17.	为完成	"研究钢铁防护	的方法"	的实践性作业,	学习小组	l查得资料:	钢铁膜化处	理是钢铁	防护的重要方
法,	其目的	是在钢铁表面形	形成致密、	均匀的保护膜。	。检验膜的	的抗腐蚀性	能要做"滴	铜实验",	即往钢铁表
面派	商加含硫	酸铜的腐蚀剂,	60s 后钢	铁表面才出现红	[色物质,	表明抗腐蚀	性能达标,	且越迟出	现红色物质的
越如	子。请和	小组同学使用。	某种膜化剂	刊开展如下研究。	o				

I.验证膜的抗腐蚀性能

【实验1】将有膜化和未膜化的薄钢片分别进行	滴铜实验,	有膜化的薄钢片出现红色物质的时间明显推迟。
(1) 出现红色物质的原因是	(用化学)	方程式表示)。

(2) 有膜化的薄钢片出现红色物质的时间明显推迟, 其原因是。

II.探究膜化条件对膜层外观的影响

【实验 2】其他条件相同时,将薄钢片放入 pH=3、不同温度的膜化剂中浸泡 20min,观察钢片表面形成的膜层外观。结果如下:

温度℃	50	60	70	80
膜层外观	粗糙	致密、均匀	致密、均匀	粗糙

【实验 3】已知 pH≥3.5 时,膜化剂不稳定。其他条件相同时,将薄钢片放入 60℃、不同 pH 的膜化剂中浸泡 20min,观察钢片表面形成的膜层外观。结果如下:

рН	1.5	2.0	2.5	3.0
膜层外观	易脱落	粗糙	致密、均匀	致密、均匀

(3)	空验3	的目的是	_
(.) /	T 1111 .)	$\Pi \Pi \Pi \Pi \Pi \Lambda V$	•

(4) 根据实验 2、实验 3 的结果,膜层外观符合要求的温度、pH 的范围依次为_____、____。 III.确定抗腐蚀性能较好的膜化条件

【实验 4】依次选取实验 2、实验 3 膜层外观符合要求的钢片进行对比实验,分别确定适宜的温度、pH。

(5) 实验 4 中,确定适宜温度的实验方案是。

IV.实践反思

(6) 反思上述实践活动,提出一个关于钢铁膜化处理可进一步探究的问题。

答: 。