EXPERIMENT NO: 6

Title: A program to simulate cache memory management using page replacement algorithms

By ~

Shawn Louis

Roll no: 31

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra

EXPERIMENT NO:6

Page replacement algorithms

AIM	Write a program to simulate cache memory management usingpage					
	replacement algorithms.					
LEARNING	To implement various page replacement policies.					
OBJECTIVE	To implement various page replacement policies.					
Objective						
LEARNING	Student will be able to visualize the scenariow hennew pages enter the cache					
OUTCOME	memory using various algorithm.					
	memory using various argorithm.					
	CSL 403.1: Ability to compile a code for computer operations.					
LAB OUTCOME	, , , , , , , , , , , , , , , , , , ,					
PROGRAM	PO1•1,					
OUTCOME	PO5•2,					
	PO8•3,					
	PO9•3,					
	PO12•2,					
	PSO1•2					
	Remember,					
BLOOM'S	Understand					
TAXONOMY	Chacistana					
LEVEL						
	In operating systems that use paging for memory management,					
THEODY	page replacement algorithm are needed to decide which page					
THEORY	needed to be replaced when new page comes in. Whenever a					
	new page is referred and not present in memory, page fault					
	occurs and Operating System replaces one of the existing					
	pages with newly needed page.					
	Least Recently Used (LRU) algorithm is a Greedy algorithm					
	where the page to be replaced is least recently used.					
	A good approximation to the optimal algorithm is based on the					
	observation that pages that have been heavily used in the last					
	few instructions will probably be heavily used again in the next					
	few. Conversely, pages that have not been used for ages will					
	probably remain unused for a long time. This idea suggests a					
	realizable algorithm: when a page fault occurs, throw out the					
	page that has been unused for the longest time. This strategy is					
	called LRU (Least Recently Used) paging.					
	A 1					
	Advantage:					
	The advantage of LRU page replacement algorithm is that it					
	does not suffer from Belady's anomaly which is the					
	phenomenon where increasing the number of page frames					
	results in an increase in the number of page faults for a given					

Class:S.E Comps(Sem IV)

Lecturer:Sejal.Chopra Subject: PA Lab

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra
Subject: PA Lab

	1.Asktheusertoentertheframesize.(ex:takeit3) 2.Let				
	him enter the number of pages.				
	3. Ask the user to enter the page numbers (reference string).				
	4. Initially there occurs three(same as your frame size) page faults while filling the				
STEPS TO	frame.				
EXECUTE THE	5. Afterthat when the frame is full, the page is replaced depending on the				
PROGRAM	specific page replacement algorithm.				
	6. Whenever the same page appears in the frame ,a hit occurs.				
	7. Display in each clock cycle the contents of the frame. ie the page				
	numbers and show whether it is a hit or a miss.				
	8.Calculate the total no.of hits.misses and the hit ratio(no.of hits/total number of				
	pages entered) and miss ratio or fault ratio (no.of				
	misses/total number of pages entered).				

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra

```
CODE
                     #include<stdio.h>
                     int LRU(int time[], int n);
                     int main()
                        int nof, nog, f[10], p[30], c = 0, t[10], flag1, flag2, i, j, pos, faults = 0,hit=0;
                            float x1,x2;
                            printf("Enter number of f: ");
                            scanf("%d", &nof);
                            printf("Enter number of p: ");
                            scanf("%d", &nog);
                            int n=nog;
                            printf("Enter the page number: ");
                        for(i = 0; i < nog; ++i){ scanf("%d",
                            &p[i]);
                        }
                            for(i = 0; i < nof; ++i){ f[i] = -1;
                        }
```

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra
Subject: PA Lab

```
for(i = 0; i < nog; ++i){flag1 = flag2}
   = 0;
   for(j = 0; j < nof; ++j){if(f[j] == p[i]){}
                   c++; hit++;
                   t[j] = c;
                           flag1 = flag2 = 1;
                           break;
                   }
   }
   if(flag1 == 0){
                   for(j = 0; j < nof; ++j){if(f[j] == -1){}}
                           C++;
                           faults++;
                           f[j] = p[i]; t[j] = c; flag2
                           = 1;
                           break;
                   }
           }
   }
   if(flag2 == 0){
           pos = LRU(t, nof); c++;
           faults++;
           f[pos] = p[i]; t[pos] = c;
   }
   printf("\n");
   printf(" -----\n");
   for(j = 0; j < nof; ++j){ printf("%d\t",
           f[j]);
   }
           if (flag1==1 && flag2==1)
           printf("\tHIT");
           else
           printf("\tMISS");
x1= (float)hit/n; x2=
(float)faults/n;
   printf("\n\nTotal MISS = %d", faults);
   printf("\n\nTotal HITS = %d",hit);
   printf("\n\n ratio = %.2f",x2);
   printf("\n)nHIT ratio = %.2f",x1);
```

Class:S.E Comps(Sem IV)

Lecturer:Sejal.Chopra

Subject: PA Lab

Class:S.E Comps(Sem IV)

Lecturer:Sejal.Chopra

OUTPUT	Enter number of frames: 3 Enter number of pages: 12 Enter the page number: 2 3 2 1 5 2 4 5 3 2 5						
	2 2 -1	-1	MISS				
	2 3		MISS				
	2 3	-1	HIT				
	2 3	1	MISS				
	2 5	1	MISS				
	2 5	1	ніт				
	2 5	4	MISS				
	2 5	4	ніт				
	3 5	4	MISS				
	3 5	2	MISS				
	3 5	2	HIT				
	3 5	2	HIT				
	Total MISS = 7						
	Total HITS = 5						
	MISS ratio = 0.58 HIT ratio = 0.42						
	CONCLUSION	Thus, LRU(Last Recently Used) algorithm helps in replacing a new page with a page that has been less frequently called so as to make efficient use of memory. Though it's a stack based page replacement algorithm, it consumes too much time in finding the page and deleting it.					

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra

REFERENCES	1. William Stallings, "Computer Organization and Architecture: Designing for
	Performance", Pearson Publication, 10 th Edition, 2013
	2. B. Govindarajulu, "Computer Architecture and Organization: Design
	Principles and Applications", Second Edition, McGraw•Hill (India)

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra