Statistical Modelling and Analysis: Formula Sheet

Summary Statistics

For data $x_1, x_2, ..., x_n$

Sample mean
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 Sample variance $s^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \right)$.

Discrete Random Variables

		Range	p.m.f.	Mean	Variance
Binomial	Bin(n,p)	$0 \le x \le n$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Poisson	$Po(\lambda)$	$0 \le x < \infty$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ
Geometric	Geo(p)	$1 \le x < \infty$	$p(1-p)^{x-1}$	1/p	$(1-p)/p^2$

Continuous Random Variables

		Range	p.d.f.	Mean	Variance
Uniform	U(a,b)	$a \le x \le b$	1/(b-a)	(a+b)/2	$(b-a)^2/12$
Exponential	$Exp(\lambda)$	$0 < x < \infty$	$\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$
Gamma	$\Gamma(\alpha,\beta)$	$0 < x < \infty$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	α/β	α/β^2
Beta	B(lpha,eta)	$0 \le x \le 1$	$\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\alpha/(\alpha+\beta)$	$\alpha\beta/[(\alpha+\beta+1)(\alpha+\beta)^2]$
Normal	$N(\mu,\sigma^2)$	$-\infty < x < \infty$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2

One Sample Two-sided Confidence Intervals, $(100-\alpha)\%$

Mean (known σ^2)	$x_1,,x_n$	$N(\mu,\sigma^2)$	$\bar{x} \pm z \times \sigma / \sqrt{n}$	where $\mathbb{P}(Z>z) = \alpha/2$ with $Z \sim N(0,1)$.
Mean (unknown σ^2)	$x_1,,x_n$	$N(\mu,\sigma^2)$	$\bar{x} \pm t \times s / \sqrt{n}$	where $\mathbb{P}(X>t) = \alpha/2$ with $X \sim t_{n-1}$.
Mean (large sample)	$x_1,,x_n$	Unknown	$\bar{x} \pm z \times s / \sqrt{n}$	where $\mathbb{P}(Z>z) = \alpha/2$ with $Z \sim N(0,1)$.
Variance	$x_1,,x_n$	$N(\mu,\sigma^2)$	$\left(\frac{s^2(n-1)}{b}, \frac{s^2(n-1)}{a}\right)$	where $\mathbb{P}(\chi_{n-1}^2 < a) = \alpha/2$ $\mathbb{P}(\chi_{n-1}^2 > b) = \alpha/2$.
Proportion	x	Bin(n,p)	$\hat{p} \pm z \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	where $\mathbb{P}(Z>z)=\alpha/2$ with $Z\sim N(0,1)$, $\hat{p}=x/n$.
Poisson Mean	$x_1,,x_n$	$Po(\lambda)$	$\bar{x} \pm z \times \sqrt{\bar{x}/n}$	where $\mathbb{P}(Z>z) = \alpha/2$ with $Z \sim N(0,1)$.

Linear Regression

Summary statistics are:

$$S_{xx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n} \qquad S_{xy} = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n} \qquad S_{yy} = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

The least squares estimates of α and β in the regression model $y=\alpha+\beta x$ are

$$\hat{\beta} = \frac{S_{xy}}{S_{xx}} \qquad \hat{\alpha} = \frac{1}{n} \left(\sum y_i - \hat{\beta} \sum x_i \right)$$

The residual (error) mean square can be calculated from:

$$s^2 = \frac{1}{n-2} \left(S_{yy} - \frac{S_{xy}^2}{S_{xx}} \right)$$

The standard error of the estimate $\hat{\beta}$ is: $\frac{s}{\sqrt{S_{xx}}}$ and of the estimate $\hat{\alpha}$ is: $s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}$

The $(100-\gamma)\%$ confidence intervals for α and β are given by $\hat{\alpha}\pm t\times ese(\hat{\alpha})$ and $\hat{\beta}\pm t\times ese(\hat{\beta})$ respectively, where $\mathbb{P}(X>t)=\gamma/2$ with $X\sim t_{n-2}$.

The prediction for a given value of the predictor x is: $\hat{y} = \hat{\alpha} + \hat{\beta} x$ and the $(100 - \gamma)\%$ confidence interval is given by

$$\hat{y} \pm t \, s \, \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$

where $\mathbb{P}(X > t) = \gamma/2$ with $X \sim t_{n-2}$.

Pearson's correlation coefficient:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$