Part I

复变函数

1 复变函数

1.1 复数及其运算规则

复数的引入

考虑二次方程

$$Ax^2 + Bx + C = 0,$$

其通解为

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$

当 $4AC > B^2$ 时, 便会出现复数

$$x = \frac{-B \pm i\sqrt{4AC - B^2}}{2A}.$$

虚单位

$$i^2 = -1 \tag{1}$$

为 -1 的平方根中的一个, 称为虚单位.

复数 z = x + iy 定义为满足以下运算规则的一对有序实数 (x, y):

加法
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$
 (2a)

乘法
$$(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$
 (2b)

复数域 所有复数的集合, 记为 ℃.

实部 $\operatorname{Re} z = x$.

虚部 Imz = y.

相等

$$z = 0 \Longleftrightarrow x = y = 0, (3a)$$

$$z_1 = z_2 \Longleftrightarrow x_1 = x_2 \& y_1 = y_2. \tag{3b}$$

代数运算

作为代数,复数运算遵从一般的代数运算规则

- 1. 加法交換律 $z_1 + z_2 = z_2 + z_1$,
- 2. 加法结合律 $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$,
- 3. 乘法交换律 $z_1z_2 = z_2z_1$,
- 4. 乘法结合律 $z_1(z_2z_3) = (z_1z_2)z_3$,
- 5. 乘法对加法的分配律 $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$.

代数运算举例 将复数看成是 i 的一次式, 加上复数虚单位 i 的性质 (1) 即可完全确定复数的运算.

1. 加法 (减法)

$$z_1 \pm z_2 = (x_1 + iy_1) \pm (x_2 + iy_2)$$

= $(x_1 \pm x_2) + i(y_1 \pm y_2).$ (4)

2. 乘法

$$z_1 z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2)$$

= $(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$ (5)

3. 除法 $(z_2 \neq 0)$

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2}
= \frac{x_1 + iy_1}{x_2 + iy_2} \cdot \frac{x_2 - iy_2}{x_2 - iy_2}
= \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2},$$
(6)

其中 $x_2 - iy_2$ 为 $z_2 = x_2 + iy_2$ 的复共扼.

Example 1.1 $\stackrel{?}{\times} w = \sqrt{z}$, $\stackrel{\text{pr}}{w} w^2 = z$.

复数的平方根 设 z = a + ib, w = x + iy, 满足

$$(x + iy)^2 = a + ib.$$

即

$$(x^2 - y^2) + i(2xy) = a + ib.$$

必须

$$x^2 - y^2 = a,$$
$$2xy = b.$$

解得 $(b \ge 0)$

$$w = \pm \left(\sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} + i\sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}} \right),$$

或 (b < 0)

$$w = \pm \left(\sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} - i\sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}} \right).$$

Example 1.2 R = 1.2 R = 1.2

Solution 令 $z^2 = w$. 则 $w^2 = -i$. 代入公式, 令 a = 0 及 b = -1

$$w = \pm \left(\frac{1}{\sqrt{2}} - \frac{\mathrm{i}}{\sqrt{2}}\right).$$

先考虑方程 $z^2=(1-\mathrm{i})/\sqrt{2}$. 同样, 代入公式, 令 $a=1/\sqrt{2}$ 及 $b=-1/\sqrt{2}$, 得两解

$$z = \pm \left(\frac{\sqrt{1+\sqrt{2}}}{2^{3/4}} - i \frac{\sqrt{-1+\sqrt{2}}}{2^{3/4}} \right).$$

另两解为

$$z = \pm \left(\frac{\sqrt{-1 + \sqrt{2}}}{2^{3/4}} + i \frac{\sqrt{1 + \sqrt{2}}}{2^{3/4}} \right).$$

Theorem 1.1 设 z 为复数. 则总存在另一复数 w 为其平方根, 使得 $w^2=z$. Note -w 为其另一个平方根.

Theorem 1.2 (代数基本定理) 任一n 次(复数)多项式(n>0)都有一个复数根.

1.2 复数的几何表示

复数的几何表示

一个复数可用复平面 (也用 ℂ 表示) 上的一个点表示. 还可以表示为复平面的一个矢量.

复数不能比较大小

实数域是有序域

有序域 = $\{0, 正数, 负数\}$.

正正得正,可得,

 $\forall a \in \text{ ff } \forall a, \quad a^2 = a \cdot a > 0$

但复数域 \mathbb{C} 有 $i^2 = -1$.

复数加法的几何意义

根据复数的加法规则, 可以看出复数加法的几何意义: 矢量相加的平行四边形法则.

