Scilab Textbook Companion for A Text Book of Physical Chemistry by K. l. Kapoor¹

Created by
Rahul Paramata
Chemical
Chemical Engineering
IIT BOMBAY
College Teacher
Na
Cross-Checked by
Chaya Ravindra

March 8, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Text Book of Physical Chemistry

Author: K. l. Kapoor

Publisher: Macmillan, India

Edition: 1

Year: 1984

ISBN: 33904222

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Equilibrium between phases	5
2	Colligative properties	14
3	Phase Rule	32
4	Solutions	36
5	Phase Diagrams of one component systems	54
6	Phase Diagrams of two component systems	56
8	Electrochemical cells	61

List of Scilab Codes

Exa 1.5.1	Ex 1														5
Exa 1.5.2	Ex 2														6
Exa 1.5.3	Ex 3														6
Exa 1.5.4	Ex 4														6
Exa 1.5.5	Ex 5														7
Exa 1.5.6	Ex 6														8
Exa 1.5.7	Ex 7														8
Exa 1.5.8	Ex 8														9
Exa 1.5.9	Ex 9														9
$\mathrm{Exa}\ 1.5.10$	Ex 10														10
Exa 1.5.11	Ex 11														11
$\mathrm{Exa}\ 1.5.12$	Ex 12														11
$\mathrm{Exa}\ 1.5.13$	Ex 13														12
Exa 1.7.1	Ex 14														12
Exa 1.7.2	Ex 15														13
Exa 2.2.1	Ex 1														14
Exa 2.2.2	$\operatorname{Ex} 2$														15
Exa 2.4.1	Ex 3														15
Exa 2.4.2	$\operatorname{Ex} 4$														16
Exa 2.4.3	$\operatorname{Ex} 5$														16
Exa 2.7.3	Ex 6														17
Exa 2.7.4	$\operatorname{Ex} 7$														18
Exa 2.7.5	Ex 8														18
Exa 2.8.2	Ex 9														19
Exa 2.8.3	Ex 10														20
Exa 2.9.1	Ex 11														21
Exa 2.9.2	Ex 12														21
Exa 2.9.3	Ex 13														22

Exa 2	2.10.1	$\mathbf{E}\mathbf{x}$	14														23
Exa 2	2.10.2	$\mathbf{E}\mathbf{x}$	15														23
Exa 2	2.11.1	Ex	16														24
Exa 2	2.11.2	Ex	17														25
Exa 2	2.11.3	$\mathbf{E}\mathbf{x}$	18														25
Exa 2	2.11.4	Ex	19														26
Exa 2	2.11.5	$\mathbf{E}\mathbf{x}$	20														27
Exa 2	2.11.6	$\mathbf{E}\mathbf{x}$	21														27
Exa 2	2.11.7	Ex	22														28
Exa 2	2.11.8	$\mathbf{E}\mathbf{x}$	23														29
Exa 2	2.12.1	Ex	24														30
Exa 2	2.12.2	Ex	25														30
Exa 3	3.3.1	Ex	1 .														32
Exa 3	3.3.2	Ex	2 .														33
Exa 3	3.3.3	Ex	3.														34
Exa 3	3.3.4	Ex	4 .														34
Exa 4	4.6.1	Ex	1 .														36
Exa 4	4.6.2	Ex	2 .														36
Exa 4	4.6.3	Ex	3.														37
Exa 4	4.6.4	Ex	4 .														38
Exa 4	4.6.5	Ex	5.														38
Exa 4	4.7.3	Ex	6.														39
Exa 4	4.7.4	Ex	7.														40
Exa 4	4.7.5	Ex	8.														41
Exa 4	4.7.6	Ex	9.														41
Exa 4	4.7.7	Ex	10														42
Exa 4	4.7.8	Ex	11														43
Exa 4	4.7.9	$\mathbf{E}\mathbf{x}$	12														43
Exa 4	4.7.10	Ex	13														44
Exa 4	4.7.11	Ex	14														45
Exa 4	4.7.12	Ex	15														46
Exa 4	4.7.13	Ex	16														46
Exa 4	4.7.14	Ex	17														47
Exa 4	4.7.15	$\mathbf{E}\mathbf{x}$	18														48
Exa 4	4.10.1	$\mathbf{E}\mathbf{x}$	19														49
Exa 4	4.10.2	$\mathbf{E}\mathbf{x}$	20														50
Exa 4	4.11.1	Ex	21														50
	4 11 2																51

Exa	4.11.3	Ex	23																										52
Exa	4.11.4	Ex	24																										52
Exa	4.11.5	Ex	25																										53
Exa	5.2.1	Ex	1 .																										54
Exa	5.2.2	Ex	2 .																										55
Exa	6.6.1	Ex	1.																										56
Exa	6.6.2	Ex	2 .																										57
Exa	6.6.3	Ex	3.																										57
Exa	6.6.5	Ex	4 .																										58
Exa	6.6.6	Ex	5.																										59
Exa	8.9.2	Ex	1 .																										61
Exa	8.9.3	Ex	2 .																										62
Exa	8.9.4	Ex	3.																										63
Exa	8.9.6	Ex	4 .																										64
Exa	8.9.7	Ex	5.																										65
Exa	8.10.1	Ex	6.																										66
Exa	8.11.1	Ex	7.																										66
Exa	8.12.1	Ex	8.																										67
	8.12.2																												67
Exa	8.14.1	Ex	10																										68
Exa	8.16.1	Ex	11															 											68
Exa	8.16.2	Ex	12																										69
Exa	8.16.3	Ex	13																										69
Exa	8.18.1	Ex	14																										70
Exa	8.18.2	Ex	15																										70
Exa	8.18.3	Ex	16																										71
Exa	8.18.4	Ex	17																										71
Exa	8.18.5	Ex	18																										72
Exa	8.18.6	Ex	19																										72
Exa	8.18.7	Ex	20																										73
Exa	8.18.8	Ex	21																										74
Exa	8.18.9	Ex	22																										74
Exa	8.18.10	Ex	23																										75
	8.18.11																												75
	8.18.12			-	-	-	-		-	-	-	-	-			-			-		-	-		-		-	-		76
	8.18.13																												76
	8.18.14																												77
	8 18 15			•	٠	•	·	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	77

Exa 8.18.16Ex 29														. 78	3
Exa 8.20.1 Ex 30														. 78	3
Exa 8.20.3 Ex 31														. 79)
Exa 8.21.2 Ex 32														. 79)
Exa 8.23.1 Ex 33														. 80)
Exa 8.23.2 Ex 34														. 80)
Exa 8.23.3 Ex 35														. 81	Ĺ
Exa 8.23.4 Ex 36														. 82	2
Exa 8.23.5 Ex 37														. 82	2
Exa 8.23.6 Ex 38														. 83	3
Exa 8.23.7 Ex 39														. 84	1

Chapter 1

Equilibrium between phases

Scilab code Exa 1.5.1 Ex 1

```
1 clear;
2 clc;
3 T1 = 234.5; // Temperature in K
4 P = 1 ; // Pressure in atm
5 rho1 = 14.19 // Density of solid Hg in g/(cm^3)
6 rho2 = 13.70 // Density of liquid Hg in g/(cm^3)
7 V = 200.59 // volume of liquid and solid in g/mol
8 delV = ((V/rho2)-(V/rho1))*(10^-3)// in dm^3/mol
9 delTdelP = 0.0051 // K/atm
10 R1 = 8.314 // in J
11 R2 = 0.082 // in (dm)^3/atm
12 delH = ((delV*T1)/(delTdelP))*(R1/R2)*10^-3; //molar
     heat of fusion in kJ/mol
13 printf('delH = \%.3 f (KJ)/mol',delH)
14 T2 = 273 // in K
15 delP = (delH*(R2/R1)*(T2-T1))/(delV*T1)*10^3;//
     pressure required to raise melting point to T2 in
16 printf('\ndelP = \%d atm', delP)
17
18
```

Scilab code Exa 1.5.2 Ex 2

```
1 clear;
2 clc;
3 T1=373.15; //in K
4 P=1; //atm
5 Vv=1674; //in cm^3/gm
6 delPdelT=27.12; //in torr/K
7 R1=8.314; //in J
8 R2=0.082; //in atm/(dm)^3
9 delH=((delPdelT)/760)*T1*((Vv*10^-3)*18)*(R1/R2)
10 printf('delH =%d J/mol', delH)
11
12 ///Example in page 15
```

Scilab code Exa 1.5.3 Ex 3

```
1 clear;
2 clc;
3 T1=313.75; //in K
4 P1=59.1; //in torr
5 T2=353.15; //in K
6 P2=298.7; //in torr
7 R=2.303*8.314; //in J/(K*mol)
8 delH=R*log10(P2/P1)*((T2*T1)/(T2-T1))
9 printf('delH=%d J/mol',delH)
```

Scilab code Exa 1.5.4 Ex 4

```
1 clear
2 clc
3 \text{ T1} = 325.15; // \text{in } K
4 T2=338.15; //in K
5 P2=760; //in torr
6 DelHm_v=10.5; //
7 P1=P2/(10^{(DelHm_v/2.303)*((T2/T1)-1))};//in torr
8 printf('P1=%.1f torr',P1)
9 P = 200; //in torr
10 T=T2/(1+((2.303/10.5)*log10(P2/P))); //in K
11 printf('\nT=\%.1 d K',T)
12 I = log 10(P2) - (((DelHm_v*T2)/2.303)*(-1/T2)); //
13 printf('\nI=\%.3f',I)
14
15 //There are some errors in the solution given in
      textbook
16 //page 16
```

Scilab code Exa 1.5.5 Ex 5

```
1 clear;
2 clc;
3 P=760;//in torr
4 dP=52;//in torr
5 dT=2;//in K
6 DelH_RTb=10.5;//Trouton rule
7 Tb=(DelH_RTb*P)/(dP/dT)
8 printf('Tb=%.1 f K',Tb)
9 R=8.314;//in J/Kmol
10 DelH_v=(DelH_RTb*R*Tb)
11 printf('\nDelH_v=%1d J/mol',DelH_v)
12
13 //There are some errors in the solution given in textbook
14 //page 17
```

Scilab code Exa 1.5.6 Ex 6

```
1 clear;
2 clc;
3 T1=373.15; //in K
4 P1=76.0; // in cmHg
5 P2=77.0; //in \text{ cmHg}
6 DelHm_v=2255; //in J/gm
7 Vm_v = 1664; //in cm^3/mol
8 Vm_1=1; //in cm^3/mol
9 R=8.314; // in J/Kmol
10 T2=(1/((1/T1)-((2.303*R/(DelHm_v*18))*log10(P2/P1)))
      )
11 printf('T2=\%.1 f K', T2)
12
13 //There are some errors in the solution given in
      textbook
14 / page 18
```

Scilab code Exa 1.5.7 Ex 7

```
1 clear;
2 clc;
3 T1=373.15; //in K
4 P1=76.0; //in cmHg
5 T2=363.15 //in K
6 DelHm_v=2268; //in J/gm
7 R=8.314; //in J/Kmol
8 P2=P1*(10^((DelHm_v*18/(2.303*R))*(1/T1-1/T2)))
9 printf('P2=%.1 f cmHg', P2)
10
11 //page 19
```

