

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № <u>2</u>
Дисциплина: Математическая статистика
Тема Интервальные оценки
Студент Сушина А.Д.
Группа ИУ7-616
Оценка (баллы)
Преподаватель Саркисян П.С.

1 Постановка задачи

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы

- 1. Для выборки объема п из нормальной генеральной совокупности X реализовать в виде программы на Θ
 - а) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания МХ и дисперсииDX соответственно;
 - b) вычисление нижней и верхней границ $\mu(\vec{x}_n)$, $\overline{\mu}(\vec{x}_n)$ для ү-доверительного интервала для математического ожидания МХ;
 - с) вычисление нижней и верхней границ $\underline{\sigma}^2(\overrightarrow{x_n})$, $\overline{\sigma}^2(\overrightarrow{x_n})$ для γ -доверительного интервала для дисперсии DX;
- 2. вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3. для заданного пользователем уровня доверия ү и N-объема выборки из индивидуального варианта:
 - а) на координатной плоскости Оуп построить прямую $y=\hat{\mu}(\overrightarrow{x_n})$, также графики функций $y=\hat{\mu}(\overrightarrow{x_n})$, $y=\underline{\mu}(\overrightarrow{x_n})$ и $y=\overline{\mu}(\overrightarrow{x_n})$ как функций объема п выборки, где п изменяется от 1 до N;
 - b) на другой координатной плоскости Оzn построить прямую $z=S^2(\overrightarrow{x_N})$, также графики функций $z=S^2(\overrightarrow{x_n})$, $z=\underline{\sigma^2}(\overrightarrow{x_n})$ и $z=\overline{\sigma^2}(\overrightarrow{x_n})$ как функций объема n выборки, где n изменяется от 1 до N.

2 Аналитическая часть

2.1 Определение у-доверительного интервала для значения параметра распределения случайной величины;

Пусть \overrightarrow{X}_n — случайная выборка объёма n из генеральной совокупности X с функцией распределения $F(x;\theta)$, зависящей от параметра θ , значение которого неизвестно.

Предположим, что для параметра θ в построенном интервале ($\underline{\theta}(\overrightarrow{X_n})$, $\overline{\theta}(\overrightarrow{X_n})$), где $\underline{\theta}(\overrightarrow{X_n})$ и $\overline{\theta}(\overrightarrow{X_n})$ являются функциями случайной выборки \overrightarrow{X} п такими, что выполняется равенство:

$$P\{\underline{\theta}(\vec{X} n) < \theta < \overline{\theta}(\vec{X} n)\} = \gamma$$

В этом случае интервал ($\underline{\theta}(\overrightarrow{X}_n)$, $\overline{\theta}(\overrightarrow{X}_n)$) называют интервальной оценкой для параметра θ с коэффициентом доверия γ (сокращенно, γ -доверительной интервальной оценкой), а $\underline{\theta}(\overrightarrow{X}_n)$ и $\overline{\theta}(\overrightarrow{X}_n)$ соответственно нижней и верхней границами интервальной оценки. Интервальная оценка ($\underline{\theta}(\overrightarrow{X}_n)$, $\overline{\theta}(\overrightarrow{X}_n)$) представляет собой интервал со случайными границами, который с заданной вероятностью γ накрывает неизвестное истинное значение параметра γ .

Интервал ($\underline{\theta}(\vec{x_n})$, $\overline{\theta}(\vec{x_n})$) называют доверительным интервалом для параметра θ с коэффициентом доверия уили у-доверительным интервалом, где $\vec{x_n}$ – любая реализация случайной выборки $\vec{X_n}$.

2.2 Формулы для вычисления границ у-доверительного интервала для математического ожидания и дисперсии нормальной случайной величины

Пусть \vec{X}_n – случайная выборка объёма n из генеральной совокупности X, распределенной по нормальному закону с параметрами μ , μ , σ^2 .

Оценка для математического ожидания

при известном о:

$$\underline{\mu}(\overrightarrow{X}_n) = \overline{X} - \frac{\sigma}{\sqrt{n}} u_{1-\alpha},$$

$$\overline{\mu}(\overrightarrow{X}_n) = \overline{X} + \frac{\sigma}{\sqrt{n}} u_{1-\alpha},$$

при неизвестном **σ**:

$$\begin{split} \underline{\mu} \Big(\overrightarrow{X_n} \Big) &= \overline{X} - \frac{S \Big(\overrightarrow{X}_n \Big)}{\sqrt{n}} t_{1-\alpha} (n-1), \\ \overline{\mu} \Big(\overrightarrow{X_n} \Big) &= \overline{X} + \frac{S \Big(\overrightarrow{X}_n \Big)}{\sqrt{n}} t_{1-\alpha} (n-1), \end{split}$$

где:

- \overline{X} оценка мат. ожидания,
- п число опытов,
- ullet $S(\overrightarrow{X}_n)$ точечная оценка дисперсии случайной выборки \overrightarrow{X}_n ,
- $u_{1-\alpha}$ квантиль уровня $1-\alpha$ для нормального распределения N(0,1), $t_{1-\alpha}(n-1)$ квантиль уровня $1-\alpha$ для распределения Стьюдента с n-1 степенями свободы,
- $\bullet \quad \alpha = \frac{(1-\gamma)}{2}.$

Оценка для дисперсии

$$\begin{split} & \underline{\sigma^2} \Big(\overrightarrow{X}_n \Big) = \frac{S \Big(\overrightarrow{X}_n \Big) (n-1)}{\chi_{1-\alpha}^2 (n-1)} \,, \\ & \overline{\sigma^2} \Big(\overrightarrow{X}_n \Big) = \frac{S \Big(\overrightarrow{X}_n \Big) (n-1)}{\chi_{\alpha}^2 (n-1)} \,, \end{split}$$

