MDP-based Itinerary Recommendation using Geo-Tagged Social Media

Radhika Gaonkar, Maryam Tavakol, Ulf Brefeld

rgaonkar@cs.stonybrook.edu, {tavakol,brefeld}@leuphana.de

Motivation

- Planning trips is a complex decision problem
- Many decisions to be made at once: duration, costs, places to visit, food and many more!
- Overload of information on the Web renders task tedious

Markov Decision Process (MDP) Framework

- \bullet State: a sequence of at most k places the user visited until now
- Actions: all POI categories present in the city
- Transition & reward function estimate by maximum-likelihood

$$T(s, a, s') = \frac{count(s'|s)}{\sum_{s''} count(s''|s)}, \quad R(s, a) = \frac{count(s, a)}{count(s)}$$

Optimizing the MDP via Value Iteration algorithm:

$$V(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s'} T(s, a, s') V(s') \right)$$

State-action values, Q(s, a), are obtained from the learned value function which serve as scores for recommendation:

$$Q(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s')$$

⇒ The goal is to recommend a sequence of POIs given individual user preferences based on previous visited places.

Data Acquisition

Utilizing photos from *Flickr* for reconstructing user trips:

- Geographical coordinate (small-fraction)
- Timestamp of capturing the photo
- Semantic data; tags and titles

Photos without coordinate information: Using Latent Semantic Analysis (LSA) to compute the semantic similarity between the tags of geo-tagged and non-geotagged photos

An example of non-geotagged photo

An example of geo-tagged photo

Conclusions

- An RL approach to recommend user itinerary
- Utilize freely available data from social media with minimal manual intervention
- Computationally inexpensive
- Outperforms standard path planning methods

Online Personalization

- Duration-based: Amount of time a user spends on a category
- Frequency-based: Frequency of visiting a certain category
- \Rightarrow A POI is recommended from the optimal category:

Weighted(distance + personalized score)

Empirical Study

- Leave-one-out cross-validation method
- Baselines: Breadth first search, Dijkstra, Heuristic Search, A*

Partial path accuracy in terms of order of Markov chain:

	Path Length	1	2	3	4	5	6
	1st order	0.041	0.041	0.042	0.042	0.041	0.034
	2nd order	0.098	0.090	0.096	0.106	0.100	0.103
	3rd order	0.097	0.090	0.093	0.105	0.090	0.087
	4th order	0.089	0.084	0.083	0.094	0.077	0.060
	5th order	0.074	0.071	0.058	0.072	0.070	0.058

⇒ Encoding more history in the state improves the performance. Personalization techniques:

⇒ Duration-based outperforms frequency-based.Exact (left) and partial path accuracy (right) for Paris:

 \Rightarrow Our approach outperforms the baselines.