$\frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma(3)} \quad \text{(c)} \quad \frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma(5.5)}$ $\int_{a}^{b} \int_{a}^{(-\frac{3}{2})^{2}} \frac{16}{15} (c) \frac{16}{315} (d) - \frac{8\sqrt{\pi}}{15}$ $\int_{a}^{\infty} \int_{a}^{\infty} \int_{a}^{\infty} \int_{a}^{\infty} \int_{a}^{\infty} \int_{a}^{\infty} dy (b) \int_{0}^{\infty} 3^{-4z^{2}} dz$ $\int_{a}^{b} \int_{a}^{b} \int_{a}^{a} \int_{a}^{\infty} \int$ (c) √π (b) (4√10.3) $\int_{0}^{|x|} \int_{0}^{|x|} \frac{(v)(4\sqrt{10^{3}})}{(4)^{3}} (1-x)^{3} dx \quad (b) \int_{0}^{2} \frac{x^{2} dx}{\sqrt{2-x}}$ $\int_{0}^{|x|} \int_{0}^{|x|} \frac{(x)(4\sqrt{10^{3}})}{\sqrt{2-x}} dy.$ $\int_{|C|}^{2} \int_{0}^{a} y^{4} \sqrt{a^{2} - y^{2}} \, dy.$ (b) $\frac{64\sqrt{2}}{15}$ (c) $\frac{\pi a^6}{32}$. $\int_{0}^{|a| \frac{1}{2\theta}} \sin^{8}\theta \ d\theta \quad (b) \int_{0}^{\frac{\pi}{2}} \cos^{6}\theta \ d\theta$ $\int_{0}^{\frac{\pi}{2}} \cos^{6}\theta \ d\theta$ $\sin^4\theta \cdot \cos^5\theta \ d\theta$. $\int_{1}^{61/10} \int_{1}^{\frac{\pi}{2}} \sin^{8}\theta d\theta = \frac{4\cdot1\cdot3\cdot5\cdot7}{(2\cdot4\cdot6\cdot8)} \frac{\pi}{2} = \frac{35\pi}{64}$ $\int_{1}^{6} \int_{1}^{61/10} \int_{1}^{61/10}$ p) 晋 (c) 弱 $\int_{0}^{|D|} \sqrt{3} x \sqrt{3} = \frac{16\pi}{(9\sqrt{3})}$ $\int_{0}^{10} \frac{1}{3} x \sqrt{3} = \frac{16\pi}{(9\sqrt{3})}$ $_{\delta}$ Find $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta$. $_{\mu_{1}}\left[\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{1}{2}\pi\sqrt{2}$ (n). 1 Show that $\int_0^{\frac{\pi}{2}} (\sqrt{\tan \theta} + \sqrt{\sec \theta}) d\theta =$ $\frac{1}{2}\Gamma\left(\frac{1}{4}\right)\left\{\Gamma\left(\frac{3}{4}\right)+\frac{\sqrt{(\pi)}}{\Gamma\left(\frac{3}{4}\right)}\right\}.$ §. Prove that $\int_0^1 x^4 \left[\ln \left(\frac{1}{x} \right) \right]^3 dx = \frac{6}{625}$. 9. Show that $\left[\int_0^1 x^2 (1-x^4)^{-\frac{1}{2}} dx \right] \times$ $\left| \int_0^1 (1+x^4)^{-\frac{1}{2}} dx \right| = \frac{\pi}{4\sqrt{2}}.$ 10. Prove that $\left[\int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta\right] \left[\int_0^{\frac{\pi}{2}} (\sin\theta)^{-\frac{1}{2}} d\theta\right]$

II. Show that $\int_0^{\frac{\pi}{2}} \sin^7 \theta \cdot \cos^7 \theta \ d\theta = \frac{1}{280}$.

12 Evaluate $\int_0^a x^3 (a^3 - x^3)^5 dx$.

Act. 219.35

13. Prove that $\int_0^1 x^m (\ln x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$ where nis a positive integer and m > -1.

14. Prove that $\int_0^\infty \frac{t^2 dt}{1+t^4} = \frac{\pi}{\sqrt{2}}.$ Hint: Put $t = \sqrt{\tan \theta}$.

15. Show that the area under the normal curve

 $y = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2\sigma^2}}$ and x- axis is unity.

