Battery INterFace Ontology (BattINFO) Reference Documentation

Version 0.1.0

Battery Interface Genome - Materials Acceleration Platform (BIG-MAP)

March 01, 2021

Abstract

This is a reference documentation for the Battery Interface Ontology (BattINFO).

BattINFO is an ontology of batteries and their interfaces based on the top-level European Materials and Modelling Ontology (EMMO). BattINFO aims to formalize the current state of knowledge on battery interfaces to support the development of computational tools and the deployment of interoperable data in the BIG-MAP project and beyond. The definitions included in BattINFO are based as far as possible on accepted standards defined by the International Union of Pure and Applied Chemistry (IUPAC) or other preeminent textbooks on the subject. BattINFO objects and their relations to each other are designed with three goals in mind: (i) to be scientifically rigorous and accurate, (ii) to reflect current battery orthodoxy and dominant jargon, and (iii) to be flexible to describe a range of battery chemistries, not only Li-ion.

The development of BattINFO is a mammoth undertaking and will continue throughout the project. However, it is important to establish an initial version to support the activities in other BIG-MAP work packages and provide a preliminary platform for collaboration. The objective of this deliverable is to establish the initial version of BattINFO. This report outlines the conceptual foundation for the definitions in the ontology and serves as a guide to help interpret the implementation of BattINFO in the ontology web language (OWL).

Keywords: Battery, EMMO, materials science, modelling, characterisation, materials, ontology

Authors:

Simon Clark, SINTEF, Norway

Jesper Friis, SINTEF, Norway

Francesca Lønstad Bleken, SINTEF, Norway

Casper Welzel Andersen, EPFL, Switzerland

Eibar Flores, DTU, Denmark

Martin Uhrin, DTU, Denmark

Simon Stier, Fraunhofer, Germany

Marek Marcinek, Warsaw University of Technology, Poland

Anna Szczesna, Warsaw University of Technology, Poland

Miran Gaberscek, National Institute of Chemistry, Slovenia

Deyana Stoytcheva, ICMAB, Spain

Rosa Palacin, ICMAB, Spain

Ingeborg-Helene Svenum, SINTEF, Norway

Inga Gudem Ringdalen, SINTEF, Norway

Emanuele Farhi, SOLEIL synchrotron, France

Contents

1	Introduction	2
	Availability and license	2
	References	
2	Generic concepts	4
	Process subclasses	4
	Participant subclasses	F
	Physicalistic subclasses	
	Physical quantities	
	Physical dimensions	
3	Electrochemical and battery-specific concepts	9
•	Active Participant branch	-
	Electrochemical System branch	
	Electrochemical Cell branch	
	Electrochemical Component branch	
	Electrochemical Subcomponent branch	
	Electrochemical Material branch	
	Electrochemical Quantity branch	
	Electrochemical Transport Quantity branch	
	Electrochemical Kinetic Quantity branch	
	Electrochemical Thermodynamic Quantity branch	
	Electrochemical Constant branch	
	Additional physical quantities	
	Material Relation branch	
	Chemical Species branch	
	Real world objects	
	Physical dimensions	
1	Appondix	11

Chapter 1

Introduction

Battery development is one of the most important and intensely pursued technical research topics in the world today. From personal electronics to electric mobility to renewable energy storage, batteries are essential to progress. The search for better batteries is supported by a host of databases, methods, models, publications, and presentations. How can we distil this deluge of data into knowledge and translate that knowledge into action?

The answer must rely in some part on artificial intelligence (AI). The breadth of fields necessary to completely describe of battery performance, characterization, and simulation combined with the depth of research being generated in those fields is simply too great for any single person (or even group of people) to manage. However, the challenge is that the wealth of battery data that exists is formatted to be read, understood, and learned by humans, not machines. The field needs a tool to formalize the current state of knowledge about battery interfaces that is both human- and machine-readable.

The Battery Interface Ontology (BattINFO) is a domain ontology for batteries and their interfaces. It is developed with the goal of creating a formalized description of battery cells to support the interoperability of battery data and support applications of artificial intelligence in battery research.

BattINFO builds upon long-standing and widely accepted principles of electrochemistry as described in preeminent texts such as Electrochemical Systems by John Newman and Karen E. Thomas-Alyea [1], Electrochemical Methods: Fundamentals and Applications by Allen J. Bard and Larry R. Faulkner [2], and Handbook of Batteries by David Linden and Thomas B. Reddy [3], among other seminal sources [4], [5]. The terminology adheres as far as possible to the recommendations and definitions contained in the Compendium of Chemical Terminology (also known as the "Gold Book") from the International Union of Pure and Applied Chemistry (IUPAC) [6] together with IUPAC supplements on electrochemical terminology [7] and recommendations from the Electrochemical Society (ECS) on nomenclature and standards. Places where conflicts exist between sources are noted for further discussion and resolution within the electrochemical community.

BattINFO employs the European Materials and Modelling Ontology (EMMO) as a top-level ontology. EMMO aims at the development of a standard representational ontology framework based on current materials modelling and characterization of knowledge. EMMO starts from the very basic scientific fundamentals and grows to encompass a complex and wide field of knowledge, however it is still functional and clear. This makes it ideal to support the development of BattINFO as an EMMO domain ontology.

The purpose of this report is to lay the groundwork for the development of BattINFO in the BIG-MAP project.

Availability and license

The Battery Interface Domain Ontology is available from the github repository https://github.com/BIG-MAP/BattINFO.

It is released under the Creative Commons Attribution 4.0 International license (CC BY 4.0).

References

- 1. J. Newman and K. E. Thmoas-Alyea, Electrochemical Systems, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2004.
- 2. A. J. Bard and L. R. Faulkner, ELECTROCHEMICAL METHODS: Fundamentals and applications. 2001.
- 3. D. Linden and T. Reddy, Handbook of Batteries. 2002.
- 4. P. Atkins and J. De Paula, Atkins' Physical Chemistry, 8th Ed. New York: W.H. Freeman and Company, 2006.
- 5. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Second. Houston, Texas: National Association of Corrosion Engineers, 1974.
- 6. IUPAC, Compendium of Chemical Terminology, 2nd (the ". Oxford: Blackwell Scientific Publications, 2014.
- 7. J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., vol. 92, no. 4, pp. 641-694, 2020.

Chapter 2

Generic concepts

These classes are intended to be merged back into EMMO.

Process subclasses

FunctionalProcess

IRI: http://emmo:info/emmo#EMMO_f7dbce66_2822_4855_9f42_1da71aa9e923

elucidation: The process that makes a product work as intended when in use.

example: - The light-emitting process of a diode. - The car crash process for a crash box in a car. - The discharging process of a battery.

prefLabel: FunctionalProcess

Relations:

• is_a Process

ChemicalPhenomenon

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_50e36d79_b2dd_422d_81eb_a665028a1ead}$

elucidation: A 'process' that is recognized by chemical sciences and is catogrized accordingly.

prefLabel: ChemicalPhenomenon

Relations:

• is_a Process

ChemicalReaction

IRI: http://emmo:info/emmo#EMMO_ecb0395f_ee1e_4e9a_bf5c_d8e56eee2d18

elucidation: A process that results in the interconversion of chemical species. Chemical reactions may be elementary reactions or stepwise reactions. (It should be noted that this definition includes experimentally observable interconversions of conformers.) Detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (i.e. 'microscopic chemical events').

