

Structural balance in social network of

Presented by Maria Lim (SID: 500386873)

Introduction

 Balance analysis on the relationship between characters in "Harry Potter" series.

Concepts

Structural balance theory - Heider (1946)

Balance is a state of equilibrium, and that individuals in networks strive to move towards and maintaining that equilibrium or balance.

 Balance theory in signed network - Cartwright and Harary (1956)

A triad within a network is balanced if the product of the signs of its edges is positive.

Concepts

Triad: group of three nodes

**Leinhardt not Leinchard

Triadic census and their names, by Holland and Leinhardt (1978)

Concepts

Semicycles in a triad

Motivation

 Considering the signs and direction of ties, how can I measure the structural balance of a network?

Problem Statement

For the signed & directed social network of Harry Potter, is the structure balanced? What is the balance score of the network?

Examples of existing measure

- Fraction of balanced triangles (Zheng et al, 2015)
- Walk-based: Eigenvalues (Estrada, 2019)
- Frustration index (Aref & Mark, 2018)

Methodology

 Algorithm proposed by Lindh et al (2020) - Expansion of balance theory using transitivity and direction of edges

Transitive and balanced triads, with their semicycles

The algorithm

```
for each type of triad, i = 1,2,3,4:
        for each triad set, Tj, j = 1,...,Nj:
                for each semicycle:
                        Sign of semicycle = product of sign of all edges
                       S<sub>i</sub><sup>+</sup>= # of positive semicycles
                         S<sub>i</sub>= # of all semicycles
                Balance ratio of triad set, B_{Ti} = S_i^+/S_i^-
              N_T= Total # of triad sets with B_{ti} not equal to 0
        Let
                T(i) = Total # of triad sets
                Balance ratio of triad class, B_T^{(i)} = N_T / T^{(i)}
Average balance ratio of the graph, B_{avg(G)} = sum of B_{T}^{(i)} / 4
```


Results & Discussions

Descriptive network measures:

Descriptive network measures	Harry Potter network
# of nodes	65
# of edges	456
Average degree	14.0308
Transitivity	0.3825
Average clustering	0.4151
Density	0.1096
Average shortest path length	2.375

**There are a lot of CLOSED triads found

Results & Discussions

	Count	Completely Balanced	Partially Balanced		
030T	211	190	0		90.050
120D	131	•		16	87.790
120U	167	158	'		95.810
300	84	82	1	1	98.810
Total	593 593 	545 	3		•

Results & Discussions

Examples of imbalanced semicycles

Conclusion

Harry Potter characters network is 93.11% balanced.

Limitation:

Not comparable - only one result

Next step/future work:

Apply - generalisation by BFS approach

There are 6 books in the series - dynamic network

References

Dataset:

https://data.world/harishkgarg/harry-potter-universe

- Papers/ studies:
- Dinh, Ly & Rezapour, Rezvaneh Shadi & Jiang, Lan & Diesner, Jana. (2020). Structural balance in signed digraphs: considering transitivity to measure balance in graphs constructed by using different link signing methods.
- ☐ Zheng, X., Zeng, D., and Wang, FY. 2015 Social balance in signed networks. Inf Syst Front 17, 1077-1095
- ☐ Aref, Samin, and Mark C. Wilson. 2018. "Measuring Partial Balance in Signed Networks." Journal of Complex Networks 6 (4): 566-95
- ☐ Estrada, Ernesto. 2019. "Rethinking Structural Balance in Signed Social Networks." Discrete Applied Mathematics
- PPT templates:

https://prezentr.com/templates/harry-potter-powerpoint-template/
https://slidesmania.com/a-harry-potter-inspired-template-for-matt-meyer/