直角坐标 (x,y) 到极坐标 (r,θ)

直角坐标 (x,y) 到极坐标 (r,θ) (cont.)

$$z = x + iy = r(\cos\theta + i\sin\theta). \tag{8}$$

模 $|z|=r=\sqrt{x^2+y^2},$

辐角 $\arg z = \theta$.

辐角的多值性

$$\theta = \theta_p + 2\pi k$$
 $(k = 0, \pm 1, \pm 2, ...)$

主辐角 θ_p 为辐角的主值 $(-\pi < \theta_p \le \pi)$.

Example 1.3 把下列关系用几何图形表示出来

1. arg(1-z) = 0,

2.
$$arg(1+z) = \frac{\pi}{3}$$
,

3.
$$\arg(z+1-i) = \frac{\pi}{2}$$
.

等式的几何表示 复数 z = x + iy 代表复平面上的一点,复数的一个等式关系则通常代表复平面上的一段曲线.

1. 1-z 为复平面上两矢量 1 和 z 之差, 1-z 沿 x 轴, 所以 z 应在 x 轴上且小于 1.

2. 1+z 则为复平面上两矢量 z 和 -1 之差, 1+z 辐角 60° , 为 -1 点引出的一条射线.

3. z+1-i 为 z 与 -1+i 之差, 所以为由 -1+i 引出平行 y 轴的一条射线.

复共扼

复共扼

$$z^* = (x + iy)^* = x - iy. (9)$$

复共扼是一个相互关系

$$(z^*)^* = z. (10)$$

显然

$$(z_1 + z_2)^* = z_1^* + z_2^*, (11a)$$

$$(z_1 z_2)^* = z_1^* z_2^*, (11b)$$

$$\left(\frac{z_1}{z_2}\right)^* = \frac{z_1^*}{z_2^*}.\tag{11c}$$

复共扼 z* 的几何表示

如图

$$\arg z = -\arg z^*. \tag{12}$$

我们有

$$z \cdot z^* = (x + iy)(x - iy) = x^2 + y^2 = |z|^2, \tag{13}$$

以及

$$z^{-1} = \frac{z^*}{|z|^2}. (14)$$

复数相乘

$$z_1 z_2 = r_1(\cos \theta_1 + i \sin \theta_1) r_2(\cos \theta_2 + i \sin \theta_2)$$

= $r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$ (15)

Theorem 1.3 (复数乘法)

$$|z_1 z_2| = r_1 r_2 = |z_1||z_2|, (16)$$

$$\arg(z_1 z_2) = \theta_1 + \theta_2 = \arg z_1 + \arg z_2. \tag{17}$$

Note 复数辐角可相差 2π 的整数倍.

复数相除

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]. \tag{18}$$

Theorem 1.4 (复数除法)

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|},\tag{19}$$

$$|z_2| |z_2|'$$

$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2. \tag{20}$$

复数乘法的几何表示

如图,两个阴影三角形为相似三角形.

De Moivre 定理 (棣美佛 1667 — 1754)

几个复数相乘时

$$z_1 z_2 \cdots z_n = r_1 r_2 \cdots r_n [\cos(\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin(\theta_1 + \theta_2 + \cdots + \theta_n)]. \tag{21}$$

 $\Leftrightarrow z_1 = z_2 = \dots = z_n,$

Theorem 1.5 (De Moivre 定理)

$$z^{n} = r^{n}(\cos n\theta + i\sin n\theta). \tag{22}$$

Example 1.4 复数的 n 次方根. 求 $w = \sqrt[n]{z}$ 即 $w^n = z$.

Solution 设

$$z = \rho(\cos\phi + i\sin\phi).$$

同样

$$w = r(\cos\theta + i\sin\theta).$$

由 De Moivre 定理

$$w^n = r^n(\cos n\theta + i\sin n\theta).$$

比较,得

$$\rho = r^n,$$
$$\phi = n\theta.$$

即

$$r = \sqrt[n]{\rho},$$
$$\theta = \frac{\phi}{n}.$$

于是

$$\sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos \frac{\phi}{n} + \mathrm{i} \sin \frac{\phi}{n} \right).$$

考虑到辐角的多值性,得到 n 个不同的根

$$\left(\sqrt[n]{z}\right)_k = \sqrt[n]{\rho} \left(\cos\frac{\phi_p + 2\pi k}{n} + \mathrm{i}\sin\frac{\phi_p + 2\pi k}{n}\right),\,$$

$$-\pi < \phi_p \le \pi, \ k = 0, 1, 2, \dots, (n-1).$$

Theorem 1.6 (n 次方根) 设 $z = r(\cos \theta + i \sin \theta)$, 它的 n 次方根为 n 个复数

$$\left(\sqrt[n]{z}\right)_k = \sqrt[n]{r} \left(\cos\frac{\theta + 2\pi k}{n} + i\sin\frac{\theta + 2\pi k}{n}\right), \ k = 0, 1, 2, \dots, (n-1).$$
 (23)

Example 1.5 求 i 的平方根.

