Linear Algebra

[KOMS120301] - 2023/2024

15.4 - Diagonalisasi

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 15 (Desember 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- memverifikasi apakah suatu matriks ortogonal atau tidak;
- melakukan diagonalisasi ortogonal suatu matriks.

Matriks ortogonal

Matriks ortogonal

• Basis yang bagus dari \mathbb{R}^n adalah basis ortogonal, jadi pertanyaan wajarnya adalah: matriks $n \times n$ manakah yang mempunyai basis vektor eigen ortogonal?

Matriks ortogonal

Matriks persegi A dikatakan ortogonal jika:

$$A^{-1} = A^T$$

atau, setara jika $AA^T = A^TA = I$.

Example

Matriks berikut ini ortogonal.

$$A = \begin{bmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{bmatrix}$$

Tugas: Buktikan!

Solusi contoh

Kita tunjukkan bahwa $AA^{T} = I$ (properti ortogonalitas).

$$A = \begin{bmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{bmatrix} \begin{bmatrix} \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \end{bmatrix}$$

$$= \frac{1}{49} \begin{bmatrix} 3 & 2 & 6 \\ -6 & 3 & 2 \\ 2 & 6 & -3 \end{bmatrix} \begin{bmatrix} 3 & -6 & 2 \\ 2 & 3 & 6 \\ 6 & 2 & -3 \end{bmatrix}$$

$$= \frac{1}{49} \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sifat-sifat matriks ortogonal

Misalkan A adalah matriks $n \times n$. Berikut ini setara.

- A adalah ortogonal.
- **2** Vektor baris A membentuk himpunan ortonormal di \mathbb{R}^n dengan hasil kali dalam Euclidean.
- **3** Vektor kolom A membentuk himpunan ortonormal di \mathbb{R}^n dengan hasil kali dalam Euclidean.

Suatu himpunan matriks membentuk himpunan ortonormal jika vektor-vektornya **ortogonal berpasangan**, dan besar setiap vektor adalah 1.

Mengapa matriks ortogonal penting?

 Matriks ortogonal terkait dengan beberapa dekomposisi terpenting dalam Aljabar Linier numerik, seperti:
 QR-decomposition, Singular Value Decomposition (SVD), dll.

Latihan: Berikan contoh lain pentingnya matriks ortogonal!

Latihan

Ingat transformasi matriks rotasi di \mathbb{R}^2 .

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Apakah matriks A ortogonal?

Bagaimana dengan matriks berikut?

- Matriks refleksi di \mathbb{R}^2 dan \mathbb{R}^3 ?
- ② Proyeksi ortogonal pada \mathbb{R}^2 dan \mathbb{R}^3 ?
- **o** Rotasi pada \mathbb{R}^3 ?

Latihan (solusi untuk rotasi matriks)

$$\det(A) = \cos^2(\theta) + \sin^2(\theta) = 1$$

Dengan demikian,

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = A^{T}$$

Jadi, matriks rotasi pada \mathbb{R}^2 merupakan matriks ortogonal.

Latihan 1: Operator refleksi aktif \mathbb{R}^3

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the x-axis T(x, y) = (x, -y)	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	(-x, y) = (x, y) $T(x)$ x	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	$T(\mathbf{x}) \qquad y = x$ $(x, y) \qquad x$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Latihan 2: Operator refleksi aktif \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the xy-plane T(x, y, z) = (x, y, -z)	$T(\mathbf{x}) = \begin{bmatrix} x & y & y \\ y & y & y \\ y & y & y \\ y & y &$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$ \begin{array}{cccc} z \\ T(x) & \xrightarrow{(-x, y, z)} \\ x & \xrightarrow{x} \end{array} $	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Latihan 3: Proyeksi ortogonal pada \mathbb{R}^3

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis $T(x, y) = (x, 0)$	(x, y) $T(x)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the <i>y</i> -axis $T(x, y) = (0, y)$	$(0, y)$ $T(\mathbf{x})$ \mathbf{x} (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Latihan 4: Proyeksi ortogonal pada \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy -plane $T(x, y, z) = (x, y, 0)$	x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz -plane $T(x, y, z) = (x, 0, z)$	(x, 0, z) $T(x)$ x y x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane $T(x, y, z) = (0, y, z)$	$ \begin{array}{c} z \\ T(x) \\ x \end{array} $ $ \begin{array}{c} (0, y, z) \\ x \end{array} $	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Latihan 5: Rotasi di \mathbb{R}^3

Diagonalisasi ortogonal

Apa itu Diagonalisasi ortogonal?

Misalkan A dan B adalah matriks persegi. B dikatakan mirip secara ortogonal dengan A, jika terdapat matriks ortogonal P, s.t.:

$$B = P^T A P$$

Catatan. Sebaliknya, *A* juga secara ortogonal mirip dengan *B*. Bisakah Anda menjelaskan alasannya?

Apa itu Diagonalisasi ortogonal?

Misalkan A dan B adalah matriks persegi. B dikatakan mirip secara ortogonal dengan A, jika terdapat matriks ortogonal P, s.t.:

$$B = P^T A P$$

Catatan. Sebaliknya, *A* juga secara ortogonal mirip dengan *B*. Bisakah Anda menjelaskan alasannya?

Bukti. Ambil $Q = P^T$. Maka:

$$Q^TBQ = PBP^T = A$$

(sebab $B = P^TAP \Rightarrow PBP^T = P(P^TAP)P^T = IAI = A$, karena $P^T = P^{-1}$)

Diagonalisasi ortogonal

Jika matriks persegi A sebangun secara ortogonal dengan matriks diagonal D, mis.

$$P^{\mathsf{T}}AP = D$$

maka kita katakan bahwa A dapat didiagonalisasi secara ortogonal dan itu P mediagonalisasi A secara ortogonal.

Mengapa kita peduli pada diagonalisasi ortogonal?

Jenis matriks apa yang dapat didiagonalisasi?

Lemma

Matriks persegi dapat didiagonalisasi secara ortogonal jika dan hanya jika matriks tersebut **simetris**.

Proof.

Algoritma untuk diagonalisasi ortogonal

Misalkan A adalah matriks simetris $n \times n$.

- **Tahap 1.** Temukan basis untuk setiap ruang eigen dari A.
- Tahap 2. Terapkan proses Gram-Schmidt ke masing-masing basis ini untuk mendapatkan basis ortonormal untuk setiap ruang eigen.
- Tahap 3. Bentuklah matriks *P* yang kolom-kolomnya merupakan vektor-vektor yang dibangun Tahap 2.

Matriks P adalah matriks yang akan mendiagonalisasi A secara ortogonal, yaitu.

 $D = P^T A P$ is a diagonal matrix

Latihan

Diagonalisasikan matriks-matriks berikut secara ortogonal:

$$\bullet \ A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\bullet \ A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Solusi dari Latihan

Solusi dapat dibaca pada https://psu.pb.unizin.org/psumath220lin/chapter/ section-5-2-orthogonal-diagonalization/

Bentuk kuadratik

Bentuk kuadratik