Lecture 08

Running Time Analysis

Lecture 08

Today:

- Counting operations
- Time measurements
- Growth rates
- Introduction to the Big-O
- Sequence operations

Analysis of Algorithms

Running time model: Count all operations

- elementary operations cost 1 time unit
- focus on the most frequent operation The barometer instruction
 - o count loops and recursion

Running time depends on:

- ■Size of input
- Currebt size of data structure
- nature of input

Growth Rates

Empirical timings

- run your code on a real machine with various input sizes
- plot a graph to determine the relationship
- but actual performance can depend on much more than just your algorithm!

```
 cpu speed
 amount of main memory
 os
 programming language / algorithm implementation
```

Instead shift focus to the growth rate as a function of N

usually independent of the above factors

Comparing Algorithm Performance

There can be many ways to solve a problem, i.e., different algorithms that produce the same result

E.g., There are numerous sorting algorithms.

Compare algorithms by their behaviour as N gets large

on today's hardware, most algorithms perform quickly for small N

Analyze behaviour in the worst case

- select the most pessimistic input of size N
- yields a saleable upper bound

Can also analyze behaviour in the average case

use statistics, but need a sensible distribution of inputs

Order Notation (the Big-O)

Suppose we express the number of operations used in our algorithm as a function of *N*, the size of the problem.

Intuitively ...

- take the dominant term
- remove the leading constant; and
- put O(...) around it

E.g.,
$$T(N) = 22 N^2 + 604 N + 4519$$

Big-O

Given a function T(N), we say T(N) = O(f(N)) if T(N) is at most a constant times f(N), except perhaps for some small values of N.

Properties:

- constant factors dont matter
- low-order terms dont matter

T(N) = O(f(N)) if and only if

there exists constants c, n > 0 such that for every N > n, $T(N) \le c^*f(N)$

Rule: For any k and any function f(N), $k \cdot f(N) = O(f(N))$

- E.g., 5N = O(N)
- E.g., $\log_a N = O(\log_b N)$. Why?
- Q. Do leading constants really not matter?

Text

Polylogarithmic Functions

Some generalizations:

- 1. The powers of *N* are ordered according to their exponents, i.e.,
 - E.g., $N^2 = O(N^3)$, but N³ is not O(N²)
- 2. A logarithm grows more slowly than any other positive power of N
 - E.g., $\log_2 N = O(N^{1/2})$.

For most functions, can compare them using L'Hôpital's Rule:

• Theorem: If $\lim_{N\to \inf} f(N)/g(N)$ exists then f(N) = O(g(N)).

3. A polynomial grows more slowly than any exponential

Typical Growth Rates

- O(1) constant time
 The time is independent of N, e.g.,
- O(logN) logarithmic time
 Usually the log is to the base 2, e.g.,
- O(N) linear time, e.g.,
- $O(N \log N) e.g.$, qsort, mergesort, heapsort
- $O(N^2)$ quadratic time, e.g.,
- $O(N^k)$ polynomial (where k is a constant)
- $O(2^N)$ exponential time, very slow!

Comparing Implementations

ADTs are a collection of data and operations

operations are tacitly as efficient as possible

- different data structures may yield different running times
 - O N is either the current size of the data collection OR,,,

o ... the number of operations thus far

Sequence of int	Dynamic Array	Singly Linked List
Sequence()	O(1)	
.get(k)	O(1)	
.set(k,x)	O(1)	
.getSize()	O(1)	
.append()	O(N)	
.remove(k)	O(N-k)	
.trunc(len)	O(1)	
~Sequence()	O(1)	