Math .Max Method:

Method	Definition	Example
Max(UInt64,UInt64)	Returns the larger of two 64-bit unsigned integers.	Math. Max(104, 114)=114
Max(UInt32,UInt32)	Returns the larger of two 32-bit unsigned integers.	Math. Max(103, 113)=113
Max(UInt16,UInt16)	Returns the larger of two 16-bit unsigned integers.	Math. Max(102, 112)=112
Max(Single, Single)	Returns the larger of two single- precision floating-point numbers.	Math. Max(5, 55)=55
Max(SByte , SByte)	Returns the larger of two 8-bit signed integers.	Math. Max(1,111)=111
Max(Byte , Byte)	Returns the larger of two 8-bit unsigned integers.	Math. Max(1,51)=51
Max(Int 32, Int32)	Returns the larger of two 32-bit signed integers.	Math. Max(-3,53)=53
Max(Int 16, Int16)	Returns the larger of two 16-bit signed integers.	Math. Max(-2,52)=52
Max(Double , Double)	Returns the larger of two double-precision floating-point numbers.	Math. Max(6.0,56.0)=56.0
Max(Decimal , Decimal)	Returns the larger of two decimal numbers.	Math. Max(7m,57m)=57m
Max(Int 64, Int 64)	Returns the larger of two 64-bit signed integers.	Math. Max(-4,54)=54

Math .Min Method:

Method	Definition	Example
Min(UInt64,UInt64)	Returns the Smaller of two 64-bit unsigned integers.	Math. Min(104, 114)=104
Min(UInt32,UInt32)	Returns the Smaller of two 32-bit unsigned integers.	Math. Min(103, 113)=103
Min(UInt16,UInt16)	Returns the Smaller of two 16-bit unsigned integers.	Math. Min(102, 112)=102
Min(Single, Single)	Returns the Smaller of two single-precision floating-point numbers.	Math. Min(5, 55)=5
Min(SByte , SByte)	Returns the Smaller of two 8-bit signed integers.	Math. Min(1,111)=1
Min(Byte , Byte)	Returns the Smaller of two 8-bit unsigned integers.	Math. Min(1,51)=1
Min(Int 32 , Int32)	Returns the Smaller of two 32-bit signed integers.	Math. Min(-3,53)=-3
Min(Int 16 , Int16)	Returns the Smaller of two 16-bit signed integers.	Math. Min(-2,52)=-2
Min (Double , Double)	Returns the Smaller of two double-precision floating-point numbers.	Math. Min(6.0,56.0)=6.0
Min(Decimal , Decimal)	Returns the Smaller of two decimal numbers.	Math. Min(7m,57m)=7m
Min (Int 64, Int 64)	Returns the Smaller of two 64-bit signed integers.	Math. Min(-4,54)=-4

Math.Pow(Double, Double) Method:

Method	Definition	Example
Min(UInt64,UInt64)	Returns the Smaller of two 64-bit	Math. Min(1,2)=1
	unsigned integers.	

Parameters	Return value
x or y = NaN.	NaN
x = Any value except NaN; y = 0.	1
x = Negative Infinity; $y < 0$.	0
x = Negative Infinity; y is a positive odd integer.	Negative Infinity
x = Negative Infinity; y is positive but not an odd integer.	Positive Infinity
x < 0 but not Negative Infinity; y is not an integer, Negative Infinity, or Positive Infinity.	NaN
x = -1; $y = $ Negative Infinity or Positive Infinity.	NaN
-1 < x < 1; y = Negative Infinity.	Positive Infinity
-1 < x < 1; y = Positive Infinity.	0
x < -1 or $x > 1$; $y = $ Negative Infinity.	0
x < -1 or $x > 1$; $y = Positive Infinity$.	Positive Infinity
x = 0; y < 0.	Positive Infinity
x = 0; y > 0.	0
x = 1; y is any value except NaN.	1
x = Positive Infinity; y < 0.	0
x = Positive Infinity; y > 0.	Positive Infinity

Math.Round Method:

Rounds a decimal value to a specified number of fractional digits, and uses the specified rounding convention for midpoint values.

Method	Definition	Example
Round(Decimal)	Rounds a decimal value to the nearest integral value, and rounds midpoint values to the nearest even number	Math. Round(4.5m)=4
Round(Decimal, Midpoint Rounding)	Rounds a decimal value to the nearest integer, and uses the specified rounding convention for midpoint values.	Math. Round(12.8m)=13

Math.Sign Method:

Method	Definition	Example
Sign(Single)	Returns an integer that indicates the sign of a single-precision floating-point number.	Math.Sign(0.0f)=0
Sign(SByte)	Returns an integer that indicates the sign of an 8-bit signed integer.	Math.Sign(-101)<0
Sign(Int 32)	Returns an integer that indicates the sign of a 32-bit signed integer.	Math.Sign(-3)<0
Sign(Int 64)	Returns an integer that indicates the sign of a 64-bit signed integer.	Math.Sign(-4)<0
Sign(Double)	Returns an integer that indicates the sign of a double-precision floating-point number.	Math.Sign(6.0)>0
Sign(Decimal)	Returns an integer that indicates the sign of a decimal number.	Math.Sign(-7m)<0
Sign(Int 16)	Returns an integer that indicates the sign of a 16-bit signed integer.	Math.Sign(-2)<0

Math.Sqrt(Double) Method:

Method	Definition	Example
Sqrt (double)	Returns the square root of a specified number.	Math. Sqrt (138.8)=11.78

Parameter	Return value
Zero or positive	The positive square root of d.
Negative	NaN
Equals NaN	NaN
Equals PositiveInfinity	PositiveInfinity

Math.Truncate Method:

Method	Definition	Example
Truncate(Decimal)	Calculates the integral part of a specified decimal number.	Math.Truncate (32.7865m;)=32
Truncate(Double)	Calculates the integral part of a specified double- precision floating-point number.	Math.Truncate (- 32.9012f)=-32

Parameter	Return value
NaN	NaN
NegativeInfinity	NegativeInfinity
PositiveInfinity	PositiveInfinity