정규세션 8주차 ToBig's 11기 김유민

# Natural Language Processing Basic

자연어처리 기초

# Conte nts

```
Unit 01 | NLP Overview
Unit 02 | Process
Unit 03 | Tokenizing
Unit 04 | Embedding
Unit 05 | Similarity
```

## ✓ What is NLP?

<mark>자연어</mark>(Natural Language) = 우리가 일상생활에서 사용하는 언어

<mark>자연어처리</mark>(Natural Language Processing) = 자연어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 일!

-> 인공지능의 주요 연구 분야!

# ✓ Why NLP?

- 자연어 이해 및 자연어 처리는 인공지능 분야에 있어서 필수적
- 빅데이터에서 주목받고 있는 것은 '비정형 데이터'
- 비정형 데이터 중 상당 부분이 텍스트 데이터
- 텍스트 데이터는 인간에 대한 정보를 많이 담고 있음

### ✓ Where NLP is used?









## ✓ NLP 용어정리

Document(문서)

Corpus(말뭉치): 텍스트(문서)의 집합

Token(토큰): 단어처럼 의미를 가지는 요소

Morphemes(형태소): 의미를 가지는 언어에서 최소 단위

POS(품사): ex) Nouns, Verbs

Stopword(불용어): I, my, me, 조사, 접미사와 같이 자주 나타나지만 실제 의미에 큰 기여를 하지 못하는 단어들

Stemming(어간 추출): 어간만 추출하는 것을 의미(running, runs, run -> run)

Lemmatization(음소표기법): 앞뒤 문맥을 보고 단어를 식별하는 것

TF-IDF: 특정 단어가 문서 내에 얼마나 자주 등장하는 지를 나타내는 TF(단어 빈도)와 어떤 단어가 문서 전체 집합에서 얼마나 많이

나오는지를 나타내는 IDF(역문서 빈도)를 곱한 값

# Conte nts

Unit 01 | NLP Overview

Unit 02 | Process

Unit 03 | Tokenizing

Unit 04 | Embedding

Unit 05 | Similarity

Data Collection

**Embedding** 

Network

Tokenizing

Similarity

#### Step 1. Data Collection



#### Step 2. Tokenizing

나는 그 사람이 아프다



'나', '는', '그', '사람', '이', '아프', '다'

#### Step 3. Embedding

#### 나는 그 사람이 아프다



'나': [0.1234, 0.1234] '는': [0.5678, 0.1234] '그': [0.7890, 0.1567]

'사람': [0.9021, 0.4321] '이': [0.0876, 0.3579] '아프': [0.3456, 0.1764]

'다': [0.1234, 0.0399]

#### Similarity

```
'나': [0.1234, 0.1234] '는': [0.5678, 0.1234] '그': [0.7890, 0.1567]
```

'사람': [0.9021, 0.4321] '이': [0.0876, 0.3579] '아프': [0.3456, 0.1764]

'**L)**': [0.1234, 0.0399]



'사람': [0.9021, 0.4321] '아프': [0.3456, 0.1764]

코사인 유사도에 따르면, 이 두 단어는 유사하다고 판단할 수 있다.

#### Network





# Conte **Nts**

Unit 01 | NLP Overview

Unit 02 | Process

Unit 03 | Tokenizing

Unit 04 | Embedding

Unit 05 | Similarity

#### 나는 그 사람이 아프다



'나', '는', '그', '사람', '이', '아프', '다'

# 특정 기준에 의해 Text -> Token

'나', '는', '그', '사람', '이', '아프', '다'

Q. What is "token"?

A. 의미를 가지는 요소! (ex) 자소/음소, 형태소, 단어, 문장, 문서… etc

English

**NLTK** 

Korean

**KONLPY** 

Kkma

Komoran

Hannaum

Twitter(0kt)

Mecab

Morphs

**Nouns** 

Pos Tagging

### 아버지가방에들어가신다

| Hannanum          | Kkma      | Komoran                  | Mecab     | Twitter        |
|-------------------|-----------|--------------------------|-----------|----------------|
| 아버지가방에<br>들어가 / N | 아버지 / NNG | 아버지가방에<br>들어가신다 /<br>NNP | 아버지 / NNG | 아버지 / Noun     |
| 0 /J              | 가방 / NNG  |                          | 가/JKS     | 가방 / Noun      |
| 시ㄴ다/E             | 에/JKM     |                          | 방/NNG     | 에 / Josa       |
|                   | 들어가/W     |                          | 에 / JKB   | 들어가신 /<br>Verb |
|                   | 시/EPH     |                          | 들어가/VV    | 다/Eomi         |
|                   | ㄴ다/EFN    |                          | 신다/EP+EC  |                |

### 아버지가방에들어가신다

| Hannanum          | Kkma      | Komoran | Mecab     | Twitter        |
|-------------------|-----------|---------|-----------|----------------|
| 아버지가방에<br>들어가 / N | 아버지 / NNG |         | 아비지 / NNG | 아버지 / Noun     |
| 0 \ \ 1           | 가방 / NNG  |         | 가/JKS     | 가방 / Noun      |
| 시ㄴ다/E             | 에 / JKM   |         | 방/NNG     | 에 / Josa       |
|                   | 들어가/W     |         | 에 / JKB   | 들어가신 /<br>Verb |
|                   | 시/EPH     |         | 들어가/VV    | 다/Eomi         |
|                   | ㄴ다/EFN    |         | 신다/EP+EC  |                |

# Conte nts

Unit 01 | NLP Overview

Unit 02 | Process

Unit 03 | Tokenizing

Unit 04 | Embedding

Unit 05 | Similarity

Q. Tokenizing, 왜 하나요?

A. 자연어 처리를 위한 의미단위를 만들기 위해!

- Q. 컴퓨터가 인간의 언어를 어떻게 이해할 수 있을까?
  - -> 컴퓨터가 처리할 수 있는 것은 수치 뿐
  - -> 컴퓨터가 언어의 특성을 이해할 수 있도록 <mark>각 token마다 수치를 부여</mark>!



- Q. One-Hot Encoding의 문제점?
- 1. n개 token -> n개 feature: 불필요한 계산이 너무 많다.
- 2. 유사도 측정이 어려워 유의어, 반의어 등의 언어적 특성을 고려하기 힘들다.

Q. 그냥 One-Hot Encoding 하면 안되나요?

#### 지금은 새벽 3시야 나는 강의를 준비하고 있지 자고 싶다



['지금', '은', '새벽', '3시', '야', '나', '는', '강의', '를', '준비', '하', '고', '있지', '자', '고', '싶다']

Q. 그냥 One-Hot Encoding 하면 안되나요?

```
'지금':
        '은':
        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
'새벽':
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
'3시':
        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
'0‡':
        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
'나':
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
'는':
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
'강의':
        [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
'를':
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
'준비':
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
'하':
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
'고':
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
'있지':
        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
'자':
        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
'고':
        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
'싶다':
```

- 차원이 너무 커지고 불필요한 계산이 많아짐
- 유사도 측정이 어려워 유의어, 반의어 등의 언어적 특성을 고려하지 못함

Q. 효과적인 방법이 없을까?

A. 단어를 좀 더 <mark>조밀한 차원</mark>에 <mark>벡터</mark>로 표현해보자!

(ex) Word2Vec, Glove, BERT, FastText

[임베딩 모델 1: w2v]

✓ Word2Vec: 말 그대로 word to vector!

- 1) CBOW
- 2) Skip-gram
- 3) Neural Net





(Mikolov et al., NAACL HLT, 2013)

[임베딩 모델 1: w2v]

1) CBOW

내가 어떻게 해야 그대를 잊을 수 있을까

cf) window size?

