This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

This Page Blank (uspto)

Recherche

(1) Publication number:

0 563 400 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(21) Application number: 92921477.3

2 Date of filing: 16.10.92

(66) International application number: PCT/JP92/01349

1 International publication number:

) 전 4일.

- WO 93/08645 (29.04.93 93/11)
- Priority: 17.10.91 JP 269784/91 07.09.92 JP 237532/92 02.10.92 JP 265178/92
- Date of publication of application: 06.10.93 Bulletin 93/40
- Beginsted Contracting States: DE FR GB
- 71 Applicant: MORI, Shinsaku Keio Gljuku Daigaku, Rikougakubu, Denki-kougakuka, 14-1, Hiyoshi 3-chome, Kouhoku-ku Yokohama-shi, Kanagawa 223(JP) Applicant: SHINTOM CO., LTD 19-1 Minowacho 2-chome Kouhoku-ku Yokohama-Shi, Kanagawa 223(JP)
- Inventor: MORI, Shinsaku, Keio Gijuku Daigaku, Rikougakubu

(i) Int. Cl.5: H03L 7/18, H03K 23/64

RRenkikougakuka, 14-1, Hiyoshi 3-chome, Kouhoku-ku Yokohama-shi, Kanagawa 223(JP) Inventor: PARK, D. Keio Gijuku Daigaku Rikougakubu Denkikou gakuka Mori-Kenkyushitsunai 14-1. Hiyoshl3-chome iKouhoku-ku, Yokohama-shi, Kanagawa 223(JP) Inventor: MIYAGI, Hiroshi, Room 204, Itohpia-Tsunashima-Kondominiamu, 1265-1, Shinyoshida-cho, Kouhoku-ku Yokohama-shi, Kanagawa 223(JP)

- (74) Representative: Blumbach Weser Bergen Kramer Zwirner Hoffmann Patentanwälte Radeckestrasse 43 D-81245 München (DE)
- FREQUENCY CONVERTER, MULTISTAGE FREQUENCY CONVERTER, AND FREQUENCY SYNTHESIZER **USING THEM.**
- (57) A frequency synthesizer provided with a phase comparator (10) for comparing a feedback frequency with a reference frequency, a filter (12) connected to the phase comparator (10) and passing low frequencies, a voltage-controlled oscillator (14) connected to the filter (12), a multistage frequency converter (16) receiving the oscillation signal generated by the voltage-controlled oscillator (14), a frequency demultiplier for forming a feedback frequency by

frequency-demultiplying the output of the multistage frequency converter (16). The multistage frequency converter (16) is constituted by connecting a plurality of frequency converters, which perform non-integer frequency-demultiplication, in series or in parallel with each other. Consequently the ratio of the frequency-demultiplication can be set arbitrarily and finely. Thereby, no matter how the output frequency of the frequency synthesizer changes, the feedback

frequency inputted to the phase comparator can be set constant and high. Therefore, the reference frequency can be set as high as the feedback frequency too, independently of the spacing frequency between the output channels of the voltage-controlled oscillator (14), and the speed of ziehen effect can be made very high.

15

25

35

Technical Field

The present invention relates to a frequency converter, multistage frequency converter and frequency synthesizer using these converters, all of which are used in the field of communication requiring a frequency synthesization, e.g. in the field of digital phase-locked system and the like.

1

Background Art

Fast frequency conversion is required in a frequency hopping system which is one of the spectrum diffusion communications, mobile radio data communication and the like. Typical methods of synthesizing frequencies can be classified into three systems, that is, a direct synthesization for synthesizing many sources of frequency; an indirect synthesization using a reference frequency corresponding to the smallest frequency increment and a phase-locked system and a digital, synthesization for increasing the speed of the indirect synthesization.

The indirect synthesization is broadly used in many fields of communication since the PLL frequency synthesizer constructed thereby can be reduced in size and cost and have a spurious smaller than that of the direct synthesization.

However, the indirect synthesization is disadvantageous in that since frequencies to be compared in phase are lower, the time constant in a low-pass filter must be increased to prolong the acquisition time when one frequency is to be switched to another frequency. If the frequencies to be compared in phase are increased to increase the acquisition time, the number of channels must be undesirably decreased.

Fig. 38 illustrates the basic arrangement of a prior art frequency synthesizer constructed in accordance with the indirect synthesization. The frequency synthesizer comprises a reference divider 100, a divider 102, a phase detector 104, a voltage controlled oscillator (VCO) 106, a low-pass filter (LPF) 108 and a charge pump 110.

The phase detector 104 compares the phase of a reference frequency fr generated at the base divider 100 with that of a feedback frequency fb obtained by dividing a VCO output frequency fo with the division ratio N of the divider 102. The output signal of the phase detector 104 is fed into the voltage controlled oscillator 106 through the charge pump 110 and the low-pass filter 108 so that the output frequency fo of the voltage controlled oscillator 106 will be a predetermined level. The relationship between the output frequency fo, the reference frequency fr and the division ratio N is represented by:

 $fo = N \cdot fr$ (1).

It is understood from the equation (1) that since the reference frequency fr is constant, the output frequency fo varies depending on the division ratio N (N = any integer). Thus, the smallest frequency interval Δf representing the spacing of output frequencies fo becomes equal to the reference frequency fr. Since the division ratio N and reference frequency fr are interdependent, the division ratio N is automatically determined if the desired output frequency fo and reference frequency fr (= Δf) have been determined.

In such a frequency synthesizer, if the reference frequency fr is 25 kHz and when it is desired to obtain an output frequency fo equal to 1.400 GHz, the division ratio N becomes equal to 56000. As the output frequency fo is switched from 1.400 GHz to 1.4126 GHz, the division ratio N must be switched from 56000 to 56504.

In the prior art frequency synthesizer wherein the necessary frequency interval Δf is set to be equal to the reference frequency fr, the reference frequency fr must be reduced if the frequency interval Δf is small. This raises a problem in that the acquisition time cannot be decreased.

In this connection, the reference frequency fr in the prior art frequency synthesizer has two functions to determine the smallest frequency interval Af in the output frequency and also to compare the phase of the reference frequency fr with that of the feedback frequency fb so as to generate a given output frequency fo. If the two functions of the reference frequency fr are separated so that the smallest frequency interval Δf of the output frequency can be controlled by the other circuit, the reference frequency fr has only a role to oscillate a given frequency fo independently of changes in the smallest frequency interval Δf . Thus, the frequencies fr and fb can be increased to shorten the acquisition time. Therefore, the prior art frequency synthesizer can determine the smallest frequency interval Δf of the output frequency between the divider 102 and the voltage controlled oscillator 106. When the integer divider is replaced by a noninteger divider and if the non-integer division ratio can be continuously and arbitrarily switched responsive to the desired output frequency fo, the acquisition time can be reduced even if the frequency spacing is smaller. However, the conventional non-integer divider could not meet such requirements and could not be used in the frequency synthesizers.

Some of the prior art non-integer dividers are disclosed in Japanese Patent Laid-Open Nos. Hei 3-206721, Hei 3-131120, Hei 2-305022, Hei 2-271717, Hei 2-224558, Hei 1-238220, Hei 1-120910, Hei 2-101663, Hei 2-44557, Sho 60-

15

25

30

40

45

50

55

500593, Sho 63-290409, Sho 60-172808 and Sho 60-172807, Japanese Utility Model Laid-Open No. Sho 55-121539, Japanese Patent Publication No. Sho 51-416, and Japanese Patent Laid-Open Nos. Sho 50-115460 and Sho 59-3555, for example.

In view of the problems in the prior art, it is an object of the present invention to provide a frequency synthesizer which can reduce the acquisition time.

Another object of the present invention is to provide a frequency converter and multistage frequency converter which can be applied to the frequency synthesizer or the like by enabling the non-integer division ratio to be finely set.

SUMMARY OF THE INVENTION

The present invention provides a frequency converter comprises:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, thereby providing an output signal having a frequency corresponding to a level non-integer times higher than the frequency of the input signal.

The frequency converter can remove pulses from the input pulse train at a predetermined intervals to provide any frequency between input and output signals by dividing a signal from the input pulse train to form a control signal and yet providing a variable integer division ratio.

The present invention also provides a multistage frequency converter which can be connected in series and/or parallel to the frequency converters of the present invention.

Each of the frequency converters defining the multistage frequency converter can have any converted frequency. Therefore, the multistage frequency converter can have a finely set division ratio which is a non-integer as a whole.

In one aspect of the present invention, the multistage frequency converter comprises a plurality of frequency converters which are connected in series to each other, each of said frequency converters comprising:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals.

In another aspect of the present invention, the multistage frequency converter comprises a plurality of frequency converters, each of said frequency converters comprising:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals,

the output of one of said frequency converters being used as an input to the divider of the other.

In still another aspect of the present invention, the multistage frequency converter comprises a plurality of frequency converters, each of said frequency converters comprising:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals,

the output of one of said frequency converters being used as an input to the divider of the other,

two or more of said frequency converters being connected in series to each other.

The present invention further provides a frequency synthesizer comprises:

a phase detector for comparing a reference frequency with a feedback frequency;

a filter connected to the phase detector for permitting the passage of a low frequency therethrough;

a voltage controlled oscillator connected to the filter;

a frequency converter for receiving an oscillation signal from the voltage controlled oscillator, the frequency converter comprising a first divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with an integer division ratio and a cycle swallower for receiving the division output of the first divider as a control input to remove pulses from the pulse train at a predetermined intervals; and

a second divider for dividing the output of the frequency converter to form the feedback frequency,

whereby the reference and feedback frequencies can be controlled to be equal to each other.

In a further aspect of the present invention, the frequency synthesizer comprises:

a phase detector for comparing a reference frequency with a feedback frequency;

a filter connected to the phase detector for permitting the passage of a low frequency therethrough;

a voltage controlled oscillator connected to the filter;

a multistage frequency converter for receiving an oscillation signal from the voltage control led oscillator as an input; and

a first divider for dividing the output of the

20

25

30

35

40

multistage frequency converter to form the feedback frequency,

whereby the reference and feedback frequencies can be controlled to be equal to each other.

Each of the aforementioned frequency synthesizers comprises a plurality of frequency converters or multistage frequency converters, each of which is constructed in accordance with the present invention. These multistage frequency converters can provide a division output having a substantially constant frequency irrespectively of the frequency in the output signal of the voltage controlled oscillator since the non-integer division ratio can be finely set. The division output is formed into a feedback frequency by the first divider and then inputted into the phase detector. Thus, the feedback frequency can be set to be higher, irrespectively of the output frequency of the voltage controlled oscillator. This means that the reference frequency to be compared with the feedback frequency can be also increased. In such a manner, the acquisition time can be greatly reduced.

In a further aspect of the present invention, the frequency synthesizer comprises:

- a phase detector for comparing a reference frequency with a feedback frequency;
- a filter connected to the phase detector for permitting the passage of a low frequency therethrough;
- a voltage controlled oscillator connected to the filter;
- a first divider for dividing the oscillation signal from said voltage controlled oscillator;
- a frequency converter comprising a second divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, said frequency converter receiving the division signal from said first divider as an input; and
- a third divider for dividing the output of said frequency converter to form said feedback frequency,

said reference and feedback frequencies being controlled to be equal to each other.

