LIST OF SYMBOLS

Symbol	Description	<u>Units</u>
В	Basic inner ring width	mm (in)
Bs	Single width of an inner ring	mm (in)
C	Basic outer ring width	mm (in)
Cs	Single width of an outer ring	mm (in)
d	Basic bore diameter Single diameter of a bore	mm (in) mm (in)
d_s		
d_{mp}	Single plane mean bore diameter	mm (in)
D	Basic outside diameter Single diameter of an outside diameter	mm (in) mm (in)
D_s	Single plane mean outside diameter	mm (in)
D_{mp}	Radial runout of assembled bearing inner ring	
K _{ia}		μm (in)
K _{ea}	Radial runout of assembled bearing outer ring	μm (in)
S_d	Inner ring reference face runout with bore	μm (in)
S_D	Outside cylindrical surface runout with outer ring reference face	μm (in)
C	Variation of outer ring outside surface generatrix inclination with respect to the outer ring flange back face	μm (in)
S_{D1}	Axial runout of assembled bearing inner ring	-
S _{ia}		μm (in)
S_{ea}	Axial runout of assembled bearing outer ring	μm (in)
S_{eal}	Runout of outer ring face (back face) with respect to the raceway of assembled bearing	μm (in)
V_{Bs}	Variation of inner ring width	μm (in)
V_{Cs}	Variation of outer ring width	μm (in)
V_{C1s}	Variation of outer ring flange width	μm (in)
V_{dmp}	Mean bore diameter variation	μm (in)
$ m V_{dp}$	Bore diameter variation in a single radial plane	μm (in)
$ m V_{Dmp}$	Mean outside diameter variation	μm (in)
V_{Dp}	Outside diameter variation in single radial plane	μm (in)
$\Delta_{ m Bs}$	Single inner ring width deviation from basic	μm (in)
$\Delta_{ ext{Cs}}$	Single outer ring width deviation from basic	μm (in)
$\Delta_{ ext{C1s}}$	Deviation of a single outer ring flange width	μm (in)
$\Delta_{ m ds}$	Single bore diameter deviation from basic	μm (in)
us	Single plane mean bore diameter deviation from basic for a tapered bore	•
$\Delta_{ m dmp}$	small end	$\mu m \ (in)$
$\Delta_{ m d1mp}$	Single plane mean bore diameter deviation at large end of tapered bore	$\mu m \ (in)$
$\Delta_{ m Ds}$	Single outside diameter deviation from basic	µm (in)
$\Delta_{ m Dmp}$	Single plane mean outside diameter deviation from basic	μm (in)
$\Delta_{ ext{TS}}$	Deviation of single-row tapered roller bearing overall width	mm (in)
$\Delta_{ m T1S}$	Deviation of the actual effective width (stand) of the cone	mm (in)
$\Delta_{ m T2S}$	Deviation of the actual effective width (stand) of the cup	mm (in)
120		

TABLE CD3.1. Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1. **PART 1.** Dimensions in Millimeters.

DESIGN &	OPERATING CONDI	TIONS	Е	BALL BE	ARINGS	CYLII	NDRICA	L BEARINGS	SPH	ERICAL	BEARINGS
Rotational	Inner Ring Axial	Radial	C	d	Tolerance	(d	Tolerance	Ó	d	Tolerance
Conditions	Displaceability	Loading	Over	Incl.	Classification ¹	Over	Incl.	Classification ¹	Over	Incl.	Classification ¹
			0	18	h5	0	40	j6 ²	0	40	j6 ²
			18	All	j6 ²	40	140	k6 ²	40	140	k6 ²
Inner Ring		Light				140	320	m6 ²	140	320	m6 ²
Rotating in						320	500	n6	320	500	n6
relation to						500	All	p6	500	All	p6
Load Direction			0	18	j5	0	40	k5	0	40	k5
			18	All	k6	40	100	m5	40	65	m5
						100	140	m6	65	100	m6
or		Normal				140	320	n6	100	140	n6
						320	500	p6	140	280	p6
						500	All	r6	280	500	r6
									500	All	r7
Load Direction			18	100	k5	0	40	m5	0	40	m5
Load Direction is			100	All	m5	40	65	m6	40	65	m6
Indeterminate		Heavy				65	140	n6	65	100	n6
		Heavy				140	200	p6	100	140	p6
						200	500	r6	140	200	r6
						500	All	r7	200	All	r7
	Inner Ring must be	Light									
Inner Ring	easily axially	Normal	All S	Sizes	g6	All S	Sizes	g6	All S	Sizes	g6
Stationary in	displaceable	Heavy									
Relation to	Inner Ring need not	Light									
Load Direction	be easily axially	Normal	All S	Sizes	h6	All S	Sizes	h6	All S	Sizes	g6
	displaceable	Heavy									
	ist (Axial) Load			Sizes	j6			g Manufacturer			g Manufacturer

Tolerance classification shown are for solid steel shaft. Numerical values are listed in Table CD3.2. For hollow or nonferrous shafts, tighter fits may be needed.

²If greater accuracy is needed, substitute j5, k5 and m5 for j6, k6 and m6 respectively.

TABLE CD3.1. Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1. **PART 2.** Dimensions in Inches.

DESIGN & 0	OPERATING CONDI	TIONS	Е	BALL BE	ARINGS	CYLII	NDRICA	L BEARINGS	SPH	IERICAL	BEARINGS
Rotational	Inner Ring Axial	Radial	(t	Tolerance	C	b	Tolerance	(d	Tolerance
Conditions	Displaceability	Loading	Over	Incl.	Classification ¹	Over	Incl.	Classification ¹	Over	Incl.	Classification ¹
			0	0.71	h5	0	1.57	j6 ²	0	1.57	j6 ²
			0.71	All	j6 ²	1.57	5.51	k6 ²	1.57	5.51	k6 ²
Inner Ring		Light				5.51	12.6	m6 ²	5.51	12.6	m6 ²
Rotating in						12.6	19.7	n6	12.6	19.7	n6
relation to						19.7	All	р6	19.7	All	p6
Load Direction			0	0.71	j5	0	1.57	k5	0	1.57	k5
			0.71	All	k6	1.57	3.94	m5	1.57	2.56	m5
						3.94	5.51	m6	2.56	3.94	m6
or		Normal				5.51	12.6	n6	3.94	5.51	n6
Oi						12.6	19.7	p6	5.51	11.0	p6
						19.7	All	r6	11.0	19.7	r6
									19.7	All	r7
Laad Disastias			0.71	3.94	k5	0	1.57	m5	0	1.57	m5
Load Direction is			3.94	All	m5	1.57	2.56	m6	1.57	2.56	m6
Indeterminate		Heavy				2.56	5.51	n6	2.56	3.94	n6
maotorrimato		пеачу				5.51	7.87	p6	3.94	5.51	p6
						7.87	19.7	r6	5.51	7.87	r6
						19.7	All	r7	7.87	All	r7
	Inner Ring must be	Light									
Inner Ring	easily axially	Normal	All S	Sizes	g6	All S	Sizes	g6	All S	Sizes	g6
Stationary in	displaceable	Heavy									
Relation to	Inner Ring need not	Light									
Load Direction	be easily axially	Normal	All S	Sizes	h6	All S	Sizes	h6	All S	Sizes	g6
	displaceable	Heavy									
Pure Thru	st (Axial) Load		All S	Sizes	j6	Consul	t Bearin	g Manufacturer	Consul	lt Bearin	g Manufacturer

Tolerance classification shown are for solid steel shaft. Numerical values are listed in Table CD3.2. For hollow or nonferrous shafts, tighter fits may be needed.

²If greater accuracy is needed, substitute j5, k5 and m5 for j6, k6 and m6 respectively.

TABLE CD3.2. Shaft Diameter Tolerance Limits and Deviations vs Tolerance Classifications for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1. PART 1. Dimensions in Millimeters; Deviations and Fi

	d													Tolera	ance C	lassifica	ations											$\overline{}$
			g	6	h		h		j!			6	k	5	k	6	rr	15		16	n		_	6		6	r	
Over	Incl	Devi-	Shaft	Resul-	Shaft	Resul-	Shaft	Resul-	Shaft	Resul-	Shaft	Resul-	Shaft	Resul-		Resul-	Shaft	Resul-		Resul-		Resul-		Resul-	Shaft	Resul-		Resul-
0.0.		ation	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant	Devi-	tant
		0	ation	Fit 12L	ation 0	Fit	ation 0	Fit	ation 3	Fit 2L	ation 6	Fit	ation 6	Fit 1T	ation	Fit	ation 9	Fit 4T	ation	Fit	ation	Fit	ation	Fit	ation	Fit	ation	Fit
3	6	-8	-4 -12	4T	-8	8L 8T	-5	5L 8T	-2	2L 11T	-2	2L 14T	1	14T			4	17T										i l
	40	0	-5	14L	0	9L	0	6L	4	2L	7	2L	7	1T			12	6T										
6	10	-8	-14	3T	-9	8T	-6	T8	-2	12T	-2	15T	1	15T			6	20T										1
10	18	0	-6	17L	0	11L	0	8L	5	3L	8	3L	9	1T			15	7T										
		-8 0	-17 -7	2T 20L	-11 0	8T 13L	-8	8T	-3 5	13T 4L	-3 9	16T 4L	1	17T 2T			7 17	23T 8T										\longmapsto
18	30	-10	-20	3T	-13	10T			-4	15T	-4	19T	2	21T			8	27T										i
30	50	0	-9	25L	0	16L			6	5L	11	5L	13	2T	18	2T	20	9T	25	9T								
30	30	-12	-25	3T	-16	12T			-5	18T	-5	23T	2	25T	2	30T	9	32T	9	37T								igsquare
50	80	-15	-10 -29	29L 5T	0 -19	19L 15T			6 -7	7L 21T	12 -7	7L 27T	15 2	2T 30T	21 2	2T 36T	24 11	11T 39T	30 11	11T 45T	39 20	20T 54T						i l
		0	-12	34L	0	22L			6	9L	13	9L	18	3T	25	3T	28	13T	35	13T	45	23T	59	37T				\vdash
80	120	-20	-34	8T	-22	20T			-9	26T	-9	33T	3	38T	3	45T	13	48T	13	55T	23	65T	37	79T				i l
120	180	0	-14	39L	0	25L			7	11L	14	11L	21	3T	28	3T	33	15T	40	15T	52	27T	68	43T	90	65T		
120	100	-25	-39	11T	-25	25T			-11	32T	-11	39T	3	46T	3	53T	15	58T	15	65T	27	77T	43	93T	65	115T		\longmapsto
180	200	-30	-15 -44	44L 15T	0 -29	29L 30T			-13	13L 37T	16 -13	13L 46T	24 4	4T 54T			37 17	17T 67T	46 17	17T 76T	60 31	31T 90T	79 50	50T 109T	106 77	77T 136T		i l
		0	-15	44L	0	29L			7	13L	16	13L	24	4T			37	17T	46	17T	60	31T	79	50T	109	80T	126	80T
200	225	-30	-44	15T	-29	30T			-13	37T	-13	46T	4	54T			17	67T	17	76T	31	90T	50	109T	80	139T	80	156T
225	250	0	-15	44L	0	29L			7	13L	16	13L	24	4T			37	17T	46	17T	60	31T	79	50T	113	84T	130	84T
		-30	-44	15T	-29	30T			-13	37T	-13	46T	4	54T			17	67T	17	76T	31	90T	50	109T	84	143T	84	160T
250	280	0 -35	-17 -49	49L 18T	0 -32	32L 35T			-16	16L 42T	16 -16	16L 51T	27 4	4T 62T			43 20	20T 78T	52 20	20T 87T	66 34	34T 101T	88 56	56T 123T	126 94	94T 161T	146 94	94T 181T
000	045	0	-17	49L	0	32L			7	16L	16	16L	27	4T			43	20T	52	20T	66	34T	88	56T	130	98T	150	98T
280	315	-35	-49	18T	-32	35T			-16	42T	-16	51T	4	62T			20	78T	20	87T	34	101T	56	123T	98	165T	98	185T
315	355	0	-18	54L	0	36L			7	18L	18	18L	29	4T			46	21T	57	21T	73	37T	98	62T	144	108T	165	108T
		-40	-54	22T 54L	-36	40T			-18 7	47T	-18 18	58T	4 29	69T 4T			21 46	86T 21T	21	97T	37 73	113T 37T	62 98	138T 62T	108 150	184T 114T	108 171	205T 114T
355	400	-40	-18 -54	22T	0 -36	36L 40T			-18	18L 47T	-18	18L 58T	4	69T			21	86T			37	113T	62	138T	114	190T	114	211T
400	450	0	-20	60L	0	40L			7	20L	20	20L	32	5T			50	23T			80	40T	108	68T	166	126T	189	126T
400	450	-45	-60	25T	-40	45T			-20	52T	-20	65T	5	77T			23	95T			40	125T	68	153T	126	211T	126	234T
450	500	0	-20	60L	0	40L			7	20L	20	20L	32	5T			50	23T			80	40T	108	68T	172	132T	195	132T
		-45 0	-60 -22	25T 66L	-40 0	45T 44L			-20 8	52T 22L	-20 22	65T 22L	5 30	77T 0T			23 56	95T 26T			40	125T	68 122	153T 78T	132 194	217T 150T	132 220	240T 150T
500	630	-50	-66	28T	-44	50T			-22	58T	-22	72T	0	80T			26	106T					78	172T	150	244T	150	270T
620	710	0	-24	74L	0	50L			10	25L	25	25L	35	0T			65	30T					138	88T	225	175T	255	175T
630	710	-75	-74	51T	-50	75T			-25	85T	-25	100T	0	110T			30	140T					88	213T	175	300T	175	330T
710	800	-75	-24 74	74L	0	50L			10	25L	25	25L	35	0T			65	30T					138	88T	235	185T 310T	265	185T
		-/5	-74 -26	51T 82L	-50 0	75T 56L			-25 12	85T 28L	-25 28	100T 28L	0 40	110T 0T			30 74	140T 34T					88 156	213T 100T	185 266	210T	185 300	340T 210T
800	900	-100	-82	74T	-56	100T			-28	112T	-28	128T	0	140T			34	174T					100	256T	210	366T	210	400T
900	1000	0	-26	82L	0	56L			12	28L	28	28L	40	0T			74	34T					156	100T	276	220T	310	220T
900	1000	-100	-82	74T	-56	100T			-28	112T	-28	128T	0	140T			34	174T					100	256T	220	376T	220	410T
1000	1120	125	-28	94L	0	66L			13	33L	33	33L	46	0T			86	40T					186	120T	316	250T	335	250T
H		-125 0	-94 -28	97T 94L	-66 0	125T 66L			-33 13	138T 33L	-33 33	158T 33L	0 46	171T 0T			40 86	211T 40T					120 186	311T 120T	250 326	441T 260T	250 365	460T 260T
1120	1250	-125	-94	97T	-66	125T			-33	138T	-33	158T	0	171T			40	211T					120	311T	260	451T	260	490T
L = Lo	nose	T = Ti											-		1						1			,				

TABLE CD3.2. Shaft Diameter Tolerance Limits and Deviations vs Tolerance Classifications for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1.

