МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет

Кафедра информационных технологий в физических исследованиях

ОТЧЕТ ПО ПЕДАГОГИЧЕСКОЙ ПРАКТИКЕ

Выполнил:

студент 2 курса магистратуры 05182м группы **Василевский А.В.**

Основная профессиональная образовательная программа подготовки магистров по направлению 09.04.02 — «Информационные системы и технологии» (профиль программы: «Информационные системы в научных исследованиях»)

Василевский А.В.
(подпись)
Руководитель педагогической
практики:
доцент кафедры ПУОС
Лозовская Л.Б.
(подпись)

Нижний Новгород 2020

Содержание

Введение							
1	Зан	ятие первое	2				
	1.1	Общая характеристика	2				
	1.2	Задачи	2				
	1.3	Методы обучения	3				
	1.4	Ход занятия	4				
	1.5	Анализ занятия	6				
	1.6	Список литературы к занятию	6				
2	Зан	ятие второе	6				
	2.1	Общая характеристика	6				
	2.2	Задачи	7				
	2.3	Методы обучения	8				
	2.4	Ход занятия	8				
	2.5	Анализ занятия	9				
	2.6	Список литературы к занятию	10				
Ві	ывод	ы	10				
Cı	Список литературы						

Введение

В рамках педагогической практики были самостоятельно подготовлены и проведены два занятия по дисциплинам «мультимедиа-технологии» и «специальные главы математики». Настоящий отчет включает в себя краткую характеристику самих занятий (план, цели и задачи, форма организации, список использованной литературы и т.д.), а также их результатов.

1. Занятие первое

1.1. Общая характеристика

Тема занятия. «Методы анализа алгоритмов. Классы сложности P и NP» по дисциплине «Мультимедиа-технологии».

Тип занятия. Лекционное. Содержит материал о методах анализа алгоритмов на предмет корректности, эффективности, сложности, математических классах сложности и проблемах, связанных с ними (P=NP). Включает объяснение и изучение нового материала о классах сложности алгоритмов, методах их анализа, закрепление знаний об алгоритмах в целом, их возможных классификациях, а также контроль приобретаемых и имеющихся знаний.

Цель занятия. Организация познавательной деятельности студентов для усвоения ими новых теоретических знаний об алгоритмах, методах их анализа, математических классах сложности, совершенствования имеющихся базовых навыков анализа алгоритмов.

Педагогические принципы. Наглядности, научности, систематичности и последовательности, связи теории с практикой, сотрудничества, сознательности, активности и самодеятельности.

Форма организации студентов. Фронтальная.

Средства обучения. Компьютер с установленным программным обеспечением для просмотра презентаций, компьютерная презентация, проектор, экран.

1.2. Задачи

Образовательные.

- Закрепление базовых знаний об алгоритмах и задачах (понятие алгоритма, задачи, экземпляра задачи в различных формулировках).
- Закрепление знаний о простейших классификациях алгоритмов в рамках различных систем классификации.
- Закрепление знаний о базовых свойствах алгоритмов (дискретность, детерминированность, понятность и т.п.).
- Закрепление знаний о простейших методах анализа алгоритмической сложности.

- Ознакомление студентов с методами анализа алгоритмов на предмет их корректности. Краткая характеристика метода логических инвариантов, формальной верификации с помощью автоматизированных инструментов анализа на базе математической логики, других автоматических и полуавтоматических методов.
- Ознакомление студентов с понятиями машины Тьюринга и RAM-машины, их взаимосвязью и применением к анализу алгоритмической сложности.
- Объяснение студентам понятия математического класса сложности задачи. Знакомство с различными базовыми классами сложностями задач на конкретных примерах. Введение в проблематику «P=NP» с анализом данной математической проблемы и следствиями доказательства гипотезы P=NP.
- Формирование умений анализа задач на предмет определения класса сложности.

Воспитательные.

