State-of-the-Art in Visual Cortical Prostheses: Technological Advances and Future Directions

Marc J. Posthuma Student Number: 4413105 marc.posthuma@ru.nl

Supervisor: Prof. dr. R.J.A. van Wezel Department: Neurobiology, Donders Centre for Neuroscience

May 17, 2024

Abstract

Abstract: Visual cortical prostheses represent a revolutionary technology within the field of neuro-prosthetics, aimed at restoring vision for individuals with visual impairments through direct neural interfaces. This review systematically explores the current capabilities, limitations, and future prospects of visual cortical prostheses, with a focus on the integration of artificial intelligence (AI) to enhance functionality and effectiveness. Key topics include the optimization of phosphene patterns, real-time image processing, and comparisons with other types of prosthetic devices. The goal is to provide a comprehensive overview of the state-of-the-art in visual cortical prostheses and propose future research directions.

Todo list

This is where I left off last time.

1 Introduction

1.1 Background

The field of neuroprosthetics has witnessed remarkable progress, particularly with the advent of visual cortical prostheses. These advanced devices offer hope for restoring vision in individuals with severe visual impairments by interfacing directly with the brain's visual cortex. Visual cortical prostheses work by converting visual information from the external environment into neural signals that the brain can process, effectively bypassing damaged visual pathways. The core technology involves the generation of

phosphenes—perceived spots of light resulting from electrical stimulation of the visual cortex [1]. However, organizing these phosphenes into coherent and interpretable visual patterns remains a significant challenge [2].

AI has emerged as a pivotal element in enhancing these prosthetic systems. By leveraging sophisticated algorithms, AI can optimize stimulation patterns to create more naturalistic visual experiences for users [3]. AI's role extends to real-time image processing, allowing the prosthesis to adapt to varying visual environments and tasks [4]. This capability is crucial for developing prosthetic systems that closely mimic natural vision, providing users with more effective and adaptable solutions. The integration of AI not only improves the functionality of these devices but also opens new avenues for innovation in how visual information is processed and perceived [5].

This review aims to provide a comprehensive analysis of visual cortical prostheses, focusing on the role of AI in advancing these prosthetics. By examining current capabilities, identifying limitations, and proposing future research directions, this work seeks to contribute to the ongoing development of more effective and user-friendly visual prosthetic systems. Combining technological innovation with neuroscientific insights has the profound potential to enhance the quality of life for individuals with visual impairments.

1.2 Research Question

This review addresses the following questions:

- How is AI leveraged to enhance visual prostheses, particularly in optimizing phosphene patterns and real-time image processing [6]?
- How do visual cortical prostheses compare with other types of prosthetic devices [7]?
- What are the functional differences between AIenhanced prosthetic vision and natural visual processing within the human brain?

2 Technological Advances

Recent years have seen significant progress in the development of visual cortical prostheses, driven by advancements in both hardware and software systems. These innovations are pivotal in enhancing the functionality, efficiency, and user experience of these devices.

2.1 Advancements in Biomaterials and Electrode Design

One major area of advancement is in electrode design and fabrication. Traditional electrodes have been limited by issues such as biocompatibility, stability, and the ability to generate precise neural stimulation. Recent studies have introduced novel materials and fabrication techniques that significantly improve these aspects.

Conductive Polymers

The development of flexible and biocompatible electrodes allows for better integration with neural tissue, reducing the risk of damage and increasing the longevity of the implants [8]. Conductive polymers have been instrumental in advancing the design and functionality of these electrodes.

One notable conductive polymer is PEDOT:PSS (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate), which has been widely used due to its excellent electrical conductivity, flexibility, and biocompatibility. PEDOT:PSS coatings on electrodes improve signal transduction and reduce impedance, which enhances the quality of neural recordings and stimulation [9].

Another significant advancement is the use of polyaniline (PANI), a conductive polymer known for its tunable conductivity and biocompatibility. PANI can be chemically modified to optimize its electrical properties, making it suitable for long-term neural interfacing applications. Its use in electrode design has shown promising results in maintaining stable performance over extended periods [10].

Polypyrrole (PPy) is another conductive polymer that has been extensively studied for neural applications. PPy-based electrodes offer a unique combination of electrical conductivity and mechanical properties that facilitate close contact with neural tissue. Additionally, PPy can be doped with various bioactive molecules to promote tissue integration and reduce inflammatory responses [11].

