No. 5 C_{2h} 2/m (b-axis setting) [monoclinic] (polar)

表 1 rank 0

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
1	A_g	Ag	-	_	$\mathbb{Q}_0^{(h,A_g)}$	$\mathtt{Qh}(\mathtt{0},\mathtt{Ag},,)$	C_0

表 2 rank 1

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
2	A_u	Au	-	-	$\mathbb{Q}_1^{(h,A_u)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Au},,)$	S_1
3	B_u	Bu	1	_	$\mathbb{Q}_1^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Bu},\mathtt{1},)$	C_1
4	B_u	Bu	2	_	$\mathbb{Q}_1^{(h,B_u,2)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Bu},\mathtt{2},)$	C_0

表 3 rank 2

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
5	A_g	Ag	1	-	$\mathbb{Q}_2^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Ag},\mathtt{1},)$	C_0
6	A_g	Ag	2	_	$\mathbb{Q}_2^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Ag},\mathtt{2},)$	C_2
7	A_g	Ag	3	_	$\mathbb{Q}_2^{(h,A_g,3)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Ag},\mathtt{3},)$	C_1
8	B_g	Bg	1	_	$\mathbb{Q}_2^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Bg},\mathtt{1},)$	S_1
9	B_g	Bg	2	-	$\mathbb{Q}_2^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Bg},\mathtt{2},)$	S_2

表 4 rank 3

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
10	A_u	Au	1	_	$\mathbb{Q}_3^{(h,A_u,1)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Au},\mathtt{1},)$	S_2
11	A_u	Au	2	-	$\mathbb{Q}_3^{(h,A_u,2)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Au},\mathtt{2},)$	$-\frac{\sqrt{6}S_1}{4} - \frac{\sqrt{10}S_3}{4}$
12	A_u	Au	3	_	$\mathbb{Q}_3^{(h,A_u,3)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Au},\mathtt{3},)$	$\frac{\sqrt{10}S_1}{4} - \frac{\sqrt{6}S_3}{4}$
13	B_u	Bu	1	_	$\mathbb{Q}_3^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{1},)$	$-\frac{\sqrt{6}C_1}{4} + \frac{\sqrt{10}C_3}{4}$
14	B_u	Bu	2	_	$\mathbb{Q}_3^{(h,B_u,2)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{2},)$	C_0
15	B_u	Bu	3	_	$\mathbb{Q}_3^{(h,B_u,3)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{3},)$	$-\frac{\sqrt{10}C_1}{4} - \frac{\sqrt{6}C_3}{4}$
16	B_u	Bu	4	_	$\mathbb{Q}_3^{(h,B_u,4)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{4},)$	C_2

表 5 rank 4

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
17	A_g	Ag	1	_	$\mathbb{Q}_4^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{1},)$	$\frac{\sqrt{21}C_0}{6} + \frac{\sqrt{15}C_4}{6}$
18	A_g	Ag	2	-	$\mathbb{Q}_4^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{2},)$	$\frac{\sqrt{15}C_0}{6} - \frac{\sqrt{21}C_4}{6}$
19	A_g	Ag	3	_	$\mathbb{Q}_4^{(h,A_g,3)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{3},)$	$-C_2$
20	A_g	Ag	4	_	$\mathbb{Q}_4^{(h,A_g,4)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{4},)$	$\frac{\sqrt{14}C_1}{4} - \frac{\sqrt{2}C_3}{4}$
21	A_g	Ag	5	-	$\mathbb{Q}_4^{(h,A_g,5)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{5},)$	$-\frac{\sqrt{2}C_1}{4} - \frac{\sqrt{14}C_3}{4}$
22	B_g	Bg	1	_	$\mathbb{Q}_4^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{1},)$	$-\frac{\sqrt{14}S_1}{4} - \frac{\sqrt{2}S_3}{4}$
23	B_g	Bg	2	_	$\mathbb{Q}_4^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{2},)$	S_4
24	B_g	Bg	3	_	$\mathbb{Q}_4^{(h,B_g,3)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{3},)$	$-\frac{\sqrt{2}S_1}{4} + \frac{\sqrt{14}S_3}{4}$
25	B_g	Bg	4	_	$\mathbb{Q}_4^{(h,B_g,4)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{4},)$	S_2

