Введение в теорию расписаний

Рассматриваются два множества:

$$M = \{M_1, M_2, \dots, M_m\}$$
 — машины (станки, процессоры, бригады, ...) $J = \{J_1, J_2, \dots, J_n\}$ — работы (задания, пакеты задач, ...)

Расписание — указание, на каких машинах и в какое время должны выполняться работы.

В каждый момент времени каждая машина выполняет не более одной работы, и каждая работа выполняется на одной машине или не выполняется вовсе.

Два типа диаграмм Гантта

Одно решение, представленное на двух диаграммах

Характеристики работ

Работы состоят из операций: $J_i = \left\{O_{i_1}, O_{i_2}, \dots, O_{i_{n_i}}\right\}$.

Операция O_{i_j} требует p_{ij} времени и может выполняться на одной из машин множества $\mu_{ij}\subseteq\{M_1,\dots,M_m\}$.

Если $|\mu_{ij}|=1$, $\forall i j$, то получаем модель с предписаниями.

Если $|\mu_{ij}| = m$, $\forall i j$, то получаем модель с параллельными машинами.

Для работы J_i известны:

 $r_i \geq 0$ — время появления первой операции O_{i_1}

 $d_i \geq 0$ — директивное время окончания последней операции $O_{i_{n_i}}$

 $w_i \geq 0$ — важность (вес, ценность) работы J_i

Классификация задач теории расписаний

Краткая запись задачи $\alpha \mid \beta \mid \gamma$

lpha — характеристики машин; eta — характеристики работ;

 γ — целевая функция задачи;

Варианты для β :

 $\beta_1 = pmtn$ (preemption) разрешаются прерывания;

 $eta_2 = prec$ (precedence relations) условия предшествования на множестве работ (цепи, деревья, сети);

 $\beta_3 = r_i$ — время поступления на обслуживание

 $eta_4 \in \{p_{ij}=1;\ p_{ij} \in \{0,1\};\ p_{ij}=p_{ij}(t),...\}$ — уточнения для времени выполнения операций.

 $eta_5 = d_i$ — директивные сроки окончания работ;

 $eta_6 = p ext{-batching} \ (s ext{-batching}) \ -$ работы разбиваются на группы, и в каждой группе берется максимум (сумма) времён выполнения работ;

Характеристики машин

Поле α состоит из двух частей $\alpha = \alpha_1 \ \alpha_2$:

 α_1 — характеристики машин,

 α_2 — число машин.

Если $\alpha_1 \in \{\emptyset, P, Q, R\}$, то $n_i = 1 \ \forall J_i$, то есть каждая работа состоит ровно из одной операции.

 $lpha_1 = \emptyset$ — для каждой работы задана машина для ее выполнения,

 $lpha_1=P$ — машины параллельны и одинаковы $p_{ij}=p_i$,

 $lpha_1=Q$ — машины параллельны, но различаются скоростями $p_{ij}=p_i/s_j$,

 $lpha_1 = R$ — машины параллельны, длительности выполнения работ произвольны, но $p_{ij} = p_i/s_{ij}$.

Если $\alpha_1 \in \{G, X, J, F, O\}$, то $n_i \ge 1$, то есть у каждой работы может быть несколько операций.

- $lpha_1=J$ (job shop, рабочий цех) у каждой операции своя машина $\left|\mu_{ij}\right|=1$ и линейный порядок выполнения операций $O_{i_1} o O_{i_2} o \cdots o O_{i_{n_i}}$.
- $lpha_1 = F$ (flow shop, потоковая линия) машины упорядочены M_1, M_2, \dots, M_m и каждая работа проходит все машины в этом порядке, $n_i = m$ и $\mu_{ij} = M_j, \forall i.$
- $lpha_1=0$ (open shop, omкрытая линия) каждая работа состоит из m операций $(n_i=m)$, но $\mu_{ij}=\{M_1,\dots,M_m\}$ и на множестве операций нет условий предшествования,
- $\alpha_1 = X$ (mixed shop, смешанный цикл) смесь J и O,
- $\alpha_1 = G$ (general case) произвольный порядок предшествования на операциях (как в календарном планировании).

Целевые функции

Обозначим через c_i — время окончания работы J_i . Рассматриваются два типа **минимизируемых** целевых функций:

$$f(c) = \max_{i} f_i(c_i), \quad f(c) = \sum_{i=1}^{n} f_i(c_i).$$

Примеры целевых функций:

 $C_{max} = \max_{i=1,\dots,n} c_i$ — время окончания всех работ;

 $L_{max} = \max_{i=1,...,n} (c_i - d_i)$ — запаздывание относительно директивных сроков;

 $D_{max} = \max_{i=1,...,n} |c_i - d_i|$ — отклонение от директивных сроков;

 $F_{max} = \max_{i=1,...,n} (\max\{0, d_i - c_i\})$ — опережение директивных сроков;

 $\sum_{i=1}^{n} w_i c_i$ — взвешенная сумма окончания работ.

