

Full Disclosure Report of the LDBC Social Network Benchmark

Audit of the LDBC Social Network Benchmark's Business Intelligence Workload over TigerGraph

October 5, 2024

GENERAL TERMS

Executive Summary

This report documents an audited implementation of the TigerGraph system for the LDBC Social Network Benchmark Business Intelligence workload (LDBC SNB BI).

TigerGraph is a massively parallel processing (MPP) graph database management system, designed for handling hybrid transaction/analytical processing (HTAP) query workloads. It is a distributed platform using a native graph storage format with an edge cut partitioning strategy. Within this, each segment (partition) of the graph holds a similar amount of vertices and processes requests in parallel. TigerGraph offers GSQL, a Turing-complete query language which provides both declarative features (e.g. graph patterns) as well as imperative ones (e.g. for expressing iterative graph algorithms with loops and accumulator primitives). TigerGraph previously passed the LDBC SNB BI benchmark with a single-machine on-premise setup using the SF1 000 dataset and with a multi-machine setup on AWS using the SF100, SF1 000 and SF10 000 datasets.

Declaration of Audit Success

This report contains details of a successful execution of the LDBC SNB BI benchmark. The results have been gathered by an independent auditor who has validated the implementation of the queries and verified the system's configuration conforms to the description of the benchmark and its strict requirements.

Sponsorship and Funding Disclaimer

TigerGraph, as an LDBC member, are the Test Sponsor of this audit. The audit and its associated execution costs (compute, storage) were funded by AMD. This arrangement was deemed acceptable by both parties, the LDBC Board of Directors and the Auditor.

DocuSigned by: David Puroja C7FE4F71E2564AE... 10/7/2024 Date Mr. David Püroja (Auditor) Pometry (Audit Company) DocuSigned by: Gabor Szarnyas -- FA33C2C8CB944A5... 10/7/2024 Dr. Gábor Szárnyas Date (Leader of LDBC SNB Task Force) DocuSigned by: Mingxi Wu 10/9/2024 — D302A312743E43D... Dr. Mingxi Wu Date (Test Sponsor Representative)

Table of Contents

Table of Contents

Table of Contents

1	BENCHMARK DESCRIPTION					
2	System Description and Pricing Summary	6				
	2.1 Details of machines driving and running the workload	6				
	2.1.1 Machine overview	6				
	2.1.2 CPU details	6				
	2.1.3 Memory details	6				
	2.1.4 Disk and storage details	6				
	2.1.5 Network details	7				
	2.1.6 Machine pricing	7				
	2.1.7 System version and availability	7				
	2.1.8 Additional configuration	7				
_	Dataset Generation	c				
3	3.1 General information	8				
		8				
	3.2 Datagen configurations	8				
	3.2.2 SF1000	8				
		8				
	3.3 Data loading and data schema	8				
4	Implementation Details	10				
•	4.1 Execution mode	10				
	4.2 Use of auxiliary data structures	10				
	4.3 Benchmark execution	11				
5	Performance Results	12				
	5.1 TigerGraph performance results	12				
,	W					
6	Validation of the Results	14				
7	Supplementary Materials	15				
,		- 5				
A	CPU and Memory details	16				
В	IO PERFORMANCE	20				
C	Dataset generation instructions	21				
	DATASET GENERATION INSTRUCTIONS	∠1				
D	Data schema	23				
Ε	Machine Cost Breakdown	25				

1 BENCHMARK DESCRIPTION

The audit was conducted in compliance with the Social Network Benchmark Business Intelligence workload's specification.

Table 1.1: Benchmark Overview

Artifact	Version	URL
Specification	2.2.0	https://arxiv.org/pdf/2001.02299v7.pdf
Data generator	0.5.0	https://github.com/ldbc/ldbc_snb_datagen_spark/releases/tag/v0.5.0
Driver and implementations	1.0.3	https://github.com/ldbc/ldbc_snb_bi/releases/tag/v1.0.3

2 System Description and Pricing Summary

2.1 Details of machines driving and running the workload

2.1.1 Machine overview

The hardware used for the experiments in this report was a Dell PowerEdge R7725 Server provided by AMD. The benchmark framework and the TigerGraph DBMS were running on bare-metal, no virtualization of any kind was used.

Table 2.1: Machine Type and Location

Hardware provider	AMD
Common name of the item	PowerEdge R7725 Server
Operating system	Ubuntu 22.04.4 LTS

2.1.2 CPU details

The details below were obtained using the command cat /proc/cpuinfo (Listing A.1) and dmidecode -t processor (Listing A.3) issued from the machine instance.

Table 2.2: CPU details summary

Type	AMD® EPYC® 9355 CPU			
Total number	2			
Cores per CPU	32			
Threads per CPU core	2			
CPU clock frequency	3.545GHz			
	L1i cache: 2MiB			
Total cache size per CPU	L1d cache: 3MiB			
Total cache size per CF O	L2 cache: 64MiB			
	L3 cache: 512MiB			

2.1.3 Memory details

The total size of the memory installed is 1.5TB and the type of memory is DDR5 with frequency 6400MHz. This information was obtained using the cat /proc/meminfo (Listing A.4) and lshw -c memory command (Listing A.5).

