

Cinterion® PLS8-E

Hardware Interface Description

Version: 01.000c

Docld: PLS8-E_HD_v01.000c

Document Name: Cinterion® PLS8-E Hardware Interface Description

Version: **01.000c**

Date: **2013-12-13**

Docld: PLS8-E_HD_v01.000c

Status Confidential / Released

GENERAL NOTE

THE USE OF THE PRODUCT INCLUDING THE SOFTWARE AND DOCUMENTATION (THE "PRODUCT") IS SUBJECT TO THE RELEASE NOTE PROVIDED TOGETHER WITH PRODUCT. IN ANY EVENT THE PROVISIONS OF THE RELEASE NOTE SHALL PREVAIL. THIS DOCUMENT CONTAINS INFORMATION ON GEMALTO M2M PRODUCTS. THE SPECIFICATIONS IN THIS DOCUMENT ARE SUBJECT TO CHANGE AT GEMALTO M2M'S DISCRETION. GEMALTO M2M GMBH GRANTS A NON-EXCLUSIVE RIGHT TO USE THE PRODUCT. THE RECIPIENT SHALL NOT TRANSFER, COPY, MODIFY, TRANSLATE, REVERSE ENGINEER, CREATE DERIVATIVE WORKS; DISASSEMBLE OR DECOMPILE THE PRODUCT OR OTHERWISE USE THE PRODUCT EXCEPT AS SPECIFICALLY AUTHORIZED. THE PRODUCT AND THIS DOCUMENT ARE PROVIDED ON AN "AS IS" BASIS ONLY AND MAY CONTAIN DEFICIENCIES OR INADEQUACIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, GEMALTO M2M GMBH DISCLAIMS ALL WARRANTIES AND LIABILITIES. THE RECIPIENT UNDERTAKES FOR AN UNLIMITED PERIOD OF TIME TO OBSERVE SECRECY REGARDING ANY INFORMATION AND DATA PROVIDED TO HIM IN THE CONTEXT OF THE DELIVERY OF THE PRODUCT. THIS GENERAL NOTE SHALL BE GOVERNED AND CONSTRUED ACCORDING TO GERMAN LAW.

Copyright

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Copyright © 2013, Gemalto M2M GmbH, a Gemalto Company

Trademark Notice

Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other registered trademarks or trademarks mentioned in this document are property of their respective owners.

Contents

0	Doc	ument H	istory		7
1	Intro	duction			9
	1.1	Suppo	rted Produ	ucts	9
	1.2	Relate	d Docume	ents	9
	1.3	Terms and Abbreviations			
	1.4	Regula	atory and	Type Approval Information	12
		1.4.1	Directive	es and Standards	12
		1.4.2	SAR rec	uirements specific to portable mobiles	15
		1.4.3	SELV R	equirements	16
		1.4.4	Safety P	Precautions	16
2	Proc	luct Con	cept		17
	2.1		-	a Glance	
	2.2	-		Overview	
	2.3		•		
3	App		-		
	3.1			S	
	3.2	•	•		
		3.2.1	Minimizi	ng Power Losses	24
		3.2.2	Monitori	ng Power Supply by AT Command	24
	3.3	Power	-Up / Pow	er-Down Scenarios	25
		3.3.1	Turn on	PLS8-E	25
		3.3.2	Signal S	states after Startup	26
		3.3.3	Turn off	PLS8-E Using AT Command	27
		3.3.4	Turn off	PLS8-E Using IGT Line	28
		3.3.5	Automat	tic Shutdown	28
			3.3.5.1	Thermal Shutdown	29
			3.3.5.2	Undervoltage Shutdown	30
			3.3.5.3	Overvoltage Shutdown	30
		3.3.6	Turn off	PLS8-E in Case of Emergency	31
	3.4	USB I	nterface		32
	3.5	UICC/		Interface	
		3.5.1		ed ESD Protection for SIM Interface	
	3.6	Analog-to-Digital Converter (ADC)3			
	3.7				
	3.8		•		
		3.8.1		ID Signal	
4					
	4.1	GSM/l		Antenna Interface	
		4.1.1		Installation	
		4.1.2	RF Line	Routing Design	
			4.1.2.1	Line Arrangement Examples	
			4.1.2.2	Routing Example	42

5	Elec	trical, R	eliability a	and Radio Characteristics	43
	5.1	Absolu	ute Maxim	um Ratings	43
	5.2	Opera	ting Temp	eratures	44
		5.2.1	Tempera	ature Allocation Model	45
	5.3	Storag	je Conditio	ons	45
	5.4	Reliab	ility Chara	cteristics	46
		5.4.1	Bending	Tests	46
	5.5	Pad A	ssignment	and Signal Description	47
	5.6	Power	Supply R	atings	54
	5.7	RF An	tenna Inte	rface Characteristics	56
	5.8	Electro	ostatic Dis	charge	58
6	Mec	•	_	and Packaging	
	6.1	Mecha	anical Dime	ensions of PLS8-E	59
	6.2	Mount	ing PLS8-	E onto the Application Platform	61
		6.2.1	SMT PC	CB Assembly	61
			6.2.1.1	Land Pattern and Stencil	61
			6.2.1.2	Board Level Characterization	63
		6.2.2	Moisture	e Sensitivity Level	63
		6.2.3	Solderin	g Conditions and Temperature	64
			6.2.3.1	Reflow Profile	64
			6.2.3.2	Maximum Temperature and Duration	65
		6.2.4	Durabilit	y and Mechanical Handling	
			6.2.4.1	Storage Life	66
			6.2.4.2	Processing Life	66
			6.2.4.3	Baking	
			6.2.4.4	Electrostatic Discharge	
	6.3	Packa	ging		
		6.3.1	-	d Reel	
			6.3.1.1	Orientation	67
			6.3.1.2	Barcode Label	68
		6.3.2	Shipping	g Materials	69
			6.3.2.1	Moisture Barrier Bag	
			6.3.2.2	Transportation Box	
7	Sam	ple App	lication	·	
8	Refe	rence A	pproval		74
	8.1			oment for Type Approval	
9	App				
	9.1	••			
	9.2	Mounting Advice Sheet			

Tables

Table 1:	Directives	
Table 2:	Standards of European type approval	12
Table 3:	Requirements of quality	
Table 4:	Standards of the Ministry of Information Industry of the	
	People's Republic of China	14
Table 5:	Toxic or hazardous substances or elements with defined concentration	
	limits	14
Table 6:	Overview of operating modes	22
Table 7:	Signal states	
Table 8:	Temperature dependent behavior	29
Table 9:	Signals of the SIM interface (SMT application interface)	33
Table 10:	Return loss in the active band	38
Table 11:	Absolute maximum ratings	43
Table 12:	Board temperature	44
Table 13:	Temperature allocation model	45
Table 14:	Storage conditions	45
Table 15:	Summary of reliability test conditions	46
Table 16:	Overview: Pad assignments	48
Table 17:	Signal description	
Table 18:	Voltage supply ratings	
Table 19:	Current consumption ratings	54
Table 20:	RF Antenna interface GSM / UMTS/LTE (at operating temperature range)	56
Table 21:	Electrostatic values	58
Table 22:	Reflow temperature ratings	
Table 23:	List of parts and accessories	75
Table 24:	Molex sales contacts (subject to change)	76
Table 25:	Hirose sales contacts (subject to change)	76

Figures

Figure 1:	PLS8-E system overview	19
Figure 2:	PLS8-E block diagram	20
Figure 3:	Decoupling capacitor(s) for BATT+	
Figure 4:	Power supply limits during transmit burst	24
Figure 5:	Power-on with IGT	25
Figure 6:	Signal states during turn-off procedure	27
Figure 7:	Timing of IGT if used to switch off the module	28
Figure 8:	Shutdown by EMERG_OFF signal	31
Figure 9:	USB circuit	
Figure 10:	UICC/SIM/USIM interface	34
Figure 11:	SIM interface - enhanced ESD protection	35
Figure 12:	PWR_IND signal	37
Figure 13:	Antenna pads (bottom view)	39
Figure 14:	Embedded Stripline line arrangement	40
Figure 15:	Micro-Stripline line arrangement samples	41
Figure 16:	Routing to application's RF connector	42
Figure 17:	PLS8-E evaluation board layer table	42
Figure 18:	Board and ambient temperature differences	44
Figure 19:	Bending test setup	47
Figure 20:	PLS8-E bottom view: Pad assignments	49
Figure 21:	PLS8-E top view: Pad assignments	50
Figure 22:	PLS8-E – top and bottom view	59
Figure 23:	Dimensions of PLS8-E (all dimensions in mm)	60
Figure 24:	Land pattern (top layer)	61
Figure 25:	Recommended design for 110 micron thick stencil (top layer)	62
Figure 26:	Recommended design for 150 micron thick stencil (top layer)	62
Figure 27:	Reflow Profile	64
Figure 28:	Carrier tape	67
Figure 29:	Roll direction	67
Figure 30:	Barcode label on tape reel	68
Figure 31:	Moisture barrier bag (MBB) with imprint	69
Figure 32:	Moisture Sensitivity Label	70
Figure 33:	Humidity Indicator Card - HIC	71
Figure 34:	PLS8-E sample application	
Figure 35:	Reference equipment for type approval	74

0 Document History

Preceding document: "PLS8-E Hardware Interface Description" Version 01.000b New document: "PLS8-E Hardware Interface Description" Version **01.000c**

Chapter	What is new
5.2	Added Figure 18.

Preceding document: "PLS8-E Hardware Interface Description" Version 01.000a New document: "PLS8-E Hardware Interface Description" Version 01.000b

Chapter	What is new
	Set state to "Confidential / Released".

Preceding document: "PLS8-E Hardware Interface Description" Version 00.192 New document: "PLS8-E Hardware Interface Description" Version 01.000a

Chapter	What is new
	Removed LTE Bd1.
1.4.1	Revised versions of some standards and directives.
3.3.2	Revised some signal states mentioned in Table 7. Added note to Table 7 on internal pulls being implemented using JFETs.
3.4	Added note to Figure 9 recommending no blocking capacitors on VUSB line.
3.6	New section Analog-to-Digital Converter (ADC).
3.7	New section GPIO Interface.
5.2	Revised section to include temperature allocation model for the module (incuding new Section 5.2.1 explaining this model).
5.4.1	New section Bending Tests.
5.5	Revised electrical characteristics for CCIN and VUSB_IN line
5.6	Revised and completed section giving power supply ratings. Revised current consumption rating for POWER DOWN mode in Table 19.
5.7	Completed Table 20 listing RF antenna interface characteristics.

