

iCE40 Technology Library

Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

•	s in This Documents	
1. Regi	ister Primitives	10
1.1.	SB_DFF – D Flip-Flop	10
1.2.	SB_DFFE –D Flip-Flop with Clock Enable	11
1.3.	SB_DFFSR – D Flip-Flop with Synchronous Reset	13
1.4.	SB_DFFR – D Flip-Flop with Asynchronous Reset	14
1.5.	SB_DFFSS – D Flip-Flop with Synchronous Set	15
1.6.	SB_DFFS – D Flip-Flop with Asynchronous Set	17
1.7.	SB_DFFESR – D Flip-Flop with Clock Enable and Synchronous Reset	18
1.8.	SB_DFFER – D Flip-Flop with Clock Enable and Asynchronous Reset	19
1.9.	SB_DFFESS – D Flip-Flop with Clock Enable and Synchronous Set	
1.10.	SB_DFFES – D Flip-Flop with Clock Enable and Asynchronous Set	22
1.11.	SB_DFFN – D Flip-Flop – Negative Edge Clock	24
1.12.	SB_DFFNE – D Flip-Flop – Negative Edge Clock and Clock Enable	25
1.13.	SB_DFFNSR – D Flip-Flop – Negative Edge Clock with Synchronous Reset	27
1.14.	SB_DFFNR – D Flip-Flop – Negative Edge Clock with Asynchronous Reset	29
1.15.	SB_DFFNSS – D Flip-Flop – Negative Edge Clock with Synchronous Set	30
1.16.	SB_DFFNS – D Flip-Flop – Negative Edge Clock with Asynchronous Set	32
1.17.	SB_DFFNESR – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Reset	33
1.18.	SB_DFFNER – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Reset	35
1.19.	SB_DFFNESS – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Set	37
1.20.	SB_DFFNES – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Set	39
2. Com	nbinational Logic Primitives	41
2.1.	SB_LUT4	41
2.2.	SB_CARRY	42
3. iCE4	O Block RAM Primitives	44
3.1.	SB_RAM256×16	45
3.1.1	1. SB_RAM256x16	45
3.1.2	2. SB_RAM256×16NR	47
3.1.3	3. SB_RAM256x16NW	49
3.1.4	4. SB_RAM256x16NRNW	51
3.2.	SB_RAM512x8	53
3.2.1	1. SB_RAM512x8	53
3.2.2	2. SB_RAM512x8NR	55
3.2.3	-	
3.2.4	-	
3.3.	SB_RAM1024x4	60
3.3.1	1. SB_RAM1024x4	61
3.3.2	2. SB_RAM1024x4NR	63
3.3.3		
3.3.4		
3.4.	SB_RAM2048x2	68
3.4.1	1. SB_RAM2048x2	69
3.4.2		
3.4.3	3. SB_RAM2048x2NW	73
3.4.4	4. SB_RAM2048x2NRNW	75
3.5.	SB_RAM40_4K	
3.5.1		
3.5.2	2. SB_RAM40_4KNW	80
3.5.3		
•	Primitives	
4.1.	SB_IO	82

4.1.1.	DDR I/O Configuration	84
4.1.2.	High Drive SB_IO	84
4.1.3.	Pull Up Resistor Configuration	84
5. Global	Buffer Primitives	86
5.1. S	B_GB_IO	86
5.2. S	B_GB Primitive	88
6. PLL Pri	mitives	89
6.1. S	B_PLL40_CORE	89
6.2. S	B_PLL40_PAD	91
6.3. S	B_PLL40_2_PAD	94
6.4. S	B_PLL40_2F_CORE	97
6.5. S	B_PLL40_2F_PAD	100
7. Hard M	lacro Primitives	103
7.1. i	CE40LM Hard Macros	103
7.1.1.	SB_HSOSC (For HSSG)	103
7.1.2.	SB_LSOSC (For LPSG)	
7.1.3.	SB_I2C	
7.1.4.	SB_SPI	108
7.2. i	CE40 Ultra (iCE5LP) Hard Macros	
7.2.1.	SB_HFOSC	
7.2.2.	SB_LFOSC	
7.2.3.	SB_LED_DRV_CUR	
7.2.4.	SB_RGB_DRV	
7.2.5.	SB_IR_DRV	
7.2.6.	SB_RGB_IP	
7.2.7.	SB_IO_OD	
7.2.8.	SB_I2C	
7.2.9.	SB_SPI	
	SB_MAC16	
	CE40 UltraLite (iCE40UL) Hard Macros	
7.3.1.	SB_HFOSC	
7.3.2.	SB_LFOSC	
7.3.3.	SB_RGBA_DRV	
7.3.4.	SB_IR400_DRV	
7.3.5.	SB_BARCODE_DRV	
7.3.6.	SB_IR500_DRV	
7.3.7.	SB_LEDDA_IP	
7.3.8.	SB_IR_IP	
7.3.9.	SB_IO_OD	
	SB_I2C_FIFO	
	CE40 UltraPlus Hard Macros	
7.4.1.	SB_HFOSC	
7.4.2.	SB_LFOSC	
7.4.3.	SB_RGBA_DRV	
7.4.4.	SB_LEDDA_IP	
7.4.5.	SB_IO_OD	
7.4.6.	SB_SPI	
7.4.7.	SB_MAC16	
7.4.8.	SB_SPRAM256KA	
7.4.9.	SB_IO_I3C	
	Device Configuration Primitives	
7.5.1.	SB_WARMBOOT	
	ipport Assistance	
Revision His	tory	175

Figures

Figure 1.1. SB_DFF – D Flip-Flop	10
Figure 1.2. SB_DFFE –D Flip-Flop with Clock Enable	11
Figure 1.3. SB_DFFSR – D Flip-Flop with Synchronous Reset	
Figure 1.4. SB_DFFR – D Flip-Flop with Asynchronous Reset	
Figure 1.5. SB_DFFSS – D Flip-Flop with Synchronous Set	
Figure 1.6. SB_DFFS – D Flip-Flop with Asynchronous Set	
Figure 1.7. SB_DFFESR – D Flip-Flop with Clock Enable and Synchronous Reset	
Figure 1.8. SB_DFFER – D Flip-Flop with Clock Enable and Asynchronous Reset	
Figure 1.9. SB DFFESS – D Flip-Flop with Clock Enable and Synchronous Set	
Figure 1.10. SB DFFES – D Flip-Flop with Clock Enable and Asynchronous Set	
Figure 1.11. SB_DFFN - D Flip-Flop - Negative Edge Clock	
Figure 1.12. SB_DFFNE – D Flip-Flop – Negative Edge Clock and Clock Enable	
Figure 1.13. SB_DFFNSR – D Flip-Flop – Negative Edge Clock with Synchronous Reset	
Figure 1.14. SB_DFFNR – D Flip-Flop – Negative Edge Clock with Asynchronous Reset	
Figure 1.15. SB_DFFNSS – D Flip-Flop – Negative Edge Clock with Synchronous Set	
Figure 1.16. SB_DFFNS – D Flip-Flop – Negative Edge Clock with Asynchronous Set	
Figure 1.17. SB_DFFNESR – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Reset	
Figure 1.18. SB_DFFNER – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Reset	
Figure 1.19. SB_DFFNESS – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Set	
Figure 1.20. SB DFFNES – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Set	
Figure 2.1. SB LUT4	
Figure 2.2. Carry Logic Structure within a Logic Cell	
Figure 3.1. SB_RAM256×16	
Figure 3.2. SB RAM512×8	
Figure 3.3. SB RAM1024×4	
Figure 3.4. SB RAM2048×2	
Figure 3.5. SB RAM40 4K	
Figure 4.1. SB IO	
Figure 5.1. SB GB IO	
Figure 5.2. SB GB Primitive	
Figure 6.1. SB PLL40 CORE	
Figure 6.2. SB PLL40 PAD	
Figure 6.3. SB_PLL40_2_PAD	
Figure 6.4. SB_PLL40_2F_CORE	
Figure 6.5. SB_PLL40_2F_PAD	
Figure 7.1. SB HSOSC	103
Figure 7.2. SB_LSOSC	104
Figure 7.3. SB_I2C	105
Figure 7.4. SB_SPI	
Figure 7.5. SB_HFOSC	111
Figure 7.6. SB_LFOSC	112
Figure 7.7. SB_LED_DRV_CUR	113
Figure 7.8. SB_RGV_DRV	114
Figure 7.9. SB_IR_DRV	116
Figure 7.10. SB_RGB_IP	117
Figure 7.11. SB_IO_OD	118
Figure 7.12. SB_I2C	120
Figure 7.13. SB_SPI	123
Figure 7.14. SB_MAC16	125
Figure 7.15. SB_MAC16	126
Figure 7.16. SB_HFOSC	137
Figure 7.17. SB_LFOSC	138

Figure 7.18. SB_RGBA_DRV	139
Figure 7.19. SB_IR400_DRV	
Figure 7.20. SB_BARCODE_DRV	143
Figure 7.21. SB_IR500_DRV	
Figure 7.22. SB_LEDDA_IP	
Figure 7.23. SB_IR_IP	
Figure 7.24. SB_IO_OD	
Figure 7.25. SB_I2C_FIFO	
Figure 7.26. SB_HFOSC	
Figure 7.27. SB_LFOSC	156
Figure 7.28. SB_RGBA_DRV	
Figure 7.29. SB_LEDDA_IP	
Figure 7.30. SB_IO_OD	
Figure 7.31. SB_I2C	
Figure 7.32. SB_SPI	
Figure 7.33. SB_MAC16	
Figure 7.34. SB_SPRAM256KA	
Figure 7.35. SB_IO_I3C	
Figure 7.36. SB WARMBOOT	

Tables

Table 1.1. SB_DFF – D Flip-Flop	10
Table 1.2. SB_DFFE –D Flip-Flop with Clock Enable	11
Table 1.3. SB_DFFSR – D Flip-Flop with Synchronous Reset	13
Table 1.4. SB_DFFR – D Flip-Flop with Asynchronous Reset	14
Table 1.5. SB_DFFSS – D Flip-Flop with Synchronous Set	15
Table 1.6. SB_DFFS – D Flip-Flop with Asynchronous Set	17
Table 1.7. SB_DFFESR – D Flip-Flop with Clock Enable and Synchronous Reset	18
Table 1.8. SB_DFFER – D Flip-Flop with Clock Enable and Asynchronous Reset	20
Table 1.9. SB_DFFESS – D Flip-Flop with Clock Enable and Synchronous Set	21
Table 1.10. SB_DFFES – D Flip-Flop with Clock Enable and Asynchronous Set	23
Table 1.11. SB_DFFN - D Flip-Flop - Negative Edge Clock	24
Table 1.12. SB_DFFNE – D Flip-Flop – Negative Edge Clock and Clock Enable	25
Table 1.13. SB_DFFNSR – D Flip-Flop – Negative Edge Clock with Synchronous Reset	27
Table 1.14. SB_DFFNR – D Flip-Flop – Negative Edge Clock with Asynchronous Reset	29
Table 1.15. SB_DFFNSS – D Flip-Flop – Negative Edge Clock with Synchronous Set	30
Table 1.16. SB_DFFNS – D Flip-Flop – Negative Edge Clock with Asynchronous Set	32
Table 1.17. SB_DFFNESR – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Reset	33
Table 1.18. SB_DFFNER – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Reset	35
Table 1.19. SB_DFFNESS – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Set	37
Table 1.20. SB_DFFNES – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Set	39
Table 2.1. SB_LUT4	41
Table 2.2. SB_CARRY	43
Table 3.1. iCE40 Block RAM	44
Table 3.2. 256 × 16 RAM Block Configuration	44
Table 3.3. SB_RAM40_4K Naming Convention Rules	77
Table 3.4. SB_RAM40_4K RAM Port Signals	77
Table 3.5. SB_RAM40_4K RAM Parameters	
Table 4.1. Input Pin Function	83
Table 4.2. Output Pin Function	83
Table 4.3. Drive Value	84
Table 4.4. Pull-up Resistor Value	84
Table 6.1. SB_PLL40_CORE Parameters	
Table 6.2. SB_PLL40_PAD Parameters	
Table 6.3. SB_PLL40_2_PAD Parameters	
Table 6.4. SB_PLL40_2F_CORE Parameters	
Table 6.5. SB_PLL40_2F_PAD Parameters	
Table 7.1. SB_HSOSC Port Signals	
Table 7.2. SB_LSOSC Port Signals	
Table 7.3. SB_I2C Port Signals	
Table 7.4. SB_I2C Parameters	
Table 7.5. SB_SPI Port Signals	
Table 7.6. SB_SPI Parameters	
Table 7.7. SB_HFOSC Port Signals	
Table 7.8. SB_HFOSC Parameters	
Table 7.9. SB_LFOSC Port Signals	
Table 7.10. SB_LED_DRV_CUR Port Signals	
Table 7.11. SB_RGB_DRV Port Signals	
Table 7.12. SB_IR_DRV Port Signals	
Table 7.13. SB_RGB_IP Port Signals	
Table 7.14. SB_IO_OD Port Signals	
Table 7.15. SB_I2C Port Signals	
Table 7.16. SB_I2C Parameters	122

Table 7.17. SB_SPI Port Signals	123
Table 7.18. SB_SPI Parameters	124
Table 7.19. SB_MAC16 Port Signals	126
Table 7.20. SB_MAC16 Parameters	128
Table 7.21. Multiplier Configurations	131
Table 7.22. MAC Configurations	132
Table 7.23. ACCUMULATOR Configurations	133
Table 7.24. Add/Subtract Configurations	
Table 7.25. Multiply Add/Subtract Configurations	135
Table 7.26. SB_HFOSC Port Signals	137
Table 7.27. SB_HFOSC Parameters	137
Table 7.28. SB_LFOSC Port Signals	138
Table 7.29. SB_RGBA_DRV Port Signals	139
Table 7.30. SB_IR400_DRV Port Signals	141
Table 7.31. SB_BARCODE_DRV Port Signals	143
Table 7.32. SB_IR500_DRV Port Signals	
Table 7.33. SB_LEDDA_IP Port Signals	146
Table 7.34. SB_IR_IP Port Signals	148
Table 7.35. SB_IO_OD Port Signals	
Table 7.36. SB_I2C_FIFO Port Signals	152
Table 7.37. SB_I2C_FIFO Parameters	153
Table 7.38. SB_HFOSC Port Signals	
Table 7.39. SB_PLL40_CORE Parameters	
Table 7.40. SB_LFOSC Port Signals	
Table 7.41. SB_RGBA_DRV Port Signals	157
Table 7.42. SB_LEDDA_IP Port Signals	159
Table 7.43. SB_IO_OD Port Signals	161
Table 7.44. SB_I2C Port Signals	163
Table 7.45. SB_I2C Parameters	164
Table 7.46. SB_SPI Port Signals	166
Table 7.47. SB_SPI Parameters	167
Table 7.48. SB_SPRAM256KA Ports	168
Table 7.49. Input Pin Function	170
Table 7.50. Output Pin Function	170
Table 7.51. Resistor Value	171

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
FIFO	First In, First Out
FPGA	Field Programmable Gate Array
I ² C	Inter-Integrated Circuit
I/O	Input/Output
LED	Light-emitting Diode
LPSG	Low Power Strobe Generator
PLL	Phase Locked Loop
RAM	Random Access Memory
SPI	Serial Peripheral Interface

1. Register Primitives

1.1. SB_DFF - D Flip-Flop

Data: D is loaded into the flip-flop during a rising clock edge transition.

Figure 1.1. SB_DFF - D Flip-Flop

Table 1.1. SB_DFF - D Flip-Flop

	Inputs		Output	Key
	D	С	Q	
	0	1	0	1 – High logic level
	1	1	1	0 – Low logic level
Power On State	Х	Х	0	X – Don't care

? - Unknown

HDL use

This register is inferred during synthesis and can also be explicitly instantiated.

Verilog Instantiation

// SB_DFF - D Flip-Flop.

VHDL Instantiation

```
-- SB_DFF - D Flip-Flop.
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.2. SB_DFFE -D Flip-Flop with Clock Enable

Data D is loaded into the flip-flop when Clock Enable E is high, during a rising clock edge transition.

Figure 1.2. SB_DFFE -D Flip-Flop with Clock Enable

Table 1.2. SB_DFFE -D Flip-Flop with Clock Enable

	Inputs	Output	Key	
E	D	С	Q	✓ – Rising Edge
0	Х	Х	Previous Q	1 – High logic level
1	0	1	0	0 – Low logic level
1	1	1	1	X – Don't care
Power On State	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input E: Logic '1'

Note that explicitly connecting a logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the logic '1'. It is recommended that the user leave the port E unconnected, or use the corresponding flip-flop without Enable functionality i.e. the DFF primitive.

Verilog Instantiation

// SB_DFFE - D Flip-Flop with Clock Enable.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

VHDL Instantiation

-- SB_DFFE - D Flip-Flop with Clock Enable.

1.3. SB_DFFSR – D Flip-Flop with Synchronous Reset

Data: D is loaded into the flip-flop when Reset R is low during a rising clock edge transition.

Reset: R input is active high, overrides all other inputs and resets the Q output during a rising clock edge.

Figure 1.3. SB_DFFSR - D Flip-Flop with Synchronous Reset

Table 1.3. SB_DFFSR - D Flip-Flop with Synchronous Reset

	Inputs	Output		
R	D	С	Q	Key
1	Х	Х	Previous Q	✓ – Rising Edge
Х	0	1	0	1 – High logic level
0	1	1	1	0 – Low logic level
0	X	X	0	X – Don't care
Power On State				? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input R: Logic '0'

Verilog Instantiation

// SB_DFFSR - D Flip-Flop, Reset is synchronous with the rising clock edge

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

VHDL Instantiation

-- SB_DFFSR - D Flip-Flop, Reset is synchronous with the rising clock edge

1.4. SB DFFR – D Flip-Flop with Asynchronous Reset

Data: D is loaded into the flip-flop when R is low during a rising clock edge transition.

Reset: R input is active high, overrides all other inputs and asynchronously resets the Q output.

Figure 1.4. SB_DFFR - D Flip-Flop with Asynchronous Reset

Table 1.4. SB_DFFR - D Flip-Flop with Asynchronous Reset

	Inputs	Output	Key	
R	D	С	Q	✓ – Rising Edge
1	X	X	0	1 – High logic level
0	0	1	0	0 – Low logic level
0	1	1	1	X – Don't care
Power On State	X	X	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0'

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

// SB_DFFR - D Flip-Flop, Reset is asynchronous to the clock.

VHDL Instantiation

-- SB_DFFR - D Flip-Flop, Reset is asynchronous to the clock.

1.5. SB_DFFSS – D Flip-Flop with Synchronous Set

Data: D is loaded into the flip-flop when the Synchronous Set S is low during a rising clock edge transition.

Set: S input is active high, overrides all other inputs and synchronously sets the Q output.

Figure 1.5. SB_DFFSS - D Flip-Flop with Synchronous Set

Table 1.5. SB_DFFSS - D Flip-Flop with Synchronous Set

	Inputs	Output	Key	
S	D	С	Q	✓ – Rising Edge
1	Х	1	1	1 – High logic level
0	0	1	0	0 – Low logic level
0	1	1	1	X – Don't care
Power On State	Х	Х	0	? – Unknown

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'
```

Verilog Instantiation

// SB_DFFSS - D Flip-Flop, Set is synchronous with the rising clock edge,

VHDL Instantiation

-- SB_DFFSS - D Flip-Flop, Set is synchronous with the rising clock edge

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.6. SB_DFFS – D Flip-Flop with Asynchronous Set

Data: D is loaded into the flip-flop when S is low during a rising clock edge transition.

Set: S input is active high, and it overrides all other inputs and asynchronously sets the Q output.

Figure 1.6. SB DFFS - D Flip-Flop with Asynchronous Set

Table 1.6. SB_DFFS - D Flip-Flop with Asynchronous Set

Inputs			Output	Key
S	D	С	Q	✓ – Rising Edge
1	Х	Х	1	1 – High logic level
0	0	1	0	0 – Low logic level
0	1	1	1	X – Don't care
Power On State	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'

Verilog Instantiation

// SB_DFFS - D Flip-Flop, Set is synchronous with the rising clock edge,

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

VHDL Instantiation

-- SB_DFFS - D Flip-Flop, Set is synchronous with the rising clock edge

1.7. SB DFFESR – D Flip-Flop with Clock Enable and Synchronous Reset

Data: D is loaded into the flip-flop when S is low during a rising clock edge transition.

Set: S input is active high, and it overrides all other inputs and asynchronously sets the Q output.

Figure 1.7. SB_DFFESR - D Flip-Flop with Clock Enable and Synchronous Reset

Table 1.7. SB_DFFESR – D Flip-Flop with Clock Enable and Synchronous Reset

	Inputs	Output			
R	E	D	С	Q	Key
1	1	1	1	0	
0	Х	0	Х	0	1 – High logic level
0	0	1	1		0 – Low logic level
	0	1	1	1	X – Don't care
Power On State	Power On Stage	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

// SB_DFFS - D Flip-Flop, Set is asynchronous to the rising clock edge

VHDL Instantiation

-- SB DFFS - D Flip-Flop, Set is asynchronous to the rising clock edge

1.8. SB_DFFER - D Flip-Flop with Clock Enable and Asynchronous Reset

Data: D is loaded into the flip-flop when Reset R is low and Clock Enable E is high during a rising clock edge transition. Reset: R, when asserted with Clock Enable E high, synchronously resets the Q output during a rising clock edge.

Figure 1.8. SB_DFFER - D Flip-Flop with Clock Enable and Asynchronous Reset

Table 1.8. SB_DFFER – D Flip-Flop with Clock Enable and Asynchronous Reset

		Inputs	Output			
	R	E	D	С	Q	Key
	1	Х	Х	Х	0	✓ – Rising Edge
	0	0	Х	Х	Previous Q	1 – High logic level
	0	1	0	1	0	0 – Low logic level
	0	1	1	1	1	X – Don't care
F	Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF primitive without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFER - D Flip-Flop, Reset is asynchronously on rising clock edge with Clock Enable.

VHDL Instantiation

-- SB_DFFER - D Flip-Flop, Reset is asynchronously -- on rising clock edge with Clock Enable.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.9. SB_DFFESS – D Flip-Flop with Clock Enable and Synchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during a rising clock edge transition. Set: Asserting S when Clock Enable E is high, synchronously sets the Q output.

Figure 1.9. SB_DFFESS - D Flip-Flop with Clock Enable and Synchronous Set

Table 1.9. SB_DFFESS - D Flip-Flop with Clock Enable and Synchronous Set

Inputs				Output	
S	E	D	С	Q	Key
1	1	Х	1	1	
0	0	Х	Х	Previous Q	1 – High logic level
0	1	0	1	0	0 – Low logic level
0	1	1	1	1	X – Don't care
Power On State	X	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input R: Logic '0'

Input S: Logic '0'

Verilog Instantiation

// SB_DFFESS - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

VHDL Instantiation

-- SB_DFFESS - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

1.10. SB_DFFES - D Flip-Flop with Clock Enable and Asynchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during a rising clock edge transition. Set: S input is active high, overrides all other inputs and asynchronously sets the Q output.

Figure 1.10. SB_DFFES - D Flip-Flop with Clock Enable and Asynchronous Set

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 1.10. SB_DFFES - D Flip-Flop with Clock Enable and Asynchronous Set

	Inputs	Output			
S	E	D	CLK	Q	Key
1	Х	Х	х	1	
0	0	Х	Х	Previous Q	1 – High logic level
0	1	0	1	0	0 – Low logic level
0	1	1	1	1	X – Don't care
Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0' Input E: Logic '1'

Verilog Instantiation

// SB_DFFES - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

VHDL Instantiation

-- SB_DFFES - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.11. SB_DFFN - D Flip-Flop - Negative Edge Clock

Data: D is loaded into the flip-flop during the falling clock edge transition.

Figure 1.11. SB_DFFN - D Flip-Flop - Negative Edge Clock

Table 1.11. SB_DFFN - D Flip-Flop - Negative Edge Clock

	Inputs		Output	
E	D	С	Q	Key
1	0	×	0	≺ – Falling Edge
1	1	¥	1	1 – High logic level
Power On State	Х	Х	0	0 – Low logic level
				X – Don't care

? - Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0'

Verilog Instantiation

// SB_DFFN - D Flip-Flop — Negative Edge Clock.

```
SB DFFN SB DFFN inst (
     .Q(Q), // Registered Output
               // Clock
     .C(C),
     .D(D),
               // Data
     );
// End of SB DFFN instantiation
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

25

VHDL Instantiation

-- SB_DFFN - D Flip-Flop - Negative Edge Clock.

1.12. SB_DFFNE - D Flip-Flop - Negative Edge Clock and Clock Enable

Data: D is loaded into the flip-flop when E is high, during the falling clock edge transition.

Figure 1.12. SB_DFFNE - D Flip-Flop - Negative Edge Clock and Clock Enable

Table 1.12. SB_DFFNE - D Flip-Flop - Negative Edge Clock and Clock Enable

	Inputs		Output	
E	D	С	Q	Key
0	Х	Х	0	≺ – Falling Edge
1	0	¥	0	1 – High logic level
1	1	¥	1	0 – Low logic level
Power On State	Х	Х	0	X – Don't care
				? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input E: Logic '1'

FPGA-TN-02026-3.2

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

// SB_DFFNE - D Flip-Flop — Negative Edge Clock and Clock Enable.

VHDL Instantiation

-- SB_DFFNE - D Flip-Flop - Negative Edge Clock and Clock Enable.

1.13. SB_DFFNSR - D Flip-Flop - Negative Edge Clock with Synchronous Reset

Data: D is loaded into the flip-flop when R is low during the falling clock edge transition.

Reset: R input is active high, overrides all other inputs and resets the Q output during the falling clock edge transition.

Figure 1.13. SB_DFFNSR - D Flip-Flop - Negative Edge Clock with Synchronous Reset

Table 1.13. SB_DFFNSR - D Flip-Flop - Negative Edge Clock with Synchronous Reset

	Inputs		Output	Key
R	D	С	Q	✓ – Rising Edge
1	Х	¥	1	≺ – Falling Edge
Х	Х	1	No Change	1 – High logic level
0	0	¥	0	0 – Low logic level
0	1	¥	1	X – Don't care
Power On State	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input R: Logic '0'

Verilog Instantiation

// SB_DFFNSR - D Flip-Flop — Negative Edge Clock, Reset is synchronous with the falling.

VHDL Instantiation

-- SB_DFFNSR - D Flip-Flop – Negative Edge Clock, Reset is synchronous with the falling clock edge.

29

1.14. SB_DFFNR – D Flip-Flop – Negative Edge Clock with Asynchronous Reset

Data: D is loaded into the flip-flop when R is low during the falling clock edge transition.

Reset: R input is active high, overrides all other inputs and asynchronously resets the Q output

Figure 1.14. SB DFFNR - D Flip-Flop - Negative Edge Clock with Asynchronous Reset

Table 1.14. SB_DFFNR - D Flip-Flop - Negative Edge Clock with Asynchronous Reset

	Inputs		Output	
E	D	CLK	Q	Key
1	Х	Х	0	≺ – Falling Edge
0	0	¥	0	1 – High logic level
0	1	¥	1	0 – Low logic level
Power On State	Х	Х	0	X – Don't care
	•			2

? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0'

Verilog Instantiation

// SB_DFFNR - D Flip-Flop — Negative Edge Clock, Reset is asynchronous to the clock.

VHDL Instantiation

-- SB_DFFNR - D Flip-Flop - Negative Edge Clock, Reset is asynchronous to the clock.

1.15. SB_DFFNSS - D Flip-Flop - Negative Edge Clock with Synchronous Set

Data: D is loaded into the flip-flop when S is low during the falling clock edge transition.

Set: S input is active high, overrides all other inputs and synchronously sets the Q output.

Figure 1.15. SB_DFFNSS - D Flip-Flop - Negative Edge Clock with Synchronous Set

Table 1.15. SB_DFFNSS - D Flip-Flop - Negative Edge Clock with Synchronous Set

	Inputs		Output	
S	D	С	Q	Key
1	Х	¥	1	≺ – Falling Edge
0	0	¥	0	1 – High logic level
0	1	¥	1	0 – Low logic level
Power On State	Х	Х	0	X – Don't care
				? – Unknown

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'
```

Verilog Instantiation

// SB_DFFNSS - D Flip-Flop - Negative Edge Clock, Set is synchronous with the falling clock edge,

VHDL Instantiation

-- SB_DFFNSS - D Flip-Flop - Negative Edge Clock, Set is synchronous with the falling clock edge.

```
SB_DFFNSS_inst : SB_DFFNSS
    port map (
    Q => Q, -- Registered Output
    C => C, -- Clock
    D => D, -- Data
    S => S -- Synchronous Set
    );
-- End of SB_DFFNSS instantiation
```


1.16. SB_DFFNS - D Flip-Flop - Negative Edge Clock with Asynchronous Set

Data: D is loaded into the flip-flop when S is low during the falling clock edge transition.

Set: S input is active high, overrides all other inputs and asynchronously sets the Q output.

Figure 1.16. SB_DFFNS - D Flip-Flop - Negative Edge Clock with Asynchronous Set

Table 1.16. SB_DFFNS - D Flip-Flop - Negative Edge Clock with Asynchronous Set

	Inputs		Output	
S	D	С	Q	Key
1	Х	Х	1	≺ – Falling Edge
0	0	¥	0	1 – High logic level
0	1	¥	1	0 – Low logic level
Power On State	Х	Х	0	X – Don't care
				2 – Unknown

? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0'

Verilog Instantiation

// SB_DFFNS - D Flip-Flop - Negative Edge Clock, Set is asynchronous to the falling clock edge.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

VHDL Instantiation

-- SB_DFFNS - D Flip-Flop - Negative Edge Clock, Set is asynchronous to the falling clock edge.

1.17. SB_DFFNESR - D Flip-Flop - Negative Edge Clock, Enable and Synchronous Reset

Data: D is loaded into the flip-flop when R is low and E is high during the falling clock edge transition. Reset: Asserting R when the Clock Enable E is high, synchronously resets the Q output during the falling clock edge.

Figure 1.17. SB_DFFNESR - D Flip-Flop - Negative Edge Clock, Enable and Synchronous Reset

Table 1.17. SB_DFFNESR - D Flip-Flop - Negative Edge Clock, Enable and Synchronous Reset

Inputs				Output	
R	E	D	С	Q	Key
1	1	Х	¥	1	≺ – Falling Edge
Х	0	Х	Х	Previous Q	1 – High logic level
0	1	0	¥	0	0 – Low logic level
0	1	1	×	1	X – Don't care
Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNESR - D Flip-Flop — Negative Edge Clock, Reset is synchronous with falling clock edge Clock Enable.

VHDL Instantiation

-- SB_DFFNESR - D Flip-Flop - Negative Edge Clock, Reset is synchronous with falling clock edge Clock Enable.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.18. SB_DFFNER - D Flip-Flop - Negative Edge Clock, Enable and Asynchronous Reset

Data: D is loaded into the flip-flop when R is low and E is high during the falling clock edge transition.

Reset: R input is active high, and it overrides all other inputs and asynchronously resets the Q output.

Figure 1.18. SB_DFFNER - D Flip-Flop - Negative Edge Clock, Enable and Asynchronous Reset

Table 1.18. SB_DFFNER - D Flip-Flop - Negative Edge Clock, Enable and Asynchronous Reset

Inputs				Output	
R	E	D	С	Q	Key
1	1	Х	х	1	≺ – Falling Edge
0	0	Х	Х	Previous Q	1 – High logic level
0	1	0	×	0	0 – Low logic level
0	1	1	×	1	X – Don't care
Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input R: Logic '0'
Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNER - D Flip-Flop — Negative Edge Clock, Reset is asynchronously // on falling clock edge and Clock Enable.

VHDL Instantiation

- -- SB_DFFNER D Flip-Flop Negative Edge Clock, Reset is asynchronously
- -- on falling clock edge and Clock Enable.

```
SB_DFFNER_inst: SB_DFFNER
    port map (
    Q => Q, -- Registered Output
    C => C, -- Clock
    E => E, -- Clock Enable
    D => D, -- Data
    R => R -- Asynchronously Reset
    );
-- End of SB_DFFNER instantiation
```


1.19. SB_DFFNESS – D Flip-Flop – Negative Edge Clock, Enable and Synchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during the falling clock edge transition.

Set: S and E inputs high, synchronously sets the Q output on the falling clock edge transition.

Figure 1.19. SB_DFFNESS - D Flip-Flop - Negative Edge Clock, Enable and Synchronous Set

Table 1.19. SB_DFFNESS - D Flip-Flop - Negative Edge Clock, Enable and Synchronous Set

Inputs				Output	
S	E	D	С	Q	Key
1	1	Х	¥	1	≺ – Falling Edge
Х	0	X	Х	Previous Q	1 – High logic level
0	1	0	×	0	0 – Low logic level
0	1	1	×	1	X – Don't care
Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNESS - D Flip-Flop — Negative Edge Clock, Set is synchronous with falling clock edge, // and Clock Enable.

VHDL Instantiation

- -- SB_DFFNESS D Flip-Flop Negative Edge Clock, Set is synchronous with falling clock edge,
- -- and Clock Enable.

```
SB_DFFNESS_inst : SB_DFFNESS
    port map (
    Q => Q, -- Registered Output
    C => C, -- Clock
    E => E, -- Clock Enable
    D => D, -- Data
    S => S -- Synchronously Set
    );
-- End of SB_DFFNESS instantiation
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1.20. SB_DFFNES – D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during the falling clock edge transition.

Set: S input is active high, and it overrides all other inputs and asynchronously sets the Q output.

Figure 1.20. SB DFFNES - D Flip-Flop - Negative Edge Clock, Enable and Asynchronous Set

Table 1.20. SB_DFFNES - D Flip-Flop - Negative Edge Clock, Enable and Asynchronous Set

Inputs				Output	
S	E	D	CLK	Q	Key
1	Х	Х	Х	1	≺ – Falling Edge
0	0	Х	Х	Previous Q	1 – High logic level
0	1	0	×	0	0 – Low logic level
0	1	1	×	1	X – Don't care
Power On State	Х	Х	Х	0	? – Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'
Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNES - D Flip-Flop – Negative Edge Clock, Set is asynchronous on falling clock edge with clock // Enable.

VHDL Instantiation

- -- SB_DFFNES D Flip-Flop Negative Edge Clock, Set is asynchronous
- -- on falling clock edge and Clock Enable.

```
SB_DFFNES_inst: SB_DFFNES
    port map (
    Q => Q, -- Registered Output
    C => C, -- Clock
    E => E, -- Clock Enable
    D => D, -- Data
    S => S -- Asynchronously Set
    );
-- End of SB_DFFNES instantiation
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2. Combinational Logic Primitives

2.1. SB_LUT4

The LUT unit is a simple ROM 4 input look-up function table.

Figure 2.1. SB_LUT4

Initialization Values

LUT state initialization parameter LUT_INIT = 16'hxxxx;

Table 2.1. SB_LUT4

_				
	Output			
13	12	I1	10	0
0	0	0	0	LUT_INIT[0]
0	0	0	1	LUT_INIT[1]
0	0	1	0	LUT_INIT[2]
0	0	1	1	LUT_INIT[3]
0	1	0	0	LUT_INIT[4]
0	1	0	1	LUT_INIT[5]
0	1	1	0	LUT_INIT[6]
0	1	1	1	LUT_INIT[7]
1	0	0	0	LUT_INIT[8]
1	0	0	1	LUT_INIT[9]
1	0	1	0	LUT_INIT[10]
1	0	1	1	LUT_INIT[11]
1	1	0	0	LUT_INIT[12]
1	1	0	1	LUT_INIT[13]
1	1	1	0	LUT_INIT[14]
1	1	1	1	LUT_INIT[15]

HDL Usage

This primitive is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns logic value '0' to unconnected input ports.

Verilog Instantiation

// SB_LUT4 : 4-input Look-Up Table

VHDL Instantiation

-- SB_LUT4: 4-input Look-Up Table.

2.2. SB_CARRY

Carry Logic

The dedicated Carry Logic within each Logic Cell primarily accelerates and improves the efficiency of arithmetic logic such as adders, accumulators, subtracters, incrementers, decrementers, counters, ALUs, and comparators. The Carry Logic also supports a limited number of wide combinational logic functions.

The figure below illustrates the Carry Logic structure within a Logic Cell. The Carry Logic shares inputs with the associated Look-Up Table (LUT). The I1 and I2 inputs of the LUT directly feed the Carry Logic. The carry input from the previous adjacent Logic Cell optionally provides an alternate input to the LUT4 function, supplanting the I3 input.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Carry Logic Structure within a Logic Cell

Figure 2.2. Carry Logic Structure within a Logic Cell

Table 2.2. SB_CARRY

	Output		
10	I1	CI	со
0	0	Х	0
0	Х	0	0
Х	1	1	1
Х	0	0	0
1	X	1	1
1	1	Х	1

HDL Usage

This primitive is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns logic value '0' to unconnected input ports.

Verilog Instantiation

VHDL Instantiation

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

3. iCE40 Block RAM Primitives

The iCE40 architecture supports dual ported synchronous RAM, with 4096 bits, and a fixed 16-bit data width. The block is arranged as 256 × 16 bit words. The RAM block may be configured to be used as a RAM with data between 1-16 bits.

Each iCE40 device includes multiple high-speed synchronous RAM blocks, each 4 kbit in size. The RAM block has separate write and read ports, each with independent control signals. Each RAM block can be configured into a RAM block of size 256×16 , 512×8 , 1024×4 or 2048×2 . The data contents of the RAM block are optionally pre-loaded during ICE device configuration.

The following table lists the supported dual port synchronous RAM configurations, each of 4 kbits in size. The RAM blocks can be directly instantiated in the top module and taken through iCube2 flow.

Table 3.1. iCE40 Block RAM

Block RAM Configuration	Block RAM Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	8 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	10 [9:0]	2 [1:0]	No Mask Port

The Lattice Technologies convention for the iCE40 RAM primitives with negedge Read or Write clock is that the base primitive name is post fixed with N and R or W according to the clock that is affected, as displayed in the table below for 256×16 RAM block configuration.

Table 3.2. 256 × 16 RAM Block Configuration

RAM Primitive Name	Description
SB_RAM256x16	Posedge Read clock, Posedge Write clock
SB_RAM4256x16NR	Negedge Read clock, Posedge Write clock
SB_RAM256x16NW	Posedge Read clock, Negedge Write clock
SB_RAM256x16NRNW	Negedge Read clock, Negedge Write clock

3.1. SB_RAM256×16

Figure 3.1. SB_RAM256×16

3.1.1. SB_RAM256x16

The following modules are the complete list of SB_RAM256x16 based primitives

SB_RAM256x16 //Posedge clock RCLK WCLK

(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM256x16
         ram256x16 inst (
   .RDATA(RDATA c[15:0]),
   .RADDR (RADDR c[7:0]),
   .RCLK(RCLK c),
   .RCLKE (RCLKE c),
   .RE(RE c),
   .WADDR(WADDR c[7:0]),
   .WCLK(WCLK c),
   .WCLKE (WCLKE c),
   .WDATA (WDATA c[15:0]),
   .WE (WE c),
   .MASK (MASK c[15:0])
   );
defparam ram256x16 inst.INIT 0 =
defparam ram256x16 inst.INIT 1 =
defparam ram256x16 inst.INIT 2 =
defparam ram256x16 inst.INIT 3 =
defparam ram256x16 inst.INIT 4 =
defparam ram256x16 inst.INIT 5 =
defparam ram256x16 inst.INIT 6 =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
defparam ram256x16 inst.INIT 7 =
defparam ram256x16 inst.INIT 8 =
defparam ram256x16 inst.INIT 9 =
defparam ram256x16 inst.INIT A =
defparam ram256x16 inst.INIT B =
defparam ram256x16 inst.INIT C =
defparam ram256x16 inst.INIT D =
defparam ram256x16 inst.INIT E =
defparam ram256x16 inst.INIT F =
```

```
ram256x16 inst : SB RAM256x16 generic map (
INIT 1 =>
INIT 3 =>
)
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLK => RCLK c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c
 WADDR => WADDR c,
 WCLK=> WCLK c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 MASK => MASK c,
 WE => WE C
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.1.2. SB RAM256×16NR

SB_RAM256x16NR // Negative edged Read Clock – i.e. RCLKN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM256x16NR ram256x16NR inst (
  .RDATA(RDATA c[15:0]),
  .RADDR(RADDR c[7:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[7:0]),
  .WCLK(WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[15:0]),
  .WE(WE c),
  .MASK (MASK c[15:0])
);
defparam ram256x16nr inst.INIT 0 =
defparam ram256x16nr inst.INIT 1 =
defparam ram256x16nr inst.INIT 2 =
defparam ram256x16nr inst.INIT 3 =
defparam ram256x16nr inst.INIT 4 =
defparam ram256x16nr inst.INIT 5 =
defparam ram256x16nr inst.INIT 6 =
defparam ram256x16nr inst.INIT 7 =
defparam ram256x16nr inst.INIT 8 =
defparam ram256x16nr inst.INIT 9 =
defparam ram256x16nr inst.INIT A =
defparam ram256x16nr inst.INIT B =
defparam ram256x16nr inst.INIT C =
defparam ram256x16nr inst.INIT D =
defparam ram256x16nr inst.INIT E =
defparam ram256x16nr inst.INIT F =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram256x16nr inst : SB RAM256x16NR
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c,
 WADDR => WADDR c,
 WCLK=> WCLK c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 MASK => MASK c,
 WE =>
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.1.3. SB RAM256x16NW

SB_RAM256x16NR // Negative edged Read Clock – i.e. RCLKN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM256x16NR ram256x16NR inst (
  .RDATA(RDATA c[15:0]),
  .RADDR(RADDR c[7:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[7:0]),
  .WCLK(WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[15:0]),
  .WE(WE c),
  .MASK (MASK c[15:0])
);
defparam ram256x16nr inst.INIT 0 =
defparam ram256x16nr inst.INIT 1 =
defparam ram256x16nr inst.INIT 2 =
defparam ram256x16nr inst.INIT 3 =
defparam ram256x16nr inst.INIT 4 =
defparam ram256x16nr inst.INIT 5 =
defparam ram256x16nr inst.INIT 6 =
defparam ram256x16nr inst.INIT 7 =
defparam ram256x16nr inst.INIT 8 =
defparam ram256x16nr inst.INIT 9 =
defparam ram256x16nr inst.INIT A =
defparam ram256x16nr inst.INIT B =
defparam ram256x16nr inst.INIT C =
defparam ram256x16nr inst.INIT D =
defparam ram256x16nr inst.INIT E =
defparam ram256x16nr inst.INIT F =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram256x16nr inst : SB RAM256x16NR
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c,
 WADDR => WADDR c,
 WCLK=> WCLK c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 MASK => MASK c,
 WE => WE C
 ):
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.1.4. SB RAM256x16NRNW

SB_RAM256x16NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM256x16NRNW ram256x16nrnw inst (
  .RDATA(RDATA c[15:0]),
  .RADDR(RADDR c[7:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[7:0]),
  .WCLKN (WCLKN c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[15:0]),
  .WE(WE c),
  .MASK (MASK c[15:0])
);
defparam ram256x16nrnw inst.INIT 0 =
defparam ram256x16nrnw inst.INIT 1 =
defparam ram256x16nrnw inst.INIT 2 =
defparam ram256x16nrnw inst.INIT 3 =
defparam ram256x16nrnw inst.INIT 4 =
defparam ram256x16nrnw inst.INIT 5 =
defparam ram256x16nrnw inst.INIT 6 =
defparam ram256x16nrnw inst.INIT 7 =
defparam ram256x16nrnw inst.INIT 8 =
defparam ram256x16nrnw inst.INIT 9 =
defparam ram256x16nrnw inst.INIT A =
defparam ram256x16nrnw inst.INIT B =
defparam ram256x16nrnw inst.INIT C =
defparam ram256x16nrnw inst.INIT D =
defparam ram256x16nrnw inst.INIT E =
defparam ram256x16nrnw inst.INIT F =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram256x16nrnw inst : SB RAM256x16NRNW
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c,
 WADDR => WADDR c,
 WCLKN=> WCLKN c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 MASK => MASK c,
 WE => WE C
 ):
```


3.2. SB_RAM512x8

Figure 3.2. SB_RAM512×8

The following modules are the complete list of SB RAM512x8 based primitives

3.2.1. SB RAM512x8

SB_RAM512x8 //Posedge clock RCLK WCLK

(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM512x8 ram512x8 inst (
  .RDATA (RDATA c[7:0]),
  .RADDR(RADDR c[8:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
   .WADDR(WADDR c[8:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA(WDATA c[7:0]),
  .WE (WE c)
  );
defparam ram512x8 inst.INIT 0 =
defparam ram512x8 inst.INIT 1 =
defparam ram512x8 inst.INIT 2 =
defparam ram512x8 inst.INIT 3 =
defparam ram512x8 inst.INIT 4 =
defparam ram512x8 inst.INIT 5 =
defparam ram512x8 inst.INIT 6 =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
defparam ram512x8 inst.INIT 7 =
defparam ram512x8 inst.INIT 8 =
defparam ram512x8 inst.INIT 9 =
defparam ram512x8 inst.INIT A =
defparam ram512x8 inst.INIT B =
defparam ram512x8 inst.INIT C =
defparam ram512x8 inst.INIT D =
defparam ram512x8 inst.INIT E =
defparam ram512x8 inst.INIT F =
```

```
ram512x8 inst : SB RAM512x8
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 =>
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
port map (
RDATA => RDATA_c,
RADDR => RADDR_c,
RCLK => RCLK_c,
RCLKE => RCLKE_c,
RE => RE_c,
```

