```
In [2]:
           import pandas as pd
           import numpy as np
           import seaborn as sns
           from sklearn.model selection import train_test_split
           from sklearn.linear model import LogisticRegression
           from sklearn.metrics import accuracy score, confusion matrix, classification report
In [3]:
           df =pd.read csv("D:\Data files\creditcard.csv")
In [5]:
           df.head(10)
                          V1
             Time
                                    V2
                                               V3
                                                         V4
                                                                    V5
                                                                              V6
                                                                                         V7
                                                                                                   V8
                                                                                                              V9 ...
                                                                                                                           V21
                                                                                                                                     V22
                                                                                                                                                V23
Out[5]:
          0
                   -1.359807
                              -0.072781
                                         2.536347
                                                   1.378155
                                                             -0.338321
                                                                         0.462388
                                                                                   0.239599
                                                                                             0.098698
                                                                                                        0.363787
                                                                                                                 ... -0.018307
                                                                                                                                 0.277838
                                                                                                                                           -0.110474
                                                                                                                                                      0.066
               0.0
                    1.191857
                               0.266151
                                         0.166480
                                                    0.448154
                                                              0.060018
                                                                        -0.082361
                                                                                  -0.078803
                                                                                             0.085102
                                                                                                       -0.255425 ... -0.225775
                                                                                                                                -0.638672
                                                                                                                                           0.101288
                                                                                                                                                     -0.339
                             -1.340163
                                                                                   0.791461
          2
                   -1.358354
                                         1.773209
                                                    0.379780
                                                             -0.503198
                                                                         1.800499
                                                                                             0.247676
                                                                                                       -1.514654 ...
                                                                                                                      0.247998
                                                                                                                                 0.771679
                                                                                                                                           0.909412
                                                                                                                                                     -0.689
                                                                                   0.237609
                             -0.185226
                                         1.792993
                                                   -0.863291
                                                                         1.247203
                                                                                                                                 0.005274
                                                                                                                                           -0.190321
                    -0.966272
                                                              -0.010309
                                                                                             0.377436
                                                                                                       -1.387024 ... -0.108300
                                                                                                                                                     -1.175
                    -1.158233
                               0.877737
                                         1.548718
                                                    0.403034
                                                              -0.407193
                                                                         0.095921
                                                                                   0.592941
                                                                                             -0.270533
                                                                                                        0.817739 ...
                                                                                                                     -0.009431
                                                                                                                                 0.798278
                                                                                                                                           -0.137458
                                                                                                                                                      0.141
               2.0
                    -0.425966
                               0.960523
                                         1.141109
                                                   -0.168252
                                                              0.420987
                                                                        -0.029728
                                                                                   0.476201
                                                                                             0.260314
                                                                                                        -0.568671
                                                                                                                 ...
                                                                                                                     -0.208254
                                                                                                                                -0.559825
                                                                                                                                           -0.026398
                                                                                                                                                     -0.371
          6
                    1.229658
                               0.141004
                                         0.045371
                                                    1.202613
                                                              0.191881
                                                                         0.272708
                                                                                   -0.005159
                                                                                             0.081213
                                                                                                        0.464960 ... -0.167716
                                                                                                                                -0.270710
                                                                                                                                          -0.154104
                                                                                                                                                     -0.780
