In [1]:

```
#step1
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]:
```

```
#step2
k=pd.read_csv(r"C:\Users\shaik\Downloads\bottle.csv.zip")
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_4592\84675588.py:2: DtypeWarni ng: Columns (47,73) have mixed types. Specify dtype option on import or se t low_memory=False.

k=pd.read_csv(r"C:\Users\shaik\Downloads\bottle.csv.zip")

Out[2]:

	Cs	st_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0		1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1		1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
k=k[['S	ı tı Salı	nty',	Lunms Fr 'T_degC' attribu	']]	19- 4903CR- HY-060- aset 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400
	ns 10	=['saː	l','Temp		19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300
 33.44 33.44 33.44 	10	Temp 10.50 10.46 10.46	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
3 33.42	20	10.45								
 4 33.42 5 33.43 864858 6 33.44 7 33.42 	31 40	10.45 10.45 34404 10.45 10.24	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
8 33.42 864839 9	20	10.06	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860		34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861		34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

In [4]: Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L STheta

```
#step3
#exploring the data scatter-plotti20 the data
sns.lmplot(x="sal",y="Temp",dat61487 order=2,ci=None)
864862 34404 864863 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4 026.4
```

<seaborn.axisgrid.FacetGrid at 0x1ffd55d1850>

In [5]:

k.describe()

Out[5]:

	sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

In [6]:

In [7]:

```
#step4
#data cleaning-elinimating
k.fillna(method='ffill',inplace=True)
k
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_4592\463270389.py:3: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

k.fillna(method='ffill',inplace=True)

Out[7]:

	sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

864863 rows × 2 columns

In [8]:

```
#step5
#traing our model
x=np.array(k['sal']).reshape(-1,1)
y=np.array(k['Temp']).reshape(-1,1)
```

In [9]:

```
k.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_4592\53174099.py:1: SettingWit hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

k.dropna(inplace=True)

In [10]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.20121086560488588

In [11]:

```
#step6
#exploring our results
#data scatter of predicted values
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [12]:

```
#selectin first 500 rows
k500=k[:][:500]
sns.lmplot(x="sal",y="Temp",data=k500,order=1,ci=None)
k500.fillna(method='ffill',inplace=True)
x=np.array(k500['sal']).reshape(-1,1)
y=np.array(k500['Temp']).reshape(-1,1)
k500.dropna(inplace=True)
```


In [13]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("regression:",regr.score(x_test,y_test))
```

regression: 0.8495895977006025

In [14]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show
```

Out[14]:

<function matplotlib.pyplot.show(close=None, block=None)>

In [15]:

```
#step8
#evalution of model
#train the model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#evaluate the model on test data
model =LinearRegression()
model.fit(x_train,y_train)
```

Out[15]:

LinearRegression()

In [16]:

#step9:

'''dataset we have taken is poor for linear model but with smaller data works well'''

Out[16]:

'dataset we have taken is poor for linear model but with smaller data work s well'

In [17]:

```
#elasticnet
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
y_pred_elastic=regr.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set",mean_squared_error)
```

```
[-1.23013343]
[49.21076752]
Mean Squared Error on test set 8.939517796114124
```