Pattern Recognition

SVM 개념 잡기

Yukyung Choi yk.choi@rcv.sejong.ac.kr

What is SVM?

Support Vector Machine → SVM

Traditional Classifier

- Until now, favorite classifier to everyone
 - Wondering why? Kernel Trick!!!

"만약, 문제에 어떠한 알고리즘을 사용할지 모르겠다면, SVM은 좋은 출발선이 될 수 있음"

Classifier

• Classifier is a <u>hypothesis</u> or <u>discrete-valued function</u> that is used to assign (categorical) class labels to particular data points.

• In the email classification example, this classifier could be a hypothesis for labeling emails as **spam** or **non-spam**.

Classifier

- y = label, x = data, y = f(x), f: classifier
- If decision function is linear, this classifier (f) is linear classifier
- If not, this classifier (f) is non-linear classifier

y = f(x)

데이터를 구획해주는 이 **점선의 함수** (decision boundary)를 우리는 **판별 함** 수 (decision function)라 부른다.

Classifier

Hyperplane

 In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

$$\mathbf{w}^T \mathbf{x} = 0$$
 $y = ax + b$ Hyperplane Line

SVM Classifier

- W : vector for hyperplane
- x_i: i_{th} data, y_i: label (class) of i_{th} data
- $Y = sign(W^TX + b) = f(X)$
 - $Y_i = +1$ when $W^T X_i + b > 1$
 - $Y_i = -1$ when $W^T X_i + b < -1$

Data Embedding Space

 X_1 , X_2 is called feature or attribute.

Data Embedding

범주형 자료를 **벡터 형태**로 바꾸는 것

Categorical Data

범주형 데이터란 몇 개의 범주로 나누어진데이터 예) 남/여, A/B/O/AB

Which hyperplane can we choose?

Decision Boundary

- Which one is better?
 - Classifier should have dealt with unseen data

Train sample data → seen data

Test sample data → unseen data

How can we decide decision boundary?

Test data predicted well (O)

How can we decide decision boundary?

Test data predicted well (X)

How can we decide decision boundary?

The answer is "Large Margin"!!

Support Vector

Support Vector

Samples on the margin are called the support vectors.

Support Vector

- SVM only uses support vector for prediction
 - Less computation!!!

Linearly Separable or not

Mapping <u>lower dimension</u> to <u>high dimension</u>

- Now it is linearly separable in higher dimension
 - Mapping to high dimension requires much computation!

- Kernel trick in SVM do this without explicitly
 - Move data point to higher dimension with low computation!

Kernel Trick

- The **kernel trick** <u>avoids the explicit mapping</u> that is needed to get linear learning algorithms.
- Kernel methods owe their name to the use of kernel functions, which
 enable them to operate in a high-dimensional, <u>implicit</u> feature space
 without ever computing the coordinates of the data in that space, but
 rather by simply computing the inner products between the images
 of all pairs of data in the feature space

Kernel Trick

Kernel Function -> simply computing the inner products

$$\begin{array}{lll} linear & : & K(x_1,x_2) = x_1^T x_2 \\ polynomial & : & K(x_1,x_2) = \left(x_1^T x_2 + c\right)^d, & c > 0 \\ sigmoid & : & K(x_1,x_2) = \tanh\left\{a(x_1^T x_2) + b\right\}, & a,b \geq 0 \\ gaussian & : & K(x_1,x_2) = exp\left\{-\frac{\|x_1 - x_2\|_2^2}{2\sigma^2}\right\}, & \sigma \neq 0 \end{array}$$

Mapping 함수의 inner-product.. Mapping (m→n)

$$K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j) = x_i^T A^T A x_j$$

• Cost is small == Margin is large

$$(\theta) = C \sum_{i=1}^m \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^n \theta_i^2$$
 misclassification Margin width

C is small

Training error is allowed

Overfitting is not allowed

Margin is large

Testing e<mark>rro</mark>r is small

Cost is large == Margin is small

$$(\theta) = C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$
 misclassification Margin width

C is large

Training error is not allowed

Overfitting is allowed

Margin is small

Testing error is large

- We assume that some samples caused by train error are the outlier.
- Therefore, we generally select a large margin for decision boundary.
- But, if not?

• Therefore, we cannot argue that we should choose large C, but we must make a decision through data analysis.

Cost is small
Training error is allowed
Overfitting is not allowed
Decision boundary is simple

Cost is large
Training error is allowed
Overfitting is allowed
Decision boundary is complex

SVM parameter – Gamma in RBF kernel

Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'.
 Radial Base Function (also called Gaussian Kernel)

$$K(x,x') = \exp(-gamma * ||x-x'||^2)$$

SVM parameter – Gamma in RBF kernel

Gamma is small
Influence is large
Margin is large
Similarly to a linear model

Gamma is large Influence is small Margin is small Overfitting is allowed

Find optical parameter – data analysis

Grid Search

• **Grid search** builds a model for **every combination** of hyper-parameters specified and evaluates each model.

		1	10	100
cost	1	0.7	0.8	0.7
	10	0.8	0.8	0.9
	100	0.6	0.8	0.8