Oblivious Transfer

Mike Rosulek Oregon State OSU crypt@b-it 2018

OT recap

OT is . . .

- Necessary for MPC [Kilian]
- ► Inherently expensive: impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

OT recap

OT is . . .

- Necessary for MPC [Kilian]
- ► Inherently expensive: impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Today's agenda: reducing the cost of OT

Precomputation: can compute OTs even before you know your input!

OT extension: 128 OTs suffice for everything.

Standard OT:

Random OT:

$$m_0, m_1 \leftarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow c, m_0$$

Standard OT:

Deterministic functionality; parties choose all inputs

Random OT:

$$m_0, m_1 \leftarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow c, m_c$$

Randomized functionality chooses m_0 , m_1 , c uniformly.

Standard OT:

Deterministic functionality; parties choose all inputs

Random OT:

Randomized functionality chooses m_0 , m_1 , c uniformly.

Beaver Derandomization Theorem [Beaver91]

There is a cheap protocol that securely evaluates an instance of **standard OT** using an instance of **random OT**.

Standard OT:

Deterministic functionality; parties choose all inputs

Random OT:

$$m_0, m_1 \leftarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow c, m_0$$

Randomized functionality chooses m_0 , m_1 , c uniformly.

Beaver Derandomization Theorem [Beaver91]

There is a cheap protocol that securely evaluates an instance of **standard OT** using an instance of **random OT**.

Offline/online approach to 2PC:

- ► In **offline preprocessing phase**, generate many random OTs
- During online phase, OT inputs are determined cheaply derandomize the offline OTs with Beaver's trick.

$$m_0^{\$}, m_1^{\$} \longleftarrow OT \longrightarrow c^{\$}, m_{c^{\$}}^{\$}$$

$$m_0^{\$}, m_1^{\$} \longleftarrow \underbrace{\text{OT}}_{c^{\$}}, m_{c^{\$}}^{\$}$$

$$-----\underset{\text{online}}{-----}$$
 m_0, m_1
 c
 m_c ?

▶ **Idea:** Alice can use $m_0^{\$}$ and $m_1^{\$}$ as one-time pads to mask m_0 , m_1

$$m_0^{\$}, m_1^{\$} \longleftarrow \underbrace{\text{OT}}_{\text{offline}} c^{\$}, m_{c^{\$}}^{\$}$$

$$m_0, m_1 \qquad \qquad c \quad (=c^{\$})$$

$$x_0 = m_0^{\$} \oplus m_0$$

$$x_1 = m_1^{\$} \oplus m_1$$

$$= x_c \oplus m_c^{\$} = m_c$$

- ▶ **Idea:** Alice can use $m_0^{\$}$ and $m_1^{\$}$ as one-time pads to mask m_0, m_1
- ▶ If $c = c^{\$}$ this works: Bob can decrypt **only** m_c (no info about m_{1-c})

$$m_0^{\$}, m_1^{\$} \xleftarrow{\text{OT}} c^{\$}, m_{c^{\$}}^{\$}$$

$$m_0, m_1 \qquad c \quad (\neq c^{\$})$$

$$x_0 = m_1^{\$} \oplus m_0$$

$$x_1 = m_0^{\$} \oplus m_1$$

$$= x_c \oplus m_{1 \oplus c}^{\$} = m_c$$

$$= x_c \oplus m_{1 \oplus c}^{\$} = m_c$$

- ▶ **Idea:** Alice can use $m_0^{\$}$ and $m_1^{\$}$ as one-time pads to mask m_0 , m_1
- ▶ If c = c\$ this works: Bob can decrypt **only** m_c (no info about m_{1-c})
- ▶ If $c \neq c^{\$}$ Bob learns wrong m unless Alice swaps $m_0^{\$}$, $m_1^{\$}$.

$$m_0^{\$}, m_1^{\$} \longleftarrow OT \longrightarrow c^{\$}, m_{c^{\$}}^{\$}$$

$$m_0, m_1 \qquad \qquad c$$

$$d = c \oplus c^{\$}$$

$$x_0 = m_d^{\$} \oplus m_0$$

$$x_1 = m_{1 \oplus d}^{\$} \oplus m_1$$

- ▶ **Idea**: Alice can use $m_0^{\$}$ and $m_1^{\$}$ as one-time pads to mask m_0, m_1
- ▶ If c = c\$ this works: Bob can decrypt **only** m_c (no info about m_{1-c})
- ▶ If $c \neq c^{\$}$ Bob learns wrong m unless Alice swaps $m_0^{\$}$, $m_1^{\$}$.
- ▶ **Solution:** Bob says whether $c = c^{\$}$ (safe: Alice has no info about $c^{\$}$)

