Exact Inference: Complexity

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. What is Inference?
- 2. Complexity Classes
- 3. Exact Inference
 - 1. Variable Elimination
 - Sum-Product Algorithm
 - 2. Factor Graphs
 - 3. Exact Inference for Tree graphs
 - 4. Exact inference in general graphs

An example of inference

- Lung Cancer BN is given
 - Serum Calcium definition:
 - calcium in blood
 - If Serum Calcium is known, what is the probability of cancer?

$$P(C \mid Se) = \frac{P(C, Se)}{P(Se)} = \frac{P(Se \mid C)P(C)}{P(Se)}$$

- P(Se|C) is known from CPD
- P(C) and P(Se) are marginals

$$P(C) = \sum_{A,Ge,E,Sm,Se,L,Gd} P(A,Ge,E,Sm,Se,C,L,Gd)$$

$$= \sum_{A,Ge,E,Sm,Se,L,Gd} P(A)P(Ge)P(Gd)P(E \mid A), P(Sm \mid A,G)P(Se \mid C)P(C \mid E,Sm)P(L \mid C,Gd)$$

Similarly we need to evaluate P(Se)

Types of inference

Graphical models represent a joint probability distribution

p(x,y)

- Types of inference tasks:
 - 1. Compute marginal probabilities

Conditional probabilities can be easily _____
 computed from joint and marginals

$$p(y) = \sum_{x} p(y/x)p(x)$$

 $p(x/y) = \frac{p(x,y)}{p(y)}$

- 2. Evaluate posterior distributions
 - 1. Some of the nodes in a graph are clamped to observed values (*X*)
 - Compute posterior distributions of one or more subsets of nodes (latent variables Z), i.e., p(Z|X)
- Compute maximum a posteriori probabilities

$$\max_{y} p(y/x)$$

Common BN Inference Problem

- Assume set of variables x
 - *E*: evidence variables, whose known value is *e*
 - Y: query variables, whose distribution we wish to know
- Conditional probability query P(Y|E=e)

$$P(Y | E = e) = \frac{P(Y,e)}{P(e)}$$
 From product rule

- Evaluation of Numerator P(Y,e)
 - If $W=\chi -Y E$
 - (1) Each term in summation is simply $P(\mathbf{y},e) = \sum_{w} P(\mathbf{y},e,w)$ an entry in the distribution
- Evaluation of Denominator P(e)

$$P(e) = \sum_{y} P(y,e)$$
 Rather $P(y,e,y)$

Rather than marginalizing over P(y,e,w) this allows reusing computation of (1)

Analysis of Complexity

- Approach of summing out the variables in the joint distribution is unsatisfactory $P(y,e) = \sum P(y,e,w)$
 - Returns us to exponential blow-up
 - PGM was precisely designed to avoid this!
- We now show that problem of inference in PGMs is NP-hard
 - Requires exponential time in the worst case except if $\mathcal{P}=\mathcal{NP}$
 - Even worse, approximate inference is \mathcal{NP} hard
- Discussion for BNs applies to MNs also

P and NP decision problems

- Definition of Decision Problem Π:
 - L_{II} defines a precise set of instances
 - Decision problem: Is instance ω in L_{Π} ?
- Decision problem
 ∏ is in
 - \mathcal{P} if there is algorithm decides in poly time
 - $-\mathcal{NP}$ if a guess can be verified in poly time
 - Guess is produced non-deterministically
- E.g., subset sum problem in P but not NP
 - Given a set of integers, is there a subset that sums to zero?
 - No polynomial time algorithm to decide this
 - Given set $\{-2, -3, 15, 14, 7, -10\}$
 - The guess $\{-2, -3, -10, 15\}$ can be verified in poly time

3-SAT (Satisfiability) decision problem

- Propositional variables $q_1,...,q_n$
 - Return true if $C_1 \land C_2 \land ... C_m$, where C_i is a DNF of 3 binary variables q_k , has a satisfying assignment,
 - e.g., return true for 3-SAT formula $(q_1 \ V \sim q_2 \ V \sim q_3) \land (\sim q_1 \ V \ q_2 \ V \sim q_3)$ since $q_1 = q_2 = q_3 = true$ is a satisfying assignment and return false for $(\sim q_1 \ V \ q_2 \ V \sim q_3) \land (q_2 \ V \ q_3) \land (\sim q_1 \ V \ q_3)$ which has no satisfying assignments
- SAT problem: whether there exists a satisfying assignment
 - To answer this we need to check n binary variables there are 2^n assignments

What is P=NP?

- Decision problem of whether ω in $L_{3\text{-}SAT}$
 - Can be verified in polynomial time P
 - Another solution is to generate guesses γ that satisfy $L_{3\text{-}SAT}$ and verify if one is ω
 - If guess verified in polynomial time, in NP
- Deterministic problems are subset of nondeterministic ones. So $P \subseteq NP$.

