МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студентка гр. 7381	Кушкоева А.О
Преподаватель	Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Необходимые сведения для составления программы.

Учет занятой и свободной памяти ведется при помощи списка блоков управления памятью MCB (Memory Control Block). MCB занимает 16 байт (параграф) и располагается всегда с адреса кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля			
00h	1	тип МСВ:			
		5Ah, если последний в списке,			
		4Dh, если не последний			
01h	2	Сегментный адрес PSP владельца участка			
		памяти, либо			
		0000h - свободный участок,			
		0006h - участок принадлежит драйверу			
		OS XMS UMB			
		0007h - участок является исключенной			
		верхней памятью драйверов			
		0008h - участок принадлежит MS DOS			

		FFFAh - участок занят управляющим				
		блоком 386MAX UMB				
		FFFDh - участок заблокирован 386MAX				
		FFFEh - участок принадлежит 386MAX				
		UMB				
03h	2	Размер участка в параграфах				
05h	3	Зарезервирован				
08h	8	"SC" - если участок принадлежит MS DOS,				
		то в нем системный код				
		"SD" - если участок принадлежит MS				
		DOS, то в нем системные данные				

По сегментному адресу и размеру участка памяти, контролируемого этим МСВ можно определить местоположение следующего МСВ в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists" (список списков). Доступ к указателю на эту структуру можно получить, используя функцию f52h "Get List of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить обращаясь к ячейкам CMOS следующим образом:

mov AL,30h; запись адреса ячейки CMOS

out 70h,AL

in AL,71h; чтение младшего байта

mov BL,AL ; размера расширенной памяти

mov AL,31h ; запись адреса ячейки CMOS

out 70h,AL

in AL,71h ; чтение старшего байта ; размера расширенной памяти

Ход работы.

В результате выполнения лабораторной работы была написана программа, описание функций которой представлено в таблице ниже.

GET_AVAILABLE_MEMORY	Получение размера доступной
	памяти
GET_EXTENDED_MEMORY	Получение размера расширенной
	памяти
GET_MCB_DATA	Получение данных одного MSB
	блока
GET_ALL_MSB_DATA	Получение данных со всех MSB
	блоков
PRINT_STRING	Вывод строки на экран

Результат работы показан на рисунке ниже.

Pre.S. Размер участка (Size (Para)) указан в байтах.

1. LAB3V1.COM

Extended i	memory: 6489 memory: 153		l Size	i	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	5A	0192	648912		LAB3V1

Из рисунка видно, что программа занимает максимум памяти, потому что при запросе размера доступной памяти мы выделяем, по сути, столько памяти, сколько возможно.

2. LAB3V2.COM

	2.com memory: 6489 memory: 153				
	MCB Type 4D		l Size 16	i	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13424		LAB3VZ
04D9	5A	0000	635472		

В данном случае мы освобождаем память. В итоге остается столько памяти, сколько занимает программа. После освобождения памяти, как видно на рисунке, есть блок свободной памяти, из которого, если вдруг нам потребуется ещё, будет выделятся память.

3. LAB3V3.COM

Extended m	memory: 6489 memory: 153		l Size	;	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13536		LABBV3
04E0	4D	0192	65536		LAB3V3
14E1	5A	0000	569808		

В данном случае мы сначала выделяем всю доступную память, потом освобождаем то, что не нужно. Затем запрашиваем блок памяти 64 кб, в итоге система выделяет нам ещё 64 кб памяти.

4. LAB3V4.COM

ERROR	/4.com memory: 648 memory: 15				
		PSP Address 0008	l Size 16	1	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13840		LAB3V4
04F3	5A	0000	635056		

В данном случае мы выделяем всё доступную память, а затем ещё запрашиваем 64 кб. В результате возникает ошибка. Она возникает из-за того, что мы в первый раз уже выделили всё доступную память, т.е. больше выделить уже нельзя, но мы всё равно пытаемся, и в итоге получаем ошибку.

Контрольные вопросы:

а) Что означает «доступный объём памяти»?

Это максимальный объем памяти, который может быть доступен программе. В этом мы убеждаемся в четвёртом пункте данной л.р., когда после выделения всей доступной памяти, мы пытаемся выделить ещё, но, увы, – нельзя.

б) Где МСВ блок Вашей программы в списке?

Блок нашей программы выделен красным на рисунке.

в) Какой размер памяти занимает программа в каждом случае?

LAB3V1.com) 648912 байт.

LAB3V2.com) 13328 байт.

LAB3V3.com) 13440 байт (без блока в 64кб).

LAB3V4.com) 14048 байт.