תרגיל 10

לשפה: $R,RE,coRE,\overline{RE\cup coRE}$ לשפה

$$L = \{M : L(M) \text{ is finite}\}$$

כדי להראות ש $E \in RE$, נשתמש במשפט רייס החזק:

- .1 מקיימת, והמכונה לא טריוויאלית: המכונה לא מקיימת, המכונה לא טריוויאלית: המכונה לא טריוויאלית: 1
- 2. התכונה היא תכונה של שפה: אם יש שתי מכונות שמקבלות את אותה שפה, לא אפשרי שאחת תהיה אינסופית והשנייה לא.
 - $L \notin RE$ אז התכונה, אז מקיימת את הריקה הריקה .3

 $SHALT \leq L$ בראה רדוקציה, $L \notin coRE$ - כדי להראות

בהינתן שיתקיים: M' את נייצר $M \in_2 SHALT$ בהינתן

$M \in SHALT \iff L(M')$ is finite

 $x \in \{0,1\}^*$ על קלט M'

- נתייחס לקלט בתור מספר בינארי). $M(\varepsilon)$ את מריצה את מריצה את למשך x
 - .2 אם $M(\varepsilon)$ אם עצרה בזמן אם.
 - .3 אחרת, נקבל.

 $|L(M')|=\infty$ אז נקבל כל x, כלומר תוך צעדים. אז נעצור תוך א שנבדוק, אז לכל x שנבדוק, אז לכל א שנבדוק, אם אם M(arepsilon)

 $|L(M')|
eq \infty$ אז אז מספר סופי של ג, אז החל מספר כומר מונדחה. עצור בזמן הזה אז נדחה. עצור מטפיים, כל x אז שנבדוק, אז החל ממקום מסויים, כל אונבדוק, אז החל ממקום מסויים, כל אינבדוק.

$$M \notin SHALT \Longrightarrow \forall x : M'(x) = 1 \Longrightarrow M' \notin L$$

$$M \in SHALT \Longrightarrow \exists t : \forall x > t : M'(x) = 0 \Longrightarrow M' \in L$$

תרגיל 11

לשפה: $R,RE,coRE,\overline{RE}\cup coRE$ לשפה

$$L = \{M : L(M) \text{ is infinite}\}\$$

כדי להראות ש-L
otin coRE, נשתמש במשפט רייס החזק:

- .1 התכונה היא תכונה לא טריוויאלית: המכונה M_{accept} לא מקיימת, והמכונה לא טריוויאלית: המכונה M_{reject}
- 2. התכונה היא תכונה של שפה: אם יש שתי מכונות שמקבלות את אותה שפה, לא אפשרי שאחת תהיה אינסופית והשנייה לא.
 - $L \notin coRE$ אז התכונה, אז מקיימת את הריקה לא מקיימת .3

 $\overline{SHALT} \leq L$ נעשה רדוקציה $L \notin RE$ -כדי להראות כדי

בהינתן $M \in_2 \overline{SHALT}$, נייצר את M' אנחנו רוצים שיתקיים:

$M \in \overline{SHALT} \iff L(M')$ is infinite

 $x \in \{0,1\}^*$ על קלט M'

- .1 מריצה את לקלט בתור מספר צעדים. (נתייחס לקלט בתור מספר בינארי). מריצה את $M(\varepsilon)$
 - עצרה בזמן הזה, נקבל. $M(\varepsilon)$ אם 2.
 - .3 אחרת, נדחה.

 $|L(M')|
eq \infty$ אז נדחה כל x, כלומר עוצרת, אז לכל x שנבדוק, לא נעצור תוך x צעדים. אז נדחה כל x

 $|L(M')|
eq \infty$ אז אז אז פר סופי על x אז החל מספר סופי של x אז שנבדוק, M(arepsilon) תעצור בזמן הזה אז נקבל. כלומר נדחה רק מספר סופי של

$$M \in SHALT \Longrightarrow \exists t : \forall x > t : M'(x) = 1 \Longrightarrow M' \in L$$

$$M \notin SHALT \Longrightarrow \forall x: M'(x) = 0 \Longrightarrow M' \notin L$$