Maclane pentagon is some comonadic descent (Rough Proof) (6 Pages)

Christopher Mary EGITOR.NET, https://github.com/mozert

March 21, 2015

Abstract

This text responds to Gross Coq Categories Experience [1] and Chlipala Compositional Computational Reflection [2] of ITP 2014. "Compositional" is synonymous for functional/functorial; "Computational Reflection" is synonymous for monadic semantics; and this text attempts some comonadic descent along functorial semantics: Dosen semiassociative coherence covers Maclane associative coherence [3]. UPDATE HERE https://github.com/mozert

1 Contents

This text responds to Gross Coq Categories Experience [1] and Chlipala Compositional Computational Reflection [2] of ITP 2014. "Compositional" is synonymous for functional/functorial; "Computational Reflection" is synonymous for monadic semantics; and this text attempts some comonadic descent along functorial semantics: Dosen semiassociative coherence covers Maclane associative coherence [3].

Categories [4] [5] study the interaction between reflections and limits.

The basic configuration for reflections is:

where, for all reification functor into any Modos category, the map ($_\star$ reflection) \circ (reification \star unit) is bijective, or same, for all object M' in CoMod, the polymorphic in M map (coreflection $_$) \circ unit $_{M'}$: Mod(reflection $M', M) \to \operatorname{CoMod}(M', \operatorname{coreflection} M)$ is bijective (and therefore also polymorphic in M' with reverse map $\operatorname{counit}_{M} \circ$ (reflection $_$) whose reversal is polymorphically determined by ($\operatorname{coreflection} \star$ $\operatorname{counit}) \circ$ (unit \star coreflection) = identity and ($\operatorname{counit} \star$ reflection) \circ (reflection \star unit) = identity); and it is said that the unit natural/polymorphic/commuting transformation is the unit of the reflection and the reflective pair (reification \circ coreflection, reification \star unit) is some coreflective ("Kan") extension functor of the reification functor along the reflection functor. ... And SemiAssoc <-> Assoc COMONADIC, List <-> SemiAssoc MONADIC...

2 Misc (TO BE UPDATED LATER)

MACLANE PENTAGON IS SOME COMONADIC DESCENT. LOGICAL COHERENCE. CATEGORICAL DESCENT. COQ DEDUKTI MODULO.

1. LOGICAL COHERENCE -GROSS, CHLIPALA, COMONADIC FUNCTORIAL SEMANTIC,~~ GALOIS, GALTHENDIECK, GENTZEN -ERRORS OF DOSEN 1 CONFUSE MIXUP CONVERTIBLE (DEFINITIONALLY/META EQUAL) WITH PROPOSITIONAL EQUAL WHEN THE THINGS ARE VARIABLES INSTEAD OF FULLY CONSTRUCTOR-ED EXPLICIT TERMS 2. RELATED TO THIS IS THE COMPUTATIONNALLY WRONG ORDER OF HES PRESENTATION -METAAUTO LOGICAL PROGRAMMING CONTRAST REFLECTION PROGRAMMING -CATEGORICAL LOGICAL COHERENCE AS META REFLECTION PROGRAMMING -

induction; (eval beta iota; auto logical unify; auto substitution rewrite); repeat ((match goal | context match term => destruct); (eval beta iota; auto logical unify; auto substitution rewrite)); congruence; omega; anyreflection-convert or logify recur or unify or substitute rewrite or reflect

- (... classification more than property specification subset, example: regurlar expression, red-black tree, closed categories, categories recur on applied subterm or nested subterm ...)
- 2. CATEGORICAL DESCENT -POLYMORPHIC REFLECTION (ADJUNCTION)~, MONADIC ADJUNCTION -INTERNALISATION -> FUNCTORIAL SATURATION (YONEDA FREE ALGEBRA) -TENSOR OF THEORIES -COMONADICITY SHALL BE VERY RELATED TO COHERENCE -KAN EXTENSIONS IS CONTEXT FOR PROOFS BY REIFICATION/REFLECTION -BASE FOR KAN EXTENSIONS MAYBE MODOS, MOVE FROM CARTESIAN LIMITS TO ?? -(NORMALIZE_ARROW_ASSOC ON NORMAL IS REVERSIBLE THEREFORE NORMALIZE_UNIT_ASSOC IS UNIT OF REFLECTION)