Solution

$$i = 1(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}).$$

所以

$$(\sqrt{i})_k = \sqrt{1} \left(\cos \frac{\pi/2 + 2\pi k}{2} + i \sin \frac{\pi/2 + 2\pi k}{2} \right)$$
$$= \cos \left(\frac{\pi}{4} + \pi k \right) + i \sin \left(\frac{\pi}{4} + \pi k \right),$$

k=0,1. 两根分别为

$$(\sqrt{i})_0 = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}},$$
$$(\sqrt{i})_1 = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}.$$

即

$$\sqrt{i}=\pm\frac{1}{\sqrt{2}}(1+i).$$

Example 1.6 R = 1.

Solution 因为

$$1 = \cos 0 + i \sin 0.$$

由 n 次方根定理

$$\begin{split} z &= \cos\frac{k2\pi}{8} + \mathrm{i}\sin\frac{k2\pi}{8}, \quad k = 0, 1, 2, ..., 7 \\ &= 1, \frac{1}{\sqrt{2}} + \frac{\mathrm{i}}{\sqrt{2}}, \mathrm{i}, \frac{-1}{\sqrt{2}} + \frac{\mathrm{i}}{\sqrt{2}}, -1, \frac{-1}{\sqrt{2}} - \frac{\mathrm{i}}{\sqrt{2}}, -\mathrm{i}, \frac{1}{\sqrt{2}} - \frac{\mathrm{i}}{\sqrt{2}}. \end{split}$$

如图, 八个根 z = ∜1 均匀分布在单位圆上.

 $\begin{array}{c|c}
y & & \\
\frac{-1+i}{\sqrt{2}} & & \frac{1+i}{\sqrt{2}} \\
-1 & & & \\
-\frac{1+i}{\sqrt{2}} & & & \\
-i & & & \\
\end{array}$

复数的指数表示

Euler 公式 (欧拉 1707 — 1783)

$$e^{i\theta} = \cos\theta + i\sin\theta. \tag{24}$$

复数 z 的极坐标表示可简单地记为

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = |z|e^{i\arg z}.$$
 (25)

复数的乘法和除法运算简化为(由(16),(17)和(19),(20)得)

$$z_1 \cdot z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)},$$
 (26)

$$z_1 \cdots z_n = r_1 \cdots r_n e^{i(\theta_1 + \dots + \theta_n)}, \tag{27}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}. (28)$$

1.3 复变函数

复变函数

与实函数定义相仿,

函数 设在复平面 \mathbb{C} 上有一点集 E, 如果对于 E 内每一个 z 值, 都有一个或多个 \mathbb{C} 复数值 w 与之对应, 则称 w 为 z 的函数. 记为 w = f(z). E 为其定义域.

 $\mathbb{P} \ \forall z \in E, \ \exists w = f(z).$

$$z = x + iy,$$
$$w = u + iv.$$

所以

$$w = f(z) = f(x, y),$$

= $u(x, y) + iv(x, y).$ (29)

复变函数不过是两个二元实变函数的有序组合.

Solution

$$\frac{z+2}{z-1} = \frac{(x+2) + iy}{(x-1) + iy} = \frac{(x+2) + iy}{(x-1) + iy} \cdot \frac{(x-1) - iy}{(x-1) - iy}$$
$$= \frac{(x+2)(x-1) + y^2 + i[y(x-1) - y(x+2)]}{(x-1)^2 + y^2}.$$

这样,

$$u(x,y) = \operatorname{Re}\left(\frac{z+2}{z-1}\right) = \frac{x^2 + x - 2 + y^2}{(x-1)^2 + y^2},$$
$$v(x,y) = \operatorname{Im}\left(\frac{z+2}{z-1}\right) = \frac{-3y}{(x-1)^2 + y^2}.$$

¹多值函数

一些初等函数

除了多项式外,基本的函数还有三角函数和指数函数,

实变函数

Taylor 展开

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1},\tag{30}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n},\tag{31}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
(32)

复变函数

三角函数和指数函数可以定义为幂级数,且其幂级数展开式与相应实变函数的幂级数展开式相同

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1},\tag{33}$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n},\tag{34}$$

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$
 (35)

作变换 $z \rightarrow iz$, 即得

$$e^{iz} = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$
$$= \cos z + i \sin z.$$

这就是 Euler 公式, 它对任意复数 z 都成立.