表 6 rank 5

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
26	A_u	Au	1	_	$\mathbb{Q}_{5}^{(h,A_{u},1)}$	Qh(5, Au, 1,)	S_4
27	A_u	Au	2	-	$\mathbb{Q}_{5}^{(h,A_{u},2)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{2},)$	$-S_2$
28	A_u	Au	3	_	$\mathbb{Q}_{5}^{(h,A_{u},3)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{3},)$	$\frac{\sqrt{15}S_1}{8} + \frac{\sqrt{70}S_3}{16} + \frac{3\sqrt{14}S_5}{16}$
29	A_u	Au	4	-	$\mathbb{Q}_{5}^{(h,A_{u},4)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{4},)$	$\frac{\sqrt{21}S_1}{8} - \frac{9\sqrt{2}S_3}{16} + \frac{\sqrt{10}S_5}{16}$
30	A_u	Au	5	_	$\mathbb{Q}_{5}^{(h,A_{u},5)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{5},)$	$-\frac{\sqrt{7}S_1}{4} - \frac{\sqrt{6}S_3}{8} + \frac{\sqrt{30}S_5}{8}$
31	B_u	Bu	1	-	$\mathbb{Q}_{5}^{(h,B_{u},1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{1},)$	$\frac{\sqrt{15}C_1}{8} - \frac{\sqrt{70}C_3}{16} + \frac{3\sqrt{14}C_5}{16}$
32	B_u	Bu	2	_	$\mathbb{Q}_{5}^{(h,B_{u},2)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{2},)$	C_0
33	B_u	Bu	3	-	$\mathbb{Q}_{5}^{(h,B_{u},3)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{3},)$	$\frac{\sqrt{21}C_1}{8} + \frac{9\sqrt{2}C_3}{16} + \frac{\sqrt{10}C_5}{16}$
34	B_u	Bu	4	-	$\mathbb{Q}_{5}^{(h,B_{u},4)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{4},)$	C_4
35	B_u	Bu	5	_	$\mathbb{Q}_5^{(h,B_u,5)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{5},)$	$\frac{\sqrt{7}C_1}{4} - \frac{\sqrt{6}C_3}{8} - \frac{\sqrt{30}C_5}{8}$
36	B_u	Bu	6	_	$\mathbb{Q}_5^{(h,B_u,6)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{6},)$	C_2

表 7 rank 6

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
37	A_g	Ag	1	_	$\mathbb{Q}_{6}^{(h,A_{g},1)}$	Qh(6, Ag, 1,)	$\frac{\sqrt{2}C_0}{4} - \frac{\sqrt{14}C_4}{4}$
38	A_g	Ag	2	-	$\mathbb{Q}_6^{(h,A_g,2)}$	$\mathtt{Qh}(6,\mathtt{Ag},2,)$	$\frac{\sqrt{11}C_2}{4} - \frac{\sqrt{5}C_6}{4}$
39	A_g	Ag	3	_	$\mathbb{Q}_{6}^{(h,A_{g},3)}$	$\mathtt{Qh}(6,\mathtt{Ag},3,)$	$\frac{\sqrt{14}C_0}{4} + \frac{\sqrt{2}C_4}{4}$
40	A_g	Ag	4	-	$\mathbb{Q}_6^{(h,A_g,4)}$	$\mathtt{Qh}(6,\mathtt{Ag},4,)$	$\frac{\sqrt{5}C_2}{4} + \frac{\sqrt{11}C_6}{4}$
41	A_g	Ag	5	_	$\mathbb{Q}_{6}^{(h,A_g,5)}$	$\mathtt{Qh}(6,\mathtt{Ag},5,)$	$-\frac{\sqrt{3}C_1}{4} - \frac{\sqrt{30}C_3}{8} + \frac{\sqrt{22}C_5}{8}$
42	A_g	Ag	6	_	$\mathbb{Q}_6^{(h,A_g,6)}$	$\mathtt{Qh}(6,\mathtt{Ag},6,)$	$\frac{3\sqrt{22}C_1}{16} - \frac{\sqrt{55}C_3}{16} + \frac{\sqrt{3}C_5}{16}$
43	A_g	Ag	7	_	$\mathbb{Q}_6^{(h,A_g,7)}$	$\mathtt{Qh}(6,\mathtt{Ag},7,)$	$\frac{\sqrt{10}C_1}{16} + \frac{9C_3}{16} + \frac{\sqrt{165}C_5}{16}$
44	B_g	Bg	1	_	$\mathbb{Q}_6^{(h,B_g,1)}$	$\mathtt{Qh}(6,\mathtt{Bg},1,)$	$\frac{\sqrt{3}S_1}{4} - \frac{\sqrt{30}S_3}{8} - \frac{\sqrt{22}S_5}{8}$
45	B_g	Bg	2	_	$\mathbb{Q}_6^{(h,B_g,2)}$	$\mathtt{Qh}(6,\mathtt{Bg},2,)$	S_4
46	B_g	Bg	3	_	$\mathbb{Q}_6^{(h,B_g,3)}$	$\mathtt{Qh}(6,\mathtt{Bg},3,)$	$\frac{3\sqrt{22}S_1}{16} + \frac{\sqrt{55}S_3}{16} + \frac{\sqrt{3}S_5}{16}$
47	B_g	Bg	4	_	$\mathbb{Q}_6^{(h,B_g,4)}$	$\mathtt{Qh}(6,\mathtt{Bg},4,)$	S_6
48	B_g	Bg	5	-	$\mathbb{Q}_6^{(h,B_g,5)}$	$\mathtt{Qh}(6,\mathtt{Bg},5,)$	$\frac{\sqrt{10}S_1}{16} - \frac{9S_3}{16} + \frac{\sqrt{165}S_5}{16}$
49	B_g	Bg	6	-	$\mathbb{Q}_6^{(h,B_g,6)}$	$\mathtt{Qh}(6,\mathtt{Bg},6,)$	S_2