• IUPAC Gold Book

prefLabel: ChemicalReaction

Relations:

• is_a ChemicalPhenomenon

Participant subclasses

ActiveParticipant

IRI: http://emmo:info/emmo#EMMO_038e37a3_1684_4980_b5e4_67ab34cd5bdb

elucidation: A 'physical' that stands for a real world object that takes active part of a functional process.

prefLabel: ActiveParticipant

Relations:

• is_a Participant

• Inverse(hasProperParticipant) some FunctionalProcess

Functional Material

IRI: http://emmo:info/emmo#EMMO_d95e6e0d-e8eb-411a-b407-0d1a517e8767

elucidation: Materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli (temperature, electric/magnetic field, etc.) and are therefore applied in a broad range of technological devices as for example in memories, displays and telecommunication. - NTNU FY3114 - Functional Materials

prefLabel: FunctionalMaterial

Relations:

- is a ActiveParticipant
- is_a Material

Physicalistic subclasses

Pore

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_69b9aead-bb43-4bd5-9168-728cea2116b1}$

elucidation: A space within a solid host domain that is filled by a liquid, gas, or vacuum. The characteristic length of the pore is much less than the characteristic length of the host domain. An exception is possible for 1 dimension (e.g. long pores).

prefLabel: Pore

Relations:

- is_a Physicalistic
- hasContactWith some Solid
- is_a Gas or Vacuum or Liquid

Physical quantities

${\bf Volumetric Thermal Expansion Coefficient}$

IRI: http://emmo:info/emmo#EMMO_1c1ec02e_4def_4979_aff9_572c06a95391

altLabel: The coefficient of thermal expansion describes how the fractional change in volume of an object changes with a change in temperature.

physical Dimension: T0 L0 M0 I0 Θ -1 N0 J0

prefLabel: VolumetricThermalExpansionCoefficient

Relations:

 $\bullet \ \ is_a \ Thermal Expansion Coefficient$

SingleComponentDiffusivity

IRI: http://emmo:info/emmo#EMMO_498d80ae_9339_49c7_8c74_44aa704e0395

elucidation: Transport of particles belonging to one component of a material due to a concentration gradient.

altLabel: Diffusvity

altLabel: MassDiffusivity
altLabel: DiffusionCoefficient

physical Dimension: T-1 L+2 M0 I0 Θ 0 N-1 J0

 ${\bf prefLabel:} \ {\bf Single Component Diffusivity}$

Relations:

• is_a PhysicoChemical

• is_a ISQDerivedQuantity

SingleComponentDiffusivity

 $\textbf{IRI:} \ http://emmo: info/emmo\#EMMO_498d80ae_9339_49c7_8c74_44aa704e0395$

elucidation: Transport of particles belonging to one component of a material due to a concentration gradient.

altLabel: Diffusvity

 ${f altLabel:}\ {f MassDiffusivity}$

altLabel: DiffusionCoefficient

physical Dimension: T-1 L+2 M0 I0 Θ 0 N-1 J0

prefLabel: SingleComponentDiffusivity

Relations:

• is_a PhysicoChemical

• is_a ISQDerivedQuantity

SingleComponentMaximalDiffusivity

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_3bd39834_7eb9_4c97_bb25_db88c3df6bab}$

altLabel: MaximalMassDiffusivity

altLabel: MaximumDiffusionCoefficient

altLabel: MaximalDiffusivity

etymology: Pre-factor in the Arrhenius expression for diffusion.

physicalDimension: T-1 L+2 M0 I0 Θ0 N-1 J0 prefLabel: SingleComponentMaximalDiffusivity

Relations:

• is_a ISQDerivedQuantity

• is_a PhysicoChemical

SingleComponentActivationEnergyOfDiffusion

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_2f761aff_88d1_4e79_a85e_09d6f400de56} \\ \textbf{IRI:} \ \text{IRI:} \ \text{$

elucidation: The energy barrier for diffusion of a given component.

physical Dimension: T-2 L+2 M+1 I0 Θ 0 N0 J0

 ${\bf prefLabel:}\ {\bf Single Component Activation Energy Of Diffusion}$

Relations:

• is_a Energy

• is_a PhysicoChemical

MolarHeatCapacity

 $\textbf{IRI:} \ http://emmo: info/emmo\#EMMO_50c5d440_683c_400f_909e_b03c0327de9c$

elucidation: The molar heat capacity of a substance is the heat capacity of one mole of material.

physical Dimension: T-2 L+2 M+1 I
0 Θ -1 N-1 J0

prefLabel: MolarHeatCapacity

Relations:

is_a ISQDerivedQuantity is_a PhysicoChemical

EnergyDensity

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_686308bd_8ed6_49d0_a204_6487dbe56511}$

elucidation: Energy per unit volume.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0~\mathrm{N0}~\mathrm{J0}$

 $\mathbf{prefLabel:}$ EnergyDensity

Relations:

• is a ISQDerivedQuantity

ThermalExpansionCoefficient

IRI: http://emmo:info/emmo#EMMO_7684ddff_d99b_405d_aad2_90e830b8403c

elucidation: The coefficient of thermal expansion describes how the fractional change in size of an object changes with a change in temperature.

altLabel: CoefficientOfThermalExpansion

physicalDimension: T0 L0 M0 I0 Θ -1 N0 J0

prefLabel: ThermalExpansionCoefficient

Relations:

• is a ISQDerivedQuantity

• is_a PhysicoChemical

HeatCapacity

IRI: http://emmo:info/emmo#EMMO_802c167d_b792_4cb8_a315_35797345c0e3

elucidation: The amount of heat to be applied to a given mass of material to produce a unit change in its

temperature.

physical Dimension: T-2 L+2 M+1 I
0 Θ -1 N0 J0

prefLabel: HeatCapacity

Relations:

• is_a PhysicoChemical

• is_a ISQDerivedQuantity

ThermalConductivity

IRI: http://emmo:info/emmo#EMMO_8dd40ec6_2c5a_43f3_bf64_cadcd447a1c1

elucidation: The ability of a material to conduct heat. physicalDimension: T-3 L+1 M+1 I0 Θ-1 N0 J0

prefLabel: ThermalConductivity

Relations:

is_a ISQDerivedQuantityis_a PhysicoChemical

SpecificHeatCapacity

IRI: http://emmo:info/emmo#EMMO_b4f4ed28_d24c_4a00_9583_62ab839abeca

elucidation: The specific heat capacity (symbol cp) of a substance is the heat capacity of a sample of the

substance divided by the mass of the sample.

physical Dimension: T-2 L+2 M0 I0 Θ -1 N0 J0

prefLabel: SpecificHeatCapacity

Relations:

 \bullet is_a ISQDerivedQuantity

• is a PhysicoChemical

Physical dimensions

PerTemperatureDimension

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_} 6e9aef15_272b_4eea_aa9_2f38b8ae951f$

prefLabel: PerTemperatureDimension

Relations:

• is_a PhysicalDimension

- equivalent_to has SymbolData value "T0 L0 M0 I0 $\Theta\text{-}1$ N0 J0"

Chapter 3

Electrochemical and battery-specific concepts

All classes under here are defined with the http://emmo.info/BattINFO# namespace.

Active Participant branch

Figure 3.1: Active Participant branch.

Functional Material

IRI: http://emmo:info/emmo#EMMO_d95e6e0d-e8eb-411a-b407-0d1a517e8767

elucidation: Materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli (temperature, electric/magnetic field, etc.) and are therefore applied in a broad range of technological devices as for example in memories, displays and telecommunication. - NTNU FY3114 - Functional Materials

prefLabel: FunctionalMaterial

Relations:

- is_a ActiveParticipant
- is_a Material

ActiveParticipant

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_038e37a3_1684_4980_b5e4_67ab34cd5bdb}$

elucidation: A 'physical' that stands for a real world object that takes active part of a functional process.

prefLabel: ActiveParticipant

Relations:

- is a Participant
- Inverse(hasProperParticipant) some FunctionalProcess

Electrochemical System branch

Figure 3.2: Electrochemical System branch.

ElectrochemicalSystem

IRI: http://emmo:info/BattINFO#EMMO_4e4d7f4b-680b-469e-bdd4-728dd3e465bf

elucidation: A system comprising at least one electrochemical cell and the components necessary to support it.

prefLabel: ElectrochemicalSystem

Relations:

- $\bullet \ \ is_a \ Active Participant$
- hasPart some ElectrochemicalCell

Electrochemical Cell branch

Figure 3.3: Electrochemical Cell branch.

