Raport - wykrywanie naczyń dna siatkówki oka

1 Skład grupy

- Zuzanna Piniarska 136782
- Mateusz Kałamoniak 136730

2 Zastosowany język programowania i biblioteki

Język programowania: Python

Dodatkowo zastosowane biblioteki

- tensorflow
- numpy
- PIL
- matplotlib
- datetime
- IPython

3 Opis zastosowanych metod

W implementacji posłużyliśmy się w głównej mierze biblioteką Tensorflow. Posłużyła ona do wstępnego przetwarzania obrazu jak i tworzenia sieci neuronowej. Zastosowaliśmy techniki augmentacji takie jak modyfikacja saturacji, kontrastu czy odcienia. Wszystkim z tych funkcji podaliśmy losowe wartości w określonych przedziałach. Dodatkowo obracaliśmy obraz. Z użyciem tak przetworzonych obrazów wytrenowaliśmy sieć neuronową. Zaimplementowaliśmy sieć będącą modyfikacją U-Net i MobileNetV2. Wykorzystaliśmy architekturę z U-Net, natomiast encoder został zaimplementowany

na wzór MobileNetV2. Do optymalizacji zastosowaliśmy algorytm Adam z współczynnikiem uczenia 0.001. Funkcja kosztu składa się z sumy indeksu Jaccarda z wagą 0.3 oraz binary cross entropy z wagą 0.7. Przy tworzeniu sieci sugerowaliśmy się przede wszystkim artykułem M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Real-World Applications (https://arxiv.org/pdf/1811.07738.pdf).

Uzupełnione informacje

Nasza sieć uczyła się przez około 3 godziny, uczyła się na 200 epokach. Ze względu na ilość obrazów wejściowych podzieliliśmy nasz zbiór na 15 obrazów treningowych i 30 obrazów walidujących. Obrazy pochodziły ze zbioru HRF.

Wykorzystaliśmy augumentację 15 obrazów składającą się ze zmiany saturacji, kontrastu i odcienia oraz orientacji.

Rozmiary zdjęć są zmienione na 544x544. Pomijając powyższe zmiany resztę algorytmu staraliśmy się zaimplementować sugerując się pracą naukową.

Podstawowe przetwarzanie:

W podstawowym przetwarzaniu zastosowaliśmy normalizację histogramu za pomocą algorytmu CLAHE (Contrast Limited Adaptive Histogram Equalization), filtr Gaussa, adaptive threshold wyliczony metodą Gaussa oraz dylatacja. Wyniki można uznać za zadowalające jednak sieć neuronowa dużo lepiej poradziła sobie z zadaniem.

4 Wyniki parametrów przetwarzania

Name	Accuracy	Precision	Sensitivity	Specificity	F1 score
01_h.jpg	0,9514	0,8387	0,6479	0,9858	0,7311
12_dr.jpg	0,9583	0,7706	0,5526	0,9880	0,6436
14_h.jpg	0,9576	0,8039	0,6797	0,9842	0,7366
13_h.jpg	0,9577	0,8107	0,6707	0,9851	0,7341
10_g.jpg	0,9624	0,7173	0,7056	0,9804	0,7114
01_dr.jpg	0,9574	0,5605	0,7552	0,9683	0,6435
03_h.jpg	0,9450	0,8120	0,6247	0,9829	0,7061
15_dr.jpg	0,9576	0,6767	0,6738	0,9775	0,6753
11_h.jpg	0,9587	0,8296	0,7021	0,9851	0,7605
04_g.jpg	0,9630	0,7082	0,7285	0,9792	0,7182
15_h.jpg	0,9631	0,8529	0,6394	0,9906	0,7309
09_h.jpg	0,9599	0,7712	0,6876	0,9828	0,7270
09_dr.jpg	0,9558	0,7361	0,5430	0,9858	0,6250
07_h.jpg	0,9600	0,7961	0,7407	0,9814	0,7674
04_dr.jpg	0,9666	0,7253	0,6588	0,9850	0,6905
13_g.jpg	0,9561	0,6746	0,6856	0,9759	0,6801
05_dr.jpg	0,9576	0,6272	0,7891	0,9688	0,6989
10_dr.jpg	0,9488	0,7036	0,7102	0,9715	0,7069
05_g.jpg	0,9653	0,7313	0,7440	0,9808	0,7376
02_dr.jpg	0,9571	0,6476	0,7219	0,9731	0,6827
08_g.jpg	0,9603	0,6889	0,7587	0,9750	0,7221
01_g.jpg	0,9558	0,6471	0,7507	0,9706	0,6950
13_dr.jpg	0,9618	0,8079	0,5762	0,9900	0,6727
02_g.jpg	0,9566	0,6945	0,7396	0,9739	0,7164
04_h.jpg	0,9539	0,7793	0,7109	0,9791	0,7435
12_h.jpg	0,9558	0,8413	0,7119	0,9843	0,7712
15_g.jpg	0,9552	0,6791	0,7296	0,9729	0,7035
07_g.jpg	0,9632	0,7111	0,7339	0,9792	0,7223
14_dr.jpg	0,9547	0,7522	0,6057	0,9835	0,6710
11_g.jpg	0,9578	0,7207	0,7336	0,9764	0,7271

5 Wizualizacja i analiza wyników działania programu

W poniżej przestawionych wynikach po lewej stronie znajduje się oryginalne zdjęcie, po środku predykcja, a po prawej maska.

5.1 Porównanie działania sieci neuronowej i zwykłego przetwarzania obrazu

Po lewej stronie znajduje się efekt prostego przetwarzania obrazu, po środku wynik działania sieci neuronowej, a po prawej - maska.

