Blackwell-Monotone Information Costs

Xiaoyu Cheng

Florida State University

Yonggyun (YG) Kim

Florida State University

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - More informative in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs
 - However, conditions for Blackwell monotonicity remain underexplored

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - More informative in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs
 - However, conditions for Blackwell monotonicity remain underexplored

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - More informative in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs
 - However, conditions for Blackwell monotonicity remain underexplored

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - ullet More informative in Blackwell's order \Rightarrow higher cost
 - Minimum requirement for plausible information costs
 - However, conditions for Blackwell monotonicity remain underexplored

- Consider consumers seeking to acquire information about their COVID-19 status
- Two tests are available in the competitive market:

		sig	nal			signal		
		n	p			n	p	
stata	_	80%	20%		_	60%	40%	
state	+	80% 20%	80%	state	+	60% 15%	85%	
		Test A	(\$10)			Test B (\$12)		

A producer can make an arbitrage by replicating test B using test A
 When n is realized, toss a coin twice and replace it with n if both are he

- Consider consumers seeking to acquire information about their COVID-19 status
- Two tests are available in the competitive market:

signal					signal		
		n	p			n	p
state	_	80%	20%	state	_	60%	40%
	+	80% 20%	80%		+	15%	85%
		Test A	(\$10)			Test B	3 (\$12)

- $\bullet\,$ A producer can make an arbitrage by replicating test B using test A
 - When n is realized, toss a coin twice and replace it with p if both are heads

- Consider consumers seeking to acquire information about their COVID-19 status
- Two tests are available in the competitive market:

		signal					signal		
		n _{oth.}	n_{HH}	p			n	p	
ctata	_	60%	20%	20%	state	_	60%	40%	
state	+	60% 15%	5%	80%	State	+	60% 15%	85%	
		Test A	(\$10)				Test B	(\$12)	

- $\bullet\,$ A producer can make an arbitrage by replicating test B using test A
 - ullet When n is realized, toss a coin twice and replace it with p if both are heads

- Consider consumers seeking to acquire information about their COVID-19 status
- Two tests are available in the competitive market:

		15% 5% 80%						signal		
		n _{oth.}	р	р				n	р	
ctoto	_	60%	20%	20%	=	ctata	_	60%	40%	
state	+	15%	5%	80%		state	+	15%	85%	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Test B	s (\$12)				

- $\bullet\,$ A producer can make an arbitrage by replicating test B using test A
 - ullet When n is realized, toss a coin twice and replace it with p if both are heads

Blackwell's Theorem

• A is more informative than $B \Leftrightarrow B$ is a garbling of A

Blackwell Monotonicity

ullet A should be more costly than B whenever A is Blackwell more informative than B

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

Blackwell's Theorem

• A is more informative than $B \Leftrightarrow B$ is a garbling of A

Blackwell Monotonicity

ullet A should be more costly than B whenever A is Blackwell more informative than B

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

Blackwell's Theorem

• A is more informative than $B \Leftrightarrow B$ is a garbling of A

Blackwell Monotonicity

ullet A should be more costly than B whenever A is Blackwell more informative than B

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

Preliminaries

Experiments

- $\Omega = \{\omega_1, \dots, \omega_n\}$: a finite set of states
- $S = \{s_1, \dots, s_m\}$: a finite set of signals
- A statistical experiment $f: \Omega \to \Delta(\mathcal{S})$ can be represented by an $n \times m$ matrix:

$$f = \begin{bmatrix} f_1^1 & \cdots & f_1^m \\ \vdots & \ddots & \vdots \\ f_n^1 & \cdots & f_n^m \end{bmatrix},$$

where $f_i^j = \Pr(s_j | \omega_i)$, thus, $f_i^j \geq 0$ and $\sum_{j=1}^m f_i^j = 1$

• $\mathcal{E}_m \subset \mathbb{R}^{n \times m}$: the space of all experiments with m possible signals

- $f \succeq_B g$: f is Blackwell more informative than g iff g is a garbling of f: \exists a stochastic matrix M s.t. g = f M
- Examples of garbling under binary signal
 - 1. **Signal Replacement**: for some $\epsilon > 0$,

$$M = \begin{bmatrix} 1 - \epsilon & \epsilon \\ 0 & 1 \end{bmatrix}$$

meaning that s_1 is replaced with s_2 with probability ϵ

Permutation:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

meaning that signals are relabeled

 \circ $f \simeq_B f P$: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g iff g is a garbling of f: \exists a stochastic matrix M s.t. g = f M
- Examples of garbling under binary signal
 - 1. **Signal Replacement**: for some $\epsilon > 0$,

$$M = egin{bmatrix} 1 - \epsilon & \epsilon \ 0 & 1 \end{bmatrix}$$

meaning that s_1 is replaced with s_2 with probability ϵ

2. Permutation:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

meaning that signals are relabeled

• $f \simeq_B f P$: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g iff g is a garbling of f: \exists a stochastic matrix M s.t. g = f M
- Examples of garbling under binary signal
 - 1. **Signal Replacement**: for some $\epsilon > 0$,

