Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 13

Exercise 1: Weighting the Data (70 P)

We consider the following three two-dimensional binary classification datasets composed of 16 samples each:

$\overset{X_1}{\bullet}$	x ₂ ●	x ₃					x ₂ ●	x ₃	-	$\overset{X_1}{\bullet}$	x ₂ ●	-	-
X ₅ ●	x ₆ ●	x ₇					x ₆ ●	x ₇		X ₅ ●	x ₆ ●		
X ₉ ●	x ₁₀ ●	X ₁₁ ●				X ₉ ●		x ₁₁ ●		X ₉ ●		x ₁₁ ●	
X ₁₃ ●	X ₁₄ ●	x ₁₅ ●				X ₁₃ ●		x ₁₅ ●		x ₁₃		x ₁₅ ●	
(i)					(ii)					(iii)			

Black circles denote the first class (-1) and white circles denote the second class (+1). We decide to use a boosted classifier with a linear soft-margin SVM as weak learner. The boosted classifier is given by the discriminant function

$$f(x) = \alpha_0 + \sum_{t=1}^{T} \alpha_t h_t(x)$$

where $\alpha_0, \ldots, \alpha_T \in \mathbb{R}$, and where the function

$$h_t(x) = \operatorname{sign}(w_t^{\top} x_i + b_t)$$

returns the classification result (-1 or +1) of the tth weak classifier. It is trained, under the weighting of the data $p_{t,1}, \ldots, p_{t,16}$, to minimize the SVM objective

$$\min_{w_t, \xi_t, b_t} \frac{1}{2} \|w_t\|^2 + C \sum_{i=1}^{16} p_{t,i} \, \xi_{t,i}$$

under the constraints

$$\forall_{i=1}^{16} : y_i(w_t^\top x_i + b_t) \ge 1 - \xi_{t,i}, \quad \xi_{t,i} \ge 0.$$

We also assume the parameter C to be large (e.g. C=100).

Determine at hand and for each dataset a possible boosted classifier that classifies the data perfectly. Draw the decision boundary learned by each individual weak learner, and the final decision boundary. Write down the coefficients $\alpha_0, \ldots, \alpha_T$, and the weighting terms $p_{t,i}$ for each weak learner $1 \le t \le T$ and data point $1 \le i \le 16$.

Exercise 2: Boosted Regressors (30 P)

We consider the boosted regressor

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

where $h_t(x) = w_t^{\top} x$ is the real-valued prediction produced by the tth weak regressor and $x \in \mathbb{R}^d$. Assuming a labeled dataset $\{(x_1, y_1), \dots, (x_n, y_n)\}$, the boosted regressor is trained to minimize the mean squared error

$$\sum_{i=1}^{n} \left(y_i - f(x_i) \right)^2, \tag{1}$$

where each weak regressor minimizes the following weighted objective function

$$\sum_{i=1}^{n} p_{t,i} (y_i - h_t(x_i))^2.$$

Show that a single weak regressor can be made as accurate as the boosted regressor when using an appropriate weighting $\{p_1, \ldots, p_n\}$. Write down one possible weighting for the single regressor that leads to the same accuracy as the optimal regressor in the sense of Equation (1).