CENG 384 - Signals and Systems for Computer Engineers Spring 2021 Homework 3

Seval, Andaç Berkay e2235521@ceng.metu.edu.tr

January 31, 2024

1. (a) $x(t) = \frac{1}{2} + \frac{e^{jw_0t} + e^{-jw_0t}}{2}$. Thus; $a_0 = \frac{1}{2}, a_1 = \frac{1}{2}, a_{-1} = \frac{1}{2}$ and all other $a_k = 0$ when $k \neq 0, 1, -1$.

Figure 1: a_k vs k.

(b)
$$y(t) = \frac{3}{2} + 2\frac{(e^{jw_0t} - e^{-jw_0t})}{2j} = \frac{3}{2} + j(e^{-jw_0t} - e^{jw_0t})$$
. Thus; $b_0 = \frac{3}{2}, b_1 = -j, b_{-1} = j$ and all other $b_k = 0$ when $k \neq 0, 1, -1$.

Figure 2: $Re\{b_k\}$ vs k.

Figure 3: $Im\{b_k\}$ vs k.

(c)
$$cos(2w_0t + \frac{\pi}{4}) = cos(2w_0t)cos(\frac{\pi}{4}) - sin(2w_0t)sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}(cos2w_0t - sin2w_0t)$$
. Thus;

$$z(t) = \frac{1}{2} + \frac{e^{jw_0t} + e^{-jw_0t}}{2} + \frac{3}{2} + j(e^{-jw_0t} - e^{jw_0t}) + \frac{\sqrt{2}}{2} \left[\frac{e^{j2w_0t} + e^{-j2w_0t}}{2} - \frac{e^{j2w_0t} - e^{-j2w_0t}}{2j} \right].$$
 Thus;

$$c_0 = 2, c_1 = \frac{1}{2} - j, c_{-1} = \frac{1}{2} + j, c_2 = \frac{\sqrt{2}}{4}(1+j), c_{-2} = \frac{\sqrt{2}}{4}(1-j) \text{ and all other } c_k = 0 \text{ when } k \neq 0, 1, -1, 2, -2$$

Figure 4: $Re\{c_k\}$ vs k.

Figure 5: $Im\{c_k\}$ vs k.

2.
$$A_0 = \frac{2}{T} \int_0^{T_1} x(t) dt = \frac{2}{T} \int_0^{T_1} M dt = \frac{2MT_1}{T}$$

$$A_k = \frac{2}{T} \int_0^{T_1} x(t) cosk w_0 t dt = \frac{2}{T} \int_0^{T_1} M cosk w_0 t dt = \frac{2M}{Tkw_0} sink w_0 T_1$$

$$B_k = \frac{2}{T} \int_0^{T_1} x(t) sink w_0 t dt = \frac{2}{T} \int_0^{T_1} M sink w_0 t dt = -\frac{2M}{Tkw_0} (cosk w_0 T_1 - 1) = \frac{2M}{Tkw_0} (1 - cosk w_0 T_1)$$
For $M = 1, T = 4T_1 \Rightarrow A_0 = \frac{2T_1}{4T_1} = \frac{1}{2}, A_k = \frac{2}{Tk\frac{2\pi}{T}} sink\frac{2\pi}{4T_1} T_1 = \frac{sink\frac{\pi}{2}}{k\pi} \text{ for } k \neq 0, B_k = \frac{2}{Tk\frac{2\pi}{T}} (1 - cosk\frac{2\pi}{4T_1} T_1) = \frac{1 - cosk\frac{\pi}{2}}{k\pi} \text{ for } k \neq 0.$ Graphs are plotted based on the values $M = 1, T = 4T_1$:

Figure 6: A_0 vs k.

Figure 7: A_k vs k.

 A_k is symmetric about the y-axis.

Figure 8: B_k vs k.

 B_k is symmetric about the origin.

3. (a)

Figure 9: x(t) vs t

(b) $w_0 = 2\pi$, $x(t) = 1 + \frac{e^{j2\pi t} + e^{-j2\pi t}}{4} + \frac{e^{j4\pi t} + e^{-j4\pi t}}{2} + \frac{e^{j6\pi t} + e^{-j6\pi t}}{3}$. Thus; $a_0 = 1, a_1 = a_{-1} = \frac{1}{4}, a_2 = a_{-2} = \frac{1}{2}, a_3 = a_{-3} = \frac{1}{3}$ and all other $a_k = 0$ when $k \neq 0, 1, -1, 2, -2, 3, -3$

Figure 10: a_k vs k.