表 8 rank 7

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
50	A_u	Au	1	_	$\mathbb{Q}_7^{(h,A_u,1)}$	Qh(7, Au, 1,)	$\frac{\sqrt{78}S_2}{12} + \frac{\sqrt{66}S_6}{12}$
51	A_u	Au	2	_	$\mathbb{Q}_7^{(h,A_u,2)}$	$\mathtt{Qh}(7,\mathtt{Au},2,)$	S_4
52	A_u	Au	3	_	$\mathbb{Q}_7^{(h,A_u,3)}$	$\mathtt{Qh}(7,\mathtt{Au},3,)$	$\frac{\sqrt{66}S_2}{12} - \frac{\sqrt{78}S_6}{12}$
53	A_u	Au	4	-	$\mathbb{Q}_7^{(h,A_u,4)}$	$\mathtt{Qh}(7,\mathtt{Au},\mathtt{4},)$	$-\frac{5\sqrt{7}S_1}{32} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{231}S_5}{32} - \frac{\sqrt{429}S_7}{32}$
54	A_u	Au	5	-	$\mathbb{Q}_7^{(h,A_u,5)}$	$\mathtt{Qh}(7,\mathtt{Au},5,)$	$-\frac{3\sqrt{33}S_1}{32} + \frac{\sqrt{11}S_3}{32} + \frac{25S_5}{32} - \frac{\sqrt{91}S_7}{32}$
55	A_u	Au	6	_	$\mathbb{Q}_7^{(h,A_u,6)}$	$\mathtt{Qh}(7,\mathtt{Au},6,)$	$\frac{\sqrt{858}S_1}{64} - \frac{3\sqrt{286}S_3}{64} + \frac{5\sqrt{26}S_5}{64} - \frac{\sqrt{14}S_7}{64}$
56	A_u	Au	7	-	$\mathbb{Q}_7^{(h,A_u,7)}$	$\mathtt{Qh}(7,\mathtt{Au},7,)$	$\frac{15\sqrt{6}S_1}{64} + \frac{19\sqrt{2}S_3}{64} + \frac{\sqrt{22}S_5}{64} - \frac{\sqrt{2002}S_7}{64}$
57	B_u	Bu	1	_	$\mathbb{Q}_7^{(h,B_u,1)}$	$\mathtt{Qh}(7,\mathtt{Bu},1,)$	$-\frac{5\sqrt{7}C_1}{32} + \frac{3\sqrt{21}C_3}{32} - \frac{\sqrt{231}C_5}{32} + \frac{\sqrt{429}C_7}{32}$
58	B_u	Bu	2	_	$\mathbb{Q}_7^{(h,B_u,2)}$	$\mathtt{Qh}(7,\mathtt{Bu},2,)$	C_0
59	B_u	Bu	3	_	$\mathbb{Q}_7^{(h,B_u,3)}$	$\mathtt{Qh}(7,\mathtt{Bu},3,)$	$-\frac{3\sqrt{33}C_1}{32} - \frac{\sqrt{11}C_3}{32} + \frac{25C_5}{32} + \frac{\sqrt{91}C_7}{32}$
60	B_u	Bu	4	_	$\mathbb{Q}_7^{(h,B_u,4)}$	$\mathtt{Qh}(7,\mathtt{Bu},4,)$	C_4
61	B_u	Bu	5	_	$\mathbb{Q}_7^{(h,B_u,5)}$	$\mathtt{Qh}(\mathtt{7},\mathtt{Bu},\mathtt{5},)$	$-\frac{\sqrt{858}C_1}{64} - \frac{3\sqrt{286}C_3}{64} - \frac{5\sqrt{26}C_5}{64} - \frac{\sqrt{14}C_7}{64}$
62	B_u	Bu	6	_	$\mathbb{Q}_7^{(h,B_u,6)}$	$\mathtt{Qh}(\mathtt{7},\mathtt{Bu},\mathtt{6},)$	C_6
63	B_u	Bu	7	_	$\mathbb{Q}_7^{(h,B_u,7)}$	$\mathtt{Qh}(7,\mathtt{Bu},7,)$	$-\frac{15\sqrt{6}C_1}{64} + \frac{19\sqrt{2}C_3}{64} - \frac{\sqrt{22}C_5}{64} - \frac{\sqrt{2002}C_7}{64}$
64	B_u	Bu	8	_	$\mathbb{Q}_7^{(h,B_u,8)}$	$\mathtt{Qh}(7,\mathtt{Bu},8,)$	C_2

