Suites numériques

M. Varvenne

1 Préliminaires sur les nombres réels

Notation 1.1. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$

Définition 1.2. Soit x un nombre réel, on définit

$$|x| := \begin{cases} x & \text{si} \quad x \ge 0 \\ -x & \text{si} \quad x < 0. \end{cases}$$

Le nombre |x| est appelé valeur absolue de x.

Proposition 1.3 (Inégalités triangulaires). Pour tout $x, y \in \mathbb{R}$,

$$|x+y| \le |x| + |y|$$
 et $||x| - |y|| \le |x-y|$.

Théorème 1.4. Soit $x \in \mathbb{R}$, alors il existe un unique entier relatif k tel que

$$k \leq x < k + 1$$
.

Cet entier est appelé partie entière de x.

Définition 1.5. Soit A une partie non vide de \mathbb{R} $(A \subset \mathbb{R})$ et α un réel. On dit que

• α est un majorant de A, si :

$$\forall x \in A, \quad x \leqslant \alpha.$$

• α est un **minorant** de A, si :

$$\forall x \in A, \quad \alpha \leqslant x.$$

• α est le **plus grand élément** de A, si :

 $\alpha \in A$ et α est un majorant de A.

• α est le plus petit élément de A, si :

 $\alpha \in A$ et α est un minorant de A.

• on dit que A est **majorée** (respectivement **minorée**) si elle admet un majorant (respectivement un minorant).

Définition 1.6. Soit A une partie non vide de \mathbb{R} , on dit que :

- α est la **borne supérieure** de A, si α est le plus petit élément de l'ensemble des majorants de A. On la note $\sup(A)$.
- α est la **borne inférieure** de A, si α est le plus grand élément de l'ensemble des minorants de A. On la note $\inf(A)$.

Théorème 1.7 (propriété de la borne supérieure).

- Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.
- Toute partie non vide et minorée de \mathbb{R} admet une borne inférieure.

2 Quelques notions sur les suites

2.1 Définition

Définition 2.1. On appelle suite de nombres réels toute application $u : \mathbb{N} \to \mathbb{R}$. Pour tout $n \in \mathbb{N}$, l'image u(n) est usuellement notée u_n .

Notation 2.2. On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites à valeurs réelles (autrement dit l'ensemble des applications de \mathbb{N} dans \mathbb{R}). Une suite $u \in \mathbb{R}^{\mathbb{N}}$ peut se noter également $(u_n)_{n \in \mathbb{N}}$ ou (u_n) .

2.2 Suites et ordre

Définition 2.3. Soit $u \in \mathbb{R}^{\mathbb{N}}$. On dit que la suite u est :

- minorée, majorée ou bornée si l'ensemble $A = \{u_n, n \in \mathbb{N}\}$ l'est.
- croissante (respectivement strictement croissante) si

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \quad \text{(respectivement)} \quad \forall n \in \mathbb{N}, \quad u_{n+1} > u_n\text{)}.$$

• décroissante (respectivement strictement décroissante) si

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leq u_n \quad \text{(respectivement)} \quad \forall n \in \mathbb{N}, \quad u_{n+1} < u_n\text{)}.$$

• monotone si elle est croissante ou décroissante.

Remarque 2.1. Soient $u \in \mathbb{R}^{\mathbb{N}}$ et $A = \{u_n, n \in \mathbb{N}\}.$

Si u est minorée, alors $\alpha = \inf(A)$ est appelé **borne inférieure de** u. On la note aussi

$$\alpha = \inf_{n \in \mathbb{N}} u_n.$$

Si u est majorée, alors $\alpha = \sup(A)$ est appelé **borne supérieure de** u. On la note aussi

$$\alpha = \sup_{n \in \mathbb{N}} u_n.$$

2.3 Limites d'une suite

Définition 2.4. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $\ell\in\mathbb{R}$, on dit que

• $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ si et seulement si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - \ell| < \varepsilon.$$

On note $\lim_{n \to +\infty} u_n = \ell$ ou $u_n \xrightarrow[n \to +\infty]{} \ell$ ou $\lim u_n = \ell$.

• $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ si et seulement si

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow u_n > A.$$

On note
$$\lim_{n \to +\infty} u_n = +\infty$$
 ou $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $\lim u_n = +\infty$.

• $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ si et seulement si

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow u_n < A.$$

On note
$$\lim_{n \to +\infty} u_n = -\infty$$
 ou $u_n \xrightarrow[n \to +\infty]{} -\infty$ ou $\lim u_n = -\infty$.

Remarque 2.2. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **convergente** si il existe un réel ℓ telle que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ . Dans tous les autres cas, on dit que la suite est **divergente**.