16. Show that $\frac{\beta(p,q)}{p+q} = \frac{\beta(p,q+1)}{q} = \frac{\beta(p+1,q)}{p}$. 17. Prove that $\beta(m,n) = \frac{1}{2} \int_0^\infty \frac{x^{m-1} + x^{m-1}}{(1+x)^{m+n}}$. Hint: Use symmetry property of β function.

18. $\int_0^\infty x^{-\frac{3}{2}} (1 - e^{-x}) dx$.

Ans. $2\sqrt{\pi}$.

19. Show Show that $\int_{b}^{a} (x-b)^{m-1} (a-x)^{n-1} dx = (a-b)^{m+n-1} \cdot \beta(m,n)$ Hint: Put $x = \frac{(t-b)}{(a-b)}$.

20. Prove that $\int_0^\infty e^{-x^4} dx = \frac{1}{4} \Gamma\left(\frac{1}{4}\right).$

21. Evaluate $\int_0^\infty \frac{x^a}{a^x} dx$.

Ans. $\frac{\Gamma(a+1)}{(\ln a)^{a+1}}$

22. Show that $\int_0^1 \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx = \beta(p,q)$ Hint: From (5) $\beta(p,q) = \int_0^\infty \frac{y^{q-1}}{(1+y)^{p+q}} dx =$ $\int_0^1 + \int_0^\infty$. Put $y = \frac{1}{z}$ in 2nd integral.

23. Show that $\int_{-1}^{1} \sqrt{\frac{1+t}{1-t}} dt = \pi$.

24. Evaluate $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$.

Ans. 0

25. Prove that $\int_0^\infty e^{-ax} \cdot x^{n-1} dx = \frac{\Gamma(n)}{a^n}$ where a and n are positive.

BESSEL'S FUNCTIONS 11.3

The boundary value problems (such as the onedimensional heat equation) with cylindrical symmetry (independent of θ) reduces to two ordinary differential equations by the separation of variables technique. One of them is the most important differential equation known as Bessel's* differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - p^{2})y = 0$$

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0$$
 (1)

Here p, which is a given constant (not necessarily an integer) is known as the order of the Bessel's equation.

[•] Friedrich Wilhelm Bessel (1784-1846) German mathemati-

11.10 - HIGHER ENGINEERING MATHEMATICS-III

Bessel's Functions (Cylindrical functions)

Bessel's functions (Cylindrical functions) are series solution of the Bessel's differential Equation (1) ob-

Assume that p is real and non-negative. Assume tained by Frobenius method. the series solution of (1) as

$$y(x) = \sum_{m=0}^{\infty} a_m x^{m+r} \qquad (a_0 \neq 0)$$
 (2)

To determine the unknown coefficients a_m and power (exponent) r, substitute (2) in (1), we get

$$\sum_{m=0}^{\infty} (m+r)(m+r-1)a_m x^{m+r} + \sum_{m=0}^{\infty} (m+r)a_m x^{m+r} + \sum_{m=0}^{\infty} (m+r)a_m x^{m+r} + \sum_{m=0}^{\infty} a_m x^{m+r+2} - p^2 \sum_{m=0}^{\infty} a_m x^{m+r} = 0$$

Now equate the sum of the coefficients of x^{s+r} to zero. For s = 0 and s = 1, the contribution comes from first, second and fourth series (not from third series because it starts with x^{r+2}). For $s \ge 2$, all the four terms contribute. Thus sum of the coefficients of powers of r, r + 1 and s + r are respectively given by

$$r(r-1)a_0 + ra_0 - p^2 a_0 = 0$$
 (s = 0) (4)

$$(r+1)ra_1 + (r+1)a_1 - p^2a_1 = 0$$
 $(s=1)$ (5)

$$(s+r)(s+r-1)a_s + (s+r)a_s + a_{s-2} - p^2 a_s = 0 \quad (s=2,3\cdots)$$
 (6)

Solving (4), we get the indicial equation

$$(r+p)(r-p) = 0 (7)$$

Solutions of (7) are $r_1 = p \ge 0$ and $r_2 = -p$.

