700, Health Sciences Drive, Stony Brook, New York

Shrinath Deshpande

https://deshpandeshrinath.github.io/ Mobile: +1-631-633-1851

Education

Stony Brook University

Stony Brook, NY

Doctor of Philosophy (Ph.D.) (Major: Mechanical, Minor: Computer Science), GPA 3.88

Aug. 2015 - May 2020

Email: deshpandeshrinath@gmail.com

- Relevent Coursework: Artificial Intelligence, Computer Vision, Machine Learning, Analysis of Algorithms, Advanced Control Systems, Robotics, Advanced Dynamics, Computational Geometry, Geometric Modeling, Product Design Optimization
- Developing the world's first Machine Learning-driven Mechanism Design computational framework, under the guidance of Dr. Purwar; funded by \$450K National Science Foundation grant.

Experience

Autodesk Research

San Francisco, CA

May 2019 - Aug 2019

Robotics Research Intern

- Worked on CAD Informed Adaptive Robotic Assembly Project; Developed a CAD-driven Assembly Motion Planner for 3D CAD Assemblies; Implemented in Fusion 360 and an in-house Robotic Environment.
- Integrated a concave-concave mesh collision library (C++) with In-house Robotic Environment; Impacted three research projects
- Identified an opportunity to leverage the data created by the motion planner; Initiated a novel deep learning project on learning the Latent Embeddings for Assembly Motion Plans; Developed a representation schema for Motion Plans; Trained a VAE on a synthetic dataset; Applications include Synthesis, Recognition, and Segmentation of Motion Plans

Stony Brook University

Stony Brook, NY
May 2016 - Present

Research Assistant

- Developed an ML-assisted framework for Mechanism Design; Outperforms the state of the art algorithms for mechanism synthesis
- Deep Learning is applied for Probabilistic Inference, Representation Learning, Conditional Generation, Sequence Modeling and Translation, Anomaly Detection, Image Segmentation, Embedding Generation, Similarity Matching, and Clustering
- $\bullet \ \ {\rm Deep \ Learning \ is \ augmented \ with \ domain-specific \ synthesis \ algorithms \ for \ Computational \ Creativity.}$
- Developing a Machine Learning-Driven Web-Based App for Synthesis of Mechanical Linkages; Deployed on Google Cloud Platform; url: http://motiongenpro.appspot.com/; [Tensorflow, React, Redux, MongoDB, GCP]
- Lead author of an award-winning publication for solving practical synthesis problems (doi: 10.1115/1.4037801)
- Published four first authored journals and

Skills

- Languages: Proficient in Python, Javascript, C++, MATLAB, Competent with Mathematica, HTML5, CSS
- Tools & Technologies: Tensorflow, OpenCV, Simulink, ROS, Vim, Scikit-learn, OpenGL, Canvas, Three.js, React, Redux, GCP, AWS, Kubernetes, Kubeflow, SageMaker, Firebase, MongoDB, Annoy

Publications

- Deshpande S, Purwar A. An Image-Based Approach to Variational Path Synthesis of Linkages, Accepted for ASME International Design Engineering Technical Conferences 2020
- Deshpande S, Purwar A. Computational Creativity via Assisted Variational Synthesis of Mechanisms using Deep Generative Models, ASME Journal of Mechanical Design 2019; doi:10.1115/1.4044396
- Loya, A., Deshpande, S., Purwar, A. Machine Learning Driven Individualized Gait Rehabilitation: Classification, Prediction, and Mechanism Design, ASME Journal of Engineering in Medical Diagnostics and Therapy, May 2020
- Deshpande S, Purwar A. A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages, Feb 2019, ASME J. Computing and Information Science in Engineering, doi 10.1115/1.4042325
- Deshpande S, Purwar A. A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem, ASME. J. Mechanisms Robotics. 2017;9(6):061005-061005-9. doi:10.1115/1.4037801
- Purwar, A., Deshpande, S., Ge, Q. J. MotionGen: An iOS and Android App for Planar Four-Bar Motion Generation, ASME IDETC 2016 August.
- Deshpande, S, et al. Wall-climbing robot with mechanically synchronized gait. Industrial Instrumentation and Control (ICIC), 2015 International Conference on. IEEE, 2015.

