Machine Learning CSE427

Mahbub Majumdar Typeset by: Syeda Ramisa Fariha

> BRAC University 66 Mohakhali Dhaka, Bangladesh

July 30, 2018

Superhumungous Thanks

These slides were typeset by Syeda Ramisa Fariha.

Without her tremendous dedication, these slides would not exist.

- So far we let m depend on ϵ, δ
- But m was independent of D and h
- Learnable classes limited to finite VC dimension classes
- Now consider a more general (but weaker) framework
- Let m depend on the hypothesis (Nonuniform Learnability)
- Then later let *m* depend on the distribution *D* (Consistency)

- NUL is a strict relaxation of agnostic PAC
- Sufficient condition for NUL is $X = \text{countable union of hypothesis classes } X_n$ Each X_n is uniformly convergent
- Algorithm implementing NUL
 ⇒ Structural Risk Minimization (SRM)
- This is just like when ERM implements PAC learning

- m depends on h : $m_{\mathcal{H}}(\epsilon, \delta, h)$
- Why does this make sense?
- Some hypothesis might need more sample data to validate
- EG :
 - ightarrow 2 pts determine a line
 - \rightarrow 3 pts determine a quadratic
 - \rightarrow nH points determine a n-degree polynomial

- Thus in choosing a K-degree polynomial predictor you would expect to need more points as K goes up
- We say that a hypothesis h is (ϵ, δ) competitive with respect to h', y with probability more than 1δ that

$$L_D(h) \leq L_D(h') + \epsilon$$

• In PAC, APAC, competitiveness not very useful. This is because looking for hypothesis with absolute low/minimum risk

Definition: NUL

 ${\cal H}$ is uniformly learnable if there exists a learning algorithm A and $m_{\cal H}^{NUL}(\epsilon,\delta,h)$ such that for every ϵ,δ,h if

$$m \geq m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$$

then for every distribution D with probability at least $1-\delta$ over the choice of $S\sim D^m$ that

$$L_D(A(S)) \leq L_D(h) + \epsilon$$

Note:

If \mathcal{H} is APAC then it is also NUL

- For APAC → finite VC dimension implied APAC
- For NUL, have the following

Theorem:

A hypothesis class of binary classifiers is NUL if and only if it is a countable union of APAC hypothesis classes

 Countable union means we can label the individual hypothesis classes using a "Counting" index n

This means

$$\mathcal{H} = \bigcup_{n} \mathcal{H}_{n}$$

• Proof of the theorem above relies on:

Theorem: **

Let $\mathcal H$ be a hypothesis class that can be written as a countable union of hypothesis classes $\mathcal H=\mathop{\cup}\limits_n\mathcal H_n$, where each $\mathcal H_n$ is uniformly convergent. Then $\mathcal H$ is NUL.

- ullet This theorem generalizes the previous result of UC o APAC to nul
- Now prove the first theorem

Proof:

- Assume $\mathcal{H} = \bigcup_{n} \mathcal{H}_{n}$
- Each \mathcal{H}_n is UC by Theorem **, \mathcal{H} is NUL Now prove the other way
- ullet Assume ${\cal H}$ is NUL using some algorithm A

Proof:

• Let.

$$\mathcal{H}_n = \left\{ h \in \mathcal{H} \mid m_{\mathcal{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \leq n \right\}$$

- Clearly $\mathcal{H} = \cup \mathcal{H}_n$
- Using the definition of $m_{\mathcal{H}}^{NUL}$ we know that for any distribution D, with the probability of at least $1 - \delta = \frac{6}{7}$ over $S \sim D^m \Rightarrow L_D(A(S)) \leq \frac{1}{8} + L_D(h)$
- Since this is true for each class \mathcal{H}_n , each \mathcal{H}_n is APAC

Example: NUL is a strict relaxation of APAC

- $\mathcal{X} = \mathbb{R}$
- \mathcal{H}_n = class of nth degree polynomials
- Binary Classifiers

$$h(\chi) = sign(p(\chi))$$

- $\mathcal{H} = \bigcup_{n} \mathcal{H}_{n}$
- $VC \dim (\mathcal{H}_n) = n + 1 = d_n$ for every set C, with $VC \dim = d$, there is a set with higher $VC \dim$
- $VC \dim (\mathcal{H}) = \infty$
- ullet Thus ${\cal H}$ is not PAC/APAC
- ullet But ${\cal H}$ is NUL

