МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«Омский государственный технический университет»

Факультет информационных технологий и компьютерных систем Кафедра «Прикладная математика и фундаментальная информатика»

Индивидуальная работа

по дисциплине Теория чисел

Студента

фамилия, имя, отчество полностью Курс 2 Группа ФИТ-212 Направление 02.03.02 Фундаментальная информатика и информационные технологии код, наименование Руководитель доц., канд. пед. наук, доцент должность, ученая степень, звание Белим С.Ю. фамилия, инициалы Выполнил дата, подпись студ баллы дата, подпись руководителя

Курпенова Куата Ибраимовича

Вариант 10

Задание 1

Найти остаток от деления $3^{5^{602}-3}$ на 50

Решение:

$$(3^{5^{602}-3})(mod50)$$

НОД (3, 50) = 1, тогда по теореме Эйлера
$$3^{\varphi(50)} \equiv 1 \pmod{50}$$
 $\varphi(50) \equiv 50 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \equiv 20$ $3^{20} \equiv 1 \pmod{50}$ $35^{15} \pmod{93}$, $15_{10} = 1111_2$ $5^{602} - 3 \pmod{20} = 5^{602} \pmod{20} - 3 \pmod{20}$

$$HOД(5, 20) = 5$$

 $5*5^{601} (mod54) = 5y$
 $y = 5^{601} (mod4) = 1mod4$
 $x = 5*1 = 5$
 $5 - 3mod20 = 2mod20$
 $3^{5^{602}-3} = 9mod50$

Задание 2

Решить сравнения a) $47x\equiv 2 \pmod{127}$, б) $12x\equiv 18 \pmod{42}$, в) $24x\equiv 6 \pmod{80}$

Решение:

a)
$$47x \equiv 2 \pmod{127}$$

$$HOД(127, 47) = 1$$

$$x \equiv 2 * 47^{-1} \pmod{127}$$

$$x = 2 * 80 (mod 127)$$

$$x = 160 (mod 127)$$

$$x = 33$$

$$HOД(42, 12) = 6$$

$$x \equiv 3 * 2^{-1} \pmod{7}$$

$$x \equiv 3 * 5 \pmod{7}$$

$$x \equiv 1 (mod 7)$$

$$x = \begin{cases} 1 (mod42) \\ 8 (mod42) \\ 15 (mod42) \\ 22 (mod42) \\ 39 (mod42) \\ 36 (mod42) \end{cases}$$

в)
$$24x \equiv 6 \pmod{80}$$

НОД(80, 24) = 8, 6 \ 8 → сравнение неразрешимо

Задание 3

Решить систему сравнений
$$\begin{cases} x \equiv 0 mod2 \\ x \equiv -2 mod3 \\ x \equiv -3 mod5 \\ x \equiv 4 mod6 \\ x \equiv 7 mod15 \end{cases}$$

Решение:

$${2, 3, 5}$$
 – попарно взаимно просты НОК $(2, 3, 5, 6, 15) = 30$

Внедрим подсистему, которую можно решить с помощь китайской теоремы об остатках

$$M \equiv 2 * 3 * 5 = 30$$

$$\begin{aligned} M_1 &\equiv 15 \\ N_1 &\equiv 15^{-1} \, (mod 2) \equiv 1 mod 2 \end{aligned}$$

$$\begin{aligned} M_2 &\equiv 10 \\ N_2 &\equiv 10^{-1} mod 3 = 1 mod 3 \end{aligned}$$

$$M_3 \equiv 6$$

$$N_3 \equiv -4mod5$$

$$x = 0 + 2 * 10 * 1 + 3 * 6 * 4 = -20 + 72 = 22 mod 30$$

 $x = 22 mod 30$

Задание 4

Пусть в прямоугольном треугольнике длины сторон выражаются целыми числами. Докажите, что длина одной из трех сторон делится на 5.

Решение:

Пусть ни одно из чисел не делится на $5 => каждый квадрат сравним с <math>\pm 1 \bmod 5$ (1, 4, 9, 16). Но равенство $\pm 1 \pm 1 \equiv \pm 1 \bmod 5$ невозможно.

Задание 5

Вычислить над кольцом вычетов по модулю 675 с помощью алгоритма Руффини – Горнера значение многочлена $f(x) = x^5 - x^4 + 6x^2 + 15x + 45$ в точке x = 3 и найти неполное частное от деления многочлена f(x) на (x - 3).

Решение

$$f(x) = x^5 - x^4 + 6x^2 + 15x + 45$$

3	1	-1	0	6	15	4 5
	1	2	6	24	87	306

$$f(3) = 306$$

$$f(x) = (x^5 - x^4 + 6x^2 + 15x + 45)(x - 3) + 306$$

 ${x}^{4}+2{x}^{3}+6{x}^{2}+24x+87$ — неполное частное от деления многочлена ${f}(x)$ на (x-3)