Anwendungssysteme – Übung 06

T. Bullmann, N. Lehmann, S. Rolfs, S. Reim, M. Höhne, J. Cwojdzinski

1. Aufgabe: Wann Fehlerbaumanalyse verwenden?

Die Fehlerbaumanalyse sollte dann als Systemanalyse eingesetzt werden, wenn man die Wahrscheinlichkeit des Ausfalls eines Systems ermitteln möchte.

Die Fehlerbaumanalyse ist auf jedes deduktive (ableitbare) System anwendbar!

2. Aufgabe: Welche Information liefert Fehlerbaumanalyse?

- welche Einzelereignisse (auch kombiniert mit anderen Einzelereignissen) zu einem Systemversagen führen
- die genaue Wahrscheinlichkeit eines Systemversagens (idealisiert)

3. Aufgabe: Syntax eines Fehlerbaums

- Top-Ereignis / Zwischenereignis
- Verknüpfungen
- primäres Ereignis
- unentwickeltes Ereignis

4. Aufgabe: weitere syntaktische Elemente

bedingte-Verknüpfung (A bedingt B = B tritt nicht ein ohne A)

- UND-Verknüpfung
- ODER-Verknüpfung

5. Aufgabe: MCS & SPF

- - MCS: Minimale Schnittmengen Die minimalen Schnittmengen bestehen aus primären Ereignissen die zusammen zum Top-Ereignis führen. Entfernt man ein primäres Ereignis aus einer minimalen Schnittmenge ist diese keine minimale Schnittmenge mehr.
 - SPF: Single Point Failures Sind Ereignisse die durch alleiniges Auftreten das Top-Ereignis auslösen.

6. Aufgabe: qualitative Analyse vs. Quantitative Analyse

• Qualitative Analyse:

Der Fehlerbaum entspricht einer logischen Gleichung. Diese ermöglicht die Bestimmung von MCS, SPF und die Anfälligkeit für Common Mode Fehler.

Quantitative Analyse:

Quantitativer Beitrag einzelner Komponenten liefert Rangliste ihrer Wichtigkeit (exakte Wahrscheinlichkeit errechenbar)

Diese liefert Ansätze zur gezielten Verbesserung eines Systems

7. Aufgabe: Probleme der Fehlerbaumanalyse

- Fehlerbäume sind unzureichend zur Modellierung komplexer Systeme
- Fehlerbaumanalyse erfordert die genaue Kenntnis eines Systems, welche in der Designphase oft nicht vorhanden ist.
- Top-Ereignis muss vorher bekannt sein
- Eingeschränkte Möglichkeiten zur Modellierung komplexer Systeme
- Quantitative Daten oft nicht vorhanden
- nichtkausale Abläufe können nicht dargestellt werden

8. Aufgabe: Anwendung/Übung

Durch den logischen UND-Operator ist das Ereignis "Ausfall des Top-Events" abhängig von allen primären Ereignissen. Es müssen alle primären Ereignisse gleichzeitig eintreten, dann kommt es zum Top-Event.

Die Wahrscheinlichkeit, dass das Top-Event eintritt, ist also:

Anwendung Fehlerbaumanalyse:

(Nicht immer ernstgemeinstes Beispiel)

MCS: {Besucht die Vorlesung generell nicht!}, {Unerwartetes Ereignis}, { Nahverkehr hat Probleme}, {zu spät aufgestanden}, {zu viel Bier}, {zu wenig Koks}, {keine Notizen zum Termin erstellt}

SPF: {Besucht die Vorlesung generell nicht!} , {Unerwartetes Ereignis} , { Nahverkehr hat Probleme}, {zu spät aufgestanden} , {zu viel Bier} , {zu wenig Koks} , {keine Notizen zum Termin erstellt}