## Physics 2301: Intermediate Mechanics II

Lecturer: Professor Anotonio Boveia

Notes by: Farhan Sadeek

Spring 2025

## 1 January 7, 2025

#### 1.1 Course Introduction

Dr. Boveia talked about the course and we will head towards relativistic mechanics. In this course we will master the concepts from Physics 1250 but more broadly. **Tuesday** is the lecture day and **Wednesday**, Thursday, and Friday are the problem-solving days. The grading scale would be on **Standard Ohio State** grading scale. There might be a curve but it will only curve up not down. Our grade would rely on **Quizzes** (20%), **Midterm (20%)**, **Final (20%)**, **Homework (30%)**, and **Participation (10%)**. The exams are **open-book**, **open-notes**, and **open-internet**.

### 1.2 Success Tips

Here are some tips to succeed in Physics 2301:

- Attend all lectures and problem-solving sessions: Regular attendance will help you understand the material better and keep up with the course pace.
- **Stay organized:** Keep track of all assignments, quizzes, and exam dates. Use a planner or digital calendar to manage your time effectively.
- **Participate actively:** Engage in class discussions and ask questions whenever you have doubts. Participation counts towards your grade.
- **Form study groups:** Collaborate with your peers to discuss concepts and solve problems. Group study can provide different perspectives and enhance understanding.
- **Utilize office hours:** Take advantage of Dr. Boveia's office hours to seek clarification on topics you find challenging.
- **Practice regularly:** Consistently work on homework and additional problems to reinforce your understanding of relativistic mechanics.
- **Review notes:** Regularly review your lecture notes and summarize key points to aid retention.

- **Use available resources:** Make use of the textbook, online resources, and any supplementary materials provided by Dr. Boveia.
- Stay healthy: Ensure you get enough rest, eat well, and manage stress to maintain your overall well-being.

#### 1.3 Review of Vectors and Matrices

#### **Definition 1**

A **scalar quantity** is a quantity with numebrs for the most part.

#### **Definition 2**

A **vector quantity** is a triplet, with magnitude and direction. Vectors follow a different set of rules. For example, there are two multiplication rules for vectors: **Dot Product** and **Cross Product**. The dot product is a scalar quantity while the cross product is a vector quantity.

$$|\vec{v}| = \text{Length and} \quad \vec{v} = \frac{|\vec{v}|}{\sqrt{3}}(V_x, V_y, V_z) \text{ if } \vec{v} = \langle V_x, V_y, V_z \rangle$$

 $Scalar \times Vector = Vector$ 

Vector · Vector = Scalar (Dot Product or Inner Product)

$$\vec{v} \cdot \vec{v} = V_x \cdot V_x + V_y \cdot V_y + V_z \cdot V_z = |\vec{v}|^2$$

$$\vec{A} \cdot \vec{B} = A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z = |\vec{A}| |\vec{B}| \cos \theta$$

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

 $\hat{x} = \text{`Unit Vector'} |\hat{x}| = 1$ 

$$\vec{A} \cdot \vec{B} = (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \cdot (B_x \hat{x} + B_y \hat{y} + B_z \hat{z}) = A_x B_x + A_y B_y + A_z B_z$$

 $\hat{x}, \hat{y}, \hat{z}$  form an orthogonal normal basis, meaning that  $\hat{x} \cdot \hat{y} = 0$ 

$$\hat{x} \cdot \hat{y} = 0$$
,  $\hat{y} \cdot \hat{z} = 0$ ,  $\hat{z} \cdot \hat{x} = 0$ 

$$\hat{x} \cdot \hat{y} = 0$$
,  $\hat{y} \cdot \hat{z} = 0$ ,  $\hat{z} \cdot \hat{x} = 0$ 

Here, Ortho means that  $\hat{x} \cdot \hat{y} = 0$  and Normal means that  $\hat{x} \cdot \hat{x} = 1$ 

 $Vector \times Vector = Cross Product = Vector$ 

$$\vec{A} \times \vec{B} = |\vec{A}||\vec{B}|\sin\theta\hat{n}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$







Figure 1: Geometric interpretation of dot and cross products



**Dot product** is just the magnitude of the proejct of  $\vec{A}$  onto  $\vec{B}$ .

$$\vec{A} \times \vec{B} = |\vec{A}||\vec{B}|\sin\theta\,\hat{n}$$
 [Magnitude]

Dot product is the component of  $\vec{B}$  along  $\vec{A}$ . The dot product is a scalar quantity.

The cross product is a vector that is perpendicular to both  $\vec{A}$  and  $\vec{B}$  ( $\vec{A} \perp \vec{B}$ ). The magnitude of the cross product is the area of the parallelogram formed by  $\vec{A}$  and  $\vec{B}$ . The direction of the cross product follows the right-hand rule.

The cross product is a vector that is perpendicular to both  $\vec{A}$  and  $\vec{B}$ . The magnitude of the cross product

is the area of the parallelogram formed by  $\vec{A}$  and  $\vec{B}$ . The direction of the cross product follows the right-hand rule.

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

# 2 January 8, 2025