MCS - LDS Sam Robbins

Discrete Structures - Relations

1 Binary relations

Let A and B be sets. A **binary relation R from A to B** is a subset of the cartesian product $A \times B$ (Or, equivalently, a binary relation R is a set of ordered pairs where the first element comes from A and the second element from B.)

- We write $(a, b) \in R$ or say that R(a, b) holds if the ordered pair (a, b) is in the binary relation R
- We write $(a, b) \notin R$ or say that R(a, b) **does not hold** or say that $\neg R(a, b)$ **holds** if the ordered pair (a, b) is not in R

2 Functions as binary relations

Functions can be viewed as binary relations.

If $f: A \to B$ then the graph of the function f is the binary relation $\{(a, f(a)) : a \in A\} \subseteq A \times B$ Conversely, not every binary relation R from A to B can be considered to be the graph of a function:

- we need R to have the property that every element a of A appears in (as the first component) **exactly** 1 element (a,b) of R
- if this is so then the corresponding function f is defined as f(a) = the unique element $b \in B$ for which $(a, b) \in R$

In general, binary relations are generalizations of functions and can be used to describe a much wider class of relationships

3 Relations on a set

We can have **relations** involving **more** than two sets; that is, relations that are subsets of the Cartesian product of any number of sets.

If a relation R is a subset of $A_1 \times A_2 \times \cdots \times A_n$, for some $n \ge 1$ then we say that R has an arity n or is n-ary relation Henceforth, we simply refer to all relations as simply 'relations' and only add terms such as 'binary' or 'n-ary' when required.

The **binary relation R on a set A** is a relation from A to A; that is, a subset of $A \times A$

We can also have n-ary relations on sets; that is, subsets of $A \times A \times \cdots \times A$ (repeated n times)

4 Properties of relations

4.1 Reflexive

A binary relation R on A is **reflexive** if $(a, a) \in R, \forall a \in A$

A relation R on A of arity greater than 2 can also be reflexive, we insist that $(a, a, ..., a) \in R, \forall a \in A$

4.2 Irreflexive

A binary relation R on A is irreflexive if $(a, a) \notin R, \forall a \in A$

A relation R on A of arity greater than 2 can also be irreflexive: we insist that $(a, a, ..., a) \notin R, \forall a \in A$

4.3 Symmetry and anti-symmetry

A binary relation R on A is symmetric if:

$$(a,b) \in R$$
, then $(b,a) \in R \forall a,b \in A$

A binary relation R on A is anti-symmetric if:

$$(a,b),(b,a) \in R$$
, then $a = b \forall a,b \in A$

(or we do not have $(a, b), (b, a) \in R$ if $a \neq b$)

MCS - LDS Sam Robbins

4.4 Transitivity

A binary relation R on A is transitive if:

$$(a, b), (b, c) \in R \text{ then } (a, c) \in R, \forall a, b, c \in A$$

5 Combining Relations

As relations are just sets (of tuples), all operations that can be applied to sets can be applied to relations.

Also, just as functions can be **composed**, so can relations

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be relations. The **composite relation** $S \circ R \subseteq A \times C$ is defined as:

$$\{(a,c): a \in A, c \in C, \exists b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$$

6 Composing a relation with itself

Suppose that $R \subseteq A \times A$ We can **compose R with itself** so that

$$R \circ R = \{(a,c) : a,c \in A, \exists b \in A \text{ s.t. } (a,b), (b,c) \in R\}$$

We denote $R \circ R$ by R^2

In general, we denote $R \circ R \circ \cdots \circ R$ (repeated n times) by R^n (with R^0 and \emptyset and R^1 defined as R)

Note that it does not matter the order we choose to build R^n . For example, $R \circ (R \circ R)$ is the same relation as $(R \circ R) \circ R$

• As an illustration, suppose that we have a **directed graph** G with vertex set V and edge set E. The edge set is a relation $E \subseteq V \times V$

7 Projections

Suppose that we have some n-ary relation R such that

$$R \subseteq A_1 \times A_2 \times \cdots \times A_n$$

We can build a new m-cry relation from R, where m < n, by projecting

- Choose $i_1, i_2, ..., i_m \in \{1, 2, ..., n\}$, where $i_1 < i_2 < ... < i_m$
- Build the m-ary relation $S \subseteq A_{i_1} \times A_{i_2} \times \cdots \times A_{i_m}$ by taking all those m-tuples that are obtained from some n-tuple of R bu only including the elements in components $i_1, i_2, ..., i_m$
- The relation S is the **projection** of R in components $i_1, i_2, ..., i_m$