In a further aspect of the present invention, the frequency synthesizer comprises:

- a phase detector for comparing a reference frequency with a feedback frequency;
- a filter connected to the phase detector for permitting the passage of a low frequency therethrough;
- a voltage controlled oscillator connected to the filter;
- a first divider for dividing an oscillation signal from said voltage controlled oscillator;

a multistage frequency converter for receiving the division signal from said first divider as an input; and

a second divider for dividing the output of said multistage frequency converter to form said feedback frequency,

said reference and feedback frequencies being controlled to be equal to each other.

Each of these frequency synthesizers may include a fixed or variable divider which is inserted between the voltage controlled oscillator and the frequency converter or between the voltage controlled oscillator and the multistage frequency converter. Therefore, the signal to be inputted into the frequency converter or the multistage frequency converter can be reduced in frequency. Thus, the power consumption can be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram showing the basic arrangement of the first embodiment of a frequency synthesizer constructed in accordance with the present invention.

Fig. 2 is a block diagram showing a frequency converter which defines a multistage frequency converter used in the frequency synthesizer of the first embodiment.

Fig. 3 is a view showing the details of a cycle swallower in the frequency converter.

Fig. 4 is a view showing the details of a divider in the frequency converter.

Fig. 5 is a timing chart for illustrating detailed operations of various parts in the frequency converter.

Fig. 6 is a view showing the arrangement of a multistage frequency converter which comprises a plurality of Fig. 2 frequency converters connected in series to each other.

Fig. 7 is output waveforms at various parts of a multistage (three-stage) frequency converter in which three frequency converters are connected in series to each other.

Fig. 8 is a view showing the entire arrangement of the frequency synthesizer which is the first embodiment of the present invention and includes a controller.

Fig. 9 is a graph illustrating the acquisition time in a prior art frequency synthesizer when no bias voltage will be applied to the voltage controlled oscillator and the divider will not be reset.

Fig. 10 is a graph illustrating the acquisition time in the frequency synthesizer constructed according to the first embodiment of the present invention when no bias voltage will be applied to the voltage controlled oscillator and the divider will not be reset.

25

30

45

Fig. 11 is a graph illustrating the acquisition time in a prior art frequency synthesizer when a bias voltage will be applied to the voltage controlled oscillator on switching of the output frequency and the reference and fixed frequency dividers will be reset.

Figs. 12 and 13 are graphs illustrating the acquisition time in the first embodiment of the frequency synthesizer according to the present invention when a bias voltage will be applied to the voltage controlled oscillator on switching of the output frequency and the reference and fixed frequency dividers will be reset.

Fig. 14 is a graph illustrating the acquisition time in a prior art frequency synthesizer when a bias voltage equal to 95% of the normal bias voltage is inputted thereinto to grasp changes in the acquisition characteristic due to the frequency drift of the voltage controlled oscillator.

Fig. 15 is a graph illustrating the acquisition time in the first embodiment of the frequency synthesizer according to the present invention when a bias voltage equal to 95% of the normal bias voltage is inputted thereinto to grasp changes in the acquisition characteristic due to the frequency drift of the voltage controlled oscillator.

Fig. 16 is a graph illustrating output spectra in the first embodiment of the frequency synthesizer according to the present invention.

Figs. 17 to 32 illustrate combinations of various division ratios in the frequency converters in the first embodiment of the present invention and their output frequencies.

Fig. 33 illustrates various division ratios and output frequencies of the frequency converters in the first embodiment of the frequency synthesizer according to the present invention when a divider having a variable division ratio is used.

Fig. 34 is a view showing the arrangement of a multistage frequency converter in which a plurality of frequency converters are connected parallel to each other.

Fig. 35 is a view showing the arrangement of the second embodiment of a frequency synthesizer constructed in accordance with the present inven-

Figs. 36 and 37 illustrate the division ratio and output frequency of each of the frequency converters in the multistage frequency converter of the frequency synthesizer of the second embodiment when a divider having a variable division ratio is used.

Fig. 38 is a block diagram of the basic arrangement of a prior art frequency synthesizer.

BEST MODE FOR CARRYING OUT THE INVENTION

The present invention will now be described by way of example with reference to the drawings. In this connection, see International Conference on Communications, June 14-18, 1992, pp. 496-500, which had been published by the inventors.

First Embodiment

Fig. 1 is a block diagram for illustrating the basic arrangement of the first embodiment of a frequency synthesizer constructed in accordance with the present invention. The frequency synthesizer comprises a phase detector 10, a low-pass filter (LPF) 12, a voltage controlled oscillator (VCO) 14, a multistage frequency converter 16 and a fixed divider 18. In the frequency synthesizer of the first embodiment, the multistage frequency converter 16 controlled by a new manner can be used to set a reference frequency fr and the smallest frequency interval Δf independently. The reference frequency fr as well as a feedback frequency fb can be increased by using the same smallest frequency increment as that of the prior art frequency synthesizer and by decreasing the division ratio N in the fixed divider 18. At the same time, the loop gain can be increased.

In Fig. 1, the multistage frequency converter 16 comprises a plurality of non-integer frequency dividers connected to each other, each of which has a variable division ratio. The entire division ratio of the multistage frequency converter 16 can be thus set arbitrarily and finely. Therefore, the multistage frequency converter 16 can operate so that the input frequency fn of the fixed divider 18 becomes constant irrespectively of changes in the output frequency fo of the voltage controlled oscillator 14. If the input frequency fn of the fixed divider 18 is constant, the feedback frequency fb from the fixed divider 18 also becomes constant. As a result, the reference frequency fr to be compared with the feedback frequency fb can be made constant. Consequently, the smallest frequency interval Δf representing the spacing in the output frequencies to of the voltage controlled oscillator 14 can be set independently of the reference frequency fr which can be thus increased. Since the reference frequency fr is generally inversely proportional to the acquisition time, the acquisition time can be reduced by setting the reference frequency fr higher.

Fig. 2 is a block diagram of one of the frequency converters which define the multistage frequency converter 16. The frequency converter comprises a divider 21 and a cycle swallower 22. The divider 21 functions to perform a dividing

10

15

20

35

operation with a division ratio M (M is an integer) such that an input pulse train having a frequency fo is divided to output a pulse train having a cycle multiplied by M. The outputted pulse train is then inputted into the cycle swallower 22 which in turn removes pulses from the received pulse train at a given timing. More particularly, if the pulse train having its frequency fo is received by the cycle swallower 22, the latter removes pulses from the pulse train at such a timing that a pulse train Pi is outputted from the divider 21.

Fig. 3 shows the detailed structure of the cycle swallower 22 which may be conventional, for example, as disclosed in Kingsford-Smith, C.A. Patent No. 3,928,813 (Washington. D.C.: U.S. Patent Office, December 23, 1975). The cycle swallower 22 comprises two J-K flip flops 24, 26 and an AND gate 28. Since the cycle swallower may be conventional as described, it may be replaced by any suitable means other than that of Fig. 3 if the same operation can be accomplished.

Fig. 4 shows the detailed structure of the divider 21 which may be conventional and comprises a programmable counter 30, an OR gate 32 and a read only memory (ROM) 34. Data read out from the ROM 34 is applied to the programmable counter 30 as an initial count. When data from the ROM 34 is changed, therefore, the initial count at the programmable counter 30 is also changed to vary the entire division ratio in the divider 21.

Fig. 5 is a timing chart illustrating the detailed operations of various parts in the arrangements shown in Figs. 2, 3 and 4. As shown in Fig. 5, each pulse is removed by the cycle swallower 22 at a timing next to one pulse Pi outputted from the divider 21. When pulses are removed at such a timing and, for example, if the division ratio in the divider 21 is assumed to be M (integer), the divider 21 will function as a non-integer divider having its division ratio (1-1/M). By changing the value M, therefore, the entire division ratio (1-1/M) can be set arbitrarily and finely.

Fig. 6 shows the arrangement of a multistage frequency converter which comprises a plurality of such frequency converters as shown in Fig. 2, these frequency converters being connected in series to each other. Each of the frequency converters 20-1, ... 20-i, ... 20-n corresponds to that of Fig. 2. The division ratio Mi of each of the frequency converters can be independently set at any value.

First-stage frequency converter 20-1 removes inputted pulses of the frequency fo at a time interval M1. First-stage output frequency f1 is:

$$f1 = fo(1-1/M1)$$
 (2)

The other frequency converters (20-i and others) similarly remove pulses. Thus, n-stage fre-

quency converter 20-n will have an output frequency fn:

$$fn = fo(1-1/M1) \dots (1-1/Mi) \dots (1-1/Mn)$$
 (3)

Fig. 7 shows waveforms at various parts of a multistage (three-stage) frequency converter comprising three frequency converters which are connected in series to each other. In such a case, the equation (3) is rewritten by:

$$f3 = f0(1-1/M1)(1-1/M2)(1-1/M3)$$
 (4)

If it is now assumed that the multistage frequency converter 16 comprises three frequency converters connected in series to each other, the relationship between input and output frequencies meets the equation (4).

Fig. 8 shows the entire arrangement of the frequency synthesizer of the present embodiment which includes a controller. The frequency synthesizer of Fig. 8 comprises a reference divider 40, a charge pump 42, an adder 44, a D/A converter 46 and a controller 48 in addition to the components of the frequency synthesizer shown in Fig. 1.

The reference divider 40 produces a reference frequency fr. The charge pump 42 is connected between the phase detector 10 and the low-pass filter 12, with the output signal having three states; charge, discharge and open. On synchronization of frequency, the output of the charge pump 42 is in the open state. If the frequencies are greatly different from each other, the output of the charge pump 42 becomes only the charge or discharge state. The adder 44 functions to provide a given bias voltage to the voltage controlled oscillator 14. This bias voltage Vr may be produced by converting data from the controller 48 into a voltage by the use of the D/A converter 46. The controller 48 functions to control the switching of output frequency fo at the voltage controlled oscillator 14.

On switching the output frequency fo, the controller 48 feeds data to the D/A converter 46 which in turn outputs a given bias voltage Vr to control the input voltage at the voltage controlled oscillator 14 into a given level. The controller 48 also outputs a reset signal which is used to initialize the fixed and reference dividers 18, 40. The controller 48 further functions to provide an instruction to the multistage frequency converter 16 so that the entire division ratio in the multistage frequency converter 16 will be set at a predetermined level. More particularly, the division ratio at each of the three frequency converters in the multistage frequency converter 16 is changed to change the entire division ratio of the multistage frequency converter 16, by changing data from the ROM 34 in the divider 21. Since the changing of frequency is

50

25

30

carried out by changing each of the values M1, M2 and M3 in the equation (4), the entire division ratio (i-1/M1) • (1-1/M2) • (1-1/M3) of the multistage frequency converter 16 can be finely set to provide substantially any output frequency f3.

As seen from the equation (4), the output frequency f3 can be made constant by suitably setting the division ratio (Mi) in each stage of the multistage frequency converter to remove any increment or decrement in the output frequency fo of the voltage controlled oscillator 14. Therefore, the division ratio N of the fixed divider 18 can be freely set irrespectively of changes in the output frequency fo. If the division ratio N is set to be smaller than the levels in the prior art, the feedback frequency fb can be set at a level much higher than those of the prior art loops.

