Нормализуемость $\lambda_{
ightarrow}$. Система F

Нормализуемость

Определение

- Терм A назовём слабо нормализуемым, если существует последовательность редукций, приводящих его в нормальную форму.
- ► Терм A назовём сильно нормализуемым, если не существует бесконечной последовательности его редукций.
- Исчисление назовём сильно нормализуемым, если любой его терм сильно нормализуем.

Теорема

Бестиповое лямбда-исчисление не является сильно нормализуемым Доказательство.

$$\Omega \rightarrow_{\beta} \Omega$$

Теорема

Просто типизированное лямбда-исчисление является сильно нормализуемым

Сильно нормализуемые множества

Определение

SN — множество всех сильно нормализуемых лямбда-термов.

Насыщенное множество $\mathcal{X} \subseteq \mathsf{SN}$ — такое, что:

$$1$$
. для любых $n \geqslant 0$ и $M_1, \ldots, M_n \in SN$

$$\times M_1 \dots M_n \in \mathcal{X}$$

2. для любых $n\geqslant 1$, $M_1,\ldots,M_n\in SN$ и $N\in\Lambda$

$$N[x:=M_1]$$
 $M_2\ldots M_n\in \mathcal{X}$ влечёт $(\lambda x.N)$ M_1 $M_2\ldots M_n\in \mathcal{X}$

Лемма

SN — насыщенное.

Интересен пункт 2: если $N[x:=M_1]$ $M_2\dots M_n\in SN$, то $(\lambda x.N)$ M_1 $M_2\dots M_n\in SN$. Подстановка подчёркнутого возвращает к редукции посылки, бесконечная «локальная» подстановка может быть повторена с посылкой.

Определение

Если $\mathcal{A},\mathcal{B}\subseteq \Lambda$, то $\mathcal{A}\to\mathcal{B}=\{X\in\Lambda\mid \forall Y\in\mathcal{A}:X\ Y\in\mathcal{B}\}$

Пример

 $\{\lambda x.\lambda y.x\} \rightarrow \{X \mid X =_{\beta} \lambda x.\lambda y.y\} = \{Not, \lambda t.F, Xor \ T, \dots\}$

Определение

$$\llbracket \sigma \rrbracket = \left\{ \begin{array}{ll} SN, & \sigma = \alpha \\ \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket, & \sigma = \tau_1 \to \tau_2 \end{array} \right.$$

Лемма

Если \mathcal{A},\mathcal{B} насыщены, то $\mathcal{A} \to \mathcal{B}$ насыщено $[\![\sigma]\!]$ насыщено.

Лемма

 $\llbracket \sigma \rrbracket \subseteq \mathit{SN}$

Оценка

Определение

Оценка $\rho: \mathcal{V} \to \Lambda$ — отображение переменных в лямбда-термы.

 $M_{
ho}:=M[x_1:=
ho(x_1),\ldots,x_n:=
ho(x_n)]$, где x_i — все свободные переменные M.

Будем писать $\rho \models M : \sigma$, если $M_{\rho} \in \llbracket \sigma \rrbracket$. Будем писать $\rho \models \Gamma$, если $\rho(x) \in \llbracket \sigma \rrbracket$ для всех $x : \sigma \in \Gamma$.

 $\Gamma \models M$: σ , если для любой оценки ρ из $\rho \models \Gamma$ следует $\rho \models M$: σ .

Теорема

 $\Gamma \vdash M : \sigma$ влечёт $\Gamma \models M : \sigma$.

Доказательство индукцией по структуре вывода $\Gamma \vdash M : \sigma$ со следующим разбором случаев.

