FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT)TM

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

NETWORKING & SYSTEM ADMINISTRATION

LABORATORY RECORD

Name: GAYATHRI S NAIR

Branch: MASTER OF COMPUTER APPLICATION

Semester: 2 Batch: A Roll No: 50

FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT)TM

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

Name : GAYATHRI S NAIR

Branch: MASTER OF COMPUTER APPLICATION

Semester: 2 Roll No: 50

University Exam. Reg. No:

CERTIF	<u>ICATE</u>			
This is to certify that this is a Bonafide record of the Practical work done and submitted to Kerala Technological University in partial fulfillment for the award of the Master Of Computer Applications is a record of the original research work done by GAYATHRI S NAIR in the NETWORKING & SYSTEM ADMINISTARION Laboratory of the Federal Institute of Science and Technology during the academic year 2020-2021.				
Signature of Staff in Charge Name : Date :	Signature of H.O.D Name:			
Date of University practical examination .	••••••			

Signature of External Examiner

Signature of Internal Examiner

CONTENT

SI No:	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	17-6-21	COMPONENT IDENTIFICATION	1	
2	27-06-21	LINUX COMMANDS	23	
3	4-07-21	LINUX FILE SYSTEM	34	
4	17-7-21	SHELL SCRIPT	40	
5	31-07-21	LAMP STACK INSTALLATION	51	
6	5-08-21	LARAVEL FRAMEWORK	58	
7	15-08-21	NETWORKING COMMANDS	68	
8	10-09-21	WIRE SHARK	71	
9	21-09-21	VIRTUAL BOX	74	

EXPERIMENT -1

1 BASIC INTRODUCTORY CONCEPT OF COMPUTER HARDWARE

What is Computer?

A computer is a programmable electronic device that accepts raw data as input and processes it with a set of instructions (a program) to produce the result as output. It renders output just after performing mathematical and logical operations and can save the output for future use. It can process numerical as well as non-numerical calculations.

History of Computers

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

Since the evolution of humans, devices have been used for calculations for thousands of years. One of the earliest and well-known devices was an abacus. Then in 1822, the father of computers, **Charles Babbage** began developing the first mechanical computer.

Computer Hardware

Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. Hardware is typically directed by the software to execute any command or <u>instruction</u>. A combination of hardware and software forms a usable <u>computing</u> system, although <u>other systems</u> exist with only hardware.

The following are the basic components that will be detailed:-

- 1. Motherboard
- 2. RAM Modules
- 3. Daughter cards
- 4. Bus slots
- 5. SMPS
- 6. Internal Storage Devices
- 7. Interfacing Ports

2. MOTHERBOARD

A motherboard (also called mainboard, main circuit board, system board, baseboard, planar board ,logic board or mobo) is the main printed circuit board (PCB) in generalpurpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

Motherboard means specifically a PCB with expansion capabilities. As the name suggests, this board is often referred to as the "mother" of all components attached to it, which often include peripherals, interface cards, and daughter cards: soundcards, video cards, network cards, host bus adapters, TV tuner cards, IEEE 1394 cards; and a variety of other custom components.

FEATURES OF MOTHERBOARD

- Motherboard varies greatly in supporting various types of components.
- Motherboard supports a single type of CPU and few types of memories.
- Video cards, hard disks, sound cards have to be compatible with the motherboard to function properly.
- Motherboards, cases, and power supplies must be compatible to work properly together.

TYPES OF MOTHERBOARD

2.1 AT Motherboard

These motherboards have bigger physical dimensions of hundreds of millimetres and hence they are not the right fit for the mini desktop category of computers.

2. ATX Motherboards

ATX denotes Advanced technology extended, It was developed by Intel during the 1990s and it was an improved version over an earlier version of AT motherboard. It is smaller in size when compared to AT and it provides interchangeability of the connected components.

3. BTX Motherboard

BTX denotes Balanced Technology Extended, intended to manage demands of new technologies in terms of more power requirements hence generation of more heat.

4. Pico BTX Motherboard

These boards are smaller in size and hence the word Pico. Two expansion slots are supported in spite of being sharing the top half of BTX. Half-height or riser cards are its unique features and it supports the demands of digital applications.

5. Mini ITX Motherboard

It's a miniature version of motherboard. Designed in the early 2000s and its dimension is 17 x 17 cm. Mainly used in small form factor (SFF) computer due to its lower power consumption and faster cooling ability.

MAIN COMPONENTS OF MOTHERBOARD

2.1 FLOPPY DISC CONTROLLER

A floppy disk controller (FDC) is an electronic chip controller used as an interface between a computer and a floppy disk drive. Modern computers have this chip embedded in the motherboard, whereas they were a separate component when they were originally introduced.

A floppy disk controller (FDC) is a specially designed chip that controls the reading and writing functionality of a floppy drive. An FDC can support up to four floppy disk drives at a time. The controller is connected to the system bus of the CPU and appears as a set of I/O ports to the computer. It is usually also linked to a serial bus of the direct memory access (DMA) controller. In an x86 computer, the floppy disk controller uses IRQ6, whereas interrupt schemes are used on other systems. Data transmission is often done by FDC while in DMA mode.

Floppy disk controller functions (FDC)

- Translate data bits into FM, MFM, M²FM, or GCR format to be able to record them
- Interpret and execute commands such as seek, read, write, format, etc.
- Error detection with check sums generation and verification, like CRC
- Synchronize data with phase-locked loop(PLL)

2.2 Serial Ports

Serial Ports provide an interface to connect serial lines to prepare a serial communication. Serial ports are typically used in modem, mouse, security cameras etc. A Serial port uses DB-9 connector, a 9 pin D-Shaped Connector which connects to the transmission line. A serial port provides a serial communication using one line and thus have no dependency on other wire's speed and its length can be extended as per the need.

2.3 Parallel Ports

Parallel ports provide an interface to connect multiple lines to prepare a parallel communication to send large data at a time. Parallel ports are used in connecting printers, hard-drives, CD-drives etc. All lines speed should be same to avoid error and cross-talk issues. To avoid such issues, the wires are kept small in length. A parallel port uses D-25 connector, a 25 pin D- Shaped connector which connects to the transmission wires.

2.4 The Expansion Buses

An expansion bus is an input/output pathway from the CPU to peripheral devices and it is typically made up of a series of slots on the motherboard. Expansion boards(cards) plug into the bus. PCI is the most common expansion bus in a PC and other hardware platforms. PCI stands for Peripheral Component Interface; PCI slot allows you to insert expansion cards into your computer. Buses carry signals such as data, memory addresses, power, and control signals from component to component. Other types of buses include ISA and EISA. Expansion buses enhance the PCs capabilities by allowing users to add missing features in their computers by slotting adapter cards into expansion slots.

2.5 The Computer Chip-sets

A chipset is a group of small circuits that coordinate the flow of data to and from a PC's key components. These key components include the CPU itself, the main memory, the secondary cache, and any devices situated on the buses. A chip set also controls data flow to and from hard disks and other devices connected to the IDE channels.

A computer has got two main chipsets:

- The North Bridge (also called the memory controller) is in charge of controlling transfers between the processor and the RAM, which is why it is located physically near the processor. It is sometimes called the GMCH, for Graphic and Memory Controller Hub.
- The South Bridge (also called the input/output controller or expansion controller) handles communications between slower peripheral devices. It is also called the ICH (I/O Controller Hub). The term "bridge" is generally used to designate a component which connects two buses.

Chipset manufacturers include SIS, VIA, ALI, and OPTI.

3. RANDOM ACCESS MEMORY

Introduction

RAM, which stands for Random Access Memory, is a hardware device generally located on the motherboard of a computer and acts as an internal memory of the CPU. It allows CPU store data, program, and program results when you switch on the computer. It is the read and write memory of a computer, which means the information can be written to it as well as read from it.

RAM comes in the form of a chip that is individually mounted on the motherboard or in the form of several chips on a small board connected to the motherboard. It is the main memory of a computer. It is faster to write to and read from as compared to other memories such as a hard disk drive (HDD), solid-state drive (SSD), optical drive, etc.

A computer's performance mainly depends on the size or storage capacity of the RAM. If it does not have sufficient RAM (random access memory) to run the OS and software programs, it will result in slower performance. So, the more RAM a computer has, the faster it will work. Information stored in RAM is accessed randomly, not in a sequence as on a CD or hard drive. So, its access time is much faster.

CHARACTERISTICS OF RAM

3.1 SDRAM AND DDR

Memory modules are labelled with either SDRAM (Synchronous Dynamic Random Access Memory) or DDR (Double Data Rate). DDR RAM, as the "double data rate" name suggests, offers much faster speeds than SDRAM. Each generation of DDR, such as DDR2 and DDR3, offers performance improvements over the one preceding it.

2. SPEED

The two numbers often quoted first on memory module specifications -- for example, "DDRxxx/PCxxxx" -- indicate the maximum clock speed and maximum transfer rate the device can operate at -- and the higher the better. The stated clock speed is actually double the real figure, so a stick of RAM labelled DDR3-1333 PC3200 offers a clock speed of 666 MHz and a transfer rate of 3,200 MB/s.

3. PINS

Essentially, the number of pins a memory module has indicates the number of connections it has to the motherboard -- and thus which motherboards it's compatible with. More pins mean more data can be transferred at once, for faster operation overall, though performance is based on a variety of different factors, including CPU speed and the motherboard configuration.

4. VOLTS

The voltage rating associated with a memory module -- for example, 2.5 V -- indicates how much power it draws from the motherboard in order to operate properly. RAM sticks that can work at lower voltages use up less power and give off less heat, and are therefore more suitable for smaller systems such as laptops.

5. CAS LATENCY

CAS (Column Address Strobe) Latency, sometimes abbreviated to just "CL," indicates the time it takes for a memory module to return data to the CPU. A lower CAS Latency indicates RAM that performs faster.

6. TIMING

Memory modules feature other timings besides CAS Latency, usually listed as a series of numbers after the other specifications. In order after CAS Latency, they are RAS (Row Address Strobe) to CAS delay, RAS Precharge, Active to Precharge delay and, optionally, command rate. These timings are only really of interest to advanced technical users, as the impact they have on performance is very small.

7. REDUNDANCY

The redundancy built into a memory module indicates its ability to recover from errors and to alert the operating system to a problem, rather than just allowing it to crash and lose your data. More expensive and critical server memory uses Error Checking and Correcting Redundancy, or ECC, in order to detect and correct errors wherever possible.

Different Types of RAM

RAM(Random Access Memory) is a part of computer's Main Memory which is directly accessible by CPU. RAM is used to Read and Write data into it which is accessed by CPU randomly. RAM is volatile in nature, it means if the power goes off, the stored information is lost. RAM is used to store the data that is currently processed by the CPU. Most of the programs and data that are modifiable are stored in RAM.

Integrated RAM chips are available in two form:

- 1. SRAM(Static RAM)
- 2. DRAM(Dynamic RAM)

3.1 SRAM

The SRAM memories consist of circuits capable of retaining the stored information as long as the power is applied. That means this type of memory requires constant power. SRAM memories are used to build Cache Memory.

3.2 DRAM

DRAM stores the binary information in the form of electric charges that applied to capacitors. The stored information on the capacitors tend to lose over a period of time and thus the capacitors must be periodically recharged to retain their usage. The main memory is generally made up of DRAM chips.

Functions

3.1. Reading Files

Hard drives can store vast numbers of files, but compared to other computer components, drives run very slowly. Accessing hard drive files -- especially when those files are scattered across the drive due to fragmentation -- requires the drive to move its mechanical read/write head back and forth and to wait for the spinning platters to spin into the correct position. Even though drives spin at thousands of rotations per minute, this process causes a noticeable delay when reading files. To lessen the slowdown, computers store files in RAM after the files are first read from the drive. RAM has no moving parts, so the files can load very quickly during subsequent uses.

