CSP 模拟赛

-By 华中师大一附中

2019年x月xx日8:30~12:00

一. 题目概况

中文题目名称	中位数	互连网	技能树
英文题目名称	middle	network	tree
可执行文件名	middle.cpp	network.cpp	tree.cpp
输入文件名	middle.in	network.in	tree.in
输出文件名	middle.out	network.out	tree.out
每个测试点时限	2 秒	2 秒	1 秒
内存上限	512MB	512MB	512MB
测试点数目	20	20	20
每个测试点分值	5	5	5
结果比较方式	全文比较	spj	全文比较
题目类型	传统	传统	传统

二.编译命令

对于 C++语言	g++ middle.cpp -o -02 middle	g++ network.cpp - o - 02 network	g++ tree.cpp - o -02 tree
----------	---------------------------------------	----------------------------------	---------------------------------

中位数 (middle)

1.1 Description

中位数在统计中拥有十分重要的作用,比如我们取每次模拟赛的成绩中位数很快就能知道这场考试的难度。

在本题中我们的中位数和普通的中位数略有不同,一个长为 x 的连续序列的中位数定义为它所有元素中第($\left\lfloor \frac{x}{2} \right\rfloor + 1$)大的那一 项。

现在给定一个长为 n 的序列 a (序列从 1 开始标号), 你要回答 m 次询问, 每次给定 I_1 , r_1 , I_2 , r_2 询问左端点在 $[I_1$, r_1] 且右端点在 $[I_2, r_2]$ 所有连续子序列的中位数中最大的一个是多少,数据保证 I_2 > r_1 。

1.2 Input

第一行一个整数n意义如上。

接下来一行 n 个数,表示 a 序列中的元素。

接下来一行一个数 m, 表示询问的个数。

接下来 m 行, 每行 4 个整数 11, r1, 12, r2, 表示一次询问。

1.3 Output

共m行,第i行的数表示第i次询问的答案。

1.4 Sample

Sample 1:

middle.in	middle.out
6	7
7 5 9 6 5 3	6
5	9
1 1 4 4	6
1 4 6 6	9

1 2 3 3	
2 3 5 6	
1 2 3 5	

这5次询问对应的答案区间分别是:

[1,4] 排序后结果为:5679 中位数为7

[3,6] 排序后结果为: 3569 中位数是6

[2,3] 排序后结果为: 5 9 中位数是 9

[3,5] 排序后结果为: 5 6 9 中位数为 6

[2,3] 排序后结果为: 5 9 中位数为 9

Sample 2:

见下发文件

1.5 Data Range

20%的数据满足 n<=100

40%的数据满足 n<=300

另有 20%的数据满足 a;=0 或 1

对于全部数据,满足 n, m<=50000, 0<=a;<=10°

互连网(network)

1.3 Description

9102年, "互连网"在生活中已无处不在, 人类不能忍受哪怕一秒钟没有互连网的生活。

一张网是"互连"的,**当且仅当网上任意两点都可以互相到** 达。华懿高级中学也拥有自己的互连网络,但是本持着勤俭节 约的原则,华懿高级中学内部 n 个点的互连网仅由 n-1 条无向 边连接,并且任意两点之间有且仅有一条简单路径。

但是这样有很大的弊端,若某天某一条边突然断开,整个网络就不再联通了,于是华懿高级中学的领导们决定翻新它。依旧本着勤俭节约的原则,他们希望添加最少的边,使得不管断开哪条边,整个网络依旧是"互连"的。

请告诉华懿高级中学,最少要添加几条边,并给出一组合法的方案。

1.4 Input

第一行两个整数 n, 意义如上。

接下来n行,每行两个整数 xi, yi,表示一条原网络的边。

1.3 Output

第一行一个数 n,表示至少要添加几条新的边。

接下来n行,每行两个整数 xi, yi,描述一条新添加的边。

1.4 Sample

Sample 1:

network.in	network.out
6	2
1 2	3 6
1 3	6 5

2 4	
4 5 2 6	
2 6	

加了边之后的图如下:

可以验证该图中断开任意一条边图依旧是联通的, 且加边最少。

Sample 2:

见下发文件

1.5 Data Rang

本题评测方式为捆绑评测, 你必须通过该子任务的全部测试点才能获得该子任务的分数。

子任务 1 (20pts): n<=10

子任务 2(10pts): 数据满足所有边的 x;=1

子任务 3(20pts): n<=1000

子任务 4(50pts): 数据满足 n<=100000

技能树 (tree)

1.6 Description

"01 的学习,理应循序渐进"。

OI 中技能的加点形如一棵以1为根的树形结构,每个点的父亲就是它的前置知识,比如"min25筛"应该在"莫比乌斯反演"之后学习,"主席树"应该在"树状数组"之后学习,形式化的来说,对于树上每个节点u,必须先学前置知识,也就是它在技能树上父亲fa(u)。

学习知识的过程可能是痛苦的,也可能是愉悦的,学习 i 号知识需要消耗 a;点愉悦度,学完之后因为满满的成就感会增加 b;点愉悦度,注意,此处先结算 a;后结算 b;,二者并非同一时刻结算。

现在,我们已经学习完了1号知识点,并拥有了一个未知的初始愉悦度,因为我们不希望学习过程中出现过分痛苦的情况,所以我们想知道:至少需要多少点初始愉悦度,使得能通过合理的学习顺序学习完技能树上所有知识,并且学习过程中任意时刻愉悦度都不为负?

1.7 Input

第一行1个整数, n 意义如上。

接下来 n-1 行, 每行两个整数 a_i, b_i表示 2、3、4···n 号节点学 习所消耗的愉悦度和学完后增加的愉悦度。

在接下来 n-1 行,每行两个整数 x_i, y_i ,表示一条连接 x_i 与 y_i 的 边。

1.3 Output

一个整数,表示最少需要多少点初始愉悦度。

1.4 **Sample**

Sample 1:

tree.in	tree.out
5	6
1 3	
3 2	
1 2	
9 5	
2 1	
3 1	
4 2	
5 2	

该技能树如图, 其中括号内的数字表示 a;和 b;(左边为 a, 右边为 b)。

可以证明按照 2->4->5->3 的顺序依次学习是最优的, 仅需要 6 点初始愉悦度 就可以保证在学习过程中任意时刻愉悦度不为负。 以下是该过程的模拟:

初始愉悦度是6

拿 2 号点, 先-1 变成 5, 再+3 变成 8

拿 4 号点, 先-1 变成 7, 再+2 变成 9

拿5号点, 先-9变成0, 再+5变成5

拿 3 号点, 先-3 变成 2, 再+2 变成 4

在该过程中,最低愉悦度为 0,满足"时刻不为负数"的要求。 而其它方案都不会更优,下面给出一组其它方案的例子模拟,拿取顺序为 2->3->4->5:

设初始值仍为6。

拿 2 号点, 先-1 变成 5, 再+3 变成 8

拿 3 号点, 先-3 变成 5, 再+2 变成 7

拿 4 号点, 先-1 变成 6, 后+2 变成 8

此时因为 a₅=9, 所以此时无法拿 5 号节点,故该方案不合法,可以发现要使得这个选取顺序合法,必须要至少 7 点初始愉悦度。

Sample 2:

见下发文件

1.5 Data Range

对于 10%的数据, 满足 n<=10

另有 20%的数据满足所有节点与 1 号节点相连。

另有 20%的数据满足对于每个节点 i,a,<=b,

另有 20%的数据满足对于每个节点 i, a;>b;

对于全部测试点,满足 n<=100000,0<=ai,bi<=10°