Package 'EMMIXSSL'

October 18, 2022

Title Semi-Supervised Gaussian Mixture Model with a Missing-Data

Type Package

Mec	hanism
Version 1.	1.1
Author Zi	yang Lyu, Daniel Ahfock, Geoffrey J. McLachlan
Maintaine	r Ziyang Lyu <ziyang.lyu@unsw.edu.au></ziyang.lyu@unsw.edu.au>
ing-c hood trodu ing i	algorithm of semi-supervised learning based on finite Gaussian mixture models with a miss- data mechanism is designed for a fitting g-class Gaussian mixture model via maximum likeli- (ML). It is proposed to treat the labels of the unclassified features as missing-data and to in- ace a framework for their missing as in the pioneering work of Rubin (1976) for miss- n incomplete data analysis. This dependency in the missingness pattern can be lever- to provide additional information about the optimal classifier as specified by Bayes' rule.
Depends 1	R (>= 3.1.0), mvtnorm, stats
License G	PL-3
Encoding	UTF-8
LazyData	true
RoxygenN	fote 7.2.0
NeedsCom	npilation no
Repository	y CRAN
Date/Publi	ication 2022-10-18 12:17:58 UTC
R topic	s documented:
di E en	Classifier_Bayes 2 ov2vec 3 iscriminant_beta 4 MMIXSSL 5 rrorrate 6 astrodata 7

2 Classifier_Bayes

gastro_label_trinary	 . 8
get_clusterprobs	 . 8
get_entropy	 . 9
initialvalue	 . 10
list2par	 . 11
loglk_full	 . 12
loglk_ig	 . 13
loglk_miss	 . 14
logsumexp	 . 15
makelabelmatrix	 . 15
neg_objective_function	 . 16
normalise_logprob	 . 17
par2list	 . 17
pro2vec	 . 18
rlabel	 . 18
rmix	 . 19
vec2cov	 . 20
vec2pro	 . 20
	22

Classifier_Bayes

Classifier based on Bayes rule

Description

A classifier based on Bayes rule, that is maximum a posterior probabilities of class membership

Usage

```
Classifier_Bayes(dat, n, p, g, pi, mu, sigma, ncov = 2)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
n	Number of observations.
p	Dimension of observation vecor.
g	Number of classes.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.

cov2vec 3

Details

The posterior probability can be expressed as

$$\tau_i(y_j;\theta) = Prob\{z_{ij} = 1 | y_j\} = \frac{\pi_i \phi(y_j; \mu_i, \Sigma_i)}{\sum_{h=1}^g \pi_h \phi(y_j; \mu_h, \Sigma_h)},$$

where ϕ is a normal probability function with mean μ_i and covariance matrix Σ_i , and z_{ij} is is a zero-one indicator variable denoting the class of origin. The Bayes' Classifier of allocation assigns an entity with feature vector y_j to Class C_k if

$$k = argmax_i\tau_i(y_j; \theta).$$

Value

cluster

A vector of the class membership.

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
cluster<-Classifier_Bayes(dat=dat$Y,n=150,p=3,g=4,mu=mu,sigma=sigma,pi=pi,ncov=2)</pre>
```

cov2vec

Transform a variance matrix into a vector

Description

Transform a variance matrix into a vector i.e., Sigma=R^T*R

Usage

```
cov2vec(sigma)
```

Arguments

sigma

A variance matrix

Details

The variance matrix is decomposed by computing the Choleski factorization of a real symmetric positive-definite square matrix. Then, storing the upper triangular factor of the Choleski decomposition into a vector.

4 discriminant_beta

Value

par A vector representing a variance matrix

discriminant_beta

Discriminant function

Description

Discriminant function in the particular case of g=2 classes with an equal-covariance matrix

Usage

discriminant_beta(pi, mu, sigma)

Arguments

pi A g-dimensional vector for the initial values of the mixing proportions.

mu A $p \times g$ matrix for the initial values of the location parameters.

sigma A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with

dimension $p \times p \times g$ if ncov=2.

