DS561-HW6

U43188754 Github Link:

https://github.com/tigeryi1998/ds561-tigeryi/tree/main/hw6

0. SQL Database "dbhw5" from HW5

https://console.cloud.google.com/sql/instances/instance-tigeryi/overview?project=feisty-gasket-3 98719

Public IP address 34.138.218.160

```
DB_NAME = "dbhw5"
INSTANCE_CONNECTION_NAME = "feisty-gasket-398719:us-east1:instance-tigeryi"
```

table1 (successful requests)

```
mysql> select * from table1 limit 5;
 request_id | ip
                              | time_of_day
                                                    | filename
                                                                | ip2
            | 7.176.22.73
                             | 2023-11-08 14:00:00 | 6783.html
                                                                   128980553
            | 9.45.75.21
                              | 2023-11-08 21:00:00
                                                      2872.html
                                                                   153963285
          3 I
              172.14.168.211 | 2023-11-08 08:00:00 |
                                                      5130.html
                                                                  2886641875
              67.184.165.29
                                2023-11-08 12:00:00
                                                      8503.html
                                                                  1136174365
              206.117.156.36 |
                               2023-11-08 06:00:00 |
                                                      4090.html
                                                                  3463814180
5 rows in set (0.01 sec)
```

table2

table3 (failed requests)

```
mysql> select * from table3 limit 5;
  failed id | ip
                              | time_of_day
                                                     | filename
                                                                  | error | ip2
          1 | 172.237.141.166 | 2023-11-08 08:00:00 | 12257.html |
                                                                     404 | 2901249446
          2 | 165.7.115.176
                                2023-11-08 17:00:00 |
                                                      10123.html
                                                                     404 |
                                                                           2768729008
             165.172.187.193 |
                                2023-11-08 14:00:00
                                                      19946.html
                                                                      404
                                                                           2779560897
            | 115.215.109.81 | 2023-11-08 14:00:00 | 18713.html |
                                                                     404 | 1943498065
            | 18.128.133.193 | 2023-11-08 00:00:00 | 11589.html |
                                                                     404 | 310412737
5 rows in set (0.00 sec)
```

Database Connection with Pandas Dataframe

Details in app1.ipynb and app2.ipynb

```
PROJECT_ID = "feisty-gasket-398719"

TOPIC_ID = "my-topic"

SUBSCRIPTION_NAME = "my-topic-sub"

INSTANCE_CONNECTION_NAME = "feisty-gasket-398719:us-east1:instance-tigeryi"

DB_USER = "root"

DB_PASS = ""

DB_NAME = "dbhw5"

DB_PRIVATE_IP = False

def connect_with_connector() -> sqlalchemy.engine.base.Engine:
...
```

I will use Pandas with SQL Alchemy to read the database table into Pandas dataframe

1. model1 (ip, country)

Code for the model is in Jupyter Notebook

app1.ipynb

Model is decision tree classifier DecisionTreeClassifier

```
clf = DecisionTreeClassifier()
clf.fit(X,y)
clf.score(X,y)
1.0
y_pred = clf.predict(X)
accuracy_score(y, y_pred)
1.0
```

2. model2 (income, gender, age, country)

Code for the model is in Jupyter Notebook

app2.ipynb

Model is decision tree classifier DecisionTreeClassifier

```
clf = DecisionTreeClassifier()
clf.fit(X,y)
clf.score(X,y)
1.0
y_pred = clf.predict(X)
accuracy_score(y, y_pred)
1.0
```