- 1. 当 a > b > 0 时, 比较 $\frac{2a+b}{a+2b}$ 和 $\frac{a}{b}$ 的大小.
- 2. 已知 a > 0, $a \neq 1$, m > n > 0, 比较 $A = a^m + \frac{1}{a^m}$ 和 $B = a^n + \frac{1}{a^n}$ 的大小.
- 3. 若 a > b,则下列各式中正确的是(

A. $a \lg x > b \lg x (x > 0)$

B. $ax^2 > bx^2$

C. $a^2 > b^2$

 $D. 2^x \cdot a > 2^x \cdot b$

item 设 ab > 0, 且 $\frac{c}{a} > \frac{d}{b}$, 则下列各式中, 恒成立的是 (

A. bc < ad

B. bc > ad

C. $\frac{a}{a} > \frac{b}{d}$

D. $\frac{a}{c} < \frac{b}{d}$

4. 下列命题中, 不正确的一个是(

A. 若 $\sqrt[3]{a} > \sqrt[3]{b}$, 则 a > b

B. 若 a > b, c > d, 则 a - d > b - c

C. 若 a > b > 0, c > d > 0, 则 $\frac{a}{d} > \frac{b}{a}$

D. 若 a > b > 0, ac > bd, 则 c > d

5. 若 x < y < 0, 则有 ().

A. $0 < x^2 < xy$

B. $u^2 < xu < x^2$

C. $xy < y^2 < x^2$

D. $u^2 > x^2 > 0$

6. 若 $a = \log_{0.2} 0.3$, $b = \log_{0.3} 0.2$, c = 1, 则 a, b, c 的大小关系是 (

A. a > b > c

B. b > a > c

C. b > c > a

D. c > b > a

- 7. 用不等号 (">" 或 "<") 填空:
 - (1) $<math> a \neq b,$ <math><math><math> $<math> a^2 + 3b^2$ 2b(a+b);

 - (3) 若 a > b, c > d, 且 a 与 d 都是负数, 则 ac_____bd.
- 8. 若 "a > b, $a \frac{1}{a} > b \frac{1}{b}$ " 同时成立, 则 ab 应满足的条件是
- 9. 已知 a > 0, b > 0, 且 $a \neq b$, 比较 $\frac{a^2}{b} + \frac{b^2}{a}$ 与 a + b 的大小.
- 10. 已知 $0 < \frac{a}{b} < \frac{c}{d}$, 比较 $\frac{b}{a+b}$ 与 $\frac{d}{c+d}$ 的大小.
- 11. 若 x > y > 1, 0 < a < 1, 则下列各式中正确的一个是(

B. $(\sin a)^x > (\sin a)^y$ C. $\log_{\frac{1}{a}} x < \log_{\frac{1}{a}} y$

D. $1 + a^{x+y} > a^x + a^y$

- 12. 已知 $a \in \mathbb{R}$, 比较 $\frac{1}{1+a}$ 与 1-a 的大小.
- 13. 设 a > 0, $a \neq 1$, t > 0, 比较 $\frac{1}{2} \log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小.
- 14. 已知 x > y > 0, 比较 $\sqrt{\frac{y^2 + 1}{r^2 + 1}}$ 与 $\frac{y}{x}$ 的大小.
- 15. 已知 a, b, m, n 都是正实数, 且 m+n=1, 比较 $\sqrt{ma+nb}$ 和 $m\sqrt{a}+n\sqrt{b}$ 的大小.

- 16. 解下列不等式:
 - (1) $6x^2 5x 1 > 0$:
 - (2) $6x^2 5x 1 < 0$;
 - (3) $5x^2 2x + 3 > 0$:
 - $(4) 9x^2 + 6x + 1 > 0;$
 - (5) $3x^2 4x + 5 < 0$.
- 17. 已知关于 x 的不等式 $ax^2 + bx + c < 0$ 的解集是 $\{x|x < -2$ 或 $x > -\frac{1}{2}\}$, 求 $ax^2 bx + c > 0$ 的解集.
- 18. 已知集合 $A = \{x|x^2 + (a-1)x a > 0\}, B = \{x|(x+a)(x+b) > 0\}, a \neq b, M = \{x|x^2 2x 3 \leq 0\}.$
 - (1) 若 $\mathcal{C}_U B = M$, 求 a, b 的值;
 - (2) $\stackrel{.}{\mathbf{Z}}$ −1 < b < a < 1, $\stackrel{.}{\mathbf{X}}$ $A \cap B$;
 - (3) 若 -3 < a < -1, 目 $a^2 1 \in C_U A$, 求实数 a 的取值范围.
- 19. 已知函数 $y = (k^2 + 4k 5)x^2 + 4(1 k)x + 3$ 的图象都在 x 轴的上方, 求实数 k 的取值范围.
- 20. 已知 a < b, 则下列各式中恒成立的是 ().

A.
$$a^2 < b^2$$

B.
$$c - a > c - b$$

C.
$$|a| < |b|$$

D.
$$a - 1 > b - 2$$

21. 若 |x| > 2, 则 ().

A.
$$x > 2$$

B.
$$x > \pm 2$$

C.
$$-2 < x < 2$$

D.
$$x > 2$$
 或 $x < -2$

22. 不等式 |x| - 3 < 0 的解集是 ().

A.
$$\{x | x < \pm 3\}$$

B.
$$\{x | -3 < x < 3\}$$
 C. $\{x | x > 3\}$

C.
$$\{x | x > 3\}$$

D.
$$\{x | x < -3\}$$

23. 已知集合 $M = \{x||x| > 2\}, N = \{x|x < 3\}$, 则下列结论正确的是 ().

A.
$$M \cup N = M$$

B.
$$M \cap N = \{x | 2 < x < 3\}$$

C.
$$M \cup N = R$$

D.
$$M \cap N = \{x | x < -2\}$$

24. 已知集合 $M = \{x | |x+1| \le 2\}, P = \{x | x \le 2 \text{ 或 } x \ge 3\}, 则 M, P$ 之间的关系是 (

A.
$$M \supset P$$

B.
$$M \supset P$$

C.
$$M \subseteq P$$

D.
$$M \subset P$$

25. 已知 $|1-x| + \sqrt{x^2 - 4x + 4} = 1$, 则 x 的取值范围是 ().

A.
$$1 \le x \le 2$$

B.
$$x < 1$$

C.
$$x < 1$$
 或 $x > 2$ D. $x \ge 2$

D.
$$x > 2$$

26. 不等式 $2x + 3 - x^2 > 0$ 的解集是 ().

A.
$$\{x \mid -\frac{3}{2} \le x < 1\}$$

B.
$$\{x | -1 < x < 3\}$$

C.
$$\{x | 1 \le x < 3\}$$

A.
$$\{x | -\frac{3}{2} \le x < 1\}$$
 B. $\{x | -1 < x < 3\}$ C. $\{x | 1 \le x < 3\}$ D. $\{x | -\frac{3}{2} \le x < 3\}$

27. 不等式 $6x^2 + 5x < 4$ 的解集是 ().

A.
$$\{x|x<-\frac{4}{3}\mathbf{E}x>\frac{1}{2}\}$$

B.
$$\{x| - \frac{4}{3} < x < \frac{1}{2}\}.$$

C.
$$\{x | -\frac{1}{2} < x < \frac{4}{3}\}.$$

A.
$$\{x|x<-\frac{4}{3}$$
或 $x>\frac{1}{2}\}$ B. $\{x|-\frac{4}{3}< x<\frac{1}{2}\}.$ C. $\{x|-\frac{1}{2}< x<\frac{4}{3}\}.$ D. $\{x|x<-\frac{1}{2}$ 或 $x>\frac{4}{3}\}$

28.	当 $a < 0$ 时, 关于 x 的不等式 $x^2 - 4ax - 5a^2 > 0$ 的解集是 ().					
	A. $\{x x>5a$ 或 $x<-a\}$	B. $\{x x<5a$ 或 $x>-a\}$	C. $\{x -a < x < 5a\}$	D. $\{x 5a < x < -a\}$		
	 A. x² ≥ 2 的解集是 {x x ≥ ±√2} B. (x - 1)² < 2 的解集是 {x 1 - √2 < x < 1 + √2} C. x² - 9 < 0 的解集是 {x x < 3} D. 设 x₁, x₂ 为 ax² + bx + c = 0 的两个实根, 且 x₁ > x₂, 则 ax² + bx + c > 0 的解集是 {x x₂ < x < x₁} A. 在① x² - 2x - 3 < 0 与 x² - 2x / x - 1 < 3 / x - 1; ② x² + 3x - 4 > 0 与 x² + 3x + √x > 4 + √x; ③ (x + 2)(x² - 1) / x + 2 					
	与 $x^2 - 1 > 0$ " 三组不等式中,解集相同的组数是 ().					
	A. 0	B. 1	C. 2	D. 3		
31.	若 $x^2 + x < 0$, 则 $x^2, x, -x^2$	2, -x 的大小关系是 ().				
	A. $x^2 > x > -x^2 > -x$	B. $-x > x^2 > -x^2 > x$	C. $-x > x^2 > x > -x^2$	D. $x^2 > -x > x > -x$		
32.	直接写出下列不等式的解集					
	(1) $(x-1)^2 > 0$:	_;				

- (2) (2-x)(3x+1) > 0:_____;
- (3) $1 3x^2 > 2x$:_____;
- $(4) 1 2x x^2 \ge 0: ___;$
- (5) $x + \sqrt{x} 6 < 0$:_____.

