IUPAC-IUB Commission on Biochemical Nomenclature Rules for Naming Synthetic Modifications of Natural Peptides¹⁻³ Tentative Rules

During the last few years, chemists have made many compounds that are variants of naturally occurring peptides (or proteins) having trivial names. Therefore, the need has arisen for "semitrivial" names to designate these variants without the necessity of designating every residue in the chain.

After discussion with active workers in the field, the following proposals are put forward; they are based on the names used by du Vigneaud and his collaborators (cf. Bodanszky and du Vigneaud, J. Am. Chem. Sec., 81, 1258 (1999); Popence, Lawler, and du Vigneaud, J. Am. Chem. Sec., 74, 3713 (1952)) and the symbols introduced by Schwyzer et al. (cf. Rittel, Iselin, Kappeler, Riniker, and Schwyzer, Angeu. Chem., 69, 179 (1957); Riniker and Schwyzer, Helb. Chim. Acla, 44, 685 (1961); see also J. Biol. Chem., 241, 2491 (1966); Biochim. Biophys. Acla, 121, 1 (1966).

This draft has been prepared by a subcommittee consisting of J. S. Fruton, W. Klyne, and R. Schwyzer. The subcommittee is greatly indebted to many colleagues for helpful suggestions, notably to V. du Vigneaud, J. Rudinger, H. B. P. Dixon, and P. E. Verkade, chairman of the IUPAC Commission on Organic Nomenclature.

of Biological Chemistry

Journal

These proposals are not suitable for application to "abnormal" links in a peptide sequence, e.g. to disulfide links or γ-peptide links. They are only suitable for modifications involving normal α-pentide links.

RITLES

1. Replacement

In a polypeptide of trivial name X, if the qth amino acid residue (starting from the NH₂-terminal end of the chain) is replaced by the amino acid residue Abc, the semitrivial name of the modified polypeptide is [q-amino acid]-X and the abbreviated form, chiefly for use in tables, is [Abe-]-X.

¹ Document of the IUPAC-IUB Commission on Biochemical Nomenclature (CBN), approved by CBN in July 1966 and published by permission of the International Union of Pure and Applied Chemistry, the International Union of Biochemistry, and the official publishers to the International Union of Pure and Applied Chemistry, Mesers, Sutterworths Scientific Publications.

² Comments on these Tentative Rules may be sent to any member of CBN: O. Hoffmann-Ostenhof (Chairman), W. E. Cohn (Secretary), A. E. Braunstein, J. S. Fruton, B. Keil, W. Klyne, C. Liebecq, B. G. Malmström, R. Schwyzer, E. C. Slater, or corresponding member, N. Tamiva.

Reprints of these Tentative Rules may be obtained from Waldo E. Cohn, Director, NAS-NRC Office of Biochemical Nomenclature, Oak Ridge National Laboratory, Box Y, Oak Ridge, Tennessee 37830.

Examples:

 [8-Citrulline]-vasopressin, [Cit*]-vasopressin (Bodanszky and Birkhimer, J. Am. Chem. Soc., 84, 4963 (1962))
 [5-Isoleucine, 7-alanine]-hypertensin II, [Ile*, Ala*]-hypertensin II

(Seu, Smeby, and Bumpus, J. Am. Chem. Soc., 84, 3883 (1962))

Comments—(a) In the full name, the replacement amino acid is designated by its own full name, not the name of its radical (cf. Rule 4 below). This name and the position of replacement are given in square brackets [], as for isotopic replacement.

(b) In the abbreviated form, the amino acid residues are designated by the standard three-letter symbols (J. Biol. Chem., 241, 527, 2491 (1966); Biochim. Biophys. Acta, 121, 1 (1966)), the first letter only being a capital, in square brackets [].

