Docente: Manuel G. Scotto

Departamento de Matemática IST, ULisboa

Aquisição e Recolha de Dados

Folha "Excel" ou ficheiro "txt" (abordagem tradicional)

Date	Open	High	Low	Close	Shares	Trades	Turnover	Vwap
11/03/2019	14,245	14,4	14,08	14,2	1394031	2640	19778649	14,1881
12/03/2019	14,23	14,23	13,945	14,085	1866338	3513	26261444	14,0711
13/03/2019	14,06	14,55	14,03	14,55	2120258	3107	30603388	14,4338
14/03/2019	14,58	14,895	14,575	14,69	1296071	2276	19074602	14,7173
15/03/2019	14,695	14,715	14,31	14,31	2012936	2804	28948840	14,3814
18/03/2019	14,375	14,565	14,36	14,565	1291694	2792	18730617	14,5008
19/03/2019	14,595	14,81	14,595	14,72	954677	1834	14038073	14,7045
20/03/2019	14,56	14,675	14,375	14,41	1194989	2586	17275958	14,457
21/03/2019	14,49	14,535	14,23	14,235	1895477	3594	27166250	14,3321
22/03/2019	14,36	14,4	13,835	13,835	1510088	2701	21107420	13,9776
25/03/2019	13,85	13,9	13,71	13,855	1601845	2936	22122207	13,8105
26/03/2019	13,9	14,12	13,875	14,075	1299265	2326	18245165	14,0427
27/03/2019	14,1	14,23	14,02	14,18	1794435	3190	25377231	14,1422
28/03/2019	14,15	14,315	14,09	14,13	1272433	2634	18030413	14,17

Aquisição e Recolha de Dados

Imagens, vídeos, áudio, redes sociais, etc.

This Is What Happens In An Internet Minute Accepted in An Internet Minute 1.4 Million 9,132 NETFLIX Southern South Consecution 1.4 Million 1.4 Mill

Smart Audio 5,000

ð

Created By:

Objetivo

• From data to knowledge and from knowledge to value!!

Métodos para obter informação a partir dos dados

- Data Visualization (tabelas e gráficos)
- Data Visuanimation

Exemplo

• GALP ENERGIA-NOM (11/03/2019 - 08/03/2021)

```
Close
   Open
                    High
                                     Low
Min. : 6.790
                Min. : 6.986
                                 Min. : 6.554
                                                  Min. : 6.820
1st Ou.: 9.252
                1st Ou.: 9.384
                                 1st Ou.: 9.103
                                                  1st Ou.: 9.264
Median :11.985
                Median :12.085
                                 Median :11.637
                                                  Median :11.810
                                 Mean :11.521
Mean
       :11.684
                Mean :11.822
                                                  Mean :11.667
3rd Ou.:13.995
                3rd Ou.:14.114
                                 3rd Ou.:13.871
                                                  3rd Ou.: 13.986
                                 Max. :15.630
Max. :15.750
                Max. :15.950
                                                  Max. :15.760
```


Closing Values Share Prices (GALP ENERGIA)

Log-RETURNS (GALP ENERGIA)


```
dataGALP = dataGALP[,5]
dataGALP=ts(dataGALP)
ts.plot(dataGALP, xlab="Period: 2019-2021", ylab="Price", main="Closing Values Share Prices (GALP ENERGIA)")
logreturnGALP = as.ts(diff(log(dataGALP)))
```

ts.plot(logreturnGALP, xlab="Period: 2019-2021", ylab="log-returns", main="Log-RETURNS (GALP ENERGIA)")

dataGALP = read.csv("GALP.txt", header=TRUE, sep="", dec=",")


```
par(mfrow=c(2,2))
hist(dataGALP, main="Histogram Closing Prices")
hist(logreturnGALP, main="Histogram Log-Returns")
dGALP=density(dataGALP)
plot(dGALP, xlab="", main="Kernel Density of Closing Prices")
polygon(dGALP, col="blue")
dlogGALP=density(logreturnGALP)
plot(dlogGALP, xlab="", main="Kernel Density of Log-Returns")
polygon(dlogGALP, col="blue")
```


