Homework 3

- 1. 1. Reject. $q_0 \vdash q_{\text{rej}}$
 - 2. Accept. $q_0011 \vdash \triangleleft p_011 \vdash \triangleleft 0p_11 \vdash \triangleleft 01p_1 \vdash \triangleleft 01s1 \vdash \triangleleft 0s10 \vdash \triangleleft s000 \vdash t \triangleleft 100 \vdash q_{acc} \triangleleft 100$
 - 3. Reject. $q_0 100 \vdash \triangleleft p_1 00 \vdash \triangleleft 1p_0 0 \vdash \triangleleft 10p_0 \vdash \triangleleft 10q_{rej} 0$
- 2. Let M_2 be an NTM and have $\Sigma_2 = \Sigma \cup \Gamma \cup Q$. On input w:
 - 1. If w has any symbol other than Σ_2 : Reject.
 - 2. If w has no state symbol or has more than one state symbol from Q: Reject.
 - 3. Move head position to the state symbol $w_i = q \in Q$.
 - 4. If $q = q_0$: Accept.
 - 5. Consider a two-tuple $(q^+, w^+) \in Q \times \Gamma$ and choose one of the three following steps nondeterministically:
 - 1. If there is (q^+, w^+) such that $\delta(q^+, w^+) = (q, w_{i+1}, \text{Stay})$: Overwrite qw_{i+1} with q^+w^+ . Otherwise: Reject
 - 2. If there is (q^+, w^+) such that $\delta(q^+, w^+) = (q, w_{i+2}, \text{Left})$: Overwrite $qw_{i+1}w_{i+2}$ with $w_{i+1}q^+w^+$. Otherwise: Reject.
 - 3. If there is (q^+, w^+) such that $\delta(q^+, w^+) = (q, w_{i-1}, \text{Right})$: Overwrite $w_{i-1}q$ with q^+w^+ . Otherwise: Reject.
 - 6. Repeat step 1-5 until accept or reject.
- 3. Consider a three-tape Turing machine.
 - 1. Put input w on tape 1.
 - 2. Scan w from left to right and put head position on the state symbol $w_i = q$.
 - 3. Copy the state symbol $w_i = q$ and the next input symbol w_{i+1} to tape 2.
 - 4. Match (q, w_{i+1}) on tape 2 to the corresponding transition relation $\delta(q, w_{i+1}) = (q^+, w^+, d)$, where $d \in \{\text{Left}, \text{Right}, \text{Stay}\}.$
 - 5. Copy the instruction (q^+, w^+, d) to tape 3.
 - 6. If d = Stay: Overwrite qw_{i+1} with q^+w^+ .
 - 7. Else if $d = \text{Left: Overwrite } w_{i-1} q w_{i+1} \text{ with } q^+ w_{i-1} w^+$
 - 8. Else if $d = \text{Right: Overwrite } qw_{i+1} \text{ with } w^+q^+$.
 - 9. **Return** output on tape 1.

- 4. Let a decider for L_{fin} be R := On input [M]: Accept if L(M) is finite. Reject if L(M) is infinite.
 - Define M'(M, w) := On input x: Accept if M accepts w.
 - Construct a decider S := On input (M, w): Construct M'(M, w). Run R on $\lfloor M' \rfloor$. Accept if H rejects. Reject if R accepts.
 - Run S on input (M, w) and consider the following two cases:
 - $w \in L(M)$: M'(M, w) accepts everything, i.e., L(M') is infinite. Hence, R rejects and S accepts.
 - $w \notin L(M)$: M'(M, w) accepts nothing, i.e., |L(M')| = 0, which is finite. Hence, R accepts and S rejects.
 - Conclusion: If R decides L_{fin} , then S decides $A_{\text{TM}} = \{(M, w) | w \in L(M)\}$. However, A_{TM} is undecidable (as proved in class), so there is no such R that decides L_{fin} is undecidable.
- 5. Let EQ_{CFG,DFA} = $\{(G,A)|G \text{ is a CFG}, A \text{ is a DFA}, L(G) = L(A)\}.$
 - Let a decider for EQCFG,DFA be R := On input (G,A): Accept if L(G) = L(A). Reject if $L(G) \neq L(A)$.
 - Construct a decider S := On input (G): Construct a DFA A that accepts Σ^* . Run R on (G, A). Accept if R accepts. Reject if R rejects.
 - Run S on input G and consider the following two cases:
 - $L(G) = \Sigma^* : L(A) = \Sigma^*$. Hence, R accepts (G, A), and S accepts.
 - $L(G) \neq \Sigma^*$: $L(A) = \Sigma^*$. Hence, R rejects (G, A), and S rejects.
 - Conclusion: If R decides EQCFG,DFA, then S decides ALLCFG = $\{G|G \text{ is a CFG}, L(G) = \Sigma^*\}$. However, ALLCFG is undecidable (as proved in class), so there is no such R that decides EQ CFG,DFA. EQCFG,DFA is undecidable.
- 6. Let $CFL_{TM} = \{ \lfloor M \rfloor | L(M) \text{ is context free} \}$.
 - Let a decider for CFLTM be $R := \text{On input } \lfloor M \rfloor$: Accept if L(M) is context free. Reject if L(M) is not.
 - Define M'(M, w) := On input x: Accept if x has the form $0^n 1^n 0^n$. Otherwise, run M on w. Accept if M accepts w.
 - Construct a decider S := On input (M, w): Construct M'(M, w). Run R on $\lfloor M' \rfloor$. Accept if R accepts. Reject if R rejects.
 - Run S on input (M, w) and consider the following two cases:
 - $w \in L(M)$: M'(M, w) accepts everything, i.e., $L(M') = \Sigma^*$, which is context free. Hence, R accepts, and S accepts.
 - $w \notin L(M)$: M'(M, w) accepts input of the form $0^n 1^n 0^n$, which is not context free. Hence, R rejects, and S rejects.
 - Conclusion: If R decides CFL_{TM} , then S decides $A_{TM} = \{(M, w) | w \in L(M)\}$. However, A_{TM} is undecidable (as proved in class), so there is no such R that decides CFL_{TM} . CFL_{TM} is undecidable.