서울시 기온데이터

- 기상자료개방포털 (https://data.kma.go.kr)
- 기후통계분석 → 기후분석 → 기온분석
- 데이터 가져오기

```
import pandas as pd
df = pd.read_csv('data/seoul.csv', encoding='cp949')
print(df)
```

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)
0	1907-10-01	108	13.5	7.9	20.7
1	1907-10-02	108	16.2	7.9	22.0
2	1907-10-03	108	16.2	13.1	21.3
3	1907-10-04	108	16.5	11.2	22.0
4	1907-10-05	108	17.6	10.9	25.4
•••					
40930	2020-12-27	108	5.8	1.4	10.0
40931	2020-12-28	108	6.7	4.2	11.4
40932	2020-12-29	108	0.1	-6.2	4.3
40933	2020-12-30	108	-10.9	-12.9	-6.2
40934	2020-12-31	108	-8.9	-12.9	-5.0

 $40935 \text{ rows} \times 5 \text{ columns}$

- 서울시 기온데이터
 - 1907년 ~ 2020년 중 가장 더웠던 날

```
df[df['최고기온(°C)'] == df['최고기온(°C)'].max()]
```

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)
40051	2018-08-01	108	33.6	27.8	39.6

● 일교차가 가장 큰 날

```
df['일교차'] = df['최고기온(℃)'] - df['최저기온(℃)'] df[ df['일교차'] == df['일교차'].max() ]
```

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)	일교차
0	1907-10-01	108	13.5	7.9	20.7	12.8
1	1907-10-02	108	16.2	7.9	22.0	14.1
2	1907-10-03	108	16.2	13.1	21.3	8.2
3	1907-10-04	108	16.5	11.2	22.0	10.8
4	1907-10-05	108	17.6	10.9	25.4	14.5

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)	일교차
12619	1942-04-19	108	12.7	2.5	24.3	21.8

● 누락값 확인

df.count()

날짜 지점 평균기온(℃) 최저기온(℃) 최고기온(℃)

dtype: int64

df[pd.isnull(df['평균기온(℃)'])]

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)	일교차
15676	1950-09-01	108	NaN	NaN	NaN	NaN
15677	1950-09-02	108	NaN	NaN	NaN	NaN
15678	1950-09-03	108	NaN	NaN	NaN	NaN
15679	1950-09-04	108	NaN	NaN	NaN	NaN
15680	1950-09-05	108	NaN	NaN	NaN	NaN
16427	1953-11-26	108	NaN	NaN	NaN	NaN
16428	1953-11-27	108	NaN	NaN	NaN	NaN
16429	1953-11-28	108	NaN	NaN	NaN	NaN
16430	1953-11-29	108	NaN	NaN	NaN	NaN
16431	1953-11-30	108	NaN	NaN	NaN	NaN

평균기온이 누락된 데이터 확인

756 rows × 6 columns

● 그래프 표현

```
import matplotlib.pyplot as plt
plt.plot(df['날짜'][10000:10050], df['평균기온(℃)'][10000:10050])
plt.xticks(df['날짜'][10000:10050], rotation=90)
plt.show()
```


- 서울시 기온데이터
 - 2000년 이후 3월 1일 이후 최고 / 최저 기온 확인
 - 연도 / 월 / 일 분리

```
df3['연도'] = df3['날짜'].apply(lambda x : x.split('-')[0])
df3['월'] = df3['날짜'].apply(lambda x : x.split('-')[1])
df3['일'] = df3['날짜'].apply(lambda x : x.split('-')[2])
print(df3.head())
```

	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)	일교차	연도	월	일
0	1907-10-01	108	13.5	7.9	20.7	12.8	1907	10	01
1	1907-10-02	108	16.2	7.9	22.0	14.1	1907	10	02
2	1907-10-03	108	16.2	13.1	21.3	8.2	1907	10	03
3	1907-10-04	108	16.5	11.2	22.0	10.8	1907	10	04
4	1907-10-05	108	17.6	10.9	25.4	14.5	1907	10	05

range(0, 21)

- 2000년 이후 3월 1일 이후 최고 / 최저 기온 확인
 - 2000년 이후 연도만 리스트로 저장

```
year = df3[ df3['연도'] >= '2000' ]['연도'].unique()
ticks = range(len(year))
print(year)
print(ticks)

['2000' '2001' '2002' '2003' '2004' '2005' '2006' '2007' '2008' '2009'
'2010' '2011' '2012' '2013' '2014' '2015' '2016' '2017' '2018' '2019'
'2020']
```

