Лабораторная работа № 4.3.2

Дифракция света на ультразвуковой волне в жидкости

Ступаков Олег 722 группа 8 февраля 2019 г.г. Долгопрудный

1

ЦЕЛЬ РАБОТЫ: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

ОБОРУДОВАНИЕ: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

I. Теоретическое введение

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin\theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

Установка с вертикальной щелью

Рис. 1. Дифракция световых волн на акустической решетке

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

II. Определение скорости ультразвука по дифракционной картине

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2. Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной $\sigma=2$ деления, или 8 мкм.

Исследуем изменения дифракционной картины на зеленом свете. При увеличении частоты УЗ-генератора и приближении к 1,1 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы I-IV ниже. На основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3-6. Коэффициенты углов наклонов прямых для всех зависимостей сведены в таблицу V.

\overline{m}	- 3	-2	-1	0	1	2	3
x_m , дел	-115	-78	-37	0	38	74	106
x_m , MKM	-460	-312	-148	0	152	296	424

Таблица I Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,\!168\,$ МГц

Рис. 3. График зависимости $x_m(m)$ при частоте генератора $\nu=1,168\,$ М $\Gamma_{\rm H}$

m	-4	-3	-2	-1	0	1	2	3	4
x_m ,	-150	-116	-81	-38	0	38	80	120	154
дел									
x_m ,	-600	-464	-324	-152	0	152	320	480	616
MKM									

Таблица II Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,219~{
m M}\Gamma$ ц

Ошибка при определении Λ и v не превышает 2%. Согласно справочным данным, при комнатной температуре скорость ультразвуковой волны в воде составляет примерно $1490~{\rm m/c}$. Значения, полученные экспериментально, с достаточной точностью соотносятся с ними.

Рис. 4. График зависимости $x_m(m)$ при частоте генератора $\nu=1,219$ М $\Gamma_{\rm H}$

m	-3	-2	-1	0	1	2	3
x_m , дел	-116	-80	-38	0	45	86	126
x_m , mkm	-464	-320	-152	0	180	344	504

Таблица III Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,\!248~{
m M}\Gamma{
m L}$

Рис. 5. График зависимость $x_m(m)$ при частоте генератора $\nu=1.248~{
m M}\Gamma_{
m II}$

m	-2	-1	0	1	2
x_m , дел	-94	- 43	0	45	85
x_m , MKM	-376	-172	0	180	340

Таблица IV

Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,\!331~{
m M}\Gamma_{
m L}$

Рис. 6. График зависимость $x_m(m)$ при частоте генератора $\nu=1.331~{
m M}\Gamma_{
m H}$

ν , МГц	b, мкм	σ_b , MKM	Λ , mkm	$\Delta\Lambda$, мкм	<i>v</i> , м/с	Δv , м/с
1,168	148,9	1,6	1289	15	1507	15
1,219	154,8	1,3	1240	10	1512	13
1,258	163,0	1,4	1178	10	1482	13
1,331	178	3	1076	20	1432	30

III. Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке 7.

Рис. 7. Схема для наблюдения дифракции методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: C=0.06 мм.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум

горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (6)$$

$$I(x) = m^2 \cos^2 \Omega x = m^2 \frac{1 + \cos^2 2\Omega x}{2}$$

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=0,06), соответствующее n темным полосам акустической решетки. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{7}$$

Расчеты также приведены в таблице VI. Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.

	Количество	Количество			
ν ,	делений	темных полос		v,	Δv ,
Мгц	шкалы	акустической	Λ ,MM	10 м/с	10 м/с
	окуляра N	решетки n		· '	
1,220	150	15	1,29	157	6
1,259	150	16	1,20	151	7
1,271	175	18	1,24	157	7

Таблица VI Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v методом темного поля

IV. Вывод

В данной работе определялась скорость ультразвука в воде разными методами: с помощью дифракционной картины $(v_{\text{сред}} = 1480 \pm 20)\text{м/c}$ и методом темного поля $(v_{\text{сред}}^{\star} = 1550 \pm 70)\text{м/c}$. Скорости, экспериментально определенные обоими методами, совпадают с табличными значениями в пределах погрешности.