

DISCRETE COSINE TRANSFORM DISCRETE FOURIER TRANSFORM

Bonus Track:

- STFT
- Wavelet Transform

Noel Alben, Thiago Roque

Special Topics: Brain-Body Music

SYNTHESIS

n = 1

@BilimNeGuzelLan

- Any wave can be constructed from a set of frequency components and their respective amplitudes
- The wave is the resultant summation of these sinusoidal frequency components
- Suppose a wave is the sum of cosines with a given set of frequencies, how would you find the amplitude for each frequency component?

20XX

DISCRETE COSINE TRANSFORM (DCT)

$$x_n = \frac{1}{N} \beta^* \sum_{k=0}^{N-1} X_k \cos \left[\left(\frac{\pi k}{2N} \right) (2n+1) \right]$$

$$X_k = \sum_{n=0}^{N-1} x_n \cos \left[\left(\frac{\pi k}{2N} \right) (2n+1) \right]$$

$$\begin{bmatrix} \vdots \\ X_k \\ \vdots \end{bmatrix} = \begin{bmatrix} \dots & \dots & \dots \\ \vdots & \cos\left[\left(\frac{\pi k}{2N}\right)(2n+1)\right] & \vdots \\ \vdots & \dots & \dots \end{bmatrix} \cdot \begin{bmatrix} \vdots \\ x_n \\ \vdots \end{bmatrix}$$

$$k \times n$$

DISCRETE COSINE TRANSFORM (DCT)

- DCT co-efficients are real valued (no imaginary parts)
- This makes it a preferred transformation for compression tasks
 - Data compression (MP3, MPEG, JPEG)
 - Audio Feedback cancellation
 - Biometric recognition (face, fingerprint, etc.)
 - Watermarking
- Many possible variation/implementations
 - DCT I
 - DCT II
 - DCT III
 - DCT IV
 - MDCT IV

Thinkdsp implements DCT IV

Example of Utilization $H_0(z)$ $\rightarrow y_0(k)$ x(k) $y_1(k)$ $H_1(z)$ $\rightarrow y_{P-1}(k)$

Harmonic partials segregation

MP3 Block Diagram

ACTIVITY 1

COMPRESS HEARTBEAT SIGNALS USING DCT

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \left[\cos \left(\frac{2\pi kn}{N} \right) + i \sin \left(\frac{2\pi kn}{N} \right) \right]$$

$$X_k = \sum_{n=0}^{N-1} x_n \left[\cos \left(\frac{2\pi kn}{N} \right) - i \sin \left(\frac{2\pi kn}{N} \right) \right]$$

$$e^{i\frac{2\pi kn}{N}} = \cos\left(\frac{2\pi kn}{N}\right) + i\sin\left(\frac{2\pi kn}{N}\right)$$

Euler's Formula

DISCRETE FOURIER TRANSFORM (DFT)

- We've been using the Discrete Fourier transform (DFT) since the first ThinkDSP exercise
- Complex Exponentials:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

- This formula is a complex number with magnitude 1
- Think of it as a point in the complex plane, it is always on the unit circle.
- Just as we did with real sinusoids, we can create compound signals by adding up complex sinusoids with different frequencies.

ACTIVITY 2

https://www.jezzamon.com/fourier/

BONUS TRACK

- Short-time Fourier Transform
- Wavelet Transform

SHORT-TIME FOURIER TRANSFORM (STFT)

Rectangular Window

Blackman-Harris Window

Hamming Window

The time-frequency window of STFT

The time-frequency window of Wavelet

WAVELET TRANSFORM

$$W_f(a,b) = \langle f, \psi_{a,b} \rangle = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \, \psi^*(\frac{t-b}{a})$$

 $a \rightarrow Scaling fator (dilatation)$

 $b \rightarrow \text{Translation factor}$

$$f(t) = \frac{1}{C} \iint_{-\infty}^{\infty} \frac{1}{|a|^2} W(a,b) \psi_{a,b} da db$$

The time-frequency window of Wavelet

MOTIVATION FOR WAVELETS

Denoising biosignals

MOTIVATION FOR WAVELETS

Denoised

THANK YOU!