3.2.2. SB RAM512x8NR

SB_RAM512x8NR // Negative edged Read Clock – i.e. RCLKN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM512x8NR
      ram512x8nr inst (
  .RDATA (RDATA c[7:0]),
  .RADDR (RADDR c[8:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[8:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA(WDATA c[7:0]),
  .WE (WE c)
  );
defparam ram512x8nr inst.INIT 0 =
defparam ram512x8nr inst.INIT 1 =
defparam ram512x8nr inst.INIT 2 =
defparam ram512x8nr inst.INIT 3 =
defparam ram512x8nr inst.INIT 4 =
defparam ram512x8nr inst.INIT 5 =
defparam ram512x8nr inst.INIT 6 =
defparam ram512x8nr inst.INIT 7 =
defparam ram512x8nr inst.INIT 8 =
defparam ram512x8nr inst.INIT 9 =
defparam ram512x8nr inst.INIT A =
defparam ram512x8nr inst.INIT B =
defparam ram512x8nr inst.INIT C =
defparam ram512x8nr inst.INIT D =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram512x8nr inst: SB RAM512x8NR
generic map (
INIT 1 \Rightarrow
INIT 4 =>
INIT
port map (
 RDATA => RDATA c, RADDR => RADDR c, RCLKN => RCLKN c,
 RCLKE => RCLKE c, RE => RE c,
 WADDR => WADDR c, WCLK=> WCLK c, WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.2.3. SB RAM512x8NW

SB_RAM512x8NW // Negative edged Write Clock – i.e. WCLKN

(RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM512x8NW
       ram512x8nw inst (
  .RDATA (RDATA c[7:0]),
  .RADDR(RADDR c[8:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[8:0]),
  .WCLKN (WCLKN c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[7:0]),
  .WE (WE c)
  );
defparam ram512x8nw inst.INIT 0 =
defparam ram512x8nw inst.INIT 1 =
defparam ram512x8nw inst.INIT 2 =
defparam ram512x8nw inst.INIT 3 =
defparam ram512x8nw inst.INIT 4 =
defparam ram512x8nw inst.INIT 5 =
defparam ram512x8nw inst.INIT 6 =
defparam ram512x8nw inst.INIT 7 =
defparam ram512x8nw inst.INIT 8 =
defparam ram512x8nw inst.INIT 9 =
defparam ram512x8nw inst.INIT A =
defparam ram512x8nw inst.INIT B =
defparam ram512x8nw inst.INIT C =
defparam ram512x8nw inst.INIT D =
defparam ram512x8nw inst.INIT E =
defparam ram512x8nw inst.INIT F =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram512x8nw inst: SB RAM512x8NW
generic map (
INIT 1 =>
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLK => RCLK c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c
 WADDR => WADDR c,
 WCLKN=> WCLKN c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
```


3.2.4. SB RAM512x8NRNW

SB_RAM512x8NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM512x8NRNW ram512x8nrnw inst (
  .RDATA (RDATA c[7:0]),
  .RADDR(RADDR c[8:0]),
  .RCLKN(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[8:0]),
  .WCLKN(WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[7:0]),
  .WE (WE c)
  );
defparam ram512x8nrnw inst.INIT 0 =
defparam ram512x8nrnw inst.INIT 1 =
defparam ram512x8nrnw inst.INIT 2 =
defparam ram512x8nrnw inst.INIT 3 =
defparam ram512x8nrnw inst.INIT 4 =
defparam ram512x8nrnw inst.INIT 5 =
defparam ram512x8nrnw inst.INIT 6 =
defparam ram512x8nrnw inst.INIT 7 =
defparam ram512x8nrnw inst.INIT 8 =
defparam ram512x8nrnw inst.INIT 9 =
defparam ram512x8nrnw inst.INIT A =
defparam ram512x8nrnw inst.INIT B =
defparam ram512x8nrnw inst.INIT C =
defparam ram512x8nrnw inst.INIT D =
defparam ram512x8nrnw inst.INIT E =
defparam ram512x8nrnw inst.INIT F =
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
ram512x8nrnw inst:
    SB RAM512x8NRNW
generic map ( INIT 0 =>
INIT 2 =>
7 =>
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c,
 WADDR => WADDR c,
 WCLKN=> WCLKN c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
```

3.3. SB RAM1024x4

Figure 3.3. SB_RAM1024×4

The following modules are the complete list of SB RAM1024x4 based primitives.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.3.1. SB RAM1024x4

SB_RAM1024x4 //Posedge clock RCLK WCLK

(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM1024x4
       ram1024x4 inst (
  .RDATA(RDATA c[3:0]),
  .RADDR(RADDR c[9:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[3:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[9:0]),
  .WE (WE c)
  );
defparam ram1024x4 inst.INIT 0 =
defparam ram1024x4 inst.INIT 1 =
defparam ram1024x4 inst.INIT 2 =
defparam ram1024x4 inst.INIT 3 =
defparam ram1024x4 inst.INIT 4 =
defparam ram1024x4 inst.INIT 5 =
defparam ram1024x4 inst.INIT 6 =
defparam ram1024x4 inst.INIT 7 =
defparam ram1024x4 inst.INIT 8 =
defparam ram1024x4 inst.INIT 9 =
defparam ram1024x4 inst.INIT A =
defparam ram1024x4 inst.INIT B =
defparam ram1024x4 inst.INIT C =
defparam ram1024x4 inst.INIT D =
defparam ram1024x4 inst.INIT E =
defparam ram1024x4 inst.INIT F =
```



```
Ram1024x4 inst: SB RAM1024x4 generic map (
INIT 1 =>
INIT
)
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLK => RCLK c,
 RCLKE => RCLKE c,
 RE => RE c,
 WADDR => WADDR C,
 WCLK=> WCLK c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
);
```


3.3.2. SB RAM1024x4NR

SB_RAM1024x4NR // Negative edged Read Clock – i.e. RCLKN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM1024x4NR
      ram1024x4nr inst (
  .RDATA(RDATA c[3:0]),
  .RADDR(RADDR c[9:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[3:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[9:0]),
  .WE (WE c)
  );
defparam ram1024x4nr inst.INIT 0 =
defparam ram1024x4nr inst.INIT 1 =
defparam ram1024x4nr inst.INIT 2 =
defparam ram1024x4nr inst.INIT 3 =
defparam ram1024x4nr inst.INIT 4 =
defparam ram1024x4nr inst.INIT 5 =
defparam ram1024x4nr inst.INIT 6 =
defparam ram1024x4nr inst.INIT 7 =
defparam ram1024x4nr inst.INIT 8 =
defparam ram1024x4nr inst.INIT 9 =
defparam ram1024x4nr inst.INIT A =
defparam ram1024x4nr inst.INIT B =
defparam ram1024x4nr inst.INIT C =
defparam ram1024x4nr inst.INIT D =
defparam ram1024x4nr inst.INIT E =
defparam ram1024x4nr inst.INIT F =
```



```
ram1024x4nr inst: SB RAM1024x4NR
generic map (
INIT 1 =>
INIT 4 \Rightarrow
)
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c
 WADDR => WADDR c,
 WCLK=> WCLK c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
```


3.3.3. SB RAM1024x4NW

SB_RAM1024x4NW // Negative edged Write Clock – i.e. WCLKN

(RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM1024x4NW
      ram1024x4nw inst (
  .RDATA(RDATA c[3:0]),
  .RADDR(RADDR c[9:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[3:0]),
  .WCLKN(WCLKN c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[9:0]),
  .WE (WE c)
  );
defparam ram1024x4 inst.INIT 0 =
defparam ram1024x4 inst.INIT 1 =
defparam ram1024x4 inst.INIT 2 =
defparam ram1024x4 inst.INIT 3 =
defparam ram1024x4 inst.INIT 4 =
defparam ram1024x4 inst.INIT 5 =
defparam ram1024x4 inst.INIT 6 =
defparam ram1024x4 inst.INIT 7 =
defparam ram1024x4 inst.INIT 8 =
defparam ram1024x4 inst.INIT 9 =
defparam ram1024x4 inst.INIT A =
defparam ram1024x4 inst.INIT B =
defparam ram1024x4 inst.INIT C =
defparam ram1024x4 inst.INIT D =
defparam ram1024x4 inst.INIT E =
defparam ram1024x4 inst.INIT F =
```



```
ram1024x4nw inst :SB RAM1024x4NW
generic map ( INIT 0 =>
INIT 2 =>
)
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLK => RCLK c,
 RCLKE => RCLKE c,
 RE => RE c,
 WADDR => WADDR c,
 WCLKN=> WCLKN c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 WE => WE C
```


3.3.4. SB RAM1024x4NRNW

SB_RAM1024x4NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM1024x4NRNW ram1024x4nrnw inst (
  .RDATA(RDATA c[3:0]),
  .RADDR(RADDR c[9:0]),
  .RCLKN(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR(WADDR c[3:0]),
  .WCLKN(WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[9:0]),
  .WE (WE c)
  );
defparam ram1024x4nrnw inst.INIT 0 =
defparam ram1024x4nrnw inst.INIT 1 =
defparam ram1024x4nrnw inst.INIT 2 =
defparam ram1024x4nrnw inst.INIT 3 =
defparam ram1024x4nrnw inst.INIT 4 =
defparam ram1024x4nrnw inst.INIT 5 =
defparam ram1024x4nrnw inst.INIT 6 =
defparam ram1024x4nrnw inst.INIT 7 =
defparam ram1024x4nrnw inst.INIT 8 =
defparam ram1024x4nrnw inst.INIT 9 =
defparam ram1024x4nrnw inst.INIT A =
defparam ram1024x4nrnw inst.INIT B =
defparam ram1024x4nrnw inst.INIT C =
defparam ram1024x4nrnw inst.INIT D =
defparam ram1024x4nrnw inst.INIT E =
defparam ram1024x4nrnw inst.INIT F =
```


FPGA-TN-02026-3 2

VHDL Instantiation:

```
ram1024x4nrnw inst :
    SB RAM1024x4NRNW
generic map ( INIT 0 =>
INIT
)
port map (
 RDATA => RDATA c,
 RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE => RE c,
 WADDR => WADDR c,
 WCLKN=> WCLKN c,
 WCLKE => WCLKE c,
 WDATA => WDATA c,
 ME => ME C
 );
```

3.4. SB RAM2048x2

Figure 3.4. SB_RAM2048×2

The following modules are the complete list of SB_RAM2048x2 based primitives.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.4.1. SB RAM2048x2

SB_RAM2048x2 //Posedge clock RCLK WCLK

(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB RAM2048x2
       ram2048x2 inst (
  .RDATA(RDATA c[1:0]),
  .RADDR (RADDR c[10:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR (WADDR c[10:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[1:0]),
  .WE (WE c)
  );
defparam ram2048x2 inst.INIT 0 =
defparam ram2048x2 inst .INIT 1 =
defparam ram2048x2 inst .INIT 2 =
defparam ram2048x2 inst .INIT 3 =
defparam ram2048x2 inst .INIT 4 =
defparam ram2048x2 inst .INIT 5 =
defparam ram2048x2 inst .INIT 6 =
defparam ram2048x2 inst .INIT 7 =
defparam ram2048x2 inst .INIT 8 =
defparam ram2048x2 inst .INIT 9 =
defparam ram2048x2 inst .INIT A =
defparam ram2048x2 inst .INIT B =
defparam ram2048x2 inst .INIT C =
defparam ram2048x2 inst .INIT D =
defparam ram2048x2 inst .INIT E =
defparam ram2048x2 inst .INIT F =
```



```
Ram2048x2 inst : SB RAM2048x2
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
)
port map (
  RDATA => RDATA c,
  RADDR => RADDR c,
  RCLK => RCLK c,
  RCLKE => RCLKE c,
  RE \Rightarrow RE c,
  WADDR => WADDR c,
  WCLK=> WCLK c,
  WCLKE => WCLKE c,
  WDATA => WDATA c,
  WE => WE C
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.4.2. SB RAM2048x2NR

SB_RAM2048x2NR // Negative edged Read Clock – i.e. RCLKN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation

```
SB RAM2048x2NR ram2048x2nr inst (
  .RDATA(RDATA c[1:0]),
  .RADDR (RADDR c[10:0]),
  .RCLKN(RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR (WADDR c[10:0]),
  .WCLK (WCLK c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[1:0]),
  .WE (WE c)
  );
defparam ram2048x2nr inst.INIT 0 =
defparam ram2048x2nr inst .INIT 1 =
defparam ram2048x2nr inst .INIT 2 =
defparam ram2048x2nr inst .INIT 3 =
defparam ram2048x2nr inst .INIT 4 =
defparam ram2048x2nr inst .INIT 5 =
defparam ram2048x2nr inst .INIT 6 =
defparam ram2048x2nr inst .INIT 7 =
defparam ram2048x2nr inst .INIT 8 =
defparam ram2048x2nr inst .INIT 9 =
defparam ram2048x2nr inst .INIT A =
defparam ram2048x2nr inst .INIT B =
defparam ram2048x2nr inst .INIT C =
defparam ram2048x2nr inst .INIT D =
defparam ram2048x2nr inst .INIT E =
defparam ram2048x2nr inst .INIT F =
```



```
ram2048x2nr inst : SB RAM2048x2NR
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
)
port map (
 RDATA => RDATA c,
  RADDR => RADDR c,
 RCLKN => RCLKN c,
 RCLKE => RCLKE c,
 RE \Rightarrow RE c,
  WADDR => WADDR c,
  WCLK=> WCLK c,
  WCLKE => WCLKE c,
  WDATA => WDATA c,
  WE => WE C
```


3.4.3. SB_RAM2048x2NW

SB_RAM2048x2NW // Negative edged Write Clock – i.e. WCLKN

(RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation

```
SB RAM2048x2NW ram2048x2nw inst (
  .RDATA (RDATA c[1:0]),
  .RADDR (RADDR c[10:0]),
  .RCLK(RCLK c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR (WADDR c[10:0]),
  .WCLKN(WCLKN c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[1:0]),
  .WE (WE c)
  );
defparam ram2048x2nw inst.INIT 0 =
defparam ram2048x2nw inst .INIT 1 =
defparam ram2048x2nw inst .INIT 2 =
defparam ram2048x2nw inst .INIT 3 =
defparam ram2048x2nw inst .INIT 4 =
defparam ram2048x2nw inst .INIT 5 =
defparam ram2048x2nw inst .INIT 6 =
defparam ram2048x2nw inst .INIT 7 =
defparam ram2048x2nw inst .INIT 8 =
defparam ram2048x2nw inst .INIT 9 =
defparam ram2048x2nw inst .INIT A =
defparam ram2048x2nw inst .INIT B =
defparam ram2048x2nw inst .INIT C =
defparam ram2048x2nw inst .INIT D =
defparam ram2048x2nw inst .INIT E =
defparam ram2048x2nw inst .INIT F =
```


VHDL Instantiation:

```
ram2048x2nw inst: SB RAM2048x2NW
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
)
port map (
 RDATA => RDATA c,
  RADDR => RADDR c,
 RCLK => RCLK c,
  RCLKE => RCLKE c,
 RE \Rightarrow RE c,
  WADDR => WADDR c,
  WCLKN=> WCLKN c,
  WCLKE => WCLKE c,
  WDATA => WDATA c,
  WE => WE C
```


3.4.4. SB RAM2048x2NRNW

SB_RAM2048x2NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN

(RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

```
SB RAM2048x2NRNW ram2048x2nrnw inst (
  .RDATA(RDATA c[1:0]),
  .RADDR (RADDR c[10:0]),
  .RCLKN (RCLKN c),
  .RCLKE (RCLKE c),
  .RE(RE c),
  .WADDR (WADDR c[10:0]),
  .WCLKN(WCLKN c),
  .WCLKE (WCLKE c),
  .WDATA (WDATA c[1:0]),
  .WE (WE c)
  );
defparam ram2048x2nrnw inst.INIT 0 =
defparam ram2048x2nrnw inst .INIT 1 =
defparam ram2048x2nrnw inst .INIT 2 =
defparam ram2048x2nrnw inst .INIT 3 =
defparam ram2048x2nrnw inst .INIT 4 =
defparam ram2048x2nrnw inst .INIT 5 =
defparam ram2048x2nrnw inst .INIT 6 =
defparam ram2048x2nrnw inst .INIT 7 =
defparam ram2048x2nrnw inst .INIT 8 =
defparam ram2048x2nrnw inst .INIT 9 =
defparam ram2048x2nrnw inst .INIT A =
defparam ram2048x2nrnw inst .INIT B =
defparam ram2048x2nrnw inst .INIT C =
ICE Technology Library 82
Lattice Semiconductor Corporation Confidential
defparam ram2048x2nrnw inst .INIT D =  
defparam ram2048x2nrnw inst .INIT E =
defparam ram2048x2nrnw inst .INIT F =
```


VHDL Instantiation:

```
ram2048x2nrnw inst : SB RAM2048x2NRNW
generic map (
INIT 0 \Rightarrow
INIT 1 \Rightarrow
INIT 2 =>
INIT 3 \Rightarrow
INIT 4 \Rightarrow
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT 7 \Rightarrow
INIT 8 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT B =>
INIT C =>
INIT D =>
INIT E =>
)
port map (
  RDATA => RDATA c,
  RADDR => RADDR c,
  RCLKN => RCLKN c,
  RCLKE => RCLKE c,
  RE \Rightarrow RE c,
  WADDR => WADDR c,
  WCLKN=> WCLKN c,
  WCLKE => WCLKE c,
  WDATA => WDATA c,
  WE => WE C
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.5. SB_RAM40_4K

SB_RAM40_4K is the basic physical RAM primitive which can be instantiated and configured to different depth and dataports. The SB_RAM40_4K block has a size of 4 Kbits with separate write and read ports, each with independent control signals. By default, input and output data is 16 bits wide, although the data width is configurable using the READ_MODE and WRITE_MODE parameters. The data contents of the SB_RAM40_4K block are optionally pre-loaded during iCE device configuration.

Table 3.3. SB_RAM40_4K Naming Convention Rules

RAM Primitive Name	Description	
SB_RAM40_4K	Posedge Read clock, Posedge Write clock	
SB_RAM40_4KNR	Negedge Read clock, Posedge Write clock	
SB_RAM40_4KNW	Posedge Read clock, Negedge Write clock	
SB_RAM40_4KNRNW	Negedge Read clock, Negedge Write clock	

SB_RAM256x16

Figure 3.5. SB_RAM40_4K

The following table lists the signals for both ports.

Table 3.4. SB_RAM40_4K RAM Port Signals

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input
MASK[15:0]*	Input	Bit-line Write Enable input, active low. Applicable only when WRITE_MODE parameter is set to 0.
WADDR[7:0]	Input	Write Address input. Selects up to 256 possible locations
WE	Input	Write Enable input, active high
WCLK	Input	Write Clock input, rising-edge active
WCLKE	Input	Write Clock Enable input
RDATA[15:0]	Output	Read Data output
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible locations
RE	Input	Read Enable input, active high
RCLK	Input	Read Clock input, rising-edge active
RCLKE	Input	Read Clock Enable input

Table 3.5. SB_RAM40_4K RAM Parameters

Parameter Name	Description	Parameter Value	Configuration
INIT_0, ,INIT_F	RAM Initialization Data. Passed using 16 parameter strings, each comprising 256 bits. (16 × 256 = 4096 total bits)	INIT_0 to INIT_F	Initialize the RAM with predefined value
WRITE_MODE	Sets the RAM block write port	0	256x16
	configuration	1	512x8
		2	1024x4
		3	2048x2
READ_MODE	Sets the RAM block read port	0	256x16
	configuration	1	512x8
		2	1024x4
		3	2048x2

Verilog Instantiation:

```
// Physical RAM Instance without Pre Initialization
SB RAM40 4K ram40 4kinst physical (
      .RDATA (RDATA),
      .RADDR (RADDR),
      .WADDR (WADDR),
      .MASK (MASK),
      .WDATA (WDATA),
      .RCLKE (RCLKE),
      .RCLK (RCLK),
      .RE(RE),
      .WCLKE (WCLKE),
      .WCLK (WCLK),
      .WE (WE)
   );
defparam ram40_4kinst_physical.READ_MODE=0;
defparam ram40 4kinst physical.WRITE MODE=0;
```

VHDL Instantiation:

```
-- Physical RAM Instance without Pre Initialization
ram40 4kinst physical : SB RAM40 4K
generic map (
READ MODE => 0,
WRITE MODE= >0 )
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
       WADDR=>WADDR,
       MASK=>MASK,
       WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLK=>RCLK,
       RE = > RE,
       WCLKE=>WCLKE,
       WCLK=>WCLK,
       WE => WE
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.5.1. SB_RAM40_4KNR

Verilog Instantiation:

VHDL Instantiation:

```
-- Physical RAM Instance without Pre Initialization
ram40 4knrinst physical : SB RAM40 4KNR
generic map (
READ MODE => 0,
WRITE MODE= >0
                    )
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
       WADDR=>WADDR,
       MASK=>MASK,
       WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLKN=>RCLKN,
       RE = > RE,
       WCLKE=>WCLKE,
       WCLK=>WCLK,
       WE => WE
```


3.5.2. SB_RAM40_4KNW

Verilog Instantiation:

```
// Physical RAM Instance without Pre Initialization
SB RAM40 4KNW ram40 4knwinst physical (
      .RDATA (RDATA),
      .RADDR (RADDR),
      .WADDR (WADDR),
      .MASK (MASK),
      .WDATA (WDATA),
      .RCLKE (RCLKE),
      .RCLK (RCLK),
      .RE(RE),
      .WCLKE (WCLKE),
      .WCLKN (WCLKN),
      .WE(WE)
      );
defparam ram40 4knwinst physical.READ MODE=0;
defparam ram40 4knwinst physical.WRITE MODE=0;
```

VHDL Instantiation:

```
-- Physical RAM Instance without Pre Initialization
ram40_4knwinst_physical : SB_RAM40_4KNW
generic map (
      READ MODE \Rightarrow 0,
      WRITE MODE= >0
                          )
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
       WADDR=>WADDR,
       MASK=>MASK,
       WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLK=>RCLK,
       RE = > RE,
       WCLKE=>WCLKE,
       WCLKN=>WCLKN,
       WE => WE
      );
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.5.3. SB_RAM40_4KNRNW

Verilog Instantiation:

```
// Physical RAM Instance without Pre Initialization
SB RAM40 4KNRNW ram40 4knrnwinst physical (
      .RDATA (RDATA),
      .RADDR (RADDR),
      .WADDR (WADDR),
      .MASK (MASK),
      .WDATA (WDATA),
      .RCLKE (RCLKE),
      .RCLKN (RCLKN),
      .RE(RE),
      .WCLKE (WCLKE),
      .WCLKN (WCLKN),
      .WE(WE)
      );
defparam ram40 4knrnwinst physical.READ MODE=0;
defparam ram40 4knrnwinst physical.WRITE MODE=0;
```

VHDL Instantiation:

```
-- Physical RAM Instance without Pre Initialization
ram40 4knrnwinst physical : SB_RAM40_4KNRNW
generic map (
READ MODE \Rightarrow 0,
WRITE MODE= >0
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
       WADDR=>WADDR,
       MASK=>MASK,
       WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLKN=>RCLKN,
       RE = > RE,
       WCLKE=>WCLKE,
       WCLKN=>WCLKN,
       WE => WE
      );
```


4. I/O Primitives

4.1. SB_IO

The SB_IO block contains five registers. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Figure 4.1. SB_IO

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK ENABLE.

Note that explicitly connecting a logic '1' value to port CLOCK_ENABLE results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Input and Output Pin Function Tables

Input and Output functions are independently selectable through the PIN_TYPE [1:0] and PIN_TYPE [5:2] parameter settings respectively. Specific I/O functions are defined by the combination of both attributes. This means that the complete number of combinations is 64, although some combinations are not valid and not defined below.

Note that the selection of I/O Standards such as SSTL and LVCMOS are not defined by these tables.

Table 4.1. Input Pin Function

#	Pin Function Mnemonic	PIN_TYPE[1:0]		Functional Description of Package Pin Input Operation
1	PIN_INPUT	0	1	Simple input pin (D_IN_0)
2	PIN_INPUT_LATCH	1	1	Disables internal data changes on the physical input pin by latching the value.
3	PIN_INPUT_REGISTERED	0	0	Input data is registered in input cell.
4	PIN_INPUT_REGISTERED_LATCH	1	0	Disables internal data changes on the physical input pin by latching the value on the input register.
5	PIN_INPUT_DDR	0	0	Input 'DDR' data is clocked out on rising and falling clock edges. Use the D_IN_0 and D_IN_1 pins for DDR operation.

Table 4.2. Output Pin Function

#	Pin Function Mnemonic	nonic PIN TYPE[5:2]			21	Functional Description of Package Pin Output Operation
1	PIN_NO_OUTPUT	0	0	0	0	Disables the output function
2	PIN_OUTPUT	0	1	1	0	Simple output pin, (no enable)
3	PIN_OUTPUT_TRISTATE	1	0	1	0	The output pin may be tristated using the enable
4	PIN_OUTPUT_ENABLE_REGISTERED	1	1	1	0	The output pin may be tristated using a registered enable signal
5	PIN_OUTPUT_REGISTERED	0	1	0	1	Output registered, (no enable)
6	PIN_OUTPUT_REGISTERED_ENABLE	1	0	0	1	Output registered with enable (enable is not registered)
7	PIN_OUTPUT_REGISTERED_ENABLE_ REGISTERED	1	1	0	1	Output registered and enable registered
8	PIN_OUTPUT_DDR	0	1	0	0	Output 'DDR' data is clocked out on rising and falling clock edges
9	PIN_OUTPUT_DDR_ENABLE	1	0	0	0	Output data is clocked out on rising and falling clock edges
10	PIN_OUTPUT_DDR_ENABLE_ REGISTERED	1	1	0	0	Output 'DDR' data with registered enable signal
11	PIN_OUTPUT_REGISTERED_INVERTE D	0	1	1	1	Output registered signal is inverted
12	PIN_OUTPUT_REGISTERED_ENABLE INVERTED	1	0	1	1	Output signal is registered and inverted, (no enable function)
13	PIN_OUTPUT_REGISTERED_ENABLE_ REGISTERED_INVERTED	1	1	1	1	Output signal is registered and inverted, the enable/tristate control is registered.

Syntax Verilog Use

Output Pin Function is the bit vector associated with PIN_TYPE [5:2] and Input Pin Function is the bit vector associated with PIN_TYPE [1:0], resulting in a 6-bit value PIN_TYPE [5:0]

defparam my_generic_IO.PIN_TYPE = 6'b{Output Pin Function, Input Pin Function};

4.1.1. DDR I/O Configuration

The following setting configures the SB_IO into a DDR I/O.

```
defparam my_DDR_IO.PIN_TYPE = 6'b100000;

// PIN_TYPE [5:2] = 1000

// PIN_TYPE [1:0] = 00
```

This creates a DDR I/O pin whereby the input data is clocked in on both the rising and falling input clock edges.

The output 'DDR' data is clocked out on rising and falling output clock edges, and the output may be tri-stated, using the output enable port of the SB_IO.

4.1.2. High Drive SB_IO

I/O in iCE40/iCE40LM device can be configured with different drive strengths to increase the I/O output current. To configure an SB_IO with specific drive value, the user needs to specify the "DRIVE_STRENGTH" synthesis attribute on the SB_IO instance and the I/O should be configured as output-only registered I/O.

Synthesis Attribute Syntax:

```
/* synthesis DRIVE STRENGTH = <Drive value> */
```

Table 4.3. Drive Value

Drive Strength Value	Description	
x1	Default drive strength. No replication of SB_IO.	
x2	Increase default drive strength by 2. SB_IO replicated once.	
хЗ	Increase default drive strength by 3. SB_IO replicated twice.	

Note: High drive SB_IO is available only in selected iCE40/iCE40LM packages. Refer to Chapter 12 in iCEcube2 userguide for the list of supported device packages.

4.1.3. Pull Up Resistor Configuration

For iCE40UL device, you can configure the internal pull-up resistor strength of an I/O to a predefined resistor value through the attribute settings. By default, all the I/O are weakly pulled up by 100k internal resistor.

The PULLUP_RESISTOR attribute is effective only when PULLUP parameter is set to 1.

Synthesis Attribute Syntax:

```
/* synthesis PULLUP_RESISTOR = "3P3K" */
```

Table 4.4. Pull-up Resistor Value

Drive Strength Value	Description	
"3P3K"	Pull-up resistor level is 3.3k.	
"6P8K"	Pull-up resistor level is 6.8k.	
"10K"	Pull-up resistor level is 10k.	
"100K"	Pull-up resistor level is 100k (default).	

Note: PULLUP RESISTOR attribute is supported only for iCE40UL devices.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

```
SB IO
            IO PIN INST
                                          //
.PACKAGE PIN (Package Pin),
                                                User's Pin signal name
.LATCH INPUT VALUE (latch input value),
                                                Latches/holds the Input value
                                          //
.CLOCK ENABLE (clock enable),
                                           //
                                                Clock Enable common to input and
                                           //
                                                output clock
.INPUT CLK (input clk),
                                           //
                                                Clock for the input registers
.OUTPUT CLK (output clk),
                                          //
                                                Clock for the output registers
                                           //
.OUTPUT ENABLE (output enable),
                                                Output Pin Tristate/Enable
                                           //
                                                 control
.D_OUT_0 (d_out_0),
                                           //
                                                Data 0 - out to Pin/Rising clk
                                           //
.D OUT 1 (d out 1),
                                           //
                                                 Data 1 - out to Pin/Falling clk
                                           //
                                           //
                                                 Data 0 - Pin input/Rising clk
.D IN 0 (d in 0),
                                           //
                                                 edge
                                                 Data 1 - Pin input/Falling clk
.D IN 1 (d in 1)
                                          //
                                           //
                                                 edge
) /* synthesis DRIVE STRENGTH= x2 */;
defparam IO PIN INST.PIN TYPE = 6'b000000;
                                // See Input and Output Pin Function Tables.
                                // Default value of PIN TYPE = 6'000000 i.e.
                                // an input pad, with the input signal
                                // registered.
defparam IO PIN INST.PULLUP = 1'b0;
                                // By default, the IO will have NO pull up.
                                // This parameter is used only on bank 0, 1,
                                // and 2. Ignored when it is placed at bank 3
defparam IO PIN INST.NEG TRIGGER = 1'b0;
                                // Specify the polarity of all FFs in the IO to
                                // be falling edge when NEG TRIGGER = 1.
                                // Default is rising edge.
defparam IO PIN INST.IO STANDARD = "SB LVCMOS";
                                // Other IO standards are supported in bank 3
                                // only: SB SSTL2 CLASS 2, SB SSTL2 CLASS 1,
                                // SB SSTL18 FULL, SB SSTL18 HALF, SB MDDR10,
                                // SB MDDR8, SB MDDR4, SB MDDR2 etc.
```


5. Global Buffer Primitives

5.1. SB_GB_IO

Figure 5.1. SB_GB_IO

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK_ENABLE.

Note: Explicitly connecting a logic '1' value to port CLOCK_ENABLE results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

```
SB GB IO My Clock Buffer Package Pin ( // A users external Clock reference
pin
                                // User's Pin signal name
.PACKAGE PIN (Package Pin),
.LATCH_INPUT_VALUE (latch_input_value), // Latches/holds the Input value
                                     // Clock Enable common to input and
.CLOCK ENABLE (clock enable),
// output clock
.INPUT_CLK (input_clk), // Clock for the input registers
.OUTPUT CLK (output clk), // Clock for the output registers
.OUTPUT ENABLE (output_enable), // Output Pin Tristate/Enable
     // control
.D OUT 0 (d out 0), // Data 0 - out to Pin/Rising clk
     //
          edge
.D OUT 1 (d out_1),
                     // Data 1 - out to Pin/Falling clk
     //
          edge
.D IN 0 (d in 0), // Data 0 - Pin input/Rising clk
     // edge
.D IN 1 (d in 1) // Data 1 - Pin input/Falling clk
     // edge
.GLOBAL BUFFER OUTPUT (Global Buffered User Clock)
// Example use - clock buffer
//driven from the input pin
);
defparam My Clock Buffer Package Pin.PIN TYPE = 6'b000000;
// See Input and Output Pin Function Tables.
// Default value of PIN TYPE = 6'000000 i.e.
// an input pad, with the input signal
// registered
```

Note: This primitive is a superset of the SB_IO primitive, and includes the connectivity to drive a Global Buffer. For example SB_GB_IO pins are likely to be used for external Clocks.

5.2. SB_GB Primitive

Figure 5.2. SB_GB Primitive

Verilog Instantiation

```
SB_GB My_Global_Buffer_i ( //Required for a user's internally generated //FPGA signal that is heavily loaded and //requires global buffering. For example, a //user's logic-generated clock.

.USER_SIGNAL_TO_GLOBAL_BUFFER (Users_internal_Clk),
.GLOBAL_BUFFER_OUTPUT ( Global_Buffered_User_Signal)

);
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6. PLL Primitives

There are five primitives that represent the PLL function in the iCEcube2 software viz. SB_PLL40_CORE, SB_PLL40_PAD, SB_PLL40_2 PAD, SB_PLL40_2 PAD, SB_PLL40_2 PAD for the iCE40 device family. A short description of each primitive and its ports/parameters is provided in the following sections.

It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

6.1. SB_PLL40_CORE

The SB_PLL40_CORE primitive should be used when the source clock of the PLL is driven by FPGA routing, that is, when the PLL source clock originates on the FPGA or is driven by an input pad that is not in the bottom I/O bank (I/O Bank 2).

Figure 6.1. SB_PLL40_CORE

Ports

REFERENCECLK: PLL source clock that serves as the input to the SB PLL40 CORE primitive.

PLLOUTGLOBAL: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCORE: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBAL/PLLOUTCORE is locked to the PLL source on REFERENCECLK.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 7-bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of

PLLOUTGLOBAL/PLLOUTCORE with respect to REFERENCECLK. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on REFERENCECLK to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBAL/PLLOUTCORE pins are held static at their last value. This function is enabled when the parameter ENABLE_ICEGATE is set to '1'.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_CORE primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Table 6.1. SB_PLL40_CORE Parameters

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL and PLLOUTCORE signals are delay compensated by (n+1)×150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are additionally delayed by (n+1)×150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0-> Divide by 4 1-> Divide by 7

Parameter Name	Description	Parameter Value	Description
PLLOUT_SELECT	Selects the signal to be output at the PLLOUTCORE and PLLOUTGLOBAL ports	SHIFTREG_Odeg	00 phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
		SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs without any phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to
DIVF	Feedback divider	0,1,,63	control the output frequency,
DIVQ	VCO Divider	1,2,,6	depending on the FEEDBACK_PATH setting.
FILTER_RANGE	PLL Filter Range	0,1,,7	Setting.
EXTERNAL_DIVIDE_FACT OR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user- implemented divider in the external feedback path.
ENABLE_ICEGATE	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

6.2. SB_PLL40_PAD

The SB_PLL40_PAD primitive should be used when the source clock of the PLL is driven by an input pad that is located in the bottom I/O bank (I/O Bank 2) or the top I/O bank (I/O Bank 0), and the source clock is not required inside the FPGA.

Figure 6.2. SB_PLL40_PAD

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB_PLL40_PAD primitive.

PLLOUTGLOBAL: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCORE: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBAL/PLLOUTCORE is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 7-bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to

PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBAL/PLLOUTCORE pins are held static at their last value. This function is enabled when the parameter ENABLE ICEGATE is set to '1'.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Table 6.2. SB_PLL40_PAD Parameters

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MO DE_FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY [3:0] pins

Parameter Name	Description	Parameter Value	Description
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL and PLLOUTCORE signals are delay compensated by (n+1) ×150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MO DE_RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are additionally delayed by (n+1)×150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0 -> Divide by 4 1 -> Divide by 7
PLLOUT_SELECT	Selects the signal to be output at the PLLOUTCORE and PLLOUTGLOBAL ports	SHIFTREG_Odeg	Oo phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
		SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs without any phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to
DIVF	Feedback divider	0,1,,63	control the output frequency, depending on the FEEDBACK_PATH setting.
DIVQ	VCO Divider	1,2,,6	
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACT OR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user- implemented divider in the external feedback path.
ENABLE_ICEGATE	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input
DIVF	Feedback divider	0,1,,63	Control the output frequency, depending on the FEEDBACK_PATH setting.
DIVQ	VCO Divider	1,2,,6	

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Parameter Name	Description	Parameter Value	Description
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACT OR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user- implemented divider in the external feedback path.
ENABLE_ICEGATE	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

6.3. SB_PLL40_2_PAD

The SB_PLL40_2_PAD primitive should be used when the source clock of the PLL is driven by an input pad that is located in the bottom I/O bank (I/O Bank 2) or the top I/O bank (I/O Bank 0), and in addition to the PLL output, the source clock is also required inside the FPGA.

Figure 6.3. SB_PLL40_2_PAD

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB PLL40 2 PAD primitive.

PLLOUTGLOBALA: The signal on PACKAGEPIN appears on the FPGA at this pin, and drives a global clock network on the FPGA. Do not use this pin in an external feedback path to the PLL.

PLLOUTCOREA: The signal on PACKAGEPIN appears on the FPGA at this pin, which drives regular

FPGA routing. Do not use this pin in an external feedback path to the PLL.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4-bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block.

The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of

PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY ADJUSTMENT MODE parameter is set to DYNAMIC.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

RESET: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to

PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Table 6.3. SB_PLL40_2_PAD Parameters

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL and PLLOUTCORE signals are delay compensated by (n+1)×150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_FEEDBACK is FIXED.

Parameter Name	Description	Parameter Value	Description
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)×150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0 -> Divide by 4 1-> Divide by 7
PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and PLLOUTGLOBALB ports	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
		SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output to PORTB. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to
DIVF	Feedback divider	0,1,,63	control the output frequency,
DIVQ	VCO Divider	1,2,,6	depending on the
FILTER_RANGE	PLL Filter Range	0,1,,7	FEEDBACK_PATH setting.
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power- down	0	Power-down control disabled
	control	1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

6.4. SB_PLL40_2F_CORE

The SB_PLL40_2F_CORE primitive should be used when PLL is used to generate two different output frequencies, and the source clock of the PLL is driven by FPGA routing. For example, when the PLL source clock originates on the FPGA.

Figure 6.4. SB_PLL40_2F_CORE

Ports

REFERENCECLK: PLL source clock that serves as the input to the SB_PLL40_2F_CORE primitive.

PLLOUTGLOBALA: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREA: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALA port.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALB port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4-bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of

PLLOUTGLOBAL/PLLOUTCORE with respect to REFERENCECLK. The DYNAMICDELAY port controls are enabled when the DELAY ADJUSTMENT MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on REFERENCECLK to

PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2F_CORE primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Table 6.4. SB_PLL40_2F_CORE Parameters

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are delay compensated by (n+1)×150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_FEEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)×150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0-> Divide by 4 1-> Divide by 7

Parameter Name	Description	Parameter Value	Description
PLLOUT_SELECT_PORTA	Selects the signal to be output at the PLLOUTCOREA and	SHIFTREG_0deg	Oo phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBALA ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs to PortA. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output to PORTA. No phase shift.
PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and	SHIFTREG_0deg	Oo phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBALB ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output to PORTB. No phase shift.
DIVR	/R REFERENCECLK divider		These parameters are used to control the output frequency, depending on the FEEDBACK_PATH setting.
DIVF	Feedback divider	0,1,,63	
DIVQ	VCO Divider	1,2,,6	
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

6.5. SB_PLL40_2F_PAD

The SB_PLL40_2F_PAD primitive should be used when the PLL is used to generate two different output frequencies, and the source clock of the PLL is driven by an input pad located in the bottom I/O bank (I/O Bank 2) or the top I/O bank (I/O Bank 0).

Figure 6.5. SB_PLL40_2F_PAD

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB_PLL40_2F_PAD primitive.

PLLOUTGLOBALA: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREA: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALA port.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALB port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4-bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block.

The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of

PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to

PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2F_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Table 6.5. SB_PLL40_2F_PAD Parameters

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are delay compensated by (n+1)×150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA and PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)×150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0-> Divide by 4 1-> Divide by 7

Parameter Name	Description	Parameter Value	Description
PLLOUT_SELECT_PORTA	Selects the signal to be output at the PLLOUTCOREA and	SHIFTREG_0deg	Oo phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBALA ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs to PortA. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output to PORTA. No phase shift.
PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and	SHIFTREG_Odeg	Oo phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBALB ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency outputs to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency is divided by 2 and then output to PORTB. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to control the output frequency, depending on the FEEDBACK_PATH setting.
DIVF	Feedback divider	0,1,,63	
DIVQ	VCO Divider	1,2,,6	
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User-specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

7. Hard Macro Primitives

7.1. iCE40LM Hard Macros

This section describes the following dedicated hard macro primitives available in iCE40LM devices.

- SB HSOSC (macro primitive for HSSG)
- SB LSOSC (macro primitive for LPSG)
- SB I2C
- SB SPI

7.1.1. SB_HSOSC (For HSSG)

SB_HSOSC primitive can be used to instantiate High Speed Strobe Generator (HSSG), which generates 12 MHz strobe signal. The strobe can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.1. SB_HSOSC

Table 7.1. SB_HSOSC Port Signals

Signal Name	Direction	Description
ENACLKM	Input	Enable High Speed Strobe Generator. Active High.
CLKM	Output	Strobe Generator Output (12 MHz).

Clock Network Selection

By default, the strobe generator use one of the dedicated clock networks in the device to drive the elements. You may configure the strobe generator to use the fabric routes instead of global clock network using the synthesis attributes.

Synthesis Attribute

```
/* synthesis ROUTE_THROUGH_FABRIC=<value> */
```

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

```
SB_HSOSC OSCInst0 (
.ENACLKM(ENACLKM),
.CLKM(CLKM)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

7.1.2. SB_LSOSC (For LPSG)

SB_LSOSC primitive can instantiate Low Power Strobe Generator (LPSG), which generates 10 kHz strobe signal. The strobe can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.2. SB_LSOSC

Table 7.2. SB_LSOSC Port Signals

Signal Name	Direction	Description
ENACLKK	Input	Enable Low Power Strobe Generator. Active High.
CLKK	Output	Strobe Generator Output (10 kHz).

Clock Network Selection

By default, the strobe generator use one of the dedicated clock networks in the device to drive the elements. You may configure the strobe generator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attribute:

```
/* synthesis ROUTE_THROUGH_FABRIC=<value> */
```

Value:

- 0: Use dedicated clock network. Default option.
- 1: Use fabric routes.

Verilog Instantiation

```
SB_LSOSC OSCInst0 (
    .ENACLKK(ENACLKK),
    .CLKK(CLKK)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.1.3. SB_I2C

The I²C hard IP provides industry standard two pin communication interface that conforms to the version 2.1 of the I²C bus specification. It could be configured as either master or slave port. In master mode, it support configurable data transfer rate and perform arbitration detection to allow it to operate in multi-master systems. It supports both 7 bits and 10 bits addressing in slave mode with configurable slave address and clock stretching in both master and slave mode with enable/disable capability.

iCE40LM device supports two I²C hard IP primitives, located at upper left corner and upper right corner of the chip.

Figure 7.3. SB_I2C

Table 7.3. SB_I2C Port Signals

Signal Name	Direction	Description
SBCLKI	Input	System Clock input.
SBRWI	Input	System Read/Write Input.
SBSTBI	Input	Strobe Signal
SBADRI0	Input	System Bus Control registers address. Bit 0.
SBADRI1	Input	System Bus Control registers address. Bit 1.
SBADRI2	Input	System Bus Control registers address. Bit 2.
SBADRI3	Input	System Bus Control registers address. Bit 3.
SBADRI4	Input	System Bus Control registers address. Bit 4.
SBADRI5	Input	System Bus Control registers address. Bit 5.
SBADRI6	Input	System Bus Control registers address. Bit 6.
SBADRI7	Input	System Bus Control registers address. Bit 7.
SBDATI0	Input	System Data Input. Bit 0.
SBDATI1	Input	System Data input. Bit 1.
SBDATI2	Input	System Data input. Bit 2.
SBDATI3	Input	System Data input. Bit 3.
SBDATI4	Input	System Data input. Bit 4.
SBDATI5	Input	System Data input. Bit 5.
SBDATI6	Input	System Data input. Bit 6.
SBDATI7	Input	System Data input. Bit 7.

Signal Name	Direction	Description
SBDATO0	Output	System Data Output. Bit 0.
SBDATO1	Output	System Data Output. Bit 1.
SBDATO2	Output	System Data Output. Bit 2.
SBDATO3	Output	System Data Output. Bit 3.
SBDATO4	Output	System Data Output. Bit 4.
SBDATO5	Output	System Data Output. Bit 5.
SBDATO6	Output	System Data Output. Bit 6.
SBDATO7	Output	System Data Output. Bit 7.
SBACKO	Output	System Acknowledgement.
I2CIRQ	Output	I ² C Interrupt output.
I2CWKUP	Output	I ² C Wake Up from Standby signal.
SCLI	Input	Serial Clock Input.
SCLO	Output	Serial Clock Output
SCLOE	Output	Serial Clock Output Enable. Active High.
SDAI	Input	Serial Data Input
SDAO	Output	Serial Data Output
SDAOE	Output	Serial Data Output Enable. Active High.

Parameters

I²C Primitive requires configuring certain parameters for slave initial address and selecting I²C IP location.

