Lecture 4

Tian Han

Outline

• Multi-class classification

K-nearest neighbor

Tasks

Methods

Algorithms

Example 1: face recognition.

#classes = #people

Example 2: hand-written digit recognition.

• #classes = 10

Can we use linear regression?

Looks like "3"
$$\rightarrow f = \mathbf{w}^T \mathbf{x}$$
 is close to 3

X

Looks like "8" $\rightarrow f = \mathbf{w}^T \mathbf{x}$ is close to 8

Can we use linear regression?

Looks like "3" \rightarrow $f = \mathbf{w}^T \mathbf{x}$ is close to 3 $f = \mathbf{w}^T \mathbf{x} \text{ is } 4.835$ Looks like "8" $\rightarrow f = \mathbf{w}^T \mathbf{x}$ is close to 8

Can we use linear regression?

Linear regression believes x is "5"

X

Looks like "8" $\rightarrow f = \mathbf{w}^T \mathbf{x}$ is close to 8

The Right Approach

Preliminaries

One-Hot Encoding

- #Class = 10 (e.g., in digit recognition).
- One-hot encode of y = 3:

$$\mathbf{y} = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$$

Softmax Function

- $\phi \in \mathbb{R}^K$
- $\mathbf{p} = \operatorname{SoftMax}(\mathbf{\phi}) \in \mathbb{R}^K$; its entries are

$$p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$$
, for $k = 1, \dots, K$.

Cross-Entropy

• The vectors \mathbf{y} and \mathbf{p} are K-dim vectors with nonnegative entries.

$$y_1 + \dots + y_K = 1$$
 and $p_1 + \dots + p_K = 1$.

Cross-entropy between y and p:

$$H(\mathbf{y}, \mathbf{p}) = -\sum_{l=1}^{K} y_l \log p_l$$
.

Cross-Entropy

• The vectors \mathbf{y} and \mathbf{p} are K-dim vectors with nonnegative entries.

$$y_1 + \dots + y_K = 1$$
 and $p_1 + \dots + p_K = 1$.

Cross-entropy between y and p:

$$H(\mathbf{y}, \mathbf{p}) = -\sum_{l=1}^{K} y_l \log p_l$$
.

- Cross-entropy measures the dissimilarity between y and p.
- When used as loss function, H(y, p) can be replaced by

$$\left|\left|\mathbf{y}-\mathbf{p}\right|\right|_{2}^{2}$$
 or $\left|\left|\mathbf{y}-\mathbf{p}\right|\right|_{1}$.

Softmax Classifier: Model Formulation

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

Remark: If the given labels are scalars $y_1, \dots, y_n \in \{0, 1, \dots, K-1\}$, turn them to K-dim vectors $\mathbf{y}_1, \dots, \mathbf{y}_n \in \{0, 1\}^K$ using one-hot encoding.

Example: One-hot encode of $y_i = 3$ (where K=10):

 $\mathbf{y}_i = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features K: #classes

• $\Phi = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$ Here, \mathbf{x} is one of $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.
- Softmax function: $p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$.
 - $p_1 + \cdots + p_K = 1$.
 - Thus $\mathbf{p} = [p_1, \cdots, p_K] \in \mathbb{R}^K$ is a distribution.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.
- Softmax function: $p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$.
- Cross-entropy loss: $H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^{K} y_k \log p_k$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\min_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$$
, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.

Cross-entropy loss

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Softmax classifier: $\min_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$
 - $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.

- The role of minimizing $H(\mathbf{y}_i, \mathbf{p}_i)$ is making \mathbf{p}_i similar to \mathbf{y}_i .
- $H(\mathbf{y}_i, \mathbf{p}_i)$ can be replaced by $||\mathbf{y}_i \mathbf{p}_i||_2^2$. In practice, cross-entropy works better.