(c) In the abbreviated form, the position of substitution is indicated in a special fashion, i.e. by a superior numeral q to indicate that it is a residue, not an individual atom, that is being replaced, and also for the reason indicated in Comment of the property of

(d) The nature of the residue replaced is not designated in either the full or the abbreviated name. This is contrary to a general principle of organic nomenclature requiring that an atom (or group) that is replaced should (unless it is hydrogen) be clearly designated, as in 2-amino 2-deoxy-Deglucose. It has been decided not to insist on the designation of the residue replaced in these semitrivial names in order to keep the names as short as possible, and because the form of nomenclature in Rule 1 clearly differs from ordinary substitution nomenclature.

(c) A partial analogy may be drawn with the form used for isotopic replacement, in which the isotope symbol is indicated in source brackets before the name.

(f) The replacement of an amino acid residue by its enantioner may be shown logically by the application of this rule as follows: the replacement in X of 1-alianine at position 7 by n-alianine results in [7-a-alianine]-X with the aboveviation [0-Ais]-X. An example may be found in Boissonnas, Guttman, and Pless, Experientia, 22, 526 (1966), dealing with the n-Ser'... derivative of β-cortisotropin; the natural compound has t-serine in position 1. Another example is the [α-0-Ais]-hypertensin II of Rinkler and Schwyzer (Hote, Chim. Acta, 41, 2357 (1994)).

2. Extension

The compounds obtained by the extension of polypeptide X at either (a) the NH₂-terminal end or (b) the COOH-terminal end are designated by the kinds of names and abbreviations shown below. These are in accordance with the general principles of polypeptide nomenclature (J. Biol. Chem., 241, 2491 (1966); Biochim. Biophys. Acta, 121, 1 (1966);

Jownloaded

 α -MSH

The

Examples: (a) Extension at NH₂-terminal end:

 $\begin{array}{ccc} & \text{Aminoacyl-X} & \text{Abc-X} \\ \textit{e.g.} & \text{Valyl-X} & \text{Val-X} \\ \text{or} & \text{Valylglycyl-X} & \text{Val-Gly-X} \end{array}$

for extension by 2 residues.

(b) Extension at COOH-terminal end:

where X-yl is the trivial name of polypeptide X with the ending

Comment—This rule is not applicable to the extension at the COOH-terminal of natural peptides having a terminal α carboxamido group, as in the case of oxytoein or α -melanophorestimulating hormone (α -MSH). It has been suggested that new names be given to the peptides having a free terminal α -carboxyl group (ϵ p, oxytoeinoi acid) and that extension at the COOH-terminal end be denoted as in the example given above (ϵ p, oxytoeinoryl-Abo).

3. Insertion

The compound obtained by the *insertion* of an additional amino acid residue Abe in the position between the qth and (q + 1)th residues of a polypeptide X is named qa-endo-amino-acid-X (abbreviated form, endo-Abe)-X).

Example:

4a-Endo-tyrosine-hypertensin II; endo-Tyr 4a -hypertensin II Comments- \cdot (a) This form has analogies in other fields in which

Comments—(a) This form has analogies in other helds in which endo implies the insertion of something into a structure (e.g. endomethylene). The prefix or index qa is based on analogies with the steroids where the atoms inserted in a ring after atom number q are designated qa, qb, etc.

(b) The prefix homo is not suitable for designating the inscrtion of a whole residue, since it is commonly used to modify the names of individual amino acids. e.a. homoserine.

(c) Multiple insertions and insertion of two or more residues together in the same place in the chain are shown by a logical extension of this rule. For example, the insertion into the polypeptide X of threonine between residues 4 and 5 and of valine and glycine (i.e. that order) between residues 6 and 7 is shown by the name "endo-4s-threonine, 6a-valine, 6b-glycine-X" and the abbreviation "endo-The-X" (Xgille-Cql)e-W.; (Ygille-Cql)e-W.;

4. Removal

The compound obtained by the formal removal of an amino acid residue in position q from a polypeptide X is designated by the name des-q-aminoacid-X, abbreviated des-Abc⁴-X.

Example:

Des-7-Proline-oxytocin; des-Pro⁷-oxytocin (Jacquenoud and Boissonas, Helv. Chim. Acta, 45, 1462 (1962))

Comment—(a) Removal of a whole residue is indicated as is the removal of a ring in steroids, e.g. des-A-androstane.

