200A Homework 5

James Harbour

October 28, 2025

Problem 1

Suppose n is a positive integer. Prove that every group of order n is cyclic if and only if $gcd(n, \phi(n)) = 1$. Hint. One of the fundamental results in finite group theory is the following result of Burnside.

Theorem 0.0.1 (Burnside's Normal *p*-Complement). Suppose G is a finite group, P is a Sylow p-subgroup, and $P \subseteq Z(N_G(P))$. Then there exists a normal subgroup N of G such that |N| = |G/P|.

You may use this theorem without proof. Use strong induction on n to show that every group of order n is cyclic if $gcd(n, \phi(n)) = 1$. Observe that $gcd(n, \phi(n)) = 1$ implies that n is square-free. Notice that if $m \mid n$, then $gcd(m, \phi(m)) = 1$. By the strong induction hypothesis, deduce that every proper subgroup of G is cyclic. Deduce that if a Sylow p-subgroup is not normal, then $N_G(P)$ is cyclic. Use Burnside's normal complement.

Proof. We induct strongly on $n \in \mathbb{N}$ in the statement that $gcd(n, \phi(n)) = 1$ implies every group of order n is cyclic.

Problem 2

In this problem, you prove that $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n)$ if $n \geq 7$.

(a): Suppose ϕ is an automorphism of S_n which sends transpositions to transpositions; that means $\phi((a b))$ is a 2-cycle for every $1 \le a < b \le n$. Prove that ϕ is an inner automorphism. (For this part it is enough to assume that $n \ge 5$.)

Proof. Let K_n denote the complete, undirected graph on n vertices and label the vertices 1, 2, ..., n. Let $T_1 \subseteq S_n$ denote the set of transpositions in S_n . Note that we have a bijection $T_1 \to E(K_n)$ given by $\tau = (i j) \mapsto \text{supp}(\tau) = \{i, j\}$, so we identify the two sets.

As φ is an automorphism, $|\varphi(T_1)| = |T_1|$, whence the assumption that $\varphi(T_1) \subseteq T_1$ implies $\varphi(T_1) = T_1$. Hence, under the identification of T_1 with $E(K_n)$, the function $\varphi|_{T_1}$ furnishes a bijection $\varphi|_{T_1} : E(K_n) \to E(K_n)$. We will show that this bijection is induced from a graph isomorphism of K_n .

Fix $i \in \{1, ..., n\}$ and suppose that $\tau, \tau' \in T_1$ with $\tau \neq \tau'$ and $i \in \text{supp}(\tau) \cap \text{supp}(\tau')$. Then there are $j, k \in \{1, ..., n\} \setminus \{\}$ with $j \neq k$ such that $\tau = (i j)$ and $\tau' = (i k)$.

$$3 = o(\varphi((i \, k \, j))) = o(\varphi(\tau \tau')) = o(\varphi(\tau)\varphi(\tau'))$$

Note that $\varphi(\tau)$ and $\varphi(\tau')$ are transpositions. If $\operatorname{supp}(\varphi(\tau)) \cap \operatorname{supp}(\varphi(\tau')) = \emptyset$, then $o(\varphi(\tau)\varphi(\tau')) = 4$ which contradicts the above equation. Thus $\operatorname{supp}(\varphi(\tau)) \cap \operatorname{supp}(\varphi(\tau')) \neq \emptyset$. If $|\operatorname{supp}(\varphi(\tau)) \cap \operatorname{supp}(\varphi(\tau'))| = 2$, then $\varphi(\tau) = \varphi(\tau')$ contradicting that φ is injective. Thus $|\operatorname{supp}(\varphi(\tau)) \cap \operatorname{supp}(\varphi(\tau'))| = 1$.

Put simply, the above explanation shows that for any two distinct transpositions τ, τ' which share an element, it follows that $\varphi(\tau)$ and $\varphi(\tau')$ also share exactly one element. Rephrasing this inside of $E(K_n)$, for any two distinct edges e, e' which share a vertex, it follows that $\varphi(e)$ and $\varphi(e')$ also share exactly one vertex.

