Билеты курса «Гармонический анализ»

Источник: an_explanations.pdf

Лектор: Карасёв Р.Н.

Восторженные читатели: Хоружий Кирилл

Примак Евгений

От: 12 июня 2021 г.

Содержание

1	Приближение функций \Rightarrow , в среднем и среднеквадратичном	2
	1.1 Приближение функций кусочно-линейными и многочленами	2
	1.2 Приближение 2π -периодических функций тригонометрическими многочленами	3
	1.3 * Алгебры непрерывных на компактах функций. Теорема Стоуна-Вейерштрасса	3
	1.4 Пространства L_p . Неравенства Гёльдера и Минковского	4
	1.5 Полнота пространства L_p	5
	1.6 Приближение функций в L_p ступенчатыми и бесконечно гладкими	6
2	Ограниченная вариация, абсолютная непрерывность и осцилляция	7
	2.7 Функции ограниченной вариации	7
	2.8 Абсолютно непрерывные функции, абсолютная непрерывность интеграла с переменных верхним пределом	8
	2.9 Представление в виде суммы монотонных абсолютно непрерывных	8
	2.10 Обобщенная формула Ньютона-Лейбница	9
	2.11 Абсолютная непрерывность произведения абсолютно непрерывных и обобщенное интегрирование	
	по частям	9
	2.12 Теорема Римана об осцилляции и равномерной осцилляции	9
	2.13 Порядок убывания коэффициентов Фурье ассолютно непрерывных функции	10 10
	2.14 Порядок уоывания коэффициентов Фурье функции ограниченной вариации	10
3	${f P}$ яд ${f \Phi}$ урье в пространстве L_2	11
	3.15 Неравенство Коши-Буняковского	12
	3.16 Неравенство Бесселя и оптимальность коэффициентов Фурье	12
	3.17 Полные системы в пространстве L_2	13
	3.18 Равенство Парсеваля для Фурье функций из $L_2[-\pi,\pi]$	13
4	Тригонометрический ряд Фурье и его сходимость	14
	4.19 Интегральное представление частичных сумм ряда Фурье, ядро Дирихле	14
	4.20 Принцип локализации для рядов Фурье и равномерный принцип локализации	15
	4.21 Признак Липшица равномерной сходимости ряда Фурье	15
	4.22 Признак Дирихле равномерной сходимости тригонометрического ряда Фурье на отрезке	16
5	Банаховы пространства	16
	5.46 Непрерывне линейные отображения	16
	5.47 Факторпространство банахового пространства	16
	5.48 Изоморфизм непрерывных линейных отображений	16
	5.49 Эпсилон-сети, предкомпактность и вполне ограниченность	16
	5.50 Теорема Арцела-Асколи	17
6	Гильбертовы пространства	17
	6.51 Гильбертово пространство	17
	6.52 Полнота и замкнутость ортонормированной системы в гильбертовом пр-ве	17
	6.53 Изометрии гильбертовых пространств	17
	6.54 Метрическая проекция и двойственное к гильбертову пр-во	18
	6.55 Двойственное к гильбертову пространству	18

1 Приближение функций ⇒, в среднем и среднеквадратичном

1.1 Приближение функций кусочно-линейными и многочленами

Hocumenb функции – дополнение к объдинению всех открытых множеств, на которых функция равна нулю, иначе – замыкание множества точек, в которых функция не равна нулю. Получается носитель функции всегда замкнут и для функций на \mathbb{R}^n компактнось носителя означает ограниченность.

Lem 1.1. Для непрерывной с компактным носителем $f(x): \mathbb{R} \to \mathbb{R}$ и $t_n \to 0$ при $n \to \infty$, последовательность $f_n(x) = f(x + t_n) \rightrightarrows f$.

△. Непрерывня функция с компактным носителем равномерно непрерывна, то есть

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in \mathbb{R}, \, \forall t, \, (|t| < \delta \Rightarrow |f(x-t) - f(x)| < \varepsilon,)$$

что можно интепретировать как равномерной сходимости $f(x-t_n) \rightrightarrows f(x)$.

Thr 1.2. $Ang(x) < 1 \ u \ \alpha \in \mathbb{R}$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {a \choose n} x^n$$

с радиуом сходимости не менее 1.

Lem 1.3. $f(x) = \sqrt{x}$ можно равномерно приблизить многочленами на любом отрезке [0, a].

 \triangle . Заменой переменной x = a - y сведем вопрос к приближению функции

$$g(y) = \sqrt{a+\delta}\sqrt{1-\frac{y}{a+\delta}},$$

который раскладывается по предыдущей лемме в степенной ряд при $|y| \leqslant a + \delta$, причём при $|y| \leqslant a$ ряд сходится равномерно, тогда g(y) приближается многочленом на [0,a], соответственно и \sqrt{x} тоже.

Lem 1.4. f(x) = |x| можно равномерно приблизить многочленами на любом отрезке [-a, a].

 \triangle . На отрезке $[0,a^2]$ приближаем \sqrt{t} многочленом $|\sqrt{t}-P(t)|<\varepsilon$. Подставим $x=\sqrt{t}$, тогда на $x\in[0,a]$ верно $|x-P(x^2)|<\varepsilon$, что можно продолжить на [-a,a], продолжая x чётным образом как $|x|\colon |x|-P(x^2)|<\varepsilon$.

Thr 1.5. Всякую непрерывную кусочно-линейную на отрезке [a,b] функцию можно сколь угодно близко равномерно приблизить многочленом.

 \triangle . Если функция со скачком производной на Δ , то $f(x) - \Delta/2|x - x_i|$ будет уже без скачка, тогда кусочнолинейная представится в виде

$$f(x) = \sum_{i} c_i |x - x_i| + ax + b,$$

где каждое слагаемой уже приближаемо.

Этого достаточно, чтобы приближать кусочно-линейные многочленами. Осталось понять, как приближать непрерывные на отрезке функции кусочно-линейными. Определим

$$\varphi_{\delta}(x) = \begin{cases} 0, & x < -\delta, \\ 1 - |x|/\delta, & |x| \leq \delta \\ 0, & x > \delta. \end{cases}$$

Такая функция кусочно линейная, непрерывная, и её носитель – $[-\delta, \delta]$

Lem 1.6. Для непрерывной $f: [0,1] \to \mathbb{R}$: $\sum_{k=0}^m f(k/m) \varphi_{1/m}(x-k/m) \rightrightarrows f$.

△. Воспользуемся разбиением единицы

$$\sum_{k=0}^{m} \varphi_{1/m}(x - k/m) = 1.$$

Умножая это на f(x) и вычитая $f_m(x)$, получаем

$$f(x) - f_m(x) = \sum_{k=0}^{m} (f(x) - f(k/m)) \varphi_{1/m}(x - k/m).$$

При фиксированном x в правой части слагаемые ненулевые только при |x-k/m| < 1/m. Тогда правую часть оценим через модуль непрерывности

$$\left| \sum_{k=0}^{m} (f(x) - f(k/m)) \varphi_{1/m}(x - k/m) \right| \leq \sum_{k=0}^{m} \omega_f(1/m) \varphi_{1/m}(x - k/m) = \omega_f(1/m),$$

который стремится к нулю при $m \to \infty$ по непрерывности f. Напомним, что

$$\omega_f(\delta) = \sup \left\{ \rho(f(x) - f(y)) \mid x, y \in M, \ \rho(x, y) < \delta. \right\}$$

Thr 1.7. Всякую $f: [a_1,b_1] \times [a_n,b_n] \to \mathbb{R}$ можно сколь угодно близко равномерно приблизить многочленом.

△. Сначала масштабируем параллелепипед в единичный куб. Потом равномерно приближаем непрерывную функцию комбинацией произведений кусочно-линейных функций отдельных переменных:

$$f: [0,1]^n \to \mathbb{R}, \quad f_m(x) = \sum_{k_1, \dots, k_n} f\left(\frac{k_1}{m}, \dots, \frac{k_n}{m}\right) \varphi_{1/m}\left(x_1 - \frac{k_1}{m}\right) \dots \varphi_{1/m}\left(x_n - \frac{k_n}{m}\right).$$

Потом их приближаем многочленами

sw

1.2 Приближение 2π -периодических функций тригонометрическими многочленами

Thr 1.8 (теорема Вейерштрасса). Всякую непрерывную на $[-\pi,\pi]$ функцию 2π -периодичную $f:\mathbb{R}\to\mathbb{R}$, для которой $f(-\pi)=f(\pi)$ можно сколько угодно точно равномерно приблизить

$$T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

 \triangle . Многочлен от тригонометрическего многочлена – всё ещё многочлен. Рассмотрим некотрую непрерывную $g(\cos x)$, которую можем приблизить на компакте $P(\cos x)$. В частности, можем приблизить 2π -периодическую функцию

$$\psi_{\delta}(x) = \sum_{k \in \mathbb{Z}} \varphi_{\delta}(x - 2\pi k),$$

так как она чётна и 2π -периодична, а значит зависит от $\cos x$ непрерывно. Далее любую непрерывную 2π -периодическую f будем приближать суммами

$$f_m(x) = \sum_{k=0}^{m} f(2\pi k/m) \psi_{2\pi/m}(x - 2\pi k/m),$$

аналогично раннее доказанной лемме.

1.3 * Алгебры непрерывных на компактах функций. Теорема Стоуна-Вейерштрасса

Def 1.9. Множество $\mathcal{A} \subseteq C(x)$ (– непрерывные на компакте функции) называется *алгеброй*, если она содержит константы ($\mathbb{R} \subseteq \mathcal{A}$) и топологически "замкнута" относительно операций · и +.

Def 1.10. Алгебра разделяющая точки — $\forall a,b \in \mathbb{R}, \ x=y \in X, \ \exists f \in A$ такая что f(x)=a, а f(y)=b.

Thr 1.11 (теорема Стоуна-Вейерштрасса). Пусть у нас зафиксирован компакт K и дана алгебра непрерывных функций A на этом компакте, которая разделяет точки. Тогда любую непрерывную на K функцию можно сколь угодно близко равномерно приблизить функциями из A.

1.4 Пространства L_p . Неравенства Гёльдера и Минковского.

Def 1.12. Абсолютно интегрирумыми функциями на измеримом $X \subseteq \mathbb{R}^n$ называют $f \colon X \mapsto \mathbb{R}$ с конечным интегралом $\int_X |f(x)| \, dx$. Расстоянием между функциями f и g будем считать $\int_X |f(x) - g(x)| \, dx$.

Def 1.13. *Нормой* в векторном пространстве V над полем $\mathbb F$ называется функционал $p\colon V\mapsto \mathbb R_+$, обладающий своствами:

- 1. $p(x) = 0 \implies x = 0_V$ невырожденность нормы (в *полунорме* это неверно);
- 2. $\forall x, y \in V, \ p(x+y) \leqslant p(x) + p(y)$ неравенство треугольника;
- 3. $\forall \alpha \in \mathbb{F}, \forall x \in V, \ p(\alpha x) = |\alpha|p(x).$

Def 1.14. Обозначим через $L_1(X)$ факторпространство линейного пространства абсолютно интегрируемых функций по его линейному подпространству почти всюду равных нулю функций. То есть функции на 0 расстоянии считаем равными. *Нормой* будем считать

$$||f||_1 = \int_Y |f(x)| dx.$$

Def 1.15. Для измеримого по Лебегу $X \subset \mathbb{R}^n$ и числа $p \geqslant 1$ факторпространство измеримых по Лебегу функций на X с конечной (полу)нормой

$$||f||_p = \left(\int_X |f|^p \, dx\right)^{1/p},$$

по модулю функций равных нулю почти всюду, назовём $L_p(X)$.

Очень хорошим, симметричным, актуальным для описания квантовой механики оказывается L_2 пространство, на котором естественно вводить скалярное произведение, его порождающее.

Def 1.16. В комплексном случае норма L_2 порождена *скалярным произведением*

$$(f,g) = \int_{-\infty}^{+\infty} f(x)\overline{g(x)} dx \longrightarrow \|f\|_2 = \sqrt{(f,f)}.$$

Thr 1.17 (Неравенство Гёльдера). Возьмём p, q > 1 такие, что 1/p + 1/q = 1. Пусть $f \in L_p(X)$ и $g \in L_q(X)$. Тогда

$$\int_X |fg| \, dx \leqslant ||f||_p \cdot ||g||_q.$$

 \triangle . Добьёмся (домножением на константу) ситуации с $\|f\|_p = \|g\|_q = 1$. Тогда достаточно проинтегрировать неравенство вида

$$|fg| \leqslant \frac{|f|^p}{p} + \frac{|g|^q}{q}.$$

Неравенство же можем получить из выпуклости логарифма

$$\ln(\alpha a + \beta b) \geqslant \alpha \ln a + \beta \ln b, \quad \alpha + \beta = 1, \quad \Rightarrow \left/ \begin{array}{c} \alpha = p^{-1} \\ \beta = q^{-1} \end{array} \right/ \Rightarrow \quad \ln\left(\frac{a}{p} + \frac{b}{q}\right) \geqslant \frac{\ln a}{p} + \frac{\ln b}{q} = \ln(a^{1/p}b^{1/q}).$$

Con 1.18. Для измеримых функций и чисел p, q > 0, таких что 1/p + 1/q = 1, имеет место формула

$$||f||_p = \sup \left\{ \int_X fg \, dx \, \middle| \, ||g||_q \leqslant 1 \right\}.$$
 (1.1)

4

 $^{^{1}}$ В силу неравенства $|f(x) - g(x)| \le |f(x)| + |g(x)|$ расстояние конечно.

 \triangle . По неравенству Гёльдера норма f не менее супремума правой части, более того равенство достигается при выборе

$$g(x) = \frac{\operatorname{sign} f(x)|f(x)|^{p-1}}{\|f\|_p^{p-1}}.$$

Def 1.19. Функция $f: V \mapsto \mathbb{R}$ на векторном пространство называется *выпуклой*, если для любых $x, y \in V$ и любого $t \in (0,1)$ имеет место неравенство

$$f((1-t)x + ty) \leqslant (1-t)f(x) + tf(y).$$

Функция называется строго выпуклой, если неравенство строгое $\forall x \neq y$ и $t \in (0,1)$.

Lem 1.20. Echu в семействе функций $f_{\alpha}: V \mapsto \mathbb{R}, \ \alpha \in A, \ все функции выпуклые, то$

$$f(x) = \sup\{f_{\alpha}(x) \mid \alpha \in A\}$$

тоже выпуклая².

 \triangle . Выпуклость функции нескольких переменных означает выпуклость всех её ограничений на прямые, а значит достаточно доказать это для функции одной переменной, что допускает графическое доказательство.

Thr 1.21 (Неравенство Минковского). Для функций $f, g \in L_p$ при $p \geqslant 1$

$$||f + g||_p \le ||f||_p + ||g||_p.$$

 \triangle . В силу предыдущих двух утверждений норма $\|\cdot\|_p$ – выпуклая функция на L_p , тогда, в частности

$$\left\| \frac{f+g}{2} \right\|_p \leqslant \frac{1}{2} \left(\|f\|_p + \|g\|_p \right), \quad \Rightarrow \quad \left\| \frac{f}{2} + \frac{g}{2} \right\|_p \leqslant \left\| \frac{f}{2} \right\|_p + \left\| \frac{g}{2} \right\|_p,$$

где последнее верно по 1-однородности нормы.

1.5 Полнота пространства L_p

Полнота пространства интегрируемых функций

Далее в разделе всегда предполагается суммирование по k от 1 до ∞ , если не сказано иного. Глобально можно сказать, что в нормированном пространстве вопрос полноты сводится в вопросу сходимости рядов, у которых сходятся суммы норм.

Def 1.22. Назовём последовательность (f_n) фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} : \forall n, m \geqslant N_{\varepsilon} \ \|f_n - f_m\|_p < \varepsilon.$$

Lem 1.23. Пусть у последовательности функций (u_k) из $L_p(X)$ сумма $\Sigma = \sum \|u_k\|_p$ оказалась конечной. Тогда $S(x) = \sum u_k(x)$ определена для почти всех x и $\|S\|_p \leqslant \sum \|u_k\|_p$.

