PSS-BEM 114 PS3

May 3, 2024

```
from sklearn.linear_model import LinearRegression
     import numpy as np
     import matplotlib.pyplot as plt
     from matplotlib.dates import AutoDateLocator, AutoDateFormatter
[]: crsp_data = pd.read_csv("/content/crsp_1926_2020.csv")
     crsp_data['PRC'] = crsp_data['PRC'].where(crsp_data['PRC'] >= 0)
     crsp_data['ME'] = (crsp_data['PRC'] * crsp_data['SHROUT'])/1000
     ff5 = pd.read_csv('/content/ff5_factors.csv')
     mom_data = pd.read_csv('/content/mom_factor.csv')
     industry_data = pd.read_csv('/content/12IndustryPortfolios.csv')
     data_datemod = crsp_data.copy()
     data datemod['date'] = np.floor(data datemod['date'].str.replace('-','').
      ⇒astype(float)/100).astype(int)
     crsp_data = pd.merge(data_datemod, ff5, how = 'inner', on='date')
     crsp_data = pd.merge(crsp_data, mom_data, how = 'inner', on='date')
     crsp_data = pd.merge(crsp_data, industry_data, how = 'inner', on='date')
     crsp_data.columns = crsp_data.columns.str.strip()
     bcw_data = pd.read_excel("/content/bcwlist.xls")
[]: crsp_data['date'] = [str(n)[:4] + "-" + str(n)[4:] for n in crsp_data['date']]
[]: crsp_data['date'] = pd.to_datetime(crsp_data['date'])
     crsp_data['month'] =crsp_data['date'].dt.month
     crsp_data['year'] = crsp_data['date'].dt.year
```

1 1A

[]: import pandas as pd

import statsmodels.api as sm

The code below is used to create the signals for taking positions with the Edmans (2011) strategy as well as create weightings for each of the assets with a signal. The code will be further described cell-by-cell below.

1.1 Signal

The code below creates a new column for signalling assets in the crsp dataset based on if they are ranked in that year. It indexes each of the rating years and if a company is listed that year on the bcw list and also in the crsp data it will write that column value as a 1, indicating that it is listed at that time and should be included in the portfolio.

```
[]: # Create column in pricing dataframe 'ranked' that for each row indicates 1 if \Box
     ⇔the company was ranked
    # at that timestep in the bcw list, and O if not
    signal_years = sorted(bcw_data['year'].unique())
    test years = sorted(crsp data['year'].unique())
    crsp_data['ranked'] = 0
    for year in signal_years:
        ranked_ids = bcw_data[bcw_data['year'] == year]['permno']
        ranked_ids = ranked_ids.dropna()
        if year == 1984:
          crsp_data.loc[(crsp_data['year'] == year) & (crsp_data['month'] >= 3) &__
      crsp data.loc[(crsp data['year'] == year) & (crsp data['month'] >= 3) & |
      Grap_data['PERMNO'].isin(ranked_ids)), 'ranked'] = 0
          crsp_data.loc[(crsp_data['year'] > year) & (crsp_data['PERMNO'].
      ⇔isin(ranked_ids)), 'ranked'] = 1
          crsp_data.loc[(crsp_data['year'] > year) & ~(crsp_data['PERMNO'].
      →isin(ranked_ids)), 'ranked'] = 0
        elif year == 1993:
          crsp_data.loc[(crsp_data['year'] == year) & (crsp_data['month'] >= 2) &__
      ⇔(crsp_data['PERMNO'].isin(ranked_ids)), 'ranked'] = 1
          crsp_data.loc[(crsp_data['year'] == year) & (crsp_data['month'] >= 2) &__
      Grsp_data['PERMNO'].isin(ranked_ids)), 'ranked'] = 0
          crsp_data.loc[(crsp_data['year'] > year) & (crsp_data['PERMNO'].
      ⇔isin(ranked_ids)), 'ranked'] = 1
          crsp_data.loc[(crsp_data['year'] > year) & ~(crsp_data['PERMNO'].
      →isin(ranked_ids)), 'ranked'] = 0
        else:
          crsp_data.loc[(crsp_data['year'] >= year) & (crsp_data['PERMNO'].
      ⇔isin(ranked_ids)), 'ranked'] = 1
          crsp_data.loc[(crsp_data['year'] >= year) & ~(crsp_data['PERMNO'].
      →isin(ranked_ids)), 'ranked'] = 0
```

```
[]: def rank_shift(group):
    group = group.sort_values(by='date')
    group['ranked'] = group['ranked'].shift(1)
    return group
```

1.2 Building portfolio weights

The code below builds the portfolio weights at each timestep for the value weighted and equal weighted portfolios. The reweighting is done at each time step for both the value and equal weighted portfolios. The reason for this is although ratings are only re-evaluated every year, the value weighted portfolios will automatically rebalance themselves each timestep by the nature the weights should be updated at each timestep to reflect their current relative weights. The equal weighted portfolios are also recalculated every timestep, ideally we would want to keep a tracker of portfolio values after equal weighting to adjust the weights at each timestep respective to the returns after equal weighting but for simplicity we will expect that these weights do not change to a statistically signficant scale to affect the returns calculations and factor models later on.

```
[]: def eval_weights(group):
    group['val_weighting'] = group['ME'] / group['ME'].sum()
    group['eq_weighting'] = 1 / len(list(group['ME']))
    return group

def calc_weights(data):
    data['val_weighting'] = 0
    data = data.groupby('date').apply(eval_weights)
    data = data.reset_index(drop = True)
    return(data)

def calc_weights_2(data):
    data['val_weighting'] = 0
    data = data.groupby(['date', 'ranked']).apply(eval_weights)
    data = data.reset_index(drop = True)
    return(data)
```

```
[]: def weight_shift(group):
    group = group.sort_values(by='date')
    group['val_weighting'] = group['val_weighting'].shift(1)
    group['eq_weighting'] = group['eq_weighting'].shift(1)
    return group
```

