Appendix B

Definition of Reaction Types

Reaction types (MT) are identified by an integer number from 1 through 999. Version ENDF-6 of the ENDF format supports incident charged particles and photons in a manner consistent with the definitions of MT's used in previous versions of the ENDF format to the extent possible. Users should be aware of the few differences. In the following table, those MT numbers restricted to incident neutrons are labeled (n,xxx); those that are limited to incident charged particles and photons are labeled (y,xxx) and those that allow all particles in the entrance channel are labeled (z,xxx), where x can represent any exit particle. See Section 0 for complete descriptions of MT numbers. Refer to Sections 3.4 (incident neutrons) and 3.5 (incident charged particles and photons) for the list of MT numbers that should be included in each evaluation.

For the ENDF-6 format, all particles in the exit channel are named (within the parenthesis) except for the residual. The identity of this residual can be specified explicitly in File 6 or determined implicitly from the MT number. In cases where more than one MT might describe a reaction, the choice of MT number is then determined by the residual which is the heaviest of the particles (AZ,A) in the exit channel. For example, $^6\text{Li}(n,t)\alpha$ is represented by MT=700, rather than my MT=800; and MT=32 represents the $^6\text{Li}(n,nd)\alpha$ reaction rather than MT=22. Sequential reaction mechanism descriptions can be used, where necessary, for reactions such as X(n,np)Y. These are described in Sections 0.4.3.3 and 0.4.3.4.

B.1 Reaction Type Numbers MT

$\overline{\mathrm{MT}}$		Description	Comments
1	(n,total)	Neutron total cross sections. (See sum	Redundant. Un-
		rules for cross sections in Section 0.4.3.11 Table 14).	defined for incident charged particles.
2	(z,z0)	Elastic scattering cross section for incident particles.	

\mathbf{MT}		Description	Comments
3	(z,nonelas.)	Nonelastic neutron cross section. (See sum	Redundant. For
		rules for cross sections in Section 0.4.3.11	photon production
		Table 14).	only.
4	(z,n)	Production of one neutron in the exit chan-	Redundant. For in-
		nel. Sum of MT=50-91.	cident neutrons, this
			is inelastic scatter-
			$\lim_{n \to \infty} (MT=50 \text{ is un-}$
_			defined).
5	(z,anything)	_ ·	Each particle can
		another MT number. This is a partial re-	be identified and its
		action to be added to obtain MT=1.	multiplicity given in File 6. Not allowed
			in Files 4, 5.
6-9		Not allowed in Version 6.	${}^{9}\text{Be}(\text{n},2\text{n})$ in format
			Version 5.
10	(z,contin.)	Total continuum reaction; includes all con-	Redundant; to be
		tinuum reactions and excludes all discrete	used for derived files
		reactions.	only.
11	(z,2nd)	Production of two neutrons and a	
		deuteron, plus a residual ¹ .	
12-15		Unassigned.	
16	(z,2n)	Production of two neutrons and a resid-	
		uall. Sum of MT=875-891, if they are	
17	(z,3n)	present. Production of three neutrons and a resid-	
17	(z,sn)	ual.	
18	(z,fission)	Particle-induced fission (sum of MT 19, 20,	
	(2,11551011)	21 and 38, if present).	
19	(n,f)	First-chance neutron-induced fission ² .	
20	(n, nf)	Second-chance neutron-induced fission ² .	
21	(n,2nf)	Third-chance neutron-induced fission ² .	
22	$(z,n\alpha)$	Production of a neutron and an alpha par-	
		ticle, plus a residual.	
23	$(n,n3\alpha)$	Production of a neutron and three alpha	
		particles, plus a residual ¹ .	
24	$(z,2n\alpha)$	Production of two neutrons and an alpha	
0.5	(- 2	particle, plus a residual ¹ .	
25	$(z,3n\alpha)$	Production of three neutrons and an alpha	
		particle, plus a residual ¹ .	

¹The "residual" is the remainder after the reaction specified by has taken place (e.g. isotope of the target nucleus with mass A-1 after an (n,2n) reaction). This residual may break up further if LR>0

²Note that the partial fission cross sections are not defined for charged particles.

