Exploring Spherical Autoencoder for Spherical Video Content Processing

Jin Zhou, Na Li, Shuochao Yao, Yao Liu, Songqing Chen George Mason University, Rutgers University

Why spherical autoencoder?

- 360-degree Video with 3 DoF (Degree of Freedom)
- Widely use in many fields and research areas
- Traditional Video processing:
 - Project frames to 2D content
 - Process with traditional schemes, MPEG
- Spherical autoencoder:
 - Project frames onto 3D mesh content
 - Process with convolution neural network

Previous work

Spherical CNN[1]:

- Lower numbers of network parameters
- Better performance than others

Icosahedral Mesh_[2]:

- Discretize use refined icosahedral mesh
- Start with a regular icosahedron
- Divided each faces into 4 smaller faces
- Level-9 mesh contains 2621442 vertices

Level-0 mesh

Level-1 mesh

Level-3 mesh

^[2] Baumgardner, et al. "Icosahedral discretization of the two-sphere." SIAM Journal on Numerical Analysis 22.6 (1985)

^[1] Chiyu" Max" Jiang, et al. "Spherical CNNs on Unstructured Grids." ICLR (Poster). 2019.

Spherical Autoencoder (SAE)

Optimization - Partial Spherical Autoencoder

(a) SAE sample frame

- Process whole frame each time
- Directly compress it to lower level and use vertexShuffle to recover it.

(b) p-SAE sample frame

- Use field-of-view prediction
- Only process 1/80 face each time
- Rotate 79 time to process the whole frame

Optimization - Compressive Sensing

- Orthogonal Regularization < Restricted Isometry Property
- Spectral Normalization < Lipschitz continuity

Experiments

- Dataset[1]
 - Highly dynamic, Dynamic, Low motions, Static
 - Different Resolutions: 960p, 1080p, 2k, 4k
- Baseline model:
 - 2d Convolutional autoencoder
- Evaluation methods :
 - PSNR, model size, VI-VMAF

(a) classroom

(b) roller-coaster

(c) Indoor

(c) football

[1]These videos are from the "The Psychology of 360-Video" repository, available at https://github.com/vhilab/psych-360

Result - PSNR

Model	CAE	SAE				p-SAE				
Model Compression Ratio	none	none	26.01%	41.54%	58.30%	none	36.03%	45.97%	55.11%	
Indoor	24.7384	39.2887	41.2183	39.0652	38.3835	37.8229	37.7869	36.4909	35.9083	
City	17.1524	39.7354	38.9868	38.5078	37.6546	33.4587	33.6031	32.7565	31.8372	
Roller-Coaster	17.8414	34.1936	32.8375	32.0299	31.5185	32.5046	32.1746	31.5830	30.3547	
Football	20.6538	36.2050	36.3093	36.2165	36.1787	34.4323	33.9375	33.7339	33.2091	
Model	co-CAE		c-S	SAE		c-p-SAE				
Model Compression Ratio	37.21%	none	26.01%	41.54%	58.30%	none	36.03%	45.97%	55.11%	
Indoor	20.1124	40.5602	41.3595	39.7724	38.7182	38.6803	38.5517	37.6399	37.5349	
City	15.0681	40.3514	39.4804	39.1991	38.9915	34.5360	36.4247	33.6042	33.0823	
Roller-Coaster	13.5168	35.5432	33.8656	33.4480	32.6312	33.2020	32.2679	32.1994	31.0052	
Football	14.8910	35.5992	36.8822	36.4333	36.0842	36.6811	36.8463	36.4243	36.1195	

- CAE traditional 2D convolutional autoencoder
- co-CAE CAE with compressive sensing
- SAE Spherical autoencoder
- p-SAE partial mesh in SAE
- c-SAE Spherical autoencoder with compressive sensing
- c-p-SAE p-SAE with compressive sensing

Result - Model Size

Model	CAE	SAE				p-SAE				
Model Compression Ratio	none	none	26.01%	41.54%	58.30%	none	36.03%	45.97%	55.11%	
Indoor	34.6512	73.4501	73.2218	72.6442	72.6351	70.4519	70.1362	69.8044	69.2314	
City	34.0079	72.7804	72.6419	71.9773	71.0025	70.7577	70.5893	69.7488	69.6832	
Roller-Coaster	28.5093	68.1255	68.1238	67.9836	67.4821	66.2091	65.9343	65.4290	65.1028	
Football	29.8409	68.8549	68.6027	68.4981	68.0195	67.5121	67.4982	67.0034	66.2105	
						c-p-SAE				
Model	co-CAE		c-S	AE			с-р-	SAE		
Model Model Compression Ratio	co-CAE 37.21%	none	c-S 26.01%	AE 41.54%	58.30%	none	c-p- 36.03%	SAE 45.97%	55.11%	
		none 75.8872			58.30% 73.8041	none 72.6344			55.11% 70.3342	
Model Compression Ratio	37.21%		26.01%	41.54%			36.03%	45.97%		
Model Compression Ratio Indoor	37.21% 32.8001	75.8872	26.01% 75.4571	41.54% 74.7633	73.8041	72.6344	36.03% 72.1874	45.97% 71.0801	70.3342	
Model Compression Ratio Indoor City	37.21% 32.8001 31.5367	75.8872 75.0090	26.01% 75.4571 74.6623	41.54% 74.7633 74.1342	73.8041 73.3103	72.6344 71.9523	36.03% 72.1874 71.6345	45.97% 71.0801 70.7638	70.3342 70.1020	

Model	CAE	SAE				p-SAE				
Model Compression Ratio	none	none	26.01%	41.54%	58.30%	none	36.03%	45.97%	55.11%	
Model Size (KB)	8600	268	195	154	110	250	180	152	126	
GPU Usage	4702	13261	13053	12371	11647	2973	2619	2578	2477	
		c-SAE								
Model	co-CAE		c-(SAE			c-p	-SAE		
Model Model Compression Ratio	co-CAE 37.21%	none	c-9 26.01%	SAE 41.54%	58.30%	none	c-p 36.03%	-SAE 45.97%	55.11%	
		none 330			58.30% 135	none 321			55.11% 131	

Conclusion

- Spherical Autoencoder maintains the high quality of compression by projecting 360-degree content onto spherical mesh
- Partial Mesh Autoencoder achieves the low computing power and small size of transition data
- Compressive sensing efficiently and effectively guarantees the compression ratio and video quality

Thank you!