33. 直接写出下列不等式的解集:

- (1) $\frac{3x+4}{x-2} \ge 0$: ; (2) $\frac{4-2x}{1+3x} > 0$: ; (3) $\frac{1}{x} > x$: ;
- (4) $x^2 2|x| 3 > 0$:_____;
- (5) $x^2 x 5 > |2x 1|$:_____.

34. 若 $\sqrt{x^2 - x - 6} \in \mathbf{R}$, 则 x 的取值范围为_____.

- 35. 要使代数式 $\frac{\sqrt{x-3}}{\sqrt{x^2-3x+2}}$ 有意义, 实数 x 的取值范围是_____
- 36. 若代数式 $6x^2 + x 2$ 的值恒取非负实数, 则实数 x 的取值范围是______
- 37. 不等式 $4 \le x^2 3x < 18$ 的整数解集是______.
- 38. 已知实数 x 满足 $4x^2 4x 15 \le 0$, 化简 $\sqrt{x^2 8x + 16} |x 3|$.

39.	已知 $a>b$, 直接写出下列不等式的解集:							
	$(1) \frac{x-a}{x-b} \ge 0: \underline{\hspace{1cm}};$							
	(2) $\frac{x-a}{x-b} < 0$:;							
	(3) $x^2 - (a-b)x + ab > 0$:;							
	$(4) x^2 - (a-b)x + ab < 0:_{_}$	·						
40. 若关于 x 的方程 $2kx^2 + (8k+1)x + 8k = 0$ 有两个不等实根, 则实数 k 的取值范围是								
41.	41. 已知 $a \neq 0$, 若关于 x 的不等式 $ax^2 - 2ax + 2a + 3 > 0$ 无实数解, 则 a 的取值范围是							
42.	. 不等式 $\frac{x-1}{2x} \le 1$ 的解集是 ().							
	A. $\{x x \ge -1\}$	B. $\{x x \le -1\}$	C. $\{x -1 \le x < 0\}$	D. $\{x x \le -1$ 或 $x > 0\}$				
43.	43. 若关于 x 的二次不等式 $mx^2 + 8mx + 21 < 0$ 的解集是 $\{x -1 < x < -1\}$, 则实数 m 的值等于 ().							
	A. 1	B. 2	C. 3	D. 4				
44.	44. 若关于 x 的不等式 $(a^2-3)x^2+5x-2>0$ 的解集是 $\{x \frac{1}{2}< x<2\}$, 则实数 a 的值等于 ().							
	A. 1	B1	C. ±1	D. 0				
45.	45. 若关于 x 的不等式 $ax^2 + bx + c < 0 (a \neq 0)$ 的解集是空集, 则 ().							
	A. $a < 0$ Д. $b^2 - 4ac > 0$	B. $a < 0$ Д. $b^2 - 4ac \le 0$	С. $a > 0$ Д. $b^2 - 4ac \le 0$	D. $a > 0$ \coprod $b^2 - 4ac > 0$				
46. 若对任何实数 x , 二次函数 $y=ax^2-x+c$ 的值恒为负, 则 a , c 应满足 ().								
	$\int_{\Lambda} a > 0,$	B. $\begin{cases} a < 0, \\ ac < \frac{1}{a} \end{cases}$	$\int a < 0,$	D. $\begin{cases} a < 0, \\ ac < 0 \end{cases}$				
	$ac \leq \frac{1}{4}$	$ac < \frac{1}{4}$	$ac > \frac{1}{4}$	ac < 0				
47.	47. 若对任意实数 x , 不等式 $x^2 + 2(1+k)x + 3 + k > 0$ 恒成立, 则 k 的取值范围是 ().							
	A. $-1 < k < 2$	B. $-1 \le k \le 2$	C. $-2 < k < 1$	D. $-2 \le k \le 1$				
48.	若关于 x 的二次方程 $2(k+1)x^2+4kx+3k-2=0$ 的两根同号, 则 k 的取值范围是 ().							
	A. $-2 < k < 1$		$32 \le k < -1$ 或 $\frac{2}{3} < k \le 1$	1				
	C. $k < -1$ 或 $k > \frac{2}{3}$	Ι	$02 < k < 1 \implies \frac{2}{3} < k < 1$					
49.	. 已知关于 x 的方程 $(m+3)x^2-4mx+2m-1=0$ 的两根异号, 且负根的绝对值比正根大, 那么实数 m 的							
	取值范围是 ().							
	A. $-3 < m < 0$	B. $0 < m < 3$	C. $m < -3$ 或 $m > 0$	D. $m < 0$ 或 $m > 3$				
50.	若 α, β 是关于 x 的方程 x^2	$-(k-2)x + k^2 + 3k + 5 =$	0(k 为实数) 的两个实根, 则	$\alpha^2 + \beta^2$ 的最大值等于				
	().							
	A. 19	B. 18	C. $\frac{50}{9}$	D6				
			U					

- 51. 不等式 (x-1)(x-2)(x-3)(x-4) > 120 的解为 (). A. x>6 B. x<-1 或 x>6 C. x<-1 D. -1< x<6
- 52. 在三个关于 x 的方程 $x^2 ax + 4 = 0$, $x^2 + (a-1)x + 16 = 0$ 和 $x^2 + 2ax + 3a + 10 = 0$ 中,已知至少有一个方程有实根,则实数 a 的取值范围是 ().
- 53. 若关于 x 的二次方程 $x^2 2mx + 4x + 2m^2 4m 2 = 0$ 有实根, 则其两根之积的最大值等于______.
- 54. 使关于 x 的方程 $x^2 kx + 2k 3 = 0$ 的两实根的平方和取最小值, 实数 k 的值等于______.
- 56. 若关于 x 的不等式 $ax^2 + bx + 1 \ge 0$ 的解集是 $\{x \mid -5 \le x \le 1\}$, 则实数 a = 1, b =

- 59. 若关于 x 的不等式 (a+b)x+(2a-3b)<0 的解集是 $\{x|x>3\}$, 则不等式 (a-3b)x+b-2a>0 的解集是 ______.
- 60. 若关于 x 的不等式 $ax^2 + bx + c < 0$ 的解集是 $\{x | x < -2\mathbf{y}x > -\frac{1}{2}\}$, 则关于 x 的不等式 $ax^2 bx + c > 0$ 的解集是______.
- 61. 解不等式 $x^4 2x^2 + 1 > x^2 1$.
- 62. 已知关于 x 的不等式 $kx^2 2x + 6k < 0 (k \neq 0)$.
 - (1) 若不等式的解集是 $\{x | x < -3\mathbf{v}x > -2\}$, 求实数 k 的值;
 - (2) 若不等式的解集是 $\{x|x\neq \frac{1}{k}\}$, 求实数 k 的值;
 - (3) 若不等式的解集是实数集, 求实数 k 的值.
- 63. 已知关于 x 的方程 m(x-1) = 3(x+2) 的解是正实数, 求实数 m 的取值范围.
- 64. 已知关于 x 的方程 $\frac{1}{4}x^2 kx + 5k 6 = 0$ 无实数解, 求实数 k 的取值范围.
- 65. 已知关于 x 的方程 $kx^2 (3k-1)x + k = 0$ 有两个正实数根, 求实数 k 的取值范围.
- 66. 已知集合 $M = \{x|x^2 7x + 10 \le 0\}$, $N = \{x|x^2 (2-m)x + 5 m \le 0\}$, 且 $N \subseteq M$, 求实数 m 的取值范围.
- 67. 已知集合 $A = \{x|x^2 + 4x + p < 0\}$, $B = \{x|x^2 x 2 > 0\}$, 且 $A \subseteq B$, 求实数 p 的取值范围.
- 68. 已知集合 $A = \{x | x^2 + ax + 1 \le 0\}$, $B = \{x | x^2 3x + 2 \le 0\}$, 且 $A \subseteq B$, 求实数 a 的取值范围.
- 69. 已知集合 $A = \{x|x^2 2x 3 \le 0\}$, $B = \{x|x^2 + px + q < 0\}$, 且 $A \cap B = \{x|-1 \le x < 2\}$, 求实数 p,q 的 关系式及其取值范围.

- 70. 已知集合 $A = \{x|-2 < x < -1$ 或 $x > \frac{1}{2}\}$, $B = \{x|x^2 + ax + b \le 0\}$, 且 $A \cup B = \{x|x+2 > 0\}$, $A \cap B = \{x|\frac{1}{2} < x \le 3\}$, 求 a,b 的值.
- 71. 要使代数式 $mx^2 + (m-1)x + (m-1)$ 的值恒为负值, 求实数 m 的取值范围.
- 72. 已知关于 x 的不等式 $(a^2 4)x^2 + (a + 2)x 1 \ge 0$ 的解集是空集, 求实数 a 的取值范围.
- 73. 若关于 x 的不等式 $\frac{x^2 8x + 20}{mx^2 + 2(m+1)x + 9m + 4} < 0$ 的解集为 \mathbf{R} , 求实数 m 的取值范围.
- 74. 当 $0^{\circ} < \varphi < 90^{\circ}$ 时, 要使 $\frac{x^2 6x + 8}{x^2 + 2} = \sin \varphi$ 恒成立, 求实数 x 的取值范围.
- 75. 既要使关于 x 的不等式 $x^2 + (m \frac{1}{2})x \frac{7}{16} \le 0$ 有实数解, 又要使关于 x 的方程 $(2m+3)x^2 + mx + \frac{m-2}{4} = 0$ 有实数解, 求实数 m 的取值范围.
- 76. 为长 80cm、宽 60cm 的工作台做一块台布, 使台布的面积是台面面积的两倍以上, 并使台子四边垂下的长度相等, 问: 垂下的长度至少是多少 (精确到 0.1cm)?
- 77. 已知非零实数 x, y, z, 满足 x + y + z = xyz, $x^2 = yz$, 求证: $x^2 \ge 3$.
- 78. 已知 a+b > 0,求证: $a^3 + b^3 > a^2b + ab^2$.
- 79. 设 $a, b \in \mathbb{R}^+$, 且 $a \neq b$, 求证: $a^a b^b > a^b b^a$.
- 80. 已知 $a, b, c \in \mathbb{R}$, 求证: $a^2 + b^2 + c^2 \ge ab + bc + ca$.
- 81. 已知 a, b, c > 0, 求证: $(1) (a+b)(\frac{1}{a} + \frac{1}{b}) \ge 4$; $(2) (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \ge 9$.
- 82. 已知正数 a, b 满足 a + b = 1, 求证: $\sqrt{2a + 1} + \sqrt{2b + 1} \le 2\sqrt{2}$.
- 83. 已知 $\alpha, \beta \in (0, \frac{\pi}{2})$, 且 $\alpha \neq \beta$, 求证: $\tan \alpha + \tan \beta > 2 \tan \frac{\alpha + \beta}{2}$.
- 84. 记 $f(x) = x^2 + ax + b$, 求证: |f(1)|, |f(2)|, |f(3)| 中至少有一个不小于 $\frac{1}{2}$.
- 85. 已知 $-1 \le x \le 1$, $n \ge 2$, $n \in \mathbb{N}$, 求证: $(1-x)^n + (1+x)^n \le 2^n$.
- 86. 已知 x + 2y + 3z = 12, 求证: $x^2 + 2y^2 + 3z^2 > 24$.
- 87. 已知 $a, b, c \in \mathbb{R}^+$, 求证: $a^3 + b^3 + c^3 > 3abc$ (当且仅当 a = b = c 时取等号).
- 88. 己知 a > 0,求证: $x + \frac{1}{x} + \frac{1}{x + \frac{1}{x}} \ge \frac{5}{2}$.
- 89. 已知实数 a, b, c 满足 a + b + c = 0 和 abc = 2, 求证: a, b, c 中至少有一个不小于 2.
- 90. 已知 $0 < a < 1, 0 < b < 1, 求证: \sqrt{a^2 + b^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a-1)^2 + (b-1)^2} \ge 2\sqrt{2}$.
- 91. 已知实数 x,y,z 不全为零, 求证: $\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}>\frac{3}{2}(x+y+z)$.

- 92. 已知 $x \ge 0$, $y \ge 0$, 求证: $\frac{1}{2}(x+y)^2 + \frac{1}{4}(x+y) \ge x\sqrt{y} + y\sqrt{x}$.
- 93. 求证: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < \frac{7}{4} (n \in \mathbf{N}^*).$
- 94. 已知 x > 0, y > 0, a, b 是正常数, 且满足 $\frac{a}{x} + \frac{b}{y} = 1$, 求证: $x + y \ge (\sqrt{a} + \sqrt{b})^2$.
- 95. 已知正数 a, b 满足 $a^2b = 1$, 求 a + b 的最小值.
- 96. 求 $\sin^2 \alpha \cos^2 \alpha + \frac{1}{\sin^2 \alpha \cos^2 \alpha}$ 的最小值.
- 97. 已知直角三角形的周长为定值 1, 求它面积的最大值.
- 98. 已知圆柱的体积为定值 V, 求圆柱全面积的最小值.
- 99. 从半径为 R 的圆形铁片里剪去一个扇形, 然后把剩下部分卷成一个圆锥形漏斗, 要使漏斗有最大容量, 剪去扇形的圆心角 θ 应是多少弧度?
- 100. 在 Rt $\triangle ABC$ 中, 已知 $\angle C = 90^{\circ}$, $\angle A$, $\angle B$, $\angle C$ 的对边 a,b,c 满足 a+b=cx. 设 $\triangle ABC$ 绕直线 AB 旋转一周所得的旋转体的侧面积为 S_1 , $\triangle ABC$ 的内切圆面积为 S_2 . 求:
 - (1) 函数 $f(x) = \frac{S_1}{S_2}$ 的解析式和定义域;
 - (2) 函数 f(x) 的最小值.
- 101. 用比较法证明以下各题:
 - (1) 已知 a > 0, b > 0, 求证: $\frac{1}{a} + \frac{1}{b} \ge \frac{2}{\sqrt{ab}}$;
 - (2) 已知 a > 0, b > 0, 求证: $\frac{b}{\sqrt{a}} + \frac{a}{\sqrt{b}} \ge \sqrt{a} + \sqrt{b}$;
 - (3) 已知 a > 0, b > 0, 求证: $a^2 + b^2 \ge (a+b)\sqrt{ab}$;
 - (4) 已知 0 < x < 1,求证: $\frac{a^2}{x} + \frac{b^2}{1-x} \ge (a+b)^2$.
- 102. 已知 a > 0, b > 0, 求证: $a^3 + b^3 > a^2b + b^2a$.
- 103. 己知 $x \in \mathbb{R}^+, y \in \mathbb{R}^+, n \in \mathbb{N}$, 求证: $x^{n+1} + y^{n+1} > x^n y + x y^n$.
- 104. 已知 a > 0, b > 0, c > 0, 求证: $a(b^2 + c^2) + b(c^2 + a^2) + c(a^2 + b^2) \ge 6abc$.
- 105. 求证: $a^5 + b^5 \ge \frac{1}{2}(a^3 + b^3)(a^2 + b^2)(a > 0, b > 0)$.
- 106. 求证: $a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c$ 是实数).
- 107. 已知 a > b > c, 求证: $a^2b + b^2c + c^2a > ab^2 + bc^2 + ca^2$.
- 108. 在 $\triangle ABC$ 中, 记 a,b,c 分别是角 A,B,C 的对边, S 是 $\triangle ABC$ 的面积, 求证: $c^2-a^2-b^2+4ab\geq 4\sqrt{3}S$.
- 109. 设 $a,b \in \mathbb{N}$, 则 $\sqrt{2}$ 在 $\frac{b}{a}$ 与 $\frac{2a+b}{a+b}$ 之间.
- 110. 已知 a, b, c 都是正数, 求证: $a^{2a}b^{2b} \ge a^{b+c}b^{c+a}c^{a+b}$.

- 111. 下列命题中, 正确的一个是().
 - A. 若 $a, b, c \in \mathbf{R}$, 且 a > b, 则 $ac^2 > bc^2$
- B. 若 $a,b \in \mathbf{R}$, 且 $a \cdot b \neq 0$, 则 $\frac{a}{b} + \frac{b}{a} \geq 2$
- C. 若 $a, b \in \mathbf{R}$, 且 a > |b|, 则 $a^n > b^n (n \in \mathbf{N})$ D. 若 a > b, c < d, 则 $\frac{a}{c} > \frac{b}{d}$
- 112. 下列各式中, 对任何实数 x 都成立的一个是 ().
 - A. $\lg(x^2 + 1) > \lg 2x$ B. $x^2 + 1 > 2x$
- C. $\frac{1}{x^2+1} \le 1$ D. $x + \frac{1}{x} \ge 2$
- 113. 已知, $a,b \in \mathbb{R}$, 且 $a,b \neq 0$, 则在① $\frac{a^2+b^2}{2} \geq ab$; ② $\frac{b}{a}+\frac{a}{b} \geq 2$; ③ $ab \leq (\frac{a+b}{2})^2$; ④ $(\frac{a+b}{2})^2 \leq \frac{a^2+b^2}{2}$ 这 四个式子中, 恒成立的个数是(

- 115. 若 x > 0, 则 $x + \frac{1}{x}$ 的最小值为_______; 若 x < 0, 则 $(-x) + \frac{1}{-x}$ 的最小值为______, $x + \frac{1}{x}$ 的最大
- 116. 若 a>1, b>1, c>1, 则 $\log_a b + \log_b a$ 的最小值为______, $\log_a b + \log_b c + \log_c a$ 的最小值为___
- 117. 若 0 < a < 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最小值为_____
- 118. 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最大值为_
- 119. 设 a, b 为正数, 且 $a + b \le 4$, 则下列各式中, 一定正确的是 (

A.
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{4}$$

B.
$$\frac{1}{4} \le \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$$

A.
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{4}$$
 B. $\frac{1}{4} \le \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$ C. $\frac{1}{2} \le \frac{1}{a} + \frac{1}{b} \le 1$ D. $\frac{1}{a} + \frac{1}{b} \ge 1$

- 120. 若 a,b,c 均大于 1, 且 $\log_a c \cdot \log_b c = 4$, 则下列各式中, 一定正确的是 ().

A.
$$ac \geq b$$

B.
$$ab \geq c$$

C.
$$bc \geq a$$

D.
$$ab \leq c$$

121. 若 a > 0, b > 0, 且 $a \neq b$, 则下列各式恒成立的是(

A.
$$\frac{2ab}{a+b} < \frac{a+b}{2} < \sqrt{ab}$$

B.
$$\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$$

C.
$$\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2}$$

A.
$$\frac{2ab}{a+b} < \frac{a+b}{2} < \sqrt{ab}$$
 B. $\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$ C. $\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2}$ D. $\sqrt{ab} < \frac{a+b}{2} < \frac{2ab}{a+b}$

- 122. 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 x > 0, y > 0, 则 $\sqrt{(1+x)(1+y)} \ge 1 + \sqrt{xy}$.
- 123. 利用公式 $a^2+b^2 \geq 2ab$ 或 $a+b \geq 2\sqrt{ab}(a,b \geq 0)$, 求证: 若 $a>0,\,b>0,\,c>0,\,$ 则 ab(a+b)+bc(b+c)+ $ca(c+a) \ge 6abc$.
- 124. 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 a > 0, b > 0, 则 $a + b + \frac{1}{\sqrt{ab}} \ge 2\sqrt{2}$.
- 125. 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 $m = x\cos^2\theta + y\sin^2\theta$, $n = x\sin^2\theta + y\cos^2\theta$, 则 $mn \ge xy$.

- 126. 利用公式 $a^2+b^2 \geq 2ab$ 或 $a+b \geq 2\sqrt{ab}(a,b \geq 0)$, 求证: 若 x+3y-1=0, 则 $2^x+8^y \geq 2\sqrt{2}$.
- 127. 利用公式 $a^2+b^2 \geq 2ab$ 或 $a+b \geq 2\sqrt{ab}(a,b \geq 0)$, 求证: $\log_{0.5}(\frac{1}{4^a}+\frac{1}{4^b}) \leq a+b-1$.
- 128. 已知 x > 0, y > 0, x + y = 1, 求证:
 - (1) $(1 + \frac{1}{x})(1 + \frac{1}{y}) \ge 9;$
 - $(2) \left(\frac{1}{x^2} 1\right) \left(\frac{1}{y^2} 1\right) \ge 9.$
- 129. 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $(1 a)(1 b)(1 c) \ge 8abc$.
- 130. 已知 $a>0,\,b>0,\,c>0,\,a+b+c=1,$ 求证: $(\frac{1}{a}-1)(\frac{1}{b}-1)(\frac{1}{c}-1)\geq 8.$
- 131. 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$.
- 132. 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $\frac{1}{abc} \ge 27$.
- 133. 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $(1 + \frac{1}{a})(1 + \frac{1}{b})(1 + \frac{1}{c}) \ge 64$.
- 134. 利用公式 $\frac{a+b+c}{3} \leq \sqrt{\frac{a^2+b^2+c^2}{3}}$, 求证: $\sqrt{a^2}+b^2+\sqrt{b^2}+c^2+\sqrt{c^2}+a^2 \geq \sqrt{2}(a+b+c)$.
- 135. 利用公式 $\frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}}$, 求证: 若 $a+b=1(a,b\geq 0)$, 则 $\sqrt{2a+1}+\sqrt{2b+1}\leq 2\sqrt{2}$.
- 136. 利用公式 $\frac{a+b+c}{3} \le \sqrt{\frac{a^2+b^2+c^2}{3}}$, 求证: 若 $a+b+c=1(a,b,c\ge 0)$, 则 $\sqrt{13a+1}+\sqrt{13b+1}+\sqrt{13c+1}\le 4\sqrt{3}$
- 137. 利用公式 $\frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}}$,求证: $a\cos\varphi + b\sin\varphi + c \leq \sqrt{2(a^2+b^2+c^2)}$.
- 138. 利用 $a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c \in \mathbf{R})$, 证明: 若 a > 0, b > 0, c > 0, 则 $\frac{a^2}{b^2} + b^2c^2 + c^2a^2a + b + c \ge abc$.
- 139. 利用 $a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c \in \mathbf{R})$, 证明: 若半径为 1 的圆内接 $\triangle ABC$ 的而积为 $\frac{1}{4}$, 二边长分别为 a, b, c, 则
 - (1) abc = 1;
 - (2) $\sqrt{b} + \sqrt{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.
- 140. 利用 $a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c \in \mathbf{R})$, 证明: 若 a, b, c > 0, $n \in \mathbf{N}$, $f(n) = \lg \frac{a^n + b^n + c^n}{3}$, 则 $2f(n) \le f(2n)$.
- 141. 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: $\lg 9 \cdot \lg 11 < 1$.
- 142. 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$,证明: $\log_a(a-1) \cdot \log_a(a+1) < 1(a>1)$.
- 143. 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: 若 a > b > c, 则 $\frac{1}{a-b} + \frac{1}{b-c} + \frac{4}{c-a} \geq 0$.
- 144. 利用放缩法证明: $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{n^2} > 1 (n \in \mathbb{N}, n \ge 2).$

- 145. 利用放缩法证明: $\frac{1}{2} \le \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} < 1(n \in \mathbb{N}).$
- 146. 利用放缩法证明: 已知 $a>0,\,b>0,\,c>0,$ 且 $a^2+b^2=c^2,$ 求证: $a^n+b^n< c^n (n\geq 3,\,n\in {\bf N}).$
- 147. 利用拆项法证明: 若 x > y, xy = 1, 则 $\frac{x^2 + y^2}{x y} \ge 2\sqrt{2}$.
- 148. 利用拆项法证明: $\frac{1}{2}(a^2+b^2)+1 \ge \sqrt{a^2+1}\cdot\sqrt{b^2+1}$.
- 149. 利用拆项法证明: 若 a > 0, b > 0, c > 0, 则 $2(\frac{a+b}{2} \sqrt{ab}) \le 3(\frac{a+b+c}{3} \sqrt[3]{abc})$.
- 150. 利用拆项法证明: $2(\sqrt{n+1}-1) < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n} (n \in \mathbb{N}).$
- 151. 利用逆代法证明: 若正数 x, y 满足 x + 2y = 1, 则 $\frac{1}{x} + \frac{1}{y} \ge 3 + 2\sqrt{2}$.
- 152. 利用逆代法证明: $\frac{1}{\sin^2 \alpha} + \frac{3}{\cos^2 \alpha} \ge 4 + 2\sqrt{3}$.
- 153. 利用逆代法证明: 若 $x,y>0, \ a,b$ 为正常数, 且 $\frac{a}{x}+\frac{a}{y}=1, \ oldsymbol{m{y}}\ x+y\geq (\sqrt{a}+\sqrt{b})^2.$
- 154. 利用判别式法证明: $\frac{1}{3} \le \frac{x^2 x + 1}{x^2 + x + 1} \le 3$.
- 155. 利用判别式法证明: 若关于 x 的不等式 $(a^2-1)x^2-(a-1)x-1<0(a\in {\bf R})$ 对仟意实数 x 恒成立,则 $-\frac{3}{5}< a\leq 1.$
- 156. 利用函数的单调性证明: 若 x > 0, y > 0, x + y = 1, 则 $(x + \frac{1}{x})(y + \frac{1}{y}) \ge \frac{25}{4}$.
- 157. 利用函数的单调性证明: 若 $0 < a < \frac{1}{k} (k \ge 2, k \in \mathbb{N})$, 且 $a^2 < a b$, 则 $b < \frac{1}{k+1}$.
- 158. 利用三角换元法证明: 若 $a^2 + b^2 = 1$, 则 $a \sin x + b \cos x \le 1$.
- 159. 利用三角换元法证明: 若 |a| < 1, |b| < 1, 则 $|ab \pm \sqrt{(1-a^2)(1-b^2)}| \le 1$.
- 160. 利用三角换元法证明: 若 $x^2 + y^2 \le 1$, 则 $-\sqrt{2} \le x^2 + 2xy y^2 \le \sqrt{2}$.
- 161. 利用三角换元法证明: 若 $|x| \le 1$, 则 $(1+x)^n + (1-x)^n \le 2^n$.
- 162. 利用三角换元法证明: 若 $a>0,\,b>0,\,$ 且 $a-b=1,\,$ 则 $0<\frac{1}{a}(\sqrt{a}-\frac{1}{\sqrt{a}})(\sqrt{b}+\frac{1}{\sqrt{b}})<1.$
- 163. 利用三角换元法证明: $0 < \sqrt{1+x} \sqrt{x} \le 1$.
- 164. 试构造几何图形证明: 若 $f(x) = \sqrt{1+x^2}$, x > b > 0, 则 |f(a) f(b)| < |a b|.
- 165. 试构造几何图形证明: 若 x, y, z > 0, 则 $\sqrt{x^2 + y^2 + xy} + \sqrt{y^2 + z^2 + yz} > \sqrt{z^2 + x^2 + zx}$.
- 166. 利用均值换元证明: 若 a > 0, b > 0, 且 a + b = 1, 则 $\frac{4}{3} \le \frac{1}{a+1} + \frac{1}{b+1} < \frac{3}{2}$.
- 167. 利用均值换元证明: 若 a+b+c=1, 则 $a^2+b^2+c^2\geq \frac{1}{3}$.
- 168. 利用设差换元证明: 若 $x \ge y \ge 0$, 则 $\sqrt{2xy y^2} + \sqrt{x^2 y^2} \ge x$.

- 169. 已知 a, b, c 都是正数, 求证: $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$.
- 170. 已知正数 a, b 满足 a + b = 1, 求证: $(ax + by)(ay + bx) \ge xy$.
- 171. 已知正数 a, b 满足 a + b = 1, 求证: $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{25}{2}$
- 172. 已知正数 a, b 满足 a + b = 1, 求证: $(a + \frac{1}{a})(b + \frac{1}{b}) \ge \frac{25}{4}$.
- 173. 已知正数 a, b, c 满足 a + b + c = 1, 求证: $\left(a + \frac{1}{a}\right) + \left(b + \frac{1}{b}\right) + \left(c + \frac{1}{c}\right) \ge 10$.
- 174. 已知正数 a,b,c 满足 a+b+c=1, 求证: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2\geq \frac{100}{3}$
- 175. 已知正数 a, b, c 满足 a + b + c = 1, 求证: $\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}} \ge 3\sqrt{3}$.
- 176. 已知 $a^2 + b^2 + c^2 = 1$, 求证: $-\frac{1}{2} \le ab + bc + ca \le 1$.
- 177. 已知 $a^2 + b^2 + c^2 = 1$, 求证: $|abc| \le \frac{\sqrt{3}}{9}$.
- 178. 已知 x > 1, 求证: $\sqrt{x} \sqrt{x-1} > \sqrt{x+1} \sqrt{x}$.
- 179. 已知 a > 0, b > 0, c > 0, 求证: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 2(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a})$.
- 180. 己知 a > 0, b > 0, c > 0, 求证: $\frac{c}{a+b} + \frac{a}{b+c} + \frac{b}{c+a} \ge \frac{3}{2}$.
- 181. 已知 $\alpha, \beta \in (0, \frac{\pi}{2})$, 求证: $\frac{1}{\cos^2 \alpha} + \frac{1}{\sin^2 \alpha \sin^2 \beta \cos^2 \beta} \geq 9.$
- 182. 已知 a > 0, b > 0, c > 0, 求证: $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{9}{2(a+b+c)}$.
- 183. 己知 $\tan \alpha, \tan \beta$ 是关于 x 的方程 $mx^2 + (2m-3)x + (m-2) = 0 (m \neq 0)$ 的两根, 求证: $\tan(\alpha + \beta) \geq -\frac{3}{4}$.
- 184. 已知长方体的对角线长为定长 l, 求证: 它的体积 $V \leq \frac{\sqrt{3}l^3}{9}$.
- 185. 在 $\triangle ABC$ 中, 求证: $\cos A + \cos B + \cos C \le \frac{3}{2}$
- 186. 在 $\triangle ABC$ 中,求证: $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le \frac{1}{8}$.
- 187. 在 $\triangle ABC$ 中, 求证: $\tan A \tan B \tan C \ge 3\sqrt{3}$, 其中三内角 A, B, C 都是锐角.
- 188. 在 $\triangle ABC$ 中, 求证: $a^2+b^2+c^2\geq 4\sqrt{3}S$, 其中三内角 A,B,C 的对边分别为 a,b,c, 三角形的面积为 S.
- 189. 己知 $f(x) = \lg \frac{1 + 2^x + a \cdot 4^x}{3} (a \in \mathbf{R}).$
 - (1) 如果 $x \le 1$ 时 f(x) 有意义, 求 a 的取值范围;
 - (2) 如果 $0 < a \le 1$, 求证: $x \ne 0$ 时, 2f(x) < f(2x).
- 190. 求证: $2 + \sin \theta + \cos \theta \ge \frac{2}{2 \sin \theta \cos \theta}$.
- 191. 求证: $-1 < \frac{4\sin\theta + 3}{\sin^2\theta + 1} \le 4$.

```
192. 求证: \frac{x+b+c+abc}{1+ab+bc+ca} \le 1, 其中 0 \le a \le 1, 0 \le b \le 1, 0 \le c \le 1.
```

193. 求证:
$$2\sin 2\alpha \le \cot \frac{\alpha}{2}$$
, 其中 $0 < \alpha < \pi$.

194. 求证: 若
$$x > -1$$
, 则 $(\frac{1}{3})^{x+\frac{3}{2}} < (\frac{1}{3})^{\sqrt{(x+1)(x+2)}}$.

195. 求证: 若
$$a > b > 0$$
, $c > d > 0$, 则 $\sqrt{ac} - \sqrt{bd} > \sqrt{(a-b)(c-d)}$.

196. 求证:
$$ac + bd \le \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}$$
.

197. 求证: 若
$$x > y > 0$$
, $\theta \in (0, \frac{\pi}{2})$, 则 $x \sec \theta - y \tan \theta \ge \sqrt{x^2 - y^2}$.

198. 求证: 若
$$-1 < x < 1$$
, $-1 < y < 1$, 则 $|\frac{x+y}{1+xy}| < 1$.

199. 求证:
$$16^{18} > 18^{16}$$
.

200. 求证:
$$(\sqrt{2})^{\sqrt{3}} < (\sqrt{3})^{\sqrt{2}}$$
.

201. 求证: 若
$$a > 0$$
, $b > 0$, $a + b = 1$, 则 $3^a + 3^b < 4$.

202. 利用反证法证明: 若
$$0 < a < 1$$
, $0 < b < 1$, $0 < c < 1$, 则 $(1-a)b$, $(1-b)c$, $(1-c)a$ 不能都大于 $\frac{1}{4}$.

203. 利用反证法证明: 若
$$0 < a < 2$$
, $0 < b < 2$, $0 < c < 2$, 则 $a(2-b)$, $b(2-c)$, $c(2-a)$ 不可能都大于 1.

204. 利用反证法证明: 若
$$x,y>0$$
, 且 $x+y>2$, 则 $\frac{1+y}{x}$ 和 $\frac{1+x}{y}$ 中至少有一个小于 2.

205. 利用反证法证明: 若
$$0 < a < 1, b > 0$$
, 且 $a^b = b^a$, 则 $a = b$.

206. 若 $a>0,\,b>0,\,$ 且 $a^3+b^3=2,$ 试分别利用 $x^3+y^3+z^3\geq 3xyz(x,y,z\geq 0)$ 构造方程, 并利用判别式以及反证法证明: $a+b\leq 2.$

207. 下列函数中, 最小值为 2 的是 ().

A.
$$x + \frac{1}{x}$$

B.
$$\frac{x^2+2}{\sqrt{x^2+1}}$$

C.
$$\log_a x + \log_x a (a > 0, x > 0, a \neq 1, x \neq 1)$$

D.
$$3^x + 3^{-x}(x > 0)$$

208. 若 $\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$, 则 x + y 的最小值是 ().

A. 8

B. $4\sqrt{2}$

C. 4

D. 2

209. 若 a, b 均为大于 1 的正数, 且 ab = 100, 则 $\lg a \cdot \lg b$ 的最大值是 ().

A. (

B. 1

C. 2

D. $\frac{5}{2}$

210. 若实数 x = 5 期限 x + y - 4 = 0, 则 $x^2 + y^2$ 的最小值是 ().

A. 4

B. 6

C. 8

D. 10

211. 若非负实数 a, b 满足 2a + 3b = 10, 则 $\sqrt{3b} + \sqrt{2a}$ 的最大值是 ().

A. $\sqrt{10}$

B. $2\sqrt{5}$

C. 5

D. 10

212. 若 x > 1, 则 $\frac{x^2 - 2x + 2}{2x - 2}$ 有 ().

B. 最大值 1

C. 最小值 -1

D. 最大值 -1

213. 若 $x, y \in \mathbb{R}^+$, 且 $x^2 + y^2 = 1$, 则 x + y 的最大值是_____.

214. 若 $x + 2y = 2\sqrt{2}a(x > 0, y > 0, a > 1)$, 则 $\log_a x + \log_a y$ 的最大值是______.

215. 若 x > 1, 则 $2 + 3x + \frac{4}{x-1}$ 的最小值______, 此时 x =______.

216. 若 x > 0, 则 $x + \frac{1}{x} + \frac{16x}{x^2 + 1}$ 的最小值是______, 此时 x =______.

217. 若正数 a, b 满足 $a^2 + \frac{b^2}{2} = 1$,则 $a\sqrt{1+b^2}$ 的最大值为______,此时 a =______,b =_____

218. 若 x > 0, 则 $3x + \frac{12}{x^2}$ 的最小值是______, 此时 x =______.

219. 若 $0 < x < \frac{1}{3}$, 则 $x^2(1-3x)$ 的最大值是______, 此时 x =______.

220. 若 xy > 0, 且 $x^2y = 2$, 则 $xy + x^2$ 的最小值是_____.

221. $\sin^4 \alpha \cos^2 \alpha$ 的最大值是______, 此时 $\sin \alpha =$ ______, $\cos \alpha =$ _____.

222. 若正数 x, y, z 满足 5x + 2y + z = 100, 则 $\lg x + \lg y + \lg z$ 的最大值是______.

223. 若 $\frac{x^2}{4} + y^2 = x$, 则 $x^2 + y^2$ 有 ().

A. 最小值 0, 最大值 16 B. 最小值 $-\frac{1}{3}$, 最大值 0 C. 最小值 0, 最大值 1 D. 最小值 1, 最大值 2

224. $|\sin x| + |\cos x|$ 的最大值是 ().

A. 2

B. $\sqrt{2}$

C. $\frac{\sqrt{2}}{2}$

D. $\frac{1}{2}$

225. 若 x > 0, 则 $\frac{x}{x^3 + 2}$ 的最大值是 ().

C. 1

D. $\frac{1}{2}$

226. 若正数 a, b 满足 ab - (a + b) = 1, 则 a + b 的最小值是 ().

A. $2 + 2\sqrt{2}$

B. $2\sqrt{2} - 2$

C. $\sqrt{5} + 2$

D. $\sqrt{5} - 2$

227. 已知 a > 1 且 $a^{\lg b} = \sqrt[4]{2}$, 求 $\log_2(ab)$ 的最小值.

228. 求函数 $y = \frac{x^4 + 3x^2 + 3}{x^2 + 1}$ 的最小值.

229. 求 $f(x) = 4x^2 + \frac{16}{(x^2+1)^2}$ 的最小值.

230. 求 $f(x) = x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2}(x > 0)$ 的最小值.

231. 若 x, y > 0, 求 $\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x + y}}$ 的最大值.

- 232. 已知正常数 a, b 和正变数 x, y 满足 $a + b = 10, \frac{a}{x} + \frac{b}{y} = 1, x + y$ 的最小值为 18,求 a, b 的值.
- 233. 已知 $x^2 + y^2 = 1$, 求 (1 + xy)(1 xy) 的最大值和最小值.
- 234. 已知 $x^2 + y^2 = 3$, $a^2 + b^2 = 4$, 求 ax + by 的最大值和最小值.
- 235. 已知 $\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, 求 x + y 的最大值和最小值.
- 236. 已知函数 $f(x) = \frac{2^{x+3}}{4^x + 8}$.
 - (1) 求 f(x) 的最大值;
 - (2) 对于任意实数 a, b, 求证: $f(a) < b^2 4b + \frac{11}{2}$.
- 237. 若直角三角形的周长为 1, 求它的面积的最大值.
- 238. 若直角三角形的内切圆半径为 1, 求它的面积的最小值.
- 239. 若球半径为 R, 试求它的内接圆柱的最大体积. 请指出下向解法的错误, 并给出正确的解答.

解: 设圆柱底面半径为
$$r$$
,则 $4r^2=4R^2-h^2$,而 $V_=\pi r^2h=\frac{\pi}{4}(4R^2-h^2)h=\frac{\pi}{4}(2R+h)(2R-h)=\frac{\pi}{8}(2R+h)(4R-2h)h\leq \frac{\pi}{8}(\frac{2R+h+4R-2h+h}{3})^3=\frac{\pi}{8}(2R)^3=\pi R^3$. 所以所求最大体积为 πR^3 .

- 240. 在 $\triangle ABC$ 中, 已知 BC=a, CA=b, AB=c, $\angle ACB=\theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在直线为 轴旋转一周, 设所得三个旋转体的体积依次为 V_1,V_2,V_3 .
 - (1) 设 $T = \frac{V_3}{V_1 + V_2}$, 试用 a, b, c 表示 T;
 - (2) 若 θ 为定值, 并令 $\frac{a+b}{c}=x$, 将 $T=\frac{V_3}{V_1+V_2}$ 表示为 x 的函数, 写出这个函数的定义域, 并求这个函数的最大值 M;
 - (3) 若 $\theta \in [\frac{\pi}{3}, \pi)$, 求 (2) 中 M 的最大值.
- 241. 已知 $A(0,\sqrt{3}a)$, B(-a,0), C(a,0) 是等边 $\triangle ABC$ 的顶点,点 M,N 分别在边 AB,BC 上,且将 $\triangle ABC$ 的面积两等分,记 N 的横坐标为 x, |MN|=y.
 - (1) 写出 y = f(x) 的表达式;
 - (2) 求 y = f(x) 的最小值.
- 242. 已知 $\triangle ABC$ 内接于单位圆, 且 $(1 + \tan A)(1 + \tan B) = 2$.
 - (1) 求证: 内角 C 为定值;
 - (2) 求 $\triangle ABC$ 面积的最大值.
- 243. 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | \alpha < x < \beta\}$, 其中 $0 < \alpha < \beta$, 求 $cx^2 + bx + a < 0$ 的解集.
- 244. 解不等式 $(x+1)^2(x-1)(x-4)^3 > 0$.
- 245. 解不等式 $\frac{3x^2 14x + 14}{x^2 6x + 8} \ge 1$.
- 246. 解不等式 $\sqrt{x^2 3x + 2} > x 3$.

- 247. 解不等式 $\sqrt{2x-1} < x-2$.
- 248. 解不等式 $|x^2 4| \le x + 2$.
- 249. 解不等式 $|x^2 \frac{1}{2}| > 2x$.
- 250. 解关于 x 的不等式 $|\log_a x| < |\log_a (ax^2)| 2(0 < a < 1)$.
- 251. 若关于 x 的不等式 2x-1>a(x-2) 的解集是 \mathbf{R} , 则实数 a 的取值范围是 (
 - A. a > 2
- B. a = 2
- C. a < 2
- D. a 不存在
- 252. 若关于 x 的不等式 $ax^2 + bx 2 > 0$ 的解集是 $(-\infty, -\frac{1}{2}) \cup (\frac{1}{3}, +\infty)$, 则 ab 等于 (

B. 24

C. 14

- D. -14
- 253. 若关于 x 的不等式 $(a-2)x^2 + 2(a-2)x 4 < 0$ 对一切实数 x 恒成立, 则实数 a 的取值范围是 (
 - A. $(-\infty, 2]$
- B. $(-\infty, -2)$
- C. (-2,2]
- D. (-2,2)

- 254. 若 q < 0 < p, 则不等式 $q < \frac{1}{r} < p$ 的解集为 (
 - A. $\{x | \frac{1}{q} < x < \frac{1}{p}, \ x \neq 0\}$

C. $\{x \mid -\frac{1}{n} < x < -\frac{1}{a}, \ x \neq 0\}$

- 255. 若关于 x 的不等式 (a+b)x+2a-3b<0 的解集是 $\{x|x<-\frac{1}{3}\}$, 则 (a-3b)x+b-2a>0 的解集是
- 256. 若不等式 $\frac{2x^2+2kx+k}{4x^2+6x+3}<1$ 对一切 $x\in\mathbf{R}$ 恒成立, 则实数 k 的取值范围是______
- 257. 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | 3 < x < 5\}$, 则不等式 $cx^2 + bx + a < 0$ 的解集是_
- 258. 若关于 x 的不等式 $\frac{x-a}{x^2-3x+2} \ge 0$ 的解集是 $\{x|1 < x \le ax > 2\}$, 则实数 a 的取值范围是______
- 259. 不等式 $(x+2)(x+1)^2(x-1)^3(x-3) > 0$ 的解集为:______.
- 260. 不等式 $\frac{(x-1)^2(x+2)}{(x-3)(x-4)} \le 0$ 的解集为:______.
- 261. 不等式 $x+1 \le \frac{4}{x+1}$ 的解集为:______.
- 262. 若不等式 $f(x) \ge 0$ 的解集为 [1,2], 不等式 $g(x) \ge 0$ 的解集为 Ø, 则不等式 $\frac{f(x)}{g(x)}$ 的解集是 (
 - $A. \varnothing$

- B. $(-\infty, 1) \cup (2, +\infty)$
- C. [1, 2)
- D. R
- 263. 若关于 x 的不等式 $ax^2 bx + c < 0$ 的解集为 $(-\infty, \alpha) \cup (\beta, +\infty)$, 其中 $\alpha < \beta < 0$, 则不等式 $cx^2 + bx + a > 0$ 的解集为(
 - A. $(\frac{1}{\beta}, \frac{1}{\alpha})$
- B. $(\frac{1}{\alpha}, \frac{1}{\beta})$
- C. $(-\frac{1}{\beta}, -\frac{1}{\alpha})$
- D. $(-\frac{1}{\alpha}, -\frac{1}{\beta})$

264. 解关于 x 的不等式: $m^2x - 1 < x + m$.

- 265. 解关于 x 的不等式: $x^2 ax 2a^2 < 0$.
- 266. 已知关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集是 $\{x | 4 < x < b\}$, 求 a, b 的值.
- 267. 已知 x=3 是不等式 ax>b 解集中的元素, 求实数 a,b 应满足的条件.
- 268. 已知集合 $\{x|x<-2$ 或 $x>3\}$ 是集合 $\{x|2ax^2+(2-ab)x-b>0\}$ 的子集, 求实数 a,b 的取值范围.
- 269. 已知集合 $A = \{x | \frac{2x-1}{x^2+3x+2} > 0\}, B = \{x | x^2+ax+b \leq 0\},$ 且 $A \cap B = \{x | \frac{1}{2} < x \leq 3\},$ 求实数 a,b 的取 值范围.
- 270. 已知集合 $A = \{x | (x+2)(x+1)(2x-1) > 0\}, B = \{x | x^2 + ax + b \le 0\},$ 且 $A \cup B = \{x | x + 2 > 0\},$ $A \cap B = \{x | \frac{1}{2} < x \le 3\}$, 求实数 a, b 的值.
- 271. 已知关于 x 的不等式 $x^2 ax 6a \le 0$ 有解, 且解 x_1, x_2 满足 $|x_1 x_2| \le 5$, 求实数 a 的取值范围.
- 272. 已知关于 x 的方程 $3x^2 + x \log_{\frac{1}{2}}^2 a + 2 \log_{\frac{1}{2}} a = 0$ 的两根 x_1, x_2 满足条件 $-1 < x_1 < 0 < x_2 < 1$, 求实数 a 的 取值范围.
- 273. 已知关于 x 的方程 $x^2 + (m^2 1)x + m 2 = 0$ 的一个根比 -1 小, 另一个根比 1 大, 求参数 m 的取值范围.
- 274. 已知集合 $A = \{x|x-a>0\}, B = \{x|x^2-2ax-3a^2<0\}, 求 A\cap B 与 A\cup B.$
- 275. 不等式 $\sqrt{x+3} > -1$ 的解集是 ().

A.
$$\{x|x > -2\}$$

B.
$$\{x | x \ge -3\}$$

D. R

276. 不等式 $(x-1)\sqrt{x+2} \ge 0$ 的解集是 ().

A.
$$\{x | x > 1\}$$

B.
$$\{x|x > 1\}$$

C.
$$\{x | x \ge 1$$
 或 $x = -2$

C.
$$\{x|x \ge 1$$
或 $x = -2\}$ D. $\{x|x > 1$ **或** $x = -2\}$

277. 与不等式 $\sqrt{(x-4)(x+3)} \le 1$ 的解完全相同的不等式是 ().

A.
$$|(x-4)(x+3)| < 1$$

B.
$$(x-4)(x+3) < 1$$

A.
$$|(x-4)(x+3)| \le 1$$
 B. $|(x-4)(x+3)| \le 1$ C. $|\lg[(x-4)(x+3)] \le 0$ D. $0 \le (x-4)(x+3) \le 1$

D.
$$0 < (x-4)(x+3) < 1$$

- 278. 解不等式: $\sqrt{x-5} + 4x 3 > 3x + 1 + \sqrt{x-5}$.
- 279. 解不等式: $\sqrt{x^2+1} > \sqrt{x^2-x+3}$.
- 280. 解不等式: $(x-4)\sqrt{x^2-3x-4} \ge 0$.
- 281. 解不等式: $\frac{x+1}{x+4}\sqrt{\frac{x+3}{1-x}} < 0$.
- 282. 解不等式: $\sqrt{x+2} + \sqrt{x-5} \ge \sqrt{5-x}$.
- 283. 解不等式: $\sqrt{x-6} + \sqrt{x-3} > \sqrt{3-x}$.
- 284. 解不等式: $\sqrt{2-x} < x$.
- 285. 解不等式: $\sqrt{4-x^2} < x+1$.

- 286. 解不等式: $\sqrt{3-2x} > x$.
- 287. 解不等式: $\sqrt{(x-1)(2-x)} > 4-3x$.
- 288. 不等式 $\sqrt{4-x^2} + \frac{|x|}{x} \ge 0$ 的解集是 ().
 - A. [-2, 2]

- B. $[-\sqrt{3}, 0) \cup (0, 2]$ C. $[-2, 0] \cup (0, 2]$ D. $[-\sqrt{3}, 0) \cup (0, \sqrt{3}]$
- 289. 已知关于 x 的不等式 $\sqrt{2x-x^2} > kx$ 的解集是 $\{x|0 < x \le 2\}$, 则实数 k 的取值范围是 ().
 - A. k < 0
- B. k > 0
- C. 0 < k < 2
- D. $-\frac{1}{2} < k < 0$

- 290. 解不等式: $\sqrt{2x-4} \sqrt{x+5} < 1$.
- 291. 解不等式: $\sqrt{x^2 5x 6} < |x 3|$.
- 292. 解不等式: $|2\sqrt{x+3} x + 1| < 1$.
- 293. 解关于 x 的不等式: $\sqrt{a(a-x)} > a 2x(a > 0)$.
- 294. 解关于 x 的不等式: $\sqrt{4x-x^2} > ax(a < 0)$.
- 295. 解关于 x 的不等式: $\sqrt{1-ax} < x 1(a > 0)$.
- 296. 解关于 x 的不等式: $\sqrt{a^2 x^2} > 2x a$.
- 297. $\lg x^2 < 2$ 的解集是 ().
 - A. $\{x | -10 < x < 0$ 或 $0 < x < 10\}$
- B. $\{x | x < 10\}$

C. $\{x | 0 < x < 10\}$

- D. $\{x | -10 < x < 10\}$
- 298. 若 $f(x) = \log_2 x$, 则不等式 $[f(x)]^2 > f(x^2)$ 的解集是 ().
- A. $\{x|0 < x < \frac{1}{4}\}$ B. $\{x|\frac{1}{4} < x < 1\}$ C. $\{x|0 < x < 1$ $\vec{\mathbf{g}}x > 4\}$ D. $\{x|\frac{1}{4} < x < 4\}$
- 299. 若 a, b 都是小于 1 的正数, 且 $a^{\log_b(x-5)} < 1$, 则 x 的取值范围是 (
 - A. x > 5
- B. x < 6
- C. 5 < x < 6 D. x < 5 **或** x > 6

- 300. 不等式 $\log_x \frac{4}{5} < 1$ 的解集是 ().
 - A. $\{x | 0 < x < \frac{4}{5}\}$

B. $\{x|x > \frac{4}{5}\}$

C. $\{x | \frac{4}{5} < x < 1\}$

- D. $\{x|0 < x < \frac{4}{5}\} \cup \{x|x > 1\}$
- 301. 若函数 $f(x) = \log_{a^2-1}(2x+1)$ 在区间 $(-\frac{1}{2},0)$ 内恒有 f(x) > 0,则实数 a 的取值范围是 ().
 - A. 0 < a < 1

B. a > 1

- C. $-\sqrt{2} < a < -1$ 或 $1 < a < \sqrt{2}$
- D. $a < -\sqrt{2}$ 或 $a > \sqrt{2}$
- 302. 若不等式 $\log_a(x^2-2x+3) \le -1$ 对一切实数都成立, 则 a 的取值范围是 ().
 - A. $a \geq 2$

- B. $1 < a \le 2$ D. $0 < a \le \frac{1}{2}$

- 303. 解关于 x 的不等式: $\log_{\frac{1}{2}}(3x-2) > \log_{\frac{1}{2}}(x+1)$.
- 304. 解关于 x 的不等式: $\log_{\frac{1}{3}}(x^2 x 2) > \log_{\frac{1}{3}}(2x^2 7x + 3)$.
- 305. 解关于 x 的不等式: $\log_x \frac{1}{2} < 1$.
- 306. 解关于 x 的不等式: $\lg(x \frac{1}{x}) < 0$.
- 307. 解关于 x 的不等式: $\log_2|x-\frac{1}{2}|<-1$.
- 308. 已知集合 $M = \{x | \log_3(x-m) > 1\}$ 与 $P = \{x | 3^{5-3x} \ge \frac{1}{3}\}$ 满足 $M \cap P \ne \emptyset$, 求实数 m 的取值范围.
- 309. 解不等式: $\log_8(2-x) + \log_{64}(x+1) \ge \log_4 x$.
- 310. 解不等式: $\log_{0.5}(x+13) < \log_{0.5}(x^2-2x-15)$.
- 311. 解不等式: $\log_x(3\sqrt{x-1}-1) > 1$.
- 312. 解不等式: $\log_{x-1}(6-x-x^2) > 2$.
- 313. 解不等式: $\frac{1}{\log_2(x-1)} < \frac{1}{\log_2\sqrt{x+1}}$.
- 314. 解不等式: $\frac{\log_3(1-\frac{3x}{2})}{\log_9(2x)} \ge 1$.
- 315. 解不等式: $\log_{0.5}(2^x 1) \cdot \log_{0.5}(2^{x-1} \frac{1}{2}) \le 2$.
- 316. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(x+1-a) > 1$.
- 317. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(1 \frac{1}{x}) > 1$.
- 318. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(2x 1) > \log_a(x 1)$.
- 319. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a^2 x < \log_x^2 a$.
- 320. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $x^{\log_a x} > \frac{x^4 \cdot \sqrt{x}}{a^2}$.
- 321. 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\sqrt{\log_a x 1} > 3 \log_a x$.
- 322. 已知 x 满足不等式 $(\frac{1}{2})^{2x-4}-(\frac{1}{2})^x-(\frac{1}{2})^{x-2}+\frac{1}{4}\leq 0,$ 且 $y=\log_{\frac{1}{a}}(a^2x)\cdot\log_{\frac{1}{a^2}}(ax)$ 的最大值是 0, 最小值是 $-\frac{1}{8},$ 求实数 a 的值.
- 323. 已知关于 x 的方程 $x^2 5x \log_a k + 6 \log_a^2 k = 0$ 的两根中 (k > 1), 仅较小的根在区间 (1, 2) 内, 试用 a 表示 k 的取值范围 (a > 0 且 $a \neq 1)$.
- 324. 设 $x \in \mathbb{R}$, 则 (1 |x|)(1 + x) > 0 成立的充要条件是 ().
 - A. |x| < 1
- B. x < 1
- C. |x| > 1
- D. $x < 1 \perp x \neq 1$

- 325. 若函数 $f(x) = \sqrt{x^2 2x 8}$ 的定义域为 $M, g(x) = \frac{1}{\sqrt{1 |x a|}}$ 的定义域为 N, 则使 $M \cap N = \emptyset$ 的实数 a 的取值范围为 (B. $-1 \le a \le 3$ C. -2 < a < 4 D. $-2 \le a \le 4$ A. -1 < a < 3326. 设 a, b 是满足 ab < 0 的实数,则下列不等式中正确的一个是 (). A. |a+b| > |a-b| B. |a+b| < |a-b| C. |a-b| < ||a| - |b|| D. |a-b| < |a| + |b|
- 327. 不等式 $|x| < \frac{1}{x}$ 的解集为 ().

B. $\{x | x < 0\}$ A. \emptyset

- C. $\{x | 0 < x < 1\}$ D. $\{x | x < 0$ 或 $x \ge 1\}$
- 328. 若 |a+b| < -c, 则在① a < -b-c; ② a+b > c; ③ a+c < b; ④ |a|+c < |b|; ⑤ |a|+|b| < -c 这五个式子 中, 一定成立的个数是().

A. 1

B. 2

C. 3

- D. 4
- 329. 若实数 a,b 满足 ab > 0,则在① |a+b| > |a|; ② |a+b| < |b|; ③ |a+b| < |a-b|; ④ |a+b| > |a-b| 这四个 式子中, 正确的是().

A. (1)(2)

B. (1)(3)

- C. (1)(4)
- D. (2)(4)

330. 不等式 $\left| \frac{x}{1+x} \right| > \frac{x}{1+x}$ 的解集是 ().

A. $\{x | x \neq -1\}$ B. $\{x | x > -1\}$

- C. $\{x | x < 0 \not\exists x \neq -1\}$ D. $\{x | -1 < x < 0\}$

- 331. 解不等式: $x^2 + |x| 6 < 0$.
- 332. 解不等式: $x^2 2|x| 15 > 0$.
- 333. 解不等式: $4 < |1 3x| \le 7$.
- 334. 解不等式: |x-3| < x-1
- 335. 解不等式: $\log_2|x-\frac{1}{2}|<-1$.
- 336. 若函数 $y = \log_a x$ 在 $x \in [2, +\infty)$ 上恒有 |y| > 1, 则实数 a 的取值范围是______
- 337. 解不等式: $|x^2 5x + 10| > x^2 8$.
- 338. 解不等式: $|x^2 4| \le x + 2$.
- 339. 解不等式: $|x+1| < \frac{1}{x-1}$.
- 340. 解不等式: |x+2|-|x-3|<4.
- 341. 解不等式: $|x+3|-|2x-1|<\frac{x}{2}+1$.
- 342. 已知当 |x-2| < a 成立时, $|x^2-4| < 1$ 必定成立, 求正数 a 的取值范围.

- 343. 已知关于 x 的不等式 |x-4| + |x-3| < a 在实数集 R 上的解集不是空集, 求正数 a 的取值范围.
- 344. 解不等式: $\log_{\frac{1}{4}}|x| < \log_{\frac{1}{2}}|x+1|$.
- 345. 解不等式: $|\lg(1-x)| > |\lg(1+x)|$.
- 346. 解不等式: $|\log_{\frac{1}{3}} x| + |\log_{\frac{1}{3}} \frac{1}{3-r}| \ge 1$.
- 347. 求函数 $f(x) = |x \frac{1}{2}| |x + \frac{1}{2}|$ 的最大值.
- 348. 已知 $|\lg x \lg y| \le 1$, 则 $\frac{x}{y} + \frac{y}{x}$ 的取值范围是______.
- 349. 解关于 x 的不等式: $|\log_{\sqrt{a}} x 2| |\log_a x 2| < 2$.
- 350. 解关于 x 的不等式: $|\log_a x| < |\log_a (ax^2)| 2$.
- 351. 解关于 x 的不等式: $|3^x 3| + 9^x 3 > 0$.
- 352. 解关于 x 的不等式: $|a^x 1| + |a^{2x} 3| > 2(a > 0)$.
- 353. $\triangle ABC$ 三内角 A, B, C 对边长分别为 a, b, c. 求证: $a^2 + b^2 + c^2 \ge 2ab\cos C + 2b\cos A + 2ca\cos B$.
- 354. $\triangle ABC$ 三内角 A, B, C 对边长分别为 a, b, c. 求证: $(a + b c)(b + c a)(c + a b) \le abc$.
- 355. $\triangle ABC$ 三内角 A,B,C 对边长分别为 a,b,c. 求证: $\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \leq \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.
- 356. $\triangle ABC$ 三内角 A,B,C 对边长分别为 a,b,c,外接圆半径记作 R. 求证: $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \geq \frac{1}{R^2}$.
- 357. 已知常数 $a \in (0,1)$, 对任意 x > 0, $f(\log_a x) = \frac{a(x^2 1)}{x(a^2 1)}$.
 - (1) 求 $f(x)(x \in \mathbf{R})$ 的表达式, 并判断它的单调性;
 - (2) 若 $n \ge 2$, $n \in \mathbb{N}$, 求证: f(n) > n.
- 358. 若正数 a, b, c 满足 a + b > c, 求证: $\frac{a}{1+a} + \frac{b}{1+b} > \frac{c}{1+c}$.
- 359. 求证: $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \dots \cdot \frac{99}{100} < \frac{1}{10}$
- 360. 求证: $(1+\frac{1}{3})(1+\frac{1}{5})\cdots(1+\frac{1}{2n-1}) > \frac{1}{\sqrt{3}}\sqrt{2n+1}(n \in \mathbf{N}, n > 1).$
- 361. 求证: $\frac{x_1^2}{x_2-1}+\frac{x_2^2}{x_3-1}+\cdots+\frac{x_{n-1}^2}{x_n-1}+\frac{x_n^2}{x_1-1}\geq n+x_1+x_2+\cdots+x_a(x_1,x_2,\cdots,x_n$ 都是大于 1 的实数).
- 362. 若正数 a, b, c 满足 a + b + c = 1, 求证: $(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$.
- 363. 若 $0 \le a \le 1, \ 0 \le b \le 1, \ 0 \le c \le 1,$ 求证: $\frac{a}{1+b+c} + \frac{b}{1+c+a} + \frac{c}{1+a+b} + (1-a)(1-b)(1-c) \le 1.$
- 364. 已知三棱锥的三条侧棱两两互相垂直,且六条棱之和为定值 m,求证: 它的体积 $V \leq \frac{5\sqrt{2}-7}{162}m^3$.
- 365. 已知 a+b+c>0, ab+bc+ca>0, abc>0 求证: a>0, b>0, c>0.
- 366. 求证: 任何面积等于 1 的凸四边形的周长及两条对角线的长度之和不小于 $4+\sqrt{8}$.

- 367. 解不等式: $2^{x+1} + x > 0$.
- 368. 解关于 x 的不等式: $\frac{a(x-1)}{x-2} > 1$.
- 369. 解关于 x 的不等式: $x^2 + (a-4)x + 4 2a > 0$, 其中 $-1 \le a \le 1$.
- 370. 解不等式: $\frac{x}{\sqrt{1+x^2}} + \frac{1-x^2}{1+x^2} > 0$.
- 371. 解关于 x 的不等式: $\frac{cx}{a \cdot c^2 + b} \frac{x}{2\sqrt{ab}} > x^2$, 其中 $a, b, c \in \mathbf{R}$, 且 a > 0, b > 0.
- 372. 已知函数 $f(x) = ax^2 c$ 满足 $-4 \le f(1) \le -1, \ -1 \le f(2) \le 5,$ 求证: $-1 \le f(3) \le 20.$
- 373. 已知关于 x 的方程 $a\sin^2 x + \frac{1}{2}\cos x + \frac{1}{2} a = 0$ 在 $0 \le x < 2\pi$ 内有两个相异的实根, 求实数 a 的取值范围.
- 374. 已知 |a| < 1, |b| < 1, |c| < 1, 求证: |1 abc| > |ab c|.
- 375. 已知 |a| < 1, |b| < 1, |c| < 1, 求证: a + b + c < abc + 2.