$$\label{eq:par} \begin{split} & \mathsf{par}(\mathsf{mfrow}{=}\mathsf{c}(1,2)) \\ & \mathsf{boxplot}(\mathsf{data}\mathsf{GALP},\ \mathsf{col}{=}"\ \mathsf{blue}",\ \mathsf{ylab}{=}"\ \mathsf{Price}") \\ & \mathsf{boxplot}(\mathsf{logreturn}\mathsf{GALP},\ \mathsf{col}{=}"\ \mathsf{red}",\ \mathsf{ylab}{=}"\ \mathsf{log}{-}\mathsf{returns}") \end{split}$$

Closing Values Share Prices (GALP, EDP)


```
jointGALPEDP=cbind(dataGALP, dataEDP)
jointGALPEDP.ts=ts(jointGALPEDP)
ts.plot(jointGALPEDP,ts, xlab="Period: 2019-2021", ylab="Price", main="Closing Values Share Prices (GALP, EDP)")
lines(jointGALPEDP.ts[.1], col="red")
lines(jointGALPEDP.ts[.2], col="blue")
legend("topright", legend=c("GALP", "EDP"), col=c("red", "blue"), lty=1)
```

Closing Values Share Prices (GALP, EDP, MOTA, NOS, NOVABASE)


```
dataGALP = read.csv("GALP.txt", header=TRUE, sep="", dec=",")
dataEDP = read.csv("EDP.txt", header=TRUE, sep="", dec=",")
dataMOTAENGIL =read.csv("MOTA ENGIL.txt", header=TRUE, sep="", dec=",")
dataNOS = read.csv("NOS.txt", header=TRUE, sep="", dec=",")
dataNOVABASE = read.csv("NOVABASE.txt", header=TRUE, sep="", dec=",")
dataGALP = dataGALP[.5]
dataEDP = dataEDP[.5]
dataMOTAENGIL = dataMOTAENGIL[,5]
dataNOS = dataNOS[.5]
dataNOVABASE = dataNOVABASE[,5]
dataGALP=ts(dataGALP)
dataEDP=ts(dataEDP)
dataMOTAENGIL=ts(dataMOTAENGIL)
dataNOS=ts(dataNOS)
dataNOVABASE=ts(dataNOVABASE)
jointGEMNN=cbind(dataGALP, dataEDP, dataMOTAENGIL, dataNOS, dataNOVABASE)
jointGEMNN.ts=ts(jointGEMNN)
ts.plot(jointGEMNN.ts, xlab="Period: 2019-2021", ylab="Price", main="Closing Values Share Prices (GALP,
EDP. MOTA. NOS. NOVABASE)")
lines(jointGEMNN.ts[,1], col="red")
lines(jointGEMNN.ts[,2], col="blue")
lines(iointGEMNN.ts[.3], col="green")
lines(jointGEMNN.ts[,4], col="black")
lines(jointGEMNN.ts[,5], col="orange")
legend("topright", legend=c("GALP", "EDP", "MOTA ENGIL", "NOS", "NOVABASE"), col=c("red", "blue",
"green", "black", "orange"), lty=1)
```


 $boxplot(jointGEMNN[,1:5],\ col = c('red',\ 'blue',\ 'green',\ 'grey',\ 'orange'),\ ylab = "Price")$

Closing Values log-returns(GALP, EDP, MOTA, NOS, NOVABASE)

COVID-19 em PORTUGAL (17/03/2020 - 23/08/2021)

Daily Deaths (17/03/2020 - 23/08/2021)

 $\label{local-bound} MortesPortugal=ts(MortesPortugal[,2]) $$ts.plot(MortesPortugal, xlab="Time: 2020-2021", ylab="Deaths", main="Daily Deaths (17/03/2020 - 23/08/2021)", col="blue")$

COVID-19 em PORTUGAL (17/03/2020 - 23/08/2021)

