

LV Olimpiada Matemática Española

Primera Fase

Primera sesión Viernes mañana, 18 de enero de 2019

- 1. Para cada número de cuatro cifras \overline{abcd} , denotamos por S al número $S = \overline{abcd} \overline{dcba}$. Demuestra que S es múltiplo de 37 si y sólo si las dos cifras centrales del número \overline{abcd} son iguales.
- **2.** Demuestra que para todo $n \ge 2$ podemos encontrar n números reales

$$x_1, x_2, \dots, x_n \neq 1$$

de manera que los productos

$$x_1 \cdot x_2 \cdot \ldots \cdot x_n$$
 y $\frac{1}{1-x_1} \cdot \frac{1}{1-x_2} \cdot \ldots \cdot \frac{1}{1-x_n}$

son iguales.

3. El trapecio isósceles ABCD tiene lados paralelos AB y CD. Sabemos que $\overline{AB}=6, \ \overline{AD}=5$ y $\angle DAB=60^\circ$. Se lanza un rayo de luz desde A que rebota en CB en el punto E e interseca en AD en el punto F. Si $\overline{AF}=3$, calcula el área del triángulo AFE.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.

LV Olimpiada Matemática Española

Primera Fase Segunda sesión

Viernes tarde, 18 de enero de 2019

- 4. Sea $p \geq 3$ un número primo y consideramos el triángulo rectángulo de cateto mayor p^2-1 y cateto menor 2p. Inscribimos en el triángulo un semicírculo cuyo diámetro se apoya en el cateto mayor del triángulo y que es tangente a la hipotenusa y al cateto menor del triángulo. Encuentra los valores de p para los cuales el radio del semicírculo es un número entero.
- 5. Existen m, n números naturales de forma que

$$n^2 + 2018mn + 2019m + n - 2019m^2$$

es un número primo?

6. Fijamos un número natural $k \geq 1$. Encuentra todos los polinomios P(x) que cumplan

$$P(x^k) - P(kx) = x^k P(x)$$

para todo valor de $x \in \mathbb{R}$.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.