

Resilient Distributed Datasets: Spark

CS 475: Concurrent & Distributed Systems (Fall 2021)

Lecture 16

Yue Cheng

Some material taken/derived from:

- Matei Zarahia's NSDI'12 talk slides.
- Utah CS6450 by Ryan Stutsman.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

What's good with MapReduce

- Scaled analytics to thousands of machines
- Eliminated fault-tolerance as a concern

Problems with MapReduce

- Scaled analytics to thousands of machines
- Eliminated fault-tolerance as a concern
- Not very expressive
 - Iterative algorithms (PageRank, Logistic Regression, Transitive Closure)
 - Interactive and ad-hoc queries (Interactive Log Debugging)
- Lots of specialized frameworks
 - Pregel, GraphLab, PowerGraph, DryadLINQ, HaLoop...

Sharing data between iterations/ops

- Only way to share data between iterations / phases is through shared storage
 - Slow!
- Allow operations to feed data to one another
 - Ideally, through memory instead of disk-based storage

Sharing data between iterations/ops

- Only way to share data between iterations / phases is through shared storage
 - Slow!
- Allow operations to feed data to one another
 - Ideally, through memory instead of disk-based storage
- Need the "chain" of operations to be exposed to make this work
- Also, does this break the MR fault-tolerance scheme?
 - Retry and Map or Reduce task since idempotent

Examples

Examples

Goal: In-memory data sharing

Goal: In-memory data sharing

10-100× faster than network/disk, but how to get FT?

Challenges

 How to design a distributed memory abstraction that is both fault-tolerant and efficient?

Challenges

 How to design a distributed memory abstraction that is both fault-tolerant and efficient?

- Existing storage systems allow fine-grained mutation to state
 - In-memory key-value stores
 - Requires replicating data or logs across nodes for fault tolerance
 - Costly for data-intensive apps
 - 10-100x slower than memory write
 - They also require costly on-the-fly replication for mutations

Challenges

 How to design a distributed memory abstraction that is both fault-tolerant and efficient?

 Existing storage systems allow fine-grained mutation to state

Insight: leverage similar coarse-grained approach that transforms whole dataset per operation, like MapReduce (batch processing)

- 10-100x slower than memory write
- They also require costly on-the-fly replication for mutations

Solution: Resilient Distributed Datasets (RDDs)

- Restricted form of distributed shared memory
 - Immutable, partitioned collections of records
 - Can only be built through coarse-grained, deterministic transformations (map, filter, join, ...)

- Efficient fault recovery using lineage
 - Log one operation to apply to many elements
 - Recompute lost partitions on failure
 - No cost if nothing fails

Spark programming interface

- Scala API, exposed within interpreter as well
- RDDs
- Transformations on RDDs (RDD₁ → RDD₂)
- Actions on RDDs (RDD → output)
- Control over RDD partitioning (how items are split over nodes)
- Control over RDD persistence (in memory, on disk, or recompute on loss)

Transformations

Transformations (define a new RDD)

map filter sample groupByKey reduceByKey sortByKey flatMap union join cogroup cross mapValues

RDDs in terms of Scala types -> Scala semantics at workers

Transformations are lazy "thunks"; cause no cluster action

Actions

Actions (return a result to driver program) collect reduce count save lookupKey

Consumes an RDD to **produce** output either to storage (save), or to interpreter/Scala (count, collect, reduce)

Causes RDD lineage chain to get executed on the cluster to produce the output (for any missing pieces of the computation)

```
errors.count()
```


errors.count()


```
lines = textFile("hdfs://foo.log")
errors = lines.filter(
           .startsWith("ERROR")
errors.persist()
errors.count()
errors.filter(
     _.contains("MySQL")).count()
errors.filter(
     _.contains("HDFS"))
     _.map(_.split("\t")(3))
     .collect()
```



```
lines = textFile("hdfs://foo.log")
errors = lines.filter(
           _.startsWith("ERROR")
errors.persist()
errors.count()
errors.filter(
     _.contains("MySQL")).count()
errors.filter(
     _.contains("HDFS"))
     _.map(_.split("\t")(3))
     .collect()
```



```
lines = textFile("hdfs://foo.log")
errors = lines.filter(
           _.startsWith("ERROR")
errors.persist()
errors.count()
errors.filter(
     _.contains("MySQL")).count()
errors.filter(
     _.contains("HDFS"))
     _.map(_.split("\t")(3))
     .collect()
```



```
lines = textFile("hdfs://foo.log")
errors = lines.filter(
           _.startsWith("ERROR")
errors.persist()
errors.count()
errors.filter(
     _.contains("MySQL")).count()
errors.filter(
     _.contains("HDFS"))
     _.map(_.split("\t")(3))
     .collect()
```


persist()

