GRADIENT BOOST

Аналитик больших данных 2019

Градиентный бустинг скрывает в себе

- 1 $Set(x_i,x_j)_{i=1}^n$ и функцию потерь $L(y_i,F(x))$
- $P_0(x) = argmin\Sigma L(y_i, \gamma)$
- $r_{i,m} = -[rac{\partial L(y_i,F(x_i))}{\partial F(x_i)}]_{F(x)=F_{m-1}(x)}$
- 4 Обучение регрессии r_{jm} в цикле ј = 1...m
- **5** В цикле j = 1...m вычислени $\mathfrak{F}_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$
- 6 $F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$

Разберем на примере. Что скрыто в ARGMIN?

Наш помощник – набор данных

Category	Subcategor Y	Param1	threshold	price
Личные вещи	1	1	3	99
Личные вещи	2	1	2	99
Личные вещи	5	1	3	89
Личные вещи	4	6	3	259
	Личные вещи Личные вещи Личные вещи	личные вещи 1 Личные вещи 2 Личные вещи 5	Дичные вещи 1 1 Личные вещи 2 1 Личные вещи 5 1	Дичные вещи 1 1 3 Личные вещи 2 1 2 Личные вещи 5 1 3

Вспомните деревья

Вспомните деревья

Вспомните

лубина должна быть ограничена.

обычно 8 - 32

Вспомните деревья

Начинаем считать

Region	Category	Sub category	Param1	threshol d	price	diff
Владимирская область	Личные вещи	1	1	3	99	
Волгоградская область	Личные вещи	2	1	2	99	
Кировская область	Личные вещи	5	1	3	89	
Москва	Личные вещи	4	6	3	259	

Начинаем считать

Region	Category	Sub category	Param1	threshol d	price	diff
Владимирская область	Личные вещи	1	1	3	99	-37,5
Волгоградская область	Личные вещи	2	1	2	99	-37,5
Кировская область	Личные вещи	5	1	3	89	-47,5
Москва	Личные вещи	4	6	3	259	122,5

Region	Category	Subcategor Y	Param1	threshold	T
Владимирская область	Личные вещи	1	1	3	-37,5
Волгоградская область	Личные вещи	2	1	2	-37,5
Кировская область	Личные вещи	5	1	3	-47,5
Москва	Личные вещи	4	6	3	122,5

Region	Category	Subcategor Y	Param1	threshold	T
Владимирская область	Личные вещи	1	1	3	-37,5
Волгоградская область	Личные вещи	2	1	2	-37,5
Кировская область	Личные вещи	5	1	3	-47,5
Москва	Личные вещи	4	6	3	122,5

Region	Category	Subcategor Y	Param1	threshold	T
Владимирская область	Личные вещи	1	1	3	-37,5
Волгоградская область	Личные вещи	2	1	2	-37,5
Кировская область	Личные вещи	5	1	3	-47,5
Москва	Личные вещи	4	6	3	122,5

(Avg Price + Predicted) =
$$(136.5 + (-37.5)) = 99$$

Region	Category	Subcategor Y	Param1	threshold	T
Владимирская область	Личные вещи	1	1	3	-37,5
Волгоградская область	Личные вещи	2	1	2	-37,5
Кировская область	Личные вещи	5	1	3	-47,5
Москва	Личные вещи	4	6	3	122,5


```
(Avg Price + (Learning Rate * Predicted)) = 136.5 + (0.1 * (-37.5)) = 132.75
```


(Avg Price +
 (Learning Rate * Predicted))

Region	Category	Subcategory	Param1	threshold	price	diff
Владимирская область	Личные вещи	1	1	3	99	-37,5
Волгоградская область	Личные вещи	2	1	2	99	-37,5
Кировская область	Личные вещи	5	1	3	89	-47,5
Москва	Личные вещи	4	6	3	259	122,5

Ещё больше деревьев

Смотрите

Мы разобрали:

 $Set(x_i,x_j)_{i=1}^n$ и функцию потерь $L(y_i,F(x))$ $F_0(x) = argmin\Sigma L(y_i, \gamma)$ $r_{i,m} = -[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}]_{F(x) = F_{m-1}(x)}$ Обучение регрессии r_{jm} в цикле j=1...m В цикле j=1...т вычислени $\mathfrak{F}_{jm}=argmin\Sigma L(y_i,F_{m-1}(x_i)+\gamma)$ 6 $F_m(x) = F_{m-1}(x) + v\Sigma \gamma_m I(x \in R_{jm})$