Scilab code Exa 1.5.8 Ex 8

```
1 clear
2 clc
3 T1=456.15; //boiling temperature of iodine in K
4 T2=389.65; //vapour pressure temperature of iodine in
      K
5 P1=760; // pressure in torr
6 P2=100; //vapour pressure in torr
7 DelHm_f=15.65; //heat of fusion in kJ/mol
8 R=8.314; //in J/K
9 DelHm_v=(2.303*R*log10(P1/P2))/((1/T2)-(1/T1));//
      heat of vapourization in J/mol
10 DelHm_s = (DelHm_f *1000) + DelHm_v; //heat of sublimation
       in J/mol
11 T=311.85; //temperature at solid vapour equilibrium
      in K
12 P=1;//pressure at solid vapour equilibrium in torr
13 K1 = (DelHm_s)/(2.30*R); //
14 K2=(DelHm_v)/(2.30*R);//
15 T0 = (K1 - K2) / ((K1 * (1/T)) - (K2 * (1/T2)) - log10(P2)); //
      triple point temperature in K
16 printf ('\nT0=\%.1 f K',T0)
17 P0=10^{(K1*((1/T)-(1/T0)))}; // triple point pressure in
       torr
18 printf('\nP0=\%.2f torr',P0)
19
20 //There are some errors in the solution given in
      textbook
21 //page 19
```

```
1 clear
2 clc
3 \text{ K1=5.36;} //
4 K2=4.95; //
5 T1 = -2875; //in K
6 T2 = -2740; //in K
7 R=8.314; //in J/Kmol
8 T=(T2-T1)/(K1-K2); // triple point temperature in K
9 printf('T=\%.1 f K',T)
10 P=(10^{(T1/T)+K1)};//triple point pressure in atm
11 printf ('\nP=\%.7 f K atm',P)
12 DelHm_s=2.303*R*(-T1); // molar enthalpy of
      sublimation in J/mol
13 DelHm_v=2.303*R*(-T2); // molar enthalpy of
      vapourization in J/mol
14 DelHm_f=DelHm_s-DelHm_v;//molar enthalpy of fusion
      in J/mol
15 printf('\nDelHm_f=\%.1d J/mol', DelHm_f)
16 DelSm_f=DelHm_f/T;//molar entropy of fusion
                                                   in J/
     Kmol
17 printf('\nDelSm_f=\%.2 f J/Kmol',DelSm_f)
18
19 //There are some errors in the solution given in
      textbook
20 //page 20
```

Scilab code Exa 1.5.10 Ex 10

```
1 clear
2 clc
3 T=273; //in K
4 R=8.314; //in J/Kmol
5 DelHm=T*2.303*R; //in J/mol
6 printf('DelHm=%.1d J/mol', DelHm)
7
```

Scilab code Exa 1.5.11 Ex 11

```
1 clear;
2 clc;
3 DelG=2866; //in J/mol
4 rhoG=2.25; //in gm/cm^3
5 rhoD=3.52; // in gm/cm<sup>3</sup>
6 MC=12; // mass of carbon
7 P1=1; // in atm
8 P2=(-DelG/(MC/rhoD-MC/rhoG))+P1
9 printf ('P2=\%.1 \text{ f Jcm}^-3', P2)
10 R1=0.082; //in dm^3atm
11 R2=8.314; //in J
12 P21=P2*(R1*1000/R2)
13 printf('\nP21=\%.1d atm', P21)
14
15 //There are some errors in the solution given in
      textbook
16 / page 23
```

Scilab code Exa 1.5.12 Ex 12

```
1 clear
2 clc
3 rho1=1.21; //in gm^cm-3
4 rho2=1.10; //in gm^cm-3
5 P2=3260; //in atm
6 T2=298.15; //in K
7 P1=2450; //in atm
8 T1=242.15; //in K
9 MI=18; //molar mass of ice in gm/mol
```

```
10  R1=8.314; //in  J
11  R2=0.082; //in atm dm^3
12  DelH_Tr=((P2-P1)*(R1/R2)*(MI/rho2-MI/rho1)*T1)/(T2-T1)
13  printf('DelH_Tr=%.3 f  J/mol', DelH_Tr)
14  //There is an error in the answer given in the textbook
16  //In text book he took (T1-T2)=6, but actually (T1-T2)=56
17  //page 23
```

Scilab code Exa 1.5.13 Ex 13

```
1 clear
2 clc
3 DelVm_tr=0.0126; //in cm^3/gm
4 P=1; //in atm
5 Ti=368.65; //in K
6 DelTDelP=0.035; //in K/atm
7 R1=8.314; //in J
8 R2=0.082; //in dm^3atm
9 DelHm_tr=Ti*(DelVm_tr*32/1000)*1/(DelTDelP)*(R1/R2)
10 printf('DelHm_tr=%.1 f J/mol', DelHm_tr)
```

Scilab code Exa 1.7.1 Ex 14

```
1 clear
2 clc
3 T=263.15; //in K
4 P2=1.95; //in torr
5 rho=0.920; //in gm/cm^3
6 P=1; //in atm
```

```
7 R=0.082; //in dm^3atm/(molK)

8 P1=P2*exp((18/(rho*1000))*(P-(P2/760))/(R*T))

9 printf('P1=%.3f torr',P1)

10

11 //page 29
```

Scilab code Exa 1.7.2 Ex 15

```
1 clear
2 clc
3 P0=100; //in atm
4 P=1; //in atm
5 P2=31.82; //in torr
6 rho=0.996; //in gm/cm^3
7 R=0.082; //in dm^3atm/(molK)
8 T=303.15; //in K
9 P1=P2*(10^(((18/(rho*1000))*(P0-P)))/(2.303*R*T)))
10 printf('P1=%.1f torr',P1)
11
12 //page 29
```

Chapter 2

Colligative properties

Scilab code Exa 2.2.1 Ex 1

```
1 clear
2 clc
3 M1=20; //mass of acetic acid in gm
4 M2=80; //mass of water in gm
5 mM=60; //molar mass of acetic acid in gm
6 Vm1=M1/60; //in mol
7 Vm2=M2/18; //in mol
8 rho=1.026; // in gm/cm<sup>3</sup>
9 X=Vm1/(Vm1+Vm2);//mole fraction of acetic acid
10 printf('X=\%.3f',X)
11 B=Vm1/(M2/1000); // molality of acetic acid
12 printf('\nB=\%.3 \text{ f mol/kg',B})
13 V = (M1 + M2) / rho
14 C=(Vm1)/(V/1000); // molarity of acetic acid
15 printf('\nC=\%.3 f moldm^-3',C)
16
17 //There are some errors in the solution given in
      textbook
18 //In textbook the value of X is given in fraction
19 //page 36
```

Scilab code Exa 2.2.2 Ex 2

```
1 clear
2 clc
3 C=5;//molarity in mol
4 mM=100;//molar mass in gm
5 rho=1.289;//in gm/cm^3
6 M1=C*mM;//mass of solute
7 M2=(rho*1000)-M1;//mass of solvent
8 V=(M2)/18;//volume of water solvent in mol
9 X=(C)/(V+C);//mole fraction of solute
10 printf('X=%.4f',X)
11 B=(C)/(M2/1000)
12 printf('\nB=%.3f mol/kg',B)
13
14 //page 23
```

Scilab code Exa 2.4.1 Ex 3

```
1 clear
2 clc
3 T=303;//in K
4 m2=10;//mass of solute in gm
5 m1=80;//mass of solute acetone in gm
6 P1=271;//in torr
7 P2=283;//in torr
8 M1=58;//in gm/mol
9 M2=((m2*M1)/(((P2-P1)/P2)*m1))-((M1*m2)/m1)
10 printf('M2=%.1 f gm/mol', M2)
11
12 //page 39
```

Scilab code Exa 2.4.2 Ex 4

```
1 clear
2 clc
3 \text{ P1} = 74.01; //in torr
4 P2=74.66; //in torr
5 \text{ m}2=2; // \text{in gm}
6 \text{ m1} = 100; // \text{in gm}
7 \text{ M1} = 78; // \text{in gm}
8 M2 = ((m2*M1)/(((P2-P1)/P2)*m1)) - ((M1*m2)/m1)
9 printf('M2=\%.1 f gm/mol', M2)
10 nCH=94.4/5.6; //mass ratio of C and H
11 N=nCH*(1/12); //atomic ratio
12 printf('\nN=\%.1 f', N)
13
14 //atomic ratio is 7:5 (here N is showed decimals)
15
16 EM = (12*7) + (1*5); //empirical mass
17 K=M2/EM; //No. of units C7H5
18 printf('\nK=%1f',K)
19
20 //Approximately equal to 2, Molecular Formula C14H10
21 //There are some errors in the solution given in
      textbook
\frac{22}{\text{page }} 40
```

Scilab code Exa 2.4.3 Ex 5

```
1 clear
2 clc
3 m1=100;//amount of water in gm
4 M1=18;//in gm
```

```
5 m2=1; //amount of urea in gm
6 M2=60; //in gm
7 m3=2; //amount of sucrose in gm
8 M3=342; //in gm
9 X=(m1/M1)/((m1/M1)+(m2/M2)+(m3/M3)); //mole fraction of solvent
10 P2=23.756; //in torr
11 T=298; //in K
12 P1=P2*X; //vapour pressure of solution intorr
13 printf('P1=%.2f torr',P1)
14
15 //There are some errors in the solution given in textbook
16 //page 39
```

Scilab code Exa 2.7.3 Ex 6

```
1 clear
2 clc
3 m1=0.5126; //in dissolved mass in gm
4 mM1=128.2; //molar mass of napthalene in gm
5 m0=50; //mass of solvent in gm
6 B=(m1/mM1)/(m0/1000); // Molality of solution in mol/
      kg
7 printf ('B=\%.5 \, \text{f} \, \text{mol/kg}',B)
8 delTb=0.402; //change in tempereature of napthalene
      in K
9 Kb=delTb/B;
10 delTbs=0.647//chamge in temp for unknown solution in
      K
11 m2=0.6216; //mass of unknown solute
12 M=(Kb*m2*1000)/(delTbs*m0);//molar mass of unknown
      solute
13 printf('\nM=\%.2 f gm/mol', M)
14
```

Scilab code Exa 2.7.4 Ex 7

```
1 clear
2 clc
3 P0=100; //vapour pressure in torr
4 P2 = 760; //in torr
5 T2 = 353.15; //in K
6 T1=300.15; // in K
7 DelSm_v=87.03; //entropy in J/Kmol
8 R=8.314; // \text{in J/Kmol}
9 P1=P2/(10^{(DelSm_v*(T2-T1))/(2.303*R*T1))}
10 printf('P1=%.1f torr',P1)
11 X=(P1-P0)/P1;//Mole fraction of solute
12 printf('\nX=\%.4 f', X)
13 T0 = (1/T2) + ((R*log(1-X))/(DelSm_v*T2))
14 Tb=1/T0; // Boiling point of solution
15 printf ('\nTb=\%.1 f K', Tb)
16
17 // page 52
```

Scilab code Exa 2.7.5 Ex 8

```
1 clear
2 clc
3 M1=76; //molar mass of CS2 in gm
4 w2=3.795; //weight of S in 100gm of CS2 in gm
5 w1=100; //weight of CS2
6 R=8.314; //in J/Kmol
7 Tb=319.81; //boiling point of CS2 in K
8 Tbp=319.45; //boiling point of pure CS2 in K
9 DelHm_v=351.87; //enthalpy of vaporization in J/gm
```

```
10 M2=(w2*M1*R*(Tb^2))/(w1*(Tb-Tbp)*DelHm_v*76)
11 printf('M2=%.1 f gm/mol',M2)
12 N=M2/32;//no. of s atoms
13 printf('\nN=%.1 f',N)
14
15 // Molecular formula S8
16 // There are some errors in the solution given in textbook
17 // page 53
```

Scilab code Exa 2.8.2 Ex 9

```
1 clear
2 clc
3 M1=152.2; //molar mass of carbon in gm
4 T1=451.55; // melting point temp in K
5 T2=433.85; // melting point temp in K(for unknown
      compound)
6 w2=0.0386; //mass of unknown compound in gm
7 w1=0.522; //mass of camphor in solution in gm
8 R=8.314; //J/Kmol
9 DelHm_f = 6.844; // in KJ
10 Kf = (((R*T1^2)/(DelHm_f*10^3))*(M1/1000))
11 printf ('Kf=%.1f',Kf)
12 DelT_f = (T1-T2);
13 B=(DelT_f/Kf);//molality of the solution in mol/kg
14 printf('\nB=\%.2 \text{ f mol/kg',B})
15 M2=(w2/B)*(1000/w1);
16 printf ('\nM2=\%.1 \text{ f gm/mol'}, M2)
17 Z=92.3/7.7; //mass ratio of wC and wH
18 NO=1/12; //atomic ratio of H and C
19 K = (Z * NO);
20 printf('\nK=\%.1 f',K)
21
\frac{22}{\text{Clearly}} we get K=1.0 implies empirical formula is
```

```
CH
23 Me=13; //empirical mass in gm
24 N=(M2/Me); //no. of units of CH
25 printf('\nN=%.1f',N)
26
27 //Taking approximately equal to 12 Molecular formula is C12H12
28 //There are some errors in the solution given in textbook
29 //page 58
```

