

Einige Grundlagen der Informatik

M. Lüthi - Universität Basel

Was heisst Programmieren

Exaktes Instruieren eines Computers, eine bestimmte Aufgabe zu lösen.

Arten von Programmen

Anwendersoftware:

erlaubt die Lösung allgemeiner Aufgabenstellungen.

z. B. Textverarbeitung, Tabellenkalkulation, Bildbearbeitung, Buchhaltung, Produktionsplanung, Lohn und Gehaltsabrechnung, Spiele...

– Systemsoftware:

hilft beim Betrieb des Rechners und bei der Konstruktion der Anwendersoftware. Systemsoftware umfasst neben Datenbanksystemen, Übersetzern (compiler) etc. in jedem Fall das Betriebssystem.

Agenda

Trennung Algorithmus und Hardware in Java nicht ganz perfekt.

Hardware

Von-Neumann Architektur

By Kapooht - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639a

Grundsätzlicher Aufbau moderner Computer

Speicherzugriff

Speicher

Kleinste Speichereinheit hat 2 Zustände

- 1 Bit
- Zustände werden i.A. mit 0 und 1 bezeichnet

Mit 2 Speichereinheiten 2²=4 Zustände darstellbar

Mit 8 Bit 28=256 Zustände darstellbar
8 Bit = 1 Byte

Heutzutage sind Bytes die kleinsten adressierbaren Speichereinheiten Kleinere Einheiten müssen aus einem Byte extrahiert werden

Bit 0	Bit 1	Zustand
0	0	0
0	1	1
1	0	2
1	1	3

Intermezzo: Zahlensystem

Ein Zahlensystem (number system) besteht aus

- endlich vielen Ziffern (digits) und
- einer Vorschrift wie werden Zeichenreihen als Zahl interpretiert?

Arabische Zahlensysteme zur Basis β

Natürliche Zahl z wird geschrieben als Polynom

$$z = \sum_{i=0}^{n-1} z_i \beta^i, \qquad 0 \le z_i \le \beta$$

Intermezzo: Binärsystem

Basis $\beta = 2$

$$z = \sum_{i=0}^{n-1} z_i 2^i, \qquad 0 \le z_i \le 1$$

Beispiele:

- $1_d = 1 \cdot 2^0 = 1_b$
- $7_d = 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 111_b$
- $9_d = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1001_b$

Speicher & Adressierung

Quiz: Speicher

Wodurch wird der maximal mögliche Speicher in einem Computer begrenzt?

Wie viele Bits können auf einmal aus dem Speicher gelesen werden oder in den Speicher geschrieben werden?

Welcher Dezimalzahl entspricht die Zahl 101011111?

Welcher Binärzahl entspricht die Zahl 12?

Welcher Zahl im 16-er System (Hexadezimalsystem) entspricht die Dezimalzahl 65?

Variablen

Variablen sind Namen für Speicheradressen

Einfacher zu merken als Zahl

Variable hat einen Wert

Inhalt des Speichers an dieser Adresse

Variable hat einen Typ

- Wie gross ist Speicherstelle?
- Wie muss Bitmuster interpretiert werden?

Kleine Zahl x = 11

Grosse Zahl y = 256

Zeichen $z = \frac{1}{2}$

Adresse	Inhalt
00000001	00001011
00000010	00000001
00000011	00000001
00000100	10010001
00000101	11000111

Elementare Datentypen

```
8 Bit Zahl -2^7 \dots 2^7 -1 (-128, ...., 127)
byte
                 16 Bit-Zahl -2<sup>15</sup> ... 2<sup>15</sup> -1 (-32768, ..., 32767)
short
                  32 Bit-Zahl -2<sup>31</sup> ... 2<sup>31</sup> -1 (-2 147 483 648, ...., 2 147 483 647)
int
                 64 Bit-Zahl -2<sup>63</sup> ... 2<sup>63</sup> –1
long
                   32 Bit IEEE-754-1985 Gleitkommazahl
float
                   64 Bit IEEE-754-1985 Gleitkommazahl
Double
                   16 Bit Unicode
char
boolean
                   Wahrheitswert, false oder true
```

Gleitkommazahlen

Darstellung einer Floating-Point-Zahl (IEEE 754-1985)

$$z = (-1)^{v} \cdot Mantisse \cdot 2^{Exponent}$$

float

V	Exponent	Mantisse
1 Bit	8 Bit	23 Bit

double

V	Exponent	Mantisse
1 Bit	11 Bit	52 Bit

Von-Neumann Architektur: Befehle

Befehle: Operationen mit den Speicherzellen

By Kapooht - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639a

Charakteristik der Von-Neumann Architektur. Gleicher Speicher für Daten und Befehle

Diskutieren Sie

Jedes Programm, das wir schreiben, wir irgendwann in Maschinensprache übersetzt.

