experimentelle Methoden der Bioinformatik

Inhaltsverzeichnis

1	Allgemein / Hintergrund	1
2	ChIP-Chip und ChIP-Seq 2.1 Ablauf	1 1 1 1 2 2 2 2 3
3	Peak Calling 3.1 MACS	4 5
4 5	CLIP-Seq 4.1 ICLIP	6 6
6	Protein-Protein-Interaktion	6
7	Tandem Affinity Purification (TAP) 7.1 Local clique merging algorithm (LCMA)	6 6
8	RNA structure probing 8.1 chemical probing	6
9	X-ray crystallography	8
10	NMR spectroscopy	9

1 Allgemein / Hintergrund

Messung von Strukturen vs. Messung von Interaktionen Motifsuche:

- Proteine (Transkriptionsfaktoren) haben Domaine die Nukleotidsequenzen erkennen
- Position weight matrix (PWM), position specific scoring matrix (PSSM)
- MEME zum erkennen von Sequenzen / Motifen

2 ChIP-Chip und ChIP-Seq

ChIP: Chromatin-ImmunoPrecipitation

Kein Single Cell Protocol -; es werden Zellpopulationen benötigt

Ziel: Man will feststellen an welcher Stelle Proteine binden

Quellen für Fehler / Ungenauigkeiten: Messung des Populationsmittelwerts

ChIP-Chip: Chromatin-Immunoprecipitation Chip

ChIP-Seq: Chromatin-Immunoprecipitation DNA-Sequencing

2.1 Ablauf

2.1.1 Crosslinking

Stabilisierung der Bindungen zwischen DNA und Protein

Geschieht reversibel zwischen DNA (Chromatin) und rekombinanten Proteinen

- Formaldehyd (CH2O) vernetzt Base (B) mit Proteinen (P-NH2) quer
- P-NH2+CH2O \rightleftharpoons PN=CH2+NH2-B \rightleftharpoons PNH-CH2-NH-B
- Rekombinant: Biotechnologisch hergestellte Proteine aus genetisch veraenderten Organismen

2.1.2 Sonication

Zerstören und Zerkleinern (fragmentieren) der Zellen, Zellbestandteile und DNA durch Ultraschall

(Vorher: Waschen der Zellen mit Protease Inhibitor, Lyse + homogenisieren)

- zeitkritisch \rightarrow Länge bestimmt Grad der Zerkleinerung
- 200-1000 BP Fragmente im Idealfall

Ergebnis sind DNA Fragmente mit gebundenen Proteinen

2.1.3 Immunoprezipitation (Selektion mittels Antikörper)

- Antikörper (binden an Beads oder Membranen, Chip/in Gel) binden an rekombinante Proteine

oder Protein-TAG (kurze Aminosäuresequenz, markieren Protein)

- Aufreinigung:
 - → Zentrifugation des Prezipitats: Beads+(Protein-DNA) am Boden, Zellfragmente/Rest in Lösung
 - → Abkippen der Lösung
 - \rightarrow Aufnehmen des Beadspellets in Puffer, erneut zentrifugieren (x-Mal) Manchmal noch
 - → DNase Verdau der DNA in Lösung
 - → Aufheben der DNA in Lösung, als total-Chromatin-Probe

2.1.4 Reverse Immunoprezipitation

Durch Aufreinigungsschritte sind Beads/Gel/Chip idealerweise frei von Zellfragmenten/ungebundener DNA.

Umkehren der IP mit Elutionspuffer
 \to Antikörper von DNA+Proteine trennen
 \to Salzgehalt und PH-Wert an Rückreaktion angepasst

2.1.5 Reverse Cross Linking

- Thermische Zerstörung der Bindung zw. Protein und DNA
- Salzgehalt des Buffer angepasst auf Rückreaktion Proteinase K und RNase bauen Proteine und RNA ab(zur Aufreinigung)
 - Extraktion der übrig gebliebenen DNA durch Zentrifuge

2.1.6 Auswertung

Chiphybridisierung

- Hybridisierung der DNA an Microarray
- Färbung der DNA
- Messung der Farbintensität

$ightarrow mit\ dem\ ChIP\ Background\ kann\ ich\ nichts\ anfangen...\leftarrow$ Sequencing

Hochdurchsatzsequenzierung der aufgereinigten DNA.

- →DNA extrahieren→DNA fragmentieren→Primer an Fragmente→Sequenzierung
- \rightarrow Herausrechnen der Primer (idealerweise kennt man sie) \rightarrow

Quality control-Phred-score Berechnung (Güte der erkannten

Nukleobase)→Cutoff bei zu niedrigem Phred-score→Mapping des sequenzierten Teilstücks auf Genom

2.2 Probleme/Fehler

Cross-Linking

FN: Protein an DNA gebunden, aber kein Cross-Linking

FP: Proteine, die sehr nahe an der DNA sind, aber ungebunden, werden

auch cross linked

Sonication

- Größe der Fragmente abhängig von Ultraschalleinsatz zeitkritisch!
- Kürzere und längere Fragmente können Informationen enthalten

Immunoprecipitation

FP: Mangelnde Reinheit der rekombinanten Proteine; Spezifität der heterophilen Antikörper zu gering Aufreinigung führt zu FP und FN

Chip

FN: Hybridisierung nicht effektiv genug

2.3 Antikörper

- Antikörper bindet spezifisch und sensitiv
- Antikörper sind fixiert an:
 - Beads
 - Chip (kein Microarray)
 - Gel
- Antikörper werden im Experiment erzeugt

polyclonal monoclonal Aufbrechen der Proteine in kurze Aminosäureketten (Peptide) Peptide in Ratte/Maus geimpft extrahieren der B-Lymphozyten aus Serum Extrahieren der Antikörper aus den Lymphozyten Antikörper