Table 7.4. SB_I2C Parameters

I ² C Location	Parameter	Parameter Default Value	Description
Upper Left Corner	I2C_SLAVE_INIT_ADDR	0b1111100001	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	060001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Upper Right Corner	I2C_SLAVE_INIT_ADDR	0b1111100010	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	060011	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER=[Divide Range] */ Divide Range: 0, 1, 2, 3 ... 1023. Default is 0.

Verilog Instantiation

```
SB I2C i2cInst0 (
      .SBCLKI (sbclki),
      .SBRWI (sbrwi),
      .SBSTBI (sbstbi),
      .SBADRI7(sbadri[7]),
      .SBADRI6(sbadri[6]),
      .SBADRI5(sbadri[5]),
      .SBADRI4(sbadri[4]),
      .SBADRI3(sbadri[3]),
      .SBADRI2(sbadri[2]),
      .SBADRI1(sbadri[1]),
      .SBADRIO(sbadri[0]),
      .SBDATI7(sbdati[7]),
      .SBDATI6(sbdati[6]),
      .SBDATI5(sbdati[5]),
      .SBDATI4(sbdati[4]),
      .SBDATI3(sbdati[3]),
      .SBDATI2(sbdati[2]),
      .SBDATI1(sbdati[1]),
      .SBDATIO(sbdati[0]),
      .SCLI (scli),
      .SDAI (sdai),
      .SBDATO7(sbdato[7]),
      .SBDATO6(sbdato[6]),
      .SBDATO5 (sbdato[5]),
      .SBDATO4(sbdato[4]),
      .SBDATO3(sbdato[3]),
      .SBDATO2(sbdato[2]),
      .SBDAT01(sbdato[1]),
      .SBDATO0(sbdato[0]),
      .SBACKO(sbacko),
      .I2CIRQ(i2cirq),
      .I2CWKUP(i2cwkup),
      .SCLO(sclo),
      .SCLOE(scloe),
      .SDAO(sdao),
      .SDAOE (sdaoe)
   )/* synthesis I2C CLK DIVIDER= 1 */;
defparam i2cInst0.I2C SLAVE INIT ADDR = "0b11111100001";
defparam i2cInst0.BUS ADDR74 = "0b0001";
```


7.1.4. SB SPI

The SPI hard IP provide industry standard four-pin communication interface with 8-bit wide System Bus to communicate with System Host. It could be configured as Master or Slave SPI port with separate Chip Select Pin. In master mode, it provides programmable baud rate, and supports CS HOLD capability for multiple transfers. It provides variety status flags, such as Mode Fault Error flag, Transmit/Receive status flag, and others for easy communicate with system host.

The iCE40LM device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip.

Figure 7.4. SB_SPI

Table 7.5. SB_SPI Port Signals

Signal Name	Direction	Description
SBCLKI	Input	System Clock input.
SBRWI	Input	System Read/Write Input.
SBSTBI	Input	Strobe Signal
SBADRIO	Input	System Bus Control registers address. Bit 0.
SBADRI1	Input	System Bus Control registers address. Bit 1.
SBADRI2	Input	System Bus Control registers address. Bit 2.
SBADRI3	Input	System Bus Control registers address. Bit 3.
SBADRI4	Input	System Bus Control registers address. Bit 4.
SBADRI5	Input	System Bus Control registers address. Bit 5.
SBADRI6	Input	System Bus Control registers address. Bit 6.
SBADRI7	Input	System Bus Control registers address. Bit 7.
SBDATI0	Input	System Data Input. Bit 0.
SBDATI1	Input	System Data input. Bit 1.
SBDATI2	Input	System Data input. Bit 2.
SBDATI3	Input	System Data input. Bit 3.
SBDATI4	Input	System Data input. Bit 4.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Direction	Description	
SBDATI5	Input	System Data input. Bit 5.	
SBDATI6	Input	System Data input. Bit 6.	
SBDATI7	Input	System Data input. Bit 7.	
SBDATO0	Input	System Data Output. Bit 0.	
SBDATO1	Input	System Data Output. Bit 1.	
SBDATO2	Input	System Data Output. Bit 2.	
SBDATO3	Input	System Data Output. Bit 3.	
SBDATO4	Input	System Data Output. Bit 4.	
SBDATO5	Input	System Data Output. Bit 5.	
SBDATO6	Input	System Data Output. Bit 6.	
SBDATO7	Input	System Data Output. Bit 7.	
SBACKO	Output	System Acknowledgement	
SPIIRQ	Output	SPI Interrupt output.	
SPIWKUP	Output	SPI Wake Up from Standby signal.	
MI	Input	Master Input from PAD	
SO	Output	Slave Output to PAD	
SOE	Output	Slave Output Enable to PAD. Active High.	
SI	Input	Slave Input from PAD	
МО	Output	Master Output to PAD	
MOE	Output	Master Output Enable to PAD. Active High	
SCKO	Output	Slave Clock Output to PAD	
SCKOE	Output	Slave Clock Output Enable to PAD. Active High.	
SCSNI	Input	Slave Chip Select Input From PAD	
MCSNO0	Output	Master Chip Select Output to PAD. Line 0.	
MCSNO1	Output	Master Chip Select Output to PAD. Line 1.	
MCSNO2	Output	Master Chip Select Output to PAD. Line 2.	
MCSNO3	Output	Master Chip Select Output to PAD. Line 3.	
MCSNOE0	Output	Master Chip Select Output Enable to PAD. Active High. Line 0.	
MCSNOE1	Output	Master Chip Select Output Enable to PAD. Active High. Line 1	
MCSNOE2	Output	Master Chip Select Output Enable to PAD. Active High. Line 2	
MCSNOE3	Output	Master Chip Select Output Enable to PAD. Active High. Line 3	

Parameters

SPI Primitive requires configuring a parameter for selecting the SPI IP location.

Table 7.6. SB_SPI Parameters

SPI Location	Parameter	Parameter Default Value	Description
Lower Left Corner	BUS_ADDR74	0ь0000	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Lower Right Corner	BUS_ADDR74	0b0010	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

Synthesis attribute "SPI_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCKO output with respect to the SBCLKI input clock frequency.

/* synthesis SPI_CLK_DIVIDER= [Divide Range] */ Divide Range

: 0, 1, 2, 3....63. Default is 0.

Verilog Instantiation

```
SB SPI spiInst0 (
      .SBCLKI (sbclki),
      .SBRWI (sbrwi),
      .SBSTBI (sbstbi),
      .SBADRI7(sbadri[7]),
      .SBADRI6(sbadri[6]),
      .SBADRI5(sbadri[5]),
      .SBADRI4(sbadri[4]),
      .SBADRI3(sbadri[3]),
      .SBADRI2(sbadri[2]),
      .SBADRI1(sbadri[1]),
      .SBADRIO(sbadri[0]),
      .SBDATI7(sbdati[7]),
      .SBDATI6(sbdati[6]),
      .SBDATI5(sbdati[5]),
      .SBDATI4(sbdati[4]),
      .SBDATI3(sbdati[3]),
      .SBDATI2(sbdati[2]),
      .SBDATI1(sbdati[1]),
      .SBDATIO(sbdati[0]),
      .MI (mi),
      .SI(si),
      .SCKI (scki),
      .SCSNI(scsni),
      .SBDATO7(sbdato[7]),
      .SBDATO6(sbdato[6]),
      .SBDATO5 (sbdato[5]),
      .SBDATO4(sbdato[4]),
      .SBDATO3(sbdato[3]),
      .SBDATO2(sbdato[2]),
      .SBDAT01(sbdato[1]),
      .SBDATO0(sbdato[0]),
      .SBACKO(sbacko),
      .SPIIRQ(spiirq),
      .SPIWKUP(spiwkup),
      .SO(so),
      .SOE (soe),
      .MO (mo),
      .MOE (moe),
      .SCKO(scko),
      .SCKOE (sckoe),
      .MCSNO3 (mcsno hi[3]),
      .MCSNO2 (mcsno hi[2]),
      .MCSNO1(mcsno lo[1]),
      .MCSNO0 (mcsno lo[0]),
      .MCSNOE3 (mcsnoe hi[3]),
      .MCSNOE2 (mcsnoe hi[2]),
      .MCSNOE1 (mcsnoe lo[1]),
      .MCSNOE0(mcsnoe lo[0])
) /* synthesis SPI CLK DIVIDER = "1" */;
defparam spiInst0.BUS ADDR74 = "0b00000";
```


7.2. iCE40 Ultra (iCE5LP) Hard Macros

This section describes the following dedicated hard macro primitives available in iCE5LP (iCE40 Ultra) devices.

- SB HFOSC
- SB LFOSC
- SB_LED_DRV_CUR
- SB_RGB_DRV
- SB_IR_DRV
- SB_IO_OD
- SB_I2C
- SB_SPI
- SB MAC16

7.2.1. **SB_HFOSC**

SB_HFOSC primitive generates 48 MHz nominal clock frequency within +/- 10% variation, with user-programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.5. SB_HFOSC

Table 7.7. SB_HFOSC Port Signals

Signal Name	Direction	Description
CLKHFPU	Input	Power up the HFOSC circuit. After power up, the oscillator output is stable after 100 μs. Active High.
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100 μs power up period. Active High.
CLKHF	Output	HF Oscillator output.

Table 7.8. SB_HFOSC Parameters

Parameter	Parameter Values	Description	
CLKHF_DIV	"0b00"	Sets 48 MHz HFOSC output.	
	"0b01"	Sets 24 MHz HFOSC output.	
	"0b10"	Sets 12 MHz HFOSC output.	
	"0b11"	Sets 6 MHz HFOSC output	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0" Input CLKHFPU: Logic "0"

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value> */ Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

```
SB_HFOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = "0b00";
```

7.2.2. SB LFOSC

SB_LFOSC primitive generates 10 kHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.6. SB_LFOSC

Table 7.9. SB_LFOSC Port Signals

Signal Name	Direction	Description	
CLKLFPU	Input	Power up the LFOSC circuit. After power up, the oscillator output is stable after 100 $\mu s.$ Active High.	
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100 μs power up period. Active High.	
CLKLF	Output	LF Oscillator output.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0"
Input CLKLFPU: Logic "0"

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value> */

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

7.2.3. SB LED DRV CUR

SB_LED_DRV_CUR primitive generates the constant reference current required to power up the SB_RGB_DRV and SB_IR_DRV primitives.

Figure 7.7. SB_LED_DRV_CUR

Table 7.10. SB_LED_DRV_CUR Port Signals

Signal Name	Direction	Description	
EN	Input	Enable to generate constant current source for SB_RGB_DRV and SB_IR_DRV primitives. After Enable, the reference current value is stable after 100 µs. Active High.	
LEDPU	Output	Power up signal for SB_RGB_DRV and SB_IR_DRV primitives. This port should be connected only to RGBPU/IRPU pins of SB_RGB_DRV and SB_IR_DRV primitives.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input EN: Logic "0"

Verilog Instantiation

```
SB_LED_DRV_CUR    LED_CUR_inst
(
        .EN(enable_led_current),
        .LEDPU(led_power_up)
);
```


7.2.4. SB_RGB_DRV

SB_RGB_DRV primitive contains three dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the 3 RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b0000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.8. SB_RGV_DRV

Table 7.11. SB_RGB_DRV Port Signals

Signal Name	Direction	Description	
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.	
RGBPU	Input	Power Up Signal. Connect to LEDPU port of SB_LED_DRV_CUR primitive.	
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.	
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually driven from the SB_LEDD_IP.	
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually driven from the SB_LEDD_IP.	
RGB0	Output	RGB0 LED output	
RGB1	Output	RGB1 LED output	
RGB2	Output	RGB2 LED output	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input RGBLEDEN: Logic "0"
Input RGB0PWM: Logic "0"
Input RGB1PWM: Logic "0"
Input RGB2PWM: Logic "0"
Input RGBPU: Logic "0"

Parameters

```
The SB_RGB_DRV primitive contains the following parameter and their default values:

Parameter RGB0_CURRENT = "0b000000";

Parameter RGB1_CURRENT = "0b000000";

Parameter RGB2_CURRENT = "0b000000";

Parameter values:

"0b000000" = 0 mA. // Set this value to use the associated SB_IO_OD instance at RGB // LED location.

"0b000001" = 4 mA.

"0b000011" = 8 mA.

"0b000111" = 12 mA.

"0b001111" = 16 mA.

"0b011111" = 20 mA.

"0b111111" = 24 mA.
```

Verilog Instantiation

7.2.5. SB_IR_DRV

SB_IR_DRV primitive contains a single dedicated open drain I/O pin for IRLED output. The IRLED output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_IR_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR_CURRENT parameter is set to "0b0000000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.9. SB_IR_DRV

Table 7.12. SB_IR_DRV Port Signals

Signal Name	Direction	Description	
IRLEDEN	Input	Enable the SB_IR_DRV primitive. Active High.	
IRPU	Input	Power Up Signal. Connect to LEDPU port of SB_LED_DRV_CUR primitive.	
IRPWM	Input	PWM Input data to drive IRLED pin.	
IRLED	Output	IR LED output.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input IRLEDEN : Logic "0"
Input IRPWM : Logic "0"

Parameter

The SB_IR_DRV primitive contains the following parameter and their default values:

Parameter IR_CURRENT = "0b0000000000";

Parameter Values:

"0b000000000"; = 0 mA. // Set this value to use the associated SB IO OD instance at // IR LED location.

"0b000000001"; = 50 mA

"0b000000011"; = 100 mA

"0b000000111"; = 150 mA

"0b000001111"; = 200 mA

"0b0000011111"; = 250 mA

"0b0000111111"; = 300 mA

"0b0001111111"; = 350 mA

"0b0011111111"; = 400 mA

"0b0111111111"; = 450 mA

"0b1111111111"; = 500 mA

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Verilog Instantiation

7.2.6. SB_RGB_IP

SB_RGB_IP primitive generates the three RGB PWM outputs, to be connected to the LED drivers.

Figure 7.10. SB_RGB_IP

Table 7.13. SB_RGB_IP Port Signals

Signal Name	Direction	Description	
CLK	Input	Clock Input	
RST	Input	Asynchronous Reset Input	
PARAMSOK	Input	Enable signal to sample the RGB data	
RGBCOLOR[3:0]	Input	4-bit RGB color data input	
BRIGHTNESS[3:0]	Input	4-bit RGB brightness data input	
BREATHRAMP[3:0]	Input	4-bit breathramp data input	
BLINKRATE[3:0]	Input	4-bit blinkrate data input	
REDPWM	Output	RED PWM output	
GREENPWM	Output	GREEN PWM output	
BLUEPWM	Output	BLUE PWM output	

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

7.2.7. SB IO OD

The SB_IO_OD is the open drain I/O primitive. When the Tristate output is enabled, the I/O pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Figure 7.11. SB_IO_OD

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 7.14. SB_IO_OD Port Signals

Signal Name	Direction	Description	
PACKAGEPIN	Bidirectional	Bidirectional I/O pin	
LATCHINPUTVALUE	Input	Latches/Holds the input data	
CLOCKENABLE	Input	Clock enable signal	
INPUTCLK	Input	Clock for the input registers	
OUTPUTCLK	Input	Clock for the output registers	
OUTPUTENABLE	Input	Enable Tri-state output. Active high.	
DOUT0	Input	Data to package pin	
DOUT1	Input	Data to package pin	
DIN0	Output	Data from package pin	
DIN1	Output	Data from package pin	

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for

CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE results in a non-optimal implementation, since extra LUT is used to generate the Logic "1". If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameter Values

```
Parameter PIN_TYPE = 6'b000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1.

Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

Verilog Instantiation

