

Computabilidad

Apellidos, Nombre:.....DNI:....

1. (2 puntos) Sea un programa P1, que utiliza exactamente k variables, y cuya función unaria semántica es $\varphi_{P1}^{(1)}(x)=g(x)$. Completa las <u>TRES</u> instrucciones que faltan en el siguiente programa while P, de tal forma que su función unaria semántica sea:

$$\varphi_P^{(1)}(x) = \sum_{i=1}^x g(i)$$

Nota: se permite utilizar la macro de la suma y de la asignación.

begin

Xk+1 := X1;

Xk+2 := 0;

Xk+3 := 0;

while Xk+2 != Xk+1 do

begin

X2 := 0; X3 := 0; ...; Xk := 0;

P1;

end

X1 := Xk+3;

end

2. (1,25 puntos) Construye una expresión para el test $\neg((X \le Y) \land (Y < Z))$, de tal forma que la expresión devuelva un número mayor que 0 si el test es verdadero y 0 si es falso.

3. (1,75 puntos) Indica la función <u>binaria</u> semántica de la siguiente máquina de Turing, siendo q0 su estado inicial y f su único estado final.

 q0 0 0 D q1
 q2 1 0 l q3
 q4 0 0 D q5

 q0 1 1 D q0
 q3 0 0 l q4
 q4 1 1 l q4

 q1 0 1 l q2
 q3 1 1 l q3
 q5 0 0 H f

 q1 1 1 D q1
 q5 1 0 D q0

Computabilidad

Apellidos, Nombre:.....DNI:.....DNI:

4. (1,75 punto) Rellénense los <u>CUATRO</u> huecos de modo que la MT compute la siguiente función:

$$f(x) = 3x$$

(q0,	1, 0, D, q1)		
(q1,	1, 0, D, q2)	(q3, 1, 1, D, q3)	(q5, 0, 0, I, q6)
		(q3, 0, 1, D, q4)	(q6, 1, 1, I, q6)
(q2,	1, 1, D, q2)	(q4, 0, 1, I, q5)	

5. Queremos determinar la irresolubilidad del siguiente problema **C**: "Dado un programa while P, determinar si la función unaria asociada a P está definida sí y solo sí su entrada es mayor o igual que 10". Responde a los siguientes ejercicios:

a) **(0,5 puntos)** Construye un posible programa que más adelante nos permita reducir el problema de la parada al problema **C**.

el problema de la parada al problema ${f C}$.	

b) **(0,5 puntos)** Indica la función unaria semántica del programa construido en el apartado a).

- c) **(0,5 puntos, pero una respuesta incorrecta resta 0,2 puntos)** ¿Cómo utilizaría el método de reducción el programa del apartado a) para demostrar la irresolubilidad del problema **C**? Marca la única respuesta correcta:
 - ☐ Si tuviésemos un algoritmo (macro) **A** que resuelve el problema **C**, aplicándola al número que codifica el programa, dicho algoritmo podría resolver también el problema de la parada, que sabemos que es irresoluble, lo cual nos lleva a una contradicción, y por lo tanto **A** no puede existir.
 - ☐ Ejecutando el programa se resolvería directamente el problema de la parada. Como sabemos que el problema de la parada es irresoluble, esto nos lleva a una contradicción y por tanto **C** es irresoluble.

Computabilidad

Apellidos, N	Nombre:	 	 	DNI:

- Si tuviésemos un algoritmo (macro) **A** que resuelve el problema de la parada, aplicándola al número que codifica el programa, dicho algoritmo podría resolver también el problema **C**, lo cual nos lleva a una contradicción.
- d) **(0,75 puntos, pero una respuesta incorrecta resta 0,25 puntos)** Queremos demostrar, utilizando el Teorema de Rice, que el problema **C** es irresoluble. Para aplicarlo, necesitamos construir dos programas while Q1 y Q2. Marca la única respuesta que nos permitiría aplicar el Teorema de Rice:

Q1:	Q1:	Q1:
begin	begin	begin
while (X1≥10) do	while (X1<10) do	while (X1<10) do
X1:=succ(X1);	X1:=pred(X1);	X1:=0;
end	end	end
Q2:	Q2:	Q2:
begin	begin	begin
while (X1<10) do	X1:=20;	X2:=X1;
X1:=succ(X1);	end	while (X2≥10) do
end		X2:=0;
		while (X1<10) do
		X2:=succ(X2);
		end

6. (1 punto) Sea un programa while P cuyo código es 'e' y su función semántica ternaria es $\varphi_e(x,y,z)=\varphi_x(z)+2\,z^y$. Queremos construir un programa while P2 cuya función unaria semántica sea igual a $\varphi_a(z)=\varphi_{e1}(z)+2\,z^3$, siendo e1 una constante. ¿cómo se podría calcular el código 'a' de este programa? ¿se podría calcular para cualquier valor de e1?