

Samedi 9 avril 2022

OPTION: MATHÉMATIQUES

MP-PC-PSI-PT-TSI

Durée: 2 heures

Conditions particulières

Calculatrice et documents interdits

Concours CPGE EPITA-IPSA-ESME 2022

Option Mathématiques

On considère un entier naturel $n \ge 3$ et, dans le plan complexe muni de sa structure euclidienne, n points distincts non alignés $M_0, M_1, \ldots, M_{n-1}$ d'affixes notés $z_0, z_1, \ldots, z_{n-1}$.

On se propose d'étudier la fonction f associant à tout point M d'affixe z de ce plan complexe le réel :

$$f(M) = \sum_{k=0}^{n-1} \left\| \overline{M_k M} \right\|$$
 ou de façon équivalente : $f(z) = \sum_{k=0}^{n-1} |z - z_k|$.

- 0°) Préliminaire : l'inégalité triangulaire et son cas d'égalité
- a) Démontrer, pour tous complexes z, z', qu'on a l'inégalité : $|z + z'| \le |z| + |z'|$.
- b) Démontrer qu'on a l'égalité : |z + z'| = |z| + |z'| si et seulement si : z = 0 ou : $\exists \mu \ge 0, z' = \mu z$.
- 1°) Existence d'un minimum absolu de la fonction f sur le plan
- a) Vérifier pour tout complexe z l'inégalité suivante :

$$f(z) = \sum_{k=0}^{n-1} |z - z_k| \ge n|z| - f(0).$$

En déduire qu'on a $\lim_{|z|\to+\infty} f(z) = +\infty$, et qu'en particulier : f(z) > f(0) pour |z| > 2 f(0)/n.

- b) Justifier l'existence d'un minimum m de f sur la boule fermée de centre 0 et de rayon 2 f(0)/n. Montrer que ce minimum m est un minimum absolu de f sur le plan complexe, et que m > 0.
- 2°) Unicité du point Ω où la fonction f réalise son minimum
- a) On désigne par f_k la fonction associant à tout complexe z le nombre réel $f_k(z) = |z z_k|$.

Démontrer, pour tous complexes distincts z, z' et tout réel $\lambda \in]0, 1[$, l'inégalité suivante :

$$f_k(\lambda z + (1 - \lambda) z') \le \lambda f_k(z) + (1 - \lambda) f_k(z').$$

Etablir que s'il y a égalité dans l'inégalité, les points M_k , M, M' d'affixes z_k , z, z' sont alignés.

b) En déduire, pour tous complexes distincts z, z' et tout réel $\lambda \in]0$, 1[, l'inégalité stricte suivante :

$$f(\lambda z + (1 - \lambda) z') < \lambda f(z) + (1 - \lambda) f(z').$$

c) On suppose que f atteint son minimum absolu m en deux points distincts d'affixes ω et ω' .

Etablir, pour tout réel $\lambda \in]0, 1[$, l'inégalité : $f(\lambda \omega + (1 - \lambda) \omega') < m$.

En déduire que f atteint son minimum absolu m en un unique point Ω d'affixe noté ω .

- d) On suppose successivement que l'ensemble $\{M_0, M_1, ..., M_{n-1}\}$ est stable par :
 - 1. la symétrie orthogonale par rapport à une droite Δ .

A l'aide des résultats précédents, montrer dans ce cas que le point Ω appartient la droite Δ . On pourra à cet effet raisonner par l'absurde en supposant que le point Ω n'est pas sur Δ , puis introduire le symétrique Ω' de Ω par rapport à Δ , et montrer que $f(\Omega') = f(\Omega)$.

2. la symétrie centrale par rapport à un point *I*.

A l'aide des résultats précédents, montrer dans ce cas que le point Ω est le point I.

Si n = 4, déterminer ainsi le minimum de f lorsque $M_0 M_1 M_2 M_3$ forme un parallélogramme.

3. la rotation de centre *I* et de mesure $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$.

A l'aide des résultats précédents, montrer dans ce cas que le point Ω est le point I.

Déterminer ainsi le minimum de la fonction f lorsqu'on a : $\forall k \in [0, n-1], z_k = \exp\left(\frac{2ki\pi}{n}\right)$.

