Sistemas de Visão e Perceção Industrial

Componentes de um sistema de visão 2022-2023

SVPI

Para captar uma imagem necessitamos:

- Lente, capta a luz da cena e projeta a luz no sensor
- **Sensor**, converte a luz em "dados"
- Interface, com o computador para envio da informação recolhida
- **Software**, para processamento da imagem

Como selecionar cada um dos components?

Sistema de Visão: Componentes e Parâmetros

- Diferentes soluções de visão:
 - Sensores de Visão
 - Smart Camara
 - PC + Câmara + Componentes
 - Caraterísticas dos componentes:
 - Lentes: Field of View, F-Stop, etc
 - Sensores: CCD e CMOS
 - Interfaces de comunicação: GiGE, USB,
 CameraLink

Sensores de Visão

- Solução integrada: Lente + Sensor + Unidade de processamento + Iluminação (normalmente)
- Funcionamento autónomo
- Armazenamento de diferentes programas, Programação remota através de um Web Browser ou através de programa específico
- Comunicação com outros dispositivos através de protocolos industriais usuais: TCP/IP, RS232, Profibus, Devicenet, Modbus, etc
- Resultado da inspeção enviado através de E/S digitais ou através dos protocolos de comunicação disponíveis no sistema no equipamento
- Número de ferramentas de analise reduzidos: Identificação contornos e áreas (normalmente)

Sensores de Visão (Aplicações)

 Identificação dos tipos de parafusos: (diferentes formato do parafuso, utilizado para diferentes componentes)

Analise do contorno do parafuso e verificação relativamente a um padrão

Smart Camera

- **→**
- Solução integrada: Lente + Sensor + Unidade de processamento (configuráveis)
- Memória para armazenar diferentes programas
- Programação remota através de um Web Browser ou de um programa específico
- Possibilita a visualização do processo Programação de básica de alguns algoritmos
- Comunicação com outros dispositivos através de protocolos industriais usuais como: TCP/IP, RS232, Profibus, Devicenet, Modbus, etc
- Resultado da inspeção enviado através de E/S digitais ou através dos protocolos de comunicação (Profinet, TCPIP, etc) disponíveis no sistema
- Possibilidade de dispor de Iluminação integrada e respetivo controlo
- Maior capacidade de processamento: Maior número de ferramentas de pré-processamento e maior número de algoritmos

Smart Camera (Aplicações)

- Iluminação vermelha (Dark Field) e filtro passa-banda 660 nm
- Iluminação vermelha interessante em objetos metálicos/industriais em que a iluminação é predominantemente fluorescente
- Identificação da anilha e das palhetas (componentes com muita reflexão)

Smart Camera (Aplicações)

Identificação da anilha e das palhetas (indicadas na figura)

Computador + Câmara

PC + Sistema de Aquisição

- Todos os componentes são independentes
- Uma ou mais Câmaras e óticas
- Aquisição de imagens em alta velocidade (Protocolos de comunicação específicos, Frame Graber)
- Sistema de aquisição (Placas de I/O, Comunicações Industriais, etc)
- Comunicações Industriais: Profibus, ProfiNet, DeviceNet, etc,
- Capacidade de armazenamento de imagens para rastreabilidade e outras aplicações
- Software (Sherlock, Halcon, OpenCV, outros)
- Iluminação e outros acessórios

Aplicação de um sistema com PC+Câmaras

- PC Industrial com várias portas de ligação: Ethernet, Gigabit Ethernet, USB3, RS-232, RS-422, RS-485, VGA ou HDMI
- Software de desenvolvimento: Sherlock, Halcon, Matlab, C#, C++
- Aplicações mais complexo

Aquisição de Imagem

- Lente, capta a luz refletida do objeto e projeta no sensor. O campo de visão, é definido pela distância focal. Definir um campo de visão que maximize o objeto que pretendemos avaliar
- 2. Resolução depende da dimensão do sensor (por ex 640x480) e do campo de visão. Definir em função da característica mínima que pretendemos...