In the frequency synthesizer shown in Fig. 8, it is now assumed that the reference frequency fr or the smallest frequency interval Δf is equal to 25 kHz and that the output frequency fo is to be changed from 1.400 GHz to 1.4126 GHz. If such a change of output frequency fo is made by the use of the prior art frequency synthesizer, the division ratio N of the divider must be changed from 56000 to 56504. In accordance with the frequency synthesizer of the present embodiment, however, all the aforementioned output frequencies fo can be provided by fixing the division ratio N of the fixed divider 18 to 550 and by setting both the feedback and reference frequencies fb, fr at 2.5 MHz while changing the division ratios M1, M2 and M3 of the respective dividers in the multistage (three-stage) frequency converter 16 from 185, 112 and 276 to 55, 294 and 192, respectively.

Figs. 17 to 32 illustrate various combinations of the division ratios M1, M2 and M3 of the dividers in the multistage frequency converter 16 when it is set such that the reference frequency fr is equal to 2.5 MHz, the division ratio N of the fixed divider 18 is 550 and the output frequency f3 of the multistage frequency converter 16 is 1.375 GHz. As seen from these figures, the division ratios M1, M2 and M3 can be selected such that the output frequency fo will be provided at every 25 kHz interval between 1.400 GHz and 1.425 GHz. The resulting 1001 output frequencies fo are provided within the error range of ±28 Hz.

If the division ratios M1, M2 and M3 corresponding to 1001 frequencies which are provided at every 25 kHz interval between 1.400 GHz and 1.425 GHz are previously stored in the ROM 34 shown in Fig. 4, the 1001 output frequencies fo can be switched from one to another by changing the division ratios M1, M2 and M3.

Although the frequency synthesizers shown in Figs. 1 and 8 have been described as to the output frequency f3 of the multistage frequency converter

16 being divided by the fixed divider 18 with the division ratio N, the fixed divider 18 may be replaced by any other variable divider which can change the division ratio N. If such a variable divider is used, the division ratio N' thereof may be combined with the division ratios M1, M2 and M3 of the respective dividers in the multistage frequency converter 16 such that the feedback frequency fb can be made substantially constant, irrespectively of the output frequency fo of the voltage controlled oscillator 14.

If the frequency synthesizer is set such that the smallest frequency interval Δf of the output frequency fo of the voltage controlled oscillator 14 is equal to 25 kHz, the reference frequency fr is equal to 2.5 MHz and the output frequency fo is changed from 1.400 GHz to 1.425 GHz, as described, the frequency error can be maintained within ±0.5 Hz.

Fig. 33 shows an example that the division ratios M1, M2 and M3 of the respective dividers of the multistage frequency converter 16 are combined with the division ratio N' of the variable divider in the above-mentioned manner.

Although the multistage frequency converter 16 has been described as to three frequency converters connected in series to each other as shown in Fig. 2, the connection between the frequency converters may be varied in accordance with the present invention.

Fig. 34 shows another arrangement in which the output of first-stage frequency converter 20-1 is applied to the divider of second-stage frequency converter 20-2. Similarly, the output of second-stage frequency converter 20-2 is inputted to the divider of third-stage frequency converter 20-3. In such a manner, the multistage frequency converter 16 may be constructed even by using the output of any upstream-stage frequency converter as an input to the divider of the downstream-stage frequency converter. In such a case, the relationship between the input frequency fo and the output frequency f3 in the multistage frequency converter 16 is represented by:

fc = fo(1-(1-(1-1/M1)/M2)/M3) (5)

When the frequency converters are connected parallel to each other as described, any adjacent pulse can be prevented from being removed by each of the frequency converters in the multistage frequency converter 16. Thus, the phase jitter in the output frequency fc can be reduced. Although Fig. 34 illustrates three frequency converters connected parallel to each other, the number of frequency converters may be increased with any combination of parallel and series connections.

55

10

20

30

35

45

Second Embodiment

Fig. 35 is a block diagram showing the basic arrangement of the second embodiment of a frequency synthesizer constructed in accordance with the present invention. The frequency synthesizer comprises a divider 50 having a division ratio K, in addition to the components of the frequency synthesizer shown in Fig. 1. The divider 50 is connected to the leading stage of the multistage frequency converter 16 and adapted to divide the output frequency fo of the voltage controlled oscillator 14 with the division ratio K to form an output frequency fk which in turn is inputted into the multistage frequency converter 16.

As the output frequency fo is increased in the frequency synthesizers shown in Figs. 1 and 8, the power consumption can be increased. As shown in Fig. 35, however, the power consumption can be prevented from being increased by interposing a fixed or variable divider 50 into the leading stage of the multistage frequency converter 16. More particularly, the higher output frequency fo of the voltage controlled oscillator 14 is decreased to a lower frequency fk by the fixed divider 50. Pulse train having such a lower frequency fk can be inputted into the multistage frequency converter 16 to reduce the power consumption greatly.

Fig. 36 shows various combinations of division ratios when the multistage frequency converter 16 comprises a plurality of frequency converters connected in series to each other. When the division ratio K of the divider 50 located in the leading stage of the multistage frequency converter 16 is equal to 10 and the reference frequency fr is equal to 1 MHz, the output frequency fo is changed at every 25 kHz frequency interval between 1.400 GHz and 1.425 GHz. When the multistage frequency converter 16 of Fig. 35 comprises the frequency converters connected in series to each other as shown in Fig. 36, the error of the output frequency fo can be maintained within ±137 Hz.

Fig. 37 shows various combinations of division ratio when the multistage frequency converter 16 of Fig. 35 is constructed as shown in Fig. 34. When the division ratio K of the divider 50 located in the leading stage of the multistage frequency converter 16 is equal to 8 and the reference frequency fr is equal to 1 MHz, the output frequency fo is changed at every 25 kHz frequency interval between 1.400 GHz and 1.425 GHz. As shown in Fig. 36, the error of the output frequency fo can be maintained within ±23 Hz.

Unlike the case of Fig. 33, the reference frequency fr in the examples shown in Figs. 36 and 37 is set to be equal to 1 MHz. This is because if the reference frequency fr is set to be equal to 2.5 MHz in the arrangement of Fig. 35, the output

frequency fo may have a substantial interval error. By increasing the number of stages in the multistage frequency converter 16 to four or more, however, the interval error in the output frequency fo can be reduced even if the reference frequency fr is set to be equal to 2.5 MHz.

When the frequency synthesizer shown in Fig. 1, 8 or 35 is used, the reference and feedback frequencies fr, fb can be set much higher than that of the prior art frequency synthesizer (e.g. 100 times). At the same time, very fast acquisition time can be provided since the time constant in the low-pass filter can be decreased. Even if a bias voltage applied to the voltage controlled oscillator 14 includes an error, the acquisition time can be faster that of the prior art frequency synthesizer. Particularly, when the bias voltage is applied to the frequency synthesizer at a level equal to 100% of the normal, the acquisition time can be extremely shortened to about one-tenth of a cycle of the step frequency (the smallest frequency interval Δf).

In order to confirm the characteristics of the frequency synthesizers constructed in accordance with the aforementioned embodiments of the present invention, the acquisition time in the frequency synthesizers of the present invention is compared with that of a prior art frequency synthesizer, using the following parameters:

(1) Common parameters in all the frequency synthesizers

Range of change in the output frequency fo: 4.1 MHz-4.2 MHz

The output frequency interval Δf : 100 Hz Changes of the output frequency: 407 steps (407 frequency intervals)

4.1001 MHz - 4.1408 MHz (40.7 kHz)

(2) Parameters in the frequency synthesizer of the present invention shown in Fig. 8

Input frequency f3 of the fixed divider 18: 4.0 MHz

Reference frequency fr: 10 kHz Division ratio N of the fixed divider 18: 400

(3) Parameters in the frequency synthesizer of the prior art shown in Fig. 38

Reference frequency fr: 100 Hz

Division ratio N of the divider 102: 41000 - 42000

Although both the frequency synthesizers of the invention and prior art have the same changes of the output frequency, the frequency synthesizer of the present embodiment can use the multistage frequency converter 16 to increase the reference frequency fr and also to reduce the division ratio.

Figs. 9 and 10 show the acquisition times in the frequency synthesizers of the invention and prior art when no bias voltage will be applied to the voltage controlled oscillator 14 and the divider will not be reset. As seen from Fig. 9, the acquisition

15

20

25

30

35

40

45

50

55

time in the prior art is equal to 7 sec. while the acquisition time of the present invention is equal to about 0.1 sec.. It is understood that the frequency synthesizer of the present embodiment has its substantially improved acquisition time, even though no bias voltage and reset signal will be applied thereto.

Figs. 11, 12 and 13 show acquisition times obtained when on switching of the output frequency fo, a bias voltage corresponding to a new output frequency is applied to the voltage controlled oscillator 14 and the reference and fixed dividers are reset and initialized by the controller.

Fig. 13 is one that the time axis (transverse axis) of Fig. 12 is enlarged.

In such a case, the acquisition time in the prior art system shown in Fig. 11 is equal to about 600 msec while the acquisition time of the present embodiment is highly improved to be equal to about one msec, as seen from Fig. 13.

Therefore, the acquisition time in the frequency synthesizer of the present embodiment becomes about one-tenth of a cycle of the reference frequency (frequency interval) in the prior art frequency synthesizer.

If it is assumed that the output frequency is ranged between 1.400 GHz and 1.425 GHz, the frequency interval being equal to 25 kHz and the reference frequency being equal to 2.5 MHz, the acquisition time of the present embodiment becomes equal to four µsec..

When the reference frequency fr is increased to 25 MHz, the acquisition time must be equal to about 0.4 µsec. However, the phase jitter in the output of the divider 18 will be substantially increased since the division ratio N therein is smaller. Thus, this unsuitably increases the spurious components in the frequency synthesizer.

However, if the reference frequency fr is set to be 25 MHz immediately after switching of the frequency and then changed to 2.5 MHz, the acquisition time can be reduced to a level smaller than four µsec. and further to a level equal to or smaller than one µsec..

The voltage controlled oscillator 14 must be considered with respect to its frequency drift affecting to the acquisition time since the frequency drift depends on change in the temperature.

Figs. 14 and 15 illustrate the acquisition times of the frequency synthesizers when a bias voltage equal to 95% of the normal bias voltage is inputted thereinto to grasp changes in the acquisition characteristic due to the frequency drift of the voltage controlled oscillator 14. As will be apparent from these figures, even if 5% drift is produced, the acquisition time of the frequency synthesizer according to the present embodiment can be within about four cycles of the step frequency (the chan-

nel frequency interval Δf).

Fig. 16 shows the fact that the output spectrum of the frequency synthesizer according to the present embodiment has a reduced spurious.

Although some preferred embodiments of the present invention have been described, it is of course understood that the present invention is not limited to these embodiments. For example, the multistage frequency converter 16, which comprises a plurality of frequency converters connected in series to each other as shown in Fig. 6 or parallel to each other as shown in Fig. 34, may be composed of a combination of series and parallel connections.

Although the embodiments of the present invention have been described as to the frequency synthesizer which comprises the frequency converters shown in Fig. 2 or the multistage frequency converter as shown in Fig. 6 or 34, the frequency synthesizer may be replaced by any other circuit including a plurality of frequency converters or a multistage frequency converter.

ADVANTAGES OF THE INVENTION

As will be apparent from the foregoing, the present invention can have an increased reference frequency to provide a greatly shortened acquisition time by utilizing a frequency synthesizer comprising a plurality of frequency converters or a multistage frequency converter. This also enables the non-integer division ratio to be finely set.

