ACE Examination Paper 3 Year 12 Mathematics Extension 2 Yearly Examination Worked solutions and marking guidelines

Sectio	n I	
	Solution	Criteria
1	$\int \frac{(x-1)^2}{x} dx = \int \left(x - 2 + \frac{1}{x}\right) dx$	1 Mark: B
	$= \frac{1}{2}x^2 - 2x + \ln x + C$	
2	$\arg(z^7) = 7\arg(z)$	1 Mark: B
	$=\frac{7\pi}{5}=-\frac{3\pi}{5}$	
3	$x = 4\sin^2 t - 1$	1 Mark: C
	$= 2(1 - \cos 2t) - 1$ = 1 - 2\cos 2t	
	$\therefore \text{Centre of motion is } x = 1.$	
4	u = x - 2	1 Mark: B
	$\frac{du}{dx} = 1 \text{ or } du = dx$	
	When $x = 1$ then $u = -1$ and when $x = 3$ then $u = 1$.	
	$\int_{1}^{3} x(x-2)^{5} dx = \int_{-1}^{1} (u+2)u^{5} du$	
	$= \int_{-1}^{1} (u^6 + 2u^5) du$	
	$= \left[\frac{u^7}{7} + \frac{u^6}{3} \right]_{-1}^{1}$	
	$= \left[\frac{1}{7} + \frac{1}{3}\right] - \left[-\frac{1}{7} + \frac{1}{3}\right] = \frac{2}{7}$	
5	$\overrightarrow{OP} = 3\underline{\imath} + 6\underline{\jmath} - 2\underline{k} \overrightarrow{OQ} = 2\underline{\imath} - 2\underline{\jmath} + \underline{k}$	1 Mark: C
	$ \overrightarrow{OP} = \sqrt{3^2 + 6^2 + (-2)^2} = 7$	
	$ OQ = \sqrt{2^2 + (-2)^2 + 1^2} = 3$	
	$\overrightarrow{OP} \cdot \overrightarrow{OQ} = (3 \times 2) + (6 \times -2) + (-2 \times 1) = -8$	
	$\cos \angle POQ = \frac{\overrightarrow{OP} \cdot \overrightarrow{OQ}}{ \overrightarrow{OP} \overrightarrow{OR} } = \frac{-8}{7 \times 3}$	
	∠ <i>POQ</i> = 112.3926≈ 112.4°	

6	$z^2 + 6z + 10$	1 Mark: A
	$z = \frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times 10}}{2}$	
	$= \frac{-6 \pm \sqrt{-4}}{2} = \frac{-6 \pm 2i}{2} = -3 \pm i$	
	= (z+3-i)(z+3+i)	
7	F = ma	1 Mark: A
	$=mv\frac{dv}{dx}$	
	$= -2m(v+v^2)$	
	$\therefore \frac{dx}{dv} = -\frac{1}{2(1+v)}$	
	$x = -\frac{1}{2} \int \frac{1}{1+v} dv$	
8	The converse of a statement 'If A then B ' is 'If B then A '.	1 Mark: D
	The statements can be represented as: the converse of $A \Rightarrow B$ is	
	$B\Rightarrow A$ or $A\Leftarrow B$. The converse of a true statement need not be true.	
9	Vectors (A) (B) and (D) are opposite direction to $\underline{\iota} - 2\underline{\jmath} + 2\underline{k}$	1 Mark: D
	(A) $\sqrt{(-6)^2 + 12^2 + (-2)^2} = \sqrt{184}$	
	(B) $\sqrt{(-3)^2 + 6^2 + (-6)^2} = \sqrt{81}$	
	(D) $\sqrt{(-2)^2 + 4^2 + (-4)^2} = \sqrt{36} = 6$	
10	Use the substitution $u = \sin x$	1 Mark: C
	$\frac{du}{dx} = \cos x$	
	$du = \cos x dx$	
	When $u = 0$ then $u = 0$ and when $x = \frac{\pi}{2}$ then $u = 1$	
	$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 - \sin^2 x}} dx = \int_0^1 \frac{1}{\sqrt{1 - u^2}} dx$	
	$= [\sin^{-1} u]_0^1$	
	$=\frac{\pi}{2}$	

Section	ı II	
	Solution	Criteria
11(a) (i)		2 Marks: Correct answer.
	$\sqrt{5 + m^2} = \sqrt{12}$ $5 + m^2 = 12$ $m^2 = 7$ $m = \pm \sqrt{7}$	1 Mark: Shows understanding of the magnitude of a vector.
11(a) (ii)	Two vectors are perpendicular if and only if \underline{u} . $\underline{v} = 0$ $\underline{u} \cdot \underline{v} = (1 \times 1) + ((-1) \times 2) + (2 \times m) = 0$ $1 - 2 + 2m = 0$ $m = \frac{1}{2}$	2 Marks: Correct answer. 1 Mark: Shows understanding when two vectors are perpendicular.
11(b) (i)	z+w = 4-3i $= 5$	1 Mark: Correct answer.
11(b) (ii)	$z^{2} - w^{2} = (1 - i)^{2} - (3 - 2i)^{2}$ $= -2i - (9 - 12i + 4i^{2})$ $= -2i - 5 + 12i$ $= -5 + 10i$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(c)	$B(-3,2,5)$ $\overrightarrow{O}A = 2\iota + \jmath + 2k, \overrightarrow{OB} = -3\iota + 2\jmath + 5k, \overrightarrow{OC} = 4\iota + 5\jmath - 2k$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= -5\iota + \jmath + 3k$ $\overrightarrow{DC} = \overrightarrow{AB} \text{ (opposite sides of a parallelogram are equal)}$ $= -5\iota + \jmath + 3k$ $\overrightarrow{OD} = \overrightarrow{OC} - \overrightarrow{DC}$ $= 9\iota + 4\jmath - 5k$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds \overrightarrow{AB} or shows some understanding.

11(d)	Integration by parts	3 Marks: Correct
	$\int e^x \sin x dx = \int e^x \times \frac{d}{dx} (-\cos x) dx$	answer.
	$= e^{x}(-\cos x) - \int e^{x}(-\cos x) dx$ $= -e^{x}\cos x + \int e^{x} \times \frac{d}{dx}(\sin x) dx$	2 Marks: Finds the second application of integration by parts.
	$= -e^x \cos x + e^x \sin x - \int e^x \sin x dx$ $2 \int e^x \sin x dx = -e^x \cos x + e^x \sin x + C$ $\int e^x \sin x dx = \frac{e^x}{2} (\sin x - \cos x) + C$	1 Mark: Correctly applies integration by parts.
12(a) (i)	Amplitude of motion is 3 cm ($a = 3$) Period of motion is 4 seconds	2 Marks: Correct answer.
	$T = \frac{2\pi}{n} = 4$ $n = \frac{\pi}{2}$ $v^2 = n^2(a^2 - x^2)$ $= \left(\frac{\pi}{2}\right)^2 (3^2 - x^2)$ Maximum velocity occurs when $x = 0$ $v^2 = \left(\frac{\pi}{2}\right)^2 \times 3^2$ $v = \frac{3}{2}\pi \text{ cms}^{-1}$	1 Mark: Finds the values of <i>a</i> and <i>n</i> or shows some understanding of the problem.
12(a) (ii)	Maximum acceleration is when $x = -3$ cm $\ddot{x} = -n^2 x$ $= -\left(\frac{\pi}{2}\right)^2 \times -3$ $= \frac{3}{4}\pi^2 \text{ cms}^{-2}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
12(a) (iii)	Displacement is $x = \pm 1$ cm $v^2 = \left(\frac{\pi}{2}\right)^2 (3^2 - (\pm 1)^2)$ $= \frac{8\pi^2}{4}$ $v = \pm \pi \sqrt{2} \text{ cms}^{-1}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
12(b) (i)	$z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ $\sqrt{2}$ $\frac{\pi}{4}$	1 Mark: Correct answer.
12(b) (ii)	Using De Moivre's theorem $z^{n} = \cos n\theta + i \sin n\theta \text{for } n = 1, 2, 3, \dots$ $z^{10} = \sqrt{2}^{10} \cos \left(10 \times \frac{\pi}{4}\right) + i \sin \left(10 \times \frac{\pi}{4}\right)$	2 Marks: Correct answer.
	$= 32\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2} = 32\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$ $\therefore z^{10} = 32 \text{ and } \arg(z^{10}) = \frac{\pi}{2}$	1 Mark: Finds the modulus or the argument.