```
SB IO OD
            OpenDrainInst0
.PACKAGEPIN (PackagePin),
                                    // User's Pin signal name
.LATCHINPUTVALUE (latchinputvalue), // Latches/holds the Input value
.CLOCKENABLE (clockenable),
                                   // Clock Enable common to input and
                                    // output clock
.INPUTCLK (inputclk),
                                   // Clock for the input registers
.OUTPUTCLK (outputclk),
                                   // Clock for the output registers
                                    // Output Pin Tristate/Enable
.OUTPUTENABLE (outputenable),
                                    // control
                                    // Data 0 - out to Pin/Rising clk
.DOUT0 (dout0),
                                    // edge
.DOUT1 (dout1),
                                    // Data 1 - out to Pin/Falling clk
                                    // edge
                                    // Data 0 - Pin input/Rising clk
.DINO (din0),
                                    // edge
.DIN1 (din1)
                                    // Data 1 - Pin input/Falling clk
                                    // edge
);
defparam OpenDrainInst0.PIN TYPE = 6'b000000;
defparam OpenDrainInst0.NEG TRIGGER = 1'b0;
```

7.2.8. SB I2C

The iCE5LP device supports two I²C hard IP primitives, located at upper left corner and upper right corner of the chip.

Figure 7.12. SB_I2C

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 7.15. SB_I2C Port Signals

Signal Name	Direction	Description	
SBCLKI	Input	System Clock input	
SBRWI	Input	System Read/Write Input	
SBSTBI	Input	Strobe Signal	
SBADRI0	Input	System Bus Control registers address. Bit 0.	
SBADRI1	Input	System Bus Control registers address. Bit 1.	
SBADRI2	Input	System Bus Control registers address. Bit 2.	
SBADRI3	Input	System Bus Control registers address. Bit 3.	
SBADRI4	Input	System Bus Control registers address. Bit 4.	
SBADRI5	Input	System Bus Control registers address. Bit 5.	
SBADRI6	Input	System Bus Control registers address. Bit 6.	
SBADRI7	Input	System Bus Control registers address. Bit 7.	
SBDATI0	Input	System Data Input. Bit 0.	
SBDATI1	Input	System Data input. Bit 1.	
SBDATI2	Input	System Data input. Bit 2.	
SBDATI3	Input	System Data input. Bit 3.	
SBDATI4	Input	System Data input. Bit 4.	
SBDATI5	Input	System Data input. Bit 5.	
SBDATI6	Input	System Data input. Bit 6.	
SBDATI7	Input	System Data input. Bit 7.	
SBDATO0	Output	System Data Output. Bit 0.	
SBDATO1	Output	System Data Output. Bit 1.	
SBDATO2	Output	System Data Output. Bit 2.	
SBDATO3	Output	System Data Output. Bit 3.	
SBDATO4	Output	System Data Output. Bit 4.	
SBDATO5	Output	System Data Output. Bit 5.	
SBDATO6	Output	System Data Output. Bit 6.	
SBDATO7	Output	System Data Output. Bit 7.	
SBACKO	Output	System Acknowledgement.	
I2CIRQ	Output	I ² C Interrupt output.	
I2CWKUP	Output	I ² C Wake Up from Standby signal.	
SCLI	Input	Serial Clock Input.	
SCLO	Output	Serial Clock Output	
SCLOE	Output	Serial Clock Output Enable. Active High.	
SDAI	Input	Serial Data Input	
SDAO	Output	Serial Data Output	
SDAOE	Output	Serial Data Output Enable. Active High.	

Parameters

I²C Primitive requires configuring certain parameters for slave initial address and selecting I²C IP location.

Table 7.16. SB_I2C Parameters

I2C Location	Parameters	Parameter Default Value	Description
Upper Left Corner	I2C_SLAVE_INIT_ADDR	0b1111100001	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Upper Right Corner	I2C_SLAVE_INIT_ADDR	0b1111100010	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0011	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value * / Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

0: No delay.

1: Add 50 ns delay. (Default value).

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value

0: No delay (Default value).

1: Add 50 ns delay.

7.2.9. SB_SPI

The iCE5LP device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip.

Figure 7.13. SB_SPI

Table 7.17. SB_SPI Port Signals

Signal Name	Direction	Description	
SBCLKI	Input	System Clock input.	
SBRWI	Input	System Read/Write Input.	
SBSTBI	Input	Strobe Signal	
SBADRI0	Input	System Bus Control registers address. Bit 0.	
SBADRI1	Input	System Bus Control registers address. Bit 1.	
SBADRI2	Input	System Bus Control registers address. Bit 2.	
SBADRI3	Input	System Bus Control registers address. Bit 3.	
SBADRI4	Input	System Bus Control registers address. Bit 4.	
SBADRI5	Input	System Bus Control registers address. Bit 5.	
SBADRI6	Input	System Bus Control registers address. Bit 6.	
SBADRI7	Input	System Bus Control registers address. Bit 7.	
SBDATI0	Input	System Data Input. Bit 0.	

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Direction	Description
SBDATI1	Input	System Data input. Bit 1.
SBDATI2	Input	System Data input. Bit 2.
SBDATI3	Input	System Data input. Bit 3.
SBDATI4	Input	System Data input. Bit 4.
SBDATI5	Input	System Data input. Bit 5.
SBDATI6	Input	System Data input. Bit 6.
SBDATI7	Input	System Data input. Bit 7.
SBDATO0	Input	System Data Output. Bit 0.
SBDATO1	Input	System Data Output. Bit 1.
SBDATO2	Input	System Data Output. Bit 2.
SBDATO3	Input	System Data Output. Bit 3.
SBDATO4	Input	System Data Output. Bit 4.
SBDATO5	Input	System Data Output. Bit 5.
SBDATO6	Input	System Data Output. Bit 6.
SBDATO7	Input	System Data Output. Bit 7.
SBACKO	Output	System Acknowledgement
SPIIRQ	Output	SPI Interrupt output.
SPIWKUP	Output	SPI Wake Up from Standby signal.
MI	Input	Master Input from PAD
SO	Output	Slave Output to PAD
SOE	Output	Slave Output Enable to PAD. Active High.
SI	Input	Slave Input from PAD
MO	Output	Master Output to PAD
MOE	Output	Master Output Enable to PAD. Active High
SCKO	Output	Slave Clock Output to PAD
SCKOE	Output	Slave Clock Output Enable to PAD. Active High.
SCSNI	Input	Slave Chip Select Input From PAD
MCSNO0	Output	Master Chip Select Output to PAD. Line 0.
MCSNO1	Output	Master Chip Select Output to PAD. Line 1.
MCSNO2	Output	Master Chip Select Output to PAD. Line 2.
MCSNO3	Output	Master Chip Select Output to PAD. Line 3.
MCSNOE0	Output	Master Chip Select Output Enable to PAD. Active High. Line 0.
MCSNOE1	Output	Master Chip Select Output Enable to PAD. Active High. Line 1
MCSNOE2	Output	Master Chip Select Output Enable to PAD. Active High. Line 2
MCSNOE3	Output	Master Chip Select Output Enable to PAD. Active High. Line 3

Parameters

SPI Primitive requires configuring a parameter for selecting the SPI IP location.

Table 7.18. SB_SPI Parameters

I ² C Location	Parameters	Parameter Default Value	Description
Lower Left Corner	BUS_ADDR74	0ь0000	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Lower Right Corner	BUS_ADDR74	060001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Synthesis Attribute

Synthesis attribute "SPI_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCKO output with respect to the SBCLKI input clock frequency.

/* synthesis SPI_CLK_DIVIDER= [Divide Range] */ Divide Range : 0, 1, 2, 3....63. Default is 0.

7.2.10. SB MAC16

The SB_MAC16 primitive is the dedicated configurable DSP block available in iCE5LP devices. The SB_MAC16 can be configured into a multiplier, adder, subtracter, accumulator, multiply-add and multiply- sub through the instance parameters. The SB_MAC16 blocks can be cascaded to implement wider functional units.

iCEcube2 supports a set of predefined SB_MAC16 functional configurations. Refer to the SB_MAC16 Configurations section for the list of supported configurations.

Figure 7.14. SB_MAC16

Port A (Source Clock)

Figure 7.15. SB_MAC16

Port A (Generated Clock)

Table 7.19. SB_MAC16 Port Signals

Signal Name	Direction	Description	Default Values
CLK	Input	Clock input. Applies to all clocked elements in the MAC16 Block.	
CE	Input	Clock Enable Input. Active High.	1'b1
C[15:0]	Input	Input to the C Register / Direct input to the adder accumulator.	16'b0
A[15:0]	Input	Input to the A Register / Direct input to the multiplier blocks /Direct input to the adder accumulator.	16'b0
B[15:0]	Input	Input to the B Register / Direct input to the multiplier blocks /Direct input to the adder accumulator.	16'b0
D[15:0]	Input	Input to the D Register / Direct input to the adder accumulator.	16'b0
AHOLD	Input	Hold A registers Data .Controls data flow into the input register A. Active High. 0: Update (load) register at next active clock edge. 1: Hold (retain) current register value, regardless of clock.	1'b0
BHOLD	Input	Hold B registers Data .Controls data flow into the B input register. Active High. 0: Update (load) register at next active clock edge. 1: Hold (retain) current register value, regardless of clock.	1'b0

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Direction	Description	Default Values
CHOLD	Input	Hold C registers Data. Controls data flow into the A input register. Active High. 0: Update (load) register at next active clock edge.	1'b0
		1: Hold (retain) current register value, regardless of clock.	
DHOLD	Input	Hold D registers Data. Controls data flow into the A input register. Active High. 0: Update (load) register at next active clock edge. 1: Hold (retain) current register value, regardless of clock.	1'b0
IRSTTOP	Innut	Reset input to the A and C input registers, and the pipeline registers in	1'b0
INSTIUP	Input	the upper half of the multiplier block. Active High	1 00
IRSTBOT	Input	Reset input to the B and C input registers, and the pipeline registers in the lower half of the multiplier block, and the 32-bit multiplier result pipeline register. Active High.	1'b0
ORSTTOP	Input	Reset the high-order bits of the accumulator register ([31:16]). Active High.	1'b0
ORSTBOT	Input	Reset the low-order accumulator register bits ([15:0]). Active High.	1'b0
OLOADTOP	Input	High-order Accumulator Register Accumulate/Load. Controls whether the accumulator register accepts the output of the adder/subtracter or whether the register is loaded with the value from Input C (or Register C, if configured). O: Accumulator Register [31:16] loaded with output from adder/subtracter. 1: Accumulator Register [31:16] loaded with Input C or Register C, depending on primitive parameter value.	1'b0
OLOADBOT	Input	Low-order Accumulator Register Accumulate/Load. Controls whether the low-order accumulator register bits (15:0] accepts the output of the adder/subtracter or whether the register is loaded with the value from Input D (or Register D, if configured). O: Accumulator Register [15:0] loaded with output from adder/subtracter. 1: Accumulator Register [15:0] loaded with Input D or Register D, depending on primitive parameter value.	1'b0
ADDSUBTOP	Input	High-order Add/Subtract. Controls whether the adder/subtracter adds or subtracts. 0: Add: W+X+HCl 1: Subtract: W-X-HCl	1'b0: Add
ADDSUBBOT	input	Low-order Add/Subtract. Controls whether the adder/subtracter adds or subtracts. 0: Add: Y+Z+LCI 1: Subtract: Y-Z-LCI	1'b0: Add
OHOLDTOP	Input	High-order Accumulator Register Hold. Controls data flow into the high-order ([31:16]) bits of the accumulator. 0: Update (load) register at next active clock edge. 1: Hold (retain) current register value, regardless of clock.	
OHOLDBOT	Input	Low-order Accumulator Register Hold. Controls data flow into the high-order ([15:0]) bits of the accumulator. 0: Update (load) register at next active clock edge. 1: Hold (retain) current register value, regardless of clock.	
CI	Input	Carry/borrow input from lower logic tile.	
ACCUMCI	Input	Cascade Carry/borrow input from lower MAC16 block.	
SIGNEXTIN	Input	Sign extension input from lower MAC16 block.	

Signal Name	Direction	Description	Default Values
O[31:0]	Output	32-bit MAC16 Output.	
		O[31:0]: 32-bit result of a 16x16 multiply operation or a 32-bit adder/accumulate function.	
		O[31:16]: 16-bit result of an 8x8 multiply operation or a 32-bit adder/accumulate function.	
		O[15:0]: 16-bit result of an 8x8 multiply operation or a 32-bit adder/accumulate function.	
СО	Output	Carry/borrow output to higher logic tile.	
ACCUMCO	Output	Cascade Carry/borrow output to higher MAC16 block.	
SIGNEXTOUT	Output	Sign extension output to higher MAC16 block.	

Parameters

The parameter table below shows the list of parameters to configure the SB_MAC16 block. This table also maps the parameter to the configuration bits shown in the SB_MAC16 Functional diagram.

Table 7.20. SB MAC16 Parameters

Parameter Name	Configuration Bits	Parameter Description	Value	Description				
NEG_TRIGGER		Controls input clock polarity	0	All the registers are rising_edge triggered.				
			1	All the registers are falling_edge triggered.				
C_REG	CO	Input C register Control.	0	Input C not registered				
			1	Input C registered				
A_REG	C1	Input A register Control	0	Input A not registered				
			1	Input A registered				
B_REG	C2	Input B register Control	0	Input B not registered				
			1	Input B registered				
D_REG	C3	Input D register Control	0	Input D not registered				
			1	Input D registered				
TOP_8x8_MULT_REG	C4	Top 8x8 multiplier output register control	0	Top 8x8 multiplier output is no registered.				
		(point F)	1	Top 8x8 multiplier output is registered.				
BOT_8x8_MULT_REG	C5	Bottom 8x8 multiplier output register control.	0	Bottom 8x8 multiplier output is not registered.				
		(point G)	1	Bottom 8x8 multiplier output is registered				
PIPELINE_16x16_MULT_REG1	C6	Intermediate 8x8 multiplier pipeline	0	Intermediate 8x8 multiplier outputs are not registered.				
		register controls (points J and K). These multipliers are only used for 16x16 multiply operations. For 8x8 multiply operations, set C6 and C7 to 1, which reduces power consumption.	1	Intermediate 8x8 multiplier outputs are registered.				

Parameter Name	Configuration Bits	Parameter Description	Value	Description
PIPELINE_16x16_MULT_REG2	C7	16x16 multiplier Pipeline registers	0	32-bit output from 16x16 multiplier is not registered.
		control. (point H)	1	32-bit output from 16x16 multiplier is registered.
TOPOUTPUT_SELECT	C9,C8	Selects Top SB_MAC16 output O[31:16].	00	16-bit output of Multiplexer P, from top adder/subtracter,
			01	16-bit output from upper accumulator register, Q
			10	16-bit output from upper 8x8 multiplier, F
			11	Upper 16-bit output from 16x16 multiplier, H
TOPADDSUB_LOWERINPUT	C11,C10	Selects input X for the upper adder/subtracter	00	16-bit input from A input or associated input register.
			01	16-bit output from upper 8x8 multiplier, F
			10	Upper 16-bit output from 16x16 multiplier, H
			11	Sign extension input from lower adder/subtracter, Z[15]. Duplicate 16 bits.
TOPADDSUB_UPPERINPUT	C12	Selects input W for the upper adder/subtracter	0	16-bit feedback from upper accumulator register, Q
			1	16-bit input from C input or associated pipeline register
TOPADDSUB_CARRYSELECT	C14,C13	Carry/borrow input	00	Constant 0
		select to upper	01	Constant 1
		adder/subtracter.	10	Cascade Carry/borrow output from lower adder/subtracter
			11	Carry/borrow output from lower adder/subtracter
BOTOUTPUT_SELECT	C16,C15	Selects Lower SB_MAC16 output	00	16-bit output of multiplexer R from lower adder/subtracter
		O[15:0].	01	16-bit output from lower accumulator register, S
			10	16-bit output from lower 8x8 multiplier, G
			11	Lower 16-bit output from 16x16 multiplier, H
BOTADDSUB_LOWERINPUT	C18,C17	Selects Input Z for the lower dder/subtracter	00	16-bit input from B input or associated pipeline register
			01	16-bit output from lower 8x8 multiplier, G
			10	Lower 16-bit output from 16x16 multiplier, H
			11	Sign extension input SIGNEXTIN. Duplicate 16 bits.
BOTADDSUB_UPPERINPUT	C19	Selects Input Y for the lower adder/subtracter	0	16-bit feedback from lower accumulator register, S
			1	16-bit input from D input or associated input register.

Parameter Name	Configuration Bits	Parameter Description	Value	Description
BOTADDSUB_CARRYSELECT	C21,C20	Carry/borrow input	00	Constant 0
		select to lower	01	Constant 1
		adder/subtracter	10	Cascade Carry/borrow input from ACCUMCI
			11	Carry/borrow input from CI
MODE_8x8	C22	Selects 8x8 Multiplier	0	No effect
		mode and 8x8 Low- Power Multiplier Blocking Option	1	Selects 8x8 Multiplier mode. Holds the pipelining registers associate with a 16x16 multiplier in clock disable mode. Helps reduce the dynamic power consumption within the multiplier function. Used in conjunction with C6, C7 settings.
A_SIGNED	C23	Indicates whether	0	Multiplier input A is unsigned.
		multiplier input A is signed or unsigned. Applies regardless if input A is 16-or 32- bits wide.	1	Multiplier input A is signed.
B_SIGNED	C24	Indicates whether	0	Multiplier input B is unsigned.
		multiplier input B is signed or unsigned. Applies regardless if input B is 16-or 32- bits wide.	1	Multiplier input B is signed.

7.2.10.1. SB_MAC16 Configurations

The following SB_MAC16 functional blocks are supported in iCEcube2.

- Multiplier
- Multiply and Accumulate (MAC)
- Accumulator (ACC)
- Add/Subtract (ADD/SUB)
- Multiply and Add/Subtract (MULTADDSUB)

The valid configuration parameter settings for each functional block are listed below.

Note: Read the configuration settings from left to right while filling the SB_MAC16 instance parameter values.

Multiplier Configurations

8×8 Multiplier : 8×8 input multiplier with 16-bit output. 16×16 Multiplier : 16×16 input multiplier with 32-bit output.

Table 7.21. Multiplier Configurations

Table 7.21. Multiplier Co.	niigi	urat	IOII	<u> </u>																					
SB_MAC16 Function/ Parameter Settings	B_SIGNED	A_SIGNED	MODE_8x8	TOS ISSNAGANO GIISAGATOG	BOTADDSUB_CARRISELECT	BOTADDSUB_UPPERINPUT	TI I I I I I I I I I I I I I I I I I I	BOTADD30B_LOWENINFOL	103133 11141110104	BOTOUTPOL_SELECT	TOTISTICAL STREET	IOPADD30B_CARRT3ELECT	TOPADDSUB_UPPERINPUT	TI MINISTRUCT	IOPADD30B_LOWENINFO!	101113 111111110101	IOPOOLPOI_SELECT	PIPELINE_16x16_MULT_REG2	PIPELINE_16x16_MULT_REG1	BOT_8x8_MULT_REG	TOP_8x8_MULT_REG	D_REG	B_REG	A_REG	C_REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
8×8 Multiplier																									
mult_8x8_all_pipelined_ unsigned	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	1	0	1	1	0
mult_8x8_all_pipelined_ signed	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	1	0	1	1	0
mult_8x8_bypass_unsigne d	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
mult_8x8_bypass_signed	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
16×16 Multiplier																									
mult_16x16_all_pipelined_ unsigned	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0
mult_16x16_all_pipelined _signed	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0
mult_16x16_intermediate _ register_bypassed_ unsigned	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0
mult_16x16_intermediate _ register_bypassed_signed	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
mult_16x16_bypass_ unsigned	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
mult_16x16_bypass_ signed	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0

MAC Configurations

16-bit MAC: 8×8 input, 16-bit output MAC. 32-bit MAC: 16×16 input, 32-bit output MAC.

Table 7.22. MAC Configurations

SB_MAC16 Function/Parameter Settings	B SIGNED	A_SIGNED	MODE_8x8	POTADDSIID CABBYSEIECT	BOINDSOB_CANNISELECT	BOTADDSUB_UPPERINPUT	TI I I I I I I I I I I I I I I I I I I		TOS ISS THAT I CTOS	BOIOUIPOI_3ELECI	TOBOXED CABOXETECT	OPADD30B_CARRISELECT	TOPADDSUB_UPPERINPUT	TIGNIGE I SWEDINE	Oranga Lowening of	TOBOT TIBLE CE		PIPELINE 16x16 MULT REG2	PIPELINE 16x16 MULT REG1	BOT_8x8_MULT_REG	TOP_8x8_MULT_REG	D_REG	B_REG	A_REG	C_REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
16-bit MAC																									
mac_16_all_pipelined_unsigned	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1
mac_16_intermediate_register_	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	1	1	1
bypassed_unsigned																									
mac_16_bypassed_unsigned	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
32-bit MAC																									
mac_32_all_pipelined_ unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1
mac_32_all_pipelined_cascaded_ unsigned	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1
mac_32_all_pipelined_cin_ unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1
mac_32_intermediate_register_ bypassed_unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_intermediate_register_bypasse d_cascaded_unsigned	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_intermediate_register_ bypassed_cin_unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_bypassed_unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_bypassed_cascaded_ unsigned	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_bypassed_cin_ unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_intermediate_register_ bypassed_signed	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1

ACCUMULATOR Configurations

16-bit ACCUMULATOR: 16-bit input, 16-bit output Accumulator. 32-bit ACCUMULATOR: 32-bit input, 32-bit output Accumulator.

Table 7.23. ACCUMULATOR Configurations

Tune Alba Accomplantions														_											
SB_MAC16 Function/ Parameter Settings	B_SIGNED	A_SIGNED	MODE_8x8	TOTIES CABACTICA	BOI ADDSOB_CARRISELECT	BOTADDSUB_UPPERINPUT	THUMBS/WOL BUSINESS	BOLADD30B_LOWENINFOL	POTOLITBILIT SELECT		TO I I SY GO A I I SUCK GOT	OFADD30D_CANNISELECT	TOPADDSUB_UPPERINPUT	TIGNIGENOL GIEGORGOT	O PADD30D_CONTRINTO	TOBOLITELIT SELECT	-21115-	PIPELINE_16x16_MULT_REG2	PIPELINE_16x16_MULT_REG1	BOT_8x8_MULT_REG	TOP_8x8_MULT_REG	D_REG	B_REG	A_REG	C_REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
16-bit ACCUMULATOR						•										•									
acc_16_all_pipelined_unsigned	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_16_bypassed_unsigned	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
32-bit ACCUMULATOR																									
acc_32_all_pipelined_unsigned	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_all_pipelined_cascaded _unsigned	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_all_pipelned_cin_ unsigned	0	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_bypassed_unsigned	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
acc_32_bypassed_cascaded_ unsigned	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
acc_32_bypassed_cin_unsigne d	0	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Add/Subtract Configurations

16-bit ADDSUB: 16-bit input, 16-bit output ADDSUB.32-bit ADDSUB: 32-bit input, 32-bit output ADDSUB.

Table 7.24. Add/Subtract Configurations

Table 7.24. Add/Subtract Con	ligu	· ati	0113																						_
SB_MAC16 Function/ Parameter Settings	B_SIGNED	A_SIGNED	MODE_8x8	TO I SOURCE CAPACET FOR	BOI ADDSOB_CARRISELECT	BOTADDSUB_UPPERINPUT	TIGNIGEWOL GUSGOTTO	BOLADISOB_LOWENINFOL	103133 11141110104		TOBANDALIB CABBVEELECT	OF AUDSOB_CANNISELECT	TOPADDSUB_UPPERINPUT	THUNIGENOUS GILDGE AGOT	OFADD30B_COWENINFO	TOBOLITBILI SELECT		PIPELINE_16x16_MULT_REG2	PIPELINE_16x16_MULT_REG1	BOT_8x8_MULT_REG	TOP_8x8_MULT_REG	D_REG	B_REG	A_REG	C_REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
16-bit ADDSUB																									
add_sub_16_all_pipelined_ unsigned	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_16_ bypassed_unsigned	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
32-bit ADDSUB																•									
add_sub_32_all_pipelined_ unsigned	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_all_pipelined_ cascaded_unsigned	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_all_pipelined_cin_ unsigned	0	0	1	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_bypassed_ unsigned	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
add_sub_32_bypassed_cascade d_unsigned	0	0	1	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
add_sub_32_bypassed_cin_ unsigned	0	0	1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Multiply Add/Subtract Configurations

16-bit Mult-Add/Sub: 8×8 input, 16-bit output Mult-Add/Sub. 32-bit Mult-Add/Sub: 16×16 input, 32-bit output Mult-Add/Sub.

Table 7.25. Multiply Add/Subtract Configurations

Table 7.25. Multiply Add/Subtract Config	gui	atic	1113																						
SB_MAC16 Function/ Parameter Settings		A SIGNED	MODE 8x8	TO HONGANO GILOGUATOG	BOTADDSUB_CARRISELECT	BOTADDSUB UPPERINPUT	THUNISHWOT SHOW TO S	BOTADD30B_COWERINFOT	TOTIES THATHOTOG	BOIOUIPUI_SELECT	TO 1300 AND GITS GARACT	OPADD30B_CARRISELECT	TOPADDSUB UPPERINPUT	TOBABOLI BILOWEBINBILE		TOBOLITBIT SELECT		PIPELINE 16x16 MULT REG2	PIPELINE 16x16 MULT REG1	BOT 8x8 MULT REG	TOP 8x8 MULT REG	D REG	B REG	A REG	C REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
16-bit Mult-Add/Sub																	<u> </u>			•					
mult_add_sub_16_all_pipelined_unsigned	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	0	1	1	1	1	1	1	1	1	1
mult_add_sub_16_intermediate_register_b ypassed_unsigned	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	1	1
mult_add_sub_16_bypassed_ unsigned	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
32-bit Mult-Add/Sub																	<u> </u>			•					
mult_add_sub_32_all_pipelined_ unsigned	0	0	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_all_pipelined_ cascaded_unsigned	0	0	0	1	0	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_all _pipelined_cin_unsigned	0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_intermediate_register_b ypassed_unsigned	0	0	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_intermediate_register_b ypassed_cascaded_unsigned	0	0	0	1	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_intermediate_register_b ypassed_cin_unsigned	0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_bypassed_ unsigned	0	0	0	0	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult_add_sub_32_bypassed_ cascaded_unsigned	0	0	0	1	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult_add_sub_32_bypassed_ cin_unsigned	0	0	0	1	1	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult_add_sub_32_intermediate_register_ bypassed_signed	1	1	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1

Verilog Instantiation

```
SB MAC16 i sbmac16
      (
                 .A(A i),
                 .B(B i),
                 .C(C i),
                 .D(D i),
                 .0(0),
                 .CLK(SYSCLK i),
                 .CE(CE i),
                 .IRSTTOP(RST i),
                 .IRSTBOT(RST i),
                 .ORSTTOP(RST i),
                 .ORSTBOT(RST i),
                 .AHOLD (AHOLD i),
                 .BHOLD(BHOLD i),
                 .CHOLD(CHOLD i),
                 .DHOLD (DHOLD i),
                 .OHOLDTOP (HLDTOPOUT i),
                 .OHOLDBOT (HLDBOTOUT i),
                 .OLOADTOP (LOADTOP i),
                 .OLOADBOT (LOADBOT i),
                 .ADDSUBTOP (ADDSUBTOP i),
                 .ADDSUBBOT (ADDSUBBOT i),
                 .CO(CO),
                 .CI(CI),
                 //MAC cascading ports.
                 .ACCUMCI(),
                 .ACCUMCO(),
                 .SIGNEXTIN(),
                 .SIGNEXTOUT()
      );
// mult 8x8 all pipelined unsigned [24:0] = 001 0000010 0000010 0111 0110
// Read configuration settings [24:0] from left to right while filling the
instance parameters.
defparam i sbmac16. B SIGNED
                                                        = 1'b0 ;
defparam i sbmac16. A SIGNED
                                                        = 1'b0 ;
defparam i sbmac16. MODE 8x8
                                                        = 1'b1 ;
defparam i sbmac16. BOTADDSUB CARRYSELECT
                                                       = 2'b00 ;
defparam i sbmac16. BOTADDSUB UPPERINPUT
                                                       = 1'b0;
defparam i sbmac16. BOTADDSUB LOWERINPUT
                                                        = 2'b00 ;
defparam i sbmac16. BOTOUTPUT SELECT
                                                       = 2'b10;
defparam i sbmac16. TOPADDSUB CARRYSELECT
                                                        = 2'b00 ;
defparam i sbmac16. TOPADDSUB UPPERINPUT
                                                       = 1'b0;
defparam i sbmac16. TOPADDSUB LOWERINPUT
                                                       = 2'b00 ;
defparam i sbmac16. TOPOUTPUT SELECT
                                                        = 2'b10;
defparam i sbmac16. PIPELINE 16x16 MULT REG2
                                                        = 1'b0 ;
```

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.3. iCE40 UltraLite (iCE40UL) Hard Macros

This section describes the following dedicated hard macro primitives available in the iCE40 UltraLite device.

- SB_HFOSC
- SB LFOSC
- SB RGBA DRV
- SB IR400 DRV
- SB_BARCODE_DRV
- SB_IR500_DRV
- SB LEDDA IP
- SB IR IP
- SB IO OD
- SB_I2C_FIFO

7.3.1. SB_HFOSC

SB_HFOSC primitive generates 48 MHz nominal clock frequency within +/- 10% variation, with user-programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.16. SB_HFOSC

Table 7.26. SB_HFOSC Port Signals

Signal Name	Direction	Description
CLKHFPU	Input	Power up the HFOSC circuit. After power up, the oscillator output is stable after 100 μ s. Active High.
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100 μs power up period. Active High.
CLKHF	Output	HF Oscillator output.

Parameters

Table 7.27. SB HFOSC Parameters

Parameter	Parameter Values	Description
CLKHF_DIV	"0b00"	Sets 48 MHz HFOSC output.
	"0b01"	Sets 24 MHz HFOSC output.
	"0b10"	Sets 12 MHz HFOSC output.
	"0b11"	Sets 6 MHz HFOSC output

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notic

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0"Input CLKHFPU: Logic "0"

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

/* synthesis ROUTE THROUGH FABRIC = <value> */ Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

7.3.2. SB_LFOSC

SB_LFOSC primitive generates 10 kHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.17. SB_LFOSC

Table 7.28. SB_LFOSC Port Signals

Signal Name	Direction	Description							
CLKLFPU	Input	Power up the LFOSC circuit. After power up, the oscillator output is stable after 100 μ s. Active High.							
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100 μs power up period. Active High.							
CLKLF	Output	LF Oscillator output.							

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0" Input CLKLFPU: Logic "0"

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value> */ Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

7.3.3. SB_RGBA_DRV

SB_RGBA_DRV primitive is the RGB LED drive module which contains three dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the three RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b0000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.18. SB_RGBA_DRV

Table 7.29. SB_RGBA_DRV Port Signals

Signal Name	Direction	Description
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled, (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100 µs to reach a stable reference current value.
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB0	Output	RGB0 LED output.
RGB1	Output	RGB1 LED output.
RGB2	Output	RGB2 LED output.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input RGBLEDEN : Logic "0"
Input RGB0PWM : Logic "0"
Input RGB1PWM : Logic "0"
Input RGB2PWM : Logic "0"

Parameters

The SB_RGBA_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT_MODE = "0b0"; Parameter values:

"0b0" = Full Current Mode (Default).

"0b1" = Half Current Mode.

Parameter RGB0_CURRENT = "0b000000";

Parameter RGB1_CURRENT = "0b000000";

Parameter RGB2_CURRENT = "0b000000";

Parameter values:

"0b000000" = 0 mA. // Set this value to use the associated SB_IO_OD instance at RGB // LED location.

"0b000001" = 4 mA for Full Mode; 2 mA for Half Mode

"0b00011" = 8 mA for Full Mode; 4 mA for Half Mode.

"0b001111" = 12 mA for Full Mode; 6 mA for Half Mode.

"0b001111" = 20 mA for Full Mode; 8 mA for Half Mode

"0b011111" = 24 mA for Full Mode; 10 mA for Half Mode.

"0b111111" = 24 mA for Full Mode; 12 mA for Half Mode.
```

Verilog Instantiation

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.3.4. SB_IR400_DRV

SB_IR400_DRV primitive is the IR driver which contains a single dedicated open drain I/O pin for IRLED output. The IRLED output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_IR400_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR400_CURRENT parameter is set to "0b000000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.19. SB_IR400_DRV

Table 7.30. SB_IR400_DRV Port Signals

Signal Name	Direction	Description
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100 µs to reach a stable reference current value.
IRLEDEN	Input	Enable the SB_IR400_DRV primitive. Active High.
IRPWM	Input	PWM Input data to drive IRLED pin.
IRLED	Output	IR LED output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input IRLEDEN : Logic "0"
Input IRPWM : Logic "0"

Parameter

The SB_IR400_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT_MODE = "0b0";
Parameter values:
"0b0" = Full Current Mode (Default).
"0b1" = Half Current Mode.

