M=N	Количество потоков									
		2		2	1	7				
	T1	T2	S2	T4	S4	T7	S7			
20000	1.904359	0.975313	1.95	0.509380	3.76	0.297179	6.45			
40000	7.607933	3.873346	1.96	2.004825	3.80	1.158704	6.57			

M=N	Количество потоков									
	8		16		20		40			
	T8	S8	T16	S16	T20	S20	T40	S40		
20000	0.261800	7.32	0.138952	13.78	0.113576	16.86	0.069645	27.50		
40000	1.016343	7.50	0.515919	14.75	0.417797	18.24	0.241342	31.51		

По графику ускорения зависимости от количества потоков можно сделать вывод, насколько хорошо программа масштабируется при увеличении количества потоков в системе.

Увеличение коэффициента ускорения говорит о эффективном использовании многопоточности и параллельной обработки.

Если Sp->0, то это означает, что есть проблемы с масштабируемостью.