3°) Expression du gradient de la fonction f

Lorsque z = x + i y avec x, y réels, on conviendra d'écrire indifféremment f(z) ou f(x, y), et de même $f_k(z)$ ou $f_k(x, y)$ pour $0 \le k \le n - 1$. On a ainsi, en posant $z_k = x_k + i y_k$:

$$f_k(z) = |z - z_k|$$
 ou $f_k(x, y) = \sqrt{(x - x_k)^2 + (y - y_k)^2}$

- a) Etablir que le plan privé des points M_0, M_1, \dots, M_{n-1} d'affixes z_0, z_1, \dots, z_{n-1} est un ouvert U.
- b) Préciser les dérivées partielles de f_k sur U par rapport à ses deux variables x et y. Etablir que les fonctions f_k sont de classe C^1 sur U. Préciser l'affixe du gradient de f_k sur U en fonction du complexe $z z_k$.
- c) Justifier que f est de classe C^1 sur l'ouvert U, puis préciser l'affixe de son gradient en fonction des complexes $z-z_0$, $z-z_1$, ..., $z-z_{n-1}$.
- 4°) Recherche de l'unique point Ω où la fonction f admet son minimum
- a) Etablir que le minimum m de la fonction f peut être atteint soit en l'un des points M_k d'affixe z_k , soit (s'il existe) en un point d'affixe $z \notin \{z_0, z_1, \dots, z_{n-1}\}$ vérifiant la relation : $\sum_{k=0}^{n-1} \frac{z^{-z_k}}{|z-z_k|} = 0$.
- b) On suppose qu'il existe un tel point C d'affixe $c \notin \{z_0, z_1, \dots, z_{n-1}\}$ vérifiant : $\sum_{k=0}^{n-1} \frac{c-z_k}{|c-z_k|} = 0$. Etablir l'égalité suivante pour tout complexe z: $\sum_{k=0}^{n-1} |c-z_k| = \sum_{k=0}^{n-1} \overline{z-z_k} \frac{c-z_k}{|c-z_k|}$.

En déduire que : $\forall z \in \mathbb{C}, f(c) \leq f(z)$.

En conclure que C est alors l'unique point Ω en lequel f réalise son minimum absolu.

- c) Etablir qu'il existe au plus un tel complexe $c \notin \{z_0, z_1, \dots, z_{n-1}\}$ vérifiant : $\sum_{k=0}^{n-1} \frac{c-z_k}{|c-z_k|} = 0$. Ainsi, f atteint son minimum en ce point C s'il existe, et sinon en l'un des points M_0, \dots, M_{n-1} .
- 5°) Localisation du point Ω dans le cas d'un polygone convexe
- a) On considère une droite Δ du plan, un point M situé d'un côté de Δ (mais n'appartenant pas à Δ), un point A situé de l'autre côté de Δ , et le point M' symétrique de M par rapport à Δ . Représenter ces éléments sur une même figure, ainsi que le point I d'intersection de AM et Δ . En exploitant l'inégalité triangulaire, justifier l'inégalité : $AM' \leq AM$.
- b) On suppose que les points M_0 , M_1 , ..., M_{n-1} , pris dans cet ordre, forment un polygone convexe. En posant $M_n = M_0$, on montre que, pour tout entier $i \in [0, n-1]$, les points M_0 , M_1 , ..., M_{n-1} sont toujours dans un même demi-plan fermé F_i délimité par la droite M_i M_{i+1} , et l'intersection de ces n demi-plans fermés F_0 , F_1 , ..., F_{n-1} est le polygone M_0 M_1 ... M_{n-1} (intérieur et côtés). Déduire de 5.a) que le point Ω appartient à l'intérieur ou aux côtés du polygone M_0 M_1 ... M_{n-1} .
- 6°) Etude d'un exemple

On considère dans cette question un réel x > 0 et les trois points A, B, C d'affixes i, x, -x.

- a) Montrer que le point Ω appartient au segment OA où le point O désigne l'origine.
- b) Calculer $f(M_t)$ en fonction de t et x, où M_t est le point d'affixe i t, avec $0 \le t \le 1$. Pour quelle valeur de $t \in [0, 1]$ l'expression $f(M_t)$ est-elle minimale? En déduire en fonction de x le point Ω minimisant la fonction f dans le cas de ce triangle ABC.
- c) Démontrer enfin qu'on a $\Omega = A$ si et seulement si l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est supérieur ou égal à $\frac{2\pi}{3}$.