Scilab code Exa 2.8.3 Ex 10

```
1 clear
2 clc
3 n1=0.1; //amount of napthalene in mol
4 n2=0.9; //amount of benzene in mol
5 Tf=278.5; //freezing temperature of C6H6 in K
6 Tb=353; // boiling temperature of C6H6 in K
7 P1=670; //vapour pressure in torr
8 P2=760; //in torr
9 R=8.314; // \text{in J/Kmol}
10 M1=78; //atomic mass of C6H6
11 DelHm_f = 10.67; // in KJ
12 X1 = (P2 - P1) / P2; //
13 nT = (n1/X1); //
14 nb = (nT - n1); //
15 Kfb=((R*Tf^2)/(DelHm_f*1000))*(M1/1000);//
16 printf ('Kfb=\%.3 f Kg/mol', Kfb)
17 B=(n1/(nb*M1)*1000);//molality of the solution
18 printf('\nB=\%.3 \text{ f mol/kg',B})
19 DelTf=(Kfb*B); //in K
20 T=(Tf-DelTf); //in K
21 printf('\nT=\%.2 f K',T)
22
```

```
23 //There are some errors in the solution given in textbook
24 //page 59
```

Scilab code Exa 2.9.1 Ex 11

```
1 clear
2 clc
3 \text{ x1} = [0.0200, 0.0150, 0.0100, 0.0075, 0.0050, 0.00025]
4 y2 = [0.104, 0.101, 0.099, 0.098]
5 \text{ x2} = [0.0200, 0.0150, 0.0100, 0.0050]
6 y1 = [0.585, 0.440, 0.300, 0.230, 0.18, 0.140]
7 plot(x1,y1, 'go-',x2,y2, 'ro-')
8 \quad [m1,c1] = reglin(x1,y1)
9 [m2,c2] = reglin(x2,y2)
10 R=82.0; //in cm^2atm/Kmol
11 T=298; //in K
12 M=R*T/c2; //molar mass of polyisobutylene in gm/mol
13 printf('M=\%.1d gm/mol', M)
14
15 //There is some error in the solution given in
      textbook
16 //There are some errors in the solution given in
      textbook
17 //page 68
```

Scilab code Exa 2.9.2 Ex 12

```
1 clear
2 clc
3 h=3.9; // height in mm
4 rho=1.0; // density of solution
5 g=980.7; // acceleration due to gravity in cm/s^2
```

```
6 P=((h/10)*rho*g);//osmotic pressure in gm/(cms^2)
7 V=1000; //volume in cm<sup>3</sup>
8 T=25; //temperatur in C
9 w2=1; // weight of serum albumin
10 R=8.314; // in J/Kmol
11 M2 = (w2*(R*10^7)*(T+273))/(P*V); //molar mass of serum
       albumin
12 printf ('M2=\%.3 \text{ f } *10^4 \text{ g/mol'}, M2/10^4)
13
14 //The above result is in CGS units
15
16 //The following results are in SI units
17 p=(P/10); //osmotic pressure in <math>N/m^2
18 m2=(M2/10^3);//molar mass of serum albumin
19 printf('\nm2=\%.2 f Kg/mol', m2)
20
21 / page 67
```

Scilab code Exa 2.9.3 Ex 13

```
1 clear
2 clc
3 w1=1;//amount of glucose C6H12O6 in gm
4 w2=1;//amount of sucrose C12H12O22 in gm
5 n=(w1/180)+(w2/342);//amount of solute
6 R=8.314;//in J/Kmol
7 T=25;//in C
8 V=1000;//volume of water in gm
9 P=(n*R*(T+273))/(V*10^-6);//osmotic pressure of solution
10 printf('P=%.3f *10^4 N/m^2',P/10^4)
11 w=(w1+w2);//weight of solute
12 M=(w*R*(T+273))/(P*(V*10^-3));//molar mass of solute
13 printf('\nM=%.4f kg/mol',M)
14 Mn=((w1*10^-3)+(w2*10^-3))/(n);//average molar mass
```

```
in Kg/mol
15 printf('\nMn=%.4f kg/mol',Mn)
16
17 //page 67
```

Scilab code Exa 2.10.1 Ex 14

```
1 clear
2 clc
3 P=2.47;//osmotic pressure in atm
4 DelHm_v=539*18; //in cal/mol
5 R=0.082; //in litreatm
6 Vm=18.1; //molar volume of water
7 T=303; //in K
8 Tb=373; // boiling point temperature in K
9 DelTb = (P*Vm*10^-3*(Tb^2))/(DelHm_v*(R/1.987)*T)
10 printf('DelTb=%.4 f K', DelTb)
11
12 //The above calculations are done in CGS units
13
14 //To convert them into SI units the following
      changes are done
15 R=8.314; //in J/Kmol
16 P=2.47*101325; //in N/m^2
17 Vm = 18.1 * 10^-6; //in m^3/mol
18
19 //Both answers come out be same
20 //page 70
```

Scilab code Exa 2.10.2 Ex 15

```
1 clear
2 clc
```

```
3 rho=1.59; //density of CCl4 in kg/dm<sup>3</sup>
4 M1=154; //molar mass of CCl4 in kg/mol
5 DelTb=0.60; //boiling point of CCl4 in K
6 Kb=5.03; //in Kkg/mol
7 m=DelTb/Kb;
8 m2=3; //amount added to CCl4 in gm
9 m1=100; //amount of CCl4 in gm
10 M2 = (m2*10^-3)/(m1*10^-3*m); //molar mass of substance
11 printf ('M2=\%.3 f kg/mol', M2)
12 Kf=31.8; //freezing point depression in Kkg/mol
13 DelTf = Kf * m
14 printf('\nDelTf=\%.3 f K', DelTf)
15 P=(m2*10^-3/M2)/(((m2*10^-3)/M2)+((m1*10^-3)/M1)
      *10^-3)));//relative vapour pressure DelP/P1
16 printf ('\nP=\%.5 f', P)
17 V1m=m1*10^-3/(rho); //volume in dm^3
18 R=0.082; //in dm^3atm/Kmol
19 T=298; // Temperature in K
20 P0=((m2/250)*R*T)/V1m;//osmotic pressure in atm
21 printf ('\nP0=\%.3 \text{ f atm'}, P0)
22
23 //There are some errors in the solution given in
      textbook
24 / page 71
```

Scilab code Exa 2.11.1 Ex 16

```
1 clear
2 clc
3 w2=0.122; //amount of benzoic acid in kg
4 w1=1; //amount of benzene in kg
5 Tb1=353; //boiling point of benzene in K
6 Tb2=354.5; //boiling point at which actually boiling of benzene starts in K
7 DelH_v=394.57; //in J/gm
```

Scilab code Exa 2.11.2 Ex 17

```
clear
clc
w2=0.011;//amount of barium nitrate in kg
M2=0.2613;//molar mass of barium nitrate inkg/mol
w1=0.1;//amount of water in kg
Kb=5.2;//for 100gm of water in K
m=(w2/M2)/w1;//molality of solution in mol/kg
DelTb_0=Kb/10*m;//in K
T=100.46;//boiling point of water
i=(T-100)/DelTb_0;//van't hoff factor
v=3;
alpha=(i-1)/(v-1);//degree of ionization
printf('alpha=%.2f',alpha)
//page 75
```

Scilab code Exa 2.11.3 Ex 18

```
1 clear
2 clc
3 M1=324.6; // molar mass of Hg(NO3) 2 in gm
4 m1=3.24; //amount of Hg(NO3)2 in gm dissolved in
      water
5 w=1; //amount of water in kg
6 MO = (m1/M1) * (1/w); // molality of the solution in K
7 Kf = 1.86; // in Kkg/mol
8 DelTf_0=(Kf*M0); // here DelTf_0 is negative
9 DelTf=0.0558; //freezing point of the solution here
      DelTf is negative
10 i=(DelTf/DelTf_0);//van't hoff factor
11 v=3;
12 alpha=(i-1)/(v-1); // degree of dissociation
13 printf ('alpha=\%1d', alpha)
14 M2=271.5; //molar mass of HgCl2 in gm
15 m2=10.84; //amount of HgCl2 dissolved in water in gm
16 M=(m2/M2)*(1/w);//molality of HgCl2 solution in mol/
17 DelTf1_0=Kf*M; //for HgCl2 solution
18 printf('\nDelTf1_0=\%.3 f K', DelTf1_0)
19
20 / page 76
```

Scilab code Exa 2.11.4 Ex 19

```
1 clear
2 clc
3 M=78*10^-3; // molar mass of C6H6 in Kg/mol
4 R=8.314; // gas constant in J/Kmol
5 Tf2=278.4; // melting point of pure C6H6 in K
6 DelHm_v=10.042*10^3; // heat of fusion in J/mol
7 Kf=((M*R*Tf2^2)/DelHm_v); // inKkg/mol
8 Tf1=277.4; // melting point of C6H6 in Kg/mol
9 M1=(Tf2-Tf1)/Kf; // molality in mol/kg
```

Scilab code Exa 2.11.5 Ex 20

```
1 clear
2 clc
3 DelTf1=0.704; //freezing point of aqueous KCN in K
4 Kf = 1.86; //in \, kg/mol
5 M1=(DelTf1)/Kf;//molality of the solution containing
      KCN
6 DelTf2=0.530; // freezing point on addition of Hg(CN)2
7 M2=(DelTf2)/Kf;//molality on addition og Hg(CN)2
8 Kplus=0.1892; //amount of K+ in 1000gm of solvent
9 HgCN2=0.095; //amount of Hg(CN)2 added to form
      complex
10 M = (Kplus + Kplus + HgCN2 - M2); //
11 N=(M/HgCN2); //no. of CN— units combined
12 printf('N=\%.1 f', N)
13
14 //Formula is Hg(CN)2^-4
15 //page 77
```

Scilab code Exa 2.11.6 Ex 21

```
1 clear
2 clc
3 M1=148.31; // molar mass of Mg(NO2)2 in gm
4 m1=6.69; //amount of Mg(NO2)2 dissolved in water
5 m2=100; //amount of water
6 P1=747; // pressure in torr
7 T2=373; //temperature in K
8 P=760; // pressure at normal temperature
9 X=(m1/M1)/((m1/M1)+(m2/18));//mole fraction of
      solute in solution \
10 DelP=X*P; //
11 i=(P-P1)/DelP; //van't hoff factor
12 v=3; //
13 alpha=(i-1)/(v-1); // degree of dissociation of salt
     in solution
14 printf ('alpha=\%.3 f', alpha)
15
16 //page 78
```

Scilab code Exa 2.11.7 Ex 22

```
1 clear
2 clc
3 C_Mg=0.5; // concentration of Mg2+ ion
4 C_S04=0.7; // concentration of SO4_2- ion
5 C_Al=0.1; // concentration of Al3+ ion
6 C_Cl=0.3; // concentration of Cl- ion
7 C_NH4=0.4; // concentration of NH4+ ion
8 Z1=2; // valence of Mg2+ ion
9 Z2=2; // valence of SO4_2- ion
10 Z3=3; // valence of Al3+ ion
11 Z4=1; // valence of Cl- ion
12 Z5=1; // valence of NH4+ ion
13 mu=1/2*(C_Mg*(Z1^2)+C_S04*(Z2^2)+C_Al*(Z3^2)+C_Cl*(Z4^2)+C_NH4*(Z5^2)); // ionic strength
```

```
14 printf('mu=%.1f',mu)
15
16 //page 78
```

