Improving Landmark Localization with Semi-Supervised Learning

Sina Honari*, Pavlo Molchanov, Stephen Tyree, Pascal Vincent, Christopher Pal, Jan Kautz University of Montreal, NVIDIA, Ecole Polytechnique of Montreal, CIFAR, Facebook AI Research.

Presented by: Arif Anjum

Motivation

- Manual landmark localization is a time consuming and tedious task
- To build a database it requires a lot of efforts
- Single image labelling requires ~60 sec
- But with attributes such as smiling and head orientation(looking straight) image labelling requires ~ 1 sec

Facial Landmarks Localization

Semi-Supervised Learning

Using CNNs with sequential multitasking:

- Predict Landmarks using Convolutional Neural Network
- Use predicted landmarks to predict Attributes
- Using backpropagation get the gradient from attributes to the landmark localization network

Semi-Supervised Learning

Equivariant Landmark Transformation (ELT):

- Predict landmarks (L) on an image I
- Apply a transformation T to image I
- Predict landmark (L') on image I'
- Apply transformation T to landmarks L(I)
- Compare L' with T O L(I)
- $T O L(I) \sim L(T O I)$
- *Get gradient from ELT loss:*

$$- ELT = || T O L - L'||^2$$

Equivariant Landmark Transformation (ELT):

Learning Landmarks

Making use of all data:

- Loss from GT Landmarks (L)
- Loss from Attributes (A) using Sequential Multi-tasking
- Loss from Equivariant Landmark Transformation (ELT)

Sequential Multi-Tasking (Seq-MT)

Our basic implementation:

- Using only conv layers for landmark localization
- Predict Attribute only from Landmarks
- Using soft-argmax to allow full back-propagation

Landmark Localization Network Attribute Prediction

CNN Architecture using Sequential Multi-Tasking

Common Multi-tasking (Comm-MT)

- The model takes an image and applies a series of conv(C) and pooling (P) layers
- Then passed to common (shared) fully connected (FC) layer
- The last FC layer connected to two branches (each for a task)

Heatmap Multi-Tasking(Heatmap-MT)

- Landmarks are detected using conv (C) layers without sub-sampling, pooling, or FC layers
- A softmax layer is used for landmark prediction in the output layer
- Landmark heatmaps right before softmax layer are fed to a series of pool (P) and conv (C) layers which are then passed to FC layers
- The last FC layer is fed to softmax for attribute classification

Semi-Supervised Impact on HGR1 hands dataset

Model trained with different percentage of labelled landmarks:

- Seq-MT loss (L+A) improves results compared to only using landmarks (L)
- ELT loss (L+ELT) improves results compared to only using landmarks (L)
- Seq-MT (L+ELT+A) compared to Seq-MT (L) gets the same performance with half landmark labels (see 5%, 10%, 20%)

		Percentage of Images with Labeled Landmarks				
	Model	5%	10%	20%	50%	100%
	Seq-MT (L)	57.6	41.1	32.0	21.4	15.8
)	Seq-MT(L+A)	50.0	38.1	28.1	19.8	16.9
	Seq-MT (L+ELT)	43.7	31.5	25.1	17.7	
	Seq-MT (L+ELT+A)	38.5	30.3	24.0	19.1	
	Comm-MT (L)	77.1	62.8	52.7	41.8	35.7
	Comm-MT (L+A)	53.4	39.3	35.5	26.9	24.1
	Heatmap-MT (L)	66.5	51.9	42.4	30.9	25.5
_	Heatmap-MT (L+A)	64.8	54.9	43.2	30.5	26.7
_	1 '			.2		

Visualizing Results (Multi-PIE)

Model predictions on Multi-PIE Dataset