Homotopical Topology Notes

toshinari tong January 14, 2023

1 Classical Spaces

1.1 Euclidean Spaces, Spheres, and Balls

 $\mathbb{R}^n, \mathbb{C}^n$, sphere S^n , ball D^n ; \mathbb{R}^∞ is the inductive limit of the chain $\mathbb{R}^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset ...$; thus \mathbb{R}^∞ is the set of sequences of real numbers with only finitely many nonzero terms. The topology in \mathbb{R}^∞ is introduced by the rule: A set $F \subset \mathbb{R}^\infty$ is closed \iff all intersections $F \cap \mathbb{R}^n$ are closed in respective spaces. $\mathbb{C}^\infty, S^\infty, D^\infty$ have a similar sense.

Exercise 1. Show that sequence $(a_1, 0, 0, ...), (0, a_2, 0, ...), (0, 0, a_3, ...), ...$ has a limit \iff it has finitely many nonzero terms.

Since in each dimension it is nonzero at most once the limit point if it exists must be (0,0,0,...). Consider open neighbourhood $((-|a_1/2|,|a_1/2|),((-|a_2/2|,|a_2/2|),(-|a_3/2|,|a_3/2|),...)$ (if $a_i=0$ then take (-1,1)): If a_i is nonzero then it is outside this neighbourhood. But there must $\exists N$ s.t. $\forall n>N$ the n-th point is in this neighbourhood, or in other words is zero. Therefore it only has finitely many nonzero terms.