ADMM algorithm

LongZhang *

July 8, 2025

1 Imaging

We know that imaging (F) by an optical imaging system equals the ideal image (X) convolved with the point spread function (K):

$$F = K * X + n \tag{1}$$

where n denotes random noise.

1.1 Why ADMM?

Why Direct Inverse Filtering Fails in Practical Non-Blind Image Restoration?

Theoretical Perfect Restoration: In theory, for a Linear Space-Invariant (LSI) system without noise, the perfect restoration formula is:

Fourier Transform \rightarrow Divide by OTF \rightarrow Inverse Fourier Transform

However, inverse filtering nearly always fails in practical non-blind image restoration due to:

1.2 OTF Zero Points:

- 1. The Optical Transfer Function (OTF, Fourier transform of PSF) contains frequency components where $OTF(\omega)=0$.
- 2. Division by OTF at these points becomes infinite (1/0).
- Even near-zero OTF values cause extreme amplification of corresponding frequency components.

1.3 Noise Amplification:

1. Real images always contain noise.

- Noise predominantly resides in high-frequency regions.
- OTF values are typically very small at high frequencies.
- Division by small OTF values amplifies noise catastrophically.

1.4 PSF Truncation and Modeling Errors:

- Measured PSFs are finite-sized, truncated approximations.
- Truncation introduces artifacts in the OTF representation.
- 3. Accurate PSF modeling is challenging and error-prone.

1.5 Ill-Posed Nature:

- Due to OTF zeros or near-zeros, restoration becomes ill-posed.
- Small perturbations lead to massive variations in output.

${f 2}$ Theory

2.1 Problem Formulation

Objective function:

$$\min_{X} \sum_{i} \|D_{i}X\|_{2} + \frac{\mu}{2} \|K * X - F\|_{F}^{2} \tag{2}$$

where D_iX denotes the gradient of image X at pixel $i, \|\cdot\|_2$ is the vector 2-norm, and $\|\cdot\|_F$ is the Frobenius norm.

^{*}Computational optical imaging; Picture processing

THEORY 2 2

2.2 ADMM Formulation

Introduce auxiliary variables: Let Y = (Y_1, Y_2) replace $DX = (D_x X, D_y X)$:

$$\min_{X,Y} \quad ||Y||_{2,1} + \frac{\mu}{2} ||K * X - F||_F^2 \tag{3}$$

s.t.
$$Y = DX$$
 (4)

where $||Y||_{2,1} = \sum_{i,j} \sqrt{(Y_1)_{i,j}^2 + (Y_2)_{i,j}^2}$ is the isotropic TV norm.

Augmented Lagrangian: Introduce Lagrange multiplier $\Lambda = (\Lambda_1, \Lambda_2)$:

$$\mathcal{L}(X, Y, \Lambda) = \|Y\|_{2,1} + \frac{\mu}{2} \|K * X - F\|_F^2 + \langle \Lambda, DX - Y \rangle$$

$$+ \frac{\beta}{2} \|DX - Y\|_F^2$$
(5)

where $\beta > 0$ is the penalty parameter.

ADMM Algorithm 2.3

(a) Update Y (Shrinkage step): Fix X and Λ , solve:

$$\min_{Y} \|Y\|_{2,1} + \frac{\beta}{2} \|DX - Y + \beta^{-1}\Lambda\|_F^2 \qquad (6)$$

Let $Z = DX + \beta^{-1}\Lambda$. The problem becomes:

$$\min_{Y} \|Y\|_{2,1} + \frac{\beta}{2} \|Y - Z\|_F^2 \tag{7}$$

Derivation of the Shrinkage Solution: The optimization problem can be decomposed per pixel since both terms are separable. For each pixel (i,j), we solve:

$$\min_{v \in \mathbb{R}^2} \|v\|_2 + \frac{\beta}{2} \|v - z\|_2^2 \tag{8}$$

where $v = Y_{i,j}, z = Z_{i,j}$.

