4	value of the leaf node.
3	creating and storing the keystream segment by applying a third function to the state
2	function;
11	rightward tree branch transition comprises computing a second non-linear
10	branch transition comprises computing a first non-linear function and a
9	traversal of the tree from root node to the leaf node wherein a leftward tree
8	leaf node represents the keystream segment at the location, by a preorder
7	the <u>leaves of the</u> tree [represents] represent the complete keystream and the
6	creating and storing a state value for a leaf node of a balanced binary tree, wherein

- 1 2. (Not amended) A method as recited in Claim 1, further comprising the steps of creating and storing the balanced binary tree by creating and storing a stack of h elements wherein the ith element of said stack stores a state datum for the ith node on a path from a root node of the tree to the leaf node.
- 1 3. (Not amended) A method as recited in Claim 2, wherein the step of creating
 2 and storing a state value for a leaf node comprises the steps of computing and storing
 3 a state value for the leaf node that is unique with respect to any other state value that
 4 is computed at any other time for any other leaf node of the tree.
- 1 4. (Canceled.)

1 5. (Amended) The method as recited in Claim 1, wherein each leaf node stores $[n] \underline{m}$ bits of state information, wherein $[n] \underline{m}$ is a multiple of [four] twelve.

(3245)

2

- 1 6. (Amended) The method as recited in Claim 1, further comprising the steps of:
- 2 creating and storing [3n] $\underline{m=3n}$ bits of state information in each leaf node comprising
- a concatenation of three $[n/2] \underline{n}$ bit quantities $z \mid y \mid x$, wherein n is a multiple
- 4 of four;
- computing the first non-linear function a and the second non-linear function b as the composition of a diffusion function d with the nonlinear "confusion"
- functions f and g, wherein $a = f \circ d$ and $b = g \circ d$ and wherein

8
$$f(z | y | x) = 2z | S(R(S(R(y)))) | L(S(L(S(x))))$$

9
$$g(z | y | x) = 2z+1|L(S(L(S(y))))|S(R(S(R(x))))$$

10
$$d(z | y | x) = z | x + y + z | 2x + y + z$$

- $11 c(z \mid y \mid x) = x \oplus y$
- wherein integer addition modulo two is denoted as +, bitwise exclusive-or is denoted
- 13 as \oplus , and bitwise complementation is denoted as ;
- wherein the R denotes rotation by n/4 bits to in a direction of a least significant bit
- and L denotes rotation by n/4 bits in a direction of a most significant bit; and
- wherein a nonlinear function S comprises a lookup in a key-dependent substitution
- 17 table.
 - 1 7. (Amended) The method as recited in Claim 1, wherein the third function
- comprises computing a linear reduction of [n] $2\underline{n}$ bits of the state value to [n/2] \underline{n} bits
- 3 thereof.
- 1 8. (Not amended) A method as recited in Claim 6, wherein the third function
- 2 comprises computing a bitwise Boolean exclusive OR of x and y.

A method as recited in Claim 6, further comprising the steps of 9. (Not amended) 1 2 creating and storing the substitution table S by selecting four invertible functions and 3 storing the four invertible functions in a concatenated form. A method as recited in Claim 6, further comprising the steps of 10. (Not amended) 1 2 computing functions f and g in seven instructions of a central processing unit that can 3 issue two instructions simultaneously, by using five registers to store values of x, y, z, a temporary variable, and a pointer to the substitution table S. 4 A method as recited in Claim 6, wherein the substitution table S 1 11. (Amended) 2 comprises an array of [randomly selected] key dependent pseudorandom integer 3 values. 12. A method as recited in Claim 6, wherein the substitution table S comprises an array of 256 [randomly selected] key dependent pseudorandom 32-bit unsigned integer values. The method as recited in Claim 1, further comprising the steps of 1 13. (Amended) 2 creating and storing a key for use by the first non-linear function and the second non -3 linear function, wherein the key comprises a table of [randomly selected] key dependent pseudorandom values. 4 The method as recited in Claim 1, further comprising the steps of 1 14. (Amended) 2 creating and storing, once and at a time prior to receiving the location value, a key 3 for use by the first non-linear function and the second non-linear function, wherein the key comprises a table of [randomly selected] key dependent pseudorandom 4

(3245)

values.

5

1	15.	(Not Amended) The method as recited in Claim 1, further comprising the steps
2		of creating and storing a key in the form of a plurality of pseudo-randomly selected
3		invertible functions, wherein each of the invertible functions maps an 8 -bit portion of
4		the state value to an 8-bit quantity for use as a substitute portion of the state value.
	-	
1	16.	(Amended) A method as recited in Claim 1, [wherein the substitution table S
2		comprises a plurality of sub-tables, and wherein generating the substitution table
3		comprises (a) setting values of the sub-tables to key-dependent permutations and (b)
4		setting values of one of the sub-tables to an exclusive OR of itself to the identity
5		permutation] wherein the pseudo-randomly selected invertible functions are stored in
6/	$\prod_{i=1}^{n}$	a plurality of substitution tables, and wherein the plurality of substitution tables are
7	r 4	generated by:
81) (setting each of the plurality of substitution tables equal to the identity function;
9		for each element of each of the plurality of substitution tables, swapping said element
0		with another element of such table in a key-dependent manner, and also
1		performing the same swapping operation on each table that has been
2		previously been generated.
1	17.	(Amended) A method of enciphering a plaintext using at least one keystream
2		segment at an arbitrary location of a complete keystream, the method comprising the
3		computer-implemented steps of:
4		receiving a segment of a plaintext;
5		receiving a location value that identifies a location of the keystream segment within
6		the complete keystream;

7	creating and storing a state value for a leaf node of a balanced binary tree, wherein
8	the <u>leaves of the</u> tree [represents] represent the complete keystream and the
9	leaf node represents the keystream segment at the location, by a preorder
10	traversal of the tree from root node to the leaf node wherein a leftward tree
11	branch transition comprises computing a first non-linear function and a
12	rightward tree branch transition comprises computing a second non-linear
13	function;
14	creating and storing the keystream segment by applying a third function to the state
15	value of the leaf node;
16	enciphering the segment of the plaintext by combining the keystream segment with
17.	the segment of the plaintext using a Boolean exclusive OR operation to result
18	in creating and storing a segment of ciphertext.

A method of encrypting an ordered plurality of packets of a network communication link using at least one keystream segment at an arbitrary location of a complete keystream, the method comprising the computer-implemented steps of: receiving a packet from among the plurality of packets; determining a location value that represents a relative location of the packet among the plurality of packets; creating and storing a state value for a leaf node of a balanced binary tree, wherein the leaves of the tree [represents] represent the complete keystream and the leaf node represents a keystream segment at the relative location, by a preorder traversal of the tree from root node to the leaf node wherein a leftward tree branch transition comprises computing a first non-linear function and a rightward tree branch transition comprises computing a second non-linear function; creating and storing the keystream segment by applying a third function to the state value of the leaf node;

(3245)6

18.

(Amended)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

U		enciphering the packet by combining the keystream segment with data of the packet
7		using a Boolean exclusive OR operation to result in creating and storing
8		enciphered packet data.
1	19.	(Amended) A computer-readable medium carrying one or more sequences of
2		instructions for automatically generating a keystream segment of an arbitrary
3		location of a complete keystream of an additive stream cipher, which instructions,
4		when executed by one or more processors, cause the one or more processors to carry
5		out the steps of:
6	111	receiving a location value that identifies a location of the keystream segment within
7	MA	the complete keystream;
8	11 /	creating and storing a state value for a leaf node of a balanced binary tree, wherein
9		the <u>leaves of the</u> tree [represents] represent the complete keystream and the
0		leaf node represents the keystream segment at the location, by a preorder
1		traversal of the tree from root node to the leaf node wherein a leftward tree
2		branch transition comprises computing a first non-linear function and a
3		rightward tree branch transition comprises computing a second non-linear
4		function;
5		creating and storing the keystream segment by applying a third function to the state
6		value of the leaf node.
1	20.	(Amended) An apparatus for automatically generating a keystream segment of an
2		arbitrary location of a complete keystream of an additive stream cipher, comprising:
3	,	means for receiving a location value that identifies a location of the keystream
4		segment within the complete keystream;

5	means for creating and storing a state value for a leaf node of a balanced binary tree,
6	wherein the <u>leaves of the</u> tree [represents] represent the complete keystream
7	and the leaf node represents the keystream segment at the location, by a
8	preorder traversal of the tree from root node to the leaf node wherein a
9	leftward tree branch transition comprises computing a first non-linear
10	function and a rightward tree branch transition comprises computing a second
11	non-linear function;
12	means for creating and storing the keystream segment by applying a third function to
13	the state value of the leaf node.
1	21. (Amended) An apparatus for automatically generating a keystream segment of an
2	arbitrary location of a complete keystream of an additive stream cipher, comprising:
3	a network interface that is coupled to the data network for receiving one or more
4	packet flows therefrom;
5	a processor;
6	one or more stored sequences of instructions which, when executed by the processor,
7	cause the processor to carry out the steps of:
8	receiving a location value that identifies a location of the keystream segment
9	within the complete keystream;
10	creating and storing a state value for a leaf node of a balanced binary tree,
1	wherein the <u>leaves of the</u> tree [represents] represent the complete
12	keystream and the leaf node represents the keystream segment at the
13	location, by a preorder traversal of the tree from root node to the leaf
4	node wherein a leftward tree branch transition comprises computing a
15	first non-linear function and a rightward tree branch transition
6	comprises computing a second non-linear function;
7	creating and storing the keystream segment by applying a third function to the
8	state value of the leaf node