

Měření M_x výpočtem z vlastních indukčností

Martin Zlámal

© Datum poslední revize 28. října 2013 IAT_EX

Obsah

1	Zadá	ání	2				
2	Teor	retický úvod	2				
3	Schéma zapojení						
4	Postup měření						
5	Naměřené a dopočítané hodnoty						
6	Závě	ér	4				
7	Příst	troje	4				
Seznam obrázků 1 Sériové resp. antisériové schéma zapojení							
Seznam tabulek							
	1	Naměřené a dopočítané hodnoty pro $f=1kHz$	3				

1 Zadání

- 1. Pomocí digitálního RLC měřiče změřte vlastní a vzájemnou indukčnost dvou vinutí předloženého vzorku.
- 2. Z naměřených hodnot dopočítejte činitel vazby obou cívek.
- 3. Ze znalosti absolutních chyb RLC měřiče určete absolutní chybu, se kterou byl činitel vazby změřen.
- 4. Zhodnoť te výsledky měření.

2 Teoretický úvod

Vlastní indukčnost

Vlastní indukčnost je fyzikální veličina, vyjadřující schopnost dané konfigurace elektricky vodivých těles protékaných elektrickým proudem vytvářet ve svém okolí magnetické pole.

Vzájemná indukčnost

Vzájemná indukčnost je fyzikální veličina, vyjadřující velikost vzájemné indukce dvou blízkých cívek.

3 Schéma zapojení

Obrázek 1: Sériové resp. antisériové schéma zapojení

4 Postup měření

Nejdříve si pomocí RLC měřiče změříme vlastní indukčnosti jednotlivých cívek. Poté změříme vzájemné indukčnosti s zapojením sériovém a antisériovém. Ze znalosti těchto hodnot můžeme spočítat celkovou vzájemnou indukčnost, činitel vazby a chybu měření.

5 Naměřené a dopočítané hodnoty

Tabulka 1: Naměřené a dopočítané hodnoty pro f = 1kHz

Naměře	ené indukčnosti	Rozsah RLC [mH]	Absolutní chyby měření	
$L_1[H]$	0,01619	100	$\Delta L_1[H]$	•
$L_2[H]$	0,01073	100	$\Delta L_2[H]$	•
$L_A[H]$	0,00930	10	$\Delta L_A[H]$	•
$L_B[H]$	0,04462	100	$\Delta L_B[H]$	•

Vzájemná indukčnost:

$$M_x = \frac{L_A - L_B}{4} = \frac{0,00930 - 0,04462}{4} = -0,00883H \tag{1}$$

Činitel vazby:

$$\kappa = \frac{|M_x|}{\sqrt{L_1 L_2}} = \frac{0,00883}{\sqrt{0,01619 \cdot 0,01073}} = 0,67[-]$$
 (2)

Chyby RLC měřiče jsou podle rozsahů:

- Rozsah 100mH = $\pm 0.3\% + (L_x/100000)\% + 5dgt$
- Rozsah $10\text{mH} = \pm 0.5\% + (L_x/100000)\% + 5dgt$

Kde L_x jsou zobrazená čísla na dispeji, tzn. pokud L=88,88H, pak $L_x=8888$. Absolutní chyba vzájemné indukčnosti je potom:

$$\Delta M_x = \Delta L_A - \Delta L_B = 0,000660 - 0,002818 = -0,002158H \tag{3}$$

S tím, že:

$$\Delta L_1 = \pm 0,03 \cdot 0,01619 + 0,01619\% + 0,00005 = \pm 0,000538H$$

$$\Delta L_2 = \pm 0,03 \cdot 0,01073 + 0,01073\% + 0,00005 = \pm 0,000373H$$

$$\Delta L_A = \pm 0,05 \cdot 0,00930 + 0,00930\% + 0,00005 = \pm 0,000330H$$

$$\Delta L_B = \pm 0,03 \cdot 0,04462 + 0,04462\% + 0,00005 = \pm 0,001409H$$

Relativní chyba vzájemné indukčnosti:

$$\delta M_x = \frac{\Delta M_x}{M_x} = \frac{-0,002158}{-0,00883} = 0,244394[-] \tag{4}$$

Relativní chyba vlastní indukčnosti L_1 :

$$\delta L_1 = \frac{\Delta L_1}{L_1} = \frac{0,000538}{0,01619} = 0,03323[-] \tag{5}$$

Relativní chyba vlastní indukčnosti L_2 :

$$\delta L_2 = \frac{\Delta L_2}{L_2} = \frac{0,000373}{0,01073} = 0,034762[-] \tag{6}$$

Relativní chyba činitele vazby κ :

$$\delta\kappa = \delta M_x + \frac{\delta L_1}{2} + \frac{\delta L_2}{2} = 0,244394 + \frac{0,03323}{2} + \frac{0,034762}{2} = 0,27839[-] \quad (7)$$

Absolutní chyba činitele vazby κ :

$$\Delta \kappa = \delta \kappa \cdot \kappa = 0,27839 \cdot 0,67 = 0,186521[-] \tag{8}$$

6 Závěr

Číselné vyjádření vzájemného ovlivňování induktorů určuje činitel vazby. Ten by měl být v rozsahu 0-1, což určuje zda se induktory vůcen neovlivňují (0), nebo jestli je mezi induktory těsná vazba (ideálně 1). V tomto případě vyšel činitel vazby $\kappa=0,67$.

7 Přístroje

• RLC Meter Escort ELC 3131D, evid. 109599