

Automatic Filling Machine Farzad Azizi Zade

Automatic Filling Machine

Photocells are sensors that allow you to detect light. They are small, inexpensive, low-power, easy to use and don't wear out. For that reason they often appear in toys, gadgets and appliances. They are often referred to a CdS cells (they are made of Cadmium-Sulfide), light-dependent resistors (LDR), and Photoresistors.

Photocells, Photoresistors, LDR (light dependent resistor)

Ultrasonic Ranging Module HC - SR04/SR05 features:

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver and control circuit. The basic principle of work:

- 1) Using IO trigger for at least 10us(micro-second) high level signal,
- 2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.
- 3) IF the signal back, through high level, time of high output IO duration is the time from sending ultrasonic to returning.

 Test distance = [high level time × velocity of sound (340 m/s)] / 2

Vcc: 5V Supply Trigger

Trig: Pulse Input

Echo: Echo Pulse Output

GND: 0V Ground

+12V	5 – 35 V power supply		
GND	Power supply and Arduino ground		
12 V jumper	Remove if motor power > 12 V!		
5V+ (optional)	5 V Arduino if 12 V jumper is removed		
IN1	Pin 8 Arduino		
IN2	Pin 9 Arduino		
IN3	Pin 10 Arduino		
IN4	Pin 11 Arduino		
ENA and ENB jumper	Leave installed		
OUT1 + OUT2	Stepper motor coil A		
OUT3 + OUT4	Stepper motor coil B		

It is highly recommended to use a cooling fan on the heatsink

H-Bridge

for controlling rotation direction, we just need to inverse the direction of current flow through the motor, and the most common method is by using an H-Bridge.

An H-Bridge circuit contains four switching elements, transistors or MOSFETs, with the motor at the center forming an H-like configuration. By activating two particular switches at the same time we can change the direction of the current flow, thus change the rotation direction of the motor.

Arduino Uno R3

ATmega328P microcontroller

- USB connection
 - DC input
 - upload instructions
 - Communicate with PC
- Arduino C is not standard C. Rather, a robust **subset** of standard C.
 - A few standard C features are missing.

ATmega328P pin mapping

○ Arduino function					Ar	duino function 👀
reset	PC6	1		28	PC5	analog input 5
digital pin 0 RX	PD0	2		27	PC4	analog input 4
digital pin 1 TX	PD1	3		26	PC3	analog input 3
digital pin 2	PD2	4		25	PC2	analog input 2
digital pin 3 PWM	PD3	5		24	PC1	analog input 1
digital pin 4	PD4	6		23	PC0	analog input 0
VCC	VCC	7	TMEGA	22	GND	GND
GND	GND	8	ATMEGA328P	21	AREF	analog reference
crystal	PB6	9	016 P-PU	20	AVCC	AVCC
crystal	PB7	10	_	19	PB5 SCK	digital pin 13
digital pin 5 PWM	PD5	11		18	PB4 MISO	digital pin 12
digital pin 6 PWM	PD6	12		17	PB3 MOS	PWM digital pin 11
digital pin 7	PD7	13		16	bB5 using	PWM digital pin 10
digital pin 8	PB0	14		15	When using the chip	PWM digital pin 9


```
AutomatcFillingMachine
                     AutomatcFillingMachineold
int in1 = 8;
int in2 = 9;
int LED = 5;
int in3 = 7;
int in4 = 6;
int analogInPin = A0;
int sensorValue = 0;
#define trigPin 13
#define echoPin 12
int moistureAnalogValue = 0;
int moistureDigitalValue = 0;
int analogPin = A1;
int digitalPin = 2;
int p1 = 0;
```

Variables and parameters have been defined.


```
AutomatcFillingMachine
                     AutomatcFillingMachineold
void setup() {
 Serial.begin(9600);
 pinMode(in1, OUTPUT);
 pinMode(in2, OUTPUT);
 pinMode (LED, OUTPUT);
 pinMode(in3, OUTPUT);
 pinMode(in4, OUTPUT);
 pinMode(trigPin, OUTPUT);
 pinMode (echoPin, INPUT);
 pinMode(analogPin, INPUT);
 pinMode(digitalPin, INPUT);
```

The modes of the pins have been set.

AutomatcFillingMachine

AutomatcFillingMachineold

```
void TurnMotorA ROn () {
 digitalWrite(in2, HIGH);
 digitalWrite(in1, LOW);
void TurnMotorA On () {
 digitalWrite(in1, HIGH);
 digitalWrite(in2, LOW);
void TurnMotorA OFF() {
 digitalWrite(in1, LOW);
 digitalWrite(in2, LOW);
void TurnMotorB On () {
 digitalWrite(in3, HIGH);
 digitalWrite(in4, LOW);
void TurnMotorB OFF() {
 digitalWrite(in3, LOW);
 digitalWrite(in4, LOW);
```

The functions of both the driver and the pump DC motor have been defined.


```
AutomatcFillingMachine
                    AutomatcFillingMachineold
void loop()
 sensorValue = analogRead(analogInPin);
 long duration, distance;
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds (10);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);
 distance = (duration/2) / 29.1;
 moistureAnalogValue = analogRead(analogPin);
 moistureDigitalValue = digitalRead(digitalPin);
```

Sensors values, are read and the distance of the container from the start point has been calculated.


```
AutomatcFillingMachine
                  AutomatcFillingMachineold
Serial.print(" Leser sensor = ");
Serial.print(sensorValue);
Serial.println("");
if (distance >= 200 || distance <= 0) {
  Serial.println("Out of range");
  Serial.print(" Distance = ");
  Serial.print(distance);
  Serial.println(" cm");
Serial.print("Analog Waster value : ");
Serial.print(moistureAnalogValue);
Serial.print("\t");
Serial.print("Digital Water value : ");
Serial.print(moistureDigitalValue);
Serial.println("");
if (moistureDigitalValue==0) {
      Serial.println(" Error, check the tank ");
```

Sensors values and the distance of the container from the start point has been printed.