Preceding document: "PLS8-E Hardware Interface Description" Version 00.130 New document: "PLS8-E Hardware Interface Description" Version 00.192

Chapter	What is new
Throughout document	Removed SLEEP mode and references to power saving
3.3.1	Added maximum startup time for USB interface.
3.3.4	New section Turn off PLS8-E Using IGT Line.
3.3.6	Revised Figure 8 showing shutdown timings for EMERG_OFF signal.
3.4	Removed section "Power Saving".

3.4	Removed remarks on USB Suspended state and power saving.
5.5	Revised some electrical characteristics for SIM interface lines.
5.6	Added some more power supply ratings.
6.2.1.1	Revised Figure 25 and Figure 26.

New document: "PLS8-E Hardware Interface Description" Version 00.130

Chapter	What is new
	Initial document setup.

1 Introduction

The document¹ describes the hardware of the Cinterion[®] PLS8-E module, designed to connect to a cellular device application and the air interface. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components.

1.1 Supported Products

This document applies to the following Gemalto M2M products:

Cinterion[®] PLS8-E module

1.2 Related Documents

- [1] Cinterion® PLS8-E AT Command Set
- [2] Cinterion® PLS8-E Release Notes
- [3] Application Note 48: SMT Module Integration

1.3 Terms and Abbreviations

Abbreviation	Description
ANSI	American National Standards Institute
ARP	Antenna Reference Point
CE	Conformité Européene (European Conformity)
CS	Coding Scheme
CS	Circuit Switched
CSD	Circuit Switched Data
DCS	Digital Cellular System
DL	Download
dnu	Do not use
DRX	Discontinuous Reception
DSB	Development Support Board
DTX	Discontinuous Transmission
EDGE	Enhanced Data rates for GSM Evolution
EGSM	Extended GSM
EMC	Electromagnetic Compatibility

^{1.} The document is effective only if listed in the appropriate Release Notes as part of the technical documentation delivered with your Gemalto M2Mproduct.

Abbreviation	Description
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
ETSI	European Telecommunications Standards Institute
FDD	Frequency Division Duplex
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HiZ	High Impedance
HSDPA	High Speed Downlink Packet Access
I/O	Input/Output
IMEI	International Mobile Equipment Identity
ISO	International Standards Organization
ITU	International Telecommunications Union
kbps	kbits per second
LED	Light Emitting Diode
LGA	Land Grid Array
LTE	Long term evolution
MBB	Moisture barrier bag
Mbps	Mbits per second
MCS	Modulation and Coding Scheme
MIMO	Multiple Input Multiple Output
MLCC	Multi Layer Ceramic Capacitor
МО	Mobile Originated
MS	Mobile Station, also referred to as TE
MSL	Moisture Sensitivity Level
MT	Mobile Terminated
nc	Not connected
NTC	Negative Temperature Coefficient
PBCCH	Packet Switched Broadcast Control Channel
РСВ	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System, also referred to as GSM 1900
PD	Pull Down resistor (appr. 100k)
PDU	Protocol Data Unit
PS	Packet Switched
PSK	Phase Shift Keying
PU	Pull Up resistor (appr. 100k)

Abbreviation	Description		
QAM	Quadrature Amplitude Modulation		
R&TTE	Radio and Telecommunication Terminal Equipment		
RF	Radio Frequency		
rfu	Reserved for future use		
RTC	Real Time Clock		
Rx	Receive Direction		
SAR	Specific Absorption Rate		
SELV	Safety Extra Low Voltage		
SIM	Subscriber Identification Module		
SMD	Surface Mount Device		
SMS	Short Message Service		
SMT	Surface Mount Technology		
SRAM	Static Random Access Memory		
SRB	Signalling Radio Bearer		
TE	Terminal Equipment		
TPC	Transmit Power Control		
TS	Technical Specification		
Tx	Transmit Direction		
UL	Upload		
UMTS	Universal Mobile Telecommunications System		
URC	Unsolicited Result Code		
USB	Universal Serial Bus		
UICC	USIM Integrated Circuit Card		
USIM	UMTS Subscriber Identification Module		
WCDMA	Wideband Code Division Multiple Access		

1.4 Regulatory and Type Approval Information

1.4.1 Directives and Standards

PLS8-E has been designed to comply with the directives and standards listed below.

It is the responsibility of the application manufacturer to ensure compliance of the final product with all provisions of the applicable directives and standards as well as with the technical specifications provided in the "PLS8-E Hardware Interface Description".

Table 1: Directives

99/05/EC	Directive of the European Parliament and of the council of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity (in short referred to as R&TTE Directive 1999/5/EC). The product is labeled with the CE conformity mark	
ECE-R 10	Economic Commission for Europe (ECE) Regulation No. 10: Uniform provisions concerning the approval of vehicles with regard to electromagnetic compatibility	
2002/95/EC (RoHS 1) 2011/65/EC (RoHS 2)	Directive of the European Parliament and of the Council of 27 January 2003 (and revised on 8 June 2011) on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)	

 Table 2: Standards of European type approval

3GPP TS 51.010-1	Digital cellular telecommunications system (Release 7); Mobile Station (MS) conformance specification;	
ETSI EN 301 511 V9.0.2	Global System for Mobile communications (GSM); Harmonized standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC)	
GCF-CC V3.50	Global Certification Forum - Certification Criteria	
ETSI EN 301 489-01 V1.9.1	Electromagnetic Compatibility and Radio spectrum Matters (ERM); Electr magnetic Compatibility (EMC) standard for radio equipment and services Part 1: Common Technical Requirements	
ETSI EN 301 489-07 V1.3.1	Electromagnetic Compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and service Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DC)	
ETSI EN 301 489-24 V1.5.1	Electromagnetic Compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment	
EN 301 908-01 V5.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000 Third Generation cellular networks; Part 1: Harmonized EN for IMT-2000, introduction and common requirements of article 3.2 of the R&TTE Directive	

1.4 Regulatory and Type Approval Information

Table 2: Standards of European type approval

EN 301 908-02 V5.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000 Third Generation ce lular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive	
EN 301 908-13 V5.2.1	IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 13: Evolved Universal Terrestria Radio Access (E-UTRA) User Equipment (UE)	
EN 300 440-02 V1.3.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Short range devices; Radio equipment to be used in the 1 GHz to 40 GHz frequency range; Part 2: Harmonized EN covering essential requirements carticle 3.2 of the R&TTE Directive	
EN 62311:2008	Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)	
IEC/EN 60950-1:2006+ A11:2009+A1:2010+ A12:2011	Safety of information technology equipment	

Table 3: Requirements of quality

IEC 60068	Environmental testing	
DIN EN 60529	IP codes	

Table 4: Standards of the Ministry of Information Industry of the People's Republic of China

SJ/T 11363-2006	"Requirements for Concentration Limits for Certain Hazardous Substances in Electronic Information Products" (2006-06).
SJ/T 11364-2006	"Marking for Control of Pollution Caused by Electronic Information Products" (2006-06). According to the "Chinese Administration on the Control of Pollution caused by Electronic Information Products" (ACPEIP) the EPUP, i.e., Environmental Protection Use Period, of this product is 20 years as per the symbol shown here, unless otherwise marked. The EPUP is valid only as long as the product is operated within the operating limits described in the Gemalto M2M Hardware Interface Description. Please see Table 5 for an overview of toxic or hazardous substances or elements that might be contained in product parts in concentrations above the limits defined by SJ/T 11363-2006.

Table 5: Toxic or hazardous substances or elements with defined concentration limits

部件名称	有毒有害物质或元素 Hazardous substances					
Name of the part	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
金属部件 (Metal Parts)	0	0	0	0	0	0
电路模块 (Circuit Modules)	х	0	0	0	0	0
电缆及电缆组件 (Cables and Cable Assemblies)	0	0	0	0	0	0
塑料和聚合物部件 (Plastic and Polymeric parts)	0	0	0	0	0	0

0:

表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006 标准规定的限量要求以下。 Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006.

X:

表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006标准规定的限量要求。 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part *might exceed* the limit requirement in SJ/T11363-2006.

1.4.2 SAR requirements specific to portable mobiles

Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module must be in accordance with the guidelines for human exposure to radio frequency energy. This requires the Specific Absorption Rate (SAR) of portable PLS8-E based applications to be evaluated and approved for compliance with national and/or international regulations.

Since the SAR value varies significantly with the individual product design manufacturers are advised to submit their product for approval if designed for portable use. For European markets the relevant directives are mentioned below. It is the responsibility of the manufacturer of the final product to verify whether or not further standards, recommendations or directives are in force outside these areas.

Products intended for sale on European markets

EN 50360

Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz - 3GHz)

1.4.3 **SELV** Requirements

The power supply connected to the PLS8-E module shall be in compliance with the SELV requirements defined in EN 60950-1.

1.4.4 Safety Precautions

The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating PLS8-E. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Gemalto M2M assumes no liability for customer's failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.

The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment. Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger.

IMPORTANT!

Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.

Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call.

Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

2 Product Concept

2.1 Key Features at a Glance

Feature	Implementation			
General				
Frequency bands	GSM/GPRS/EDGE: Dual band, 900/1800MHz UMTS/HSPA+: Triple band, 900 (BdVIII) / 1800 (BdIII) / 2100MHz (BdI LTE: band, 800 (Bd20) / 900 (Bd8) / 1800 (Bd3) / 2600MHz (Bd7)			
GSM class	Small MS			
Output power (according to Release 99)	Class 4 (+33dBm ±2dB) for EGSM900 Class 1 (+30dBm ±2dB) for GSM1800 Class E2 (+27dBm ± 3dB) for GSM 900 8-PSK Class E2 (+26dBm +3 /-4dB) for GSM 1800 8-PSK Class 3 (+24dBm +1/-3dB) for UMTS 2100, WCDMA FDD Bdl Class 3 (+24dBm +1/-3dB) for UMTS 1800, WCDMA FDD BdIII Class 3 (+24dBm +1/-3dB) for UMTS 900, WCDMA FDD BdVIII			
Output power (according to Release 8)	Class 3 (+23dBm ±2dB) for LTE 2600, LTE FDD Bd7 Class 3 (+23dBm ±2dB) for LTE 1800, LTE FDD Bd3 Class 3 (+23dBm ±2dB) for LTE 900, LTE FDD Bd8 Class 3 (+23dBm ±2dB) for LTE 800, LTE FDD Bd20			
Power supply	$3.3V \le V_{BATT+} \le 4.2V$			
Operating temperature (board temperature)	Normal operation: -30°C to +85°C Extended operation: -40°C to +95°C			
Physical	Dimensions: 33mm x 29mm x 2.2mm Weight: approx. 4.5g			
RoHS	All hardware components fully compliant with EU RoHS Directive			
LTE features				
3GPP Release 9	UE CAT 3 supported DL 100Mbps, UL 50Mbps 2x2 MIMO in DL direction			
HSPA features				
3GPP Release 8 UE CAT. 14, 24 DC-HSPA+ – DL 42Mbps HSUPA – UL 5.76Mbps Compressed mode (CM) supported according to 3GPP TS25				
UMTS features				
3GPP Release 8	PS data rate – 384 kbps DL / 384 kbps UL			

