Review Worksheet for MATH 574

Problem 1

Show that for any $\xi < \omega_1, \Sigma_{\xi}^0$ is closed under countable unions, finite intersections, and projections along \mathbb{N} .

(*Hint:* Proceed by induction along Ord.)

Problem 2

Show that for a function $f: X \to Y$ between Polish spaces, the following are equivalent:

- (i) f is Borel,
- (ii) the graph of f is Borel,
- (iii) the graph of f is analytic.

Problem 3

Show that for two disjoint closed subsets A, B $\subseteq \mathbb{N}^{\mathbb{N}}$, there exists a clopen C $\subseteq \mathbb{N}^{\mathbb{N}}$ such that

$$A \subseteq C$$
 and $B \cap C = \emptyset$.

Is the same true for open sets?

Remark: We have shown a similar property for analytic sets (the Lusin Separation Theorem). What can we say about separability for other Borel classes?

Problem 4

The Perfect Subset Property for Analytic Sets: Show that if $A \subseteq \mathbb{N}^{\mathbb{N}}$ is analytic and uncountable, then it contains a perfect subset.

Hint: Since \bar{A} is analytic, there exists a continuous mapping $f:\mathbb{N}^\mathbb{N}\to\mathbb{N}^\mathbb{N}$ such that $A=f(\mathbb{N}^\mathbb{N})$. Construct an embedding of $2^\mathbb{N}$ into A. Show that we can find two disjoint open sets U_0,U_1 whose intersection with $A=f(\mathbb{N}^\mathbb{N})$ is uncountable. The preimages of the U_i are disjoint open subsets with uncountable images. Show that this process can be continued and defines in the limit an injection of $2^\mathbb{N}$ into A.

Problem 5

Show that the classes of the projective hierarchy Σ_n^1 , Π_n^1 are closed under the Souslin operation for $n \ge 2$.

Problem 6

Show that if $\xi \geqslant \omega$ and $X \subseteq \xi$ is constructible, then $X \in L_{\eta}$, where η is the least cardinal greater than ξ .

Problem 7

Define the relation IS_L on $\mathbb{N}^\mathbb{N}\times\mathbb{N}^\mathbb{N}$ by

$$IS_L(\alpha,\beta) \qquad \Leftrightarrow \qquad \{(\alpha)_n \colon n \in \mathbb{N}\} = \{\gamma \in \mathbb{N}^{\mathbb{N}} \colon \gamma <_L \beta\},$$

where $(\alpha)_n$ is the nth column of α . Show that IS_L is Σ_2^1 .

Problem 8

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be Δ_1^1 . Show that there exists a computable function $\pi : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ and a Π_1^0 set P such that $\pi(P) = A$.

Hint: Fix a computable Wadge-reduction form A to WOrd. Then the range of f is bounded by some ordinal $\xi < \omega_1^{CK}$. We can express membership $\alpha \in A$ as "there exists an order preserving mapping from $E_{f(\alpha)}$ onto an initial segment of ξ ". We can bring this statement in normal form and obtain a suitable Π_1^0 predicate from it.

Problem 9

Let

$$\delta_1^1=\sup\{\|\alpha\|\colon \alpha\in WOrd\ \text{ and the set }\{\langle m,n\rangle\colon \alpha(m)=n\}\text{ is }\Delta_1^1\}.$$

Show that $\delta_1^1 = \omega_1^{CK}$.

Hint: Show that if a some $\Delta_1^1 \beta \in WOrd$ were "unreachable" by recursive well-orderings, then by boundedness one could show that some properly Π_1^1 set is Δ_1^1 .

Problem 10

A path in O is a subset of O that is linearly ordered by $<_O$ and is closed downward under $<_O$. A path Z can be extended if there exists $x \in O$ such that $\forall z \in Z$, $z <_O x$. Show that there exists a path of order type $< \omega_1^{CK}$ which cannot be extended.

Problem 11

Show that for any $\xi < \omega_1$ there exists a tree T with $\|T\|_{CB} = \xi$.

Problem 12

An alternative way to define the H-sets is

$$\begin{split} &H_1^* = 0, \\ &H_{2^x}^* = (H_x)', \\ &H_{3.5^x}^* = \{\langle n, m \rangle \colon m \in H_{\phi_x(n)} \}. \end{split}$$

Show that for any $x \in \mathcal{O}$, $H_x \equiv_T H_x^*$.