ElectrochemicalCell

IRI: http://emmo:info/BattINFO#EMMO_6f2c88c9_5c04_4953_a298_032cc3ab9b77

elucidation: A system capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The key feature of an electrochemical cell is that it contains two (or more) electrodes that allow transport of electrons, separated by a salt bridge that allows the movement of ions but blocks movement of electrons.

- Adapted from J. Newman, Electrochemical Systems (p. 3) and other sources

prefLabel: ElectrochemicalCell

Relations:

• is_a ActiveParticipant

- is_a Object
- is a Matter
- hasSpatialPart some ElectrochemicalComponent
- hasConventionalQuantity some Density
- hasConventionalQuantity some EnergyDensity
- hasConventionalQuantity some ThermodynamicTemperature
- hasConventionalQuantity some SpecificEnergy
- hasConventionalQuantity some Volume
- hasConventionalQuantity some ThermalConductivity
- hasConventionalQuantity some ElectricPotential
- hasConventionalQuantity some InternalConductance
- hasConventionalQuantity some ChargeCapacity
- hasConventionalQuantity some ThermalExpansionCoefficient
- hasConventionalQuantity some HeatCapacity
- hasConventionalQuantity some InternalResistance
- hasConventionalQuantity some SpecificChargeCapacity
- hasConventionalQuantity some StoredEnergy
- hasConventionalQuantity some OpenCircuitVoltage
- hasConventionalQuantity some SpecificHeatCapacity
- hasConventionalQuantity some Mass
- hasConventionalQuantity some ElectricImpedance

GalvanicCell

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e248373f_294f_4ca4_9edf_0ad6653bb64f}$

elucidation: An electrochemical cell that spontaneously produces work.

– J. Newman, Electrochemical Systems (p. 6)

prefLabel: GalvanicCell

Relations:

• is_a ElectrochemicalCell

ElectrolyticCell

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e931087f_7681_4096_b200_5223bcc47eb4}$

elucidation: An electrochemical cell that requires input of work to drive the reaction.

– J. Newman, Electrochemical Systems (p. 6)

prefLabel: ElectrolyticCell

Relations:

 \bullet is_a ElectrochemicalCell

Electrochemical Component branch

SimpleElectrode

IRI: http://emmo:info/BattINFO#EMMO_029f0b45-70a7-481f-8154-bf982a77e08c

elucidation: An electrode consisting of a single ElectrochemicalSubComponent

example: Metal foil.

prefLabel: SimpleElectrode

Relations:

• is a Electrode

Figure 3.4: Electrochemical Component branch.

SimpleSaltBridge

IRI: http://emmo:info/BattINFO#EMMO_6e4f4681-f327-4300-96e4-5905fcea36e3

elucidation: A salt bridge consisting of exactly 1 subcomponent that is an IonicSubcomponent.

prefLabel: SimpleSaltBridge

Relations:

• is a State

• is_a SaltBridge

hasSpatialDirectPart exactly 1 IonicSubcomponent

PorousElectrode

IRI: http://emmo:info/BattINFO#EMMO_3663991d-9319-4f7a-922b-f0e428b58801

elucidation: Porous electrodes consist of porous matrices of a single reactive electronic conductor or a mixture of solids that include essentially non-conducting, reactive materials in addition to electronic conductors. An electrolytic solution fills the void spaces of the porous matrix. At a given time, there may be a large range of reaction rates within the pores. The distribution of these rates will depend on physical structure, conductivity of the matrix and of the electrolyte, and on parameters characterizing the electrode processes themselves. - Newman and Thomas-Alyea, Electrochemical Systems.

prefLabel: PorousElectrode

Relations:

• is a Electrode

• hasSpatialPart some ElectrodePore

SaltBridge

IRI: http://emmo:info/BattINFO#EMMO 637c576e a50e 47ae 8c74 2024ce4c6d0f

elucidation: "Means of making electrolytic connection between two half cells without introducing a significant liquid junction potential. Note: A typical construction is a tube of an inert material (e.g. agar agar) filled with a solution con- taining an electrolyte with approximately equal ion mobilities of the cation and the anion (e.g., KNO3, KCl), with the ends of the tube immersed in the electrolyte solution of the half cells." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: SaltBridge

Relations:

• is_a ElectrochemicalComponent

CompositeElectrode

IRI: http://emmo:info/BattINFO#EMMO_7aa79b12-6b34-4724-9728-f31b5f7ed83d

elucidation: An electrode consisting of multiple ElectrochemicalSubComponent

prefLabel: CompositeElectrode

Relations:

• is a Electrode

Electrode

IRI: http://emmo:info/BattINFO#EMMO 0f007072-a8dd-4798-b865-1bf9363be627

elucidation: Electron conductor in an electrochemical cell connected to the external circuit. - Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019)

prefLabel: Electrode

Relations:

- is_a ElectrochemicalComponent
- is_a Object
- hasContactWith some Electrolyte
- hasConventionalQuantity some ChargeCapacity

Separator

IRI: http://emmo:info/BattINFO#EMMO_331e6cca_f260_4bf8_af55_35304fe1bbe0

definition: "A permeable membrane placed between the positive and negative electrodes to keep them physically separated and prevent an internal short circuit."

prefLabel: Separator

Relations:

• is_a ElectrochemicalComponent

ElectrochemicalComponent

IRI: http://emmo:info/BattINFO#EMMO_3597a1e0_09ef_48ad_b913_b3e71ea21c94

elucidation: A component that is essential to the function of an electrochemical cell.

 ${\bf prefLabel:} \ {\bf Electrochemical Component}$

Relations:

- is a ActiveParticipant
- hasPart some ElectrochemicalSubcomponent

CompositeSaltBridge

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_6cae5943-737a-4f88-9903-9de4cffebd11}$

elucidation: A salt bridge consisting of at least two subcomponents, one of which is an IonicSubcomponent.

 ${\bf prefLabel:}\ {\bf Composite Salt Bridge}$

Relations:

- is_a State
- is_a SaltBridge
- hasSpatialDirectPart min 2 ElectrochemicalSubcomponent
- hasSpatialDirectPart some IonicSubcomponent

Electrochemical Subcomponent branch

Figure 3.5: Electrochemical Subcomponent branch.

ElectronicSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_9c4e61c6-4a7b-41c2-9133-e780e144ddcd

 ${\bf elucidation:} \ {\bf An} \ {\bf Electrochemical Subcomponent} \ {\bf whose} \ {\bf primary} \ {\bf role} \ {\bf is} \ {\bf electronic}$

example: Current Collector Conducting Additive

prefLabel: ElectronicSubcomponent

Relations:

• is a ElectrochemicalSubcomponent

ElectrochemicalSubcomponent

 $\textbf{IRI:}\ \text{http://emmo:info/BattINFO\#EMMO_f89bb8bc-ef9b-43d5-b5df-14e12b0d93b8}$

elucidation: A subcomponent of an ElectrochemicalComponent.

 ${\bf prefLabel:} \ {\bf Electrochemical Subcomponent}$

Relations:

• is_a ActiveParticipant

• hasPart some ElectrochemicalMaterial

StructuralSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_dd15b4b0-11e7-4900-b379-9702a8caa6bb

prefLabel: StructuralSubcomponent

Relations:

• is_a ElectrochemicalSubcomponent

IonicSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_23b866e8-27c6-4fd8-a1d2-6b58ad4445af

prefLabel: IonicSubcomponent

Relations:

 \bullet is_a ElectrochemicalSubcomponent

ReactiveSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_6ab1ca1a-3809-4e9a-aaf7-374915288f73

elucidation: An ElectrochemicalSubcomponent whose primary role is to participate in a reaction.

prefLabel: ReactiveSubcomponent

Relations:

• is a ElectrochemicalSubcomponent

Electrochemical Material branch

Figure 3.6: Electrochemical Material branch.

