BIOS 6612 Lecture 14 Repeated Measures ANOVA

Additional Reading:

KKMN Section 26.4.5

Review (Lecture 13)/ Current (Lecture 14)/ Preview (Lecture 15)

- Lecture 13: Linear Mixed Models
 - 2 time points per persons
 - Paired t-test
 - Linear regression
 - Random intercept model
 - Notation
 - Linear mixed models with a random intercept
 - Linear mixed models specifying the covariance structure
 - Lecture 14: Repeated Measures ANOVA
 - ANOVA for repeated measurements
 - Lecture 15: Modelling the Random Effects

$$Y = X\beta + Zb + \varepsilon$$
 and $V = Var(Y) = ZGZ' + R$

- o Specify the random effect b
- o Random intercept, random slope

RMANOVA

- Repeated measures ANOVA is the equivalent of the one-way ANOVA, but for related, not independent groups
 - Test to detect any overall differences between related means
- ANOVA partitions total variability (SS_T) into between-groups variability (SS_b) and within-groups variability (SS_w)

- o In this design, within-group variability (SSw) is defined as the error variability (SSerror)
- \circ F statistic= MS_{model}/ MS_{error} = MS_b/MS_w
- RMANOVA can further partition this error term, reducing its size

https://statistics.laerd.com/statistical-guides/repeated-measures-anova-statistical-guide.php

REVIEW: One-Way ANOVA

Respiratory Quotient (RQ), which measures the ratio between O₂ consumed and CO₂ produced, was measured for 15 participants after a week of consuming one of three diets of varying diet compositions.

	Standard	High Fat	Low Fat
	Diet	Diet	Diet
	(n = 5)	(n = 5)	(n=5)
	0.80	0.77	0.83
	0.78	0.77	0.82
	0.82	0.80	0.87
	0.76	0.73	0.79
	0.83	0.83	0.86
Mean	0.798	0.780	0.834
Variance	0.00082	0.0014	0.00103

$$\overline{Y} = 0.804$$

SD(Y) = 0.03832

$$SS_{Total} = 14 \times (0.03832)^2 = 0.02056$$

$$SS_{Diet} = 5 \times [(0.798 - 0.804)^2 + (0.780 - 0.804)^2 + (0.834 - 0.804)^2] = 0.00756$$

$$SS_{Error} = SS_{Total} - SS_{Diet} = 0.02056 - 0.00756 = 0.013$$

$$MS_{Error} = [(0.00082) + (0.0014) + (0.00103)] / 3 = 0.00108333 = s_p^2$$

3.489

diets-1=3-1=2

 $df_{error} = df_{total} - df_{model} = 14 - 2 = 12$

subjects-1=15-1=14

 $F = MS_{model}/MS_{Error}$

Source	Sum of Squares	d.f.	Mean Square
Model	0.00756	*2 /	0.00378
Error	0.013	12₩	0.00108333
Total	0.02056	14	

F p-value

0.0639

F

When n are equal:

Estimate of $MS_{Error} = \overline{VAR}$ =(0.001030+.00082+0.0014)/3=0.00108333

For unequal n, MS_{Error} is a weighted average of the variances, with weights (n_k -1).

H₀: $\mu_{\text{standard}} = \mu_{\text{high}} = \mu_{\text{low}}$ RQ does not differ significantly across the three diets.

 $MS_{Error} = SS_{Error} / df_{Error}$

	Low Fat $(n = 5)$	Standard Fat $(n = 5)$	High Fat (n = 5)
Mean	0.834	0.798	0.780
Variance	0.00103	0.00082	0.0014

One-Way ANOVA Results

The GLM Procedure

Class Level Information

Class Levels Values

diet 3 123

Number of Observations Read 15 **Number of Observations Used** 15

The GLM Procedure

Dependent Variable: rq

Error

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	2	0.00756000	0.00378000	3.49	0.0639

0.00108333

12 14 **Corrected Total** 0.02056000

> R-Square Coeff Var **Root MSE** rq Mean 0.367704 4.093785 0.032914 0.804000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
diet	2	0.00756000	0.00378000	3.49	0.0639
Source	DF	Type III SS	Mean Square	F Value	Pr > F
<mark>diet </mark>	2	0.00756000	0.00378000	3.49	0.0639

0.01300000

PROC GLM DATA=rq2; CLASS diet; MODEL rq = diet; RUN;

> H_0 : $\mu_{standard} = \mu_{high} = \mu_{low}$ RQ does not differ significantly between the three diets.