8 Closures of relations

Let $R \subseteq A \times A$

The **reflexive closure** of R is the smallest reflexive relation that contains R. It is obtained by adding to R all the pair (x,x) that do not already lie in R

The **symmetric closure** of R is the smallest symmetric relation that contains R. It is obtained by adding to R all the pairs(x,y) for which (y,x) (but not (x,y)) lies in R

The **transitive closure** of R is the smallest transitive relation that contains R. It is the relation defined as

$$\{(a,b): a,b \in A, (a,b) \in \mathbb{R}^n, \text{ for some } n \ge 1\} = \bigcup_{n=1}^{\infty} \mathbb{R}^n$$

9 Equivalence Relations

A relation $R \subseteq A \times A$ is called an **equivalence relation** if it is **reflexive**, **symmetric and transitive**

If R is an equivalence relation and $(a, b) \in R$ then a and b are **equivalent** and we sometimes write $a \equiv b$ or $a \sim b$ (note that $b \equiv a$ also)

Let $a \in A$. The **equivalence class** containing a, written as $[a]_R$ is the set of all elements z that are equivalent to a.

Note that all elements in $[a]_R$ are equivalent to each other

So, if $x \in [a]_R$ then $a \in [x]_R$ and $[a]_R = [x]_R$

In particular, no element of a can be in two different equivalence classes; that is, if $[a]_R \neq [b]_R$ then $[a]_R \cap [b]_R = \emptyset$ So the distinct equivalence classes of R partition A; that is, A can be written as the disjoint union of equivalence classes. MCS - LDS Sam Robbins

10 Partial orders

A binary relation that is reflexive, anti symmetric and transitive is called a partial order.

A set S together with a partial order R on S is called a partially ordered set (or **poset**) and written (S,R).

We often denote the partial order relation in a poset by \leq even though we way not be referring to the usual ordering on numbers, and write $a \leq b$ rather than $\leq (a, b)$

If (S, \leq) is some poset then two elements of S are comparable if either $a \leq b$ or $b \leq a$, and incomparable otherwise

11 Using posets in communication protocols

Suppose that we have two devices, A and B, sending messages to one another according to some protocol. A **trace** of this system is a sequence of messages where each message comes with:

• the time it was sent and the time it was received

However, the two device clocks are not synchronised and might run at different speeds:

• so a time on device A cannot be compared with a time on device B

The delivery of a message takes a non-zero amount of time. A typical trace might be (with events in increasing time order)

- device A: send m_1 ; receive m_2 ; send m_3 , receive m_4
- device B: send m_2 ; receive m_1 ; send m_4 ; receive m_3

We can think of our example trace as a relation R on a set E

$$E = \{s_1, r_1, s_2, r_2, s_3, r_3, s_4, r_4\}$$

$$R = \{(s_1, r_1), (s_2, r_2), (s_3, r_3), (s_4, r_4), (s_1, r_2), (r_2, s_3), (s_3, r_4), (s_2, r_1), (r_1, s_4), (s_4, r_3)\}$$

Take the reflexive, transitive closure of R and denote it by T. If we obtain a partial order (that is, T is anti-symmetric) then the trace is a legitimate one.

12 Total and well orders

If (S, \le) is a poset, and further, every two elements in S are comparable then S is a **totally ordered set** or **linearly ordered set**, with \le a **total ordering** or **linear ordering**

• The poset (\mathbb{Z} , \leq) is totally ordered (as $a \leq b$ or $b \leq a \ \forall a, b \in \mathbb{Z}$)

If (S, \leq) is a poset and, further, \leq is a total ordering and every non empty subset of S has a least element (under \leq) then (S, \leq) is a **well-ordered set**.

13 Lexicographic orders

If (A, \leq_A) and (B, \leq_B) are two posets then define the lexicographic ordering \leq on $A \times B$ by $(a, b) \leq (a', b')$ if and only f

- $a \leq_A a'$ and $a \neq a'$, or
- a = a' and $b \leq_B b'$

With (a, b) = (a', b') if and only if a = a' and b = b' $(A \times B, \leq)$ is a poset.

Lexicographic orders can be extended to more than two posets.

Let (A_j, \leq_i) be a poset, for i=1,2,...,n. Consider the cartesian product $A_1 \times A_2 \times ... \times A_n$, where $n \geq 2$. We say that $(a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n)$ in the lexicographic order \leq on $A_1 \times A_2 \times ... \times A_n$ if and only if

- $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$ or
- $\exists j \in \{1, 2, ..., n\}$ such that $(A, \setminus \{\} | A) = b_1, a_2 = b_2, ..., a_{j-1} = b_{j-1}, a_j \leq_i b_i, a_j \neq b_j$