Feature	Implementation			
GSM / GPRS / EGPRS features				
Data transfer	 GPRS: Multislot Class 12 Mobile Station Class B Coding Scheme 1 – 4 EGPRS: Multislot Class 12 EDGE E2 power class for 8 PSK Downlink coding schemes – CS 1-4, MCS 1-9 Uplink coding schemes – CS 1-4, MCS 1-9 SRB loopback and test mode B 8-bit, 11-bit RACH 1 phase/2 phase access procedures Link adaptation and IR NACC, extended UL TBF Mobile Station Class B 			
Software				
AT commands	Hayes, 3GPP TS 27.007 and 27.005, and proprietary Gemalto M2M com-			
Firmware update	Generic update from host application over USB			
Interfaces				
Module interface	Surface mount device with solderable connection pads (SMT application interface). Land grid array (LGA) technology ensures high solder joint reliability and provides the possibility to use an optional module mounting socket. For more information on how to integrate SMT modules see also [3]. This application note comprises chapters on module mounting and application layout issues as well as on additional SMT application development equipment.			
Antenna	50Ohms. GSM/UMTS/LTE main antenna, UMTS/LTE Diversity/MIMO antenna			
USB	USB 2.0 High Speed (480Mbit/s) device interface, Full Speed (12Mbit/s) compliant			
UICC interface	Supported chip cards: UICC/SIM/USIM 3V, 1.8V			
Power on/off, Reset				
Power on/off	Switch-on by hardware signal IGT Switch-off by AT command (AT^SMSO) or IGT Automatic switch-off in case of critical temperature or voltage conditions			
Reset	Orderly shutdown and reset by AT command			
Emergency-off	Emergency-off by hardware signal EMERG_OFF if IGT is not active			
Special Features				
Antenna	SAIC (Single Antenna Interference Cancellation) / DARP (Downlink Advanced Receiver Performance) Rx Diversity (receiver type 3i - 64-QAM) / MIMO			

Feature	Implementation	
Evaluation kit		
Evaluation module	PLS8-E module soldered onto a dedicated PCB that can be connected to an adapter in order to be mounted onto the DSB75.	
DSB75	DSB75 Development Support Board designed to test and type approve Gemalto M2M and provide a sample configuration for application engineering. A special adapter is required to connect the PLS8-E evaluation module to the DSB75.	

2.2 PLS8-E System Overview

Figure 1: PLS8-E system overview

2.3 Circuit Concept

Figure 2 shows a block diagram of the PLS8-E module and illustrates the major functional components:

Baseband block:

- GSM/UMTS controller/transceiver/power supply
- Stacked Flash/RAM memory with multiplexed address data bus
- Application interface (SMT with connecting pads)

RF section:

- RF transceiver
- RF power amplifier/frontend
- RF filter
- Antenna pad

Figure 2: PLS8-E block diagram

3 Application Interface

PLS8-E is equipped with an SMT application interface (LGA pads) that connects to the external application. The host interface incorporates several sub-interfaces described in the following sections:

- Operating modes see Section 3.1
- Power supply see Section 3.2
- USB interface see Section 3.4
- UICC/SIM/USIM interface see Section 3.5
- ADC interface Section 3.6
- GPIO interface Section 3.7
- Control line: PWR_IND see Section 3.8

3.1 Operating Modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

Table 6: Overview of operating modes

Mode	Function				
Normal operation	GSM / GPRS / UMTS / HSPA / LTE IDLE	No data transfer in progress.			
	GPRS DATA	GPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multislot settings).			
	EGPRS DATA	EGPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates and EGPRS configuration (e.g. used multislot settings).			
	UMTS DATA	UMTS data transfer in progress. Power consumption depends on network settings (e.g. TPC Pattern) and data transfer rate.			
	HSPA DATA	HSPA data transfer in progress. Power consumption depends on network settings (e.g. TPC Pattern) and data transfer rate.			
		LTE data transfer in progress. Power consumption depends on network settings (e.g. TPC Pattern) and data transfer rate.			
Power Down	Normal shutdown after sending the AT^SMSO command. Software is not active. Interfaces are not accessible. Operating voltage (connected to BATT+) remains applied.				
Airplane mode	Airplane mode shuts down the radio part of the module, causes the module to log off from the GSM/GPRS network and disables all AT commands whose execution requires a radio connection. Airplane mode can be controlled by AT command (see [1]).				

3.2 Power Supply

PLS8-E needs to be connected to a power supply at the SMT application interface - 4 lines each BATT+ and GND. There are two separate voltage domains for BATT+:

- BATT+_RF with 2 lines for the RF power amplifier supply
- BATT+ with 2 lines for the general power management.

The main power supply from an external application has to be a single voltage source and has to be expanded to two sub paths (star structure). Each voltage domain must be decoupled by application with low ESR capacitors (\geq 47 μ F MLCC @ BATT+; \geq 4x47 μ F MLCC @ BATT+_RF) as close as possible to LGA pads. Figure 3 shows a sample circuit for decoupling capacitors for BATT+.

Figure 3: Decoupling capacitor(s) for BATT+

The power supply of PLS8-E must be able to provide the peak current during the uplink transmission.

All key functions for supplying power to the device are handled by the power management IC. It provides the following features:

- Stabilizes the supply voltages for the baseband using switching regulators and low drop linear voltage regulators.
- Switches the module's power voltages for the power-up and -down procedures.
- Delivers, across the VEXT line, a regulated voltage for an external application.
- LDO to provide SIM power supply.

3.2.1 Minimizing Power Losses

When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage V_{BATT+} never drops below 3.3V on the PLS8-E board, not even in a transmit burst where current consumption can rise to typical peaks of 2A. It should be noted that PLS8-E switches off when exceeding these limits. Any voltage drops that may occur in a transmit burst should not exceed 400mV to ensure the expected RF performance in 2G networks.

The module switches off if the minimum battery voltage (V_{BATT}min) is reached.

Example:

 $V_I min = 3.3V$ Dmax = 0.4V

 V_{BATT} min = V_{I} min + Dmax V_{BATT} min = 3.3V + 0.4V = 3.7V

Figure 4: Power supply limits during transmit burst

3.2.2 Monitoring Power Supply by AT Command

To monitor the supply voltage you can use the AT^SBV command which returns the averaged value related to BATT+ and GND at the SMT application interface.

The module continuously measures the voltage at intervals depending on the operating mode of the RF interface. The duration of measuring ranges from 0.5s in DATA mode to 50s when PLS8-E is in Limited Service (deregistered). The displayed voltage (in mV) is averaged over the last measuring period before the AT^SBV command was executed.

3.3 Power-Up / Power-Down Scenarios

In general, be sure not to turn on PLS8-E while it is beyond the safety limits of voltage and temperature stated in Section 5.1. PLS8-E would immediately switch off after having started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

3.3.1 Turn on PLS8-E

When the PLS8-E module is in Power-down mode, it can be started to Normal mode by driving the IGT (ignition) line to ground. it is recommended to use an open drain/collector driver to avoid current flowing into this signal line. Pulling this signal low triggers a power-on sequence. To turn on PLS8-E IGT has to be kept active at least 100ms. After turning on PLS8-E IGT should be set inactive to prevent the module from turning on again after a shut down by AT command or EMERG_OFF. For details on signal states during startup see also Section 3.3.2.

Figure 5: Power-on with IGT

Note: After power up IGT should remain high. Also note that with a USB connection the USB host may take up to 12 seconds to set up the virtual COM port connection.

The module's ready state can be checked by polling. To do so, try to send characters (e.g. "at") until the module is responding.

3.3.2 Signal States after Startup

Table 7 describes the various states each interface signal passes through after startup and during operation.

Signals are in an initial state while the module is initializing. Once the startup initialization has completed, i.e. when the software is running, all signals are in defined state. The state of several signals will change again once the respective interface is activated or configured by AT command.

Table 7: Signal states

Signal name	Power on reset Duration appr. 60ms	Startup phase Duration appr. 4s	State after first firmware initialization After 4-5s
CCIN	PD and PU (24k)	PU(24k)	I, PU(24k)
CCRST	Not driven (similar PD)	Not driven (similar PD)	O, L ¹
			O, H ²
CCIO	PD(10k)	PD(10k)	PD(10k) ¹
			PU(10k) ²
CCCLK	Not driven (similar PD)	Not driven (similar PD)	O, L ¹
			Clock ²
CCVCC	Off	Off	Off ¹
			1.8V/3V ²
PWR_IND	Z	O, L	O, L
STATUS	PD	PD	PD
EMERG_OFF	PU	I, PU	I, PU
IGT	I, PU	I, PU	I, PU
GPIO110	PD	PD	PD

L = Low level H = High level I = Input	PD = Pull down resistor with appr. 100k ³ PD(k) = Pull down resistor withk PU = Pull up resistor with appr. 100k PU(k) = Pull up resistor with k
O = Output	PU(k) = Pull up resistor withk
	Z = High impedance

^{1.} If CCIN = High level

^{2.} If CCIN = Low level

 $^{^{3.}\,}$ Internal pulls are implemented using JFETs; strengths vary between devices, possible range: 55k...390k

3.3.3 Turn off PLS8-E Using AT Command

The best and safest approach to powering down PLS8-E is to issue the AT^SMSO command. This procedure lets PLS8-E log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power Down mode. After sending AT^SMSO do not enter any other AT commands. To verify that the module turned off it is possible to monitor the PWR_IND signal. A high state of the PWR_IND signal line indicates that the module is being switched off as shown in Figure 6.

Be sure not to disconnect the supply voltage V_{BATT+} before the module's switch off procedure has been completed and the VEXT signal has gone low. Otherwise you run the risk of losing data. Signal states during switch off are shown in Figure 6.

While PLS8-E is in Power-down mode the application interface is switched off and must not be fed from any other source. Therefore, your application must be designed to avoid any current flow into any digital signal lines of the application interface. No special care is required for the USB interface which is protected from reverse current.

Figure 6: Signal states during turn-off procedure

- Note 1: Depending on capacitance load from host application
- Note 2: The power supply voltage (BATT+) may be disconnected resp. switched off only after the VEXT went low.
- Note 3: After module shutdown by means of AT command is completed, please allow for a time period of at least 1s before restarting the module.

