Course: Advanced Topics: Linear Algebra

Instructor: Mr. Blauss 22 January, 2024

Problem 1

Let S and T be subspaces of a vector space V. When is $S \cup T$ a subspace of V?

Solution:

Let $s \in S$, $s \notin T \implies s \in S \cup T$ and $t \in T$, $t \notin S \implies s \in S \cup T$

For $S \cup T$ to be a subspace, it has to be closed under vector addition: $s + t \in S \cup T$

 $s+t \in S \cup T \implies 1$ $s+t \in S$ or/and 2 $s+t \in T$

1) \exists -s \in S by Axiom 4. S is a subspace, and therefore closed under vector addition:

 $s+t+(-s)\in S \implies t\in S$

However, this contradicts our initial assumption that $t \notin S$

2) Similarly, for $-t \in T$, $s + t + (-t) \in T \implies s \in T$, which contradicts our assumption.

Thus, $S \cup T$ is not a subspace of V when there are vectors in S but not in T and vice versa.

This proves that for $S \cup T$ to be a subspace of V, $S \subseteq T$ or $T \subseteq S$

Problem 2

Show that any non-zero vector spans \mathbb{R}

Proof. For $A \in \mathbb{R}$ to span \mathbb{R} , the set $\{A\}$ has to be linearly independent.

By the definition of linearly independence, $rA = \vec{0}$ has to have no solutions for $r \neq 0$

 $\vec{0}$ in \mathbb{R} is 0. We have rA = 0. The only solutions are r = 0 or A = 0. However, $r \neq 0$ and A is a non-zero vector. The equation, therefore, has no solutions.

Thus, the set $\{A\}$ is linearly independent, and, therefore, spans \mathbb{R} .

Problem 3

Show that $A = \{(1,1,0), (0,0,1)\}$ and $B = \{(1,1,1), (-1,-1,1)\}$ span the same subspace of \mathbb{R}^3

Proof. Denote $A = \{(1,1,0), (0,0,1)\} = \{a_1,a_2\}$ and $B = \{(1,1,1), (-1,-1,1)\} = \{b_1,b_2\}$

Linear combination $a_1 + a_2 = (1, 1, 0) + (0, 0, 1) = (1, 1, 1) = b_1$

Linear combination $a_1 + a_2 = -(1, 1, 0) + (0, 0, 1) = (-1, -1, 1) = b_2$

 $(a_1 + a_2), (-a_1 + a_2) \in span(A),$ by the defn.

Thus, we have $b_1, b_2 \in span(A)$

span(A) is a subspace by Prop 4. Therefore, it is closed under vector addition and scalar multiplication.

Thus, all of the linear combinations of b_1 and b_2 are in span(A).

By the definition of a span, we have $span(B) \subseteq span(A)$

Linear combination $0.5b_1 - 0.5b_2 = (0.5, 0.5, 0.5) - (-0.5, -0.5, 0.5) = (1, 1, 0) = a_1$

Linear combination $0.5b_1 + 0.5b_2 = (0.5, 0.5, 0.5) + (-0.5, -0.5, 0.5) = (0, 0, 1) = a_2$

 $(0.5b_1 - 0.5b_2), (0.5b_1 + 0.5b_2) \in span(B),$ by the defn.

Thus, we have $a_1, a_2 \in span(B)$

span(B) is a subspace by Prop 4. Therefore, it is closed under vector addition and scalar multiplication.

Thus, all of the linear combinations of a_1 and a_2 are in span(A).

By the definition of a span, we have $span(A) \subseteq span(B)$

 $span(B) \subseteq span(A)$ and $span(A) \subseteq span(B) \implies span(A) = span(B)$

Problem 4

Suppose S, T are subspaces of V and $S \cap T = \vec{0}$. Show that every vector $\vec{C} \in S + T$ can be written uniquely in the form $\vec{A} + \vec{B} = \vec{C}$ with $\vec{A} \in S$ and $\vec{B} \in T$. Construct an example to show that this is false if $S \cap T \neq \vec{0}$.

Proof. Assume not: Let $A_1, A_2 \in S$ and $B_1, B_2 \in T$. Then we have $A_1 + B_1 = C$ and $A_2 + B_2 = C$.

This implies $A_1 + B_1 = A_2 + B_2 \implies (A_1 - A_2) + (B_1 - B_2) = \vec{0}$

This is true for: 1) $(A_1 - A_2)$ and $(B_1 - B_2)$ are inverses; 2) $(A_1 - A_2)$ and $(B_1 - B_2)$ are zero vectors.

1) S is a subspace and, therefore, a vector space and, therefore closed under vector addition.

Thus $(A_1 - A_2) \in S$.

If $(B_1 - B_2)$ is an inverse of $(A_1 - A_2)$, then $(B_1 - B_2) \in S$ by Axiom 4.

T is a subspace and, therefore, a vector space and, therefore closed under vector addition.

Thus $(B_1 - B_2) \in T$.

If $(A_1 - A_2)$ is an inverse of $(B_1 - B_2)$, then $(B_1 - B_2) \in S$ by Axiom 4.

Thus, we have $(A_1 - A_2), (B_1 - B_2) \in S$ and $(A_1 - A_2), (B_1 - B_2) \in T \implies (A_1 - A_2), (B_1 - B_2) \in T \cap S$, which contradicts our condition that $T \cap S = \{\vec{0}\}.$

Therefore, as $(A_1 - A_2)$, $(B_1 - B_2)$ cannot be inverses, for $(A_1 - A_2) + (B_1 - B_2) = \vec{0}$ to be true, $(A_1 - A_2)$ and $(B_1 - B_2)$ are zero vectors.

 $A_1 - A_2 = \vec{0} \implies A_1 = A_2 = A$ by Axiom 4.

 $B_1 - B_2 = \vec{0} \implies B_1 = B_2 = B$ by Axiom 4.

This shows that $\vec{C} \in S + T$ can be written uniquely in the form $\vec{A} + \vec{B} = \vec{C}$

Example: Let $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_2 = 0\}$ and $T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_3 = 0\}$

Then we have $S \cap T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_2 = 0, x_3 = 0\} \neq \{\vec{0}\}$

 $(2,0,0) \in S$ and $(3,0,0) \in T$. Then $(2,0,0) + (3,0,0) = (5,0,0) \in S + T$

 $(1,0,0) \in S$ and $(4,0,0) \in T$. Then $(1,0,0) + (4,0,0) = (5,0,0) \in S + T$

Hence, $\vec{C} = (5, 0, 0) \in S + T$ can be written in **at least two ways** in the form $\vec{A} + \vec{B} = \vec{C}$ with $\vec{A} \in S$ and $\vec{B} \in T$.