Sl. No.		Name with full address	Area of specialization					
	Panel Member from other University/Institution							
6.	Name	: Dr. N. Yuvaraj	Machining Process,					
	Designation	: Assistant Professor (Research)	Composite Materials					
	Department	: Mechanical Engineering						
	Address	: Vel Tech Rangarajan Dr.Sagunthala R&D						
		Institute of Science and Technology,						
		Chennai – 600 062						
	Mobile	: 9842079202						
	E-mail	:yuvaceg09@gmail.com						

Publication Details:

S.No	Title	Status	Journal Name
1	Cutting of Aluminium Alloy with Abrasive Water Jet and Cryogenic Assisted Abrasive Water Jet: A Comparative Study of the Surface Integrity Approach	Published – Vol. 362-363, 18-32, 2016	Wear - Elsevier Impact Factor 2.95
2	Investigation of Process Parameters Influence in AWJ Cutting of D2 Steel	Published – Vol.32, issue 2, pp.151-161, 2017	Materials and Manufacturing Processes – Taylor & Francis Impact Factor 3.35
3	Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach	Published- Vol. 30, Issue 7, pp,882-889, 2015	Materials and Manufacturing Processes – Taylor & Francis Impact Factor 3.35
4	Study and Evaluation of Abrasive Water Jet Cutting Performance on AA5083-H32 Aluminium Alloy by varying the Jet Impingement Angles with different Abrasive Mesh Sizes	Published- Vol. 21, Issue 3, pp.385-415, 2017	International Journal of Machining Science and Technology— Taylor & Francis Impact Factor 1.716
5	Surface Integrity Studies On Abrasive Water Jet Cutting Of AISI D2 Steel	Published-Vol.32, Issue 2, pp.162- 170, 2017	Materials and Manufacturing Processes – Taylor & Francis Impact Factor 3.35
6	Optimization of abrasive water jet cutting process parameters for AA5083-H32 aluminium alloy using Fuzzy TOPSIS method	Published-Vol.20, No.2, 2018, pp.118-140	International Journal of Machining and machinability of Materials – Inderscience

S.No	Title	Status	Journal Name
7	Investigation of Water Jet Peening Process Parameters on Al6061-T6	Published - Vol.34, No.4, 2018, pp. 330-340	Surface Engineering – Taylor and Francis Impact Factor 2.229
8	Experimental Investigation of cryogenic assisted abrasive water jet machining of aluminium alloy	Published -July Issue , Vol6(3), 415-432, 2019	International Journal of Precision Engineering and Manufacturing – Green Technology (Springer) Impact Factor 4.561
9	Machinability Study of Abrasive Aqua Jet Parameters On Hybrid Metal Matrix Composite	Published 2019 Vol.34, issue 3, pp. 321-344	Materials and Manufacturing Processes – Taylor & Francis Impact Factor 3.35
10	Selection of Heat Transfer Fluids for Solar Thermal Applications Using Multi-Criteria Decision Making Tools	Published Online 2019, Vol.48	ASTM Journal of Testing and Evaluation – ASTM International Impact Factor 0.711
11	Influence of Cryogenic reaming process parameters on Titanium alloy by using grey relational analysis	Vol. 47(3), pp. 634-640, 2019	FME Transactions
12	Investigation of Surface Morphology and Topography features on Abrasive Water Jet Milled Surface pattern of SS 304	Published Online 2019 vol.48(1) In press	ASTM Journal of Testing and Evaluation – ASTM International Impact Factor 0.711
13	Experimental study of the influence of the process parameters in the milling of Al6082-T6 alloy	Published –2019, Vol.34 (12), 1411-1427	Materials and Manufacturing Processes – Taylor & Francis Impact Factor 3.35
14	Investigation of surface integrity in end milling of 55NiCrMoV7 die steel under the cryogenic environments	Accepted October 2019	International Journal of Machining Science and Technology— Taylor & Francis Impact Factor 1.716
15	Experimental Investigation of twist fatigue characteristics on piston rings	Accepted April 2019	Int. J. Vehicle Structures & Systems
16	The impact of electrical process parameter in Electrochemical Micromachining of Nimonic 75 alloy	Accepted April 2019	Int. J. Vehicle Structures & Systems