Примеры задач теории расписаний

Пример 1.
$$P \mid prec, p_i = 1 \mid C_{max}$$

Задача поиска расписания с минимальным временем окончания всех работ на m параллельных машинах с длительностями работ $p_i=1$ и условиями предшествования, то есть предполагается известным ориентированный граф без циклов, вершинами которого являются работы, а дуги задают частичный порядок выполнения работ.

Если $n=7, \ m=2$ и условия предшествования заданы графом:

то одно из допустимых решений имеет вид

Пример 2. $1 \mid r_i$, $pmtn \mid L_{max}$

Задача на одной машине с возможностью прерывания работ, директивными сроками окончания работ и произвольными временами появления работы. Требуется найти расписание $\{c_i\}_{i=1}^n$, минимизирующее максимальное запаздывание, то есть

$$L_{max} = \max_{i=1,\dots,n} (c_i - d_i) \rightarrow \min$$

Для
$$n=4$$
 и

Одно из допустимых решений имеет вид:

$$L_{max} = \max\{3-2; 4-3; 6-4; 9-8\} = 2.$$

Пример 3.
$$J3 \mid p_{ij} = 1 \mid C_{max}$$

Задача поиска расписания с минимальным временем окончания всех работ на трех машинах, образующих систему *job shop* — рабочий цех; длительности всех операций равны 1; у каждой работы свое множество операций; для каждой операции указана машина для ее выполнения.

При n=5, m=3 и матрице

	Машины							
J_1	M_1	M_3	M_2	M_1				
J_2	M_2	M_3	_	_				
J_3	M_3	M_1	_	_				
J_4	M_1	M_3	M_1	_				
J_5	M_3	M_1	M ₂ M ₁ M ₂	M_3				

Одно из допустимых решений задачи имеет вид:

Заметим, что машина M_1 обязана работать не менее 6 единиц времени (2 для J_1 , 1 для J_3 , 2 для J_4 , 1 для J_5), то есть нашли оптимум!

Пример 4. $R3 \mid d_i \mid D_{max}$

Задача поиска расписания, минимизирующего максимальное отклонение времен завершения работ от директивных сроков на трех параллельных машинах.

При $n=4, \ m=3$ и матрице длительностей выполнения

работ p_{ij}

Одно из допустимых решений задачи имеет вид

$$D_{max} = \max\{|5-6\}; |5-5|; |6-1; |7-11\} = 5$$

 J_1 J_2 J_3 J_4

Пример 5. 1 | s-batch | $\sum w_i c_i$

Задача собрать работы в группы для обработки на одной машине так, чтобы минимизировать взвешенную сумму окончания всех работ. В каждой группе время окончания работ равно времени окончания последней работы в группе. Длительность выполнения всей группы работ равна сумме длительностей работ. При переходе от одной группы к другой машина требует переналадки τ (простой.)

При
$$n = 6$$
, $m = 1$, $\tau = 1$ и

i	1	2	3	4	5	6
$\overline{p_i}$	3	2	2	3	1	1
$\overline{w_i}$	1	2	1	1	4	4

Одно из допустимых решений при разбиении на 3 группы: $\{J_2\}, \{J_3, J_1, J_5\}, \{J_4, J_6\}$ имеет вид

$$\sum_{i=1}^{6} w_i c_i = w_2 \cdot 3 + (w_3 + w_1 + w_5) \cdot 10 + (w_4 + w_6) \cdot 15$$

Задачи теории расписаний на одной машине

Рассмотрим задачу, где все работы доступны в нулевой момент времени, то есть $r_i \equiv 0$ для всех i=1,...,n Для каждой работы задана монотонно возрастающая функция $f_i(c_i)$ где c_i — время окончания работы J_i . Требуется найти порядок выполнения работ на одной машине, для которого целевая функция $f_{max}(c_i) = \max_{i=1,...,n} f_i(c_i)$ достигала бы минимального значения, то есть

$$f_{max}(c_i) = \max_{i=1,\dots,n} f_i(c_i) \rightarrow \min$$

Прерывания работ разрешены. Эта задача обозначается

Теорема 1. Среди оптимальных решений найдется решение без прерывания работ и простоя машины.

Доказательство. Пусть в оптимальном решении работа J_{i_0} выполнялась

Тогда изменим расписание, сохранив $c_{i_0} = t_4$, а работы из интервала $[t_2, t_3]$ сдвинем влево к t_1 . Так как f_i — монотонно возрастающая функция, то новое решение также будет оптимальным.

Задача 1 | *prec* | *f*_{max}

Решение задается перестановкой $\Pi=(\Pi_1,...,\Pi_n)$. Величина Π_i задает номер работы, стоящей на i-м месте в перестановке Π . Отношения предшествования задаются матрицей A: $a_{ij}=1$, если работа J_i предшествует работе J_j и $a_{ij}=0$ в противном случае.

Идея алгоритма

Пусть $N = \{1, ..., n\}$ — множество всех работ и $P(N) = \sum_{i \in N} p_i$. Тогда в опти-

мальном решении последней работой будет работа, которая не имеет последователей и дает. $\min_{i \in N} f_i(P(N))$.

Алгоритм Лаулера

1. For
$$i \coloneqq 1, ..., n$$
 do $n(i) \coloneqq \sum_{j=1}^{n} a_{ij}$;

2.
$$S \coloneqq \{1, ..., N\}; \quad p \coloneqq \sum_{i \in S} p_i;$$

- 3. For $k \coloneqq n, \dots, 1$ do
 - 3.1. Найти $j \in S$, для которого n(j) = 0 и $f_i(p) = \min_{i \in S} f_{i(p)}$;
 - 3.2. Положить S $\{j\}$; $\Pi_k \coloneqq j$; $p \coloneqq p p_j$;
 - 3.3. For $i=1,\ldots,n$ do $\text{if } a_{ij}=1 \text{ then } n(i)\coloneqq n(i)-1.$

Трудоемкость алгоритма $T \approx O(n^2)$.

Teopema 2. Алгоритм Лаулера строит оптимальную перестановку \mathcal{H} .

Доказательство. Перенумеруем все работы так, чтобы $\mathcal{\Pi}(i) = i, i = 1, ..., n$. Предположим, что $\mathcal{\Pi}$ не является оптимальным решением, и пусть $\sigma = (\sigma(1), ..., \sigma(n))$ — оптимальное решение. Найдем в нем первый номер с конца, где $j = \sigma(i) \neq i$ и $\sigma(i+1) = i+1$:

Согласно алгоритму Лаулера, работа J_i может быть поставлена сразу перед J_{i+1} , так как у нее нет последователей в блоке $(J_k, ..., J_j)$. Но $f_i(p) \leq f_j(p)$. $p = \sum_{l=1}^i p_l$. Значит, вставка i перед i+1 не увеличит целевую функцию и новое решение также является оптимальным. Действуя аналогично, мы уберем все нарушения, переходя от одного оптимального решения к другому, и в итоге получим \mathcal{I} .

Задача $1|prec,pmtn,r_i|f_{max}$

По-прежнему $f_{max} = \max_{i=1,\dots,n} f_i(c_i)$ и $f_i(x)$ — монотонно возрастающие функции. Времена прихода работ $r_i \geq 0$ могут не быть согласованными с частичным порядком, то есть $a_{ij} = 1$ $(i \to j)$, но $r_j < r_i + p_i$. Поэтому сначала модифицируем величины r_i . Занумеруем работы так, что i < j при $(i \to j)$ и упорядочим пары $e = (i \to j)$ по возрастанию j. Если всего пар |E| штук, то алгоритм пересчета величин r_i может быть записан следующим образом.

Алгоритм Modify r_i

```
For e \coloneqq 1, ..., |E| do r_j \coloneqq \max\{r_j, r_i + p_i\};
```

Разбиение на блоки

Упорядочим работы так, чтобы

$$r_1 \le r_2 \le \cdots \le r_n$$
.

Этот порядок порождает допустимое расписание. Оно разбивается на блоки. Блок — это максимальное подмножество работ, которое выполняется без простоя машины:

Алгоритм построения блоков

Алгоритм Blocks $\{1, 2, ..., n\}$

- 1. i := 1, j := 1;
- 2. While $i \leq n$ do

2.1.
$$t \coloneqq r_i$$
; $B_i \coloneqq \emptyset$;

2.2. While $(r_i \le t) \& (i \le n)$ do

2.2.1.
$$B_j := B_j \cup \{i\};$$

2.2.2.
$$t \coloneqq t + p_i$$
;

2.2.3.
$$c_i \coloneqq t$$
;

2.2.4.
$$i := i + 1$$
;

2.3
$$j := j + 1$$
;

Трудоемкость алгоритма $T \approx O(n)$.

