

EQUINOX AI&DATA LAB

Business Course Structure

Introduction to QC

Thursday 4th August

What is QC?
What you should know
about QC

Applications and Big Players

Thursday 11th August

How can QC generate value Which companies lead the way

Assignment 1: Due

Quantum Strategy

Thursday 18th August

Quantum Mindset How can QC be integrated Generating capabilities

Assignment 2 Due

Introduction to Quantum Computing

Bringing QC to business

Introduction to Quantum Computing

Contents

- 1. What is quantum computing
- 2.Key definitions
- 3. How to learn more

QnA

- We use Slido for Q&As and polls
- Teams app users can see Slido at the bottom of the meeting

• Web users can go to slido.com and enter the number #2835880

lmage: IBM

Which of these are quantum?

How is quantum?

Number of coins	1	2	3	4	5	n
# possible combinations	2	4	8	16	32	2n

Superposition

How is quantum?

Entanglement

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

How do Computers Work?

Babbage Difference Engine 1822

IBM Summit 2018c

How Quantum Computers Work

Quantum computers today

Why the excitement around QC?

- Potential to impact many industries
- Numerous reports estimate value generation in the hundreds of billions
- Implications for national security

Source: McKinsey & Company: Quantum computing: An emerging ecosystem and industry use cases, December 2021

Exhibit 6

Conservatively, we estimate that the value at stake in pharmaceuticals, chemicals, automotive, and finance use cases could be up to nearly \$700 billion.

Note: Viability and value of use cases is uncertain due to the immaturity of quantum-computing technology and the industry; given that business-value estimates are speculative and on the conservative side, they are intended to guide research toward areas of quantum applications with a high value potential, rather than to serve as definitive projections for business value.

Quantum Computing Myths

- Not faster versions of normal computers
- Not smaller versions of normal computers
- Consumers won't buy one
- Not going to replace normal computers
- Do not require a PhD in physics or computer science to use

Key Definitions

Quantum Advantage

- Faster, more accurate or cheaper than the best classical alternative
- No universal definition of quantum advantage
- Application dependent
- Classical HPC/AI raise the bar each year

Qubit

- The qubit is the smallest unit of a quantum computer
- Each qubit is a controlled quantum state
- **Physical qubit**: Today's qubits are physical qubits: irreducible quantum systems that can carry out computation
- Logical qubits: Combining many physical qubits to produce higher quality logical qubits that can perform computations with much higher accuracy

QC Now vs the Future

1: Classically simulatable

2: Noisy Intermediate-Scale Quantum (NISQ)

3: Quantum Computing with error correction

Fault Tolerant QC

- Fault-Tolerant qubits with error correction that can carry out all quantum algorithms
- Associated with million (physical) qubit machines
- Optimistic outlook: could be achieved by 2030
- Sometimes called "Fairy Tale" QC from pessimistic NISQ people

Marketing speak

- Quantum inspired: Classical computing algorithms developed using ideas from quantum computing
- Quantum as a Service (QaaS): Access to QC over the cloud, key component of our strategy
- Sometimes people use the same terms with different meanings- ask to clarify how the algorithm works to confirm their meaning

Quantum Supremacy

- QC can carry out computation that the most powerful supercomputer can't do in a reasonable time
- Google claimed to have achieved this in 2019 (IBM contested this)
- Recently this term has fallen out of popularity

```
nature > articles > article
```

Article Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

```
Frank Arute, Kunal Arya, ... John M. Martinis → + Show authors
```

```
Nature 574, 505–510 (2019) Cite this article
```

902k Accesses | 1825 Citations | 6174 Altmetric | Metrics

05/08/2022

Quantum Machine Learning

- Integration of classical ML models with QC
- One of the most exciting, and uncertain applications of QC
- There is no proven, or demonstrated, significant advantage to using QC for ML
- Boston Consulting group estimated that <u>quantum</u> <u>machine learning could offer \$150-220 bn</u> of value creation

Shor's Algorithm

Credit: Ars Technica

 4,100 logical qubits could break current 2048-bit RSA

How to learn more

Engaging with the quantum ecosystem

Quantum Latino

"bringing together researchers, entrepreneurs, start-ups, and industry collaborators to participate, learn, exchange ideas, connect, network, and grow, to be part of an evergrowing quantum community in Latin-America"

Good sources for news

Quantum Computing Report
Where Qubits Entangle with Commerce

Reports

Accenture, Capgemini & BCG have published free reports on Quantum Computing

July 2021 By Jean-François Bobier, Matt Langione, Edward Tao, and Antoine Gourevitch

Quantum computing: An emerging ecosystem and industry use cases

ecember 2021

Podcasts

PODCAST

Noisy Intermediate-Scale Podcast

Michał Stęchły

PODCAST

The Quantum Pod

Zapata Computing

PODCAST

The Qubit Guy's Podcast

Yuval Boger (a.k.a. The Qubit Guy)

Summary

 The content covered today should make press releases, LinkedIn posts and marketing material more comprehensible

 References to the broader quantum ecosystem to help keep up-to-date with developments

Next time: What are the applications of QC and who are the big players

30

Assignment 1 [Due 11th August]

Choose one of these articles, or another of your choice.

- Nvidia announces quantum programming platform
- <u>lonQ Hyundai collaboration</u>
- Multiverse Computing Digital Twin Initiative with Bosch Group
- Quantum Data Centre of the Future Project

Additional sources:

Choose one of your own from:

The Quantum Insider
Quantum Pirates
Quantum Computing Report

- 1. What is the technology? (for example is it an algorithm, a new hardware development...)
- 2. Which industry(ies) are likely to be directly affected?
- Why is it exciting?
- 4. How does it fit with established technologies/future technologies?
- [Challenge] Consider one limitation of the technology or potential barrier to scalability/commercialisation

GRACIAS

Join at slido.com #2835 880