Claims

- 1. A frequency converter comprising:
 - a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and
 - a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, thereby providing an output signal having a frequency corresponding to a level non-integer times higher than the frequency of the input signal.
- A frequency converter as defined in claim 1 wherein said non-integer is (1-1/M) where M is the division ratio of said divider.
- A multistage frequency converter comprising a plurality of frequency converters which are connected in series to each other, each of said frequency converters comprising:
 - a divider responsive to a pulse train having a predetermined frequency for performing a

10

20

30

35

40

45

50

55

dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals.

4. A multistage frequency converter comprising a plurality of frequency converters, each of said frequency converters comprising:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals.

the output of one of said frequency converters being used as an input to the divider of the other.

5. A multistage frequency converter comprising a plurality of frequency converters, each of said frequency converters comprising:

a divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio; and

a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals.

the output of one of said frequency converters being used as an input to the divider of the other,

two or more of said frequency converters being connected in series to each other.

6. A frequency synthesizer comprising:

a phase detector for comparing a reference frequency with a feedback frequency;

a filter connected to the phase detector for permitting the passage of a low frequency therethrough;

a voltage controlled oscillator connected to the filter;

a frequency converter for receiving an oscillation signal from the voltage controlled oscillator, the frequency converter comprising a first divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with an integer division ratio and a cycle swallower for receiving the division output of the first divider as a control input to remove pulses from the pulse train at a predetermined intervals; and

a second divider for dividing the output of

the frequency converter to form the feedback - frequency,

whereby the reference and feedback frequencies can be controlled to be equal to each other.

7. A frequency synthesizer as defined in claim 6 wherein said second divider is a fixed divider having a fixed division ratio.

8. A frequency synthesizer as defined in claim 6 wherein said second divider is a variable divider having a variable division ratio.

15 9. A frequency synthesizer comprising:

a phase detector for comparing a reference frequency with a feedback frequency;

a filter connected to the phase detector for permitting the passage of a low frequency therethrough;

a voltage controlled oscillator connected to the filter;

a multistage frequency converter for receiving an oscillation signal from the voltage controlled oscillator as an input; and

a first divider for dividing the output of the multistage frequency converter to form the feedback frequency,

whereby the reference and feedback frequencies can be controlled to be equal to each other.

10. A frequency synthesizer as defined in claim 9 wherein said first divider is a fixed divider having a fixed division ratio.

11. A frequency synthesizer as defined in claim 9 wherein said first divider is a variable divider having a variable division ratio.

12. A frequency synthesizer as defined in claim 9 wherein said multistage frequency converter comprises a plurality of frequency converters connected in series to each other, each of said frequency converters comprising a second divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals.

13. A frequency synthesizer as defined in claim 9 wherein said multistage frequency converter comprises a plurality of frequency converters, each of said frequency converters comprising a second divider responsive to a pulse train

10

15

25

30

35

40

45

50

55

having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, the output of one of said frequency converters being used as an input to the second divider of the other.

- 14. A frequency synthesizer as defined in claim 9 wherein said multistage frequency converter comprises a plurality of frequency converters, each of said frequency converters comprising a second divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, the output of one of said frequency converters being used as an input to the second divider of the other, two or more of said frequency converters being connected in series to each other.
- 15. A frequency synthesizer comprising:
 - a phase detector for comparing a reference frequency with a feedback frequency;
 - a filter connected to the phase detector for permitting the passage of a low frequency therethrough;
 - a voltage controlled oscillator connected to the filter;
 - a first divider for dividing the oscillation signal from said voltage controlled oscillator,
 - a frequency converter comprising a second divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the output of the divider as a control input to remove pulses from the pulse train at a predetermined intervals, said frequency converter receiving the division signal from said first divider as an input; and
 - a third divider for dividing the output of said frequency converter to form said feedback frequency,

said reference and feedback frequencies being controlled to be equal to each other.

- 16. A frequency synthesizer as defined in claim 15 wherein said third divider is a fixed divider having a fixed division ratio.
- 17. A frequency synthesizer as defined in claim 15 wherein said third divider is a variable divider

having a variable division ratio.

- 18. A frequency synthesizer comprising:
 - a phase detector for comparing a reference frequency with a feedback frequency;
 - a filter connected to the phase detector for permitting the passage of a low frequency therethrough;
 - a voltage controlled oscillator connected to the filter;
 - a first divider for dividing the oscillation signal from said voltage controlled oscillator;
 - a multistage frequency converter for receiving the division signal from said first divider as an input; and
 - a second divider for dividing the output of said multistage frequency converter to form said feedback frequency,

said reference and feedback frequencies being controlled to be equal to each other.

- 19. A frequency synthesizer as defined in claim 18 wherein said second divider is a fixed divider having a fixed division ratio.
- 20. A frequency synthesizer as defined in claim 18 wherein said second divider is a variable divider having a variable division ratio.
- 21. A frequency synthesizer as defined in claim 18 wherein said multistage frequency converter comprises a plurality of frequency converters connected in series to each other, each of said frequency converters comprising a third divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the division output of the third divider as a control input to remove pulses from the pulse train at a predetermined intervals.
- 22. A frequency synthesizer as defined in claim 18 wherein said multistage frequency converter comprises a plurality of frequency converters, each of said frequency converters comprising a third divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the division output of the third divider as a control input to remove pulses from the pulse train at a predetermined intervals, the output of one of said frequency converters being used as an input to the third divider of the other.
- 23. A frequency synthesizer as defined in claim 18 wherein said multistage frequency converter

comprises a plurality of frequency converters, each of said frequency converters comprising a third divider responsive to a pulse train having a predetermined frequency for performing a dividing operation with its variable integer division ratio and a cycle swallower for receiving the division output of the third divider as a control input to remove pulses from the pulse train at a predetermined intervals, the output of one of said frequency converters being used as an input to the third divider of the other, two or more of said frequency converters being connected in series to each other.

F16.2

F/6.3

F/G.4

F167

F16.9

vertical: 0.4mV/div, horizontal: I sec/div 4.100IMHz - 4.1408MHz, fr=100Hz, N=41,001 - 41,408

vertical: 0.4mV/div, horizontal: | sec/div 4.1001MHz -- 4.1408MHz, fr=10KHz, N=400 M1=80, M2=157, M3=173 -- M1=40, M2=128, M3=126

vertical: 0.4mV/div, horizontal: 100msec/div 4.1001MHz \rightarrow 4.1408MHz, fr=100Hz, N=41,001 \rightarrow 41,408

vertical: 0.4mV/div, horizontal: 100msec/div 4.1001MHz->4.1408MHz, fr=10KHz, N=400 M1=80, M2=157, M3=173--M1=40, M2=128, M3=126

vertical: 0.4mV/div, horizontal: 0.5msec/div 4.1001MHz-- 4.1408MHz, fr=10KHz, N=400 MI=80, M2=157, M3=173---MI=40, M2=128, M3=126

vertical: 0.4mV/div, horizontal: lsec/div 4.1001MHz-4.1408Mz, fr=100Hz, N=41.001-- 41.408

vertical: 10 dB/div, horizontal: 5KHz/div

band witch: 300Hz, center frequency: 4,140.8KHz

reference frequency(fr): IOKHz

	NUMBER	FREQUENCY				ERROR
		(Kiiz)	MI	И2	МЗ	(liz)
	1	1425000	133	106	54	0
	2	1424975	72	436	52	-2.14267
	3	1424950	175	305	38	-3.88319
	4	1424925	539	486	32	10.8483
	5	1424900	538	491	32	5.7619
	6	1424875	37	187	349	429146
	7	1424850	45	177	126	0
	8	1424825	213	287	37	-3.02371
•	9	1424800	269	225	37	-2.49867
	10	1424775	471	376	33	0
	ii	1424750	41	276	139	Ō
	12	1424725	1 30	322	41	. 603734
	13	1424700	35	467	229	-1.27338
	. 14	1424675	63	418	59	1.40044
	15	1424650	38	250	209	-3. 33 976 -
	16	1424625	40	525	122	6.67272
	17	1424600	51	76	419	0
	18	1424575	39	461	138	-9. 6043
	- 19	1424550	51	83	288	-12.7475
_	20	1 424 525	83	149	61	-1.37332
	21	1424500	51	91	222	0
	22	1424475	35	291	343	3. 55859
_	23	1424450	547	222	35	-1.02373
	24	1424425	37	411	183	-3.35031
	25	1424400	398	342	34	-8.86413
•	26	1424375	265	301	36	0
(27	1424350	60	370	64	1.85918
	28	1424325	100	368	45	6.19272
_	29	1424300	49	189	108	2. 48 558
	30	1424275	523	291	34	-3.30295
•	31	1424250	56	211	81	0
1 (32	1424225	143	459	39	-14. 2431
	33	1424200	483	310	34	-2.68568
	34	1424175	44	270	119	1.86826
	35	1424150	98	347	46	2.31744
	36	1424125	194	253	39	1.62323
	37	1424100	51	101	188	0
	38	1424075	64	519	58	12.0152
	39	1424050	40	356	145	2.00634
	40	1424025	63	88	132	1.91052
	41	1424000	126	89	64	0
	42	1423975	53	427	74	16.4492
	43	1423950	35	406	284	-1.41137
	44	1423925	39	182	288	7. 62417
	45	1423900	338	470	34	. 2109
	46	1423875	64	480	59	. 428505
	47	1423850	48	92	342	· 377111
	48	1423825	110	98	65	15.3693
	49	1423800	126	113	56	0
	50	1423775	64	298	64	3.03276
	51	1423750	134	133	51	. 0
	5.2	1423725	41	463	126	. 0
	53	1423700	35	255	530	-5. 95389
	54	1423675	124	501	41	0 -
	55	1423650	500	265	35	3. 92943
	56	1423625	188	109	50	-5. 55778
	57	1423600	192	352	38	. 48377

58	1423575	1 26	111	57	0
59	1423550	401	426	34	0
60	1423525	519	505	33	-2.80095
61	1423500	78	511	51	0
62	1423475	34	520	349	. 184558
63	1 423 450	166 196	1 26 3 5 4	49 38	0 6.03676
64 65	1423425 1423400	340	288	36	-9.6909
66	1423400	4 47	403	34	2. 78875
67	1423350	39	347	176	6.51919
68	1 423 325	206	333	38	-7.34646
69	1423300	51	86	331	0
70	1423275	541	531	33	14.7406
71	1423250	240	231	39	-2. 39365
72	1423225	36	496	234	-15.328
73	1 423 200	131	477	41	6.06012 1.28391
74	1423175	55	98 532	172 373	-4.38747
75 76	1 4 2 3 1 5 0 1 4 2 3 1 2 5	34 51	207	103	0
77	1423123	76	321	56	Ŏ
78	1 423075	37	305	272	-3.77635
79	1 423 0 5 0	36	395	275	. 793974
80	1 423025	36	336	315	-2.37665
81 82	1423000° 1422975	339 383	253 234	37 37	. 978366 3. 93232
83	1422950	65	361	63	-6. 3004
84	1422925	50	89	363	-5, 63761
85	1422900	51	93	276	0
86	1422875	46	402	103	-2.03739
87	1422850	97	428	47	-4.66687
88	1422825	44	433	113	-6.53685
89	1 422800	44	452	112	2.04402
90	1422775	245	245 441	39 271	2.74049 0
91 92	1 422 7 5 0 1 422 7 2 5	36 67	440	60	8. 68 69 2
93	1 422 7 2 3	485	458	34	4.21964
94	1422675	63	130	97	-4.68867
95	1422650	483	333	35	1.36009
96	1422625	485	334	35	2.00735
97	1 422 600	178	233	42	1.4255 -7.13383
98 99	1 422 57 5 1 422 550	35 39	430 450	371 173	7. 9055
100	1422525	102	382	47	-6. 69444
101	1 422 500	422	293	36	-11.6208
102	1422475	482	271	36	-2.475
103	1422450	37	238	432	1.46847
104	1422425	4 36	291	36	-4. 24664
105	1 422 400	1 26	127	56	0
106	1 422 375	179	339	40	4. 47495
107 108	1 422350 1 422325	1 56 2 98	115 263	54 38	-1.60169 3.24752
108	1422323	431	301	36	0
110	1422275	351	234	38	-9.52823
111	1 422 250	68	410	61	3.04103
112	1 422 225	86	441	51	0
113	1422200	110	160	55 27	2. 99186
114 115	1422175 1422150	257 54	411 89	37 269	-15.0851 -10.5604
116	1422125	104	100	7°2	17. 0928
117	1422100	220	318	39	13. 4189
118	1422075	47	417	103	307397
119	1422050	46	157	190	753704
120	1422025	37	454	249	-22. 8465
121	1422000	474	301	36	0
122	1421975	409	464	35	3.67445
123	1421950	1 35	490	42	8.82167