This is a proximal operator for the ℓ_2 -norm. To solve it, we consider the subdifferential of the objective function $f(v) = ||v||_2 + \frac{\beta}{2}||v-z||_2^2$:

• Case 1: $||z||_2 > \frac{1}{\beta}$

The solution occurs when the gradient is zero:

$$\frac{v}{\|v\|_2} + \beta(v - z) = 0$$

$$v = \left(1 - \frac{1}{\beta \|z\|_2}\right) z$$

• Case 2: $||z||_2 \le \frac{1}{\beta}$

The optimal solution is v = 0, as verified by the subdifferential condition:

$$0 \in \partial f(0) = \{ g - \beta z \mid ||g||_2 \le 1 \}$$
$$||\beta z||_2 \le 1$$

Combining both cases, we obtain the vector shrinkage operator:

$$v = \frac{z}{\|z\|_2} \max\left(\|z\|_2 - \frac{1}{\beta}, 0\right)$$
 (9)

Therefore, the solution for the entire image is:

$$Y_{i,j} = \frac{Z_{i,j}}{\|Z_{i,j}\|_2} \max\left(\|Z_{i,j}\|_2 - \frac{1}{\beta}, 0\right)$$
 (10)

where $Z_{i,j} = ((Z_1)_{i,j}, (Z_2)_{i,j}) \in \mathbb{R}^2$.

(b) Update X (Linear subproblem): Fix Y and Λ , solve:

$$\min_{X} \frac{\mu}{2} \|K * X - F\|_{F}^{2} + \frac{\beta}{2} \|DX - Y + \beta^{-1}\Lambda\|_{F}^{2}$$
 (11)

Optimality condition:

$$\mu K^*(K*X-F) + \beta D^*(DX-Y+\beta^{-1}\Lambda) = 0$$
 (12)

Rearranged form:

$$(\mu K^* K + \beta D^* D) X = \mu K^* F + \beta D^* (Y - \beta^{-1} \Lambda)$$
(13)

Frequency domain solution:

$$X = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\mu K^* F + \beta D^* (Y - \beta^{-1} \Lambda))}{\mu |\mathcal{F}(K)|^2 + \beta (|\mathcal{F}(D_x)|^2 + |\mathcal{F}(D_y)|^2)} \right)$$
(14)

Numerator implementation:

Numerator =
$$\mu K^{\top} F - D^*(\Lambda) + \beta D^*(Y)$$
 (15)

(c) Update multiplier:

$$\Lambda \leftarrow \Lambda - \gamma \beta (DX - Y) \tag{16}$$

where $\gamma \in (0, 1.618]$ is a relaxation parameter.

Precomputed Frequency Domain 2.4 Constants

$$z) = 0 \qquad \qquad \mathbf{H} = \mathcal{F}(H, \operatorname{size}(F))$$

$$v = \left(1 - \frac{1}{\beta ||z||_2}\right) z \qquad \qquad |\mathcal{F}(D)|^2 = |\mathcal{F}([1, -1], \operatorname{sizeF})|^2 + |\mathcal{F}([1; -1], \operatorname{sizeF})|^2$$

2 THEORY 3

2.5 Finite Difference Operators

Forward difference:

$$(D_x U)_{i,j} = \begin{cases} U_{i,j+1} - U_{i,j} & j < n \\ U_{i,1} - U_{i,n} & j = n \end{cases}$$
$$(D_y U)_{i,j} = \begin{cases} U_{i+1,j} - U_{i,j} & i < m \\ U_{1,j} - U_{m,j} & i = m \end{cases}$$

Negative divergence $(D^* = -\text{div})$:

$$(D^*(V))_{i,j} = (V_{i,j}^x - V_{i,j-1}^x) + (V_{i,j}^y - V_{i-1,j}^y)$$
(17)

with circular boundary conditions:

$$\begin{aligned} V_{i,0}^x &= V_{i,n}^x, & V_{i,n+1}^x &= V_{i,1}^x \\ V_{0,j}^y &= V_{m,j}^y, & V_{m+1,j}^y &= V_{1,j}^y \end{aligned}$$

