Design of A Charge-Pump Phase Lock Loop

Phase Lock Loop (PLL) เป็นระบบที่ใช้ควบคุมความถี่ โดยใช้วิธีการเปรียบเทียบเฟสของความถี่อินพุตกับความเฟส ของความถี่เอาต์พุต ซึ่งในโครงงานนี้ เราจะทำการออกแบบ PLL แบบ Charge-Pump PLL เนื่องจาก Type-I PLL มีข้อจำกัด ต่างๆในการออกแบบที่มากเกิน ดังนั้นโมเดลที่เราจะใช้ในการออกแบบมีทั้งหมด 3 ส่วนหลัก ได้แก่

- Phase/Frequency Detector
- Loop Filter
- Voltage-Controlled Oscillator

โดยแต่ละส่วนจะทำหน้าที่ดังนี้

Phase/Frequency Detector มีหน้าที่ตรวจสอบสัญญาณสองสัญญาณที่อินพุตเข้ามาว่ามีเฟสต่างกันมากน้อยเท่าใด และเฟสของสัญญาณใดน้ำหรือตามอีกสัญญาณเท่าใด โดยที่เอาต์พุตของ Phase/Frequency Detector จะเป็นกระแส ซึ่งจะมี ลักษณะเป็น pulse ที่ขึ้นอยู่กับสัญญาณสองสัญญาณว่ามีเฟสต่างกันมากน้อยเพียงใด ถ้าหากเฟสต่างกันมาก pulse width ของ กระแสก็จะมาก หากเฟสต่างกันน้อย pulse width ของกระแสก็จะน้อย ซึ่งการนำกระแสนี้ไปใช้งานจำเป็นต้องนำไปกรองผ่าน Loop-Filter ที่จะทำหน้าที่กรองกระแสเหล่านี้ให้เรียบและสามารถนำไปใช้ได้ เมื่อได้กระแสที่ถูกกรองให้เรียบแล้วจะได้ V_{CTRL} เป็น Output ของ Loop Filter ซึ่งขึ้นอยู่กับการกำหนด V_{high} และ V_{low} ของ Phase/Frequency Detector ก่อนที่จะผ่าน Loop Filter ด้วย โดย V_{CTRL} จะเป็นตัวควบคุม Output Frequency ที่ออกมาจาก Voltage-Controlled Oscillator เพราะฉะนั้น กระแสที่เข้า Loop Filter แล้วได้ออกมาเป็น V_{CTRL} จะเป็นตัวควบคุมว่าระบบต้องเพิ่มลดความถี่ของ Output อย่างไร เพื่อให้ ความถี่ของ Input ตรงกับความถี่ของ output เนื่องจากระบบนี้นำ Output Frequency ไปต่อเป็น Feedback เข้าไปที่ Phase/Frequency Detector

ทฤษฎีที่ใช้ในการออกแบบ

Voltage-Controlled Oscillator (VCO):

ใช้ Model ของ LTC6990 ใน LTSpice ที่ทำหน้าที่ควบคุมความถี่การ Oscillator ด้วยการปรับค่า V_{CTRL}

OE : ทำหน้าที่กำหนดการทำงานของ IC โดยการใส่ High เพื่อสั่งให้ IC ทำงาน

OUT : ใช้เป็นเอาต์พุตที่จะมีความถี่ตามฟังก์ชันการทำงานของวงจร

SET : ใช้ทำการควบคุมความถี่ที่จะถูกขับออกที่ขา OUT

DIV : ใช้โปรแกรมฟังก์ชันของวงจร ว่าวงจรจะทำงานอยู่ในช่วงใดตามตารางจาก datasheet

V+: เป็น Supply Voltage ตั้งแต่ 2.25-5.5 Volt

GND : ขา Ground

วิธีการออกแบบ

1. เลือก N_{DIV} จากความถี่ที่แนะนำใน datasheet

DIVCODE	Hi-Z	N _{DIV}	Recommended four	R1 (k)	R2 (k)	V _{DIV} /V+
0	0	1	62.5kHz to 1MHz	Open	Short	≤ 0.03125 ±0.015
1	0	2	31.25kHz to 500kHz	976	102	0.09375 ±0.015
2	0	4	15.63kHz to 250kHz	976	182	0.15625 ±0.015
3	0	8	7.813kHz to 125kHz	1000	280	0.21875 ±0.015
4	0	16	3.906kHz to 62.5kHz	1000	392	0.28125 ±0.015
5	0	32	1.953kHz to 31.25kHz	1000	523	0.34375 ±0.015
6	0	64	976.6Hz to 15.63kHz	1000	681	0.40625 ±0.015
7	0	128	488.3Hz to 7.813kHz	1000	887	0.46875 ±0.015
8	1	128	488.3Hz to 7.813kHz	887	1000	0.53125 ±0.015
9	1	64	976.6Hz to 15.63kHz	681	1000	0.59375 ±0.015
10	1	32	1.953kHz to 31.25kHz	523	1000	0.65625 ±0.015
11	1	16	3.906kHz to 62.5kHz	392	1000	0.71875 ±0.015
12	1	8	7.813kHz to 125kHz	280	1000	0.78125 ±0.015
13	1	4	15.63kHz to 250kHz	182	976	0.84375 ±0.015
14	1	2	31.25kHz to 500kHz	102	976	0.90625 ±0.015
15	1	1	62.5kHz to 1MHz	Short	Open	≥ 0.96875 ±0.015

