Disciplinas:

MAP 5706 - Introdução à Análise Real (DINTER)

MAP 0216 - Introdução à Análise Real

MAT 0206 - Análise Real

Semestre: 2020/2

Professor: Rodrigo Bissacot - Sala 147A - IME-USP

mail: rodrigo.bissacot@gmail.com

Listas de exercícios e informações sobre o curso em:

https://sites.google.com/site/matbissacot/Home/teaching/analise2020

Monitores:

João Maia - mail: joao.vitor.maia@usp.br Rafael Severiano - mail: rafaelseveriano@usp.br Thiago Alexandre - mail: thiago2.alexandre@usp.br Thiago Raszeja - mail: tcraszeja@gmail.com

Monitorias:

João Maia - Segundas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Alexandre - Terças 17h-18h - Link: FÓRUM DE DISCUSSÃO Rafael Severiano - Quintas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Raszeja - Sexta 19h-20h - Link: FÓRUM DE DISCUSSÃO.

Lista 5: Sequências Parte I: subquências, os conceitos de limite inferior $\lim \inf x_n$ e limite superior $\lim \sup x_n$ de uma sequência $(x_n)_{n\in\mathbb{N}}$. Algumas sequências importantes.

Topologia da Reta Parte II: Subconjuntos densos da reta (de novo), fecho (de novo), ponto de acumulação. Compactos (sequenciamente compacto) e a equivalência com limitado e fechado em dimensão finita. Funções contínuas Parte I.

ENTREGA: DIA 16 DE NOVEMBRO - SEGUNDA ÀS 23:59 HORÁRIO DE SÃO PAULO

MODO DE ENVIAR A LISTA: Envie sua lista para o endereço prova.analise.2020@gmail.com, com o seguinte assunto (título) da mensagem, em maiúsculo:

LISTA 5 - NOME - NUSP - SIGLA DA DISCIPLINA

SOBRE O CONTEÚDO DA P2

A MATÉRIA DAS PROVAS É CUMULATIVA, TUDO QUE JÁ VIMOS PODE SER COBRADO E SER UTILLIZADO NAS PROVAS. PORÉM, O FOCO DAS QUESTÕES DE CADA PROVA É O CONTEÚDO MAIS RECENTEMENTE ENSINADO.

NA P2 ESSE CONTEÚDO É ESSENCIALMENTE 3 TÓPICOS:

1.SEQUÊNCIAS;

- 2. TOPOLOGIA DA RETA;
- 3. FUNÇÕES CONTÍNUAS.

Exercício 1. Sejam $(x_n)_{n\in\mathbb{N}}$ uma sequência limitada de números reais. Usando a definição de $\limsup x_n = A$ da aula 23 mostre que:

- (a) A é um valor de aderência da sequência $(x_n)_{n\in\mathbb{N}}$, ou seja, existe uma subsequência $(x_{n_k})_{k\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$ tal que $A = \lim_{k\to\infty} x_{n_k}$.
- (b) Seja β tal que $A < \beta$. Mostre que β não é valor de aderência da sequência $(x_n)_{n \in \mathbb{N}}$.
- (c) Seja β tal que $A < \beta$. Mostre que existe n_0 tal que para todo $n \ge n_0$ temos que $x_n < \beta$.

Exercício 2. Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências limitadas de números reais. Considere os seguintes números: $a = \liminf x_n, A = \limsup y_n$.

Prove que:

- (a) $\limsup (x_n + y_n) \le A + B$
- (b) $\limsup(-x_n) = -a$

Assumindo que $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ possuem somente elementos positivos mostre que:

- (c) $\limsup (x_n.y_n) \leq A.B$
- (d) Dê exemplos onde temos desigualdades estritas nos itens (a) e (c).

Exercício 3. Sejam $(x_n)_{n\in\mathbb{N}}$ uma sequência limitada de números reais.

- (a) Mostre que $(x_n)_{n\in\mathbb{N}}$ é convergente se $\liminf x_n = \limsup x_n$.
- (b) Mostre que α é um valor de aderência da sequência $(x_n)_{n\in\mathbb{N}}$ se, e somente se, $\forall \varepsilon > 0$ o conjunto $\{n \in \mathbb{N} : x_n \in (\alpha \varepsilon, \alpha + \varepsilon)\}$ é infinito .

(c) Mostre que se $\lim_{n\to\infty}x_n=x$ então $\lim_{n\to\infty}|x_n|=|x|$. Vale a recíproca? Se sim, prove. Caso contrário, dê contra-exemplo.

Exercício 4. Sejam (x_n) , (y_n) , (z_n) sequências de números reais tais que $x_n \le z_n \le y_n$, $\forall n \ge 1$. Suponhamos que $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$. Prove que $\lim_{n \to \infty} z_n = a$. (Teorema do Confronto para sequências)

Exercício 5. Sejam (x_n) , (y_n) sequências limitadas de números reais.