Давайте закрепим

Наш помощник – набор данных

(Observed - Predicted)

Наш помощник – набор данных

								$Set(x_i, x_j)_{i=1}^n$
ľ	Region	Category	Subcatego ry	Param1	threshol d	price		
ľ	Владимирская область	Личные вещи	1	1	3	99		$L(y_i, F(x))$
	Волгоградская область	Личные вещи	2	1	2	99		-()1)1 (11)
	Кировская область	Личные вещи	5	1	3	89		_
	Москва	Личные вещи	4	6	3	259		↓

$$\frac{diff}{diff*Predicted}*\frac{1}{2}(Observed-Predicted)^2 = \frac{1}{2}(Observed-Predicted)^2$$

Наш помощник набор данных

							\	$Set(x_i, x_j)_{i=1}^n$
ľ	Region	Category	Subcatego ry	Param1	threshol d	price		
Ī	Владимирская область	Личные вещи	1	1	3	99		$L(y_i, F(x))$
	Волгоградская область	Личные вещи	2	1	2	99		-()1)-(-/)
	Кировская область	Личные вещи	5	1	3	89		_
	Москва	Личные вещи	4	6	3	259		↓

$$\frac{diff}{diff*Predicted}*\frac{1}{2}(Observed-Predicted)^2 = \frac{1}{2}(Observed-Predicted)^2$$

Наш помощник набор данных

						$Set(x_i, x_j)_{i=1}^n$
Region	Category	Subcatego ry	Param1	threshol d	price	
Владимирская область	Личные вещи	1	1	3	99	$L(y_i, F(x))$
Волгоградская область	Личные вещи	2	1	2	99	-(51)-(-7)
Кировская область	Личные вещи	5	1	3	89	_
Москва	Личные вещи	4	6	3	259	

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

Наш помощник набор данных

						$Set(x_i, x_j)_{i=1}^n$
Region	Category	Subcatego ry	Param1	threshol d	price	
Владимирская область	Личные вещи	1	1	3	99	$L(y_i, F(x))$
Волгоградская область	Личные вещи	2	1	2	99	-01,- (-7)
Кировская область	Личные вещи	5	1	3	89	_
Москва	Личные вещи	4	6	3	259	

$$\frac{1}{2}(Observed - Predicted)^{2} = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

$$\frac{1}{2}(99 - Predicted)^2 + \frac{1}{2}(99 - Predicted)^2 +$$

$$\frac{1}{2}(89 - Predicted)^2 + \frac{1}{2}(259 - Predicted)^2$$


```
-99 + Predicted + (-99) + Predicted + (-89) + Predicted + (-259) + Predicted = 0
```



```
-99 + Predicted + (-99) + Predicted + (-89) +
Predicted + (-259) + Predicted = 0
```


Predicted + Predicted + Predicted = 99 + 89 + 259

Градиентный спуск

Теперь разберём:


```
Set(x_i,x_j)_{i=1}^n и функцию потерь L(y_i,F(x))
\overline{F_0(x) = argmin\Sigma L(y_i, \gamma)}
                      r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}
Вычисление
                                    r_{jm} в цикле ј = 1...m
Обучение регрессии
В цикле j=1...т вычислени \mathfrak{F}_{jm}=argmin\Sigma L(y_i,F_{m-1}(x_i)+\gamma)
F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})
```

Сначала посмотрим посмотрим

Разбираем шаги спуска

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Разбираем шаги спуска

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

1

$$\frac{diff}{diff*Predicted}*\frac{1}{2}(Observed-Predicted)^2$$

Разбираем шаги спуска

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Разбираем шаги спуска

$$r_{i,m} = -[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}]_{F(x) = F_{m-1}(x)}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Помните этот слайд?

