

#### 2-Dimensional Motion Estimation

CoSupervisors
Prof. Sid-Ahmed
Prof. Ahmadi

RCIM Presentation
December 2006
Elham Shahinfard



#### **Outline**

- Introduction
- 2D Motion and Optical flow
- Optical Flow Equation
- General Methodologies of Motion Estimation Algorithms
  - Parameterization of the motion field → motion representation
  - Formulation of the optimization criteria → optimization criteria
  - Searching for the optimal parameters → optimization method
- Pixel Based Motion Estimation
- Block Based Motion Estimation
- Multiresolution Motion Estimation
- Summary



#### Introduction



#### Applications:

- Preprocessing step for 3D structure extraction and motion estimation
- Video Coding: efficient transmission and storage
- Sampling rate conversion: de-interlacing, frame rate conversion
- Filtering: noise suppression, de-blurring



### **2D Motion and Optical flow**

 Human eye perceives motion by identifying corresponding points at different times

Difference between observed 2D motion and the actual projected 2D

motion

– Example one:

A uniform flat surface sphere rotating under a constant ambient light



### **2D Motion and Optical flow**

#### Example 2:

A stationary sphere, illuminated by a point light source rotating around the sphere

- So, Observed motion may not be the same as the true 2D motion
- Observed or apparent 2D motion is referred to as Optical flow
- Optical flow can be caused by
  - Object motion
  - Camera movements
  - Illumination condition changes





## **Optical Flow Equation**

Under the constant intensity assumption:

$$\psi (x + dx, y + dy, t + dt) = \psi (x, y, t) 
\psi (x + dx, y + dy, t + dt) = \psi (x, y, t) + \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy + \frac{\partial \psi}{\partial t} dt 
\Rightarrow 
\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy + \frac{\partial \psi}{\partial t} dt = 0 
\frac{\partial \psi}{\partial x} v_x + \frac{\partial \psi}{\partial y} v_y + \frac{\partial \psi}{\partial t} = 0 
\nabla \psi^T V + \frac{\partial \psi}{\partial t} = 0$$

$$t + \Delta t$$



# General Methodologies of Motion Estimation Algorithms

- The problem of motion estimation can be converted to an optimization problem
- Solving the problem involves:
  - Parameterization of the motion field 
     motion representation
  - Formulation of the optimization criteria → optimization criteria
  - Searching for the optimal parameters → optimization method









- (1) Pixel Based Representation
- (2) Region Based Representation
- (3) Block Based Representation



- Pixel Based Representation
  - Large number of unknowns for estimation (twice the number of pixels)
  - The solution can be physically incorrect unless proper constraints are imposed
- Region Based Representation
  - Suitable for scenes with multiple moving objects
  - Consists of
    - Segmentation map
    - Several sets of motion parameters
  - Iterative Segmentation and estimation must be used
    - Intensive computation



- Block Based Representation
  - Simple case of region based representation
    - Regions are well defined
  - A simple model characterize the motion within a block
  - Good compromise between accuracy and complexity
  - No constraint on the motion transition between adjacent blocks
- Mesh Based Representation









- (1) Pixel Based Representation
- (2) Region Based Representation
- (3) Block Based Representation



#### **Motion Estimation Criteria**

• Displaced Frame Difference (DFD) Based criteria

$$E_{DED}(dt) = \sum |\psi(x + dx, t + dt) - \psi(x, t)|^{p}$$

P=1: Mean Absolute Error

P=2: Mean Square Error

• Erequency domain Criteria  $\frac{F\{\psi(x+dx,t+dt)\}}{F\{\psi(x,t)\}} = \exp(j2\pi f dx) \qquad f = (f_x, f_y)$ 

Regularization



## **Optimization Methods**

- Exhaustive Search Method
  - Generally use MAE
    - Computational complexity
  - Reaching the global minimum is guaranteed
  - Unfeasible for large number of unknown parameters or large range of parameters variation
  - Various fast algorithms can be developed
- Gradient Based Methods
  - Generally use MSE
    - Mathematical tractability
  - Only reaching to a local minimum is guaranteed
  - Gradient calculation methods accuracy influence the algorithm performance



# **Optimization Methods**

- Phase correlation Methods
- Multiresolution Search Methods
  - Any of the previous methods may take advantage of multiresolution implementation to:
    - Decrease computation amount
    - Defeat local minima problem