These advancements in conductive polymers are crucial for the development of next-generation neural prostheses, offering improved performance, biocompatibility, and longevity.

Nanotechnology

Advances in microfabrication have enabled the creation of high-density electrode arrays that can stimulate the visual cortex with greater precision, offering the potential for more detailed and coherent visual experiences [12].

Nanotechnology has introduced several innovative approaches to enhance the performance and integration of electrodes in visual cortical prostheses. One such approach is the use of carbon nanotubes (CNTs), which possess exceptional electrical conductivity and mechanical strength. CNTs can be incorporated into electrode designs to improve signal transmission and reduce impedance, thereby enhancing the quality of neural stimulation [13].

Another promising implementation is the use of graphene, a two-dimensional material known for its outstanding electrical and thermal properties. Graphene-based electrodes have shown excellent biocompatibility and flexibility, which are crucial for long-term implantation and stable neural interfaces. The incorporation of graphene into electrode arrays allows for better integration with neural tissue and more precise stimulation of the visual cortex [14].

Additionally, gold nanostructures have been utilized to enhance electrode performance. Gold nanoparticles and nanowires can be used to modify the surface of electrodes, increasing their surface area and improving their electrical properties. This modification can lead to more efficient charge transfer and lower stimulation thresholds, resulting in more effective and reliable neural stimulation [15].

These nanotechnology-based advancements are paving the way for the development of more sophisticated and effective visual cortical prostheses, providing users with improved visual experiences and greater functionality.

3D Printing

Recent advancements in 3D printing has significantly impacted the field of visual cortical prostheses, particularly in the fabrication of electrodes. 3D printing offers unparalleled precision and customization capabilities, allowing for the creation of complex and highly detailed electrode arrays that can be tailored to the unique anatomical features of individual patients [16].

This technology enables the production of electrodes that conform to the specific geometry of the cortical surface, improving contact and integration with neural tissue, thereby enhancing the accuracy of neural stimulation and minimizing potential damage to surrounding tissues [17]. Advances in 3D printing

materials, including biocompatible and conductive inks, have improved the performance and longevity of printed electrodes, providing the necessary electrical properties while maintaining compatibility with neural tissue.

Additionally, the ability to rapidly prototype and produce electrodes using 3D printing reduces manufacturing time and cost, facilitating quicker iterations and refinements in electrode design, which accelerates the development process [18]. Recent studies have demonstrated the potential in creating flexible and biocompatible electrodes, advancing the state-of-theart in visual cortical prostheses.

2.2 Improved Signal Processing and Integration

Advances in signal processing and integration have been crucial in enhancing the performance and functionality of visual cortical prostheses. High-resolution imaging techniques and sophisticated signal processing algorithms have significantly improved the precision and reliability of these devices.

High-Resolution Imaging

High-resolution imaging techniques have played a pivotal role in the advancement of visual cortical prostheses by providing detailed maps of the brain's cortical structures. These techniques allow for more precise placement and targeting of electrodes, which is essential for effective neural stimulation.

Optical Coherence Tomography (OCT) is one such high-resolution imaging technique that has been extensively used in neural prosthetics. OCT provides cross-sectional images of the brain's surface, enabling detailed visualization of cortical layers and structures. This level of detail allows for the precise placement of electrodes, improving the effectiveness and safety of neural stimulation [19].

Functional Magnetic Resonance Imaging (fMRI) provides high-resolution images of brain activity by detecting changes associated with blood flow. This imaging technique is valuable for mapping functional areas of the brain, ensuring that electrodes are placed

in regions that will yield the most beneficial outcomes for the user [20].

Two-photon microscopy allows for deep imaging of living brain tissue with high spatial resolution. This technique is particularly useful for observing the interactions between electrodes and neural tissue over time, providing insights that can guide the design and optimization of electrode arrays [21].

Furthermore, the development of NIR-II semiconducting polymers has enhanced in vivo highresolution imaging capabilities. These polymers offer excellent penetration depth and spatial resolution, which are critical for accurate diagnostics and therapeutic applications in neural prosthetics [22], [23].

Deep learning techniques have also been employed to enhance the resolution of confocal fluorescence microscopy. By using generative models, these techniques improve the learning ability of imaging systems in the frequency domain, resulting in significantly higher resolution images that are essential for detailed neural mapping [24].

