Agenda

- Limitation of Conventional Models
- Neural Networks
- Why Neural Networks
- Hyper parameters
 - Learning rate
 - Epochs
 - Regularization
 - Activation functions
- Play ground

Recap

Machine Learning

Deep Learning

Shortcoming of Conventional ML

 Can NOT directly work with unstructured, high dimensional data (Required Feature Engineering)

Example: Image and Video Data, Genes Data

• Can learn only so much from available data (i.e performance does not increase after certain threshold even if more training data is available)

Why is Deep Learning Popular now?

Most of the techniques used in deep learning are as old as 70 years, then why it is suddenly gaining so much traction?

- 1. Data
- 2. Compute
- 3. Algorithm

Simple Neural Network

Neural Network

Types of Neural Network

Types of Neural Network

Types of Neural Network

Hyper-parameters

Epoch 000,000

Learning rate 0.03

Activation
Tanh

Regularization None Regularization rate

Problem type

Classification

Learning Rate

A hyperparameter that controls the **step size** during **gradient descent** optimization. It determines how quickly the model adjusts its parameters in the direction that **reduces** the **loss**.

A higher learning rate might lead to faster convergence but risks overshooting, while a lower rate might slow down convergence.

Gradient Descent

Convergence

Divergence

Learning Rate

A higher learning rate might lead to faster convergence but risks overshooting, while a lower rate might slow down convergence.

Batch Size

Batch is a subset of the training dataset used in each iteration of the training process.

Instead of processing the **entire dataset** at once, we **divide** it into **smaller batches**.

Batch Size

Batch size is the number of training examples in each batch.

It's a hyperparameter that can be adjusted based on hardware limitations and dataset characteristics.

Larger batch sizes may speed up training but require more memory.

Number of Epochs

The number of **times** the entire training **dataset** is **seen** by the **model** during **training**.

Too **few epochs** might result in **underfitting**, while too **many epochs** can lead to **overfitting**.

Number of Epochs

All training samples

Activation Functions (Neuron)

It determine the functions applied to the outputs of each neuron to **introduce non-linearity**.

Common activation functions include

- ReLU (Rectified Linear Unit),
- Softmax