- Introduction
- 2D Motion and Optical flow
- Optical Flow Equation
- General Methodologies of Motion Estimation Algorithms
  - Parameterization of the motion field 
     motion representation
  - Formulation of the optimization criteria → optimization criteria
  - Searching for the optimal parameters → optimization method
- Pixel Based Motion Estimation
- Block Based Motion Estimation
- Multiresolution Motion Estimation
- Summary



#### **Pixel Based Motion Estimation**

- Based on calculation of a Motion Vector (MV) for each pixel
  - The problem is ill-defined under constant intensity assumption
    - Could have any number of solutions
  - The problem is indeterminate using optical flow equation
    - Two unknown and one equation for each pixel
- Three general approaches are available
  - Using multipoint neighborhood MV to solve optical flow equations
  - Pel recursive methods
    - Simple algorithms
    - Prediction error is large
    - Error propagation problem



#### **Block Based Motion Estimation**

The problem is to determine a matching block in the target frame

$$E(dx) = \sum_{x \in \beta_m} \left| \psi(X + dX, t + dt) - \psi(X, t) \right|^p$$

 The displacement vector between these two blocks is the MV of the block pixels





#### **Block Based Motion Estimation: Exhaustive Search**

 Determines the optimal matching block by comparing the original block with all candidate blocks



$$(2p+1)^2$$

• Total number of candidates is for a 512x512 frame with N=P=16 the number of operation per frame is 2.85x10^8 so with a frame rate of 30fps the number will be 8.55x10^9 per minute



# Fast Algorithms for Block-Based Motion Estimation

- The key to speed up the EBMA is reducing the number of search candidates
- Various Fast algorithms have been developed
- They differ in the way of skipping candidates unlikely to have small error
- The most popular ones are:
  - Three-step search algorithm
  - 2D-log search algorithm
  - Four-step search algorithm
  - Orthogonal search algorithm
  - One at a time algorithm
  - Cross search algorithm



# **Three-Step Search Algorithm**

- Step 1
- Select an initial step size (s) equal or slightly larger than half of the maximum search range
- Calculate the error for the block at the center of search area and 8 square neighborhood point at the distance of s from center
- Step 2
- Move the center to the point with minimum distortion
- 2. Reduce step size by a factor of two
- 3. If the step size is greater than one, repeat the step 1, otherwise go to step 3
- Step 3
- Final point with minimum distortion is the result





## **Three-Step Search Algorithm**

#### Simulation Results

Frame 0 Image

Image Size 243 x 360



Frame 1 Image



Image Size 243 x 360

**Motion Vectors** 





## **Three-Step Search Algorithm**

- Advantages:
  - Low Complexity in terms of selected candidate locations
  - Good regularity in terms of motion vector generation
- Disadvantages:
  - Complexity factor increases with search area size
  - High data bandwidth



## 2D-Logarithmic Search Algorithm

- Step 1
- 1. Select an initial step size (s)
- 2. Calculate the error for the block at the center of search area and four point at x and y axis at distance of s from center
- Step 2
- 1. If the position of best match is at centre keep the centre unchanged and reduce the step size by half, otherwise the best match becomes the center
- 2. Then step 1 is repeated
- Step 3
- 1. When the step size becomes 1 all the 8 neighbor blocks around the center will be checked for finding the best match





# 2D-Logarithmic Search Algorithm

#### Simulation results

Frame 0 Image



Image Size 243 x 360



Frame 1 Image



Image Size 243 x 360

**Motion Vectors** 





### 2D-Logarithmic Search Algorithm

- Advantage:
  - It is suitable for sequences with fast motion
- Disadvantage
  - The accuracy of algorithm is low when the motion vector is at an angle to x-y axis



# Four Step Search Algorithm

#### Advantage:

- Very Low complexity in terms of selected candidate locations
- More accurate than threestep search
- Memory bandwidth saving
- For small motions, fewer steps calculation are needed
- Disadvantage:
  - Risk of local minima if motion is far away from center





## **Orthogonal Search Algorithm**

- Advantage:
  - Very quick for small motions
- Disadvantage:
  - Local minima may stop the search very soon





## One at a time Algorithm

- Advantage:
  - The procedure can be stopped at any step to ensure low computational cost
- Disadvantage:
  - Local minima





# **Cross Search Algorithm**

- Advantage:
  - Low computational cost
- Disadvantage:
  - Performance is worse than Three-step search





### **Comparison of Fast Block-Based Algorithms**

- The algorithms with more regular structure have a fixed number of computations
- The ones with less regularity have very different best-case and worse-case computation
- Structural regularity is important for VLSI implementation
- Average case complexity is important for software implementation
- To achieve half-pel accuracy a final step can be added to any fast algorithm



### **Comparison of Fast Block-Based Algorithms**

Image size: 243x360

Block size: 16x16

Search range: 32x32

For 20frames per sequence and 3

different sequences



$$MAE = \frac{\sum |\psi(X) - \Psi(X)|}{N^2}$$



- Common difficulties with motion estimation algorithms
  - Local minima; difficulty in finding the global minimum unless it is close to the initial solution
  - High computation amount of minimization process
- Multiresolution approach is a solution for both of these difficulties
  - By searching the solution in a successively finer resolutions
    - Local minima: by first searching the solution in a coarse resolution
    - High computation cost: by limiting the search in each resolution to a small area using the previous level results





$$\tilde{d}_{l}(X) = I(d_{l+1}(X))$$
 I represent the interpolation operator

$$\sum_{X \in \Lambda_l} \left| \psi_{2,l}(X + \widetilde{d}_l(X) + q_l(X)) - \psi_{1,l}(X) \right|^p$$

$$d(X) = q_L(X) + I(q_{L-1}(X) + I(q_{L-2}(X) + \dots + I(q_1(X) + d_0(X)) \dots))$$



As the original level view shows the final MV is (13,11)



Multiresolution estimation:

estimation: 
$$q_1 = (3,3) \implies d_1 = q_1 + I(d_0) = (3,3)$$

$$q_2 = (1,-1) \Rightarrow d_2 = q_2 + I(d_1) = (7,5)$$

$$q_3 = (-1,1) \Rightarrow d_3 = q_3 + I(d_2) = (13,11)$$



- Lower level representations are obtained by spatial low-pass filtering and subsampling
- The most common pyramid structure is one in which resolution is reduced by half
- Any of the block matching algorithms could be used at each resolution
- The benefits of the multiresolution approach are:
  - Minimization problem at a coarse resolution is better-posed than at a finer resolution, so more likely to be the true solution
  - The estimation at each resolution can be done using a smaller search range so the, so we have less number of computation



# **Summary**

- Relation between Image Intensity and Motion
  - Almost all motion estimation algorithms are based on the constant intensity assumption and optical flow equation
- Key Component in Motion Estimation
  - Motion Representation
    - Depends on the way we divide a frame: pixel-based, blockbased, region-based, mesh-based
    - Motion model used for each region of the partition (block, region ...)
    - Different motion representation led to different motion estimation methods



# **Summary**

- Motion Estimation Criterion
  - Motion estimation problem is usually converted to an optimization problem
  - To speed up the search and avoid being trapped in local minim, a multiresolotion procedure can be used



#### References

- [1] Yao Wang, Joern Ostermann, Ya-Qin Zhang, "Video Processing and Communications", Prentice Hall, 2002, ISBN 0-13-017547-1
- [2] M. Tekalp, "Digital Video Processing" Prentice Hall, 1995, ISBN 0-13-190075-7
- [3] Songtao Huang, "Algorithms for Motion Estimation," M.Sc thesis, Univ. of Windsor, 2002
- [4] C. Stiller, J. Konrad, "Estimating Motion in Image Sequences," IEEE signal proc. magazine, vol. 16, issue 4, pp 70-91, 1999
- [5] Yui-Lam Chan, Wan-Chi Siu, "An Efficient Search Strategy for Block Motion Estimation Using Image Features," IEEE trans. on Image Proc., Vol. 10, No. 8, 2001
- [6] Xudong Song, Tihao Chiang, Xiaobing Lee, Ya-Qin Zhang, "New Fast Binary Pyramid Motion Estimation for MPEG2 and HDTV Encoding," IEEE trans. on Circuits and Systems for Video Technology, Vol. 10, No. 7, 2000



# Thanks for your Attention ©