PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

Submitted By

PNT2022TMID28666

KANNAN G - 410719104040

SANTHOSH P - 410719104086

MOHAMMED - 410719104055 YOUNUS S

PANTA NITHISH - 410719104065 KUMAR REDDY

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1Project Overview
- 1.2Purpose

2. LITERATURE SURVEY

- 2.1Existing problem
- 2.2References
- 2.3Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2Ideation & Brainstorming
- 3.3Proposed Solution
- 3.4Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1Functional requirement
- 4.2Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2Sprint Delivery Schedule
- 6.3Reports from JIRA
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
- 8. TESTING
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9. RESULTS
 - 9.1 Performance Metrics
- 10.ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12.FUTURE SCOPE
- 13.APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

Machine learning and deep learning play an important role in computer technology and Artificial Intelligence. With the use of Deep Learning and Machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Handwritten Digit Recognition is the ability of Computer systems to recognize handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

1.2 Purpose

Digit Recognition system are capable of recognizing the digits from different sources like emails, bank cheques, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer, tablets or systems, recognize number plates of vehicles, processing bank cheque amounts, numeric enteries in forms filled up by hand (tax forms) and so on.

2. LITERATURE SURVEY

2.1Existing problem

✓ The different architectures of CNN, hybrid CNN, CNN - RNN and CNNHMM models, and domain - specific recognition system, are not thoroughly inquired and evolutionary algorithms are not clearly explored for optimizing CNN learning parameters ,the number of layers, learning rate and kernel sizes of convolutional filters.

✓ The fluctuation of accuracies for handwritten digits was observed for 15 epochs by varying the hidden layers. There is no clear explanation given for observing variation in the overall classification accuracy by varying the number of hidden layers and batch size.

2.2 References

S.NO	Author Name	Paper Title	Journal/ Conference title	Page No/ Volume No	Year of Publicati on	Description
	Savita Ahlawat , Amit Choudh ary, Anand Nayyar, Saurabh Singh and Byungu n Yoon.	Improved Handwritten Digit Recognition Using Convolutiona I Neural Networks (CNN)	IEEE Sensors Journal		2020	In this paper, with the aim of improving the performance of handwritten digit recognition, they valuated variants of a convolution al neural network to avoid complex preprocessin g, costly feature extraction and a complex ensemble (classifier combination) approach

					of a traditional recognition system.
Vijayala xmi R Rudras wamima th, Bhavani shankar and Channas andra.	Handwritten Digit Recognition using CNN	International Journal of Innovative Science and Research Technology	Volume -4 Issue- 6	2019	In this paper, the most widely used Machine learning algorithms, KNN, SVM, RFC and CNN have been trained and tested on the same data in order acquire the comparison between the classifiers
Fathma Siddiqu e, Shadma n Sakib and Md. Abu Bakr Siddiqu e.	Recognition of Handwritten Digit using Convolutiona l Neural Network in Python with Tensorflow and Comparison of Performance for Various Hidden Layers	5th International Conference on Advances in Electrical Engineering (ICAEE)		2019	In this paper, they observed the variation of accuracies of CNN to classify handwritten digits for 15 epochs using various numbers of hidden layers and epochs and

Akanks ha Gupta, Ravindr a Pratap Narwari a and Madhav Singh	Review on Deep Learning Handwritten Digit Recognition using Convolutiona 1 Neural Network	International Journal of Recent Technology and Engineering (IJRTE)	Volume -9 Issue- 5	2021	to make the comparison between the accuracies. For this performance evaluation of CNN, they performed the experiment using Modified National Institute of Standards and Technology(MN IST) dataset. In this paper, Object Character Recognition (OCR) is used on printed or documented letters to convert them into text. The database has training image
					database has

