

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE113|Basic Electronics

Dr. S. S. Jamuar

Lab_1:

Student Name: Shivam Agrawal

Roll No.: 2020124 Date: 19/06/21

Part 1)

Aim: Verify Thevenin's and Norton's equivalent representations using TinkerCAD.

Material Required: Voltage Source, Multimeter, Resistors, wires, etc.

Circuit Diagram:

Tinkercad Link:

- 1) For Branch AG: https://www.tinkercad.com/things/63bTSfYzXBi-lab1ag/editel?sharecode=iAspqsiQDNffHoEFkGpqAENPqxN-OzhXT6ga9pXuGnw
- 2) For Branch AB: https://www.tinkercad.com/things/0ZObZUJuy6G-lab1ab/editel?sharecode=RgUoMMWIQq8RMTsXn2fGVX_dbnxqJv1HvnKBjal8DHc

Software/Tools Used: TinkerCAD website (https://www.tinkercad.com/)

Theoretical Calculations:

		e No.
	Reggy = R3.Ry	
	R3 + R4	
	= 220 +220 = 220	
	210+216 2	
7	= 110 0	1,439
	RTH = Regiz + Regay	
	= 68.75 + 110	
+	RTH = 178.75 SZ	
+	THE TRUE & LEVEL &	
1		
+	In (Norton's Current),	
	IN = VTH - 1.375 - 0.00769 = 7.69 RTH 178.75	mAI
	RTH 178-75	
Ca	elculating In Chodd Current) using Norton's Conc	. 24.
		-
	172	
	PINE 3 R.	
	IN 10 THE SEL	
	I - (#1) x (=)	
	IL= (IN) x (TR) (Tr + Tru)	
	= 7.69 × 100 100	
	- 1.67 × 10 100	
	2 1 (~	
	- 7.69 × 10-3 × 100 178-75 +100 100× 178-75	-10.1
	100 × 178.75	
	= 7.69 × 10 ⁻³ × 178-75	
	278 - 75	And the second
	IL = 4.93 × 10-3 = [4.93 mA]	
	11	

TinkerCAD Screenshots:

FOR AG BRANCH:

A) Original Circuit

B) Thevenin's Circuit

C) Norton's Circuit

FOR AB BRANCH:

A) Original Circuit

B) Thevenin's Circuit

C) Norton's Circuit

Observation Table:

FOR BRANCH AG:

S.No	RL	I∟ (from Original Circuit)	I∟ (from Thevenin's Circuit)	I∟ (from Norton's Circuit)	V _{AG} (from original Circuit)	V _{AG} (from Thevenin's Circuit)	V _{AG} (from Norton's Circuit)
1	220 Ω	4.71 mA	4.71 mA	4.71 mA	1.35 V	1.35 V	1.35 V
2	100 Ω	8.08 mA	8.07 mA	8.08 mA	1.35 V	1.35 V	1.35 V
3	150 Ω	6.22 mA	6.22 mA	6.22 mA	1.35 V	1.35 V	1.35 V
4	110 Ω	7.62 mA	7.62 mA	7.62 mA	1.35 V	1.35 V	1.35 V
5	120 Ω	7.22 mA	7.21 mA	7.22 mA	1.35 V	1.35 V	1.35 V

FOR BRANCH AB:

S.No	R _{AB}	I _{AB} (from Original Circuit)	I _{AB} (from Thevenin's Circuit)	I _{AB} (from Norton's Circuit)	V _{AB} (from original Circuit)	V _{AB} (from Thevenin's Circuit)	V _{AB} (from Norton's Circuit)
1	100 Ω	4.93 mA	4.93 mA	4.93 mA	1.37 V	1.37 V	1.37 V
2	220 Ω	3.45 mA	3.45 mA	3.45 mA	1.37 V	1.37 V	1.37 V
3	150 Ω	4.18 mA	4.18 mA	4.18 mA	1.37 V	1.37 V	1.37 V
4	110 Ω	4.76 mA	4.76 mA	4.76 mA	1.37 V	1.37 V	1.37 V
5	120 Ω	4.60 mA	4.60 mA	4.60 mA	1.37 V	1.37 V	1.37 V

<u>Observations/Results:</u> In both branches AG and AB, the value of I_L (Load Current) & Voltage are equal for all the circuits, i.e. Original Circuit, Thevenin's Circuit and Norton's Circuit respectively. Due to this observation we can say that these theorems are applicable and are effectively justified by the tables made.

