OKR

Main objective: Confirm promoter via dual luciferase assay (before April 25th)

Key results

- 1.1. Determine the concentration of β CD and cholesterol to simulate high and low cholesterol levels in human cells
- Optimize the transfection procedure and specifically the amount of DNA and Lipofectamine 2000 needed
- 1.3. Run Dual Luciferase assays(DLA) to confirm the function of the promoter

General Deliverables

- Confirmed that the synthetic promotor is statistically sensitive to cholesterol levels running a DLA. (1.3 - Luis and Khaliq; April 25)
- 2. Determining what maximum and minimum conditions of cholesterol allow cells to grow via kill curve analysis. (1.1- Miriam, Raphael, Elias; April 7th)
- 3. Habituate wild type cells to the optimized BCD and cholesterol concentrations to prepare them for transfection process) (1.1- Miriam; April 4th and 11th)
- 4. Determine the Optimal Transfection DNA:Lipofectamine Conditions that result in the most transfected cells (1.2- Mehdi, Yari, Katana; April 2nd)
- 5. Comparative luminescence sensitivity analysis of the FLx800 and GloMax 20/20 (1.3- Luis, Khaliq; April 2nd)

Draft of timeline

Relevancy:

a. The promoter is part of a synthetic plasmid vector engineered, and itself is synthetic.

Introducing a new possible therapeutic solution for maintaining homeostatic cholesterol levels. We want to present our work to IGEM.

Timeline

Step one: due by April 16th

Transfect cells with v2

- Will be done on April 29
- Checklist
 - Cells
 - Coordinate with Miriam
 - DNA
 - X amount needed
 - Coordinate with Yari and Katana
 - Dependent on pilot transfection Use ratios that had highest transfection efficiency. Likely wells C3, C6, B6, which correlate to _*check well plate*_.
- Run dual luciferase assay (practice)
 - Will be done on April 30
 - Checklist
 - Assay kit
 - Coordinate with IPRO treasure
 - Prepared reagents
 - Coordinate with Luis
 - Transfected V2 cells
 - Coordinate with transfection team
 - Finalize protocol
 - Coordinate with Khaliq
- Growth curve to determine the max BCD and cholesterol concentrations for transfection in order to determine if the promoter is sensitive to varying cholesterol levels
 - o Will be done with BCD and Cholesterol triplicates by April 18th
 - Coordinate with Growth curve team
 - o Cholesterol
 - Last GC to be started on April 7^{th} --> 30 μ M and 50 μ M again, 60 μ M if current results show cells are viable
 - Input 60 µM Cholesterol Growth Curve
 - Update existing growth curves with new values
 - Will be finished by April 18th
 - o BCD
 - Next BCD (trial 2) --> start March 31st
 - Last BCD GC (trial 3) to be started April 7th -- > with more narrowed down range
 - Input BCD Cell data

- Produce new curves
- Set new range of BCD concentrations
- Will be finished by April 18th

Step two: Due April 22nd

- Transfection optimization
 - o Due April 18th
 - Must be performed three times
 - DNA extraction takes 3 days
 - Check list
 - Cells
 - Coordinate with Miriam
 - Ensure cell flasks are passaged according to when cells are needed
 - DNA
 - X amount needed
 - Coordinate with Yari and Katana
- Kill Curve Chart
 - o Input all X-ranges bar graph to find bell curve
 - Due April 19th
 - Coordinate with Elias and Raphael
- Preform final Transfection
 - Due April 22nd

Step three: due April 25rd

- Do the final run of the dual luciferase assay
 - Will be done on April 24th
 - Must be triplicated
 - Checklist
 - Cells
 - Coordinate with Miriam
 - DNA
 - X amount needed
 - Coordinate with Yari and Katana
- Determine whether or not the promotor is sensitive to cholesterol
 - Will be done by April 25

- Run a good dual luciferase assay
 - o Requires transfection optimization
 - Must be triplicated
 - o Needs to be practiced before it is run
- Run dual luciferase practice
 - o Requires V2 transfection
 - o Doesn't require optimization to be done
 - o Requires cells
- Transfection optimization
 - o Requires enough DNA to be isolated
 - Needs to be triplicated
 - o Requires cells
- Growth curve
 - o To determine maximum and minimum cholesterol levels cells can tolerate
 - o For other experiments
 - Must be triplicated [cholesterol and BCD conditions]