Prova tipo B

	P1 de Álgebra Linear I – 2004.2	(02/09/04)	
Nome:_		Matrícula:	
Assinat	ura:	Turma:	

Duração: 1 hora 45 minutos

Respostas erradas terão nota zero

Questão	Valor	Nota	Revis.
1a	1.0		
1b	0.5		
1c	0.5		
2a	1.0		
2b	0.5		
2c	1.0		
2d	1.0		
2e	1.0		
2f	0.5		
3a	1.0		
3b	1.0		
3c	0.5		
3d	0.5		
Total	10.0		

Instruções

- \bullet Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova e as folhas de rascunho. Prova com folhas faltando ou rasuradas terá nota zero.
- Entregar somente este caderno com as respostas. Faça os cálculos nas folhas de rascunho.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.

1) Considere os vetores $\bar{v}=(1,1,0)$ e $\bar{w}=(1,-1,1).$

a) Determine um vetor \bar{a} de módulo igual a $\sqrt{6}$ tal que $\bar{a} \times \bar{v} = \bar{w}$.

b) Determine o valor de c para que se verifique a igualdade

$$(1, c, 2) \cdot ((1, 1, 0) \times (1, -1, 1)) = 6.$$

 \mathbf{c}) Determine o valor de d para que se verifique a igualdade

$$(1,d,2)\cdot ((1,1,0)\times (1,-1,1))=(1,d,2)\cdot ((1,-1,1)\times (1,1,0)).$$

Respostas:

a)
$$\bar{a} =$$

c)
$$d =$$

2) Considere o ponto P=(-2,3,2) e a reta r e o plano π de equações

$$r: (1-t, 2+t, t) \quad t \in \mathbb{R}, \qquad \pi: x-y+z=3.$$

- a) Determine o ponto Q da reta r mais próximo de P.
- b) Determine a distância d entre o ponto P e a reta r.
- c) Determine um ponto A de r tal que a distância entre P e A seja $\sqrt{29}$.
- d) Determine o ponto B da reta r tal que B, P e o ponto (1,2,0) da reta r sejam os vértices de um triângulo de área $\sqrt{6}$.
- e) Determine o ponto C do plano π mais próximo de P.
- f) Determine a distância d' entre o ponto P e o plano π .

Respostas:

b)
$$d =$$

$$\mathbf{d)} \qquad B =$$

e)
$$C =$$

$$f)$$
 $d' =$

3) Considere o ponto P=(1,1,2) e as retas r_1 e r_2 de equações paramétricas $r_1:(1+t,2t,1-t),\quad t\in\mathbb{R},\qquad r_2:(5-2t,2+2t,-2+t),\quad t\in\mathbb{R}.$

a) Escreva a reta r_1 como interseção de dois planos (escritos de forma cartesiana) π e ρ , onde π é paralelo ao eixo \mathbb{Y} e ρ é paralelo ao plano

$$\tau$$
: $2x + y + 4z = 0$.

- b) Determine a equação cartesiana do plano β que contém o ponto P e a reta r_1 .
- c) As retas r_1 e r_2 são concorrentes. Determine o ponto C de interseção destas duas retas.
- d) Determine as equações paramétricas da reta r_3 perpendicular comum a r_1 e r_2 (isto é, r_3 intercepta as retas r_1 e r_2 e é perpendicular a ambas retas).

Respostas:

a) π : ρ :

b) $\beta =$

C = C

 $\mathbf{d)} \qquad r_3 =$