Attention Is All You Need

Authors: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin

From: Google brain Google research

NIPS 2017

Slides prepared by: Chandra Thapa (July 2020)

Applications of Attention mechanism

- Cyber-security:
 - Attention-Based Automated Feature Extraction for Malware Analysis [1]
 - Neural Malware Analysis with Attention Mechanism [2]
 - How to Make Attention Mechanisms More Practical in Malware Classification [3]
 - I-MAD: A Novel Interpretable Malware Detector Using Hierarchical Transformer [4]
- Phishing email detection
 - Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors and Attention Mechanism [5]
- Fake news detection
 - Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection [6]
 - HGAT: Hierarchical Graph Attention Network for Fake News Detection [7]

^[1] https://www.mdpi.com/1424-8220/20/10/2893

^[2] https://www.sciencedirect.com/science/article/pii/S0167404819300264

^[3] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876839

^[4] https://arxiv.org/abs/1909.06865

^[5] https://ieeexplore.ieee.org/abstract/document/8701426

^[6] https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222713

^[7] https://arxiv.org/abs/2002.04397

Background

• In machine translation: Sequence-to-sequence model

Word embeddings

- A RNN takes two inputs at each time step:
 - Input (e.g., one word of the input sentence, if encoder)
 - Hidden state

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

- Challenging if long sequence context vector is a bottleneck
- (Classic) Attention is introduced [1,2] it allows the model to focus on the relevant parts of the input sequences as needed

- An attention model differs from a classic sequence-to-sequence model in the following ways:
 - the encoder passes *all* the hidden states to the decoder

^[1] Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, https://arxiv.org/abs/1409.0473

- Attention decoder does the following:
 - Look at the set of encoder hidden states it received each encoder hidden states is most associated with a certain word in the input sentence
 - Give each hidden states a score
 - Multiply each hidden states by its softmaxed score, thus amplifying hidden states with high scores, and drowning out hidden states with low scores

How the attention process works?

- The attention decoder RNN takes in the embedding of the <END> token, and an initial decoder hidden state.
- The RNN processes its inputs, producing an output and a new hidden state vector (h4). The output is discarded.
- Attention Step: Use the encoder hidden states and the h4 vector to calculate a context vector (C4) for this time step.
- Concatenate h4 and C4 into one vector.
- Pass this vector through a feedforward neural network (one trained jointly with the model).
- The output of the feedforward neural networks indicates the output word of this time step.
- Repeat for the next time steps

Neural Machine Translation

Transformer

High-level look

Reference: https://jalammar.github.io/illustrated-transformer/

Self-Attention at a high level

- Translating: "The animal didn't cross the street because it was too tired"
- What does "it" in this sentence refer to?
- When the model is processing the word "it", selfattention allows it to associate "it" with "animal".

- Q, K, V are created for each of the encoder's input vector (i.e., embedding of each word)
- These vectors are created by multiplying the embedding by three matrices W^Q , W^K and W^V trained during the training process

- Calculate a score
 - calculated by taking the dot product of the query vector with the key vector of the respective word we're scoring.
 - So if processing the self-attention for the word in position #1, the first score would be the dot product of q1 and k1. The second score would be the dot product of q1 and k2.

- Divide the score by the square root of the dimension of the key vectors
- Take softmax operation determines how much each word will be expressed at this position

- Multiply each value by the sofmax score.
- Sum up the weighted value of vectors

 this is attention value.

Attention mechanism

• Mimics the retrieval of a value v_i for a query q_i based on a key k_i in database.

 $attention(q, \mathbf{k}, \mathbf{v}) = \sum_{i} similarity(q, k_i) \times v_i$

$$S_i = F(q, k_i) = egin{cases} q^T k_i, & \textit{dot product similarity} \ rac{q^T k_i}{\sqrt{d}}, & \textit{scaled dot product} \ q^T W k_i, & \textit{general dot product} \end{cases}$$

Multihead attention

• Compute multiple attentions per query with different weights

$$\begin{split} & \textit{multihead}(Q, K, V) = W^{O} concat(\textit{head}_{1}, \textit{head}_{2}, ..., \textit{head}_{h}) \\ & \textit{head}_{i} = attention(W_{i}^{Q}Q, W_{i}^{K}K, W_{i}^{V}V) \\ & attention(Q, K, V) = softmax\left(\frac{Q^{T}K}{\sqrt{d_{k}}}\right)V \end{split}$$

- Masked multi-head attention: multi-head where some values are masked (i.e., probabilities of masked values are nullified to prevent them from being selected).
- When decoding, an output value should only depend on previous outputs (not future outputs). Hence we mask future outputs.

$$attention(Q,K,V) = softmax\left(\frac{Q^TK}{\sqrt{d_K}}\right)V$$

$$maskedAttention(Q,K,V) = softmax\left(\frac{Q^TK+M}{\sqrt{d_K}}\right)V$$
 where M is a mask matrix of 0's and $-\infty$'s

Multihead attention

Multihead attention

Transformer architecture

- Encoder-decoder based on attention (no recurrence)
- Positional encoding:
 - use sine and cosine functions of different frequencies to encode the position information

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

Encoder

Decoder

Decoder

Reference: https://jalammar.github.io/illustrated-transformer/

Decoder

Transformer

Results

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training C	Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$		

Variants of Transformers

- BERT
- XLNet
- RoBERTa
- GPT-2
- GPT-3
- ALBERT

Thank you for your attention!!