Math 131A Homework 3

Jiaping Zeng

8/20/2020

10.9

11.2

11.5

12.2

12.4

12.9

12.10

12.12

14.5

P1 Let (s_n) be the sequence

$$s_n = \frac{n^2 + 1}{n^2 + 2n} \sin n.$$

Prove that (s_n) has a convergent subsequence.

- P2 Let (s_n) be a sequence that contains every integer. Prove that there is a subsequence of (s_n) which diverges to $-\infty$.
- P3 Suppose (s_n) is a sequence and (t_k) is a subsequence of (s_n) such that (t_k) converges. Prove that $\lim_{k \to \infty} t_k \leq \lim_{k \to \infty} \sup_{n \to \infty} s_n$.
- P4 For each series, determine whether the series (1) converges to a real number, (2) diverges to $+\infty$, (3) diverges to $-\infty$, or (4) none of these. Prove your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^3-1}$$