$_{ m QCM}^{ m Algo}$

1.	Un	arbre	binaire	\mathbf{dont}	tous	les	noeuds	\mathbf{sont}	simples	est	?
----	----	-------	---------	-----------------	------	-----	--------	-----------------	---------	-----	---

- (a) dégénéré
- (b) parfait
- (c) complet
- (d) localement complet
- (e) filiforme

2. Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que des liens gauches est?

- (a) le chemin droit
- (b) le bord gauche
- (c) la branche gauche
- (d) le chemin gauche

3. L'arbre défini par $B = \{E, 0, 1, 00, 01, 000, 001, 0010, 0011, 00100, 00101\}$ est?

- (a) dégénéré
- (b) parfait
- (c) complet
- (d) localement complet
- (e) quelconque

4. Dans un arbre binaire, un noeud possédant juste 1 fils droit est appelé?

- (a) une racine
- (b) noeud interne
- (noeud externe à droite
- (d) point simple à droite

5. Un arbre binaire non vide est un arbre de taille?

- (a) ≥ -1
- (b) $\geqslant 0$
- (c) $\geqslant 1$

6. Un arbre binaire localement complet est un arbre binaire dont?

tous les noeuds sont simples

- (b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite
- (c) tous les noeuds sont doubles sauf sur le dernier niveau
- (d) tous les noeuds sont doubles

- 7. Si LCE(B) définit la longueur de cheminement externe de B (un arbre binaire), alors PME(B) la profondeur moyenne externe de B est égale à?
 - (a) LCE(B)/f avec f le nombre de feuilles de B
 - (b) LCE(B)/n avec n le nombre de noeuds de B
 - (c) LCE(B)/n avec n le nombre de noeuds externes de B
 - (d) LCE(B).n avec n le nombre de noeuds externes de B
- 8. Dans un arbre binaire, un noeud ne possédant pas de fils est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe
 - (d)_feuille
- 9. La hauteur d'un arbre binaire réduit à un noeud racine est?
 - (a) -1
 - (b) 0
 - (c) 1
- 10. Un peigne gauche est un arbre binaire?
 - (a) parfait
 - (b) complet
 - (c) localement complet
 - (d) filiforme

QCM N°16

lundi 4 février 2019

Question 11

Le reste de la division euclidienne de $X^2 + X - 1$ par X - 1 est

- a. 2
- b. -2
- c. -1
- d. 0
- Cerien de ce qui précède

Question 12

- (a.) X 3 divise $X^2 + 4X 21$
- $b \cdot X 4 \text{ divise } X^2 5X + 4$
- (c.) X + 3 divise $X^2 + 2X 3$
- (d.) X + 7 divise $X^2 + 4X 21$
 - e. rien de ce qui précède

Question 13

Soient $P = 2X^4 - 5X^3 + X^2 - X + 1$ et $Q = X^2 + X + 1$. Alors

- le quotient de la division euclidienne de P par Q est $2X^2-7X-6$.
- ا بطر le quotient de la division euclidienne de P par Q est $2X^2 + 7X 6$.
- $\not e$ le reste de la division euclidienne de P par Q est 5.
- $\overrightarrow{\text{d.}}$ e reste de la division euclidienne de P par Q est -5.
- e. rien de ce qui précède

Question 14

Soient P et Q deux polynômes de $\mathbb{R}[X]$. Alors

$$\underline{a}$$
. $d^{\circ}(PQ) = d^{\circ}(P) \times d^{\circ}(Q)$

$$d^{\circ}(P+Q)=d^{\circ}(P)+d^{\circ}(Q)$$

$$d^{\circ}(P-Q) = d^{\circ}(P) - d^{\circ}(Q)$$

$$d^{\circ}(P) = 0 \Longleftrightarrow P = 0$$

e jien de ce qui précède

Question 15

Soit $P \in \mathbb{R}[X]$ non nul. Alors

a. Si 2 est racine double de P, X-2 divise P'

Si X-2 divise P', 2 est racine double de P

Ĉ. Si 2 est racine double de P', $(X-2)^2$ divise P'

d. rien de ce qui précède

Question 16

Les solutions de l'équation différentielle y''-2y'+5y=0 sur $\mathbb R$ sont les fonctions de la forme

$$k_1 e^{2t} + k_2 e^{-2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

$$k_1 \cos(2t) + k_2 \sin(2t)$$
 où $(k_1, k_2) \in \mathbb{R}^2$

$$(k_1t+k_2)e^{2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

$$(d)$$
 $t(k_1\cos(2t)+k_2\sin(2t))$ où $(k_1,k_2)\in\mathbb{R}^2$

e. rien de ce qui précède

Question 17

Les solutions de l'équation différentielle -y''+y'-2y=0 sur $\mathbb R$ sont les fonctions de la forme

$$\mathbf{k}_1 e^t + k_2 e^{-2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

be
$$k_1e^{-t}+k_2e^{2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

$$e^{-2t}(k_1\cos(t) + k_2\sin(t))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

