Planche nº 3. Révision algèbre linéaire. Matrices

Exercice no 1 (** I)

Soit $E = \mathbb{K}_n[X]$. $\mathfrak u$ est l'endomorphisme de E défini par : $\forall P \in E, \ \mathfrak u(P) = P(X+1) - P$.

- 1) Déterminer Ker(u) et Im(u).

Exercice nº 2 (***)

$$\operatorname{Rang} \ \operatorname{de} \ \operatorname{la} \ \operatorname{matrice} \left(\begin{array}{cccc} 1 & \cos(\alpha) & \cos(2\alpha) & \cos(3\alpha) \\ \cos(\alpha) & \cos(2\alpha) & \cos(3\alpha) & \cos(4\alpha) \\ \cos(2\alpha) & \cos(3\alpha) & \cos(4\alpha) & \cos(5\alpha) \\ \cos(3\alpha) & \cos(4\alpha) & \cos(5\alpha) & \cos(6\alpha) \end{array} \right).$$

Exercice no 3 (***)

Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ définie par $a_{i,j}=1$ si i=j,j si i=j-1 et 0 sinon. Montrer que A est inversible et calculer A^{-1} .

Exercice nº 4 (***)

Soient $\mathfrak n$ un entier naturel non nul puis $A\in \mathcal M_n(\mathbb K)$. Soit $\mathfrak f$ l'endomorphisme de $M_n(\mathbb K)$ qui à une matrice X associe AX+XA. Calculer $\mathrm{Tr}(\mathfrak f)$.

Exercice no 5 (**)

Soient \mathfrak{a} un réel non nul et A et B deux éléments de $\mathscr{M}_n(\mathbb{R})$.

Résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation d'inconnue $M: \mathfrak{a}M + \operatorname{Tr}(M)A = B$.

Exercice nº 6 (**)

Rang de la matrice $(i + j + ij)_{1 \le i,j \le n}$.

Exercice nº 7 (**)

Soient
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Soit $E = \{M(x,y) = xI + yJ, \ (x,y) \in \mathbb{R}^2\}$.

- 1) Montrer que (E, +, .) est un R-espace vectoriel et préciser sa dimension.
- 2) Montrer que $(E, +, \times)$ est un anneau commutatif.
- 3) Quels sont les éléments inversibles de l'anneau $(E, +, \times)$?
- 4) Résoudre dans E les équations : a) $X^2 = I$ b) $X^2 = 0$ c) $X^2 = X$.
- 5) Calculer $(M(x,y))^n$ pour n entier naturel et x et y réels.

Exercice nº 8 (***)

On appelle idéal bilatère de l'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times)$ tout sous-ensemble I de $\mathcal{M}_n(\mathbb{K})$ tel que

a)
$$(I, +)$$
 est un groupe et b) $\forall A \in I, \forall M \in \mathcal{M}_n(\mathbb{K}), AM \in I$ et $MA \in I$.

Déterminer tous les idéaux bilatères de l'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times)$.

Exercice nº 9 (***)

Soient
$$a_1,..., a_n$$
 n réels tous non nuls et $A = \begin{pmatrix} 1+a_1 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 1+a_n \end{pmatrix}$. Inverse de A en cas d'existence?

Exercice no 10 (**)

Soient $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ et $B=(b_{i,j})_{1\leqslant i,j\leqslant n}$ deux matrices carrées de format n telles que $a_{i,j}=0$ si $j\leqslant i+r-1$ et $b_{i,j}=0$ si $j\leqslant i+s-1$ où r et s sont deux entiers donnés entre 1 et n. Montrer que si $AB=(c_{i,j})_{1\leqslant i,j\leqslant n}$ alors $c_{i,j}=0$ si $j\leqslant i+r+s-1$.

Exercice nº 11 (** I)

$$\text{Calculer l'inverse de} \left(\begin{array}{ccccc} \binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \cdots & \binom{n-1}{0} & \binom{n}{0} \\ 0 & \binom{1}{1} & \binom{2}{1} & \cdots & \cdots & \binom{n}{1} \\ \vdots & \ddots & \binom{2}{2} & & \vdots \\ & \ddots & & \ddots & \\ \vdots & & \ddots & \binom{n-1}{n-1} & \vdots \\ 0 & \cdots & & \cdots & 0 & \binom{n}{n} \end{array} \right)$$

Exercice nº 12 (*** I)

Soit $\mathfrak n$ un entier naturel supérieur ou égal à 2 et $\omega = e^{2i\pi/\mathfrak n}$. Soit $A = (\omega^{(j-1)(k-1)})_{1\leqslant j,k\leqslant \mathfrak n}$. Montrer que A est inversible et calculer A^{-1} .

Exercice nº 13 (** I)

Soit A une matrice carrée de format n. Calculer le déterminant de sa comatrice.

Exercice no 14 (*** I)

Soit A une matrice carrée de format n. Etudier le rang de comA en fonction du rang de A.

Exercice nº 15 (*** I) (Théorème de HADAMARD.)

Soit $A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr{M}_n(\mathbb{C})$ telle que $\forall i\in \llbracket 1,n\rrbracket,\ |\mathfrak{a}_{i,i}|>\sum_{j\neq i}|\mathfrak{a}_{i,j}|.$ Montrer que $A\in \mathscr{GL}_n(\mathbb{C}).$ (Une matrice à diagonale strictement dominante est inversible.)

Exercice nº 16 (* I)

Existe-t-il deux matrices carrées A et B telles que $AB - BA = I_n$.

Exercice nº 17 (**I)

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$ $(n \ge 2)$ telle que $\forall (A,B) \in (\mathcal{M}_n(\mathbb{C}))^2$, f(AB) = f(BA). Montrer qu'il existe un complexe α tel que $f = \alpha Tr$.

Exercice no 18 (***)

- $\begin{aligned} \textbf{1)} \ \operatorname{Pour} \ \theta \in \mathbb{R}, \ \operatorname{on} \ \operatorname{pose} \ M(\theta) &= \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right). \\ \operatorname{Calculer} \ M(\theta) \times M(\theta') \ \operatorname{pour} \ (\theta, \theta') \in \mathbb{R}^2. \ \operatorname{En} \ \operatorname{d\'eduire} \ (M(\theta))^n \ \operatorname{pour} \ (\theta, n) \in \mathbb{R} \times \mathbb{N}. \end{aligned}$
- 2) Pour $(n, a) \in \mathbb{N}^* \times \mathbb{R}$, on pose $A_n = \begin{pmatrix} 1 & -\frac{a}{n} \\ \frac{a}{n} & 1 \end{pmatrix}$. Calculer $\lim_{n \to +\infty} A_n^n$.

Exercice nº 19 (**)

Soient A une matrice carrée de format $\mathfrak n$ et f l'application de $\mathscr M_{\mathfrak n}(\mathbb C)$ dans lui-même qui à une matrice M associe MA. Trouver la matrice de f dans la base canonique de $\mathscr M_{\mathfrak n}(\mathbb C)$ (ordonnée par l'ordre lexicographique).

Exercice nº 20 (***)

Soient $A \in \mathcal{M}_n(\mathbb{C})$ puis B l'élément de $\mathcal{M}_{np}(\mathbb{C})$ défini par blocs par $B = \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A \end{pmatrix}$. Déterminer le rang de B

en fonction du rang de A.

Exercice nº 21 (***)

Soit H un élément de $\mathcal{M}_n(\mathbb{C})$ tel que $\forall A \in \mathcal{M}_n(\mathbb{C}), \ \exists \lambda_A \in \mathbb{C}/\ HAH = \lambda_A H$. Montrer que $\operatorname{rg} H \leqslant 1$.

Exercice no 22 (***)

Soit $M \in \mathcal{M}_3(\mathbb{R})$. Montrer que les deux propriétés suivantes sont équivalentes :

(1)
$$M^2 = 0$$
 et (2) $rg(M) \le 1$ et $tr(M) = 0$.

Exercice nº 23 (*** I)

Soient A et B deux matrices carrées de format n telles que AB - BA = A. Calculer la trace de A^{2022} .

Exercice nº 24 (**)

Soient
$$M(a) = \begin{pmatrix} 4-a & 1 & -1 \\ -6 & -1-a & 2 \\ 2 & 1 & 1-a \end{pmatrix}$$
 et $N(a) = \begin{pmatrix} 1-a & 1 & 0 \\ 0 & 1-a & 0 \\ 0 & 0 & 2-a \end{pmatrix}$. $M(a)$ et $N(a)$ sont-elles semblables?

Exercice nº 25 (*** I)

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$. Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{C})$, elles le sont dans $\mathcal{M}_n(\mathbb{R})$.

Exercice nº 26 (**I) (Exponentielle d'une matrice nilpotente)

Pour A matrice nilpotente donnée, on pose $\exp(A) = \sum_{k=1}^{\infty} \frac{A^k}{k!}$.

- 1) Montrer que si A et B commutent et sont nilpotentes alors A + B est nilpotente et $\exp(A + B) = \exp(A) \times \exp(B)$.
- 2) Montrer que $\exp(A)$ est inversible.

3) Calculer
$$\exp(A)$$
 où $A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ & & & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & & \dots & 0 \end{pmatrix}$.

Exercice n° 27 (*** I)

Exercice nº 27 (*** I)

Soient
$$A \in \mathcal{M}_{3,2}(\mathbb{R})$$
 et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que $AB = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}$. Justifier l'existence de A et B puis calculer BA .

Exercice nº 28 (***)

Soit
$$G$$
 un sous-groupe fini de $GL_n(\mathbb{R})$ tel que $\sum_{M\in G}\operatorname{Tr}(M)=0.$ Montrer que $\sum_{M\in G}M=0.$

Exercice nº 29 (**** I)

Montrer que tout hyperplan de $M_n(\mathbb{R})$ contient des matrices inversibles.

Exercice no 30 (*** I)

Soient $A_1,...,A_p$ p matrices distinctes et inversibles de $M_n(\mathbb{R})$ telles que $G = \{A_1,...,A_p\}$ soit stable pour la multiplication. Soit $A = A_1 + ... + A_p$. Montrer que Tr(A) est un entier divisible par p.