Trucks' drivers' detection software

-	Dataset	2
-	Models	2
_	Process	2

Overview and Methods:

Dataset:

Gathered simple data of approximate 25 images, and labeled them with Labelimg

Model:

- Given the task of detecting from unclear images like given samples, which are mostly from CCTV cameras, decided to use <u>YoloV5</u>, as it's known for speed, high accuracy
- The data was small so I needed many epochs so it can learn ,and very high accuracy cause the testing samples are CCTV unclear images
- Also used YoloV5 as it gave me best results better with the cropping process
- After prediction, cropped the 'drivers' category, and blurred/anonymized 'passenger' category

Project Pipeline and Process:

- Trained the model with these <u>data</u>, and saves the best weights "best.pt", to use them later on the detection
- Changed the coco128.yaml file so the model can only read 2 classes: "Driver" and "passenger" classes instead of the whole 80 classes of COCO dataset
- Changed some function in the detected.py file so it crops exactly at the driver's area, subtracted every 20 pixels from 3 corners, the next image shows the changes in detected.py

```
if save_crop:
if names[c]=='driver':
    save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg

    x_min= int(xyxy[0].item())-20
    y_min= int(xyxy[1].item())-20
    x_max= int(xyxy[2].item())-50
    y_max= int(xyxy[3].item())

start_point=(x_min,y_min)
end_point=(x_max,yymax)

blurred_img = cv2.GaussianBlur(imc, (21, 21), 0)

mask = np.zeros((553, 446, 3), dtype=np.uint8)
mask = cv2.rectangle(mask, start_point, end_point, (255, 255, 255), -1)

out = np.where(mask==(255, 255, 255), imc, blurred_img)

cv2.imwrite("/content/drive/MyDrive/yolo5/results/out1.png", out)
```

RESULTS

The result for this method is:

But it causes problems if the image sized differed

So tried another method , and this was the results , where I crop only the detected category

Where crops get saved at runs/detected/exp/crops

Detection final results:

Although I trained the model on "passengers'" class, the model **failed** to detect any of them in the CCTV images.

It gives high confidence but only for the "drivers" category

Part of the labeled data

The model mAP: 0.942

Epoch	GPU_mem	box_loss	obj_loss	cls_loss	Instances	Size
150/159	4.75G	0.0357	0.01763	0.002115	6	640: 100
	Class	Images	Instances	P	R	mAP@.5 mAP@
	all	12	13	0.918	0.5	0.942

Finally, I couldn't Docker the software as I was writing it on Google Colab , Docker isn't supported by Google Colab.

I use colab , cause I faced some problems in PyCharm , and also Yolo need NVidia and Cuda "My laptop is AMD RadeonGraphics"

So I'm sending the colab notebook with all the dependencies in a public mounted drive on the notebook.

The notebook

The repo folder mounted on a driver