2.1.4 Disk and storage details

The instance used three NVMe SSDs. The SSDs used by the SUT and to store the data were formatted in xfs, the SSD used for the system was formatted in ext4.

The 4KB QD1 write performance on the data disk was measured with the fio command and the output (Listing B.1) showed an average of 44 525 IOPS.

Table 2.3: Disk details summary

Root disk	Dell NVMe PM1743 RI E3.S 3.84TB
Data disk	Dell NVMe PM1743 RI E3.S 3.84TB
Root file system	ext4
Data file system	xfs

2.1.5 Network details

The benchmark run only used a single machine, therefore no network details are included.

2.1.6 Machine pricing

The system pricing summary in US dollars (USD) is included in the table below. The full breakdown of the cost for the Dell PowerEdge R7725 Server, provided by AMD, can be found in Appendix E.

Table 2.4: Pricing summary

Item	Price
Dell PowerEdge R7725 Server	191 461.32 USD
Software license (3 years)	1 097 280.00 USD
Maintenance fee (3 years)	109 728.00 USD
Total cost	1 398 469.32 USD

2.1.7 System version and availability

Table 2.5: System versions

System	Version	License				
TigerGraph	3.7.0	Enterprise Licence provided by TigerGraph				

Note, for this audit, the installation script for 3.7.0 was edited to add Ubuntu 22.04 as supported operating system. All required installation files are included in the supplemental package of this audit.

2.1.8 Additional configuration

For the benchmark, additional configuration parameters were configured for the Tigergraph instance (executed on the machine instance CLI:

- gadmin config set FileLoader.ReplicaNumber 8
- gadmin config set FileLoader.Factory.HandlerCount 8
- gadmin config set RESTPP.Factory.HandlerCount 8
- gadmin config set KafkaLoader.Factory.HandlerCount 8
- gadmin config entry GPE.BasicConfig.Env, added MVExtraCopy=0;

3 Dataset Generation

3.1 General information

The data generation settings of the LDBC Datagen are described below.

Table 3.1: Datagen settings summary

	<u> </u>
Data format for TigerGraph	composite-projected-fk layout, compressed CSV files
Scale factors for TigerGraph	10 (validation), 1000 (benchmark)
Data format for Neo4j	composite-projected-fk layout, compressed CSV files with quoted fields and without headers
Scale factors for Neo4j	10 (validation)
Data format for Umbra	composite-merged-fk layout, compressed CSV files
Scale factors for Umbra	10 (validation)

3.2 Datagen configurations

The datasets and query substitution parameters used for the benchmark and the cross-validation runs were retrieved from the following URLs. The URLs are served by LDBC's official data repository, available as a public bucket in the Cloudflare R2 object storage.¹

3.2.1 SF10

- $\bullet \hspace{0.1cm} \texttt{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/parameters-2022-10-01.zip} \\$
- $\bullet \ \text{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf10-composite-merged-fk.tar.zst}$
- https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf10-composite-projected-fk-with-quotes-without-headers.tar.zst
- $\bullet \ \ \, \text{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf10-composite-projected-fk.tar.zst2}$

3.2.2 SF1000

- $\bullet \ \text{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/parameters-2022-10-01.zip}$
- $\bullet \text{ https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf1000-composite-projected-fk.tar.zst.000} \\$
- $\bullet \ \ \, \text{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf1000-composite-projected-fk.tar.zst.001}$
- $\bullet \ \text{https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf1000-composite-projected-fk.tar.zst.002}$

To re-generate these datasets from scratch, use the instructions provided in Appendix C.

3.3 Data loading and data schema

The data preprocessing and loading times are reported below. Values were measured using the GNU Time tool (/usr/bin/time) with the -v flag, reading the *Elapsed (wall clock) time* from the output. The column **Data preprocessing time** shows how much time it took to preprocess the CSV files. For this benchmark execution, the setup time consisted of the schema setup, query installations, precompute of auxiliary data structures (see Section 4.2) and rebuilding the indices. The column **Data loading time** shows how long it took to create a graph from the input CSV files and perform the initial indexing, compilation of the queries and precomputation. The column **Total time** contains the sum of the data preprocessing and loading times.

The TigerGraph data schema is shown in Listing D.1.

The decomposition of the **Data loading times** are shown in Table 3.3.

https://www.cloudflare.com/products/r2/

Table 3.2: Data preprocessing and loading times for TigerGraph on scale factor 1000

Scale factor	Setup time (s)	Data loading time (s)	Total time (s)
1000	902	7 804	8 706

Table 3.3: Decomposition of data loading time

	Time (s)
Schema setup	39
Load data	7 804
Query install	48
Precompute	236
Rebuild	579
Total	8 706

4 IMPLEMENTATION DETAILS

4.1 Execution mode

Section 7.5.2.2 of the SNB specification defines two execution modes for the throughput batches. In disjoint read-write mode, the updates for each day of the benchmark's simulation are applied in bulk, separately from the read queries (i.e. there are no overlapping read and write operations). In concurrent read-write mode, the updates are applied concurrently with the reads. Systems opting for concurrent read-write mode are subject to the LDBC ACID test¹.

In the current audited run, TigerGraph was executed using the disjoint read-write mode. Therefore, no ACID tests were conducted.

4.2 Use of auxiliary data structures

The TigerGraph implementation precomputes the following auxiliary data structures. These are executed in each batch after the writes have been applied.

- Root Post: For each Message node (Comments and Posts), an edge to the corresponding Message thread's root Post is inserted. These derived edges are maintained incrementally, i.e. root Post edges are inserted for newly inserted Messages and removed for deleted Messages.
- Q4: For each Forum, the maximum number of members (for number of members per country) is precomputed.
- **Q6:** For each Message, the popularityScore defined in the query is precomputed.
- Q14: The weight attributed on the knows edges are precomputed based on the number of interactions between the two Person nodes.
- Q19: The weight attributes on the knows edges are precomputed based on the number of interactions between the two Person nodes.
- Q20: The weight attributes on the knows edges are precomputed based on the class Year attributes on the studyAt edges that point to the same University from the endpoint Person nodes.

The precomputations for Q14 and Q19 are performed together using different scoring methods for establishing the edge weights. We display the runtime of this operation as "precomputation for Q14 and Q19" in Table 5.3.

¹https://github.com/ldbc/ldbc_acid

4.3 Benchmark execution

The benchmark is executed using the following commands.

Note: despite what the script's name suggests, this is benchmark was executed bare-metal with the TigerGraph instance running on the server machine and not using any containerization/virtualization technology.

```
1 cd /data/ldbc_snb_bi/tigergraph
2 # change the following lines in k8s/vars.sh
3 # export NUM_NODES=1 # number of pods or nodes
4 # export SF=1000
5 # export TG_DATA_DIR=/tg/r2/sf${SF}
6 # export TG_PARAMETER=/home/tigergraph/ldbc_snb_bi/parameters-sf${SF}
 nohup ./k8s/benchmark.sh > log.benchmark 2>&1 < /dev/null &
 tail -f log.benchmark
```

Listing 4.1: Script to execute the benchmark on TigerGraph for SF1000

5 Performance Results

TigerGraph performance results 5.1

Table 5.1: Summary of results for TigerGraph on scale factor 1000

Benchmark duration	Power@SF Power@SF/\$		Throughput@SF	Throughput@SF/\$	
167.57 minutes	34 949.74	24.99	15 089.13	10.79	

Table 5.2: Detailed power test results for TigerGraph on scale factor 1000. Execution times are reported in seconds.

Query	Count	Min.	Max.	Mean	P_{50}	P_{90}	P_{95}	P_{99}
1	30	6.133	7.859	6.352	6.293	6.431	6.534	7.859
2a	30	1.418	16.430	6.331	4.157	13.382	14.211	16.430
2b	30	0.599	3.214	1.610	1.376	2.448	3.197	3.214
3	30	2.195	8.010	3.668	2.950	6.306	6.780	8.010
4	30	1.321	1.497	1.378	1.368	1.414	1.453	1.497
5	30	1.037	1.088	1.066	1.067	1.080	1.083	1.088
6	30	0.849	0.906	0.883	0.885	0.901	0.904	0.906
7	30	1.770	1.946	1.851	1.843	1.900	1.937	1.946
8a	30	1.531	2.380	1.755	1.705	1.890	2.332	2.380
8b	30	0.828	0.915	0.854	0.851	0.894	0.905	0.915
9	30	4.771	5.129	4.967	4.973	5.093	5.114	5.129
10a	30	3.847	7.661	5.500	5.603	6.378	6.498	7.661
10b	30	2.220	2.929	2.642	2.705	2.869	2.909	2.929
11	30	2.669	3.141	2.953	2.960	3.120	3.127	3.141
12	30	4.372	7.514	5.874	6.605	7.180	7.449	7.514
13	30	11.073	11.660	11.318	11.297	11.491	11.559	11.660
14a	30	6.446	7.454	7.118	7.106	7.296	7.330	7.454
14b	30	2.797	2.947	2.834	2.828	2.847	2.913	2.947
15a	30	10.843	13.339	11.566	11.550	12.015	12.083	13.339
15b	30	8.269	38.269	23.704	22.996	34.015	36.290	38.269
16a	30	3.751	9.750	5.500	5.022	6.842	7.139	9.750
16b	30	1.435	2.929	1.838	1.538	2.705	2.799	2.929
17	30	2.383	2.663	2.554	2.562	2.616	2.635	2.663
18	30	9.158	11.576	9.960	9.803	10.763	11.008	11.576
19a	30	1.956	2.897	2.586	2.692	2.870	2.878	2.897
19b	30	2.054	3.561	2.735	2.701	2.968	3.271	3.561
20a	30	0.411	2.454	1.037	0.417	2.251	2.449	2.454
20b	30	0.614	1.223	0.845	0.817	1.023	1.028	1.223

Table 5.3: Operations in the **power test** for TigerGraph on scale factor 1000. Execution times are reported in seconds. Root Post precomputations are performed for each Comment insertion and deletion operation, therefore, they are reported as part of the writes.

Operation	Time
reads	3 938.587
writes	966.927
q4precomputation	51.865
q6precomputation	53.580
q19precomputation	464.228
q20precomputation	18.111

6 Validation of the Results

The results were cross-validated against the Umbra version cbad59200 1 and Neo4j Community Edition version 4.4.13 ² reference implementation on scale factor 10. Umbra is a relational database management system developed at the Technische Universität München. The queries of the BI workload are implemented using PostgreSQL-compatible SQL queries that use the WITH RECURSIVE clause to implement graph traversal operations. Neo4j is a graph database management system where data is stored using the property graph data model and is queried using the Cypher language.

Listing 6.1: Output of the cross-validation commands

```
$ export SF=10
$ scripts/cross-validate.sh cypher tigergraph
+++ Files "cypher/output/output-sf10/results.csv" and "tigergraph/output/output-sf10/results.csv" are equal
$ export SF=10
$ scripts/cross-validate.sh umbra tigergraph
    Files "umbra/output/output-sf10/results.csv" and "tigergraph/output/output-sf10/results.csv" are equal
```

 $^{^{1}} https://github.com/ldbc/ldbc_snb_bi/tree/e84aadab0347e90da655f2dd5df8254012e63339/umbraalebase6339/umbraalebase6339/umbraaleb$

 $^{^2} https://github.com/ldbc/ldbc_snb_bi/tree/e84aadab0347e90da655f2dd5df8254012e63339/cypheres. \\$

7 Supplementary Materials

Table 7.1: Supplementary materials

File or Directory	Purpose
umbra/output/output-sf10	Output of the Umbra reference implementation
cypher/output/output-sf10	Output of the Cypher reference implementation
parameters/parameters-sf{10,1000}.tar	Query substitution parameters
scoring/calculate-scores.py	Python script to calculate the scores of the benchmark run
tigergraph/output/output-sf{10,1000}	Benchmark logs and outputs
ldbc_snb_bi-1.0.3.tar.gz	Benchmark driver and reference implementations
ldbc_snb_datagen_spark-0.5.1.tar.gz	Data generator
ldbc_snb_specification-2.2.0.pdf	Benchmark specification
tigergraph-3.7.0-offline.tar.gz	Installer of TigerGraph

 $The \ \verb|ldbc_snb_bi_tigergraph_sf1000_attachments| folder's \ directory| structure| is as follows:$

A CPU AND MEMORY DETAILS

Listing A.1: Output of the cat /proc/cpuinfo command for a single CPU core

```
processor
1
2
       vendor_id
                    : AuthenticAMD
3
       cpu family : 26
                            : 2
       model
       model name : AMD EPYC 9355 32-Core Processor
       stepping
                    : 0xb002114
       microcode
       cpu MHz
                            : 1736.316
9
       cache size : 1024 KB
10
       physical id: 0
       siblings
                    : 64
11
12
       core id
                             : 0
13
       cpu cores
                  : 32
       apicid
                             : 0
14
       initial apicid
                             : 0
15
16
       fpu
                  : yes
       fpu_exception
17
                             : yes
18
       cpuid level : 16
19
       WD
                    : ves
20
       flags
                             : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx
        fxsr\ sse\ sse2\ ht\ syscall\ nx\ mmxext\ fxsr\_opt\ pdpe1gb\ rdtscp\ lm\ constant\_tsc\ rep\_good\ amd\_lbr\_v2\ nopl
        nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic
        \verb|movbe| popcnt| aes xsave| avx f16c rdrand lahf_lm cmp_legacy| svm| extapic cr8_legacy| abm sse4a misalignsse 3
        dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_13
        cdp_13 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep
        bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni
        avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk
         avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save
        {\tt tsc\_scale} \ {\tt vmcb\_clean} \ {\tt flushbyasid} \ {\tt decodeassists} \ {\tt pausefilter} \ {\tt pfthreshold} \ {\tt avic} \ {\tt v\_vmsave\_vmload} \ {\tt vgif} \ {\tt x2avic}
        v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg
        {\tt avx512\_vpopcntdq\ la57\ rdpid\ bus\_lock\_detect\ movdiri\ movdir64b\ overflow\_recov\ succor\ smca\ fsrm}
        avx512_vp2intersect flush_l1d debug_swap
21
       bugs
                            : sysret_ss_attrs spectre_v1 spectre_v2 spec_store_bypass
                    : 7090.55
22
       bogomips
                  : 192 4K pages
23
       TLB size
24
       clflush size
                            : 64
25
       cache_alignment
                             : 64
                             : 52 bits physical, 57 bits virtual
26
       address sizes
       power management: ts ttp tm hwpstate cpb eff_freq_ro [13] [14]
27
```

Listing A.2: Output of the 1scpu command

```
Architecture:
                             x86_64
2
      CPU op-mode(s):
                             32-bit, 64-bit
      Byte Order:
                             Little Endian
3
      CPU(s):
4
      On-line CPU(s) list: 0-31
6
      Thread(s) per core: 2
7
      Core(s) per socket: 16
8
      Socket(s):
                             1
9
      NUMA node(s):
                             2
      Vendor ID:
                             AuthenticAMD
10
      CPU family:
                             25
11
12
      Model:
                             1
```

