# A (Mostly) Informal Introduction to Computation Theory

- Computation theory is a different, more structural and less statistical approach to complexity, emergence, organization.
- Computation theory can be very elegant, rigorous, and mathematical.
- But I'll present little of the formalism. I think the math can obscure some of the basic ideas, which are really quite simple.

We'll begin with some examples in the form of a game:

- I'll give you the specification for a set
- I'll then show you an object, and you need to tell me if it's in the set or not

## **Example 1**

The set  $\mathcal{L}$  consists of all sequences of 0's and 1's of any length, except for those that have two 00's in a row.

Accept all sequences of 1's and 0's except for those which have two or more 0's in a row.

1110101101 1101101001 110110101011

## **Example 2:**

The set  $\mathcal L$  consists of all sequences of correctly balanced parentheses.

This example is harder.

## **Example 3:**

The set  $\mathcal{L}$  consists of all sequences of 0's and 1's, except for those that contain a **prime** number of consecutive 0's!

## What to learn from the examples

- There are qualitative differences between the procedures you just used to identify the strings on the previous slides.
- These distinctions lie at the heart of computation theory.
- We'll start by focusing on example 1.
- Your task was to accept all sequences of 1's and 0's except for those which have two or more 0's in a row.



- Sequence is OK if there exists a path through this machine as one scans left to right.
- Example: 1011001 is not in the set.

#### **Finite State Machines**

- The mathematical object on the previous page is known as a Finite State Machine or a Finite Automaton.
- Note that this two-state machine can correctly identify arbitrarily long sequences.
- ullet The machine is a finite representation of the infinite set  ${\cal L}.$

## Some terminology and definitions

- A Language  $\mathcal{L}$  is a set of words (symbol strings) formed from an Alphabet  $\mathcal{A}$ .
- We'll always assume a binary alphabet,  $\mathcal{A}=\{0,1\}.$

**Big Idea:** There is a correspondence between the rules needed to generate or describe a language, and the type of machine needed to recognize it.

## **Regular Expressions**

- A Regular Expression is a way of writing down rules that generate a language.
- To generate a regexp, start with the symbols in A.
- You can make new expressions via the following operations: grouping, concatenating, logical OR (denoted +), and closure \*.
- Closure means 0 or more concatenations.
- Examples:

1. 
$$(0+1) = \{0,1\}$$

2. 
$$(0+1)^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$$

3. 
$$(01)^* = \{\epsilon, 01, 0101, 010101, \ldots\}$$

• ( $\epsilon$  is the empty symbol.)

## **Regular Languages and FSM**

- A language  $\mathcal{L}$  is a **Regular Language** if and only if it can be generated by a regular expression.
- A puzzle: what is the regular expression that generates the language of example 1?

#### Two important results:

- For any regular language, there is an FSM that recognizes it.
- 2. Any language generated by an FSM is regular.

## Notes on terminology:

- A regular expression is a rule.
- A regular language is a set.
- A FSM is a machine.

Regular languages ↔ FSM's is the first example of the correspondence between sets and the procedures or machines needed to recognize them.

## **Revisiting Parentheses**

- This example is different than the last—you can't scan left to right unless you remember stuff.
- There is no FSM that can recognize this language. The problem is that as the strong grows in length, the number of states necessary also grows.
- This task requires infinite memory. However, the memory only needs to be organized in a simple way.
- The parentheses language can be recognized by a device known as a Pushdown Automata.
- Put an object on the stack if you see a left paren (and take it off if you see a right paren).
- If the stack is empty after scanning the sequence, then it is ok.

#### **Pushdown Automata**



- This is the PDA for the parentheses example
- If you see a "(", write (push) a symbol to the stack.
- If you see a ")", erase (pop) a symbol from the stack.
- The machine can only write to the top of the stack.
- This PDA can recognize balanced parentheses of any length.

## **Context-Free Languages**

- The languages recognized by PDA are context-free languages.
- Regular languages are generated sequentiality—one symbol after the next.
- CFL's are generated by writing rules applied in parallel.
- For example, to generate the parentheses language, apply the following:

$$egin{array}{lll} W & 
ightarrow & (V & \ V & 
ightarrow & (VV & {
m or} \end{array})$$

- ullet Start with W. The set of all possible applications of the above rules give you the set of all possible balanced parentheses.
- For example:

$$W$$
,  $(V, ((VV, (()V(()(VV(()())V(())))))$ 

## **CFL Terminology**

- ullet (,) are **terminals**, symbols in the alphabet  $\mathcal{A}$ .
- W, V are **variables**, symbols not in A, to be eventually replaced by terminals.
- CFL's are context free in the sense that the production rule depends only on the variable, not on where the variable is in the string.

## **CFL Summary**

- Every CFL can be recognized by a PDA, and every PDA produces a CFL.
- Also, FSM's are a proper subset of PDAs, and
- Regular Languages are a proper subset of CFL's
- We can thus divide languages into two classes, one of which is strictly more complex than the other.
- Are there even more complex languages? Yes ...

## **Chomsky Hierarchy**

• The hierarchy continues:



- This hierarchy of languages/machines is known as the Chomsky Hierarchy.
- Each level in the hierarchy contains something new, and also contains all the languages at lower levels of the hierarchy.

## **Chomsky Hierarchy, terminology**

- CSL = Context Sensitive Language. These are like
   CFL's, but allow transitions that depend on the position of the variable in the strings.
- LBA = Linear Bounded Automata. These are like PDA's, except:
  - 1. Controller can write anywhere on work tape.
  - 2. Work tape restricted to be a linear function of input.
- Recursively Enumerable Languages are those languages produced by an unrestricted grammar.
- An Unrestricted Grammar is like a CSL, but allows substitutions that shrink the length of the string.
- TM = Turing Machines. These are LBA's with linear tape restriction removed. These are the most powerful model of computation. (Example 3 requires a TM.) Much more on these later!

## **Chomsky Hierarchy, Conclusions**

- Order languages (sets) by the type of machine needed to recognize elements of the language.
- There are qualitative difference between machines at different levels of the hierarchy.
- At lower levels of the hierarchy, there are algorithms for minimizing machines. (I.e., remove duplicate nodes.)
- The minimum machine can be viewed as a representation of the pattern contained in the language.
   The machine is a description of all the regularities.
- The size of the machine may be viewed as a measure of complexity.
- The machine itself reveals the "architecture" of the information processing.

## Other computation theory notes

- It is possible to refine the Chomsky hierarchy with different sorts of machines. The result is a rich partial ordering of languages.
- To use computation theory as a basis for measuring complexity or structure, I think it's important to start at the bottom of the hierarchy and work your way up.

## **Computation Theory References**

The basic material presented is quite standard and there are many references on it. Here are a few:

- Hopcroft and Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley. 1979. A standard reference. Not my favorite, though. It's thorough and clear, but rather dense.
- Brookshear. Theory of Computation: Formal Languages, Automata, and Complexity. Benjamin/Cummings. 1989. I like this book. I find it much clearer than Hopcroft and Ullman.

### Computation theory applied to physical sequences

- Badii and Politi. Complexity: Hierarchical Structures and Scaling in Physics. Cambridge. 1997. Excellent book, geared toward physics grad students. Closest thing to a textbook that covers topics similar to those I've covered throughout these lectures.
- Bioinformatics textbooks?