

SÍLABO MECÁNICA APLICADA

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I1.3 Código de la asignatura : 09008705050

1.4Ciclo: V1.5Créditos: 51.6Horas semanales totales: 10

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 6 (T=04, P=0, L=02)

1.6.2. Horas no lectivas : 4

1.7 Condición del Curso : Obligatorio

1.8 Requisito(s) : 09005603050 Física I

09017703030 Diseño Industrial por Computador

1.9 Docentes : Ing. Luis Carlos A. Rojas Torres

II. SUMILLA

El curso de Mecánica Aplicada es de naturaleza teórico-práctica. Consiste en describir y predecir las condiciones de reposo de los cuerpos rígidos. Permite desarrollar en el alumno la capacidad de analizar cualquier problema de cuerpos rígidos estáticos en una forma sencilla y lógica, aplicando en su solución pocos principios básicos de la mecánica (estática) y sus conocimientos previos de matemáticas, física y dibujo asistido por computadora. El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Estática de la partícula y sistemas de fuerzas equivalentes. II. Equilibrio de cuerpos rígidos, fricción seca y fuerzas distribuidas. III. Análisis de cargas en armaduras y/o armazones y determinación de cargas internas en vigas prismáticas. IV. Momentos de inercia centroidales, producto de inercia centroidal y momentos de inercia principales en vigas prismáticas.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Expresar la fuerza y la posición en forma vectorial cartesiana y explicar cómo determinar la magnitud y el sentido del vector.
- Comprender el concepto de diagrama de cuerpo libre para una partícula.
- Mostrar cómo resolver problemas de equilibrio de partículas usando las ecuaciones de equilibrio.
- Analizar y calcular el momento de una fuerza en un espacio bi y tridimensional.
- Utilizar un método para definir el momento de una fuerza con respecto a un eje específico.
- Determinar las resultantes de sistemas de fuerzas no concurrentes

3.2 Componentes

Capacidades

- o Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales.
- O Utiliza software para la solución de sistemas de ecuaciones.
- Puede interpretar estructuras cotidianas como puentes y andamios.
- Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

Contenidos actitudinales

- Aplica los conocimientos impartidos en clase en el análisis de estructuras en el laboratorio.
- Aplica conceptos del cálculo integral para obtener propiedades de diferentes estructuras.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : Estática de la partícula y sistemas de fuerzas equivalentes

CAPACIDAD: Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales

SEMANA	CONTENIDOS CONCEDTIALES	CONTENIDOS DEOCEDIMENTALES	ACTIVIDAD DE ADDENDIZA IE	НО	RAS
SEIVIANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	L	T.I.
1	Primera sesión: Teoría de matemática vectorial. Equilibrio de una partícula. Segunda Sesión: Descomposición de fuerzas. Suma de fuerzas concurrentes en el espacio.	Desarrolla los conceptos básicos y necesarios para el buen desempeño del curso. Entender los diferentes modelos jerárquicos que existen para un mismo problema. Aplicar el concepto de partícula y cuando debe ser utilizado. Aplica para 2 y 3 dimensiones las leyes del equilibrio.	Lectivas (L): Introducción al tema - 2 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2h Trabajo Aplicativo - 2 h	6	4
2	Primera sesión: Introducción al cálculo de momentos de fuerza respecto a un punto. Teorema de Varignon Segunda sesión: Proyección de vectores. Tiple producto	Significado matemático y físico de los productos vectorial y escalar. Aplicación del producto vectorial para el cálculo de momento en dos y tres dimensiones.	Lectivas (L): Desarrollo del tema – 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
3	Primera sesión: Momento de una fuerza respecto a un eje. Segunda sesión: Momento de par, representación y reducción de fuerzas mediante estos. Primera Practica	Comprensión del uso de ejes para transmisión de momentos. Capacidad para simplificar sistemas de fuerzas en varias dimensiones.	Lectivas (L): Desarrollo del tema – 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
4	Primera sesión: Sistemas equivalentes de fuerzas. Segunda sesión: Reducción de un sistema de fuerzas a una llave de torsión.	Reconoce sistemas similares de fuerzas y momentos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD II: Equilibrio de cuerpos rígidos, fricción seca y fuerzas distribuidas.

