

MA0301 Elementær Diskret matematikk

Øving 1

Våren 2025

Øvingen skal leveres inn digitalt på OVSYS, som én enkelt individuelt .pdf-fil. Du må gjøre et ærlig forsøk på alle oppgavene som ikke har en stjerne etter seg.

 $\boxed{\mathbf{1}}$ I denne oppgaven er X mengden av alle naturlige tall mindre enn eller lik 15, så

$$X = \{x \in \mathbb{N} \mid x \le 15\}$$

Husk at 0 teller som et naturlig tall, altså $0 \in \mathbb{N}$. La nå

inneholder elementet (7,5)
☐ inneholder nøyaktig 9 elementer

$$A = \{ a \in X \mid a - 1 \text{ kan deles på 3} \}$$

altså er A mengden av tallene i X som kan skrives på formen 3k+1 for et naturlig tall k.

Vi definerer til slutt $B = \{b \in X \mid b \text{ kan deles på 5}\}$, altså er B delmengden av tallene i X som er multipler av 5. Velg de riktige påstandene under. Flere av dem kan være sanne samtidig. Du trenger ikke å forklare svarene dine.

- a) $\mathcal{P}(A) \cap \mathcal{P}(B)$: \Box er lik $\mathcal{P}(A \cap B)$ \Box inneholder nøyaktig 1 element {10, \emptyset } \Box inneholder nøyaktig 3 elementer

 b) $\mathcal{P}(A) \cup \mathcal{P}(B)$: \Box er lik $\mathcal{P}(A \cup B)$ \Box inneholder nøyaktig 8 elementer \bigstar inneholder alle elementene av $\mathcal{P}(A) \cap \mathcal{P}(B)$ c) $A \times B$: \Box inneholder elementet 10
- 2 La A, B, C være tre mengder i et univers X. Tegn Venn-diagrammene som tilsvarer følgende mengder:
 - a) $A \cap B \cap C$
 - b) $(A \cup B) \cap C$
 - c) $A \cup (B \cap C)$
 - d) $(A \cap B) \cup (A \cap C) \cup (B \cap C)$

- 3 Skriv følgende mengder som opplistinger av elementene i mengden, mellom klammeparenteser:
 - a) $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+y \le 5\}$
 - b) $\mathcal{P}(\mathcal{P}(\emptyset))$
- 4 La A og B være to delmengder av et univers U. Komplementet til en vilkårlig mengde M skrives $U \setminus M$, eller \overline{M} , eller M^C . Vis at:
 - a) $(A \cup B)^C = A^C \cap B^C$
 - b) $(A \cap B)^C = A^C \cup B^C$

Teori:

- En god strategi for å bevise at to til synelatende forskjellige mengder er like, er å bevise en dobbelinklusjon.
- En god strategi for å bevise at en mengde er inkludert i en annen mengde, er å velge et vilkårlig element i den første mengden og bevise at det også tilhører den andre mengden.

Eksempel:

- For å bevise at mengden av multipler av 6 er en delmengde av mengden av multipler av 3. La A være mengden av multipler av 6, og B mengden av multipler av 3. Vi ønsker å vise at $A \subseteq B$. La $x \in A$. Da er x et multiplum av 6, så det finnes et naturlig tall k slik at $x = 6 \times k$. La k' = 2k: vi har $x = 3 \times k'$, så per definisjon er x også et multiplum av 3. Med andre ord, et vilkårlig tall valgt fra A ligger også i B og vi kan konkludere $A \subseteq B$.
- Her er de klassiske stegene for et dobbelinklusjon-bevis:
 - Først viser vi at $A \subseteq B$;
 - Så viser vi at $B \subseteq A$;
 - Den eneste måten A og B kan være delmengder av hverandre på, er hvis de er en og samme mengde, derfor: A=B

- - a) $(A \cup B)^C = A^C \cap B^C$ b) $(A \cap B)^C = A^C \cup B^C$
- a) XE(AUB) * 50

X & (AUB) X is outside of A and B

X&A and X&B so

X & A OBC

(AUB) < AC nBC

XEACBE ** SO

X & A and X & B SO

XEAUB

A'OB' = (AUB)C

therefore

ACOBC = (AUB)C

b) X E (AnB) + XEAUB **

X & AnB

X & A or X & B

* XEA then X & B $X \not\in A$ then $X \in B$ or $X \not\in A$ and $X \not\in B$

ACUBE (AnB)C

(AnB) < Acu Bc

therepore (AnB) = AnB