CURRENT LISTING OF THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

- 1 1. (Previously Presented) A system for use in a well, comprising:
- 2 a plurality of wireless network devices in the well, the plurality of wireless network
- devices in the well to communicate wirelessly using a protocol that defines
- 4 short-range wireless communication.
- 1 2. (Previously Presented) A system for use in a well, comprising:
- a plurality of wireless network devices in the well, the plurality of wireless network
- devices to communicate wirelessly using a Bluetooth wireless communication
- 4 protocol.
- 1 3. (Original) The system of claim 1, further comprising:
- an interlink wireless network device positioned proximal the surface of the well;
- a communication line interconnecting the interlink wireless network device to a surface
- 4 controller.
- 1 4. (Previously Presented) The system of claim 1, further comprising:
- at least one of the wireless network devices communicating with a downhole device.
- 1 5. (Previously Presented) The system of claim 4, wherein the downhole device is selected
- from gauges, sensors, valves, sampling devices, a device used in intelligent or smart well
- completion, temperature sensors, pressure sensors, flow-control devices, flow rate
- 4 measurement devices, oil/water/gas ratio measurement devices, scale detectors, actuators,
- locks, release mechanisms, equipment sensors, vibration sensors, sand detection sensors,
- 6 water detection sensors, data recorders, viscosity sensors, density sensors, bubble point
- sensors, composition sensors, resistivity array devices and sensors, acoustic devices and
- 8 sensors, other telemetry devices, near infrared sensors, gamma ray detectors, H₂S
- 9 detectors, CO₂ detectors, downhole memory units, downhole controllers, perforating
- devices, shape charges, firing heads, and locators.

1	6.	(Previously Presented) The system of claim 1, further comprising:
2		at least one of the wireless network devices in communication with a power source.
1	7.	(Original) The system of claim 6, wherein the power source is selected from a battery, a
2		fuel cell, a downhole power generator, and a communication line extending to a surface
3		of the well.
1	8.	(Previously Presented) The system of claim 2, further comprising:
2		at least one of the wireless network devices positioned in a lateral branch of a multilateral
3		well.
1	9.	(Previously Presented) The system of claim 2, wherein:
2		a first of the wireless network devices is positioned in a lateral branch of a multilateral
3		well;
4		a second of the wireless network devices is positioned outside the lateral branch in
5		another portion of the well;
6		the first wireless network device and second wireless network device positioned within
7		range of one another.
1	10.	(Previously Presented) The system of claim 2, further comprising:
2		a wireless network device in a wellhead of the well to communicate wirelessly with at
3		least one of the wireless network devices in the well using the Bluetooth wireless
4		communication protocol.
1	11.	(Previously Presented) The system of claim 10, further comprising:
2		a wireless network device outside the well adapted to communicate wirelessly with at
3		least one of the wireless network devices in the wellhead.
1	12. –	13. (Cancelled)

(Previously Presented) The system of claim 1, further comprising: 1 14. a wireless network device outside the well adapted to communicate wirelessly with at 2 least one of the wireless network devices in the well using the protocol. 3 15. (Cancelled) 1 (Previously Presented) The system of claim 2, further comprising at least one secondary 1 16. communication system in communication with the at least one of the wireless network 2 3 devices. (Original) The system of claim 16, wherein the secondary communication system is 1 17. selected from communication line, a fiber optic line, an Internet, a satellite, a telephone 2 system, and an intranet. 3 (Original) The system of claim 16, wherein the at least one secondary communication 1 18. system provides communication between the at least one wireless network device and a 2 location selected from a remote land-based location and an offshore surface location. 3 (Previously Presented) The system of claim 2, wherein: 1 19. a first one of the wireless network devices is positioned outside a casing in the well; 2 a second one of the wireless network devices is positioned inside the casing of the well; 3 the first wireless network device and the second wireless network device adapted to 4 communicate wirelessly with one another. 5 (Original) The system of claim 19, further comprising: 1 20. a memory device communicating with the first wireless network device. 2 (Original) The system of claim 19, wherein: 1 21. 2 the second wireless network device is mounted in the well.

