Statistical Language Models

Week 6

Feature Engineering

- Devising your own covariates
- Vocabulary (presence/absence of word)
- Frequency (count of words)
- Occurrence (distribution of words in text)

Clustering Algorithms

- How do they work?
- What makes them special?

Cluster these articles

$$P(Y_i \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_k N(Y_i \mid \theta_k, \sigma_k^2)$$

$$P(Y_i \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_k N(Y_i \mid \theta_k, \sigma_k^2)$$

$$\bullet \ P(Z_i = k \mid p_k) = p_k$$

•
$$P(Y_i \mid Z_i = k, \theta, \sigma, p) = N(Y_i \mid \theta_k, \sigma_k^2)$$

$$P(Y_i \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_k N(Y_i \mid \theta_k, \sigma_k^2)$$

$$P(Z_i = k \mid p_k) = p_k$$

•
$$P(Y_i \mid Z_i = k, \theta, \sigma, p) = N(Y_i \mid \theta_k, \sigma_k^2)$$

•
$$P(Y_i, Z_i = k \mid \theta, \sigma, p) = p_k N(Y_i \mid \theta_k, \sigma_k^2)$$

$$P(Z_i = k \mid Y_i, \theta, \sigma, p) = \frac{p_k N(Y_i \mid \theta_k, \sigma_k^2)}{\sum_{j=1}^K p_j N(Y_i \mid \theta_j, \sigma_j^2)}$$

Z defines group membership

- Single group for an observational unit: Hard clustering
- Multiple groups for an observational unit: Soft clustering

The geometry

Changing cluster shape

Repeated measures within an observation

$$P(Y_{ij} \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_{ik} N(Y_{ij} \mid \theta_k, \sigma_k^2)$$

$$P(Y_{ij} \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_{ik} N(Y_{ij} \mid \theta_k, \sigma_k^2)$$

- $\bullet \ P(Z_{ij} = k \mid p_{ik}) = p_{ik}$
- $P(Y_{ij} \mid Z_{ij} = k, \theta, \sigma, p) = N(Y_i \mid \theta_k, \sigma_k^2)$

$$P(Y_{ij} \mid \theta, \sigma, p) = \sum_{k=1}^{K} p_{ik} N(Y_{ij} \mid \theta_k, \sigma_k^2)$$

$$P(Z_{ij} = k \mid p_{ik}) = p_{ik}$$

•
$$P(Y_{ij} | Z_{ij} = k, \theta, \sigma, p) = N(Y_i | \theta_k, \sigma_k^2)$$

•
$$P(Y_{ij}, Z_{ij} = k \mid \theta, \sigma, p) = p_{ik}N(Y_i \mid \theta_k, \sigma_k^2)$$

Bag of words model

- Observational unit: Document
- Within document observe words,
 - order does not matter
 - Words are considered iid observations within a document

 Goal is to cluster documents into topics. One document has many topics.

Data generating mechanism

- Make a song containing N words (possibly sample N from Poisson)
- Song has a Dirichlet allocation of topics describing what it is about
- For word i in 1:N
 - Randomly sample one of the topics
 - Topic has a Dirichlet allocation of words within the topic
 - Randomly sample a word within topic

D.Blei, A. NG, M. Jordan (2003) "Latent Dirichlet Allocation", JMLR http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

- LDA assumes the following generative process for each document w in a corpus D:
- 1. Choose N ~ Poisson(ξ), there are N word in the document
 - 2. Choose a topic allocation θ~Dir(α)
 - 3. For each of the N words w_n :
- (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$. Each position in the doc has a latent topic (b) Choose a word w_n from $p(w_n | z_n, \beta)$, a multinomial probability conditioned on the topic z_n .