               4.0
                                                                                   1.120631
                    -0.644269
                               1.417964
                                         1.074380
                                                   -0.492199
                                                              0.948934
                                                                         0.428118
                                                                                             -3.807864
                                                                                                        0.615375
                                                                                                                      1.943465
                                                                                                                                -1.015455
                                                                                                                                           0.057504
                                                                                                                                                     -0.649
               7.0
                    -0.894286
                               0.286157
                                         -0.113192
                                                   -0.271526
                                                              2.669599
                                                                         3.721818
                                                                                   0.370145
                                                                                             0.851084
                                                                                                        -0.392048
                                                                                                                     -0.073425
                                                                                                                                -0.268092
                                                                                                                                           -0.204233
                                                                                                                                                      1.011
                    -0.338262
                               1.119593
                                         1.044367
                                                   -0.222187
                                                              0.499361
                                                                        -0.246761
                                                                                   0.651583
                                                                                             0.069539
                                                                                                       -0.736727 ... -0.246914
                                                                                                                               -0.633753 -0.120794
                                                                                                                                                     -0.385
         10 rows × 31 columns
In [6]:
           df.tail()
```

```
Out[6]:
                                V1
                                                                                                           V9 ...
                    Time
                                         V2
                                                   V3
                                                            V4
                                                                      V5
                                                                               V6
                                                                                         V7
                                                                                                  V8
                                                                                                                      V21
                                                                                                                               V22
                                                                                                                                         V2
         284802 172786.0 -11.881118 10.071785 -9.834783 -2.066656
                                                                -5.364473 -2.606837
                                                                                   -4.918215
                                                                                             7.305334 1.914428 ... 0.213454 0.111864
                                                                                                                                     1.01448
         284803
                172787.0
                          -0.732789
                                    -0.055080
                                              2.035030
                                                       -0.738589
                                                                 0.868229
                                                                          1.058415
                                                                                    0.024330
                                                                                             0.294869
                                                                                                      0.584800
                                                                                                               ... 0.214205 0.924384
                                                                                                                                     0.01246
                172788.0
                           1.919565
                                    -0.301254
                                             -3.249640
                                                       -0.557828
                                                                 2.630515
                                                                          3.031260
                                                                                   -0.296827
                                                                                             0.708417
                                                                                                      0.432454 ...
                                                                                                                  0.232045 0.578229
                                                                                                                                    -0.03750
                172788.0
                          -0.240440
                                     0.530483
                                              0.702510
                                                       0.689799
                                                                -0.377961
                                                                          0.623708
                                                                                   -0.686180
                                                                                             0.679145  0.392087  ...  0.265245  0.800049
                                                                                                                                    -0.16329
         284806 172792.0
                          -0.533413 -0.189733
                                             0.703337 -0.506271 -0.012546 -0.649617
                                                                                   1.577006 -0.414650 0.486180 ... 0.261057 0.643078
                                                                                                                                    0.37677
        5 rows × 31 columns
In [7]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 284807 entries, 0 to 284806
         Data columns (total 31 columns):
              Column Non-Null Count
                                          Dtype
                       284807 non-null float64
              Time
              V1
                       284807 non-null float64
              V2
                       284807 non-null float64
          3
              V3
                       284807 non-null float64
              ٧4
                       284807 non-null float64
              ۷5
                       284807 non-null float64
              ۷6
                       284807 non-null float64
          7
              ٧7
                       284807 non-null float64
          8
                       284807 non-null float64
              ٧8
              ۷9
                       284807 non-null float64
                       284807 non-null float64
          10
              V10
          11
              V11
                       284807 non-null float64
          12
              V12
                       284807 non-null float64
          13
              V13
                       284807 non-null float64
          14
              V14
                       284807 non-null float64
                       284807 non-null float64
          15
              V15
          16
              V16
                       284807 non-null float64
          17
              V17
                       284807 non-null float64
          18
              V18
                       284807 non-null float64
```

