TUBULAR LAMP

Publication number: JP5036377

Publication date:

1993-02-12

Inventor:

TAMURA NOBUHIRO; ITO HIDENORI; TAMAYA

MASAAKI

Applicant:

TOSHIBA LIGHTING & TECHNOLOGY; TOKYO

SHIBAURA ELECTRIC CO

Classification:

- international:

H01J61/26; H01J61/35; H01K1/32; H01K1/54;

H01J61/24; H01J61/35; H01K1/00; H01K1/28; (IPC1-7):

H01J61/26; H01J61/35; H01K1/32; H01K1/54

- european:

Application number: JP19910191469 19910731 Priority number(s): JP19910191469 19910731

Report a data error here

Abstract of JP5036377

PURPOSE:To eliminate residual impurity inside of a bulb to lower the discharge voltage of fluorescent lamp and improve the lifetime characteristic of an incandescent lamp by adsorbing CO, CO2 and H2O inside of the bulb with fine particles. CONSTITUTION:As fine particles, super fine particulates having specific surface at 100m<2>/g or more and charge trend against reduced iron powder, of which particle diameter is 44-74mum, at +3.0muC/g or more and pH of the 20weight% aqueous solution thereof at 9 or more is attached to the inside of a bulb.

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-36377

(43)公開日 平成5年(1993)2月12日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 1 J	61/26	L	8019-5E		
	61/35	L	8019-5E		
H 0 1 K	1/32	С	9172-5E		
	1/54		9172-5E	•	

審査請求 未請求 請求項の数5(全 8 頁)

(21)出願番号	特顯平3-191469	(71)出願人 000003757
	·	東芝ライテツク株式会社
(22)出顧日	平成3年(1991)7月31日	東京都港区三田一丁目 4番28号
		(71)出願人 000003078
	•	株式会社東芝
		神奈川県川崎市幸区堀川町72番地
		(72)発明者 田村 暢宏
		東京都港区三田一丁目 4番28号 東芝ライ
		テツク株式会社内
		(72)発明者 伊藤 秀徳
		東京都港区三田一丁目 4 番28号 東芝ライ
		テツク株式会社内
		(74)代理人 弁理士 鈴江 武彦
		最終頁に続く
		72.5

(54)【発明の名称】 管 球

(57)【要約】

【目的】バルブ内の不純物を吸着してランプ特性を改善 した管球を提供する。

【構成】バルブの内部に、比表面積が100m²/g以 上の超微粒子であり、粒子径が44~74μmの還元鉄 粉に対する帯電傾向が+3.0μC/g以上の粉体、ま たは20重量%の水溶液におけるpHが9以上の粉体を 付設したことを特徴とする。

【作用】本発明の粉体は、バルブ内のCOやCO2 およ びH。Oを吸着するので、バルブ内に不純物が残留せ ず、けい光ランプの場合は放電電圧を引下げることがで き、白熱電球の場合は寿命特性がよくなる。

【特許請求の範囲】

【請求項1】 バルブの内部に、粒子径が44~74μ mの還元鉄粉に対する帯電傾向が+3.0μ C / g 以上の粉体を付設したことを特徴とする管球、

【請求項2】 上記管球が白熱電球の場合は、バルブの内面に、粒子径が44~74μmの還元鉄粉に対する帯電傾向が-3.0~+3.0μC/gの範囲以外の帯電傾向をもつ粉体を付設したことを特徴とする請求項1に記載の管球。

【請求項3】 バルブの内部に、20重量%の水溶液におけるpHが9以上となる粉体を付設したことを特徴とする管球。

【請求項4】 上記管球が白熱電球の場合は、バルブの内面に、20重量%の水溶液におけるpHが5~9の範囲以外のpHをもつ粉体を付設したことを特徴とする請求項3に記載の管球。

【請求項5】 上記粉体は、比表面積が100m²/g 以上の超微粒子であることを特徴とする請求項1ないし 4のいづれかに記載の管球。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、けい光ランプや白熱電 球などの管球において、バルブ内の不純物の浄化対策技 術に関する。

