Span and Subspace

COMP408 - Linear Algebra Dennis Wong

Linear combination

Let $x_1, x_2, ..., x_s$ be vectors in \mathbb{R}^n . A *linear combination* of $x_1, x_2, ..., x_s$ is an expression of the form

$$a_1X_1 + a_2X_2 + ... + a_sX_s$$

where $a_1, a_2, \ldots, a_s \in \mathbf{R}$.

Example: Let $x_1 = [2, -1, 3]^T$ and let $x_2 = [4, 2, 1]^T$, then $[22, 5, 13]^T$ is a linear combination of x_1 and x_2 .

$$3\mathbf{x}_1 + 4\mathbf{x}_2 = 3 \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 22 \\ 5 \\ 13 \end{bmatrix}$$

Span

Let $\{x_1, x_2, ..., x_s\}$ be a set of vectors in \mathbb{R}^n . The *span* of $\{x_1, x_2, ..., x_s\}$, denoted by Span $\{x_1, x_2, ..., x_s\}$, is the set of all linear combinations of $x_1, x_2, ..., x_s$:

Span
$$\{x_1, x_2, ..., x_s\} = \{a_1x_1 + a_2x_2 + ... + a_sx_s \mid a_1, a_2, ..., a_s \in \mathbf{R}\}.$$

If x_1 and x_2 are not parallel, then one can show that Span $\{x_1, x_2\}$ is the **plane** determined by x_1 and x_2 .

Span

We can use system of linear equations to determine if a vector is in a span or not.

Example: Determine whether $[2, -5, 8]^T$ is in Span $\{x_1, x_2\}$.

$$\begin{bmatrix} 2 \\ -5 \\ 8 \end{bmatrix} = \alpha_1 \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2\alpha_1 + 4\alpha_2 \\ -\alpha_1 + 2\alpha_2 \\ 3\alpha_1 + \alpha_2 \end{bmatrix}.$$

Equating components leads to the following augmented matrix:

$$\begin{bmatrix} 2 & 4 & 2 \\ -1 & 2 & -5 \\ 3 & 1 & 8 \end{bmatrix}^{1} \begin{array}{c} -3 \\ 2 \end{array} \right) \sim \begin{bmatrix} 2 & 4 & 2 \\ 0 & 8 & -8 \\ 0 & -10 & 10 \end{bmatrix}^{\frac{1}{8}} \frac{1}{10}$$

$$\sim \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}^{1}$$

$$\sim \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Subspace

A subset S of Rⁿ is called a *subspace* if

- (a) $0 \in S$ (origin),
- (b) $x, y \in S$ implies $x + y \in S$ (addition), and
- (c) $x \in S$, $a \in \mathbf{R}$ implies $ax \in S$ (scalar multiplication).

Subspace

Example: Let S be the subset of \mathbb{R}^2 given by

$$S = \{ \begin{bmatrix} 2t \\ -t \end{bmatrix} \mid t \in \mathbf{R} \}.$$

Show that S is a subspace of \mathbb{R}^2 .

Solution: First we have $0 = [0, 0]^T$ and thus it contains the origin.

Secondly, let $x, y \in S$ with x = (2t, -t) and y = (2s, -s) for some $t, s \in R$, we have

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} 2t \\ -t \end{bmatrix} + \begin{bmatrix} 2s \\ -s \end{bmatrix} = \begin{bmatrix} 2t + 2s \\ -t - s \end{bmatrix} = \begin{bmatrix} 2(t+s) \\ -(t+s) \end{bmatrix} \in S.$$

Finally, let x = (2t, -t) and $a \in \mathbf{R}$, we have

$$\alpha \mathbf{x} = \alpha \begin{bmatrix} 2t \\ -t \end{bmatrix} = \begin{bmatrix} 2(\alpha t) \\ -(\alpha t) \end{bmatrix} \in S.$$

Subspace

If $x_1, x_2, ..., x_s$ are vectors in \mathbb{R}^n and S is their span, then S is a subspace of \mathbb{R}^n .

The subspaces of \mathbb{R}^2 are (a). {0}, (b). *lines through origin*, and (c). \mathbb{R}^2 .

The subspaces of **R**³ are (a). {0}, (b). *lines through origin*, (c). *planes through origin*, and (d). **R**³.

If L is a linear function on \mathbb{R}^n , then L(x) is a subspace of \mathbb{R}^n if $x \in \mathbb{R}^n$.