Proposition 2.5 (Unicité de la limite). Si une suite réelle $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ_1 et converge vers un réel ℓ_2 , alors $\ell_1 = \ell_2$.

3 Propriétés des limites

3.1 Composition

Définition 3.1 (Suites extraites). Soient u et v deux suites réelles. On dit que v est une suite extraite de u si il existe une application $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$\forall n \in \mathbb{N}, \quad v_n = u_{\varphi(n)}.$$

Remarque 3.1. L'application φ est appelée fonction extractrice. Cette fonction vérifie la propriété suivante

$$\forall n \in \mathbb{N}, \quad \varphi(n) \geqslant n.$$

Proposition 3.2 (Limite et suites extraites). Soit $(u_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$. Si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Proposition 3.3 (Suites et fonctions).

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ une application, $a \in I$ (ou une extrémité de I), $\ell \in \overline{\mathbb{R}}$ et (u_n) une suite à valeurs dans l'intervalle I (c'est-à-dire: $\forall n \in \mathbb{N}$, $u_n \in I$).

$$Si \lim_{n \to +\infty} u_n = a \ et \lim_{x \to a} f(x) = \ell, \ alors$$

$$\lim_{n \to +\infty} f(u_n) = \ell.$$

Remarque 3.2. En particulier, si f est continue en $a \in I$, alors $\ell = f(a)$.

3.2 Limites et opérations

Proposition 3.4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles, ℓ,ℓ' deux éléments de $\overline{\mathbb{R}}$, tels que $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$.

Alors on retrouve les propriétés vues en terminale sur les opérations (somme, quotient, produit) sur les limites de suites.

Ces propriétés sont résumées dans les trois tableaux ci-dessous :

$\lim_{n \to +\infty} u_n =$	ℓ	ℓ	$+\infty$	$-\infty$	+∞
$\lim_{n \to +\infty} v_n =$	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
$ \lim_{n \to +\infty} u_n + v_n = $	$\ell + \ell'$	$\pm \infty$	$+\infty$	$-\infty$	Indéterminée

$\lim_{n \to +\infty} u_n =$	ℓ	$\ell \neq 0$	$\pm \infty$	$-\infty$	0
$\lim_{n \to +\infty} v_n =$	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$\pm \infty$
$\lim_{n \to +\infty} u_n v_n =$	$\ell\ell'$	$\pm \infty$	$\pm \infty$	$+\infty$	Indéterminée

$\lim_{n \to +\infty} u_n =$	ℓ	$\ell \neq 0$	$\pm \infty$	$\pm \infty$	0
$\lim_{n \to +\infty} v_n =$	$\ell' \neq 0$	$\pm \infty$	$\ell' \neq 0$	$\pm \infty$	0
$\lim_{n \to +\infty} \frac{u_n}{v_n} =$	$\frac{\ell}{\ell'}$	0	$\pm \infty$	Indéterminée	Indéterminée

3.3 Limites et ordre

Inégalités 3.3.1

Proposition 3.5. Soit $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que $\lim_{n \to \infty} u_n = \ell$ et $\lim_{n \to \infty} v_n = \ell'$.

• $Si \ \ell < \ell'$, alors il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0, \quad u_n < v_n.$$

• Si pour tout $n \in \mathbb{N}$ on a $u_n < v_n$, alors

$$\ell \leqslant \ell'$$
.

3.3.2 Comparaison, encadrement

Théorème 3.6 (Comparaison). Soient u et v deux suites réelles telles que

$$\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \quad u_n \leqslant v_n.$$

Alors,

- (i) $si \lim_{n \to +\infty} u_n = +\infty$, $alors \lim_{n \to +\infty} v_n = +\infty$. (ii) $si \lim_{n \to +\infty} v_n = -\infty$, $alors \lim_{n \to +\infty} u_n = -\infty$.

Théorème 3.7 (Théorème des gendarmes).

Soient $u, v, w \in \mathbb{R}^{\mathbb{N}}$ telles que

- (i) $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \quad u_n \leqslant v_n \leqslant w_n,$
- (ii) $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers un réel ℓ .

Alors,

$$(v_n)_{n\in\mathbb{N}}$$
 converge et $\lim_{n\to+\infty}v_n=\ell$.

Corollaire 3.8.

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$, on suppose que

- (i) $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \leqslant v_n,$
- (ii) $(v_n)_{n\in\mathbb{N}}$ converge et $\lim_{n\to+\infty} v_n = 0$.

Alors

$$\lim_{n \to +\infty} u_n = 0.$$

Corollaire 3.9.

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$, on suppose que

- (i) u est bornée,
- (ii) $(v_n)_{n\in\mathbb{N}}$ converge et $\lim_{n\to+\infty} v_n = 0$.

