

CHEAT SHEET

Naive Bayes Classifier

Algorithm Name	Naive Bayes Classifier	
Description	If our goal is to find the distribution for the label, namely, $P(y \mathbf{x})$, we can use the Naive Bayes classifier on this distribution to find the label of test points. To simplify the procedure for finding $P(y \mathbf{x})$, we assume that each feature is independent of the others given the label. Naive Bayes decomposes a d-dimensional probability estimation problem into d 1-dimensional probability estimation problems, because MLE gets exponentially harder as d increases. We derive the Naive Bayes classifier as follows: $h(\mathbf{x}) = argmax_y P(y \mathbf{x}) \\ = argmax_y \frac{P(\mathbf{x} y)P(y)}{P(\mathbf{x})} \qquad \text{(Bayes rule)} \\ = argmax_y \frac{1}{\alpha} P(\mathbf{x} y)P(y) \qquad \text{($P(\mathbf{x})$ does not depend on y)} \\ = argmax_y \sum_{\alpha=1}^d log(P(x_\alpha y)) + log(P(y)) \qquad \text{(as log is a monotonic function)} $	
Applicability	Classification problems where features can be assumed independent.	
Assumptions	Given the label, features are independent of one another.	
Underlying Mathematical Principles	We assume the $\mathbf{x}_{lpha} y$ follows some distribution (e.g. categorical distribution) and use MLE to learn the distribution from the data.	
Aditional Details	Optional +1 smoothing (Laplace smoothing).	
Example	Email spam classification; features are words that appear in the emails, labels are spam / not spam.	

Information Science