7.7

- 2000년 이후 3월 1일 이후 최고 / 최저 기온 확인
 - 매년 3월 1일의 최고 기온 확인

```
8.5
     13.1
     10.2
    6.0
    4.5
     2.5
     15.3
    7.8
    8.6
    6.3
    3.7
   14.6
    7.7
    9.4
    5.9
15
16
    2.1
    11.4
17
    3.0
18
     13.0
19
     10.1
20
Name: 최고기온(℃), dtype: float64
```

-3.2 1.7 1.1

- 2000년 이후 3월 1일 이후 최고 / 최저 기온 확인
 - 매년 3월 1일의 최저 기온 확인

```
4.0
  -1.1
   -4.5
  -2.4
   3.9
8 -0.5
   -1.6
   1.1
   -2.7
11
12
   4.0
13
   -2.4
   3.3
14
   -0.2
15
16
   -7.5
   2.0
17
   -4.3
18
19
   1.2
20
     3.2
Name: 최저기온(℃), dtype: float64
```

- 서울시 기온데이터
 - 2000년 이후 3월 1일 이후 최고 / 최저 기온 확인

```
import matplotlib.pyplot as plt

plt.rc('font', family='Malgun Gothic')
plt.rcParams['axes.unicode_minus'] = False

plt.plot(최고기온, label='최고기온')
plt.plot(최저기온, label='최저기온')
plt.xticks(ticks, year, rotation=45)
plt.legend()
plt.show()
```


● 연도별 평균기온

```
df3_group = df3.groupby('연도')['평균기온(℃)'].mean()
print(df3_group)
df3_group.plot()
```

```
my month
연도
1907
        5.103261
1908
       10.427322
1909
       10.608767
1910
       10.412055
                                               8
1911
       10.654795
                                               6
2016
       13.592896
2017
       13.073151
2018
       13.002466
                                               2
2019
       13.598904
2020
       13.271858
                                                             1947
                                                                         1987
                                                       1927
                                                                   1967
                                                                               2007
                                                 1907
Name: 평균기온(℃), Length: 114, dtype: float64
                                                                  연도
```

● 연도별 최고기온 데이터를 히스토그램으로 표현

```
import matplotlib.pyplot as plt plt.rc('font', family='Malgun Gothic') plt.rcParams['axes.unicode_minus'] = False plt.hist(df['최고기온(℃)'], bins=100, color='yellow') plt.show()
```


인구 공공데이터

- 행정안전부 (https://www.mois.go.kr)
- 정책자료 → 통계 → 주민등록 인구 통계
- 데이터 가져오기

```
df = pd.read_csv(
     'data/people_202101.csv', encoding='cp949', thousands=',')
print(df.head())
```

	행정구역	2021년 01월_계 _총인구 수	2021년 01월_계 _연령구 간인구 수	2021 년01 월_계 _0세	2021 년01 월_계 _1세	2021 년01 월_계 _2세	2021 년01 월_계 _3세	2021 년01 월_계 _4세	2021 년01 월_계 _5세	2021 년01 월_계 _6세	
0	서울특별시 (1100000000)	9657969	9657969	44249	49910	52741	56732	63560	68419	67870	
1	서울특별시 종로구 (1111000000)	149125	149125	464	588	564	663	761	841	833	
2	서울특별시 종로구 청운 효자동 (1111051500)	12426	12426	47	60	65	77	71	104	91	
3	서울특별시 종로구 사직 동 (1111053000)	9544	9544	27	37	33	54	69	64	82	
4	서울특별시 종로구 삼청 동 (1111054000)	2613	2613	7	7	6	16	3	17	7	

5 rows × 104 columns

- 인구 공공데이터
 - 서울특별시 관악구 신림동(1162069500) 정보 확인

df2 = df[df['행정구역'] == '서울특별시 관악구 신림동(1162069500)'] print(df2)

```
2021
                    년01
               2021
                         2021
                             2021 2021 2021
                                            2021
                                                2021 2021
               년01
                    월 계
                         년01
                             년01 년01 년01
                                            년01
                                                년01 년01
                   _연령
구간
                                   월_
                                        월_
                              월_
                                            월_
                                                 월_
              월_계
                         월_
                                                      월
       행정구역
                         계_0 계_1 계_2 계_3
                                            계_4
                                                계 5
                          세
                     인구
                               세
                                    세
                                         세
                                             세
     서울특별시
     관악구 신림
355
              21831 21831
                           42
                                                      40 ...
                               43
                                    29
                                         47
                                             39
                                                  37
   (1162069500)
```

