Consider an array $A = [a_0, a_1, \ldots, a_{n-1}]$ of n integers. We perform q queries of the following type on \boldsymbol{A} :

• Sort all the elements in the subsegment $a_{l_i}, a_{l_i+1}, \ldots, a_{r_i}$.

Given A, can you find and print the value at index k (where $0 \le k < n$) after performing q queries?

Input Format

The first line contains three positive space-separated integers describing the respective values of n (the number of integers in A), q (the number of queries), and k (an index in A).

The next line contains n space-separated integers describing the respective values of $a_0, a_1, \ldots, a_{n-1}$. Each line $m{j}$ of the $m{q}$ subsequent lines contain two space-separated integers describing the respective $m{l_i}$ and r_i values for query j.

Constraints

- $1 \le n, q \le 75000$
- $egin{array}{l} 1 &= ll, q = 18000 \\ \bullet & 0 \leq k \leq n-1 \\ \bullet & -10^9 \leq a_i \leq 10^9 \\ \bullet & 0 \leq l_i \leq r_i < n \end{array}$

Output Format

Print a single integer denoting the value of $a_{\pmb{k}}$ after processing all ${\pmb{q}}$ queries.

Sample Input 0

- 3 1 1
- 3 2 1
- 0 1

Sample Output 0

Explanation 0

$$A = [3, 2, 1]$$

There is only one query to perform. When we sort the subarray ranging from index 0 to index 1, we get A' = [2, 3, 1]. We then print the element at index 1, which is 3.

Sample Input 1

- 4 2 0
- 4 3 2 1
- 0 2
- 1 3

Sample Output 1

2

Explanation 1

$$A = [4, 3, 2, 1]$$

There are q = 2 queries:

- 1. When we sort the subarray ranging from index 0 to index 2, we get A' = [2, 3, 4, 1].
- 2. When we sort the subarray of A' from index 1 to index 3, we get A'' = [2, 1, 3, 4].

Having performed all of the queries, we print the element at index 0, which is 2.