Figure: Linear Classifier

Figure: Quadratic Classifier

- ullet So far encoded prior knowledge with choice of ${\cal H}$
- ullet A more powerful way is to specify preferences over ${\cal H}$
- In SRM, assume
 - $\circ \mathcal{H} = \bigcup_{n} \mathcal{H}_{n}$
 - Specify a weight factor $w: \mathbb{N} \to [0,1]$ and $\sum_{n=1}^{\infty} w(n) \leq 1$
 - higher weight ⇒ stronger preference

 one example of a weighting scheme is Minimum Descriptive length (MDL)

```
Define \epsilon_n: \epsilon_n(m,\delta) = min\left(\{\epsilon \mid m^{UC}_{\mathcal{H}_n}(\epsilon,\delta) \leq m\}\right) Here, m = \text{Sample size} \delta = \text{Confidence} UC = \text{Uniform Convergence}
```

 \circ ϵ_n is the most accuracy you can get by sampling up to m data points

• From the definition of *UC*, for every ϵ, δ and $prob \ge 1 - \delta$, we find that

$$\forall h \in \mathcal{H}_n, \mid L_D(h) - L_S(h) \mid \leq \epsilon_n(m, \delta)$$

ullet If all ${\cal H}$ have equal height

$$w(n) = \frac{1}{N}$$
 (total number of classes = N)

 If the highest weight for low n (for example, low degree polynomials) choice is

$$w(n) = \frac{6}{\pi^2 n^2}$$

Note:

$$\sum_{n=1}^{\infty} w(h) = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = 1$$

- The SRM is a bound minimization approach
- It minimizes a certain upper bound on The true risk
- The bound in tries to minimize is the following:

Theorem:

Let w(n) be a weight function with $w(n) \le 1$. Suppose $\mathcal{H} = \bigcup_n \mathcal{H}_n$, and each \mathcal{H} is UC, with sample complexity $m_{\mathcal{H}_n}^{UC}$. Let ϵ_n be defined as

$$\epsilon_n(m,\delta) = min\left(\left\{\epsilon \mid m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) \leq m
ight\}
ight)$$

Then for every ϵ, D with probability $\geq 1 - \delta$ over the choice of $S \sim D^m$, the following bound holds simultaneously for every n and \mathcal{H}_n

$$|L_D(h) - L_S(h)| \le \epsilon_n(m, w(n) \cdot \delta)$$

Therefore for every δ and D with probability $\geq 1-\delta$, it holds that

$$\forall h \in \mathcal{H}, L_D(h) \leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta)$$

[pick the smallest ϵ_n]

Proof:

Define: $\delta_n = w(n) \cdot \delta$

• using UC for each n with $probability <math>\geq 1 - \delta$ and a fixed n,

$$D^{m}(S \mid \forall h \in \mathcal{H}_{n}, |L_{D}(h) - L_{S}(h)| \leq \epsilon_{n}) \geq 1 - \delta_{n}$$

$$\Rightarrow D^{m}(S \mid \exists h \in \mathcal{H}_{n}, |L_{D}(h) - L_{S}(h)| > \epsilon_{n}) < \delta_{n}$$

$$\cup D^{m}(S \mid \exists h \in \mathcal{H}_{n}, |L_{D}(h) - L_{S}(h)| > \epsilon_{n})$$

$$\leq \delta_{1} + \delta_{2} \dots = \sum_{n} \delta_{n} = \delta_{n} \sum_{n} w(n) \leq \delta_{n}$$

Now apply the Union bound over
 all n = 1,2.... so that this holds for every n

$$\forall h \in \mathcal{H}_n, | L_D(h) - L_S(h) | \leq \epsilon_n(m, \delta_n)$$

Since

$$1 - \sum_{n} \delta_{n} = 1 - \delta \sum_{n} w(n)$$

$$> 1 - \delta$$

have that with probability $\geq 1-\delta$

$$|L_D(h) - L_S(h)| \le \epsilon_n(m, w(n) \cdot \delta)$$

Now define

$$n(h) = \min(\{n \mid h \in \mathcal{H}_n\})$$

- n(h) is the smallest n for which h is in a Subclass \mathcal{H}_n Thus $\min_{n(h)} \epsilon_n(m, \delta_n)$ is the smallest n that gives error ϵ_n
- Then we can rewrite

$$\forall h \in \mathcal{H}, L_D(h) \leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta)$$

as

$$L_D(h) \leq L_S(h) + \epsilon_n(h)(m, w(n(h)) \cdot \delta)$$

This gives rise to the SRM paradigm

Structural Risk Minimization (SRM)

prior knowledge:

 $\mathcal{H} = \bigcup_n \mathcal{H}_n$ where \mathcal{H}_n has uniform convergence with $m_{\mathcal{H}_n}^{\text{UC}}$ $w : \mathbb{N} \to [0, 1]$ where $\sum_n w(n) \le 1$

define: ϵ_n as in Equation (7.1); n(h) as in Equation (7.4)

input: training set $S \sim \mathcal{D}^m$, confidence δ

output: $h \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta) \right]$

Figure: SRM

- In SRM we care about
 - 1. Sample loss $L_S(h)$
 - 2. Size of $\epsilon_n(h)$

- Since ϵ_n increases with n \Rightarrow tradeoff between estimation error \downarrow and $\epsilon_n(h)(m, w(n(h)) \cdot \delta)$
- Now we can show that SRM can be used for NUL problems

Theorem:

Let \mathcal{H} be a hypothesis class such that $\mathcal{H} = \bigcup \mathcal{H}_n$. Here \mathcal{H}_n is UC with saple complexity $m_{\mathcal{H}_n}^{UC}$.

Let $0 \le w(n) \le 1$ be such that,

$$w(n) = \frac{6}{n^2 \pi^2}$$

Then ${\cal H}$ is non-uniformly learnable using the SRM role with

$$m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) \leq m_{\mathcal{H}_{n(h)}}^{UC}\left(\frac{\epsilon}{2}, \frac{6}{(\pi n(h))^2} \cdot \delta\right)$$

Proof:

- A(s) is SRM algorithm with respect to weight function w
- For every $h \in \mathcal{H}$ and $\epsilon, \delta, m_{\mathcal{H}_{n(h)}}^{UC}(\epsilon, w(n(h)) \cdot \delta) \leq m$
- Now use Theorem

$$\forall h \in \mathcal{H}, L_D(h) \leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta)$$

with the fact that $\sum_{n} w(n) = 1$

24 / 46

ullet Then with probability of at least $1-\delta$

$$L_D(h') \leq L_S(h') + \epsilon_{n(h')}(m, w(n(h')) \cdot \delta)$$

- This also holds for the A(S) returned by the SRM rule
- By definition of SRM

$$L_D(A(S)) \leq \min_{h' \in \mathcal{H}} L_S(h') + \epsilon_{n(h')}(m, w(n(h')) \cdot \delta)$$

$$\leq L_S(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta)$$

• Here h is the minimum of $L_S(h') + \epsilon_{n(h')}(m, w(n(h')) \cdot \delta)$

Consider

$$m_{\mathcal{H}_{n(h)}}^{UC}\left(\frac{\epsilon}{2}, \frac{6}{(\pi n(h))^2} \cdot \delta\right)$$

if

$$m \geq m_{\mathcal{H}_{n(h)}}^{UC} \left(\frac{\epsilon}{2}, \frac{6}{(\pi n(h))^2} \cdot \delta \right)$$

then plugging this higher m into $\epsilon_{n(h)}$

$$\epsilon_{n(h)}(m, w(n(h)) \cdot \delta) \leq \frac{\epsilon}{2}$$

 $^{26}/_{46}$

• Since each ${\cal H}$ is ${\it UC}$

$$L_D(h) \leq L_S(h) + \frac{\epsilon}{2}$$

The

$$L_DA(S) \leq L_S(A(S)) + \frac{\epsilon}{2} \text{ (by UC)}$$

$$\leq L_S(h') + rac{\epsilon}{2} ext{ (by SRM)}$$

$$\leq L_D(h') + rac{\epsilon}{2} + rac{\epsilon}{2} ext{ (by UC)}$$

 $^{27}/_{46}$

•
$$\Rightarrow L_D(A(S)) \le L_D(h) + \epsilon$$

Thus \mathcal{H} is NUL

Remarks:

• One can show that for any infinite domain set the hypothesis class of a binary predictor is not equal to a countable union

$$\mathcal{H} \neq \bigcup_{n}$$
 (classes of finite VC dimension)

Thus NFL holds for NUL also
 ⇒ ∞ domain ⇒ no universal learner + ∃ perfect adversary