-SemiAssoc <-> Assoc COMONADIC , NO LACK NEWMAN CONFLUENCE

- List <-> SemiAssoc MONADIC , LACK NEWMAN CONFLUENCE, MAYBE "ITERCOVER RESOLUTION" ? -MORE BY INTERNALISATION OF COMMON COHERENCES -NOT YET FULL CATEGORICAL DESCENT FORM, PROGRAMME LOGICAL DOSEN AND CATEGORICAL BORCEUX 1 2 AUTO DESCENT VIEW, RELATE CONVERTIBILITY TYPES BY AUTORESOLUTION OR TACTIC, RELATE CANONICAL-STRUCTURE-AND-COERCION RESOLUTION
- 3. COQ DEDUKTI MODULO -COQTEXT ASSOC RECURSIVE SQUARE, NO ASSOC PREORDER -COQTEXT SEMIASSOC COMPLETENESS, NO SEMIASSOC CONFLUENCE, NO SEMIASSOC PREORDER

3 Maclane Associative Coherence

```
Infix "\setminus \setminus 0" := (up_0) (at level 59, right associativity).
Print objects.
Infix "\tilde{a}" := same_assoc (at level 69).
Print same\_assoc.
Infix "\tilde{s}" := same' (at level 69).
About same'.
Print normal.
Inductive normal: objects \rightarrow \mathtt{Set} :=
     normal\_cons1: \forall l: letters, normal (letter l)
  | normal\_cons2 : \forall (A : objects) (l : letters),
                           normal\ A \rightarrow normal\ (A\ /\ 0\ letter\ l).
Print normalize_aux.
fix normalize\_aux (Z A : objects) \{ struct A \} : objects :=
  \mathtt{match}\ A with
  | letter l \Rightarrow Z / \backslash 0 letter l
  |A1| \land 0 A2 \Rightarrow normalize\_aux (normalize\_aux Z A1) A2
       : \mathit{objects} \rightarrow \mathit{objects} \rightarrow \mathit{objects}
Print normalize.
fix normalize (A : objects) : objects :=
  {\tt match}\ A\ {\tt with}
  | letter l \Rightarrow letter l
  A1 / 0 A2 \Rightarrow normalize A1 < / 0 A2
```

Print developed.