Аксиома

Вывод имеет вид:

$$\overline{\Gamma, x : \sigma \vdash x : \sigma}$$

Фиксируем
$$\rho \models \Gamma \cup \{x : \sigma\}$$
, тогда $x_{\rho} = \rho(x) \in \llbracket \sigma \rrbracket$
Отсюда $\Gamma, x : \sigma \models x : \sigma$

Применение

Вывод имеет вид:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

Фиксируем $\rho \models \Gamma$. По индукционному предположению, $\Gamma \models M : \sigma \to \tau$ и $\Gamma \models N : \sigma$, так что $\rho \models M : \sigma \to \tau$ и $\rho \models N : \sigma$, что означает, что $M_{\rho} \in \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$ и $N_{\rho} \in \llbracket \sigma \rrbracket$. Тогда $(M,N)_{\rho} = M_{\rho}, N_{\rho} \in \llbracket \tau \rrbracket$.

Абстракция

Вывод имеет вид:

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \ x \notin FV(\Gamma)$$

Пусть $\rho \models \Gamma$. Чтобы показать $(\lambda x.M)_{\rho} \in \llbracket \sigma \to \tau \rrbracket$, надо для всех $N \in \llbracket \sigma \rrbracket$ показать $(\lambda x.M)_{\rho}$ $N \in \llbracket \tau \rrbracket$.

Фиксируем $N \in [\![\sigma]\!]$. Тогда $\rho^{x:=N} \models \Gamma, x:\sigma$. По индукционному предположению, $\Gamma, x:\sigma \models M:\tau$, так что $\rho^{x:=N} \models M:\tau$ (по определению \models). То есть, $M_{\rho^{x:=N}} \in [\![\tau]\!]$. Произведём редукцию:

$$(\lambda x.M)_{\rho}N = (\lambda x.M)^{y_1:=\rho(y_1),...,y_n:=\rho(y_n)} N \to_{\beta} M^{y_1:=\rho(y_1),...,y_n:=\rho(y_n),x:=N} = M_{\rho^{x:=N}}$$

Заметим, $N \in \llbracket \sigma \rrbracket \subseteq SN$ и $M_{\rho^{x:=N}} \in \llbracket \tau \rrbracket$. Заметим ещё, что $M_{\rho^{x:=N}} = M_{\rho}[x:=N]$. По определению насыщенного множества из $M_{\rho}[x:=N] \in \llbracket \tau \rrbracket$ следует требуемое $(\lambda x.M)_{\rho}$ $N \in \llbracket \tau \rrbracket$.

Основная теорема

Теорема

 $\Gamma \vdash M : \sigma$ влечёт $M \in SN$

Доказательство.

По предыдущей теореме, $\Gamma \models M : \sigma$. Построим «тождественную» оценку, $\rho(x) = x$ для всех $x : \tau \in \Gamma$.

Рассмотрим каждый $x:\tau$ из контекста. По лемме выше, $[\![\tau]\!]$ насыщенное. По определению насыщенного, $x\in[\![\tau]\!]$. Поэтому $\rho\models\Gamma$.

Поскольку $\Gamma \models M : \sigma$, то $M = M_{\rho} \in \llbracket \sigma \rrbracket$. А по лемме выше, $\llbracket \sigma \rrbracket \subseteq SN$.

О свойстве сильной нормализуемости

Правило сечения в S_{∞} (без одной боковой формулы):

$$\frac{\sigma \vee \neg \beta \qquad \beta}{\sigma}$$

Или перепишем в привычной грамматике (подобно Modus Ponens):

$$\frac{\beta \to \sigma \qquad \beta}{\sigma}$$

И заметим нечто похожее в просто-типизированном лямбда-исчислении:

$$\frac{(\lambda x.P): \tau \to \sigma}{(\lambda x.P) \ Q: \sigma} \ \beta$$
 — редекс

Поэтому добавим пункты к изоморфизму Карри-Ховарда:

Логика	$\lambda_{ ightarrow}$
Правило сечения, М.Р.	Бета-редекс
Устранение сечения	Бета-редукция
Теорема об устранении сечений	Нормализуемость

ИИП второго порядка

- ▶ Алфавит: a z, \vee , &, \rightarrow , \neg , \forall , \exists .
- Метапеременные: α для формул, p, x, y, z для переменных.
- Сокращения записи: приоритеты как в ИИВ, подкванторное выражение продолжается направо настолько, насколько возможно.

