In [1]: import pandas as pd
import numpy as np
import seaborn as sns

In [5]: data = pd.read_csv("Diabetes.csv")

In [8]: data.head()

Out[8]:

	Pregnancies	PG Concentration	Diastolic BP	Tri Fold Thick	Serum Ins	ВМІ	DP Function	Age	Diabetes
0	6	148.0	72.0	35.0	0.0	33.6	0.627	50.0	Sick
1	1	85.0	66.0	29.0	0.0	26.6	0.351	31.0	Healthy
2	8	183.0	64.0	0.0	0.0	23.3	0.672	32.0	Sick
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21.0	Healthy
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	Sick

In [7]: data.tail()

Out[7]:

	Pregnancies	PG Concentration	Diastolic BP	Tri Fold Thick	Serum Ins	ВМІ	DP Function	Age	Diabetes
777	Serum Ins: 2- Hour Serum Insulin (mu U/ml)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
778	BMI: Body Mass Index: (weight in kg/ (height	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
779	DP Function: Diabetes Pedigree Function	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
780	Age: Age (years)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
781	Diabetes: Whether or not the person has diabetes	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In [9]: data.shape

Out[9]: (782, 9)

In [10]: data.describe()

Out [10]:

	PG Concentration	Diastolic BP	Tri Fold Thick	Serum Ins	ВМІ	DP Function	Age
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885
std	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000
25%	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000
50%	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000
75%	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000
max	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000

```
In [11]: | data.nunique()
```

```
Out[11]: Pregnancies
                                31
          PG Concentration
                               136
          Diastolic BP
                                47
          Tri Fold Thick
                                51
          Serum Ins
                               186
          BMI
                               248
          DP Function
                               517
          Age
                                52
                                 2
          Diabetes
          dtype: int64
```

In [12]: |data['Tri Fold Thick'].unique()

```
Out[12]: array([35., 29., 0., 23., 32., 45., 19., 47., 38., 30., 41., 33., 26
                15., 36., 11., 31., 37., 42., 25., 18., 24., 39., 27., 21., 34
                10., 60., 13., 20., 22., 28., 54., 40., 51., 56., 14., 17., 50
                44., 12., 46., 16., 7., 52., 43., 48., 8., 49., 63., 99., na
         n])
```

```
In [13]: data['Age'].unique()
Out[13]: array([50., 31., 32., 21., 33., 30., 26., 29., 53., 54., 34., 57., 59
                51., 27., 41., 43., 22., 38., 60., 28., 45., 35., 46., 56., 37
         .,
                48., 40., 25., 24., 58., 42., 44., 39., 36., 23., 61., 69., 62
                55., 65., 47., 52., 66., 49., 63., 67., 72., 81., 64., 70., 68
                nanl)
In [14]: data['Diabetes'].unique()
Out[14]: array(['Sick', 'Healthy', nan], dtype=object)
In [15]: data.isnull().sum()
Out[15]: Pregnancies
                               0
         PG Concentration
                              14
         Diastolic BP
                              14
         Tri Fold Thick
                              14
         Serum Ins
                              14
         BMI
                              14
         DP Function
                              14
                              14
         Age
         Diabetes
                              14
         dtype: int64
In [16]: sns.heatmap(corelation, xticklables=corelation.columns, yticklables=co
                                                    Traceback (most recent call
         NameError
         last)
         <ipython-input-16-f5df89825d15> in <module>
         ----> 1 sns.heatmap(corelation, xticklables=corelation.columns,
         yticklables=corelation.columns)
         NameError: name 'corelation' is not defined
In [17]: | student = data.drop(['Tri Fold Thick'], axis=1)
In [18]: |corelation = student.corr()
```

In [19]:	data.isnull().sum(
Out[19]:	Pregnancies	0
	PG Concentration	14
	Diastolic BP	14
	Tri Fold Thick	14
	Serum Ins	14
	BMI	14
	DP Function	14
	Age	14
	Diabetes	14
	dtype: int64	

In [22]: sns.pairplot(student)

Out[22]: <seaborn.axisgrid.PairGrid at 0x7f9d78defa00>

In [23]: sns.relplot(x= 'Pregnancies', y= 'Age', hue= 'BMI', data= student)

Out[23]: <seaborn.axisgrid.FacetGrid at 0x7f9d7a227a30>

In [24]: sns.relplot(x= 'Age', y= 'Diabetes', hue= 'PG Concentration', data= st

Out[24]: <seaborn.axisgrid.FacetGrid at 0x7f9d7a0ddb50>

In [25]: sns.relplot(x= 'Age', y= 'BMI', hue= 'Serum Ins', data= student)

Out[25]: <seaborn.axisgrid.FacetGrid at 0x7f9d7a16a3d0>

In []: