标题 title

作者 author

2024年9月1日

前言

目录

前言		i
第一部分	分 AI 的逻辑	1
第一章	合情推理	2
§1.1	命题逻辑的演绎推理	3
§1.2	合情推理的数学模型	8
	§1.2.1 合情推理的基本假设,似然	9
	§1.2.2 似然与概率	12
	§1.2.3 先验与基率谬误	14
§1.3	合情推理的归纳强论证	15
	§1.3.1 归纳强论证	15
	§1.3.2 有效论证和归纳强论证的比较	18
§1.4	先验模型的存在性	21
§1.5	章末注记	23
§1. 6	习题	23
第二章	Markov 链与决策	24
§2.1	Markov 链	24
§2.2	Markov 奖励过程(MRP)	32
§2.3	Markov 决策过程(MDP)	36
§2.4	隐 Markov 模型(HMM)	43
	§2.4.1 评估问题	45
	§2.4.2 解释问题	46
§2.5	扩散模型	48

	§2.5.1 采样逆向过程	51
	§2.5.2 训练逆向过程	52
§2.6	章末注记	54
§2.7	习题	54
第二部	分 信息与数据	55
第三章	熵与 Kullback-Leibler 散度	56
§3.1	熵	56
	§3.1.1 概念的导出	56
	§3.1.2 概念与性质	60
§3 . 2	Kullback-Leibler 散度	66
	§3.2.1 定义	66
	§3.2.2 两个关于信息的不等式	67
§3. 3	编码理论	68
	§3.3.1 熵与编码	68
	§3.3.2 K-L 散度、交叉熵与编码	70
§3.4	在机器学习中的应用:语言生成模型	72
§3 . 5	附录: Shannon 定理的证明	73
§3.6	习题	75
§3 . 7	章末注记	77
<i></i>	京 // □ /	- 0
	高维几何,Johnson-Lindenstrauss 引理	78
94.1	高维几何	79 79
	§4.1.1 高维球体	
	§4.1.2 Stein 悖论	82
84.0	§4.1.3 为什么我们要正则化?远有潜龙,勿用	86 87
	集中不等式	91
	J-L 引理的应用	95
	附录: Stein 悖论的证明	93
	河题	
	章末注记	97 97

第五章	差分隐私	98
§5.1	数据隐私问题	99
§5.2	差分隐私的定义与性质	101
§5. 3	差分隐私的应用	107
	§5.3.1 随机反应算法	107
	§5.3.2 全局灵敏度与 Laplace 机制	108
	§5.3.3 DP 版本 Llyod 算法	111
§5 . 4	习题	113
§5.5	章末注记	113
第三部分	分 决策与优化	114
第六章	凸分析	115
§6.1	决策与优化的基本原理	116
	§6.1.1 统计决策理论	116
	§6.1.2 优化问题	118
	§6.1.3 例子: 网格搜索算法	122
§6 . 2	凸函数	124
§6 . 3	凸集	128
	§6.3.1 基本定义和性质	129
	§6.3.2 分离超平面定理	132
§6.4	习题	133
§6 . 5	章末注记	133
第七章	对偶理论	134
§7 . 1	约束的几何意义	136
§7 . 2	条件极值与 Lagrange 乘子法	141
§7 . 3	Karush-Kuhn-Tucker 条件	143
§7.4	Lagrange 对偶	145
	§7.4.1 Lagrange 定理	145
	§7.4.2 弱对偶定理,强对偶定理	149
§7 . 5	应用: 支持向量机 (SVM)	153

第八章 不动点理论	146
§8.1 Banach 不动点定理	146
§8.2 Brouwer 不动点定理	154
§8.3 习题	158
§8.4 章末注记	158
第四部分 逻辑与博弈	159
第九章 动态博弈	154
§9.1 输赢博弈	154
§9.2 随机博弈(Markov 博弈)	159
第十章 静态博弈	165
§10.1 正则形式博弈	165
§10.1.1 生成对抗网络	166
§10.1.2 混合策略	168
§10.2 不完全信息博弈(Bayes 博弈)	169
第五部分 认知逻辑	174
第五部分 认知逻辑 第十一章 模态逻辑基础	174 175
	175
第十一章 模态逻辑基础	175 175
第十一章 模态逻辑基础 §11.1 模态逻辑的起源	175 175 175
第十一章 模态逻辑基础 §11.1 模态逻辑的起源	175 175 176
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑	175 175 176 177
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.2 模态语言	175 175 175 176 177 181
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.2 模态语言 §11.3 Kripke 语义与框架语义 §11.4 模态可定义性	175 175 175 176 177 181
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.3 Kripke 语义与框架语义	175 175 176 177 181 185
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.2 模态语言 §11.3 Kripke 语义与框架语义 §11.4 模态可定义性 第十二章 认知逻辑与共同知识	175 175 176 177 181 185 188
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.2 模态语言 §11.3 Kripke 语义与框架语义 §11.4 模态可定义性 第十二章 认知逻辑与共同知识 §12.1 "泥泞的孩童"谜题	175 175 176 177 181 185 188 188 190
第十一章 模态逻辑基础 §11.1 模态逻辑的起源 §11.1.1 三段论 §11.1.2 非经典逻辑 §11.2 模态语言 §11.3 Kripke 语义与框架语义 §11.4 模态可定义性 \$11.4 模态可定义性 \$11.4 模态可定义性 \$12.1 "泥泞的孩童"谜题 §12.2 认知逻辑的基本模型与性质	175 175 176 177 181 185 188 188 190 194

§12.4	4 Rubinstein 电子邮件博弈	199
第六部分	分 附录:预备知识	203
附录 A	线性代数基础	204
§A.1	线性空间	204
§A.2	线性映射	208
§A.3	矩阵	213
§A.4	双线性型与二次型	219
§A.5	带内积的线性空间	223
§A.6	行列式	229
§A.7	算子范数与谱理论	232
附录R	微分学基础	238
		238
32.1		238
	\$B.1.2 开集与闭集	241
	§B.1.3 紧致性, 收敛性, 完备性	244
	\$B.1.4 连续映射	247
	§B.1.5 与实数序有关的性质	250
&B.2	一元函数的微分学	252
3212	§B.2.1 导数与微分的定义	253
	§B.2.2 微分学基本定理	256
§B.3	多元函数的微分学	258
0		258
	§B.3.2 微分学基本定理	264
		266
74 T O	柳龙丛甘加	0=0
		270
§C.1	从朴素概率论到公理化概率论	270
	§C.1.1 Kolmogorov 概率论	270
	§C.1.2 条件概率,独立性	274
§C.2		278
	§C.2.1 基本定义	278