Let $\mathcal{F} := \{e \in E(K_n) : i \text{ is incident with } e\} = \{(i j) \in S_n : j \in \{1, \dots, n\} \setminus \{i\})\}$. Then for any distinct $\tau, \tau' \in \mathcal{F}$, $|\operatorname{supp}(\varphi(\tau)) \cap \operatorname{supp}(\varphi(\tau'))| = 1$. Fix distinct $e, e' \in \mathcal{F}$ and write $e = (i \alpha), e' = (i \beta)$ with $i \neq \alpha \neq \beta$. As

$$|\operatorname{supp}(\varphi((i\,\alpha))) \cap \operatorname{supp}(\varphi((i\,\beta)))| = 1,$$

there are $a \neq b_1 \neq b_2$ in $\{1, \ldots, n\}$ such that $\varphi((i\alpha)) = (ab_1)$ and $\varphi((i\beta)) = (ab_2)$. Suppose $f \in \mathcal{F}$ is any other edge/transposition with $f \neq e, e'$. Write $f = (i\gamma)$ where $\gamma \neq \alpha, \beta, i$. Suppose, for the sake of contradiction, that $a \notin \text{supp}(\varphi((1\gamma)))$. As

$$|\operatorname{supp}(\varphi((i\,\gamma))) \cap \operatorname{supp}(\varphi((i\,\beta)))| = 1,$$

$$|\operatorname{supp}(\varphi((i\,\gamma))) \cap \operatorname{supp}(\varphi((i\,\alpha)))| = 1,$$

it follows that $\varphi((i\gamma)) = (b_1 b_2)$. Then we may write

$$\varphi((\alpha \beta)) = \varphi((i \alpha)(i \beta)(i \alpha)) = (a b_1)(a b_2)(a b_1) = (b_1 b_2) = \varphi((i \gamma))$$

which contradicts the injectivity of φ . Thus we have shown

$$\left| \bigcap_{e \in \mathcal{F}} \varphi(e) \right| = 1,$$

whence we may define a map $\Phi: K_n \to K_n$ by

$$\Phi(i) := \widehat{i} \quad \text{where } \widehat{i} \in \bigcap_{\substack{e \in E(K_n) \\ i \in e}} \varphi(e).$$

We claim that Φ is a graph automorphism. We show injectivity first. Suppose $1 \neq i \in \{1, ..., n\}$. We will show that $\Phi(1) \neq \Phi(i)$, whence injectivity follows without loss of generality.

Let $k = \Phi(1)$ and suppose, for the sake of contradiction, that $k = \Phi(i)$. Choose $j \in \{1, ..., n\}$ such that $j \neq 1, i$. Then using the same logic with supports as above, we may write

$$\varphi((i 1)) = (k a)$$

$$\varphi((i j)) = (k b)$$

$$\varphi((1 j)) = (k c)$$

with $a \neq b \neq c$. Then observe that

$$(k\,b) = \varphi((i\,j)) = \varphi((i\,1)(1\,j)(i\,1)) = (k\,a)(k\,c)(k\,a) = (a\,c),$$

whence $a \neq b$ implies that a = k, contradicting that φ sends transpositions to transpositions. Thus Φ is injective, whence size considerations give that Φ is bijective.

Fix $i \neq j \in \{1, ..., n\}$. Then as $i, j \in (i, j)$, it follows that

$$\Phi(i) = \bigcap_{\substack{e \in E(K_n) \\ i \in e}} \varphi(e) \in \varphi((i j)) \quad \text{and} \quad \Phi(j) = \bigcap_{\substack{e \in E(K_n) \\ i \in e}} \varphi(e) \in \varphi((i j)).$$

Using the injectivity of Φ , we see that

$$\varphi((i j)) = (\Phi(i), \Phi(j)) \in E(K_n).$$

As φ is a bijection on $E(K_n)$, it follows that Φ is an automorphism of K_n whence it induces a permutation $\Phi \in S_n$ by considering only the map on vertices. But then, inside S_n ,

$$\varphi((ij)) = (\Phi(i) \Phi(j)) = \Phi(ij)\Phi^{-1}$$

for all $i \neq j$, whence φ is inner as transpositions generate S_n .

(b): Suppose ϕ is an automorphism. Prove that for all $\sigma_1, \sigma_2 \in S_n$, $\phi(\sigma_1)$ and $\phi(\sigma_2)$ are conjugate if and only if σ_1 and σ_2 are conjugate. (This is true for an automorphism of any group.)

Proof. Let G be any group and $\varphi \in \text{Aut}(G)$. Suppose that $g_1, g_2 \in G$ are conjugate, so there is some $x \in G$ such that $g_1 = xg_2x^{-1}$. Then

$$\varphi(g_1) = \varphi(xg_2x^{-1}) = \varphi(x)\varphi(g_2)\varphi(x)^{-1},$$

whence $\varphi(g_1)$ and $\varphi(g_2)$ are conjugate.

On the other hand, suppose that $g_1, g_2 \in G$ are such that $\varphi(g_1)$ and $\varphi(g_2)$ are conjugate. Then there is some $y \in G$ such that $\varphi(g_1) = y\varphi(g_2)y^{-1}$. As φ is an automorphism, there is some $x \in G$ such that $y = \varphi(x)$. Then

$$\varphi(g_1) = y\varphi(g_2)y^{-1} = \varphi(x)\varphi(g_2)\varphi(x)^{-1} = \varphi(xg_2x^{-1}),$$

whence as φ is an automorphism it follows that $g_1 = xg_2x^{-1}$, so g_1 and g_2 are conjugate.

