

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL

Korszerű fűtési rendszerek szabályzása - kismargós munkapéldány

SZADOLGOZAT

Készítette Gyulai László Belső konzulens dr. Kiss Bálint Külső konzulens

Kurbucz Máté

Tartalomjegyzék

1.	Mod	Modellalkotás, irodalomkutatás				
2.	Fűtő	őtestek modellje	6			
	2.1.	Állandósult állapotbeli hőleadás	7			
		2.1.1. Hőleadás alapegyenletei	7			
		2.1.2. Hőfelvétel alapegyenletei	8			
		2.1.3. Energiamérleg állandósult állapotban	9			
	2.2.	Dinamikus hőátadás modellje	10			
		2.2.1. Hőkapacitás	10			
		2.2.2. Sugárzó és konvektív teljesítmény szétválasztása	10			
	2.3.	Radiátor modellje	11			
		2.3.1. Paraméterek	11			
		2.3.2. A modell validálása	12			
	2.4.	Padlófűtés modellje	12			
3.	Ház	modellje	14			
	3.1.	Fűtési rendszer és ház kapcsolata	14			
	3.2.	A modellalkotás folyamata	15			
		A megvalósított modell / a modell hatóköre, használhatósága, assumptions	15			
		Alkalmazott fűtési rendszerek	16			

	3.5. A modell átviteli függvénye						
	3.6.	TABS	16				
4.	Modellek tesztje						
		4.0.1. Radiátor unit test	17				
		4.0.2. Padlófűtés unit test	17				
5.	Iden	tification	18				
	5.1.	Hagyományos szabályzás performanciája	19				
6.	Szał	pályzó kiválasztása és analízise	20				
	6.1.	Ismerkedés az MPC szabályzással	21				
		6.1.1. Elvárások a szabályzás teljesítményével szemben	21				
		6.1.2. A MATLAB MPC Toolbox elemei	22				
		6.1.3. A létrehozott MPC tulajdonságai	25				
	6.2. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása 2						
		6.2.1. Az MPC költségfüggvénye	26				
		6.2.2. Offline MPC - supervisory control	27				
		6.2.3. Validálás	27				
7.	Gyal	korlati megvalósítás	28				
	7.1.	A Simulink konfigurálása	28				
8.	3. További teendők, finomítások, lehetőségek 3						
9	Össz	refoglalás	31				

Abstract

A szakdolgozatban fűtési rendszerek modell-prediktív szabályzásának lehetőségeit vizsgálom Matlab Simulinkben. Végighaladok az MPC tervezés lépésein, a tervezést és a validálást is szimulált szakaszmodellen végzem. A szakaszmodellt a fűtési rendszer és a szoba alkotja, a fűtés hője a szobából külső falon távozik a környezet felé. Az állandósult állapotban szükséges fűtési teljesítményt képlettel számítom, ebből kapható a beavatkozó jel egy adott teljesítményigényhez. A hőkapacitásokat és hőátadási, hővezetési tényezőket Simscape modell tartalmazza, meghatározva a szakasz dinamikáját. Megvizsgálom az MPC predikciós horizontjának, költségfüggvényének illetve mintavételi idejének hatását a zárt szabályzási kör viselkedésére.

A tervezési lépéseket ezután valós, fizikai modellen is elvégzem, így látható lesz, hogy egy kész házra, vagy annak egy részére mennyi munkával jár a szabályzó beállítása. Ha a modellezésre, hangolásra fordított idő megtérül, azaz komfortnövekedéssel, illetve az üzemeltetési költségek csökkenésével jár, akkor a funkciókat akár az iContrALL okosház platformba is be lehet illeszteni.

Modellalkotás, irodalomkutatás

A fűtőtestek feladata, hogy az adott szobában teljesítményt (hőt¹) adjanak le. A leadott teljesítmény növeli a levegő és az épületszerkezet hőjét (2.7. egyenlet). A levegőnek, padlónak, falaknak tömegüknél és fajhőjüknél fogva mind-mind van egy hőtároló képességük (??. táblázat), így ezen elemek hőmérséklete nem változhat ugrásszerűen, hanem egy bizonyos idő alatt tudnak feltöltődni vagy hőenergiájukat leadni.

A hasonlóság nem véletlen a villamos hálózatokkal. Felfedezhető, hogy a hőáramot a hőmérsékletkülönbség hozza létre, nagysága pedig fordítottan arányos a hővezetési tényezővel.

Munkámban elsősorban a különböző fűtési típusok közti különbségeket szeretném megvizsgálni. A ház modelljét először adottnak venném, az eltérést pedig a különböző fűtési módok jelentenék. Azaz megpróbálom felírni a környezet belső hőmérsékletre való ráhatását, eztán pedig modellezem többféle fűtőtest viselkedését.

Ehhez először áttekintettem a hőátadás lehetséges formáit és forrásait. Ezután fűtőtestek modelljét állítom fel.

¹A hő mértékegysége J, a teljesítményé $[W] = \begin{bmatrix} \frac{J}{s} \end{bmatrix}$

Arra jutottam, hogy ha a levegő hőmérsékletére szabályzok, akkor az abba beleszóló tényezőket veszem sorra:

- konvektív hőátadás: a felszín közelében felmelegedett levegő áramlani kezd
- radiatív hőátadás: sugárzással kibocsátott energia a környezetbe

1.1. ábra. Alacsony hőmérsékletű fűtés és magas hőmérsékletű hűtés c. könyv ábrája

A levegő hőmérsékletére ezek a következőképp hatnak a leginkább:

- a fűtőtestek konvektív és radiatív hőátadással is melegítik a környezetet
- a radiatív energiát a tárgyak, falak nyelik el, amik ezáltal felmelegszenek (mintegy kapacitásként lesz egy hőtároló tömeg, ami a fűtés kikapcsolásával fenntartja a hőmérsékletet / lassítja a hűlést)
- a fűtetlen falfelületek hűtik a szobát (külső hőmérséklet befolyása)

Így a kezdeti modellben azzal a feltételezéssel élek, hogy ezen kívül más hatás nem lép fel.

