Error Detection and Correction - The Structure of (Natural) Languages

Eric Filiol

ESIEA - Laval Laboratoire de cryptologie et de virologie opérationnelles $(C+V)^O$ filiol@esiea.fr

2013 - 2014

- 1 Introduction: Natural Languages as Mathematical Sources
- 2 The Entropy of English
- 3 Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

- 1 Introduction: Natural Languages as Mathematical Sources
- The Entropy of English
- Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

Introduction: Natural Languages as Mathematical Sources

- In the Information Theory course we have presented various mathematical models of sources (DMC, stationary sources, Markov sources...).
- Natural languages or even programming languages are so complex information sources that an exact mathematical model of them is impossible.
- We however need to work practically on natural languages or on programming languages. Is it possible to build a reasonable approximation, using the concepts and tools of Information Theory?
- Wlog, we focus on natural languages: 27-letter alphabet (26 letters + space). This extend to other languages with any alphabet.
- The core concept/tool will be that of *n-th order approximation*.

N-th Order Approximation of Natural Languages

Definition

Let S be a Markov source of order n and \mathcal{L} a (natural) language. Whenever S uses the distribution of n-grams of \mathcal{L} , we said that S is a n-th order approximation of \mathcal{L} .

- 0-th order approximation : each letter has probability $\frac{1}{27}$.
- ullet 1-th order of approximation : letters are emitted randomly according to ${\cal L}$ symbols frequency
- 2-th order of approximation (bigram frequencies) or using probabilities P(i|j) = p(i,j)/p(j) with respect to letters i and j.
- ...

N-th Order Approximation of Natural Languages (2)

N-th Order Approximation of Natural Languages (3)

Guess which \mathcal{L} and n have been used hereafter.

- XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD
- OCRO HLI RGWR NMIELWIS EU L NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL...
- HE AREAT BEIS HEDE THAT WISHBOUT SEED DAY OFTE AND HE IS FOR...
- IENEC FES VIMONILLITUM M ST ER PEM ENIM PTAUL
- MAITAIS DU VEILLECALCAMAIT DE LIEU DIT
- DU PARUT SE NE VIENNER PERDENT LA TET

N-the order Word Approximation of Natural Languages

- Shannon proposed to model \mathcal{L} as a source whose alphabet is made up of basic words of \mathcal{L} (using then word frequencies).
- 1st order word approximation of English: REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME...
- 2nd order word approximation of English: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT...
- We can then model natural languages with a succession of Markov sources which therefore are ergodic and with a unique steady state distribution, as described in the information theory course (part IV).
- We can then use and apply all relevant tools : entropy, word entropy and explore new concepts like language redundancy.

- 1 Introduction: Natural Languages as Mathematical Sources
- 2 The Entropy of English
- 3 Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

- 1 Introduction: Natural Languages as Mathematical Sources
- 2 The Entropy of English
- Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

The Entropy of English: a First Approximation

- We are now going to give some estimates and interpretations of the entropy of English H_E .
- ullet By the Shannon-McMillan Theorem (on ergodic sources), we can interpret H_E by using the following formula

$$2^{nH_E} \approx t(n)$$
 for n large (1)

where T(n) denotes the number of typical (e.g. meaningful) sequences of length n of English texts.

- The critical issue is to know H_E first to compute then T(n).
- First approximation : there are 27^n possible of sequences of n symbols. Then we have

$$H_E \leq \log_2(27) = 4.76$$
 bits per symbol

Eric Filiol (Esiea - $(C+V)^O$ lab)

The Entropy of English : Using n-th Order Approximation

ullet A better estimate of H_E is obtained from the 1st Order Approximation and using the different probabilities that a letter occurs

$$P[\langle space \rangle] = 0.18 \quad P[E] = 0.13....$$

• We use then $H(X,Y) \leq H(X) + H(Y)$ to have a better bound since

$$H_E \le H_E^1 = -\sum_i p_i \log_2(p_i)$$

where p_i is the probability of occurrence of the i-th symbol.

 We can extend to any higher order of approximation (hereafter based on the frequency of bigrams with non-zero probability)

$$H_E \le H_E^2 = -\frac{1}{2} \sum_{i} \sum_{j} p(i,j) \log_2(p(i,j))$$

where p(i,j) is the probability of occurrence of bigram (i,j).

N-grams Entropies

	26-letter Alphabet	27-letter Alphabet
$\overline{H_E^0}$	4.70	4.76
$H_E^{\overline{1}}$	4.14	4.03
$H_E^{\overline{2}}$	3.56	3.32
$H_E^{\overline{3}}$	3.30	3.10

TABLE: *n*-gram entropies (Shannon, 1951)

N-grams Entropies (2)

TABLE I. Block entropy estimates \hat{h}_n in bits per character for written English, as estimated from a concatenation of several long texts of altogether $\approx 7 \times 10^7$ characters. See the text for details.