These high-resolution imaging techniques are integral to the development of more precise and effective visual cortical prostheses, facilitating better integration and performance of these devices.

Wireless Communication

Additionally, innovations in wireless technology have enabled the development of untethered visual cortical prostheses. Wireless systems eliminate the need for external wires, which not only improves the comfort and aesthetics of the prostheses but also reduces the risk of infections and mechanical failures. Advancements in wireless power transfer and data communication have made it possible to deliver sufficient power and high-fidelity signals to the implants, ensuring reliable and efficient operation [25].

Recent advancements include the development of biphasic quasistatic brain communication (BP-QBC), a technique that significantly reduces power consumption while maintaining high data transfer rates. This method leverages electro-quasistatic signaling to create a low-power, broadband communication channel between wireless neural implants and external devices, offering a promising solution for

energy-efficient and high-speed data transmission in neural prosthetics [26].

Another innovative approach is the use of feedforward neural networks to improve the control of brain-machine interfaces. This simpler neural network architecture enhances the speed and accuracy of prosthetic control by more closely mimicking the natural communication pathways between the brain and the body. Such advancements not only improve the functionality of prosthetic devices but also enhance their usability for individuals with paralysis or limb loss [27].

Moreover, multidimensional graph neural networks (GNNs) have been employed to optimize wireless communication policies in neural prosthetics. These networks use graph-based representations to manage complex data transmission scenarios, improving the efficiency and reliability of wireless communication between implants and external devices [28].

These advancements in wireless communication technology are crucial for the development of nextgeneration visual cortical prostheses, providing users with more seamless and reliable neural interfaces.

2.3 Software and Algorithmic Enhancements

On the software side, the integration of artificial intelligence (AI) has revolutionized the way visual information is processed and interpreted by prosthetic systems. AI algorithms, particularly those based on deep learning, have been employed to optimize stimulation patterns and enhance image processing capabilities. These algorithms can learn from vast amounts of data to improve the accuracy and efficiency of visual signal conversion, making the visual experiences more naturalistic and adaptable to different environments [29].

Real-Time Data Processing

[Add relevant text here if available]

This is where I left off last time.

Predictive Modeling

[Add relevant text here if available]

2.4 Deep Learning Algorithms in Prosthetic Vision

Convolutional Neural Networks (CNNs)

CNNs are employed to process and classify visual inputs, enhancing the ability of the prosthetic system to interpret complex visual scenes and improve object recognition capabilities.

Recurrent Neural Networks (RNNs)

RNNs, including LSTM (Long Short-Term Memory) networks, are used to handle sequential data, making it possible to maintain temporal continuity in visual perception and improve the user's ability to track moving objects.

Generative Adversarial Networks (GANs)

GANs are utilized to generate realistic phosphene patterns by training on large datasets of visual scenes, improving the fidelity and natural appearance of the visual output.

2.5 Other Functional Improvements

Another significant advancement is the implementation of closed-loop systems in visual cortical prostheses. These systems continuously monitor neural feedback to adjust stimulation parameters in real-time, thereby enhancing the precision and effectiveness of visual restoration. Closed-loop systems mimic the natural feedback mechanisms of the human visual system, providing a more responsive and user-friendly experience. Recent research has demonstrated the efficacy of these systems in improving the visual outcomes for users, as they can dynamically adapt to changes in the environment and the user's neural responses [30].

Closed-Loop Feedback Systems

Closed-loop systems continuously monitor neural activity and adjust stimulation parameters in real-time,

leading to more precise and individualized visual restoration.

Multi-Modal Sensory Integration

The integration of multi-modal sensory input is another promising development in this field. By incorporating inputs from other senses, such as auditory or tactile feedback, visual cortical prostheses can provide a more holistic sensory experience. This multi-modal approach leverages the brain's ability to integrate information from different sensory modalities, potentially enhancing the overall perceptual experience and aiding in the interpretation of visual scenes [31].

Neuroplasticity and Rehabilitation

[Add relevant text here if available]

3 AI Integration

Discusses the role of AI in processing and enhancing visual data, optimizing phosphene patterns, and emulating normal brain processing.

4 Comparison with Natural Systems

Explores the differences in processing between prosthetic and natural vision and how these differences impact user experience.

5 Limitations and Challenges

Details current drawbacks, biocompatibility issues, and areas requiring improvement in visual cortical prosthesis technology.