2. Temporary Storage

In addition to storing files read from the hard drive, RAM also stores data that programs are actively using but that doesn't need to be saved permanently. By keeping this data in RAM, programs can work with it quickly, improving speed and responsiveness.

3. RAM Size

If RAM works so much faster than the hard drive, why not load all of the computer's data into RAM? One major reason: computers have far less RAM than drive space. As of publication, hard drive sizes range from a few hundred gigabytes in laptops to 10TB in high-end enterprise systems. Most home computers have between 1 and 4TB of drive space.

4. DAUGHTER CARD

Referred to as a piggyback board and **daughter card**, a daughterboard is an expansion board that connects directly to the motherboard and gives added functionality.

Motherboard with daughter card

To disable a daughter board, the user must physically remove it from the motherboard Daughter boards do not provide new functions to the circuit like an expansion but they extend the circuitry of the circuit in which they are plugged into

Functionalities of daughter board:

- It is known as the piggyback board, riser card, daughtercard etcetera.
- A daughter board is smaller than a motherboard and may have some slots like the motherboard.
- A daughter board is a printed circuit board which is connected to the motherboard or expansion card.
- Unlike expansion card, daughter boards are directly connected to the motherboard by soldering.
- Daughter boards do not provide new functions to the circuit like an expansion but they extend the circuitry of the circuit in which they are plugged into.
- Daughter boards are released by the vendors as an update of motherboard or expansion card.

	Expt No:
List of daughter cards	
•Video Card: This is also referred to as the graphics adapter, display a adapter.	adapter or video
•Sound Card: To handle sound, to insert a microphone or connect a spis used.	peaker this sound card
Network Interface Card: This is also referred as NIC. The computer network only with the use of this network interface card.	can be connected to a
Ethernet Card: Ethernet card is used to connect computers to compute to connect the Ethernet cards in each computer to make a network.	ters. A cable is used

5. SWITCHED- MODE POWER SUPPLY

Switched-mode power supply Introduction A switched-mode power supply (switchingmode power supply, switch-mode power supply, switched power supply, SMPS, or switcher) is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Its function is to convert a level of voltage to the voltage or current required by the client through different forms of architecture.

WORKING

The working of SMPS is simply understood by knowing that the transistor used in LPS is used to control the voltage drop while the transistor in SMPS is used as a controlled switch. The AC input supply signal 50 Hz is given directly to the rectifier and filter circuit combination without using any transformer. A fast switching device such as a Power transistor is employed in this section, which switches ON and OFF according to the variations and this output is given to the primary of the transformer. This is a regulated output voltage which is then given to the control circuit, which is a feedback circuit

6. INTERNAL STORAGE DEVICES

A storage device is any type of computing hardware that is used for storing, porting or extracting data files and objects. Storage devices can hold and store information both temporarily and permanently. They may be internal or external to a computer. Some storage devices are classed as 'internal' which means they are inside the computer case. At the most basic level, internal storage is needed to hold the operating system so that the computer is able to access the input and output devices. It will also be used to store the applications software that you use and more than likely, the original copies of your data files. Internal storage allows the data and applications to be loaded very rapidly into memory, ready for use. The data can be accessed much faster than data which is stored on an external storage device. This is because internal storage devices are connected directly to the motherboard and its data bus whereas external devices are connected through a hardware interface such as USB, which means they are considerably slower to access.

The main disadvantage of internal storage is that when the hard disk fails (and it will), all the data and applications may be lost. This can be avoided to some extent by using more than one hard disk within the machine. Each hard disk has a copy of all the data, so if one fails the other can carry on. This is called a RAID array. An alternative is to use external drives for backup

Examples of Internal storage devices

- Hard Disk
- SSD
- RAM

6.1 HARD DISK

A **hard disk drive** (sometimes abbreviated as a **hard drive**, **HD**, or **HDD**) is a <u>nonvolatile</u> data <u>storage device</u>. It is usually installed internally in a computer, attached directly to the disk controller of the computer's <u>motherboard</u>. It contains one or more <u>platters</u>, housed inside of an air-sealed casing. Data is written to the platters using a magnetic head, which moves rapidly over them as they spin.

<u>Internal</u> hard disks reside in a <u>drive bay</u>, connected to the motherboard using an <u>ATA</u>, <u>SCSI</u>, or <u>SATA</u> cable. They are powered by a connection to the computer's <u>PSU</u> (power supply unit).

Hard disk, Magnetic storage medium for <u>a microcomputer</u>. Hard disks are flat, circular plates made of aluminum or glass and coated with a magnetic material. Hard disks for <u>personal computers</u> can store up to several gigabytes (billions of bytes) of information. Data are stored on their surfaces in concentric tracks. A small electromagnet, called a magnetic head, writes a

binary digit (1 or 0) by magnetizing tiny spots on the spinning disk in different directions and reads digits by detecting the magnetization direction of the spots. A computer's hard drive is adevice consisting of several hard disks, read/write heads, a drive motor to spin the disks, and a small amount of circuitry, all sealed in a metal case to protect the disks from dust. In addition to referring to the disks themselves, the term hard disk is also used to refer to the whole hard drive.

Computers rely on hard disk drives (HDDs) to store data permanently. They are storage devices used to save and retrieve digital information that will be required for future reference.

Hard drives are non-volatile, meaning that they retain data even when they do not have power. The information stored remains safe and intact unless the hard drive is destroyed or interfered with. The information is stored or retrieved in a random-access manner as opposed to sequential access. This implies that blocks of data can be accessed at any time they are required without going through other data blocks.

6.2 SOLID STATE DRIVE

A solid-state drive (SSD) is a <u>solid-state</u> storage device that uses <u>integrated circuit</u> assemblies to store data <u>persistently</u>, typically using <u>flash memory</u>, and functioning as <u>secondary storage</u> in the <u>hierarchy of computer storage</u>. It is also sometimes called a **solid-state device** or a **solid-state disk**, even though SSDs lack the physical spinning <u>disks</u> and movable <u>read-</u>write heads used in hard disk drives (HDDs) and floppy disks.

Compared with electromechanical drives, SSDs are typically more resistant to physical shock, run silently, and have quicke<u>r access time</u> and lower <u>latency</u>. SSDs store data in <u>semiconductor</u> cells. SSDs have a limited number of writes, and slow as they reach storage capacity.

6.3 **RAM**

RAM (Random Access Memory) is the internal memory of the CPU for storing data, program, and program result. It is a read/write memory which stores data until the machine is working. As soon as the machine is switched off, data is erased.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there is a power failure. RAM is small, both in terms of its physical size and in the amount of data it can hold.

RAM is of two types –

- Static RAM (SRAM)
- Dynamic RAM (DRAM)

Static RAM (SRAM)

The word **static** indicates that the memory retains its contents as long as power is being supplied. However, data is lost when the power gets down due to volatile nature. SRAM chips use a matrix of 6-transistors and no capacitors. Transistors do not require power to prevent leakage, so SRAM need not be refreshed on a regular basis.

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually **refreshed** in order to maintain the data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred times per second. DRAM is used for most system memory as it is cheap and small

6.4 SOME OTHER STORAGE DEVICES

- Magnetic Storage Device
- Optical Storage Device
- Flash Memory Device
- Online and Cloud
- Paper Storage

7. COMPUTER PORTS

WHAT IS MEANT BY A PORT?

A port in a computer network is a communication endpoint whereas, in an operating system, it is a logical construct, recognizes precise method otherwise a network service type. These endpoints recognize the combination of every protocol and its address through 16-bit unsigned numbers, called the port number. The protocols that use port numbers are the TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). The port number in every computer networking uses an IP address of the type of protocol & the host

What is Port in Computer/Computer Port?

A computer port or a communication port is a connection point used as an interface between the computer & the peripherals like keyboard, mouse, printer, display unit, monitor, flash drive and speaker. The computer port transmits the data from any peripheral to the computer. In general, the communication ports are available in two type like Serial Ports as well as Parallel Ports.

Characteristics of Computer Ports

The characteristics of the computer port include the following.

- It is an interface between external devices as well as a computer.
- Ports on the motherboard can be connected using an external device cable by plugging in.
- The external devices which are connected through via ports are the keyboard, mouse, microphone, monitor, speakers, etc.

Types of Computer Ports

There are different types of ports available in a computer network. Some of them are:

PS/02

- Serial Port
- Parallel Port
- Ethernet
- VGA Port
- USB Port
- DVI Port
- HDMI Port
- Display Port
- **7.1 PS/2 PORTS:** PS/2 is a type of <u>port</u> used by older computers for connecting <u>input</u> <u>devices</u> such as <u>keyboards</u> and <u>mice</u>. The port was introduced with IBM's Personal System/2 computer in 1987 (which was abbreviated "PS/2"). The PS/2 port has six pins and is roughly circular in shape

7.2 SERIAL PORT: A serial port is an interface that allows a PC to transmit or receive data one bit at a time. It is one of the oldest types of interfaces commonly used to connect printers and external modems to a PC. Compared to a parallel port, the data transfer rate of a serial port is slower. Normally, a serial port is a male port, while a parallel port is a female port. The serial port standard is RS-232. This standard is used for transmitting serial communication between devices.

7.3 PARALLEL PORT: Parallel port is a type of interface found on computers (personal and otherwise) for connecting peripherals. Parallel ports send multiple bits of data at once (parallel communication), as opposed to serial communication, in which bits are sent one at a time. Parallel port is an interface between computer and peripheral devices like printers with parallel communication

7.4 ETHERNET: A Ethernet port is a jack or socket on a computer that allows the use of an Ethernet connector. These ports are essential in allowing the creation of local area networks (LANs). An Ethernet port is usually found on networking devices, including computers, routers, video game consoles, modems, and televisions. Ethernet is a communication system that allows multiple local devices to share information and work together.

7.5 VGA PORT: Abbreviated VGA, Video Graphics Array is a standard type of connection for video devices such as monitors and projectors. Generally, VGA refers to the types of cables, ports, and connectors used to connect monitors to video cards.

7.6 USB PORT: A **USB port** is a standard cable connection interface for personal computers and consumer electronics devices. <u>USB stands for Universal Serial Bus</u>, USB ports allow USB devices to be connected to each other with and transfer digital data over USB cables

7.7 HDMI PORT: Full form of HDMI is **High-Definition Multimedia Interface.**

HDMI is a proprietary audio/video interface for transmitting uncompressed video data and compressed or uncompressed digital audio data from an HDMI-compliant source device, such as a display controller, to a compatible computer monitor, video projector, digital television, or digital audio device..

7.8 DISPLAY PORT: DisplayPort is a digital display interface developed by a consortium of PC and chip manufacturers and standardized by the Video Electronics Standards Association. Display Port is a digital display interface with optional multiple channel audio and other forms of data. Display Port is developed with an aim of replacing

VGA and DVI ports as the main interface between a computer and monitor.

