PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C22C 38/00 A1 (11) 国際公開番号 WO99/05333 (43) 国際公開日 1999年2月4日(04.02.99)

JP

(21) 国際出願番号

PCT/JP98/03276

(22) 国際出願日

1998年7月22日(22.07.98)

(30) 優先権データ 特願平9/210222

1997年7月22日(22.07.97)

(71) 出願人 (米国を除くすべての指定国について)

新日本製鐵株式会社

(NIPPON STEEL CORPORATION)[JP/JP]

〒100-8071 東京都千代田区大手町二丁目6番3号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

越智達朗(OCHI, Tatsuro)[JP/JP]

久保田学(KUBOTA, Manabu)[JP/JP]

〒050-0087 北海道室蘭市仲町12番地

新日本製鐵株式会社 室蘭製鐵所内 Hokkaido, (JP)

(74) 代理人

弁理士 石田 敬, 外(ISHIDA, Takashi et al.)

〒105-8423 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル

青和特許法律事務所 Tokyo, (JP)

添付公開書類

国際調査報告書

(54)Title: CASE HARDENED STEEL EXCELLENT IN THE PREVENTION OF COARSENING OF PARTICLES DURING CARBURIZING THEREOF, METHOD OF MANUFACTURING THE SAME, AND RAW SHAPED MATERIAL FOR CARBURIZED PARTS

(54)発明の名称 浸炭時の粗大粒防止特性に優れた肌焼鋼とその製造方法ならびに浸炭部品用素形材

(57) Abstract

A method of manufacturing case hardened steel, capable of minimizing stably the coarsening of particles therein in the carburizing and quenching step, comprising heating steel containing 0.015-0.04 % of Al, 0.005-0.04 % of Nb, 0.006-0.020 % of N and a specific range of percentage of other specific components at 1150 °C or above for 10 minutes or more, hot rolling the resultant steel at a finishing temperature of 920-1000 °C, and then gradually cooling the resultant product from 800 °C to 500 °C at a rate of 1 °C/sec or above: a case hardened steel manufactured by this method and having an amount of deposition of Nb (CN) after the hot rolling step of at least 0.005 %, an amount of deposition of AlN of at most 0.005 %, the number of Nb (CN) particles with diameters of at most 0.1 μ m in a mother phase of the steel of at least 20/100 μ m², a content of a bainite structure of at most 30 % and a crystal grain number of ferrite of 8-11; and a raw shaped material for carburized parts made by utilizing the case hardened steel.

a ... Amount of deposition of Mb (CM) (%)

b ... Amount of deposition of AlH (%)

c ... Coarsened particles absent

d ... Coarsened particles locally present

e ... Coarsemed particles present

(57)要約

本発明は、A1:0.015~0.04%、Nb:0.005~ 0.04%、N:0.006~0.020%他、特定成分を特定範囲 含有する鋼を、1150℃以上で10分以上加熱し、仕上げ温度を9 20~1000℃として熱間圧延し、その後800~500℃を1℃ /秒以下で徐冷する、浸炭焼入れ工程において粗大粒の発生を安定的 に抑制することができる肌焼鋼の製造方法、及び前記方法により、熱 間圧延後のNb(CN)の析出量がO.005%以上、AlNの析出 量を 0. 0 0 5 %以下、鋼の母相中に直径 0. 1 μ m以下の N b (C N) を20個/100μm²以上、ベイナイトの組織分率を30%以 下、フェライト結晶粒度番号を8~11番とした肌焼鋼、及び前記肌 焼鋼を利用した浸炭部品用素形材を提供するものである。

アルバニア アルメニア オーストリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ バルバドス PFGGGGGGGGGHHIIIIIII AZ BA BB LV MC MD MG MK STGJMRTAGSZNUW YZ BBBBBBCCCCCCCCCCC フルナット ベナラジル ベナラジル シ カナダ フリ カーシンイト・シ カート・ジャンス カート・ジャンス MMRWXELOZLTOUDEG コカ中キキチドデエストル ー・リ国ュプェインスペー・リスコーロッツマトイーニン インス・マーニン イファーニン カーニングー バスコーニン KE KG KP

KR KZ LC LI

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

浸炭時の粗大粒防止特性に優れた肌焼鋼とその製造方法ならびに浸 炭部品用素形材

技術分野

本発明は、浸炭時の粗大粒防止特性に優れた肌焼鋼とその製造方法ならびに浸炭部品用素形材に関するものである。

背景技術

歯車、軸受部品、転動部品、シャフト、等速ジョイント部品は、 通常、例えばJIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106な どに規定されている中炭素の機械構造用合金鋼を使用し、冷間鍛造 (転造も含む) - 切削により所定の形状に加工された後、浸炭焼入 れを行う工程で製造されている。冷間鍛造は、製品の表面肌、寸法 精度が良く、熱間鍛造に比べて製造コストが低く、歩留まりも良好 であるため、従来は熱間鍛造で製造されていた部品を、冷間鍛造へ 切り替える傾向が強くなっており、冷間鍛造-浸炭工程で製造され る浸炭部品の対象は近年顕著に増加している。浸炭部品の大きな課 題として、熱処理歪みの低減が挙げられる。これは、シャフトにつ いては熱処理歪みで曲がればシャフトとしての機能が損なわれるた めであり、また歯車や等速ジョイント部品では熱処理歪みが大きけ れば、騒音や振動の原因となるためである。ここで、熱処理歪みの 最大の原因は、浸炭時に発生する粗大粒である。この粗大粒を抑制 するために、従来は、冷間鍛造後、浸炭焼入れの前に、焼鈍が行わ れていた。これに対して、コスト削減の視点から、近年焼鈍省略の 指向が強い。そのためには、焼鈍を省略しても粗大粒を生じない鋼

材が強く求められている。

これに対して、特開昭56-75551号公報には、特定量のA1, Nを含有する鋼を1200℃以上に加熱後、熱間加工をすることにより、 980 ℃で 6 時間の浸炭を行った場合でも、芯部のオーステナイト結晶粒度番号で 6 番以上の細粒に保持できる浸炭用鋼が示されている。しかしながら、該鋼の粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、浸炭時の粗大粒の発生を抑制できないのが現実である。

また、特開昭61-261427号公報には、特定量のA1, Nを含有する 鋼を、A1とN量に応じた温度に加熱し、仕上げ温度を 950℃以下の 条件で熱間圧延し、圧延後の A1Nの析出量を 40ppm以下、フェライ トの結晶粒度番号を11~9 である浸炭用鋼の製造方法が示されてい

る。しかしながら、該鋼もやはり、粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、浸炭時の粗大粒の発生を抑制できないのが現実である。

また、特開昭58-45354号公報には、特定量のAI, Nb, Nを含有する肌焼鋼が示されている。しかしながら、本鋼もやはり、粗大粒抑制の能力は不安定であり、粗大粒の発生を抑制できる場合もあれば、できない場合もある。また、該鋼はその実施例から明らかな通り、0.021%以上のNを含有する。そのため、結晶粒粗大化特性はかえって劣化するとともに、鋼材の製造時に割れやキズが発生しやすく、また素材の状態で硬くて冷間加工性が良くない等の欠点を有している。

上記従来の方法では、浸炭焼入れ工程において粗大粒の発生を安定的に抑制することができず、歪みや曲がりの発生を防止することはできない。また、高面圧が負荷される軸受部品、転動部品についても、高温浸炭により高深度浸炭を行って、十分な強度特性を実現した例はない。つまり、高温浸炭に適した肌焼鋼および浸炭部品用素形材の先例はない。

発明の開示

本発明は上記従来技術の問題を解決して、熱処理歪みの小さい浸炭時の粗大粒防止特性に優れた肌焼鋼とその製造方法、ならびに熱間鍛造工程で製造される浸炭部品の製造に関して、高温浸炭においても粗大粒の発生を防止し、十分な強度特性を有する浸炭部品用素形材を提供することを目的とする。

本発明者らは、上記目的を達成するために結晶粒の粗大化の支配 因子について鋭意調査し、次の点を明らかにした。

(1)同じ化学組成の鋼材でも、粗大粒の発生を抑制できる場合

もあれば、できない場合もあり、化学組成を制限するのみでは、粗 大粒を防止することはできない。化学組成以外の要因として、熱間 圧延後または熱間鍛造後の鋼材の炭窒化物の析出状態が重要である

- (2) 浸炭時に結晶粒の粗大化を防止するには、ピン止め粒子として微細なAIN、Nb (CN)を浸炭加熱時に多量分散させることがポイントである。
- (3)浸炭加熱時にNb(CN)のピン止め効果を安定して発揮させるには、熱間圧延後または熱間鍛造後の鋼材に、一定量以上のNb(CN)をあらかじめ微細析出させておくことが必要である。また、熱間圧延後または熱間鍛造後の鋼材に、粗大な AlNが析出していたり、あるいは、 TiNや Al_2O_3 が存在すると、粗大Nb(CN)の析出の核になり、Nb(CN)の微細析出が妨げられる。そのため、不純物としてのTiの含有量およびOの含有量を極力制限する必要がある。
- (4) 浸炭加熱時に AINのピン止め効果を安定して発揮させるには、Nb (CN) の場合とは逆に、熱間圧延後または熱間鍛造後の鋼材の状態で、 AINの析出量を極力制限する必要がある。これは、上記のようにNb (CN) の微細析出のためにも、必須の要件である。なお、熱間圧延後または熱間鍛造後の鋼材に、 TiNや Al₂O₃が存在すると、これが、 AIN析出の核になり、 AINの析出量が増大するので、やはり不純物としてのTiの含有量およびOの含有量を極力制限しなければならない。
- (5)上記のように炭窒化物の規制を満足したとしても、熱間圧延後の鋼材にベイナイト組織が混入すると、浸炭加熱時の粗大粒発生の原因になる。
- (6) さらに、熱間圧延後の鋼材のフェライト粒が過度に微細であると、浸炭加熱時に粗大粒が発生しやすくなる。

