Ejercicio 1

- a) Calcular el paso de número decimal a binario del 235.186, 122.002, 35.8, 1024
- b) Calcular el número decimal a partir del número binario: 100000001, 10101011, 1010.1011

https://www.disfrutalasmatematicas.com/numeros/binario-decimal-hexadecimal-conversor.html

(a2)
$$|22,602|$$
 $|22| \frac{2}{2}$ $|5| \frac{2}{2}$

1010.1011 =
$$2^3 + 2^1 + 2^{-1} + 2^{-3} + 2^{-4} =$$

 $3 \ 2 \ 1 \ 0 \ -1 \ -2 \ -3 \ -4$ = $8 + 2 \ + \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = 10,6875$

https://cual-es-mi-ip.online/herramientas/conversores-numericos/conversor-hexadecimal-a-octal/

Ejercicio 3

235,186 122,002 35,18 1024

BCD Natural

0010 0011 0101 1000 1000 0110 0000 0000 0010 0100 0001 0100 0000 0000

Exceso a 3.

Reflexión: li el mímero es par, en la primera división el verto es cero. li es inyor, el verto es 1. Por ejemplo:

Ese bit es el menos rignificativo, el que va en las "unidades", luego l'el nº acaba en O es par, y ri en 1, impar

---- 0 -> no par ---- 1-> no impar.

Inagino un n° analysies 0101 (5); este mirrero es $5=2^2+2^\circ$ N lo multiplico por 2, $2\cdot 5=2\cdot (2^2+2^\circ)=2^3+2^4$; en realidad lo puedo escribir como nuna de potencias de 2 pero con los expuentes numando uno. Entances en binario $2\cdot 5=2^3+2^4=1010$

li nos damos cuenta multiplicar por 2 no es más que desplazar hacia la izquierda los bits. Cada desplazamiento significa X2

> ○101 <---- ×2

De forma análoga, des plazar hacia la derecha ignifica dividir entre 2.

B) Example para
$$J = \frac{5}{3}(2,3,5,6) \rightarrow JT(0,1,4,7)$$

a b c mintérmino m f maxtérmino M

0 0 0 0 0 a'b'c' mo O a+b+C Mo

1 0 0 1 a'b'c mo O a+b+C' Mo

2 0 1 0 a'bc' mo 1 a+b'+C Mo

3 0 1 1 a'bc mo 1 a+b'+C Mo

4 1 0 0 ab'c' mo O a'bb'c Mo

5 1 0 1 ab'c mo 1 a'+b'+C Mo

6 1 1 0 ab c' mo 1 a'+b'+C Mo

7 1 1 1 ab c mo 0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a'+b'+C' Mo

0 a

desen dar 1 "producto" debendar o

$$\int_{2}^{2} \frac{2}{3} (2,3,5,6) = a'bc' + a'bc + ab'c + abc' = m_{2} + m_{3} + m_{5} + m_{6}$$

La función complementaria j' tiene los 1 y los 0 cambiados respecto af, huego

La función (j') = f, ni complemento (i Obtendré &!

Luego
$$\int = \frac{\xi(2,3,5,6)}{3} = m_z + m_3 + m_5 + m_6 = \dot{\alpha}b\dot{c} + \dot{\alpha}bc + \dot{\alpha}bc + \dot{\alpha}bc' =$$

$$= (\alpha + b + c) \cdot (\alpha + b + c') \cdot (\alpha' + b + c) \cdot (\alpha' + b' + c') = \frac{TT}{3}(0,11,1,7)$$

Problema 5

A)			С					
			0			1		
	00	0	0		4	0		
AB	01	2	(1)		3	0		
A	11	6	$\sqrt{1}$		7	0		
	10	4	0		5	0		