MT		Description	Comments
26		Not allowed in Version 6.	Version 5: (n,2n)
			isomeric state; used
			in file 8 and 6, 9, or
			10.
27	(n,abs)	Absorption; sum of MT=18, 102-117, 155,	Rarely used.
		182, 191-193, 197	
28	(z,np)	Production of a neutron and a proton, plus	
20		a residual.	
29	$(z,n2\alpha)$	Production of a neutron and two alpha par-	
20	$\left(a_{n} \cdot 2n \cdot 2a_{n} \right)$	ticles, plus a residual.	
30	$(z,2n2\alpha)$	Production of two neutrons and two alpha particles, plus a residual.	
31		Not allowed for Version 6.	Used only as an LR
31		Not allowed for version o.	flag.
32	(z,nd)	Production of a neutron and a deuteron,	inag.
32		plus a residual.	
33	(z,nt)	Production of a neutron and a triton, plus	
		a residual.	
34	(z,n^3He)	Production of a neutron and a ³ He particle,	
		plus a residual.	
35	$(z,nd2\alpha)$	Production of a neutron, a deuteron, and	
		2 alpha particles, plus a residual.	
36	$(z,nt2\alpha)$	Production of a neutron, a triton, and 2 al-	
		pha particles, plus a residual.	
37	(z,4n)	Production of 4 neutrons, plus a residual.	
38	(n,3nf)	Fourth-chance fission cross section.	
39		Not allowed for Version 6.	Used only as an LR
40		Not allowed for Version 6	flag.
40		Not allowed for Version 6.	Used only as an LR
41	(z,2np)	Production of 2 neutrons and a proton,	flag.
41		plus a residual.	
42	(z,3np)	Production of 3 neutrons and a proton,	
	(=,5==P)	plus a residual.	
43		(Unassigned)	
44	(z,n2p)	Production of a neutron and 2 protons,	
		plus a residual.	
45	$(z,np\alpha)$	Production of a neutron, a proton, and an	
		alpha particle, plus a residual.	
46-49		Not allowed in Version 6.	Version 5: descrip-
			tion of 2nd neutron
			from ${}^{9}\mathrm{Be}(\mathrm{n},2\mathrm{n})$ re-
			actions to excited
			states.

MT		Description	Comments
50	(y,n_0)	Production of a neutron, leaving the resid-	Not allowed for in-
		ual nucleus in the ground state.	cident neutrons; use MT=2.
51	(z,n_1)	Production of a neutron, with residual in the 1st excited state.	
52	(z,n_2)	Production of a neutron, with residual in the 2nd excited state.	
90	(z,n_{40})	Production of a neutron, with residual in the 40th excited state.	
91	(z,n_c)	Production of a neutron in the continuum not included in the above discrete repre-	
92-100		sentation. (Unassigned)	
101	(n,disap)	Neutron disappearance; equal to sum of MT=102-117, 155, 182, 191-193, 197.	Rarely used.
102	$(\mathrm{z},\!\gamma)$	Radiative capture.	
103	(z,p)	Production of a proton, plus a residual. Sum of MT=600-649, if they are present.	For incident protons, this is inelastic scattering
104	(z,d)	Production of a deuteron, plus a residual. Sum of MT=650-699, if they are present.	(MT=600 is undefined). For incident deuterons, this is inelastic scattering (MT=650 is
105	(z,t)	Production of a triton, plus a residual. Sum of MT=700-749, if they are present.	undefined). For incident tritons, this is inelastic scattering (MT=700 is undefined).
106	$(z,^3\text{He})$	Production of a ³ He particle plus a residual. Sum of MT=750-799, if they are	undermed).
107	(z,α)	present. Production of an alpha particle, plus a residual. Sum of MT=800-849, if they are present.	
108	$(z,2\alpha)$	Production of 2 alpha particles, plus a residual.	
109	$(z,3\alpha)$	Production of 3 alpha particles, plus a residual.	
110		(Unassigned)	
111	(z,2p)	Production of 2 protons, plus a residual.	

