ECEN454 Ref Sheet © Josh Wright March 29, 2017

Metric Prefixes					
peta	Р	10^{15}	1 000 000 000 000 000		
tera	Τ	10^{12}	1 000 000 000 000		
giga	G	10^{9}	1 000 000 000		
mega	Μ	10^{6}	1 000 000		
kilo	k	10^{3}	1 000		
hecto	h	10^{2}	100		
deca	da	10^{1}	10		
one		10^{0}	1		
deci	d	10^{-1}	0.1		
centi	c	10^{-2}	0.01		
milli	m	10^{-3}	0.001		
micro	μ	10^{-6}	0.000 001		
nano	n	10^{-9}	0.000 000 001		
pico	p	10^{-12}	0.000 000 000 001		
femto	f	10^{-15}	0.000 000 000 000 001		

De Morgan's Laws

- $\bullet \ \overline{AB} = \overline{A} + \overline{B}$
- A + B = (A)(B)

Silicon

- Si
- P-type:
- * doped with material to remove electrons (add electron holes), usually Boron (B), Aluminum (Al), or Gallium (Ga)
- N-type:
- * doped with material to add electrons, usually Antimony (Sb), Arsenic (As), or Phosphorous (P)
- Silicon dioxide: SiO₂
- Polysilicon is just silicon without the crystal structure

Transistors

- nMOS
- * no bubble
- * on when input is on, off when input is off
- * base (of whole chip) is p-substrate
- * spot of n+ for source and drain, joined by a small layer of oxide (SiO_2) and polysilicon (gate). also has a spot of p+ (base) connected to ground
- pMOS:
- * has the bubble
- * on when input is 0, off when input is 1
- * whole thing sits in an n-well (inside the p-substrate
- * source and drain are spots of p+ connected by gate. Gate is polysilicon layer separated from rest of chip by thin layer of SiO₂ on bottom. Also has a n+ spot for base (connected to VDD)
- CMOS: when you combine a nMOS and pMOS network together to make a gate, where one is the compliment of the other
- V_t : Threshold voltage. Nominal voltage below which the transistor is off
- * below as in closer to 0, not less
- * $V_t > 0$ for nMOS, $V_t < 0$ for pMOS
- * this is compared to the gate to source voltage, V_{as}
- regions: (for nMOS)
 - * accumulation: gate is negatively charged, attracts positive voids in p-substrate, which block flow in the
- * depletion: small positive charge on gate repels positive voids from channel, forming a depletion below the gate
- * inversion: higher positive charge (> V_t) is applied to gate, attracting electrons to the channel and allowing

flow

D Flip Flop vs Latch

- latch is level triggered
- flip flop is edge triggered

Fabrication

- n-well: use diffusion or ion implantation
- positive lithography: expose to UV where you want to remove material
- negative lithography: expose to UV where you want to keep material

Stick Diagram vs Boolean Function

- there is more than one way of making a stick diagram for an expression
- * stuff in series could be in different order, for instance
- if you do it manually, you need to check it with tools:
- * LVS: Layout Vs Schematic
- * DRC: Design Re-Check
- * These aren't really needed for designs automatically generated from verilog code, because of course that's correct

Lithography

- the process of printing onto a chip at nanometer scale
- generally uses UV light, wavelength around 150nm
- * must use fancy tricks to make 10nm features with 150nm light
- * would be nice to use even lower wavelength X-rays, but those are hard to focus
- negative lithography: use the lithography mask to cover what you want to keep.
- positive lithography: mask what you want to remove
- a lens is used to focus the light
 - * ideally, want a point source for the light, but that is not practical
 - * Optical Proximity Effect: what happens when your focus from the lens is not just right
 - * results in rounded corners, inaccurate critical dimensions, and shorter wire ends
 - * can use Optical Proximity Correction to fix: basically over-emphasize all the features, and/or add extra lines at outset