 $1 \text{ rows} \times 104 \text{ columns}$

- 인구 공공데이터
 - 2021년 1월 연령별 인구 현황 그래프로 표현
 - 불필요 컬럼 삭제

```
df2 = df2.drop(
 ['행정구역', '2021년01월_계_총인구수', '2021년01월_계_연령구간인구수'], axis=1)
df2.head()
```

```
년01
     년01 년01 년01 년01 년01 년01 년01 년01
      월_
         월
             월
                   월_
                       월_
                          월_
  계_0 계_1 계_2 계_3 계_4 계_5 계_6 계_7
                             계_8
                 세
                                 32 ...
355
   42
       43
          29
             47
                 39
                           21
                              29
                    37
                       40
```

 $1 \text{ rows} \times 101 \text{ columns}$

- 2021년 1월 연령별 인구 현황 그래프로 표현
 - 열의 정보를 행으로 정리

```
df3 = df2.melt()
df3.drop('variable', axis=1, inplace=True)
df3
```

	variable	value	
0	2021년01월_계_0세	42	
1	2021년01월_계_1세	43	
2	2021년01월_계_2세	29	
3	2021년01월_계_3세	47	
4	2021년01월_계_4세	39	
96	2021년01월_계_96세	1	
7	2021년01월_계_97세	1	
8	2021년01월_계_98세	1	
99	2021년01월_계_99세	3	
.00	2021년01월_계_100세 이상	16	

101 rows × 2 columns

101 rows × 1 columns

- 인구 공공데이터
 - 2021년 1월 연령별 인구 현황 그래프로 표현

```
import matplotlib.pyplot as plt
plt.plot(df3)
plt.show()
```


- 인구 공공데이터
 - 2021년 1월 연령별 인구 현황 그래프로 표현

```
import matplotlib.pyplot as plt
plt.bar(range(101), df3['value'])
plt.show()
```


● 2021년 1월 성별 / 연령별 인구 현황 데이터 가져오기

```
df = pd.read_csv(
     'data/people_gender_202101.csv', encoding='cp949',
     thousands=',')
df.head()
```

	행정구역	2021년 01월_남 _총인구 수	2021년 01월_남 _연령구 _간인구 수	2021년 01월_ 남_0~9 세	2021년 01월_ 남 _10~19 세	2021년 01월_ 남 _20~29 세	2021년 01월_ 남 _30~39 세	2021년 01월_ 남 _40~49 세	2021년 01월_ 남 _50~59 세	2021년 01월_ 남 _60~69 세	
0	서울특별시 (1100000000)	4695999	4695999	317563	399754	704862	735813	755311	748598	590203	
1	서울특별시 종로구 (1111000000)	72528	72528	3767	5443	11493	9883	10800	12765	9979	
2	서울특별시 종로구 청운 효자동 (1111051500)	5784	5784	430	618	795	772	969	922	620	
3	서울특별시 종로구 사직 동 (1111053000)	4273	4273	290	306	568	619	668	695	567	
4	서울특별시 종로구 삼청 동 (1111054000)	1251	1251	47	108	164	170	179	202	187	

5 rows \times 27 columns

● 서울특별시 관악구 신림동(1162069500) 정보 확인

df2 = df[df['행정구역'] == '서울특별시 관악구 신림동(1162069500)'] df2

```
2021
                          2021
                     년01
                               2021년 2021년 2021년 2021년 2021년
                2021
                          년01
                                01월_
                                      01월_
                년01
                                             01월
                                                   01월
                                                          01월_
                                                                01월
               월_남
       행정구역
                               _10~19 _20~29 _30~39 _40~49 _50~59 _60~69
                          0~9
                                               세
      서울특별시
     관악구 신림
355
               11398 11398
                           178
                                 231
                                                                  695 ...
                                       4032
                                              3247
                                                    1425
                                                           999
   (1162069500)
```

 $1 \text{ rows} \times 27 \text{ columns}$

- 인구 공공데이터
 - 2021년 1월 성별 / 연령별 인구 현황 그래프로 표현
 - 불필요 컬럼 삭제

```
df2.drop(['행정구역'], axis=1, inplace=True)
df2.drop(
    ['2021년01월_남_총인구수', '2021년01월_남_연령구간인구수'], axis=1, inplace=True)
df2.drop(
    ['2021년01월_여_총인구수', '2021년01월_여_연령구간인구수'], axis=1, inplace=True)
df2.columns
```

```
Index(['2021년01월_남_0~9세', '2021년01월_남_10~19세', '2021년01월_남_20~29세', '2021년01월_남_30~39세', '2021년01월_남_40~49세', '2021년01월_남_50~59세', '2021년01월_남_60~69세', '2021년01월_남_70~79세', '2021년01월_남_80~89세', '2021년01월_남_90~99세', '2021년01월_남_100세 이상', '2021년01월_여_0~9세', '2021년01월_여_10~19세', '2021년01월_여_20~29세', '2021년01월_여_30~39세', '2021년01월_여_40~49세', '2021년01월_여_50~59세', '2021년01월_여_60~69세', '2021년01월_여_70~79세', '2021년01월_여_80~89세', '2021년01월_여_90~99세', '2021년01월_여_100세 이상'], dtype='object')
```

