ГИДРОЛОГИЯ СУШИ, ВОДНЫЕ РЕСУРСЫ, ГИДРОХИМИЯ / LAND HYDROLOGY, WATER RESOURCES, HYDROCHEMISTRY

DOI: https://doi.org/10.23670/IRJ.2024.141.34

СЕТЕВОЕ МОДЕЛИРОВАНИЕ СИСТЕМЫ ФУНКЦИОНИРОВАНИЯ ОПЫТНО-ПРОМЫШЛЕННОЙ УСТАНОВКИ ОЧИСТКИ СТОЧНЫХ ВОД НЕФТЕХИМИЧЕСКИХ ПРОИЗВОДСТВ

Научная статья

Савдур С.Н.^{1, *}, Кузнецов М.Г.²

 1 Казанский государственный аграрный университет, Казань, Российская Федерация 2 Казанский национальный исследовательский технологический университет, Казань, Российская Федерация

* Корреспондирующий автор (savdur.svetlana[at]yandex.ru)

Аннотация

В статье рассматривается технологический комплекс очистки сточных вод (ОСВ) нефтехимических производств. С помощью методов моделирования дискретно-непрерывных химико-технологических систем (ХТС) обоснована целесообразность применения теории сетей Петри (СП) для моделирования процесса ОСВ нефтехимических производств. Предложено использовать модификацию сетей Петри, которая ориентирована на моделирование и анализ дискретно-непрерывных ХТС, с помощью включения приоритетных переходов, времени задержки меток в переходах и позициях. Построена модель модифицированной сети Петри (МСП). А с помощью SCADA-технологии TRACE МОDЕ можно разработать программный комплекс системы управления технологическим процессом ОСВ.

Ключевые слова: модифицированные сети Петри, очистка сточных вод нефтехимических производств, компьютерное моделирование, химико-технологическая система, моделируемые системы.

NETWORK MODELLING OF THE FUNCTIONING SYSTEM OF A PETROCHEMICAL WASTEWATER TREATMENT PILOT PLANT

Research article

Savdur S.N.^{1,*}, Kuznetsov M.G.²

¹ Kazan State Agrarian University, Kazan, Russian Federation ² Kazan National Research Technological University, Kazan, Russian Federation

* Corresponding author (savdur.svetlana[at]yandex.ru)

Abstract

The article examines the technological complex of wastewater treatment (WWT) of petrochemical enterprises. With the help of modelling methods of discrete-continuous chemical and technological systems (CTS) the expediency of Petri nets theory (PNT) application for modelling the process of WWT of petrochemical productions is substantiated. It is proposed to use a modification of Petri nets, which is oriented on modelling and analysis of discrete-continuous CTS, by means of including priority transitions, delay time of labels in transitions and positions. A modified Petri net (MPN) model is constructed. And by means of SCADA-technology TRACE MODE it is possible to develop a software complex of the OSV technological process control system.

Keywords: modified Petri nets, petrochemical wastewater treatment, computer modelling, chemical and technological system, modelled systems.

Введение

На сегодняшний день работа по очистке сточных вод представляет собой сложную структуру, состоящую из несколько уровней. Именно по этой причине многие связывают этот процесс с разными кибернетическими системами. В частности, применяется системный анализ. Анализирование и моделирование систем является сложнейшей задачей, поэтому следует применять методы компьютерного и математического моделирования.

При решении поставленных задач использовались следующие методы исследования: системный анализ, теория графов, компьютерное моделирование, теория сети Петри.

Основные результаты

В современном мире постоянное увеличение добычи нефти, рост производства нефтепродуктов ведет к росту сточных вод, где могут содержаться большое количество нефтепродуктов. Поэтому для защиты окружающей среды необходимо найти пути очистки данных водных объектов.

Многие большие организации по добыче нефти и нефтепродуктов имеют свои очистные сооружения. Их структура считается очень сложной. Из-за этого появляется интерес к изучению их работы, потому что по составу и по объему потока у воды в данных сооружениях бывают различные показатели [1]. Результат работы системы обеспечивается при помощи обработки информации методом системного анализа, который связан с приемом: математическое описание технологического процесса [2].

Если смотреть со стороны системного анализа, то Рассматривая деятельность сооружений по очистки сточных вод с точки зрения системного анализа, то она имеет технологическую и химическую систему, которая связана между собой информационными, тепловыми и материальными линиями [3]. Все ОСВ делятся на уровни или подсистемы. В

процессе производственных работ ставятся цели и реализуются задачи. Среди задач, главной является очистка воды до необходимых показателей или до нормального функционирования водообеспечительной деятельности.