1.3 Data processing and filtering

The code below calculates the weights and shifts indices of ranking signal and weights to adjust for position taking. We also filters all crsp data that was not ranked in the signalling cell above so accessing and analyzing data visually becomes easier and quicker to run.

```
[]: crsp_data = calc_weights_2(crsp_data)
    crsp_data = crsp_data.groupby('PERMNO').apply(rank_shift)
```

```
crsp_data = crsp_data.reset_index(drop = True)
crsp_data = crsp_data.groupby('PERMNO').apply(weight_shift)
crsp_data = crsp_data.reset_index(drop = True)
crsp_data = crsp_data[crsp_data['ranked'] == 1]
```

2 Testing / Sanity Check code

The testing functions below test whether the rankings signals we developed are correct. The function test_rankings shows 74 companies are ranked in 1984 and 65 in 1993 so it seems to work. The test_weights function also sums all weighted assets to 1 over all timesteps so the value weightings seem to be properly set as well.

```
[]: def test_weights(data):
      vears = sorted(set(data['vear']))
      months = sorted(set(data['month']))
      prev_weighting = []
      for year in years:
        if year >= 1984:
          print('----')
          print(year)
          for month in months:
            condition = (data['year'] == year) & (data['month'] == month) & |
      # print(data.loc[condition])
            curr_weight = list(data.loc[condition]['val_weighting'])
            # if curr_weight != prev_weighting:
            # print('weight change')
            # print(len(list(data.loc[condition]['val_weighting'])))
            print(data.loc[condition]['val_weighting'].sum())
            prev_weighting = curr_weight
    def test rankings(data):
      dates = sorted(set(data['date']))
      curr_permno = []
      for date in dates:
        df = data.loc[(data['date'] == date) & (data['ranked'] == 1)]
        permnos = list(df['PERMNO'])
        print(date)
        print(len(permnos))
        curr_permno = permnos
```

3 Returns and Model Estimation Code

Below is the code we use to calculate returns as well as estimate the loadings on the CAPM, FF3, FF5, Carhart, and 12 Industry Portfolio implied returns.

```
[]: # Code to calculate return list based on each companies
     def get_returns(data, ret_type):
       date_set = sorted(set(data['date']))
       returns = []
      for date in date_set:
         # print(np.sum(data.loc[data['date'] == date]['val weighting'])) - used to_!
      ⇔check portfolio weights at each timestep sum to 1 (they do)
         ret = 1 + np.sum(data.loc[data['date'] == date][ret_type])
         returns.append(ret)
       return returns
     def estim_CAPM(portfolio_ret, data_unique_dates):
      model1 = sm.OLS(portfolio ret, sm.add constant(data unique dates['Mkt-RF'])).
      ⇒fit()
      alpha, beta = model1.params
      print("CAPM ESTIMATES")
      print(model1.summary())
      return (beta, alpha)
     def estim_FF3(portfolio_ret, data_unique_dates):
      model1=sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF',_

¬'SMB', 'HML']])).fit()
      alpha, beta 1, beta 2, beta 3 = model1.params
       # print(model1.summary())
      return (beta_1, beta_2, beta_3, alpha)
     def estim_FF5(portfolio_ret, data_unique_dates):
      model1=sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF',_

¬'SMB', 'HML', 'RMW', 'CMA']])).fit()
      alpha, beta_1, beta_2, beta_3, beta_4, beta_5 = model1.param
      print("FF5 ESTIMATES")
      print(model1.summary())
      return (beta_1, beta_2, beta_3, beta_4, beta_5, alpha)
     def estim_FF5mom(portfolio_ret, data_unique_dates):
      model1=sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF',_

¬'SMB', 'HML', 'RMW', 'CMA', 'Mom']])).fit()
       alpha, beta_1, beta_2, beta_3, beta_4, beta_5, beta_6 = model1 params
      print("FF5 + MOMENTUM ESTIMATES")
      print(model1.summary())
      return (beta_1, beta_2, beta_3, beta_4, beta_5, beta_6, alpha)
     def estim_industry(portfolio_ret, data_unique_dates):
```

```
model1 = sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['NoDur',_
  G'Durbl', 'Manuf', 'Enrgy', 'Chems', 'BusEq', 'Telcm', 'Utils', 'Shops',
  alpha, beta_1, beta_2, beta_3, beta_4, beta_5, beta_6, beta_7, beta_8,_
  ⇔beta_9, beta_10, beta_11, beta_12 = model1.params
   print("INDUSTRY LOADINGS ESTIMATES")
   print(model1.summary())
   return (beta_1, beta_2, beta_3, beta_4, beta_5, beta_6, beta_7, beta_8,__
  →beta_9, beta_10, beta_11, beta_12, alpha)
def estim_models(portfolio_ret, input_ret, data_unique_months, industry):
   rf = list(data unique months['RF'])
   ret = [input_ret[i] - (rf[i] / 100) for i in range(len(input_ret))]
   mean_ret = np.mean(ret) - 1
   volatility = np.std(ret)
   sharpe_ratio = mean_ret / volatility ==
   print("Mean returns = {:.3f}".format(mean_ret))
   print("Portfolio volatility = {:3f}".format(volatility))
   print("Strategy Sharpe Ratio = {:3f}".format(sharpe_ratio))
   portfolio_ret = [(item - 1) * 100 for item in portfolio_ret]
   beta, alpha = estim CAPM(portfolio ret, data unique months)
   CAPM_implied = list(data_unique_months['RF'] + beta *_

¬data_unique_months['Mkt-RF'])
   CAPM_implied_percent = [1 + CAPM_implied[i] / 100 for i in_
  →range(len(CAPM_implied))]
   CAPM_implied_cumulative = [1 * np.prod(CAPM_implied_percent[0:i+1]) for i in_
  →range(len(CAPM_implied_percent))]
   beta_1, beta_2, beta_3, alpha = estim_FF3(portfolio_ret, data_unique_months)
   FF3_implied = list(data_unique_months['RF'] + beta_1 *__
  data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *⊔

data_unique_months['HML'])

   FF3_implied_percent = [1 + FF3_implied[i] / 100 for i in_
  →range(len(FF3 implied))]
   FF3_implied_cumulative = [1 * np.prod(FF3_implied_percent[0:i+1]) for i in_
  →range(len(FF3_implied_percent))]
   beta_1, beta_2, beta_3, beta_4, beta_5, alpha = estim_FF5(portfolio_ret,_

data_unique_months)

   FF5_implied = list(data_unique_months['RF'] + beta_1 *__

data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *

...

→ data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *

...

→ data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *

...

→ data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *

...

→ data_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *

...

→ data_unique_months['Mkt-RF'] +
  \hookrightarrowdata_unique_months['HML'] + beta_4 * data_unique_months['RMW'] + beta_5 *__

¬data_unique_months['CMA'])
```

```
FF5_implied_percent = [1 + FF5_implied[i] / 100 \text{ for i } in_{\square}]
→range(len(FF5_implied))]
FF5_implied_cumulative = [1 * np.prod(FF5_implied_percent[0:i+1]) for i in_
→range(len(FF5 implied percent))]
beta_1, beta_2, beta_3, beta_4, beta_5, beta_6, alpha =_
→estim_FF5mom(portfolio_ret, data_unique_months)
FF5mom implied = list(data unique months['RF'] + beta 1 * 1
odata_unique_months['Mkt-RF'] + beta_2 * data_unique_months['SMB'] + beta_3 *□
-data_unique_months['HML'] + beta_4 * data_unique_months['RMW'] + beta_5 *□
→data_unique_months['CMA'] + beta_6 * data_unique_months['Mom'])
FF5mom_implied_percent = [1 + FF5mom_implied[i] / 100 for i in_
→range(len(FF5mom_implied))]
FF5mom_implied_cumulative = [1 * np.prod(FF5mom_implied_percent[0:i+1]) for i
→in range(len(FF5mom_implied_percent))]
if industry is True:
  beta 1, beta 2, beta 3, beta 4, beta 5, beta 6, beta 7, beta 8, beta 9,
beta_10, beta_11, beta_12, alpha = estim_industry(portfolio_ret,_

data_unique_months)
  Industry_implied = list(data_unique_months['RF'] + beta_1 *_
→data_unique_months['NoDur'] + beta_2 * data_unique_months['Durbl'] + beta_3_
* data_unique_months['Manuf'] + beta_4 * data_unique_months['Enrgy'] +__
⇒beta_5 * data_unique_months['Chems'] + beta_6 * data_unique_months['BusEq']_
data_unique_months['Utils'] + beta_9 * data_unique_months['Shops'] + beta_10_
* data_unique_months['Hlth'] + beta_11 * data_unique_months['Money'] +
⇒beta_12 * data_unique_months['Other'])
  Industry_implied_percent = [1 + Industry_implied[i] / 100 for i in_
→range(len(Industry_implied))]
  Industry_implied_cumulative = [1 * np.prod(Industry_implied_percent[0:i+1])_

¬for i in range(len(Industry_implied_percent))]
  return CAPM_implied_cumulative, FF3_implied_cumulative,
→FF5_implied_cumulative, FF5mom_implied_cumulative,
→Industry_implied_cumulative
return CAPM_implied_cumulative, FF3_implied_cumulative,
→FF5_implied_cumulative, 0, 0
```