	Md. Anwar Hossain and Md. Mohon Ali	Recognition of Handwritten Digit using Convolutiona 1 Neural Network (CNN)	Global Journal of Computer Science and Technology: D Neural & Artificial Intelligence	Volume 19 Issue2	2019	testing image database of 10,000 images. The KNN algorithm describes categorical value by making use of majority of votes of K - nearest neighbors, the K value used to differ here. The goal of this work will be to create a model that will be able to identify and determine the handwritten digit from its image with better accuracy using using the concepts of Convolution al Neural Network
--	--	--	---	------------------------	------	---

			dataset.
			Later it can
			be extended
			for character
			recognition
			and real-
			time
			person's
			handwriting.
			The results
			can be made
			more
			accurate
			with more
			convolution
			layers and
			more
			number of
			hidden
			neurons.

2.3 Problem Statement Definition

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort.

Hence, there comes a need for handwritten digit recognition in many real time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned on to UI(User Interface).

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1	Problem Statement (Problem	Handwriting recognition is one
	to be solved)	of the compelling research
		works going on because every
		individual in this world has
		their own style of writing. It is
		the capability of the computer
		to identify and understand
		handwritten digits or characters
		automatically. Because of the
		progress in the field of science
		and technology, everything is
		being digitized to reduce human
		effort. Hence, there comes a
		need for handwritten digit
		recognition in many real-time
		applications. The user interacts
		with the UI (User Interface) to
		upload the image as input. The
		uploaded image is analyzed by
		the model which is integrated.
		Once the model analyses the
		uploaded image, the prediction
		is showcased on the UI.
2	Idea / Solution description	Convolutional Neural Networks
		(CNN) has become one of the
		most appealing approaches and
		has been an ultimate factor in a
		variety of recent success and
		challenging machine learning
		applications. In our model we
		use AlexNet, which is one of
		the CNN architectures.
		AlexNet allows for multi-GPU
		training by putting half of the
		model's neurons on one GPU
		and the other half on another

		GPU. Not only does this mean that a bigger model can be trained, but it also cuts down on the training time. It also reduces the overfitting problem by Data Augmentation and Dropout.
3	Novelty / Uniqueness	Handwritten Digit Recognition is the capability of a computer to fete the mortal handwritten integers from different sources like images, papers, touch defenses, etc. And classify them into 10 predefined classes (0-9). This is the existing method along with this we add some features to make our project unique among them.
4	Social Impact / Customer Satisfaction	Even the unclear or blurred digits can be recognized after the removal of noise and data preprocessing. One such application is a handwritten digit recognition system that can be used in postal mail sorting, bank check processing, form data entry, etc.,
5	Business Model (Revenue Model)	Handwritten digit recognition is necessary because everything is digitalized. The benefits of handwritten digit recognizer is high. In the banking sector, it is very efficient. It is used to recognize the figures written on cheques. So, Varied handwriting of each and every person in the cheque can be identified. Handwritten addresses are difficult to sort by machine, not

		necessarily because of sloppy
		handwriting, but because people
		write all over the envelope.We
		have hard time segmenting
		handwritten addresses into their
		components, such as ZIP code
		or street address, because very
		few people print addresses
		neatly in a prescribed format.
		So, this problem can be solved
		using Handwritten digit
		recognition system.
6	Scalability of the Solution	In our model, AlexNet
		significantly outperformed as it
		is trained on a GTX 580 GPU
		with only 3 GB of memory
		which couldn't fit the entire
		network. So the network was
		split across 2 GPUs, with half
		of the neurons(feature maps) on
		each GPU. So, a greater
		accuracy can be attained by
		-11i14: CDI I 4ii
		allowing multi-GPU training by
		putting half of the model's

3.4 Problem Solution fit

3. TRIGGERS What triggers customers to act? i.e. seeing their neighbour installing solar panels, reading about a more efficient solution in the news. Advertisement in the market about the efficient recognition of digits. Articles about the achievements made by our project.	10. YOUR SOLUTION If you are working on an existing business, write down your current solution first, fill in the canvas, and check how much it fits reality. If you are working on a new business proposition, then keep it blank until you fill in the canvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behaviour. Our solution aims to recognize handwritten digits using machine learning techniques thereby saving costs to the organization improving	8. CHANNELS of BEHAVIOUR 8.1 ONLINE What kind of actions do customers take online? Extract online channels from #7 Requires Stable internet connection for image processing. 8.2 OFFLINE What kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.
4. EMOTIONS: BEFORE / AFTER How do customers feel when they face a problem or a job and afterwards? i.e. lost, insecure > confident, in control - use it in your communication strategy & design. Defects are common and our project is not an exception When the system failed to recognize the digit, Customer Mentality:	employee productivity. In our model we use AlexNet , which is one of the CNN architectures . AlexNet allows for multi-GPU training by putting half of the model's neurons on one GPU and the other half on another GPU. Not only does this mean that a bigger model can be trained, but it also cuts down on the training time. It also reduces the overfitting problem by Data Augmentation and Dropout.	Obtain modern electronic devices and check they are working
Before:(Failure) We would give guarantee that it would work most of the time and if any error occurs, they can contact us at any time. So, customers can feel at ease. After:(Failure) They have no need to panic when the failure occurs They can easily contact us to rectify the error. We would solve the defect as soon as possible.		

4. REQUIREMENT ANALYSIS

4.3 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	Input Correlation	Digital image correlation is a technique that combines image registration and tracking methods for accurate 2 measurements of changes in images and recognizes the characters from the images.		
FR-2	Data Preparation	Data preparation is the process of preparing raw data so that it is suitable for further processing and analysis.		
FR-3	Feature Extraction	Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original data set.		
FR-4	Character Classification	In character classification phase, the attributes of the data in the picture are compared to the classes in the database to determine in which class the picture belongs to.		

4.4 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Handwritten digit recognition is one of the major important issues in pattern recognition applications. Some of the applications for digit recognition include data entry forms, Bank check processing etc,.
NFR-2	Security	The applications of handwritten digit recognition can be used in the banking sector where it can be used to maintain the security pin numbers safely. It can be also used for blind-people by using sound output.
NFR-3	Reliability	Reliability indicates the probability that the system will perform its intended function for a larger period of sufficient time and also it will operate in a secured environment without any failures.
NFR-4	Performance	The standard implementations of neural networks achieve an accuracy of approximately (98–99)
		percent in correctly classifying the handwritten digits.
NFR-5	Availability	The features for handwritten digit recognition have been Acquainted. These features are based on shape analysis of the digit image and extract slant or slope information. They are effective in obtaining good recognition of accuracy.
NFR-6	Scalability	The scalability in the task of handwritten digit recognition, using a classifier, has great importance and it makes use of online handwriting recognition on computer tablets, recognizing zip codes on mail for postal mail sorting, processing bank check amounts, numeric entries in forms filled up manually(for example - tax forms) and so on.

5. PROJECT DESIGN

5.1Data Flow Diagrams

5.2 Solution & Technical Architecture

Solution Architecture

Technology Architecture

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI	HTML, CSS, JavaScript
2.	Application Logic-1	Model is built	Python
3.	Application Logic-2	Python model is deployed	IBM Watson Studio
4.	File Storage	Predicted outputs of the image are stored in a local folder.	Local Filesystem
5.	Machine Learning Model	To predict the image uploaded by the user.	Image Recognition Model
6.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Flask Cloud Server Configuration: IBM Watson Studio	Local, Cloud Foundry.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Flask
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	High workload can be supported without undergoing any major changes.	Technology used in the architecture is that with Python and the IBM cloud.
4.	Availability	Readily available enables the IT Infrastructure to function when some of the components fail.	Technology used is IBM cloud.
5.	Performance	Performance technology is a field which uses various tools, processes and procedures in a systematic and efficient manner to improve the desired outcomes of individuals and organizations.	Technology used is python.