1

Region	Category	Sub category	Param1	threshol d	price	diff
Владимирская область	Личные вещи	1	1	3	99	-37,5
Волгоградская область	Личные вещи	2	1	2	99	-37,5
Кировская область	Личные вещи	5	1	3	89	-47,5
Москва	Личные вещи	4	6	3	259	122,5

Он считает R

Region	Category	Sub category	Param1	threshol d	price	R1
Владимирская область	Личные вещи	1	1	3	99	-37,5
Волгоградская область	Личные вещи	2	1	2	99	-37,5
Кировская область	Личные вещи	5	1	3	89	-47,5
Москва	Личные вещи	4	6	3	259	122,5

Обучение регрессии r_{jm} в цикле j = 1..m

Обучение регрессии r_{jm} в цикле j = 1..m

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

$$\gamma_{jm} = argmin \Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

(если несколько значений в листе)

(если несколько значений в листе)

(если несколько значений в листе)

$$F_m(x) = F_{m-1}(x) + v \sum \gamma_m I(x \in R_{jm})$$

$$F_m(x)=F_{m-1}(x)+
u\Sigma\gamma_mI(x\in R_{jm})$$
 На примере шага 1 , где $m=1$, $v=$ Learning rate
$$F_m(x)=\overline{F_{m-1}(x)}+
u\Sigma\gamma_mI(x\in R_{jm})$$
 $F_m(x)=136.5$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = 136.5 + \text{Learning Rate}$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = 136.5 + 0.1$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \sum \gamma_m I(x \in R_{jm})$$

$$F_m(x) = 136.5 + 0.1 - 37.5$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \sum \gamma_m I(x \in R_{jm})$$

$$F_m(x) = \begin{bmatrix} 136.5 & + & 0.1 & -37.5 \\ & & & \end{bmatrix} = 132.75$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + v\Sigma\gamma_m I(x \in R_{jm})$$

$$F_m(x) = \begin{bmatrix} 136.5 \\ + 0.1 \end{bmatrix} - 37.5 = 132.75$$

Region	Category	Sub categor Y	Param1	thresho ld	pric e	diff 1	pred1
Владимирская область	Личные вещи	1	1	3	99	- 37,5	132,75

Осталось сделать больше шагов


```
1 Set(x_i,x_j)_{i=1}^n и функцию потерь L(y_i,F(x))
```

- 2 $F_0(x) = argmin\Sigma L(y_i, \gamma)$
- $r_{i,m} = -[rac{\partial L(y_i,F(x_i))}{\partial F(x_i)}]_{F(x)=F_{m-1}(x)}$
- $oldsymbol{4}$ Обучение регрессии $oldsymbol{r_{jm}}$ в цикле ј = 1...m
- $F_m(x) = F_{m-1}(x) + v\Sigma\gamma_m I(x \in R_{jm})$

Посмотрим что мы посчитали

Градиент для классификации

В поиск класса

Region	Categor Y	Sub categor Y	Target
Владимирская область	Личные вещи	1	0
Волгоградская область	Личные вещи	2	0
Кировская область	Личные вещи	5	1

В поиск класса

Region	Categor Y	Sub categor Y	Target
Владимирская область	Личные вещи	1	0
Волгоградская область	Личные вещи	2	0
Кировская область	Личные вещи	5	1

Нужен старт для расчета

Нужен старт для расчета

Нужен старт для расчета

Нужен старт для расчета

Нужен старт для расчета

$$\frac{e^{log(\frac{|True|}{|False|})}}{1 + e^{log(\frac{|True|}{|False|})}}$$

$$\frac{e^{log(\frac{|True|}{|False|})}}{1 + e^{log(\frac{|True|}{|False|})}} = \frac{e^{log(\frac{1}{2})}}{1 + e^{log(\frac{1}{2})}} = 0.33$$

$$rac{e^{log(rac{|True|}{|False|})}}{1+e^{log(rac{|True|}{|False|})}}$$
 = 0.3 = порог для 1

$$\frac{e^{log(\frac{|True|}{|False|})}}{1 + e^{log(\frac{|True|}{|False|})}}$$

$$0.3$$
 = порог для 1

Region	Category	Sub category	Targe t	diff
Владимирская область	Личные вещи	1	0	
Волгоградская область	Личные вещи	2	0	
Кировская область	Личные вещи	5	1	

(Observed - Predicted)

