МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 8304	Нам Ё Себ
Преподаватель	Ефремов М. А.

Санкт-Петербург

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0, 20]; при этом средний интервал между ошибками будет $m_{\rm pabh}=10$, СКО $s_{\rm pabh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, $W(y) = b * exp(-b * y), y \ge 0$, с параметром b = 0.1 и соответственно $m_{_{9\text{КСП}}} = s_{_{9\text{КСП}}} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром « b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)), y>=0$, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(/2), s_{\rm pen}=c*sqrt(2-/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.

3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен X_j , j=n+1, n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, равномерно распределенных в интервале [0, 20] (см. Таблица 1).

Таблица 1 — Равномерное распределение при n = 30

1	2	3	4	5	6	7	8	9	10
0.357	1.281	1.710	2.722	3.444	5.817	5.948	7.385	7.938	8.178
11	12	13	14	15	16	17	18	19	20
8.834	9.565	11.068	11.199	12.652	12.678	12.964	13.494	13.520	13.861

21	22	23	24	25	26	27	28	29	30
15.267	15.340	15.862	15.995	16.326	16.893	16.980	19.205	19.347	19.431

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 19.797 > 15.5$$
 условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 2).

Таблица 2 – Значения функций для равномерного распределения при n = 30.

	31	32	33	34	35	36	37
f	3.995	3.027	2.558	2.255	2.034	1.863	1.72466
g	2.678	2.459	2.272	2.112	1.973	1.851	1.74398
f-g	1.317	0.569	0.286	0.143	0.061	0.011	0.01942

Минимум разности достигается при m=36. Первоначальное количество ошибок B=m-1=35. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{N}X_{i}-\sum\limits_{i=1}^{n}iX_{i}}=0.00556$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2$..., $n+k$. Результат представлен в таблице 3.

Таблица 3 — Время обнаружения следующих ошибок для равномерного распределения при n=30.

j	31	32	33	34	35
X_{j}	35.974	44.968	59.957	89.936	179.872

Было рассчитано время до завершения тестирования $t_{k}=410.706$ дней.

Было рассчитано общее время тестирования $t_{\rm oбщ} = 743.761$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, равномерно распределенных в интервале [0, 20](см Таблица 4).

Таблица 4 — Равномерное распределение, $n = 24$	ŀ.
---	----

i	1	2	3	4	5	6	7	8
X	0.579	0.777	1.871	2.680	3.629	4.186	5.436	6.787
i	9	10	11	12	13	14	15	16
X	7.592	9.157	9.461	10.999	12.468	12.655	13.518	13.627
i	17	18	19	20	21	22	23	24
X	14.391	14.495	17.287	18.086	18.827	19.071	19.542	19.560

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 6.517 > 12.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m, A) = \frac{n}{m-A}$ (см.

Таблица 5)

Таблица 5 – Расчёт значений функций для равномерного распределения n = 24.

	25	26	27	28	29
f	3.775	2.815	2.354	2.058	1.843
g	2.829	2.530	2.289	2.090	1.923
f-g	0.946	0.285	0.064	0.032	0.078

Минимум разности достигается при m=28. Первоначальное количество ошибок B=m-1=27. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_{i}-\sum\limits_{i=1}^{n}iX_{i}}=0.00814$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2$..., $n+k$. Результат представлен в таблице 6.

Таблица 6 – Расчет времени обнаружения следующих ошибок для равномерного распределения при n = 24.

j	25	26	27
X_{j}	40.938	61.407	122.814

Было рассчитано время до завершения тестирования $t_{_{\nu}}=225.159$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 481.847$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, равномерно распределенных в интервале [0, 20](см Таблица 7).

Таблица 7 — Равномерное распределение при n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.148	1.041	1.309	2.309	3.901	4.908	5.277	5.751	6.019
i	10	11	12	13	14	15	16	17	18
X_{i}	6.104	6.867	9.621	12.971	15.403	15.852	16.454	17.507	18.091

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 13.121 > 9.5$$
 условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 8)

Таблица 8 – Значения функций для равномерного распределения при n=18.

m	19	20	21
f	3.495	2.547	2.097
g	3.062	2.617	2.285
f-g	0.433	0.069	0.187

Минимум разности достигается при m=20. Первоначальное количество ошибок B=m-1=19. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}iX_i}=0.01745$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j=n+1, n+2..., \ n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Время обнаружения следующих ошибок для равномерного распределения при n=18.

j	19
X_{j}	57.147

Было рассчитано время до завершения тестирования $t_{k}=57.147$ дней.