1.4 复平面的拓扑简介

邻域 复平面上 |z-a|=r 为一圆. 圆内 |z-a|< r (r>0) 称为以 a 为中心, r 为半径的**圆盘**或 a 的一个**邻域**, 或 r-邻域.

|z-a| < r 则称为以 a 为中心, r 为半径的**闭圆盘**.

空心邻域 z_0 的空心邻域, 指的是以 z_0 为圆心的环域 $0 < |z - z_0| < \delta$.

聚点 给定集合 E, 若复数 a, 对于任意给定的 $\epsilon>0$ 恒有 $z\in E$, 满足 $0<|z-a|<\epsilon$ 则称 a 为 E 的一个 聚点 (或极限点)

即 a 的任意小邻域内都包含有不等于 a 的点 $z \in E$

孤立点 给定集合 E, a 属于 E, 如果以点 a 为圆心作一个圆, 当半径 ϵ 足够小时, 空心邻域 $0 < |z-a| < \epsilon$ 内所有点 z 都不属于点集 E, 即 $z \notin E$, 则称点 a 为点集 E 的一个孤立点.

即点集 E 的点 a 不是 E 的聚点.

内点 给定集合 E, a 属于 E, 如果以点 a 为圆心作一个圆, 当半径 ϵ 足够小时, 圆内所有点 $|z-a|<\epsilon$ 都属于点集 E, 即 $z\in E$, 则称点 a 为点集 E 的一个**内点**.

即存在 a 的某个邻域完全包含在 E 内.

边界点 给定集合 E, 如果以点 a 为圆心作一个任意半径 ϵ 的圆, 圆内总有两点 z_1 和 z_2 , $|z_{1,2}-a|<\epsilon$, 其中 $z_1\in E$ 而 $z_2\notin E$, 则称点 a 为点集 E 的一个边界点.

边界点包括 E 的孤立点. 集合的边界点不一定属于集合.

内部 集合 E 的内部由所有 E 的内点组成. 记为 \mathring{E} .

边界 集合 E 的边界由所有 E 的边界点组成. 记为 ∂E .

闭包 集合 E 的闭包由 E 加上 E 的所有边界点组成. 记为 \overline{E} .

显然

$$\overline{E} = E + \partial E = \mathring{E} + \partial E.$$

开集 如果集E即它的内部,则E称为开集.

即开集 E 的点全部是内点: $E = \mathring{E}$.

Note 任何集合 E 的内部 \mathring{E} 必然是一开集.

闭集 如果集 E 即它的闭包,则 E 称为闭集.

即闭集 E 包括它的所有边界点: $E = \overline{E}$.

Note 任何集合 E 的闭包 \overline{E} 必然是一闭集.

Example 1.8 $\square \triangleq E : |z - a| < r$.

Solution $\forall z_0 \in E$, 显然 $\exists \epsilon > 0$, 使得 z_0 的 ϵ -邻域 $|z - z_0| < \epsilon$ 内所有点 z 都属于圆盘即 $z \in E$. 于是圆盘 E: |z - a| < r 中的点全部是它的内点. 因此圆盘 (邻域) 是一个开集.

E 的闭包 \overline{E} 即闭圆盘 $|z-a| \le r$, 它是一个闭集.

E 的边界为 $\partial E = \overline{E} - E$ 由圆 |z - a| = r 组成.

Example 1.9 E: 0 < |z-a| < r.

Solution E 为开集.

 \overline{E} 仍为闭圆盘 $|z-a| \leq r$.

 ∂E 由圆周 |z-a|=r 及孤立边界点 z=0 组成.

区域 区域为具有下列两个性质的点集

- 1. 开集: 全部由内点组成,
- 2. 连通性: 点集中任意两点都可以用一条折线连接起来, 折线上的点全都属于此点集.

Example 1.10 下列点集是否区域?

区域与非区域 由区域定义来判断:

- (a) 是,
- (b) 有洞也是,
- (c) 自相交不是. 看似有交点, 但交点非内点.

闭区域 区域G的闭包 \overline{G} 即区域G加上边界 ∂G 构成 闭区域.