5.3User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	Dashboard	USN-1	As a user, they can see the information regarding the prediction of handwritten digit recognition.	I can see the information regarding digit recognition.	High	Sprint 1
	Launch	USN-2	On clicking the launch button, it will redirect the user to a page where the images to be predicted can be uploaded.	I can see the launch button.	High	Sprint 1
	Upload	USN-3	Users can select the image from the local storage.	I can upload the image.	High	Sprint 2
	Predict	USN-4	Once the image is uploaded, it will predict the respective image.		High	Sprint 3
	Display	USN-5	The predicted image will be displayed with the accuracy chart.	I can see the result with accuracy.	High	Sprint 4

6. PROJECT PLANNING &

SCHEDULING6.1Sprint

Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint 1	Dashboard	USN-1	As a user, they can see the information regarding the prediction of handwritten digit recognition.	2	High	Kannan G , Santhos P
Sprint 2	Launch	USN-2	On clicking the launch button, it will redirect the user to a page where the images to be predicted can be uploaded.	2	High	Panta Nithish Kumar Reddy
Sprint 3	Upload	USN-3	Users can select the image from the local storage.	2	High	Mohammed Younus S
Sprint 4	Predict	USN-4	Once the image is uploaded, it will predict the respective image.	2	High	Kannan G, Mohammed Younus s
Sprint 5	Display	USN-5	The predicted image will be displayed with the accuracy chart.	2	High	Panta Nithih Kumar Reddy, Kannan G

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

Velocity Report

Sprint 1

Date - October 24th, 2022 - October 29th, 2022

Sprint 2

Date - October 31st, 2022 - November 5th, 2022

Sprint 3

Date - November 7th, 2022 - November 13th, 2022

Sprint 4

Date - November 14th, 2022 - November 19th, 2022

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render template, url for
from werkzeug.utils import secure_filename, redirect
#from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD FOLDER = 'D:/ibm/data'
app = Flask(_name_)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load_model("./DigitRecog_IBM_model/mnistCNN.h5")
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
        f = request.files["image"]
        filepath = secure_filename(f.filename)
        f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
        upload_img = os.path.join(UPLOAD_FOLDER, filepath)
        img = Image.open(upload img).convert("L") # convert image to monochrome
        img = img.resize((28, 28)) # resizing of input image
        im2arr = np.array(img) # converting to image
        im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
        pred = model.predict(im2arr)
        num = np.argmax(pred, axis=1) # printing our Labels
        return render_template('predict.html', num=str(num[0]))
if name == ' main ':
    app.run(debug=True, threaded=False)
```

8. TESTING

8.1 Test Cases

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
Homepage_TC_OO1	Functional	Home Page	Verify user is able to see the Homepage when clicked on the link	Home Page should be displayed.	Working as expected	Pass
Homepage_TC_OO2	UI	Home Page	Verify the UI elements in Homepage	Application should show below UI elements: a.choose file button b.predict button c.clear button	Working as expected	Pass
Homepage_TC_OO3	Functional	Home Page	Verify user is able to choose file from the local system and click on predict	Choose file popup screen must be displayed and user should be able to click on predict button	Working as expected	Pass
Homepage_TC_OO4	Functional	Home page	Verify user able to select invalid file format	Application won't allow to attach formats other than ".png, .jiff, .pjp, .jpeg, .jpg, .pjpeg"	Working as expected	Pass
Predict_TC_OO5	Functional	Predict page	Verify user is able to navigate to the predict to and view the predicted result	User must be navigated to the predict page and must view the predicted result	Working as expected	Pass

8.2 User Acceptance Testing

Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	0	0
Duplicate	0	0	0	0	0
External	0	0	0	0	0
Fixed	0	0	0	0	0
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	0	0	0	0	0

Test Case Analysis

Section	Total Cases	Not Tested	Fail	Pass
Client Application	5	0	0	5
Security	5	0	0	5
Final Report Output	5	0	0	5
Performance	5	0	0	5

9. RESULTS

9.1 Performance Metrics

Model Summary:

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 64)	640
conv2d_1 (Conv2D)	(None, 24, 24, 32)	18464
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 10)	184330
	=======================================	
Total params: 203,434		
Trainable params: 203,434		
Non-trainable params: 0		
None		

Accuracy:

Confusion Matrix:

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.99	0.98	980
1	0.98	0.99	0.99	1135
2	0.97	0.98	0.97	1032
3	0.99	0.97	0.98	1010
4	0.98	0.97	0.98	982
5	0.96	0.99	0.97	892
6	0.98	0.98	0.98	958
7	0.98	0.97	0.97	1028
8	0.98	0.97	0.98	974
9	0.96	0.96	0.96	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

Performance Metrics Result:

10.ADVANTAGES & DISADVANTAGES

Advantages

- ✓ Reduces manual work.
- ✓ More accurate than average human.
- ✓ Capable of handling a lot of data.
- ✓ Can be used anywhere from any device.

Disadvantages

- ✓ Cannot handle complex data.
- ✓ All the data must be in digital format.
- ✓ Requires high performance server for faster predictions.
- ✓ Prone to occasional errors.

11. CONCLUSION

This project demonstrated a web application that uses machine learning to recognie handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

12. FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- ✓ Add support to detect from digits multiple images and save the results
- ✓ Add support to detect multiple digits
- ✓ Improve model to detect digits from complex images
- ✓ Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better.

Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

13.APPENDIX

Source Code

HTML AND CSS:

index.html:

```
<html>
<!--
IBM-Project-50924-1660929698
TEAM ID: PNT2022TMID28666
<head>
  <title>HDR</title>
  <meta name="viewport" content="width=device-width">
href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap"
rel="stylesheet">
 ink
href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap"
rel="stylesheet">
href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&displ
ay=swap" rel="stylesheet">
  ink
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|
Pacifico&display=swap" rel="stylesheet">
  <link rel="stylesheet"</pre>
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.cs
s" integrity="sha384-
qqOvR0iXCbMov3Xipma34MD+dH/1f0784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
  <link rel="stylesheet" type= "text/css" href= "{{</pre>
url for('static',filename='css/style.css') }}">
  <script src="https://kit.fontawesome.com/b3aed9cb07.js"</pre>
crossorigin="anonymous"></script>
  <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
integrity="sha384-
q8i/X+965Dz00rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.j
s" integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
  <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
  <script
src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
  <link rel="stylesheet"</pre>
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css
">
</head>
```

```
<style>
    body {
     background-image: url('static/images/bc1.jpg');
     background-repeat: no-repeat;
     background-size: cover;
    }
</style>
<script>
  function preview() {
   frame.src=URL.createObjectURL(event.target.files[0]);
}
    $ (document) . ready (function() {
          $('#clear button').on('click', function() {
              $('#image').val('');
              $('#frame').attr('src',"");
            });
        });
</script>
<body>
    <h1>HandWritten Digit Recognition System</h1>
                <h3>TEAM ID : PNT2022TMID28666 </h3>
        <div class="container p-3 my-3 bg-dark text-white">
            This Handwritten Digit Recognition is a technology, Our Pro-
posed System of the project to deliver or convert the hand written notes and
traditional forms of Images into digital forms results.
It's difficult to store and access physical data with efficiency. The project
presents in representing the recognization of handwritten digits (0 - 9) from
the famous MNIST dataset. Here we will be using AlexNet which is an architec-
ture of Convolutional Neural Network.
        </div>
        <section id="content">
            <div class="leftside">
            <form action="/predict" method="POST" enctype="multipart/form-</pre>
data">
            <label color="white">Select a image:</label>
            <input id="image" type="file" name="image" accept="image/png, im-</pre>
age/jpeg" onchange="preview()"><br><br>
              <img id="frame" width="100px" height="100px"/>
              <div class="buttons div">
                <button type="submit" class="btn btn-light">Predict</button>
                <button type="button" class="btn btn-light">&nbsp Clear
&nbsp</button>
              </div>
            </form>
            </div>
      </section>
</body>
</html>
```

Predict.html:

```
<!DOCTYPE html>
<!--
IBM-Project-50924-1660929698
TEAM ID: PNT2022TMID28666
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Prediction</title>
</head>
<style>
   body {
    background-image: url('static/images/bc1.jpg');
    background-repeat: no-repeat;
    background-size: cover;
    }
    #rectangle{
     width: 400px;
    height:150px;
    background-color: #000000;
    border-radius: 15px;
     position:absolute;
    box-shadow: 0px 0px 10px 5px white;
     top:25%;
     left:50%;
     transform:translate(-50%,-50%);
    }
    #head{
  text-align: center;
  font-size: 30px;
  margin: 0 auto;
  padding: 3% 5%;
  font-family: Arial, Helvetica, sans-serif;
  color: white;
    }
    #num{
        font-size: 50px;
</style>
<body>
    <div id="rectangle">
        <h1 id="head">Predicted Number : <br><center</td>
id="num">{{num}}</center></h1>
    </div>
</body>
</html>
```

Style.css

```
#clear button{
 margin-left: 15px;
  font-weight: bold;
  color: rgb(0, 174, 255);
}
#confidence{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
#content{
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
}
.welcome{
   text-align: center;
  position: relative;
  color: rgb(0, 32, 112);
  background-color: skyblue;
  padding-top: 1%;
  padding-bottom: 1%;
  font-weight: bold;
  font-family: 'Bookman', 'URW Bookman L', serif;
}
#team id{
  text-align: right;
   font-size: 25px;
   padding-right: 3%;
}
#predict button{
 margin-right: 15px;
 color: rgb(0, 255, 72);
  font-weight: bold;
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
}
#result{
  font-size: 5rem;
}
#title{
 padding: 1.5% 15%;
 margin: 0 auto;
  text-align: center;
}
```

```
.buttons div{
   margin-bottom: 30px;
   margin-right: 100px;
   margin-top: 20px;
 }
  .heading{
    font-family: "American Typewriter", serif;
    font-weight: 700;
   font-size: 2rem;
   display: inline;
  .leftside{
   text-align: center;
   margin: 0 auto;
   margin-top: 2%;
    /* padding-left: 10%; */
 #frame {
   margin-right: 10%;
  .predicted answer{
   text-align: center;
   margin: 0 auto;
   padding: 3% 5%;
   padding-top: 0;
    /* padding-left: 10%; */
    text-align: center;
    color: aliceblue;
   padding: 40px 50px 40px 100px;
}
   h3{
   text-align: center;
    color: aliceblue;
   padding: 10px 50px 30px 50px;
   }
.btn{
   background: #2196f3;
   display: inline-block;
   text-transform: uppercase;
    letter-spacing: 4px;
   font-size: 10px;
    overflow: hidden;
   border: 0px;
   border-radius: 60px;
   transition: 0.2s;
   color: rgb(90, 90, 90);
   margin-right:30px;
   margin-left:50px;
}
```

