

Machine learning Neural New orks

Wouter Gevaert

Content

- Introduction
- The artificial neural network
- Getting started with Keras and Tensorflow

Introduction

What is a neural network?

Definition

According to Simon Haykin, Neural Networks - a comprehensive Foundation, Prentice Hall, New Jersey, 2nd edition.

A neural network (NN) is a massively parallel distributed processor that has a natural propensity for malfunctioning experimental knowledge and making it available for use.

It resembles the brain in two aspects:

- Knowledge is acquired through the network through a learning process.
- Interneuron connection strengths known as synaptic weights are used to store the knowledge.

What is a neural network?

Inspired by the human brain

The human brain excels in tasks such as **pattern recognition**, **speech recognition**, **perception**, and so on.

- As the brain learns more, it learns faster.
- The brain is very strong in parallel processing, a classic computer in serial processing.

Human brain vs computer

	Brain	Computer
Processing Elements	10 ¹⁰ neurons	10 ⁸ transistors
Element Size	10 ⁻⁶ m	10 ⁻⁶ m
Energy Use	30 W	30 W (CPU)
Processing Speed	10² Hz	10 ¹² Hz
Style Of Computation	Parallel, Distributed	Serial, Centralized
Energetic Efficiency	10 ⁻¹⁶ joules/opn/sec	10 ⁻⁶ joules/opn/sec
Fault Tolerant	Yes	No
Learns	Yes	A little

Biological

Pigeon sas art experts (Watanabe et al. 1995)

- · Pigeon in Skinner box.
- Show paintings by two painters (Chagall and Van Gogh).
- Give pigeon a reward for paintings by a certain painter.

Pigeons as art experts (Watanabe et al.

Biological model Pigeons as art experts (Watanabe et al. 1995)

- The pigeons were able to correctly classify the training set with 95%.
- On the test set with unseen paintings they achieved an accuracy score of 85%.
- Pigeons not only memorize images, they recognize patterns.
- They generalize already seen information to base predictions on.

See

Biological model Human body scaled to allocated volume of brain

The human brain

The artificial neural network

The artificial neural network

Perceptron

The artificial neural network

Perceptron

Characteristics of a neural network

- Network architecture
- Learning algorithm
- Activation functions

Network architecture

Overview

Structure

Example: XOR function

Example MNIST

Example MNIST

One-hot encoding

One-hot encoding is a way to transform categorical features / targets to a more suitable format.

The index of 1 in a column vector (with only zeros) corresponds to the category of the feature / target.

One-hot encoding

```
# one-hot encoding class labels
from keras.utils import np_utils
y train[:10]
array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4], dtype=uint8)
y train OneHotEncoding = np utils.to categorical(y train)
y train OneHotEncoding[:10]
array([[ 0., 0., 0., 0., 1., 0., 0., 0., 0.]
     [ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       0., 0., 0., 0., 1., 0., 0., 0.,
     [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]
     [0., 0., 0., 0., 0., 0., 0., 0., 1.],
     [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
     [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
     [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]
     [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]
```

One-hot encoding

```
1 from sklearn import preprocessing
  2 print(y_train)
 4 lb = preprocessing.LabelBinarizer()
 5 lb.fit(y train)
 6 y train = lb.transform(y train)
 8 print(y_train)
[5, 0, 4, 1, 9, 2, 1, 3, 1, 4]
[[0 0 0 0 0 1 0]
[1 0 0 0 0 0 0]
 [0 0 0 0 0 0 1]
 [0 0 1 0 0 0 0]
 [0 1 0 0 0 0 0]
 [0 0 0 1 0 0 0]
 [0 1 0 0 0 0 0]
 [0 0 0 0 1 0 0]]
```

Backpropagation learning

 η is the learning rate $0 < m\eta < 1$ with m number of inputs

- Error: $e_k(n) = d_k(n) y_k(n)$
- Minimize the cost based on the current error e_k(n)

$$\varepsilon(n) = \sum_{k} \varepsilon_{k}^{2}(n)$$

- $\Delta W_{kj}(n) = \eta e_k(n) x_j(n)$ with η the learning rate
- Adjust the weight according to:
 ΔW_{ij}(n + 1) = W_{ij}(n) + ΔW_{ij}(n)

Backpropagation learning

Error function (= loss) in function of number of training epochs

Backpropagation learning

Influence/Impact of the learning rate on the training

Activation function

Activation functions

- *Output is 1 when the value > 0
- *Output is 0 when the value < 0

Disadvantage:

- *Can only say yes or no (100% or 0%)
- *Problems with multiple classes.
- *What if multiple classes are on 1?
- *Backpropagation does not work. The derivative

=0

Activation functions (Adailne)

Output is proportional to the input

Disadvantages:

- *No matter how many layers you use, the final activation will remain linear.
- *The derivative is constant and has no relation with the entrance.

Use:

- Input layer
- *Output layer in regression

Activation functions

Non-linear

*The output is always between 0 and +1

Disadvantages

- *Vanishing gradient problem.
- *Problematic with neural networks with many hidden layers.

Use:

- *Not often used anymore.
- *Sometimes for output layer at classification problems.

Activation functions hyperbolic tangent (tann)

Non-linear

*The output is always between -1 and +1

*Centered around 0

Disadvantages

*Vanishing gradient problem remains.

Use:

*Not often used anymore.

Activation Functions Held Hectified Linear Unit

- *ReLu is non-linear and each function can be approached by combining relay functions.
- *Very efficient to computing power.
- *Sparse activation. Many activations become 0.

Disadvantages:

*Dead neurons can no longer be activated.

Use:

For hidden layers

Activation functions

- *Variant on ReLu.
- *Do not die.

Disadvantages:

•More parameters to train.

Use:

•For hidden layers.

Activation functions

Hidden layers:

- First use ReLu.
- Try Leaky ReLu.
- Do not use Sigmoid or Tanh.

Output layer:

- Linear in regression.
- Softmax / Sigmoid at classification.

Sofmax is a generalization of the Sigmoid:

$$\sigma(Z) = \int_{K} \frac{e^{Z_{j}}}{K} \int_{K=1}^{K} \frac{e^{Z_{j}}}{e^{Z_{k}}}$$

Works with mult-class classification.

Underfitting and overfitting

Number and size of the layers

- Too large neural network: overfitting.
- Toosmall neural network underfitting.

Underfitting and overfitting

Regularization of a neural network

Underfitting and overfitting

Dropou

Į

- Technique to prevent overfitting.
- Switch offa certain percentage of the neurons in a layer.
- Other neurons have to indent for neurons that are off.

Getting started with Keras and Tensorflow

Getting started with Keras and Tensorflow

What is Keras?

https://keras.io/

- Neural Network library written in Python.
- Built on top of Tensorflow and Theano.
- Easy to use.Modular and expandable.
- Allows to build complex (deep learning) neural networks.

Getting started with Keras and Tensorflow Install Keras and Tensorflow

- pip install tensorflow
- pip install keras

Getting started with Keras and Tensorflow The sequential model

- Allows to stack different layers of a neural network
- https://keras.io/#getting-started-30-seconds-to-keras

Construction of the sequential model:

```
from keras.models importSequential
model = Sequential()
```

```
from keras.layersim port Dense, Activation
model.add ( Dense (units = 30, input_dim =
10)) model.add ( Activation('relu'))
model.add ( Dense (units = 5))
model.add ( Activation('softmax'))
```

10 inputs | 30 hidden layer ReLu units | 5 softmax uitgangen

Getting started with Keras and Tensorflow

The sequential model

Compile and train the sequential model + predictions

```
model.compile(loss='categorical crossentropy',
optimizer='sqd'.
metrics = ['accuracy'])
model.compile(loss=keras.losses.categorical_cr
ossentropy, optimizer = keras.optimizers.SGD (Ir=0.
0.1, momentum =0.9,
nesterov=True))
model.fit(x_train,y_train,epochs=5,batch_size=
32) classes = model.predict(x_test, batch_size =
128)
```

Activation functions

https://keras.io/activations/

Available activation functions:

- softmax
- relu
- sigmoid
- tanh
- linear
- https://keras.io/layers/advanced-activations/

Learning rate optimizers

https://keras.io/optimizers/

- SGD + Nesterov (Stochastic Gradient Descent)
- RMSProp: more suitable for recurrent networks
- Adagrad
- Adam
- Adamax

Epochs - batch size - iterations

- Epochs: the number of times the neural network sees the complete training set.
- Iterations: The number of times the weights are adjusted. Is equal to the number of epochs times the number of batches.
- Batch size: The number of samples that the neural network will see before it updates the weights. Updating of the weights is based on the average error of a batch.
- Batch mode: The batch size is equal to the number of training samples.
- Mini-batch mode: The batches are larger than 1 and smaller than the number of training samples.
- Stochastic mode: The batch size = 1. After each training sample there is an update of the weights.

Batch size

- Advantages and disadvantages of a small batch size
- Small batches take up less memory.
- The network usually trains faster in small batches.
- Smaller batches give quicker feedback.
- Disadvantage of small batches: less accurate estimation of the gradient. Network stabilizes on the basis of the last training samples.

Loss function

https://keras.io/losses/#available-loss-functions

The cost function to be minimized during training.

Error losses: usually used in regression mean_squared_error(y_true, y_pred)

- mean_absolute_error(y_true, y_pred)
- mean_absolute_percentage_error(y_true, y_pred)
- mean_squared_logarithmic_error(y_true, y_pred)

Loss function

https://keras.io/losses/#available-loss-functions

Hinge losses: usually used with Support Vector Machines.

- squared_hinge(y_true, y_pred)
- hinge(y_true, y_pred)
- categorical_hinge(y_true, y_pred)

Loss function

https://keras.io/losses/#available-loss-functions

Class losses: used in classification.

binary_crossentropy (y_true, y_pred)

For binary classification or multilabel classification: problems where multiple labels can be assigned to a training sample (with sigmoid output layer).

Example a photo contains both a dog and a cat.

categorical_crossentropy (y_true, y_pred)

With multiclass classification with softmax where you want to predict one particular class with high certainty.

Example with the MNIST classification.

Metrics

Used to assess the performance of the model.

Regression metrics:

- Mean Squared Error: mean_squared_error of mse
- Mean Absolute Error: mean_absolute_error, mae
- Mean Absolute Percentage Error: mean_absolute_percentage_error, mape
- Cosine Proximity: cosine

Metrics

Classification metrics:

- Binary Accuracy: binary_accuracy, acc
- Categorical Accuracy: categorical_accuracy, acc
- Top k Categorical Accuracy: top_k_categorical_accuracy
- Cosine Proximity

Other parameters

- validation_split: fraction of training data used for validation.
- sample_weight_mode: for unbalanced data: some classes are more common in the training set than others.