2.6 Algorithm

Algorithm 1 ADMM for Image Restoration

Input: Blurred image F, kernel K, parameters μ, β, γ

Initialize: Restored image X

- 1: Initialize $X^0 = F$, $\Lambda^0 = 0$
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: Update Y^{k+1} via shrinkage: Eq.(12)
- 4: Update X^{k+1} via frequency domain: Eq.(16)
- 5: **if** $||X^{k+1} X^k|| / ||X^k|| < \epsilon$ **then**
- 6: break
- 7: end if
- 8: Update multiplier: $\Lambda^{k+1} = \Lambda^k \gamma \beta (DX^{k+1} Y^{k+1})$
- 9: end for
- 10: **Output:** Restored image X

2.7 TV/L1 Model: Robust Restoration with Impulse Noise

Problem Formulation: The TV/L1 model addresses impulse noise (salt-and-pepper, random-valued) by replacing the L2 fidelity term with an L1 norm:

$$\min_{X} \sum_{i} \|D_{i}X\|_{2} + \mu \|K * X - F\|_{1}$$
 (18)

where $\|\cdot\|_1$ denotes the element-wise L1 norm. This formulation is robust to outliers in the observed image F.

Key Differences from TV/L2:

- 1. Fidelity Term: L1 norm $(\|\cdot\|_1)$ replaces L2 norm $(\|\cdot\|_F^2)$
- 2. Regularization Parameter: μ scales the fidelity term directly (no 1/2 factor)
- 3. **Noise Assumption:** Designed for impulse noise instead of Gaussian noise

2.8 ADMM Formulation with Three Splits

To handle the non-differentiable L1 term, we introduce three auxiliary variables:

$$Y_1 = D_x X$$
 (horizontal gradients) (19)

$$Y_2 = D_y X$$
 (vertical gradients) (20)

$$Z = K * X - F$$
 (residuals) (21)

The constrained problem becomes:

$$\min_{X,Y_1,Y_2,Z} \|Y_1\|_2 + \|Y_2\|_2 + \mu \|Z\|_1 \tag{22}$$

s.t.
$$Y_1 = D_x X$$
, $Y_2 = D_y X$, $Z = K * X - F$ (23)

where $||Y_1||_2 = \sum_{i,j} \sqrt{(Y_1)_{i,j}^2}$, similarly for Y_2 .

2.9 Augmented Lagrangian

We introduce Lagrange multipliers $\Lambda_1, \Lambda_2, \Lambda_3$ and penalty parameters β_1, β_2 :

$$\mathcal{L}(X, Y_1, Y_2, Z, \Lambda_1, \Lambda_2, \Lambda_3) = \|Y_1\|_2 + \|Y_2\|_2 + \mu \|Z\|_1$$

$$+ \langle \Lambda_1, D_x X - Y_1 \rangle + \frac{\beta_1}{2} \|D_x X - Y_1\|_F^2$$

$$+ \langle \Lambda_2, D_y X - Y_2 \rangle + \frac{\beta_1}{2} \|D_y X - Y_2\|_F^2$$

$$+ \langle \Lambda_3, (K * X - F) - Z \rangle + \frac{\beta_2}{2} \|K * X - F - Z\|_F^2$$
(24)

2.10 ADMM Updates

The algorithm alternates between updating variables:

For each gradient direction $k \in \{1, 2\}$:

$$Y_k^{t+1} = \arg\min_{Y_k} ||Y_k||_2 + \frac{\beta_1}{2} ||D_k X^t - Y_k + \beta_1^{-1} \Lambda_k^t||_F^2$$
(25)

Let $V_k = D_k X^t + \beta_1^{-1} \Lambda_k^t$. The closed-form solution is:

$$Y_k^{t+1} = \max\left(\|V_k\|_2 - \frac{1}{\beta_1}, 0\right) \frac{V_k}{\|V_k\|_2}$$
 (26)

with $Y_k^{t+1} = 0$ when $||V_k||_2 = 0$.

