2(a) Let $x \in \Delta_n$. For each coordinate $i, 0 \le x_i \le 1$ and consequently $x_i^2 \le x_i$. So

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2} \le \sqrt{x_1 + \dots + x_n} = \sqrt{1} = 1.$$

Or via the triangle inequality: x has nonnegative coordinates summing to one, so $||x|| \leq \sum_{i=1}^{n} |x_i|||e_i|| = 1$. **2(b)** Let $k \in \mathbb{N}$. Using properties (N3) and (N4) of norms and the fact that $A^k x$ and x lie in Δ_n and consequently have a length at most one by our answer above, we find

$$||Av_k - v_k|| = \left\| \frac{1}{k} (Ax + Ax^2 + \dots + A^k x) - \frac{1}{k} (x + Ax + \dots + A^{k-1} x) \right\| = \left\| \frac{1}{k} (A^k x - x) \right\|$$
$$= \frac{1}{k} ||A^k x - x|| \le \frac{1}{k} (||A^k x|| + ||-x||) = \frac{1}{k} (||A^k x|| + ||x||) \le \frac{2}{k}.$$

- **2(c)** By 2(a), sequence $(v_k)_{k\in\mathbb{N}}$ in Δ_n is bounded, so it has a convergent subsequence (Thm. 9.2(d)). Δ_n is a polyhedron, hence closed (p. 66), so its limit lies in Δ_n (Thm. 9.4). Or use Thm. 13.4.
- **2(d)** Denote our subsequence by $(v_{k(n)})_{n\in\mathbb{N}}$. It converges to v^* and the function $v\mapsto Av-v$ is linear, hence continuous (Ex. 8.3), so the sequence $(Av_{k(n)}-v_{k(n)})_{n\in\mathbb{N}}$ converges to Av^*-v^* by Thm. 9.3. Since $\frac{2}{k}\to 0$ as $k\to \infty$, it also converges to **0** by 2(b). The limit of a (sub)sequence in a metric space is unique (Thm. 9.1), so $Av^*-v^*=\mathbf{0}$, i.e., $Av^*=v^*$.