class15

Shivani Khosla (PID: A59010433)

11/17/2021

Background

RNA-seq analysis: dex effects on cells

Loading countData and colData (design of experiment)

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")</pre>
```

head(counts)

##		SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
##	ENSG0000000003	723	486	904	445	1170
##	ENSG0000000005	0	0	0	0	0
##	ENSG00000000419	467	523	616	371	582
##	ENSG00000000457	347	258	364	237	318
##	ENSG00000000460	96	81	73	66	118
##	ENSG00000000938	0	0	1	0	2
##		SRR1039517	SRR1039520	SRR1039521		
##	ENSG0000000003	1097	806	604		
##	ENSG0000000005	0	0	0		
##	ENSG00000000419	781	417	509		
##	ENSG00000000457	447	330	324		
##	ENSG00000000460	94	102	74		
##	ENSG00000000938	0	0	0		

head(metadata)

```
## id dex celltype geo_id
## 1 SRR1039508 control N61311 GSM1275862
## 2 SRR1039509 treated N61311 GSM1275863
## 3 SRR1039512 control N052611 GSM1275866
## 4 SRR1039513 treated N052611 GSM1275867
## 5 SRR1039516 control N080611 GSM1275870
## 6 SRR1039517 treated N080611 GSM1275871
```

```
# info about each cell line's (column's) treatment
```

Check correspondence of metadata and countData

```
all(metadata[,1] == colnames(counts))
## [1] TRUE
all function checks if every element in array is TRUE
all(c(T,T,T,T,F))
## [1] FALSE
compare control to treated:
   • first access control columns in our counts
control.inds <- metadata$dex == "control"</pre>
control.ids <- metadata[control.inds,]$id</pre>
control.ids
## [1] "SRR1039508" "SRR1039512" "SRR1039516" "SRR1039520"
#alternative method to get indices of control samples
which(control.inds==TRUE)
## [1] 1 3 5 7
head(counts[,control.ids])
##
                    SRR1039508 SRR1039512 SRR1039516 SRR1039520
## ENSG0000000003
                           723
                                       904
                                                  1170
                                                              806
## ENSG0000000005
                             0
                                         0
                                                     0
## ENSG0000000419
                           467
                                       616
                                                   582
                                                              417
## ENSG0000000457
                           347
                                       364
                                                   318
                                                              330
## ENSG0000000460
                            96
                                        73
                                                   118
                                                              102
## ENSG0000000938
                             0
                                         1
                                                                0
control.mean <- rowMeans(counts[,control.ids])</pre>
head(control.mean)
## ENSG00000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
            900.75
                                0.00
                                              520.50
                                                               339.75
                                                                                 97.25
## ENSG0000000938
##
              0.75
same steps for treated
```

```
treated.inds <- metadata$dex == "treated"
treated.ids <- metadata[treated.inds,]$id
treated.mean <- rowMeans(counts[,treated.ids])
head(treated.mean)</pre>
```

```
## ENSG00000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG0000000460
## 658.00 0.00 546.00 316.50 78.75
## ENSG0000000938
## 0.00
```

put means of both treated and control in one dataframe

```
meancounts <- data.frame(control.mean, treated.mean)
head(meancounts)</pre>
```

	${\tt control.mean}$	${\tt treated.mean}$
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00
	ENSG0000000003 ENSG000000000419 ENSG00000000457 ENSG00000000460 ENSG000000000938	ENSG00000000003 900.75 ENSG00000000005 0.00 ENSG00000000419 520.50 ENSG00000000457 339.75 ENSG00000000460 97.25

There are 38694 rows/genes in this dataset

nrow(counts)

[1] 38694

Compare control and treated

plot(meancounts)

need data transformation because many points are hidden in bottom left

```
plot(meancounts, log="xy")
```

```
## Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted ## from logarithmic plot
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted
from logarithmic plot</pre>

log2(80/20)

[1] 2

 $\label{eq:condition} \begin{array}{l} \log\ 2\ \text{fold change means a 4x change} \\ \text{add log2foldchange column to dataframe} \end{array}$

meancounts\$log2fc <- log2(meancounts[,"treated.mean"]/meancounts[,"control.mean"])
head(meancounts)</pre>

```
##
                   control.mean treated.mean
                                                   log2fc
## ENSG0000000003
                                       658.00 -0.45303916
                         900.75
## ENSG0000000005
                           0.00
                                         0.00
## ENSG0000000419
                         520.50
                                       546.00
                                               0.06900279
## ENSG0000000457
                         339.75
                                       316.50 -0.10226805
## ENSG0000000460
                          97.25
                                        78.75 -0.30441833
## ENSG0000000938
                           0.75
                                         0.00
                                                     -Inf
```

