CORRIGÉ DU DS N°6

PROBLÈME 1 : Autour de la fonction Zeta alternée de Riemann (extrait de CCP MP 2008)

I. Généralités

- 1. Soit $x \in \mathbb{R}$; si x > 0, alors la suite $\left(\frac{1}{n^x}\right)_{n \geqslant 1}$ tend vers 0 en décroissant; donc la série alternée $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge; si $x \leqslant 0$, la suite $\left(\frac{(-1)^{n-1}}{n^x}\right)_{n \geqslant 1}$ ne converge pas vers 0, donc la série $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x}$ diverge (grossièrement). En conclusion, le domaine de définition de F est \mathbb{R}_+^* .
- 2. Comme |-t| < 1, la série géométrique $\sum (-t)^n$ converge et sa somme vaut $\sum_{k=0}^{+\infty} (-t)^k = \frac{1}{1-(-t)} = \frac{1}{1+t}$; donc la suite (g_n) converge simplement vers la fonction $g: t \mapsto \frac{1}{1+t}$ sur [0,1[.
 - Pour tout $t \in [0,1[$, on a $\left|g_n(t) g(t)\right| = \frac{t^{n+1}}{1+t}$ donc $\sup_{t \in [0,1[} \left|g_n(t) g(t)\right| = \frac{1}{2}$ ne tend pas vers zéro quand $n \to \infty$; la convergence n'est donc pas uniforme sur [0,1[(elle le serait sur tout segment de la forme [0,a] avec 0 < a < 1).
 - Pour tout $t \in [0,1[$, on a $|g_n(t) g(t)| \le t^{n+1}$ donc $\left| \int_0^1 g_n \int_0^1 g \right| \le \int_0^1 t^{n+1} \, \mathrm{d}t = \frac{1}{n+1}$, ce qui prouve que $\lim_{n \to \infty} \int_0^1 g_n = \int_0^1 g = \int_0^1 \frac{\mathrm{d}t}{1+t} = \ln 2$. Puisque $\int_0^1 g_n(t) \, \mathrm{d}t = \sum_{k=0}^n \int_0^1 (-t)^k \, \mathrm{d}t = \sum_{k=0}^n \frac{(-1)^k}{k+1}$, on en déduit $F(1) = \ln 2$.
- 3. $\forall n \geqslant 1, \forall x \geqslant 2, \left| \frac{(-1)^{n-1}}{n^x} \right| \leqslant \frac{1}{n^2}$. Comme la série $\sum_{n \geqslant 1} \frac{1}{n^2}$ est indépendante de x et convergente, la série $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge normalement sur $[2, +\infty[$.

On en déduit qu'elle converge uniformément sur $[2,+\infty[$. Comme, pour tout $n\geqslant 2$, $\frac{(-1)^{n-1}}{n^x}\xrightarrow[x\to+\infty]{}0$ et que, pour n=1, $\frac{(-1)^{n-1}}{n^x}=1$, le théorème de passage à la limite terme à terme permet d'affirmer que $F(x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n^x}\xrightarrow[x\to+\infty]{}\sum_{n=1}^{+\infty}\lim_{x\to+\infty}\frac{(-1)^{n-1}}{n^x}$

- **4.** Dérivabilité de F
 - a) Soit x > 0. La fonction $h_x : t \mapsto \frac{\ln t}{t^x}$ est de classe \mathscr{C}^{∞} sur $]0, +\infty[$ et $h'_x(t) = \frac{t^{x-1}(1-x\ln t)}{t^{2x}}$. Donc h'_x est négative sur l'intervalle $[e^{1/x}, +\infty[$ et positive sur $]0, e^{1/x}]$. Donc h_x est décroissante sur $[e^{1/x}, +\infty[$ et croissante sur $]0, e^{1/x}]$.

