CSCI 341 Problem Set 1

Games and State Machines; Automata

Due Monday, September 1

Games and State Machines

Problem 1 (Always an Upper Bound). Let M = (G, L, S, E, A, C) be a directional maze with the set of legal moves $A = \{ \uparrow, \Rightarrow \}$. Prove that $\mathcal{S}(M)$ is finite (there are only finitely many elements) by calculating an upper bound on the number of all possible legal paths through an $n \times m$ directional maze.

Problem 2 (Deja Vu). Let B be a Sokoban game that is not already in a winning position (there is a finishing position without a box on it). Prove that if B has a nonempty solution space, then it has an infinite solution space.

Problem 3 (Reverse Engineering). Find a Sokoban game that represents state s_1 in abstract state diagram (A). Replace the states in the state diagram with drawings of each state of the Sokoban game.

Figure 1: Abstract state diagram (A).

Problem 4 (Impossibility). Prove that there *does not* exist a directional maze that represents state s_1 in abstract state diagram (A).

Automata

Problem 5 (Functional Determinism). Let $\mathcal{A} = (Q, A, \delta, F)$ be an automaton. Prove that \mathcal{A} is a deterministic and total if and only if δ is a function $\delta \colon Q \times A \to Q$.