- n выборка,
 \chi_{\alpha}^2(n-1) квантиль уровня \alpha для распределения \chi^2 с n-1 степенями свободы,
- $\bullet \quad \alpha = \frac{(1-\gamma)}{2}.$

3 Технологическая часть

3.1 Текст программы

Листинг 1. Текст программы lab2.m

```
function lab2()
  X = [14.90, 14.40, 13.56, 15.55, 13.97, 16.33, 14.37, 13.46, 15.51, 14.69,...]
     13.41, 14.24, 15.65, 14.54, 13.55, 13.15, 14.32, 15.04, 13.27, 14.60,...
     13.83, 13.93, 14.11, 14.15, 15.48, 15.96, 14.46, 13.87, 13.67, 15.30, ...
     13.95, 16.08, 18.25, 14.93, 15.37, 14.38, 15.56, 13.92, 14.23, 12.80, ...
     13.16, 13.89, 14.24, 13.90, 12.82, 13.20, 13.89, 13.50, 13.44, 16.13, ...
     14.68, 15.27, 13.35, 13.62, 16.16, 16.46, 13.83, 14.13, 15.68, 15.22, ...
     12.59, 12.94, 13.09, 16.54, 14.61, 14.63, 14.17, 13.34, 16.74, 16.30, ...
     13.74, 15.02, 14.96, 15.87, 16.03, 12.87, 14.32, 14.48, 14.57, 14.43, ...
     12.61, 14.52, 15.29, 12.07, 14.58, 11.74, 14.97, 14.31, 12.94, 12.82, ...
     14.13, 14.48, 12.25, 14.39, 15.08, 12.87, 14.25, 15.12, 15.35, 12.27, ...
     14.43, 13.85, 13.16, 16.77, 14.47, 14.89, 14.95, 14.55, 12.80, 15.26, ...
     13.32, 14.92, 13.44, 13.48, 12.81, 15.01, 13.19, 14.68, 14.44, 14.89];
  N = 1:length(X);
  gamma = 0.9;
  alpha = (1 - gamma)/2;
  mu = expectation(X);
  sSqr = variance(X);
  fprintf('mu = \%.2f\n', mu);
  fprintf('S^2 = \%.2f\n\n', sSqr);
  muArray = expectationArray(X, N);
  varArray = varianceArray(X, N);
  figure
  plot([N(1), N(end)], [mu, mu], 'm');
  hold on;
  plot(N, muArray, 'g');
  Ml = muArray - sqrt(varArray./N).*tinv(1 - alpha, N - 1);
  plot(N, Ml, 'b');
  fprintf('mu low = \%.2f\n', Ml(end));
  Mh = muArray + sqrt(varArray./N).*tinv(1 - alpha, N - 1);
  plot(N, Mh, 'r'), legend('y=mu', 'y=mu_n', 'y=mu-low_n', 'y=mu-high_n');
  grid on;
  hold off;
  fprintf('mu\_high = \%.2f\n', Mh(end));
  figure
  plot([N(1), N(end)], [sSqr, sSqr], 'm');
  hold on;
  plot(N, varArray, 'g');
  Sl = varArray.*(N - 1)./chi2inv(1 - alpha, N - 1);
  plot(N, Sl, 'b');
```

```
Sh = varArray.*(N - 1)./chi2inv(alpha, N - 1);
  plot(N, Sh, 'r'), legend('z=S^2', 'z=S^2_n', 'z=S^2-low_n', 'z=S^2-high_n');
  grid on;
  hold off;
  fprintf(sigma^2_low = \%.2f\n', Sl(end));
  fprintf('sigma^2_high = \%.2f\n', Sh(end));
end
function mu = expectation(X)
 mu = mean(X);
end
function sSqr = variance(X)
  sSqr = var(X);
end
function muArray = expectationArray(X, N)
  muArray = zeros(1, length(N));
  for i = 1:length(N)
    muArray(i) = expectation(X(1:N(i)));
  end
end
function varArray = varianceArray(X, N)
  varArray = zeros(1, length(N));
  for i = 1:length(N)
    varArray(i) = variance(X(1:N(i)));
  end
end
```

4 Экспериментальная часть

4.1 Результаты расчетов и графики для выборки из индивидуального варианта

```
\hat{\mu} 14.35

S^2 1.28

(\underline{\mu}, \overline{\mu}) (14.18, 14.52)

(\underline{\sigma}^2, \overline{\sigma}^2) (1.05, 1.60)

\Rightarrow lab2

mu = 14.35

S^2 = 1.28

mu_low = 14.18

mu_high = 14.52

sigma^2low = 1.05

sigma^2high = 1.60
```

Рис 1. Результат работы программы

Построение на координатной плоскости Оуп прямой $\mathbf{y} = \hat{\mu}(\overrightarrow{x_n})$, также графиков функций $\mathbf{y} = \hat{\mu}(\overrightarrow{x_n})$, $\mathbf{y} = \underline{\mu}(\overrightarrow{x_n})$ и $\mathbf{y} = \overline{\mu}(\overrightarrow{x_n})$ как функций объема п выборки, где п изменяется от 1 до N.

График 1.

Построение на другой координатной плоскости Оzn прямой $z=S^2(\overrightarrow{x_N})$, также графиков функций $z=S^2(\overrightarrow{x_n})$, $z=\underline{\sigma^2}(\overrightarrow{x_n})$ и $z=\overline{\sigma^2}(\overrightarrow{x_n})$ как функций объема n выборки, где n изменяется от 1 до N.

График 2.