MİKROİŞLEMCİ SİSTEMLERİ 1.Vize Sınavı

1- Aşağıdaki lojik ve aritmetik işlemlerin sonunda akümülatörün (A) alacağı değeri onaltılık sayı düzeninde hesaplayınız.

MOV A.#10H $A = (10)_{16}$ a) DEC A XRL $\Rightarrow A = (???)_{16}$ A,#00001111B b) MOV A,#254D ; $A = (254)_{16}$ RR Α CPL Α ANL A,#7FH $\Rightarrow A = (???)_{16}$ c) MOV A,#0D $; A = (0)_{10}$ $; R0 = (4)_{10}$ MOV R0,#4D **CEVRIM:** RL A A,R0 ADD DJNZ R0,CEVRIM

 $\Rightarrow A = (???)_{16}$

2- 64Kbyte'lık bir bellek sisteminde adres yolunun en üst üç biti 3x3 bir kod çözücü ile 3 tane bellek elemanına bağlıdır.

0000H-1FFFH $\overline{Y0}$ 'a bağlı eleman etkin kılınacaktır. (Etkin durumda lojik 0) 2000H-5FFFH $\overline{Y1}$ 'a bağlı eleman etkin kılınacaktır. (Etkin durumda lojik 0) 6000H-7FFFH $\overline{Y2}$ 'a bağlı eleman etkin kılınacaktır. (Etkin durumda lojik 0) 8000H-FFFFH Kullanılmıyor.

- a) $\overline{Y0}$, $\overline{Y1}$ ve $\overline{Y2}$ çıkışları için lojik doğruluk tablosu çiziniz ve minimumlaştırılmış lojik ifadeyi bulunuz.
- b) Yalnızca katalog bilgisi verilmiş tek türden vedeğil (NAND) kapılarını kullanarak lojik devreyi çiziniz.

- 3- 8 Bit veri yolu, 64Kbyte adresleme kapasitesi olan bir merkezi işlem birimine, 1 adet 27C64EPROM ve 2 adet 62C128 statik yazoku bellekten (RAM) oluşan bellek bloğu bağlanmak istenmektedir. MİB'in sıfırlama (reset) vektörü EPROM'un ilk adresini gösterecektir. (0000H)
 - a) Tanımlanan mikrobilgisayar sistemine ilişkin bellek haritasını çıkartınız.
 - b) 74HC138 kod çözücü kullanarak tüm sistem elemanlarının yer aldığı devre şemasını çiziniz.