CPU and Memory details

```
AMD EPYC 7R13 Processor
13
      Model name:
14
      Stepping:
      CPU MHz:
15
                            1502.144
      BogoMIPS:
                            5299.97
16
17
      Hypervisor vendor:
                            KVM
18
      Virtualization type: full
19
      L1d cache:
                            32K
20
      L1i cache:
                            32K
      L2 cache:
                           512K
21
                            32768K
      L3 cache:
22
23
      NUMA node@ CPU(s): 0-7,16-23
24
      NUMA node1 CPU(s): 8-15,24-31
25
      Flags:
                            fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
        sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid
       extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes
        xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext
       invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap
       clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes
       vpclmulqdq rdpid
```

```
Listing A.3: Output of the dmidecode -t processor command
 1 Architecture:
                                                                                      x86_64
 2
     CPU op-mode(s):
                                                                                      32-bit, 64-bit
                                                                                      52 bits physical, 57 bits virtual
     Address sizes:
 3
                                                                                     Little Endian
    Byte Order:
    CPU(s):
                                                                                     128
 6 On-line CPU(s) list:
                                                                                     0-127
    Vendor ID:
                                                                                      AuthenticAMD
 8 Model name:
                                                                                     AMD EPYC 9355 32-Core Processor
     CPU family:
 9
                                                                                      26
10 Model:
                                                                                     2
                                                                                     2
11 Thread(s) per core:
                                                                                      32
12 Core(s) per socket:
13 Socket(s):
                                                                                      2.
14 Stepping:
15 BogoMIPS:
                                                                                      7090 55
16 Flags:
                                                                                      fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
               clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2
               nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2
               \verb|x2apic| movbe| popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse
                 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3
               cdp_13 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep
                 bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni
               avx512bw\ avx512vl\ xsaveopt\ xsavec\ xgetbv1\ xsaves\ cqm\_llc\ cqm\_occup\_llc\ cqm\_mbm\_total\ cqm\_mbm\_local\ user\_shstk
                 avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save
               tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic
               \verb|v_spec_ctr|| \verb|vnmi|| \verb|avx512|| \verb|vbmi|| \verb|avx512|| \verb|vbmi|| \verb|gfni|| \verb|vaes|| \verb|vpclmu|| \verb|qdq|| \verb|avx512|| \verb|vnni|| avx512|| \verb|vnni|| avx512|| avx
               avx512_vpopcntdq la57 rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm
               avx512_vp2intersect flush_l1d debug_swap
17 Virtualization:
                                                                                     AMD-V
18 L1d cache:
                                                                                      3 MiB (64 instances)
19 L1i cache:
                                                                                     2 MiB (64 instances)
20 L2 cache:
                                                                                      64 MiB (64 instances)
21
    L3 cache:
                                                                                     512 MiB (16 instances)
22 NUMA node(s):
23 NUMA node0 CPU(s):
                                                                                     0-31,64-95
24 NUMA node1 CPU(s):
                                                                                      32-63,96-127
```

CPU and Memory details

```
25 Vulnerability Gather data sampling:
                                        Not affected
26
  Vulnerability Itlb multihit:
                                        Not affected
27 Vulnerability L1tf:
                                        Not, affected
28 Vulnerability Mds:
                                        Not affected
29 Vulnerability Meltdown:
                                        Not affected
30 Vulnerability Mmio stale data:
                                        Not affected
31
  Vulnerability Reg file data sampling: Not affected
  Vulnerability Retbleed:
                                        Not affected
  Vulnerability Spec rstack overflow: Not affected
33
34 Vulnerability Spec store bypass:
                                        Mitigation; Speculative Store Bypass disabled via prctl
35 Vulnerability Spectre v1:
                                        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
  Vulnerability Spectre v2:
                                        Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on;
       RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
  Vulnerability Srbds:
                                        Not affected
  Vulnerability Tsx async abort:
                                        Not, affected
```

Listing A.4: Output of the cat /proc/meminfo command

```
1 MemTotal:
                 1584566504 kB
  MemFree:
                 1558998080 kB
  MemAvailable: 1569463816 kB
4 Buffers:
                  198180 kB
  Cached:
                 16787336 kB
  SwapCached:
                  0 kB
  Active:
                  5230956 kB
  Inactive:
               15929488 kB
8
  Active(anon):
                  4608216 kB
10 Inactive(anon):
                     0 kB
11
  Active(file):
                   622740 kB
  Inactive(file): 15929488 kB
12
  Unevictable:
                  3088 kB
  Mlocked:
                        0 kB
14
                 1998844 kB
  SwapTotal:
15
                  1998844 kB
16
  SwapFree:
  Zswap:
                     0 kB
  Zswapped:
                       0 kB
18
19 Dirty:
                     400 kB
20
  Writeback:
                        0 kB
  AnonPages:
                  4178928 kB
22
  Mapped:
                   647272 kB
23 Shmem:
                  434356 kB
24 KReclaimable:
                  548120 kB
25 Slab:
                  1521800 kB
26 SReclaimable: 548120 kB
  SUnreclaim:
27
                 973680 kB
28
  KernelStack:
                   65520 kB
                    57692 kB
29
  PageTables:
                        0 kB
  SecPageTables:
30
  NFS_Unstable:
31
                        0 kB
  Bounce:
                        0 kB
  WritebackTmp:
                        0 kB
33
34 CommitLimit:
                 794282096 kB
35 Committed_AS: 26829536 kB
36
  VmallocTotal: 13743895347199 kB
  VmallocUsed:
                  522408 kB
38 VmallocChunk:
                        0 kB
39 Percpu:
                   293376 kB
40 HardwareCorrupted:
                        0 kB
```