EXPERIMENT -2

Linux Commands

LC₁

Q1. Create the directories and files as given in the above directory structure. Directories are mentioned as (d). Files should be filled with necessary text data

```
gaya3@gaya3-VirtualBox:~$ mkdir India
gaya3@gaya3-VirtualBox:~$ cd India
g Thunderbird Mail tualBox:~/India$ mkdir kerala
g Thunderbird Mail tualBox:~/India$ mkdir tn
gaya3@gaya3-VirtualBox:~/India$ mkdir ap
gaya3@gaya3-VirtualBox:~/India$ cd kerala
gaya3@gaya3-VirtualBox:~/India/kerala$ cat > culture.txt
kerala has a traditional culturegaya3@gaya3-VirtualBox:~/India/kerala$
```

```
language is malayalam^Z
[1]+ Stopped
                               cat > language.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ cat language.txt
language is malayalamgaya3@gaya3-VirtualBox:~/India/kerala$ cat > dress.txt
dressing style is tradtional^Z
[2]+ Stopped
                              cat > dress.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ cd ...
gaya3@gaya3-VirtualBox:~/India$ cd tn
gaya3@gaya3-VirtualBox:~/India/tn$ cat > farm.txt
tn agricultural sector is the greatest overiding sector in the economy of the s
tate^Z
[3]+ Stopped
                              cat > farm.txt
gaya3@gaya3-VirtualBox:~/India/tn$ cat > land.txt
tn has a good agricultural land^Z
[4]+ Stopped
                              cat > land.txt
gaya3@gaya3-VirtualBox:~/India/tn$ cd ..
gaya3@gaya3-VirtualBox:~/India$ cd ap
gaya3@gaya3-VirtualBox:~/India/ap$ mkdir development
gaya3@gaya3-VirtualBox:~/India/ap$ cat > industry.txt
this is about industry^Z
                              cat > industry.txt
[5]+ Stopped
gaya3@gaya3-VirtualBox:~/India/ap$ cat > farmers.txt
department of agriculture has been created mainly to provide agricultual extens
ion services to farmers^Z
[6]+ Stopped
                              cat > farmers.txt
gaya3@gaya3-VirtualBox:~/India/ap$ cat > general.txt
capital of ap is hyderabad^Z
[7]+ Stopped
                              cat > general.txt
```

Q2. List your present working directory

```
gaya3@gaya3-VirtualBox:~/India/kerala$ cat language.txt
language is malayalamgaya3@gaya3-VirtualBox:~/India/kerala$ cat > dress.txt dressing style is tradtional^Z
[2]+ Stopped cat > dress.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ cd ..
gaya3@gaya3-VirtualBox:~/India$ cd tn
gaya3@gaya3-VirtualBox:~/India/tn$ cat > farm.txt
tn agricultural sector is the greatest overiding sector in the economy of the s
[3]+ Stopped
                                               cat > farm.txt
gaya3@gaya3-VirtualBox:~/India/tn$ cat > land.txt
tn has a good agricultural land^Z
[4]+ Stopped agricultural tand*2

[4]+ Stopped cat > land.txt
gaya3@gaya3-VirtualBox:~/India/tn$ cd ..
gaya3@gaya3-VirtualBox:~/India/s cd ap
gaya3@gaya3-VirtualBox:~/India/ap$ mkdir development
gaya3@gaya3-VirtualBox:~/India/ap$ cat > industry.txt
this is about industry^Z
[5]+ Stopped
                                               cat > industry.txt
gaya3@gaya3-VirtualBox:~/India/ap$ cat > farmers.txt
department of agriculture has been created mainly to provide agricultual extens
ion services to farmers^Z
[6]+ Stopped
                                               cat > farmers.txt
gaya3@gaya3-VirtualBox:~/India/ap$ cat > general.txt capital of ap is hyderabad^Z
[7]+ Stopped cat > general.txt
  aya3@gaya3-VirtualBox:~/India/ap$ pwd
/home/gaya3/India/ap
```

```
Q3. Move to the root directory.
     gaya3@gaya3-VirtualBox:~/India/ap$ cd ~
gaya3@gaya3-VirtualBox:~$ cd India
gaya3@gaya3-VirtualBox:~/India$
Q4. Copy the file 'Culture' to the folder AP
d Thunderbird Mail tualBox:~/India/ap$ cd ~
gaya3@gaya3-virtualBox:~$ cd India
gaya3@gaya3-VirtualBox:~/India$ cp -r kerala/culture.txt ap
gaya3@gaya3-VirtualBox:~/India$ cd ap
gaya3@gaya3-VirtualBox:~/India/ap$ cat general.txt
capital of ap is hyderabadgaya3@gaya3-VirtualBox:~/India/ap$
Q5. Display the content of the file 'general'
 g Thunderbird Mail tualBox:-/India/ap$ cd ~ gaya3@gaya3-VirtualBox:-$ cd India gaya3@gaya3-VirtualBox:-/India$ cp -r kerala/culture.txt ap gaya3@gaya3-VirtualBox:-/India$ cd ap gaya3@gaya3-VirtualBox:-/India/ap$ cat general.txt capital of ap is hyderabadgaya3@gaya3-VirtualBox:-/India/ap$
```

```
Q6. Move the file 'language' to the directory AP/Development

gaya3@gaya3-VirtualBox:~/India$ mv -i kerala/language.txt ap/development

gaya3@gaya3-VirtualBox:~/India$ cd ap

gaya3@gaya3-VirtualBox:~/India|ap$ ls -al

total 28

drwxrwxr-x 3 gaya3 gaya3 4096 Jun 19 21:14 .

drwxrwxr-x 5 gaya3 gaya3 4096 Jun 19 20:40 ..

-rw-rw-r-- 1 gaya3 gaya3 4096 Jun 19 21:19 development

-rw-rw-r-- 1 gaya3 gaya3 102 Jun 19 21:19 development

-rw-rw-r-- 1 gaya3 gaya3 26 Jun 19 21:02 general.txt

-rw-rw-r-- 1 gaya3 gaya3 22 Jun 19 20:59 industry.txt

gaya3@gaya3-VirtualBox:~/India/ap$
```

Q7. List all the files in the folder AP

```
gaya3@gaya3-VirtualBox:~/India$ mv -i kerala/language.txt ap/development gaya3@gaya3-VirtualBox:~/India$ cd ap gaya3@gaya3-VirtualBox:~/India/ap$ ls -al total 28 drwxrwxr-x 3 gaya3 gaya3 4096 Jun 19 21:14 .
drwxrwxr-x 5 gaya3 gaya3 4096 Jun 19 20:40 ..
-rw-rw-r-- 1 gaya3 gaya3 32 Jun 19 21:14 culture.txt drwxrwxr-x 2 gaya3 gaya3 4096 Jun 19 21:19 development -rw-rw-r-- 1 gaya3 gaya3 102 Jun 19 21:00 farmers.txt -rw-rw-r-- 1 gaya3 gaya3 26 Jun 19 21:02 general.txt -rw-rw-r-- 1 gaya3 gaya3 22 Jun 19 20:59 industry.txt gaya3@gaya3-VirtualBox:~/India/ap$
```

O8. List first 10 lines of the file 'Dress'

```
dressing style is tradtional
These days western culture has had a common influence on people not unlike the rest of India
p LibreOffice Writer ted wearing western clothes like shirts, jeans, skirts, dresses, etc.
But whenever any religious event or a wedding or any other function is celebrated, they make sure that traditions are followed, and people wear only the traditional attires.
The people of Kerala still preserve the culture.
It's quite evident that the people of this southern state of India wear a very simple clothing.
White is their favourite colour as it depicts purity, elegance and simplicity.

Beautiful embroideries and Kara designs are enough to make it an occasional dress for them.
Although the basic clothing in Kerala is very simple it can be worn and designed according to different occasions, such as weddings, family events, regional festivals like Onam and Vishu.

gaya3@gaya3-VirtualBox:~/India/kerala$
```

O9. List the last 10 lines of the file 'Dress'

```
g Files gaya3-VirtualBox:~/India/kerala$ tail dress.txt
The people of Kerala still preserve the culture.
It's quite evident that the people of this southern state of India wear a very simple clothing.
White is their favourite colour as it depicts purity, elegance and simplicity.

Beautiful embroideries and Kara designs are enough to make it an occasional dress for them.
Although the basic clothing in Kerala is very simple it can be worn and designed according to different occasions, such as weddings, family events, regional festivals like Onam and Vishu.
The cultural richness of Kerala is famous all over the world and is the matter of real fascination for everybody.
The costumes of kerala are a symbol for the simple life style of people at her e. Men and women in each religion has got traditional dress, ornaments etc. in Kerala.

Usually they wear traditional costumes in functions like marriages, temple fe stivals etc.
It is culture of Kerala to wear new dresses in their festivals like Onam, Vishu etc.
gaya3@gaya3-VirtualBox:~/India/kerala$
```

Q10. List all the files in AP in long listing format

```
gaya3@gaya3-VirtualBox:~/India\scd ap
gaya3@gaya3-VirtualBox:~/India\ap\s ls -l
total 20
-rw-rw-r-- 1 gaya3 gaya3 32 Jun 19 21:14 culture.txt
drwxrwxr-x 2 gaya3 gaya3 4096 Jun 19 21:19 development
-rw-rw-r-- 1 gaya3 gaya3 102 Jun 19 21:00 farmers.txt
-rw-rw-r-- 1 gaya3 gaya3 26 Jun 19 21:02 general.txt

Rhythmbox 1 gaya3 gaya3 22 Jun 19 20:59 industry.txt

Rhythmbox -VirtualBox:~/India/ap\s\

I
```

Q11. List the files in AP which begin with the character 'f'

```
gaya3@gaya3-VirtualBox:-/India/ap$ ls -d f*
farmers.txt
gaya3@gaya3-VirtualBox:~/India/ap$
```

Q12. List the files page by page

```
gaya3@gaya3-VirtualBox:~/India/kerala$ ls -la | more total 16 drwxrwxr-x 2 gaya3 gaya3 4096 Jun 19 21:33 . drwxrwxr-x 5 gaya3 gaya3 4096 Jun 19 21:23 .. -rw-rw-r-- 1 gaya3 gaya3 32 Jun 19 20:41 culture.txt -rw-rw-r-- 1 gaya3 gaya3 1357 Jun 19 21:32 dress.txt gaya3@gaya3-VirtualBox:~/India/kerala$
```

Q13. Remove the file 'general'

LC2

Q14. Change the permission of the file 'Culture' as only read permission to all

```
gaya3@gaya3-VirtualBox:~/India/ap$ cd ..
gaya3@gaya3-VirtualBox:~/India/kerala$ ls
culture.txt dress.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ ls -l culture.txt
-rw-rw-r-- 1 gaya3 gaya3 32 Jun 19 20:41 culture.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ chmod g-wx culture.txt
gaya3@gaya3-VirtualBox:~/India/kerala$ ls -l culture.txt
-rw-r--r-- 1 gaya3 gaya3 32 Jun 19 20:41 culture.txt
gaya3@gaya3-VirtualBox:~/India/kerala$
Text Editor
```

Q15. List the lines of the file which contains a string 'Saree'

```
gaya3@gaya3-VirtualBox:~/India/kerala$ grep 'saree' dress.txt
dressing style is tradtional, like saree and mundu.

It's quite evident that the people of this southern state of India wear a very simple clothing such as saree.

gaya3@gaya3-VirtualBox:~/India/kerala$
```

Q16. Use man command to get the syntax of wc command

```
WC(1)
                                     User Commands
                                                                                    WC(1)
NAME
        wc - print newline, word, and byte counts for each file
SYNOPSIS
        wc [OPTION]... [FILE]...
wc [OPTION]... --files0-from=F
DESCRIPTION
        Print newline, word, and byte counts for each FILE, and a total line if more than one FILE is specified. A word is a non-zero-length se-
        quence of characters delimited by white space.
        With no FILE, or when FILE is -, read standard input.
        The options below may be used to select which counts are printed, al-
        ways in the following order: newline, word, character, byte, maximum line length.
        -c, --bytes
                print the byte counts
        -m, --chars
                print the character counts
        -l, --lines
               print the newline counts
Manual page wc(1) line 1 (press h for help or q to quit)
```

Q17. Count the number of characters, words, lines in the directory listing

Q18. Put a listing of the files in your directory into a file called file list.

```
gaya3@gaya3-VirtualBox:~/India$ ls -l >> filelist.txt
gaya3@gaya3-VirtualBox:~/India$ cat filelist.txt
total 16
drwxrwxr-x 3 gaya3 gaya3 4096 Jun 19 21:48 ap
-rw-rw-r-- 1 gaya3 gaya3 859 Jun 19 21:27 dress.txt
-rw-rw-r-- 1 gaya3 gaya3 0 Jun 24 21:25 filelist.txt
drwxrwxr-x 2 gaya3 gaya3 4096 Jun 24 21:24 kerala
drwxrwxr-x 2 gaya3 gaya3 4096 Jun 19 20:52 tn
gaya3@gaya3-VirtualBox:~/India$
```

```
Q19. List the status of all process running in your system
   2041 pts/0
2285 pts/0
                 00:00:00 cat
                 00:00:00 ps
gaya3@gaya3-VirtualBox:~/India$ ps -aux
USER
             PID %CPU %MEM
                              VS7
                                   RSS TTY
                                                  STAT START
                                                               TIME COMMAND
root
                 0.0
                      0.5 167672 11508
                                                  Ss 19:10
                                                               0:03 /sbin/init s
              2 0.0 0.0
                                                               0:00 [kthreadd]
root
                                  0 ?
                                                       19:10
                                                     19:10
root
              3 0.0 0.0
                              0
                                      0 ?
                                                               0:00 [rcu_gp]
              4 0.0 0.0
6 0.0 0.0
                                                I<
I<
                                                     19:10
19:10
                                                               0:00 [rcu_par_gp]
0:00 [kworker/0:0
root
                                0
                                      0 ?
                                      0 ?
root
                                0
              9 0.0
                                      0 ?
                                                I< 19:10
root
                       0.0
                              0
                                                               0:00 [mm_percpu_w
                                                     19:10
19:10
                                                               0:01 [ksoftirqd/0
root
             10 0.0
                       0.0
                                      0 ?
root
              11 0.0
                       0.0
                                      0 ?
                                                               0:02 [rcu_sched]
                              0
             12 0.0
                                      0 ?
                                                     19:10
                                                               0:00 [migration/0
root
                       0.0
                                      0 ?
                                                     19:10
root
             13 0.0
                       0.0
                                                               0:00 [idle_inject
                              0
             14 0.0
15 0.0
                                      0 ?
root
                       0.0
                                                      19:10
                                                               0:00 [cpuhp/0]
                                                      19:10
                                      0 ?
root
                       0.0
                                0
                                                               0:00
                                                                    [cpuhp/1]
                                                               0:00 [idle inject
root
             16 0.0
                       0.0
                              0
                                                 S
                                                      19:10
                                      0 ?
                                                               0:00 [migration/1
0:00 [ksoftirqd/1
             17 0.0
                                                      19:10
root
                       0.0
             18 0.0
                       0.0
                                                       19:10
root
                              0
                                                I< 19:10
             20 0.0
                                                               0:00 [kworker/1:0
                                      0 ?
root
                       0.0
                                      0 ?
root
             21 0.0
                       0.0
                              0
                                                      19:10
                                                               0:00 [kdevtmpfs]
                                                     19:10
                                            I<
S
             22 0.0
23 0.0
                       0.0
                                      0 ?
                                                               0:00 [netns]
root
                                      0 ?
                                                               0:00 [rcu_tasks_
root
                       0.0
                                0
                                                       19:10
                                                               0:00 [rcu_tasks_r
root
             24 0.0
                       0.0
                               0
                                      0 ?
                                                 S
                                                      19:10
                                                               0:00 [rcu_tasks_t
0:00 [kauditd]
0:00 [khungtaskd]
             25 0.0
                                0
                                      0 ?
                                                      19:10
root
                       0.0
              26
                 0.0
                       0.0
                                                       19:10
root
                                      0 ?
                                                       19:10
root
                 0.0
                       0.0
                                0
root
              28
                 0.0
                       0.0
                                       0 ?
                                                       19:10
                                                               0:00 [oom reaper]
              29
                  0.0
                       0.0
                                       0 ?
                                                  I<
                                                       19:10
                                                               0:00 [writeback]
root
```

Q20. List the disk partitions in your harddisk.

```
aya3-VirtualBox:~/India$ lsblk
NAME
          MAJ:MIN RM
                            SIZE RO TYPE MOUNTPOINT
                   0
                       0 219M 1 loop /snap/gnome-3-34-1804/66
0 55.5M 1 loop /snap/core18/1988
loop0
             7:0
loop1
             7:1
             7:2
                   0 64.8M 1 loop /snap/gtk-common-themes/1514
loop2
            7:3 0 51M 1 loop /snap/snap-store/518
7:4 0 31.1M 1 loop /snap/snapd/11036
8:0 0 100.7G 0 disk
loop3
loop4
sda
             8:1 0 512M 0 part /boot/efi
8:2 0 1K 0 part
  -sda1
sda2 8:2 0 1K 0 part / sda5 8:5 0 100.2G 0 part / sr0 11:0 1 58.2M 0 rom / gaya3@gaya3-VirtualBox:~/India$
                                                /media/gaya3/VBox_GAs_6.1.22
```

Q21. Redirect the output of the top program to a file called 'errors'. gaya3@gaya3-VirtualBox:~/India\$ top >> error.txt [3]+ Stopped top >> error.txt gaya3@gaya3-VirtualBox:~/India\$ cat error.txt

```
top - 21:45:03 up 2:34, 1 user, load average: 0.12, 0.10, 0.09
Tasks: 182 total, 1 running, 179 sleeping, 2 stopped, 0 zombie
%Cpu(s): 1.0 us, 0.4 sy, 0.0 ni, 95.2 id, 2.2 wa, 0.0 hi, 1.2 si, 0.0 st
MiB Mem: 1891.1 total, 355.9 free, 722.5 used, 812.8 buff/cache
2048.0 free,
                                                                    1002.8 avail Mem
                                                      0.0 used.
PID to renice [default pid = 1189] ror
     PID USER
                    PR NI
                                VIRT
                                          RES
                                                SHR S %CPU %MEM
                                                                            TIME+ COMMAND
                                                                          3:52.82 gnome-+
    1189 gaya3
                          0 4103.9m 328.9m 120.1m S
                                                           1.2
                                                                  17.4
                     20
                    20 0 817.1m 69.7m 41.8m S

20 0 20.0m 3.7m 3.2m R

20 0 903.2m 71.7m 45.9m S
    895 gaya3
                                                           0.8
                                                                   3.7
                                                                          1:30.11 Xorg
   2346 gaya3
1961 gaya3
                                                3.2m R
                                                           0.8
                                                                  0.2
                                                                          0:00.06 top
                                                                        0:13.99 nautil+
                                               45.9m S
                                                           0.4
                                                                   3.8
   1995 gaya3
                    20 0 805.4m 50.2m 38.0m S
                                                           0.4
                                                                          0:22.69 gnome-+
                                                                   2.7
                        0 163.7m 11.2m
0 0.0m 0.0m
                     20
                                                8.2m S
                                                                         0:03.25 systemd
      1 root
                                                           0.0
                                                                   0.6
                                                                          0:00.00 kthrea+
                                                 0.0m S
       2 root
                     20
                               0.0m
                                        0.0m
                                                           0.0
                                                                   0.0
                    0 -20
                               0.0m
                                         0.0m
                                                 0.0m I
                                                           0.0
                                                                         0:00.00 rcu_gp
       3 root
                                                                   0.0
                    0 -20
0 -20
                                                                   0.0 0:00.00 rcu_pa+
0.0 0:00.00 kworke+
      4 root
                                                 0.0m I
                                0.0m
                                         0.0m
                                                           0.0
                                0.0m
                                         0.0m
                                                 0.0m I
       6 root
                                                           0.0
                    0 -20
       9 root
                                                           0.0
                                                                        0:00.00 mm per+
                                0.0m
                                         0.0m
                                                 0.0m I
                                                                   0.0
                   20 0 0.0m
20 0 0.0m
rt 0 0.0m
-51 0 0.0m
20 0 0.0m
20 0 0.0m
                                         0.0m
                                                 0.0m S
                                                                         0:01.95 ksofti+
      10 root
                                                           0.0
                                                                  0.0
                                         0.0m
                                                 0.0m I
      11 root
                                                           0.0
                                                                   0.0
                                                                          0:02.78 rcu_sc+
                                                 0.0m S
                                                                       0:00.09 migrat+
      12 root
                                         0.0m
                                                           0.0
                                                                   0.0
                                                                  0.0 0:00.00 idle_i+
                                                 0.0m S
0.0m S
      13 root
                                         0.0m
                                                           0.0
      14 root
                                         0.0m
                                                           0.0
                                                                   0.0
                                                                         0:00.00 cpuhp/0
      15 root
                                         0.0m
                                                 0.0m S
                                                           0.0
                                                                   0.0
                                                                          0:00.00 cpuhp/1
                    -51 0
rt 0
                                                                          0:00.00 idle_i+
      16 root
                                0.0m
                                         0.0m
                                                 0.0m S
                                                           0.0
                                                                   0.0
      17 root
                                 0.0m
                                         0.0m
                                                 0.0m S
                                                           0.0
                                                                   0.0
                                                                          0:00.56 migrat+
                        0
      18 root
                     20
                                 0.0m
                                         0.0m
                                                 0.0m S
                                                           0.0
                                                                   0.0
                                                                          0:00.18 ksofti+
                     0 -20
                                                 0.0m I
                                                           0.0
                                                                   0.0
                                                                         0:00.00 kworke+
      20 root
                                 0.0m
                                         0.0m
gaya3@gaya3-VirtualBox:~/India$
                                         0.0m
                                                 0.0m S
                                                            0.0
                                                                   0.0
                                                                          0:00.00 kdevtm+
```

EXPERIMENT -3

Exploring linux file system

It makes sense to explore the Linux filesystem from a terminal window, In fact, that is the name of the first tool you'll install to help you on the way: tree. If you are using Ubuntu or Debian, you can do: sudo apt install tree

Once installed, stay in your terminal window and run tree like this: \$ tree /

The / in the instruction above refers to the root directory. The root directory is the one from which all other directories branch off from. When you run tree and tell it to start with /, you will see the whole directory tree, all directories and all the subdirectories in the whole system, with all their files, fly by.

If you have been using your system for some time, this may take a while, because, even if you haven't generated many files yourself, a Linux system and its apps are always logging, caching, and storing temporary files. The number of entries in the file system can grow quite quickly.

Instead, try this: tree -L 1 /

And you should see a listing similar to what is shown in Figure 1

Figure 1: tree

The instruction above can be translated as "show me only the 1st Level of the directory tree starting at /(root)". The -L option tells tree how many levels down you want to see.

Most Linux distributions will show you the same or a very similar layout to what you can see in the image above. This means that even if you feel confused now, master this, and you will have a handle on most, if not all, Linux installations in the whole wide world.

Now, let's look at what each directory is used for. While we go through each, you can peek at their contents using ls.

Directories

From top to bottom, the directories you are seeing are as follows.

<u>/bin</u>

/bin is the directory that contains binaries, that is, some of the applications and programs you can run. You will find the *ls* program mentioned above in this directory, as well as other basic tools for making and removing files and directories, moving them around, and so on. There are more bin directories in other parts of the file system tree, but we'll be talking about those in a minute.

<u>/boot</u>

The /boot directory contains files required for starting your system. If you mess up one of the files in here, you may not be able to run your Linux and it is a pain to repair. On the other hand, don't worry too much about destroying your system by accident: you have to have superuser privileges to do that.

/dev

/dev contains device files. Many of these are generated at boot time or even on the fly. For example, if you plug in a new webcam or a USB pendrive into your machine, a new device entry will automatically pop up here.

<u>/etc</u>

/etc is the directory where names start to get confusing. /etc gets its name from the earliest Unixes and it was literally "et cetera" because it was the dumping ground for system files administrators were not sure where else to put.

Nowadays, it would be more appropriate to say that *etc* stands for "Everything to configure," as it contains most, if not all system-wide configuration files. For example, the files that contain the name of your system, the users and their passwords, the names of machines on your network and when and where the partitions on your hard disks should be mounted are all

in here. Again, if you are new to Linux, it may be best if you don't touch too much in here until you have a better understanding of how things work.

