លំខាង់នី៤

គេអោយអនុគមន៍ f មួយ កំណត់លើ $\mathbb{R}-\{1,3\}$ ដោយ $f(x)=rac{x^2+4x+3}{x^2-4x+3}$ ។ តាង(C) ជាក្រាបតាងអនុគមន៍ f ក្នុងតម្រុយ $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ ។

ក. បង្ហាញថាបន្ទាត់ y=1 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប(C) ត្រង់ $\pm\infty$ ។ y រួចរកសមីការអាស៊ីមតូតឈរទាំងពីរ។

ខ. ចូរបង្ហាញថា
$$\mathbf{f'}(\mathbf{x}) = -rac{8\left(\mathbf{x}^2-3
ight)}{\left(\mathbf{x}^2-4\mathbf{x}+3
ight)^2}$$
 ចំពោះគ្រប់ $\mathbb{R}-\{1,3\}$ ។

គី. សិក្សាអថិរភាព និងសង់តារាងអថេរភាពនៃអនុគមន៍ f រួចសង់ក្រាប(C) ។

ឃ. ដោយប្រើក្រាប(C) ពិភាក្សាតាមតម្លៃk នូវចំនួនឫសរបស់សមីការ $(k-1)x^2-4(k+1)x+3(k-1)=0 \quad (1)$

រួចប្រៀបធៀបឫសរបស់ (1) ទៅនឹងចំនួន $-3, -\sqrt{3}, -1, 0, 1, \sqrt{3}$ និង 3 ។

<u> ಜೀನಾ:ಕ್ರಾಕಾ</u>

ក. បង្ហាញថាបន្ទាត់ y=1 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប(C) ត្រង់ $\pm \infty$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 + 4x + 3}{x^2 - 4x + 3} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{4}{x} + \frac{3}{x^2}\right)}{x^2 \left(1 - \frac{4}{x} + \frac{3}{x^2}\right)} = 1$$

ដូចនេះ បន្ទាត់
$$y=1$$
 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប (C) ត្រង់ $\pm\infty$

រកសមីការអាស៊ីមតូតឈរទាំងពីរ

ដោយ
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 4x + 3}{x^2 - 4x + 3} = \pm \infty$$

ហើយ
$$\lim_{x\to 3} f(x) = \lim_{x\to 3} \frac{x^2+4x+3}{x^2-4x+3} = \pm \infty$$

ដូចនេះ បន្ទាត់ $\mathbf{x}=1$ និង $\mathbf{x}=3$ ជាអាស៊ីមតូតឈរនៃក្រាប (\mathbf{C})

$${\mathfrak d}.$$
 បង្ហាញថា ${f f}'({f x}) = -rac{8\left({f x}^2-3
ight)}{\left({f x}^2-4{f x}+3
ight)^2}$ ចំពោះគ្រប់ ${\Bbb R}-\{1,3\}$

$$f'(x) = \left(\frac{x^2 + 4x + 3}{x^2 - 4x + 3}\right)' = \frac{(2x + 4)(x^2 - 4x + 3) - (2x - 4)(x^2 + 4x + 3)}{(x^2 - 4x + 3)^2}$$
$$= \frac{-8x^2 + 24}{(x^2 - 4x + 3)^2} = -\frac{8(x^2 - 3)}{(x^2 - 4x + 3)^2}$$

ដូចនេះ
$$\mathbf{f'}(\mathbf{x}) = -rac{8\left(\mathbf{x}^2-3
ight)}{\left(\mathbf{x}^2-4\mathbf{x}+3
ight)^2}$$
 ចំពោះគ្រប់ $\mathbb{R}-\{1,3\}$

គ. សិក្សាអថិរភាព

ដោយ
$$f'(x) = -\frac{8(x^2-3)}{(x^2-4x+3)^2}$$
 យើងបាន $f'(x) = 0 \Leftrightarrow -8(x^2-3) = 0 \Leftrightarrow -8x^2+24 = 0 \Rightarrow x = \pm \sqrt{3}$ តារាសញ្ញាដេរីវេ $f'(x)$

