

zoidberg2.0

Kick-off

T8 - Al & Big Data

T-DEV-810

Machine learning

Learn from data instead of stating explicit rules.

Find regularities in samples to classify, display, make suggestions or decisions, ...

Many applications: finance, health, language processing, robotics, games...

Supervised classification

Cluster information between classes

Assume regularity Y=F(X), where Y is the class and X contains the various parameters.

Try to build an estimator of F based on sample data.

Image recognition

Data = bunch of pixels. Associate pixels with a label.

Start with tagged pictures. Emulate rules. Then, apply rules on unlabeled pictures.

You may rebuild missing data or retrieve compressed file.

Visualization

Frequent usage of ML for decision-making.

Starting with multi-dimensional (n>2) data, produce a 2-dimensional visualization, without losing too much information.

Dealing with big data

Quality & size of data impact algorithm's choice.

Neural Networks are not always the best option.

Learn to select variables, control running time and assess quality of solutions.

Back to the project

Given a sizeable amount of pictures from a medical bank:

- build robust algorithm, using scarce resources;
- return reliable predictions to detect infected organs.

Any questions

?

