EDA+ Data Cleaning and Pre-Processing

March 7, 2025

1 Introduction

1.1 Objective

This report provides an exploratory analysis(EDA) of the Auto Loan Credit Decisioning dataset. It includes data visualization, missing value analysis, and necessary preprocessing steps to prepare the data for modeling.

1.2 Data Overview

1. Training Dataset: $\sim 21,000$ records

2. Testing Dataset: $\sim 5{,}400$ records

3. Target variable: aprv_flag (loan approval rate)

4. Key Variables:

(a) Fico: FICO score

(b) amtfinanced_1req: Requested loan amount

(c) pti_1req: Payment-to-income ratio

(d) ltv_1req: Loan-to-Value ratio

2 EDA

2.1 Data Summary

2.1.1 General Information

1. Number of features: 43

2. Number of Numerical features: 38

- 3. Number of Categorical features: 3 which are Race, Gender and collateral_dlrinput_newused_1req (if the vehicle is used or not)
- 4. Number of Missing Values per column:

2.1.2 Target Distribution

The target is the aprv_flag (approval rate):

2.1 Data Summary 2 EDA

2.1.3 Statistical Summary

Statistics for some columns in the train set:

	fico	aprv_flag	amtfinanced_1r		ti_1req \	
count	21431.000000	21606.000000	21606.0000		.000000	
mean	703.643087	0.738313	29870.8671		.025000	
std	82.786470	0.439563	15311.3005		.803567	
min	372.000000	0.000000	0.0000		.080000	
25%	644.000000	0.000000	19370.0000		930000	
50%	701.000000	1.000000	26806.0000		.590000	
75%	766.000000	1.000000	36931.2500		.580000	
max	894.000000	1.000000	189729.0000	00 207.	.090000	
	ltv_1req	p12_reh7120_a	p12_bcx7110_a	p12_all7		
count	21601.000000	19694.000000	17917.000000	20943.0	300000	
mean	101.188938	51.866406	35.863370	3.5	597288	
std	23.245966	37.352331	33.225946	14.8	388786	
min	10.350000	0.000000	0.000000	0.0	000000	
25%	90.520000	16.000000	6.000000	0.0	000000	
50%	103.470000	52.000000	26.000000	0.0	000000	
75%	113.800000	88.000000	63.000000	0.0	000000	
max	955.260000	415.000000	290.000000	100.0	00000	
	p12_aut7110_a	p12_all7120_	a p12_alm	6200_a p1	12_all6971_a	\
count	11070.000000	21226.00000	0 21606.	000000 i 2	21562.000000	
mean	66.256459	85.35136	2 149.	763445	58.454271	
std	24.470168	37.63001	3 181.	349594	133.394966	
min	0.000000	0.00000		000000	0.000000	
25%	50.000000	73.00000		000000	1.000000	
50%	72.000000	94.00000	0 30.0	000000	1.000000	
75%	86.000000	100.00000	0 400.0	000000	1.000000	
max	152.000000	711.00000	0 400.0	000000	400.000000	
	clntr9437_a	clact9429_a	clall5010_a cla	all2434_a	cloil0214_	a \
count	8952.000000	8952.000000	2390.000000 7	19.000000	78.00000	0
mean	1.391309	2.264187	2427.658996	0.020862	0.21794	9
std	3.433233	6.929704	4421.540329	0.143023	0.41552	5
min	0.000000	0.000000	0.000000	0.000000	0.00000	0
25%	0.000000	0.000000	0.000000	0.000000	0.00000	0
50%	0.000000	0.000000	0.000000	0.000000	0.00000	
75%	1.000000		2798,250000	0.000000	0.00000	
max	73.000000		3549.000000	1.000000	1.00000	

Statistics for some columns in the test set:

	fico	aprv_flag	amtfinanced_1r	eq pti_1re	ltv_1req	\
count	5343.000000	5400.000000	5400.0000			`
mean	702.706719	0.741481	29782.5503			
std	82.291798	0.437861	14843.9832			
min	416.000000	0.000000	3786.0000			
25%	644.000000	0.000000	19638.0000			
50%	701.000000	1.000000	26894.0000			
75%	765.000000	1.000000	36946.5000			
max	893.000000	1.000000	134500.0000			
IIIax	093.000000	1.000000	134300.0000	00 /9.2/000	304.230000	
	p12_reh7120_a	a p12_bcx7110	_a p12_all717	0_a p12_aut71	10 a \	
count	4916.00000					
mean	51.01098					
std	37.08170					
min	0.00000					
25%	15.000000					
50%	51.00000					
75%	88.00000					
max	279.000000					
mart				201100		
	p12 all7120 a	a p12 a	Lm6200 a p12 a	ll6971 a clnt	r9437 a \	
count	5295.000000	o 5400	.000000 538	5.000000 2272	.000000	
mean	85.01133	1 150	.206481 5	9.554875 1	428257	
std	39.00750	0 181	1.471627 13	4.574791 3	.305008	
min	0.00000	ð 1	.000000	0.000000 0	.000000	
25%	71.00000	ð 1	.000000	1.000000 0	.000000	
50%	94.00000	ð 30	0.000000	1.000000 0	.000000	
75%	100.000000	0 400	0.000000	1.000000 2	.000000	
max	603.00000	ð 400	.000000 40	0.000000 61	.000000	
	clact9429_a	clall5010_a			ltra4405_a \	
count	2272.000000	607.000000	200.000000		203.000000	
mean	2.311620	2902.642504	0.030000	0.333333	0.004926	
std	6.601955	5030.618640	0.198233	0.485071	0.070186	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	2.000000	3885.000000	0.000000	1.000000	0.000000	
max	117.000000	38755.000000	2.000000	1.000000	1.000000	

3 Visualization

3.1 Univariate Analysis

1. Histogram and KDE plots

2. Box plots

3. Log Transformation of Skewed Features:

We aimed to address features with significant skewness in their distribution. Skewed features can negatively impact the performance of certain machine learning models, which assume more symmetric, normal distributions.

3.2 Bivaiate Analysis

1. Correlation Heatmap

We removed the features that have more than 0.8 correlation value.

3.3 Outliers Detection

Using the above boxplots, we saw that there is a lot of outliers. To handle them the values in numerical features were capped at the 99th percentile.

4 Data Cleaning and Pre-Processing

4.1 Handling Missing Values

- 1. Drop features that have more than 80% mising data.
- 2. For categorical features, we used SimpleImputer using the most frequent strategy.
- 3. For numerical features, we used SimpleImputer using the median strategy.

4.2 Scaling

Scaling Method: RobustScaler was chosen to transform numerical features, which is effective in handling outliers by using the median and interquartile range (IQR) instead of mean and standard deviation.

4.3 Encoding Categorical Variables

- 1. One-hot encoding was applied using pd.get_dummies(), creating binary indicator variables for each category in these columns.
- 2. The parameter drop_first=False ensures that all categories are retained, preventing loss of information.
- 3. Newly generated dummy variables were explicitly converted to integers to ensure compatibility with machine learning models.

4.4 Train_Test_Split

The dataset was split into 80% training data and 20% testing data