Acids, Bases and Salts

Acids

Acids furnish ${\rm H^+}$ ions or ${\rm H_3O^+}$ ions when dissolved in water. Acids have one or more replaceable H atoms

Arrhenius Concept of Acids

Acid is capable of producing hydrogen ion H^+ by dissociating in aqueous solution. This reaction can be represented by

$$\underset{A\mathrm{cid}}{HA(aq)} \longrightarrow \underset{Hydrogen\ Ion\ (proton)}{H^+(aq)} A^-(aq)$$

For example: Hydrochloric Acid (HCl)

$$HCl(aq) \longrightarrow H^+(aq) Cl^-(aq)$$

The proton or hydrogen ion binds itself to a water molecule to form a **hydronium ion** (H_3O^+)

$$H^+_{\mathrm{Hydrogen\ Ion\ (proton)}} + H_2O \longrightarrow H_3O^+_{\mathrm{Hydronium\ Ion}}$$

The hydronium ion is also known as oxonium ion or hydroxonium ion.

The first equation can be rewritten as

$$HA(aq) + H_2O \longrightarrow H_3O^+(aq) A^-(aq)$$

Note: H⁺ ions are protons.

- Acids generally have sour taste.
- Acids change Blue litmus Red.
- They are colorless with **phenolphthalein** and pink with **methyl orange**.
- Acids show acidic nature in their aqueous form.

Classification of Acids

- Based on Source:
 - Organic Acids are present in plants and animals (living beings).

Eg: HCOOH (Formic Acid), CH₃COOH (Acetic Acid)

- Inorganic Acids are found from rocks and minerals.

Eg: HCl (Hydrochloric Acid), HNO₃ (Nitric Acid), H₂SO₄ (Sulphuric Acid)

• Based on their Basicity

Basicity = The number of H atoms replaceable by a base in a particular acid.

- Monabasic Acid gives one H⁺ ion per molecule of the acid in solution.

Eg: HCl, HNO₃

- Dibasic Acid gives two H⁺ ions per molecule of the acid in the solution.

Eg: H_2SO_4 , H_2CO_3

- Tribasic Acid gives three H⁺ ions per molecule of the acid in the solution.

Eg: H₃PO₄

• Based on Ionisation

- Strong Acids ionise completely in water.

Eg: HCl

- Weak Acids ionise partially in water.

Eg: CH₃COOH

• Based on Concentration

- Concentrated Acid has a relatively high percentage of acid in its aqueous solution.
- Dilute Acid has a relatively low percentage of acid in its aqueous solution.