Algorithms for Problem Solving – 11650 Geometría

Jon Ander Gómez Adrián jon@dsic.upv.es

Departament de Sistemes Informàtics i Computació Escola Tècnica Superior d'Enginyeria Informàtica Universitat Politècnica de València

6 de abril de 2014

6 de abril de 2014

Geometría

Dog and Gopher
The Knights of the
Round Table
Birthday Cake
Is This Integration?
Trees On My Island
Resumen problemas

- Rectas (representación, intersección, rectas paralelas, misma recta, ángulos, punto más cercano)
- Triángulos y trigonometría (triángulos rectángulos y teorema de Pitágoras, funciones trigonométricas, resolución de triángulos)
- Círculos (representación, circunferencia y área, tangentes, intersecciones entre círculos)
- Veamos los códigos de Point2D.java, Line2D.java,
 Segment2D.java, Triangle.java y Circle.java

Dog and Gopher

Geometría

Dog and Gopher
The Knights of the
Round Table
Birthday Cake
Is This Integration?
Trees On My Island
Resumen problemas

- Este problema es muy sencillo.
- Pero ojo al pasar de un caso de prueba al siguiente.
- Leeremos tantos puntos como nos indiquen, después saltaremos todas las líneas que hasta encontrar una vacía.
- Una vez visto que puede escapar ya nos podemos saltar todo lo que quede hasta el siguente caso.

The Knights of the Round Table

Geometría
Dog and Gopher
The Knights of

> the Round Table
Birthday Cake
Is This Integration?
Trees On My Island
Resumen problemas

- También es muy fácil.
- Buscad en Wikipedia la fórmula del círculo inscrito en un triángulo de lados a, b y c.
- Cuidado con el caso de que los tres lados valgan cero.

Birthday Cake

Geometría Dog and Gopher The Knights of the Round Table ▶ Birthday Cake Is This Integration? Trees On My Island Resumen problemas

- Seguro que hay algún método más sofisticado, pero con fuerza bruta me lo ha aceptado.
- Variando $A \in [-500, 500]$ y $B \in [0, 500]$ como enteros.
- lacktriangle Y aplicando la ecuación $A \cdot x + B \cdot y$ para según dé asignar la cereza a un grupo de los dos.
- Si una cereza está sobre la recta abandonamos esa recta y probamos con la siguiente.

Is This Integration?

Geometría
Dog and Gopher
The Knights of the
Round Table
Birthday Cake
Is This
➤ Integration?
Trees On My Island
Resumen problemas

- Calcularemos el área formada por los dos "ojos" como $(\frac{\pi}{2}-1)\cdot a^2$
- El área del cuadrado interno como $lado^2$, donde

$$lado = \sqrt{(a \cdot cos(60) - a \cdot cos(30))^2 + (a \cdot sin(60) - a \cdot sin(30))^2}$$

donde
$$sin(60) = cos(30) = \frac{\sqrt{3}}{2}$$
 y $cos(60) = sin(30) = \frac{1}{2}$

- El borde del cuadrado es el área del sector menos el área del triángulo interior. Que se sumará cuatro veces al área del cuadrado.
- El sector es de 30°, luego su área es $\frac{1}{2}\frac{\pi}{6}a^2 = \frac{\pi}{12}a^2$
- La del triángulo es $\frac{lado \cdot \sqrt{a^2 (\frac{lado}{2})^2}}{2}$
- El resto ya lo debéis tener claro.

Trees On My Island

Geometría

Dog and Gopher

The Knights of the
Round Table

Birthday Cake

Is This Integration?

Trees On My

➤ Island

Resumen problemas

111407/10088

Aquí aplicaremos directamente el teorema de Pick.

Resumen problemas

Geometría			
Dog and Gopher			
The Knights of the			
Round Table			
Birthday Cake			
Is This Integration?			
Trees On My Island			
Resumen			

111301/10310	"Dog and Gopher"
111303/10195	"The Knights of the Round Table"
111305/10167	"Birthday Cake"
111307/10209	"Is This Integration?"
111407/10088	"Trees On My Island"