	7-bit ASCII			27 characters		
n	Eq. (5)	Eq. (8)	$N \rightarrow \infty$	Eq. (5)	Eq. (8)	$N \rightarrow 0$
1	4.503	4.503	4.503	4.075	4.075	4.07
2	3.537	3.537	3.537	3.316	3.316	3.31
3	2.883	2.884	2.884	2.734	2.734	2.73
4	2.364	2.367	2.369	2.256	2.257	2.25
5	2.026	2.037	2.043	1.944	1.947	1.94
6	1.815	1.842	1.860	1.762	1.773	1.78

FIGURE: Results by (Schürrman & Grassberger, 1996)

The Entropy of English: Using Conditional Entropy

- An alternative approach by (Shannon, 1951) was based on estimating the conditional entropies $H(X_n|X_1,X_2,\ldots,X_{n-1})$.
- ullet Based on the natural assumption that an intelligent human being can operate as a predictor about the n-th letter when knowing the n-1 previous ones.

n	Lower bound	Upper bound	n	Lower bound	Upper bound
1	3.19	4.03	9	1.0	1.9
2	2.50	3.42	10	1.0	2.1
3	2.10	3.00	11	1.3	2.2
4	1.70	2.60	12	1.3	2.3
5	1.70	2.70	13	1.2	2.1
6	1.30	2.20	14	0.9	1.7
7	1.80	2.80	15	1.2	2.1
8	1.00	1.80	100	0.6	1.3

- Similar results obtained by (Burton & Licklider, 1955).
- All the previous estimations, they strongly depends on the type of natural languages texts you use (e.g Gadsby, E. V. Wright's 250-page noveal never uses the letter 'e').

- 1 Introduction: Natural Languages as Mathematical Sources
- 2 The Entropy of English
- Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

Introduction

- Shannon (1951) suggested to base the estimate of English entropy on word frequency rather than letter/symbol frequency.
- Let us consider a (natural) language as a word collection $\{w_1, w_2, \ldots, w_N\}$ each occurring with probability $p(w_i)$. The word entropy is then given by

$$H_W = -\sum_{i=1}^{N} p(w_i) \log_2(p(w_i)).$$

• Shannon suggested (from Formula (1)) that the symbol entropy H_E could be approximated by

$$H_E = \frac{H_W}{l(w)}$$

where l(w) is the average length of a language word.

Introduction (2)

- Unfortunately, this approximation is far from being accurate since
 - Words in a language are not independent (the previous formula relates more to 1st order approximation).
 - Letters in a word are not independent.
- It is possible to have a better approximation by considering a law proposed by a linguist G.K. Zipf (1935).
- This law holds strikingly well for many various languages.
- Zipf law has been applied to many other various research area (biology, economics, earth science...).

Zipf Law

Zipf Law

The probability of occurrence of words in a language or other items starts high and tapers off. Thus, a few occur very often while many others occur rarely. Formally, if p_n is the frequency of the n-th ranked word/item (relatively to the decreasing order of their probability), then $p_n \approx \frac{A}{n}$, where A is constant that depends on the language/context in question.

Shannon's Use of Zipf Law

- Shannon used Zipf law as an approximation to the word frequencies of English, with A=0.1.
- Using Zipf law with A=0.1 and taking M=12366, we have

$$\sum_{n=1}^{12366} p_n = 0.1 \sum_{n=1}^{12366} \frac{1}{n} = 1$$

Then Formula (1) gives

$$H_W = 9.72$$
 bits per word

• Using this value and taking the fairly well established approximation of 4.5 letters for l(w) of an English word, we obtain the estimate for $H_{4.5}$ (or equivalently the 4.5-th order approximation to English with respect to a 26-letter alphabet) :

$$H_{4.5} \approx \frac{9.72}{4.5} = 2.16$$
 bits per letter.

Eric Filiol (Esiea - $(C+V)^O$ lab)

Discussion

 The previous approximation is an underestimate since words are actually dependent sequences of letters. Hence we have

$$H_W = \sum_{k=1}^{\infty} H(W||W| = k).P(|W| = k)$$

where W is a random word output and |W| its length.

Thus we have

$$H_W = \sum_{k=1}^{\infty} H(X_1 X_2 \dots X_k).P(|W| = k) \le \sum_{k=1}^{\infty} k.H(X).P(|W| = k),$$

where H(X) is the symbol entropy H_E . The inequality follows from the basic one $H(X,Y) \leq H(X) + H(Y)$.

