

ÉWICZENIE53

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa Ohma dla prądu przemiennego dla układu złożonego z opornika, cewki indukcyjnej i kondensatora.

Zagadnienia: prąd przemienny, prawo Ohma, zawada, reaktancja pojemnościowa i indukcyjna.

1 Wprowadzenie

Jak pamiętamy, prądem nazywamy uporządkowany przepływ ładunków elektrycznych. Prąd w obwodzie zawierającym opornik o oporze R, cewkę o indukcyjności własnej L oraz kondensator o pojemności C (obwód RLC) nie będzie zanikać, jeśli zewnętrzne źródło SEM dostarczy dostatecznie dużo energii, aby uzupełnić straty spowodowane rozpraszaniem energii np. w oporniku R. W większości krajów energia (elektryczna) jest dostarczana do odbiorcy przy użyciu napięć i natężeń prądu, zmieniających się w czasie — taki prąd nazywamy prądem przemiennym (lub potocznie zmiennym) (w skrócie AC od ang. alternating current). W odróżnieniu od powyższego prąd wytwarzany w baterii nie zmienia się w dostatecznie krótkim czasie – nazywamy go prądem stałym (DC od ang. direct current).

Te zmienne napięcia i natężenia prądu zależą sinusoidalnie od czasu, zmieniając kierunek przepływu (w Europie 100 razy na sekundę, co odpowiada częstości 50 Hz).

1.1 Obciążenie oporowe

Załóżmy, że nasz obwód składa się początkowo ze źródła SEM (generator, prądnica):

$$\mathcal{E} = \mathcal{E}_{max} \sin \omega t = \mathcal{E}_{max} \sin(2\pi f \cdot t) \tag{1}$$

 $(\omega$ – częstość kołowa, f – częstotliwość) oraz opornika o oporze R – Rys. 1. Zgodnie z prawem Kirchhoffa ($\mathcal{E}-U_R=0$) spadek napięcia na oporniku w tym przypadku wynosi:

$$U_R = \mathcal{E}_{max} \sin(2\pi f \cdot t) = U_{Rmax} \left(\sin 2\pi f \cdot t\right)$$
(2)

Korzystając z zależności definiującej nam opór R = U/I, możemy zapisać wyrażenie na prąd płynący przez opornik:

$$I_R = I_{R\max} \sin(2\pi f \cdot t - \varphi) \tag{3}$$

 $I_{\rm Rmax}$ jest amplitudą natężenia prądu $I_{\rm R}$ (jego maksymalną wartością) płynącego przez opornik, φ jest tzw. fazą początkową. W przypadku obciążenia oporowego $\varphi=0$, czyli prąd i napięcie są w tej samej fazie (prąd i napięcie maksymalne wartości osiągają w tej chwili – patrz Rys. 2).

Rys. 1 Układ prądu przemiennego zawierający opornik *R*.

Rys. 2 Zależności *I*(*t*) i *U*(*t*) dla układu zawierającego opornik *R*.

1.2 Obciążenie pojemnościowe (reaktancja pojemnościowa)

Na rysunku 3 przedstawiono obwód, składający się ze źródła prądu zmiennego o SEM (wyrażonej wzorem (1)) oraz kondensatora o pojemności *C.* Stosując drugie prawo Kirchhoffa znajdujemy napięcie na okładkach kondensatora:

$$U_C = U_{Cmax} \sin(2\pi f \cdot t) \tag{4}$$

Z definicji pojemności $q_{\rm C}$ = $CU_{\rm C}$ oraz wyrażenia na prąd $I_{\rm C}$ = ${\rm d}q_{\rm C}/{\rm dt}$ wyznaczamy prąd

$$I_C = \frac{U_{Cmax}}{X_C} \sin(2\pi f \cdot t + 90^\circ) = I_{Cmax} \sin(2\pi f \cdot t - \varphi)$$
 (5)

gdzie

$$X_C = \frac{1}{2\pi f \cdot C} \tag{6}$$

jest tzw. **reaktancją pojemnościową**. Widzimy, że dla czysto pojemnościowego obciążenia faza początkowa natężenia prądu jest równa -90°. Wielkości U_C i I_C są przesunięte w fazie o 90°, co odpowiada jednej czwartej okresu – I_C wyprzedza U_C , więc I_C osiąga maksimum ćwierć okresu przed U_C (patrz Rys. 4).

Rys. 3 Układ prądu przemiennego zawierający kondensator C.

Rys. 4 Zależności I(t) i U(t) dla układu zawierającego kondensator C.

