Programmation orientée agents #2 L'importance de l'environnement

M1 S2 - Université de Montpellier II

FMIN207 – Parcours Imagina (et Aigle)

Jacques Ferber

Version 1.2. Oct 2013

Resp du module: J. Ferber

Comment programmer les déplacements en NetLogo

Mouvements

- Les tortues ont un mouvement local défini à partir d'une « géométrie tortue »
- fd, rt, lt
 - @ cercle : repeat 360 [fd 1 rt 1]

Possible d'aller vers un objet particulier

- NetLogo:
 - reset heading towards x fd 1
 - Où x est une tortue ou un patch.
- Ex:
 - reset heading towards patch 0 0
 - face reine 1 ;; va vers la 1ère reine
 - * face one-of reines ;; va vers une reine quelconque...

Problèmes des déplacements directs

Hypothèses

- Suppose que l'on connaisse les coordonnées (ou tout du moins que l'on puisse avoir la direction vers le but)
- Ne prend pas en compte les obstacles
- ◆ Problème: ne prend pas en compte la notion de perception limitée essentielle dans la programmation agent!!

Les agents ont une perception locale

Perception limitée

Primitives de perception en Netlogo

- <trucs> in radius <rayon de perception>
 - Où trucs est un agentset (turtles, patches, « breed » ou une restriction d'un de deux là)

\bullet Ex:

- Reines in radius 3
 - Retourne l'agentset de toutes les reines dans un rayon de 3
- patches with energy-level > 10 in radius 5
 - Retourne l'agentset de tous les patches

Pour aller vers ce que l'on a perçu

◆ Aller vers l'objet

- towards <objet perçu>
- Ex:

```
let p one-of reines in-radius 5
  if p != nobody [
     set heading towards p ;; ou face p
     fd 1 ;; ou faire un « gigoter » wiggle
]
```

Aller vers l'objet le plus proche

- min-one-of <agentset> [distance myself]
- Ex:
- Let r min-one-of reines in-radius 5 [distance myself]
 if r != nobody [
 face r
]

L'importance de l'environnement

- **♦** Mais l'environnement contient plein d'informations:
 - Informations naturelles
 - Végétation, amers, paysage (montagnes, sols, etc.)
 - Ajouts d'informations
 - Marques, balises, phéronomes
 - Système de communication
 - Signaux

Aller vers un patch particulier

- ◆ Pour aller vers le patch avec la plus grande valeur d'un attribut
 - max-one-of <patches visibles> [<attribut>]
 - Ex:
 - max-one-of patches in radius 8 [hauteur-herbe]
 - Retourne le patch ayant l'herbe la plus haute dans un rayon de 8
 - Attention: doit avoir défini l'attribut 'hauteur-herbe' comme attribut de patch:

```
patches-own [hauteur-herbe]
```

Principe général d'un environnement qui contient des indices

- On suit les indices en espérant qu'ils nous conduisent au but en nous faisant éviter les obstacles
- Les indices sont des substituts de ce vers quoi on se dirige
 - Ex: les traces des animaux pour un prédateur

Se diriger grâce à un signal

les indices et traces sont interprétés comme des signaux pour aller vers un but

L'agent est attiré par le signal émis par la borne

Aller vers les valeurs les plus grandes du champ

= suivre le gradient d'un champ de potentiel

Suivi de gradient de potentiel

Suivre un gradient de potentiel

Les forces sont définies comme le gradient d'un champ de potentiel

$$F(p) = -grad(U(p))$$

Les buts sont représentés comme des champs attractifs.

Les obstacles

- Les obstacles sont des champs qui émettent un signal négatif
 - Les obstacles sont représentés comme des champs répulsifs

Le mouvement est obtenu par une combinaison de champs attractifs et répulsifs

$$U(p) = U_{attr(p)} + U_{repul(p)}$$

- Les obstacles sont des champs qui émettent un signal négatif
 - Les obstacles sont représentés comme des champs répulsifs

Diffusion

- ♦ Primitive de diffusion: diffuse <variable> <coeff> (associée à l'observateur)
 - diffuse chemical 0.40
 - chaque patch diffuse 40% de sa variable chemical ;; à ses 8 patches voisins. Donc, chaque patch voisin reçoit 1/8 de 40% de la variable chemical (chaque patch voisin reçoit 5% de la valeur du patch diffusant)

Champs de potentiels en NetLogo

♦Construction d'un paysage

- Primitive
 - diffuse <attribut de patche> <coeff>
 - Partage sa valeur de <coeff> avec ses voisins

♦Suivi de gradient

- Primitive
 - " uphill <attribut de patche>
 - Avance la tortue dans le patch dont la valeur de l'attribut est la plus élevée.

Evaporation

♦ La vitesse de disparition des odeurs...

set odeur *(100 - taux) / 100

• A chaque tour, le patch perd taux (en pourcentage) de sa valeur d'odeur.