Formal Security Analysis of Neural Networks using Symbolic Intervals

Shiqi Wang et. al.

杨宇清

April 11, 2019

Table Of Contents

Table Of Contents

- Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Table Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Existence of Problems

Outline

- Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Shiqi Wang et. al.

Existence of Problems

- Existing adversarial testing models:
 - No guarantee of non-existence of adversarial examples
 - My conjecture:
 - Tend to overestimate
 - The example might not be applied to real life
- High overhead of SMT
 - especially for non-linear, non-convex function

Goal

- Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Goal

Goal:

A system for formally checking security properties of Relu-based DNNs

- High efficiency: "200 times on average"
- High accuracy: "a variety of optimizations to improve accuracy"

le Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Target

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
 - Related Work
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Target

- Target system: ACAS Xu
- Security property: input-output-based

 To security property
- Attacker model: similar to adversarial examples:

given a computer vision DNN f, the attacker solves following optimization problem: $min(L_p(x'-x))$ such that $f(x) \neq f(x')$, where $L_p(\cdot)$ denotes the p-norm and x'-x is the perturbation applied to original input x. In other words, the security property of a vision DNN being robust against adversarial perturbations can be defined as: for any x' within a L-distance ball of x in the input space, f(x) = f(x').

Overview

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Overview

- Main method: interval analysis
- Optimization₁: symbolic Interval
- Optimization₂: iterative refinement: (existence of Lipschitz Consistency)

A Working Example

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

A Working Example

A Working Example: aiming to verify whether safe or not

Distance: x,

Approaching angle : y

Safe property : $x \in [4, 6] y \in [1, 5]$

Figure 2: Running example to demonstrate our techniques.

(a) Naive interval propagation

Shiqi Wang et. al.

Dependency error

- Naively computing output intervals in this way suffers from high errors as it computes extremely loose bounds.
- Only a highly conservative estimation of the output range, too wide to be useful for checking any safety property.

Symbolic Interval and Iterative Refinement

- Symbolic interval propagation
 - explicitly represent the intermediate computations of each neuron in terms of the symbolic intervals that encode the interdependency of the inputs to minimize overestimation
- Iterative refinement
 - The dependency error for Lipschitz continuous functions decreases as the width of intervals decreases
 - Therefore, we can bisect the input interval by evenly dividing the interval into the union of two consecutive sub-intervals and reduce the overestimation

Symbolic Interval and Iterative Refinement

- Symbolic interval propagation (algebraic operand preservation)
- Iterative refinement (even interval division)

Table Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Analysis Procedure

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

able Of Contents Motivation Model Method Details **Evaluation** Related Works Appendix

Statistics

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Statistics

Source	Properties	Networks	Reluplex Time (sec)	ReluVal Time (sec)	Speedup
	ϕ_1	45	>443,560.73*	14,603.27	>30×
	ϕ_2	34* ²	123,420.40	117,243.26	$1 \times$
	ϕ_3	42	35,040.28	19,018.90	$2 \times$
Committee	ϕ_4	42	13,919.51	441.97	32×
Security Properties from [25]	ϕ_5	1	23,212.52	216.88	107×
	ϕ_6	1	220,330.82	46.59	4729×
	ϕ_7	1	>86400.0*	9,240.29	>9×
	ϕ_8	1	43,200.01	40.41	1069×
	ϕ_9	1	116,441.97	15,639.52	7×
	ϕ_{10}	1	23,683.07	10.94	2165×
	ϕ_{11}	1	4,394.91	27.89	158×
Additional	ϕ_{12}	1	2,556.28	0.104	24580×
Security	ϕ_{13}	1	>172,800.0*	148.21	>1166×
Properties	ϕ_{14}	2	>172,810.86*	288.98	>598×
-	ϕ_{15}	2	31,328.26	876.80	36×

^{*} Reluplex uses different timeout thresholds for different properties.

Table 1: ReluVal's performance at verifying properties of ACAS Xu compared with Reluplex. ϕ_1 to ϕ_{10} are the properties proposed in Reluplex [25]. ϕ_{11} to ϕ_{15} are our additional properties.

Statistics

# Seeds	CW	CW Miss	ReluVal	ReluVal Miss
50	24/40	40.0%	40/40	0%
40	21/40	47.5%	40/40	0%
30	17/40	58.5%	40/40	0%
20	10/40	75.0%	40/40	0%
10	6/40	85.0%	40/40	0%

Table 2: The number of adversarial inputs CW can find compared to ReluVal on 40 adversarial ACAS Xu properties. The third column shows the percentage of adversarial properties CW failed to find

P	Adv Range	Adv	Timeout	Non-adv
S_1	[6402.36, 10000]	98229	1	163915
S_2	[-0.2, -0.186] and $[-0.103, 0]$	18121	2	14645
C-	[_0.1.0.0085]	17738	1	15020

Table 3: The second column shows the input ranges containing at least one adversarial input, while the rest of ranges are found by ReluVal to be non-adversarial. The last three columns show the number of total sub-intervals checked by ReluVal with a precision of e-6.

Adversarial machine learning

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Adversarial machine learning

- Lack of Guarantee: None of the existing attacks can provide any provable guarantees about the non-existence of adversarial examples
- ReluVal can provide a provable security analysis of given input ranges, systematically narrowing down and detecting all adversarial ranges

Table Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Customized SMT solvers

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Customized STM solvers

- **Significant overhead**: Customized SMT solvers for verifying security properties of DNNs are mostly limited by the scalability of the solver
- ReluVal uses interval-based techniques and significantly outperforms the state-of-the-art solver-based systems like Reluplex

Table Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Convex-problem transformation

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning
 - Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Model

Convex-problem transformation

- Lack of Concrete Results: Focus on simply over-approximating the total number of potential adversarial violations without trying to find concrete counterexamples problem
- ReluVal can find concrete counterexamples as well as verify security properties of pre-trained DNNs

Table Of Contents Motivation Model Method Details Evaluation Related Works Appendix

Discreteness analysis

Outline

- 1 Motivation
 - Existence of Problems
 - Goal
- 2 Model
 - Target
- 3 Method Details
 - Overview
 - A Working Example
 - Analysis Procedure

- 4 Evaluation
- Statistics
- 5 Related Works
 - Adversarial machine learning

•0

- Customized SMT solvers
 - Convex-problem transformation
 - Discreteness analysis
- 6 Appendix

Verivis: Transform the verification problem into a convex optimization problem using relaxations to over-approximate the outputs of ReLU nodes

- Lack of Verification: Leveraging the discreteness of image pixels cannot verify non-existence of norm-based adversarial examples
- ReluVal can.

An example of Security Property Definition

Property ϕ_1 : If the intruder is distant and is significantly slower than the ownship, the score of a COC advisory will always be below a certain fixed threshold.

Tested on: all 45 networks.

Input ranges: $\rho \ge 55947.691$, $v_{own} \ge 1145$, $v_{int} \le 60$.

Desired output: the output of COC is at most 1500.

Property ϕ_2 : If the intruder is distant and is significantly slower than the ownship, the score of a COC advisory will never be maximal.

Tested on: model_x_y, $x \ge 2$, except model_5_3 and model_4_2

Input ranges: $\rho \ge 55947.691$, $v_{own} \ge 1145$, $v_{int} \le 60$.

Desired output: the score for COC is not the maximal score.

▶ Back to Model

Shiqi Wang et. al.
Formal Security Analysis of Neural Networks using Symbolic Intervals