Details

Discriminant function in the particular case of g=2 classes with an equal-covariance matrix can be expressed

$$d(y_i, \beta) = \beta_0 + \beta_1 y_i,$$

where $\beta_0 = \log \frac{\pi_1}{\pi_2} - \frac{1}{2} \frac{\mu_1^2 - \mu_2^2}{\sigma^2}$ and $\beta_1 = \frac{\mu_1 - \mu_2}{\sigma^2}$.

Value

beta0 An intercept of discriminant function

beta A coefficient of discriminant function

EMMIXSSL 5

EMMIXSSL

Fitting Gaussian mixture models

Description

Fitting Gaussian mixture model to a complete classified dataset or a incomplete classified dataset with/without the missing-data mechanism.

Usage

```
EMMIXSSL(
    dat,
    zm,
    pi,
    mu,
    sigma,
    ncov,
    xi = NULL,
    type,
    iter.max = 500,
    eval.max = 500,
    rel.tol = 1e-06,
    sing.tol = 1e-20
)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector containing the class labels including the missing-label denoted as NA.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
хi	A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.
type	Three types of Gaussian mixture models, 'ign' indicates fitting the model to a partially classified sample on the basis of the likelihood that ignores the missing label mechanism, 'full' indicates fitting the model to a partially classified sample on the basis of the full likelihood, taking into account the missing-label mechanism, and 'com' indicate fitting the model to a completed classified sample.
iter.max	Maximum number of iterations allowed. Defaults to 500

6 errorrate

eval.max	Maximum number of evaluations of the objective function allowed. Defaults to 500
rel.tol	Relative tolerance. Defaults to 1e-15
sing.tol	Singular convergence tolerance; defaults to 1e-20.

Value

objective Value of objective likelihood

convergence Value of convergence

iteration Number of iteration

pi Estimated vector of the mixing proportions.

mu Estimated matrix of the location parameters.

sigma Estimated covariance matrix

xi Estimated coefficient vector for a logistic function of the Shannon entropy

Examples

```
n<-150
pi < -c(0.25, 0.25, 0.25, 0.25)
sigma < -array(0, dim = c(3, 3, 4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4] < -diag(4,3)
mu < -matrix(c(0.2, 0.3, 0.4, 0.2, 0.7, 0.6, 0.1, 0.7, 1.6, 0.2, 1.7, 0.6), 3, 4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)</pre>
xi < -c(-0.5,1)
m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi,ncov=2)</pre>
zm<-dat$clust
zm[m==1]<-NA
inits<-initialvalue(g=4,zm=zm,dat=dat$Y,ncov=2)
fit_pc<-EMMIXSSL(dat=dat$Y,zm=zm,pi=inits$pi,mu=inits$mu,sigma=inits$sigma,xi=xi,type='full',ncov=2)</pre>
## End(Not run)
```

errorrate Error rate of the Bayes rule for two-class Gaussian homoscedastic model

Description

The optimal error rate of Bayes rule for two-class Gaussian homoscedastic model

Usage

```
errorrate(beta0, beta, pi, mu, sigma)
```

gastrodata 7

Arguments

beta0	An $n \times p$ matrix where each row represents an individual observation
beta	Number of observations.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.

Details

The optimal error rate of Bayes rule for two-class Gaussian homoscedastic model can be expressed as

$$err(y_j; \theta) = \pi_1 \phi \{ -\frac{\beta_0 + \beta_1^T \mu_1}{(\beta_1^T \Sigma \beta_1)^{\frac{1}{2}}} \} + \pi_2 \phi \{ \frac{\beta_0 + \beta_1^T \mu_2}{(\beta_1^T \Sigma \beta_1)^{\frac{1}{2}}} \}$$

where ϕ is a normal probability function with mean μ_i and covariance matrix Σ_i .

Value

errval A vector of error rate

Description

The collected dataset is composed of 76 colonoscopic videos (recorded with both White Light (WL) and Narrow Band Imaging (NBI)), the histology (classification ground truth), and the endoscopist's opinion (including 4 experts and 3 beginners). There are \$n=76\$ observations, and each observation consists of 698 features extracted from colonoscopic videos on patients with gastrointestinal lesions.

References

http://www.depeca.uah.es/colonoscopy_dataset/

|--|

Description

A panel of seven endoscopists viewed the videos and determined which patient needs resection (malignant) or no-resection (benign).

References

http://www.depeca.uah.es/colonoscopy_dataset/

8 get_clusterprobs

gastro_label_trinary Gastrointestinal trinary labels

Description

Gastrointestinal trinary ground truth (Adenoma, Serrated, and Hyperplastic)

References

http://www.depeca.uah.es/colonoscopy_dataset/

get_clusterprobs

Posterior probability

Description

Get posterior probabilities of class membership

Usage

