PATENT APPLICATION

TTED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Daping CHU

Group Art Unit: 2834

Application No.: 09/866,740

PIEZOELECTRIC DEVICES

For:

Filed: May 30, 2001

Docket No.: 109678

TC 2890 MAIL ROOM

CLAIM FOR PRIORITY

Director of the U.S. Patent and Trademark Office Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

British Patent Application No. 0013234.0 filed May 31, 2000.

In support of this claim, a certified copy of said original foreign application:

X	is	filed	herewith.

	was filed on		in Parent	Application	No.	filed	
--	--------------	--	-----------	-------------	-----	-------	--

will be filed at a later date.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

Registration No. 27,075

Joel S. Armstrong Registration No. 36,430

JAO:JSA/kaf

Date: August 31, 2001

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE **AUTHORIZATION** Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 10 August 2001

RECEIVED

OLIFF & BERRIDGE, PLC,

OLIFF & BERRIDGE, PLC,
P.O. BOX 19928
ALEXANDRIA, VA 22320
(703) 836-6400
APPLICANT: Daping CHU
APPLICATION NO.: New U.S. Application
FILED: May 30, 2001
FOR: PIEZOELECTRIC DEVICES
ATTORNEY DOCKET NO.: 109678

Patents Form 1/77

Patents Act 1977 (Rule 16)

Request for grant of a patent

01JUNOO E541344-14 D00528 P01/7700 0.00-0013234.0

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

Your reference

GBP13415A

31 MAY 2000

Patent application number (The Patent Office will fill in this part) 0013234.0

31 MAY 2000

Full name, address and postcode of the or of each applicant (underline all surnames)

Seiko Epson Corporation 4-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0811 Japan

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

712331003

Tokyo, Japan

4. Title of the invention

Piezoelectric Devices

Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Miller Sturt Kenyon 9 John Street London WC1N 2ES United Kingdom

Patents ADP number (if you know it)

07395486001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country Priority application number (if you know it)

Date of filing (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- any named applicant is a corporate body.

Yes

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document Continuation sheets of this form Description Claim(s) Abstract 1 Drawing(s) 10. If you are also filing any of the following, state how many against each item. Priority documents Translations of priority documents Statement of inventorship and right to grant of a patent (Patents Form 7/77) Request for preliminary examination and search (Patents Form 9/77) Request for substantive examination (Patents Form 10/77) Any other documents (please specify) 11. I/We request the grant of a patent on the basis of this application.

31st May 2000

12. Name and daytime telephone number of person to contact in the United Kingdom

C M Sturt 020 7242 5974

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to probibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

7

Claim(s)

1

Abstract

]

Drawing(s)

1

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

1

Request for substantive examination

(Patents Form 10/77)

Any other documents

(please specify)

I/We request the grant of a patent on the basis of this application.

Signature

Date

Miller Stut Leanyon

31st May 2000

12. Name and daytime telephone number of person to contact in the United Kingdom

C M Sturt 020 7242 5974

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- fi Ear dataile of the fee and work to the

Piezoelectric Devices

The present invention relates to devices which use piezoelectric materials in their structure.

It is well known that piezoelectric material will contract and elongate when an alternating electric field is applied. On the other hand, if such a material is subjected to alternated strains an electric field will be induced. This effect is used in a number of known devices.

There is a desire to extend the use of piezoelectric materials to the fabrication of other devices and the present invention has been made against this background.

According to the present invention there is provided a device comprising a layer of piezoelectric material and a layer of ferroelectric material clamped together such that a voltage applied to one layer results in a voltage being generated across the other layer.

If two pieces of piezoelectric material are clamped together and a voltage applied to one of them, an induced voltage can be measured from the other. The ratio of the applied voltage will depend upon the piezoelectric properties of the two materials and, possibly, sample geometry. A piezoelectric amplifier/transformer can be realised in this way using two layers of piezoelectric material. In ceramic piezoelectric materials the strain and corresponding electric field are in-phase.

Ferroelectric materials are a sub-set of piezoelectric materials. They can exhibit a non-volatile, bi-stable internal polarisation (generally, with respect to a particular crystal axis). The state of polarisation is established by the application of a voltage between opposing surfaces of the material. Having applied a sufficiently large voltage to internally polarise the material, it is subsequently possible to determine the direction of polarisation. This operation consists of applying a voltage to set the polarisation in a specified direction. If the polarisation is already

in that direction no charge exchange is required. However, if the polarisation is in the opposite direction a relatively large amount of charge exchange is required to establish the specified direction of polarisation. Thus, the previous direction of polarisation can be judged according to the high or low (zero) level of charge exchange required to establish the specified polarisation.

In the present invention it has been found that a polarised ferroelectric material elongates or contracts when a weak external field (much less than the coercive force of the ferroelectric material) is applied in parallel or anti-parallel, respectively, to the polarisation. Consequently, the strains induced along the polarisation axis can be in-phase or out-of-phase to the applied AC external field, depending on the direction of polarisation. Either strain or electric field can be the primary driving force in the piezoelectric effect and they have a linear relationship to the first order. From this it has been recognised, in the present invention, that the phase of the induced electric field of a polarised ferroelectric material can be controlled by the direction of polarisation.

