Z	Symbol	Name	$r_1/\mathrm{pm^a}$	$r_2/\mathrm{pm^b}$	$r_3/\mathrm{pm^c}$	$r_{ m t}/{ m pm^d}$	$r_{ m vdW,calc}/{ m pm}$	$r_{ m vdW,cryst}/ m pm^h$	$r_{ m vdW,eq}/ m pm^2$
1	Н	hydrogen	32	-	-	-	110^{f}	-	-
2	He	helium	46	-	-	-	140^{g}	-	-
3	Li	lithium	133	124	-	137	181 ^g	220	263
4	Ве	beryllium	102	90	85	106.1	153 ^e	190	223
5	В	boron	85 75	78 67	73	88.2	192 ^e	180	205
6 7	C N	carbon	75 71	67 60	60 54	$77.3 \\ 68.9$	$170^{ m g} \ 155^{ m g}$	170 160	196 179
8	O	nitrogen oxygen	63	57	54 53	67.4	152^{g}	155	179 171
9	F	fluorine	64	59	53	57.5	147^{g}	150	165
10	Ne	neon	67	96	-	-	154^{g}	240	-
11	Na	sodium	155	160	_	_	$227^{ m g}$	220	277
12	Mg	magnesium	139	132	127	141.2	173 ^g	210	242
13	Al	aluminium	126	113	111	128.5	$184^{\rm e}$	210	240
14	Si	silicon	116	107	102	117.6	$210^{\rm g}$	210	226
15	P	phosphorus	111	102	94	108.4	180^{g}	195	214
16	S	sulfur	103	94	95	104.2	180^{g}	180	206
17	Cl	chlorine	99	95	93	107.6	175^{g}	180	205
18	Ar	argon	96	107	96	-	188^{g}	-	-
19	K	potassium	196	193	-	-	275^{g}	280	302
20	Ca	calcium	171	147	133	-	231^{e}	240	278
21	Sc	scandium	148	116	114	138.6	-	230	262
22	Ti	titanium	136	117	108	-	-	215	244
23	V	vanadium	134	112	106	-	-	205	227
24	Cr	chromium	122	111	103	1.40.0	-	205	223
25	Mn	manganese	119	105	103	140.3	-	205	225
26	Fe	iron	116	109	102	120.9	-	205	227
27 28	Co Ni	cobalt nickel	111	103 101	96 101	125.6	-	200 200	$\frac{225}{223}$
20 29	Cu		$\frac{110}{112}$	1115	120	- 127.1	-	200	$\frac{223}{227}$
30	Zn	copper zinc	112	120	-	130.4	-	210	224
31	Ga	gallium	124	117	121	130.4 127.5	$187^{\rm g}$	210	241
32	Ge	germanium	121	111	114	127.5 122.5	211 ^e	210	232
33	As	arsenic	121	114	106	117.4	185^{g}	205	$\frac{232}{225}$
34	Se	selenium	116	107	107	114.5	190 ^g	190	218
35	Br	bromine	114	109	110	119.5	183 ^g	190	210
36	Kr	krypton	117	121	108	-	202^{g}	-	-
37	Rb	rubidium	210	202	-	_	303e	290	315
38	Sr	strontium	185	157	139	_	249^{e}	255	294
39	Y	yttrium	163	130	124	_	-	240	271
40	Zr	zirconium	154	127	121	-	-	230	257
41	Nb	niobium	147	125	116	-	-	215	246
42	Mo	molybdenum	138	121	113	-	-	210	239
43	Tc	technetium	128	120	110	-	-	205	237
44	Ru	ruthenium	125	114	103	-	-	205	237
45	Rh	rhodium	125	110	106	-	-	200	232
46	Pd	palladium	120	117	112	-	-	205	235
47	Ag	silver	128	139	137	147.3	-	210	237
48	Cd	cadmium	136	144	-	148.2	-	220	237
49	In	indium	142	136	146	145.5	193^{g}	220	253
50	Sn	tin	140	130	132	140.0	$217^{\rm g}$	225	246
51	Sb	antimony	140	133	127	136.3	206 ^e	220	241
52	Te	tellurium	136	128	121	133.5	206g	210	236
53	I	iodine	133	129	125	134.5	198 ^g	210	222
54	Xe	xenon ·	131	135	122	-	216 ^g	-	-
55 50	Cs	caesium	232	209	1.40	-	343^{e} 268^{e}	300	330
56 57	Ва	barium lanthanum	196	161 139	149	-		$270 \\ 250$	$\frac{305}{281}$
58	La Ce	cerium	$\frac{180}{163}$	139 137	139 131	-	-	200	
59	Ce Pr	praseodymium	105 176	138	128	-	-	-	-
60	Nd	neodymium	174	137	120	-	-	-	-
61	Pm	promethium	173	135	-	_	-	-	-
62	Sm	samarium	173	134	-	-	-	-	-
63	Eu	europium	168	134	-	_	-	-	-
64	Gd	gadolinium	169	134 135	132	_	-	-	-
65	Tb	terbium	168	135	-	_	<u>-</u>	-	_ _
66	Dy	dysprosium	167	133	_	_	_	_	_
67	Но	holmium	166	133	_	_	_	_	_
68	Er	erbium	165	133	_	_	_	_	_
69	Tm	thulium	164	131	_	_	_	-	_
70	Yb	ytterbium	170	129	_	_	_	-	-
71	Lu	lutetium	162	131	131	_	_	-	-
72	Hf	hafnium	152	128	122	-	-	225	252
		tantalum	146	126	119	_	_	220	$\frac{242}{242}$
73	Ta	tantaium	140	120	119			220	242