- (a) Mostre que se $\lim_{n\to\infty} x_n = 0$ então $\lim_{n\to\infty} x_n y_n = 0$.
- (a) Mostre que se $\lim_{n\to\infty} z_n = +\infty$ então $\lim_{n\to\infty} (x_n + z_n) = +\infty$.

Exercício 6.

Seja (x_n) uma sequência de números reais positivos tal que existe um n_0 para o qual

$$0 < \frac{x_{n+1}}{x_n} \le c < 1, \forall \ n \ge n_0.$$

Prove que $\lim_{n\to\infty} x_n = 0$.

Exercício 7. Seja $K \subset \mathbb{R}$ um conjunto compacto.

- (a) Mostre que K tem mínimo e máximo. Ou seja, que existem $x_0 \in K$ e $y_0 \in K$ tais que $x_0 \le x \le y_0$ para todo $x \in K$.
- (b) Mostre que se todos os pontos de K são isolados, então K é finito.
- (c) Mostre que se $E \subset \mathbb{R}$ é fechado, então $E \cap K$ é compacto.

Exercício 8.

- (a) Mostre que $X \subset \mathbb{R}$ é denso em \mathbb{R} se, e somente se, para todo $\alpha \in \mathbb{R}$ existe uma sequência $(x_n)_{n \in \mathbb{N}}$ de elementos pertencentes ao conjunto X tal que $\lim_{n \to \infty} x_n = \alpha$.
- (b) Mostre que se α é racional e $X_{\alpha}=\{m+n.\alpha; m\in\mathbb{Z} \text{ e } n\in\mathbb{Z}\}$ então X_{α} não é denso em \mathbb{R} .

Exercício 9. Seja $(K_n)_{n\in\mathbb{N}}$ uma sequência encaixante de compactos não vazios, ou seja, para todo $n\in\mathbb{N}$ temos:

3

- (i) $K_n \supseteq K_{n+1}$
- (ii) K_n é compacto não vazio.

Mostre que $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

Exercício 10.

- (a) Seja $X \subset \mathbb{R}$, mostre que \overline{X} é fechado.
- (b) Dado $\alpha \in \mathbb{R}$ definimos a distância do ponto α a um conjunto X não vazio por:

$$d(\alpha, X) = \inf\{|x - \alpha|; x \in X\}.$$

Mostre que $d(\alpha, X) = 0$ se, e somente se, $\alpha \in \overline{X}$.

Definição 1. Dado $\alpha \in \mathbb{R}$ e $X \subset \mathbb{R}$, dizemos que α é ponto de acumulação de X quando:

$$\forall \ \varepsilon > 0 \ \exists \ x \in X \ tal \ que \ x \in (\alpha - \varepsilon, \alpha + \varepsilon) \backslash \{\alpha\} = (\alpha - \varepsilon, \alpha) \cup (\alpha, \alpha + \varepsilon)$$

Notação: Dado $X\subset\mathbb{R},$ o conjunto de pontos de acumulação de X é denotado por X'.

Exercício 11. Seja $X \subset \mathbb{R}$.

- (a) Mostre que X' é sempre um conjunto fechado.
- (b) Mostre que $X' = (\overline{X})'$
- (c) Mostre que $\overline{X} = X \cup X'$.

Definição 2. Dado um subconjunto $X \subset \mathbb{R}$ limitado e não-vazio, o diâmetro de X é definido como:

$$diam X = \sup\{|x - y|; x \in X \ e \ y \in X\}$$

Exercício 12. Mostre que se X é limitado de \mathbb{R} então:

- (a) Se Y é limitado e $X \subset Y$ então diam $X \leq$ diam Y.
- (b) diam $X = \text{diam } \overline{X}$.
- (c) diam $X = \sup X \inf X$.

Definição 3. Seja $X \subset \mathbb{R}$. Seja $f: X \to \mathbb{R}$ uma função limitada. A oscilação de f no ponto $x_0 \in X$ é definição por

$$w(f, x_0) = \inf\{diam[f(X \cap (x_0 - \delta, x_0 + \delta))]; \ \delta > 0\}$$

Exercício 13. Seja $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ uma função limitada. Mostre que f é contínua em x_0 se, e somente se, $w(f, x_0) = 0$.

Exercício 14. (Composta de contínuas é contínua) Sejam X e Y subconjuntos de \mathbb{R} . Seja $f: X \to \mathbb{R}$ uma função contínua em $x_0 \in X$. Suponha que $f(X) \subseteq Y$ e que $g: Y \to \mathbb{R}$ seja contínua em $y_0 = f(x_0)$. Mostre que $h:=g\circ f: X \to \mathbb{R}$ uma função contínua em $x_0 \in X$ de duas maneiras diferentes:

- (a) Usando a definição com ε e δ .
- (b) Usando sequências.

Exercício 15. Seja $X = \mathbb{R} - \{0\}$ e $f : X \to \mathbb{R}$ definida por $f(x) = \frac{1}{x}$. Dado $x_0 \in X$, mostre que f é contínua em x_0 usando a definição de continuidade com ε e δ .