- More samples are needed in NUL than APAC
 - \Rightarrow NUL must search over all \mathcal{H}_n
 - \Rightarrow APAC, search over one \mathcal{H}_n (consequence of having more prior knowledge)
- Assume for all *n*

$$n = VCdim(\mathcal{H}_n)$$

$$m_{\mathcal{H}_n}(\epsilon,\delta) = C \frac{n + \log \frac{1}{8}}{\epsilon^2}$$

one can then show

$$m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) - m_{\mathcal{H}_n}^{UC}\left(\frac{\epsilon}{2}, \delta\right) \leq 4C \cdot \frac{2\log(2n)}{\epsilon^2}$$

- \Rightarrow Thus NUL needs many more samples
- \Rightarrow grows logarithmically with V dim of \mathcal{H}_n
- \Rightarrow grows as $rac{1}{\epsilon^2}$

³⁰/₄₆

- NUL is actually a practical and widely used learning paradigm
- But what is w(n)?
 How to express preferences with respect to different hypotheses?
- Consider the case of singleton classes

$$\mathcal{H}_1 = \left\{ h_z \mid z \in \mathcal{X}, h_z(\chi) = \left\{ egin{array}{ll} 1 ext{ if } \chi = z \\ 0 ext{ otherwise} \end{array}
ight\}
ight\}$$

$$\mathcal{H}_2 = \left\{ h_{z_1, z_2} \mid z_1, z_2 \in \mathcal{X}, h_z = egin{array}{l} \mathsf{zero} \ \mathsf{unless} \ \chi = \mathsf{z_1} \ \mathsf{or} \ \chi = \mathsf{z_2} \end{array}
ight\}$$

- Suppose we don't have a true predictor
 ⇒ APAC predictor needed
- Use Hoeffding's inequality or Find them of Statistical Learnining

$$m^{UC}(\epsilon, \delta) = \frac{\log\left(\frac{2}{\delta}\right)}{\epsilon^2}$$

Now invert this to

$$m = \frac{\log \frac{2}{\delta}}{\epsilon_n^2}$$

$$\Rightarrow \epsilon_n(m, \delta) = \sqrt{\frac{\frac{2}{\delta}}{2m}}$$

$$\Rightarrow \delta \Rightarrow \delta \cdot w(n)$$

Thus

$$\epsilon_{n(h)}(m, w(n(h)) \cdot \delta)$$

$$= \sqrt{\frac{\log \frac{2}{w \cdot \delta}}{2m}}$$

$$= \sqrt{\frac{-\log w(n) + \log \frac{2}{\delta}}{2m}}$$

• The SRM rule then becomes

$$h \in \operatorname{argmin}_{h \in \mathcal{H}} \left(L_{S}(h) + \sqrt{\frac{-\log w(h) + \log \frac{2}{\delta}}{2m}} \right)$$

 A convenient way to assign weights is to use a complexity measure for the hypotheses

- Consider the bit-length required to describe a hypothesis
 ⇒ the more complicated the h , the longer the description
- Thus fix a description language
 ⇒ can be English/Bangla/Python/Math formulas/etc...
- A description consists of a finite string of symbols from a fixed alphabet
- Fix a finite set ∑, of symbols.
 Call them "characters"
- ullet For example, $\sum = \{0,1\}$
- $\sigma =$ string of symbols from \sum Suppose $\sigma = (0,1,1,1,1)$ $|\sigma| = 5$ (length of string)

- The set of all *finite* length string is denoted \sum^*
- ullet A descriptive language for ${\mathcal H}$ is $d:{\mathcal H} o \sum^*$ maps every $h \in {\mathcal H}$ to a string d(h)
- $d(h) \equiv$ description of h|h| = length of h
- To make sure that each d(h) uniquely describes a string h
 ⇒ require the description language to be Prefix-free

· Prefix-free means if

$$h' \neq h$$

then the first |h| symbols of d(h') cannot be d(h) or vice -versa

$$d(h') = \frac{1h!}{2 + hese are diff from d(h)}$$

Prefix-free strings can be used to weight different hypotheses

Kraft Inequality:

If $S \subseteq \{0,1\}^*$ is a prefix-free set of strings then

$$\sum_{\sigma \in \mathcal{S}} \frac{1}{2^{|\sigma|}} \le 1$$

Proof:

- Suppose S is a binary prefix-free set of string S
- given a string σ , what is the probability of randomly choosing σ ?
 - \Rightarrow Suppose $P(0) = P(1) = \frac{1}{2}$
 - \Rightarrow because S is prefix-free once the first $|\sigma|$ flips match σ , we know that this sequence of coin flips uniquely corresponds to σ

