Pseudo Random Generators

Pseudorandom Generators

- Let T(n), $\varepsilon(n)$ be functions. A collection $\{X_n\}$ of random variables with $X_n \in \{0,1\}^n$ is called (T,ε) -pseudorandom if $\{X_n\} \approx_{T,\varepsilon} \{U_n\}$
- A collection of functions $g_n : \{0,1\}^n \to \{0,1\}^{m(n)}$ is called a (T,ε) -pseudorandom generator if $\{g_n(U_n)\}$ is (T,ε) -pseudorandom

Good Pseudorandom Generators

- m(n) > n Otherwise it is trivial and uselessm(n) n is the stretch of a PRG
- A functions T is called superpolynomial if for any polynomial p(n),
 p ∈ o(T)
- A pair of functions (T,ε) is superpolynomial if T is superpolynomial and $\varepsilon(n) = \frac{1}{f(n)}$ where f is superpolynomial
- A PRG should be (T,ε) -pseudorandom for some superpolynomial pair (T,ε)
- \circ g_n must be efficiently computable
- PRG Axiom: A good PRG exists

PRGs and Statistical Security

Lemma.

If m(n) > n then for any collection of functions $\{g_n\}$ we have $\Delta(g_n(U_n), U_m) \ge \frac{1}{2}$

Proof.

Let S_n be the image of $g_n(\{0,1\}^n)$. Clearly $|S_n| \le 2^n \le 2^{m(n)-1}$ Thus $\Pr[g_n(U_n) \in S_n] = 1$ while $\Pr[U_{m(n)} \in S_n] \le \frac{1}{2}$

Candidate PRGs: Blum - Blum - Shub

- This is a PRG that given an input of length 2n produces a string of bits of length m, where m is as big as we want
- Input: an n-bit integer N and integer X, 1 ≤ X ≤ N

```
num_outputted = 0;
while num_outputted < m:
    X := X*X mod N
    num_outputted := num_outputted + 1
    output (least-significant-bit(X))
endwhile</pre>
```

Blum - Blum - Shub is Good

Theorem.

The BBS PRG is (T,ε) -pseudorandom for some superpolynomial pair (T,ε) if the assumption below is true

Assumption.

There is a superpolynomial pair (T,ϵ) such that for any probabilistic algorithm Alg with time complexity less than T(n) the following holds

Pr[Alg finds factorization of a random n-bit integer] $< \varepsilon(n)$

Candidate PRGs: RC4

- RC4 stands for Ron's Cipher no. 4
- Widely used: SSL (and then TLS), SSH, WEP, WPA (IEEE 802.11), BitTorrent protocol encryption, Microsoft Point-to-Point Encryption,
- A byte is a number from {1,...,256}
- Input: a permutation S: $\{1,...,256\} \rightarrow \{1,...,256\}$

```
i := 0 \ j := 0
```

while num_outputted < m :</pre>

$$i := (i + 1) \mod 256$$
 $j := (j + S[i]) \mod 256$
 $swap(S[i],S[j])$

output $(S[(S[i] + S[j]) \mod 256])$

endwhile

Candidate PRGs: RC4 (cntd)

- RC4 given an input of length 2048 produces an output of length m, which is as big as we want
- If 2048 is too much, there is another algorithm KSE, the Key Scheduling Algorithm – that uses an input of length 40 ≤ n ≤ 128 to generate S
- Input: a key k of length n, 40 ≤ n ≤ 128
 for i from 0 to 255 S[i] := i endfor
 j := 0
 for i from 0 to 255
 j := (j + S[i] + k[i mod n]) mod 256
 swap(S[i],S[j])
 endfor

JAVA Pseudorandom Generator

JAVA uses a linear congruential pseudorandom generator

```
synchronized protected int next(int bits) {
  seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
  return (int)(seed >>> (48 - bits));
}
```