Removing Redundancies From Data: Principle Component Analysis

COMS21202, Part III

Objectives

- OUnderstand potential harm of high dimensionality of dataset
- OUse Principle Component Analysis (PCA) to remove "redundant" dimensions from data.

High Dimensionality, Good? Bad?

- $\bigcirc X = \{x_i\}_{i=1}^n, x \in \mathbb{R}^d.$
- Ols a large d always a good thing?
 - \circ We have more info as d grows!
 - $\bigcirc \otimes$ LS does not work when d > n
 - $\bigcirc \otimes$ Large d causes overfitting
 - OMore ⊗ ?

Curse of Dimensionality (CoD)

- OCoD is a generic term referring to the fact that many machine learning algorithms scale very poorly with *d*, in terms of performance.
 - Reason: Many geometry concepts can have very different meanings in lower and higher dimensional space.
 - One of those is the concept of "locality".

The Vanishing Neighborhood

volume of x_0

The Vanishing Neighborhood

- OThe neighborhood cube quickly vanishes as d increases.
- $igcup_{igcap}$ As a result, your k-nearest neighbors are **no longer** in the neighborhood V_0 .
- OThese neighbors are no longer good at predicting the label of x_0 .

Reduce the Dimensionality using Feature Transform

- We want to find a feature transform $f(x) \in \mathbb{R}^m$, where $m \ll d$.
 - $\bigcirc f$ transforms original input x to a subspace as $R^m \subset R^d$.
 - OWe assume our dataset is **centered**:

$$\mathbf{O}_{n}^{1} \sum_{i=1}^{n} \mathbf{x}_{i} = \mathbf{0}$$

- \bigcirc If dataset X' is not centered:
- OCentering: $\forall_i x_i = x_i' \frac{1}{n} \sum_{i=1}^n x_i'$
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Reduce the Dimensionality using Feature Transform

- OWhat is the optimal strategy of selecting f(x)?
- OWant to reduce dimension using f.
 - Owhile preserving as much info as possible!
- OLet's look at this problem from data compression perspective!
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Encoder and Decoder

Codec

Linear Codec

- OSuppose $f(x) = Bx^T$, $B \in R^{m \times d}$.
- OSuppose $f'(z) = B'z^{T}$, $B' \in \mathbb{R}^{d \times m}$.
- OWe can learn a codec by

$$\operatorname{Omin}_{B,B'} \sum_{i=1}^{n} \left| \left| \boldsymbol{x}_{i}^{\mathsf{T}} - B'B\boldsymbol{x}_{i}^{\mathsf{T}} \right| \right|^{2}$$

- OHowever, there are so many possible candidates B and B'!
- Solving above problem is hard.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Linear Codec

- OWe need to put **constraints** on the B and B' to make our problem easier.
- One possible constraint is:

$$\mathbf{O}B' = B^{\mathsf{T}}$$

$$\bigcirc BB' = BB^{\top} = I$$

- OSuch a codec actually defines an orthogonal projection of X.
 - \bigcirc Show B'B is an orth. projection matrix
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Orthogonal Projection

 $z_i = f(x_i) = Bx_i^{\mathsf{T}}$ is called an **embedding** of x_i , B is called embedding matrix.

A Pizza Topping Analogy of Embedding

Minimizing Projection Error

$$\sum_{B,BB^{\top}=I}^{n} \sum_{i=1}^{n} \left| \left| \boldsymbol{x}_{i}^{\top} - \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{x}_{i}^{\top} \right| \right|^{2}$$

- OWe minimize square error between original data points and its projection.
- OThe above problem is equivalent to:
 - $\bigcap_{B,BB^{\top}=I} \operatorname{tr}(BX^{\top}XB^{\top})$
 - OLive demonstration

Minimizing Projection Error

- $\bigcap_{B,BB^{\top}=I} \operatorname{tr}(BX^{\top}XB^{\top})$
- ORemarkably, this seemingly complex optimization has an analytical solution:
- OLet $[(\lambda_1, v_1), ..., (\lambda_m, v_m)]$ be sorted eigenvalue and eigenvec of X^TX .
 - $\bigcirc \lambda_1 \geq \lambda_2 \dots \geq \lambda_m$
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Principle Component Analysis

- OAs X is a centered dataset,
 - $\bigcirc X^T X = n \cdot \text{cov}[x]$ (PC: show it!)
- OComputing $\widehat{\mathbf{B}}$ via computing sorted eigenvectors of cov[x] is called Principle Component Analysis (PCA).
- O Finally, embedding $\hat{f}(x_i) = \hat{B}x_i^T \in R^m$ is called **PCA embedding** of x_i .
 - $\bigcirc m$ dimensional "compression" we want!
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Refresh: Eigenvectors and Eigenvalues

OGiven a square $n \times n$ matrix A, If there exists non-zero vector v such that

$$\bigcirc Av = \lambda v, v \in \mathbb{R}^n$$

OThen λ is an eigenvalue and v is an eigenvector of A.

Example, One Cluster

 v_1 always points at the direction where your dataset has the largest variance! PC: Intuitively explain why.

Example, Embedding $v_1^T x^T$

Example, Two Clusters

However, PCA does **not necessarily** preserve clustering information.

Example, Embedding $v_1^{\mathsf{T}} x^{\mathsf{T}}$

Cluster information **lost** after embedding! Will address this issue in the next lecture.

Conclusion

- OCurse of Dimensionality
 - Od increases, performance may decrease.
- OPrinciple Component Analysis
 - OFinding an embedding matrix \hat{B} by computing sorted eigenvalue/vectors of cov[x].
 - OPCA Embedding: $\hat{f}(x_i) = \hat{B}x^T$.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.