$\overline{\mathrm{MT}}$		Description	Comments
112	$(z,p\alpha)$	Production a proton and an alpha particle,	
	, , ,	plus a residual.	
113	$(z,t2\alpha)$	Production of a triton and 2 alpha parti-	
		cles, plus a residual.	
114	$(z,d2\alpha)$	Production of a deuteron and 2 alpha par-	
		ticles, plus a residual.	
115	(z,pd)	Production of proton and a deuteron, plus	
		a residual.	
116	(z,pt)	Production of proton and a triton, plus a	
		residual.	
117	$(z,d\alpha)$	Production of deuteron and an alpha par-	
		ticle, plus a residual.	
118-119		(Unassigned)	
120		Not allowed for Version 6.	Version 5: tar-
			get destruction -
			nonelastic minus
101 150		/11 . 1)	total $(n,n'\gamma)$
121-150	(DEC)	(Unassigned)	T .1 ,
151	(n,RES)	Resonance parameters that can be used to	Incident neutrons
		calculate cross sections at different temper- atures in the resolved and unresolved en-	only.
		ergy regions.	
152	(z,5n)	Production of five neutrons plus a residual	Additional open
102		1 roduction of five ficultions plus a residual	channels for inci-
			dent energies up to
			60 Mev. Indicates
			the production of
			the defined particles
			and a residual
153	(z,6n)	Production of six neutron, plus a residual	
154	(z,2nt)	Production of two neutrons, a triton, plus	
		a residual	
155	$(z,t\alpha)$	Production of a triton, an alpha particle,	
		plus a residual	
156	(z,4np)	Production of four neutrons, a proton, plus	
		a residual	
157	(z,3nd)	Production of three neutrons, a deuteron,	
1.50		plus a residual	
158	$(z,n'd\alpha)$	Production of a neutron, deuteron, an al-	
150		pha particle, plus a residual	
159	$(z,2np\alpha)$	Production of two neutrons, a proton, an	
160	(7.75)	alpha particle, plus a residual	
160	(z,7n)	Production of seven neutrons plus a resid-	
]	ual	

$B.1. \;\; REACTION \; TYPE \; NUMBERS \; MT$

\mathbf{MT}		Description	Comments
161	(z,8n)	Production of eight neutrons plus a resid-	
		ual	
162	(z,5np)	Production of five neutrons, a proton, plus	
		a residual	
163	(z,6np)	Production of six neutrons, a proton, plus	
		a residual	
164	(z,7np)	Production of seven neutrons, a proton,	
		plus a residual	
165	$(z,4n\alpha)$	Production of four neutrons, an alpha par-	
		ticle, plus a residual	
166	$(z,5n\alpha)$	Production of five neutrons, an alpha par-	
		ticle, plus a residual	
167	$(z,6n\alpha)$	Production of six neutrons, an alpha par-	
		ticle, plus a residual	
168	$(z,7n\alpha)$	Production of seven enutrons, an alpha	
1.00	(4 1)	particle, plus a residual	
169	(z,4nd)	Production of four neutrons, a deuteron,	
170	(= 1)	plus a residual	
170	(z,5nd)	Production of five neutrons, a deuteron,	
171	(z 6nd)	plus a residual	
171	(z,6nd)	Production of six neutrons, a deuteron, plus a residual	
172	(z,3nt)	Production of three neutrons, a triton, plus	
1/2	(2,5110)	a residual	
173	(z,4nt)	Production of four neutrons, a triton, plus	
110		a residual	
174	(z,5nt)	Production of five neutrons, a triton, plus	
	(-,)	a residual	
175	(z,6nt)	Production of six neutrons, a triton, plus	
		a residual	
176	$(z,2n^3He)$	Production of two neutrons, a helion, plus	
		a residual	
177	$(z,3n^3He)$	Production of three neutrons, a helion,	
		plus a residual	
178	$(z,4n^3He)$	Production of four neutrons, a helion, plus	
		a residual	
179	(z,3n2p)	Production of three neutrons, a proton,	
100		plus a residual	
180	$(z,3n2\alpha)$	Production of three neutrons, two alpha	
101		particles, plus a residual	
181	$(z,3np\alpha)$	Production of three neutrons, a proton, an	
199	(5, 4+)	alpha particle, plus a residual	
182	(z,dt)	Production of a deuteron, a triton, plus a	
		residual	

\mathbf{MT}		Description	Comments
183	(z,n'pd)	Production of a neutron, a proton, a	
		deuteron, plus a residual	
184	(z,n'pt)	Production of a neutron, a proton, a triton,	
		plus a residual	
185	(z,n'dt)	Production of a neutron, a deuteron, a tri-	
		ton, plus a residual	
186	$(z,n'p^3He)$	Production of a neutron, a proton, a helion,	
	_	plus a residual	
187	$(z,n'd^3He)$	Production of a neutron, a deuteron, a he-	
		lion, plus a residual	
188	$(z,n't^3He)$	Production of a neutron, a triton, a helion,	
		plus a residual	
189	$(z,n't\alpha)$	Production of a neutron, a triton, an alpha	
		particle, plus a residual	
190	(z,2n2p)	Production of two neutrons, two protons,	
101	277	plus a residual	
191	(z,p^3He)	Production of a proton, a helion, plus a	
100	(1311)	residual	
192	(z,d^3He)	Production of a deuteron, a helion, plus a	
102	(= 311==)	residual	
193	$(z,^3 \text{He}\alpha)$	Production of a helion, an alpha particle,	
194	(z,4n2p)	plus a residual Production of four neutrons, two protons,	
194	(2,4112p)	plus a residual	
195	$(z,4n2\alpha)$	Production of four neutrons, two alpha	
150	(2,41120)	particles, plus a residual	
196	$(z,4np\alpha)$	Production of four neutrons, a proton, an	
100		alpha particle, plus a residual	
197	(z,3p)	Production of three protons, plus a resid-	
	(2,3P)	ual	
198	(z,n'3p)	Production of a neutron, three protons,	
		plus a residual	
199	$(z,3n2p\alpha)$	Production of three neutrons, two protons,	
		an alpha particle, plus a residual	
200	(z,5n2p)	Production of five neutrons, two protons,	
		plus a residual	
201	(z,Xn)	Total neutron production.	Redundant; use in
			derived files only.
202	$(z,X\gamma)$	Total gamma production.	Redundant; use in
			derived files only.
203	(z,Xp)	Total proton production.	Redundant; use in
			derived files only.
204	(z,Xd)	Total deuteron production.	Redundant; use in
			derived files only.

MT		Description	Comments
205	(z,Xt)	Total triton production.	Redundant; use in
	(derived files only.
206	(z, X^3He)	Total ³ He production.	Redundant; use in
207	(- V -)	Total alaba martiala anadustian	derived files only.
207	$(z,X\alpha)$	Total alpha particle production.	Redundant; use in derived files only.
208	$(z,X\pi^+)$	Total π^+ production.	For use in high-
200		Total n production.	energy evaluations.
209	$(z,X\pi^0)$	Total π^0 production.	For use in high-
		1	energy evaluations.
210	$(z,X\pi^-)$	Total π^- production.	For use in high-
			energy evaluations.
211	$(z,X\mu^+)$	Total μ^+ production.	For use in high-
			energy evaluations.
212	$(z,X\mu^-)$	Total μ^- production.	For use in high-
010	(37 ±)	m , 1 + 1	energy evaluations.
213	$(z,X\kappa^+)$	Total κ^+ production.	For use in high-
214	(a V (a ⁰)	Total 40 production	energy evaluations.
214	$(z,X\kappa_{long}^0)$	Total κ_{long}^0 production.	For use in high- energy evaluations.
215	$(z,X\kappa_{short}^0)$	Total κ_{short}^0 production.	For use in high-
210	(Z,210short)	rotal R _{short} production.	energy evaluations.
216	$(z,X\kappa^-)$	Total κ^- production.	For use in high-
		1	energy evaluations.
217	(z,Xp^-)	Total anti-proton production.	For use in high-
			energy evaluations.
218	(z,Xn^-)	Total anti-neutron production.	For use in high-
			energy evaluations.
219-250		(Unassigned)	
251	(n,)	$\overline{\mu}$, average cosine of the scattering angle	Derived files only.
		(laboratory system) for elastic scattering	
252	(n)	of neutrons. ξ , average logarithmic energy decrement	Derived files only.
202	(n,)	for elastic scattering of neutrons.	Derived mes omy.
253	(n,)	γ , average of the square of the logarith-	Derived files only.
	(11,)	mic energy decrement divided by twice the	Berrea mes emj.
		average logarithmic energy decrement, for	
		elastic scattering of neutrons.	
254-300		(Unassigned)	
301-450	(z,)	Energy release parameters (eV-barns), for	Derived files only.
		total and partial cross sections; MT=	
		300 plus the reaction MT number, e.g.,	
		MT=302 is the elastic scattering kerma.	

