Instructions:

- 1. Mark the answer sheet with a # 2 pencil.
- 2. <u>Write out</u> and <u>bubble in your UVa student ID</u> (9-digit number, from your UVa Photo ID) in the spaces provided on the right of the answer sheet. <u>Print your name</u> in the appropriate blank at the top. <u>Write your computing ID next to your name</u>.
- 3. Write out and sign the honor pledge in the box on the back of the answer sheet.
- 4. You have until **12:50 P.M.** to complete the quiz and turn in your answer sheet.
- 5. Useful information as well as a periodic table are provided below and on the reverse side of this front sheet. You may remove this front sheet for convenience.
- 6. Turn in only the answer sheet. You may keep the quiz booklet.
- 7. There are 15 (fifteen) questions; each counts 5 (five) points, for 75 possible points. Wrong answers count for 0 points.
- 8. If for any question, no answer listed is correct, please mark answer E.
- 9. The answers to this quiz will be sent to you by e-mail, but only after all the quizzes are graded.
- 10. Your grade will be posted on the Gradebook feature of the Collab site for your class. Also posted will be a spreadsheet that will list your scan sheet responses (but no grade). Should you suspect a scanning error, email me and I will check your scan sheet.

1A	_																8A
1																	2
H																	He
1.008	2A	_										3A	4A	5A	6 A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B		8B		1B	2B	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(210)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac†	Rf	Db	Sg	Bh	Hs	Mt									
223.0	226.0	227.0	(261)	(262)	(266)	(264)	(265)	(268)	(269)	(272)	(277)		(285)		(289)		(293)
																	_
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
* Lanthanides		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
† Actinides		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
			232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Conversion Factors

Length		Mass		Volume			
1Å	$= 10^{-10} \text{ m}$	1 kg	= 2.205 lb	1 L	$= 1 \text{ dm}^3$		
1 in	= 2.54 cm *	1 amu	$= 1.6605 \times 10^{-24} \text{ g}$		= 0.266 gal		
Pressur	re	Energy		Force			
1 Pa	$= 1 \text{ N} \cdot \text{m}^{-2}$ $= 1 \text{ kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$	1 J	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ $= 1 \text{ V} \cdot \text{C}$	1 N	$= 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$		
1 atm	= 101,325 Pa	Electric	c Charge	Temp			
	= 760 mm Hg * = 760 torr *	1 C	= 1 A·s	0 K	= -273.15° C *		
	$= 14.70 \text{ lb} \cdot \text{in}^{-2}$	Electric	Potential				
		1 V	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-1}$ $= 1 \text{ J} \cdot \text{C}^{-1}$				

^{*} These conversion factors and the unitary conversion factors are *exact*; the others have been rounded to the values given.

Constants

Avogadro	N	$= 6.022 \times 10^{23} \text{ mol}^{-1}$	Electron Charge	e	$= 1.602 \times 10^{-19} \mathrm{C}$
Plank	h	$= 6.626 \times 10^{-34} \mathrm{J \cdot s}$	Electron mass	$m_{\rm e}$	$=9.109\times10^{-28} \text{ g}$
Boltzmann	k	= $1.381 \times 10^{-23} \mathrm{J} \cdot \mathrm{K}^{-1}$	Proton mass	$m_{ m p}$	$= 1.673 \times 10^{-24} \text{ g}$
Faraday	F	$= 96485 \text{ C} \cdot \text{mol}^{-1}$	Neutron mass	$m_{\rm n}$	$= 1.675 \times 10^{-24} \text{ g}$
Gas	R	= $0.08206 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ = $8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ = $1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$	$\Delta H_{\text{fusion}} (\text{H}_2\text{O})$		$= 6.01 \text{ kJ} \cdot \text{mol}^{-1}$
			$\Delta H_{\text{vap}} \left(\text{H}_2 \text{O} \right)$		$= 40.67 \text{ kJ} \cdot \text{mol}^{-1}$
			Specific heat (ice)		$=2.09~J\cdot g^{-1}\cdot K^{-1}$
Speed of	c	$= 2.998 \times 10^8 \mathrm{m}\cdot\mathrm{s}^{-1}$	Specific heat (water)		$= 4.18 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$
Light			Specific heat (water vap	or)	$= 1.84 \; \mathbf{J} \cdot \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}$

In answering questions involving Lewis Dot Structures – use the structure(s) with the preferred values of the formal charges.

1. Place the following in order of *increasing magnitude* of lattice energy.

- a. RbI < KF < MgS
- b. RbI < MgS < KF
- c. MgS < RbI < KF
- $d. \hspace{0.5cm} KF \hspace{0.5cm} < \hspace{0.5cm} RbI \hspace{0.5cm} < \hspace{0.5cm} MgS$
- e. MgS < KF < MgI
- 2. Which of the following ions does *not* have the same number of electrons as argon?
 - $a. \quad S^{2-}$
 - $b. \quad P^{3-}$
 - c. Ca^{2+}
 - d. Br
 - e. Sc^{3+}
- 3.. Which of the following molecules will have resonance structures? (Use only structures with preferred values of formal charges.)
 - a. N₂
 - b. IF₂
 - c. NO₂
 - d. None of these.
 - e. Two of these.

