Worksheet 8 Review

March 27, 2020

Question 1

a. $\forall n \in \mathbb{N}, (0 \le 1) \land (n \le 2^n) \Rightarrow (n+1) \le 2^{n+1}$

Note:

- Induction: $\forall n \in \mathbb{N}, \ P(0) \land P(n) \Rightarrow P(n+1)$
- b. We will prove this statement by induction on n.

Base Case:

Let n = 0.

Then,

$$0 \le 2^0 \tag{1}$$

$$0 \le 1 \tag{2}$$

Since the above inequality is true, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume P(n).

Then,

$$n \le 2^n \tag{3}$$

$$n+1 \le 2^n + 1 \tag{4}$$

$$n+1 \le 2^n + 2^n$$
 (5)
 $n+1 \le 2^{n+1}$ (6)

$$n+1 \le 2^{n+1} \tag{6}$$

by the fact $2^k + 2^k = 2^{k+1}$.

Then, it follows from proof by induction that the statement $n \leq 2^n$ is true for all n.

Correct Solution:

We will prove this statement by induction on n.

Base Case:

Let n = 0.

Then,

$$0 \le 2^0 \tag{7}$$

$$0 \le 1 \tag{8}$$

Since the above inequality is true, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume P(n).

We want to show $n+1 \leq 2^{n+1}$.

Then,

$$n \le 2^n \tag{9}$$

$$n+1 \le 2^n + 1 \tag{10}$$

$$n+1 \le 2^n + 2^n \tag{11}$$

$$n+1 \le 2^{n+1} \tag{12}$$

by the fact $2^n + 2^n = 2^{n+1}$.

Then, it follows from proof by induction that the statement $n \leq 2^n$ is true for all n.

Notes:

- professor specifically states what we want to show in inductive case part of the proof. I thought it was obvious, and not necessary.
- When are the times 'we want to show x' in proof can be omitted?

Question 2

• We will prove the statement by induction on natural number n.

Base Case:

Let n=1.

Then,

$$\sum_{j=1}^{1} T_j = 1 \frac{(1+1)(1+2)}{6} \tag{1}$$

$$=1 (2)$$

Since the data also shows value 1 at n = 1, the base case holds.

Inductive Case:

Let
$$n \in \mathbb{N}$$
. Assume $\sum_{j=0}^{n} T_j = \frac{n \cdot (n+1)(n+2)}{6}$.

We want to show
$$\sum_{j=0}^{n+1} T_j = \frac{(n+1)(n+2)(n+3)}{6}$$
.

It follows from the following table

n	1	2	3	4	5
$T_i = \frac{n \cdot (n+1)}{2}$	1	3	6	10	15
$\sum_{j=1}^{n} T_j$	1	4	10	20	35

that $n+1^{th}$ value of the summation is $\frac{(n+1)(n+2)}{2}$ more than the n^{th} sum.

Then,

$$\sum_{j=0}^{n+1} T_j = \frac{n \cdot (n+1)(n+2)}{6} + \frac{(n+1)(n+2)}{2} \tag{3}$$

$$= \frac{n \cdot (n+1)(n+2)}{6} + \frac{3(n+1)(n+2)}{6} \tag{4}$$

$$=\frac{(n+1)(n+2)(n+3)}{6}\tag{5}$$

Correct Solution:

We will prove the statement by induction on natural number n.

Base Case:

Let n=0.

Then,

$$\sum_{j=0}^{1} T_j = \frac{0 \cdot (0+1)(0+2)}{6} \tag{1}$$

$$=0 (2)$$

Since

$$\sum_{j=0}^{0} T_j = T_0 \tag{3}$$

and,

$$T_0 = \frac{0 \cdot (0+1)}{2}$$
 (4)
= 0 (5)

, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume $\sum_{j=0}^{n} T_j = \frac{n \cdot (n+1)(n+2)}{6}$.

We want to show $\sum_{j=0}^{n+1} T_j = \frac{(n+1)(n+2)(n+3)}{6}$.