Параметры блоков

Для блока B_j определим: $s_j = \min_{i \in B_j} r_j$ — начало блока;

 $pig(B_jig) = \sum_{i \in B_j} p(B_j)$ — длительность блока; $t_j = t(B_j) = s_j + p(B_j)$ — окончание блока.

Теорема 3. Для задачи $1|prec,pmtn,r_i|f_{max}$ существует оптимальное расписание, в котором машина работает без простоев в интервалах $[s_j,t_j]$, $j=1,\ldots,K$, где K — число блоков.

Доказательство. Рассмотрим оптимальное расписание и предположим, что в интервале $[s_i, t_i]$ машина простаивает с s по t:

Рассмотрим первый такой интервал (самый левый).

Покажем, что \exists работа J_{i_0} такая, что $r_{i_0} \leq s$, но $c_{i_0} > s$. Предположим, что такой работы нет. Рассмотрим множество работ T, стартующих позже s: $T = \{J_i \mid s_i > s\}$. Для них

$$r = \min\{r_i | i \in T\} > s,$$

так как нет работы J_{i_0} Но тогда алгоритм Blocks должен был дать простой машины в интервале [s,r]. Получили противоречие. Значит работа J_{i_0} существует. Сдвинем ее начало в s и сократим интервал [s,t] на p_{i_0} . Если $t-s>p_{i_0}$, то повторяем процедуру до тех пор, пока не покроем весь интервал. Но [s,t] был первым интервалом. Аналогично поступим со вторым и т.д. \blacksquare

Оптимальное расписание для блока

Каждый блок можно рассматривать отдельно. Пусть $f_{max}^*(B)$ — оптимальное решение для блока B и $f_{max}^*(B\backslash\{j\})$ — оптимальное решение для $B\backslash\{j\}$. Так как f_i — монотонно неубывающие функции, то $f_{max}^*(B) \geq f_{max}^*(B\{j\})$ и

$$f_{\max}^*(B) \ge \max_{j \in B} f_{\max}^*(B\{j\}) \tag{*}$$

В блоке B одна из работ заканчивается последней. Обозначим ее через J_l . Она не имеет последователей в B и

 $f_l(t(B)) = \min\{f_j(t(B)) | j \in B$ и j не имеет последователей в $B\}$.

Очевидно, что

$$f_{max}^*(B) \ge f_l(t(B)) \tag{**}$$

Удалим работу J_l из B и найдем оптимальное решение для этой подзадачи. Оно снова будет иметь блочную структуру. Простой машины в интервале $[s_i,t_i]$ будет соответствовать времени выполнения работы J_l и

$$f_{max}^*(B) = \max\{f_{max}^*(B \setminus \{J_l\}), f_l(t(B))\}$$

В силу неравенств (*) и (**) это значение будет оптимальным. Применяя алгоритм рекурсивно, получаем оптимальное решение задачи.

Общая схема алгоритма $1|prec,pmtn,r_i|f_{max}$

```
1. S := \{1, ..., n\}
2. f_{max}^* := Decompose(S)
Procedure Decompose (S)
1. If S = \emptyset then return -\infty
2. If S = \{i\} then return f_i(r_i + p_i)
  else 2.1. Call Blocks (S)
        2.2. f := -\infty
         2.3. For all blocks B do
              2.3.1. Найти l: f_l(t(B)) = \min\{f_i(t(B)) | j \in B \text{ и } j \text{ не имеет в } \}
                      B последователей\};
              2.3.2. h := Decompose (B \setminus \{J_l\})
              2.3.3. f := \max\{f, h, f_l(t(B))\}
        2.4. return f
```

Трудоемкость алгоритма $T = O(n^2)$

Число прерываний не более (n-1), т.к. каждое прерывание дает разбиение на блоки.

Если $r_i=0$ для всех $i\in S$, то получаем алгоритм Лаулера.

Упражнение. Разработать точный полиномиальный алгоритм для задачи $1|prec, p_i = 1, r_i|f_{max}$.

Вопросы

- В задаче $1 \mid pmtn \mid f_{max}$ требуется на одной машине с возможными прерываниями работ найти расписание, максимизирующее некоторую функцию от времени окончания работ (Да или Hem?)
- В задаче $1 | prec, pmtm, r_i | f_{max}$ работа i начинает выполняться в момент времени r_i (Да или Нет?)
- В алгоритме решения задачи $1|prec,pmtm,r_i|f_{max}$ расписание для каждого блока строится независимо от других блоков (Да или Hem?)