F/6./8

124	1421925	79	269	59	-2.80428
125	1421900	484	403	35	-15. 6931
126	1421875	54	91	265	0
127	1421850	44	124	414	. 20601
128	1421825	97	88	8.6	5. 63444
129	1421800	51	99	285	3. 59299
130	1421775	51	89	4 2 6	0
131	1421750	51	188	121	Ō
132	1421725	192	451	39	6.88895
133	1421700	178	409	40	. 284048
134	1421675	อูก	199	50	-5, 45535
135	1421650	180	323	41	3.46993
136	1 421 625	51	89	146	0
137	1421600	36	5 2 8	307	12. 7565
138	1421575	52	89	386	6.36618
139	1 4 2 1 5 5 0	78	81	126	0
140	1421525	311	531	36	2.17372
141	1421500	38	473	224	-13. 3523
142	1421475	37	511	258	-6.99372
143	1421450	35	542	419	858403
144	1421425	431	528	35	7. 07357
145	1421400	51	103	276	0
146	1421375	166	137	51	ŏ
147	1421350	54	81	491	4.81325
148	1421325	130	413	44	-5. 5571
149	1421300	148	145	52	-1.48207
150	1421275	42	273	188	-2.10988
151	1421250	56	18	379	0
152	1421225	47	399	111	-10.9242
153	1421200	51	266	106	0
154	1421175	\$23	340	36	363282
155	1421150	499	231	38	6.37096
156	1421125	44	417	132	1.70697
157	1421100	37	327	398	. 257555
158	1421075	204	128	50	-4.61105
159	1421050	311	328	38	6.53213
160	1421025	55	545	79	-1.65843
161	1421000	133	126	58	· 0
162	1420975	52	104	263	835582
163	1420950	61	79	278	-6.17113
164	1420925	453	252	38	-6.02708
165	1420900	536	233	38	870997
166	1420875	36	421	441	0
167	1420850	196	142	49	-3.03085
168	1420825	126	353	46	0
169	1420800	126	111	64	0
170	1420775	54	94	298	-5.07202
171	1420750	199	134	50	-4.26236
172	1420725	1 30	500	44	9.36613
173	1420700	487	309	37	13.4725
174	1420675	67	529	64	-4.00834
175	1420650	276	231	41	0
176	1420625	138	544	43	1.20022
177	1420600	138	169	52	8.17845
178	1420575	333	234	40	-3.87817
179	1420550	68	279	71.	. 766977
180	1420525	64	77	267	3. 29772
181	1420500	545	393	36	-8.03893
182	1420475	1 38	440	44	. 299673
183	1420450	48	482	107	-2. 54555
184	1420425	306	391	38	-2. 55615
185	1420400	126	106	67	0
186	1420375	533	414	36	-3. 57604
187	1420350	125	344	47	2. 55785
188	1420325	37	405	391	4. 76009
189	1420300	131	97	70	-16. 2579
				• •	

F/6.19

			403		5 72075
190	1420275	217	407	40	5.73075
191	1420250	276	247	41	0
192	1420225	418	390	37	-2.51727
193	1 4 2 0 2 0 0	36	526	441	0
194	1420175	43	163	379	155526
195	1420150	120	76	94	4.51794
196	1420125	541	441	36	0
197	1 4 2 0 1 0 0	46	163	242	-6. 26104
198	1420075	333	220	41	8. 25219
199	1420050	305	335	39	. 774982
200	1420025	544	453	36	-5.06387
			213	56	
201	1420000	106			0
202	1419975	364	362	38	1.07763
203	1419950	210	482	40	-2.94595
204	1419925	41	506	183	5.4401
205	1419900	93	222	60	1.00034
		51	111	307	0
206	1419875				
207	1419850	64	365	74	8.72144
208	1419825	136	104	67	-2.99652
209	1419800	549	484	36	1.29535
210	1419775	61	133	126	0
211	1419750	403	467	37	-3, 41045
	•				
212	1419725	87	412	56	-4. 24378
213	1419700	156	493	43	7.49316
214	1419675	72	447	64	676706
215	1419650	84	347	59	2.76169
216	1419625	41	277	276	0
217	1419600	56	91	351	Ö
					3.87777
218	1419575	64	78	308	
219	1419550	40	285	328	1.82227
220	1419525	318	365	39	-5.33669
221	1419500	51	167	166	0
222	1419475	208	84	67	-1.4551
223	1419450	207	439	41	2.49368
224	1419425	58	159	124	9. 61419
225	1419400	188	151	51	0
228	1419375	39	482	270	-9.91502
227	1419350	106	167	62	. 470265
228	1419325	58	179	115	-4.05348
229	1419300	171	166	51	0
.230	1419275	440	496	37	-7.73363
231	1419250	60	93	247	-4. 49341
232	1419225	491	. 275	39	3.52811
233	1419200	469	353	38	. 721876
234	1419175	543	322	38	-3.19232
235	1419150	46	1 29	543	5. 76 568
235			463		
	1419125	40		244	. 628087
237	1419100	47	398	133	1.82528
238	1419075	51	106	441	0
239	1419050	56	101	281	0
240	1419025	112	108	76	-6.31473
241	1419000	64	129	1 26	0
242	1418975	42	543	181	-2. 25002
243					
	1418950	48	527	118	-6.11933
214	1418925	445	311	39	-13.1923
245	1418900	160.	315	46	28.0415
246	1418875	42	198	445	 418271
247	1418850	40	403	279	5. 35884
248	1418825	41	238	405	-1.56661
248	1418800				
		60	439	82	-1.14657
250	1418775	183	140	54	5. 48 183
251	1418750	56	113	227	0
252	1418725	201	i 26	55	0
253	1418700	53	113	299	-1.49808
254	1418675	380	302	40	-2. 77023
	1418650				
255	1410020	220	88	66	 605598

F16.20

256	1418625	126	97	78	0
257	1418600	41	276	346	0
258	1418575	72	77	242	999665
259	1418550	193	126	56	0
260	1418525	40	514	257	524781
261	1418500	40	288	4 26	-7.88308
262	1418475	59	94	300	-5. 67334
263	1418450	178	109	62	1.88667
264	1418425	459	341	39	-2.8729
265	1418400	1 26	197	56	0
266	1418375	3 9 3	395	39	6. 98 58 3
267	1418350	99	544	53	433663
268	1418325	65	88	245	-1.17769
269	1418300	488 139	438 94	. 38 77	-6, 99744 -7, 58676
270 271	1418275	61	93	276	-1.30010
272	1418250 1418225	274	506	40	860187
273	1418200	98	504	54	541393
274	1418175	51	191	171	0
275	1418150	452	251	41	Ö
276	1418125	38	428	534	1.70707
277	1418100	449	302	40	. 608472
278	1418075	450	255	41	1.75368
279	1418050	- 57	547	89	-2. 4529
280	1418025	51	511	111	0
281	1418000	440	541	38	-4, 56037
282	1417975	109	312	55	-4.30048
283	1417950	411	276	41	0
284	1417925	40	407	338	7.43058
285	1417900	167	143	57	-1.66663
286	1417875	199	126	57	0
287	1417850	48	1 50	340	1.45323
288	1417825	58	108	252	-10.8273
289	1417800	51	139	276	0
290	1417775	59	98	305	2.10489
291	1417750	88	478	59	8.51703
292	1417725	409	460	39	-6. 23917
293	1417700	526	298	40	4. 52223
294	1417675	101	142	55	-2.09961
295	1417650	59	89	465	-2.78686
296	1417625	38	535	503	554518
297 298	1417600 1417575	42 461	5 2 7 2 7 6	2 2 2 4 1	2.85349 0
299	1417550	142	425	48	11.5309
300	1417525	536	257	41	-7. 3014
30 i	1417500	456	441	39	0
302	1417475	49	317	151	-2. 19761
303	1417450	182	525	44	-1. 12792
304	1417425	42	462	243	-3.96804
305	1417400	200	90	71	-1.6132
306	1417375	51	161	232	0
307	1417350	124	314	53	-1.09893
308	1417325	126	91	89	0
309	1417300	132	118	71	-2.79619
310	1417275	48	343	159	-8. 15059
311	1417250	414	396	. 40	11. 1988
312	1417225	41	485	287	1. 98665
313	1417200	536	329	40	-2. 33791
314	1417175	92	214	69	4. 32459
315	1417150	8.5	84	369	-2.86472
316	1417125	42	444	252	237315
317	1417100	39	506	454	345102
318	1417075	47	261	209	4. 42179
319	1417050	67	81	376	0
320	1417025	202	375	45	-1. 99537
321	1417000	109	78	1 26	0

