Lecture 10

(ii) ⇒(iii): Assume (i·i). Let €>0. To show: There exists a G-set G. G2E & m* (G(E)=0. by isi), there exists an opensat Un = IR such that Un2E & m(Un)E) 5 5. het G= 0 Un 4n The Gisa G-set & ESG. AN m (GIE) < m (UNE) < 5 (: GIE = UNE) =) m (G/E) < 0. =) mx (h IE) =0, as required. Asm (iii) (iii) => (i): To show: E y mesmelle. we have E = GIGIE We know that G is meanable * m* (GIE)=0 =) GIE is meanwhle. E = 61 (GIE) = GN (GIE)

1

is also meanable.

(i) =) (ii)*: Asm (i). je, Es a meanable set.

To show: Given E>0, Then exists a closek set

F C E such that m* (E F) S E.

LA E>0

We have E' is meanwhle.

Then by (ii), there exists an opened UDE's such that m(UIES) \le \E.

NE UNE° = UNE°.

= ENU°.

= ENU°.

but F= U°. F is a cloud set.

Then we have $m(E \mid F) \leq \varepsilon$, as required.

(ii)* = (iii)*: Assum (ii). Then for each nEN, Let Fn be a be a bound set, Fn CE & m*(EVFn) \le in.

het F = U, Fn. Then F y an F_ set

X FSE.

Now $m^*(E \setminus F) \subseteq m^*(F \setminus F_n) \leq \frac{1}{n}$ $(:: E \setminus F) \subseteq E \setminus F_n)$. $\Rightarrow m^*(E \setminus F) \leq 0$. Thus $m^*(E \setminus F) = 0$, as required. $(::i)^* \Rightarrow (i)$: Proof is analogue to $(:i) \Rightarrow (i)$ $E \times ER \cap SE$.

When when E is meanable?) Can we give a necessary & sufficient conditions to have that E is meanable.?

Theorem: Let E = IR & mi(E) < 00. Then

E'y measurable if and only if

(given E70 there exists disjoint finite
intervals I,,, In such that
given \$70 there exists disjoint finite intervals II,, In such that m*(ED ÜI;) < E.
We may Stipulate that intervals In be open, closed or half-open.
closed or half-open.
proof: Assure E is measuable.
1. 1 E>0.
Then there exists on operat UZE
Then there exists on operat $U \supseteq E$ such that is $(U \cap E) < \frac{E}{2}$.
⇒ m(U) <∞ (:: m(E) <∞)
U= E () (DIE)
But U is an openset, Therefore $U = U = \overline{T}i$
Therefore $U = \bigcup_{i=1}^{\infty} \overline{T_i}$ open intervals $\overline{T_i}$.
12) desgoint Onion of
open (NRIVIU) I:
$m(U) = m(\bigcup_{i=1}^{N} I_i) = \sum_{i=1}^{N} m(I_i)$
$\tilde{i}=1$
$= \sum_{i=1}^{\infty} l(I_i) < \infty$
$i = \bar{p}$

₩ i= 1, ..., n

Then
$$m(E\Delta \bigcup_{i=1}^{n_0} J_i) \leq m(E\Delta \bigcup_{i=1}^{n_0} J_i)$$
 $+m(\bigcup_{i=1}^{n_0} J_i) \Delta(\bigcup_{i=1}^{n_0} J_i)$

(in some proportion of Δ)

 $\leq \pm \xi = \xi$.

So the Construction goes through for the intervals J_i .

If for an other type of intervals.

 $E : J_0 \text{ then } J_0 \text{$

To how Eis measurable if in sufficient to show mit (UIE) is sufficiently small.

(by above Theorem)

We have (\mathcal{X}) . i.e., There exists intervals $I_{j,j-i,j}I_{n,s}$ disjoint such that $m(E_{ij}) < E_{i,j-i-1}$ but $J = \bigcup_{i=1}^{n_0} I_i$. & $V = U \cap J$.

```
NOW USE S WAY) U (VSE) Charkit!)
 > m³(USE) ≤ m³(USV) + m³(VXE)
 Since VSJ, we have VIE < JIE V
thy since ESU, we have EIV = EIJ
       EEIV

= ace & af V

FIV = EIU
 PS:- ac EIV
        3 a EU & a & V= UNT
        → a ¢ J
      Thus REELJ.
      - EN SEIT.
  LAT a CEIT = a CEIQ a & J
              = a E V & a ¢ V
              ⇒ RE EIV.
      F J S E / V.
        E) V = E ) J.
   VAF S JAE
 m*(USE) < EN (JAE) < E.
But ES VU(VAE)
```

$$\exists n^*(E) \leq m^*(V) + m^*(V \times E)$$

 $\leq m(V) + \epsilon.$