Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 35

Виконав студент <u>ІП-15, Шабанов Метін Шаміль огли</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив <u>Вєчерковська Анастасія Сергіївна</u>

(прізвище, ім'я, по батькові)

Лабораторна робота 4 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 35

Умова задачі

Обчислити:
$$y = \frac{1}{1 + \frac{1}{3 + \frac{1}{5 + \frac{1}{...}}}}$$

Постановка задачі

Обчислити значення заданого виразу. Результатом розв'язку ϵ одне числове значення.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Обмежувач циклу	Ціле	limit	Проміжні дані
Лічильник циклу	Ціле додатне	n	Проміжні дані
Початкове значення	Додатне	X ₁	Проміжні дані
Поточне значення	Дійсне	Xn	Проміжні дані
Результат виразу	Додатне	X51	Вихідні дані

Для вираховування значення виразу застосуємо арифметичний цикл, у якому буде використовуватися формула $x_n = \frac{1}{(105-2n)+x_{n-1}}$ а умовою буде n <= 51(limit).

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

Крок 1. Визначимо основні дії;

Крок 2. Деталізуємо створення початкового значення.

Крок 3. Деталізуємо схему роботи арифметичного циклу.

Псевдокод

Крок 1

Початок

Створення початкового значення

Робота арифметичного циклу, розраховування результату

Кінець

Крок 2

Початок

$$x_1 = 1/103$$

Робота арифметичного циклу, розраховування результату

Кінець

Крок 3

Початок

$$x_1 = 1/103$$

повторити

для п від 2 до 51

$$x_n = 1 / ((105 - 2n) + x_n)$$

все повторити

Кінець

Блок схема

Випробування алгоритму

I

Блок	Дія
	Початок
1	$X_{n(2)} = 0.00990099$
2	$x_{n(3)} = 0.020002$
3	$x_{n(4)} = 0.030311279$
4	$x_{n(5)} = 0.040837593$
5	$x_{n(6)} = 0.051590282$
44	$x_{n(45)} = 0.992542$
45	$x_{n(46)} = 1,0694652$
46	$x_{n(47)} = 1,1603743$
47	$x_{n(48)} = 1,2714854$
48	$x_{n(49)} = 1,4143426$
49	$x_{n(50)} = 1,6143427$
50	$x_{n(51)} = 1,9476761$
	Кінець

Висновки

Ми дослідили особливості роботи арифметичних циклів та набули практичних навичок їх використання під час складання програмних специфікацій. Як результат, ми отримали алгоритм обчислення значення виразу $y=\frac{1}{1+\frac{1}{3+\frac{1}{5+\frac{1}{\dots}}}}$, розділивши задачу на

101 + 1/103

три кроки: визначення основних дій, деталізація створення початкового значення; деталізація схеми роботи арифметичного циклу. В процесі випробовування ми отримали результат $x_{n(51)} = 1,9476761$.