                                           115515 non-null float64
 5
    new_cases
                                           114500 non-null float64
    new_cases_smoothed
```

			(continued from previous page)
7	total_deaths	104708 non-null	float64
8	new_deaths	104863 non-null	float64
9	new_deaths_smoothed	114500 non-null	float64
10	total_cases_per_million	114910 non-null	float64
11	new_cases_per_million	114907 non-null	float64
12	new_cases_smoothed_per_million	113897 non-null	float64
13	total_deaths_per_million	104113 non-null	float64
14	new_deaths_per_million	104268 non-null	
15	new_deaths_smoothed_per_million	113897 non-null	float64
16	reproduction_rate	98318 non-null	
17	icu_patients	14443 non-null	float64
18	icu_patients_per_million	14443 non-null	float64
19	hosp_patients	16504 non-null	float64
20	hosp_patients_per_million	16504 non-null	
21	weekly_icu_admissions	1268 non-null	float64
22	weekly_icu_admissions_per_million	1268 non-null	
23	weekly_hosp_admissions	2088 non-null	
24	weekly_hosp_admissions_per_million	2088 non-null	float64
25	new_tests	52248 non-null	
	total_tests	52352 non-null	float64
27	total_tests_per_thousand	52352 non-null	
28	new_tests_per_thousand	52248 non-null	
29	new_tests_smoothed	62816 non-null	float64
30	new_tests_smoothed_per_thousand	62816 non-null	float64
31	positive_rate	58959 non-null	float64
32	tests_per_case	58319 non-null	float64
33	tests_units	64746 non-null	object
34	total_vaccinations	28115 non-null	float64
35	people_vaccinated	26746 non-null	float64
36	people_fully_vaccinated	23714 non-null	float64
37	total_boosters	3057 non-null	float64
38	new_vaccinations	23298 non-null	float64
39	new_vaccinations_smoothed	50221 non-null	float64
40	total_vaccinations_per_hundred	28115 non-null	float64
41	people_vaccinated_per_hundred	26746 non-null	float64
42	people_fully_vaccinated_per_hundred	23714 non-null	float64
43	total_boosters_per_hundred	3057 non-null	float64
44	new_vaccinations_smoothed_per_million	50221 non-null	float64
45	stringency_index	101767 non-null	
46	population	120880 non-null	float64
47	population_density	112501 non-null	float64
48	median_age	107423 non-null	float64
49	aged_65_older	106229 non-null	float64
50	aged_70_older	106834 non-null	float64
51	gdp_per_capita	108055 non-null	float64
52	extreme_poverty	72482 non-null	float64
53	cardiovasc_death_rate	107695 non-null	float64
54	diabetes_prevalence	111063 non-null	float64
55	female_smokers	84078 non-null	float64
56	male_smokers	82858 non-null	float64
57	handwashing_facilities	54111 non-null	float64
58	hospital_beds_per_thousand	97911 non-null	float64
59	life_expectancy	115458 non-null	float64
60	human_development_index	107790 non-null	float64
61	excess_mortality_cumulative_absolute	4317 non-null	float64
62	excess_mortality_cumulative	4317 non-null	float64
63	excess_mortality	4317 non-null	float64

```
64 excess_mortality_cumulative_per_million 4317 non-null float64 dtypes: datetime64[ns](1), float64(60), object(4) memory usage: 60.4+ MB
```

now we are ready to perform datetime operations, however we can see that dates are appearing multiple times, this because we have records for multiple countries. I live in Belgium, so decided to isolate that subsection of the data. If they had used a data lake and partitioned into countries, reading out the data would have been much more efficient, but efficiency is not something I would expect from government as a Belgian.

```
covid_belgium_df = covid_df[covid_df.location=='Belgium'].set_index('date')
covid_belgium_df.head()
```

		1	+-+-1			\		
date	iso_code continent	location	total_ca	ses new_	_cases	\		
2020-02-04	BEL Europe	Belgium		1.0	1.0			
2020-02-04		Belgium		1.0	0.0			
2020-02-05					0.0			
	-	Belgium		1.0				
2020-02-07	-	Belgium		1.0	0.0			
2020-02-08	BEL Europe	e Belgium	:	1.0	0.0			
	new_cases_smoothe	ed total d	eaths ne	deaths	new de	aths sm	oot hed	\
date	new_cabeb_binocen	-a -cocar <u></u> a	eaciib iic	·_acaens	110 11_00		ioociica	`
2020-02-04	Ná	a N	NaN	NaN			NaN	
2020-02-05	Ná		NaN	NaN			NaN	
2020-02-06	Ná		NaN	NaN			NaN	
2020-02-07	Ná Ná		NaN	NaN			NaN	
2020-02-08	Ná		NaN	NaN			NaN	
2020 02 00	11/0	***	11/11/1	INCIN			INCLIN	
	total_cases_per_r	million	. female	_smokers	male_s	mokers	\	
date				_	_			
2020-02-04		0.086	•	25.1		31.4		
2020-02-05		0.086		25.1		31.4		
2020-02-06		0.086		25.1		31.4		
2020-02-07		0.086		25.1		31.4		
2020-02-08		0.086		25.1		31.4		
	handwashing_facil	ities hos	pital_bed	s_per_tho	ousand	\		
date								
2020-02-04		NaN			5.64			
2020-02-05		NaN						
2020-02-06		NaN	5.64					
2020-02-07		NaN	5.64					
2020-02-08		NaN			5.64			
	life_expectancy	human_deve	lopment_i	ndex \				
date								
2020-02-04	81.63			.931				
2020-02-05	81.63			.931				
2020-02-06	81.63			.931				
2020-02-07	81.63			.931				
2020-02-08	81.63		0	.931				
	orranga mantalii	a	abac 1+ -	0	mont-1'		10+4	\
da+ o	excess_mortality_	_cumuıatıve	_apsolute	excess_	_mortalı	.ry_cumu	ııatıve	\
date			37 - 37				37 - 37	
2020-02-04			NaN				NaN	
2020-02-05			NaN				NaN	es on next nage)

			\ 1 1 2 /
2020-02-06		NaN	NaN
2020-02-07		NaN	NaN
2020-02-08		NaN	NaN
	excess_mortality	excess_mortality_cumulative_per_milli	on
date			
2020-02-04	NaN	N	aN
2020-02-05	NaN	N	aN
2020-02-06	NaN	N	aN
2020-02-07	NaN	N	aN
2020-02-08	NaN	N	aN
[5 rows x 6	34 columns]		
	-		

Now that we have our dataset containing only Belgium I would like to emphasize another aspect, for features such as population density we would not expect a 'head count' to differ each day, and as we can see this number is steady over the whole line (results may vary for those who execute this in the future).

```
covid_belgium_df.population.value_counts()
```

```
11632334.0 611
Name: population, dtype: int64
```

we only have a single value (in my case 11.6M) that is repeated over the whole dataset, would this look optimal to you? How would you perhaps approach this to improve data management? If you would like to go hands-on I left you a blank cell to experiment.

Optimalizations aside, we can not do that which we came for! Datetime operations, the first thing that I have in mind is that due to weekends, the cases might fluctuate a lot per day, so it is not optimal to view it on a daily basis.

First we create a simple line plot with the raw daily cases, then we perform a weekly sum to create a more smooth version of the new cases.

```
covid_belgium_df['new_cases'].plot(title='daily cases are fluctuating')
```

```
<AxesSubplot:title={'center':'daily cases are fluctuating'}, xlabel='date'>
```



```
weekly_cases_df = covid_belgium_df['new_cases'].resample('W').sum()
weekly_cases_df.plot(title='weekly cases are smoother')
```

<AxesSubplot:title={'center':'weekly cases are smoother'}, xlabel='date'>

That looks great! Those who inspected carefully saw that the x-axis was correctly identified as datetimes and that the y-axis for weekly sums have a much higher range.

In a next example we would like to have the relative changes from week to week, this can be done using the shift operation.

```
weekly_cases_df.shift(1)
```

```
date
2020-02-09
                 NaN
2020-02-16
                 1.0
2020-02-23
                 0.0
2020-03-01
                 0.0
2020-03-08
                 1.0
2021-09-12
            14099.0
2021-09-19
            13508.0
2021-09-26
            14298.0
2021-10-03
             13909.0
2021-10-10
             13474.0
Freq: W-SUN, Name: new_cases, Length: 88, dtype: float64
```

This method shifted our data by 1 week forwards, this way we can subtract these results from our original data creating a relative increase (this_week_cases - last_week_cases).

```
(weekly_cases_df-weekly_cases_df.shift(1)).plot(title='relative increase p week')
```

```
<AxesSubplot:title={'center':'relative increase p week'}, xlabel='date'>
```


Another powerfull asset of datetimes is that we can utilize the concepts of days, weeks, months and years. In Belgium they speak about a phenomenon called 'the weekend effect' where a lot of reports are delayed and therefore Sundays have less cases whereas Mondays have more.

Do we see that in our data? let us seperate the Sundays and Mondays and take a mean!

```
print('mean deaths on Monday')
covid_belgium_df.loc[covid_belgium_df.index.dayofweek==0,"new_deaths"].mean()
```

mean deaths on Monday

39.02439024390244

```
print('mean deaths on Sunday')
covid_belgium_df.loc[covid_belgium_df.index.dayofweek==6,"new_deaths"].mean()
```

mean deaths on Sunday

```
36.646341463414636
```

It seems indeed that more people are reported to pass away no a Monday than on a Sunday, it would be optimal to verify this with statistics, but for now we keep it simple.

As a last example I would like to use slicing of our dataset to demonstrate we can also take a subset of our data and handle this, here we took the months of dec2020-jan2021 for belgium and calculated the total deaths.

```
covid_belgium_df.loc['2020-12-01':'2021-01-31'].new_deaths.sum()
```

```
4447.0
```

Now let's compare this to our neighbours, the Netherlands and France, we do exactly the same operations by selecting exactly the same time window.

```
covid_netherlands_df = covid_df[covid_df.location=='Netherlands'].set_index('date')
covid_netherlands_df.loc['2020-12-01':'2021-01-31'].new_deaths.sum()
```

```
4655.0
```

```
covid_france_df = covid_df[covid_df.location=='France'].set_index('date')
covid_france_df.loc['2020-12-01':'2021-01-31'].new_deaths.sum()
```

```
23382.0
```

You can see that Belgium has the lowest of total deaths in that time interval, so you could assume we performed the best! However this approach is a bit simplified as there are not as many Belgians as French and Dutch. Could you perhaps think if an improvement to create a better understanding?

CHAPTER

EIGHT

CATEGORICAL ENCODING

Often we deal with categorical data and this kind of data is something computer algorithms are not able to understand. On the other hand long categorical features might take up unnecessary memory in our dataset, so converting to a categorical feature is optimal.