Region	Category	Sub category	Targe t	diff
Владимирская область	Личные вещи	1	0	-0,5
Волгоградская область	Личные вещи	2	0	-0,5
Кировская область	Личные вещи	5	1	0,5

$$(0 - 0.5)$$

Region	Category	Sub category	Targe t	diff
Владимирская область	Личные вещи	1	0	-0,5
Волгоградская область	Личные вещи	2	0	-0,5
Кировская область	Личные вещи	5	1	0,5

Region	Category	Sub category	Targe t	diff
Владимирская область	Личные вещи	1	0	-0,5
Волгоградская область	Личные вещи	2	0	-0,5
Кировская область	Личные вещи	5	1	0,5

$$\frac{\sum Diff_i}{\sum [PreviousProb_i * (1 - PreviousProb_i)]}$$

$$\frac{\sum Diff_i}{\sum [PreviousProb_i*(1-PreviousProb_i)]}$$

Predict =
$$0.5 + (0.1 * -2) = 0.3$$

Predict =
$$0.5 + (0.1 * -2) = 0.3$$

$$\frac{e^{\log(\frac{1}{2})}}{1 + 0.3} = 0.57$$

Region	Category	Sub category	Target	Diff	Pred
Владимирская область	Личные вещи	1	0	-0,5	0,57
Волгоградская область	Личные вещи	2	0	-0,5	0,57
Кировская область	Личные вещи	5	1	0,5	0,66

Predict = 0.5 + (0.1 * Diff)

Region	Category	Sub category	Target	Diff	Pred
Владимирская область	Личные вещи	1	0	-0,5	0,57
Волгоградская область	Личные вещи	2	0	-0,5	0,57
Кировская область	Личные вещи	5	1	0,5	0,66

Predict = 0.5 + (0.1 * Diff)

Повторить много раз

Region	Category	Sub category	Targe t	pred
Владимирская область	Личные вещи	1	0	1
Волгоградская область	Личные вещи	2	0	1
Кировская область	Личные вещи	5	1	1

Разобрали на примере


```
Set(x_i,x_j)_{i=1}^n
                        и функцию потерь L(y_i, F(x))
      F_0(x) = argmin\Sigma L(y_i, \gamma)
                        r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}
3 Вычисление
      Обучение регрессии r_{jm} в цикле j = 1...m
      В цикле j=1...т вычислени\phi_{jm}=argmin\Sigma L(y_i,F_{m-1}(x_i)+\gamma)
6 F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})
```

Что изменилось

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

для регрессии

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

Что изменилось

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

для регрессии

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

для классификации

Log(likelihood of Observed Data)

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

для регрессии

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

для классификации

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$
 p = 0.5

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

- 0.69?

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p) \qquad - \sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-[Observed * log(p) + (1 - Observed) * log(1 - p)]$$

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-[Observed * log(p) + (1 - Observed) * log(1 - p)]$$

$$-Observed * log(p) - (1 - Observed) * log(1 - p)$$

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-[Observed * log(p) + (1 - Observed) * log(1 - p)]$$

$$-Observed * log(p) - (1 - Observed) * log(1 - p)$$

$$-Observed * log(p) - log(1 - p) + Observed * log(1 - p)$$

$$\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-\sum y_i * log(p) + (1 - y_i) * log(1 - p)$$

$$-[Observed * log(p) + (1 - Observed) * log(1 - p)]$$

$$-Observed * log(p) - (1 - Observed) * log(1 - p)$$

$$-Observed * log(p) - log(1 - p) + Observed * log(1 - p)$$

$$-Observed * [log(p) - log(1 - p)] - log(1 - p)$$

$$-Observed*[log(p)-log(1-p)]-log(1-p)$$

$$-Observed* \frac{[log(p) - log(1-p)]}{-log(1-p)} - log(1-p)$$

$$log(p) - log(1-p) = \frac{log(p)}{log(1-p)}$$

$$-Observed* \frac{[log(p)-log(1-p)]}{-log(1-p)}$$

$$log(p) - log(1-p) = \frac{log(p)}{log(1-p)}$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$

$$-Observed* \frac{[log(p)-log(1-p)]}{-log(1-p)} - \frac{log(1-p)}{-log(1-p)}$$

$$\log(p) - \log(1-p) = \frac{\log(p)}{\log(1-p)}$$

$$\log(p) - \log(1-p) = \log(1 - \frac{e^{\log(odds)}}{1 + e^{\log(odds)}})$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$