△. Определим возрастающую последовательность

$$\rho_N(x) = \left(\sum_{k=1}^N |u_k(x)|\right)^p, \quad \stackrel{(1)}{\Rightarrow} \quad \int_X \rho_N(x) \leqslant \left(\sum_{k=1}^N ||u_k(x)||\right)^p \leqslant \Sigma^p \quad \stackrel{(2)}{\Rightarrow} \quad \rho(x) = \lim_{N \to \infty} \rho_N(x).$$

Первое следствие получается по неравенству Минковского, второе по теореме о монотонной сходимости функции: $\rho(x)$ почти всюду конечна и имеет конечный интеграл, что означает почти всюду абсолютную сходимость ряда $\sum u_k(x)$.

Функция $\sigma_N(x) = \left| \sum u_k(x) \right|^p$ сходится к $|S(x)|^p$ почти всюду и $\sigma_N(x) \leqslant \rho(x)$. По теореме об ограниченной сходимости

$$\left\| \sum u_k(x) \right\|_p^p \to \|S\|_p^p, \quad \Rightarrow \quad \|S\|_p \leqslant \sum \|u_k\|_p,$$

по предельному переходу в неравенстве Минковского.

²Если разрешить в определении выпуклости значение +∞.

Lem 1.24. Пусть у последовательности функций (u_k) из $L_p(x)$ сумма $\Sigma = \sum \|u_k\|_p$ оказалась конечной. Тогда $S(x) = \sum u_k(x)$ определена для почти всех x и (что отличает эту лемму от предыдущей) $S = \sum u_k$ в смысле сходимости в пространстве $L_p(X)$.

 \triangle . По предыдущей лемме для остатка $r_N(x) = \sum_{k=N+1}^{\infty} u_k(x)$:

$$||r_N||_p \leqslant \sum_{k=N+1}^{\infty} ||u_k||_p, \quad \text{при} \quad N \to \infty,$$

что и означает сходимость в терминах L_p .

Thr 1.25. Пространство $L_p(X)$ полно.

 \triangle . Рассмотрим фундаментальную последовательность (f_k) в $L_p(x)$ для подпоследовательности которой докажем сходимость. Выберем её так, чтобы $\|f_k - f_l\|_p \leqslant 2^{-k-1}$ при всех l > k.

Пусть тогда $u_1 = f_1$, $u_k = f_k - f_{k-1}$, получается хотим доказать сходимость суммы телескопического ряда $\sum u_k$, для которых $||u_k||_p \leqslant 2^{-k}$. По предыдущей лемме ряд почти всюду сходится к $S \in L_p(X)$, а (f_k) сходятся к S по норме $L_p(X)$.

Так и сводится в L_p вопрос полноты к вопросу сходимости рядов, со сходящейся суммой норм. Вообще сходимость в $L_p(X)$ может не означать поточечной сходимости ни в одной точке.

1.6 Приближение функций в L_p ступенчатыми и бесконечно гладкими

Def 1.26. Назовём *элементарно ступенчатыми* функции с конечным числом ступенек, в основании которых лежат элементарные множества.

Thr 1.27. Пусть функция $f: X \mapsto \mathbb{R} \in L_p$ с конечным интегралом. Положим для M > 0

$$f_M(x) = \begin{cases} M, & f(x) \geqslant M; \\ f(x), & |f(x)| \leqslant M; \\ -M, & f(x) \leqslant -M; \end{cases} \Rightarrow \lim_{M \to +\infty} ||f_M||_p = ||f||_p.$$

Thr 1.28. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ и $f \in L_1(\mathbb{R}^n)$. Тогда f можно сколь угодно близко приблизить в среднем элементарно ступенчатой функцией.

Thr 1.29. Можно сколь угодно близко по норме $\|\cdot\|_p$ приблизить элементарно ступенчатой $\forall f \in L_p(\mathbb{R}^n)$.

 \triangle . Интеграл разности $f - f_M$ можно оценить, как

$$|f(x) - M|^p \le |f(x)|^p - M^p,$$
 $f(x) > M;$
 $|f(x) + M|^p \le |f(x)|^p - M^p,$ $f(x) < -M;$

что получается из выпуклости $|x|^p$.

$$\int_{\mathbb{R}^n} (|f|^p - |f_M|^p) \, dx < \varepsilon^p, \quad \Rightarrow \quad \int_{\mathbb{R}^n} |f - f_M|^p \, dx < \varepsilon^p.$$

Осталось перейти к ограниченной функции $g = f_M|_{[-a,a]^n}$. В силу непрерывности интеграла Лебега по множествам

$$\int_{\mathbb{R}^n} |g(x)|^p \, dx = \lim_{a \to +\infty} \int_{[-a,a]^n} |g(x)|^p \, dx,$$

поэтому можем приблизить f_M функцией g с точностью ε функцией $h \leqslant M$ с $\operatorname{supp} h = Q = [-a, a]^n$. Таким образом h измерима по Лебегу, то есть $h \in L_1(\mathbb{R}^n)$.

Теперь возвращаемся к приближению функции из L_1 элементарно ступенчатой s в норме L_1 :

$$\int_{\mathbb{R}^n} |h-s| \, dx < \varepsilon', \quad \Rightarrow \quad \int_{\mathbb{R}^n} |h(x)-s(x)|^p \, dx \leqslant (2M)^{p-1} \int_{\mathbb{R}^n} |h-s| \, dx < (2M)^{p-1} \varepsilon'.$$

Тогда можем добиться

$$||f - s||_p < ||f - g||_p + ||g - h||_p + ||h - s||_p < 3\varepsilon,$$

при выборе $s = s(\varepsilon)$.

Thr 1.30. Всякую $f \in L_p(\mathbb{R}^n)$ можно сколь угодно близко по норме $\|\cdot\|_p$ приблизить бесконечно дифференцируемой функцией с компактным носителем.

△. Вспомним хороший набор функций

$$f(x) = \begin{cases} 0, & x \leq 0; \\ e^{-1/x}, & x > 0. \end{cases} \qquad \varphi(x) = f(x+1)f(1-x), \qquad \varphi_{\varepsilon}(x) = A\varphi\left(\frac{\sqrt{n}x_1}{\varepsilon}\right) \cdots \varphi\left(\frac{\sqrt{n}x_n}{\varepsilon}\right),$$

где последняя нормирована быть с единичным интегралом и отлична от нуля только в $U_{\varepsilon}(0)$. Тогда можем построить

$$\psi(x) = B \int_{-\infty}^{x} \varphi(t) dt, \quad B \colon \begin{cases} \psi(x) \equiv 0, & x \leqslant 1; \\ \psi(x) \equiv 1, & x \geqslant 1; \end{cases} \Rightarrow \psi_{\varepsilon, \delta}(x) = \psi\left(\frac{\delta + \varepsilon - 2|x|}{\varepsilon - \delta}\right),$$

где $\psi_{\varepsilon,\delta}$ отлична от нуля только в $U_{\varepsilon}(0)$ и тождественно равна 1 в $U_{\delta}(0)$.

Осталось свёрткой приблизить каждую ступеньку на параллелепипедом P, точнее χ_P в норме L_p , тогда

$$\int_{\mathbb{R}^n} \left| \chi_P - g(x) \right|^p dx \leqslant \mu \left[U_{\varepsilon}(P) \right] - \mu P,$$

что стремится к нулю при $\varepsilon \to +0$.

 \mathcal{A} оплнительно. Также по теореме Стоуна-Вейерштрасса любую $f \in L_p(X)$ можно сколь угодно близко по норме $\|\cdot\|_p$ приблизить ограниченным на X многочленом, где X – ограниченное измеримое в \mathbb{R}^n множество. Также для любой $f \in L_p(\mathbb{R}^n)$ можно показать непрерывность сдвига в L_p :

$$\int_{-\infty}^{+\infty} |f(x+t) - f(x)|^p dx \to 0$$
 при $|t| \to 0$,

показав это для непрерывной функции с компактным носителем, а затем по неравенству Минковского, приближая f, доказать утверждение.