PART 2. Dimensions in Inches; Deviations and Fits in 0.0001 Inches.

	d													Toler	ance C	lassifica	ations											
			g		h		h		,	5	,	6	k		k			15	m			16		6	r			·7
Over	Incl.	Devi-	Shaft	Resul-	1	Resul-	Shaft	Resul-		Resul-	Shaft	Resul-	Shaft	Resul-		Resul-		Resul-		Resul-	Shaft	Resul-		Resul-	Shaft	Resul-		Resul-
		ation	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit	Devi- ation	tant Fit
		0	-2	5L	0	3L	0	2L	1	1L	2	1L	2	0T	allon	111	4	2T	alion	111	alion	111	alion	111	allon	111	alion	1 11
0.1181	0.2362	-3	-5	1T	-3	3T	-2	3T	-1	4T	-1	5T	0	5T			2	7T										
0.2362	0.3937	0 -3	ې 6	6L 1T	0 -4	4L 3T	0 -2	2L 3T	2 -1	1L 5T	3 -1	1L 6T	3 0	0T 6T			5 2	2T 8T										
0.3937	0.7087	0 -3	-2 -7	7L 1T	0 -4	4L 3T	0 -3	3L 3T	2 -1	1L 5T	3 -1	1L 6T	4 0	0T 7T			6 3	3T 9T										
0.7087	1.1811	0 -4	-3 -8	8L 1T	0 -5	5L 4T			2 -2	2L 6T	4 -2	2L 8T	4 1	1T 8T			7 3	3T 11T										
1.1811	1.9685	0 -4	-4 -11	10L 0.5T	0 -6	6L 4.5T			2 -2	2L 6.5T	4 -2	2L 8.5T	5 1	1T 9.5T	7 1	1T 11.5T	8 4	4T 12.5T	10 4	4T 14.5T								
1.9685	3.1496	0 -6	-4 -11	11L 2T	0 -7	7L 6T			2 -3	3L 8T	5 -3	3L 11T	6 1	1T 12T	8 1	1T 14T	9 4	4T 15T	12 4	4T 18T	15 8	8T 21T						
3.1496	4.7244	0 -8	-5 -13	13L 3T	0 -9	9L 8T			2 -4	4L 10T	5 -4	4L 13T	7	1T 15T	10	1T 18T	11 5	5T 19T	14 5	5T 22T	18 9	9T 26T	23 15	15T 31T				
4.7244	7.0866	0	-6	15L	0	10L			3	4L	6	4L	8	1T	11	1T	13 6	6T	16	6T	20	11T	27	17T	35	26T		
7.0866	7.8740	-10 0	-15 -6	4T 17L	-10 0	10T 11L			-4 3	13T 5L	-4 6	16T 5L	9	18T 2T	1	21T	15	23T 7T	6 18	26T 7T	11 24	30T 12T	17 31	37T 20T	26 42	45T 30T		
7.8740	8.8583	-12 0	-17 -6	6T 17L	-11 0	12T 11L			-5 3	15T 5L	-5 6	18T 5L	9	21T 2T			7 15	27T 7T	7 18	30T 7T	12 24	36T 12T	20 31	43T 20T	30 43	54T 31T	50	31T
		-12 0	-17 -6	6T 17L	-11 0	12T 11L			-5 3	15T 5L	-5 6	18T 5L	9	21T 2T			7 15	27T 7T	7 18	30T 7T	12 24	36T 12T	20 31	43T 20T	31 44	55T 33T	31 51	62T 33T
8.8583	9.8425	-12 0	-17 -7	6T 19L	-11 0	12T 13L			-5 3	15T 6L	-5 6	18T 6L	2	21T 2T			7	27T 8T	7 20	30T 8T	12 26	36T 13T	20 35	43T 22T	33 50	56T 37T	33 57	63T 37T
9.8425	11.0236	-14	-19	7T	-13	14T			-6	17T	-6	20T	2	25T			8	31T	8	34T	13	40T	22	49T	37	64T	37	71T
11.0236	12.4016	0 -14	-7 -19	19L 7T	0 -13	13L 14T			3 -6	6L 17T	6 -6	6L 20T	11 2	2T 25T			17 8	8T 31T	20 8	8T 34T	26 13	13T 40T	35 22	22T 49T	51 39	39T 65T	59 39	39T 73T
12.4016	13.9764	0 -16	-7 -21	21L 9T	0 -14	14L 16T			3 -7	7L 19T	7 -7	7L 23T	11 2	2T 27T			18 8	8T 34T	22 8	8T 38T	29 15	15T 45T	39 24	26T 55T	57 43	43T 73T	65 43	43T 81T
13.9764	15.7480	0 -16	-7 -21	21L 9T	0 -14	14L 16T			3 -8	7L 19T	7 -7	7L 23T	11 2	2T 27T			18 8	8T 34T	0	001	29 15	15T 45T	39 24	26T 55T	59 45	45T 75T	67 45	45T 83T
15.7480	17.7165	0	-8	24L	0	16L			3	8L	8	8L	13	2T			20	9T			31	16T	43	27T	65	50T	74	50T
17.7165	19.6850	-18 0 -18	-24 -8 -24	10T 24L 10T	-16 0 -16	18T 16L 18T			-8 3 -8	21T 8L 21T	-8 8 -8	26T 8L 26T	2 13 2	31T 2T 31T			9 20 9	38T 9T 38T			16 31	49T 16T	27 43 27	61T 27T 61T	50 68 52	83T 52T 86T	50 77 52	92T 52T 95T
19.6850	22.0472	0	-9	26L	0	17L			3	9L	9	9L	12	0T			22	10T			16	49T	48	31T	76	59T	87	59T
22.0472	24.8031	-20 0	-26 -9	11T 26L	-17 0	20T 17L			-9 3	23T 9L	-9 9	29T 9L	12	32T 0T			10 22	42T 10T					31 48	68T 31T	59 78	96T 61T	59 89	106T 61T
		-20 0	-26 -9	11T 29L	-17 0	20T 20L			-9 4	23T 10L	-9 10	29T 10L	0 14	32T 0T			10 26	42T 12T					31 54	68T 35T	61 89	98T 68L	61 100	109T 69T
24.8031	27.9528	-30 0	-29 -9	21T 29L	-20 0	30T 20L			-10 4	34T 10L	-10 10	40T 10L	0	44T 0T			12 26	56T 12T					35 54	84T 35T	69 93	119T 73T	69 104	130T 73T
27.9528	31.4961	-30	-29	21T	-20	30T			-10	34T	-10	40T	0	44T			12	56T					35	84T	73	123T	73	134T
31.4961	35.4331	0 -39	-10 -32	32L 29T	0 -22	22L 39T			5 -11	11L 44T	11 -11	11L 50T	16 0	0T 55T			29 13	13T 68T					61 39	39T 100T	105 83	83T 144T	118 83	83T 157T
35.4331	39.3701	0 -39	-10 -32	32L 29T	0 -22	22L 39T			5 -11	11L 44T	11 -11	11L 50T	16 0	0T 55T			29 13	13T 68T					61 39	39T 100T	109 87	87T 148T	122 87	87T 161T
39.3701	44.0945	0 -49	-11 -37	37L 38T	0 -26	26L 49T			5 -13	13L 54T	13 -13	13L 62T	18 0	0T 67T			34 16	16T 83T					73 47	47T 122T	124 98	98T 173T	140 98	98T 189T
44.0945	49.2126	0 -49	-11 -37	37L 38T	0 -26	26L 49T			5 -13	13L 54T	13 -13	13L 62T	18 0	0T 67T			34 16	16T 83T					73 47	47T 122T	128 102	102T 177T	144 102	102T 193T
I = I 006	ı e. T = Tial		0,	001	20	701	1		10	0+1	10	021	U	0/1				001	1		l	l	77	1221	102	. , , , 1	102	1001

TABLE CD3.3. Housing Bore Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Ball, Cylindrical Roller, and Spherical Roller

	DESIGN & OPERATING	G CONDITIONS		
Rotational Conditions	Loading	Other Conditions	Outer Ring Axial Displaceability	Tolerance Classification ¹
0 . 5:		Heat input through shaft	Outer ring	G7 ³
Outer Ring Stationary in relation to load	Light Normal or Heavy	Housing split axially	axially displaceable	H7 ²
direction				H6 ²
	Shock with temporary complete unloading	Housing not split axially		J6 ²
Load Direction	Light		Transitional	
Load Direction indeterminate	Normal or heavy		Range⁴	K6 ²
indeterminate	Heavy shock	Split not		M6 ²
Outer Ring	Light	recommended		IVIO
Rotating in	Normal or heavy		Outer ring not	N6 ²
relation to load direction	Heavy	Thin wall housing not split	easily axially displaceable	P6 ²

For cast iron or steel housings. Numerical values are listed in Table CD3.4. For housings of non-ferrous alloys tighter fits may be needed.

²Where wider tolerances are permissible, use tolerance classifications H8, H7, J7, K7, M7, N7 and P7 in place of H7, H6, J6, K6, M6, N6 and P6 respectively.

³For large bearings and temperature differences between outer ring and housings greater than 10°C, F7 may be used instead of G7.

⁴The tolerance zones are such that outer ring may be either tight or loose in the housing.

TABLE CD3.4. Housing Bore Tolerance Limits and Deviations vs Tolerance Classifications for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1. **PART 1.** Dimensions in Millimeters; Deviations and Fits in Micrometers.

	D															Tolera	ance C	lassifica	ations													
			F	7	G	3 7	H	18	Н	17	Н	6	,	J6	J	7	K	(6	K	7	M	16	N	17	N	l6	N	17	Р	6	P	7
		Devi-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-	Hous-	Resul-
Over	Incl.	ation	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant	ing	tant
		alion	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit	Devi-	Fit
			ation	ГЦ	ation	FIL	ation	ΓIL	ation		ation	-	ation	FIL	ation	ΓIL	ation	FIL	ation		ation	Ľ	ation	FIL	ation		ation		ation		ation	FIL
10	18	0	16	42L	6	32L	0	35L	0	26L	0	19L	-5	14L	-8	18L	-9	10L	-12	14L	-15	4L	-18	8L	-20	1T	-23	3L	-26	7T	-29	3T
10	10	-8	34	16L	24	6L	27	0L	18	0L	11	0L	6	5T	10	8T	2	9T	6	12T	-4	15T	0	18T	-9	20T	-5	23T	-15	26T	-11	29T
18	30	0	20	50L	7	37L	0	42L	0	30L	0	22L	-5	17L	-9	21L	-11	11L	-15	15L	-17	5L	-21	9L	-24	2T	-28	2L	-31	9T	-35	5T
		-9	41	20L	28	7L	33	0L	21	0L	13	0L	8	5T	12	9T	2	11T	6	15T	-4	17T	0	21T	-11	24T	-7	28T	-18	31T	-14	35T
30	50	0	25	61L	9	45L	0	50L	0	36L	0	27L	-6	21L	-11	25L	-13	14L	-18	18L	-20	7L	-25	11L	-28	1T	-33	3L	-37	10T	-42	6T
		-11	50	25L	34	9L	39	0L	25	0L	16	0L	10	6T	14	11T	3	13T	7	18T	-4	20T	0	25T	-12	28T	-8	33T	-21	37T	-17	42T
50	80	0	30	73L	10	53L	0	59L	0	43L	0	32L	-6	26L	-12	31L	-15	17L	-21	22L	-24	8L	-30	13L	-33	1T	-39	4L	-45	13T	-51	8T
-		-13	60	30L 86L	40	10L	46	0L	30	0L	19	0L 37L	13	6T 31L	18 -13	12T 37L	-18	15T	9	21T	-5 -28	24T	-35	30T 15L	-14 -38	33T 1T	-9 -45	39T	-26	45T 15T	-21 -59	51T 9T
80	120	0 -15	36 71	36L	12 47	62L 12L	0 54	69L 0L	0 35	50L 0L	0 22	3/L 0L	-6 16	6T	22	37L 13T	-18 4	19L 18T	-25 10	25L 25T	-28 -6	9L 28T	-35	35T	-38 -16	38T	-45 -10	5L 45T	-52 -30	52T	-59 -24	59T
		-15	43	101L	14	72L	0	81L	0	58L	0	43L	-7	36L	-14	44L	-21	22L	-28	30L	-33	10L	-40	18L	-45	2T	-52	451 6L	-61	18T	-68	10T
120	150	-18	83	43L	54	14L	63	0L	40	0L	25	0L	18	7T	26	14T	1	21T	12	28T	-8	33T	0	40T	-20	45T	-12	52T	-36	61T	-28	68T
		0	43	108L	14	79L	0	88L	0	65L	0	50L	-7	43L	-14	51L	-21	29L	-28	37L	-33	17L	-40	25L	-45	5L	-52	13L	-61	11T	-68	3T
150	180	-25	83	43L	54	14L	63	0L	40	0L	25	0L	18	7T	26	14T	4	21T	12	28T	-8	33T	0	40T	-20	45T	-12	52T	-36	61T	-28	68T
		0	50	126L	15	91L	0	102L	0	76L	0	59L	-7	52L	-16	60L	-24	35L	-33	43L	-37	22L	-46	30L	-51	8L	-60	16L	-70	11T	-79	3T
180	250	-30	96	50L	61	15L	72	0L	46	0L	29	0L	22	7T	30	16T	5	24T	13	33T	-8	37T	0	46T	-22	51T	-14	60T	-41	70T	-33	79T
050	0.45	0	56	143L	17	104L	0	116L	0	87L	0	67L	-7	60L	-16	71L	-27	40L	-36	51L	-41	26L	-52	35L	-57	10L	-66	21L	-79	12T	-88	1T
250	315	-35	108	56L	69	17L	81	0L	52	0L	32	0L	25	7T	36	16T	5	27T	16	36T	-9	41T	0	52T	-25	57T	-14	66T	-47	79T	-36	88T
015	400	0	62	159L	18	115L	0	129L	0	97L	0	76L	-7	69L	-18	79L	-29	47L	-40	57L	-46	30L	-57	40L	-62	14L	-73	24L	-87	11T	-98	1T
315	400	-40	119	62L	75	18L	89	0L	57	0L	36	0L	29	7T	39	18T	7	29T	17	40T	-10	46T	0	57T	-26	62T	-16	73T	-51	87T	-41	98T
400	500	0	68	176L	20	128L	0	142L	0	108L	0	85L	-7	78L	-20	88L	-32	53L	-45	63L	-50	35L	-63	45L	-67	18L	-80	28L	-95	10T	-108	0T
400	300	-45	131	68L	83	20L	97	0L	63	0L	40	0L	33	7T	43	20T	8	32T	18	45T	-10	50T	0	63T	-27	67T	-17	80T	-55	95T	-45	108T
500	630	0	76	196L	22	142L	0	160L	0	120L	0	94L	-7	87L	-22	98L	-44	50L	-70	50L	-70	24L	-96	24L	-88	6L	-114	6L	-122	28T	-148	28T
000	000	-50	146	76L	92	22L	110	0L	70	0L	44	0L	37	7T	48	22T	0	44T	0	70T	-26	70T	-26	96T	-44	88T	-44	114T	-78	122T	-78	148T
630	800	0	80	235L	24	179L	0	200L	0	155L	0	125L	-10	115L	-24	131L	-50	75L	-80	75L	-80	45L	-110	45L	-100	25L	-130	25L	-138	13T	-168	13T
		-75	160	80L	104	24L	125	0L	80	0L	50	0L	40	10T	56	24T	0	50T	0	80T	-30	80T	-30	110T	-50	100T	-50	130T	-88	138T	-88	168T
800	1000	0	86	276L	26	216L	0	240L	0	190L	0	156L	-10	146L	-26	164L	-56	100L	-90	100L	-90	66L	-124	66L	-112	44L	-146	44L	-156	0T	-190	OT
		-100	176	86L	116	26L	140	0L	90	0L	56	0L	46	10T	64	26T	0	56T	0	90T	-34	90T	-34	124T	-56	112T	-56	146T	-100	156T	-100	190T
1000	1250	0	98	328L	28	258L	0	290L	0	230L	0	191L	-10	181L	-28	202L	-66	125L	-105	125L	-106	85L	-145	85L	-132	59L	-171	59L	-186	5L	-225	5L
-		-125 0	203 110	98L 395L	133 30	28L 315L	165 0	0L 355L	105	0L 285L	66 0	0L 238L	-10	10T 228L	77 -30	28T 255L	-78	66T 160L	-125	105T 160L	-40 -126	106T 112L	-40 -173	145T 112L	-66 -156	132T 82L	-66 -203	171T 82L	-120 -218	186T 20L	-120 -265	225T 20L
1250	1600	-160	235	110L	155	30L	195	0L	125	200L	78	236L 0L	68	10T	95	30T	-76	78T	0	125T	-48	126T	-48	173T	-78	156T	-203 -78	203T	-140	20L 218T	-140	265T
-		0	120	470L	32	382L	0	430L	0	350L	0	292L	-10	282L	-32	318L	-92	200L	-150	200L	-46	142L	-208	1/31 142L	-184	108L	-76	108L	-262	30L	-320	30L
1600	2000	-200	270	120L	182	32L	230	430L	150	0L	92	292L	82	10T	118	32T	-92	92T	-150	150T	-58	150T	-58	208T	-164	184T	-242	242T	-170	262T	-320	320T
-		0	130	555L	34	459L	0	530L	0	425L	0	360L	-10	350L	-34	391L	-110	250L	-175	250L	-178	182L	-243	182L	-220	140L	-285	140L	-305	55L	-370	55L
2000	2500	-250	305	130L	209	34L	280	0L	175	0L	110	0L	100	10T	141	34T	0	110T	0	175T	-68	178T	-68	243T	-110	220T	-110	285T	-195	305T		370T
1-1	oose	T = Tic		1002		U 1.E		<u> </u>	175			UL.	100	1 101	<u> </u>	<u> </u>		1101	_ <u>`</u>	1101	- 00	1701	- 00	101			110	_001	100	3001	100	5701