```
get_clusterprobs(dat, n, p, g, pi, mu, sigma, ncov = 2)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
n	Number of observations.
p	Dimension of observation vecor.
g	Number of multivariate normal classes.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.

Details

The posterior probability can be expressed as

$$\tau_i(y_j;\theta) = Prob\{z_{ij} = 1|y_j\} = \frac{\pi_i\phi(y_j;\mu_i,\Sigma_i)}{\sum_{h=1}^g \pi_h\phi(y_j;\mu_h,\Sigma_h)},$$

where ϕ is a normal probability function with mean μ_i and covariance matrix Σ_i , and z_{ij} is is a zero-one indicator variable denoting the class of origin.

get_entropy 9

Value

clusprobs

Posterior probabilities of class membership for the ith entity

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,4]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
tau<-get_clusterprobs(dat=dat$Y,n=150,p=3,g=4,mu=mu,sigma=sigma,pi=pi,ncov=2)</pre>
```

get_entropy

Shannon entropy

Description

Shannon entropy

Usage

```
get_entropy(dat, n, p, g, pi, mu, sigma, ncov = 2)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
n	Number of observations.
р	Dimension of observation vecor.
g	Number of multivariate normal classes.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Details

The concept of information entropy was introduced by shannon1948mathematical. The entropy of y_j is formally defined as

$$e_j(y_j; \theta) = -\sum_{i=1}^g \tau_i(y_j; \theta) \log \tau_i(y_j; \theta).$$

10 initialvalue

Value

clusprobs The posterior probabilities of the i-th entity that belongs to the j-th group.

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
en<-get_entropy(dat=dat$Y,n=150,p=3,g=4,mu=mu,sigma=sigma,pi=pi,ncov=2)</pre>
```

initialvalue

Initial values for ECM

Description

Inittial values for claculating the estimates based on solely on the classified features.

Usage

```
initialvalue(dat, zm, g, ncov = 2)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector containing the class labels including the missing-label denoted as NA.
g	Number of multivariate normal classes.
ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.

Value

pi	A g-dimensional initial vector of the mixing proportions.
mu	A initial $p \times g$ matrix of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.

list2par

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
xi<-c(-0.5,1)
m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi,ncov=2)
zm<-dat$clust
zm[m==1]<-NA
inits<-initialvalue(g=4,zm=zm,dat=dat$Y,ncov=2)</pre>
```

list2par

Transfer a list into a vector

Description

Transfer a list into a vector

Usage