Scilab code Exa 2.11.8 Ex 23

```
1 clear
2 clc
3 Kf=1.86; //in Kkg/mol
4 m=0.2; //amount of aqueous solution of KCL freezes in
       mol/kg
5 DelTf_0=Kf*m; //in K
6 DelTf_1=0.680; // in K
7 i1=DelTf_1/DelTf_0;//van't hoff factor
8 printf('i1=\%.2 f',i1)
9 v = 2;
10 alpha=(i1-1)/(v-1); // degree of dissociation
11 printf ('\nalpha=\%.2 f', alpha)
12 z=1; // valency
13 mu = (1/2) * ((m*z^1) + (m*z^1))
14 printf('\nmu=\%.1 f', mu)
15 i2=v*(1-((0.375+z-z)*(sqrt(mu))))
16 printf('\ni2=\%.4 f',i2)
17 Kb=0.52; //in Kkg/mol
18 \quad DelTb=i1*Kb*m
19 printf ('\nDelTb=\%.3 f K', DelTb)
20 R=8.314; // \text{in J/Kmol}
21 T = 273; //in K
22 P=i1*(m*10^3)*R*T*(1/101325);//osmotic pressure in
23 printf('\nP=%.1f atm',P)
24
25 //page 79
```

Scilab code Exa 2.12.1 Ex 24

Scilab code Exa 2.12.2 Ex 25

```
1 clear
2 clc
3 n2=6.2; //in mol
4 n1=1000; //in mol
5 X=(n2)/((n1/18)+n2); // solubility of sucrose
6 T1=298; //in K
7 T2=473; // freezing point temperature in K
8 R=8.314; //in J/Kmol
9 DelH2m_f=-(R*2.303*log10(X)/((1/T1)-(1/T2))); // molar heat of fusion
10 printf('DelH2m_f=%.1d J/mol', DelH2m_f)
11
```

```
12 //There are some errors in the solution given in textbook
13 //page 82
```

Chapter 3

Phase Rule

Scilab code Exa 3.3.1 Ex 1

```
1 clear
2 clc
3 //In KCL NaCl H20 system
4 r=3; //no. of reactions
5 C=8; //no. of constituents
6 Z=2; //no. of restricting equations
7 C1=C-r-Z; //no. of components
8 printf ('C1=\%.1d',C1)
9
10 //If salts present in equal amounts
11 C1=C-r-(Z+1); //no. of components
12 printf ('\nC1=\%.1d',C1)
13
14 // If KCL NaCl as strong electrolytes
15 r=1; //no.of reactions
16 C=6; //no. of constituents
17 Z=2; //no. of restricting equations
18 C3=C-r-Z; //no. of components
19 printf('\nC3=\%.1d',C3)
20
21 // If salts present in equal amounts
```

```
22 C4=C-r-(Z+1); //no. of components
23 printf('\nC4=\%.1d',C4)
24
25 //In KCL NaCl H20 system
26 r=5; //no. of reactions
27 C=11; //no. of constituents
28 Z=2; //no. of restricting equations
29 C5=C-r-Z; //no. of components
30 printf ('\nC5=\%.1d', C5)
31
32 //If salts present in equal amounts
33 C6=C-r-(Z+1); //no. of components
34 printf ('\nC6=\%.1d',C6)
35
36 // If KCL NaCl NaBr and KBr as strong electrolytes
37 \text{ r=1}; //\text{no.of reactions}
38 C=7; //no. of constituents
39 Z=2; //no. of restricting equations
40 C7=C-r-Z; //no. of components
41 printf('\nC7=\%.1d',C7)
42
43 //If salts present in equal amounts
44 C8=C-r-(Z+1); //no. of components
45 printf ('\nC8=\%.1d', C8)
46
47 // page 103
```

Scilab code Exa 3.3.2 Ex 2

```
1 clear
2 clc
3 //For system when P_NH3=P_HCl
4 r=1; //no. of equations
5 C=3; //no. of constituents
6 Z1=1; //no. of restricting equations
```

```
7 C1=C-r-Z1; //no. of components

8 printf('C1=%.1d',C1)

9
10 //For system when P_NH3 not equal P_HCl

11 Z2=0; //no. of restricting equations

12 C1=C-r-Z2

13 printf('\nC1=%.1d',C1)

14
15 //page 103
```

Scilab code Exa 3.3.3 Ex 3

```
1 clear
2 clc
3 C=9;//no. of constituents
4 r=5;//no. of equilibium reactions
5 Z=1;//no. of restricting conditions
6 C1=C-r-Z;//no. of components
7 printf('C1=%.1d',C1)
8
9 //page 103
```

Scilab code Exa 3.3.4 Ex 4

```
1 clear
2 clc
3 // Arbitrary amounts of A1 and A2 only
4 C=4; //no. of constituents
5 r=1; //no. of reactions
6 Z1=1; //no. of restrictions
7 C1=C-r-Z1; //no. of components
8 printf('C1=%.1d',C1)
```

```
10  // Arbitrary amounts of A1, A2, A3, A4
11  Z2=0
12  C1=C-r-Z2; //no. of components
13  printf('\nC1=%.1d',C1)
14
15  // Different moles of A1 and A2 only
16  Z3=2
17  C1=C-r-Z3; //no. of components
18  printf('\nC1=%.1d',C1)
19
20  // page 103
```

Chapter 4

Solutions

Scilab code Exa 4.6.1 Ex 1

```
1 clear
2 clc
3 T1=273; //in K
4 T2=283; //in K
5 R=8.314; //in J/Kmol
6 alpha1=0.04889; //absorption coefficients in /atm
7 alpha2=0.03802; //absorption coefficients in /atm
8 DelH=(2.303*R*log10(alpha2/alpha1))/((1/T1)-(1/T2)); //enthalpy of solution
9 printf('DelH=%.1d J/mol',DelH)
10
11 //Answer comes negative, error in the textbook
12 //page 118
```

Scilab code Exa 4.6.2 Ex 2

```
1 clear
2 clc
```

```
3 V1=500; //volume of H2O in cm<sup>3</sup>
4 V2=15.03; //volume of CH4 in cm<sup>3</sup>
5 V=V2/V1;//volume dissolved in 1 cm<sup>3</sup> water
6 P=1; //pressure in atm
7 T=273; // Temperature in K
8 R=82.06; //In cm<sup>3</sup>atm/Kmol
9 X=(P*V)/(R*T); //amount of gas dissolved in mol
10 M=(X*16); //mass of gas dissolved in gm
11 K=M/P; //
12 m1=0.001; //amount of CH4 in mol
13 m2=300; //amount of H20 in cm<sup>3</sup>
14 M1=(m1*16)/m2; //mass of gas dissolved in 1 cm<sup>3</sup>
15 PO=M1/K; //pressure if Henry's law holds in atm
16 printf ('P0=\%.3 f atm', P0)
17
    //There are some errors in the solution given in
18
       textbook
19 //page 58
```

Scilab code Exa 4.6.3 Ex 3

```
1 clear
2 clc
3 Kh=150; //Henry's law constant in torr
4 X1=0.12; //mole fraction of acetone
5 P=(Kh*X1); //vapour pressure of acetone in torr
6 printf('P=%.1d torr',P)
7 Kh1=175; //Henry's law constant for chloroform in torr
8 X2=(P/Kh1);
9 printf('\nX2=%.3f',X2)
10
11 //page 119
```

Scilab code Exa 4.6.4 Ex 4

```
1 clear
2 clc
3 X1=4/100; // amount of NH3 solution
4 X2=(1-X1); //amount of water]
5 P=17; //vapour pressure of pure water
6 PT=50; //total pressure in torr
7 P2=(P*X2);//vapour pressure of water in torr
8 P1=(PT-P2);//vapour pressure of NH3 in torr
9 Kh=P1/X1; //Henry's constant for NH3 in torr
10 X=5/100; //mol \% of solution
11 P10=Kh*X; // pressure of NH3 at 5% mol in torr
12 printf('P10=%.1f torr',P10)
13 P20=P*(1-X); // pressure of water at 5\% mol in torr
14 printf ('\nP20=\%.1 f torr', P20)
15 PTO=(P10+P20); // total pressure for 5% of mol
      solution in torr
16 printf('\nPT0=\%.1f torr',PT0)
17
18 //There are some errors in the solution given in
      textbook
19 //page 119
```

Scilab code Exa 4.6.5 Ex 5

```
1 clear
2 clc
3 P1=2/100*101325; // partial pressure of O2 in Pa
4 P2=8/100*101325; // partial pressure of N2 in Pa
5 Kh1=2.53*10^9; // Henry's law constant for O2 in Pa
6 Kh2=5.47*10^9; // Henry's law constant for N2 in Pa
```

```
7 X1=(P1/Kh1);//mole fraction of O2
8 X2=(P2/Kh2);//mole fraction of N2
9 K = (X1/X2);
10 P=1; //in atm
11 M1 = (K/(P+K))*100; //mol \% of O2
12 printf ('M1=\%.2 f', M1)
13 M2=100-M1; //mol \% of N2
14 printf('\nM2=\%.2f', M2)
15 X=X1+X2; //total mole fraction
16 N=X*(1000/18); //in mol
17 Kf = 1.86; // Kkg/ mol
18 DelTf = (Kf * N); // freezing point of saturated water in
19 printf ('\nDelTf=\%.5 f', DelTf)
20
21 //Freezing point will be negative of DelTf
22 //There are some errors in the solution given in
      textbook
23 //page 120
```

Scilab code Exa 4.7.3 Ex 6

```
clear
clc
Xt=1/2; //mole fraction of toluene
Xb=1/2; //mole fraction of benzene
Pt=4.274; // Partial pressure of toluene in kNm^2
Pb=13.734; // Partial pressure of benzene in kNm^2
P=(Xt*Pt)+(Xb*Pb); // total pressure in kNm^2
P=(Xt*Pt)+(Xb*Pb); // total pressure in kNm^2
printf('P=%.4 f kNm^2',P)
Yt=(Xt*Pt)/P; // compostion of toluene
printf('\nYt=%.4 f ',Yt)
Yb=(1-Yt); // compostion of benzene
printf('\nYb=%.4 f ',Yb)
P0=(Pb*Pt)/(Pt+((Pb-Pt)*Xt)); // pressure at which
```

```
last trace liquid disappear
14 printf('\nP0=\%.3 \text{ f kNm}^2', P0)
15 Xt1=(Xt*P0)/Pt;//composition of last trace of
      toluene
16 printf('\nXt1=\%.4 f kNm^2', Xt1)
17 Xb1=(1-Xt1);//composition of last trace of benzene
18 printf ('\nXb1=\%.4 f kNm^2', Xb1)
19 P=sqrt(Pt*Pb);//pressure when 1 mol of mixture is
      vaporized in kN/m<sup>2</sup>
20 printf('\nP=\%.3 f kN/m^2',P)
21 Yb1=1-((P-Pt)/(Pb-Pt)); //composition of benzene when
       1 mol of mixture is vaporized
22 printf (' \nYb1 = \%.3 f', Yb1)
23 Yt1=(1-Yb1); // composition of toluene when 1 mol of
      mixture is vaporized
24 printf (' \ NYt1 = \%.3 f', Yt1)
25
26 //There are some errors in the solution given in
      textbook
27 //page 143
```

Scilab code Exa 4.7.4 Ex 7

```
1 clear
2 clc
3 XA=0.70;
4 YA=0.35;
5 P=600; //in torr
6 PA=(YA*P)/XA; //vapour pressure of pure A
7 printf('PA=%.1d torr',PA)
8 PB=((1-YA)*P)/(1-XA); //vapour pressure of pure B
9 printf('\nPB=%.1f torr',PB)
10
11 //page 145
```

Scilab code Exa 4.7.5 Ex 8

```
1 clear
2 clc
3 PA=54.4; // vapour pressure of n-hexane in kN/m^2
4 PB=18.8; // vapour pressure of n-heptane in kN/m^2
5 YA=0.85; // molar fraction of n-hexane
6 XA=(YA*PB)/(PA-((PA-PB)*YA)); // mole fraction of n-hexane in equilibrium with vapour
7 printf('XA=%.3f',XA)
8 R=8.314; // J/Kmol
9 DelS_mix=(-((XA*2.303*log10(XA))+((1-XA)*2.303*log10(1-XA))))*R
10 printf('\nDelS_mix=%.3f J/K',DelS_mix)
11 // page 146
```