- 인구 공공데이터
 - 2021년 1월 성별 / 연령별 인구 현황 그래프로 표현
 - 남자 데이터 확인

male = df2.iloc[:, 0:11]
male

	2021년01	2021년01월									
	월_남	_남_100세									
	_0~9세	_10~19세	_20~29세	_30~39세	_40~49세	_50~59세	_60~69세	_70~79세	_80~89세	_90~99세	이상
355	178	231	4032	3247	1425	999	695	443	138	9	1

- 여자 데이터 확인

female = df2.iloc[:, 11:22]
female

	2021년01 월_여 _0~9세	2021년01 월_여 _10~19세	2021년01 월_여 _20~29세	2021년01 월_여 _30~39세	2021년01 월_여 _40~49세	2021년01 월_여 _50~59세		2021년01 월_여 _70~79세	2021년01 월_여 _80~89세	2021년01 월_여 _90~99세	2021년01월 _여_100세 이상
355	181	243	4304	2378	1066	773	767	497	173	36	15

- 인구 공공데이터
 - 2021년 1월 성별 / 연령별 인구 현황 그래프로 표현
 - 남자 데이터 정리

```
male2 = male.melt()
male2.drop('variable', axis=1, inplace=True)
male2['value'] = male2['value'].apply(lambda x : x * -1)
male2
```

```
value
0 -178
1 -231
2 -4032
3 -3247
               수평 막대 그래프를 이용하여 좌 / 우로 인구 분포 표현
4 -1425
5 -999
6 -695
7 -443
8 -138
   -9
9
10
     -1
```

- 인구 공공데이터
 - 2021년 1월 성별 / 연령별 인구 현황 그래프로 표현
 - 남자 데이터 정리

```
female2 = female.melt()
female2.drop('variable', axis=1, inplace=True)
female2
```

```
value
     181
0
     243
1
    4304
    2378
    1066
     773
5
     767
6
7
     497
8
     173
9
      36
10
      15
```

- 인구 공공데이터
 - 2021년 1월 성별 / 연령별 인구 현황 그래프로 표현

```
import matplotlib.pyplot as plt
plt.rc('font', family='Malgun Gothic')
plt.rcParams['axes.unicode minus'] = False
plt.title('서울 신림동 남녀 성별 인구 분포')
plt.barh(range(11), male2['value'].tolist(), label='남자')
plt.barh(range(11), female2['value'].tolist(), label='여자')
plt.yticks(
   range(11),
   ['0-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-69',
    '70-79', '80-89', '90-99', '100이상'])
plt.xlim(-4500, 4500)
plt.xticks(
   range(-4000, 4001, 2000),
    ['4000명', '2000명', '0명', '2000명', '4000명'])
plt.legend()
                                                        서울 신림동 남녀 성별 인구 분포
plt.show()
                                                70-79
                                                60-69
```

40-49 30-39 20-29 10-19 0-9

4000명

2000명

2000명

4000명

● 제주도 성별 인구 비율 표현하기

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv(
    'data/people_gender_202101.csv', encoding='cp949', thousands=',')

df2 = df[ df['행정구역'] == '제주특별자치도 (5000000000)' ]

df2
```

```
2021 2021년 2021년
                                    2021년 2021년
                                                2021년 2021년
             2021년
       2021년
                   년01 01월_
                                           01월_
                                                 01월_
              01월
                               01월
                                     01월
                                                       01월
       01월
행정구역
                   월_남
                   _0~9 _10~19 _20~29 _30~39 _40~49 _50~59 _60~69
```

```
제주특별자치
3800 도 338553 338553 30833 36894 43655 41539 57902 58463 39783 ...
(5000000000)
```

 $1 \text{ rows} \times 27 \text{ columns}$

- 인구 공공데이터
 - 제주도 성별 인구 비율 표현하기

```
male = df2['2021년01월_남_총인구수']
female = df2['2021년01월_여_총인구수']
plt.rc('font', family='Malgun Gothic')
color = ['magenta', 'cyan']
plt.pie(
    [male.sum(), female.sum()], labels=['남', '여'],
    colors=color, startangle=90, autopct='%.1f%%')
plt.show()
```

