2023년 4월 (1)차 회의록									
팀번호	6	6 주제명 Rocker bogie mechanism 기반 야외 배달용 로봇 개발							
지도교수			(인)	회의일시	2023년	3월 31	일		
참석팀원 송종헌, 김민재, 석영선, 김강현									

- 발표내용

3월 24일 날 진행된 캡스톤디자인 1차 발표에서 나온 피드백을 바탕으로 회의가 진행됨. 그때 나온 피드백으로는 한 축 제어의 가능여부, 조향문제, 라이다 센서의 위치, 구체화 된 설계 필요, 전복조건을 고려할 때 마찰력과 턱 넘을때의 토크 반 영등이 있었음. 이것들을 고려하여 먼저

- 조향문제 → 실무게 테스터 모델을 이용하여 로커보기의 바퀴구조에도 선회 조 향이 잘 되나 테스트 진행
- 구체화 된 설계 필요 → 솔리드웍스를 이용하여 우리 로봇만의 구조 설계

회의 내용

및 설계 장료조사

설계

• 전복조건을 고려할 때 마찰력과 턱 넘을때의 토크 반영 → 바퀴의 마찰력 반영 방법 공부

를 진행하기로 함.

- 진행 상황 및 계획

테스터 모델 몸체 설계 완료. 회로 및 제어 완성 후 조향문제 여부 파악 예정 대략적인 야외 배달용 로봇 설계 완료. 링크 길이 및 전체적인 크기는 계산 및 실 험을 통하여 구한 다음 수정 예정

- 교수님 피드백 및 과제

중요하게 검토해야 할 설계 변수들을 더 고려해보고 자료들을 조금 더 조사해 본 후 link의 길이, 바퀴의 크기 등 관계식을 찾아보기

평가	평가항목		학습성과	1점	2점	3점		4점	5	점		
	진척도 (계획대비 진척도)		PO4	계획대비 0~30%	계획대비 30~50%	계획대 50~70		계획대비 70~90%		부대비 100%		
	의사소통능력 (진행상황설명능력)		PO7	팀원>20% 설명가능	팀원>40% 설명가능	팀원>6 설명가		팀원>80% 설명가능		l100% 녕가능		
	설계내용 (설계내용타당성)		PO3	매우 미흡함	다소 미흡함	추가검 필요		타당함		배우 당함		
	공학지식 ((공학적 지 응용도)	식의	PO1	매우낮음 0~30%	다소낮음 30~50%	보통 50~70	다소높음 70~90%		매우 높음 90~100%			
	합계											
3월	3월 (발표)	4월	4월	4월 (발표)	5월	5월	9월	9월 (발표)	10월	11월 (발표)		
계획수	^{누립} 개념	구체화	상세	상세	최종	부품	제작및	조립및	작품	최종		

설계 설계 설계 제작 조립 동작 동작 심사