S= b.c' (averta, crale l'empre 0 j b "1")

$$S = \begin{cases} (1,2,3,4,5,7) = M_1 + M_2 + M_3 + M_4 + M_5 + M_7 \\ (c es 1, g las de más varian) \end{cases}$$

a'b (c vara, a cero, b uno)

ab' (cvaría, a uno j b cero)

S = C + a'b + ab'

		Ф						
		00	01	11	10			
	00	0	1	3	2			
AB	01	4	5	7	6			
A	11	12	13	15	14			
	10	8	9	11	10			

c)				C	D				
		00 \		01		11		10	s= \(\(0, 2, 4, 8, 10, 12 \) =
	00	01	4	0	3	0	2	1	= Mo+ Mz+ My+ My+ M10+M12
AB	01	4 1	5	0	7	0	6	0	grupo de 4 !
A	11	12 1	13	0	15	0	14	0	grupo de 4 !
	10	8 (1)	9	0	11	0	10	1	P, 91
		Lo	دا م	J					-
		17		•			S =	c' d'	+ .6'd'

Facilmente re puede comprobar que tiene una expresión más rimplificada $S = (c' + b') \cdot d'$ pero ja como productos de numas. c' y i lo hago por maxterns?

Maxlerms Los maxtérminos que son cero son: 1.3.5.7.6.13.15.14,9,10

T(1,3,5,7,6,13,15,14,9,10) = M1.M3. M5.M7 Mc. MB.Mrs.M4.M9.M10

c) 			C	:D		para by c.				
		00	01	11	10	In suma debe dar cero				
	00	0 1	7 0	3 0	2 1	huego (b'+c')				
AB	01	4 1	5 0	7 (0)	6 0	La función es				
A	11	12 1	13 0	12 0	14 0	,				
	10	8 1	9 0	11 0	10 1	S= d'.(b+c)				
Corresponde a un grupo en el que des 1, pero como lo estamos haciendo con producto de munos, cogeremos d' d to										

$$S = (c+d) \cdot (a+b+c) \cdot (a+b+d)$$

http://www.32x8.com/pos4___A-B-C-D___m_1-2-3-5-6-7-11-13-14-15_____option-a___889788975078827597720

Groups

(0,4,8,12)	$\overline{\mathrm{C}}.\overline{\mathrm{D}}$
(8,9)	$A.\overline{B}.\overline{C}$
(8,10)	$A.\overline{B}.\overline{D}$

$$\begin{split} \overline{y} &= \overline{C}.\overline{D} + A.\overline{B}.\overline{C} + A.\overline{B}.\overline{D} \\ \overline{y} &= \overline{\overline{C}.\overline{D}} + A.\overline{B}.\overline{C} + A.\overline{B}.\overline{D} \end{split}$$

$$y = (C + D) (A' + B + C) (A' + B + D)$$

	C.D	C.D	C.D	C.D	
$\overline{A}.\overline{B}$	0	1	1	1	
\overline{A} .B	0	1	1	1	
A.B	0	1	1	1	
ΔĒ	Ω	Λ	1	Λ	

Map Layout

Ejercicio 6

Una lámpara se acciona mediante tres pulsadores de la siguiente forma: si se pulsa solo uno de ellos, cualquiera, se ilumina. Si se pulsan dos simultáneamente también se enciende, pero no si es la combinación segundo tercer pulsador. Cualquier otra combinación no enciende la lámpara. Expresar una función lógica para el funcionamiento del circuito.

a	ط	C	S
0	0	0	0
O	0	- 1	1
0	1	0	1
0	1	1	0
- 1	O	0	1
1	0	- 1	1
1	- 1	0	1
1	1	- 1	0

		С						
			0			1	1	
	00	0	0		1	1		
AB	01	٤	1	•	3	0		
A	11	6	1		7	0		
	10	4 (1		5	(1)) K	
							K	

Un ascensor muestra la información de la planta en la que se encuentra la cabina como un número, codificado en binario de 4 dígitos. Se trata de realizar un sistema que avise cuando el ascensor esté en la planta 4, 6, 7, 8 y 12 como una función lógica.