322	1416975	92	489	59	-1.3977
323	1416950	48	518	142	-1.44477
324	1416925	190	308	47	2. 49152
325	1416900	52	1 2 5	390	3. 41 458
326	1416875	304	384	42	. 394072
327	1416850	146	118	69	-2.60051
328	1416825	289	417	42	. 73288
329	1416800	276	451	42 .	. 0
330	1416775	475	269	42	-3.11041
331	1416750	42	412	296	. 754369
332	1416725	58	108	313	. 945931
333	1416700	42	359	335	326367
334	1416675	347	291	43	-1.4237*
335	1416650	386	318	42	3.84704
336	1416625	312	398	42	-1.20996 2.37630
337	1416600	58	195	. 138	7. 10496
338	1416575	59	365	101	2. 97444
339	1416550	224	434	44	0
340	1416525	151	303	51	3.01319
341	1416500	228	4 2 5	44	5.51497
342	1416475	50	219	203 426	0
343	1416450	51	133		-1.04383
344	1416425	192	339	47	8.05056
345	1416400	157	326	50	-4.06341
346	1416375	40	459	466	-3.09585
347	1416350	40	532	412	4.7019
348	1416325	410	326	42	-3.1807
349	1416300	368	258	44 42	. 565811
350	1416275	4 28	319	103	0
351	1416250	136	8 1 3 2 9	45	1.84402
352	1416225	249	100	98	8.485
353	1416200	109	387	171	-11.5105
354	1416175	48 184	79	89	7.00575
355	1416150 1416125	207	378	46	-3.21908
356	1416100	51	1 36	441	0
357 358	1416075	106	195	68	549535
359	1416050	178	112	68	1. 10153
360	1416025	44	251	414	-1.40774
361	1416000	64	177	1 26	0
362	1415975	76	81	271	0
363	1415950	40	480	515	4.40532
364	1415925	55	119	394	-11.4608
365	1415900	177	218	53	-2.21553
366	1415875	51	188	241	0
367	1415850	53	206	187	-2.01739
368	1415825	150	159	62	-13. 1262
369	1415800	54	131	347	. 838947
370	1415775	160	78	100	680661
371	1415750	307	415	43	7.70571
372	1415725	48	298	210	. 848349
373	1415700	- 51	143	426	0 1.89566
374	1415675	5.5	158	225	4. 92514
375	1415650	41	424	481 65	0
376	1415625	151	144	47	2. 48 558
377	1415600	174	547 -	40	1.63065
378	1415575	542	522	5 2 2	-8. 45325
379	1415550	46	.194	. 42	. 709225
380	1415525	363	457		0
381	1415500	76	149	111	3.86307
382	1415475	203	478	. 46 .	5. 56 235
383	1415450	1 26	102	90	9. 0639
384	1415425	53	528 227	125	0
385	1415400	126	337	56 78	0
386	1415375	201	91	78 328	2.77947
387	1415350	43	4 28	340	m. 11 a-11

388	. 1415325	501	452	41	0
389	1415300	62	268	113	1.75425
390	1415275	283	262	47	-1.38819
391 .	1415250	51	185	. 276	0
392	1415225	43	391	365	-8.88916
393	1415200	61	116	276	0
394	1415175	425	290	44	. 645278
395	1415150	51	166	341	0
396	1415125	43	548	294	-7.01936
397	1415100	1 26	106	89	0
398	1415075	321	276	46	0
399	1415050	499	384	42	1.87977
100	1415025	76	81	331	0
401	1415000	51	188	283	. 0
402	1414975	248	227	50	-4.36884
403	1414950	310	292	46	1.79174
404	1414925	182	486	48	-4.15061
405	1414900	539	487	41	5.06754
406	1414875	51	511	· 147	0
407	1414850	542	493	41	-7.70179
408	1414825	497	333	43	607268
409	1414800	126	131	78	0
410	1414775	147	105	83	. 160631 . 775521
411 412	1414750	> 59 71	398 87	113 366	-3.41328
413	1414725 1414700	51	188	301	0
414	1414675	208	333	49	-4.36529
415	1414650	46	462	234	4. 18944
416	1414625	495	437	42	-2. 15157
417	1414600	58	147	240	-6.63564
418	1414575	· 65	100	355	3. 92341
419	1414550	54	259	173	1.02044
420	1414525	53	142	450	-3.73625
421	1414500	82	81	276	0
422	1414475	6.5	179	135	. 322502
423	1414450	190	109	73	-3.53822
424	1414425	74	90	287	887984
425	1414400	51	166	416	0
426	1414375	73	93	276	0 .
427	1414350	56	1 26	449	0
428	1414325	1 20	366	59	-12.0076
429	1414300	68	107	252	4.82441
430	1414275	67	94	412	218019
431	1414250	293	311	47	-3.60237
432	1414225	68	92	420	-1.30155
433	1414200	71	102	246	17.3195
434	1414175	382	334	45	-1.77343
435	1414150	43	385	515	-2. 19547 0
436 437	1414125	76	81	419	
438	1414100 1414075	407 524	246 497	47 42	-1.7484 6.73203
439	1414050	54	285	173	5. 0986
440	1414025	44	345	478	-4. 16679
441	1414000	. 144	101	91	. 0
442	1413975	60	144	240	-4. 5005
443	1413950	341	287	47	7. 37753
444	1413925	295	394	46	1.1059
445	1413900	5 50	393	43	8.89505
446	1413875	54	227	210	1.09851
447	1413850	56	447	132	1.71157
448	1413825	547	331	44	. 709884
449	1413800	49	223	369	1.37706
450	1413775	1 26	106	97	0
451	1413750	51	188	377	0
452	1413725	44	516	352	-2.07452
453	1413700	67	211	126	0

454	1413675	126	309	61	0
455	1413650	134	532	55	3.48748
456	1413625	526	441	43	0
457	1413600	171	496	51	0
458	1413575	70	91	449	-5. 03221
459	1413550	412	309	46	5.79307
460	1413525	51	188	401,	0
461	1413500	64	126	257	Ö
462	1413475	465	337	45	. 962131
463	1413450	102	407	66	-1.68831
464	1413425	122	516	58	-1.16133
465	1413400	191	111	76	0
466	1413375	53	155	499	2.75829
467	1413350	51	403	192	-3.90717
468	1413325	56	166	.292	-2.60335
469	1413300	77	279	93	-2.16074
470	1413275	43	512	508	-1.71396
471	1413250	141	382	57	10.0434
472	1413225	94	524	68	. 590706
473	1413200	64	110	397	-6.47218
474	1413175	428	283	47	. 848522
475	1413150	514	256	47	-1.08018
476	1413125	51	217	342	0
477	1413100	380	223	50	-4.31749
478	1413075	152	145	73	1.02199
479	1413050	158	527	53	-1.11777
480	1413025	73	174	130	-10.8288
481	1413000	51	188	471	0
482	1412975	481	274	47	-4.31332
483	1412950	61	126	367	0 .
484	1412925	57	188	240	-2.63704
485	1412900	51	199	426	0
486	1412875	89	127	126	0
187	1412850	99	332	72	4.03804
488	1412825	60	212	179	157948
489	1412800	204	108	78	10. 5231
490	1412775	273	276	51	0
491	1412750	59	173	239	-1.26354
492	1412725	1 60	409	5.5	-1.4844
493	1412700	277	276	51	0
194	1412675	130	522	58	5.81454
495	1412650	97	81	237	-1.85519
496	1412625	64	132	275	-4.31164
497	1412600	55	294	192	8. 33884
498	1412575	472	541	44	320026
499	1412550	57	1 50	392	7.72413
500	1412525	100	486	68	-3.84675
501	1412500	64	441	113	0
502	1412475	51	209	437	3. 30805
503	1412450	66	107	452	1.76997
504	1412425	461	453	45	-1.20239
505	1412400	126	107	106	0
506	1412375	65	262	134	-1.80048
507	1412350	59	175	252	-5.44789
508	1412325	63	125	364	7.09488
509	1412300	66	289	125	-2.58478
510	1412275	4 28	517	45	1.36158
511	1412250	67	269	126	0
512	1412225	425	421	46	1. 24788
513	1412200	307	276	51	0
514	1412175	58	228	205	-2. 15945
515	1412150	61	126	463	0
516	1412125	65	315	126	0
517	1412100	46	488	386	3. 25935
518	1412075	122	542	61	-1.40032 -2.54505
519	1412050	45	480	493	-2.54595

520	1412025	56	201	281	0
		64	126	353	ŏ
521	1412000				
522	1411975	267	388	50	-1.57608
523	1411950	\$\$	209	297	1. 62422
524	1411925	450	274	49	-4. 28372
525	1411900	343	222	53 .	-2.13726
526	1411875	265	251	54	0
	1411850	151	476	57	. 0
527			80	374	2.85027
528	1411825	90			
529	1411800	78	181	126	0
530	1411775	451	456	46	-10. 175
531	1411750	530	259	49	30523
532	1411725	63	140	314	5.0603A
533	1411700	63	132	366	. 337327
534	1411675	54	248	279	1.14033
					-2.05287
535	1411650	488	440	46	
536	1411625	491	276	49	0
537	1411600	186	315	57	4.30367
538	1411575	131	209	73	5. 6SC27
539	1411550	126	111	109	0
-540	1411525	94	75	477	4. 21267
		524	273	49	1.7574
541	1411500				
542	1411475	86	101	221	0
543	1411450	47	525	364	-4.52584
544	1411425	369	276	51 -	0
545	1411400	86	540	80	-3.03919
546	1411375	319	522	48	. 096316
547	1411350	458	417	47	2.8816
548	1411325	80	390	92	. 116216
549	1411300	68	125	312	1.70293
550	1411275	182	459	55 .	603151
551	1411250	57	213	277	-4.57782
552	1411225	63	223	182	5.17805
553	1411200	51	392	276	0
554	1411175	439	380	48	. 0576769
555	1411150	507	501	46	0
556	1411125		426	51	0
		283	301	53	-1.13657
557	1411100				
558	1411075	78	220	119	5.8045
559	1411050	409	276	51	0
560	1411025	54	349	233	3.08483
561	1411000	61	166	306	0
562	1410975	422	308	50	. 85661
563	1410950	190	95	101	11. 2575
564	1410925	257	352	53	-1.36971
565	1410900	51	360	314	2.66982
566	1410875	251	326	54	-7. 25689
					-2.14509
567	1410850	58	202	296	
568	1410825	54	213	431	4.34649
569	1410800	1 22	117	113	-2.79893
570	1410775	48	379	503	-1.98463
571	1410750	477	266	51	0
572	1410725	60	167	353	2. 55258
573	1410700	65	157	268	-3.90137
574	1410675	408	394	49	12.0349
				373	-2.02241
575	1410650	68	124		
576	1410625	61	185	276	0
577	1410600	47	541	454	-3.37702
578	1410575	67	122	440	1.72569
579	1410550	429	335	50	-1.94157
580	1410525	95	82	377	-2. 23552
581	1410500	93	91	276	0
582	1410475	55	197	492	-1.27003
583	1410450	90	88	351	8.30243
584	1410425	61	179	303	. 930129
585	1410400	301	245	56	0

586	1410375	106	432	74	1.70268
587	1410350	67	126	421	0
588	1410325	65	139	379	-1.13824
589	1410300	187	315	60	3. 13422
590	1410275	68	160	236	. 049931
591	1410250	1 35	470	64	1.13657
592	1410225	499	375	49	. 738247
593	1410200	472	339	50	-5.07647
594	1410175	175	547	57	. 789441 O
595	1410150	474	301 529	51 115	-8.06244
596 597	1410125 1410100	69 155	454	61	5. 25597
598	1410135	74	140	227	5.08019
599	1410050	55	213	473	1.44352
600	1410025	80	193	1 36	-3.90686
601	1410000	153	188	76	0
602	1409975	67	327	143	4. 3204
603	1409950	212	336	58	558445
604	1409925	65	178	254	-3.0705
605	1409900	64	159	333	2.1787
606	1409875	65	139	431	1.31657
507	1409850	241	351	56	0
608	1409825	84	289	105	2.8962
609	1409800	133	126	106	0 -
510	1409775	56	432	216	4.04684 .178475
611	1409750	110	544	72 51	0
612	1 409725 1 409700	321 126	496 127	111	0
613 614	1409675	70	499 .	118	6, 20592
615	1409650	341	466	51	0
616	1409625	51	441	358	0
617	1409600	265	235	60	7.24323
618	1409575	65	169	295	-2.34097
619	1409550	71	136	308	-6.03209
620	1409525	478	480	49	2.5166
521	1409500	65	142	453	1.471
622	1409475	191	104	102	. 379445 1. 29169
623	1409450	208	122 101	86 491	-6.54108
624	1409425	79 116	101 81	276	0
625	1409400 1409375	129	82	215	Ö
626 627	1409350	426	397	51	Ŏ
628	1409325	57	301	276	Ŏ
629	1409300	437	274	54	. 19022
630 ⁻	1409275	62	176	376	-3.9032
631	1409250	461	449	50	. 990303
632	1409225	379	308	54	-1.53648
633	1409200	126	78	271	0
634	1409175	55	323	323	2. 28615
635	1409150	104	88	291	5. 19493
636	1409125	214	116	90	. 86007
637 638	1409100	61 322	216 513	301 52	0 1.71798
639	1409075 1409050	522 69	153	303	-1.08923
640	1409025	414	549	50	2.78633
641	1409000	69	133	439	-8.39377
642	1408975	491	390	51	-1.31158
643	1408950	155		. 126	0
644	1408925	166	97	126	0
645	1408900	511	386	51	0
646	1408875	51	507	391	0
547	1408850	59	292	264	-2.50061
648.	1408825	545	376	51	0
649	1408800	57	391	249	-1.66164
650	1408775	61	525	172	1.11602
651	1408750	343	276	57	0 ·

