

Digital Filtering using C8051F020

Course: Bioelectronics

Team ID: 01

Team members:

Name	SEC	BN	Seating Number
Rawan Sayed	1	30	53030
Sara Adel	1	35	53035
AlZahraa Eid	1	16	53016
Ahmed Adel Ahmed	1	06	53006
Kirolos Dawood	2	15	53060

Submitted to Dr. Ahmed Ehab

ABSTRACT

Real-time digital filtering module receives noisy analog signals simultaneously via its channels and have 2 types of digital filter. After filtration, digital signals shall be converted into analog again and accessed via the C8051F020 pins .

Table of Contents

INTRODUCTION	1
CIRCUIT SCHEMATIC	1
CIRCUIT DIAGRAM	2
DESIGN DESCRIPTION	2
DESCRIPTION FOR DIGITAL FILTERS USED ALONG WITH EQUATIONS	6

List of Figures

Figure 1: Circuit Schematic	1
Figure 2: Circuit Diagram	2
Figure 3: Weighted Summer.	2
Figure 4: Used Signals	3
Figure 5: ADC	3
Figure 6: Microcontroller C8051F020	4
Figure 7: DAC	4
FIGURE 8: OUTPUT WITHOUT FILTRATION	5
Figure 9: Output With Filtration	5
Figure 10: Filtration Equations	6
Figure 11: Filteration Coefficients	6

Introduction

We have 2 signals so we use 2 weighted summer each one used to add three sinusoidal waves to enter to ADC then to our microcontroller C8051F020

After that, we use low pass filter for signal one and high pass filter for signal two and finally we enter the both signals to DAC

Circuit schematic

Figure 1 : Circuit Schematic

Circuit Diagram

Figure 2: Circuit Diagram

Design description

4 Weighted Summer

Figure 3: Weighted Summer

♣ Our 2 used signals after weighted summer at two different channels

Figure 4: Used Signals

♣ ADC

Figure 5: ADC

♣ Microcontroller C8051F020

Figure 6: Microcontroller C8051F020

♣ DAC

Figure 7: DAC

♣ Output after DAC

o Without Filtration and Switch ON

Figure 8: Output without Filtration

o With Filtration and Switch OFF

Figure 9: Output With Filtration

Description for Digital filters used along with equations

We use two types of filters:

- 1. Low Pass Filter for signal one
- 2. High Pass Filter for signal two

Filter order N=3

4 Used Equation

Figure 10: Filtration Equations

Used coefficients

Low Pass Filter	0.34917535	0.229359258	0.229359258	0.34917535
High Pass Filter	-0.641653637	-0.649742213	0.649742213	0.649742213

Figure 11: Filtration Coefficients