# Relatório trabalho 3 – Filtragem de imagens

Processamento de imagens

Autor: Bruno Aquiles de Lima Professor: Luiz Eduardo Soares de Oliveira

# I. Introdução:

O objetivo desse trabalho é testar e comparar a eficiência de filtros para remoção de ruído "salt and pepper" em diferentes níveis. Os filtros testados são: Média, Gaussiano, Mediana, NLM, Bilateral (do módulo opencv2) e Stacking.

## II. Processo:

Vários parâmetros foram escolhidos na tentativa e erro com intuito de maximizar o PSNR, o qual é uma métrica que expressa o quão semelhante é a imagem tratada com a original.

#### Tamanho do Kernel:

Para os filtros de Média, Gaussiano, Mediana e Bilateral, o tamanho de kernel escolhido foi 3. Outros tamanhos resultam em um PSNR menor para todos.

#### **NLM e Bilateral:**

Filtro NLM tem a ideia de quem regiões semelhantes na imagem terão uma estrutura de ruído parecida, então é esperado um desempenho menor já que o ruído "salt and pepper" é aleatório. O parâmetro h que controla o quão semelhante os patches (regiões da imagem) tem que ser para serem considerados vizinhos ficou em 21 com base em testes visando o maior PSNR.

O filtro Bilateral suaviza uma imagem, mantendo as bordas. Ele calcula uma média ponderada dos pixels em uma vizinhança, levando em conta tanto a distância D entre os pixels quanto a diferença I de intensidade. Os parâmetros D e I foram decididos em testes, sendo D = 10 e I = 10.

### Stacking:

O método de stacking foi implementado da seguinte forma:

É gerado uma imagem com ruído de valor **N** em cima da imagem original. Em seguida, é calculado o PSNR da imagem ruidosa com a original. Se esse PSNR tiver uma diferença com o PSNR anterior (que na primeira iteração é 0) **MAIOR** que **stop\_distance** (um valor passado por parâmetro), é gerada outra imagem ruidosa com o mesmo valor **N** e é feito um stacking, calculando a média dos pixels de todas as imagens que estão na stack. Caso a diferença seja **MENOR** o looping acaba.

Para decidir o parâmetro **stop\_distance**, foi feito um teste que envolve pegar um valor de ruído e gerar PSNR's com **stop\_distance** variando de 0.005

a 0.1 incrementando 0.005, em seguida, é anotado os pontos **stop\_distance x PSNR's** onde o PSNR estabiliza (derivada < 0.5, valor escolhido através de testes). Esse mesmo processo ocorre para os outros valores de ruídos (gráfico abaixo). No final, é tirado a média dos valores de **stop\_distance** desses pontos onde o PSNR estabiliza, sendo esse o valor escolhido para o parâmetro (0.047).



Descrição: O gráfico a esquerda representa a melhora do PSNR conforme o **stop\_distance** diminui, os pontos pretos são os locais que o PSNR estabiliza. O gráfico da direita é a quantidade de imagens necessárias para o stacking conforme o **stop\_distance** diminui.

### III. Resultados:

Tabela de PSNR de cada método com cada nível de ruído:

| Noise<br>level       | Média | Gaussiano | Mediana | Stacking | NLM   | Bilateral |
|----------------------|-------|-----------|---------|----------|-------|-----------|
| 0.01                 | 27.93 | 28.93     | 30.13   | 38.98    | 26.65 | 24.07     |
| 0.02                 | 26.70 | 27.15     | 30.05   | 36.56    | 24.73 | 20.90     |
| 0.05                 | 24.27 | 24.12     | 29.81   | 31.16    | 19.23 | 17.03     |
| 0.07                 | 23.03 | 22.73     | 29.56   | 28.96    | 16.83 | 15.55     |
| 0.1                  | 21.53 | 21.13     | 29.19   | 26.23    | 14.53 | 14.00     |
| Média dos<br>Valores | 24.69 | 24.81     | 29.75   | 32.38    | 20.39 | 18.31     |

### Conclusões:

O método que mostrou melhor desempenho foi o Stacking para todos os níveis de ruído, em seguida vem a Mediana, Gaussiano, Média, NLM e Bilateral. O PSNR perfeito seria de aproximadamente 361, o que do ponto de vista dessa métrica, todos esses métodos obtiverão valores bem próximos e não atingiram nem 11% de similaridade com a imagem original.

No entanto, através de uma análise visual (subjetiva), é notável claras diferenças do desempenho de cada método. A Média deixa a imagem borrada e não consegue cobrir bem os ruídos. O Gaussiano não deixa a imagem tão borrada e suaviza os ruídos, porém ainda são bem visíveis. A Mediana e o Stacking conseguem tratar muito bem os ruídos, tendo um resultado satisfatório. O NLM consegue limpar principalmente o ruido preto, porém ainda tem um desemprenho ruim, acaba deixando um aspecto de "lente molhada" em níveis de ruido mais baixo. Por último, o Bilateral não teve êxito nenhum em tirar o ruído.