★測定結果を表3のように整理し、図10のようにグラフを描く。

表3	トランジス	タ出力特性の測定結果
----	-------	------------

$I_B = 30[\mu A]$		$I_B = 60[\mu \text{ A}]$		$I_B = 90[\mu \text{ A}]$	
$V_{CE}[V]$	I_C [mA]	$V_{CE}[V]$	I_C [mA]	$V_{CE}[V]$	I_C [mA]

5. 考察

- (1) ダイオードの整流作用がなぜおこるのか、図2の(a)、(b)と関連付けて説明せよ。
- (3) 実験結果より、トランジスタの電流増幅作用とスイッチング作用を説明せよ。
- (4) トランジスタの測定で、 $P_c = 100 [mW]$ 曲線より左下の部分についてのみ測定するのはなぜか、 説明せよ。
- (5) 図10のグラフが飽和した部分で $\frac{\Delta I_C}{\Delta I_B}$ を電流増幅率という。 $V_C=5[{
 m V}]$ で I_B が $30[\mu{
 m A}]$ から $60[\mu{
 m A}]$ に変化したとき、 I_C はどれだけ変化したか。また、電流増幅率はいくらか。
- (6) 今回の実験から、自分が理解できたことを報告せよ。

改訂 2012/7/28 H.Sori 改訂 2014/3/20 N.Yabuki 改訂 2016/8/11 T.Okada 改訂 2017/8/30 M.Kawai 改訂 2018/9/6 M.Kawai