KAIST ME & **NAVER Labs**

Capstone Design 2018

Team 必勝 Gyeongwon Yun, Mingyu Kim, Sojin Kim Jihun Kim Dongha Nam, Kyeongwon Park, Jeongseol Ol

Advisor:

Professor Philseung Lee | TA Sooyong Kim

Contents

01.

System Description

Detachable system with light and fast collector

02.

Specific Issues

Heat, vision, vibration, motor control, ROS, and cable reel

03,

Key features

Advantages of this system

04.

Demo Video(algorithm)

Step-by-step explanation of algorithm

05.

Final Comment

Lessons learned & great team

2-Body System: Station and SCV

Our vehicle is composed of **2 independent bodies** connected by a wire for powering: **Station and SCV**.

01.System
Description

Station and SCV (simply collecting Vehicle)_Station

Slope

O1.
System
Description

Station and SCV (simply collecting Vehicle)_SCV

O1.
System
Description

Heat_improving h(convection coefficient)

Measuring steady state temperature and analyze cooling efficiency improvement

Vision_recognizing the (real) world

Marker calibration, distortion correction

Vibration_is suspension needed?

Control motor and Communicate with ROS to get input

Motor Control_rotation speed control

Nonlinear control

ROS_integration of all systems

Data analysis, calculation, ordering, and station motor control

Cable Reel_connecting two rotating line

Spiral spring, slip ring, and 3d printing

02. Specific Issues

Heat

Improving h(convection coefficient)

Major Heat source: Converter

Max. temp. = 48.3°C

Heat

Improving h(convection coefficient)

Heat analysis: change in h

$$\begin{split} \frac{T_b = 48.3 \text{°C}}{Nu_L} &= 0.54 Ra_L^{0.25} = 3.706\\ &= \frac{\overline{h}L}{k} \end{split}$$

$$\therefore \overline{h} = 9.99 \, W/m^2 K, \ q = 0.448 \, W$$

$$\frac{Re = 63018.87}{Nu} = 0.664Re^{0.5}Pr^{0.33} = 148.5$$
$$= \frac{\overline{h}L}{k}$$
$$\overline{h} = 97.6 W/m^2 K$$

u = 14.4 m/s

$$\eta(fin\ efficiency) = 0.9537$$

 $\therefore T_b = 25.83^{\circ}\text{C}, T_{actual} = 27.1^{\circ}\text{C}$

Recognizing the (real) world

How do we see the world?

Image from camera

Detecting balls (except red)

Convert into position data

Recognizing the (real) world

Distortion factors

Distortion by height of marker

Distortion in angle and distance

Recognizing the (real) world

Calibrating distortion by height of marker

Recognizing the (real) world

Calibrating distortion in angle and distance

Unit vector = 1 SCV

: vector between two markers(after calibration)

: contains information about distortion in angle and distance

Distance needed to initiate 'eating' = 1.5 SCV

Vibration

Is vibration reduction system needed?

Tracking yellow ball during straight movement

Conclusion: vibration of markers is not significant!

Motor Control

Nonlinear control

Time delay caused by communication and computational speed

Time delay = Δt Error = $\Delta t * v(translational)$, $\Delta t * \omega(angular)$

Motor Control

Nonlinear control

Gradual speed change as vehicle reaches target angle or position

$$\omega = 0.125 + 3 * \left\{ \frac{\min(30, \Delta\theta)}{30} \right\}^{2}$$

$$v = 0.05 + 0.2 * \left\{ \frac{\min(80, \Delta x)}{80} \right\}^{2}$$
Minimum value

Control range

ROS System integration

ROS' job

Get vision data

Control station

Mapping balls

Path planning

Execute algorithm

Order to LabView

Software

Hardware

Cable Reel

Connecting two rotating line

Slip ring + spiral spring + 3D printing = rotating cable reel

"Clever system"

Big Picture

we see entire map from high position

Sorting & Planning

sort balls from closest and plan path, re-checking

Glue Red Ball

tape sticks red ball on the body

03. Key Features

View from camera

"fast and accurate"

Lighter, faster!

SCV(1.5kg) < battery(1.6kg)

Markers

using markers to detect position and orientation of SCV

03. Key Features

No Picking Method

dribble the balls to the basket

Team 必勝 | Final Presentation | Date: June 1st, 2018 | @ ME Building

04. Demo Video

Trial records (yesterday)

trials	1	2	3	4	5	6	7	8	9	10	average
Time(s)	52	fail	56	59	57	48	56	56	42	56	53.6

Special Thanks to

Professor Philseung Lee | TA Sooyoung Kim | Technician Sangeun Yeo

Great Team

Gyeongwon Yun | Mingyu Kim | Sojin Kim | Jihun Kim Dongha Nam | Kyeongwon Park | Jeongseok Oh

05. Final Comment

Thank you! Q&A

