Math for "Balance" Trading Logic

Copyright (c) 2018 Andreas Lobbes, <u>andreas.lobbes@gmail.com</u> All rights reserved.

Intro

The basic idea with this logic is that both profits and losses are distributed across all commodities (including the Fiat money). By transforming gains and losses above a threshold into less volatile commodities and thus preserving them, the overall volatility of the portfolio is reduced (gains and losses too, however). For a mathematical analysis, we start by considering a portfolio consisting of one volatile commodity and (non-volatile) fiat money.

Legend

- *F* Fiat money (amount)
- C Commodity (amount)
- P Price (conversion factor)
- *p* Percent factor
- Profit (expressed as related factor minus 1)
- K Constant relation factor
- T Capitalization (all exchanged to fiat money)

Ruleset

We require, that value of commodity is proportional to fiat money. Relation factor K shall be constant:

1)
$$F = K(CP)$$

Thus if price of commodity changes, we need to rebalance via buying / selling:

2)
$$F_1 - F_0 = -(C_1 - C_0) P_1$$

Derivation

Inserting 1 in 2:

$$\Rightarrow K (C_1 P_1) - F_0 = -(C_1 - C_0) P_1$$

$$\Leftrightarrow K (C_1 P_1) = -(C_1 P_1) + (C_0 P_1) + F_0$$

$$\Leftrightarrow (K + 1) (C_1 P_1) = F_0 + (C_0 P_1)$$

$$\Leftrightarrow C_1 = (C_0 + F_0 / P_1) / (K + 1)$$

Last statement 3 inserted in 1:

$$\Rightarrow F_1 = K(C_1 P_1) = K(C_0 + F_0 / P_1) / (K + 1) P_1$$
4)
$$\Leftrightarrow F_1 = K / (K + 1) (F_0 + C_0 P_1)$$

With price function Pn given as:

$$\Rightarrow P_n = P_0 * p^n$$

Inserted in 3 and 4:

6)
$$\Rightarrow C_1 = (C_0 + (F_0/P_0)p^{-1})/(K+1)$$

7)
$$\Rightarrow F_1 = K/(K+1)(F_0+(C_0P_0)p)$$

Equation 1 for n = 0 results to:

8)
$$\Rightarrow F_0 = K C_0 P_0$$

Using last statement 8 in 6 and 7 we can transform:

9)
$$\Rightarrow C_1 = (C_0 + (K C_0) p^{-1}) / (K + 1) = C_0 (K / p + 1) / (K + 1)$$

10)
$$\Rightarrow F_1 = K/(K+1)(F_0 + (F_0/K)p) = F_0(K+p)/(K+1)$$

Transforming 9 and 10 into function of n:

11)
$$\Rightarrow C_n = C_0 ((K/p + 1)/(K + 1))^n$$

12)
$$\Rightarrow F_n = F_0 ((K + p) / (K + 1))^n$$

Price Swing

Proof: Logic guarantees profit for price step forward and back cycle. Using 10:

⇒
$$F'_0 = F_1 = F_0 (K + p) / (K + 1)$$
 | forward step
⇒ $F''_0 = F'_1 = F'_0 (K + 1/p) / (K + 1)$ | back step
= $F_0 ((K + p) / (K + 1)) ((K + 1/p) / (K + 1))$
= $F_0 (K + p) (K + 1/p) / (K + 1)^2$

We require that $F''_0 \ge F_0$

$$\Rightarrow (K + p) (K + 1/p) \ge (K + 1)^{2}$$

$$\Leftrightarrow K^{2} + K(p + 1/p) + 1 \ge K^{2} + 2K + 1$$

$$\Leftrightarrow K(p + 1/p) \ge 2K$$

$$\Leftrightarrow p + 1/p \ge 2$$

$$\Leftrightarrow p^{2} + 1 \ge 2p$$

$$\Leftrightarrow p^{2} - 2p + 1 \ge 0$$

$$\Leftrightarrow (p - 1)^{2} \ge 0$$

Q.e.d

The profit of such a swing results to:

13)
$$\Rightarrow R''_0 = F''_0 / F_0 - 1 = (K + p)(K + 1/p)/(K + 1)^2 - 1$$

Finding the local maximum with:

$$\Rightarrow \frac{d}{dK}R''_0 = \frac{(K-1)}{(K+1)^3} \frac{(p-1)^2}{p} = 0$$
, for $K = 1$

Thus max profit results for K = 1

The theoretical, maximum profit for a price swing would be p - 1 (p > 1), if you exchange all commodity to fiat money and back. So the relation between real and maximum profit (eg. degree of utilization) is:

14)
$$\Rightarrow U''_0 = R''_0 / (p-1)$$

Graphical analysis of 13 and 14 as functions of K for p = 1.05, p = 1.10, p = 1.15

Meaningful values for K are in the range [0.5, 2].

The bigger the price step p, the better the degree of utilization. Therefore, a configured price step should not be infinitesimal, but approximately equal to the average amplitude of a swing.

If we were to apply this logic to Bitcoin, a reasonable price step would be 10%. Fluctuations of this magnitude occur more than once a month. Total assets would rise by around 0.2% for each of these swings. For a full year, the return would be around 2.5%, without the price having to rise significantly.

Price Increase

With a steady price increase (p > 1) the profit results to:

15)
$$\Rightarrow R_n = F_n / F_0 - 1 = ((K + p) / (K + 1))^n - 1$$

And the theoretical, maximum profit is:

16)
$$\Rightarrow R^{x}_{n} = P_{n}/P_{0} - 1 = p^{n} - 1$$

Thus the degree of utilization is:

$$17) \qquad \Rightarrow U_n = R_n / R_n^x$$

R1, R2, R3 as functions of K for p = 1.02 and p = 1.08

With $p_n = 1 + (p-1) n$ we can roughly say $R_n(p_1) \approx R_1(p_n)$ and $R_n^x(p_1) \approx R_1^x(p_n)$, for p, K around 1 and small n.

So we can simplify degree of utilization:

18)
$$\Rightarrow U_n = R_n / R_n^x \approx R_1(p_n) / R_1^x(p_n) = 1 / (K + 1)$$

Simplified and some exakt Un with p=1.05 / 1.10 / 1.15, n = 2 / 3 / 4

Degree of utilization is significantly better for smaller Ks. Thus the more you expect long-term price gains, the smaller should be K ($0 \le K \le 1$, see also <u>Price Swing</u> for meaningful values). If you do not expect price gains but rather swings in the long term, you should operate with a value of K around 1.

Usage

Collection of formulas derived in former chapters:

```
1) 	 F = K(CP)
```

8)
$$F_0 = K C_0 P_0$$

2)
$$F_1 - F_0 = -(C_1 - C_0) P_1$$

$$P_n = P_0 * p^n$$

11)
$$C_n = C_0 ((K/p + 1)/(K + 1))^n$$

12)
$$F_n = F_0 ((K + p) / (K + 1))^n$$

13)
$$R''_0 = (K + p)(K + 1/p)/(K + 1)^2 - 1$$

15)
$$R_n = ((K + p) / (K + 1))^n - 1$$

Placing buy / sell orders:

- 1. Determine suitable value of p, that is around the average amplitude of a price swing.
- 2. Determine suitable value of K ($0 < K \le 1$), for which the profits of price swings and increase (according to 13 and 15) become maximum. Rule of thumb is: The more you expect price gains, the lower should be K (than 1). Determination of K might be worth another chapter (in near future). Note, that your portfolio is also expected to be balanced, such that you have enough fiat money to meet the equation F = K(CP), as given by 1.
- 3. Place your orders according to 11 at price intervall steps given by 5. On price gains (p > 1) you have to place sell orders and on price losses (p < 1) you have to place buy orders at interval steps.
- 4. On a successful buy you have to update your sell orders and vice versa.