Было рассчитано общее время тестирования $t_{\text{обш}} = 206.684$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по

значениям случайной величины t, равномерно распределенной в интервале [0, 1], по формуле: $Y = -\ln(t)/b$ (см Таблица 10).

Таблица 10 - Экспоненциальное распределение при <math>n = 30

1	2	3	4	5	6	7	8	9	10
0.139	0.798	0.811	0.933	1.397	1.605	1.994	2.950	3.007	3.538
11	12	13	14	15	16	17	18	19	20
3.690	4.022	4.839	6.204	6.548	6.792	7.752	9.511	10.593	11.163
21	22	23	24	25	26	27	28	29	30
11.896	12.856	16.084	16.521	16.784	22.98	23.803	23.847	25.183	30.610

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 22.754 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 11).

Таблица 11 – Значения функций для экспоненциального распределения при n = 30.

m	31	32	33
f	3.995	3.027	2.558
g	3.638	3.244	2.928
f-g	0.356	0.217	0.369

Минимум разности достигается при m=32. Первоначальное количество ошибок B=m-1=31. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^n X_i-\sum\limits_{i=1}^n iX_i}=0.01123$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2...$, $n+k$. Результат представлен в таблице 12.

Таблица 12 — Временя обнаружения следующих ошибок для экспоненциального распределения при n = 30.

	31
X_{j}	89.025

Было рассчитано время до завершения тестирования $t_{k}=89.025$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 377.888$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 13).

Таблица 13 - Экспоненциальное распределение, <math>n = 24.

i	1	2	3	4	5	6	7	8
X	0.042	0.445	0.723	0.852	1.617	1.740	1.965	3.181
i	9	10	11	12	13	14	15	16
X	4.777	7.021	7.351	8.833	10.319	12.757	13.659	14.255
i	17	18	19	20	21	22	23	24
X	14.819	15.268	16.055	16.167	17.434	22.284	23.865	38.978

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 18.\,104 > 12.\,5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 14).

Таблица 14 – Значения функций для экспоненциального распределения при n = 24.

m	25	26	27
f	3.776	2.816	2.354
g	3.480	3.039	2.697
f	0.295	0.223	0.343

Минимум разности достигается при m=26. Первоначальное количество ошибок B=m-1=25. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}iX_i}=0.01194$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2...$, $n+k$. Результат представлен в таблице 15.

Таблица 15 — Время обнаружения следующих ошибок для экспоненциального распределения при n=24

	25
X_{j}	83.702

Было рассчитано время до завершения тестирования $t_{_k} = 83.703$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 338.121$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 16).

Таблица 16 - Экспоненциальное распределение при <math>n = 18.

i	1	2	3	4	5	6	7	8	9
2	0.211	0.356	0.609	0.649	3.727	3.816	5.003	5.627	5.655
i	10	11	12	13	14	15	16	17	18
2	6.400	6.967	7.821	8.113	10.628	12.992	15.210	16.049	44.194

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 14.108 > 9.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m, A) = \frac{n}{m-A}$ (см Таблица 17).

Таблица 17 – Значения функций для экспоненциального распределения при n = 18

	19	20
	3.495	2.547
	3.679	3.055
f-g	0.184	0.507

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_{i}-\sum\limits_{i=1}^{n}iX_{i}}=0.023889$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 154.037$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0, 1], по формуле:

$$Y = c * sqrt(-2 * ln(t))$$
 (см Таблица 18).

Таблица 18 – Релеевское распределение при n = 30.

1	2	3	4	5	6	7	8	9	10
1.854	1.971	3.385	4.025	5.983	6.654	6.990	7.347	7.626	7.908
11	12	13	14	15	16	17	18	19	20
7.925	8.485	8.701	8.715	9.267	9.655	9.819	10.007	10.405	10.973
21	22	23	24	25	26	27	28	29	30
11.098	11.431	11.57	12.920	13.254	13.736	16.361	17.249	18.205	18.465

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 19.161 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 19).

Таблица 19 – Значения функций для релеевского распределения при n = 30.