	§C.2.2	离散型随机	几变量						 	 •		 	•	282
	§C.2.3	连续型随机	几变量						 			 	•	282
	§C.2.4	随机向量,	条件分	布,	独立	性	•	 	 		 	 		286
	§C.2.5	随机变量	(向量)	的逐	数 .				 			 		290
§C.3	随机变	量的数字特	寺征,条	件数	学期	望.			 			 		293
	§C.3.1	数学期望,	Lebes	gue ₹	只分				 			 		293
	§C.3.2	数学期望的	内性质						 			 		297
	§C.3.3	随机变量的	内内积空	间					 			 		300
	§C.3.4	特征函数							 			 		302
	§C.3.5	条件数学期	明望 .						 			 		303
§C.4	多元正	态分布(G	lauss 向	量)					 	 •		 	•	307

第一部分

AI 的逻辑

第二部分

信息与数据

第三部分 决策与优化

第七章 对偶理论

在经济社会中,通常会有买家和卖家两种角色。卖家要以尽可能高的售价卖出商品,而买家则希望以尽可能低的价格购买商品.因此,卖家和买家之间构成了相互矛盾的利益关系.下面我们来看一个具体的例子。

甲用三种纸浆混合生产两种抽纸. 甲的目标是让总售价最大。表 7.1 描述了公司甲用纸浆生产抽纸的信息表。

	纸浆1	纸浆 2	纸浆3	售价(万元/吨)
抽纸 A	0.25	0.50	0.25	12
抽纸 B	0.50	0.50		15
库存 (吨)	120	150	50	

表 7.1: 抽纸和纸浆信息表,其中,数据的第一(二)行表示生产一吨抽纸 A(B) 需要的纸浆吨数.

设抽纸 A 和 B 分别生产 x_1 和 x_2 吨,我们可以把甲的目标写成一个优化问题:

$$\begin{array}{llll} \max & z = 12x_1 + 15x_2 \\ \text{s.t.} & 0.25x_1 + 0.50x_2 & \leq & 120, \\ & 0.50x_1 + 0.50x_2 & \leq & 150, \\ & 0.25x_1 & \leq & 50, \\ & x_1 & \geq & 0, \\ & x_2 & \geq & 0. \end{array}$$

当然,甲也有一种选择,自己不生产销售纸巾,而是直接售卖纸浆。此时,甲变成了卖家。现在有一个公司乙需要这三种纸浆,打算向甲购买,问甲应该如何定价纸浆? 假设三种纸浆的定价分别为每吨 y₁, y₂, y₃ 万元. 对于买家乙来说,它希望总价格尽 量小,但不能低于甲用纸浆生产抽纸所产生的价值,因此,对于乙来说,优化问题为:

min
$$w = 120y_1 + 150y_2 + 50y_3$$

s.t. $0.25y_1 + 0.50y_2 + 0.25y_3 \ge 12$,
 $0.50y_1 + 0.50y_2 \ge 15$,
 $y_1 \ge 0$,
 $y_2 \ge 0$,
 $y_3 \ge 0$.

假设甲乙双方都知道表 7.1 的信息,如果甲对纸浆的定价高于上述乙优化问题的最优解,那么乙会选择不购买纸浆。此时,这一市场的资源配置发生了浪费:甲有多余的纸浆,乙没有得到所需的纸浆.

在上个世纪,苏联完全实行计划经济,一个东西的售价是多少,由国家计划决定,而不是由市场决定.我们上面的小例子就是计划经济的一个缩影:如果没有合理的定价,社会资源的配置就会出现问题,想买的买不到,想卖的卖不出去.

1959年,苏联经济学家 Kantorovich 出版了著作《经济资源的最佳利用》,第一次将上面线性规划的这种思路引入到资源配置中。对于一个资源配置高效的经济社会,每一个产品的定价都应该接近于它对应优化问题的最优解,这样的定价被称为影子价格.

1965 年,因 Kantorovich 因为这一工作而获列宁奖金。1975 年,Kantorovich 因此获得了诺贝尔经济学奖,成为第一个获得这一奖项的前苏联经济学家。

在我们上面纸浆定价的例子中,我们其实看到了两个优化问题之间非同寻常的联系:一个的目标函数是另一个的约束条件. 影子价格产生于两个最优解相等的情况,正是 Kantorovich 所观察到的核心现象。

这样的现象被称为对偶性,对偶性不仅仅是线性规划中的现象,它是优化问题中的一个普遍现象.在本章中,我们考虑带约束的优化问题.它的一般形式是

min
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \Omega$. (7.1)

函数 f,h,g 都是连续的,且通常假设它们拥有连续的二阶导数.

一个满足所有函数约束的点 $x \in \Omega$ 被称作**可行**解,而使得 f 取得最小值的可行解叫做最优解. 有时候优化问题的目标可能是最大化 f,此时相应的最优解就是使得 f 取得最大值的可行解. 本章的任务是讨论各种情况下最优值的必要条件,这些必要条件最终推导出了**对偶理论**.

§7.1 约束的几何意义

我们首先指出,优化问题的函数约束其实有很强的几何意义,更偏微积分的讨论请 参见附录 B。我们先只考虑 (7.1) 中的等式约束 h(x) = 0,考虑如下例子。

例 7.1 (二维空间中的约束) 考虑二维空间中的如下约束:

$$h_1(x) = x_1^2 + x_2^2 - 1 = 0,$$

$$h_2(x) = x_1 + x_2 - 1 = 0.$$

第一个约束 $h_1(x) = 0$ 定义了一个圆环,它是一维曲面¹. 第二个约束 $h_2(x) = 0$ 定义了一条直线,也是一维曲面. 这两个约束的交集是两个点,即零维曲面.

例 7.2 (三维空间中的约束) 考虑三维空间中的如下约束:

$$h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1 = 0,$$

$$h_2(x) = x_1 + x_2 + x_3 - 1 = 0.$$

第一个约束 $h_1(x) = 0$ 定义了一个球面,它是一个二维曲面. 第二个约束 $h_2(x) = 0$ 定义了一个平面,也是一个二维曲面. 这两个约束的交集是一个圆环,即一维曲面.