(b) "de" is not suitable as a prefix because it is easily confused, in speaking, with n (for configuration).

5. Substitution Forming a Side Chain

The compound formed by the substitution of an additional amino acid residue as a side chain into a polypeptide X is named by applying the ordinary rules of nomenclature to the trivial name.

(a) If the substitution is on a side chain amino group of polypeptide X, the name of the additional amino acid residue is written (with the termination "yP") and prefixed by symbols indicating the position of substitution (residue number and atom).

Example: An imaginary compound (A)

in which a valyl group is substituted at the ε-amino group of lysine at position 2 of the chain of a peptide X is named N^avalyl-X (abbreviated N^a-Val-X).

(b) If the substitution is on a side chain carboxyl group of polypeptide X, the additional amino acid having a free α-carboxyl group, the substituted derivative is named by specifying the position of substitution (residue number and atom) and is given the designation "X-vl-amino acid."

Example: An imaginary compound (B)

B Ala-Leu-Glu-Ala . 1 2 3 4

in which a valine residue is substituted into the δ-carboxyl group of glutamic acid in position 3 of the chain of a peptide X would be named C⁴³-X-yl-valine (abbreviated C²³-X-yl-Val).

 ${\it Comment}$ —Note the importance of clear distinction from ${\it replacement}$ as indicated in Rule 1.

6. Partial Sequences (Fragments)

Polypeptide sequences that form fragments of a longer sequence that already has a trivial name may be designated as follows. The trivial name is followed by numbers giving the positions of the first and last amino acids, and then the usual Greek designation giving the number of amino acid units in the fragment, thus:

Example: from \alpha-MSH

Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-

We may have

Met-Glu-His-Phe-Arg-Trp-Gly
$$\alpha$$
 MSH-(4-10)-heptapeptide 4

and

$$\begin{array}{cccc} {\rm His\text{-}Phe\text{-}Arg\text{-}Lys\text{-}Pro\text{-}Val\text{-}NH_2} & & \alpha\text{-}{\rm MSH\text{-}}(6\text{-}8)\text{-}(11\text{-}13)\text{-} \\ & 8 & 11 & 13 & & {\rm hexapeptide\ amide} \end{array}$$

The last example illustrates the nomenclature for a composite sequence of two fragments, and also for an amide-terminal group. The Journal of Biological Chemistry

Summary with examples

The systematic application of these principles to the name of an imaginary pentapeptide "tupaciubin" a may illustrate the symbolism.

Rule	Operation.	Short name	Structure
	Fundamental name	Iupaciubin	1 2 3 4 5 Ala-Lys-Glu-Tyr-Len
1	Replacement	[Phe ⁴]-iupaciubin ⁵	Ala-Lys-Glu-Phe-Leu
2(a)	Extension, NH ₂ -terminal	Arginyl-iupaciubin Arg-iupaciubin	1 5 Arg-Ala-Lys-Glu-Tyr-Leu
2(b)	Extension, COOH-terminal	lupaciubyl-Methionine Iupaciubyl-Met	1 5 Ala-Lys-Glu-Tyr-Leu-Me
3	Insertion	Endo-Thr ²⁸ -iupaciubin	2 2a 3 5 Ala Lys-Thr-Glu-Tyr-Let
ŧ	Removal	Des-Glu³-iupaciubin	2 4 Ala-Lys-Tyr-Leu
5(a)	Side chain substitution on amino group	N ^{ez} -Val-iupaciubin	Val \epsilon Ala-Lys-Glu-Tyr-Leu 2 Val
i(b)	Side chain substitution on carboxyI group	C.*s-Iupaciubyl-valine	8 Ala-Lys-Glu-Tyr-Leu 3
	Partial sequence	Iupaciubin-(2-4)-tripeptide	2 3 4 Lys-Glu-Tyr

^a To symbolize the harmonious cooperation of IUPAC and IUB.

' Note that only for replacement are square brackets required.

Downloaded from www.jbc org by on March 22, 2007