Câmara: Constituição

- Tipo de Sensor: CCD, CMOS
 - Protocolo de comunicação:
 - Analógico
 - FireWire
 - USB 2.0 e atualmente 3.0
 - Gigabit Ethernet (GiGE)
 - CameraLink

- Área
- Linear
- TDI (time delay integration)
- Resolução: VGA, SVGA, XGA, ...
- Espectro: Visível, Ultravioleta, Infravermelho, Térmico

Sensores de Imagem

CCD (Charge-Coupled Devices):

- Array de condensadores, a carga dos condensadores é proporcional à intensidade de luz e, convertida em tensão
- Imagens com maior qualidade
- Menos suscetível ao ruído
- Maior número de pixéis
- Major sensibilidade à luz

CMOS (Complementary Metal Oxide Semiconductor):

- Array de transístores e foto díodos, os foto díodos transformam a luz em tensão
- Menor custo
- Mais fácil construir
- Menor consumo

Sensores de Imagem - Dimensões

- Resolução espacial: Número de células do sensor (por ex: 640x480, 1280*1024, 1600*1200, ...)
- Profundidade: Número de bits para representar os níveis de cinzento ou componente de cor de cada célula

Sensores de Imagem - Dimensões

- Sensores a cores: têm uma célula para cada uma das componentes de cor (RGB)
- Os sensores a cores com o mesmo número de células, têm menos resolução do que um sensor monocromático

Sensores de Imagem - Dimensões

	Sensor Dimensions (mm)				
Туре	Diagonal	Width	Height		
1/3.6"	5.000	4.000	3.000		
1/3.2"	5.680	4.536	3.416		
1/3"	6.000	4.800	3.600		
1/2.7"	6.721	5.371	4.035		
1/2.5"	7.182	5.760	4.290		
1/2.3"	7.70	6.16	4.62		
1/2"	8.000	6.400	4.800		
1/1.8"	8.933	7.176	5.319		
1/1.7"	9.500	7.600	5.700		
2/3"	11.000	8.800	6.600		
-and, for comparison, also some sizes not applied in standard compact cameras:					
1"	16.000	12.800	9.600		
4/3"	22.500	18.000	13.500		
1.8"	28.400	23.700	15.700		
35 mm film	43.300	36.000	24.000		

Sensores de Imagem - Aplicações

17

Sistema de Visão: Parâmetros Gerais

→

Sensor Size

• Dimensão do Sensor (1/3", ½", etc)

Working Distance (Distância de Trabalho)

• Distância entre o a lente e a superfície em análise

Resolução (Sensor/Ótica)

Característica mínima a distinguir pela câmara

Field of View (Campo de Visão)

- Área visível do objeto a inspecionar. Área captada pelo sensor da câmara
- Distância focal (mm)

Depth of Field

 Profundidade de campo – máxima profundidade em que diferentes zonas do objeto se mantem focado

Shutter Speed

- Velocidade do obturador
- Número de imagens adquiridas por segundo

Aperture (Abertura da Lente)

Maior ou Menor entrada de luz

Óticas

- Lentes captam a luz do
 Objeto/Cena e projetam a luz no
 sensor de imagem (CCD/CMOS)
 - Óticas Standard (Concêntricas)
 - Óticas Telecêntricas
 - Óticas para câmaras de alta definição
 - Óticas para câmaras RGB
 - Óticas Zoom até 160x
 - CS-Mount e C-Mout

Óticas

CS-mount

- 12,5 mm Distância entre a lente e o sensor
- Pode ser adaptada em C-mount utilizando um espaçador

C-mount

- Lente mais antiga
- 17,5 mm Distância entre a câmara e o sensor

Lentes Telecêntricas

- Lentes que com projeção ortogonal em vez de central (pin-hole)
- Os raios paralelos ao eixo ótico
- Utilizadas em medições de elevada precisão. Por exemplo na medição de diâmetros de furos e outras características geométricas

Objetivas (Lentes)

- F-Number (ou F-Stop) Relação entre a distância focal e a abertura do diafragma
- **Distance scale** distância ao objeto

Depth of Field (profundidade de campo)

Depth of Field (profundidade de campo)

Grande Abertura

A abertura da lente, afeta a profundidade de campo.

Abertura pequena:

- aumenta a profundidade de identificação/focagem
- diminui a quantidade de luz, necessário mais tempo de exposição para captar a imagem

F-Number (ou F-Stop)

- Indica a abertura do diafragma, possibilitando maior ou menor entrada de luz
- f/2.8 relaciona a distância focal com a abertura do diafragma
- f/8 equivale à relação 1/8
- f/2 equivale à relação 1/2 por isso, 1/2 é maior que 1/8, deixa entrar mais luz na lente...