 On en déduit que la suite $\left(\frac{\ln n}{n^x}\right)_{n \ge 1}$ est décroissante à partir du rang $E(e^{1/x}) + 1$.
 - **b)** $f_n: x \mapsto (-1)^{n-1} \mathrm{e}^{-x \ln n}$ est de classe \mathscr{C}^1 et $f_n'(x) = (-1)^n \frac{\ln n}{n^x}$. Soit a > 0. On pose $\mathrm{N}_a = \mathrm{E} \left(\mathrm{e}^{1/a} \right) + 1$. Pour tout $x \geqslant a$, la suite $\left(\frac{\ln n}{n^x} \right)_{n \geqslant \mathrm{N}_a}$ tend vers 0 en décroissant; donc la série alternée $\sum_{\mathbf{N}} f_n'(x)$ converge et, pour $n \geqslant \mathrm{N}_a$, son reste d'ordre n, $\rho_n(x)$, vérifie :

$$\left| \rho_n(x) \right| \le \left| (-1)^{n+1} \frac{\ln(n+1)}{(n+1)^x} \right| \le \frac{\ln(n+1)}{(n+1)^a}.$$

Donc $\sup_{x\geqslant a}\left|\rho_n(x)\right|\leqslant \frac{\ln(n+1)}{(n+1)^a}\xrightarrow[n\to+\infty]{}0$. Donc la série $\sum_{n\geqslant 1}f'_n$ converge uniformément sur $[a,+\infty[$.

• Pour tout $n \ge 1$, la fonction f_n est de classe \mathscr{C}^1 sur $]0, +\infty[$;

- la série $\sum_{n\geq 1} f_n$ converge simplement sur $]0,+\infty[$ et sa somme est F;
- la série $\sum_{n\geq 1}^{n\geq 1} f'_n$ converge uniformément sur tout segment inclus dans $]0,+\infty[$.

D'après le théorème de dérivation terme à terme, F est de classe \mathscr{C}^1 sur $]0,+\infty[$ et

$$\forall x > 0, F'(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n^x}.$$

5. Lien avec ζ

Pour
$$x > 1$$
, $F(x) - \zeta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} - 1}{n^x} = \sum_{k=1}^{+\infty} \frac{-2}{(2k)^x} = -2^{1-x} \sum_{k=1}^{+\infty} \frac{1}{k^x} = -2^{1-x} \zeta(x)$. On en déduit l'égalité : $F(x) = (1-2^{1-x})\zeta(x)$. Comme $2^{1-x} \xrightarrow[x \to +\infty]{} 0$, $F(x) \sim \zeta(x)$ au voisinage de $+\infty$ et donc $\zeta(x) \xrightarrow[x \to +\infty]{} 1$.

II. Produit de Cauchy de la série alternée par elle-même

- 6. Étude de la convergence
 - a) Lorsque x > 1, la série $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^x}$ converge absolument; donc (on applique directement le théorème du cours) la série produit de $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^x}$ par elle-même converge absolument et sa somme vaut : $\left(\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}\right)^2 = (F(x))^2$.
 - **b)** Pour x > 0, $c_n(x) = (-1)^{n-2} \sum_{k=1}^{n-1} \frac{1}{[k(n-k)]^x}$. Comme $k \mapsto k(n-k)$ est maximum quand $k = \frac{n}{2}$ et que la somme comporte n-1 termes, $|c_n(x)| = \sum_{k=1}^{n-1} \frac{1}{[k(n-k)]^x} \ge (n-1) \frac{1}{[(n/2)^2]^x} = \frac{(n-1)4^x}{n^{2x}}$.

Pour $0 < x \le \frac{1}{2}$, $\frac{(n-1)4^x}{n^{2x}}$ a une limite strictement positive (finie ou non), donc la suite $(c_n(x))$ ne converge pas vers 0. Donc la série $\sum_{n \ge 2} c_n(x)$ diverge grossièrement.

7. *Cas où* x = 1

a)
$$\frac{1}{X(n-X)} = \frac{1}{n} \left(\frac{1}{X} + \frac{1}{n-X} \right)$$
. Donc

$$c_n(1) = (-1)^{n-2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)} = (-1)^{n-2} \frac{1}{n} \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k} \right) = (-1)^{n-2} \frac{1}{n} \left(\sum_{k=1}^{n-1} \frac{1}{k} + \sum_{k=1}^{n-1} \frac{1}{n-k} \right)$$

$$= 2(-1)^{n-2} \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{k} = 2(-1)^{n-2} \frac{H_{n-1}}{n}.$$

b) Monotonie

$$\frac{\mathbf{H}_{n-1}}{n} - \frac{\mathbf{H}_n}{n+1} = \frac{(n+1)\mathbf{H}_{n-1} - n\mathbf{H}_n}{n(n+1)} = \frac{n(\mathbf{H}_{n-1} - \mathbf{H}_n) + \mathbf{H}_{n-1}}{n(n+1)}$$
$$= \frac{-1 + \mathbf{H}_{n-1}}{n(n+1)} \ge 0$$

