Category Theory

Ikhan Choi

June 22, 2023

Contents

I		2
1		3
	1.1 Functors	3
2	Universal properties	4
3	Limits	5
4		6
	4.1 Adjunctions	6
	4.2 Monads	6
	4.3 Kan extensions	6
5		7
	5.1 Enriched categories	7
6	Abelian categories	8
	6.1 Regular and exact categories	8
	6.2 Additive and abelian categories	
7		10

Part I

set theoretical issues duality morphisms monic

1.1 Functors

full, faithful natural transformations and equivalence 2-category

Universal properties

products, equalizers, pullbacks representability and yoneda

Limits

preservation, reflection, creation completeness functoriality

- 4.1 Adjunctions
- 4.2 Monads
- 4.3 Kan extensions

Monoidal categories

closed, symmetric, cartesian coherence theorem, closure theorem

5.1 Enriched categories

- **5.1** (Pointed category). A pointed category is a category with a zero object.
 - (a) A category is \mathbf{Set}_* -enriched if and only if it admits a zero morphism.
 - (b) Every pointed category is **Set***-enriched.

Abelian categories

6.1 Regular and exact categories

split, regular, strong effective, normal, strict

A kernel pair of a morphism f is the pullback of (f, f).

A category is called *regular* if every kernel pair admits a coequalizer.

6.1. A regular category is called *exact* if every equivalence relation is given by a kernel pair.

The category **Grp** is regular but not coregular, since there is a monomorphism which is not regular.

6.2 Additive and abelian categories

- **6.2** (Pre-additive categories). A pre-additive category is another name of Ab-enriched category.
 - (a) a
- **6.3** (Semi-additive cateogries). A semi-additive category is a category with binary biproducts.
 - (a) A category is semiadditive if and only if it is pointed **CMon**-enriched.
- **6.4** (Additive categories). (a) additive completion by formally adjoining finite biproducts.
 - (b) additive structures on a semi-additive category is unique.

The notion of kernels and cokernels can be defined in a Set*,-enriched category.

- **6.5** (Pre-abelian categories). A *pre-abelian category* is an additive category in which every morphism has the kernel and cokernel. Equivalently, it is a finitely bicomplete pre-additive category.
 - (a)
- **6.6** (Semi-abelian categories in the sense of Jenelidze-Márkin-Tholen). A pointed, Baar-exact, protomodular, with binary coproudcts.
 - (a) short five lemma, 3×3 lemma, snake lemma, noehter isomorphism hold.
 - (b) long exact homology sequence
 - (c) Every semi-abelian category is exact.
 - (d) Every semi-abelian category is finitely bicomplete.
 - (e) In general, a semi-abelian category is not pre-additive nor semi-additive.

- **6.7** (Abelian categories). We say C is *abelian* if every morphism has the kernel and cokernel, and every mono and epi is normal.
 - (a) A category is abelian if and only if it is additive and exact.
- 6.8 (Freyd-Mitchell embedding).

- Pre-abelian: abelian topological groups, Banach spaces, Fréchet spaces.
- Semi-abelian: groups, non-unital algebras, Lie algebras, C*-algebras, compact Hausdorff (profinite) spaces.
- Additive: projective modules

site, topos (∞ , 1)-category