Problem

Chef has an array A of length N. He defines the *alternating sum* of the array as:

•
$$S = |A_1| - |A_2| + |A_3| - |A_4| + \dots (-1)^{N-1} \cdot |A_N|$$

Chef is allowed to perform the following operation on the array **at most once**:

• Choose two indices i and j ($1 \le i < j \le N$) and swap the elements A_i and A_j .

Find the **maximum** *alternating sum* Chef can achieve by performing the operation **at most once**.

Note: |X| denotes the absolute value of X. For example, |-4|=4 and |7|=7.

Input Format

- ullet The first line will contain T the number of test cases. Then the test cases follow.
- First line of each test case contains a single integer N size of the array A.
- ullet Second line of each test case contains N space separated integers denoting the elements of array A.

Output Format

For each testcase, output in a single line, the **maximum** *alternating sum* Chef can obtain by performing the operation **at most once**.

Constraints

- $1 < T < 10^5$
- $2 \le N \le 10^5$
- $-10^9 \le A_i \le 10^9$
- Sum of N over all test cases does not exceed $2\cdot 10^5$.

Sample 1:

Input	Output
2	0
2	6
10 -10	
7	
-3 -2 -1 0 1 2 3	

Explanation:

Test Case 1: One optimal way is to perform no operations. Thus the alternating sum is |10| - |-10| = 10 - 10 = 0.

Test Case 2: One optimal way is to choose i=2 and j=5. After swapping, the array is [-3,1,-1,0,-2,2,3]. The alternating sum in this case is |-3|-|1|+|-1|-|0|+|-2|-|2|+|3|=6.

https://www.codechef.com/submit/PMA