$$-Observed* \overline{[log(p)-log(1-p)]} - \overline{log(1-p)}$$

$$log(p) - log(1-p) = \frac{log(p)}{log(1-p)}$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$

$$-Observed* \overline{[log(p)-log(1-p)]} - \overline{log(1-p)}$$

$$log(p) - log(1-p) = \frac{log(p)}{log(1-p)}$$

$$log(1-p) = log(1 - \frac{e^{log(odds)}}{1 + e^{log(odds)}})$$

$$log(\frac{1 + e^{log(odds)}}{1 - e^{log(odds)}})$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$

$$log(1-p) = log(1 - \frac{e^{log(odds)}}{1 + e^{log(odds)}})$$

$$log(\frac{1 + e^{log(odds)}}{1 + e^{log(odds)}} - \frac{e^{log(odds)}}{1 + e^{log(odds)}})$$

$$-Observed*[log(p)-log(1-p)]-[log(1-p)]$$

$$\log(p) - \log(1-p) = \frac{\log(p)}{\log(1-p)}$$

$$\log(p) - \log(1-p) = \frac{\log(p)}{\log(1-p)}$$

$$\log(1-p) = \log(1 - \frac{e^{\log(odds)}}{1 + e^{\log(odds)}})$$

$$\log(1-p) = \log(1 - \frac{e^{\log(odds)}}{1 + e^{\log(odds)}})$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$

$$log(\frac{1}{1+e^{log(odds)}}) = log(1) - log(1+e^{log(odds)})$$

$$log(1-p) = log(1 - \frac{e^{log(odds)}}{1 + e^{log(odds)}})$$

$$log(\frac{1+e^{log(odds)}}{1+e^{log(odds)}} - \frac{e^{log(odds)}}{1+e^{log(odds)}})$$

$$log(\frac{1}{1 + e^{log(odds)}}) = log(1) - log(1 + e^{log(odds)})$$

$$-Observed*[log(p)-log(1-p)]-[log(1-p)]$$

$$\log(p) - \log(1-p) = \frac{\log(p)}{\log(1-p)}$$

$$\log(p) - \log(1-p) = \frac{\log(p)}{\log(1-p)}$$

$$\log(1-p) = \log(1 - \frac{e^{\log(odds)}}{1 + e^{\log(odds)}})$$

$$\log(1-p) = \log(1 - \frac{e^{\log(odds)}}{1 + e^{\log(odds)}})$$

$$log(\frac{p}{1-p}) = log(odds of 1) \qquad log(\frac{1}{1+e^{log(odds)}}) = log(1) - log(1+e^{log(odds)})$$

$$log(1-p) = log(1 - \frac{e^{log(odds)}}{1 + e^{log(odds)}}$$

$$log(rac{1+e^{log(odds)}}{1+e^{log(odds)}}-rac{e^{log(odds)}}{1+e^{log(odds)}})$$

$$log(\frac{1}{1 + e^{log(odds)}}) = log(1) - log(1 + e^{log(odds)})$$

$$-log(1+e^{log(odds)})$$

$$-Observed*[log(p)-log(1-p)]-[log(1-p)]$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$
 $-log(1 + e^{log(odds)})$

$$-log(1+e^{log(odds)})$$

$$-Observed* \underbrace{[log(p)-log(1-p)]} - \underbrace{log(1-p)}$$

$$log(\frac{p}{1-p}) = log(odds of 1)$$
 $-log(1 + e^{log(odds)})$

$$-log(1+e^{log(odds)})$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$\frac{\partial}{\partial log(odds)} - Observed*log(odds) + log(1 + e^{log(odds)})$$

$$\frac{\partial}{\partial log(odds)} - Observed*log(odds) + log(1 + e^{log(odds)})$$

- Observed

$$\frac{\partial}{\partial log(odds)} - Observed * log(odds) + log(1 + e^{log(odds)})$$

