

Institutt for matematiske fag

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897		
Eksamensdato: 20. desember 2016		
Eksamenstid (fra-til): 09:00 - 13:00		
Hjelpemiddelkode/Tillatte hjelpemidler: C: - Tabeller og formler i statistikk, Tapir forlag, - K.Rottman. Matematisk formelsamling, - Ett gult ark (A4 med stempel) med egne håndskrevne - Kalkulator: HP30S, Citizen SR-270X, Citizen SR-270X Annen informasjon: Sensur:		
Målform/språk: bokmål		
Antall sider: 3		
Antall sider vedlegg: 0		
Informasjon om trykking av eksamensoppgave		Kontrollert av:
Originalen er:		
1-sidig □ 2-sidig ⊠		
sort/hvit ⊠ farger □ skal ha flervalgskjema □	Dato	Sign

Oppgave 1

I et laboratorium brukes et løsningsmiddel som skal ha pH = 7.45. Det tas n prøver av et parti av løsningsmiddelet, og i hver prøve måles pH. Målingene, $X_1, X_2, ..., X_n$, er uavhengige og normalfordelte med forventningsverdi μ , som er pH i løsningsmiddelet, og standardavvik 0.05 (som skyldes måleusikkerhet).

En utfører en hypotesetest med nullhypotese $\mu = 7.45$ mot den alternative hypotesen $\mu > 7.45$. Hvis nullhypotesen forkastes med signifikansnivå 0.05, kasseres partiet.

- a) Foreslå hvordan en slik hypotesetest basert på gjennomsnittet \bar{X} av målingene kan gjennomføres. Hva blir konklusjonen hvis det tas n=20 prøver og gjennomsnittet av målingene er 7.47?
- **b)** Hva er sannsynligheten for at nullhypotesen blir forkastet hvis det tas n=20 prøver og pH i løsningsmiddelet er $\mu=7.47$?
- c) Anta at pH i løsningsmiddelet er $\mu = 7.47$. Hvor mange prøver, n, må tas for at sannsynligheten for at nullhypotesen forkastes skal være større enn 0.8?

Oppgave 2

La $X_1, X_2, ..., X_n$ være et tilfeldig utvalg fra en normalfordeling med (kjent) forventning $E(X_i) = 1$ og (ukjent) varians $Var(X_i) = \theta$. Man ønsker å benytte de observerte verdier til å teste

$$H_0: \theta = 1 \mod H_1: \theta \neq 1.$$

a) Bruk

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - 1)^2$$

som testobservator og bestem en beslutningsregel for når man skal forkaste H_0 . Benytt signifikansnivå α .

Utled styrkefunksjonen for denne testen.

b) Finn sannsynlighetskvote (generalised likelihood ratio (GLR)), λ , for H_0 og H_1 som angitt over.

Forklar hvorfor testen du utledet i punkt **a**) ikke er en sannsynlighetskvote test (generalised likelihood ratio test (GLRT)).

Oppgave 3

På et laboratorium undersøkes sammenhengen mellom reaksjonsfart Y (i mikromol pr. time) og konsentrasjonen x (i mikromol pr. dm³) av en katalysator. Det gjøres 10 målinger av reaksjonsfart Y_i og konsentrasjon x_i , $1 \le i \le 10$. Anta at parene av målinger er uavhengige, og at Y_i er normalfordelt med forventningsverdi $\alpha + \beta x_i$ og standardavvik σ , der α , β og σ er ukjente parametre.

a) Forklar kort hva minste kvadraters metode for estimering av α og β går ut på.

Ved minste kvadraters metode blir β estimert til 1.12. Variansen σ^2 blir estimert til 2.3, og

$$\sum_{i=1}^{10} (x_i - \bar{x})^2 = 4.1$$

(det vil si at 2.3/4.1 er et estimat av variansen til estimatoren til β)

b) Utfør en hypotesetest for å undersøke om det er noen sammenheng mellom x og Y. Bruk signifikansnivå 0.05.

Oppgave 4

I denne oppgaven skal vi se på en regresjonsmodell som er noe modifisert i forhold til den som er behandlet i læreboka. Anta at vi har variabelpar $(x_1, Y_1), ..., (x_n, Y_n)$ der $x_1, ..., x_n$ ikke betraktes som stokastiske, mens $Y_1, ..., Y_n$ antas å være uavhengige stokastiske normalfordelte variabler med

$$E(Y_i) = \alpha + \beta(x_i - \bar{x}) \text{ og } Var(Y_i) = \sigma_0^2.$$

Her er $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$, verdiene til de to parametrene α og β antas ukjente, mens variansen σ_0^2 antas å ha en kjent verdi.

a) Utled sannsynlighetsmaksimeringsestimatorene (SME) for α og β og vis spesielt at estimatoren for β kan skrives på formen

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) Y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

Vis at variansen til $\hat{\beta}$ kan skrives på formen

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

b) Hvilken sannsynlighetsfordeling har $\hat{\beta}$? Begrunn svaret. Utled et $(1 - \delta) \cdot 100\%$ konfidensintervall for β .

Oppgave 5

Følgende tabell er en delvis utfylt variansanalysetabell (ANOVA-tabell) hvor noe informasjon mangler (stjerner).

Source	df	SS	MS	F
Treatment	*	24.48	8.16	*
Error	40	*	5.1	
Total	*	*		

a) Finn tallene som mangler og skriv opp den fullstendige ANOVA-tabellen. Vis hvordan du beregner verdiene der det står \star i tabellen.

Utfør hypotesetesten for

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$$

Signifikansnivået er $\alpha = 0.05$.