Scilab code Exa 4.7.6 Ex 9

```
clear
clc
P1=36.7;//vapour pressure of pure toluene in torr
P2=118.2;//vapour pressure of pure benzene in torr
nt=50;//% amount of toluene in gm
nb=50;//% amount of benzene in gm
Nt=92;//molar mass of toluene in gm/mol
Nb=78;//molar mass of benzene in gm/mol
Xt=(nt/Nt)/((nt/Nt)+(nb/Nb));//mole fraction of toluene
Pt=Xt*P1;//partial pressure of toluene on torr
Pb=(1-Xt)*P2;//partial pressure of benzene on torr
P=Pt+Pb;//total pressure of toluene on torr
```

Scilab code Exa 4.7.7 Ex 10

```
1 clear
2 clc
3 PA=22.93; //vapour pressure of pure ethyl bromide in
      kNm^-2
4 PB=16.93; //vapour pressure of pure propylene bromide
       in kNm^{-2}
5 \text{ nA=3; //in mol}
6 nB=2; //in mol
7 P=20.4; // in kNm^{-2}
8 XA=(P-PB)/(PA-PB);//mole fraction of ethyl bromide
9 printf ('XA=\%.3 f', XA)
10 XB=(1-XA); //mole fraction of propylene bromide
11 printf('\nXB=\%.3 f', XB)
12 YA = (XA * PA) / P;
13 printf ('\nYA=\%.4 f', YA)
14 NA = (nA - (XA * (nA + nB)))/(1 - (XA/YA)); //amount of
      vaporized ethyl bromide at P
15 printf ('\nNA=\%.4 f', NA)
16 NB=(NA/YA)-NA; //amount of vaporized propylene
```

```
bromide at P

17 printf('\nNB=%.4f',NB)

18 //There are some errors in the solution given in textbook

19 //page 147
```

Scilab code Exa 4.7.8 Ex 11

```
1 clear
2 clc
3 \text{ YA=0.6497;} //
4 XA = 0.578; //
5 \text{ nA=3;} //
6 nB=2; //
7 N1 = (YA - (nA/(nA+nB)))/((nA/(nA+nB))-XA);/amount of
      liquid phase
8 N2=(1/(1+N1))*(nA+nB);//amount of vapour phase
9 NA=YA*((nA+nB)/(1+N1));//mole fraction of ethyl
      bromide at P
10 printf('\nNA=\%.4 \text{ f mol'}, NA)
11 NB = (1 - YA) * ((nA + nB) / (1 + N1)); //
12 printf('\nNB=\%.4 f mol', NB)
13
14 //page 148
```

Scilab code Exa 4.7.9 Ex 12

```
1 clear
2 clc
3 PA=300; //in torr
4 PB=800; //in torr
5 YA=0.25;
```

```
6 XA = (YA * PB) / (PA - ((PA - PB) * YA)); //mole fraction of
      component A
7 printf ('XA=\%.4 f', XA)
8 \text{ XB} = (1 - \text{XA})
9 P=(PA*XA)+(PB*XB);//total pressure P in torr
10 printf('\nP=\%.1f torr',P)
11 P0=760; //in torr
12 XA1=(PO-PB)/(PA-PB);//mole fraction at normal
      boiling point
13 printf ('\nXA1=\%.2 f', XA1)
14 XB1 = (1 - XA1); //
15 printf ('\nXB1=\%.2 f', XB1)
16 P1 = (PA * YA) + (PB * (1 - YA)); //
17 printf('\nP1=%.1d torr',P1)
18 YA1 = (YA * PA) / P1; //
19 printf ('\nYA1=\%.3 f', YA1)
20 YB1 = (1 - YA1); //
21 printf ('\nYB1=\%.3 f', YB1)
22
23 / page 149
```

Scilab code Exa 4.7.10 Ex 13

```
1 clear
2 clc
3 PA=300; //in torr
4 PB=800; //in torr
5 XA=0.60; //
6 XB=1-XA; //
7 P=(PA*XA)+(PB*XB); // pressure at which first bubble of vapour is formed
8 printf('P=%.1d torr',P)
9 YA=(XA*PA)/P; // mole fraction of components in first bubble of vapour
10 printf('\nYA=%.2f',YA)
```

Scilab code Exa 4.7.11 Ex 14

```
1 clear
2 clc
3 Tb=353.25; //temperature of benzene in K
4 Tt=383.75; //temperature of toluene in K
5 T=368.15; //temperature in K
6 DelS_vR=-10.6; //
7 Xb = ((exp(DelS_vR)) - (exp((DelS_vR)*(Tt/T))))/((exp((exp(DelS_vR))*(Tt/T))))
      DelS_vR)*(Tb/T)))-(exp((DelS_vR)*(Tt/T))));//mole
       fraction of benzene
8 printf ('Xb=\%.4 f', Xb)
9 Xt=(1-Xb);//mole fraction of benzene
10 printf ('\nXt=\%.4 f', Xt)
11 Yb=Xb*(exp((-DelS_vR)*(1-(Tb/T))));//
12 printf ('\nYb=\%.4 f', Yb)
13 Yt=1-Yb; //
14 printf ('\nYt=\%.4 f', Yt)
15
16 //There are minor errors in solution in textbook
17 // page 151
```

Scilab code Exa 4.7.12 Ex 15

```
1 clear
2 clc
3 T1 = 5100; //in K
4 T2=4530; //in K
5 A=16.24; //
6 B=13.38; //
7 PA = 760; //in torr
8 PB = PA
9 TA = -(T1/(log10(PA)-A)); //in K
10 printf('TA=%.1 f K', TA)
11 TB = -(T2/(log10(PB) - B)); //in K
12 printf('\nTB=\%.1 f K', TB)
13 l=round(TA)+3;
14 u = round(TB) - 6;
15 T=1:5:u;
16 for i=1:length(T)
17 P_A=10^(-T1/T(i)+A);
18 P_B=10^(-T2/T(i)+B);
19 x_A(i) = (PA - P_B) / (P_A - P_B);
20 y_A(i) = x_A(i) * P_A/PB
21 end
22 plot(x_A,T,y_A,T); xlabel('Mole fraction xA'); ylabel
      ('T/K');
23
24 //There is no numerical solution to the given
      question only a graph is plotted
25 //page 152
```

Scilab code Exa 4.7.13 Ex 16

```
1 clear
2 clc
3 T=391; //temperature in K
4 Yb = 0.045; //
5 \text{ Ya=0.955}; //
6 T=410; //in K
7 X = 50/100; //
8 XA=0.09; //composition of liquid at 12
9 XB=0.91; //composition of liquid at 12
10 YA=0.74; //composition of liquid at v2
11 YB=0.26; //composition of liquid at v2
12 N = (YA - X) / (X - XA); //
13 M1 = (X - XA) / ((YA - X) + (X - XA)) * 100; //mol \% of vapour
14 printf ('M1=\%.2 f', M1)
15 M2=100-M1; //mol \% of vapour
16 printf('\nM2=\%.2f', M2)
17 XA1=0.035; //composition of liquid at 13
18 XB1=0.965; ///composition of liquid at 13
19 Yaf=0.743;//
20 \text{ X1=(Ya+Yaf)/2;} //
21 printf ('\nX1=\%.2 f', X1)
22
23 //page 154
```

Scilab code Exa 4.7.14 Ex 17

```
1 clear
2 clc
3 n1=270;//amount of sugar in gm
4 N1=358;//molar mass of sugar in gm/mol
5 n2=1;//amount of water in kg
6 N2=18;//molar mass of water in gm/mol
7 M1=n1/N1;//amount of sugar in mol
8 M2=(n2*1000)/N2;//amount of water in mol
9 Mt=M1+M2;//total amount in mol
```

```
10 Xs=M1/Mt;//mole fraction of sugar
11 Xw=M2/Mt; //mole fraction of water
12 R=8.314; // in J/Kmol
13 T = 298; //in K
14 DelG_m = (Xs*R*T*log(Xs)) + (Xw*R*T*log(Xw))
15 printf ('DelG_m=\%.3 f J/mol', DelG_m)
16 DelGm=Mt*DelG_m; //
17 printf ('\nDelGm=\%.2 f J', DelGm)
18 DelS_m=-(DelG_m/T);//
19 printf('\nDelS_m=\%.3 f J/Kmol', DelS_m)
20 DelSm = -(DelGm/T); //
21 printf('\nDelSm=\%.3 f J/Kmol', DelSm)
22
23 //There are some errors in the solution given in
      textbook
24 / page 154
25
26 //there are some minor errors in solutions in
      textbook
```

Scilab code Exa 4.7.15 Ex 18

```
1 clear
2 clc
3 R=8.314; //in J/Kmol
4 T=300; //in K
5 Nt=10; //in mol
6 m1=1; //in mol
7 m2=9; //in mol
8 M=10; //in mol
9 DelGm1=Nt*R*T*((m1/M*log(m1/M))+(m2/M*log(m2/M)))
      *(10^-3); //
10 printf('DelGm1=%.3 f kJ', DelGm1)
11 DelSm1=-((DelGm1/T)*1000); //
12 printf('\nDelSm1=%.2 f J/K', DelSm1)
```

```
13 Nt1=20; //in mol
14 m3=19; //in mol
15 M1 = 20; //in mol
16 DelGm3=Nt1*R*T*((m1/M1*log(m1/M1))+(m3/M1*log(m3/M1)
      ))*(10^-3);//
17 printf ('\nDelGm3=\%.3 f kJ', DelGm3)
18 DelSm3=-((DelGm3/T)*1000);//
19 printf ('\nDelSm3=\%.2 f J/K', DelSm3)
20 DelGm2=DelGm3-DelGm1
21 printf ('\nDelGm2=\%.3 f kJ', DelGm2)
22 DelSm2=DelSm3-DelSm1
23 printf ('\nDelSm2=\%.2 f J/K', DelSm2)
24
25 //There are some errors in the solution given in
     textbook
26 //page 155
```

Scilab code Exa 4.10.1 Ex 19

```
1 clear
2 clc
3 P=760; //total vapour pressure in torr
4 MA=112.5; //molar mass of chlorobenzene in gm
5 MB=18; //molar mass of water in gm
6 P1=538.9; //vapour pressure of water at 90.6 C
7 PA=(P-P1); //vapour pressure of pure chlorobenzene in
       torr
8 \text{ W1} = (PA*MA)/(P1*MB); //
9 W2=1/W1; //
10 W = W2 + 1; //
11 M = 100; //in gm
12 WA=M/W; //
13 printf ('WA=%.1d gm', WA)
14
15 //There are some errors in the solution given in
```

```
textbook
16 //page 191
```

Scilab code Exa 4.10.2 Ex 20

```
1 clear
2 clc
3 Pt=747.3; // toatal pressure in torr
4 PB=638.6; // vapour pressure of water
5 PA=Pt-PB; // vapour pressure of liquid
6 WA=1.27; // in gm
7 WB=1; // in gm
8 MB=18; // molar mass of water in gm/mol
9 MA=(WA/WB)*((PB*MB)/PA); // molar mass of liquid in gm /mol
10 printf('MA=%.1f gm/mol',MA)
11
12 // page 192
```

Scilab code Exa 4.11.1 Ex 21

```
1 clear
2 clc
3 Xw1=0.01; //in gm/dm^3
4 Xw2=0.12; //in gm/dm^3
5 Xw3=0.24; //in gm/dm^3
6 Xb1=1.848*10^-5; //in gm/dm^3
7 Xb2=2.661*10^-3; //in gm/dm^3
8 Xb3=1.089*10^-2; //in gm/dm^3
9 //Taking Xw1, Xw2, Xb1, Xb1 to calculate n
10 n=((log10(Xb1))-(log10(Xb2)))/((log10(Xw1))-(log10(Xw2))); // degree of complexity
11 printf('n=%.1f',n)
```

```
12
13 // Similarly can be done using lines (4,5,7,8) and also for lines (3,5,6,8)
14 // For all we get n=2
15 // page 200
```

Scilab code Exa 4.11.2 Ex 22

```
1 clear
2 clc
3 KD=9; // distribution coefficient
4 M1=0.10825; //amount of p-nitroaniline in gm
5 N=0.00693; //amount of p-nitroaniline chlorine
      dissolved in mol
6 NO=0.04342; //molarity of dil HCl
7 m1=138; //molar mass of p-nitroaniline in gm/mol
8 N1=60; //amount of benzene added in cm<sup>3</sup>
9 N2=25; //amount of benzene withdrawn in cm<sup>3</sup>
10 M2=(M1/m1); //amount of free base in 25cm^3 of
      benzene
11 X = (M2 * (N1/N2)); //amount in mol
12 M = (X/(N1/1000)); //in mol/dm^3
13 MO=(M/KD); //molar concentration of free bas e in
      ageous solution
14 C=(N-(X+MO)); // concentration of unhydrolyzed cation
15 C1=(X+MO); //amount of free base in benzene and water
16 Ct=(NO+C1); //total amount of acid
17 Kh=(M0*Ct)/C;//hydrolysis constant
18 printf ('kh=\%.4 \text{ f mol/dm}^3', Kh)
19
20 //There are some errors in the solution given in
      textbook
21 //page 201
```

Scilab code Exa 4.11.3 Ex 23

```
1 clear
2 clc
3 \text{ KD} = 25.8; //
4 M1=0.385; //concentration of NH3 in aqueous CuSO4
      solution in mol/dm^-3
5 M2=0.0112;//concentration of NH3 in chloroform in
     mol/dm^-3
6 m=0.025; //concentration of CuSO4 in mol/dm^-3
7 MO=(M2*KD);//concentration of NH3 in aqueous layer
      in mol/dm^-3
8 M=M1-M0; // concentration of combined NH3 in mol/dm^-3
9 X = (M/m); //
10 printf ('X=\%.2 f', X)
11
12 // X is approximately equal to 4
13 / page 202
```

Scilab code Exa 4.11.4 Ex 24

```
1 clear
2 clc
3 Ac=10;//
4 Ab=1;//
5 Kd=Ab/Ac;//
6 wn=0.01;//in gm
7 w=1.00;//in gm
8 Vb=100;//in cm^3
9 Vc=10;//in cm^3
10 n=log10(wn/w)/(log10((Kd*Vb)/((Kd*Vb)+Vc)));//
11 printf('n=%.1f',n)
```

Scilab code Exa 4.11.5 Ex 25

```
1 clear
2 clc
3 KD=4.7; // distribution coefficient
4 W1=20; //amount of ether added in cm<sup>3</sup>
5 W2=50; //amount of solution in cm<sup>3</sup>
6 M=0.20; //amount of aspirin in gm
7 w2=(M/(1+(W1*KD)/W2));//mass of aspirin in ether
      phase in gm
8 printf ('w2=\%.4 f gm', w2)
9 w1=M-w2; //mass of aspirin in aqueous phase in gm
10 printf ('\nw1=\%.4 f gm', w1)
11 \quad n=2
12 W = 10; //
13 wn = (((1/KD)*W2)/(((1/KD)*W2)+W))^n*(M); //amount of
      aspirin unextracted in gm
14 printf('\nwn=\%.4 f \text{ gm',wn})
15 w=(M-wn); //amount of aspirin extracted in gm
16 printf('\nw=\%.4 f gm',w)
17
18 //page 203
```

Chapter 5

Phase Diagrams of one component systems

Scilab code Exa 5.2.1 Ex 1

```
1 clear
2 clc
3 DelHm_f = 6008.5; // \text{in J/mol}
4 m=18; //molar mass of water in gm/mol
5 rho_i=0.917; //density of ice in gm/cm<sup>3</sup>
6 rho_1=0.99987; // density of liquid in gm/m<sup>3</sup>
7 DelV=((m/rho_1)-(m/rho_i));
8 printf ('DelV=\%.3 \text{ f}*10^--6 \text{ m}^3/\text{mol}', \text{DelV}/10^--6)
9 T=273.15; //in K
10 P=760; //in mmHg
11 Pt=4.6; // triple point pressure in mmHg
12 DelPDelT=((DelHm_f)/(T*DelV*10^-6));
13 printf ('\nDelPdelT=\%.3 f 10^6 J/Km<sup>3</sup>', DelPDelT/10^6)
14 DelP=((P-Pt)/P)*101.325*10^3; //in N/m^3
15 DelT=(DelP/DelPDelT);
16 printf ('\nDelT=\%.4 f K', DelT)
17
18 //There are some errors in the solution given in
      textbook
```

```
19 / page 222
```

Scilab code Exa 5.2.2 Ex 2

```
1 clear
2 clc
3 R=8.314;//in J/Kmol
4 T=273.15;//in K
5 m=18;//molar mass of water in gm /mol
6 rho_1=0.99987;//density of water ingm/cm^3
7 P2=101.325*10^3;//atmospheric pressure in N/m^2
8 Pt=4.6;//triple point pressure in mmHg
9 P1=(Pt/760)*P2;//
10 P=Pt*10^((((m*10^-3)/(rho_1*10^3))*(P2-P1)))/(2.303*R*T));//vapour pressure of liquid water in mmHg
11 printf('P=%.3 f mmHg',P)
12
13 //page 223
```

Chapter 6

Phase Diagrams of two component systems

Scilab code Exa 6.6.1 Ex 1

```
1 clear
3 DelHmA_f = 28.87; //enthalpy of fusion of NaCl in KJ/
4 DelHmB_f=24.06; // enthalpy of fusion of Na2SO4 in KJ/
5 R=8.314; // in J/Kmol
6 TA=1074; // melting point temperature of NaCl
7 XB=48.2/100; //composition of Na2SO4
8 XA = (1 - XB); // composition of NaCl
9 TB=1/((1/TA)-(2.303*R*log10(XA)/(DelHmA_f*10^3))
      +(2.303*R*log10(XB)/(DelHmB_f*10^3)));//melting
     point of Na2SO4 in K
10 printf('TB=%.1d K',TB)
11 T=(1)/((-(2.303*R*log10(XA)/(DelHmA_f*10^3))+(1/TA))
     );//temperature of the sysytem in K
12 printf('\nT=\%.1 f K',T)
13
14 //There are some errors in the solution given in
```

```
textbook
15 //page 313
```

Scilab code Exa 6.6.2 Ex 2

```
1 clear
2 clc
3 M=20; //in Kg
4 BC=35; //in mm
5 BA=31; //in mm
6 M1=(BA/(BA+BC))*M; //mass of Sb in Kg
7 printf('M1=%.2 f Kg',M1)
8 L=(BA+20); //in mm
9 M2=(L/(L+BC))*20; //mass of Sb in Kg
10 printf('\nM2=%.2 f Kg',M2)
11
12 //page 314
```

Scilab code Exa 6.6.3 Ex 3

```
1 clear
2 clc
3 X1=80;//mol % of n-heptane
4 X2=90;//mol % of n-heptane
5 X3=95;//mol % of n-heptane
6 X=24;//mol % of n-heptane at -114.4 C
7 N1=(100-X1)/(X1-X);//at 80% of n-heptane
8 N2=(X1-X)/(100-X);//at 80% of n-heptane
9 N=((N2*100)/X1)*100;//%of n-heptane recovered w.r.t to original n-heptane
10 printf('N=%.1f',N)
11 N3=(100-X2)/(X2-X);//at 90% of n-heptane
12 N4=(X2-X)/(100-X);//at 90% of n-heptane
```

Scilab code Exa 6.6.5 Ex 4

```
1 clear
2 clc
3 X1=1.04; //solubility of KBr in gm/gm
4 w=1; //amount of H20 in gm
5 X2=0.64; //solubility of KBr after cooling in gm/gm
6 M1=(w/X1)*(X1-X2);//mass of water to be added in gm
7 M2=(X2/w)*M1; //mass of KBr in the solution in gm
8 M=(X1-X2)-M2;//mass of KBr separated in gm
9 N1=M*(100/X1);//percent yield of pure KBr
10 printf('N1=\%.2 f', N1)
11 M3=(w/X1)*X2;//mass of water remained in above
     evaporation process in gm
12 M4 = (X2/w)*(M3); //mass of water remained after
     cooling in above evaporation process in gm
13 M=(X2)*M4; //mass of KBr separated in second crop in
14 Mt=(X1-X2)+M;//total mass of kBr separated in two
     crops in gm
15 N2=Mt*(100/X1);//percent of KBr recovered
16 printf ('\nN2=\%.2 f', N2)
17
18 //There are some errors in the solution given in
```

```
textbook
19 //page 317
```

Scilab code Exa 6.6.6 Ex 5

```
1 clear
2 clc
3 M1=40; //total amount of mixture of calcium and
      aluminium in gm
4 w1=54; //amount of aluminium in CaAl2 in gm
5 w2=81; //amount of aluminium in CaAl3 in gm
6 W1=70; //total amount of aluminium in gm
7 X1 = (W1 - ((w2/M1) * M1)) / ((w1/M1) - (w2/M1)); //amount of
      calcium in gm
8 printf ('X1=\%.1 f gm', X1)
9 N1=(w1/M1)*X1; //amount of calcium in mixture of
      CaAl2 in gm
10 printf ('\nN1=\%.1 f gm', N1)
11 N2=(w2/M1)*(M1-X1); //amount of aluminium in mixture
      of CaAl3 in gm
12 printf('\nN2=\%.1 f gm', N2)
13 M2=20; //total amount of mixture of calcium and
      aluminium in gm
14 W2=90; // total amount of aluminium in gm
15 w3=86; //amount of aluminium after melting
16 M3=14; //percent of clacium mass melted
17 X2 = (W2 - ((w3/M3) * M2)) / ((w2/M1) - (w3/M3)); // amount of
      calcium in gm
18 printf ('\nX2=\%.1 f gm', X2)
19 N3=(w2/M1)*X2;//amount of calcium in mixture of
     CaAL2 in gm
20 printf ('\nN3=\%.1 f gm', N3)
21 N4 = (w3/M3) * (M2 - X2); //amount of aluminium in mixture
      of CaAL3 in gm
22 printf ('\nN4=\%.1 f gm', N4)
```

```
23
24 //There are some errors in the solution given in textbook
25 //page 318
26
27 //There are some errors in the solution given in textbook
```

Chapter 8

Electrochemical cells

Scilab code Exa 8.9.2 Ex 1

```
1 clear
2 clc
3 EFe_Pt=0.771; //in V
4 EFe=-0.440; //in V
5 Ecell=(EFe_Pt-EFe); // in V
6 printf ('Ecell = \%.3 f V', Ecell)
7 E1=1.510; //in V
8 E2=1.223; //in V
9 Ecell=(E1-E2); // in V
10 printf ('\nEcell=\%.3 f V', Ecell)
11 E3=0.401; // in V
12 E4=-0.601; //in V
13 Ecell=(E3-E4); // in V
14 printf ('\nEcell=\%.3 f V', Ecell)
15 E5=0.337; //in V
16 E6=0.799; //in V
17 Ecell=(E5-E6); // in V
18 printf ('\nEcell=\%.3 f V', Ecell)
19 E7=1.44; // in V
20 E8=0.5355; //in V
21 Ecell=(E7-E8); //in V
```

```
22 printf('\n E cell = \%.4 f V', Ecell)
23 E9=0.7991; //in V
24 E10=-0.126; //in V
25 Ecell=(E9-E10); // \text{in V}
26 printf('\n E cell = \%.4 f V', Ecell)
27 E11=1.51; //in V
28 E12=-0.49; //in V
29 Ecell=(E11-E12); // in V
30 printf('\nEcell=\%.3 f V', Ecell)
31 E13=1.33; //in V
32 E14=0.771; //in V
33 Ecell=(E13-E14); // \text{in V}
34 printf ('\nEcell=\%.3 f V', Ecell)
35 E15=0.771; //in V
36 E16=0.150; //in V
37 Ecell=(E15-E16); // \text{in V}
38 printf('\nEcell=\%.3 f V', Ecell)
39 E17=0.771; //in V
40 E18=0.76; //in V
41 Ecell=(E17-E18); //in V
42 printf('\n E cell = \%.3 f V', Ecell)
43 E19=0.771; // in V
44 E20=1.080; //in V
45 Ecell=(E19-E20); // in V
46 printf ('\nEcell=\%.3 f V', Ecell)
47
48 / page 448
```

Scilab code Exa 8.9.3 Ex 2

```
1 clear
2 clc
3 E1=1.3595; //in V
4 E2=0.337; //in V
5 Ecell=(E1-E2); //in V
```

```
6 printf ('\nEcell=\%.4 f V', Ecell)
7 E3=1.510; //in V
8 E4=0.337; //in V
9 Ecell=(E3-E4); // in V
10 printf('\nEcell=\%.3 f V', Ecell)
11 E5=0.7791; // in V
12 E6 = 0.337; //in V
13 Ecell=(E5-E6); // in V
14 printf ('\nEcell=\%.4 f V', Ecell)
15 E7=0.771; //in V
16 E8=0.150; //in V
17 Ecell=(E7-E8); // \text{in V}
18 printf ('\nEcell=\%.3 f V', Ecell)
19 E9=0.771; //in V
20 E10=1.51; //in V
21 Ecell=(E9-E10); // \text{in V}
22 printf('\nEcell=\%.3 f V', Ecell)
23 E11=0.771; //in V
24 E12=-0.126; //in V
25 Ecell=(E11-E12); //in V
26 printf ('\nEcell=\%.3 f V', Ecell)
27
28 // All the positive values of Ecell gives forward
      reaction, negative values of Ecell gives backward
      reaction
29 //page 451
```

Scilab code Exa 8.9.4 Ex 3

```
1 clear
2 clc
3 E1=1.3595; //in V
4 E2=0.337; //in V
5 Ecell=(E1-E2); //in V
6 printf('\nEcell=%.4 f V', Ecell)
```

```
7 E3=1.510; //in V
8 E4=0.337; //in V
9 Ecell=(E3-E4); // in V
10 printf ('\nEcell=\%.3 f V', Ecell)
11 E5=0.7791; //in V
12 E6=0.337; //in V
13 Ecell=(E5-E6); // in V
14 printf('\nEcell=\%.4 f V', Ecell)
15 E7=0.771; //in V
16 E8=0.150; // in V
17 Ecell=(E7-E8); // in V
18 printf('\n Ecell = \%.3 f V', Ecell)
19 E9=0.771; //in V
20 E10=1.51; //in V
21 Ecell=(E9-E10); // in V
22 printf ('\nEcell=\%.3 f V', Ecell)
23 E11=0.771; //in V
24 E12=-0.126; //in V
25 Ecell=(E11-E12); // \text{in V}
26 printf ('\nEcell=\%.3 f V', Ecell)
27
28
  //page 451
```

Scilab code Exa 8.9.6 Ex 4

```
1 clear
2 clc
3 E1=1.07; //in V
4 E2=0.45; //in V
5 Ecell=(E1-E2); //in V
6 printf('\nEcell=%.2 f V', Ecell)
7 E3=0.71; //in V
8 E4=0.54; //in V
9 Ecell=(E3-E4); //in V
10 printf('\nEcell=%.2 f V', Ecell)
```

```
11
12 // page 454
```

Scilab code Exa 8.9.7 Ex 5

```
1 clear
2 clc
3 \text{ E_RHE} = (0.5335 - (-2.363)); // \text{reduction reaction at RHE}
      in V
4 RT_F=0.05915; //
5 E_LHE = ((RT_F/2) * log10 (0.1*0.2^2)); // reduction
      reaction at LHE in V
6 Ecell=E_RHE-E_LHE; // cell reaction in V
7 printf ('Ecell=%.4f V', Ecell)
8 E_RHE=(0.0-0.0713);//reduction reaction at RHE in V
9 RT_F=0.05915; //
10 E_LHE = ((RT_F) * log10((0.5^(1/2))/(0.02*0.02))); //
      reduction reaction at LHE in V
11 Ecell=E_RHE-E_LHE; // cell reaction in V
12 printf ('\nEcell=\%.4 f V', Ecell)
13 E_RHE = (0.337 - (-0.441)); // reduction reaction at RHE
      in V
14 RT_F=0.05915; //
15 E_LHE = ((RT_F/2) * log10(0.05/0.01)); // reduction
      reaction at LHE in V
16 Ecell=E_RHE-E_LHE; // cell reaction in V
17 printf ('\nEcell=\%.4 f V', Ecell)
18 E_RHE = (0.0-0.0); //reduction reaction at RHE in V
19 RT_F=0.05915; //
20 E_LHE = ((RT_F/2) * log10 (6.43/0.127)); // reduction
      reaction at LHE in V
21 Ecell=E_RHE-E_LHE; // cell reaction in V
22 printf('\n E cell = \%.4 f V', Ecell)
23 E_RHE = (-0.763 - 0.337); //reduction reaction at RHE in
```

Scilab code Exa 8.10.1 Ex 6

```
1 clear
2 clc
3 RT_F=0.05915; //in V
4 Ecell=0.0295; //in V
5 A=0.1; //
6 B=0.01; //
7 n=(RT_F/Ecell)*(log10(A/B)); //
8 printf('n=%.1f',n)
9
10 //page 459
```

Scilab code Exa 8.11.1 Ex 7

```
1 clear
2 clc
3 k = [24.4,48.8,73.2,85.4]
4 E = [0.101,0.116,0.129,0.139]
5 l = log10(k./(100-k))
6 plot(1,E,'mo-')
7 [m,c]=reglin(1,E)
8 V=0.0603;//in V
```

```
9 n=V/m;//
10 printf('n=%.1f',n)
11
12 //page 460
```

Scilab code Exa 8.12.1 Ex 8

```
1 clear
2 clc
3 E0=0.7991; //in V
4 RT_F=0.05915; //in V
5 K1=6.02*10^-8; //
6 K2=1.995*10^-19; //
7 E1=(E0-(RT_F*(-log10(K1)))); //
8 printf('E1=%.4 f V',E1)
9 E2=(E0-(RT_F*(-log10(K2)))); //
10 printf('\nE2=%.4 f V',E2)
11
12 //page 464
```

Scilab code Exa 8.12.2 Ex 9

```
1 clear
2 clc
3 T=298; //temperature in K
4 R=8.314; //J/K
5 F=96500; //in C
6 Kw=(10^-14); //
7 E=((2.303*R*T)/F)*log10(Kw); //reduction potential in V
8 printf('E=%.3f V',E)
9
10 //page 464
```

Scilab code Exa 8.14.1 Ex 10

```
1 clear
2 clc
3 E3=0.54; //in V
4 E4=0.45; //in V
5 n3=4; //
6 \text{ n4=1;} //
7 n1=5; //
8 E1=((-n3*(E3))-(n4*(E4)))/(-n1);// in V
9 printf ('E1=\%.2 f V', E1)
10 n2=6;//
11 n5=1;//
12 E5=1.07; //in V
13 E2=((-n3*(E3))-(n4*(E4))-(n5*E5))/(-n2);// in V
14 printf('\nE2=\%.2 f V',E2)
15
16 / page 468
```

Scilab code Exa 8.16.1 Ex 11

```
1 clear
2 clc
3 E_RHE=(0.1385);//reduction reaction at RHE in V
4 RT_F=0.05915;//
5 E_LHE=((RT_F*2)*log10(0.2));//reduction reaction at LHE in V
6 Ecell=E_RHE-E_LHE;//cell reaction in V
7 printf('Ecell=%.4f V',Ecell)
8 //page 473
```

Scilab code Exa 8.16.2 Ex 12

```
1 clear
2 clc
3 Ecell=0.2860; //in V
4 E_RHE=(-0.1522-(-0.403)); //in V
5 RT_F=0.05915; //
6 a=10^((-2/(3*RT_F))*(Ecell-E_RHE))
7 printf('a=%.4f',a)
8 a1=a^3; //
9 printf('\na1=%.5f',a1)
10
11 //page 474
```

Scilab code Exa 8.16.3 Ex 13

```
1 clear
2 clc
3 m=0.01021; //in mol/kg
4 m1=m*(2*m)^2
5 Ecell=1.1566; //in V
6 E_RHE=(0.222-(-0.762)); //in V
7 RT_F=0.05915; //
8 K=10^((-2/(3*RT_F))*((Ecell-E_RHE)+((RT_F/2)*log10( m1)))); //ion activity coefficient
9 printf('K=%.4f',K)
10
11 //There are some errors in the solution given in textbook
12 //page 474
```

Scilab code Exa 8.18.1 Ex 14

```
1 clear
2 clc
3 n1=2;//
4 F = 96500; //in C
5 E=0.0455//in V
6 DelG=-(n1*F*E);//free energy change in J
7 printf('DelG=%.1d J', DelG)
8 T = 298; //in K
9 dEdT_p = (3.38*10^-4)
10 DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
11 printf('\nDelH=%.1d J',DelH)
12 DelS=(n1*F*dEdT_p); //entropy change in J/K
13 printf('\nDelS=\%.2 f J/K', DelS)
14
15 //There are some errors in the solution given in
      textbook
16 / page 480
```

Scilab code Exa 8.18.2 Ex 15

```
1 clear
2 clc
3 n1=2;//
4 F=96500;//in C
5 E=0.1634//in V
6 DelG=-(n1*F*E);//free energy change in J
7 printf('DelG=%.1f J',DelG)
8 T=298;//in K
9 dEdT_p=(0.000837);//in V/K
10 DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
```

```
printf('\nDelH=%.1d J',DelH)
le DelS=(n1*F*dEdT_p);//entropy change in J/K
printf('\nDelS=%.2f J/K',DelS)

//There are some errors in the solution given in textbook
//page 481
```

Scilab code Exa 8.18.3 Ex 16

```
1 clear
2 clc
3 x = [293, 298, 303]
4 y = [0.0663, 0.06839, 0.07048]
5 plot(x,y,'mo-')
6 [m,c] = reglin(x,y)
7 n=2; //
8 F = 96500; //in C
9 T=298; //in K
10 E=0.06839; //in V
11 DelG=-n*F*E; //in J
12 printf ('DelG=\%.1 f J', DelG)
13 DelH=-n*F*(E-(T*m)); //in J
14 printf('\nDelH=\%.1f J',DelH)
15 DelS=n*F*m; //in J/K
16 printf('\nDelS=\%.1f J/K', DelS)
17
18 //There are some errors in the solution given in
      textbook
19 //page 482
```

Scilab code Exa 8.18.4 Ex 17

```
1 clear
2 clc
3 n1=2;//
4 F=96500;//in C
5 E=0.490//in V
6 DelG=-(n1*F*E);//free energy change in J
7 printf('DelG=%.1f J',DelG)
8 T=298;//in K
9 dEdT_p=-(1.86*10^-4);//in V/K
10 DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
11 printf('\nDelH=%.1f J',DelH)
12 DelS=(n1*F*dEdT_p);//entropy change in J/K
13 printf('\nDelS=%.2f J/K',DelS)
14
15 //page 483
```

Scilab code Exa 8.18.5 Ex 18

```
1 clear
2 clc
3 n=2;//
4 F=96500;//
5 DelH=-217780;//in J
6 T=273;//in K
7 E=1.015;//in V
8 dEdT_p=(1/T)*(E+(DelH/(n*F)));//
9 printf('dEdT_p=%.3f*10^-4 V/K',dEdT_p/10^-4)
10
11 //There are some errors in the solution given in textbook
12 //page 483
```

Scilab code Exa 8.18.6 Ex 19

```
1 clear
 2 clc
 3 DelG1=-237.23; // in kJ
4 DelG2=79.71; // in kJ
5 n=2; //
6 DelG=(DelG1+(n*DelG2)); //in kJ
7 F = 96500; //in C
8 T = 298; //in K
9 E=-((DelG*10^3)/(n*F)); //in V
10 printf ('E=\%.3 f V', E)
11 DelH1=-285.85; // in kJ
12 DelH2=56.9; //in kJ
13 DelH=(DelH1+(n*DelH2)); //in kJ
14 dEdT_p = ((DelH-DelG)*10^3)/(n*F*T); //in V/K
15 printf('\ndEdT_p=\%.5 f V/K', dEdT_p)
16
17 //error in solution
18 ///There are some errors in the solution given in
      textbook
19 //page 484
```

Scilab code Exa 8.18.7 Ex 20

```
1 clear
2 clc
3 E1=0.771; //in V
4 E2=0.150; //in v
5 E=(E1-E2); //in V
6 n=2; //
7 F=96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T=298; //in K
10 Keq=10^((n*F*E)/(2.303*R*T)); //equilibrium constant
1 printf('Keq=%.1f*10^21', Keq/10^21)
```

Scilab code Exa 8.18.8 Ex 21

```
1 clear
2 clc
3 E1=1.51; //in V
4 E2=-0.49; //in v
5 E=(E1-E2); //in V
6 n=2; //
7 F=96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T=298; //in K
10 Keq=10^((n*F*E)/(2.303*R*T)); //equilibrium constant
11 printf('Keq=%.d10^331', Keq/10^331)
12 //There are some errors in the solution given in textbook
13 //page 486
```

Scilab code Exa 8.18.9 Ex 22

```
1 clear
2 clc
3 E1=-0.40; //in V
4 E2=-0.61; //in v
5 E=(E1-E2); //in V
6 n=2; //
7 F=96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T=298; //in K
10 Keq=10^((n*F*E)/(2.303*R*T)); // equilibrium constant
1 printf('Keq=%.2f*10^7', Keq/10^7)
```

```
13 / page 486
```

Scilab code Exa 8.18.10 Ex 23

```
1 clear
2 clc
3 E1=-0.224; //in V
4 E2=0.337; //in v
5 E=(E1-E2); //in V
6 n=2; //
7 F=96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T=298; //in K
10 Keq=10^((n*F*E)/(2.303*R*T)); // equilibrium constant
11 printf('Keq=%.1f*10^-19', Keq/10^-19)
12
13 // page 486
```

Scilab code Exa 8.18.11 Ex 24

```
1 clear
2 clc
3 E1=-0.151; //in V
4 E2=0.799; //in v
5 E=(E1-E2); //in V
6 RT_F=0.05913; //in V
7 Ksp=10^(E/RT_F); // solubility product
8 printf('Ksp=%.2f*10^-17', Ksp/10^-17)
9
10 //page 487
```

Scilab code Exa 8.18.12 Ex 25

```
1 clear
2 clc
3 E1=0.222; //in V
4 E2=0.095; //in v
5 E = (E1 - E2); //in V
6 n=1; //
7 F = 96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T = 298; //in K
10 \text{Keq}=10^{(n*F*E)/(2.303*R*T)}; // \text{equilibrium constant}
11 printf ('Keq = \%.1 f', Keq)
12 X = (Keq * 0.1) / (1 + Keq); / in moldm^3
13 printf('\nX=\%.6 f moldm^3', X)
14 Y = 0.1 - X; // in moldm^3
15 printf('\nY=\%.6 f moldm^3',Y)
16
17 //error in the solution
18 //There are some errors in the solution given in
      textbook
19 // page 487
```

Scilab code Exa 8.18.13 Ex 26

```
1 clear
2 clc
3 E1=0.337; //in V
4 E2=-0.763; //in v
5 E=(E1-E2); //in V
6 n=2; //
7 F=96500; //in C/mol
8 R=8.314; //in J/Kmol
9 T=298; //in K
10 Keq=10^((n*F*E)/(2.303*R*T)); //equilibrium constant
```

```
11 printf('Keq=%.1 f *10^37', Keq/10^37)
12
13 //page 488
```

Scilab code Exa 8.18.14 Ex 27

```
1 clear
2 clc
3 m = [0.01, 0.02, 0.05, 0.10, 0.20]; //
4 n=0.01; //
5 \text{ mu=m+n;} //
6 \quad E = [1.0495, 1.0315, 1.0073, 0.9885, 0.9694]
7 E2=0.2225; //in V
8 R=0.05913; //in V
9 \ O = log 10 (m/n); //
10 K = (E-E2)/R + 0; //
11 plot(mu, K, 'mo-');//
12 [m,c]=reglin(mu,K)
13 Ksp=10^-c; //
14 printf ('Ksp=\%.2 f*10^-14', Ksp/10^-14)
15
16 //There are some errors in the solution given in
      textbook
17 //page 491
```

Scilab code Exa 8.18.15 Ex 28

```
1 clear
2 clc
3 RT_F=0.05913; //in V
4 pH=5; //
5 E1=0.280; //in V
6 E2=0.6996; //in V
```

```
7 E=(E1-E2)+(RT_F*pH);//in V
8 printf('E=%.4 f V',E)
9 E=0;//
10 pH=(E-(E1-E2))/RT_F;//
11 printf('\npH=%.1 f',pH)
12 pH=7.5
13 E=(E1-E2)+(RT_F*pH);//in V
14 printf('\nE=%.4 f V',E)
15
16 //page 489
```

Scilab code Exa 8.18.16 Ex 29

```
1 clear
2 clc
3 RT_F=0.05913; //in V
4 pH=7; //
5 E=0.062; //in V
6 E1=(E-(RT_F*pH)); //in V
7 E2=0.145; //in V
8 pH1=(E2-E1)/RT_F; //
9 printf('pH1=%.1 f', pH1)
10 E=-0.062; //in V
11 E1=(E-(RT_F*pH)); //in V
12 pH2=(E2-E1)/RT_F; //
13 printf('\npH2=%.1 f', pH2)
14
15 //page 499
```

Scilab code Exa 8.20.1 Ex 30

```
1 clear
2 clc
```

```
3 RT_F=0.05913; // in V
4 m_LHC=0.01; //
5 gamma_LHC=0.383; //
6 m_RHC=1.0; //
7 gamma_RHC=0.042; //
8 Ecell=-(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC))); //
9 printf('Ecell=%.4 f V', Ecell)
10
11 // page 525
```

Scilab code Exa 8.20.3 Ex 31

```
1 clear
2 clc
3 RT_F=0.05913; //in V
4 m_LHC=0.01; //
5 gamma_LHC=0.708; //
6 m_RHC=0.10; //
7 gamma_RHC=0.502; //
8 Ecell=((-3/2)*(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC)))); //
9 printf('Ecell=%.4 f V', Ecell)
10 //page 527
```

Scilab code Exa 8.21.2 Ex 32

```
1 clear
2 clc
3 RT_F=0.05913; //in V
4 m_LHC=0.02; //
5 gamma_LHC=0.320; //
```

```
6  m_RHC=0.2; //
7  gamma_RHC=0.110; //
8  E1=0.370; // in    V
9  Ecell_1=(-E1)*(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC))); // in    V
10  printf('Ecell_1=%.4 f V', Ecell_1)
11  Ecell_2=(Ecell_1)/(2*E1); // in    V
12  printf('\n Ecell_2=%.5 f V', Ecell_2)
13
14  // page 536
```

Scilab code Exa 8.23.1 Ex 33

```
1 clear
2 clc
3 E1=-0.277; //in V
4 E2=-0.744; //in V
5 Ecell_1=(E2-E1); //in V
6 printf('Ecell_1=%.3f V', Ecell_1)
7 Ecell_2=(E1-E2); //in V
8 printf('\nEcell_2=%.3f V', Ecell_2)
9
10 //page 539
```

Scilab code Exa 8.23.2 Ex 34

```
1 clear
2 clc
3 E1=-0.74; //in V
4 E2=-0.40; //in V
5 E3=-0.91; //in V
6 n1=3; //
7 n2=1; //
```

```
8 n3=6; //
9 n=2; //
10 E=((n1*E1)-(n2*E2))/n;//in V
11 printf ('E=%.2 f V',E)
12 E=E2-E1; //in V
13 DelG1=n1*E;//
14 printf ('\nDelG1=\%.2 f V', DelG1)
15 E=E1-E3; //in V
16 DelG2=n3*E;//
17 printf(' \cap DelG2=\%.2 f V', DelG2)
18 E=E2-E3; //in V
19 DelG3=n*E;//
20 printf ('\nDelG3=\%.2 f V', DelG3)
21 RT_F=0.05913; //in V
22 Keq=10^(DelG1/RT_F);//
23 printf ('\nKeq=\%.2 f *10^17', Keq/10^17)
24
25 / page 540
```

Scilab code Exa 8.23.3 Ex 35

```
1 clear
2 clc
3 Ecell=0; //in V
4 E1=0; //in V
5 E2=-0.40; //in V
6 E=(E1-E2); //in V
7 T=298; //in K
8 RT_F=0.05913; //in V
9 Kw=10^-14; //in moldm^3
10 Ksp=Kw^2*(10^((-2/RT_F)*(-E))); //in (moldm^3)^2
11 printf('Ksp=%.2 f*10^-15 (moldm^3)^2', Ksp/10^-15 )
12
13 dEdT_p=0.002; //in V/K
14 n=2
```

```
15 F=96500; //inC
16 DelG=n*F*E1; //change in gibbs energy
17 printf('\nDelG=%.1d',DelG)
18
19 DelS=n*F*dEdT_p; //change in entropy in J/K
20 printf('\nDelS=%.1d J/K',DelS)
21
22 DelH=DelG+(T*DelS)*10^-3; //change in enthalpy in kJ
23 printf('\nDelH=%.3f kJ',DelH)
24
25 //page 543
```

Scilab code Exa 8.23.4 Ex 36

```
1 clear
2 clc
3 K1=1;//
4 K2=1.66*10^6;//in dm^3/mol
5 Keq=(K1/K2);//equilibrium constant in mol/dm^3
6 RT_F=0.05913;//in V
7 n=1;//
8 Ecell=RT_F/n*(log10(Keq))
9 printf('Ecell=%.4f V',Ecell)
10 E_h=0.337;//
11 n2=2
12 Ecell_2=n2*E_h
13 printf('\nEcell_2=%.3f V',Ecell_2)
14
15 //page 544
```

Scilab code Exa 8.23.5 Ex 37

```
1 clear
```

```
2 clc
3 RT_F=0.05913; //in V
4 Ecell=0.1185//in V
5 K1=0.379*10^-3//
6 K2=37.9*10^-3//
7 m=-(RT_F/Ecell)*log10(K1/K2); //
8 printf('m=%.1 f',m)
9 K3=0.1; //
10 K4=1; //
11 Ecell_1=0.1263; //in V
12 n=(-(Ecell_1*m)/RT_F)/log10(K3/K4); //
13 printf('\nn=%.1 d',n)
14
15 //page 545
```

Scilab code Exa 8.23.6 Ex 38

```
1 clear
2 clc
3 E1=0.6994; //in V
4 RT_F=0.05913; //in V
5 E=0.7314; //in V
6 kRHE_kLHE=10^((E-E1)/RT_F);//
7 printf('kRHE_kLHE=%.3f',kRHE_kLHE)
8 K=0.1; //in mol/dm<sup>3</sup>
9 K2=2.1*10^-4; //in mol/dm^3
10 K1=(K2/(kRHE_kLHE^2)); // in mol/dm<sup>3</sup>
11 printf ('\nK1=\%.2 f*10^-5 mol/dm^3', K1/10^-5)
12 pH1=-log10(sqrt(K2*K))
13 printf('\npH1=\%.3f',pH1)
14 pH2=-log10(sqrt(K1*K))
15 printf ('\npH2=\%.3 f', pH2)
16
17 // page 545
```

Scilab code Exa 8.23.7 Ex 39

```
1 clear
2 clc
3 Ecell=-0.188; //in V
4 RT_F=0.05913; //in V
5 H=10^(Ecell/RT_F); //in mol/dm^3
6 M=1/32; //
7 alpha=(H/M); // degree of freedom
8 printf('alpha=%.3f*10^-2',alpha/10^-2)
9 Kh=(M*alpha^2)/(1-alpha); //
10 printf('\nKh=%.2f*10^-5 mol/dm^3',Kh/10^-5)
11
12 //page 547
```