表 9 rank 8

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
65	A_g	Ag	1	-	$\mathbb{Q}_8^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{1},)$	$\frac{\sqrt{33}C_0}{8} + \frac{\sqrt{21}C_4}{12} + \frac{\sqrt{195}C_8}{24}$
66	A_g	Ag	2	_	$\mathbb{Q}_8^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{2},)$	$-rac{\sqrt{286}C_0}{32}+rac{\sqrt{182}C_4}{16}+rac{\sqrt{10}C_8}{32}$
67	A_g	Ag	3	_	$\mathbb{Q}_8^{(h,A_g,3)}$	$\mathtt{Qh}(8,\mathtt{Ag},3,)$	C_6
68	A_g	Ag	4	_	$\mathbb{Q}_8^{(h,A_g,4)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{4},)$	$-\frac{\sqrt{210}C_0}{32} - \frac{\sqrt{330}C_4}{48} + \frac{\sqrt{6006}C_8}{96}$
69	A_g	Ag	5	_	$\mathbb{Q}_8^{(h,A_g,5)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{5},)$	C_2
70	A_g	Ag	6	=	$\mathbb{Q}_8^{(h,A_g,6)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{6},)$	$\frac{\sqrt{715}C_1}{32} - \frac{\sqrt{273}C_3}{32} + \frac{\sqrt{35}C_5}{32} - \frac{C_7}{32}$
71	A_g	Ag	7	=	$\mathbb{Q}_8^{(h,A_g,7)}$	$\mathtt{Qh}(8,\mathtt{Ag},7,)$	$\frac{\sqrt{77}C_1}{32} + \frac{5\sqrt{15}C_3}{32} + \frac{3\sqrt{13}C_5}{32} - \frac{\sqrt{455}C_7}{32}$
72	A_g	Ag	8	=	$\mathbb{Q}_8^{(h,A_g,8)}$	$\mathtt{Qh}(8,\mathtt{Ag},8,)$	$-\frac{\sqrt{858}C_1}{64} - \frac{\sqrt{910}C_3}{64} + \frac{7\sqrt{42}C_5}{64} - \frac{3\sqrt{30}C_7}{64}$
73	A_g	Ag	9	_	$\mathbb{Q}_8^{(h,A_g,9)}$	$\mathtt{Qh}(8,\mathtt{Ag},9,)$	$-\frac{\sqrt{70}C_1}{64} - \frac{3\sqrt{66}C_3}{64} - \frac{\sqrt{1430}C_5}{64} - \frac{\sqrt{2002}C_7}{64}$
74	B_g	Bg	1	_	$\mathbb{Q}_8^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{1},)$	$-\frac{\sqrt{715}S_1}{32} - \frac{\sqrt{273}S_3}{32} - \frac{\sqrt{35}S_5}{32} - \frac{S_7}{32}$
75	B_g	Bg	2	_	$\mathbb{Q}_8^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{2},)$	S_8
76	B_g	Bg	3	=	$\mathbb{Q}_8^{(h,B_g,3)}$	$\mathtt{Qh}(8,\mathtt{Bg},3,)$	$-\frac{\sqrt{77}S_1}{32} + \frac{5\sqrt{15}S_3}{32} - \frac{3\sqrt{13}S_5}{32} - \frac{\sqrt{455}S_7}{32}$
77	B_g	Bg	4	=	$\mathbb{Q}_8^{(h,B_g,4)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{4},)$	S_4
78	B_g	Bg	5	=	$\mathbb{Q}_8^{(h,B_g,5)}$	$\mathtt{Qh}(8,\mathtt{Bg},5,)$	$-\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{910}S_3}{64} + \frac{7\sqrt{42}S_5}{64} + \frac{3\sqrt{30}S_7}{64}$
79	B_g	Bg	6	_	$\mathbb{Q}_8^{(h,B_g,6)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{6},)$	S_6
80	B_g	Bg	7	_	$\mathbb{Q}_8^{(h,B_g,7)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},7,)$	$-\frac{\sqrt{70}S_1}{64} + \frac{3\sqrt{66}S_3}{64} - \frac{\sqrt{1430}S_5}{64} + \frac{\sqrt{2002}S_7}{64}$
81	B_g	Bg	8		$\mathbb{Q}_8^{(h,B_g,8)}$	$\mathtt{Qh}(8,\mathtt{Bg},8,)$	S_2