1.3 Obciążenie indukcyjne (reaktancja indukcyjna)

Obwód składający się ze źródła prądu zmiennego o SEM (wyrażonej wzorem (1)) oraz cewki o indukcyjności L przedstawia Rys. 5. Napięcie na cewce opisujemy zależnością:

$$U_L = U_{Lmax} \left(\sin 2\pi f \cdot t \right) \tag{7}$$

Można pokazać, że natężenie prądu płynącego przez cewkę ma postać:

$$I_L = \frac{U_{Lmax}}{X_L} \sin(2\pi f \cdot t - 90^\circ) = I_{Lmax} \sin(2\pi f \cdot t - \varphi)$$
 (8)

gdzie

$$X_L = 2\pi f \cdot L \tag{9}$$

to tzw. reaktancja indukcyjna. W przypadku czysto indukcyjnego obciążenia faza początkowa

Rys. 5 Układ prądu przemiennego zawierający cewkę o indukcyjności *L*.

Rys. 6 Zależności I(t) i U(t) dla układu zawierającego cewkę o indukcyjności L.

natężenia prądu jest równa +90°. Wielkości $I_{\rm L}$ i $U_{\rm L}$ są więc przesunięte w fazie o 90°. W tym jednak przypadku $I_{\rm L}$ opóźnia się w stosunku do $U_{\rm L}$ – czyli $I_{\rm L}$ osiąga maksimum ćwierć okresu po $U_{\rm L}$ (patrz Rys. 6).

1.4 Obwód szeregowy RLC

Połączmy teraz wszystkie elementy R, L i C w jednym obwodzie zasilanym źródłem prądu zmiennego SEM (równanie (1)) – obwód RLC (patrz Rys. 7). Prąd płynący przez układ będzie zmieniał się w czasie zgodnie z równaniem:

$$I = I_{\text{max}} \sin(2\pi f \cdot t - \varphi) \tag{10}$$

Ponieważ nie będziemy badać zmian prądu w czasie, do dalszych rozważań konieczne jest wyznaczenie tylko wartości $I_{\rm max}$. Biorąc pod uwagę wpływ wszystkich elementów układu na prąd w nim płynący dostajemy:

$$I_{\rm max} = \varepsilon_{max}/\sqrt{R^2 + (X_L - X_C)^2} = \varepsilon_{max}/Z$$

gdzie R jest wartością oporu występującego w układzie (może to być opór zastępczy wszystkich elementów obwodu), X_L jest reaktancją indukcyjną (równanie (9)) a X_C reaktancją pojemnościową (równanie (6)). Z nazywamy **zawadą** (lub impedancją) obwodu

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (12)

Przypomnijmy sobie, że wprowadzenie do obwodu prądu zmiennego kondensatora lub cewki (a także obydwu elementów naraz) powoduje, że maksima napięcia i prądu występują w różnych chwilach czasu (faza początkowa $\varphi \neq 0$). W związku z tym prawo Ohma w

Rys. 7 Obwód szeregowy RLC.

postaci jaką znamy dla prądu stałego nie może być spełnione. Dla prądu przemiennego podobną zależność możemy zapisać biorąc pod uwagę maksymalne amplitudy napięcia i prądu

$$I_{\text{max}} = \mathcal{E}_{\text{max}}/Z \tag{13}$$

równanie to możemy nazwać prawem Ohma dla prądu przemiennego.

Prąd przemienny (sinusoidalny) można scharakteryzować przez tzw. **wartość skuteczną**. Prąd przemienny o natężeniu skutecznym $I_{\rm sk}=I_{\rm max}/\sqrt{2}$ wytwarza w czasie T tyle ciepła co prąd stały o takim samym natężeniu. Analogicznie określa się napięcie skuteczne $U_{\rm sk}={\epsilon_{\rm max}}/\sqrt{2}$. Oznacza to także fakt, że maksymalne napięcie, które możemy spotkać w standardowym gniazdku elektrycznym w naszym mieszkaniu to ponad 325V, ponieważ pamiętana przez wszystkich wartość 230V jest właśnie wartością skuteczną.

Prawo Ohma dla prądu przemiennego (równanie (13)) możemy przepisać używając zamiast wartości maksymalnych amplitud napięcia i prądu ich wartości skutecznych.