[임베딩 모델 1: w2v]

#### 1) CBOW

'내', '가', '어떻게, '해야', '그대', '를', '잊을', '수' '있을', '까 '

| Center Word   | Neighbor Words   |
|---------------|------------------|
| ' <b>Ľ</b> ‖' | '가', '어떻게'       |
| '가'           | '내', '어떻게', '해야' |
| '어떻게'         | '가', '해야', '그대'  |
| '해야'          | '어떻게', '그대', '를' |
| '그대'          | '해야', '를', '잊을'  |
| '를'           | '그대', '잊을', '수'  |
| '잊을'          | '를', '수', '있을'   |
| '수'           | '잊을', '있을', '까'  |
| '있을 '         | '잊을', '수', '까'   |
| '끼ト'          | '수', '있을'        |

[임베딩 모델 1: w2v]

1) CBOW

<Input>
Neighbor Words



<Target>
Center Word

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^{\top} v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v'_w^{\top} v_{w_I}\right)}$$

- W<sub>o</sub>: output word
- W<sub>I</sub>: context words

#### [임베딩 모델 1: w2v]

#### 1) CBOW



| center word     | context words                                                            |
|-----------------|--------------------------------------------------------------------------|
| [1,0,0,0,0,0,0] | [0,1,0,0,0,0,0]<br>[0,0,1,0,0,0,0]                                       |
| [0,1,0,0,0,0,0] | [1,0,0,0,0,0,0]<br>[0,0,1,0,0,0,0]<br>[0,0,0,1,0,0,0]                    |
| [0,0,1,0,0,0,0] | [1,0,0,0,0,0,0]<br>[0,1,0,0,0,0,0]<br>[0,0,0,1,0,0,0]<br>[0,0,0,0,1,0,0] |
| [0,0,0,1,0,0,0] | [0,1,0,0,0,0,0]<br>[0,0,1,0,0,0,0]<br>[0,0,0,0,1,0,0]<br>[0,0,0,0,0,1,0] |
| [0,0,0,0,1,0,0] | [0,0,1,0,0,0,0]<br>[0,0,0,1,0,0,0]<br>[0,0,0,0,0,1,0]<br>[0,0,0,0,0,0,1] |
| [0,0,0,0,0,1,0] | [1,0,0,1,0,0,0]<br>[0,0,0,0,1,0,0]<br>[0,0,0,0,0,0,1]                    |
| [0,0,0,0,0,0,1] | [0,0,0,0,1,0,0]<br>[0,0,0,0,0,1,0]                                       |

[임베딩 모델 1: w2v]

#### 2) Skip-gram

내가 어떻게 해야 <mark>그대를</mark> 잊을 수 있을까

cf) window size?

[임베딩 모델 1: w2v]

2) Skip-gram

<Input>
Target Word



<Target>
Neighbor Words

[임베딩 모델 1: w2v]

# 3) Neural Net



Bow(Bag of Words)

'I': 0 'am': 1 'a': 2 'boy': 3 'girl': 4

"I am a girl" => [1 1 1 0 1]

[임베딩 모델 1: w2v]



BOW Encoding





### [임베딩 모델 1: w2v]

# Word Vector





[임베딩 모델 1: w2v]

# ✓ Word2Vec의 문제점

- ① 한번에 하나의 동시 출현만 고려 -> 전체적인 정보 이용 x -> 비효율성&부정확성
- ② train corpus에 존재하지 않았던 단어의 벡터를 만들어낼 수 없음

[임베딩 모델 2: GloVe]



전체 텍스트의 정보를 이용해보자! train corpus에서 동시에 같이 등장한 단어의 빈도를 세어서 corpus의 단어 개수로 나눠준 "동시 등장 비율"을 고려하자!