 $\underline{(\mathbf{c})}$: Let T_k be the set of permutations with cycle type

$$(2,\ldots,2 \ k \text{ times},\ 1,\ldots,1 \ n-2k \text{ times}).$$

For instance, T_1 is the set of 2-cycles. Prove that

$$|T_k| = \frac{n(n-1)\cdots(n-2k+1)}{k!2^k} \ge \frac{n(n-1)}{2} \cdot \frac{(2k-2)!}{k!2^{k-1}},$$

for a positive integer $k \leq n/2$.

Proof. First choosing the n-2k 1-cycles gives $\binom{n}{n-2k}$ choices. Then out of the remaining 2k elements, we iteratively choose pairs for each cycle, which after correcting for the fact that we do not care about the ordering of the k pairs we have chosen, gives $\frac{1}{k!} \binom{2k}{2} \binom{2k-2}{2} \dots \binom{2k-(2k-2)}{2}$ choices. Hence, in total

$$|T_k| = \binom{n}{2k} \cdot \frac{1}{k!} \binom{2k}{2} \binom{2k-2}{2} \dots \binom{2k-(2k-2)}{2}$$

$$= \frac{n(n-1)\cdots(n-2k+1)}{k!(2k)!} \cdot \frac{2k(2k-1)}{2} \cdot \frac{(2k-2)(2k-3)}{2} \cdots \frac{3\cdot 2}{2}$$

$$= \frac{n(n-1)\cdots(n-2k+1)}{k!2^k}.$$

Now, using that $k \leq n/2$ or equivalently $n \geq 2k$, we estimate

$$\frac{n(n-1)\cdots(n-2k+1)}{k!2^k} = \frac{n(n-1)}{2} \cdot \frac{(n-2)(n-3)\cdots(n-2k+1)}{k!2^{k-1}}$$

$$\geq \frac{n(n-1)}{2} \cdot \frac{(2k-2)(2k-3)\cdots(2k-2k+1)}{k!2^{k-1}} = \frac{n(n-1)}{2} \cdot \frac{(2k-2)!}{k!2^{k-1}}.$$

(d): Prove that for every $\phi \in \operatorname{Aut}(S_n)$, there exists an integer k such that $\phi(T_1) = T_k$.

Proof. Fix $\varphi \in \operatorname{Aut}(S_n)$ Let $\sigma \in T_1$ and suppose that $\varphi(\sigma)$ has cycle type $l_1 \leq l_2 \leq \cdots \leq l_m$. Then, as φ is an automorphism,

$$2 = o(\sigma) = o(\varphi(\sigma)) = \operatorname{lcm}(l_1, l_2, \dots, l_m),$$

whence each $l_i \in \{1, 2\}$ and at least one l_i is equal to 2. Thus, $\varphi(\sigma) \in T_k$ for some $k \in \mathbb{N}$. As every element in T_1 is conjugate, it follows by part (b) that every element in $\varphi(T_1)$ is conjugate. Thus, every element in $\varphi(T_1)$ has the same cycle type, namely that of σ , so $\varphi(T_1) \subseteq T_k$.

Now fix $\sigma \notin T_1$. Suppose, for the sake of contradiction, that $\varphi(\sigma) \in T_k$. Fix $\tau \in T_1$. As T_k is a conjugacy class, $\varphi(\sigma)$ is conjugate to $\varphi(\tau)$, whence σ is conjugate to τ . As T_1 is a conjugacy class, it follows that $\sigma \in T_1$, which is a contradiction. Thus $\sigma \notin T_k$.

(e): Prove that for every $\phi \in \operatorname{Aut}(S_n)$, $\phi(T_1) = T_1$. Deduce that $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n)$.

Proof. Fix $\varphi \in \text{Aut}(S_n)$. Then there is some $k \in \mathbb{N}$ such that $\varphi(T_1) = T_k$. Then, we compute

$$|T_1| = |\varphi(T_1)| = |T_k| \ge \frac{n(n-1)}{2} \cdot \frac{(2k-2)!}{k!2^{k-1}}$$
$$= |T_1| \cdot \frac{(2k-2)!}{k!2^{k-1}}$$

whence it must hold that

$$1 \ge \frac{(2k-2)!}{k!2^{k-1}}.$$

Suppose, for the sake of contradiction, that k > 1. Then

$$1 \ge \frac{(2k-2)!}{k!2^{k-1}} = \frac{2(k-1)(2k-3)2(k-2)(2k-5)\cdots 2(2)\cdot 3\cdot 2(1)\cdot 1}{k!2^{k-1}}$$