Kernel Density of Daily Deaths

par(mfrow=c(1,2))
hist(MortesPortugal, xlab="Mortes - Portugal", main="Histogram Daily Deaths")
dMortesPortugal=density(MortesPortugal)
plot(dMortesPortugal, xlab="Mortes - Portugal", main="Kernel Density of Daily Deaths")
polygon(dMortesPortugal, col="blue")

COVID-19 em PORTUGAL (17/03/2020 - 23/08/2021)

Análise Exploratória de Dados em R/RStudio

- Instalar o programa R (http://www.r-project.org).
- Na secção download escolher qual o seu sistema operativo (Mac, Linux ou Windows) e qual o seu processador 32- ou 64-bits.
- Na página r-project.org, no lado esquerdo debaixo do texto download, aparece a opção CRAN e na nova página deve escolher um dos servidores internacionais.
- O programa R dispõe de uma interface gráfica própria. Porém, utilizaremos uma interface gráfica avançada (IDE-Integrated Development Environment) que se chama RStudio.

[Home]

Download

CRAN

R Project

About R Logo Contributors What's New? Reporting Bugs Conferences Search Get Involved: Mailing Lists Developer Pages R Bloq

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download** R, please choose your preferred CRAN mirror

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News

- R version 4.1.1 (Kick Things) has been released on 2021-08-10.
- R version 4.0.5 (Shake and Throw) was released on 2021-03-31.
- Thanks to the organisers of useR! 2020 for a successful online conference. Recorded tutorials and talks from the conference are available on the R Consortium YouTube channel.
- You can support the R Foundation with a renewable subscription as a supporting member

Instalação do RStudio

- Instalar o RStudio (http://www.rstudio.com).
- Na página de descarga escolha a opção RStudio Desktop (gratuita).

Alguns comandos em R

- Linha de comandos (Console).
- Se o resultado for uma variável ou um gráfico, estes vão aparecer nas subjanelas: Environment ou Plot.
- Concatenate:
 - Exemplo 1: x=c(1:10) x=c(1,10)
 - Exemplo 2: y = c(65.2, 73.2, 66.3, 56.7), y[1:3] y[y>60]
- As matrizes correspondem a uma coleção de elementos do mesmo tipo definida através de linhas e colunas.
 - Exemplo 1: y = matrix(1:6, nrow=3, ncol=2)
 - Exemplo 2: mat = c(10, -3, 42, -10) namesL = c("I1", "I2") namesC = c("C1", "C2") matfinal = matrix(mat, nrow=2, ncol=2, byrow=TRUE, dimnames=list(namesL, namesC))

Alguns comandos em R

- As arrays apresentam as mesmas características que as matrizes, mas apresentam a possibilidade de terem mais de duas dimensões.
- As listas são conjuntos de dados que podem ser de qualquer tipo.
- Uma data frame corresponde a um conjunto de vetores de igual tamanho. Esses vetores não têm de ser necessariamente do mesmo tipo de dados. As data frames são utilizadas para armazenar tabelas de dados.

Exemplo

• Exemplo:

```
\begin{aligned} & \text{Alunos} = \text{c("Pedro", "Maria","João", "Ana")} \\ & \text{Idade} = \text{c(15, 18, 22, 17)} \\ & \text{Estudos} = \text{c("FIS", "MAT", "AMB", "INF")} \\ & \text{frame} = \text{data.frame(Alunos,Idade,Estudos)} \end{aligned}
```

