53

$$\mathbb{R}^{10})_{p}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}^{7}$$

$$\mathbb{R}^{7}$$

$$\mathbb{R}^{8}$$

$$\mathbb{R}^{9}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{6}$$

$$\mathbb{C}\mathbb{R}^{8}\mathbb{R}^{9})_{n}$$

$$\mathbb{R}^{10})_{p}$$

$$\mathbb{R}^{10}$$

$$(R^{10})_p$$
 R^3
 R^5
 R^7
 $(CR^8R^9)m$
 R^7
 $(CR^8R^9)_n$
 $(CR^8R^9)_n$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table

R¹ and R² are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -

arylalkenyl group or a halogen atom,

is a hydrogen atom, a halogen atom, a C_2 - C_{10} -alkyl group, a C_1 - C_{10} -alkyl group which is halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

[R³ and] R⁴ [are identical or different and are] is a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

R⁵ and R⁶ are identical or different and are as defined for R³ and R⁴, with the proviso that R⁵ and R⁶ are not hydrogen,

R⁷ is

$$R^{11}$$
 R^{11}
 C
 C
 R^{12}
 R^{12}
 R^{12}

1990/F 333C (5591*160)

SERIAL NO: 08/895,950

 $=BR^{11}$, $=A1R^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -fluoroaryl group, a C_1 - C_{10} -alkoxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} -- or R^{11} and R^{13} in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

R⁸ and R⁹ are identical or different and are as defined for R¹¹

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2, [and]

the radicals R¹⁰ are identical or different and are as defined

for R^{11} , R^{12} and R^{13} ,

rings A are saturated or aromatic,

<u>p</u> <u>is 8, when rings A are saturated, and</u>

<u>p</u> <u>is 4, when rings A are aromatic</u>.

7. A compound [as claimed in claim 1,] of the formula (1) for preparing essentially isotactic olefin polymers

JUN 1 1 2001

$$(R^{10})_p$$
 R^3
 R^5
 R^7
 $(CR^8R^9)_m$
 $(CR^8R^9)_n$
 $(CR^8R^9)_n$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table

R¹ and R² are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

R³ and R⁴ are hydrogen,

are identical or different and are a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group

 \mathbb{R}^7 is

$$R^{11}$$
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{12}
 R^{12}

1990/F 333C (5591*160)

SERIAL NO: 08/895,950

 $=BR^{11}$, $=A1R^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -alkoxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} -- or R^{11} and R^{13} in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

R⁸ and R⁹ are identical or different and are as defined for R¹¹

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2,

the radicals R¹⁰ are identical or different and are as defined

for R11, R12 and R13,

rings A are saturated or aromatic,

<u>p</u> is 8, when rings A are saturated, and

<u>is 4, when rings A are aromatic.</u>

19. A compound of the formula (I)'

$$(CR^8R^9)_m$$
 R^5
 R^6
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$

in which

M1 is a metal from group IVb, Vb or VIb of the Periodic Table,

 R^1 and R^2 are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

R³ is a hydrogen atom, a halogen atom, a C_2 - C_{10} -alkyl group, a C_1 - C_{10} -alkyl group which is halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R¹5 is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

 R^4 is a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

R⁵ and R⁶ are identical or different and are as defined for R³ and R⁴, with the proviso that R⁵ and R⁶ are not hydrogen,

 R^7 is

 $=BR^{11}$, $=A1R^{11}$, -Ge, -Sn, -O, -S, =SO, =SO₂, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₁₀-alkyl group, a C₁-C₁₀-alkenyl group, a C₂-C₁₀-alkenyl group, a C₇-alkenyl group, a C