

Spatial Frequent Patterns and Associations

- □ Spatial frequent patterns and association rule: $A \Rightarrow B$ [s%, c%]
 - A and B are sets of spatial or non-spatial predicates, e.g.,
 - Topological relations: intersects, overlaps, disjoint, etc.
 - Spatial orientations: left_of, west_of, under, etc.
 - Distance information: close_to, within_distance, etc.
 - \square Measures: s%: support, and c%: confidence of the rule
- Example: Rules likely to be found
 - □ $is_a(x, large_town) \land intersect(x, highway) \rightarrow adjacent_to(x, water) [7%, 85%]$
- Explore spatial autocorrelation: Spatial data tends to be highly self-correlated (nearby things are more related than distant ones)
 - E.g., neighborhood, temperature

Mining Spatial Associations: Progressive Refinement

- Hierarchy of spatial relationship:
 - close_to is a generation of near_by, touch, intersect, contain, ...
 - Progressive refinement: First search for rough relationship and then refine it
- Two-step mining of spatial association:
 - Step 1: Rough spatial computation (as a filter)
 - Using MBR (Minimum Bounding Rectangle) or R-tree for rough estimation
 - Step2: Detailed spatial algorithm (as refinement)
 - Apply only to those objects which have passed the rough spatial association test (no less than min_support)

Spatial Colocation Patterns

- Colocation pattern: A group of spatial features or events that are frequently co-located in the same region
 - Ex. West Nile Virus often occur in regions with poor mosquito control and the presence of birds
- Figure: Neighborhood instances are connected by edges ¹
 - **Ex.** {3, 6, 17}, {4, 7, 10, 16}, {2, 8, 11, 14, 15}, {2, 9}, ...
- Rowset(C) if every feature in patter C appears as a feature of an instance in the neighbor-set L, e.g.,
 - \square rowset({A, B, C, D}) = {{4, 7, 10, 16}, {2, 11, 14, 15}, {8, 11, 14, 15}}
 - \square rowset({A, B}) = {{5, 13}, {7, 10}, {2, 14}, {8, 14}}
- A colocation rule R: A \rightarrow B, conditional probability cp(R) is defined as $|\{L \in rowset(A) | \exists L' \text{ s.t. } (L \subseteq L') \land (L' \in rowset(A \cup B))\}|$

 \Box cp({A, B} \rightarrow {C, D}) = |rowset({A, B, C, D})|/|rowset({A,B})| = $\frac{3}{4}$ = 75%

Mining Spatial Colocation Patterns

Participation ratio pr(C, f): probability that C is observed in a neighbor-set wherever feature f is observed

$$pr(C, f) = \frac{|\{r | (r \in S) \land (r. f = f) \land (r \text{ is in a row instance of } C)\}|}{\{r | (r \in S) \land (r. f = f)\}|}$$

- \square Ex. $pr({A,B,C,D}, A) = 2/5, ..., <math>pr({A,B,C,D}, D) = 2/2 = 1$
- Monotonicity of participation ratio
 - Let C, C' be two co-location patterns such that $C' \subset C$
 - □ Then, for each feature $f \in C'$, $pr(C', f) \ge pr(C, f)$

- \Box Ex: Let min-feature-support = σ, min-pr = ρ
 - □ Start with a set of single feature pattern $\{p_1\}$ with support $\geq \sigma$
 - \Box Grow to size k, in Apriori way (i.e., stop growing if the pattern is infrequent)
 - □ For each such p, mine its super-pattern P, s.t., $pr(P, p) \ge \rho$, in Apriori way

Partition-Based Trajectory Pattern Mining

- □ Partition-Based Trajectory Pattern Mining (e.g., Mining T-Patterns) [1]:
- ☐ First partition the space into equal-width grids and obtain Regions-of-Interests (Rols)
- ☐ Then transform each input trajectory into a time-annotated symbolic sequence
- Use constraint-based sequential pattern mining to find trajectory patterns

Railway Station $-15min \rightarrow$ Castle Square $-2h15min \rightarrow$ Museum

Railway Station $-10min \rightarrow$ Middle Bridge $-10min \rightarrow$ Campus

[1] F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory Pattern Mining, KDD'07

Detecting Moving Object Clusters

- ☐ Flock and convoy: Both require *k* consecutive time stamps
 - □ **Flock:** At least *m* entities are within a *circular* region of *radius r* and move in the same direction
 - □ Convoy: Density-based clustering at each timestamp; no need to be a rigid circle
- Swarm: Moving objects may not be close to each other for all the consecutive time stamps
 - □ Efficient pattern mining algorithm can be derived for mining such swarm patterns

