Discrete Optimization

Column Generation

Goals of the Lecture

- Column generation
 - introduction
 - -cutting stock

Motivation

- Branch and Cut
 - -solving a MIP with exponentially many constraints
 - subtour constraints
 - -generate the constraints on demand
- Column generation
 - -solving a LP with exponentially many variables
 - -variables represent complex objects
- Branch and Price
 - -solving a MIP with exponentially many variables
 - -branching over column generation

Given

- a number of large wood boards of a length L
- a number of shelves of various sizes that need to be cut from the boards
- the demand for each shelf size
 - how many to cut.

► Find

 the smallest number of boards to cut in order to meet the demand for shelves

L=110

L=110

L=110

20

75

Decision variables

- $-y_b = 1$ if board b is used in the solution
- x_{sb} is the number of shelves of type s cut from board b

Decision variables

- $-y_b = 1$ if board b is used in the solution
- x_{sb} is the number of shelves of type s cut from board b

► Constraints

- a board is used if some shelf is cut from it
- the shelves cut from a board cannot exceed the capacity of the board
- -the demand is met

Decision variables

- $-y_b = 1$ if board b is used in the solution
- x_{sb} is the number of shelves of type s cut from board b

► Constraints

- a board is used if some shelf is cut from it
- the shelves cut from a board cannot exceed the capacity of the board
- -the demand is met

Objectives

- minimize the number of boards used

$$\min \sum_{b \in B} y_b$$

$$My_b \ge x_{s,b}$$
 $b \in B, s \in S$
 $\sum_{s \in S} l_s x_{s,b} \le L$ $b \in B$
 $\sum_{b \in B} x_{s,b} \ge d_s$ $s \in S$
 $y_b \in \{0,1\}$ $b \in B$
 $x_{s,b} \in \mathbb{N}$ $s \in S, b \in B$

$$\min_{b \in B} y_b \longleftarrow \text{minimize the number of boards}$$

$$My_b \ge x_{s,b}$$
 $b \in B, s \in S$
 $\sum_{s \in S} l_s x_{s,b} \le L$ $b \in B$
 $\sum_{b \in B} x_{s,b} \ge d_s$ $s \in S$
 $y_b \in \{0,1\}$ $b \in B$
 $x_{s,b} \in \mathbb{N}$ $s \in S, b \in B$

$$\min_{b \in B} y_b \longleftarrow \text{minimize the number of boards}$$

$$\begin{array}{ll} My_b \geq x_{s,b} & b \in B, s \in S \\ \sum_{s \in S} l_s x_{s,b} \leq L & b \in B \\ \sum_{s \in S} x_{s,b} \geq d_s & s \in S \\ y_b \in \{0,1\} & b \in B \\ x_{s,b} \in \mathbb{N} & s \in S, b \in B \end{array}$$
 is board b used?

 $y_b \in \{0, 1\} \qquad b \in B$

 $x_{s,b} \in \mathbb{N}$ $s \in S, b \in B$

$$\min_{b \in B} y_b \longleftarrow \text{minimize the number of boards}$$
 s.t.
$$My_b \geq x_{s,b} \qquad b \in B, s \in S \longleftarrow$$

$$\sum_{s \in S} l_s x_{s,b} \leq L \qquad b \in B \qquad \text{is board b used?}$$

$$\sum_{b \in B} x_{s,b} \geq d_s \qquad s \in S \qquad \text{capacity constraint}$$

Is this a good model?

- Is this a good model?
 - linear relaxation, symmetries

- Key idea
 - -reasoning about cutting configurations, i.e., a specific way to cut a board

- Key idea
 - -reasoning about cutting configurations, i.e., a specific way to cut a board
- ► How is a configuration c specified?
 - by the number of shelves of different types that it consists of.
 - $-e.g., [n_{c,1}, ..., n_{c,|S|}]$
 - we can find all these configurations.