652	1408725	124	396	74	. 317196
653	1408700	50	547	459	3.13384
654	1408675	65	151	489	3.20184
655	1408650	204	162	77	1.69088
656	1408625	191	177	76	0
657	1408600	528	237	56	-6.43232
658	1408575	52	382	480	-2.66722
659	1408550	197	91	126	0
660	1408525	196	123	93	-1.37069
661	1408500	1 26	313	78	0
662	1408475	116	167	107	. 741275
663	1408450	94	437	91	1.09609
654	1408425	126	211	89	0
665	1408400	503	251	56	ŏ
565	1408375	160	131	100	6.71935
667	1408350	416	283	56	4. 27241
668	1408325	199	378	62	1.0871
669	1408300	82	119	311	-5. 39997
670	1408275	124	344	78	-7.36482
671	1408250	78	131	301	0
672	1408225	423	227	59	-2. 24 168
673	1408200	65	193	317	-2. 4208
674	1408175	62	203	379	-4.65894
675	1408150	148	82	210	-4.64123
676	1408125	483	373	53	1.60878
677	1408100	66	175	359	-2.96371
678	1408075	52	487	436	-7. 11841
679	1408050	126	149	111	0
680	1408025	152	75	270	-2. 27892
188	1408000	512	511	51	0 ·
682	1407975	84	133	240	3,78081
683	1407950	85	123	272	1.29627
684	1407925	400	474	53	336261
685	1407900	126	78	361	0
686	1407875	68	257	204	4.59525
687	1407850	434	278	57	-5.41933
688	1407825	54	4 38	383	. 356033
689	1407800	76	163	240	10. 3311
690	1407775	224	440	60	. 229401
691	1407750	254	245	65	5. 56842
692	1407725	102	131	167	2. 52342
693	1407700	139	102	156	1.38864
694	1407675	184	115	108	-1.81433
695	1407650	64	5 50	170	. 504687
696	1407625	270	312	61	-1.49416
697	1407600	153	76	276	0
698	1407575	426	221	61	0
699 700	1407550	63	187	492	. 105966
700	1407525	284	407	58	3.76383
701	1407500	62	206	448	2. 23624
702	1407475	60	396	250	2.39103
703	1407450	198	500	62	275161
704	1407425	458	412	54	2.02665
705	1407400	116	377	84	2. 22908
706	1407375	81	139	276	0 -1.73058
707 708	1407350	63 309	337 289	234 61	6. 2004
709	1407325	528	4 4 0	53	0997476
710	1407275	326 446	281	53 . 58	. 704007
711	1407273	351	433	56	0
712	1407225	58 531	164	36 448	-2. 34038
713	1407223	131	327	81	1. 47475
714	1407175	153	76	301	
715	1407150	126	106		0 0
716	1407125	70	366	177 168	. 445803
717	1407100	157	325	74	1. 40932
•••	1401100	131	723	13	1. 40336

718	1407075	68	179	379	42147
719	1407050	526	321	56	0
720	1407025	356	2,38	63	143778
721	1407000	i 34	133	1 26	0
722	1406975	501	337	56	0
723	1406950	325	324	60 ·	201824
724	1406925	91	111	351	0
725	1406900	188	125	105	3.6491
726	1406875	173	93	159	-1.99985
727	1406850	166	126	113	0
728	1406825	69	239	245	-2. 48 171
729	1406800	459	429	55	3. 57099
730	1406775	65 153	278 76	268 331	4.73235 0
731	1406750	196	102	128	2. 84856
732 733	1406725 1406700	521	351	56	0
734	1406675	215	114	108	-4. 27057
735	1406650	486	303	58	-5. 56 967
736	1406625	136	81	341	0
737	1406600	541	351	56	Ŏ
738	1406575	142	132	125	2. 75061
739	1406550	90	436	109	-2.15248
740	1406525	104	546	90	425339
741	1406500	1 26	97	232	0
742	1406475	376	513	56	0
743	1406450	74	294	179	2. 86 29 6
744	1406425	194	94	149	1.54341
745	1406400	83	534	117	-3.07699
746	1406375	57	429	396	-8, 45009
747	1406350	482	297	59	3. 7298
748	1406325	76	215	217	2. 8845
749	1406300	1 25	9 I 7 6	287 328	0 -1. 42458
750	1406275	162 153	188	95	0
751 752	1 406 250 1 406 225	366	. 314	53 61	1. 09414
753	1406223	89	316	125	0
754	1406175	142	86	274	4.08783
755	1406150	232	429	64	1.05961
756	1406125	549	350	57	-1.30718
757	1406100	94	131	250	. 332181
758	1406075	494	285	60	. 133161
759	1406050	66	258	315	-2.19241
760	1406025	178	537	68	8.58974
761	1406000	185	76	276	0
762	1405975	180	432	70	. 74672
763	1405950	1 26	221	103	0
764	1405925	124	534	82	. 579066
765	1.405 900	520	439	56	~. 879809
766	1405875	163	81	276	0
767	1405850	57	534	383	-2.13999
768	1405825	525	316	59	2. 19356
769	1405800	213	106	126	0 6. 51992
770 771	1405775 1405750	499 70	259 252	62 267	2. 27921
772	1405725	394	354	60	5. 19492
173	1405723	74	159	462	-1.54217
774	1405675	355	369	51	-1.15144
775	1405650	528	363	58	-3.06232
776	1405625	346	276	65	0
777	1405600	76	251	210	Ö
778	1405575	300	542	60	-2. 19253
779	1405550	534	417	57	. 99865
780	1405525	76	269	201	0
781	1405500	484	461	57	-4.82234
782	1405475	156	311	82	-6.74452
783	1405450	5 50	335	59	-5.39716

	•		•		
784	1405425	123	289	98	-2.46465
	1405400	134	512	81	2. 94 273
785					. 348086
786	1405375	407	320	62	
787	1405350	59	435	410	2. 37 425
788	1405325	95	117	378	. 632473
789	1405300	65	376	276	0
		63	335	359	323735
790	1405275				
791	1405250	511	306	61	0
792	1405225	277	258	70	1.63233
793	1405200	170	131	1 23	6.71557
794	1405175	179	521	71	-2.3151
795	1405150	68	417	224	257423
798	1405125	539	368	59	2.05207
197	1405100	197	159	98	6. 52486
		217	111	126	0
798	1405075				
799	1405050	261	221	76	0
800	1405025	59	498	401	. 867273
801	1405000	281	441	64	0
802	1404975	91	131	351	0
803	1404950	134	86	424	-5. 38 47 6
				73	825 982
804	1404925	178	476		
805	1404900	126	89	446	0
806	1404875	427	487	59	. 333109
807	1404850~	108	279	117	115924
808	1404825	70	202	475	540014
809	1404800	122	98	339	2. 21824
		63	528	284	-, 751616
810	1404775				
811	1404750	92	271	1 48	. 692178
812	1404725	155	79	460	4.58873
813	1404700	74	177	477	719466
814	1404675	115	102	362	-2.41787
815	1404650	189	165	101	1.62169
816	1404625	106	109	382	578631
817	1404600	520	505	58	1.8243
818	1404575	94	117	500	94739
			108	157	200812
819	1404550	180			
8 2 0	1404525	66	268	447	872056
821	1404500	106	106	441	0
822	1404475	87	275	167	-1.94293
823	1404450	91	349	1 38	-2.79666
824	1404425	75	350	205	-3.75818
825	1404400	142	87	396	-2.50534
	1404375	106	107	441	0
8 2 6					
827	1404350	115	102	395	-1.19034
828	1404325	118	379	101	-1.13056
829	1404300	151	126	155	0
830	1404275	472	291	65	2.74544
831	1404250	303	447 .	65	5.68426
832	1404225	236	508	68	-3.64851
833	1404200	177	126	136	0
					258602
834	1404175	74	189	480	
835	1404150	121	111	276	0
836	1404125	434	318	65	. 455337
837	1404100	261	545	66	1.08771
838	1404075	126	97	386	0
839	1404050	62	437	425	. 106414
840			226	71	0
	1404025	441			
841	1404000	208	81	276	.0
842	1403975	342	322	6&	. 112492
843	1403950	355	313	68	-4. 97296
844	1403925	163	480	80	0244588
845	1403900	158	82	459	. 927136
846	1403875	93	534	124	-2.73567
847	1403850	191	126	133	0
848	1403825 .	76	429	194	3.63179
849	1403800	512	331	64	2.07084

850	1403775	486	296	66	3.02423
851	1403750	63	452	404	-2.44039
852	1403725	116	104	425	-1.39379
853 854	1403700 1403675	198 117	75 125	461 249	. 894737 . 728856
855	1403650	530	289	66	1. 21 177
856	1403625	197	133	126	0
857	1403600	126	106	319	Ö
858	1403575	83	211	271	-4. 30163
859	1403550	65	312	545	. 443304
860	1403525	84	275	204	1. 44045
861	1403500	64	441	401	0
862 863	1403475 1403450	18 4 146	219 128	96 174	1.78104 -2.27573
864	1403435	424	327	67	4.71363
865	1403400	199	89	244	2. 0784
866	1403375	126	109	309	0
867 -	1403350	1 26	127	221	٥
868	1403325	1 26	97	486	0
869 870	1403300	419	340	67	470471
871	1403275 1403250	427 157	249 99	72 264	. 159979 4. 47678
872	1403235	111	111	451	4.47678 0 -
873	1403200	186	83	359	. 368266
874	1403175	126	106	353	0
875	1403150	1 36	94	457	. 34934
876	1403125	64	449	441	0
877	1403100	549	319	66	-4.7673
878 879	1403075 1403050	127 99	259 307	119	. 729938
880	1403035	177	518	148 80	4.49159 1.8363
881	1403000	276	366	73	0
882	1402975	503	282	69	771459
883	1402950	199	375	81	0
884 885	1402925 1402900	118 87	116 177	341 350	546484
886	1402875	116	129	276	832945 0
887	1402850	85	408	174	-1, 1159
888	1402825	78	517	193	-1.73034
889	1402800	64	441	501	0
890	1402775	169	87	400	-2.28978
891	1 402750	181	93	276	0
892 893	1 402725 1 402700	207 166	175	107	3.79001
894	1402675	130	91 266	351 119	0 -1.17754
895	1402650	317	424	70	672226
896	1402625	126	229	133	0
897	1402600	1 38	98	427	635917
898	1402575	163	321	95	615642
899 900	1 402 5 50 1 402 5 25	352 305	313 · 227	73 83	. 405841 -2. 09453
901	1402520	187	93	276	0
902	1402475	164	97	303	507862
903	1402450	69	390	385	82697
904	1402425	276	271	81	0
905	1402400	124	533	103	4. 91425
906 907	1 402375 1 402350	185	90	321	1.90828
908	1402335	1 28 3 24	104 272	457 78	0670585 693616
909	1402323	217	343	83	-2.60834
910	1402275	197	507	80	. 842384
911	1402250	474	301	71	0
912	1402225	255	294	82	. 821143
913	1402200	133	126	246	0
914 915	1402175 1402150	387 203	258 427	76	-1.45543
- 1 -	1404130	203	427	82	. 832112