/home

/home is where you will find your users' personal directories. In my case, under /home there are two directories: /home/paul, which contains all my stuff; and /home/guest, in case anybody needs to borrow my computer.

<u>/lib</u>

/lib is where libraries live. Libraries are files containing code that your applications can use. They contain snippets of code that applications use to draw windows on your desktop, control peripherals, or send files to your hard disk.

There are more *lib* directories scattered around the file system, but this one, the one hanging directly off of / is special in that, among other things, it contains the all-important kernel modules. The kernel modules are drivers that make things like your video card, sound card, WiFi, printer, and so on, work.

/media

The /media directory is where external storage will be automatically mounted when you plug it in and try to access it. As opposed to most of the other items on this list, /media does not hail back to 1970s, mainly because inserting and detecting storage (pendrives, USB hard disks, SD cards, external SSDs, etc) on the fly, while a computer is running, is a relatively new thing.

/mnt

The /mnt directory, however, is a bit of remnant from days gone by. This is where you would manually mount storage devices or partitions. It is not used very often nowadays.

<u>/opt</u>

The /opt directory is often where software you compile (that is, you build yourself from source code and do not install from your distribution repositories) sometimes lands. Applications will end up in the /opt/bin directory and libraries in the /opt/lib directory.

A slight digression: another place where applications and libraries end up in is /usr/local, When software gets installed here, there will also be /usr/local/bin and /usr/local/lib directories. What determines which software goes where is how the developers have configured the files that control the compilation and installation process.

/proc

/proc, like /dev is a virtual directory. It contains information about your computer, such as information about your CPU and the kernel your Linux system is running. As with /dev, the

files and directories are generated when your computer starts, or on the fly, as your system is running and things change.

/root

/root is the home directory of the superuser (also known as the "Administrator") of the system. It is separate from the rest of the users' home directories BECAUSE YOU ARE NOT MEANT TO TOUCH IT. Keep your own stuff in you own directories, people.

<u>/run</u>

/run is another new directory. System processes use it to store temporary data for their own nefarious reasons.

/sbin

/sbin is similar to /bin, but it contains applications that only the superuser (hence the initial s) will need. You can use these applications with the sudo command that temporarily concedes you superuser powers on many distributions. /sbin typically contains tools that can install stuff, delete stuff and format stuff. As you can imagine, some of these instructions are lethal if you use them improperly, so handle with care.

/usr

The /usr directory was where users' home directories were originally kept back in the early days of UNIX. However, now /home is where users kept their stuff as we saw above. These days, /usr contains a mish-mash of directories which in turn contain applications, libraries, documentation, wallpapers, icons and a long list of other stuff that need to be shared by applications and services.

You will also find *bin*, *sbin* and *lib* directories in /usr. What is the difference with their root-hanging cousins? Not much nowadays. Originally, the /bin directory (hanging off of root) would contain very basic commands, like ls, mv and rm; the kind of commands that would come pre-installed in all UNIX/Linux installations, the bare minimum to run and maintain a system. /usr/bin on the other hand would contain stuff the users would install and run to use the system as a work station, things like word processors, web browsers, and other apps.

But many modern Linux distributions just put everything into /usr/bin and have /bin point to

/usr/bin just in case erasing it completely would break something. So, while Debian, Ubuntu and Mint still keep /bin and /usr/bin (and /sbin and /usr/sbin) separate; others, like Arch and

its derivatives just have one "real" directory for binaries, /usr/bin, and the rest or *bins are "fake" directories that point to /usr/bin.

<u>/srv</u>

The /srv directory contains data for servers. If you are running a web server from your Linux box, your HTML files for your sites would go into /srv/http (or /srv/www). If you were running an FTP server, your files would go into /srv/ftp.

/svs

/sys is another virtual directory like /proc and /dev and also contains information from devices connected to your computer.

In some cases you can also manipulate those devices. I can, for example, change the brightness of the screen of my laptop by modifying the value stored in the <code>/sys/devices/pci0000:00/0000:00:02.0/drm/card1/card1-eDP-1/intel_backlight/brightness</code> file (on your machine you will probably have a different file). But to do that you have to become superuser. The reason for that is, as with so many other virtual directories, messing with the contents and files in <code>/sys</code> can be dangerous and you can trash your system. DO NOT TOUCH until you are sure you know what you are doing.

/tmp

/tmp contains temporary files, usually placed there by applications that you are running. The files and directories often (not always) contain data that an application doesn't need right now, but may need later on.

You can also use /tmp to store your own temporary files — /tmp is one of the few directories hanging off / that you can actually interact with without becoming superuser.

<u>/var</u>

/var was originally given its name because its contents was deemed variable, in that it changed frequently. Today it is a bit of a misnomer because there are many other directories that also contain data that changes frequently, especially the virtual directories we saw above.

Be that as it may, /var contains things like logs in the /var/log subdirectories. Logs are files that register events that happen on the system. If something fails in the kernel, it will be logged in a file in /var/log; if someone tries to break into your computer from outside, your firewall will also log the attempt here. It also contains spools for tasks. These "tasks" can be the jobs you send to a shared printer when you have to wait because another user is printing a long document, or mail that is waiting to be delivered to users on the system.

Your system may have some more directories we haven't mentioned above. In the screenshot, for example, there is a /snap directory. That's because the shot was captured on an Ubuntu

system. Ubuntu has recently incorporated <u>snap</u> packages as a way of distributing software. The /snap directory contains all the files and the software installed from snaps.

/var/log/syslog contains lot of system related logfiles.

Figure 2: Standard Unix filesystem hierarchy. To explore the filesystem yourself, use the cd command: cd

will take you to the directory of your choice (cd stands for change directory. If you get confused,

pwd cd with no options or parameters, will take you back to your own home directory, where things are safe and cosy. Finally, cd .. will take you up one level, getting you one level closer to the / root directory. If you are in /usr/share/wallpapers and run cd .., you will move up to /usr/share.

To see what a directory contains, use

ls or simply ls to list the contents of the directory you are in right now.And, of course, you always have tree to get an overview of what lays within a directory. Try it on /usr/share — there is a lot of interesting stuff in there. Although there are minor differences between Linux distributions, the layout for their filesystems are mercifully similar. So much so that you could say: once you know one, you know them all. And the best way to know the filesystem is to explore it. So go forth with tree, ls, and cd into uncharted territory. You cannot damage your filesystem just by looking at it, so move from one directory to another and take a look around

EXPERIMENT -4

Linux Shell Programming

1. Write a Shell program to display a given message

```
echo "enter a message: "

read msg
echo "Your msg:$msg"

gaya3@gaya3-VirtualBox:-$ chmod +x prg1.sh
gaya3@gaya3-VirtualBox:-$ ./prg1.sh
enter a message:
hello fisat
Your msg:hello fisat
gaya3@gaya3-VirtualBox:-$
```

2. Write a shell script to evaluate arithmetic operations.

```
echo "enter numbers: "
read a
read b
c=`expr $a + $b`
echo "sum:$c"
c=`expr $a - $b`
echo "sub=$c"
c=`expr $a/$b`
echo "div=$c"
c=`expr $a \* $b`
echo "multi=$c"
c=`expr $a % $b`
echo "remainder=$c"
```

```
gaya3@gaya3-VirtualBox:~$ chmod +x prg2.sh
gaya3@gaya3-VirtualBox:~$ ./prg2.sh
enter 2 numbers:
6
4
sum:10
subtraction:2
division:1
multiplication:24
modulus:2
gaya3@gaya3-VirtualBox:~$
```

3. Write a shell Script to determine largest among three integer number.

```
echo "enter 3 numbers: "
read a
read b
read c
if [ $a -ge $b ]
then
if ((\$a > \$c))
then
echo "largest is $a"
else
echo "largest is $c"
elif(($b > $c))
then
echo "largest is $b"
echo "largest is $c"
fi
```

```
gaya3@gaya3-VirtualBox:~$ chmod +x prg3.sh
gaya3@gaya3-VirtualBox:~$ ./prg3.sh
enter 3 numbers:
4
5
6
largest is 6
gaya3@gaya3-VirtualBox:~$
```

4. Write a shell script to compare two string.

```
echo "enter 2 strings: "
read str1
read str2
if [ -z $str1 ]
then
echo "String1 is empty"
fi
if [ -z $str2]
then
echo "String2 is empty"
if [\$str1 = \$str2]
then
echo "Strings are equal"
else
echo "Strings not equal"
    gaya3@gaya3-VirtualBox:~$ chmod +x prg4.sh
gaya3@gaya3-VirtualBox:~$ ./prg4.sh
enter 2 strings:
hello
hello
     hello
     strings are equal gaya3@gaya3-VirtualBox:~$
```

5. Write a shell script to read and check the directory exists or not, if not make directory.

```
echo "enter directory name: "
read dir
if [ -d $dir ]
then
echo "Directory $dir exist"
else
echo "Directory $dir not found"
mkdir $dir
fi
```

6. Write a shell script to read and check the file exists or not, if not make file.

```
echo "enter a filename: "
read fname
if [ -f $fname ]
then
echo "file $fname exists"
else
echo "file $fname not found"
touch $fname
fi
```

```
gaya3@gaya3-VirtualBox:~$ chmod +x prg6.sh
gaya3@gaya3-VirtualBox:~$ ./prg6.sh
enter a filename:
file2
file file2 exists
gaya3@gaya3-VirtualBox:~$
gaya3@gaya3-VirtualBox:~$
```

7. Write a shell script to implement menu driven program to perform all arithmetic operation using case statement.

```
echo "enter 2 numbers: "
read a
read b
echo -e "\n 1.Addition \n 2.Subtraction \n 3.Multiplication \n 4.Division \n 5.Modulus"
echo "enter your choice"
read ch
case $ch in
1)echo "sum=$(expr $a + $b)";;
2)echo "sub=$(expr $a - $b)";;
3)echo "multi=$(expr $a \* $b)";;
4)echo "division=$(expr $a / $b)";;
5)echo "modulus=$(expr $a % $b)";;
6)echo "invalid choice"
esac
```

```
aya3@gaya3-VirtualBox:~$ chmod +x prg7.sh
aya3@gaya3-VirtualBox:~$ ./prg7.sh
.nter 2 numbers:

1.Addition
2.Subtraction
3.Multiplication
4.Division
5.Modulus
.nter your choice

ulti=18
aya3@gaya3-VirtualBox:~$
```

8. Write a shell script to do:

- a. display list of directory contents
- b. Name of current directory
- c. Who is logged on
- d. Long listing of directory contents according to choose of user.

echo -e "\n 1.Directory contents \n 2.Current directory \n 3.Who is logged on \n 4.Long listing of directory contents" echo "enter choice: " read ch case \$ch in 1)ls;;
2)pwd;;
3)who;;
4)ls -l;;
5)echo "invalid choice" esac

9. Write a shell script to getting input details like name, roll number and marks and print them using command line arguments.

```
cat > Studentdetail
echo "Name:$1"
echo "RollNumber:$2"
echo "Marks:$3"
```

```
gaya3@gaya3-VirtualBox:-$ chmod +x prg9.sh
gaya3@gaya3-VirtualBox:-$ ./prg9.sh gayathri 12 45
Name:gayathri
RollNumber:12
Marks:45
gaya3@gaya3-VirtualBox:-$

Ubuntu Software
Ubuntu Software
```

10.Understand the differences between Echo statement using single quote , double quote and without quotes.

```
cat < myfile.sh
a=12
echo $a
echo "$a"
echo '$a'

gaya3@gaya3-VirtualBox:-$ chmod +x prg10.sh
gaya3@gaya3-VirtualBox:-$ ./prg10.sh
12
12
5a
gaya3@gaya3-VirtualBox:-$ |
```

11.To check whether there is any entry in the file with the word "Fisat"