- Key idea
 - -reasoning about cutting configurations, i.e., a specific way to cut a board
- How is a configuration c specified?
 - by the number of shelves of different types that it consists of.
 - $-e.g., [n_{c,1}, ..., n_{c,ISI}]$
 - we can find all these configurations.
- Decision variables
 - -x_c: the number of configurations of type c

$$\min \sum_{c \in C} x_c$$

$$\sum_{c \in C} n_{c,s} \ x_c \ge d_s \quad (s \in S)$$

$$x_c \in \mathbb{N} \quad (c \in C)$$

$$\min \sum_{c \in C} x_c \longleftarrow \underbrace{\text{minimize the number of boards}}$$

$$\sum_{c \in C} n_{c,s} \ x_c \ge d_s \quad (s \in S)$$

$$x_c \in \mathbb{N} \quad (c \in C)$$

$$\min \sum_{c \in C} x_c \longleftarrow \underbrace{\text{minimize the number of boards}}_{c \in C}$$
 s.t.
$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (s \in S)}_{c \in C}$$

$$\underbrace{x_c \in \mathbb{N}}_{c \in C}$$

$$\underbrace{(c \in C)}$$

$$\min \sum_{c \in C} x_c \longleftarrow \underbrace{\text{minimize the number of boards}}_{c \in C}$$
 s.t.
$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (s \in S)}_{c \in C}$$

$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (c \in C)}_{c \in C}$$

Strong relaxation

$$\min \sum_{c \in C} x_c \longleftarrow \underbrace{\text{minimize the number of boards}}_{c \in C}$$
 s.t.
$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (s \in S)}_{c \in C}$$

$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (c \in C)}_{c \in C}$$

- Strong relaxation
- No capacity constraint
 - it is built in the configurations

$$\min \sum_{c \in C} x_c \longleftarrow \underbrace{\text{minimize the number of boards}}_{c \in C}$$
 s.t.
$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (s \in S)}_{c \in C}$$

$$\underbrace{\sum_{c \in C} n_{c,s} \ x_c \geq d_s \quad (c \in C)}_{c \in C}$$

- Strong relaxation
- No capacity constraint
 - it is built in the configurations
- No symmetries
 - reasoning about the numbers of configurations

- Key idea
 - -reasoning about cutting configuration, i.e., a specific way to cut a board

- Key idea
 - -reasoning about cutting configuration, i.e., a specific way to cut a board
- ► How do we find these configurations?
 - a configuration must satisfy the constraint

$$\sum_{s \in S} l_s \ n_s \le L$$

- Key idea
 - -reasoning about cutting configuration, i.e., a specific way to cut a board
- ► How do we find these configurations?
 - a configuration must satisfy the constraint

$$\sum_{s \in S} l_s \ n_s \le L$$

- What about enumerate them all?
 - in practical applications, there may be billions and billions

- Key idea
 - reasoning about cutting configuration, i.e., a specific way to cut a board
- ► How do we find these configurations?
 - a configuration must satisfy the constraint

$$\sum_{s \in S} l_s \ n_s \le L$$

- What about enumerate them all?
 - in practical applications, there may be billions and billions
- Can we generate them on demand?

The MIP Program

	X ₁	X ₁	Xi	Demand
Obj	1	1	 1	
Self ₁	N _{1,1}	N _{2,1}	 N _{i,1}	d ₁
Self ₂	n _{1,2}	n _{2,2}	 n _{i,2}	d ₂
Selfisi	N _{1,lsl}	n _{2,IsI}	 n _{i,IsI}	d _{Isl}

The MIP Program

	X ₁	X ₁	Xi	Xc	Demand
Obj	1	1	 1	1	
Self ₁	n _{1,1}	n _{2,1}	 n _{i,1}	n _{c,1}	d ₁
Self ₂	n _{1,2}	n _{2,2}	 n _{i,2}	n _{c,2}	d ₂
Selfisi	n _{1,lsl}	n _{2,IsI}	 n _{i,lsl}	n _{c,IsI}	d _{Isl}