CPU and Memory details

```
41 AnonHugePages:
                         0 kB
                         0 kB
42 ShmemHugePages:
43 ShmemPmdMapped:
                         0 kB
44 FileHugePages:
                         0 kB
45 FilePmdMapped:
                         0 kB
46 Unaccepted:
                         0 kB
47 HugePages_Total:
                         0
48 HugePages_Free:
                         0
49 HugePages_Rsvd:
                         0
                         0
50 HugePages_Surp:
                      2048 kB
51 Hugepagesize:
52 Hugetlb:
                         0 kB
53 DirectMap4k:
                   231916 kB
54 DirectMap2M:
                   9529344 kB
55 DirectMap1G:
                  1600126976 kB
```

Listing A.5: Output of the 1shw -C memory command for a single memory bank

```
*-memory
2
          description: System Memory
3
          physical id: 1000
          slot: System board or motherboard
4
5
          size: 1536GiB
6
          capacity: 6TiB
7
          capabilities: ecc
          \verb|configuration: error detection=multi-bit-ecc|\\
8
9
             description: DIMM Synchronous Registered (Buffered) 6400 MHz (0.2 ns)
10
11
             product: HMCG94AHBRA277N
             vendor: Hynix Semiconductor (Hyundai Electronics)
12
13
             physical id: 0
             serial: 97C7BF7C
14
             slot: A1
15
16
             size: 64GiB
17
             width: 64 bits
             clock: 2105MHz (0.5ns)
18
```

B IO PERFORMANCE

Listing B.1: Output of the fio command

```
1 fio --rw=write --ioengine=sync --fdatasync=1 --direct=1 --directory=/tg-data/io-test-data --size=2g --bs=4k --
       name=iotest
2 iotest: (g=0): rw=write, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B, ioengine=sync, iodepth=1
3 fio-3.28
4
  Starting 1 process
5 iotest: Laying out IO file (1 file / 2048MiB)
6 Jobs: 1 (f=1): [W(1)][100.0%][w=174MiB/s][w=44.7k IOPS][eta 00m:00s]
  iotest: (groupid=0, jobs=1): err= 0: pid=49650: Thu Aug 29 20:53:24 2024
    write: IOPS=44.5k, BW=174MiB/s (182MB/s)(2048MiB/11774msec); 0 zone resets
      clat (nsec): min=8281, max=70856, avg=9021.47, stdev=684.82
10
       lat (nsec): min=8301, max=71517, avg=9050.05, stdev=685.96
     clat percentiles (nsec):
11
       | 1.00th=[8512], 5.00th=[8640], 10.00th=[8640], 20.00th=[8768],
12
       | 30.00th=[8768], 40.00th=[8896], 50.00th=[8896], 60.00th=[8896],
13
       | 70.00th=[ 9024], 80.00th=[ 9024], 90.00th=[ 9280], 95.00th=[10176],
14
       99.00th=[11456], 99.50th=[14528], 99.90th=[16064], 99.95th=[17024],
       99.99th=[21632]
16
     bw ( KiB/s): min=176096, max=179744, per=99.99%, avg=178102.26, stdev=802.88, samples=23
17
                 : min=44024, max=44936, avg=44525.57, stdev=200.72, samples=23
18
19
    lat (usec)
                 : 10=94.30%, 20=5.68%, 50=0.02%, 100=0.01%
    fsync/fdatasync/sync_file_range:
20
21
      sync (nsec): min=11065, max=168249, avg=13115.26, stdev=970.90
      sync percentiles (nsec):
22
       1.00th=[12096], 5.00th=[12352], 10.00th=[12480], 20.00th=[12608],
23
       30.00th=[12608], 40.00th=[12736], 50.00th=[12992], 60.00th=[13120],
24
       | 70.00th=[13248], 80.00th=[13376], 90.00th=[13888], 95.00th=[14400],
25
26
       99.00th=[17280], 99.50th=[18816], 99.90th=[21376], 99.95th=[23936],
       | 99.99th=[29568]
27
                : usr=1.16%, sys=31.80%, ctx=1568287, majf=0, minf=16
28
    cpu
29
    IO depths
               : 1=200.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%
               : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
30
       complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
31
32
       issued rwts: total=0,524288,0,0 short=524287,0,0,0 dropped=0,0,0,0
       latency : target=0, window=0, percentile=100.00%, depth=1
33
  Run status group 0 (all jobs):
35
    WRITE: bw=174MiB/s (182MB/s), 174MiB/s-174MiB/s (182MB/s-182MB/s), io=2048MiB (2147MB), run=11774-11774msec
36
37
38 Disk stats (read/write):
    nvme1n1: ios=0/1035816, merge=0/3, ticks=0/6876, in_queue=6876, util=58.40%
```

C Dataset generation instructions

The datasets can be generated using the LDBC SNB Datagen. To regenerate the data sets used in this benchmark, build the Datagen JAR as described in the project's README, configure the AWS EMR environment, upload the JAR to the S3 bucket (denoted as \${BUCKET_NAME}) and run the following commands to generate the datasets used in this audit.

