Fizyka

11 lutego 2018

Spis treści

	Kinematyka		
	1.1 Prędkość, droga, czas		
2	Dynamika		
	2.1 Zasady dynamiki Newtona		
	2.2 Rodzaje oddziaływań		
	2.3inne oddziaływania?		
	Zadania z fizyki		
	3.1 Energia		

1 Kinematyka

1.1 Prędkość, droga, czas

Zrobimy głównie zadania matematyczne.

Dwóch korektorów, pracując razem, jest w stanie dokonać poprawek w tekście w czasie 8 godzin. Jeżeli każdy z nich wykonywałby tę pracę sam, to pierwszy, bardziej doświadczony korektor zakończyłby ją o 12 godzin wcześniej niż drugi. W ciągu ilu godzin każdy z korektorów wykonałby tę pracę samodzielnie?

Dwie pracownice urzędu pocztowego miały ostemplować pewną partię listów. Stemplowanie listów pierwsza urzędniczka rozpoczęła o godzinie 8:00, a druga o godzinie 9:00. O godzinie 11:00 panie stwierdziły, że pozostało im jeszcze do ostemplowania 45% listów. Po ukończeniu pracy okazało się, że każda z urzędniczek ostemplowała tyle samo listów. Oblicz, w ciągu ilu godzin każda z pań ostemplowałaby sama wszystkie listy.

Marcin goni Norberta. Początkowa odległość między nimi wynosi 162 m, Krok Marcina ma 0,9 m, krok Norberta 0,75 m. Marcin w ciągu 4 sekund robi 20 kroków, a Norbert w ciągu 5 sekund robi 24 kroki. Po jakim czasie Marcin dogoni Norberta?

Z przystani A w kierunku przystani B wypłynął statek, który poruszał się z prędkością 10 km/h. W cztery godziny później z tej samej miejscowości i w tym samym kierunku wypłynął drugi statek poruszający się z prędkością 12 km/h. Oba statki dotarły jednocześnie do miejscowości B. Jaka jest odległość pomiędzy tymi przystaniami?

Statek wycieczkowy, płynąc z prądem rzeki, pokonuje trasę z miasta A do miasta B w ciągu dwóch godzin, natomiast z powrotem płynie o pół godziny dłużej. Ile czasu będzie płynąć tratwa z miasta A do miasta B?

Kuba pożyczył od taty samochód, którym wyruszył z domu na spotkanie ze swoją dziewczyną. Przed wyjazdem obliczył, że jadąc ze średnią prędkością 60 km/h przybędzie na spotkanie dokładnie o umówionej godzinie. Po przejechaniu (z zaplanowaną prędkością) 60% drogi "złapał gumę", a zmiana koła zajęła mu 16 minut. Teraz, aby zdążyć na spotkanie, musiałby jechać z prędkością 120 km/h. Oblicz odległość od domu Kuby do miejsca spotkania z ukochaną.

1-1R. Dwa samochody poruszają się w tym samym kierunku, z prędkościami v_1 i v_2 po tym samym torze prostym. W pewnej chwili drugi samochód wyprzedza pierwszy o odległość $x_0 > 0$.

Znaleźć: a) czas t_s , po którym się spotkają, b) miejsce spotkania, c) Określić, jak zmienia się w czasie odległość między samochodami, d) Podać w którym z przypadków: $v_1 > v_2$, $v_1 < v_2$, $v_1 = v_2$ zadanie ma rozwiązanie.

1-2. Pociąg A ma długość s_A , pociąg B długość s_B . Gdy pociągi się mijają jadąc w tę samą stronę, to czas, który upływa od chwili gdy lokomotywa A dogoni ostatni wagon pociągu B do chwili gdy ostatni wagon pociągu A minie lokomotywę B, wynosi t_1 . Gdy pociągi jadą w przeciwne strony, czas mijania wynosi t_2 . Obliczyć prędkości v_A i v_B obu pociągów.

1-4. Gdy dwa ciała A i B poruszają się ruchem jednostajnym zbliżając się do siebie po tej samej linii prostej, to odległość między nimi zmniejsza się o $s_1=240$ m w czasie każdych $t_1=3$ s. Jeżeli ciała z tymi samymi prędkościami będą się poruszać w tę samą stronę, to odległość między nimi będzie się zwiększać o $s_2=80$ m w ciągu każdych $t_2=4$ s. Obliczyć prędkości v_A i v_B obu ciał.

2 Dynamika

2.1 Zasady dynamiki Newtona

Zacznijmy od wymienienia wszystkich trzech zasad:

- 1. Ciało na którą działa zerowa siła wypadkowa porusza się bez przyspieszeń.
- 2. Przyspieszenie ciała jest wprost proporcjonalne do wypadkowej siły nań działającej.
- 3. Oddziaływania ciał są zawsze wzajemne. Suma oddziaływań w układach inercjalnych zawsze się zeruje.

2.2 Rodzaje oddziaływań

Nowoczesna fizyka rozróżnia cztery podstawowe oddziaływania:

- 1. Grawitacja,
- 2. Elektromagnetyzm,
- 3. Oddziaływania silne,
- 4. Oddziaływania słabe.

Ostatnie dwa odpowiadają za oddziaływania wewnątrz atomowe - dzięki oddziaływaniom silnym kwarki trzymają się razem i tworzą neutrony i protony, które następnie tworzą jądra atomów. Oddziaływania słabe są znacznie bardziej subtelne i występują w przemianach kwarków i leptonów. Dwa pierwsze oddziaływania znamy znacznie lepiej z życia - grawitacja jest oddziaływaniem mas na siebie, elektromagnetyzm jest oddziaływaniem ładunków elektrycznych na siebie.

