Guía de Uso: sniff_and_fingerprint.py

Este documento detalla el funcionamiento del script sniff_and_fingerprint.py, describe su propósito, explicación técnica y ofrece una guía paso a paso para su ejecución y análisis de resultados. Está pensado para que los integrantes del equipo suban este archivo al repositorio en formato Word.

1. ¿Qué es la herramienta?

sniff_and_fingerprint.py es un script en Python que combina dos funcionalidades clave para pruebas de penetración en redes:

- Captura de tráfico: Utiliza la librería pyshark (CLI de Wireshark en Python) para capturar paquetes en tiempo real de una interfaz de red, filtrando aquellos que puedan contener información sensible.
- **Fingerprinting de sistema operativo**: Emplea Nmap con detección de SO (-0) para identificar el sistema operativo y su versión en el equipo objetivo.

Ambas tareas pueden ejecutarse simultáneamente, generando archivos PCAP y reportes en JSON con hallazgos y recomendaciones.

2. Propósito de la herramienta

- Identificar vulnerabilidades por exposición de datos: Detectar credenciales en texto claro (HTTP Basic Auth), cookies, tokens, handshakes WPA y cabeceras sensibles.
- 2. **Determinar el sistema operativo**: Realizar un escaneo de fingerprinting que ayude a planificar ataques basados en exploits específicos.
- 3. **Automatizar flujos**: Unificar en un único comando la captura de tráfico y el escaneo de fingerprinting, optimizando tiempo y reduciendo errores manuales.

3. Funcionamiento a nivel técnico

Estructura y componentes principales

Componente	Descripción
ArgumentParser	Define la interfaz CLI con parámetrosiface,target yduration.
Logging	Configura registro en consola y archivo $\boxed{\text{sniff_and_fingerprint.log}}$ con nivel $\boxed{\text{INFO}}$ y $\boxed{\text{WARNING}}$.

Componente	Descripción
TrafficAnalyzer	Clase que: 1) inicia captura LiveCapture de Pyshark, 2) aplica filtros Wireshark, 3) procesa cada paquete con callback _packet_handler, 4) guarda credenciales y handshakes en JSON.
NmapScanner	Clase que: 1) ejecuta Nmap con subprocess.run, 2) recibe salida XML, 3) parsea con xml.etree.ElementTree, 4) extrae osmatch y guarda en JSON.
Threading	Permite correr el fingerprinting de Nmap en paralelo con la captura de tráfico.
Directorios	Crea carpetas captures/ y reports/ para almacenar: PCAPs, JSON de credenciales y JSON de fingerprinting.

Filtros de captura

El análisis de tráfico aplica un filtro compuesto que incluye:

```
tcp.port == 80 or tcp.port == 8080 or tcp.port == 21 or tcp.port == 23 or
tcp.port == 143 or tcp.port == 110 or tcp.port == 25 or eapol or
http.authorization or http.cookie or http.request.uri contains "token" or
http.request.uri contains "session"
```

Este filtro selecciona paquetes HTTP, FTP, Telnet, IMAP, POP3, SMTP, WPA handshakes, authorization headers, cookies y posibles tokens en URLs.

4. Guía paso a paso de cada script

A continuación, se describe la ejecución completa de sniff_and_fingerprint.py, con ejemplos y explicación detallada.

1. Preparación del entorno

- 2. Asegurarse de tener **Python 3.8+** instalado en Kali Linux.
- 3. Instalar dependencias:

```
pip install pyshark xmltodict
```

4. Verificar que nmap y dumpcap (o tcpdump) estén disponibles en el sistema.

5. Descarga del script

6. Colocar sniff_and_fingerprint.py dentro de scripts/python/ en el repositorio.

7. Permisos de ejecución

8. Aunque se invoca con python3, se recomienda dar permisos de lectura y escritura:

```
chmod +x scripts/python/sniff_and_fingerprint.py
```

9. Ejecución básica

10. Ejecutar con parámetros obligatorios:

```
python3 scripts/python/sniff_and_fingerprint.py \
   --iface eth0 \
   --target 10.0.0.5 \
   --duration 60
```

11. Explicación:

- --iface eth0: interfaz de red donde se hará la captura.
- --target 10.0.0.5 : IP o rango de la máquina a fingerprintear.
- --duration 60 : tiempo (en segundos) de captura activa.

12. Procesos en segundo plano

- 13. Al iniciar, el script crea dos hilos:
 - **Hilo Nmap**: ejecuta fingerprinting y guarda JSON en reports/ fingerprint_<target>_<timestamp>.json.
 - **Hilo Pyshark**: captura paquetes, aplica filtros y guarda PCAP en captures/ sniff_<iface>_<timestamp>.pcap, además de JSON con credenciales en credentials_<iface>_<timestamp>.json.

14. Salida de resultados

- 15. Revisar captures/ para descargar el archivo .pcap y analizar con Wireshark si se desea.
- 16. Abrir en reports/:
 - credentials_<iface>_<timestamp>.json : listado de credenciales, handshakes y cabeceras sensibles encontradas.
 - fingerprint_<target>_<timestamp>.json : sistema operativo detectado, precisión y marca de tiempo.
- 17. Consultar sniff_and_fingerprint.log para detalles de mensajes y posibles errores.

18. Interpretación de hallazgos

- 19. Credenciales encontradas indican vulnerabilidad de transmisión de datos en texto claro.
- 20. Handshakes WPA pueden servir para ataques de fuerza bruta a la red inalámbrica.
- 21. Sistema operativo y versión facilitan la selección de exploits específicos de Nmap o Metasploit.

Fin de la guía

Este documento está listo para convertirse en un archivo Word y mantenerse en el repositorio como guía de uso para el equipo.