Lista 2 IA

Daniel Salgado Magalhães - 821429

Questão 1

Registros de teste	Tamanho da Pétala	Largura da Pétala	Tamanho da Sépala	Largura da Sépala
Instância 1	3.46	0.87	2.45	1.78
Instância 2	1.67	1.89	0.78	1.32
Instância 3	2.56	2.34	2.45	1.78
Instância 4	6.67	2.34	2.45	1.78

Cada instância será baseada na análise da imagem acima, juntamente da tabela. Após a análise de cada parâmetro, informarei se o caminho é para esquerda ou direita.

Instância 1 - Direita → Esquerda → Esquerda → Iris_Versicolor

Instância 2 - Esquerda \rightarrow Iris_Setosa

Instância 3 - Direita → Direita → Esquerda → Iris_Versicolor

Instância 4 - Direita \rightarrow Direita \rightarrow Direita \rightarrow Iris_Virginica

Resposta: Letra C - Iris_Versicolor, íris_Setosa, Iris_Versicolor, Iris_Virgínica

Questão 2

Considerando a árvore da questão anterior, e as seguintes afirmações:

I. Esta árvore possui 5 regras de classificação - Verdade, existem 5 resultados possíveis nessa árvore de decisão, são eles:

Lista 2 IA

- 1. Se tamanho da pétala ≤ 2.35 é Iris_Setosa
- 2. Se tamanho da pétala > 2.35, largura da pétala ≤ 1.75 e tamanho da pétala ≤ 4.95 é Iris_Versicolor
- 3. Se tamanho da pétala > 2.35, largura da pétala ≤ 1.75 e tamanho da pétala > 4.95 é Iris_Virginica
- 4. Se tamanho da pétala > 2.35, largura da pétala > 1.75 e tamanho da pétala ≤ 4.85 é Iris_Versicolor
- 5. Se tamanho da pétala > 2.35, largura da pétala > 1.75 e tamanho da pétala > 4.85 é Iris_Virginica

II. Das regras geradas, há apenas uma com cobertura por classe de 100% - Verdade, apenas a classe da Iris_Setosa possui cobertura de classe de 100%

III. A menor cobertura por classe é de 6.8% e corresponde à classe Iris_Virgínica - Falso, apesar da menor cobertura de classe da Iris_Virginica realmente ser 6.8% no caminho Direita → Esquerda → Direita, esta não é a menor cobertura de classe. A menor cobertura de classe é de 2.7% da Iris_Versicolor no caminho Direita → Direita → Esquerda

Resposta: Letra C - I e II, apenas

Questão 3

Foi classificado como

			L
F	4-	-1	Г
Era	uа	classe	l

	Α	В	C	D
Α	10	4	2	1
В	1	15	15 2	
С	2	3	20	5
D	4	1	2	50

Letra A - VP = 10 | FN = 4+2+1 = 7 | FP = 1+2+4 = 7 | VN = 15+2+0+3+20+5+1+2+50 = 98

Letra B - VP = 15 | FN = 1+2+0 = 3 | FP = 4+3+1 = 8 | VN = 10+2+1+2+20+5+4+2+50 = 96

Letra C - VP = 20 | FN = 2+3+5 = 10 | FP = 2+2+2 = 6 | VN = 10+4+1+1+15+0+4+1+50 = 86

Letra D - VP = 50 | FN = 4+1+2 = 7 | FP = 1+0+5 = 6 | VN = 10+4+2+1+15+2+2+3+20 = 59

	Precisão	Recall	F1Score	TVP	TFN	TFP	TVN
Α	0,588	0,588	0,588	0,588	0,411	0,066	0,933
В	0,652	0,833	0,731	0,833	0,166	0,076	0,923
С	0,769	0,666	0,713	0,666	0,333	0,065	0,934
D	0,892	0,877	0,884	0,877	0,122	0,092	0,907

Questão 4

A métrica Gini é utilizada para a construção de árvores de decisão. O número informado pelo atributo Gini é usado para medir a "pureza" de um nó em uma árvore de decisão. Com ele, a gente pode perceber o quão misturadas estão as classes em um conjunto de dados. Quanto mais puras forem as classes em um nó (ou seja, mais homogêneas), menor será o valor do índice Gini. No caso do algoritmo CART, o mesmo usa o atributo de gini como escolha principal para escolher a melhor divisão em cada nó. Com isso, as divisões são analisadas, e a melhor é aquela que minimiza a média ponderada dos índices de gini dos nós filhos, reduzindo assim a incerteza dos dados, devido a criação de nós mais puros.

Questão 5

1. Balanceamento é uma técnica usada para lidar com conjuntos de dados desbalanceados, onde uma ou mais classes possuem significativamente mais instâncias do que outras. A falta de balanceamento pode causar problemas em modelos de machine learning, que tendem a favorecer as classes majoritárias.

Lista 2 IA

- 2. Dados ausentes são dados faltantes ou em branco dentro de uma base de dados. A existência dos dados ausentes pode ocorrer por vários motivos, como: problemas nos equipamentos que realizam a coleta, a transmissão e o armazenamento dos dados ou problemas no preenchimento ou na entrada dos dados por seres humanos.
- 3. Dados inconsistentes são aqueles que possuem valores conflitantes em seus atributos, apresentando erros ou discrepâncias do resultado esperado. Dados redundantes podem se referir tanto a instâncias quanto a atributos. Uma instância é redundante quando ela é muito semelhante a uma outra instância do mesmo conjunto de dados. Um atributo é redundante quando seu valor para todas as instâncias pode ser deduzido a partir do valor de um ou mais atributos.
- 4. Conversão simbólica-numérica é um processo que converte dados simbólicos(nominais/categóricos) em valores numéricos. Neste processamento, existem 2 casos: 1 quando o atributo é do tipo simbólico e assume apenas dois valores, se os valores denotam a presença ou ausência de uma característica podemos utilizar um dígito binário e 2 quando o atributo é do tipo simbólico e assume mais de dois valores, a técnica utilizada na conversão depende de o atributo ser nominal ou ordinal.
- 5. Conversão numérico-simbólica é um processo que converte dados numéricos em valores simbólico. Isso ocorre devido ao fato de que algumas técnicas de AM foram desenvolvidas para trabalhar com valores qualitativos, sendo assim, é melhor discretizar o atributo para fazer uma análise mais correta.
- 6. Transformação de um atributo numérico é um processo que geralmente ocorre quando o valor numérico de um atributo precisa ser transformado em outro valor numérico, pois é possível que os limites inferior e superior de valores dos atributos são muito diferentes, o que leva a uma grande variação de valores, ou ainda quando vários atributos estão em escalas diferentes. Dessa forma, a transformação consegue evitar que um atributo predomine o outro, melhorando a perfomance dos modelos de machine learning.
- 7. Redução de dimensionalidade é utilizada para diminuir o número de variáveis de entrada em um modelo, combinando ou eliminando parte dos atributos irrelevantes. É possível realizar a redução de duas formas principais: 1 Agregação, em que substituem os atributos originais por novos atributos formados pela combinação de grupos de atributos, porém levam à perda dos valores originais dos atributos, o que pode ser importante dependendo do contexto e 2 Seleção de atributos, em que mantem uma parte dos atributos originais e descartam os demais atributos.

Lista 2 IA