

Asignatura: Estructuras Discretas	Bimestre: 1ro
Docente: Omar Alexander Ruiz Vivanco	Calificación: 1,5 puntos
Componente: APE - Taller 1	Fecha de presentación: 25/10/2023 (23:59)

Tema 1: Simbolización de proposiciones

• Escribir 3 proposiciones: P, Q, R y realizar la siguiente simbolización:

P:	
Q:	
R:	
¬ P:	
¬ R:	
¬ (¬ R):	
¬Pv¬(¬R):	
¬ (¬Pv¬(¬R)):	
(Q V ¬ R):	
¬ (Q V ¬R):	
¬ (¬Pv¬(¬R))	
$\neg P \leftrightarrow \neg (Q V \neg R)$:	

Tema 2: Tablas de verdad y precedencia del operador

• Elaborar la tabla de verdad para la siguiente estructura: $\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$

Р	Q	R	(P ^ Q)	¬ (P ^ Q)	٦P	¬Q	(¬ P v ¬ Q)	$\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$

Tema 3: Equivalencia Lógica

• Completar la equivalencia considerando las leyes de las proposiciones. Indicar la ley que están utilizando.

	Equivalencia lógica	Ley utilizada
(p∧q)∧r≡		
(p∧q)∧r≡		
p v (q ∧ r) ≡		
¬ (p ∧ q) ≡		
$(p \land q) \lor (p \land r) \equiv$		
$(p \land q) \lor (p \land r) \equiv$		
¬p ∧ ¬q ≡		
$(p \land q) \land (r \rightarrow s) \equiv$		
$(p \land q) \land (r \rightarrow s) \equiv$		
$(p \rightarrow s) v (q \land r) \equiv$		
¬ (p ∧ ¬ q) ≡		
¬¬P≣		
(pvq)∧ r≡		
$(p \land q) \land (r \rightarrow s) \equiv$		
$\neg (p \land (q \rightarrow r)) \equiv$		
¬(p ∧ ¬(q v r)) ≡		
¬(p v ¬(q v p)) ≡		
$\neg((p \land q) \lor \neg(q \lor p)) \equiv$		