INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4051 8-channel analog multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4051

FEATURES

- Wide analog input voltage range: ± 5 V.
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

 Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals

- Typical "break before make" built in
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4051 are high-speed Si-gate CMOS devices and are pin compatible with the "4051" of the

"4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4051 are 8-channel analog multiplexers/demultiplexers with three digital select inputs (S_0 to S_2), an active LOW enable input (\overline{E}), eight independent inputs/outputs (Y_0 to Y_7) and a common input/output (Z).

With \overline{E} LOW, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 to S_2 .

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$ to S $_2$, and \overline{E}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y $_0$ to Y $_7$, and Z) can swing between V $_{CC}$ as a positive limit and V $_{EE}$ as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMDOL	DADAMETED	CONDITIONS	TYP	ICAL	LINUT
SYMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PZH} / t _{PZL}	turn "ON" time	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$			
	E to V _{os}	$V_{CC} = 5 V$	22	22	ns
	S _n to V _{os}		20	24	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time				
	E to V _{os}		18	16	ns
	S _n to V _{os}		19	20	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	25	25	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		25	25	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \} \text{ where:}$

 f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \} = \text{sum of outputs}$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

74HC/HCT4051

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3	Z	common input/output
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
11, 10, 9	S ₀ to S ₂	select inputs
13, 14, 15, 12, 1, 5, 2, 4	Y ₀ to Y ₇	independent inputs/outputs
16	V _{CC}	positive supply voltage

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

FUNCTION TABLE

	INP		channel	
Ē	S ₂	S ₁	S ₀	ON
L	L	L	L	$Y_0 - Z$
L	L	L	Н	$Y_1 - Z$
L	L	Н	L	$Y_2 - Z$
L	L	Н	Н	$Y_3 - Z$
L	Н	L	L	$Y_4 - Z$ $Y_5 - Z$ $Y_6 - Z$ $Y_7 - Z$
L	H	L	Н	$Y_5 - Z$
L	H	Н	L	$Y_6 - Z$
L	Н	Н	Н	$Y_7 - Z$
Н	X	Х	Х	none

Notes

H = HIGH voltage level
 L = LOW voltage level
 X = don't care

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n, the voltage drop across
the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out
of terminals Y_n. In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may
not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	;		74HC	Т	UNIT	CONDITIONS
STIVIBUL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNII	CONDITIONS
V _{CC}	DC supply voltage V _{CC} – GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V _{CC}	DC supply voltage V _{CC} – V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	٧	
Vs	DC switch voltage range	V _{EE}		V _{CC}	V _{EE}		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4051.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4051.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb} ((°C)					TEST CONDITIONS			
CVMDOL	PARAMETER		74HC/HCT											
SYMBOL		+25			-40 t	-40 to +85 -40 t			UNIT	V _{CC}	V _{EE} (V)	l _S (μ A)	Vis	Vı
		min.	typ.	max.	min.	max.	min.	max.		(',	(,	(per ty		
R _{ON}	ON resistance (peak)		_	_		_		_	Ω	2.0	0	100	V _{CC}	V_{IH}
			100	180		225		270	Ω	4.5	0	1000	to	or
			90	160		200		240	Ω	6.0	0	1000	V_{EE}	V_{IL}
			70	130		165		195	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance (rail)		150	_		_		_	Ω	2.0	0	100	V _{EE}	V _{IH}
			80	140		175		210	Ω	4.5	0	1000		or
			70	120		150		180	Ω	6.0	0	1000		V_{IL}
			60	105		130		160	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance (rail)		150	_		_		_	Ω	2.0	0	100	V _{CC}	V _{IH}
			90	160		200		240	Ω	4.5	0	1000		or
			80	140		175		210	Ω	6.0	0	1000		V_{IL}
			65	120		150		180	Ω	4.5	-4.5	1000		
ΔR_{ON}	maximum ∆ON		_						Ω	2.0	0		Vcc	V _{IH}
	resistance between		9						Ω	4.5	0		to	or
	any two channels		8						Ω	6.0	0		VEE	V_{IL}
			6						Ω	4.5	-4.5			-

Notes to DC characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear.
 Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

			T _{amb} (°C)							1	EST	COND	ITIONS
CVMDOL	DADAMETED				74H	3						\ \ \	OTUED
SYMBOL	PARAMETER	+25			−40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE} (V)	Vi	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(' '	(',		
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
± I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
± I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
± I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
± I _S	analog switch ON-state current			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.11
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