Alunos Idade Estudos
1 Pedro 15 FIS
2 Maria 18 MAT
3 João 22 AMB
4 Ana 17 INF

Número de Doutoramentos (2019) por Área e por País

UE27 (2020)	Total (2019)	Educação	Artes e Hum	Cie. Soc. Com. Dir.	Ciências, Mat. Inf.	Engenharia	Agricultura	Saúde Pro. Soc
DE	28 690	471	2 152	4 079	9 110	3 790	798	8 169
AT	2 215	40	253	409	562	495	61	314
BE	3 014	52	283	524	711	675	74	675
BG	1 285	124	206	388	173	153	38	169
CY	128	13	23	26	32	20	2	12
HR	680	35	77	123	99	122	28	183
DK	2 095	0	176	209	357	532	125	696
SK	1 432	84	229	305	271	246	48	190
SI	477	28	86	75	90	104	3	83
ES	9 340	427	1 207	1 753	2 584	1 381	248	1 614
EE	235	3	37	30	93	38	6	25
FI	1 794	81	184	337	387	328	53	415
FR	13 405	179	1 830	2 382	5 245	1 955	143	1 550
GR	1 774	83	195	255	315	337	41	512
HU	1 271	44	178	178	285	123	59	250
IE	1 555	80	182	315	455	198	41	282
IT	7 991	67	930	1 433	2 378	1 743	372	1 059
LV	134	7	8	30	39	34	8	8
LT	325	13	37	50	90	69	16	50
LU	108	3	9	20	57	19	0	0
MT	40	2	4	2	5	8	0	19
NL	4 956	61	340	782	1 012	671	309	1 780
PL	4 039	81	802	759	836	671	145	572
PT	2 103	177	275	427	441	399	34	249
cz	2 346	115	276	353	649	526	110	224
RO	1 920	31	478	325	223	392	86	328
SE	3 329	85	144	334	769	905	41	1 018
IS	96	7	9	15	25	9	0	31
NO	1 595	59	125	236	463	189	21	482
UK	29 340	1 120	4 144	4 423	10 197	4 463	318	4 668
СН	4 303	47	329	681	1 425	671	151	994

Número de Doutoramentos (2019) por Área

Número de Doutoramentos por Área

boxplot(PORDATADou2019[,3:9], col=c('red', 'blue', 'green', 'grey', 'orange', 'gold', 'aquamarine3'), main="Número de Doutoramentos por Área")

Número de Doutoramentos (2019) por País

Número de Doutoramentos por País

Links

- https://www.r-graph-gallery.com/index.html
- https://ggplot2-book.org/index.html
- https://www.gapminder.org/

GGPLOT

 A função ggplot permite definir os parâmetros iniciais do gráfico.

$$ggplot(data=dados, aes(x=\cdots, y=\cdots))$$

A função

define o tipo de gráfico.

Exemplos:
 xxx = density, dotplot, point, histogram, bar, dotplot, violin, line, freqpoly, . . .


```
> ggplot(data= GALPexcel, aes(x = Date, y = Close)) + geom_line(colour="blue") +
geom_point(colour="blue")
> ggplot(data= GALPexcel, aes(x = Date, y = Close)) + geom_point(colour="blue") +
geom_smooth()
> ggplot(data= GALPexcel, aes(x = Close)) + geom_histogram(bins=30)
> ggplot(data= GALPexcel, aes(x = Close)) + geom_density(colour="red")
```


Animated line chart transition with R: GALP dataset

```
library(gganimate)
library(ggplot2)
ggplot(data= GALPexcel, aes(x = Date, y = Close)) + geom_line ()+ geom_point(colour="blue")
+ transition reveal(along= Date)
```


Animated line chart transition with Gapminder

```
> library(plotly)
> library(gapminder)
> p <- ggplot(gapminder, aes(gdpPercap, lifeExp, color = continent)) +
 geom point(aes(size = pop, frame = year, ids = country)) +
 scale x log10()
> fig <- ggplotly(p)
> fig
```


Criação de Funções em R

Funções em R

• É possível criar-mos as nossas próprias funções em R.

```
nome_da_função < -function(x) \{transformação de x\}
```

Exemplo

```
n<-sample(1:30, 50, replace=TRUE)
fff<-function(x){y=x+1
return(y)
}
fff(n)</pre>
```


Criação de Funções em R

```
Exemplo
fff1<-function(x){
print("média")
print(mean(x))
print("desvio padrão")
print(sd(x))
hist(x)
boxplot(x)
fff1(n)
```


Criação de Funções em R

```
Exemplo
toFahrenheit<-function(celsius) { f = (9/5) * celsius + 32
return(f)
}
toFahrenheit(30)
86</pre>
```