(7)熱間圧延後の鋼材の状態で、 AINの析出量を極力制限する ためには、圧延加熱温度を高温にする必要がある。

(8)熱間圧延後の鋼材に、一定量以上のNb (CN)をあらかじめ 微細析出させるためには、圧延加熱温度及び圧延後の冷却条件を最適化すれば良い。すなわち圧延加熱温度を高温にすることによって、Nb (CN)を一旦マトリックス中に固溶させ、熱間圧延後にNb (CN)の析出温度域を徐冷することによってNb (CN)を多量、微細分散させることができる。

本発明は以上の新規なる知見にもとづいてなされたものであり、 本発明の要旨は以下の通りである。

本発明の請求項1~4の発明は、質量%で、

 $C: 0.1 \sim 0.40\%$

 $Si: 0.02 \sim 1.3 \%$

Mn: $0.3 \sim 1.8 \%$

 $S: 0.001 \sim 0.15\%$

A1: $0.015 \sim 0.04\%$

Nb: $0.005 \sim 0.04\%$

 $N: 0.006 \sim 0.020 \%$

を含有し、

さらに、

 $Cr: 0.4 \sim 1.8 \%$

 $Mo: 0.02 \sim 1.0 \%$

Ni: $0.1 \sim 3.5 \%$

 $V: 0.03 \sim 0.5 \%$

の1種または2種以上を含有し、

P: 0.025%以下、

Ti: 0.010 %以下、

O:0.0025%以下に制限し、

残部が鉄および不可避的不純物からなり、

熱間圧延後のNb (CN) の析出量が 0.005%以上であり、 AINの析出量を 0.005%以下に制限し、

又はさらに、

熱間圧延後の鋼のマトリックス中に直径 0.1μ m以下のNb (CN) を 20個 \angle 100μ m 2 以上を有し、

又はさらに、

熱間圧延後のベイナイトの組織分率を30%以下に制限し、

又はさらに、

熱間圧延後のフェライト結晶粒度番号を 8 ~11番とすることを特徴とする浸炭時の粗大粒防止特性に優れた肌焼鋼である。

本発明の請求項5~7の発明は、

上記の鋼を製造するに際して、

1150℃以上の温度で保熱時間10分以上加熱して線材または棒鋼に熱間圧延し、

又はさらに、

熱間圧延後に 800~500 ℃の温度範囲を1℃/秒以下の冷却速度で徐冷し、

又はさらに、

熱間圧延の仕上げ温度を 920~1000℃とすることを特徴とする浸炭 時の粗大粒防止特性に優れた肌焼鋼の製造方法である。

本発明の請求項8,9の発明は、

質量%で

 $C: 0.1 \sim 0.40\%$

 $Si: 0.02 \sim 1.3 \%$

Mn: $0.3 \sim 1.8 \%$

 $S: 0.001 \sim 0.15\%$

A1: $0.015 \sim 0.04\%$

Nb: $0.005 \sim 0.04\%$

 $N: 0.006 \sim 0.020 \%$

を含有し、

さらに、

 $Cr: 0.4 \sim 1.8 \%$

 $Mo: 0.02 \sim 1.0 \%$

Ni: $0.1 \sim 3.5 \%$

 $V: 0.03 \sim 0.5 \%$

の1種または2種以上を含有し、

P: 0.025%以下、

Ti: 0.010 %以下、

〇:0.0025%以下に制限し、

残部が鉄および不可避的不純物からなり、

熱間鍛造後のNb (CN) の析出量が 0.005%以上であり、AIN の析出量を 0.005%以下に制限し、

又はさらに、

熱間鍛造後の鋼のマトリックス中に直径0.1 μm以下のNb (CN) を20個/100 μm² 以上を有することを特徴とする浸炭時の粗大粒防止特性に優れた浸炭部品用素形材である。

図面の簡単な説明

図1は、Ti量と結晶粒粗大化温度の関係について解析した一例を示すグラフである。

図2は、O量と結晶粒粗大化温度の関係について解析した一例を示すグラフである。

図3は、熱間圧延後の AINの析出量とNb (CN) の析出量と結晶粒 粗大化温度の関係について解析した一例を示すグラフである。

図4は、熱間圧延後の鋼のマトリックス中の微細Nb (CN) の析出物の個数と結晶粒粗大化温度の関係について解析した一例を示すグラフである。

図 5 は、熱間圧延後のベイナイト分率と結晶粒粗大化温度の関係について解析した一例を示すグラフである。

図 6 は、熱間圧延後のフェライト結晶粒度番号と結晶粒粗大化温度の関係について解析した一例を示すグラフである。

発明を実施するための最良の形態

以下、本発明について詳細に説明する。

まず、成分の限定理由について説明する。

Cは鋼に必要な強度を与えるのに有効な元素であるが、 0.1%未満では必要な引張強さを確保することができず、0.40%を超えると硬くなって冷間加工性が劣化するとともに、浸炭後の芯部靱性が劣化するので、 0.1~0.40%の範囲内にする必要がある。好適範囲は 0.1~0.35%である。

Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素であるが、0.02%未満ではその効果は不十分である。一方、 1.3%を超えると、硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.02~1.3 %の範囲にする必要がある。冷間加工を受ける鋼材の好適範囲は0.02~0.5 %、更に好適な範囲は0.02~0.3 %である。なお、特に冷間鍛造性を重視する場合は、0.02~0.15%の範囲にするのが望ましい。

一方、Siは粒界強度の増加に有効な元素であり、さらに軸受部品

、転動部品においては、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。そのため、熱間鍛造工程で製造される部品において、高強度化を指向する場合には、 0.2~1.3 %の範囲にするのが望ましい。なお、Si添加による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化による軸受部品、長炭後の組織中の残留オーステナイト量(通称、代理など、対象の時に大きい。残留ヶ量をこの範囲である。とであるには、いわゆる浸炭との過程で浸室を行う処理である。とでは、没炭後の拡散処理の過程で浸室を行う処理である。のでであるには、没炭後の拡散処理の過程で浸室を行う処理である。のでであるには、没炭後の拡散処理の過程で浸室を行う処理である。とで、この場合の浸炭時の炭素ポテンシャルは 0.9~1.3 %の範囲とするのが望ましい。

Mnは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与えるのに有効な元素であるが、 0.3%未満では効果は不十分であり、 1.8%を超えるとその効果は飽和するのみならず、硬さの上昇を招き冷間鍛造性が劣化するので、 0.3%~ 1.8%の範囲内にする必要がある。好適範囲は 0.5~1.2 %である。なお、冷間鍛造性を重視する場合は、 0.5~0.75%の範囲にするのが望ましい

Sは鋼中で MnSを形成し、これによる被削性の向上を目的として添加するが、 0.001%未満ではその効果は不十分である。一方、 0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、 Sの含有量を 0.001~0.15%の範囲内にする必要がある。好適範囲は 0.005~0.15%、更に好適な範囲は 0.005~0.04%である。なお、軸受部品、転動部品においては、Mn S が転動疲労寿命を劣化させるために、 Sを極力低減する必要があ

り、 0.001~0.01%の範囲にするのが望ましい。

A1は、浸炭加熱の際に、鋼中のNと結び付いて A1Nを形成し、結晶粒の微細化、及び結晶粒の粗大化抑制に有効な元素である。 0.0 15%未満ではその効果は不十分である。一方、0.04%を超えると、 A1Nの析出物が粗大になり、結晶粒の粗大化抑制に寄与しなくなる。以上の理由から、その含有量を 0.015~0.04%の範囲内にする必要がある。好適範囲は0.02~0.035 %である。

Nbは、浸炭加熱の際に、鋼中のC, Nと結び付いてNb (C, N)を 形成し、結晶粒の微細化、及び結晶粒の粗大化抑制に有効な元素で ある。 0.005%未満ではその効果は不十分である。一方、0.04%を 超えると、素材の硬さが硬くなって冷間鍛造性が劣化するとともに 、Nb(C,N)の析出物が粗大になり、結晶粒の粗大化抑制に寄与し なくなる。以上の理由から、その含有量を 0.005~0.04%の範囲内 にする必要がある。好適範囲は0.01~0.03%である。なお、本願発 明の鋼および浸炭部品用素形材は、浸炭加熱時に侵入してくる炭素 および窒素と固溶Nbが反応して、浸炭屑に微細なNb(CN)が多量に 析出する。そのために、軸受部品、転動部品においては、これらの Nb(CN)が転動疲労寿命の向上に寄与する。したがって、軸受部品 、転動部品において、特に髙いレベルの転動疲労寿命を指向する場 合には、浸炭時の炭素ポテンシャルを 0.9~1.3 %の範囲で髙めに 設定すること、あるいは、いわゆる浸炭浸窒処理を行うことが有効 である。浸炭浸窒処理は、上記のように浸炭後の拡散処理の過程で 浸窒を行う処理であるが、表面の窒素濃度が 0.2~0.6 %の範囲に なるような条件が適切である。

NはAIN, Nb (C, N)の析出による浸炭時の結晶粒の微細化、及び結晶粒の粗大化抑制を目的として添加するが、 0.006%未満ではその効果は不十分である。一方、0.020 %を超えると、その効果は飽

和する。過剰なNの添加は、素材の硬さを増大させ、冷間鍛造性および最終部品の転動疲労特性を劣化させる。以上の理由から、その含有量を 0.006~0.020 %の範囲内にする必要がある。好適範囲は 0.009~0.020 %である。

次に、本願発明では、Cr, Mo, Ni, Vの1種又は2種以上を含有する。

Crは鋼に強度、焼入れ性を与えるのに有効な元素であり、さらに軸受部品、転動部品においては、浸炭後の残留 γ 量を増大させるとともに、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。 0.4%未満ではその効果は不十分であり、 1.8%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を 0.4~1.8 %の範囲内にする必要がある。好適範囲は 0.7~1.6 %、更に好適な範囲は 0.7~1.5 %である。なお、Cr添加による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化の抑制の効果は、浸炭後の組織中の残留 γ 量が25~40%の時に特に大きい。残留 γ 量をこの範囲で制御するには、いわゆる浸炭浸室処理を行い、表面の窒素濃度が 0.2~0.6 %の範囲になるようにすることが有効である。