```
import pandas as pd
```

8.1 Raw Material Charaterization

In this dataset, we have a few numerical features describing characteristics of our material, next to that we also have an Outcome feature describing the state of our material in a category.

Let's have a look at the data

```
raw_material_df = pd.read_csv('./data/raw-material-characterization.csv')
raw_material_df.head()
```

```
Lot number
             Outcome Size5 Size10 Size15
                                              TGA
                                                   DSC
                                     41.2 787.3 18.0
       B370 Adequate
                      13.8
                              9.2
                                                        65.0
       B880 Adequate
                      11.2
                                5.8
                                      27.6 772.2 17.7
                                                        68.8
1
                                      28.3 602.3 18.3
2
                       9.9
       B452 Adequate
                                5.8
                                                        50.7
3
                      10.4
                                      24.7
                                            677.9
                                                  17.7
                                                        56.5
       B287
             Adequate
                                4.0
4
                                      22.0
                                                        52.0
       B576
            Adequate
                       12.3
                                9.3
                                            593.5
                                                  19.5
```

So we can see that the outcome is indeed a text field with a human interpretable value. The different values are:

```
raw_material_df.Outcome.unique()
```

```
array(['Adequate', 'Poor'], dtype=object)
```

Image that we would like to get all records where the Outcome is less than adequate, using strings this is not possible as the computer does not understand relations of Adequate and Poor when they are denoted as text.

```
raw_material_df[raw_material_df.Outcome<'Adequate']
```

```
Empty DataFrame
Columns: [Lot number, Outcome, Size5, Size10, Size15, TGA, DSC, TMA]
Index: []
```

To overcome this we can change the type of the feature from 'object' (string) to 'category' let us look at the data types of our data

```
raw_material_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24 entries, 0 to 23
Data columns (total 8 columns):
# Column Non-Null Count Dtype
                 -----
   Lot number 24 non-null
0
                               object
1 Outcome 24 non-null object
2 Size5 24 non-null
3 Size10 24 non-null
4 Size15 24 non-null
5 TGA 24 TERM 21
                               float64
                               float64
                               float64
                             floato-
float64
float64
 5
    TGA
               24 non-null
 6
    DSC
                24 non-null
    TMA
7
                24 non-null
dtypes: float64(6), object(2)
memory usage: 1.6+ KB
```

Now we can change that of Outcome to category using the astype method

```
raw_material_df.Outcome = raw_material_df.Outcome.astype('category')
raw_material_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24 entries, 0 to 23
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ---- ---- ----- -----
0 Lot number 24 non-null object
1 Outcome 24 non-null float64
3 Size5 24 non-null float64
4 Size15 24 non-null float64
5 TGA 24 non-null float64
6 DSC 24 non-null float64
7 TMA 24 non-null float64
dtypes: category(1), float64(6), object(1)
memory usage: 1.6+ KB
```

Our feature might be of categorical nature now, however we still have to define it is an ordinal category and has an order.

If we retry to effort to only take the records where the Outcome is less than Adequate, we now get an outcome! Since we only have 2 categories this is a bit unfortunate, but you should get the idea behind it.

```
raw_material_df[raw_material_df.Outcome<'Adequate']</pre>
```

	Tot number	Outcomo	Cinor	Ci = 010	Ciao1E	TCA	DCC	T1M7
	Lot number	Outcome	Sizes	Sizeiu	Sizeis	TGA	DSC	TMA
5	B914	Poor	13.7	7.8	27.0	597.9	18.1	49.8
6	B404	Poor	15.5	10.7	34.3	668.5	19.6	55.7
7	В694	Poor	15.4	10.7	35.9	602.8	19.2	53.6
8	B875	Poor	14.9	11.3	41.0	614.6	18.5	50.0
10	B517	Poor	16.1	11.6	39.2	682.8	17.5	56.4

13	B430	Poor	12.9	9.7	36.3	642.4	19.1	55.0
21	B745	Poor	10.2	5.8	24.7	575.9	18.5	46.2

Let's take this a step further, since computer algorithms still have no idea what the numerical relation is between Adequate and Poor, we could use a Label Encoder for that.

```
from sklearn.preprocessing import LabelEncoder
```

the label encoder is inputted with the Outcome feature and recognises 2 types, it chooses a numerical value for each while fitting.

```
le = LabelEncoder()
le.fit(raw_material_df.Outcome)
```

```
LabelEncoder()
```

After fitting we can use this encoder to transform our dataset!

```
raw_material_df['outcome_label'] = le.transform(raw_material_df.Outcome)
raw_material_df.head()
```

```
Lot number Outcome Size5 Size10 Size15
                                                  TGA
                                                      DSC
                                                              TMA
       B370 Adequate
                                       41.2 787.3 18.0
                        13.8 9.2
                                                             65.0
        B880 Adequate 11.2
                                         27.6 772.2
                                                      17.7
                                  5.8
                                                             68.8
       B452 Adequate 9.9 5.8
B287 Adequate 10.4 4.0
B576 Adequate 12.3 9.3
                                       28.3 602.3
2
                                                      18.3
                                                             50.7
                                  4.0 24.7
                                               677.9
                                                      17.7
3
                                                             56.5
                                         22.0 593.5 19.5 52.0
4
   outcome_label
0
               0
1
               0
2
               0
3
               0
4
               0
```

It seems something unfortunate has happened, the encoder gave the Adequate an outcome label of 0, which is lower than the label of Poor (1), this might be bad if we would like to give a score as our outcome.

There is in pandas another method of mapping a label to a category albeit less automated, as you would have to know the categories in your feature.

```
raw_material_df.outcome_label = raw_material_df.Outcome.map({'Poor': 0, 'Adequate':1})
raw_material_df.head()
```

	Lot number	Outcome	Size5	Size10	Size15	TGA	DSC	TMA o	outcome_label	
0	B370	Adequate	13.8	9.2	41.2	787.3	18.0	65.0	1	
1	B880	Adequate	11.2	5.8	27.6	772.2	17.7	68.8	1	
2	B452	Adequate	9.9	5.8	28.3	602.3	18.3	50.7	1	
3	B287	Adequate	10.4	4.0	24.7	677.9	17.7	56.5	1	
4	B576	Adequate	12.3	9.3	22.0	593.5	19.5	52.0	1	

Yes! This did the trick, now we can use that outcome label to predict an outcome for future samples.

RESTAURANT TIPS

Now we are going to look at a dataset of tips, here a restaurant tracked the table bills and tips for a few days in the week whilst also noting the gender, smoking habit and time of day. This led to a small yet very interesting dataset, let's have a look!

```
total_bill
                 tip
                        sex smoker
                                     day
                                           time
                                                 size
         16.99
                1.01 Female
0
                               No
                                     Sun
                                         Dinner
                                                    2
         10.34
               1.66
                       Male
                                No
                                     Sun
                                         Dinner
                                                    3
2
         21.01
                3.50
                       Male
                                No
                                     Sun
                                         Dinner
3
         23.68
               3.31
                       Male
                                No
                                     Sun
                                         Dinner
                                                    2
         24.59 3.61 Female
                                No
                                                    4
4
                                    Sun Dinner
                                     . . .
         29.03 5.92
                                                    3
239
                       Male
                               No
                                     Sat Dinner
240
         27.18 2.00 Female
                               Yes
                                     Sat Dinner
                                                    2
241
         22.67 2.00
                                     Sat Dinner
                       Male
                               Yes
                                                    2
2.42
         17.82 1.75
                       Male
                               No
                                     Sat Dinner
243
         18.78 3.00 Female
                                                    2
                                No Thur Dinner
[244 rows x 7 columns]
```

We can see here that we have a lot of categorical variables: gender, smoker, the day and the time. In later sections we will see how we can aggregate on these categorical variables. Now however we would like to process them for a machine learning exercise, where we need numbers not text. For the features smoker and day, you could argue there is a clear numbering between them, smoking is 1 if the person was smoking and e.g. Sun relates to 7 as it is the seventh day of the week.

But for the gender this is different, we can't really say that women are 1 and Men are 0 or vice versa (although in this binary case it might work). The same theory applies for time, if we would say that breakfast, lunch and dinner equal to 0, 1 and 2 this would give our algorithm a bad impression as it would think dinner is twice lunch...

We use One Hot Encoding for this, the idea is that for each value of the feature we create a new column.

```
from sklearn.preprocessing import OneHotEncoder
```

First we create our encoder, then we give it the day column to learn and see which values of categories there are.

```
ohe = OneHotEncoder()
ohe.fit(tips_df[['day']])
```

```
OneHotEncoder()
```

Now we can perform an encoding, here we insert the day column and it returns a matrix with 4 columns corresponding to the 4 days in our feature.

```
ohe.transform(tips_df[['day']]).todense()
```

```
matrix([[0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
```

```
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
```

```
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
```

```
[0., 0., 1., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
```

```
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.]]
```

As this is a rather mathematical approach for this simple problem I prefer to use the pandas approach for this, which is the get_dummies method. The outcome is much more pleasing yet completely the same.

```
pd.get_dummies(tips_df.day)
```

```
Fri
          Sat
                Sun
                      Thur
0
       0
             0
                  1
1
       0
             0
                  1
2
       0
             0
                  1
3
             0
4
       0
             0
                  1
239
       0
           1
                  0
240
       0
            1
                  0
241
       0
            1
                  0
242
       0
            1
243
       0
                         1
[244 rows x 4 columns]
```

As an exercise you could create a script that given a specific feature (e.g. day):

- · extracts that feature
- · creates dummies
- concattenates it to the dataframe

Good luck!

SCALING AND NORMALIZATION

In this notebook we are going to look into 2 rather mathematical concepts, Scaling and Normalization. The idea is that we can scale the values and shape the distribution of feature in our dataset.

As an example we take a dataset containing samples from a low density polyethylene production process, containing several numerical features such as temperatures, Forces, Pressure,...

The idea is that by using Scaling and normalization, the 'range of motion' for these sensors is equal and we can compare the fluxtuations not only inbetween records, but also inbetween sensors.