12(c) (i)	$t = \tan \frac{x}{2}$ $dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$ $dx = \frac{2}{1+t^2} dt$ When $x = 0$ then $t = 0$ and when $x = \frac{\pi}{2}$ then $t = 1$ $5 + 5\sin x - 3\cos x = \frac{5(1+t^2) + 10t - 3(1-t^2)}{1+t^2}$ $= \frac{8t^2 + 10t + 2}{1+t^2}$ $= \frac{2(4t^2 + 5t + 1)}{1+t^2}$	3 Marks: Correct answer. 2 Marks: Finds sinx and cosx in terms of t. 1 Mark: Shows some understanding.
	$\int_0^{\frac{\pi}{2}} \frac{1}{5 + 5\sin x - 3\cos x} dx = \int_0^1 \frac{1 + t^2}{2(4t^2 + 5t + 1)} \times \frac{2}{1 + t^2} dt$ $= \int_0^1 \frac{1}{4t^2 + 5t + 1} dt$	
12(c) (ii)	$\frac{1}{4t^2 + 5t + 1} = \frac{1}{(4t + 1)(t + 1)} = \frac{1}{3} \left\{ \frac{4}{4t + 1} - \frac{1}{t + 1} \right\}$ $\int_0^{\frac{\pi}{2}} \frac{1}{5 + 5\sin x - 3\cos x} dx = \int_0^1 \frac{1}{3} \left\{ \frac{4}{4t + 1} - \frac{1}{t + 1} \right\} dt$ $= \frac{1}{3} \left[\ln \left(\frac{4t + 1}{t + 1} \right) \right]_0^1$ $= \frac{1}{3} \left(\ln \frac{5}{2} - \ln 1 \right) = \frac{1}{3} \ln \frac{5}{2}$	2 Marks: Correct answer. 1 Mark: Correct expression for the integral in terms of <i>t</i> using partial fractions.
13(a)	Step 1: To prove true for $n = 1$ $T_1 = 3 \cdot 2^1 + 1 = 7$ Result is true for $n = 1$ Step 2: Assume true for $n = k$ $T_k = 3 \cdot 2^k + 1$ Step 3: To prove true for $n = k + 1$ $T_{k+1} = 3 \cdot 2^{k+1} + 1 \text{ given } T_{k+1} = 2T_k - 1$ LHS = $2T_k - 1$ $= 2(3 \cdot 2^k + 1) - 1$ $= 3 \cdot 2^{k+1} + 1$ $= \text{RHS}$ Step 4: True by induction	3 Marks: Correct answer. 2 Marks: Proves the result true for $n = 1$ and attempts to use the result of $n = k$ to prove the result for $n = k + 1$. 1 Mark: Proves the result true for $n = 1$.

13(b)	Use the substitution $x = 2\sin\theta$	3 Marks: Correct
	$\frac{dx}{d\theta} = 2\cos\theta$	answer.
	$\frac{d\theta}{d\theta} = 2\cos\theta d\theta$ $dx = 2\cos\theta d\theta$	0.14 1 70 1 1
	When $x = 0$ then $\theta = 0$ and when $x = \sqrt{2}$ then $\theta = \frac{\pi}{4}$	2 Marks: Finds the primitive function.
		primitive function.
	$\int_0^{\sqrt{2}} \sqrt{4 - x^2} dx = \int_0^{\frac{\pi}{4}} 2\cos\theta \times 2\cos\theta d\theta$	1 Mark: Correctly
	π	expresses the integral in terms
	$=4\int_0^{\frac{\pi}{4}} \left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) d\theta$	of θ .
	$=4\left[\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{4}}$	
	$= 4\left(\frac{\pi}{8} + \frac{1}{4}\right)$ $= \frac{\pi}{2} + 1$	
	$\begin{vmatrix} \pi & 4 \\ = - + 1 \end{vmatrix}$	
	2 . 1	
13(c)	y V	4 Marks: Correct
		answer.
	y	3 Marks: Makes
	$O \xrightarrow{\beta} x$	significant progress
	Position at <i>P</i>	towards the
	21	solution.
	$\tan \beta = \frac{y}{x}$	2 Marks: Finds an
	$=\frac{-\frac{1}{2}gt^2 + Vt\sin\alpha}{Vt\cos\alpha}$	expression for $tan \beta$.
		1 Mark: Uses the
	$= \tan \alpha - \frac{g}{2V\cos \alpha}t$ (1)	equations of motion
	Velocity at P	appropriately.
