We can say that

Vulnerable bits = data pate x burst duration

- 0. Valnerable bits = 1500x (2x103) = 3 bits
- b. Vulnerable bits = (12 x103) x (2 x103) = 24 bits
- c. Vulnerable bits = (100×103) x(2×103) = 200 bits
- d. Vulnerable bits = (100×106) x (2×103) = 200,000 bits

The last example shows how a noise of small duration can effect so many bits if the data nate is high.

Answer to the question no:12

© 10001 ⊕10000 00001 00000

<u>11100</u> ⊕00000 ⊙ .11100 The codeword for dataword 10 is 101. This code word will be changed to 010 if a 3-bits burst error occurs. This pattern is not one of the Valid Codewords, So the receiver detects the error and discards the received pattern.

Answer to the question no: 14

The codeword for dataword 10 is 10101. This codeword will be changed to 01001 if a 3 bit burst error occurs. This pattern is not one of the Valid codewords, so the receiver discards the received pattern.

part e and d show that the distance a codeword and itself is 0.

- a. For error detection dmin = S+1 = 2+1 = 3
- b. For enror Correction dmin = 21+1 = 2x2+1=5
- C. For ennor section → dmin=S+1=3+1=4
 For ennor connection → dmin=2+1=2×2+1=5
- d. For error detection dmin = S+1 = 6+1=7

 For error correction dmin = 2+1 = 2x2+1=5

 Therefore dmin should be 7.

Answer to the question no: 17

- 0. 01
- b. error
- e. 00
- e. error

we show that the exclusive-or of the second and third code word

is not in the code. The code is not linear.

Answer to the question no: 19

1. (1 st)
$$\oplus$$
 (2nd) = (2nd)

- a. Dataword: 0100 -> codeword: 0100011 -> Carrupted: 0010011
 This pattern isn't in the table -> Connectly discarded
- b. Dataword: 0111- Codeword: 0111001 Corrupted: 1111000
 This pattern isn't in the table Correctly discared
- c. Dataword: 1111 Codeword: 1111111 Consupted: 0101116

 This pattern is in the table Froneously accepted as
- d. Dataword: 0000 Gdeword: 0000000 Carrupted: 1101000
 This pattern is in the table Ennoneously accepted as.
 1107

Answer to the question no: 21

.a. Dataword: 0100 - Codeword: 0100011 - Committed: 1100011 - S25150 = 110 - Connected Codeword: 0100011 - dataword: 0100

The dataword is correctly founded.

C. Datawond: 1111- & Gdewond: 111111- Connupted: 0111110- Sisso: 111Connected datawond: 0101110 - datawond: 0101
This datawond is found but inconnect.

d. Dataword: 0000 - Gdeword: 0000000 - Corrupted: 1100001 - S2S1S0: 100 - Corrected dataword: 1100101 - dataword: 1100

This dataword is found but incorrect.

Answer to the question no: 22

- a. If we notate 0101100 one bit, the nesult is 0010110, which is in the code. If we notate 0101100 two bits the pesult is 0001011, which is in the code.
- b. The xoring of the two codewonds

which is in the eode.

We need to find $k=2^{m}-1-m \ge 11$. We use trial and ennor to found the night answer.

a. Let m=1 $k=2^m-1-m=2^1-1-1=0$ (not acceptable)

b. Let m=2 $k=2^n-1-2=1$ (not acceptable)

c. Let m=3 $k=2^n-1-2=4$ (not acceptable)

d. Let m=4 $k=2^4-1-4=11$ (acceptable)

The code is C(15,11) with $d_{min}=3$

Answer to the question no: 29

a. $(x^3+x^4+x+1)+(x^4+x^4+x+1)=x^4+x^3$ b. $(x^3+x^4+x+1)-(x^4+x^4+x+1)=x^4+x^3$

