Leeteure 6. GD. genevalired Jeelve vector Linear Régléssion Four component: 0 {(Ki, yi)};=1 $(x_i) = \omega^T \cdot x_i$ $=\omega_{o}\cdot\chi_{io}+\omega_{i}\cdot\chi_{i}+\ldots+\omega_{m}\cdot\chi_{im}$ prediction fcx) $=\frac{1}{2}\sum_{i=1}^{2}(\omega^{T}x_{i}-y_{i})^{2}$ (1) Optimization. Find with (best model parameters) cox = arg minimize 1(w) = ½ $DL(\omega)|_{\omega=\omega}*=0$ (M+1, equations) $b=\begin{pmatrix} y_1\\y_2\\y_3\\y_{nx} \end{pmatrix} = \frac{1}{2}\begin{pmatrix} \omega^7 x_2 - y_2\\\omega^7 x_1 - y_1 \end{pmatrix} \begin{pmatrix} \omega^7 x_1 - y_1\\x_2\\x_1 \end{pmatrix} = \frac{1}{2}(A\omega - b)^T(A\omega - b)$ $\int_{W} L(\omega) = \left(\frac{1}{2} \cdot 2\right) \cdot A^{T}(A\omega - b) = 0$ $A^{T}A \omega = A^{T}b \quad \text{inverse}$ $\omega^{*} = (A^{T}A)^{-1}A^{T}b \quad (Analytic Solution)$

challenges:

D) A could be very large. We may do not have enough resources to load it and perform the Calculation.

A.A. (A.T.A)

2) (ATA) T may not exist.

2. Gradient-based approaches. D. main idea: start from a random sw) (ocation, e.g., w, update w to approach the wt. Generate a sequence of model $2(\omega') > 2(\omega') > 1(\omega^2) - \cdots > 1(\omega^k)$

To design this optimization, we need to determine O moving direction.

- 2) Step Size
- 3 Stopping condition. (K)

 2) Moving direction (use the sign of the gradient to determine the trend direction of the 1(w))

 This positive >0, Th(-) VL is positive >0, - DL (-) 一マレ(+) DL is <0,

$$\omega = \left(\begin{array}{c} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_m \end{array} \right)$$

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial w} \\ \frac{\partial L}{\partial w} \\ \frac{\partial L}{\partial w} \end{pmatrix}$$

moving direction - 522 copposible direction)

3) Step Size. E/learning vate

if step size is small, it takes longer time to reach wx.

Too large step size may not converge to wo

Défine E as a small positive value.

10-3, 15-4 new w

 $\mathcal{E}^* = arg min \mathcal{L}(\omega + \mathcal{E} \cdot (-\nabla L))$ (2) line search.

E, > E2 > E3 : > Ek 3) Dynamic E:

4) Stopping Conditions

$$0 ||\nabla L(\omega)||_2 < 3$$
 (small positive $||\nabla L(\omega)||_2 = 0$ value, e.g. (5^5)

Define the max number of iterations, R=1000.

5) GD Algonithm.

Input:
$$\{(x_i, y_i)\}_{i=1}^n$$
, \mathcal{E} , $S = 10^{-5}$, $max_i = 17er$.

Output: cox

|. Generate
$$\omega^{\circ}$$
 randomly: $\omega = \omega^{\circ}$, $i = 0$

2. while
$$||\nabla L(\omega)||_{2} > 5$$
 and $0 < max_iter$

0 calcutate the gradient. $g = \nabla L(\omega) = A(A\omega - b)$

5 update $\omega : \omega = \omega + \varepsilon \cdot (-g)$

3.
$$\omega^{x} = \omega$$
. $i = i + 1$
 $\omega^{x} = \omega$. return ω^{x}