Lecture 3

Chapter 2: Basic Laws

Ohm's Law Kirchhoff's Current Law Kirchhoff's Voltage Law

Objectives of the Lecture

- Present Kirchhoff's Current and Voltage Laws.
- Demonstrate how these laws can be used to find currents and voltages in a circuit.
- Explain how these laws can be used in conjunction with Ohm's Law.

Resistivity, p

- Resistivity is a material property
 - Dependent on the number of free or mobile charges (usually electrons) in the material.
 - In a metal, this is the number of electrons from the outer shell that are ionized and become part of the 'sea of electrons'
 - Dependent on the mobility of the charges
 - Mobility is related to the velocity of the charges.
 - It is a function of the material and magnitude of the voltage applied to make the charges move, and temperature.

Resistivity of Common Materials at Room Temperature (300K)

Material	Resistivity (Ω-cm)	Usage
Silver	1.64x10 ⁻⁸	Conductor
Copper	1.72x10 ⁻⁸	Conductor
Aluminum	2.8x10 ⁻⁸	Conductor
Gold	2.45x10 ⁻⁸	Conductor
Carbon (Graphite)	4x10 ⁻⁵	Conductor
Germanium	0.47	Semiconductor
Silicon	640	Semiconductor
Paper	10^{10}	Insulator
Mica	$5x10^{11}$	Insulator
Glass	10^{12}	Insulator
Teflon	$3x10^{12}$	Insulator

Resistance, R

• Resistance takes into account the physical dimensions of the material $R = \rho \frac{L}{A}$

-where:

• L is the length along which the carriers are moving

• A is the cross sectional area that the free charges move through.

Ohm's Law

• Voltage drop across a resistor is proportional to the current flowing through the resistor

$$v = iR$$

Units: $V = A\Omega$

where A = C/s

Short Circuit

• If the resistor is a perfect conductor (or a short circuit)

$$R = 0 \Omega$$
,

then

$$v = iR = 0 V$$

 no matter how much current is flowing through the resistor

Open Circuit

• If the resistor is a perfect insulator, $R = \infty \Omega$

• then

$$i = \lim_{R \to \infty} \frac{\mathbf{v}}{R} = 0$$

no matter how much
 voltage is applied to (or dropped across) the
 resistor.

Conductance, G

Conductance is the reciprocal of resistance

$$G = R^{-1} = i/v$$

- Unit for conductance is **S** (siemens) or (mhos, **\(\)**)

$$G = A\sigma/L$$

where σ is conductivity,
which is the inverse of resistivity, ρ

Power Dissipated by a Resistor

•
$$p = iv = i(iR) = i^2R$$

•
$$p = iv = (v/R)v = v^2/R$$

•
$$p = iv = i(i/G) = i^2/G$$

•
$$p = iv = (vG)v = v^2G$$

Circuit Terminology

Node

- point at which 2+ elements have a common connection
 - e.g., node 1, node 2, node 3

Path

- a route through a network, through nodes that never repeat
 - e.g., $1 \rightarrow 3 \rightarrow 2$, $1 \rightarrow 2 \rightarrow 3$

Loop

- a path that starts & ends on the same node
 - e.g., $3 \rightarrow 1 \rightarrow 2 \rightarrow 3$

Branch

- a single path in a network; contains one element and the nodes at the 2 ends
 - e.g., $1 \rightarrow 2$, $1 \rightarrow 3$, $3 \rightarrow 2$

(b)

Example 2.4

Determine the number of branches and nodes in the circuit shown in Fig. 2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elements in the circuit, the circuit has four branches: 10 V, 5 Ω , 6 Ω , and 2 A. The circuit has three nodes as identified in Fig. 2.13. The 5- Ω resistor is in series with the 10-V voltage source because the same current would flow in both. The 6- Ω resistor is in parallel with the 2-A current source because both are connected to the same nodes 2 and 3.

Practice Problem 2.4

How many branches and nodes does the circuit in Fig. 2.14 have? Identify the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The $1-\Omega$ and $2-\Omega$ resistors are in parallel. The $4-\Omega$ resistor and 10-V source are also in parallel.

Exercise

• For the circuit below:

- a. Count the number of circuit elements.
- b. If we move from *B* to *C* to *D*, have we formed a path and/or a loop?
- c. If we move from *E* to *D* to *C* to *B* to *E*, have we formed a path and/or a loop?

