Исследование процессов плавления и затвердевания в малых кластерах

Этап 4: Защита проекта

Гэинэ Андрей

Содержание

1	L Цель работы	5
2	2 Задачи	6
3	В Теоретическое введение	7
4	Результаты моделирования 4.1 Базовые характеристики кластеров	. 8
5	5 Анализ зависимости от размера	10
	5.1 Сравнение температур плавления	. 10
	5.2 Экстраполяция к объемным материалам	. 10
	5.3 Особенности плавления разных кластеров	. 11
6	5 Физические эффекты	12
	6.1 Гистерезис плавления и затвердевания	. 12
	6.2 Оболочечное плавление	. 12
	6.3 Динамика фазовых переходов	. 13
7	7 Самооценка и выводы	14
	7.1 Соответствие результатов ожиданиям	. 14
	7.2 Ограничения исследования:	. 14
	7.3 Рекомендации для будущих работ:	. 14
Сг	Список литературы	15

Список иллюстраций

5.1	Гексагональные кластеры с "магическими" числами частиц	10
6.1	Стадии плавления кластера из 37 частиц	12
6.2	Гистерезис для N=19	13
6.3	Флуктуации всех N	13

Список таблиц

1 Цель работы

Цель работы 4-го этапа — обобщить и представить результаты моделирования плавления и затвердевания малых кластеров, доказав соответствие поставленным задачам, а также проанализировать физические закономерности и ограничения исследования.

2 Задачи

- 1. Моделирование кластеров с "магическими" числами частиц (N = 7, 19, 37).
- 2. Анализ термодинамических параметров (температура, теплоемкость, флуктуации длины связи).
- 3. Исследование зависимости температуры плавления от размера кластера.
- 4. Визуализация динамики плавления и затвердевания.

3 Теоретическое введение

Проект посвящён исследованию плавления и затвердевания малых кластеров с использованием методов молекулярной динамики. Основная цель — изучение фазовых переходов в наночастицах, их зависимость от размера кластера и выявление таких эффектов, как гистерезис и оболочечное плавление.

4 Результаты моделирования

4.1 Базовые характеристики кластеров

Кластеры с гексагональной структурой были сгенерированы с использованием модуля cluster_generator.py. Для N = 7, 19 и 37 частиц были получены стабильные конфигурации.

Начальные температуры установлены низкими (0.01) для обеспечения устойчивости системы перед началом нагрева.

4.2 Энергетические и температурные профили

Модуль thermodynamics.py использовался для расчёта температуры и теплоемкости. Например, для кластера N=19 температура плавления составила ~ 0.25 (в условных единицах).

Нагрев и охлаждение проводились с коэффициентами 1.002 и 0.998 соответственно, что позволило наблюдать гистерезис (разницу температур плавления и затвердевания).

4.3 Фазовые переходы

Анализ фазовых переходов выполнялся с помощью модуля phase_analyzer.py. Для кластера N = 7 обнаружен резкий скачок энергии при плавлении, что соответствует переходу из твёрдой фазы в жидкую. Флуктуации длины связи (критерий Линдеманна) показали, что плавление начинается с поверхностных слоёв.

5 Анализ зависимости от размера

5.1 Сравнение температур плавления

Для кластеров N = 7, 19 и 37 температуры плавления составили 0.20, 0.25 и 0.28 соответственно. Результаты сохранены в main.py и визуализированы с помощью plot_size_dependence.

Наблюдается рост температуры плавления с увеличением размера кластера, что согласуется с теоретическими предсказаниями.

Рис. 5.1: Гексагональные кластеры с "магическими" числами частиц

5.2 Экстраполяция к объемным материалам

Используя функцию analyze_cluster_size_effect, была выполнена экстраполяция зависимости $T(N^{-1/3})$. Полученная температура для объёмного материала составила ~ 0.35 .

5.3 Особенности плавления разных кластеров

Для N=19 обнаружено оболочечное плавление (анализ через detect_shell_melting). Внутренние оболочки сохраняли структуру дольше, чем внешние.

6 Физические эффекты

6.1 Гистерезис плавления и затвердевания

Разница температур плавления и затвердевания достигала 0.05 для N=37, что свидетельствует о необратимости процесса при быстром охлаждении.

Рис. 6.1: Стадии плавления кластера из 37 частиц

6.2 Оболочечное плавление

Анализ подвижности частиц в разных оболочках (N = 19) показал, что внешние частицы теряют порядок раньше, чем внутренние.

Рис. 6.2: Гистерезис для N=19

6.3 Динамика фазовых переходов

Парная корреляционная функция (pacчёт через calculate_pair_correlation_function) демонстрировала размытие пиков при плавлении, что характерно для перехода в жидкую фазу.

Рис. 6.3: Флуктуации всех N

7 Самооценка и выводы

7.1 Соответствие результатов ожиданиям

Результаты подтвердили теоретические предсказания:

- 1. Температура плавления растёт с увеличением размера кластера.
- 2. Наблюдается гистерезис и оболочечное плавление.

7.2 Ограничения исследования:

- 1. Модель не учитывает квантовые эффекты, что важно для очень малых кластеров (N < 10).
- 2. Использование упрощённого потенциала Леннарда-Джонса может недооценивать влияние электронных степеней свободы.

7.3 Рекомендации для будущих работ:

- 1. Расширить диапазон размеров кластеров (например, N = 55, 61).
- 2. Внедрить параллельные вычисления для ускорения расчётов.

Список литературы