

Harold Zurcher as a Q-learner

Wending Liu
Chienhsiang Yeh
Shu Hu

Research School of Economics, ANU

The Australasian Leadership Computing Symposium 2023

Introduction

- How to analyze the dynamic choices of agents with data?
- Dynamic Programming Approach (Rust, 1987)
 - strong assumptions for rationality and knowledge.
 - estimation based on nested fixed point algorithm.
- Q-learning Approach (This paper)
 - weak assumption for rationality.
 - agent has little knowledge of the environment.
 - simulation-based estimation.

The Importance of Rust (1987)

Zurcher's Problem

- Zurcher (a bus manager in Madison city) tries to minimize the infinite-horizon bus maintenance cost.
- He observes mileage x_t and chooses between ordinary maintenance ($d_t=0$) and engine replacement ($d_t=1$).
- ullet Zurcher believes the cost function is c(x,d)+e, where

$$c(x,d)\coloneqq egin{cases} RC+c_m(0), & d=1\ c_m(x), & d=0 \end{cases}$$

ullet e is an unobserved random shock, $\mathbb{E}(e|(x,d)) = \mu_e(x,d)$.

Zurcher as a DP solver

$$C(x)\coloneqq \min_{\{d_t\}_{t\geq 0}}\mathbb{E}\left[\sum_{t=0}^{\infty}eta^tc_t\Big|x_0=x
ight].$$

where $c_t = c(x_t, d_t) + e_t$.

Bellman equation

$$C(x) = \min_d igl\{ \mathbb{E}[c(x,d) + e + eta C(x') | (x,d)] igr\}.$$

DP Estimation

- 1. Fix $\beta = 0.9999$.
- 2. Estimates transition kernel of mileage by MLE.
- 3. Estimates cost function by NFXP algorithm.

Parameter	Interpretation	Estimate	Std
p_1	$Pr(x_{t+1}=x_t)$	0.3919	0.0096
p_2	$Pr(x_{t+1}=x_t+1)$	0.5953	0.0118
p_3	$Pr(x_{t+1}=x_t+2)$	0.0129	0.0017
$ heta_1$	$c_m(x) = \theta_1 x$	0.0023	0.0006
RC	Replacement Cost	10.0562	1.3576

Limitations of DP approach

- Zurcher can solve the Bellman equation.
- Zurcher's behavior follows the solution to DjP.
- Zurcher has complete knowledge of cost structure, distribution of cost shock, and transition kernel of mileage.
- Data is detached from solving the model, data is only useful for econometricians.

Zurcher as a Q-learner

$$C(x) = \min_d \underbrace{\{\mathbb{E}[c(x,d) + e + eta C(x')|(x,d)]\}}_{=:Q^*(x,d)}.$$

Algorithm 1: Q-learning

- 1 Initialize $Q \in \mathbb{R}^G, x \in X$
- 2 repeat
- Take action d, based on $Q(x,\cdot)$ using ε -greedy policy
- 4 Observe $x' \in X$ and $c \in \mathbb{R}$
- 5 $Q(x,d) \leftarrow (1 \alpha(x,d))Q(x,d) + \alpha(x,d) (c + \beta \min_{a \in \{0,1\}} Q(x',a))$
- 6 $x \leftarrow x'$
- 7 until end

Zurcher as a Q-learner

- Zurcher has initial knowledge Q_0 .
 - \circ He only observes c_t, x_t and x_{t+1} .
- Zurcher learns Q^* by Q-learning algorithm.
 - $\circ \ C(x) = \min_d Q^*(x,d).$
- Since Q_t converges to Q^* , Zurcher believes that he will learn Q^* eventually.

Estimation on GPU

- 1. Set $\beta = 0.9999$, $\alpha = 0.1$, $\varepsilon = 0.02$
- 2. Parameterize Q_0 as a quadratic function of (x,d).
- 3. Simulate many cost shock sequences, then simulate the time series of ${\cal Q}$ table and choice probabilities.
- 4. Simulated maximum likelihood estimation.

Parameter	Interpretation	Estimate	Std
δ_0	$Q_0(x,0)=\delta_0+\delta_1x+\delta_2x^2$	0.0010	0.0002
δ_1	$Q_0(x,0)=\delta_0+\delta_1x+\delta_2x^2$	0.0021	0.0004
δ_2	$Q_0(x,0)=\delta_0+\delta_1x+\delta_2x^2$	0.0004	0.00007
$ heta_1$	$c_m(x) = \theta_1 x$	0.0011	0.0002
RC	Replacement Cost	7.2174	1.3391

Fitness of Data (DP)

• DP: stable decision pattern.

Fitness of Data (Q-learning)

• Q-learning: Zurcher learns from data!

Demand for Engine Replacement

• DP: stable engine demand across time, d = f(x, RC).

Replacement Cost

10

Demand for Engine Replacement

• Q-learning: engine demand curve shifts through time, d=f(x,RC,t).

Conclusion

- "The majority of the modern economics literature can be regarded as a type of applied DP, ..., However, my impression is that formal DP has not been widely adopted to improve decision making by individuals and firms." (Rust, 2019)
- Q-learning is a promising complement to DP.
 - more realistic assumptions for rationality.
 - evolving decision rules over time.
 - more flexible in modeling complex decisions.
 - GPU makes simulation-based estimation fast.