2 Zasada pomiaru

2.1 Wyznaczanie pojemności kondensatora

Do wyznaczenia pojemności kondensatora możemy zastosować układ przedstawiony na Rys. 8 – układ RC, w którym znana jest wartość obciążenia R natomiast pojemność C jest nieznana. Podłączony do układu generator jest źródłem sinusoidalnie zmieniającej się SEM. Na generatorze ustalamy żądaną częstotliwość f. Amplitudę napięcia podawanego przez generator mierzymy woltomierzem V. Amplituda prądu w układzie wyznaczana jest przez miliamperomierz mA. Dla ustalonej częstotliwości f dokonujemy pomiaru prądu $I_{\rm sk}$ w zależności od napięcia podawanego przez generator $U_{\rm sk}$ dla wcześniej określonego przedziału napięć.

Rys. 8 Układ pomiarowy do wyznaczenia zawady obwodu *RC*.

Rys. 9 Przykład zależności napięcia od natężenia prądu.

Zmierzoną zależność przedstawiamy na wykresie, przy czym dla wygody późniejszych obliczeń rysujemy wykres $U_{\rm sk}(I_{\rm sk})$ – patrz Rys. 9. Spodziewamy się zależności liniowej pomiędzy napięciem a prądem, stąd stosując metodę regresji liniowej wyznaczamy współczynnik $Z_{\rm C}$ z równania $U_{\rm sk}=Z_{\rm C}~I_{\rm sk}$, który jest zawadą rozpatrywanego układu RC. Ze wzorów (12) i (6) możemy wyprowadzić zależność na pojemność kondensatora

$$C = \frac{1}{2\pi f \sqrt{Z_C^2 - R^2}} \tag{14}$$

Aby określić dokładność wyznaczenia pojemności wyznaczamy niepewność złożoną $u_c(C)$ – patrz dodatek.

2.2 Wyznaczanie indukcyjności cewki

Układ do wyznaczania indukcyjności cewki przedstawia Rys. 10 – układ RL. W układzie znana jest wartość obciążenia R oraz opór wewnętrzny cewki R_L . Podobnie jak poprzednio dla ustalonej częstotliwości f dokonujemy pomiaru prądu $I_{\rm sk}$ w zależności od napięcia podawanego przez generator $U_{\rm sk}$ dla wcześniej określonego przedziału napięć. Zmierzoną zależność przedstawiamy na wykresie $U_{\rm sk}(I_{\rm sk})$. Stosując metodę regresji liniowej wyznaczamy współczynnik Z_L z równania $U_{\rm sk} = Z_L I_{\rm sk}$, który jest zawadą rozpatrywanego układu RL. Ze wzorów (12) i (9) możemy wyprowadzić zależność na indukcyjność cewki

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} \tag{15}$$

Dokładność wyznaczenia pojemności wyznaczamy jako niepewność złożoną $u_{\rm c}(L)$ – patrz dodatek.

Rys. 10 Układ pomiarowy do wyznaczenia zawady obwodu *RL*.

Rys. 11 Układ pomiarowy do wyznaczenia zawady obwodu *RLC*.

2.3 Sprawdzenie słuszności prawa Ohma dla prądu przemiennego

Przykładowy schemat układu do wyznaczenia zawady obwodu szeregowego RLC przedstawia Rys. 11. Zawadę (oznaczmy ją jako Z_1) wyznaczamy (podobnie jak w poprzednich

przypadkach), metodą regresji liniowej, z zależności $U_{\rm sk}(I_{\rm sk})$. Z drugiej strony, zgodnie z (12) zawada (oznaczmy ją jako Z_2) powinna być równa

$$Z_2 = \sqrt{(R + R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}$$
 (16)

Dokładność wyznaczenia pojemności wyznaczamy jako niepewność złożoną $u_{\rm c}(Z_2)$ – patrz dodatek.

Jeżeli prawo Ohma dla prądu przemiennego jest słuszne to Z_1 i Z_2 z dokładnością do niepewności ich wyznaczenia powinny być sobie równe.

3 Zadania do wykonania

3.1 Pomiary

Wybrać elementy R, L i C obwodów oraz ustalić na generatorze częstotliwość f (odpowiednią dla wybranych elementów L i C). Dla obwodów szeregowych RC, RL i RLC (przedstawionych na schematach 8, 10 i 11) wykonać pomiary prądu $I_{\rm sk}$ w zależności od napięcia $U_{\rm sk}$ dla określonego przedziału napięć (np. w zakresie 0 – 20 V, dla kilku – kilkunastu wartości napięcia).

