

= 1. Формирование датасета

Исходные данные:

- Временной ряд тока экструдера (тег value_14) и другие параметры (value_10, value 16, value 48, mode)
- Период: 05.03.2024 05.03.2025
- Объём: 685 201 значение

Этапы подготовки:

- 1. Добавление признаков:
 - 10 лаговых значений тока (value_14_lag_1 ... value_14_lag_10)
 - Разность между текущим и предыдущим значением (value_14_diff_1)
 - Итого: **160 параметров** → затем отобраны ключевые
- 2. Сегментация по режиму работы:
 - Данные разбиты на **сегменты**, где mode = 1 (рабочий режим)
 - Получено 1687 сегментов
 - Удалены сегменты короче 50 точек → осталось **1397 сегментов**
- 3. Стандартизация и выравнивание:
 - Все сегменты приведены к длине **360 точек**:
 - Короткие дополнены нулями справа
 - Длинные обрезаны слева
 - Данные **стандартизированы** (mean=0, std=1)
- 4. Разделение выборки:
 - Обучающая / тестовая = 80% / 20%

🗐 2. Архитектура моделей: CNN + LSTM

Общая структура:

 $[Conv1D \rightarrow MaxPooling1D] \rightarrow [LSTM] \rightarrow [Dense]$

Базовая модель:

- Conv1D: 128 фильтров, kernel_size=3, активация ReLU
- MaxPooling1D: pool_size=2
- LSTM: 128 нейронов, return_sequences=False
- **Dropout**: 0.2
- **Dense**: выходной слой + регуляризация (L2)

- Loss: mean_squared_error (MSE)
- **Оптимизатор**: RMSprop (lr=0.001)

🔍 3. Эксперименты и настройка

Параметры обучения:

- Размер окна (window size): 20, 30, 40, 50, 60
- Горизонт прогноза (forecast_horizon): 10, 20, 30, 40, 50, 60
- Лучшая комбинация: window_size=20, forecast_horizon=10
 - → На других комбинациях значительно хуже качество

Тестировались изменения:

Изменение	Эффект
Увеличение фильтров в Conv1D до 256	Незначительное улучшение
Увеличение LSTM-нейронов до 256	Высокие потери на первых эпохах
Добавление второго LSTM-слоя	Увеличение времени обучения, нет прироста
Смена оптимизатора с Adam на RMSprop	Снижение потерь на первой эпохе
Добавление L2-регуляризации	Помогает против переобучения

🤽 4. Результаты и выводы

Лучшая модель:

```
model.add(Conv1D(filters=128, kernel_size=3, activation='relu', input_shape=input_shape))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(units=128, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(units=128, activation='relu', kernel_regularizer=l2(0.01)))
model.add(Dropout(0.2))
model.add(Dense(units=n_outputs))
```

Ключевые результаты:

Гориз	онт прогноза MSE (на тесте)
10	1492.18
20	2902.12
30	4191.38
•	Чем дальше горизонт — тем хуже качество (ожидаемо).

5. Основные выводы

1. Датасет требует пересмотра:

- Несмотря на разные архитектуры, МSE остаётся высокой
- Изменения в модели не дают существенного улучшения
- Вероятная причина недостаточное качество или структура данных

2. Проблемы с данными:

- Сегменты разной природы (пуск, работа, простой) могут мешать обучению
- Нулевые значения и пропуски искажают сигнал
- Текущая сегментация (mode=1) может быть **недостаточно точной**

3. Рекомендации:

- Пересмотреть логику формирования датасета
- Уточнить у заказчика критерии рабочего режима
- Рассмотреть разделение на подрежимы (выход на режим, стабильная работа)
- Попробовать **модели с механизмом внимания** для фокусировки на ключевых участках