$$M = egin{bmatrix} 1 - \epsilon & \epsilon \ 0 & 1 \end{bmatrix}$$

meaning that s_1 is replaced with s_2 with probability ϵ

2. **Permutation**:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

meaning that signals are relabeled

• $f \simeq_B f$ P: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g iff g is a garbling of f: \exists a stochastic matrix M s.t. g = f M
- Examples of garbling under binary signal
 - 1. **Signal Replacement**: for some $\epsilon > 0$,

$$M = egin{bmatrix} 1 - \epsilon & \epsilon \ 0 & 1 \end{bmatrix}$$

meaning that s_1 is replaced with s_2 with probability ϵ

2. **Permutation**:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

meaning that signals are relabeled

• $f \simeq_B f P$: relabeling signals does not change the informativeness

Information Costs and Blackwell Monotonicity

Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all absolutely continuous information cost functions defined over \mathcal{E}_m
- Absolute continuity ensures that a derivative exists a.e. and is integrable
- ullet In the talk, assume that C is differentiable and the gradient exists

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., C(f) = C(f|P) for any permutation matrix P

Information Costs and Blackwell Monotonicity

Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all absolutely continuous information cost functions defined over \mathcal{E}_m
- Absolute continuity ensures that a derivative exists a.e. and is integrable
- ullet In the talk, assume that C is differentiable and the gradient exists

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., C(f) = C(f|P) for any permutation matrix P

Information Costs and Blackwell Monotonicity

• Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all absolutely continuous information cost functions defined over \mathcal{E}_m
- Absolute continuity ensures that a derivative exists a.e. and is integrable
- ullet In the talk, assume that C is differentiable and the gradient exists

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

• Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., C(f) = C(f|P) for any permutation matrix P

- Focus on the case where n = m = 2
- Any experiment can be represented by $f \equiv (f_L, f_H)^{\mathsf{T}} \in [0, 1]^2$:

$$\begin{bmatrix} \mathbf{1} - f, f \end{bmatrix} = \begin{bmatrix} s_L & s_H \\ \omega_L & 1 - f_L & f_L \\ \omega_H & 1 - f_H & f_H \end{bmatrix}$$

- 1 f is a permutation of f
- When $f_L = f_H$, it is completely uninformative

- Focus on the case where n = m = 2
- Any experiment can be represented by $f \equiv (f_L, f_H)^{\mathsf{T}} \in [0, 1]^2$:

$$\begin{bmatrix} \mathbf{1} - f, f \end{bmatrix} = \begin{bmatrix} s_L & s_H \\ \omega_L & 1 - f_L & f_L \\ \omega_H & 1 - f_H & f_H \end{bmatrix}$$

- 1 f is a permutation of f
- When $f_L = f_H$, it is completely uninformative

- Focus on the case where n = m = 2
- Any experiment can be represented by $f \equiv (f_L, f_H)^{\mathsf{T}} \in [0, 1]^2$:

$$\begin{bmatrix} \mathbf{1} - f, f \end{bmatrix} = \begin{bmatrix} s_L & s_H \\ \omega_L & 1 - f_L & f_L \\ \omega_H & 1 - f_H & f_H \end{bmatrix}$$

- 1 f is a permutation of f
- When $f_L = f_H$, it is completely uninformative

• Recall that $f \succeq_B g$ iff

$$[1-g,g] = [1-f,f] M$$

for some stochastic matrix M

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \quad M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

• Recall that $f \succeq_B g$ iff

$$[1-g,g] = [1-f,f] M$$

for some stochastic matrix M

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \quad M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

• Recall that $f \succeq_B g$ iff

$$[1-g,g] = [1-f,f] M$$

for some stochastic matrix M

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ $M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

• Recall that $f \succeq_B g$ iff

$$[1-g,g] = [1-f,f] M$$

for some stochastic matrix M

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ $M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

• Recall that $f \succeq_B g$ iff

$$[1-g,g] = [1-f,f] M$$

for some stochastic matrix M

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ $M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

Necessary Conditions for Blackwell Monotonicity

When an information cost C is Blackwell monotone,

Necessary Conditions for Blackwell Monotonicity

When an information cost C is Blackwell monotone,

Theorem for Binary Experiments

Theorem 1

 $C \in \mathcal{C}_2$ is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_2$,

$$\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle.$$
 (1)

• This theorem holds for the cases with more than two states, but the binary signal assumption is crucial.

Proof for Sufficiency

For any $f \succeq_B g$, we can find a path from f to g (or the permutation of it) along which Blackwell informativeness decreases

Finite Experiments: more than two

signals

Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

- Permutation invariance is still necessary
- For any pair (i, j), the following garbling worsens the informativeness:

$$\begin{array}{ccc}
s_i & \xrightarrow{1-\epsilon} s'_i \\
s_j & \xrightarrow{1} s'_j
\end{array}$$

• This gives us $\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle \leq 0$, where

$$\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle = \sum_{s=1}^n \frac{\partial C}{\partial f_s^j} \cdot f_s^i - \sum_{s=1}^n \frac{\partial C}{\partial f_s^i} \cdot f_s^i$$

Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

- Permutation invariance is still necessary
- For any pair (i, j), the following garbling worsens the informativeness:

$$\begin{array}{ccc} s_i & \xrightarrow{1-\epsilon} s'_i \\ s_j & \xrightarrow{1} s'_j \end{array}$$

• This gives us $\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle \leq 0$, where

$$\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle = \sum_{s=1}^n \frac{\partial C}{\partial f_s^j} \cdot f_s^i - \sum_{s=1}^n \frac{\partial C}{\partial f_s^i} \cdot f_s^i$$

- For binary experiments, sufficiency was established by finding a path between two experiments along which informativeness decreases
- However, when $m \ge 3$, there may not exist such path

► Illustrations

14/20

• To overcome this issue, we impose quasiconvexity on *C*:

$$C(\lambda f + (1 - \lambda)g) \le \max\{C(f), C(g)\}$$

With quasiconvexity, the first-order condition serves as a sufficient condition for Blackwell monotonicity

- Quasiconvexity is not a necessary condition for Blackwell Monotonicity
- We found a weaker (but less standard) version of Quasiconvexity serving as a necessary condition for Blackwell monotonicity

- For binary experiments, sufficiency was established by finding a path between two experiments along which informativeness decreases
- However, when $m \ge 3$, there may not exist such path

14/20

• To overcome this issue, we impose quasiconvexity on *C*:

$$C(\lambda f + (1 - \lambda)g) \le \max\{C(f), C(g)\}$$

With quasiconvexity, the first-order condition serves as a sufficient condition for Blackwell monotonicity

- Quasiconvexity is not a necessary condition for Blackwell Monotonicity
- We found a weaker (but less standard) version of Quasiconvexity serving as a necessary condition for Blackwell monotonicity

- For binary experiments, sufficiency was established by finding a path between two experiments along which informativeness decreases
- However, when $m \ge 3$, there may not exist such path

14/20

• To overcome this issue, we impose quasiconvexity on *C*:

$$C(\lambda f + (1 - \lambda)g) \le \max\{C(f), C(g)\}.$$

With quasiconvexity, the first-order condition serves as a sufficient condition for Blackwell monotonicity

- Quasiconvexity is not a necessary condition for Blackwell Monotonicity
- We found a weaker (but less standard) version of Quasiconvexity serving as a necessary condition for Blackwell monotonicity

- For binary experiments, sufficiency was established by finding a path between two experiments along which informativeness decreases
- However, when $m \ge 3$, there may not exist such path

• To overcome this issue, we impose quasiconvexity on C:

$$C(\lambda f + (1 - \lambda)g) \le \max\{C(f), C(g)\}.$$

With quasiconvexity, the first-order condition serves as a sufficient condition for Blackwell monotonicity

- Quasiconvexity is not a necessary condition for Blackwell Monotonicity
- We found a weaker (but less standard) version of Quasiconvexity serving as a necessary condition for Blackwell monotonicity

Theorem for Finite Experiments

Theorem 2

Suppose that $C \in \mathcal{C}_m$ is absolutely continuous and quasiconvex. Then, C is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_m$ and $i \neq j$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \le 0.$$
 (2)

- $S_B(f)$: the set of experiments that are less Blackwell informative than f
- Two conditions ensure that extreme points of $S_B(f)$ are not more costly than f
- Then, we can apply quasiconvexity

Theorem for Finite Experiments

Theorem 2

Suppose that $C \in \mathcal{C}_m$ is absolutely continuous and quasiconvex. Then, C is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_m$ and $i \neq j$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \le 0.$$
 (2)

- $S_B(f)$: the set of experiments that are less Blackwell informative than f
- Two conditions ensure that extreme points of $S_B(f)$ are not more costly than f
- Then, we can apply quasiconvexity

Likelihood Separable Costs

Likelihood Separable Costs

Likelihood Separable Costs

C is *likelihood separable* if there exist a constant a and an absolutely continuous function $\psi: \mathbb{R}^n_+ \to \mathbb{R}_+$ such that, for all m and $f \in \mathcal{E}_m$,

$$C(f) = \sum_{j=1}^{m} \psi(f^j) + a.$$

Let C^{LS} be the class of likelihood separable costs

Theorem 3

When $C \in \mathcal{C}^{LS}$, C is Blackwell monotone if and only if ψ is sublinear

- 1. positive homogeneity: $\psi(\alpha h) = \alpha \psi(h)$
- 2. subadditivity: $\psi(k) + \psi(l) \ge \psi(k+l)$

Likelihood Separable Costs

Likelihood Separable Costs

C is *likelihood separable* if there exist a constant a and an absolutely continuous function $\psi: \mathbb{R}^n_+ \to \mathbb{R}_+$ such that, for all m and $f \in \mathcal{E}_m$,

$$C(f) = \sum_{j=1}^{m} \psi(f^j) + a.$$

Let C^{LS} be the class of likelihood separable costs

Theorem 3

When $C \in \mathcal{C}^{\mathit{LS}}$, C is Blackwell monotone if and only if ψ is sublinear:

- 1. positive homogeneity: $\psi(\alpha h) = \alpha \psi(h)$;
- 2. subadditivity: $\psi(k) + \psi(l) \ge \psi(k+l)$

GSLS Costs

Groundedness

C is grounded if it assigns zero cost to uninformative experiments.