	$\tan(\pi - \beta) = \frac{\dot{y}}{\dot{x}}$	
	$-\tan\beta = \frac{-gt + V\sin\alpha}{V\cos\alpha}$	
	$\tan\beta = \frac{g}{V\cos\alpha}t - \tan\alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	Equating equations 1 and 2	
	$\tan\alpha - \frac{g}{2V\cos\alpha}t = \frac{g}{V\cos\alpha}t - \tan\alpha$	
	$2\tan\alpha = \frac{3}{2} \frac{g}{V \cos\alpha} t$	
	$\therefore t = \frac{4V \sin\alpha}{3g}$	
	<u>I</u>	

13(d) (i)	$5x^3 - 3x^2 + 2x - 1 = Ax(x^2 + 1) + B(x^2 + 1) + (Cx + D)x^2$ $= Ax^3 + Ax + Bx^2 + B + Cx^3 + Dx^2$	2 Marks: Correct answer.
	Therefore	1 Mark: Finds two
	$(A+C) x^3 = 5x^3 $	of the pronumerals or shows some
	$(B+D) x^2 = -3x^2 \ \widehat{2}$	understanding.
	Ax = 2x (3)	
	$B = -1 \ \textcircled{4}$	
	Hence $A = 2$, $B = -1$, $C = 3$ and $D = -2$	
13(d) (ii)	$\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} dx = \int \left(\frac{2}{x} - \frac{1}{x^2} + \frac{3x - 2}{x^2 + 1}\right) dx$	2 Marks: Correct answer.
	$= \int \left(\frac{2}{x} - \frac{1}{x^2} + \frac{3x}{x^2 + 1} - \frac{2}{x^2 + 1}\right) dx$	1 Mark: Correctly finds one of the
	$= 2\ln x + \frac{1}{x} + \frac{3}{2}\ln(x^2 + 1) - 2\tan^{-1}x + C$	integrals.
13(e)	$z.\bar{z} = (x+iy)(x-iy)$	2 Marks: Correct
	$=x^2-i^2y^2$	answer.
	$= x^2 + y^2$	1 Mark: Expands
	$=\left(\sqrt{x^2+y^2}\right)^2$	$z.\bar{z}$ or shows some understanding.
	$= z ^2$	
14(a) (i)	$a^{2} + b^{2} - 2ab = (a - b)^{2} \ge 0$ $a^{2} + b^{2} \ge 2ab$	1 Mark: Correct answer.
14(a)	Using the result in part (a)	2 Marks: Correct
(ii)	$a^{2} + b^{2} \ge 2ab$ $a^{2} + d^{2} \ge 2ad$ $b^{2} + d^{2} \ge 2bd$ $a^{2} + c^{2} \ge 2ac$ $b^{2} + c^{2} \ge 2bc$ $c^{2} + d^{2} \ge 2cd$	answer.
	Adding all the above inequations $3(a^2 + b^2 + c^2 + d^2) \ge 2(ab + ac + ad + bc + bd + cd)$	1 Mark: Uses the result in part (a).
14(a)	$a^2 + b^2 + c^2 + d^2$	3 Marks: Correct
(iii)	$= (a + b + c + d)^{2} - 2(ab + ac + ad + bc + bd + cd 1)$	answer.
	Multiply equation ① by 3 and use $a + b + c + d = 1$	2 Marks: Makes
	$3(a^2 + b^2 + c^2 + d^2) = 3 - 6(ab + ac + ad + bc + bd + cd)$	significant progress towards the
	Now using the result in part (b)	solution.
	2(ab + ac + ad + bc + bd + cd)	1 Mark: Writes the
	$\leq 3 - 6(ab + ac + ad + bc + bd + cd)$	sum of the squares in terms of the
	$8(ab + ac + ad + bc + bd + cd) \le 3$	products taken two
	$(ab + ac + ad + bc + bd + cd) \le \frac{3}{8}$	at a time.

14(b)	,C	2 Marilan Carrant
(i)	y C	2 Marks: Correct answer.
(1)	D	allswel.
		1 Mark: Shows
	B	some
		understanding.
	A Z_{2}	8
	E	
	\leftarrow O $\rightarrow x$	
	OE//AB and $OE = AB$	
	∴ OABE is a parallelogram	
	Let <i>w</i> be the vector that correspond to point <i>E</i> .	
