Exploratory Data Analysis with Excel

Using Excel to analyze my friends' NBA bets

Gollnick's NBA Playoffs Predictions Game was a betting game that I developed from 2018 to 2022 for the sake of having a little bit of fun with my friends during the NBA playoffs. Betting was actually free and there was no prize money.

***In order to make it easier to read, I'm replacing the original columns letters (e.g "A:A") by what the column means in square brackets (e.g: [Year])

FIRST HYPOTHESIS:

Participants would make conservative bets in the first two rounds of the Playoffs and more audatious bet in the last two rounds

-- Creating columns to find if the bet was conservative:

```
[Conservative]
= IF([Bet_Games Won by Higher Ranked team] > [Bet_Games Won by Lower Ranked team], 1, 0)

[Conservative T/F]
= IF([Conservative] = 1; TRUE; FALSE)
```

-- Finding out conservative bets by year and round (e.g. first round from 2021 season):

```
[Conservative Bets Sum]
= SUMIF('2021bets'![Round]; "1st Rd"; [Conservative])
```

-- Counting ALL bets by year and round (e.g. first round from 2021 season)

```
[Bets count]
= COUNTIF('2021bets'![Round]'; "1st Rd")
```

-- Calculating conservative bets %:

```
[Conservative Bets %]
= ([Conservative bets Sum] * 100) / [Bets count]
```

RESULT: First hypothesis was wrong, participants would usually be conservative in all rounds (except for for the 2019 finals).

% of the Bets that Were Conservative

	2018	2019	2020	2021	TOTAL	
1R	*	87,5	82,8	82,4	84,0	
SFC	72,5	66,1	86,7	82,4	77,7	
FC	71,4	68,8	70,0	97,1	78,2	
FIN	90,0	33,3	33,3 73,3		69,6	
					80,3	

^{*}There was no betting in the first round of the 2018 season

SECOND HYPOTHESIS:

Conservative bets would usually pay off

-- Creating columns to find out it the bet was right about the winning team:

```
[Bet_Games Won Margin]
= [Bet_Games Won by Higher Ranked team] - [Bet_Games Won by Lower Ranked
team]

[Bet_Winning Team]
= IF([Bet_Games Won Margin] > 0; "Higher-Ranked Team"; "Lower-Ranked Team")
```

-- Bringing the results of the real games to from another table (with all the real life results) to this one:

```
[Real_Games Won Margin]
= VLOOKUP ([Series ID]; 'Real life Results Table'; [Games Won Difference]; 0)
[Real_Winning Team]
= IF([Real_Games Won Margin] > 0; "Higher-Ranked Team"; "Lower-Ranked Team")
```

-- Comparing colums:

```
[Bet was right]
= IF([Bet_Winning Team] = [Real_Winning Team]); 1; 0)

[Bet was right T/F]
= IF([Bet was right] = 1); TRUE; FALSE)
```

-- Finding out conservative bets that were RIGHT, by year and round (e.g. first round from 2021 season):

```
[Right Conservative Bets]
= SUMIFS('2021bets'![Bet was right]; [Round]; "1st Rd";
'2021bets'![Conservative]; "TRUE")
```

-- Finding out ALL the conservative bets by year and round (e.g. first round from 2021 season):

```
[Conservative Bets]
= COUNTIFS('2021bets'![Round]; "1st Rd"; '2021bets'![Conservative]; "TRUE")
```

-- Calculating % of the conservative bets that were right:

```
[Right Conservative Bets %]
= ([Right Conservative Bets] * 100) / [Conservative Bets]
```

RESULT: Second hypothesis was right, 76,6% of the conservative bets were right. Also, splitting that calculation by year and round may better show in which series the underdogs had a great performance.

	2018	2019	2020	2021	TOTAL	
1R	*	100,0	98,1	86,6	94,6	
SFC	79,3	89,2	26,9	25,0	48,3	
FC	0,0	72,7	66,7	100,0	73,3 64,1	
FIN	100,0	100,0	100,0	0,0		
					76,6	

^{*}There was no betting in the first round of the 2018 season

THIRD HYPOTHESIS:

Series results: in average, participants would bet that the series from the first two rounds would end with a 4-0 or a 4-1 result; The last two rounds would be in general 4-3 or 4-2.

-- In this case I wanted to test nested functions. Let's find the average bet of how many games the higher ranked team won in a series, by year and round (e.g. first round from 2021 season)

```
[Higher-Ranked Team, Average Games Won]
= SUMIF('2021bets'![Round]; "1st Rd";'2021bets'![Bet_Games Won by Higher
Ranked team])
/ COUNTIF('2021bets'![Round]; "1st Rd")

[Lower-Ranked Team, Average Games Won]
= SUMIF('2021bets'![Round]; "1st Rd";'2021bets'![Bet_Games Won by Lower Ranked team])
/ COUNTIF('2021bets'![Round]; "1st Rd")
```

-- And, for the "Total" column that would sum data from the four years up, I decided to test even more functions in the same expression:

```
= ( SUMIF('2021bets'![Round]; "1st Rd";'2021bets'![Bet_Games Won by Lower
Ranked team]) +
SUMIF('2020bets'![Round]; "1st Rd";'2020bets'![Bet_Games Won by Lower Ranked
team]) +
SUMIF('2019bets'![Round]; "1st Rd";'2019bets'![Bet_Games Won by Lower Ranked
team]) +
SUMIF('2018bets'![Round]; "1st Rd";'2018bets'![Bet_Games Won by Lower Ranked
team]) )
/ ( COUNTIF('2021bets'![Round]; "1st Rd") +
COUNTIF('2020bets'![Round]; "1st Rd") +
COUNTIF('2019bets'![Round]; "1st Rd") +
COUNTIF('2019bets'![Round]; "1st Rd") )
```

RESULT: Inconclusive, as I could not see any pattern on the resulting data apart from some outliers.

Average Participants' Bets on Games Won by Team

	2018		2019		2020		2021		TOTAL	
	High-Rank	Low-Rank								
1R	*	*	3,82	1,85	3,74	2,01	3,73	2,25	3,76	2,05
SFC	3,45	2,25	3,38	2,79	3,85	2,28	3,75	2,66	3,63	2,52
FC	3,43	2,64	2,11	2,53	3,57	2,67	3,97	1,71	3,71	2,33
FIN	3,80	1,90	0,71	3,53	3,53	2,53	3,81	2,19	3,43	2,59

^{*}There was no betting in the first round of the 2018 season

-- In the [Participant Surname] column, I used this string manipulation to keep participants discrete and reveal only their surname:

```
[Participant Surname]
= RIGHT([Participant Full Name]; LEN([Participant Full Name]) - SEARCH(" ";
[Participant Full Name]; 1))
```