TEAM 9

Pretrained CoLES model quality based on the input data amount

Anastasia Volkova Olga Volkova Ksenia Kuvshinova Alexander Zubrey Anastasia Grigoreva

Content

Motivation

Problem Statement

CoLES Method

Experimental Setup

Results

Conclusions

Motivation

Sequential data embeddings

Using of Pre-training data

Performance metrics

NN saturation

Problem Statement

Challenges

CoLES

difficulty capturing temporal dependencies and patterns in customer transactions

Our project

CoLES does not have dependence of the model quality on the size of the pretrain data

Problem Statement

Challenges

CoLES

difficulty capturing temporal dependencies and patterns in customer transactions

Our project

CoLES does not have dependence of the model quality on the size of the pretrain data

Solution

a new self-monitoring method for embedding discrete event sequences based on contrastive learning different sizes of pretrain testing, NN saturation investigation, comparison of model accuracy

Description of CoLES metod

Algorithm for random slices sub-sequence generation strategy

```
Input: the sequence of length T S = \{z_j\}_{j=0}^{T-1}
```

Output: S subsequence of S

```
for i \leftarrow 1 to k do

Generate a random integer T_i uniformly from [1,T];

if T_i \in [m,M] then

Generate a random integer s from [0,T-T_i);

Add the slice \tilde{S}_i := \{z_{s+j}\}_{j=0}^{I_i-1} to S;

end
```

Description of CoLES metod

Figure 1: General framework. Phase 1: Self-supervised training.

Phase 2.a Self-supervised embeddings as features for supevised model.

Phase 2.b: Pre-trained encoder fine-tuning.

Phase 1

Dmitrii Babaev, Nikita Ovsov, Ivan Kireev, Maria Ivanova, Gleb Gusev, Ivan Nazarov, and Alexander Tuzhilin. 2022. CoLES: Contrastive Learning for Event Sequences with Self-Supervision. In Proceedings of the 2022 International Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD'22). Association for Computing Machinery, New York, NY, USA, 1190–119

Description of CoLES metod

CoLES

Event Sequent Encoder Pairs
Generation
Strategy

Loss Function for Contrastive Algorithm

$$\mathcal{L}_{uv}(M) = Y_{uv} \frac{1}{2} d_M(u, v)^2 + (1 - Y_{uv}) \frac{1}{2} \max\{0, \rho - d_M(u, v)\}^2 \quad \text{wrt} \quad M: \mathcal{X} \to \mathbb{R}^n$$

 $d_M(u,v) = d(c_u,c_v)$ - distance between embeddings of the pair (u,v)

 $c_* = M(\{ ilde{x}_*(au)\})$ ho - soft minimal margin between dissimilar objects

 $Y_{uv}=1$ - if samples from same sequences $Y_{uv}=0$ - if samples from different sequences

Experimental Setup

Transactions Data

Embeddings coding by CoLES

Pretrained Data

Model Size

Experiments

росбанк

Accuracy

Hidden size	RandForest	LGBM
64	0.569	0.603
128	0.592	0.617
256	0.587	0.612
512	0.584	0.623

AUC_ROC

Hidden size	RandForest	LGBM
64	0.799	0.814
128	0.807	0.823
256	0.811	0.808
512	0.816	0.834

Conclusions

- CoLES method for building embeddings of discrete event sequences was implemented
- Pretrained dataset size on both transactions datasets had a strong influence on model performance. The "plato" can be observed at 40% of pretrained data
- Saturation of NN in self-supervised training was reached at half of value of the original model

Thank You!

Anastasia Volkova Olga Volkova Ksenia Kuvshinova Alexander Zubrey Anastasia Grigoreva

TEAM 9