C. $(x^3 + x^2) \times (x^4 + x^2 + x + 1) = x^7 + x^6 + x^5 + x^2$

d. $(x^3+x^2+x+1)/(x^2+1) = x+1$ (reminder is 0)

a. 101110 - x5+x3+x+x

b. 101110 -- 101110000 (Three Zeno's added to the right

C. $\lambda^{3} \times (\lambda^{5} + \lambda^{3} + \lambda^{4} + \lambda^{5} + \lambda^{6} + \lambda^{5} + \lambda^{4})$

d. 101110-10 (The four nightmost bits are deleted)

e. x4 x (x5+x3+x+x)= x (Negative power are deleted)

Answer to the question no: 26

To detect Single bit ennous, a CRC generator must have at least two terms and the coefficient of xo must be non-zero.

a. x3+x+1 - It meets both enities

b. x4+x — It meets the first (niteria, but not the Second.

e. 1 - It meets the Second Cniteria, but not the first.

d. x+1-1+ meets both (nifenia.

CRC-8 generator is x8+x+x+1

- of x° is 1. It can detect a Single bit error.
- b. The polynomial is of degree 8. which means the number of checkbits r=8. It will defect all the brust errors of size 8 or less.
- c. Burst error of size 9 are detected most of the time, but they slip by with probability (1/2)^n-1 or (1/2)8-1 ≈ 0.008. This means 8 out of 1000 burst errors of size 9 are left undetected.
- d. Burst of errors of size 15 are defected most of the time, but slip by with probability (2) or (2) a 6.004. This means 4 out of 1000 burst errors of size 15 are left undetected.

This generator is $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{11} + x^{10} + x^$

- a. It has more than one term and the co-efficient of x° is 1. It defects all Single bit error.
- b. The polynomial is of degree 37, which means that the number of checkbits h=32. It will detect all burst enrors of size 32 or less.
- c. Burst enrors of size 33 are detected most of the time, but they slip by with mobability $(\frac{1}{2})^{n-1}$ or $(\frac{1}{2})^{32-1} \approx 465 \times 10^{-12}$. This means 465 out of 10^{12} burst enrors of size 33 are lefter Undetected.
- d. Burst ennous of Size 55 are detected most of the time, but they are slipped with probability (1) or (2) 22 \approx 233×1512. This means 233 out of 1012 burst ennous of size 55 are left undetected

We need to add all bits modulo-2 (xoring). However, it is Simpler to count the number of 1s and make them even by adding a 0 or a 1. we have shown the panity bit in the codewond in colon separate for emphasis.

Datawond Number of 1s panity Codewond

i.
$$1001011 \rightarrow 4 \text{ (even)} \rightarrow 0 \rightarrow 0 \text{ 1001011}$$

b. $0001100 \rightarrow 2 \text{ (even)} \rightarrow 0 \rightarrow 0 \text{ 0001100}$

c. $1000000 \rightarrow 1 \text{ (odd)} \rightarrow 1 \rightarrow 1 \text{ 10000000}$

d. $1110111 \rightarrow 6 \text{ (even)} \rightarrow 0 \rightarrow 0 \text{ 1110111}$

Answer to the question no: 33

Dataword: 10100111

Divison: 10111

Senden 10111) 10100111 0000

0.10110

\$ \$ O111

(Reminden)

Codeword: 101001110001

0 0011

Remind (no ennon)

Dataword: 10100111

Answer to the question no: 31 Sender: Dataword: x7+x5+x+x+1 Divison: x1+x+x+1 x1+x1+x1+x2+x+1 26+25+29+28+27 x⁶+x⁵+x⁴+ x⁸ 27 +25+24+23 x5+x9+u3 x⁵ +x³+x+x

x⁴ +x⁷+x 24+4×+n+1 Leceiver: Reminder 1 Codeword: x"+x9+x6+x5+x4+1 27+x4+x3+x+1 x4+x++1) x11+x9+x6+x5+x4+1 x6+x5+x4+1+x8+x7 x6+x5+x4 x8 24+1 +x5+x4+x3 x5+x4+x3+1 25 + n3 + n + n 24+2×+2+1 24+x++++1 Reminder

Dataword: x7+x5+x+n+1

a. checksum at the Sender Site

b. checksum at the neceiver Site (no enno)

c. checksum at the necesiven Site (one aught ennow)

d. checksum at the neceiver site (two ernor, but not caught).