This development or factorization lemma necessitate some deep ('well-founded') induction, using some measure coherence.length which shows that this may be related to arithmetic factorization. Print coherence.length.

```
com\ A0\ B0\ C\ f1\ f2 \Rightarrow length\ A0\ B0\ f1\ +\ length\ B0\ C\ f2
  end
Check development: \forall (len : \mathbf{nat}) (A B : \mathbf{objects}) (f : \mathbf{arrows} \ A \ B),
         length f < len \rightarrow
         \{f': arrows A B \&
         (developed f' \times ((length f' < length f) \times (f \sim f'))\%type.
Notation normalize_aux_unitrefl_assoc := normalize_aux_arrow_assoc.
Print normalize_aux_arrow_assoc.
fix normalize\_aux\_arrow\_assoc (Y Z : objects) (y : arrows\_assoc Y Z)
                                       (A:objects) {struct A}:
  arrows\_assoc (Y / \ 0 A) (Z < / \ 0 A) :=
  match A as A\theta return (arrows\_assoc\ (Y\ /\ 0\ A\theta)\ (Z</\ 0\ A\theta)) with
    letter \ l \Rightarrow y / 1a \ unitt\_assoc \ (letter \ l)
  A1 / 0 A2 \Rightarrow
        normalize\_aux\_arrow\_assoc~(Y~/\backslash 0~A1)~(Z</\backslash 0~A1)
          (normalize\_aux\_arrow\_assoc\ Y\ Z\ y\ A1)\ A2 < oa
        bracket_left_assoc Y A1 A2
  end
      : \forall Y Z : objects,
         arrows\_assoc \ Y \ Z \rightarrow
         \forall A : objects, arrows\_assoc (Y / \ A) (Z < / \ A)
Notation normalize_unitrefl_assoc := normalize_arrow_assoc.
Print normalize_arrow_assoc.
fix normalize\_arrow\_assoc (A : objects) : arrows\_assoc A (normalize A) :=
  match A as A\theta return (arrows\_assoc\ A\theta\ (normalize\ A\theta)) with
    letter l \Rightarrow unitt\_assoc (letter l)
    A1 / 0 A2 \Rightarrow normalize\_aux\_unitrefl\_assoc (normalize\_arrow\_assoc A1)
A2
  end
      : \forall A : objects, arrows\_assoc \ A \ (normalize \ A)
Check th151 : \forall A : objects, normal A \rightarrow normalize A = A.
    Aborted th270: For local variable A with normal A, although there is the
propositional equality th 151: normalize A = A, that normalize A, A are not
```

 $up_1 A0 B0 A1 B1 f1 f2 \Rightarrow length A0 B0 f1 \times length A1 B1 f2$

 $bracket_left _ _ _ \Rightarrow 4$

convertible (definitionally/meta equal); therefore one shall not regard $nor-malize_unitrefl_assoc$, $unitt\ A$ as sharing the same domain-codomain indices of $arrows_assoc$

Check th260 : $\forall NP$: **objects**, **arrows**_**assoc** $NP \rightarrow$ normalize P.

Aborted lemma_coherence_assoc0: For local variables N, P with $arrows_assoc\ N\ P$, although there is the propositional equality th260: $normalize\ N = normalize\ P$, that $normalize\ A$, $normalize\ B$ are not convertible (definitionally/meta equal); therefore some transport other than eq_rect , some coherent transport is lacked.

```
Check normalize_aux_map_assoc
```

```
 (y: \mathsf{arrows\_assoc}\ X\ Y)\ (Z: \mathsf{objects})   (y: \mathsf{arrows\_assoc}\ Y\ Z),   \mathsf{directed}\ y \to \\ \forall\ (A\ B: \mathsf{objects})\ (f: \mathsf{arrows\_assoc}\ A\ B),   \{y\_map: \mathsf{arrows\_assoc}\ (Y </ \\ \ 0\ A)\ (Z </ \\ \ 0\ B)\ \&   ((y\_map < \mathsf{oa}\ \mathsf{normalize\_aux\_unitrefl\_assoc}\ x\ A \sim \mathsf{a}   \mathsf{normalize\_aux\_unitrefl\_assoc}\ y\ B < \mathsf{oa}\ x\ /\\ \ 1\mathsf{a}\ f) \times \mathsf{directed}\ y\_map)\%type\}.  Check \mathsf{normalize\_map\_assoc}  : \forall\ (A\ B: \mathsf{objects})\ (f: \mathsf{arrows\_assoc}\ A\ B)
```

```
: \forall (A \ B : \mathbf{objects}) \ (f : \mathbf{arrows\_assoc} \ A \ B), \{y\_map : \mathbf{arrows\_assoc} \ (\mathsf{normalize} \ A) \ (\mathsf{normalize} \ B) \& ((y\_map < \mathsf{oa} \ \mathsf{normalize\_unitrefl\_assoc} \ A \sim \mathsf{a}  \mathsf{normalize\_unitrefl\_assoc} \ B < \mathsf{oa} \ f) \times \mathbf{directed} \ y\_map)\%type\}.
```

Print Assumptions normalize_map_assoc.

ERRORS OF DOSEN: 1. CONFUSE MIXUP CONVERTIBLE (DEFINITIONALLY/META EQUAL) WITH PROPOSITIONAL EQUAL WHEN THE THINGS ARE VARIABLES INSTEAD OF FULLY CONSTRUCTORED EXPLICIT TERMS, 2. RELATED TO THIS IS THE COMPUTATIONNALLY WRONG ORDER OF HES PRESENTATION

4 Dosen Semiassociative Coherence

Print nodes.

```
Inductive nodes: objects \rightarrow Set:=
self: \forall A: objects, A
| at\_left: \forall A: objects, A \rightarrow \forall B: objects, A / \setminus 0 B
| at\_right: \forall A B: objects, B \rightarrow A / \setminus 0 B.
```

```
Print lt_right.
Inductive lt\_right: \forall A: objects, A \rightarrow A \rightarrow Set:=
     lt\_right\_cons1: \forall (B:objects) (z:B) (C:objects),
                            self (C / \backslash 0 B) < r at\_right C z
  | lt\_right\_cons2 : \forall (B \ C : objects) (x \ y : B),
                            x < r y \rightarrow at\_left \ x \ C < r \ at\_left \ y \ C
  | lt\_right\_cons3 : \forall (B \ C : objects) (x \ y : B),
                            x < r y \rightarrow at\_right \ C \ x < r \ at\_right \ C \ y.
Notation comparable A B := \{f : arrows\_assoc \ A \ B \mid True\} \ (only \ parsing).
Check bracket_left_on_nodes
      : \forall A B C : \mathbf{objects}, \mathbf{nodes} (A /\0 (B /\0 C)) \rightarrow \mathbf{nodes} ((A /\0 B))
/\setminus 0 C).
Definition bracket\_left\_on\_nodes (A B C : objects) ( x : nodes (A \wedge (B \wedge
(C)): nodes ((A \wedge B) \wedge C).
dependent destruction x.
exact (at\_left (self (A \wedge B)) C).
exact (at\_left (at\_left x B) C).
dependent destruction x.
exact (self\ ((A \land B) \land C)).
exact (at\_left (at\_right A x) C).
exact (at_right\ (A \land B)\ x).
Defined.
Check arrows_assoc_on_nodes : \forall A B : objects, arrows_assoc A B \rightarrow nodes
A \rightarrow  nodes B.
    Soundness.
Check lem033 : \forall (A B : objects) (f : arrows A B) (x y : A),
         f x < r f y \rightarrow x < r y.
    Completeness. Deep ('well-founded') induction on lengthn'', with accu-
mulator/continuation cumul_letteries.
Check lemma_completeness : \forall (B A : objects) (f : arrows_assoc B A)
                                              (H_cumul_lt_right_B : \forall x y : nodes)
B, lt_right <math>x y \rightarrow lt_right (f x) (f y)
```

Infix "<r" := lt_right (at level 70).

```
, arrows A B.
Check lem005700: \forall (B: objects) (len: nat),
  \forall (cumul\_letteries : nodes B \rightarrow bool)
            (H_cumul_letteries\_wellform: cumul_letteries\_wellform' B cumul_letteries)
            (H_{cumul\_letteries\_satur}: \forall y: \mathbf{nodes}\ B, cumul\_letteries\ y = \mathsf{true}
                                                                            \rightarrow \forall z : \mathsf{nodes}
B, lt_leftorright_eq y z \rightarrow cumul_letteries z = true
            (H_len: lengthn' cumul_letteries H_cumul_letteries_wellform <
len).
  \forall (A : \mathbf{objects}) (f : \mathbf{arrows\_assoc} \ B \ A)
            (H\_node\_is\_lettery: \forall x: nodes B, cumul\_letteries x = true \rightarrow
node_is_lettery f(x)
            (H\_object\_at\_node : \forall x : nodes B, cumul\_letteries x = true \rightarrow
object_at_node x = object_at_node (f x)
            (H_{-}cumul_{-}B: \forall x y: nodes B, lt_{right} x y \rightarrow lt_{right} (f x) (f
y))
  , arrows A B.
Print Assumptions lem005700.
    Get two equivalent axioms.
JMeq.JMeq.eq: \forall (A: Type) (x y: A), JMeq.JMeq x y \rightarrow x = y
Eqdep.Eq\_rect\_eq.eq\_rect\_eq: \forall (U: Type) (p: U) (Q: U \rightarrow Type)
                                           (x : Q p) (h : p = p), x = eq_rect p Q
```

