

MATRICES

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES

Un sistema de "m" ecuaciones lineales con "n" incógnitas. Tal como:

Se puede escribir aplicando notación matricial de la siguiente manera.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
\dots & \dots & \dots & \dots & \dots \\
a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\dots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
\dots \\
b_n
\end{pmatrix}$$

Donde:

A: Matriz de coeficientes

B: Matriz de resultados

X: Matriz de variables

En la resolución de un sistema de ecuaciones lineales se pueden presentar tres casos

- a) Que el sistema no tenga solución, se dice entonces que el sistema es incompatible.
- b) Que el sistema tenga solución única en este caso el sistema es compatible y determinado.
- c) Que el sistema admita más de una solución, entonces el sistema es compatible e indeterminado.

Teorema:

La condición necesaria y suficiente para que un sistema de ecuaciones lineales sea compatible o consistente es que:

El rango de la matriz de los coeficientes de A, sea igual al rango de la matriz ampliada o aumentada (A/B), en caso contrario el sistema es incompatible o inconsistente.

La matriz aumentada (A/B) consiste en aumentar la matriz B a la matriz A.

Un sistema compatible será determinado si el rango común de la matriz de los coeficientes y de la matriz ampliada es igual al número de incógnitas. en caso contrario el sistema será indeterminado.

RESOLUCION DE SISTEMAS NO HOMOGENEOS DE ECUACIONES LINEALES.

Un sistema de ecuaciones lineales es no homogéneo cuando al menos uno de los términos independientes del sistema es diferente de cero.

RESOLUCION DE SISTEMAS DE ECUACIONES POR TRANSFORMACIONES ELEMENTALES

Este método consiste en reducir la matriz aumentada (A/B) a su forma escalonada, mediante transformaciones elementales.

Si $r(A) \neq r(A \mid B)$ Entonces el sistema es incompatible y no existe solución

Si $r(A) = r(A \mid B)$ El sistema es compatible

Si r = n Entonces existe solución única, siendo n el numero de incognitas

Si r < n Entonces existe infinitas soluciones, de donde k = n - r K, es el numero de parámetros

SISTEMAS HOMOGENEOS DE ECUACIONES LINEALES

Un sistema de ecuaciones lineales es homogéneo si todos los términos constantes son ceros, es decir si el sistema tiene la forma.

$$a_{11}x_1 + a_{12}x_2 + \dots a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{12}x_2 + \dots a_{2n}x_n = 0$$

$$\dots = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots a_{mn}x_n = 0$$

Si
$$x_1, x_2, ... x_n = o$$
 se denomina solución TRIVIAL

Si existen otras soluciones se les denomina solución no trivial (Si el sistema tiene más incógnitas que ecuaciones)

2x - 5y + 2z = -2

4x + 6y - z = 23

2x + 7y + 4z = 24

$$6x + 4y + 2z = 2$$

$$5x + 3y + 3z = 2$$

$$7x + 4y + 5z = 3$$

$$6x + 4y + 2z = 2$$

$$5x + 3y + 3z = 2$$

$$7x + 4y + 5z = 3$$

$$\begin{pmatrix} 6 & 4 & 2 & 2 \\ 5 & 3 & 3 & 2 \\ 7 & 4 & 5 & 3 \end{pmatrix} \xrightarrow{F_2(-1) + F_1} \begin{pmatrix} 1 & 1 & -1 & 0 \\ 5 & 3 & 3 & 2 \\ 7 & 4 & 5 & 3 \end{pmatrix} \xrightarrow{F_1(-5) + F_2} \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & -2 & 8 & 2 \\ 0 & -3 & 12 & 3 \end{pmatrix} \xrightarrow{F_2(-1/2)} \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & -4 & -1 \\ 0 & -3 & 12 & 3 \end{pmatrix} \xrightarrow{F_2(-1) + F_1} \xrightarrow{F_2(3) + F_3} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$2 x + 4y + 6z = 18$$

 $4x + 5y + 6z = 24$
 $3x + y - 2z = 4$

$$\begin{cases} x_1 + 2x_2 + x_3 - 3x_4 = 1 \\ 2x_1 + 3x_2 - x_3 + 2x_4 = 3 \\ 2x_1 + x_2 - 6x_3 + x_4 = -1 \end{cases}$$