3.3.4 Turn off PLS8-E Using IGT Line

The IGT line can be used to switch off PLS8-E. If the module is on, the IGT line must be asserted for at least 2.1s before being released. The module switches off after the line is released. The switch-off routine is identical with the procedure initiated by AT^SMSO, i.e. the software performs an orderly shutdown as described in Section 3.3.3. Before switching off the module wait at least 12 seconds after startup.

Figure 7: Timing of IGT if used to switch off the module

3.3.5 Automatic Shutdown

Automatic shutdown takes effect if:

- The PLS8-E board is exceeding the critical limits of overtemperature or undertemperature
- Undervoltage or overvoltage is detected

The automatic shutdown procedure is equivalent to the power down initiated with the AT^SMSO command, i.e. PLS8-E logs off from the network and the software enters a secure state avoiding loss of data.

Alert messages transmitted before the device switches off are implemented as Unsolicited Result Codes (URCs). The presentation of the temperature URCs can be enabled or disabled with the AT commands AT^SCTM. The URC presentation mode varies with the condition, please see Section 3.3.5.1 to Section 3.3.5.3 for details. For further instructions on AT commands refer to [1].

3.3.5.1 Thermal Shutdown

The board temperature is constantly monitored by an internal NTC resistor located on the PCB. The values detected by the NTC resistor are measured directly on the board and therefore, are not fully identical with the ambient temperature.

Each time the board temperature goes out of range or back to normal, PLS8-E instantly displays an alert (if enabled).

- URCs indicating the level "1" or "-1" allow the user to take appropriate precautions, such as protecting the module from exposure to extreme conditions. The presentation of the URCs depends on the settings selected with the AT^SCTM write command:
 - AT^SCTM=1: Presentation of URCs is always enabled.
 - AT^SCTM=0 (default): Presentation of URCs is enabled during the 15 second guard period after start-up of PLS8-E. After expiry of the 15 second guard period, the presentation will be disabled, i.e. no URCs with alert levels "1" or "-1" will be generated.
- URCs indicating the level "2" or "-2" are instantly followed by an orderly shutdown. The presentation of these URCs is always enabled, i.e. they will be output even though the factory setting AT^SCTM=0 was never changed.

The maximum temperature ratings are stated in Section 5.2. Refer to Table 8 for the associated URCs.

Table 8: Temperature dependent behavior

Sending temperature alert (15sec after PLS8-E start-up, otherwise only if URC presentation enabled)	
^SCTM_B: 1	Caution: Board close to overtemperature limit, i.e., board is 5°C below overtemperature limit.
^SCTM_B: -1	Caution: Board close to undertemperature limit, i.e., board is 5°C above undertemperature limit.
^SCTM_B: 0	Board back to uncritical temperature range, i.e., board is 6°C below its over- or above its undertemperature limit.
Automatic shutdown (URC appears no matter whether or not presentation was enabled)	
^SCTM_B: 2	Alert: Board equal or beyond overtemperature limit. PLS8-E switches off.
^SCTM_B: -2	Alert: Board equal or below undertemperature limit. PLS8-E switches off.

The AT^SCTM command can also be used to check the present status of the board. Depending on the selected mode, the read command returns the current board temperature in degrees Celsius or only a value that indicates whether the board is within the safe or critical temperature range. See [1] for further instructions.

3.3.5.2 Undervoltage Shutdown

If the measured battery voltage is no more sufficient to set up a call the following URC will be presented:

^SBC: Undervoltage.

The URC indicates that the module is close to the undervoltage threshold. If undervoltage persists the module keeps sending the URC several times before switching off automatically.

This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur.

3.3.5.3 Overvoltage Shutdown

The overvoltage shutdown threshold is 100mV above the maximum supply voltage V_{BATT+} specified in Table 17.

When the supply voltage approaches the overvoltage shutdown threshold the module will send the following URC:

^SBC: Overvoltage warning

This alert is sent once.

When the overvoltage shutdown threshold is exceeded the module will send the following URC ^SBC: Overvoltage shutdown before it shuts down cleanly:

This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur.

Keep in mind that several PLS8-E components are directly linked to BATT+ and, therefore, the supply voltage remains applied at major parts of PLS8-E, even if the module is switched off. Especially the power amplifier is very sensitive to high voltage and might even be destroyed.

3.3.6 Turn off PLS8-E in Case of Emergency

Caution: Use the EMERG_OFF line only when, due to serious problems, the software is not responding for more than 5 seconds. Pulling the EMERG_OFF line causes the loss of all information stored in the volatile memory. Therefore, this procedure is intended only for use in case of emergency, e.g. if PLS8-E does not respond, if reset or shutdown via AT command fails.

The EMERG_OFF line is available on the application interface and can be used to switch off the module. To control the EMERG_OFF line it is recommended to use an open drain / collector driver.

To switch off, the EMERG_OFF line must be pulled to ground for longer than 40ms. After the 40ms and an additional delay period of 500ms the module shuts down as shown in Figure 8.

Figure 8: Shutdown by EMERG_OFF signal

Please note that the power supply voltage (BATT+) may be disconnected resp. switched off only after having reached Shut Down as indicated by the PWR_IND signal going high. The power supply has to be available (again) before the module is restarted.

3.4 USB Interface

PLS8-E supports a USB 2.0 High Speed (480Mbit/s) device interface that is Full Speed (12Mbit/s) compliant. The USB interface is primarily intended for use as command and data interface and for downloading firmware.

The USB host is responsible for supplying the VUSB_IN line. This line is for voltage detection only. The USB part (driver and transceiver) is supplied by means of BATT+. This is because PLS8-E is designed as a self-powered device compliant with the "Universal Serial Bus Specification Revision 2.0".

¹⁾ All serial (including R_S) and pull-up resistors for data lines are implemented.

Figure 9: USB circuit

To properly connect the module's USB interface to the host a USB 2.0 compatible connector is required. For more information on the USB related signals see Table 17. Furthermore, the USB modem driver distributed with PLS8-E needs to be installed.

_

gemalto'

²⁾ Since VUSB_IN is used for detection only it is recommended not to add any further blocking capacitors on the VUSB_IN line.

³⁾ If the USB interface is operated in High Speed mode (480MHz), it is recommended to take special care routing the data lines USB_DP and USB_DN. Application layout should in this case implement a differential impedance of 900hm for proper signal integrity.

^{1.} The specification is ready for download on http://www.usb.org/developers/docs/

3.5 UICC/SIM/USIM Interface

PLS8-E has an integrated UICC/SIM/USIM interface compatible with the 3GPP 31.102 and ETSI 102 221. This is wired to the host interface in order to be connected to an external SIM card holder. Five pads on the SMT application interfaceare reserved for the SIM interface.

The UICC/SIM/USIM interface supports 3V and 1.8V SIM cards. Please refer to Table 17 for electrical specifications of the UICC/SIM/USIM interface lines depending on whether a 3V or 1.8V SIM card is used.

The CCIN signal serves to detect whether a tray (with SIM card) is present in the card holder. Using the CCIN signal is mandatory for compliance with the GSM 11.11 recommendation if the mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with PLS8-E and is part of the Gemalto M2M reference equipment submitted for type approval. See Chapter 9 for Molex ordering numbers.

 Table 9: Signals of the SIM interface (SMT application interface)

Signal	Description
GND	Ground connection for SIM. Optionally a separate SIM ground line using e.g., pad N11 may be used to improve EMC.
CCCLK	Chipcard clock
CCVCC	SIM supply voltage.
CCIO	Serial data line, input and output.
CCRST	Chipcard reset
CCIN	Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN signal is active low. The CCIN signal is mandatory for applications that allow the user to remove the SIM card during operation. The CCIN signal is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of PLS8-E.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation. Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed the SIM card during operation. In this case, the application must restart PLS8-E.

Figure 10: UICC/SIM/USIM interface

The total cable length between the SMT application interface pads on PLS8-E and the pads of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance.

To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both lines are not placed closely next to each other. A useful approach is using the GND line to shield the CCIO line from the CCCLK line.

An example for an optimized ESD protection for the SIM interface is shown in Section 3.5.1.

3.5.1 Enhanced ESD Protection for SIM Interface

To optimize ESD protection for the SIM interface it is possible to add ESD diodes to the SIM interface lines as shown in the example given in Figure 11.

The example was designed to meet ESD protection according ETSI EN 301 489-1/7: Contact discharge: ± 4kV, air discharge: ± 8kV.

Figure 11: SIM interface - enhanced ESD protection

3.6 Analog-to-Digital Converter (ADC)

ADC1_IN and ADC2_IN are prepared for general purpose and are designed to measure two independent voltages in the range of 0.3V to 3.075V.

3.7 **GPIO** Interface

PLS8-E has 10 GPIOs for external hardware devices. Each GPIO can be configured for use as input or output. All settings are AT command controlled.

The IO port driver has to be open before using and configuring GPIOs. Before changing the configuration of a GPIO pin (e.g. input to output) the pin has to be closed. If the GPIO pins are not configured or the pins/driver were closed, the GPIO pins are high-Z with pull down resistor. If a GPIO is configured to input, the pin has high-Z without pull resistor. Internal pulls are implemented using JFETs; strengths vary between devices, possible range: 55k...390k.

3.8 Control Signal

3.8.1 PWR_IND Signal

PWR_IND notifies the on/off state of the module. High state of PWR_IND indicates that the module is switched off. The state of PWR_IND immediately changes to low when IGT is pulled low. For state detection an external pull-up resistor is required.

Figure 12: PWR_IND signal

4 Antenna Interfaces

4.1 GSM/UMTS/LTE Antenna Interface

The PLS8-E GSM/UMTS/LTE antenna interface comprises a GSM/UMTS/LTE main antenna as well as a UMTS/LTE Rx diversity/MIMO antenna to improve signal reliability and quality. The interface has an impedance of 50Ω . PLS8-E is capable of sustaining a total mismatch at the antenna interface without any damage, even when transmitting at maximum RF power.

The external antennas must be matched properly to achieve best performance regarding radiated power, modulation accuracy and harmonic suppression. Matching networks are not included on the PLS8-E PCB and should be placed in the host application, if the antenna does not have an impedance of 50Ω .

Regarding the return loss PLS8-E provides the following values in the active band:

Table 10: Return loss in the active band

State of module	Return loss of module	Recommended return loss of application
Receive	≥ 8dB	≥ 12dB
Transmit	not applicable	≥ 12dB
Idle	≤ 5dB	not applicable

4.1.1 Antenna Installation

The antenna is connected by soldering the antenna pads (ANT_MAIN; ANT_DRX_MIMO) and their neighboring ground pads directly to the application's PCB.

Figure 13: Antenna pads (bottom view)

The distance between the antenna pads and their neighboring GND pads has been optimized for best possible impedance. To prevent mismatch, special attention should be paid to these pads on the application' PCB.

