Lecture 12 Continuous Probability Distribution

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Probability Density Function (PDF)

Probability Density Function (PDF)

Probability Density Functions (PDFs)

$$f_X(x) \geqslant 0, \int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$\mathbb{P}\left(X=a\right)=?$$

$$\mathbb{P}(x \leqslant X \leqslant x + \delta)$$

$$= \int_{x}^{x+\delta} f_X(x) dx = f_X(x) \cdot \delta$$

$$f_X(x) = \frac{\mathbb{P}(x \leqslant X \leqslant X + \delta)}{\delta}$$

Cumulative Distribution Function

$$F_X(x) = \mathbb{P}(X \leqslant x) = \int_{-\infty}^x f_X(t) dt$$

$$F_X(a) = \mathbb{P}(X \leqslant a) = \int_{-\infty}^a f_X(x) \, dx$$
$$F_X(b) = \mathbb{P}(X \leqslant b) = \int_{-\infty}^b f_X(x) \, dx$$

Cumulative Distribution Functions (CDFs)

Expectation and Variance

The continuous case

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x$$

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(x) f_X(x) \, \mathrm{d}x$$

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$
$$= \int_{-\infty}^{+\infty} (X - \mathbb{E}[X])^2 f_X(x) \, \mathrm{d}x$$
$$= \mathbb{E}\left[X^2 \right] - (\mathbb{E}[X])^2$$

The discrete case

$$\mathbb{E}\left[X\right] = \sum_{x} x p_X(x)$$

$$\mathbb{E}\left[g(X)\right] = \sum_{x} g(x) p_X(x)$$

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$
$$= \sum_x (X - \mathbb{E}[X])^2 p_X(x)$$
$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Continuous Uniform Distribution

$$f_X(x)$$

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, & x < a \text{ or } x > b \end{cases}$$

$$\mathbb{E}\left[X\right] = ?$$

$$\mathbb{V}\mathrm{ar}\left(X\right) =?$$

The Idea of The Normal Distributions

The Bean Machine by Francis Galton

A Little History of The Normal Distribution

Abraham de Moivre: The Doctrine of Chances, 1738

- The middle term of the binomial coefficient is approximately: $\frac{2}{\sqrt{2\pi n}}$
- Stirling's formula: $n! \simeq n^n e^{-n} \sqrt{2\pi n}$

The de Moivre-Laplace Theorem

When n becomes large, and np, nq are also large:

$$p_X(k) = \binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi} \sqrt{npq}} \cdot e^{-\frac{(k-np)^2}{2npq}}, where \ q = 1-p$$

A Little History of the Normal Distribution

Carl Friedrich Gauss: Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections), 1809.

- least squares
- maximum likelihood
- normal distribution

Pierre Simon de Laplace

- In 1782: $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$
- In 1810: the central limit theorem