```
import pandas as pd
```

```
ldpe_df = pd.read_csv('https://openmv.net/file/LDPE.csv').drop(columns=['Unnamed: 0'])
ldpe_df.head()
```

```
Tin
         Tmax1
                 Tout1
                         Tmax2
                                 Tout2
                                         Tcin1
                                                 Tcin2
                                                          z1
                                                                 z2
208.17
        296.35
                233.81
                        283.41
                                239.05
                                       117.14
                                                117.20
                                                       0.029
                                                              0.581
207.26
        298.26
                230.88
                        287.55
                                242.55
                                       116.39
                                               117.23
                                                       0.028
                                                              0.574
205.30
        296.57
                235.38
                        284.35
                                245.19
                                       117.33
                                               118.42
                                                       0.031
                                                              0.578
209.29
        294.11
                225.61
                        283.31
                                242.04
                                       116.15
                                               117.94
                                                       0.030
                                                              0.581
206.76
                       283.74
                                       116.75
        295.13 230.26
                                244.92
                                               118.49
                                                       0.030
           Fi2
                                                                      SCB
    Fi1
                   Fs1
                           Fs2
                                Press
                                         Conv
                                                 Mn
                                                         Mw
                                                               LCB
0.4507
        0.4518 666.42 248.95
                                3021 0.1322
                                              27379
                                                     160326
                                                             0.781
                                                                    26.11
        0.5091
                658.61
                       246.36
                                 3033 0.1365
                                              27043
                                                     165044
0.4765
0.4744
        0.4505
                666.51 244.65
                                 3004
                                      0.1335
                                              27344
                                                     165621
                                                             0.801
                                                                    26.13
0.4429 0.4516
                667.31 242.28
                                 2980 0.1300
                                              27502
                                                             0.778 25.92
                                                    160497
0.4394 0.4414 670.83 244.31
                                 2997 0.1316 27518 165713 0.786 26.02
```

We can see that our features clearly have different ranges, but lets try to visualise these ranges using a density plot

```
ldpe_df.plot(kind='density')
```

```
<AxesSubplot:ylabel='Density'>
```


Ouch, this is clearly not working! Because the 'Mw' feature is in the range of 150k-175k our plot is so dilluted the rest are pinned to 0. We can use the sklearn library to perform a min max scaling, this scaling will shift the distribution of each feature between 0 and 1, but that can also be adjusted.

```
from sklearn.preprocessing import MinMaxScaler
```

```
scaler = MinMaxScaler()
scaler.fit(ldpe_df)
pd.DataFrame(scaler.transform(ldpe_df), columns=ldpe_df.columns).plot(kind='density')
```

```
<AxesSubplot:ylabel='Density'>
```


That makes a lot more sense, you can now see all of the distribution at once. Also there seems to be one (yellow) feature that has some outliers perhaps something weird is going on there...

Taking it a step further we could also alter the distributions by using a standard scaler instead of a min max scaler, redistributing the values mathematically into a normal distribution.

```
from sklearn.preprocessing import StandardScaler
```

```
scaler = StandardScaler()
scaler.fit(ldpe_df)
pd.DataFrame(scaler.transform(ldpe_df), columns=ldpe_df.columns).plot(kind='density')
```

```
<AxesSubplot:ylabel='Density'>
```


You can see it had some trouble fitting our special feature into the normal distribution but it did work out in the end. With this we are ready to perform machine learning algorithms on this data, but first why not try and figure out where those outliers are I mentioned earlier?

BINNING AND RANKING

When dealing with numerical data the trouble can sometimes be that numbers can have a wide variety.

Here we apply 2 methods to deal with that, binning and ranking. With binning we change the numerical feature into a categorical/ordinal feature. Ranking is used when our numerical feature contains a non normal distribution that fails to be normalized.

For this example we use a food consumption dataset, where european countries are listed and the relative percentage of each country is given that consumes the type of food, e.g. a value of 67 means that 67% of that country eats that type of food.

```
import pandas as pd
pd.set_option('display.max_columns', None)
```

```
food_df = pd.read_csv('https://openmv.net/file/food-consumption.csv')
food_df
```

	Country	Real coff	ee Instan	t coffee	Tea	Sweetener	Biscuits	\
0	Germany		90	49	88	19.0	57.0	
1	Italy		82	10	60	2.0	55.0	
2	France		88	42	63	4.0	76.0	
3	Holland		96	62	98	32.0	62.0	
4	Belgium		94	38	48	11.0	74.0	
5	Luxembourg		97	61	86	28.0	79.0	
6	England		27	86	99	22.0	91.0	
7	Portugal		72	26	77	2.0	22.0	
8	Austria		55	31	61	15.0	29.0	
9	Switzerland		73	72	85	25.0	31.0	
10	Sweden		97	13	93	31.0	NaN	
11	Denmark		96	17	92	35.0	66.0	
12	Norway		92	17	83	13.0	62.0	
13	Finland		98	12	84	20.0	64.0	
14	Spain		70	40	40	NaN	62.0	
15	Ireland		30	52	99	11.0	80.0	
	Powder soup	Tin soup	Potatoes	Frozen f		Frozen vegg		
0	51	19	21		27			31
1	41	3	2		4			57
2	53	11	23		11			37
3	67	43	7		14			33
4	37	23	9		13			76
5	73	12	7		26			35
6	55	76	17		20			76
7	34	1	5		20		3 2	22
								(continues on next page)

									(continued from	m previous page)
8		33	1		5	1	.5	11	49	
9		69	10		17	1	. 9	15	79	
10		43	43		39	54		45	56	
11		32	17		11	5	51		81	
12		51	4		17	3	30	15	61	
13		27	10		8	1	. 8	12	50	
14		43	2		14	2	23	7	59	
15		75	18		2		5	3	57	
	Oranges	Tinned	fruit	Jam	Garlic	Butter	Margarine	Olive oil	Yoghurt	\
0	75		44	71	22	91	85	74		
1	71		9	46	80	66	24	94	5.0	
2	84		40	45	88	94	47	36	57.0	
3	89		61	81	15	31	97	13		
4	76		42	57	29	84	80	83		
5	94		83	20	91	94	94	84	31.0	
6	68		89	91	11	95	94	57	11.0	
7	51		8	16	89	65	78	92	6.0	
8	42		14	41	51	51	72	28	13.0	
9	70		46	61	64	82	48	61	48.0	
10	78		53	75	9	68	32	48	2.0	
11	72		50	64	11	92	91	30	11.0	
12	72		34	51	11	63	94	28	2.0	
13	57		22	37	15	96	94	17		
14	77		30	38	86	44	51	91	16.0	
15	52		46	89	5	97	25	31	3.0	
	Crisp br	ead								
0	-	26								
1		18								
2		3								
3		15								
4		5								
5		24								
6		28								
7		9								
8		11								
9		30								
10		93								
11		34								
12		62								
13		64								
14		13								
15		9								

Here you could do some data validity, where we check if all values are between 0 and 100, or we check for missing values. I will leave that up to you

11.1 Binning

the first thing we want to do is seperate the countries based on their coffee consumption, instead of creating arbitrary values we can perform a quantitative cut. This means we create a number of equally sized groups using the qcut function, we give them the labels low, medium and high.

	Country	Real coff		ant coff			ener Bi		\		
0	Germany		90		49 8	8	19.0	57.0			
1	Italy		82		10 6	0	2.0	55.0			
2	France		88		42 6	13	4.0	76.0			
3	Holland		96		62 9	8	32.0	62.0			
4	Belgium		94		38 4	8	11.0	74.0			
5	Luxembourg		97		61 8	6	28.0	79.0			
6	England		27		86 9	19	22.0	91.0			
7	Portugal		72		26 7	7	2.0	22.0			
8	Austria		55		31 6	1	15.0	29.0			
9	Switzerland		73		72 8	5 2	25.0	31.0			
10	Sweden		97		13 9	3 :	31.0	NaN			
11	Denmark		96		17 9	2 :	35.0	66.0			
12	Norway		92		17 8	3 :	13.0	62.0			
13	Finland		98			4 2	20.0	64.0			
14	Spain		70			0	NaN	62.0			
15	Ireland		30		52 9	19	11.0	80.0			
	Powder soup	-	Potatoe			Frozen					
0	51	19		1	27		21				
1	41	3		2	4		2				
2	53	11		3	11		5				
3	67	43		7	14		14				
4	37	23		9	13		12				
5	73	12		7	26		23				
6	55	76		7	20		24				
7	34	1		5	20		3				
8	33	1		5	15		11				
9	69	10		7	19		15				
10	43	43	3		54		45		6		
11	32	17		1	51		42				
12	51	4		7	30		15				
13	27	10		8	18		12		0		
14	43	2		4	23		7				
15	75	18		2	5	1	3	5	7		
		,	_							,	
	_	ned fruit				Margarine			oghurt	\	
0	75	44	71	22	91	8.		74	30.0		
1	71	9	46	80	66	2		94	5.0		
2	84	40	45	88	94	4		36	57.0		
3	89	61	81	15	31	9'		13	53.0		
4	76	42	57	29	84	8(83	20.0		
5	94	83	20	91	94	94		84	31.0		
6	68	89	91	11	95	94		57	11.0		
7	51	8	16	89	65	78		92	6.0		
8	42	14	41	51	51	72		28	13.0		
9	70	46	61	64	82	48	3	61	48.0		

(continues on next page)

11.1. Binning 65

(continued	from	previous	nage)

									1 1 0 /
10	78	53	75	9	68	32	48	2.0	
11	72	50	64	11	92	91	30	11.0	
12	72	34	51	11	63	94	28	2.0	
13	57	22	37	15	96	94	17	NaN	
14	77	30	38	86	44	51	91	16.0	
15	52	46	89	5	97	25	31	3.0	
	Crisp bread b	oin_coffee							
0	26	medium							
1	18	medium							
2	3	medium							
3	15	high							
4	5	medium							
5	24	high							
6	28	low							
7	9	low							
8	11	low							
9	30	low							
10	93	high							
11	34	high							
12	62	medium							
13	64	high							
14	13	low							
15	9	low							

a new column has appeared at the end of our dataframe, containing the labels of our binning, countries with low coffee consumption are put in the low category and vice versa. Now we can seperate the countries with low coffee consumption from the rest

```
food_df[food_df.bin_coffee == 'low']
```

	Country	Real coff	ee I	nstant	coffee	Tea	Sweetener	Biscuit	s \			
6	England		27		86	99	22.0	91.	0			
7	Portugal		72		26	77	2.0	22.	0			
8	Austria		55		31	61	15.0	29.	0			
9	Switzerland		73		72	85	25.0	31.	0			
14	Spain		70		40	40	NaN	62.	0			
15	Ireland		30		52	99	11.0	80.	0			
	Powder soup	Tin soup	Pota	toes I	rozen f	ish	Frozen veg	gies App	les	\		
6	55	76		17		20		24	76			
7	34	1		5		20		3	22			
8	33	1		5		15		11	49			
9	69	10		17		19		15	79			
14	43	2		14		23		7	59			
15	75	18		2		5		3	57			
	Oranges Tin	ned fruit	Jam	Garlio	Butte	r Ma	argarine O	live oil	Yog	hurt	\	
6	68	89	91	11	1 9	5	94	57		11.0		
7	51	8	16	8.9	9 6	5	78	92		6.0		
8	42	14	41	51	1 5	1	72	28		13.0		
9	70	46	61	64	4 8	2	48	61		48.0		
14	77	30	38	86	6 4	4	51	91		16.0		
15	52	46	89	Į.	5 9	7	25	31		3.0		
	Crisp bread	bin_coffee	!									
										(santinu		

```
28
                             low
7
                  9
                             low
8
                11
                             low
9
                30
                             low
14
                13
                             low
1.5
                             low
```

You can already see the England/Ireland stereotype here, note that those are the only 2 with really low coffee consumption, the others are only in this low binning because we requested equally spaced bins in our qcut function. using the cut function would result in a different outcome. Perhaps you could try that out?

I tried to think of some metric to quantify the status of coffee drinkers, since we also have the instant coffee consumption we could create a metric where we subtract the amount of instant coffe drinkers from the amount of real coffee drinkers. This way we can measure that difference between them, I already went ahead and made equal quantity bins for them with labels low, medium and high 'quality coffee'.

```
food_df[food_df.bin_qual_coffee=='high']
```

	~ .	- I		- .							\			
	Country	Real		Insta	nt cof		Tea	Sweetener			\			
1	Italy		82			10	60	2.0						
10	Sweden		97			13	93	31.0						
11	Denmark		96			17	92	35.0						
12	Norway		92			17	83	13.0						
13	Finland		98			12	84	20.0	64	• 0				
	Powder s	Olin	Tin soup	Pota	toes	Froz	en fis	sh Frozen	vennies	Aη	ples	\		
1	rowacr c	41	3	1000	2	1102	011 111	4	2	110	67	`		
10		43	43		39			54	45		56			
11		32	17		11			51	42		81			
12		51	4		17			30	15		61			
13		27	10		8			.8	12		50			
10		۵,	10		Ü		_		12		00			
	Oranges	Tinn	ned fruit	Jam	Garli	lc B	utter	Margarin	e Olive	oil	Yog	hurt	\	
1	71		9	46	8	30	66	2	4	94		5.0		
10	78		53	75		9	68	3	2	48		2.0		
11	72		50	64	1	1	92	9	1	30		11.0		
12	72		34	51	1	1	63	9	4	28		2.0		
13	57		22	37	1	15	96	9	4	17		NaN		
	Crien ha	and b	in antfor	hin	~	. o f f o								
1	CITSD DI	18	in_coffee medium		qual_(hiq								
10		93				_								
11		93 34	high			hig								
		54 62	high			hig								
12			medium			hig								
13		64	high	1		hig	11							

Aha! you can see here which countries prefer the real coffee over the instant version. It seems the scandinavian countries together with obviously Italy are the true Caffeine connoisseur of Europe. Another intersting thing we can do now is take the mean for each product for both group high and low and take the difference for high - low. We can see the result below

11.1. Binning 67

```
/tmp/ipykernel_16521/3908782487.py:1: FutureWarning: Dropping of nuisance columns in_
DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version—
this will raise TypeError. Select only valid columns before calling the reduction.
food_df[food_df.bin_qual_coffee=='high'].mean()-food_df[food_df.bin_qual_coffee==
'low'].mean()
```

```
Real coffee 34.500000
Instant coffee -43.366667
            -0.800000
-0.2233
               2.066667
Sweetener
Biscuits
               2.583333
Powder soup
Tin soup
             -18.200000
              -9.600000
                5.066667
Potatoes
Frozen fish 15.400000
Frozen veggies 10.866667
        -4.166667
Apples
                3.666667
Oranges
Tinned fruit -14.066667
             -12.233333
Jam
Garlic
             -13.466667
Butter
              10.333333
Margarine
               2.500000
Olive oil
              -3.433333
Yoghurt
              -19.000000
Crisp bread
              36.533333
dtype: float64
```

It seems a preference for quality coffee also pairs with crisp bread, who knew? Do you think scaling/normalization might be interesting here? why (not)?

11.2 Ranking

In case normalization fails us and we are for some reason not able to get a normal distribution out of a feature, we can still resort to ranking. Note that non linear machine learning techniques often use a ranking functionality under the hood, therefore this technique is often not required, yet for educational purposes we are going to use it here anyway. Let's see how the distribution for Real coffee consumption looks like.

```
food_df.sort_values('Real coffee')
```

	Country	Real coffee	Instant coffee	Tea	Sweetener	Biscuits	\
6	England	27	86	99	22.0	91.0	
15	Ireland	30	52	99	11.0	80.0	
8	Austria	55	31	61	15.0	29.0	
14	Spain	70	40	40	NaN	62.0	
7	Portugal	72	26	77	2.0	22.0	
9	Switzerland	73	72	85	25.0	31.0	
1	Italy	82	10	60	2.0	55.0	
2	France	88	42	63	4.0	76.0	
0	Germany	90	49	88	19.0	57.0	
12	Norway	92	17	83	13.0	62.0	
4	Belgium	94	38	48	11.0	74.0	
3	Holland	96	62	98	32.0	62.0	
11	Denmark	96	17	92	35.0	66.0	

								(continued from	n previous page)
5	Luxembourg	9-	7	61	86	28.0	79.	0	
10	Sweden	9.	7	13	93	31.0	Na	N	
13	Finland	98	3	12	84	20.0	64.	0	
	Powder soup	Tin soup I	Potatoes F	rozen fi	sh Fro	zen vegg:	ies App	les \	
6	55	76	17		2.0		24	76	
15	75	18	2		5		3	57	
8	33	1	5	:	15		11	49	
14	43	2	14	2	23		7	59	
7	34	1	5		20		3	22	
9	69	10	17		19		15	79	
1	41	3	2		4		2	67	
2	53	11	23		11		5	87	
0	51	19	21		27		21	81	
12	51	4	17		30		15	61	
4	37	23	9		13		12	76	
3	67	43	7		14		14	83	
11	32	17	11		51		42	81	
5	73	12	7		26		23	85	
10	43	43	39		54		45	56	
13	27	10	8		18		12	50	
	Oranges Tin	ned fruit	Jam Garlic	Butter	Marga	arine Ol:	ive oil	Yoghurt	\
6	68	89	91 11			94	57	11.0	
15	52	46	89 5	97		25	31	3.0	
8	42	14	41 51			72	28	13.0	
14	77	30	38 86			51	91	16.0	
7	51	8	16 89			78	92	6.0	
9	70	46	61 64			48	61	48.0	
1	71	9	46 80			24	94	5.0	
2	84	40	45 88	94		47	36	57.0	
0	75	44	71 22			85	74	30.0	
12	72	34	51 11			94	28	2.0	
4	76	42	57 29	84		80	83	20.0	
3	89	61	81 15			97	13	53.0	
11	72	50	64 11	92		91	30	11.0	
5	94	83	20 91	94		94	84	31.0	
10	78	53	75 9	68		32	48	2.0	
13	57	22	37 15	96		94	17	NaN	
	Crisp bread	bin_coffee k	oin_qual_co	ffee					
6	28	low		low					
15	9	low		low					
8	11	low		low					
14	13	low		low					
7	9	low	me	dium					
9	30	low		low					
1	18	medium		high					
2	3	medium	me	dium					
0	26	medium		dium					
12	62	medium		high					
4	5	medium	me	dium					
3	15	high		low					
11	34	high		high					
5	24	high		dium					
10	93	high		high					
13	64	high		high					
L									

11.2. Ranking 69 Ah yes, about half of the values are 90 or higher, not really optimal as the range is between 0 and 100! We can also view this in a visual way using a density plot.

```
food_df['Real coffee'].plot(kind='density', title='Real coffee (raw)')
```

```
<AxesSubplot:title={'center':'Real coffee (raw)'}, ylabel='Density'>
```


For larger datasets this would be more useful as we cannot see our whole dataset, it is clear we have to do something about this, now imagine we can not use regular normalization techniques. The rank method now comes in handy!