$$m_{0}^{\$}, m_{1}^{\$} \longleftarrow OT \longrightarrow c^{\$}, m_{c^{\$}}^{\$}$$

$$m_{0}, m_{1} \qquad c$$

$$d = c \oplus c^{\$}$$

$$x_{0} = m_{d}^{\$} \oplus m_{0}$$

$$x_{1} = m_{1 \oplus d}^{\$} \oplus m_{1} \longrightarrow compute x_{c} \oplus m_{c^{\$}}^{\$}$$

$$= x_{c} \oplus m_{c \oplus d}^{\$} = m_{c}$$

- ▶ **Idea**: Alice can use $m_0^{\$}$ and $m_1^{\$}$ as one-time pads to mask m_0, m_1
- ▶ If $c = c^{\$}$ this works: Bob can decrypt **only** m_c (no info about m_{1-c})
- ▶ If $c \neq c^{\$}$ Bob learns wrong m unless Alice swaps $m_0^{\$}$, $m_1^{\$}$.
- ▶ **Solution:** Bob says whether $c = c^{\$}$ (safe: Alice has no info about $c^{\$}$)

- Offline cost: same as before (1 OT instance)
- ► Online cost: simple XORs

E paucis plura

from a few, many

Oblivious Transfer is inherently expensive:

 Impossible using only cheap crypto (random oracle)
 [ImpagliazzoRudich89]

Oblivious Transfer is inherently expensive:

Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Public-key encryption is inherently expensive:

 Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Oblivious Transfer is inherently expensive:

Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Public-key encryption is inherently expensive:

 Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

PKE cost be **minimized** with **hybrid encryption**:

- Use (expensive) PKE to encrypt short s
- Use (cheap) symmetric-key encryption with key s to encrypt long M

PKE of λ bits + cheap SKE = PKE of N bits

Oblivious Transfer is inherently expensive:

 Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Is there an analog of "hybrid encryption" for OT?

 λ instances of OT + cheap SKE = N instances of OT ??

Public-key encryption is inherently expensive:

 Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

PKE cost be **minimized** with **hybrid encryption**:

- Use (expensive) PKE to encrypt short s
- Use (cheap) symmetric-key encryption with key s to encrypt long M

PKE of λ bits + cheap SKE = PKE of N bits

Beaver OT extension [Beaver96]

Key insight: Yao's protocol requires only # of OTs proportional to function's **input length**

Beaver OT extension [Beaver96]

Key insight: Yao's protocol requires only # of OTs proportional to function's **input length**

Beaver protocol: Run the following 2PC using Yao:

Beaver OT extension [Beaver96]

Key insight: Yao's protocol requires only # of OTs proportional to function's **input length**

Beaver protocol: Run the following 2PC using Yao:

$$s_A \longrightarrow \text{Use } s_A \oplus s_B \text{ as pseudorandom seed to:} \longleftrightarrow s_B \in \{0, 1\}^{\lambda}$$

$$\text{Sample } 2n \text{ random strings}$$

$$(m_{1,0}, m_{1,1}), \dots, (m_{n,0}, m_{n,1}).$$

$$\text{Sample } n\text{-bit random string } r$$

$$\rightarrow r, \{m_{i,r_i}\}_i$$

- # OTs = input length = λ
- ▶ Output provides $n \gg \lambda$ instances of OT (random strings + choice bits)
- Impractical feasibility result (2PC evaluation of a PRG circuit)

Yuval Ishai, Joe Kilian, Kobbi Nissim, Erez Petrank: **Extending Oblivious Transfers Efficiently**. Crypto 2003.

```
r
1
0
0
0
1
1
0
1
1
```

Bob

▶ Bob has input *r*

	_	_	_	_	_		_		-
r									
<u>r</u>	1	1	1	1	1	1	1	1	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	
0	0	0	0	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	
١.	١.								
:	:	:	:	:	:	:	:	:	
	_								_
D a la									

Bob

▶ Bob has input $r \Rightarrow$ extend to matrix

▶ Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

s=0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0	r 1 0 0 0 1 0 1 1 1	1 1 0 1 1 1 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 1	1 1 0 0 1 1 0 0 1 1 1	1 0 1 1 1 0 1 1 1 0	0 1 0 1 0 0 1 0 0 1	0 0 0 0 1 1	1 0 1 1 1 0 0 0 0 0	1 0 1 1 0 0 1 0	0 0 1 1 1 0 0	
---	--	-----------------	---	--	---	--	--	----------------------------	--	--------------------------------------	---------------------------------	--