2 Ограниченная вариация, абсолютная непрерывность и осцилляция

2.7 Функции ограниченной вариации

Def 2.1. Функция f на промежутке I имеет *ограниченную вариацию*, если для любых $x_0 < x_1 < \dots x_N \in I$ (в любом количестве)

$$|f(x_0) - f(x_1)| + |f(x_1) - f(x_2)| + \ldots + |f(x_{N-1}) - f(x_N)| \le M,$$

для некоторой константы M. Наименьшую константу M назовём вариацией функции f равную $||f||_B$, что задаёт полунорму, вида

$$||f||_B = \sup \left\{ |f(x_0) - f(x_1)| + |f(x_1) - f(x_2)| + \ldots + |f(x_{N-1}) - f(x_N)| \mid N \in \mathbb{N}, a \leqslant x_1 \leqslant \ldots \leqslant b \right\}$$

Вообще это длина кривой в одномерном варианте, в частности кривая в \mathbb{R}^n спрямляема только при конечной вариации каждой своей координаты. Важно что вариация функции аддитивна и выпукла, в смысле $||f+g||_B \le ||f||_B + ||g||_B$.

Lem 2.2. Функцию ограниченной вариации на отрезке [a,b] можно представить в виде суммы двух функций f=u+d, одна из которых возрастает, а другая убывает. При этом $||f||_B=||u||_B+||d||_B$ и если f была непрерывной, то u,d тоже будут непрерывны.

 \triangle . Определим вариацию вверх u(x) как sup сумм положительных приращений и вариацию вниз d(x) как inf сумм отрицательных приращений. Любой набор приращений даст f(x) и его можно разбить на две части, одна из которых даст u(x) а другая d(x). Тогда

$$f(x) = u(x) + d(x), \quad ||f|_{[a,x]}|| = u(x) - d(x),$$

при чём $u(x) \uparrow u \ d(x) \downarrow$. Так как вариация монотонной функции – модуль её приращения, то $\|f\|_B = \|u\|_B + \|d\|_B$. Покажем теперь, что $f \in C[a,b] \Rightarrow u,d \in C[a,b]$. Функции u и -d не убывают, покажем, что нет скачков. Их сумма u(x) - d(x) равна $\|f|_{[a,x]}\|$ так что осталось показать, что у вариации нет скачков, что сводится к утверждению о непрерывности зависимости длины спрямляемой кривой от параметра.

Вспомним, что для монотонной g и $f \in L_1$ верна следующая теорема о среднем:

Thr 2.3 (Вторая теорема о среднем). Если f интегрируема по Лебегу c конечным интегралом, a g монотонна u ограниченна на [a,b], то при некотором $\nu \in [a,b]$

$$\int_{a}^{b} f(x)g(x) dx = g(a+0) \int_{a}^{\nu} f(x) dx + g(b-0) \int_{\nu}^{b} f(x) dx.$$

Таким образом приходим к утверждению о том, что функции ограниченной вариации допускают оценку интеграла своего произведения с другой функцией. В силу предыдущей леммы для любой функции ограниченной вариации g из второй теоремы о среднем

$$\bigg|\int_a^b f(x)g(x)\,dx\bigg|\leqslant (|g(a+0)|+\|g\|_B)\cdot \sup\left\{\bigg|\int_\nu^b f(x)\,dx\bigg|\ \text{при }\nu\in[a,b]\right\}.$$

2.8 Абсолютно непрерывные функции, абсолютная непрерывность интеграла с переменных верхним пределом

Для формулы Ньютона-Лейбница условие липшицевости можно ослабить до следующего:

Def 2.4. Функция F на промежутке I абсолютно непрерывна, если $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$, такое что $\forall x_1 \leqslant y_1 \leqslant x_2 \leqslant y_2 \leqslant \ldots \leqslant x_N \leqslant y_N \in I$ из неравенства

$$|x_1 - y_1| + |x_2 - y_2| + \ldots + |x_N - y_N| \le \delta$$

следует, что

$$|F(x_1) - F(y_1)| + |F(x_2) - F(y_2)| + \ldots + |F(x_N) - F(y_N)| \le \varepsilon.$$

Говоря неформально, сумма модулей приращений функции на системе непересекающихся отрезков должна стремиться к нулю при суммарной длине системы, стремящейся к нулю.

Thr 2.5. Для некоторой $f \in L_1[a,b]$, всякая обобщенная первообразная F

$$F(x) = \int_{a}^{x} f(t) dt,$$

является абсолютно непрерывной и её производная почти всюду существует и совпадает с f.

 \triangle . В силу теоремы о дифференцируемости интеграла с переменным верхним пределом, производная F почти всюду равна f. Осталось показать абсолютную непрерывность F. Как и раньше, приблизим f ограниченной $g \leq M$, так что $||f - g||_1 < \varepsilon$. Тогда при наборе отрезков S длины $< \delta$

$$\int_{S} |g(x)| dx \leqslant M\delta, \quad \int_{S} |f(x) - g(x)| < \varepsilon, \quad \Rightarrow \quad \int_{S} |f(x)| dx \leqslant M\delta + \varepsilon, \quad \Rightarrow \quad \int_{S} |f(x)| dx \leqslant 2\varepsilon,$$

что и означает сумма приращений F на отрезках S не более 2ε при $\mu[S] < \delta$.

2.9 Представление в виде суммы монотонных абсолютно непрерывных

Lem 2.6. Абсолютно непрерывная на отрезке функция f имеет на нём ограниченную вариацию. Также на отрезке существует разложение f в сумму двух монотонных абсолютно непрерывных функций.

 \triangle . Для данной абсолютно непрерывной $f:[a,b] \mapsto \mathbb{R}$ рассмотрим f=u+d, также вспомним $u[x]+(-d[x])=v(x)=\|f|_{[a,x]}\|_{B}$. Осталось показать абсолютную непрерывность v(x).

От противного: $\exists \varepsilon > 0$ такое, что сумма приращений v на некоторых отрезках не менее ε . По аддитивности вариации $v(y_i) - v(x_i) = \|f|_{[x_i,y_i]}\|_B$, тогда

$$\exists [x_{i1}, y_{i1}], \dots, [x_{iN_i}, y_{iN_i}] \subset [x_i, y_i], : |f(x_i1) - f(y_{i1})| + \dots + |f(x_{iN_i}) - f(y_{iN_i})| \geqslant \frac{v(y_i) - v(x_i)}{2}.$$

Суммируя такие неравенства по всем $i=1,\ldots,N$ получаем, что сумма модулей приращений f не менее $\varepsilon/2$, что противоречит абсолютной непрерывности f.

2.10 Обобщенная формула Ньютона-Лейбница

Thr 2.7 (обобщенная формула Ньютона-Лейбница). Абсолютно непрерывная функция $F:[a,b] \mapsto \mathbb{R}$ почти всюду имеет производную и является обобщенной первообразной своей производной с выполнением формулы Ньютона-Лейбница

$$F(b) - F(a) = \int_a^b F'(t) dt.$$

Легко показать через...ух, ну по лемме Безиковича, посмотреть можно здесь.

2.11 Абсолютная непрерывность произведения абсолютно непрерывных и обобщенное интегрирование по частям

Con 2.8 (Обобщенное интегрирование по частям). *Если* $f \in L_1[a,b]$, а g абсолютно непрерывна, то верна формула интегрирования по частям

$$\int_a^b fg \, dx = F(x)g(x) \Big|_a^b - \int_a^b F(x)g'(x) \, dx,$$

где $F(x) = \int_a^x f(t) dt$.

 \triangle . Производная g' существует почти всюду, функция F абсолютно непрерывна по раннее доказанной теореме, тогда Fg тоже абсолютно непрерывна:

$$F(y)g(y) - F(x)g(x) = [F(y) - F(x)]g(y) + [g(y) - g(x)]F(x).$$

Тогда (Fg)' = fg + Fg', к её приращению применима формула Ньютона-Лейбница, так и получаем интегрирование по частям.