(b) Update Z (Element-wise Soft Thresholding):

$$Z^{t+1} = \arg\min_{Z} \mu \|Z\|_1 + \frac{\beta_2}{2} \|K * X^t - F - Z + \beta_2^{-1} \Lambda_3^t\|_F^2$$
(27)

Let $R = K * X^t - F + \beta_2^{-1} \Lambda_3^t$. The solution is:

$$Z^{t+1} = \operatorname{sign}(R) \odot \max\left(|R| - \frac{\mu}{\beta_2}, 0\right)$$
 (28)

where \odot denotes element-wise multiplication.

(c) Update X (Quadratic Subproblem):

$$X^{t+1} = \arg\min_{X} \frac{\beta_1}{2} \|D_x X - Y_1^{t+1} + \beta_1^{-1} \Lambda_1^t \|_F^2$$

$$+ \frac{\beta_1}{2} \|D_y X - Y_2^{t+1} + \beta_1^{-1} \Lambda_2^t \|_F^2$$

$$+ \frac{\beta_2}{2} \|K * X - F - Z^{t+1} + \beta_2^{-1} \Lambda_3^t \|_F^2$$
(29)

Define:

$$W_1 = Y_1^{t+1} - \beta_1^{-1} \Lambda_1^t \tag{30}$$

$$W_2 = Y_2^{t+1} - \beta_1^{-1} \Lambda_2^t \tag{31}$$

$$W_3 = F + Z^{t+1} - \beta_2^{-1} \Lambda_3^t \tag{32}$$

The optimality condition is:

$$\beta_1(D_x^T D_x + D_y^T D_y)X + \beta_2 K^T K * X = \beta_1(D_x^T W_1 + D_y^T W_2) + \beta_2 K^T * W_3$$
(33)

In the frequency domain (assuming periodic boundaries):

$$X^{t+1} = \mathcal{F}^{-1} \left(\frac{\mathcal{F} \left(\beta_1 (D_x^T W_1 + D_y^T W_2) + \beta_2 K^T * W_3 \right)}{\beta_1 \mathcal{F}(L) + \beta_2 |\mathcal{F}(K)|^2} \right)$$
(34)

where $L = D_x^T D_x + D_y^T D_y$ is the discrete Laplacian operator.

(d) Update Multipliers:

$$\Lambda_1^{t+1} = \Lambda_1^t - \gamma \beta_1 (D_x X^{t+1} - Y_1^{t+1}) \tag{35}$$

$$\Lambda_2^{t+1} = \Lambda_2^t - \gamma \beta_1 (D_u X^{t+1} - Y_2^{t+1}) \tag{36}$$

$$\Lambda_3^{t+1} = \Lambda_3^t - \gamma \beta_2 ((KX^{t+1} - F) - Z^{t+1})$$
 (37)

(a) Update Y_1 and Y_2 (Group Shrinkage): with $\gamma \in (0, (1+\sqrt{5})/2]$ typically set to 1.618 for acceleration.

2.11Implementation Notes

- Variable Initialization: $X^0 = F, Y_1^0 =$ $D_x F, Y_2^0 = D_u F, Z^0 = K * F - F, \Lambda_i^0 = 0$
- Parameter Selection: $\beta_1 \approx 0.1 \mu$, $\beta_2 \approx \mu$, μ depends on noise level
- Convergence: Stop when $X^{t}|_{F}/||X^{t+1}||_{F} < \epsilon \ (\epsilon \sim 10^{-4})$

2.12 Comparison with TV/L2 \mathbf{ADMM}

Table 1: TV/L1 vs TV/L2 ADMM Comparison

Characteristic	${ m TV/L1}$	$\mathrm{TV}/\mathrm{L2}$
Fidelity Term	$\mu \ KX - F\ _1$	$\frac{\mu}{2} KX - F _F^2$
Auxiliary Variables	$3(Y_1, Y_2, Z)$	1(Y)
Z-update	Soft thresholding	Not needed
Gradient Update	Group shrinkage	Group shrinkage
X-update Complexity	Higher (3 terms)	Lower (2 terms)
Noise Robustness	Impulse noise	Gaussian noise