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

s = 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1	7 0 0 0 1 0 1 1	1 1 0 1 1 1 0 0 0	1 0 1 1 0 0 0	0 1 0 1 0 1 0 1 1 1	1 0 0 1 1 0 0 1 1 1	1 0 1 1 1 0 1 1 1 0	0 1 0 1 0 0 1 0 0	0 0 0 0 1 1 1 1 0	1 0 0 0 0 0 0 1 1	1 0 1 1 0 0 1 0	0 0 1 1 1 1 0 0	
---	--------------------------------------	-------------------	---------------------------------	--	--	--	---	---	-------------------	--------------------------------------	--------------------------------------	--

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

s =	0	1	0	0	0	1	1	0
	1	0	0	1	1	1	1	1
	1	0	1	1	0	1	0	0
	0	1	1	0	0	0	1	1
	1	1	0	1	1	0	1	1
	1	0	0	1	0	0	0	0
	1	0	1	0	1	0	0	0
	0	1	0	0	0	0	1	1
	0	1	1	1	1	1	0	0
	:	:	:	:	:	:	:	:
			Α	lic	e			

r																	
1	1	1	0	1	1	0	0	1									
0	1	0	1	1	0	1	0	0									
0	0	1	1	0	0	0	1	1									
0	1	1	0	1	1	0	1	1									
1	1	1	0	1	0	1	1	0									
0	1	0	1	0	1	0	0	0									
1	0	0	0	0	0	1	0	1									
1	0	0	1	1	1	0	1	0									
	١.																
:	l :	:	:	:	:	:	:	:									
	· ·																
			F	3ol	b				Bob								

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q
- Whenever $r_i = 0$, Alice row = Bob row

- Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
- Alice chooses random string s
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q
- Whenever $r_i = 0$, Alice row = Bob row
- ▶ Whenever $r_i = 1$, Alice row = Bob row \oplus s

q_1	$q_1 \oplus s$
q_2	$q_2 \oplus s$
q_3	$q_3 \oplus s$
:	÷

► For every *i*: Bob knows t_i ; Alice knows q_i and $q_i \oplus s$

t_1	$t_1 \oplus s$	$q_i = \begin{cases} t_i & \text{if } r_i = 0 \\ t_i \oplus s & \text{if } r_i = 1 \end{cases}$	$r_1 = 0$ t_1
$t_2 \oplus s$	t_2		$r_2 = 1$ t_2
$t_3 \oplus s$	<i>t</i> ₃	$s, \{q_i\} \longleftarrow (IKNP) \leftarrow r$	$r_3 = 1$ t_3
:	:		:

- ► For every *i*: Bob knows t_i ; Alice knows q_i and $q_i \oplus s$
- ► From Bob's perspective, he knows **exactly one** of Alice's two values: (Almost) an OT instance for each i!

$q_i = \begin{cases} t_i & \text{if } r_i = 0 \\ t_i \oplus s & \text{if } r_i = 1 \end{cases}$	0 t ₁
$t_2 \oplus s$ t_2	1 t ₂
$t_3 \oplus s \mid t_3$ $s, \{q_i\} \longleftarrow r$ $r_3 =$	1 t 3
\vdots \vdots \vdots \vdots	

- ► For every *i*: Bob knows t_i ; Alice knows q_i and $q_i \oplus s$
- From Bob's perspective, he knows **exactly one** of Alice's two values: (Almost) an OT instance for each i!
 - Reusing s leads to linear correlations in OT strings

	11/1 0	$q_i = egin{cases} t_i & ext{if } r_i = 0 \ t_i \oplus s & ext{if } r_i = 1 \end{cases}$	
$H(t_2 \oplus s)$	· ' /	$s, \{q_i\} \longleftarrow \text{IKNP} \longleftarrow r$	$r_1 = 0 H(t_1)$ $r_2 = 1 H(t_2)$
$H(t_3 \oplus s)$ \vdots	$H(t_3)$	$ \begin{array}{c} 3, (q_i) \\ & \downarrow \\$	$r_3 = 1$ $H(t_3)$ \vdots

- For every i: Bob knows t_i ; Alice knows q_i and $q_i \oplus s$
- From Bob's perspective, he knows **exactly one** of Alice's two values: (Almost) an OT instance for each i!
 - Reusing s leads to linear correlations in OT strings
- Break correlations by applying random oracle:
 - \vdash $H(t_1 \oplus s), \ldots H(t_n \oplus s)$ pseudorandom given t_1, \ldots, t_n (secret s)

- ► For every *i*: Bob knows t_i ; Alice knows q_i and $q_i \oplus s$
- From Bob's perspective, he knows **exactly one** of Alice's two values: (Almost) an OT instance for each i!
 - Reusing s leads to linear correlations in OT strings
- Break correlations by applying random oracle:
 - \vdash $H(t_1 \oplus s), \dots H(t_n \oplus s)$ pseudorandom given t_1, \dots, t_n (secret s)
- ⇒ Random OT instance for each **row**, using base OT for each **column**

IKNP overview [IshaiKilianNissimPetrank03]

Tall matrices (λ columns, $n \gg \lambda$ rows)

IKNP overview [IshaiKilianNissimPetrank03]

Tall matrices (λ columns, $n \gg \lambda$ rows)

Base OTs by column

- λ base OT instances
- transfer of n-bit strings

IKNP overview [IshaiKilianNissimPetrank03]

Tall matrices (λ columns, $n \gg \lambda$ rows)

Base OTs by column

- λ base OT instances
- transfer of n-bit strings

Obtain extended OT instance by row

▶ 1-2 evaluations of *H* per row


```
r
1
0
0
0
1
1
0
1
1
```

► IKNP says: "Bob has *r*

▶ IKNP says: "Bob has $r \Rightarrow$ extend to a matrix

► IKNP says: "Bob has $r \Rightarrow$ extend to a matrix \Rightarrow secret-share"

1 0	1 0	1 0	1 0	-	•	1 0	•			1	0	1	1 1 0	0	1		0		1	0	1	0 1 0	0	1		(
0 0 1		0 0							_	1 1	1 1	0	1	1	0	1 1	1 0	А	1	1 0	0 1	1	1	0	1	1
0 1 1	1	0 1 1	1	1	1	1	1	1		0	0	0	0 0 1	0	1	0	1	9	1	1	1	0 1 0	1	0	1	C
:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:

- ► IKNP says: "Bob has $r \Rightarrow$ extend to a matrix \Rightarrow secret-share"
- ► KK13 says: $0 \mapsto 000 \cdots$; $1 \mapsto 111 \cdots$ is simple **repetition code**

1 0 0	0	1 0 0	0	0	0	0	0	0		1	0	0 1 1	1	0	1	0	0		1	0	1	0 1 0	0	1	0	0
0	0	0	0	0	0	0	0	0	=	1	1	0 0 1	1	0	1	1	0	\oplus	0	0	1	1 0 0	1	0	0	1
0 1 1	1	0 1 1	1	1	1	1	1	1				0 1					1 0					1 0				
:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:

- ▶ IKNP says: "Bob has $r \Rightarrow$ extend to a matrix \Rightarrow secret-share"
- ► KK13 says: $0 \mapsto 000 \cdots$; $1 \mapsto 111 \cdots$ is simple **repetition code**
- Generalize by using a different error-correcting code.
 - Q: How do code properties (rate, distance) affect protocol?

```
Bob
```

▶ Bob has input *r*

```
Bob
```

▶ Bob has input $r \Rightarrow$ encode under C

▶ Bob has input $r \Rightarrow$ encode under C and secret share as (T, T')

- ▶ Bob has input $r \Rightarrow$ encode under C and secret share as (T, T')
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- ▶ Bob has input $r \Rightarrow$ encode under C and secret share as (T, T')
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q

- ▶ Bob has input $r \Rightarrow$ encode under C and secret share as (T, T')
- ▶ OT for each **column** \Rightarrow Alice obtains matrix Q
- Sanity check (using repetition code):

$$r_i = 0$$
 \Rightarrow $t_i = q_i \oplus (000 \cdots) \land s = q_i$
 $r_i = 1$ \Rightarrow $t_i = q_i \oplus (111 \cdots) \land s = q_i \oplus s$

$q_1 \oplus C(0) \wedge s$	$q_1 \oplus C(1) \wedge s$
$q_2 \oplus C(0) \wedge s$	$q_2 \oplus C(1) \wedge s$
$q_3 \oplus C(0) \wedge s$	$q_3 \oplus C(1) \wedge s$

► For every *i*: Bob knows t_i ; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$

- ► For every *i*: Bob knows t_i ; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
- Rewrite from Bob's point of view

	$t_1 \oplus C(0 \oplus 1) \wedge s$
$t_2 \oplus C(1 \oplus 0) \wedge s$	$t_2 \oplus C(1 \oplus 1) \wedge s$
$t_3 \oplus C(1 \oplus 0) \wedge s$	$t_3 \oplus C(1 \oplus 1) \wedge s$
	•

- ► For every *i*: Bob knows t_i ; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
- Rewrite from Bob's point of view
- ▶ When C is a **linear code**: $[C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s$

t_1	$t_1 \oplus C(1) \wedge s$
$t_2 \oplus C(1) \wedge s$	
$t_3 \oplus C(1) \wedge s$	t_3

- ► For every *i*: Bob knows t_i ; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
- Rewrite from Bob's point of view
- ▶ When C is a **linear code**: $[C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s$ and $C(0) \land s = 00 \cdots$

$H(t_1 \oplus C(1) \wedge s)$
$H(t_2)$
$H(t_3)$
•

- ► For every *i*: Bob knows t_i ; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
- Rewrite from Bob's point of view
- ▶ When *C* is a **linear code**: $[C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s$ and $C(0) \land s = 00 \cdots$
- Use random oracle to destroy correlations

Consider a code that encodes more bits $C: \{0,1\}^3 \to \{0,1\}^k$

Consider a code that encodes more bits $C: \{0,1\}^3 \to \{0,1\}^k$

$q_1 \oplus C(000) \wedge s$		$q_1 \oplus C(111) \wedge s$
$q_2 \oplus C(000) \wedge s$		$q_2 \oplus C(111) \wedge s$
$q_3 \oplus C(000) \wedge s$		$q_3 \oplus C(111) \wedge s$
:	:	:

$$q_i \oplus C(000) \land s$$
, $q_i \oplus C(001) \land s$, ... $q_i \oplus C(111) \land s$

Consider a code that encodes more bits $C: \{0,1\}^3 \to \{0,1\}^k$

$$q_i \oplus C(000) \land s$$
, $q_i \oplus C(001) \land s$, ... $q_i \oplus C(111) \land s$

Consider a code that encodes more bits $C: \{0,1\}^3 \to \{0,1\}^k$

$$q_i \oplus C(000) \land s$$
, $q_i \oplus C(001) \land s$, ... $q_i \oplus C(111) \land s$

- ▶ Bob knows exactly 1 of the 8 values (corresponding to r_i)
 - ▶ Others are of the form $t \oplus c \land s$ for known t and **codeword** c

Consider a code that encodes more bits $C: \{0,1\}^3 \to \{0,1\}^k$

$$q_i \oplus C(000) \land s$$
, $q_i \oplus C(001) \land s$, ... $q_i \oplus C(111) \land s$

- ▶ Bob knows exactly 1 of the 8 values (corresponding to r_i)
 - ▶ Others are of the form $t \oplus c \land s$ for known t and **codeword** c
- In the random oracle model:
 - ► $H(t_1 \oplus c_1 \land s), \dots H(t_n \oplus c_n \land s)$ pseudorandom if all c_i have Hamming weight $\geq \lambda$

[KolesnikovKumaresan13]

Using a code $C: \{0,1\}^{\ell} \to \{0,1\}^{k}$ with minimum distance λ gives you 1-out-of- 2^{ℓ} OT extension (from k base OTs)

[KolesnikovKumaresan13]:

- ▶ Walsh-Hadamard code $C: \{0,1\}^8 \to \{0,1\}^{256}$ (min. dist. 128)
- ▶ 1-out-of-256 OT

[OrruOrsiniScholl16]:

- ▶ BCH code $C: \{0,1\}^{76} \to \{0,1\}^{512}$ (min. dist. 171)
- ▶ 1-out-of-2⁷⁶ OT

[Kolesnikov Kumaresan Rosulek Trieu 16] :

- ► Any pseudorandom function $C: \{0,1\}^* \to \{0,1\}^{\sim 480}$
- Linearity and decoding properties not needed (only min. dist. whp)!
- 1-out-of-∞ OT

Perspective

	28 million / sec
1-out-of-2	24 million / sec
	2.5 million / sec
1-out-of-N	1.8 million / sec
	1-out-of-2 1-out-of- <i>N</i>

Perspective

semi-honest	1-out-of-2	28 million / sec
malicious	1-out-of-2	24 million / sec
semi-honest	1-out-of- <i>N</i>	2.5 million / sec
malicious	1-out-of- <i>N</i>	1.8 million / sec

OTs are cheap!