Applications:

For Thevenin's Theorem:

- 1) It is very useful for analyzing power systems and other circuits where on particular load resistor and recalculation of the circuit is essential with each trial value of load resistance, to find the voltage across it and current through it.
- 2) Source modelling and resistance measurement by using the Wheatstone bridge provide applications for thevenin's theorem.

For Norton's Theorem:

- 1) It is used to reduce a complex circuit into a simple circuit.
- 2) Norton's theorem is useful to solve problems on parallel generators with unequal emf's and unequal impedances.

Part 2)

<u>Aim:</u> Verify Thevenin's and Norton's equivalent representations using Virtual Labs.

Material Required: Voltage Source, Multimeter, Resistors, wires, etc.

Virtual Lab Screenshots:

1) Verification of Thevenin's Theorem

2) Verification of Norton's Theorem

Observation Table:

1) For Thevenin's Theorem

<u>bservation</u>	n Table:		~ °	Y. R				(5)
Serial no. of Observation	Load Current(I _L) from case 1	Load Voltage(V _L)	Load Resistance (R _L)=V _L /I _L	Thevenin Voltage(V _{th}) from case 2(a)	2nd Voltage source(v) for case 2(b)	Ammeter Reading(I) from case 2(b)	Thevenin Resistance R _{th} =V/I	Load current (I _L)=V _{th} /(R _{th} +R _L)
1st	0.26316	57.8952	220	100.00	200	1.2500	160.00	0.26316
2nd	0.38462	38.462	100	100.00	200	1.2500	160.00	0.38462
3rd	0.32258	48.38699999	150	100.00	200	1.2500	160.00	0.32258
4th	0.37037	40.7407	110	100.00	200	1.2500	160.00	0.37037
5th	0.35714	42.8568	120	100.00	200	1.2500	160.00	0.35714

2) For Norton's Theorem

<u>C</u>	Observation Ta	ble:	Ve.	HN			No.	HN		
FX	Serial no. of Observation	Load Current(I _L) from case 1	Load Voltage(V _L)	Load Resistance (R _L)=V _L /I _L	Norton current(I _{Sc}) from case 2(a)	2nd Voltage source(v) from case 2(b)	Ammeter Reading(I) from case 2(b)	Norton Resistance R _n =V/I	Load current $(I_L)=I_{sc}*R_n/(R_n+R_L)$	(O)
- 15	1st	0.28947	63.683	220	0.68750	200	1.2500	160.00	0.28947	
12	2nd	0.42308	42.308	100	0.68750	200	1.2500	160.00	0.42308	,
	3rd	0.35484	53.226	150	0.68750	200	1.2500	160.00	0.35484	30
1.	4th	0.40741	44.815	110	0.68750	200	1.2500	160.00	0.40741	1
U)	5th	0.39286	47.143	120	0.68750	200	1.2500	160.00	0.39286	0
Ņ	No. of	A COUNTY		HŅ	N Carlo	A C TO		HŃ	N .	6.3

Observations/Results:

We can see that after implying the Thevenin's Theorem the Load Current is same in both Original Circuit and Thevenin Circuit, then we can say that Thevenin's theorem is applicable and justifiable from the above mentioned readings.

We can see that after implying the Norton's Theorem the Load Current is same in both Original Circuit and Norton Circuit, then we can say that Norton's theorem is applicable and justifiable from the above mentioned readings.

Applications:

For Thevenin's Theorem:

- 1) It is very useful for analyzing power systems and other circuits where on particular load resistor and recalculation of the circuit is essential with each trial value of load resistance, to find the voltage across it and current through it.
- 2) Source modelling and resistance measurement by using the Wheatstone bridge provide applications for thevenin's theorem.

For Norton's Theorem:

- 1) It is used to reduce a complex circuit into a simple circuit.
- 2) Norton's theorem is useful to solve problems on parallel generators with unequal emf's and unequal impedances.

Software/Tools Used: Virtual Labs (http://vlabs.iitkgp.ac.in/vlt/)

Source of applications:

https://www.iceeet.com/thevenin-theorem/

https://electricalinsider.com/nortons-theorem-dc-circuits-solved-examples/