 \mathcal{A} ополнительно. Функция $f:[a,b]\mapsto \mathbb{R}$ абсолютно непрерывна тогда и только тогда, когда она может быть сколь угодно близко в B-норме приближена кусочно-линейными функциями.

2.12 Теорема Римана об осцилляции и равномерной осцилляции

Def 2.9. Определим коэффициент Фурье (с точностью до умножения на константу)

$$c_f(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx.$$

Thr 2.10. Если $f \in L_1(\mathbb{R})$, то $|c_f(y)| \leq ||f||_1$ и $c_f(y)$ непрерывно зависит от y.

Thr 2.11 (Теорема об ограниченной сходимости). Пусть неотрицательная функция g на измеримом X имеет конечный интеграл. Пусть f_k измеримы на X, $|f_k| \leq g$ для всех k и $f_k \to f$ поточечно на X. Тогда $\lim_{k\to\infty} \int_X f_k \, dx = \int_X f \, dx$.

 \triangle . По теореме об ограниченной сходимости разрешен предельный переход под знаком интеграла, значит $c_f(y)$ непрерывно зависит от y. Расписать бы это.

Thr 2.12 (Лемма Римана об осцилляции). Если $f \in L_1(\mathbb{R})$, то выражение

$$c_f(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx$$

стремится к нулю при $y \to \infty$.

 \triangle . У Кудрявцева математичненько всё расписано. Получим оценки на порядок убывания $c_f(y)$ при $y \to \infty$ считая $f^{(k-1)}$ абсолютно непрерывной и производные до k-й включительно $\in L_1(\mathbb{R})$, тогда интегрируя по частям (дифференцируя функцию) получим:

$$c[f](y) = \int_{-\infty}^{+\infty} f(x) d\left(\frac{e^{-ixy}}{-iy}\right) = f(x) \left(\frac{e^{-ixy}}{-iy}\right) \Big|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} f'(x) \cdot \left(\frac{e^{-ixy}}{-iy}\right) dx =$$

$$= \frac{c[f'](y)}{iy} = \dots = \frac{c[f^{(k)}](y)}{(iy)^k} = O\left(\frac{1}{y^k}\right), \quad y \to \infty.$$

Тут мы воспользовались компактностью носителя функции и её производных.

Рассмотрим теперь $\forall f \in L_1(\mathbb{R})$. Найдём бесконечно гладкую g с компактным носителем $||f - g||_1 < \varepsilon$. Тогда $\forall y \in \mathbb{R}$:

$$|c[f](y) - c[g](y)| = |c[f - g](y)| \le \varepsilon.$$

При этом для $c[g](y) \to 0$ доказали (быстрее любой степени). Отсюда следует, что $\overline{\lim}|c[f](y)| < \varepsilon$, точнее равен нулю.

Thr 2.13 (Лемма о равномерной осцилляции). Если $f \in L_1(\mathbb{R})$, то выражение

$$c[f](y,\xi,\eta) = \int_{\xi}^{\eta} f(x)e^{-ixy} dx$$

стремится к нулю при $y \to \infty$ равномерно по ξ , η .

 \triangle . Разобьём $\mathbb R$ на коненое число промежутков числами $x_1 < \ldots < x_N$ так, чтобы на каждом промежутке $\int |f| < \varepsilon$. Для ξ и η найдём ближайшие x_i, x_j :

$$\left| \int_{\xi}^{\eta} f(x)e^{-ixy} dx \right| \le \left| \int_{x_i}^{x_j} f(x)e^{-ixy} dx \right| + 2\varepsilon$$

и при достаточно большом y по доказанному неравномерному варианту, применяемого к ограничению f на $[x_i, x_j]$, интеграл в правой части $< \varepsilon'$, что и доказывает равномерную оценку.

2.13 Порядок убывания коэффициентов Фурье абсолютно непрерывных функций

Lem 2.14. Если производная $f^{(k-1)}$ абсолютно непрерывна и производные до k-й включительно³ находятся в $L_1(\mathbb{R})$, то

$$c_f(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx = o\left(\frac{1}{y^k}\right), \quad t \to \infty.$$

 \triangle . Всё как раньше, но слагаемые вижа $f^{(l)}(x)e^{-ixy}|_{-\infty}^{+\infty 1}$ исчезают в силу конечности пределов $f^{(l)}$ на бесконечности. Так как $f^{(l+1)} \in L_1(\mathbb{R})$, то $f^{(l)}$ имеет конечные пределы в $-\infty$ и $+\infty$, которые должны быть равны нулю, так как $f^{(l)}$ конечного интеграла. Я бы и эту штуку посмотрел в другой книжке.

2.14 Порядок убывания коэффициентов Фурье функций ограниченной вариации

Thr 2.15. Если $f \in L-1(\mathbb{R})$ имеет ограниченную вариацию на \mathbb{R} , то выражение

$$c_f(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx = O(1/y), \quad y \to +\infty.$$

 \triangle . Получим оценку для интеграла по [a,b]. Можем представить f=u+g в виде суммы монотонно возрастающей и убывающей. Тогда по второй теореме о среднем

$$c_{[a,b]}[f](y) = \int_a^b f(x)e^{-ixy}\,dx = u(a+0)\int_a^\nu e^{-ixy}\,dx + u(b-0)\int_\nu^b e^{-ixy}\,dx + g(a+0)\int_a^\psi e^{-ixy}\,dx + g(b-0)\int_\psi^b e^{-ixy}\,dx.$$

 $^{^{3}}$ Для k-й достаточно существования почти всюду.

Функция ограниченной вариации имеет пределы на бесконечности, а из интегрируемости следует их равенство нулю. Тогда значения u(a+0), u(b-a), g(a+0), g(b-0) оцениваются полной вариацией $||f||_B$, а интегралы оцениваются по модулю как $\frac{2}{|u|}$.

Con 2.16. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ имеет абсолютно непрерывную (k-1)-ую производную, производные до k-й включительно находятся в $L_1(\mathbb{R})$, а $f^{(k)}$ (возможно, после изменения на множестве меры нуль) имеет ограниченную вариацию на \mathbb{R} , тогда

$$c_f(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx = O\left(\frac{1}{y^{k+1}}\right), \qquad y \to \infty.$$

 \triangle . Можно получить интегрированием по частям, аналогично лемме **2.14**, только используя предыдущую теорему.

Периодические функции

Def 2.17. Для 2π -периодической функции $f(x+2\pi) \equiv f(x)$ коэффициенты Фурье запишутся, как

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \frac{(f, e^{inx})}{\|e^{inx}\|_2^2},$$

где последнее выражение понимается в смысле скалярного произведения и нормы в $L_2[-\pi,\pi]$.

Для таких функций сохраняются утверждения, доказанные выше.

Thr 2.18. Пусть функция f имеет период 2π и абсолютно непрерывную (k-1)-ую производную, причём $f^{(k)}$ (возможно, после изменения на множестве меры нуль) имеет ограниченную вариацию на $[-\pi,\pi]$, тогда

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx} dx = O\left(\frac{1}{n^{k+1}}\right), \qquad n \to \infty.$$

 \triangle . Здесь слагаемые $f(x)e^{-ixy}|_{-\pi}^{+\pi}$ обращаются в нуль в силу 2π -периодичности, поэтому можем воспользоваться теоремой об ограниченной вариации.

Lem 2.19. Если у 2π -периодической функции ограниченной вариации есть ненулевое конечное число разрывов, и она кусочно абсолютно непрерывна, то оценка O(1/n) для коэффициентов Фурье неулучшаема.

Thr 2.20. Пусть функция f непрерывна и 2π -периодическая, тогда для коэффициента Фурье имеется оценка

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x)e^{inx} dx = O(\omega_f(\pi/n)),$$

где ω_f – модуль непрерывности f.

 \triangle . Перейдём к переменной $x = x' + \pi/n$, тогда

$$c_n = -\frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x' + \pi/n) e^{-inx'} dx', \quad \Rightarrow \quad |c_n| = \frac{1}{2\pi} \left| \int_{-\pi}^{+\pi} \frac{1}{2} \left(f(x + \pi/n) - f(x) \right) e^{-inx} dx \right| \leqslant \frac{1}{2} \omega_f(\pi/n).$$

Так и получаем не очень точную, но полезную оценку.