我们可以从另一个角度来理解这两个例子。在例 7.1 中,原本 (x_1, x_2) 两个维度都是自由选择的,所以我们可以用两个互相独立的参数来描述这个点。当加入约束 $h_1(x)=0$ 之后,给定一个 x_1 ,我们我们并不能自由选择 x_2 ,而是要满足约束 $h_1(x)=0$. 容易看出,我们只用一个参数 θ 就可以描述这个约束下的点:

$$(x_1, x_2) = (\cos \theta, \sin \theta), \quad \theta \in [0, 2\pi).$$

所以,约束 $h_1(x) = 0$ 将原本的二维空间约束到了一维空间. 继续加入约束 $h_2(x) = 0$,我们已经不需要参数就可以描述这个约束下的点:

$$(x_1, x_2) \in \{(0, 1), (1, 0)\}.$$

因此,约束 $h_2(x) = 0$ 将原本的一维空间约束到了零维空间.

类似地,在例 7.2 中,原本 (x_1,x_2,x_3) 可以用三个互相独立的参数来描述,当加入约束 $h_1(x)=0$ 之后,我们只能用两个独立的参数来描述,而加入约束 $h_2(x)=0$ 之后,我

¹严格来说,一维空间应该叫曲线。不过,为了和后面高维空间的术语保持一致,我们都称之为曲面。

们只需要一个参数就可以描述这个约束下的点. 这对应的就是三维空间被约束到了二维空间,再被约束到了一维空间.

更一般地,如果 $h: \mathbb{R}^n \to \mathbb{R}^m$,那么 h 的每一维都对 \mathbb{R}^n 增加了一个约束,最终 h(x) = 0 定义了一个 n-m 维的曲面(在通常的情况下)。

不过,这一性质并不是绝对的,请看下面的例子。

例 7.3 在三维空间中,考虑如下约束:

$$h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1 = 0,$$

 $h_2(x) = x_1 = 1.$

容易看出,这一约束其实对应的是一个点 (1,0,0),即零维曲面,而不是我们预期的一维曲面.

再考虑如下约束:

$$h_1(x) = x_1 + x_2 + x_3 = 1,$$

 $h_2(x) = x_1 + 2x_2 + 3x_3 = 1,$
 $h_3(x) = x_2 + 2x_3 = 0.$

这一约束对应的是一个直线,即一维曲面,而不是我们预期的零维曲面.

上面的例子是很恼人的,因为我们无法通过直观的方式来判断曲面的维度. 所以,我们需要一些更强的方法来判断曲面的维度. 如果 h 是具有连续的一阶导数的函数,那么这个曲面是光滑 2 的. 我们只考虑光滑曲面,因为它们是最常见的情况.

例 7.3 的第一个约束为什么不符合预期?在点 (1,0,0),球面 $h_1(x) = 0$ 的切平面恰好是 $x_1 = 1$,这意味着在这个点, $h_1(x) = 0$ 和 $h_2(x) = 0$ 其实只产生了一个有效的约束!这说明,"切平面"这样的概念对于维度有着至关重要的作用。

在一般空间中,我们可以通过切空间的概念来描述约束在某个点的维度。切空间其实是所有过该点的切线的集合。为了引入切线,我们先介绍曲线,

定义 **7.1** (曲线和切向量) 考虑曲面 S,其上的一条曲线是一系列点的集合: $x(t) \in S$,它们以 $t \in [0,1]$ 为参数且在该区间上连续. 因为它只有一个参数,所以它是一维曲面。

如果曲线 x(t) 在点 $x^* = x(t^*)$ 处可微,那么它在该点的导数被定义为

$$\dot{x}(t) = \left. \frac{\mathrm{d}x(t)}{\mathrm{d}t} \right|_{t=t^*}.$$

²在文献中,"光滑"这一词的含义有多种多样,例如无穷次可微、具有连续二阶导数等等。因此,这里用光滑仅仅只是方便起见,在阅读文献时,需要根据具体的上下文来理解这一词的含义.

如果曲线处处可微,我们称它是可微的。

考虑向量v,如果存在一个可微曲线x(t)和常数k>0,使得

$$\dot{x}(0) = kv, \quad x(0) = x^*,$$

那么我们称 v 是曲面 S 在点 x^* 处的切向量.

有了曲线和切向量的概念,我们可以引入切空间的概念.

定义 **7.2 (切空间)** 考虑曲面 S,在点 $x^* \in S$ 处的切空间是所有在该点的切向量的集合,记作 $T_{x^*}(S)$.

下面我们看一个切空间的例子.

例 7.4 (三维球面的切空间) 考虑三维空间中的单位球面

$$S^2 = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}.$$

在点 $x^* = (1,0,0)$ 处,球面的切空间是什么? 我们可以通过曲线来描述切空间. 考虑过 x^* 的圆弧:

$$x_{\theta}(t) = (\cos t, \sin t \cos \theta, \sin t \sin \theta), \quad t \in [0, \pi],$$

其中 θ 是一个固定的参数,它表示圆弧的方向.那么,

$$\dot{x}_{\theta}(0) = (0, -\sin\theta, \cos\theta),$$

所以, x^* 处的切空间至少包含以下集合

$$\{(0, -k\sin\theta, k\cos\theta) : k \in \mathbb{R}, \theta \in [0, 2\pi)\} = \{(0, y, z) : y, z \in \mathbb{R}\}.$$

切空间不可能是整个三维空间,因为球面是一个二维曲面,所以,过 x^* 的切空间就是

$$T_{x^*}(S^2) = \{(0, y, z) : y, z \in \mathbb{R}\}.$$

例 7.4 中的切空间是一个二维的线性空间。直观上,任何切空间都是应该一个线性 空间,这也是它名字的来源。

引理7.1 切空间是一个线性空间.

图 7.1: 切空间的示意图

尽管引理 7.1 的直观是很明显的,但是这一性质的证明需要一定程度的微积分知识, 所以我们这里略去. 我们也只需要这一性质的直观理解,而不需要深入的数学推导.

既然切空间是一个线性空间,我们的一个主要目标就是给出切空间的显式表达.这一部分需要一些基本的微积分和线性代数知识,请参阅附录 B 和附录 A.

考虑一条曲线 x(t), 如果它在 $h_i(x) = 0$ 形成的曲面上, 所以

$$\forall t, h_i(x(t)) = 0 \implies \forall t, \frac{\mathrm{d}}{\mathrm{d}t} h_i(x(t)) = 0.$$

那么,根据复合函数的求导法则,应该有

$$\frac{\mathrm{d}}{\mathrm{d}t}h_i(x(t)) = 0 \iff \nabla_x h_i(x(t))\dot{x}(t) = 0.$$

因此 x(t) 的切向量和该点处函数 $h_i(x(t))$ 的导数向量正交.

于是,如果 x(t) 在 h(x) = 0 形成的曲面上,那么 x(t) 处的导数 $\nabla h(x(t))$ 是切空间的法向量. 这一数学推导的示意图见图 **7.1**.