- (c) The plot of x(t) is in time domain and it is a continuous graph. The plot of a_k is in frequency domain and it is a discrete graph. Plots are similar since both of them are symmetric about y-axis. The term k=0 is 1, constant. The terms for k=1 and k=-1 both have fundamental frequency $w_0 = 2\pi$ and they are referred to as fundamental components. The terms for k=2 and k=-2 are periodic with half the period and have twice the frequency (4π) of the fundamental components. The terms for k=3 and k=-3 are periodic with one third the period and have triple the frequency (6π) of the fundamental components.
- (d) We can write $x(t) = \sum_{k=-3}^{3} a_k e^{j2\pi t}$ from part (b). In order to find spectral coefficients of y(t), first compute frequency response $H(jw) = \int_0^\infty e^{-2\tau} e^{-jw\tau} d\tau = \frac{1}{2+jw}$. We can write $y(t) = \sum_{k=-\infty}^\infty a_k H(jkw_0) e^{jkw_0t}$. Thus; $y(t) = \sum_{k=-3}^3 b_k e^{jk2\pi t}$. $b_k = a_k H(jk2\pi)$. Therefore; $b_0 = \frac{1}{2}$, $b_1 = \frac{1}{4}(\frac{1}{2+j2\pi}) = \frac{1}{8}(\frac{1-j\pi}{1+\pi^2})$, $b_{-1} = \frac{1}{4}(\frac{1}{2-j2\pi}) = \frac{1}{8}(\frac{1+j\pi}{1+\pi^2})$, $b_2 = \frac{1}{2}(\frac{1}{2+j4\pi}) = \frac{1}{4}(\frac{1-j2\pi}{1+4\pi^2})$, $b_{-2} = \frac{1}{2}(\frac{1}{2-j4\pi}) = \frac{1}{4}(\frac{1+j2\pi}{1+4\pi^2})$, $b_3 = \frac{1}{3}(\frac{1}{2+j6\pi}) = \frac{1}{6}(\frac{1-j3\pi}{1+9\pi^2})$, $b_{-3} = \frac{1}{3}(\frac{1}{2-j6\pi}) = \frac{1}{6}(\frac{1+j3\pi}{1+9\pi^2})$ and all other $b_k = 0 \ \forall k \in \mathbb{Z}$

Figure 11: $Re\{b_k\}$ vs k.

Note that $b_0 = \frac{1}{2}$ but in order not to break the graph, it is not on the graph.

Figure 12: $Im\{b_k\}$ vs k.

4. (a)
$$b_k = \frac{1}{3}e^{-3jkw_0}a_k - \frac{2}{7}a_{-k}$$

(b)
$$\frac{d^3x(t)}{dt^3} = \sum_{-\infty}^{\infty} -jk^3w_0^3a_ke^{jkw_0t}$$
. Thus; $c_k = -jk^3w_0^3a_k$

5. (a)
$$w_0 = \frac{2\pi}{N} = \frac{\pi}{2}, N = 4$$

 $x[n] = \frac{e^{j\frac{\pi}{2}n} - e^{-j\frac{\pi}{2}n}}{2j}$. Thus; $a_{1+4k} = \frac{1}{2j}, a_{-1+4k} = \frac{-1}{2j} \ \forall k \in \mathbb{Z}$

(b)
$$w_0 = \frac{2\pi}{N} = \frac{\pi}{2}, N = 4$$

 $y[n] = 1 + \frac{e^{j\frac{\pi}{2}n} + e^{-j\frac{\pi}{2}n}}{2}$. Thus; $b_{4k} = 1, b_{1+4k} = \frac{1}{2}, b_{-1+4k} = \frac{1}{2} \ \forall k \in \mathbb{Z}$

(c)
$$N=4$$
. Circular convolution: $\mathbf{x}[\mathbf{n}]\mathbf{y}[\mathbf{n}] \leftarrow FS \rightarrow c_k = \sum_{l=0}^3 a_l b_{k-l}$

$$c_{1+4k} = a_0 b_1 + a_1 b_0 + a_2 b_{-1} + a_3 b_{-2} = \frac{1}{2j}$$

$$c_{-1+4k} = a_0 b_{-1} + a_1 b_{-2} + a_2 b_{-3} + a_3 b_{-4} = \frac{-1}{2j}$$

$$c_{3+4k} = a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0 = \frac{-1}{2j}$$

$$c_{-3+4k} = a_0 b_{-3} + a_1 b_{-4} + a_2 b_{-5} + a_3 b_{-6} = \frac{1}{2j} \text{ and all other } c_k = 0 \ \forall k \in \mathbb{Z}$$