[0002]

【従来の技術】最近、ラピッドスタート形けい光ランプのけい光体として、3波長発光形けい光体が使用されている。ラピッドスタート形けい光ランプは、発光管バルプの内面に透明性導電被膜(EC膜=ネサ膜)を形成し、このEC膜の内面にけい光体被膜を形成して構成されており、上記ネサ膜が管壁抵抗を減じる役割を果たすので始動が容易であるという特質をもっている。そしてけい光体として3波長発光形けい光体を用いると、高輝度および高演色性を得ることができる利点がある。しかしながら、この種のラピッドスタート形けい光ランプにおいては、ランプの点灯開始電圧Vsが高くなるものがみられる。

【0003】点灯開始電圧が高くなる原因は種々挙げられるが、その1つにバルプ内の不純ガスが影響することが考えられる。通常けい光ランプは、バルブ内に炭酸ガスCOや一酸化炭素 CO_2 および水分 H_2 Oなどの不純物が存在すると点灯開始電圧 V_S が高くなることが判っている。

【0004】このため、ランプを製造する工程でバルブ内に不純ガスが残らないように種々の対策がなされており、バルブ壁やマウント構成部材を加熱したり、ガス置換などの方法でこれらバルブ壁やマウント構成部材に付着、吸着されていた不純物を放出させたり、けい光体に不純物が付着、吸着されることがないように注意している。しかしながら、これらの対策は万全とはいえず、点

灯中にバルブ壁やマウント構成部材などから不純物が叩き出される場合があり、さらには電極に塗布したバリウム Ba などの電子放射物質(エミッター)を加熱して活性化した場合にこのエミッターからCOや CO_2 および H_2 Oが放出される場合がある。したがって、バルブ内にCOや CO_2 が放出されるのを完全に避けるのは不可能である。

【0005】一方、白熱電球、例えば交通信号灯に用いる電球などの場合、排気状態の微妙な変化により寿命特性が大幅に低下するランプがみられる。白熱電球の場合は、バルプ内に水分H₂ Oが残留していると、フィランメントがウオータサイクルを起こして早期断線を招く不具合がある。このようなウオータサイクルを防止するためゲッターなどを用いているが、水分の吸着性能が充分でなく、また高価であるなどの不具合がある。

【0006】なお、白熱電球の場合、酸素や窒素あるいはCOやCO₂が残留していても、その残留量が少なければたいして影響が少ないが、水分H₂Oの残留は僅かでも避けたい要求がある。

[0007]

【発明が解決しようとする課題】すなわち、けい光ランプおよび白熱電球のいづれの管球であっても、バルブ内に不純物が残留していると、始動電圧の上昇や寿命特性の低下などの不具合があり、このような不純物の残留を解消したいという要求がある。

【0008】本発明はこのような事情にもとづきなされたもので、その目的とするところは、バルブ内にCOや CO_2 および H_2 Oなどの不純物が残留しないようにした管球を提供しようとするものである。

[0009]

【課題を解決するための手段】本発明の1番目は、バルブの内部に、粒子径が $44\sim74\mu$ mの還元鉄粉に対する帯電傾向が $+3.0\mu$ C/g以上の粉体を付設したことを特徴とする。本発明の2番目は、バルブの内部に、20重量%の水溶液におけるpHが9以上となる粉体を付設したことを特徴とする。

[0010]

【作用】本発明の1番目によれば、粒子径が44~74 μ mの還元鉄粉に対する帯電傾向が $+3.0\mu$ C/g以上の粉体はバルブ内の不純物を吸着し、バルブ内にCOや CO_2 および H_2 Oなどを残留させなくする。このため、けい光ランプの場合は始動電圧を下げることができ、また白熱電球の場合は寿命特性が向上する。