	$w + z_1 = z_2$	
	$\therefore w = z_2 - z_1$	
14(b)	$OF \perp OE$ and $OF = OE$	1 Mark: Correct
(ii)	$\therefore F$ corresponds to $i(z_2 - z_1)$	answer.
	(multiplying a complex number by <i>i</i> corresponds to an	
	anticlockwise rotation about the origin through 90°)	
14(b)	Since $AD//OF$ and $AD = OF$	1 Mark: Correct
(iii)	Point <i>D</i> corresponds to the complex number:	answer.
	$z_1 + i(z_2 - z_1) = z_1(1 - i) + iz_2$	
14(c)	į component	2 Marks: Correct
	$4 + \lambda = 0$	answer.
	$\lambda = -4$	
	<i>J</i> component	1 Mark: Finds λ or
	~	shows some understanding.
	$10 - 4 \times 5 = a$	under standing.
	a = -10	
	$k \in \mathbb{R}$ component	
	$-1 - 4 \times (-3) = b$	
	∴ $a = -10$ and $b = 11$.	
14(d)	$\int_{-\infty}^{\frac{\pi}{2}}$	2 Marks: Correct
(i)	$I_n = \int_0^{\frac{n}{2}} \sin^n x dx n \ge 2$	answer.
		4.11.0
	$= \int_{0}^{\frac{\pi}{2}} -\sin^{n-1}x \frac{d\cos x}{dx} dx$	1 Mark: Correctly
		applies integration by parts.
	$= -[\sin^{n-1}x \cos x]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x \frac{d(\sin^{n-1}x)}{dx} dx$	by parto.
	$\int_0^{\pi} dx$	
	$\int_{-\infty}^{\frac{n}{2}} \cos(n + 1) \sin^{n-2} n \cos n dn$	
	$= 0 + \int_0^{\overline{2}} \cos x (n-1) \sin^{n-2} x \cos x dx$	
	$\int \frac{\pi}{2}$	
	$= (n-1) \int_0^{\frac{n}{2}} \sin^{n-2} x \cos^2 x dx$	
	70	

14(d) (ii)	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2}x \cos^2x dx$	2 Marks: Correct answer.
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2}x (1-\sin^2x) \ dx$ $= (n-1) \int_0^{\frac{\pi}{2}} (\sin^{n-2}x - \sin^n x) \ dx$	1 Mark: Shows some understanding of the problem.
	$I_{n} = (n-1)I_{n-2} - (n-1)I_{n}$ $nI_{n} = (n-1)I_{n-2}$ $I_{n} = \frac{n-1}{n}I_{n-2}$	
14(d) (iii)	$I_4 = \frac{3}{4} I_2$	2 Marks: Correct answer.
	$= \frac{3}{4} \times \frac{1}{2} I_0$ $= \frac{3}{8} \times \int_0^{\frac{\pi}{2}} dx$	1 Mark: Applies the recurrence relation to find an expression for <i>I</i> ₄ .
	$=\frac{3\pi}{16}$	
15(a)	$ z-1 \le 3$ represents a region with centre $(1,0)$ and radius less than or equal to 3. Im $(z) \ge 3$ represents a region above the horizontal line $y=3$. The point $(1,3)$ is where the two inequalities hold.	3 Marks: Correct answer. 2 Marks: Correctly graphs one inequality. 1 Mark: Makes some progress.
15(b) (i)	Given $a > 0$ and $b > 0$ $\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$	1 Mark: Correct answer.
	$a + b - 2\sqrt{ab} \ge 0$ $\frac{a+b}{2} \ge \sqrt{ab}$	

15(b)	Using the result in part(a)	2 Marks: Correct
(ii)	$\left(\frac{a+b}{2}\right)^2 \ge \left(\sqrt{ab}\right)^2$	answer.
		1 Mark: Uses the
	$\left \frac{(a+b)^2}{4} \ge ab \right $	result in part (a)
	4	and makes some
	$\left \frac{(a+b)}{ab} \ge \frac{4}{(a+b)} \right $	progress.
	$\left \frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b} \right $	
	$(a+b)\left(\frac{1}{a} + \frac{1}{b}\right) \ge 4$	
15(c)	$(x+iy)^2 = -3-4i$	2 Marks: Correct
(i)	$x^2 - y^2 + 2ixy = -3 - 4i$ Equating the real and imaginary parts	answer.