对于例7.4,我们可以看到,

$$\nabla h_1(x) = (2x_1, 2x_2, 2x_3) \implies \nabla h_1(x^*) = (2, 0, 0).$$

因此,切空间 $T_{x^*}(S^2)$ 的法向量是 (2,0,0),我们可以重新描述切空间为一个二维平面

$$T_{x^*}(S^2): 2x_1 + 0x_2 + 0x_3 = 0 \iff x_1 = 0.$$

这和例 7.4 的结果是一致的.

图 7.2: 正规点示意图

记

$$M = \left\{ \sum_{i} \alpha_{i} \nabla h_{i}(x^{*})^{\mathsf{T}} : \alpha_{i} \in \mathbb{R} \right\},$$

即 $M \neq \nabla h_i(x^*)$ 张成的空间. 它的正交补是

$$M^{\perp} = \{ y \in \mathbb{R}^n : \nabla h(x^*)y = 0 \}.$$

我们已经证明 $T_{x^*}(S) \subseteq M^{\perp}$. 进一步,例 7.4 的结果表明, $T_{x^*}(S) = M^{\perp}$,即切空间和 M^{\perp} 是相等的. 然而,如果对于例 7.3 中的第一个 h,我们会发现切空间和 M^{\perp} 是不相等的: h(x) = 0 对应的是单个点,对于单个点的切空间自然是一个零维空间,然而,和 $\nabla h(x^*)$ 正交的空间是整个二维空间!

以上例子说明两件事,首先,切空间和 M^{\perp} 不一定相等;其次,切空间和 M^{\perp} 的关系和曲面的维度有关。为了说明这一点,我们引入正规点的概念。

定义 **7.3** (正规点) 考虑优化问题 (**7.2**),当一个点 $x^* \in \Omega$ 满足约束 $h(x^*) = 0$,且梯度向量 $\nabla h_1(x^*), \nabla h_2(x^*), \dots, \nabla h_m(x^*)$ 线性无关时,它被称作该约束的正规点.

直观上来说,正规点上每一条约束都起到了实际的作用,因此梯度向量 $\nabla h_i(x^*)$ 形成了一个线性无关的集合,张成了空间 M. 此时,切空间恰好完全垂直于 M,即 $T_{x^*}(S) = M^{\perp}$. 这一几何直观见图 7.2,点 x^* 处的两个等式约束共同确定了该点的切空间.

定理 7.1 (正规点切空间刻画定理) 设曲面 $S \subseteq \mathbb{R}^n$ 由约束 h(x) = 0 定义, $x^* \in S$ 是正规点,那么,

$$T_{x^*}(S) = M^{\perp} = \{y : \nabla h(x^*)y = 0\}.$$

该定理的证明需要隐函数定理,对微积分要求较高,我们这里略去.

如此,针对正规点,我们找到了表达切空间的一种方法.这一方法还揭示了曲面维度 和约束的梯度向量的关系.

注. 实际上,梯度向量 $\nabla h_i(x^*)$ 张成空间 M 的维数定义了曲面 S 在点 x^* 的维数. 如果在点 $x^* \in S$ 一个邻域内维数都是 k,那么,我们可以用一个 k 维的参数来描述这个邻域内的点. 这一性质被称为秩定理.

§7.2 条件极值与 Lagrange 乘子法

有了切空间的准备,现在我们要对正规点推导带约束的优化问题的极值条件.我们首先考虑只有等式约束的情况:

$$\begin{aligned} & \min \quad f(x) \\ & \text{s.t.} \quad h(x) = 0, \\ & \quad x \in \Omega. \end{aligned} \tag{7.2}$$

设 x^* 是一个约束 h(x) = 0 一个正规点,同时也是函数 f 的一个在可行域中的极值点. 这一部分的目标是得到条件极值的一阶必要条件:

定理 7.2 (条件极值的一阶必要条件) 令 x^* 是一个 f 的满足约束 h(x) = 0 的正规极值点. 那么存在一个 $\lambda \in \mathbb{R}^m$ 使得

$$\nabla f(x^*) + \lambda^\mathsf{T} \nabla h(x^*) = 0.$$

一阶必要条件 $\nabla f(x^*) + \lambda^\mathsf{T} \nabla h(x^*) = 0$ 以及约束 $h(x^*) = 0$ 给出了 n + m 个等式以及包含 x^* , λ 在内的 n + m 个变量. 因此在非退化的情况下,他们给出了一个唯一解.

引入与这个约束问题对应的 Lagrange 函数:

$$l(x,\lambda) = f(x) + \lambda^{\mathsf{T}} h(x).$$

 λ 被称为 Lagrange 乘子. 必要条件可以被写作:

$$\nabla_x l(x,\lambda) = 0,$$

$$\nabla_\lambda l(x,\lambda) = 0.$$

这一个求解条件极值的方法会在大部分微积分课程中给出,我们这里的更重要的任务是给出这一方法的几何解释. 注意,定理 7.2 本质上在说, $\nabla f(x^*)$ 是 $\nabla h_i(x^*)$ 的线性组合,所以我们的目标就是得到这一事实。

假设 h(x) = 0 形成的曲面是 S,考虑正规极值点 $x^* \in S$. 我们任选一条曲线 x(t) 过 $x^* = x(0.5)$,那么,f(x(t)) 在 t = 0.5 处取得了极小值. 根据微积分的极值定理,我们有

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t))\bigg|_{t=0.5} = 0 \iff \nabla f(x^*)\dot{x}(0.5) = 0.$$

因此, $\nabla f(x^*)$ 和切向量 $\dot{x}(0.5)$ 正交,因为曲线 x(t) 是任意选取的,所以 $\nabla f(x^*)$ 也和切空间 $T_{x^*}(S)$ 正交.

现在,回忆定理 7.1,我们知道切空间 $T_{x*}(S) = M^{\perp}$,因此

$$\nabla f(x^*)^{\mathsf{T}} \in (M^{\perp})^{\perp} = M = \left\{ \sum_{i} \lambda_i \nabla h_i(x^*)^{\mathsf{T}} : \lambda_i \in \mathbb{R} \right\}.$$

换言之, $\nabla f(x^*)$ 是 $\nabla h_i(x^*)$ 的线性组合,这就证明了定理 7.2.

最后,作为应用,我们考虑一个例子.

例 7.5 (最大熵) 考虑一个离散的概率分布,其分布列为 $p_i = \Pr(X = x_i), i = 1, ..., n$. 该分布的熵为

$$\epsilon = -\sum_{i=1}^{n} p_i \log p_i.$$

该分布的均值为 $\sum_{i=1}^{n} x_i p_i$.