17 Farzad Azizi Zade - Automatic Filling Machine - Manufacturing Automation


```
if (distance <=4) {
  delay(500);
  Serial.print(" Leser sensor = ");
  Serial.print(sensorValue);
  Serial.println("");
  if (distance >= 200 | | distance <= 0){
  Serial.println("Out of range");
  else {
  Serial.print(" Distance = ");
  Serial.print(distance);
  Serial.println(" cm");
  Serial.print("Analog Waster value : ");
  Serial.print(moistureAnalogValue);
  Serial.print("\t");
  Serial.print("Digital Water value : ");
  Serial.print(moistureDigitalValue);
  Serial.println("");
  if (moistureDigitalValue==0){
   Serial.println(" Error, check the tank ");
 if (p1==0){
  delay(6000);
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration/2) / 29.1;
 if (distance <=4) {
 TurnMotorA On();
  p1 = 1;
```

```
if (p1==1){
  digitalWrite(LED, HIGH);
 else{
  digitalWrite(LED, LOW);
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration/2) / 29.1;
 if (distance >= 13 && distance <= 23) {
  delay(500);
  Serial.print(" Leser sensor = ");
  Serial.print(sensorValue);
  Serial.println("");
  if (distance >= 200 | | distance <= 0){
  Serial.println("Out of range");
  else {
  Serial.print(" Distance = ");
  Serial.print(distance);
  Serial.println(" cm");
  Serial.print("Analog Waster value : ");
  Serial.print(moistureAnalogValue);
  Serial.print("\t");
  Serial.print("Digital Water value : ");
  Serial.print(moistureDigitalValue);
  Serial.println("");
```

```
TurnMotorA_OFF();

if (p1==1){
    delay(3000);
    if (moistureDigitalValue==1) {
        TurnMotorB_On();
        delay(3000);
        TurnMotorB_OFF();
        delay(2000);
    }
    else if (moistureDigitalValue==0){
        Serial.println(" Error, check the tank ");
    }
    p1=0;
        TurnMotorA_ROn();
        delay(1250);
        TurnMotorA_OFF();
    }
}
```

The automation algorithm has been Implemented.


```
if (distance <=4) {
  delay(500);
  Serial.print(" Leser sensor = ");
  Serial.print(sensorValue);
  Serial.println("");
   if (distance >= 200 | | distance <= 0){
  Serial.println("Out of range");
  else {
  Serial.print(" Distance = ");
   Serial.print(distance);
   Serial.println(" cm");
   Serial.print("Analog Waster value : ");
   Serial.print(moistureAnalogValue);
  Serial.print("\t");
   Serial.print("Digital Water value : ");
   Serial.print(moistureDigitalValue);
  Serial.println("");
   if (moistureDigitalValue==0){
    Serial.println(" Error, check the tank ");
   if (p1==0){
```

```
delay(6000);
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration/2) / 29.1;
  if (distance <=4) {
  TurnMotorA On();
  p1 = 1;
```

In the first part of the algorithm, if the distance between the container and the start point is less than 4 cm the driver dc motor will turn on.


```
if (p1==1){
   digitalWrite(LED, HIGH);
  else{
   digitalWrite(LED, LOW);
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);
 distance = (duration/2) / 29.1;
```

In this tiny part, the indicating LED will turn on provided that the P variable is equal to 1, which means the container shouldn't be relocated on the belt, and the driver dc motor will turn on soon.


```
if (distance >= 13 && distance <= 23) {
                                               delay(2000);
  delay(500);
  Serial.print(" Leser sensor = ");
                                              else if (moistureDigitalValue==0){
  Serial.print(sensorValue);
                                               Serial.println(" Error, check the tank
  Serial.println("");
  if (distance >= 200 | | distance <= 0){
  Serial.println("Out of range");
                                              p1=0;
                                              TurnMotorA ROn();
  else {
                                               delay(1250);
  Serial.print(" Distance = ");
                                               TurnMotorA OFF();
  Serial.print(distance);
  Serial.println(" cm");
  Serial.print("Analog Waster value : ");
  Serial.print(moistureAnalogValue);
  Serial.print("\t");
  Serial.print("Digital Water value : ");
  Serial.print(moistureDigitalValue);
  Serial.println("");
  TurnMotorA OFF();
  if (p1==1){
  delay(3000);
   if (moistureDigitalValue==1) {
    TurnMotorB On();
    delay(3000);
    TurnMotorB OFF();
```

In the last part, if the distance between the container and the start point is simultaneously more than 13 cm and less than 23 cm, the driver dc motor will turn off before the pump starting to work.

Nozzle

Ultrasonic Sensor

Motor and Gearbox

Bread board

Arduino Uno R3

Laser Sensor (LDR and Laser)

Pump

Water Sensor

Motor Driver

Analog to Digital convertor board

Motor Driver

Ultrasonic Sensor

Lesser Sensor (LDR)

Motor and Gearbox

Power Axle

Water Sensor

Pump

THE END Thanks for your Time and Consideration

