Zadanie 1. Permutację $\langle \pi_1, \ldots, \pi_n \rangle$ zbioru $\{1, \ldots, n\}$ nazywamy *ciekawą* jeśli dla dokładnie jednego $i \in \{1, \ldots, n\}$ zachodzi $\pi_i > i$. Znajdź zwarty wzór na liczbę ciekawych *n*-permutacji. *Wskazówka*: Rozważ zbiór punktów stałych ciekawej permutacji.

Rozwiązanie.

Permutacje ciekawe możemy podzielić na rozłączne grupy tak, że w każdej grupie znajdą się tylko te permutacje, które mają dokładnie k punktów stałych (gdzie $k = 1 \dots n$).

1. Ile jest takich permutacji dla k=0? Gdy n=1 oczywiście nie możemy wskazać takiej permutacji. W przeciwnym wypadku dokładnie jedna: $\langle n, 1, 2, \dots, n-1 \rangle$.

Dowód. Oczywiście na pierwszej pozycji mamy $\pi_1 = k$, gdzie $1 < k \le n$. Teraz pokażemy indukcyjnie, że $\pi_i = i - 1$ dla każdego i > 1.

(Baza). Dla i=2 niemożliwe jest, aby $\pi_i=2$ (to pkt. stały) lub $\pi_i>2$ (nieciekawa), stąd $\pi_2=1$. (Krok). Zakładamy, że predykat jest spełniony dla każdego i=2...(n-1); najmniejszą możliwą (bo niewykorzystaną jeszcze) wartością jest wówczas n-1. Niemożliwe jest, aby $p_n=n$ (to pkt. stały) ani $p_n>n$ (nieciekawa), więc istotnie $p_n=n-1$.

Odnotujmy, że prawdziwość $\pi_i=i-1$ dla każdego i>1 wyznacza nam jednoznacznie wartość $p_1=n$ (w przeciwnym wypadku dwa elementy powtarzają sie w permutacji, sprzeczność).

- 2. Teraz rozpatrzmy liczbę permutacji dla dowolnego k. Oczywiście dla k=n lub k=n-1 istnieje tylko permutacja id, która nie jest ciekawa. W przeciwnym razie wybierzmy punkty stałe na $\binom{n}{k}$ sposobów. Zauważmy, że predykat ciekawości jest spełniony wtw., gdy obcięta do n-k nie-stałych punktów permutacja wciąż jest ciekawa. Ale liczbę ciekawych nieporządków już obliczyliśmy (dokładnie jeden dla n>1). Stąd mamy $\binom{n}{k}[k< n-1]$ ciekawych n-permutacji z k punktami stałymi.
- 3. Sumując po $k = 1 \dots n$, otrzymujemy zwarty wzór na liczbę ciekawych n-permutacji.

$$\sum_{k=1}^{n-2} \binom{n}{k} = 2^n - (n+1)$$