Previsão Epidemiológica na Plataforma JFST e a Utilização de Pipeline de Dados para sua Automatização

Bolsista: Gustavo Almeida Silva

Orientador: Prof. Dr. Marcel de Toledo Vieira

A Plataforma

Previsão Epidemiológica

Análise Descritiva

Gráficos e Dados Disponibilizados Relatórios Automatizados e Boletins Informativos Mensais

Análise Exploratória

Prever Dados
Confirmados para o
Futuro

Como repetir esse processo semanalmente de maneira automatizada?

Pipeline de Dados

Pipelines de dados são sistemas ou fluxos de processamento de dados que permitem a coleta, transformação, armazenamento e análise de informações de forma automatizada e escalável. Eles são essenciais em ambientes onde grandes volumes de dados precisam ser processados de maneira eficiente e confiável.

Salvando

Coleta Limpeza e Armazenamento dos Dados

Etapa 1

Modelagem

Etapa 2

Salvando JF Todos

Deployment

Gráficos

02

03

O Workflow

Como o pipeline realmente funciona

Modelos Utilizados

Assim como o processo, os modelos precisam ser automatizados

ARIMA/SARIMA

- Algoritmo de Hyndman & Khandakar, 2008
- Um stepwise para busca de parâmetros que minizam o AICc
- Busca de tais parâmetros ocorre em uma malha
- Os modelos podem ser: ARIMA(p, d, q) ou SARIMA(p, d, q)(P, D, Q) [m]

Algoritmo de busca

NNETAR

- Autoregressivo de Redes Neurais (Neural Network Auto Regressive)
- Os parâmetros autoregressivos e hidden layers são ajustados via tuning
- Um modelo NNETAR(p, P, k)[m] é calculado

Rede Neural

Relatório de Acurácia - Modelos de Previsão Epidemiológica

Dados da SRAGs

JF Salvando Todos http://jfsalvandotodos.ufjf.br/#!/

Detalhes

ARIMA

Model	MAE	RMSE	MAPE	MASE
ARIMA	1,401.99	2,458.36	12.73	0.08

METODOLOGIA

Model	MAE	RMSE	MAPE	MASE

NNETAR

Model	MAE	RMSE	MAPE	MASE
NNETAR	1,086.81	1,905.7	9.87	0.06

Time difference of -35.81621 secs

Metodologia

- 1. Seleção de Modelo
- · Tópico busca explicar como os modelos disponibilizados são construídos
- 2. Cálculo da Acurácia
- · Tópico busca explicar como a acurácia dos modelos é calculada

Cálculo da Acurácia

Os modelos construídos possuem o mesmo procedimento para o cálculo de suas acurácias.

O procedimento se baseia na divisão do conjunto de dados em k conjuntos de treino e teste, onde a cada conjunto novo de treino e teste feito, uma unidade adicional de tempo é adicionada para o treino. A seguinte figura ilustra o processo:

Tal procedimento é conhecido como Time Series Cross Validation ou Evaluation on a Rolling Forecasting Origin

METODOLOGIA

As seguinte estatísticas dos erros são disponibilizadas:

- Média do Erro em Valor Absoluto (Mean Absolute Error): $MAE = mean(|e_t|)$
- Raiz do Erro Quadrático Médio (Root Mean Squared Error): $RMSE = \sqrt{mean(e_t^2)}$.
- Média do Erro em Valor Absoluto em Porcentagem (Mean Absolute Percentage Érror): $MAPE=mean(|p_t|), p_t=100\times \frac{e_t}{p_t}$
- Média do Erro Dimensionado em Valor Absoluto (Mean Absolute Scaled Error): $MASE = mean(|q_j|), q_j = \frac{e_j}{\frac{1}{T-1}\sum_t^T|y_t-y_{t-1}|}$

_

Problemas Atuais e Próximos Passos

- ARIMA e dados de contagem
- Add-on: fable Count
- Automatização e Modulação das demais funcionalidades da Plataforma

_

Referências

- Hyndman, Rob J., and George Athanasopoulos.
 Forecasting: principles and practice 3. OTexts, 2018.
- Landou, W. The {targets} R package user manual.
 ROpenSCI, 2022

OBRIGADO!