need to get rid of NaN and -Inf values the which() function gives indices where elements are TRUE

```
inds <- which(meancounts[,1:2] == 0, arr.ind = TRUE)
head(inds)</pre>
```

```
##
                   row col
## ENSG00000000005
                     2
## ENSG0000004848 65
## ENSG0000004948 70
## ENSG0000005001 73
## ENSG0000006059 121
## ENSG0000006071 123
to.rm <- unique(sort(inds[,"row"]))</pre>
mycounts <- meancounts[-to.rm,]</pre>
head(mycounts)
                                                   log2fc
##
                   control.mean treated.mean
## ENSG00000000003
                         900.75 658.00 -0.45303916
## ENSG0000000419
                         520.50
                                       546.00 0.06900279
## ENSG0000000457
                         339.75
                                       316.50 -0.10226805
## ENSG0000000460
                          97.25
                                       78.75 -0.30441833
## ENSG0000000971
                        5219.00
                                      6687.50 0.35769358
## ENSG0000001036
                        2327.00
                                     1785.75 -0.38194109
We now have 21817 genes remaining
number of upregulated genes (logfc > 2)
sum(mycounts$log2fc > 2)
## [1] 250
as a percentage
100*sum(mycounts$log2fc > 2) / nrow(mycounts)
## [1] 1.145895
number of downregulated genes
sum(mycounts$log2fc < -2)</pre>
## [1] 367
as a percentage
100*sum(mycounts$log2fc < -2) / nrow(mycounts)</pre>
## [1] 1.682174
```

DESeq2 analysis

library(DESeq2)

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
##
       union, unique, unsplit, which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
```

```
## The following objects are masked from 'package:matrixStats':
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
first set up DESeq input object
dds <- DESeqDataSetFromMatrix(countData=counts,</pre>
                              colData=metadata,
                              design=~dex)
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dds
```

```
## class: DESeqDataSet
## dim: 38694 8
## metadata(1): version
## assays(1): counts
## rownames(38694): ENSG00000000003 ENSG00000000005 ... ENSG00000283120
##
    ENSG00000283123
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(4): id dex celltype geo_id
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
res <- results(dds)
head(res)
## log2 fold change (MLE): dex treated vs control
## Wald test p-value: dex treated vs control
## DataFrame with 6 rows and 6 columns
##
                    baseMean log2FoldChange
                                                lfcSE
                                                           stat
                                                                   pvalue
##
                    <numeric>
                                  <numeric> <numeric> <numeric> <numeric>
## ENSG00000000003 747.194195
                                 -0.3507030 0.168246 -2.084470 0.0371175
## ENSG0000000005
                    0.000000
                                         NA
                                                   NA
                                                             NA
## ENSG00000000419 520.134160
                                 0.2061078 0.101059 2.039475 0.0414026
## ENSG0000000457 322.664844
                                  0.0245269 0.145145 0.168982 0.8658106
## ENSG0000000460 87.682625
                                 -0.1471420 0.257007 -0.572521 0.5669691
## ENSG0000000938
                    0.319167
                                 -1.7322890 3.493601 -0.495846 0.6200029
##
                       padj
                   <numeric>
## ENSG0000000000 0.163035
## ENSG0000000005
## ENSG00000000419 0.176032
## ENSG0000000457 0.961694
## ENSG0000000460 0.815849
## ENSG0000000938
```

Volcano plot

```
plot(res$log2FoldChange, -log(res$padj))
abline(v=c(-2,2), col="gray")
abline(h=-log(0.05), col="gray")
```



```
library("AnnotationDbi")
```

Warning: package 'AnnotationDbi' was built under R version 4.1.2