[임베딩 모델 2: GloVe]

# ✓ GloVe

| Probability and Ratio | k = solid            | k = gas              | k = water            | k = fashion         |
|-----------------------|----------------------|----------------------|----------------------|---------------------|
| P(k ice)              | $1.9 \times 10^{-4}$ | $6.6 \times 10^{-5}$ | $3.0 \times 10^{-3}$ | $1.7\times10^{-5}$  |
| P(k steam)            | $2.2 	imes 10^{-5}$  | $7.8\times10^{-4}$   | $2.2\times10^{-3}$   | $1.8\times 10^{-5}$ |
| P(k ice)/P(k steam)   | 8.9                  | $8.5\times10^{-2}$   | 1.36                 | 0.96                |

"solid"?
"ice" vs "steam"

Bag-of-Characters

[임베딩 모델 3: FastText]

= 3-gram Embedding의 합

# ✓ FastText

# 단어가 아닌 단어 내부의 n-gram이 최소 단위!



**Embedding** 

[임베딩 모델 3: FastText]

# ✓ FastText

- ① train corpus에 존재하지 않았던 단어의 embedding이 가능함 (ex) 'disaster'/'disastrous'
- ② 희소한 단어에 대해 더 좋은 embedding이 가능함

# Conte nts

```
Unit 01 | NLP Overview

Unit 02 | Process

Unit 03 | Tokenizing
```

Unit 04 | Embedding

Unit 05 | Similarity

# ✓ Similarity

: 유사도를 구해 의미론적 해석을 이끌어낸다!

- 1) Euclidean Similarity
- 2) Cosine Similarity
- 3) Jaccard Similarity

#### [유사도 1: 유클리디안]

1) Euclidean Similarity 
$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+...+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$$

| -   | 바나나 | 사과 | 저는 | 좋아요 |
|-----|-----|----|----|-----|
| 문서1 | 2   | 3  | 0  | 1   |
| 문서2 | 1   | 2  | 3  | 1   |
| 문서3 | 2   | 1  | 2  | 2   |



| -   | 바나나 | 사과 | 저는 | 좋아요 |  |
|-----|-----|----|----|-----|--|
| 문서Q | 1   | 1  | 0  | 1   |  |

#### [유사도 1: 유클리디안]

# 1) Euclidean Similarity



$$\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + ... + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

```
import numpy as np
def dist(x, y):
    return np.sqrt(np.sum((x-y)**2))

doc1 = np.array((2,3,0,1))
doc2 = np.array((1,2,3,1))
doc3 = np.array((2,1,2,2))
docQ = np.array((1,1,0,1))

print(dist(doc1, docQ))
print(dist(doc2, docQ))
print(dist(doc3, docQ))

2.23606797749979
3.1622776601683795
2.449489742783178
```

#### [유사도 2: 코사인]

# 2) Cosine Similarity

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

|       | ı    | love | dogs | hate | and  | knitting | is   | my   | hobby | passion |
|-------|------|------|------|------|------|----------|------|------|-------|---------|
| Doc 1 | 0.18 | 0.48 | 0.18 |      |      |          |      |      |       |         |
| Doc 2 | 0.18 |      | 0.18 | 0.48 | 0.18 | 0.18     |      |      |       |         |
| Doc 3 |      |      |      |      | 0.18 | 0.18     | 0.48 | 0.95 | 0.48  | 0.48    |



| -   | 바나나 | 사과 | 저는 | 좋아요 |
|-----|-----|----|----|-----|
| 문서1 | 2   | 3  | 0  | 1   |
| 문서2 | 1   | 2  | 3  | 1   |
| 문서3 | 2   | 1  | 2  | 2   |



Cosine Similarity

[유사도 3: 자카드]

# 3) Jaccard Similarity

- 두 집합의 교집합의 크기를 합집합의 크기로 나는 값으로 두 문서(집합)의 유사도를 측정
- 0에서 1사이의 값을 가지며 두 집합 사이에 교집합이 없으면 0, 두 집합이 동일하면 1의 값을 가짐