- Converse is biggest problem in complexity
 - If you can verify in polynomial time, can you decide in polynomial time?
 - Eg., is there a prime greater than n?

NP-Hard and NP-complete

- Hardest problems in NP are called NP-complete
 - If poly time solution exists, can solve any in NP
- NP-hard problems need not have polynomial time verification
- If Π is NP-hard it can be transformed into Π ' in \mathcal{NP}
- 3-SAT is NP-complete

BN for 3-SAT

- Propositional variables $q_1,...,q_n$
 - Return true if $C_1 \land C_2 \land ... C_m$, where C_i is a DNF of 3 binary variables q_k , has a satisfying assignment,
 - e.g., return true for 3-SAT formula $(q_1 \ V \sim q_2 \ V \sim q_3) \land (\sim q_1 \ V \ q_2 \ V \sim q_3)$ since $q_1 = q_2 = q_3 = true$ is a satisfying assignment and return false for $(\sim q_1 \ V \ q_2 \ V \sim q_3) \land (q_2 \ V \ q_3) \land (\sim q_1 \ V \ q_3)$ which has no satisfying assignments

BN to infer this:

 $P(q_k^{\ I})=0.5$ C_i are deterministic OR

 A_i are deterministic AND

X is output (has value 1 iff all of the C_i 's are 1

#P-complete Problem

- Counting the number of satisfying assignments
 - E.g., Propositional variables $q_1,...,q_n$

Return true if $C_1 \wedge C_2 \wedge ... C_m$,

where C_i is a DNF of 3 binary variables q_k , has a satisfying assignment,

Analysis of Exact Inference

- Worst case: CPD is a table of size $|Val\{X_i\} \cup Pa_{X_i}\}|$
- Most analyses of complexity are stated as decision-problems
 - Consider decision problem first, then numerical one
- Natural version of conditional probability task:
 - BN-Pr-DP: Bayesian Network Decision Problem
 - Given a BN \mathcal{B} over χ , a variable $X \in \chi$, and a value $x \in Val(X)$ decide $P_{\mathcal{B}}(X=x) > 0$
 - This decision problem can be shown to be NPcomplete

Proof of BN-Pr-DP is NP-complete

Whether in NP:

- Guess assignment ξ to network variables. Check whether X=x and $P(\xi)>0$
- One such guess succeeds iff P(X=x)>0.
- Done in linear time

Is NP-hard:

- Answer for instances in BN-Pr-DP can be used to answer an NP-hard problem
- Show a reduction from 3-SAT problem

Reduction of 3-SAT to BN inference

• Given a 3-SAT formula ϕ create BN B_{ϕ} with variable X such that ϕ is satisfiable iff $P_{B\phi}(X=x_1)>0$

 If BN inference is solved in poly time we can also solve 3-SAT in poly time

BN to infer this:

 $P(q_k^{\ l})=0.5$ C_i are deterministic OR A_i are deterministic AND X is output

Original Inference Problem

$$p(y) = \sum_{x} p(y/x)p(x)$$

- It is a numerical problem
 - rather than a decision problem
- Define BN-Pr
 - Given a BN \mathcal{B} over χ , a variable $X \in \chi$, and a value $x \in Val(X)$ compute $P_{\mathcal{B}}(X=x)$
 - Task is to compute the total probability of instantiations that are consistent with X=x
 - Weighted count of instantiations, with weight being the probability
 - This problem is #P-complete

Analysis of Approximate Inference

- Metrics for quality of approximation
- Absolute Error
 - Estimate ρ has error ε for P(y|e) if

$$|P(y|e)-\rho| \leq \varepsilon$$

• If a rare disease has probability 0.0001 then error of 0.0001 is unacceptable. If the probability is 0.3 then error of 0.0001 is fine

Relative Error

- Estimate ρ has error ε for P(y|e) if

$$\rho/(1+\varepsilon) \leq P(\mathbf{y}|\mathbf{e}) \leq \rho(1+\varepsilon)$$

• ε =4 means P(y|e) is at least 20% of ρ and at most 600% of ρ . For low values much better than absolute error

Approximate Inference is NP-hard

- The following problem is NP-hard
- Given a BN B over χ , a variable $X \in \chi$ and a value $x \in Val(X)$, find a number ρ that has relative error ε for $P_B(X=x)$
- Proof:
 - It is NP-hard to decide if $P_B(x^I) > 0$
 - Assume algorithm returns estimate ρ to $P_B(x^l)$ which has relative error ε for some $\varepsilon > 0$
 - $-\rho > 0$ if and only if $P_B(x^I) > 0$
 - This achieving relative error is NP-hard

Inference Algorithms

- Worst case is exponential
- Two types of inference algorithms
 - -Exact
 - Variable Elimination
 - Clique trees
 - Approximate
 - Optimization
 - Propagation with approximate messages
 - Variational (analytical approximations)
 - Particle-based (sampling)