Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2021-22

Απόδοση ΚΜΕ

(Μέτρηση και τεχνικές βελτίωσης απόδοσης)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας

- Απόδοση υπολογιστικού συστήματος
 - Η απόδοση εξαρτάται από όλα τα επιμέρους τμήματα του συστήματος
 - Υλικό και λογισμικό
- Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας
 - Πόσο γρήγορα εκτελείται ένα πρόγραμμα;
 - Πώς επηρεάζει η αρχιτεκτονική της (Κ)ΜΕ
 την απόδοση;
 - Πόσο γρηγορότερα εκτελείται ένα πρόγραμμα μετά από μια αρχιτεκτονική αλλαγή;

Χρόνος απόκρισης – Ρυθμός Ολοκλήρωσης

- Χρόνος απόκρισης (response time)
 - Συνολικός χρόνος για την ολοκλήρωση των εργασιών ενός προγράμματος (από την έναρξη μέχρι τη λήξη)
- Ρυθμός ολοκλήρωσης (throughput)
 - Ρυθμός ολοκλήρωσης έργου σε συγκεκριμένο χρόνο
- Τα δύο μεγέθη είναι αλληλένδετα
 - Συνήθως η βελτίωση του ενός επιδρά θετικά και στο άλλο

Χρόνος Εκτέλεσης (Execution Time)

- Χρόνος εκτέλεσης στην (Κ)ΜΕ
 - Ο χρόνος για τον οποίο η ΚΜΕ εκτελεί εντολές του προγράμματος
 - Όχι χρόνος για αναμονή Ε/Ε ή για άλλες διεργασίες
- Συνιστώσες
 - Χρόνος προγράμματος χρήστη
 - Για το πρόγραμμα καθεαυτό
 - Χρόνος συστήματος
 - Λειτουργίες ΛΣ για την εξυπηρέτηση του προγράμματος

Εκτέλεση προγραμμάτων

- Χρόνος εκτέλεσης (execution time)
 - Αύξηση απόδοσης ⇔ Μείωση χρόνου εκτέλεσης
- Για υπολογιστή Χ:

Συγκρίνοντας δύο υπολογιστές

• Απόδοση ΚΜΕ

- Συγκρίνοντας αποδόσεις
 - Έστω υπολογιστές X και Y
 - Εάν:

Απόδοση(Χ) > Απόδοση(Υ)

Τότε (και αντίστροφα):

Χρόνος Εκτέλεσης(Χ) < Χρόνος Εκτέλεσης(Υ)

Ο Χ είναι η φορές γρηγορότερος από τον Υ

Ο Χ εκτελεί ένα πρόγραμμα σε 10 sec και ο Υ σε 15 sec. Πόσο πιο γρήγορος είναι ο X;

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

- Κύκλος ρολογιού (περίοδος)
 - Clock Cycle (CC)
 - Η διάρκεια ενός κύκλου ρολογιού (περίοδος ρολογιού) κατά τον οποίο η ΚΜΕ εκτελεί τις μικρότερες βασικές λειτουργίες
 - Απόλυτα σταθερό μέγεθος
- Poλόι (clock)
 - Περιοδικό σήμα (εναλλάσσεται συνεχώς μεταξύ 0 και 1)
 - Ο παλμός κάθε υπολογιστικού συστήματος,
 συγχρονίζει τις λειτουργίες του συστήματος

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

• Απόδοση ΚΜΕ

Κύκλοι ρολογιού ανά εντολή

- Clocks Per Instruction (CPI)
 - Οι απαιτούμενοι κύκλοι ρολογιού για την ολοκλήρωση μιας εντολής
 - Ενδεχομένως διαφορετικό μέγεθος ανά τύπο εντολής
 - Σε προσεγγιστικούς υπολογισμούς χρησιμοποιείται ένα μέσο CPI
 - Σε λεπτομερείς υπολογισμούς χρησιμοποιούνται μεγέθη από προσομοιώσεις ή μετρήσεις μέσω μετροπρογραμμάτων