Изучая систему по очистке сточных вод, можно выделить информационный подход, в основе которого лежит математическое моделирование [4]. Такой подход и методы с использованием компьютерных технологий – результативный показатель, который помогает пользоваться системой управления, увидеть результат деятельности во внештатных ситуациях, дать оценку структурным аспектам, учитывать все показатели, которые связаны с непредсказуемостью возмущающих воздействий [5], [6]. Чтобы составить модель того или иного объекта, имеется 2 подхода:

- 1. Объект рассматривается как растущая система с постоянной переменной. Подход применяется при моделировании технологических или химических систем с постоянным технологическим процессом [7], [8].
- 2. Объект рассматривается как растущая система с дискретными событиями (ДСДС). Это линии сборки, система по производству, компьютерные технологии.

Также можно отметить дискретно-непрерывные технологические системы с использованием математических методов и приемов (логическое и лингвистическое моделирование, система теории СП и графов) [9]. После сравнения и анализа, аппарат теории СП был выбран как главный аппарат математического моделирования [9]. Именно этот аппарат помогает строить моделировать прерывистые параллельные процессы [9], увидеть сетевую графику, показать структуру на разных ступенях абстракции [10], провести сравнение и анализ модели с прикладными программами. Сети Петри, как и сети конечных автоматов, совмещают в себе возможности отображения динамики параллельных процессов в целом, с сохранением представления о динамике каждого из этих процессов в отдельности. Это сочетается с простотой и выразительностью отображения взаимодействия элементов сети и процессов в них, простым синтаксисом, наглядностью и широкими функциональными возможностями. Сети Петри более адекватно отражают организацию процессов в ДСДС по сравнению с моделями других видов.

Обсуждение

Системный анализ, его различные методы и приемы помогают при создании системы опытно – промышленной установки для очищения сточных вод в нефтехимических предприятиях (рис. 1). Она построена по математической модели.

Рисунок 1 - Технологическая схема опытно – промышленной установки:

1 - патрубок; 2 - гидроциклон; 3 - цилиндрическая камера; 4 - цилиндрическая камера; 5 - отстойник; 6 - нижний распределитель; 7 - верхний распределитель; 8 - перегородка; 10 - буферная зона; 11 - нефтесборник; 11' - нефтесборник; 12' - патрубок; 13 - патрубок; 146 - отбойник; 15 - патрубок DOI: https://doi.org/10.23670/IRJ.2024.141.34.1

Чтобы получить систему, необходимо использовать N–схемы, основанные на математическом аппарате СП, эффективность которой увеличивается от работы сетевой модели в графической и аналитической форме.

При сравнении и анализе технологических и химических схем необходимо учитывать ограниченность N–схем, так как здесь отдельные критерии модели не учитываются, потому что время (T) = 0. Учитывая эти условия, мы использовали МСП - сеть Петри следующего вида:

$$C = \langle P, T, I, O, M, L, t1, t2 \rangle$$
 (1)

где $T=\{t_j\}$ – конечное непустое множество символов – *переходы*, на которые влияют количество условных порций продукции при непрерывной подаче в аппарат технологической схемы.

 $P=\{p_i\}$ – конечное непустое множество символов – *позиции*, большое количество аппаратов технологической схемы;

 $I: PxT \rightarrow \{0, 1\}$ – входная функция, которая для каждого перехода t_i задает множество его позиций p_i I (t_i) .

O: PxT → {0, 1} – выходная функция, отображает переход в множество выходных позиций p_i O (t_i).

Каждый переход показывает множество входных $I\left(t_{j}\right)$ и выходных позиций $O\left(t_{j}\right)$ как:

$$I(t_j) = \{p_i P / I(p_i, t_j) = 1\}; O(t_j) = \{p_i P / O(p_i, t_j) = 1\}$$

 $M: P \rightarrow \{1, 2, 3...\}$ - функция маркировки (разметки) сети, которая ставит в соответствие каждой позиции положительное целое число, равное числу меток в этой позиции, изменяемое в процессе работы сети».

Срабатывание перехода меняет разметку $M(p)=(M(p_1), M(p_2), M(p_3)...M(p_n))$ на разметку M'(p) по формуле:

$$M/(p) = M(p) - I(tj) + O(tj)$$
(2)

Уравнение показывает, что переход t_i удаляет по одной метке из каждой входной позиции и добавляет по метке в каждую из выходных.

 t_1 : $T \to N$ и t_2 : $P \to N$ функции, которые определяют время задержки в позиции и при срабатывании перехода.

Линия увеличения МСП устанавливается движением меток, которые дают баланс точечных потоков по ограниченности объема аппаратов установки ОСВ.