2. คำนวณ K_{VCO} และ $f_{(0V)}$ จากการกำหนด Transfer Function

3. คำนวณ R_{VCO} และ R_{SET} จากสมการใน datasheet

$$\begin{split} R_{VCO} &= \frac{1 \text{MHz} \cdot 50 \text{k}}{N_{DIV} V_{SET} K_{VCO}} &---(1.1) \\ R_{SET} &= \frac{1 \text{MHz} \cdot 50 \text{k}}{N_{DIV} (f_{(0V)} \cdot V_{SET} K_{VCO})} &---(1.2) \end{split}$$

ดังนั้น หลังจากที่สามารถออกแบบพารามิเตอร์ต่างๆใน Voltage-Controlled Oscillator ได้แล้วนั้นจะทำให้เราสามารถสร้าง ระบบของ VCO ที่มี Transfer Function เป็นดังนี้

Transfer Function of VCO =
$$\frac{\kappa_{VCO}}{s}$$
 ---(1.3)

Phase/Frequency Detector (PFD):

ใช้ Model Phidet (รูปที่ 4) ที่เป็น Phase/Frequency Detector แบบ charge-pump (รูปที่ 3)

โดยต้องกำหนดกระแสของตัว Charge-Pump และ V_{high} กับ V_{low} ของ Output ที่ I_{out} ตามความต้องการของวงจรรวม ซึ่งจะได้กระแสเฉลี่ยในรูปที่ 5 ในหนึ่งคาบหลังจากที่ผ่าน Loop Filter เป็น $I_{av} = \frac{I_{out}}{2\pi}$ ดังนั้นจะได้

Gain (Transfer Function) of PFD =
$$\frac{l_{out}}{2\pi}$$
 ---(2)

Loop Filter:

เนื่องจากการวงจรกรองความถี่สูงหรือ Low-Pass Filter ใช้ตัวเก็บประจุหนึ่งตัว จึงมี Transfer Function เป็น $\frac{1}{SC_p}$ ซึ่ง เมื่อรวมกับ Transfer Function ของ VCO จะทำให้เกิดเป็น Pole ที่ origin 2 ตัว ซึ่งทำให้ Phase margin เป็น 0 องศาและทำ ให้ระบบ unstable ดังนั้นจึงได้เพิ่ม lead compensation ทำให้วงจรประกอบไปด้วยตัวเก็บประจุสองตัวและตัวต้านทานหนึ่งตัว

นำทั้งสามส่วนมารวมกันจะได้ Open-Loop Transfer Function ของระบบเป็นรูปที่ 7

การออกแบบค่าพารามิเตอร์

Requirement:

- Loop crossover frequency = 50kHz
- Phase margin = 45°
- Lock range 900kHz 1.1MHz
- Center Frequency of the VCO = 1MHz

จากโจทย์ ให้ f_1 และ f_2 ในรูปที่ 2 เป็น 1.1MHz และ 900KHz ตามลำดับ และกำหนด V_1 และ V_2 อยู่ระหว่าง 0-3.3 volt ตาม suggestion ซึ่งได้เลือกเป็น 0-2 volt ทำให้ได้ความชั้นของกราฟหรือ $K_{VCO}=100$ kHz/V

และได้ทำการออกแบบวงจร VCO ตามทฤษฎีโดยเลือก N_{DIV} = 1 จากตารางที่ 1 และนำค่าต่างๆมากแทนในสมการที่ 1.1 และ 1.2 ดังนี้

$$\begin{split} R_{VCO} &= \frac{1 \text{MHz } \text{`50k}}{1 \times 1 \times (100 \times 10^3)} = 500 \text{ kilo-ohms} \\ R_{SET} &= \frac{1 \text{MHz } \text{`50k}}{1 \times [(1.1 \times 10^3) \times (100 \times 10^3)]} = 50 \text{ kilo-ohms} \end{split}$$

ออกแบบ Open loop Transfer Function จากรูปที่ 8

ให้ตำแหน่งของ Zero อยู่ที่ crossover frequency :

$$\frac{1}{RC_p} = \mathbf{W}_C$$

$$\frac{1}{RC_p} = 314.16 \text{ krad/sec} \qquad ---(5)$$

ต้องการให้ที่ crossover frequency เป็นจุดเดียวกับ zero ที่ $\frac{1}{RC_p}$ จึงจะได้ Phase margin ประมาณ 45° ซึ่งจาก Requirement ของโจทย์ ต้องการ Loop crossover frequency = 50 kHz ซึ่งเท่ากับ $2\pi(50\text{kHz}) = 314.16 \text{ krad/sec}$ และทราบว่าความ ชันก่อนจะถึง zero มีค่าเป็น -40dB/dec จึงสามารถ คำนวณหาจุดตัดแกน y ใน log scale ได้

