Лабораторная работа 1

Попов Дмитрий Павлович, НФИмд-01-23

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	ç
4	Список литературы	10

List of Figures

2.1	cesar1																6
2.2	cesar2																7
2.3	cesar_out .																7
2.4	atbash																8
2.5	atbash out			_													8

List of Tables

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра математического моделирования и искусственного интеллекта ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

дисциплина: Математические основы защиты информации и информацион-

ной безопасности

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Попов Дмитрий Павлович

Группа: НФИмд-01-23

MOCKBA

2023 г.

1 Цель работы

Целью данной работы является приобретение практических навыков шифрования простой замены.[1]

2 Выполнение лабораторной работы

Требуется реализовать шифр Цезаря с произвольным ключом k и Реализовать шифр Атбаш.

Для этого я реализовал две программы на языке Python Первая программа для шифра Цезаря(fig. 2.1)(fig. 2.2).

```
ち lab_1_cesar.py 🗡 🛮 ち lab_1_atbash.py
      import sys
      print("----")
      print("----")
      alphabet = "абвгдеёжзийклмнопрстуфхцчшщъыьэюя"
      alphabet = alphabet.split()
      password = list(input("Введите пароль (неповторяющиеся буквы): ").lower())
      k = int(input("Введите сдвиг k: "))
      k = k % len(alphabet)
      uniq_letters = list()
      for letter in alphabet:
          if letter not in password:
              uniq_letters.append(letter)
         cypher = password + uniq_letters
      elif k <= len(alphabet) - len(password):</pre>
          cypher = uniq_letters[-k:] + password + uniq_letters[:len(uniq_letters)-k]
          sys.exit()
```

Figure 2.1: cesar1

```
print("Таблица шифрования")
print(alphabet)
print(cypher)

while True:
    mess = str(input("Введите предложение, которое нужно зашифровать (0 - для завершения шифрования): "))

if mess == '0':
    print("Выход из шифрования...")
break

cypher_mess = str()
for symbol in mess:
    if symbol == ' ':
        cypher_mess += ' '
    else:
        cypher_mess += cypher[alphabet.index(symbol)]

print(" Введенное предложение: ", mess)
print(" Зашированное предложение: ", cypher_mess)
```

Figure 2.2: cesar2

Затем я запустил программу, ввел пароль и сдвиг. Получил таблицу шифрования. Затем ввел предложение, которое нужно закодировать и получил зашифрованное сообщение. Вывод работы программы (fig. 2.3)

Figure 2.3: cesar_out

Вторая программа для шифра Атбаш(fig. 2.4).

Figure 2.4: atbash

Вывод работы программы (fig. 2.5)

Figure 2.5: atbash out

3 Выводы

В результате выполнения работы я освоил на практике шифрование простой замены. Шифр Цезаря и Атбаш.

4 Список литературы

1. Методические материалы курса