平成20年度 東京大学大学院

数理科学研究科 数理科学専攻 修士課程

専門科目B (筆記試験)

平成19年 8月28日(火) 11:00 ~ 15:00

問題は全部で19題ある。その中から3題選んで解答すること。

- (1) 解答しようとする各問ごとに解答用紙を1枚使用すること. 各解答用紙の所定欄に各自の**氏名,受験番号**と解答する**問題の番号**を記入すること.
- (2) 各計算用紙の上部に各自の**受験番号**を明記すること。ただし氏名は記入してはならない。
- (3) 試験終了後に提出するものは、1題につき1枚、計**3枚の答案**、および**3枚の計算用紙**である。着手した問題数が3題にみたない場合でも、氏名と受験番号のみを記入した白紙答案を補い、3枚とすること。 指示に反したもの、**答案が3枚でないものは無効**とする。
- (4) 解答用紙の裏面を使用する場合は、表面右下に「裏面使用」と明記すること.

B 第1問

群 G の自己同型全体の集合 $\mathrm{Aut}(G)$ を写像の合成を算法として群とみなす.

- (1) $\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}) \simeq (\mathbf{Z}/n\mathbf{Z})^{\times}$ を示せ. ただし $(\mathbf{Z}/n\mathbf{Z})^{\times}$ は可換環 $\mathbf{Z}/n\mathbf{Z}$ の乗法群とする.
- (2) Aut $(\mathbf{Z} \times (\mathbf{Z}/2\mathbf{Z})) \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ を示せ.
- (3) G を有限生成アーベル群とする . $\operatorname{Aut}(G)$ が巡回群となる G を同型を除いて全て決定せよ. ただし単位群は巡回群とは見なさないものとする .

B 第2問

1 変数多項式環 $\mathbf{C}[T]$ の部分環 $\{f\in\mathbf{C}[T]|f(0)=f(1)\}$ を A とおく . $S=T^2-T$ で生成される A の部分環 $\mathbf{C}[S]$ を B とおく .

- (1) A は B 加群として自由加群であることを示し、その階数を求めよ .
- (2) C 上の 2 変数多項式環 C[X,Y] のイデアル I であって剰余環 C[X,Y]/I が A と同型となるようなものを 1 つ求め , それを最小個数の生成元を用いて表せ .
- (3) 商群 $A\left[rac{1}{S}
 ight]^ imes igg/B\left[rac{1}{S}
 ight]^ imes$ の生成系で,要素の個数が最小のものを1組求めよ. ただし可換環 R に対し, $R^ imes$ は R の乗法群を表すものとする.

B 第3問

K を R 上の 1 変数有理関数体 $\mathbf{R}(X)$, L を C 上の 1 変数有理関数体 $\mathbf{C}(X)$ とし, L の拡大体 F を $F=L(\sqrt[3]{X+i})$ で定める .

- (1) F は K のガロア拡大ではないことを示せ.
- (2) F の K 上のガロア閉包を E とするとき, E の K 上の拡大次数 [E:K] を求めよ.
- (3) E に含まれる K の 6 次ガロア拡大を全て求めよ .
- (4) E に含まれる K の 3 次拡大の個数を求めよ.

B 第4問

標数 0 の体 K と正の整数 n に対し, $m_n(K)$ を $GL_n(K)$ の有限位数の元の位数の最大値 (最大値が存在しなければ ∞) とする. (特に, $m_1(K)$ は K の乗法群に含まれる 1 のべき 根の位数の最大値 (最大値が存在しなければ ∞) となる.) 以下の問に答えよ.

- (1) 正の整数 n を固定するとき、次の 2 条件は同値であることを示せ.
 - (a) $m_n(K) < \infty$.
 - (b) $\sup\{m_1(L) \mid [L:K] \le n\} < \infty$.
- (2) $K=\mathbf{Q}$ のとき , 任意の正の整数 n に対して (1) における 2 条件が満たされることを示せ .
- (3) $m_4(\mathbf{Q})$ を求めよ.

B 第5問

2 次元トーラスを $T^2={f R}^2/{f Z}^2$ とし,自然な射影を $\pi:{f R}^2\to T^2$ とする.2 次の実正方行列 X に対して,X の定める線形写像を $L_X:{f R}^2\to{f R}^2$ と表し,X の成分がすべて整数であるとき, L_X が T^2 に誘導する写像を $\ell_X:T^2\to T^2$ と表す.すなわち, ℓ_X は $\ell_X\circ\pi=\pi\circ L_X$ をみたす唯一の写像である.このとき,以下の問に答えよ.