```
food_df['rank_coffee'] = food_df['Real coffee'].rank()
food_df
```

	Country	Real coffee	Instant coffe	ee Tea	Sweetener	Biscuits	\
0	Germany	90		49 88	19.0	57.0	
1	Italy	82		10 60	2.0	55.0	
2	France	88		42 63	4.0	76.0	
3	Holland	96		52 98	32.0	62.0	
4	Belgium	94	:	38 48	11.0	74.0	
5	Luxembourg	97	1	61 86	28.0	79.0	
6	England	27	:	36 99	22.0	91.0	
7	Portugal	72	:	26 77	2.0	22.0	
8	Austria	55	:	31 61	15.0	29.0	
9	Switzerland	73		72 85	25.0	31.0	
10	Sweden	97	:	13 93	31.0	NaN	
11	Denmark	96		17 92	35.0	66.0	
12	Norway	92		17 83	13.0	62.0	
13	Finland	98		12 84	20.0	64.0	
14	Spain	70	•	40 40	NaN	62.0	
15	Ireland	30	!	52 99	11.0	80.0	
	Powder soup	Tin soup Po	tatoes Froze	n fish	Frozen vegg	ies Apples	5 \

0												(continued fron	n previous page)
1	0		51	19		21		2.7	1	21		81	
2													
3													
4													
5													
6 555 76 17 20 24 76 7 344 1 5 20 3 22 6 33 1 5 15 11 49 9 69 10 17 19 15 79 10 43 43 43 39 54 45 56 11 32 17 11 51 42 81 12 51 4 17 30 15 61 13 27 10 8 18 12 50 14 43 2 14 23 7 59 15 75 18 2 5 5 3 57 Oranges Tinned fruit Jam Garlic Butter Margarine Olive oil Yoghurt \ 0 75 44 71 22 91 85 74 30.0 1 71 9 46 80 66 24 94 5.0 2 84 40 45 88 94 47 36 57.0 3 89 61 81 15 31 97 13 53.0 4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 816 89 65 78 92 66.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 96 88 32 48 2.0 11 72 50 64 11 92 91 30 11.0 10 78 53 75 96 88 32 48 2.0 11 77 30 38 86 44 51 91 10.0 11 77 30 38 86 44 51 91 10.0 12 84 69 59 7 25 31 30.0 15 594 85 75 99 88 32 48 2.0 16 66 68 89 91 11 95 94 57 11.0 17 51 8 16 89 65 78 92 66.0 18 42 14 41 51 51 51 72 28 13.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 30 38 86 44 51 91 16.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium medium 8.0 3 15 high medium 11.0 5 24 high medium 11.0 5 24 high medium 11.0 6 28 low low 10.0 8 11 low 6.0 10 93 high high 14.5 11 34 high high 12.5													
7													
8													
9													
10													
11													
12													
13				17									
14	12			4		17		30)			61	
Oranges Tinned fruit Jam Garlic Butter Margarine Olive oil Yoghurt \ 0 75 44 71 22 91 85 74 30.0 1 71 9 46 80 66 24 94 5.0 2 84 40 45 88 94 47 36 57.0 3 89 61 81 15 31 97 13 53.0 4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 11.0 5 24 high medium 14.5 6 28 low low 10w 1.0 7 9 low medium 14.5 6 28 low low 10w 1.0 7 9 1ow medium 5.0 8 11 low 1.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 11 34 high high 12.5			27	10		8		18	3	12		50	
Oranges Tinned fruit Jam Garlic Butter Margarine Olive oil Yoghurt \ 0 75 44 71 22 91 85 74 30.0	14		43	2		14		23	3	7		59	
0 75 44 71 22 91 85 74 30.0 1 71 9 46 80 66 24 94 5.0 2 84 40 45 88 94 47 36 57.0 3 89 61 81 15 31 97 13 53.0 4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee 0 26 medium medium 9.0 1 18 medium 11.0 5 2 3 medium medium 12.5 4 5 medium medium 11.0 5 24 high medium 11.0 5 24 high medium 11.0 7 9 low medium 14.5 6 28 low low 1.0 7 9 30 low 1.0 3.0 9 30 low 1.0 40 6.0 10 93 high high 14.5 11 34 high high 12.5 11 34 high high 12.5 12 62 medium high 12.5 11 34 high high 12.5 12 62 medium high 12.5	15		75	18		2		5	5	3		57	
0		0	m ' .		T	0 - 1 ' -	D 11.			01.		37 1 1	\
1 71 9 46 80 66 24 94 5.0 2 84 40 45 88 94 47 36 57.0 3 89 61 81 15 31 97 13 53.0 4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 11 72 50 64 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 1 1 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 Crisp bread bin_coffee bin_qual_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 11.0 5 24 high medium 11.0 5 24 high medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low 1.0 9 30 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 14.5 11 34 high high 12.5 12 62 medium high 12.5		_	Tin						_	Olive		_	\
2 84 40 45 88 94 47 36 57.0 3 89 61 81 15 31 97 13 53.0 4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low 1.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 12.5 12 62 medium high 12.5													
3													
4 76 42 57 29 84 80 83 20.0 5 94 83 20 91 94 94 84 31.0 6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15													
5	3	89		61	81		3	1	97		13		
6 68 89 91 11 95 94 57 11.0 7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee rank_coffee 0 26 medium high	4	76		42	57	29	8	4	80		83	20.0	
7 51 8 16 89 65 78 92 6.0 8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1 10 7 9 low medium 15.0 8 11 low 1 20 8 11 low 3.0 9 30 low medium 5.0 8 11 low 10w 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 12.5 12 62 medium high 12.5	5	94		83	20	91	9	4	94		84	31.0	
8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 9.0 1 18 medium 9.0 2 3 medium 8.0 3 15 high 10w	6	68		89	91	11	9	5	94		57	11.0	
8 42 14 41 51 51 72 28 13.0 9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 9.0 1 18 medium 9.0 2 3 medium 8.0 3 15 high 10w	7	51		8	16	89	6	5	78		92	6.0	
9 70 46 61 64 82 48 61 48.0 10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 9.0 1 18 medium 8.0 3 15 high 10w 12.5 4 5 medium 11.0 5 24 high medium 14.5 6 28 <	8			14	41								
10 78 53 75 9 68 32 48 2.0 11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 90 <													
11 72 50 64 11 92 91 30 11.0 12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 10.0 3 15 high high 12.5 4 5 medium medium 14.5 6 28 low low 10													
12 72 34 51 11 63 94 28 2.0 13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 9.0 1 18 medium 9.0 1 18 medium 9.0 2 3 medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 3													
13 57 22 37 15 96 94 17 NaN 14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
14 77 30 38 86 44 51 91 16.0 15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium 9.0 1 18 medium 9.0 1 18 medium 9.0 2 3 medium 8.0 3 15 high low 12.5 4 5 medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
15 52 46 89 5 97 25 31 3.0 Crisp bread bin_coffee bin_qual_coffee rank_coffee 0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
Crisp bread bin_coffee bin_qual_coffee													
0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0	13	32		40	09	5	9	' /	25		31	3.0	
0 26 medium medium 9.0 1 18 medium high 7.0 2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0		Crisp br	ead	bin_coffee	bin_	qual_cof	fee r	ank	_coffee				
1 18 medium high 7.0 2 3 medium 8.0 3 15 high low 12.5 4 5 medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0	0	_	26	medium		med							
2 3 medium medium 8.0 3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0	1								7.0				
3 15 high low 12.5 4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0	2			medium			-						
4 5 medium medium 11.0 5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
5 24 high medium 14.5 6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
6 28 low low 1.0 7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
7 9 low medium 5.0 8 11 low low 3.0 9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
8 11 low low 3.0 9 30 low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
9 30 low low 6.0 10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
10 93 high high 14.5 11 34 high high 12.5 12 62 medium high 10.0													
11 34 high high 12.5 12 62 medium high 10.0													
12 62 medium high 10.0				_									
110 CA high high 100							_						
	13		64	high		h	igh		16.0				
14 13 low low 4.0			13	low			low		4.0				
15 9 low low 2.0	15		9	low			low		2.0				

At the end of our data a new column was appended, containing the ranking of each country with the lowest being 1 and the highest equal to the amount of countries. When we visualise this distribution we get a uniform distribution, not normal but still better than before!

11.2. Ranking 71

```
food_df['rank_coffee'].plot(kind='density', title='Real coffee (ranked)')
```

<AxesSubplot:title={'center':'Real coffee (ranked)'}, ylabel='Density'>

CHAPTER

TWELVE

SOME PRACTICE

Now that you have learned techniques in data preparation, why don't you put them to use in this wonderfully horrifying dataset. Good luck!

```
import os
import json
import pandas as pd
```

```
df = pd.read_csv('./data/monster_com-job_sample.csv')
```

```
df.head()
```

```
country country_code date_added has_expired \
0 United States of America US NaN No
1 United States of America US NaN No
2 United States of America US NaN No
```

```
United States of America
                                      US
                                                NaN
                                                             No
  United States of America
                                      US
                                                NaN
                                                             No
                                                       job_description
          job_board
                    TeamSoft is seeing an IT Support Specialist to...
  jobs.monster.com
   jobs.monster.com The Wisconsin State Journal is seeking a flexi...
   jobs.monster.com Report this job About the Job DePuy Synthes Co...
  jobs.monster.com Why Join Altec? If you're considering a career...
  jobs.monster.com Position ID# 76162 # Positions 1 State CT C...
                                           job_title
                                                                 job_type
0
                IT Support Technician Job in Madison
                                                       Full Time Employee
             Business Reporter/Editor Job in Madison
                                                                Full Time
  Johnson & Johnson Family of Companies Job Appl...
                                                      Full Time, Employee
3
                     Engineer - Quality Job in Dixon
                                                                Full Time
4
        Shift Supervisor - Part-Time Job in Camphill
                                                     Full Time Employee
                                            location \
0
                                   Madison, WI 53702
                                   Madison, WI 53708
  DePuy Synthes Companies is a member of Johnson...
3
                                           Dixon, CA
                                        Camphill, PA
4
                      organization \
0
          Printing and Publishing
2
  Personal and Household Services
3
                 Altec Industries
4
                            Retail
                                            page_url salary
  http://jobview.monster.com/it-support-technici...
  http://jobview.monster.com/business-reporter-e...
  http://jobview.monster.com/senior-training-lea...
                                                        NaN
  http://jobview.monster.com/engineer-quality-jo...
                                                        NaN
4 http://jobview.monster.com/shift-supervisor-pa...
                                                        NaN
                       sector
                                                        uniq_id
      IT/Software Development 11d599f229a80023d2f40e7c52cd941e
1
                          NaN e4cbb126dabf22159aff90223243ff2a
2
                          NaN 839106b353877fa3d896ffb9c1fe01c0
   Experienced (Non-Manager)
                               58435fcab804439efdcaa7ecca0fd783
  Project/Program Management 64d0272dc8496abfd9523a8df63c184c
```

Need some inspiration? perhaps this might help!

Part III

3. Data Preprocessing

\sim	ш	٨	P ¹	re	R
L	п	А	Р.	ᇉ	ĸ

THIRTEEN

DATA PREPROCESSING

this is an introduction

CHAPTER

FOURTEEN

INDEXING AND SLICING

In

```
import pandas as pd
```

```
Date Temp

0    1981-01-01    20.7

1    1981-01-02    17.9

2    1981-01-03    18.8

3    1981-01-04    14.6

4    1981-01-05    15.8
...    ...    ...

