COMPSCI762: Foundations of Machine Learning Data Preprocessing

Katerina Taskova and Jörg Simon Wicker The University of Auckland

Data Preprocessing

Data Preprocessing

Noisy Data Data Transformation and Data Discretization Imbalanced Data Noisy Data

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - Faulty data collection instruments
 - Data entry problems
 - Data transmission problems
 - Technology limitation
 - Inconsistency in naming convention
- Other data problems which require data cleaning
 - Duplicate records
 - Incomplete data
 - Inconsistent data

- So how could we handle noisy data?
- Binning

- First sort data and partition into (equal-frequency) bins
- Then one can smooth by different methods (bin means, bin medians, bin boundaries).

- So how could we handle noisy data?
- Binning
 - Sorted data: 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
 - Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
 - Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
 - Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

- So how could we handle noisy data?
- Regression

Smooth by fitting the data into regression functions

- So how could we handle noisy data?
- Clustering

Detect and remove outliers

Data Transformation and Data Discretization

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values (each old value can be identified with one of the new values).
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Normalization: Scaled to fall within a smaller, specified range
 - Min-max normalization
 - Z-score normalization
 - Normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

■ Min-max normalization to new_min_A, new_max_A

$$v' = rac{v - min_{\mathcal{A}}}{max_{\mathcal{A}} - min_{\mathcal{A}}}(new_max_{\mathcal{A}} - new_min_{\mathcal{A}}) + new_min_{\mathcal{A}}$$

e.g. v = 20 from the range [0,40] maps to v' = 0 in the range [-1,1]

Z-score normalization – mean μ , standard deviation σ

$$\mathbf{v}' = \frac{\mathbf{v} - \mu_{\mathsf{A}}}{\sigma_{\mathsf{A}}}$$

Normalization by decimal scaling

$$v' = \frac{v}{10^j}$$

Where j is the smallest integer such that Max(|v'|) < 1 e.g. Let 200 be the largest value of attribute A, then j = 3.

- There are three type of attributes
 - Nominal values from an unordered set, e.g. color
 - Ordinal values from an ordered set, e.g. rank
 - Numeric real numbers, e.g. integers or reals
- Discretization divides a range of continuous attributes into intervals
 - Interval labels can then be used to replace actual data values
 - Discretization can be performed recursively on an attribute
 - Reduce data size by discretization
 - Prepare for further analysis, e.g. classification
 - The resulting mined patterns are typically easier to understand
 - Mining on different level of data abstraction (concept hierarchies)

- Top-down vs bottom-up (w.r.t which direction it proceeds)
- Supervised vs unsupervised (w.r.t class information usage)
- Example methods
 - Binning (top-down split, unsupervised)
 - Histogram analysis (top-down split, unsupervised)
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation analysis (supervised, bottom-up merge)

Binnning

- How could you discretize the data into bins?
- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - If A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N
 - The most straightforward, but?
 - Outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

- Chi-merge: χ^2 -based discretization
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e. low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

■ Given two nominal variables C and B with values c_1, \ldots, c_k and b_1, \ldots, b_r the correlation can be calculated using the χ^2 test:

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^r \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- With o_{ij} being the actual frequency of the event (c_i, b_j)
- And e_{ij} the expected frequency (n is the number of instances)

$$e_{ij} = \frac{count(C = c_i) \times count(B = b_j)}{n}$$

■ The larger χ^2 , the less likely the two variables are independent

Discretization by Correlation Analysis

- Chi-merge: χ^2 -based discretization
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e. low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

Contingency table A:

	Class 1	Class 2	Sum
Interval 1	1	2	3
Interval 2	1	2	3
Sum	2	4	6

The class variable is independent to the two intervals
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(A_{ij} - e_{ij}\right)^2}{e_{ij}} = 0$$
The class variable is independent to the two intervals
$$\Rightarrow \text{ the class distribution is similar in the two intervals}$$

- Chi-merge: χ^2 -based discretization
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e. low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

Imbalanced Data

Imbalanced Data

- In this context, imbalanced data refers to an imbalanced class distribution
- For example if there are far more 1s than 0s in the class
- What are problems arising from this?
 - Problems with evaluation
 - Accuracy = $\frac{TP+TN}{P+N}$
 - What is a good accuracy?
 - Alternatively, use Precision-Recall, ROC curves
 - Classifiers try to reduce the overall error so they could over-predict the majority class.
 - How do we address this?

Sampling the data

- Under- and oversampling with replacement can significantly improve the prediction of the minority class
- Randomly undersampling the majority class
 - Randomly remove instances from the majority class
 - Balances the data set
 - Discarded observations could have important information
 - Can introduce bias
- Randomly oversampling the minority class
 - Randomly add more instances from minority class
 - No information loss
 - Risk of overfitting
- Alternatives to random sampling?

- Cluster positive and negative instances independently
- Then apply over- or undersampling techniques to each single cluster
- What's the advantage?
- Does that solve overfitting?

SMOTE - Synthetic Minority Oversampling Technique (Chawla et al. 2002)

- Generally, create new artificial instances
- Process
 - Find pairs of instances in the minority class that are closest to each other
 - Nearest neighbours within the class
 - Create a new instance between these instances, assign it to the minority class

Conclusion

- Preprocessing is an important part in machine learning and data analysis
- Missing values can be caused by various reasons depending on what the reasons are, they must be addressed differently
- Various imputation approaches exist, they use the information of other instances and values to impute the missing values
- Noisy data can be addressed for example by binning, clustering, or regression
- Sampling can be used to overcome class imbalance problems

Literature

■ Material in Chapter 3 in Han's Data Mining

Thank you for your attention!

https://ml.acukland.ac.nz