1. Find an equation for the tangent to the curve at the given point.

(a).
$$y = \frac{1}{x^4}$$
 at $(2, \frac{1}{16})$

(b).
$$y = 2\sqrt{x-3}$$
 at $(7,4)$

(c).
$$y = 3\sin(x - \frac{\pi}{6})$$
 at $(\frac{\pi}{3}, \frac{3}{2})$

2. Find the derivatives of the following functions

(a).
$$f(x) = \chi \cdot \sqrt{x}$$

(b).
$$f(x) = \frac{x+3}{x-1}$$

(c).
$$f(x) = \int x^2 - 1$$

3. Find the second derivatives of the following functions:

(b).
$$f(x) = \frac{(x^2+3x)(x+5inx+1)}{x^4}$$

(b).
$$f(x) = \frac{\chi^2 - \tan \chi}{\sqrt{\chi^3 - 1}}$$

4. Find the derivatives of the following functions:

(a).
$$f(x) = g(x + g(x))$$

5. Show that $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ is differentiable x = 0, but f(x) is not continuous at x = 0.

6. Suppose that f(x) is differentiable at x_0 , then $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h} = f(x_0)$

And show that even if the limit on the left hand side exists (not equal to ∞), fix) may not be differentiable.