Lab session week 20: Linear Regression

Mikael Escobar-Bach

May 20, 2016

##		MetroArea	${\tt PriceChange}$	${\tt LoanPaymentsOverdue}$
##	1	Atlanta	1.2	4.55
##	2	Boston	-3.4	3.31
##	3	Chicago	-0.9	2.99
##	4	Dallas	0.8	4.26
##	5	Denver	-0.7	3.56
##	6	Detroit	-9.7	4.71
##	7	LasVegas	-6.1	4.90
##	8	LosAngeles	-4.8	3.05
##	9	${\tt MiamiFt.Lauderdale}$	-6.4	5.63
##	10	${\tt MinneapolisStPaul}$	-3.4	3.01
##	11	NewYork	-3.8	3.29
##	12	Phoenix	-7.3	3.26
##	13	Portland	3.8	1.93
##	14	SanDiego	-7.8	3.45
##	15	SanFrancisco	-4.1	2.29


```
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 4.514 -2.249
```


Exercise 2 a)

```
n <- length(x)

SXX <- sum((x-mean(x))^2)
S <- sqrt(sum(l$residuals^2)/(n-2))

se1 <- S/sqrt(SXX)

ci1 <- l$coefficients[2]-qt(0.975,n-2)*se1
ci2 <- l$coefficients[2]+qt(0.975,n-2)*se1</pre>
```

Exercise 2 b)

```
y4 <- l$coefficients[1]+l$coefficients[2]*4

ci1 <- y4-qt(0.975,n-2)*S*sqrt(1/n+(4-mean(x))^2/SXX)
ci2 <- y4+qt(0.975,n-2)*S*sqrt(1/n+(4-mean(x))^2/SXX)
```