One-way ANOVA: Results from R

```
respquot <- data.frame(subject=1:5,</pre>
                       standard=c(.8,.78,.82,.76,.83),
                       high.fat=c(.77,.77,.80,.73,.83),
                       low.fat=c(.83,.82,.87,.79,.86))
# put the data in "long" format
respquot.long <- reshape(respquot, direction='long',</pre>
                         varying=2:4,
                         v.names='rq',
                         idvar='subject',
                         times=colnames(respquot)[-1],
                         timevar='diet')
# simple one-way ANOVA, ignoring repeated measures
mod1 <- lm(rq ~ diet,data=respquot.long)</pre>
anova(mod1)
## Analysis of Variance Table
##
## Response: rq
             Df Sum Sq Mean Sq F value Pr(>F)
## diet 2 0.00756 0.0037800 3.4892 0.0639 .
## Residuals 12 0.01300 0.0010833
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Repeated Measures Data

Repeated Measures Data: The same outcome/response is measured on the same individual under multiple conditions (or at multiple times) or the same outcome/response is measured for clusters or

groups of similar individuals.

Example: Respiratory Quotient (RQ), which measures the ratio between O₂ consumed and CO₂ produced, was measured for 5 subjects after a week of consuming one of three diets of varying diet compositions (with each diet separated by a week "washout" period).

Subject	Standard	High Fat	Low Fat	Subject
	Diet	Diet	Diet	Mean
1	0.80	0.77	0.83	0.80
2	0.78	0.77	0.82	0.79
3	0.82	0.80	0.87	0.83
4	0.76	0.73	0.79	0.76
5	0.83	0.83	0.86	0.84
Diet Mean	0.798	0.780	0.834	0.804
Variance	0.00082	0.0014	0.00103	

Design: Rather than recruit 15 individuals

(5 subjects for each diet), we could recruit 5 individuals and have each individual receive each of the three diets.

Benefits:

- Fewer participants needed
- Between-Subject variability is removed from error
 - More powerful

Drawbacks:

- Participants may be more likely to drop from the study
 - Missing values result in deletion of the subject when using traditional RM ANOVA approaches.
- Carry-over effects or order-effects possible.

Assumptions for Repeated Measures ANOVA

- **Normality**: Each population is normally distributed, and thus the errors follow a normal distribution.
- Homogeneity of variances: The variances of the k populations/treatments are the same.
- Independence of experimental units: Experimental units (e.g., individuals or clusters) are independent
 - Account for the correlation between measurements within individuals or clusters
- Homogeneity of covariances: Equal correlation between conditions

The join assumption of homogeneity of variances and of covariances is known as *compound* symmetry or sphericity.

- Mauchly's test is one method for testing the assumption of sphericity.
- There are two common measures of sphericity:
 - o Greehhouse-Geisser (conservative)
 - Huynh-Feldt (liberal)

Remedy: If the assumption of sphericity is violated:

- 1) The *F* statistic df can be corrected by multiplying by one of the sphericity estimates
- 2) Multivariate approach can be used which does not require this assumption

One-Way Repeated Measures ANOVA in Matrix Form

DATA RQ2;

For i=1,...,5, $E[Y_i] = \beta_s \operatorname{standard}_i + \beta_{HF} \operatorname{highfat}_i + \beta_{LF} \operatorname{lowfat}_i$

And $E[Y] = X\beta$ where

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{21} \\ Y_{22} \\ Y_{33} \\ Y_{23} \\ Y_{33} \\ Y_{41} \\ Y_{42} \\ Y_{42} \\ Y_{53} \\ Y_{53} \\ \end{bmatrix} \begin{bmatrix} 0.80 \\ 0.77 \\ 0.083 \\ 100 \\ 0.01 \\ 100 \\ 0.01 \\ 100 \\ 0.01 \\ 100 \\ 0.01 \\ 100 \\ 0.01 \\ 0.01 \\ 100 \\ 0.01 \\$$

X is 15x3 matrix of full rank

Sphericity Assumption Implies: Var(Y) is a 15x15 matrix such that

One-Way Repeated Measures ANOVA

	Standard	High Fat	Low Fat	Mean	
	Diet	Diet	Diet		
Subject					
1	0.80	0.77	0.83	0.80	Tre
2	0.78	0.77	0.82	0.79	We
3	0.82	0.80	0.87	0.83	(wi
4	0.76	0.73	0.79	0.76	
5	0.83	0.83	0.86	0.84	
Mean	0.798	0.780	0.834	0.804	
Variance	0.00082	0.0014	0.00103		
44 (0.020	22)2	0.7.6		SD(Y) = 0	0.03832

Treat subject as a random factor. We now have a two-way ANOVA (with factors subject and diet).

 $SS_{Total} = \frac{14}{(0.03832)^2} = 0.02056$

$$SS_{Diet} = 5 \times [(0.798 - 0.804)^2 + (0.780 - 0.804)^2 + (0.834 - 0.804)^2] = 0.00756$$

$$SS_{Subject} = 3 \times [(0.80 - 0.804)^2 + (0.79 - 0.804)^2 + (0.83 - 0.804)^2 + (0.76 - 0.804)^2 + (0.84 - 0.804)^2] = 0.01236$$

$$SS_{Error} = (.80 - .80 - .798 + .804)^{2} + (.77 - .80 - .780 + .804)^{2} + (.83 - .80 - .834 + .804)^{2} + \dots + (.86 - .84 - .834 + .804)^{2} = 0.00064$$

$$SS_{Error} = SS_{Total}$$
 - SS_{Diet} - $SS_{Subject} = 0.02056 - 0.00756 - 0.01236 = 0.00064$

Variability between subjects is removed from the Error!

SS_{Error} is also the
Subject ×Diet interaction.
We must assume there is
no interaction and this
quantity is all error.

 $SS_{Error} = SS_{Subject \times Diet}$

Repeated Measures ANOVA

Source	Sum of Squares	d.f.	Mean Square	F	p- value	
Between Subjects	0.01236	4	0.00309	38.63	<.0001	
Within Subjects	[0.0082]	[10]				
Diet	0.00756	2	0.00378	47.25	<.0001	
Error	0.00064	8	0.00008		1	
Total 0.02056 14				RQ dif signific across the thr	antly	
$MS_{Error} = \overline{VAR} - \overline{COV}$						

MSE has fewer d.f. for repeated measures design (8) compared to independent subjects design (12)

SS(Error) for independent subjects design is equal to SS(Between) + SS(Error) in RM design (0.013=0.01236+0.00064)

Repeated Measures ANOVA with R: Two-factor ANOVA

- Can treat subject as the second factor
- Two-way ANOVA
 - o Factor subject varies between subjects
 - o Factor diet varies within subjects (comparisons are made within independent units)
 - No interaction term included

Repeated Measures ANOVA with PROC GLM: Multivariate Layout

Multivariate Layout

id	RQ_standard	RQ_highfat	RQ_lowfat
1	0.80	0.77	0.83
2	0.78	0.77	0.82
3	0.82	0.80	0.87
4	0.76	0.73	0.79
5	0.83	0.83	0.86