6 Objective

Provides a comprehensive overview of the current state and future potential of visual cortical prostheses, highlighting technological capabilities, AI integration, and challenges.

7 Conclusion

In conclusion, the technological advancements in electrode design, microfabrication, artificial intelligence, closed-loop systems, wireless technology, and multimodal sensory integration are significantly advancing the field of visual cortical prostheses. These innovations are crucial for developing more effective, reliable, and user-friendly devices that can better restore vision for individuals with severe visual impairments. Continued research and development in these areas promise to further enhance the capabilities and accessibility of visual cortical prostheses, paving the way for their widespread clinical application.

References

- [1] M. van der Grinten, J. de Ruyter van Steveninck, A. Lozano, et al., "Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses," eLife, vol. 13, C. I. Baker and M. P. Barry, Eds., e85812, Feb. 22, 2024, ISSN: 2050-084X. DOI: 10.7554/eLife.85812. [Online]. Available: https://doi.org/10.7554/eLife.85812 (visited on 05/11/2024).
- [2] L. B. Merabet, J. F. Rizzo, A. Amedi, D. C. Somers, and A. Pascual-Leone, "What blindness can tell us about seeing again: Merging neuroplasticity and neuroprostheses," *Nature Reviews Neuroscience*, vol. 6, no. 1, pp. 71–77, Jan. 2005, ISSN: 1471-0048. DOI: 10.1038/nrn1586. [Online]. Available: https://www.nature.com/articles/nrn1586 (visited on 05/17/2024).
- [3] N. Kriegeskorte, "Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing," Annual Review of Vision Science, vol. 1, pp. 417–446, Volume 1, 2015 Nov. 24, 2015, ISSN: 2374-4642, 2374-4650. DOI: 10.1146/annurev-vision-082114-035447. [Online]. Available: https://www.annualreviews.org/content/

- journals / 10 . 1146 / annurev vision 082114-035447 (visited on 05/17/2024).
- [4] A. H. Marblestone, G. Wayne, and K. P. Kording, "Toward an Integration of Deep Learning and Neuroscience," Frontiers in Computational Neuroscience, vol. 10, Sep. 14, 2016, ISSN: 1662-5188. DOI: 10.3389/fncom.2016.00094. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncom.2016.00094 (visited on 05/17/2024).
- [5] C. Galletti, M. Gamberini, D. F. Kutz, P. Fattori, G. Luppino, and M. Matelli, "The cortical connections of area V6: An occipito-parietal network processing visual information," European Journal of Neuroscience, vol. 13, no. 8, pp. 1572–1588, 2001, ISSN: 1460-9568. DOI: 10. 1046/j.0953-816x.2001.01538.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.0953-816x.2001.01538.x (visited on 05/17/2024).
- [6] A. Farnum and G. Pelled, "New Vision for Visual Prostheses," Frontiers in Neuroscience, vol. 14, Feb. 18, 2020, ISSN: 1662-453X. DOI: 10. 3389/fnins.2020.00036. [Online]. Available: https://www.frontiersin.org/journals/ neuroscience/articles/10.3389/fnins. 2020.00036/full (visited on 05/14/2024).
- [7] F. Grani, C. Soto-Sánchez, A. Fimia, and E. Fernández, "Toward a personalized closed-loop stimulation of the visual cortex: Advances and challenges," Frontiers in Cellular Neuroscience, vol. 16, Dec. 13, 2022, ISSN: 1662-5102. DOI: 10.3389 / fncel. 2022. 1034270. [Online]. Available: https://www.frontiersin.org/articles/10.3389 / fncel. 2022. 1034270 (visited on 05/14/2024).
- [8] Z. Xiang, J. Liu, and C. Lee, "A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses," *Microsystems & Nanoengineering*, vol. 2, no. 1, pp. 1–8, May 23, 2016, ISSN: 2055-7434. DOI: 10.1038/micronano.2016.12. [Online]. Available: https://www.nature.