	Equating the real and imaginary parts $x^2 - y^2 = -3 \text{ (1)}$	1 Mark: Finds one
	$2xy = -4 \ 2$	pair of integers or
	From equation ② $y = -\frac{2}{x}$ and substitute into equation ①	equates the real and imaginary parts.
	$x^2 - \frac{4}{x^2} = -3$	imagmary parts.
	$x^{4} + 3x^{2} - 4 = 0$	
	$(x^2+4)(x^2-1)=0$	
	$x^2 = 1$ $x = +1$	
	$x - \pm 1$ $\therefore \text{When } x = 1 \text{ then } y = -2 \text{ and when } x = -1 \text{ then } y = 2$	
	Also	
	$[\pm (1-2i)]^2 = -3 - 4i$	
456)	$\sqrt{-3-4i} = \pm (1-2i)$	
15(c) (ii)	Using $\sqrt{-3-4i} = \pm (1-2i)$	2 Marks: Correct answer.
	$z = \frac{3 \pm \sqrt{9 - 4(3 + i)}}{2}$	diswerr
	_	1 Mark: Uses the
	$=\frac{3\pm\sqrt{-3-4i}}{2}$	result from part (a) and shows some
	_	understanding.
	$=\frac{3\pm(1-2i)}{2}$	
	z = 2 - i or z = 1 + i	
15(d)	$\overrightarrow{EB} = \overrightarrow{AO} \qquad \qquad \overrightarrow{EF} = \overrightarrow{OC}$	2 Marks: Correct
(i)	$= -\overrightarrow{OA} \qquad = 4\cancel{k}$	answer.
	$= -3\underline{\iota}$ $\overrightarrow{OE} = \overrightarrow{OB} + \overrightarrow{BE}$ $\overrightarrow{OF} = \overrightarrow{OE} + \overrightarrow{EF}$	1 Mark: Finds two
	$ \begin{array}{ccc} OE &= OB + BE \\ &= 5j + \overrightarrow{OA} \end{array} $ $ OF &= OE + EF \\ &= 3i + 5j + 4k $	of the vectors.
	= 5j + 3i $= 5j + 3i$	
	$=3\tilde{\underline{\imath}}+5\tilde{\underline{\jmath}}$	

15(d)	$\overrightarrow{OM} = \overrightarrow{OF} + \overrightarrow{FM}$	2 Manlan Camara
(ii)		2 Marks: Correct answer.
(11)	$= \overrightarrow{OE} + \overrightarrow{EF} + \overrightarrow{FM}$	answer.
	$=3\underline{i}+5\underline{j}+4\underline{k}+\frac{1}{2}\left(-\overrightarrow{GF}\right)$	1 Mark: Shows
	$=3\underline{i}+5\underline{j}+4\underline{k}+\frac{1}{2}(-\overrightarrow{OA})$	understanding.
	$=3\underline{i}+5\underline{j}+4\underline{k}+\frac{1}{2}(-3\underline{i})$	
	$=\frac{3}{2}\iota+5\iota+4\iota$	
16(a)	Resolving forces	2 Marks: Correct
(i)	$m\ddot{x} = F - kv^2$	answer.
	$\ddot{x} = \frac{1}{m}(F - kv^2)$	1 Mark: Resolves forces.
16(a) (ii)	$v\frac{dv}{dx} = \frac{1}{m}(F - kv^2)$	3 Marks: Correct answer.
	$\frac{dv}{dx} = \frac{(F - kv^2)}{mv}$	2 Marks: Makes
		significant progress
	$\frac{dx}{dv} = \frac{mv}{(F - kv^2)}$	towards the solution.
	C^{X_2} C^{V_2} m_{12}	Solution.
	$\int_{x_1}^{x_2} 1 dx = \int_{v_1}^{v_2} \frac{mv}{(F - kv^2)} dv $ (Distance travelled is $x_2 - x_1$)	1 Mark: Finds an dx
	$x_2 - x_1 = -\frac{m}{2k} \left[\ln(F - kv^2) \right]_{v_1}^{v_2}$	expression for $\frac{dx}{dv}$ or has some
	$= \frac{m}{2k} [\ln(F - kv^2)]_{v_2}^{v_1}$	understanding of the problem.