Kirchhoff's Current Law (KCL)

- Robert Kirchhoff: German university professor, born while Ohm was experimenting
- Based upon conservation of charge

$$\sum_{n=1}^{\infty} i_n = 0$$
Where N is the total number of branches connected to a node.

$$\sum_{\text{node}} i_{\text{enter}} = \sum_{\text{node}} i_{\text{leave}}$$

 the algebraic sum of the currents entering and exiting any node is zero.

$$i_A + i_B - i_C - i_D = 0$$

$$-i_A - i_B + i_C + i_D = 0$$

$$i_D$$

$$i_C$$

Kirchhoff's Voltage Law (KVL)

- Based upon conservation of energy
 - the algebraic sum of voltages dropped across components around a loop is zero.

$$\sum_{m=1}^{M} v = 0$$

Where M is the total number of branches in the loop.

$$\sum v_{drops} = \sum v_{rises}$$

To avoid violating KVL, a circuit cannot contain two different voltages V_1 and V_2 in parallel unless $V_1 = V_2$.

Figure 2.20

Voltage sources in series: (a) original circuit, (b) equivalent circuit.

• For the circuit, compute the current through R₃ if it is known that the voltage source supplies a

current of 3 A.

• Use KCL

$$3 - 2 - i + 5 = 0$$

$$i = 3 - 2 + 5 = 6$$
 A

• Referring to the single node below, compute:

a.
$$i_B$$
, given $i_A = 1$ A, $i_D = -2$ A, $i_C = 3$ A, and $i_E = 4$ A

b.
$$i_{\rm E}$$
, given $i_{\rm A} = -1$ A, $i_{\rm B} = -1$ A, $i_{\rm C} = -1$ A, and $i_{\rm D} = -1$ A

• Use KCL

$$i_{\rm A} + i_{\rm B} - i_{\rm C} - i_{\rm D} - i_{\rm E} = 0$$

a.
$$i_{B} = -i_{A} + i_{C} + i_{D} + i_{E}$$

 $i_{B} = -1 + 3 - 2 + 4 = 4 A$

b.
$$i_{\rm E} = i_{\rm A} + i_{\rm B} - i_{\rm C} - i_{\rm D}$$

 $i_{\rm E} = -1 - 1 + 1 + 1 = 0 \text{ A}$

• Determine I, the current flowing out of the voltage source.

-Use KCL

- 1.9 mA + 0.5 mA + I are entering the node.
- 3 mA is leaving the node.

$$1.9mA + 0.5mA + I = 3mA$$

 $I = 3mA - (1.9mA + 0.5mA)$
 $I = 0.6mA$

V1 is generating power.

• Suppose the current through R2 was entering the node and the current through R3 was leaving the node.

- Use KCL

- 3 mA + 0.5 mA + I are entering the node.
- 1.9 mA is leaving the node.

$$3mA + 0.5mA + I = 1.9mA$$

 $I = 1.9mA - (3mA + 0.5mA)$
 $I = -1.6mA$

V1 is dissipating power.

If voltage drops are given instead of currents,

$$I_1 = 2V / 7k\Omega = 0.286mA$$

$$I_2 = 4V / 2k\Omega = 2mA$$

$$I_3 = 1.75V / 5k\Omega = 0.35mA$$

- you need to apply Ohm's Law
 to determine the current flowing
 through each of the resistors
 before you can find the current
 flowing out of the voltage
 supply.
 - I₁ is leaving the node.
 - I₂ is entering the node.
 - I₃ is entering the node.
 - I is entering the node.

$$I_2 + I_3 + I = I_1$$

 $2mA + 0.35mA + I = 0.286mA$
 $I = 0.286mA - 2.35mA = -2.06mA$

• For each of the circuits in the figure below, determine the voltage v_x and the current i_x .

Applying KVL clockwise around the loop and Ohm's law

$$-5 - 7 + v_x = 0$$
$$v_x = 12 \text{ V}$$

$$i_x = \frac{v_x}{100} = \frac{12}{100} \text{ A} = 120 \text{ mA}$$

$$+3+1+v_x=0$$

$$v_x = -4 \text{ V}$$

$$i_x = \frac{v_x}{10} = -400 \text{ mA}$$

• For the circuit below, determine

- a. v_{R2}
- b. v_{x}

a.
$$4 - 36 + v_{R2} = 0$$

$$v_{R2} = 32 \text{ V}$$

b.
$$-32 + 12 + 14 + v_x = 0$$

$$v_x = 6 \text{ V}$$

• For the circuit below, determine

a. v_{R2}

b.
$$v_x$$
 if $v_{R1} = 1$ V.

