Integrated Algebra 2 and Precalculus

Exam: Chapter 10 of Algebra 2 23

Exponential and Logarithmic Functions

Name: Krish Arom

Instructions: Answer all questions to the best of your ability. Show all your work in the space provided for full credit.

1. Find the base n such that $\log_n 4\sqrt{2} = 10$.

2. Find x if $\log_9(2x-7) = \frac{3}{2}$.

3. For how many positive integers b is $\log_b 729$ a positive integer?

(8)

(10)

(8)

4. If $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x? $\log_3(\log_3(\log_3(\log_3(x))) = 2$, then how many digits are in x?

5. Find the domain and range of $f(x) = 2\log_3(x^2 - 4x - 5)$.

(12)

Domuin's CER, X & [-1, Range: CERT (R)

6. Let
$$f(x) = 3x^2 - 7$$
 and $g(f(4)) = 9$. What is $g(f(-4))$?

(10)

(12)

7. Let $f(x) = 1 - \frac{1}{x}$.

(a) Find f(f(x)).

(b) Find f(f(f(x))).

(c) Find f(f(f(f(x)))).

(d) Find $f^{34}(5)$.

Hint: Compare $f^4(x)$ to f(x). Notice anything interesting? If you don't, then you should find $f^4(x)$ again.

Page 3 of 5

8. If $8^x = 27$, then what is 4^{2x-3} ?

9. Let f be a function whose graph passes through the points (2,3), (4,7), and (8,12). Suppose f has an inverse. Name three points that must be on the graph of $y = f^{-1}(x)$. (8)

> (7,4) (12,8)

10. I have just won a lottery that will pay me \$1,000,000 in 10 years. A company offers to (10)buy my winning ticket today for \$300,000.

(a) If the annually compounded interest rate is 9%, should I take the offer?

(m \$1000) 300 (1091/1) \$ 300 (2,37) = PM

5 Million (b) For what annually compounded interest rate is my lottery ticket worth \$300,000

Page 4 of 5

Exam: Chapter 10 of Algebra 2

11. Evaluate $\log_2 8$, $\log_2 16$, and $\log_2(8 \cdot 16)$.

(12)

(a) Evaluate $\log_3 \frac{1}{9}$, $\log_3 \sqrt{3}$, and $\log_3 \left(\frac{1}{9} \cdot \sqrt{3}\right)$.

(b) Do you notice a relationship among $\log_a b$, $\log_a c$, and $\log_a(bc)$? Can you prove it? Hint: Let $x = \log_a b$, $y = \log_a c$, and $z = \log_a(bc)$. Use exponential notation.

loga(b)=x=7 ax=b loga(b)=x=7 ax=b loga(b)=x=7 ax=c loga(b)=z(=) az= bx= ax ax= ax+y (=> loga(b) + loga(c) z=x+y=>toga(bc)= loga(b) + loga(c)

12. At how many points does the parabola $y = x^2$ intersect the exponential curve $y = 2^x$?

(8)

Two Points

2 x = x L x = log_(x²) = 7 x > 2 log_2 (x)