高等数值分析第二次实验作业

李伟伟 2019312462

清华大学核能与新能源技术学院

(注意:矩阵规模不得小于 1000 阶)

1. 构造例子特征值全部在右半平面时,观察基本的 Arnoldi 方法和 GMRES 方法的数值性态和相应的重新启动算法的收敛性

解:

(1) 构造特征值全部在右半平面的系数矩阵 A

首先构造如下矩阵 $U \in \mathbb{R}^{2n \times 2n}$, U 矩阵由 n 个对角分块矩阵组成,每个分块矩阵 u_{ii} 具有以下形式

$$u_{ii} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ & 2 & -2 \\ & & 2 & 2 & \ddots \\ & & & \ddots & \ddots \\ & & & & n/2 & -n/2 \\ & & & & n/2 & n/2 \end{pmatrix}$$

然后取任意一单位正交阵 Q, 使得

$$A = Q^T U Q$$

矩阵 U 的特征值为一系列复共轭 $\alpha \pm i\beta$ 构成,均分布在右半平面。矩阵 A 与矩阵 U 具有相同的特征值,矩阵 A 构造完毕。实现代码如下:

```
1  n=500;
2  Q=orth(rand(2*n,2*n));
3  for j=1:n
4  U(2*j-1,2*j-1)=j;
5  U(2*j-1,2*j)=-j;
6  U(2*j,2*j)=j;
7  U(2*j,2*j-1)=j;
8  end
9  A=Q'*U*Q;
```

(2) 观察基本的 Arnoldi 方法和 GMRES 方法的数值性态(收敛准则: $\epsilon=10^{-6}$)

```
clc; clear; close;
2 n=500;
з m=1000;
4 Q=orth(rand(2*n,2*n));
5 for j=1:n
6 U(2*j-1,2*j-1)=j;
7 U(2*j-1,2*j)=-j;
8 U(2*j,2*j)=j;
9 U(2*j,2*j-1)=j;
10 end
11 A=Q'*U*Q;
  b=ones(2*n,1);
12
13 x_0=zeros(2*n,1);
14
   [ r1 ] = Arnoldi(A, x_0, b, m);
16
   [ r2 ] = GMRES(A,x_0,b,m);
17 toc
   semilogy(r1, 'b')
   hold on
_{20}\quad semilogy\left( \,r2\,,\,'\,r\,'\,\right)
```


图 1: 基本 Arnoldi 方法和 GMRES 方法数值性态比较

方法	迭代步数	计算时间/s
基本 Arnoldi	602	2.70
基本 GMRES	588	4.97

表 1: 基本的 Arnoldi 方法和 GMRES 方法数值性态比较

- ① 迭代步数: 停机准则设置为 $\epsilon=10^{-6}$; 达到停机准则,基本 Arnoldi 方法需要 602 步,基本 GMRES 需要 588 步,基本 GMRES 方法的收敛速度要快于 Arnoldi 方法。因为 GMRES 方法 $||r_m||$ 相比于 Arnoldi 有最优性质。
- ② 计算时间: 达到停机准则,基本的 Arnoldi 方法需要 2.70s,基本 GMRES 方法需要 4.97s,基本 GMRES 方法的计算时间要长于 Arnoldi 方法。因为 GMRES 方法中每一次迭代都需要计算一次最小二 乘问题 $\min_{y \in R^m} ||\beta e_1 \overline{H}_m y||$
- (3) 观察重新启动的 Arnoldi 方法和 GMRES 方法的收敛性(收敛准则: $\epsilon=10^{-6}$)

```
clc; clear; close;
2 n=500;
3 %m取10,50,100,200
_{4} m=50:
5 Q=orth(rand(2*n,2*n));
6 for j=1:n
7 U(2*j-1,2*j-1)=j;
8 U(2*j-1,2*j)=-j;
9 U(2*j,2*j)=j;
10 U(2*j,2*j-1)=j;
11 end
12 A=Q'*U*Q;
13 b=ones (2*n,1);
14 x_0=zeros(2*n,1);
15 tic
16 [ r1 ] = GMRES_r( A, x_0, b, m );
17 [r2] = Arnoldi_r(A,x_0,b,m);
semilogy(r1, 'b')
20 hold on
semilogy (r2, 'r')
```