•

- Αριθμός εντολών
 - Instruction Count (IC)
 - Ο αριθμός των εντολών ενός προγράμματος

Χρόνος εκτέλεσης στην (Κ)ΜΕ

• Απόδοση ΚΜΕ

• Χρόνος Εκτέλεσης για ένα πρόγραμμα

κύκλοι ρολογιού συνολικού προγράμματος ExecTime = IC x CPI x CC

- Τι μπορεί να κάνει ο σχεδιαστής ΚΜΕ για να βελτιώσει την απόδοση;
 - Να μειώσει τον κύκλο ρολογιού (CC)
 - Να μειώσει τον αριθμό κύκλων ανά εντολή (CPI)
 - Ο αριθμός εντολών δεν αλλάζει

Παράδειγμα

• Απόδοση ΚΜΕ

Τύπος εντολής	A	В	C
СРІ	1	2	3

Ακολουθία κώδικα	A	В	C
1	2	1	2
2	4	1	1

- Επιλογή μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές;
 - Ποια είναι ταχύτερη;
 - Ποιο το μέσο CPI σε κάθε περίπτωση;

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

Συσχέτιση με λογισμικό

• Απόδοση ΚΜΕ

• Αλγόριθμος

- Καθορίζει το IC
- Ενδεχομένως καθορίζει το CPI, ευνοώντας ορισμένους τύπους εντολών (π.χ. κινητής υποδιαστολής)
- Γλώσσα προγραμματισμού Μεταγλωττιστής
 - Καθορίζει το ΙC (μετάφραση εντολών υψηλού επιπέδου)
 - Καθορίζει το CPI απαιτώντας/χρησιμοποιώντας
 συγκεκριμένους τύπους εντολών

Το υλικό (ISA) καθορίζει και τα τρία μεγέθη (IC, CPI και CC)

Μετροπρογράμματα

• Απόδοση ΚΜΕ

Benchmarks

- Για τη μέτρηση της απόδοσης
- Και τη σύγκριση μεταξύ υπολογιστών
- Θα πρέπει να αντιπροσωπεύουν τις πραγματικές εφαρμογές
- Υπό ρεαλιστικές συνθήκες εκτέλεσης και δεδομένα εισόδου
- Χωρίς "εσωτερικές" ειδικές βελτιστοποιήσεις
- Δυνατότητα επανάληψης μέτρησης
- Διαφορετικά για ανόμοιες κλάσεις υπολογιστών
 - PCs, servers, embedded systems...

Ο "νόμος" του Amdahl

• Απόδοση ΚΜΕ

Ένα πρόγραμμα τρέχει για 100 sec σε έναν υπολογιστή και εκτελεί πολλαπλασιασμούς για 80 sec. Πόσο πρέπει να βελτιώσω τη ταχύτητα του πολλαπλασιασμού για να πενταπλασιάσω τη συνολική απόδοση;

- "Η βελτίωση της συνολικής απόδοσης ενός συστήματος μέσω της εισαγωγής ενός νέου χαρακτηριστικού, περιορίζεται από το βαθμό χρήσης αυτού του νέου χαρακτηριστικού"
- Ερμηνεία συνέπειες
 - Οι περισσότερο χρησιμοποιούμενες περιπτώσεις πρέπει να είναι γρήγορες
 - Δεν ωφελεί η βελτιστοποίηση των σπάνιων περιπτώσεων
 - Η μη χρήση του νέου χαρακτηριστικού εμποδίζει να επιτύχουμε την «τέλεια» απόδοση

ΚΜΕ ενός κύκλου (single-cycle)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου

Κάθε εντολή ολοκληρώνεται σε έναν κύκλο ρολογιού

ΚΜΕ ενός κύκλου (single-cycle)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου

- CPI = 1
 - Σε κάθε έναν κύκλο ρολογιού ολοκληρώνεται μια εντολή ή
 - κάθε εντολή απαιτεί έναν κύκλο ρολογιού
- Πόσο πρέπει να είναι το CC;
 - Τσο με τη διάρκεια της μεγαλύτερης λειτουργίας
 - Μη αποδοτικό σχήμα
 - Όλες οι εντολές δεν απαιτούν τον ίδιο χρόνο