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
82	A_u	Au	1	-	$\mathbb{Q}_9^{(h,A_u,1)}$	$\mathtt{Qh}(9,\mathtt{Au},1,)$	$rac{\sqrt{102}S_4}{12} - rac{\sqrt{42}S_8}{12}$
83	A_u	Au	2	-	$\mathbb{Q}_9^{(h,A_u,2)}$	$\mathtt{Qh}(9,\mathtt{Au},2,)$	$rac{\sqrt{3}S_2}{4} - rac{\sqrt{13}S_6}{4}$
84	A_u	Au	3	-	$\mathbb{Q}_9^{(h,A_u,3)}$	$\mathtt{Qh}(9,\mathtt{Au},3,)$	$\frac{\sqrt{42}S_4}{12} + \frac{\sqrt{102}S_8}{12}$
85	A_u	Au	4	-	$\mathbb{Q}_9^{(h,A_u,4)}$	$\mathtt{Qh}(9,\mathtt{Au},4,)$	$-rac{\sqrt{13}S_2}{4} - rac{\sqrt{3}S_6}{4}$
86	A_u	Au	5	-	$\mathbb{Q}_9^{(h,A_u,5)}$	$\mathtt{Qh}(9,\mathtt{Au},5,)$	$\frac{21\sqrt{5}S_1}{128} + \frac{\sqrt{2310}S_3}{128} + \frac{3\sqrt{286}S_5}{128} + \frac{3\sqrt{1430}S_7}{256} + \frac{\sqrt{24310}S_9}{256}$
87	A_u	Au	6	_	$\mathbb{Q}_9^{(h,A_u,6)}$	$\mathtt{Qh}(9,\mathtt{Au},6,)$	$\frac{\sqrt{2431}S_1}{128} - \frac{\sqrt{9282}S_3}{128} + \frac{5\sqrt{170}S_5}{128} - \frac{7\sqrt{34}S_7}{256} + \frac{3\sqrt{2}S_9}{256}$
88	A_u	Au	7	_	$\mathbb{Q}_9^{(h,A_u,7)}$	$\mathtt{Qh}(9,\mathtt{Au},7,)$	$\frac{\sqrt{1001}S_1}{64} + \frac{\sqrt{78}S_3}{64} - \frac{3\sqrt{70}S_5}{64} - \frac{23\sqrt{14}S_7}{128} + \frac{3\sqrt{238}S_9}{128}$
89	A_u	Au	8	-	$\mathbb{Q}_9^{(h,A_u,8)}$	$\mathtt{Qh}(9,\mathtt{Au},8,)$	$-\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{91}S_3}{32} + \frac{5\sqrt{15}S_5}{32} - \frac{21\sqrt{3}S_7}{64} + \frac{\sqrt{51}S_9}{64}$
90	A_u	Au	9	-	$\mathbb{Q}_9^{(h,A_u,9)}$	$\mathtt{Qh}(9,\mathtt{Au},9,)$	$-\frac{7\sqrt{22}S_1}{64} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{65}S_5}{32} + \frac{\sqrt{13}S_7}{64} + \frac{3\sqrt{221}S_9}{64}$
91	B_u	Bu	1	-	$\mathbb{Q}_9^{(h,B_u,1)}$	$\mathtt{Qh}(9,\mathtt{Bu},1,)$	$\frac{21\sqrt{5}C_1}{128} - \frac{\sqrt{2310}C_3}{128} + \frac{3\sqrt{286}C_5}{128} - \frac{3\sqrt{1430}C_7}{256} + \frac{\sqrt{24310}C_9}{256}$
92	B_u	Bu	2	-	$\mathbb{Q}_9^{(h,B_u,2)}$	$\mathtt{Qh}(9,\mathtt{Bu},2,)$	C_0
93	B_u	Bu	3	-	$\mathbb{Q}_9^{(h,B_u,3)}$	$\mathtt{Qh}(9,\mathtt{Bu},3,)$	$\frac{\sqrt{2431}C_1}{128} + \frac{\sqrt{9282}C_3}{128} + \frac{5\sqrt{170}C_5}{128} + \frac{7\sqrt{34}C_7}{256} + \frac{3\sqrt{2}C_9}{256}$
94	B_u	Bu	4	-	$\mathbb{Q}_9^{(h,B_u,4)}$	$\mathtt{Qh}(9,\mathtt{Bu},4,)$	C_8
95	B_u	Bu	5	_	$\mathbb{Q}_9^{(h,B_u,5)}$	$\mathtt{Qh}(9,\mathtt{Bu},5,)$	$\frac{\sqrt{1001}C_1}{64} - \frac{\sqrt{78}C_3}{64} - \frac{3\sqrt{70}C_5}{64} + \frac{23\sqrt{14}C_7}{128} + \frac{3\sqrt{238}C_9}{128}$
96	B_u	Bu	6	_	$\mathbb{Q}_9^{(h,B_u,6)}$	$\mathtt{Qh}(9,\mathtt{Bu},6,)$	C_4
97	B_u	Bu	7	_	$\mathbb{Q}_9^{(h,B_u,7)}$	$\mathtt{Qh}(9,\mathtt{Bu},7,)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{91}C_3}{32} - \frac{5\sqrt{15}C_5}{32} - \frac{21\sqrt{3}C_7}{64} - \frac{\sqrt{51}C_9}{64}$
98	B_u	Bu	8	_	$\mathbb{Q}_9^{(h,B_u,8)}$	$\mathtt{Qh}(9,\mathtt{Bu},8,)$	C_6
99	B_u	Bu	9	-	$\mathbb{Q}_9^{(h,B_u,9)}$	$\mathtt{Qh}(9,\mathtt{Bu},9,)$	$\frac{7\sqrt{22}C_1}{64} - \frac{3\sqrt{21}C_3}{32} + \frac{\sqrt{65}C_5}{32} + \frac{\sqrt{13}C_7}{64} - \frac{3\sqrt{221}C_9}{64}$
100	B_u	Bu	10	-	$\mathbb{Q}_9^{(h,B_u,10)}$	$\mathtt{Qh}(9,\mathtt{Bu},\mathtt{10},)$	C_2