Parameter IR400_CURRENT = "0b00000000";
Parameter Values:
"0b000000000"; = 0 mA. //This is the setting to tristate the IR output to allow it to be used as GPIO (SB_IO_OD)
"0b00000001"; = 50 mA for Full Mode; 25 mA for Half Mode.
"0b00000011"; = 100 mA for Full Mode; 50 mA for Half Mode.
"0b00000111"; = 150 mA for Full Mode; 75 mA for Half Mode.
"0b00001111"; = 200 mA for Full Mode; 100 mA for Half Mode.
"0b00011111"; = 250 mA for Full Mode; 125 mA for Half Mode.
"0b001111111"; = 350 mA for Full Mode; 150 mA for Half Mode.
"0b011111111"; = 350 mA for Full Mode; 175 mA for Half Mode.
"0b011111111"; = 400 mA for Full Mode; 200 mA for Half Mode.
```

Verilog Instantiation

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.3.5. SB_BARCODE_DRV

SB_BARCODE_DRV primitive contains a single dedicated open drain I/O pin for BARCODE output. The BARCODE output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_BARCODE_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the BARCODE_CURRENT parameter is set to "0b0000", SB_IO_OD can be used to drive the package pin.

Figure 7.20. SB_BARCODE_DRV

Table 7.31. SB BARCODE DRV Port Signals

Signal Name	Direction	Description
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes $100~\mu s$ to reach a stable reference current value.
BARCODEN	Input	Enable the SB_BARCODE_DRV primitive. Active High.
BARCODEPWM	Input	PWM Input data to drive BARCODE pin.
BARCODE	Output	BARCODE output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input BARCODEEN : Logic "0"
Input BARCODEPWM : Logic "0"

Parameter

The SB_BARCODE_DRV primitive contains the following parameter and their default values:

Parameter CURRENT_MODE = "0b0";

Parameter values:

"0b0" = Full Current Mode (Default).

"0b1" = Half Current Mode.

Parameter BARCODE_CURRENT = "0b0000";

Parameter values:

"0b0000" = 0 mA.//This is the setting to tri-state the BARCODE output to allow it to be used // as GPIO (SB_IO_OD)

"0b0001" = 16.6 mA for Full Mode; 8.3 mA for Half Mode,

"0b0011" = 33.3 mA for Full Mode; 16.6 mA for Half Mode,

"0b1001" = 66.6 mA for Full Mode; 33.3 mA for Half Mode,

"0b1010" = 83.3 mA for Full Mode; 41.6 mA for Half Mode,

"0b0111" = 50 mA for Full Mode; 25 mA for Half Mode,

"0b1111" = 100 mA for Full Mode; 50 mA for Half Mode

Verilog Instantiation

7.3.6. SB_IR500_DRV

SB_IR500_DRV primitive is the IR driver which contains a two dedicated open drain I/O pin for IRLED1, IRLED2 outputs. The IRLED outputs are bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_IR500_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR4500_CURRENT parameter is set to "0b00000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.21. SB_IR500_DRV

SB_IR500_DRV DRC Rule

This primitive cannot be instantiated along with SB_BARCODE_DRV or SB_IR400_DRV instance.

Table 7.32. SB IR500 DRV Port Signals

Direction	Description							
Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100 µs to reach a stable reference current value.							
Input	Enable the SB_IR400_DRV primitive. Active High.							
Input	PWM Input data to drive IRLED pin.							
Output	IR LED output 1.							
Output	IR LED output 2.							
	Input Input Input Output							

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input IRLEDEN : Logic "0"
Input IRPWM : Logic "0"

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Parameters

The SB_IR500_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT MODE = "0b0";
Parameter values:
"0b0"; = Full Current Mode (Default).
"0b1"; = Half Current Mode.
Parameter IR500_CURRENT = "0b00000000000";
Parameter values:
"0b0000000000"; = 0 mA. // This is the setting to tristate the BARCODE output to allow it to // be used as GPIO
(SB_IO_OD).
"0b00000000111"; = 50 mA for Full Mode; 25 mA for Half Mode.
"0b00000001111"; = 100 mA for Full Mode; 50 mA for Half Mode.
"0b00000011111"; = 150 mA for Full Mode; 75 mA for Half Mode.
"0b00000111111"; = 200 mA for Full Mode; 100 mA for Half Mode.
"0b000001111111"; = 250 mA for Full Mode; 125 mA for Half Mode.
"0b000011111111"; = 300 mA for Full Mode; 150 mA for Half Mode.
"0b000111111111"; = 350 mA for Full Mode; 175 mA for Half Mode.
"0b001111111111"; = 400 mA for Full Mode; 200 mA for Half Mode.
"0b01111111111"; = 450 mA for Full Mode; 225 mA for Half Mode.
"0b1111111111"; = 500 mA for Full Mode; 250 mA for Half Mode.
```

Verilog Instantiation

7.3.7. **SB_LEDDA_IP**

SB_LEDDA_IP primitive generates the RGB PWM outputs for the RGB LED drivers. The IP contains registers that are programmed in by the SCI bus interface signals.

Figure 7.22. SB_LEDDA_IP

Table 7.33. SB_LEDDA_IP Port Signals

Signal Name	Direction	Description
LEDDCS	Input	CS to write LEDD IP registers
LEDDCLK	Input	Clock to write LEDD IP registers
LEDDDAT7	Input	Bit 7 data to write into the LEDD IP registers
LEDDDAT6	Input	Bit 6 data to write into the LEDD IP registers
LEDDDAT5	Input	Bit 5 data to write into the LEDD IP registers
LEDDDAT4	Input	Bit 4 data to write into the LEDD IP registers
LEDDDAT3	Input	Bit 3 data to write into the LEDD IP registers
LEDDDAT2	Input	Bit 2 data to write into the LEDD IP registers
LEDDDAT1	Input	Bit 1 data to write into the LEDD IP registers
LEDDDAT0	Input	Bit 0 data to write into the LEDD IP registers
LEDDADDR3	Input	LEDD IP register address bit 3
LEDDADDR2	Input	LEDD IP register address bit 2
LEDDADDR1	Input	LEDD IP register address bit 1
LEDDADDR0	Input	LEDD IP register address bit 0
LEDDDEN	Input	Data enable input to indicate data and address are stable.
LEDDEXE	Input	Enable the IP to run the blinking sequence. When it is LOW, the sequence stops at the nearest OFF state.
LEDDRST	Input	Device level reset signal to reset all internal registers during the device configuration. This port is not accessible to user signals.
PWMOUT0	Output	PWM output 0
PWMOUT1	Output	PWM output 1
PWMOUT2	Output	PWM output 2
LEDDON	Output	Indicating the LED is on

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

```
SB LEDDA IP PWMgen_inst (
      .LEDDCS (ledd cs),
      .LEDDCLK(led clk),
      .LEDDDAT7(led ip data[7]),
      .LEDDDAT6(led ip data[6]),
      .LEDDDAT5(led ip data[5]),
      .LEDDDAT4(led ip data[4]),
      .LEDDDAT3(led ip data[3]),
      .LEDDDAT2(led ip data[2]),
      .LEDDDAT1(led ip data[1]),
      .LEDDDAT0(led ip data[0]),
      .LEDDADDR3(led ip addr[3]),
      .LEDDADDR2(led ip addr[2]),
      .LEDDADDR1(led ip addr[1]),
      .LEDDADDR0(led ip addr[0]),
      .LEDDDEN(led ip den),
      .LEDDEXE (led ip exe),
      .LEDDRST(led ip rst),
      .PWMOUTO(LEDO),
      .PWMOUT1 (LED1),
      .PWMOUT2 (LED2),
      .LEDDON(led on)
);
```

7.3.8. SB IR IP

SB_IR_IP primitive is the IR transceiver module. It generates or receives the modulated pulse for the IR driver primitives.

Figure 7.23. SB_IR_IP

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Table 7.34. SB_IR_IP Port Signals

Signal Name	Direction	Description
CLKI	Input	Clock input for IR IP
CSI	Input	Select Signal. Active High to activate the IP. This usually connects to the output
DENI	Innut	of the decoding logic from MSB of the address bus
DENI	Input	Data Enable. When asserted, indicates that the data and address on the IR Transceiver Control Bus are stabilized and ready to be captured.
WEI	Input	Data Write Enable. Asserted during WRITE and deasserted during READ cycle.
ADRI3	Input	Control Register Address Bit 3
ADRI2	Input	Control Register Address Bit 2
ADRI1	Input	Control Register Address Bit 1
ADRI0	Input	Control Register Address Bit 0
WDATA7	Input	Write Data Input Bit 7
WDATA6	Input	Write Data Input Bit 6
WDATA5	Input	Write Data Input Bit 5
WDATA4	Input	Write Data Input Bit 4
WDATA3	Input	Write Data Input Bit 3
WDATA2	Input	Write Data Input Bit 2
WDATA1	Input	Write Data Input Bit 1
WDATA0	Input	Write Data Input Bit 0
RDATA7	Output	Read Data Output Bit 7
RDATA6	Output	Read Data Output Bit 6
RDATA5	Output	Read Data Output Bit 5
RDATA4	Output	Read Data Output Bit 4
RDATA3	Output	Read Data Output Bit 3
RDATA2	Output	Read Data Output Bit 2
RDATA1	Output	Read Data Output Bit 1
RDATA0	Output	Read Data Output Bit 0
EXE	Input	Execute. When asserted, starts the IR Transceiver Hard IP to transmit or receive IR data
LEARN	Input	Learning Mode control. When asserted, the IR Transceiver is in learning mode. The IR Transceiver receives data instead of transmit data.
BUSY	Output	Busy status output
DRDY	Output	Data Buffer Ready status output
ERR	Output	Data Error status
RST	Input	Device level reset signal to reset all internal registers and IROUT signal to OFF state during the device configuration. This port is not accessible to user signals.
IRIN	Input	Modulated ON/OFF pulse from IR sensor.
IROUT	Output	Modulated ON/OFF pulse from its sensor. Modulated ON/OFF pulse for IR Transmit.
11.001	σαιραί	Modulated OnyOTT puise for in Transfillt.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

```
SB_IR_IP IRIP inst (
      .CLKI (sysclk i),
      .CSI(csi i),
      .DENI(deni i),
      .WEI(wei i),
      .ADRI3(addri i[3]),
      .ADRI2(addri_i[2]),
      .ADRI1(addri i[1]),
      .ADRIO(addri i[0]),
      .WDATA7(wdata i[7]),
      .WDATA6(wdata i[6]),
      .WDATA5(wdata i [5]),
      .WDATA4(wdata i [4]),
      .WDATA3(wdata i [3]),
      .WDATA2(wdata i [2]),
      .WDATA1 (wdata i [1]),
      .WDATA0(wdata i [0]),
      .RDATA7(rdata o[7]),
      .RDATA6(rdata o[6]),
      .RDATA5(rdata o[5]),
      .RDATA4(rdata o[4]),
      .RDATA3(rdata o[3]),
      .RDATA2(rdata o[2]),
      .RDATA1(rdata o[1]),
      .RDATA0(rdata o[0]),
      .EXE (exe i),
      .LEARN(learn i),
      .BUSY (busy o),
      .DRDY(drdy o),
      .ERR (err o),
      .RST(rst i),
      .IRIN(irin i),
      .IROUT(irpulse w)
);
```

7.3.9. SB_IO_OD

The SB_IO_OD is the open drain I/O primitive. When the Tristate output is enabled, the I/O pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Figure 7.24. SB_IO_OD

Table 7.35. SB IO OD Port Signals

Table 7.55.55_16_65 Tote 516.11.15		
Signal Name	Direction	Description
PACKAGEPIN	Bidirectional	Bidirectional I/O pin.
LATCHINPUTVALUE	Input	Latches/Holds the input data.
CLOCKENABLE	Input	Clock enable signal.
IRLED1	Output	IR LED output 1.
IRLED2	Output	IR LED output 2.
INPUTCLK	Input	Clock for the input registers.
OUTPUTCLK	Input	Clock for the output registers.
OUTPUTENABLE	Input	Enable Tristate output. Active high.
DOUT0	Input	Data to package pin.
DOUT1	Input	Data to package pin.
DIN0	Output	Data from package pin.
DIN1	Output	Data from package pin.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE results in a non-optimal implementation, since extra LUT is used to generate the Logic "1". If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameters

```
Parameter PIN_TYPE = 6'b0000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1.

Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional Table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

Verilog Instantiation

```
OpenDrainInst0 (
SB IO OD
.PACKAGEPIN (PackagePin),
                                           // User's Pin signal name
.LATCHINPUTVALUE (latchinputvalue),
                                           // Latches/holds the Input value
                                           // Clock Enable common to input and
.CLOCKENABLE (clockenable),
                                          // output clock
                                           // Clock for the input registers
.INPUTCLK (inputclk),
.OUTPUTCLK (outputclk),
                                          // Clock for the output registers
.OUTPUTENABLE (outputenable),
                                          // Output Pin Tristate/Enable
                                           // control
.DOUT0 (dout0),
                                           // Data 0 - out to Pin/Rising clk
                                           // edge
                                           // Data 1 - out to Pin/Falling clk
.DOUT1 (dout1),
                                           // edge
.DINO (din0),
                                           // Data 0 - Pin input/Rising clk
                                           // edge
                                           // Data 1 - Pin input/Falling clk
.DIN1 (din1)
                                           // edge
);
defparam OpenDrainInst0.PIN TYPE = 6'b000000;
defparam OpenDrainInst0.NEG TRIGGER = 1'b0;
```


7.3.10. SB _ I2C_FIFO

The iCE40UL device supports two I^2C hard IP primitives, located at bottom left corner and bottom right corner of the chip.

Figure 7.25. SB_I2C_FIFO

Table 7.36. SB_I2C_FIFO Port Signals

Signal Name	Direction	Description
CLKI	Input	System Clock input
CSI	Input	Select Signal. Active High to activate the IP. This usually connects to the output of the decoding logic from MSB of the address bus
STBI	Input	Strobe Signal
WEI	Input	Write Enable Signal
ADRI3	Input	Control Register Address Bit 3
ADRI2	Input	Control Register Address Bit 2
ADRI1	Input	Control Register Address Bit 1
ADRI0	Input	Control Register Address Bit 0
DATI9	Input	Data Input Bit 9
DATI8	Input	Data Input Bit 8
DATI7	Input	Data Input Bit 7
DATI6	Input	Data Input Bit 6
DATI5	Input	Data Input Bit 5
DATI4	Input	Data Input Bit 4
DATI3	Input	Data Input Bit 3
DATI2	Input	Data Input Bit 2
DATI1	Input	Data Input Bit 1
DATI0	Input	Data Input Bit 0
DATO9	Output	Data Output Bit 9

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Direction	Description
DATO8	Output	Data Output Bit 8
DATO7	Output	Data Output Bit 7
DATO6	Output	Data Output Bit 6
DATO5	Output	Data Output Bit 5
DATO4	Output	Data Output Bit 4
DATO3	Output	Data Output Bit 3
DATO2	Output	Data Output Bit 2
DATO1	Output	Data Output Bit 1
DATO0	Output	Data Output Bit 0
ACKO	Output	Acknowledgement
I2CIRQ	Output	I ² C Interrupt output
I2CWKUP	Output	I ² C Wake up from Standby signal
SRWO	Output	Slave RW "1" master receiving / Slave transmitting "0" master transmitting /
		Slave receiving
SCLI	Input	Serial Clock Input
SCLO	Output	Serial Clock Output
SCLOE	Output	Serial Clock Output Enable. Active High
SDAI	Input	Serial Data Input
SDAO	Output	Serial Data Output
SDAOE	Output	Serial Data Output Enable. Active High
FIFORST*	Input	RESET for the FIFO logic
TXFIFOAEMPTY*	Output	TX FIFO Status Signal
TXFIFOEMPTY*	Output	TX FIFO Status Signal
TXFIFOFULL*	Output	TX FIFO Status Signal
RXFIFOAFULL*	Output	RX FIFO Status Signal
RXFIFOFULL*	Output	RX FIFO Status Signal
RXFIFOEMPTY*	Output	RX FIFO Status Signal
MRDCMPL*	Output	Master Read Complete (only valid for Master Read Mode)

*Note: Only available if I2C_FIFO_ENB = ENABLED.

Parameters

Table 7.37. SB_I2C_FIFO Parameters

I ² C Location	Parameter	Parameter Default	Description
Left Side Corner	I2C_SLAVE _ADDR	0b1111100001	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
Right Side	I2C_SLAVE _ADDR	0b1111100010	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value */

Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

0: No delay.

1: Add 50 ns delay. (Default value).

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value:

0: No delay (Default value).

1: Add 50 ns delay.

I2C_FIFO_ENB

"I2C FIFO ENB" attribute is used to enable or disable FIFO

/* synthesis I2C FIFO ENB= [value] */

Value:

ENABLED: FIFO mode is enabled. DISABLED: FIFO mode is disabled.

7.4. iCE40 UltraPlus Hard Macros

This section describes the following dedicated hard macro primitives available in iCE40 UltraPlus device.

- SB HFOSC
- SB LFOSC
- SB RGBA DRV
- SB_LEDDA_IP
- SB_IO_OD
- SB_I2C
- SB_SPI
- SB_MAC16
- SB SPRAM256KA
- SB_IO_I3C

7.4.1. SB HFOSC

SB_HFOSC primitive generates 48 MHz nominal clock frequency within +/- 10% variation, with user-programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.26. SB_HFOSC

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 7.38. SB_HFOSC Port Signals

Signal Name	Direction	Description
CLKHFPU	Input	Power up the HFOSC circuit. After power up, the oscillator output is stable after 100 μs. Active High.
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100 μ s power up period. Active High.
CLKHF	Output	HF Oscillator output.

Parameters

Table 7.39. SB_PLL40_CORE Parameters

Parameter	Parameter Values	Description
CLKHF_DIV	"0b00"	Sets 48 MHz HFOSC output.
	"0b01"	Sets 24 MHz HFOSC output.
	"0b10"	Sets 12 MHz HFOSC output.
	"0b11"	Sets 6 MHz HFOSC output

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0" Input CLKHFPU: Logic "0"

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
```

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

```
SB_HFOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = "0b00";
```


7.4.2. SB_LFOSC

SB_LFOSC primitive generates 10 kHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Figure 7.27. SB_LFOSC

Table 7.40. SB_LFOSC Port Signals

Signal Name	Direction	Description
CLKLFPU	Input	Power up the LFOSC circuit. After power up, the oscillator output is stable after 100 μs. Active High.
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100 μs power up period. Active High.
CLKLF	Output	LF Oscillator output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0" Input CLKLFPU: Logic "0"

Clock Network Selection

By default, the oscillator use one of the dedicated clock networks in the device to drive the elements. You may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value> */

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.4.3. SB_RGBA_DRV

SB_RGBA_DRV primitive is the RGB LED drive module which contains three dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. You can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the three RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b000000", then SB_IO_OD can be used to drive the package pin.

Figure 7.28. SB_RGBA_DRV

Table 7.41. SB_RGBA_DRV Port Signals

Signal Name	Direction	Description
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100 µs to reach a stable reference current value.
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually driven from the SB_LEDD_IP.
RGB0	Output	RGB0 LED output.
RGB1	Output	RGB1 LED output.
RGB2	Output	RGB2 LED output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input RGBLEDEN : Logic "0"
Input RGB0PWM : Logic "0"
Input RGB1PWM : Logic "0"
Input RGB2PWM : Logic "0"

Parameters

The SB_RGBA_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT_MODE = "0b0";

Parameter values:

"0b0" = Full Current Mode (Default).

"0b1" = Half Current Mode.

Parameter RGB0_CURRENT = "0b000000";

Parameter RGB1_CURRENT = "0b000000";

Parameter RGB2_CURRENT = "0b000000";

Parameter values:

"0b000000" = 0 mA. // Set this value to use the associated SB_IO_OD instance at RGB // LED location.

"0b000001" = 4 mA for Full Mode; 2 mA for Half Mode

"0b000011" = 8 mA for Full Mode; 4 mA for Half Mode

"0b000111" = 12 mA for Full Mode; 6 mA for Half Mode.

"0b001111" = 16 mA for Full Mode; 8 mA for Half Mode

"0b011111" = 20 mA for Full Mode; 10 mA for Half Mode.