Donc la suite $\left(\frac{\mathbf{H}_{n-1}}{n}\right)_{n\geqslant 2}$ est décroissante.

c) "Classiquement", $H_n \sim \ln n$ au voisinage de $+\infty$. Donc la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geqslant 2}$ converge vers 0 en décroissant et la série alternée $\sum_{n\geqslant 2} c_n(1)$ converge.

III. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

8. Développement asymptotique en 1

a) On pose h = x - 1. Comme F est dérivable en 1, au voisinage de 1, on a :

$$F(x) = F(1) + hF'(1) + o(h) = \ln 2 + hF'(1) + o(h)$$

On a aussi, en utilisant la formule de Taylor-Young : $1 - 2^{1-x} = 1 - e^{-h \ln 2} = h \ln 2 - \frac{\ln^2 2}{2} h^2 + o(h^2)$ au voisinage de x = 1.

b) Développement de ζ

$$\zeta(x) = \frac{F(x)}{1 - 2^{1 - x}} = \frac{\ln 2 + hF'(1) + o(h)}{h \ln 2 - \frac{\ln^2 2}{2} h^2 + o(h^2)} = \frac{1}{h \ln 2} \frac{\ln 2 + hF'(1) + o(h)}{1 - \frac{\ln 2}{2} h + o(h)}$$

$$= \frac{1}{h \ln 2} \left(\ln 2 + hF'(1) + o(h) \right) \left(1 + \frac{\ln 2}{2} h + o(h) \right) = \frac{1}{h \ln 2} \left(\ln 2 + h \left(F'(1) + \frac{\ln^2 2}{2} \right) + o(h) \right)$$

$$= \frac{1}{h} + \left(\frac{F'(1)}{\ln 2} + \frac{\ln 2}{2} \right) + o(1)$$

- 9. Développement asymptotique en 1 (bis)
 - a) Pour $n \ge 1$ et $x \in [1,2]$, $t \mapsto \frac{1}{t^x}$ est décroissante sur [n,n+1] (qui est un intervalle de longueur 1), donc $1 \cdot \frac{1}{(n+1)^x} \le \int_{0}^{n+1} \frac{\mathrm{d}t}{t^x} \le 1 \cdot \frac{1}{n^x}$. On en déduit que : $0 \le v_n(x) \le \frac{1}{n^x} \frac{1}{(n+1)^x}$.
 - **b)** Pour $x \in [1,2]$, la suite $\left(\frac{1}{n^x}\right)_{n\geqslant 1}$ converge (vers 0); comme $\sum_{k=1}^n \left(\frac{1}{k^x} \frac{1}{(k+1)^x}\right) = 1 \frac{1}{(n+1)^x}$, la série $\sum_{n\geqslant 1} \left(\frac{1}{n^x} \frac{1}{(n+1)^x}\right)$ converge. De l'encadrement du (a), on déduit la convergence de la série $\sum_{n\geqslant 1} \nu_n(x)$.
 - c) Pour $x \in]1,2]$, $\sum_{k=1}^{n} \nu_k(x) = \sum_{k=1}^{n} \frac{1}{k^x} \int_{1}^{n+1} \frac{\mathrm{d}t}{t^x} \xrightarrow[n \to +\infty]{} \zeta(x) \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^x} = \zeta(x) \frac{1}{x-1}$.
 - d) La série $\sum_{n\geq 1} v_n$ converge simplement sur [1,2]. On note $R_n(x) = \sum_{k=n+1}^{+\infty} v_k(x)$ le reste d'ordre n de la série. D'après (a), $0 \leq R_n(x) \leq \sum_{k=n+1}^{+\infty} \left(\frac{1}{k^x} \frac{1}{(k+1)^x}\right) = \frac{1}{(n+1)^x} \lim_{k \to +\infty} \frac{1}{k^x} = \frac{1}{(n+1)^x}$. Donc $\sup_{x \in [1,2]} |R_n(x)| \leq \frac{1}{(n+1)^1} \xrightarrow[n \to +\infty]{0}$. Donc la série $\sum_{n\geq 1} v_n$ converge uniformément sur [1,2].
 - e) Pour $x \in]1,2]$, $v_n(x) = \frac{1}{n^x} \frac{1}{1-x} \left(\frac{1}{n^{x-1}} \frac{1}{(n+1)^{x-1}} \right)$; $v_n(1) = \frac{1}{n} \ln(n+1) + \ln n$. v_n est continue, sauf peut-être en 1.