- LDA assumes the following generative process for each document w in a corpus D:
- 1. Choose N ~ Poisson(ξ), there are N word in the document
 - 2. Choose a topic allocation θ ~Dir(α), the Dirichlet has a prior vector α .
 - 3. For each of the N words wn:
- (a) Choose a topic $\mathbf{z}_n \sim \text{Multinomial}(\boldsymbol{\theta})$. Each position in the doc has a latent topic (b) Choose a word \mathbf{w}_n from $\mathbf{p}(\mathbf{w}_n | \mathbf{z}_n, \boldsymbol{\beta})$, a multinomial probability conditioned on the topic \mathbf{z}_n . Each topic has it's own pdf over words, the word Dirichlet has prior vector $\boldsymbol{\beta}$

Getting stared

- Convert corpus into a document term matrix.
- library(topicmodels)

Example from Associated Press Articles

- library(topicmodels)
- data("AssociatedPress")
- AssociatedPress
- APLDA = LDA(AssociatedPress, k=5) # < 1 minute to run

- Within topic word probabilities: their beta == Blei's $p(w_n | z_n, \beta)$
- AP_topics = tidy(APLDA, matrix = "beta")

- library(ggplot2)
- library(dplyr)
- AP_TopWords = AP_topics %>%
- group_by(topic) %>% # take an action within topic values
- top_n(10, beta) %>% # find the largest 10 values based on the 'beta' column
- ungroup() %>%
 # stop acting within a topic
- arrange(topic, -beta) # sort the

- AP_TopWords %>%
- mutate(term = reorder_within(term, beta, topic)) %>% # Used for faceting (glue topic to term)
 basically make sure that topic 1 is my topic #1
- ggplot(aes(term, beta, fill = factor(topic))) +
- geom_col(show.legend = FALSE) +
- facet_wrap(~ topic, scales = "free") +
- coord_flip() +
- scale_x_reordered()

Also consider bigger differences differentiators between topics

- library(tidyr)
- beta_spread = AP_topics %>%
- mutate(topic = paste0("topic", topic") %>% # set the names so I remember what the numbers are
- spread(topic, beta) %>% #Make topics into columns, rows are then words
- filter(topic1 > .001 | topic2 > .001 | topic3 > .001 | topic4 > .001 | topic5 > .001) % #keep only major words
- mutate(log_ratio21 = log2(topic2 / topic1)) %>% mutate(log_ratio31 = log2(topic3 / topic1)) %>%
- mutate(log_ratio41 = log2(topic4 / topic1)) %>% mutate(log_ratio51 = log2(topic5 / topic1))

Biggest differences in words

- beta_spread %>%
- filter(log_ratio21 > 50 | log_ratio21 < -50) %>% #keep only major words
- mutate(log_ratio21 = sort(log_ratio21)) %>%
- ggplot(aes(term, log_ratio21)) +
- geom_col(show.legend = FALSE) +
- coord_flip() +
- scale_x_reordered()

Most similar words

- beta_spread %>%
- filter(log_ratio21 < .5 & log_ratio21 > -.5) %>% #heavy trimming required
- mutate(log_ratio21 = sort(log_ratio21)) %>%
- ggplot(aes(term, log_ratio21)) +
- geom_col(show.legend = FALSE) +
- coord_flip() +
- scale_x_reordered()

- Their gamma == Blei's $P(z_n | \theta, w_n)$
- ap_documents = tidy(APLDA, matrix = "gamma")
- Estimate of the proportion of words from a document that are generated from a specific topic

Common words within a topic

- Count the most common words for a particular document; before class document 2 was mainly pulling from topic # 1
- tidy(AssociatedPress) %>%
- filter(document == 9) %>%
- arrange(desc(count))

GETTING STARTED

wordcount = uniquesongs %>%

- #matrix with cols for document and full text
- unnest_tokens(output = word, input = songlyric) %>%
- # anti_join(stop_words) %>%

here it's better to not exclude these 1149 words

group_by(track_title) %>%

count within a document

- count(word,sort=TRUE)%>%
- ungroup()

• DTM = wordcount %>% cast_dtm(term=word,document=track_title,value=n)

Some words shouldn't be included

• Jude, Octopus, Walrus, eggman,...

