Álgebra Lineal I

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema 1

- A) Estudiar si $H = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = z t = 0\}$ es un subespacio vectorial de \mathbb{R}^4 . (1 punto)
- B) Sea R[X] el espacio vectorial de los polinomios en la variable X con coeficientes reales,. Se considera en R[X] los polinomios $f_1 = 1 + X$, $f_2 = 1 + X^2$, $f_3 = 1 + X + X^2$. Estudiar si $\{f_1, f_2, f_3\}$ forman una base del subespacio vectorial $R_2[X]$, de los polinomios reales de grado menor o igual a dos. (1,5 puntos)

Problema 2

- A) Sea E un espacio vectorial de tipo finito y consideremos una base suya $B = \{u_1, ..., u_n\}$. Sea F un segundo espacio vectorial (no necesariamente de tipo finito) y $v_1, ..., v_n \in F$. Entonces existe una única aplicación lineal $f: E \to F$ tal que $f(u_1) = v_1, ..., f(u_n) = v_n$. (2 puntos)
- B) Sea A una matriz nxn. Demostrar que si n es impar, $A^t \cdot A = I_n$ (I_n es la matriz identidad nxn) y det(A) = 1, entonces $det(A I_n) = 0$. (2 puntos)

Problema 3

Sea $f:\mathbb{R}^4 \to \mathbb{R}^4$ una aplicación líneal de espacios vectoriales de la que se conoce

$$f((1,1,0,0)) = (0,1,0,-1)$$
 y $f((1,0,1,0)) = (1,1,1,0)$

Hallar la matriz asociada, respecto de las bases canónicas, en los siguientes casos:

- A) Ker(f) = im(f) (1,5 puntos)
- B) $f \circ f = f$ (2 puntos)