图 2: 重新启动的 Arnoldi 方法和 GMRES 方法收敛性比较

重启步长	重启次数	计算时间/s	重启步长	重启次数	计算时间/s
10	279	0.83	10	240	0.71
50	33	0.75	50	29	0.62
100	18	1.32	100	15	0.88
200	7	1.57	200	6	1.09

表 2: 重启的 Arnoldi 方法

表 3: 重启的 GMRES 方法

- ① 重启次数: 停机准则设置为 $\epsilon = 10^{-6}$; 达到停机准则,随着重启步长 m 的增加,基本 Arnoldi 方 法和 GMRES 方法的重启次数都在减少,但是当 m 增长到 50 左右的时候,重启次数就减少地很缓慢。
- ② 重启算法的总迭代次数 (重启步长 × 重启次数): 重启后的总迭代次数要大于基本方法的迭代次数,因为每次重启后会丢失之前的计算信息,从新的初值 x_0 开始计算。
- ③ 计算时间: 重启的 Arnoldi 和 GMRES 方法的计算时间都远远小于基本的方法,对于同一个方程组问题,重启的 GMRES 方法的收敛速度要优于重启的 Arnoldi。
- 2. 对于 1 中的矩阵,将特征值进行平移,使得实部有正有负,和 1 的结果进行比较,方法的收敛速度会如何?基本的 Arnoldi 算法有无峰点?若有,基本的 GMRES 算法相应地会怎样?

解:

(1) 构造特征值实部有正有负的系数矩阵 A

对题目 1 中的矩阵 U 进行改造,使其特征值实部有正有负,每个分块矩阵 u_{ii} 依然具有以下形式

$$u_{ii} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

$$U = \begin{pmatrix} 1 - (k+1/2) & -1 + (k+1/2) \\ 1 - (k+1/2) & 1 - (k+1/2) \\ & & 2 - (k+1/2) & -2 + (k+1/2) \\ & & 2 - (k+1/2) & 2 - (k+1/2) \\ & & & \ddots \\ & & & & k - (k+1/2) & -k + (k+1/2) \\ & & & k - (k+1/2) & k - (k+1/2) \\ & & & & \ddots \\ & & & & & n - (k+1/2) & -n + (k+1/2) \\ & & & & & n - (k+1/2) & n - (k+1/2) \end{pmatrix}$$

实现代码如下:

```
1 %表示特征值实部为负的个数, k取1 10 50 100 200 500 900 950
2 s=k+1/2;
3 for j=1:n
4 U(2*j-1,2*j-1)=-s+j;
5 U(2*j-1,2*j)=s-j;
6 U(2*j,2*j)=-s+j;
7 U(2*j,2*j-1)=-s+j;
8 end
9 A=Q'*U*Q;
```

(2) 观察特征值实部为负数的个数不同时,基本的 Arnoldi 方法和 GMRES 方法的收敛性(收敛准则: $\epsilon=10^{-6}$)

```
clc; clear; close;
2 n=500;
3 m=1000;
4 Q=orth(rand(2*n,2*n));
5 %k表示特征值实部为负的个数, k取1 10 50 100 200 500 900 950
6 k=200;
8 for j=1:n
9 U(2*j-1,2*j-1)=-s+j;
10 U(2*j-1,2*j)=s-j;
11 U(2*j,2*j)=-s+j;
12 U(2*j,2*j-1)=-s+j;
13 end
14 A=Q'*U*Q;
15 b=ones (2*n,1);
16 x_0=zeros(2*n,1);
17 [ r1 ] = Arnoldi( A, x_0, b, m );
18 [ r2 ] = GMRES( A, x_0, b, m );
```


图 3: 基本的 Arnoldi 方法和 GMRES 方法在特征值实部为负数个数不同条件下的收敛性

k	迭代步数	计算时间/s		k	迭代步数	计算时间/s
1	734	4.64	•	1	728	8.69
10	962	9.13		10	961	19.79
50	1000	10.99		50	1000	25.26
100	1000	10.52		100	1000	23.02
200	1000	10.62		200	1000	26.06
500	654	3.35		500	644	5.97
900	28	0.02		900	28	0.01
1000	26	0.01		1000	25	0.02

表 4: 基本的 Arnoldi 方法

表 5: 基本的 GMRES 方法

- ① 基本的 Arnoldi 算法有峰点,因为基本的 Arnoldi 算法中计算 $y_m = \beta H_m^{-1} e_1$ 时, H_m 矩阵可能 会近似奇异,导致中断。而基本的 GMRES 算法光滑,无峰点,因为 GMRES 算法的残差具有最优性,不中断。
- ② k 较小时,基本的 Arnoldi 方法中出现的峰点个数随着 k 的增大而增加,但是当 k 增大到 500 时,之后的峰点个数会随着 k 的增加而迅速减少
- ③ 特征值实部为负数的个数远大于正数时,相比于第一题,基本的 Arnoldi 算法和基本的 GMRES 算法收敛速度会明显提升,迭代步数明显减少。
- 3. 对 1 中的例子固定特征值的实部,变化虚部,比较收敛性.

解:

(1) 对 1 中的矩阵进行变化,固定特征值的实部,对虚部放大或缩小,缩放系数为 k

对题目 1 中的矩阵 U 进行改造,使其特征值虚部放大或缩小,每个分块矩阵 u_{ii} 依然具有以下形式

$$u_{ii} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & -k & & & & & \\ k & k & & & & & \\ & 2 & -2k & & & & \\ & 2k & 2 & \ddots & & & \\ & & \ddots & \ddots & & & \\ & & & & n/2 & -n \cdot k/2 \\ & & & & n \cdot k/2 & n/2 \end{pmatrix}$$

实现代码如下:

```
1 clc; clear; close;
2 %表示缩放系数, k取0.25.1.5,2.5,4
3 k=0.25;
4 n=500;
5 m=1000;
6 Q=orth(rand(2*n,2*n));
7 for j=1:n
8 U(2*j-1,2*j-1)=j;
9 U(2*j-1,2*j)=-j*k;
10 U(2*j,2*j)=j;
11 U(2*j,2*j-1)=j*k;
12 end
13 A=Q'*U*Q;
```

(2) 观察基本的 Arnoldi 方法和 GMRES 方法的数值性态(收敛准则: $\epsilon=10^{-6}$)

图 4: 基本的 Arnoldi 方法和 GMRES 方法在虚部缩放系数不同时的收敛性比较

虚部缩放系数	迭代步数	计算时间/s	虚部缩放系数	迭代步数	计算时间/s
0.25	238	0.31	0.25	231	0.47
1.5	816	5.98	1.5	806	12.12
2.5	986	9.98	2.5	986	22.25
4	1000	10.30	4	1000	22.96

表 6: 基本的 Arnoldi 方法

表 7: 基本的 GMRES 方法

- ① 随着特征值虚部放大系数增加的时候,基本的 Arnoldi 和 GMRES 算法收敛性都变差。迭代步数增大,收敛速度变慢,但是依然能够收敛到停机准则。
- ② 基本 GMRES 算法的迭代步数略小于 Arnoldi 算法,但是 GMRES 计算时长却远大于 Arnoldi 算法。
- ③ 随着虚部放大系数的增加,基本 Arnoldi 算法出现的峰点个数增加,因为近似中断的次数增加。而 GMRES 算法相对平缓下降,因为不中断。

图 5: 重启的 Arnoldi 方法和 GMRES 方法在虚部缩放系数不同时的收敛性比较

- ① 随着特征值虚部放大系数增加的时候,基本的 Arnoldi 和 GMRES 算法收敛性都变差。迭代步数增大,收敛速度变慢。
- ② 当重启步长 m 较小,例如等于 5 时,重启的 Arnoldi 算法已经不收敛了,但是重启的 GMRES 算法依然收敛,因为 GMRES 算法的残差具有最优性。
 - ③ 随着重启步长 m 增加,重启的 Arnoldi 和 GMRES 算法的收敛速度加快,迭代步数减少。
- 4. 当 A 只有 m 个不同特征值时,对于大的 m 和小的 m, 观察 Arnoldi 方法和 GMRES 方法的收敛性 MRE 解:
- (1) 首先构造只有 m 个不同特征值的矩阵 A, m=10,50,100,500,1000 实现代码如下:

```
1 clc;clear;
2 n=1000;
3 %m=10,50,100,500,1000
4 m=50;
5 Q=orth(rand(n,n));
6 D=diag([repelem(10,n-m),linspace(15,1000,m)]);
7 A=Q*D*Q';
```

(2) 观察对于大的 m 和小的 m, Arnoldi 方法和 GMRES 方法的收敛性

m	迭代步数	计算时间/s	m	迭代步数	计算时间/s
10	11	0.016	10	11	0.026
50	35	0.024	50	36	0.034
100	45	0.029	100	45	0.033
500	58	0.041	500	53	0.039
1000	53	0.038	1000	52	0.037

表 8: 基本的 Arnoldi 方法

表 9: 基本的 GMRES 方法

- ① 随着不同特征值数 m 的增加,基本的 Arnoldi 和 GMRES 算法的迭代步数增加,收敛速度变慢。两个算法的迭代步数和计算时间基本一致。
- ② 基本的 Arnoldi 和 GMRES 算法,都至多需要 m 步收敛。当 m 较小时,迭代步数接近 m,但是 当 m 较大时,迭代步数远小于 m。
 - ③ 此现象与 Lanczos 算法得到的结果类似。

图 6: 只有 m 个不同特征值问题的基本 Arnoldi 和 GMRES 方法收敛性

5. 取初始近似解为零向量,右端项 b 仅有 A 的 m 个不同个特征向量的线性组合表示时,Arnoldi 方法和 GMRES 方法的收敛性如何?

解:

(1) 首先构造只有 m 个不同特征向量线性组合的右端项 b, m=10,50,100,500,1000

$$A=QUQ^T$$

实现代码如下: 正交矩阵 Q 的每一列对应矩阵 A 的其中一个特征向量

```
1 clc; clear; close;
2 %构造1000阶每个特征值都不同的矩阵A
3 n=1000;
4 U=diag(linspace(1,n,n));
5 Q=orth(rand(n,n));
6 A=Q*U*Q';
7 %加取值为10, 50, 100, 500, 1000
8 m=10;
9 R=randperm(n);
10 %构造右端项b
11 b=zeros(n,1);
12 for j=1:m
13 b=b+Q(:,R(j));
14 end
```

m	迭代步数	计算时间/s
10	10	0.017
50	43	0.031
100	56	0.037
500	114	0.093
1000	169	0.178

表 10: 基本的 Arnoldi 方法

表 11: 基本的 GMRES 方法

- ① 随着 m 的增大,基本的 Arnoldi 和 GMRES 算法的收敛速度均变慢,迭代步数增加。
- ② 基本 GMRES 算法的迭代步数略少于 Arnoldi 算法, 计算时间略高于 Arnildi 算法, 符合算法的收敛性。
- ③ m 较小时,基本的 Arnoldi 算法出现了峰点,随着 m 增大,基本 Arnoldi 算法的峰点个数减少,逐渐平滑。基本 GMRES 算法根据性质,没有峰点出现。

图 7: 由 m 个不同特征值线性组合的 b 问题的基本 Arnoldi 和 GMRES 方法收敛性

附录

基本的 Arnoldi 算法

```
1 function [r] = Arnoldi(A,x_0,b,m)
 2 r_0=b-A*x_0;
3 beta=norm(r_0);
4 v(:,1)=r_0/beta;
 5 for j=1:m
 6 w=A*v(:,j);
 7 for i=1:j
 8 h(i,j)=v(:,i)'*w;
9 w=w-h(i,j)*v(:,i);
10 end
11 h(j+1,j)=norm(w);
12 v(:, j+1)=w/h(j+1, j);
y=h(1:j,1:j)\setminus(beta*eye(j,1));
^{14}\quad r\left(\,j\,\right)\!\!=\!\!h\left(\,j+\!1,j\,\right)\!*\!abs\left(\,y\left(\,\mathrm{end}\right)\,\right);
15 if r(j)<1e-6
16 break;
17 end
18 end
19 end
```

基本的 GMRES 算法

```
{\scriptsize 1 \quad function \ [ \ r \ ] = G\!M\!R\!E\!S\!(\ A,x\_0,b,m\ )}
 2 r_0=b-A*x_0;
 3 beta=norm(r_0);
 4 v(:,1)=r_0/beta;
 5 for j=1:m
 6 w=A∗v(:,j);
 7 for i=1:j
 s \quad h\,(\,i\,\,,j\,)\!\!=\!\!v\,(\,:\,,\,i\,\,)\,\,'\!*w;
 9 w=w-h(i,j)*v(:,i);
^{11}\quad h\left(\,j+1,j\right)\!\!=\!\!norm\left(w\right);
^{12}\quad v\left( :\,,\,j\!+\!1\right)\!\!=\!\!w/h\left( \,j\!+\!1,j\;\right) ;
13 [Q R] = qr(h);
14 g=Q'*(beta*eye(j+1,1));
15 r(j)=abs(g(end));
_{16} if r(j)<1e-6
17 break;
18 end
19 end
20 end
```

重启的 m 步 Arnoldi 算法

```
1 function [ r ] = Arnoldi_r( A,x_0,b,m )
 2 for k=1:1000
 3 r_0=b-A*x_0;
4 beta=norm(r_0);
5 v(:,1)=r_0/beta;
6 for j=1:m
7 w=A∗v(:,j);
 8 for i=1:j
9 h(i,j)=v(:,i)'*w;
_{10}\quad w\!\!=\!\!w\text{-}\!\;h\left(\left.i\right.,\left.j\right.\right)\!*\!v\left(\left.:\right.,\left.i\right.\right);
11 end
12 h(j+1,j)=norm(w);
13 v(:,j+1)=w/h(j+1,j);
14 end
y=h(1:m,1:m)\setminus (beta*eye(j,1));
16 r(k)=h(j+1,j)*abs(y(end));
17 if r(k) < 1e-6
18 break;
19 else
20 x_0=x_0+v(:,1:m)*y;
21 end
22 end
23
    end
```

重启的 m 步 GMRES 算法

```
1 \quad function \ [ \ r \ ] = GMRES\_r(\ A, x\_0, b, m \ )
2 for k=1:1000
3 r_0=b-A*x_0;
4 beta=norm(r_0);
5 v(:,1)=r_0/beta;
6 for j=1:m
7 w=A∗v(:,j);
8 for i=1:j
9 h(i,j)=v(:,i)'*w;
10 w=w-h(i,j)*v(:,i);
11 end
12 h(j+1,j)=norm(w);
13 v(:, j+1)=w/h(j+1, j);
14 end
15 [Q R]=qr(h);
16 g=Q'*(beta*eye(m+1,1));
17 r(k)=abs(g(end));
18 if r(k) < 1e-6
19 break;
20 else
21 x_0=x_0+v(:,1:m)*(R(1:m,1:m)\setminus g(1:m,1));
22 end
23
   end
   end
```