Fast, Set-Oriented Numerical Analysis using GAIO.jl

April Herwig

Department of Mathematics Technical University of Munich

Dynamical systems

Consider a continuous map

$$f: \mathbb{R}^d \to \mathbb{R}^d$$
.

The map defines a discrete dynamical system by iteration:

$$x_{k+1} = f(x_k), \qquad k = 0, 1, 2, \dots$$

Basic question: What is the fate of some x_0 as $k \to \infty$?

Motivation

Attractors

Definition 1. An invariant set A is attracting if there is a neighborhood U of A such that for every open set $V \supset A$ there is $K \in \mathbb{N}$ such that

$$f^k(U) \subset V$$
 for all $k \geq K$.

Proposition 1. *If A is a closed attracting set then*

$$A = \bigcap_{k \in \mathbb{N}} f^k(U).$$

Basic idea: Successively refine an approximation of A using subdivision

Computing Attractors

The subdivision algorithm

Generate a sequence $\mathcal{B}_0, \mathcal{B}_1, \mathcal{B}_2, \ldots$ of finite families of compact sets as follows:

Let
$$\mathcal{B}_0 = \{Q\}, \ \theta \in (0,1)$$
. For $k = 1, 2, ...$ do

• construct $\hat{\mathcal{B}}_{\nu}$ such that

$$|\hat{\mathcal{B}}_k| = |\mathcal{B}_{k-1}|$$
 and $\operatorname{diam} \hat{\mathcal{B}}_k \leq \theta \cdot \operatorname{diam} \mathcal{B}_{k-1}$.

set

$$\mathcal{B}_k = f(\hat{\mathcal{B}}_k) \cap \hat{\mathcal{B}}_k, \quad \text{where}$$

$$f(\hat{\mathcal{B}}_k) \cap \hat{\mathcal{B}}_k \stackrel{def}{=} \{ B \in \hat{\mathcal{B}}_k \mid \exists B' \in \hat{\mathcal{B}}_k : f(B') \cap B \neq \varnothing \}.$$

Theorem 1. $|\mathcal{B}_k| \to A$ as $k \to \infty$ in the Hausdorff metric.

Computing AttractorsThe subdivision algorithm

Representation of Cubical Sets

Simple idea: partition the domain into equally sized grid of hypercubes

```
struct Box{N. T}
  center::SVector{N, T}
  radius::SVector{N, T}
end
struct BoxPartition{B <: Box}</pre>
  domain · · B
  size::CartesianIndex{N}
end
struct BoxSet{P <: BoxPartition, S <: AbstractSet{<:CartesianIndex}}</pre>
  partition::P
  cartesian indices::S
end
```

Representation of Cubical Sets

We can use the built-in set data types and setwise operations for BoxSets using multiple-dispatch

```
function Base. \subseteq ( B<sub>1</sub>::BoxSet , B<sub>2</sub>::BoxSet )

B<sub>1</sub>.partition == B<sub>2</sub>.partition &&

B<sub>1</sub>.cartesian_indices \subseteq B<sub>2</sub>.cartesian_indices

end

function Base.rand(B::Box{N,T}) where {N,T}

c = B.center; r = B.radius

c .+ r .* rand(-1:eps(T):1, N)

end
```

Combined with BoxSet, the BoxPartition serves as a σ -algebra over the domain. We can generate sets with cover:

```
cover(partition, points), cover(partition, other_boxset)
```

Cell Mapping

So how do we compute

$$f(\mathcal{B}) = \{ B \in \mathcal{P} \mid \exists B' \in \mathcal{B} : f(B') \cap B \neq \emptyset \} ?$$

Cell Mapping test point sampling

```
function map_boxes(f, source::BoxSet; n_samples)
 B() = empty(source)
                                    # Initialize empty BoxSet
 P = source.partition
 Ofloop for box in source
    for k = 1:n_samples
      p = rand(box)
                                    # Generate sample point
     image_p = f(p)
     hit = cover(P, image_p) # Box in P covering the point fp
      @reduce(image = B() ∪ hit) # Each thread collects hits,
    end
                                    # after loop completion the
 end
                                    # result is reduced by \cup
 return image
end
```

Cell Mapping test point sampling

- ullet predefine test points and (affine) transform them to $B\in \mathcal{B}$ as needed
- memory-efficient "lazy" test point sampling with Generators
- ensure type-stability with FunctionWrappers to shorten generated llvm
- spread load across multiple compute threads using @floop macro
- collect hits and reduce per-thread result into single result using @reduce macro
- "embarrasingly parallel" can harness the GPU using CUDA.jl

Usage: Constructing an Attractor algorithm

Compare the pseudocode algorithm

```
Require: f, \mathcal{B}_0, n_{\text{steps}}

1: for k = \{1, \ldots, n_{\text{steps}}\} do

2: \mathcal{B}_k \leftarrow \text{SUBDIVIDE}(\mathcal{B}_{k-1})

3: \mathcal{B}_k \leftarrow \mathcal{B}_k \cap f(\mathcal{B}_k)

4: return \mathcal{B}_n
```

to the julia implementation

```
function relative_attractor(F::BoxMap, \mathcal{B}::BoxSet, steps)

for k = 1:steps
\mathcal{B} = \text{subdivide}(\mathcal{B})
\mathcal{B} = \mathcal{B} \cap F(\mathcal{B})
end
return \mathcal{B}
```