Case 1: $r_1 = p$

With $r_1 = p$, Equation (5) becomes $(2p + 1)a_1 = 0$ so $a_1 = 0$

Rewrite (6) as

$$(s+r+p)(s+r-p)a_s + a_{s-2} = 0$$

Substituting r = p, this becomes

$$s(s+2p)a_s + a_{s-2} = 0$$
or
$$a_s = -\frac{a_{s-2}}{s(s+2p)}$$
(8)

For
$$s=3$$
, $a_3=-\frac{a_1}{3(3+2p)}$

Since $a_1 = 0$ and $p \ge 0$, then $a_3 = 0$. Thus to

$$a_3 = 0$$
, $a_5 = 0$, $a_7 = 0$ etc.

i.e., all coefficients with odd subscript s = 2m, we have

$$2m(2m+2p)a_{2m}+a_{2n-2\geq 0}$$

Solving

$$a_{2m} = -\frac{1}{2^2 m(m+p)} \cdot a_{2m-2}, \quad m = 1, 2,$$

Thus
$$a_2 = -\frac{a_0}{2^2(1+p)}$$

$$a_4 = -\frac{a_2}{2^2 \cdot 2(2+p)} = \frac{a_0}{2^4 2! (p+1)(p+1)}$$
eneral

In general

$$a_{2m} = \frac{(-1)^m a_0}{2^{2m} \cdot m!(p+1)(p+2)\cdots(p+m)}$$

$$m = 1, 2, \dots$$

ao which is arbitrary may be taken as

$$a_0 = \frac{1}{2^p \Gamma(p+1)}$$

Then
$$a_2 = -\frac{a_0}{2^2(p+1)} = -\frac{1}{2^2 \cdot 2^p(p+1)\Gamma(p+1)}$$
$$= \frac{-1}{2^{2+p}\Gamma(p+2)}$$

since $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$. Similarly,

$$a_4 = \frac{-a_2}{2^2 \cdot 2 \cdot (p+2)} = \frac{1}{2^2 \cdot 2 \cdot 2^{2+p} \cdot (p+2)\Gamma(p+2)}$$
$$= \frac{1}{2^{4+p} \cdot 2!\Gamma(p+3)}$$

In general

$$a_{2m} = \frac{(-1)^m}{2^{2m+p} \cdot m! \Gamma(p+m+1)}$$
 for $m = 1, 2$

By substituting these coefficients from (10) in (10) observing that $a_1 = a_3 = a_5 = \cdots = 0$, a particular solution of the Bessel's Equation (1) is obtained

$$J_p(x) = x^p \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+p} \cdot m! \Gamma(p+m+1)}$$
 Si

(11) is known as I (11) of order p. w iest)

Case 2: For r2 By replacing p $J-p^{(x)}=x^{-}$

Hence the gene for all x ≠ 0 is

provided p is

Linear Der Jand Ja Assume that Then from

> Since I (n+m)!

 $J_n(x)$

Book V early de

Proof

Whe func The bec

Bessel's function of the first which converges for all x (by reconverges)

the bessel a function of the first which converges for all x (by ratio $\beta^{p} = -\frac{p}{p}$ in (11), we get a second $\beta^{p} = \frac{p}{p}$ in (11) as

in (11), we get a second
$$\int_{-p}^{p} \int_{-p}^{p} \int_{-p}$$

Bessel's Equation (1)

$$\int_{a^{1/2}}^{a^{1/2}} \frac{g^{\alpha \beta c_{1} (x)}}{g^{(x)}} = c_{1} J_{\rho}(x) + c_{2} J_{-\rho}(x)$$

$$\int_{a^{1/2}}^{a^{1/2}} \frac{g^{\alpha \beta c_{1} (x)}}{g^{(x)}} = c_{1} J_{\rho}(x) + c_{2} J_{-\rho}(x)$$
(13)

netalp is not an integer.

Thus from (8)

Dis are zero.

1, 2, ...

(9)

2)

Dependence of Bessel's Functions:

where n is an integer. M (11), we get

$$\int_{M^{(1)}}^{\infty} \int_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} \cdot m! \Gamma(n+m+1)}$$

 $\int_{(n+1)} \Gamma(n+1) = n!$, we have $\Gamma(n+m+1) =$

$$\int_{a(x)}^{a(x)} = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} \cdot m! (m+n)!}$$
 (14)

we work: Prove that $J_n(x)$ and $J_{-n}(x)$ are linà dependent because

$$I_{e}(x) = (-1)^n J_n(x)$$
 for $n = 1, 2, 3, ...$

If Replacing p by -n in (11), we get

$$L_{s}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m-n}}{2^{2m-n} \cdot m! \Gamma(m-n+1)}$$
 (15)