(1) 行列 A, B を以下のように定める.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = A^2$$

このとき , $L_B \circ H = H \circ L_A$ をみたす同相写像 $H: \mathbf{R}^2 \to \mathbf{R}^2$ を具体的に与えよ .

(2) 条件 $\ell_B \circ h = h \circ \ell_A$ をみたすような同相写像 $h: T^2 \to T^2$ は存在しないことを証明 せよ .

B 第6問

ユークリッド空間 ${f R}^3$ の部分集合 Γ を

$$\Gamma = \{(x, y, z) \in \mathbf{R}^3 \mid x, y, z, \,$$
の少なくとも 2 つは整数 $\}$

と定め, \mathbf{R}^3 上の同値関係 \sim を次のように定める: $(x,y,z),(x',y',z')\in\mathbf{R}^3$ に対して, $(x,y,z)\sim(x',y',z')$ とは,次の条件 $(\mathbf{a}),(\mathbf{b})$ のいずれかが成立することである.

(a) **ある整数** ℓ, m, n に対して

$$x' = x + \ell, \ y' = y + m, \ z' = z + n$$

が成立する.

(b) $(x, y, z) \in \Gamma$ かつ $(x', y', z') \in \Gamma$ が成り立つ.

このとき , 同値関係 \sim による ${f R}^3$ の商空間 $X={f R}^3/\sim$ について , その整係数ホモロジー群 $H_*(X;{f Z})$ を求めよ .

B 第7問

2n-1 次元球面 $S^{2n-1}=\left\{(\mathbf{x},\mathbf{y})\in\mathbf{R}^n imes\mathbf{R}^n\;\middle|\;\;\|\mathbf{x}\|^2+\|\mathbf{y}\|^2=1
ight\}$ の交わらない二つの部分多様体 L_1 および L_2 を

$$L_1 = \{(\mathbf{x}, \mathbf{y}) \in S^{2n-1} | \mathbf{x} = \mathbf{0}\}, \quad L_2 = \{(\mathbf{x}, \mathbf{y}) \in S^{2n-1} | \mathbf{y} = \mathbf{0}\}$$

と定め, $M=S^{2n-1}\setminus (L_1\cup L_2)$ とおく.M から $S^{n-1}\times S^{n-1}$ への C^∞ 写像 f を

$$f \colon M \to S^{n-1} \times S^{n-1}, \quad f(\mathbf{x}, \mathbf{y}) = \left(\frac{\mathbf{x}}{\|\mathbf{x}\|}, \frac{\mathbf{y}}{\|\mathbf{y}\|}\right)$$

と定め,そのグラフを

$$\Gamma_f = \{((\mathbf{x}, \mathbf{y}), \mathbf{p}, \mathbf{q}) \in M \times S^{n-1} \times S^{n-1} | f(\mathbf{x}, \mathbf{y}) = (\mathbf{p}, \mathbf{q})\}$$

とする.包含 $M\subset S^{2n-1}$ により $\Gamma_f\subset S^{2n-1}\times S^{n-1}\times S^{n-1}$ とみなし, Γ_f の $S^{2n-1}\times S^{n-1}\times S^{n-1}$ における閉包を G とおく.

- (1) G は $[0,1] imes S^{n-1} imes S^{n-1}$ に位相同型である事を示せ .
- (2) 正数 ϵ に対して, Γ_f の閉集合 G_ϵ を次式で定める:

$$G_{\epsilon} = \{ ((\mathbf{x}, \mathbf{y}), \mathbf{p}, \mathbf{q}) \in \Gamma_f \mid ||\mathbf{x}|| \ge \epsilon, ||\mathbf{y}|| \ge \epsilon \}.$$

 $S^{n-1} \times S^{n-1}$ 上の 2n-2 次微分形式 ω が

$$\int_{S^{n-1}\times S^{n-1}}\omega=1$$

をみたすとき、極限値

$$\lim_{\epsilon \to 0} \int_{G_{\epsilon}} f^* \omega \wedge (\|\mathbf{x}\| d \|\mathbf{y}\| - \|\mathbf{y}\| d \|\mathbf{x}\|)$$

を求めよ.

