Wrocław University of Science and Technology

ELECTRIONIC MEASUREMENTS LABORATORY REPORT

Chair of Electronic and Photonic Metrology ELECTRIONIC MEASUREMENTS LABORATORY

Theme of class: MEASUREMET OF VOLTAGE AND CURRENT SOURCE PARAMETERS

Group no: 1

Students: Date of class: 2023-01-09

Paulina Nowak 251002
 Ivan Melnyk 275510

3. Stanislav Kustov 275512 Submission Date: 2023-01-16

Lab assistant: mgr inż. Krzysztof Adamczyk

Contents

	Introduction 1.1 Theory	
2	Experiment 2.1 Measurement of voltage source parameters	
3	Conclusion	8

1 Introduction

1.1 Theory

1.2 Equipment

The following devices were used during the laboratory:

• power supply: DF1730SB3A;

 \bullet decade resistor: DR5b-16;

• digital meter: Agilent 34401A and UT803;

 \bullet oscilloscope;

• standard resistor.

2 Experiment

${\bf 2.1}\quad {\bf Measurement\ of\ voltage\ source\ parameters}$

Figure 1

 $V_o = 5.31615 \,\mathrm{V}$

$R_L[\Omega]$	V[V]	$\frac{V}{V_o}$	$V_{p-p}[mV]$	$I[\mathrm{mA}]$
10000	5.31131	0.99909	19.6	0.53113
9000	5.31236	0.99929	18	0.59026
8000	5.31491	0.99977	18.4	0.66436
7000	5.315501	0.99988	19.2	0.75936
6000	5.31475	0.99974	18.8	0.88579
5000	5.3145	0.99969	18	1.06290
4000	5.31252	0.99932	16.4	1.32813
3000	5.31252	0.99932	20.4	1.77084
2000	5.30828	0.99852	18.8	2.65414
1000	5.31172	0.99917	18	5.31172
900	5.31169	0.99916	19.6	5.90188
800	5.31252	0.99932	17.2	6.64065
700	5.31295	0.99940	19.6	7.58993
600	5.31366	0.99953	15.2	8.85610
500	5.31247	0.99931	17.6	10.62494
400	5.14929	0.96861	50.4	12.87323
300	4.92745	0.92688	100	16.42483

Table 1

Figure 2

Figure 3

Figure 4

				$R_L[\Omega]$	V[V]	$\frac{V}{V_0}$	I[mA]
$R_L[\Omega]$	V[V]	$\frac{V}{V_0}$	I[mA]	10000	13.86	0.99856	1.38284
$\frac{10000}{10000}$	5.318	$\frac{V_o}{0.99906}$	0.53137	9000	13.86	0.99856	1.51444
9000	5.319	0.99900 0.99925	0.59025	8000	13.86	0.99856	1.70754
8000	5.319	0.99925 0.99925	0.66377	7000	13.86	0.99856	1.95128
		0.99925 0.99887		6000	13.85	0.99784	2.28445
7000	5.317		0.75821	5000	13.85	0.99784	2.76018
6000	5.317	0.99887	0.88412	4000	13.85	0.99784	3.44949
5000	5.315	0.99850	1.06036	3000	13.85	0.99784	4.59595
4000	5.312	0.99793	1.3242	2000	13.85	0.99784	6.87844
3000	5.306	0.99681	1.76291	1000	13.84	0.99712	13.6041
2000	5.298	0.99530	2.58513	900	13.83	0.99640	15.0913
1000	5.271	0.99023	4.95231	800	13.83	0.99640	16.8573
900	5.265	0.98910	5.53997	700	13.82	0.99568	18.3644
800	5.255	0.98723	6.34545	600	13.81	0.99496	22.5856
700	5.243	0.98497	7.21971	500	13.8	0.99424	27.0082
600	5.228	0.98215	8.36787	400	13.79	0.99352	33.6526
500	5.200	0.97689	9.96317	300	13.78	0.99280	44.6311
400	5.144	0.96637	12.1929	200	13.68	0.99250 0.98559	65.1863
300	4.887	0.91809	15.2643	100	13.66	0.98339 0.98415	132.8120
(a) 1at	· ···oltore :		_ K 202 V				
(a) Ist	vonage s	source: $V_o =$	= 0.020 V	50	13.37	0.96326	251.9140

(b) 2nd voltage source: $V_o = 13.88 \,\mathrm{V}$

Table 2

Figure 5

2.2 Measurement of current source parameters

Figure 6

 $R_s = 10\,\Omega$

$R_L[\Omega]$	$V_v[\mathrm{mV}]$	$\frac{V_v}{V_o}$	$I[\mathrm{mA}]$	V[V]
0	19.3363	1.00000	1.93363	0.0193363
10	19.4437	1.00555	1.94437	0.0388874
20	19.4527	1.00602	1.94527	0.0583581
30	19.4569	1.00624	1.94569	0.0778276
40	19.4585	1.00632	1.94585	0.0972925
50	19.4607	1.00643	1.94607	0.1167642
60	19.4627	1.00654	1.94627	0.1362389
70	19.4633	1.00657	1.94633	0.1557064
80	19.4639	1.00660	1.94639	0.1751751
90	19.464	1.00660	1.9464	0.19464
100	19.4647	1.00664	1.94647	0.2141117
200	19.4199	1.00432	1.94199	0.4078179
500	19.4347	1.00509	1.94347	0.9911697
1000	19.4332	1.00501	1.94332	1.9627532
2000	19.4207	1.00436	1.94207	3.9035607
5000	19.3332	0.99984	1.93332	9.6859332
6000	16.8815	0.87305	1.68815	10.1457815

Table 3

Figure 7

3 Conclusion