En 1 : en posant h = x - 1, $\frac{1}{n^x} = \frac{1}{n} + o(1)$ par continuité de l'exponentielle $x \mapsto n^{-x}$ en 1 et

$$\frac{1}{1-x} \left(\frac{1}{n^{x-1}} - \frac{1}{(n+1)^{x-1}} \right) = \frac{1}{h} \left(e^{-h \ln n} - e^{-h \ln(n+1)} \right) = \frac{1}{h} \left((1-h \ln n + o(h)) - (1-h \ln(n+1) + o(h)) \right) = \ln(n+1) - \ln n + o(1);$$
donc $v_n(x) = \frac{1}{n} + \ln(n+1) - \ln n + o(1).$ Donc v_n est continue en 1.

On en déduit que la série $\sum_{n\geqslant 1} \nu_n$ est une série de fonctions continues sur [1,2]. La convergence uniforme sur [1,2] entre înc de particulité de se comme sur [1,2]

On en déduit que $\zeta(x) - \frac{1}{x-1} = \sum_{n=1}^{+\infty} \nu_n(x) = \left(\sum_{n=1}^{+\infty} \nu_n(1)\right) + o(1) = \gamma + o(1)$ au voisinage de 1⁺. D'où $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$ au voisinage de 1⁺.

10. Application

Par unicité du développement limité en 1⁺ (éventuellement en multipliant par (x-1)), on déduit de 8.(b) et 9.(e) les égalités a=1 et $\frac{\mathrm{F}'(1)}{\ln 2}+\frac{\ln 2}{2}=b=\gamma$. D'où $\mathrm{F}'(1)=\ln 2\left(\gamma-\frac{\ln 2}{2}\right)$.

3/7

D'après I.4.(b),
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n} = -F'(1) = \ln 2 \left(\frac{\ln 2}{2} - \gamma \right).$$

PROBLÈME 2 : Produits infinis (d'après Centrale TA 1981)

Partie I

I.1 On calcule successivement, par des récurrences faciles (télescopage)

$$\prod_{k=0}^{n} \left(1 - \frac{1}{k}\right) = \frac{1}{n} \to 0 \qquad \prod_{k=0}^{n} \left(1 - \frac{1}{k^2}\right) = \prod_{k=0}^{n} \left(\frac{(k-1)(k+1)}{k^2}\right) = \frac{n+1}{2n} \to \frac{1}{2} \qquad \prod_{k=0}^{n} \left(1 - \frac{2}{k(k+1)} = \frac{n+2}{3n} \to \frac{1}{3}\right)$$

a) Comme $0 < u_n < 1$, la suite (p_n) décroît (on a $p_n/p_{n-1} = u_n < 1$ et donc (décroissante et minorée par 0) converge, i.e. $\prod u_n$ existe.

Prenons le logarithme:

$$\ln p_n = \sum_{k=0}^n \ln(u_k)$$

Si la série $\sum \ln(u_n)$ est convergente, on a donc $\ln p_n$ qui a une limite, donc p_n aussi, et $\prod^{\infty} u_n$ existe.