Aufbrechen der Proteine in Peptide Peptide in Ratte/Maus geimpft extrahieren der B-Lymphozyten aus Milz Fusionierung der B-Lymphozyten mit Plasmazellen aus Myelom (Krebszelle - 'unsterblich') Hybrid erzeugt (unsterblich + Antikörper) Testen der Hybride auf Antigene ernten spezifischer Antikörper

Peak Calling 3

Sequenziertes Genom/RNA/DNA aus dem Experiment = viele, kurze Reads \rightarrow naiv: Jedes Nukleotid, dass von Reads bedeckt ist = Gebunden

 \rightarrow Problem: Viele FP, da kurze Reads mehrere Treffer haben können

 \rightarrow Lösung: Cutoff für Anzahl der Reads auf Nukleotid

 \rightarrow Problem: Manche Basen einfach zu binden = viele FP So geht das nicht!

Lösung:

Enrichment: $log \frac{Expression}{Background}$ naiv: Wenn Enrichtment > Cutoff \rightarrow Peak!

3.1 MACS

Model-based Analysis of ChIP-Seq (MACS)

1. Einteilen des Genoms in Bins (Eimer)

Window: 200 BP und Offset von 1/4 der window size

In Bins werden Reads eingeordnet

- 2. Zählen der Fragmente pro Bin, +/- Strang
 - \rightarrow Poisson verteilt!

$$P(x > k, \lambda) = \sum_{i=k}^{\infty} P\lambda(i) = 1 - \sum_{i=0}^{k-1} P\lambda(i) = 1 - \sum_{n=0}^{k-1} \frac{\lambda^n}{n!} e^{-\lambda}$$

 λ =Mittelwert der read counts aus Background, k=read counts aus Experiment read count signifikant größer Mittelwert \rightarrow Peak!

Mittelwert kann abhängig von Menge der reads in Window sein:

 $\lambda = \max(\lambda \text{global}, \lambda 1000, \lambda 5000, \lambda 10000)$

 \rightarrow Window jeweils zentriert an Bin

3. p-Value Correction

Holm-Bonferroni

q-Value

4. Peakmerging

Wenn Abstand zwischen Peaks < Cutoff \rightarrow Merge Peaks (bei MACS 2xWindowSize)

Wo sind die Bindungsstellen?

 $\operatorname{Protein} \to \operatorname{RNA}$ - ChIP: Regionen, mit denen das Protein assoziert ist

 $DNA \rightarrow RNA$ - **ChIRP**: Match von RNA auf sequenzierter DNA

Verfahren ähnlich zu CLIP

 \rightarrow RNA cross-linking(UV o. formalin) \rightarrow aufreinigen \rightarrow reverse cross-linking \rightarrow Read \rightarrow Match mit DNA

(Chromatin isolation by RNA purification)

Protein \rightarrow RNA - RIP: RNA zu cDNA, hybridisieren mit Chip

 \rightarrow RNA cross-linking(UV o. formalin) \rightarrow aufreinigen \rightarrow

reverse cross-linking \rightarrow RNA in cDNA \rightarrow

Hybridisierung auf Chip

(RNA immunoprecipitation protocol)

- 4 CLIP-Seq
- 4.1 ICLIP
- 5 PAR-CLIP
- 6 Protein-Protein-Interaction
- 7 Tandem Affinity Purification (TAP)
- 7.1 Local clique merging algorithm (LCMA)
- 7.2 Clique Finding Algorithzm (CFA)
- 8 RNA structure probing
- 8.1 chemical probing

MACS (Model-based Analysis of ChIP-Seq):

1) Einteilen des Genoms in Bins Window Size: typisch 200 bp & offset (ungefähr 0.25 windows size = 50 bp) MACS empfiehlt Bin doppelt so groß wie Fragment

2) Zähle die Anzahl an hypothethischen Fragmenten pro Bin (=window) Fragemente können in mehr als ein Bin fallen

CLIP Cross-linking & immunoprecipitation protocol - Ultraviolettes Licht für cross linking - UV cross linked nur RNA mit Proteinen - induziert UV Mutation der RNA - CIMS: cross-linking induced mutation sites

9 X-ray crystallography

Voraussetzung: regulären Kristall aus dem Protein

Bragg's Law: $n\lambda = 2dsin(\Theta)$

X-ray crytallography diffraction:

X-ray \rightarrow Kristall \rightarrow Ablenkung

durch Atome \to Ablenkung wird durch einen Detektor gemessen feste Wellenlänge λ , Winkel Θ variieren (Kristall rotieren) \to charakteristisches Diffraction pattern \to Amplitude ändert sich über den Winkel $d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$ mit hkl=Laue-Index, $a_0 = Gitterkonstante$

oder:

 Θ fest und λ variiren \rightarrow white x-ray

Kombinierte Information aus allen Messungen für verschiedene $\lambda\&\Theta$

- 1. Backbone des Proteins ($COOH NH_2$)
- 2. Bestimmung der Position der flexiblen Seitenketten der Aminosäuren
- 3. Verbesserung

10 NMR spectroscopy

NMR: nuclear magnetic resonance

Wechsel des Zustands ist messbar

Atome mit magnetischen Eigenschaften: H, Deuterium, N, C, Li, B, O

NMR: Magnet, der ein magnetisches Feld induziert & Radiowellen sendet

- \rightarrow ohne weitere äußere Einflüsse Atom in $\alpha-spin$
- ightarrow über Flips im Magnetfeld Ermittlung der Protein-Struktur

Spektren von H,C,N + Strukturformel der bekannten Aminosäure + Aminosäureketten \to Wechselwirkungen zwischen den Gruppen herleiten \to 3D Koordinaten berechnen