- Observed

$$\frac{1}{1 + e^{\log(odds)}}$$

$$\frac{\partial}{\partial log(odds)} - Observed*log(odds) + log(1 + e^{log(odds)})$$

$$-Observed + \frac{1}{1 + \rho log(odds)} * e^{log(odds)}$$

$$\frac{\partial}{\partial log(odds)} - Observed*log(odds) + log(1 + e^{log(odds)})$$

$$-Observed + \frac{1}{1 + e^{log(odds)}} * e^{log(odds)}$$

$$\frac{\partial}{\partial log(odds)} - Observed*log(odds) + log(1 + e^{log(odds)})$$

$$-Observed + \frac{1}{1 + e^{log(odds)}} * e^{log(odds)}$$

$$-Observed + \frac{e^{log(odds)}}{1 + e^{log(odds)}}$$

Градиентный спуск для классификации

price

$$-0 + p + (-0) + p + (-1) + p = 0$$

price

$$-0 + p + (-0) + p + (-1) + p = 0$$

$$p = \frac{1}{3} \implies log(\frac{p}{1-p})$$

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

$$-0 + p + (-0) + p + (-1) + p = 0$$

$$p = \frac{1}{3} \implies log(\frac{p}{1-p})$$

$$log(\frac{\frac{1}{3}}{1-\frac{1}{3}}) \implies -0.69$$

$$F_0(x) = argmin\Sigma L(y_i, \gamma)$$

$$F_0(x) = -0.69$$

Теперь разберём


```
Set(x_i,x_j)_{i=1}^n и функцию потерь L(y_i,F(x))
\overline{F_0(x) = argmin\Sigma L(y_i, \gamma)}
                      r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}
Вычисление
                                   r_{jm} в цикле ј = 1...m
Обучение регрессии
В цикле j=1...т вычислени \mathfrak{F}_{jm}=argmin\Sigma L(y_i,F_{m-1}(x_i)+\gamma)
F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})
```

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Observed
$$-\frac{e^{-0.69}}{1+e^{-0.69}}$$

$$Observed - \frac{e^{-0.69}}{1 + e^{-0.69}} \longrightarrow Observed - p = Observed - 0.33$$

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Region	Category	Sub category	Targe t	R			
Владимирская область	Личные вещи	1	0	-0,33	— (Observed -	0.33
Волгоградская область	Личные вещи	2	0	-0,33	— (Observed -	0.33
Кировская область	Личные вещи	5	1	0,67	—	Observed -	0.33

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Region	Category	Sub category	Targe t	R	
Владимирская область	Личные вещи	1	0	-0,33	← 0 − 0.33
Волгоградская область	Личные вещи	2	0	-0,33	← 0 − 0.33
Кировская область	Личные вещи	5	1	0,67	← 1 − 0.33

Обучение регрессии на дереве

Region	Category	Sub category	Targe t	R
Владимирская область	Личные вещи	1	0	-0,33
Волгоградская область	Личные вещи	2	0	-0,33
Кировская область	Личные вещи	5	1	0,67

Вычисление

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

Вычисление

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$argmin\Sigma - y_i * [F_{m-1}(x_i) + \gamma] + log(1 + e^{F_{m-1}(x_i) + \gamma})$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$argmin \Sigma - y_i * [F_{m-1}(x_i) + \gamma] + log(1 + e^{F_{m-1}(x_i) + \gamma})$$

$$-0.33$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$argmin\Sigma - y_i * [F_{m-1}(x_i) + \gamma] + log(1 + e^{F_{m-1}(x_i) + \gamma})$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$argmin \Sigma - y_i * [F_{m-1}(x_i) + \gamma] + log(1 + e^{F_{m-1}(x_i) + \gamma})$$

$$\frac{\partial}{\partial \gamma} L(y_i, F_{m-1}(x_i) + \gamma) \approx \frac{\partial}{\partial F()} (y_i, F_{m-1}(x_i)) + \frac{\partial^2}{\partial F()^2} (y_i, F_{m-1}(x_i)) \gamma$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$argmin\Sigma - y_{i} * [F_{m-1}(x_{i}) + \gamma] + log(1 + e^{F_{m-1}(x_{i}) + \gamma})$$

$$\frac{\partial}{\partial \gamma} L(y_{i}, F_{m-1}(x_{i}) + \gamma) \approx \frac{\partial}{\partial F()} (y_{i}, F_{m-1}(x_{i})) + \frac{\partial^{2}}{\partial F()^{2}} (y_{i}, F_{m-1}(x_{i}))\gamma$$

