ThinkDSP. Лабораторная 5. Автокорреляция.

Шерепа Никита 8 мая 2021 г.

Содержание

1	Упражнение 5.1	5
2	Упражнение 5.2	8
3	Упражнение 5.3	11
4	Упражнение 5.4	14
5	Вывод	19

Список иллюстраций

1	Высота тона звука	6
2	Высота тона звука	7
3	Спектрограмма звука	
4	Кривая и спектрограмма	10
5	Таблица цен $BitCoin$	11
6	График цен $BitCoin$ за 7 лет	12
7	Результат автокорреляции	13
8	Спектр сигнала с 2 по 2.5 секунду	15
9	Результат автокорреляции	16
10	Удалили частоту 464 Гц	17
11	Убрали пики	18

Листинги

1	Meтод serial_corr	5
2	Mетод autocorr	5
3	Фрагмент 1 и высота его тона	5
4	Уточнение частоты	6
5	Фрагмент 2 и высота его тона	6
6	Уточнение частоты	7
7	Спектрограмма звука	8
8	Meтод estimate_fundamental	9
9	Вычисление частоты с помощью метода estimate_fundamental	9
10	Вычисление кривой отслеживания тона	9
10	рычисление кривои отслеживания тона	IJ
11		1
	Таблица цен $BitCoin$	_
11	Таблица цен BitCoin 1 График цен BitCoin 1	1
11 12	Таблица цен BitCoin 1 График цен BitCoin 1 Автокоррелируем 1	11
11 12 13	Таблица цен BitCoin 1 График цен BitCoin 1 Автокоррелируем 1 Работа со звуком 1	$egin{array}{c} 1 \ 1 \ 1 \ 2 \end{array}$
11 12 13 14	Таблица цен BitCoin 1 График цен BitCoin 1 Автокоррелируем 1 Работа со звуком 1 Автокоррелируем 1	$egin{array}{c} 1 \ 1 \ 1 \ 2 \ 14 \end{array}$
11 12 13 14 15	Таблица цен BitCoin 1 График цен BitCoin 1 Автокоррелируем 1 Работа со звуком 1 Автокоррелируем 1 Функция find_frequency 1	$egin{array}{c} 1 \ 1 \ 1 \ 2 \ 14 \ 15 \end{array}$
11 12 13 14 15 16	Таблица цен BitCoin 1 График цен BitCoin 1 Автокоррелируем 1 Работа со звуком 1 Автокоррелируем 1 Функция find_frequency 1 Частота первого пика 1	11 12 14 15

1. Задание

Вычислите автокорреляцию для различных lag, воспользовавшись материалами из $chap\,05.ipynb$. Оцените высоты тона вокального чирпа для нескольких времен начала сегмента.

2. Ход работы

```
Bоспользуемся некоторыми методами из chap05.ipynb

serial_corr - вычисляет корреляцию для разных типов шума

def serial_corr(wave, lag=1):
    N = len(wave)
    y1 = wave.ys[lag:]
    y2 = wave.ys[:N-lag]
    corr = np.corrcoef(y1, y2)[0, 1]
    return corr

    Листинг 1: Метод serial_corr
```

autocorr - вызывает serial corr с различными значениями lag

```
def autocorr(wave):
lags = np.arange(len(wave.ys)//2)
corrs = [serial_corr(wave, lag) for lag in lags]
return lags, corrs
Листинг 2: Метод autocorr
```

Теперь возьмем звук, выберем из него фрагмент и найдем высоту его тона.

```
wave =
read_wave('res/28042__bcjordan__voicedownbew.wav')
wave.normalize()
segment = wave.segment(start=0.3, duration=0.01)

lags, corrs = autocorr(segment)
plt.plot(lags, corrs)
decorate(xlabel='Lag (index)', ylabel='Correlation')
Листинг 3: Фрагмент 1 и высота его тона
```


Рис. 1: Высота тона звука

Видим, что пик лежит между 100 и 120. Для уточнения lag воспользуемся методом argmax

```
low, high = 100, 120
lag = np.array(corrs[low:high]).argmax() + low

period = lag / segment.framerate
frequency = 1 / period
frequency

Output
404.5871559633028
```

Листинг 4: Уточнение частоты

404.5871559633028

Теперь возьмем другой фрагмент и вычислим частоту для него

```
wave =
read_wave('res/28042__bcjordan__voicedownbew.wav')
wave.normalize()
segment = wave.segment(start=0.6, duration=0.01)

lags, corrs = autocorr(segment)
plt.plot(lags, corrs)
decorate(xlabel='Lag (index)', ylabel='Correlation')
Листинг 5: Фрагмент 2 и высота его тона
```


Рис. 2: Высота тона звука

Видим, что пик лежит между 100 и 150. Для уточнения lag воспользуемся методом argmax

```
low, high = 90, 110
lag = np.array(corrs[low:high]).argmax() + low

period = lag / segment.framerate
frequency = 1 / period
frequency

Output
352.8
```

Листинг 6: Уточнение частоты

Частота уменьшается с увеличением времени начала сегмента.

1. Задание

Инкапсулируйте код, выполняющий автокорееляцию в функцию, названную $estimate_fundamental$, и используйте её для отслеживания высоты тона записанного звука.

Проверьте, насколько хороша она работает, накладывая оценки высоты тона на спектрограмму записи.

2. Ход работы

Возьмём звук из прошлого пункта и построим его спектрограмму

Рис. 3: Спектрограмма звука

Теперь инкапсулируем код в функцию $estimate_fundamental$

```
def estimate_fundamental(segment, low = 70, high = 150):

lags, corrs = autocorr(segment)

lags = np.array(corrs[low:high]).argmax() + low

period = lag / segment.framerate

frequency = 1 / period

return frequency

Листинг 8: Метод estimate fundamental
```

_ *

Проверим его работоспособность

```
segment = wave.segment(start = 0.2, duration = 0.01)
frequency = estimate_fundamental(segment)
frequency

Output
436.63366336633663
```

Листинг 9: Вычисление частоты с помощью метода estimate fundamental

```
436.63366336633663
```

Теперь вычислим высоту тона записанного звука и построим кривую отслеживания тона, наложенную на спектрограмму

```
step = 0.05
          starts = np.arange(0.0, 1.4, step)
          duration = 0.01
          ts = []
          freqs = []
          for start in starts:
          ts.append(start + step/2)
          segment = wave.segment(start, duration)
          freq = estimate_fundamental(segment)
          freqs.append(freq)
13
          wave.make_spectrogram(2048).plot(high=900)
1.4
          plt.plot(ts, freqs, color='green')
          decorate(xlabel='Time (s)',
          ylabel='Frequency (Hz)',
          xlim=[0, 1.4],
```

уlim=[0, 900]) Листинг 10: Вычисление кривой отслеживания тона

Рис. 4: Кривая и спектрограмма

Видим, что зеленая кривая правильно наложилась на спектрограмму, значит все вычисления верны.

1. Задание

Используя данные про BitCoin из прошлой лабораторной работы, вычислите автокорреляции цен в платежной системе BitCoin. Быстро ли спадает автокорреляционная функция? Есть ли признаки периодичности процесса?

2. Ход работы

Вспомним данные про BitCoin из прошлой лабораторной работы

Листинг 11: Таблица цен BitCoin

	Currency	Date	Closing Price (USD)	24h Open (USD)	24h High (USD)	24h Low (USD)
0	BTC	2013-10-01	123.654990	124.304660	124.751660	122.563490
1	BTC	2013-10-02	125.455000	123.654990	125.758500	123.633830
2	BTC	2013-10-03	108.584830	125.455000	125.665660	83.328330
3	BTC	2013-10-04	118.674660	108.584830	118.675000	107.058160
4	BTC	2013-10-05	121.338660	118.674660	121.936330	118.005660
2768	BTC	2021-05-01	57302.646424	53598.879503	57434.933127	53097.762794
2769	BTC	2021-05-02	57677.975222	57741.020910	58511.256049	57062.700071
2770	BTC	2021-05-03	56427.043125	57824.300187	57925.741567	56123.039508
2771	BTC	2021-05-04	57255.306838	56639.439786	59001.359642	56508.240449
2772	BTC	2021-05-05	53658.843121	57218.805329	57246.891191	53613.595218

2773 rows × 6 columns

Рис. 5: Таблица цен BitCoin

decorate(xlabel='Time (days)') Листинг 12: График цен BitCoin

Рис. 6: График цен BitCoin за 7 лет

Теперь воспользуемся функцией автокорреляции

```
lags, corrs = autocorr(wave)
plt.plot(lags, corrs)
decorate(xlabel='Lag',
ylabel='Correlation')
```

Листинг 13: Автокоррелируем

Рис. 7: Результат автокорреляции

Как видим, идет плавное уменьшение значения, как у розового шума. Результат совпадает с результатом прошлом лабораторной.

Увеличение значения происходит из-за того, что на самом графике курс цен сначала увеличился, а затем уменьшился, а затем опять резко увеличился.

1. Задание

Поэкспериментируйте с исследованием автокорреляции, используя материалы файла saxophone.ipynb

2. Ход работы

Вопроизведем звук саксофона и посмотрим на спектр сигнала вблизи

```
from thinkdsp import read_wave
          wave =
              read_wave('res/100475__iluppai__saxophone-weep.wav')
          wave.normalize()
          wave.make_audio()
          start = 2.0
          duration = 0.5
          segment = wave.segment(start=start, duration=duration)
          segment.make_audio()
10
11
          spectrum = segment.make_spectrum()
12
          spectrum.plot(high=3000)
13
          decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
                 Листинг 14: Работа со звуком
```


Рис. 8: Спектр сигнала с 2 по 2.5 секунду

Воспринимаем мы основную частоту, равную 464 Γ ц. Но она не доминирующая. Доминирующая = 1392 Γ ц.

Воспользуемся автокорреляцией, чтобы понять, почему мы воспринимаем не доминирующую частоту.

```
def autocorr(segment):
             corrs = np.correlate(segment.ys, segment.ys,
                mode='same')
             N = len(corrs)
             lengths = range(N, N//2, -1)
             half = corrs[N//2:].copy()
             half /= lengths
             half /= half[0]
             return half
10
          corrs = autocorr(segment)
          plt.plot(corrs[:200])
12
          decorate(xlabel='Lag', ylabel='Correlation',
13
              ylim=[-1.05, 1.05])
                 Листинг 15: Автокоррелируем
```


Рис. 9: Результат автокорреляции

Как видим, первый крупный пик находится в районе lag = 100

Воспользуемся фнукцией, которая находит самую высокую корреляцию в заданном диапазоне задержек и возвращает соответствующую частоту - $find_frequency$

```
def find_frequency(corrs, low, high):
lag = np.array(corrs[low:high]).argmax() + low
print(lag)
period = lag / segment.framerate
frequency = 1 / period
return frequency
Листинг 16: Функция find_frequency
```

Вычислим частоту 1ого пика

```
find_frequency(corrs, 80, 100)

Output
4 464.2105263157895
Листинг 17: Частота первого пика
```

464.2105263157895

Если попробовать удалить частоту 464 Гц из спектра то восприятие не изменится

```
spectrum2 = segment.make_spectrum()
```

```
spectrum2.high_pass(600)
spectrum2.plot(high=3000)
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
Листинг 18: Удалим частоту 464 Гц
```


Рис. 10: Удалили частоту 464 Гц

Всопринимается всё еще частота = $464~\Gamma$ ц. Это явление называется "подавленная" основная частота.

Мы всё еще восприминаем частоту = 464 Γ ц, потому что оставшиеся пики, которые присутствуют в сигнале, представляют собой гармоники 464 Γ ц.

Наше ухо интерпретирует высокие гармоники как свидетельство того, что «правильная» основная частота $=464~\Gamma$ ц.

Если избавиться от остальных пиков, то весь эффект пропадет и мы будем слышать не саксофон, а звук, похожий на сигнал перед записью сообщения на автоответчик.

```
spectrum4 = segment.make_spectrum()
spectrum4.high_pass(600)
spectrum4.low_pass(1200)
spectrum4.plot(high=3000)
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
Листинг 19: Убираем пики
```


Рис. 11: Убрали пики

5 Вывод

В результате выполнения лабораторной работы получены навыки работы с корреляцией, автокорреляцией. Мы ознакомились с явлением "подавленных" основных частот и функцией автокорреляции.