Cat>newfile.txt
this is fisat
angamaly
ernakulam
cat newfile.txt | grep "fisat"

```
gaya3@gaya3-VirtualBox:~$ cat > newfile.txt
this is fisat
angamaly
ernakulam
gaya3@gaya3-VirtualBox:~$ cat newfile.txt | grep -e "fisat"
this is fisat
gaya3@gaya3-VirtualBox:~$
```

12.Implement arithmetic calculator using Functions

```
add()
{
i=$1
j=$2
 ((k=i+j))
 echo sum is $k
sub()
 i=$1
 j = $2
 ((k=i-j))
 echo sub is $k
multi()
 i=$1
 j=$2
 ((k=i*j))
 echo product is $k
echo "enter choice:"
echo "1.Addition 2.Subtraction 3.Multiplication"
read i
case $i in
1)add 12;;
2)sub 12;;
3)multi 12;;
Esac
```

```
g Files gaya3-VirtualBox:-$ chmod +x prg12.sh
gaya3@gaya3-VirtualBox:-$ ./prg12.sh
enter choice:
1.Addition 2.Subtraction 3.Multiplication
3
product is 2
gaya3@gaya3-VirtualBox:-$
```

13. To find the sum of n natural numbers.

a. Using for loop

```
sum=0
for((i=0;i<10;i++))
do
((sum=sum+i))
done
echo $sum</pre>
```

b. Using While loop

```
i=0

sum=0

while((i<10));

do

((sum=sum+i))

((i=i+1))

done

echo $sum
```


EXPERIMENT-5

Installing LAMP on Ubuntu

Step 1: Update Package Repository Cache

Before you begin:

- 1.Open the terminal either by using the CTRL+ALT+T keyboard shortcut or by searching for the word *terminal* in **Ubuntu**
- 2.Make sure to update the package repository cache to ensure it installs the latest versions of the software. To do so, type in the following command:

sudo apt-get update

```
hp@hp-HP-Laptop-15s-du0xxx:~$ sudo apt-get update
Get:1 http://in.archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Hit:2 https://screenrec.com/download/ubuntu stable InRelease
Get:3 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]
Get:4 http://security.ubuntu.com/ubuntu focal-security/main amd64 DEP-11 Metadata [27 .6 kB]
Get:5 http://security.ubuntu.com/ubuntu focal-security/universe amd64 DEP-11 Metadata [61.0 kB]
Get:6 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 DEP-11 Metada ta [2,464 B]
Get:1 http://in.archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:1 http://in.archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:1 http://in.archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Hit:7 http://in.archive.ubuntu.com/ubuntu focal-updates InRelease
Hit:8 http://in.archive.ubuntu.com/ubuntu focal-backports InRelease
Fetched 463 kB in 2min 36s (2,977 B/s)
Reading package lists... Done
hp@hp-HP-Laptop-15s-du0xxx:~$
```

Step 2: Install Apache

1. To install Apache, run the following command in the terminal:

sudo apt-get install apache2

```
Reading package lists... Done
hp@hp-HP-Laptop-15s-du0xxx:-$ sudo apt-get install apache2
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
enchant geolp-database libbind9-161 libboost-filesystem1.67.0
libboost-iostreams1.67.0 libdns-export1107 libdns1109 libenchant1c2a
libexiv2-14 libfprint0 libgeolpi libgspell-1-1 libgutenprint-common
libgutenprint0 libiptc0 libirs161 libisc-export1104 libisc1105
libiscc1611 libisccfg163 libilvm9 libihvmes161 libinfs12 liboauth0
printer-driver-gutenprint python3-asnicrypto shim ubuntu-software
ubuntu-system-service
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
apache2-bin apache2-data apache2-utils libapri libaprutil1
libaprutil1-idbd-sqlite3 libaprutil1-idap liblus5.2-0
Suggested packages:
apache2-doc apache2-suexec-pristine | apache2-suexec-custom
The following NEW packages will be installed:
apache2 apache2-bin apache2-data apache2-utils libapri libaprutil1
libaprutil1-idbd-sqlite3 libaprutil3 libapri libapri libaprutil1
libaprutil2-dbd-sqlite3 libaprutil3 libapri libapri libaprutil1
libaprutil3-dbd-sqlite3 libaprutil3 libapri libapri libapri libaprutil1
libaprutil3-dbd-sqlite3 libaprutil3 libaprutil5 libapri libapri libapri libaprutil1
libaprutil3-dbd-sqlite3 libaprutil3 libaprutil5 libapri libapri libaprutil1
libaprutil3-dbd-sqlite3 libaprutil3
libaprutil5-dbd-sqlite3 libaprutil6 libaprutil5 libapri libaprutil1
libaprutil7-dbd-sqlite3 libaprutil6 libaprutil5 libaprutil5 libaprutil6 libaprutil6
libaprutil7-dbd-sqlite3 libaprutil6 libaprutil6
libaprutil7-dbd-sqlite3 libaprutil6
libaprutil6-dbd-sqlite3 libaprutil6
libaprutil7-dbd-sqlite3 libaprutil6
libaprutil7-dbd-sqlite3 libaprutil6
libaprutil6-dbd-sqlite3 libaprutil6
libaprutil6-dbd-sqlite3 libaprutil6
libaprutil6-dbd-sqlite3 libaprutil6
libaprutil6-dbd-sqlite3 libaprutil6
libaprutil6-dbdd-sqlite3
libaprutil6-dbdd-sqlite3
libaprutil6-dbdd-sqlite3
libaprutil
```

Press y (yes) and hit **ENTER** to permit the installation.

2. To ensure Apache is running, enter the Localhost of your server in the address bar and press **ENTER**.

The test Apache web server page should display as below.

Step 3: Install PHP

1. To install PHP, run the following command:

\$ sudo apt-get install php7.4

Press y and **ENTER** to allow the installation.

Step 4: Restart Apache

After the php installation you must restart the Apache service.

Enter the command:

\$ sudo /etc/init.d/apache2 restart

Step 5: Test PHP Processing on Web Server

1. Create a basic **PHP script** and save it to the "web root" directory. This is necessary for Apache to find and serve the file correctly. This directory is located at /var/www/html/.

To create a file in that directory, type in the following command:

sudo nano /var/www/html/test.php

```
hp@hp-HP-Laptop-15s-du0xxx:~$ sudo nano /var/www/html/test.php [sudo] password for hp:
hp@hp-HP-Laptop-15s-du0xxx:~$
```

This command opens the bank file.

?>

2. Inside the file, type in the valid PHP code:

<!php
Echo " test php ";

- 3. Press **CTRL** + **X** to save and close the file. Press **y** and **ENTER** to confirm.
- 4. Then check the code are run currectly in php.open the browser enter the Ip address (localhost/test.php).

It show the below image

Step 6: Install Mysql server

1. To install Mysql server, run the following command:

\$ sudo apt-get install mysql-server

```
hp@hp-HP-Laptop-15s-du0xxx:-$ sudo apt-get install mysql-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
  enchant geoip-database libbind9-161 libboost-filesystem1.67.0
  libboost-iostreams1.67.0 libdns-export1107 libdns1107 libdns1109
  libenchant1c2a libexiv2-14 libfprint0 libgeoip1 libgspell-1-1
  libgutenprint-common libgutenprint9 libiptc0 libirs161 libisc-export1104
  libisc1104 libisc1105 libisccc161 libisccfq163 libllvm9 liblwres161 libnfs12
  liboauth0 printer-driver-gutenprint python3-asn1crypto shim ubuntu-software
  ubuntu-system-service
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
  libaio1 libcgi-fast-perl libcgi-pm-perl libevent-core-2.1-7
  libevent-pthreads-2.1-7 libfcgi-perl libhtml-template-perl libmecab2
  mecab-ipadic mecab-ipadic-utf8 mecab-utils mysql-client-8.0
  mysql-client-core-8.0 mysql-server-8.0 mysql-server-core-8.0
Suggested packages:
```

- 2. Then it's asking us for a root password . enter the password . Again we get to repeat it **Step 7: Check the Mysql server**
- 1. To check Mysql server, run the following command

\$ mysql -u root -p

Enter the root password and press enter

```
@hp-HP-Laptop-15s-du0xxx:-$ mysql -u root -p
Enter password:
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
 p@hp-HP-Laptop-15s-du0xxx:-$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor.
                                   Commands end with ; or \g.
Your MySQL connection id is 19
Server version: 8.0.26-Oubuntu0.20.04.2 (Ubuntu)
Copyright (c) 2000, 2021, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
Type 'help;' or 'h' for help. Type 'c' to clear the current input statement.
mysql> create database testdb;
Query OK, 1 row affected (0.01 sec)
mysql> show databases;
 Database
 information_schema
 performance_schema
 SYS
 testdb
 rows in set (0.00 sec)
nysql>
```

- 2. Create a database testdb and show it
- Enter the command

Create database testdb;

Show databases:

• So mysql is working then exit the mysql prompt just enter exit;

Step 8: Install PHP Myadmin

1. To install PHP Myadmin, run the following command:

\$ sudo apt-get install phpMyAdmin

```
| Seeding package lists... Done
| Booling list
```

Press y and ENTER to allow the installation

- 2. Then its ask what type of server, we have Apache2 is set by default that's what we want then press ok
- 3. Then a configuration prompt are open . here we're going to just choose yes and then it ask the input password for phpmyadmin
- 4. Then check it currect . go to the localhost/phpmyadmin. Here we can not found it so We have to actually edit the file php is located in Apache2 folder.
- 5. Enter the following command to edit the file

\$ sudo nano/etc/php7.4/apache2.php.ini

- 6. Then we need to uncomment an **extension=mysql.so.** find it the file just remove the Semicolon.
- 7. Then enter ctl+x to save

Step 9: Restart Apache

After the php installation you must restart the Apache service.

Enter the command:

\$ sudo /etc/init.d/apache2 restart

Step 9.1: Include phpmyadmin in apache configuration

1. Enter the command:

\$ sudo nano/etc/apache2/apache2.conf

2. Type the following command to the nano editor

Include /etc/phpmyadmin/apache.conf

- 3. Then enter ctl+x to save
- 4. Then again restart the apache

EXPERIMENT-6

Laravel installation On Ubuntu with Apache

Step 1 – Install Apache Web Server

Let's open up a Terminal and do first thing first update your package list using Sudo apt update command.

\$ sudo apt update

After updating your package list install apache webserver

- \$ sudo apt install apache2
- \$ systemctl status apache2

```
ebin@ebin=VirtualBox:-$ sudo apt install apache2
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
    linux-headers-5.11.0-25-generic linux-hwe-5.11-headers-5.11.0-25 linux-image-5.11.0-25-generic linux-modules-extra-5.11.0-25-generic
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
    apache2-bin apache2-data apache2-utils
Suggested packages:
    apache2-box apache2-suexec-pristine | apache2-suexec-custom
The following packages will be ungraded:
    apache2 apache2-bin apache2-data apache2-utils
4 to upgrade, 0 to newly install, 0 to remove and 78 not to upgrade.
Need to get 1,518 kB of archives.
After this operation, 4,096 B of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://in.archive.ubuntu.com/ubuntu focal-updates/main amd64 apache2 amd64 2.4.41-4ubuntu3.5 [95.5 kB]
Get:2 http://in.archive.ubuntu.com/ubuntu focal-updates/main amd64 apache2-data all 2.4.41-4ubuntu3.5 [1,180 kB]
Get:3 http://in.archive.ubuntu.com/ubuntu focal-updates/main amd64 apache2-data all 2.4.41-4ubuntu3.5 [84.2 kB]
Fetched 1,518 kB in 1s (1,216 kB/s)
```

Now, check the status of apache server whether it is running or not.

If the Apache server not running then use the following command to start apache serve and add to boot startup.