F 1 G. 33

DESTRED FREQUENCY	N	M_1	M ₂	Мз	RESULTING FREQUENCY (Hz)	ERROR IIz)
1,425,000 KHz	558	340	341	342	1,425,000,000.000	0.000
1,424,975 KHz	563	213	231	304	1,424,975,000.203	0.203
1,424,950 KHz	559	82	277	281	1,424,950,000.159	0.159
1,424,925 KHz	566	349	464	510	1,424,924,999.894	-0.106
1,418,900 KHz	565	271	307	562	1,418,899,999.849	-0.151
:	:	:	:	:	:	
1,412,700 KHz	561	361	441	554	1,412,700,000.000	0.000
1,412,675 KHz	. 561	341	466	467	1,412,675,000.000	0.000
1,412,650 KHz	557	110	308	505	1,412,650,000.166	0.166
1,412,625 KHz	561	325	454	525	1,412,624,999.883	-0.117
1,412,600 KHz	556	111	230	368	1,412,599,999.784	-0.216
	:	:	:			
1,400,100 KHz	- 546	51	358	359	1,400,100,000.000	0.000
1,400,075 KHz	554	184	304	481	1,400,075,000.150	0.150
1,400,050 KHz	552	100	447	469	1,400,050,000.174	0.174
1,400,025 KII2	554	142	526	550	1,400,024,999.831	-0.169
1,400,000 KHz	556	418	419	420	1,400,000,000.000	0.000

N: DIVISION RATIO OF VARIABLE DIVIDER

 Δf : SMALLEST FREQUENCY INCREMENT (25KHz) OF OUTPUT FREQUENCY (f_0) $M_1,\,M_2,\,M_3$: DIVISION RATIOS OF THREE-STAGE REMOVING CIRCUIT

F1G.36

DESIRED FREQUENCY	N	M_1	M 2	M ₃	RESULTING (IIz)	ERROR(IIz)
1,425,000 KHz	138	93	94	95	1,425,000,000.000	0.000
1,424,975 KHz	138	71	108	117	1,424,975,001.151	1.151
1,424,950 KHz	138	86	94	104	1,424,950,019.344	19.344
1,424,925 KHz	139	104	J 131	134	1,424,925,031.024	31.024
1,418,900 KHz	131	32	34	45	1,418,900,026.660	26.660
i i	:	÷	:	:	:	:
1,417,725 KHz	133	29	60	84	1,417,725,137.839	137.839
1,415,775 KHz	136	48	105	105	1,415,774,896.135	-103.865
1,412,650 KHz	137	79	106	119	1,412,650,007.243	7.243
1,412,625 KHz	138	119	133	136	1,412,625,007.133	7.133
1,412,600 KHz	136	62	85	102	1,412,599,995.363	-4.637
:	•	:	:	:	:	:
1,400,100 KHz	135	60	95	111	1,400,099,990.165	-9.835
1,400,075 KHz	135	79	83	87	1,400,074,992.364	-7.636
1,400,050 KHz	133	42	72	76	1,400,050,017.176	17.176
1,400,025 KHz	134	49	67	123	1,400,024,993.790	-6.210
1,400,000 KHz	136	103	104	105	1,400,000,000.000	0.000

N: DIVISION RATIO OF DIVIDER

 Δf : SMALLEST FREQUENCY INCREMENT (25KHz) OF OUTPUT FREQUENCY (f_{σ})

 $M_1,\,M_2,\,M_3$: DIVISION RATIO OF THREE-STAGE REMOVING CIRCUIT

K=10 : DIVISION RATIO OF DIVIDER

F1G.37

DESIRED FREQUENCY	N	M_1	M ₂	М3	RESULTING (Hz)	ERROR(Hz)
1,425,000 KHz	175	19	55	55	1,425,000,000.000	0.000
1,424,975 KHz	177	55	88	157	1,424,975,009.734	9.734
1,424,950 KHz	1.77	12	28	154	1,424,949,999.028	-0.972
1,424,925 KHz	177	67	95	158	1,424,924,997.824	-2.176
1,418,900 KHz	177	104	144	159	1,418,900,000.042	0.042
:	:	:	:	: '	:	:
1,401,825 KHz	174	43	83	141	1,401,825,023.714	23.714
1,409,875 KHz	175	52	. 79	141	1,409,874,976.311	-23.689
1,412,650 KHz	176	47	62	299	1,412,650,000.346	0.346
1,412,625 KHz	176	174	212	304	1,412,624,999.899	-0.101
1,412,600 KHz	.176	186	281	306	1,412,599,999.937	-0.063
:	:	:	:	:	:	:
1,400,100 KHz	174	10	84	171	1,400,099,993.698	-6.302
1,400,075 KHz	174	42	71	171	1,400,075,000.838	0.838
1,400,050 KHz	174	56	89	172	1,400,050,000.059	0.059
1,400,025 KHz	174.	45	117	173	1,400,024,999.338	-0.663
1,400,000 KHz	172	25	42	57	1,400,000,000.000	0.000

N: DIVISION RATIO OF DIVIDER

 Δf : SMALLEST FREQUENCY INCREMENT (25KHz) OF OUTPUT FREQUENCY $(f_{\mathfrak o})$

 $M_1,\,M_2,\,M_3$: DIVISION RATIOS OF THREE-STAGE REMOVING CIRCUIT

K=8: DIVISION RATIO OF DIVIDER

F/6.38

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/01349

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *						
	g to International Patent Classification (IPC) or to both National C	lessification and IPC				
Int	. Cl ⁵ H03L7/18, H03K23/64					
II. FIELD	S SEARCHED					
	Minimum Documentation					
Classificati	on System Classif	cation Symbols				
IP	IPC H03L7/06-7/18, H03K23/00-23/86					
	Documentation Searched other than Mi to the Extent that such Documents are in					
		26 - 1992 71 - 1992				
III. DOC	MENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of Document, 11 with Indication, where appropriat	e, of the relevant passages 12	Relevant to Claim No. 13			
Y	JP, A, 55-664 (Toshiba Corp.) January 7, 1980 (07. 01. 80), (Family: none)		1-2, 6-8, 15-17			
Y	JP, B2, 59-35556 (General Co. August 29, 1984 (29. 08. 84), (Family: none)		3, 9-12, 18-21			
"Special categories of cited documents: 19 "T" later document published after the international filling date or priority date and not in conflict with the application but cited to priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step document of other special reason (as specified) "To" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date claimed.						
IV. CERT	TIFICATION		· · · · · · · · · · · · · · · · · · ·			
Date of the	ne Actual Completion of the International Search Det	e of Mailing of this international Se	arch Report			
		nuary 7, 1993 (07. 01. 93)			
	nal Searching Authority Sign anese Patent Office	nsture of Authorized Officer				

,			
•			
	·	·	
		-	- -

916	1402125	114	119	438	-2. 44553
917	1402100	93	195	281	200102
918	1402075	487	516	65	. 749131
919	1402050	. 74	451	274	. 278767
920	1402025	285	510 203	72	-5. 95315 -2. 98945
921	1402000	93	203 93	271 276	-2. 98943 0
922	1401975	201 511	327	70 ·	2.87658
923 924	1 401 950 1 401 925	79	492	217	1.01543
925	1401923	69	500	361	982357
926	1401875	367	447	70	. 665881
927	1401850	1 26	529	106	. 0
928	1401825	1 50	105	327	95017n
929	1401800	86	326	221	0
930	1401775	1 38	111	338	541489
931	1401750	216	89	301	0
932	1401725	73	544	277	. 518975
933	1401700	129	325	1 20	-2.91783
934	1401675	139	515	100	156644
935	1401650	8.8	205	348	2.82534
936	1401625	1 90	113	200	. 474785
937	1401600	276	438	76	0
938	1401575	1 20	349	1 27	2. 18475
939	1401550	196	530	83	. 0591107
940	1401525	417	432	70	1.74596
941	1401500	299	302	81	1.39357
942	1401475	130	. 108	489	0890753
943	1401450	380	550	69 376	. 0424064 . 527059
944 945	1401425	164 91	98 301	216	0 .
945	1401400 1401375	185	101	276	0
947	1401373	89	200	375	1.34362
948	1401335	545	538	66	1. 26393
949	1401300	346	276	81	0
950	1401275	168	212	122	-2.77343
951	1401250	177	266	105	0
952	1401225	126	157	221	0
953	1401200	93	226	276	0
954	1401175	200	94	318	882094
955	1401150	134	302	1 25	1.16839
956	1401125	167	110	272	1.68248
957	1401100	218	517	82	. 573336
958	1401075	175	188	1 30	1.70343
959	1401050	165	102	353	. 754649
960	1401025	531	291	. 75	1.75843
961	1401000	87	389	218	. 828631
962	1400975	181	140	167	-3.13003
963	1400950	153	129	230	. 628448
964	1400925	212	85	473	191256
965 966	1 400 900 1 400 875	166 102	160 211	1 58 2 4 8	1. 33531 2. 14741
967	1400850	141	126	283	0
968	1400825	190	102	288	369624
969	1400800	76	309	476	0
970	1400775	216	240	103	-3.005
971	1400750	431	30 i	78	O
972	1400725	538	292	76	1.5465
973	1400700	276	405	81.	0
. 974	1400675	154	116	301	-2.3681
975	1400650	511	428	71	2. 296
976	1400625	276	249	93	0
977	1400600	149	111	376	0
978	1400575	126	121	463	0
979	1400550	480	345	75 266	-1.37779
980 981	1400525	151 76	125 527	265 310	0 2 05085
201	1400500	76	341	210	2.05085

F / G 3

F1G.32

982	1400475	526	441	71	0
983	1400450	5 50	277	78	. 565681
984	1400425	85	266	368	. 428427
985	1400400	317	483	77	-3.47279
986	1400375	88	550	199	. 290788
987	1400350	74	452	409	. 327562
988	1400325	388	324	80	. 0683539
989	1400300	201	265	106	0
990	1400275	170	167	159	 834737
991	1400250	456	307	79	-1.38122
992	1400225	164	103	434	-1.65994
993	1400200	295	289	89	. 295257
994	1400175	1 27	441	126	0
995	1400150	546	349	75	-1.71003
996	1400125	487	276	81	0
997	1400100	118	370	146	1.35781
998	1400075	536	360	75	-2.76159
999	1400050	165	115	309	-1.14616
1000	1400025	496_	415	74	183825
1001	1400000	185	112	276	0