CAO Assignment Prashanth.S (19MID0020)

1 = 11 2

Addition

Augend => -5 => 10101

Addard => -3 => 10011

> 0101 0011

1000

Since the sign is -ve (I I 000)

My PC specification:

Model - HP 14ce1001tx

Processor - Intel® core(tm) i5-8265u cpu @ 2.30ghz (14 nm Processor)

- 16 gb (LPDDR 4 2133)

internal - 500 gb → ssd

1 tb \rightarrow hdd

Type: - 64-bit processor

OS - Windows 10 Home Single Language

Intel® Core™ i5-8265U Processor

6M Cache, up to 3.90 GHz

Performance Specifications

Number of Cores	4
Number of Threads	8
Processor Base Frequency	1.60 GHz
Max Turbo Frequency	3.90 GHz
Cache	6 MB Intel® Smart Cache
Bus Speed	4 GT/s
Intel® Turbo Boost Technology	
2.0 Frequency‡	3.90 GHz
TDP	15 W
Configurable TDP-up Frequency	1.80 GHz
Configurable TDP-up	25 W
Configurable TDP-down	
Frequency	800 MHz
Configurable TDP-down	10 W

Memory Specifications

Max Memory Size (dependent	
on memory type)	64 GB
Memory Types	DDR4-2400, LPDDR3-2133
Max # of Memory Channels	2
Max Memory Bandwidth	37.5 GB/s
ECC Memory Supported ‡	No

CPU Utilization

Utilization Speed Base speed: 1.80 GHz

8% 1.78 GHz Sockets: 1

Processes Threads Handles

Processes Threads Handles Logical processors: 8

259 3229 117118 Virtualization: Enabled

Up time L1 cache: 256 KB

L2 cache:

1.0 MB

1:09:08:58 L3 cache: 6.0 MB

Memory Specification

In use (Compressed) Available Speed: 2133 MHz

7.2 GB (192 MB) 8.5 GB Slots used: 1 of 1

Form factor: SODIMM
Committed Cached Hardware reserved: 113 MB

10.0/18.3 GB 6.1 GB

Paged pool Non-paged pool

599 MB 847 MB

SSD Specification

Active time Average response time Capacity: 466 GB

1% 3.4 ms Formatted: 466 GB

System disk: Yes

Read speed Write speed Page file: No OKB/s 104 KB/s Type: SSD

HDD Specification

Active time Average response time Capacity: 932 GB

4% 3.0 ms Formatted: 932 GB

Read speed Write speed System disk: No Page file: No

115 KB/s 16.4 KB/s Type: No

b) Instruction

- 1) My Processor is compactible with 64 bit instruction set.
- 2)An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out.
- 3) My processor uses x86 64-bit architecture.

Basically my processor supports following types of instructions (x86_instruction):

- 4) Data Transfer Instructions
- 5) Arithmetic Instructions
- 6)Bit Manipulation Instructions
- 7) Program Execution Transfer Instructions (Branch & Loop Instructions)
- 8)Processor Control Instructions
- 9) Iteration Control Instructions
- 10)Interrupt Instructions
- 11)Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).
- 12) String Instructions

c). Arithmetic Instructions (of x86 instruction set)

These instructions are used to perform arithmetic operations like addition, subtraction, multiplication, division, etc.

Following is the list of instructions under this group –

Instructions to perform addition

- 1)ADD Used to add the provided byte to byte/word to word.
- 2)ADC Used to add with carry.
- 3)INC Used to increment the provided byte/word by 1.
- 4)AAA Used to adjust ASCII after addition.
- 5)DAA Used to adjust the decimal after the addition/subtraction operation.

Instructions to perform subtraction

- 6) SUB Used to subtract the byte from byte/word from word.
- 7) SBB Used to perform subtraction with borrow.
- 8) DEC Used to decrement the provided byte/word by 1.
- 9) NPG Used to negate each bit of the provided byte/word and add 1/2's complement.
- 10) CMP Used to compare 2 provided byte/word.
- 11) AAS Used to adjust ASCII codes after subtraction.
- 12) DAS Used to adjust decimal after subtraction.

Instruction to perform multiplication

- 13) MUL Used to multiply unsigned byte by byte/word by word.
- 14) IMUL Used to multiply signed byte by byte/word by word.
- 15) AAM Used to adjust ASCII codes after multiplication.

Instructions to perform division

- 16) DIV Used to divide the unsigned word by byte or unsigned double word by word.
- 17) IDIV Used to divide the signed word by byte or signed double word by word.
- 18) AAD Used to adjust ASCII codes after division.
- 19) CBW Used to fill the upper byte of the word with the copies of sign bit of the lower byte.
- 20) CWD Used to fill the upper word of the double word with the sign bit of the lower