284807 non-null float64

19

V19

```
V20
                     284807 non-null float64
         20
         21
             V21
                     284807 non-null float64
         22
             V22
                     284807 non-null float64
         23
             V23
                     284807 non-null float64
             V24
                     284807 non-null float64
         24
         25
             V25
                     284807 non-null float64
         26
             V26
                     284807 non-null float64
             V27
                     284807 non-null float64
         27
         28
             V28
                     284807 non-null float64
             Amount 284807 non-null float64
         29
         30 Class
                     284807 non-null int64
        dtypes: float64(30), int64(1)
        memory usage: 67.4 MB
In [8]:
         df.isnull().sum()
        Time
                  0
Out[8]:
        ٧1
                  0
        ٧2
                  0
        ٧3
                  0
        ٧4
                  0
        ۷5
                  0
        ۷6
                  0
        ٧7
                  0
        ٧8
                  0
        ۷9
                  0
        V10
                  0
        V11
                  0
        V12
                  0
        V13
                  0
        V14
                  0
        V15
                  0
        V16
                  0
        V17
                  0
        V18
                  0
        V19
                  0
        V20
                  0
        V21
                  0
        V22
                  0
        V23
                  0
        V24
```

```
V25
         V26
         V27
         V28
         Amount
         Class
         dtype: int64
 In [9]:
          #now gettinng some info regarding our target column"Class"
          df['Class'].value counts()
              284315
 Out[9]:
                 492
         Name: Class, dtype: int64
In [10]:
          Normal = df[df.Class== 0]
          fraud = df[df.Class== 1]
In [11]:
          print(fraud)
                     Time
                                 ٧1
                                           V2
                                                    ٧3
                                                               ٧4
                                                                        ۷5
                                                                                  ۷6
                    406.0 -2.312227 1.951992 -1.609851 3.997906 -0.522188 -1.426545
         541
         623
                    472.0 -3.043541 -3.157307 1.088463 2.288644 1.359805 -1.064823
         4920
                   4462.0 -2.303350 1.759247 -0.359745 2.330243 -0.821628 -0.075788
         6108
                   6986.0 -4.397974 1.358367 -2.592844 2.679787 -1.128131 -1.706536
                   7519.0 1.234235 3.019740 -4.304597 4.732795
         6329
                                                                 3.624201 -1.357746
                 169142.0 -1.927883
                                    1.125653 -4.518331 1.749293 -1.566487 -2.010494
         279863
         280143
                 169347.0 1.378559 1.289381 -5.004247 1.411850
                                                                 0.442581 -1.326536
         280149
                 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
         281144
                 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
         281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
                       ٧7
                                 V8
                                                         V21
                                                                  V22
                                                                            V23 \
         541
                -2.537387 1.391657 -2.770089
                                              ... 0.517232 -0.035049 -0.465211
         623
                 0.325574 -0.067794 -0.270953
                                              ... 0.661696 0.435477 1.375966
                                              ... -0.294166 -0.932391 0.172726
         4920
                 0.562320 -0.399147 -0.238253
                -3.496197 -0.248778 -0.247768 ... 0.573574 0.176968 -0.436207
         6108
```

```
6329
                1.713445 -0.496358 -1.282858 ... -0.379068 -0.704181 -0.656805
         279863 -0.882850
                                                   0.778584 -0.319189
                          0.697211 -2.064945
                                                                      0.639419
         280143 -1.413170 0.248525 -1.127396
                                                   0.370612 0.028234 -0.145640
         280149 -2.234739 1.210158 -0.652250
                                                  0.751826 0.834108 0.190944
         281144 -2.208002 1.058733 -1.632333
                                              ... 0.583276 -0.269209 -0.456108
         281674 0.223050 -0.068384 0.577829
                                              ... -0.164350 -0.295135 -0.072173
                     V24
                               V25
                                         V26
                                                   V27
                                                             V28
                                                                 Amount Class
         541
                 0.320198 0.044519 0.177840
                                              0.261145 -0.143276
                                                                    0.00
                                                                             1
         623
                529.00
                                                                             1
         4920
               -0.087330 -0.156114 -0.542628
                                              0.039566 -0.153029
                                                                             1
                                                                  239.93
               -0.053502  0.252405  -0.657488  -0.827136  0.849573
                                                                             1
         6108
                                                                  59.00
                                                                             1
         6329
               -1.632653 1.488901 0.566797 -0.010016
                                                       0.146793
                                                                   1.00
         . . .
                                                                    . . .
                                    0.788395
                                              0.292680
         279863 -0.294885
                          0.537503
                                                       0.147968
                                                                  390.00
                                                                             1
                                    0.739467
         280143 -0.081049 0.521875
                                              0.389152 0.186637
                                                                   0.76
         280149 0.032070 -0.739695
                                    0.471111
                                              0.385107 0.194361
                                                                  77.89
                                                                             1
         281144 -0.183659 -0.328168 0.606116
                                              0.884876 -0.253700
                                                                  245.00
         281674 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                             1
                                                                  42.53
         [492 rows x 31 columns]
In [13]:
         fraud.Amount.describe()
                   492.000000
         count
Out[13]:
                  122.211321
         mean
         std
                   256,683288
                    0.000000
         min
         25%
                    1.000000
         50%
                    9.250000
         75%
                  105.890000
                 2125.870000
         max
         Name: Amount, dtype: float64
In [14]:
         Normal.Amount.describe()
                  284315.000000
         count
Out[14]:
                     88.291022
         mean
                     250.105092
         std
         min
                      0.00000
```