TABLE CD3.4. Housing Bore Tolerance Limits and Deviations vs Tolerance Classifications for Metric Radial Ball, Cylindrical Roller, and Spherical Roller Bearings of Tolerance Classes ABEC-1 or RBEC-1. PART 2. Dimensions in Inches; Deviations and Fits in 0.0001 Inches.

	D															Toler	ance C	lassifica	ations													
			F			37		18	Н			16		6		7	K	.6		7	M	_	N	17	N	16		17		P6		7
Over	Incl.	Devi- ation	Hous- ing Devi- ation	Resul- tant Fit																												
0.3937	0.7087	0 -3	6 13	16L 6L	2 9	12L 2L	0 11	14L 0L	0 7	10L 0L	0 4	7L 0L	-2 2	5L 2T	-3 4	7L 3T	-4 1	4L 4T	-5 2	5L 5T	-6 -2	1L 6T	-7 0	3L 7T	-8 -4	1T 8T	-9 -2	1L 9T	-10 -6	3T 10T	-11 -4	1T 11T
0.7087	1.1811	0 -3.5	8 16	19.5L 8L	3 11	14.5L 3L	0 13	16.5L 0L	0 8	11.5L 0L	0 5	8.5L 0L	-2 3	6.5L 2T	-4 5	8.5L 4T	-4 1	4.5L 4T	-6 2	5.5L 6T	-7 -2	1.5L 7T	-8 0	3.5L 8T	-9 -4	0.5T 9T	-11 -3	0.5L 11T	-12 -7	3.5T 12T	-14 -6	2.5T 14T
1.1811	1.9685	0 -4.5	10 20	24.5L 10L	4 13	17.5L 4L	0 15	19.5L 0L	0 10	14.5L 0L	0	10.5L 0L	-2 4	8.5L 2T	-4 6	10.5L 4T	-5 1	5.5L 5T	-7 3	7.5L 7T	-8 -2	2.5L 8T	-10 0	4.5L 10T	-11 -5	0.5T 11T	-13 -3	1.5L 13T	-15 -8	3.5T 15T	-17 -7	2.5T 17T
1.9685	3.1496	0 -5	12 24	29L 12L	4 16	21L 4L	0 18	23L 0L	0 12	17L 0L	0 7	12L 0L	-2 5	10L 2T	-5 7	12L 5T	-6 2	7L 6T	-8 4	9L 8T	-9 -2	3L 9T	-12 0	5L 12T	-13 -6	1T 13T	-15 -4	1L 15T	-18 -10	5T 18T	-20 -8	3T 20T
3.1496	4.7244	0 -6	14 28	34L 14L	5 19	25L 5L	0 21	27L 0L	0 14	20L 0L	0	15L 0L	-2 6	12L 2T	-5 9	15L 5T	-7 2	8L 7T	-10 4	10L 10T	-11 -2	4L 11T	-14 0	6L 14T	-15 -6	0T 15T	-18 -4	2L 18T	-20 -12	6T 20T	-23 -9	3T 23T
4.7244	5.9055	0 -7	17 33	40L 17L	6 21	28L 6L	0 25	32L 0L	0 16	23L 0L	0 10	17L 0L	-3 7	14L 3T	-6 10	17L 6T	-8 2	9L 8T	-11 5	12L 11T	-13 -3	4L 13T	-16 0	7L 16T	-18 -8	1T 18T	-20 -5	2L 20T	-24 -14	7T 24T	-27 -11	4T 27T
5.9055	7.0866	0 -10	17 33	43L 17L	6 21	31L 6L	0 25	35L 0L	0 16	26L 0L	0 10	20L 0L	-3 7	17L 3T	-6 10	20L 6T	-8 2	12L 8T	-11 5	15L 11T	-13 -3	7L 13T	-16 0	10L 16T	-18 -8	2L 18T	-20 -5	5L 20T	-24 -14	4T 24T	-27 -11	1T 27T
7.0866	9.8425	0 -12	20 38	50L 20L	6 24	36L 6L	0 28	40L 0L	0 18	30L 0L	0 11	23L 0L	-3 9	21L 3T	-6 12	24L 6T	-9 2	14L 9T	-13 5	17L 13T	-15 -3	9L 15T	-18 0	12L 18T	-20 -9	3L 20T	-24 -6	6L 24T	-28 -16	4T 28T	-31 -13	1T 31T
9.8425	12.4016	0 -14	22 43	57L 22L	7 27	41L 7L	0 32	46L 0L	0 20	34L 0L	0 13	27L 0L	-3 10	24L 3T	-6 14	28L 6T	-11 2	16L 11T	-14 6	20L 14T	-16 -4	10L 16T	-20 0	14L 20T	-22 -10	4L 22T	-26 -6	8L 26T	-31 -19	5T 31T	-35 -14	0T 35T
12.4016	15.7480	0 -16	24 47	63L 24L	7 30	46L 7L	0 35	51L 0L	0 22	38L 0L	0 14	30L 0L	-3 11	27L 3T	-7 15	31L 7T	-11 3	19L 11T	-16 7	23L 16T	-18 -4	12L 18T	-22 0	16L 22T	-24 -10	6L 24T	-29 -6	10L 29T	-34 -20	4T 34T	-39 -16	0T 39T
15.7480	19.6850	0 -18	27 52	70L 27L	8 33	51L 8L	0 38	56L 0L	0 25	43L 0L	0 16	34L 0L	-3 13	31L 3T	-8 17	35L 8T	-13 3	21L 13T	-18 7	25L 18T	-20 -4	14L 20T	-25 0	18L 25T	-26 -11	7L 26T	-31 -7	11L 31T	-37 -22	4T 37T	-43 -18	0T 43T
19.6850	24.8031	0 -20	30 57	77L 30L	9 36	56L 9L	0 43	63L 0L	0 28	48L 0L	0 17	37L 0L	-3 15	35L 3T	-9 19	39L 9T	-17 0	20L 17T	-28 0	20L 28T	-28 -10	10L 28T	-38 -10	10L 38T	-35 -17	3L 35T	-45 -17	3L 45T	-48 -31	11T 48T	-58 -31	11T 58T
24.8031	31.4961	0 -30	31 63	93L 31L	9 41	71L 9L	0 49	79L 0L	0 31	61L 0L	0 20	50L 0L	-4 16	46L 4T	-9 22	52L 9T	-20 0	30L 20T	-31 0	30L 31T	-31 -12	18L 31T	-43 -12	18L 43T	-39 -20	10L 39T	-51 -20	10L 51T	-54 -35	5T 54T	-66 -35	5T 66T
31.4961	39.3701	0 -39	34 69	108L 34L	10 46	85L 10L	0 55	94L 0L	0 35	74L 0L	0 22	61L 0L	-4 18	57L 4T	-10 25	64L 10T	-22 0	39L 22T	-35 0	39L 35T	-35 -13	26L 35T	-49 -13	26L 49T	-44 -22	17L 44T	-57 -22	17L 57T	-61 -39	0T 61T	-75 -39	0T 75T
39.3701	49.2126	0 -49	39 80	129L 39L	11 52	101L 11L	0 65	114L 0L	0 41	90L 0L	0 26	75L 0L	-4 22	71L 4T	-11 30	79L 11T	-26 0	49L 26T	-41 0	49L 41T	-42 -16	33L 42T	-57 -16	33L 57T	-52 -26	23L 52T	-67 -26	23L 67T	-73 -47	2L 73T	-89 -47	2L 89T
49.2126	62.9921	0 -63	43 93	156L 43L	12 61	124L 12L	0 77	140L 0L	0 49	112L 0L	0 31	94L 0L	-4 27	90L 4T	-12 37	100L 12T	-31 0	63L 31T	-49 0	63L 49T	-50 -19	44L 50T	-68 -19	44L 68T	-61 -31	32L 61T	-80 -31	32L 80T	-86 -55	8L 86T	-104 -55	8L 104T
62.9921	78.7402	0 -79	47 106	185L 47L	13 72	151L 13L	0 91	170L 0L	0 59	138L 0L	0 36	115L 0L	-4 32	111L 4T	-13 46	125L 13T	-36 0	79L 36T	-59 0	79L 59T	-59 -23	56L 59T	-82 -23	56L 82T	-72 -36	43L 72T	-95 -36	43L 95T	-103 -67	12L 103T	-126 -67	12L 126T
78.7402	98.4252 • T = Tig	0 -98	51 120	218L 51L	13 82	180L 13L	0 110	208L 0L	0 69	167L 0L	0 43	141L 0L	-4 39	137L 4T	-13 56	154L 13T	-43 0	98L 43T	-69 0	98L 69T	-70 -27	71L 70T	-96 -27	71L 96T	-87 -43	55L 87T	-112 -43	55L 112T	-120 -77	21L 120T	-146 -77	21L 146T

TABLE CD3.5. ANSI/ABMA vs ISO

Tolerance Classifications

Ball and Non-Tapered Roller Bearings Metric Tapered Roller Bearings

Dan and Hon Taporoa	Tioner Bearinge	mono raporda mono	Boaringo
ANSI/ABMA	ISO	ANSI/ABMA	ISO
ABEC 1 or RBEC 1	Normal Class	K	Normal Class
ABEC 3 or RBEC 3	Class 6	N	Class 6X
ABEC 5 or RBEC 5	Class 5	С	Class 5
ABEC 7	Class 4	В	Class 4
ABEC 9	Class 2	A	Class 2

TABLE CD3.6. Tolerance Class ABEC-1, RBEC-1. Metric Ball and Roller Bearings [except tapered roller bearings^e] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 1.** Dimensions in Millimeters; Tolerances in Micrometers.

							Inne	r Ring						
						V_{dp}^{f}								
						diameter serie	es					Δ_{Bs}		
	(t	Δ	dmp	9	0, 1	2, 3, 4	V_{dmp}	K_{ia}	S_{ia}^{g}	all	normal	modifieda	V_{Bs}
	over	incl.	high	low		max.		max.	max.	max.	high	lo	ow	max.
a	0.6	2.5	0	-8	10	8	6	6	10	15	0	-40		12
	2.5	10	0	-8	10	8	6	6	10	20	0	-120	-250	15
	10	18	0	-8	10	8	6	6	10	20	0	-120	-250	20
	18	30	0	-10	13	10	8	8	13	25	0	-120	-250	20
	30	50	0	-12	14	12	9	9	15	30	0	-120	-250	20
	50	80	0	-15	19	19	11	11	20	30	0	-150	-380	25
	80	120	0	-20	25	25	15	15	25	35	0	-200	-380	25
	120	180	0	-25	31	31	19	19	30	40	0	-250	-500	30
	180	250	0	-30	38	38	23	23	40	45	0	-300	-500	30
	250	315	0	-35	44	44	26	26	50	55	0	-350	-500	35
	315	400	0	-40	50	50	30	30	60	65	0	-400	-630	40
	400	500	0	-45	56	56	34	34	65	75	0	-450		50
	500	630	0	-50	63	63	38	38	70	90	0	-500		60
	630	800	0	-75					80	100	0	-750		70
	800	1000	0	-100					90	110	0	-1000		80
	1000	1250	0	-125					100	125	0	-1250		100
	1250	1600	0	-160					120	150	0	-1600		120
	1600	2000	0	-200					140	170	0	-2000		140

								ter Ring						
						V	c,f Dp							
					-		•	Capped						
						Open Bearing	gs	Bearings ^b						
						diamet	ter series							
	1	D	Δ_{E}	Этр	9	0, 1	2, 3, 4	2, 3, 4	V_{Dmp}^{c}	K _{ea}	S_{ea}^{g}	Δ_{Cs}	Δ_{C1s}^{g}	V_{Cs}, V_{C1s}^{g}
	over	incl.	high	low		max.			max.	max.	max.	high	low	max.
а	2.5	6	0	-8	10	8	6	10	6	15	15			
	6	18	0	-8	10	8	6	10	6	15	20			
	18	30	0	-9	12	9	7	12	7	15	25			
	30	50	0	-11	14	11	8	16	8	20	30			
	50	80	0	-13	16	13	10	20	10	25	35			
	80	120	0	-15	19	19	11	26	11	35	40			
	120	150	0	-18	23	23	14	30	14	40	45			
	150	180	0	-25	31	31	19	38	19	45	55			
	180	250	0	-30	38	38	23		23	50	65	Identical to	A and V	of inner ring of
	250	315	0	-35	44	44	26		26	60	75	identical to		_
	315	400	0	-40	50	50	30		30	70	90		same bearir	ig
	400	500	0	-45	56	56	34		34	80	100			
	500	630	0	-50	63	63	38		38	100	110			
	630	800	0	-75	94	94	55		55	120	120			
	800	1000	0	-100	125	125	75		75	140	125			
	1000	1250	0	-125						160	140			
	1250	1600	0	-160						190	150			
	1600	2000	0	-200						220	170			
	2000	2500	0	-250						250	190			

^aThis diameter is included in the group.

^bNo values have been established for diameter series 9, 0 and 1.

^cApplies before mounting and after removal of internal or external snap ring.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

^fNo values have been established for diameter series 7 and 8.

^gApplies to groove ball bearings only.

TABLE CD3.6. Tolerance Class ABEC-1, RBEC-1. Metric Ball and Roller Bearings [except tapered roller bearings^e] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. PART 2. Dimensions in Millimeters; Tolerances in 0.0001 Inches.

		•					Inne	r Ring						
						V_{dp}^{f}								
						diameter serie	es					Δ_{Bs}		
	(d	Δ_{c}	dmp	9	0, 1	2, 3, 4	V_{dmp}	K_{ia}	S_{ia}^{g}	all	normal	modified ^a	V_{Bs}
	over	incl.	high	low		max.		max.	max.	max.	high		ow	max.
1	0.6	2.5	0	-3	4	3	2.5	2.5	4	6	0	-16		4.5
	2.5	10	0	-3	4	3	2.5	2.5	4	8	0	-47	-98	6
	10	18	0	-3	4	3	2.5	2.5	4	8	0	-47	-98	8
	18	30	0	-4	5	4	3	3	5	10	0	-47	-98	8
	30	50	0	-4.5	6	4.5	3.5	3.5	6	12	0	-47	-98	8
	50	80	0	-6	7.5	7.5	4.5	4.5	8	12	0	-59	-150	10
	80	120	0	-8	10	10	6	6	10	14	0	-79	-150	10
	120	180	0	-10	12	12	7.5	7.5	12	16	0	-98	-197	12
	180	250	0	-12	15	15	9	9	16	18	0	-118	-197	12
	250	315	0	-14	17	17	10	10	20	22	0	-138	-197	14
	315	400	0	-16	20	20	12	12	24	26	0	-157	-248	16
	400	500	0	-18	22	22	13	13	26	30	0	-177		20
	500	630	0	-20	25	25	15	15	28	35	0	-197		24
	630	800	0	-30					31	39	0	-295		28
	800	1000	0	-39					35	43	0	-394		31
	1000	1250	0	-49					39	49	0	-492		39
	1250	1600	0	-63					47	59	0	-630		47
	1600	2000	0	-79					55	67	0	-787		55

							Ou	ter Ring						
						V	c,f Dp	-						
						Open Bearing	•	Capped Bearings ^b						
		D	Δ_{Γ}	Omp	9	0, 1	2, 3, 4	2, 3, 4	V_{Dmp}^{c}	K _{ea}	S_{ea}^{g}	Δ_{Cs} ,	$\Delta_{C1s}^{}g}$	V_{Cs}, V_{C1s}^{g}
	over	incl.	high	low		max.		·	max.	max.	max.	high	low	max.
а	2.5	6	0	-3	4	3	2.5	4	2.5	6	6	-		
	6	18	0	-3	4	3	2.5	4	2.5	6	8			
	18	30	0	-3.5	4.5	3.5	3	4.5	3	6	10			
	30	50	0	-4.5	5.5	4.5	3	6.5	3	8	12			
	50	80	0	-5	6.5	5	4	8	4	10	14			
	80	120	0	-6	7.5	7.5	4.5	10	4.5	14	16			
	120	150	0	-7	9	9	5.5	12	5.5	16	18			
	150	180	0	-10	12	12	7.5	15	7.5	18	22			
	180	250	0	-12	15	15	9		9	20	26	Identical to	A and V	of inner ring of
	250	315	0	-14	17	17	10		10	24	30			-
	315	400	0	-16	20	20	12		12	28	35		same beari	ng
	400	500	0	-18	22	22	13		13	31	39			
	500	630	0	-20	25	25	15		15	39	43			
	630	800	0	-30	37	37	22		22	47	47			
	800	1000	0	-39	49	49	30		30	55	49			
	1000	1250	0	-49						63	55			
	1250	1600	0	-63						75	59			
	1600	2000	0	-79						87	67			
	2000	2500	0	-98						98	75			

^aThis diameter is included in the group.

^bNo values have been established for diameter series 9, 0 and 1.

^cApplies before mounting and after removal of internal or external snap ring.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

^fNo values have been established for diameter series 7 and 8.

^gApplies to groove ball bearings only.

TABLE CD3.7. Tolerance Class ABEC-3, RBEC-3. Metric Ball and Roller Bearings [except tapered roller bearings^e] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 1.** Dimensions in Millimeters; Tolerances in Micrometers.

							Inne	er Ring						
						V_{dp}^{f}		-						
					-	diameter serie	es					Δ_{Bs}		
	(d	$\Delta_{\sf d}$	mp	9	0, 1	2, 3, 4	V_{dmp}	K_{ia}	S_{ia}^{g}	all	normal	modified ^a	V_{Bs}
	over	incl.	high	low		max.		max.	max.	max.	high		ow	max.
а	0.6	2.5	0	-7	9	7	5	5	5	10	0	-40		12
	2.5	10	0	-7	9	7	5	5	6	15	0	-120	-250	15
	10	18	0	-7	9	7	5	5	7	20	0	-120	-250	20
	18	30	0	-8	10	8	6	6	8	20	0	-120	-250	20
	30	50	0	-10	13	10	8	8	10	20	0	-120	-250	20
	50	80	0	-12	15	15	9	9	10	25	0	-150	-380	25
	80	120	0	-15	19	19	11	11	13	25	0	-200	-380	25
	120	180	0	-19	23	23	14	14	18	30	0	-250	-500	30
	180	250	0	-22	28	28	17	17	20	35	0	-300	-500	30
	250	315	0	-25	31	31	19	19	25	40	0	-350	-500	35
	315	400	0	-30	38	38	23	23	30	45	0	-400	-630	40
	400	500	0	-35	44	44	26	26	35	50	0	-450		45
	500	630	0	-40	50	50	30	30	40	55	0	-500		50

							Ou	ter Ring						
						V	c,f Dp							
						Open Bearing	•	Capped Bearings ^b						
	[)	$\Delta_{ extsf{ iny C}}$)mp	9	0, 1	2, 3, 4	2, 3, 4	$V_{Dmp}^{}c}$	K_{ea}	S_{ea}^g	$\Delta_{Cs},$	$\Delta_{\text{C1s}}^{ g}$	V_{Cs}, V_{C1s}^{g}
	over	incl.	high	low		max.			max.	max.	max.	high	low	max.
а	2.5	6	0	-7	9	7	5	9	5	8	10			
	6	18	0	-7	9	7	5	9	5	8	15			
	18	30	0	-8	10	8	6	10	6	9	15			
	30	50	0	-9	11	9	7	13	7	10	20			
	50	80	0	-11	14	11	8	16	8	13	20			
	80	120	0	-13	16	16	10	20	10	18	25			
	120	150	0	-15	19	19	11	25	11	20	30	Identical to	A and V	of inner ring of
	150	180	0	-18	23	23	14	30	14	23	35	identical to		
	180	250	0	-20	25	25	15		15	25	40		same beari	ig
	250	315	0	-25	31	31	19		19	30	45			
	315	400	0	-28	35	35	21		21	35	50			
	400	500	0	-33	41	41	25		25	40	55			
	500	630	0	-38	48	48	29		29	50	60			
	630	800	0	-45	56	56	34		34	60	65			
	800	1000	0	-60	75	75	45		45	75	70			

^aThis diameter is included in the group.

^bNo values have been established for diameter series 9.

^cApplies before mounting and after removal of internal or external snap ring.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

^fNo values have been established for diameter series 7 and 8.

^gApplies to groove ball bearings only.

TABLE CD3.7. Tolerance Class ABEC-3, RBEC-3. Metric Ball and Roller Bearings [except tapered roller bearings^e] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 2.** Dimensions in Millimeters; Tolerances in 0.0001 Inches.

							Inne	er Ring						
						V_{dp}^{f}								
						diameter serie	es					Δ_{Bs}		
	C	d	$\Delta_{\sf d}$	mp	9	0, 1	2, 3, 4	V_{dmp}	K_{ia}	S_{ia}^{g}	all	normal	modified ^a	V_{Bs}
	over	incl.	high	low		max.		max.	max.	max.	high		ow	max.
a	0.6	2.5	0	-3	3.5	3	2	2	2	4	0	-16		4.5
	2.5	10	0	-3	3.5	3	2	2	2.5	6	0	-47	-98	6
	10	18	0	-3	3.5	3	2	2	3	8	0	-47	-98	8
	18	30	0	-3	4	3	2.5	2.5	3	8	0	-47	-98	8
	30	50	0	-4	5	4	3	3	4	8	0	-47	-98	8
	50	80	0	-4.5	6	6	3.5	3.5	4	10	0	-59	-150	10
	80	120	0	-6	7.5	7.5	4.5	4.5	5	10	0	-79	-150	10
	120	180	0	-7	9	9	5.5	5.5	7	12	0	-98	-197	12
	180	250	0	-8.5	11	11	6.5	6.5	8	14	0	-118	-197	12
	250	315	0	-10	12	12	7.5	7.5	10	16	0	-138	-197	14
	315	400	0	-12	15	15	9	9	12	18	0	-157	-248	16
	400	500	0	-14	17	17	10	10	14	20	0	-177		18
	500	630	0	-16	20	20	12	12	16	22	0	-197		20

							Ou	ter Ring						
						V	c,f Dp							
						Open Bearing	as	Capped Bearings ^b						
							er series							
		D	$\Delta_{ extsf{ iny C}}$)mp	9	0, 1	2, 3, 4	2, 3, 4	$V_{Dmp}^{}c}$	K_{ea}	$S_{ea}^{}g}$	$\Delta_{Cs},$	$\Delta_{C1s}^{}g}$	V_{Cs}, V_{C1s}^{g}
	over	incl.	high	low		max.			max.	max.	max.	high	low	max.
а	2.5	6	0	-3	3.5	3	2	3.5	2	3	4			
	6	18	0	-3	3.5	3	2	3.5	2	3	6			
	18	30	0	-3	4	3	2.5	4	2.5	3.5	6			
	30	50	0	-3.5	4.5	3.5	3	5	3	4	8			
	50	80	0	-4.5	5.5	4.5	3	6.5	3	5	8			
	80	120	0	-5	6.5	6.5	4	8	4	7	10			
	120	150	0	-6	7.5	7.5	4.5	10	4.5	8	12	Identical to	A and V	of inner ring of
	150	180	0	-7	9	9	5.5	12	5.5	9	14			-
	180	250	0	-8	10	10	6		6	10	16		same bearir	ng
	250	315	0	-10	12	12	7.5		7.5	12	18			
	315	400	0	-11	14	14	8.5		8.5	14	20			
	400	500	0	-13	16	16	10		10	16	22			
	500	630	0	-15	19	19	11		11	20	24			
	630	800	0	-18	22	22	13		13	24	26			
	800	1000	0	-24	30	30	18		18	30	28			

^aThis diameter is included in the group.

^bNo values have been established for diameter series 9.

^cApplies before mounting and after removal of internal or external snap ring.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

^fNo values have been established for diameter series 7 and 8.

^gApplies to groove ball bearings only.

TABLE CD3.8. Tolerance Class ABEC-5, RBEC-5. Metric Ball and Roller Bearings [except instrument bearings^e and tapered roller bearings^f] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 1.** Dimensions in Millimeters; Tolerances in Micrometers.

						Inne	er Ring						•
					V_{dp}^{g}								
				diame	eter series						Δ_{Bs}		
	d	Δ_{c}	dmp	9	0, 1, 2, 3, 4	V_{dmp}	K_{ia}	S_d	S_{ia}^{c}	all	normal	modified ^a	V_{Bs}
over	incl.	high	low		max.	max.	max.	max.	max.	high	I	ow	max.
a 0.6	2.5	0	-5	5	4	3	4	7	7	0	-40	-250	5
2.5	10	0	-5	5	4	3	4	7	7	0	-40	-250	5
10	18	0	-5	5	4	3	4	7	7	0	-80	-250	5
18	30	0	-6	6	5	3	4	8	8	0	-120	-250	5
30	50	0	-8	8	6	4	5	8	8	0	-120	-250	5
50	80	0	-9	9	7	5	5	8	8	0	-150	-250	6
80	120	0	-10	10	8	5	6	9	9	0	-200	-380	7
120	180	0	-13	13	10	7	8	10	10	0	-250	-380	8
180	250	0	-15	15	12	8	10	11	13	0	-300	-500	10
250	315	0	-18	18	14	9	13	13	15	0	-350	-500	13
315	400	0	-23	23	18	12	15	15	20	0	-400	-630	15

Outer Ring $V_{Dp}^{b,g}$ diameter series V_{Dmp} S_D^h, S_{D1}^c $S_{ea}^{\ c,h}$ S_{ea1}^{c} $\Delta_{\text{Cs}},\,{\Delta_{\text{C1s}}}^{\text{c}}$ D 0, 1, 2, 3, 4 Δ_{Dmp} incl. high low max. max. max. max. max. high low max. over max. 2.5 -5 -5 -6 -7 -9 -10 -11 Identical to Δ_{Bs} and V_{Bs} of -13 inner ring of same bearing -15 -18 -20 -23 -28 -35

^aThis diameter is included in the group.

^bNo values have been established for capped bearings.

^cApplies to groove type ball bearings only.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor instrument ball bearing tolerances see [3.2, 3.3].

For tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

⁹No values have been established for diameter series 7 and 8.

^hDoes not apply to bearings with flanged outer ring.

TABLE CD3.8. Tolerance Class ABEC-5, RBEC-5. Metric Ball and Roller Bearings [except instrument bearings^e and tapered roller bearings^f] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 2.** Dimensions in Millimeters; Tolerances in 0.0001 Inches.

						Inne	er Ring						
					V_{dp}^{g}								
				diame	eter series						Δ_{Bs}		
	d	Δ_{c}	dmp	9	0, 1, 2, 3, 4	V_{dmp}	K_{ia}	S_d	S_{ia}^{c}	all	normal	modified ^a	V_{Bs}
over	incl.	high	low		max.	max.	max.	max.	max.	high	I	ow	max.
a 0.6	2.5	0	-2	2	1.5	1	1.5	3	3	0	-16	-98	2
2.5	10	0	-2	2	1.5	1	1.5	3	3	0	-16	-98	2
10	18	0	-2	2	1.5	1	1.5	3	3	0	-31	-98	2
18	30	0	-2.5	2.5	2	1	1.5	3	3	0	-47	-98	2
30	50	0	-3	3	2.5	1.5	2	3	3	0	-47	-98	2
50	80	0	-3.5	3.5	3	2	2	3	3	0	-59	-98	2.5
80	120	0	-4	4	3	2	2.5	3.5	3.5	0	-79	-150	3
120	180	0	-5	5	4	3	3	4	4	0	-98	-150	3
180	250	0	-6	6	4.5	3	4	4.5	5	0	-118	-197	4
250	315	0	-7	7	5.5	3.5	5	5	6	0	-138	-197	5
315	400	0	-9	9	7	4.5	6	6	8	0	-157	-248	6

Outer Ring $V_{Dp}^{b,g}$ diameter series V_{Dmp} S_D^h, S_{D1}^c $S_{ea}^{\ c,h}$ S_{ea1}^{c} $\Delta_{\text{Cs}},\,{\Delta_{\text{C1s}}}^{\text{c}}$ D 9 0, 1, 2, 3, 4 Δ_{Dmp} incl. high low max. max. max. max. max. max. high low max. over 2.5 6 0 -2 2 1.5 2 3 3 4.5 2 6 18 0 -2 2 1.5 1 2 3 3 4.5 2 30 -2.5 2.5 2 2.5 3 4.5 2 18 0 1 3 2 4.5 2 30 50 0 -3 3 1.5 3 3 3 50 80 0 -3.5 3.5 3 2 3 3 4 5.5 2.5 80 120 0 -4 4 3 2 4 3.5 4.5 6.5 3 120 150 0 -4.5 4.5 3 2.5 4.5 5 7 Identical to Δ_{Bs} and V_{Bs} of 3 4 8 3 150 180 0 -5 5 4 3 5 4 5.5 inner ring of same bearing 180 250 -6 6 4.5 3 6 4.5 6 8.5 4 250 315 0 -7 7 5.5 3.5 7 5 7 10 4.5 -8 8 6 8 5 8 5 315 400 0 4 11 9 6.5 4.5 9 6 400 500 0 -9 6 9 13 500 8.5 5.5 10 7 14 7 630 -11 11 10 630 800 -14 14 10 7 12 8 12 16.5

^aThis diameter is included in the group.

