Numerical Methods of Thermo-Fluid Dynamics I

Winter Semester 2020-2021

Deliverable Task 1: Numerical Solution of 2D Heat Equation

Given: Monday, 9/11/2020 **Deadline: 14/12/2020**

Chair of Fluid Mechanics

Department of Biochemical Engineering, Technical Faculty
Friedrich-Alexander University Erlangen-Nuremberg

Dr. Manuel Münsch, Suharto Saha

Deliverable Task I

Consider the dimensionless 2D heat equation:

$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2},\tag{1}$$

$$[x, y] \in [0, 1] \times [0, 1], t \in [0, 0.16]$$
 (2)

The initial and boundary conditions are:

$$w(x,y,0) = 0, (3)$$

$$w(0,y,t) = 1 - y^3$$
, $w(1,y,t) = 1 - \sin(\pi/2 * y)$, $w(x,0,t) = 1$, $w(x,1,t) = 0$. (4)

- Discretize the equation by the CDS scheme in space and the Crank-Nicolson method in time:
 - (5pts) Show under what conditions the Crank-Nicolson scheme is stable.
 - (5pts) Show that the numerical results will converge when the grid is refined.
- •(50pts) Write MATLAB/OCTAVE programs for the Crank-Nicolson and explicit Euler schemes to solve the heat equation. The programs should automatically generate all plots required.
- Use h = 1/40 in x and y directions and Δt with different values: 0.01, 0.001 and 0.0001.
 - (10pts) Generate two plots (one for Explicit Euler, and one for Crank-Nicolson) by using the stable Δt , show the time evolution of the temperature at =y=0.4, explain the results.
 - (10pts) Use a stable Δt , generate two plots (one for Explicit Euler, another one for Crank-Nicolson) showing the vertical temperature profile at t=0.16 and x=0.4, explain the results.
 - (10pts) Compare the performance of the two methods.
- (10pts) Choose an appropriate scheme and time step and generate 5 plots of the numerical solution for the whole domain from t=0.01, 0.02, 0.04, 0.08, 0.16. Explain the physical phenomenon. You can use the command conturf or any other MATLAB/OCTAVE output commands to generate proper figures.

The Deliverable Task I must be submitted to suharto.saha@fau.de as a .ZIP file containing codes and a combined report before December 14th, 2020 (before the Tutorial session begins)