Electrolyte

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_fb0d9eef_92af_4628_8814_e065ca255d59}$

definition: 1. Conducting medium in which the flow of electric current is accompanied by the movement of ions. Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: Electrolyte

Relations:

• is_a ElectrochemicalMaterial

ElectroactiveSubstance

IRI: http://emmo:info/BattINFO#EMMO_92ba4a12-146e-4b1f-86f3-bcc66ac52763

 ${f prefLabel:}$ ElectroactiveSubstance

Relations:

• is a ElectrochemicalMaterial

ElectrochemicalMaterial

IRI: http://emmo:info/BattINFO#EMMO_ebdb68e9_c4b5_4d57_a042_c0f51d446755

elucidation: A material that participates in a functional process in an electrochemical assembly.

prefLabel: ElectrochemicalMaterial

Relations:

• is_a FunctionalMaterial

ActiveElectrochemicalMaterial

IRI: http://emmo:info/BattINFO#EMMO 79d1b273-58cd-4be6-a250-434817f7c261

prefLabel: ActiveElectrochemicalMaterial

Relations:

- is a ElectrochemicalMaterial
- hasPart some ElectroactiveSubstance

SupportingElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_1fc5642c_b7b2_43bf_ad20_f96001db8800

definition: "Electrolyte solution, the ions of which are electroinactive in the range of applied potential being studied, and whose ionic strength (and, therefore, contribution to the overall conductivity) is usually much greater than the concentration of an electroactive substance to be dissolved in it." Pingarron et al., Terminology of electrochemical methods of analysis

altLabel: InertElectrolyte
altLabel: BaseElectrolyte

altLabel: IndifferentElectrolyte
prefLabel: SupportingElectrolyte

Relations:

• is_a LiquidElectrolyte

IonicLiquidElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_c3f4b34a_0e2c_46f3_baab_4ebd2682d26f

definition: "An ionic liquid is an electrolyte composed of a salt that is liquid below 100 °C. Ionic liquids have found uses in electrochemical analysis, because their unconventional properties include a negligible vapor pressure, a high thermal and electrochemical stability, and exceptional dissolution properties for both organic and inorganic chemical species." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: IonicLiquidElectrolyte

Relations:

• is a LiquidElectrolyte

SolidElectrolyte

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_0508a114_544a_4f54_a7de_9b947fb4b618$

definition: "A solid electrolyte is a solid material where the predominant charge carriers are ions. For example: NASICON (Na Super Ionic Conductor), which has the general formula Na1+xZr2P3-xSix O12 , 0 < x < 3." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: SolidElectrolyte

Relations:

• is_a Electrolyte

Electrolytic Solution

IRI: http://emmo:info/BattINFO#EMMO_fa22874b_76a9_4043_8b8f_6086c88746de

definition: "A liquid electrolyte that consists of solutes dissolved in a solvent."

prefLabel: ElectrolyticSolution

Relations:

• is a LiquidElectrolyte

LiquidElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_609b340f_3450_4a10_95c2_c457e3eb8a89

definition: "An electrolyte in the liquid phase"

prefLabel: LiquidElectrolyte

Relations:

• is_a Electrolyte

Electrochemical Quantity branch

Figure 3.7: Electrochemical Quantity branch.

TheoreticalChargeCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_2b09f961_3374_42e4_8836_bffc6bf522fa}$

elucidation: Theoretical amount of charge a cell can store. Minimum of the theoretical capacity of the positive electrode and negative electrode.

altLabel: TheoreticalCapacity

physicalDimension: T+1 L0 M0 I+1 Θ 0 N0 J0

prefLabel: TheoreticalChargeCapacity

Relations:

• is_a ChargeCapacity

TheoreticalSpecificCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO} \underline{8632} \underline{\text{dee1}} \underline{-0} \underline{\text{adf}} \underline{-4} \underline{\text{a47}} \underline{-8400} \underline{-820} \underline{\text{b48b86732}} \\ \underline{\text{result}} \underline{-8400} \underline{-820} \underline{\text{b48b86732}} \underline{-8400} \underline{-8400} \underline{-820} \underline{\text{b48b86732}} \underline{-8400} \underline{-84$

elucidation: TheoreticalCapacity divided by the mass of the cell.

 ${\bf altLabel:}\ Theoretical Specific Charge Capacity$

physical Dimension: T+1 L0 M-1 I+1 Θ 0 N0 J0

prefLabel: TheoreticalSpecificCapacity

Relations:

• is_a SpecificChargeCapacity

ChargeCapacity

IRI: http://emmo:info/BattINFO#EMMO_791c1915_a791_4450_acd8_7f94764743b5

elucidation: Amount of electric charge that can be stored.

altLabel: ElectricChargeCapacity

altLabel: Capacity

physical Dimension: T+1 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ChargeCapacity

Relations:

• is_a ElectricCharge

• is_a ElectrochemicalQuantity

ElectrochemicalQuantity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_} a ecc 6094 _ c6a5 _ 4a36 _ a825 _ 8a497a2ae112$

elucidation: Physical quantities defined within the domain of electrochemistry.

prefLabel: ElectrochemicalQuantity

Relations:

• is_a PhysicoChemical

StoredEnergy

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_4f1ed4ee_06ba_44a4_8ece_1ee56bf12afe}$

elucidation: Amount of energy stored in a physical object.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0$ N0 J0

prefLabel: StoredEnergy

Relations:

• is_a ElectrochemicalQuantity

• is_a InternalEnergy

ActiveElectrochemicalMaterialLoading

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_c955c089_6ee1_41a2_95fc_d534c5cfd3d5}$

elucidation: Weight of active material in an electrode per unit electrode area.

 ${\bf altLabel:} \ {\bf Active Material Loading}$

physical Dimension: T0 L-2 M+1 I0 Θ 0 N0 J0 pref Label: Active Electrochemical Material Loading

Relations:

• is_a ElectrochemicalQuantity

BatteryQuantity

IRI: http://emmo:info/BattINFO#EMMO_230809da_bc18_42ec_ac94_4ca6a86292d1

elucidation: Physical quantities defined within the domain of batteries.

prefLabel: BatteryQuantity

Relations:

• is a Electrochemical Quantity

TheoteticalSpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_1c13c786_35ae_4768_88fe_795813d465cd

elucidation: TheoreticalEnergy per unit mass of the cell.

physicalDimension: T-2 L+2 M0 I0 Θ0 N0 J0

prefLabel: TheoteticalSpecificEnergy

Relations:

• is_a SpecificEnergy

${\bf Specific Charge Capacity}$

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_1e3dc60d_dd6b_47d6_8161_70004fc5ee30}$

elucidation: Electric charge per unit mass. altLabel: SpecificElectricChargeCapacity

altLabel: SpecificCapacity

physicalDimension: T+1 L0 M-1 I+1 Θ0 N0 J0

 ${\bf prefLabel:} \ {\bf Specific Charge Capacity}$

Relations:

• is a ISQDerivedQuantity

• is_a ElectrochemicalQuantity

ElectrochemicallyActiveSurfaceArea

 $\textbf{IRI:} \ http://emmo: info/BattINFO\#EMMO_bad1b6f4_1b26_40e2_b552_6d53873e3973$

elucidation: The area of the electrode material that is accessible to the electrolyte that is used for charge

transfer and/or storage.

altLabel: EASA altLabel: ECSA

physicalDimension: T0 L+2 M0 I0 Θ0 N0 J0 prefLabel: ElectrochemicallyActiveSurfaceArea

Relations:

• is a ElectrochemicalQuantity

SpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_ea0c7651_b58b_4caf_ae02_fb6a4dfe6a5d

elucidation: Energy per unit mass.

physical Dimension: T-2 L+2 M0 I0 Θ 0 N0 J0

prefLabel: SpecificEnergy

Relations:

is_a ISQDerivedQuantityis_a ElectrochemicalQuantity

TheoreticalStoredEnergy

IRI: http://emmo:info/BattINFO#EMMO_9ea6a862_131f_4154_be47_e7417f2fb924

elucidation: Theoretical amount of energy that can be stored in a battery cell. Minimum of the theoretical energy of the positive electrode and negative electrode. Product of the Theoretical Capacity and the Theoretical Open-Circuit Voltage.

altLabel: TheoreticalEnergy

physicalDimension: T-2 L+2 M+1 I0 Θ0 N0 J0

prefLabel: TheoreticalStoredEnergy

Relations:

• is a StoredEnergy

Electrochemical Transport Quantity branch

Figure 3.8: Electrochemical Transport Quantity branch.

