MapReduce and Fault Tolerance

Spark Details

wizeline.com | confidential - do not distribute

Distributed Storage

A distributed data store is a computer network where information is stored on more than one node.

Wikipedia

Computer Network

What Happens When a Node Dies?

With Spark

What happens if:

- a) A node is no longer active?
- b) The data chunks are corrupted?

Fault Tolerance: Storage Handling

HDFS // Google GCS // Amazon S3: All storage clusters accomplish fault tolerance

- Partitioning the dataset amongst different nodes (physical/virtual machines)
- Automated handling and balancing

Activity

- 1. Connect to your zeppelin.
- 2. Open a new ssh tunnel to port 9870 and view the page.
- 3. Once on the HDFS, click around to answer the following questions:
 - a. How much memory has been assigned?
 - b. How many nodes are active and how many are death?
 - c. How much capacity is remaining?
 - d. What are the cluster metrics?
 - e. Can you examine each node by itself?

- What is distributed storage?
- How does distributed storage address fault tolerance?
- What is a NameNode?
- How many nodes may a cluster afford to lose considering the replications it has?

wizeline.com | confidential - do not distribute

What is parallelization?

Parallel computing is a type of computation in which many calculations or the execution of processes are carried out at the same time.

Parallel Computing Wikipedia

Distributed Computing

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to each other.

<u>Distributed Storage Wikipedia</u>

Say you have to sum the values in an array, but it does not fit in memory.

Since you can do the same simple operation (+) in separate computers, this is an **embarrassingly parallel task.**

Split the activity into simple parts.

Split the activity into simple parts.

Compute each part in multiple devices.

$$(1+2) + (3+4) + (5+6) => (3) + (7) + (11)$$

• **Split** the activity into simple parts.

Compute each part in multiple devices.

$$(1+2) + (3+4) + (5+6) => (3) + (7) + (11)$$

• **Join** the work and coordinate the communication of those devices.

$$(3) + (7) + (11) => 3+7+11$$

Example: How to Parallelize Word Count?

Text Processing

- 1) **Split** the text into words.
- 2) **Compute** the frequency of each word.
- 3) **Join** the frequencies from all devices.

- Split the activity into simple parts.
- Compute each part in multiple devices.
- Join the work and coordinate the communication of those devices.

- Fault Tolerance at the Storage Level
- MapReduce
 - Parallelization
 - The Framework
 - Iterations and MapReduce
- Fault Tolerance at the Application Level (Spark)

MapReduce Framework

A simple and powerful interface that enables automatic **parallelization** and **distribution** of **large-scale** computations, combined with an implementation of this interface that achieves high performance on large clusters of **commodity PCs**."

Dean and Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", Google Inc.

"Moving Computation is Cheaper than Moving Data" **Hadoop Team**

Move Tasks Instead of Data

17 to 56 GB being moved

MB or Bytes being moved (messages and programs only)

MapReduce, What Does It Consist Of?

What Is Map and What Is Reduce?

Primitive Map:

- Perform the same action on every item of the Dataset.
- Embarrassingly parallel.

Primitive Reduce:

- Combine the dataset.
- Gather the results.
- Recieves Ordered data.

Parallelization Framework with Word Count

A Parallelization Without Coordinated Efforts

Text	processing,	use word	frequency	/ to	describe	а	text:
IOAL		asc word	11 Cquci lo	, ,	acount	u	LUNL.

1)	Ingest text into distributed storage.	Distribute (data)
2)	Split text into words.	(computing)
3)	Sort the words globally.	Join (communication and networking)
4)	Compute each word.	(computing)
5)	Store the vector of repetition for future comparisons.	Distribute (data)

The Genius of Map-Reduce

Hadoop Provides

Integrates distributed storage to the computing framework.

The Genius of Map-Reduce

Hadoop Provides

- Integrates distributed storage to the computing framework.
- Sends tasks to the data, not data to the tasks (reduce network overhead).

The Genius of Map-Reduce

Hadoop Provides:

- Integrates distributed storage to the computing framework.
- Sends tasks to the data, not data to the tasks (reduce network overhead).
- Is a high-level parallel programming abstraction (you don't have to coordinate the tasks).

The Genius of Map-Reduce

A Parallelization Without Coordinated Efforts

- Integrates distributed storage to the computing framework.
- Sends tasks to the data, not data to the tasks (reduce network overhead).
- Is a high level parallel programming abstraction (you don't have to coordinate the tasks).
- Seems to have close to linear scalability*.

