## **ECE 341**

## Lecture # 5

Instructor: Zeshan Chishti zeshan@ece.pdx.edu

October 13, 2014

**Portland State University** 

## **Lecture Topics**

- Computer Arithmetic
  - 2's Complement Representation
  - Addition and subtraction of signed integers
    - Binary Addition
    - Overflow Conditions
    - Ripple-carry Adders
  - Design of Fast Adders
    - Carry Looakahead Adders (CLA)
- Reference:
  - Chapter 9: Sections 9.1, 9.2

## **Two's Complement Representation**

- N-bit binary digit can represent any integer between  $-2^{N-1}$  and  $+2^{N-1}-1$
- Most significant bit (MSB) indicates sign of the integer
- To obtain representation for a signed integer
  - Invert the bits (1's complement)
  - > Add 1
  - ►E.g., +4 = 0100 -4 = 1011 + 1 = 1100
- To add a +ve number, go clockwise,
- To add a –ve number, go anticlockwise





### Addition and Subtraction – 2's Complement



Simpler addition/subtraction scheme makes two's complement the most common choice for integer number systems

# **Overflow in Integer Arithmetic**



When the result of an add/subtract cannot be represented by the same number of bits as the operands, overflow occurs

### **Overflow Conditions**



#### For addition:

- Overflow cannot occur if the sign of two operands is different
- Overflow occurs when the sign of two operands is the same AND the sign of result is different from the sign of operands

#### For both addition and subtraction:

Overflow occurs when the carry-in to MSB is different from the carry-out of MSB

## **Logic Specification for Binary Addition**

| x <sub>i</sub> | y <sub>i</sub> | Carry-in $c_i$ | Sum s <sub>i</sub> | Carry-out $c_{i+1}$ |
|----------------|----------------|----------------|--------------------|---------------------|
| 0              | 0              | 0              | 0                  | 0                   |
| 0              | 0              | 1              | 1                  | 0                   |
| 0              | 1              | 0              | 1                  | 0                   |
| 0              | 1              | 1              | 0                  | 1                   |
| 1              | 0              | 0              | 1                  | 0                   |
| 1              | 0              | 1              | 0                  | 1                   |
| 1              | 1              | 0              | 0                  | 1                   |
| 1              | 1              | 1              | 1                  | 1                   |

At the *i*<sup>th</sup> stage:

#### Input:

 $c_i$  is the carry-in

#### **Output:**

 $s_i$  is the sum

 $c_{i+1}$  carry-out to  $(i+1)^{st}$  stage

$$S_{i} = X_{i}Y_{i}C_{i} + X_{i}Y_{i}C_{i} + X_{i}Y_{i}C_{i} + X_{i}Y_{i}C_{i} = X_{i} \oplus y_{i} \oplus c_{i}$$

$$C_{i+1} = Y_{i}C_{i} + X_{i}C_{i} + X_{i}Y_{i}$$

#### **Example:**

$$\frac{X}{Y} = \frac{7}{13} = \frac{0}{1} = \frac{0$$

## **Addition Logic for a Single Stage**



**Full Adder (FA)**: Symbol for the complete circuit for a single stage of addition

### *n*-bit Adder

- •Cascade *n* full-adder (FA) blocks to form a *n*-bit adder.
- Carries propagate or ripple through this cascade, *n*-bit <u>ripple carry adder</u>



Most significant bit (MSB) position

Least significant bit (LSB) position

### kn-bit Adder

Two numbers each having kn-bits can be added by cascading k n-bit adders For example, 8 4-bit adders can be cascaded to add two 32-bit numbers



Each *n*-bit adder forms a block
Carries ripple or propagate through blocks, Blocked Ripple Carry Adder

### *n*-bit Subtractor

- Recall X Y is equivalent to adding 2's complement of Y to X.
- 2's complement is equivalent to 1's complement + 1.
- $\bullet \quad X Y = X + \overline{Y} + 1$
- Carry-in  $c_0$  into the LSB position is equal to "1" to perform subtraction



Most significant bit (MSB) position

Least significant bit (LSB) position

# *n*-bit Adder/Subtractor



Add/sub control = 0 implies addition. Add/sub control = 1 implies subtraction.