Note that while the datasets for TigerGraph were generated as gzip-compressed archives, they are decompressed during preprocessing. Decompressing was performed with the following command: time find /home/tiger-graph/sf1000 -name "*.csv.gz" -print0 | parallel -q0 gunzip

Listing C.1: Script to generate the SF10 dataset for TigerGraph in AWS EMR. This dataset is only used for cross-validation

```
export SCALE_FACTOR=10
  export JOB_NAME=sf${SCALE_FACTOR}-projected-csv-gz
   ./tools/emr/submit_datagen_job.py \
5
      --use-spot \
      --bucket ${BUCKET_NAME} \
6
      --copy-all \
       --az us-east-2c \
9
      ${JOB_NAME} \
      ${SCALE_FACTOR} \
10
11
      csv \
12
      bi ∖
13
14
       --explode-edges \
15
       --format-options compression=gzip \
       --generate-factors
16
```

Listing C.2: Script to generate the SF1000 dataset for TigerGraph in AWS EMR. This dataset is used for the benchmark run

```
export SCALE_FACTOR=1000
  export JOB_NAME=sf${SCALE_FACTOR}-projected-csv-gz
3
   ./tools/emr/submit_datagen_job.py \
5
      --use-spot \
      --bucket ${BUCKET_NAME} \
6
      --copy-all \
8
      --az us-east-2c \
9
      ${JOB_NAME} \
10
      ${SCALE_FACTOR} \
      bi ∖
12
13
14
      --explode-edges \
15
      --format-options compression=gzip \
16
      --generate-factors
```

Listing C.3: Script to generate the SF10 dataset for Umbra locally. This dataset is only used for cross-validation

```
export SCALE_FACTOR=10
export LDBC_SNB_DATAGEN_MAX_MEM=60G

export LDBC_SNB_DATAGEN_JAR=$(sbt -batch -error 'print assembly / assemblyOutputPath')

tools/run.py \
--cores $(nproc) \
```

Dataset generation instructions

```
7
       --memory ${LDBC_SNB_DATAGEN_MAX_MEM} \
8
9
      --format csv \
      --scale-factor ${SCALE_FACTOR} \
10
11
      --explode-edges \
      --mode bi \setminus
12
13
       --output-dir out-sf${SCALE_FACTOR}/ \
14
       --generate-factors \
15
       -- format-options \ header= \textbf{false}, quote \texttt{All=true}, compression= gzip
```

D Data schema

Listing D.1: Content of the GSQL schema used by TigerGraph

```
## Message
  CREATE VERTEX Comment (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed STRING, content
       STRING, length UINT) WITH primary_id_as_attribute="TRUE"
 3 CREATE VERTEX Post (PRIMARY_ID id UINT, imageFile STRING, creationDate INT, locationIP STRING, browserUsed STRING
       , language STRING, content STRING, length UINT) WITH primary_id_as_attribute="TRUE"
 4 ## organisation
5 CREATE VERTEX Company (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
6 CREATE VERTEX University (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
  CREATE VERTEX City (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
8
  CREATE VERTEX Country (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
9
10 CREATE VERTEX Continent (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
11 ## etc
12 CREATE VERTEX Forum (PRIMARY_ID id UINT, title STRING, creationDate INT,
      \verb|maxMember UINT| \  \, \textbf{WITH} \  \, \text{primary\_id\_as\_attribute="TRUE"} \  \, // \  \, \text{maxMember is for precompute in BI-4} \\
13
14 CREATE VERTEX Person (PRIMARY_ID id UINT, firstName STRING, lastName STRING, gender STRING, birthday INT,
       creationDate INT, locationIP STRING, browserUsed STRING, speaks SET<STRING>, email SET<STRING>,
       popularityScore UINT) WITH primary_id_as_attribute="TRUE" // popularityScore is for precompute in BI-6
15
16 CREATE VERTEX Tag (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
  CREATE VERTEX TagClass (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"
18
19
20 # create edge
  CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum, TO Post) WITH REVERSE_EDGE="CONTAINER_OF_REVERSE"
21
22 CREATE DIRECTED EDGE HAS_CREATOR (FROM Comment|Post, TO Person) WITH REVERSE_EDGE="HAS_CREATOR_REVERSE"
23 CREATE DIRECTED EDGE HAS_INTEREST (FROM Person, TO Tag) WITH REVERSE_EDGE="HAS_INTEREST_REVERSE"
24 CREATE DIRECTED EDGE HAS_MEMBER (FROM Forum, TO Person, creationDate INT) WITH REVERSE_EDGE="HAS_MEMBER_REVERSE"
25 CREATE DIRECTED EDGE HAS_MODERATOR (FROM Forum, TO Person) WITH REVERSE_EDGE="HAS_MODERATOR_REVERSE"
26 CREATE DIRECTED EDGE HAS_TAG (FROM Comment|Post|Forum, TO Tag) WITH REVERSE_EDGE="HAS_TAG_REVERSE"
27 CREATE DIRECTED EDGE HAS_TYPE (FROM Tag, TO TagClass) WITH REVERSE_EDGE="HAS_TYPE_REVERSE"
28 CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Company, TO Country | FROM Person, TO City | FROM University, TO City)
       WITH REVERSE_EDGE="IS_LOCATED_IN_REVERSE"
  CREATE DIRECTED EDGE MESG_LOCATED_IN (FROM Comment, TO Country | FROM Post, TO Country) // Reverse edge of
29
       Comment/Post -IS_Located_IN-> Country will cause Country connected by too many edges, which makes loading
30 CREATE DIRECTED EDGE IS_PART_OF (FROM City, TO Country | FROM Country, TO Continent) WITH REVERSE_EDGE="
       IS_PART_OF_REVERSE"
31 CREATE DIRECTED EDGE IS_SUBCLASS_OF (FROM TagClass, TO TagClass) WITH REVERSE_EDGE="IS_SUBCLASS_OF_REVERSE"
  CREATE UNDIRECTED EDGE KNOWS (FROM Person, TO Person, creationDate INT, weight19 UINT, weight20 UINT DEFAULT
  CREATE DIRECTED EDGE LIKES (FROM Person, TO Comment|Post, creationDate INT) WITH REVERSE_EDGE="LIKES_REVERSE"
33
34 CREATE DIRECTED EDGE REPLY_OF (FROM Comment, TO Comment|Post) WITH REVERSE_EDGE="REPLY_OF_REVERSE"
  CREATE DIRECTED EDGE STUDY_AT (FROM Person, TO University, classYear INT) WITH REVERSE_EDGE="STUDY_AT_REVERSE"
36 CREATE DIRECTED EDGE WORK_AT (FROM Person, TO Company, workFrom INT) WITH REVERSE_EDGE="WORK_AT_REVERSE"
37
38 CREATE DIRECTED EDGE ROOT_POST (FROM Comment, TO Post) WITH REVERSE_EDGE="ROOT_POST_REVERSE" //FOR BI-3,9,17
  CREATE DIRECTED EDGE REPLY_COUNT (FROM Person, TO Person, cnt UINT)
39
40
41 CREATE GLOBAL SCHEMA CHANGE JOB addIndex {
42
    ALTER VERTEX Country ADD INDEX country_name ON (name);
    ALTER VERTEX Company ADD INDEX company_name ON (name);
    ALTER VERTEX University ADD INDEX university_name ON (name);
44
     ALTER VERTEX Tag ADD INDEX tag_name ON (name);
45
    ALTER VERTEX TagClass ADD INDEX tagclass_name ON (name);
```