```
list2par(
   p,
   g,
   pi,
   mu,
   sigma,
   ncov = 2,
   xi = NULL,
   type = c("ign", "full", "com")
)
```

Arguments

n	Dimension	of observat	ion vocor
D	Dimension	oi observai	ion vecor.

g Number of multivariate normal classes.

pi A g-dimensional vector for the initial values of the mixing proportions.

mu A $p \times g$ matrix for the initial values of the location parameters.

sigma A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.

12 loglk_full

ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.
xi	A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.
type	Three types to fit to the model, 'ign' indicates fitting the model on the basis of the likelihood that ignores the missing label mechanism, 'full' indicates that the model to be fitted on the basis of the full likelihood, taking into account the missing-label mechanism, and 'com' indicate that the model to be fitted to a completed classified sample.

Value

par	a vector including all list information	
loglk_full	Full log-likelihood function	

Description

Full log-likelihood function with both terms of ignoring and missing

Usage

$$loglk_full(dat, zm, pi, mu, sigma, ncov = 2, xi)$$

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector containing the class labels including the missing-label denoted as NA.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.
хi	A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.

Details

The full log-likelihood function can be expressed as

$$\log L_{PC}^{(full)}(\boldsymbol{\Psi}) = \log L_{PC}^{(ig)}(\boldsymbol{\theta}) + \log L_{PC}^{(miss)}(\boldsymbol{\theta}, \boldsymbol{\xi}),$$

wherelog $L_{PC}^{(ig)}(\theta)$ is the log likelihood function formed ignoring the missing in the label of the unclassified features, and $\log L_{PC}^{(miss)}(\theta, \xi)$ is the log likelihood function formed on the basis of the missing-label indicator.

loglk_ig

Value

1k Log-likelihood value

loglk_ig	Log likelihood for partially classified data with ingoring the missing mechanism

Description

Log likelihood for partially classified data with ingoring the missing mechanism

Usage

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector containing the class labels including the missing-label denoted as NA.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Details

The log-likelihood function for partially classified data with ingoring the missing mechanism can be expressed as

$$\log L_{PC}^{(ig)}(\theta) = \sum_{j=1}^{n} \left[(1 - m_j) \sum_{i=1}^{g} z_{ij} \left\{ \log \pi_i + \log f_i(y_j; \omega_i) \right\} + m_j \log \left\{ \sum_{i=1}^{g} \pi_i f_i(y_j; \omega_i) \right\} \right],$$

where m_j is a missing label indicator, z_{ij} is a zero-one indicator variable defining the known group of origin of each, and $f_i(y_j; \omega_i)$ is a probability density function with parameters ω_i .

Value

1k Log-likelihood value.

14 loglk_miss

loglk_miss	Log likelihood function formed on the basis of the missing-label indicator

Description

Log likelihood for partially classified data based on the missing mechanism with the Shanon entropy

Usage

```
loglk_miss(dat, zm, pi, mu, sigma, ncov = 2, xi)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector containing the class labels including the missing-label denoted as NA.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; $ncov = 1$ for a common covariance matrix; $ncov = 2$ for the unequal covariance/scale matrices.
xi	A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.

Details

The log-likelihood function formed on the basis of the missing-label indicator can be expressed by

$$\log L_{PC}^{(miss)}(\theta, \xi) = \sum_{j=1}^{n} \left[(1 - m_j) \log \left\{ 1 - q(y_j; \theta, \xi) \right\} + m_j \log q(y_j; \theta, \xi) \right],$$

where $q(y_j; \theta, \xi)$ is a logistic function of the Shannon entropy $e_j(y_j; \theta)$, and m_j is a missing label indicator.

Value

lk loglikelihood value

logsumexp 15

logsumexp

log summation of exponential function

Description

log summation of exponential variable vector.

Usage

logsumexp(x)

Arguments

Х

A variable vector.

Value

val

log summation of exponential variable vector.

makelabelmatrix

Label matrix

Description

Convert class indicator into a label maxtrix.

Usage

```
makelabelmatrix(clust)
```

Arguments

clust

An n-dimensional vector of class partition.

Value

Z

A matrix of class indicator.

Examples

```
cluster<-c(1,1,2,2,3,3)
label_maxtrix<-makelabelmatrix(cluster)</pre>
```

```
neg_objective_function
```

Negative objective function for EMMIXSSL

Description

Negative objective function for EMMIXSSL

Usage

```
neg_objective_function(
  dat,
  zm,
  g,
  par,
  ncov = 2,
  type = c("ign", "full", "com")
)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation
zm	An n-dimensional vector of group partition including the missing-label, denoted as NA.
g	Number of multivariate Gaussian groups.
par	An informative vector including mu, pi,sigma and xi.
ncov	Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
type	Three types to fit to the model, 'ign' indicates fitting the model on the basis of the likelihood that ignores the missing label mechanism, 'full' indicates that the model to be fitted on the basis of the full likelihood, taking into account the missing-label mechanism, and 'com' indicate that the model to be fitted to a completed classified sample.

Value

val Value of negatvie objective function.

normalise_logprob 17

normalise_logprob

Normalize log-probability

Description

Normalize log-probability.

Usage

```
normalise_logprob(x)
```

Arguments

x A variable vector.

Value

val

A normalize log probability of variable vector.

par2list

Transfer a vector into a list

Description

Transfer a vector into a list

Usage