```
.btn:hover{
    color: #ffffff;
    background: #2196f3;
    box-shadow: 0 0 10px #2196f3, 0 0 10px #2196f3, 0 0 10px #2196f3;
    transition-delay: 0.2s;
}
  @media (min-width: 720px) {
    .leftside{
      padding-left: 10%;
      color:white;
    }
  }
   FLASK:
    app.py:
     import numpy as np
     import os
     from PIL import Image
     from flask import Flask, request, render_template, url_for
     from werkzeug.utils import secure filename, redirect
     #from gevent.pywsgi import WSGIServer
     from keras.models import load model
     from keras.preprocessing import image
     from flask import send from directory
     UPLOAD FOLDER = 'D:\IBM1\data'
     app = Flask( name )
     app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
     model = load model("./models/mnistCNN.h5")
     @app.route(^{\prime}\overline{/}^{\prime})
     def index():
         return render template('index.html')
     @app.route('/predict', methods=['GET', 'POST'])
     def upload():
         if request.method == "POST":
             f = request.files["image"]
             filepath = secure_filename(f.filename)
             f.save(os.path.join(app.config['UPLOAD FOLDER'], filepath))
             upload_img = os.path.join(UPLOAD_FOLDER, filepath)
             img = Image.open(upload img).convert("L") # convert image to mono-
     chrome
             img = img.resize((28, 28)) # resizing of input image
             im2arr = np.array(img) # converting to image
             im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our
     requirement
             pred = model.predict(im2arr)
             num = np.argmax(pred, axis=1) # printing our Labels
             return render template('predict.html', num=str(num[0]))
```

```
if __name__ == '__main__':
    app.run(debug=True, threaded=False)
```

MODEL CREATION:

```
import matplotlib.pyplot as plt
                                      #used for data visualization (x train,
y_train), (x_test, y_test)=mnist.load_data ()
x train=x train.reshape (60000, 28, 28, 1).astype('float32')
x test=x test.reshape (10000, 28, 28, 1).astype ('float32') number of classes
= 10 #storing the no of classes in a variable
y train = np utils.to categorical (y train, number of classes) #converts the
output in binary format
y test = np utils.to categorical (y test, number of classes)
model.add(Conv2D(64, (3, 3), input shape=(28, 28, 1), activation='relu'))
model.add(Conv2D(32, (3, 3), activation = 'relu')) model.add(Flatten())
model.add(Dense(number of classes,activation = 'softmax'))
model.compile(loss= 'categorical crossentropy', optimizer="Adam",
metrics=['accuracy']) x train = np.asarray(x train)
y train = np.asarray(y train)
history = model.fit(x train, y train, validation data=(x test, y test),
epochs=5, batch size=32)
from sklearn.model selection import train test split from sklearn.metrics
import confusion matrix
import itertools
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val loss'], color='r', label="validation")
loss", axes =ax[0]) legend = ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['accuracy'], color='b', label="Training accuracy")
ax[1].plot(history.history['val accuracy'], color='r', label="Validation"
accuracy") legend = ax[1].legend(loc='best', shadow=True)
def plot confusion matrix(cm, classes,
normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
```

```
.....
This function prints and plots the confusion matrix. Normalization can be
applied by setting `normalize=True`. """
plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title)
plt.colorbar()
tick marks = np.arange(len(classes)) plt.xticks(tick marks, classes,
rotation=45) plt.yticks(tick marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight layout() plt.ylabel('True label') plt.xlabel('Predicted label')
# Predict the values from the validation dataset Y pred =
model.predict(x test)
# Convert predictions classes to one hot vectors Y pred classes =
np.argmax(Y pred,axis = 1)
# Convert validation observations to one hot vectors Y true =
np.argmax(y test, axis = 1)
# compute the confusion matrix
confusion mtx = confusion matrix(Y true, Y pred classes) # plot the confusion
matrix plot confusion matrix(confusion mtx, classes = range(10))
import sklearn
print(sklearn.metrics.classification report(Y true, Y pred classes))
print(model.summary())
# Final evaluation of the model
metrics = model.evaluate(x test, y test, verbose=0) print("Metrics (Test loss
&Test Accuracy) : ") print(metrics)
plt.imshow(x test[5100])
import numpy as np print(np.argmax(prediction, axis=1))
np.argmax(y test[5100:5101]) #printing the actual labels # Save the model
model.save('models/mnistCNN.h5')
```

GitHub & Project Demo Link

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-50924-1660929698

Demo Video:

 $\underline{https://www.dropbox.com/s/28txausz7ywuekr/VN20221119_171634.mp4?dl=0}$