Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 0$$
$$x - z = 1$$

Standard E2.

Mark:

Find RREF A, where

$$A = \begin{bmatrix} 2 & -1 & 5 & | & 4 \\ -1 & 0 & -2 & | & -1 \\ 1 & 3 & -1 & | & -5 \end{bmatrix}$$

	Mark:
Standard E3.	

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

Standard E4.

Mark:

Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

Let V be the set of all real numbers with the operations, for any $x, y \in V, c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Mark:

Standard V2.

Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

Standard V3.	Mark							
Determine if the vectors	$\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$,	3 1 3 6	,	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	$\left \begin{array}{c} \\ \end{array} \right $, and	$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$	span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S1.

Mark:

Determine if the set of vectors $\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ -1 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 0 & 4 \end{bmatrix} \right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \\
\end{bmatrix}$$
Let $W = \operatorname{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right)$. Find a basis of W .

Standard S4.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}$$
 Compute the dimension of W .