^bNo values have been established for capped bearings.

^cApplies to groove type ball bearings only.

^dThis refers to the rings of single bearings made for paired or stack mounting.

^eFor instrument ball bearing tolerances see [3.2, 3.3].

For tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

⁹No values have been established for diameter series 7 and 8.

^hDoes not apply to bearings with flanged outer ring.

TABLE CD3.9. Tolerance Class ABEC-7, RBEC-7. Metric Ball [except instrument bearings¹ and tapered roller bearings¹] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 1.** Dimensions in Millimeters; Tolerances in Micrometers.

								Inne	r Ring							
								V_{dp}^{g}								
							diame	eter series						Δ_{Bs}		
	C	d	$\Delta_{\sf d}$	mp	Δ_{ϵ}	b ds	9	0, 1, 2, 3, 4	V_{dmp}	K_{ia}	S_d	S_{ia}^{d}	all	normal	modified ^e	V_{Bs}
	over	incl.	high	low	high	low		max.	max.	max.	max.	max.	high		ow	max.
а	0.6	2.5	0	-4	0	-4	4	3	2	2.5	3	3	0	-40	-250	2.5
	2.5	10	0	-4	0	-4	4	3	2	2.5	3	3	0	-40	-250	2.5
	10	18	0	-4	0	-4	4	3	2	2.5	3	3	0	-80	-250	2.5
	18	30	0	-5	0	-5	5	4	2.5	3	4	4	0	-120	-250	2.5
	30	50	0	-6	0	-6	6	5	3	4	4	4	0	-120	-250	3
	50	80	0	-7	0	-7	7	5	3.5	4	5	5	0	-150	-250	4
	80	120	0	-8	0	-8	8	6	4	5	5	5	0	-200	-380	4
	120	180	0	-10	0	-10	10	8	5	6	6	7	0	-250	-380	5
	180	250	0	-12	0	-12	12	9	6	8	7	8	0	-300	-500	6

									er Ring						
								V _{Dp} ^{c,g} eter series							
	[D	Δ_{D}	mp	Δ_{D}	b,c s	9	0, 1, 2, 3, 4	V_{Dmp}	K_{ea}	S_D^h, S_{D1}^d	$S_{ea}^{d,h}$	S_{ea1}^{d}	$\Delta_{Cs},\Delta_{C1s}^{}d}$	V_{Cs}, V_{C1s}^{d}
	over	incl.	high	low	high	low		max.	max.	max.	max.	max.	max.	high low	max.
а	2.5	6	0	-4	0	-4	4	3	2	3	4	5	7	-	2.5
	6	18	0	-4	0	-4	4	3	2	3	4	5	7		2.5
	18	30	0	-5	0	-5	5	4	2.5	4	4	5	7		2.5
	30	50	0	-6	0	-6	6	5	3	5	4	5	7		2.5
	50	80	0	-7	0	-7	7	5	3.5	5	4	5	7	Identical to A. and V. of	3
	80	120	0	-8	0	-8	8	6	4	6	5	6	8	Identical to Δ_{Bs} and V_{Bs} of	
	120	150	0	-9	0	-9	9	7	5	7	5	7	10	inner ring of same bearing	5
	150	180	0	-10	0	-10	10	8	5	8	5	8	11		5
	180	250	0	-11	0	-11	11	8	6	10	7	10	14		7
	250	315	0	-13	0	-13	13	10	7	11	8	10	14		7
	315	400	0	-15	0	-15	15	11	8	13	10	13	18		8

^aThis diameter is included in the group.

^bThese deviations apply to diameter series 0, 1, 2, 3, and 4 only.

^cNo values have been established for capped bearings.

^dApplies to groove type ball bearings only.

eThis refers to the rings of single bearings made for paired or stack mounting.

^fFor instrument ball bearing tolerances see [3.2, 3.3].

⁹No values have been established for diameter series 7 and 8.

^hDoes not apply to bearings with flanged outer ring.

For tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

TABLE CD3.9. Tolerance Class ABEC-7, RBEC-7. Metric Ball [except instrument bearings¹ and tapered roller bearings¹ of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 2.** Dimensions in Millimeters; Tolerances in 0.0001 Inches.

								Inne	r Ring							
								V_{dp}^{g}								
							diame	eter series						Δ_{Bs}		
	C	d	$\Delta_{\sf d}$	lmp	Δ_{ϵ}	b ds	9	0, 1, 2, 3, 4	V_{dmp}	K_{ia}	S_d	S_{ia}^{d}	all	normal	modified ^e	V_{Bs}
	over	incl.	high	low	high	low		max.	max.	max.	max.	max.	high	- I	ow	max.
а	0.6	2.5	0	-1.5	0	-1.5	1.5	1	1	1	1	1	0	-16	-98	1
	2.5	10	0	-1.5	0	-1.5	1.5	1	1	1	1	1	0	-16	-98	1
	10	18	0	-1.5	0	-1.5	1.5	1	1	1	1	1	0	-31	-98	1
	18	30	0	-2	0	-2	2	1.5	1	1	1.5	1.5	0	-47	-98	1
	30	50	0	-2.5	0	-2.5	2.5	2	1	1.5	1.5	1.5	0	-47	-98	1
	50	80	0	-3	0	-3	3	2	1.5	1.5	2	2	0	-59	-98	1.5
	80	120	0	-3	0	-3	3	2.5	1.5	2	2	2	0	-79	-150	1.5
	120	180	0	-4	0	-4	4	3	2	2.5	2.5	3	0	-98	-150	2
	180	250	0	-4.5	0	-4.5	4.5	3.5	2.5	3	3	3	0	-118	-197	2.5

								Oute	er Ring						
								/ _{Dp} c,g							
							diame	eter series							
	[)	Δ_{D}	mp	Δ_{D}	b,c s	9	0, 1, 2, 3, 4	V_{Dmp}	K_{ea}	S_D^h, S_{D1}^d	$S_{ea}^{d,h}$	S_{ea1}^{d}	$\Delta_{Cs},\Delta_{C1s}^{}d}$	V_{Cs}, V_{C1s}^{d}
	over	incl.	high	low	high	low		max.	max.	max.	max.	max.	max.	high low	max.
а	2.5	6	0	-1.5	0	-1.5	1.5	1	1	1	1.5	2	3		1
	6	18	0	-1.5	0	-1.5	1.5	1	1	1	1.5	2	3		1
	18	30	0	-2	0	-2	2	1.5	1	1.5	1.5	2	3		1
	30	50	0	-2.5	0	-2.5	2.5	2	1	2	1.5	2	3		1
	50	80	0	-3	0	-3	3	2	1.5	2	1.5	2	3	Identical to A and V of	1
	80	120	0	-3	0	-3	3	2.5	1.5	2.5	2	2.5	3	Identical to Δ_{Bs} and V_{Bs} of	1.5
	120	150	0	-3.5	0	-3.5	3.5	3	2	3	2	3	4	inner ring of same bearing	2
	150	180	0	-4	0	-4	4	3	2	3	2	3	4.5		2
	180	250	0	-4.5	0	-4.5	4.5	3	2.5	4	3	4	5.5		3
	250	315	0	-5	0	-5	5	4	3	4.5	3	4	5.5		3
	315	400	0	-6	0	-6	6	4.5	3	5	4	5	7		3

^aThis diameter is included in the group.

^bThese deviations apply to diameter series 0, 1, 2, 3, and 4 only.

^cNo values have been established for capped bearings.

^dApplies to groove type ball bearings only.

eThis refers to the rings of single bearings made for paired or stack mounting.

^fFor instrument ball bearing tolerances see [3.2, 3.3].

⁹No values have been established for diameter series 7 and 8.

^hDoes not apply to bearings with flanged outer ring.

ⁱFor tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

TABLE CD3.10. Tolerance Class ABEC-9, RBEC-9. Metric Ball [except instrument bearings^d and tapered roller bearings^g] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 1.** Dimensions in Millimeters; Tolerances in Micrometers

						In	ner Ring							
												Δ_{Bs}		
	d	Δ_{c}	lmp	Δ	ds	V_{dp}^{b}	V_{dmp}	K_{ia}	S_d	S_{ia}^{c}	all	normal	modified [†]	V_{Bs}
over	incl.	high	low	high	low	max.	max.	max.	max.	max.	high	low	max.	max.
a 0.6	2.5	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	0	-40	-250	1.5
2.5	10	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	0	-40	-250	1.5
10	18	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	0	-80	-250	1.5
18	30	0	-2.5	0	-2.5	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5
30	50	0	-2.5	0	-2.5	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5
50	80	0	-4	0	-4	4	2	2.5	1.5	2.5	0	-150	-250	1.5
80	120	0	-5	0	-5	5	2.5	2.5	2.5	2.5	0	-200	-380	2.5
120	150	0	-7	0	-7	7	3.5	2.5	2.5	2.5	0	-250	-380	2.5
150	180	0	-7	0	-7	7	3.5	5	4	5	0	-250	-380	4
180	250	0	-8	0	-8	8	4	5	5	5	0	-300	-500	5

								Outer Rin	g						
)	Δ_{C}	Этр	$\Delta_{\mathfrak{l}}$	b Ds	V_{Dp}^{b}	V_{Dmp}	K _{ea}	S_D^e, S_{D1}^c	S _{ea} c,e	S _{ea1} c	Δ_{Cs} , Δ	A _{C1s} ^c	V _{Cs} , V _{C1s} c
	over	incl.	high	low	high	low	max.	max.	max.	max.	max.	max.	high	low	max.
а	2.5	6	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	3			1.5
	6	18	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	3			1.5
	18	30	0	-4	0	-4	4	2	2.5	1.5	2.5	4			1.5
	30	50	0	-4	0	-4	4	2	2.5	1.5	2.5	4			1.5
	50	80	0	-4	0	-4	4	2	4	1.5	4	6	Identical to	and V of	1.5
	80	120	0	-5	0	-5	5	2.5	5	2.5	5	7		λ_{Bs} and V_{Bs} of	2.5
	120	150	0	-5	0	-5	5	2.5	5	2.5	5	7	inner ring of	same bearing	2.5
	150	180	0	-7	0	-7	7	3.5	5	2.5	5	7			2.5
	180	250	0	-8	0	-8	8	4	7	4	7	10			4
	250	315	0	-8	0	-8	8	4	7	5	7	10			5
	315	400	0	-10	0	-10	10	5	8	7	8	11			7

^aThis diameter is included in the group.

^bApplicable only to open and capped bearings in diameter series 0, 1, 2, 3 and 4.

^cApplies to groove type ball bearings only.

^dFor instrument ball bearing tolerances see [3.2, 3.3].

^eDoes not apply to bearings with flanged outer ring.

^fThis refers to the rings of single bearings made for paired or stacked mounting.

⁹For tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

TABLE CD3.10. Tolerance Class ABEC-9, RBEC-9. Metric Ball [except instrument bearings^d and tapered roller bearings^g] of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 1 of [3.8]. **PART 2.** Dimensions in Millimeters; Tolerances in 0.0001 Inches.

								Inner Ring	9						
													Δ_{Bs}		
	(d	Δ_{d}	lmp	Δ	ds	V_{dp}^{b}	V_{dmp}	K_{ia}	S_d	S_{ia}^{c}	all	normal	modified	V_{Bs}
	over	incl.	high	low	high	low	max.	max.	max.	max.	max.	high	low	max.	max.
а	0.6	2.5	0	-1	0	-1	1	0.5	0.5	0.5	0.5	0	-16	-98	0.5
	2.5	10	0	-1	0	-1	1	0.5	0.5	0.5	0.5	0	-16	-98	0.5
	10	18	0	-1	0	-1	1	0.5	0.5	0.5	0.5	0	-31	-98	0.5
	18	30	0	-1	0	-1	1	0.5	1	0.5	1	0	-47	-98	0.5
	30	50	0	-1	0	-1	1	0.5	1	0.5	1	0	-47	-98	0.5
	50	80	0	-1.5	0	-1.5	1.5	1	1	0.5	1	0	-59	-98	0.5
	80	120	0	-2	0	-2	2	1	1	1	1	0	-79	-150	1
	120	150	0	-3	0	-3	3	1.5	1	1	1	0	-98	-150	1
	150	180	0	-3	0	-3	3	1.5	2	1.5	2	0	-98	-150	1.5
	180	250	0	-3	0	-3	3	1.5	2	2	2	0	-138	-197	2

								Outer Rin	g					_
)	Δ_{C})mp	$\Delta_{\mathfrak{l}}$	b Ds	V_{Dp}^{b}	V_{Dmp}	K _{ea}	S_D^e, S_{D1}^c	S _{ea} c,e	S _{ea1} ^c	$\Delta_{Cs},\Delta_{C1s}^{}c}$	V _{Cs} , V _{C1s} ^c
	over	incl.	high	low	high	low	max.	max.	max.	max.	max.	max.	high low	max.
а	2.5	6	0	-1	0	-1	1	0.5	0.5	0.5	0.5	1	-	0.5
	6	18	0	-1	0	-1	1	0.5	0.5	0.5	0.5	1		0.5
	18	30	0	-1.5	0	-1.5	1.5	1	1	0.5	1	1.5		0.5
	30	50	0	-1.5	0	-1.5	1.5	1	1	0.5	1	1.5		0.5
	50	80	0	-1.5	0	-1.5	1.5	1	1.5	0.5	1.5	2.5	Identical to A. and V	0.5
	80	120	0	-2	0	-2	2	1	2	1	2	3	Identical to Δ_{Bs} and V_{E}	
	120	150	0	-2	0	-2	2	1	2	1	2	3	inner ring of same bea	ring 1
	150	180	0	-3	0	-3	3	1.5	2	1	2	3		1
	180	250	0	-3	0	-3	3	1.5	3	1.5	3	4		1.5
	250	315	0	-3	0	-3	3	1.5	3	2	3	4		2
	315	400	0	-4	0	-4	4	2	3	3	3	4.5		3

^aThis diameter is included in the group.

^bApplicable only to open and capped bearings in diameter series 0, 1, 2, 3 and 4.

^cApplies to groove type ball bearings only.

^dFor instrument ball bearing tolerances see [3.2, 3.3].

^eDoes not apply to bearings with flanged outer ring.

⁹For tapered roller bearing tolerances see Tables CD3.11-CD3.20 from [3.6, 3.7].

TABLE CD3.11. Tolerance Class K. Metric Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 2 of [3.6]. Dimensions in Millimeters; Tolerances in Micrometers.