360    1981-12-27    15.5

361    1981-12-28    13.3

362    1981-12-29    15.6

363    1981-12-30    15.2

364    1981-12-31    17.4
```

```
min_temp_df.Date = pd.to_datetime(min_temp_df.Date)
```

```
min_temp_df = min_temp_df.set_index('Date')
```

```
min_temp_df.loc['1981-06-01':'1981-06-30']
```

```
Temp
Date

1981-06-01 11.6

1981-06-02 10.6

1981-06-03 9.8

1981-06-04 11.2

1981-06-05 5.7

1981-06-06 7.1

1981-06-07 2.5

1981-06-08 3.5

1981-06-09 4.6
```

```
1981-06-10 11.0
1981-06-11 5.7
1981-06-12 7.7
1981-06-13 10.4
1981-06-14 11.4
1981-06-15
           9.2
1981-06-16 6.1
1981-06-17
           2.7
1981-06-18 4.3
1981-06-19 6.3
1981-06-20 3.8
1981-06-21 4.4
1981-06-22 7.1
1981-06-23 4.8
1981-06-24 5.8
1981-06-25 6.2
1981-06-26 7.3
1981-06-27 9.2
1981-06-28 10.2
1981-06-29
           9.5
1981-06-30 9.5
```

```
min_temp_df.loc['1989-06-01':'1989-06-30'].mean()
```

```
Temp NaN dtype: float64
```

```
min_temp_df.resample('MS').mean()
```

```
Temp

Date

1981-01-01 17.712903

1981-02-01 17.678571

1981-03-01 13.500000

1981-04-01 12.356667

1981-05-01 9.490323

1981-06-01 7.306667

1981-07-01 7.577419

1981-08-01 7.238710

1981-09-01 10.143333

1981-10-01 10.087097

1981-11-01 11.890000

1981-12-01 13.680645
```

```
import seaborn as sns
```

```
tip_df = sns.load_dataset('tips')
tip_df.head()
```

```
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
```

```
4 24.59 3.61 Female No Sun Dinner 4
```

```
tip_index_df = tip_df.set_index('day')
```

```
tip_index_df.loc['Sun']
```

```
total_bill
               tip
                    sex smoker
                                  time size
day
        16.99 1.01 Female
                                           2
Sun
                              No Dinner
Sun
        10.34 1.66
                    Male
                              No Dinner
                                           3
        21.01 3.50
Sun
                     Male
                              No Dinner
                                           3
        23.68 3.31
Sun
                     Male
                             No Dinner
                                           2
        24.59 3.61 Female
                            No Dinner
Sun
                                           4
          . . .
               . . .
                    . . .
                             . . .
                                    . . .
        20.90 3.50 Female Yes Dinner
                                          3
Sun
        30.46 2.00
                    Male Yes Dinner
                                          5
        18.15 3.50 Female
                             Yes Dinner
        23.10 4.00
Sun
                     Male
                             Yes Dinner
Sun
        15.69 1.50
                     Male Yes Dinner
[76 rows x 6 columns]
```

```
tip_index_df = tip_df.set_index(['day','time'])
```

```
tip_index_df.loc[('Thur','Lunch')].tip.mean()
```

```
2.767704918032786
```

```
time Lunch Dinner
day
Thur 16.00 18.780
Fri 13.42 18.665
Sat NaN 18.240
Sun NaN 19.630
```

```
tip_df.set_index(['sex', 'time','smoker']).loc[('Male', 'Dinner','Yes')]['tip'].mean()
```

```
/tmp/ipykernel_25625/3467525553.py:1: PerformanceWarning: indexing past lexsort depth

may impact performance.
  tip_df.set_index(['sex', 'time', 'smoker']).loc[('Male', 'Dinner', 'Yes')]['tip'].

mean()
```

```
3.123191489361702
```

CHAPTER

FIFTEEN

MERGE

When data becomes multi-dimensional - covering multiple aspects of information - it usually happens that a lot of information is redundant. Take for example the next dataset, we have collected ratings of restaurants from users, when a single user rates 2 restaurants the information of the user relates to both rows, yet it would be wasteful to keep this info twice. The same can happen when we have a restaurant with 2 ratings, the location of the restaurant is kept twice in our data, which is not scalable.

We solve this problem using relational data, the idea is that we have a common key column in 2 of our tables which we can use to join the data for further processing.

In our example we use a dataset with consumers, restaurants and ratings between those, you can find more information here.

```
import pandas as pd
```

	userID	placeID	rating	food_rating	service_rating
0	U1077	135085	2	2	2
1	U1077	135038	2	2	1
2	U1077	132825	2	2	2
3	U1077	135060	1	2	2
4	U1068	135104	1	1	2
1156	U1043	132630	1	1	1
1157	U1011	132715	1	1	0
1158	U1068	132733	1	1	0
1159	U1068	132594	1	1	1
1160	U1068	132660	0	0	0
[1162	1 rows x	5 column	s]		

this first table we read contains the userID from whom the rating came, the placeID is the restaurant he/she rated and the numerical values of the 3 different ratings.

Perhaps you can find out what the min and max values for the ratings are?

to know the type of restaurant, we can not read another table

```
placeID Rcuisine
135110 Spanish
135109 Italian
0
1
2
     135107 Latin_American
3
    135106 Mexican
    135105 Fast_Food ...
4
                 ...
. .
911 132005 Seafood
912 132004 Seafood
913 132003 International
914 132002 Seafood
915 132001 Dutch-Belgian
[916 rows x 2 columns]
```

This table also contains the placeID, so we should be able to merge/join these 2 tables and create a new table with info of both. Notice how we specify the 'on' parameter where we denote placeID as our common key.

```
merged_df = pd.merge(rating_df, cuisine_df, on='placeID', how='inner')
merged_df
```

```
userID placeID rating food_rating service_rating Rcuisine
          135085 2
135085 13500
                       2
    U1077
          135085
                                           2 Fast Food
    U1108
                                2
                                            1 Fast_Food
    U1081 135085 1
U1056 135085 2
U1134 135085 2
                                2
2
                                            1 Fast Food
3
                               2
                                            2 Fast_Food
                              1
                                            2 Fast_Food
4
2 American
                              0
                                           0 American
                              1
                                            1 American
1041 U1096 132958
                    1
                              2
                                           2 American
                                            2 American
1042 U1136 132958
[1043 rows x 6 columns]
```

Great! now we have more info about the rating that were given, being the type of cuisine that they rated. We could figure out which cuisines are available in our dataset and do a comparison, let us count the occurences of each cuisine.

```
merged_df.Rcuisine.value_counts()
```

```
Mexican
                 238
Bar
                 140
Cafeteria
                 102
Fast_Food
                  91
                  62
Seafood
Bar_Pub_Brewery
Pizzeria
                  59
                  51
Chinese
                  41
American
                   39
                  37
International
Contemporary
                  32
Burgers
                  31
                  29
Japanese
Italian
                   26
Family
```

(continues on next page)

84 Chapter 15. Merge

```
Cafe-Coffee_Shop
                      12
Breakfast-Brunch
                       9
                       7
Game
Vietnamese
                       6
Bakery
                       5
Mediterranean
                       4
Armenian
                       4
Regional
Name: Rcuisine, dtype: int64
```

A lot of mexican, which is not surpising as this dataset comes from Mexico. I wonder if there is a difference between 'Bar' and 'Bar_Pub_Brewery', we can see if the average rating for those 2 differ.

```
Bar
rating
                 1.200000
food_rating
                1.135714
service_rating
                 1.085714
dtype: float64
Bar_Pub_Brewery
                 1.305085
rating
food_rating
                 1.169492
service_rating
                 1.203390
dtype: float64
```

just looking at the averages we can deduces that while food ratings do not change a lot, the service seems a lot better at the Brewery.

```
rating 1.205882
food_rating 1.127451
service_rating 1.078431
dtype: float64
```

```
rating 1.583333
food_rating 1.333333
service_rating 1.416667
dtype: float64
```

As easy as it looks, we can now merge information of different tables in our dataset and perform some simple comparisons, in later sections we will see how we can improve on those.

As an exercise I already read in the table containing the info about which type of payment the user has opted for. Could you find out if the type of payment could have an influence on the rating?

```
userID
                 Upayment
0
  U1001
                    cash
  U1002
1
                    cash
2 U1003
                    cash
3 U1004
                    cash
4 U1004 bank_debit_cards
172 U1134
                    cash
173 U1135
                    cash
174 U1136
                     cash
175 U1137
                     cash
176 U1138
                     cash
[177 rows x 2 columns]
```

86 Chapter 15. Merge

CHAPTER

SIXTEEN

GROUPBY

In the previous section we saw how to combine information of multiple tables from our dataset. Here we are going to build further on that by using the merged information to group on categorical variables.

```
import pandas as pd
```

	userID	placeID	rating	food_rating	service_rating
0	U1077	135085	2	2	2
1	U1077	135038	2	2	1
2	U1077	132825	2	2	2
3	U1077	135060	1	2	2
4	U1068	135104	1	1	2
1156	U1043	132630	1	1	1
1157	U1011	132715	1	1	0
1158	U1068	132733	1	1	0
1159	U1068	132594	1	1	1
1160	U1068	132660	0	0	0
[116	1 rows x	5 column	s]		

Again we have our rating data containing the users, places and ratings they gave. As a simple example we could just group by the placeID column and take the mean, this would give us the mean rating for each restaurant

```
grouped_rating_df = rating_df.groupby('placeID').mean().sort_values('rating')
grouped_rating_df
```

	rating	food_rating	service_rating
placeID			
132654	0.250000	0.25	0.250000
135040	0.250000	0.25	0.250000
132560	0.500000	1.00	0.250000
132663	0.500000	0.50	0.666667
135069	0.500000	0.50	0.750000
132755	1.800000	2.00	1.600000
132922	1.833333	1.50	1.833333
134986	2.000000	2.00	2.000000
135034	2.000000	2.00	1.600000

```
132955 2.000000 1.80 1.800000
[130 rows x 3 columns]
```

Keep in mind that this might be tricky, as we do not always have as much records per group, we could count the amount per records using a groupby operation and count.

```
rating_df.groupby('placeID').rating.count()
```

```
placeID
132560
           4
132561
           4
132564
           4
132572
          15
132583
           4
          . .
135088
           6
135104
           7
135106
          10
135108
          11
135109
           4
Name: rating, Length: 130, dtype: int64
```

Taking an average of 4 ratings might not be ideal, so we should keep in mind that our groups have a good sample size.

Let's make things more interesting and insert some location data.