31	32	33	34	35	36	37	38	39	40
3.994	3.027	2.558	2.255	2.035	1.863	1.724	1.608	1.510	1.424
2.534	2.336	2.167	2.021	1.894	1.781	1.681	1.592	1.512	1.439

lf-g	1.460	0.690	0.390	0.233	0.140	0.081	0.042	0.016	0.002	0.015

Минимум разности достигается при m=39. Первоначальное количество ошибок B=m-1=38. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{N}X_i-\sum\limits_{i=1}^{i}iX_i}=0.00518$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2$..., $n+k$. Результат представлен в таблице 20.

Таблица 20 — Время обнаружения следующих ошибок для релеевского распределения при n=30.

31	32	33	34	35	36	37	38
24.136	27.584	32.182	38.618	48.272	64.363	96.545	193.09

Было рассчитано время до завершения тестирования $t_{_k} = 524.7910$ дней.

Было рассчитано общее время тестирования $t_{\text{обш}} = 816.784$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром с = 8.0 (см Таблица 21).

Таблица 21 — Релеевское распределение при n = 24

i	1	2	3	4	5	6	7	8
X	0.668	1.112	4.367	4.657	5.315	5.550	5.984	6.714
i	9	10	11	12	13	14	15	16
X	7.411	8.759	8.988	9.545	10.298	10.468	10.825	11.568
i	17	18	19	20	21	22	23	24
X	12.009	12.044	12.106	12.188	12.266	12.390	15.923	19.596

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 15.615 > 12.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 22).

			-				
m	25	26	27	28	29	30	31
f	3.776	2.816	2.354	2.058	1.844	1.678	1.544
g	2.557	2.311	2.108	1.937	1.793	1.668	1.559
f-g	1.218	0.504	0.246	0.120	0.050	0.009	0.014

Таблица 22 – Расчёт значений функций для релеевского распределения (80%).

Минимум разности достигается при m=30. Первоначальное количество ошибок B=m-1=29. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}iX_i}=0.00755$.

Было рассчитано среднее время обнаружения следующих ошибок

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j=n+1$, $n+2$..., $n+k$. Результат представлен в таблице 23.

Таблица 23 – Время обнаружения следующих ошибок для релеевского распределения при n = 24

25	26	27	28	29
26.463	33.079	44.1061	66.159	132.318

Было рассчитано время до завершения тестирования $t_k = 302.127$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 522.890$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром с = 8.0 (см Таблица 24).

Таблица 24 — Релеевское распределение при $n = 18$
--

i	1	2	3	4	5	6	7	8	9
, A	3.342	3.893	4.041	4.913	4.994	5.343	5.663	6.553	6.840
i	10	11	12	13	14	15	16	17	18
1	7.163	7.169	7.514	9.409	11.853	13.462	15.661	18.283	18.698

$$A = \frac{\sum\limits_{i=1}^{n} iX_{i}}{\sum\limits_{i=1}^{n} X_{i}} = 12.160 > 9.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 25).

Таблица 25 – Значения функций для релеевского распределения при n = 18.

	19	20	21	22	23
	3.495	2.548	2.098	1.812	1.607
	2.631	2.296	2.036	1.829	1.660
f-g	0.863	0.251	0.061	0.017	0.053

Минимум разности достигается при m=22. Первоначальное количество ошибок B=m-1=21. Коэффициент $K=\frac{n}{(B+1)\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}iX_i}=0.01182$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j=rac{1}{K(B-j+1)},$ где j=n+1,n+2..., n+k. Результат представлен в таблице 26.

Таблица 26 — Время обнаружения следующих ошибок для релеевского распределения при n=18

19	20	21
28.207	42.310	84.621

Было рассчитано время до завершения тестирования $t_{_k}\,=\,155.\,140$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 309.940$ дней.

4. Результаты расчетов.

В таблицах 27 и 28 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 27 – Оценка первоначального числа ошибок.

п Входные		Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	36	32	39		
24	80	28	26	30		
18	60	20	19	22		

Таблица 28 – Оценка полного времени проведения тестирования.

n	Входные	Распределение					
	данные, %	Равномерное	Экспоненциальное	Релеевское			
30	100	743.761	377.888	816.784			
24	80	481.847	338.121	522.890			
18	60	206.684	153.037	309.940			

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. При равномерном распределении результаты ниже чем при релеевском.

Выводы.

В ходе выполнения работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок

Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.