"0b111111" = 24 mA for Full Mode; 12 mA for Half Mode.
```

Verilog Instantiation

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.4.4. SB_LEDDA_IP

SB_LEDDA_IP primitive generates the RGB PWM outputs for the RGB LED drivers. The IP contains registers that are programmed in by the SCI bus interface signals.

Figure 7.29. SB_LEDDA_IP

Table 7.42. SB_LEDDA_IP Port Signals

Signal Name	Direction	Description
LEDDCS	Input	CS to write LEDD IP registers
LEDDCLK	Input	Clock to write LEDD IP registers
LEDDDAT7	Input	Bit 7 data to write into the LEDD IP registers
LEDDDAT6	Input	Bit 6 data to write into the LEDD IP registers
LEDDDAT5	Input	Bit 5 data to write into the LEDD IP registers
LEDDDAT4	Input	Bit 4 data to write into the LEDD IP registers
LEDDDAT3	Input	Bit 3 data to write into the LEDD IP registers
LEDDDAT2	Input	Bit 2 data to write into the LEDD IP registers
LEDDDAT1	Input	Bit 1 data to write into the LEDD IP registers
LEDDDAT0	Input	Bit 0 data to write into the LEDD IP registers
LEDDADDR3	Input	LEDD IP register address bit 3
LEDDADDR2	Input	LEDD IP register address bit 2
LEDDADDR1	Input	LEDD IP register address bit 1
LEDDADDR0	Input	LEDD IP register address bit 0
LEDDDEN	Input	Data enable input to indicate data and address are stable.
LEDDEXE	Input	Enable the IP to run the blinking sequence. When it is LOW, the sequence stops at the nearest OFF state.
LEDDRST	Input	Device level reset signal to reset all internal registers during the device configuration. This port is not accessible to user signals.
PWMOUT0	Output	PWM output 0
PWMOUT1	Output	PWM output 1
PWMOUT2	Output	PWM output 2
EDDON	Output	Indicating the LED is on

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

```
SB LEDDA IP PWMgen inst (
      .LEDDCS (ledd cs),
      .LEDDCLK(led clk),
      .LEDDDAT7(led ip data[7]),
      .LEDDDAT6(led ip data[6]),
      .LEDDDAT5(led ip data[5]),
      .LEDDDAT4(led ip data[4]),
      .LEDDDAT3(led ip data[3]),
      .LEDDDAT2(led ip data[2]),
      .LEDDDAT1(led ip data[1]),
      .LEDDDAT0(led ip data[0]),
      .LEDDADDR3(led ip addr[3]),
      .LEDDADDR2(led ip addr[2]),
      .LEDDADDR1(led ip addr[1]),
      .LEDDADDR0(led ip addr[0]),
      .LEDDDEN(led ip den),
      .LEDDEXE (led ip exe),
      .LEDDRST(led ip rst),
      .PWMOUTO(LED0),
      .PWMOUT1 (LED1),
      .PWMOUT2 (LED2),
      .LEDDON(led on)
```

7.4.5. SB_IO_OD

The SB_IO_OD is the open drain I/O primitive. When the tri-state output is enabled, the I/O pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 7.30. SB_IO_OD

Table 7.43. SB_IO_OD Port Signals

Signal Name	Direction	Description
PACKAGEPIN	Bidirectional	Bidirectional I/O pin.
LATCHINPUTVALUE	Input	Latches/Holds the input data.
CLOCKENABLE	Input	Clock enable signal.
INPUTCLK	Input	Clock for the input registers.
OUTPUTCLK	Input	Clock for the output registers.
OUTPUTENABLE	Input	Enable Tristate output. Active high.
DOUT0	Input	Data to package pin.
DOUT1	Input	Data to package pin.
DIN0	Output	Data from package pin.
DIN1	Output	Data from package pin.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE results in a non-optimal implementation, since extra LUT is used to generate the Logic "1". If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameter Values

```
Parameter PIN_TYPE = 6'b000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1.

Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional Table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

Verilog Instantiation

```
SB_IO_OD
            OpenDrainInst0
(
PACKAGEPIN (PackagePin),
                                           //User's Pin signal name
LATCHINPUTVALUE (latchinputvalue),
                                           //Latches/holds the Input value
CLOCKENABLE (clockenable),
                                           //Clock Enable common to input and
                                           //output clock
INPUTCLK (inputclk),
                                           //Clock for the input registers
OUTPUTCLK (outputclk),
                                           //Clock for the output registers
                                           //Output Pin Tristate/Enable
OUTPUTENABLE (outputenable),
                                           //control
DOUTO (dout0),
                                           //Data 0 - out to Pin/Rising clk
                                           //edge
DOUT1 (dout1),
                                           //Data 1 - out to Pin/Falling clk
DINO (din0),
                                           // Data 0 - Pin input/Rising clk
                                           // edge
DIN1 (din1)
                                           // Data 1 - Pin input/Falling clk
                                           // edge
);
defparam OpenDrainInstO.PIN TYPE = 6'b000000;
defparam OpenDrainInst0.NEG TRIGGER = 1'b0;
```


7.4.5.1. SB_I2C

The iCE40 UltraPlus device supports two I^2C hard IP primitives, located at upper left corner and upper right corner of the chip.

Figure 7.31. SB_I2C

Table 7.44. SB_I2C Port Signals

Signal Name	Direction	Description
SBCLKI	Input	System Clock input.
SBRWI	Input	System Read/Write Input.
SBSTBI	Input	Strobe Signal
SBADRIO	Input	System Bus Control registers address. Bit 0.
SBADRI1	Input	System Bus Control registers address. Bit 1.
SBADRI2	Input	System Bus Control registers address. Bit 2.
SBADRI3	Input	System Bus Control registers address. Bit 3.
SBADRI4	Input	System Bus Control registers address. Bit 4.
SBADRI5	Input	System Bus Control registers address. Bit 5.
SBADRI6	Input	System Bus Control registers address. Bit 6.
SBADRI7	Input	System Bus Control registers address. Bit 7.
SBDATI0	Input	System Data Input. Bit O.
SBDATI1	Input	System Data input. Bit 1.
SBDATI2	Input	System Data input. Bit 2.
SBDATI3	Input	System Data input. Bit 3.
SBDATI4	Input	System Data input. Bit 4.
SBDATI5	Input	System Data input. Bit 5.
SBDATI6	Input	System Data input. Bit 6.
SBDATI7	Input	System Data input. Bit 7.
SBDATO0	Output	System Data Output. Bit 0.
SBDATO1	Output	System Data Output. Bit 1.
SBDATO2	Output	System Data Output. Bit 2.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Direction	Description	
SBDATO3	Output	System Data Output. Bit 3.	
SBDATO4	Output	System Data Output. Bit 4.	
SBDATO5	Output	System Data Output. Bit 5.	
SBDATO6	Output	System Data Output. Bit 6.	
SBDATO7	Output	System Data Output. Bit 7.	
SBACKO	Output	System Acknowledgement.	
I2CIRQ	Output	I2C Interrupt output.	
12CWKUP	Output	I2C Wake Up from Standby signal.	
SCLI	Input	Serial Clock Input.	
SCLO	Output	Serial Clock Output	
SCLOE	Output	Serial Clock Output Enable. Active High.	
SDAI	Input	Serial Data Input	
SDAO	Output	Serial Data Output	
SDAOE	Output	Serial Data Output Enable. Active High.	

Parameters

Table 7.45. SB_I2C Parameters

I ² C Location	Parameter	Parameter Default Value	Description
Upper Left Corner	I2C_SLAVE_INIT_ADDR	0b1111100001	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Upper Right Corner	I2C_SLAVE_INIT_ADDR	0b1111100010	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0011	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value */ Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

- 0: No delay.
- 1: Add 50 ns delay. (Default value).

164

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50 ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value:

0: No delay (Default value).

1: Add 50 ns delay.

SCL_INPUT_FILTERED

SCL_INPUT_FILTERED attribute is used to add 50 ns glitch filter to the SCLI signal.

/* synthesis SCL_INPUT_FILTERED= value */

Value:

0: No Filter delay (Default value).

1: Add 50 ns glitch filter delay.

7.4.6. SB SPI

The iCE40 UltraPlus device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip.

Figure 7.32. SB_SPI

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 7.46. SB_SPI Port Signals

Signal Name	Direction	Description
SBCLKI	Input	System Clock input.
SBRWI	Input	System Read/Write Input.
SBSTBI	Input	Strobe Signal
SBADRI0	Input	System Bus Control registers address. Bit 0.
SBADRI1	Input	System Bus Control registers address. Bit 1.
SBADRI2	Input	System Bus Control registers address. Bit 2.
SBADRI3	Input	System Bus Control registers address. Bit 3.
SBADRI4	Input	System Bus Control registers address. Bit 4.
SBADRI5	Input	System Bus Control registers address. Bit 5.
SBADRI6	Input	System Bus Control registers address. Bit 6.
SBADRI7	Input	System Bus Control registers address. Bit 7.
SBDATI0	Input	System Data Input. Bit 0.
SBDATI1	Input	System Data input. Bit 1.
SBDATI2	Input	System Data input. Bit 2.
SBDATI3	Input	System Data input. Bit 3.
SBDATI4	Input	System Data input. Bit 4.
SBDATI5	Input	System Data input. Bit 5.
SBDATI6	Input	System Data input. Bit 6.
SBDATI7	Input	System Data input. Bit 7.
SBDATO0	Input	System Data Output. Bit 0.
SBDATO1	Input	System Data Output. Bit 1.
SBDATO2	Input	System Data Output. Bit 2.
SBDATO3	Input	System Data Output. Bit 3.
SBDATO4	Input	System Data Output. Bit 4.
SBDATO5	Input	System Data Output. Bit 5.
SBDATO6	Input	System Data Output. Bit 6.
SBDATO7	Input	System Data Output. Bit 7.
SBACKO	Output	System Acknowledgement
SPIIRQ	Output	SPI Interrupt output.
SPIWKUP	Output	SPI Wake Up from Standby signal.
MI	Input	Master Input from PAD
SO	Output	Slave Output to PAD
SOE	Output	Slave Output Enable to PAD. Active High.
SI	Input	Slave Input from PAD
MO	Output	Master Output to PAD
MOE	Output	Master Output Enable to PAD. Active High.
SCKO	Output	Slave Clock Output to PAD
SCKOE	Output	Slave Clock Output Enable to PAD. Active High.
SCSNI	Input	Slave Chip Select Input From PAD
MCSNO0	Output	Master Chip Select Output to PAD. Line 0.
MCSNO1	Output	Master Chip Select Output to PAD. Line 1.
MCSNO2	Output	Master Chip Select Output to PAD. Line 2.
MCSNO3	Output	Master Chip Select Output to PAD. Line 3.
MCSNOE0	Output	Master Chip Select Output Enable to PAD. Active High. Line 0.
MCSNOE1	Output	Master Chip Select Output Enable to PAD. Active High. Line 1.
MCSNOE2	Output	Master Chip Select Output Enable to PAD. Active High. Line 2.
MCSNOE3	Output	Master Chip Select Output Enable to PAD. Active High. Line 3.

Parameters

SPI Primitive requires configuring a parameter for selecting the SPI IP location.

Table 7.47. SB_SPI Parameters

SPI Location	Parameter	Parameter Default Value	Description
Lower Left Corner	BUS_ADDR74	060000	Fixed value. SBADRI[7:4] bits also should match with this value to activate the IP.
Lower Right Corner	BUS_ADDR74	060010	Fixed value. SBADRI[7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

Synthesis attribute "SPI_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCKO output with respect to the SBCLKI input clock frequency.

/* synthesis SPI_CLK_DIVIDER=[Divide Range] */ Divide Range : 0, 1, 2, 3....63. Default is 0.

7.4.7. SB_MAC16

The SB_MAC16 primitive is the dedicated configurable DSP block available in iCE5LP/iCE40 UltraPlus devices. The SB_MAC16 can be configured into a multiplier, adder, subtracter, accumulator, multiply-add and multiply-sub through the instance parameters. The SB_MAC16 blocks can be cascaded to implement wider functional units.

iCEcube2 supports a set of predefined SB_MAC16 functional configurations. Refer to SB_MAC16 section for the SB_MAC16 functional model, port details, and the list of supported configurations.

Figure 7.33. SB_MAC16

Port B (Generated Clock)

7.4.8. SB_SPRAM256KA

The iCE40 UltraPlus devices offer four embedded memory blocks of Single Port RAM. Each of these blocks can be configured in 16 kb x 16 mode. These RAM blocks can be cascaded using logic implemented in the fabric to create larger memories.

Figure 7.34. SB_SPRAM256KA

Table 7.48. SB_SPRAM256KA Ports

Port Name	Port Width	Default Value	Description
ADDRESS	[13:0]	14b'000000 00000000	This Address input port is used to address the location to be written during the write cycle and read during the read cycle.
DATAIN	[15:0]	16b'000000 0000000000	The data input bus used to write the data into the memory location specified by address input port during the write cycle.
MASKWREN	[3:0]	4b'1111	The Bit Write feature where selective write to individual I/O can be done using the Maskable Write Enable signals. Each bit masks a nibble of DATAIN.
WREN	[0:0]	1b'0	When the Write Enable input is Logic High, the memory is in the write cycle. When the Write enable is Logic Low, the memory is in the Read Cycle.
CHIPSELECT	[0:0]	1b'0	When the memory enable input is Logic High, the memory is enabled and read/write operations can be performed. When memory Enable input is logic Low, the memory is deactivated.
CLOCK	[0:0]	-	This is the external clock for the memory.
STANDBY	[0:0]	1b'0	When this pin is active then memory goes into low leakage mode, there is no change in the output state.
SLEEP	[0:0]	1b'0	This pin shut down power to periphery and maintain memory contents. The outputs of the memory are pulled low.
POWEROFF	[0:0]	1b'1	This pin turns off the power to the memory core when it is driven low (1'b0). There is no memory data retention when it is driven low. When POWEROFF is driven high (1'b1), the SPRAM is powered on.
DATAOUT	[15:0]	-	It outputs the contents of the memory location addressed by the Address Input signals.

The default value of each MASKWREN is 1. In order to mask a nibble of DATAIN, the MASKWREN needs to be pulled low (0).

The following shows which MASKWREN bits enables the mask for the DATAIN nibbles.

- MASKWREN(3) enables mask for DATAIN(15:12)
- MASKWREN(2) enables mask for DATAIN (11:8)
- MASKWREN(1) enables mask for DATAIN (7:4)
- MASKWREN(0) enables mask for DATAIN(3:0)

7.4.9. SB IO I3C

The iCE40 UltraPlus devices contain two special purpose I/O blocks. These blocks are same as SB_IO, but have two additional user control signals PU_ENB, WEAK_PU_ENB to enable/disable the resistor networks. These blocks are useful in I3C applications.

The SB_IO_I3C block contains five registers. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Figure 7.35. SB_IO_I3C

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK_ENABLE.

Note that explicitly connecting a logic '1' value to port CLOCK_ENABLE results in a non-optimal implementation, since an extra LUT is used to generate the Logic '1'. If your intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

Explicitly connecting a logic "0" value to port PU_ENB and/or WEAK_PU_ENB results and extra LUTs are used to generate the Logic "0". If it is intended to always enable the pull-up and/or weak pull-up, it is recommended the associated port be left unconnected.

Input and Output Pin Function Tables

Input and Output functions are independently selectable through the PIN_TYPE [1:0] and PIN_TYPE [5:2] parameter settings respectively. Specific I/O functions are defined by the combination of both attributes. This means that the complete number of combinations is 64, although some combinations are not valid and not defined below.

Note that the selection of I/O Standards such as LVCMOS is not defined by these tables.

Table 7.49. Input Pin Function

#	Pin Function Mnemonic	PIN_TYPE[1:0]		Functional Description of Package Pin Input Operation
1	PIN_INPUT	0	1	Simple input pin (D_IN_0)
2	PIN_INPUT_LATCH	1	1	Disables internal data changes on the physical input pin by latching the value.
3	PIN_INPUT_REGISTERED	0	0	Input data is registered in input cell
4	PIN_INPUT_REGISTERED_LATCH	1	0	Disables internal data changes on the physical input pin by latching the value on the input register
5	PIN_INPUT_DDR	0	0	Input 'DDR' data is clocked out on rising and falling clock edges. Use the D_IN_0 and D_IN_1 pins for DDR operation.

Table 7.50. Output Pin Function

#	Pin Function Mnemonic	PIN_	TYPE	[5:2]		Functional Description of Package Pin Output Operation
1	PIN_NO_OUTPUT	0	0	0	0	Disables the output function
2	PIN_OUTPUT	0	1	1	0	Simple output pin, (no enable)
3	PIN_OUTPUT_TRISTATE	1	0	1	0	The output pin may be tri-stated using the enable
4	PIN_OUTPUT_ENABLE_REGISTERED	1	1	1	0	The output pin may be tri-stated using a registered enable signal
5	PIN_OUTPUT_REGISTERED	0	1	0	1	Output registered, (no enable)
6	PIN_OUTPUT_REGISTERED_ENABLE	1	0	0	1	Output registered with enable (enable is not registered)
7	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED	1	1	0	1	Output registered and enable registered
8	PIN_OUTPUT_DDR	0	1	0	0	Output 'DDR' data is clocked out on rising and falling clock edges
9	PIN_OUTPUT_DDR_ENABLE	1	0	0	0	Output data is clocked out on rising and falling clock edges
10	PIN_OUTPUT_DDR_ENABLE_REGIST ERED	1	1	0	0	Output 'DDR' data with registered enable signal
11	PIN_OUTPUT_REGISTERED_INVERT ED	0	1	1	1	Output registered signal is inverted
12	PIN_OUTPUT_REGISTERED_ENABLE INVERTED	1	0	1	1	Output signal is registered and inverted, (no enable function)
13	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED_INVERTED	1	1	1	1	Output signal is registered and inverted, the enable/tristate control is registered.

© 2016-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Syntax Verilog Use

Output Pin Function is the bit vector associated with PIN_TYPE [5:2] and Input Pin Function is the bit vector associated with PIN_TYPE [1:0], resulting in a 6-bit value PIN_TYPE [5:0]

defparam my_generic_IO.PIN_TYPE = 6'b{Output Pin Function, Input Pin Function};

Pull-Up Resistor Configuration.

You can configure the internal pull-up resistor strength of an I/O to a predefined resistor value through the parameter settings and synthesis attributes. The PULLUP parameter setting enables one of the resistor values as given in table 1 and WEAKPULLUP parameter setting enables the 100k pull-up resistor.

The specific resistor value associated with the PULLUP parameter needs to specify through the PULLUP_RESISTOR attribute. The PULLUP_RESISTOR value is effective only when PULLUP parameter is set to 1.

Both the PULLUP and WEAKPULLUP parameters are allowed to set simultaneously. When both parameters are set the effective pull-up resistor values is [100K | | {3P3K/6P8K/10K}].

Once the required parameters, attribute values are set, the active low PU_ENB, WEAK_PU_ENB signals allows you to control the pull-up resistor network dynamically.

Synthesis Attribute Syntax:

/* synthesis PULLUP RESISTOR = "3P3K" */

Resistor Value

Table 7.51. Resistor Value

Resistor Value	Description	
"3P3K"	Pull-up resistor level is 3.3k.	
"6P8K"	Pull-up resistor level is 6.8k.	
"10K"	Pull-up resistor level is 10k.	

Note: The PULLUP RESISTOR value is effective only when PULLUP parameter is set to 1.

Verilog Instantiation

```
SB IO I3C
          I3CIO INST
.PACKAGE PIN (Package Pin),
                                          //User's Pin signal name
.LATCH INPUT VALUE (latch input value),
                                          //Latches/holds the Input value
.CLOCK ENABLE (clock enable),
                                          //Clock Enable common to input and
                                          //output clock
.INPUT CLK (input clk),
                                          //Clock for the input registers
.OUTPUT CLK (output clk),
                                          //Clock for the output registers
.OUTPUT_ENABLE (output enable),
                                          //Output Pin Tristate/Enable
                                          //control
.D_OUT_0 (d_out_0),
                                          //Data 0 - out to Pin/Rising clk
.D OUT 1 (d out 1),
                                          //Data 1 - out to Pin/Falling clk
                                          //edge
                                          //Data 0 - Pin input/Rising clk
.D IN 0 (d in 0),
                                          //edge
.D IN 1 (d in 1),
                                          //Data 1 - Pin input/Falling clk
                                          //edge
.PU ENB (pu enb),
                                          // Active low Pull Up resistor
Enable -Default to GND
.WEAK PU ENB (weak pu enb)
                                         //Active low Weak Pull Up Enable
for 100k resistor. Default to GND
) /* synthesis PULLUP RESISTOR "3P3K" */ ;
defparam I3CIO INST.PIN TYPE = 6'b000000;
                                 // See Input and Output Pin Function Tables.
                                 // Default value of PIN TYPE = 6'000000 i.e.
                                 // an input pad, with the input signal
                                 // registered.
defparam I3CIO INST.PULLUP = 1'b0;
                                 // By default, the IO will have NO pull up.
defparam I3CIO INST.WEAK PULLUP = 1'b0;
                                // By default, the IO will have NO Weak pull up.
defparam I3CIO INST.NEG TRIGGER = 1'b0;
defparam I3CIO INST.IO STANDARD = "SB LVCMOS";
```


7.5. Device Configuration Primitives

7.5.1. SB_WARMBOOT

The iCE FPGA devices permit you to load a different configuration image during regular operation. Through the use of the Warm Boot Primitive, you can load one of four pre-defined configuration images into the iCE FPGA device.

Note that this Warm Boot mode is different from the Cold Boot operation, which is executed during the initial device boot-up sequence.

Figure 7.36. SB_WARMBOOT

The selection of one of these four images is accomplished through two input signals, S1 and S0. In order to trigger the selection of a new image, an additional signal, BOOT, is provided. It should be noted that this signal is level-triggered, and should be used for every Warm Boot operation. For example, every time you want to load a new image into the device.

The successful instantiation of this primitive also requires the user to specify the address locations of the four images. These addresses should be specified in the iCEcube2 software as per the Warm Boot Application Note.

Verilog Instantiation

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 3.2, November 2021

Section	Change Summary		
All	Adjustments in formatting across the document.		
Acronyms in This Document	Added this section.		
I/O Primitives	Changed table name to Pull-up Resistor Value and K to k unit in Table 4.4.		
Hard Macro Primitives	 Changed 16K x 16 mode to 16 kb x 16 mode in SB_SPRAM256KA. Updated Table 7.6 and Table 7.47 to change I²C column to SPI Location and parameter 		
	value of Lower Right Corner to 0b0010.		
	Changed K to k unit in Table 7.51.		

Revision 3.1, July 2021

Section	Change Summary	
All	Assigned document number FPGA-TN-02026.	
	Updated document template.	
Disclaimers	Added this section.	
Hard Macro Primitives	Updated Figure 7.15.	

Revision 3.0, August 2016

Section	Change Summary
All	Previous Lattice release.

www.latticesemi.com