

ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM 308 – Lojik Devreler

RAPOR-I

UYGULAMA ADI

UYGULAMA 1: ARİTMETİK TOPLAYICI/ÇIKARICI LOJİK DEVRE TASARIMI

DERSIN SORUMLUSU

Doç. Dr. Rıfat HACIOĞLU

GRUP NO: I-8

UYGULAMAYI YAPANLAR

180106106006 Doğan Nalçacı 180106106061 Uğurcan Doğan (Grup Lideri) 180106106062 Erkan Doğan

Uygulamaları herhangi bir dış yardım almadan grup olarak hazırladık.

UYGULAMA 1: ARİTMETİK TOPLAYICI/ÇIKARICI LOJİK DEVRE TASARIMI

AMAÇ: Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak ve temel kapılar kullanarak yarım ve tam toplayıcı gerçekleştirmek.

ÖN ÇALIŞMA: Aritmetik toplama/çıkarma işleminde iki binary sayının önce en düşük anlamlı hanelerinde işlem gerçekleştirilir, sonra bir elde veya borcun olup olmadığı durumuna göre yüksek hanede işlem tekrarlanır.

q1	q2	C1	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tablo-1: Toplayıcı devresinin doğruluk tablosu

Sonuç (S) için K-map

q1q2 C1	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Tablo-2: S'nin K-haraitası

C icin K-map

q1q2	00	01	11	10
C1		01	11	10
0	0	0	1	0
1	0	1	1	1

Tablo-3: C'nin K-haraitası

Şekil-1: Tam toplayıcı devre

Tasarımda tam toplayıcı devresi

kullanacağımızdan dolayı ilk olarak tek bitlik tam toplayıcı devresi tasarlandı. Tasarlamada şu işlem basamakları izlendi:

- Matematiksel işlemler yapılması için Tablo 1 'de gösterildiği gibi problemin doğruluk tablosu oluşturuldu.
- Doğruluk tablosu kullanılarak toplama işlemi yapıldı. Sonuç ve elde çıkışları oluşturuldu.
- 3. Çıkış denklemlerinin elde edilmesi için Tablo 2 ve Tablo 3 'de görüldüğü üzere karnough (k) haritaları oluşturulmuştur.
- 4. Karnough haritaları kullanılarak devrenin denklemi elde edilmiştir.

$$S = \overline{q1}q2\overline{c1} + q1\overline{q2}\overline{c1} + \overline{q1}\overline{q2}c1 + q1q2c1$$

$$\Rightarrow S = (q1 \otimes q2) \otimes c1$$

$$\rightarrow$$
 $C = q1 q2 + c1(q1 \otimes q2)$

Yukarıdaki denklemler kullanılarak şekil 1'deki devre elde edilmiştir.

Yapılacak tasarım 8 bit olduğundan dolayı 8 tane 1 bitlik tam toplayıcı devresi bir araya getirilerek 8 bit tam toplayıcı devresi elde edilmiştir (Şekil 2). Devrede bitleri birbirlerine bağlarken her bitin elde çıkışı bir sonraki bitin elde girişi olarak bağlanmıştır.

Şekil 2: 8 bit tam toplayıcı devresi

Devrede BCD tasarımı istenildiğinden dolayı 8 bit tam toplayıcı devresi 8 bit BCD devresine aşağıdaki işlemler yapılarak dönüştürülmüştür.

- 1. Devrenin doğruluk tablosu oluşturulmuştur (Tablo 4).
- 2. Doğruluk tablosundan BCD doğruluk tablosu elde edilmistir.
- 3. BCD sayı sisteminde her 9 sayısını geçen sayılardan 10 sayısı çıkartılarak basamak kaydırıldı.
- 4. Toplama işleminde her 9 sayısını geçen sayılar için BCD doğruluk tablosunda 1 çıktısı elde edildi.
- 5. Elde edilen bu birler karnough haritasına yerleştirildi (Şekil 3).

BCD Code							Binan	y code				
n8	n7	n6	n5	n4	n3	n2	n1	S4	S3	S2	S1	у
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	1	1	0	0	1	1	0
0	0	0	0	0	1	0	0	0	1	0	0	0
0	0	0	0	0	1	0	1	0	1	0	1	0
0	0	0	0	0	1	1	0	0	1	1	0	0
0	0	0	0	0	1	1	1	0	1	1	1	0
0	0	0	0	1	0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	1	1	0	0	1	0
0	0	0	1	0	0	0	0	1	0	1	0	1
0	0	0	1	0	0	0	1	1	0	1	1	1
0	0	0	1	0	0	1	0	1	1	0	0	1
0	0	0	1	0	0	1	1	1	1	0	1	1
0	0	0	1	0	1	0	0	1	1	1	0	1
0	0	0	1	0	1	0	1	1	1	1	1	1

Tablo 4: 8 bit BCD tam toplayıcı devresi doğruluk tablosu

Karnogh haritası kullanılarak Q=S2*S4 + S3*S4 denklemi elde edilmiştir.

s4 s3	00	01	11	10	110
00	0	0	0	0	U2 U3
01	0	0	0	0	AND
11	1	1	1	1	S3 U1 OR OR
10	0	0	1	1	AND

Şekil 3: karnogh haritası ve devrenin gerçeklemesi

Şekil 3 'de elde edilen devre 9 tan büyük olan sayıları bir sonraki basamağa kaydırarak BCD kodlamamızı sağlamaktadır. İki tane 8 bit tam toplayıcı devresi bir araya getirildi ve aralarına şekil 3 de gösterildiği gibi BCD dönüşümü yapacak devre eklenmiştir. Bu şekilde tasarlanan 8 bit BCD tam toplayıcı devresi ile girişe verilen sayılar basamak kaydırarak toplama işlemi yaptırıldı. Toplama işlemi öğrencilerin numaraların son rakamı kullanılarak yapıldı (tablo 5).

Öğrenci ismi	Doğan Nalçacı	Uğurcan Doğan	Erkan Doğan
Numarası	18010610600 6	18010610606 1	18010610606 2
Decimal	6	1	2
Binary	0110	0001	0010

Tablo 5: öğrenci numaraları

Tablo 5'de verilen öğrenci numaralarından ilk iki tanesi kendi aralarında kalan biri de ayrıca toplandı. Toplanan sayıların eldleri kullanılarak sonuç bulundu (Şekil 4).

Şekil-4: 8 bit BCD tam toplayıcı devresi

SONUÇ VE YORUM

Raporunun sonunda 8 bit öğrenci numaralarının son hanesini toplayan bir devre tasarlayarak hem toplayıcı devreleri hakkında hem de AND, OR, XOR gibi kapıların kullanımları hakkında bilgi sahibi olunmuştur.