Applicazione di algoritmi di routing dinamico su reti wireless in ambiente portuale

Tesi svolta presso il Fantuzzi Reggiane Electronic Department (FRED)

Relatore: Prof. G. Dodero

Candidato: Daniele Venzano Correlatore: Prof. M. Ancona

Relatore esterno: Dott. F. Parodi

Problema

- Representation de la Fornire una copertura di rete WiFi su ampie zone in cui:
 - 1. sono presenti mezzi in constante movimento
 - 2. non è possibile installare cavi (lunghe distanze, costi degli scavi)
 - 3. si vuole poter estendere la copertura in qualsiasi momento
 - 4. possono esistere zone d'ombra causate da palazzine, pile di container o altre strutture metalliche
 - 5. apparecchiature eterogenee (sistemi embedded, palmari, pc portatili) possono essere collegate alla rete

Soluzione -- MeshAP

- A Progettare ed assemblare un nodo di una rete mesh in grado di:
 - 1. essere montato in posizione sia fissa che mobile
 - 2. necessitare solo di una connessione alla rete elettrica per l'alimentazione e di un'antenna per la ricezione/trasmissione dei dati
 - 3. resistere a forti vibrazioni ed a condizioni meteorologiche ostili (estremi di temperature, umidità e salinità dell'aria)
 - 4. essere gestito da remoto, sia per il monitoraggio del buon funzionamento, sia per la modifica dei parametri di configurazione
 - 5. fornire l'accesso alla rete mesh in modo trasparente ad un altro dispositivo non wireless attraverso una connessione Ethernet

Reti mesh

Rete Mesh

Tutti i nodi sono alla pari

Per comunicare con la rete basta la visibilità di un nodo qualsiasi

Routing dinamico per gestire la mobilità dei nodi

Rete WiFi tradizionale

Ogni nodo deve rimanere nel raggio d'azione dell'access point

Meccanismi di roaming poco diffusi e proprietari

Ogni nuovo access point richiede una connessione di rete aggiuntiva

Lavoro svolto

- Valutazione degli algoritmi esistenti in base a criteri di maturità dell'implementazione e di attività del gruppo di sviluppo
- Scelta e test dell'hardware e delle antenne da utilizzare per il MeshAP
- Preparazione del sistema operativo basato su kernel Linux e distribuzione OpenWRT
- Scrittura e test del software applicativo per monitoraggio e diagnostica remota ed interfaccia web per la configurazione

Optimized Link State Routing

Algoritmo proattivo: all'avvio ogni nodo inizia a scambiare dati con i vicini e si costruisce internamente la topologia completa della rete

A Pro:

- Dopo un tempo di inizializzazione di qualche secondo in ogni istante sono disponibili i cammini verso tutti gli altri nodi
- Protocollo standardizzato in una RFC e implementazione matura
- & Buona interoperabilità, esistono versioni per Linux, Windows e palmari

Contro:

Vengono mantenute informazioni anche su cammini che non vengono mai usati

Hardware - WRT54g

- Router wireless a basso costo
- Utilizza Linux come sistema operativo
- E' possibile sostituire il sistema operativo fornito di fabbrica
- Basato su architettura MIPS
- Sistema embedded 'estremo', da 4 ad 8 MByte di memoria di massa

Test hardware

Verifica del funzionamento a temperature estreme (da -20° a 70° C)

Affidabilità al riavvio

Limiti di sovra e sotto alimentazione

Uptime sotto carico

Test routing

- Impostazioni di default di OLSR molto instabili, trovati nuovi valori per un routing più stabile
- Effettuati test fino a 4 nodi (3 salti), sufficienti a coprire un'area di 1,2Km x 400m

Architettura di rete

- Ogni MeshAP, grazie a proxy ARP e routing IP è in grado di offrire una connessione trasparente a 5 dispositivi via ethernet
- Ogni client ha bisogno soltanto di un indirizzo IP e di una connessione wireless o ethernet verso un MeshAP per poter comunicare con tutto il resto della rete

Software

- Base di partenza: distribuzione embedded OpenWRT. Fornisce un sistema di compilazione che crea il nuovo firmware per il WRT54g
 - Modificato il sistema di compilazione per:
 - aggiungere nuovi pacchetti
 - sostituire vecchi programmi con nuove versioni (OLSR)
 - Modificato il sistema di boot per impostare parametri hardware ed automatizzare la prima installazione e l'aggiornamento del firmware
- Aggiunto software per offrire:
 - Monitoraggio remoto del funzionamento
 - Interfaccia web di configurazione
 - Accesso shell via SSH

Applicazione e sviluppi futuri

- Il sistema MeshAP verrà installato entro la fine dell'anno nell'Interporto Campano, a Nola (NA) per dare copertura ad un piazzale di 1 Km²
- E' il primo prodotto commercializzato del suo tipo
- E' in corso di sviluppo una versione con porte seriali per permettere l'uso di lettori di schede magnetiche per autenticare gli operatori o per il monitoraggio remoto di vecchie installazioni
- Si prevede di sfruttare lo stesso software, ma su hardware differente, per offrire comunicazione voce via protocolli Voice over IP