P3. Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from x to all network nodes. Show how the algorithm works by computing a table similar to Table 5.1.

Step	N'	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	Х	ω	ω	3,x	6,x	6,x	8,x
1	XV	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

P4. Consider the network shown in Problem P3. Using Dijkstra's algorithm, and showing your work using a table similar to Table 5.1, do the following:

- a. Compute the shortest path from t to all network nodes.
- b. Compute the shortest path from u to all network nodes.
- c. Compute the shortest path from v to all network nodes.
- d. Compute the shortest path from w to all network nodes.
- e. Compute the shortest path from y to all network nodes.
- f. Compute the shortest path from z to all network nodes.

a)

<u>,</u>							
Step	N'	D(x),p(x)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	t	ω	2,t	4,t	ω	7,t	ω
1	tu	ω	2,t	4,t	5,u	7,t	ω
2	tuv	7,v	2,t	4,t	5,u	7,t	ω
3	tuvw	7,v	2,t	4,t	5,u	7,t	ω
4	tuvwx	7,v	2,t	4,t	5,u	7,t	15,x

5	tuvwxy	7,v	2,t	4,t	5,u	7,t	15,x
6	tuvwxyz	7,v	2,t	4,t	5,u	7,t	15,x
b)	<u>'</u>	1 .	1 .	1	1 -	<u> </u>	
Step	N'	D(x),p(x)	D(t),p(t)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	u	ω	2,u	3,u	3,u	ω	ω
1	ut	ω	2,u	3,u	3,u	9,t	ω
2	utv	6,v	2,u	3,u	3,u	9,t	ω
3	utvw	6,v	2,u	3,u	3,u	9,t	ω
4	utvwx	6,v	2,u	3,u	3,u	9,t	14,x
5	utvwxy	6,v	2,u	3,u	3,u	9,t	14,x
6	utvwxyz	6,v	2,u	3,u	3,u	9,t	14,x
c)							
Step	N'	D(x),p(x)	D(u),p(u)	D(t),p(t)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	V	3,v	3,v	4,v	4,v	8,v	ω
1	VX	3,v	3,v	4,v	4,∨	8,v	11,x
2	vxu	3,v	3,v	4,v	4,∨	8,v	11,x
3	vxut	3,v	3,v	4,v	4,v	8,v	11,x
4	vxutw	3,v	3,v	4,v	4,∨	8,v	11,x
5	vxutwy	3,v	3,v	4,v	4,v	8,v	11,x
6	vxutwyz	3,v	3,v	4,v	4,v	8,v	11,x
d)							
Step	N'	D(x),p(x)	D(u),p(u)	D(v),p(v)	D(t),p(t)	D(y),p(y)	D(z),p(z)
0	W	6,w	3,w	4,w	ω	ω	ω
1	wu	6,w	3,w	4,w	5,u	ω	ω
2	wuv	6,w	3,w	4,w	5,u	12,v	ω
3	wuvt	6,w	3,w	4,w	5,u	12,v	ω
4	wuvtx	6,w	3,w	4,w	5,u	12,v	14,x
5	wuvtxy	6,w	3,w	4,w	5,u	12,v	14,x
6	wuvtxyz	6,w	3,w	4,w	5,u	12,v	14,x
e)							
Step	N'	D(x),p(x)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(t),p(t)	D(z),p(z)
0	у	6,y	ω	8,y	ω	7,y	12,y
1	yx	6,y	ω	8,y	12,x	7,y	12,y
2	yxt	6,y	9,t	8,y	12,x	7,y	12,y
3	yxtv	6,y	9,t	8,y	12,x	7,y	12,y
4	yxtvu	6,y	9,t	8,y	12,x	7,y	12,y
5	yxtvuw	6,y	9,t	8,y	12,x	7,y	12,y
6	yxtvuwz	6,y	9,t	8,y	12,x	7,y	12,y
f)							
Step	N'	D(x),p(x)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(t),p(t)

0	Z	8,z	ω	ω	ω	12,z	ω
1	ZX	8,z	ω	11,x	14,x	12,z	8
2	ZXV	8,z	14,v	11,x	14,x	12,z	15,v
3	ZXVY	8,z	14,v	11,x	14,x	12,z	15,v
4	zxvyu	8,z	14,v	11,x	14,x	12,z	15,v
5	zxvyuw	8,z	14,v	11,x	14,x	12,z	15,v
6	zxvyuwt	8,z	14,v	11,x	14,x	12,z	15,v

P5. Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z

	U	V	X	Υ	Z
V	ω	ω	ω	ω	ω
Χ	ω	ω	ω	ω	ω
Z	ω	6	2	ω	0

	U	V	Χ	Υ	Z
V	1	0	3	ω	6
Χ	ω	3	0	3	2
Z	7	5	2	5	0

	U	V	X	Υ	Z
V	1	0	3	3	5
X	4	3	0	3	2
Z	6	5	2	5	0

P7. Consider the network fragment shown below. x has only two attached neighbors, w and y. w has a minimum-cost path to destination u (not shown) of 5, and y has a minimum-cost path to u of 6. The complete paths from w and y to u (and between w and y) are not shown. All link costs in the network have strictly positive integer values.

- a. Give x's distance vector for destinations w, y, and u.
- b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform its neighbors of a new minimum-cost path to u as a result of executing the distance-vector algorithm.
- c. Give a link-cost change for either c(x,w) or c(x,y) such that x will not inform its neighbors of a new minimum-cost path to u as a result of executing the distance-vector algorithm.
- a) Dx(w) = 2, Dx(y) = 4, Dx(u) = 7
- b) node x again informs its neighbors of the new cost.
- c) not cause x to inform its neighbors of a new minimum-cost path to u.
- P14. Consider the network shown below. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between AS2 and AS4.
- a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP?
- b. Router 3a learns about x from which routing protocol?
- c. Router 1c learns about x from which routing protocol?
- d. Router 1d learns about x from which routing protocol?

- a) eBGP
- b) eBGP
- c) eBGP
- d) iBGP