Let C^G be the class of grounded costs.

GSLS costs

C is called grounded sublinear likelihood separable (GSLS) if there exists a sublinear and absolutely continuous function ψ such that

$$C(f) = \sum_{j=1}^{m} \psi(f^{j}) - \psi(\mathbf{1}).$$

Then,

$$\mathcal{C}^{GSLS} = \mathcal{C}^{LS} \cap \mathcal{C}^G \cap \mathcal{C}^{BM}$$

GSLS Costs

Groundedness

C is grounded if it assigns zero cost to uninformative experiments. Let C^G be the class of grounded costs.

GSLS costs

C is called grounded sublinear likelihood separable (GSLS) if there exists a sublinear and absolutely continuous function ψ such that

$$C(f) = \sum_{j=1}^{m} \psi(f^j) - \psi(\mathbf{1}).$$

Then,

$$\mathcal{C}^{GSLS} = \mathcal{C}^{LS} \cap \mathcal{C}^{G} \cap \mathcal{C}^{BM}$$

Examples: GSLS Costs

1. Supnorm Costs

$$C(f) = \sum_{i=1}^{m} \max_{i} f_i^j - 1,$$

2. Absolute-Linear Costs

$$C(f) = \sum_{j=1}^{m} |\langle a, f^j \rangle| - |\langle a, \mathbf{1} \rangle| = \sum_{j=1}^{m} \left| \sum_{i=1}^{n} a_i f_i^j \right| - \left| \sum_{i=1}^{n} a_i \right|.$$

3. Linear ϕ -divergence Costs (including LLR costs of Pomatto, Strack, Tamuz (2023))

$$C(f) = \sum_{j=1}^{m} \sum_{i,i'} \beta_{ii'} f_{i'}^{j} \phi_{ii'} \left(\frac{f_{i}^{j}}{f_{i'}^{j}} \right) = \sum_{i,i'} \beta_{ii'} \sum_{j=1}^{m} f_{i'}^{j} \phi_{ii'} \left(\frac{f_{i}^{j}}{f_{i'}^{j}} \right),$$

where $\phi_{ii'}:[0,\infty]\to\mathbb{R}\cup\{+\infty\}$ is a convex function with $\phi_{ii'}(1)=0$ and $\beta_{ii'}\geq 0$

(3)

GSLS Costs and Posterior Separability

Posterior Separability

C has a posterior separable (PS) representation at a prior belief $\mu \in \Delta(\Omega)$ if there exists a concave and absolutely continuous function $H:\Delta(\Omega) \to \mathbb{R}$ such that

$$C(f) = H(\mu) - \sum_{j=1}^m \tau_\mu(f^j) \cdot H(q_\mu(f^j))$$

where $q_{\mu}(f^{j})$ is the posterior belief upon receiving s_{j} and $\tau_{\mu}(f^{j})$ is the probability of receiving s_{j} .

Let C_{μ}^{PS} denote the class of cost functions that have PS representations at μ .

Proposition

For any full support prior $\mu \in \Delta(\Omega)$, $\mathcal{C}^{GSLS} = \mathcal{C}^{PS}_{\mu}$

GSLS Costs and Posterior Separability

Posterior Separability

C has a posterior separable (PS) representation at a prior belief $\mu \in \Delta(\Omega)$ if there exists a concave and absolutely continuous function $H:\Delta(\Omega) \to \mathbb{R}$ such that

$$C(f) = H(\mu) - \sum_{j=1}^m au_\mu(f^j) \cdot H(q_\mu(f^j))$$

where $q_{\mu}(f^{j})$ is the posterior belief upon receiving s_{j} and $\tau_{\mu}(f^{j})$ is the probability of receiving s_{j} .

Let C_{μ}^{PS} denote the class of cost functions that have PS representations at μ .

Proposition

For any full support prior $\mu \in \Delta(\Omega)$, $C^{GSLS} = C_{\mu}^{PS}$.

