MIDTERM 1 MATH 3215-C (PROBABILITY AND STATISTICS)

TUESDAY, SEPTEMBER 22

INSTRUCTOR: ARMENAK PETROSYAN

IMPORTANT: Please read carefully (1pt)

- You have a 12 hour window to take and submit your exam (7 am 7 pm).
- Be warned: **exam ends at 7 pm** (e.g. if you start at 6 pm, you only have 1 hour).
- After you opened this file you have 100 minutes to finish the work and 20 minutes to submit it (120 minutes in total).
- If you run into difficulties submitting on GradeScope, email the files to the instructor before the 120 minutes expire and before 7 pm. Late submissions will not be accepted.
- If you encounter technical problems, email the instructor as soon as possible.
- You CAN use the course textbook and the lecture notes/slides for reference.
- You **CAN** use any fact we presented in class without proving them; anything else used must be proved.
- You CAN use any calculator you want.
- You CANNOT get any help from anyone.
- Posting the problems online to get help or to let others know what the problems are will be a violation; it will be reported and result in a penalty.
- Write complete answers to get full credit.
- The total amount of points for this exam is 75. Different problems have different weights.
- Be wise with your time. You can handwrite your answers on a different paper, and submit a photocopy. Make sure it is readable. No need to print the problem sheet or copy the problems.

Problem 1. (10pt) Post office employs three postmen and they need to deliver post to 120 different households. In how many different ways can they split the job equally?

Solution. The job is split equally implies each postmen is going to visit 120/3 = 40 houses. The first postman can visit the 40 houses in $\binom{120}{40}$ ways. The remaining 80 houses the second postman can visit in $\binom{80}{40}$ ways, and the third postman will visit the remaining houses. Using the multiplication principle, the total number is going to be

$$\binom{120}{40} \cdot \binom{80}{40} \cdot 1 = \frac{120!}{80!40!} \frac{80!}{40!40!} = \frac{120!}{(40!)^3}.$$

Problem 2 (10pt). Four people are asked to guess a number between 0 and 9. What is the probability that at least two of them will guess the same number (assuming equiprobability space)?

Solution. The total number of all possible number combinations is 10^4 . The number of all different 4 digit combinations is $P(10,6) = \frac{10!}{6!}$. Therefore, the probability that none of them guesses the same number is $\frac{10!}{6!10^4}$. Consequently, the probability of at least tow have them guessing the same number is $1 - \frac{10!}{6!10^4} = 0.496$.

Problem 3 (10pt). a) Let A, B be any two events. Show that

$$P(A \cap B) \ge P(A) + P(B) - 1.$$

b) For any events A_1, \ldots, A_n , use induction to show

$$P(A_1 \cap \cdots \cap A_n) > P(A_1) + \cdots + P(A_n) - n + 1.$$

Solution. a) Using the inclusion-exclusion principle

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Probability of an event is always less than or equal than 1, therefore

$$1 > P(A) + P(B) - P(A \cap B)$$

which implies

$$P(A \cap B) \ge P(A) + P(B) - 1.$$

b) For any events A_1, \ldots, A_n , use induction to show

$$P(A_1 \cap \dots \cap A_n) \ge P(A_1) + \dots + P(A_n) - n + 1.$$

The first step of the induction is proved in (a). Assume the inequality is true for A_1, \ldots, A_{n-1} :

$$P(A_1 \cap \cdots \cap A_{n-1}) \ge P(A_1) + \cdots + P(A_{n-1}) - n + 2.$$

Put $B = A_1 \cap \cdots \cap A_n$. From (a) and the inductive assumption,

$$P(A_1 \cap \dots \cap A_n) = P(B \cap A_n) \ge p(B) + P(A_n) - 1$$

$$\ge P(A_1) + \dots + P(A_{n-1}) - n + 2 + P(A_n) - 1$$

$$= P(A_1) + \dots + P(A_n) - n + 1.$$

Problem 4 (10pt). Are you more likely to win exactly 3 games out of 4 or exactly 5 games out of 8 against an equally strong opponent?

Solution. Both opponents are equally strong, implies they each have the same probability p = 0.5 to win in each round. The number of wins in four games is a binomial distribution with parameters (n = 4, p = 0.5) so the probability of winning 3 games is $\binom{4}{3}0.5^4 = 0.25$.