X	-∞	$-\sqrt{3}$	1	$\sqrt{3}$	3	+∞
f'(x)		- 0 -	-	+ 0 -		_

- ullet f'(x) >0 ឬ អនុគមន៍ f កើន ពេល x \in $\left(-\sqrt{3},1
 ight) \cup \left(1,\,\sqrt{3}
 ight)$
- f'(x) < 0 ឬ អនុគមន៍ f ចុះ ពេល $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, 3) \cup (3, +\infty)$ បរមាធៀប
- ullet ត្រង់ ${f x}=-\sqrt{3};\;{f f}'({f x})=0$ ហើយប្តូរសញ្ញាពី–ទៅ+ នោះ ${f f}$ មានអប្បបរមាធៀបមួយគឺ

$$f(-\sqrt{3}) = \frac{(-\sqrt{3})^2 + 4(-\sqrt{3}) + 3}{(-\sqrt{3})^2 - 4(-\sqrt{3}) + 3} = 4\sqrt{3} - 7$$

• ត្រង់ ${f x}=\sqrt{3};\ {f f}'({f x})=0$ ហើយប្តូរសញ្ញាពី+ទៅ- នោះ ${f f}$ មានអតិបរមាធៀបមួយគឺ

$$f(\sqrt{3}) = \frac{(\sqrt{3})^2 + 4(\sqrt{3}) + 3}{(\sqrt{3})^2 - 4(\sqrt{3}) + 3} = -4\sqrt{3} - 7$$

សង់តារាងអថិរភាពនៃអនុគមន៍ f

សង់ក្រាប(C)

$$(C)\cap(x'ox)\Leftrightarrow\quad y=0\quad\Leftrightarrow\quad x^2+4x+3=0\Rightarrow x_1=-1,\;x_2=-3$$

(C)
$$\cap$$
 (y'oy) \Leftrightarrow $x = 0$ \Rightarrow $y = \frac{0^2 + 4(0) + 3}{0^2 - 4(0) + 3} = 1$

(C)
$$\cap$$
 (d) : y = 1 \Leftrightarrow 1 = $\frac{x^2 + 4x + 3}{x^2 - 4x + 3}$

$$\Leftrightarrow \quad x^2 - 4x + 3 = x^2 + 4x + 3 \quad \Rightarrow x = 0$$

អ្យបអ្វេងដោយ លីម សីហា គ្រុតណិតវិទ្យាវិទ្យាល័យសម្ដេចខ្ចី ខេត្តស្យេមរាប

 ${\mathfrak w}$. ពិភាក្សាតាមតម្លៃk នូវចំនួនឫសរបស់សមីការ $({\bf k}-1){\bf x}^2-4({\bf k}+1){\bf x}+3({\bf k}-1)=0$ (1)

$$(1) \Leftrightarrow kx^2 - x^2 - 4kx - 4x + 3k - 3 = 0$$

$$\Leftrightarrow k(x^2 - 4x + 3) - (x^2 + 4x + 3) = 0$$

$$\Leftrightarrow k = \frac{x^2 + 4x + 3}{x^2 - 4x + 3}$$

$$\Leftrightarrow \ k = f(x)$$
 ជាសមីការអាប់ស៊ីសរវាងក្រាប (C) និងបន្ទាត់ $y = k$

តាមក្រាប(C)

$$ullet$$
 បើ $\mathbf{k} \in \left(-\infty, -4\sqrt{3} - 7
ight)$ $\Rightarrow (1)$ មានបុសពីរផ្សេងគ្នាដែល $1 < \mathbf{x}_1 < \mathbf{x}_2 < 3$

• បើ
$$k=-4\sqrt{3}-7$$
 \Rightarrow (1) មានឬសតែមួយគត់ $x=\sqrt{3}$

• បើ
$$k \in (-4\sqrt{3}-7, 4\sqrt{3}-7)$$
 $\Rightarrow (1)$ គ្មានឫស

$$ullet$$
 បើ ${
m k}=4\,\sqrt{3}\,{
m -}\,7$ $\Longrightarrow (1)$ មានឫសតែមួយគត់គឺ ${
m x}=-\sqrt{3}$

$$ullet$$
 បើ $\mathbf{k} \in \left(4\sqrt{3}-7,1
ight)$ $\Rightarrow (1)$ មានឫសពីរផ្សេងគ្នា ដែល $\mathbf{x}_1 < \mathbf{x}_2 < 0$

$$ullet$$
 បើ ${f k}=1$ $\Longrightarrow (1)$ មានបុសតែមួយគត់ គឺ ${f x}=0$

$$ullet$$
 បើ $k \in (1, +\infty)$ $\Rightarrow (1)$ មានឫសពីរផ្សេងគ្នាដែល $0 < x_1 < 1 \; ; \quad 3 < x_2$