Moも鋼に強度、焼入れ性を与えるのに有効な元素であり、さらに軸受部品、転動部品においては、浸炭後の残留ヶ量を増大させるとともに、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。0.02%未満ではその効果は不十分であり、1.0%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.02~1.0%の範囲内にする必要がある。好適範囲は0.02~0.5%、更に好適な範囲は0.02~0.4%である。Mo添加による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化の抑制の効果についても、Crと同様に、いわゆる浸

炭浸窒処理を行い、浸炭後の組織中の残留γ量が25~40%の時に特に大きい。

Niも鋼に強度、焼入れ性を与えるのに有効な元素であるが、 0.1 %未満ではその効果は不十分であり、 3.5%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を 0.1~3.5 %の範囲内にする必要がある。好適範囲は 0.4~2.0 %である。

Vも鋼に強度、焼入れ性を与えるのに有効な元素であるが、0.03%未満ではその効果は不十分であり、0.5%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.03~0.5%の範囲内にする必要がある。好適範囲は0.07~0.2%である。

Pは冷間鍛造時の変形抵抗を高め、靱性を劣化させる元素であるため、冷間鍛造性が劣化する。また、焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、疲労強度を劣化させるので、できるだけ低減することが望ましい。従ってその含有量を 0.025%以下に制限する必要がある。好適範囲は 0.015%以下である。

本発明のような高N鋼においては、Tiは鋼中のNと結び付いて TiNを形成する。 TiNの析出物は粗大であり、浸炭時の結晶粒の微細化、及び結晶粒の粗大化抑制に寄与しない。むしろ、 TiNが存在すると、 AINやNb (CN) の析出サイトとなり、熱間圧延時に AINやNb (CN) が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。そのため、Ti量はできるだけ低減することが望ましい。図1に Ti量と結晶粒粗大化温度との関係を示す。圧下率R=50%の冷間据え込みを行った後、各温度で5時間保定して浸炭シミュレーションを行った結果である。Ti含有量が0.010%を超えると粗大粒発生温度が 950℃以下になり、実用的には粗大粒の発生が懸念される。以

上の理由から、Tiの含有量を0.010 %以下に制限する必要がある。 好適範囲は 0.005%以下である。なお、軸受部品、転動部品においては、粗大なTiN の存在は、最終部品の転動疲労特性の顕著な劣化を招く。そのため、軸受部品、転動部品として適用する場合には、Tiの含有量を0.0025%以下に制限するのが望ましい。

本発明のような高A1鋼においては、Oは鋼中で A1203のような酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、 A1NやNb (CN) の析出サイトとなり、熱間圧延時に A1NやNb (CN) が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。そのため、O量はできるだけ低減することが望ましい。図2にO量と結晶粒粗大化温度との関係を示す。圧下率R=50%の冷間据え込みを行った後、各温度で5時間保定して浸炭シミュレーションを行った結果である。O含有量が0.0025%を超えると粗大粒発生温度が950℃未満になり、実用的には粗大粒の発生が懸念される。以上の理由から、その含有量を0.0025%以下に制限する必要がある。好適範囲は0.002%以下である。なお、軸受部品、転動部品においては、酸化物系介在物が転動疲労破壊の起点となるので、O含有量が低いほど転動寿命は向上する。そのため、軸受部品、転動部品においては、O含有量を0.0012%以下に制限するのが望ましい。

本願発明では、熱間圧延後または熱間鍛造後のNb (CN) の析出量が 0.005%以上であり、 AINの析出量を 0.005%以下に制限するが、このように限定した理由を以下に述べる。

浸炭時に結晶粒の粗大化を防止するにはピン止め粒子として微細なAIN、Nb (CN)を浸炭時に多量分散させることが有効である。粗大なAIN、Nb (CN)は浸炭時の結晶粒の粗大化防止に全く役に立たないばかりでなく、むしろピン止め粒子の数を減らす作用をするため、粗大化防止に対して有害である。ここで、Nbは、鋼中のC、Nと結

合し、NbC, NbN及び両者が複合したNb (CN) を生成するが、本願発明で言うNb (CN) はこれら3種類の析出物の総称として用いている

まず、浸炭加熱時にNb(CN)のピン止め効果を安定して発揮させ るには、熱間圧延後または熱間鍛造後の鋼材に、一定量以上のNb(CN)をあらかじめ微細析出させておくことが必要である。また、浸 炭加熱時に AINのピン止め効果を安定して発揮させるには、熱間圧 延後または熱間鍛造後の鋼材の状態で、 AINの析出量を逆に極力制 限する必要がある。これは、熱間圧延後または熱間鍛造後の鋼材の 状態で析出する AINは粗大であり、ピン止め粒子として寄与しない ばかりか、むしろ上記のNb (CN) の粗大析出の核になり、Nb (CN) の微細析出が妨げられて、結晶粒の粗大化を促進する。図3に熱間 圧延後の AlNの析出量とNb (CN) の析出量と結晶粒粗大化温度との 関係を示す。球状化焼鈍後、圧下率R=50%の冷間据え込みを行っ た後、 950℃×5時間の条件で浸炭シミュレーションを行った結果 である。Nb (CN) の析出量が 0.005%未満、および AlNの析出量が 0.005%を超えると粗大粒が生成する。以上から、熱間圧延後また は熱間鍛造後のNb (CN) の析出量を 0.005%以上に、また、 AlNの 析出量を 0.005%以下に制限する必要がある。好適範囲は、熱間圧 延後または熱間鍛造後のNb (CN) の析出量0.01%以上、 AlNの析出 量 0.003%以下である。なお、熱間圧延後または熱間鍛造後の鋼材 の状態で、 AlNの析出量を本発明の範囲で極力制限すれば、その後 の焼鈍過程、焼準過程、あるいは浸炭時の昇温過程で AINを鋼中に 微細分散させることが可能になり、浸炭時の粗大粒を防止すること が可能になる。なお、AIN の析出量の化学分析法としては、臭素メ タノール溶液で溶解し、 0.2μmのフィルターで残さを採取し、こ れを化学分析する方法が一般的であり、またNb(CN)の析出量の化

学分析法としては、塩酸で溶解し、 0.2μ mのフィルターで残さを採取し、これを化学分析する方法が一般的である。 0.2μ mのフィルターを用いても、ろ過の過程で析出物によりフィルターが目詰まりを起こすため、実際には 0.2μ m以下の微細な析出物の抽出も可能である。

次に、本願発明の請求項 2 、請求項 6 、請求項 9 では、Nb添加鋼について、熱間圧延後の鋼のマトリックス中に直径 0.1μ m以下のNb (CN) を20個/ 100μ m 2 以上を有するが、このように限定した理由を以下に述べる。

結晶粒の粗大化を抑制するには、上記のように、結晶粒界をピン 止めする粒子を多量、微細に分散させることが有効であり、粒子の 直径が小さいほど、また量が多いほどピン止め粒子の数が増加する ため好ましい。微細Nb(CN)と結晶粒粗大化温度との関係を図4に 示す。圧下率R=50%の冷間据え込みを行った後、各温度で5時間 保定して浸炭シミュレーションを行った結果である。図4から明ら かなように、結晶粒粗大化特性と熱間圧延後の微細な析出粒子数に は極めて密接な関連があり、マトリックス中に直径 0.1μm以下の Nb (CN) を20個/ 100μm²以上分散させると実用上の浸炭加熱温 度域において結晶粒の粗大化が生じず、優れた結晶粒粗大化防止特 性が得られる。以上から、マトリックス中に直径 0.1μm以下のNb (CN) が20個/ 100μm² 以上分散していることが必要である。好 適範囲は50個/ 100μm² 以上である。なお、Nb (CN) の分散状態 は、鋼材のマトリックス中に存在する析出物を抽出レプリカ法によ って採取し、透過型電子顕微鏡で、 30000倍で20視野程度観察し、 直径 0.1μ m以下のNb (CN) の数を数え、 100μ m² あたりの数に 換算することにより求めることができる。

次に、本願発明の請求項3,6では、熱間圧延後のベイナイトの

組織分率を30%以下に制限するが、このように限定した理由を以下に述べる。

上記のようにA1N, Nb (CN)の規制を満足したとしても、熱間圧延後の鋼材にベイナイト組織が混入すると、浸炭加熱時の粗大粒発生の原因になる。図 5 にベイナイト分率と結晶粒粗大化温度との関係を示す。圧下率R = 50%の冷間据え込みを行った後、各温度で 5 時間保定して浸炭シミュレーションを行った結果である。ベイナイトの組織分率が30%を超えると粗大粒発生温度が 950℃未満になり、実用的には粗大粒の発生が懸念される。また、ベイナイトの混入の抑制は冷間加工性改善の視点からも望ましい。以上の理由から、熱間圧延後のベイナイトの組織分率を30%以下に制限する必要がある。好適範囲は20%以下である。なお、熱間鍛造工程で製造される部品においては、熱間鍛造時の鍛造温度と鍛造後の冷却速度を制御して、素形材の状態でベイナイトの組織分率を30%以下に抑制すると、熱間鍛造後の焼準の省略が可能になる。

次に、本願発明の請求項4,7では、熱間圧延後のフェライト結晶粒度番号を8~11番とするが、このように限定した理由を以下に述べる。

熱間圧延後の鋼材のフェライト粒が過度に微細であると、浸炭加 熱時に粗大粒が発生しやすくなる。図 6 にフェライト結晶粒度と結 晶粒粗大化温度との関係を示す。圧下率R=50%の冷間据え込みを 行った後、各温度で 5 時間保定して浸炭シミュレーションを行った 結果である。フェライト結晶粒度番号が11番を超えると粗大粒発生 温度が 950℃未満になり、実用的には粗大粒の発生が懸念される。 また、熱間圧延後の鋼材のフェライト結晶粒度番号を 8 番未満の粗 粒にすると、熱間圧延材の硬さが増加し、冷間鍛造性が劣化する。 以上の理由から、熱間圧延後のフェライト結晶粒度番号を 8~11番 の範囲内にする必要がある。

次に、熱間圧延条件について説明する。

上記の本発明成分からなる鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行い、鋳造工程、必要に応じて分塊圧延 工程を経て、線材または棒鋼に熱間圧延する圧延素材とする。

次に、本発明の請求項 5 は、圧延素材を1150℃以上の温度で保熱時間10分以上加熱の温度で加熱する。加熱条件が、1150℃未満であるか、あるいは加熱温度が1150℃以上でも保熱時間が10分未満では、A1N及びNb (CN)を一旦マトリックス中に固溶させることができない。そのため、熱間圧延後の鋼材に、一定量以上のNb (CN)をあらかじめ微細析出させることができず、熱間圧延後に粗大な A1NおよびNb (CN)が存在し、浸炭時に粗大粒の発生を抑制することができない。そのため、熱間圧延に際して、1150℃以上の温度で保熱時間10分以上加熱することが必要である。好適範囲は1180℃以上の温度で保熱時間10分以上である。

次に、本発明の請求項 6 は、熱間圧延後に 800~500 ℃の温度範囲を 1 ℃/秒以下の冷却速度で徐冷する。冷却条件は、 1 ℃/ s を超えるとNb (CN) の析出温度域を短時間しか通過させることができず、熱間圧延後の微細なNb (CN) の析出量が不十分となり、さらにまた、ベイナイトの組織分率が大きくなる。そのため、浸炭時に粗大粒の発生を抑制することができなくなる。また、冷却速度が大きいと圧延材の硬さが上昇し、冷間鍛造性が劣化するため、冷却速度はできるだけ小さくするのが望ましい。好適範囲は 0.7℃/ s 以下である。なお、冷却速度を小さくする方法としては、圧延ラインの後方に保温カバーまたは熱源付保温カバーを設置し、これにより、徐冷を行う方法が挙げられる。

次に、本発明の請求項7は、熱間圧延の仕上げ温度を 920~1000

℃とする。仕上げ温度が 920℃未満では、フェライト結晶粒度が過度に微細になりすぎて、その後の浸炭時に粗大粒が発生しやすくなる。一方、仕上げ温度が1000℃を超えると、圧延材の硬さが硬くなって冷間鍛造性が劣化する。以上の理由から、熱間圧延の仕上げ温度を 920~1000℃とする。

次に請求項 8 , 9 は、浸炭時の粗大粒防止特性に優れた浸炭部品用素形材に関する発明である。本発明は、「棒鋼ー熱間鍛造ー必要により焼準等の熱処理ー切削ー浸炭焼入れー必要により研磨」の工程で製造される浸炭部品および浸炭窒部品に関するものであり、本発明における素形材とは、熱間鍛造後の中間部品を指す。本願発明の浸炭時の粗大粒防止特性に優れた浸炭部品用素形材を用いれば、990℃~1090℃の温度域での高温浸炭のような厳しい条件での浸焼入れ熱処理においても、粗大粒の発生の抑制が可能となり、優れた材質特性が得られる。例えば、軸受部品、転動部品の場合であると、高温浸炭を行っても、優れた転動疲労特性が得られる。各要件の限定理由は、請求項1~2で述べたのと同じである。

本願発明では、鋳片のサイズ、凝固時の冷却速度、分塊圧延条件については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。

なお、本願発明では、浸炭条件を特に限定するものではない。軸受部品、転動部品において、特に高いレベルの転動疲労寿命を指向する場合には、上記のように、浸炭時の炭素ポテンシャルを 0.9~1.3 %の範囲で高めに設定すること、あるいは、いわゆる浸炭浸窒処理を行うことが有効である。浸炭浸窒処理は、浸炭後の拡散処理の過程で浸窒を行う処理であるが、表面の窒素濃度が 0.2~0.6 %の範囲になるような条件が適切である。これらの条件を選択することにより、浸炭層に微細なNb (CN) が多量に析出し、また残留 γ が

25~40%導入されることが、転動寿命の向上に寄与する。

実施例

以下に、本発明の効果を実施例により、さらに具体的に示す。 実施例 1

熱間圧延後の棒鋼から、 AlNの析出量、Nb (CN) の析出量を化学 分析により求めた。また、圧延後の棒鋼のビッカーズ硬さを測定し 、冷間加工性の指標とした。

上記の工程で製造した棒鋼について、球状化焼鈍を行った後、据え込み試験片を作成し、圧下率50%の据え込みを行った後、浸炭シミュレーションを行った。浸炭シミュレーションの条件は、 910℃~1010℃に 5 時間加熱 - 水冷である。その後、切断面に研磨 - 腐食を行い、旧オーステナイト粒径を観察して粗粒発生温度(結晶粒粗大化温度)を求めた。浸炭処理は通常 930~950 ℃の温度域で行われるため、粗粒発生温度が 950℃以下のものは結晶粒粗大化特性に劣ると判定した。なお、旧オーステナイト粒度の測定はJIS G 0551に準じて行い、 400倍で10視野程度観察し、粒度番号 5 番以下の粗粒が1 つでも存在すれば粗粒発生と判定した。

これらの調査結果をまとめて、表 2 に示す。 950℃浸炭時の γ 粒度もあわせて示した。本発明例の結晶粒粗大化温度は 960℃以上であり、通常の上限の浸炭条件である 950℃では、細整粒であることが明らかである。

一方、比較例12はAlの含有量が本願規定の範囲を下回った場合で あり、粗大化特性は劣る。比較例13,14はA1の含有量が本願規定の 範囲を上回った場合であり、粗大化特性は劣る。これは、粗大な A 1Nが存在し、 AINとNb (CN) の微細分散が妨げられたためである。 比較例15はNbの含有量が本願規定の範囲を下回った場合であり、粗 大化特性は劣る。本実施例のように球状化焼鈍後に冷間鍛造する場 合には、微細なNb (CN) が存在しないと、微細な AlNのみでは粗大 粒を抑制できない。比較例16.17はNbの含有量が本願規定の範囲を 上回った場合であり、粗大化特性は劣る。比較例18はNの含有量が 本願規定の範囲を下回った場合であり、窒化物の量が不足するため 、粗大化特性は劣る。比較例19はNの含有量が本願規定の範囲を上 回った場合であり、析出物が粗大になり、やはり粗大化特性は劣る 。特開昭58-45354号公報の実施例/発明鋼の鋼材の粗大化特性が必 ずしも良くない原因は、N量が 0.021%以上と高いためと考えられ る。比較例20~21は、Tiの含有量、Oの含有量が本願規定の範囲を 上回った場合であり、いずれも粗大化特性は劣る。また、比較例22 は、成分系は本願発明の範囲にあるが、熱間圧延後の冷却速度が 1 .5℃/秒と速く、熱間圧延後のNb(CN)の析出量が本願規定の範囲 を下回った場合であり、粗大粒発生温度は低い。また、比較例23も 成分系は本願発明の範囲にあるが、熱間圧延加熱温度が1080℃と低 く、 AlNの容体化が不十分であり、熱間圧延後の AlNの析出量が本 願規定の範囲を上回った場合であり、粗大粒発生温度は低い。

実施例2

実施例 1 で製造した 162mm角の圧延素材を用いて、熱間圧延により、直径23~25mmの棒鋼を製造した。熱間圧延の条件は、加熱温度1150℃~1280℃、仕上げ温度は 840℃~1000℃、圧延後の 800℃-500 ℃の冷却速度は 0.2-1.5 ℃/秒の範囲である。

熱間圧延後の棒鋼のNb (CN) の分散状態を調べるため、棒鋼のマトリックス中に存在する析出物を抽出レプリカ法によって採取し、透過型電子顕微鏡で観察した。観察方法は 30000倍で20視野程度観察し、直径 0.1μm以下のNb (CN) の数を数え、 100μm² あたりの数に換算した。また、圧延後の棒鋼の組織観察を行い、ベイナイトの組織分率、フェライトの結晶粒度番号を求めた。

熱間圧延棒鋼を焼鈍した後、実施例1と同様の方法で、結晶粒粗大化温度を求めた。これらの調査結果をまとめて、表3に示す。第2発明例の結晶粒粗大化温度は970℃以上であり、950℃浸炭時の7粒度は8.7番以上である。また、第3発明例の結晶粒粗大化温度は990℃以上であり、950℃浸炭時の7粒度は9.5番以上である。さらに、第4発明例の結晶粒粗大化温度は1010℃以上であり、950℃浸炭時の7粒度は10.0番以上である。このように、本願発明例では、いずれも、通常の上限の浸炭条件である950℃では、細整粒であることが明らかである。

一方、比較例34は、熱間圧延後の冷却速度が 1.5℃/秒と速く、熱間圧延後のNb (CN) の析出量とNb (CN) の個数が本願規定の範囲を下回った場合であり、比較例43も、熱間圧延後の冷却速度が 1.5℃/秒と速く、熱間圧延後のベイナイトの組織分率が本願規定の範囲を上回った場合であり、いずれも粗大粒発生温度は低い。比較例50は、熱間圧延の仕上げ温度が 840℃と低く、フェライト結晶粒度番号が本願規定の範囲を上回った場合であり、粗大粒発生温度は低い。

実施例3

実施例1で製造した 162mm角の圧延素材を用いて、種々の条件で 熱間圧延を行うことにより、直径25mmの棒鋼を製造した。

熱間圧延棒鋼を球状化焼鈍を行った後、実施例1と同様の方法で

結晶粒粗大化温度を求めた。これらの調査結果をまとめて、表 4 に示す。本発明例の結晶粒粗大化温度は 970℃以上であり、 950℃浸炭時のγ粒度は 8.8番以上である。通常の上限の浸炭条件である 9 50℃では、細整粒であることが明らかである。

一方、比較例53は、熱間圧延時の加熱温度が本願規定の範囲を下回り、 AlNの析出量も本願規定の範囲を上回った場合であり、 910 ℃でも粗大粒が発生する。

実施例 4

実施例1で製造した 162mm角の圧延素材を用いて、種々の条件で 熱間圧延を行うことにより、直径25mmの棒鋼を製造した。

熱間圧延棒鋼を球状化焼鈍を行った後、実施例1と同様の方法で結晶粒粗大化温度を求めた。これらの調査結果をまとめて、表5に示す。第6発明例の結晶粒粗大化温度は990℃以上であり、950℃浸炭時のγ粒度は9.4番以上である。また、第7発明例の結晶粒粗大化温度は1010℃以上であり、950℃浸炭時のγ粒度は10.0番以上である。このように、本願発明例では、いずれも、通常の上限の浸炭条件である950℃では、細整粒であることが明らかである。

一方、比較例73は、熱間圧延時の仕上げ温度が本願規定の範囲を下回った場合であり、圧延後のフェライト結晶粒度も本願規定の範囲を上回った場合であり、 950℃で粗大粒が発生する。比較例74は、熱間圧延時の冷却速度が本願規定の範囲を上回り、ベイナイトの組織分率も本願規定の範囲を上回った場合であり、 950℃で粗大粒が発生する。

実施例 5

表 6 に示す組成を有する転炉溶製鋼を連続鋳造し、必要に応じて 分塊圧延工程を経て 162mm角の圧延素材とした。続いて、熱間圧延 により、直径80mmの棒鋼を製造した。この棒鋼を素材として、熱間

鍛造を行い直径65mmの素形材に仕上げた。熱間鍛造の加熱温度は1100 $℃ \sim 1290 ℃$ である。熱間鍛造後の 800 ℃ - 500 ℃の冷却速度は 0.2-1.3 ℃ / 秒の範囲である。

熱間鍛造により成形された素形材から、AIN の析出量、Nb (CN) の析出量を化学分析により求めた。

上記の工程で製造した素形材について、 900℃×1時間加熱空冷の条件で焼準処理を行った。その後、1050℃×5時間-水冷の条件で浸炭シミュレーションを行った。その後、切断面に研磨-腐食を行い、旧オーステナイト粒径を観察した。旧オーステナイト粒度の測定はJIS G 0551に準じて行った。

また、上記の熱間鍛造により成形された素形材を焼準した後、直径12.2㎜の円柱状の転動疲労試験片を作成し、浸炭焼入れを行った。浸炭処理は次の3条件のいずれかである。なお、浸炭条件Ⅱは、いわゆる浸炭浸窒処理である。

- I. 1000℃×12時間、炭素ポテンシャル1.15%
- Ⅱ. 1000℃×12時間、炭素ポテンシャル1.15%、引き続いて 870 ℃で浸室処理。窒素濃度約 0.4%。
 - Ⅲ. 1050℃×1時間、炭素ポテンシャル 1.2%

また、いずれの条件ともに焼入れ油の温度は 130℃、焼戻しは 180℃×2時間の条件である。

これらの浸炭焼入れ材について、硬さ、残留オーステナイト量、 γ 粒度を調査した。さらに、点接触型転動疲労試験機(ヘルツ最大接触応力5884MPa)を用いて転動疲労特性を評価した。疲労寿命の尺度として、「試験結果をワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数」として定義される L_{10} 寿命を用いた。

これらの調査結果をまとめて、表7に示す。転動疲労寿命は比較

例98(鋼水準 u)の L 10寿命を 1 とした時の各材料の L 10寿命の相対値を示した。

表7に示した通り、本発明例では、γ粒は8番以上の細粒であり、転動疲労寿命も比較例に比べて5倍以上と極めて良好である。特に、浸炭条件IIで浸炭浸窒処理を行った本発明例は転動疲労寿命が顕著に優れている。これは、残留γ量が多く、さらに浸炭浸窒時にNb(CN)が浸炭層に多量に析出したためである。

一方、比較例96はAlの含有量が本願規定の範囲を下回った場合で あり、比較例97はA1の含有量が本願規定の範囲を上回った場合であ り、粗大粒が発生している。比較例98はNbの含有量が本願規定の範 囲を下回った場合であり、比較例99はNbの含有量が本願規定の範囲 を上回った場合であり、やはり粗大粒が発生している。比較例100 はNの含有量が本願規定の範囲を下回った場合であり、窒化物の量 が不足するため、粗大粒が発生している。比較例101 はNの含有量 が本願規定の範囲を上回った場合であり、析出物が粗大になり、や はり粗大粒が発生している。比較例102, 103は、Tiの含有量、Oの |含有量が本願規定の範囲を上回った場合であり、いずれも本発明例| に比較して粗粒である。また、転動疲労特性も不十分である。比較 例104 は、成分系は本願発明の範囲にあるが、熱間鍛造後の冷却速 度が 1.3℃/秒と速く、熱間鍛造後のNb (CN) の析出量が本願規定 の範囲を下回った場合であり、粗大粒が発生している。また、比較 例105 も成分系は本願発明の範囲にあるが、熱間鍛造加熱温度が11 00℃と低く、AINの溶体化が不十分であり、熱間鍛造後のAINの析 出量が本願規定の範囲を上回った場合であり、粗大粒が発生してい る。

次に、熱間鍛造により成形された素形材から採取した一部の試験 片については、上記の条件で浸炭焼入れ後、 900℃×1時間加熱焼

入れの条件で再加熱焼入れを実施した。結果を表 8 に示す。本発明例のγ粒はさらに細粒になり、また転動疲労寿命もさらに向上することが明らかである。特に、浸炭条件 II で浸炭浸窒処理を行った材料は、再加熱焼入れにより、転動疲労寿命が顕著に向上している。これは、本発明例では、再加熱焼入れにより、Nb (CN) が一層多量微細分散するためである。

実施例 6

実施例 5 で製造した直径80㎜の圧延棒鋼を用いて、熱間鍛造により、直径30~45㎜の素形材を製造した。熱間鍛造の条件は、加熱温度1200℃~1300℃、鍛造後の 800℃-500 ℃の冷却速度は 0.4-1.5 ℃/秒の範囲である。

熱間鍛造により成形された素形材のNb(CN)の分散状態を調べるため、マトリックス中に存在する析出物を抽出レプリカ法によって採取し、透過型電子顕微鏡で観察した。観察方法は 30000倍で20視野程度観察し、直径 0.1μ m以下のNb(CN)の数を数え、 100μ m 2 あたりの数に換算した。

実施例 5 と同様の浸炭処理等を行い、転動疲労特性他を求めた。 これらの調査結果をまとめて、表 9 に示す。本願発明例では、いず れも、γ粒は細粒であり、転動疲労特性も優れている。

一方、比較例125 は、熱間鍛造後の冷却速度が 1.5℃/秒と速く、熱間鍛造後のNb (CN) の析出量とNb (CN) の個数が本願規定の範囲を下回った場合であり、結晶粒が粗大であり、転動疲労特性も不十分である。

WO 99/05333

PCT/JP98/03276

	鋼水準 C Si	0.19 0.29	0.04	20 0.05	19 0.26	0.04	20 0.03	0.04	0. 20 0. 26	20 0. 42	20 0.27	19 0.23	0. 20	0.00	20 0.05	19 0.05	20 0.24	20 0. 23	20 0. 18	21 0.06	20 0.05	24	20 0. 25	19 0.24	21 0.22	0. 19 0. 24
	Mn				-	_	-			_	\rightarrow	_			_		-		_			0. 79				
	S	0.012	0.015	0.015	0.020	0.017	0.014	0.016	0.021	0.018	0.013	0.018	0.015	0.016	0.015	0.016	0.019	0.021	0.017	0.014	0.016	0.020	0.015	0.017	0.015	0.020
	A1	0.028	0.031	0.028	0.026	0.030	0.031	0.032	0.030	0.035	0.025	0.026	0.011	0.049	0.052	0.026	0.031	0.035	0.029	0.030	0.028	0.026	0.032	0.030	0.027	0.031
報	NP	0.028	0.025	0.025	0.023	0.026	0.022	0.024	0.022	0.022	0.022	0.020	0.025	0.022	0.026	0.002	0.048	0.053	0.027	0.028	0.020	0.022	0.024	0.026	0.025	0.023
-	Z	0.0184	0.0174	0.0173	0.0146	0.0162	0.0173	0.0168	0.0159	0.0164	0.0101	0.0089	0.0170	0.0181	0.0163	0.0167	0.0142	0.0148	0.0052	0.0224	0.0180	0.0151	0.0175	0.0174	0.0161	0.0164
	Cr	1.07	1.05	1.53	1.04	0.99	0.84	0.83	0.55	0.98	1.02	0.98	1.00	0.98	1.05	1.12	1.06	0.97	1.05	0.99	1.02	0.98	1.00	1.02	0.97	1.01
	Wo	ı	_	1	0.18	0.16	0.74	0.76	0.21	ı	1	0.21	ı	1	0.16	1	-	0.17	ı	1	1	_	ı	0.18	i	0.19
	ž	1	1	1	1	1	-	1	1.78	1	1	1	ı	1	ı	-	ı	1	1	l	1	1	1	1	-	1
	>	1	1	_	ı	ı	1	0.12	1	ŀ	i	ı	1	ı	ı	1	1	ı	ı	ı	1	ı	1	1	1	1
	۵.	0.016	0.014	0.015	0.017	0.013	0.009	0.012	0.013	0.016	0.015	0.018	0.015	0.017	0.013	0.015	0.019	0.016	0.016	0.014	0.016	0.016	0.014	0.016	0.017	0.018
(質量	T.	0.0018	0.0021	0.0022	0.0020	0.0019	0.0017	0.0022	0.0021	0.0022	0.0020	0.0021	0.0018	0.0017	0.0019	0.0022	0.0017	0.0018	0.0018	0.0021	0.0124	0.0022	0.0019	0.0020	0.0021	0.0018
(質量%)	0	0.0014	0.0009	0.0018	0.0016	0.0014	0.0016	0.0017	0.0018	0.0017	0.0015	0.0019	0.0013	0.0009	0.0016	0.0018	0.0017	0.0019	0.0014	0.000	0.0018	0.0029	0.0017	0.0018	0.0020	0.0012

1
<u> </u>
摇
実
2
nb(

後の 田延 田田 AIN析出量	坤
S	.5 ≤ 0.
	017 0.
15 < 0.0015	< 0.
	0.015 0.00
0.	.014 0.
0.	1
14 0.0015	.014 0.
< 0.	
	0.013 0.00
0.	014 0.
	.014 0.
0.	.013 0.
V	< 0.
13 0.0039	.013 0.
0.	.001 0.
0.	0.
32 0.0030	0.
	.016 0.
17 0.0023	
.0	
17 0.0032	•
0.	.002 0.
32 0.0241	0.032 0.0

表 3 (実施例2)

アーション結果				0.0	9 6	2 8	3.5	10.3	10.4	9.5	10.1	11.2	9.6	9.5	10.5	1.0	10.1	10.4		10.8	10.0	10.3	2.2
浸炭シミュ	結晶粒	相大化温度	>	086	6	970	910	1010	1010	066	066	>1010	066	066	1010	<910	1010	1010	>1010	>1010	>1010	>1010	8
圧延後の	関			183	823	292	179	176	174	873	231	238	260	183	186	282	185	181	183	179	226	622	228
圧延後のフェニイト	結晶粒度番号		× 17~	,	ı		1	1	1	J	1	l		1	ı	ı	9.5	10.1	9.5	9.2	8.8	9.9	12.0
圧延後のベイナイト	の組織分率	%	085	3 1	1	1	ı	7	11	19	16	17	17	14	12	82	14	1	14	1	16	1	21
圧延後の 100 mm ² 当かの	Nb(CN)の数		>20	75	162	29	12	284	321	101	129	372	1	1	172	26	242	260	460	337	1	1	8
圧延後の	AIN析出量	%	≤0.005	0.0015	0:0030	0.0023	0.0015	<0.0015	0.0015	0.0020	0.0030	0.0023	0.0020	0.0015	0.0030	0.0023	0.0015	0.0030	0.0015	0.0030	0.0025	0.0025	0.0023
圧延後の	Nb(cN)析出量	%	≥0.005	0.017	0.014	0.013	<0.003	0.015	0.017	0.013	0.012	0.013	0.014	0.016	0.015	0.013	0.017	0.014	0.017	0.014	0.017	0.015	0.018
巖	*	供		Α	Ω		-		\rightarrow	Ľ	7	Ξ	H	×	×	王	>	7	>	>-	2	7	2
巖		<u> </u>	_	— '	잃	8	হ্ল ৷	ક્ષ	88	ह्य	8	83	육	4	3	43	#	8	46	47	₩	49	2
•	区分		体制定範囲	育2発明例			元 数 定	83. 充筑型包								功数	5 4 発明例					:	无 数
	鋼 田延後の 田延後の 田延後の 田延後の 田延後の 100 um²型りの ベイナイト コ・コイト	鋼 鋼 無 圧延後の 上延後の 上延修の 上延修の 上延修の 上延修の 上延修の 上延修の 上延修の 上延修の 上延修の 上延修の	鋼 鋼 無 圧延後の 上延後の 圧延後の 上延後の 上級 上級	 編 編 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の	 編 網 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の に延後の	 網 網 圧延後の 圧延後の 圧延後の 圧延後の 圧延後の に延後の に延後の	鋼 鋼 田延後の 日本ライト 日本ライト 日本ライト 田本ライト 日本ライト 田本ライト 日本ライト 日本ラ	網 編 任延後の 圧延後の 圧延後の L延後の LOLLm² 当りの ペイナイト フェライト JOD Lum² 当りの ペイナイト フェライト JOD Lum² 当りの ペイナイト フェライト JOD Lum² 当りの ペイナイト フェライト Mb (CN) が数 の組織分率 結晶粒度番号 硬 き SD CD CD SD	鋼 (鋼) 田延後の 田延後の 田延後の でイナイト フェライト Nb(CN)析出量 Nb(CN)の数 の組織分率 結晶粒度番号 硬 さ	鋼 鋼 任延後の 圧延後の 上まライト ボタ ボタ	網 編 任延後の 日延後の 日延後の 日延後の 日延後の 日延後の 日延後の マイナイト フェライト 100 μμμ 当りの マイナイト フェライト フェライト フェライト 3	網 個 任延後の 圧延後の 上本ライト フェライト アンニライト でナライト アンニライト ボライト フェライト ボライト フェライト ボライト アンニライト ボライト ボライト ボライト ボライト ボラライト ボアライト ボラライト ボアライト ボアランスト ボアランスト	網 (報) 圧延後の 上エライト ボーライト フェライト ボーライト ボーライト フェライト ボーライト フェライト ボーライト フェライト ボーライト フェライト ボーライト フェライト ボーライト ボータイト ボータイト ボータイト ボータイト ボーターの ボーターの	## ## HOUN #HAI HOUN HOUN HOUN HOUN HOUN HOUN HOUN HOUN	鋼 鋼 田延後の 日延度の 日本ライト 日本ラ	 編 編 任延後の 日延後の 日延後の 日延後の 日延後の 日延後の マイナイト フェライト フェライト フェライト フェライト カンライト カンライト カンライト カンライト カンライト カンライト カンライト カンション 8~11 旧り 100 μm²当りの ベイナイト フェライト カンライト から 0055 ミ20 ミ20 ミ30 8~11 旧り 183 コンタ M く0.005 に2	編	 編	50 100 km² 当りの ペイナイト フェライト 183 に 20 0014 0.0020 162	編	編	編	5 100 km 当 100 km 3 100

-:未測定。

表 4 (実施例3)

	쬻	觀	熱間圧延条件	圧延後の	圧延後の	圧延後の	漫炭シミュレ	浸炭シミュレーション結果
X X		¥	加熱温度*	Nb(CN)析出量	AIN析出量	形	結晶粒	950℃浸炭時
	Na	想	ຸ	%	%	Н	祖人に高度。	の~社及
本願規定範囲			≥ 1150	≥ 0.005	≤ 0. 005			
第5発明例	51	Α	1205	0.017	0.0025	183	970	8.8
	52	Q	1230	0.014	0.0015	228	086	9.4
比較例	53	А	1100	0.019	0.0287	187	< 910	1.2

保熱時間20分。

_
$\hat{}$
*
塞
摇
Ж
J
ro _
誤

4	羅	羅子	※ 間	間圧延条件	44-	圧延後の	圧延後の	圧延後の	圧延後の	圧延後の	圧延後	漫炭シミュレーシ 結 果	デッシン
	Ę	← 梨	加熱温度*	仕上げ温度	冷却递废	ND (CN) 作任職	AIN好出量	100 mm 能から 30 mm	ヘイナイトの色質ない	ラば	の硬み	結晶粒	950°C
		}	٦.	၁	64/ 2°	%	%	ND(CN)	%	梅 む	Æ	租大化温度。こので	漫炭時の 7粒度
本願規定範囲			≥1150	920~1000	≤ 1	≥0.005	≤0.005	0Z≈I	≥30	8~11			
発明例	61	M	1225	l	0.50	0.021	0.0015	116	ı	ļ	192	066	9.6
	29	×	1210	1	0.69	0.018	0.0030	155	1	1	223	1010	9.8
	အ	7	1235	1	0. 56	0.017	<0.0015	1	17	1	187	066	9.6
	হ্র	×	1235	, I	0. 55	0.018	0.0016	t	18	ı	221	066	9.4
	83	×	1210	ı	0.61	0.015	0.0023	172	14	ı	223	1010	10.2
	99	>-	1225	ı	0. 63	0.017	0.0020	72	10	ı	191	066	9.7
7 発明例	29	V	1230	950	ł	0.016	0.0020	ı	ı	9.4	187	1010	10.0
	89	Ω	1215	955	1	0.015	0.0024	1	1	9.6	224	1010	10.6
	69	×	1225	096	0.54	0.017	0.0015	183	-	9.5	223	>1010	10.8
	8	7	1215	920	0. 62	0.015	<0.0015	160	ı	9.6	187	1010	10.2
	7	×	1240	955	0.69	0.017	0.0020	246	12	9.2	225	>1010	10.8
	7.5	H	1235	096	0.50	0.016	<0.0015	324	20	9.4	258	>1010	11.3
壓	73	×	1210	840	·	0.016	0.0017	125	15	11.6	231	950	4.0
	74	>	1235	945	1.35	0.007	0.0025	121	82	10.6	185	950	3.4
		!			***************************************						1		

*保熱時間20分。 -:未測定。

	区分额			i	紀					 ==	 : 					題					 ±			<u> </u>			
	鋼水準		ρ		p							꾹	-				Д	\exists	-	S	+	ם	Δ	*	×	'n	
	ပ	0.20	0.19	0.26	0.34	0.21	0.20	0.19	0.24	0.25	0.35	0.22	0. 23	0.21		_		_				0.21	0. 20	0. 20	0. 19	0.21	0. 20
	Si	0.22	0.24	0.23	0.20	0.42	0.58	1.0	0.98	0.02	0.62	0.93	0.23	0.20	0.06	0.41	0.42	0.22	0.24	0.24	0. 22	0.21	0.25	0.23		0.24	0.21
	Wu	0.83	0.81	0. 76	0.82	0.74	0.82	0.69	0.42	0.91	0.44	0.62	0.80	0.80	0.81	0. 78	0.67	0.75	0.79	0. 78	0.81	0.76	0.82	0.76	0.83	0.81	0.83
	S	900 .0	0.002	0.002	0.007	900 0	900.0	0.002	0.001	900 0	0.002	0.004		_	0.004	_		0.006		0.006	0.005	0.007	0.008	0.006	0.006	0.005	0.007
	A1	0.029	0.030	0.031	0.026	0.030	0.030	0.032	0.031	0.028	0.034	0.025	0.027	0.031	0.029	0.031	0.030	0.032	0.028	0.010	0.056	0.031	0.034	0.030	0.029	0.028	0.026
₩	Nb	0.027	0.026	0.030	0.024	0.027	0.023	0.022	0.024	0.024	0.025	0.024	0.024	0.027	0.025	0.027	0.028	0.027	0.026	0.028	0.031	0.001	0.055	0.029	0.030	0.031	0.025
9	z	0.0175	0.0186	0.0183	0.0144	0.0161	0.0175	0.0162	0.0157	0.0160	0.0162	0.0104	0.0000	0.0168	0.0176	0.0174	0.0171	0.0164	0.0159	0.0165	0.0164	.0.0147	0.0143	0.0051	0.0227	0.0181	0.0153
	ر.	1.05	1.16	1. 18	1.06	1.02	1.03	1.02	1.44	1.21	1.43	1.44	1.45			1.05	1.45	1.05	1.01	1.05	1.12	1.06	1.03	1.05	1.03	1.02	96 0
	₽	,	0.17	0. 29			0.18	0.25	0.25	0.41	0.24	0.24	1	0.52		0.43		0.17	0.19	0.17	0. 20	0.17	0.16	0. 20	0.17	0.16	0.18
	ä	ı	1	1	1	ı		1	l	ı	ı	_	1	ł	1	-	ı	1.82	1	_	ı	ı	ı	1	ı	_	
	Λ	1	ı		1	-	1	ı	_	1	_	i	ı	i	ı	ı	ı	1	0.13	-	1	1	-	ı	ı	ı	ı
	d	0.014	0.016	0.011	0.014	0.016	0.011	0.012	0.009	0.014	0.013	0.015	0.016	0.015	0.014	0.016	0.014	0.014	0.015	0.015	0.014	0.018	0.017	0.015	0.015	0.017	0.014
(質)	Ti	0.0009	0.0012	0.0010	0.0014	0.0014	0.0015	0.0010	0.0009	0.0016	0.0010	0.0014	0.0013	0.0016	0.0012	0.0011	0.0016	0.0015	0.0016	0.0015	0.0017	0.0015	0.0016	0.0014	0.0015	0.0116	0 0016
(質量%)	0	0.0000	0.0008	0.0008	0.0007	0.000	0.0009	0.0007	0.0008	0.0007	0.0009	0.0008	0.0009	0.0008	0.000	0.0007	0.0008	0.0007	0.0007	0.0007	0.0008	0.0009	0.0008	0.0007	0.0009	0.0008	0 0028
	$\overline{}$	_		,	_	_	_	-	_					_													_

7 (実施例5)

			_	7		1		_		_		$\overline{}$	$\overline{}$		_	_	_	,	$\overline{}$	_	$\overline{}$	_	_	_	_			
	転動疲労寿命 (相対値)*		5.5		8.8	9.1	12.7	13.2	15.4	15.3	5.9	6. 1	5.3	6.4	6.9	9.5		0.5	0.7	1.0	1.2	0.8	1.3	9.0	0.7	1.7	0.5	
0特性	7 粒度		8.2	8.5	8.4	8. 7	8.0	8.0	8.3	8.4	9.4	8.8	8.7	9.0	8.8	8.9	9.0	1.1	2.1	3.8	3.9	2.5	3.4	6.2	7.3	4.6	1.8	
高温浸炭材の特性	最表層の 残留7量%		19	18	37	98	88	38	98	37	16	11	18	19	18	35	35	91	17	- 11	16	18	16	18	17	18	17	寸値。
	最表層硬さHV		784	792	144	746	121	748	150	752	784	161	081	748	184	736	741	779	781	16 <i>L</i>	787	771	169	784	782	779	783	した時の相対値。
	烫条贷件		L	I	II	II	II	II	I	Π	Ш	Ш	Ш	I	I	п	П	I	I	I	I	I	I	ŀ	I	I	I	とした
1050℃×5			8.6	9.0	8.9	9. 1	8.4	8.4	8.6	8.8	9.1	8.4	9.0	9.3	9.1	9.2	9.5	1.3	2.5	4.3	4.5	3.2	4.6	8.5	8.4	4.9	2.4	のしい寿命を」
然暇材の A I N to Li 車	% WILLIAM %	≤ 0.005	0.0017	< 0.0015	0.0026	0.0025	0.0021	0.0030	< 0.0015	0.0017	0.0022	0.0024	0.0028	0.0016	< 0.0015	0.0031	0.0038	< 0.0015	0.0047	0.0024	0.0030	< 0.0015	0.0045	0.0022	0.0025	< 0.0015	0.0250	(細水準 1) 0
熱徴材の	第25 第五章 第二章	≥ 0.005	0.016	0.016	0.014	0.015	0.014	0.013	0.013	0.014	0.015	0.015	0.013	0.016	0.015	0.014	0.014	0.016	0.014	0.001	0.031	0.016	0.031	0.016	0.027	0.003	0.029	比較例98
無	- 世		В	۵	၁	þ	е	f	g	ų	i	j	ĸ	u	ď	ō	r	s	t	n	Λ	W	x	y	2	а	q	*
羅	욧			82	83	84	82	98	87	88	68	90	16	92	66	64	98	96	26	86	66	100	101	102	103	104	105	
4	Ŕ	鬼定範囲	第8発明例															校宛										
l b	₫	本願	級															¥										ı

表 8 (実施例5)

	礟	篡	熱銀材の	熱鍛材の	1050℃浸炭		高温浴	高温浸炭材の特性		
X X		X	NP (CN)	AIN作出中	· · · · · · · · · · · · · · · · · · ·					
					1					
	& —	料	析出量	%	ト時の7粒	漫炭条件	最表層	最表層の	7粒度	転動疲労寿命
			%		展		硬さIIV	残留7量%		(相対値) *
本願規定範囲			≥0.005	≤0.005						
第8発明例	111	q	0.016	<0.0015	9.0	I + 再加熱焼入れ**	688	15	10.0	10.5
	112	ပ	0.014	0.0026	8.9	II + 再加熱焼入れ	851	35	9.6	15.4
	113	Ð	0.015	0.0025	9.1	II + 再加熱焼入れ	862	34	10.4	16.2
	114	4	0.014	0.0017	8.8	II+再加熱焼入れ	863	34	9.8	21.1
	115	৸	0.013	0.0028	9.0	皿+再加熱焼入れ	698	15	9.7	6 6

*第7表の比較例98(鋼水準u)のL10寿命を1とした時の相対値。## 900℃×1時間加熱焼入れ。

表 9 (実施例6)

	墨	觀	熱銀材	熱餓材の	熱鍛部材の	1050℃浸炭			高温浸炭材の特性)特性	
N A		术	ONP (CN)	AIN析出量	100 µ m²	ツミュフー					
	Š	料	析出量	%	服りの	ト時の7粒	浸炭	最表層	最表層の	7粒度	転動疲労寿命
			%		NP(CN)の数	庚	茶	風水IV	残留ヶ量%		(相対値)*
				,							
本願規定範囲			≥0.005	≥0.005	≥20						
第9発明例	121	þ	0.012	0.0017	121	8.5	П	779	16	8.2	6.0
	122		0.011	0.0016	144	8.7	П	745	37	8.4	8.5
	123	u	0.012	0.0020	87	8.3	П	737	35	8.0	10.4
	124	0	0.012	0.0020	82	8.4	Ħ	742	98	8.2	12.9
比較例	125	п	< 0.003	< 0.0015	13	4.3	H	781	15	3.7	1.0

*第7表の比較例98(鋼水準u)のL10寿命を1とした時の相対値。 觅。 一:未 選

WO 99/05333 PCT/JP98/03276

産業上の利用可能性

本発明の浸炭時の粗大粒防止特性に優れた肌焼鋼及びその製造方法を用いれば、冷間鍛造工程で部品を製造しても、浸炭時の結晶粒の粗大化が抑制されるために、焼入れ歪みによる寸法精度の劣化が従来よりも極めて少ない。そのため、これまで、粗大粒の問題から冷間鍛造化が困難であった部品の冷間鍛造化が可能になり、さらに冷間鍛造後の焼鈍を省略することも可能になる。また、浸炭時の粗大粒防止特性に優れた浸炭部品用素形材を用いれば、高温浸炭においても粗大粒の発生を防止し、転動疲労特性等の十分な強度特性を得ることができる。以上のように、本発明による産業上の効果は極めて顕著なるものがある。

PCT/JP98/03276 EEE\$0/66 OM

コ世科上初述大田の胡規長の簿にコ 2 お又 1 更本需るする婚許をと 3. 熱間圧延後のベイナイトの組織分率を30%以下に制限したこ

4. 熱間圧延後のフェライト結晶粒度番号が8~11番であること 。脚無川され動

放大財の初規長の舞品コペれをいの内の 8~1 更次請るもら資料を

防止特性に優れた肌焼鰯。

, 5 % 量賀 . 8

 $C : 0.1 \sim 0.40\%$

,% E.I~20.0: i2

'% 8 'I~ε'0 : uW

`%91'0~100'0 : S

VI: 0.015~0.04%,

NP: 0.005~0.04%,

'% 030'0~900'0 : N

, ()) 計合多

'198

Cr: 0.4~1.8 %,

% 0 1~20 0 : OW

'% 9'E~1'0 : !N

'% G'0~80'0: Λ

、し 育合る土以野 2 おみま野 1 の

P: 0.025%以下、

, 不以% 010.0:iT

O:0.0025%以下に制限し、

1150℃以上の温度で保熱時間10分以上加熱して線材または棒鋼に熱 、多瞬合むる体磷納不的逛厄不切去法幾次密數

間圧延し、熱間圧延後のNb (CN) の析出量が 0.005%以上であり、

田 谉 の 永 龍

, 5% 量預 . 1

 $C : 0.1 \sim 0.40\%$

% E:1~20.0: iS

,% 8.1~ε.0 : πM

'%91'0~100'0 : S

% \$ 0 .0 5 10 .0 : IA

'% \$0 00 ~900 0 : 9N

,% 020.0~900.0 : N

, J 脊含多

12192

Cr: 0.4~1.8 %,

Mo: 0.02~1.0 %

, % 8.6~1.0 : iN

'% G'0~80'0 : Λ

、J 育含全土以酥 2 制 六 末 酥 I の

P: 0.025%以下、

, 不以% 010.0: iT

O:0.0025%以下に制限し、

残部が鉄およびよ可離的不純物からなり、 他市のNIA 、0.005%以上であり、 AINの析出 期間圧延後のNb (CN) の析出量が 0.005%以上であり、 AINの析出 直を 0.005%以下に制限したことを特徴とする浸炭時の粗大粒防止

特性に優れた肌焼鰯。 2. 熱間圧延後の鰯のマトリックス中に直径 0.1μm以下のNb (CN)を20個/ 100μm 2以上を有することを特徴とする請求項1に記載の浸炭時の相大粒防止特性に優れた肌焼鍋。

WO 99/05333 PCT/JP98/03276

P: 0.025%以下,

, 不划% 010.0: iT

、J 頭牌コイ以 82500 .0: O

, 0 4 6 4 磅縣不的퐓厄不切 4 6 幾 4 倍 數

曲市の NIA 、C あう上以 8 00 00 が量出 市の (NO) のNA 途 強 間 機 上 は ない 00 5 % 以 上 で まり、 00 5 % 以 下 に 制 限 し た こ と を 特 巻 と す る 浸 炭 時 の 出 大 粒 防 止 は 立 な な り 00 5 % 以 下 に 制 限 し た こ と を 特 巻 と す る 浸 炭 時 の 相 大 粒 防 止

。 は 沢 秦 用 品 暗 景 長 六 九 憂 ご 掛 静

9. 熱間鍛造後の鋼のマトリックス中に直径 0.1μm以下のNb(CN)を20個/100 μm 以上を有することを特徴とする請求項 8 に

。林泺素用品暗岗曼され愛い世帯はは松大郎の海岗曼の強信

MO 99/05333 ACT/JP98/03276 PCT/JP98/03276 PCT/JP9

。去古彭獎の雕熟肌さな憂い世帯は成本財の都規長る下と遊却

6. 熱間圧延後に 800~500 ℃の温度範囲を 1 ℃ / 抄以下の冷却速速で徐冷し、熱間圧延後の鰯のマトリックス中に直径 0.1 μ m 以 1.0 0.1 μ m 以 1.0 0.1

需るもく資券をよるようによるなら離るもで番Ⅱ~8 な号番 速の瞬熱肌され憂い性特性に優れた肌焼鰯の製 要の瞬気 の対し、 のがし、 のが

, 5% 量費 .8

。五亢贵

C:0.10~0.40%,

81:0.02~1.3 %,

,% 8.1∽8.0 : nM

'%91'0~100'0 : S

,%\$0.0~810.0 : IA

'% ₱0 '0~900 '0 : 9N

'% 020.0~900.0 : N

, J 育合多

~(\frac{1}{2} \frac{1}{2}

1398

.% 8.1~4.0 :13

,% 0.1~20.0: oM

、しず合き土以酥らおさま酥Iの

7

INTERNATIONAL SEARCH REPORT

PCT/JP98/03276 International application No.

Int.Cl C22C38/00, 301

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) In t. clf 6 C22C38/00-38/60

Jitsuyo Shinan Toroku Koho 866T-966T Kokai Jitauyo Shinan Koho 1971-1998 866T-\$66T Toroku Jitsuyo Shinan Koho litsuyo Shinan Koho 1926-1996 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

	Facsimile No. Telephone No.		
	recific bezironiuA	lailing address of the ISA/ nese Patent Office	
	Date of mailing of the international sear 20 October, 1998 (2	idual completion of the international search ctober, 1998 (12, 10, 98)	Date of the a
ion but cited to understand wention inned invention cannot be to involve an inventive step when the document is ocuments, such combination ut	"T" date and not in conflict with the applicated after the internation of the principle or theory underlying the improvement of particular relevance; the cismot be considered novel or cannot be considered to the document is taken alone considered to involve an inventive step vectorated with one or more other anch being obvious to a person skilled in the abort proving obvious to a person skilled in the action of the same patent in the action of the same patent and when the complement member of the same patent is a factor of the same patent and when the complement of the same patent and the same pate	categories of cited documents: an defining the general state of the an which is not red to be of particular relevance becomen but published on or after the international filing date focument but published on or after the international filing date establish the publication date of another citation or other reason (as specified) an referring to an oral disclosure, use, exhibition or other at published prior to the international filing date but later than rity date ciaimed	"A" docume consider docume consider docume means "O" docume means "D" docume
	See patent family annex.	T documents are listed in the continuation of Box C.	Eurthe
δ ' ε	Ltd.), Ramily: none)	JP, 2-149643, A (Kobe Steel, 8) (F	Ą
δ ' ε	red.), Family: none)	JP, 63-76815, A (Kobe Steel, 7 April, 1988 (07. 04. 88)	A
6-T	l Co., Ltd.), (Family: none)	T, 8-199303, A (Daido Steel) 6 August, 1996 (06. 80. 96)	A
6-1	Ltd.),) (Family: none)	JP, 6-17224, A (Kobe Steel, 25 January, 1994 (25. 01. 94	Ą
6-T	. Ltd.), (Family: none)	JP, 3-100142, A (Kobe Steel, 25 April, 1991 (25. 04. 91)	A
6 - T	tal Industries, Ltd.), 2) (Family: none)	JP, 4-247848, A (Sumitomo Me 3 September, 1992 (03. 09. 9	A
6-T	ial Steel Co., Ltd.), Family: none)	TP, 5-125437, A (Sanyo Speci 21 May, 1993 (21. 05. 93) (F	x
Relevant to claim No.	opropriate, of the relevant passages	Citation of document, with indication, where ap	*vnogstsy*
C DOCUMENTS CONSIDERED TO BE RELEVANT			

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuati n of second sheet) (July 1992)

ŀ			
	1		
		•	
•			
		•	
6-T		JP, 4-143253, A (Kobe Steel, Ltd.), 18 May, 1992 (18. 05. 92) (Family: none)	Ą
L '\$	(euc	JP, 6-60345, B (Kobe Steel, Ltd.), 10 August, 1994 (10. 08. 94) (Family: no	A
		Corp.), 993 (09. 07. 93) (Family: none)	
Relevant to claim No.		JP, 5-171347, A (Aichi Steel Works Ltd, To	A
-14 minls of travals H	29087280 Ins	Citation of document, with indication, where appropriate, of the relev	Category*
0/700/06	30/TO2	ijou). DOCUMENTS CONSIDERED TO BE RELEVANT	eunitroO) O
od mital 98/03276	ilqqs lanoitsmətal GT.\ TOG	INTERNATIONAL SEARCH REPORT	-

DIXH:	宜附足	(FFIR

国際出版番号 PCT/1P98/03276

発明の属する分野の分類(IPC))

C55C38\00'301 Int Cl.

硬代式で許多査閲

C55C38\00-38\00 Int CI.

⇒9661−9761 舜公案 展用 実 国 本 日 のよるパま合习種代式で許多査購了将資の代以将資別小量

お8661-1761 **舜公案帝用実開公国本日**

⇒8661-7661 蟒公案豫用実稳登团本日

舜公舜登案帝用実国本日

(語用式し用動ご査腕、将各のスーンモーデ) スーンモーデチョゴし用動で査闘器国

6 — T	.艮I .BS , (祝職獎可軒卦会方耕) A ,bSS (しおーリミャワ) (be.I0	19, 6-172 1994 (25.	Ą
6 - T	4 . 8 2 , (荷藤製司軒社会法裁) A , 2 b I C (しなーじミャワ) (1 6 . p 0 . 8 2		A
6 - I	8 . 8 , (1P, 4-247	A
6 — I	る . I S , (掛左執職獎報幹翻山) A , 7 & 4 & 8 (x
です です を を を を の を は の を は の を は の の の の の の の の の の の の の	示表の商商をす事関の子、おきろとす題はお商の暗一心	J. 及 、	の猫文用!? *ーパとでな
<u> </u>		猫文をれる体器とは	

。朋毒を財服る中関コーリミスてインデン 📙

- てのあず猫文式水も歩公式影目表面却又日顧出潮国【T】 焼文式水さ寒公式影の日の
- 開発するの猫文類世、Jであす猫文るあの重関引勢(X) のよるも用にごめれの発野の締 野却又野亰の門祭、〉なおつのよるヤ青玉と顧出て
- コサ合路る私で明自アトンコ 青葉芒 ,の3 焼文の土 以Iの断く補文類と、プロペラ桶文であの重関31种【Y】 のよるれる大きろいながかも断れて対財帝の
- **猫文一リミマてイベデバー同 [&]** のよるれる大きちいなな対地地丁でよ

1846

09 卡示多単水浒技的鉄一、>なおで猫文をdの重関ご詩 [A] 一じとそなの焼文用に *

X C欄の続きにも文献が列挙されている。

- も六水ち表公式券以日顧出額国、込るあむ丁茄文計式 [3]
- (大計多由野) 矯文 るや用に30名式る十立節を由重な限券の出おり」 苔日
- 猫女&卡及官习等示風、用動、示閥&よ习頭口 [O]

日式して完全査隔親国

顧出るなる藝基の張主の辭法憂ぐべ、ブ前日顧出親国 [9]

12, 10, 98

86. 01.02	日教祭の母婦
------------------	--------

3848 03-3581-1101 内稿 3435

査院親国

3168-001号番動類 近一 谷政 (員癖さめの別辦) 官査審引 精幹 式フ格び及神各の関数査闘額国

母 8 番 4 目 丁三関 3 6 韓 凶田 外干 谐 京 東

(見7中2661) (ペート2限) 012/A21/T29左形

国際調査報告

国際出願番号 PCT/JP98/03276

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 8-199303, A (大同特殊鋼株式社), 6.8月.1 996 (06.08.96) (ファミリーなし)	1 – 9
A	JP, 63-76815, A (株式会社神戸製鋼所), 7. 4月. 1988 (07. 04. 88) (ファミリーなし)	3,4
Α	JP, 2-149643, A (株式会社神戸製鋼所), 8. 6月. 1990 (08. 06. 90) (ファミリーなし)	3、4
A	JP, 5-171347, A (愛知製鋼株式会社、トヨタ自動車株式会社), 9. 7月. 1993 (09. 07. 93) (ファミリーなし)	3、4
Α .	JP, 6-60345, B (株式会社神戸製鋼所), 10.8月. 1994 (10.08.94) (ファミリーなし)	4、7
Α	JP, 4-143253, A (株式会社神戸製鋼所), 18. 5 月. 1992 (18. 05. 92) (ファミリーなし)	1 – 9
	·	
	·	*