

Comparison of relaxed-clock models using the **Bayesian model selection implemented in MCMCtree**

Sandra Alvarez-Carretero and Mario dos Reis

School of Biological and Chemical Sciences. Queen Mary University of London, Mile End Road, London, EI 4NS, UK.

BACKGROUND

MARGINAL LIKELIHOOD ESTIMATION

$$\frac{posterior}{(marginal\ likelihood)}$$

$$f(t,r|\mathbf{D}) = \frac{1}{z}f(r|t)f(t)f(\mathbf{D}|t,r)$$

 $\mathbf{z} = \iint f(t)f(r|t)f(\mathbf{D}|t,r) drdt$

MCMC SAMPLING FROM **POWER POSTERIOR DISTRIBUTIONS**

 $f_{\beta}(t,r|\mathbf{D}) \propto f(r|t)f(t)f(\mathbf{D}|t,r)^{\beta}$

- a) Select $k \beta$ values
- b) $0 \le \beta \le 1$
- c) Sample $f(\mathbf{D}|t,r)^{\beta}$
- d) Estimate Z
 - $TI^{1,2,3}$ (Thermodynamic integration)
 - SS⁴ (Steppingstone)
- e) Calculate Bayes factors (BFs)
- f) Select model

IMPLEMENTATION

mcmc3r⁵ (R package) & MCMCtree (PAML^{6,7}, current v. 4.9h)

- Prepare sequence alignment (aln.aln) and tree (tree.tree) files in MCMCtree format for each model to evaluate.
- 2. Prepare MCMCtree control files (mcmctree.ctl).
- 3. \blacksquare Find appropriate k β values (betaweights.txt) to calculate the marginal likelihood using **TI** or **SS** approach.
- 4. R Create k directories with the corresponding mcmctree.ctl file with the appropriate β value appended.
- 5. Run MCMCtree within each directory created by mcmc3r having the mcmctree.ctl with the appropriate β value.
- 6. R Parse MCMCtree's output to calculate the marginal likelihood estimates and standard errors.
- Compute BFs and posterior model probabilities.

https://dosreislab.github.io/2017/10/24/marginal-likelihood-mcmc3r.html

RESULTS OF A BAYESIAN MODEL SELECTION ANALYSIS

Table 1. Bayesian selection of relaxed-clock model for 10 randomly sampled mammal genes [8]. Three different methods to calculate the Bayes factors and posterior probabilities are used.

	Thermodynamic integration			Steppingstone			Harmonic mean (bad method)		
Gene ⁽¹⁾	P(M _{ILN} D)	$P(M_{GBM} D)$	$BF_{ILN,GBM}$	$P(M_{\rm ILN} D)$	$P(M_{GBM} D)$	${\rm BF}_{\rm ILN,GBM}$	$P(M_{\rm ILN} D)$	$P(M_{GBM} D)$	BF _{ILN,GBM}
cds_ENSG00000178691 (SUZ12, q1q1)	1.000	0.000	25.034	1.000	0.000	25.261	1.000	0.000	11.678
cds_ENSG00000164066 (INTU, q1g2)	0.000	1.000	-20.389	0.000	1.000	-20.393	0.474	0.526	-0.104
cds_ENSG00000108296 (CWC25, q2g1)	0.000	1.000	-10.999	0.000	1.000	10.985	1.000	0.000	8.567
cds_ENSG00000164169 (PRMT9, q2g2)	0.883	0.117	2.022	0.884	0.116	2.031	1.000	0.000	7.680
cds_ENSG00000182504 (CEP97, q3g1)	1.000	0.000	11.223	1.000	0.000	10.750	0.998	0.002	6.392
cds_ENSG00000188266 (HYKK, q3g2)	0.002	0.998	-6.327	0.002	0.998	-6.231	0.999	0.001	6.762
cds_ENSG00000164099 (PRSS12, q4g1)	0.000	1.000	-13.644	0.000	1.000	-13.924	0.975	0.025	3.672
cds_ENSG00000094963 (FMO2, q4g2)	0.864	0.136	1.850	0.887	0.112	2.067	0.933	0.067	2.630
cds_ENSG00000170456 (DENND5B, q5g1)	1.000	0.000	11.879	1.000	0.000	11.775	1.000	0.000	9.107
cds_ENSG00000196943 (NOP9, q5g2)	0.000	1.000	-8.308	0.000	1.000	-7.805	0.995	0.005	5.322

⁽¹⁾ Ensembl identifiers for the genes studied in [8]. Next to them, we have added the gene name and a tag, which indicates the order of the gene sampled and the quintile from where it was sampled. gX: gene number X; qY: quantile Y.

- Note: ILN: Independent-rates model under log-normal distribution, GBM: Autocorrelated-rates model under geometric Brownian motion. The R package psych was used to

REFERENCES

- 1. Ogata, Y. (1989) Numer. Math. 55:137
- 2. Gelman, A. & Meng, X. L. (1998) Stat. Sci. 13(2):163
- 3. Lartillot, N. & Philippe, H. (2006) Syst. Biol. 55(2):195
- 4. Xie, W. et al. (2011) Syst. Biol. 60(2):150
- 5. dos Reis et al. (2018) Syst. Biol. 67(4):594
- 6. Yang, Z. (2007) Mol. Biol. Evol. 24(8):1586
- 7. Rannala, B. & Yang, Z. (2017) Syst. Biol. 66(5):823
- 8. Liu, L. et al. (2017) Proc. Natl. Acad. Sci. U.S.A 114(35):E7282

ACKNOWLEDGEMENTS

We are grateful to the comments and feedback received during the lab meetings at QMUL and UCL.

