LIQUID PROPULSION Progress Report

Week 16

Last week's objectives

Combining of code . 2 %

Developing PCB (Etching, Soldering, Testing)

- Stress analysis of engine supports

Development of PCB

Top Layer

Our first etched PCB.

We will have a total of 2 PCBs.

2. Combining of Code

The combination is almost ending.

A stable sample rate of 10Hz was used.

(10Hz means sampling every 100ms).

The highest allowable sample rate is 20Hz (every 50ms)

Above 20Hz, the flow meters yields rather inaccurate values.

```
["SVState":1,"Q FUEL":5.056174,"Q GNZ":0,"Q GOX":0,"P GNZ":1.013,"P GOX":1.013,"P 3":0.9991,"P 4":1.012541,"P 5":1.025982}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ("SVState":1,"Q FUEL":28.65165,"Q GN2":0,"Q GOX":0,"P GN2":1.013,"P GOX":1.013,"P 3":0.9991,"P 4":0.9991,"P 5":0.9991}
                                                                                                                                                                                                                             ["SVState":1,"Q FUEL":0,"Q GNZ":0,"Q GOX":0,"P GNZ":1.013,"P GOX":1.013,"P 3":0.9991,"P 4":1.012541,"P 5":0.9991}
["SVState":1,"Q FUEL":0,"Q GX":0,"Q GXX":0,"P GXZ":1.013,"P GXX":1.013,"P 3":1.012541,"P 4":0.9991,"P 5":0.9991}
                                                                                                                                                                                                                                                                                                                                                                                                                                                "SVState":1,"Q FUEL":0,"Q GNZ":0,"Q GOX":0,"P GNZ":1.013,"P GOX":1.013,"P 3":0.9991,"P 4":0.9991,"P 5":0.9991}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ["SVState":1,"Q FUEL":0,"Q GNZ":0,"Q GOX":0,"P GNZ":1.013,"P GOX":1.013,"P 3":0.9991,"P 4":0.9991,"P 5":0.9991}
```

COM7

4. Stress Analysis of Engine Supports

improved and the analysis results are as follows

The design of the engine support was further

Yield stress of stainless steel and mild steel (used for the fasteners) is 250 MPa and 220 MPa respectively hence our design will not fail

1st Principal Stress

Von Mises Stress

Maximum Displacement

3rd Principal Stress

Contact Pressure

Equivalent Strain

THANK YOU

ANY QUESTIONS?