Test di Calcolo Numerico

Ingegneria Informatica 01/02/2014

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 01/02/2014

1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10,2,-3,3)$. Dati i numeri $x_1=0.0015,\ x_2=1.5768,\ x_3=0.7385$ e $x_4=0.0016$, determinare le loro rappresentazioni nell'insieme \mathcal{F} .

Determinare anche la rappresentazione in \mathcal{F} del numero $x_5 = x_1 - x_4$.

2) La matrice

$$A = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -2 & 1 & 2 \\ 2 & 0 & 1 & 0 \\ -1 & 7 & 1 & 3 \end{pmatrix}$$

è riducibile.

Determinare una matrice di permutazione che riduce la matrice A.

3) È data l'equazione

$$(x^2 - 1)(x - 2)^2 = 0.$$

Calcolare le soluzioni di tale equazione e per ciascuna di esse determinare l'ordine con cui converge il metodo di Newton.

4) Il polinomio $P(x) = x^3 - x^2 - x - 1$ è il polinomio di interpolazione della tabella di valori

5) Per approssimare l'integrale $I=\int_1^3 f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = f(3) + f(1)$$
.

Determinare il grado di precisione m della formula data.

Supponendo che si possa esprimere l'errore come $E_1(f) = Kf^{(s)}(\xi)$, determinare $K \in s$.

SOLUZIONE

1) Le rappresentazioni in \mathcal{F} dei numeri dati sono

$$\hat{x}_1 = 0.15 \times 10^{-2}$$
, $\hat{x}_2 = 0.16 \times 10^1$, $\hat{x}_3 = 0.74 \times 10^0$, $\hat{x}_4 = 0.16 \times 10^{-2}$, $\hat{x}_5 = -0.10 \times 10^{-3}$.

2) Una matrice che riporta A in forma ridotta è, per esempio,

$$P = \left(e^{(1)}|e^{(3)}|e^{(2)}|e^{(4)}\right) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3) L'equazione data ha soluzioni

$$\alpha_1 = \alpha_2 = 2$$
, $\alpha_3 = 1$, $\alpha_4 = -1$.

Il metodo di Newton converge ad α_1 con ordine p=1 essendo una radice con molteplicità uguale a 2.

Ponendo $f(x) = (x^2 - 1)(x - 2)^2$ si ha $f''(x) = 12x^2 - 24x + 6$ che non si annulla in $\alpha_{3,4}$ per cui il metodo di Newton converge a tali valori con ordine p = 2.

- 4) Il polinomio dato non è il polinomio di interpolazione dei valori dati perché ha grado 3 mentre, con tre punti, il polinomio di interpolazione deve avere al massimo grado 2.
- 5) La formula data ha grado di precisione m=1 (risulta esatta per f(x)=1, x mentre si ha $E_1(x^2)=-\frac{4}{3}$). Ne segue che s=2 e $K=-\frac{2}{3}$. (Si poteva arrivare allo stesso risultato osservando che la formula data è la formula trapezoidale)