4 Portfolio Simulation and Plotting Code

Below is the code we use to simulate this portfolio given our analyzed and signal-included dataset as well as estimate the model-implied returns for the various models described in the text cell above.

We create lists of returns and cumulative portfolio returns in the code below as well as a plotting function to plot the raw returns against model implied returns over the time frame.

```
[]: | # Calculated value weighted and equal weighted returns for each asset at each_
     ⇒time step then create list of monthly returns
     # Use list of monthly returns (from get_returns function) to create cumulative_
      ⇔portfolio values
     # Feed returns into estimation models to develop factor implied returns and
      ⇔portfolio values
     def sim_portfolio(input_data, equal, date_split = None, type_split = None,
      →industry = False):
       if date_split is not None:
         if type_split == 'Pre':
           data = input_data[(input_data['date'] < pd.to_datetime(date_split)) &_u
      ⇔(input_data['date'] > pd.to_datetime('1984-01-01'))]
         else:
           data = input_data[(input_data['date'] >= pd.to_datetime(date_split))]
       else:
         data = input_data[(input_data['date'] > pd.to_datetime('1984-01-01'))]
       data['RET'] = pd.to_numeric(data['RET'], errors='coerce')
       data['weighted_val_ret'] = data['val_weighting'] * data['RET']
       data['weighted_eq_ret'] = data['eq_weighting'] * data['RET']
       if equal:
         returns = get_returns(data, 'weighted_eq_ret')
         returns = get_returns(data, 'weighted_val_ret')
      portfolio_ret_mom = returns
      portfolio_val_mom = [1 * np.prod(portfolio_ret_mom[0:i+1]) for i in_
      →range(len(portfolio_ret_mom))]
       date_df = data.reset_index(drop = True).drop_duplicates(subset='date',__
      ⇔keep='first')
       date df = date df.sort values(by = 'date')
       # ff5mom, industry
       capm, ff3, ff5, ff5mom, industry = estim models(portfolio ret_mom, __
      →portfolio_ret_mom, date_df, industry)
       return data.reset_index(drop = True), portfolio_ret_mom, portfolio_val_mom,_u

¬capm, ff3, ff5, ff5mom, industry
```

```
[]: # Plot portfolio cumulative returns and model implied returns for each model
     def disp_portfolio(data, rets, vals, capm, ff3, ff5, ff5mom =None, industry = __
      →None):
      mean_ret = np.mean([i - 1 for i in rets])
       var_ret = np.std(rets)
       x_axis = sorted(set(data['date']))
       print(mean_ret)
      print(var_ret)
      print('Sharpe Ratio: {}'.format(mean_ret / var_ret))
      plt.figure(figsize = (20, 8))
      plt.plot(x_axis, vals, label = 'Returns')
      plt.plot(x_axis, ff3, label = 'FF3 Implied Returns')
      plt.plot(x_axis, capm, label = 'CAPM Implied Returns')
       if ff5 is not None:
         plt.plot(x_axis, ff5, label = 'FF5 Implied Returns')
       if ff5mom is not None:
         plt.plot(x_axis, ff5mom, label = 'FF5+Momentum Implied Returns')
       if industry is not None:
         plt.plot(x_axis, industry, label = 'Industry Implied Returns')
      plt.gca().xaxis.set_major_locator(AutoDateLocator())
       plt.legend(loc = 'best')
      plt.show()
```

5 2A & 2B

Dep. Variable:

The output from the cell below displays the mean returns, volatility, and Sharpe ratio as well as the factor models OLS estimates for value and equal weighted portfolios respectively. From the factor model estimates calculated in the cells below, we can clearly see that the strategy has a significant positive alpha.