表 11 rank 10

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
101	A_g	Ag	1	-	$\mathbb{Q}_{10}^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{1},)$	$\frac{\sqrt{390}C_0}{48} - \frac{\sqrt{22}C_4}{8} - \frac{\sqrt{1122}C_8}{48}$
102	A_g	Ag	2	-	$\mathbb{Q}_{10}^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{2},)$	$-\frac{\sqrt{85}C_{10}}{16} + \frac{\sqrt{1482}C_2}{48} + \frac{\sqrt{57}C_6}{48}$
103	A_g	Ag	3	-	$\mathbb{Q}_{10}^{(h,A_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{3},)$	$\frac{11\sqrt{420189}C_0}{8988} + \frac{\sqrt{827645}C_4}{1498} - \frac{\sqrt{146055}C_8}{8988}$
104	A_g	Ag	4	=	$\mathbb{Q}_{10}^{(h,A_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{4},)$	$\frac{\sqrt{370006}C_{10}}{749} + \frac{\sqrt{190995}C_2}{749}$
105	A_g	Ag	5	-	$\mathbb{Q}_{10}^{(h,A_g,5)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{5},)$	$\frac{3\sqrt{3213210}C_0}{11984} - \frac{83\sqrt{1498}C_4}{5992} + \frac{31\sqrt{76398}C_8}{11984}$
106	A_g	Ag	6	=	$\mathbb{Q}_{10}^{(h,A_g,6)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},6,)$	$\frac{\sqrt{1209635}C_{10}}{11984} - \frac{19\sqrt{58422}C_2}{35952} + \frac{\sqrt{2247}C_6}{48}$
107	A_g	Ag	7	_	$\mathbb{Q}_{10}^{(h,A_g,7)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},7,)$	$-\frac{\sqrt{221}C_1}{32} - \frac{\sqrt{102}C_3}{32} + \frac{\sqrt{510}C_5}{32} - \frac{11\sqrt{6}C_7}{64} + \frac{\sqrt{38}C_9}{64}$
108	A_g	Ag	8	_	$\mathbb{Q}_{10}^{(h,A_g,8)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{8},)$	$-\frac{\sqrt{39}C_1}{32} - \frac{11\sqrt{2}C_3}{32} - \frac{5\sqrt{10}C_5}{32} - \frac{\sqrt{34}C_7}{64} + \frac{\sqrt{1938}C_9}{64}$
109	A_g	Ag	9	_	$\mathbb{Q}_{10}^{(h,A_g,9)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{9},)$	$\frac{\sqrt{41990}C_1}{256} - \frac{\sqrt{4845}C_3}{128} + \frac{\sqrt{969}C_5}{128} - \frac{\sqrt{285}C_7}{256} + \frac{\sqrt{5}C_9}{256}$
110	A_g	Ag	10	_	$\mathbb{Q}_{10}^{(h,A_g,10)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{10},)$	$\frac{9\sqrt{78}C_1}{256} + \frac{69C_3}{128} - \frac{\sqrt{5}C_5}{128} - \frac{43\sqrt{17}C_7}{256} + \frac{3\sqrt{969}C_9}{256}$
111	A_g	Ag	11	_	$\mathbb{Q}_{10}^{(h,A_g,11)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{11},)$	$\frac{7\sqrt{3}C_1}{128} + \frac{7\sqrt{26}C_3}{128} + \frac{5\sqrt{130}C_5}{128} + \frac{7\sqrt{442}C_7}{256} + \frac{\sqrt{25194}C_9}{256}$
112	B_g	Bg	1	_	$\mathbb{Q}_{10}^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{1},)$	$\frac{\sqrt{221}S_1}{32} - \frac{\sqrt{102}S_3}{32} - \frac{\sqrt{510}S_5}{32} - \frac{11\sqrt{6}S_7}{64} - \frac{\sqrt{38}S_9}{64}$
113	B_g	Bg	2	_	$\mathbb{Q}_{10}^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{2},)$	S_8
114	B_g	Bg	3	_	$\mathbb{Q}_{10}^{(h,B_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{3},)$	$\frac{\sqrt{39}S_1}{32} - \frac{11\sqrt{2}S_3}{32} + \frac{5\sqrt{10}S_5}{32} - \frac{\sqrt{34}S_7}{64} - \frac{\sqrt{1938}S_9}{64}$
115	B_g	Bg	4	_	$\mathbb{Q}_{10}^{(h,B_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{4},)$	S_4
116	B_g	Bg	5	_	$\mathbb{Q}_{10}^{(h,B_g,5)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{5},)$	$\frac{\sqrt{41990}S_1}{256} + \frac{\sqrt{4845}S_3}{128} + \frac{\sqrt{969}S_5}{128} + \frac{\sqrt{285}S_7}{256} + \frac{\sqrt{5}S_9}{256}$
117	B_g	Bg	6	_	$\mathbb{Q}_{10}^{(h,B_g,6)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},6,)$	S_{10}
118	B_g	Bg	7	_	$\mathbb{Q}_{10}^{(h,B_g,7)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},7,)$	$\frac{9\sqrt{78}S_1}{256} - \frac{69S_3}{128} - \frac{\sqrt{5}S_5}{128} + \frac{43\sqrt{17}S_7}{256} + \frac{3\sqrt{969}S_9}{256}$
119	B_g	Bg	8	_	$\mathbb{Q}_{10}^{(h,B_g,8)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{8},)$	S_6
120	B_g	Bg	9	_	$\mathbb{Q}_{10}^{(h,B_g,9)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{9},)$	$\frac{7\sqrt{3}S_1}{128} - \frac{7\sqrt{26}S_3}{128} + \frac{5\sqrt{130}S_5}{128} - \frac{7\sqrt{442}S_7}{256} + \frac{\sqrt{25194}S_9}{256}$
121	B_g	Bg	10	_	$\mathbb{Q}_{10}^{(h,B_g,10)}$	Qh(10, Bg, 10,)	S_2

