Abstract

The present invention relates to a rear-projection light-scattering least one encompassing at methacrylate layer, which comprises polymethyl polymethyl methacrylate matrix and spherical scattering and spherical particles (B) (A) particles different median particle size V_{50} , where the spherical scattering particles (A) have a median size V_{50} in the range from 0.1 to 40 $\mu m\text{,}$ the difference between the refractive index of the spherical scattering particles and that of the polymethyl methacrylate matrix 0.2, where in the range from 0.02 to spherical particles (B) have a median size V_{50} in the range from 10 to 150 μm , the difference between the refractive index of the spherical particles (B) and that of the polymethyl methacrylate matrix being in the range from 0 to 0.2, and where the total concentration of the spherical scattering particles (A) and particles (B) is in the range from 1 to 60% by weight, based on light-scattering polymethyl of. the weight methacrylate layer, where the concentration of the spherical scattering particles (A) cpA, the thickness of the light-scattering polymethyl methacrylate layer $\ensuremath{\text{d}}_{\text{S}}$ and the size of the spherical scattering particles (A) D_{PA} is selected in such a way that the ratio $c_{PA}{}^{*}d_{S}/D_{PA}{}^{3}$ is in the range from 0.001 to 0.015% by weight * mm/ μ m³, the concentration of the spherical particles (B) CPB, light-scattering polymethyl the of thickness methacrylate layer d_{S} and the size of the spherical particles (B) D_{PB} is selected in such a way that the ratio $c_{PB}^* d_s/D_{PB}^3$ is in the range from 0.000005 to 0.002% by weight * mm/ μ m 3 and the ratio of the square of average surface roughness of the polymethyl methacrylate layer $R_{
m z}$ to the third power of the size of the spherical particles (B) R_z^2/D_{PB}^3 is in the range from 0.0002 to $0.1300 \, \mu m^{-1}$.