MATH 364: Lecture 14 (10/03/2024)

Today: * Review for midterm

Optimal Solutions and # Optimal BFS's

 $\frac{\text{Kecall}}{\text{Messall}}$ by $\frac{\text{Kecall}}{\text{Messall}}$ by $\frac{\text{Kecall}}{\text{Messall}}$ We note the following points:

- * an optimal solution is any feasible point that is optimal; it may or may may not be a corner point, i.e., it may or may not be a bots.
- * But if the LP has a unique optimal solution, then that optimal solution must be a bfs.
 - * If the UP has alternative optimal solutions (case 2), it must have infinitely many optimal solutions.
- * The total # bfs's possible is finite, since we can have at-most (n) = n! choices for the set of basic variables, but not all of them may give a bfs. Hence the # optimal bfs's is also finite.

HW6, Problem 5

You will get 3 optimal bfs. Describe them as 4-vectors in the form $\bar{u} = \frac{x_1}{x_2} \left[\cdot \right]$, $\bar{v} = \frac{x_1}{x_3} \left[\cdot \right]$, and $\bar{w} = \frac{x_1}{x_3} \left[\cdot \right]$, Say.

Then describe all optimal solutions as convex combinations of \bar{u} , \bar{v} , and $\bar{\omega}$.

Hwb, Problem 3

142

Afternative Optimal solutions exist if there is a non-basic variable with coefficient o in Row-D.

Here, x, is non-basic with 0 in its Row-0.

=> alternative optimal solutions exist.

BV	\overline{z}	x_1	x_2	x_3	x_4	rhs
	1	(0)	0	0	4	5
X3	0	-2	0	1	2	3
x_2	0	-3	1	0	1	1

But there are no candidates for min ratio test => x, cannot enter the basis. So, there are no alternative optimal bifs's.

Consider $\begin{cases} \max_{x_2} x_2 \\ \text{s.t. } 1 \leq x_2 \leq 2 \\ x_1, x_2 \geq 0 \end{cases}$ $Z^* = 2 \text{ here.}$

There is one optimal by at B(0,2) and infinitely many optimal solutions.

B
A
[6] X,

All optimal solutions can be given as $\bar{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \alpha = 0$, i.e., $\bar{x} = \begin{bmatrix} x \\ 2 \end{bmatrix}, \alpha = 0$.

Hwb, Problem 4

143

What happens if we were to pivot X, in?
We come to the conclusion that the LP is unbounded after that one pivot.

_						
	z	x_1	x_2	x_3	x_4	rhs
_	1	-5	0	0	-1	5
X3	0	(2)	0	1	0	4
X2	0	3	1	0	-2	6
,	_1_	0	0	5/2	-1	15
χ_{l}	O)	0	1/2	0	2
χ_2	0	O	1	- 3/2	-2	0

LP is unboarded

But we can get to that conclusion without pivoting x, in!

Problems from Practice Midterm

$$C_3 = 0$$
, $a_4 = 1$, $C_5 = 0$, $a_3 = 0$, $a_5 = 0$, $a_7 = 1$
and $b = 70$ always hold.

X, X2, X5 cannot be basic (they must be unit vector columns).

So, x_3, x_4, x_6 must be basic. x_3 is basic in Row-1.

 X_4 coefficient in Row 3 is $0 \Rightarrow X_4$ is basic in Row 2, and hence X_6 is basic in Row 3.

z	x_1	x_2	x_3	x_4	x_5	x_6	rhs
1	$c_1 = 0$	c_2	0	C3=0	c4=0	C5=0	z^*
0	3	a_{170}	1	0	$a_{2}7^{0}$	a_3	1
0	-1	-2.	0	a_4	-1	a_{5}	b70
0	a_6	-4	0	0	-3	$a_7=1$	3

(a) The current solution is <u>optimal</u>, and there are alternative optimal basic feasible solutions.

optimality:
$$c_1 = 0$$
, $c_2 = 0$, $c_4 = 0$

For alternative optimal bofs, we should be able to pivot a non-basic var with Row-O coeff = 0 into the basis.

($c_1 = 0$) OR ($c_2 = 0$, $a_1 = 0$) OR ($c_4 = 0$, $a_2 = 0$),

or any combinations of above settings.

(b) LP unbounded.

 $(C_2>0 \text{ and } a_1\leq 0)$ OR $(C_4>0 \text{ and } a_2\leq 0)$, or both.

3. Careful about sign restrictions! Plot at least one Z-line.

4.

z	x_1	x_2	x_3	s_1	s_2	rhs
1	0	-3	0	-3	-1/2	-20
0	1	-1	0	1	-1	2
0	0	2	1	0	1/2	2
1	3	-6	0	0	-7/2	-14
0	1	-1	0	1	-1.	2
D	0	2	1	0	(Y2)	2
1	3	8	7	0	O	0
0	1	3	2)	0	6
0	0	4	2	. 0	1	4

min LP, as all #s in Row-D (under vans) are ≤0.

min
$$z = -3x_1 - 8x_2 - 7x_3$$

S.t. $x_1 + 3x_2 + 2x_3 \le 6$
 $4x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ne 0$

5. TIF

a) feasible region has no corner points.

FALSE

max X_2 S.t. $1 \le X_2 \le 2$ X_1 urs

x, urs has no corner points, but $Z^* = 2$ (i.e., not unbounded LP)

b) False.

If min ratio = 0, Z does not change.