 DTM95 = removeSparseTerms(DTM,.95) # remove terms that are are least this proportion sparse Text Mining with R
Chapter 3: tf-idf
Chapter 6 Topic Modelling

- k = 10
- # trim out empty documents
- DTMatrix = as.matrix(DTM95)
- sumDTMatrix = apply(DTMatrix,1,sum)
- BeatlesLDA = LDA(DTM95, k)

- library(wordcloud) ## Loading required package: RColorBrewer
- par(mfrow = c(1, 1))
- v = sort(colSums(as.matrix(DTM95)), decreasing = TRUE)
- MainWords = names(v)
- d = data.frame(word = MainWords, freq = v)
- wordcloud(d\$word, colors = rainbow(4), random.color = T, d\$freq, min.freq
 = 10,scale=c(8,2)) # scale argument is so that you can see it projected

- summed = matrix(colSums(as.matrix(DTM95)), ncol = 1)
- rownames(summed) = colnames(DTM95)
- summedsorted = summed[sort(summed, decreasing = T, index.return = T)\$ix,]
- d = data.frame(word = names(summedsorted), freq = summedsorted)
- barplot(d\$freq[1:50], las = 2, names.arg = d\$word[1:50], col = "lightblue", main = "Top 50 most frequent words", ylab = "Word frequencies")

Most frequent words

- #Find the least sparse words of the 349 songs:
- sort(apply(as.matrix(DTM)>0,2,sum),decreasing=TRUE)[1:10]
- #If a word appears in all documents it shouldn't matter in defining the topic

Inverse Document Frequency: measure of commonality of words

$$idf(term) = ln \left(\frac{n_{docs}}{n_{docswithword}} \right)$$

- Ndocs = dim(as.matrix(DTM))[1]
- book_words = wordcount %>% mutate(Ndocs=Ndocs)
- #count docs with the word
- Ndocswithword = wordcount %>% group_by(word) %>% count() %>% ungroup()
- Ndocswithword = Ndocswithword %>% rename(NdocsWithWord =n) #rename col
- wordcountidf = left_join(book_words, Ndocswithword) # extend the tibble

Inverse Document Frequency

$$idf(term) = ln \left(\frac{n_{docs}}{n_{docswithword}} \right)$$

wordcountidf = wordcountidf %>% mutate(idf = log(Ndocs/NdocsWithWord)) # extend the tibble with the idf column

- #Most common words within songs
- freq_by_rank= wordcountidf %>%
- group_by(track_title) %>%
- mutate(rank = row_number())
- rank1words = freq_by_rank%>% filter(rank ==1)
- head(sort(table(rank1words\$word),decreasing=TRUE),25)

tf idf

$$tfidf(term) = \left(\frac{N_{occur}}{N_{words in doc}}\right) * ln\left(\frac{n_{docs}}{n_{docswithword}}\right)$$

- #Term frequency weighted by the commonality of the word ≈ importance of the word
- WordsInDoc = wordcountidf %>% group_by(track_title)%>% summarize(NwordsinDoc = sum(n))
- wordcountidf = left_join(wordcountidf, WordsInDoc)

tf idf

•
$$tfidf(term) = \left(\frac{N_{occur}}{N_{words in doc}}\right) * ln\left(\frac{n_{docs}}{n_{docswithword}}\right)$$

- #Term frequency weighted by the commonality of the word \approx importance of the word
- wordcountTFIDF = wordcountidf %>% mutate(termfreq = n/NwordsinDoc, tfidf = n/NwordsinDoc*idf)
- #alternatively: obtain tf_idf directly in one move:
- wordcountTFIDF = wordcountTFIDF %>% bind_tf_idf(word,track_title,n)

Most/Least important words

•
$$tfidf(term) = \left(\frac{N_{occur}}{N_{words in doc}}\right) * ln\left(\frac{n_{docs}}{n_{docswithword}}\right)$$