- Воспитание коммуникативных навыков студентов посредством обсуждения поставленных преподавателем вопросов, общения с преподавателем.
- Мотивирование на дальнейшее развитие навыков формального анализа алгоритмов с использованием современных автоматизированных инструментов формальной верификации, анализ возникающих в рамках профессиональной деятельности задач с целью определения класса сложности задачи для выбора наиболее подходящего для ее решения алгоритма (класса алгоритмов), анализ самих алгоритмов на предмет их сложности с целью выбора наиболее подходящего по определенным критериям в конкретной ситуации.
- Побуждение к познавательной и научной деятельности.

Развивающие.

- Развитие способности применять теоретические знания для практического анализа конкретных примеров.
- Развитие навыков работы и анализа получаемой посредством презентации информации.
- Развитие внимания через анализ студентами конкретных примеров с использованием изложенного материала.

1.3. Методы обучения

По источнику информации и восприятию.

- Словесные (устное изложение теоретического материала, беседа и обсуждение вопросов).
- Наглядные (компьютерная презентация по теме лекции, в которой представлена графическая информация в виде схем, рисунков, формул, листингов алгоритмов, а также основные теоретические положения в кратком тезисном виде).
- Практические (анализ примеров из презентации совместно с преподавателем и самостоятельно).

По логике мышления.

- Дедуктивные (анализ конкретных примеров задач и конкретных алгоритмов на основании изложенной общей теории сложности (математической и алгоритмической)).
- Индуктивные (теоретическое изложение следует от простых частных вопросов к общей связующей теории).

По степени самостоятельности и активности познавательной деятельности студентов.

- Репродуктивные (систематизация имеющихся у студентов знаний об алгоритмах; краткая сводка нового материала перед началом работы над упражнениями).
- Проблемно-поисковые (студенты решают небольшие практические задачи по теме лекции, взаимодействуют с преподавателем).
- Исследовательские (студенты сравнивают различные задачи из разных классов сложности, анализируют последствия доказательства гипотезы P=NP на базе имеющихся и полученных знаний).

1.4. Ход занятия

Этап занятия	Деятельность преподавателя	Деятельность студентов		
Организационный момент				
	Представляется студентам. Форму-	Знакомятся с преподавате-		
	лирует тему лекции, ставит задачи,	лем. Вспоминают пройден-		
	намеченные на предстоящее заня-	ный материал, лежащий в		
	тие	основе занятия		
	Объяснение нового материала			
Базовые сведе-	Вводит понятия алгоритма в раз-	Вспоминают известные све-		
ния об алгорит-	личных трактовках, задачи и экзем-	дения об алгоритмах и их		
Max	пляра задачи, объясняет основные	классификациях, усваивают		
	свойства алгоритмов и их основные	новые системные знания по		
	классификации, направления и це-	данному вопросу		
	ли анализа алгоритмов			