R-squared:

0.825

Model:	OLS	Adj. R-squared:	0.825
Method:	Least Squares	F-statistic:	2073.
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	2.17e-168
Time:	04:51:52	Log-Likelihood:	-966.47
No. Observations:	441	AIC:	1937.
Df Residuals:	439	BIC:	1945.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF	0.3590 1.0494	0.105 0.023	3.427 45.531	0.001 0.000	0.153 1.004	0.565 1.095
Omnibus: Prob(Omnibus Skew: Kurtosis:	====== s):	0	.000 Jaro	oin-Watson: que-Bera (JB o(JB): 1. No.):	2.105 64.023 1.25e-14 4.61
=========		========	========		=========	

Notes:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

OLS Regression Results

Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Sa ions: :	Least Squar t, 27 Apr 20 04:51:)24 : 52 141 135 5	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.861 0.859 538.0 1.08e-183 -916.31 1845. 1869.
	coef	std err		t	P> t	[0.025	0.975]
const	0.4999	0.098		.095	0.000	0.307	0.693
Mkt-RF	1.0092	0.024	42.	.795	0.000	0.963	1.056
SMB	-0.2167	0.035	-6.	. 134	0.000	-0.286	-0.147
HML	-0.1008	0.043	-2.	.348	0.019	-0.185	-0.016
RMW	-0.0907	0.046	-1.	.967	0.050	-0.181	-5.02e-05
CMA	-0.2927	0.066	-4.	. 434	0.000	-0.422	-0.163
Omnibus: Prob(Omnibus):	11.9	971 903		in-Watson: ie-Bera (JB):		2.130 21.231

0.120 Prob(JB):

2.45e-05

 Kurtosis:
 4.048 Cond. No.
 5.31

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results							
=========			=====	=====	=========	=======	=======
Dep. Variabl	le:		у	R-sq	uared:		0.862
Model:			OLS	Adj.	R-squared:		0.860
Method:		Least Squa	res	F-st	atistic:		451.0
Date:	S	at, 27 Apr 2	024	Prob	(F-statistic)	:	5.72e-183
Time:		04:51	:52	Log-	Likelihood:		-914.76
No. Observat	tions:		441	AIC:			1844.
Df Residuals	3:		434	BIC:			1872.
Df Model:			6				
Covariance 7	Гуре:	nonrob	ust				
=========			=====				
	coef	std err		t	P> t	[0.025	0.975]
const	0.5219	0.099	 5	.289	0.000	0.328	0.716
Mkt-RF	1.0015	0.024	41	.842	0.000	0.954	1.049
SMB	-0.2152	0.035	-6	3.105	0.000	-0.284	-0.146
HML	-0.1231	0.045	-2	2.756	0.006	-0.211	-0.035
RMW	-0.0823	0.046	-1	.778	0.076	-0.173	0.009
CMA	-0.2788	0.066	-4	.202	0.000	-0.409	-0.148
Mom	-0.0386	0.022	-1	.753	0.080	-0.082	0.005
			=====	-	======================================		
Omnibus:			777		in-Watson:		2.116
Prob(Omnibus	3):		002	_	ue-Bera (JB):		22.430
Skew:			149	Prob			1.35e-05
Kurtosis:		4.	064	Cond	. No.		5.62

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

###########

EQUAL WEIGHTED PORTFOLIO RESULTS:

Mean returns = 0.009

Portfolio volatility = 0.053696

Strategy Sharpe Ratio = 0.174329

CAPM ESTIMATES

OLS Regression Results

Dep. Variable: y R-squared: 0.899

Model:	OLS	Adj. R-squared:	0.899
Method:	Least Squares	F-statistic:	3915.
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	7.79e-221
Time:	04:51:52	Log-Likelihood:	-860.29
No. Observations:	441	AIC:	1725.
Df Residuals:	439	BIC:	1733.
Df Model:	1		

Covariance Type: nonrobust

========	========					
	coef	std err	t	P> t	[0.025	0.975]
const	0.3642	0.082	 4.422	0.000	0.202	0.526
Mkt-RF	1.1335	0.002	62.569	0.000	1.098	1.169
MKC-KF	1.1335	0.016	02.509	0.000	1.090	1.109
	=======			========= 		
Omnibus:		36	5.269 Dur	bin-Watson:		1.803
Prob(Omnibus):	(0.000 Jar	que-Bera (JE	3):	148.286
Skew:		(0.169 Pro	b(JB):		6.31e-33
Kurtosis:		Ę	5.821 Con	d. No.		4.61
=========	=======	========		========		========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.915
Model:	OLS	Adj. R-squared:	0.914
Method:	Least Squares	F-statistic:	935.9
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	3.44e-230
Time:	04:51:52	Log-Likelihood:	-822.76
No. Observations:	441	AIC:	1658.
Df Residuals:	435	BIC:	1682.
Df Model:	5		
Covariance Type:	nonrobust		
=======================================	coef std err	t P> t	[0.025 0.975]

	coef	std err	t	P> t	[0.025	0.975]
const	0.3520	0.079	4.436	0.000	0.196	0.508
Mkt-RF SMB	1.1093 0.2187	0.019 0.029	58.154 7.657	0.000 0.000	1.072 0.163	1.147 0.275
HML RMW	0.1404 0.0845	0.035 0.037	4.043 2.266	0.000 0.024	0.072 0.011	0.209 0.158
CMA	-0.1296	0.053	-2.427	0.024	-0.235	-0.025

