CheggSolutions - Thegdp

```html

Environmental Engineering

Design of Rapid Gravity Filters

Given data:

Population to be served \((P) = $50,000 \$ \) Average daily demand \((D_a) = $180 \$ \text{Lcd} \) (liters per capita per day) Filter operation rate = $5000 \$ \text{lit/hr/sqm} Length to width ratio = 1.5 Maximum daily demand factor = $1.8 \$ \times \ average daily demand

Step-by-Step Solution:

Step 1: Calculate the Total Average Daily Water Demand

Average daily demand for the entire population:

Explanation: The total demand is calculated by multiplying the population by the average daily demand per person.

Supporting Statement: This step ensures the calculation of the average daily water demand for the given population.

Step 2: Calculate the Total Maximum Daily Demand

Maximum daily demand with 1.8 times the average daily demand:

Explanation: The maximum daily demand is 1.8 times the average daily demand as given.

Supporting Statement: This provides the peak water demand scenario which the filters need to handle.

Step 3: Convert Maximum Daily Demand to Liters per Hour

Converting the maximum daily demand to a flow rate in liters per hour:

Explanation: Dividing the daily maximum demand by the number of hours per day to find the hourly flow rate.

Supporting Statement: Critical to understand the hourly flow rate which is essential for filter design.

Step 4: Calculate Required Filter Area

Using the operation rate for the filters:

Explanation: The area of the filters required is found by dividing the maximum hourly demand by the operational rate of the filters.

Supporting Statement: Determines the total effective filtration area required.

Step 5: Determine Dimensions of Each Filter

Total area needed for two filters (since two filters are required):

Explanation: By dividing the total required area by the number of filters, the area per filter is calculated.

Supporting Statement: Necessary to find the area of one filter to establish the dimensions.

Step 6: Calculate Filter Length and Width

Given the relationship \(\text{Length} = 1.5 \times \text{Width}\):

Let $\ (\text{text{Width}} = B \)$ and $\ (\text{text{Length}} = 1.5B \)$

 $\label{eq:length} $$ \left(\text{Length} \times \text{Length} \right) $$ \left(\text{C.5} = 1.5B \times B \times B \times 67.5 = 1.5B^2 \times B^2 = \frac{67.5}{1.5} \right) B^2 = 45 \times B = \sqrt{45} \times B = 6.75 \times \{m\} \times \{\text{Length}\} = 1.5 \times 6.75 \times \{\text{Length}\} = 10.125 \times \{m\} \times B = 6.75 \times B = 1.5 \times B = 6.75 \times B = 1.5 \times$

Rounding to practical dimensions:

\[\text{Length} \approx 10 \ \text{m} \\ \text{Width} \approx 6.75 \ \text{m} \]

Explanation: Calculating the width using the area equation and then finding the length by multiplying the width with the given ratio.

Supporting Statement: Establishes the physical dimensions of each rapid gravity filter based on the calculated area and given length-to-width ratio.

Final Solution:

The dimensions of each rapid gravity filter required to treat water for a 50,000 population at specified demand rates are **Length = 10 m and Width = 6.75 m**.

Explanation: The final step consolidates all calculations into the specified design dimensions for practical application.

•••