FIFA WC TWEETS SENTIMENT ANALYSIS

2022

Enrique Ulises Báez Gómez Tagle

Master's in Data Science – NLP Final Project

~25k tweets from Day 1 (Qatar 2022)

Analyze public sentiment on Twitter during FIFA World Cup 2022 using classical ML, deep learning, and Transformers.

Motivation & Problem

Why this matters?

- Twitter is a live global "sensor" of fan emotions.
- Sentiment informs media, sponsors, and organizers about engagement.
- NLP challenges: short, noisy, multilingual, sarcastic text.

Task: classify tweets into positive / neutral / negative.

Research Background

8,489

Positive (37.7%)

Dataset Overview

8,251

Neutral (36.6%)

5,784

Negative (25.7%)

22,524

tweets after cleaning

Imbalance Ratio = 1.47 < 1.5); no resampling

Preprocessing Pipeline

vectorization/embedding

Model Families

Traditional ML (TF-IDF features)

- 1. Logistic Regression
- Linear SVM
- 3. Random Forest

Deep (Learning (GloVe embeddings)

- 1. CNN (SE + Attention)
- 2. BiLSTM + Attention

Transformers (RoBERTa)

- Frozen feature extractor → LR / SVM heads
- Fine-tuned end-to-end classifier
- 3. Ensembles: weighted and majority (fixed tie-breaker)

Overall Performance

Overall Performance

Model	Accuracy	Precision	Recall	F1
RoBERTa fine-tuned (twitter-roberta-base-sentiment-latest)	0.897800	0.897500	0.901100	0.899000
RoBERTa feature extractor (LogReg head)	0.886900	0.889200	0.889000	0.889100
RoBERTa feature extractor (LinearSVC head)	0.884200	0.886700	0.886100	0.886300
Ensemble (Weighted Voting)	0.814200	0.811800	0.818900	0.814400
Ensemble (Majority Voting)	0.814200	0.811800	0.818900	0.814400
CNN (Twitter SE+Attn)	0.767900	0.766500	0.772300	0.768400
BiLSTM+Attention (GloVe-Twitter)	0.767000	0.764900	0.772500	0.767300
Logistic Regression (TF-IDF)	0.706800	0.705000	0.711900	0.707800
LinearSVC (TF-IDF)	0.698600	0.700100	0.699000	0.699400
RandomForest (TF-IDF)	0.677300	0.686900	0.671900	0.677400

Per-Class Performance

Where errors happen

- Most confusions: neutral ↔ positive.
- **Negative** is well **separated** (high precision & recall).
- Neutral remains the hardest boundary.

Model Behavior & Representation

Model Behavior & Representation

Discrimination quality

- RoBERTa shows strong separability (high AUC).
- PR curves confirm robust precision/recall trade-offs.
- Indicates effective contextual encoding for sentiment polarity.

Discussion: Insights

What I learned

- RoBERTa outperformed classical ML models by +19 pp and deep learning models by +13 pp in macro-F1.
- Contextual pretraining handles slang/sarcasm better than GloVe.
- TF-IDF remains a fast, strong baseline for low compute.
- Neutral is the main ambiguity; data near the boundary drives errors.

Limitations & Future Work

Limitations

- **Temporal scope:** only Day 1 of World Cup.
- **English-only** subset (no multilingual coverage).
- Limited GPU: single-GPU training prevented multi-seed runs, longer sequences, or large backbones

Future Work

- Cross-domain evaluation: other days, clubs, or sports.
- **Cross-lingual robustness**: XLM-T, mDeBERTa, multilingual RoBERTa.
- Larger or instruction-tuned transformers: zero/few-shot setups.
- Neutral-class refinement.

Conclusions & Takeaways

- Transformers dominate on context-rich tweet sentiment.
- RoBERTa fine-tuned: Macro-F1 = 0.899 (best).
- GloVe + LSTM/CNN $\approx 0.76 \rightarrow$ solid mid-tier trade-off.
- TF-IDF $\approx 0.70 \rightarrow$ fast baselines for constrained compute.

Takeaway: Context is king for Twitter sentiment.

GitHub

https://github.com/enriquegomeztagle/MCD-NLP-SentimentAnalysisOfFIFATweets-FinalProject.git

"We Are 26"

Thanks!

