8. Color recognition and object tracking

8. Color recognition and object tracking

8.1、Introduction

8.1.1、Color recognition

8.1.2、Object tracking

8.2、Steps

8.2.1、Start up

8.2.2、Identify

8.2.3 Color calibration

8.3、C++ version KCF

8.3.1、Instructions

8.3.3 Node relationship graph

website: https://learnopencv.com/object-tracking-using-opencv-cpp-python/#opencv-tracking-ap i

8.1, Introduction

8.1.1、Color recognition

HSV

H: 0 — 180

S: 0 — 255

V: 0 — 255

Part of the red is classified as the purple range here:

	black	gray	white	re	d	orange	yellow	green	verdant	blue	purple
hmin	0	0	0	0	156	11	26	35	78	100	125
hmax	180	180	180	10	180	25	341	77	99	124	155
smin	0	0	0	43		43	43	43	43	43	43
smax	255	43	30	255		255	255	255	255	255	255
vmin	0	46	221	46		46	46	46	46	46	46
vmax	46	220	255	255		255	255	255	255	255	255

HSV

- Hue H
- Saturation S
- Lightness V

8.1.2、Object tracking

Object tracking is to locate an object in consecutive video frames.

• Comparison of OpenCV algorithms

Algorithm	Speed	Accuracy	Description		
BOOSTING	Slow	Low	It is the same as the machine learning algorithm behind Haar casades (AdaBoost), but it has been born for more than ten years, a veteran algorithm.		
MIL	Slow	Low	It is more accurate than BOOSTING, but the failure rate is higher.		
KCF	Fast	High	Faster than BOOSTING and MIL, but it is not effective when there is occlusion		
TLD	Middle	Middle	There are a lot of erro		
MEDIANFLOW	Middle+	Middle	The model will fail for fast-jumping or fast-moving objects.		
GOTURN	Middle	Middle	A deep learning-based object detector requires additional models to run.		
MOSSE	Fastest	High	The speed is really fast, but not as high as the accuracy of CSRT and KCF. If you are looking for speed, you can choose it.		
CSRT	Fast -	Higher	Slightly more accurate than KCF, but not as fast as KCF.		

8.2、Steps

8.2.1、Start up

roslaunch astra_tracker AstraTracker.launch VideoSwitch:=false
tracker_type:=color

- VideoSwitch parameter: whether to use the astrapro.launch function package to start.
- tracker_type parameter: select the tracking algorithm ['BOOSTING','MIL','KCF','TLD','MEDIANFLOW','MOSSE','CSRT','color'], click the keyboard [F] key after startup Can be switched.

Set the parameters according to your needs, and you can also modify the launch file directly, so you don't need to attach parameters when you start.

8.2.2、Identify

After startup, the system defaults to [Target Detection Mode], as shown below.

Keyboard key control:

- [r]: Color selection mode, the mouse can be used to select the area of the color to be recognized (cannot exceed the area range).
- [i]: Target detection mode. Color map on the left (Color), binary map on the right (Binary).
- [f]: Switching algorithm: ['BOOSTING','MIL','KCF','TLD','MEDIANFLOW','MOSSE','CSRT','color'].
- [q]: Exit the program.
- Color recognition

In the color selection mode, use the mouse to select the location of the colored object, as shown in the figure below, release it to start recognition.

• Object tracking

After starting, enter the selection mode, use the mouse to select the location of the object, as shown in the figure below, release it to start recognition.

8.2.3, Color calibration

Dynamic parameter

rosrun rqt_reconfigure rqt_reconfigure

], [Hmax], these four parameters can be well identified.

The slider is always in the dragging state, and no data will be transferred to the system. Data will be transferred to the system when you release it.

8.3、C++ version KCF

8.3.1、Instructions

Start up

roslaunch astra_tracker KCFTracker.launch

After starting, enter the selection mode, use the mouse to select the location of the object, as shown in the figure below, release it to start recognition.

8.3.3. Node relationship graph

rqt_graph