 $|a_{n-n+1}| \le 0$ or $m \le (n-1)$, the gamma of zero or negative integers is infinite. $\frac{1}{2} = 0$ to n - 1, the coefficients in (15) tero. So m starts at n. Thus

$$L_{k}(x) = \sum_{m=n}^{\infty} \frac{(-1)^m x^{2m-n}}{2^{2m-n} \cdot m! (m-n)!}$$

$$e^{(m-n+1)} = (m-n)!$$

$$J_{-n}(x) = \sum_{s=0}^{\infty} \frac{(-1)^{s+n} x^{2(s+n)-n}}{2^{2(s+n)-n} (s+n)! s!}$$

$$= (-1)^n \sum_{s=0}^{\infty} \frac{(-1)^s x^{2s+n}}{2^{2s+n} \cdot s! (s+n)!}$$

$$J_{-n}(x) = (-1)^n J_n(x).$$

Generating Function

Generating function of a sequence of functions

$$G(u,x) = \sum_{n=-\infty}^{\infty} f_n(x) \cdot u^n$$

which generates $f_n(x)$ i.e., $f_n(x)$ appear as coeffi-

Theorem: Prove that the generating function for Bessel's functions of integral order is

$$e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)} \tag{17}$$

(16)

If $e^{\frac{1}{2}x(t-\frac{1}{t})}$ is the generating function of Bessel function then the coefficients of different powers of t in the expansion of (17) are the Bessel's functions of different integral orders. Consider

$$e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)}=e^{\frac{xt}{2}}\cdot e^{-\frac{xt}{2}}$$

Expanding in series, we get

$$= \left[1 + \frac{xt}{2} + \frac{1}{2!} \left(\frac{xt}{2}\right)^2 + \frac{1}{3!} \left(\frac{xt}{2}\right)^3 + \cdots\right] \times \left[1 - \frac{xt}{2} + \frac{1}{2!} \left(\frac{xt}{2}\right)^2 - \frac{1}{3!} \left(\frac{xt}{2}\right)^3 \cdots\right]$$
(18)

Case 1: n = 0.

The coefficient of $t^0 = 1$ in the expansion (18) is

$$1 - \left(\frac{x}{2}\right)^2 + \left(\frac{1}{2!}\right)^2 \left(\frac{x}{2}\right)^4$$

$$- \left(\frac{1}{3!}\right)^2 \left(\frac{x}{2}\right)^6 + \left(\frac{1}{4!}\right)^2 \left(\frac{x}{2}\right)^8 - \cdots$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} \left(\frac{x}{2}\right)^{2m} = J_0(x). \tag{19}$$

11.12 - HIGHER ENGINEERING MATHEMATICS

Case 2: Positive powers of $t:t^n$ The coefficient of t^n in the above expansion (18) is

$$\frac{1}{n!} \left(\frac{x}{2}\right)^n - \frac{1}{(n+1)!} \left(\frac{x}{2}\right)^{n+2} + \frac{1}{2!} \frac{1}{(n+2)!} \left(\frac{x}{2}\right)^{n+4} + \cdots \\
= \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(n+m)!} \left(\frac{x}{2}\right)^{n+2m} \\
= J_n(x). \tag{20}$$

Case 3: Negative powers of $t: t^{-n}$ The coefficient of t^{-n} in the expansion (18) is

$$\frac{(-1)^n}{n!} \left(\frac{x}{2}\right)^n + \left(\frac{x}{2}\right) \frac{(-1)^{n+1}}{(n+1)!} \left(\frac{x}{2}\right)^{n+1} + \frac{1}{2!} \left(\frac{x}{2}\right)^2 \frac{(-1)^{n+2}}{(n+2)!} \left(\frac{x}{2}\right)^{n+2} + \cdots$$

$$= (-1)^n \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(n+m)!} \left(\frac{x}{2}\right)^{n+2m} + \cdots$$

$$= (-1)^n J_n(x) = J_{-n}(x)$$
(21)

Thus from (19), (20) and (21), we have

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} J_n(x)t^n.$$

Equation Reducible to Bessel's Equation

The differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (\lambda^{2}x^{2} - p^{2})y = 0$$
 (22)

where λ is a parameter, can be reduced Bessel's differential equation of order p in t,

$$t^{2}\frac{d^{2}y}{dt^{2}} + t\frac{dy}{dt} + (t^{2} - p^{2})y = 0$$
 (23)

where
$$t = \lambda x$$
 (so $\frac{dy}{dx} = \lambda \frac{dy}{dt}$, $\frac{d^2y}{dx^2} = \lambda^2 \frac{d^2y}{dt^2}$).