\$ systemctl start apache2

\$ systemctl enable apache2

```
ebin@ebin-Virtual8ox:-$ systemctl status apache2

apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/system/system/apache2.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2021-09-28 13:53:55 IST; 6min ago
Docs: https://httpd.apache.org/docs/2.4/
Main PID: 2749 (apache2)
Tasks: 7 (limit: 4650)
Memory: 14.8M
CGroup: /system.slice/apache2.service
-2749 /usr/sbin/apache2 -k start
-2750 /usr/sbin/apache2 -k start
-2751 /usr/sbin/apache2 -k start
-2752 /usr/sbin/apache2 -k start
-2753 /usr/sbin/apache2 -k start
-2754 /usr/sbin/apache2 -k start
-2755 /usr/sbin/apache2 -k start
-2756 /usr/sbin/apache2 -k start
-2757 /usr/sbin/apache2 -k start
-2758 /usr/sbin/apache2 -k start
-2759 /usr/sbin/apache2 -k start
-2750 /usr/sbin/apache2 -k start
-2750 /usr/sbin/apache2 -k start
-2751 /usr/sbin/apache2 -k start
-2752 /usr/sbin/apache2 -k start
-2753 /usr/sbin/apache2 -k start
-2755 /usr/sbin/apache2 -k start
-2756 /usr/sbin/apache2 -k start
-2757 /usr/sbin/apache2 -k start
-2758 /usr/sbin/apache2 -k start
-2759 /usr/sbin/apache2 -k start
-2750 /usr
```

Open browser, goto localhost and check if default apache server page is available or not

Step 2 – Install and Configure PHP 7.4

To install Laravel 8.x, at least you must have PHP >= 7.3 on your system. And by default, the official Ubuntu 20.04 repository provides PHP 7.4 packages. Install PHP 7.4 packages using the apt command below.

\$ sudo apt install libapache2-mod-php php php-common php-xml php-gd php-opcache php-mbstring php-tokenizer php-json php-bcmath php-zip unzip

```
ebin@ebin-VirtualBox: $ sudo apt install libapache2-nod-php php php-common php-xml php-gd php-opcache php-mbstring php-tokenizer php-js on php-bcmath php-zip unzip [sudo] password for ebin:
Reading package lists... Bone
Building dependency tree
Reading state information... Done
Package php-opcache is a virtual package provided by:
php8.1-opcache 8.1.9-rc2-1+ubuntu20.04.1+deb.sury.org+1
php8.0-opcache 8.0.11-1+ubuntu20.04.1+deb.sury.org+1
php7.4-opcache 7.3.31-1+ubuntu20.04.1+deb.sury.org+1
php7.3-opcache 7.3.31-1+ubuntu20.04.1+deb.sury.org+1
php7.1-opcache 7.1.33-41+ubuntu20.04.1+deb.sury.org+1
php7.1-opcache 7.0.33-54+ubuntu20.04.1+deb.sury.org+1
php7.1-opcache 7.0.33-54+ubuntu20.04.1+deb.sury.org+1
php7.6-opcache 7.0.33-54+ubuntu20.04.1+deb.sury.org+1
php5.6-opcache 5.6.40-54+ubuntu20.04.1+deb.sury.org+1
php5.6-opcache 5.6.40-54+ubuntu20.04.1+deb.sury.org+1
vou should explicitly select one to install.
```

```
counsels.—VirtualBos:-$ php7.4-dev php7.4-zlp php7.4-mbstring php7.4-mysql php7.4-xxll curl -y
php7.4-dev: command not found
elve@bin-VirtualBos:-$ suds apt install php7.4 [lbapache2-mod-php7.4 php7.4-curl php-pear php7.4-gd php7.4-dev php7.4-zlp php7.4-mbstr
ing php7.4-mysql ahp7.4-xxll curl -y
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
[linux-hodders-5.11.6-25-generic linux-inwe-5.11-headers-5.11.0-25 linux-inage-5.11.0-25-generic linux-modules-5.11.6-25-generic
Linux-nodules-bestra-5.11.6-25-generic
Linux-hodders-5.11.6-25-generic linux-inwe-5.11-headers-5.11.0-25 linux-inage-5.11.0-25-generic
Linux-nodules-bestra-5.11.6-25-generic
Linux-nodules-bestra-5.11.6-25-generic
Linux-hodders-5.11.6-25-generic
Linux-hodders-5.11.6-2-generic
Linux-hodders-5.11.6-2-
```

Now go ahead and make tweak changes in PHP ini file and set cgi.fix_pathinfo set to be 0. If this number is kept as a 1, the php interpreter will do its best to process the file that is as near to the requested file as possible. This is a possible security risk. If this number is set to 0, conversely, the interpreter will only process the exact file path—a much safer alternative.

\$ cd /etc/php/7.4/apache2 \$ sudo nano php.ini

Press ctrl+w and search for the word "cgi.fix" the uncomment the line and set it to 0.

... cgi.fix_pathinfo=0

•••

```
ebin@ebin-VirtualBox:~$ cd /etc/php
ebin@ebin-VirtualBox:/etc/php$ ls
7.4 8.0
ebin@ebin-VirtualBox:/etc/php$ cd 7.4/
ebin@ebin-VirtualBox:/etc/php/7.4$ ls
apache2 cli mods-available
ebin@ebin-VirtualBox:/etc/php/7.4$ cd apache2/
ebin@ebin-VirtualBox:/etc/php/7.4/apache2$ ls
conf.d php.ini
ebin@ebin-VirtualBox:/etc/php/7.4/apache2$ sudo nano php.ini
ebin@ebin-VirtualBox:/etc/php/7.4/apache2$ sudo nano php.ini
ebin@ebin-VirtualBox:/etc/php/7.4/apache2$
```

```
ou CAN safely turn this off for IIS, in fact, you MUST.**
; http://php.net/cgi.force-redirect
;cgi.force_redirect = 1
; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = \bf 1
; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape ; (iPlanet) web servers, you MAY need to set an environment variable name that PHP ; will look for to know it is OK to continue execution. Setting this variable MAY ; cause security issues, KNOW WHAT YOU ARE DOING FIRST. ; http://php.net/cgi.redirect-status-env ;cgi.redirect_status_env =
; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI. PHP's ; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok ; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; tho use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; http://php.net/cgi.fix-pathinfo; cgi.fix_pathinfo=1
; if cgi.discard_path is enabled, the PHP CGI binary can safely be placed outside ; of the web tree and people will not be able to circumvent .htaccess security. ;cgi.discard_path=1
 ; FastCGI under IIS supports the ability to impersonate ; security tokens of the calling client. This allows IIS to define the ; security context that the request runs under. mod_fastcgi under Apache
^C Get He
                                             ^K Cut Text ^J Justify
^U Paste Text ^T To Spell
                                                                                                                                                                                                                                    ^C Cur Pos M-U Undo
^ Go To Line M-E Redo
     **You CAN safely turn this off for IIS, in fact, you MUST.**
Thunderbird Mail et/cgi.force-redirect
   :cai.force redirect = 1
  ; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = 1 \,
   ; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape; (iPlanet) web servers, you MAY need to set an environment variable name that PHP; will look for to know it is OK to continue execution. Setting this variable MAY; cause security issues, KNOW WHAT YOU ARE DOING FIRST.

; http://php.net/cgi.redirect-status-env
   ;cgi.redirect status env
 ; Egi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI. PHP's previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; http://php.net/cgi.fix-pathinfocgi.fix_pathinfo=0
  ; if cgi.discard_path is enabled, the PHP CGI binary can safely be placed outside ; of the web tree and people will not be able to circumvent .htaccess security.;cgi.discard_path=1
   ; FastCGI under IIS supports the ability to impersonate
; security tokens of the calling client. This allows IIS to define the
; security context that the request runs under. mod_fastcgi under Apache
                                                                                                                                                                                        ^J Justify
^T To Spell
 ^G Get Help
^X Exit
                                               ^O Write Out
^R Read File
                                                                                                                                            ^K Cut Text
^U Paste Text
```

Press Ctrl + x then y to Save and Exit.

Now Restart The apache service.

\$ systemctl restart apache2

<u>Step 3 – Install Composer PHP Packages Management</u>

Install the composer package manager go ahead and download and install Composer. and move the composer .phar file to usr/local/bin/composer directory.

```
$ sudo apt install curl
$ curl -sS https://getcomposer.org/installer | php
$ sudo mv composer.phar /usr/local/bin/composer
```

```
ebin@ebin-VirtualBox:~$ sudo apt install curl
Reading package lists... Done
Building dependency tree
Reading state information... Done
curl is already the newest version (7.68.0-lubuntu2.7).
The following packages were automatically installed and are no longer required:
    linux-headers-5.11.0-25-generic linux-hwe-5.11-headers-5.11.0-25 linux-image-5.11.0-25-generic linux-modules-extra-5.11.0-25-generic
Use 'sudo apt autoremove' to remove them.
0 to upgrade, 0 to newly install, 0 to remove and 76 not to upgrade.
    ebin@ebin-VirtualBox:~$ curl -sS https://getcomposer.org/installer | php
All settings correct for using Composer
Downloading...

Composer (version 2.1.8) successfully installed to: /home/ebin/composer.phar
Use it: php composer.phar

ebin@ebin-VirtualBox:~$ sudo mv composer.phar /usr/local/bin/composer
ebin@ebin-VirtualBox:~$ composer --version
Composer version 2.1.8 2021-09-15 13:55:14
ebin@ebin-VirtualBox:~$
```

Step 4 – Install Laravel 8.x on Ubuntu 20.04

Now install Laravel Framework using composer, just type composer global require Laravel/installer It will take a while to complete download its dependencies.

```
ebin@ebin-VirtualBox:~$ composer global require laravel/installer
Changed current directory to /home/ebin/.config/composer
Using version ^4.2 for laravel/installer
./composer.json has been created
Running composer update laravel/installer
Loading composer repositories with package information
Updating dependencies
Lock file operations: 13 installs, 0 updates, 0 removals
  - Locking laravel/installer (v4.2.8)
  - Locking psr/container (1.1.1)
  - Locking symfony/console (v5.3.7)
  - Locking symfony/deprecation-contracts (v2.4.0)
  - Locking symfony/polyfill-ctype (v1.23.0)
  - Locking symfony/polyfill-intl-grapheme (v1.23.1)
  - Locking symfony/polyfill-intl-normalizer (v1.23.0)
  - Locking symfony/polyfill-mbstring (v1.23.1)
  - Locking symfony/polyfill-php73 (v1.23.0)
  - Locking symfony/polyfill-php80 (v1.23.1)
  - Locking symfony/process (v5.3.7)
  - Locking symfony/service-contracts (v2.4.0)

    Locking symfony/string (v5.3.7)
    Writing lock file

  - Downloading symfony/polyfill-php80 (v1.23.1)
    Downloading symfony/process (v5.
```

As you had seen above image, all packages have been installed on the '~/.config/composer' directory. Next, we need to add the 'bin' directory to the PATH environment through the ~/.bashrc configuration. So Now Edit the ~/.bashrc configuration using nano command.

\$ nano ~/.bashrc

And add the following line at the end of the file.

. . .

export PATH="\$HOME/.config/composer/vendor/bin:\$PATH"

. . .

```
GNU nano 4.8
                                                    /home/ebin/.bashrc
# Add an <mark>"alert"</mark> al
# sleep 10; alert
                 alias for long running commands. Use like so
alias alert='notify-send --urgency=low -i "$([ $? = 0 ] && echo terminal ||
if [ -f ~/.bash_aliases ]; then
    . ~/.bash_aliases
   I shopt -og posix; then
  if [ -f /usr/share/bash-completion/bash_completion ]; then
    . /usr/share/bash-completion/bash_completion
  elif [ -f /etc/bash_completion ]; then
    . /etc/bash_completion
export PATH="$HOME/.config/composer/vendor/bin:$PATH"
   Get Help
                 ^O Write Out
                                  ^W Where Is
                                                   ^K Cut Text
                                                                       Justify
                 ^R Read File
                                  ^\ Replace
                                                   ^U Paste Text
                                                                       To Spell
   Exit
```

Press Ctrl + x then y to Save and Exit.

Now reload your bashrc configuration using the source command.

\$ source ~/.bashrc

Now echo \$PATH. It will return your "Bin" directory path for the Composer package.

\$ echo \$PATH

```
ebin@ebin-VirtualBox:~$ nano ~/.bashrc
ebin@ebin-VirtualBox:~$ source ~/.bashrc
ebin@ebin-VirtualBox:~$ source ~/.bashrc
ebin@ebin-VirtualBox:~$ echo $PATH
/home/ebin/.config/composer/vendor/bin:/usr/local/sbin:/usr/local/bin:/usr/sbinsr/local/games:/snap/bin
ebin@ebin-VirtualBox:~$
```

The 'bin' directory for the composer packages has been added to the \$PATH environment variable. And as a result, you can use the command 'laravel' to start and create a new project. Now go ahead and type Laravel new then your project name to start a new Laravel project.

\$ laravel new myapp1

This will take a while to download all dependencies required by Laravel.

```
Creating a "laravel/laravel" project at "./myapp1"
Installing laravel/laravel (v8.6.2)

- Downloading laravel/laravel (v8.6.2)

- Installing laravel/laravel (v8.6.2): Extracting archive
Created project in /home/ebin/myapp1

> @php -r "file_exists('.env') || copy('.env.example', '.env');"
Loading composer repositories with package information
Updating dependencies
Lock file operations: 110 installs, 0 updates, 0 removals

- Locking asm89/stack-cors (v2.0.3)

- Locking doctrine/inflector (2.0.3)

- Locking doctrine/inflector (2.0.3)

- Locking doctrine/instantiator (1.4.0)

- Locking doctrine/lexer (1.2.1)

- Locking dragonmantank/cron-expression (v3.1.0)

- Locking egulias/email-validator (2.1.25)

- Locking facade/flare-client-php (1.9.1)

- Locking facade/ignition-contracts (1.0.2)

- Locking facade/ignition-contracts (1.0.2)
```

Here you can see the installation of my new project myapp1 finished. You can also see inside my home directory a new directory has been created with my project name.

Step 5 – Finally Configure Apache for Laravel and test it

First, add your project directory to www-data group use the following command

\$ sudo chgrp -R www-data /home/ebin/myapp1

-R flag is recursive, Recursive means all subdirectory and files under your project directory become changed to the "www-data" group.

Also, you need to change access permission 775 of the storage directory under your project. So, go ahead and use the following command.

\$ sudo chmod -R 775 /home/ebin/myapp1/storage

```
ebin@ebin-VirtualBox:~$ cd home
bash: cd: home: No such file or directory
ebin@ebin-VirtualBox:~$ pwd
/home/ebin
ebin@ebin-VirtualBox:~$ /home/ebin/myapp1
bash: /home/ebin/myapp1: Is a directory
ebin@ebin-VirtualBox:~$ cd /home/ebin/myapp1
ebin@ebin-VirtualBox:~$ sud chgrp -R www-data /home/ebin/myapp1
[sudo] password for ebin:
ebin@ebin-VirtualBox:~$ sudo chmod -R 775 /home/ebin/myapp1/storage
ebin@ebin-VirtualBox:~$
```

Now create an apache vhost configuration go to the following directory and create a vhost config file using nano file editor.

\$ cd /etc/apache2/sites-available/ \$ sudo nano myapp1.com.conf

And paste the following line inside the file.

```
<VirtualHost *:80>
    ServerName myapp1.com

ServerAdmin admin@myapp1.com
    DocumentRoot /home/ebin/myapp1/public

<Directory /home/ebin/myapp1>
    Options Indexes MultiViews
    AllowOverride None
    Require all granted
    </Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
    CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

//All Red colored text must be changed as per your//
```


Now enable mod rewrite for apache2 just type

\$ sudo a2enmod rewrite

Now enable your site, just type

\$ sudo a2ensite myapp1.com.conf

Finally, Restart the apache service, type

\$ systemctl restart apache2

```
ebin@ebin-VirtualBox:~$ cd /etc/apache2/sites-available/
ebin@ebin-VirtualBox:/etc/apache2/sites-available$ sudo nano myapp1.com.conf
ebin@ebin-VirtualBox:/etc/apache2/sites-available$ sudo nano myapp1.com.conf
ebin@ebin-VirtualBox:/etc/apache2/sites-available$ sudo a2enmod rewrite
Enabling module rewrite.
To activate the new configuration, you need to run:
    systemctl restart apache2
ebin@ebin-VirtualBox:/etc/apache2/sites-available$ sudo a2ensite myapp1.com.conf
Enabling site myapp1.com.
To activate the new configuration, you need to run:
    systemctl reload apache2
ebin@ebin-VirtualBox:/etc/apache2/sites-available$ systemctl restart apache2
ebin@ebin-VirtualBox:/etc/apache2/sites-available$
```

As you are in a local environment you need a local dns resolver for your site. Go ahead and edit /etc/hosts file, add a dns record for your site then save the file.

\$ sudo nano /etc/hosts

127.0.0.1 myapp1.com

Replace

Cut Text

Now get back to the web browser and open a tab then type your project hostname.

And here it is it's working. Here you can see the Laravel version and PHP version.

EXPERIMENT -7

Networking Commands

PING COMMAND

PING (Packet Internet Groper) command is used to check the network connectivity between host and server/host. This command takes as input the IP address or the URL and sends a data packet to the specified address with the message "PING" and get a response from the server/host this time is recorded which is called latency. Fast ping low latency means faster connection. Ping uses ICMP(Internet Control Message Protocol) to send an ICMP echo message to the specified host if that host is available then it sends ICMP reply message. Ping is generally measured in millisecond every modern operating system has this ping pre-installed.

Syntax: ping [OPTIONS] DESTINATION

```
### dope@Dope-HP-Laptop-15-da0xxx:~

File Edit View Search Terminal Help

### dope@Dope-HP-Laptop-15-da0xxx:~$ ping google.com

PING google.com (142.250.71.14) 56(84) bytes of data.

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=1 ttl=116 time=99.9 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=2 ttl=116 time=24.3 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=3 ttl=116 time=64.5 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=5 ttl=116 time=98.5 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=6 ttl=116 time=113 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=7 ttl=116 time=56.2 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=8 ttl=116 time=56.2 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=9 ttl=116 time=43.2 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=10 ttl=116 time=24.8 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=11 ttl=116 time=24.5 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=11 ttl=116 time=143 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=12 ttl=116 time=160 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=12 ttl=116 time=160 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=15 ttl=116 time=90.3 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=15 ttl=116 time=90.3 ms

### 64 bytes from maa03s34-in-f14.le100.net (142.250.71.14): icmp_seq=15 ttl=116 time=118 ms
```

TRACEROUTE COMMAND

Traceroute command in Linux prints the route that a packet takes to reach the host. This command is useful when you want to know about the route and about all the hops that a packet takes. Below image depicts how traceroute command is used to reach the Google (172.217.26.206) host from the local machine and it also prints detail about all the hops that it visits in between.

Syntax: traceroute [options] host_Address [pathlength]

ROUTE COMMAND

route command in Linux is used when you want to work with the IP/kernel routing table. It is mainly used to set up static routes to specific hosts or networks via an interface. It is used for showing or update the IP/kernel routing table.

Syntax: route

```
dope@Dope-HP-Laptop-15-da0xxx: ~
File Edit View Search Terminal Help
dope@Dope-HP-Laptop-15-da0xxx:~$ route
Kernel IP routing table
                                                                      Use Iface
Destination Gateway
                                 Genmask
                                                 Flags Metric Ref
                               Genmask Flags Metric Ret
0.0.0.0 UG 600 0
255.255.0.0 U 1000 0
default
                gateway
                                                                      0 wlo1
             0.0.0.0
link-local
                                                                        0 wlo1
192.168.1.0
               0.0.0.0
                                 255.255.255.0 U
                                                                        0 wlo1
dope@Dope-HP-Laptop-15-da0xxx:~$
```

NSLOOKUP COMMAND

nslookup (stands for "Name Server Lookup") is a useful command for getting information from DNS server. It is a network administration tool for querying the Domain Name System (DNS) to obtain domain name or IP address mapping or any other specific DNS record. It is also used to troubleshoot DNS related problems.

Syntax: nslookup [option]

IFCONFIG COMMAND

ifconfig(interface configuration) command is used to configure the kernel-resident network interfaces. It is used at the boot time to set up the interfaces as necessary. After that, it is usually used when needed during debugging or when you need system tuning. Also, this command is used to assign the IP address and netmask to an interface or to enable or disable a given interface.

Syntax: ifconfig [...OPTIONS] [INTERFACE]

EXPERIMENT -8

WIRESHARK

Send an email and analyze the content and format of messages using Wireshark

Capture SMTP Traffic

- To capture SMTP traffic:
- Start a Wireshark capture
- Open a command promptt
- Type **telnet gmail-smtp-in.l.google.com 25** and press **Enter**. If this does not work, your ISP may be blocking outbound traffic on port 25. You can try **telnet smtp.gmail.com 587** instead to generate SMTP traffic and then filter on port 587 in the next activity.
- Observe the server response.
- Type helo and press Enter.
- Observe the server response. Note that at this point you could enter mail, rcpt and data to send an SMTP message, but this only works on servers configured to allow clear text relay without authentication.
- Type **quit** and press **Enter** to close the connection.
- Observe the server response.
- Close the command prompt.
- Stop the Wireshark capture

Step 1:Start the wire shark

EXPERIMENT-9

Introduction to Virtual Machines

Creating a Virtual Machine

1 Install VirtualBox.

If you don't already have VirtualBox installed on your Windows or Mac computer, you'll need to install it before proceeding.

<u>Following are the steps required to install VirtualBox(Oracle VM VirtualBox):</u>

You can download the latest version of VirtualBox from the Virtual Box website: https://www.virtualbox.org/wiki/Downloads according to the version of your operating system Windows, Mac or Linux.

Click Next

To Install VirtualBox – Setup Wizard

To Install VirtualBox – Custom Setup

1.3. Uncheck "Create a shortcut in the Quick Launch Bar" and click "Next"

To Install VirtualBox – Features Selection

1.4. Click "Yes"

To Install VirtualBox – Network Interfaces Warning

1.5. Click "Install"

Installation of Oracle VM VirtualBox – Ready to Install

1.6. Click "Install"

Installation of Oracle VM VirtualBox- Serial Bus Software Installation

1.7. Click "Install"

Installation of Oracle VM VirtualBox – Network Service Installation

1.8. Click "Install"

Installation of Oracle VM VirtualBox – Network Adapters Installation

1.9. Click "Finish"

2 Open VirtualBox. Double-click (or click once on a Mac) the VirtualBox app icon.

3 Click New. It's a blue badge in the upper-left corner of the VirtualBox window. Doing so opens a pop-up menu.

4

Enter a name for your virtual machine. Type whatever you want to name your virtual machine (e.g., Ubuntu) into the "Name" text field that's near the top of the pop-up menu.

5

For **Operating System Type**, select the OS that you want to install.

6

Select the **version** of the operating system.

Click Next. It's at the bottom of the menu.

8

Select an amount of RAM to use. Click and drag the slider left or right to decrease or increase the amount of RAM that VirtualBox will have available for your virtual machine. The ideal amount of RAM will automatically be selected when you get to this page.

Make sure not to increase the RAM into the red section of the slider; try to keep the slider in the green.

10

Create your virtual machine's virtual hard drive. The virtual hard drive is a section of your computer's hard drive space which will be used to store your virtual machine's files and programs:

13.

Allocate at Minimum 8 GB (recommended 10 or more).

Click **Create**, to create your new virtual machine. The virtual machine is displayed in the list on the left side of the VirtualBox Manager window, with the name that you entered initially.

VMs can run multiple operating system environments on a single physical computer, saving physical space, time and management costs.