Continuité

George Alexandru Uzunov

Table des matières

1	Notion de continuité	2
2	Continuite des fonctions usuelles	2
3	Continuite et derivabilite	3
4	Continuite et equations	3
5	Continuite et suites	4

1 Notion de continuité

Exemple

- 1. La fonction valeur absolue $(f: x \mapsto |x|)$:
 - Continue
 - Non derivable en 0
- 2. La fonction racine carree $(f: x \mapsto \sqrt{x})$

$$- D_f = \mathbb{R}^* \quad D_{f'} = \mathbb{R}_+^*$$

- Continue en 0
- Non derivable en 0
- 3. La fonction exponentielle $(f: x \mapsto e^x)$
 - Continue
 - Derivable
- 4. La fonction partie entiere $(f: x \mapsto |x|)$
 - Non continue
 - Non derivable

2 Continuite des fonctions usuelles

Fonction	Intervalle de continuite
x^n (avec $n \in \mathbb{N}$)	\mathbb{R}
$\frac{1}{x^n}$	\mathbb{R}^*
\sqrt{x}	\mathbb{R}^*
x	\mathbb{R}
e^x	\mathbb{R}
sin(x)	\mathbb{R}
$\cos(x)$	\mathbb{R}

FIGURE 2 - Tableau de continuite des fonctions de reference

Toute fonction construite par somme, produit, quotient ou composition à partir des fonctions de reference herite de la continuite des fonctions de reference utilisees.

Exemple

$$f: x \mapsto x^2 + 1 \mapsto \cos(x^2 + 1) \mapsto e^{\cos(x^2 + 1)}$$

Par theoreme de continuite des fonctions des fonctions de reference, par somme et par composition, on peut conclure que f est continue sur \mathbb{R} .

Exercice type

$$f(x) = \begin{cases} -x + 2 \text{ pour } x < 3\\ x - 4 \text{ pour } 3 \le x < 5\\ -2x + 13 \text{ pour } x \ge 5 \end{cases}$$

La fonction est elle continue?

$$\lim_{x\to 3^-} -x+2=-1$$
 $\lim_{x\to 3^+} x-4=-1$ continue en 3 $\lim_{x\to 5^-} x-4=1$

$$\lim_{x\to 5^-} x - 4 = 1$$

$$\lim_{x\to 5^+} -2x + 13 = 3 \Biggr\} \ \ {\rm pas\ continue\ en\ 5}$$

3 Continuite et derivabilite

Theoreme (admis)

- $\overline{}$ Si f est derivable en a alors la fonction f est continue en a.
- Si f est derivable sur I, alors elle est continue sur cet intervalle.

4 Continuite et equations

Theoreme (admis) Soit une fonction continue sur un intervalle I=[a;b], pour tout k tel que $\overline{f(a) \leq k \leq f(b)}$, l'equation f(x)=k admet au moins une solution dans I.

Remarque Le theoreme permet de prouver qu'il existe au moins une solution.

<u>Corrolaire du theoreme</u> Soit une fonction f continue et strictement monotone sur I. Soit $f(a) \le k \le f(b)$, l'equation f(x) = k admet une unique solution en I.

Exemple

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^3 - 3x^2 - 1 \end{cases}$$

Quel est le nombre de solutions a l'equation f(x) = 4 sur \mathbb{R} ?

$$f'(x) = 3x^2 - 6x$$

On cherche les racines de la derivee.

$$3x^2 - 6x = 0$$

$$\Delta = 36$$

D'où : $x_1 = 2$ et $x_2 = 0$.

x	$-\infty$		0		2		$+\infty$
Signe de $f'(x)$		+	0	_	Ö	+	
Variation de f			→ -1 -		→ -5 -		→

FIGURE 3 – Tableau de signes de f'(x) et tableau de variations de f.

Sur $]-\infty;0]$ 0 solutions Sur [0;2] 0 solutions Sur $[2;+\infty]$ 1 solution.

5 Continuite et suites

Theoreme (du point fixe) Soit une suite (U_n) definie par la relation $U_{n+1} = f(U_n)$ convergente vers l. Si la fonction associee f est continue sur \mathbb{R} , alors la limite de la suite en N est solution de l'equation f(x) = x.

Sachant que:

- $\ \forall n \in \mathbb{N}$, $U_n \in I$ fermé
- f continue en l, $l \in I$ ou f a valeur dans I ou I contient tous les termes de (U_n) ou $f(I) \subset I$ ou sachant que $x \in I$, $f(x) \in I$.

Exemple Soit

$$(U_n) = \begin{cases} U_0 = 1\\ U_{n+1} = \frac{3}{U_{n+1}} \end{cases}$$

Determinez la limite de (U_n) .

- **1.** Posons $U_{n+1} = f(U_n)$ où $f(x) = \frac{3}{x+1}$ sur I = [0;3]. On admet $que(U_n)$ converge et que ses valeurs sont contenues dans l'intervalle [0;3]
- **2. Continuité** f est continue sur I car elle est la fonction inverse d'une fonction continue ne s'annulant pas sur I.
- **3.** Verifions que toutes les images de x par f appartiennent à I.

$$0 \le x \le 3$$

$$\iff 1 \le x + 1 \le 4$$

$$\iff 1 \ge \frac{1}{x+1} \ge \frac{1}{4}$$

$$\iff 3 \ge \frac{3}{x+1} \ge \frac{3}{4}$$

4. (U_n) converge vers l, f est continue et à valeur dans I donc d'après le theoreme du point fixe on a f(x) = x.

$$f(x)=x\iff \frac{3}{x+1}=x\iff x^2+x-3=0\quad \Delta=13$$

$$x_1=\frac{1-\sqrt{13}}{2} \text{ et } x_2=\frac{-1-\sqrt{13}}{2} \text{ or } x_2\notin I \text{ donc } \lim_{n\to+\infty}(U_n)=\frac{-1+\sqrt{13}}{2}$$

а

$$2^{\frac{3x-2}{x-1}} + 3^{\frac{2x-1}{x-1}} = 43$$