A modellben feltételezem, hogy a fűtőtest felületi hőmérsékletével tudunk beavatkozni. A modellben paraméter a fűtőtestek hőátadási tényezője és felülete. Zavarásként (?) hat a külső hőmérséklet értéke, amit mérni is tudunk. Kimenet a belső hőmérséklet (térben konstansnak véve azt / átlagolva a szoba levegőjére)

A modell felírásához a fűtőtest tulajdonságain kívül szükség van a szobában található levegő mennyiségére is. A zavarás hatását is fel kell írni, azaz hogy egy külső hőmérsékletváltozás hogyan jelenik meg a kimeneten. (Célszerű itt egy átviteli függvényt felírni először, szuperpozíciószerűen. A zavarás viszont nem a modell bemenetén és nem is a kimenetén hat.)

A felírandó átviteli függvények:

- levegő felmelegedése konstans külső hőmérsékletet feltételezve, fűtőtest egységugrással
- levegő felmelegedése fűtés kikapcsolt állapota mellett, környezeti hőmérséklet ugrásával

Ezeket ráadtam a rendszerre és két bemenetű, egy kimenetű rendszerként identifikáltam.

Fűtőtestek modellje

A következőkben egy radiátort és egy padlófűtést fogok modellezni, ezekre képlettel felírom az állandósult állapotbeli hőleadást. Szimuláció során olyan bekapcsolási tranziensekkel is számolnom kell, amik egy kis időállandós fűtés (pl. légbefúvás, fan-coil) esetén elhanyagolhatók lennének. Ehhez már a Matlab Simscape környezetét fogom használni, amely képes termikus rendszerek modellezésére.

Állandósult állapotra a fűtőtestek teljesítménye felírható a szabályzott jellemzők és a környezeti jellemzők függvényében. Mivel vizsgált fűtési rendszerek hője melegvízből származik, szabályzott jellemzőként a kazán (hőszivattyú, stb.) által előállított melegvíz hőmérséklete, illetve a keringető szivattyú tömegárama jöhet szóba. Az elképzelésemmel jobban összhangban áll az utóbbi választása, hiszen ezzel elosztottan, szobánként is szabályozható az egyes fűtőtestekbe táplált hőmennyiség: a víz tömegáramát folytonosan tudom szabályozni egy szelep segítségével, a fűtőtestekbe betáplált víz hőmérséklete (ún. előremenő hőmérséklet) állandó.

A fűtőtest hőleadása viszont függ a környezetétől is: a szabályzott jellemzőn felül a **modell bemenetéhez tartozik** a környezet hőmérséklete, ami a levegő vagy a fűtetlen objektumok hőmérséklete. (A hőleadás típusa dönti el, hogy ezek közül melyik mérvadó, lásd a sugárzó és konvektív fejezetet.) Ezen bemenő paraméterek és a fizikai tulajdonságok alapján megadható az állandósult állapotbeli teljesítmény. Ennek levezetése a következő section-ben található.

A tranziensek a fűtőtestek fizikai kialakításától függnek. Minél nagyobb tömeget kell átmelegíteni azelőtt, hogy a fűtőtest felszínén a hőleadás megindulna, annál lassabb a beállási ideje az állandósult állapotnak. Így egy adott referencia trajektória esetén figyelembe kell venni ezen rendszerek dinamikáját is. A pontos paramétereket könyvekből, publikációkból, gyártói katalógusokból, méréssel, vagy

¹A kazánok a víz hőmérsékletét képesek változtatni időjárás függvényében, így az egy külön rendszer része lehet. Nem célom kazánvezérlést írni, az egyszerűség kedvéért feltételezem, hogy a melegvíz pl. távhő formában rendelkezésre áll.

2.1. ábra. A szimulációban szereplő elemek kapcsolata

becsléssel határoztam meg. A Simscape-ben minden blokknak olyan fizikai tartalma van, amiben ezek a jellemzők bevihetők, hatásuk megfigyelhető. Ezt a modellt a simscapes section-ben láthatjuk.

2.1. Állandósult állapotbeli hőleadás

Mivel a Matlab szimulációban a légbefúvásos fűtés modelljének teljesítmény kimenete van, olyan modellt szerettem volna felírni, ami beilleszthető az eredeti légbefúvó rendszer helyére. A ház hőveszteségeit a Matlab számolja², ebből pedig adódik a szoba levegőjének hőmérséklete. A rendszer szabályozását így visszavezettem a leadott teljesítmény szabályzására. A levezetett egyenletnek köszönhetően egy teljesítményigényhez meg tudom majd mondani hogy mennyire kell a szabályzószelepeket kinyitni.

Az Épületgépészet a gyakorlatban³ c. könyvben szó esik fűtési rendszerek méretezéséről. Itt adatként szerepel egy épületre a szobák hőigénye⁴ és névleges hőmérséklete. Ehhez választanak megfelelő méretű radiátort, hogy azokban a kiszámolt sebességgel vizet keringetve a hőleadás elég legyen az adott helyiségbe. (Ehhez figyelembe kell venni minden radiátorra a keringő víz hőmérsékletét is, különösen ha azok sorba vannak kötve és a hőmérsékletesések is jelentősek.)

Hasonlóan méretezési feladatot mutat be a [3, 4.2.7.3] is. Ezek alapján vezettem le a leadott hő mennyiségét állandósult állapotra. Természetesen a felmelegedés és lehűlés idejét is figyelembe kell majd venni, de ezzel érthető módon a méretezésnél sem számolnak.

2.1.1. Hőleadás alapegyenletei

A fűtőtestek hőleadását befolyásolja a fűtőtestek közepes hőmérsékletkülönbsége (ld. a 2.2. egyenletet), a felülete és a hőleadási tényezője. Ezek közötti kapcsolatot adja az 2.1. egyenlet ([3, 358. o.]-ből):

$$\dot{Q}_{le} = h_t \ A_e \ \Delta t_m \tag{2.1}$$

ahol

 \dot{Q}_{le} [W] a leadott hő

 $h_t \left[\frac{\mathsf{W}}{\mathsf{m}^2 \, \mathsf{K}} \right]$ a teljes hőleadási tényező

 $A_e \ [\mathrm{m^2}]$ a radiátor felülete

 Δt_m [K] a közepes hőmérsékletkülönbség:

$$\Delta t_m = t_s - t_i$$

$$t_s = \frac{t_w + t_r}{2} - t_{drop}$$
(2.2)

ahol °C-ban szerepelnek:

 t_s a fűtőtest felületi hőmérséklete

 t_i a szoba hőmérséklete

 t_w a radiátorba befolyó 5 , t_r az onnan kifolyó víz hőmérséklete

 t_{drop} hőmérsékletesés a közepes fűtővízhőmérséklethez képest 6

2.1.2. Hőfelvétel alapegyenletei

A vízből felvett hő felírható:

$$\dot{Q}_{fel} = c \ \dot{m} \ \Delta t \tag{2.3}$$

ahol

 \dot{Q}_{fel} [W] a vízből felvett hő, ami annak lehűléséből adódik

 $c\left[\frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}\right]$ a víz fajhője

 $\dot{m} \left[\frac{\text{kg}}{\text{s}} \right]$ a víz tömegárama

 $\Delta t = t_w - t_r$ [K] a víz lehűlésének mértéke

 $^{^{5}}$ Consider using T_{w} for supply water temp instead of T_{s} to avoid misinterpretation as sampling time.

⁶A hőleadás során a fűtőközeg és a fűtőtest felülete közötti konduktív hővezetés miatt hőmérsékletesés lép fel. A padlófűtésnél lesz ez különösen releváns, hiszen ott a felület hőmérséklete jóval alacsonyabb, mint a be- és kimenő vízhőmérsékletek átlaga: hiába fűtünk 40 °C-os vízzel, a padló kb. 25 °C-os lesz.

2.1.3. Energiamérleg állandósult állapotban

Állandósult állapot esetén a leadott hő egyenlő a felvettel, mivel akkor nem történik hőfelhalmozás, hőtárolás. Azaz ekkor a radiátor hőkapacitását nem kell figyelembe vennem.

Beírva a (2.2)-ba (2.1)-t:

$$\dot{Q}_{le} = k_e A_e \left(\frac{t_s + t_r}{2} - t_i\right) = k_e A_e \left(\frac{t_s + (t_s - \Delta t)}{2} - t_i - t_{drop}\right)$$
 (2.4)

Ahol felhasználtuk azt is, hogy $t_r=t_s-\Delta t$, majd Δt helyére beírhatjuk a (2.3) átrendezett alakját:

$$\Delta t = \frac{\dot{Q}_{fel}}{c \ \dot{m}} \tag{2.5}$$

Beírva (2.4)-ba (2.5)-t:

$$\dot{Q}_{le} = k_e A_e \left(t_s - t_i - \frac{\dot{Q}_{fel}}{2 c \dot{m}} \right)$$

$$\dot{Q}_{le} + \frac{k_e A_e \dot{Q}_{fel}}{2 c \dot{m}} = k_e A_e (t_s - t_i)$$
(2.6)

$$2 c \dot{m} \dot{Q}_{le} + k_e A_e \dot{Q}_{fel} = k_e A_e 2 c \dot{m} (t_w - t_i)$$

Csak abban az esetben, ha $\dot{Q}_{le}=\dot{Q}_{fel}$:

$$\dot{Q}(2 c \dot{m} + k_e A_e) = 2 k_e A_e c \dot{m} (t_w - t_{drop} - t_i)$$

$$\dot{Q} = \frac{2 c \dot{m} k_e A_e}{2 c \dot{m} + k_e A_e} (t_s - t_i)$$
(2.7)

Ez adja meg a fűtési rendszer által szolgáltatott teljesítményt állandósult állapotban. A fenti képletben a hőleadási tényezőt hőmérsékletfüggőnek is lehet venni, [2] mérései alapján.

Állandósult állapotra a szükséges beavatkozójel adott kimenő teljesítményhez: 2.7 egyenletet kell α \dot{m} -ra (ill. csak α -ra) rendezni.

Mivel a hőleadást, hőtárolást Simscape-ben valósítottam meg, a radiátorba bemenő hőt kell csak kiszámítani. Erre meg kell vizsgálni, hogy az állandósult állapotbeli képlet helyes-e.

Megjegyzés: A radiátorba bekerülő teljesítményt a t_w-t_r szabja meg (2.3. egyenlet), viszont itt t_r -t kiejtettem az egyenletekből. Viszonta REHVA Guidebook [1] szerint a $\Delta t = t_w-t_r$ -re szabályozással megtakarítás érhető el. Meg kell vizsgálni, reális-e mindkét paraméter mérése, radiátorok esetén, vagy csak padlófűtésnél.

2.2. Dinamikus hőátadás modellje

Ezen hőtároló elemek feltöltődése szimulálva adja a dinamikus viselkedést.

2.2.1. Hőkapacitás

Katalógusból radiátorok tömege és a bennük lévő víz térfogata leolvasható. A hőkapac számítása:

Aljzat, aljzatbeton: slab facade: frontal - homlokzat

2.2.2. Sugárzó és konvektív teljesítmény szétválasztása

Fun facts:

- A falakra az $\alpha=10~\frac{W}{m^2\,\mathrm{K}}$ érték a sugárzó és konvektív hőleadást is tartalmazza. A konvektív hőleadás függ a felületi áramlási sebességtől: falsaroknál ez az érték alacsonyabb, kb. a fele.
- A sugárzó hő a Stefan-Boltzmann törvény alapján függ az emisszivitástól. (Annak a mértéke, hogy a test a feketetesthez képest mennyi hőt bocsát ki). A hőmennyiség a hőmérséklet negyedik hatványával arányos. A sugárzott hő meghatározásához még meg kell keresni és be kell írni a Simscape blokkba a megfelelő együtthatókat. Valami általános összefüggést kell találni, hogy a radiátor milyen arányban melegíti a külső falat, ahol van, ill. az ablakra milyen hatással van: még nem kezelem le ezeket az aszimmetriákat, hanem minden hőmérsékleteloszlást homogénnek veszek. A Stefan-Boltzmann törvény direkt alkalmazása helyett a szabványokban és irodalomban található közelítésekkel élek.
- A q_r [W/m²] radiant heat flux density a [2] T. Cholewa (5.) egyenlet alapján számítható de az a geometriától is nagyban függ. Helyette Kilkis1994 (4) és (6) javasolt, illetve a [2]-ból is lehet mért értékekkel számolni / a szabványok ajánlását használni.
- A hőhidak a hőveszteségek meglepően nagy részéért felelősek, jelentős hibát követünk el, ha ezekkel nem számolunk. Meg kell keresni az energ. tanúsítványokban hogy hol tüntetik fel ezek mértékét.

Fűtött padló, falak, mennyezet esetén jelentős szerepe van a sugárzó hőleadásnak.

- A.Laouadi / Building and Environment 39 (2004) 421 431 p424, eq. 10-11: radiant heat transfer model
- TEMPERATURE CONTROL STRATEGIES FOR RADIANT FLOOR EIEATING SYSTEMS, Zhi Long Zhang: 40.o.
- [2] T. Cholewa et al. / Energy and Buildings 66 (2013) 599-606 Table 5: coefficient
- Kilkis1994 A simplified model for radiant heating and cooling panels: itt van képlet sugárzóra
- Kiegészítés: [3, 349. o.]

A sugárzó hőleadási tényező bevezetésével viszont linearizálhatjuk a hőleadást, a hőleadás így egyszerűen lineárisan függ majd a hőmérséklet-különbségtől.

$$\dot{Q}_r = h_r A_e \left(t_{surf} - t_{AUST} \right) \tag{2.8}$$

ahol

 \dot{Q}_r [W] a leadott sugárzó hő

 $h_r \left[\frac{\mathsf{W}}{\mathsf{m}^2 \, \mathsf{K}} \right]$ sugárzó hőleadási tényező

 A_e [m²] a padló felülete

 t_{surf} [K] padló hőmérséklete

 t_{AUST} [K] fűtetlen felületek átlagos hőmérséklete - a fal hőmérsékletének veszem a Simscapeben

2.3. Radiátor modellje

2.3.1. Paraméterek

A felmelegedéskor és lehűléskor a pontos hőleadást akkor tudjuk modellezni, ha ismerjük a radiátor hőkapacitását. Ehhez tudnunk kell, hogy a radiátorban mennyi víz van, illetve hogy a radiátortest milyen nehéz.

Radiátor katalógusokból⁷ azt találtam, hogy az egyes radiátor típusokra ezek a paraméterek milyen értékűek.

⁷Purmo Ventil Compact - purmo.com

	Komponens	hőleadás módja	Hőtároló tömeg	Fajhő
Radiátor	Víz			
Naulatoi	Fémtest			
	Víz			
Padlófűtés	Födém			
	Padló burkolat			

2.1. táblázat. Fűtőtestek termikus tulajdonságai

Ismert a radiátor hossza, magassága, konstrukciója. Ezalapján a tömege, illetve az acél hőkapacitása alapján a radiátortest hőkapacitása - simscape termikus hőtároló elem blokként víztérfogata, a víz fajhője még egy hőtároló elem.

2.3.2. A modell validálása

2.4. Padlófűtés modellje

Nyilvánvalóan nehéz lenne a felírt modellt egyénileg validálni, főleg hogy sehol sem találkoztam ilyen formában felírt képlettel a szakirodalomban. Szerencsére Cholewa [2] és Koca [4] végzett méréseket falfűtés és mennyezetfűtés esetére. Ezen mérési eredmények paramétereit helyettesítettem be a hőleadás egyenletébe ahhoz hogy eldöntsem, helytálló-e a felírt modell. Az említett publikációkban minden adat rendelkezésre áll. A következő eseteket vizsgáltam:

Paraméter		Cholewa mérései			
$T_{water}, {}^{\circ}C$	30	30	40	50	55
$\dot{m} \; [rac{kg}{min}]$	1	3	1	1	3
T_{surf}	25.3	26.2	32	37.4	42.4
$T_{a0.6}$	22.3	23.3	26.9	30.8	34.3
$h_{total0.6}$ $\left[\frac{W}{m^2 K} \right]$	8.7	9.4	9.7	10.5	10.8
q_{total} $\left[\frac{W}{m^2} \right]$	25.1	26.4	47.8	68.8	88.4
$q_{formula} \left[rac{W}{m^2} ight]$	24.6	26.7	46.3	64.5	85.5

2.2. táblázat. A 2.7. képlettel kapott eredmények és a [2] és [4] eredményeinek összevetése

A hőleadás egyenletével számolt és a fent hivatkozott, méréssel kapott eredmények elég jól követik egymást. Padlófűtésnél a padló felületi hőmérséklettel számoltam, ugyanis a padló hőmérséklete jóval alacsonyabb, mint a fűtővíz hőmérséklete. A fenti publikációkban figyelembe vették a hőleadási tényező hőmérsékletfüggését.⁸ Azaz a felfutási tranziens során is változik a hőátadási tényező.

⁸Intuitívan is belátható, hogy melegebb testnek nagyobb a konvektív hőleadási tényezője. A konvektív hőátadás mértéke nagyban függ attól, hogy a felületen milyen sebességgel áramlik a levegő, hiszen a forró tea gyorsabban hűl, ha fújjuk, illetve szélben a kinti hőmérséklet kisebbnek érződik. Hasonlóan melegebb tárgy esetén a légáramlás felgyorsul, amiatt hogy a melegebb levegő felfelé száll.

Ház modellje

A szabályzótervezéshez rendelkezésre kell, hogy álljon a szabályzott szakasz modellje. Ehhez egy könnyen módosítható, koncentrált paraméterű rendszert vettem fel. Felépítettem egy hálózatot¹, ahol minden elemhez lehet fizikai tartalmat rendelni. Majd ahhoz, hogy ehhez szabályzót lehessen tervezni, identifikáltam azt az ugrásválaszával.

3.1. Fűtési rendszer és ház kapcsolata

Amikor a fűtési rendszer viselkedését szimulálom, nekem kell megalkotni mind a szabályzott épületrész, mind a fűtési rendszer modelljét. Így tehát ez a modellezésen felül egy méretezési feladat is, amit egy kész épületnél már elvégeztek a tervezés során, és a megfelelő fűtési teljesítmény áll rendelkezésre.

