CVM Topical Workshop (May 13-14, 2024): Tutorial on CVM Tools

About This Tutorial:

This tutorial is focused on standardizing Community Velocity Models (CVMs) into unified formats to improve storage, exchange, extraction, and visualization capabilities. We will explore the use of GeoCSV (http://geows.ds.iris.edu/files/geocsv/GeoCSV.pdf) and netCDF-4 classic

(https://docs.unidata.ucar.edu/nug/current/netcdf introduction.html) formats. Both formats require that datasets be self-describing and contain sufficient metadata. We will demonstrate how to convert models into netCDF format, transform them into GeoCSV, and access them using Python packages such as Xarray.

Repository and Software Requirements:

Access the tools for this workshop through the CVM GitHub repository at https://github.com/cascadiaquakes/cvm-tools. Ensure you are using the latest version of these tools, which are currently under development. All tools require Python 3.

Package Installation and Preparation for the Tutorial:

- 1. Ensure Python 3 is installed on your system.
- 2. Create a directory specifically for this workshop.
- 3. Clone the repository: git clone https://github.com/cascadiaquakes/cvm-tools
- 4. Navigate to the tutorial directory and examine the **requirements.txt** file for necessary Python packages.
- 5. Create a virtual environment and activate it:
 - To create a virtual environment named cvm-env: python3 -m venv cvm-env
 - To activate the cvm-env environment: source cvm-env/bin/activate
- 6. Install the required packages: pip install -r requirements.txt

Data Requirements:

Participants will need model data in CSV format along with corresponding metadata. You are welcome to bring your own model or use the provided Cascadia_ANT+RF_Delph2018 model available at https://ds.iris.edu/ds/products/emc-cascadia_antrf_delph2018. Data and metadata files for this model are located in the directory sample-files/Cascadia-ANT+RF-Delph2018:

- Metadata file: Cascadia-ANT+RF_meta.txt
- Data file in CSV format: Cascadia-ANT+RF_data.txt If bringing your own model, ensure your data is in CSV format and create a metadata file by copying and modifying the provided Cascadia-ANT+RF_meta.txt file.

Using CVM Tools:

During the tutorial, we will explore the following tools:

- **cvm_writer.py**: For converting data and metadata files to GeoCSV or netCDF formats.
- netcdf_to_geocsv.py: To convert netCDF files back to GeoCSV.
- cvm_slicer.py: To read, visualize, and extract data from netCDF files.

Please experiment with these tools prior to the workshop and come prepared with questions. Detailed instructions are available on the GitHub page: https://github.com/cascadiaguakes/cvm-tools/blob/main/README.md

For Any Inquiries, Please Contact:

Manochehr Bahavar at manochehr.bahavar@earthscope.org.