3 Ряд Фурье в пространстве L_2

3.15 Неравенство Коши-Буняковского

Thr 3.1 (Неравенство Коши-Буняковского). Пусть функции $f, g: X \mapsto \mathbb{R}$ измеримы по Лебегу, а также $|f|^2, |g|^2 \in L_1(X)$. Тогда

$$\left(\int_X f(x)g(x) \, dx\right)^2 \leqslant \left(|f(x)|^2 \, dx\right) \cdot \left(\int_X |g(x)|^2 \, dx\right).$$

 $\triangle.$ Домножая на константы добиваемся нормировки к 1 интегралов $|f|^2$ и $|g|^2.$ Тогда

$$|fg|\leqslant \frac{|f|^2}{2}+\frac{|g|^2}{2}, \quad \Rightarrow \quad \int_X |fg|\,dx\leqslant 1, \quad \Rightarrow \quad \left|\int_X fg\,dx\right|\leqslant 1.$$

По теореме 1.30 любую $f \in L_2[-\pi,\pi]$ можно сколь угодно близко по норме приблизить бесконечно гладкой функцией с носителем строго в $(-\pi,\pi)$. Такая функция продолжается до бесконечно гладкой 2π -периодической и по теореме 1.8 равномерно приближается тригонометрическим многочленом $\sum_{k=-n}^{n} c_k e^{ikx}$.

Равномерное приближение является приближением по норме L_2 , так как на отрезке $[-\pi,\pi]$ имеется неравенство $||f||_2 \leqslant \sqrt{2\pi} ||f||_C$. В случае L_2 нормы определим коэффициенты, которыми собираемся приближать.

Дописать про геометрическое представление коэффициентов Фурье.

3.16 Неравенство Бесселя и оптимальность коэффициентов Фурье

Thr 3.2 (Оптимальность коэффициентов Фурье). Для всякой $f \in L_2[-\pi,\pi]$ и данного числа n лучшее по норме L_2 приближение f тригонометрическим многочленом $\sum_{-n}^{+n} c_k e^{ikx}$ дают коэффициенты Фурье

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{ikx} dx.$$

 \triangle . Воспользуемся скалярным произведением в L_2 , занумеруем e^{ikx} в некотором порядке $\varphi_1, \varphi_2, \ldots$, где далее будет важна лишь орогональность этих функций относительно введенного скалярного произведения. Пусть мы приближаем $\varphi = \sum_{k=1}^{N} a_k \varphi_k$ и оптимизируем a_k , тогда

$$\left\| f - \sum_{k=1}^{N} a_k \varphi_k \right\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{N} \bar{a}_k(f, \varphi_k) - \sum_{k=1}^{N} a_k(\varphi_k, f) + \sum_{k=1}^{N} |a_k|^2 \|\varphi_k\|_2^2.$$

Далее, по определению коэффициентов Фурье в виде $(f, \varphi_k) = c_k \|\varphi\|_2^2$ находим

$$\left\| f - \sum_{k=1}^{N} a_k \varphi_k \right\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{N} \left(\bar{a}_k c_k + a_k \bar{c}_k - |a_k|^2 \right) \|\varphi_k\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{N} |c_k|^2 \|\varphi_k\|_2^2 + \sum_{k=1}^{N} |c_k - a_k|^2 \|\varphi_k\|_2^2,$$

откуда оптимально положить $a_k = c_k$.

Lem 3.3 (неравенство Бесселя). *Из доказательства предыдущей теоремы, можем получить, что*

$$\left\| f - \sum_{k=1}^{N} c_k \varphi_k \right\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{N} |c_k|^2 \|\varphi_k\|_2^2, \quad \Rightarrow \quad \|f\|_2^2 \geqslant \sum_{k=1}^{\infty} |c_k|^2 \|\varphi_k\|_2^2, \quad \stackrel{\text{trig}}{\Rightarrow} \quad \|f\|_2^2 \geqslant 2\pi \sum_{k=-n}^{n} |c_k|^2.$$

Точно ли до п?

Lem 3.4 (Представление действительнозначной функции). Для действительнозначной функции представление в виде ряда Фурье перепишется в виде

$$f = a_0 + \sum_{k=0}^{n} (a_k \cos kx + b_k \sin kx), \quad a_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) dx, \quad a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx,$$

для $k \geqslant 1$. Неравенство Бесселя тогда запишется так:

$$||f||_2^2 \geqslant \frac{\pi}{2}|a_0|^2 + \pi \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2).$$

3.17 Полные системы в пространстве L_2

Пусть $\{\varphi_i\}$ – ортогональная система в L_2 . Допустим $f=\sum_i c_i \varphi_i$, где коэффиценты c_i могут быть найдены непосредственно:

$$c_i = \frac{(f, \, \varphi_i)}{(\varphi_i, \, \varphi_i)},$$

что упрощается в случае ортонормированной системы до $c_i = (f, \tilde{\varphi}_i)$. Числа c_i и называются коэффицентами Фурье элемента f в ортогональной системе φ_i .

В таких терминах можем определить и ряд Фурье элемента f по ортогональной системе $\{\varphi_k\}$:

$$f \sim \sum_{k=1}^{\infty} \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)} \varphi_k,$$

где если система φ_k конечна, то ряд сводится к конечной сумме.

Так например можно выделить ортогональную систему $\{1,\cos kx,\sin kx;\ k\in\mathbb{N}\}$. Или, например, многочлены Лежандра

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dz^n} (z^2 - 1)^n,$$

образующих ортогональную систему.

Def 3.5. Система $\{\varphi_{\alpha}; \alpha \in \mathcal{A}\}$ векторов нормированного пространства X называется *полной по отношению* κ *множееству* $E \subseteq X$ (полной в E), если любой вектор $x \in E$ можно сколь угодно точно в смысле нормы пространства X приблизить конечными линейными комбинациями векторов системы. Другими словами $E \subset \overline{L}\{\varphi_{\alpha}\}$ – замыкание линейной оболочки векторов.

Thr 3.6 (условие полноты ортогональной системы). Пусть X – линейное пространство со скалярным произведением, а φ_k – конечная или счётная система ортогональных векторов в X. Тогда следующие условия эквивалентны:

- 1. система $\{\varphi_k\}$ полна по отношению к множеству $E \subseteq X$;
- 2. для любого вектора в $f \in E \subset X$ имеет место разложение в ряд Фурье в смысле нормы;
- 3. для любого вектора $f \in E \subset X$ имеет место равенство Парсеваля $||f||^2 = \sum_k |(f, \varphi_k)|^2/(\varphi_k, \varphi_k)$.

 \triangle . Из (1) \Rightarrow (2) в силу экстремального свойства коэффициентов Фурье. Из (2) в (3) по теореме Пифагора. Из (3) \Rightarrow (1) т.к. ввиду леммы о перпендикуляре по теореме Пифагора ... по Зоричу можно дописать.

Def 3.7. Система элементов линейного нормированного простанства X называется *базисом пространства* X, если любая конечная её подсистема состоит из линейно независимых векторов и любой вектор $x \in X$ может быть представлен в виде $f = \sum_k \alpha_k x_k$, где α_k – коэффициенты из поля констант пространства X, а сходимость понимается по норме пространства X.

Для доказательства неравенства Бесселя достаточно требовать ортогональность системы. В случае же равенства Парсеваля необходима *полнота* системы – возможность приблизить любую функцию L_2 линейной комбинацикй функций рассматриваемой системы сколь угодно точно.