$$= \frac{2^{k-1}(k-1)!(2k-3)(2k-5)\cdots 5\cdot 3\cdot 1}{2^{k-1}k!}$$

$$= \frac{(2k-3)(2k-5)\cdots 5\cdot 3\cdot 1}{k}$$

$$= \left(2-\frac{3}{k}\right)(2k-5)\cdots 5\cdot 3$$

$$\ge \left(2-\frac{6}{n}\right)(2k-5)\cdots 5\cdot 3$$

which is absurd as $n \ge 7$ implies that $\left(2 - \frac{6}{n}\right) > 1$.

Thus we have shown $\varphi(T_1) = T_1$. Hence, by part (a), $\varphi \in Inn(S_n)$.

Hint. Consider the complete graph with n vertices. Notice that there is a bijection between 2-cycles and edges of this graph. If an automorphism ϕ sends 2-cycles to 2-cycles, then it induces a bijection on the edges of this graph. Observe that two 2-cycles τ_1 and τ_2 do not commute if and only if the corresponding edges of τ_1 and τ_2 have a vertex in common. Use this property to show that the induced map on edges gives an automorphism of the graph, and hence a permutation σ on the set of vertices. Prove that ϕ is conjugation by σ .

Problem 3

For every group G, the group of outer automorphisms is

$$\operatorname{Out}(G) := \frac{\operatorname{Aut}(G)}{\operatorname{Inn}(G)}.$$

Let Cl(G) be the set of conjugacy classes of G.

(a): Prove that

$$(\theta \operatorname{Inn}(G)) \cdot [a] := [\theta(a)]$$

is a well-defined action of Out(G) on Cl(G), where [g] denotes the conjugacy class of g in G.

(b): Argue why

$$f: Cl(G) \to \mathbb{Z} \times \mathbb{Z}, \quad f([g]) := (o(g), |[g]|)$$

is fixed along an Out(G)-orbit.

(c): Prove that $\operatorname{Aut}(S_n) \cong \operatorname{Inn}(S_n)$ if $n \neq 6$.

(d): Prove that $\operatorname{Aut}(S_n) \cong S_n$ if $n \neq 2, 6$.

 $\overline{\mathit{Hint}}.$ Use an argument similar to part (a) of Problem 2.

Problem 4

Suppose n is an integer at least 2.

(a): Prove that $S_n = \langle (12), (12 \cdots n) \rangle$. (This means the smallest subgroup of S_n containing (12) and $\overline{(12 \cdots n)}$ is S_n .)

(b): Suppose p is prime, $\tau \in S_p$ is a 2-cycle, and $\sigma \in S_p$ is an element of order p. Prove that $S_p = \langle \tau, \sigma \rangle$. \overline{Hint} . Let $\gamma := (1\,2)(1\,2\,\cdots\,n) = (2\,3\,\cdots\,n)$. Consider $\gamma^i(1\,2)\gamma^{-i}$ and use this to show that all 2-cycles are in the group generated by these elements.

For the second part, think of permutations of $\mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\}$. Notice that an element of order p is a p-cycle. After relabelling, assume that

$$\sigma: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \quad \sigma(x) := x+1.$$

After another relabelling, assume $\tau = (0\,a)$ for some $a \neq 0$. Consider $\sigma^i \tau \sigma^{-i} = (i\,a+i)$. Use this to obtain that (ka,(k+1)a) is in the group for every $k \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Inductively show that (0,ka) is in this group for every $k \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Deduce that $(0\,1)$ is in this group. Use the first part.

Problem 5

(15-puzzle) In a 15-puzzle, a player can rearrange the numbers 1–15 by sliding the numbers into the empty spot.

Starting with the position

can we get to the following position?

2 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Hint. Think about each position in the 15-puzzle as a permutation in S_{16} . Every sliding move is a 2-cycle. Argue why we need an even number of sliding moves to go from the initial position to the second given position.

Problem 6

Suppose G is a finite group of order $2^k m$ where k is a positive integer and m is odd. Suppose G has a cyclic Sylow 2-subgroup. Prove that G has a characteristic subgroup of order m.

You are not allowed to use Burnside's p-complement theorem for this problem.

Hint. Suppose $\phi: G \to S_G$ is the embedding given by the action of G on itself by left translations. Prove that $\varepsilon \circ \phi: G \to \{\pm 1\}$ is not trivial. Show that $\ker(\varepsilon \circ \phi)$ is a characteristic subgroup of index 2. By induction, prove that for every integer $1 \le i \le k$, G has a characteristic subgroup of index 2^i .