Ha a szabályzást egy már meglévő épületre tervezzük, akkor csak a rendszerek adatait kell felvenni, illetve identifikálni. A szakdolgozatban tárgyalt egyszerű példa során csak egy részét ismerem a paramétereknek, tehát méretezési kérdéseket is fogok érinteni. Szerencsére új építésű házaknál kötelező az energetikai tanúsítás², ami egy meglehetősen részletes lajstromot ad az épület hőtechnikai tulajdonságairól. Ez alapján lehet egy hozzávetőlegesen jó modellünk az épületről, illetve a fűtési rendszerről is találhatók adatok paraméterek. Az interneten számos tanúsító cég töltött fel minta tanúsítványokat, amiben a számítások levezetése, indoklása is megtalálható. Így az energetikai tanúsítvány lehet egy interface a szakdolgozatban bemutatott modell és a gyakorlati alkalmazások között: valódi épület tanúsítványa alapján a modellem paraméterezhető.

¹Fodor HáRe alapján nézzük meg a különbséget rendszer és hálózat között.

²TNM 2006 rendelet alapján kötelező az energetikai tanúsítvány pl. átlagos lakóépületekre, irodákra.

3.2. A modellalkotás folyamata

White-box grey-box black-box

Említést érdemel, hogy a szakirodalomban hogy állnak hozzá ehhez a kérdéshez, a szabályzótervezés során néhányan egyáltalán nem alkotnak modellt, csak a mért adatokat használják fel. Lényegében én is mért adatokat használok, tulajdonképpen, mivel a modellt olyan alakban kéne felírni, hogy a szabályzó azt futtatni tudja. (?)

Viszont az ident toolbox tf identjénél kihasználtam azt, hogy a rendszer jellegét ismerem, azaz hogy hány pólusa és hány zérusa van a szakasznak / felnyitott körnek. Így lett egy nagyon jól illeszkedő átviteli függvényem.

Én összeraktam a fizikai modellt simulinkben (ez white-box) majd annak az ugrásválaszát mértem. Így nem egy állapotteres modell, hanem egy átviteli fv. "keletkezett".

Egyzónás hőmérsékletszabályzást veszek alapul, azaz egy referenciajelem és egy mért hőmérsékletem van, a modellben a szoba levegőjének hőmérsékletét mindenhol ugyanakkorának feltételezem. A szabályzás külső behatások ellenében történik, úgy mint alacsonyabb külső hőmérséklet, illetve a napsütés, szellőzés hatása. Nem foglalkozok viszont belső zavarással, pl. több szoba különböző típusú fűtésével, vagy a belső hőterheléssel, ami pl. emberek jelenlétéből fakad.

Természetesen lehetett volna nagyon sok állapotú állapoteres modellt is létrehozni, ám rengeteg nem mérhető belső változója lett volna, emiatt nem biztos hogy teljesen irányítható vagy megfigyelhető rendszert kaptam volna, így pedig a szabályzótervezés nem működik.

3.3. A megvalósított modell / a modell hatóköre, használhatósága, assumptions

Figyelembe kell vennem a ház hőveszteségeit és hőtároló képességét is. Kell a határoló elemek felszíne, hőátbocsátási tényezője, a hőtároló elemek fajhője. Az alábbi táblázat értékeinek nagy részét ki lehet tölteni a tanúsítványból. Az épület hőigénye numerikusan is szerepel, ám ez pl. éves átlagolással adódik, nem csak a fűtési rendszert, hanem a várható időjárást is figyelembe veszi, illetve az energiaigénynél nem csak a fűtési, hanem használati melegvíz előállítására felhasznált energiát is.

felület	méret	kalorikus hőátbo- csátási tényező	hőtároló tömeg	hőkapac
külső fal	4.5 m ²	2 W/m ² K	4.5*200kg	e.g. 4.5*200*840
ablak	4 m ²	4 W/m ² K	0	0
belső válaszfalak	50 m ²	7	50*100kg	50*100*840
padló	16 m ²	11	16*200kg	169*200*840
mennyezet	16 m ²	? rad / conv		

3.1. táblázat. Egy szoba határoló felületei és azok termikus tulajdonságai

A példában a schönherzes kollégiumi szoba határoló elemeit vettem fel. Minden szobának van ablaka és külső fala, egy átlagos szobát 4 másik vesz körül. A belső falakon nem veszt hőt, csak az ablakon ill. a külső falon. Feltételezzük, hogy a radiátoros fűtést egy szeleppel szabályozhatjuk, amit tetszőleges mértékben nyithatunk ki. A napsütés hőnyereségét is figyelembe vehetjük.

A modell mintavételi ideje? A teljesítményeket megnöveljük és semmi mást, az nem lesz ekvivalens.

3.4. Alkalmazott fűtési rendszerek

Az alkalmazott fűtési rendszerek az épületet annak különböző pontjain gerjesztik. (Belső változóira nem egyformán hatnak: a kimeneten a változás intenzitása és sebessége más-más.) A teljes plant modell a fűtési rendszer és a ház sorba kötésével adódik.

A kettő között az interface az, hogy hol avatkozunk be. Így a ház bemenetei igazából a belső változókra vonatkozó "zavarások" (a külső hőmérséklethez képest)

3.5. A modell átviteli függvénye

A Simulinkben identifikáltam, aztán az adatokat a sys ident toolbox-szal dolgoztam fel, tudva a modell struktúráját. (az átviteli fv. számlálójának, nevezőjének a fokszámait)

3.6. TABS

Modellek tesztje

4.0.1. Radiátor unit test

4.0.1.1. Állandósult állapot numerikus modellje

Annak ellenőrzése, hogy a ?? egyenlet jó-e. Azaz elfogadható-e ez a közelítés állandósult állapotban, illetve a tranziens alatt mennyire feasible.

Az egyenletben a mintavételi idő egy szorzóként jelenik meg,

Az egyenlet wattban adja a kimenetét. A teszt egy formája lehet, ha a gyári adatokat (fűtési teljesítmény) összevetem az általam számoltakkal.

4.0.1.2. Tranziens Simscape modellje

A bejövő hő függvényében a hőleadás tranziensei. A bejövő hőt a képlet numerikusan számítja. A tranzienst viszont Simscape-ben szimulálom. Ez folytonos rendszert feltételez.

4.0.1.3. Szabályzás célja

Állandósult állapotban olyan bemenő hőáramot elérni, ami épp fedezi a veszteségeket.

4.0.2. Padlófűtés unit test

Identification

A Simulink modellt bemenetein gerjesztem (külső hőmérséklet ablak $40\,^{\circ}$ C 5 napig, majd fűtés $60\,^{\circ}$ C előremenő hőmérsékleten valve = 1 állásban. 1)

Ay IDDATA Simulink blokkba bevezetem a be- és kimeneteket. A mintavételi idő először egy másodperc volt. A Matlab Workspace-ben megjelenik egy iddata, ezt tudom az ident toolboxba importálni. Erre átviteli függvényeket illesztek. Az átviteli függvények pólusainak, zérusainak a száma a Simscape modell alapján meghatározható, illetve intuícióból.

Nyilvánvalóan célszerű az identifikációnál minél nagyobb változásokat mérni. Nem tartottam "értelmét" 1°C-os step jelre identifikálni. Így beállítottam nulla kezdeti értéket a ház összes paraméterére. (Falak, fűtési rendszer, stb. Nyilvánvaló, hogy ilyenkor nem a realizmus a cél, hiszen a nagy változásokra jön elő a rendszer dinamikája.) Nulla kezdeti értékből a környezeti hőmérsékletet 0-ról 40°C-ra emeltem, ennek a beállási ideje több nap volt, majd megvártam a lecsengést, ezután pedig a beavatkozókat vezéreltem ki teljesen. (Max. szelep kinyitás)

Egy ilyen szimuláció a fenti szekvenciával kb. 50 napnyi viselkedést fog át, ez másodperces mintavételi idővel rengeteg adat, amivel meggyűlik az Ident Toolbox baja is.

5 perces mintavételi időkkel már sokkal gyorsabban lefutott a Simulinkben a szimuláció és a toolboxban az identifikáció, lénygében azonos eredményt adva. (Indoklás???)

Viszont a mintavételi idők megváltoztatásától azért *féltem*, mert nem tudtam, hogy reagál rá a Simscape vagy az MPC.

Zérusok hatása röviden. Mit tud. Hánytárolós rendszer. Néhány kép. MISO identifikáció.

 $^{^1}$ A stratégia lehet t_s előremenő hőmérséklet vagy $\alpha\cdot \dot{m}$ tömegáram szabályzása $\alpha=[0..1]$ beavatkozójellel.

5.1. Hagyományos szabályzás performanciája

PI, miért nem jó Csak SISO-ra működik és itt esetünkben itt több bemenetről van szó mindenképpen. Irodalom: S. Prívara et al.

Szabályzó kiválasztása és analízise

Már a modell identifikációját is bonyolította az egynél több bemenet. Illetve kettő van kimenetből is. A szabályzásnál különösen nehéz több bemenetű rendszerre tervezni, esetleg a modellek szétválasztásával lehetséges: külön beavatkozójel a

Az identifikált modellekre többféle szabályzót tervezek, illetve próbálok ki.

A hasonló feladatokra leggyakrabban modell-prediktív (MPC) szabályzást használnak. Ehhez szükség van a szakasz modelljére, ami alapján a szabályzó szimulálhatja a szakasz kimenetét. A szimuláció több mintavételi perióduson, egy predikciós horizonton keresztül fut le, minden lehetséges beavatkozójelsorozatra a kimenetet szimulálva. Ezen sorozatok közül a legjobbat kiválasztja és egy lépést végrehajt. Ezután a szimuláció újrakezdődik. Az optimális beavatkozójelet egy költségfüggvény minimalizálásával kapja. A költségfüggvényben különböző eltéréseknek vagy abszolútértékeknek különböző súlya lehet.

Egy irodában, vagy lakásban 0.1°C-os vagy 1°C-os pontosságú hőmérsékletszabályzás közötti különbség komfortban aligha érezhető. Ám a követelmények megengedhető mértékű lazítása az energiafogyasztást nagyban lecsökkentheti.

Ha az mpc blokknak van külső ktsg fv. bemenete, használjuk azt. Ebből kössük rá a numerikus képleteket. A teljesítmény integrálját és pillanatértékét, ill. túl gyors változását is lehet büntetni és energetikai szempontotkat (kazán hatásfoka, energia ára, napelemmel megtermelt mennyiség, azaz törés az energiaköltségben, ha egy külön blokkban megadjuk ezeket.)

6.1. Ismerkedés az MPC szabályzással

Nomenklatúra

MPC Model Predicive Control

6.1. táblázat. Az MPC be-és kimenetei a szabályzási körben

MO Measured output of the plant - a visszacsatolt jel

REF A referenciajel

MD Measured disturbance on plant input (?) - ha a zavarjelet lehet mérni, de beavatkozni azon a bemeneten nem lehet

MV Manipulated variable of the plant - beavatkozó jel

Egyéb MPC paraméterek: mintavételi idő, predikciós horizont, control horizont, súlyozás, soft vagy hard constraintek, cost, optimum (szuboptimum), stabliltás / garanciák

6.1. ábra. Az MPC be- és kimenetei

6.1.1. Elvárások a szabályzás teljesítményével szemben

Az MPC hangolása során lépésről lépésre fogom módosítani az alapértelmezett paramétereket, azok hatását megfigyelem. Az MPC szintézis folyamata:

- 1. A szakaszt identifikálni kell, az átviteli függvény be- és kimeneteinek típusát be kell állítani
- 2. Létre kell hozni az MPC-t a megfelelő mintavételi frekvenciával
- 3. Be kell állítani a jelek fizikai korlátait és súlyukat a szabályzás költségfüggvényében
- 4. Hozzá kell adni a Simulink modell Model workspace-éhez a szabályzót és megadni a nevét az Explicit MPC blokkjában. Az itt található Review funciót érdemes használni.
- 5. Be kell kötni a jeleket és le kell futtatni a szimulációt

A setmpcsignals() függvény használatával egy új átviteli függvényt hozunk létre, amit az MPC függvénynek odaadhatunk. Ez annyival több az identifikált tf-nél, hogy benne vannak a be-és kimenetek típusai is, aszerint, hogy az említett jelek milyen típusúak. A szakasz átviteli függvényének

be-és kimeneteit meg kell nevezni, a típusokat a 6.1 listából választhatjuk ki. Ezután az mpc(tf, Ts) függvénnyel létrehozhatjuk az MPC szabályzót a megadott szakaszmodellre.