Data schema

```
47 }
48
49 RUN GLOBAL SCHEMA_CHANGE JOB addIndex
50 CREATE GRAPH ldbc_snb (*)
```

E Machine Cost Breakdown

Quantity	Description	Cost
1	Dell PowerEdge R7725 Server	\$189,394.14
1	Chassis with up to 8 E3.S NVMe Direct Drives	\$0.00
1	AMD EPYC 9355 3.40GHz, 32C/64T, 256 Cache (280W) DDR5-6000	\$0.00
1	AMD EPYC 9355 3.40GHz, 32C/64T, 256 Cache (280W) DDR5-6000	\$0.00
1	Heatsink for 2 CPU configuration (CPU less than or equal to 400W)	\$0.00
1	Performance Optimized	\$0.00
1	6400MT/s RDIMMs	\$0.00
24	64GB RDIMM, 6400MT/s, Dual Rank	\$0.00
1	C30, No RAID for NVME chassis	\$0.00
1	No Controller	\$0.00
1	No Hard Drive	\$0.00
4	3.84TB NVMe Read Intensive AG Drive E3s Gen5 with carrier	\$0.00
1	Performance BIOS Setting	\$0.00
1	UEFI BIOS Boot Mode with GPT Partition	\$0.00
1	PowerEdge 2U Very High Performance Fan	\$0.00
1	Dual, Redundant (1+1),Hot-Plug MHS Power Supply, 1500W MM, Titanium	\$0.00
2	NEMA 5-15P to C13 Wall Plug, 125 Volt, 15 AMP, 10 Feet (3m), Power Cord, North America	\$0.00
1	Riser Config 3, 4 x16 FH Slots (Gen5), 2nd OCP	\$0.00
1	PowerEdge R7725 Motherboard, MX	\$0.00
1	Broadcom 57504 Quad Port 10/25GbE,SFP28, OCP NIC 3.0	\$0.00
1	PowerEdge 2U Standard Bezel	\$0.00
1	No Media Required	\$0.00
1	iDRAC10, Enterprise 17G	\$0.00
1	Blank Left Ear Module	\$0.00
1	iDRAC Force Change Password for OCP cards	\$0.00
1	iDRAC Service Module (ISM), NOT Installed	\$0.00
1	ReadyRails Sliding Rails with Cable Management Arm	\$0.00
1	PowerEdge R7725 Shipping	\$0.00
1	PowerEdge 2U Shipping Material	\$0.00
1	PowerEdge CCC, No CE Label Marking	\$0.00
1	Decline Selection	\$0.00
1	Realtek RTL8153 Gigabit Ethernet Adapter	\$0.00
1	Basic Next Business Day 36 Months, 36 Month(s)	\$249.00
1	ProSupport and Next Business Day Onsite Service, 36 Month(s)	\$1,818.18
	Total	\$191,461.32