Node	Voisins	\mathbf{M}_{i}	\mathbf{M}_{ri}	M_{mi}
1	{2,3,4,5,6}	13	8	0
2	{1,3,4,5,6,14}	<mark>5</mark>	0	1
3	<i>{</i> 1,2,4,5,6,11 <i>}</i>	<u>1</u> 2	6	0
4	{1,2,3,5,6}	<mark>4</mark>	0	1
5	{1,2,3,4,6}	1	0	<mark>4</mark>
<mark>6</mark>	{1,2,3,4,5,7}	1	0	<mark>5</mark>
<mark>7</mark>	{6,8,9,10}	2	0	<mark>2</mark>
8	{7,9}	3	1	0
9	{7,8,10}	10	7	0
10	{7,9}	3	1	0
<mark>11</mark>	{3,12,13}	1	0	<mark>2</mark>
12	{11}	2	1	0
13	{11}	2	1	0
14	{2}	1	0	0

les nœuds en manque de mémoire sont les nœuds : 2,4,5,6,7 et 11

Mémoire virtuel et IN_i

- Nœud 2

 $IN_2 = 1$

$M_{\rm r1}$ $M_{\rm r3}$	

- Nœud 4

 $IN_4 = 1$

$M_{\rm r1}$	$ m M_{r3}$

- Nœud 5

 $IN_5 = 1$

$ \mathbf{M}_{\mathrm{r}1} $	M_{r3}

- Nœud 6

 $IN_6 = 1$

_	· 0 =		
- 1	$M_{\rm r1}$	M_{r3}	

- Nœud 7

 $IN_7 = 9$

$oxed{M_{ ext{r9}}}$	$ m M_{r10}$	M_{r8}	
1 v1 _r 9	1 v 1 _r 10	1 v1 r8	

- Nœud 2

$$IN_{11} = 3$$

-		
$M_{ m r3}$	M_{r13}	$M_{\rm r12}$

Pour le nœud 2:

$$M_{m2} = 1, L_2 = \{1,3,4,5,6,14\}$$

le nœud 2 a trois voisins en manque de mémoire a savoir les nœuds 4,5,6 ;

$$IN_2 = IN_4 = IN_5 = IN_6 = 1.$$

le nœud 2 est en conflit avec ses 3 voisins.

La mémoire nécessaire maximal du voisinage de 2 est celle du nœud 6 qui vaut 5. $max(M_{mk}) = 5 = M_{m6}$. Le nœud 2 ne peut pas encore effectue sont traitement.

Pour le nœud 4.

$$M_{m4} = 1, L_4 = \{1, 2, 3, 5, 6\}$$

le nœud 4 a trois voisins en manque de mémoire a savoir les nœuds 2,5,6 ; $IN_2 = IN_4 = IN_5 = IN_6 = 1$.

le nœud 4 est en conflit avec ses 3 voisins.

La mémoire nécessaire maximal du voisinage de 4 est celle du nœud 6 qui vaut 5. $max(M_{mk}) = 5 = M_{m6}$. Le nœud 4 ne peut pas encore effectue sont traitement.

Pour le nœud 5:

$$M_{m5} = 4, L_5 = \{1,2,3,4,6\}$$

le nœud 5 a trois voisins en manque de mémoire a savoir les nœuds 2,4,6 ;

$$IN_2 = IN_4 = IN_5 = IN_6 = 1$$
.

le nœud 5 est en conflit avec ses 3 voisins.

La mémoire nécessaire maximal du voisinage de 5 est celle du nœud 6 qui vaut 5. $max(M_{mk}) = 5 = M_{m6}$. Le nœud 5 ne peut pas encore effectue sont traitement.

Pour le nœud 6:

$$M_{m6} = 5, L_6 = \{1, 2, 3, 4, 5, 7\}$$

le nœud 6 a quatre voisins en manque de mémoire a savoir les nœuds 2,4,5,7 ;

$$IN_2 = IN_4 = IN_5 = IN_6 = 1$$
.

le nœud 6 est en conflit avec 3 de ses voisins. Nœud 2,4 et 5

La mémoire nécessaire maximal du voisinage de 6 est celle du nœud 6 qui vaut 5.

