Akhil singh(20171210)

DSAA Assignment 4

Problem 1

a)

Function create_mat_dct() outputs the the 8-point 2D-DCT basis function F.

create_mat_dct() gives:

```
0.3536  0.3536  0.3536  0.3536  0.3536  0.3536
                                       0.3536
0.4157 -0.0975 -0.4904 -0.2778
                               0.4904 0.0975 -
                         0.2778
0.4157
0.3536 -0.3536 -0.3536 0.3536
                        0.3536 -0.3536
                                    -0.3536
0.3536
0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 - 0.2778
0.1913 -0.4619 0.4619 - 0.1913 -0.1913 0.4619 -0.4619 0.1913
0.0975 -0.2778 0.4157 - 0.4904 0.4904 -0.4157
                                        0.2778
- 0.0975
```

b)
Function myDCT(Im,F):
returns DCT Transformed Image.

Output = F^*Im^*F' where F is 8-point 2D-DCT basis function F.

For eg. 8 x 8 image transform using myDCT function.

c) Function myIDCT(Im,F):
 returns Inverse of DCT Transform.
 Output = F'*Im*F where F is 8-point 2D-DCT basis function F.

For eg. 8 x 8 image Inverse transform using myIDCT function.

d)
Function myDCT_quantization(imDCT,qm,c):
returns quantized DCT image.

For eg.

e) Function **myDCT_dequantization(imDCT,qm,c):** returns de-quantized DCT image.

For eg.

f)

Function RMSE(im1, im2), which computes RMSE error between two images of arbitrary size

Calculated using formula:

sqrt(mean((double(im1(:)) - double(im2(:))).^2,'all'));
where im1=image1 and im2=image2

g)

Function My_entropy(im), computes the entropy of a given image using the imhist() function.

- First calculate PDF
- Set any entries in the PDF that are 0 to 1 so log calculation works
- Calculate entropy using formula: -sum(h.*log2(h));

Entropy of given image "LAKE.TIF" = 7 .4845

2.

Q_mat =							
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

C = 2 here C=compression factor;

For Left corners are at the coordinates:

• [420, 45]:

Original Image: Compressed Image:

A lot variation is present between the values of the pixels, as a results the image is reconstructed almost perfectly after compression.

• For [427, 298]

Reconstructed

In this image there is less variation between values of pixels. As a result, after quantization less number of non-zero values are present. So image reconstruction is not satisfactory.

• For [30, 230]

Original

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

Reconstructed

As variation of Image3 is very small, therefore after taking dct, quantization leads to a significant loss of information. As a result the image is not properly reconstructed.

3.

Original image

DCT_Transform

Quantized_image

De-quantized_image

Reconstructed_image

For compression factor=2:

We observe that the image is almost perfectly reconstructed after compression.

4.

For c=2:

Original

Reconstructed

Entropy: 0.0010 **RMSE**: 7.4132

For c=4:

Original Reconstucted

Entropy:0.0034 RMSE:9.4709

For c=8:

Original

Reconstructed

Entropy: 0.0077 RMSE:12.7261

For c=10

Original

Reconstructed

Entropy:0.0103 RMSE:14.0217

Entropy: 0.0165 RMSE: 17.3306

We see that as we increase the value of c the amount of pixelation in the image increases.

As a result, c = 2 or 3 must be sufficient to reconstruct the image.

In c = 10

Error value is very high \sim 14 and entropy is also high \sim 0.01 At c = 10, we observe a huge amount of pixelation.