## **Detecting Overflows**

#### Recall that for addition

- Overflow can occur only when the sign of two operands is the same
- Overflow occurs if the sign of result is different from the sign of operands
- Recall that the MSB represents the sign.
  - $x_{n-1}$ ,  $y_{n-1}$ ,  $s_{n-1}$  represent the sign of operand x, operand y and result s respectively
- Circuit to detect overflow in an n-bit adder can be implemented as:

$$Overflow = x_{n-1}y_{n-1}\bar{s}_{n-1} + \bar{x}_{n-1}\bar{y}_{n-1}s_{n-1}$$

#### Recall that for both addition/subtraction,

- Overflow occurs when carry-in to MSB is different from carry-out of MSB
- Simpler circuit to detect overflow in an n-bit adder/subtractor is:

$$Overflow = c_n \oplus c_{n-1}$$

## **Computing the Add Time**



#### Consider 0th stage:

- • $c_1$  is available after 2 gate delays.
- • $s_0$  is available after 1 gate delay.

- c<sub>i</sub> needed to compute s<sub>i</sub>
- Carry propagation is the critical path in a ripple-carry adder



## Computing the Add Time (contd..)

Cascade of 4 Full Adders, or a 4-bit adder



- $s_0$  available after 1 gate delays,  $c_1$  available after 2 gate delays.
- $s_1$  available after 3 gate delays,  $c_2$  available after 4 gate delays.
- $s_2$  available after 5 gate delays,  $c_3$  available after 6 gate delays.
- $s_3$  available after 7 gate delays,  $c_4$  available after 8 gate delays.

For an *n*-bit ripple adder,  $s_{n-1}$  is available after 2n-1 gate delays  $c_n$  is available after 2n gate delays.

### **Fast Addition**

Recall the equations:

$$s_i = x_i \oplus y_i \oplus c_i$$
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Second equation can be written as:

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

We can write:

$$c_{i+1} = G_i + P_i c_i$$

$$where G_i = x_i y_i \text{ and } P_i = x_i + y_i$$

- G<sub>i</sub> is called generate function and P<sub>i</sub> is called propagate function
- $G_i$  and  $P_i$  computed only from  $x_i$  and  $y_i$  and not  $c_i$ , thus they can be computed in one gate delay after X and Y are applied to the inputs of an n-bit adder

# Carry Lookahead Adder (CLA)

$$\begin{split} c_{i+1} &= G_i + P_i c_i \\ c_i &= G_{i-1} + P_{i-1} c_{i-1} \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} c_{i-1}) \\ continuing \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} c_{i-2})) \\ until \\ c_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + ... + P_i P_{i-1} ... P_1 G_0 + P_i P_{i-1} ... P_0 c_0 \end{split}$$

- $c_{i+1}$  in the above equation depends only on propagate functions, generate functions and  $c_0$
- Calculation of c<sub>i+1</sub> no longer requires calculation of c<sub>i</sub>, c<sub>i-1</sub>, c<sub>i-2</sub>...... etc.
   => all carries can be computed in parallel
- This is called carry lookahead addition (CLA)

## **Understanding Carry-Lookahead Addition**

- CLA relies on generate (G) and propagate (P) functions
- An *n*-bit CLA computes G<sub>i</sub> and P<sub>i</sub> at each of its *n* stages

$$G_i = x_i y_i$$
 and  $P_i = x_i + y_i$ 

- **G**<sub>i</sub> = **1** implies that stage *i* **generates** a carry-out of **1**, independent of its carry-in
- P<sub>i</sub> = 1 implies that stage *i* propagates a carry-in of 1 from its input to its output
- The carry-out  $c_{i+1}$  of stage i is equal to 1, if:
  - ► Stage *i* generates a carry-out (i.e.,  $G_i = 1$ ), or
  - Any stage j, such that j < i, generates a carry-out (i.e.,  $G_j = 1$ ) and all the stages between j and i, including i, propagate the carry (i.e.,  $P_{j+1} = P_{j+2} = ... = P_i = 1$ ), or
  - $c_0 = 1$  and all the stages up to and including stage *i* propagate the carry (i.e.,  $c_0 = 1$ )

$$P_0 = P_1 = \dots = P_i = 1$$

• Therefore, the general expression for  $c_{i+1}$  in a CLA is:

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 C_0$$

## **CLA Example**

The general expression for c<sub>i+1</sub> in CLA is:

$$ightharpoonup c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 C_0$$

Consider 4-bit addition. The carries can be implemented as:

$$c_1 = G_0 + P_0 c_0$$

$$c_2 = G_1 + P_1 G_0 + P_1 P_0 c_0$$

$$c_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$$

$$c_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0$$

Above equations can be used to implement a 4-bit carry-lookahead adder

# 4-bit Carry Lookahead adder