1 22. (Original) The system of claim 19, further comprising: 2 the second wireless network device is provided on a running tool. 23. (Previously Presented) The system of claim 1, wherein: 1 a first of the wireless network devices is positioned outside a tubing in the well; 2 a second of the wireless network devices is positioned inside the tubing of the well; 3 the first wireless network device and the second wireless network device adapted to 4 communicate wirelessly with one another. 5 1 24. (Original) The system of claim 23, further comprising: 2 a memory device communicating with the first wireless network device. 25. - 27. (Cancelled) 1 (Previously Presented) The system of claim 23, further comprising: 1 28. at least a portion of the tubing extends through a casing in the well; 2 a third of the wireless network devices positioned inside the casing of the well; 3 the first wireless network device, the second wireless network device, and the third 4 wireless network device are adapted to communicate wirelessly with one another. 5 (Original) The system of claim 28, wherein: 1 29. the first wireless network device relays information between the second wireless network 2 device and the third wireless network device. 3 1 30. - 32. (Cancelled)

1	33.	(Previously Presented) A system comprising:
2		a tool having a first wireless network device, the tool movable in the well;
3		at least a second wireless network device in the well located at a predetermined position
4		therein;
5		a depth correlation circuitry in the tool in communication with the first wireless network
6		device in the tool to detect a signal from the first wireless network device for
7		determining the depth of the tool in the well, the signal from the first wireless
8		network device based on wireless communication between the first and second
9		wireless network devices; and
10		a third wireless network device in the well;
11		wherein the signal is based on triangulation among the first, second, and third wireless
12		network devices.
1	34. –	38. (Cancelled)
1	39.	(Previously Presented) A method for use in a well, comprising:
2		providing plural wireless network devices in the well; and
3		the plural wireless network devices communicating wirelessly using a protocol that
4		defines short-range wireless communication.
1	40.	(Previously Presented) A method for use in a well, comprising:
2		providing a plurality of wireless network devices in the well; and
3		the plurality of wireless network devices communicating wirelessly using a Bluetooth
4		wireless communication protocol.
1	41.	(Previously Presented) The method of claim 39, further comprising:
2		communicating with a downhole device via at least one of the wireless network devices.
1	42.	(Previously Presented) The method of claim 39, further comprising:
2		powering at least one of the wireless network devices with a downhole power source.

1	43.	(Previously Presented) The method of claim 40, further comprising:
2		telemetering data in a multilateral well using the wireless network devices.
1	44.	(Previously Presented) The method of claim 39, further comprising:
2		telemetering data from the well to a position outside the well using at least one of the
3		wireless network devices.
1	45.	(Previously Presented) The method of claim 40, further comprising:
2		telemetering data from through a casing using at least one of the wireless network
3		devices.
1	46.	(Previously Presented) The method of claim 40, further comprising:
2		telemetering data from through a tubing using at least one of the wireless network
3		devices.
1	47.	(Previously Presented) The method of claim 40, further comprising:
2		storing information downhole;
3		transferring the stored information to a running tool via at least one of the wireless
4		network devices.
1	48.	(Previously Presented) The method of claim 47, further comprising:
2		determining the depth of a tool in the well using at least one of the wireless network
3		devices.
1	49.	(Previously Presented) The method of claim 40, further comprising:
2		actuating a tool in the well using at least one of the wireless network devices.
1	50.	(Cancelled)