Softmax Classifier: Algorithm

Tasks

Methods

Algorithms

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

= 1

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$$
 and $H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \mathbf{\phi}_j + \log(\sum_{j=1}^K e^{\mathbf{\phi}_j}).$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\begin{array}{c} \phi_1 \\ \phi_2 \\ \vdots \\ \psi_{r} \\ \text{(the r-th row of W)} \end{array}$$

Chain rule:
$$\frac{\partial H}{\partial \mathbf{w}_{r:}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w}_{r:}} \cdot \frac{\partial H}{\partial \phi_q}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$$
 and $H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \mathbf{\phi}_j + \log(\sum_{j=1}^K e^{\mathbf{\phi}_j}).$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} .$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

•
$$\phi_q = \mathbf{x}^T \mathbf{w}_{q:}$$
.

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

•
$$\phi_q = \mathbf{x}^T \mathbf{w}_{q:}$$
.

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \begin{bmatrix} \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \left| \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} \right| \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \left| \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \right| \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{q:}}{\partial \mathbf{w}_{1:}} = \mathbf{0}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \left| \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} \right| \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \left| \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \right| \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{q:}}{\partial \mathbf{w}_{1:}} = \mathbf{0}$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{1}}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{q}}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{q}}.$$

$$\bullet \frac{\partial H}{\partial \phi_q} = -y_q + \frac{e^{\phi_q}}{\sum_{j=1}^K e^{\phi_j}} = -y_q + p_q.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{q}}.$$

$$\bullet \frac{\partial H}{\partial \phi_q} = -y_q + \frac{e^{\phi_q}}{\sum_{j=1}^K e^{\phi_j}} = -y_q + p_q.$$

$$\bullet \rightarrow \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \left(-y_q + p_q \right)$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \, \frac{\partial H}{\partial \mathbf{w}_{q}} = (p_q - y_q) \cdot \mathbf{x} \, .$$

$$\bullet \frac{\partial H}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial H}{\partial \mathbf{w}_{1:}^T} \\ \frac{\partial H}{\partial \mathbf{w}_{2:}^T} \\ \vdots \\ \frac{\partial H}{\partial \mathbf{w}_{K:}^T} \end{bmatrix} = \begin{bmatrix} (p_1 - y_1) \cdot \mathbf{x}^T \\ (p_2 - y_2) \cdot \mathbf{x}^T \\ \vdots \\ (p_K - y_K) \cdot \mathbf{x}^T \end{bmatrix} = (\mathbf{p} - \mathbf{y}) \cdot \mathbf{x}^T.$$

Stochastic Gradient Descent

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Model: $\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$ $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^{K} y_{i,k} \log(p_{i,k})$.
- A (stochastic) gradient: $\mathbf{G}_i = \frac{\partial H(\mathbf{y}_i, \mathbf{p}_i)}{\partial \mathbf{W}} = (\mathbf{p}_i \mathbf{y}_i) \cdot \mathbf{x}_i^T \in \mathbb{R}^{K \times d}$.

Stochastic Gradient Descent

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Model: $\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$
 - $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.
- A (stochastic) gradient: $\mathbf{G}_i = \frac{\partial H(\mathbf{y}_i, \mathbf{p}_i)}{\partial \mathbf{W}} = (\mathbf{p}_i \mathbf{y}_i) \cdot \mathbf{x}_i^T \in \mathbb{R}^{K \times d}$.

SGD Algorithm:.

- 1. Randomly sample i from $\{1, 2, \dots, n\}$.
- 2. Compute G_i using (\mathbf{x}_i, y_i) .
- 3. $\mathbf{W} \leftarrow \mathbf{W} \alpha \mathbf{G}_i$.

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

What is the predicted class?

$$\phi' = \begin{bmatrix} 0.9 \\ -5 \\ 10 \\ -20 \\ 0 \end{bmatrix}$$

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

Limitations of Softmax Classifier

#Parameter v.s. #Classes

#Parameter v.s. #Classes

- Suppose #features = 1K.
- Suppose #classes = 10 (e.g., digit recognition).
 - $1K \times 10 = 10K$ parameters.
- Suppose # classes = 1K (e.g., ImageNet image recognition).
 - $1K \times 1K = 1M$ parameters.
- Suppose # classes = 1M (e.g., face recognition).
 - $1K \times 1M = 1G$ parameters \rightarrow Heavy computation and memory costs.

