CS 101	Fall	2024 -	$\mathbf{Q}\mathbf{u}$	iz 3
October	, 21,	2024 -	25	Minutes

Name:

Student ID:

C

HINT:	$\sum_{i=1}^{n}$	$\frac{1}{i} =$	$\Theta(\log n)$
-------	------------------	-----------------	------------------

1. (3 points) Honor Code

I promise that I will complete this quiz independently and will not use any electronic products or paper-based materials during the quiz, nor will I communicate with other students during this quiz.

I will not violate the Honor Code during this quiz.

)	True	\bigcirc	False

2. (5 points) True or False

Determine whether the following statements are true or false.

- (a) (1') Quick-sort is an in-place sorting algorithm, while merge-sort is not since it requires $\omega(n)$ extra space. \bigcirc True \bigcirc False
- (b) (1') Randomized Quick-sort is unstable, while Quick-sort with deterministic method (choosing pivots) is stable.

 O True O False
- (c) (1') There exists an comparison-based sort algorithm that needs O(1) extra space and takes $o(n \log n)$ time. \bigcirc True \bigcirc False
- (d) (1') For an array $\{a_n\}$ with distinct elements, for fixed i, j, if $\forall a_k \neq a_i, a_k \neq a_j, (a_k a_i)(a_k a_j) > 0$, then a_i and a_j will be compared in any case when using randomized quick-sort to make $\{a_n\}$ sorted. \bigcirc True \bigcirc False
- (e) (1') When we use divide and conquer to solve a problem, we should divide the problem into one or more subproblems with the exact same scale, then recursively do them and merge their answers at last.

 Or True Or False

3. (5 points) Randomized quick-sort

- (a) (1') If we use randomized quick-sort(i.e. randomly choosing pivots) to sort the array [3, 4, 6, 2, 1, 5, 8, 0], the probability of 1 and 6 are compared is _____ .
- (b) (1') Use the same method as above to sort an array with n distinct elements, the probability of i-th largest and j-th largest element ($i \neq j$) are compared is _______.
- (c) (3') Prove that the expectation times of comparisons in the randomized quick-sort is $\Theta(n \log n)$. Hint: The total expectation times can be obtained from the sum of the expectation of each comparison.

4. (12 points) Solving Recursion

Solve the recursion relation with T(1) = 1, T(0) = 0:

(a) (3')
$$T(n) = T(n-1) + \Theta(c^n)$$
 (c > 1 is a constant).

(b) (4')
$$T(n) = T(\frac{n}{2}) + \Theta(\log n)$$

(c) (5')
$$T(n) = \Theta(n) + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i))$$
, you can write $\Theta(n)$ as cn for your convenience.