The wiring of the antenna connection, starting from the antenna pad to the application's antenna should result in a 50Ω line impedance. Line width and distance to the GND plane need to be optimized with regard to the PCB's layer stack. Some examples are given in Section 4.1.2.

To prevent receiver desensitization due to interferences generated by fast transients like high speed clocks on the external application PCB, it is recommended to realize the antenna connection line using embedded Stripline rather than Micro-Stripline technology. Please see Section 4.1.2 for examples of how to design the antenna connection in order to achieve the required 50Ω line impedance.

For type approval purposes, the use of a 50Ω coaxial antenna connector (U.FL-R-SMT) might be necessary. In this case the U.FL-R-SMT connector should be placed as close as possible to PLS8-E's antenna pad.

4.1.2 RF Line Routing Design

4.1.2.1 Line Arrangement Examples

Several dedicated tools are available to calculate line arrangements for specific applications and PCB materials - for example from http://www.polarinstruments.com/ (commercial software) or from http://web.awrcorp.com/Usa/Products/Optional-Products/TX-Line/ (free software).

Embedded Stripline

This below figure shows line arrangement examples for embedded stripline.

Figure 14: Embedded Stripline line arrangement

Micro-Stripline

This section gives two line arrangement examples for micro-stripline.

Figure 15: Micro-Stripline line arrangement samples

4.1.2.2 Routing Example

Interface to RF Connector

Figure 16 shows a sample connection of a module's antenna pad at the bottom layer of the module PCB with an application PCB's coaxial antenna connector. Line impedance depends on line width, but also on other PCB characteristics like dielectric, height and layer gap. The sample stripline width of 0.33mm is recommended for an application with a PCB layer stack resembling the one of the PLS8-E evaluation board shown in Figure 17. For different layer stacks the stripline width will have to be adapted accordingly.

Figure 16: Routing to application's RF connector

Figure 17: PLS8-E evaluation board layer table

5 Electrical, Reliability and Radio Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings stated in Table 11 are stress ratings under any conditions. Stresses beyond any of these limits will cause permanent damage to PLS8-E.

Table 11: Absolute maximum ratings

Parameter	Min	Max	Unit
Supply voltage BATT+	-0.5	+6.0	V
Voltage at all digital lines in POWER DOWN mode	-0.5	+0.5	V
Voltage at digital lines in normal operation	-0.5	+2.3	V
Voltage at SIM/USIM interface, CCVCC 1.8V in normal operation	-0.5	+2.3	V
Voltage at SIM/USIM interface, CCVCC 3.0V in normal operation	-0.5	+3.4	V
Voltage at ADC pins if the module is powered by BATT+	-0.5	+3.5	V
Voltage at ADC pins if the module is not powered	-0.5	+0.5	V
VEXT maximum current shorted to GND		-300	mA
VUSB_IN, USB_DN, USB_DP	-0.3	5.75	V
Voltage at PWR_IND line	-0.5	5.5	V
PWR_IND input current if PWR_IND= low		2	mA
Voltage at following signals: IGT, EMERG_OFF	-0.5	2.5	V

5.2 Operating Temperatures

Table 12: Board temperature

Parameter	Min	Тур	Max	Unit
Operating temperature range ¹ Normal temperature range Extreme temperature range	+15 -30	+25	+55 +85	္ ့
Extended temperature range ²	-40		+95	°C
Automatic shutdown ³ Temperature measured on PLS8-E board	<-40		>+95	°C

- ^{1.} Operating temperature range according to 3GPP type approval specification.
- Extended operation allows normal mode data transmissions for limited time until automatic thermal shutdown takes effect.
 - Within the extended temperature range (outside the operating temperature range) there will be no inefficient use of the radio spectrum and no harm to the radio network. Also, there should not be any unrecoverable malfunctioning. General performance parameters like Pout or RX sensitivity however may be reduced in their values. The module's life time may also be affected, if deviating from a general temperature allocation model (for details see Section 5.2.1).
- 3. Due to temperature measurement uncertainty, a tolerance on the stated shutdown thresholds may occur. The possible deviation is in the range of ± 2°C at the overtemperature and undertemperature limit.

See also Section 3.3.5 for information about the NTC for on-board temperature measurement, automatic thermal shutdown and alert messages.

Note that within the specified operating temperature ranges the board temperature may vary to a great extent depending on operating mode, used frequency band, radio output power and current supply voltage. Note also the differences and dependencies that usually exist between board (PCB) temperature and ambient temperature as shown in the following Figure 18. The possible ambient temperature range depends on the mechanical application design including the module and the PCB with its size and layout. A thermal solution will have to take these differences into account and should therefore be an integral part of application design.

Figure 18: Board and ambient temperature differences

5.2.1 Temperature Allocation Model

The temperature allocation model shown in Table 13 assumes shares of a module's average lifetime of 10 years (given in %) during which the module is operated at certain temperatures.

Table 13: Temperature allocation model

Module lifetime share (in %) ¹	6	20	65	7	1	1
Module Temperature (in °C)	-40	20	40	75	85	95

^{1.} Based on an assumed average module lifetime of 10 years (=100%).

Any deviations from the above temperature allocation model may reduce the module's life span, for example if the module is operated close to the maximum automatic shutdown temperature not only for 1% but for 20% of its product life.

5.3 Storage Conditions

The conditions stated below are only valid for modules in their original packed state in weather protected, non-temperature-controlled storage locations. Normal storage time under these conditions is 12 months maximum. The modules will be delivered in a packaging that meets the requirements according "IPD/JEDEC J-STD-033B.1" for Low Temperature Carriers.

Table 14: Storage conditions

Туре		Condition	Unit	Reference
Humidity relativ	e: Low High	10 90 at 40°C	%	CbIPC/JEDEC J-STD-033A
Air pressure:	Low High	70 106	kPa	IEC TR 60271-3-1: 1K4 IEC TR 60271-3-1: 1K4
Movement of su	urrounding air	1.0	m/s	IEC TR 60271-3-1: 1K4
Water: rain, drip frosting	ping, icing and	Not allowed		
Radiation:	Solar Heat	1120 600	W/m ²	ETS 300 019-2-1: T1.2, IEC 60068-2-2 Bb ETS 300 019-2-1: T1.2, IEC 60068-2-2 Bb
Chemically activ	ve substances	Not recom- mended		IEC TR 60271-3-1: 1C1L
Mechanically ad stances	ctive sub-	Not recom- mended		IEC TR 60271-3-1: 1S1
Vibration sinusor Displacement Acceleration Frequency	ent n	1.5 5 2-9 9-200	mm m/s ² Hz	IEC TR 60271-3-1: 1M2
Shocks: Shock spector Duration Acceleration		semi-sinusoidal 1 50	ms m/s ²	IEC 60068-2-27 Ea

5.4 Reliability Characteristics

The test conditions stated below are an extract of the complete test specifications.

Table 15: Summary of reliability test conditions

Type of test	Conditions	Standard
Vibration	Frequency range: 10-20Hz; acceleration: 5g Frequency range: 20-500Hz; acceleration: 20g Duration: 20hper axis; 3 axes	DIN IEC 60068-2-6 ¹
Shock half-sinus	Acceleration: 500g Shock duration: 1msec 1 shock per axis 6 positions (± x, y and z)	DIN IEC 60068-2-27
Dry heat	Temperature: +70 ±2xC Test duration: 16h Humidity in the test chamber: < 50%	EN 60068-2-2 Bb ETS 300 019-2-7
Temperature change (shock)	Low temperature: -40×C ±2×C High temperature: +85×C ±2×C Changeover time: < 30s (dual chamber system) Test duration: 1h Number of repetitions: 100	DIN IEC 60068-2-14 Na ETS 300 019-2-7
Damp heat cyclic	High temperature: +55×C ±2×C Low temperature: +25×C ±2×C Humidity: 93% ±3% Number of repetitions: 6 Test duration: 12h + 12h	DIN IEC 60068-2-30 Db ETS 300 019-2-5
Cold (constant exposure)	Temperature: -40 ±2×C Test duration: 16h	DIN IEC 60068-2-1

^{1.} For reliability tests in the frequency range 20-500Hz the Standard's acceleration reference value was increased to 20g.

5.4.1 Bending Tests

From experience with other modules an elongation of up to 200µm/m is acceptable for PLS8-E modules as a result of bending strains.

Tests (based on EN 60068-2-21) showed that if applying a force of 10N at the middle of the module, i.e., the evaluation module with the actual PLS8-E module soldered onto the evaluation PCB as shown in Figure 19, the possible elongation is clearly below the value of $200\mu m/m$. Therefore, a force of 10N is recommended as maximum force.

Please note that these values only apply for a one-off short stress. The module will have to be mounted free of any strains and without being exposed to dynamic pressures.

Figure 19: Bending test setup

5.5 Pad Assignment and Signal Description

The SMT application interface on the PLS8-E provides connecting pads to integrate the module into external applications. The following Table 16 lists the pads' assignments, Figure 20 (bottom view) and Figure 21 (top view) show the connecting pads' numbering plan.

Please note that pads marked "rfu" (reserved for future use) and further qualified as "dnu" (do not use) may be soldered but should not be connected to an external application.

Because with surface mount modules the heat is transported through the solder pads to the external application's PCB, it is generally recommended to solder all pads.

