10. To test whether observed values are significantly different from expected values (from a statistical standpoint), you can perform a statistical test called a goodness-of-fit test. One such test is called the Chi-squared test. There is information about the Chi-squared test in the Stats Appendix (Section H) of your lab manual and your AI has covered or will shortly cover this test during one of your discussion sessions. Perform Chi-squared tests for your own cross using: a) your own data, b) your section's data, and (if they are available), c) the entire class's data.

Tables for calculating the Chi-squared (X^2) value for my cross, which is _

IVIY Data		My	Data	
-----------	--	----	------	--

		1117			
Phenotypes:	WT	Dumpy	REAL OF THE	KOP BELOW	Total
Observed Numbers	29	47	May 1		76
Expected Numbers	57.	19			76
Deviations	28	28			1
Deviations squared	784.	784		man.	
Deviations squared, divided by expected numbers	13.75	41.26	W		$X^2 = 55.01$

Probability = 4.0000 |

Section's Data:

13 F. France	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I D Data.		
WT	Dumpy		1331 1331	Total
877	308			
889	29%	Midedon		
12	12			
144	144			
.162	.486	70.1 2.4 7a.t		$X^2 = .648$
	WT 877 889 12 144	WT Dumpy 877 308 889 296 12 12 144 144	877 308 889 296 12 12 144 144	WT Dumpy 877 308 889 296 12 12 144 144

Probability = . 421

431

se tubes of tubes XXX