

Introdução aos Nanossatélites e Cubesats

Lázaro Aparecido Pires de Camargo Divisão de Pequenos Satélites - DIPST Instituto Nacional de Pesquisas Espaciais — INPE São José dos Campos - SP

O QUE SÃO CUBESATS?

Histórico

- Padrão surge há cerca de 18/19 anos
- Stanford Bob Twiggs Stanford e Jordi Puigi-Suari - CalPoly, El Bispo, CA
- Padrão cubo com 10cm. de aresta e 1kg. de massa
 - Subsistemas TMTC (VHF/UHF), computador de bordo, potência, controle, antenas, software, estação de solo.
 - o Cubesat design specification (CDS); rev. 13 (2013)
- Proposta inicial formação prática de RH

Começou como um projeto de sala em 1999

Figure 1. Prof. Bob Twiggs

Figure 2. Prof. Jordi Puig-Suari

Figure 3. Original CubeSat

http://www.jossonline.com/wp-content/uploads/2014/12/0101-Thinking-Outside-the-Box-Space-Science-Beyond-the-CubeSat.pdf

Cubesat – padrão de especificação

Combinações de unidades de Cubesat

Padrão 1U

Small Sats (até 10kgs):

CubeSats

PocketQub

John Salo

CanSat

https://asunow.asu.edu/20160406-creativity-asu-suncube-femtosat-space-exploration-for-everyone

ASU's SunCube FemtoSat

POR QUE CUBESATS?

```
Grandes - > 1 ou 2 ton
Médios - 500 kg. a 1
ton
Pequenos – até 500 kg.
  Mini - 50 a 100 kg.
  Micro - 10 a 50 kg.
  Nano -1 a 10 kg.
  Pico - < 1 \text{ kg}.
```


Alguns dos Pequenos satélites brasileiros

LANÇAMENTO

- o Carona; órbita polar; lançamento "terciário"
- o Baixo custo; em torno de 150 KUS\$
- PSLV (Índia); DNPER (Rússia); VEGA (ESA);
 LM (China); Soyuz (Russia); ISS; VLM (?) (Brasil 2021? Cooperação com o DLR)
- Dificuldade de lançamento dedicado; alto custo em relação ao custo do cubesat (100 KUS\$ + estação 100 KUS\$)
- Busca por lançadores de pequeno porte (VLS/VLM); NASA; RocketLab; Virgin etc

Além de padronizar os satélites, padronizou-se a interface de transporte

INTERFACE COM O LANÇADOR

- Padrão (P-POD MkIII ICD)
- POD Picosatellite Orbit Deployer

CUBESATS E P-POD'S

SpaceX

AESP-14

Dragon

Falcon-9

P-POD

Missões Cubesats no INPE

NanosatC-Br1

- Cooperação INPE/CRS e UFSM
- Objetivos
 - Missão científica magnetômetro; medidas do campo magnético na AMAS
 - Missão tecnológica testes de CI's projetados no Brasil para uso espacial (resistentes à radiação – pioneiros)
 - FPGA com software tolerante a falha e driver on/off
 - Acadêmicos formação de alunos de graduação
- Compra da plataforma e estação e desenvolvimento da carga útil, AIT e operação.

Nanosatc-Br1 - Plataforma

Nanosatc-Br1 – cargas úteis

- Magnetômetro XEN1210, XI 2x2x4 mm., 3 eixos + eletrônica
- Driver on/off
 - Projeto SMDH biblioteca in house
 - o Projeto com proteção à radiação; pioneiro no país
 - Protótipo fabricado no exterior
 - Demanda do INPE/DEA/PMM
- FPGA
 - UFRGS Lab. Informática
 - Resistência à radiação por software tolerante a falha; pioneiro no país; testado em solo no IEAv. para dose acumulada.
 - Componente industrial
 - Aplicação pioneira

Placa de carga útil do NanosatC-Br1

Testes - vibração

Testes - Térmicos

Nanosatc-Br1 - Lançamento

NCBR1 – DNEPR, YASNY

NANOSATC-BR2

CARGAS ÚTEIS CIENTÍFICAS

CARGAS ÚTEIS TECONOLÓGICAS

ITASAT

SPORT

The equatorial ionization anomalies

Plasma Bubbles

Bela Fejer, The Equatorial Ionosphere: A Tutor CEDAR Meeting, Seattle Washington, 2015

GUVI (Same Local Time, Different Longitudes)

Why do bubbles form and sometimes not at Different Longitudes?

Kil, Hyosub, et al. "Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1." Geophysical research letters 31.3 (2004).