ElectrochemicalTransportQuantity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_4a450a27_b84a_4c70_a3a9_15ec30e2f30b} \\$

elucidation: An ElectrochemicalQuantity related to the transport of mass and/or charge.

prefLabel: ElectrochemicalTransportQuantity

Relations:

• is_a ElectrochemicalQuantity

Electronic Conductivity

IRI: http://emmo:info/BattINFO#EMMO_6a28741c_ef47_4a11_ba3d_166aef581e86

physical Dimension: T+3 L-3 M-1 I+2 $\Theta 0$ N0 J0

prefLabel: ElectronicConductivity

Relations:

- is a ElectricConductivity
- is a ElectrochemicalTransportQuantity

IonicResistivity

IRI: http://emmo:info/BattINFO#EMMO_c90a4ca0_493f_4880_a838_3a2c4b808a03

elucidation: Inverse of IonicConductivity

physicalDimension: T-3 L+3 M+1 I-2 Θ 0 N0 J0

prefLabel: IonicResistivity

Relations:

• is_a ElectrochemicalTransportQuantity

• is_a ElectricResistivity

InternalConductance

IRI: http://emmo:info/BattINFO#EMMO_0c9655c6_6b0b_4819_a219_f286ad196fa9

physicalDimension: T+3 L-2 M-1 I+2 $\Theta0$ N0 J0

prefLabel: InternalConductance

Relations:

• is_a ElectrochemicalTransportQuantity

 $\bullet \ \ is_a \ ElectricConductance \\$

ElectronicResistivity

IRI: http://emmo:info/BattINFO#EMMO bbcafb37 ceec 436b bb45 080a2bc656aa

elucidation: Inverse of ElectronicConductivity

physicalDimension: T-3 L+3 M+1 I-2 Θ0 N0 J0

prefLabel: ElectronicResistivity

Relations:

• is_a ElectricResistivity

• is_a ElectrochemicalTransportQuantity

TransportNumber

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_5c0ad135_89ea_44da_8df7_f108f8ee1d75}$

elucidation: Of ions B, the current density due to ions B divided by the sum of current densities of all the

ions in the electrolyte.

iupacEntry: https://goldbook:iupac:org/terms/view/T06489

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

 $\mathbf{prefLabel:}\ \mathrm{TransportNumber}$

Relations:

 $\bullet \ \ is_a \ Electrochemical Transport Quantity$

IonicConductivity

IRI: http://emmo:info/BattINFO#EMMO_64e6ed6a_8d17_40ba_937f_f385a54a86c3

physicalDimension: T+3 L-3 M-1 I+2 Θ 0 N0 J0

prefLabel: IonicConductivity

Relations:

• is a ElectrochemicalTransportQuantity

• is a ElectricConductivity

Electrochemical Kinetic Quantity branch

Figure 3.9: Electrochemical Kinetic Quantity branch.

ElectrochemicalKineticQuantity

IRI: http://emmo:info/BattINFO#EMMO_21745019_2830_4395_bca7_15ddfd266673

elucidation: An ElectrochemicalQuantity that relates to the kinetics of a reaction.

prefLabel: ElectrochemicalKineticQuantity

Relations:

• is a ElectrochemicalQuantity

ExchangeCurrentDensity

IRI: http://emmo:info/BattINFO#EMMO_e9fd9ef9_adfe_46cb_b2f9_4558468a25e7

elucidation: Defined by j0 = i0/A, where i0 is the exchange current of the electrode reaction and A is usually taken as the geometric area of the electrode.

altLabel: MeanExchangeCurrentDensity

iupacEntry: https://goldbook:iupac:org/terms/view/M03777

physical Dimension: T0 L-2 M0 I+1 Θ 0 N0 J0

prefLabel: ExchangeCurrentDensity

wikipediaEntry: https://en:wikipedia:org/wiki/Exchange_current_density

Relations:

• is_a ElectrochemicalKineticQuantity

ReactionRateConstant

IRI: http://emmo:info/BattINFO#EMMO_dbd808a7_8a8f_43be_9870_02cc35bd1646

iupacEntry: https://goldbook:iupac:org/terms/view/O04322

prefLabel: ReactionRateConstant

Relations:

• is_a ElectrochemicalKineticQuantity

Charge Transfer Coefficient

IRI: http://emmo:info/BattINFO#EMMO_a4dfa5c1_55a9_4285_b71d_90cf6613ca31

elucidation: The fraction of the electrostatic potential energy affecting the reduction rate in an electrode reaction, with the remaining fraction affecting the corresponding oxidation rate.

• Guidelli et al.: Transfer coefficient: An assessment, DOI: 10.1515/pac-2014-5026

physicalDimension: T0 L0 M0 I0 Θ0 N0 J0

prefLabel: ChargeTransferCoefficient

wikipediaEntry: https://en:wikipedia:org/wiki/Charge_transfer_coefficient

Relations:

• is a ElectrochemicalKineticQuantity

ExchangeCurrent

IRI: http://emmo:info/BattINFO#EMMO ccde24bb 790a 40ca a06e cea156a61031

elucidation: The common value (i0) of the anodic and cathodic partial currents when the reaction is at equilibrium:

i0 = ia = -ic

For an electrode at equilibrium at which only one reaction is significant i = 0. When more than one reaction is significant at a given electrode, subscripts to i0 may be used to distinguish exchange currents. i is not usually zero when only one of these reactions is at equilibrium.

iupacEntry: https://goldbook:iupac:org/terms/view/E02238

physicalDimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ExchangeCurrent

Relations:

• is_a ElectrochemicalKineticQuantity

ReactionRate

IRI: http://emmo:info/BattINFO#EMMO_47b7d606_7030_4674_9828_cf83fb4a2995

elucidation: For the general chemical reaction:

 $aA\!+\!bB\!\to\!pP\!+\!qQ\!+\!\dots$

occurring under constant-volume conditions, without an appreciable build-up of reaction intermediates, the rate of reaction ν is defined as:

 $\nu = -1/a \ d[A]/dt = -1/b \ d[B]/dt = 1/p * d[P]/dt = 1/q * d[Q]/dt$

where symbols placed inside square brackets denote amount (or amount of substance) concentrations (conventionally expressed in units of mol dm-3). The symbols R and r are also commonly used in place of ν .

altLabel: RateOfReaction

iupacEntry: https://goldbook:iupac:org/terms/view/R05156

physicalDimension: T-1 L0 M0 I0 Θ 0 N+1 J0

prefLabel: ReactionRate

wikipediaEntry: https://en:wikipedia:org/wiki/Reaction_rate

Relations:

• is_a ElectrochemicalKineticQuantity

ChargeNumber

IRI: http://emmo:info/BattINFO#EMMO_abfadc99_6e43_4d37_9b04_7fc5b0f327ae

elucidation: Number of electrons transferred in a charge transfer reaction between an electrode and a single entity (ion, radical-ion, or molecule) of an electroactive substance, whose identity must be specified.

-Pingarrón et al.: Terminology of electrochemical methods of analysis, DOI: 10.1515/pac-2018-0109

altLabel: NumberOfElectronsTransferred

altLabel: ElectronNumberOfAnElectrochemicalReaction

iupacEntry: https://goldbook:iupac:org/terms/view/C00995

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: ChargeNumber

Relations:

• is a ElectrochemicalKineticQuantity

ReactionOrder

IRI: http://emmo:info/BattINFO#EMMO_29a57599_aa0d_458f_b23e_666a2da55883

elucidation: If the macroscopic (observed, empirical or phenomenological) rate of reaction (v) for any reaction can be expressed by an empirical differential rate equation (or rate law) which contains a factor of the form k $[A]\alpha$ $[B]\beta$... (expressing in full the dependence of the rate of reaction on the concentrations [A], [B] ...) where α , β are constant exponents (independent of concentration and time) and k is independent of [A] and [B] etc. (rate constant, rate coefficient), then the reaction is said to be of order α with respect to A, of order β with respect to B, ..., and of (total or overall) order $n=\alpha+\beta+...$ The exponents α , β , ... can be positive or negative integral or rational nonintegral numbers.

altLabel: OrderOfReaction

iupacEntry: https://goldbook:iupac:org/terms/view/O04322

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: ReactionOrder

Relations:

• is a ElectrochemicalKineticQuantity

Electrochemical Thermodynamic Quantity branch

Figure 3.10: Electrochemical Thermodynamic Quantity branch.

