

Rechnernetze

Kapitel 1: Einleitung

Hochschule Ulm Prof. Dr. F. Steiper

Rechnernetze, INF2, 2022

Urheberrechte

- Die Vorlesungsmaterialien und Vorlesungsaufzeichnungen zum Kurs "Rechnernetze (INF2)" dürfen nur für private Zwecke im Rahmen Ihres Studiums an der Technischen Hochschule Ulm genutzt werden.
- Eine Vervielfältigung und Weitergabe dieser Materialien in jeglicher Form an andere Personen ist untersagt.
- © Copyright. Frank Steiper. 2022. All rights reserved

Prof. Dr. F. Steiper Seite 2 Rechnernetze (INF2)

- Geschichte der Rechnernetze
 - 1970-1980: Aufbau und Experimentierphase (ARPANET)
 - Hervor gegangen aus einem Projekt des US-Verteidigungsministeriums
 - Auftrag an die ARPA (Advanced Research Project Agency)
 - Beginn 1969: 4 Netzknoten, 4 angeschlossene Rechner, 50kb-Leitungen
 - 1970 ALOHAnet wird realisiert, verbindet Hawaii-Inseln per Funk; daraus resultieren Funktionsprinzipien des heutigen Ethernet-Protokolls
 - 1973 Erfindung des TCP-Protokolls an der Stanford University
 - 1978 Die ISO (International Standards Organisation) veröffentlicht das OSI Referenzmodell; Erstes Ethernet-Patent wird vergeben an die Gründer von 3COM
 - ▶ 1980-1990: Verbreitung des Internet vor allem als Forschungsund Wissenschaftsnetz
 - 1983 200 Netzknoten, Hunderte von Rechnern;
 Trennung: militärischer Teil -> MILNET; ziviler Teil -> NSFnet
 - 1990-2000ff: Internet wird weltweite Basiskommunikationsstruktur für wissenschaftliche, kommerzielle und private Nutzung
 - Anfang 1993: die ersten Web-Server im Internet (rein wissenschaftlich)
 Ende 1994: 10000 Web-Server, 2000 davon kommerziell

[Ref1] Kapitel 1, Seite 84-90 [Ref2] Kapitel 1, Seite 80-87

• Anzahl der ans Internet angeschlossenen Rechner

Internet Domain Survey Host Count

Siehe auch: The ISC Domain Survey (https://www.isc.org/solutions/survey)

• Struktur des Internets

[Ref1] Kapitel 1, Seite 22-26 [Ref1] Kapitel 1, Seite 42-56 [Ref 2] Kapitel 1, Seite 87-91

 Großes Spektrum von Netztechnologien, hierarchisch strukturiert, dynamische Topologie

• Die Internet-Netzinfrastruktur

Unterwasserverstärker: 1-2 m Länge, 30-50 cm Breite, 300-500 kg, 40W, 0.5-1 Mio \$, in bis zu 7000 m Tiefe.

Hochschule

- Fragestellung
 - Wie funktioniert die Datenübertragung über viele, heterogene Netze hinweg?

Prof. Dr. F. Steiper Seite 8 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Bitübertragung

Prof. Dr. F. Steiper Seite 9 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Sicherung

- Fragestellung
 - Wie funktioniert die Datenübertragung über viele, heterogene Netze hinweg?

Prof. Dr. F. Steiper Seite 10 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Sicherung

• 2. Die Sicherungsschicht

Prof. Dr. F. Steiper Seite 11 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Vermittlung

- Fragestellung
 - Wie funktioniert die Datenübertragung über viele, heterogene Netze hinweg?

Prof. Dr. F. Steiper Seite 12 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Vermittlung

- 3. Die Vermittlungsschicht: Das Internet-Protocol (IP)
 - IP ist optimiert f\u00fcr Daten\u00fcbertragung \u00fcber heterogene, nicht zuverl\u00e4ssige Netzwerke:
 - Übertragung erfolgt in Form unabhängiger Pakete
 - Einheitliches, übergreifendes Adressschema
 - Keine Mechanismen zur Fehlerbehebung

Prof. Dr. F. Steiper Seite 13 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Transport

- Fragestellung
 - Wie funktioniert die Datenübertragung über viele, heterogene Netze hinweg?

