10강. 가설함수, 비용, 손실함수

가설함수

X	Y
1	3
2	5
3	7

가설함수

X	Y
1	3
2	5
3	7

X	Υ
1	3
2	5
3	7

$$H(x) = W * X + b$$

X	Trial	Y Predict	Υ
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

$$H(x) = Y Predict$$

X	Trial	Y Predict	Υ
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

$$H(x) = Y Predict$$

손실 =
$$Y$$
 Predict - Y

X	Trial	Y Predict	Υ
1		1	3
2	w=0.5, b=0.5	1.5	5
3		2	7
1		2	3
2	w=1, b=1	3	5
3		4	7
1		3	3
2	w=2, b=1	5	5
3		7	7

$$H(x) = W * X + b$$

$$H(x) = Y Predict$$

손실 =
$$Y$$
 Predict - Y

손실함수 = W * X + b - Y

Y Predict	Υ	Loss
1	3	-2
1.5	5	-3.5
2	7	-5
2	3	-1
3	5	-2
4	7	-3
3	3	0
5	5	0
7	7	0

손실함수 = W * X + b - Y

Trial	Υ
w=0.5, b=0.5	-2 + -3.5 + -5 = -10.5
w=1, b=1	-5 + -1 + -2 = -8
w=2, b=1	0 + 0 + 0 = 0

손실의 총합의 오류?

손실함수 =
$$W * X + b - Y = 2X + 1 - Y$$

X	Y	Loss	X2	Y2	Loss
1	3	0	1	2	-1
2	5	0	2	5	0
3	7	0	3	8	1

손실의 총합의 제곱 오차 (Mean Squared Error)

손실함수 =
$$W * X + b - Y = (2X + 1 - Y)^2$$

X	Y	Loss	X2	Y2	Loss
1	3	0	1	2	-1
2	5	0	2	5	0
3	7	0	3	8	1

제곱 오차 (Mean Squared Error)

손실함수 =
$$W * X + b - Y$$

= $(W * X + b - Y)^2$ 의 전체 합
= $\sum (W * X + b - Y)^2$

제곱 오차 (Mean Squared Error)

손실함수 =
$$W * X + b - Y$$

= $(W * X + b - Y)^2$ 의 전체 합
= $\sum (W * X + b - Y)^2$

데이터의 개수가 많아지면 손실이 커지므로 전체 손실의 평균을 구합니다

$$=\sum (W*X+b-Y)^2/N(데이터 개수)$$

제곱 오차 (Mean Squared Error)

데이터의 개수가 많아지면 손실이 커지므로 전체 손실의 평균을 구합니다

$$=\sum (W*X+b-Y)^2/N(데이터 개수)$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

최적의 W를 찾는 것 = 최소 오차

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

경사하강법 (Gradient Descent)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

scikit-learn

https://scikit-learn.org

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, and more...

Example

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: k-Means, feature selection, nonnegative matrix factorization, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Examples

Clustering

Automatic grouping of similar objects into

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, and more...

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and more...

Examples