Relação entre F-Number (ou F-Stop) e o Shutter Speed

- Tempo de exposição para a mesma quantidade de luz:
 - Para uma abertura pequena do diafragma, é necessário maior tempo de exposição (abertura grande->menor tempo de exposição)
 - Condiciona a aquisição da imagem em função do movimento/luz do objeto ou da cena er análise

FOV – Field of View (campo de visão)

Grand-angulaire 24 mm

Normal 50 mm

 Campo de visão depende da distância focal

- Menor distância focal->
 Maior ângulo de visão, maior campo de visão
- Maior distância focal -> Menor ângulo de visão, menor campo de visão
- A dimensão da imagem também está condicionada pela dimensão do sensor

1º Cálculo da Distância Focal (lente)

 1º Seleção da ótica (lente)

$$f = D * \frac{I}{W}$$

f - Distância focal

D - Distância ao objecto

W – Largura do Objecto

I – Largura do sensor

- Cálculo da distância focal:
 - □ Dimensão objecto (largura) = 50 mm
 - □ Largura do sensor = 4 mm
 - □ Distância ao objecto = 100 mm

$$f = 100 * \frac{4}{50} = 8 \, mm$$

1º Cálculo da Distância Focal (exemplo 2)

$$f=D\,*\frac{I}{W}$$

- f Distância focal
- D Distância ao objecto
- W Largura do Objecto
- I Largura do sensor

- Distância Objeto = 120 mm
- Largura Objeto = 50 mm
- Largura Sensor (1/1.8" -> 7.2*5.3) = 7.2 mm

Resolução = 50/1280 = 0,039 mm

uEye 3240	LE
Câmara compacta	USB3 de 1.3 megapíxeis
Especificações do p	produtos
Saída	USB 3.0
Tipo Sensor	CMOS
Tamanho Senso	1/1.8"
Resolución	1280x1024
Velocidade máx.	60 img/s
Família	uEye LE
Fabricante	IDS I ()

2º Cálculo da Resolução do Sensor

- Para identificar um defeito (por exemplo uma das asas não existe...) com uma dimensão de 1mm, qual a resolução a utilizar?
- Resolução pretendida = FOV (Campo de Visão) (-> Pixéis) / (Caraterística Mínima * 3) (-> Pixéis)

2º Cálculo da Resolução do Sensor

4 Pixel (500µm)

16 Pixel (250µm)

• 64 Pixel (125µm)

256 Pixel (62µm)

- Para identificar um defeito com uma dimensão de 1mm, qual a resolução a utilizar?
- Resolução pretendida = FOV (Campo de Visão) (em Pixéis) / (Caraterística Mínima * (2 a 4)) (em Pixéis)

2º Cálculo da Distância Focal (exemplo)

- Dimensão mínima da mancha: 1mm
- A camara está a uma distância de 400
 mm
- Sensor 1/1.8" -> (Largura do sensor: 7,176 mm)

- Largura máxima do objeto= 1280/4 = 320
 mm
 - Largura Objeto = 320 mm

Câmaras: Protocolos de Comunicação

- Data Rate (MByte/sec) = Resolução Imagem (W*H) * Frame Rate (fps) * Bit Depth (8, 10, 12, 16...)/ (1 048 520 * 8)
- 1 048 520 = MByte

Câmaras: Protocolos de Comunicação

+

Protocolo	FireWire	USB (2.0) USB (3.0)	Gigabit Ethernet	CameraLink
Vel. Comunicação	<400 Mb/s	<480 Mb/s <5 Gb/s	<1000Mb/s	<7140Mb/s
Distância	10 m	4,5 m	100 m	10 m
Nº Máx de Dispositivos	63	127	ILIMITADO	4
Interface	Placa Base/PCI Drive Windows	Placa Base/PCI Drive Windows	Placa Base/PCI Drive Windows	Frame Grabber
				Drive proprietário

Câmaras: Protocolos de Comunicação

- Data Rate (MByte/sec)= Resolução Imagem (W*H) * Frame Rate (fps) * Bit Depth (8, 10, 12, 16...)/ (1 048 520 * 8)
- Data Rate (MByte/sec) = (1280*1024*60*8)/(1048520*8)
- Data Rate (MByte/sec) = 75 MByte/sec

(Considerando 8 bits resolução profunidade...)

Auto Focus

Sistemas Ativos:

- Tempo de voo de ultrassons (medição do tempo de envio e receção da onda)
- Triangulação de feixes infravermelhos
- Ambos os sistemas são falíveis a longas distâncias e para objetos escuros ou especulares

Sistemas Passivos:

- Necessário utilizar cenas bem iluminadas
- A focagem é realizada por analise/processamento da imagem do sensor
- Comparação do contraste de zonas de imagens em 3 profundidades diferentes, a lente está focada corretamente, quando o contraste é máximo
- Método de fase, análise de cor uniforme em duas zonas do sensor

Links interessantes

https://www.opto-e.com/basics/camera-basics
https://www.optex-fa.com/tech_guide/vision/guide/