Данное направление СП помогает сравнить и анализировать работу аппаратов системы в различных неожиданных ситуациях, отключения управления сети и технологических линий производства по обеспечению непрерывной работы системы.

Чтобы вести работу ОСВ, создана математическая модель технологической схемы и программа ее выполнения. Такая модель системы ОСВ построена на основе МСП. Работа по данной модели помогает исследованию систему и законы данной функции полностью. Имеются еще модели, которые ведут технологический процесс на основе ОСВ [11]. Из СП-моделей данных систем была разработана модель всей установки (рис. 2).

С помощью СП-модели можно получить единую систему технологического модуля ОСВ. Она показывает очистку в настоящем времени. Аппаратами SCADA-технологии TRACE MODE можно построить программу деятельности технологическим процессом ОСВ [12]. Структура и система анализа технологии помогает проводить постоянный контроль основных направлений, приостановить ОСВ, провести полный или частичный анализ для предотвращения разных внештатных ситуаций [4].

Рисунок 2 - Общая СП - модель опытно – промышленной установки:

1 — гидроциклон; 2, 3 — цилиндрические камеры; 4 — нижний распределитель; 5 — верхний распределитель; 6 — слой нефти; 7 — отстойник; 8 — буферная зона; 9 — емкость очищенной воды; 10 — емкость уловленной нефти DOI: https://doi.org/10.23670/IRJ.2024.141.34.2

Заключение

После исследования химических и технологических систем определено главное ограничение функций N-схем. Оно заключается в том, что учет N-схемами уменьшается или совсем отсутствует. Из-за этого появляется необходимость применения СП, которая основана на модель и системный анализ дискретно-непрерывных ХТС. Данная математическая модель деятельности системы очищения воды при нефтехимических предприятиях, показанные по модифицированной сети Петри, помогает изучить системные связи и работу установки полностью.

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы на английском языке / References in English

- 1. Fesina E. Modeling of Sewage Bioremediation as a Modified Petri Net / E. Fesina, S. Savdur // World Applied Sciences Journal. 2014. № 31(6). P. 1191-1197.
- 2. Hunt J.C.R. System Dynamics Applied to Operations and Policy Decisions / J.C.R. Hunt, Y. Timoshkina, P.J. Baudains [et al.] // European Review. 2012. № 20(3). P. 324–342.
- 3. Motameni H. Software with an Object-Oriented Petri Net Model / H. Motameni, A. Movaghar, B. Shirazi [et al.] // World Applied Sciences Journal. 2008. № 3(4). P. 565-576.
- 4. Huilinir C. Modeling of the Denitrification/Anaerobic Digestion Process of Salmon Fishery Wastewater in a Biofilm Tubular Reactor / C. Huilinir, E. Aspe, M. Roeckel // Journal of Environmental Management. 2011. № 92. P. 1591-1608
- 5. A Novel Method for Behavior Modeling in Uncertain Information Systems / A. Haroonabadi, M. Teshnehlab, A. Movaghar // World Applied Sciences Journal. 2008. № 3(5). P. 797-805.
- 6. Ruiz M. Multivariate Principal Component Analysis and Case-Based Reasoning for monitoring, fault detection and diagnosis in a WWTP / M. Ruiz, G. Sin, X. Berjaga [et al.] // Water Science, Technology. 2011. № 64 (8). P. 1661–1667.
- 7. Peter P. Determination of Biological Degradability of Organic Substrates / P. Peter // Water Research. 1976. 10. P. 231-235.
- 8. Buswell A.M. Mechanisms of Methane Fermentation / A.M. Buswell, M.F. Mueller // Industrial and Engineering Chemistry. 1952. \mathbb{N}_{2} 44. P. 550-552.
- 9. Meng C.Z. Special issue on «Petri Nets for System Control and Automation» / C.Z. Meng, Z.W. Li // Asian Journal of Control. 2010. № 12(3). P. 237-239.
- 10. Barzegar B. Modeling and Simulation Firewall Using Colored Petri Net / B. Barzegar, H. Motameni // World Applied Sciences Journal. 2011. № 15(6). P. 826-830.
- 11. Albert W. A Petri Nets-based Process Planning System for Wastewater Treatment / W. Albert, L. Yao, J. Zhiming [et al.] // Asian Journal of Control. 2010. № 12(3). P. 281-291.
- 12. Nasby G. SCADA Standardization: Modernization of a Municipal Waterworks with SCADA Standardization: Past, Present, and Planning for the Future / G. Nasby, M. Phillips // Tech. 2011. N_0 58(5-6). P. 1.