Alapértelmezés szerint a költségfüggvény súlyai az alábbiak. A zárt szabályzási körben ezek a súlyok a hibajelet büntették a legjobban, ezért nagyon jó referenciakövetést sikerült elérni.

6.1.2. A MATLAB MPC Toolbox elemei

Az MPC blokknak van egy alapértelmezett költségfüggvénye, és ennek a súlyozását lehet beállítani. Külön beállítható a szabályzási és a szimulációs horizont. Ezek optimális beállításai

A kezdeti MPC szabályzót egyszerűen létre lehet hozni az identifikált modellből és a bemenetek típusának megadásával. (A szelep a beavatkozó jel, illetve a plantnek van még egy bemenete, egy mérhető zavarás.) Ezután a bemenetek értékkészletét adtam meg, illetve van egy normalizáló faktor, ami a jellemzőfull scale.

Az optimalizálás egy költségfüggvény minimalizálását jelenti, amiben *büntetjük* a referenciajeltől való eltérést és a beavatkozó jelek **értékét vagy változását**.

A fenti a klasszikus MPC, tov. info. Baochang DING, Modern MPC című könyvében olvasható.

```
6.361e-05
s + 2.637e-06
Input groups:
                            Channels
       Name
   Manipulated
                               2,3
     Measured
                                1
Output groups:
      Name
                            Channels
     Measured
                                1
Name: tf19
Continuous—time identified transfer function.
Parameterization:
    Number of poles: [3 4 1] Number of zeros: [2 1 0]
    Number of free coefficients: 14
    Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using TFEST on time domain data "tf_3in1out__68d".
Fit to estimation data: 82.28% (stability enforced)
FPE: 1.707, MSE: 1.706
>> mpc_control_slab=mpc(tf_19_toMPC,1)
—>Converting linear model from System Identification Toolbox to statespace.
—>The "PredictionHorizon" property of "mpc" object is empty. Trying
PredictionHorizon = 10.
--->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
—>The "Weights.ManipulatedVariables" property of "mpc" object is empty.
Assuming default 0.00000.
—>The "Weights.ManipulatedVariablesRate" property of "mpc" object is
empty. Assuming default 0.10000.
```

```
—>The "Weights.OutputVariables" property of "mpc" object is empty.
Assuming default 1.00000.
MPC object (created on 30-0ct-2018 20:51:50):
Sampling time: 1 (seconds)
Prediction Horizon: 10
Control Horizon: 2
Plant Model:
MATLAB Command Window Page 6
2 manipulated variable(s) —> | 8 states |
| \ | \longrightarrow 1 measured output
(s)
1 measured disturbance(s) -->| 3 inputs |
| \ | \longrightarrow 0 unmeasured
output(s)
0 unmeasured disturbance(s) --->| 1 outputs |
Indices:
(input vector) Manipulated variables: [2 3 ]
Measured disturbances: [1 ]
(output vector) Measured outputs: [1]
Disturbance and Noise Models:
Output disturbance model: default (type "getoutdist
(mpc_control_slab)" for details)
Measurement noise model: default (unity gain after scaling)
Weights:
ManipulatedVariables: [0 0]
ManipulatedVariablesRate: [0.1000 0.1000]
OutputVariables: 1
ECR: 100000
State Estimation: Default Kalman Filter (type "getEstimator
(mpc_control_slab)" for details)
Unconstrained
>> mpc_control_slab.ManipulatedVariables(1).Min = 0;
```

```
>> mpc_control_slab.ManipulatedVariables(2).Min = 0;
>> mpc_control_slab.ManipulatedVariables(2).Max = 1;
mpc_control_slab.ManipulatedVariables(1).Max = 1;
```

6.1.3. A létrehozott MPC tulajdonságai

Még lehetséges:

- környezeti hőmérséklet: predikció / szekvencia használata
- napsugárzás zavaró hatása

Belső változók - fűtési rendszer és ház kapcsolata

- napsugárzás radiatív, az ablak felületével és a szöggel arányos
- fűtőtestek sugárzó és konvektív hőárama

Paraméterek a plantben nem állandók:

• szellőztetés, belső hőterhelés hatása

6.1.3.1. A kezdeti szabályzó problémái

Igaz, hogy az alapjelkövetés gyakorlatilag tökéletes volt, de a beavatkozó jelnek a gyakorlatban nem csak a nagysága, hanem a frekvenciája is korlátos. Ezért a beavatkozó szervnek is kell egy átviteli függvény ideális esetben. (Itt most a szelepről van szó.)

A súlyozatlan MPC nem vette figyelembe a beavatkozójel változásának nagy költségét, ezért irreálisan gyorsan nyitotta és zárta azt. A gyakorlatban nincs szükség tűpontos referenciakövetésre, a hőmérséklet kb. 1 °C-ot ingadozhat. (\pm 0.5 °C) Ha ezt megengedjük, a beavatkozás költsége lecsökkenhet.

6.1.3.2. Robosztusság

A Simulinkben identifikált modellre pontosan lehetett átviteli függvényt illeszteni, így a szabályzóban futó modell gyakorlatilag tökéletes volt. Gyakorlatban viszont a modellek igencsak pontatlanok lehettek, így megvizsgáltam a szabályzás viselkedését megváltozott paraméterekkel is. Ezt a szabályzás alapvetően jól viselte, a referenciakövetés minősége megmaradt.

6.2. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása

A mintavételi időt megnöveltem. A ház identifikációját és az MPC tervezést is 5 perces időállandóval végeztem. A lépéseket először egy unit test részben hajtottam végre.