 Omnibus:
 23.275
 Durbin-Watson:
 1.939

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 52.987

 Skew:
 0.244
 Prob(JB):
 3.12e-12

	=======	======		
Kurtosis:	4.626	Cond.	No.	5.31

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results

OLS Regression Results								
========			=====	=====				
Dep. Variabl	e:		У	_	uared:		0.927	
Model:			OLS	Adj.	R-squared:		0.926	
Method:		Least Squ	ares	F-st	atistic:		915.2	
Date:	S	Sat, 27 Apr	2024	Prob	(F-statistic)	:	9.43e-243	
Time:		04:5	1:52	Log-	Likelihood:		-789.82	
No. Observat	ions:		441	AIC:			1594.	
Df Residuals	s:		434	BIC:			1622.	
Df Model:			6					
Covariance T	Type:	nonro	bust					
=========	:=======							
	coef	std err		t	P> t	[0.025	0.975]	
const	0.4311				0.000			
Mkt-RF	1.0815	0.018						
SMB	0.2241	0.027			0.000			
HML	0.0601	0.034	1	.786	0.075	-0.006	0.126	
RMW	0.1148	0.035	3	3.295	0.001	0.046	0.183	
CMA	-0.0795	0.050	-1	.591	0.112	-0.178	0.019	
Mom	-0.1386	0.017	-8	3.363	0.000	-0.171	-0.106	
0			071	D1			1 000	
Omnibus:	`		.071		in-Watson:		1.880	
Prob(Omnibus	3):		.007	_	ue-Bera (JB):		17.535	
Skew:			.058				0.000156	
Kurtosis:		3	.970	Cond	. No.		5.62	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

6 2C

The output in the 2 cells below displays: * The plot of cumulative returns for the value weighted portfolio as well as the model implied cumulative returns for the various factor models * The plot of cumulative returns for the equal weighted portfolio as well as the model implied cumulative returns for the various factor models

We can clearly see for both portfolios relative to the CAPM implied returns and the general market returns (around 50-60x calculated in a test not displayed) that the portfolio does tend to outperform

the benchmark of the market over the time period of the test (1984-2020)

[]: disp_portfolio(data_val_w, rets_w, vals_w, capm_w, ff3_w, ff5_w)

- 0.011430050589911093
- 0.05179853869304044

Sharpe Ratio: 0.22066357233832185

[]: disp_portfolio(data_val_e, rets_e, vals_e, capm_e, ff3_e, ff5_e)

- 0.012109906831284522
- 0.05360090604120217

Sharpe Ratio: 0.2259272785795044

7 2D

Method:

Date:

The 2 cells below estimate the factor models and plot cumulative returns for the dataset pre- and post- 2010 which is around when the Edmans paper was published. We notice that in the pre-timeframe the strategy has significant positive alpha according to the factor models, however after 2010 the alpha falls significantly to ~.1 as implied by the FF5 model. This suggests along with the cumulative return plots of strategy returns vs. CAPM benchmark returns that the strategy does not work in the post- period. From the data in part A-C we also notice the equal weighted portfolio outperforming the value weighted (higher alpha and sharpe ratio seen above) which follows along with table 4 in Edmans (2011) in which the equal weighted portfolios perform better in testing. Furthermore we see that the averages of the 2 alphas from pre- and post- is around the alpha from Edmans' results

[]: data_val, rets, vals, capm, ff3, ff5, ff5mom, industry =__

```
⇒sim_portfolio(crsp_data, False, '2010-01-01', 'Pre')
disp portfolio(data val, rets, vals, capm, ff3, ff5)
<ipython-input-182-f86afb83a410>:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 data['RET'] = pd.to numeric(data['RET'], errors='coerce')
<ipython-input-182-f86afb83a410>:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  data['weighted_val_ret'] = data['val_weighting'] * data['RET']
<ipython-input-182-f86afb83a410>:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  data['weighted_eq_ret'] = data['eq_weighting'] * data['RET']
Mean returns = 0.007
Portfolio volatility = 0.053708
Strategy Sharpe Ratio = 0.125593
CAPM ESTIMATES
                            OLS Regression Results
                                        R-squared:
Dep. Variable:
                                                                          0.830
Model:
                                  OLS
                                        Adj. R-squared:
                                                                          0.829
```

F-statistic:

Prob (F-statistic):

1498.

4.09e-120

Least Squares

Sat, 27 Apr 2024

Time:	04:52:09	Log-Likelihood:	-684.50
No. Observations:	309	AIC:	1373.
Df Residuals:	307	BIC:	1380.

Df Model: 1 Covariance Type: nonrobust

========		========	========		========	========
	coef	std err	t	P> t	[0.025	0.975]
const	0.4461	0.128	3.499	0.001	0.195	0.697
Mkt-RF	1.0720	0.028	38.701	0.000	1.017	1.126
========						=======
Omnibus:		19	.985 Durl	oin-Watson:		2.091
Prob(Omnibu	s):	0	.000 Jar	que-Bera (JB	s):	62.900
Skew:		0	.064 Prol	o(JB):		2.19e-14
Kurtosis:		5	.207 Cond	d. No.		4.64
========		=======	========		========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.868
Model:	OLS	Adj. R-squared:	0.866
Method:	Least Squares	F-statistic:	398.7
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	6.35e-131
Time:	04:52:09	Log-Likelihood:	-645.26
No. Observations:	309	AIC:	1303.
Df Residuals:	303	BIC:	1325.
Df Model:	5		

Df Model:

Covariance T	Type:	nonrobi	ust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.6773	0.120	5.661	0.000	0.442	0.913
Mkt-RF	0.9905	0.029	33.957	0.000	0.933	1.048
SMB	-0.2094	0.041	-5.160	0.000	-0.289	-0.130
HML	-0.1814	0.053	-3.421	0.001	-0.286	-0.077
RMW	-0.0864	0.052	-1.656	0.099	-0.189	0.016
CMA	-0.2410	0.078	-3.105	0.002	-0.394	-0.088
Omnibus:		12.	======== 511 Durbi:	======= n-Watson:		2.085
Prob(Omnibus	s):	0.0	002 Jarque	e-Bera (JB):		17.298
Skew:		0.3	315 Prob(.	JB):		0.000175
Kurtosis:		3.9	974 Cond.	No.		5.64

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results

=======================================	=========	=======	=========		=======
Dep. Variable:		y R-s	quared:		0.870
Model:		OLS Adj	. R-squared:		0.867
Method:	Least Squa	res F-s	tatistic:		336.3
Date:	Sat, 27 Apr 2	024 Pro	b (F-statistic	:):	1.76e-130
Time:	04:52	:09 Log	-Likelihood:		-643.19
No. Observations:		309 AIC	: :		1300.
Df Residuals:		302 BIC	: :		1327.
Df Model:		6			
Covariance Type:	nonrob	ust			
=======================================	========	=======	=========	=======	=======
COE	ef std err	t	P> t	[0.025	0.975]
const 0.710		5.914			
Mkt-RF 0.980		33.331		0.923	
SMB -0.205	0.040	-5.096	0.000	-0.285	-0.126
HML -0.211	.4 0.055	-3.857	0.000	-0.319	-0.104
RMW -0.073	0.052	-1.408	0.160	-0.177	0.029
CMA -0.220	0.078	-2.836	0.005	-0.374	-0.068
Mom -0.048	0.024	-2.021	0.044	-0.097	-0.001
=======================================		======			=======
Omnibus:	13.	258 Dur	bin-Watson:		2.070
Prob(Omnibus):	0.	001 Jar	que-Bera (JB):		17.434
Skew:	0.	352 Pro	b(JB):		0.000164
Kurtosis:	3.	927 Con	d. No.		5.94

Notes:

Sharpe Ratio: 0.1950819212321679

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^{0.010487723790098252}

^{0.05376061361225146}

<ipython-input-182-f86afb83a410>:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['RET'] = pd.to_numeric(data['RET'], errors='coerce') <ipython-input-182-f86afb83a410>:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['weighted_val_ret'] = data['val_weighting'] * data['RET'] <ipython-input-182-f86afb83a410>:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['weighted_eq_ret'] = data['eq_weighting'] * data['RET']

Mean returns = 0.013 Portfolio volatility = 0.046821 Strategy Sharpe Ratio = 0.282176 CAPM ESTIMATES

OLS Regression Results

Don Variable.				D 0011	- mad.		0.817
Dep. Variable:		У			ared:		
Model:		0	OLS	Adj. 1	R-squared:		0.816
Method:		Least Squar	es	F-sta	tistic:		581.7
Date:	S	Sat, 27 Apr 20	24	Prob	(F-statistic)	:	7.84e-50
Time:		04:52:	10	Log-L	ikelihood:		-278.84
No. Observations	:	1	32	AIC:			561.7
Df Residuals:		1	30	BIC:			567.4
Df Model:			1				
Covariance Type:		nonrobu	st				
=======================================	coef	std err	====	-===== t	======== P> t	 Γ0.025	0.975]
const 0.	1881	0.182	1	1.033	0.303	-0.172	0.548

	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF	0.1881 0.9961	0.182 0.041	1.033 24.118	0.303 0.000	-0.172 0.914	0.548 1.078
Omnibus: Prob(Omnibu Skew: Kurtosis:	.s):	0	.780 Jaro	pin-Watson: que-Bera (JB p(JB): 1. No.):	2.140 0.183 0.912 4.59
========	=======		=======			========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

Prob(Omnibus):

OLS Regression Results

========	=======	========	=======	========		=======
Dep. Variab	le:		y R-sq	uared:		0.864
Model:		(OLS Adj.	R-squared:		0.858
Method:		Least Squar	res F-st	atistic:		159.7
Date:	S	at, 27 Apr 20	024 Prob	(F-statistic	c):	9.37e-53
Time:		04:52	:10 Log-	Likelihood:		-259.53
No. Observa	tions:	-	132 AIC:			531.1
Df Residual	s:	-	126 BIC:			548.3
Df Model:			5			
Covariance	Type:	nonrobi	ıst			
========	========					=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.1312	0.166	0.792	0.430	-0.197	0.459
Mkt-RF	1.0711	0.041	25.988	0.000	0.990	1.153
SMB	-0.3725	0.076	-4.916	0.000	-0.522	-0.223
HML	0.0945	0.075	1.266	0.208	-0.053	0.242
RMW	-0.0793	0.108	-0.733	0.465	-0.293	0.135
CMA	-0.4784	0.126	-3.798	0.000	-0.728	-0.229
========		========				
Omnibus:		9.9	999 Durb	in-Watson:		2.216

Jarque-Bera (JB):

11.441

0.007

Skew:	-0.502	Prob(JB):	0.00328
Kurtosis:	4.036	Cond. No.	5.13
	========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results

===========	============		=========
Dep. Variable:	у	R-squared:	0.864
Model:	OLS	Adj. R-squared:	0.857
Method:	Least Squares	F-statistic:	132.2
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	1.15e-51
Time:	04:52:10	Log-Likelihood:	-259.44
No. Observations:	132	AIC:	532.9
Df Residuals:	125	BIC:	553.1

Df Model: 6
Covariance Type: nonrobust

========	=========				========	=======
	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF SMB HML RMW CMA	0.1355 1.0683 -0.3756 0.0835 -0.0805 -0.4749 -0.0209	0.167 0.042 0.076 0.080 0.109 0.127 0.052	0.813 25.454 -4.914 1.046 -0.741 -3.749 -0.397	0.418 0.000 0.000 0.297 0.460 0.000	-0.194 0.985 -0.527 -0.074 -0.295 -0.726 -0.125	0.465 1.151 -0.224 0.241 0.134 -0.224 0.083
	0.0209					0.005
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	0.0	007 Jarque	•		2.211 11.004 0.00408 5.44