表 12 rank 11

						12 12	rank 11
No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
122	A_u	Au	1	_	$\mathbb{Q}_{11}^{(h,A_u,1)}$	Qh(11, Au, 1,)	$\frac{\sqrt{798}S_{10}}{48} + \frac{\sqrt{255}S_2}{24} + \frac{3\sqrt{6}S_6}{16}$
123	A_u	Au	2	_	$\mathbb{Q}_{11}^{(h,A_u,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{2},)$	S_8
124	A_u	Au	3	_	$\mathbb{Q}_{11}^{(h,A_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{3},)$	$-\frac{\sqrt{210}S_{10}}{96} + \frac{\sqrt{969}S_2}{48} - \frac{\sqrt{570}S_6}{32}$
125	A_u	Au	4	_	$\mathbb{Q}_{11}^{(h,A_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{4},)$	S_4
126	A_u	Au	5	_	$\mathbb{Q}_{11}^{(h,A_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{5},)$	$-\frac{\sqrt{646}S_{10}}{32} + \frac{\sqrt{35}S_2}{16} + \frac{\sqrt{238}S_6}{32}$
127	A_u	Au	6	-	$\mathbb{Q}_{11}^{(h,A_u,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{6},)$	$-\frac{21\sqrt{66}S_1}{512}-\frac{\sqrt{88179}S_{11}}{512}-\frac{\sqrt{30030}S_3}{512}-\frac{15\sqrt{143}S_5}{512}-\frac{\sqrt{36465}S_7}{512}-\frac{\sqrt{46189}S_9}{512}$
128	A_u	Au	7	_	$\mathbb{Q}_{11}^{(h,A_u,7)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{7},)$	$-\frac{\sqrt{41990}S_1}{512} - \frac{\sqrt{385}S_{11}}{512} + \frac{3\sqrt{4522}S_3}{512} + \frac{3\sqrt{4845}S_5}{512} - \frac{77\sqrt{19}S_7}{512} + \frac{39\sqrt{15}S_9}{512}$
129	A_u	Au	8	_	$\mathbb{Q}_{11}^{(h,A_u,8)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{8},)$	$-\frac{5\sqrt{546}S_1}{256} - \frac{\sqrt{10659}S_{11}}{256} - \frac{11\sqrt{30}S_3}{256} + \frac{13\sqrt{7}S_5}{256} + \frac{3\sqrt{1785}S_7}{256} + \frac{3\sqrt{2261}S_9}{256}$
130	A_u	Au	9	_	$\mathbb{Q}_{11}^{(h,A_u,9)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{9},)$	$\frac{\sqrt{29393}S_1}{512} - \frac{\sqrt{22}S_{11}}{1024} - \frac{9\sqrt{1615}S_3}{512} + \frac{5\sqrt{13566}S_5}{1024} - \frac{7\sqrt{1330}S_7}{1024} + \frac{9\sqrt{42}S_9}{1024}$
131	A_u	Au	10	_	$\mathbb{Q}_{11}^{(h,A_u,10)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{10},)$	$\tfrac{15\sqrt{221}S_1}{512} - \tfrac{3\sqrt{2926}S_{11}}{1024} - \tfrac{\sqrt{595}S_3}{512} - \tfrac{53\sqrt{102}S_5}{1024} - \tfrac{105\sqrt{10}S_7}{1024} + \tfrac{61\sqrt{114}S_9}{1024}$
132	A_u	Au	11	_	$\mathbb{Q}_{11}^{(h,A_u,11)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{11},)$	$\frac{21\sqrt{130}S_1}{512} - \frac{\sqrt{124355}S_{11}}{512} + \frac{57\sqrt{14}S_3}{512} + \frac{41\sqrt{15}S_5}{512} + \frac{17\sqrt{17}S_7}{512} - \frac{\sqrt{4845}S_9}{512}$