```
geo_df = pd.read_csv('./data/cuisine/geoplaces2.csv').set_index('placeID')
geo_df
```

```
latitude longitude
placeID
134999
        18.915421 -99.184871
132825 22.147392 -100.983092
135106 22.149709 -100.976093
       23.752697 -99.163359
132667
132613 23.752903 -99.165076
132866
       22.141220 -100.931311
135072
        22.149192 -101.002936
135109
        18.921785 -99.235350
       18.875011 -99.159422
135019
132877
        22.135364 -100.934948
                                           the_geom_meter \
placeID
        0101000020957F000088568DE356715AC138C0A525FC46...
134999
        0101000020957F00001AD016568C4858C1243261274BA5...
132825
135106
        0101000020957F0000649D6F21634858C119AE9BF528A3...
132667
        0101000020957F00005D67BCDDED8157C1222A2DC8D84D...
132613
        0101000020957F00008EBA2D06DC8157C194E03B7B504E...
132866
        0101000020957F000013871838EC4A58C1B5DF74F8E396...
135072
        0101000020957F0000E7B79B1DB94758C1D29BC363D8AA...
        0101000020957F0000A6BF695F136F5AC1DADF87B20556...
135109
135019
        0101000020957F0000B49B2E5C6E785AC12F9D58435241...
```

					(continued from	n previous page)
132877	0101000020957F000090735015	B84B58C1AI	F0DC0414698			
	1	name \				
placeID						
134999	Kiku Cuerna	vaca				
132825	puesto de ta					
135106	El Rinc•n de San Franc					
132667	little pizza Emilio Portes					
132613	carnitas_r	nata				
132866	Chai	ires				
135072	Sushi :	Itto				
135109	Paniro	oles				
135019	Restaurant Bar Coty y Pa	ablo				
132877	sirloin stoc					
			1.1			
placeID			address		city \	
134999			Revolucion	Cueri	navaca	
132825	esquina santos dec	gollado v			s.l.p.	
135106	ooquina bancob acq	-	versidad 169		-	
132667	22		portes gil		toria	
132613			portes gil portes gil		ctoria	
132013	1.	IC. EMILLIC	portes gii	VIO		
132866		Ricas	rdo B. Anaya	San Luis 1		
135072	Venustiano Car		_	San Luis 1		
135109	venusciano ca	LIANZA IO	?	Sail Luis i	?	
	December 24 Dec	-l	•	т:.	•	
135019	Paseo de Las Fuentes 24 Peo	aregal de		JII	utepec	
132877			?		?	
	state country far	x zip	alc	ohol sm	oking_area	\
placeID				,		
134999			No_Alcohol_Se		none	
132825	s.l.p. mexico		No_Alcohol_Se		none	
135106	San Luis Potosi Mexico		Wine-		nly at bar	
132667	tamaulipas ? '	? ?	No_Alcohol_Se	rved	none	
132613	Tamaulipas Mexico '		No_Alcohol_Se	rved	permitted	
132866	San Luis Potosi Mexico		No_Alcohol_Se	rved not	 permitted	
135072		· ? 78220	No_Alcohol_Se		none	
135109		? ?	Wine-		permitted	
135109		· · · · · · · · · · · · · · · · · · ·	No_Alcohol_Se		none	
132877		: ? ?	No_Alcohol_Se			
132011	£ £	: :	NO_AICONOI_Se	rvea	none	
	dress_code accessibility	y price		url	Rambience	\
placeID						
134999	informal no_accessibility	-	kikucuernava		familiar	
132825	informal completely			?	familiar	
135106	informal partially	y medium		?	familiar	
132667	informal completely	y low		?	familiar	
132613	informal completely	y medium		?	familiar	
132866	informal completely	y medium		?	familiar	
135072	informal no_accessibility		sushi-it	to.com.mx	familiar	
135109	informal no_accessibility			?	quiet	
135019	informal completely			?	familiar	
132877	informal completely			?	familiar	
		, ±0W		•		es on next page

```
franchise area other_services
placeID
134999
             f closed
                               none
132825
             f
                open
                               none
135106
             f
                 open
                               none
132667
             t closed
                               none
                              none
132613
             t closed
                 . . .
                               . . .
132866
            f closed
                              none
135072
            f closed
                              none
135109
            f closed
                          Internet
135019
            f closed
                              none
132877
            f closed
                              none
[130 rows x 20 columns]
```

Here we have for each restaurant information about its location, I mentioned earlier that grouping per restaurant might be dangerous as some restaurants have nearly no reviews. By adding information such as city, state and country we have other categorical variables to group by. Notice how we use the merge operation from previous section, but this time specify our common key is the index.

```
geo_rating_df = pd.merge(grouped_rating_df, geo_df, left_index=True, right_index=True)
geo_rating_df
```

placeID 132654 0.250000 0.25 0.250000 23.735523 -99.129588 135040 0.250000 0.25 0.250000 22.135617 -100.969709 132560 0.500000 1.00 0.250000 23.752304 -99.166913 132663 0.500000 0.50 0.666667 23.752511 -99.166954 135069 0.500000 0.50 0.750000 22.140129 -100.944872								
135040 0.250000 0.25 0.250000 22.135617 -100.969709 132560 0.500000 1.00 0.250000 23.752304 -99.166913 132663 0.500000 0.50 0.666667 23.752511 -99.166954 135069 0.500000 0.50 0.750000 22.140129 -100.944872 132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132560 0.500000 1.00 0.250000 23.752304 -99.166913 132663 0.500000 0.50 0.666667 23.752511 -99.166954 135069 0.500000 0.50 0.750000 22.140129 -100.944872 132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132663 0.500000 0.50 0.666667 23.752511 -99.166954 135069 0.500000 0.50 0.750000 22.140129 -100.944872 132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
135069 0.500000 0.50 0.750000 22.140129 -100.944872 132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132755 1.800000 2.00 1.600000 22.153324 -101.019546 132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132922 1.833333 1.50 1.833333 22.151135 -100.982311 134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
134986 2.000000 2.00 2.000000 18.928798 -99.239513 135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
135034 2.000000 2.00 1.600000 22.140517 -101.021422 132955 2.000000 1.80 1.800000 22.147622 -101.010275								
132955 2.000000 1.80 1.800000 22.147622 -101.010275								
the_geom_meter \								
the_geom_meter \								
placeID 132654 0101000020957F000040E8F628488557C18224E8B94845								
135040 0101000020957F00001B552189B84A58C15A2AAEFD2CA2								
132560 0101000020957F00001B532189B84A38C13A2AAEFB2CA2								
132663 0101000020957F0000FDF8D26EE08157C1FEDB6A1FDB4E								
135069 0101000020957F000038E5D546B74A58C18FD29AD0D29A								
132755 0101000020957F000026CADE45A14658C1F011EBCA55AF								
132922 0101000020957F000060A98A38FF4758C146718E41D9A4								
134986 0101000020957F00002A0D05E2D96D5AC1AB058CB1EC56								
135034 0101000020957F000026D92BB4894858C161A7552DA2B0								
132955 0101000020957F000068BE7C87C24758C1920A360A08AD								
name \								
placeID								
132654 Carnitas Mata Calle 16 de Septiembre								

				(c	ontinued from previous page)
135040	Rest	taurant los Compadres			
132560		puesto de gorditas			
132663		tacos abi			
135069	Abono	dance Restaurante Bar			
132755		La Estrella de Dimas			
132922		cafe punta del cielo			
134986	Rest	taurant Las Mananitas			
135034	Michil	co Restaurant Japones			
132955		emilianos			
		ac	ddress	city	\
placeID					
132654		16 de Septi		victoria	
135040	Cam	ino a Simon Diaz 155 (Luis Potosi	
132560		frente al tecno	Logico	victoria	
132663			?	victoria	
135069	:	Industrias 908 Valle I	Dorado San	Luis Potosi	
132755		Av. de los Pir		Luis Potosi	
132922			?	?	
134986		Ricardo Linare		Cuernavaca	
135034	Cordillera de Los	s Alpes 160 Lomas 2 Se		Luis Potosi	
132955		venustiano car	rranza sa	n luis potos	
	state	alcohol smo	oking_area	dress_code \	
placeID	• • •				
132654	tamaulipas	No_Alcohol_Served	none	informal	
135040	SLP	Wine-Beer	none	informal	
132560	tamaulipas		permitted	informal	
132663	tamaulipas	No_Alcohol_Served	none	informal	
135069	SLP	Wine-Beer	none	informal	
4.00755			• • •		
132755	S.L.P	No_Alcohol_Served	none	informal	
132922	?		permitted	formal	
134986	Morelos	Wine-Beer	none	formal	
135034	SLP	No_Alcohol_Served	none	informal	
132955	mexico	Wine-Beer	none	informal	
	accossibili+	price	ים נאוו	mhianao franc	hico \
placeID	accessibility	brice	ull Ra	umbience franc	111706 /
132654	completely	low	? f	amiliar	f
135040	no_accessibility	high		amiliar	f
132560	no_accessibility	low	-	amiliar	f
132663	completely	low		amiliar	f
135069	no_accessibility	low	• -	amiliar	f
	no_accessibility				
132755	partially			amiliar	f
132922	completely			amiliar	f
134986	no_accessibility	high lasmananitas	-	amiliar	f
135034	no accessibility	medium		amiliar	f
132955	completely	low		amiliar	t
	22	•	• +		-
	area other_ser	vices			
placeID					
132654	closed	none			
135040	closed	none			
					(continues on next page)

```
132560
         open
                        none
132663 closed
                        none
135069 closed
                        none
132755 closed
                     variety
132922
       closed
                        none
134986
       closed
                        none
135034
       closed
                        none
132955 closed
                     variety
[130 rows x 23 columns]
```

By adding this amount of data, things are getting a bit cluttered, thankfully we can use pandas to get a list of all our columns.

```
geo_rating_df.columns
```

How about we try and see if we can find a difference between countries for the ratings?

```
geo_rating_df.groupby('country')[['rating', 'food_rating', 'service_rating']].mean()
```

```
rating food_rating service_rating
country
? 1.166045 1.232946 1.069169
Mexico 1.200977 1.229093 1.118162
mexico 1.062660 1.069006 0.900064
```

Ah, it seems we forgot to do some data cleaning here, perhaps you could jump in and fix this string problem, might as well tackle the missing value while we are at it. Aside from that, we can see that lower-case Mexico is not doing very well, perhaps the food was so bad they forgot how to write Mexico?

Jokes aside, do you see the ressemblance between this and our rudimentary approach of comparing different categories? We are slowly getting more and more efficient using these operations, how about the difference between alcohol consumption?

```
geo_rating_df.groupby('alcohol')[['rating', 'food_rating', 'service_rating']].mean()
```

```
rating food_rating service_rating
alcohol
Full_Bar 1.287124 1.218315 1.170311
No_Alcohol_Served 1.148075 1.194730 1.042417
Wine-Beer 1.231887 1.261840 1.174437
```

Something we can remark here is that the food rating for no alcohol locations seems to be holding up, whilst the general rating and service rating fall behind. This would suggest that the food rating indeed is for the food, where the type of drinks served have no influence.

As a last we look at the difference between accessibility, does that influences our ratings?