The concepts of the present invention have been found to be beneficial for the implementation of a range of devices including analogue devices such as amplifiers/transducers, inverters and comparators.

Embodiments of the present invention will now be described in more detail, by way of further example only and with reference to the accompanying drawings, in which:-

Figure 1 illustrates the structure of an amplifier/transducer according to a first embodiment of the present invention; and

Figure 2 illustrates the structure of a comparator according to another embodiment of the present invention.

A first embodiment of the present invention is the implementation of an amplifier/transducer, the structure of which is illustrated in figure 1.

A layer of polarised ferroelectric material can be used as a driving unit and apply an electric field to it as the input signal. The induced strain is then passed onto another layer of polarised ferroelectric material, the sensing unit. It induces a secondary electric field to provide the output signal. The magnification of the output depends on the properties of the materials used, while the phase of the signal is controlled by the arrangement of directions of polarisation in the two materials. Such a device acts as an amplifier or transformer with an extra degree of control on the phase of the output signal.

One structure to realise such an amplifier/transformer is to clamp these two units together along the polarisation axis, as shown in figure 1. The order of the units is not important.

Here the ε_{ri} $d_{33,i}$, and d_i are dielectric constant, piezoelectric coefficient and thickness of the material i, respectively. The strain of the material i, $S_{3,i}$ is simply: $S_{3,i} = d_{33,i}$ $E_{3,i}$ where $E_{3,i}$ is the corresponding electric field component, and the stress is $T_{3,i} = S_{3,i}$ / $S_{33,i}$. The subscript 3 indicates that the parameter concerned is the component along axis 3, the polarisation axis.

The performance of the device of figure 1 can be evaluated at two limits under hard-wall clamping conditions: (1) compressible limit; where the ferroelectric materials are regarded as compressible, which leads to $(d_1 + d_2 = \text{constant})$ at all times; (2) incompressible limit; when the ferroelectric materials are regarded as incompressible, which gives $T_{3,1} + T_{3,2} = 0$ where $T_{3,i}$ is the stress in the material *i*. A real device should be working between these two limits.

At the compressible limit, we have $\Delta(d_1 + d_2) = \Delta d_1 + \Delta d_2 = 0$, and the induced change of the thickness at a given electric field is:

$$\Delta d_{i}(E_{i}) \equiv d_{i}(E_{i}) - d_{i}(0)$$

$$\approx S_{3,i} d_{i}(0)$$

$$= \pm d_{33,i} E_{i} d_{i}(0)$$

$$\approx \pm d_{33,i} V_{i}$$

where the sign \pm - is chosen when the E_i is parallel/anti-parallel to the direction of polarisation. Therefore, the output signal is:

$$V_{2} = \frac{-d}{33.1} V_{l}$$

$$\frac{d}{33.2}$$
(1)

where the sign +/- shows that the input and output signals are in-phase/out-phase corresponding to anti-parallel/parallel polarisation between regions 1 and 2. The gain of the amplifier/transformer is $d_{33,1}/d_{33,2}$.

At the incompressible limit, we have $T_{3,I} + T_{3,2} = 0$ and $T_{3,i} = -e_{33,i} E_{3,i} \approx -e_{33,i} V_i / d_i$ (0) where $e_{33,i}$ is another piezoelectric constant.

The output voltage shall be:

$$V_{2} = \mp \underbrace{\begin{array}{cc} e_{33,1} & d_{2}(0) \\ e_{33,2} & d_{1}(0) \end{array}}_{I} V_{I}$$
(2)

where again the signs correspond to parallel and anti-parallel polarisation between regions 1 and 2, respectively, and the gain of the device in this case is $e_{33,1} d_2(0) / e_{33,2} d_1(0)$.

To compare with the analysis of the previously suggested piezoelectric amplifier/transformer, (other than at the above two limits) it becomes apparent that

$$T_{3,i} = c_{33,i} S_{3,i} = \pm c_{33,i} = d_{33,i} E_{3,i}$$

where $c_{33,i}$ is the elastic stiffness constant of the material i.

Since $E_{3,i} \approx V_i / d_i(0)$, the output can be expressed as:

$$V_2 = \mp \frac{c_{33,1}}{c_{33,2}} \cdot \frac{d_{33,1}}{d_{33,2}} \cdot \frac{d_{2}(0)}{d_{1}(0)} \cdot V_I$$
(3)

To the approximation of only one component involved, we have $e_{33,i} = d_{33,i} c_{33,i}$ and find that Equation 3 is identical to Equation 2 obtained from the incompressible limit. From the same approximation, we can also have $c_{33,i}$ 1/s_{33,i} is the elastic compliance coefficient, and get:

$$V_2 = \mp \frac{{}^{d}33,1}{{}^{d}33,2} \cdot {}^{s}33,2} \cdot {}^{d}_{I}(0) \cdot V_I$$

$$(4)$$

Variation of the first embodiment leads to the implementation of an inverter. That is, when the properties and geometry of the materials concerned are chosen in such a way that the gain of the amplifier is unity, the device works as a inverter in the configuration of parallel polarisation.

