南京航空航天大学

第1页 (共3页)

二〇一九 ~ 二〇二〇 学年 第I学期 《自动控制原理》考试试题

考试日期: 2020年1月5日 试卷类型: A 试卷代号:

班号					学号			姓名			
题号	_	=	三	四	五	六	七	八	九	+	总分
得分											

一、(本题16分)试确定图1 所示系统的输出 C(s)。

- - 1. β 值对系统稳定性的影响;
 - 2. β 值对系统单位阶跃响应动态性能的影响;
 - 3. β 值对系统单位斜坡响应稳态性能的影响。

本资源免费共享 收集网站 nuaa.store

三、(本题 16分) 已知单位负反馈系统的开环传递函数为 $G(s) = \frac{K}{s(Ts+1)(s+1)}$

其中K>0、T>0。试确定使闭环系统稳定时,参数 K、T 应满足的关系;并计算在输入 $r(t)=t\cdot 1(t)$ 作用下系统的稳态误差

四、 (本题 16分)系统结构如图 所示,其开环传递函数在s=-2 之左具有一对重极点, 试确定闭环系统处于临界阻尼时的a 、b 。

五、(本题 16分) 设系统结构图如图所示,其中 $G(s) = \frac{10}{s^2(2s+1)}$ 1. 试绘制a = 0 时的开环幅相曲线,并用奈氏判据判断该系统的闭环稳定性 2.a > 0 ,若系统开环截止频率 ω_c 为4,问能否满足相角裕度 $p > 15^\circ$ 的要求 3. 讨论参数a 对系统稳定性的影响

六、(本题 18分)试用描述函数法求出如图所示系统(非线性环节的描述函数 $\frac{4M}{\pi 4}$)的输出信号c 的自振振幅和频率,分别画出信号c、x、y 的稳态波形

本资源免费共享 收集网站 nuaa.store

南京航空航天大学

第1页 (共3页)

二〇一九 ~ 二〇二〇 学年 第I学期 《自动控制原理》考试试题											
考试日期: 2020年1 月5 日 试卷类型: B 试卷代号:											
班号					学号			姓名			
题号	-	=	三	四	五.	六	七	八	九	+	总分
得分											

一、(本题16分)试用梅森公式求图 1 所示系统的传递函数C(s)/R(s)和E(s)/R(s)。

- 二、(本题 18分)设一反馈控制系统如图 2 所示,试选择 K_1 、 K_2 以使系统同时满足下列性能指标要求:
 - 1. 当单位斜坡输入时,系统的稳态误差 $e_{ss} \leq 0.35$
 - 2. 闭环系统的阻尼比 $\zeta \leq 0.707$
 - 3. 调节时间*t_s*≤3秒

本资源免费共享 收集网站 nuaa.store

三、(本题 16分) 已知某系统结构图如图 3 所示,其中K、T 均大于 0。在输入r(t) 作用下,具有如图 4 所示的输出c(t) 曲线。

四、(本题 16分)已知某单位反馈三阶系统,当输入信号r(t) = 2 + 0.5t 时,稳态误差 e_{ss} 为 0.5,系统开环幅相曲线如图 5 所示,试分析:

- 1. 求系统临界稳定时的开环增益 K_c
- 2. 若穿越频率 $\omega_x = 1$,求系统的相角裕度 ,并绘制开环对数幅频渐近曲线
- 3. 试设计串联校正环节,使校正后系统满足截止频率 $\omega_c \geq 1$ 、相角裕度 $\gamma \geq 45^\circ$

五、(本题 16分) 采样系统如图所示, 其中T 为采样周期。

- 1. 计算系统开环及闭环脉冲传递函数;
- 2. 确定闭环系统稳定的 K 值范围;
- 3. 讨论采样周期T 对系统稳定性的影响;

六、(本题 18分)已知控制系统如图所示,其中 $K_1>0$, $K_2>0$,

- 1 写出以 x_1 、 x_2 为状态变量的系统状态方程与输出方程;
- 2 判断系统的能控性和能观性;
- 3 求系统的传递函数。

