

Hajar Lachheb

1 Introduction

Through this paper, I am presenting the individual work I did. Working on the first activity was a real challenge and a very exciting exercise indeed. First, we had to work on all the networks, then focused on the airport one. In the end, we had to plot the different networks and compare their representations to select the best.

2 Work Description

2.1 Description of what is done in all the work parts

To start with, the software used in my work is Google Colab. Following the use of Google Colab, I used the package NetworkX. The programming language used is Python. The choice of the software and the language can be explained by the fact that I am very confident when it comes to Python and I have used Google Colab a lot so it helped me code better and use the NetworkX Package in a very easy and optimized way.

I also tried working with iGraph but I preferred at the end working with NetworkX.

2.2 First Exercise Method Explanation

For the first exercise, we had to calculate the descriptors corresponding to all the networks. The idea was to have a csv file with all the results corresponding to each descriptor: Number of nodes, Number of edges, Minimum, maximum, and average degree, Average clustering coefficient (average of the clustering coefficient of each node), Assortativity, Average path length (average distance between all pairs of nodes), Diameter (maximum distance between nodes in the network). Before coding this part, I had to convert all the multigraphs to graphs using nx.Graph.

My method was not that smart, because I had to repeat the code three times for every sub-element of the initial folder "A1-networks". Here is the result I get after running the code for each sub-folder.

Figure representing the descriptors results for the folder Model

network_file	num_nodes	num_edges	min_degree	max_degree	avg_degree	avg_clustering	assortativity	avg_path_length	diameter
ER1000k8.net	1000	3956	1	17	7.912	0.008042110177	-0.01683326736	3.569777778	
SF_1000_g2.7.net	1000	1668	2	24	3.336	0.006650454307	-0.001960898955	5.468826827	1:
SF_500_g2.7.net	500	859	2	22	3.436	0.007773809575	-0.0255858811	4.875935872	10
256 4 4 4 13 18	256	2299	10	25	17.9609375	0.5112995545	0.0006954016351	2.651102941	4
256 4 4 2 15 18	256	2274	15	23	17.765625	0.7330611456	0.02862392046	2.782107843	
homorand_N1000_K	1000	2000	4	4	4	0.002		5.64	
SF_1000_g2.5.net	1000	1905	2	30	3.81	0.00960504089	0.01998152187	4.614932933	10
BA1000.net	1000	3990	4	115	7.98	0.0354487623	-0.05420735055	3.183279279	
homorand_N1000_K	1000	2994	5	6	5.988	0.0038	0.191902834	4.191299299	
ws2000.net	2000	6000	3	13	6	0.00333015873	-0.07617895967	4.511093047	
SF_1000_g3.0.net	1000	1517	2	26	3.034	0.005159194521	-0.008538806598	5.965063063	10
ER5000k8.net	5000	19980	4	17	7.992	0.001388896659	-0.05547627909	4.379741068	
s1000.net	1000	3000	3	13	6	0.004364840715	-0.09992885591	4.091303303	
rb125.net	125	410	4	100	6.56	0.8372950558	-0.1729819599	2.303225806	

Figure representing the descriptors results for the folder Real

network_file	num_nodes	num_edges	min_degree	max_degree	avg_degree	avg_clustering	assortativity	avg_path_length	diameter
rb25.net	25	66	4	20	5.28	0.9023157895	-0.1635258359	2.033333333	4
graph3+1+3.net	7	8	2	3	2.285714286	0.6666666667	-0.6	2.19047619	4
20x2+5x2.net	50	404	4	22	16.16	0.9715584416	0.9186473754	2.387755102	4
graph4+4.net	8	13	3	4	3.25	0.875	-0.08333333333	1.857142857	3
circle9.net	9	9	2	2	2	0		2.5	4
star.net	9	8	1	8	1.77777778	0	-1	1.77777778	2
wheel.net	9	16	3	8	3.55555556	0.6243386243	-0.3333333333	1.55555556	2
grid-p-6x6.net	36	72	4	4	4	0		3.085714286	6
Airports.csv	36	72	4	4	4	0		3.085714286	6

Figure representing the descriptors results for the folder Toy

network_file	num_nodes	num_edges	min_degree	max_degree	avg_degree	avg_clustering	assortativity	avg_path_length	diameter
dolphins.net	62	159	1	12	5.129032258	0.2589582461	-0.04359402822	3.356953993	8
airports_UW.net	3618	14142	1	250	7.817578773	0.4957489312	0.04622413053	4.439594642	17
zachary_unwh.net	34	78	1	17	4.588235294	0.5706384782	-0.4756130977	2.408199643	5
PGP.net	10680	24316	1	205	4.553558052	0.2659452243	0.2382113717	7.485540051	24

2.3 Second Exercise Method Explanation

For the second exercise, I had to work on a single network which is the Airport one. I am using the numerical descriptors of the nodes such as Degree, Strength, Clustering coefficient, Average path length (average distance to the rest of the nodes), Maximum path length (maximum distance to the rest of the nodes), Betweenness, Eigenvector centrality, and PageRank. We considered that the network is unweighted and we did the same as we did in the previous exercise. In this part, instead of looking manually for the Airport network, we will merge all the networks we have in a tuple, so that we can, later on, navigate through the different networks easily for the next exercise without the need to navigate through each folder and subfolder and look for the adequate file. We get a CSV File then with the results of the descriptor corresponding to all of the aeroports.