Réciproquement, si $\prod^{\infty} u_n$ existe, il y a deux cas :

- Si p_n → 0 alors la série des ln p_n diverge vers -∞.
 Sinon, la série des ln p_n a une limite finie et donc converge.
- b) Que l'on parte de la convergence de la série ou du produit, il est nécessaire (mais pas suffisant) que $1+u_n \rightarrow 1$. En effet, le critère de divergence grossière appliqué à $\sum \ln(1+u_n)$ implique que $\ln(1+u_n) \to 0$. Et la convergence de la série des u_n implique que $u_n \rightarrow 0$.

Dans tous les cas, on a donc $\ln(1+u_n) \sim u_n$, et le théorème sur les séries à termes équivalents **positifs** permet

$$\prod_{n=0}^{\infty} (1+u_n) \text{ existe} \iff \sum \ln(1+u_n) \text{ converge} \iff \text{la série } \sum u_n \text{ est convergente.}$$

c) De la même façon, si on a l'existence de $\prod_{n=0}^{\infty} (1+u_n)$, la série des u_n converge; comme $\ln(1-u_n) \sim -u_n$ dans ces conditions (puisque $u_n \to 0$), on en déduit l'existence de $\prod (1-u_n)$ et en prenant l'exponentielle :

$$\sum_{k=0}^{n} \ln(1 - u_k) \to \ell \Rightarrow \prod_{k=0}^{n} (1 - u_k) \to e^{\ell} \neq 0$$

Réciproquement, si $\prod (1-u_n)$ existe et est non nul, on peut passer aux logarithmes et retrouver la convergence de $\sum \ln(1-u_n)$, d'où (équivalents) celle de $\sum u_n$, et donc l'existence de $\prod_{i=1}^{\infty} (1+u_n)$.

Partie II

II.1 Dans le premier cas, une récurrence facile permet de démontrer la double proposition

$$p_{2n} = \prod_{k=0}^{2n} \left(1 - \frac{(-1)^k}{k}\right) = \frac{1}{2}$$
 $p_{2n+1} = \prod_{k=0}^{2n+1} \left(1 - \frac{(-1)^k}{k}\right) = \frac{n+1}{2n+1} \to \frac{1}{2}$

En vertu d'un lemme classique, on a bien $p_n \rightarrow \frac{1}{2}$.

Dans le deuxième cas, on remarque que si $u_n = 1 - \frac{(-1)^n}{\sqrt{n}}$ il vient

$$u_{2n}u_{2n+1} = (1 - \frac{1}{\sqrt{2n}})(1 + \frac{1}{\sqrt{2n+1}}) \le (1 - \frac{1}{\sqrt{2n}})(1 + \frac{1}{\sqrt{2n}}) = 1 - \frac{1}{2n}$$

$$p_{2n+1} = (u_2u_3)(u_4u_5)...(u_{2n}u_{2n+1}) \le (1 - \frac{1}{2})...(1 - \frac{1}{2n})$$

et ce produit tend vers 0, puisque $\sum -\frac{1}{2n} \to -\infty$ (vu aussi en exemple en partie I).

Donc $p_{2n+1} \to 0$. Or $p_{2n} = p_{2n+1}/(1 + \frac{1}{\sqrt{2n+1}}) \sim p_{2n+1} \to 0$. Donc la sous-suite d'indices pairs aussi tend vers 0. Donc en vertu du même lemme que précédemment, $\prod_{2}^{\infty} (1 - \frac{(-1)^n}{\sqrt{n}})$ existe, et vaut 0.

- **II.2** Comme par hypothèse, $u_n \to 0$, on a le droit d'écrire quand $n \to +\infty$ $u_n \ln(1 + u_n) \sim \frac{u_n^2}{2}$. Ceci est le terme général d'une série à termes positifs :
 - soit elle converge, et il en est de même de $\sum (u_n \ln(1 + u_n))$ ce qui signifie que $\sum \ln(1 + u_n)$ est de même nature que $\sum u_n$, qui est supposée convergente, et cela prouve l'existence de $\prod_{n=0}^{\infty} (1 + u_n)$;
 - soit $\sum \frac{u_n^2}{2}$ diverge, mais c'est vers $+\infty$; alors cela implique que $\sum \ln(1+u_n)$ tend vers $-\infty$, autrement dit (comme on l'a vu) le produit $\prod_{n=0}^{\infty} (1+u_n)$ existe, mais il est nul.