Alors la suite $(u_n v_n)_{n \in \mathbb{N}}$ converge vers 0.

3.3.3 Suites monotones

Théorème 3.10 (Cas borné).

Toute suite réelle **croissante** et **majorée** converge. Toute suite réelle **décroissante** et **minorée** converge.

Théorème 3.11 (Cas non borné).

Toute suite réelle **croissante** et **non majorée** diverge vers $+\infty$. Toute suite réelle **décroissante** et **non minorée** diverge vers $-\infty$.

3.4 Suites adjacentes

Définition 3.12. Deux suites réelles u et v sont dites **adjacentes** si elles vérifient les deux conditions suivantes :

- (i) l'une est croissante et l'autre est décroissante,
- (ii) la suite $(u_n v_n)_{n \in \mathbb{N}}$ converge vers 0.

Théorème 3.13. Soient u et v deux suites réelles.

Si u et v sont adjacentes alors elle convergent et ont la même limite.

3.5 Relations de comparaison entre les suites

Définition 3.14. Soient $u, v \in \mathbb{R}^{\mathbb{N}}$.

On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, v_n \ne 0$.

On dit que $(u_n)_{n\in\mathbb{N}}$ est :

- dominée par $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\geqslant n_0}$ est bornée. On note alors $u_n=\mathcal{O}(v_n)$.
- **négligeable** devant $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\geqslant n_0}$ converge vers 0. On note alors $u_n=o(v_n)$.
- équivalente à $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\geqslant n_0}$ converge vers 1. On note alors $u_n \sim v_n$.

Remarque 3.3.

- $u_n = o(1) \iff \lim_{n \to +\infty} u_n = 0.$
- Deux suites équivalentes qui convergent, admettent la même limite.

Proposition 3.15. Soient $u, v, w \in \mathbb{R}^{\mathbb{N}}$.

- $Si \ u_n \sim v_n \ et \ v_n \sim w_n, \ alors \ u_n \sim w_n.$
- $Si \ u_n \sim v_n \ et \ si \ v_n = o(w_n) \ alors \ u_n = o(w_n).$

Proposition 3.16. Soient $u, u', v, v' \in \mathbb{R}^{\mathbb{N}}$.

- $Si \ u_n \sim v_n \ et \ u'_n \sim v'_n$, alors $u_n v_n \sim u'_n v'_n$.
- $Si \ u_n \sim v_n, \ u'_n \sim v'_n \ et \ v, v' \in (\mathbb{R}^*)^{\mathbb{N}}, \ alors \ \frac{u_n}{v_n} \sim \frac{u'_n}{v'_n}.$
- $Si \ \alpha \in \mathbb{R}^{+*} \ et \ u_n \sim v_n, \ alors \ u_n^{\alpha} \sim v_n^{\alpha}$

4 Suites récurrentes

4.1 Suites itératives

Définition-Théorème 4.1. Soit I un intervalle de \mathbb{R} , $f:I\to I$ une application et $a\in I$. Il existe une unique suite $(u_n)_{n\in\mathbb{N}}$ telle que

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n). \end{cases}$$

6

On dit que f est la fonction itératrice de la suite $(u_n)_{n\in\mathbb{N}}$.

Remarque 4.1.

Si $f: x \mapsto x + r$ avec $r \in \mathbb{R}$, alors on obtient une suite **arithmétique**:

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + r. \end{cases}$$

Si $f: x \mapsto qx \text{ avec } q \in \mathbb{R}, \text{ alors on obtient une suite } \textbf{g\'{e}om\'{e}trique}:$

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = qu_n. \end{cases}$$

Si $f: x \mapsto bx + d$ avec $b, d \in \mathbb{R}$, alors on obtient une suite **arithmético-géométrique**:

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = bu_n + d. \end{cases}$$

Théorème 4.2. Soit I un intervalle de \mathbb{R} , $f: I \to I$ une application, $a \in I$ et $(u_n)_{n \in \mathbb{N}}$ telle que

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n). \end{cases}$$

Alors:

- si f est croissante sur I, alors $(u_n)_{n\in\mathbb{N}}$ est monotone.
- si f est décroissante sur I, alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones et de monotonie contraire.

Théorème 4.3. Soit $(u_n)_{n\in\mathbb{N}}$ définie de même que dans le théorème 4.2. On suppose de plus que f est continue sur I.

Si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ alors ℓ est un point fixe de f, c'est-à-dire ℓ est solution de l'équation

$$f(x) = x.$$

4.2 Suites récurrentes linéaires d'ordre 2

Définition 4.4. On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est **récurrente linéaire d'ordre 2** si il existe $a,b\in\mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n.$$