通常用 G 代表区域, \overline{G} 代表闭区域, C 代表边界. 则

$$\overline{G} = G + \partial G = G + C. \tag{36}$$

区域用不等式表示

等式代表复平面上的一段曲线, 而一个关于复数的不等式则通常代表复平面上的一个区域.下图中, 不等式 |z| < 2 和 |z| > 2 都是区域 (等式 |z| = 2 为闭集).

同样, 下图中, 不等式 $Rez > \frac{1}{2}$ 和 1 < Imz < 2 也是区域.

1.5 极限和连续

复变函数中极限和连续概念是建立在邻域概念上的.

极限 设函数在 z_0 的空心邻域内有定义. 如果存在复数 A, $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$, 使当 $0 < |z - z_0| < \delta$ 时, 恒有 $|f(z) - A| < \epsilon$, 则称 $z \to z_0$ 时, f(z) 的极限存在. A 为其极限值 (或极限), 表示为

$$\lim_{z \to z_0} f(z) = A. \tag{37}$$

连续 设函数在 20 的邻域内有定义. 如果

$$\lim_{z \to z_0} f(z) = f(z_0), \tag{38}$$

即 $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$, 当 $|z - z_0| < \delta$ 时, 恒有 $|f(z) - f(z_0)| < \epsilon$, 则称 f(z) 在 z_0 点连续.

Note 函数在区域 G 内的每一点都连续, 称为在 G 内连续.

函数在闭区域 \overline{G} 上的每一点都连续, 称为在 \overline{G} 内连续.

Theorem 1.7 连续函数的和、差、积、商 (分母不为零), 以及复合函数仍是连续函数.

1.6 无穷远点

无穷远点

为了方便, 常引入无穷远点 (或无穷大) ∞ , 满足 ($\forall z \in \mathbb{C}$)

$$z + \infty = \infty, \tag{39a}$$

$$z \cdot \infty = \infty \quad (z \neq 0), \tag{39b}$$

$$\infty \cdot \infty = \infty. \tag{39c}$$

Note 与实数域不同 (它有两个无穷大 $+\infty$ 和 $-\infty)$, 复数域只有一个无穷远点. 原因是复数域不是一个有序域.

扩充的复数域 和扩充的复平面

$$\overline{\mathbb{C}} = \mathbb{C} + \infty$$
.

Riemann 球表示

可以用 Riemann 球表示来理解扩充的复平面.

无穷远点的邻域 定义为 $|z| > M \ (M > 0)$.

无穷远点的极限 设函数在 ∞ 的邻域内有定义. 如果存在复数 A, $\forall \epsilon > 0$, $\exists M(\epsilon) > 0$, 使当 |z| > M 时, 恒有 $|f(z) - A| < \epsilon$, 则称 $z \to \infty$ 时, f(z) 的极限存在. A 为其极限值 (或极限), 表示为

$$\lim_{z \to \infty} f(z) = A. \tag{40}$$

无穷远点的函数值 设函数在 ∞ 的极限存在. 定义

$$\lim_{z \to \infty} f(z) = f(\infty),\tag{41}$$

并称 f(z) 在 ∞ 点连续.

无穷远点只不过是一个极限过程. 若令 $z=\frac{1}{w}$, 则无穷远点的邻域 |z|>M 便是 $|w|<\frac{1}{M}$, 为 w=0 点的邻域. 所以

$$\lim_{z \to \infty} f(z) = \lim_{w \to 0} f(\frac{1}{w}). \tag{42}$$

1.7 有界区域

有界 若存在正实数 M>0, 所有点集 E 的点 z 都满足 |z|< M, 则称点集 E 有界.

Theorem 1.8 (连续函数有界性) 在有界闭区域 \overline{G} 上连续的函数 f(z), |f(z)| 在 \overline{G} 中有界, 并达到它的上下界.

在引入扩充的复平面后,扩充复平面上的闭区域 \overline{G} 都是 Riemann 球上的有界闭区域,连续函数的有界性定理可表为

Theorem 1.9 (推广的连续函数有界性) 在扩充的复平面内, 闭区域 \overline{G} 上连续的函数 f(z), |f(z)| 在 \overline{G} 中有界, 并达到它的上下界.

这是因为在扩充的复平面,我们可以将闭区域 \overline{G} 拆为两部分: $|z| \leq M$ 和 $|z| \geq M$. 第一部分为有界闭区域,而第二部分在变换 $z=\frac{1}{w}$ 后,也是 w 平面的一个有界闭区域.