- ullet A mintavételi idő növelése a Matlab default workspace-ben magával vonja, hogy a Simulink blokkban is módosul a $T_{\rm s}$.
- A Simulinkben az időt a jobb alsó sarokban mindig mp-ben írja ki. Ámde ha a steppingnél 1000 step-et állítok be, az a jobb alsó sarokban T_s -sel felskálázva fogja a mp-t mutatni. Azaz 5 perces sampling time esetén 1 step a jobb alsó sarokban T=300 mp-nek felel meg.
- A mintavételi idő megválasztása nagyban meghatározza a költségfüggvény értékét.

6.2.0.1. Módosítások az MPC-ben

A súlyozást módosítva adhatunk költséget a beavatkozásnak, csökkentve így pl. annak a frekvenciáját. Ez a referenciakövetést rontja, de esetünkben nem cél a tized °C-os pontosság, hanem az energiamegtakarítás. Pontosan fel kellene ezért írni a forintosított költségét a beavatkozásnak, és ezt minimalizálni.

Egyensúlyt kell találni a referenciakövetés és a beavatkozás között. Külön érdekesség, hogy ha nem távfűtést használunk, akkor a kis beavatkozásnak is nagy költsége van. Erre a súlyozásnál egy LUTot lehetne használni. Btw. a hőszivattyúk kis terhelésen is nagy hatásfokkal működnek. Online weight tune elképzelhető, pl. a beavatkozó jeltől függően.

6.2.1. Az MPC költségfüggvénye

Nem csak a bemenetek értékei súlyozhatók. Az egyik kinyomtatott doksiban nem csak a bemenetek, vagy a hibajel kap súlyozást, hanem a villamos energia aktuális ára is tényező.

Kell keresni egy suitable költségfüggvényt. Illetve megfontolandó lenne vízhőmérsékletre szabályozni, annak a költsége szemléletesebb.

6.2.1.1. Súlyozás

A beavatkozó jelek és a szakasz kimenete is súlyozható, hogy azok a költségfüggvénybe mennyire szóljanak bele. A MATLAB lehetőséget ad arra, hogy ezeket a súlyokat működés közben befolyásoljuk.

A Simulinkben beállítottam, hogy a radiátor szelepének alacsony kimenetére a szelep súlya 1 legyen, viszont 30%-ban kinyitott szelepre csökkenjen le 0.5-re. Ez nem hozott javulást, ugyanis a nagy súllyal az MPC a predikciós horizonton végrehajtott egy optimalizálást. Ám ha a szelepet kinyitotta, a súlyok megváltoztak, így az optimális költségű beavatkozójel is. Viszont ennek éppen elősegítenie kellett volna a szabályzást, ehelyett összezavarta.

Valójában fordítva kell. Kis amplitúdó esetén NULLA pluszköltség még jobban kinyitni ("Szívesen" növekedjen tovább ha még csak kicsit van nyitva.) Csak ha félig van kinyitva, akkor növeljük a költséget.

Sajnos viszont a fenti költségeket nem lehet (nehéz) megfeleltetni forintosított tételeknek.

Fel kellene írni egy ideális scenario-t és ahhoz igazítani a ktsg-fv-t, hogy annak az esetnek a kialakulása legyen valószínűbb.

6.2.2. Offline MPC - supervisory control

4.4. Approaches without real-time dynamic optimization Döntési fa, affin leképezés ilyenek.

Elkészíteni az offline döntési hálót viszont nehezebb.

6.2.3. Validálás

Szimulációval ellenőrizzük a szabályzás robosztusságát. Ehhez megnöveltem a hőtároló tömegeket.

Ötlet: random időpontban lehetne ablaknyitást szimulálni. Napsütés hatásmechanizmusa. Radiant heat transfer paramétere továbbra sem olyan világos: sok publikációban a hőmérsékletkülönbség lineáris függését tartalmazza és nem a Stefan-Boltzmann törvény szerinti negyedik hatvány szerintit

¹Thieblemont-ból. A real-time update nélküli MPC a legegyszerűbb és a leggyorsabban kiszámolható. Gyakran más irányítási technikákon alapul.

Gyakorlati megvalósítás

Az elméleti eredmények validálásához elkészítettük egy szoba kicsinyített modelljét. Ez egy kartondobozban kapott helyet. A doboz hőtároló képessége elég csekély, ezért extra hőtároló tömegeket helyeztünk a A fűtési teljesítményt halogén izzókkal juttattuk a rendszerbe. Ezek fényárama szabályozható, a A szimulációt és a fizikai modellt

7.1. A Simulink konfigurálása

A real time futáshoz Simulink Real-time szükséges. A real-time itt nem jelent szigorú megkötéseket, csupán azt jelenti, hogy a szimulációt a Simulink nem a lehető leggyorsabban futtatja le az elérhető számítási teljesítményt kihasználva, hanem csak bizonyos mintavételi időnként.

A szabályzó a számítógépen fog futni, és mintavételi időnként a jelenlegi hőmérsékletet beolvassa, az MPC-t lefuttatja, a beavatkozó jeleket pedig elküldi a beágyazott számítógépnek.

7.1. ábra. A szimulációban szereplő elemek kapcsolata

További teendők, finomítások, lehetőségek

Összefoglalás

Irodalomjegyzék

- [1] J. Babiak, B. W. Olesen, and D. Petrás. *REHVA Guidebook no. 7, Low Temperature Heating and High Temperature cooling Embedded water based surface systems.* rehva Federation of European Heating aand Air-conditioning Associations, 2007.
- [2] Tomasz Cholewa, Marian Rosiński, Zenon Spik, Marzenna R. Dudzińska, and Alicja Siuta-Olcha. On the heat transfer coefficients between heated/cooled radiant floor and room. *Energy and Buildings*, 66:599 – 606, 2013.
- [3] Csoknyai István. Több, mint hidraulika. Herz Armatúra Hungária Kft, 2013.
- [4] Aliihsan Koca, Zafer Gemici, Yalcin Topacoglu, Gursel Cetin, Rușen Acet, and Baris Kanbur. Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room. *Energy and Buildings*, 82:211–221, 10 2014.