	$= \frac{m}{2k} \left[\ln(F - kv_1^2) - \ln(F - kv_2^2) \right]$	
	$x = \frac{m}{2k} \ln \left(\frac{F - kv_1^2}{F - kv_2^2} \right)$	
16(b) (i)	Step 1: To prove the statement true for $n = 1$	4 Marks: Correct
	$\sum_{i=1}^{2} 1^2 = \frac{1}{6} + \frac{1^2}{2} + \frac{1^3}{3} = 1$	3 Marks: Makes
	$\iota=1$	significant progress
	Result true for $n = 1$	towards the
	Step 2: Assume the result true for $n = k$	solution.
	$\sum_{i=1}^{k} i^2 = \frac{k}{6} + \frac{k^2}{2} + \frac{k^3}{3}$	2 Marks: Proves the result true for <i>n</i> = 1
	l=1	and attempts to use
	Step 3: To prove the result true for $n = k + 1$	the result of $n = k$ to prove the result for
	$\sum_{k=2}^{k+1} k+1 (k+1)^2 (k+1)^3$	n = k + 1.
	$\sum_{i=1}^{k+1} i^2 = \frac{k+1}{6} + \frac{(k+1)^2}{2} + \frac{(k+1)^3}{3}$	1 Mark: Proves the
		result true for $n = 1$.

	b±1 b	
	LHS = $\sum_{r=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2$	
	$ \begin{array}{ccc} \overline{r} = 1 & \overline{i} = 1 \\ k & k^2 & k^3 \end{array} $	
	$= \frac{k}{6} + \frac{k^2}{2} + \frac{k^3}{3} + (k+1)^2$	
	$=\frac{k+3k^2+2k^3+6(k^2+2k+1)}{6}$	
	$=\frac{2k^3+9k^2+13k+6}{6}$	
	RHS = $\frac{k+1}{6} + \frac{(k+1)^2}{2} + \frac{(k+1)^3}{3}$	
	$=\frac{(k+1)(1+3(k+1)+2(k^2+2k+1))}{6}$	
	$=\frac{(k+1)(1+3k+3+2k^2+4k+2)}{6}$	
	$=\frac{(k+1)(2k^2+7k+2)}{6}$	
	$=\frac{2k^3+9k^2+13k+6}{6}$	
	LHS = RHS	
	Result is true for $n = k + 1$	
16(b)	Step 4: Result true by the principle of mathematical induction.	1 Mark: Correct
(ii)	$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \lim_{n \to \infty} \frac{\sum_{i=1}^n i^2}{n^3}$	answer.
	$= \lim_{n \to \infty} \frac{1}{n^3} \left(\frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3} \right)$	
	$= \lim_{n \to \infty} \left(\frac{1}{6n^2} + \frac{1}{2n} + \frac{1}{3} \right) = \frac{1}{3}$	
16(c)	$\overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC}$	2 Marks: Correct
(i)	$\overrightarrow{OC} + \overrightarrow{CA} = \overrightarrow{OA}$	answer.
	Now $\overrightarrow{BC} = \overrightarrow{CA}$	1 Mark: Shows
	$\therefore \overrightarrow{OC} - \overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{OC}$	some
	<i>∪ →</i> 1 <i>→ →</i>	understanding.
	$\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$	
	$= \frac{1}{2} (3\underline{\imath} + 4\underline{k} + 2\underline{\imath} - 2\underline{\jmath} + \underline{k}) = \frac{1}{2} (5\underline{\imath} - 2\underline{\jmath} + 5\underline{k})$	
16(c) (ii)	$\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AB}$	3 Marks: Correct
()	$\overrightarrow{OC} - \overrightarrow{OA} = \frac{4}{3} (\overrightarrow{OB} - \overrightarrow{OA})$	2 Marks: Makes
	3	significant progress towards the
	$\overrightarrow{OC} = \frac{4}{3} \left(\overrightarrow{OB} - \overrightarrow{OA} \right) + \overrightarrow{OA}$	solution.
	$= \frac{4}{3} (2\underline{\imath} - 2\underline{\jmath} + \underline{k} - 3\underline{\imath} - 4\underline{k}) + 3\underline{\imath} + 4\underline{k}$	1 Mark: Sets up the equation with
	$= \frac{4}{3} \left(-i - 2i - 3k \right) + \frac{1}{3} (9i + 12k) = \frac{1}{3} (5i - 8i)$	position vectors.
I		