 $max(M_{mk}) = 5 = M_{m6}$. Le nœud 6 a donc la priorité il va utilise occuper 5T sur le nœud 1.

donc
$$Mr1 = Mr1-Mm6 = 8-5 = 3$$
;

Pour le nœud 7:

$$M_{m7} = 7$$
, $L_7 = \{6, 8, 9, 10\}$

le nœud 7 a un voisin qui est aussi en manque de mémoire il s'agit du nœud 6 :

 $IN_7 = 9$, $IN_6 = 1$. les deux ne sont pas en conflit le nœud 7 continue le calcule.

le nœud 7 va donc occuper 2T sur le nœud 9. Mr9 = 5

Pour le nœud 11:

$$M_{m11}=1, L_7=\{3,12,13\}$$

le nœud 11 n'a aucun nœud voisin en manque de mémoire

le nœud 11 va donc occuper 2T sur le nœud 3. Mr3 = 4

Après cette phase de calcule, les nœuds 2,4 et 5 sont toujours en manque de mémoire. Les nœud repartage les espace disponible a leur voisin en manque de mémoire.

- Nœud 2

$$IN_2 = 3$$

 M_{r3} M_{r1}

- Nœud 4

$$IN_4 = 3$$

M_{r3}	M_{r1}	

- Nœud 5

$$IN_5 = 3$$

 M_{r3} M_{r1}

Pour le nœud 2:

$$M_{m2} = 1, L_2 = \{1, 3, 4, 5, 6, 14\}$$

le nœud 2 a deux voisins en manque de mémoire a savoir les nœuds 4,5;

$$IN_2 = IN_4 = IN_5 = 3$$
.

le nœud 2 est en conflit avec ses 2 voisins.

La mémoire nécessaire maximal du voisinage de 2 est celle du nœud 5 qui vaut 4. $max(M_{mk}) = 4 = M_{m5}$. Le nœud 2 ne peut pas encore effectue sont traitement.

Pour le nœud 4.

$$M_{m4} = 1, L_4 = \{1, 2, 3, 5, 6\}$$

le nœud 4 a deux voisins en manque de mémoire a savoir les nœuds 2,5;

$$IN_2 = IN_4 = IN_5 = 3$$
.

le nœud 4 est en conflit avec ses 2 voisins.

La mémoire nécessaire maximal du voisinage de 4 est celle du nœud 5 qui vaut 4. $max(M_{mk}) = 4 = M_{m5}$. Le nœud 4 ne peut pas encore effectue sont traitement.

Pour le nœud 5:

$$M_{m5} = 4$$
, $L_5 = \{1, 2, 3, 4, 6\}$

le nœud 4 a deux voisins en manque de mémoire a savoir les nœuds 2,4;

$$IN_2 = IN_4 = IN_5 = 3$$
.

le nœud 5 est en conflit avec ses 2 voisins.

La mémoire nécessaire maximal du voisinage de 5 est celle du nœud 5 qui vaut 4. $\max(M_{mk}) = 4 = M_{m5}$. Le nœuds 5 a donc la priorité il va occuper 4T sur le nœud 3 Mr3 = 0.

Après cette phase de calcul, les nœuds 2,4 sont toujours en manque de mémoire. Les nœud repartage les espace disponible a leur voisins en manque de mémoire.

- Nœud 2

$$IN_2 = 1$$

 M_{r1}

- Nœud 4

$$IN_4 = 1$$

 M_{r1}

Pour le nœud 2:

$$M_{m2} = 1, L_2 = \{1,3,4,5,6,14\}$$

le nœud 2 a un voisin en manque de mémoire a savoir le nœud 4

$$IN_2 = IN_4 = 1$$
.

le nœud 2 est en conflit avec son 4.

La mémoire manquante maximal du voisinage de 2 est 1T.

 $max(M_{mk}) = 1 = M_{m2} = M_{m4}$. Les deux nœuds on besoin de la même quantité de mémoire.

Le nœud ayant le plus grand indice est le nœud 4.

Le nœud 2 ne peut pas encore effectue sont traitement.

Pour le nœud 4:

$$M_{m4} = 1, L_4 = \{1, 2, 3, 5, 6\}$$

le nœud 4 a un voisin en manque de mémoire a savoir le nœud 2

$$IN_2 = IN_4 = 1$$
.

le nœud 4 est en conflit avec son voisin 4.

La mémoire manquante maximal du voisinage de 4 est 1T.

 $max(M_{mk}) = 1 = M_{m2} = M_{m4}$. Les deux nœuds on besoin de la même quantité de mémoire.

Le nœud ayant le plus grand indice est le nœud 4.

donc le nœud 4 occupe 1T sur le nœud 1.

Mr1 = 3-1 = 2.

Après cette phase de calcul, le nœuds 2 est toujours en manque de mémoire. Les nœud repartagent les espaces disponibles a leur voisins en manque de mémoire.

- Nœud 2

$$IN_2 = 1$$

 $M_{\rm r1}$

Pour le nœud 2:

$$M_{m2} = 1, L_2 = \{1,3,4,5,6,14\}$$

le nœud 2 n'a aucun voisin en maque de mémoire donc le nœud 4 occupe 1T sur le nœud 1.