Another embodiment of the present invention is the implementation of a comparator. If two identical driving units and one sensing unit are clamped together in the same way, it is possible to build up a comparator as shown in figure 2. The order of the units is again not important, if the input signals and output signal do not refer to one another. Otherwise, the arrangement as shown in figure 2 should be used. Besides, non-identical driving units can be used for special situations.

The performance of the comparator can be analysed in the same way as stated above in relation to the first embodiment. At the two limits, we now have: (1) $\Sigma d_I = \text{constant}$; (2) $(T_{3,1I} + T_{3,12}) + T_{3,2} = 0$ if we assume that there is no interference between the two driving units. This assumption does affect the following conclusions drawn for the comparator.

In the first case, because $\Sigma \Delta d_1 = 0$, we have:

$$\pm V_2 = -\frac{{}^{d}_{33,1} \cdot (\pm V_{11} + \pm V_{12})}{{}^{d}_{33,2}} \tag{5}$$

where the signs refer to the applied field is parallel or anti-parallel to the corresponding polarisation.

Similarly, for the second case, we have

$$\pm V_2 = -\frac{{}^{d}_{33,1}}{{}^{d}_{33,2}} \frac{{}^{s}_{33,2}}{{}^{d}_{1}(0)} (\pm {}^{V}_{11} + \pm {}^{V}_{12})$$
(6)

By arranging the directions of polarisation in the driving units as anti-parallel/parallel, we see the output of the device reduces to zero as the two input signals reach the same level when they are in-phase/out-phase.

In above, we assumed the devices are working at a constant temperature and did not take into account of the possible pyroelectric effect. In addition, we simplified the relations among electric field E, strain S and stress T. In general, they are coupled together in the form of $E + \beta$ $S + \gamma T = 0$ to the first order. Detailed analysis and expressions can be found in standard texts relating to piezoelectric materials.

The clamping itself, apart from using clamps, can be realised by using two pieces of thick material (such as substrate) on each side of the device. The inertia of such a material will act as some kind of clamp, which should be particularly effective as a fast input signal or an input pulse is concerned.

It is not necessary to clamp the driving and sensing units together directly. They can be separated from each other and connected by incompressible solid or liquid. In this case, the device can work in the same fashion as if they were clamped together directly.

Piezoelectric ceramics can be used in the sensing unit for the comparator and the signs in front of V_2 in Equations (5) and (6) will disappear in this case. Besides, piezoelectric ceramics instead of ferroelectric material can be used in any one of the two units in figure 1. The signs in Equations (1) and (2) shall change accordingly.

The common electrode described in figure 1 can be used as a common ground for both input and output signal. Alternatively, it can be used as a ground electrode only for one unit so that the corresponding signal will float on the other one. For example, the output signal can be floating on the input signal. Same argument applies to the comparator.

The clamped device described here should be affected very little by external disturbances, as long as the scale of the device concerned is much smaller than the wavelength of the acoustic wave. The internal and relative displacements during the piezoelectric operation can be analogised to the optical mode of phonons, while the external disturbance, e.g. vibrations, to the acoustic mode which should have very little impact on our output.

The foregoing description has been given by way of example only and it will be appreciated by a person skilled in the art that modifications can be made without departing from the scope of the present invention.

CLAIMS

- 1. A device comprising a layer of piezoelectric material and a layer of ferroelectric material clamped together such that a voltage applied to one layer results in a voltage being generated across the other layer.
- 2. A device as claimed in claim 1, wherein a common electrode is provided between the two layers, an input electrode is provided on one of the layers and an output electrode is provided on the other of the layers, the input and output electrodes being disposed on opposite sides of their respective layers compared with the common electrode.
 - 3. An amplifier comprising a device as claimed in claim 1 or claim 2.
 - 4. A transformer comprising a device as claimed in claim 1 or claim 2.
 - 5. An inverter comprising a device as claimed in claim 1 or claim 2.
- 6. A comparator comprising a device as claimed in claim 1, said device further having a third layer of material clamped together with the other two layers, said third layer being a ferroelectric material.
- 7. A comparator as claimed in claim 6, wherein a first input electrode is provided on one of the layers, a second input electrode is provided on another of the layers, a common electrode is provided between the layers having the input electrodes, and an output electrode is provided on the third layer, the input electrodes being disposed on opposite sides of their respective layers compared with the common electrode.

ABSTRACT

A device comprising a layer of piezoelectric material and a layer of ferroelectric material clamped together such that a voltage applied to one layer results in a voltage being generated across the other layer. Examples are given of the implementation of analogue components such as an amplifier, a transformer, an inverter and a comparator. For the comparator, the device has a third layer of material clamped together with the other two layers, the third layer being a ferroelectric material.

Refer to figure 1

Figure 1.

Figure 2