Applications of Diodes – DC Power Supply

- One of the most common uses of a diode in **large-signal** operation is as a rectifier.
- Large-signal means changes in V and I are large.
- A DC power supply is a device that gives a constant DC voltage output for a sinusoidal voltage input.
- The sinusoidal input is normally taken from the mains supply of 230 V, 50 Hz. * The 230 V designated here is the rms value of voltage.

230V 50 Hz mains supply

UK Mains Voltage

Designing a DC Power Supply

Rectifier

- A rectifier is the first stage in designing a constant DC power supply.
- A rectifier is a device that allow current to flow through in one direction only.

A simple rectifier circuit that contains an ac source e(t) and load R

- During the +ve half cycle the diode is forward biased and current will flow.
- During each –ve half cycle the diode is reverse biased and no current flows (except for I_s).
- Net effect is the conversion of an ac voltage into a pulsating DC voltage, the fundamental step in the construction of a DC power supply.
- The single diode is called a half wave rectifier.

Figure 2: Waveform of Half Wave Rectifier

Elementary DC Power Supplies

- Most practical circuits require a DC voltage source that produces and maintains a constant voltage.
- This is done by converting the pulsating half sine waves obtained with a rectifier to a steady DC level.
- This is achieved by filtering.
- The pulsating half sine waves (like all periodic waveforms) can be regarded as waveforms that have both a DC component and ac components.
- The purpose of filtering these waveforms for a DC power supply is to reject all the ac components.

Illustration of frequency spectra

Sinusoidal (single frequency)

Rectified sinusoidal (many frequencies)

Filtered (Low frequencies)

- The simplest kind of filter that will do this is a capacitor.
- Capacitor has reactance $Xc = 1/(2\pi fC)$ where f is frequency in Hz and C the capacitance in F
- Thus Xc α 1/f.
- If we connect a capacitor in parallel to the diode then at high frequencies the rectified signal will see a low impedance path to ground and will not appear in the output.
- In practice a power supply will supply a DC current to a load.
- Then the circuit for the elementary DC power supply is

Zener Diode

- The Zener diode is a PN junction device and operates in the reversebreakdown region only
- The breakdown voltage V_z of a Zener diode is set by carefully controlling the doping level during manufacture.

- When reverse voltage VR is increased the reverse current (called Zener current I₂) remain very small up to the 'knee' point K.
- •At K the breakdown process begins.
- •From K, the breakdown voltage V_z remains essentially constant with increasing I_z .
- •This ability of a diode is called the regulating ability.

- Two important points must be noted
- 1) There is a minimum value of I_z called breakdown current I_{zK} which must be maintained in order to keep the diode in the breakdown (or regulation region). When current is reduced below I_{zK} the voltage changes rapidly and the regulation is lost.
- 2) there is a maximum value of zener current I_{ZM} above which the diode may be damaged. The value I_{ZM} is given by the maximum power dissipation of the zener diode and will be supplied by the manufacturer.

$$I_{zM} = P_{zM} / V_z$$
, where

 P_{zm} = power rating for zener, V_z = breakdown voltage.

• The circuit symbol and a practical equivalent circuit for a Zener diode are

Zener diode Voltage Regulator

- For operation $V_s > V_z$ and this ensures operation is in the breakdown region of the Zener.
- The input current $I_s = (V_s V_z) / R_s$

where V_s is DC input voltage and V_z is Zener Voltage.

Zener acts as a constant voltage source of Vz

Zener diode Voltage Regulator

- A practical Zener has a finite value of r_z (Zener resistance).
- Therefore there is a voltage drop across r_z
- Voltage across terminals of load $V_L = V_z + I_z r_z$
- If r_z is small $V_L = V_z$
- Applying Kirchoff's Law the current through the load resistor is $I_L = I_s I_z$ where $I_L = V_L / R_L$
- Rs is connected in series with Zener to limit the current in the circuit.

Operation of Zener Regulator

- 1) Regulation with varying input voltage
 - (a) when Vs increase, Is increases. This increases the current through Zener without affecting I_L . Increase in Is will increase the voltage drop across Rs thereby keeping the load voltage V_L constant.
 - (b) If Vs is decreased Is is also decreased. Current through Zener is decreased and voltage drop across Rs is reduced. Therefore V_L and I_L remains constant.

Operation of Zener Regulator

- 2) Regulation with varying load resistance variation of R_L changes I_L so changing V_L .
- (a) when R_L decreases, I_L increases.

 This causes Zener current I_z to decrease.

 As a result, I_s and voltage drop across R_s remain constant.

 Therefore V_L is also kept constant.
- (b) If R_L increase, I_L decrease and I_z increase. This keeps I_s and voltage drop across R_s constant. Therefore V_L remains constant

Components of a typical linear power supply