					(Cone (Inner Ri	ing)					
(d	$\Delta_{ m c}$	dmp	V_{dp}	V_{dmp}	K _{ia}	Δ-	T1S	Δ-	T2S	Δ	TS
over	incl.	high	low	max.	max.	max.	high	low	high	low	high	low
10	18	0	-12	12	9	15	100	0	100	0	200	0
18	30	0	-12	12	9	18	100	0	100	0	200	0
30	50	0	-12	12	9	20	100	0	100	0	200	0
50	80	0	-15	15	11	25	100	0	100	0	200	0
80	120	0	-20	20	15	30	100	-100	100	-100	200	-200
120	180	0	-25	25	19	35	150	-150	200	-100	350	-250
180	250	0	-30	30	23	50	150	-150	200	-100	350	-250
250	315	0	-35	35	26	60	150	-150	200	-100	350	-250
315	400	0	-40	40	30	70	200	-200	200	-200	400	-400
400	500	0	-45	60	35	80	а	а	а	а	480	-480
500	630	0	-50	70	35		а	а	а	а	480	-480
630	800	0	-80	120	35		а	а	а	а	480	-480
800	1000	0	-100	150	35		а	а	а	а	450	-450
1000	1200	0	-130	195	35		а	а	а	а	450	-450
1200	1600	0	-150	225	35		а	а	а	а	450	-450
1600	2000	0	-200	300	35		а	а	а	а	450	-450
2000		0	-250	375	35		а	а	а	а	450	-450

^aThese sizes are matched assemblies only.

	Cup (Outer Ring) D Δ _{Dmp} V _{Dp} V _{Dmp} K _{ea} over incl. high low max. max. max. 18 30 0 -12 12 9 18 30 50 0 -14 14 11 20 50 80 0 -16 16 12 25 80 120 0 -18 18 14 35 120 150 0 -20 20 15 40 150 180 0 -25 25 19 45 180 250 0 -30 30 23 50 250 315 0 -35 35 26 60 315 400 0 -40 40 30 70 400 500 0 -45 45 34 80 500 630 0											
)	$\Delta_{ extsf{D}}$	mp	V_{Dp}	V_{Dmp}	K _{ea}						
over	incl.					max.						
18	30	0	-12	12	9	18						
30	50	0	-14	14	11	20						
50	80	0	-16	16	12	25						
80	120	0	-18	18	14	35						
120	150	0	-20	20	15	40						
150	180	0	-25	25	19	45						
180	250	0	-30	30	23	50						
250	315	0	-35	35	26	60						
315	400	0	-40	40	30	70						
400	500	0	-45	45	34	80						
500	630	0	-50	50	38	100						
630	800	0	-75	95	40	120						
800	1000	0	-100	150	42	140						
1000	1200	0	-130	195	44	160						
1200	1600	0	-165	245	46	180						
1600	2000	0	-200	300	48	200						
2000		0	-250	375	50	200						

TABLE CD3.12. Tolerance Class N. Metric Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 2 of [3.6]. Dimensions in Millimeters; Tolerances in Micrometers.

					(Cone (Inner Ri	ing)					
(d	$\Delta_{\sf d}$	mp	V_{dp}	V_{dmp}	K _{ia}	Δ_1	T1S	Δ_1	T2S	Δ	TS
over	incl.	high	low	max.	max.	max.	high	low	high	low	high	low
10	18	0	-12	12	9	15	50	0	50	0	100	0
18	30	0	-12	12	9	18	50	0	50	0	100	0
30	50	0	-12	12	9	20	50	0	50	0	100	0
50	80	0	-15	15	11	25	50	0	50	0	100	0
80	120	0	-20	20	15	30	50	0	50	0	100	0
120	180	0	-25	25	19	35	50	0	100	0	150	0
180	250	0	-30	30	23	50	50	0	100	0	150	0
250	315	0	-35	35	26	60	100	0	100	0	200	0
315	400	0	-40	40	30	70	100	0	100	0	200	0
400	500	0	-45	60	35	80	а	а	а	а	200	0

^aThese sizes are matched assemblies only.

			Cup (Outer F	Ring)		
)	$\Delta_{ extsf{D}}$	mp	V_{Dp}	V_{Dmp}	K_{ea}
over	incl.	high	low	max.	max.	max.
18	30	0	-12	12	9	18
30	50	0	-14	14	11	20
50	80	0	-16	16	12	25
80	120	0	-18	18	14	35
120	150	0	-20	20	15	40
150	180	0	-25	25	19	45
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70
400	500	0	-45	45	34	80
500	630	0	-50	50	38	100

TABLE CD3.13. Tolerance Class C. Metric Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 2 of [3.6]. Dimensions in Millimeters; Tolerances in Micrometers.

					(Cone (Inner R	ing)					
(d	$\Delta_{\sf d}$	lmp	V_{dp}	V_{dmp}	K _{ia}	Δ	T1S	Δ	T2S	Δ	TS
over	incl.	high	low	max.	max.	max.	high	low	high	low	high	low
10	18	0	-7	4	5	5	100	-100	100	-100	200	-200
18	30	0	-8	4	5	5	100	-100	100	-100	200	-200
30	50	0	-10	4	5	6	100	-100	100	-100	200	-200
50	80	0	-12	5	5	6	100	-100	100	-100	200	-200
80	120	0	-15	5	5	6	100	-100	100	-100	200	-200
120	180	0	-18	5	5	8	100	-100	100	-150	200	-250
180	250	0	-22	6	5	10	100	-150	100	-150	200	-300
250	315	0	-22	7	5	11	100	-150	100	-150	200	-300
315	400	0	-25	11	10	13	150	-150	100	-150	250	-300
400	500	0	-25	14	10	18	а	а	а	а	300	-300
500	630	0	-30	17	10	25	а	а	а	а	300	-400
630	800	0	-40	22	15	35	а	а	а	а	300	-400
800	1000	0	-50	28	15	50	а	а	а	а	350	-400
1000	1200	0	-60	33	20	60	а	а	а	а	350	-450
1200	1600	0	-80	44	25	80	а	а	а	а	350	-500

^aThese sizes are matched assemblies only.

	Cup (Outer Ring) D Δ _{Dmp} V _{Dp} V _{Dmp} K _{ea} over incl. high low max. max. max. 18 30 0 -8 4 5 5 30 50 0 -9 4 5 6 50 80 0 -11 4 6 6 80 120 0 -13 5 7 6 120 150 0 -15 5 8 7 150 180 0 -18 5 9 8 180 250 0 -20 6 10 10 250 315 0 -25 8 13 11 315 400 0 -28 10 14 13 400 500 0 -30 14 14 18 500 630 0 -35 17 14											
)	Δ_{D}	mp	V_{Dp}	V_{Dmp}	K_{ea}						
over	incl.			max.		max.						
18	30	0	-8	4	5	5						
30	50	0	-9	4	5	6						
50	80	0	-11	4	6	6						
80	120	0	-13	5	7	6						
120	150	0	-15	5	8	7						
150	180	0	-18	5	9	8						
180	250	0	-20	6	10	10						
250	315	0	-25	8	13	11						
315	400	0	-28	10	14	13						
400	500	0	-30	14	14	18						
500	630	0	-35	17	14	25						
630	800	0	-40	22	14	35						
800	1000	0	-50	28	14	50						
1000	1200	0	-60	33	14	60						
1200	1600	0	-80	44	14	80						

TABLE CD3.14. Tolerance Class B. Metric Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 2 of [3.6]. Dimensions in Millimeters; Tolerances in Micrometers.

						Cone (I	nner Ring)						
	d	$\Delta_{\sf d}$	lmp	V_{dp}	V_{dmp}	K _{ia}	S _{ia}	Δ_1	18	Δ_1	⁻ 2S	Δ	TS
over	incl.	high	low	max.	max.	max.	max.	high	low	high	low	high	low
10	18	0	-5	3	4	3	3	а	а	а	а	200	-200
18	30	0	-6	3	4	3	4	а	а	а	а	200	-200
30	50	0	-8	3	5	4	4	а	а	а	а	200	-200
50	80	0	-9	3	5	4	4	а	а	а	а	200	-200
80	120	0	-10	3	5	5	5	а	а	а	а	200	-200
120	180	0	-13	3	7	6	7	а	а	а	а	200	-250
180	250	0	-15	4	8	8	8	а	а	а	а	200	-300
250	315	0	-15	4	8			а	а	а	а	200	-300

^aThese sizes are matched assemblies only.

			Cup (Outer Ring)			
)	$\Delta_{ extsf{D}}$	mp	V_{Dp}	V_{Dmp}	K _{ea}	S _{ea}
over	incl.	high	low	max.	max.	max.	max.
18	30	0	-6	3	4	3	3
30	50	0	-7	3	5	3	3
50	80	0	-9	3	5	4	4
80	120	0	-10	3	5	4	4
120	150	0	-11	3	6	4	4
150	180	0	-13	3	7	4	5
180	250	0	-15	4	8	5	6
250	315	0	-18	5	9	5	6
315	400	0	-20	5	10	5	6

TABLE CD3.15. Tolerance Class A. Metric Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Metric Radial Bearings Given in Table 2 of [3.6]. Dimensions in Millimeters; Tolerances in Micrometers.

						Cone (I	nner Ring)						
	d	$\Delta_{\sf d}$	mp	V_{dp}	V_{dmp}	K _{ia}	S _{ia}	Δ_T	T1S	Δ_T	'2S	Δ	TS
over	incl.	high	low	max.	max.	max.	max.	high	low	high	low	high	low
10	18	0	-5	2	2.5	1.9	2.4	а	а	а	а	200	-200
18	30	0	-6	2	2.5	1.9	2.4	а	а	а	а	200	-200
30	120	0	-8	2	2.5	1.9	2.4	а	а	а	а	200	-200
120	180	0	-8	2	2.5	1.9	2.4	а	а	а	а	200	-250
180	265	0	-8	2	2.5	1.9	2.4	а	а	а	а	200	-300

^aThese sizes are matched assemblies only.

	Cup (Outer Ring)											
)	Δ_{D}	mp	V_{Dp}	V_{Dmp}	K _{ea}	S _{ea}					
over	incl.	high	low	max.	max.	max.	max.					
18	120	0	-8	2	2.5	1.9	2.4					
120	180	0	-8	2	2.5	1.9	2.4					
180	250	0	-8	2	2.5	1.9	2.4					
250	315	0	-8	2	2.5	1.9	2.4					

TABLE CD3.16. Tolerance Class 4. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART I.** Dimensions in Millimeters; Tolerances in Micrometers.

					Cone (I	nner Ring)					
(d	$\Delta_{\sf d}$	mp	Δ_{l}	BS	Δ-	Γ1S	Δ-	Γ2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	76.2	13	0	76	-254	102	0	102	0	203	0
76.2	101.6	25	0	76	-254	102	0	102	0	203	0
101.6	152.4	25	0	76	-254	152	-152	203	-102	356	-254
152.4	304.8	25	0			152	-152	203	-102	356	-254
304.8	609.6	51	0			178	-178	203	-102	381	-381
609.6	914.4	76	0			178	-178	203	-102	381	-381
914.4	1219.2	102	0			178	-178	203	-102	381	-381
1219.2		127	0			178	-178	203	-102	381	-381

			Cup (C	outer Ring)			
1)	Δ_{D}	mp	K _{ia}	K _{ea}	Δ_{c}	CS
over	incl.	high	low	max.	max.	high	low
	101.6	25	0	51	51	51	-254
101.6	304.8	25	0	51	51	51	-254
304.8	355.6	51	0	51	51	51	-254
355.6	609.6	51	0	51	51		
609.6	914.4	76	0	76	76		
914.4	1219.2	102	0	76	76		
1219.2		127	0	76	76		

TABLE CD3.16. Tolerance Class 4. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART 2.** Dimensions in Inches; Tolerances in 0.0001 Inches.

					Cone (I	nner Ring)					
	d	$\Delta_{\sf d}$	mp	Δ	BS	Δ_{T}	1S	Δ_{T}		Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	3	5	0	30	-100	40	0	40	0	80	0
3	4	10	0	30	-100	40	0	40	0	80	0
4	6	10	0	30	-100	60	-60	80	-40	140	-100
6	12	10	0			60	-60	80	-40	140	-100
12	24	20	0			70	-70	80	-80	150	-150
24	36	30	0			70	-70	80	-80	150	-150
36	48	40	0			70	-70	80	-80	150	-150
48		50	0			70	-70	80	-80	150	-150

			Cup (C	outer Ring)			
[)	Δ_{D}	mp	K _{ia}	K _{ea}	Δ	CS
over	incl.	high	low	max.	max.	high	low
	4	10	0	20	20	20	-100
4	12	10	0	20	20	20	-100
12	14	20	0	20	20	20	-100
14	24	20	0	20	20		
24	36	30	0	30	30		
36	48	40	0	30	30		
48		50	0	30	30		

TABLE CD3.17. Tolerance Class 2. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART I.** Dimensions in Millimeters; Tolerances in Micrometers.

	Cone (Inner Ring)													
	d Δ_{dmp}		mp	$\Delta_{ m l}$	BS	Δ-	Γ1S	Δ-	T2S	$\Delta_{\sf TS}$				
over	incl.	high	low	high	low	high	low	high	low	high	low			
	76.2	13	0	76	-254	102	0	102	0	203	0			
76.2	101.6	25	0	76	-254	102	0	102	0	203	0			
101.6	152.4	25	0	76	-254	102	0	102	0	203	0			
152.4	304.8	25	0			102	0	102	0	203	0			
304.8	609.6	51	0			178	-178	203	-203	381	-381			

	Cup (Outer Ring)											
])	Δ_{D}	mp	K _{ia}	K _{ea}	Δ_{CS}						
over	incl.	high	low	max.	max.	high	low					
	101.6	25	0	38	38	51	-254					
101.6	304.8	25	0	38	38	51	-254					
304.8	355.6	51	0	38	38	51	-254					
355.6	609.6	51	0	38	38							
609.6	914.4	76	0	51	51							

TABLE CD3.17. Tolerance Class 2. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART 2.** Dimensions in Inches; Tolerances in 0.0001 Inches.

					Cone (I	nner Ring)					
(d Δ_{dmp}		mp	Δ	BS	Δ_{7}	Γ1S	Δ_{T2S}		Δ_{TS}	
over	incl.	high	low	high	low	high	low	high	low	high	low
	3	5	0	76	-254	40	0	40	0	80	0
3	4	10	0	76	-254	40	0	40	0	80	0
4	6	10	0	76	-254	40	0	40	0	80	0
6	12	10	0			40	0	40	0	80	0
12	24	20	0			70	-70	80	-80	150	-150

	Cup (Outer Ring)												
[D	Δ_{D}	mp	K _{ia}	K _{ea}	Δ	CS						
over	incl.	high	low	max.	max.	high	low						
	4	10	0	15	15	51	-254						
4	12	10	0	15	15	51	-254						
12	14	20	0	15	15	51	-254						
14	24	20	0	15	15								
24	36	30	0	20	20								

TABLE CD3.18. Tolerance Class 3. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART I.** Dimensions in Millimeters; Tolerances in Micrometers.

