

Varying processing parameters in the development of slurry-based oxide bond coat for environmental barrier coatings

R. I. Webster, K. N. Lee, B. J. Puleo
NASA Glenn Research Center, Cleveland, OH

47th International Conference and Expo on Advanced Ceramics and Coatings
S2: Environmental Barrier Coatings II

January 26, 2023

Funded by: Transformational Tools & Technologies (TTT) Project
Hybrid Thermally Efficient Core (HyTEC) Project

Introduction

- Silicon carbide (SiC)-based ceramic matrix composites (CMCs) are an attractive alternative to nickel-base superalloys as hot-section aircraft engine components
 - Lower density and higher operating temperature improve engine efficiency
- CMCs require an environmental barrier coating (EBC) to prevent volatilization of the protective SiO_2 scale formed on SiC in a combustion environment

Oxidation

Recession

Motivation

- Current-generation EBCs consist of a rare earth (RE) silicate ($\text{RE}_2\text{Si}_2\text{O}_7$; RE_2SiO_5) top coat and a Si bond coat
- Upper use temperature limited by melting point of Si bond coat ($\sim 1410^\circ\text{C}$)
 - Operating temperature of 2700°F (1482°C) desired

<https://ntrs.nasa.gov/api/citations/20180004253>

Motivation

- A slurry-based oxide bond coat with significantly higher temperature capabilities has been developed at NASA Glenn Research Center
 - Three-layer system
 - Cycling at 1427°C in 90 vol% H₂O/10 vol% O₂

	Mullite	Yb ₂ Si ₂ O ₇	HfSiO ₄	Al ₂ O ₃	Si
Top coat	0.2 – 1 wt%	balance			0 – 10 wt%
Chemical barrier			balance		10 wt%
Bond coat	balance	1.3 wt%		7	20 wt%

500 h at 1427°C; ~15 µm thick TGO

KN Lee et al., J. Eur. Ceram. Soc., 41 1639–1653 (2021).

Objective

- Explore the effects of processing and chemistry on slurry-based oxide bond coat performance at $\sim 1480^{\circ}\text{C}$ in a steam cycling environment

Experimental

- Slurry processes (dip, spray, spin) provide a feasible, inexpensive, and scalable method for producing coatings
- Slurry = powder + solution (solvent + binder + dispersant)
- A bond coat (5 mil) and chemical barrier (5 mil) were deposited on Hexoloy® SA coupons via spin coating

	Mullite	$RE_2Si_2O_7$	$HfSiO_4$	Al_2O_3	Si	SiC
Chemical barrier			balance		2 wt%	
Bond coat	balance	≤ 1 wt%		< 1 wt%	15 wt%	5 wt%

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

Experimental

- Bond coat variables:
 - Particle size
 - Powders prepared with 2, 3, or 5 mm diameter ZrO_2 milling media
 - Viscosity
 - Slurry viscosity varied between ~ 10 ("low viscosity") and 20 – 30 cP ("standard viscosity")
 - RE inclusion
 - Yb/Sc/Lu

	Mullite	$\text{RE}_2\text{Si}_2\text{O}_7$	HfSiO_4	Al_2O_3	Si	SiC
Chemical barrier			balance		2 wt%	
Bond coat	balance	≤ 1 wt%		< 1 wt%	15 wt%	5 wt%

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

Experimental

- Dried coupons sintered for 3 h at $\sim 1525^{\circ}\text{C}$ and annealed for 10 h at $\sim 1480^{\circ}\text{C}$ in a stagnant-air box furnace
- Sintered/annealed samples exposed in a steam cycling rig (1 hour hot, 30 min cool) at $\sim 1480^{\circ}\text{C}$
 - 90 vol% H_2O /10 vol% O_2
 - 10 cm/s gas velocity
- Coating performance evaluated macroscopically and by scanning electron microscopy (SEM)

	Mullite	$\text{RE}_2\text{Si}_2\text{O}_7$	HfSiO_4	Al_2O_3	Si	SiC
Chemical barrier			balance		2 wt%	
Bond coat	balance	≤ 1 wt%		< 1 wt%	15 wt%	5 wt%

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

Results: Particle size

- Average particle size ranged from 2.0 to 4.7 μm
- Smaller particle size = denser bond coat?
 - \uparrow density, \uparrow elastic modulus, \uparrow thermal stress during cycling

Results: Particle size

- Average particle size ranged from 2.0 to 4.7 μm
- Smaller particle size = denser bond coat?
 - \uparrow density, \uparrow elastic modulus, \uparrow thermal stress during cycling
- Density not significantly different across initial particle size range investigated

Results: Particle size

- Average particle size ranged from 2.0 to 4.7 μm
- Smaller particle size = denser bond coat?
 - \uparrow density, \uparrow elastic modulus, \uparrow thermal stress during cycling
- Density not significantly different across initial particle size range investigated
 - Differences in density likely due to other factors

Particle size = 2.0 μm ; 500 cycles, $\sim 1480^\circ\text{C}$

Results: Particle size

- Average particle size ranged from 2.0 to 4.7 μm
- Smaller particle size = denser bond coat?
 - \uparrow density, \uparrow elastic modulus, \uparrow thermal stress during cycling
- Density not significantly different across initial particle size range investigated
 - Differences in density likely due to other factors

No apparent trends with respect to density or performance as a function of particle size.

Particle size = 2.0 μm ; 500 cycles, $\sim 1480^\circ\text{C}$

Results: Viscosity

- “Standard” viscosity = powder to solution ratio of 36/64 (wt%)
- “Low viscosity” = powder to solution ratio of 25/75 (wt%)

Results: Viscosity

- “Standard” viscosity = powder to solution ratio of 36/64 (wt%)
- “Low viscosity” = powder to solution ratio of 25/75 (wt%)
- Low viscosity samples generally showed improved resistance to edge-lifting/edge effects after processing

Standard viscosity

Low viscosity

As-processed

Results: Viscosity

- Low viscosity samples generally showed improved resistance to edge-lifting/edge effects after processing
- Only minor improvements in bond coat performance in a steam cycling environment were observed across multiple samples

Standard viscosity

Low viscosity

After 500 cycles,
~1480°C

Results: Viscosity

- Low viscosity samples generally show improved resistance to edge-lifting/edge effects after processing
- Only minor improvements in bond coat performance in a steam cycling environment were observed across multiple samples
 - No significant difference in density between standard and low viscosity samples

Results: Viscosity

- Low viscosity samples generally show improved resistance to edge-lifting/edge effects after processing
- Only minor improvements in bond coat performance in a steam cycling environment were observed across multiple samples
 - No significant difference in density between standard and low viscosity samples

A lower viscosity slurry results in somewhat improved bond coat performance.

Results: RE inclusion

- Substitution of Sc or Lu for Yb in $\text{RE}_2\text{Si}_2\text{O}_7$ expected to increase the $\text{RE}_2\text{Si}_2\text{O}_7$ + mullite/ Al_2O_3 eutectic temperature

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

	Mullite	$\text{RE}_2\text{Si}_2\text{O}_7$	Al_2O_3	Si	SiC
Bond coat	balance	≤ 1 wt%	< 1 wt%	15 wt%	5 wt%

Results: RE inclusion

- Substitution of Sc or Lu for Yb in $\text{RE}_2\text{Si}_2\text{O}_7$ expected to increase the $\text{RE}_2\text{Si}_2\text{O}_7$ + mullite/ Al_2O_3 eutectic temperature

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

	Mullite	$\text{RE}_2\text{Si}_2\text{O}_7$	Al_2O_3	Si	SiC
Bond coat	balance	≤ 1 wt%	< 1 wt%	15 wt%	5 wt%

Results: RE inclusion

- 1:1 substitution of Sc or Lu for Yb results in improved bond coat performance
 - Slurry prepared as “low viscosity”; 5 mm milling media

Results: RE inclusion

- 1:1 substitution of Sc or Lu for Yb results in improved bond coat performance
 - Slurry prepared as “low viscosity”; 5 mm milling media

After 500 cycles, $\sim 1480^{\circ}\text{C}$

Results: RE inclusion

- 1:1 substitution of Sc or Lu for Yb results in improved bond coat performance
 - Slurry prepared as “low viscosity”; 5 mm milling media

After 500 cycles, ~1480°C

Results: RE inclusion

- 1:1 substitution of Sc or Lu for Yb results in improved bond coat performance
 - Slurry prepared as “low viscosity”; 5 mm milling media
- Additional research is underway to optimize the substitution amount
 - Density $\text{Yb}_2\text{Si}_2\text{O}_7$ = 6.15 g/cm³
 - Density $\text{Lu}_2\text{Si}_2\text{O}_7$ = 6.249 g/cm³
 - Density $\text{Sc}_2\text{Si}_2\text{O}_7$ = 3.396 g/cm³

Substitution of the RE in $\text{RE}_2\text{Si}_2\text{O}_7$ has the most pronounced effect on oxide bond coat performance.

Summary

- The effects of particle size, slurry viscosity, and RE chemistry on the performance of a slurry-based oxide bond coat in a steam cycling environment were explored

Summary

- The effects of particle size, slurry viscosity, and RE chemistry on the performance of a slurry-based oxide bond coat in a steam cycling environment were explored
- There was no trend in bond coat performance as a function of particle size observed over the particle size range investigated

Summary

- The effects of particle size, slurry viscosity, and RE chemistry on the performance of a slurry-based oxide bond coat in a steam cycling environment were explored
- There was no trend in bond coat performance as a function of particle size observed over the particle size range investigated
- Lowering the slurry viscosity reduced edge-lifting after processing

Summary

- The effects of particle size, slurry viscosity, and RE chemistry on the performance of a slurry-based oxide bond coat in a steam cycling environment were explored
- There was no trend in bond coat performance as a function of particle size observed over the particle size range investigated
- Lowering the slurry viscosity reduced edge-lifting after processing
- The type of RE in $\text{RE}_2\text{Si}_2\text{O}_7$ had the strongest effect on bond coat performance

Future work

- The effects of particle size, slurry viscosity, and RE chemistry on the performance of a slurry-based oxide bond coat in a steam cycling environment were explored
- There was no trend in bond coat performance as a function of particle size observed over the particle size range investigated
- Lowering the slurry viscosity reduced edge-lifting after processing
- The type of RE in $\text{RE}_2\text{Si}_2\text{O}_7$ had the strongest effect on bond coat performance

- Future work will explore particle size and viscosity effects after bond coat chemistry has been optimized, specifically with respect to RE inclusion
- A slurry-based, HfO_2 -dominant top coat chemistry will be investigated