密码工程原理 2020 年 3 月 2 日

作业 2

教师: 陈小明 Due: Mar. 02, 2020

Problem 1 (设) () 分

随机向量 $\xi=(\xi_1,\cdots,\xi_n)$ 是 $\{0,1\}^n$ 上均匀分布的充要条件是 ξ_1,\cdots,ξ_n 是 i.i.d.

Problem 2 (两两独立随机变量)

() 分

3 维随机向量 $E = (E_1, E_2, E_3)$,它在 $\{0,1\}^3$ 上的分布如下(表中 V4 以下向量的概率为 0)

E	E_1	E_2	E_3	P
v_1	0	0	0	1/4
v_2	0	1	1	1/4
v_3	1	0	1	1/4
v_4	1	1	0	1/4
v_5	X	X	X	0

回答下列问题:

- 1. E_1, E_2, E_3 是等概(均匀)分布吗?
- 2. E_1, E_2, E_3 是两两独立的吗?
- 3. E_1, E_2, E_3 是 i.i.d. 吗?
- 4. 修改该表使 *E*₁, *E*₃, *E*₃ 为 i.i.d..

Problem 3 (变号点个数的概率分布)

() 分

设 $\varepsilon = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_{n+1}$ 是 i.i.d., 定义 $\chi(\varepsilon_i) = \varepsilon_i \oplus \varepsilon_{i+1}$, 即 $\varepsilon_i = 1$ 表示在第 i 位置, 后面的比特发生反转 (与 ε 不一样). 设 $\xi = \sum_{i=1}^n \chi(\varepsilon_i)$.

1. ξ 是什么分布?

- 3. 取 $\alpha = 0.01$, 拒绝还是接受 " ε 是 i.i.d. 样本"?

Problem 4 (余差函数)

设 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$ 是标准正态分布的分布函数,定义余差函数 $refc(z) = \frac{2}{\sqrt{\pi}} \int_z^\infty e^{-u^2} du$. 证明 $\mathbb{P}(|x| > c) = \frac{1}{2} refc\left(\frac{c}{\sqrt{2}}\right)$

Problem 5 (不完全 Γ 函数)

() 分

() 分

记
$$\Gamma(a,z)=\int_z^\infty t^{a-1}e^{-t}dt, \Gamma(a)=\Gamma(a,0)$$

$$F(z)=\int_0^z \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}dx=\frac{1}{2^{n/2}\Gamma(\frac{n}{2})}\int_0^z x^{\frac{n}{2}-1}e^{-\frac{x}{2}}dx$$
 是 χ^2 分布的分布函数,不完全 Γ 函数定义为: $Q(a,y)=\frac{1}{\Gamma(a)}\int_y^\infty t^{a-1}e^{-t}dt.$ 证明 $\mathbb{P}(x>c)=Q(n/2,z/2)$

Problem 6 (设计 χ^2 检验项目)

() 分

- 1. 从 $0,1,\dots,2^n-1$ 中随机取一个数, 取完后放回. 独立重复这个过程 k 次, 求事件 A_m : "此 k 个数中最大的数是 m" 的概率 $p_m(m \leq 2^n-1).(提示: p_m = \frac{m^k-(m-1)^k}{(2^n-1)^k})$
- 2. 根据上面的概率计算,设计一个随机性检验项目。要求:
 - (a) 选定参数 n 和 k.
 - (b) 写出检测算法过程,包括观察值的计算过程。
 - (c) 说明确定 P 值的过程 (借助不完全 Γ 函数)。
- 3. 选自己熟悉的语言和计算环境, 考虑编程实现所设计的检验项目, 为实验课做准备(返校后开始实验课).