Мототт отготт	D of sorrow warms of government	Darremon accourage and		
Методы анали-	В обзорном ключе объясняет воз-	Заинтересовываются воз-		
за корректно-	можные методы анализа коррект-	можностью формальной		
сти алгоритмов	ности алгоритмов с упором на фор-	верификации алгоритмов		
	мальные методы анализа коррект-	и статическим анали-		
	ности (вручную и с использованием	зом программного кода		
	компьютерных систем). Предлага-	автоматизированными		
	ет студентам самостоятельно озна-	программными средствами,		
	комиться с некоторыми наиболее	теорией, лежащей в их		
	важными системами формальной	основе. Задают вопросы о		
	верификации и статического анали-	практическом применении		
	за алгоритмов (с указанием источ-	указанных инструментов		
	ников информации). Проводит па-			
	раллели между анализом алгорит-			
	мов (область математики и инфор-			
	матики) и анализом программного			
	кода (область программирования,			
	программной инженерии)			
Понятие и	Раскрывает понятие алгоритми-	Вспоминают известные фак-		
методы ана-	ческой (по времени, по памяти)	ты о сложности алгорит-		
лиза алго-	сложности, связанные с этим по-	мов, необходимые математи-		
ритмической	нятия машины Тьюринга и RAM-	ческие сведения. Усваивают		
СЛОЖНОСТИ	машины, предположения, лежа-	новый материал. Участвуют		
	щие в основе анализа алгоритмиче-	в разборе примера, задают		
	ской сложности, и способы анализа.	вопросы о практической цен-		
	Приводит простой пример расчета	ности анализа сложности ал-		
	сложности для конкретного алго-	горитмов		
	ритма (сортировки).	ТОРИТМОВ		
Классы слож-	Вводит понятие класса сложности	Усваивают новый материал		
ности	задачи, дает определения классам	_		
пости	P, NP, NPC, NPH в рамках еди-	о классах сложности, соотно-		
	ной взаимосвязанной системы, при-	сят материал данного пунк-		
	, -	та с материалом предыдуще-		
	водит примеры задач, попадающих	го. Вместе с преподавателем		
	в каждый из указанных классов с	разбирают конкретные при-		
	разбором причин	меры задач, пытаются опре-		
П		делить их класс сложности		
Проблема	Ставит проблему доказательства	Знакомятся с проблемой		
P = NP	гипотезы равенства классов P и	P = NP». Дополняют спи-		
	NP и указывает на ее фундамен-	сок возможных последствий		
	тальную важность. Приводит воз-	равенства классов сложно-		
	можные последствия (для матема-	сти Р и NР		
	тики, информатики, информацион-			
	ной безопасности и т.п.) доказатель-			
	ства этой гипотезы			
	Контроль знаний			
Классы слож-	Предлагает студентам классифици-	Принимают совместное уча-		
ности	ровать набор задач, приведенный	стие в решении поставлен-		
	на слайдах презентации	ной задачи, участвуют в дис-		
		куссиях, обсуждают ошибки		
<u> </u>	1			

1.5. Анализ занятия

Цели занятия были достигнуты — студентами были получены и усвоены необходимые знания по теме занятия. Поставленные дидактические задачи занятия были решены полностью.

Выбранные методы, форма, средства обучения соответствуют типу и содержанию занятия. Наглядные, систематизированные и максимально сжатые материалы с большим количеством примеров улучшают восприятие сложного материала студентами. Фронтальная организация учащихся позволяет не только дать достаточно объемный материал в отведенное на занятие время, но и организовать взаимодействие с преподавателем в рамках совместного решения небольших задач по теме занятия. Это позволяет, с одной стороны, осуществить контроль получаемых знаний, оценить степень вовлеченности студентов в тему занятия, дать возможность студентам проявить себя, с дугой стороны, не отвести излишне много времени на самостоятельное решение задач и последующую (совместную) проверку решений.

В ходе занятия студенты выглядели серьезными, заинтересованными излагаемым материалом. Они внимательно слушали преподавателя, принимали участие в дискуссиях, отвечали на вопросы преподавателя и задавали свои. Студенты выражали желание более глубоко ознакомиться с отдельными вопросами занятия, возможностью применения излагаемого материала в учебной и профессиональной деятельности.

Отведенное на занятие время и сложность некоторых вопросов занятия послужили ограничивающим фактором для более полного и глубокого раскрытия материала. Это не повлияло на его системность и общность, а также на наличие большого количества практических примеров и упражнений для студентов. Некоторые вопросы занятия были вынужденно сделаны сугубо обзорными, однако студентам был предоставлен прокомментированный список рекомендованной литературы для более глубокого ознакомления с теорией и практикой по этим вопросам.

1.6. Список литературы к занятию

- 1. Алгоритмы: построение и анализ / Т. Х. Кормен [и др.]. 3-е изд. Издательский дом «Вильямс», 2013. ISBN 978-5-8459-1794-2.
- 2. Compilers: principles, techniques, & tools / A. V. Aho [et al.]. 2nd ed. Pearson / Addison Wesley, 2007. ISBN 978-0-32148-681-3, 0-321-48681-1.
- 3. Bertot Y., Castéran P. Interactive Theorem Proving and Program Development: Coq'Art: The Calculus of Inductive Constructions. Springer, 2004. (Texts in Theoretical Computer Science. An EATCS Series). ISBN 3-540-20854-2.
- 4. Deductive Software Verification The KeY Book: From Theory to Practice / W. Ahrendt [et al.]. 1st ed. Springer International Publishing, 2016. (Lecture Notes in Computer Science 10001). ISBN 978-3-319-49811-9, 978-3-319-49812-6.

