

Wanqing Zhu¹, Bing Guan¹, Shanshan Wang², Minghui Zhang¹ and Qiegen Liu¹
¹Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
²Paul C. Lauterbur Research Center for Biomedical Imaging, SIAT, CAS, Shenzhen 518055, China

2022 IEEE 19th International Symposium on Biomedical Imaging

- 1 Introduction
- 2 Method
- 3 Experimental Results
- 4 Conclusion

Challenging:

Most parallel imaging strategies require the explicit formation of either **coil sensitivity profiles** or a **cross-coil correlation operator**, and as a result reconstruction corresponds to solving a challenging bilinear optimization problem.

Exploring

There are mainly two categories of deep learning-based fast MRI: Supervised and unsupervised schemes.

Disadvantage:

- 1. Requiring a huge number of labeled samples.
- 2. Adding a layer of complexity when dealing with multi-coil data.

Contribution

- Universal generative modeling: Although the learned prior knowledge is trained from single coil image, the proposed model can be used for PI reconstruction with any coil number.
- Reconstruction with fast mixing: Due to the special similarity among the multi-channel object, an adaptive iteration strategy for reducing the iteration number of the inner loop is introduced.

- 1 Introduction
- 2 Method
- 3 Experimental Results
- 4 Conclusion

Network Architecture

Fig. 2. Flowchart illustration of the proposed UGM-PI model.

Algorithm 1 UGM-PI

Training stage

Dataset: Dataset in wavelet domain: $X = \{x_{ll}, x_{lh}, x_{hl}, x_{hh}\}$

Output: Trained UGM-PI $S_{\rho}(X,\sigma)$

Reconstruction stage

```
Setting: \sigma \in \{\sigma_i\}_{i=1}^I, \varepsilon, T, x^0, k_v and \Omega

1: for i \leftarrow 1 to I do (Outer loop)

2: \alpha_i = \varepsilon \cdot \sigma_i^2 / \sigma_i^2

3: for t \leftarrow 1 to T do (Inner loop)

4: X_j^t = T_W(x_j^t)

5: Draw z_t \sim N(0,1) and X^{t-1} = \{x_{ll}^{t-1}, x_{lh}^{t-1}, x_{hl}^{t-1}, x_{hh}^{t-1}, x_{hh}^{t-1}\}

6: X_j^t = X_j^{t-1} + \frac{\alpha_i}{2} S_{\theta}(X_j^{t-1}, \sigma_i) + \sqrt{\alpha_i} z_t

7: Update x_j^t = T_W^{-1}(X_j^t) and Eq. (10)

8: end for

9: x_j^0 \leftarrow x_j^T

10: Update multi-coil images x_j^T, j = 1, \cdots, J

11: end for
```

12: Update the final image as the square root of $SOS(x^T)$

Reconstruction with universal deep prior

For the neural network trained by high dimensional wavelet tensor x, the reconstruction result is obtained via gradually annealed noise. i.e.,

$$X_j^t = X_j^{t-1} + \frac{\alpha_i}{2} S_{\theta}(X_j^{t-1}, \sigma_i) + \sqrt{\alpha_i} z_t$$

Specifically, at each iteration of the annealed Langevin dynamics, we update the solution via data consistency constraint, let $x^t = T_w^{-1}(X^t)$, it yields,

$$x_{j}^{t+1} = \arg\min_{x} \left\{ \sum_{j=1}^{J} \left\| F_{m} x_{j} - y_{j} \right\|_{2}^{2} + \lambda \left\| x_{j} - x_{j}^{t} \right\|_{2}^{2} \right\}$$

The least-square (LS) minimization can be solved as follows:

$$(F_m^T F_m + \lambda) x_j^{t+1} = F_m^T y_j + \lambda x_j^t$$

Convergence tendency comparison

Let $F \in C^{M \times M}$ denotes the full Fourier encoding matrix. $Fx_j(k_v)$ stands for the updated j-th coil value at k-space location k_v , and Ω represents the sampled subset of data, it yields,

$$Fx_{j}(k_{v}) = \begin{cases} Fx_{j}^{t}(k_{v}), & k_{v} \notin \Omega \\ \frac{FF_{m}^{T}y_{j}(k_{v}) + \lambda Fx_{j}^{t}(k_{v})}{(1+\lambda)}, k_{v} \in \Omega \end{cases}$$

It shows the convergence tendency of PSNR curves versus iteration that reconstructed by UGM-PI and the native NCSN. Even if the final reconstruction result is similar, UGM-PI reach the convergence target more quickly.

- 1 Introduction
- 2 Method
- 3 Experimental Results
- 4 Conclusion

Comparative Experiment

Average PSNR,SSIM and HFEN comparison values and reconstruction results with three state-of-the-art methods.

		P-LORAKS	SAKE	LINDBREG	UGM-PI
Random _2D	R=4	35.94	35.95	33.49	40.13
		0.92	0.88	0.93	0.95
		0.50	0.57	0.63	0.40
	R=6	32.73	33.62	30.79	37.25
		0.88	0.84	0.90	0.93
		0.65	0.80	0.80	0.53
Poisson _2D	R=6	33.61	34.96	32.47	38.05
		0.90	0.87	0.92	0.95
		0.48	0.57	0.59	0.42
	R=10	31.22	32.13	28.67	34.20
		0.85	0.82	0.84	0.91
		0.83	0.94	1.19	0.71

- 1 Introduction
- 2 Method
- 3 Experimental Results
- 4 Conclusion

Conclusion

- 1. we present a **universal generative modeling** for parallel imaging, it can be used for PI reconstruction with any coil number.
- 2. we made use of the merits of **wavelet transform** at prior learning stage and the **adaptive iteration strategy** at the reconstruction stage.
- 3. Compared with state-of-the-art calibration-free methods, the proposed method can produce images with **less noise and artifacts**.