Les deux exemples donnés illustrent ces deux cas possibles.

Partie III

III.1 a) Posons $s_n = a_1 + \dots + a_n$, alors

$$s_{2n} = \sum_{k=1}^{n} \frac{1}{2k} + \frac{1}{2k\sqrt{2k}}$$

et comme le terme général de cette nouvelle série est équivalent à celui d'une série de RIEMANN divergente, $s_{2n} \to +\infty$ ce qui assure que la série des a_n diverge.

Quant à $\sum a_n^2$ c'est encore plus simple vu que $a_n^2 \sim \frac{1}{n}$, terme général d'une série de RIEMANN divergente. Donc ces deux séries divergent.

On va voir que néanmoins, le produit infini converge...

b) On trouve $(1+a_{2n-1})(1+a_{2n})=1-\frac{1}{n^2}$. Donc

$$p_{2n} = \prod_{q=3}^{2n} (1 + a_q) = \prod_{k=2}^{n} (1 + a_{2k-1})(1 + a_{2k}) = \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) \to \frac{1}{2}$$

comme on l'a vu en partie I.

La sous-suite des p_{2n+1} se déduit de p_{2n} en multipliant par $1+a_{2n+1}\to 1$, donc a même limite : le lemme habituel entraı̂ne donc que $\prod_{n=0}^{\infty} (1+a_n)$ existe (et vaut $\frac{1}{2}$).

III.2 a) Que l'une ou l'autre des deux séries $\sum u_n$ et $\sum u_n^2$ converge, on en déduit que $u_n \to 0$; ceci permet d'écrire dans les deux cas que $u_n - \ln(1 + u_n) \sim \frac{u_n^2}{2}$.

Le passage au logarithme de la partie I permet encore d'affirmer que $\sum \ln(1+u_n)$ converge; ce qu'on ne peut plus faire est d'utiliser les équivalents (non positifs ici). Mais on en déduit que les deux séries $\sum u_n$ et $\sum u_n^2$ sont **de même nature**, puisque la différence de leurs termes généraux est celui d'une série convergente.

- **b)** Ici on considère le cas où la série de terme général (u_n^2) diverge. Comme elle est à termes positifs, c'est vers $+\infty$. Ceci équivaut, d'après le calcul précédent, à ce que $\sum u_n$ diverge vers $+\infty$, la différence des termes généraux étant toujours le terme général d'une série convergente.
- III.3 Les hypothèses faites entraînent encore que $u_n \to 0$. On ne peut pas appliquer la partie I, car on ne sait rien sur le signe de u_n ; en revanche on a

 $|\ln(1+u_n)| \sim |u_n|$, terme général d'une série convergente.

Donc la série des $\ln(1+u_n)$ converge parce qu'elle est absolument convergente, et cela entraı̂ne comme d'habitude l'existence du produit $\prod_{n=0}^{\infty} (1+u_n)$.

Ainsi $\prod_{1}^{\infty} \left(1 - \frac{\cos \operatorname{truc}}{4n^2}\right)$ existe, puisque $\sum \frac{\cos \operatorname{truc}}{4n^2}$ converge absolument (dominée par une série de RIEMANN convergente).

Partie IV

IV.1 L'hypothèse que $\forall n \in \mathbb{N}$ $u_n \neq -1$ interdit que $\prod_{n=0}^{\infty} (1+u_n)$ vale 0. Donc la suite p_n tend vers 0 dans \mathbb{C} sans jamais s'annuler, et de même pour $|p_n|$. En passant au logarithme, on en déduit que la série $\sum \ln |1+u_n|$ diverge vers $-\infty$.

IV.2 Le produit $\prod_{0}^{\infty} (1 + |u_n|)$ est à termes réels, il existe parce que de la forme $\prod_{0}^{\infty} (1 + v_n)$ où $0 \le v_n < 1$ est le terme général d'une série convergente (I2b).

La valeur (réelle) de ce produit infini est toujours > 1, sauf si tous les u_n sont nuls. En effet la suite des $p'_n = \prod_{k=0}^{n} (1 + |u_k|)$ est croissante.