【0011】また、本発明の2番目によれば、20重量%の水溶液におけるpHが9以上となる粉体がバルブ内の不純物を吸着し、バルブ内にCOやCO₂およびH₂Oなどを残留させなくする。この場合も、けい光ランプに適用すれば始動電圧を下げることができ、また白熱電球に用いると寿命特性が向上する。

[0012]

【実施例】以下本発明について、図1ないし図4にもと づき第1の実施例を説明する。

【0013】図面は直管形ラピッドスタート形けい光ランプを示し、1はガラスバルブである。バルブ1の両端はフレアステム2、2により気密に閉塞されており、これらステム2、2にはそれぞれ一対のリード線3…が気密に貫通されている。

【0014】両ステム2、2の各リード線3、3間には タングステン等からなる熱陰極、すなわちフィラメント 4、4が掛け渡されている。なお、フィラメント4、4 には図示しないが酸化パリウムなどの電子放射物質が塗 布されている。

【0015】上記バルブ1の内面には、酸化錫などのような透明性導電膜(EC膜=ネサ膜)5が形成されており、この透明性導電膜5の表面にはけい光体被膜6が形成されている。このけい光体被膜6は3波長発光けい光体を用いており、具体的には、 Y_2 O_3 : Eu(赤色)、(Re, Tb, Ce)・(P, Si) O_4 (緑色)(但しReは希土類元素)および $BaMg_2$ Al_{11} O_{27} : Eu(青色)の各けい光体粉末を混合して構成されている。

【0016】上記けい光体には、比表面積が $100m^2$ /g以上の金属酸化物の超微粒子が付着されている。すなわち、図1の(B)図に示すように、けい光体粉末10の表面には、例えばMgOなどの金属酸化物の粉末20が付着されており、この粉体20は、比表面積が $100m^2$ /g以上とされており、これにより金属酸化物の粉末20は帯電傾向が $+3.0\mu$ C/g以上の粉体、または20重量%の水溶液におけるpHが9以上(アルカリ性)とされている。

【0017】なお、図2に示すように、金属酸化物の帯電傾向は種類により正に帯電する性質および負に帯電する性質をもっており、MgOは正に帯電されるが、 SiO_2 は負に帯電される傾向がある。そして、Mgに代わって、Ca、Sr、Ba、Znの各酸化物の中から選ばれた少なくとも1種の金属酸化物は、帯電傾向が正の性質がある。また、 SiO_2 に代わって、Sn、Ti、Ge、Ta 、Nb 、V 、Mo の各酸化物の中から選ばれた少なくとも一種は、帯電傾向が負の性質をもつ。

【0018】本実施例の場合は、帯電傾向がプラスの性質をもち、しかも粒子径が44~74μmの還元鉄粉に対する帯電傾向が+3.0μC/g以上の粉体20を用いている。

【0019】このような粉体20は、20重量%の水溶液に溶かした場合のpHが9以上(アルカリ性)となる性質を有している。なお、pHが7以上でアルカリ性、pHが7未満で酸性とされている。なお、バルブ1内には、所定量の水銀と、アルゴン等の希ガスが封入されている。

【0020】このような構成のけい光ランプは、バルブ

1の内面に形成したけい光体被膜6のけい光体10に、 粒子径が44~74μmの還元鉄粉に対する帯電傾向が +3.0µC/g以上の電荷を帯びた粉体20、例えば MgOを付着させている。MgOはCOやCO。および H₂ Oを吸着する性質が強いが540℃で解離する性質 があり、けい光体に混ぜた場合吸着されているCOやC O_2 および H_2 Oは、けい光体被膜のベーキング工程で 放出されてパルプ1内はクリーンになり、その後の封止 工程後に、主としてMgO粉体20がバルブ1内に残留 しているCOやCO。およびH。Oの不純物を吸着して ゲッター機能を奏する。これは、MgOに吸着された-OH基とCO。が反応して、表面でMg (OH) やMg CO3の化合物が生成されるためと推測される。このた め、バルブ1内に不純物が浮遊した状態で残らないか ら、始動電圧Vsを引き下げることができ、始動が容易 になる。