```
library("org.Hs.eg.db")
```

##

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                        "ALIAS"
                                        "ENSEMBL"
                                                        "ENSEMBLPROT"
                                                                       "ENSEMBLTRANS"
    [6] "ENTREZID"
                        "ENZYME"
                                        "EVIDENCE"
                                                        "EVIDENCEALL"
                                                                       "GENENAME"
                        "GO"
                                        "GOALL"
                                                        "IPI"
                                                                        "MAP"
   [11] "GENETYPE"
                                        "ONTOLOGYALL"
   [16] "OMIM"
                        "ONTOLOGY"
                                                        "PATH"
                                                                       "PFAM"
                        "PROSITE"
                                        "REFSEQ"
                                                                       "UCSCKG"
   [21] "PMID"
                                                        "SYMBOL"
## [26] "UNIPROT"
```

```
res$symbol <- mapIds(org.Hs.eg.db,</pre>
                     keys=row.names(res), # Our genenames
                     keytype="ENSEMBL",
                                          # The format of our genenames
                     column="SYMBOL",
                                               # The new format we want to add
                     multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
head(res$symbol)
## ENSG00000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
          "TSPAN6"
                            "TNMD"
                                            "DPM1"
                                                           "SCYL3"
                                                                        "C1orf112"
## ENSG0000000938
             "FGR"
head(res)
## log2 fold change (MLE): dex treated vs control
## Wald test p-value: dex treated vs control
## DataFrame with 6 rows and 7 columns
##
                     baseMean log2FoldChange
                                                 lfcSE
                                                                    pvalue
##
                    <numeric>
                                   <numeric> <numeric> <numeric> <numeric>
## ENSG0000000003 747.194195
                                  -0.3507030 0.168246 -2.084470 0.0371175
## ENSG0000000000 0.000000
                                         NA
                                                    NA
                                                              NA
                                                                        NA
## ENSG00000000419 520.134160
                                 0.2061078 0.101059 2.039475 0.0414026
## ENSG0000000457 322.664844
                                 0.0245269 0.145145 0.168982 0.8658106
## ENSG00000000460 87.682625
                                  -0.1471420 0.257007 -0.572521 0.5669691
## ENSG0000000938
                                 -1.7322890 3.493601 -0.495846 0.6200029
                     0.319167
##
                       padj
                                  symbol
##
                   <numeric> <character>
## ENSG0000000000 0.163035
                                  TSPAN6
## ENSG0000000005
                                    TNMD
## ENSG00000000419 0.176032
                                   DPM1
## ENSG0000000457 0.961694
                                   SCYL3
## ENSG00000000460 0.815849
                                Clorf112
## ENSG0000000938
                                    FGR
save results to date
write.csv(res, file='allmyresults.csv')
Pathway analysis: use Kegg
library(pathview)
library(gage)
library(gageData)
data(kegg.sets.hs)
# Examine the first 2 pathways in this kegg set for humans
```

head(kegg.sets.hs, 2)

```
## $'hsa00232 Caffeine metabolism'
## [1] "10" "1544" "1548" "1549" "1553" "7498" "9"
## $'hsa00983 Drug metabolism - other enzymes'
## [1] "10"
               "1066"
                        "10720" "10941" "151531" "1548"
                                                             "1549"
                                                                      "1551"
## [9] "1553" "1576" "1577" "1806"
                                           "1807" "1890"
                                                             "221223" "2990"
## [17] "3251" "3614" "3615" "3704"
                                           "51733" "54490" "54575" "54576"
## [25] "54577" "54578" "54579" "54600" "54657"
                                                    "54658"
                                                             "54659" "54963"
## [33] "574537" "64816" "7083"
                                  "7084"
                                           "7172"
                                                    "7363"
                                                             "7364"
                                                                      "7365"
                                           "7378"
## [41] "7366"
                "7367"
                         "7371"
                                  "7372"
                                                    "7498"
                                                             "79799" "83549"
## [49] "8824"
                "8833"
                         "9"
                                  "978"
Before using Kegg, need to get gene identifiers into correct format: ENTREZ format
res$entrez <- mapIds(org.Hs.eg.db,
                    keys=row.names(res), # Our genenames
                    keytype="ENSEMBL", # The format of our genenames
                    column="ENTREZID",
                                              # The new format we want to add
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
res$genename <- mapIds(org.Hs.eg.db,</pre>
                    keys=row.names(res), # Our genenames
                    keytype="ENSEMBL", # The format of our genenames
                    column="GENENAME",
                                              # The new format we want to add
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
foldchanges <- res$log2FoldChange</pre>
head(foldchanges)
## [1] -0.35070302
                           NA 0.20610777 0.02452695 -0.14714205 -1.73228897
names(foldchanges) <- res$entrez</pre>
head(foldchanges)
                    64102
##
         7105
                                 8813
                                            57147
                                                        55732
                                                                     2268
## -0.35070302
                       NA 0.20610777 0.02452695 -0.14714205 -1.73228897
pass into gage function
keggres = gage(foldchanges, gsets=kegg.sets.hs)
can use attributes for any R object
attributes(keggres)
## $names
## [1] "greater" "less"
                          "stats"
```

head(keggres\$less, 3)

```
##
                                         p.geomean stat.mean
                                                                    p.val
## hsa05332 Graft-versus-host disease 0.0004250461 -3.473346 0.0004250461
## hsa04940 Type I diabetes mellitus 0.0017820293 -3.002352 0.0017820293
## hsa05310 Asthma
                                      0.0020045888 -3.009050 0.0020045888
                                           q.val set.size
                                                                  exp1
## hsa05332 Graft-versus-host disease 0.09053483
                                                       40 0.0004250461
## hsa04940 Type I diabetes mellitus 0.14232581
                                                       42 0.0017820293
## hsa05310 Asthma
                                      0.14232581
                                                       29 0.0020045888
```

pathview function adds genes to a KEGG pathway as colored entries

```
pathview(gene.data=foldchanges, pathway.id="hsa05310")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/Shivani/Desktop/GraduateSchool/BGGN213/bggn213/class15

Info: Writing image file hsa05310.pathview.png

