机器学习

07 聚类

李祎

liyi@dlut.edu.cn

是是

- □ 聚类任务
- □ 性能度量
- □ 距离计算
- □ 原型聚类
- □ 密度聚类
- □ 层次聚类

什么是聚类

- □ 无监督学习: No labels, Data driven
- □ 聚类目标:将数据集中的样本划分为若干个通常不相交的子集 ("簇", cluster),子集内部具有相似性,子集之间具有差异性。
- □ 聚类既可以作为一个单独过程(用于找寻数据内在的分布结构), 也可作为分类等其他学习任务的前驱过程.

数学描述

- 假定样本集 $D = \{x_1, x_2, \dots, x_m\}$ 包含m个无标记样本,每个样本 $x_i = (x_{i1}; x_{i2}; \dots; x_{in})$ 是一个n 维的特征向量,聚类算法将样本集 D 划分成 k 个不相交的簇 $\{C_l|l=1,2,...,k\}$ 。其中 C_l ① $\{C_l|l=1,2,...,k\}$ 。 其中 $\{C_l|l=1\}$ ② $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ② $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ② $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ④ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ③ $\{C_l|l=1\}$ ④ $\{C_l|l=1\}$ ④
- 相应地,用 $\lambda_j \in \{1,2,\cdots,k\}$ 表示样本 x_j 的"簇标记"(即cluster label),即 $x_j \in C_{\lambda_j}$ 。于是,聚类的结果可用包含m个元素的簇标记向量 $\lambda = \{\lambda_1; \lambda_2; \cdots; \lambda_m\}$ 表示。

应用场景

■ Marketing

Finding groups of customers with similar behaviours.

□ Biology

Finding groups of animals or plants with similar features.

■ Earthquake Studies

Clustering observed earthquake epicenters to identify dangerous zones.

Clustering weblog data to discover groups of similar access patterns.

Social Networks

Discovering groups of individuals with close friendships internally.

.....

GLOBAL SEISMIC HAZARD MAP

图像分割

选择哪种?

□ 两个基本问题:

● 性能度量: 1. 评估结果好坏, 2. 作为优化目标

● 距离计算:有序、无序

性能度量

性能度量

- □ 聚类性能度量,亦称为聚类"有效性指标" (validity index)
- □ 直观来讲:

我们希望"物以类聚",即同一簇的样本尽可能彼此相似,不同簇的样本尽可能不同。换言之,聚类结果的"簇内相似度" (intra-cluster similarity) 高,且"簇间相似度" (inter-cluster similarity) 低,这样的聚类效果较好.

- □ 大致分为以下两类:
 - 外部指标 (external index)将聚类结果与某个 "参考模型" (reference model)进行比较。
 - 内部指标 (internal index)直接考察聚类结果而不用任何参考模型。

外部指标

对数据集 $D = \{x_1, x_2, \dots, x_m\}$,假定通过聚类得到的簇划分为

 $C = \{C_1, C_2, \dots, C_k\}$,参考模型给出的簇划分为 $C^* = \{C_1, C_2, \dots, C_s^*\}$ 相应地,今 $\lambda = \lambda^*$ 分别表示与 C 和 C^* 对应的簇标记向量

我们将样本两两配对考虑,定义

$$a = |SS|, SS = \{(x_i, x_j) | \lambda_i = \lambda_j, \lambda_i^* = \lambda_j^*, i < j\}$$

$$b = |SD|, SD = \{(x_i, x_j) | \lambda_i = \lambda_j, \lambda_i^* \neq \lambda_j^*, i < j\}$$

$$c = |DS|, DS = \{(x_i, x_j) | \lambda_i \neq \lambda_j, \lambda_i^* = \lambda_j^*, i < j\}$$

$$d = |DD|, DD = \{(x_i, x_j) | \lambda_i \neq \lambda_j, \lambda_i^* \neq \lambda_j^*, i < j\}$$

性能度量 - 外部指标

□ Jaccard系数 (Jaccard Coefficient, JC)

$$JC = \frac{a}{a+b+c}$$

■ FM指数 (Fowlkes and Mallows Index, FMI)

$$FMI = \sqrt{\frac{a}{a+b} \cdot \frac{a}{a+c}}$$

□ Rand指数 (Rand Index, RI)

$$RI = \frac{2(a+b)}{m(m-1)}$$

[0,1]区间内, 越大越好.

性能度量 - 内部指标

□ 考虑聚类结果的簇划分 $C = \{C_1, C_2, \dots, C_k\}$ 定义

簇 C 内样本间的平均距离

$$avg(C) = \frac{2}{|C|(|C|-1)} \sum_{1 \le i \le j \le |C|} dist(x_i, x_j)$$

簇 C 内样本间的最远距离

$$diam(C) = max_{1 \le i \le j \le |C|} dist(x_i, x_j)$$

簇 C_i 与簇 C_j 最近样本间的距离

$$d_{min}(C) = min_{x_i \in C_i, x_j \in C_j} dist(x_i, x_j)$$

簇 C_i 与簇 C_j 中心点间的距离

$$d_{cen}(C) = dist(\mu_i, \mu_j)$$

性能度量 - 内部指标

□ DB指数 (Davies-Bouldin Index, DBI)

$$DBI = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{avg(C_i) + avg(C_j)}{d_{cen}(\mu_i, \mu_j)} \right)$$

越小越好.

□ Dunn指数 (Dunn Index, DI)

$$DI = \min_{1 \le i \le k} \left\{ \min_{j \ne i} \left(\frac{d_{min}(C_i, C_j)}{\max_{1 \le l \le k} diam(C_l)} \right) \right\}$$

越大越好.

距离计算

距离计算

□ 距离度量的性质:

非负性: $dist(x_i, x_j) \ge 0$

同一性: $dist(x_i, x_j) = 0$ 当且仅当 $x_i = x_j$

对称性: $dist(x_i, x_i) = dist(x_i, x_i)$

直递性: $dist(x_i, x_j) \leq dist(x_i, x_k) + dist(x_k, x_j)$

□ 常用距离:

闵可夫斯基距离 (Minkowski distance):

$$dist(x_i, x_j) = \left(\sum_{u=1}^{n} |x_{iu} - x_{ju}|^p\right)^{\frac{1}{p}}$$

p=2: 欧氏距离 (Euclidean distance).

p=1: 曼哈顿距离 (Manhattan distance) 或 街区距离.

距离计算

□ 属性介绍

- 连续属性 (continuous attribute) 在定义域上有无穷多个可能的取值
- 离散属性 (categorical attribute)
 在定义域上是有限个可能的取值

有序属性 (ordinal attribute)

- 例如定义域为{1,2,3}的离散属性,"1"与"2"比较接近、与"3"比较远,称为"有序属性"。
- 无序属性 (non-ordinal attribute)

例如定义域为{飞机,火车,轮船}这样的离散属性,不能直接在属性值上进行计算,称为"无序属性"。

距离度量

□ Value Difference Metric, VDM (处理无序属性):

令 $m_{u,a}$ 表示属性 u 上取值为 a 的样本数, $m_{u,a,i}$ 表示在第 i 个样本簇中在属性 u 上取值为 a 的样本数, k 为样本数, 则属性 u 上两个 离散值 a 与 b之间的**VDM**距离为

$$VDM_p(a,b) = \sum_{i=1}^{k} \left| \frac{m_{u,a,i}}{m_{u,a}} - \frac{m_{u,b,i}}{m_{u,b}} \right|^p$$

□ 例如:

● 计算出行方式上飞机和火车这两个离散值的VDM距离,即为

距离度量

- 用于度量相似性的"距离"未必满足距离的所有基本性质,尤其是直递性,即"非度量距离";
- 距离不一定是提前定义好的,可以根据数据样本进行动态学习,即"距离度量学习"。

原型聚类

原型聚类

□ 原型聚类

也称为"基于原型的聚类" (prototype-based clustering), 此类算法假设聚类结构能通过一组原型刻画。

□ 算法过程:

通常情况下,算法先对原型进行初始化,再对原型进行迭代更新求解。

□ 几种著名的原型聚类算法:

k-means、学习向量量化 (LVQ) 、高斯混合聚类 (GMM)

给定数据集 $D = \{x_1, x_2, \dots, x_m\}$, k均值算法针对聚类所得簇划分

 $C = \{C_1, C_2, \cdots, C_k\}$ 最小化平方误差

$$E = \sum_{i=1}^{k} \sum_{x \in C_j} ||x - \mu_i||_2^2$$

其中, μ_i 是簇 C_i 的均值向量。

□ 算法流程(迭代优化):

初始化每个簇的均值向量

repeat

- 1. (更新) 簇划分;
- 2. 计算每个簇的均值向量

until 当前均值向量均未更新


```
输入: 样本集D = \{x_1, x_2, \ldots, x_m\};
        聚类簇数k.
过程:
 1: 从D中随机选择k个样本作为初始均值向量\{\mu_1, \mu_2, \ldots, \mu_k\}
 2: repeat
      \diamondsuit C_i = \emptyset \ (1 \le i \le k)
      for j = 1, \ldots, m do
 4:
          计算样本x_i与各均值向量\mu_i (1 \le i \le k)的距离: d_{ji} = ||x_j - \mu_i||_2;
 5:
          根据距离最近的均值向量确定x_j的簇标记: \lambda_j = \arg\min_{i \in \{1,2,...,k\}} d_{ji};
 6:
          将样本x_i划入相应的簇: C_{\lambda_i} = C_{\lambda_i} \cup \{x_i\};
 7:
       end for
 8:
       for i = 1, \ldots, k do
 9:
          计算新均值向量: \boldsymbol{\mu}_i' = \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x};
10:
11:
         if \mu'_i \neq \mu_i then
            将当前均值向量\mu_i更新为\mu'_i
12:
13:
         else
            保持当前均值向量不变
14:
         end if
15:
       end for
16:
17: until 当前均值向量均未更新
18: return 簇划分结果
输出: 簇划分\mathcal{C} = \{C_1, C_2, \dots, C_k\}
```


□ k均值算法实例

接下来以表**9-1**的西瓜数据集**4.0**为例,来演示k均值算法的学习过程。将编号为i的样本称为 x_i .

编号	密度	含糖率	编号	密度	含糖率	编号	密度	含糖率
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346
3	0.634	0.264	13	0.639	0.161	23	0.483	0.312
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445
10	0.243	0.267	20	0.282	0.257	30	0.446	0.459

回 假定聚类簇数k=3,算法开始时,随机选择3个样本 x_6, x_{12}, x_{27} 作为初始均值向量,即 $\mu_1=(0.403;0.237), \mu_2=(0.343;0.099), \mu_3=(0.533;0.472)$ 。

考察样本 $x_1 = (0.697; 0.460)$,它与当前均值向量 μ_1, μ_2, μ_3 的距离分别为0.369, 0.506, 0.166, 因此 x_1 将被划入簇 C_3 中。类似的,对数据集中的所有样本考察一遍后,可得当前簇划分为

$$C_1 = \{x_5, x_6, x_7, x_8, x_9, x_{10}, x_{13}, x_{14}, x_{15}, x_{17}, x_{18}, x_{19}, x_{20}, x_{23}\}$$

$$C_2 = \{x_{11}, x_{12}, x_{16}\}$$

$$C_3 = \{x_1, x_2, x_3, x_4, x_{21}, x_{22}, x_{24}, x_{25}, x_{26}, x_{27}, x_{28}, x_{29}, x_{30}\}$$

于是,可以从分别求得新的均值向量

$$\mu'_1 = (0.473; 0.214), \mu'_2 = (0.394; 0.066), \mu'_3 = (0.623; 0.388)$$

不断重复上述过程,如下图所示。

算法特点

□ 优点:

- 原理简单,容易实现
- 可解释度较强

□ 缺点:

- K值很难确定
- 可能陷入局部最优
- 对噪音和异常点敏感
- 聚类效果依赖于聚类中心的初始化
- 对于非凸数据集或类别规模差异太大的数据效果不好。

原型聚类 - 高斯混合聚类

与k均值用原型向量来刻画聚类结构不同,高斯混合模型

(Gaussian Mixture Model) 采用概率模型来表达聚类原型:

□ 多元高斯分布的定义

对n维样本空间中的随机向量x,若x服从高斯分布,其概率密度 函数为

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

其中 μ 是 n 维均值向量, Σ 是 $n\times n$ 的协方差矩阵。也可将概率密度 函数记作 $p(x|\mu,\Sigma)$ 。

原型聚类 - 高斯混合聚类

□ 高斯混合分布的定义

$$p_M(x) = \sum_{i=1}^{\kappa} \alpha_i p(x|\mu_i, \Sigma_i)$$

该分布由 k 个混合分布组成,每个分布对应一个高斯分布。其中,

 μ_i 与 Σ_i 是第 i个高斯混合成分的参数。而 $\alpha_i > 0$ 为相应的"混合系

数",
$$\sum_{i=1}^k \alpha_i = 1$$
 。

高斯混合聚类


```
输入: 样本集D = \{x_1, x_2, ..., x_m\}; 高斯混合成分个数k.
```

过程:

1: 初始化高斯混合分布的模型参数 $\{(\alpha_i, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \mid 1 \leq i \leq k\}$

2: repeat

3: **for**
$$j = 1, ..., m$$
 do 根据(0.30)计算**x**.由

4: 根据(9.30)计算 x_j 由各混合成分生成的后验概率,即

步

$$\gamma_{ji} = p_{\mathcal{M}}(z_j = i \mid \boldsymbol{x}_j) \ (1 \le i \le k)$$

5: end for

6: **for** i = 1, ..., k **do**

7: 计算新均值向量: $\mu'_i = \frac{\sum_{j=1}^m \gamma_{ji} \mathbf{x}_j}{\sum_{j=1}^m \gamma_{ji}};$

M 8: 计算新协方差矩阵: $\Sigma_i' = \frac{\sum_{j=1}^m \gamma_{ji} (\boldsymbol{x}_j - \boldsymbol{\mu}_i') (\boldsymbol{x}_j - \boldsymbol{\mu}_i')^\top}{\sum_{j=1}^m \gamma_{ji}};$

9: 计算新混合系数: $\alpha_i' = \frac{\sum_{j=1}^m \gamma_{ji}}{m}$;

10: end for

11: 将模型参数 $\{(\alpha_i, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \mid 1 \leq i \leq k\}$ 更新为 $\{(\alpha'_i, \boldsymbol{\mu}'_i, \boldsymbol{\Sigma}'_i) \mid 1 \leq i \leq k\}$

12: until 满足停止条件

13: $C_i = \emptyset \ (1 \le i \le k)$

14: **for** j = 1, ..., m **do**

15: 根据(9.31)确定 x_i 的簇标记 λ_i ;

16: 将 x_j 划入相应的簇: $C_{\lambda_i} = C_{\lambda_i} \bigcup \{x_j\}$

17: end for

18: return 簇划分结果

输出: 簇划分 $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$

$$p_{\mathcal{M}}(z_j = i \mid \boldsymbol{x}_j) = \frac{P(z_j = i) \cdot p_{\mathcal{M}}(\boldsymbol{x}_j \mid z_j = i)}{p_{\mathcal{M}}(\boldsymbol{x}_j)}$$
$$= \frac{\alpha_i \cdot p(\boldsymbol{x}_j \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{l=1}^k \alpha_l \cdot p(\boldsymbol{x}_j \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}.$$

高斯混合聚类

密度聚类

密度聚类

- 原型聚类:假设聚类结构能够通过一组原型刻画
- □ 密度聚类: 也称为"基于密度的聚类"
 - 此类算法假设聚类结构能通过样本分布的紧密程度来确定。
 - 通常情况下,密度聚类算法从样本密度的角度来考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇来获得最终的聚类结果。

□ 特点

- Generate clusters of arbitrary shapes.
- Robust against noise.
- No K value required in advance.
- Somewhat similar to human vision.

DBSCAN

DBSCAN算法:基于一组 "邻域"参数 $(\epsilon, MinPts)$ 来刻画样本分布的 紧密程度。

□ 基本概念:

- ϵ 邻域: 对样本 $x_j \in D$ 其 ϵ 邻域包含样本集 D 中与 x_j 的距离不大于 ϵ 的样本;
- 核心对象: 若样本 x_j 的 ϵ 邻域至少包含MinPts个样本,则该样本点为一个核心对象;
- 密度直达: 若样本 x_j 位于样本 x_i 的 ϵ 邻域中,且 x_i 是一个核心对象,则称样本 x_j 由 x_i 密度直达;
- 密度可达: 对样本 x_i 与 x_j , 若存在样本序列 p_1, p_2, \dots, p_n , 其中 $p_1 = x_i, p_n = x_j$ 且 p_{i+1} 由 p_i 密度直达,则该两样本密度可达;
- 密度相连: 对样本 x_i 与 x_j ,若存在样本 x_k 使得两样本均由 x_k 密度可达,则称该两样本密度相连。

directly density reachable

density reachable

density connected

- 例如:
- \square \Rightarrow *MinPts* = 3, 则

虚线显示出 ϵ 领域。

 x_1 是核心对象。

 x_2 由 x_1 密度直达。

 x_3 由 x_1 密度可达。

 x_3 与 x_4 密度相连。

□ 对"簇"的定义

由密度可达关系导出的最大密度相连样本集合。

□ 对"簇"的形式化描述

给定领域参数, 簇是满足以下性质的非空样本子集:

连接性: $x_i \in C, x_j \in C \Rightarrow x_i \vdash x_j$ 密度相连

最大性: $x_i \in C$, $x_i \subseteq x_j$ 密度可达 $\Rightarrow x_j \in C$


```
输入: 样本集D = \{x_1, x_2, \dots, x_m\};
        邻域参数(\epsilon, MinPts).
过程:
1: 初始化核心对象集合: \Omega = \emptyset
                                                               遍历样本找出数据集中的
 2: for j = 1, ..., m do
    确定样本x_i的\epsilon-邻域N_{\epsilon}(x_i);
                                                                         核心对象集
      if |N_{\epsilon}(\boldsymbol{x}_i)| \geq MinPts then
         将样本x_i加入核心对象集合: \Omega = \Omega \bigcup \{x_i\}
      end if
 7: end for
 8: 初始化聚类簇数: k=0
 9: 初始化未访问样本集合: \Gamma = D
10: while \Omega \neq \emptyset do
      记录当前未访问样本集合: \Gamma_{\text{old}} = \Gamma;
11:
      随机选取一个核心对象o \in \Omega, 初始化队列 Q = \langle o \rangle;
12:
    \Gamma = \Gamma \setminus \{\boldsymbol{o}\};
13:
      while Q \neq \emptyset do
14:
      取出队列Q中的首个样本q;
15:
         if |N_{\epsilon}(q)| \geq MinPts then
16:
                                                              根据密度可达, 每次循环
     \diamondsuit \Delta = N_{\epsilon}(\mathbf{q}) \cap \Gamma;
17:
           将\Delta中的样本加入队列Q;
18:
                                                                         牛成一个簇
    \Gamma = \Gamma \setminus \Delta;
19:
      end if
20:
21:
      end while
      k = k + 1, 生成聚类簇C_k = \Gamma_{\text{old}} \setminus \Gamma;
22:
23:
      \Omega = \Omega \setminus C_k
24: end while
25: return 簇划分结果
输出: 簇划分\mathcal{C} = \{C_1, C_2, \ldots, C_k\}
```


层次聚类

层次聚类

- □ 层次聚类试图在不同层次对数据集进行划分,从而形成<mark>树形</mark>的聚类结构。数据集划分既可采用"自底向上"的聚合策略,也可采用"自顶向下"的分拆策略。
- □ 灵活停止
- □ 不必事先设定簇个数

层次聚类

□ AGNES算法(自底向上的层次聚类算法)

首先,将样本中的每一个样本看做一个初始聚类簇,然后在算法 运行的每一步中找出距离最近的两个聚类簇进行合并,该过程不断重 复,直到达到预设的聚类簇的个数。

这里两个聚类簇 C_i 和 C_j 的距离,可以有3种度量方式。

最小距离: $d_{min}(C_i, C_j) = \min_{x \in C_i, z \in C_j} dist(x, z)$

最大距离: $d_{max}(C_i, C_j) = \max_{x \in C_i, z \in C_j} dist(x, z)$

平均距离: $d_{avg}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i} \sum_{z \in C_j} dist(x, z)$

MIN vs. MAX

层次聚类 - AGNES算法


```
输入: 样本集D = \{x_1, x_2, \ldots, x_m\};
      聚类簇距离度量函数d \in \{d_{\min}, d_{\max}, d_{\text{avg}}\};
      聚类簇数k.
过程:
1: for j = 1, ..., m do
                           初始化样本。每个样本作为一个初始聚类簇
    C_i = \{ \boldsymbol{x}_i \}
3: end for
4: for i = 1, ..., m do
     for j = i, \ldots, m do
    M(i,j) = d(C_i, C_j);
                            初始化簇间距离矩阵
    M(j,i) = M(i,j)
     end for
9: end for
10: 设置当前聚类簇个数: q = m
11: while q > k do
     找出距离最近的两个聚类簇(C_{i^*}, C_{i^*});
12:
     合并(C_{i^*}, C_{i^*}): C_{i^*} = C_{i^*} \bigcup C_{i^*};
13:
     for j = j^* + 1, ..., q do
14:
                                           簇合并
    将聚类簇C_i重编号为C_{i-1}
15:
     end for
16:
     删除距离矩阵M的第j*行与第j*列;
    for j = 1, ..., q - 1 do
18:
     M(i^*, j) = d(C_{i^*}, C_i);
19:
                                           更新簇间距离矩阵
    M(j, i^*) = M(i^*, j)
20:
     end for
21:
     q = q - 1
23: end while
24: return 簇划分结果
输出: 簇划分\mathcal{C} = \{C_1, C_2, \ldots, C_k\}
```

AGNES聚类结果

总结

- □ 聚类任务
- □ 性能度量
- □ 距离计算
- □ 原型聚类: K-means, GMM
- 密度聚类: DBSCAN
- □ 层次聚类: AGNES