- wordcountTFIDF %>%
- select(-idf,-termfreq,-Ndocs,-NdocsWithWord,-tfidf) %>%
- arrange(desc(tf_idf))
- wordcountTFIDF %>%
- select(-idf,-termfreq,-Ndocs,-NdocsWithWord,-tfidf) %>%
- arrange(tf_idf)

Beatles LDA and using tf_idf for stop words

- k = 10
- wordcount = uniquesongs %>%
- unnest_tokens(output = word, input = songlyric) %>%
- group_by(track_title) %>% count(word,sort=TRUE)%>% ungroup()
- wordcount = wordcount %>% bind_tf_idf(word,track_title,n)
- wordcount = wordcount%>% filter(tf_idf>.001) #remove stop words

Beatles LDA

- k = 10
- wordcount = uniquesongs %>%
- unnest_tokens(output = word, input = songlyric) %>%
- group_by(track_title) %>% count(word,sort=TRUE)%>% ungroup()
- DTM = wordcount %>% cast_dtm(term=word,document=track_title,value=n)
- DTM95 = removeSparseTerms(DTM,.95)
- BeatlesLDA = LDA(DTM95, k) ########. FAILS

Beatles LDA

- #remove sparse documents
- DTM95matrix = as.matrix(DTM95)
- Removethese = names(which(apply(DTM95matrix,1,sum)<5)))

- DTM = wordcount %>% filter (!(wordcount\$track_title %in% names(Removethese)))%>%
 - cast_dtm(term=word,document=track_title,value=n)
- DTM

Beatles LDA

- DTM95 = removeSparseTerms(DTM,.95)
- BeatlesLDA = LDA(DTM95, k) ########YAY!!!

- LDA assumes the following generative process for each document w in a corpus D:
- 1. Choose N ~ Poisson(ξ), there are N word in the document
 - 2. Choose a topic allocation θ ~Dir(α), the Dirichlet has a prior vector α .
 - 3. For each of the N words wn:
- (a) Choose a topic $\mathbf{z}_n \sim \text{Multinomial}(\boldsymbol{\theta})$. Each position in the doc has a latent topic (b) Choose a word \mathbf{w}_n from $\mathbf{p}(\mathbf{w}_n | \mathbf{z}_n, \boldsymbol{\beta})$, a multinomial probability conditioned on the topic \mathbf{z}_n . Each topic has it's own pdf over words, the word Dirichlet has prior vector $\boldsymbol{\beta}$

Estimation

- Gibbs & Variational EM Algorithm
- http://times.cs.uiuc.edu/course/598f16/notes/lda-survey.pdf

$$P(W, Z, \theta \mid \alpha, \beta) = \prod_{j=1}^{K} P(\theta_j \mid \alpha) \prod_{t=1}^{N_j} P(z_{jt} \mid \theta_j) P(w_{jt} \mid \beta_{zt})$$

Target distribution:

$$P(Z, \theta \mid \alpha, \beta) \propto \prod_{j=1}^{K} P(\theta_j \mid \alpha) \prod_{t=1}^{N_j} P(z_{jt} \mid \theta_j) P(w_{jt} \mid \beta_{zt})$$

Variational Methods

Approximate a distribution using an easy to use distribution. Typically fit
minimizing Kullback-Leibler (KL) divergence between the variational
distributions q and the true posteriors p

• Select a variational distribution q with parameters γ , π

•
$$P(Z, \theta \mid \alpha, \beta) \approx q(z, \theta \mid \gamma, \pi)$$

KL divergence of p to q is

$$D(q \mid \mid p) = \int_{\theta} \sum_{z} q(z_{j}, \theta_{j} \mid \gamma_{j}, \pi_{j}) log \left(\frac{q(z_{j}, \theta_{j} \mid \gamma_{j}, \pi_{j})}{p(z_{j}, \theta_{j} \mid w_{j}, \alpha, \beta)} \right) d\theta$$