MOS transitive *I-V* Characteristics and **Parasitics**

- *I-V*: current-voltage relationship
- Transistors are not really ideal switches, they have 3 zones of operation: cutoff, linear, saturation
- definitions:

 V_{gs} : voltage gate to source V_{gd} : voltage gate to drain

 V_{ds} : voltage source to drain (across the channel) V_t : critical voltage at which transistor is saturated channel: space between the source and drain, where the electrons flow

- remember that the gate is insulated from the area under it by a thin layer of Silicon Dioxide (SiO₂)
- by convention, the source is the terminal at lower voltage
- cutoff:
- * when $V_{qs} < 0$
- * electrons on the gate attract positive voids in the silicon below, and inhibit current flow. Therefore, the transistor is closed.
- $* I_{ds} = 0$
- linear:
- * $V_{gs} > V_t, V_{gd} = V_{gs}, V_{ds} = 0$ or $V_{gs} > V_t, V_{gs} > V_{gd} > V_t, 0 < V_{ds} < V_{gs} V_t$
- * I_{ds} linearly proportional to V_{ds}
- * channel of electrons forms, allowing current to flow

- * $V_{gs} > V_t, V_{gd} < V_t, V_{ds} > V_{gs} V_t$ * channel pinches off due to electrons attracting to
- * I_{ds} is independent of V_{ds}

capacitor effect

- gate and channel can have a parallel plate capacitor effect, with the thin layer of SiO₂ acting as the insulator
- $C = \frac{Q}{V} = \epsilon_{SiO_2} wl/t_{SiO_2}, V = V + gc V_t =$ $(v_{qs} - Vds/2) - V_t$
 - * l, w: length, width of section of gate above channel

* ϵ_{SiO_2} : permittivity of SiO₂ layer

- * t_{SiO_2} : thickness of SiO₂ layer
- general capacitance per unit area: $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$
- * ϵ_{ox} : permittivity of oxidation layer
- * t_{ox} : thickness of oxidation layer
- carrier velocity: velocity of the electrons?
- * proportional to the electric field running horizontally between source and drain
- $v = \mu E, E = V_{ds}/L, t = L/v = L/(\mu E) = L/(\mu \frac{V_{ds}}{L})$ μ : mobility. electrons move about twice as fast as positive voids

L: length of channel

- actual velocity of electrons is the speed of light, but they don't travel in a straight line, they travel atom-to-atom
- * this slowdown is called the **scattering** effect

Shockley model of transistor

- $V_{dsat} = V_{qs} V_t$
- 1st order model: $\beta = \mu C_{SiO_2} \frac{w}{I}$

 $I_{ds} = 0$ $V_{qs} < V_t$ cutoff $V_{ds} < V_{dsat} \quad I_{ds} = \beta (V_{gs} - V_t - \frac{V_{ds}}{2}) V_{ds}$ $V_{ds} > V_{dsat} \quad I_{ds} = \frac{\beta}{2} (V_{gs} - V_t)^2$ linear saturation

• Must be able to derive this model on exam!

Non-Ideal I-V Effects

- velocity saturation (due to scattering)
- * also called short channel effect
- * this is hard to make into a mathematical formula
- sub-threshold leakage, junction leakage, gate tunneling

• Body Effect

- * affected by V_{sb} : voltage of the p-substrate (which should be ground)
- * $V_t = V_{t0} + \lambda(\sqrt{|-2\phi_F + V_{sb}|} \sqrt{|-2\phi_F|})$ V_{t0} : threshold without body bias
- ϕ_F : Fermi potential
- · negative for nMOS, positive for pMOS
- λ : body effect coefficient
 - · positive for nMOS, negative for pMOS (reversed)
- * generally fixed/caused by biasing
- * Forward Body Bias (FBB):
- $-V_{sb} < 0, V_t < V_{s0}$
- gates switch faster, but leak more current
- * Reverse Body Bias (RBB):
- $V_{sb} > 0, V_t > V_{s0}$
- gates switch slower, but consume less power (because less leakage)

