

Tau-Leaping Speeding Stochastic Simulation

Applied Numerics in Systems Biology Seminar

Balduin Laubisch

Tau-Leaping Method

- simulate stochastic models faster
- simulate complex stochastic models in feasible time

SSA vs. Tau-Leaping vs. ODE

SSA

$$X_t = X_0 + \sum_j s_{\cdot,j} \mathcal{P}\left(\int_0^t a_j(X_s) ds\right)$$

Tau-Leaping

$$X_{t+\Delta t} \approx X_t + \sum_{j} s_{\cdot,j} \mathcal{P}(a_j(X_t)\Delta t)$$

ODE

$$\frac{dX_t}{dt} = \sum_{j} s_{.,j} \cdot a_j(X_t)$$

Tau-Leaping Implementation

```
def tau leap simulate (model, T, h):
# population
x = [model[0]]
# propensity functions
r = model[2]
# stoichiometric matrix
s = np.array(model[1])
# time
t = [0]
while (t[-1] < T):
    # calculate reaction rates
     ai = r(x[-1])
     if (t[-1] + h > T):
         # last time step size
        h = T - t[-1]
     # change in x according to current propensity and tau leap condition
     k = np.random.poisson(np.array(ai) * h)
     dx = s.dot(k)
     # update time and population
     t.append(t[-1] + h)
     x.append(np.add(dx, x[-1]))
return x, t
```


Experimental Setup

Assess Tau-Leaping method on different models and reproduce dynamics

- Birth-death process
- Banana / Boomerang model
- Schlögl model

Birth-death process

$$\varnothing \xrightarrow{\lambda=50} X \xrightarrow{\beta=0.1} \varnothing$$

- X(0) = 10
- stationary distribution at $\lambda/\beta = 500$

Birth-death Population SSA (τ =0.010657±0.010851) 1000 Simulations

Birth-death Population Tau-Leap (h=5.000000, τ =5.000000±0.000000) 100000 Simulations

Birth-death Population Tau-Leap (h=2.500000, τ =2.500000 \pm 0.000000) 100000 Simulations

Birth-death Population Tau-Leap (h=1.000000, τ =1.000000 \pm 0.000000) 100000 Simulations

Banana / Boomerang model

- A(0) = B(0) = 10
- increasing population for A or B only mutually exclusive

Phaseprobability SSA τ =0.334383 \pm 0.339502 Banana (5000 Simulations)

Phaseprobability Tau-leap (h=50.000000, τ =25.671700 \pm 21.203371) Banana (10000 Simulations)

Phaseprobability Tau-leap (h=10.000000, τ =9.510187 \pm 1.553271) Banana (10000 Simulations)

Phaseprobability Tau-leap (h=2.500000, τ =2.494563 \pm 0.082507) Banana (10000 Simulations)

Phaseprobability Tau-leap (h=0.500000, τ =0.499953 \pm 0.003413) Banana (10000 Simulations)

Schlögl model

- S(0) = 40
- bistability in time

Population Histrogram SSA τ =0.000978±0.002264 Schlögl (2000 Simulations)

Population Histrogram Tau-leap (h=1.000000, τ =0.817688±0.304819) Schlögl (10000 Simulations)

Population Histrogram Tau-leap (h=0.250000, τ =0.247143 \pm 0.018938) Schlögl (10000 Simulations)

Population Histrogram Tau-leap (h=0.050000, τ =0.049505 \pm 0.004949) Schlögl (10000 Simulations)

Conclusions

Birth-death model

- Tau-Leaping is a good approximation
- converges, but retains higher variance than SSA when stepsize is high

Banana model

- difficult, only similar to SSA solutions when stepsize approaches SSA-level
- → no gain from Tau-Leaping

Schlögl model

- although especially stepsize dependent, yields good results
- can benefit from Tau-Leaping

→ model dependent performance of Tau-Leaping

Discussion - so far

Have looked into:

- experimental behavior of Tau-Leaping for some elementary models
- → some models can be simulated a lot faster with Tau-Leaping, conserving dynamics, for other models dynamics break or are hard (i.e. small stepsize necessary)
- similar to the numerical integrators for ODEs, there is a trade-off between performance and accuracy

Discussion - go further

Further steps:

- evaluate Tau-Leaping for more complex models (more reactions, more species)
- look into numerical perturbation and maybe find generalizing principles from comparison to ODE integrators
- more rigorously test congruence of different simulations

References

- 1. Approximate accelerated stochastic simulation of chemically reacting systems (Gillespie 2001)
- 2. Efficient step size selection for the tau-leaping simulation method (Cao et al. 2005)
- 3. Numerics for Bioinformaticians course material (12.07.17) http://systems-pharmacology.de/?page_id=724
- Applied Numerics in Systemsbiology course material (12.07.17) http://systems-pharmacology.de/?page_id=971
- Download more RAM https://downloadmoreram.com/

Additional Slides

Birth-death continued

Banana continued