Relevant Projects

Deep Reinforcement Learning for Continuous Control Tasks

 $Tensorflow,\ OpenAI-Gym\ https://github.com/deshpandeshrinath/deepDGP$

CSE 537 AI, Prof. N Balasubramanian

Jan 2018 – May 2018

- Implemented Deep DPG algorithm to learn continuous control policies; Compatible with all OpenAI-Gym environments.
- Implemented Hindsight Experience Replay for learning goal-oriented tasks with sparse binary rewards.

Visual Odometry with Deep Learning

CSE527 Computer Vision, Prof. Roy Shilkrot

Python, Tensorflow, OpenCV https://github.com/sladebot/deepvo

Oct 2017 - Dec 2017

- Built deep Recurrent Convolutional Neural Network for pose estimation of a car; CNN was derived from pretrained FlowNet2.0
- Trained and tested on KITTI visual odometry dataset (grayscale); Supported by Human Interaction Lab, Stony Brook.

Face Tracking in Video

CSE527 Computer Vision, Prof. Roy Shilkrot

Python, OpenCV

Oct 2017 - Nov 2017

• Detected the face in first frame with Viola-Jones Detector; Compared the tracking by CAMShift, PF, KF, Optical Flow tracker algorithms.

Computing Central Trajectory

CSE555 Computational Geometry, Prof. Joseph Mitchell

CGAL, OpenGL, Boost, C++

March 2017 - May 2017

- Developed an algorithm to find valid representative trajectory among n time-stamped trajectories; works in d dimensional space.
- The algorithm builds a weighted DAG on input; designed heuristics for assigning weights. The output is Dijkstra's shortest path on DAG.

Optimal Control of a Drifting Car

MEC560 Advanced Control Systems, Prof. Vivek Yadav

Oct 2016 - Dec 2016

MATLAB, GPOPS-II [Source]

- $\bullet \ \ \text{Designed Ext. Kalman Filter for Observer; Modeled governing dynamics; Used empirical tire friction model for drift simulations.}$
- Computed shortest path using Dynamic Programming. Obtained Optimal Control via Direct Collocation; Implemented in MATLAB using optimal control solver GPOPS II.
- Used high gain PID controller to follow optimal control. Results match with empirical drifting techniques used by race drivers.

Motion Planning of Baxter Arm

MEC529 Robotics, Prof. N. Chakraborty

MATLAB

March 2016 - May 2016

- Computed smooth B-Spline motion for pushing. Computed Jacobian matrix; Applied approximate Inverse Position Kinematics
- Obtained joint angles and rates for the task. Performed simulations to validate the results.

Interactive Manipulation of NURBS Surfaces

MEC572 Geomtric Modelling, Prof. Anurag Purwar

C++, OpenGL

March 2016 - May 2016

• QT5, OpenGL based implementation in C++ for interactive manipulation of Non Uniform Rational B-Spline Surfaces.

Wall Climbing Robot

Senior Design Project

MATLAB, Simulink, Solidworks

Jan 2015 - May 2015

- Design of a novel mechanism inspired by Gecko; Fabrication CNC lathe, laser cutter and 3D printing, vacuum for adhesion
- Developed control system for autonomous climbing on flat surfaces; climbing speed of 3 inches/sec

Awards

- Research Intern Culture Catalyst Award, Autodesk, Aug 2019
- Autodesk Intern Blog Contest Winner, Autodesk, Aug 2019
- Award of Research Achievement, Sigma XI Scientific Research Society, May 2019
- Featured in Student Spotlight, Mechanical Engineering, Stony Brook University, Fall 2019
- A.T. Yang Award in Theoretical Kinematics, Aug 2017