$$\begin{array}{l} (\mathrm{d}) \ \ \mathrm{x[n]y[n]} = \sin \frac{\pi}{2} n + (\sin \frac{\pi}{2} n) (\cos \frac{\pi}{2} n) = \sin \frac{\pi}{2} n + \frac{\sin \pi n}{2} \\ c_k \ = \ \frac{1}{4} \sum_{n=0}^3 (\sin \frac{\pi}{2} n + \frac{\sin \pi n}{2}) e^{-jkw_0 n} \ = \ \frac{1}{4} [e^{-jkw_0} - e^{-3jkw_0}] = \ \frac{1}{4} [e^{-jk\frac{\pi}{2}} - e^{-3jk\frac{\pi}{2}}] = \ \frac{1}{4} [(\cos k\frac{\pi}{2} - j \sin k\frac{\pi}{2}) - (\cos 3k\frac{\pi}{2} - j \sin 3k\frac{\pi}{2})] \\ c_{1+4k} \ = \ \frac{-j}{2} \ = \ \frac{1}{2j}, c_{-1+4k} = \ \frac{j}{2} \ = \ \frac{-1}{2j}, c_{3+4k} = \ \frac{j}{2} \ = \ \frac{-1}{2j}, c_{-3+4k} = \ \frac{-j}{2} \ = \ \frac{1}{2j} \ \text{ and all other } c_k = 0 \ \forall k \in Z. \end{array}$$
 The spectral coefficients for x[n]y[n] are exactly same for part(c) and part(d).

$$\begin{aligned} &6. \ \ a_k = a_k^{(1)} + a_k^{(2)} \\ & w_0 \ \text{for} \ a_k^{(1)} = \frac{\pi}{6} = \frac{2\pi}{N_1} \Rightarrow N_1 = 12 \\ & w_0 \ \text{for} \ a_k^{(2)} = \frac{5\pi}{6} = \frac{2\pi m}{N_2} \Rightarrow N_2 = 12 \ \text{for} \ m = 5. \ \text{Thus}; \ N = 12 \ \text{for} \ a_k \ \text{and} \ \mathbf{x}[\mathbf{n}]. \\ & a_k = \cos \frac{k\pi}{6} + \sin \frac{5k\pi}{6} = \frac{1}{2} e^{jk\frac{\pi}{6}} + \frac{1}{2} e^{-jk\frac{\pi}{6}} + \frac{1}{2j} e^{jk\frac{5\pi}{6}} - \frac{1}{2j} e^{-jk\frac{5\pi}{6}} \ \text{and} \ a_k = \frac{1}{12} \sum_{n=0}^{11} x[n] e^{-jk\frac{\pi}{6}n} = \frac{1}{12} (x[0] + x[1] e^{-jk\frac{\pi}{6}} + x[2] e^{-jk\frac{\pi}{3}} + x[3] e^{-jk\frac{\pi}{2}} + x[4] e^{-jk\frac{2\pi}{3}} + x[5] e^{-jk\frac{5\pi}{6}} + x[6] e^{-jk\pi} + x[7] e^{-jk\frac{7\pi}{6}} + x[8] e^{-jk\frac{4\pi}{3}} + x[9] e^{-jk\frac{3\pi}{2}} + x[1] e^{-jk\frac{5\pi}{3}} x[11] e^{-jk\frac{11\pi}{6}}). \ \text{Thus}; \ x[n] = 6\delta[n-1] + 6\delta[n-11] + 6j\delta[n-5] - 6j\delta[n-7] \ \text{for} \ 0 \leq n \leq 11 \end{aligned}$$

7. (a)
$$N=4, w_0=\frac{\pi}{2}.$$
 $a_k=\frac{1}{4}\sum_{n=0}^3x[n]e^{-jkw_0n}=\frac{1}{4}[e^{-jkw_0}+2e^{-2jkw_0}+e^{-3jkw_0}]=\frac{1}{4}[\cos\frac{k\pi}{2}-j\sin\frac{k\pi}{2}+2(\cos k\pi-j\sin k\pi)+\cos\frac{3k\pi}{2}-j\sin\frac{3k\pi}{2}]$ $a_{4k}=1, a_{1+4k}=\frac{-1}{2}, a_{3+4k}=\frac{-1}{2}$ and all other $a_k=0 \ \forall k\in Z.$

Figure 13: a_k vs k.

(b) i.
$$y[n] = x[n] - \sum_{-\infty}^{\infty} \delta[n+1-4k]$$
 since $y[-1+4k] = 0 \ \forall k \in \mathbb{Z}$
ii. $N = 4, w_0 = \frac{\pi}{2}.$ $b_k = \frac{1}{4} \sum_{n=0}^{3} y[n] e^{-jkw_0 n} = \frac{1}{4} [e^{-jkw_0} + 2e^{-2jkw_0}] = \frac{1}{4} [\cos \frac{k\pi}{2} - j\sin \frac{k\pi}{2} + 2(\cos k\pi - j\sin k\pi)]$
Thus; $b_{4k} = \frac{3}{4}, b_{1+4k} = \frac{-2-j}{4}, b_{2+4k} = \frac{1}{4}, b_{3+4k} = \frac{-2+j}{4}$ and all other $b_k = 0 \ \forall k \in \mathbb{Z}$

Figure 14: $Re\{b_k\}$ vs k.

Figure 15: $Im\{b_k\}$ vs k.