Infix "<l" := lt_-left (at level 70). Print lt_-left .

x p h

Maybe some betterement revision/egition by using objects_same is necessary here. Contrast this eq with objects_same Print lt_leftorright_eq.

```
Notation lt\_leftorright\_eq \ x \ y := (sum \ (eq \ x \ y) \ (sum \ (lt\_left \ x \ y) \ (lt\_right \ x \ y))).
```

 $nodal_multi_bracket_left_full$ below and later really lack this constructive equality $objects_same$, so that we get transport map which are coherent, transport map other than eq_rect Print $objects_same$.

```
\begin{array}{l} \textbf{Inductive} \ objects\_same: \ objects \rightarrow objects \rightarrow \texttt{Set} := \\ objects\_same\_cons1: \ \forall \ l: \ letters, \\ objects\_same \ (letter \ l) \ (letter \ l) \end{array}
```

```
| objects_same_cons2 : \forall A A' : objects,

objects_same A A' \rightarrow

\forall B B' : objects,

objects_same B B' \rightarrow

objects_same (A /\0 B) (A' /\0 B').
```

 $nodal_multi_bracket_left_full$ is one of the most complicated/multifolded construction in this coq text. $nodal_multi_bracket_left_full$ below and later really lack this constructive equality $objects_same$, so that we get transport map which are coherent, transport map other than eq_rect

```
Print "/\".
```

```
fix foldright (A : objects) (Dlist : list objects) {struct Dlist} :
  objects :=
  match Dlist with
    nil \Rightarrow A
  |(D0 :: Dlist0)\% list \Rightarrow foldright \ A \ Dlist0 \ / \ 0 \ D0
Check multi_bracket_left : \forall (A B C : objects) (Dlist : list objects),
         arrows (A /\ 0 (B /\ 0 C /\ Dlist)) ((A /\ 0 B) /\ 0 C /\ Dlist).
Check (fun A (x: nodes A) (A2 B2 C2: objects) (Dlist2: list objects)
     @nodal_multi_bracket_left_full A x A2 B2 C2 Dlist2).
Print object_at_node.
object\_at\_node =
fix \ object_at_node \ (A : objects) \ (x : A) \ \{struct \ x\} : objects :=
  {\tt match}\ x\ {\tt with}
   self\ A\theta \Rightarrow A\theta
    at\_left \ A0 \ x0 \ \_ \Rightarrow object\_at\_node \ A0 \ x0
   | at\_right \_ B x0 \Rightarrow object\_at\_node B x0 |
```

object_is_letter is some particularised sigma type so to do convertibility (definitinal/meta equality) instantiatiations instead and avoid propositional equalities. Print object_is_letter.

```
\begin{array}{l} \textbf{Inductive} \ object\_is\_letter: \ objects \rightarrow \texttt{Set} := \\ object\_is\_letter\_cons: \ \forall \ l: \ letters, \ object\_is\_letter \ (letter \ l). \end{array}
```

Print $object_is_tensor$.

```
Print node\_is\_letter.
Notation node\_is\_letter \ x := (object\_is\_letter \ (object\_at\_node \ x)).
Print node_is_tensor.
Notation node\_is\_tensor \ x := (object\_is\_tensor \ (object\_at\_node \ x)).
Print node_is_lettery.
Notation node\_is\_lettery f w :=
  (prod
      (\forall (x: nodes \_), lt\_leftorright\_eq w x \rightarrow lt\_leftorright\_eq (f w) (f x))
       (\forall (x : nodes \_), lt\_leftorright\_eq (f w) (f x) \rightarrow lt\_leftorright\_eq ((rev))
f) (f w)) ((rev f) (f x))).
Print cumul_letteries_wellform'.
Notation cumul\_letteries\_wellform'\ B\ cumul\_letteries :=
  (\forall x: B,
    object\_is\_letter\ (object\_at\_node\ x) \rightarrow eq\ (cumul\_letteries\ x)\ true).
Print lengthn''.
lengthn'' =
fix lengthn''(A:objects) (cumul\_letteries: A \rightarrow bool)
                   (H\_cumul\_letteries\_wellform: cumul\_letteries\_wellform' A
                                                               cumul_letteries) {struct
A}:
  nat :=
  match
     A as o
     return
        (\forall cumul\_letteries0 : o \rightarrow bool,
         cumul\_letteries\_wellform' \ o \ cumul\_letteries0 \rightarrow nat)
  with
  | letter l \Rightarrow
        fun (cumul\_letteries0 : letter l \rightarrow bool)
           (\_: cumul\_letteries\_wellform' (letter l) cumul\_letteries0) \Rightarrow 1
  |A1| \wedge 0 A2 \Rightarrow
        fun (cumul\_letteries0 : A1 / \setminus 0 A2 \rightarrow bool)
```

```
(H\_cumul\_letteries\_wellform0: cumul\_letteries\_wellform'(A1 / \0
A2)
                                                     cumul\_letteries0) \Rightarrow
       let s :=
          Sumbool.sumbool\_of\_bool\ (cumul\_letteries0\ (self\ (A1\ /\ 0\ A2))) in
       if s
       then 1
       else
         let IHA1 :=
           lengthn'' A1 (restr_left cumul_letteries0)
              (restr_left_wellform cumul_letteries0 H_cumul_letteries_wellform0)
in
         let IHA2 :=
           lengthn" A2 (restr_right cumul_letteries0)
              (restr\_right\_wellform\ cumul\_letteries0\ H\_cumul\_letteries\_wellform0)
in
         IHA1 + IHA2
  end cumul\_letteries\ H\_cumul\_letteries\_wellform
Check restr_left : \forall B1 \ B2 : objects, (B1 \ \land \lor 0 \ B2 \rightarrow bool) \rightarrow B1 \rightarrow bool.
Check restr_left_wellform : \forall (B1 \ B2 : \mathbf{objects}) (cumul\_letteries : B1 / \setminus 0
B2 \rightarrow bool),
         cumul_letteries_wellform' (B1 / 0 B2) cumul_letteries \rightarrow
         cumul_letteries_wellform' B1 (restr_left cumul_letteries).
   More at https://github.com/mozert/.
```

References

- [1] Jason Gross, Adam Chlipala, David I. Spivak. "Experience Implementing a Performant Category-Theory Library in Coq". In: Interactive Theorem Proving. Springer, 2014.
- [2] Gregory Malecha, Adam Chlipala, Thomas Braibant. "Compositional Computational Reflection". In: Interactive Theorem Proving. Springer, 2014.
- [3] Kosta Dosen, Zoran Petric. "Proof-Theoretical Coherence". http://www.mi.sanu.ac.rs/~kosta/coh.pdf, 2007.
- [4] Francis Borceux, George Janelidze. "Handbook of categorical algebra. Volumes 1 2 3.". Cambridge University Press, 2001.
- [5] Francis Borceux. "Handbook of categorical algebra. Volumes 1 2 3.". Cambridge University Press, 1994.