- Not an action and not a transformation
- A scheduler hint
- Tells which RDDs the Spark schedule should materialize and whether in memory or storage
- Gives the user control over reuse/recompute/recovery tradeoffs

persist()

- Not an action and not a transformation
- A scheduler hint
- Tells which RDDs the Spark schedule should materialize and whether in memory or storage
- Gives the user control over reuse/recompute/recovery tradeoffs

 Q: If persist() asks for the materialization of an RDD why isn't it an action? Lineage graph of RDDs

lines

Lineage graph of RDDs

Lineage graph of RDDs lines lines filter(_.startsWith("ERROR")) errors errors filter(_.contains("HDFS"))

HDFS errors

HDFS errors

Lineage graph of RDDs

Narrow & wide dependencies

Narrow: each parent partition used by at most one child partition (can partition on one machine)

Wide: multiple child partitions depend on one parent partition

Must stall for all parent data, loss of child requires whole parent RDD (not just a small # of partitions)

Task scheduler

Dryad-like DAGs

Pipelines functions within a stage

Locality & data reuse aware

Partitioning-aware to avoid shuffles

= cached data partition

Interactive debugging (control and data flow)

Load error messages from a log into memory, then interactively search for various patterns

```
Transformed RDD
lines = spark.textFile("hdfs://...")
                                                                     Worker
                                                          results
errors = lines.filter(_.startsWith("ERROR"))
                                                               tasks
messages = errors.map(_.split('\t')(2))
                                                      Driver
messages.persist()
                                                    Action
messages.filter(_.contains("MySQL")).count
messages.filter(_.contains("HDFS")).count
                                                                    Worker
                                                   Worker
   Result: scaled to 1 TB data in 5-7 sec
       (vs 170 sec for on-disk data)
                                                   Block 3
                                 GMU CS475 Fall 2021
                                                                          38
   Y. Cheng
```

Fault recovery

 RDDs track the graph of transformations that built them (their *lineage*) to rebuild lost data

Fault recovery

 RDDs track the graph of transformations that built them (their lineage) to rebuild lost data

Y. Cheng

Fault recovery

 RDDs track the graph of transformations that built them (their lineage) to rebuild lost data

Y. Cheng

Fault recovery results

Example: PageRank

- 1. Start each page with a rank of 1
- 2. On each iteration, update each page's rank to $\Sigma_{i \in neighbors}$ rank_i / |neighbors_i|

```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
   ranks = links.join(ranks).flatMap {
      (url, (links, rank)) =>
         links.map(dest => (dest, rank/links.size))
   }.reduceByKey(_ + _)
}
```

Example: PageRank

- 1. Start each page with a rank of 1
- 2. On each iteration, update each page's rank to $\Sigma_{i \in neighbors}$ rank_i / |neighbors_i|

Reduce to RDD[(URL, Rank)]

Join (⋈)

Alice	5
Bob	6
Claire	4

Alice	5	F
Bob	6	M
Claire	4	F

Α	5	С	5
Α	2	В	2
Α	3	Α	3
В	4	В	4
В	1	Α	1
С	6	В	6
С	8	С	8

If partitioning doesn't match, then need to reshuffle to match pairs. Same problem in reduce() for MapReduce.

Optimizing placement

- links & ranks repeatedly joined
- Can co-partition them (e.g. hash both on URL) to avoid shuffles
- Can also use app knowledge, e.g., hash on DNS name

Optimizing placement

- links & ranks repeatedly joined
- Can co-partition them (e.g. hash both on URL) to avoid shuffles
- Can also use app knowledge, e.g., hash on DNS name

Q: Where might we have placed **persist()**?

Co-partitioning example

Co-partitioning can avoid shuffle on join
But, fundamentally a shuffle on reduceByKey
Optimization: custom partitioner on domain

PageRank performance

^{*} Figure 10a: 30 machines on 54 GB of Wikipedia data computing PageRank

Tradeoff space