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under likelihood separability, we show that the sublinearity of the component function is equivalent to Blackwell Monotonicity.
- Applications: we apply our results to extend
 - 1. Costly Persuasion (Gentzkow, Kamenica, 2014)
 - 2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024)
- Future Research: Lehmann-Monotone Information Costs

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under likelihood separability, we show that the sublinearity of the component function is equivalent to Blackwell Monotonicity.
- Applications: we apply our results to extend
 - 1. Costly Persuasion (Gentzkow, Kamenica, 2014)

► Costly Persuasion

- 2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024)
- Future Research: Lehmann-Monotone Information Costs

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under likelihood separability, we show that the sublinearity of the component function is equivalent to Blackwell Monotonicity.
- Applications: we apply our results to extend
 - 1. Costly Persuasion (Gentzkow, Kamenica, 2014)

▶ Costly Persuasion

- 2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024)
- Future Research: Lehmann-Monotone Information Costs

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under likelihood separability, we show that the sublinearity of the component function is equivalent to Blackwell Monotonicity.
- Applications: we apply our results to extend
 - 1. Costly Persuasion (Gentzkow, Kamenica, 2014)

▶ Costly Persuasion

- 2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024)
- Future Research: Lehmann-Monotone Information Costs

▶ Bargaining

Thank You!

Related Literature

Posterior-based information costs

- Entropy cost: Sims [2003]; Matějka, Mckay [2015]
- Decision theory: Caplin, Dean [2015]; Caplin, Dean, Leahy [2022]; Chambers, Liu, Rehbeck [2020]; Denti [2022]
- Applications: Ravid [2020]; Zhong [2022]; Gentzkow, Kamenica [2014]

• Experiment-based information costs

- LLR cost: Pomatto, Strack, Tamuz [2023];
- Applications: Denti, Marinacci, Rustichini [2022]; Ramos-Mercado [2023]

Quiz

Which of the followings (defined over $f_H > f_L$) are Blackwell-monotone information cost functions?

1.
$$C(f_L, f_H) = \frac{f_H(1 - f_H)}{f_L(1 - f_L)} - 1$$

2.
$$C(f_L, f_H) = \frac{f_H}{f_L} + \frac{1 - f_L}{1 - f_H} - 2$$

3.
$$C(f_L, f_H) = (f_H - f_L)^2$$

4.
$$C(f_L, f_H) = f_H - 2f_L$$

 $f \succeq_B g$ is equivalent to:

1. AB steeper than A'B:

$$\alpha \equiv \frac{f_H}{f_L} \ge \frac{g_H}{g_L} \equiv \alpha'$$

 α : the likelihood ratio of receiving s_H

2. AD shallower than A'D:

$$\beta \equiv \frac{1 - f_L}{1 - f_H} \ge \frac{1 - g_L}{1 - g_H} \equiv \beta'$$

 β : the inverse of likelihood ratio of receiving s_L

ullet C is Blackwell monotone iff it is increasing in lpha and eta after reparametrization

 $f \succeq_B g$ is equivalent to:

1. AB steeper than A'B:

$$\alpha \equiv \frac{f_H}{f_L} \ge \frac{g_H}{g_L} \equiv \alpha'$$

 α : the likelihood ratio of receiving s_H

2. AD shallower than A'D:

$$\beta \equiv \frac{1 - f_L}{1 - f_H} \ge \frac{1 - g_L}{1 - g_H} \equiv \beta'$$

 β : the inverse of likelihood ratio of receiving s_L

 \bullet C is Blackwell monotone iff it is increasing in α and β after reparametrization

1.
$$C(f_L, f_H) = \frac{f_H(1 - f_H)}{f_L(1 - f_L)} - 1$$
 with $1 > f_H > f_L > 0$

$$\tilde{C}(\alpha, \beta) = \frac{\alpha}{\beta} - 1$$

• \tilde{C} is increasing in α but not in β , thus, \tilde{C} is not Blackwell monotone.

2.
$$C(f_L, f_H) = \frac{f_H}{f_L} + \frac{1 - f_L}{1 - f_H} - 2$$
 with $1 > f_H > f_L > 0$

$$\tilde{C}(\alpha,\beta) = \alpha + \beta - 2$$

• \tilde{C} is increasing in both α and β , thus, \tilde{C} is **Blackwell monotone**.

1.
$$C(f_L, f_H) = \frac{f_H(1 - f_H)}{f_L(1 - f_L)} - 1$$
 with $1 > f_H > f_L > 0$

$$\tilde{C}(\alpha, \beta) = \frac{\alpha}{\beta} - 1$$

• \tilde{C} is increasing in α but not in β , thus, \tilde{C} is not Blackwell monotone.

2.
$$C(f_L, f_H) = \frac{f_H}{f_L} + \frac{1 - f_L}{1 - f_H} - 2 \text{ with } 1 > f_H > f_L > 0$$

$$\tilde{C}(\alpha,\beta) = \alpha + \beta - 2$$

• \tilde{C} is increasing in both α and β , thus, \tilde{C} is **Blackwell monotone**.

$$\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle$$
 is equivalent to:

$$\underbrace{\frac{f_H}{f_L}}_{\text{the slope}} \geq \underbrace{-\frac{\partial C/\partial f_L}{\partial C/\partial f_H}}_{\text{the slope of of } \frac{1-f_H}{1-f_L}}_{\text{the slope of } \frac{1}{A\overline{D}}}$$

• Interpretation: a marignal rate of information transformation (MRIT) lies between the two likelihood ratios provided by the experiment.

$$\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle$$
 is equivalent to:

$$\underbrace{\frac{f_H}{f_L}}_{\text{the slope}} \geq \underbrace{-\frac{\partial C/\partial f_L}{\partial C/\partial f_H}}_{\text{the slope of the isocost curve}} \geq \underbrace{\frac{1-f_H}{1-f_L}}_{\text{the slope of }\overline{AD}}$$

• Interpretation: a marignal rate of information transformation (MRIT) lies between the two likelihood ratios provided by the experiment.

