3. Let a_1 be a positive integer and for all n>0, a_{n+1} is the largest odd divisor of $a_n + 2^n - 1$. Let r be a positive integer greater than 1, determine if there exists infinitely many pair (u,v) with u>v and and $a_u = ra_v$

First, note that the number of 1s in binary of a_n is non increasing, therefore it will become a constant for sufficient large n. Let m be the number of 1s in binary of a_n when n is large enough and WLOG m>1 since it is trivial when m=1. Suppose $a_u = ra_v$, then since both a_u and a_v has the same number of 1s in binary, consider both sides in binary, and it will be easy to consider the sum of digit in base 2 of both sides, we observe that if the distance between 2 consecutive 1s of a_n is too large, then we will reach a contradiction, since $S_2(LHS)=m$ and $S_2(RHS)=mS_2(r)$.

Now for a large n, suppose we have $a_n=1+2^{t_1}+2^{t_2}+\ldots+2^{t_m}$. Now we wish to calculate a_{n+1} , but in order to do that, we need to know if $t_1 < n$ or not. Thus, we try several values of a_1 to compare t_1, t_2, \ldots, t_m and n. And we can see that

$$a_n$$
<2ⁿ. The proof is easy, since $a_{n+1} \le \frac{a_n + 2^n - 1}{2}$

Now for large n, we have $c=1+2^{t_1}+2^{t_2}+...+2^{t_m}$, then:

$$a_{n+1}=1+2^{t_2-t_1}+2^{t_3-t_1}+\ldots+2^{t_m-t_1}+2^{n-t_1}$$

$$a_{n+2} = 1 + 2^{t_3 - t_2} + 2^{t_4 - t_2} + \dots + 2^{t_m - t_2} + 2^{n - t_2} + 2^{n + 1 - t_2 + t_1}$$

$$a_{n+3} = 1 + 2^{t_4-t_3} + 2^{t_5-t_3} + \dots + 2^{t_m-t_3} + 2^{n-t_3} + 2^{n+1-t_3+t_1} + 2^{n+2-t_3+t_2}$$

.....

$$\begin{array}{l} a_{n+m} = 1 + 2^{n-t_m} + 2^{n+1-t_m+t_1} + 2^{n+2-t_m+t_2} + \dots + 2^{n+m-1-t_m+t_{m-1}} \\ a_{n+m+1} = 1 + 2^{t_1+1} + 2^{t_2+2} + \dots + 2^{n+m+t_m} \end{array}$$

Look at a_n and a_{n+m+1} , if we let d_n = the minimal distance between 2 consecutive 1s in binary of a_n , in other word, d_n =min $(t_2 - t_1, t_3 - t_2, ..., t_m - t_{m-1})$, then $d_{n+m+1} > d_n$ for all large n, thus $\lim_{n \to +\infty} d_n = +\infty$, thus $S_2(ra_v) = mS_2(r)$ for all large v, and since u>v we have $S_2(a_u) = m$, thus $a_u \neq ra_v$ for all large u,v.

If v is not large, then it is easy to see that $\lim_{n\to+\infty} a_n = +\infty$, thus $a_u > ra_v$ for all large u and small v. And our conclusion follows.