Supplemental Instructions

Benjamin Eriksson & Erik Thorsell beneri@student.chalmers.se & erithor@student.chalmers.se

2015-02-17

1

- a) $\int xe^{x^2}dx$
- b) $\int \frac{1}{\sqrt{1-x^2}} dx$

 $\mathbf{2}$

Oegentliga integraler

- a) $\int_1^\infty \frac{1}{x^2} dx$
- b) $\int_0^\infty \frac{1}{1+x^2} dx$

3

- a) $\int x * \cos(x^2 + 1) dx$
- b) $\int 18x^2 \sqrt[4]{6x^3 + 5} dx$
- c) $\int x^2 * 2^{x^3+1} dx$

4

Använd Trapzeoidregeln för att approximera $\int_0^\pi sin(x)dx$

- a) med 10 subintervall.
- b) med 20 subintervall.

5

Gå till sida 397!

S fås genom att snurra det område som avgränsas av $y=x^2$ runt x-axeln. Vad är S volym om området även begränsas av y=0 och x=1 och:

- a) du använder diskmodellen?
- b) du använder skalmodellen?

6

Beräkna längden av följande kurvor:

- a) $y = \frac{4}{3} x$, där x går från 0 till 3.
- b) $y = \frac{2}{3}(x-1)^{\frac{3}{2}}$, där x går från 0 till 4.