2.3 ...inne oddziaływania?

Na lekcjach fizyki poznamy inne siły - siłę tarcia, siłę oporu, siłę wyporu, siłę sprężystości, etc etc. Nie są to manifestacje nowych oddziaływań, tylko doświadczalne przejawy znanych efektów.

3 Zadania z fizyki

Zadanie 3.1. Jaką siłę należy nadać kulce o masie 0.5 kg aby poruszała się z przyspieszeniem 2 $\frac{m}{s^2}$?

Zadanie 3.2. Ciało o masie 2 kg porusza się z przyspieszeniem 5 $\frac{m}{s^2}$. Oblicz wartość działającej siły.

Zadanie 3.3. Na obiekt o masie 5 kg działamy siłą 20 N. Jednocześnie na obiekt działa siła tarcia o wartości 5 N. Oblicz przyspieszenie z jakim porusza się ciało.

Zadanie 3.4. Ciało o masie 10 kg podlega oddziaływaniu siły o wartości 50 N. Na ciało działa również siła tarcia. Obiekt porusza się z przyspieszeniem 2 $\frac{m}{s^2}$. Oblicz wartość siły tarcia.

Zadanie 3.5. Na ciało działa siła 30 N oraz siła tarcia wartości 20 N. Ciało porusza się z przyspieszeniem 20 $\frac{m}{s^2}$. Oblicz masę ciała.

Zadanie 3.6. Ciało o masie 5 kg porusza się po poziomej powierzchni o współczynniku tarcia k = 5. Równanie określające zależność siły tarcia od siły nacisku jest dane jako:

$$F_t = kN$$
,

gdzie F_t to wartość siły tarcia, k to współczynnik tarcia, a N to wartość siły nacisku. Nacisk na poziomą powierzchnię jest równy wartości siły ciężkości (ciężaru) ciała, równej

$$F_c = mg$$
,

gdzie g oznacza przyspieszenie ziemskie. Znajdź przyspieszenie ciała, jeśli działamy na nie siłą o wartości 20 N.

Zadanie 3.7. Jak będzie się różniło rozwiązanie poprzedniego zadania, jeśli zamiast na powierzchni Ziemi przeprowadzimy eksperyment na powierzchni a) Księżyca, b) Marsa, c) Saturna.

Zadanie 3.8. Jaki dystans przeleci ciało w ciągu 5 sekund, jeśli porusza się z przyspieszeniem $10 \frac{m}{s^2}$ i zaczyna ruch z zerową prędkością?

Zadanie 3.9. Ciało porusza się z przyspieszeniem 7 $\frac{m}{s^2}$. W ciągu 2 sekund obiekt pokonał drogę o długości 20 m. Oblicz jaka była prędkość początkowa ciała.

Zadanie 3.10. Obiekt porusza się z przyspieszeniem $a = 5\frac{m}{s}$ i zerową prędkością początkową. Oblicz, ile czasu potrzebuje na pokonanie dystansu 40 m.

Przykładowe wartości przyspieszenia na powierzchni wybranych ciał niebieskich z uwzględnieniem przyspieszenia odśrodkowego[1]:

Ciało niebieskie	przyspieszenie grawitacyjne [m/s²]	względem przyspieszenia ziemskiego [g]
Słońce	273,95	27,9
Merkury	3,7	0,38
Wenus	8,9	0,90
Mars	3,70	0,38
Jowisz	23,1	2,35
Saturn	9,0	0,92
Uran	8,7	0,89
Neptun	11,0	1,12
Ziemia wartość standardowa	9,80665	1
Księżyc	1,622	0,1654

Przypisy

3.1 Energia

Wzór na energię kinetyczną:

$$E_k = \frac{mv^2}{2}. (1)$$

Wzór na energię potencjalną:

$$E_p = mgh. (2)$$

Jednostka energii: dżul [J]. 1 $J=1N\cdot 1m=\frac{kg\cdot m^2}{s^2}.$

Zadanie 3.11. Oblicz energię kinetyczną ciała o masie 2 kg i prędkości $5\frac{m}{s}$.

Zadanie 3.12. Jaką masę musi mieć ciało poruszające się z prędkością $3\frac{m}{s}$, aby jego energia kinetyczna wynosiła 45 J?

Zadanie 3.13. Z jaką prędkością musi poruszać się obiekt o masie 5 kg aby jego energia kinetyczna wynosiła 10 J?

Zadanie 3.14. Ciało o masie 5 kg porusza się z przyspieszeniem 10 $\frac{m}{s^2}$. Jaką energię kinetyczną będzie miało po 10 sekundach?

Zadanie 3.15. Jeśli ciało zostanie rzucone w górę, energia kinetyczna będzie stopniowo przechodziła w energię potencjalną podczas wznoszenia się ciała ku górze, w końcu

^{1. ↑} Dane dotyczące planet zaczerpnięte ze źródła: Planetary Fact Sheet NASA @

wytracając całą energię kinetyczną będąc przez chwilę nieruchome na szczycie trasy. Następnie ciało zacznie opadać, ponownie przekształcając energię potencjalną w kinetyczną podczas wytracania wysokości.

Przez cały czas suma energii pozostanie stała:

$$E_k + E_p = const. (3)$$

Oblicz na jaką wysokość wzniesie się ciało o masie 2 kg, jeśli zostało rzucone ku górze z energią kinetyczną równą 20 J.

Zadanie 3.16. Oblicz na jaką wysokość poleci ciało o masie 1 kg, jeśli zostało rzucone z prędkością 20 $\frac{m}{s}$. Czy znajomość masy była potrzebna?