$B.1. \;\; REACTION \; TYPE \; NUMBERS \; MT$

MT		Description	Comments
451	(z,)	Heading or title information; given in File 1	
		only.	
452	(z,)	$\overline{\nu}_T$, average total (prompt plus delayed)	
		number of neutrons released per fission	
		event.	
453		(Unassigned)	
454	(z,) $(z,)$	Independent fission product yield data.	
455	(z,)	$\overline{\nu}_d$, average number of delayed neutrons re-	
	(z,)	leased per fission event.	
456	(z,)	$\overline{\nu}_p$, average number of prompt neutrons re-	
	(z,)	leased per fission event.	
457	(z,)	Radioactive decay data.	
458	(n,)	Energy release in fission for incident neu-	
450	(z,) (z,)	trons.	
459	(z,)	Cumulative fission product yield data.	
460	(z,)	Delayed fission photons.	
461-464		(Unassigned)	77 . 5 11 1
465-466		Not allowed in Version 6.	Version 5: delayed
			and prompt neu-
			trons from spontaneous fission.
467-499		(Unassigned)	neous fission.
500		Total charged-particle stopping power.	
501		Total photo- or electro-atomic interaction.	
502		Photon coherent scattering.	
503		(Unassigned)	
504		Photon incoherent scattering.	
505		Imaginary scattering factor.	
506		Real scattering factor.	
507-514		(Unassigned)	
515		Pair production, electron field.	
516		Pair production; sum of MT=515, 517.	Redundant.
517		Pair production, nuclear field.	
518		Not allowed in Version 6.	
519-521		(Unassigned)	
522		Ionization (sum of all subshells)	Version 5:
		,	MT = 602.
523		Photo-excitation cross section.	
524		(Unassigned)	
525		Large angle scattering.	
526		Total electro-atomic scattering.	
527		Electro-atomic bremsstrahlung.	
528		Electro-atomic excitation cross section.	

MT		Description	Comments
529-531		(Unassigned)	
532		Not allowed in Version 6.	Version 5: (γ,n) .
533		Atomic relaxation data.	Version 5: total
			photonuclear
534	K	(1s1/2) subshell photoelectric or electro-	
		atomic cross section.	
535	L1	(2s1/2) subshell photoelectric or electro-	
~ 0.0	T 0	atomic cross section.	
536	L2	(2p1/2) subshell photoelectric or electro- atomic cross section.	
537	L3	(2p3/2) subshell photoelectric or electro-	
001	11.0	atomic cross section.	
538	M1	(3s1/2) subshell photoelectric or electro-	
		atomic cross section.	
539	M2	(3p1/2) subshell photoelectric or electro-	
		atomic cross section.	
540	M3	(3p3/2) subshell photoelectric or electro-	
F 41	3.4.4	atomic cross section.	
541	M4	(3d3/2) subshell photoelectric or electro- atomic cross section.	
542	M5	(3d5/2) subshell photoelectric or electro-	
012	1410	atomic cross section.	
543	N1	(4s1/2) subshell photoelectric or electro-	
		atomic cross section.	
544	N2	(4p1/2) subshell photoelectric or electro-	
	270	atomic cross section.	
545	N3	(4p3/2) subshell photoelectric or electro-	
E 4G	N4	atomic cross section.	
546	114	(4d3/2) subshell photoelectric or electro- atomic cross section.	
547	N5	(4d5/2) subshell photoelectric or electro-	
	1.0	atomic cross section.	
548	N6	(4f5/2) subshell photoelectric or electro-	
		atomic cross section.	
549	N7	(4f7/2) subshell photoelectric or electro-	
	0.1	atomic cross section.	
550	O1	(5s1/2) subshell photoelectric or electroatomic cross section.	
551	O_2	(5p1/2) subshell photoelectric or electro-	
001	02	atomic cross section.	
552	O3	(5p3/2) subshell photoelectric or electro-	
		atomic cross section.	
553	O4	(5d3/2) subshell photoelectric or electro-	
		atomic cross section.	

MT		Description	Comments
554	O5	(5d5/2) subshell photoelectric or electro-	
		atomic cross section.	
555	O6	(5f5/2) subshell photoelectric or electro-	
		atomic cross section.	
556	O7	(5f7/2) subshell photoelectric or electro-	
		atomic cross section.	
557	O8	(5g7/2) subshell photoelectric or electro-	
		atomic cross section.	
558	O9	(5g9/2) subshell photoelectric or electro-	
		atomic cross section.	
559	P1	(6s1/2) subshell photoelectric or electro-	
		atomic cross section.	
560	P2	(6p1/2) subshell photoelectric or electro-	
	D.0	atomic cross section.	
561	P3	(6p3/2) subshell photoelectric or electro-	
F 00	D4	atomic cross section.	
562	P4	(6d3/2) subshell photoelectric or electro-	
F69	Dr	atomic cross section.	
563	P5	(6d5/2) subshell photoelectric or electro-	
564	P6	atomic cross section.	
304	10	(6f5/2) subshell photoelectric or electroatomic cross section.	
565	P7	(6f7/2) subshell photoelectric or electro-	
000	1 (atomic cross section.	
566	P8	(6g7/2) subshell photoelectric or electro-	
		atomic cross section.	
567	P9	(6g9/2) subshell photoelectric or electro-	
		atomic cross section.	
568	P10	(6h9/2) subshell photoelectric or electro-	
		atomic cross section.	
569	P11	(6h11/2) subshell photoelectric or electro-	
		atomic cross section.	
570	Q1	(7s1/2) subshell photoelectric or electro-	
		atomic cross section.	
571	Q2	(7p1/2) subshell photoelectric or electro-	
		atomic cross section.	
572	Q3	(7p3/2) subshell photoelectric or electro-	
		atomic cross section.	
573-599		(Unassigned)	
600	(z,p_0)	Production of a proton leaving the residual	Not allowed for in-
		nucleus in the ground state.	cident protons; use
601			MT=2.
601	(z,p_1)	Production of a proton, with residual in	
		the 1st excited state.	