• Temperature

- * higher temperature means higher electron mobility, more leakage, and threshold decreases
- Diffusion Capacitance
- * capacitance on the source/drain: C_{sb} , C_{db}
- source/drain are diffusion nodes
- C is comparable to C_g (gate) for connected nodes, $\frac{1}{2}C_q$ for unconnected
- (depends on process)

- * this is the capacitance we care most about (because we must fill it every time the gate switches?)
- * if two capacitors share a source/drain, that reduces diffusion capacitance (reducing this is a good thing)
- * also, you can remove unconnected diffusion spots

DC Response

- example: inverter
- must settle to $I_{dsn} = |I_{dsp}|$
- V_{tn} , V_{tp} : threshold voltages for nMOS and pMOS (defined in Non-Ideal *I-V* Effects)
- $V_{in} = V_{DD} \rightarrow V_{out} = 0$, $V_{in} = 0 \rightarrow V_{out} = V_{DD}$

- $$\begin{split} * & V_{gsn} = V_{in}, V_{dsn} = V_{out} \\ * & \text{cutoff: } V_{in} < V_{tn} \\ * & \text{linear: } V_{in} > V_{tn}, V_{out} < V_{in} V_{tn} \\ * & \text{saturated: } V_{in} > V_{tn}, V_{out} > V_{in} V_{tn} \end{split}$$

- * $V_{gsp} = V_{in} V_{DD}, V_{dsp} = V_{out} V_{DD}, T_{tp} < 0$ * cutoff: $V_{in} > V_{DD} + V_{tp}$ * linear: $V_{in} < V_{DD} + V_{tp}, V_{out} > V_{in} V_{tp}$ * saturated: $V_{in} < V_{DD} + V_{tp}, V_{out} < V_{in} V_{tp}$ to calculate actual output voltage, balance $I_{dsn} = I_{dsp}$ (easiest to do graphically)
- * end up with a graph of V_{out} as function of V_{in}

	0 1	000
Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

- * don't want to switch nMOS and pMOS because then nMOS would saturate at far end of graph (and vice versa for pMOS)
- * horizontal position of graph can be varied by tuning β_p/β_n
- called beta ratio, or skewed gate
- $-\beta_p/\beta_n > 1 \to \text{right}, \beta_p/\beta_n \to \text{left}$
- * unity gain slope: part of response graph where the
- want to tune β_p/β_n to put logic levels at these regions to maximize noise margins
- * Noise Margins:
- $NM_H = |V_{OH} V_{IH}|, NM_L = |V_{OL} V_{IL}|$
- that's just the higher/lower of the two axes

Transient Analysis

- for instance, find step response of gate to determine
- rise/fall delay: time from when V_{in} crosses $\frac{V_{DD}}{2}$ to when V_{out} crosses it
- rise/fall time: (of V_{in} or V_{out}): time for that signal to go from $0.1V_{DD}$ to $0.9V_{DD}$ (or reverse)
- TODO many equations and such for inverter step response (from slides)
- TODO pass transistors (form slides)

Pass Transistors

- for nMOS trying to pass V_{DD} or pMOS trying to pass 0
- nMOS can pull no higher than $V_{DD} V_{tn}$ if $V_q = V_{DD}$
- * more generally, $V_g V_{tn}$ * called degraded 1
- pMOS can pull no lower than $|V_{tp}|$

- generally estimated with RC models
- * for nMOS with width k:
- * resistance of R/k

- * caps of kC on all terminals
- * pMOS same except resistance is 2R/k
- \bullet depends on effective R and C of transistors
- * exactly what parasitic caps depends on exact layout (which stuff is shared between transistors)
- * C proportional to width (approx 2 fF/ μ m)
- * R inversely proportional to width (approx $6k\Omega^*\mu m$)
- * TODO unity transistors
- find widths necessary for rise and fall resistance to be same as standard inverter
- * pMOS is about half as conductive as nMOS, so the inverter has nMOS=1, pMOS=2
- * larger width \rightarrow smaller R
- * transistors in series: delay adds, so double the width
- * transistors in parallel: same as a single transistor (because we assume worst case of only one being
- use effective resistance in RC model: $I_{ds} = V_{ds}/R$ (just good enough for a RC model, not for current at arbitrary time)
- find delay of circuit
- * decompose to RC model (take into account widths of each transistor)
- replace transistors with resistors
- add parasitic caps on either side of every transistor (cap value = width of transistor)
- · caps with both pins short to ground don't count, are never charged
- \cdot caps from V_{DD} to ground don't count, always
- * add together all R and C's to get delay
- don't count R of nMOS and pMOS at the same time, because they're never on at the same time
- Delay d = f + p• Effort Delay f = gh
- * g: logical effort: relative ability of gate to deliver current
- g = 1 for standard inverter
- *h: electrical effort: ratio of input to output capacitance
- also called fanout
- Parasitic Delay p
- * independent of load (represents delay of gate driving no load)
- * set by internal parasitic capacitance
- Elmore Delay:
- * ON transistors look like resistors, so pullup/pulldown network is modeled as RC ladder
- * $t = \sum_{i \in nodes} R_{i-to-source} C_i$
- = $R_1C_1 + (R_1 + R_2)C_2 + \ldots + (R_1 + \ldots + R_n)C_n$ Ideal number of stages for inverter driving large load
- * delay = $\left(\frac{C_{load}}{C_{inv}}\right)^{\frac{1}{k}} kR_{inv}C_{inv}$ * k: number of stages
- * stage size ratio: $\left(\frac{C_{load}}{C_{inv}}\right)^{\frac{1}{k}}$

Static Timing Analysis

- worst case at each step
- in form arrival time / required arrival time / slack
- arrival time: input to output, take max
- required arrival time: output to input, take min
- * work backward
- * if a gate drives only one gate on it's output, this is
- slack: required arrival time arrival time
- Contamination delay: just best case delay (smallest delay)

- * in this case, you'll count parallel transistors as parallel resistors
- not sure about this stuff, Peter just said to not worry about this question on the homework

Power Estimation

- Dynamic Power
- * power required to charge the load capacitor
- * only counted when transistor switches
- therefore this power usage is data dependent
- therefore, you have to count the falling transitions in the output per time period
- * $P_{dynamic} = \frac{1}{T} \int_0^T i_{DD}(t) V_{DD} dt$ * for any gate: $P_{dynamic} = CV_{DD}^2 f_{sw}$ Activity Factor α

- * α : how often this gate switches in terms of the base clock frequency
- * $\alpha = 1$: clock; $\alpha = 0.5$: every other cycle, etc...
- * for system clock at frequency f, $P_{dynamic} = \alpha C V_{DD}^2 f$
- Short Circuit Current
- * nMOS and pMOS may both be on for a short instant during switching, leading to a short instant of short circuit current (from V_{DD} to ground)
- * $P_s \propto (V_{DD} 2V_t)^3 t_r f_p$ assume $t_r = t_f$ for input

 f_p : frequency of input

- * this is less than 10% of dynamic power if the rise/fall times are comparable
- Static Power
- * leakage when gate is off

$$I_{ds} = I_{ds0}e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}}\right)$$
$$V_t = V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s}\right)$$

Wire Delay

• n-segment π model:

to model, find total R and C of wire; then split up according to n segment model, then combine adjacent

Miller Effect

- AKA crosstalk; it's when one wire affects another
- it's dynamic; depends on what signal the wires are
- MCF: Miller factor (or something)
- for two wires A and B, model as

 $C_{eff} = C_{qnd} + MCF \cdot C_{adj}$ behavior of B | MCF constant • MCF: with A 0 2 opposite A