class 14

Anqi Feng

##import data Counts Metadata -Data cleanup -setup for DESe
up -DESeq -Inspect Results -Pathway analysis

Import Data: we need two things "COunts" and "Meta Data" (what DESEeq calls colData as it)

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"
counts <- read.csv(countFile, row.names =1)
metadata <- read.csv(metaFile)</pre>
```

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				

0

258

head(metadata)

ENSG00000273547

ENSG00000187634

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

We want the columns in our counts to match the metadata

colnames(counts)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

Something's off cuz theres seven colnames in count but six in metadata

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

We can get rid of the first column in counts to make these match

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
colnames(countData) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Filter out zero counts It is standard practice

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds, ]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup fo DESEup

library(DESeq2)

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

DESeq

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

res <- results(dds)</pre>

head(res)

```
\log 2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

Datarrame with (J IOWS and	O COLUMNIS			
	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0	03			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0	07			
ENSG00000187583	9.19031e-0	01			
ENSG00000187642	4.03379e-0	01			

data visualization

plot(res\$log2FoldChange, -log(res\$padj))

Pathway analysis

Annotation of genes: First I need to translate my Ensemble IDs in my resobject to Entrez and gene symbol formats

For this I will use the annotation Dbi package and it's mapIds() function

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	ייזואדספטדיי				

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                           lfcSE
                                                                pvalue
                                                       stat
               <numeric>
                             <numeric> <numeric> <numeric>
                                                             <numeric>
ENSG00000279457
                 29.9136
                             0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                             0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                           -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                             0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
               11.9798
                             0.5428105 0.5215599 1.040744 2.97994e-01
                                        genename
                                                      entrez
                                                                 symbol
                      padj
                 <numeric>
                                     <character> <character> <character>
ENSG00000279457 6.86555e-01
                                                                     NA
                                                         NA
ENSG00000187634 5.15718e-03 sterile alpha motif ..
                                                    148398
                                                                 SAMD11
ENSG00000188976 1.76549e-35 NOC2 like nucleolar ...
                                                     26155
                                                                  NOC2L
```

```
ENSG00000187961 1.13413e-07 kelch like family me.. 339451 KLHL17
ENSG00000187583 9.19031e-01 pleckstrin homology .. 84069 PLEKHN1
ENSG00000187642 4.03379e-01 PPARGC1 and ESRR ind.. 84808 PERM1
```

Before going any further lets focus on the a subset of top hits We can use a starting point log 2FC of +2/-2 and a adjusted p=value of less than 0.05

```
top.inds <- (abs(res$log2FoldChange) > 2) & (res$padj < 0.05)
```

let's save our "top genes" to a csv

```
top.inds[is.na(top.inds)] <- FALSE</pre>
```

```
look.see <- is.na(top.inds)
res[look.see,]</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 0 rows and 9 columns

```
top.genes <- res[top.inds,]
write.csv(top.genes, file = "top_geneset.csv")</pre>
```

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                         "1577"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                         "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
                         "54579"
                                            "54657"
                                                               "54659"
                                                                         "54963"
               "54578"
                                  "54600"
                                                      "54658"
[33] "574537" "64816"
                         "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                                                                          "113"
                "10846"
                          "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                "112"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                       "204"
                                                                "205"
                                                                          "221823"
 [33] "2272"
                "22978"
                          "23649"
                                   "246721"
                                             "25885"
                                                       "2618"
                                                                "26289"
                                                                          "270"
 [41] "271"
                "27115"
                          "272"
                                   "2766"
                                             "2977"
                                                       "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                          "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
 [57] "353"
                "3614"
                          "3615"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                          "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                          "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                "5139"
                                                                          "5140"
 [81] "5141"
                "5142"
                          "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                          "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                          "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                          "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                          "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                "58497"
                                                                          "6240"
                "64425"
                                                       "7498"
[137] "6241"
                          "646625" "654364"
                                             "661"
                                                                "8382"
                                                                          "84172"
```

"8654"

"87178"

"8833"

"9060"

"8622"

"84618"

[145] "84265"

"84284"

```
[153] "9061" "93034" "953" "954" "955" "956" "957" [161] "9583" "9615"
```

The \mathbf{gage} function wants a vector of importance as input with gene names as labels - KEGG speaks ENTREZ

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.066915974	144 1	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	.961413e-03