	a	b	С	d	mintérmino	m	f	maxtérmino	М
0	0	0	0	0			0	arbread	Mo
1	0	0	0	1			0	arbtetd'	u,
2	0	0	1	0			0	athtotal	Mz
3	0	0	1	1			0	arbitotal	Mz
4	0	1	0	0	aib c'd'	My	1		
5	0	1	0	1			0	a+b'+c+d	Mr
6	0	1	1	0	a'bcd'	MG	7		
7	0	1	1	1	albed	μMη	1		
8	1	0	0	0	ab'c'd'	ms	1		
9	1	0	0	1			0	ait bect di	Mg
10	1	0	1	0			O	a1 +6+ c1+4	Mio
11	1	0	1	1			0	a'26+c'2d'	Mu
12	1	1	0	0	ab c'd'	MIZ	1		
13	1	1	0	1			0	a'ab'acadi	MB
14	1	1	1	0			0	a'tb'tc'td	Mily
15	1	1	1	1			0	012616164	Mis

J= ξ (4,6,7,8,12) Aurque poure ce mais facil simplifica des maxtérnines, nos

		CD								
		00	01	11	10					
	00	0 0	1 0	3 0	ζ 0					
AB	01	4 (1)	5 0	7 (1	6 1)					
Ā	11	12 1	13	15 0	14 0					
	10	8 1	9 0	1) O	10 0					

piden suma de productos.

- k) bo'd'
- k) ac'd'
- √ a'6 c

f= a'bc+ac'd'+bc'd'

 $\bar{j} = \overline{a'bc + ac'd' + bc'd'} = (a'bc) \cdot (ac'd) \cdot (bc'd')$ a b c d $a'bc + ac'd' + bc'd' = (a'bc) \cdot (ac'd) \cdot (bc'd')$ $a'bc + ac'd' + bc'd' = (a'bc) \cdot (ac'd) \cdot (bc'd')$

Pollun 7 por maxtérninos.

		00	01	11	10						
	00	0 0	1 0	3 _O	2 0 -	→ (a+b)					
AB	01	4 1	5 0	7 1	6 1						
A	11	12 1	13	15 0	14 0	→ (a+c)					
	10	8 7	9 0	ıı O	10 0	(40)					
	(c+d')										

$$\begin{cases}
f = c \cdot b' \cdot a + cba' + ca + cb' = \underbrace{\xi}_{3}(1,3,5,7) \\
ab'c & a'bc & axc & xb'c \\
\downarrow_{5} & \downarrow_{3} & \downarrow_{5} \downarrow_{1} \downarrow_{5} \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{5}
\end{cases}$$
intérmino m f maxémino M

	a	b	С	mintérmino	m	f	maxtérmino	М
0	0	0	0			0		
1	0	0	1	al blc	m,	1		
2	0	1	0			0		
3	0	1	1	albe	m3	1		
4	1	0	0			0		
5	1	0	1	a b' c	ms	1		
6	1	1	0			Ø		
7	1	1	1	abc	M ₇	1		

		С			
		0	1		
	00	0 0	1 1		
AB	01	2 0	3 1		
A	11	6 0	7 1		
	10	4 0	5 /		

Tomo la variable 4 como la del presidente del Carejo.

		CD					
		\00	01	11	10		
AB	00	000	1 0	3 0	20		
	01	4 0	5 0	7 1	60		
	11	12 1	13 1	15 1	14 1		
	10	3	9 1	u 1	10 1		

0000 → 0 0001 0010 0100 1000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$010 ((2) \to 0)$ $011 ((3) \to 0)$	100 (12) } 100 (12) } 100 (10) } 100 (10) } 100 (10) } 100 (10) }

Calculo le función por maxtérninos

j = (C+a)·(a+b)·(a+d)·(c+d+b)

Nor 4 entadas.