2. Занятие второе

2.1. Общая характеристика

Тема занятия. «Обратные задачи: условия корректности, обратные задачи матфизики, экстремальные задачи для выпуклого функционала» по дисциплине «Специальные главы математики».

Тип занятия. Лекционное. Включает систематизацию и закрепление знаний об обратных задачах в целом, условиях их корректности, объяснение и изучение нового материала о выпуклых функционалах, функциях и множествах, классификацию обратных задач математической физики и теории систем, обзор некоторых обратных задач математической физики.

Цель занятия. Организация познавательной деятельности студентов для усвоения ими новых теоретических знаний об обратных задачах, выпуклых функционалах, множествах, функциях.

Педагогические принципы. Наглядности, научности, систематичности и последовательности, сознательности.

Форма организации студентов. Фронтальная.

Средства обучения. Компьютер с установленным программным обеспечением для просмотра презентаций, компьютерная презентация, проектор, экран.

2.2. Задачи

Образовательные.

- Закрепление базовых знаний об обратных задачах (понятие обратной задачи, корректность задачи, условия корректности задачи).
- Ознакомление студентов с понятиями выпуклого множества, функции, функционала, оптимизацией выпуклых функций, функционалов, операторами проекций на выпуклые множества как инструментом итерационного решения задачи с ограничениями.
- Объяснение студентам классификации обратных задач с точки зрения теории систем.
- Ознакомление студентов с некоторыми обратными задачами математической физики (на примере одномерного уравнения теплопроводности).
- Формирование умений анализа задач на предмет корректности согласно условиям корректности.

Воспитательные.

- Мотивирование на дальнейшее развитие навыков решения обратных задач с ограничениями с помощью аппарата выпуклых множеств и функционалов там, где это применимо.
- Побуждение к познавательной и научной деятельности.

Развивающие.

- Развитие навыков работы и анализа получаемой посредством презентации информации.
- Развитие внимания через анализ студентами конкретных примеров (обратных задач) с использованием изложенного материала (классификации обратных задач, условий корректности).

2.3. Методы обучения

По источнику информации и восприятию.

- Словесные (устное изложение теоретического материала).
- Наглядные (компьютерная презентация по теме лекции, в которой представлена графическая информация в виде схем, рисунков, формул, а также основные теоретические положения в кратком тезисном виде).
- Практические (анализ примеров из презентации совместно с преподавателем).

По логике мышления.

• Дедуктивные (анализ конкретных примеров (обратных задач) на основании изложенной общей теории (классификации, условий корректности)).

По степени самостоятельности и активности познавательной деятельности студентов.

- Репродуктивные (систематизация имеющихся у студентов знаний об обратных задачах, условиях их корректности).
- Проблемно-поисковые (студенты решают небольшие практические задачи по теме лекции, взаимодействуют с преподавателем).

2.4. Ход занятия

Этап занятия	Деятельность преподавателя	Деятельность студентов		
	Организационный момент			
	Представляется студентам. Форму-	Знакомятся с преподавате-		
	лирует тему лекции, ставит задачи,	лем. Вспоминают пройден-		
	намеченные на предстоящее заня-	ный материал, лежащий в		
	тие	основе занятия		
	Объяснение нового материа	ала		
Выпуклые	Вводит понятия выпуклой функ-	Вспоминают известные све-		
функции,	ции, функционала, множества.	дения о задачах оптимиза-		
функционалы,	Приводит определение задачи	ции. Усваивают новый ма-		
множества,	условной оптимизации для функ-	териал о выпуклых функ-		
операторы	ции (функционала) в общем и для	циях, операторах проекции		
проекции на	выпуклой функции (функционала)	на выпуклые множества. За-		
выпуклые	в частности. Формулирует понятие	дают вопросы о практиче-		
множества	оператора проекции на выпуклые	ской применимости излагае-		
	множества, сужающего оператора,	мых методов, способах опре-		
	его фиксированной точки как	деления выпуклости функ-		
	(итерационного) решения задачи с	ции (множества). Заинтере-		
	ограничениями	совываются возможностью		
		упрощения анализа задачи		
		оптимизации применением		
		к ней аппарата выпуклых		
		функций и множеств		