StandardPotential

IRI: http://emmo:info/BattINFO#EMMO_7fc10197_41d9_4c1e_a107_928f03eb2d36

elucidation: Theoretical equilibrium potential under standard conditions.

altLabel: StandardElectrodePotential

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: StandardPotential

Relations:

• is_a TheoreticalOpenCircuitPotential

MolarChemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_68dc1bf8_9813_43c8_b428_6bd614c3161d

elucidation: ChemicalPotential per mole. **altLabel:** PartialMolarGibbsFreeEnergy

altLabel: PartialMolarFreeEnergy

physical Dimension: T-2 L+2 M+1 I0 Θ 0 N-1 J0

prefLabel: MolarChemicalPotential

Relations:

• is a ChemicalPotential

ChemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_17e305af_52a9_4255_a70f_700ba1088f13

elucidation: Energy that can be absorbed or released due to a change of the particle number of the given

species

iupacEntry: https://goldbook:iupac:org/terms/view/C01032

physical Dimension: T-2 L+2 M+1 I0 $\Theta 0$ N0 J0

prefLabel: ChemicalPotential

wikipediaEntry: https://en:wikipedia:org/wiki/Chemical_potential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

ElectrochemicalStabilityLimit

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_8f4b90ef_fea4_47c9_99f5_a9b3290a505d} \\$

elucidation: Electric potential at which a material undergoes an oxidation or reduction decomposition.

example: For water, the electrochemical stability limits are: Reduction: 0 V Oxidation: 1.23 V

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: ElectrochemicalStabilityLimit

Relations:

• is a ElectrochemicalThermodynamicQuantity

MolarElectrochemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_7fe804b8_6126_4132_be8f_b4985d61b1f6

elucidation: ElectrochemicalPotential per mole.

iupacEntry: https://goldbook:iupac:org/terms/view/E01945

physical Dimension: T-2 L+2 M+1 I0 Θ 0 N-1 J0

prefLabel: MolarElectrochemicalPotential

Relations:

• is a ElectrochemicalPotential

Theoretical Open Circuit Potential

IRI: http://emmo:info/BattINFO#EMMO_d91940f0_c8b6_4505_9b68_6bf6cfc5c544

elucidation: Theoretical electrode potential considering a given electrochemical charge-transfer reaction.

altLabel: NernstPotential

altLabel: EquilibriumPotential

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: TheoreticalOpenCircuitPotential

Relations:

• is a OpenCircuitPotential

ConcentrationOverpotential

IRI: http://emmo:info/BattINFO#EMMO_9ed7210c_c4fa_467b_822d_ba12f885bdf4

elucidation: The concentration overpotential of an electrode reaction at a given electrode current density (c.d.) is basically the difference in equilibrium potentials across the diffusion layer. More precisely, it is the potential of a reference electrode (of the same electrode reaction as the working electrode) with the interfacial concentrations which establish themselves at c.d., relative to the potential of a similar reference electrode with the concentrations of the bulk solution. From such a measured potential difference, with c.d. flowing, one needs to subtract the ohmic potential drop prevailing between the two electrodes.

iupacEntry: https://goldbook:iupac:org/terms/view/C01230

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: ConcentrationOverpotential

Relations:

• is_a Overpotential

SurfaceOverpotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_60741c58_a10d_4aa6_bb68_0066a6ff8e30}$

elucidation: The potential of a working electrode relative to a reference electrode of the same kinds placed in the solution adjacent to the surface of the working electrode (just outside the double layer).

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: SurfaceOverpotential

Relations:

• is_a Overpotential

GibbsFreeEnergyOfReaction

IRI: http://emmo:info/BattINFO#EMMO_d62ff300_26ac_4b00_bfcd_04a68aff5dc3

elucidation: Change in the Gibbs free energy between the products and reactants in a reaction.

physical Dimension: T-2 L+2 M+1 I0 Θ 0 N0 J0

prefLabel: GibbsFreeEnergyOfReaction

Relations:

• is_a ElectrochemicalThermodynamicQuantity

TheoreticalOpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO 367a4916 d03a 483c 9f2c 6588370fc9d9

elucidation: Difference between the theoretical electric potentials of the positive electrode and negeative

electrode under no current flow.

 ${f altLabel:}$ NernstVoltage

 ${\bf alt Label:} \ {\bf Theoretical Equilibrium Voltage}$

physical Dimension: T-3 L+2 M+1 I-1 $\Theta 0$ N0 J0

prefLabel: TheoreticalOpenCircuitVoltage

Relations:

• is_a OpenCircuitVoltage

ElectrochemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_1422cde1_929e_46b6_b0dc_1010eebc5dfd

iupacEntry: https://goldbook:iupac:org/terms/view/E01945

physicalDimension: T-2 L+2 M+1 I0 Θ0 N0 J0

prefLabel: ElectrochemicalPotential

Relations:

• is a ElectrochemicalThermodynamicQuantity

ElectrochemicalThermodynamicQuantity

IRI: http://emmo:info/BattINFO#EMMO_2d896559_eee3_447c_9759_87c854a4266a

elucidation: A thermodynamically derived ElectrochemicalQuantity.

 ${\bf prefLabel:} \ {\bf Electrochemical Thermodynamic Quantity}$

Relations:

• is_a ElectrochemicalQuantity

ReactionQuotient

IRI: http://emmo:info/BattINFO#EMMO_740d5817_3fa7_464a_90c3_55552e51a3df

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: ReactionQuotient

wikipediaEntry: https://en:wikipedia:org/wiki/Reaction quotient

Relations:

• is_a ElectrochemicalThermodynamicQuantity

Overpotential

IRI: http://emmo:info/BattINFO#EMMO_1cd1d777_e67b_47eb_81f1_edac35d9f2c6

elucidation: Deviation of the potential of an electrode from its equilibrium value required to cause a given

current to flow through the electrode.

iupacEntry: https://goldbook:iupac:org/terms/view/O04358

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: Overpotential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

Theoretical Open Circuit Voltage

IRI: http://emmo:info/BattINFO#EMMO_34e440e0_b720_4585_a915_fbe5abb8615d

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

 ${f prefLabel:}\ {f Theoretical Open Circuit Voltage}$

Relations:

• is_a OpenCircuitVoltage

OpenCircuitPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9c657fdc_b9d3_4964_907c_f9a6e8c5f52b}$

elucidation: Measured electric potential of an electrode without external current flow.

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: OpenCircuitPotential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

• is_a ElectricPotential

OpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO 0c0c623c 43b8 426d a536 168108e2353a

elucidation: Measured difference between two electrodes without external current flow.

altLabel: EquilibriumPotential

physical Dimension: T-3 L+2 M+1 I-1 $\Theta0~\mathrm{N0~J0}$

prefLabel: OpenCircuitVoltage

Relations:

• is_a ElectricPotential

• is_a ElectrochemicalThermodynamicQuantity

Figure 3.11: Electrochemical Constant branch.