					Cone (I	nner Ring)					
	d	$\Delta_{\sf d}$	mp	Δ	BS	Δ	Γ1S	Δ	T2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	76.2	13	0	76	-254	102	-102	102	-102	203	-203
76.2	101.6	13	0	76	-254	102	-102	102	-102	203	-203
101.6	152.4	13	0	76	-254	102	-102	102	-102	203	-203
152.4	304.8	13	0			102	-102	102	-102	203	-203
304.8						^a 102	^a -102	^a 102	^a -102	^a 203	^a -203
	609.6	25	0			^b 178	^b -178	^b 203	^b -203	^b 381	^b -381
609.6	914.4	38	0			178	-178	203	-203	381	-381
914.4	1219.2	51	0			178	-178	203	-203	381	-381
1219.2		76	0			178	-178	203	-203	381	-381

^aCup Outside Diameter ≤ 508.0

^bCup Outside Diameter > 508.0

			Cup (C	uter Ring)			
)	Δ_{D}	mp	K_{ia}	K_{ea}	Δ_{ϵ}	CS
over	incl.	high	low	max.	max.	high	low
	101.6	13	0	8	8	51	-254
101.6	304.8	13	0	8	8	51	-254
304.8	355.6	25	0	18	18	51	-254
355.6	609.6	25	0	18	18		
609.6	914.4	38	0	51	57		
914.4	1219.2	51	0	76	76		
1219.2		76	0	76	76		

TABLE CD3.18. Tolerance Class 3. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART 2.** Dimensions in Inches; Tolerances in 0.0001 Inches.

					Cone (li	nner Ring)					
	d	$\Delta_{\sf d}$	mp	Δ	BS	Δ-	Γ1S	Δ-	Γ2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	3	5	0	30	-100	40	-40	40	-40	80	-80
3	4	5	0	30	-100	40	-40	40	-40	80	-80
4	6	5	0	30	-100	40	-40	40	-40	80	-80
6	12	5	0			40	-40	40	-40	80	-80
12						^a 40	^a -40	^a 40	^a -40	^a 80	^a -80
	24	10	0			^b 70	^b -70	^b 80	^b -80	^b 150	^b -150
24	36	15	0			70	-70	80	-80	150	-150
36	48	20	0			70	-70	80	-80	150	-150
48		30	0			70	-70	80	-80	150	-150

^aCup Outside Diameter ≤ 508.0

^bCup Outside Diameter > 508.0

			Cup (C	uter Ring)			
)	Δ_{D}	mp	K_{ia}	K_{ea}	Δ	CS
over	incl.	high	low	max.	max.	high	low
	4	5	0	3	3	20	-100
4	12	5	0	3	3	20	-100
12	14	10	0	7	7	20	-100
14	24	10	0	7	7		
24	36	15	0	20	20		
36	48	20	0	30	30		
48		30	0	30	30		

TABLE CD3.19. Tolerance Class 0. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART I.** Dimensions in Millimeters; Tolerances in Micrometers.

					Cone (I	nner Ring)					
	d	$\Delta_{\sf d}$	mp	Δ_{i}	BS	Δ-	Γ1S	Δ-	T2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	76.2	13	0	76	-254	102	-102	102	-102	203	-203
76.2	101.6	13	0	76	-254	102	-102	102	-102	203	-203
101.6	152.4	13	0	76	-254	102	-102	102	-102	203	-203
152.4	304.8	13	0			102	-102	102	-102	203	-203

			Cup (C	outer Ring)											
[D Δ_{Dmp} K_{ia} K_{ea} Δ_{CS}														
over	incl.	high	low	max.	max.	high	low								
	101.6	13	0	4	4	51	-254								
101.6	304.8	13	0	4	4	51	-254								

TABLE CD3.19. Tolerance Class 0. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART 2.** Dimensions in Inches; Tolerances in 0.0001 Inches.

					Cone (I	nner Ring)					
(d	Δ_{d}	mp	Δ	BS	Δ_{T}	18	Δ_{T}	⁻ 2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	3	5	0	30	-100	40	-40	40	-40	80	-80
3	4	5	0	30	-100	40	-40	40	-40	80	-80
4	6	5	0	30	-100	40	-40	40	-40	80	-80
6	12	5	0			40	-40	40	-40	80	-80

			Cup (C	outer Ring)											
	D Δ_{Dmp} K_{ia} K_{ea} Δ_{CS}														
over	incl.	high	low	max.	max.	high	low								
	4	5	0	1.5	1.5	20	-100								
4	12	5	0	1.5	1.5	20	-100								

TABLE CD3.20. Tolerance Class 00. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART I.** Dimensions in Millimeters; Tolerances in Micrometers.

					Cone (li	nner Ring)					
	d	$\Delta_{\sf d}$	mp	$\Delta_{ m l}$	BS	Δ-	Γ1S	Δ-	Γ2S	Δ	TS
over	incl.	high	low	high	low	high	low	high	low	high	low
	76.2	8	0	76	-254	102	-102	102	-102	203	-203
76.2	101.6	8	0	76	-254	102	-102	102	-102	203	-203
101.6	152.4	8	0	76	-254	102	-102	102	-102	203	-203
152.4	304.8	8	0			102	-102	102	-102	203	-203

			Cup (C	outer Ring)											
[D Δ_{Dmp} K_{ia} K_{ea} Δ_{CS}														
over	incl.	high	low	max.	max.	high	low								
	101.6	8	0	2	2	51	-254								
101.6	304.8	8	0	2	2	51	-254								

TABLE CD3.20. Tolerance Class 00. Inch Tapered Roller Bearings of Dimensions Conforming to the Basic Plan for Boundary Dimensions of Inch Radial Bearings in [3.7]. **PART 2.** Dimensions in Inches; Tolerances in 0.0001 Inches.

					Cone (li	nner Ring)					
	b	Δ_{d}	mp	Δ	BS	Δ_{T}	18	Δ_{T}	⁻ 2S	Δ -	rs .
over	incl.	high	low	high	low	high	low	high	low	high	low
	3	3	0	30	-100	40	-40	40	-40	80	-80
3	4	3	0	30	-100	40	-40	40	-40	80	-80
4	6	3	0	30	-100	40	-40	40	-40	80	-80
6	12	3	0			40	-40	40	-40	80	-80

			Cup (C	outer Ring)											
	D Δ_{Dmp} K_{ia} K_{ea} Δ_{CS}														
over	incl.	high	low	max.	max.	high	low								
	4	3	0	0.75	0.75	20	-100								
4	12	3	0	0.75	0.75	20	-100								

TABLE CD3.21. Industrial Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Single-Row Tapered Roller Bearings of Tolerance Classes K and N. Dimensions in Millimeters; Deviations and Fits in Micrometers.

d over	incl.		Ç	ΓΑΤΙΝG CC	ONE	ROTATIN	IG OR STA CONE					ONE BORE								
over	incl.		Ç		ONE		CONE													
over	incl.			ground sea								_		STATIONA	ARY CONE					
over	incl.			ground sea															ardened ar	
over	incl.		con			ungrou	ınd or grou	nd seat		nground se			ground sea			nground se			ground sea	<u>.t</u>
over	incl.			stant load v			/y loads, or		mo	derate load	ds,	mo	oderate load	ds,	she	eaves, whee	els,			
	incl.		mo	derate sho	ock	sp	eed or sho	ock		no shock			no shock			idlers		W	heel spindle	es
	incl.		cone seat	resultant		cone seat	resultant		cone seat	resultant		cone seat	resultant		cone seat	resultant		cone seat	resultant	İ
		deviation	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol
10		-12	+18	30T	,	+23	35T		0	12T	-	-6	6T	,	-6	6T	,	-16	4L	
	18	0	+7	7T	m6	+12	12T	n6	-11	11L	h6	-17	17L	g6	-17	17L	g6	-27	27L	f6
		-12	+21	33T		+28	40T		0	12T		-7	5T		-7	5T		-20	8L	<u> </u>
18	30	0	+8	8T	m6	+15	15T	n6	-13	13L	h6	-20	20L	g6	-20	20L	g6	-33	33L	f6
		-12	+25	37T		+33	45T		0	12T		-9	3T	_	-9	3T		-25	13L	
30	50	0	+9	9T	m6	+17	17T	n6	-16	16L	h6	-25	25L	g6	-25	25L	g6	-41	41L	f6
50	00	-15	+30	45T	0	+39	54T	0	0	15T	1-0	-10	5T	0	-10	5T	0	-30	15L	"
50	80	0	+11	11T	m6	+20	20T	n6	-19	19L	h6	-29	29L	g6	-29	29L	g6	-49	49L	f6
80	120	-20	+35	15T	m6	+45	65T	n6	0	20T	h6	-12	8T	g6	-12	8T	q6	-36	16L	f6
80	120	0	+13	13T	1110	+23	23T	110	-22	22L	110	-34	34L	go	-34	34L	yo	-58	58L	10
120	180	-25	+52	77T	n6	+68	93T	р6	0	25T	h6	-14	11T	g6	-14	11T	g6	-43	18L	f6
120	100	0	+27	27T	110	+43	43T	ро	-25	25L	110	-39	39L	go	-39	39L	go	-68	68L	10
180	200					+106	136T													İ
100	200					+77	77T													İ
200	225	-30	+60	90T	n6	+109	139T	r6	0	30T	h6	-15	15T	g6	-15	15T	g6	-50	20L	f6
		0	+31	31T		+80	80T		-29	29L		-44	44L	90	-44	44L	90	-79	79L	
225	250					+113	143T													İ
						+84	84T													<u> </u>
250	280	0.5	00	404T		+146	181T		_	OFT		47	40T		47	40T		50	041	İ
		-35	+66	101T	n6	+94 +150	94T 185T	r7	0 -32	35T 32L	h6	-17 -49	18T 49L	g6	-17	18T 49L	g6	-56 -68	21L 88L	f6
280	315	0	+34	34T		+150	98T		-32	32L		-49	49L		-49	49L		-68	88L	ĺ
						+96	205T											1		
315	355	-40	+73	113T		+105	108T		0	40T		-18	22T		-18	22T				1
+		0	+73	37T	n6	+171	211T	r7	-36	36L	h6	-16 -75	75L	g7	-16 -75	75L	g7			
355	400	U	+01	0, 1		+114	114T		00	JUL		, ,	752		, ,	750				1
						+189	234T											1		
400	450	-45	+80	125T		+126	126T	_	0	45T		-20	25T	_	-20	25T	_			1
450		0	+40	40T	n6	+195	240T	r7	-40	40L	h6	-83	83L	g7	-83	83L	g7			
450	500	Ť				+132	132T													1
500	000	-50	+100	150T		+200	250T		0	50T		-50	0		-50	0				
500	630	0	+50	50T		+125	125T		-50	50L		-100	100L		-100	100L				
630	800	-80	+125	205T		+225	305T		0	80T		-80	0		-80	0				
030	800	0	+50	50T		+150	150T		-75	75L		-150	150L		-150	150L				
800	1000	-100	+150	250T		+275	375T		0	100T		-100	0		-100	0				
=Loose / T=T		0	+50	50T		+175	175T		-100	100L		-200	200L		-200	200L				

TABLE CD3.22. Industrial Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Single-Row Tapered Roller Bearings of Tolerance Classes K and N. Dimensions in Millimeters; Deviations and Fits in Micrometers.

	CUP OD						DEV	IATION FE	ROM MAXII	MUM CUP	OD AND R	ESULTANT	FIT				
						STA	TIONARY	CUP							ING CUP		
[D			floating or clamped			adjustable		no	nadjustable in carriers	or		able or in o aves - clam			ves - uncla	mped
over	incl.	deviation	cup seat deviation	resultant fit	symbol	cup seat deviation	resultant fit	symbol	cup seat	resultant fit	symbol	cup seat	resultant fit	symbol	cup seat deviation	resultant fit	symbol
18	30	0 -12	+7 +28	7L 40L	G7	-9 +12	9T 24L	J7	-35 -14	35T 2T	P7	-41 -20	41T 8T	R7	-61 -28	61T 16T	R8
30	50	0 -14	+9 +34	9L 48L	G7	-11 +14	11T 28L	J7	-42 -17	42T 3T	P7	-50 -25	50T 11T	R7	-73 -34	73T 20T	R8
50	65											-60	60T				
65	80	0 -16	+10 +40	10L 56L	G7	-12 +18	12T 34L	J7	-51 -21	51T 5T	P7	-30 -62	14T 62T	R7	-90 -45	90T 29T	
80	100											-32 -73	16T 73T				
100	120	-18	+12 +47	12L 65L	G7	-13 +22	13T 40L	J7	-59 -24	59T 6T	P7	-38 -76	20T 76T	R7	-100 -50	100T 32T	
120	140											-41 -88	23T 88T				
140	150	0 -20	+14 +54	14L 74L	G7	-14 +26	14T 46L	J7	-68 -28	68T 8T	P7	-48 -90	28T 90T	R7	-115 -65	115T 45T	
150	160											-50 -90	30T 90T				
160	180	0 -25	+14 +54	14L 79L	G7	-14 +26	14T 51L	J7	-68 -28	68T 3T	P7	-50 -93	25T 93T	R7	-115 -65	115T 40T	
180	200											-53 -106	28T 106T				
200	225	0	+15	15L	G7	-16	16T	J7	-79	79T	P7	-60 -109	30T 109T	R7	-125	125T	
225	250	-30	+61	91L	G.	+30	60L	0.	-33	3T		-63 -113	33T 113T		-75	45T	
250	280											-67 -126	37T 126T				
280	315	0 -35	+17 +69	17L 104L	G7	-16 +36	16T 71L	J7	-88 -36	88T 1T	P7	-74 -130	39T 130T	R7	-140 -90	140T 55T	
315	355											-78 -144	43T 144T		-144	144T	
355	400	0 -40	+62 +98	62L 138L	F6	-18 +39	18T 79L	J7	-98 -41	98T 1T	P7	-87 -150	47T 150T	R7	-87 -150	47T 150T	R7
												-93 -166	53T 166T		-93 -166	53T 166T	
400	450	0 -45	+68 +95	68L 140L	F5	-20 +43	20T 88L	J7	-108 -45	108T 0	P7	-103 -172	58T 172T	R7	-103 -172	58T 172T	R7
450	500	0	+65	65L		-22	22T		-118	118T		-109 -190	64T 190T		-109 -190	64T 190T	
500	630	-50 0	+115 +75	165L 75L		+46 -25	96L 25T		-50 -150	0 150T		-120	70T		-120	70T	
630	800	-75 0	+150 +75	225L 75L		+50 -25	125L 25T		-75 -200	0 200T							
800 L =Loose / ⁻	1000	-100	+175	275L		+75	175L		-200 -100	0							

TABLE CD3.23. Automotive Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Single-Row Tapered Roller Bearings of Tolerance Classes K and N. Dimensions in Millimeters; Deviations and Fits in Micrometers.

