GROUP 2: FINAL PROJECT

Dania Usman, Jomaris Banua, Shruti Gajre

2024-12-13

1) Data Cleaning

Variable	Reason for Selection
town11nm	Identifies the geographical area, essential for studying regional patterns.
size_flag	Captures town size, a key variable for analyzing differences in educational outcomes.
income_flag	Represents income levels, crucial for examining socioeconomic influences on education.
uni_flag	Indicates if a town has a university, potentially impacting higher education access.
qual_residents	Reflects the proportion of educated adults, a possible community influence on students.
GCSEs	Serves as a proxy for high school graduation rates.
college_grad	Represents college graduation rates.

Exclusion Criteria

- Dropped variables not directly related to the research question, such as minor demographic details or redundant information.
- Variables with incomplete or irrelevant data for analyzing educational attainment (e.g., administrative or non-educational metrics).

Reason for Collapsing Town Size Categories

Collapsed					
Level	Original Categories Included	Reason			
Large	"City", "Medium Towns", "Large Towns", "Outer London BUA", "Inner London BUA", "Not BUA"	Reflects similarities in urban characteristics, such as population density and access to resources.			
Small	"Small Towns", "Other Small BUAs"	Focuses on smaller, less urbanized communities to highlight contrasts with larger urban areas.			

Additional Notes

- Simplification Benefits: Collapsing categories reduces noise and ensures clearer distinctions between urban and rural-like areas.
- Comparison Focus: The new levels, Large and Small, facilitate easier interpretation of differences in educational attainment based on town size.

```
#factor collapse to combine mid and large size towns and cities into one level levels(eng_ed$size_flag)
```

2) EDA

```
#distribution of the size_flag
ggplot(data = eng_ed, aes(x = size_flag, fill = size_flag)) +
  geom_bar() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(
    title = "Distribution of Town Sizes",
    x = "Town Size",
    y = "Frequency",
    fill = "Town Size"
```

```
theme_minimal(base_size = 10) +
theme(
  plot.title = element_text(face = "bold", hjust = 0.5),
  axis.title.x = element_text(face = "bold"),
  axis.title.y = element_text(face = "bold"),
  legend.position = "top"
)
```

Distribution of Town Sizes


```
#distribution of the income_flag
eng_ed |>
  drop_na() |>
  ggplot(aes(y = income_flag, fill = income_flag)) +
  geom_bar() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(
    title = "Distribution of Income Status of the Towns",
    y = "Income Status",
    x = "Frequency",
    fill = "Income Status"
) +
  theme_minimal(base_size = 10) +
  theme(
    plot.title = element_text(face = "bold", hjust = 0.5),
    axis.title.x = element_text(face = "bold"),
```

```
axis.title.y = element_text(face = "bold"),
  legend.position = "top"
)
```

Distribution of Income Status of the Towns


```
# Distribution of High School Graduation
ggplot(eng_ed, aes(x = GCSEs)) +
 geom_histogram(
   bins = 10,
   col = "white",
   fill = "#DECBE4"
 ) +
 labs(
   title = "Distribution of High School Graduation",
   x = "High School Graduation Proportion of Towns",
   y = "Frequency"
  ) +
 theme_minimal(base_size = 10) +
   plot.title = element_text(face = "bold", hjust = 0.5),
   axis.title.x = element_text(face = "bold"),
   axis.title.y = element_text(face = "bold")
```



```
# Distribution of College Graduation
ggplot(eng_ed, aes(x = college_grad)) +
  geom_histogram(
   bins = 10,
    col = "white",
   fill = "#CCEBC5"
  ) +
  labs(
   title = "Distribution of College Graduation",
   x = "College Graduation Proportion of Towns",
   y = "Frequency"
  theme_minimal(base_size = 10) +
  theme(
   plot.title = element_text(face = "bold", hjust = 0.5),
   axis.title.x = element_text(face = "bold"),
    axis.title.y = element_text(face = "bold")
```



```
# Summary Statistics Grouped by Town Size
eng_ed |>
  select(size_flag, income_flag, GCSEs, college_grad) |>
 tbl_summary(
   by = size_flag,
     # Display mean (SD) for continuous variables
   statistic = list(all_continuous() ~ "{mean} ({sd})"),
   # Treat dichotomous variables as categorical
   type = list(all_dichotomous() ~ "categorical"),
   # Round to 2 decimal places
   digits = list(all_continuous() ~ c(2, 2)),
   label = list(
     income_flag = "Income Flag",
     GCSEs = "High School Graduation",
      college_grad = "College Graduation"
   )
  ) |>
  as_kable()
```