• Thus,

$$P(\sigma) = \frac{1}{2^{|\sigma|}}$$

for every $\sigma \in S$

- Since the $P(\sigma)$ add up to 1, proof is finished
- There we can weight h as

$$w(h) = \frac{1}{2^{|h|}}$$

• Inserting this weight into the

$$\sqrt{-\log w(h) + \log \frac{2}{\delta}}$$

Theorem:

Let ${\mathcal H}$ be a hypothesis class, and let d be a descriptive language

$$d: \mathcal{H}
ightarrow \{0,1\}^* \stackrel{\leftarrow}{\leftarrow} \mathsf{finite}$$

that is prefix-free.

Then for every m, S, D with probability $\geq 1 - \delta$ over $S \sim D^m$, we have

$$\forall h \in \mathcal{H} \ L_D(h) \leq L_S(h) + \sqrt{\frac{|h| + \ln \frac{2}{\delta}}{2m}}$$

where |h| is the length of d(h)

Proof:

use $\forall h \in \mathcal{H}, L_D(h) \leq \overline{L_S(h)} + \min_{n:h \in \mathcal{H}_n} \overline{\epsilon_n(m, w(n) \cdot \delta)}$ and let

$$w(h) = 2^{-|h|}$$
, use

$$\epsilon_n(m,\delta) = \sqrt{\frac{\ln \frac{2}{\delta}}{2m}}$$

and

$$\ln 2^{|h|} = |h| \ln 2 < |h|$$

 $^{40}/_{46}$

- From this we can construct a new learning paradigm
 - 1. Find a training set S
 - 2. Search for a hypothesis h Minimizing the bound

$$L_{S}(h) + \sqrt{\frac{|h| + \ln \frac{2}{\delta}}{2m}}$$

• This trades low empirical risk $L_S(h)$ for low description length

Minimum Description Length (MDL)

prior knowledge:

 \mathcal{H} is a countable hypothesis class

 \mathcal{H} is described by a prefix-free language over $\{0,1\}$

For every $h \in \mathcal{H}$, |h| is the length of the representation of h **input:** A training set $S \sim \mathcal{D}^m$, confidence δ

output:
$$h \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_{S}(h) + \sqrt{\frac{|h| + \ln(2/\delta)}{2m}} \right]$$

Figure: MDL

• For example |h| could be the length of a program (in binary).

Assume compiler stops if program 1 is a header for program 2

Occam's Razor

- Prefer hypotheses with shorter lengths: less complex
- Two hypotheses with equal sample error
 ⇒ prefer the one with shorter MDL length
- Choice of language is one way of implementing prior knowledge
 For example use the more complex language of relativity to describe physics instead of Galilean/Newtonian relativity

Other Notions of Learnability - Consistency

Let m depend on underlying distribution D

Definition: (Consistency)

Let Z be a domain set.

Let P a set of distributions over Z.

Let \mathcal{H} be a hypothesis class.

A learning role is <u>consistent</u> with respect to $\mathcal H$ and P, if \exists a $m(\epsilon,\delta,h,D)$ such that for every $(\epsilon,\delta)\in(0,1)$, every $h\in\mathcal H$, every $D\in P$ that if $m\geq m_{\mathcal H}^{NUL}(\epsilon,\delta,h,D)$ then with probability $\geq 1-\delta$ that

$$L_D(A(S)) \leq L_D(h) + \epsilon$$

If P is the set of all distributions, we say that A is universally consistent with respect to $\mathcal H$

Other Notions of Learnability - Consistency

- Consistency is a strict relaxation of NUL
- If A(S) is NUL with respect to \mathcal{H} , it is universally consistent with respect to \mathcal{H}
- · Consistency is desirable, but not powerful
- Suppose $A_1(S)$ and $A_2(S)$ are NUL But $A_1(S)$ is consistent, $A_2(S)$ is not.
- East to make $A_2(S)$ consistent
 - \Rightarrow Just memorize the sample data and output the most frequent y value of x,y
 - x appears in the sample
 - ⇒ This memorization also can be shown to be consistent

Other Notions of Learnability - Consistency

- Same subtlely regarding the NFL theorem for consistent algorithms
 - \rightarrow in APAC/NUL fix training set size m, then find a distribution and labeling the function for this training set size
 - \rightarrow in Consistency guarantees, first fix the distribution and the labeling function and then find a training set size that works for learning this part distribution and labeling function