For p non-integral, the general solution of Equation (23) is

$$y = c_1 J_n(t) + c_2 J_{-n}(t)$$

Thus the general solution of Equation (22) is

$$y(x) = c_1 J_n(\lambda x) + c_2 J_{-n}(\lambda x)$$

when p is non-integral.

Orthogonality of Bessel's Function

Prove that
$$\int_{0}^{a} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0, \\ \frac{\alpha^{2}}{2} J_{n+1}^{2}(\alpha x) \end{cases}$$
where α and β are roots of $J_{n}(\alpha x) \ge 0$.

Proof: Let $u = J_{n}(\alpha x)$

Proof: Let $u = J_n(\alpha x)$ and $v = J_n(\alpha x)$ tively be the solutions of the equations

wing (1) by
$$\frac{v}{x}$$
 and (2) by $\frac{v}{x}$

Multiplying (1) by $\frac{v}{x}$ and (2) by $\frac{v}{x}$ and $\frac{v}{x}$ and $\frac{v}{x}$

Multiplying (1) by
$$\frac{u}{x}$$
 and (2) by $\frac{u}{x}$ and $\frac{u}{x}$ and $\frac{u}{x}$ and $\frac{u}{x}$ or
$$\frac{d}{dx} \left\{ x(u'v - uv') \right\} = (\beta^2 - \alpha^2)_{x_{11}}$$

Integrating both sides of (3) from x = 0

$$(\beta^2 - \alpha^2) \int_0^a x u v \, dx = \left[x (u'v - uv') \right]_0^a$$

$$= a \left[u'(a)v(a) - u(a)v'(a) \right]_0^a$$

where ' denotes differentiation w.r.t., z.

Now
$$u' = \frac{d}{dx}u \approx \frac{d}{dx}J_n(\alpha x) = \alpha J_n(\alpha x)$$

Similarly,
$$v' = \frac{dv}{dx} = \frac{d}{dx} J_n(\beta x) = \beta J'_n(\beta x)$$

Substituting u' and v' from (5) and (6) in (4)

$$\int_0^a x J_n(\alpha x) J_n(\beta x) dx$$

$$= \frac{a}{\beta^2 - \alpha^2} \left[\alpha J_n'(\alpha a) J_n(\beta a) - \beta J_n(\alpha a) J_n'(\beta a) \right]$$

Case 1: Suppose α and β are two distinct α $J_n(ax) = 0$ then $J_n(a\alpha) = J_n(a\beta) = 0$. Thus for $\alpha \neq \beta$

$$\int_0^a x J_n(\alpha x) J_n(\beta x) dx = 0$$

(8) is known as the orthogonality relation for her functions.

Suppose $\beta = \alpha$; then R.H.S. of β Case 2: form. Assuming α as a root of $J_n(\alpha x) = 0$

R.H.S. of (4) as B -Im Jo x Jalax = lim (F

 $Since \int_{a}^{a} (a\alpha) = 0.$ Since $\int_{a}^{a} (a\alpha) = 0.$ with B). We get

In the recurrent

 $Put x = a\alpha,$ Since a is a t

> Thus for a \int_{0}^{a}

> > Note: F Page 11.

> > > Since . Thu

> > > > Rec Bes

Vali

$\left[\alpha J'_n(a\alpha)J_n(a\beta) - 0\right]$ L'Hospital's rule (differentiating

$$\lim_{\beta \to 0} \frac{a}{2\beta} \left[\alpha J'_n(a\alpha) \cdot a J'_n(a\beta) \right]$$

$$= \lim_{\beta \to 0} \frac{a}{2\beta} \left[J'_n(a\alpha) \right]^2$$

$$= \frac{a^2}{2} \left[J'_n(a\alpha) - J'_n(a\alpha) \right]$$

$$= \frac{a^2}{2} \left[J'_n(a\alpha) - J'_n(a\alpha) - J'_n(a\alpha) \right]$$

$$J_{n+1}(x) = \frac{n}{x} J_n(x) - J'_n(x)$$

$$J_{n+1}(x) = \frac{n}{x} J_n(x) - J'_n(x)$$

$$J_{n+1}(x) = \frac{n}{x} J_n(x) - J_n(x)$$

$$J_{n+1}(a\alpha) = \frac{n}{a\alpha} J_n(a\alpha) - J'_n(a\alpha).$$

$$J_{n+1}(a\alpha) = 0. \text{ Then}$$

$$J'_n(a\alpha) = -J_{n+1}(a\alpha)$$

$$\int_{0}^{2} J_{n}(ax) J_{n}(\beta x) dx = \frac{a^{2}}{2} \left[J'_{n}(a\alpha) \right]^{2}$$