\mathbf{MT}		Description	Comments
602	(z,p_2)	Production of a proton, with residual in the 2nd excited state.	Version 5: photo- electric absorption; see MT=522.
603	(z,p_3)	Production of a proton, with residual in the 3rd excited state.	
604	(z,p ₄)	Production of a proton, with residual in the 4th excited state.	
649	(z,p_c)	Production of a proton in the continuum not included in the above discrete representation.	
650	(z,d_0)	Production of a deuteron leaving the residual nucleus in the ground state.	
651	(z,d_1)	Production of a deuteron, with the residual in the 1st excited state.	
652	(z,d_2)	Production of a deuteron, with the residual in the 2nd excited state.	
699	(z,d_c)	Production of a deuteron in the continuum not included in the above discrete representation.	
700	(z,t_0)	Production of a triton leaving the residual nucleus in the ground state.	
701	(z,t_1)	Production of a triton, with residual in the 1st excited state.	
702	(z,t_2)	Production of a triton, with residual in the 2nd excited state.	
749	(z,t_c)	Production of a triton in the continuum not included in the above discrete representation.	
750	$(n,^3 He_0)$	Production of a ³ He particle leaving the residual nucleus in the ground state.	
751	$(n,^3He_1)$	Production of a ³ He, with residual in the 1st excited state.	
799	$(n,^3 \text{He}_c)$	Production of a ³ He in the continuum not included in the above discrete representation.	
800	(z,α_0)	Production of an alpha particle leaving the residual nucleus in the ground state.	
801	(z,α_1)	Production of an alpha particle, with residual in the 1st excited state.	

MT		Description	Comments
849	(z,α_c)	Production of an alpha particle in the con-	
		tinuum not included in the above discrete	
		representation.	
850		(Unassigned)	
851-870		Lumped reaction covariances.	
871-874		(Unassigned)	
875	$(z,2n_0)$	Production of 2 neutrons with residual in	
		the ground state.	
876	$(z,2n_1)$	Production of 2 neutrons with residual in	
	() 1)	the 1st excited state.	
891	$(z,2n_c)$	Production of 2 neutrons in the continuum	
	(-,c)	not included in the above discrete repre-	
		sentation.	
892-999		(Unassigned)	

B.2 Residual Breakup Flags LR

Many reactions are sequential in nature. That is, a particle or gamma ray may be emitted first, then the residual nucleus decays by one or more paths. Most often, the first stage of the reaction proceeds through a well-defined discrete state of the residual nucleus and the angular dependence of the first emitted particle must be uniquely described. A simple, two-body reaction is one in which the incident particle is inelastically scattered from the target nucleus leaving the target in an excited state, which immediately decays by gamma emission. Other excited states of the same target may, however, decay by particle emission, electron-positron pair formation, or internal conversion. It is often necessary to completely specify the reaction mechanism, in particular for isotopic depletion and/or build-up calculations.

The following numbers can be used as flags to indicate the mode of decay of the residual nucleus.

LR	Description
0 or blank	Simple reaction. Identity of product is implicit in MT. Only
	gamma rays may be emitted additionally.
1	Complex or breakup reaction. The identity and multiplicity of
	all products are given explicitly in File 6.
22	α emitted (plus residual, if any).
23	3α emitted (plus residual, if any).
24	$n\alpha$ emitted (plus residual, if any).
25	$2n\alpha$ emitted (plus residual, if any).
28	p emitted (plus residual, if any).
29	2α emitted (plus residual, if any).