Electrochemical Constant branch

FaradayConstant

IRI: http://emmo:info/BattINFO#EMMO 499a652b 5be6 4931 be7b 15d42e544b0b

definition: Product of ElectronCharge and AvagadroConstant

elucidation: Fundamental physical constant representing molar elementary charge: F=9.648 533 99(24)×10⁴

C mol-1.

iupacEntry: https://goldbook:iupac:org/terms/view/F02325

physical Dimension: T+1 L0 M0 I+1 Θ 0 N-1 J0

prefLabel: FaradayConstant

Relations:

• is_a ElectrochemicalConstant

ElectrochemicalConstant

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_cdaf1d61_b5df_43a9_91a4_a5b7f719e2b4} \\$

prefLabel: ElectrochemicalConstant

Relations:

• is_a PhysicalConstant

Additional physical quantities

Theoretical Specific Capacity

IRI: http://emmo:info/BattINFO#EMMO 8632dee1 0adf 4a47 8400 820b48b86732

elucidation: TheoreticalCapacity divided by the mass of the cell.

altLabel: TheoreticalSpecificChargeCapacity physicalDimension: T+1 L0 M-1 I+1 Θ0 N0 J0

prefLabel: TheoreticalSpecificCapacity

Relations:

• is_a SpecificChargeCapacity

Figure 3.12: Additional physical quantities defined in BattINFO. Parent classes belonging to EMMO are shown in gray.

TheoteticalSpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_1c13c786_35ae_4768_88fe_795813d465cd

elucidation: TheoreticalEnergy per unit mass of the cell.

physical Dimension: T-2 L+2 M0 I0 Θ 0 N0 J0

prefLabel: TheoteticalSpecificEnergy

Relations:

• is_a SpecificEnergy

IonicCurrentDensity

IRI: http://emmo:info/BattINFO#EMMO_683e4991_38f3_42e1_84de_5ee25942d2e8

elucidation: Current density in which the charge carriers are ions.

physical Dimension: T0 L-2 M0 I+1 Θ 0 N0 J0

 ${\bf prefLabel:}\ {\bf Ionic Current Density}$

Relations:

• is_a CurrentDensity

Electronic Conductivity

IRI: http://emmo:info/BattINFO#EMMO_6a28741c_ef47_4a11_ba3d_166aef581e86

physical Dimension: T+3 L-3 M-1 I+2 $\Theta0~\mathrm{N0~J0}$

prefLabel: ElectronicConductivity

Relations:

• is_a ElectricConductivity

• is_a ElectrochemicalTransportQuantity

IonicCurrent

IRI: http://emmo:info/BattINFO#EMMO_569a62a5_3b7e_4099_8a4c_f76e229a0347

elucidation: A flow of electric charge, in which ions are the charge carrier.

physical Dimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: IonicCurrent

Relations:

• is a ElectricCurrent

Porosity

IRI: http://emmo:info/BattINFO#EMMO_3a38e30d_4c97_49d4_b0f4_661c9779e039

elucidation: Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%.

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: Porosity

Relations:

• is_a RatioQuantity

ElectronicCurrent

IRI: http://emmo:info/BattINFO#EMMO_e73063fe_30a4_4ed5_b9f6_11979f807a42

elucidation: A flow of electric charge, in which electrons are the charge carrier

physical Dimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ElectronicCurrent

Relations:

• is_a ElectricCurrent

ChargeCapacity

IRI: http://emmo:info/BattINFO#EMMO_791c1915_a791_4450_acd8_7f94764743b5

elucidation: Amount of electric charge that can be stored.

altLabel: ElectricChargeCapacity

altLabel: Capacity

physical Dimension: T+1 L0 M0 I+1 Θ 0 N0 J0

 ${\bf prefLabel:}\ {\bf Charge Capacity}$

Relations:

• is a ElectricCharge

• is_a ElectrochemicalQuantity

IonicConductivity

IRI: http://emmo:info/BattINFO#EMMO_64e6ed6a_8d17_40ba_937f_f385a54a86c3

physical Dimension: T+3 L-3 M-1 I+2 $\Theta 0$ N0 J0

prefLabel: IonicConductivity

Relations:

• is_a ElectrochemicalTransportQuantity

• is a ElectricConductivity

Theoretical Open Circuit Voltage

IRI: http://emmo:info/BattINFO#EMMO_34e440e0_b720_4585_a915_fbe5abb8615d

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: TheoreticalOpenCircuitVoltage

Relations:

• is a OpenCircuitVoltage

InternalConductance

IRI: http://emmo:info/BattINFO#EMMO_0c9655c6_6b0b_4819_a219_f286ad196fa9

physical Dimension: T+3 L-2 M-1 I+2 $\Theta0~\mathrm{N0~J0}$

prefLabel: InternalConductance

Relations:

• is_a ElectrochemicalTransportQuantity

• is_a ElectricConductance

Electronic Resistivity

IRI: http://emmo:info/BattINFO#EMMO_bbcafb37_ceec_436b_bb45_080a2bc656aa

elucidation: Inverse of ElectronicConductivity physicalDimension: T-3 L+3 M+1 I-2 Θ0 N0 J0

prefLabel: ElectronicResistivity

Relations:

• is_a ElectricResistivity

• is_a ElectrochemicalTransportQuantity

OpenCircuitPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9c657fdc_b9d3_4964_907c_f9a6e8c5f52b}$

elucidation: Measured electric potential of an electrode without external current flow.

physicalDimension: T-3 L+2 M+1 I-1 Θ0 N0 J0

prefLabel: OpenCircuitPotential

Relations:

• is a ElectrochemicalThermodynamicQuantity

• is a ElectricPotential

StandardPotential

IRI: http://emmo:info/BattINFO#EMMO_7fc10197_41d9_4c1e_a107_928f03eb2d36

elucidation: Theoretical equilibrium potential under standard conditions.

altLabel: StandardElectrodePotential

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: StandardPotential

Relations:

 $\bullet \ \ is_a \ Theoretical Open Circuit Potential$

SpecificChargeCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_1e3dc60d_dd6b_47d6_8161_70004fc5ee30}$

elucidation: Electric charge per unit mass.
altLabel: SpecificElectricChargeCapacity

altLabel: SpecificCapacity

physical Dimension: T+1 L0 M-1 I+1 Θ 0 N0 J0

prefLabel: SpecificChargeCapacity

Relations:

is_a ISQDerivedQuantity is_a ElectrochemicalQuantity

TheoreticalStoredEnergy

IRI: http://emmo:info/BattINFO#EMMO_9ea6a862_131f_4154_be47_e7417f2fb924

elucidation: Theoretical amount of energy that can be stored in a battery cell. Minimum of the theoretical energy of the positive electrode and negative electrode. Product of the Theoretical Capacity and the Theoretical Open-Circuit Voltage.

altLabel: TheoreticalEnergy

physicalDimension: T-2 L+2 M+1 I0 $\Theta 0$ N0 J0

prefLabel: TheoreticalStoredEnergy

Relations:

• is a StoredEnergy

TheoreticalChargeCapacity

IRI: http://emmo:info/BattINFO#EMMO_2b09f961_3374_42e4_8836_bffc6bf522fa

elucidation: Theoretical amount of charge a cell can store. Minimum of the theoretical capacity of the positive electrode and negative electrode.

altLabel: TheoreticalCapacity

physicalDimension: T+1 L0 M0 I+1 Θ 0 N0 J0

prefLabel: TheoreticalChargeCapacity

Relations:

• is_a ChargeCapacity

Theoretical Open Circuit Potential

IRI: http://emmo:info/BattINFO#EMMO_d91940f0_c8b6_4505_9b68_6bf6cfc5c544

elucidation: Theoretical electrode potential considering a given electrochemical charge-transfer reaction.

altLabel: NernstPotential
altLabel: EquilibriumPotential

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

 ${\bf prefLabel:}\ Theoretical Open Circuit Potential$

Relations:

• is_a OpenCircuitPotential

Theoretical Open Circuit Voltage

IRI: http://emmo:info/BattINFO#EMMO 367a4916 d03a 483c 9f2c 6588370fc9d9

elucidation: Difference between the theoretical electric potentials of the positive electrode and negeative

electrode under no current flow.

altLabel: NernstVoltage

 ${\bf alt Label:}\ {\bf Theoretical Equilibrium Voltage}$

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: TheoreticalOpenCircuitVoltage

Relations:

• is_a OpenCircuitVoltage

StoredEnergy

IRI: http://emmo:info/BattINFO#EMMO 4f1ed4ee 06ba 44a4 8ece 1ee56bf12afe

elucidation: Amount of energy stored in a physical object.