Similarly, the number of wins in 8 games is a binomial distribution with parameters (n=8, p=0.5) so the probability of winning 5 games is $\binom{8}{5}0.5^8 = 0.21875$.

The probability of 3 wins in 4 games is larger than the probability of 5 wins in 8 games.

Problem 5 (12pt). Urn 1 contains one red ball and three blue balls. Urn 2 contains one red ball. A random ball is drawn from urn 1 and placed into urn 2. Then one ball is drawn at random from urn 2 and it turns out red. What is the conditional probability that the ball remaining in the urn 2 is also red?

Solution. Let R_1 denote the event if red ball was drawn from urn 1 and R_2 if red ball was drawn from urn 2. Same for blue balls. We want to compute $P(R_1|R_2)$. Then $P(R_1) = \frac{1}{4} = 0.15$ and $P(B_1) = \frac{3}{4} = 0.75$. Then

Then
$$P(R_1) = \frac{1}{4} = 0.15$$
 and $P(B_1) = \frac{3}{4} = 0.75$. Then

$$P(R_2|R_1) = 1$$
, $P(R_2|B_1) = 0.5$.

Then (easier to see if you draw the probability tree)

$$P(R_1|R_2) = \frac{P(R_2R_1)}{P(R_2)} = \frac{P(R_2R_1)}{P(R_2R_1) + P(R_2B_1)}$$
$$= \frac{P(R_2|R_1)P(R_1)}{P(R_2|R_1)P(R_1) + P(R_2|R_1)P(R_1)} = \frac{0.25}{1 \cdot 0.25 + 0.5 \cdot 0.75} = 0.4.$$

Problem 6 (12pt). Suppose the cdf of the random variable X is given by

$$F(x) = \begin{cases} 0 & x < -1\\ \frac{1}{2} & -1 \le x < 2\\ \frac{3}{4} & 2 \le x < 3\\ \frac{5}{6} & 3 \le x < 4\\ 1 & x > 4 \end{cases}.$$

- (a) Draw the histogram of X.
- (b) Find the mean and variance of X.

Solution. (a) Note that $Range(X) = \{-1, 2, 3, 4\}$ and the pmf is

$$f(-1) = \frac{1}{2} - 0 = \frac{1}{2}, \quad f(2) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4},$$

$$f(3) = \frac{5}{6} - \frac{3}{4} = \frac{1}{12}, \quad f(4) = 1 - \frac{5}{6} = \frac{1}{6}.$$

(b)

$$E[X] = \sum_{x \in \text{Range}(X)} x f(x) = -1\frac{1}{2} + 2\frac{1}{4} + 3\frac{1}{12} + 4\frac{1}{6} = \frac{11}{12}.$$

$$E[X^2] = \sum_{x \in \text{Range}(X)} x^2 f(x) = 1\frac{1}{2} + 4\frac{1}{4} + 9\frac{1}{12} + 16\frac{1}{6} = \frac{11}{12} = \frac{59}{12}.$$

$$VarX = E[X^2] - E[X]^2 = \frac{587}{144} \approx 4.076.$$

Problem 7 (10pt). A fair coin is flipped 5 times and the number of heads is recorded as X_1 . The same coin is then flipped 6 times and the number of heads is recorder as X_2 . Find the conditional probability

$$P(X_1 = 2|X_1 + X_2 = 4).$$

Solution. Notice that

$$P(X_1 = 2|X_1 + X_2 = 4) = \frac{P(X_1 = 2)P(X_2 = 2)}{P(X_1 + X_2 = 4)}.$$

 X_1 has a binomial distribution with parameters (n=5, p=0.5), X_2 has a binomial distribution with parameters (n=6, p=0.5) and $X_1 + X_2$ has a binomial distribution with parameters (n=11, p=0.5). Therefore

$$P(X_1 = 2|X_1 + X_2 = 4) = \frac{\binom{5}{2}0.5^5\binom{6}{2}0.5^6}{\binom{11}{4}0.5^{11}} = \frac{150}{330} = \frac{5}{11} \approx 0.455.$$