【0021】図3には40Wのラピッドスタート形けい 光ランプについて、MgOの粉末を用いて帯電傾向と始 動電圧Vsとの関係を測定した結果を示す。この測定結 果から、粒子径が44~74μmの還元鉄粉に対する帯 電傾向が+3.0μC/g以上の電荷を帯びた粉体20 を用いると、始動電圧Vsを低くすることができ、始動 が容易になることが判明した。

【0022】また、図4には同じく40Wのラピッドスタート形けい光ランプについて、MgOの粉末を用いてpH値と始動電圧Vsとの関係を測定した結果を示す。この測定結果から、pHが9以上の粉体20を用いた場合に、始動電圧Vsを低くすることができ、始動が容易になることが判明した。

【0023】なお、比表面積は100m²/g以上とされており、これ以上であれば表面積が大きいので不純物の吸着が良好になり、これ未満の場合は充分な効果を期待することができない。次に、図5ないし図8に示す第2の実施例について説明する。

【0024】第2の実施例は白熱電球、例えば交通信号 灯用の電球を示し、30はR形のバルブである。バルブ 30の一端首部はステム31で閉塞されており、このス テム31には一対のリード線32、32が気密に貫通さ れている。これらリード線32、32の内端部には、フ ィラメント33が掛け渡されており、このフィラメント 33は、中央部がアンカーワイヤ34により支持されて いる。バルブ30の首部には口金35が被着されてい る。

【0025】バルブ30の内面には白色の光拡散膜36 が形成されており、この光拡散膜36はバルブ30の内面にシリカSiO₂の粉末37を静電塗装などの手段で付着させることにより形成されている。

【0026】そして、本実施例の場合、光拡散膜36には、図5の(B)図に示すように、シリカ粉末37に加えて、例えばMgOなどの金属酸化物の粉末40が1重

虽%の割合で混在されており、この粉体40は、比表面積が100 m² / g以上とされており、これにより金属酸化物の粉末40 は帯電傾向が+3.0 μ C / g以上の粉体、またはp Hが9 以上(アルカリ性)とされている。

【0027】このような構成の白熱電球の場合、バルブ30の内面に形成した光拡散膜36のシリカ粉末中に、粒子径が $44\sim74$ μ mの還元鉄粉に対する帯電傾向が+3.0 μ C/g以上の電荷を帯びたMgO粉末を付着させたので、このMgO粉体40がバルブ1内に残留している不純物、特に H_2 Oを吸着してゲッター機能を奏する。このため、バルブ1内に H_2 Oが残留しないから、ウオータサイクルを発生差せず、フィラメントが長寿命になる。

【0028】図6は60Wの白熱電球に適用した場合の、MgO粉体40の比表面積とランプ寿命との関係を測定したものである。この測定結果より、粉体40の比表面積は $100m^2$ /g以上でないと効果が低いことが判った。これは表面積は小さいと、不純物との接触面積が小さいので、吸着性能が低くなるものと考えられる。よってMgO粉体40の比表面積は $100m^2$ /g以上を必要とする。

【0029】図7は、シリカ粉末中に混入された金属酸化物の帯電傾向とランプ寿命との関係を測定した結果を示す。金属酸化物の帯電傾向は図2に示す通りであり、Mg、Ca、Sr、Ba、Znの各酸化物は帯電傾向が正の性質があり、逆に、Si、Sn、Ti、Ge、Ta、Nb、V、Moの各酸化物は、帯電傾向が負の性質をもつ。

【0030】このような各酸化物を選んで、帯電傾向とランプ寿命との関係を測定すると図7に示す通り、帯電傾向は -3.0μ C/g以下か、または $+3.0\mu$ C/g以上に電荷を帯びている方が良いことが判った。つまり、帯電傾向が -3.0μ C/g未満の場合は、帯電傾向が中性であるため水分H2 Oを取り込む力が弱く、したがってバルプ内に不純物が残留すると考えられる。

【0031】これに対し、還元鉄粉に対する帯電傾向が -3.0μ C/g以下の場合、または $+3.0\mu$ C/g以上の場合は、帯電傾向が偏るので電荷による水分 H_2 Oを吸着する性能が高くなり、バルプ内に H_2 Oを残留させないから寿命が延びるものと考えられる。また、図8は金属酸化物のpH値とランプ寿命との関係を測定した結果を示す。

【0032】pH値の異なる金属酸化物を選んで、pH値とランプ寿命との関係を測定すると、pH値が5以下(酸性)か、または9以上(アルカリ性)である方が良い結果を得られることが判った。pH値が5以下、または9以上であると、酸性およびアルカリ性がともに強いので水分H。Oを吸着する力が強く、したがってバルブ

内にH₂ Oを残留させないようになり、このため寿命が 延びるものと考えられる。

【0033】以上の説明から理解できる通り、けい光ランプおよび白熱電球に共通していえることは、バルプ内に、比表面積が $100m^2$ /g以上の粉体であり、この粉体は粒子径が $44\sim74\mu$ mの還元鉄粉に対する帯電傾向が $+3.0\mu$ C/g以上であり、または20重量%の水溶液におけるpH値が9以上(アルカリ性)であれば、バルブ内の不純物を吸着するゲッター作用を奏し、けい光ランプに対しては始動特性の改善に有効であり、白熱電球の場合は寿命特性の改善に有効となる。

【0034】また、上記の範囲に加えて、帯電傾向が -3.0μ C/g以下、または20 重量%の水溶液におけるp H値が5以下(酸性)の場合でも、バルブ内の水分を吸着するゲッター作用を奏し、白熱電球において寿命特性の改善に有効となる。なお、本発明は上記の実施例に制約されるものではない。

【0035】すなわち、本発明のけい光ランプは、ラピッドスタート形けい光ランプに限らず、通常のけい光ランプであってもよく、ランプ形状も直管形、環形、コンパクト屈曲形など種々の形状の場合に実施可能である。

[0036]

【発明の効果】以上説明したように本発明の1番目によれば、帯電傾向が+3. $0 \mu C/g$ 以上の粉体がバルブ内のCOや CO_2 および H_2 Oなどを吸着して残留させなくするから、けい光ランプの場合は始動電圧を下げることができ、また白熱電球の場合は寿命特性が向上する.

【0037】また、本発明の2番目によれば、pHが9 以上となる粉体がバルブ内の不純物を吸着し、この場合 も、けい光ランプに適用すれば始動電圧を下げることが でき、また白熱電球に用いると寿命特性が向上する。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示し、(A)図はラピッドスタート形けい光ランプの断面図、(B)図はけい 光体にMgO粉末を付着させた状態を示す模式図。

【図2】金属酸化物粉末の帯電傾向を示す図。

【図3】金属酸化物粉末の帯電傾向とけい光ランプの始 動電圧の関係を示す特性図。

【図4】金属酸化物粉末のpH値とけい光ランプの始動 電圧の関係を示す特性図。

【図5】本発明の第2の実施例を示し、(A)図は白熱 電球の断面図、(B)図は拡散膜にMgO粉末を混入さ せた状態を示す模式図。

【図6】金属酸化物粉末の比表面積とランプ寿命との関係を示す特性図。

【図7】金属酸化物粉末の帯電傾向とランプ寿命との関係を示す特性図。

【図8】金属酸化物粉末のpH値とランプ寿命との関係を示す特性図。

【符号の説明】

1…バルブ、2…ステム、3…リード線、4…電極、5 …ネサ膜、6…けい光体被膜、10…けい光体、20… MgO粉末、30…バルブ、33…フィラメント、36 …光拡散膜、27…シリカ粉末、40…MgO粉末。

【図1】

【図5】

0 +3 帯電量(μc/g) -3 +3

【図7】

フロントページの続き

(72) 発明者 玉谷 正昭 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内