Configurations and Linear Programming

- Which configuration to generate?
 - a configuration is a column in the LP relaxation

- Which configuration to generate?
 - a configuration is a column in the LP relaxation
- What is an interesting configuration then?
 - a configuration with a negative reduced cost
 - if it is positive, it will not enter the basis

- Which configuration to generate?
 - a configuration is a column in the LP relaxation
- What is an interesting configuration then?
 - a configuration with a negative reduced cost
 - if it is positive, it will not enter the basis
- ► How did we compute these reduced costs?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

► How did we compute these reduced costs?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

For a specific configuration i in this problem

How did we compute these reduced costs?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

For a specific configuration i in this problem

How did we compute these reduced costs?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

► For a specific configuration i in this problem

$$1 - c_B A_B^{-1}(n_{i,1}, \dots, n_{i,k})^T$$

► How did we compute these reduced costs?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

► For a specific configuration i in this problem

$$1 - c_B A_B^{-1}(n_{i,1}, \dots, n_{i,k})^T$$

$$1 - \Pi(n_{i,1}, \ldots, n_{i,k})^T$$

dual variables

The MIP Program

	X ₁	X ₁	Xi	Xc	Demand	Dual
Obj	1	1	 1	1		
Self ₁	N _{1,1}	N _{2,1}	 N _{i,1}	n _{c,1}	d ₁	Π1
Self ₂	n _{1,2}	n _{2,2}	 n _{i,2}	n _{c,2}	d ₂	Π2
		■ ■				
Selfisi	n _{1,lsl}	n _{2,IsI}	 n i,Isl	n _{c,lsl}	d _{Isl}	$\Pi_{ S }$

- A new configuration must satisfy two conditions
 - feasibility
 - -quality: i.e., entering the basis

- A new configuration must satisfy two conditions
 - feasibility
 - -quality: i.e., entering the basis
- ► Feasibility

$$\sum_{s \in S} l_s \ n_s \le L$$

- A new configuration must satisfy two conditions
 - feasibility
 - -quality: i.e., entering the basis
- Feasibility

$$\sum_{s \in S} l_s \ n_s \le L$$

Quality

$$1 - \Pi(n_{i,1}, \dots, n_{i,|S|})^T < 0$$

- A new configuration must satisfy two conditions
 - feasibility
 - -quality: i.e., entering the basis
- Solve the following linear program

$$\min \quad 1 - \sum_{s \in S} \Pi_s^* n_s$$

$$s.t$$

$$\sum_{s \in S} l_s n_s \le L$$

► If the objective is negative, we have a new configuration for the LP relaxation; otherwise, no such configuration exists

Column Generation for Cutting Stock

- 1. Generate an initial set of configurations
 - one configuration for each shelf type
- 2. Solve the linear program
 - with the existing configurations
- 3.Generate a new configuration based on the optimal solution to the relaxation
 - -solve the knapsack problem
- 4. If a new column was found, repeat from step 2
- 5.Otherwise, round the solution upwards to find an integer solution.

	Obj=46.25				
20	20	20	20	20 d ₁ =48	$X_1 = 0$
45		45	d ₂ =	-35	$X_2 = 0$
50		50		d ₃ =24	$X_3 = 8.25$
55		5	5	d ₄ =1	$0 X_4 = 5$
75			$d_5=8$		$X_5 = 0$
20	75				$X_6 = 8$
20	45		45		$X_7 = 17.5$
20	20	20	50		X ₈ =7.5

		L=110	CG	Obj=46.25	OPT=47
20	20	20	20	20 d ₁ =48	4
50		50		d ₃ =24	12
55		5	5	d ₄ =10	5
20	75			d ₅ =8	8
20	45		45	$d_2 = 3$	5 17
20	20	20	45		1

22

Branch and Price

- Perform column generation
- If the solution is integral, terminate
- Otherwise, branch and repeat the process on the subproblem
 - generate new columns at the node to obtain a stronger relaxation

Until Next Time