133	B_u	Bu	1	_	$\mathbb{Q}_{11}^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{1},)$	$-\frac{21\sqrt{66}C_1}{512}+\frac{\sqrt{88179}C_{11}}{512}+\frac{\sqrt{30030}C_3}{512}-\frac{15\sqrt{143}C_5}{512}+\frac{\sqrt{36465}C_7}{512}-\frac{\sqrt{46189}C_9}{512}$
134	B_u	Bu	2	_	$\mathbb{Q}_{11}^{(h,B_u,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{2},)$	C_0
135	B_u	Bu	3	_	$\mathbb{Q}_{11}^{(h,B_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{3},)$	$-\frac{\sqrt{41990}C_1}{512} + \frac{\sqrt{385}C_{11}}{512} - \frac{3\sqrt{4522}C_3}{512} + \frac{3\sqrt{4845}C_5}{512} + \frac{77\sqrt{19}C_7}{512} + \frac{39\sqrt{15}C_9}{512}$
136	B_u	Bu	4	_	$\mathbb{Q}_{11}^{(h,B_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{4},)$	C_8
137	B_u	Bu	5	_	$\mathbb{Q}_{11}^{(h,B_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{5},)$	$-\frac{5\sqrt{546}C_1}{256}+\frac{\sqrt{10659}C_{11}}{256}+\frac{11\sqrt{30}C_3}{256}+\frac{13\sqrt{7}C_5}{256}-\frac{3\sqrt{1785}C_7}{256}+\frac{3\sqrt{2261}C_9}{256}$
138	B_u	Bu	6	_	$\mathbb{Q}_{11}^{(h,B_u,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{6},)$	C_4
139	B_u	Bu	7	_	$\mathbb{Q}_{11}^{(h,B_u,7)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{7},)$	$-\frac{\sqrt{29393}C_1}{512}-\frac{\sqrt{22}C_{11}}{1024}-\frac{9\sqrt{1615}C_3}{512}-\frac{5\sqrt{13566}C_5}{1024}-\frac{7\sqrt{1330}C_7}{1024}-\frac{9\sqrt{42}C_9}{1024}$
140	B_u	Bu	8	_	$\mathbb{Q}_{11}^{(h,B_u,8)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{8},)$	C_{10}
141	B_u	Bu	9	_	$\mathbb{Q}_{11}^{(h,B_u,9)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},9,)$	$-\frac{15\sqrt{221}C_1}{512} - \frac{3\sqrt{2926}C_{11}}{1024} - \frac{\sqrt{595}C_3}{512} + \frac{53\sqrt{102}C_5}{1024} - \frac{105\sqrt{10}C_7}{1024} - \frac{61\sqrt{114}C_9}{1024}$
142	B_u	Bu	10	_	$\mathbb{Q}_{11}^{(h,B_u,10)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{10},)$	C_6
143	B_u	Bu	11	_	$\mathbb{Q}_{11}^{(h,B_u,11)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{11},)$	$-\frac{21\sqrt{130}C_1}{512} - \frac{\sqrt{124355}C_{11}}{512} + \frac{57\sqrt{14}C_3}{512} - \frac{41\sqrt{15}C_5}{512} + \frac{17\sqrt{17}C_7}{512} + \frac{\sqrt{4845}C_9}{512}$
144	B_u	Bu	12		$\mathbb{Q}_{11}^{(h,B_u,12)}$	Qh(11, Bu, 12,)	C_2