25% 5.650000 50% 22.000000 75% 77.050000 max 25691.160000

Name: Amount, dtype: float64

In [15]:

df.corr()

V	V8	V7	V6	V5	V4	V3	V2	V1	Time	
-8.660434e	-3.694943e- 02	8.471437e-02	-6.301647e- 02	1.730721e-01	-1.052602e- 01	-4.196182e- 01	-1.059333e- 02	1.173963e-01	1.000000	Time
-1.513678e 1	-2.433822e- 16	-1.005191e- 15	-6.506567e- 16	1.812612e-17	-9.215150e- 16	-1.227819e- 15	4.135835e-16	1.000000e+00	0.117396	V1
1.978488e-1	-5.377041e- 17	2.055934e-16	2.787346e-16	5.157519e-16	-1.121065e- 15	3.243764e-16	1.000000e+00		-0.010593	V2
5.568367e-1	-1.268779e- 15	4.895305e-16	1.627627e-15	-6.539009e- 17	4.711293e-16	1.000000e+00	3.243764e-16	-1.227819e- 15	-0.419618	V3
6.923247e-1	5.697192e-16	-4.104503e- 16	-7.491959e- 16	-1.719944e- 15	1.000000e+00	4.711293e-16	-1.121065e- 15	-9.215150e- 16	-0.105260	V4
7.391702e-1	7.437229e-16	2.715541e-16	2.408382e-16	1.000000e+00	-1.719944e- 15	-6.539009e- 17	5.157519e-16		0.173072	V5
4.131207e-1	-1.104219e- 16	1.191668e-16	1.000000e+00	2.408382e-16	-7.491959e- 16	1.627627e-15	2.787346e-16	-6.506567e- 16	-0.063016	V6
1.122501e-1	3.344412e-16	1.000000e+00	1.191668e-16	2.715541e-16	-4.104503e- 16	4.895305e-16	2.055934e-16	-1.005191e- 15	0.084714	V 7
4.356078e-1	1.000000e+00	3.344412e-16	-1.104219e- 16	7.437229e-16	5.697192e-16	-1.268779e- 15	-5.377041e- 17	-2.433822e- 16	-0.036949	V8
1.000000e+0	4.356078e-16	1.122501e-15	4.131207e-16	7.391702e-16	6.923247e-16	5.568367e-16	1.978488e-17	-1.513678e- 16	-0.008660	V9
-4.642274e 1	-2.801370e- 16	-7.492834e- 17	5.932243e-17	-5.202306e- 16	2.232685e-16	1.156587e-15	-3.991394e- 16	7.388135e-17	0.030617	V10
1.354680e-1	2.487043e-16	1.425248e-16	1.980503e-15	7.203963e-16	3.459380e-16	1.576830e-15	1.975426e-16	2.125498e-16	-0.247689	V11