Notes

Sharpe Ratio: 0.2912955745403222

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^{0.013635951962200245}

^{0.046811394178296065}

8 2E

The two cells below estimate the factor models and industry loadings as well as plot the strategy and models' cumulative returns for pre- and post- 1999 respectively. We can clearly see from the differences in the 12 industry loadings that the list of companies to work for has changed over time as the industry weightage of the portfolio varies from pre- and post-. In general, we see that BusEq was a strong weight that increased even further while industries such as Telecom's diminished over time, other industries also experience some level of weight shifting suggesting that the composition of top companies to work for changes over time.

```
[]: data_val, rets, vals, capm, ff3, ff5, ff5mom, industry =__
      sim portfolio(crsp data, False, '1999-01-01', 'Pre', True)
     disp_portfolio(data_val, rets, vals, capm, ff3, ff5, ff5mom, industry)
    <ipython-input-182-f86afb83a410>:13: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row indexer,col indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      data['RET'] = pd.to_numeric(data['RET'], errors='coerce')
    <ipython-input-182-f86afb83a410>:14: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      data['weighted_val_ret'] = data['val_weighting'] * data['RET']
    <ipython-input-182-f86afb83a410>:15: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['weighted_eq_ret'] = data['eq_weighting'] * data['RET']

Mean returns = 0.011 Portfolio volatility = 0.047034 Strategy Sharpe Ratio = 0.237779 CAPM ESTIMATES

OLS Regression Results

OLD Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model:		Least Squ at, 27 Apr 04:5		Adj. F-st: Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.856 0.855 1042. 1.34e-75 -353.42 710.8 717.2
Covariance Typ	e:	nonro	_				
==========				=====			
	coef	std err		t	P> t	[0.025	0.975]
	0.6273 0.9909		4 32		0.000		0.900 1.051
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	0	.267 .195 .078 .677	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.	====	2.053 3.563 0.168 4.61

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

OLS Regression Results

=======================================			=======================================
Dep. Variable:	у	R-squared:	0.890
Model:	OLS	Adj. R-squared:	0.887
Method:	Least Squares	F-statistic:	277.9
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	4.09e-80
Time:	04:52:15	Log-Likelihood:	-329.35
No. Observations:	177	AIC:	670.7
Df Residuals:	171	BIC:	689.8
Df Model:	5		
Covariance Type:	nonrobust		

22

	coef	std err	t	P> t	[0.025	0.975]
const	0.5894	0.138	4.270	0.000	0.317	0.862
Mkt-RF	0.9469	0.033	28.710	0.000	0.882	1.012
SMB	-0.2916	0.054	-5.430	0.000	-0.398	-0.186
HML	-0.2164	0.077	-2.820	0.005	-0.368	-0.065
RMW	0.1089	0.099	1.102	0.272	-0.086	0.304
CMA	-0.0701	0.108	-0.646	0.519	-0.284	0.144
Omnibus:	=======	 1	.116 Durbi	in-Watson:	=======	2.046
Prob(Omnib	us):	0	.572 Jarqı	ie-Bera (JB)	:	0.798
Skew:		0	.142 Prob	(JB):		0.671
Kurtosis:		3	.164 Cond	. No.		6.07

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model:	tions: s:		Sat, 27	Apr 04:5	2:15 177 170 6	Adj. F-st Prob		tic):		0.894 0.890 238.1 5.61e-80 -326.69 667.4 689.6
Covariance '	Type:		r	nonro	bust					
=======	=====	coef	std	err	=====	===== t	P> t	=====	[0.025	0.975]
const	0.	 6528	0.	. 139	4	.690	0.000		0.378	0.928
Mkt-RF	0.	9563	0.	.033	29	.115	0.000)	0.891	1.021
SMB	-0.	3150	0.	054	-5	.829	0.000)	-0.422	-0.208
HML	-0.	2349	0.	076	-3	.081	0.002	!	-0.385	-0.084
RMW	0.	1234	0.	.098	1	.261	0.209)	-0.070	0.317
CMA	-0.	0420	0.	108	-0	.389	0.697		-0.255	0.171
Mom	-0.	0985	0.	.043	-2	.278	0.024	:	-0.184	-0.013
Omnibus:				 2	.074	 Durb	oin-Watson:			2.058
Prob(Omnibu	s):			0	.355	Jaro	que-Bera (J	B):		1.656
Skew:				0	.195	Prob	(JB):			0.437
Kurtosis:				3	.268	Cond	l. No.			6.15
========	=====	====			=====			=====	======	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

INDUSTRY LOADINGS ESTIMATES

OLS Regression Results

0.929 0.924 179.5 2e-87 90.61
179.5 2e-87
2e-87
90.61
307.2
348.5
====
.975]
0.225
0.283
0.084
0.280
0.189
0.264
0.503
0.146
0.050
0.097
0.224
0.145
0.200
==== 2.172
3.690
.0130
17.8

Notes:

Sharpe Ratio: 0.338840819741769

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^{0.015920993548317903}

^{0.04698664570712381}

<ipython-input-182-f86afb83a410>:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['RET'] = pd.to_numeric(data['RET'], errors='coerce') <ipython-input-182-f86afb83a410>:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['weighted_val_ret'] = data['val_weighting'] * data['RET'] <ipython-input-182-f86afb83a410>:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data['weighted_eq_ret'] = data['eq_weighting'] * data['RET']

Mean returns = 0.007 Portfolio volatility = 0.054743 Strategy Sharpe Ratio = 0.127922 CAPM ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.813
Model:	OLS	Adj. R-squared:	0.812
Method:	Least Squares	F-statistic:	1135.
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	3.13e-97
Time:	04:52:17	Log-Likelihood:	-601.66
No. Observations:	264	AIC:	1207.
Df Residuals:	262	BIC:	1214.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF	0.1971 1.0834	0.147 0.032	1.338 33.697	0.182 0.000	-0.093 1.020	0.487 1.147
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	0.		•	:	2.116 36.114 1.44e-08 4.62

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.858
Model:	OLS	Adj. R-squared:	0.855
Method:	Least Squares	F-statistic:	312.1
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	3.57e-107
Time:	04:52:17	Log-Likelihood:	-564.89
No. Observations:	264	AIC:	1142.
Df Residuals:	258	BIC:	1163.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.3418	0.135	2.529	0.012	0.076	0.608
Mkt-RF	1.0539	0.034	31.439	0.000	0.988	1.120
SMB	-0.1480	0.047	-3.131	0.002	-0.241	-0.055
HML	-0.1161	0.055	-2.109	0.036	-0.225	-0.008