physical Dimension: T-2 L+2 M+1 I0 $\Theta 0$ N0 J0

prefLabel: StoredEnergy

Relations:

• is a ElectrochemicalQuantity

• is_a InternalEnergy

ElectronicCurrentDensity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_bfc8c075_246e_4633_ba8e_906a9f5f2e3a}$

elucidation: Current density in which the charge carriers are electrons.

physical Dimension: T0 L-2 M0 I+1 $\Theta0$ N0 J0

prefLabel: ElectronicCurrentDensity

Relations:

• is a CurrentDensity

IonicResistivity

IRI: http://emmo:info/BattINFO#EMMO_c90a4ca0_493f_4880_a838_3a2c4b808a03

elucidation: Inverse of IonicConductivity

physicalDimension: T-3 L+3 M+1 I-2 Θ0 N0 J0

prefLabel: IonicResistivity

Relations:

• is_a ElectrochemicalTransportQuantity

• is_a ElectricResistivity

SpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO ea0c7651 b58b 4caf ae02 fb6a4dfe6a5d

elucidation: Energy per unit mass.

physicalDimension: T-2 L+2 M0 I0 Θ0 N0 J0

prefLabel: SpecificEnergy

Relations:

• is_a ISQDerivedQuantity

• is_a ElectrochemicalQuantity

InternalResistance

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9bf40017_3f58_4030_ada7_cb37a3dfda2d}$

elucidation: Impetance associated with a power source. physical Dimension: T-3 L+2 M+1 I-2 Θ 0 N0 J0

prefLabel: InternalResistance

Relations:

• is_a ElectricResistance

OpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO_0c0c623c_43b8_426d_a536_168108e2353a

elucidation: Measured difference between two electrodes without external current flow.

altLabel: EquilibriumPotential

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: OpenCircuitVoltage

Relations:

 \bullet is_a ElectricPotential

• is a ElectrochemicalThermodynamicQuantity

Tortuosity

IRI: http://emmo:info/BattINFO#EMMO_caa0969a_1e27_4950_8af6_5b72fd20e504

elucidation: A measure of deviation from a straight line. It is the ratio of the actual distance traveled divided by the straight line distance.

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0 prefLabel: Tortuosity

Relations:

• is_a RatioQuantity

Material Relation branch

Figure 3.13: Material Relation branch.

MaterialRelation

IRI: http://emmo:info/emmo#EMMO e5438930 04e7 4d42 ade5 3700d4a52ab7

elucidation: An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables).

example: The Lennard-Jones potential.

A force field.

An Hamiltonian.

prefLabel: MaterialRelation

Relations:

• is_a Equation

• hasSpatialDirectPart some PhysicalQuantity

ElectrochemicalRelation

IRI: http://emmo:info/BattINFO#EMMO 3d805c2a 4801 440e 9e4d 0fa5585c76ae

elucidation: A material relation in electrochemistry.

 ${f prefLabel:}$ ElectrochemicalRelation

Relations:

• is_a MaterialRelation

NernstEquation

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_fe3a6c9a_85b8_4da6_aa4f_71c8de74939e}$

elucidation: An equation that describes the equilibrium potential of an electrode at which a given electrochemical charge-transfer reaction occurs, considering the activity of the reacting species and the temperature of the system.

prefLabel: NernstEquation

wikipediaEntry: https://en:wikipedia:org/wiki/Nernst_equation

Relations:

- is_a ElectrochemicalRelation
- hasSpatialDirectPart some StandardPotential
- hasSpatialDirectPart some TheoreticalOpenCircuitPotential
- hasSpatialDirectPart some ThermodynamicTemperature
- hasSpatialDirectPart some ReactionQuotient
- hasSpatialDirectPart some ChargeNumber
- hasSpatialDirectPart some MolarGasConstant
- hasSpatialDirectPart some FaradayConstant

ButlerVolmerEquation

IRI: http://emmo:info/BattINFO#EMMO_d48ea516_5cac_4f86_bc88_21b6276c0938

elucidation: The standard phenomenological model for electrode kinetics, describing the relation between the electrode current from an electrochemical charge-transfer reaction and the surface overpotential of the electrode.

altLabel: ErdeyGruzVolmerEquation
altLabel: ButlerVolmerApproximation
prefLabel: ButlerVolmerEquation

Relations:

- is_a ElectrochemicalRelation
- hasSpatialDirectPart some SurfaceOverpotential
- $\bullet \ \ has Spatial Direct Part \ some \ Thermodynamic Temperature$
- hasSpatialDirectPart some ElectricCurrent
- hasSpatialDirectPart some MolarGasConstant
- hasSpatialDirectPart some ChargeNumber
- $\bullet \ \ has Spatial Direct Part \ some \ Exchange Current$
- hasSpatialDirectPart some FaradayConstant

Chemical Species branch

StrongBase

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_a1bbb273_bc05_4e80_8817_82479178bb41}$

definition: "A base that completely dissociates in water."

prefLabel: StrongBase

Relations:

• is_a Base

Figure 3.14: Chemical Species branch.

WeakBase

IRI: http://emmo:info/BattINFO#EMMO_ce548161_c987_4beb_9091_adcf80027310

definition: "A base that partially dissociates in water."

prefLabel: WeakBase

Relations:

• is_a Base

StrongAcid

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_c9e0fb9b_c11e_48ab_9245_04b45e15dcfb}$

definition: An acid that completely dissociates in water.

prefLabel: StrongAcid

Relations:

• is_a Acid

Salt

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_b6a52fdb_ba40_4caf_a8d9_523a467eb799}$

definition: "A chemical compound consisting of an assembly of cations and anions." IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/S05447

 $\mathbf{prefLabel:}\ \mathrm{Salt}$

Relations:

 \bullet is_a Chemical Species

WeakAcid

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e3ec1307_09d7_4b61_97e3_a69ec87fb408}$

definition: "An acid that partially dissociates in water."

prefLabel: WeakAcid

Relations:

• is_a Acid

Base

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_af499b32_68a7_4b8c_972e_4ebdba8b314e}$

definition: "A chemical species or molecular entity having an available pair of electrons capable of forming a covalent bond with a hydron (proton) (see Brønsted base) or with the vacant orbital of some other species (see Lewis base)." - IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/B00601

prefLabel: Base

Relations:

• is_a ChemicalSpecies

Acid

IRI: http://emmo:info/BattINFO#EMMO c230694a 04ce 4719 88a4 ecfa85167c30

definition: "A molecular entity or chemical species capable of donating a hydron (proton) (see Brønsted acid) or capable of forming a covalent bond with an electron pair (see Lewis acid)." - IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/A00071

prefLabel: Acid

Relations:

• is_a ChemicalSpecies

Real world objects

ElectrodePore

IRI: http://emmo:info/BattINFO#EMMO 4f3a2ba3-7abc-4150-ba98-3973d865690f

elucidation: A pore that exists within an electrode host domain.

prefLabel: ElectrodePore

Relations:

• is_a Pore

• hasContactWith some PorousElectrode

ElectrochemicalDevice

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_0acd0fc2_1048_4604_8e90_bf4e84bd87df}$

elucidation: A device whose primary function is facilitating the conversion between chemical and electrical energy.

prefLabel: ElectrochemicalDevice

Relations:

• is_a Device

• hasPart some ElectrochemicalComponent

Physical dimensions

${\bf Charge Per Mass Dimension}$

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_7bfcbe2d_eac6_4953_86d6_6f075334cf29}$

 ${\bf prefLabel:}\ {\bf Charge Per Mass Dimension}$

Relations:

- is_a PhysicalDimension
- equivalent_to has Symbol
Data value "T+1 L0 M-1 I+1 $\Theta0$ N0 J0"

Chapter 4

Appendix

Figure 4.1: All classes defined with the BattINFO namespace, except physical quantities. In addition parent classes belonging to EMMO are shown in gray.

Figure 4.2: All physical quantities defined with the BattINFO name space. In addition parent classes belonging to EMMO are shown in gray.