Table 16: Overview: Pad assignments¹

Pad	Signal Name	Pad	Signal Name	Pad	Signal Name
No.		No.		No.	
A4	nc	E2	GND	L2	GND
A5	GND	E3	GND	L3	GND
A6	GND	E4	GND GND	L4	GND
A7 A8	rfu (dnu) GND	E5 E12	rfu (dnu)	L5 L6	rfu (dnu) rfu (dnu)
Ao A9	GND	E12	rfu (dnu)	L7	rfu (dnu)
A10	GND	E14	rfu (dnu)	L8	rfu (dnu)
A10	GND	E15	rfu (dnu)	L9	rfu (dnu)
A12	ANT_DRX_MIMO	E16	rfu (dnu)	L10	rfu (dnu)
A13	GND	F1	GND	L11	rfu (dnu)
B3	nc	F2	GND	L12	rfu (dnu)
B4	GND	F3	GND	L13	rfu (dnu)
B5	GND	F4	GND	L14	CCRST
B6	GND	F13	rfu (dnu)	L15	CCCLK
В7	GND	F14	rfu (dnu)	L16	IGT
B8	GND	F15	rfu (dnu)	M2	GND
В9	GND	F16	GPÌO10	M3	GND
B10	GND	G1	GND	M4	PWR_IND
B11	GND	G2	GND	M5	VEXT
B12	GND	G3	GND	M6	GND
B13	GND	G4	rfu (dnu)	M7	rfu (dnu)
B14	STATUS	G13	rfu (dnu)	M8	rfu (dnu)
C2	GND	G14	GPIO7	M9	rfu (dnu)
C3	GND	G15	GPIO8	M10	rfu (dnu)
C4	GND	G16	GPIO9	M11	rfu (dnu)
C5	GND	H1	GND	M12	ADC2_IN
C6	GND	H2	GND	M13	ADC1_IN
C7	GND	НЗ	GND	M14	CCIN
C8	GND	H4	GND	M15	rfu (dnu)
C9	GND	H13	rfu (dnu)	N3	BATT+_RF
C10	GND	H14	GPIO4	N4	BATT+_RF
C11 C12	GND	H15	GPIO5 GPIO6	N5 N6	VUSB_IN
C12	rfu (dnu) rfu (dnu)	H16 J1	GND	N7	rfu (dnu) rfu (dnu)
C14	rfu (dnu)	J1 J2	GND	N8	rfu (dnu)
C14	rfu (dnu)	J2 J3	GND	N9	rfu (dnu)
D1	GND	J4	GND	N10	rfu (dnu)
D2	GND	J13	GND	N11	GND
D3	GND	J14	GPIO1	N12	rfu (dnu)
D4	GND	J15	GPIO2	N13	BATT+
D5	rfu (dnu)	J16	GPIO3	N14	EMERG_OFF
D6	GND	K1	ANT_MAIN	P4	USB_DP
D7	GND	K2	GND	P5	USB_DN
D8	GND	K3	GND	P6	rfu (dnu)
D9	GND	K4	GND	P7	rfu (dnu)
D10	GND	K5	GND	P8	rfu (dnu)
D11	GND	K12	rfu (dnu)	P9	rfu (dnu)
D12	rfu (dnu)	K13	rfu (dnu)	P10	rfu (dnu)
D13	rfu (dnu)	K14	CCIO	P11	rfu (dnu)
D14	rfu (dnu)	K15	CCVCC	P12	rfu (dnu)
D15	rfu (dnu)	K16	rfu (dnu)	P13	BATT+
D16	rfu (dnu)	L1	GND		
E1	rfu (dnu)				

^{1.} nc = not connected; rfu = reserved for future use; dnu = do not use

Figure 20: PLS8-E bottom view: Pad assignments

Figure 21: PLS8-E top view: Pad assignments

Please note that the reference voltages listed in Table 17 are the values measured directly on the PLS8-E module. They do not apply to the accessories connected.

Table 17: Signal description

Function	Signal name	Ю	Signal form and level	Comment
Power supply	BATT+_RF	I	V_l max = 4.2V V_l norm = 3.8V V_l min = 3.3V during Tx burst on board Imax \approx 2A, during Tx burst (GSM) n Tx = n x 577 μ s peak current every 4.615ms	Lines of BATT+ and GND must be connected in parallel for supply purposes because higher peak currents may occur. Minimum voltage must not fall below 3.3V including drop, ripple, spikes.
	BATT+	I	V_l max = 4.2V V_l norm = 3.8V V_l min = 3.3V during Tx burst on board Imax = 350mA	чтор, прріс, оріксо.
Power supply	GND		Ground	Application Ground
External supply voltage	VEXT	0	CLmax = 1μ F $V_O = 1.80V + 1\% - 5\%$ I_O max = -50 mA	VEXT may be used for application circuits. If unused keep line open. The external digital logic must not cause any spikes or glitches on voltage VEXT.
Ignition	IGT	I	$\begin{split} R_{PU} &\approx 200 k\Omega \\ V_{OH} max = 1.8 V \\ V_{IH} max = 2.1 V \\ V_{IH} min = 1.17 V \\ V_{IL} max = 300 mV \\ Low impulse width > 100 ms \end{split}$	Do not exeed IOmax This signal switches the module ON. It is recommended to drive this line low by an open drain or open collector driver connected to GND.
Emer- gency off	EMERG_OFF	I	$\begin{split} R_{PU} &\approx 40 k \Omega \\ V_{OH} max = 1.8 V \\ V_{IH} max = 2.1 V \\ V_{IH} min = 1.17 V \\ V_{IL} max = 300 mV \\ \sim \sim __ \sim \text{low impulse width} > 40 ms \end{split}$	It is recommended to drive this line low by an open drain or open collector driver connected to GND. If unused keep line open.
Connectiv- ity status	STATUS	0	V _{OL} max = 0.45V at I = 2mA V _{OH} min = 1.35V at I = -2mA V _{OH} max = 1.85V	Status signalling e.g. with ext. LED circuit
SIM card detection	CCIN	I	$\begin{split} R_{PU} &\approx 24.2 k\Omega \\ V_{OH} max = 1.9 V \\ V_{IH} min &= 1.15 V \\ V_{IH} max = 1.9 V \\ V_{IL} max &= 0.4 V \end{split}$	CCIN = Low, SIM card inserted. If unused connect to GND.

Table 17: Signal description

Function	Signal name	Ю	Signal form and level	Comment
3V SIM card interface	CCRST	0	V_{OL} max = 0.45V at I = 2mA V_{OH} min = 2.40V at I = -2mA V_{OH} max = 2.9V	Maximum cable length or copper track should be not longer than 100mm to SIM
	CCIO	I/O	$R_{PU} \approx 4.89.5k\Omega \\ V_{IL} max = 0.76V \\ V_{IL} min = -0.3V \\ V_{IH} min = 1.98V \\ V_{IH} max = 3.35V \\ V_{OL} max = 0.45V \text{ at I} = 2mA \\ V_{OH} min = 2.57V \text{ at I} = -0.05mA \\ V_{OH} max = 3.08V \\ V_{OH} max = 3.08V$	card holder.
	CCCLK	0	V _{OL} max = 0.45V at I = 2mA V _{OH} min = 2.57V at I = -2mA V _{OH} max = 3.08V	
	ccvcc	0	$V_{O}\text{min} = 3.0V$ $V_{O}\text{typ} = 3.05V$ $V_{O}\text{max} = 3.08V$ $I_{O}\text{max} = -50\text{mA}$	
1.8V SIM card interface	CCRST	0	V_{OL} max = 0.45V at I = 2mA V_{OH} min = 1.35V at I = -2mA V_{OH} max = 1.85V	Maximum cable length or copper track should be not longer than 100mm to SIM
	CCIO	I/O	$\begin{split} R_{I} &\approx 4.89.5 k\Omega \\ V_{IL} max &= 0.62 V \\ V_{IL} min &= -0.3 V \\ V_{IH} min &= 1.20 V \\ V_{IH} max &= 2.1 V \\ \end{split} \\ V_{OL} max &= 0.45 V \ at \ I = 2 mA \\ V_{OH} min &= 1.32 V \ at \ I = -0.05 mA \\ V_{OH} max &= 1.82 V \end{split}$	card holder.
	CCCLK	0	V_{OL} max = 0.45V at I = 2mA V_{OH} min = 1.32V at I = -2mA V_{OH} max = 1.82V	
	CCVCC	0	V_{O} min = 1.75V V_{O} typ = 1.80V V_{O} max = 1.82V I_{O} max = -50mA	

Table 17: Signal description

Function	Signal name	Ю	Signal form and level	Comment
Power indi- cator	PWR_IND	0	V_{IH} max = 5.5V V_{OL} max = 0.4V at Imax = 1mA	PWR_IND (Power Indicator) notifies the module's on/off state.
				PWR_IND is an open collector that needs to be connected to an external pull-up resistor. Low state of the open collector indicates that the module is on. Vice versa, high level notifies the power-down mode.
				Therefore, signal may be used to enable external voltage regulators that supply an external logic for communication with the module, e.g. level converters.
USB	VUSB_IN	I	$\begin{aligned} &V_{IN}\text{min} = 3.0V \\ &V_{IN}\text{max} = 5.75V \\ &I_{I}\text{typ} = 150\mu\text{A} \\ &I_{I}\text{max} = 200\mu\text{A} \\ &\text{Cin=1}\mu\text{F} \end{aligned}$	If the USB interface is not used please connect this line to GND. Since VUSB_IN is used for detection only it is recommended not to add any further blocking capacitors on the VUSB_IN line.
	USB_DN	I/O	All electrical characteristics according	If lines are unused keep
	USB_DP	I/O	to USB Implementers' Forum, USB 2.0 Full or High Speed Specification.	lines open.
				USB High Speed mode operation requires a differential impedance of 90Ω.
GPIO interface	GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO9 GPIO10	I/O	V_{IL} max = 0.6V at 30 μ A V_{IH} min = 1.20V at -30 μ A V_{IH} max = 2V V_{OL} max = 0.45V at I = 2mA V_{OH} min = 1.35V at I = -2mA V_{OH} max = 1.85V	If lines are unused keep lines open.
ADC interface	ADC1_IN, ADC2_IN	I	Full specification compliance range $V_{lmin}>=0.3V$ $V_{lmax}<=3.075V$ Degraded accuracy range V_{lmin} 0.05V 0.3V	If unused keep pin open. Prepared for general purpose.
			Ridc>1MOhm Resolution: 12 Bit Offset error: <+-10mV Gain error: <1% analog bandwidth: <16kHz conversation time: 853µs	

5.6 Power Supply Ratings

Table 18 and Table 19 assemble various voltage supply and current consumption ratings of the module.