Пример

$$\forall p. \forall q. p \rightarrow q \rightarrow p$$

Теория доказательств

Правила вывода совпадают с правилами для ИИВ, добавлены 4 новых:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall p.\varphi} (p \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash \forall p.\varphi}{\Gamma \vdash \varphi[p := \theta]}$$

$$\frac{\Gamma \vdash \varphi[p := \theta]}{\Gamma \vdash \exists p.\varphi} \qquad \frac{\Gamma \vdash \exists p.\varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} (p \notin FV(\Gamma, \psi))$$

Теория моделей

Простая неполная модель.

$$\textit{V} = \{\textit{\textbf{M}}, \textit{\textbf{\Pi}}\}$$

$$\llbracket P
ightarrow Q
rbracket = egin{cases} \Pi, \llbracket P
rbracket = \mathsf{M}, \llbracket Q
rbracket = \Pi \ \mathsf{M}, \mathsf{uhave} \end{cases}$$

$$\llbracket orall p.Q
rbracket = egin{cases} \mathsf{M}, \llbracket Q
rbracket^{p:=oldsymbol{\Pi}, \; \mathsf{M}} = \mathsf{M} \ \mathsf{J}, \mathsf{иначe} \end{cases}$$

Выразимость всех связок через \forall , \rightarrow

Заметим, что достаточно определить связки \forall и ightarrow.

Связка Способ выразить
$$\alpha\&\beta \qquad \forall p.(\alpha\to\beta\to p)\to p \\ \alpha\vee\beta \qquad \forall p.(\alpha\to\rho)\to (\beta\to p)\to p \\ \bot \qquad \forall p.p \\ \exists p.\varphi \qquad \forall f.(\forall p.\varphi\to f)\to f$$

С так определёнными связками оказывается возможно показать все правила вывода. Например, примем $\alpha\&\beta$ за $\forall p.(\alpha\to\beta\to p)\to p$ и покажем, что из $\alpha\&\beta$ следует α :

$$\frac{\frac{\alpha, \beta \vdash \alpha}{\alpha \vdash \beta \to \alpha}}{\vdash \alpha \to \beta \to \alpha} \qquad \frac{\vdash \forall p.(\alpha \to \beta \to p) \to p}{\vdash (\alpha \to \beta \to \alpha) \to \alpha} p := \alpha$$

Система F

Определение

Типы в системе F:

$$\tau = \begin{cases} \alpha, \beta, \gamma... & (атомарные типы) \\ \tau \to \tau \\ \forall \alpha. \tau & (\alpha - переменная) \end{cases}$$

Определение

Пред-лямбда-терм в системе F (типизировано по Чёрчу):

$$F ::= x \mid (\lambda x^{\tau}.F) \mid (F F) \mid (\Lambda \alpha.F) \mid (F \tau)$$

Типовая абстракция и применение

Примеры соответствующих конструкций из С++.

```
Tиповая абстракция, A\tau.W:
template<typename t>
class W {
    t x;
}
```

► Типовое применение, *W int*:

```
W<int> w_test;
```

В системе F определены следующие правила вывода:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^{\tau}, M : \tau \to \sigma} \quad (x \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha. M : \forall \alpha. \sigma} \quad (\alpha \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash M : \forall \alpha. \sigma}{\Gamma \vdash M \tau : \sigma[\alpha := \tau]}$$

Начнем с β -редукции:

- 1. Типовая β -редукция: $(\Lambda \alpha. M^{\sigma}) \tau \rightarrow_{\beta} M[\alpha := \tau] : \sigma[\alpha := \tau]$
- 2. Классическая β -редукция: $(\lambda x^{\sigma}.M)^{\sigma \to \tau}X \to_{\beta} M[x:=X]$: τ