3.2 Opracowanie wyników

- a) Dla wszystkich badanych obwodów wykonać wykresy punktowe $U_{\rm sk}(I_{\rm sk})$.
- b) Metodą regresji liniowej określić współczynniki kierunkowe odpowiednich zależności liniowych. Określić wartości $Z_{\rm C}$, $Z_{\rm L}$ oraz $Z_{\rm 1}$ oraz ich niepewności (jako niepewności współczynników kierunkowych prostych).
- c) Uzupełnić wykresy o linie odpowiadające wyznaczonym zależnościom: $U_{sk}=Z_CI_{sk}$, $U_{sk}=Z_CI_{sk}$ oraz $U_{sk}=Z_1I_{sk}$.
- d) Dla szeregowego obwodu RC, z zależności (14) wyznaczyć pojemność C oraz jej niepewność $u_c(C)$.
- e) Dla szeregowego obwodu RL, z zależności (15) wyznaczyć indukcyjność L oraz jej niepewność $u_c(L)$.
- f) Dla szeregowego obwodu RLC, z zależności (16) wyznaczyć zawadę Z_2 oraz jej niepewność $u_c(Z_2)$. Porównać wielkości Z_1 i Z_2 . Skomentować prawdziwość prawa Ohma dla prądu przemiennego.

4 Pytania

- 1. Jaki prąd nazywamy prądem przemiennym? Opisz równaniem i przedstaw na wykresie.
- 2. Podaj definicję wartości skutecznych natężenia prądu i napięcia.
- 3. Jak zmienia się w czasie napięcie na kondensatorze i prąd ładujący lub rozładowujący kondensator w szeregowym obwodzie *RC*? Zdefiniuj reaktancję pojemnościową.
- 4. Jak zmienia się w czasie napięcie na cewce i prąd płynący przez cewkę w szeregowym obwodzie *RL*? Zdefiniuj reaktancję indukcyjną.
- 5. Napisać prawo Ohma dla prądu przemiennego dla szeregowego obwodu *RLC*. Napisać wzór na zawadę; rozważyć przypadki, gdy w obwodzie brak jest jednego z elementów *RLC*.
- 6. Jaka siła elektromotoryczna indukuje się w cewce? Czy potrafisz nazwać prawo fizyczne opisujące to zjawisko? Opisz zjawisko samoindukcji.
- 7. Przedstaw układy do wyznaczenia:
 - pojemności kondensatora w układzie RC,
 - indukcyjności cewki w układzie RL.
- 8. Jak doświadczalnie sprawdzamy słuszność prawa Ohma dla prądu przemiennego dla szeregowego obwodu *RLC*?
- 9. Za pomocą jakich metod będzie przeprowadzona analiza niepewności pomiarowych zmierzonych wielkości fizycznych?

5 Dodatek - przydatne wzory

a) niepewność wyznaczonej pojemności (wzór (14))

$$\frac{\partial C}{\partial f} = -\frac{1}{2\pi f^2 \sqrt{Z_C^2 - R^2}},$$

$$\frac{\partial C}{\partial Z_C} = -\frac{Z_C}{2\pi f (Z_C^2 - R^2)^{3/2}}$$

$$\frac{\partial C}{\partial R} = \frac{R}{2\pi f (Z_C^2 - R^2)^{3/2}}.$$

b) niepewność wyznaczonej indukcyjności (wzór (15))

$$\frac{\partial L}{\partial f} = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f^2},$$

$$\frac{\partial L}{\partial Z_L} = \frac{Z_L}{2\pi f \sqrt{Z_L^2 - (R + R_L)^2}},$$

$$\frac{\partial L}{\partial R} = \frac{\partial L}{\partial R_L} = -\frac{(R+R_L)}{2\pi f \sqrt{Z_L^2 - (R+R_L)^2}}.$$

c) niepewność wyznaczonej zawady (wzór (16))
$$\frac{\partial Z_2}{\partial R} = \frac{\partial Z_2}{\partial R_L} = \frac{(R+R_L)}{\sqrt{(R+R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}},$$

$$\frac{\partial Z_2}{\partial f} = \frac{\left(2\pi L + \frac{1}{2\pi f^2 C}\right) \left(2\pi f L - \frac{1}{2\pi f C}\right)}{\sqrt{(R + R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}},$$

$$\frac{\partial Z_2}{\partial L} = \frac{2\pi f \left(2\pi f L - \frac{1}{2\pi f C}\right)}{\sqrt{(R + R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}},$$

$$\frac{\partial Z_2}{\partial C} = \frac{\left(2\pi f L - \frac{1}{2\pi f C}\right)}{\left(2\pi f C^2 \sqrt{(R + R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}\right)}.$$

Autorzy

dr Kazimierz Sierański dr Piotr Sitarek