

Mise en service du Moby Crea- 20 minutes

Objectifs	0 0 0	 D1-01: Mettre en œuvre un système en suivant un protocole D2-01: Choisir le protocole en fonction de l'objectif visé. D2-02: Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par l'expérimentation. D2-03: Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation. D2-04: Choisir la grandeur physique à mesurer ou justifier son choix. 			
*					

Expérimenter e analyser

Activité 1

- ☐ Prendre connaissance de la Fiche 1 (Présentation générale).
- ☐ Prendre connaissance de la Fiche 2 (Mise en service du Moby).
- □ Proposer un schéma cinématique minimal du système.
- ☐ Donner les différences entre le système réel et le système didactique.

Expérimenter e analyser

Activité 2

- □ Réaliser un essai en utilisant le module « Mesures Moby Créa » et un mouvement « Car Ride ».
- ☐ Afficher les courbes.
- Commenter les courbes obtenues.
- ☐ Expliquer qualitativement comment sont obtenus les différents mouvements du MobyCrea.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le contexte industriel du système.
- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse de l'activité 2.

Pour XENS - CCINP - Centrale :

Conserver des copies d'écran dans PowerPoint ou Word

Pour CCMP:

• Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Détermination des lois de mouvement - 80 minutes

		B3-01	Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques		
nes		aux résultats expérimentaux.			
.₫		C1-04	Proposer une démarche permettant d'obtenir une loi entrée-sortie géométrique.		
606		C2-06	Déterminer les relations entre les grandeurs géométriques ou cinématiques.		
☐ C3-01 Mener une simulation numérique. ☐ D2-04 Choisir la grandeur physique à mesurer ou justifier son choix.			Mener une simulation numérique.		
pé		D2-04	Choisir la grandeur physique à mesurer ou justifier son choix.		
ifs		D2-05	Choisir les entrées à imposer et les sorties pour identifier un modèle de comportement.		
Objectifs		A4-03	Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou		
90		numériquement.			
		A4-04	Rechercher et proposer des causes aux écarts constatés.		

On cherche à reproduire les mouvements maternels. Pour cela, il faut :

Objectif

- modéliser les mouvements maternels ;
- reproduire ces mouvements grâce à un « robot ».

L'objectif de ce TP est de comparer les mouvements souhaités avec les mouvements réalisés par le Moby Crea. On cherchera ensuite à modéliser le comportement du système.

Dans le cadre de ce TP, on cherche à modéliser un mouvement de type « Car Ride ». On donne dans la figure ci-dessous la trajectoire idéale souhaitée dans le plan ainsi que les lois de mouvement de chacun des axes en fonction du temps.

Activité 1. Acquérir les trajectoires.

cpérimenter

- ☐ En utilisant la fiche 6, mesurer la trajectoire pour un mouvement de type « Car Ride ».
- Ouvrir le notebook sur Capytale : https://capytale2.ac-paris.fr/web/c/11e1-3612495.
- ☐ Importer les résultats sur Capytale (► Disponibles le temps de la session ► Ajouter un fichier disponible le temps de la session − En cas de problème le fichier 13_05_01_CarRide.txt peut vous porter secours).
- ☐ Afficher les courbes expérimentales.

Synthétiser

Résoudre analytiquement

Activité 2. Modélisation du mouvement idéal

On propose le schéma cinématique suivant pour l'axe de déplacement horizontal du MobyCrea.

- \Box Idéalement le mouvement de chacun des axes est sinusoïdal de la forme $f(x) = A \sin(\omega t + \varphi)$.
- Sur la courbe précédente, déterminer l'amplitude des mouvements verticaux et horizontaux ainsi que les pulsations. Remplir les valeurs numériques dans Capytale.
- ☐ Justifier brièvement le choix des liaisons.
- \Box Exprimer le déplacement x(t) et de y(t) de telle sorte à avoir la trajectoire « Car Ride ».
- ☐ En utilisant Capytale :
 - renseigner la ligne les_t : liste ou tableau numpy de 10 000 éléments régulièrement espacés entre 0 et 10 s;
 - renseigner la ligne les_x: liste ou tableau numpy de 10 000 correspondant aux abscisses du point P;
 - renseigner la ligne les_y : liste ou tableau numpy de 10 000 correspondant aux ordonnées du point P.
- ☐ Tracer les courbes en exécutant la cellule suivante.
- ☐ Conclure par rapport à la courbe souhaitée.

Activité 3. Comparaison

- ☐ Tracer sur le même graphe les courbes issues de la simulation et de l'expérimentation x et y en fonction du temps et y en fonction de x.
- Conclure.

Activité 4. Modéliser le mouvement horizontal

On propose le schéma cinématique suivant pour l'axe de déplacement horizontal du MobyCrea. La fiche 5 donne des informations complémentaires sur le paramétrage.

- \square Exprimer le déplacement x(t) correspondant à $\overrightarrow{AC} = x(t)\overrightarrow{\iota_0}$ en fonction de la rotation de la roue 4.
- \Box En utilisant Capytale, tracer x(t) en fonction du temps pour une vitesse de rotation de la pièce 4 à choisir.
- Comparer votre trajectoire avec la trajectoire idéale (Car ride).

	_
	ā
ø	Ē
~	⊆
ਰ	− o
5	–
=	=
O	.≌
S	=
œ,	>
2	—
_	- 5
	Ċ

Activité 5. Modéliser le mouvement vertical

- \Box Exprimer le déplacement vertical y(t) de la nacelle berçant le bébé.
- En utilisant Capytale, comparer la trajectoire souhaitée, la trajectoire simulée, et la trajectoire mesurée.
- ☐ Comparer les résultats issus du modèle souhaité, du modèle simulé et les résultats expérimentaux.
- □ Conclure

Conclure

Activité 6. Modéliser le mouvement du Moby.

- ☐ Réaliser le tracé expérimental et celui issu de la modélisation.
- □ Conclure.

Réaliser une synthèse dans le but d'une préparation orale

- Présenter les points clés de la modélisation analytique.
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

nthèse

Pour XENS - CCINP - Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter les points clés de la résolution utilisant Capytale.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.