Υποθετικό παράδειγμα

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου

Εντολή	IF	ID	EX	DM	WB	Σύνολο
Αριθμητική	200	50	100	0	50	400 ps
Διακλάδωση	200	50	100	0	0	350 ps
Ανάγνωση μνήμης	200	50	100	200	50	600 ps
Εγγραφή μνήμης	200	50	100	200	0	550 ps

- CC πρέπει να είναι 600 ps (single cycle CPU)
 - Αν ήταν δυνατή η χρήση με μεταβλητό CC (προσοχή: πρακτικά αδύνατο!)
 - Ποια η βελτίωση της απόδοσης;
 - 25% ανάγνωση, 10% εγγραφή, 45% αριθμητικές, 20%
 διακλάδωσης

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

ΚΜΕ πολλαπλών κύκλων (multi-cycle)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

- CPI > 1
 - Κάθε εντολή χωρίζεται σε έναν μεταβλητό αριθμό βημάτων
 - Κάθε βήμα απαιτεί έναν κύκλο ρολογιού
- Πόσο πρέπει να είναι το CC;
 - Ίσο με τη διάρκεια ολοκλήρωσης του μεγαλύτερου βήματος
- Καταχωρητές για τη συγκράτηση αποτελεσμάτων μεταξύ βημάτων
- Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν για περισσότερες από μία φορές κατά την εκτέλεση μιας εντολής

Παράδειγμα: Εντολή load (βήμα IF)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

Η εντολή load απαιτεί τα περισσότερα βήματα (κύκλους ρολογιού) για να εκτελεστεί

 $R1 \leftarrow mem[R2 + offset]$

Παράδειγμα: Εντολή load (βήμα ID)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

 $R1 \leftarrow mem[R2 + offset]$

Παράδειγμα: Εντολή load (βήμα ΕΧ)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

R1 ← mem[R2 + offset]

Παράδειγμα: Εντολή load (βήμα DM)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

R1 ← mem[R2 + offset]

Παράδειγμα: Εντολή load (βήμα WB)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

Σε κάθε βήμα, μερικά τμήματα μένουν ανενεργά. Πώς θα μπορούσαμε να τα εκμεταλλευτούμε;

 $R1 \leftarrow mem[R2 + offset]$

Μονάδα Ελέγχου ΚΜΕ πολλαπλών κύκλων

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

- Πολυπλοκότητα σημάτων ελέγχου
 - Δημιουργία σημάτων σε κάθε βήμα εκτέλεσης
 - Ανάλογα με το είδος της εντολής
 - Διατήρηση προηγούμενης κατάστασης
- Μέθοδοι υλοποίησης
 - Αυτόματα πεπερασμένων καταστάσεων
 - Ακολουθιακά λογικά κυκλώματα
 - Παραγωγή σημάτων ελέγχου ανάλογα με εισόδους και τρέχουσα κατάσταση
 - Μικροπρόγραμμα
 - Καθορισμός σημάτων μέσω μικροεντολών
 - Εσωτερικά στην ΚΜΕ
 - Για υλοποίηση σύνθετων εντολών με πολλά βήματα και πολλαπλά περάσματα από το datapath
 - Μερικές φορές είναι εγγράψιμο (updates, patches..)

Απόδοση ΚΜΕ πολλαπλών κύκλων

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων

• Πλεονεκτήματα

- Δεν απαιτείται ο μέγιστος χρόνος για το CC
- Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν με πολλαπλό τρόπο κατά την εκτέλεση μιας εντολής
- Μειονεκτήματα
 - Η μονάδα ελέγχου γίνεται πολυπλοκότερη
 - Η πολυπλοκότητα πιθανόν να ακυρώνει τα πλεονεκτήματα

• Σήμερα

- Οι ΚΜΕ υψηλής απόδοσης χρησιμοποιούν πρόσθετες τεχνικές παραλληλισμού σε επίπεδο εντολών (instruction level parallelism ILP)
 - (στο επόμενο μάθημα...)