- Weshalb programmiert man typischwerweise nicht direkt in Maschinensprache?
- Was könnten Vorteile sein, direkt in Maschinensprache zu programmieren?
- Gibt es Programme, die in Maschinensprache geschrieben werden müssen?

Algorithmen

Algorithmus

Algorithmus:

Schrittweises, präzises Verfahren zur Lösung eines Problems

Problem: Summiere die Zahlen von 1 bis max $sum = \sum_{i=1}^{max} i$

 $3.1 \quad sum \leftarrow sum + zahl$

 $3.2 \quad zahl \leftarrow zahl + 1$

Anweisungsfolge

Programm

Beschreibung eines Algorithmus in einer Programmiersprache

Variablen

Variablen: Behälter für Werte

X

У

99

3

Variablen können Wert ändern $x \leftarrow x + 1$ 100

Variablen haben Datentyp (Menge erlaubter Werte)

Variablentyp

Werte

Zahl

17 54

- in eine Zahlenvariable passen nur Zahlen

(a) (x)

- in eine Zeichenvariable passen nur Zeichen

Anweisungen

Beispiel: Wertzuweisung

- 1. Werte Ausdruck aus
- 2. Weise seinen Wert der Variablen zu

Beliebige, klar definierte Anweisungen sind möglich

• Keine Einschränkung durch Programmiersprache oder Hardware

Anweisungsfolge (Sequenz)

Ablaufdiagram

Assert x = 3, y = 4, z = 7

Assertion (Zusicherung)
Aussage über den Zustand des Algorithmus an einer bestimmten Stelle

Auswahl (Verzweigung)

Beispiel: Suche das Minimum der zwei Zahlen x und y

Wiederholung (Schleife, Iteration)

Beispiel: Suche die grösste ganze Zahl n mit 2ⁿ kleiner oder gleich x.

Beispiel: Vertausche zwei Variableninhalte

Schreibtischtest

X	У	h
3 2	12 3	3

Beispiel: Bestimme Maximum dreier Zahlen

Beispiel: Euklidscher Algorithmus

Berechnet den größten gemeinsamen Teiler zweier Zahlen x und y

Schreibtischtest

X	У	rest
28	20	8
20	8	4
8	4	0

Euklischer Algorithmus: Korrektheitsbeweis

Warum funktioniert dieser Algorithmus?

```
(ggt teilt x) & (ggt teilt y)
ggt teilt (x - y)
ggt teilt (x - q* y)
ggt teilt rest
ggt(x, y) = ggt(y, rest)
```


Grammatiken

Beschreibung von Programmiersprachen

Syntax

Regeln, nach denen Sätze gebaut werden dürfen z. B.: Zuweisung = Variable " ← " Ausdruck.

Semantik

Bedeutung der Sätze

z. B.: werte Ausdruck aus und weise ihn der Variablen zu

Grammatik

Menge von Syntaxregeln z. B. Grammatik der ganzen Zahlen Ziffer = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". Zahl = Ziffer {Ziffer}.

EBNF (Erweiterte Backus- Naur- Form)

Metazeichen	Bedeutung	Beispiel	beschreibt
= () [] {}	trennt Regelseiten schließt Regel ab trennt Alternativen klammert Alternativen wahlweises Vorkommen 0 n- maliges Vorkommen	x y (x y) z [x] y {x} y	x, y xz, yz xy, y y, xy, xxy, xxxy,

Beispiele

Grammatik der Gleitkommazahlen

```
Ziffer = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Zahl = Ziffer {Ziffer}.

Gleitkommazahl = Zahl "." Zahl [ " E" [ "+" | " -" ] Zahl].
```

Quiz

Welche der folgenden Ausdrücke sind syntaktisch korrekte Gleitkommazahlen

- a) 1
- b) 1.1
- c) .12
- d) 1.3E7
- e) +1.3E-7

Welche der folgenden Ausdrücke sind syntaktisch korrekt gemäss folgender Grammatik: A{[_]A}

- a) A_A
- b) AA_AAA
- c) _A
- d) A_
- e) A__A