- What is parallelization?
- What does the concept "embarrassingly parallel" mean?
- What is MapReduce?
- What is the benefit of the MapReduce -hadoop- framework?

- Fault Tolerance at the Storage Level
- MapReduce
 - Parallelization
 - The Framework
 - Iterations and MapReduce
- Fault Tolerance at the Application Level (Spark)

Iterations and MR

The MapReduce paradigm involves **reading**, **processing and writing** if you want the outcome to be useful for further processing.

This is **ideal for batch processing**, which is the case for most of the initial business requirements where you make historical data available.

But what about iterative work?

Imagine you have a matrix and want to multiply it by four other matrices

Matrix multiplication refresh:

⊗

Matrix Multiplications: Reduce Detail

With MapReduce

⟨⟩

Matrix Multiplications: Reduce Detail

With MapReduce

Sequential Analysis Math

- The information passed is incremental: in every mapreduce you send the original + calculations/annotations.
- We don't have any memory other than storage.

Sparks' approach to iterations

wizeline.com | confidential - do not distribute

Exercises

Exercise 2:

Implement the matrix multiplication using the same four original matrix.

Exercise 3:

Using the same four original matrix, find the result of the multiplication of each squared matrix.

Hint 1: how can you extend the matrix multiplication to consider exponents?

- Fault Tolerance at the Storage Level
- MapReduce
 - Parallelization
 - The Framework
 - Iterations and MapReduce
- Fault Tolerance at the Application Level (Spark)

What Happens If a Node Fails?

It is also distributed: RDD/DataFrame/DataSet

What happens if:

- a) The connection to certain nodes gets bottlenecked?
- b) The node that was completing the task fails?
- c) One of the chunks of the partitioned dataset gets compromised at mid process?

It is also distributed: RDD/DataFrame/DataSet

Immutable distributed

Inmutable distributed: word count example

Fault Tolerance: Example Remember the Notebook


```
package com.wizeline.wordcount
import org.apache.spark.sql._
object WordCount {
  def wordCount(
    documents: Dataset[String],
    separatorsRegexp: String = """\s+""") : Dataset[(String, Long)] =
    val words = documents.flatMap(doc => doc.split(separatorsRegexp))
    val lcWords = words.map(word => word.toLowerCase)
   val counts = lcWords.groupByKey(identity).count()
    counts
```


OK, you can recover if a node fails, but who keeps track of it?

Distributed Dataset

Fault Tolerance: DAG

▶ Event Timeline

Any distributed object is managed and represented by a Directional Acyclic Graph (DAG):

- It is separated on stages that comprise sets of tasks that can be accomplished in parallel (single node).
- It submits the stages to be performed.
- It is notified when a stage fails.

Fault Tolerance Spark Application Overview

RECAP

- MapReduce is a parallelization paradigm that delegates all coordination and maintenance tasks to the framework.
- Spark extends this paradigm to exploit parallelization and repetition, and considers iterative activities.
- Fault tolerance is present on the file system for the cluster.
- Fault tolerance is also present with the distributed graph representation that Spark uses.

Spark

Big Data Analysis with Scala and Spark (Coursera MOOC – Week 1)

Spark UI visualizations

<u>HDFS</u>

S3

<u>YARN</u>

Graphs implementation

Djikstra algorithm

GraphX programming

https://stanford.edu/~rezab/classes/cme3 23/S15/notes/lec8.pdf

For the Knowledge Hungry...

Spark Explanation https://www.youtube.com/watch?v=49Hr5x ZyTEA&feature=youtu.be

Map-Reduce costs https://www.youtube.com/watch?v=sCaKw QEF8Ao

The dataset you'll need to read is located in the Google bucket:

gs://de-training-input/matrices/matrix*.txt

Within that bucket, you'll find two files, one for each matrix:

Matrix1.txt and matrix2.txt

Each row in the matrix documents contains: row number, Value1, Value2, Value3, etc

Reformat the input so a CoordinateMatrix can be created:

1. Perform the matrix multiplication on a bigger matrix?

For this assignment you'll need to do several things:

- Transform the information so you can have [i,j,value] for each value in the matrix.
- Use the functions created during the exercises.
- Save the output of the multiplied matrix in your bucket under `matrix_mult-#.txt` a.

NOTE: To aid you with this particular assignment, we have made available a notebook to guide you. Bear in mind that you are still expected to submit your job with a JAR or .py

C2 - Data Engineering Academy

Where Can I Get this Presentation?

https://tinyurl.com/y9wybmbl

C2 - Data Engineering Academy

Your feedback is very valuable!

https://goo.gl/forms/F3hIFk1yldyXZdy03

