

UFPB – UNIVERSIDADE FEDERAL DA PARAÍBA CI – CENTRO DE INFORMÁTICA DCC – DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA

CÁLCULO NUMÉRICO PROFA.: TATIANA SIMÕES

A = ==== (A)			
ALUNO(A):			

OBS:.

- Em cada questão considere $\mathbf{K} = \mathbf{3}$ últimos dígitos da sua matrícula (se sua matrícula for 20170166340, você vai usar $\mathbf{K} = 340$).
- Todas as questões devem ser feitas com uso de aplicativos (gráficos, planilhas, software, ...) **E DEVEM** APRESENTAR **O PASSO A PASSO** PARA OBTENÇÃO DOS RESULTADOS (EXPLICAR COMO FORAM GERADOS OS RESULTADOS);
 - A ATIVIDADE DEVE SER ENTREGUE EM UM ÚNICO ARQUIVO COM FORMATO PDF.

1º LISTA DE EXERCÍCIOS

1. Considere $\varepsilon = 10^{-4}$ e seja a função

$$f(x) = -ke^x - 3x$$

- a. Determine **uma raiz aproximada** da função através do Método da Bissecção (explique como chegou ao intervalo que contém a raiz e faça uma tabela com as aproximações);
- b. Determine **uma raiz aproximada** da função através do Método de Newton- Raphson (explique como escolheu x_0 e faça uma tabela com as aproximações);
- c. Determine **uma raiz aproximada** da função através do Método da Secante (explique como escolheu x_0 e faça uma tabela com as aproximações);
- d. Compare os resultados.
- 2. Duas escadas, uma de 20 m e outra de 30 m, apoiam-se em edifícios frontais a uma avenida, conforme ilustrado na figura abaixo. Se o ponto no qual as escadas se cruzam está a 8 m de altura do solo, determinar a largura da avenida. Gruenberger e Jeffrey, em Problems for Computer Solution (New York: Wiley, 1964), mostram que este problema pode ser formulado para pedir a solução da seguinte equação:

$$f(y) = y^4 - 16y^3 + 500y^2 - 8000y + 32000$$

para o qual $x = \sqrt{400 - y^2}$. Calcule uma aproximação para a raiz de f(y) pelo Método de Newton e pelo método das Secantes com $\varepsilon = 10^{-5}$ e critério de parada $|f(x_k)| < \varepsilon$. Informe a largura da rua, para essa aproximação.