- 4. Draw the Lewis structure for the nitrate ion. The structure of nitrate ion as it exists *in nature* has:
 - a. One double and two single NO bonds, and thus one short and two long NO bonds.
 - b. Two double and one single NO bonds, and thus one long and two short NO bonds.
 - c. Three equivalent NO single bonds.
 - d. Three equivalent NO bonds, with a bond length somewhat shorter than that for a NO single bond
 - e. Three equivalent NO bonds, with a bond length somewhat longer than that for a NO single bond.
- 5. Using Lewis structures and formal charge, predict which of the following ions is the most stable.

OCN ONC NOC

- a. OCN
- b. ONC
- c. NOC-
- d. None of these molecules is stable.
- e. All of these are equally stable.
- 6. Complete the Lewis structure for the molecule:

$$\begin{array}{c|c} CH_3 & O \\ & \mid & \mid \\ CH_2-C-C-C-N \end{array}$$

The molecule has ___ single bonds, ___ double bonds, ___ triple bonds, and ___ non-bonding electron pairs.

- a. 9, 1, 1, 2
- b. 8, 2, 1, 3
- c. 8, 1, 2, 4
- d. 9, 2, 1, 2
- e. None of the above.

- 7. As indicated by its Lewis structure, which of the following would probably not exist as a stable molecule?
 - a. CH₃OH
 - b. CH₂O
 - c. CH₃O
 - d. C_2H_2
 - e. All are stable, or more than one of these is not stable.
- 8. The best Lewis Dot structure for the compound POCl₃ (where the O and Cl's are attached to the central P) is:

e. None of these

- 9. The azide ion, N_3 , is isoelectronic with (has the same electronic structure as) which of the following?
 - CO_2 a.
 - b. I_3^-
 - $c. O_3$
 - d. None of these.
 - e. More than one of these.
- 10. Arrange the following in order of **increasing** CO bond length.

$$CO_2$$
 CO_3^{2-} CO

- $CO_2 < CO_3^{2-} < CO$
- $CO < CO_3^{2-} < CO_2$ $CO < CO_2 < CO_3^{2-}$ b.
- c.
- d. $CO_3^{2-} < CO_2 < CO$
- CO_3^{2-} < CO < CO_2 e.
- 11. The correct Lewis dot structure for the I₃⁻ anion is
 - a. $\ddot{\mathbf{I}} = \ddot{\mathbf{I}} = \ddot{\mathbf{I}}$:
 - b. $\ddot{\ddot{\mathbf{I}}} = \ddot{\ddot{\mathbf{I}}} = \ddot{\ddot{\mathbf{I}}}$:
 - c. $\ddot{\ddot{\mathbf{I}}} \ddot{\ddot{\mathbf{I}}} \ddot{\ddot{\mathbf{I}}}$:
 - $: \ddot{\mathbf{I}} = \ddot{\mathbf{I}} \ddot{\mathbf{I}}: \ \ \Rightarrow \ : \ddot{\mathbf{I}} \ddot{\mathbf{I}} = \ddot{\mathbf{I}}:$
 - None of these, or more than one of these.

- 12. In which of the following compounds is the interaction between the central atom and bromine have the greatest ionic character?
 - a. LiBr
 - b. KBr
 - c. SeBr₂
 - d. AsBr₂
 - e. CaBr₂

- 13. In which of the following is the bond polarity incorrect?
 - $a. \quad ^{\delta^{+}}\!H^{-}F^{\delta^{-}}$
 - $b. \quad {}^{\delta^+}I C l^{\delta^-}$
 - $c. \quad {}^{\delta -}C O^{\delta +}$
 - d. $\delta S Si^{\delta +}$
 - e. $\delta^+P-C1^{\delta-}$
- 14. What is the correct order of the following bonds in terms of *decreasing* polarity? (Most polar to least polar.)
 - a. N-Cl > P-Cl > As-Cl
 - b. P-Cl > N-Cl > As-Cl
 - $c. \quad As-Cl \quad > \quad N-Cl \quad > \quad P-Cl$
 - d. P-Cl > As-Cl > N-Cl
 - $e. \quad As-Cl \quad > \quad P-Cl \quad > \quad N-Cl$

15. From the given bond strength data, estimate ΔE for the following reaction.

$PCl_3(g)$	$+ \operatorname{Cl}_2(g)$	$\rightarrow PCl_5(g)$

b. -419 kJ/mol

c. -662 kJ/mol

d. -67 kJ/mol

e. -905 kJ/mol

Bond	Bond Strength (kJ/mol)
Cl-Cl	243
P-Cl	331

dge: On my ho	onor, I have neit	her given nor	received aid (on this exam.
	our UVa Student d your scan sheet			