Suppose $f: S \longrightarrow T$. Recall that for $X \subseteq S$, the image of X under f, denoted $im_f(X)$ is the set $\{f(x): x \in X\}$ and for $Y \subseteq T$, the preimage of Y under f, $preim_f(Y)$ is the set $\{x \in S: f(x) \in Y\}$

For each of the following assertions determine whether it's true or false. If it's true prove it. If it's false, disprove it.

- (a) For any two subsets X_1 and X_2 of S, $im_f(X_1 \cup X_2) = im_f(X_1) \cup im_f(X_2)$. Proof: We must show that for all subsets X_1, X_2 of S that $im_f(X_1 \cup X_2) = im_f(X_1) \cup im_f(X_2)$. Suppose X_1, X_2 are arbitrary subsets of S. By the definition of set equality our goal becomes showing $im_f(X_1 \cup X_2) \subseteq im_f(X_1) \cup im_f(X_2)$ and $im_f(X_1) \cup im_f(X_2) \subseteq im_f(X_1 \cup X_2)$.
 - We must show that $im_f(X_1 \cup X_2) \subseteq im_f(X_1) \cup im_f(X_2)$. Suppose p is an arbitrary member of $im_f(X_1 \cup X_2)$. Then by definition of image $p \in \{f(x) : x \in X_1 \cup X_2\}$. By definition of set union $p \in \{f(x) : x \in X_1 \text{ or } x \in X_2\}$. This provides two cases, when $x \in X_1$ and $x \in X_2$.
 - Assume $x \in X_1$. Then $\{f(x) : x \in X_1\} = im_f(X_1)$. Since $p \in im_f(X_1)$, then by definition of union $p \in im_f(X_1) \cup im_f(X_2)$.
 - Assume $x \in X_2$. Then $\{f(x) : x \in X_{@}\} = im_f(X_2)$. Since $p \in im_f(X_2)$, then by definition of union $p \in im_f(X_1) \cup im_f(X_2)$.
 - We must show $im_f(X_1) \cup im_f(X_2) \subseteq im_f(X_1 \cup X_2)$. Suppose $p \in im_f(X_1) \cup im_f(X_2)$. By definition of set union $p \in im_f(X_1)$ or $p \in im_f(X_2)$. This provides two cases, when $p \in im_f(X_1)$ and when $p \in im_f(X_2)$.
 - Assume $p \in im_f(X_1)$. Then by definition of image $p \in \{f(x) : x \in X_1\}$. Therefore if $x \in X_1$ then it by definition $x \in X_1 \cup X_2$. Thus $p \in im_f(X_1 \cup X_2)$.
 - Assume $p \in im_f(X_2)$. Then by definition of image $p \in \{f(x) : x \in X_2\}$. Therefore if $x \in X_2$ then it by definition $x \in X_1 \cup X_2$. Thus $p \in im_f(X_1 \cup X_2)$.

Therefore $im_f(X_1 \cup X_2) \subseteq im_f(X_1) \cup im_f(X_2)$.

- (b) For any two subsets X_1 and X_2 of S, $im_f(X_1 \cap X_2) = im_f(X_1) \cap im_f(X_2)$. This is false. Take $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$, $X_1 = \{1, 2, 3\}$, and $X_2 = \{-1, -2, -3.\}$. Therefore $im_f(X_1 \cap X_2) = im_f(\{1, 2, 3\} \cap \{-1, -2, -3\}) = im_f(\emptyset) = \emptyset \neq \{1, 4, 9\} = \{1^2, 2^2, 3^2\} \cap \{(-1)^2, (-2)^2, (-3)^2\} = im_f(X_1) \cap im_f(X_2)$.
- (c) For any two subsets Y_1 and Y_2 of T, $preim_f(Y_1 \cap Y_2) = preim_f(Y_1) \cap preim_f(Y_2)$. We must show for any two subsets of T, that $preim_f(Y_1 \cap Y_2) = preim_f(Y_1) \cap preim_f(Y_2)$. By the definition of set equality, our goal is now to show that $preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_1) \cap preim_f(Y_2)$ and $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_1 \cap Y_2)$.
 - We must show $preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_1) \cap preim_f(Y_2)$. Suppose p is an arbitrary element in $preim_f(Y_1 \cap Y_2)$. By the definition of set intersection we must show $p \in preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_1)$ and $p \in preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_2)$.
 - We must show $p \in preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_1)$. By definition $p \in \{x \in S : f(x) \in Y_1 \text{ and } f(x) \in Y_2\}$. If $f(x) \in Y_1$ and $f(x) \in Y_2$, then necessarily $f(x) \in Y_1$. Therefore by definition $p \in preim_f(Y_1)$.

- We must show $p \in preim_f(Y_1 \cap Y_2) \subseteq preim_f(Y_2)$. By definition $p \in \{x \in S : f(x) \in Y_1 \text{ and } f(x) \in Y_2\}$. If $f(x) \in Y_1$ and $f(x) \in Y_2$, then necessarily $f(x) \in Y_2$. Therefore by definition $p \in preim_f(Y_2)$.
- We must show $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_1 \cap Y_2)$. Suppose p is an arbitrary element of $preim_f(Y_1) \cap preim_f(Y_2)$. By the definition of set intersection, we must show $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_1)$ and Y_2 . Therefore we now have two goals, $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_1)$ and $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_2)$.
 - We must show $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_1)$. By the definition of set intersection $p \in preim_f(Y_1)$ and $p \in preim_f(Y_2)$. Therefore $p \in preim_f(Y_1)$.
 - We must show $preim_f(Y_1) \cap preim_f(Y_2) \subseteq preim_f(Y_2)$. By the definition of set intersection $p \in preim_f(Y_1)$ and $p \in preim_f(Y_2)$. Therefore $p \in preim_f(Y_2)$.
- (d) For any subset X of S, $preim_f(im_f(X)) \supseteq X$. Proof: We must show for any subset X of S, $preim_f(im_f(X)) \supseteq X$. Suppose x is an arbitrary member of X. By the definition of image we must show $X \subseteq preim_f(\{f(x) : x \in X\})$ By definition of preimage we must show $X \subseteq \{s \in S : f(s) \in \{f(x) : x \in X\}\}$. Therefore since we have $x \in X$, we satisfy the internal definition of image, then the preimage of that simply takes all of the potential values in S which satisfy f(s) = f(x), which we know include x.
- (e) For any subset X of S, preim $_f$ ($\operatorname{im}_f(X)$) = X. False: Let $f:\mathbb{R}\to\mathbb{R}$ be given as $f(x)=x^2$, and $X=\{1,2\}$. then $X=\{1,2\}\neq\{-2,-1,1,2\}=\operatorname{preim}_f(\{1,4\})=\operatorname{preim}_f(\operatorname{im}_f(X)).$ (f) For any subset Y of T,im_f (preim $_f(Y)$) $\supseteq Y$. False. Take $f:\mathbb{R}\to\mathbb{R}$ given by $f(x)=\sqrt{x}$, and $Y=\mathbb{R}$. Then $Y=\mathbb{R}\not\subseteq\mathbb{R}_{\geq 0}=\operatorname{im}_f(\mathbb{R}_{\geq 0})=\operatorname{im}_f(\operatorname{preim}_f((\mathbb{R}))=\operatorname{im}_f(\operatorname{preim}_f(Y)).$ (g) For any subset Y of $T,\operatorname{im}_f(\operatorname{preim}_f(Y))=Y$.