3.
$$C(f_L, f_H) = (f_H - f_L)^2$$
 with $1 > f_H > f_L > 0$

$$\frac{f_H}{f_L} \ge -\frac{\partial C/\partial f_L}{\partial C/\partial f_H} = \frac{1}{1 - f_L}$$

• The above inequalities hold for all $1 > f_H > f_L > 0$, thus, it is **Blackwell monotone**.

4.
$$C(f_L, f_H) = f_H - 2f_L$$
 with $1 > f_H > f_L > 0$

$$\frac{f_H}{f_L} \ge -\frac{\partial C/\partial f_L}{\partial C/\partial f_H} = 2 \ge \frac{1 - f_H}{1 - f_L}$$

3.
$$C(f_L, f_H) = (f_H - f_L)^2$$
 with $1 > f_H > f_L > 0$

$$\frac{f_H}{f_L} \ge -\frac{\partial C/\partial f_L}{\partial C/\partial f_H} = \frac{1}{1 - f_L}$$

• The above inequalities hold for all $1 > f_H > f_L > 0$, thus, it is **Blackwell monotone**.

4.
$$C(f_L, f_H) = f_H - 2f_L$$
 with $1 > f_H > f_L > 0$

$$\frac{f_H}{f_L} \ge -\frac{\partial C/\partial f_L}{\partial C/\partial f_H} = \frac{2}{1 - f_L}$$

• The above inequalities does not always hold, e.g., $f_L = .5$ and $f_H = .6$, thus, it is not Blackwell monotone.

Answer for the Quiz

Which of the followings are Blackwell-monotone information cost functions?

1.
$$C(f_L, f_H) = \frac{f_H(1 - f_H)}{f_L(1 - f_L)} - 1$$

2.
$$C(f_L, f_H) = \frac{f_H}{f_L} + \frac{1 - f_L}{1 - f_H} - 2$$

3.
$$C(f_L, f_H) = (f_H - f_L)^2$$

4.
$$C(f_L, f_H) = f_H - 2f_L$$

When $m \ge 3$, there may not exist a path along which informativeness decreases

Proposition

Let

$$g = \begin{bmatrix} 4/5 & 1/5 & 0 \\ 0 & 4/5 & 1/5 \\ 1/5 & 0 & 4/5 \end{bmatrix} \in \mathcal{E}_3.$$

If $f \succeq_B g$ and $f \in \mathcal{E}_3$, then f is a permutation of I_3 or g.

• I_3 is Blackwell more informative than g, but we cannot find a path from I_3 to g along which Blackwell informativeness decreases

When $m \ge 3$, there may not exist a path along which informativeness decreases

Proposition

Let

$$g = egin{bmatrix} 4/5 & 1/5 & 0 \ 0 & 4/5 & 1/5 \ 1/5 & 0 & 4/5 \end{bmatrix} \in \mathcal{E}_3.$$

If $f \succeq_B g$ and $f \in \mathcal{E}_3$, then f is a permutation of I_3 or g.

• I_3 is Blackwell more informative than g, but we cannot find a path from I_3 to g along which Blackwell informativeness decreases

• When n = m = 3, $f \succeq_B g$ iff the triangle generated by f^1, f^2, f^3 includes the one generated by g^1, g^2, g^3

• When n = m = 3, $f \succeq_B g$ iff the triangle generated by f^1, f^2, f^3 includes the one generated by g^1, g^2, g^3

Quasiconvexity

• Observe that there is a permutation of I_3 such that

$$g=\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot (I_3\cdot P).$$

• If we impose quasiconvexity, with permutation invariance, we have

$$C(I_3)=C(I_3\cdot P)\geq C\left(\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot I_3\cdot P\right)=C(g).$$

Quasiconvexity

• Observe that there is a permutation of I_3 such that

$$g=\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot (I_3\cdot P).$$

• If we impose quasiconvexity, with permutation invariance, we have

$$C(I_3)=C(I_3\cdot P)\geq C\left(\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot I_3\cdot P\right)=C(g).$$

Quasiconvexity

• The following information cost function for binary experiments is not quasiconvex

$$C(f_1, f_2) = \min \left\{ \frac{f_2}{f_1}, \frac{1 - f_1}{1 - f_2} \right\}$$
$$= \min \{\alpha, \beta\}$$