 $^{{}^{\}rm a}\,{\rm Ref.}\,\,[1] \qquad {}^{\rm b}\,{\rm Ref.}\,\,[2] \qquad {}^{\rm c}\,{\rm Ref.}\,\,[3] \qquad {}^{\rm d}\,{\rm Ref.}\,\,[4] \qquad {}^{\rm e}\,{\rm Ref.}\,\,[5] \qquad {}^{\rm f}\,{\rm Ref.}\,\,[6] \qquad {}^{\rm g}\,{\rm Ref.}\,\,[7] \qquad {}^{\rm h}\,{\rm Ref.}\,\,[8]$

Z	Symbol	Name	$r_1/\mathrm{pm^a}$	$r_2/\mathrm{pm^b}$	$r_3/\mathrm{pm^c}$	$r_{ m t}/{ m pm^d}$	$r_{ m vdW,calc}/{ m pm}$	$r_{ m vdW,cryst}/{ m pm^h}$	$r_{ m vdW,eq}/{ m pm^h}$
75	Re	rhenium	131	119	110	-	-	205	235
76	Os	osmium	129	116	109	-	-	200	233
77	Ir	iridium	122	115	107	-	-	200	234
78	Pt	platinum	123	112	110	-	-	205	237
79	Au	gold	124	121	123	-	-	210	241
80	Hg	mercury	133	142	-	147.8	-	205	225
81	Tl	$_{ m thallium}$	144	142	150	138	196^{g}	220	253
82	Pb	lead	144	135	137	144.1	202^{g}	230	253
83	Bi	bismuth	151	141	135	146.0	$207^{\rm e}$	230	252
84	Po	polonium	145	135	129	141.6	197^{e}	-	-
85	At	astatine	147	138	138	-	$202^{\rm e}$	-	-
86	Rn	radon	142	145	133	-	$220^{\rm e}$	-	-
87	Fr	francium	223	218	-	-	$348^{\rm e}$	-	-
88	Ra	radium	201	173	159	-	$283^{\rm e}$	-	-
89	Ac	actinium	186	153	140	-	-	-	-
90	Th	thorium	175	143	136	-	-	240	275
91	Pa	protactinium	169	138	129	-	-	-	-
92	U	uranium	170	134	118	-	-	230	265
93	Np	neptunium	171	136	116	-	-	-	-
94	Pu	plutonium	172	135	-	-	-	-	-
95	Am	americium	166	135	-	-	-	-	-
96	Cm	curium	166	136	-	-	-	-	-
97	Bk	berkelium	168	139	-	-	-	-	-
98	Cf	californium	168	140	-	-	-	-	-
99	Es	einsteinium	165	140	-	-	-	-	-
100	Fm	fermium	167	-	-	-	-	-	-
101	Md	mendelevium	173	139	-	-	-	-	-
102	No	nobelium	176	159	-	-	-	-	-
103	Lr	lawrencium	161	141	-	-	-	-	-
104	Rf	rutherfordium	157	140	131	-	-	-	-
105	Db	dubnium	149	136	126	-	-	-	-
106	Sg	seaborgium	143	128	121	-	-	-	-
107	$_{ m Bh}$	bohrium	141	128	119	-	-	-	-
108	Hs	hassium	134	125	118	-	-	-	-
109	Mt	meitnerium	129	125	113	-	-	-	-
110	Ds	darmstadtium	128	116	112	-	-	-	-
111	Rg	roentgenium	121	116	118	-	-	-	-
112	Cn	copernicium	122	137	130	-	-	-	-
113	Nh	nihonium	136	-	-	-	-	-	-
114	Fl	flerovium	143	-	-	-	-	-	-
115	Mc	moscovium	162	-	-	-	-	-	-
116	Lv	livermorium	175	-	-	-	-	-	-
117	Ts	tennessine	165	-	-	-	-	-	-
118	Og	oganesson	157	-	-	-	-	-	-
a Ref.	[1] b Ref	. [2] C Ref. [3]	d Ref. [4]	e Ref. [5]	f Ref. [6]	g Ref. [7	7] h Ref. [8]		

^a Ref. [1] ^b Ref. [2] ^c Ref. [3] ^d Ref. [4] ^e Ref. [5] ^f Ref. [6] ^g Ref. [7] ^h Ref. [8]

References

- [1] Pekka Pyykkö and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118". In: Chem. Eur. J. 15.1 (2009), pp. 186–197. DOI: 10.1002/chem.200800987.
- [2] Pekka Pyykkö and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112". In: Chem. Eur. J. 15.46 (2009), pp. 12770–12779. DOI: 10.1002/chem.200901472.
- [3] Pekka Pyykkö, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii". In: Chem. Eur. J. 11.12 (2005), pp. 3511-3520. DOI: 10.1002/chem.200401299.
- [4] Pekka Pyykkö. "Refitted tetrahedral covalent radii for solids". In: Phys. Rev. B 85.2 (2012). DOI: 10.1103/physrevb.85.024115.
- [5] Manjeera Mantina et al. "Consistent van der Waals Radii for the Whole Main Group". In: J. Phys. Chem. A 113.19 (2009), pp. 5806–5812. DOI: 10.1021/jp8111556.
- [6] R. Scott Rowland and Robin Taylor. "Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii". In: *J. Phys. Chem.* 100.18 (1996), pp. 7384–7391. DOI: 10.1021/jp953141+.
- [7] A. Bondi. "van der Waals Volumes and Radii". In: J. Phys. Chem. 68.3 (1964), pp. 441–451. DOI: 10.1021/j100785a001.
- [8] Stepan S. Batsanov. "Van der Waals Radii of Elements". In: Inorg. Mater. 37.9 (2001), pp. 871–885. DOI: 10.1023/a: 1011625728803.