Z. Li, et al.: Swarm: Mining Relaxed Temporal Moving Object Clusters. VLDB'10

Trajectory Clustering: A Partition-and-Group Framework

- \Box Grouping trajectories *as a whole* \Rightarrow cannot find *similar portions* of trajectories
- **Solution:** discovers common **sub**-trajectories, e.g., forecast hurricane landfall
- Two phases: partitioning and grouping
- Identify the points where the behavior (1) Partition $_{3}^{1}$ of a trajectory changes rapidly \Rightarrow characteristic points
 - Based on the minimum description length (MDL) principle

●: characteristic point - -: trajectory partition

J.-G. Lee, et al., "Trajectory Clustering: A Partitionand-Group Framework", SIGMOD'07

Mining Frequent Movement Patterns

- □ Frequent Movement Pattern: A movement sequence that frequently appears in the input trajectory database
- □ Frequent Movement Pattern vs. Frequent Sequential Pattern
 - Both aim at finding frequent subsequences from the input sequence database
 - □ For mining frequent movement patterns, similar places may need to be grouped to collectively form frequent subsequences

An example trajectory

An example movement pattern

Mining Semantics-Rich Movement Patterns

- □ **Semantics-rich movement pattern**: In addition to knowing how people move from one region to another, we also want to understand the functions of the regions
- □ A two-step top-down mining approach:
 - □ Step 1: Find a set of coarse patterns that reflect people's semantics-level transitions (e.g., office \rightarrow restaurant, home \rightarrow gym)
 - Step 2: Split each coarse pattern into several fine-grained ones by grouping similar movement snippets

C. Zhang et al., Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories, VLDB 2014

Pattern Discovery in Sparse Movement Data: Finding Good Reference Points

- □ Pattern discovery in sparse data (e.g., find bird flying patterns)
 - Periodicity shows up in some reference "spots" (or "cluster centers")
 - Reference spots can be detected using density-based method
 - Periods are detected for each reference spot using Fourier Transform and auto-correlation

Example: Mining Periodic Patterns with Sparse Data

3-yr Bird migration data: very sparse

- Detecting periods: Cluster data to find reference "points" and then detect multiple interleaved periods by Fourier Transform and auto-correlation
- Summarizing periodic patterns: By clustering and pattern discovery

Z. Li, et al.: Mining Periodic Behaviors for Moving Objects. KDD'10

Periodicity Detection in Sparse Data

Time-related data can be scattered and sparse, e.g., phone calls at a location

- □ Projecting on the true period, it shows a highly skewed (clustered) distribution
- Effective method can be developed based on this observation

Z. Li, et al., ePeriodicity: Mining Event Periodicity from Incomplete Observations. IEEE TKDE, 2015

Summary: Mining Spatiotemporal and Trajectory Patterns

- Mining Spatial Associations
- Mining Spatial Colocation Patterns
- Mining and Aggregating Patterns over Multiple Trajectories
- Mining Semantics-Rich Movement Patterns
- Mining Periodic Movement Patterns

Recommended Readings

- F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi: Trajectory Pattern Mining. KDD'07
- Y. Huang, S. Shekhar, H. Xiong: Discovering colocation patterns from spatial data sets: A general approach. IEEE Trans. on Knowledge & Data Eng., 16(12), 2004
- Y. Huang, J. Pei, H. Xiong: Mining Co-Location Patterns with Rare Events from Spatial Data Sets. GeoInformatica 10(3): 239-260, 2006
- □ K. Koperski, J. Han: Discovery of Spatial Association Rules in Geographic Information Databases. SSD'95
- J.-G. Lee, J. Han, and K.-Y. Whang: Trajectory Clustering: A Partition-and-Group Framework, SIGMOD'07
- Z. Li, B. Ding, J. Han, R. Kays: Swarm: Mining Relaxed Temporal Moving Object Clusters. VLDB'10
- Z. Li, B. Ding, J. Han, R. Kays, P. Nye: Mining Periodic Behaviors for Moving Objects. KDD'10
- Z. Li, J. Wang and J. Han, ePeriodicity: Mining Event Periodicity from Incomplete Observations. IEEE TKDE, 27(5): 1219-1232, 2015
- C. Zhang, J. Han, L. Shou, J. Lu, and T. La Porta: Splitter: Mining Fine Grained Sequential Patterns in Semantic Trajectories. VLDB'14