(CONE BOR	E								DEVIA	TION FRO	M MAXIMU	JM CONE E	BORE AND	RESULTA	NT FIT							
											ROTATIN	G CONES									STAT	TIONARY C	ONE
										rear wheels			transaxles ansmission cross shaft	ns s	(UN	ear wheels	NG)				(full	ront wheels rear wheels -floating ax	s (les)
						IION			(sem	ni-floating a	ıxles)	tr	ansfer case	es	(sem	i-floating a	xles)		differential		tı	ailer wheel	S
	d			adjustable adjustable clamped collapsible spacer					n	onadjustab	le	n	onadjustab	le	no	onadjustab	le	no	onadjustab	le		adjustable	
over	incl.	da da da da da da da da da da da da da d	cone seat deviation		symbol	cone seat		symbol	cone seat	resultant	symbol	cone seat	resultant fit	symbol	cone seat	resultant fit	symbol	cone seat	resultant fit	symbol	cone seat	resultant	symbol
18	30	-12 0	+15 +2	27T 2T	k6	+15 +2	27T 2T	k6	+35 +22	47T 22T	p6	+21 +8	33T 8T	m6	+35 +22	47T 22T	p6	+56 +35	68T 35T		-20 -33	8L 33L	p6
30	50	-12 0	+18 +2	30T 2T	k6	+18 +2	30T 2T	k6	+42 +26	54T 26T	p6	+25 +9	37T 9T	m6	+42 +26	54T 26T	p6	+68 +43	80T 43T		-25 -41	13L 41L	p6
50	80	-15 0	+21 +2	26T 2T	k6	+21 +2	36T 2T	k6	+51 +32	66T 32T	р6	+30 +11	45T 11T	m6				+89 +59	104T 59T		-30 -49	15L 49L	р6
80	120	-20 0	+13 9	33T 9L	j6				+45 +23	65T 23T	n6	+35 +13	55T 13T	m6				+114 +79	134T 79T		-36 -58	16L 58L	p6
120	180	-25 0	+14 11	39T 11L	j6				+52 +27	77T 29T	n6	+40 +15	66T 15T	m6				+140 +100	165T 100T		-43 -68	18L 68L	p6

TABLE CD3.24. Automotive Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Metric Radial Single-Row Tapered Roller Bearings of Tolerance Classes K and N. Dimensions in Millimeters; Deviations and Fits in Micrometers.

	CUP OD						DEV		ROM MAXIN	MUM CUP	OD AND R	ESULTAN	ΓFIT				
								STATION	ARY CUP						RC	OTATING C	UP
													ransmissio				
													¹ transaxles	3			
						1							pinion			front wheel	-
							ransmissio			rear			differential			rear wheels	
				differential			cross shafts		,	wheels			(solid seat)			I-floating ax	
				(split seal)		tr	ansfer case	es	(sem	ni-floating a	xles)	tr	ansfer case	es	t	railer whee	IS
Ι.,	,			a divetable			ماليونوامام		alamana	adjustable	A DINIC)	_	ما معانی معمام	la.			la.
1 ') 			adjustable			adjustable		ciamped	d (UNIT BE	ARING)	n	onadjustab I	ie I	l n	onadjustab I	ie
			cup seat	resultant		cup seat	resultant		cup seat	resultant		cup seat	resultant		cup seat	resultant	
over	incl.	deviation	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol	deviation	fit	symbol
		0	0	0		-13	13T	,	+9	9L	,	-50	50T	,	-50	50T	,
30	50	-14	+25	39L	H7	+3	17L	K6	+34	48L	G7	-25	+11	R7	-25	+11	R7
50	0.5											-60	60T		-60	60T	
50	65	0	0	0	H7	-15	15T	K6	+10	10L	G7	-30	14T	R7	-30	14T	R7
65	80	-16	+30	46L	П/	+4	20L	Nο	+40	56L	G/	-62	62T	H/	-62	62T	K/
65	80											-32	16T		-32	16T	
80	100											-73	73T		-73	73T	
- 00	100	0	0	0	H7	-18	18T	K6	+12	12L	G7	-38	20T	R7	-38	20T	R7
100	120	-18	+35	53L	117	+4	22L	110	+47	65L	a,	-76	76T	117	-76	76T	117
												-41	23T		-41	23T	
120	140	_										-88	88T		-88	88T	
		0	-14	14T	J7	-21	21T	K6	+14	14L	G7	-48	28T	R7	-48	28T	R7
140	150	-20	+26	46L		+4	24L		+54	74L		-90 50	90T		-90	90T	
-												-50 -90	30T 90T		-50 -90	30T 90T	
150	160	0	-14	14T		-21	21T		+14	14L		-90 -50	901 25T		-90 -50	25T	
		-25	+26	51L	J7	+4	29L	K6	+54	79L	G7	-93	93T	R7	-93	93T	R7
160	180	20	120	0.1		'-	202		104	702		-53	28T		-53	28T	
												-106	106T		-106	106T	
180	200											-60	30T		-60	30T	
200	225	0	-16	16T	J7	-16	15T	J7				-109	109T	R7	-109	109T	R7
200	225	-30	+30	60L	J/	+30	60L	J/				-63	33T	H/	-63	33T	K/
225	250											-113	113T		-113	113T	
223	230											-67	37T		-67	37T	
250	280											-126	126T		-126	126T	
		0	-16	16T	J7	-16	16T	J7				-74	39T	R7	-74	39T	R7
280	315	-35	+36	71L		+36	71L					-130	103T		-130	103T	
Ļ												-78	43T		-78	43T	

 $^{^1\}text{For transmissions}$ and transaxles using aluminum housings, a minimum tight fit of 25 μm is suggested. L=Loose / T=Tight

TABLE CD3.25. Industrial Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 1.** Dimensions in Millimeters; Deviations and Fits in Micrometers.

	CONE BOR	E					EVIATION	FROM MA	XIMUM CC	NE BORE	AND RES	JLTANT F	IT			
				ROTATIN	NG CONE						STATIONA	RY CONE				
					ungro	und or	ungro	und or							harden	ed and
			groun	d seat		d seat		d seat		nd seat	groun	d seat	ungrou	nd seat	groun	d seat
			moderat	e loads,	heavy load	ds, or high	heavy loads, or high		moderat	moderate loads,		e loads,	sheaves	, wheels,		
	d	no shock		hock	speed or shock		speed or shock		no s	hock	no shock		idlers		wheel s	pindles
			cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	76.2	0	+38	38T	+64	64T	+64	64T	+13	13T	0	0	0	0	-5	5L
U	70.2	+13	+26	13T	+38	25T	+38	25T	0	13L	-13	26L	-13	26L	-8	31L
76.2	304.8	0	+64	64T					+25	25T	0	0	0	0	-5	5L
70.2	304.0	+25	+38	13T	¹ Heavy D	uty Fitting	¹ Heavy D	uty Fitting	0	25L	-25	51L	-25	51L	-31	56L
304.8	609.6	0	+127	127T	Prac	ctice	Prac	ctice	+51	51T	0	0	0	0		
504.6	009.0	+51	+76	25T					0	51L	-51	102L	-51	102L		
609.6	914.4 0 +191 191T +381		381T	+381	381T	+76	76T	0	0	0	0					
000.0	0.4.4	+76	+114	38T	+305	229T	+305	229T	0	76L	-76	152L	-76	152L		

¹Heavy duty fitting practice uses an average interference fit of 0.5 micrometers per mm of cone bore diameter. L=Loose / T=Tight

TABLE CD3.25. Industrial Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 2.** Dimensions in Inches; Deviations and Fits in 0.0001 Inches.

	CONE BOR	E					EVIATION	FROM MA	XIMUM CC	NE BORE	AND RESI	ULTANT F	IT			
				ROTATIN	IG CONE						STATIONA	ARY CONE				
					ungro	und or	ungro	und or							harden	ed and
			groun	d seat	groun	d seat	groun	d seat	ungrou	nd seat	groun	d seat	ungrou	nd seat	groun	d seat
			moderat	te loads,	heavy load	ds, or high	heavy loads, or high		moderat	e loads,	moderat	e loads,	sheaves	, wheels,		
	d	no shock		speed or shock		speed o	or shock	no s	hock	no shock		idlers		wheel spindles		
			cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant	cone seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	3	0	+15	15T	+25	25T	+25	25T	+5	5T	0	0	0	0	-2	2L
U	3	+5	+10	5T	+15	10T	+15	10T	0	5L	-5	10L	-5	10L	-7	12L
3	12	0	+25	25T					+10	10T	0	0	0	0	-2	2L
3	12	+10	+15	5T	¹ Heavy D	uty Fitting	¹ Heavy D	uty Fitting	0	10L	-10	20L	-10	20L	-12	22L
12	24	0	+50	50T	Prac	ctice	Prac	ctice	+20	20T	0	0	0	0		
12	24	+20	+30	10T					0	20L	-20	40L	-20	40L		
24	36	0	+75	75T	+150	150T	+150	150T	+30	30T	0	0	0	0		
	00	+30	+45	15T	+120	90T	+120	90T	0	30L	-30	60L	-30	60L		

¹Heavy duty fitting practice uses an average interference fit of 0.0005 inches per inch of cone bore diameter. L=Loose / T=Tight

TABLE CD3.26. Industrial Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 1.** Dimensions in Millimeters; Deviations and Fits in Micrometers.

	CUP OD				DEVIATIO	N FROM N	MAXIMUM (CUP OD A	ND RESUL	TANT FIT		
					STATION	ARY CUP				ROTATI	NG CUP	
									•	table or in		
_	_		floati	•			-	stable or	carriers or			ves -
)		clam			table		rriers		nped		mped
			cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	76.2	+25	+50	25L	0	25T	-39	64T	-39	64T	-77	102T
U	70.2	0	+76	76L	+25	25L	-13	13T	-13	13T	-51	51T
76.2	127	+25	+50	25L	0	25T	-51	76T	-51	76T	-77	102T
70.2	127	0	+76	76L	+25	25L	-25	25T	-25	25T	-51	51T
127	304.8	+25	+50	25L	0	25T	-51	76T	-51	76T	-77	102T
121	304.0	0	+76	76L	+51	51L	-25	25T	-25	25T	-51	51T
304.8	609.6	+51	+102	51L	+26	25T	-76	127T	-76	127T	-102	153T
504.0	003.0	0	+152	152L	+76	76L	-25	25T	-25	25T	-51	51T
609.6	914.4	+76	+152	76L	+51	25T	-102	178T	-102	178T		
009.0	J 1 T.T	0	+229	229L	+127	127L	-25	25T	-25	25T		

TABLE CD3.26. Industrial Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 2.** Dimensions in Inches; Deviations and Fits in 0.0001 Inches

	CUP OD				DEVIATIO	N FROM N	MAXIMUM	CUP OD A	ND RESUL	TANT FIT		
					STATION	ARY CUP				ROTATI	NG CUP	
									•	table or in		
			floati	•			,	stable or	carriers or			ves -
)		clam		adjus			rriers		nped		mped
			cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	3	+10	+20	10L	0	10T	-15	25T	-15	25T	-30	40T
U	5	0	+30	30L	+10	10L	-5	5T	-5	5T	-20	20T
3	5	+10	+20	10L	0	10T	-20	30T	-20	30T	-30	40T
3	5	0	+30	30L	+10	10L	-10	10T	-10	10T	-20	20T
5	12	+10	+20	10L	0	10T	-20	30T	-20	30T	-30	40T
3	12	0	+30	30L	+20	20L	-10	10T	-10	10T	-20	20T
12	24	+20	+40	20L	+10	10T	-30	50T	-30	50T	-40	60T
12	24	0	+60	60L	+30	30L	-10	10T	-10	10T	-20	20T
24	36	+30	+60	30L	+20	10T	-40	70T	-40	70T		
24	50	0	+90	90L	+50	50L	-10	10T	-10	10T		

TABLE CD3.27. Automotive Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 1.** Dimensions in Millimeters; Deviations and Fits in Micrometers.

(CONE BOR	E				DEVIATION	N FROM MA	AXIMUM C	ONE BORE	AND RES	SULTANT F	IT		
							ROTATIN	IG CONE					STATIONA	ARY CONE
				pin	iion			heels ting axles)	transm cross transfe	shafts	differ	ential	wheels (fo	eels, rear ull-floating iler wheels
(d		_	adjustable adjustable clamped collapsible space				ustable	nonadj	ustable	nonadjustable		adjus	stable
ovor	incl.		cone seat deviation	resultant fit	cone seat deviation	resultant fit	cone seat deviation	resultant fit	cone seat deviation	resultant fit	cone seat deviation	resultant fit	cone seat	resultant fit
over	IIICI.	deviation		-				-		=		-		-
0	76.2	0 +13	+25 +13	25T 0	+30 +18	30T 5T	+51 +38	51T 25T	+38 +25	38T 12T	+102 +64	102T 51T	-5 -18	5L 31L
76.2	304.8	0 +25	+38 +13	38T 12L			+76 +51	76T 26T	+64 +38	64T 13T	+102 +76	102T 51T	-5 -31	5L 56L

TABLE CD3.27. Automotive Shaft Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 2.** Dimensions in Inches; Deviations and Fits in 0.0001 Inches.

(CONE BOR	E			[DEVIATION	N FROM MA	AXIMUM C	ONE BORE	AND RES	SULTANT F	IT		
							ROTATIN	IG CONE					STATIONA	ARY CONE
							rear w	/heels	transm cross					eels, rear ull-floating
				pin	iion		(semi-floating axles) transfer cases				differ	ential		iler wheels
	d		-	stable nped	adjus collapsib	table le spacer	nonadi	ustable	nonadi	ustable	nonadi	ustable	adius	stable
			cone seat		cone seat		cone seat		-					resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	3	0 +5	+10 +5	10T 0	+12 +7	12T 2T	+20 +15	20T 10T	+15 +10	15T 5T	+40 +25	40T 20T	-2 -7	2L 12L
3	12	0 +10	+15 +5	15T 5L			+30 +20	30T 10T	+25 +15	25T 5T	+40 +30	40T 20T	-2 -12	2L 22L

TABLE CD3.28. Automotive Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 1.** Dimensions in Millimeters; Deviations and Fits in Micrometers.

	CUP OD				DEVIATIO	N FROM N	MAXIMUM	CUP OD A	ND RESUL	TANT FIT		
						STATION	ARY CUP				ROTATI	NG CUP
									pin	ion	front v	vheels
					transn	nisions			differ	ential	rear v	vheels
			differ	ential	cross	shafts	rear w	/heels	(solid seat transfer		(full-floati	ing axles)
)		(split	seat)	transfe	r cases	(semi-floa	ting axles)	cas	ses)	trailer	wheels
			cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	76.2	+25	+25	0	0	25T	+38	13L	-38	63T	-51	76T
U	70.2	0	+51	51L	+25	25L	+76	76L	-13	13T	-13	13T
76.2	127	+25	+25	0	0	25T	+38	13L	-51	76T	-77	102T
70.2	127	0	+51	51L	+25	25L	+76	76L	-25	25T	-25	25T
127	304.8	+25	0	25T	0	25T			-77	102T	-77	102T
127	304.0	0	+51	51L	+51	51L			-25	25T	-25	25T

TABLE CD3.28. Automotive Housing Tolerance Range Classification Selection vs Bearing Operating Conditions for Inch Radial Single-Row Tapered Roller Bearings of Tolerance Classes 4 and 2. **PART 2.** Dimensions in Inches; Deviations and Fits in 0.0001 Inches.

	CUP OD				DEVIATIO	N FROM N	MAXIMUM	CUP OD A	ND RESUL	TANT FIT		
						STATION	ARY CUP				ROTATI	NG CUP
									pin	ion	front v	vheels
					transn	nisions			differ	ential	rear v	vheels
			differ	ential	cross shafts		rear wheels		(solid seat transfer		(full-floati	ing axles)
)		(split	seat)	transfe	r cases	(semi-floa	ting axles)				wheels
			cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant	cup seat	resultant
over	incl.	deviation	deviation	fit	deviation	fit	deviation	fit	deviation	fit	deviation	fit
0	3	+10	+10	0	0	10T	+15	5L	-15	25T	-20	30T
U	5	0	+20	20L	+10	10L	+30	30L	-5	5T	-5	5T
3	5	+10	+10	0	0	10T	+15	5L	-20	30T	-30	40T
3	,	0	+20	20L	+10	10L	+30	30L	-10	10T	-10	10T
5	12	+10	0	10T	0	10T			-30	40T	-30	40T
3	12	0	+20	20L	+20	20T			-10	10T	-10	10T