Обратные зада-	Объясняет классификацию обрат-	Усваивают классификацию
чи в теории си-	ных задач с точки зрения теории	обратных задач теории си-
стем и матема-	систем. Приводит примеры обрат-	стем и математической фи-
тической физи-	ных задач теории систем и матема-	зики, участвуют в обсужде-
ке	тической физики. Разбирает кон-	нии примеров
	кретные примеры со студентами	
Корректность	Вводит понятие корректной задачи,	Вспоминают известные све-
обратных	условия корректности задачи, при-	дения о некорректных и
задач	водит связь некорректных и обрат-	обратных задачах, участву-
	ных задач, примеры задач, не удо-	ют в обсуждении примеров
	влетворяющих тем или иным кри-	некорректных задач
	териям корректности	

2.5. Анализ занятия

Рис. 1. Преподаватель объясняет студентам один из вопросов занятия

Цели занятия были достигнуты — студенты получили и усвоили новые знания по теме занятия. Поставленные дидактические задачи были решены.

Выбранные методы, форма, средства обучения соответствуют типу и содержанию занятия. Наглядные материалы улучшают восприятие материала студентами, способствуют лучшему запоминанию и усвоению информации. Фронтальная организация учащихся позволяет максимально раскрыть тему занятия и дать наиболее полную и общую информацию по теме за отведенное на занятие время.

В ходе занятия студенты выглядели серьезными, интересующимися темой занятия и мотивированными на дальнейшее и более полное изучение и практическое применение полученных базовых знаний. Они внимательно слушали преподавателя, участвовали в обсуждении приводимых примеров, по окончании занятия задавали вопросы и беседовали с преподавателем по теме занятия.

При подготовке занятия преподаватель столкнулся с рядом трудностей, обусловленных, в основном, необходимостью уложить достаточно объемный и многогранный материал в отведенное на занятие время. В процессе составления плана занятия приходилось ограничивать количество менее существенной информации, не жертвуя при этом полнотой и понятностью изложения и дополняя сугубо теоретический материал его возможными практическими применениями к знакомым студентам задачам (обработка сигналов, восстановление изображений, задачи оптимизации и оптимального управления и т.д.).

2.6. Список литературы к занятию

- 1. Обратные задачи математической физики. Учебное пособие / Ю. Я. Белов [и др.]. Красноярск : СФУ, 2008.
- 2. *Борухов В. Т., Гайшун И. В., Тимошпольский В. И.* Структурные свойства динамических систем и обратные задачи математической физики. Беларуская навука, 2009. ISBN 978-985-08-1037-3, 985-08-1037-8.
- 3. *Василенко Г. И.*, *Тараторин А. М.* Восстановление изображений. Москва : Радио и связь, 1986.
- 4. Π *шеничный Б. Н.* Выпуклый анализ и экстремальные задачи. Москва : Наука, 1980. ISBN 1-70207-013-1.

Выводы

Оба проведенных занятия соответствуют целям занятия, все из которых были достигнуты в процессе проведения занятий. В ходе занятий студенты проявляли активность, заинтересованность, выказывали понимание излагаемого материала. При подготовке занятий преподаватель не столкнулся с какими-либо серьезными сложностями, за исключением необходимости дать студентам сложный и объемный материал в отведенное на занятие время, сделать его доступным студентам.

Список литературы

- 1. *Лозовская Л. Б.*, *Морозов О. А.* Педагогическая практика в магистратуре. Методические указания: Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2020.
- 2. Федеральный закон №273-ФЗ «Об образовании в Российской Федерации» от 29 декабря 2012 г.
- 3. *Пидкасистый П. И.* Педагогика. Учебное пособие / под ред. П. И. Пидкасистого. Москва : Издательство Юрайт, 2017.
- 4. *Кодэкаспирова Г. М.*, *Кодэкаспиров А. Ю.* Педагогический словарь. Москва : Издательский центр «Академия», 2003.