

第一次习题课

施宏建

2023年10月18日

饮水思源•爱国荣校

- 复习题
- 课后作业

知识点总结

●基本定义

- 图
- 度
 - 结点关联的边数
 - 自环对度的贡献是2
- 简单图: 无重边无自环的无向图
- 赋权图/正权图
- 支撑子图/生成子图,导出子图
- 图的并、交和对称差
- 直接后继集/直接前趋集
- 同构

●基本性质

- 结点和边的数量关系
- 奇数度的结点数量为偶数个
- 正度之和等于负度之和
- 完全图的边数
- 非空简单图存在度相同的节点

同构的必要条件

- 结点数量与边数量各自相等;
- 度的非增序列相同;
- 存在同构的导出子图。

知识点总结

邻接矩阵

• 有向图

$$a_{ij} = \begin{cases} 1, & (N_i, N_j) \in E \\ 0, & \text{else} \end{cases}$$

- 无向图
 - 对称矩阵

关联矩阵

• 有向图

$$b_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \in E \\ -1, & e_j = (v_k, v_i) \in E \end{cases}$$

• 无向图

	邻接矩阵	关联矩阵
结点数量	矩阵的行数/列数	矩阵的行数
边数量	非零元素数量 (有向图)	矩阵的列数
表示自环	能	不能
表示重边	不能	能

●简单图: 无重边、无自环的无向图

● 有方向+两点间有多条边=有向多重图

交通导航适合用下面哪种图表示

有向简单图	10 回应者	17 %	
有向多重图	47 回应者	78 %	/
无向多重图	2 回应者	3 %	
简单图	1回应者	2 %	

●节点的度

完全图的每边任给一个方向,称为有向完全图。证明在有向完全图中

$$\sum_{v_i \in V} (d^+(v_i))^2 = \sum_{v_i \in V} (d^-(v_i))^2 \, .$$

注意 $d(v_i)$ 指的是节点的度

$$d^+(v_i) + d^-(v_i) = n - 1$$

$$\sum_{v_i \in V} d^+(v_i) = \sum_{v_i \in V} d^-(v_i) = m = \frac{n(n-1)}{2}$$

$$\sum_{v \in V} \left[d^{+}(v_{i}) \right]^{2} - \sum_{v \in V} \left[d^{+}(v_{i}) \right]^{2}$$

$$= \sum_{v \in V} \left[d^{+}(v_{i}) - d^{+}(v_{i}) \right] \left[d^{+}(v_{i}) + d^{+}(v_{i}) \right]$$

$$= (n-1) \sum_{v \in V} \left[d^{+}(v_{i}) - d^{-}(v_{i}) \right]$$

$$= (n-1) \left[\sum_{v \in V} d^{+}(v_{i}) - \sum_{v \in V} d^{-}(v_{i}) \right]$$

$$= 0$$
Apply [1.1.3]

证明 9 个人中若非至少有 4 个人互相认识,则至少有 3 个人互相不认识。

引理:六个人中必有三个人相互认识或相互不认识。(拉姆塞定理)

引理证明:

- 1. 设其中一人为A。 若A认识其中三个人,则若三个人之间相互不认识,得证。若三人之中有两人相互认识,则加上A,三人相互认识。
- 2. 若A不认识其中三个人,则若三个人之间相互认识,得证。若三人之中有两人相互不认识,则加上A,三人相互不认识。

证明:

- 1. 若九个人中存在一个人不认识其中四个人,设其为A。则若四个人相互认识,存在4个人相互认识;若四个人中有两人相互不认识,则加上A,存在3个人相互不认识。
- 2. 若全部九个人都认识至少五个人,则至少有一个人认识至少六个人(图中度为奇数的节点必有偶数个)。则由引理:六个人中有三人互相认识,加上A就有4个人相互认识;或者六个人里有三个人互不认识。得证。