3.18 Равенство Парсеваля для Фурье функций из $L_2[-\pi,\pi]$

Thr 3.8 (Сходимость ряда Фурье в среднеквадратичном). Для вской комплекснозначной $f \in L_2[-\pi,\pi]$

$$f = \sum_{k=-\infty}^{\infty} c_k e^{ikx} = \lim_{n \to \infty} \sum_{k=-n}^{n} c_k e^{ikx}, \qquad c_k = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{ikx} dx$$

в смысле сходимости суммы в пространстве $L_2[-\pi,\pi]$, а также выполняется равенство Парсеваля

$$||f||_2^2 = 2\pi \sum_{k=-\infty}^{\infty} |c_k|^2.$$

 \triangle . Сначала функцию f приближаем по L_2 норме тригонометрическим многочленом. Формула для квадрата точности приближения

$$\left\| f - \sum_{k=1}^{N} c_k \varphi_k \right\|_2^2 = \|f\|_2^2 - 2\pi \sum_{k=1}^{N} |c_k|^2 < \varepsilon,$$

откуда при $N \uparrow$ можем говорить про сходимость ряда Фурье по L_2 норме по определению. Также получаем в пределе в неравенстве Бесселя равенство Парсеваля.

Стоит заметить что в последней теореме использовали «симметричное» сумирование – *суммирование в смыс*ле главного значения:

$$v.p.$$

$$\sum_{k=-\infty}^{+\infty} c_k e^{ikx} = \lim_{n \to \infty} \sum_{k=-n}^{n} c_k e^{ikx}.$$

Пока мы не доказали, что в полученную формулу можно подставить хоть одно конкретное значение x. Тот факт, что ряд Фурье функции из $L_2[-\pi,\pi]$ на самом деле сходится к этой функции почти всюду, был доказан Л. Карлесоном (1966), а до этого был известен как гипотеза Лузина.

4 Тригонометрический ряд Фурье и его сходимость

4.19 Интегральное представление частичных сумм ряда Фурье, ядро Дирихле

Def 4.1. Обозначим *частичную сумму* тригонометрического ряда Фурье для 2π -периодической функции f как

$$T_n(f,x) = \sum_{k=-n}^{n} c_k(f)e^{ikx}.$$

Lem 4.2. Для n-й частичной суммы ряда Фурье 2π -периодической функции имеет место формула в виде свёртки

$$T_n(f,x) = \int_{-\pi}^{\pi} f(x+t)D_n(t) dT,$$

с ядром Дирихле

$$D_n(t) = \frac{1}{2\pi} \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)}.$$

 \triangle . По определению:

$$T_n[f](x) = \sum_{k=-n}^n c_k e^{ikx} = \frac{1}{2\pi} \sum_{k=-n}^n \int_{-\pi}^{+\pi} f(\xi) e^{ikx-ik\xi} d\xi = \left/ \xi = x + t \right/ = \int_{-\pi}^{+\pi} f(x+t) \left(\frac{1}{2\pi} \sum_{k=-n}^n e^{-ikt} \right) dt.$$

Теперь раскрываем геометрическую прогрессию:

$$D_n(t) = \frac{1}{2\pi} \sum_{k=-n}^n e^{-itk} = -\frac{e^{int}}{2\pi} \frac{e^{it} - e^{-2int}}{1 - e^{it}} = \frac{e^{i(n+1/2)t} - e^{-i(n+1/2)t}}{2\pi \left(e^{it/2} - e^{-it/2}\right)} = \frac{1}{2\pi} \frac{\sin(n+1/2)t}{\sin t/2}.$$

Lem 4.3 (Равномерная ограниченность интегралов от ядра Дирихле). Существует такая константа C, что

$$\left| \int_{a}^{b} D_{n}(t) \, dt \right| \leqslant C$$

для любых $a, b \in [-\pi, \pi], n \in \mathbb{N}$.

 \triangle . Заметим, что $t/\sin(t/2)$ — монотонная и ограниченная на $[-\pi,\pi]$ функция, тогда вынесем её из под знака интеграла:

$$\bigg| \int_a^b \frac{1}{2\pi} \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)} \, dt \bigg| \sim \bigg| \int_a^b \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{t} \, dt \bigg| \sim \bigg| \int_a^b \frac{\sin t}{t} \, dt \bigg|.$$

А оставшееся выражение принимает значения $\in [-1,1]$, так что имеет конечный интеграл на отрезке.

Также можем оценить интеграл от ядра Дирихле:

$$D_n(t) = \frac{1}{2\pi} \sum_{k=-n}^n e^{-ikt}, \quad \Rightarrow \quad \int_{-\pi}^{\pi} D_n(t) = 1, \quad \Rightarrow \quad T_n[f](x) - f(x) = \int_{-\pi}^{+\pi} (f(x+t) - f(x)) D_n(t) dt,$$

что исследуется равномерным принципом локализации.

4.20 Принцип локализации для рядов Фурье и равномерный принцип локализации

Thr 4.4 (принцип локализации). Если $f-2\pi$ -периодическая абсолютно интегрируемая функция, то существование и значение предела последовательности её частичных сум Фурье $T_n[f](x)$ в любой точке $x_0 \in \mathbb{R}$ зависит только от существования и значения предела при $n \to \infty$ интеграла

$$\frac{1}{\pi} \int_0^{\delta} D_n(t) \left(f(x_0 + t) + f(x_0 - t) \right) dt,$$

иначе говоря сходимость ряда Φ урье в точке x_0 определяется лишь поведением функции f в любой сколь угодно малой окрестности x_0 .

△. Во-первых, по чётности ядра Дирихле, можем записать

$$T_n[f](x) = \frac{1}{\pi} \int_0^{\pi} D_n(t) \left(f(x+t) + f(x-t) \right) dt = \left(\frac{1}{\pi} \int_0^{\delta} + \frac{1}{\pi} \int_{\delta}^{\pi} \right) D_n(t) \left(f(x+t) + f(x-t) \right) dt.$$

Подробнее рассмотрим последнее слагаемое:

$$\frac{1}{\pi} \int_{\delta}^{\pi} \frac{f(x+t) + f(x-t)}{2\sin(t/2)} \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = o(1), \quad n \to \infty,$$

так как $\frac{f(x+t)+f(x-t)}{2\sin(t/2)}$ интегрируемое по интегрируемости f и ограниченности $\frac{1}{\sin(t/2)}$. Оставшаяся велична стремится к 0 по лемме Римана об осцилляции.

Thr 4.5 (Равномерный принцип локализации). Запищем для $\delta \in (0,\pi)$

$$T_n(f,x) - f(x) = \int_{-\pi}^{\pi} (f(x+t) - f(x)) D_n(t) dt = \int_{-\delta}^{\delta} (f(x+t) - f(x)) D_n(t) dt + \int_{M} (f(x+t) - f(x)) D_n(t) dt,$$

$$e \partial e M = \{t \mid \delta \leq |t| \leq \pi\}. \ Ecnu \ f \in L_1[-\pi, \pi], \ mo$$

$$\int_{M} (f(x+t) - f(x)) D_n(t) dt \to 0, \quad n \to \infty.$$

Если f ограничена на отрезке [a,b], то это выражение стремится к нулю равномерно по $x \in [a,b]$.

△. Делаем то же, что и раньше, но подводим всё к лемме о равномерной осцилляции:

$$\left|\int\limits_a^b f(x+t)\sin\left(\left(n+\tfrac{1}{2}\right)t\right)dt\right| \sim \left|\int\limits_a^b f(x+t)e^{i\left(n+\tfrac{1}{2}\right)t}\,dt\right| = \left|\int\limits_{x+a}^{x+b} f(\xi)e^{\left(i\left[n+\tfrac{1}{2}\right]\xi-i\left[n+\tfrac{1}{2}\right]x\right)}\,d\xi\right| = \left|\int\limits_{x+a}^{x+b} f(\xi)e^{\left(i\left[n+\tfrac{1}{2}\right]\xi\right)}\,d\xi\right|,$$

где уже можем применить лемму о равномерной осцилляции в силу $f \in L_1$.

4.21 Признак Липшица равномерной сходимости ряда Фурье

Def 4.6. Функция f называется гёльдеровой степени $\alpha > 0$, если для любых x, y из области определения

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

с некоторой константой C.

Thr 4.7 (Признак Липшица сходимости ряда Фурье). Для абсолютно интегрируемой 2π -периодической функции, которая является гёльдеровой с некоторыми C, $\alpha > 0$ на интервале $(A, B) \supset [a, b]$

$$T_n(f,x) \to f(x)$$

равномерно $x \in [a, b]$ при $n \to \infty$.