a. KVL yields
$$-8 - 12 + v_{R2} = 0$$

$$\underline{\mathbf{v}_{R2}} = 20 \text{ V}$$

b. KVL yields
$$-20 + 7 - 9 - v_2 - 3 + v_{R1}$$

where $v_{R1} = 1$ V. Thus, $v_2 = -24$ V

• For the circuit below, determine v_r

$$-60 + v_8 + v_{10} = 0$$

$$-v_{10} + v_4 + v_x = 0$$

$$-60 + v_8 + v_{10} = 0$$

$$v_{10} = 0 + 60 - 40 = 20 \text{ V}$$

$$v_x = 20 - v_4$$

$$i_4 = 5 - i_{10} = 5 - \frac{v_{10}}{10} = 5 - \frac{20}{10} = 3$$

$$v_4 = (4)(3) = 12 \text{ V}$$

$$v_4 = (4)(3) = 12 \text{ V}$$
 $v_x = 20 - 12 = 8 \text{ V}$

Example-10...

- Find the voltage across R1.
 - Note that the polarity of the voltage has been assigned in the circuit schematic.

– First, define a loop that include R1.

...Example-10...

If the red loop is considered

 By convention, voltage drops are added and voltage rises are subtracted in KVL.

$$-5 \text{ V} - \text{V}_{R1} + 3 \text{ V} = 0$$
 $\text{V}_{R1} = -2 \text{ V}$

...Example-10

- Suppose you chose the green loop instead.
 - Since R2 is in parallel with I1, the voltage drop across R2 is also 3V.

$$-5 \text{ V} - \text{V}_{R1} + 3 \text{ V} = 0$$

$$V_{R1} = -2 V$$

Example-11...

• Find the voltage across R2 and the current flowing through it.

– First, draw a loop that includes R2.

...Example-11...

• If the green loop is used:

$$-11.5 \text{ V} + 2.4 \text{ V} + \text{V}_{R2} = 0$$

$$V_{R2} = 9.1 \text{ V}$$

...Example-11...

• If the blue loop is used:

• First, find the voltage drop across R3

$$1 \text{ mA} \times 1.1 \text{ k}\Omega = 1 \times 10^{-3} \text{ A} \times 1.1 \times 10^{3} \Omega = 1.1 \text{ V}$$

$$1.1 \text{ V} + 8 \text{ V} - \text{V}_{R2} = 0$$
 $\text{V}_{R2} = 9.1 \text{ V}$

...Example-11

Once the voltage across R2 is known, Ohm's Law is applied to determine the current.

$$I_{R2} = 9.1 \text{ V} / 4.7 \text{ k}\Omega = 9.1 \text{ V} / (4.7 \times 10^3 \Omega)$$
$$I_{R2} = 1.94 \times 10^{-3} \text{ A} = 1.94 \text{ mA}$$

Figure 2.21

For Example 2.5.

Solution:

To find v_1 and v_2 , we apply Ohm's law and Kirchhoff's voltage law. Assume that current i flows through the loop as shown in Fig. 2.21(b). From Ohm's law,

$$v_1 = 2i, v_2 = -3i$$
 (2.5.1)

Applying KVL around the loop gives

$$-20 + v_1 - v_2 = 0 (2.5.2)$$

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

$$-20 + 2i + 3i = 0$$
 or $5i = 20$ \Rightarrow $i = 4$ A

Substituting i in Eq. (2.5.1) finally gives

$$v_1 = 8 \text{ V}, \quad v_2 = -12 \text{ V}$$

Determine v_o and i in the circuit shown in Fig. 2.23(a).

Figure 2.23 For Example 2.6.

Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$-12 + 4i + 2v_o - 4 + 6i = 0 (2.6.1)$$

Applying Ohm's law to the 6- Ω resistor gives

$$v_o = -6i \tag{2.6.2}$$

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

$$-16 + 10i - 12i = 0$$
 \Rightarrow $i = -8 \text{ A}$

and $v_o = 48 \text{ V}.$

Example 2.7

Find current i_o and voltage v_o in the circuit shown in Fig. 2.25.

Figure 2.25 For Example 2.7.

Solution:

Applying KCL to node a, we obtain

$$3 + 0.5i_o = i_o \implies i_o = 6 \text{ A}$$

For the 4- Ω resistor, Ohm's law gives

$$v_o = 4i_o = 24 \text{ V}$$

Thank You