```
DATA RQ;
INPUT id RQ_standard RQ_hifat RQ_lowfat;
DATALINES;
1 0.80 0.77 0.83
2 0.78 0.77 0.82
3 0.82 0.80 0.87
4 0.76 0.73 0.79
5 0.83 0.83 0.86
;

PROC GLM DATA=rq;
    MODEL RQ_standard RQ_hifat RQ_lowfat = /NOUNI; %No univariate tests and output REPEATED diet 3;
RUN;
```

Repeated Measures ANOVA with PROC GLM: Multivariate Layout

The GLM Procedure

Number of Observations Read 5 Number of Observations Used 5 MODEL RQ_standard RQ_hifat RQ_lowfat =;
 REPEATED diet 3;
RUN;

PROC GLM DATA=rq;

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable standard hifat lowfat Level of diet 1 2 3

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 4	standard	hifat	lowfat	S
standard	1.000000	0.956650	0.962981	l a
		0.0108	0.0085	С
hifat	0.956650 0.0108	1.000000	0.916031 0.0288	e
lowfat	0 962981	0 916031	1 000000	

0.0288

Sphericity: assumes these correlations are equal.

Sphericity Tests

0.0085

Variables DF Criterion Chi-Square Pr > ChiSq Transformed Variates 2 0.5619147 1.7292158 0.4212 Orthogonal Components 2 0.703125 1.0566618 0.5896

Fail to reject.

GLM Repeated Measures Results

For G-G correction: df(diet): $2 \times 0.7711 = 1.542$ df(error): $8 \times 0.7711 = 6.1688$

For H-F Correction: df(diet): $2 \times 1 = 2$ df(error): $8 \times 1 = 8$ We do not increase or d.f. using these corrections. If the correction value is greater than 1 (e.g., 1.1618 for H-F), we use 1 and do not adjust our d.f.

NOTE that the other variance sources (e.g., the Between Subject SS) are not included by SAS in the multivariate layout.

Repeated Measures ANOVA with R 'car' package: Multivariate Layout

```
library(car)
mod3 <- lm(as.matrix(respquot[,-1]) ~ 1) # need data in "wide" form</pre>
diet <- factor(colnames(respquot)[-1])</pre>
results <- Anova(mod3, idata=data.frame(diet), idesign=~diet, type="III")
summary(results, multivariate=FALSE)
## Warning in summary.Anova.mlm(results, multivariate = FALSE): HF eps > 1
## treated as 1
##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
##
                   SS num Df Error SS den Df
                                                        Pr(>F)
                                          4 3137.94 6.081e-07 ***
## (Intercept) 9.6962
                           1 0.01236
                          2 0.00064
                                          8 47.25 3.711e-05 ***
## diet
               0.0076
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
##
        Test statistic p-value
## diet
               0.70313 0.58959
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
##
         GG eps Pr(>F[GG])
## diet 0.77108 0.0002439 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
##
##
          HF eps
                  Pr(>F[HF])
## diet 1.161765 3.710774e-05
```

Repeated Measures ANOVA with PROC GLM: Univariate Layout

Univariate Layout

```
DATA RQ2;
INPUT id diet rq;
DATALINES;
1 1 .80
1 2 .77
1 3 .83
2 1 .78
2 2 .77
2 3 .82
3 1 .82
3 2 .80
3 3 .87
4 1 .76
4 2 .73
4 3 .79
5 1 .83
5 2 .83
5 3 .86
PROC GLM DATA=rq2;
  CLASS id diet;
 MODEL rq = diet id;
  RANDOM id /TEST;
RUN;
```

Univariate Layout				
id	Diet	RQ		
1	1	0.80		
1	2	0.77		
1	3	0.83		
2	1	0.78		
2	2	0.77		
2	3	0.82		
3	1	0.82		
3	2	0.80		
3	3	0.87		
4	1	0.76		
4	2	0.73		
4	3	0.79		
5	1	0.83		
5	2	0.83		
5	3	0.86		

Repeated Measures ANOVA: Univariate Layout

The GLM Procedure

Source Type III Expected Mean Square diet Var(Error) + Q(diet) id Var(Error) + 3 Var(id)

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: rq

Source	DF	Type III SS	Mean Square	F Value	Pr > F
diet	2	0.007560	0.003780	47.25	<.0001
id	4	0.012360	0.003090	38.63	<.0001
Error: MS(Error)	8	0.000640	0.00080000		

RQ differs significantly across the three diets.

Review Repeated Measures Data

Repeated Measures Data:

- 1) The same outcome/response is measured on the same individual under multiple conditions or at multiple times
- 2) The same outcome/response is measured for clusters or groups of similar individuals
 - Two sample t-test is to a paired t-test as an ANOVA is to a Repeated Measures ANOVA

Assumptions:

- 1) Normality: Each population is normally distributed (errors follow a normal distribution)
- 2) Sphericity: homogeneity of variances and of covariances
- 3) Independence of experimental units: Individuals or clusters are independent
 - If sphericity is violated, then adjust the degrees of freedom or use **Mixed Models** approach

Note: two-sample *t* tests, paired *t* tests, ANOVA, Repeated Measures ANOVA do not easily account for confounders (Stratify but then reduce sample size)