Deterministic Policy Gradient (DPG)

Shusen Wang

Continuous Action Space

- The action space \mathcal{A} is a subset of \mathbb{R}^2 .
- The action space \mathcal{A} is continuous:

$$\mathcal{A} = [0^{\circ}, 360^{\circ}] \times [0^{\circ}, 180^{\circ}].$$

• Actions are 2-dim vectors.

Deterministic Policy Gradient (DPG)

Reference

- Silver et al. Deterministic Policy Gradient Algorithms. In *ICML*, 2014.
- Lillicrap et al. Continuous control with deep reinforcement learning. In ICLR, 2016.

Deterministic Actor-Critic

• Use a deterministic policy network (actor): $a = \pi(s; \theta)$.

Deterministic Actor-Critic

- Use a deterministic policy network (actor): $a = \pi(s; \theta)$.
- Use a value network (critic): q(s, a; w).

Deterministic Actor-Critic

- Use a deterministic policy network (actor): $a = \pi(s; \theta)$.
- Use a value network (critic): q(s, a; w).
- The critic outputs a scalar that evaluates how good the action a is.

• Transition: (s_t, a_t, r_t, s_{t+1}) .

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

• TD error:
$$\delta_t = q_t - (r_t + \gamma \cdot q_{t+1}).$$
 TD Target

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

- TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$.

• The critic q(s, a; w) evaluates how good the action a is.

- The critic $q(s, a; \mathbf{w})$ evaluates how good the action a is.
- Improve θ so that the critic believes $\alpha = \pi(s; \theta)$ is better.
- Update θ so that $q(s, \mathbf{a}; \mathbf{w}) = q(s, \pi(s; \theta); \mathbf{w})$ increases.

• Goal: Increase q(s, a; w), where $a = \pi(s; \theta)$.

• Goal: Increase $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• Goal: Increase $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial q(s,\pi(s;\theta);\mathbf{w})}{\partial \theta} \neq \frac{\partial a}{\partial \theta} \cdot \frac{\partial q(s,a;\mathbf{w})}{\partial a}$$
.

• Goal: Increase $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial \ q(s,\pi(s;\theta);\mathbf{w})}{\partial \ \theta} = \frac{\partial \ a}{\partial \ \theta} \cdot \frac{\partial \ q(s,a;\mathbf{w})}{\partial \ a}.$$

• Goal: Increase $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial \ q(s,\pi(s;\theta);\mathbf{w})}{\partial \ \theta} = \frac{\partial \ a}{\partial \ \theta} \cdot \frac{\partial \ q(s,a;\mathbf{w})}{\partial \ a}.$$

• Gradient ascent: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \mathbf{g}$.

Improvement: Using Target Networks

Bootstrapping

• Value network makes prediction for time t:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

• TD error: $\delta_t = q_t - (r_t + \gamma \cdot q_{t+1})$.

Bootstrapping

• Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

• TD error: $\delta_t = q_t - (r_t + \gamma \cdot q_{t+1})$.

Bootstrapping: Using one's estimate to update oneself.

Bootstrapping

• Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

Basic idea: Compute the TD target using different networks.

Using target networks

• Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Target value network makes prediction for time t+1:

$$q_{t+1} = \boxed{q(s_{t+1}, a'_{t+1}; \mathbf{w}^-)} \text{ where } a'_{t+1} = \boxed{\pi(s_{t+1}; \mathbf{\theta}^-)}.$$
Target value network

The same network structure, but different parameters.

Updating policy and value networks

- Policy network makes decision: $\alpha = \pi(s; \theta)$.
- Updating policy network by DPG: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial \mathbf{a}}{\partial \mathbf{\theta}} \cdot \frac{\partial \mathbf{q}(s,\mathbf{a};\mathbf{w})}{\partial \mathbf{a}}$.

Updating policy and value networks

- Policy network makes decision: $\alpha = \pi(s; \theta)$.
- Updating policy network by DPG: $\theta \leftarrow \theta + \beta \cdot \frac{\partial a}{\partial \theta} \cdot \frac{\partial q(s,a;w)}{\partial a}$.
- Value network evaluates the action: $q_t = q(s, a; \mathbf{w})$.
- Target networks, $\pi(s; \mathbf{\theta}^-)$ and $q(s, \mathbf{a}; \mathbf{w}^-)$, compute q_{t+1} .
- TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- Updating value network by TD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial q(s, \mathbf{a}; \mathbf{w})}{\partial \mathbf{w}}$.

Updating target networks

- Set a parameter $\tau \in (0,1)$.
- Update the target networks by weighted averaging:

$$\mathbf{w}^- \leftarrow \tau \cdot \mathbf{w} + (1 - \tau) \cdot \mathbf{w}^-.$$

$$\mathbf{\theta}^- \leftarrow \tau \cdot \mathbf{\theta} + (1 - \tau) \cdot \mathbf{\theta}^-.$$

Improvements

- Target networks.
- Experience replay.
- Multi-step TD target.
- Dueling network.

Stochastic Policy VS Deterministic Policy

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|\mathbf{s};\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Control:

Randomly sample an action from the distribution

Directly use the output, *a*

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Control:

Randomly sample an action from the distribution

Directly use the output, *a*

Application:

Mostly discrete control

Continuous control

Thank you!