Characteristic	Large $N = 441$	Small $N = 663$
Income Flag		
Cities	18 (4.1%)	0 (0%)
Higher deprivation towns	221 (50%)	212 (32%)
Lower deprivation towns	117 (27%)	327~(49%)

Characteristic	Large $N = 441$	Small $N = 663$
Mid deprivation towns	82 (19%)	123 (19%)
Unknown	3	1
High School Graduation	60.20 (8.60)	$62.02\ (10.94)$
College Graduation	27.53(7.39)	31.59(9.02)
Unknown	1	230

3) Data Analysis

TEST 1: High School Graduation Rates: Small v Large Towns

Is there a difference in high school graduation rates between small v large towns/cities?

- H0: There is no mean difference between the high school graduation rates between small v large towns/cities
- H1: There is a difference between the high school graduation rates between small v large towns/cities
- Test: Difference between two means

Conditions

- Independence: We can assume the observations of one town to another are independent from each other.
- Normality: Populations are approximately normal
- Sample Size: Both groups have n larger than 30

```
small_town <- eng_ed |>
  filter(size_flag == "Small") #filtered data by small town
large_town <- eng_ed |>
  filter(size_flag == "Large") #filtered data by large town
nrow(small_town)
```

[1] 663

```
nrow(large_town)
```

[1] 441

```
mean_small_gcse <- mean(small_town$GCSEs, na.rm = TRUE)
mean_large_gcse <- mean(large_town$GCSEs, na.rm = TRUE)

sd_pooled_gcse <- sqrt((
    (sd(small_town$GCSEs, na.rm = TRUE)^2 +
        sd(large_town$GCSEs, na.rm = TRUE)^2) / 2

))</pre>
```

```
# Cohen's d (effect size)
cohens_d_gcse <- abs(mean_small_gcse - mean_large_gcse) / sd_pooled_gcse</pre>
# Sample size
n_small <- nrow(small_town)</pre>
n_large <- nrow(large_town)</pre>
# Power analysis
power_gcse <- pwr.t.test(</pre>
 d = cohens_d_gcse,
 n = min(n_small, n_large),
 sig.level = 0.05,
 type = "two.sample"
)$power
cat(
  "Results Summary for GCSE Difference Test:\n",
  "----\n",
 "Observed Cohen's d (Effect Size):", round(cohens_d_gcse, 3), "\n",
  "Sample Size (Small Towns):", n_small, "\n",
  "Sample Size (Large Towns):", n_large, "\n",
  "Computed Power for GCSE Difference Test Power Analysis", round(power_gcse, 3), "\n"
)
## Results Summary for GCSE Difference Test:
## -----
## Observed Cohen's d (Effect Size): 0.185
## Sample Size (Small Towns): 663
## Sample Size (Large Towns): 441
## Computed Power for GCSE Difference Test Power Analysis 0.782
Test for Difference in Means
t_test_result <- t.test(small_town$GCSEs, large_town$GCSEs)</pre>
cat("T-test Result: \n")
## T-test Result:
print(t_test_result)
##
## Welch Two Sample t-test
##
## data: small_town$GCSEs and large_town$GCSEs
## t = 3.0771, df = 1071.4, p-value = 0.002144
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6579486 2.9738975
## sample estimates:
## mean of x mean of y
## 62.02080 60.20487
```

- Decision: The p-value is less than 0.05, we reject the null hypothesis
- Conclusion: We have enough evidence that there is a significant difference in high school graduation rates between small towns and large towns/cities.

TEST 2: Difference in College Graduation Rates: Small v Large Towns

Is there a difference in college graduation rates between small v large towns/cities?

- H0: There is no difference in college graduation rates between small vs large towns/cities.
- H1: There is a difference in college graduation rate between small vs large towns/cities.
- Test: Difference between two means

Conditions

- Independence: We can assume the observations of one town to another are independent from each other.
- Normality: Populations are approximately normal
- Sample Size: Both groups have n larger than 30

```
mean_small_college <- mean(small_town$college_grad, na.rm = TRUE)</pre>
mean_large_college <- mean(large_town$college_grad, na.rm = TRUE)</pre>
sd_pooled_college <- sqrt((</pre>
  (sd(small_town$college_grad, na.rm = TRUE)^2 +
    sd(large_town$college_grad, na.rm = TRUE)^2) / 2
))
# Cohen's d (effect size)
cohens_d_college <- abs(mean_small_college - mean_large_college) /</pre>
 sd pooled college
# Power analysis for two-sample t-test
power_college <- pwr.t.test(</pre>
 d = cohens_d_college,
 n = min(n small, n large),
 sig.level = 0.05,
 type = "two.sample"
)$power
 "Results Summary for College Graduation Difference Test:\n",
 "----\n".
 "Observed Cohen's d (Effect Size):", round(cohens_d_college, 3), "\n",
 "Sample Size (Small Towns):", n_small, "\n",
 "Sample Size (Large Towns):", n_large, "\n",
 "Computed Power for College Graduation Difference Test:", round(power college, 3), "\n"
```

```
## Results Summary for College Graduation Difference Test:
## ------
## Observed Cohen's d (Effect Size): 0.492
## Sample Size (Small Towns): 663
## Sample Size (Large Towns): 441
## Computed Power for College Graduation Difference Test: 1
```

Test for Difference in Means

```
t_test_college_grad <- t.test(small_town$college_grad, large_town$college_grad)
cat("T-test Results for College Graduation Rates: \n")</pre>
```

T-test Results for College Graduation Rates:

```
print(t_test_college_grad)
```

```
##
## Welch Two Sample t-test
##
## data: small_town$college_grad and large_town$college_grad
## t = 7.2603, df = 833.25, p-value = 8.864e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.959436 5.152498
## sample estimates:
## mean of x mean of y
## 31.58938 27.53341
```

- Decision: The p-value is less than 0.05, we reject the null hypothesis
- Conclusion: We enough evidence that there is a difference in college graduation rate between small vs large towns/cities.

TEST 3: Association between Income and Town Size

Are income and town sizes associated?

- $\bullet~$ H0: Income levels are independent of town size.
- H1: Income levels are associated with town size
- Test: Chi-squared test of independence

Conditions

- Independence: We can assume the observations of one town to another are independent from each other.
- Expected Counts: All counts are greater than 5.

```
income_size_table <- table(eng_ed$size_flag, eng_ed$income_flag)</pre>
proportions <- prop.table(income_size_table, margin = 1)</pre>
proportions_df <- as.data.frame(as.table(proportions))</pre>
colnames(proportions_df) <- c("Town_Size", "Income_Level", "Proportion")</pre>
# Bar chart
ggplot(proportions_df, aes(x = Income_Level, y = Proportion,
                           fill = Town_Size)) +
  geom_bar(stat = "identity", position = position_dodge(width = 0.8), col = "white") +
 labs(
   title = "Proportion of Towns by Income Level and Town Size",
   x = "Income Level",
   y = "Proportion of Towns",
   fill = "Town Size"
  ) +
  scale_y_continuous(labels = scales::percent_format()) +
  scale_fill_manual(
   values = c("Small" = "#B3CDE3", "Large" = "#FBB4AE")
 ) +
  theme_minimal(base_size = 10) + # Consistent font size
 theme(
   plot.title = element_text(face = "bold", hjust = 0.5),
   axis.title.x = element_text(face = "bold"),
   axis.title.y = element_text(face = "bold"),
   axis.text.x = element_text(angle = 45, hjust = 1)
```



```
chisq_test <- chisq.test(eng_ed$size_flag, eng_ed$income_flag)</pre>
income_size_table <- table(eng_ed$size_flag, eng_ed$income_flag)</pre>
# Calculate Cramér's V
cramers_v <- sqrt(chisq_test$statistic / (sum(income_size_table) *</pre>
                                                (min(dim(income_size_table)) - 1)))
# Df
df <- chisq_test$parameter</pre>
# Total sample size
n_total <- sum(income_size_table)</pre>
# Compute power for chi-squared test
power_chisq <- pwr.chisq.test(</pre>
  w = cramers_v,
  N = n_{total}
  df = df,
  sig.level = 0.05
)$power
```

```
cat(
  "Results Summary for Chi-Squared Test:\n",
  "----\<u>n</u>",
  "Observed Cramér's V (Effect Size):", round(cramers_v, 3), "\n",
  "Degrees of Freedom:", df, "\n",
  "Total Sample Size:", n_total, "\n",
  "Computed Power for Chi-Squared Test:", round(power_chisq, 3), "\n"
## Results Summary for Chi-Squared Test:
##
##
   Observed Cramér's V (Effect Size): 0.276
## Degrees of Freedom: 3
## Total Sample Size: 1100
##
  Computed Power for Chi-Squared Test: 1
test <- chisq.test(eng_ed$income_flag, eng_ed$size_flag)</pre>
cat("Expected counts:", test$expected)
## Expected counts: 7.167273 172.4127 176.7927 81.62727 10.83273 260.5873 267.2073 123.3727
test
##
   Pearson's Chi-squared test
##
##
## data: eng_ed$income_flag and eng_ed$size_flag
## X-squared = 83.562, df = 3, p-value < 2.2e-16
  • Decision: We reject the null hypothesis.
  • Conclusion: There is strong statistical evidence to conclude that income levels and town size are not
```