Prof. Dr. F. Steiper Seite 14 Rechnernetze (INF2)

1.1 Datenübertragung im Internet: Transport

- 4. Die Transportschicht: z.B. Transmission Control Protocol (TCP)
 - Ziel
 - Zuverlässigkeit des Datentransports über unzuverlässigen IP-Datagramm-Dienst garantieren
 - → Datagramm-Dienst des IP ist nur ein "best-effort"-Service
 - Sicherung der Übertragung zwischen Anwendungsprozessen
 - → Anzahl und Reihenfolge der Datenpakete soll beim Transport erhalten bleiben

- TCP liefert diese Funktionalität
 - Die Anwendung übergibt Daten an die TCP-Schicht
 - Der korrekte Transport ist Aufgabe von TCP

Prof. Dr. F. Steiper Seite 15 Rechnernetze (INF2)

Hypothetisches Beispiel eines Schichtenmodells

[Ref 1] Kapitel 1, Seite 69-73 [Ref 2] Kapitel 1, Seite 53-58

Prof. Dr. F. Steiper Seite 16 Rechnernetze (INF2)

Schichtenmodell im Detail

Brieffreundin in Japan: \mathbf{B}_J Übersetzerin in Japan: $\ddot{\mathbf{U}}_J$ Postdienst in Japan: \mathbf{P}_J Brieffreundin in Frankreich: \mathbf{B}_F Übersetzerin in Frankreich: $\ddot{\mathbf{U}}_F$ Postdienst in Frankreich: \mathbf{P}_F

Prof. Dr. F. Steiper Seite 17 Rechnernetze (INF2)

- Wichtige Erkenntnisse aus dem praktischen Beispiel
 - Eine mehrschichtige, hierarchische Architektur ermöglicht es, Teile des Gesamtsystems entkoppelt zu betrachten
 - Jede Schicht nutzt die Dienste der untergeordneten Schicht ohne deren Implementierung zu kennen
 - Zwischen den Schichten eines Standorts
 - gibt es definierte Schnittstellen zur Weiterleitung von Daten und Kontrollinformationen
 - wird die Nachricht mit immer weiteren Schicht spezifischen Steuer- und Kontroll-Informationen ausgestattet (Anweisungen an Übersetzer, postalische Zieladresse)
 - Innerhalb einer Schicht
 - besteht mit Ausnahme der untersten Schicht nur ein virtueller Informationsaustausch
 - wird über sogenannte Kommunikationsprotokolle kommuniziert

Prof. Dr. F. Steiper Seite 18 Rechnernetze (INF2)

- Kommunikationsprotokolle
 - ▶ Ein menschliches und ein Netzwerk-Kommunikationsprotokoll

- Ein Kommunikationsprotokoll beinhaltet die Festlegung von
 - Protokoll-Syntax: Wie wird kommuniziert...
 - Datenformate und Codierungen:
 z.B. wie werden alphanumerische Zeichen binär codiert (z.B. ASCII).
 - Protokoll-Semantik: Was wird kommuniziert...
 - Steuer- und Kontrollinformationen:
 welche Steuersequenzen (Einzelaktionen) gibt es;
 wie wird auf den Empfang von Steuersequenzen reagiert;
 wie werden Fehlerzustände signalisiert;
 wie werden sonstige Ereignisse signalisiert.
 - Protokoll-Timing: Ablauf der Kommunikation...
 - Zeitliche Reihenfolge der Einzelereignisse;
 Flusskontrolle, d.h. Anpassung von Sende- und
 Empfangsgeschwindigkeit;
 Priorisierung, d.h. bevorzugte Übertragung bestimmter Informationen.