1	51.	(Original) A system for use in a well, comprising:
2		a first device positioned in the well;
3		a second device remotely located with respect to the first device;
4		means for transferring data between the first device and the second device using short-
5		range wireless communication operating without the need for a central network.
1	52.	(Previously Presented) A subsea networking system, comprising:
2		a wireless network device positioned in a subsea structure;
3		a subsea vehicle having a wireless network device therein that is adapted to communicate
4		based on a radio frequency wireless protocol with the wireless network device
5		positioned in the subsea structure.
1	53.	(Previously Presented) The system of claim 52, wherein:
2		the subsea structure is selected from a wellhead, a subsea processing device, a power
3		generation device and a subsea monitor.
1	54.	(Previously Presented) The system of claim 52, wherein:
2		the subsea vehicle is selected from an ROV and a AUV.
1	55.	(Previously Presented) A subsea telemetry system, comprising:
2		a wireless network device positioned proximal the sea floor;
3		a subsea vehicle having a wireless network device therein that is adapted to communicate
4		based on a radio frequency wireless protocol with the wireless network device
5		positioned proximal the sea floor.

1	56.	(Previously Presented) A subsea telemetry system, comprising:
2		a wireless network device positioned proximal the sea floor;
3		a subsea vehicle having a wireless network device therein that is adapted to communicate
4		with the wireless network device positioned proximal the sea floor; and
5		a guidance circuitry of the subsea vehicle in communication with the wireless network
6		device of the subsea vehicle, the guidance circuitry adapted to determine the
7		relative position of the subsea vehicle based upon input from the interconnected
8		wireless network device.
1	57.	(Cancelled)
1	58.	(Previously Presented) A system for use in a well, comprising:
2		a tool containing a first wireless network device, the tool movable in the well during a
3		downhole operation;
4		a second wireless network device for location in the well,
5		wherein the first wireless network device is outside a wireless communication range of
6		the second wireless network device until the tool is moved into proximity of the
7		second wireless network device,
8		the second wireless network device to transmit a location code to the first wireless
9		network device.
1	59.	(Previously Presented) The system of claim 61, wherein the tool includes a depth
2		correlation device to correlate a position of the tool based on wireless communication
3		between the first and second wireless network devices.

1	60.	(Previously Presented) A system for use in a well, comprising:
2		a tool containing a first wireless network device, the tool movable in the well during a
3		downhole operation;
4		a second wireless network device for location in the well,
5		wherein the first wireless network device is outside a wireless communication range of
6		the second wireless network device until the tool is moved into proximity of the
7		second wireless network device; and
8		at least another wireless network device for location in the well, the first wireless network
9		device to perform triangulation of signals to determine relative position of the tool
10		to the second wireless network device and the at least another wireless network
11		device.
1	61.	(Previously Presented) A system for use in a well, comprising:
2		a tool containing a first wireless network device, the tool movable in the well during a
3		downhole operation;
4		a second wireless network device for location in the well,
5		wherein the first wireless network device is outside a wireless communication range of
6		the second wireless network device until the tool is moved into proximity of the
7		second wireless network device,
8		the second wireless network device to send an actuating signal to the first wireless
9		network device for actuating the tool once the tool comes within range of the
10		second wireless network device.
1	62.	(Previously Presented) The system of claim 61, wherein the tool comprises a perforating
2		gun, and the actuating signal comprises a firing signal to fire the perforating gun.
1	63.	(Previously Presented) The system of claim 61, wherein the tool comprises a valve
2		actuated by the actuating signal.
1	64.	(Previously Presented) The system of claim 61, wherein the tool comprises a release
2		mechanism that releases sensors from the tool in response to the actuation signal.

- 1 65. (Previously Presented) The system of claim 61, wherein the tool comprises a sampler to take a sample in response to the actuating signal.

 1 66. (Previously Presented) The system of claim 61, wherein the tool comprises a recorder that starts recording in response to the actuating signal.

 1 67. (Previously Presented) The system of claim 1, wherein the protocol comprises a
- 2 Bluetooth protocol.
- 1 68. (Previously Presented) The method of claim 39, wherein communicating wirelessly using the protocol comprises communicating wirelessly using a Bluetooth protocol.
- 1 69. (Previously Presented) The system of claim 51, wherein the short-range wireless communication is according to a Bluetooth protocol.