independent.

TEST 4: Relationship between College Graduation Rate & Highschool Graduation Rate

Is high school completion a good predictor of college degree completion?

- H0: There is no linear relationship between high school and college completion.
- H1: There is a linear relationship between high school and college completion.
- Test: Linear Regression

Conditions

- Linearity: Data appears to be linear
- Independence: Errors seem to have no pattern
- Constant Variance: Seems Constant
- Normality: The qq plots appear normal

```
#Independence

mod<- lm(college_grad ~ GCSEs, data =eng_ed)
plot(predict(mod), rstandard(mod))
abline(h=0)</pre>
```


summary(mod)

```
##
## Call:
## lm(formula = college_grad ~ GCSEs, data = eng_ed)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -16.765 -3.612 -0.180
                             3.296 21.944
##
##
  Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.94830
                            1.19441
                                    -10.84
                                              <2e-16 ***
## GCSEs
                 0.68247
                            0.01896
                                      36.00
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.38 on 871 degrees of freedom
     (231 observations deleted due to missingness)
```

Multiple R-squared: 0.598, Adjusted R-squared: 0.5976 ## F-statistic: 1296 on 1 and 871 DF, p-value: < 2.2e-16

#constant variance
#normality
plot(mod, 1:2)


```
r_squared <- summary(mod)$r.squared</pre>
# Size (Cohen's f2)
f2 <- r_squared / (1 - r_squared)</pre>
n <- nrow(eng_ed)</pre>
num_predictors <- 1</pre>
# Power analysis
power_regression <- pwr.f2.test(</pre>
  u = num_predictors,
  v = n - num\_predictors - 1,
 f2 = f2,
  sig.level = 0.05
)$power
  "Results Summary for Regression Test:\n",
  "----\<u>n</u>",
  "R-squared (Goodness-of-Fit):", round(r_squared, 3), "\n",
  "Effect Size (Cohen's f2):", round(f2, 3), "\n",
  "Sample Size:", n, "\n",
```

```
"Computed Power for Regression Test:", round(power_regression, 3), "\n"
## Results Summary for Regression Test:
## ----
## R-squared (Goodness-of-Fit): 0.598
## Effect Size (Cohen's f2): 1.488
## Sample Size: 1104
## Computed Power for Regression Test: 1
clean_data <- eng_ed[!is.na(eng_ed$GCSEs) & !is.na(eng_ed$college_grad), ]</pre>
# Fit the linear regression model
model <- lm(college_grad ~ GCSEs, data = clean_data)</pre>
# Calculate Adjusted R-squared
adj_r2 <- summary(model)$adj.r.squared</pre>
# Create scatter plot with regression line
ggplot(clean_data, aes(x = GCSEs, y = college_grad)) +
  geom_point(color = "steelblue", alpha = 0.6) +
  geom_smooth(method = "lm", color = "red", se = TRUE) +
  annotate("text", x = 40, y = max(clean_data$college_grad) - 5,
           label = paste("Adjusted R<sup>2</sup> = ", round(adj_r2, 3)),
           color = "darkred", size = 4, hjust = 0) +
  labs(
   title = "Relationship Between High School and College Graduation Rates",
    x = "High School Graduation Rate (GCSEs)",
    y = "College Graduation Rate (%)"
  ) +
  theme_minimal()
```

Relationship Between High School and College Graduation Rates

- Decision: We reject the null hypothesis.
- Conclusion: The results provide strong evidence of a statistically significant positive linear relationship between high school graduation rates (GCSEs) and college graduation rates (college_grad). This indicates that high school completion is a good predictor of college degree completion. Specifically, the model estimates that for every 1% increase in high school graduation rates, college graduation rates increase by approximately 0.682%, on average. The model explains 59.8% of the variability in college graduation rates ($R^2 = 0.598$).