#Parameter v.s. #Classes

- Suppose #features = 1K.
- Suppose #classes = 10 (e.g., digit recognition).
 - $1K \times 10 = 10K$ parameters.
- Suppose # classes = 1K (e.g., ImageNet image recognition).
 - $1K \times 1K = 1M$ parameters.
- Suppose # classes = 1M (e.g., face recognition).
 - $1K \times 1M = 1G$ parameters \rightarrow Heavy computation and memory costs.
- What if # classes = 1G? (E.g., face recognition for all the Chinese citizens.)

Nearest Neighbor Methods

K-Nearest Neighbor (KNN)

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

How to classify an test feature vector **x**'?

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

How to classify an test feature vector **x**'?

k-Nearest Neighbor (KNN):

- Find the k nearest neighbors (NN) of \mathbf{x}' .
- Let the *k* NNs vote.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of x'.
- Let the NNs vote.

Question: How to set k?

- Treat k as hyper-parameter.
- Tune k using cross-validation.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to measure similarity?

- Cosine similarity: $sim(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{||\mathbf{x}||_2 ||\mathbf{x}'||_2}$.
- Gaussian kernel: $sim(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{1}{\sigma^2} \left| |\mathbf{x} \mathbf{x}'| \right|_2^2\right)$.
- Laplacian kernel: $sim(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{1}{\sigma}||\mathbf{x} \mathbf{x}'||_{1}\right)$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to find the k nearest neighbors?

- Naïve algorithm
 - compute all the similarities $sim(\mathbf{x}_1, \mathbf{x}'), \dots, sim(\mathbf{x}_n, \mathbf{x}')$
 - Sort the scores and find the top k.
 - O(nd) time complexity (n: #samples, d: # features).
- Efficient algorithms (to be discussed later).

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to vote?

Option 1: Every neighbor has the same weight.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to vote?

- Option 1: Every neighbor has the same weight.
- Option 2: Nearer neighbor has higher weight.
 - E.g., weight_i = $sim(\mathbf{x}_i, \mathbf{x}')$

Tasks

Methods

Algorithms

KNN: Naïve Algorithm

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Algorithm: find the k nearest neighbors to \mathbf{x}' .

- Naïve algorithm
 - compute all the similarities $sim(\mathbf{x}_1, \mathbf{x}'), \dots, sim(\mathbf{x}_n, \mathbf{x}')$ and find the top k.
- Training: no training at all.
- Test: for each query, O(nd) time complexity

KNN: Efficient Algorithm

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Question: find your nearest post office (given longitude & latitude).

Question: find your nearest post office (given longitude & latitude).

Data: n = 30,000 post offices' latitude and longitude:

- Post office 1: (lat₁, lon₁)
- Post office 2: (lat₂, lon₂)
- Post office 3: (lat₃, lon₃)
- Post office 4: (lat₄, lon₄)

•

• Post office n: (lat_n, lon_n)

Query: your own latitude and longitude:

• (40.74627, -74.02431)

Question: find your nearest post office (given longitude & latitude).

Data: n = 30,000 post offices' latitude and longitude:

- Post office 1: (lat₁, lon₁)
- Post office 2: (lat₂, lon₂)
- Post office 3: (lat₃, lon₃)
- Post office 4: (lat₄, lon₄)

Query: your own latitude and longitude:

• (40.74627, -74.02431)

Question: Which is your nearest post office?

•

• Post office n: (lat_n, lon_n)

Training:

 Vector quantization (build landmarks)

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

 Compare your location with all the landmarks and find the nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

 Compare your location with all the landmarks and find the nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

- Compare your location with all the landmarks and find the nearest landmarks.
- Compare with the postal offices assigned to the landmarks.

KNN: Efficient Algorithms

- Fast algorithms
 - Vector Quantization
 - KD-tree
 - Locality sensitive hashing

- More resources:
 - KNN Search (Wikipedia)

Summary

KNN method for multi-class classification.

- KNN's advantage over Softmax classifier:
 - When #class is huge, Softmax classifier is expensive.
 - E.g., in the face recognition problem, #class can be millions.