Garbling Quasiconvexity

Garbling Quasiconvexity

 $C \in \mathcal{C}_m$ is garbling-quasiconvex if for all $f \in \mathcal{E}_m$, any finite collection of its garblings, $\{g_1, \cdots, g_n\}$, and $\lambda_0, \cdots, \lambda_n \in [0,1]$ with $\sum_{i=0}^n \lambda_i = 1$,

$$C(\lambda_0 f + \sum_{i=1}^n \lambda_i g_i) \leq \max\{C(f), C(g_1), \cdots, C(g_n)\}$$

Theorem 4

 $C \in \mathcal{C}_m$ is Blackwell monotone if and only if (i) C is permutation invariant; (ii) C is garbling-quasiconvex; and (iii) for all $f \in \mathcal{E}_m$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \leq 0$$

Garbling Quasiconvexity

Garbling Quasiconvexity

 $C \in \mathcal{C}_m$ is garbling-quasiconvex if for all $f \in \mathcal{E}_m$, any finite collection of its garblings, $\{g_1, \cdots, g_n\}$, and $\lambda_0, \cdots, \lambda_n \in [0,1]$ with $\sum_{i=0}^n \lambda_i = 1$,

$$C(\lambda_0 f + \sum_{i=1}^n \lambda_i g_i) \leq \max\{C(f), C(g_1), \cdots, C(g_n)\}$$

Theorem 4

 $C \in \mathcal{C}_m$ is Blackwell monotone if and only if (i) C is permutation invariant; (ii) C is garbling-quasiconvex; and (iii) for all $f \in \mathcal{E}_m$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \leq 0.$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(f^k)$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(f^k)$$

[Sublinearity \Rightarrow Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \epsilon \cdot \psi(f^j)$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(\epsilon \cdot f^j) \le 0$$

[Blackwell Monotonicity ⇒ Sublinearity]

1. Positive homegenity: Note that $\psi(\mathbf{0}) = 0$. For any $k \in \mathbb{N}$,

$$[\hat{f}, \mathbf{0}, \cdots, \mathbf{0}, \mathbf{1} - \hat{f}] \sim_B [\hat{f}/k, \hat{f}/k, \cdots, \hat{f}/k, \mathbf{1} - \hat{f}] \quad \Rightarrow \quad \psi(\hat{f}) = k \ \psi(\hat{f}/k).$$

Then, for any $(k, l) \in \mathbb{N}^2$, we also have

$$\frac{1}{k} \ \psi(\hat{f}) = 1 \ \psi\left(\frac{\hat{f}}{k}\right) = \psi\left(\frac{1}{k} \ \hat{f}\right)$$

By density of \mathbb{Q} in \mathbb{R} and the continuity of ψ , $\psi(\alpha \hat{f}) = \alpha \psi(\hat{f})$ for all $\alpha \in \mathbb{R}_+$

2. **Subadditivity**:

$$[\hat{f}, \hat{g}, \mathbf{1} - \hat{f} - \hat{g}] \succeq_B [\hat{f} + \hat{g}, \mathbf{0}, \mathbf{1} - \hat{f} - \hat{g}] \quad \Rightarrow \quad \psi(\hat{f}) + \psi(\hat{g}) \ge \psi(\hat{f} + \hat{g})$$

Application I: Costly Persuasion

Gentzkow, Kamenica (2014) Revisited

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

Gentzkow, Kamenica (2014) Revisited

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

Gentzkow, Kamenica (2014) Revisited

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

Costly Persuasion with Blackwell-Monotone Information Cost

- It is without loss to consider binary experiments since R's action is binary
 - $f_2 = Pr(C|guilty)$ and $f_1 = Pr(C|innocent)$
- When the prior is p, the sender's problem is

$$\max_{0 \le f_1 \le f_2 \le 1} pf_2 + (1-p)f_1 - C(f_1, f_2)$$

subject to

$$\frac{pf_2}{pf_2 + (1-p)f_1} \ge \frac{1}{2}.$$

• When $p \ge 1/2$, the solution is $f_1 = f_2 = 1$: always convict costlessly

Costly Persuasion with Blackwell-Monotone Information Cost

- It is without loss to consider binary experiments since R's action is binary
 - $f_2 = Pr(C|guilty)$ and $f_1 = Pr(C|innocent)$
- When the prior is p, the sender's problem is

$$\max_{0 \le f_1 \le f_2 \le 1} pf_2 + (1-p)f_1 - C(f_1, f_2)$$

subject to

$$\frac{pf_2}{pf_2 + (1-p)f_1} \ge \frac{1}{2}.$$

• When $p \ge 1/2$, the solution is $f_1 = f_2 = 1$: always convict costlessly

Cost Minimization

- Suppose p < 1/2.
- Cost minimization problem under $pf_2 + (1 p)f_1 = w$:

min
$$C(f_1, f_2)$$
 s.t. $\begin{aligned} pf_2 + (1-p)f_1 &= w, \\ pf_2 &\geq (1-p)f_1 \end{aligned}$

• **Proposition**: for any Blackwell-monotone information cost function, the cost is minimized when $pf_2 = (1 - p)f_1$

Cost Minimization

- Suppose p < 1/2.
- Cost minimization problem under $pf_2 + (1 p)f_1 = w$:

min
$$C(f_1, f_2)$$
 s.t. $pf_2 + (1-p)f_1 = w,$
 $pf_2 \ge (1-p)f_1$

• **Proposition**: for any Blackwell-monotone information cost function, the cost is minimized when $pf_2 = (1 - p)f_1$

Sender's Problem

• When $pf_2 + (1-p)f_1 = w$, the cost is minimized at

$$f_2 = \frac{w}{2p}$$
 and $f_1 = \frac{w}{2(1-p)}$.

• Now the sender's problem is

$$\max_{0 \le w \le 2p} w - C\left(\frac{w}{2(1-p)}, \frac{w}{2p}\right) \tag{4}$$

• From here on, a specific cost function is needed

Sender's Problem

• When $pf_2 + (1-p)f_1 = w$, the cost is minimized at

$$f_2 = \frac{w}{2p}$$
 and $f_1 = \frac{w}{2(1-p)}$.

• Now the sender's problem is

$$\max_{0 \le w \le 2p} w - C\left(\frac{w}{2(1-p)}, \frac{w}{2p}\right) \tag{4}$$

• From here on, a specific cost function is needed

Costly Persuasion with Non-Posterior-Separable Cost

• When $C(f_1, f_2) = (f_2 - f_1)^2$, the solution for p < 1/2 is

$$f_2(p) = \min \left\{ 1, \; \frac{(1-p)^2p}{(1-2p)^2} \right\} \quad \text{and} \quad f_1(p) = \frac{p}{1-p} \cdot f_2(p).$$

 $\begin{array}{c}
\mu \\
1/2 \\
\hline
Pr(g|A) \\
\hline
\hat{p} \\
1/2
\end{array}$

Optimal Experiments Posteriors

Application II: Bargaining and

Information Acquisition

Chatterjee, Dong, Hoshino (2023)

- Consider a bargaining problem with information acquisition
 - Players: Seller and Buyer
 - State (**B**'s valuation): $v \in \{L, H\}$ with H > L > 0
 - Prior belief: $\pi \equiv \Pr(v = H) \in (0, 1)$
 - Timing of the game
 - 1. Nature draws v and S observes v
 - 2. **S** offers *p*
 - 3. B costly acquires information about v and then accepts or rejects
- Chatterjee et al. focus on specific types of information acquisition
- We extend their analysis by allowing B to choose information flexibly

Chatterjee, Dong, Hoshino (2023)

- Consider a bargaining problem with information acquisition
 - Players: Seller and Buyer
 - State (**B**'s valuation): $v \in \{L, H\}$ with H > L > 0
 - Prior belief: $\pi \equiv \Pr(v = H) \in (0,1)$
 - Timing of the game
 - 1. Nature draws v and S observes v
 - 2. **S** offers *p*
 - 3. B costly acquires information about v and then accepts or rejects
- Chatterjee et al. focus on specific types of information acquisition
- We extend their analysis by allowing B to choose information flexibly

Chatterjee, Dong, Hoshino (2023): H-focused information

B's cost: $\lambda \cdot c(f_H)$

Result 1: pooling eq'm

under H-focused signal structure, for any λ , there exists $\epsilon>0$ such that every equilibrium is a pooling equilibrium where

- 1. both types of **S** offer $p^* \in [L, L + \epsilon)$;
- 2. **B** accepts without information acquisition.

Moreover, $\epsilon \to 0$ as $\lambda \to 0$, thus, **B** extracts full surplus as $\lambda \to 0$

H-focused Information

	s_L	s _H
L	1	0
Н	$1-f_H$	f_H

Chatterjee, Dong, Hoshino (2023): L-focused information

B's cost: $\lambda \cdot c(1 - f_L)$

Result 2: almost-separating eq'm

under L-focused signal structure, for any small enough λ , there exists an equilibrium such that

- 1. type H **S** offers $p^* \approx H$;
- 2. type L **S** offers *L* with prob. 1ϵ , p^* with prob. ϵ ;
- 3. **B** acquires information and conditions her purchase decision on the signal realization

Moreover, S's payoff is close to v and B's payoff is close to zero

L-focused Information

$$\begin{array}{c|cc} & s_L & s_H \\ L & 1 - f_L & f_L \\ H & 0 & 1 \end{array}$$

Flexible Information Acquisition

• We extend to the full domain and consider $\lambda |f_2 - f_1|$ and $\lambda (f_2 - f_1)^2$

Result 1': when $C(f_1, f_2) = \lambda |f_2 - f_1|$, the unique equilibrium is the pooling equilibrium, and as $\lambda \to 0$, **B** extracts full surplus

Result 2': when $C(f_1, f_2) = \lambda (f_2 - f_1)^2$, there exists an almost-separating equilibrium, and **S**'s payoff is close to v and **B**'s payoff is close to zero

Flexible Information

	s_L	s _H
L	$1-f_L$	f_L
Н	$1-f_H$	f_H

