Lösungen zu Aufgabe 1, Zettel 9

Jendrik Stelzner

6. Juli 2016

1 Vorbereitung: Basiswechselmatrizen

Lemma 1. Es sei $A \in M_n(\mathbb{K})$. Dann sind die folgenden Bedingungen äquivalent:

- 1. Die Matrix A ist invertierbar mit $A^{-1} = A^*$.
- 2. Es gilt $AA^* = I$.
- 3. Es gilt $A^*A = I$.
- 4. Die Spalten von A sind eine Orthonormalbasis von \mathbb{K}^n (als Spaltenvektoren gesehen).
- 5. Die Zeilen von A sind eine Orthonormalbasis von \mathbb{K}^n (als Zeilenvektoren gesehen).

Beweis. Die Äquivalenz der ersten drei Aussagen folgt, wie aus Lineare Algebra I bekannt, mithilfe der Dimensionsformel.

Dass $A^*A=I$ ist äquivalent dazu, dass $\sum_{l=1}^n \overline{a_{lj}}a_{lk}=\delta_{jk}$ für alle $j,k=1,\ldots,n$. Dies ist durch Konjugation äquivalent dazu, dass $\sum_{l=1}^n a_{lj}\overline{a_{lk}}=\delta_{j,k}$ für alle $j,k=1,\ldots,n$. Da der Ausdruck $\sum_{l=1}^n a_{lj}\overline{a_{lk}}$ das Standardskalarprodukt der j-ten und k-ten Spalten von A ist, bedeutet dies gerade, dass die Spalten von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Analog ergibt sich, dass $AA^*=I$ äquivalent dazu ist, dass die Zeilen von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Im Folgenen sei

$$D_{\varphi} \coloneqq \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

die Drehmatrix um den Winkel $\varphi \in \mathbb{R}$.

Theorem 2. 1. Ist $A \in M_n(\mathbb{C})$ normal, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt ist.

- 2. Ist $A \in M_n(\mathbb{C})$ selbstadjungiert, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt mit reellen Diagonaleinträgen ist.
- 3. Ist $A \in M_n(\mathbb{C})$ antiselbstadjungiert, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt mit rein imaginären Diagonaleinträgen ist.

- 4. Ist $A \in M_n(\mathbb{C})$ unitär, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt ist, und alle Diagonaleinträge haben Betrag 1.
- 5. Ist $A \in M_n(\mathbb{R})$ normal, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass

$$OAO^{-1} = \begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_p & & & \\ & & & r_1 D_{\varphi_1} & & \\ & & & \ddots & \\ & & & & r_q D_{\varphi_q}, \end{pmatrix}.$$

- 6. Ist $A \in M_n(\mathbb{R})$ selbstadjungiert, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass OAO^{-1} in Diagonalgestalt ist.
- 7. Ist $A \in M_n(\mathbb{R})$ orthogonal, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass

Beweis. Wir betrachten den Fall, dass $A \in \mathcal{M}_n(\mathbb{C})$ normal ist. Es sei $\mathcal{B} = (e_1, \dots, e_n)$ die Standardbasis von \mathbb{C}^n und $f \colon V \to V$ der eindeutige Endomorphismus mit $\mathcal{M}_{\mathcal{B}}(f) = A$. Da \mathcal{B} eine Orthonormalbasis ist, folgt aus der Normalität von A, dass der Endomorphismus f normal ist. Da \mathbb{C}^n endlichdimensional ist, gibt es eine Orthonormalbasis $\mathcal{C} = (c_1, \dots, c_n)$ von \mathbb{C}^n aus Eigenvektoren von f. Für die Basiswechselmatrix $U \coloneqq T_{\mathcal{C}}^{\mathcal{B}}$ gilt nun, dass

$$UAU^{-1} = T_{\mathcal{C}}^{\mathcal{B}} M_{\mathcal{B}}(f) T_{\mathcal{B}}^{\mathcal{C}} = M_{\mathcal{C}}(f)$$

eine Diagonalmatrix ist. Die Spalten der Matrix $U^{-1}=T^{\mathcal{C}}_{\mathcal{B}}$ sind genau die Spaltenvektoren $c_1,\ldots,c_n\in\mathbb{C}^n$. Also sind die Spalten von U^{-1} eine Orthonormalbasis von \mathbb{C}^n , und U^{-1} somit unitär. Deshalb ist auch U unitär.

Das zeigt die erste Aussage. Die anderen Aussagen ergeben sich analog über die Normalenformen der entsprechenden Endomorphismen. \Box

Im Folgenden seien

$$I \coloneqq \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \quad \text{und} \quad J \coloneqq \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}.$$

Lemma 3. Für alle $r, \theta \in \mathbb{R}$ ist $\exp(\log(r)I + \theta J) = rD_{\theta}$.

Beweis. Da I und J kommutieren (denn I ist die Einheitsmatrix), kommutieren auch $\log(r)I$ und $\theta J.$ Daher ist

$$\exp(\log(r)I + \theta J) = \exp(\log(r)I) \exp(\theta J) = \exp(\log(r))I \exp(\theta J) = r \exp(\theta J).$$

Da $J^2=-I$ gilt für alle $n\in\mathbb{N}$

$$J^n = \begin{cases} I & \text{falls } n \equiv 0 \mod 4 \\ J & \text{falls } n \equiv 1 \mod 4 \\ -I & \text{falls } n \equiv 2 \mod 4 \\ -J & \text{falls } n \equiv 3 \mod 4. \end{cases}$$