	Time	V1	V2	V3	V4	V5	V6	V7		
V12	0.124348	2.053457e-16	-9.568710e- 17	6.310231e-16	-5.625518e- 16	7.412552e-16	2.375468e-16	-3.536655e- 18	1.839891e-16	-1.079314e
V13	-0.065902	-2.425603e- 17	6.295388e-16	2.807652e-16	1.303306e-16	5.886991e-16	-1.211182e-16	1.266462e-17	-2.921856e- 16	2.251072e-1
V14	-0.098757	-5.020280e- 16	-1.730566e- 16	4.739859e-16	2.282280e-16	6.565143e-16	2.621312e-16	2.607772e-16	-8.599156e- 16	3.784757e-1
V15	-0.183453	3.547782e-16	-4.995814e- 17	9.068793e-16	1.377649e-16	-8.720275e- 16	-1.531188e-15	-1.690540e- 16	4.127777e-16	-1.051167e-1
V16	0.011903	7.212815e-17	1.177316e-17	8.299445e-16	-9.614528e- 16	2.246261e-15	2.623672e-18	5.869302e-17	-5.254741e- 16	-1.214086e 1
V17	-0.073297	-3.879840e- 16	-2.685296e- 16	7.614712e-16	-2.699612e- 16	1.281914e-16	2.015618e-16	2.177192e-16	-2.269549e- 16	1.113695e-1
V18	0.090438	3.230206e-17	3.284605e-16	1.509897e-16	-5.103644e- 16	5.308590e-16	1.223814e-16	7.604126e-17	-3.667974e- 16	4.993240e-1
V19	0.028975	1.502024e-16	-7.118719e-18	3.463522e-16		-1.450421e- 16		-1.881008e- 16		-1.376135e 1
V20	-0.050866	4.654551e-16	2.506675e-16	-9.316409e- 16		-3.554057e- 16		9.379684e-16	2.033737e-16	-2.343720e 1
V21	0.044736	-2.457409e- 16	-8.480447e- 17	5.706192e-17	-1.949553e- 16	-3.920976e- 16	5.833316e-17	-2.027779e- 16	3.892798e-16	1.936953e-1
V22	0.144059	-4.290944e- 16	1.526333e-16	-1.133902e- 15	-6.276051e- 17	1.253751e-16	-4.705235e- 19	-8.898922e- 16	2.026927e-16	-7.071869e 1
V23	0.051142	6.168652e-16	1.634231e-16	-4.983035e- 16	9.164206e-17	-8.428683e- 18	1.046712e-16	-4.387401e- 16	6.377260e-17	-5.214137е 1
V24	-0.016182	-4.425156e- 17	1.247925e-17	2.686834e-19	1.584638e-16	-1.149255e- 15	-1.071589e- 15	7.434913e-18	-1.047097e- 16	-1.430343e 1
V25	-0.233083	-9.605737e- 16	-4.478846e- 16	-1.104734e- 15	6.070716e-16	4.808532e-16	4.562861e-16	-3.094082e- 16		6.757763e-1
V26	-0.041407	-1.581290e- 17	2.057310e-16	-1.238062e- 16	-4.247268e- 16	4.319541e-16	-1.357067e- 16	-9.657637e- 16	-1.727276e- 16	-7.888853e 1
V27	-0.005135	1.198124e-16	-4.966953e- 16	1.045747e-15	3.977061e-17	6.590482e-16	-4.452461e- 16	-1.782106e- 15	1.299943e-16	-6.709655е 1

		Time	V1	V2	V3	V4	V5	V6	V7	V8	V!
,	V28	-0.009413	2.083082e-15	-5.093836e- 16	9.775546e-16	-2.761403e- 18	-5.613951e- 18	2.594754e-16	-2.776530e- 16	-6.200930e- 16	1.110541e-1
	Amount	-0.010596	-2.277087e- 01	-5.314089e- 01	-2.108805e- 01	9.873167e-02	-3.863563e- 01	2.159812e-01	3.973113e-01	-1.030791e- 01	-4.424560e 0
	Class	-0.012323	-1.013473e- 01	9.128865e-02	-1.929608e- 01	1.334475e-01	-9.497430e- 02	-4.364316e- 02	-1.872566e- 01	1.987512e-02	-9.773269e 0:

31 rows × 31 columns

In [16]: sns.barplot(x = df['Class'], y = df['Amount'])

Out[16]: <AxesSubplot:xlabel='Class', ylabel='Amount'>


```
In [17]: sns.boxplot(y = df['Time'], x = df['Class'])
Out[17]: <AxesSubplot:xlabel='Class', ylabel='Time'>
```



```
In [18]: sns.violinplot(y = df['Time'], x = df['Class'])
```

Out[18]: <AxesSubplot:xlabel='Class', ylabel='Time'>


```
In [19]: sns.stripplot(y = df['Amount'], x = df['Class'])
```


data set is quite unbalanced there is huge difference btw normal and fraudulent transaction

In [22]:	Normal	Normal_sample = Normal.sample(n=492)													
In [24]:	new_DS	<pre>new_DS = pd.concat([Normal_sample,fraud],axis = 0)</pre>													
In [25]:	new_DS	new_DS.head(10)													
Out[25]:		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	V
	114141	73352.0	-0.643988	0.027076	0.833219	0.056823	-0.736694	1.367252	-0.315082	0.791502	-1.388007		0.013705	0.331415	0.1524
	237943	149461.0	-1.096401	0.632418	1.670101	-0.025553	-0.171099	0.185873	-0.303729	0.646746	-0.265961		0.306181	0.823680	-0.4953
	9471	14029.0	-1.392495	0.648354	2.773889	3.196665	-0.600547	1.236008	0.305347	0.093096	1.202625		-0.353657	-0.058054	0.1779
	242283	151423.0	0.232189	0.941870	-0.611982	-0.562880	1.258595	-0.919127	1.143471	-0.438695	0.188747		-0.286990	-0.464250	0.2123
	27621	34629.0	0.773271	-1.114798	0.740682	0.255502	-1.277445	0.055913	-0.566152	0.189316	0.800965		0.224493	0.213760	-0.2644
	104528	69111.0	-0.514623	0.977262	1.126972	-0.114227	0.412296	-0.365229	0.919477	-0.059294	-0.990392		0.185562	0.523681	-0.0973
	105914	69746.0	-1.865757	1.733006	0.720265	-0.222788	-0.983962	-0.606863	0.571125	0.471771	-0.031584		-0.305593	-0.553122	0.1602
	166242	117949.0	-0.475986	-4.123578	-3.881512	1.375609	-0.640504	-1.308704	2.823923	-1.046474	-0.336423		1.088579	0.272964	-1.3633
	80871	58692.0	-0.846328	0.124692	2.393975	1.506541	0.009698	1.405863	0.821615	-0.284832	-0.012751		0.045530	0.900258	0.0035
	124096	77174.0	1.383051	-0.808056	0.648904	-0.925350	-1.143584	0.038841	-1.205615	0.187688	-0.456206		0.369750	0.938388	-0.2085
	10 rows × 31 columns														
	4														•
In [26]:	new_DS	S.tail(10))												
Out[26]:		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	V

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V
274382	165981.0	-5.766879	-8.402154	0.056543	6.950983	9.880564	-5.773192	-5.748879	0.721743	-1.076274	 0.880395	-0.130436	2.2414
274475	166028.0	-0.956390	2.361594	-3.171195	1.970759	0.474761	-1.902598	-0.055178	0.277831	-1.745854	 0.473211	0.719400	0.1224
275992	166831.0	-2.027135	-1.131890	-1.135194	1.086963	-0.010547	0.423797	3.790880	-1.155595	-0.063434	 -0.315105	0.575520	0.4908
276071	166883.0	2.091900	-0.757459	-1.192258	-0.755458	-0.620324	-0.322077	-1.082511	0.117200	-0.140927	 0.288253	0.831939	0.1420
276864	167338.0	-1.374424	2.793185	-4.346572	2.400731	-1.688433	0.111136	-0.922038	-2.149930	-2.027474	 -0.870779	0.504849	0.1379
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	 0.778584	-0.319189	0.6394
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	 0.370612	0.028234	-0.1456
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	 0.751826	0.834108	0.1909
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	 0.583276	-0.269209	-0.4561
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	 -0.164350	-0.295135	-0.0721

10 rows × 31 columns

```
In [28]:
          new_DS['Class'].value_counts()
              492
Out[28]:
              492
         Name: Class, dtype: int64
In [29]:
          sns.lmplot(x='Amount', y='Time', data=new_DS, hue="Class")
         <seaborn.axisgrid.FacetGrid at 0x231494d37c0>
```

Out[29]:

169347.0 1.378559 1.289381 -5.004247 1.411850 0.442581 -1.326536

```
169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
       169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
             ٧7
                       ٧8
                                 V9
                                               V20
                                                         V21
                                                                   V22 \
114141 -0.315082 0.791502 -1.388007
                                     ... -0.262706
                                                    0.013705 0.331415
237943 -0.303729 0.646746 -0.265961
                                          0.102339
                                                   0.306181 0.823680
        0.305347 0.093096 1.202625
                                     ... 0.156233 -0.353657 -0.058054
9471
242283 1.143471 -0.438695 0.188747
                                          0.064516 -0.286990 -0.464250
27621 -0.566152 0.189316
                           0.800965
                                          0.348621 0.224493
279863 -0.882850
                 0.697211 -2.064945
                                          1.252967
                                                    0.778584 -0.319189
280143 -1.413170 0.248525 -1.127396
                                          0.226138
                                                    0.370612 0.028234
280149 -2.234739 1.210158 -0.652250
                                          0.247968
                                                    0.751826 0.834108
281144 -2.208002 1.058733 -1.632333
                                          0.306271 0.583276 -0.269209
281674 0.223050 -0.068384 0.577829
                                     ... -0.017652 -0.164350 -0.295135
                                V25
                                          V26
            V23
                      V24
                                                    V27
                                                              V28
                                                                   Amount
       0.152402 -1.192954 -0.445267 -0.169486 0.096869
114141
                                                         0.110978
                                                                   135.00
237943 -0.495328 -0.277173
                           0.603836
                                     0.089087 -0.019539
                                                        -0.046429
                                                                     9.99
       0.177994 -0.005416 0.032830
                                     0.236688 0.270658 -0.006230
9471
                                                                   136.90
242283 0.212312 0.583572 -1.276640 -0.073954 0.097633
                                                         0.013812
                          0.110221 1.090849 -0.088614
27621 -0.264411 0.091172
                                                         0.038372
                                                                   230.00
279863 0.639419 -0.294885
                           0.537503
                                               0.292680
                                     0.788395
                                                         0.147968
                                                                   390.00
280143 -0.145640 -0.081049
                           0.521875
                                     0.739467 0.389152
                                                         0.186637
                                                                     0.76
280149 0.190944 0.032070 -0.739695
                                     0.471111 0.385107
                                                         0.194361
                                                                    77.89
                                     0.606116  0.884876  -0.253700
281144 -0.456108 -0.183659 -0.328168
                                                                   245.00
281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                    42.53
[984 rows x 30 columns]
print(y)
114141
          0
237943
9471
242283
27621
279863
```

In [33]:

```
280143
         280149
         281144
         281674
         Name: Class, Length: 984, dtype: int64
In [34]:
          #step 2 divide X nd Y further into training and testing
          X train, X test, y train, y test = train test split (X, y, test size=0.25, stratify= y, random state= 2)
In [35]:
          print(X train.shape)
         (738, 30)
In [36]:
          print(X_test.shape)
         (246, 30)
In [37]:
          print(y train.shape)
         (738,)
```

Applying model

```
In [38]: ml_model = LogisticRegression()
In [39]: ml_model.fit(X_train, y_train)
Out[39]: LogisticRegression()
```

Evaluation of accuracy

```
#accuracy score of training data
In [40]:
          Train prediction=ml model.predict(X train)
          Acc train= accuracy score(Train prediction, y train)
In [41]:
          #check accuracy score
          print('Accuracy score of training data is', Acc train)
         Accuracy score of training data is 0.9200542005420054
In [42]:
          #accuracy score of training data
          Test prediction=ml model.predict(X test)
          Acc test= accuracy score(Test prediction, y test)
In [43]:
          print('Accuracy score of test data is', Acc_test)
         Accuracy score of test data is 0.9065040650406504
        Confusion matrix
In [44]:
          print (confusion matrix(Test prediction, y test))
         [[122 22]
          [ 1 101]]
In [45]:
          print (confusion matrix(Train prediction, y train))
         [[352 42]
          [ 17 327]]
In [46]:
          print (classification_report(Test_prediction, y_test))
                       precision
                                    recall f1-score
                                                       support
                            0.99
                                      0.85
                                                0.91
                                                           144
                                      0.99
                                                0.90
                            0.82
                                                           102
```

accuracy			0.91	246
macro avg	0.91	0.92	0.91	246
weighted avg	0.92	0.91	0.91	246

In []: