Average values, volumes

December 5th, 2024

• We define the average value of a function on the interval [a,b] to be $f_{ave} =$

• The Mean Value Theorem for integrals says .

• Suppose we have a solid whose cross-sectional area at x is given by A(x). Then the volume of the solid between x=a and x=b is

 $V = \lim_{n \to \infty} = \int$

Trig practice: (Stewart) If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\pi/2$, evaluate $\sin(x+y)$.

Problem 1: (Stewart 6.2) Find the average value of $f(x) = 4x - x^2$ on the interval [0, 4].

My Attempt:

Solution:

Problem 2: (Stewart 6.2) Find the average value of $\cos^4 x \sin x$ on $[0, \pi]$.

My Attempt:

Solution:

Problem 3: (Stewart 6.2) Find the average value of $(3-2u)^{-1}$ on the interval [-1,1].

My Attempt:

Solution:

Problem 4: Consider the region under the curve $y = \sqrt{x}$ from 0 to 1. This problem will walk you through the process of finding the volume of the solid generating by rotating this region about the x axis.

- 1. Sketch the solid of revolution. What shape is the cross-section?
- 2. Find the area of a cross-section for a fixed x. This will be your function A(x).
- 3. Integrate A(x) between the given bounds to find the volume.
- 4. You did it! Celebrate!

My Attempt:	Solution:

Problem 5: (Stewart 6.4) Find the volume of the solid obtained by rotating the region $y = 1 - x^2$ and y = 0 about the *x*-axis.

My Attempt:	Solution:

y = 0, x = 2, and $x = 4$ about the x-axis.	obtained by rotating the region bound by $y = \sqrt{25 - x^2}$,
My Attempt:	Solution:
Problem 7: (Stewart 6.4) Consider the solid obtained by rotating the region bounded by $x = 2\sqrt{y}$, $x = 0$, and about the <i>y</i> -axis. Sketch the solid, and then find its volume. <i>Hint: try integrating with respect to y instead of x.</i>	
My Attempt:	Solution:
Problem 8: (Stewart 6.4) Use a definite integral to find the radius r .	he volume of a right circular cone with height \boldsymbol{h} and base
My Attempt:	Solution:
Challenge problem: (Stewart 6.4) Find the volume comm sphere lies on the surface of the other sphere.	non to two spheres, each with radius r , if the center of each
You made it to the very end! Thanks for coming to discus	sion this semester :)

 $Visit\ tinyurl.com/sections 10 a\ for\ my\ discussion\ resources.$