Teoria Sygnałów w zadaniach Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone Wydrukowano w Polsce

Książka współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Zadanie 1. Wyznacz wszystkie współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) będącego przekształceniem sygnału cosinusoidalnego przedstawionego na rysunku.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (1)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{1}{\frac{2\pi}{T}} \cdot dz \\ dt &= \frac{T}{2\pi} \cdot dz \end{cases}$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{T}{2\pi} \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \sin(z) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(\frac{2\pi}{T} \cdot 0\right)\right)$$

$$= \frac{A}{2\pi} \cdot (\sin(pi) - \sin(0))$$

$$= \frac{A}{2\pi} \cdot (0 - 0)$$

$$= \frac{A}{2\pi} \cdot 0$$

$$= 0$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{3}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} \cdot dt + \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \\ &= \left\{ \frac{z_1}{dz_1} \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt \cdot dz_2 = -\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t \right. \\ &dt = \frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot dz_1 \quad dt = \frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot dz_2 \right. \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{z_1} \cdot \frac{1}{J \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 + \int_0^{\frac{T}{2}} e^{z_2} \cdot \frac{1}{(1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{\jmath \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{\jmath \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{\jmath \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{\jmath \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{\jmath \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ \end{array}$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \frac{T}{J \cdot 2\pi} \cdot \left(\frac{1}{(1-k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{1}{(1+k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{z_1} |_0^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{z_2} |_0^{\frac{T}{2}}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot t} |_0^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot t} |_0^{\frac{T}{2}}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot \frac{T}{2}} - e^{J \cdot \frac{2\pi}{T} \cdot (1-k) \cdot 0}\right) - \frac{1}{(1+k)} \cdot \left(e^{-J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot \frac{T}{2}} - e^{-J \cdot \frac{2\pi}{T} \cdot (1+k) \cdot 0}\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \pi \cdot (1-k)} - e^{0}\right) - \frac{1}{(1+k)} \cdot \left(e^{J \cdot \pi \cdot (1+k)} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{J \cdot \pi} \cdot e^{-J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(e^{J \cdot \pi} \cdot e^{-J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{J \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{J \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{-J \cdot k \cdot \pi} - 1\right) \cdot \left(1+k\right)}{(1-k) \cdot \left(1+k\right)} - \frac{\left(-e^{-J \cdot k \cdot \pi} - 1\right) \cdot \left(1-k\right)}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{-J \cdot k \cdot \pi} - 1 + k \cdot e^{J \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} + 1 - k \cdot e^{J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} + 1 - k \cdot e^{J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1-k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} + 1 - k \cdot e^{J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} + 1 - k \cdot e^{J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1-k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} + 1 - k \cdot e^{J \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1-k\right)}\right) \\ &= \frac{A}{J \cdot 4\pi} \cdot \left(\frac{\left(-e^{J \cdot k \cdot \pi} - 1 - k \cdot e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot \pi} - k + e^{J \cdot k \cdot$$

Wartość współczynnika F_k wynosi $-\frac{A\cdot k}{\jmath\cdot 2\pi}\cdot \left(\frac{e^{-\jmath\cdot k\cdot \pi}+1}{1-k^2}\right)\!.$

Dla k=1 i k=-1 trzeba wyzanczyć wartość współczynnika raz jeszcze w
prost ze wzoru

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \end{split}$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot (1-1) \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot (1+1) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{0} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} 1 \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \left\{ \begin{aligned} z &= -j \cdot \frac{4\pi}{T} \cdot t \\ dt &= \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dt \\ dt &= \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dt \end{aligned} \right\} \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dz \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(t|_{0}^{\frac{T}{2}} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{z}|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\left(\frac{T}{2} - 0 \right) - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j \cdot \frac{4\pi}{T} \cdot t}|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot \frac{4\pi}{T} \cdot 0} \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot \frac{2\pi}{T}} - e^{0} \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - 0 \right) \end{aligned}$$

Wartość współczynnika F_1 wynosi $\frac{A}{4}$.

$$F_{-1} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right)$$

$$\begin{split} &=\frac{1}{T}\left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{j\frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt\right) \\ &=\left\{\cos\left(x\right) = \frac{e^{j\cdot x} + e^{-j\cdot x}}{2}\right\} \\ &=\frac{1}{T}\left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{j\cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0\right) \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot e^{j\cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot dt}\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot$$

$$=\frac{A}{4}$$

Wartość współczynnika F_{-1} wynosi $\frac{A}{4}$.

Tak wiec ostatecznie współczynniki zespolonego szeregu fouriera

$$F_{0} = 0$$

$$F_{1} = \frac{A}{4}$$

$$F_{-1} = \frac{A}{4}$$

$$F_{k} = -\frac{A \cdot k}{\jmath \cdot 2\pi} \cdot \left(\frac{e^{-\jmath \cdot k \cdot \pi} + 1}{1 - k^{2}}\right)$$

$$(4)$$

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	0	$j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0	$j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$-j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	0	$-j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0
$ F_k $	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0
$Arg\left\{ F_{k}\right\}$	0	π	0	π	0	0	0	$-\pi$	0	$-\pi$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (5)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{min}=-2$ do $k_{max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -4$ do $k_{max} = 4$ otrzymujemy

W przypadku sumowania od $k_{\min} = -10$ do $k_{\max} = 10$ otrzymujemy

W przypadku sumowania od $k_{\min} = -20$ do $k_{\max} = 20$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

