Practice Problems: Lesson 10 - Qualitative Analysis

Master qualitative techniques without solving!

Part A: Basic Concepts (6 problems)

- 1. Draw the phase line for $\frac{dy}{dx} = y^2 4$ and classify all equilibria.
- 2. Using the derivative test, determine stability of equilibria for $\frac{dy}{dx} = \sin(y)$.
- 3. For $\frac{dy}{dx} = e^y 1$, find the equilibrium and determine its stability without computing derivatives.
- 4. Explain why solutions to $\frac{dy}{dx} = y^2 + 1$ cannot have equilibria.
- 5. If $y_1(0) = 1$ and $y_2(0) = 2$ are solutions to $\frac{dy}{dx} = -y$, what is their relationship for all x > 0?
- 6. For $\frac{dy}{dx} = f(y)$ where f is strictly decreasing, prove all equilibria are stable.

Part B: Core Techniques (6 problems)

- 7. Analyze the complete phase portrait for $\frac{dy}{dx} = y^3 y$.
- 8. For $\frac{dy}{dx} = (y-1)(y-2)(y-3)$, determine the long-term behavior of solutions with different initial conditions.
- 9. Find regions where solutions to $\frac{dy}{dx} = x^2 y$ are concave up vs concave down.
- 10. Using comparison, prove that solutions to $\frac{dy}{dx} = -y + \sin(x)$ are bounded.
- 11. For $\frac{dy}{dx} = y y^3$, find the inflection points of solution curves.
- 12. Determine all asymptotic behaviors for $\frac{dy}{dx} = y^2(1-y)$.

Part C: Applications (5 problems)

13. A population model follows $\frac{dP}{dt} = P(2-P)(P-1)$. Analyze long-term behavior for all initial populations.

- 14. For the Gompertz equation $\frac{dy}{dx} = y \ln(K/y)$ with K > 0, analyze stability without solving.
- 15. Show that $\frac{dy}{dx} = x + y^2$ has no periodic solutions.
- 16. Find a first integral for $\frac{dy}{dx} = \frac{2xy}{x^2 y^2}$.
- 17. For $\frac{dy}{dx} = -y + e^{-x}$, determine $\lim_{x\to\infty} y(x)$ without solving.

Part D: Advanced/Theoretical (5 problems)

- 18. Prove that if H(x,y) is a first integral, then $\nabla H \perp (1, f(x,y))$ at each point.
- 19. Show that for $\frac{dy}{dx} = f(y)g(x)$ with g(x) > 0, stability is determined solely by f.
- 20. For what functions f(y) does $\frac{dy}{dx} = f(y)$ have exactly three equilibria with alternating stability?
- 21. Prove that if all solutions to $\frac{dy}{dx} = f(x,y)$ are bounded, then f must change sign.
- 22. Characterize all ODEs of the form $\frac{dy}{dx} = f(x)g(y)$ that admit periodic solutions.

Part E: Exam-Style Questions (6 problems)

- 23. [**Prof. Ditkowski Special**] For $\frac{dy}{dx} = y^2 xy$:
 - a) Find all curves where solutions have horizontal tangents
 - b) Determine regions of increasing/decreasing behavior
 - c) Analyze concavity
 - d) Describe all possible asymptotic behaviors
- 24. Given $\frac{dy}{dx} = (1 y^2)(x^2 + 1)$:
 - a) Find and classify all equilibria
 - b) Prove all solutions are bounded
 - c) Determine if periodic solutions exist
 - d) Sketch the qualitative behavior
- 25. [Multi-method] For $\frac{dy}{dx} = y(1 y)(2 y)$:
 - a) Draw the complete phase line
 - b) Use linearization to confirm stability
 - c) Find maximum growth rate locations
 - d) Describe basin of attraction for each stable equilibrium

- 26. Without solving, prove that all solutions to $\frac{dy}{dx} = -x y^3$ approach zero as $x \to \infty$.
- 27. [Energy Method] Show that $\frac{dy}{dx} = \frac{x^3 xy^2}{x^2y + y^3}$ has circular solution curves by finding an appropriate first integral.
- 28. A system satisfies $\frac{dy}{dx} = f(y)$ where f is continuous, f(0) = f(1) = f(2) = 0, f'(0) > 0, f'(1) < 0, f'(2) > 0.
 - a) Sketch the phase line
 - b) How many distinct asymptotic behaviors exist?
 - c) What fraction of initial conditions lead to $y \to 1$?
 - d) Can solutions oscillate?

Answer Key with Hints

Problem 1: Equilibria at $y = \pm 2$; y = -2 unstable, y = 2 stable

Problem 7: Three equilibria: y = 0 (unstable), $y = \pm 1$ (stable)

Problem 10: Use comparison with $\frac{dy}{dx} = -y \pm 1$ **Problem 16:** First integral: $H = x^2y - y^3/3$

Problem 25: Use Lyapunov function $V = x^2 + y^2$

Problem 28c: Basin of y = 1 includes all $y \in (0, 2)$