Table 18: Voltage supply ratings

	Description	Conditions	Min	Тур	Max	Unit
BATT+	Supply voltage	Directly measured at Module. Voltage must stay within the min/max values, including voltage drop, ripple, spikes	3.3	3.8	4.2	V
	Maximum allowed voltage drop during transmit burst	Normal condition, power control level for Pout max			400	mV
	Voltage ripple	Normal condition, power control level for Pout max @ f <= 250 kHz @ f > 250 kHz			120 90	${\sf mV}_{\sf pp} \ {\sf mV}_{\sf pp}$

Table 19: Current consumption ratings

	Description	Conditions	Typical rating	Unit
I _{BATT+} ¹	OFF State supply current	POWER DOWN	40	μΑ
	Average GSM /	IDLE (USB disconnected) @ DRX=2	75	mA
	GPRS supply current	IDLE (USB active) @ DRX=2	90	mA
		GPRS Data transfer GSM900; PCL=5; 1Tx/4Rx	320	mA
		GPRS Data transfer GSM900; PCL=5; 2Tx/3Rx	540	mA
		GPRS Data transfer GSM900; PCL=5; 4Tx/ 1Rx	930	mA
		- @Total mismatch	990	
		EDGE Data transfer GSM900; PCL=5; 1Tx/4Rx	220	mA
		EDGE Data transfer GSM900; PCL=5; 2Tx/3Rx	340	mA
		EDGE Data transfer GSM900; PCL=5; 4Tx/1Rx	570	mA
		GPRS Data transfer GSM1800; PCL=0; 1Tx/4Rx	230	mA
		GPRS Data transfer GSM1800; PCL=0; 2Tx/3Rx	360	mA
		GPRS Data transfer GSM1800; PCL=0; 4Tx/1Rx	590	mA
		EDGE Data transfer GSM1800; PCL=0; 1Tx/4Rx	190	mA
		EDGE Data transfer GSM1800; PCL=0; 2Tx/3Rx	290	mA
		EDGE Data transfer GSM1800; PCL=0; 4Tx/1Rx	460	mA

Table 19: Current consumption ratings

	Description	Conditions	Typical rating	Unit
I _{BATT+} 1	Average WCDMA	IDLE (USB disconnected) @ DRX=6	50	mA
	supply current	IDLE (USB active) @ DRX=6	65	mA
		UMTS Data transfer Band I @+24dBm	560	mA
		UMTS Data transfer Band III @+24dBm	620	mA
		UMTS Data transfer Band VIII @+24dBm	500	mA
		HSDPA Data transfer Band I @+24dBm	590	mA
		HSDPA Data transfer Band III @+24dBm	620	mA
		HSDPA Data transfer Band VIII @+24dBm	510	mA
	Average LTE sup-	IDLE (USB disconnected)	55	mA
	ply current ²	IDLE (USB active)	70	mA
		LTE Data transfer Band 3 @+23dBm - @ 50Ohm - @ Total mismatch	650 830	mA
		LTE Data transfer Band 7 @+23dBm	640	mA
		LTE Data transfer Band 8 @+23dBm	520	mA
		LTE Data transfer Band 20 @+23dBm	520	mA
I _{VUSB_IN}	USB typical and maximum ratings are mentioned in Table 17: VUSB_IN.			

 $^{^{\}rm 1.}$ With an impedance of Z_{LOAD}=50Ohm at the antenna pads. Measured at 25°C and 4.2V - except for POWER DOWN ratings that were measured at 3.4V.

^{2.} Communication tester settings:

⁻ Channel Bandwidth: 5MHz

⁻ Number of Resource Blocks: 25 (DL), 1 (UL)

⁻ Modulation: QPSK

5.7 RF Antenna Interface Characteristics

Table 20: RF Antenna interface GSM / UMTS/LTE (at operating temperature range¹)

Parameter	Conditions	Nominal	Unit
LTE connectivity ²	Band 3, 7, 8, 20	'	'
Receiver Input Sensitivity @ ARP (ch. bandwidth 5MHz)	LTE 800 Band 20	-103	dBm
	LTE 900 Band 8	-104	dBm
	LTE 1800 Band 3	-103	dBm
	LTE 2600 Band 7	-102	dBm
RF Power @ ARP with 500hm Load	LTE 800 Band 20	+23	dBm
	LTE 900 Band 8	+23	dBm
	LTE 1800 Band 3	+23	dBm
	LTE 2600 Band 7	+23	dBm
UMTS/HSPA connectivity ²	Band I, III, VIII		
Receiver Input Sensitivity @ ARP	UMTS 900 Band VIII	-112	dBm
	UMTS 1800 Band III	-111	dBm
	UMTS 2100 Band I	-111	dBm
RF Power @ ARP with 500hm Load	UMTS 900 Band VIII	+24	dBm
	UMTS 1800 Band III	+24	dBm
	UMTS 2100 Band I	+24	dBm
GPRS coding schemes	Class 12, CS1 to CS4		
EGPRS	Class 12, MCS1 to MCS9		
GSM Class	Small MS		
Static Receiver input Sensitivity @ ARP	E-GSM 900	-111	dBm
	GSM 1800	-110	dBm
RF Power @ ARP with 500hm Load GSM	E-GSM 900	33	dBm
	GSM 1800	30	dBm

Table 20: RF Antenna interface GSM / UMTS/LTE (at operating temperature range¹)

Parameter		Conditions	Nominal	Unit
RF Power @ ARP	GPRS, 1 TX	E-GSM 900	33	dBm
with 50Ohm Load		GSM 1800	30	dBm
	EDGE, 1 TX	E-GSM 900	27	dBm
		GSM 1800	26	dBm
	GPRS, 2 TX	E-GSM 900	33	dBm
		GSM 1800	30	dBm
	EDGE, 2 TX	E-GSM 900	27	dBm
		GSM 1800	26	dBm
	GPRS, 3 TX	E-GSM 900	33	dBm
		GSM 1800	30	dBm
	EDGE, 3 TX	E-GSM 900	27	dBm
		GSM 1800	26	dBm
	GPRS, 4 TX	E-GSM 900	33	dBm
		GSM 1800	30	dBm
	EDGE, 4 TX	E-GSM 900	27	dBm
		GSM 1800	26	dBm

^{1.} At restricted temperature range no active power reduction is implemented - any deviations are hardware related

 $^{^{\}rm 2.}$ Applies also to UMTS/LTE Rx diversity/MIMO antenna.

5.8 Electrostatic Discharge

The module is not protected against Electrostatic Discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates a PLS8-E module.

Special ESD protection provided on PLS8-E:

BATT+: Inductor/capacitor

An example for an enhanced ESD protection for the SIM interface is shown in Section 3.5.1.

The remaining interfaces of PLS8-E with the exception of the antenna interface are not accessible to the user of the final product (since they are installed within the device) and are therefore only protected according to the ANSI/ESDA/JEDEC JS-001-2011 requirements.

PLS8-E has been tested according to the following standards. Electrostatic values can be gathered from the following table.

Table 21: Electrostatic values

Specification / Requirements	Contact discharge	Air discharge		
ANSI/ESDA/JEDEC JS-001-2011				
All SMT interfaces	± 1kV Human Body Model	n.a.		
JESD22-A114-F				
All SMT interfaces	± 500V Charge Device Model (CDM)	n.a.		
ETSI EN 301 489-1/7				
BATT+	± 4kV	± 8kV		

Note: Please note that the values may vary with the individual application design. For example, it matters whether or not the application platform is grounded over external devices like a computer or other equipment, such as the Gemalto M2M reference application described in Chapter 8.

6 Mechanics, Mounting and Packaging

6.1 Mechanical Dimensions of PLS8-E

Figure 22 shows a 3D view¹ of PLS8-E and provides an overview of the board's mechanical dimensions. For further details see Figure 23.

Length: 33mm Width: 29mm Height: 2.2mm

Figure 22: PLS8-E - top and bottom view

_

^{1.} The coloring of the 3D view does not reflect the module's real color.

Figure 23: Dimensions of PLS8-E (all dimensions in mm)

6.2 Mounting PLS8-E onto the Application Platform

This section describes how to mount PLS8-E onto the PCBs (=printed circuit boards), including land pattern and stencil design, board-level characterization, soldering conditions, durability and mechanical handling. For more information on issues related to SMT module integration see also [3].

Note: All SMT module pads need to be soldered to the application's PCB. Not only must all supply pads and signals be connected appropriately, but all pads denoted as "Do not use" will also have to be soldered (but not electrically connected) in order to ensure the best possible mechanical stability. Note also that in order to avoid short circuits between signal tracks on an external application's PCB and various markings at the bottom side of the module, it is recommended not to route the signal tracks on the top layer of an external PCB directly under the module, or at least to ensure that signal track routes are sufficiently covered with solder resist.

6.2.1 SMT PCB Assembly

6.2.1.1 Land Pattern and Stencil

The land pattern and stencil design as shown below is based on Gemalto M2M characterizations for lead-free solder paste on a four-layer test PCB and a 110 respectively 150 micronthick stencil.

The land pattern given in Figure 24 reflects the module's pad layout, including signal pads and ground pads (for pad assignment see Section 5.5). Besides these pads there are ground areas on the module's bottom side that must not be soldered, e.g., the position marker. To prevent short circuits, it has to be ensured that there are no wires on the external application side that may connect to these module ground areas.

Figure 24: Land pattern (top layer)

The stencil design illustrated in Figure 25 and Figure 26 is recommended by Gemalto M2M as a result of extensive tests with Gemalto M2M Daisy Chain modules.

Figure 25: Recommended design for 110 micron thick stencil (top layer)

Figure 26: Recommended design for 150 micron thick stencil (top layer)

6.2.1.2 Board Level Characterization

Board level characterization issues should also be taken into account if devising an SMT process.

Characterization tests should attempt to optimize the SMT process with regard to board level reliability. This can be done by performing the following physical tests on sample boards: Peel test, bend test, tensile pull test, drop shock test and temperature cycling. Sample surface mount checks are described in [3].

It is recommended to characterize land patterns before an actual PCB production, taking individual processes, materials, equipment, stencil design, and reflow profile into account. For land and stencil pattern design recommendations see also Section 6.2.1.1. Optimizing the solder stencil pattern design and print process is necessary to ensure print uniformity, to decrease solder voids, and to increase board level reliability.

Daisy chain modules for SMT characterization are available on request. For details refer to [3].

Generally, solder paste manufacturer recommendations for screen printing process parameters and reflow profile conditions should be followed. Maximum ratings are described in Section 6.2.3.

6.2.2 Moisture Sensitivity Level

PLS8-E comprises components that are susceptible to damage induced by absorbed moisture.

Gemalto M2M's PLS8-E module complies with the latest revision of the IPC/JEDEC J-STD-020 Standard for moisture sensitive surface mount devices and is classified as MSL 4.

For additional MSL (=moisture sensitivity level) related information see Section 6.2.4 and Section 6.3.2.

6.2.3 Soldering Conditions and Temperature

6.2.3.1 Reflow Profile

Figure 27: Reflow Profile

Table 22: Reflow temperature ratings

Profile Feature	Pb-Free Assembly
	150°C 200°C 60-120 seconds
Average ramp up rate (T _{Smax} to T _P)	3K/second max.
Liquidous temperature (T _L) Time at liquidous (t _L)	217°C 60-90 seconds
Peak package body temperature (T _P)	245°C +0/-5°C
Time (t_P) within 5 °C of the peak package body temperature (T_P)	30 seconds max.
Average ramp-down rate (T _P to T _{Smax})	6 K/second max.
Time 25°C to maximum temperature	8 minutes max.

6.2.3.2 Maximum Temperature and Duration

The following limits are recommended for the SMT board-level soldering process to attach the module:

- A maximum module temperature of 245°C. This specifies the temperature as measured at the module's top side.
- A maximum duration of 30 seconds at this temperature.

Please note that while the solder paste manufacturers' recommendations for best temperature and duration for solder reflow should generally be followed, the limits listed above must not be exceeded.