- com/articles/micronano201612 (visited on 05/17/2024).
- [9] J. Rivnay, P. Leleux, M. Ferro, et al., "High-performance transistors for bioelectronics through tuning of channel thickness," Science Advances, vol. 1, no. 4, e1400251, May 2015, ISSN: 2375-2548. DOI: 10.1126/sciadv. 1400251. [Online]. Available: https://www.science.org/doi/10.1126/sciadv.1400251 (visited on 05/17/2024).
- [10] N. Almufleh, A. Al-Othman, Z. Alani, M. H. Al-Sayah, and H. Al-Nashash, "Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications," *Electronic Materials*, vol. 2, no. 3, pp. 413–427, 3 Sep. 2021, ISSN: 2673-3978. DOI: 10.3390/electronicmat2030028. [Online]. Available: https://www.mdpi.com/2673-3978/2/3/28 (visited on 05/17/2024).
- [11] E. N. Zare, T. Agarwal, A. Zarepour, et al., "Electroconductive multi-functional polypyrrole composites for biomedical applications," Applied Materials Today, vol. 24, p. 101117, Sep. 2021, ISSN: 23529407. DOI: 10.1016/j.apmt.2021.101117. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2352940721001827 (visited on 05/17/2024).
- [12] S. B. Ryu, A. C. Paulk, J. C. Yang, et al., "Spatially confined responses of mouse visual cortex to intracortical magnetic stimulation from micro-coils," Journal of Neural Engineering, vol. 17, no. 5, p. 056 036, Oct. 2020, ISSN: 1741-2552. DOI: 10.1088/1741-2552/abbd22. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/abbd22 (visited on 05/17/2024).
- [13] N. Alegret, A. Dominguez-Alfaro, J. M. González-Domínguez, et al., "Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole," ACS Applied Materials & Interfaces, vol. 10, no. 50, pp. 43 904–43 914, Dec. 19, 2018, ISSN: 1944-8244. DOI:

- 10.1021/acsami.8b16462. [Online]. Available: https://doi.org/10.1021/acsami.8b16462 (visited on 05/17/2024).
- [14] Y. Lu, X. Liu, and D. Kuzum, "Graphene-based neurotechnologies for advanced neural interfaces," Current Opinion in Biomedical Engineering, Tissue Engineering and Regenerative Medicine / Biomaterials, vol. 6, pp. 138–147, Jun. 1, 2018, ISSN: 2468-4511. DOI: 10.1016/j.cobme.2018.06.001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468451118300096 (visited on 05/17/2024).
- [15] I. Zare, M. Tavakkoli Yaraki, G. Speranza, et al., "Gold nanostructures: Synthesis, properties, and neurological applications," Chemical Society Reviews, vol. 51, no. 7, pp. 2601–2680, 2022. DOI: 10.1039/D1CS01111A. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2022/cs/d1cs01111a (visited on 05/17/2024).
- [16] R. Guo and J. Liu, "Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions," Journal of Micromechanics and Microengineering, vol. 27, no. 10, p. 104 002, Sep. 2017, ISSN: 0960-1317. DOI: 10.1088/1361-6439/aa891c. [Online]. Available: https://dx.doi.org/10.1088/1361-6439/aa891c (visited on 05/17/2024).
- [17] Y. Liu, J. Liu, S. Chen, et al., "Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation," Nature Biomedical Engineering, vol. 3, no. 1, pp. 58–68, Jan. 2019, ISSN: 2157-846X. DOI: 10.1038/s41551-018-0335-6. [Online]. Available: https://www.nature.com/articles/s41551-018-0335-6 (visited on 05/17/2024).
- [18] Y. Zhang, N. Zheng, Y. Cao, et al., "Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording," Science Advances, vol. 5, no. 4, eaaw1066, Apr. 5, 2019, ISSN: 2375-2548. DOI: 10.1126/sciadv.aaw1066. [Online]. Available: https:

- //www.science.org/doi/10.1126/sciadv. aaw1066 (visited on 05/17/2024).
- [19] J. S. Xie, L. Donaldson, and E. Margolin, "The use of optical coherence tomography in neurology: A review," *Brain*, vol. 145, no. 12, pp. 4160–4177, Dec. 1, 2022, ISSN: 0006-8950. DOI: 10.1093/brain/awac317. [Online]. Available: https://doi.org/10.1093/brain/awac317 (visited on 05/17/2024).
- [20] C. Landelle, O. Lungu, S. Vahdat, et al., "Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging," NeuroImage, vol. 245, p. 118684, Dec. 2021, ISSN: 10538119. DOI: 10.1016/j.neuroimage. 2021. 118684. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1053811921009575 (visited on 05/17/2024).
- [21] Q. Yang, B. Wu, E. Castagnola, et al., "Integrated Microprism and Microelectrode Array for Simultaneous Electrophysiology and Two-Photon Imaging across All Cortical Layers," Advanced Healthcare Materials, vol. n/a, no. n/a, p. 2302362, ISSN: 2192-2659. DOI: 10. 1002 / adhm . 202302362. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202302362 (visited on 05/17/2024).
- [22] T. Wang, Y. Chen, B. Wang, and M. Wu, "Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging," Frontiers in Physiology, vol. 14, p. 1126805, Feb. 21, 2023, ISSN: 1664-042X. DOI: 10.3389/fphys. 2023.1126805. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fphys.2023.1126805/full (visited on 05/17/2024).
- [23] X. Kang, S. Yin, J. Song, Y. Zhang, and J. Qi, "NIR-II semiconducting polymers for in vivo high-resolution imaging and theranostics," Sensors & Diagnostics, vol. 2, no. 3, pp. 492–506, 2023. DOI: 10.1039/D2SD00234E. [Online]. Available: https://pubs.rsc.org/

