Assignment 2 - Solutions Temporal Logic

- 1. (a) $\Box \Diamond \Box a \text{legal LTL}$
 - (b) $\exists (a \cup \forall \bigcirc b) \text{legal CTL}$
 - (c) $a \wedge b \square (a \to \bigcirc b)$ not legal in either logic
 - (d) $\neg((\Box\Box a) \cup (a \vee b))$ legal LTL
 - (e) false ∧ true legal in both LTL and CTL
 - (f) $\forall \Box \exists a$ not legal in either logic (although it is legal CTL*)
- 2. (a) $a \wedge \Diamond b \wedge \Diamond c$

This is an LTL formula. It is satisfied by the LTS.

(Every possible path from the initial state s_0 has a true in the first state, b true in the second, and eventually reaches a state labelled with c.)

(b) $\forall \bigcirc (a \lor c) \land \exists \Diamond c$

This is a CTL formula. It is satisfied in states s_3 , s_4 and s_6 of the LTS.

(The left-hand side is satisfied in s_3 , s_4 and s_6 , and the right-hand side is satisfied in all states.)

(c) $\exists \Diamond (\exists \bigcirc (a \land b) \land \forall \bigcirc \neg c)$

This is a CTL formula. It is satisfied only in state s_5 of the LTS.

(The two $\exists \bigcirc$ formulae are satisfied in states $\{s_4, s_5, s_6\}$ and states $\{s_0, s_1, s_2, s_5, s_7\}$, respectively, so their conjunction is true in s_5 and this state can only be reached from itself.)

(d) $\Box \Diamond ((a \land \neg b) \lor \neg c)$

This is an LTL formula. It is satisfied by the LTS.

(Every path eventually ends up visiting state s_6 infinitely often, which satisfies $\neg c$ and therefore $(a \land \neg b) \lor \neg c$.)

(e) $\Box\Diamond\bigcirc\bigcirc(a \land b)$

This is an LTL formula. It is *not* satisfied by the LTS.

(Some path (in fact multiple paths) eventually ends up looping between states s_2 and s_6 forever, which never visits state s_7 in two state's time.)

- 3. (a) "servers 1 and 2 are never both down simultaneously" $\forall \Box \neg (down_1 \wedge down_2)$, where $down_i$ denotes server i being down (equivalently, you could write $\neg \exists \Diamond (down_1 \wedge down_2)$)
 - (b) "it is always the case that a is true now or in one step's time" $\Box(a\lor\bigcirc a)$
 - (c) "zone A is visited infinitely often but zones B and C are visited only finitely often" $\Box \Diamond z_A \wedge \Diamond \Box \neg (z_B \vee z_C)$, where proposition names z_X indicate being in zone X. (equivalently, you could write $\Box \Diamond z_A \wedge \Diamond \Box \neg z_B \wedge \Diamond \Box \neg z_C$ or $\Box \Diamond z_A \wedge \neg \Box \Diamond z_B \wedge \neg \Box \Diamond z_C$)
 - (d) "the robot eventually reaches room 1 and then goes immediately to room 2, all before the alarm goes off"

 $\neg alarm \, U \, (\neg alarm \wedge room_1 \wedge \bigcirc room_2)$ where $room_X$ indicates being in room X and alarm means that the alarm is going off.

(note this assumes it is ok for the alarm to go off as soon as room 2 is reached; this could be interpreted differently)

4. (a) This is an equivalence. We have:

$$\neg(\Box \lozenge a \to \lozenge \Box b) \equiv \neg(\neg\Box \lozenge a \vee \lozenge \Box b) \quad \text{since } \psi_1 \to \psi_2 \equiv \neg \psi_1 \vee \psi_2$$

$$\equiv \neg\neg\Box \lozenge a \wedge \neg \lozenge \Box b \quad \text{since } \neg(\psi_1 \vee \psi_2) \equiv \neg \psi_1 \wedge \neg \psi_2$$

$$\equiv \Box \lozenge a \wedge \neg \lozenge \Box b \quad \text{since } \psi \equiv \neg \neg \psi$$

$$\equiv \Box \lozenge a \wedge \neg \lozenge \neg \Box b \quad \text{since } \psi \equiv \neg \neg \psi$$

$$\equiv \Box \lozenge a \wedge \Box \neg \Box b \quad \text{since } \neg \psi \equiv \Box \psi$$

$$\equiv \Box \lozenge a \wedge \Box \neg \Box \neg \neg b \quad \text{since } \psi \equiv \neg \neg \psi$$

$$\equiv \Box \lozenge a \wedge \Box \neg \Box \neg \neg b \quad \text{since } \neg \psi \equiv \lozenge \psi$$

(b) This is *not* an equivalence, i.e., $\Box a \to \neg \Box (b \land c) \not\equiv \Diamond \neg a \lor \Diamond (\neg b \lor c)$.

At a glance, it looks like it might be, so we can try to rewrite the left-hand side using similar equivalences to those used above:

$$\Box a \to \neg \Box (b \land c) \equiv \neg \Box a \lor \neg \Box (b \land c)$$

$$\equiv \neg \Box \neg \neg a \lor \neg \Box \neg \neg (b \land c)$$

$$\equiv \Diamond \neg a \lor \Diamond \neg (b \land c)$$

$$\equiv \Diamond \neg a \lor \Diamond (\neg b \lor \neg c)$$

This differs from the right-hand side proposed in the question because the c is negated. In other words, it is instead equivalent to $\Box a \to \neg \Box (b \land \neg c)$.

So we can find a trace satisfying the right-hand side but not the left, e.g.: $\{a, b, c\}^{\omega}$.