题图 1.7

写出题图 1.7(a)的邻接矩阵、关联矩阵,边列表及正向表。

道路与回路

02

- 知识点总结
- 复习题
- 课后作业

知识点总结

- ●道路与回路
 - 道路、简单道路、初级道路
 - 回路、简单回路、初级回路
 - 连通图、极大联通子图 (不止一个)
- 欧拉道路与回路
 - 定义: 经过所有边的简单道路(回路)
 - 充要条件
- ◎哈密顿道路与回路
 - 定义: 经过所有点的初级道路(回路)
 - 充分性定理

- ●数学归纳法
- **⑤**反证法

● 无向图的道路

图 G_1 中以下哪些是道路 (path):

The Graph G_1

(其中a, b, c, d, e为结点 (vertex), ei为边(edge))

a, e6, e, e6, a, e2, c, e2, a	43 回应者	75 %	~	
a, e1, a, e2, c, e5, e	5 回应者	9 %		
a, e2, c, e4, d, e3, b	57 回应者	100 %		~

有向图的回路

The Graph G_4

其中a,b,c,d,e,f,g为结点,ei为边

c, e9, g, e10, d, e4, c	13 回应者	23 %	
d, e11, d	54 回应者	95 %	✓
b, e3, c, e9, g, e7, f, e6, b	56 回应者	98 %	✓

● 单个节点是道路,不是回路

图G2中以下哪些道路为简单回路 (simple circuit)?

The Graph G_2

(其中a, b, c, d, e, f为结点, e_i为边)

a, e2, c, e2, a		0 %	I
d, e6, e, e5, c, e4, d	57 回应者	100 %	✓
a, e2, c, e4, d, e6, e, e5, c, e4, d, e3, b, e1, a	3回应者	5 %	
a	9回应者	16 %	

图 G_1 中以下哪些是回路(circuit)?

The Graph G_1

(其中a, b, c, d, e为结点, e;为边)

a	9回应者	16 %	
e, e5, c, e4, d, e7, e	57 回应者	100 %	✓
a, e6, e, e7, d	1回应者	2 %	
a, e2, c, e2, a	48 回应者	84 %	~

◎ 强连通分支: 分支内两两节点相互可达

6	2回应者	4 %	
3	12 回应者	21 %	
4	3回应者	5 %	
5	40 回应者	70 %	✓

● 强连通分支: 分支内两两节点相互可达

在有向图 G_4 中,有多少强连通分支?

The Graph G_4

其中a,b,c,d,e,f,g为结点,ei为边

5	3回应者	5 %	
4	40 回应者	70 %	✓
2	5 回应者	9 %	
3	9回应者	16 %	

◎欧拉道路(回路): 奇度节点数量

The Graph G_7

存在欧拉道路和欧拉回路	45 回应者	79 %	~
欧拉回路和欧拉道路均不存在	1回应者	2 %	I
存在欧拉道路,但不存在欧拉回路	6回应者	11 %	
存在欧拉回路, 但不存在欧拉道路	5 回应者	9 %	

◉哈密尔顿道路 (回路)

图G8中是否存在哈密尔顿回路(Hamilton circuit)和哈密尔顿道路(Hamilton path)?

The Graph G_8

存在哈密尔顿道路, 但没有哈密尔顿回路	51 回应者	89 %	,	/
哈密尔顿道路和哈密尔顿回路均不存在	2回应者	4 %		
存在哈密尔顿回路,但不存在哈密尔顿回 路	2回应者	4 %		
哈密尔顿回路和哈密尔顿道路均存在	2回应者	4 %		

◉哈密尔顿道路 (回路)

图G₉是著名的Petersen图。尝试通过穷举判断该图中是否存在哈密尔顿道路 (Hamilton path)和哈密尔顿回路(Hamilton circuit)?

The Graph G_9

存在哈密尔顿道路, 但没有哈密尔顿回路	67 回应者	86 %		~
存在哈密尔顿道路和哈密尔顿回路		0 %	1	
存在哈密尔顿回路, 但没有哈密尔顿道路		0 %		
哈密尔顿道路和哈密尔顿回路均不存在	11 回应者	14 %		

连通图

证明G和 \overline{G} 至少有一个是连通图。

设日不连面 对德南岛 从 V, 若 (V, VL) \$ E(G), 则 (V, VL) € E(G), 即 V, V在G中超 若 (V, V2) EE(G), 那么在另一个连通历支中找一点 Vs 在百中(以以)(以,以)必存在、即以处在中随 · 若 G 不适通 G 中任意西兰都连通。

● 连通图的最长道路

证明: 若连通图的最长道路不唯一,则它们必定相交。

```
假设连通图G有两条不相交最长道路
                        L= (V10, e11, V11, C12, --, e1n, V1n), L= (V20, en, V21, e22, --, e2n, V2n)
                      由于し、して相交、则对灯,j=1,2,...,n有色;并已zj.
   由于G连通,则习i,j=0.1,2,…,n使得Vi,5以j之间有道路Lz=(Vi,, e,, k, ez,…, em, 以j)
                    其中对 Yp.g=1,2,...,n及 k=1,2,...,m有 Ck+C1p 且Ck+C2g
     LEBJ. \( \( \sum_{i, \in \text{U}_{i}} \), \( \lambda_{i, \text{U}
                                    Lz1=(V2, Cz1, Vz1, En, -, Vzj), Lzz=(Vzj, Czj, --, Cm, Vzn)
                 则不好没人,长度七, 3号, 上班度七江7号,而上班6371
   故有道路 Ly=(V10, P11, V11, P12, 11, V1, P1, V2, P2, --, Pm, V2j, Pzj, ..., P2m, V2n)
                   的腹似二小十九十十分三十十十一十一、比儿及上长、新有
  校儿儿女相关
```


●带弦回路

在简单图中,证明:若 $n \ge 4$ 且 $m \ge 2n-3$,则 G 中含有带弦的回路。

1°当小一4时,加入上,此时日中全带往回路 2°若n=k的对效之,则与n=k+1的力,对G中极长和级道 路上,改其一端点为心,则 ○著人(い。) > 3、假设ョン、ちい。相连且以来以(上)、双」 [V., L]为更长道路,不看。故心智点的 在上上,此时日带往回路 17 \$d(V0)<3, RJE(G-{V0}) >m-2=2(6+1)-3-2 = 24-3,此时分-(16) 全带弦回路 经到"2"有众经荣任回路

●哈密尔顿回路

设 $G \not\in n \ge 3$ 的简单图,证明:若 $m \ge \frac{1}{2}(n-1)(n-2)+2$,则 G 存在 H 回路。

考
$$\exists v_i, v_i \in V(G)$$
 使得 $d(v_i) + d(v_i) < n$.

RJE(G-{ v_i, v_i }) > $m - n = \frac{1}{2}(n - 1)(n - 2) + 2 - 1n$
 $= \frac{1}{2}n^2 - \frac{1}{2}n + 3 = \frac{1}{2}(n - 2)(n - 3)$

TO E(G-{ v_i, v_i }) $\leq k_{n-2} = \frac{1}{2}(n - 2)(n - 3)$

矛盾、 なメサ $v_i, v_i \in V(G)$, 均有 $d(v_i) + d(v_i) > n$

由推论 $z \cdot u \cdot 1$ 有 G 存在 H 见路

●哈密尔顿道路

设 G 是有向完全图,证明 G 中存在有向的哈密顿道路。

注意数学归纳法的要点:

- 1. 初始条件
- 2. 推导条件

N=3时,三个点的有向完全图存在H道路

假设 hsk bt, G 姊族H道路

当n=k+1时,删除以报到下的因是结点数为k的有向途包设这片点中存在H道路40→40→13···→16

证明 (Vk+1, V1)或者(Vk, Vk+1)或者存在(Vi, Vk+1)环(Vk+1, Vi+1)

◎哈密尔顿回路

在例 2.4.5 中,若 $n \ge 4$,证明这 n 个人一定可以围成一圈,使相邻者互相认识。

例 2.4.5 设 $n(\ge 3)$ 个人中,任两个人合在一起都认识其余 n-2 个人。证明这 n 个人可以排成一队,使相邻者都互相认识。

证明:每个人用一个结点表示,相互认识则用边连接相应的结点,于是得到简单图 G。若 G 中有 H 道路,则问题得证。由已知条件,对任意两点 $v_i,v_j \in V(G)$,都有 $d(v_i)+d(v_j) \ge n-2$ 。此时若 v_i 与 v_j 相识,即(v_i,v_j) $\in E(G)$,则 $d(v_i)+d(v_j) \ge n$;若不相识, 必存在 $v_k \in V(G)$ 满足(v_i,v_k),(v_j,v_k) $\in E(G)$ 。否则,设(v_i,v_k) $\in E(G)$,就出现 v_k,v_j 合在一起不认识 v_i ,与原设矛盾。因此也有 $d(v_i)+d(v_j) \ge n-1$ 。综上由定理 2.4.1,G 中存在 H 道路。

- 设n(n>=4)个人中,任两个人合在一起都认识其余n-2个人。证明这n个人可以排成一圈,使相邻者都相互认识。
 - $d(u) + d(v) \ge n$

03

- 复习题
- 课后作业

知识点总结

- 树的定义:不含回路的连通图
- 割边
- 支撑树
- 哈夫曼树
- ●最短树
 - Kruskal 算法
 - Prim 算法
- ●补充:二叉树
 - 满二叉树
 - 完全二叉树

●哈夫曼树没有度为1的结点:这个说法里的结点只针对非叶子结点

True 48 回应者 87 % ✓ False 7 回应者 13 %

- 同构: G1和G2顶点度的非增序列相同
- ◉树:无回路,连通
 - 11114
 - 11123
 - 11222

5个结点的完全图G, 其不同构的生成树的个数是()

3	36 回应者	65 %	✓
8	2回应者	4 %	
4	15 回应者	27 %	
16	2回应者	4 %	

● 强连通:两两节点相互可达

含有n(n>1)个结点的强连通有向图,	至少有()条边。	
n-1	8回应者	15 %	
n+1	1回应者	2 %	
n	45 回应者	82 %	✓
2n	1回应者	2 %	

● 最短树: Kruscal/Prim算法

		0 %
		0 %
		0 %
15	67 回应者	87 %
其他事情	9 回应者	12 %
无答案	1回应者	1 %

Muffman树

③2【★☆☆☆】假设数据项 A, B, C, D, E, F, G 以下面的概率分布出现: A: 0.1, B: 0.3, C: 0.05, D: 0.15, E: 0.2, F: 0.15, G: 0.05, \vec{x} —种二进制编码方式使得传输一个数据项的期望长度最小,并求其期望。

●最短树

求权矩阵所示带权图中(见图 3.36)的最短树的边权之和。

最终边权和为8

补充题

下列关于图的基本概念的说法中,正确的有 ____。

- A. 一个包含 5 个节点的图中, 节点的度数可能是 (3,4,2,2,4)。 节点的度之和为奇数
- B. 已知图 G = (V, E),图 G' = (V', E')。 如果 G' 是 G 的支撑子图,那么 V = V'。
- C. 无向图 G 和 G' 如图 1 所示,G' 是 G 的导出子图。 V2与V3缺少边
- D. 如果 G 和 G' 不存在同构的导出子图,则 G 和 G' 一定不同构。

图 1

补充题

图 3 中 存在 (存在/不存在) 欧拉回路, 存在 (存在/不存在) 哈密顿回路.

补充题

[2^(k-2), 2^(k-1)]

一棵高度为 k 的完全二叉树的叶子结点个数的范围为 _____. 在一棵完全二叉树中,某结点的右子树的高度为 k,其左子树的高度为 _____.

k或者k+1

使用哈夫曼树对字符串"ihaveapenihaveanapple"进行编码, 得到的哈夫曼树的带权路径总长为 $_{61}$.