 \triangle . Вспомним локальное представление $T_n[f](x) - f(x)$, как

$$\left| \int_{-\delta}^{\delta} \left(f(x+t) - f(x) \right) D_n(t) dt \right| \leqslant C \int_{-\delta}^{\delta} \frac{|t|^{\alpha}}{2\pi} \frac{1}{|\sin t/2|} dt \leqslant \frac{C}{2} \int_{-\delta}^{\delta} |t|^{\alpha - 1} dt = \frac{C}{\alpha} |\delta|^{\alpha},$$

где мы воспользовались мыслью, что $\pi |\sin t/2| \geqslant t$ на $[-\pi,\pi]$. По произвольности δ и равномерного принципа локализации следует, что $T_n[f](x) - f(x)$ может быть равномерно сделано сколь угодно маленьким при некотором $\delta > 0$ и n.

4.22 Признак Дирихле равномерной сходимости тригонометрического ряда Фурье на отрезке

Thr 4.8 (Признак Дирихле сходимости ряда Фурье). Для абсолютно интегрируемой 2π -периодической функции, которая является непрерывной с ограниченной вариацией на интервале $(A, B) \supset [a, b]$

$$T_n(f,x) \to f(x)$$

равномерно по $x \in [a, b]$ при $n \to \infty$.

5 Банаховы пространства

5.46 Непрерывне линейные отображения

Def 5.1. Норма линейного $A: E \to F$ между банаховыми $- ||A|| = \sup\{||A(x)|| \mid x \in E, ||x|| \le 1\}.$

Можно сформулировать утверждения:

$$\forall x \in E, ||Ax|| \leq ||A|| \cdot ||x||$$

и для $f\colon E\to F$ и $g\colon F\to G$ верно:

$$||g \circ f|| \leqslant ||g|| \cdot ||f||.$$

Ядро отображения между банаховыми это просто $\ker A = \{x \in E \mid Ax = 0\}.$

5.47 Факторпространство банахового пространства

Def 5.2. Если $G \subset E$ – замкнутое неполное подпространство E, то на факторпрострнастве E/G норма:

$$||x + G|| = \inf\{||x + y|| \mid y \in G\} = \inf\{||x - y|| \mid y \in G\} = \operatorname{dist}(x, G) = \operatorname{dist}(0, x + G).$$

Lem 5.3. Определенная выше $||\cdot|| \colon E/G \to \mathcal{R}$ для замкнутого $G \subset E$ в банаховом E явялется нормой.

Lem 5.4. Естественная проекция $\pi \colon E \to E/G$ для замкнутого $G \in E$ имеет единичную норму.

Lem 5.5. Φ акторпространство E/G банохова пространства по замкнутому подпространству полно.

5.48 Изоморфизм непрерывных линейных отображений

Lem 5.6. Если отображение банаховых $A \colon E \to F$ непрерывно, то соответствующее $\bar{A} \colon E/\ker A \to F$ тоже непрерывно $u \mid |\bar{A}|| = ||A||$.

Def 5.7. Линейное отображене банаховых $A \colon E \to F$ — **изоморфизм**, если A непрерывно и A тоже непрерывно.

Def 5.8. Если линейное непрерывное из банаховых $A \colon E \to F$ имеет замкнутый $\operatorname{Im} A(E)$, то оно порождает изоморфизм $E/\ker A \to A(E)$.

5.49 Эпсилон-сети, предкомпактность и вполне ограниченность

Def 5.9. Для топологического пространства M, его $X\subseteq M$ — **предкомпактным**, если \overline{X} — компактно.

Def 5.10. $X \subseteq M$ называется вполне ограниченным, если $\forall \varepsilon > 0 \,\exists N \subseteq X$ – конечная ε -сеть. (равносильно и утверждение с $N \subset X$) Или $\forall \varepsilon > 0$, X покрывается конченым набором шаров с центрами в X и радиусами ε .

Thr 5.11. Для полного метрического пространства M, его $X \subseteq M$ – компактно $\iff X$ – вполне ограничено.

5.50 Теорема Арцела-Асколи

Def 5.12. Множество функций $X \subset C(K)$ (над метрическим компактом) **равностепенно непрерывно** , если

$$\forall \varepsilon > 0 \, \exists \delta > 0 \colon \forall f \in X \, \forall x,y \in K, \, \rho(x,y) < \delta \Leftrightarrow |f(x) - f(y)| < \varepsilon.$$

Если все функции ещё и L-липшецивы, то $|f(x) - f(y)| = L\rho(x,y)$.

Def 5.13. Модуль непрерывности липшецивых функций:

$$\omega_X(\delta) = \sup\{|f(x) - f(y)| \mid f \in X, \, \rho(x, y) < \delta\}.$$

И тогда, X – равностепенно непрерывно $\iff \omega_X(\delta) \to 0$ при $\delta \to +0$.

Thr 5.14 (Арцела-Асколи). *Множество* $X \subset C(K)$ предкомпактно $\iff X$ равномерно ограниченно и равностепенно непрерывно.

6 Гильбертовы пространства

6.51 Гильбертово пространство

Def 6.1. Если норма в банаховом E порождается +определённым $||x|| = \sqrt{(x,x)}$, то E — **гильбертово**.

Thr 6.2 (Неравнество Коши-Буняковского). $|(x,y)| \leq ||x|| \cdot ||y||$

$$(ax+by,ax+by)\geqslant 0 \qquad \Leftrightarrow \qquad |a|^2||x||^2+a\bar{b}(x,y)+b\bar{a}\overline{(x,y)}+|b|^2||y||^2\geqslant 0$$

Thr 6.3. Вещественное банахаво E – гильбертово **тогда** и **только тогда**, когда $\forall x, y \in E$:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

6.52 Полнота и замкнутость ортонормированной системы в гильбертовом пр-ве

Def 6.4. Последовательность векторов (φ_k) — **полная система векторов** в банаховом E, если $\overline{\langle \varphi_k \rangle} = E$. Другими словами $\forall x \in E$ и $\forall > 0$ найдется конечная $a_1\varphi_1 + \ldots + a_n\varphi_n$ такая, что $||x - a_1\varphi_1 - \cdots - a_n\varphi_n|| < \varepsilon$.

Def 6.5. (φ_k) — замкнутая система векторов в гильбертовом H, если в $\forall x \in H : (x, \varphi_k) = 0, \ \forall k$.

Thr 6.6. $\forall \varphi_k$ – ортогональной в гильбертовом H эквивалентны утверждения:

- полнота системы;
- замкнутость системы;
- сходимость ряда Фурье $\forall x \in H$ по системе (φ_k) к x;
- равенство Парсеваля для коэффициентов Фурье $\forall x \in H$ по данной системе.

6.53 Изометрии гильбертовых пространств

Def 6.7. Линейное $A: E \to F$ — изометрия, если оно биективно и сохраняет норму: $||A|| = ||A^{-1}|| = 1$.

Lem 6.8. Изометрия гильбертовых пространств сохраняет скалярное произведение.

Thr 6.9 (Рисса-Фишера). $\forall H$, в котором \exists счетная полная система элементов, изометрична $\mathcal{C}^n(\mathcal{R}^n)$ или комплексному(действительному) варианту бесконечномерного пространства последовательностей $l_2 = L_2(\mathcal{N})$.

6.54 Метрическая проекция и двойственное к гильбертову пр-во

Thr 6.10. $V \subset H$ – замкнутое линейное подпространство (афинное) гильбертова. $\forall x \in H \ \exists ! P_V(x) \in V$ ближайший к x то есть $||x - P_V(x)|| = dist(x, V)$.

Thr 6.11. Если $V \subset H$ – замкнутое линейное подпространство, то **метрическая проекция** $P_V \colon H \to V$ линейна, $||P_V|| = 1$ при $V \neq 0$ и имеет место ортогональное разложение в прямую сумму замкнутых подпространств $H = V \oplus \ker P_V$.

6.55 Двойственное к гильбертову пространству

Thr 6.12. $\forall y \in H : \lambda_y(x) = (x,y)$. Тогда $\lambda_y \in H'$, $||\lambda_y|| = ||y||$ и все элементы двойственного пространства H' имеют такой вид.