It follows from the following table

n	1	2	3	4	5
$T_i = \frac{n \cdot (n+1)}{2}$	1	3	6	10	15
$\sum_{j=1}^{n} T_j$	1	4	10	20	35

that $n+1^{th}$ value of the summation is $\frac{(n+1)(n+2)}{2}$ more than the n^{th} sum.

Then,

$$\sum_{j=0}^{n+1} T_j = \frac{n \cdot (n+1)(n+2)}{6} + \frac{(n+1)(n+2)}{2}$$
 (6)

$$= \frac{n \cdot (n+1)(n+2)}{6} + \frac{3(n+1)(n+2)}{6} \tag{7}$$

$$=\frac{(n+1)(n+2)(n+3)}{6} \tag{8}$$

Notes:

- I wasn't explicit about where the value 1 in data came from.

Question 3

a. Let $x \in \mathbb{R}$.

Correct Solution:

Let $x \in \mathbb{R}$.

We will prove the statement $\forall n \in \mathbb{N}, (1+x)^n \geq 1 + nx$ using induction on n.

Notes:

• Professor separately introduced 'Let $x \in \mathbb{R}$ ' from the rest of the statement.

- By using 'the standard proof structure to introduce x', does it include the line up to 'we will prove the statement x by induction'?
- Proof by Induction: $\forall k \in \mathbb{N}, \ P(k) \Rightarrow P(k+1)$

b. Base Case:

Let n = 0.

Then,

$$1 = (1+x)^0 \ge 1 + (0)x \tag{1}$$

$$\geq 1$$
 (2)

Because we know the inequality is true, we can conclude that the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume $(1+x)^n \ge 1 + nx$.

We want to show $(1+x)^{n+1} \ge 1 + (n+1)x$.

Because we know $(1+x)^{n+1} = (1+x)^n(1+x)$ and $(1+x)^n \ge 1+nx$, we can write

$$(1+x)^{n+1} = (1+x)^n (1+x)$$
(3)

$$\geq (1+nx)(1+x) \tag{4}$$

$$\ge 1 + x + nx + nx^2 \tag{5}$$

Then,

$$1 + x + nx + nx^2 \ge 1 + x + nx \tag{6}$$

by the fact that $nx^2 \ge 0$.

Then,

$$1 + x + nx \ge 1 + x(n+1) \tag{7}$$

Since $(1+x)^{n+1} \ge 1 + x(n+1)$ is true, it follows from proof by induction that the statement $(1+x)^n \ge 1 + xn$ is true for all n.

Correct Solution:

Base Case:

Let n=0.

Since $(1+x)^0 = 1$ and 1+(0)x = 1, we know $(1+x)^0 \ge 1+(0)x$ is true.

Because we know the inequality is true, we can conclude that the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume $(1+x)^n \ge 1 + nx$.

We want to show $(1+x)^{n+1} \ge 1 + (n+1)x$.

Because we know $(1+x)^{n+1} = (1+x)^n(1+x)$ and $(1+x)^n \ge 1+nx$, we can write

$$(1+x)^{n+1} = (1+x)^n (1+x)$$
(8)

$$\geq (1+nx)(1+x) \tag{9}$$

$$\geq 1 + x + nx + nx^2 \tag{10}$$

Then,

$$1 + x + nx + nx^2 \ge 1 + x + nx \tag{11}$$

by the fact that $nx^2 \ge 0$.

Then,

$$1 + x + nx \ge 1 + x(n+1) \tag{12}$$

Since $(1+x)^{n+1} \ge 1 + x(n+1)$ is true, it follows from proof by induction that the statement $(1+x)^n \ge 1+xn$ is true for all n.

Notes:

- Realized professor evaluates lhs and rhs before validating the inequality for the base case
- Can values can be compared directly from inequality? i.e

$$1 = (1+x)^{0} \ge 1 + (0)x$$

$$\ge 1$$
(13)
$$\ge 1$$
(14)

$$\geq 1 \tag{14}$$

- 'Assume P(n)' is called **inductive hypothesis**
- $\mathbb{N} = \{0, 1, 2, \dots\}$
- $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$