A.
$$(k_1t+k_2)e^{-2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

e. rien de ce qui précède

Question 18

Les solutions de l'équation différentielle y''+4y'+4y=0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1e^t + k_2e^{2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$k_1 e^{-2t} + k_2 e^{2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$(k_1t+k_2)e^{2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

$$d(k_1t+k_2)e^{-2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

e. rien de ce qui précède

Question 19

Les solutions de l'équation différentielle 2ty'+y=0 sur \mathbb{R}_+^* sont les fonctions de la forme

- a. kt^2 où $k \in \mathbb{R}$
- b. $k\sqrt{t}$ où $k \in \mathbb{R}$
- c. ke^{t^2} où $k \in \mathbb{R}$

$$\overbrace{\mathbf{d}.} \frac{k}{\sqrt{t}} \text{ où } k \in \mathbb{R}$$

e. rien de ce qui précède

Question 20

Les solutions de l'équation différentielle $(t^2+1)y'+2ty=0$ sur $\mathbb R$ sont les fonctions de la forme

A.
$$k \arctan(t)$$
 où $k \in \mathbb{R}$

).
$$\frac{k}{\arctan(t)}$$
 où $k \in \mathbb{R}$

$$\underbrace{c.}_{t^2+1}^k \text{ ou } k \in \mathbb{R}$$

d.
$$k \ln \left(t^2 + 1\right)$$
 où $k \in \mathbb{R}$

e. rien de ce qui précède

1984 MCQ 4 (Chapters 4, 5, 6) (Only one answer is possible in each case)
21. Winston's job is to
a) write the two minutes Hate speech.
b) dictate news to the telescreen.
c) fix plumbing problems.
d) rectify the original figures by making them agree with the later ones.
22. What was done to any scrap of waste paper?
a) They were recycled.
b) They were archived.
c) They were dropped in the nearest memory hole.
d) They were torn up.
23. 'In no case would it have been possible, once the deed was done, to prove that any falsification had taken place.' Why was it not possible to prove any falsification?
a) Because there was no falsification.
b) Because the past was rectified at every minute.
c) Because it was forbidden to prove anything.
d) None of the above
24. 'but a few lines of print and a couple of faked photographs would soon bring him into existence.' Who does this refer to?
a) Comrade Ogilvy, the war hero.
b) Big Brother.
c) O'Brien, the Party member.
d) Tillotson, Winston's colleague.
25. Syme, the guy Winston met at the canteen, was working on
a) writing a book
b) writing a diary
c) compiling a dictionary
d) publishing a newspaper

26. One of the main characteristics of Newspeak was								
a) It had lots of vocabulary								
b) Its vocabulary got smaller every year.								
عر) (t only had one word.								
d) It had no adjectives.								
27. What did Winston think of Syme?								
a) That he was too discrete.								
b) That he was too orthodox.								
c) That he was a good writer.								
d) That he lacked some kind of stupidity that could save him some day.								
28. Winston reminisces about a woman in chapter 6. Who was she?								
a) His ex-wife, Katherine.								
b) His mother.								
c) His sister.								
d) His colleague.								
29. Which of the following was a thoughtcrime?								
a) desire								
b) hunger								
c) exercise								
d) all of the above								
30. What did <i>artsem</i> stand for?								
a) Artistic Seminar								
b) Anti-Sex League.								
c) Artificial Similarities.								

d) Artificial Insemination.

Questions are based on Unit 3 and 4 of the MOOC "Video Game Design History"

NB. The sentence "check all that apply" indicates that more than one correct answer is possible.

- 31. What did Jules Verne do with the Game of Goose in the novel, The Will of the Eccentric?
 - a. Turned it into an educational using a map of the world.
 - b. Turned it into a track game based on the different US States.
 - c. Turned it into a metaphor for war.
 - d. All of the above
- 32. What are the game mechanics that early tabletop games use? (check all that apply)
 - a. Scarcity
 - b. Racing
 - c. Random Number Generation
 - -d. Time Dependent Rewards
- 33. What makes the Checkered Game of Life different than a track game?
 - a. Random Number Generation
 - b. Moral Overlays
 - c. Points Based
 - d. The time limit
- 34. Why was the modern Game of Life created?
 - a. To celebrate 100th anniversary of the Checkered Game of Life
 - b. To teach children the value of investing
 - c. To compete with a similar game in the market
 - d. All of the above
- 35. What were the differences between the two rule sets in The Landlord's Game?
 - a. Communist rules vs. Democratic rules
 - Ѣ҇: Capitalist rules vs. Georgist rules
 - c. Short form rules vs. Long form rules
 - d. All of the above
- 36. Why do game designers look to Sid Sackson as a role model?
 - a. Because he invented the game of Pit
 - b. Because of the incorporated moral overlays in his design
 - c. Because of his structured approach to design and innovation
 - d. All of the above
- 37. Which crucial company did Roberts found after Tactics?
 - a.__ TSR
 - b. Parker Brothers
 - c. Chess International
 - d. Avalon Hill
- 38. Why did the court decide that pinball is a game of skill and not chance?
 - a. Because the players use bumpers
 - b. Because there is no time limit
 - c. Because the players use flippers
 - d. All of the above
- 39. Which manufacturer was in favor of pinball payouts?
 - a. Gottlieb
 - b. Williams
 - c. Midway
 - d. All of the above
- 40. What was the first pinball game to emerge with glass over the top?
 - a. Whiffle Board
 - b. Humpty Dumpty
 - c. Baffle Ball
 - d. All of the above

EPITA-S₂ 2018-2019

O.C.M n°10 de Physique

41- La deuxième loi de Newton appliquée au pendule simple sans frottement et projetée sur l'axe tangentiel de la base de Frenet donne :

(On suppose le mouvement vers la droite et L étant la longueur du fil).

$$(a) - P\sin(\theta) = mL\ddot{\theta}$$

b)
$$-P\sin(\theta) = mL\dot{\theta}$$

c)
$$-P\sin(\theta) = mL\dot{\theta}^2$$

42- En utilisant la projection de la deuxième loi de Newton sur l'axe tangentiel du repère de Frenet (question 41), on obtient l'équation différentielle du mouvement donnée par : (on considère des petites oscillations)

a)
$$\theta(t) + \frac{L}{g}\theta(t) = 0$$

b)
$$\theta(t) + \frac{m}{g}\theta(t) = 0$$

c)
$$\theta(t) + \frac{m}{L}\theta(t) = 0$$

a)
$$\frac{\mathbf{e}}{\theta(t)} + \frac{L}{g}\theta(t) = 0$$
 b) $\frac{\mathbf{e}}{\theta(t)} + \frac{m}{g}\theta(t) = 0$ c) $\frac{\mathbf{e}}{\theta(t)} + \frac{m}{L}\theta(t) = 0$ d) $\frac{\mathbf{e}}{\theta(t)} + \frac{g}{L}\theta(t) = 0$

43- L'énergie mécanique de la masse m du pendule simple est

$$E_m = \frac{1}{2}mL^2(\dot{\theta})^2 + mgL(1 - \cos(\theta))$$

La dérivée par rapport au temps de l'énergie mécanique s'écrit donc
$$\lambda \frac{dE_m}{dt} = mL^2 \dot{\theta} - mg L sin(\theta) \dot{\theta}$$
b)
$$\frac{dE_m}{dt} = mL^2 \dot{\theta} \dot{\theta} + mg L (1 + sin(\theta)) \dot{\theta}$$
c)
$$\frac{dE_m}{dt} = mL^2 \dot{\theta} \dot{\theta} + mg L sin(\theta) \dot{\theta}$$

A. Zellagui

44- L'expression de la tension du ressort de coefficient de raideur k, du schéma ci-dessous s'écrit : (position d'équilibre de la masse au point O).

- a) $\vec{T} = kx \, \overrightarrow{u_x}$ b) $\vec{T} = -\frac{1}{2}kx^2 \, \overrightarrow{u_x}$ c) $\vec{T} = -kx \, \overrightarrow{u_x}$

45- L'équation différentielle du mouvement (ressort + masse), sans frottement (schéma de la question 44) est

- a) $\ddot{x} \dot{x} + \frac{k}{m}x = 0$ b) $\dot{x} + \frac{k}{m}x = 0$ c) $\dot{x} + \frac{k}{m}x = 0$

46- On identifie le carré de la pulsation de l'oscillateur (question 45) comme

47- La fréquence de l'oscillateur (question 45) est

a)
$$f = 2\pi \sqrt{\frac{m}{k}}$$

b)
$$f = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$$

a)
$$f = 2\pi \sqrt{\frac{m}{k}}$$
 b) $f = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$ c) $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

48- On considère le système (question 44), l'énergie mécanique s'écrit

a)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

b)
$$E_m = \frac{1}{2}m(x)^2 + mgz$$

c)
$$E_m = \frac{1}{2}m(x)^2 + kx$$

(d)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

49- La dérivée par rapport au temps de l'énergie cinétique du système (question 44) est

a)
$$\frac{dE_c}{dt} = m.\dot{x}$$
 (b) $\frac{dE_c}{dt} = m\dot{x}\dot{x}$ (c) $\frac{dE_c}{dt} = m.\dot{x}\dot{x}$ (d) $\frac{dE_c}{dt} = 2m\dot{x}\dot{x}$

c)
$$\frac{dE_c}{dt} = m.x x$$

d)
$$\frac{dE_c}{dt} = 2mx^{\circ}$$

50- La dérivée par rapport au temps de l'énergie potentielle du système (question 44) vérifie :

a)
$$\frac{dE_p}{dt} = k.x$$

b)
$$\frac{dE_p}{dt} = k x x$$

a)
$$\frac{dE_p}{dt} = k.x$$
 b) $\frac{dE_p}{dt} = kxx$ c) $\frac{dE_p}{dt} = 0$ d) $\frac{dE_p}{dt} = kxx$

QCM - Electronique

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Quelle est la bonne formule? Q1.

Soit un signal sinusoïdal $s(t) = S.\sqrt{2}.\cos(\omega t + \varphi)$ (Q2 à Q4)

Quelle relation est correcte ? T représente la période de s(t) et f, sa fréquence.

$$(a.)$$
 $f = 2.\pi.\omega$

b.
$$T = \frac{\omega}{2.\pi}$$

d.
$$\frac{\omega}{T} = \frac{2.\pi}{f}$$

La valeur efficace de s(t)est :

a.
$$S.\sqrt{2}$$

Soit le signal ci-contre (Q4&5):

Q4. La valeur moyenne de v(t) vaut :

La valeur efficace de v(t) vaut :

(a.)
$$5.\sqrt{3} V$$
 / b. $5.\sqrt{2} V$

b.
$$5.\sqrt{2} V$$

d.
$$-\sqrt{50.\frac{T}{3}} V$$

La valeur efficace d'un courant variable i(t) est la valeur du courant continu I qui dissiperait, dans la même résistance, la même énergie (le même nombre de joules) que i(t), pendant la même durée.

b- Faux

Soit un condensateur de capacité C. On note u(t), la tension à ses bornes et i(t), le courant qui le traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte:

$$a$$
: $i(t) = \frac{1}{c} \cdot \frac{di}{dt}$

$$u(t) = C.\frac{di}{dt}$$

d.
$$u(t) = \frac{1}{c} \cdot \frac{di}{dt}$$

Dans un condensateur, quel est le déphasage de la tension par rapport au courant? Q8.

a.
$$+\frac{\pi}{2}$$
b $-\frac{\pi}{2}$

d.
$$\pm \frac{\pi}{2}$$
 selon la fréquence

Q9. Soit une bobine d'inductance L. On note u(t), la tension à ses bornes et i(t), le courant qui la traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte:

a.
$$i(t) = L \cdot \frac{du}{dt}$$

b.
$$i(t) = \frac{1}{L} \cdot \frac{du}{dt}$$

- Q10. Comment appelle-t-on le complexe associé à :
 - un dipôle?
 - a. L'amplitude complexe

- un signal?
 - c. L'impédance complexe

)L'amplitude complexe

QCM 3

Architecture des ordinateurs

Lundi 4 février 2019

11. $1000110100_2 =$

A. $10001101_2 \times 2^{-2}$

B: $100011010000_2 \times 2^2$

2. 100011₂ × 16

 $1000110100000000 \times 2^{-4}$

12. Quelle est la valeur du champ *E* pour un codage à mantisse dénormalisée ?

13. Donnez la représentation associée au codage IEEE 754 double précision suivant : 7FF100000000000000₁₆

A. −∞

(B) NaN /

C. Aucune de ces réponses.

14. Donnez la représentation IEEE 754, en simple précision, du nombre suivant : 78,25

15. Donnez la représentation associée au codage IEEE 754 double précision suivant : $0000\ 2800\ 0000\ 0000_{16}$

A. 517×2^{-1032}

B. 5×2^{-135}

16. Quelle est la valeur minimum du champ E pour un codage à mantisse normalisée ?

- 17. En simple précision, quelle est la valeur maximum du champ E pour un codage à mantisse normalisée?
 - A. 0
 - B. 127
 - C.) 254
 - D. 255
- 18. Une bascule RS asynchrone (R et S sont actifs à l'état haut) peut être fabriquée à l'aide de :
 - A. Deux portes NON-ET.
 - B. Deux portes NON-OU.
 - C. Deux portes OU EXCLUSIF.
 - D. Une porte NON-OU et une porte NON-ET.
- 19. Une bascule RS maître-esclave:
 - A. Copie l'entrée R sur la sortie Q à chaque front montant de l'horloge.
 - B. Peut modifier la sortie Q uniquement sur les fronts montants de l'horloge.
 - C. Peut modifier la sortie Q sur les fronts montants et descendants de l'horloge.
 - D Peut modifier la sortie Q uniquement sur les fronts descendants de l'horloge.
- 20. Lorsque les entrées R et S d'une bascule RS active à l'état haut sont à 0 :

- B. La sortie est toujours à 1.
- C. La sortie est toujours à 0.
- D. Cet état est interdit.