$$= \frac{a^{2}}{2} \left[J_{n+1}(a\alpha) \right]^{2}$$
Here β

 ε Put $x = a\alpha$ in the recurrence relation VI on

$$J_{n-1}(a\alpha) + J_{n+1}(a\alpha) = \frac{2n}{a\alpha}J_n(a\alpha).$$

$$\lim_{\alpha} J_n(a\alpha) = 0, J_{n-1}(a\alpha) = -J_{n+1}(a\alpha).$$

$$\int_0^a r J_n(\alpha x) J_n(\beta x) dx = \frac{a^2}{2} \left[J_{n-1}(a\alpha) \right]^2$$

rence Relations (or identities) for we's Functions

lons

if a × A

S.r) respec.

tracting

uv = 0

(6)

get

(3)

(t)

$$\left| \left\{ \left| i^{p} J_{p}(x) \right| \right\} = x^{p} J_{p-1}(x)$$

From (11)

$$J_{p}(x) = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m+p}}{2^{2m+p} \cdot m! \Gamma(m+p+1)}$$
So
$$\frac{d}{dx} \left\{ x^{p} J_{p}(x) \right\} = \frac{d}{dx} \left\{ \sum_{n=0}^{\infty} \frac{(-1)^{m} x^{2m+2p}}{2^{2m+p}} \right\}$$

$$\frac{d}{dx} \left\{ x^p J_p(x) \right\} = \frac{d}{dx} \left\{ \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+2p}}{2^{2m+p} \cdot m! \Gamma(m+p+1)} \right\}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^m \cdot (2m+2p) x^{2m+2p-1}}{2^{2m+p} \cdot m! (m+p) \Gamma(m+p)}$$

$$= x^p \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+(p-1)}}{2^{2m+(p-1)} \cdot m! \Gamma(m+(p-1)+1)}$$

$$= x^p J_{p-1}(x)$$

II.
$$\frac{d}{dx} \left\{ x^{-p} J_p(x) \right\} = -x^{-p} J_{p+1}(x)$$
.

Proof: Multiplying (11) by x^{-p} and differentiating

$$\frac{d}{dx} \left\{ x^{-p} J_p(x) \right\} = \frac{d}{dx} \left\{ \sum_{m=0}^{\infty} \frac{(-1)^m \cdot x^{2m}}{2^{2m+p} \cdot m! \Gamma(m+p+1)} \right\}$$
$$= \sum_{m=1}^{\infty} \frac{(-1)^m \cdot 2m \cdot x^{2m-1}}{2^{2m+p} \cdot m! \Gamma(m+p+1)}$$

since for m = 0, the first term in R.H.S. is zero.

$$=\sum_{m=1}^{\infty}\frac{(-1)^m\cdot x^{2m-1}}{2^{2m+p-1}\cdot (m-1)!\Gamma(m+p+1)}$$

Put s = m - 1 or m = s + 1 then

$$=\sum_{s=0}^{\infty}\frac{(-1)^{s+1}\cdot x^{2(s+1)-1}}{2^{2(s+1)+p-1}\cdot s!\Gamma(s+1+p+1)}$$

$$=-x^{-p}\sum_{s=0}^{\infty}\frac{(-1)^{s}x^{2s+(p+1)}}{2^{2s+(p+1)}s!\Gamma((s+1)+p+1)}$$

$$=-x^{-p}\cdot J_{p+1}(x).$$

III.
$$\frac{d}{dx}\left\{J_p(x)\right\} = J_{p-1}(x) - \frac{p}{x}J_p(x)$$

or
$$xJ'_{p}(x) = xJ_{p-1}(x) - pJ_{p}(x)$$

Proof: From recurrence relation (I)

$$\frac{d}{dx}\left\{x^{p}J_{p}(x)\right\} = x^{p}J_{p-1}(x)$$

11.14 - HIGHER ENGINEERING MATHEMATIC

Performing the differentiation in the L.H.S.,

$$x^{p} \cdot \frac{d}{dx} \left\{ J_{p}(x) \right\} + px^{p-1} \cdot J_{p}(x) = x^{p} J_{p-1}(x)$$
or
$$J'_{p}(x) + \frac{p}{x} J_{p}(x) = J_{p-1}(x)$$
or
$$J'_{p}(x) = J_{p-1}(x) - \frac{p}{x} J_{p}(x)$$

IV.
$$J'_{p}(x) = \frac{p}{x}J_{p}(x) - J_{p+1}(x)$$

Proof: From recurrence relation (II)

$$\frac{d}{dx}\left\{x^{-p}J_p(x)\right\} = -x^{-p}J_{p+1}(x)$$

Performing the differentiation in the L.H.S.,

$$x^{-p} \cdot \frac{d}{dx} J_p(x) - px^{-p-1} J_p(x) = -x^{-p} J_{p+1}(x)$$
or
$$J'_p(x) - \frac{p}{x} J_p(x) = -J_{p+1}(x)$$
or
$$J'_p(x) = \frac{p}{x} J_p(x) - J_{p+1}(x)$$

- V. $J'_p(x) = \frac{1}{2} \{ J_{p-1}(x) J_{p+1}(x) \}$ is obtained by adding recurrence relations (III) and (IV)
- **VI.** $J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x} J_p(x)$ is obtained by subtracting (IV) from (III).

Elementary Bessel's Functions

Bessel's functions J_p of orders $p = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \dots$ are elementary and can be expressed in terms of sine and cosines and powers of x.

Result 1:
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot \sin x$$
.

Proof: With $p = \frac{1}{2}$, (11) reduces to

$$J_{\frac{1}{2}}(x) = \sqrt{x} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m + \frac{1}{2}} \cdot m! \Gamma\left(m + \frac{3}{2}\right)}$$

$$\Gamma\left(m + \frac{3}{2}\right) = \left(m + \frac{1}{2}\right)\left(m - \frac{1}{2}\right)\left(m - \frac{3}{2}\right)...$$

$$\times \frac{3}{2} \cdot \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$

$$= \frac{(2m+1)(2m-1)(2m-3)\cdots 3\cdot 1\cdot \sqrt{\pi}}{2m+1}$$

$$2^{2m+1} \cdot m! = 2^{m+1} \cdot 2^m \cdot m!$$

$$= 2^{m+1} \cdot 2^m (m)(m-1)$$

$$= 2^{m+1} \cdot (2m)(2m-2) \cdot \frac{1}{2}$$
1S

Thus

$$2^{2m+1} \cdot m! \cdot \Gamma\left(m + \frac{3}{2}\right)$$

$$= \left[2^{m+1} \cdot 2m \cdot (2m-2) \cdots 4 \cdot 2\right] \times \left[(2m+1)(2m-1) \cdots 3 \cdot 1\right] \cdot 2^{-|m|}$$

$$= (2m+1)! \sqrt{\pi}$$

Then

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{x}} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m-1}}{2^{2m+1} \cdot m! \Gamma(m+\frac{1}{2})}$$

$$= \sqrt{\frac{2}{x}} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m-1}}{(2m+1)! \sqrt{\pi}}$$

$$= \sqrt{\frac{2}{\pi x}} \cdot \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m-1}}{(2m+1)!}$$

$$\equiv \sqrt{\frac{2}{\pi x}} \cdot \sin x.$$

Result 2: In the recurrence relation I, put 1: then

$$\frac{d}{dx} \left\{ \sqrt{x} J_{\frac{1}{2}}(x) \right\} = \sqrt{x} J_{-\frac{1}{2}}(x)$$

$$\frac{d}{dx} \left\{ \sqrt{x} \sqrt{\frac{2}{\pi x}} \cdot \sin x \right\} = \sqrt{x} J_{-\frac{1}{2}}(x)$$

$$\sqrt{\frac{2}{\pi}} \cos x = \sqrt{x} J_{-\frac{1}{2}}(x)$$

$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

Similarly with $p = \frac{1}{2}$, we get from recomme relation VI.

