

Feature importance

Bram Droppers

Workshop

- Three sections
 - Impurity feature importance
 - Permutation feature importance
 - SHAP feature importance

Workshop

- Three sections
 - Impurity feature importance
 - Permutation feature importance
 - SHAP feature importance
- Per section
 - Small exercise
 - Presentation and questions

Why feature importance?

Why feature importance?

- Common sense check
- Uncertainty analysis
- Reducing model size and complexity

- Also called:
 - Gini importance
 - Mean decrease impurity
- Decrease in node impurity, weighted by the probability of reaching that node

- Also called:
 - Gini importance
 - Mean decrease impurity
- Decrease in node impurity, weighted by the probability of reaching that node
- + Already calculated

- Only for random-forest models

Permutation feature importance

- Difference in model output after permutation of input features
- + Applicable to all models
- Slow
- Limited accounting for complex non-linear interactions

SHAP feature importance

- We do not know how our models handle correlated input features
 - Ignore one
 - Use both

- We do not know how our models handle correlated input features
 - Ignore one
 - Use both
- This is reflected in the feature importance analysis

- Combine correlated features
- Omit correlated features
- Design a better train-test set

Feature importance

Bram Droppers