Скоринг человека. Балансировка участков.

Что интересного есть в данных?

Общее число пациентов в данных

Число клонов

8 человек старше

950 лет !!!

Число пациентов, у которых число совместно проживающих детей больше **20**

Число пациентов, которые совместно проживают с **50** и более льготниками

Интересная фиксация визитов.

Среднее количестов приёмов у людей, которые за 2 года ни разу не появлялись:

Среднее количестов приёмов у людей, которые за 2 года хоть раз появлялись:

12

Средний возраст пациента, который за 2 года ни разу не посетил поликлинику:

47.5

15

Средний возраст пациента, который посещал за 2 года хотя бы раз поликлинику:

Отношение пациентов к смене участка

Готовы сменить участок

- Неизвестна реакция
 755 000 пациентов о
 возможной смене их
 участков
- 196 000 пациентов готовы к смене участков
- около 16 000 пациентов не хотят менять участок

Зависимости м/у признаками

Признаки пациентов почти независимы, кроме очевидно зависимых:

- Идентификатор участка и пациента сильно зависят от района поликлиники
- Количество пенсионеров зависит от количества льготников
- Иногда дети со льготниками (возможно многодетные семьи) хотя эта связь не очень сильна

Вероятность визита к врачу в зависимости от возраста

Построение модели предсказания количества приёмов

Метрики

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - y_j'|$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Light Gradient Boosting Machine

Значимость признаков в построенной модели

MAE = 1.42MSE = 6.72

Балансировка участков

Распределение визитов каждого пациента по участкам LPU_ID=13.

Да уж, из такого графика не сбалансируешь :))

Чёрные линии -- это границы погрешности.

Погрешность составляет 8.7 % от целевого среднего значения.

8.7 % рассчитано с учётом МАЕ построенной модели по предсказанию target.

Число перемещённых людей: 525.

Предположим врачу захотелось погрешность в:

5%

Тогда:

Погрешность составляет 5 % от целевого среднего значения.

Число перемещённых людей: 742.

<u>LPU_ID = 17</u>

Погрешность составляет 5 % от целевого среднего значения.

Число перемещённых людей: 1336.

LPU_ID = 19

Погрешность составляет 5 % от целевого среднего значения.

Число перемещённых людей: 332.