B 第8問

 $M_2(\mathbf{R})$ を 2 次の実正方行列全体とする.対応

$$\begin{pmatrix} x & z \\ y & w \end{pmatrix} \mapsto (x, y, z, w)$$

により $M_2(\mathbf{R})$ を \mathbf{R}^4 と同一視し,これによって $M_2(\mathbf{R})$ 上に座標 x,y,z,w と標準的なリーマン計量 $\langle\ ,\ \rangle$ を与える.2 次の実対称行列全体を H とし,写像 $F\colon M_2(\mathbf{R})\to H$ を $F(A)={}^t\!AA$ により定める.ただし ${}^t\!A$ は A の転置行列である.このとき以下の問に答えよ.

- (1) 写像 F の $A\in M_2({f R})$ における微分 $(dF)_A$ を求め , F の正則点全体の集合を決定せよ .
- (2) $A \in M_2(\mathbf{R})$ における $M_2(\mathbf{R})$ の 接べクトル X_A を

$$X_A = \frac{d}{dt}(R_t A) \Big|_{t=0} \in \mathcal{T}_A M_2(\mathbf{R})$$
 ただし $R_t = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$

と定める. さらに , 開部分多様体 $P = \{A \in M_2(\mathbf{R}) \mid \det A > 0\}$ 上の 1 次微分形式 θ を , すべての $A \in M_2(\mathbf{R})$ について次の条件 (a),(b) が満たされるように定める:

(a)
$$\theta(X_A) = 1$$
, (b) $\langle X_A, V \rangle = 0$ ならば $\theta(V) = 0$ である.

ここに,V は A における $M_2(\mathbf{R})$ の接ベクトルであり, $\langle \ , \ \rangle$ は上で定めたリーマン計量である.このとき,微分形式 θ を座標 x,y,z,w を用いて表せ.

(3) 写像 $F: M_2(\mathbf{R}) \to H$ を P へ制限して得られる写像を $\pi: P \to B$ とする.ただし,B = F(P) である.このとき,(2) で定めた微分形式 θ の外微分 $d\theta$ は,像 B 上のある微分形式 ω の π による引き戻し $\pi^*\omega$ に等しいことを証明せよ.

B 第9問

(1) A を N 次エルミート行列とする . $k=1,2,\ldots,N$ に対し , 第 k 成分が 1 で他の成分は 0 であるようなベクトルを $e_k\in {\bf C}^N$ とおく . このとき

$$\max_{k=1,2,\dots,N} \limsup_{n\to\infty} |(A^n e_k, e_k)|^{1/n}$$

を A の固有値を用いて表せ.ただし , $(\ ,\)$ は , ${f C}^N$ の標準内積である.

(2) A を ℓ^2 上の自己共役コンパクト作用素, $\{e_k\}_{k\in \mathbf{N}}$ を ℓ^2 の正規直交基底とする.このとき,

$$\sup_{k \in \mathbf{N}} \limsup_{n \to \infty} |(A^n e_k, e_k)|^{1/n}$$

を A の固有値を用いて表せ.

B 第10問

C を複素平面とし, z = x + iy をその座標とする.

- (1) C 上の関数 $u(x,y)=x(x^2-3y^2)$ をその実部にもつような C 上の正則関数 f(z) をすべて求めよ.
- (2) C 上の正則関数の実部および虚部は調和関数であることを示せ.ここで,実数値関数 v(x,y) は C^2 級であって $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ をみたすとき調和関数であるという.
- (3) $\mathbf{C}^* = \{z = x + iy \in \mathbf{C} \mid z \neq 0\}$ とおく. \mathbf{C}^* 上の関数 $\log \sqrt{x^2 + y^2}$ は \mathbf{C}^* 上の正則関数の実部としては表せないことを示せ.
- (4) C上の調和関数はある正則関数の実部に等しいことを示せ.

B 第11問

 $f \in L^1(\mathbf{R}^n)$ に対して , その Fourier 変換 \hat{f} を

$$\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-ix\cdot\xi} f(x) \ dx$$

で定義する.このとき,任意の $\lambda \in \mathbf{R}^n$ に対して

$$\lim_{R \to \infty} R^{-n} \int_{C_R} \hat{f}(\xi) e^{i\lambda \cdot \xi} d\xi = 0$$

となることを示せ.ただし C_R は次で定義される n 次元立方体とする.

$$C_R = \{ \xi = (\xi_1, \dots, \xi_n) \in \mathbf{R}^n \mid |\xi_i| \le R, \ 1 \le i \le n \}$$

B 第12問

 $f:\mathbf{R} o\mathbf{R}$ は C^1 級の単調減少関数, $u(x,t):[-1,1] imes[0,+\infty) o\mathbf{R}$ は半線形熱方程式

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = f(u)$$

の C^3 級の解であり,境界条件

$$\frac{\partial u}{\partial x}(-1,t) = \frac{\partial u}{\partial x}(1,t) = 0 , \ t \ge 0$$

をみたすとする.

(1) s>0 かつ $-1\le a< b\le 1$ となる a,b を固定する.関数 $v(x,t)=\frac{\partial u}{\partial x}(x,t)$ は $v(a,s)=v(b,s)=0,\ v(y,s)>0,\ (a< y< b)$ をみたすとする.そのとき, $\max_{y\in[a,b]}v(y,s)=v(z,s)$ となる $z\in[a,b]$ に対して

$$\frac{\partial v}{\partial t}(z,s) \le 0$$

を示せ.

- (2) 各 s>0 に対して、 $\{(x,t) \mid 0 \le t \le s, -1 \le x \le 1\}$ における $\{(x,t) \mid v(x,t)>0\}$ の 各連結成分は $\{(x,0) \mid -1 < x < 1\}$ と交わることを示せ.
- (3) 各 $t \ge 0$ に対して,

$$Z(t) = \{(x, t) \mid v(x, t) = 0\}$$

が有限集合であるとする. そのとき,

$$\#Z(t) \le \#Z(0)$$

を示せ.ただし #Z(t) は有限集合 Z(t) の要素の個数を表す.

B 第13問

次の n 次行列式により,多項式 $P_n(x)$ $(n=2,3,\cdots)$ を定める.ただし, ω は正の実数である.

$$P_n(x) = \begin{vmatrix} x & \omega^2 & 0 & \cdots & 0 \\ 1 & x & \omega^2 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \omega^2 \\ 0 & \cdots & 0 & 1 & x \end{vmatrix}$$

さらに, $P_0(x) = 1, P_1(x) = x$ と定義する

- (1) 多項式 $P_n(x)$ の間に,次の関係式が成り立つことを示せ. $(n=1,2,\cdots)$
 - i) $P_{n+1} = xP_n \omega^2 P_{n-1}$
 - ii) $P_n^2 P_{n+1}P_{n-1} = \omega^{2n}$
- (2) $x\in [-2\omega,2\omega]$ において, $P_n(x)$ $(n=0,1,\cdots)$ が次のように表現できることを示せ.

$$P_n(x) = \frac{1}{2\pi i} \oint_C \frac{z^{-n-1}}{1 - xz + \omega^2 z^2} dz$$

ただし,複素平面上の閉曲線 C は z=0 を中心とする $1/\omega$ より小さい半径の円であり,積分路の向きは反時計回りとする.

(3) $P_n(2\omega\cos\theta)$ を計算し、 $P_n(x)$ $(n=1,2,\cdots)$ の零点をすべて求めよ.

B 第14問

n を 2 以上の自然数とする. 領域 $D=\{(x_1,\ldots,x_n)\in\mathbf{R}^n\mid x_1>\cdots>x_n\}$ で定義された関数

$$f(x_1, \dots, x_n) = \frac{1}{2} \sum_{i=1}^n x_i^2 - \sum_{1 \le i \le j \le n} \log(x_i - x_j)$$

について以下の問に答えよ.

- (1) $f: D \to \mathbf{R}$ は D 内のただ 1 つの点で最小値をとることを示せ.
- (2) $f:D\to \mathbf{R}$ が $(z_1,\ldots,z_n)\in D$ において最小値をとるとする.x を変数とする多項式 g(x) を

$$g(x) = \prod_{i=1}^{n} (x - z_i)$$

で定めるとき, y = q(x) は微分方程式

$$y'' - 2xy' + 2ny = 0$$

8

を満たすことを示せ.

(3) $\sum_{i=1}^n z_i^2$ の値を求めよ .

B 第15問

X,Y は実ヒルベルト空間とし,それらの内積は順に $(\cdot,\cdot)_X,(\cdot,\cdot)_Y$,ノルムは順に $\|\cdot\|_X,\|\cdot\|_Y$ で表す.さらに,Z は Y の有限次元部分空間とし,また,X と Y との間には包含関係 $X\supset Y$ があり,正定数 C_{XY} が存在して次式が成立すると仮定する.

$$||v||_X \le C_{XY} ||v||_Y \quad (\forall v \in Y)$$

以下の問に答えよ.

(1) 各 $f \in X$ に対して,

$$(u, v)_Y = (f, v)_X \quad (\forall v \in Y)$$

を満たすような $u \in Y$ が一意に存在することを示せ.また $f \in X \mapsto u \in Y$ なる作用素を G とすると,これは線形で次式を満たすことを示せ.

$$||Gf||_Y \le C_{XY} ||f||_X \quad (\forall f \in X)$$

(2) 各 $f \in X$ に対して ,

$$(u_Z, v)_Y = (f, v)_X \quad (\forall v \in Z)$$

を満たすような $u_Z\in Z$ が一意に存在することを示せ.また $f\in X\mapsto u_Z\in Z$ なる作用素を G_Z とすると,これは線形で,(1) の G との間に次の関係式が成立することを示せ.

$$||G_Z f||_Y \le ||Gf||_Y$$
, $||Gf - G_Z f||_Y = \min_{v \in Z} ||Gf - v||_Y$ $(\forall f \in X)$

(3) $f \in X$ を与えたとき,Gf と G_Zf の誤差 $e = Gf - G_Zf \in Y \subset X$ について,

$$||e||_{Y}^{2} = (Ge - G_{Z}e, Gf - G_{Z}f)_{Y}$$

が成立することを示し,それを利用して次の誤差評価式を導け.

$$||Gf - G_Z f||_X \le ||G - G_Z|| \cdot ||Gf - G_Z f||_Y$$

ただし, $\|G-G_Z\|$ は,G と G_Z をともに X から Y への作用素とみたときの,差 $G-G_Z$ の作用素 J ルムである.

B 第16問

次のような連立常微分方程式の初期値問題を考える.

$$\frac{du(t)}{dt} = b(u(t) + v(t)) - \mu_1 u(t) - \frac{\beta u(t)v(t)}{u(t) + v(t)}$$
$$\frac{dv(t)}{dt} = -\mu_2 v(t) + \frac{\beta u(t)v(t)}{u(t) + v(t)}$$

ただし初期条件を

$$u(0) = u_0 > 0, \quad v(0) = v_0 > 0,$$

と与え, $t\geq 0$ での解を考える.また $b,\,\mu_1,\,\mu_2,\,\beta$ は与えられた正の定数で,次の条件を満たすと仮定する:

$$\mu_2 > \mu_1, \quad \beta - \mu_2 > b - \mu_1$$

以下では初期条件を満たす一意的な解 (u(t), v(t)) が t > 0 で存在することを仮定する.

(1) 任意の t > 0 に対して, u(t) > 0, v(t) > 0 であり, かつ

$$u(t) + v(t) \le (u_0 + v_0)e^{(b-\mu_1)t}$$

となることを示せ.

(2) y(t) を以下のように定義する:

$$y(t) := \frac{v(t)}{u(t) + v(t)},$$

このとき y(t) の満たすべき常微分方程式を導き, y(t) を求めよ.

- (3) v(t) を求めよ.
- (4) ある実数 r と正数 A が存在して ,

$$\lim_{t \to \infty} e^{-rt} v(t) = A,$$

となることを示し,rとAを求めよ.

B 第17問

 $p(x,\xi,x')\;(x,\xi,x'\in\mathbf{R})$ を \mathbf{R}^3 上の複素数値 C^∞ -関数で任意の整数 $\ell=0,1,2,\ldots$ に対し次を満たすものとする.

$$|p|_{\ell} := \max_{\alpha + \beta + \gamma \le \ell} \sup_{x, \xi} \left| \partial_x^{\alpha} \partial_{\xi}^{\beta} \partial_{x'}^{\gamma} p(x, \xi, x') \right| < \infty. \tag{a}$$

ただし $\alpha,\beta,\gamma\geq 0$ は整数である.このような関数 p と \mathbf{R} 上の急減少関数 $f\in\mathcal{S}=\mathcal{S}(\mathbf{R})$ に対し以下のような作用素 P を定義する.ただし以下で関数 χ は $\chi(\xi)\in\mathcal{S}(\mathbf{R})$ で $\chi(0)=1$ を満たすものとし, $d\hat{\xi}=(2\pi)^{-1}d\xi$ とする.

$$Pf(x) = \lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} \int_{\mathbf{R}} e^{i(x-x')\xi} p(x,\xi,x') \chi(\epsilon\xi) f(x') dx' d\hat{\xi}.$$
 (b)

このとき以下の問に答えよ.

- (1) この極限の値は $\chi(0)=1$ なる急減少関数 χ の取り方によらず同一の急減少関数を定義することを示せ .
- (2) いま式 (a) を満たす関数 p_j $(j=1,2,\dots,\nu+1)$ $(\nu\geq 1$ は整数) に対し P_j を式 (b) で $p=p_j$ として定義される作用素とする.それらの作用素 P_j の積 $Q_{\nu+1}=P_1\cdots P_{\nu+1}$ を作り $f\in\mathcal{S}(\mathbf{R})$ に対し積作用素 $Q_{\nu+1}$ を施し $Q_{\nu+1}f\in\mathcal{S}(\mathbf{R})$ を作る.この作用素 $Q_{\nu+1}$ は

$$\overline{y^0} = 0, \quad \overline{y^j} = y^1 + \dots + y^j \ (j = 1, 2, \dots, \nu)$$

$$d\mathbf{y}^{\nu} = dy^1 \cdots dy^{\nu}, \quad d\widehat{\boldsymbol{\eta}}^{\nu} = d\widehat{\eta}^1 \cdots d\widehat{\eta}^{\nu}$$

として

$$q_{\nu+1}(x,\xi,x') = \lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} \cdots \int_{\mathbf{R}} e^{-i\sum_{j=1}^{\nu} y^{j} \eta^{j}} \prod_{j=1}^{\nu} p_{j}(x + \overline{y^{j-1}}, \xi + \eta^{j}, x + \overline{y^{j}}) \chi(\epsilon y^{j}) \chi(\epsilon \eta^{j}) \times p_{\nu+1}(x + \overline{y^{\nu}}, \xi, x') d\mathbf{y}^{\nu} d\widehat{\boldsymbol{\eta}}^{\nu}$$

と定義すれば (b) において $p=q_{\nu+1}$ とした作用素 $P=Q_{\nu+1}$ として書け,定数 $C_0>0$ が存在して任意の整数 $\ell=0,1,2,\dots$ に対し

$$|q_{\nu+1}|_{\ell} \le C_0^{\nu+1} \sum_{\ell_1 + \dots + \ell_{\nu+1} \le \ell} \prod_{j=1}^{\nu+1} |p_j|_{6+\ell_j}$$

が成り立つことを示せ.ただし和における $\ell_j \geq 0$ はすべて整数である.

B 第18問

次のような有限オートマトンの拡張 $A=(Q,\Sigma,\delta,q_0,F)$ を考える (Q: 状態集合, $\Sigma:$ アルファベット, $\delta:$ 遷移関数, $q_0:$ 初期状態, F: 終了状態の集合). 通常のオートマトンと異なり, 遷移関数 δ は, $Q\times\Sigma$ から $\{q\wedge q'\mid q,q'\in Q\}\cup\{q\vee q'\mid q,q'\in Q\}$ の中への関数とする.A が語 $a_1a_2\cdots a_n$ を受理することの定義を, 状態を頂点に持つ高さ n の木で, 以下の条件を満たすものが存在するときとする:

- (i) ルートは q_0 である (ルートを高さ 0 とみなす).
- (ii) 高さ $0 \le i < n$ の任意の頂点 q は, $\delta(q, a_{i+1}) = q' \wedge q''$ ならばちょうど二つの子

をもち, $\delta(q, a_{i+1}) = q' \vee q''$ ならばちょうど一つの子

をもつ.

(iii) 高さ n の頂点 (すなわち葉) はすべて終了状態である.

A が受理する語全体の集合を L(A) と書く.

 $\overline{A} = (Q, \Sigma, \overline{\delta}, q_0, Q - F)$ を以下の遷移関数で定義する.

$$\overline{\delta}(q,a) = egin{cases} q' ee q'' & (\delta(q,a) = q' \wedge q'' \,\, \mathfrak{O}$$
는き) $q' \wedge q'' & (\delta(q,a) = q' ee q'' \,\, \mathfrak{O}$ 는き)

このとき、 $L(\overline{A}) = \Sigma^* - L(A)$ を示せ.

B 第19問

以下の問に答えよ.

(1) 実数値確率変数 X が与えられ,ある a>0 に対して

$$a^2 P(|X| \ge a) = E[|X|^2]$$

が成立するとき, X の満たすべき条件を求めよ.

- (2) 実数値確率変数列 X_n , $n=1,2,\ldots$ が X に確率収束し, $f: \mathbf{R} \to \mathbf{R}$ が連続ならば, $f(X_n)$, $n=1,2,\ldots$ は f(X) に確率収束することを示せ.
- (3) X は平均 0 分散 1 の標準正規分布に従う確率変数とする.このとき,x>0 として

$$\lim_{n \to \infty} \frac{1}{n} \log P(|X| \ge \sqrt{n}x)$$

を求めよ.