Chúng ta sẽ giải 2 bài toán sau:

Bài 1 (Mathematical Reflection): Tìm tất cả các số thực a và b sao cho tập $S = \{(\{na\}, \{nb\}) \mid n \in \mathbb{N}\} \text{ có mật độ là 1 trên } (0;1)^2$

Bài 2 (China TST 2017): Cho tập hợp *M* thỏa mãn các tính chất sau:

- a) Nếu $r \in M$ thì $-r \in M$
- b) Nếu $r \in M$ thì với mọi số nguyên m, $(r+m) \in M$
- c) Tồn tại các số thực m,n,p,q sao cho m < n, p < q và với mọi $x \in (m;n)$ thì $x \in M$ và với mọi $x \in (p;q)$ thì $x \in R \setminus M$

Với số vô tỉ a, đặt $M(a)=\{n\in\mathbb{N}|na\in M\}$. Cmr nếu a và b là những số vô tỉ thỏa mãn M(a)=M(b) thì a+b hoặc a-b là số nguyên

Lời giải bài 1:

Đây là trường hợp đặc biệt của định lí Kronecker kinh điển khi m=1 và n=2, có thể xem tại đây: https://en.wikipedia.org/wiki/Kronecker%27s_theorem

Theo như wikipedia thì ta phải có a, b, 1 độc lập tuyến tính trên \mathbb{Q} , một kết quả khá ảo và thú vị.

Bước 1: Đầu tiên ta sẽ cm nếu a, b, 1 độc lập tuyến tính trên $\mathbb Q$ thì S có mật độ 1 trên $(0;1)^2$. Ta có S có mật độ 1 trên $(0;1)^2$ khi và chỉ khi với mọi m,n,p,q thỏa mãn 0 < m,n,p,q < 1, ta chọn được số nguyên dương t sao cho $\{ta\} \in (m;n)$ và $\{tb\} \in (p;q)$. Muốn làm vậy, ta cần bổ đế sau:

Bổ đề: Cho 2 số vô tỉ a, b, và số nguyên dương M khi này tồn tại số nguyên dương N sao cho $||Na|| < \frac{1}{M}$ và $||Nb|| < \frac{1}{M}$

Cm: Xét các khoảng $\left(0;\frac{1}{M}\right)$, $\left(\frac{1}{M};\frac{2}{M}\right)$,..., $\left(\frac{M-1}{M};1\right)$ và xét M^2+1 số nguyên dương đầu tiên. Khi này theo nguyên lí chuồng và thỏ, trong M^2+1 số đó tồn tại 2 số

nguyên dương phân biệt N_1 và N_2 trong sao cho $\{N_1a\}$ và $\{N_2a\}$ nằm trong cùng 1 khoảng, và $\{N_1b\}$ và $\{N_2b\}$ cũng nằm trong cùng 1 khoảng. Khi này xét $N_3=N_2-N_1$ thì số N_3 thỏa mãn điều kiện, xong.

Trở lại bài toán, ta đã chọn được số N sao cho $\|Na\|$ đều $\|Nb\|$ rất nhỏ. Wlog, khi này $\{Na\}$ và $\{Nb\}$ đều rất gần so với 0. Ta chọn có t có dạng kN và đặt $\alpha = \{Na\}$ và $\beta = \{Nb\}$. Khi này ta cần chọn số nguyên dương k sao cho $\{k\alpha\} \in (m;n)$ và $\{k\beta\} \in (p;q)$. Đầu tiên ta cần k $\alpha \in (M+m;M+n)$. Khi này ta sẽ chọn k có dạng $\left\lfloor \frac{M+n}{\alpha} \right\rfloor$. Khi này vì α đủ nhỏ nên k $\alpha > M+n-\alpha$ nên k $\alpha \in (M+m;M+n)$. Bây giờ ta cần k $\beta \in (T+p;T+q)$, để ý là k $\beta > \beta \left(\frac{M+n}{\alpha}\right) - \beta$ và k $\beta < \beta \left(\frac{M+n}{\alpha}\right)$, do đó ta chỉ cần chọn m sao cho $\beta \left(\frac{M+n}{\alpha}\right) > T+p+\beta$ và $\beta \left(\frac{M+n}{\alpha}\right) < T+q$ là được, đến đây để ý rằng $\frac{\beta}{\alpha}$ là số vô tỉ (do a,b,1 độc lập tuyến tính)

Lời giải bài 2: Ta xét 2 trường hợp:

Trường hợp 1: a, b, 1 độc lập tuyến tính trên \mathbb{Q} . WLOG, theo điều kiện tập S, ta chỉ cần xét $m,n,u,v\in(0;1)$. Khi này, từ **Lời giải bài 1**, ta có thể chọn số nguyên dương N sao cho $\{Na\}\in(m;n)$ và $\{Nb\}\in(u;v)$ khi này $Na\in M$ và Nb ko $\in M$, mâu thuẫn.

Trường hợp 2: a, b, 1 phụ thuộc tuyến tính trên \mathbb{Q} . Khi này ta có thể giả sử luôn $\frac{a}{b}$ là số hữu tỉ. Dĩ nhiên ta sẽ xét $a=p\alpha$ và $b=q\alpha$. Ta có $\{Np\alpha\}\in M$ khi và chỉ khi $\{Nq\alpha\}\in M$. Từ đây, để ý $\{Np^2\alpha\}\in M\Leftrightarrow \{Npq\alpha\}\in M$ và $\{Nq^2\alpha\}\in M\Leftrightarrow \{Npq\alpha\}\in M$, do đó $\{Np^2\alpha\}\in M\Leftrightarrow \{Nq^2\alpha\}\in M$. WLOG p<q.

Tương tự $\{Np^k\alpha\}\in M\Leftrightarrow \{Nq^k\alpha\}\in M$ với mọi số nguyên dương k. Bây giờ xét số nguyên dương N₂ thỏa mãn $\{N_2\alpha\}=$ c rất nhỏ, khi này ta chọn N=zN₂. Ta chọn z để z p^k c $\in (m;n)$ và z q^k c $\in (T+u;T+v)$ với số nguyên dương T nào đó. Lúc này, ta chỉ cần chọn T sao cho $\frac{m}{p^kc} \underbrace{\begin{array}{c} T+u \\ q^kc \end{array}} \underbrace{\begin{array}{c} n \\ p^kc \end{array}}$ và q^k c rất nhỏ với 1 là xong.