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

문서 A: 그대 내품에 안겨 눈을 감아요 문서 B: 그대 내품에 안겨 사랑의 꿈 나눠요

|      | 그대 | 내품에 | 안겨 | 눈을 | 감아요 | 사랑의 | 꿈 | 나눠요 |
|------|----|-----|----|----|-----|-----|---|-----|
| 문서 A | 0  | 0   | 0  | 0  | 0   | X   | X | X   |
| 문서 B | 0  | 0   | 0  | X  | X   | 0   | 0 | 0   |

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{3}{8}$$

[유사도 3: 자카드]

# 3) Jaccard Similarity

- 두 집합의 교집합의 크기를 합집합의 크기로 나는 값으로 두 문서(집합)의 유사도를 측정
- 0에서 1사이의 값을 가지며 두 집합 사이에 교집합이 없으면 0, 두 집합이 동일하면 1의 값을 가짐

문서 A: 그대 내품에 안겨 눈을 감아요 문서 B: 그대 내품에 안겨 사랑의 꿈 나눠요

|      | 그대 | 내품에 | 안겨 | 눈을 | 감아요 | 사랑의 | 꿈 | 나눠요 |
|------|----|-----|----|----|-----|-----|---|-----|
| 문서 A | 0  | 0   | 0  | 0  | 0   | X   | X | Х   |
| 문서 B | 0  | 0   | 0  | X  | X   | 0   | 0 | 0   |

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{3}{8}$$

# Conte nts

```
Unit 01 | NLP Overview
Unit 02 | Process
Unit 03 | Tokenizing
Unit 04 | Embedding
Unit 05 | Similarity
```

Unit 06 | Assignment

## Unit 06 | Assignment

# <과제> "NLP 제대로 맛보기"

Step1. 관심 주제 관련 텍스트 데이터 크롤링

Step2. 전처리 (ex) 불용어 처리, 특수 문자 제거 등

Step3. 임베딩

Step4. 인사이트 도출 (ex) 유사도, 그래프 해석, 요약 알고리즘 등

## Unit 06 | Assignment

# [주의사항]

- 1. 파일로 제공되는 정형 데이터가 아닌, 지난 시간에 배운 '크롤링'으로 데이터를 수집해주세요.
- 2. 임베딩 모델을 2개 이상 적용해본 후, Step4의 결과에 따라 가장 좋은 모델을 선택해주세요. (ex) CBOW, Skip-gram, GloVe, NN, FastText 등
- 3. Step 4의 인사이트가 핵심입니다. 크롤링한 데이터에서 유의미한 인사이트를 도출해주세요. (ex) 그래프 하나 보여주고 한 문장으로 인사이트 끝? BYE BYE
- 4. 이론적 궁금증 해결이나 참고를 위한 구글링은 OK, but 데이터 및 인사이트 그대로? NO!
- 5. 모델 선택 과정이나 인사이트 해석은 주석이워드 파일로 설명 부탁드립니다.

[주의사항]을 하나라도 준수하지 않은 경우, 고민 없이 돌려보내겠습니다.

# Unit 06 | Assignment

# [우수과제 선정 기준]

- ① 임베딩 모델을 선정한 판단 근거가 명확한가 (파라미터 포함)
- ② NLP에 대해 스스로 공부하고 고민한 흔적이 보이는가
- ③ 주제 및 인사이트 해석의 창의성
- ④ 전처리를 얼마나 꼼꼼히 진행하였는가
- ⑤ 정성이 담긴 과제 (김유민을 이해시켜라)

NLP에 대한 모든 연락은 환영입니다 ③

Q & A

들어주셔서 감사합니다.

### Reference

#### [자료 참고]

ToBig's 11기 정규세션 NLP 기초 강의(정윤호님)

ToBig's 제 8회 컨퍼런스 프로젝트: 가사도우미(SeqGAN과 RNN-LM을 통한 노래가사 생성)

#### [정보 참고]

ToBig's 11기 정규세션 NLP 기초 강의(정윤호님)

https://datascienceschool.net/view-notebook/6927b0906f884a67b0da9310d3a581ee/

http://hero4earth.com/blog/learning/2018/01/17/NLP\_Basics\_01/