Result 3:

$$J_{-\frac{1}{2}}(x) + J_{\frac{3}{2}}(x) = \frac{1}{x} J_{\frac{1}{2}}(x)$$
$$J_{\frac{3}{2}}(x) = \frac{1}{x} J_{\frac{1}{2}}(x) - J_{-\frac{1}{2}}(x)$$

Using result (1) a /3^(x)

Similarly with Result 4:

> Integrals of Integrating th

> > For p=1.

Integration

For p =

In gen m + n

deper been

Integ

for $J_{\frac{1}{2}}$ and $J_{-\frac{1}{2}}$, we get $\int_{1}^{2} (x)^{2} = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right).$

with $p = -\frac{1}{2}$ in recurrence relation VI $J_{-\frac{1}{2}}(x) = -\frac{1}{x}J_{-\frac{1}{2}}(x) - J_{\frac{1}{2}}(x)$ $\sqrt{2}$

Bessel's Functions the recurrence relation

$$\begin{cases} \int_{A^p J_{p-1}(x)}^{A^p J_{p}(x)} dx = x^p J_{p-1}(x), & \text{we get} \\ \int_{A^p J_{p-1}(x)}^{A^p J_{p-1}(x)} dx = x^p J_{p}(x) + c \end{cases}$$
 (1)

 $\int_{X} J_{0}(x) \, dx = x J_{1}(x) + c$

the recurrence relation

$$\frac{1}{|x|} \left| x^{-p} J_p(x) \right| = -x^{-p} J_{p+1}(x), \quad \text{we get}$$

$$\left| \frac{1}{|x|} \left| x^{-p} J_p(x) \right| = -x^{-p} J_p(x) + c \quad (1)$$

$$\int_{x^{-p}} J_{p+1}(x)dx = -x^{-p} J_p(x) + c$$
 (3)

$$\int_{|x|=0}^{\infty} \int J_1(x) dx = -J_0(x) + c$$
(4)

 $\lim_{n\to\infty}\int x^m J_n(x)dx$ for m and n integers with 1-1 > 0 can be integrated by parts completely if 1-1 is odd. But when m+n is even, the integral make on the residual integral $\int J_0(x)dx$ which has tabulated.

Example
$$J_p'(x) = \frac{1}{2} \left[J_{p-1}(x) - J_{p+1}(x) \right]$$

$$2J_p(x) = \int J_{p-1}(x) dx - \int J_{p+1}(x) dx$$

$$\int J_{p+1}(x) dx = \int J_{p-1}(x) dx - 2J_p(x) dx$$

Ssel's Function of Second Kind of Order IN Neumann Function

In is integral, $J_n(x)$ and $J_{-n}(x)$ are lindependent and do not constitute the solution.

Let $y = u(x) J_n(x)$ be a solution of (1). Substituting

$$x^{2}(u''J_{n} + 2u'J'_{n} + uJ''_{n}) + x(u'J_{n} + uJ'_{n})$$

$$+(x^{2} - n^{2})uJ_{n} = 0$$
or
$$u\left\{x^{2}J''_{n} + xJ'_{n} + (x^{2} - n^{2})J_{n}\right\} + x^{2}u''J_{n}$$

$$+2x^{2}u'J'_{n} + xu'J_{n} = 0$$
Since J is

Since J_n is a solution of (1), the first term is zero. Dividing throughout by $x^2u'J_n$, we get

$$\frac{u''}{u}+2\frac{J_n'}{J_n}+\frac{1}{x}=0$$

Integrating $\ln(u'J_n^2 \cdot x) = \ln B$ or $xu'J_n^2 = B$.

$$u' = \frac{B}{xJ_n^2}$$

Integrating

$$u = B \int \frac{dx}{x J_n^2} + c$$

Hence $y = AJ_n(x) + BY_n(x)$ is the complete solution of (1) where

$$Y_n(x) = J_n(x) \cdot \int \frac{dx}{x[J_n(x)]^2}$$

 $Y_n(x)$ is known as Bessel's function of second kind of order n or Neumann function.

WORKED OUT EXAMPLES

Example 1: Find $J_0(x)$ and $J_1(x)$.

Solution: Put n = 0 in

Solution:
$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+n}}{2^{2m+n} \cdot m!(m+n)!}$$
Then
$$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} = 1 - \frac{1}{1!} \left(\frac{x}{2}\right)^2 + \frac{1}{(2!)^2} \left(\frac{x}{2}\right)^4 - \left(\frac{1}{3!}\right)^2 \left(\frac{x}{2}\right)^6 + \cdots$$