			T _{amb} (°C)							TEST CONDITIONS			
SYMBOL	PARAMETER				74H	IC			UNIT			OTHER	
STWIBOL	PARAMETER		+25		−40 t	o +85	−40 t	o +125	UNII	V _{CC}		OTHER	
		min.	typ.	max.	min.	max.	min.	max.		` ′	` ′		
t _{PHL} / t _{PLH}	propagation delay		14	60		75		90	ns	2.0	0	$R_L = \infty$; $C_L = 50 \text{ pF}$	
	V _{is} to V _{os}		5	12		15		18		4.5	0	(see Fig.17)	
			4	10		13		15		6.0	0		
			4	8		10		12		4.5	-4.5		
t _{PZH} / t _{PZL}	turn "ON" time		72	345		430		520	ns	2.0	0	$R_L = 1 k\Omega;$	
	E to V _{os}		29	69		86		104		4.5	0	$C_L = 50 \text{ pF}$	
			21	59		73		88		6.0	0	(see Fig.18, 19 and	
			18	51		64		77		4.5	-4.5	20)	
t _{PZH} / t _{PZL}	turn "ON" time		66	345		430		520	ns	2.0	0	$R_L = 1 k\Omega;$	
	S _n to V _{os}		28	69		86		104		4.5	0	C _L = 50 pF	
			19	59		73		88		6.0	0	(see Fig.18, 19 and	
			16	51		64		77		4.5	-4.5	20)	
t _{PHZ} / t _{PLZ}	turn "OFF" time		58	290		365		435	ns	2.0	0	$R_L = 1 k\Omega;$	
	E to V _{os}		31	58		73		87		4.5	0	C _L = 50 pF	
			17	49		62		74		6.0	0	(see Fig.18, 19 and	
			18	42		53		72		4.5	-4.5	20)	
t _{PHZ} / t _{PLZ}	turn "OFF" time		61	290		365		435	ns	2.0	0	$R_L = 1 k\Omega;$	
	S _n to V _{os}		25	58		73		87		4.5	0	C _L = 50 pF	
			18	49		62		74		6.0	0	(see Fig.18, 19 and	
			18	42		53		72		4.5	-4.5	20)	

74HC/HCT4051

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

					T _{amb}	(°C)					TEST	COND	ITIONS
SYMBOL	PARAMETER				74H	СТ							
STIVIBUL	PARAMETER		+25		-40	to +85	-40 to	o +125	UNIT	V _{CC}	V _{EE}	Vi	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
± I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	0	V _{CC} or GND	
± Is	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
± I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
± I _S	analog switch ON-state current			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	0	V _{CC} – 2.1	other inputs at V _{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current (Δ I_{CC}) for a unit load of 1 is given here. To determine Δ I_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Sn	0.50
Ē	0.50

74HC/HCT4051

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

					T _{amb} ((°C)				TEST CONDITIONS			
SYMBOL	PARAMETER				74H	СТ			UNIT			OTHER	
STWIBOL	PARAWIETER	+25		−40 to +85		-40 to +125			V _{CC}	V _{EE} (V)	OTHER		
		min.	typ.	max.	min.	max.	min.	max.		(' '	(-,		
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.17)	
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os}		26 16	55 39		69 49		83 59	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.18, 19 and 20)	
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		28 16	55 39		69 49		83 59	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.18, 19 and 20)	
t _{PHZ} / t _{PLZ}	turn "OFF" time E to V _{os}		19 16	45 32		56 40		68 48	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.18, 19 and 20)	
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		23 16	45 32		56 40		68 48	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.18, 19 and 20)	

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

74HC/HCT4051

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \ \Omega; \ C_L = 50 \ pF$ (see Figs 12 and 15)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \ \Omega; C_L = 50 \ pF;$ $f = 1 \ MHz \ (\overline{E} \ or \ S_n,$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \ ns)$ (see Fig.16)
f _{max}	minimum frequency response (–3dB)	170 180	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega; C_L = 10 pF$ (see Fig.13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 25	pF pF				

Notes to AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

General note

 V_{is} is the input voltage at a Y_n or Z terminal, whichever is assigned as an input. V_{os} is the output voltage at a Y_n or Z terminal, whichever is assigned as an output.

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

The crosstalk is defined as follows (oscilloscope output):

The cr

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

AC WAVEFORMS

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V_{is}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

		V _M	t _r ; t _f	
FAMILY	AMPLITUDE		f _{max} ; PULSE WIDTH	OTHER
74HC 74HCT	V _{CC} 3.0 V	50% 1.3 V	< 2 ns < 2 ns	6 ns 6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

Fig.19 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

		V _M	t _r ; t _f	
FAMILY	AMPLITUDE		f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

Fig.20 Input pulse definitions.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

 $t_{r} = t_{f}$ = 6 ns; when measuring f_{max} , there is no constraint to t_{r} , t_{f} with 50% duty factor.

8-channel analog multiplexer/demultiplexer

74HC/HCT4051

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".