```
par2list(par, g, p, ncov = 2, type = c("ign", "full"))
```

Arguments

par A vector with list information.

g Number of multivariate normal classes.

p Dimension of observation vecor.

ncov Options of structure of sigma matrix; the default value is 2; ncov = 1 for a

common covariance matrix that sigma is a $p \times p$ matrix. ncov = 2 for the unequal covariance/scale matrices that sigma represents a list of g matrices with

dimension $p \times p \times g$.

type Three types to fit to the model, 'ign' indicates fitting the model on the basis

of the likelihood that ignores the missing label mechanism, 'full' indicates that the model to be fitted on the basis of the full likelihood, taking into account the missing-label mechanism, and 'com' indicate that the model to be fitted to a

completed classified sample.

18 rlabel

Value

parlist Return a list including mu, pi, sigma and xi.

pro2vec

Transfer a probability vector into a vector

Description

Transfer a probability vector into an informative vector

Usage

```
pro2vec(pro)
```

Arguments

pro

An propability vector

Value

y An informative vector

rlabel

Generation of a missing-data indicator

Description

Generate the missing label indicator

Usage

```
rlabel(dat, pi, mu, sigma, ncov = 2, xi)
```

Arguments

dat	An $n \times p$ matrix where each row represents an individual observation.
pi	A g-dimensional vector for the initial values of the mixing proportions.
mu	A $p \times g$ matrix for the initial values of the location parameters.
sigma	A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with dimension $p \times p \times g$ if ncov=2.
ncov	Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
xi	A 2-dimensional coefficient vector for a logistic function of the Shannon entropy.

rmix 19

Value

m

A n-dimensional vector of missing label indicator. The element of outputs m represents its label indicator is missing if m equals 1, otherwise its label indicator is available if m equals to 0.

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
xi<-c(-0.5,1)
m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi,ncov=2)</pre>
```

rmix

Normal mixture model generator.

Description

Generate random observations from the normal mixture distributions.

Usage

```
rmix(n, pi, mu, sigma, ncov = 2)
```

Arguments

n .	Numbe	er of ol	oservations.

pi A g-dimensional vector for the initial values of the mixing proportions.

mu A $p \times g$ matrix for the initial values of the location parameters.

sigma A $p \times p$ covariance matrix if ncov=1, or a list of g covariance matrices with

dimension $p \times p \times g$ if ncov=2.

ncov Options of structure of sigma matrix; the default value is 2; ncov = 1 for a

common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Value

Y An $n \times p$ numeric matrix with samples drawn in rows.

Z An $n \times g$ numeric matrix; each row represents zero-one indicator variables defin-

ing the known class of origin of each.

clust An n-dimensional vector of class partition.

20 vec2pro

Examples

```
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)</pre>
```

vec2cov

Transform a vector into a matrix

Description

Transform a vector into a matrix i.e., Sigma=R^T*R

Usage

```
vec2cov(par)
```

Arguments

par

A vector representing a variance matrix

Details

The variance matrix is decomposed by computing the Choleski factorization of a real symmetric positive-definite square matrix. Then, storing the upper triangular factor of the Choleski decomposition into a vector.

Value

sigma A variance matrix

vec2pro

Transfer an informative vector to a probability vector

Description

Transfer an informative vector to a probability vector

Usage

```
vec2pro(vec)
```

vec2pro 21

Arguments

vec An informative vector

Value

pro A probability vector

Index

```
Classifier_Bayes, 2
cov2vec, 3
{\tt discriminant\_beta, 4}
EMMIXSSL, 5
errorrate, 6
gastro_label_binary, 7
{\tt gastro\_label\_trinary}, \\ 8
gastrodata, 7
get_clusterprobs, 8
{\tt get\_entropy}, {\color{red} 9}
initial value, 10
list2par, 11
loglk_full, 12
loglk_ig, 13
loglk_miss, 14
logsumexp, 15
makelabelmatrix, 15
neg_objective_function, 16
normalise_logprob, 17
par2list, 17
pro2vec, 18
rlabel, 18
rmix, 19
vec2cov, 20
vec2pro, 20
```