THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F \in A^{\wedge}$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

Definition 3.1. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is close.

Denote by $\Re rm$ the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

Lemma 3.2. Let $A \in \text{Frm}$ and $j, k \in NA$ be. We consider $F \in A_j^{\wedge}$ y $g = j_*kj^*$ where $F = \nabla(k)$. Then $\hat{F} = \nabla(g) \in A^{\wedge}$.

Proof. \hat{F} is a filter, because g is a nucleus. Let us consider $X \subseteq A$ such that $\bigvee X \in \hat{F}$. We must prove that $X \cap \hat{F} \neq \emptyset$.

If
$$\bigvee X \in \hat{F}$$
, then $g(\bigvee X) = (j_*kj^*)(\bigvee X) = 1$. Thus

$$j^*(\bigvee X) \le j(\bigvee \{j(x) \mid x \in X\}) = j(\bigvee j[X]) = \bigvee_j X$$

and

$$1 = (j_*k)(j^*(\bigvee X)) \le (j_*k)(\bigvee_j X).$$

 $\{j(x)\mid x\in X\}$ is a directed set because X is directed. Then $j(j[X])\subseteq A_j$, $\bigvee_j X\in F$ and $F\in A_j^\wedge$, so that, exists $x\in X$ such that $x=j(x)\in F$. Therefore k(j(x))=1 and $(j_*kj^*)(x)=1$, so that, $x\in \nabla(g)=\hat{F}$. Thus $X\cap \hat{F}\neq\emptyset$. \square

Lemma 3.3. For $F \in A_i^{\wedge}$ and $\hat{F} \in A^{\wedge}$ as above, then $F \subseteq \hat{F}$.

Proof. Let $x \in F$ be, then j(x) = x and k(x) = 1. Thus

$$g(x) = (j_*kj^*)(x) = (j_*k)(j(x)) = j_*(k(x)) = j_*(1) = 1.$$

Therefore $x \in \hat{F}$.

Lemma 3.4. Let $A \in \text{Frm}$ and $j \in NA$ be. If A is tidy then A_j is tidy.

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 3.5. For every $A \in \mathcal{H}rm$ the interval corresponding to the block determined by a open filter $F \in A^{\wedge}$ is trivial, that is,

$$[v_F, w_F] = \{*\}$$

Proof. We know that for all $F \in A^{\wedge}$ the following holds: $v_F \leq w_F$. As a contradition, suppose that exists $F \in A^{\wedge}$ such that $w_F \nleq v_F$, that is, exists $a \in A$ such that $w_F(a) \nleq v_F(a)$.

Note that $w_F(a) \neq 1$, otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because $p \neq 1$.

Then $1 \neq w_F(a) \nleq v_F(a)$ and for the property (H), exists $u \in A$ such that

(1)
$$u \nleq w_F(a) \quad \mathbf{y} \quad \neg u \nleq v_F(a)$$

Note that $0 \le a$, then $w_F(0) \le w_F(a)$ and $v_F(0) \le v_F(a)$. Thus, for 1 we have that

(2)
$$i) u \not< w_F(0) \quad y \quad ii) \neg u \not< v_F(0).$$

For 2-(i) is true that $u \not\leq \bigwedge M$, in particular, $u \not\leq p$ for all $p \in M$. Therefore, $\neg u \leq p$ and $\neg u \leq w_F(0)$. If 2-(ii) is true, then $u \notin F$, in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation lemma, exists a completely prime filter G such that $u \notin G \supseteq F$. We take

$$q = \bigvee \{y \in A \mid y \notin G\}$$

the point corresponding to G. Thus, $u \notin G$, $u \leq q$. If $q \notin F$, then exists $m \in M$ such that $q \leq m$. Sinse q is maximum, q = m or m = 1, but $m \neq 1$ ($1 \in F$ and $M = A \setminus F$), then $m = q \in M$. Hence $u \nleq q$ and this is a contradition. Therefore $v_F = w_F$.

A consequence of the Proposition 3.5 is that $v_F = w_F$, so that, $A_{v_F} = A_{w_F}$ and $A_{w_F} \simeq \mathcal{O}M \simeq \mathcal{O}Q$. Thus, for all $j \in KA$ we have that $j = v_F$. Then in the Huasdorff case

$$\begin{array}{ccc}
A & \longrightarrow & A_F \\
\downarrow & & \downarrow g \\
\mathcal{O}S & \longrightarrow & \mathcal{O}S_{\nabla}
\end{array}$$

where g is an isomorphism and $A_F \simeq \mathcal{O}Q \simeq \mathcal{O}S_{\nabla}$.

On the other hand, $U_*u_{Q'}U^* = v_F$ if and only if $u_{Q'}U^* = U^*v_F$, for the adjuntion properties and U^* the spatial reflection morphism. Therefore

$$\begin{array}{ccc}
A & \xrightarrow{v_F} & A \\
U_* \uparrow & \downarrow U & U \downarrow \uparrow U_* \\
\mathcal{O}S & \xrightarrow{v_{\nabla}} & \mathcal{O}S
\end{array}$$

so that, if $A \in \mathcal{H}rm$ then patch trivial implies KC.

The above is the proof of the following theorem.

Theorem 3.6. If $A \in \mathcal{H}rm$. then every compact quotient is isomrphic to a closed quotient of the topology of a Hausdorff space.

Proposition 3.7. Every Hausdorff frame A (in the sense of Johnstone and Shou) is tidy, that is, A is patch trivial.

Proof.
$$\Box$$

4 THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

REFERENCES