Prof. Dr. F. Steiper Seite 20 Rechnernetze (INF2)

ISO/OSI-Referenzmodell

[Ref1] Kapitel 1, Seite 72-78 [Ref 2] Kapitel 1, Seite 66-70

- Es wurden 7 Schichten definiert
- Jede Schicht definiert Funktionen, die als Dienste der nächst höheren Schicht zur Verfügung stehen
- ► Es werden jedoch keine Implementierungsvorgaben gemacht
- Die höhere Schicht nutzt die Funktionen der darunter liegenden Schicht über definierte Schnittstellen, ohne zu wissen, wie die untere Schicht aufgebaut ist
- Prinzip: "Information Hiding"
- Grobstruktur:
 - Schicht 1-3: Netz orientiert, es werden reine Transportfunktionalitäten beschrieben, Inhalt der zu transportierenden Nachrichten ist irrelevant
 - Schicht 5-7: Anwendungs orientiert, Festlegung des Datenaustauschs zwischen Anwendungen und des verwendeten Datenformats
 - Schicht 4 soll bewirken, dass die Anwendungs orientierten Schichten von spezifischen Eigenschaften der eingesetzten Netztechnologie unabhängig bleiben

Prof. Dr. F. Steiper Seite 21 Rechnernetze (INF2)

• Das ISO/OSI-Referenzmodell

7	Anwendungsschicht
6	Darstellungsschicht
5	Sitzungsschicht
4	Transportschicht
3	Vermittlungsschicht
2	Sicherungsschicht
1	Bitübertragungsschicht

Prof. Dr. F. Steiper Seite 22 Rechnernetze (INF2)

Funktionen der Schichten

1. **Bitübertragungsschicht**ermöglicht die Übertragung unstrukturierter Bitströme; legt z.B. die physikalische Darstellung von Bits fest.

2. **Sicherungsschicht**dient insbesondere zur Entdeckung von Übertragungsfehlern und deren Korrektur; wirkt zwischen direkt verbundenen Rechnern.

3. Vermittlungsschicht betrachtet werden ermöglicht die transparente Übertragung der Daten im Netzwerk; verknüpft Teilstreckenverbindungen; Bereitstellung eines einheitlichen Adressierungsschemas und eines Wegewahl-Mechanismus (Routing).

4. Transportschicht

TCP kann als Protokoll dieser Schicht betrachtet werden

Sicherung der Übertragung zwischen zwei Anwendungen auf versch. Rechnern (hinsichtlich dem Verlust / der Reihenfolge von Paketen); Bereitstellung von Fluß- und Überlastkontrolle.

z.B. zwischen Web-Client A und Web-Server B; dazwischen können weitere Netzwerke liegen!

- Funktionen der Schichten ...
 - 5. **Sitzungsschicht**Synchronisation bei Systemabstürzen, Realisierung einer Sitzung sorgt für die Synchronisation und den geregelten Dialogablauf zwischen zwei Anwendungsprozessen, z.B. Login-Vorgang.

6. Darstellungsschicht

leistet für die Senderseite die Umsetzung unterschiedlicher Darstellungen der Informationen (z.B. unterschiedliche Zeichencodierungen wie ASCII und EBCDIC) auf einheitliches Format. Komprimierungs- und Verschlüsselungsmechanismen können implementiert sein.

7. Anwendungsschicht

ist die einzige Zugriffsmöglichkeit der Anwendungsprozesse zur Datenübertragung. E-Mail, FTP, WWW, Telnet, DNS......

Prof. Dr. F. Steiper Seite 24 Rechnernetze (INF2)

• ISO-Modell mit Zwischenknoten

Prof. Dr. F. Steiper Seite 26 Rechnernetze (INF2)

Das TCP/IP-Referenzmodell

[Ref 2] Kapitel 1, Seite 70-73

ISO/OSI

Anwendungsschicht

Darstellungsschicht

Sitzungsschicht

Transportschicht

Vermittlungsschicht

Sicherungsschicht

Bitübertragungsschicht

TCP/IP

Anwendungsschicht

Nicht vorhanden!

Transportschicht

Internetschicht

Host-to-Network
Schicht

UDP/TCP-Protokoll

IP-

Protokoll

Unspezifiziert "die große Leere"