CAPACIDAD: Utiliza software para la solución de sistemas de ecuaciones.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
5	Primera sesión: Introducción al análisis de cuerpo rígido en dos dimensiones. Segunda sesión: Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N° 1: Equilibrio de una partícula en 3D.	Discierne cuando utilizar el modelo partícula y cuerpo rigido para diferentes problemas. Reconoce las diferentes condiciones a las que se encuentra un cuerpo en dos dimensiones. Analiza el equilibrio de fuerzas y momentos en cuerpos bidimensionales.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	_ 6	4
6	Primera sesión: Casos especiales en el análisis bidimensional de cuerpos rígidos. Segunda sesión: Análisis de cuerpos rígidos tridimensionales. Introducción a la tribología: Coeficientes de fricción estático y dinámico. Segunda Practica	Reconoce casos especiales o particulares en estructuras. Reconoce las diferentes condiciones a las que se encuentra un cuerpo en tres dimensiones. Analiza el equilibrio de fuerzas y momentos en cuerpos tridimensionales.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	- 6	4
7	Primera sesión: Propiedades de área en las estructuras. Segunda sesión: Métodos par áreas y alambres compuestos. Teorema de Pappus-Guldinus. Cargas distribuidas en vigas.	Calcula las propiedades geométricas de cuerpos bidimensionales. Aplica los conocimientos previos para calcular carga distribuida y punto de aplicación en vigas.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
8	Primera sesión Examen parcial Segunda sesión Revisión del examen parcial				

UNIDAD III: Análisis de cargas en armaduras y/o armazones y determinación de cargas internas en vigas prismáticas.

CAPACIDAD: Puede interpretar estructuras cotidianas como puentes y andamios.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
9	Primera sesión: Propiedades de volumen en estructuras. Segunda sesión: Fuerzas sobre superficies sumergidas. Tercera Practica	Calcula las propiedades geométricas de cuerpos tridimensionales. Aplica los conceptos de carga distribuida para el calculo de fuerzas debido a la presión del agua.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h	6	4
			 Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h 		
10	Primera sesión: Introducción a las armaduras, tipos. Método de los nodos. Segunda sesión: Método de las secciones. Armaduras compuestas. Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N° 2: Fricción Seca.	Aplica diferentes métodos de análisis para diferentes tipos de cargas aplicadas a estructuras. Aplica métodos de solución para sistemas de ecuaciones aplicado a estructuras.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
11	Primera sesión: Estructuras con elementos sometidos a fuerzas múltiples. Armazones y máquinas. Segunda sesión: Fuerzas internas en elementos de máquinas.	Capacidad de diseñar sus propios mecanismos para diferentes necesidades.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
12	Primera sesión: Análisis de carga de vigas prismáticas. Segunda sesión: Construcción de diagramas de fuerza cortante y momento flector Cuarta Practica	Calcula y proyecta vigas para resistir la carga transversal requerida.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD IV: Momentos de inercia centroidales, producto de inercia centroidal y momentos de inercia principales en vigas prismáticas.

CAPACIDAD: Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.
13	Primera sesión: Momento de inercia de un área simple. Momento polar de inercia. Aplicación del teorema de Steiner Segunda sesión: Autocad como herramienta para el cálculo.	Teniendo ya los conceptos teóricos de la mecánica aplicada, puede mediante software facilitar el proceso de análisis mediante la automatización de cálculos repetitivos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
14	Primera sesión: Producto de inercia de un área simple mediante autocad. Segunda sesión: Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N° 3: Fuerzas internas en armaduras planas.	Teniendo ya los conceptos teóricos de la mecánica aplicada, puede mediante software facilitar el proceso de análisis mediante la automatización de cálculos repetitivos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
15	Primera sesión: Determinación para un área plana combinada de sus momentos de inercia, producto de inercia y productos de inercia principales utilizando software.	Teniendo ya los conceptos teóricos de la mecánica aplicada, puede mediante software facilitar el proceso de análisis mediante la automatización de cálculos repetitivos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
16	Examen final				
17	Entrega de promedios finales y acta del curso.				

V. ESTRATEGIAS METODOLÓGICAS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones, videos de estructuras, libros en formato digital.

Medios: uso de la red social como foro de preguntas y solución de dudas durante las horas no lectivas.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final se obtiene del modo siguiente:

PF = (PE+EP+EF)/3 PE =0.6*PPR+0.4*PL PPR = (P1+P2)/2 PL = (Lb1+Lb2+Lb3)/3

Donde:

PF = Promedio Final **EP** = Examen Parcial

EF = Examen Final

PE = Promedio de Evaluaciones = 0.6*PPR + 0.4*PL

PPR = Promedio de Practicas = (P1+P2)/2

PL = Promedio de ensayos de laboratorios = (Lb1 + Lb2 + Lb3)/3

VIII. FUENTES DE CONSULTA

7.1 Bibliográficas

- Beer, F., Johnston, E. & Eisenberg, E. (2013). Mecánica Vectorial para Ingenieros Estática. 10^{ma}. ed. McGraw-Hill. México, D.F.
- Beer, F., Johnston, R. & Eisenberg, E. (2016). Vector Mechanics for engineers, Statics. 11th. ed. McGraw-Hill. EEUU, N.Y.
- · Hibbeler, R. (2014). Mecánica Vectorial para Ingenieros Estática. 13va. ed. Pearson Educación. México, D.F.

7.2 Electrónicas

Versiones digitales de los libros antes mencionados.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	R
(g)	Habilidad para comunicarse con efectividad	R
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	R
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	K
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K