1 Division Algorithm

Problem 5. Use old-fashioned long division to implement the Division Algorithm and write a = bq + r, $0 \le r < b$, for each a and b listed below:

- (a) a = 20, b = 3.
- (b) a = 54, b = 7.

Problem 8. Show that when the square of an odd integer is divided by 8, the remainder is 1. (Hint: remember 2|n(n+1).)

Problem 10. Let $n, m \in \mathbb{N}$ with $m \neq 1$. Show n can be uniquely written in the form $n = \sum_{k=0}^{N} a_k m^k$ for some $N \in \mathbb{Z}_{\geq 0}$ and $a_k \in \{0, 1, \dots, (m-1)\}$ with $a_N \neq 0$. Hint: Use induction on n and begin by choosing the largest $N \in \mathbb{Z}_{\geq 0}$ so that $m^N \leq n$. Use the Division Algorithm to write $n = a_N m^N + r$ and then apply the inductive hypothesis to r.

2 Divisors

Problem 12. List all of the divisors of the following:

- (a) 52,
- (b) ...

Problem 14. Evaluate the following:

- (a) (42,56),
- (b) ...

Problem 17. Let $b, q, r \in \mathbb{Z}$ and let a = bq + r with a and b not both 0.

- (a) Show a common divisor of a and b is a divisor of r and that a common divisor of b and r is a divisor of a.
- (b) Conclude that (a,b) = (r,b)

Problem 19. Let $a, b \in \mathbb{Z}$, not both 0.

- (a) If (a,b) = d, then $(\frac{a}{d}, \frac{b}{d}) = 1$. Hint: Write ax + by = d so that $\frac{a}{d}x + \frac{b}{d}y = 1$.
- (b) ...