MEASUREMENTS, INSTRUMENTS AND TOTAL S/C MASS

Component	TRL	Mass (g)
IVM	5	1000
GPS RO	8	200
E-Field	8	80
Langmuir	8	80
Impedance	5	160
Magnetometer	6	150
Star Camera	8	166
Mechanisms	7	380
Antennas	8	180
Solar Panels	8	700
CubeComputer	8	320
NanoMind	8	65
Syrlinks	8	225
TrxUV	8	85
NanoPower	8	320
iMTQ	8	194
Structure	8	3500
Total		7805
Nanoracks	9	16900
Margin		9095

SPORT INSTRUMENTS

Ion Velocity Meter UTD

Receiver Aerospace Impedance Probe USU

GPS Occultation Langmuir, E-field, Fluxgate Magnetometer NASA Goddard

SATELLITE

MISSION CONOPS

NANOMIRAX

- Cooperação INPE/empresa
- Missão científica deteção de raios X; bursts de raios gamas associados a ondas gravitacionais
 - PI do INPE (João Braga)
 - 2U
- o PIPE Fase II FAPESP − 1,2 MR\$ p/ ME
- 4 pequenas empresas subcontratadas para desenvolvimento de 3 subsistemas, softwares de solo e bordo
- o 2 subsistemas ainda importados.
 - Um deles (OBC) com proposta para desenvolvimento p/ empresa nacional, com participação da UFC e UFSM.
- Finalização Junho 2020

CCST - RaioSat & BiomeSat

Rumo à agenda de desenvolvimento sustentável

Metas de Desenvolvimento Sustentável (SDGs) da ONU e Espaço.

Lightning Detection System RaioSat **RaioSat** Vision 3-U Cubesat **Ground Station System** downLink INPE telecommunication Lightning Infrastructure data Lightning Earth information Networks Data, lightning Informations, sensors knowledges **INPE** researchers **INPE Information System BrasilDAT** Knowledge Base Network

1

Requisitos da Missão

ITEM	REQUISITOS
Dimensões externas	CubeSat 3U (10x10x30 cm)
Massa total	até 3 Kg
Potência total consumida	6,5 W (TBC)
Telemetria UHF	downlink até 9600 bps
Telecomando VHF	uplink até 1200 bps
protocolos de comunicação	AX25 (Radio amador), AFSK, FSK e BPSK
Quantidade de armazenamento total de dados a bordo	4 Giga (TBC) com redundância
Controle de Atitude	3 eixos
Precisão de apontamento	De 1 a 5 graus (TBC)
campo de visada câmera(@ nível de nuvens)	10 km
Resolução espacial	80 metros/pixel
Resolução temporal (número de quadros por segundo, data e hora do relâmpago)	500 quadros / segundos
órbita desejada	LEO
Atitude	650 Km
Inclinação	70 ° (TBC)
Duração da missão	mínimo de 6 meses
Comprimento de onda desejável	777 nm
Sensibilidade da câmera (a abertura da ótica)	400-750 nm transmissão espectral

BiomeSat – Monitoração da Saúde de Florestas

- Estudo preliminar para um constelação BiomeSat Características orbitais:

Prospective Orbit Constellation

Initial Run: 01-Jan-2022 00:00 GMT

Lifetime: 2 years and

Satellite mass: 5 kg.

Number of revolutions /day: 14 + 7/8.

Revisit Time: 8 days.

Semi-major axis: 6978.033 km.

Altitude over the equator: 599,896 km.

Inclination: 97.787°.

Pass time in Ecuador: 10:30 AM.

Period 96.806 min.

Minimum FOV for global coverage: 31°.

CONASAT - CONSTELAÇÃO DE NANO SATÉLITES PARA COLETA DE DADOS AMBIENTAIS

Arquitetura da Missão

Dimensões: 22,6 x 22,6 x 22,7cm

Massa total: 8,3 kilogramas

Potência: 6,44 watt

Estabilizado em 2 eixos (x,y) Comunicação: UHF e Banda S

A experiência no picosatélite Tancredo-I https://www.researchgate.net/project/UbatubaSat

PicoSat - Tancredo I (UbatubaSat) Arquitetura da Missão Espacial

Ter frequência de operação coordenada

Subsistema de Comunicações

sid.inpe.br/mtc-m21b/2016/05.16.17.22-TDI

UMA METODOLOGIA PARA RE-ENGENHARIA DE SISTEMAS ESPACIAIS APLICADA A UM PICOSSATÉLITE

Auro Tikami

Floripa Sat

- O Floripa Sat surgiu de forma independente, inspirado em outros projetos experimentais do Centro Tecnológico (CTC) como o BAJA SAE, do curso de Engenharia Mecânica, que se destina a produzir protótipos de veículos automotivos off-road.
- "Existe aqui na UFSC o BAJA; o barco elétrico; o carro elétrico. São vários projetos. Pensamos então em propor o desenvolvimento de um satélite para que os alunos se interessassem e se motivassem também pela área aeroespacial", explica o professor Eduardo Bezerra, do Departamento de Engenharia Elétrica e um dos coordenadores do projeto.
- O curso da UFSC foi criado em 2009 e é uma das únicas seis graduações em Engenharia Aeroespacial em todo o país.

http://ciencia.ufsc.br/2015/12/11/missao-espacial/

Nanossatélite VCUB1 - Visiona

O nanossatélite VCUB baseia-se numa plataforma cubesat 6U de 10 kg com dimensões de 30 x 20 x 10 cm. Segundo a Visiona, a missão permitirá o desenvolvimento e validação de tecnologias espaciais e incorpora uma arquitetura de sistemas modular e escalável, que poderá ser utilizada no futuro em satélites de maior porte.

http://www.inpe.br/noticias/noticia.php?Cod_Noticia=4839

Constelação virtual de 30 sensores de observação da terra

https://www.infodefensa.com/latam/2018/08/02/noticia-agencia-espacial-brasileira-projeto.html

CBrAVIC – XLI Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência

09 – 11 de dezembro de 2020 – Foz do Iguaçu-PR

Obrigado!!!