Entropy for Data Science

Charlie Edelson, Caleb Dowdy, Chris Leonard, Nicole Navarro, Aaron Niskin, Lance Price

12/4/2017

Outline

- History
 - Statistical Mechanics
 - ► Information Theory
- Shannon Entropy
 - Uniform Distribution
 - Normal Distribution
- Tsallis Entropy

History

Statistical Mechanics

Consider a box with N particles of a monatomic gas

How would you model this?

Statistical Mechanics - State Variables?

ullet We can talk about state variables: P, T, N, and V

Statistical Mechanics - State Variables?

- We can talk about state variables: P, T, N, and V
 - ▶ Ideal Gas Law

$$PV = nRT \tag{1}$$

Statistical Mechanics - State Variables?

- We can talk about state variables: P, T, N, and V
 - ▶ Ideal Gas Law

$$PV = nRT \tag{1}$$

Characterize System Behaviors

Statistical Mechanics - Ensemble Statistics

Assume each particle obeys Newton's Law

- v_0 and x_0 determines system
- Impractical for large N

Statistical Mechanics - Ensemble Statistics

Assume each particle obeys Newton's Law

- v_0 and x_0 determines system
- Impractical for large N

James Maxwell's Kinetic Theory of Gases

Consider Ensamble Statistics

$$PV = \frac{Nmv^2}{3} \tag{2}$$

Statistical Mechanics Entropy

Average Behaviour → Macroscopic Properties

Statistical Mechanics Entropy

Average Behaviour \rightarrow Macroscopic Properties

Ludwig Boltzman's statistical mechanical entropy

$$S = k_b \ln(\Omega) \tag{3}$$

 Ω is the multiplicity of a given macrostate

Consider non-interacting paramagnet with 3 dipoles

Consider non-interacting paramagnet with 3 dipoles

• Macrostate - 2 Up, 1 Down

Consider non-interacting paramagnet with 3 dipoles

- Macrostate 2 Up, 1 Down
- Microstate ↑, ↓, ↑

Consider non-interacting paramagnet with 3 dipoles

- Macrostate 2 Up, 1 Down
- Microstate \uparrow , \downarrow , \uparrow

Entropy of 100 Dipole Paramagnet

Interpretation

Features of paramagnet entropy

- ullet Minimum at 0 and 100
 ightarrow 1 microstate each
- Maximum at $50 \rightarrow 10^{29}$ microstates!

Interpretation

Features of paramagnet entropy

- ullet Minimum at 0 and 100
 ightarrow 1 microstate each
- Maximum at $50 \rightarrow 10^{29}$ microstates!

Measure of "mixed-up-ness" of a physical system

- Higher entropy → more mixing (randomness)
- Lower entropy rightarrow less mixing