$$\frac{\partial^{2}}{\partial F()^{2}} (y_{i}, F_{m-1}(x_{i}))\gamma = \frac{\partial}{\partial F()} (y_{i}, F_{m-1}(x_{i}))$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$argmin\Sigma - y_{i} * [F_{m-1}(x_{i}) + \gamma] + log(1 + e^{F_{m-1}(x_{i}) + \gamma})$$

$$\frac{\partial}{\partial \gamma} L(y_{i}, F_{m-1}(x_{i}) + \gamma) \approx \frac{\partial}{\partial F()} (y_{i}, F_{m-1}(x_{i})) + \frac{\partial^{2}}{\partial F()^{2}} (y_{i}, F_{m-1}(x_{i}))\gamma$$

$$\frac{\partial}{\partial F()^{2}} (y_{i}, F_{m-1}(x_{i})) \gamma = \frac{\partial}{\partial F()} (y_{i}, F_{m-1}(x_{i}))$$

$$V = \frac{-\frac{\partial}{\partial F()} (y_{i}, F_{m-1}(x_{i}))}{\frac{\partial^{2}}{\partial F()^{2}} (y_{i}, F_{m-1}(x_{i}))}$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma = \frac{-\frac{\partial}{\partial F()}(y_i, F_{m-1}(x_i))}{\frac{\partial^2}{\partial F()^2}(y_i, F_{m-1}(x_i))}$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

 $-Observed * log(odds) + log(1 + e^{log(odds)})$

Observed - p $\gamma = \frac{-\frac{\partial}{\partial F()}(y_i, F_{m-1}(x_i))}{\frac{\partial^2}{\partial F()^2}(y_i, F_{m-1}(x_i))}$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma = \frac{-\frac{\partial}{\partial F()}(y_i, F_{m-1}(x_i))}{\frac{\partial^2}{\partial F()^2}(y_i, F_{m-1}(x_i))}$$

$$\frac{\partial^2}{\partial \log(odds)^2} - Observed * \log(odds) + \log(1 + e^{\log(odds)})$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$\gamma = \frac{-\frac{\partial}{\partial F()}(y_i, F_{m-1}(x_i))}{\frac{\partial^2}{\partial F()^2}(y_i, F_{m-1}(x_i))}$$

$$\downarrow$$

$$p * (1 - p)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$\frac{Observed - p}{p*(1-p)}$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-\gamma_{1,1} = \frac{-0.33}{-0.69 * (1 - (-0.69))}$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$\gamma_{im} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$-Observed * log(odds) + log(1 + e^{log(odds)})$$

$$\gamma_{1,1} = \frac{-0.33}{-0.69 * (1 - (-0.69))} = 0.28$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

Gamma для всех

$$\frac{Observed - p}{p*(1-p)}$$

Region	Categor Y	Sub categor Y	Targe t	R	G
Владимирска я область	Личные вещи	1	0	0,33	
Волгоградска я область	Личные вещи	2	0	0,33	
Кировская область	Личные вещи	5	1	0,67	

$$\leftarrow$$
 -0.57

Обновляем Е

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Обновляем Е

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Обновляем Г

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F = 0.5 + (0.1 * 0.28) = 0.58$$

Новый предикт для всех

Region	Categor Y	Sub categor Y	Target	Predic t
Владимирска я область	Личные вещи	1	0	0,58
Волгоградска я область	Личные вещи	2	0	0,58
Кировская область	Личные вещи	5	1	0,44

$$\longleftarrow 0.5 + (0.1 * 0.28) = 0.58$$

$$\longleftarrow 0.5 + (0.1 * 0.28) = 0.58$$

$$\longleftarrow 0.5 + (0.1 * -0.57) = 0.44$$

Завершили цикл


```
Set(x_i,x_j)_{i=1}^n и функцию потерь L(y_i,F(x))
F_0(x) = argmin\Sigma L(y_i, \gamma)
                     r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}
Вычисление
                                  r_{jm} в цикле ј = 1...m
Обучение регрессии
В цикле j=1...т вычислени\mathfrak{F}_{jm}=argmin\Sigma L(y_i,F_{m-1}(x_i)+\gamma)
F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})
```


Время практики