On développe bestialement :

$$\prod_{1}^{n}(1+a_k)-1 \text{ est \'egal \`a} \sum_{1\leqslant k_1< k_2< \dots k_r\leqslant n, r\leqslant n}a_{k_1}\dots a_{k_r} \text{ o\`u la somme porte sur tous les sous-ensembles (non vides)}$$
 de $\{1,2,\dots,n\}$.

Une banale application de l'inégalité triangulaire dans $\mathbb C$ donne alors

$$\left| \prod_{1}^{n} (1 + a_{k}) - 1 \right| \leq \left| \sum_{1 \leq k_{1} < k_{2} < \dots k_{r} \leq n, r \leq n} a_{k_{1}} \dots a_{k_{r}} \right| \leq \sum_{1 \leq k_{1} < k_{2} < \dots k_{r} \leq n, r \leq n} |a_{k_{1}} \dots a_{k_{r}}| = \prod_{1}^{n} (1 + |a_{k}|) - 1$$

où la dernière égalité provient du même calcul, en remplaçant les a_k par leurs modules. Considérons

$$|p_{n+q} - p_n| = |p_n| \left| \prod_{n+1}^{n+q} (1 + a_k) - 1 \right| \le |p_n| \left(\prod_{n+1}^{n+q} (1 + |a_k|) - 1 \right) = |p_n| (p'_{n+q} - p'_n) = A$$

en posant $p'_n = \prod_{k=1}^{n} (1 + |a_k|)$ (qui converge d'après la partie I).

On remarque juste que $|p_n| \le p'_n$, et on utilise que la suite (p'_n) converge : donc elle est de Cauchy, et donc $A \to 0$ quand $n \to +\infty$ ce qui prouve bien que la suite $p_n = \prod_{n=0}^{\infty} (1 + u_k)$ est aussi une suite de Cauchy.

Comme toute suite de Cauchy dans \mathbb{C} est convergente, on en déduit donc l'existence de $\prod_{1}^{\infty} (1+u_n)$.

Cette question était un peu plus difficile que le cas réel!

b) La série $\sum \ln |1 + u_n|$ est **absolument** convergente : en effet, on a, en posant $u_n = r e^{i\theta}$,

$$|1+u_n| = |1+re^{i\theta}| = \sqrt{1+r^2+2r\sin\theta} \le \sqrt{1+r^2+2r} = 1+|u_n| \text{ et donc } |\ln|1+u_n|| \le \ln(1+|u_n|) \sim |u_n|$$

et ce dernier terme est celui d'une série convergente, par hypothèse : d'où la convergence **absolue** de $\sum \ln |1+u_n|$.

- c) Ceci montre (par contraposition) que $\prod_{n=0}^{\infty} (1+u_n) \neq 0$.
- **d)** Pour la série $\sum Arg(1+u_n)$), on remarque que

$$Arg(1+u_n) = \arctan \frac{r \sin \theta}{1+r \cos \theta} \sim r \sin \theta$$

(puisque $r \to 0$); or $|r \sin \theta| \le r = |u_n|$, qui est le terme général d'une série convergente.

Donc la série des ($\sum Arg(1+u_n)$)) est, elle aussi, **absolument** convergente.

e) Le produit $\prod_{i=1}^{\infty} (1 + \frac{i}{n})$ diverge.

L'indication selon laquelle $\prod_{n=0}^{\infty} \sqrt{1 + \frac{1}{n^2}} = \sqrt{\frac{\sinh \pi}{\pi}}$ est un piège semble-t-il! (même si cette relation est exacte!).

En fait, si l'on a convergence en terme de **module**, on a divergence quant aux **arguments** : la série des $Arg(1+u_n)$ diverge car son terme général est équivalent à celui de la série harmonique.

IV.3 a) S'il arrivait que u_n prît la valeur -1, le produit serait nul, or c'est exclu. Par ailleurs, si on note $\ell = \prod_{n=0}^{\infty} (1+u_n)$, alors $\ell \neq 0$ et $1+u_n=p_n/p_{n-1} \to \ell/\ell=1$ ce qui implique que u_n tend vers 0.

b) Par passage au logarithme, on déduit de ce que la suite $|p_n|$ converge, que la série $\sum \ln |1+u_n|$ converge.

* * * * * * *