คำนวณหาจุดตัดแกน y ใน log scale :

$$\begin{aligned} &20\log\left[\frac{I_{\text{out}}\mathsf{K}_{\text{VCO}}}{2\pi(\mathsf{C}_{\text{P}}+\mathsf{C}_{\text{P2}})}\right] = 40\mathsf{log}(\pmb{\omega}_{\text{C}}) \\ &20\log\left[\frac{(10\times10^{-3})(100\times10^{3})}{2\pi(\mathsf{C}_{\text{P}}+\mathsf{C}_{\text{P2}})}\right] = 40\mathsf{log}(314.16\times10^{3}) \\ &\frac{(10\times10^{-3})(100\times10^{3})}{2\pi(\mathsf{C}_{\text{P}}+\mathsf{C}_{\text{P2}})} = (314.16\times10^{3})^{2} \\ &\mathbf{i}_{\text{WS1=22uus}} \tilde{\mathbf{u}}_{\text{US}} = \tilde{\mathbf{u}}_{\text{US}} \tilde{\mathbf{u}}_{\text{US}} = 1.6 \text{ nF} \end{aligned}$$

ต้องการให้ α = 10 เพื่อทำให้ได้ Phase จาก lag compensation มากที่สุด

$$\alpha = \frac{\alpha_T}{T} = \frac{RC_P}{R(C_P||C_{P2})} = \frac{C_P}{C_P||C_{P2}}$$
 ให้ $C_P >> C_{P2}$

$$10 = \frac{C_P}{C_{P2}} \qquad ---(7)$$

แก้สมการที่ (6) และ (7) ได้ :

$$C_P = 1.454 \text{ nF}$$

$$C_{P2} = 0.145 \text{ nF}$$

แทนลงในสมการที่ (5) :

R = 2.2 kilo-ohms

ตรวจสอบ bode plot จาก Matlab

Gm = 0

Pm = 45.3738

WC = 0

wp = 4.0080e + 05

ซึ่งค่า Phase margin และ crossover frequency ที่ได้ยังไม่ตรงตาม requirement โดย crossover frequency ที่ควรได้ต้องเป็น 3.1415e+05 จึงได้มี การปรับค่าเล็กน้อยตามความเหมาะสม $C_P=1.49~{
m nF}$, $C_{P2}=0.11~{
m nF}$ และ $R=2.4~{
m kilo}$ -ohms รวมถึง reduce gain $\sqrt{2}$ โดยการเปลี่ยนค่า $I_{
m out}$ จาก 10 เป็น $\frac{10}{\sqrt{2}}$ mA เท่าเพื่อลด error จากการโค้งงอที่จุดหัก จะได้ bode plot เป็น

Gm = 0

Pm = 45.0138

WC = 0

wp = 3.2902e + 05

หลังจากที่ปรับค่าก็ได้ phase margin และ crossover frequency ที่ใกล้เคียงกับ requirement ของโจทย์มากขึ้น

ผลการทดลองจาก Simulation บน LTspice

.tran 0 1020u 420u

ใช้ความถี่สามช่วงในการตรวจสอบว่า System ที่ใส่ input เข้าไป output จะถูก lock frequency ตาม input หรือไม่ โดยสาม ช่วงที่ใช้ตรวจสอบจะเป็น f_{in} = 900kHz, 1MHz และ 1.1MHz ซึ่งได้ผล V_{CTRL} และ Output Frequency ดังนี้

$f_{in} = 900kHz$

 $f_{in} = 1MHz$

$f_{in} = 1.1MHz$

เพื่อประเมิน Phase margin โดยใช้ FM source จะใส่ step frequency เป็น input แล้วดู output ที่ V_{CTRL} ซึ่งจะได้ t_{S} และ t_{P}

จากกราฟ V_{CTRL} ที่ถูกเปลี่ยนความที่จาก 1.1MHz เป็น 1MHz จะสามารถสังเกต Settling time และ peak time ได้

 $t_p = 1.2$ micro-seconds

 $t_S = 31$ micro-seconds

เนื่องจาก output ของระบบอยู่ในรูปของความถี่ซึ่งยากต่อการตรวจสอบ จึงได้ทำการสังเกตในส่วนของ V_{CTRL} โดยเปรียบเทียบ step response ของ V_{CRLT}/f_{in} ที่ทำให้ได้ closed-loop transfer function ที่มี phase margin = 45 จาก LTspice กับ Matlab

จากการเปรียบเทียบ Settling time และ peak time ของ Matlab และ LTspice มีค่าใกล้เคียงกัน

เพราะฉะนั้นจึงสรุปว่าการ simulation จาก LTspice มีค่า phase margin ของ closed loop transfer function เท่ากับ 45 องศา

*หมายเหตุ ส่วนของการ damping ในกราฟของ LTspice เกิดจาก noise ที่เข้ามารบกวน ยิ่งค่ากระแสมากทำให้ noise มากตาม