如果均值固定为 m, 求解使熵最大化的参数可以被转化成以下问题:

$$\max - \sum_{i=1}^{n} p_i \log p_i$$
s.t.
$$\sum_{i=1}^{n} p_i = 1,$$

$$\sum_{i=1}^{n} x_i p_i = m,$$

$$p_i \ge 0, \qquad i = 1, 2, \dots, n.$$

我们先忽略非负约束,假设这些约束不会被触发.引入两个 Lagrange 乘子, λ 和 μ ,则 Lagrange 函数为

$$l = \sum_{i=1}^{n} (-p_i \log p_i + \lambda p_i + \mu x_i p_i) - \lambda - \mu m.$$

由一阶必要条件, $-\log p_i - 1 + \lambda + \mu x_i = 0$,i = 1, 2, ..., n. 因此,

$$p_i = \exp((\lambda - 1) + \mu x_i), \quad i = 1, 2, ..., n.$$

注意 $p_i > 0$,所以非负约束确实没有被触发. Lagrange 乘子 λ 和 μ 是两个用来保证等式约束被满足的参数.

§7.3 Karush-Kuhn-Tucker 条件

现在加入不等式约束,考虑以下形式的问题:

min
$$f(x)$$

s.t. $h(x) = 0$, (7.3)
 $g(x) \le 0$.

假设 f 和 h 和前面一样,g 是一个 p 维的函数,f, h, $g \in C^1$. 我们推广正规点 x^* 的定义为:

定义 **7.4** (正规点) 考虑优化问题 (7.3), 点 x^* 被称为正规点, 如果

- 它满足约束: $h(x^*) = 0, g(x^*) \le 0$.
- 令 J 为满足 $g_j(x^*)=0$ 的下标 j 的集合(激活的约束). 那么,梯度向量 $\nabla h_i(x^*)$, $\nabla g_i(x^*)$, $1 \leq i \leq m$, $j \in J$ 是线性无关的.

换言之,此时的正规点不仅考虑等式约束,还要考虑起作用的或者说被激活的不等式约束,这些不等式约束相当于等式约束. 类似 Lagrange 乘子法,此时的一阶必要条件为:

定理 7.3 (Karush-Kuhn-Tucker 条件) 令 x^* 为优化问题 (7.3) 的正规极小值点,那么,存在向量 $\lambda \in \mathbb{R}^m$ 和向量 $\mu \in \mathbb{R}^p$ 且 $\mu \geq 0$ 使得

$$\nabla f(x^*) + \lambda^\mathsf{T} \nabla h(x^*) + \mu^\mathsf{T} \nabla g(x^*) = 0, \tag{7.4}$$

$$u^{\mathsf{T}}g(x^*) = 0. \tag{7.5}$$

证明. 首先,因为 $\mu \ge 0$ 且 $g(x^*) \le 0$,(7.5) 等价于: μ 的一个分量非零仅当对应的约束被激活(即取到等号). 这是一个互补松弛条件,即 $g(x^*)_i < 0$ 可得出 $\mu_i = 0$,以及 $\mu_i > 0$ 可得出 $g(x^*)_i = 0$.

设被激活的下标为 *J*. 因为 x^* 是约束集合上的一个极小点,它也是满足等式约束 $h(x) = 0, g_i(x) = 0, i \in J$ 的极小点. 因此,在新的等式约束问题中, x^* 的邻域中存在 Lagrange 乘子,满足一阶必要条件. 我们得出结论: 一阶必要条件 (7.4) 成立,且若 $g_i(x^*) \neq 0$,则 $\mu_i = 0$. (于是也有 (7.5) 成立)

现在还需要证明 $\mu \ge 0$. 用反证法,假设 $\mu_k < 0$ 对某个 $k \in J$ 成立. 设 S 为其他所有被激活的约束在 x^* 处定义的曲面, $M = T_{x^*}(S)$. 因为 x^* 是正规的,存在 $y \in M$ 且

 $\nabla g_k(x^*)y < 0$. 令 x(t) 为一条在 S 内且经过 x^* (此处 t = 0) 的曲线,且有 $\dot{x}(0) = y$. 则 对于充分小的 $t \ge 0$, x(t) 是可行的,由 (7.4) 以及 $y \in M$,

$$\frac{\mathrm{d}f(x(t))}{\mathrm{d}t}\bigg|_{t=0} = \nabla f(x^*)y$$

$$= -\lambda^{\mathsf{T}} \nabla h(x^*)y - \mu^{\mathsf{T}} \nabla g(x^*)y$$

$$= -\mu_k \nabla g_k(x^*)y < 0.$$

这与 x* 是极小点矛盾.

注. 这一证明具有很强的几何直观,关键在于找一个可行的方向使得函数值下降. 非常需要注意的是,这一证明并不能用于否证 $\mu_k > 0$. 此时需要取 $y \in M$ 使得 $\nabla g_k(x^*)y > 0$. 然而此时对应的 x(t) 不再可行,因为对充分小的 t > 0, $g_k(x(t)) > 0$,违背了约束的条件.

下面我们来看一个运用 KKT 条件的例子:

例 7.6 考虑问题

min
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$

s.t. $x_1^2 + x_2^2 \le 5$,
 $3x_1 + x_2 \le 6$.

KKT 条件为(注意,一阶必要条件还需要加入问题中的约束条件)

$$4x_1 + 2x_2 - 10 + 2\mu_1 x_1 + 3\mu_2 = 0,$$

$$2x_1 + 2x_2 - 10 + 2\mu_1 x_2 + \mu_2 = 0,$$

$$\mu_1(x_1^2 + x_2^2 - 5) = 0,$$

$$\mu_2(3x_1 + x_2 - 6) = 0,$$

$$\mu_i \ge 0, \quad i = 1, 2.$$

为了求解此类问题,我们假设一些约束被激活,然后检查所得出的 Lagrange 乘子的符号 正负. 在这个问题中,我们可以尝试假设有 0, 1, 2 个约束被激活.

假设第一个约束被激活,第二个约束没有被激活,得出等式

$$4x_1 + 2x_2 - 10 + 2\mu_1 x_1 = 0,$$

$$2x_1 + 2x_2 - 10 + 2\mu_1 x_2 = 0,$$

$$x_1^2 + x_2^2 = 5.$$

可得解 $x_1 = 1$, $x_2 = 2$, $\mu_1 = 1$.

由于 $3x_1 + x_2 = 5$,因此第二个约束也被满足了. 因此,因为 $\mu_1 > 0$,我们得出结论,这个解满足一阶必要条件.

§7.4 Lagrange 对偶

§7.4.1 Lagrange 定理

现在,我们不再假设函数可微,我们考虑极值点的零阶必要条件,首先考虑只有等式约束的情形:

$$\min f(x)$$
s.t. $h(x) = 0$, (7.6)
$$x \in \Omega$$
.

如果函数 f 是凸函数,m 维函数 h 是仿射的,并且集合 $\Omega \subseteq \mathbb{R}^n$ 是是凸的,那么这个规划问题是一个凸规划问题.

为了给这样的问题一个一阶必要条件,我们依然需要引入正规性条件. 此时正规性不再仅仅只对一个点,而是对仿射函数 h.

定义 7.5 (正规性条件) 一个仿射函数 h 关于集合 Ω 是正规的,指的是像集 $h(\Omega) = \{y : \exists x \in \Omega \ h(x) = y\}$ 包含 0 处的一个开球邻域. 也就是说, $h(\Omega)$ 包含一个形如 $\{y : ||y|| < \epsilon\}$ (对某个 $\epsilon > 0$) 的集合.

注. 这个条件是一阶正规点定义的推广. 如果 h 在点 x^* 有连续的导数,那么一阶正规性条件意味着 $\nabla h(x^*)$ 是满秩的,并且由隐函数定理可知存在一个 $\epsilon>0$ 使得对于任意满足 $\|y-h(x^*)\|<\epsilon$ 的 y,都有一个 x 使得 h(x)=y. 换言之,存在一个 $y^*=h(x^*)$ 周围的开球。

我们可以用 Lagrange 乘子来表述零阶必要条件:

定理 7.4 (零阶必要条件,等式约束情形) 假设 $\Omega \subseteq \mathbb{R}^n$ 是凸的,f 是 Ω 上的凸函数,h 是一个 Ω 上的 m 维仿射函数. 假设 h 是对于 Ω 正规的. 如果 x^* 是 (7.6) 的解,那么存在 $\lambda \in \mathbb{R}^m$ 使得 x^* 是以下 Lagrange 问题的解:

$$\min \quad f(x) + \lambda^{\mathsf{T}} h(x)$$

s.t. $x \in \Omega$.

这一定理证明的关键在于引入原始函数. 对应于问题(7.6) 的原始函数是:

$$\omega(y) = \inf\{f(x) : h(x) = y, x \in \Omega\}, y \in h(\Omega).$$

证明. (零阶必要条件的证明) $\Leftrightarrow f^* = f(x^*)$. 定义 $\mathbb{R}^m \times \mathbb{R}$ 内的集合 A 和 B 为:

$$A = \{(y,r) : r \ge \omega(y), y \in h(\Omega)\},\$$

$$B = \{(y,r) : r \le f^*, y = 0\}.$$

 $A \neq \omega$ 的上图, $B \neq f^*$ 向下延申并与原点对齐的垂线. $A \neq B$ 都是凸集. 他们唯一的公共点是 $(0,f^*)$. 由超平面分离定理可知,存在一个超平面分离 $A \neq B$. 这个超平面可以被表示成一个在 $\mathbb{R}^m \times \mathbb{R}$ 内的形如 (λ,s) , $\lambda \in \mathbb{R}^m$ 的非零向量,还有一个分离常数 c. 分离条件是

$$sr + \lambda^{\mathsf{T}} y \ge c$$
, $\forall (y, r) \in A$, $sr + \lambda^{\mathsf{T}} y \le c$, $\forall (y, r) \in B$.

这一过程的示意图见图 7.3.

图 7.3: 证明示意图.

注意到 $s\geq 0$,否则取 |r| 非常大的负数 r,点 $(r,0)\in B$ 违反第二个分离不等式. 几何上看,若 s=0,超平面将垂直. 我们来证明 $s\neq 0$. 假设 s=0,因为 s 和 λ 不能都是 0, $\lambda\neq 0$. 因为分离超平面必须包含点 $(f^*,0)$,从第二个分离不等式得 c=0. 由 h 的正规性,以 $0\in h(\Omega)$ 为中心的某个球包含在 $h(\Omega)$ 中,任取 y 属于这个开球. 第一个分离不等式左侧为 $\lambda^{\mathsf{T}}y$,它对于某些 y 来说是负的. 这违背第一个分离不等式. 因此 $s\neq 0$,继而 s>0.

不失一般性,可以假设 s=1. 假设 $x\in\Omega$. 那么 $(h(x),f(x))\in A$ 且 $(0,f(x^*))\in B$. 因此,由分离不等式可知,我们有

$$f(x) + \lambda^{\mathsf{T}} h(x) \ge f(x^*) = f(x^*) + \lambda^{\mathsf{T}} h(x^*).$$

因此 x* 是优化问题 (7.6) 解.

我们再考虑只有不等式约束的模型

$$\begin{aligned} & \min \quad f(x) \\ & \text{s.t.} \quad g(x) \leq 0, \\ & \quad x \in \Omega. \end{aligned} \tag{7.7}$$

其中, g 是一个 p 维的函数.

然后我们引入正规性条件. 对于不等式约束来说,正规性条件也被称为做 Slater 条件.

定义 7.6 (Slater 条件) 考虑优化问题 (7.7), 令

$$D = \{ z \in \mathbb{R}^p : \exists x \in \Omega \, g(x) \le z \}.$$

正规性条件 (Slater 条件) 为: 存在一个 $z' \in D$ 使得 z' < 0.

直观来说, Slater 条件指的是存在满足约束的内点.

类似地,我们可以用 Lagrange 乘子来表述零阶必要条件:

定理 7.5 (零阶必要条件,不等式情形) 假设 Ω 是一个 \mathbb{R}^n 的凸子集,且 f 和 g 是凸函数. 假设优化问题 (7.7) 满足正规性条件, x^* 是该问题的解,那么存在一个向量 $\mu \in \mathbb{R}^p$ 满足 $\mu \geq 0$ 使得 x^* 是下述 Lagrange 问题的解:

$$\min \quad f(x^*) + \mu^{\mathsf{T}} g(x)$$
s.t. $x \in \Omega$.

此外, $\mu^{\mathsf{T}}g(x^*)=0.$

这一定理的证明类似于定理 7.4 的证明. 首先还是引入原始函数. 问题 (7.7) 对应的原始函数为:

$$\omega(z) = \inf\{f(x) : g(x) \le z, x \in \Omega\}, z \in D.$$

图 7.4: 证明示意图.

证明. (证明概要) $\Leftrightarrow f^* = f(x^*)$. 在 $\mathbb{R}^p \times \mathbb{R}$ 内定义两个集合

$$A = \{(z,r) : r \ge \omega(z), z \in D\},$$

$$B = \{(z,r) : r \le f^*, z \le 0\}.$$

A 和 B 都是凸的. 证明依然是构造 A, B 的分离超平面,正规性条件保证了超平面不会是垂直的. 这个过程的示意见图图 7.4.

条件
$$\mu^{\mathsf{T}}g(x^*)=0$$
 是互补松弛条件,这一讨论类似 KKT 条件.

现在,我们考虑一般情形,

min
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \Omega$. (7.8)

组合以上两个零阶必要条件,我们得到一般情形的 Lagrange 定理.

定理 7.6 (Lagrange,零阶必要条件,混合情形) 假设 $\Omega \subseteq \mathbb{R}^n$ 是凸集. f 和 g 是一维和 p 维的凸函数,h 是维数为 m 的仿射函数. 假设 h 满足对于 Ω 的正规性条件,且 g 在 (7.8) 的可行域上满足正规性条件. 假设 x^* 是问题 (7.8) 的解. 那么存在向量 $\lambda \in \mathbb{R}^m$ 和 $\mu \in \mathbb{R}^p$ 满足 $\mu \geq 0$ 使得 x^* 是以下 Lagrange 问题的解:

$$\begin{aligned} & \min \quad f(x) + \lambda^\mathsf{T} h(x) + \mu^\mathsf{T} g(x) \\ & \textit{s.t.} \quad x \in \Omega. \end{aligned}$$

图 7.5: 纵截距的示意图.

此外, $\mu^{\mathsf{T}}g(x^*) = 0.$

[lhy: 举个例子]

§7.4.2 弱对偶定理,强对偶定理

Lagrange 定理有非常强的几何直观,这一直观最终导致了优化中的对偶理论. 先考虑不等式约束的情形:

min
$$f(x)$$

s.t. $g(x) \le 0$, (7.9)
 $x \in \Omega$.

 $\Omega \subseteq \mathbb{R}^n$ 是凸集,函数 f 和 g 定义在 Ω 上.函数 g 是 p 维的.

回忆原始函数的定义:

$$\omega(z) = \inf\{f(x) : g(x) \le z, x \in \Omega\}.$$

设 x^* 是 (7.9) 的解, $f^*=f(x^*)$,那么函数 $\omega(z)$ 与纵轴的交点是 f^* . 如果 (7.9) 没有解,那么 $f^*=\inf\{f(x):g(x)\leq 0,x\in\Omega\}$ 就是纵轴与 $\omega(z)$ 的交点. 考虑在 $\omega(z)$ 以下的超平面,关注其纵截距(见图图 7.5),我们用它产生对偶原理.

为了刻画超平面以及其纵截距,我们引入对偶函数. 在 $\mathbb{R}^p_{>0}$ 上定义对偶函数为:

$$\varphi(\mu) = \inf\{f(x) + \mu^{\mathsf{T}} g(x) : x \in \Omega\}.$$

定义其最大值为

$$\varphi^* = \sup \{ \varphi(\mu), \mu \ge 0 \}.$$

我们很容易可以证明以下定理:

图 7.6: 对偶间距的示意图.

定理 7.7 (弱对偶定理) $\varphi^* \leq f^*$.

证明. 对任意 $\mu \ge 0$ 我们有

$$\begin{split} \varphi(\mu) &= \inf \{ f(x) + \mu^{\mathsf{T}} g(x) : x \in \Omega \} \\ &\leq \inf \{ f(x) + \mu^{\mathsf{T}} g(x) : g(x) \leq 0, x \in \Omega \} \\ &\leq \inf \{ f(x) : g(x) \leq 0, x \in \Omega \} = f^*. \end{split}$$

由此, $\varphi^* \leq f^*$.

弱对偶定理也有非常几何的解释. 考虑向量 $(\mu,1) \in \mathbb{R}^p \times \mathbb{R}$, $\mu \geq 0$ 和一个常数 c. 关于 (z,r) 的方程 $(\mu,1)^\mathsf{T}(z,r) = r + \mu^\mathsf{T}z = c$ 定义了一个 $\mathbb{R}^p \times \mathbb{R}$ 内的超平面. 不同的 c 得到不同的超平面,他们都是平行的. 对于给定的 $(\mu,1)$ (即平行的超平面),选取一个最低的超平面,使得它刚刚碰到了原始函数上图边界. 假设 x_1 是这个触点,有 $r = f(x_1)$ 和 $z = g(x_1)$. 那么 $c = f(x_1) + \mu^\mathsf{T} g(x_1) = \varphi(\mu)$. 注意到此时 $c = \varphi(\mu)$ 就是截距,这就是 $\varphi(\mu)$ 的几何含义.

另一方面,求截距 c (对偶函数值) 的最大值 φ^* ,就是求位于原始函数之下的超平面的最大截距. 因此至少有 $\varphi^* \leq f^*$,差 $f^* - \varphi^*$ 被称为对偶问距. 这就是弱对偶定理,图示参见图 7.6.

图 7.7: 强对偶定理的示意图.

由此可以得到对偶性原理: 位于 ω 之下的超平面的最大截距等于刚刚碰到 ω 的超平面的最小截距.

如果原始函数 ω 是凸的,那么弱对偶定理可以被加强到强对偶定理,此时 φ^* 和 f^* 之间不再存在对偶间距,图 7.6 变成了图 7.7.

下面我们叙述并证明强对偶定理. 我们直接考虑一般的优化问题.

min
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \Omega$. (7.10)

其中,h是m维仿射函数,g是p维凸函数, $\Omega \subseteq \mathbb{R}^n$ 是凸集. 原始函数可以写作

$$\omega(y,z) = \inf\{f(x) : \exists x \in \Omega \ h(x) = y, g(x) \le z\}.$$

对偶函数定义为:

$$\varphi(\lambda, \mu) = \inf\{f(x) + \lambda^{\mathsf{T}} h(x) + \mu^{\mathsf{T}} g(x) : x \in \Omega\}.$$

它的最大值记为

$$\varphi^* = \sup \{ \varphi(\lambda, \mu) : \lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p, \mu \ge 0 \}.$$

	纸浆1	纸浆 2	纸浆 3	售价(万元/吨)
抽纸 A	0.25	0.50	0.25	12
抽纸 B	0.50	0.50		15
存量 (吨)	120	150	50	_

表 7.2: 抽纸纸浆价格存量表.

利用以上定义,我们可以表述强对偶定理如下:

定理 7.8 (强对偶定理) 在问题 (7.10) 中,假设 h 是对于 Ω 正规的,在可行域内 g 满足正规性条件. 假设 x^* 是问题 (7.10) 的解,设 $f(x^*) = f^*$. 那么对每个 λ 和 $\mu \ge 0$ 都有

$$\varphi(\lambda, \mu) \leq f^*$$
.

另外,存在 $\lambda, \mu \geq 0$ 使得

$$\varphi(\lambda, \mu) = f^*$$
.

因此 $\varphi^* = f^*$. 与此同时, λ, μ 是该问题的 Lagrange 乘子.

证明. 由 Lagrange 零阶条件定理(定理 7.6)可知:

$$f^* = \min\{f(x) + \lambda^\mathsf{T} h(x) + \mu^\mathsf{T} g(x) : x \in \Omega\}$$

= $\varphi(\lambda, \mu) \le \varphi^* \le f^*.$

因此, $\varphi^* = f^*$,并且取等号的 λ , μ 是 Lagrange 乘子.

从对偶原理我们可以写出对偶规划的一般形式:

原始问题 对偶问题 min
$$\omega(y,z)$$
 max $\varphi(\lambda,\mu)$ s.t. $y=0$, s.t. $\lambda \in \mathbb{R}^m$, $z \leq 0$.

作为例子,下面我们给一个对偶规划的经济学解释.

例 7.7 (线性规划的经济学解释) 表 7.2 描述了公司甲用纸浆生产抽纸的价格与存量表. 甲用 3 种纸浆混合成 2 种抽纸. 2 种抽纸应该如何配制, 使总价值最大?

设抽纸 A 和 B 分别配制 x_1 和 x_2 ,我们可以把甲的目标写成一个规划问题:

max
$$z = 12x_1 + 15x_2$$

s.t. $0.25x_1 + 0.50x_2 \le 120$,
 $0.50x_1 + 0.50x_2 \le 150$,
 $0.25x_1 \le 50$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

现在有一个公司乙需要这3种纸浆,打算向甲购买,应付出多少钱?

乙向甲购买 3 种纸浆,出价分别为每吨 y_1, y_2, y_3 万元. 希望总价格尽量小,但不能低于甲用纸浆生产抽纸所产生的价值,因此写出规划问题为:

min
$$w = 120y_1 + 150y_2 + 50y_3$$

s.t. $0.25y_1 + 0.50y_2 + 0.25y_3 \ge 12$,
 $0.50y_1 + 0.50y_2 \ge 15$,
 $y_1 \ge 0$,
 $y_2 \ge 0$,
 $y_3 \ge 0$.

注意到,以上两个规划问题恰好互为对偶问题.

§7.5 应用: 支持向量机 (SVM)

作为前面极值必要条件的一个具体应用,我们考虑一个经典的机器学习分类器: 支持向量机(SVM).

考虑二分类问题,输入 $x \in \mathbb{R}^n$,函数 f 输出一个 $\{-1,1\}$ 中的值. 二分类问题的学习问题指的是给定训练集 $\{(x_i,y_i)\}_{i=1}^N$,找到 f 使得 $f(x_i)=y_i$. 假设训练集是线性可分的,例如,存在某个 $w \in \mathbb{R}^n$ 和 $b \in \mathbb{R}$ 使得

$$f(x) = \begin{cases} 1, & w^{\mathsf{T}}x + b > 0, \\ -1, & w^{\mathsf{T}}x + b < 0. \end{cases}$$

学习问题的首要目标是找到正确的以及最优的 w 和 b. 本质上说,这就是一个找分离超平面的过程. 那么,什么才叫最优呢?从几何视角来看,一个自然的想法是最大化分离距离,即训练集中所有点到分离超平面的距离和的最小值,见图 7.8.

图 7.8: 分离距离示意图.

采样点 xi 到分离超平面的归一化距离为

$$\gamma_i = y_i \left(\left(\frac{w}{\|w\|_2} \right)^\mathsf{T} x + \frac{b}{\|w\|_2} \right).$$

 $\gamma = \min_i \gamma_i$ 是最小的归一化距离. 于是我们的任务变成了最大化 γ . 等价地,我们求解如下优化问题

$$\max_{w,b} \quad \gamma$$
s.t. $\gamma \leq \gamma_i, \quad i = 1, 2, ..., N.$

 $\gamma \leq \gamma_i$ 等价于

$$y_i\left(\left(\frac{w}{\gamma \|w\|_2}\right)^{\mathsf{T}} x + \frac{b}{\gamma \|w\|_2}\right) \ge 1.$$

简洁起见,把w替换成 $\frac{w}{\gamma||w||_2}$,把b替换成 $\frac{b}{\gamma||w||_2}$,我们有

$$y_i(w^\mathsf{T} x + b) \ge 1.$$

那么最大化 $\gamma = \frac{1}{\|w\|_2}$ 等价于最小化 $\|w\|_2^2$.

我们得到以下凸规划问题:

$$\min_{w,b} \quad \frac{1}{2} ||w||_2^2$$
s.t. $y_i(w^T x_i + b) \ge 1, \quad i = 1, 2, \dots, N.$

如何解决这个问题? 利用上面的对偶理论, 我们有如下步骤:

- 第一步,用 Lagrange 乘子法,转化成 Lagrange 问题(min-max).
- 第二步,写出对偶问题(max-min),验证强对偶定理的正规性条件,于是只需要求解对偶规划.
- 第三步,写出 KKT 条件,将对偶规划解为一个二次规划(min),用优化算法求解 二次规划.

第四部分

逻辑与博弈

第五部分

认知逻辑

第六部分

附录: 预备知识

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/word/information.
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.
- [KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.
- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.

- [Rob49] Robert M. Fano. The Transmission of Information. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.
- [Tin62] Hu Kuo Ting. On the Amount of Information. *Theory of Probability & Its Applications*, 7(4):439–447, January 1962.
- [Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.
- [李10] 李贤平. 概率论基础. 高等教育出版社, 2010.

索引

Karush-Kuhn-Tucker 条件, 143 Lagrange 乘子, 141 Lagrange 定理, 148 Slater 条件, 147 SVM, 153 一阶必要条件,141,143 光滑曲面,137 凸规划问题,145 分离超平面,153 分离距离,153 切向量,138 切空间, 137, 138 原始函数, 146, 147, 151 可行解,135 对偶函数, 149, 151 对偶性,135 对偶理论, 135, 149 对偶间距, 150 弱对偶定理,150 支持向量机,153 曲线,137 可微~,138 ~的导数,137

最优解,135

正规性条件, 145, 147 正规点, 140, 143 正规点切空间刻画定理, 140 秩定理, 141 线性空间, 138 零阶必要条件, 145, 147, 148