RMW	-0.0431	0.060	-0.716	0.475	-0.162	0.076
CMA	-0.3703	0.082	-4.520	0.000	-0.532	-0.209
=======	========	========		=======	========	======
Omnibus:		5.9	945 Durbin	n-Watson:		2.146
Drob (Omnib		0 (7E1 Tamassa	Dome (ID).		7 000

Prob(Omnibus): 0.051 Jarque-Bera (JB): 7.880

Kurtosis:	3.798	Cond. No.	5.51
Skew:	0.140	Prob(JB):	0.0195

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 + MOMENTUM ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.859
Model:	OLS	Adj. R-squared:	0.855
Method:	Least Squares	F-statistic:	260.2
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	4.11e-106
Time:	04:52:17	Log-Likelihood:	-564.39
No. Observations:	264	AIC:	1143.
Df Residuals:	257	BIC:	1168.

Df Model: 6
Covariance Type: nonrobust

========		========		:=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.3489	0.135	2.577	0.011	0.082	0.615
Mkt-RF	1.0441	0.035	29.845	0.000	0.975	1.113
SMB	-0.1412	0.048	-2.955	0.003	-0.235	-0.047
HML	-0.1332	0.058	-2.307	0.022	-0.247	-0.019
RMW	-0.0362	0.061	-0.597	0.551	-0.156	0.083
CMA	-0.3626	0.082	-4.405	0.000	-0.525	-0.201
Mom	-0.0267	0.027	-0.982	0.327	-0.080	0.027
========						=======
Omnibus:		6.0	026 Durbin	n-Watson:		2.134
Prob(Omnibu	ıs):	0.0	049 Jarque	e-Bera (JB):		7.754
Skew:		0.1	161 Prob(J	IB):		0.0207
Kurtosis:		3.7	776 Cond.	No.		6.45

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

INDUSTRY LOADINGS ESTIMATES

OLS Regression Results

Dep. Variable:	у	R-squared:	0.896
Model:	OLS	Adj. R-squared:	0.891
Method:	Least Squares	F-statistic:	180.0
Date:	Sat, 27 Apr 2024	Prob (F-statistic):	8.25e-116
Time:	04:52:17	Log-Likelihood:	-524.00
No. Observations:	264	AIC:	1074.

Df Residuals: 251 BIC: 1120.

Df Model: 12 Covariance Type: nonrobust

=======	coef	std err	t	P> t	[0.025	0.975]
const	0.0231	0.117	0.198	0.843	-0.207	0.253
NoDur	0.0721	0.058	1.243	0.215	-0.042	0.186
Durbl	0.0175	0.024	0.725	0.469	-0.030	0.065
Manuf	0.0274	0.059	0.464	0.643	-0.089	0.144
Enrgy	0.0193	0.024	0.817	0.415	-0.027	0.066
Chems	0.0980	0.055	1.768	0.078	-0.011	0.207
BusEq	0.5820	0.029	20.376	0.000	0.526	0.638
Telcm	0.0129	0.036	0.361	0.719	-0.057	0.083
Utils	-0.0870	0.035	-2.475	0.014	-0.156	-0.018
Shops	0.0355	0.047	0.760	0.448	-0.057	0.128
Hlth	0.0678	0.038	1.789	0.075	-0.007	0.143
Money	0.1318	0.039	3.407	0.001	0.056	0.208
Other	-0.0788	0.070	-1.122	0.263	-0.217	0.060
Omnibus:		 5.	 013 Durbi:	======= n-Watson:	=======	2.184
Prob(Omnik	bus):	0.	082 Jarque	e-Bera (JB):		6.955
Skew:		0.	011 Prob(.			0.0309
Kurtosis:		3.	795 Cond.	No.		17.0
========			========		========	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- 0.008419077470070164
- 0.05458202003848453

Sharpe Ratio: 0.15424635189635827

9 Question 3

9.1 Part A

The reason the beta of this strategy is close to 1 is because this list of companies is related to the employee satisfaction and not correlated with the beta values of each company. Therefore, it is logical the average beta of all the companies is 1 and the portfolio is a long-only portfolio (market returns are not negated by any short positions). Since the companies are "randomly" selected from all companies in the market, which has a beta of 1.

Institutional investors care more about stable, consistant, uncorrelated returns. This is different from retail investors, which often care more about absolute returns. This long-short strategy will create a pure-alpha strategy with returns uncorrelated with the market, which is attractive for institutions. However, the absolute returns from the long-short may be smaller, which is why it is less attractive for retail investors.

9.2 Part B

Our results indicate the market does not fully price in employee satisfaction because there is alpha in going long the companies with the highest satisfaction. This means that there is an opportunity to make better risk-adjusted returns by investing in companies with higher employee satisfaction than investing in the market, which means the market has not fully priced in employee satisfaction.

9.3 Part C

As the knowledge that there was alpha in investing in companies with higher employee satisfaction spreads, investors will deploy capital in the strategy. This drives up the price of these stocks and means that the price of companies with higher employee satisfaction are fairly priced. This means that over time the market has priced in the benefit to companies from having higher employee satisfaction, meaning that the alpha has decreased.

9.4 Part D

There are several different angles that we can take for seeing how cookies data can be relevant for company stock prices.

One method for using cookie data is to see how much time employees are spending on non-productive sites during the work day. For instance, if someone works in finance and they are spending significant time on social media, watching sports, or reading about cooking during the work day, they are probably unsatisfied with their job. Furthermore, if employees are doing things unrelated to their job during the work day, they are not as productive in their role. We can use this reasoning to believe that companies whose employees spend less time on unrelated websites are more satisfied, and companies whose employees spend more time on unrelated websites are less satisfied.

Another method for using cookie data could be more related to evaluating employees at software companies. One thing about software engineering is that there is constant innovation, and people are constantly developing new frameworks for different tasks, and improved ways of doing things. In this context, software companies with employees that spend more time on sites that talk about

F

innovative computer science ideas (such as Medium) may outperform those companies with less inquisitive engineers. Companies with more curious engineers may promote a better engineering culture and may be more likely to innovate due to their engineers spending more time thinking about advancements in technology.