Fie $^{+\Sigma,\,\Delta\,\in\,\mathcal{P}(E)}$ si $^{\alpha,\,\beta,\,\gamma\,\in\,E}$, astfel incat:

$$\Sigma \vdash \alpha \lor (\beta \to \gamma), \ \Delta \vdash \gamma \to \alpha$$

Conform Teoremei de Completitudine Tare (TCT), rezulta:

$$\Sigma \models \alpha \lor (\beta \to \gamma), \ \Delta \models \gamma \to \alpha$$

Fie h:V->L₂={0,1} a.i. $h \models \Sigma \cup \Delta . <=> h \models \Sigma$ si $h \models \Delta$

$$\Sigma \models \alpha \lor (\beta \to \gamma) \iff h \models \alpha \lor (\beta \to \gamma) \iff 1 = \tilde{h} (\alpha \lor (\beta \to \gamma))$$

$$= \tilde{h} (\alpha) \lor [\tilde{h} (\beta) \to \tilde{h} (\gamma)]$$

$$= \tilde{h} (\alpha) \lor \tilde{h} (\beta) \lor \tilde{h} (\gamma)$$

$$\Leftrightarrow$$
 h~(α)=1 sau h~(β)=1 sau h~(γ)=1

 \Leftrightarrow h~(α)=1 sau h~(β)=0 sau h~(γ)=1.

$$\Delta \models \gamma \to \alpha \qquad \Rightarrow h \models \gamma \to \alpha \\
h \models \Delta \qquad \Leftrightarrow 1 = h \sim (\gamma - > \alpha) = h \sim (\gamma) - > h \sim (\alpha)$$

$$\Leftrightarrow h \sim (\gamma) \leq h \sim (\alpha)$$

 $\Leftrightarrow h\sim(\gamma) \leq h\sim(\alpha)$.

Caz 1: Daca $h^{(\beta)}=0 => h^{(\beta)}=0 => h^{(\beta)}=0 => h^{(\alpha)}=0 = 0$

Caz 2: Daca $h\sim(\beta)=1 => h\sim(\alpha)=1$ sau $h\sim(\gamma)=1$.

Presupunem prin absurd ca $h\sim(\alpha)\neq 1$. => $h\sim(\gamma)=1$ => $1 \le h\sim(\alpha)$ => $h\sim(\alpha)=1$; contradictie. => $h\sim(\alpha)=1$.

=>
$$h \sim (\beta - > \alpha) = h \sim (\beta) - > h \sim (\alpha) = h \sim (\beta) - > 1 = 1$$
.

In ambele cazuri, $=> h \mid = \beta - > \alpha$.

$$\sum \bigcup \Delta \models \beta \rightarrow \alpha \quad \Longrightarrow \Sigma \cup \Delta \vdash \beta \rightarrow \alpha$$