```
rating food_rating service_rating
accessibility
completely 1.132494 1.203597 1.049709
no_accessibility 1.196189 1.206242 1.091278
partially 1.275356 1.330294 1.219991
```

It seems having partial accessibility is the way to go here, performing better than complete accessibility. We can however find that is due to a low sample size of 9 restaurants, making it prone to variation.

```
geo_rating_df.accessibility.value_counts()
```

```
no_accessibility 76
completely 45
partially 9
Name: accessibility, dtype: int64
```

You should get the hang of it by now, perhaps you can play some more with the other categories.

There is one thing I still would like to address, you perhaps have notices that in the beginning I first took the average rating per restaurant and later again took the average per category. This is a bad practice as a bad restaurant with one review has equal influence as a good restaurant with 100 reviews, perhaps you can think of a way to group all reviews from a category instead of the average for each restaurant?

In the previous section we added the cuisine type, perhaps you could do some groupby operations on that too here?

CHAPTER

SEVENTEEN

PIVOT

When using the groupby operation we used 1 categorical variable to seperate/group our data into those categories. Here we go a step further and use 2 categories to aggregate our data, resulting in a comparison matrix.

Aside from that, the pivot operation can in general be used to go from a long data format, to a wide data format. To keep things uniform we stick with the same cuisine dataset.

```
import pandas as pd
```

```
userID placeID rating food_rating service_rating
    U1077
          135085
                  2
0
                        2
    U1077
           135038
                     2
                                2
                                             1
1
    U1077
           132825
                     2
2
                                2
3
    U1077
          135060
                     1
                               2
                                             2
4
    U1068 135104
                     1
                                1
                                             2
           . . .
1156 U1043 132630
                    1
                               1
                                             1
                    1
1157 U1011 132715
                               1
                                             Ω
1158 U1068 132733
                    1
                               1
                                             0
1159 U1068 132594
                               1
1160 U1068
           132660
                                             0
[1161 rows x 5 columns]
```

And again we merge with the geolocations data, I feel that it becomes obvious here how these operations are very related to eachother.

A subtle difference between last time is that I did not first group per restaurant, however this leads to a dataframe that has a lot of redundant information! Try to look in the merged dataframe and spot the copies of data.

```
geo_rating_df = pd.merge(rating_df, geo_df, on='placeID')
geo_rating_df
```

	userID	placeID	rating	food_rating	service_rating	latitude	\
0	U1077	135085	2	2	2	22.150802	
1	U1108	135085	1	2	1	22.150802	
2	U1081	135085	1	2	1	22.150802	

```
U1056 135085
                         2
                                      2
                                                     2 22.150802
4
     U1134 135085
                         2
                                                     2 22.150802
                                      1
. . .
      . . .
             . . .
                        . . .
                                    . . .
                                                     2 22.144979
1156 U1061
             132958
                         2
                                     2
1157 U1025
            132958
                                                     0 22.144979
                         1
                                     0
1158 U1097
                                                     1 22.144979
             132958
                         2
                                     1
1159 U1096
             132958
                         1
                                      2
                                                     2
                                                       22.144979
1160 U1136
            132958
                         2
                                                       22.144979
     longitude
                                                  the_geom_meter \
    -100.982680 0101000020957F00009F823DA6094858C18A2D4D37F9A4...
0
1
    -100.982680 0101000020957F00009F823DA6094858C18A2D4D37F9A4...
    -100.982680 0101000020957F00009F823DA6094858C18A2D4D37F9A4...
    -100.982680 0101000020957F00009F823DA6094858C18A2D4D37F9A4...
4
    -100.982680 0101000020957F00009F823DA6094858C18A2D4D37F9A4...
            . . .
1156 -101.005683 0101000020957F000049095EB34A4858C15CB4BD1EE1AB...
1157 -101.005683 0101000020957F000049095EB34A4858C15CB4BD1EE1AB...
1158 -101.005683 0101000020957F000049095EB34A4858C15CB4BD1EE1AB...
1159 -101.005683 0101000020957F000049095EB34A4858C15CB4BD1EE1AB...
1160 -101.005683 0101000020957F000049095EB34A4858C15CB4BD1EE1AB...
                                                  address ... ∖
                      name
0
     Tortas Locas Hipocampo Venustiano Carranza 719 Centro ...
1
     Tortas Locas Hipocampo Venustiano Carranza 719 Centro ...
     Tortas Locas Hipocampo Venustiano Carranza 719 Centro ...
     Tortas Locas Hipocampo Venustiano Carranza 719 Centro ...
4
     Tortas Locas Hipocampo Venustiano Carranza 719 Centro ...
                       . . .
                                  avenida hivno nacional
         tacos los volcanes
1156
                                   avenida hivno nacional
1157
         tacos los volcanes
         tacos los volcanes
                                   avenida hivno nacional
1158
1159
         tacos los volcanes
                                   avenida hivno nacional
         tacos los volcanes
1160
                                   avenida hivno nacional
               alcohol smoking_area dress_code accessibility
                                                                 price \
0
     No_Alcohol_Served not permitted informal no_accessibility medium
     No_Alcohol_Served not permitted informal no_accessibility medium
1
2
     No_Alcohol_Served not permitted informal no_accessibility medium
3
     No_Alcohol_Served not permitted informal no_accessibility medium
4
     No_Alcohol_Served not permitted informal no_accessibility medium
                              . . .
. . .
                 . . .
                                       . . .
                                                           . . .
                              none informal
                                                                    low
1156 No_Alcohol_Served
                                                      completely
                               none informal
1157 No_Alcohol_Served
                                                      completely
                                                                    low
1158 No_Alcohol_Served
                                     informal
                               none
                                                      completely
                                                                    low
                              none
1159 No_Alcohol_Served
                                      informal
                                                      completely
                                                                    low
1160 No_Alcohol_Served
                              none informal
                                                      completely
                                                                    low
    url Rambience franchise area other_services
0
      ? familiar f closed
                                            none
      ? familiar
                        f closed
1
                                            none
      ? familiar
2
                        f closed
                                            none
3
      ? familiar
                        f closed
                                            none
4
      ? familiar
                        f closed
                                            none
          . . .
                       . . .
                             . . .
                                             . . .
                        t closed
1156
     ?
                                            none
            quiet
                        t closed
1157
          quiet
                                            none
```

(continues on next page)

96 Chapter 17. Pivot

```
1158 ? quiet t closed none
1159 ? quiet t closed none
1160 ? quiet t closed none
[1161 rows x 25 columns]
```

Now that we have our workable data, we can choose 2 categories and create a comparison matrix using the pivot operation. Yet there might be a problem that we still have to resolve, can you figure out the problem reading the error at the end of the stack trace below?

```
geo_rating_df.pivot(index='alcohol', columns='smoking_area', values='rating')
```

```
ValueError
                                          Traceback (most recent call last)
/tmp/ipykernel_20513/1351770208.py in <module>
----> 1 geo_rating_df.pivot(index='alcohol', columns='smoking_area', values='rating')
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
⇔frame.py in pivot(self, index, columns, values)
  7791
               from pandas.core.reshape.pivot import pivot
  7792
-> 7793
               return pivot(self, index=index, columns=columns, values=values)
  7794
  7795
           _shared_docs[
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
Greshape/pivot.py in pivot(data, index, columns, values)
   515
               else:
   516
                    indexed = data._constructor_sliced(data[values]._values,__
→index=multiindex)
            return indexed.unstack(columns_listlike)
   518
   519
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
series.py in unstack(self, level, fill_value)
  4079
               from pandas.core.reshape.reshape import unstack
  4080
-> 4081
                return unstack(self, level, fill_value)
  4082
  4083
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
→reshape/reshape.py in unstack(obj, level, fill_value)
   458
               if is_1d_only_ea_dtype(obj.dtype):
   459
                   return _unstack_extension_series(obj, level, fill_value)
--> 460
               unstacker = _Unstacker(
   461
                   obj.index, level=level, constructor=obj._constructor_expanddim
   462
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
Greshape/reshape.py in __init__(self, index, level, constructor)
   131
                    raise ValueError("Unstacked DataFrame is too big, causing int32_
⇔overflow")
   132
--> 133
               self._make_selectors()
```

It says: 'Index contains duplicate entries, cannot reshape' meaning that some combinations of our 2 categories, alcohol and smoking area have duplicates, which is understandable. I opted to solve this by grouping over the 2 categories and taking the mean for each combination, then i take this grouped data and pivot by setting the alcohol consumption as index and the smoking are as columns.

```
smoking_area
                     none not permitted only at bar permitted
                                                                  section
alcohol
Full_Bar
                  1.305556
                                0.857143
                                                 NaN
                                                       1.500000 1.272727
No_Alcohol_Served 1.186788
                                                       1.114286 1.265823
                                1.124402
                                                 NaN
Wine-Beer
                 1.217391
                                1.000000
                                            1.368421
                                                      1.300000 1.275000
```

Wonderful! Now we have for each combination an average rating, notice however that not every combination has the same sample size, so comparing might be tricky if you only have a few ratings.

To figure that out I counted the ratings per combination.

```
smoking_area
                   none not permitted only at bar permitted section
alcohol
Full Bar
                   36.0
                                   7.0
                                               NaN
                                                          4.0
                                                                  33.0
                                                                  79.0
No_Alcohol_Served 439.0
                                 209.0
                                               NaN
                                                         35.0
                                                         10.0
                                                                 120.0
Wine-Beer
                  161.0
                                   9.0
                                              19.0
```

It seems that there might e a correlation between the 2 categories, as a lot of place where smoking is not permitted/none, there is no alcohol served, which makes sense. Comparing the ratings with alcohol allowance for places where smoking is not permitted is not a good idea, the counts are 7, 209 and 9, very unbalanced.

```
geo_df.columns
```

98 Chapter 17. Pivot

printed the columns above, perhaps you could figure out a relation between the price category and the (R)ambience restaurant? Perhaps there are other combinations of which I did not think of, try some out!		

100 Chapter 17. Pivot

Part IV

4. Data Exploration

\sim	ш	٨	P ¹	re	R
L	п	А	Р.	ᇉ	ĸ

EIGHTEEN

DATA EXPLORATION

this is an introduction

Part V

5. Data Visualisation

NINETEEN

DATA VISUALISATION

this is an introduction

Part VI

6. Machine Learning

CHAPTER	
TWENTY	

MACHINE LEARNING

this is an introduction