CSC 321 Algorithm Analysis and Design Homework Assignment 1

Due on 02/7/2021 11:59PM

Problems

1. Comparison of running times

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
$\frac{1}{\log n}$							
\sqrt{n}							
\overline{n}							
$n \lg n$							
n^2							
n^3							
$\overline{2^n}$							
n!							

2. Nonincreasing Insertion Sort

Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of nondecreasing order.

3. Linear Searching

Consider the *searching problem*:

Input: A sequence of n numbers $A = \langle a_1, a_2, \ldots, a_n \rangle$ and a value v. **Output**: An index i such that v = A[i] or the special value NIL if v does not appear in A. Write pseudocode for **linear search**, which scans through the sequence, looking for v. Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

4. Adding Binary Numbers

Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers should be stored in binary form in an (n+1)-element array C. State the problem formally and write pseudocode for adding the two integers.

5. Recursive Insertion Sort

We can express insertion sort as a recursive procedure as follows. In order to sort A[1..n], we recursively sort A[1..n-1] and then insert A[n] into the sorted array A[1..n-1]. Write a recurrence for the running time of this recursive version of insertion sort.