Summary

- Training: partition the feature space to regions.
- Prediction (for a test feature vector x'):
 - 1. Find the nearest regions.
 - 2. Retrieve all the training feature vectors in the regions.
 - 3. Compare \mathbf{x}' with the retrieved feature vectors (using similarity score) and return the k nearest.
 - 4. Weighted/unweighted votes by the k nearest neighbors.

A few words about matrix multiplication

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$.

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

• Suppose you do not have any vector or matrix multiplication library.

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$.

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

• Suppose you have only vector-vector multiplication libraries.

```
C = numpy.zeros((m, p))
for i in range(m):
    for l in range(p):
        C[i, l] = numpy.dot(A[i, :], B[:, l])
```

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

• Suppose you have matrix-vector multiplication libraries.

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$.

• Suppose you have matrix-vector multiplication libraries.

```
C = numpy.zeros((m, p))
for l in range(p):
    C[:, l] = numpy.dot(A, B[:, l])
```

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$.

• Suppose you have matrix-matrix multiplication libraries.

$$C = numpy.dot(A, B)$$

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

- Which is the most efficient?
 - 3-level loop of scalar multiplication.
 - 2-level loop of **vector-vector multiplication**.
 - 1-level loop of matrix-vector multiplication.
 - Directly use matrix-matrix multiplication library.

Task: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, compute $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

- Which is the most efficient?
 - 3-level loop of scalar multiplication.
 - 2-level loop of **vector-vector multiplication**.
 - 1-level loop of matrix-vector multiplication.
 - Directly use matrix-matrix multiplication library.

• Is your answer the same if the programming language is C or Fortran?

Basic Linear Algebra Subprograms (BLAS)

- **BLAS**: a library of standard building blocks for performing basic vector and matrix operations
- Level 1 BLAS perform scalar, vector, and vector-vector operations.
 - E.g., $\mathbf{y} \leftarrow \alpha \mathbf{x} + \mathbf{y}$, $a \leftarrow \mathbf{x}^T \mathbf{y}$, and $b \leftarrow ||\mathbf{x}||_2$.
- Level 2 BLAS perform matrix-vector operations.
 - E.g, $\mathbf{y} \leftarrow \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$ and $\mathbf{A} \leftarrow \alpha \mathbf{x} \mathbf{y}^T + \mathbf{A}$.
- Level 3 BLAS perform matrix-matrix operations.
 - E.g, $\mathbf{A} \leftarrow \mathbf{A}^T$, $\mathbf{C} \leftarrow \mathbf{A}\mathbf{A}^T$, and $\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B} + \beta \mathbf{C}$.

Why are BLAS Fast?

• Efficient algorithms, e.g., blocking, to reduce time complexity.

Why are BLAS Fast?

- Efficient algorithms, e.g., blocking, to reduce time complexity.
- Cache optimization by, e.g., spatial locality.

Why are BLAS Fast?

- Efficient algorithms, e.g., blocking, to reduce time complexity.
- Cache optimization by, e.g., spatial locality.
- Optimized for CPUs/GPUs, e.g.,
 - Intel MKL,
 - NVIDIA cuBLAS

Linear Algebra Package (LAPACK)

• LAPACK provides routines for numerical linear algebra, e.g.,

• solving least squares
$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$
,

- eigenvalue problems $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$,
- SVD $\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$,
- etc.

Linear Algebra Package (LAPACK)

• LAPACK provides routines for numerical linear algebra, e.g.,

• solving least squares
$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$$

- eigenvalue problems $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$,
- SVD $\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$,
- etc.
- LAPACK uses Level 3 BLAS as much as possible.

Linear Algebra Package (LAPACK)

• LAPACK provides routines for numerical linear algebra, e.g.,

```
• solving least squares \min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}
```

• eigenvalue problems $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$,

• SVD
$$\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$$
,

• etc.

- LAPACK uses Level 3 BLAS as much as possible.
- Numpy uses BLAS and LAPACK for matrix computation.
- Deep learning platforms (e.g., Pytorch, Tensorflow) are built upon BLAS.

Thank you