- en / content / articlelanding / 2023 / sd / d2sd00234e (visited on 05/17/2024).
- [24] B. Huang, J. Li, B. Yao, et al., "Enhancing image resolution of confocal fluorescence microscopy with deep learning," PhotoniX, vol. 4, no. 1, p. 2, Jan. 5, 2023, ISSN: 2662-1991. DOI: 10.1186/s43074-022-00077-x. [Online]. Available: https://doi.org/10.1186/s43074-022-00077-x (visited on 05/17/2024).
- [25] J. V. Rosenfeld, Y. T. Wong, E. Yan, et al., "Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array)," Journal of Neural Engineering, vol. 17, no. 4, p. 046 001, Jul. 2020, ISSN: 1741-2552. DOI: 10.1088/1741-2552/ab9e1c. [Online]. Available: https://dx.doi.org/ 10.1088/1741-2552/ab9e1c (visited on 05/17/2024).
- [26] B. Chatterjee, M. Nath, G. Kumar K, S. Xiao, K. Jayant, and S. Sen, "Biphasic quasistatic brain communication for energy-efficient wireless neural implants," *Nature Electronics*, vol. 6, no. 9, pp. 703–716, Sep. 2023, ISSN: 2520-1131. DOI: 10.1038/s41928-023-01000-3. [Online]. Available: https://www.nature.com/articles/s41928-023-01000-3 (visited on 05/17/2024).
- [27] M. S. Willsey, S. R. Nason-Tomaszewski, S. R. Ensel, et al., "Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder," Nature Communications, vol. 13, no. 1, p. 6899, Nov. 12, 2022, ISSN: 2041-1723. DOI: 10.1038/s41467-022-34452-w. [Online]. Available: https://www.nature.com/articles/s41467-022-34452-w (visited on 05/11/2024).
- [28] S. Liu, J. Guo, and C. Yang, "Multidimensional Graph Neural Networks for Wireless Communications," *IEEE Transactions on Wireless Communications*, vol. 23, no. 4, pp. 3057–3073, Apr. 2024, ISSN: 1536-1276, 1558-2248. DOI: 10. 1109/TWC.2023.3305124. arXiv: 2212.11531

- [eess]. [Online]. Available: http://arxiv.org/abs/2212.11531 (visited on 05/17/2024).
- [29] S. Romeni, D. Zoccolan, and S. Micera, "A machine learning framework to optimize optic nerve electrical stimulation for vision restoration," *Patterns*, vol. 2, no. 7, p. 100286, Jul. 2021, ISSN: 26663899. DOI: 10.1016/j.patter. 2021.100286. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2666389921001197 (visited on 05/17/2024).
- [30] T. Levi, P. Bonifazi, P. Massobrio, and M. Chiappalone, "Editorial: Closed-Loop Systems for Next-Generation Neuroprostheses," Frontiers in Neuroscience, vol. 12, Feb. 12, 2018, ISSN: 1662-453X. DOI: 10.3389/fnins.2018. 00026. [Online]. Available: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00026/full (visited on 05/17/2024).
- [31] C. Wan, P. Cai, X. Guo, et al., "An artificial sensory neuron with visual-haptic fusion," Nature Communications, vol. 11, no. 1, p. 4602, Sep. 14, 2020, ISSN: 2041-1723. DOI: 10.1038/s41467-020-18375-y. [Online]. Available: https://www.nature.com/articles/s41467-020-18375-y (visited on 05/17/2024).