This gives

$$H_W \le H_{4.5} \sum kP(|W|=k)$$

that is

$$H_W < H_{4.5}.l(w)$$

- Introduction : Natural Languages as Mathematical Sources
- 2 The Entropy of English
- Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

Introduction

• For (natural) languages we have related the entropy per symbol of the language with the number of meaningful messages, that is

$$T(n) \approx 2^{nH}$$

• Now by the noiseless coding theorem, a source with entropy H has a compact encoding in an alphabet Σ for typical strings of length n such that

$$l(n) \approx \frac{nH}{\log_2(|\Sigma|)}$$
 (2)

 We have seen that data compression in fact consists in recoding information with respect to a compact code. This implies that before compression, part of of the information is redundant and hence represents a wasted space. What is the amount of this wasted space?

Language Redundancy

Language Redundancy

Redundancy R in information theory is the number of bits used to transmit a message minus the number of bits of actual information in the message.

- Data compression is a way to reduce or eliminate unwanted redundancy.
- Error detection/correction techniques consist of adding desired redundancy when communicating over a noisy channel of limited capacity.
- \bullet We can think of the redundancy R as a percentage. Then it is natural to write

$$l(n) \approx n(1 - \frac{R}{100})$$

Combining with Formula (2), we have

$$R = 1 - \frac{H}{\log_2(|\Sigma|)}$$

Estimating Language Redundancy

 Estimating language redundancy precisely is very difficult. Moreover it strongly depends on the text corpus chosen.

	The Bible	William James	The Atlantic Monthly
$\overline{H_0}$	4.086	4.121	4.152
H_1	2.397	2.654	2.824
Estimate of ${\cal R}$	41.4 %	32.2 %	28.5 %
l(w)	4.06	4.556	4.653

TABLE: Data for different types of English texts (Shannon, 1951)

Estimating Language Redundancy (2)

There is obviously significant dependence regarding the languages.

	Samoan	English	Russian
$\overline{H_1}$ (letter)	3.37	4.114	4.612
H_{12}	2.136	2.397	2.395
Estimate of ${\cal R}$	37.2 %	41.3 %	47.4 %
l(w)	3.174	4.060	5.296

TABLE: Data for identical passages of the Bible translated into different languages (Shannon, 1951)

 Samoan has a 16-letter alphabet, of which 60 % are vowels. Pre-1917 Russian used a 35-letter alphabet.

Discussion

- Shannon estimated that asymptotically the entropy of English can be reduced to something of the order of 1 bit per letter. This would correspond to a redundancy of roughly 75 %.
- This assumption has to be interpreted with care: it does not mean that it is systematically possible to recover a text in which letters are deleted with probability $\frac{1}{4}$.
- The exact nature of deletion is important (take the Arabic language as an example).
- Miller & Friedman (1957) proved that there is a critical value $p \approx 0.25$ of the deletion probability above which the recovery of the message from the mutilated text is impossible.

Discussion (2)

- While it is theoretically possible to shorten printed text to a quarter of their present length, random deletion is not a good choice.
- Big reduction can be achieved by clever and "sensible" encoding.
 - Omit space, letter R,...
 - Leave out vowels.
- The concept of redundancy is critical in cryptography (this issue will be addressed in the Cryptography Minor Course MAT5051).

- 1 Introduction: Natural Languages as Mathematical Sources
- 2 The Entropy of English
- Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

Conclusion

According to Shannon, we have for English

$$0.5 \le R_E \le 0.75$$
 and $1.19 \le H_E \le 2.38$

- We have all concepts and tools to measure the entropy and redundancy of any language.
- This language modelling is dependent of the working corpus.
- Application: you can simulate any language and therefore mimic any sort of trafic.
- This is part of the approach in Perseus Lib upper layer (pending).
- Go now to the computer room to practice with exercices.

- Introduction : Natural Languages as Mathematical Sources
- 2 The Entropy of English
- 3 Zipf Law and Word Entropy
- 4 Language Redundancy
- Conclusion
- 6 Bibliography

Essential Bibliography

A few papers are available on the Moodle repository for this lecture.

- Burton, N. G. & Licklider, J. C. R. (1955). Long-range Constraints in the Structure of Printed English. *Amer. J. Psych.*, 68, 650–653.
- Miller, G. A. & Friedman, E. A. (1957). The reconstruction of Mutilated English Texts. *Inf. Contr.*, 1, pp. 38–55.
- Pierce, J. R. (1973). The early Days of Information Theory. Trans. on Info. Theory, 19, pp. 3–8.
- Schürmann, T. & Grassberger, P (1996). Entropy Estimation of Symbol Sequences. CHAOS, Vol. 6-3, pp. 414–427
- Shannon, C.E. (1951). Prediction and Entropy of Printed English. Bell Syst. Tech. J., 30, pp. 50–64.
- Yavuz, D. (1974). Zipf's Law and Entropy. Trans. on Info. Theory, 20, pp. 650.
- Zipf, G. K. (1935). The Psycho-biology of Language. Houghton Mifflin Press.