GUÍA PRÁCTICA: ANÁLISIS DE PROCESOS Y RENDIMIENTO EN LINUX (Zorin OS)

Entorno: Máquina virtual Zorin OS (basado en Ubuntu Linux)

INTRODUCCIÓN: ENTENDER CÓMO FUNCIONA UN SISTEMA LINUX

Zorin OS es una **distribución basada en Ubuntu**, diseñada para ofrecer una interfaz amigable tipo Windows pero con la **potencia de Linux**.

A nivel interno, Zorin utiliza el **kernel de Linux**, que gestiona los recursos del sistema y coordina **procesos**, **memoria**, **CPU** y **almacenamiento**.

Conceptos clave:

- **Kernel:** núcleo del sistema operativo; administra hardware y procesos.
- Proceso: programa o servicio que se está ejecutando (activo o en espera).
- PID (Process ID): identificador numérico único de cada proceso.
- Hilo (thread): unidad de ejecución dentro de un proceso.
- Daemon: proceso que corre en segundo plano (por ejemplo, cupsd, sshd, systemd).

OBJETIVOS DE LA PRÁCTICA

- Comprender cómo se gestionan los procesos en Linux.
- Analizar el uso de CPU, RAM y disco.
- Detectar procesos que consumen demasiados recursos.
- Usar herramientas gráficas y de terminal para el diagnóstico.
- Interpretar resultados y aplicar medidas de optimización y seguridad.

TIPOS DE PROCESOS EN LINUX

Tipo	Descripción	Ejemplo
Interactivo	Iniciado por el usuario	gedit, firefox, libreoffice
En segundo plano (daemon)	Corre sin interfaz	cupsd, cron, systemd
Hijo / Padre	Proceso creado por otro proceso	bash → python3 script.py
Zombie	Finalizado pero no liberó recursos	defunct
Kernel threads	Tareas internas del sistema	[kworker/0:0]

HERRAMIENTAS DE MONITORIZACIÓN EN ZORIN (LÍNEA DE COMANDOS Y GRÁFICAS)

Comandos básicos

Comando	Función	Ejemplo de uso
ps aux	Lista todos los procesos activos	`ps aux
top	Muestra procesos en tiempo real	top
htop	Versión mejorada de top con interfaz de colores	sudo apt install htop && htop
free -h	Muestra uso de memoria RAM y swap	free -h
df -h	Muestra espacio libre en disco	df -h
du -sh *	Tamaño de carpetas	du -sh /home/alumno/*
uptime	Tiempo activo del sistema y carga media	uptime
vmstat 2	Estadísticas de CPU, memoria y E/S cada 2 s	vmstat 2
iostat	Actividad de CPU y discos	sudo apt install sysstat && iostat

Herramientas gráficas en Zorin

Herramienta	Descripción	Acceso
Monitor del sistema (GNOME System Monitor)	Vista visual de CPU, memoria y procesos	Menú → Sistema → Monitor del sistema
Stacer	Herramienta completa de optimización, monitoreo y limpieza	Instalar con sudo apt install stacer
GParted	Análisis de particiones y uso de disco	sudo apt install gparted

PARÁMETROS CLAVE DE RENDIMIENTO

Recurso	Indicador	Valor ideal	Posible problema si supera
CPU	% de uso medio	< 70%	Sobrecarga o bucle de proceso
RAM	% ocupada	< 80%	Falta de memoria disponible
SWAP	Actividad	Mínima	Sistema empieza a intercambiar memoria lenta
Carga media (load average)	Promedio de tareas listas para ejecutar	≈ nº de núcleos CPU	CPU saturada
Disco	% ocupado	< 85%	Falta de espacio para logs o caché
Temperatura	< 70 °C	> 80 °C	Riesgo térmico en VM física

GUÍA PASO A PASO (PRÁCTICA GUIADA)

Paso 1: Identificar el entorno

- 1. Iniciar Zorin OS en la máquina virtual.
- 2. Abrir **Terminal** (Ctrl + Alt + T).

