

How microphysical changes affect cirrus properties in P3 in SCREAM

CFMIP-GASS
July 14, 2023

Sami Turbeville, Peter Blossey, Tom Ackerman, Blaž Gasparini, Ben Hillman

Anvil and TTL cirrus occur across a range of scales

Microphysics Sensitivity Study Using SCREAM

3.3 km horizontal resolution

128 vertical levels (17 in the TTL)

P3 microphysics (Morrison & Milbrandt, 2014)

P3 Microphysics: old vs new

Standard ice_nucleation scheme

New ice_nucleation scheme

- Default freezing mechanism (Cooper 1986)
- 2. Options for using predicted or prescribed CCN and number concentration

New ice nucleation scheme is more complex

Standard ice_nucleation scheme

- Default freezing mechanism (Cooper 1986)
- Options for using predicted or prescribed CCN and number concentration

New ice_nucleation scheme

- 1. Freezing for mixed phase (Cooper 1986)
- 2. Allows for deposition freezing in cirrus (Mohler et al., 2006)
- 3. Allows for heterogeneous vs homogeneous competition (Liu & Penner, 2005)

New ice nucleation scheme is more complex (and hopefully more physical)

Standard ice_nucleation scheme

New ice_nucleation scheme

Microphysical changes in new freezing scheme

Sensitivity Study

Vapor deposition ice_deposition_sublimation

Scaling by 1/2 - 2 x for average grid box ice mass with $R_{eff} < 25 \, \mu \mathrm{m}$

Sensitivity Study

Vapor deposition ice_deposition_sublimation

Scaling by 1/2 - 2 x for average grid box ice mass with $R_{eff} < 25 \, \mu \mathrm{m}$

Ice sedimentation ice_sedimentation

Sensitivity Study

Vapor deposition ice_deposition_sublimation

Scaling by 1/2 - 2 x for average grid box ice mass with $R_{eff} < 25 \, \mu \mathrm{m}$

Ice sedimentation ice_sedimentation

Microphysical changes affect top-of-atmosphere radiation

DYAMOND models had a standard deviation of 10 W/m2 in OLR

OLR = Outgoing longwave radiation

ASR = Absorbed shortwave radiation

Corresponding impacts on vertical distribution of clouds

Corresponding impacts on vertical distribution of clouds

Microphysical changes affect top-of-atmosphere radiation

Vapor deposition seems to be the strongest influence on thin cirrus clouds and TOA radiation

OLR = Outgoing longwave radiation

ASR = Absorbed shortwave radiation

Summary

- New freezing scheme allows for more natural nucleation of ice
 - Better ICNC compared to observations
- Deposition > sedimentation sensitivity for cirrus clouds

Microphysics is important for TOA radiation and macrophysics

Future plans

- Add tracers for time since convection & nucleation
- Include L.S. ascent for more realistic TTL
- Run in large domain (bowling alley/variable resolution global configuration) to allow for selfaggregation
- Horizontal grid spacing (1 km)
- Update microphysics to include...
 - 1. New results from Kärcher, 2022 (JGR)
 - 2. Pre-existing ice option

Summary

- New freezing scheme allows for more natural nucleation of ice
 - Better ICNC compared to observations
- Deposition > sedimentation sensitivity for cirrus clouds

Microphysics is important for TOA radiation and macrophysics

smturbev@uw.edu

Acknowledgements:

Model:

Computing resources:

