

#### 1. Design

♦ Today's Computer chips are facing a severe problem with power dissipation in addition to that heat generation. Reversible logic reduces power consumption as zero-energy computation has inspired it.

♦ My VLSI project describes Design and Implementation of 16-Bit ALU built using reversible decoder controlled combinational circuits on Spartan3E (XC3S500E-FG320-5) FPGA.

#### Reversible Gates.

♦ A reversible logic gate is an n-input n-output logic device with one-to-one mapping. This helps to determine the outputs from the inputs and also the inputs can be uniquely recovered from the outputs.

♦ Also, in the synthesis of reversible circuits direct fan-Out is not allowed as one-to-many concept is not reversible.

## Fredkin Gate

#### **Inverse Fredkin Gate**



#### How this works?

- ♦ Rolf Landauer, 1961. Whenever we use a logically irreversible gate we dissipate energy into the environment.
- ♦ The loss of information is associated with laws of physics requiring that one bit of information lost dissipates kTln2 of energy.

- Landauer/Bennett: all operations required in computation could be performed in a reversible manner, thus dissipating no heat!
- $\diamond$  And so according to a second law of thermodynamics: ds = dq/T(for reversible process)

### Some reversible gates.













### 2. Workflow used-

- Application Specific integrated circuit (Primary)
- ♦ Field Programmable gate array (Secondary)



#### Decoder-



### Adder-



#### 3. Results-













### Timing diagrams-ALU



# Rev\_ALU-

| lame             | Value           | 0 ns | 100 ns | 200 ns  | 300 ns    | 400 ns | 500 ns | 600 ns 700       | ns | 800 ns 900 ns    |
|------------------|-----------------|------|--------|---------|-----------|--------|--------|------------------|----|------------------|
| ₹ sum[16:0]      | Z               | 386  | 711    |         |           |        |        | Z                |    |                  |
| diff[15:0]       | z               |      | Z      | 420     | 333       |        |        | Z                |    |                  |
| ₹ M[31:0]        | z               |      |        | Z       |           | 19152  | 28782  |                  |    | Ż                |
| ₹ y1[15:0]       | 000000000100000 |      |        | ZZZZZZZ | ZZZZZZZZ  |        |        | 0000011101010000 |    | 000000000100000  |
| 🧓 y2[15:0]       | 000000000000000 |      |        | ZZZZZZZ | ZZZZZZZZ  |        |        | 0000000000011101 |    | 000000000000000  |
| sel[1:0]         | 3               |      | 0      |         | 1         |        | 2      |                  |    | 3                |
| ■ a[15:0]        | Θ               | 340  | 678    |         |           |        |        | 0                |    |                  |
| ■ b[15:0]        | 0               | 45   | 32     |         |           |        |        | 0                |    |                  |
| 1₀ cin           | Θ               |      |        |         |           |        |        |                  |    |                  |
| <b>5</b> p[15:0] | 0               |      | 0      | 30      | 123       |        |        | 0                |    |                  |
| <b>動</b> q[15:0] | 0               |      | 0      | 450     | 456       |        |        | 0                |    |                  |
| ■ A[15:0]        | Θ               |      |        | 0       |           | 342    | 234    |                  |    | Ф                |
| ■ B[15:0]        | 0               |      |        | 0       |           | 56     | 123    |                  |    | Ф                |
| ■ s[15:0]        | 000000000000001 |      |        | 0000000 | 000000000 |        |        | 0000000011101010 |    | 0000000000000001 |
| ■ t[15:0]        | 5               |      |        |         | 0         |        |        | 3                |    | 5                |
|                  |                 |      |        |         |           |        |        |                  |    |                  |
|                  |                 |      |        |         |           |        |        |                  |    |                  |
|                  |                 |      |        |         |           |        |        |                  |    |                  |
|                  |                 |      |        |         |           |        |        |                  |    |                  |
|                  |                 |      |        |         |           |        |        |                  |    |                  |

#### Results to be looked for.



Figure 20: Total power consumption Rev ALU vsALU.



Figure 19: Representing dynamic power consumption Rev\_ALU vs ALU.



Figure 18: Representing Area Rev\_ALU vs ALU

# 4. Comparison

|         | Genus Area<br>(in cell-units) | Genus<br>Power<br>(in microwatts) | Innovus<br>Power<br>(milliwatts) | Innovus<br>Area(micrometer-<br>square) |
|---------|-------------------------------|-----------------------------------|----------------------------------|----------------------------------------|
| ALU     | 10528                         | 814.690707                        | 1.05026956                       | 10491.3909                             |
| Rev_ALU | 9968                          | 777.123397                        | 1.011232329                      | 9966.1023                              |

|                | Total Power (microwatts) | Area<br>(Slices) |
|----------------|--------------------------|------------------|
| Rev_ALU(Paper) | 81.71                    | 322              |
| ALU (Paper)    | 82.17                    | 351              |