Ejecutar:

```
lsb_release -a uname -a
```

3. Estos comandos muestran la versión del sistema y el kernel.

Paso 2: Ver procesos activos

Ejecutar:

ps aux | less

- 1. Observa las columnas:
 - USER: propietario del proceso
 - o %CPU: consumo de CPU
 - o %MEM: consumo de RAM
 - o COMMAND: programa ejecutado

Para localizar un proceso específico:

ps aux | grep firefox

Paso 3: Supervisar en tiempo real con top o htop

Instalar htop (si no está):

sudo apt install htop

Ejecutar:

htop

- 1. Interpreta la información:
 - o CPU%: uso de cada núcleo.
 - o Mem y Swap: ocupación de memoria.
 - Tasks: número total de procesos.
 - o Ordenar por consumo: F6 → %CPU.
- 2. Detener un proceso: seleccionarlo y presionar F9 → SIGKILL.

Paso 4: Analizar consumo de memoria y disco

free -h df -h du -sh /home/*

- free -h: muestra memoria total, usada y libre.
- **df -h:** espacio disponible en cada partición.
- du -sh: calcula el tamaño de cada carpeta.

Paso 5: Medir carga del sistema

uptime vmstat 5

Ejemplo de salida:

14:32:10 up 3:42, 2 users, load average: 0.47, 0.60, 0.52

- Los tres valores indican la carga media en los últimos 1, 5 y 15 minutos.
- Si el valor medio supera el número de **núcleos**, la CPU está saturada.

Paso 6: Revisar servicios en ejecución

systemctl list-units --type=service

• Muestra los **servicios activos** del sistema (systemd).

Para detener un servicio no crítico:

sudo systemctl stop nombre-del-servicio

Paso 7: Optimización básica

• Cerrar procesos innecesarios desde htop.

Limpiar paquetes obsoletos:

sudo apt autoremove && sudo apt clean

Ver logs de errores:

journalctl -p 3 -xb

Configurar servicios al arranque:

systemctl disable bluetooth.service

INTERPRETACIÓN DE RESULTADOS

Indicador	Valor observado	Interpretación	Acción recomendada
Carga media = 0.3	Normal	CPU sin estrés	Ninguna
RAM = 90% usada	Elevado	Procesos pesados o fuga de memoria	Cerrar apps o aumentar RAM virtual
Disco / lleno al 95%	Riesgo	Falta de espacio	Limpiar caché y logs
Servicio apache2 corriendo	Activo	Servidor web habilitado	Desactivar si no se usa
Temperatura virtual alta	Excesiva carga	CPU virtual forzada	Limitar procesos paralelos

EVIDENCIAS A ENTREGAR

- Capturas de:
 - \circ htop con el uso de CPU y memoria.
 - o df -h con el estado de disco.
 - o uptime con carga media.
- Informe técnico (PDF):
 - o Descripción del sistema (CPU, RAM, versión).
 - o Procesos más exigentes.
 - o Medidas de optimización aplicadas.
 - o Conclusión sobre rendimiento y estabilidad.

LÍNEAS DE INVESTIGACIÓN PROPUESTAS

- ¿Qué diferencia hay entre proceso, daemon y servicio?
- ¿Por qué Linux usa memoria "libre" como caché?
- ¿Qué significa load average y cómo se calcula?
- ¿Qué impacto tiene el swap en el rendimiento?
- ¿Cómo mejorar la eficiencia de una máquina virtual Linux?

Elabora un informe sobre estas líneas de investigación propuestas y las incluyes en el PDF final.

POSIBLES INCIDENCIAS Y SOLUCIONES

Problema	Causa	Solución
htop no se instala	Repositorios no actualizados	sudo apt update
CPU al 100% constante	Proceso en bucle	Finalizar con kill PID
Poco espacio libre	Archivos temporales o logs	sudo apt clean + sudo du -sh /var/log
VM se congela	RAM virtual insuficiente	Aumentar RAM asignada en VirtualBox
Servicio no arranca	Error en dependencia	sudo systemctl status servicio

CONCLUSIONES

En un entorno Linux, **comprender los procesos y su impacto en el rendimiento** es esencial para garantizar la **estabilidad, seguridad y eficiencia** del sistema.

Saber analizar los indicadores clave permite anticipar fallos, optimizar recursos y proteger la máquina frente a malfuncionamientos o abusos de software.