Table S1. The representative retrovirus genomes used for data screening and phylogenetic reconstruction

| Name              | Full name                           | Acession No. | Туре            |
|-------------------|-------------------------------------|--------------|-----------------|
| RELIK             | Rabbit endogenous lentivirus type K | 1            | Lentivirus      |
| RELIK_Lepus       | Rabbit endogenous lentivirus type K | 2            |                 |
| EIAV              | Equine infectious anemia virus      | NC_001450    | Lentivirus      |
| EIAVliaoning      | Equine infectious anemia virus      | AF327877     | Lentivirus      |
| FIVsubC           | Feline immunodeficiency virus       | AF474246     | Lentivirus      |
| FIVoma            | Feline immunodeficiency virus       | U56928       | Lentivirus      |
| FIVpuma           | Feline immunodeficiency virus       | EF455614     | Lentivirus      |
| FIVPPR            | Feline immunodeficiency virus       | M36968       | Lentivirus      |
| Visna             | Ovine maedivisna virus              | NC_001511    | Lentivirus      |
| CAEV              | Caprine arthritisencephalitis virus | NC_001463    | Lentivirus      |
| BIV               | Bovine immunodeficiency virus       | NC_001413    | Lentivirus      |
| Jembrana          | Jembrana disease virus              | NC_001654    | Lentivirus      |
| pSIVgml           | Gray mouse lemur prosimian          | 3            | Lentivirus      |
|                   | immunodeficiency virus              |              |                 |
| pSIV_Cheirogaleus | Fat-tailed dwarf lemur prosimian    | 4            |                 |
|                   | immunodeficiency virus              |              |                 |
| HIV1              | Human immunodeficiency virus        | EF029066     | Lentivirus      |
| HIV2              | Human immunodeficiency virus        | NC_001722    | Lentivirus      |
| SIVhoest          | Simian immunodeficiency virus       | AF188116     | Lentivirus      |
| SIVsyk            | Simian immunodeficiency virus       | L06042       | Lentivirus      |
| SIVcol            | Simian immunodeficiency virus       | AF301156     | Lentivirus      |
| SIVmnd            | Simian immunodeficiency virus       | NC_004455    | Lentivirus      |
| SIVtal            | Simian immunodeficiency virus       | AY655744     | Lentivirus      |
| LDV               | Lymphoproliferate Disease Virus     | X64337       | Alpharetrovirus |
| HTLV1             | Human T-cell leukemia virus type 1  | NC_001436    | Deltaretrovirus |
| BLV               | Bovine leukemia virus               | D00647.1     | Deltaretrovirus |
| RSV               | Rous sarcoma virus                  | NC_001407    | Alpharetrovirus |
| SRV1              | Simian SRV-1 type D retrovirus      | M11841       | Betaretrovirus  |
| HTLV2             | Human T-cell leukemia virus type 2  | NC_001488    | Deltaretrovirus |
| Jaagsiekte        | Jaagsiekte sheep retrovirus         | NC_001494    | Betaretrovirus  |
| MMTV              | Exogenous mouse mammary tumor virus | AF228552     | Betaretrovirus  |

## Note

<sup>1</sup> Katzourakis A, Tristem M, Pybus OG, Gifford RJ (2007) Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci USA 104: 6261-6265.

<sup>2</sup> Keckesova Z, Ylinen LM, Towers GJ, Gifford RJ, Katzourakis A (2009) Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384:7-11.

<sup>3</sup> Gifford RJ, et al. (2008) A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci USA 105:20362-20367.

<sup>4</sup> Gilbert C, Maxfield DG, Goodman SM, Feschotte C (2009) Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet 5:e1000425.

Table 2. The M. Putorius matching contigs identified during genome screening

| Cantia Namban | Comomio Dociona Domacont  |
|---------------|---------------------------|
| Contig Number | Genomic Regions Represent |
| contig006467  | 5'LTR-gag-pol             |
| contig111284  | 5'LTR-gag-pol             |
| contig098598  | 5'LTR-gag-pol-env-3'LTR   |
| contig023783  | 5'LTR-gag-pol-env-3'LTR   |
| contig113944  | gag                       |
| contig068467  | pol-env-3'LTR             |
| contig040515  | solo-LTR                  |
| contig027041  | solo-LTR                  |
| contig076031  | solo-LTR                  |
| contig037068  | solo-LTR                  |
| contig005647  | solo-LTR                  |
| contig022531  | solo-LTR                  |
| contig079075  | solo-LTR                  |
| contig023782  | solo-LTR                  |
| contig023486  | solo-LTR                  |
| contig001647  | solo-LTR                  |
| contig023754  | solo-LTR                  |
| contig034784  | solo-LTR                  |
| contig040860  | solo-LTR                  |

Fig S1 MELVmpf consensus sequence. Two putative accessory genes, vif, and tat, were identified by sequence similarity and conserved domain searches (Marchler-Bauer and Bryant 2004). Although no significant matches to lentiviral rev genes were found using similarity searches, a putative rev gene was identified by both its genomic location (overlapping the 3' end of the env gene in an alternative reading frame) and its arginine-rich nuclear localization signal (NLS) motif

```
5'-LTR
GAGGGAGGCCTGTGAGCATGAGCCCCACTGTTGCAGAGCTTCCCAGCAGACAAAGGGCCTTCCAAGAACTGTTATGAACT
AGGAGGTGTTATGCAGGATGTTATAGCCGACCGCAGATAGACCACCGGGACATGGGGTACGTGCTACAAGCAACATCAA
CATATAAGCAGCACTGGCCCTCTGCTTGTCAGAGTGTGCTCTTTGGGACACTCTCGCTCAGATCATCCTCCCGGTCGATG
CACCCAAAAGGTGTGCTCCAGGGAGGGGATCGGTCACCTTCTCGGTCGATGCACCCAAACGGTGTGCTCCAGAGAAGGG
GATCGGGCGGAGTACCCTGGGCCCTCTCCCTAGCCCACGCGGCTAGAGTTGTCTGTTCTTGTATTAGCTATTGTGTGGT
                                         TAR
TCGAGCCTCTAAAGCCTCAGTGGTGAGTACTCCCCGAGATCTTGAAACAGAGATCTGAGACTGTCCCAAGAGGGGATAG
GAAAAACAGCC ATGGGGGCTGGATTAAGTAAGAGTGATGAGAAGCGGTTTGCAACCGGTCTTCAAGGCGATGTCGAGAG
        M G A G L S K S D E K R L Q P V F K A M S R V
TAAGGAAATGTTTGGGGAGTAAAGAGACAGTTACCAGTGGTAACTGTATCTGGGCCTTGAAGACAGCCATTGAGGCAAC
R K C L G S K E T V T S G N C I W A L K T A I E A T
CGGGACGCCGGTTAAGGAGGTGACAGAGGAATCACTAGAGGACCTAATTCAGAGATGGGTGGAAGCAAAAGGAAACAAA
G T P V K E V T E E S L E D L I Q R W V E A K G N K
CCAGACGGGTTATACAAGGTCTGCTTGGAAACTTTATGTTGCATATGGTGTCTTCTTAAAAAATTTAAGATAAGAGAGT
P D G L Y K V C L E T L C C I W C L L K K F K I R E L
{\tt TGTCAGAGGGACTTGTNCAATACAAGGTTTGTCATCCAGGCTTTGGAGATGAGGATGTCAAAAAATCCCCCAAAGCAGGA}
SEGL?QYKVCHPGFGDEDVKNPPKQD
TGATCAAAAGGTCCAGGCTGCATATCCAGTAGTTGTTAGGCATGGCCAACAAGAATATGAACAATTTAATCCCAGATTC
D O K V O A A Y P V V R H G O O E Y E O F N P R F
TATAGCAGTTGGATAGGCAAGGTACAGGAGTCAGGACTTCTTGCTCAGGCAACTCTCCAATATTTTTGGGATCATCACGG
Y S S W I G K V Q E S G L L A Q A T L Q Y F G I I T A
S S T S P E M N G L L D I V P G A S G Q K E L L L A
CAAATTGAATGAGAGGCTAGAAGAATATGAGAGGATGCATCCACCACCAGGCCCTGGTGCAGCAGGACCTCGCCACCTG
K L N E R L E E Y E R M H P P P G P G A A G P R H L
ACGGTGGCAGAAATTAGAGGTCTAAACATGACAAATGAAGAAGCTGCCAGACCAGAATGGAATGTGGCTAGAAACCTAT
T V A E I R G L N M T N E E A A R P E W N V A R N L
R N M I L E A F Q D A I R V Y K G A P K A T S I R (
GGGCCCAAAAGAACCTTATCCAGATTTCATAGATAGATTATTCGGCCAAATAGATCAAGAAATAACAGATCAGGAAATC
G P K E P Y P D F I D R L F G Q I D Q E I T D Q E I
AAGGCATACCTAAAACAGCAGCTAAGTATAAATAATGCAAATGAGGACTGCAAGGCAGCCATGAGAAATCTAAGACCAG
K A Y L K Q Q L S I N N A N E D C K A A M R N L R P E
AAGATCCTCTAGAGGACAAAATGTATGCCTGTAGGGAGATAGGGTCAAATAAACACAAAATGGCTCTCCTAGCCGAAGC
D P L E D K M Y A C R E I G S N K H K M A L L A E A
CCTGCAGGCAGGCTGCAACAAGGAAGGAGGGGAAATGGAGAAAAATGTTTTAATTGTGGCAAACCTGGTCACGTAGCA
L Q A G L Q Q G R R G N G E K C F N C G K P G H V A
                    Ribosomal frameshift site
                                  -> pol
AGGCAATGTCGGGCGCCCAAGCAACAACAAAAATGACTTGCTTTAAATGTGGAAAACCAGGCCACATGCAGAAGGAGT
R Q C R A P K Q Q Q K M T C F K C G K P G H M Q K E C
K Q G N G Q R P Q G M S P G K V M Q A S E S A H Q E
                           gag <-
GGGGGGGACCAACAACTATATCCCTCCCTGTCCTTAGCCTAAATAGTAGGCCTATAGCCCCAGTGTATATTAATGAAA
G G T N K L Y P S L S L A *
```

```
AAGAGATTCATATGCTGATAGACACTGGGGCCGATACATCAATTATCAGCAACAAGGAAGCAAGAAAATTGGATCTAGG
ACCATGCTTAGAGGTAGTCAACATAATTGGAGTAGGGGGTCTCCAAAGATTTCAAAAATATGGTCCCTTAAATATTCAA
GTAGGAGAAAAAAGGATTTCTTCAAAAATCTTGGTAGGAGAAGTCCCCTTAAATCTCTTGGGAAGAGATATTTTAAAGA
AACTAAGGGTAAAATTAATATGTGCTAATCTATCAGATAAGATTAGGCCCTACAAGGTACAACTTAAAGACCCTACTAA
GGGACCCCAAATAAAACAATGGCCCCTTAGCAAGGATAAATTAGAGGGAATTACAGAAATCATAGAGAAGTTATTAAAG
GAAGGGAAAATAGAAGAAGCAGCATGGGATAACCCTTGGAATACACCCATATTTTGCATAAAAAAAGAAGTCAGGAAAAT
ACAGACTGTTAATAGATTTCAGGGAGCTTAATAAGATGACTTTAAAGGGAGAAAATACAATTGGGAATTCCCTTCCC
TGCAGGGTTGCCAGAAAAGAAATATATAACTGTTTTAGATATAGCAGATGCCTACTTTACTATCCCATTGGATCCTGAT
CACAAGGCTGGAGTCACAGCCCTGCTATATATCAAGGCACCCTTAGAGATATTCTCTTGCCCTGGAGAGAACAACATCC
TGAGATATTATTATACCAATACATGGATGATTTACTAATAGGATCATATTTAAGCAAAAAGGAGCATCAAAAGGTAGTG
CAAAATCTTAGAGACATGCTACTTCAATGGGGGTTTGAGACCCCAGAGGAGAAACTACAGGAAACTCCCCCATATAATT
GGATGGGGTATGAATTAGAACCTAAAACCTGGAAATTGCAAAAATGGGAACTGGAAATCCCAGAAAAACCAACTTTAAA
TTAATGAGAGGCAATATGCAATTAGACTCCCATAGGGAATGGACAACAGAAGCTTTAGAGGAAGTAAAATATGCCCAAC
AAAAAATAACAGAAAATCAAGGATATCATTACTACATATCAGAAAAGGAGGTTTATTGCAAGATTGTAAAGGATTCTCA
GGAAATAAATTATGGAATATATCAGGAAGAGCAAGGGAAAAAACAAATGCTATGGGTTGGAAGACAATCATTAAAGAGG
GATATTGGGAAATCTATCCTAGATAAATTGGCCATAGCTATTCAGAATATTTTGCACAGAATGCAAAATCAGATTAGGGG
TAGAACCCATTATTCTACTCCCCATGGAAAAAAGGACCTTAGAAAATTGGTACAGCCAACAAAATTATCTTCGCTGGTT
TCCCCATGTCAAACTAATAAATGCAGATTTAATGTTTAAGGAAGTCCTAGCAAACCAAAGTGATGATCCTTTAGAGGAT
GAATAGAACATATAGTAGGATCAAATCAGCAAGCAGAAAAATATGCAATAAAAATGGCCTTTCAAGATTCAGGTCCGCA
AGTTAACATCATCACAGATAGCAAGTACTGCTTCTCCATTTTAAGAGCTAGACCCAGAACCCAGAAACCATAGAAGATAGT
TTATGGAAGGAGATAATTTCATTAGCTATGAAAAAGGACAATTGGTATATAGGATGGGTACCAGGACATAAGGGGGGTAC
AGGCTATGATCTATGTACCCCAAAAGATTTATTTCTATTACCTAGGGAAATTATAAAACTAAACATAGAAACAAAAATA
GAGATCCCAAGAGGACACTGGGGTTGGATAACCCAAAAATCATCCCTAGGCTTAAAAAGGCCTACAAATCCAGGGAGGAA
ACAAAAAATAGCACAATTAATCATCTTACCCTTATTTCATGAGCCTCTTAAACAAGGCACAGTAGATAAATATACAGAA
AGGGGGCAAAATGGGTTTTGCAGCACAGGTGTCTTTTTCAACTGGGTAGACAACCTGAGTCAAATAAAGGAAGAACATG
AAAAATGGCATAATAATTGGAGGGATTTAAAATTGAAATATGGTCTCCCTACCACAGTGGCAAAAGAAATAATTAAACA
```

```
ATGTCCAAACTGCATTAAAGGGGCCAAACCCAGTAAGAGGCATCAACCCTGTAGACTCCCAACTATGGCAGTTANCGGCC
TGTCACAGCTCCTCAGGATACTTGCATGCAGTTATCCTGCCCTCAGAATCAGGAAAGGCCACTGCTGTGGCCATATTAA
ATGTCAATACTTAAATATAAAACACACATACGGCATTCCATGGAATCCTCAAAGTCAGGCCATAATAGAAAATAAGCAC
AAGGAGTTAAAAAGACTGACTAATCAGTTCAAAGAGCAAACAGAGACCTTACAGGCTGCATTGGACTTAGCATTGATAG
TGCTTAATAAAAACAAAGGGGTGGAATAGGGGATGTCACACCTTGGGAACTAATGATATACCAGATGAATACAGATAA
CCAAGAACAAATAAATTTCTACAAAACTCAAAATAACAAAAAATTCTGTTATTACAGACTTCAGCAAGGAAAGCAAAAG
GGGAATTGGCAAGGTCCTGCTGTATCCTTTGGAAAGGGGAAGGTGCTATAGTAATACAAACACCTGATGGGCCAGTCC
                                po1 <-
\verb|TCATCCCTAATAAGAACTTTAAGGAGGTACCTAACCCGGAGGATTAGGCCACATAACCCATGGCGAACAACTTTTAGTA|\\
GCACCTGAAAAACCAATGTCATTAGAATTACAAGCTGTAAAAGAGGAACCCAAGAATTTCACGTTAGGCAGGGATTAGG
                      -> vif
CTTCTTCGAAAGAAGTCAAGAAGACATGAGGGGGCTGTTCAGGTTAAATTTAGACATGCAAAATTTAGAAGATGAA
                      M R R L F R L N L D M Q N L E D
GATATCTGGTACAACAGGTATAAGGTAGTAATAGGAACCAGGGTTGATTGGGAAAATTGGGAAATTGGGATAAGC
    W Y N R Y K V V I G T R V D W E N W E G
{\sf CAGGAGTGTTTGGTCTGTTGTGCAGATTAGCATCATGTGGGGAGCACACCTCAGACTGGTGGAAACTCCTCTTAACAGG}
 G V F G L L C R L A S C G E H T S D W W K L L L T G
ACAAGAACCCCCAAGATGCTTTGAATGCGCTCTGCTAGCAATTATTTTTGGAAACCCCGCCAAATAGCCTGCAAAGAAGA
O E P P R C F E C A L L A I I L E T P P N S L O R R
GCTGCACTTGCATATGTAGAGGGGAAAAGGGGCACCTCCTTTGCCAAACATCATAAAATATGACAAATTTATATACAGGC
 A L A Y V E G K G A P P L P N I I K Y D K F I Y R P
CCCATATGACAAATATGGATCGAACCCTACTCCTAAGACCCCATACCCAGCTAAAGTTTCTCCTTGACCTAGAATGGTG
H M T N M D R T L L R P H T Q L K F L L D L E W C
TTAGATGGAGAATGAGACTTGCAGACTGCTATGCCAAGCTATAGAGCATAAGCTCTCAAAGGATCAACTCCAGAGAGTA
AAAGTCATTATAATGTTTCAGACCCCCCAAGGCGCAGAAAGATACCTGCAATGGCTAGCATGGAGATTGAGTATCAAAG
                                        MASMEIEYQR
AGCTAAAGTAGGATGTAACTCATGCGCTTTCCACTGCCAGCTTTGCTTTCTTCAGAAATATTTAGGAATAGCTTATAAA
AKVGCNSCAFHCQLCFLQKYLGIAYK
TGCAAAACCAGGAGGACACGAAAAAGAAGCCATGGACCCAGGAAGAAGCAGAGGTCATGTGGGACTGGCATCAACTCAC
C K T R R T R K R S H G P R K K Q R S C G T G I N S P
 Q N Q E D T K K K P W T Q E E A E V M W D W H Q L T
L E E E V S T P S E K E N T L T W S S G S L S W K G
F G G G G L N P F R E G E H P D M E Q W Q P I L E R
 <- tat
TTGAATGCTGAACGGGTGACATATGGTAATGTGACCATGATAAGATTAGAAGCACTATGGGAAAGGGATCAAAAACTAA
   AERVTYGNVTMIRLEALWERDQKL
GAAGGAAGGAAAGGATAGAAAAATGCTGGACACTAATCTTAGCCTGTATAGGTGGGCTAATTTTAATACACACCTGCCT
 R K E R I E K C W T L I L A C I G G L I L I H T C L
GATATTAGCCATGTTTGGCGGGAATAGCCAAACCAAGGCGGAAAGGGTTATTCTGCTAGCCACTCCCCGGGAGTGATC
I L A M F G G N S Q T K A E R V I L A T P P G V I
CCAGCGGAGGAACTGCCACCATGGTGGTGCGCCTCCGACAACCACCCTGGATGCTCTAGGTCAGAGGCACTAATGCCGG
P A E E L P P W W C A S D N H P G C S R S E A L M P E
G K V T F N E T F Q G M N A S L L A A D V L K S F I
CAAATTGGCCATAAAAGGTTGCAAGGAGAGGGGGGAGTTCCAGCCAAGGTTTATTTGGGGAAGTGACAATTATAACAGCT
```

K L A I K G C K E R G S S S Q G L F G E V T I I T A

```
N S T W V S L E N I S I E T S Y Y T C N L E R L H N W
A A G G R K L S L C L T E G Y F F L R E R T L Q Y C
CATTACTAACCTTTCTAGTACTCTTATCAATCAAACCATGATCTCAGAACCGATCTTTTGGACCTAATGGAACACTTTAT
I T N L S S T L I N Q T M I S E P I F G P N G T L Y
G S M S G V D K C N Y T Y H W V P R N M S V N C S R
CCATCTGGAAACAAAGAGTATCAACACAAGGCAAATTTTGGGGTTTTCCCCTATCATATTTGAGCTATAAGGAAAAAAG
 I W K Q R V S T Q G K F W G F P L S Y L S Y K E K R
GTATAGGCAATTGAAATGCAATTACACTGGTGACCCTTGGAGGCCAGATGGAGCAGTATTAAATCTATGGAAGGTCAAT
  R Q L K C N Y T G D P W R P D G A V L N L W K V N
ACCAGCCGCCCTCAAGAAAACCCTGCCAGGTGGTTCCTATTTCCTTGCCACTCAAAGAACTTTAGCGTCATCATACAAT
S R P Q E N P A R W F L F P C H S K N F S V I I Q C
GTCCTTGCATAGATGGCAAAAACGAAAGTTCTCCCTGCGGTAACACAAATGACACCTCAGTAGATTGGAATAACTGTAC
PCIDGKNESSPCGNTNDTSVDWNNCT
AATAGCAAAGAATATTCTCTCTGGGATGGAGGAGCCGGAGGGTTAATAGCTAATTGGAGCAGAACATCCCTCAAAAGC
I A K N I L F W D G G A G G L I A N W S R T S L K S
ATGACAGGGAACTGGACATGCTATAATGCCTGGAAAGGGTTCTATAACAGCAGCTGTAATAATTCTACTGAAGGAGATG
M T G N W T C Y N A W K G F Y N S S C N N S T E G D E
AATGCTCATGCCAAAATAATACCATTATAAATTTTATAGATCCATACCCTTATGCATCAGTTAAAAGACTACTC
C S C Q N N T I I N F I D P Y S N L M H Q L K D Y S
CATAGTCAAACAACCTTCAATAGGAGTGTTCAGGGAAAGTGAATTCCCAATGTGGGGGACCAAAAGGTCGATTGGCAGG
I V K Q P S I G V F R E S E F P M W G T K R S I G R
AGGAAAAGAGCTGTACAGGTACCATTGCTTCTGTTCTCCTTGCTGATGAGTGGAATCGGAGCCGCATCAGGGATAACTG
R K R A V Q V P L L F S L L M S G I G A A S G I T G
GAGTGCTCCAATCTTCAGGGCTGGTAGGAGTCTTGAAGGAGCAACAGAAACTCCTGAGAGGCATCCTTGAAACCCAGGG
V L Q S S G L V G V L K E Q Q K L L R G I L E T Q (
ATTGTTGTTGCACAGACAGGAGGCCCTGGAGGCAGGCCTGATGGAACTGGAGGCAAGAGTAGACAGAATCGATTGGATC
L L L H R Q E A L E A G L M E L E A R V D R I D W I
\tt CTGGGAACAGCCCAATTAATGAATTTGGCCGGATGTGGGAGTTTTACCCCAGTATGTCTGACCCACCTTGTTTGGAATT
L G T A Q L M N L A G C G S F T P V C L T H L V W N S
                                             RRE
\verb|CCACATATAACATTACCATGAAGAATAGGACCATGAGCAACTGGTTAAATCAAAGCAGGACATATAAGGAGTTAATACT| \\
T Y N I T M K N R T M S N W L N Q S R T Y K E L I L
GCAGCAACTGGCTGAGAGTGGCGCCTCGTTCCAATCATTAGAGGTACAACTCAAAAATTTGGGGGAGTCAAATTGGCTA
Q Q L A E S G A S F Q S L E V Q L K N L G E S N W L
 TACCATATGGAATAAGTTCAAGGATCTGTGGAGATCATGGGGTGTTCTAGCACTTATAGTACTGCTCTTACTTCTTT
  T I W N K F K D L W R S W G V L A L I V L L L L F
TCGGGCCATGCCTCTTTCAATGCGTTCAAAATATGCTTTATAAGTTTGTAGGTTATTCTCTTATATCTGAACAGGACCA
 GPCLFQCVQNMLYKFVGYSLISEQDQ
AATCCTTCCTGCCATGTCTGTGGCGGACCAGATAATGACGGCAGACATCCTTGGGGAGGCAGACGTAGAGGTCGGCGAC
I L P A M S V A D Q I M T A D I L G E A D V E V G D
   SCHVCGGPDNDGRHPWGG<mark>RRRGRR</mark>
GATTCCTCGCTCGAGCAAGGCGTCAAGCCAGGGAAGGACTGGAAGCCCAATTTGCGCAGCTCCACTTGGTGGCTGAATG
 S S L E Q G V K P G K D W K P N L R S S T W W L N V
R D K V Q N I R N K L P Q N K I S S T S H R E E G A
                                          3'-LTR
   env <-
ACCATCATAAGAATTAACCCCACCATCTTGCCACAATAGAAAAGAAAAGGGTGGACTGAGGGAGTCCTGTGAGCATGAA
P S *
```

CCCCACTGTTGCAGAACTTCCCAGCAGACAAAGGGCTTCCAAGAACTGTTATGAACTAGAAGGTGTTATGCAGGATGTT
ATAGCTGACCGCAGATAGACCACCGGGACATGGTGTACGTGCTACAAGCAACATTAGCAGCAGCAGACGAGCAGCCTCG
CACGTACAGCAGACCGCAGATTAACCGCAAGCGCCCTTGACGCAGTGACTGGACTGGCATATAAGCAGCACTGGCCCTC
TGCTTGTCAGAGTGTGCTCTTGGGACACTCTCGCTCAGATCATCCTCCGCACCCAAATGGTGTGCTCCAGAGAAGGGGA

 $\tt GCGCTAATAAACAGCTTTCGCTTTCAGTTACTGTGTGTGACCCGTTTGCTTCCACCATCGGACCGGCTCACTCCCCTGGGAGCTCCGTGAGCGGCAGAGAGCTCCCA$ 

A

```
MELVmpf 41 WDkPGVFGLLCRLASCGEHTSDWWKLLLTGQE--PPR-CF pfam05851 146 WG-PGMVGVVIKAFSCGERKYDWTPMMVIRGEidPQKwCG

ECALLAIILETPPNSLQRRAALA 100

CWNLICLRNSPPGSLQRLAMLA 207
```

B

```
RELIK 44 RPLAEQRWVPGMYGLASRATSCWFCKKSKNWKKVIRIGKL pfam05851 139 GGEPSPGWGPGMVGVVIKAFSCGERKYDWTPMMVIRGEID EEGVIRRVFLVCCL--TPQGTLQRLAALA 110 PQKWCGDCWNLICLTNSPPGSLQRLAMLA 207
```

Fig S2. Conserved domain alignment of the deduced amino acid sequences from the MELVmpf (A) and RELIK (B) vif genes and the lentiviral Vif superfamily (pfam05851). Pfam is a large collection and classification of protein domains and families. Numbers refer to the position in the original protein or domain. Identical amino acid residues are highlighted in red, and blue and gray indicate different amino acid residues or a gap, respectively. The representative RELIK vif gene used here is encoded by O. cuniculus genome cont2.81652 (version 2). The expectation values (e-value) were generated by a conserved domain search. Black rectangles represent the SLQXLA conserved sequence motif of Vif protein. RELIK has an SLQXLA conserved sequence motif with only one S->T substitution. This substitution is also present in feline immunodeficiency virus (FIV) (Oberste and Gonda 1992). It is worth noting that the RELIK *vif* element described here is derived from the second assembly of the European rabbit, released in 2009; the initial analysis of RELIK was published with the preliminary assembly that was available in 2005.





Fig S4. Phylogenetic relationships of MELVmpf and other retroviruses. Tree was reconstructed using ML method with 500 nonparametric bootstrap replicates. Support indices are indicated as percent.