Tutorial #8

Security in Computing COSC2356/2357

 $\underline{\mbox{Q1:}}$ Discuss the general model of secured data hiding (i.e. steganography).

(Discuss with your peers and do it yourself)

Q2: Why steganography is important? Discuss.

(Discuss with your peers and do it yourself)

Q3: Say, Alice wants to hide a secret binary message (M = 1010) in an integer number 512876. Discuss, how the message 'M' can be hidden in the above integer (i.e. embedding procedure). What is the stego integer number and stego key?

[Hints: Use the online "Decimal to Binary Converter" to convert the number to binary and binary to decimal: http://www.binaryconvert.com/convert_unsigned_int.html

Use the online "Binary to Decimal Converter" to convert the number to binary and binary to decimal: https://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html

Select 4 random bits by your own to hide message bits.]

(Do it yourself)

Q4: Assume that Alice wants to hide a secret binary message (**M = 00110**) in an ECG Signal with **16** samples as shown below:

Hence, the cover data becomes: $C = \{0, 0, 0.1, 0, 0, -0.05, 0, 0.85, -0.25, -0.1, -0.03, 0, 0.25, -0.1, -0.05, -0.02\}$. Show how Alice can hide secret binary message (M) within cover data (C). What would be the stego data (S) and stego key (S_K) that would be sent to Bob? Discuss, how Bob can extract secret message from the above five stego integers.

[Hints: Convert each ECG sample into 32-bit binary string using online calculator and use LSB of corresponding binary string to hide a bit of secret message].

Task-1 (Hiding Secret Message within HTML file)

Say, Alice has a HTML file "Text_Cover.html" that looks like as below when opened in a Web Browser:

"The time has come," the Walrus said,

"To talk of many things:

Of shoes and ships and sealing wax

Of cabbages and kings

And why the sea is boiling hot

And whether pigs have wings."

The source of the HTML file is as follows:

```
<font color=#000000>"The time has come," the Walrus said,</font><br>
<font color=#000000>"To talk of many things: </font><br>
<font color=#000000>Of shoes and ships and sealing wax </font><br>
<font color=#000000>Of cabbages and kings </font><br>
<font color=#000000>And why the sea is boiling hot </font><br>
<font color=#000000>And whether pigs have wings." </font><br></font><br/>
<font color=#000000>And whether pigs have wings." </font><br/></font><br/></font><br/></font>
```

Assume that Alice has a secret message **M** = **01000001010000101.** Now, she hides the **M** in the HTML file to produce **stego HTML file**. Next, Alice sends the stego HTML file to Bob. Bob extracts the secret message **M** from the stego HTML file.

Embedding Procedure (By Alice):

Here, length of secret message is 24 (i.e. length = 24) and cover data = {"Text_Cover.html"}

- Alice fragments 24 bits secret message into 4 segments of binary strings. Each segment has 6 bits (as font-color takes 6 bit binary value).
- The segments are: *010000, 010100, 001001, 000011*
- Alice sets message segments as the font-color of 1st, 2nd, 5th and 6th lines as follows:

```
<font color=#010000>"The time has come," the Walrus said,</font><br>
<font color=#010100>"To talk of many things: </font><br>
<font color=#000000>Of shoes and ships and sealing wax </font><br>
<font color=#000000>Of cabbages and kings </font><br>
<font color=#001001>And why the sea is boiling hot </font><br>
<font color=#000011>And whether pigs have wings." </font><br>
</font><br/>
<br/>
</font><br/>
<br/>
</font><br/>
<br/>
</font><br/>
<br/>
</font><br/>
<br/>
</font><br/>
<br/>
```

The stego HTML file (Text_Stego.html) is obtained as follows:

"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."

• Therefore, Stego-Key (S_K) becomes: $S_K = \langle lines \rangle = \langle \{1,2,5,6\} \rangle$

Alice sends **Text_Stego.html** and $S_K = \langle 1, 2, 5, 6 \rangle$ to Bob.

Compare the Cover HTML file and Stego HTML file. Do you find any difference?

Extraction Procedure:

- Bob retrieves the colour codes from the lines of source files of **Text_Stego.html** as per given in S_K .
- The retrieved segments are: 010000, 010100, 001001, 000011
- The secret message is obtained as: $M_X = 010000010100001000011$