AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-13 - Canceled.

- 14. (Previously Presented) A method for constitutive and/or inducible gene knock down in a vertebrate, or in a tissue culture or cells of a cell culture derived from a vertebrate, which method comprises stably integrating an expression vector comprising a short hairpin RNA construct under control of a ubiquitous promoter into the genome of the vertebrate, of the tissue culture or of the cells of the cell culture.
- 15. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector is suitable for stabile integration into the genome of a vertebrate, or into the genome of the tissue culture or of cells of the cell culture.
- 16. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector contains homologous sequences suitable for integration at a defined genomic locus through homologous recombination in the genome of the vertebrate, in the genome of the tissue culture or in the genome of the cells of the cell culture.
- 17. (Currently Amended) The method of claim [[3]] 16, wherein the cells of the cell culture are embryonic cells.
- 18. (Currently Amended) The method of claim [[3]] 16, wherein the homolgous sequences are suitable for integration at a polymerase II dependent locus in the genome of the vertebrate, in the genome of the tissue culture or in the genome of the cells of the cell culture.
- 19. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector USSN 10/531,347 2
 Response to Restriction Requirement filed May 8, 2008

further contains functional sequences selected from the group consisting of splice acceptor sequences, polyadenylation sites and selectable marker sequences.

- 20. (Currently Amended) The method of claim [[5]] 18, wherein the polymerase II dependent locus is selected from the group consisting of a Rosa26, collagen, RNA polymerase, actin and HPRT locus.
- 21. (Currently Amended) The method of claim [[1]] 14, wherein the ubiquitous promoter is selected from the group of promoters consisting of polymerase I, II and III dependent promoters.
- 22. (Currently Amended) The method of claim [[8]] <u>21</u>, wherein the ubiquitous promoter is selected from the group consisting of a polymerase II or III dependent promoter.
- 23. (Currently Amended) The method of claim [[8]] 21, wherein the ubiquitous promoter is selected from the group consisting of a CMV promoter, a CAGGS promoter, a snRNA promoter, a RNAse P RNA promoter, a tRNA promoter, a 7SL RNA promoter and a 5 S rRNA promoter.
- 24. (Currently Amended) The method of claim [[10]] 23, wherein the S nRNA promoter is a U6 promoter.
- 25. (Currently Amended) The method of claim [[10]] 23, wherein the RNAse P RNA promoter is a H1 promoter.
- 26. (Currently Amended) The method of claim [[1]] 14, wherein the ubiquitous promoter is a constitutive promoter.
- 27. (Currently Amended) The method of claim [[1]] 14, wherein the ubiquitous promoter is an inducible promoter.
 - 28. (Currently Amended) The method of claim [[14]] 27, wherein the inducible promoter

contains an operator sequence selected from the group consisting of tet, Gal4 and lac.

- 29. (Currently Amended) The method of claim [[1]] 14, wherein said vertebrate is a non-human vertebrate.
- 30. (Currently Amended) The method of claim [[16]] <u>29</u>, wherein the non-human vertebrate is selected from the group of vertebrates consisting of mouse and fish.
- 31. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector is a Pol III dependent promoter driven shRNA construct suitable to be integrated into a ubiquitously active Pol II dependent locus;
- 32. (Currently Amended) The method of claim [[18]] <u>31</u>, wherein the PolIII dependent promoter is selected from a constitutive H1 promoter and a constitutive U6 promoter.
- 33. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector is a Pol III dependent promoter driven shRNA construct suitable to be integrated into a ubiquitously active Pol II dependent locus.
- 34. (Currently Amended) The method of claim [[20]] 33, wherein the Pol III dependent promoter is selected from an inducible U6 promoter and an inducible H1 promoter.
- 35. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector is a Pol II dependent promoter driven shRNA construct suitable to be integrated into a ubiquitously active Pol II dependent locus.
- 36. (Currently Amended) The method of claim [[22]] 35, wherein the Pol III dependent promoter is a inducible CMV promoter.
 - 37. (Currently Amended) The method of claim [[1]] 14, wherein the shRNA comprises

(I) at least one DNA segment A-B-C wherein

A is a 15 to 35, preferably 19 to 29 bp DNA sequence with at least 95%, preferably 100% complementarily to the gene to be knocked down;

B is a spacer DNA sequence having 5 to 9 bp forming the loop of the expressed RNA hair pin molecule, and

C is a 15 to 35, preferably 19 to 29 bp DNA sequence with at least 85% complementarily to the sequence A, and

- (II) a stop and or polyadenylation.
- 38. (Currently Amended) The method of claim [[24]] 37, wherein A is a 19 to 29 bp sequence with 100% complementarily to the gene to be knocked down.
- 39. (Currently Amended) The method of claim [[1]] 14, wherein the expression vector is integrated at a polymerase dependent locus of the living organism, tissue culture or cell culture.
- 40. (Currently Amended) The method of claim [[1]] 14, wherein the method for constitutive and/or inducible gene knock down in a vertebrate comprises integrating the expression vector into ES cells of the vertebrate.
- 41. (Currently Amended) A vertebrate, or tissue or cell culture derived from a vertebrate having stably integrated, preferably at a polymerase II dependent locus of the vertebrate, tissue culture or cells of the cell culture, an expression vector comprising a short hairpin RNA construct under control of a ubiquitous promoter.
- 42. (Currently Amended) The vertebrate tissue or cell culture of claim [[28]] 41, which is or is derived from a non-human vertebrate.
- 43. (Currently Amended) The vertebrate of claim [[29]] 42, which is selected from the group of vertebrates consisting of mouse and fish.

	N. A	stan communicipa a chom	hairnin RNA construct
44. (Previously Presented) An expression vector comprising a short hairpin RNA construct under control of a ubiquitous promoter.			