Figure representing the descriptors result for the full Airport Network

PageRank	Eigenvector centrali	Betweenness	Maximum path lengt	Average path length	Clustering coefficier	Strenght	Degree	Node	
6.47E-05	8.97E-05	0	12	4.515754561	1	92	2	AAA	0
0.0002196250765	0.005915562148	6.39E-05	11	3.676616915	0.7333333333	7284	6	AAE	1
0.0001834549814	0.003318859326	0	11	3.909342178	1	13071	3	AAL	2
9.87E-05	0.006981236005	1.01E-05	11	3.926755113	0.6727272727	3224.5	11	AAN	3
9.26E-05	0.006565162375	2.00E-05	11	3.809010503	0.3333333333	1690	10	AAQ	4
0.0001635669682	0.00910678414	1.70E-08	11	3.599778883	0.9333333333	11653	6	AAR	5
4.22E-05	0.0001246977819	0	12	4.681315644	0	28.5	1	AAT	6
5.06E-05	8.65E-07	0	13	5.630458817	0	38	1	AAU	7
7.32E-05	0.0005953009436	6.12E-08	12	4.516583748	0.8333333333	646	4	AAY	8
4.81E-05	6.83E-05	0	12	4.871199558	0	164	1	ABA	9
0.0001116901739	0.002381753466	3.03E-06	11	3.954947485	0.8333333333	2918	4	ABD	10
0.0001911662168	0.02078037394	2.27E-06	12	3.644831399	0.9230769231	21783	14	ABE	11
5.88E-05	0.003548051213	0	12	3.931177446	1	2582	3	ABI	12
0.0006233111675	0.02444291808	0.000950327909	11	3.465450525	0.3544973545	25044.5	28	ABJ	13
0.0001253324272	7.83E-06	0	13	5.426755113	1	250	3	ABK	14
0.0001400644832	6.30E-06	2.75E-06	13	5.190713101	0.6666666667	278	4	ABL	15
7.10E-05	8.99E-05	0.0002757586063	10	4.463239359	0.3333333333	268	3	ABM	16
0.001067623058	0.02902630608	0.004188841409	11	3.422056385	0.3412698413	105678	36	ABQ	17
0.0001624508565	0.001430211472	0.0005529444291	12	4.045328911	0.3333333333	2958	3	ABR	18
0.000113697954	9.17E-05	0	12	4.660862355	0	4391	1	ABS	19
7.67E-05	0.001729300578	0	11	4.089552239	1	2210	2	ABT	20
0.0001334386233	0.003663205566	8.56E-05	11	3.706467662	0.6666666667	3253	3	ABV	21
0.000147441454	0.0004636435229	5.70E-06	11	4.212548369	0.6	3935	5	ABX	22
5.05E-05	0.002168693763	0	12	3.914870094	0	1410	1	ABY	23
0.000610957714	0.0146878349	0.003747922599	11	3.582642344	0.2813852814	32727.5	22	ABZ	24

Following is the representation of descriptors of the following airports: PAR, LON, FRA, AMS, CHI, NYC, ATL, BCN, WAW, CHC, DJE, ADA, AGU, TBO, ZVA.

Figure representing the descriptors result - Dataframe

0	ADA	7	10704.0	0.714286	3.632394	11	0.000013	0.010688	0.000205
1	AGU	7	7678.0	0.761905	3.664455	11	0.000006	0.005134	0.000119
2	AMS	192	481335.0	0.142834	2.731343	10	0.040492	0.171452	0.005384
3	ATL	172	1129605.0	0.137835	2.915423	11	0.024896	0.122071	0.008603
4	BCN	80	289105.0	0.328481	3.273079	11	0.001932	0.089146	0.002816
5	CHC	20	64158.5	0.252632	3.565229	10	0.003367	0.004188	0.001615
6	DJE	20	10198.5	0.700000	3.578220	11	0.000146	0.031831	0.000181
7	FRA	237	697513.5	0.116963	2.682145	10	0.065578	0.195546	0.007704
8	LON	242	1464828.0	0.112342	2.635158	10	0.084989	0.200372	0.015606
9	MOW	186	217145.0	0.095844	2.877557	10	0.052211	0.116645	0.005884
10	NYC	179	1524349.5	0.157554	2.708402	11	0.069283	0.160584	0.012471
11	PAR	250	1023424.5	0.089157	2.687673	10	0.093420	0.180287	0.012729
12	TBO	2	234.0	1.000000	4.583195	12	0.000000	0.000123	0.000080
13	WAW	55	86836.5	0.458586	3.243505	11	0.001557	0.075199	0.001120
14	ZVA	1	19.0	0.000000	7.575180	15	0.000000	0.000000	0.000095

2.4 Third Exercise Method Explanation

In this exercise, we simply had to plot the histograms. What is special about my work is that i tried to plot the different possibilities and includes: PDF linlin, CDF linlin, CCDF linlin, PDF loglog, CDF loglog and finally CCDF loglog. The reason why we plotted all of these representations is to be able to choose the best representation following if the figure we get represents a power law and how it is actually presented.

Following is the representation of the networks : ER5000k8, SF1000g2.7, ws1000, airportsUW and PGP.

Figure representing the best representation for the network SF1000g2.7

Figure representing the best representation for the network ${\rm ws}1000$

Figure representing the best representation for the network ER5000k8

Figure representing the best representation for the network PGP

Figure representing the best representation for the network airportsUW