PLS8-E is specified for one soldering cycle only. Once PLS8-E is removed from the application, the module will very likely be destroyed and cannot be soldered onto another application.

6.2.4 Durability and Mechanical Handling

6.2.4.1 Storage Life

PLS8-E modules, as delivered in tape and reel carriers, must be stored in sealed, moisture barrier anti-static bags. The shelf life in a sealed moisture bag is an estimated 12 month. However, such a life span requires a non-condensing atmospheric environment, ambient temperatures below 40°C and a relative humidity below 90%. Additional storage conditions are listed in Table 17.

6.2.4.2 Processing Life

PLS8-E must be soldered to an application within 72 hours after opening the MBB (=moisture barrier bag) it was stored in.

As specified in the IPC/JEDEC J-STD-033 Standard, the manufacturing site processing the modules should have ambient temperatures below 30°C and a relative humidity below 60%.

6.2.4.3 Baking

Baking conditions are specified on the moisture sensitivity label attached to each MBB (see Figure 32 for details):

- It is *not necessary* to bake PLS8-E, if the conditions specified in Section 6.2.4.1 and Section 6.2.4.2 were not exceeded.
- It is *necessary* to bake PLS8-E, if any condition specified in Section 6.2.4.1 and Section 6.2.4.2 was exceeded.

If baking is necessary, the modules must be put into trays that can be baked to at least 125°C. Devices should not be baked in tape and reel carriers at any temperature.

6.2.4.4 Electrostatic Discharge

ESD (=electrostatic discharge) may lead to irreversible damage for the module. It is therefore advisable to develop measures and methods to counter ESD and to use these to control the electrostatic environment at manufacturing sites.

Please refer to Section 5.8 for further information on electrostatic discharge.

6.3 Packaging

6.3.1 Tape and Reel

The single-feed tape carrier for PLS8-E is illustrated in Figure 28. The figure also shows the proper part orientation. The tape width is 44mm and the PLS8-E modules are placed on the tape with a 40mm pitch. The reels are 330mm in diameter with 100mm hubs. Each reel contains 500 modules.

6.3.1.1 Orientation

Figure 28: Carrier tape

Figure 29: Roll direction

6.3.1.2 Barcode Label

A barcode label provides detailed information on the tape and its contents. It is attached to the reel.

Figure 30: Barcode label on tape reel

6.3.2 Shipping Materials

PLS8-E is distributed in tape and reel carriers. The tape and reel carriers used to distribute PLS8-E are packed as described below, including the following required shipping materials:

- · Moisture barrier bag, including desiccant and humidity indicator card
- Transportation bag

6.3.2.1 Moisture Barrier Bag

The tape reels are stored inside an MBB (=moisture barrier bag), together with a humidity indicator card and desiccant pouches - see Figure 31. The bag is ESD protected and delimits moisture transmission. It is vacuum-sealed and should be handled carefully to avoid puncturing or tearing. The bag protects the PLS8-E modules from moisture exposure. It should not be opened until the devices are ready to be soldered onto the application.

Figure 31: Moisture barrier bag (MBB) with imprint

The label shown in Figure 32 summarizes requirements regarding moisture sensitivity, including shelf life and baking requirements. It is attached to the outside of the moisture barrier bag.

Figure 32: Moisture Sensitivity Label

MBBs contain one or more desiccant pouches to absorb moisture that may be in the bag. The humidity indicator card described below should be used to determine whether the enclosed components have absorbed an excessive amount of moisture.

The desiccant pouches should not be baked or reused once removed from the MBB.

The humidity indicator card is a moisture indicator and is included in the MBB to show the approximate relative humidity level within the bag. Sample humidity cards are shown in Figure 33. If the components have been exposed to moisture above the recommended limits, the units will have to be rebaked.

Figure 33: Humidity Indicator Card - HIC

A baking is required if the humidity indicator inside the bag indicates 10% RH or more.

6.3.2.2 Transportation Box

Tape and reel carriers are distributed in a box, marked with a barcode label for identification purposes. A box contains 2 reels with 500 modules each.

7 Sample Application

Figure 34 shows a typical example of how to integrate an PLS8-E module with an application.

The PWR_IND line is an open collector that needs an external pull-up resistor which connects to the voltage supply VCC μ C of the microcontroller. Low state of the open collector pulls the PWR_IND signal low and indicates that the PLS8-E module is active, high level notifies the Power-down mode.

If the module is in Power-down mode avoid current flowing from any other source into the module circuit, for example reverse current from high state external control lines. Therefore, the controlling application must be designed to prevent reverse flow.

While developing SMT applications it is strongly recommended to provide test points for certain signals resp. lines to and from the module - for debug and/or test purposes. The SMT application should allow for an easy access to these signals. For details on how to implement test points see [3].

The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for an individual application is very much determined by the overall layout and, especially, the position of components.

Some LGA pads are connected to clocks or high speed data streams that might interfere with the module's antenna. The RF receiver would then be blocked at certain frequencies (self interference). The external application's PCB tracks connected to these pads should therefore be well shielded or kept away from the antenna. This applies especially to the USB and UICC/SIM interfaces.

Disclaimer:

No warranty, either stated or implied, is provided on the sample schematic diagram shown in Figure 34 and the information detailed in this section. As functionality and compliance with national regulations depend to a great amount on the used electronic components and the individual application layout manufacturers are required to ensure adequate design and operating safeguards for their products using PLS8-E modules.

Sample Application

Figure 34: PLS8-E sample application

8 Reference Approval

8.1 Reference Equipment for Type Approval

The Gemalto M2M reference setup submitted to type approve PLS8-E is shown in Figure 35. The module (i.e., the evaluation module) is connected to the DSB75 by means of a flex cable and a special DSB75 adapter. The GSM/UMTS/LTE test equipment is connected via edge mount SMA connectors soldered to the module's antenna pads.

For ESD tests and evaluation purposes, it is also possible connect the module to the GSM/ UMTS/LTE test equipment through an SMA-to-Hirose-U.FL antenna cable and the SMA antenna connectors of the DSB75 adapter.

A further option is to mount the evaluation module directly onto the DSB75 adapter's 80-pin board-to-board connector and to connect the test equipment as shown below.

Figure 35: Reference equipment for type approval

9 Appendix

9.1 List of Parts and Accessories

Table 23: List of parts and accessories

Description	Supplier	Ordering information
PLS8-E	Gemalto M2M	Standard module Gemalto M2M IMEI: Packaging unit (ordering) number: L30960-N3400-A100 Module label number: S30960-S3400-A100-1
PLS8-E Evaluation Module	Gemalto M2M	Ordering number: L30960-N3401-A100
DSB75 Support Box	Gemalto M2M	Ordering number: L36880-N8811-A100
DSB75 adapter for mounting the evaluation module	Gemalto M2M	Ordering number: L30960-N2301-A100
SIM card holder incl. push button ejector and slide-in tray	Molex	Ordering numbers: 91228 91236 Sales contacts are listed in Table 24.
U.FL antenna connector	Hirose or Molex	Sales contacts are listed in Table 24 and Table 25.

Table 24: Molex sales contacts (subject to change)

Molex For further information please click: http://www.molex.com	Molex Deutschland GmbH Otto-Hahn-Str. 1b 69190 Walldorf Germany Phone: +49-6227-3091-0 Fax: +49-6227-3091-8100 Email: mxgermany@molex.com	American Headquarters Lisle, Illinois 60532 U.S.A. Phone: +1-800-78MOLEX Fax: +1-630-969-1352
Molex China Distributors Beijing, Room 1311, Tower B, COFCO Plaza No. 8, Jian Guo Men Nei Street, 100005 Beijing P.R. China Phone: +86-10-6526-9628 Fax: +86-10-6526-9730	Molex Singapore Pte. Ltd. 110, International Road Jurong Town, Singapore 629174 Phone: +65-6-268-6868 Fax: +65-6-265-6044	Molex Japan Co. Ltd. 1-5-4 Fukami-Higashi, Yamato-City, Kanagawa, 242-8585 Japan Phone: +81-46-265-2325 Fax: +81-46-265-2365

Table 25: Hirose sales contacts (subject to change)

Hirose Ltd. For further information please click: http://www.hirose.com	Hirose Electric (U.S.A.) Inc 2688 Westhills Court Simi Valley, CA 93065 U.S.A. Phone: +1-805-522-7958 Fax: +1-805-522-3217	Hirose Electric Europe B.V. German Branch: Herzog-Carl-Strasse 4 73760 Ostfildern Germany Phone: +49-711-456002-1 Fax: +49-711-456002-299 Email: info@hirose.de
Hirose Electric Europe B.V. UK Branch: First Floor, St. Andrews House, Caldecotte Lake Business Park, Milton Keynes MK7 8LE Great Britain Phone: +44-1908-369060	Hirose Electric Co., Ltd. 5-23, Osaki 5 Chome, Shinagawa-Ku Tokyo 141 Japan Phone: +81-03-3491-9741	Hirose Electric Europe B.V. Hogehillweg 8 1101 CC Amsterdam Z-O Netherlands
Fax: +44-1908-369078	Fax: +81-03-3493-2933	Fax: +31-20-6557-469

9.2 Mounting Advice Sheet

To prevent mechanical damage, be careful not to force, bend or twist the module. Be sure it is soldered flat against the host device (see also Section 6.2). The advice sheet on the next page shows a number of examples for the kind of bending that may lead to mechanical damage of the module (the module as part of an external application is integrated into a housing).

Mounting Advice

Do NOT BEND the Module

- By pressing from above

- By mounting under pressure

- By putting objects on top

- By putting objects below

About Gemalto

Gemalto (Euronext NL0000400653 GTO) is the world leader in digital security with 2011 annual revenues of €2 billion and more than 10,000 employees operating out of 74 offices and 14 Research & Development centers, located in 43 countries.

We are at the heart of the rapidly evolving digital society. Billions of people worldwide increasingly want the freedom to communicate, travel, shop, bank, entertain and work - anytime, everywhere - in ways that are enjoyable and safe. Gemalto delivers on their expanding needs for personal mobile services, payment security, authenticated cloud access, identity and privacy protection, eHealthcare and eGovernment efficiency, convenient ticketing and dependable machine-to-machine (M2M) applications.

Gemalto develops secure embedded software and secure products which we design and personalize. Our platforms and services manage these secure products, the confidential data they contain and the trusted end-user services they enable. Our inovations enable our clients to offer trusted and convenient digital services to billions of individuals.

Gemalto thrives with the growing number of people using its solutions to interact with the digital and wireless world.

For more information please visit

 $m2m.gemal to.com, www.facebook.com/gemal to, or Follow@gemal tom2m \ on \ twitter.$

Gemalto M2M GmbH

St.-Martin-Str. 60 81541 Munich Germany

