【UART 通信について】

UART は非同期方式による通信方式のことである.

UART の信号線は送信用の TXD と受信用の RXD の 2 本で構成されている.

ラズパイの8番ピン(GPIO14) と10番ピン(GPIO15) がUARTピンになる.

以下の「デバイス」が、MONOSTICK にあたる.

【Python】pySerial を用いたシリアル通信(ループバック試験) - 7839 (hatenablog.com) 【ラズパイ】pySerial を用いたシリアル通信(GPIO 編) - 7839 (hatenablog.com)

上記の URL は、MONOSTICK のような USB の通信機器で、

ラズパイと Windows のデータ送信を行っている.

【関連研究】

- ① プロトタイプの一般的なアーキテクチャの概要
- ② セルラー接続での UAV 通信の実験
- ③ UAV 対応の航空通信プラットフォームに関する測定実験

(2)

- ・現在のセルラーネットワークは主に地上ユーザーにサービスを提供するように設計されているため、空でのシームレスな 3D カバレッジは保証できない.
- ・測定結果、飛行高度 150 m までのコマンド&コントロールメッセージ交換は可能であるが、高い飛行高度では高速伝送の要件を満たすことができない.
- ・既存のセルラー基地局でのネットワークを使用して、低高度(たとえば 122 m 以下)での UAV ユーザーに接続を提供する実現可能性が実証された.

図 5 (オンライン カラー) 携帯電話に接続された UAV の図。

③ 地上ユーザーに空からの空中無線アクセスを提供することを目的 非都市部と都市部, 農地と都市部, 間で UAV 空中リレーという実験を行い, 高度は 15m 以下で UDP プロトコルの評価や, スループットの最大化を行っている.

今後の取り組みとして, UAV 通信のための軌道の最適化, エネルギー効率の高い UAV 通信,機械学習ベースの UAV 通信を挙げている.

今までの認識として、LTE(4G などの電話回線)は、速度や安定性の観点から一番優れていて、欠点としては、月額料金がかかることであった。現在実用化されているドローンも 4G や 5G を用いている。

しかし、この論文より、基地局は地上方向に電波を飛ばしているチルトダウンより、 高い高度での伝送が弱点だと理解した.

(参考文献)

Qingheng SONG, et al., "A Survey of Prototype and Experiment for UAV Communications", SCIENCE CHINA Information Sciences, Vol 64, February, 2021.

【スケジュール】

	スケジュール	実施したこと	できなかったこと	来週への課題
5/26 ~ 6/2	・JN5169にbeaconがないため JN5189を使用	・JN5189を検討結果使用しない ・pollコードを制御	・wiresharkの全般の理解	・JN5169を継続 ・E→Cの送信で検証 ・wiresharkでの確認
6/2 ~ 9	・E→Cでの送信を wiresharkで確認	・E→Cでの送信	・wiresharkでの正確な表示	・ArduinoかRaspberry Piを 用いてAD変換を実施する.
6/9 ~ 16	・ラズバイの初期設定 ・フィルタありのwireshark	・ラズバイの初期設定 ・wiresharkのフィルタで表示内容を 制限	・適切なフィルター表示	・wiresharkで指定の パケットのみを表示 ・ラズパイでデータ収集 ・AD変換のプログラミング (Pythonの予定)
6/16 ~23	・wiresharkでのデータ確認 ・PythonでのAD変換とUART 通信プログラミング	 ・wiresharkでの送信データの確認 ・実際のセンサを用いた過程でのプログラム構築 ・UART通信を実現するプログラム 構築 	・プログラムの動作確認 (AD変換に必要なラズパイ のチップが手元にないため)	・センサとチップを使用し プログラムの動作確認
6/23~30	・AD変換に必要なチップ (ADS1015)を実装 ・E→R→Cの経路をsnifferで確 認	特にR→Cの経路をsnifferで確認	AD変換チップが手元にない ため、未確認	AD変換チップをラズパイ に実装する.
6/30~7/7	・AD変換チップをラズパイに 実装 ・UARTの初期設定	・UARTに関する情報収集 ・論文調査	AD変換チップの実装	AD変換チップをラズパイ に実装する.
7/7~14	・AD変換チップの実装			