Multilingual Resources

MICKUS, Timothee

Contents of the lecture

- 1. Quick reminder on why encoding matters
- 2. Word-level resources
 - 2.1 Dictionary-like resources
 - 2.2 Aligning word embeddings
- 3. Sentence-level resources
 - 3.1 Parallel corpora
 - 3.2 Universal dependencies

Encoding

Encoding

General caveat

- Multilingual NLP applications must deal with variations in writing:
 - ► Multiple alphabets or writing systems (latin, cyrillic, arabic, chinese...)
 - Multiple variants of similar writing systems: diacritics, etc.
- ► Computers deal with these variations by using different **encodings**: latin1, UTF-8, CP1251 ...
- Each encoding is a specific mapping of characters to binary representations, and vice-versa: low level text representation is done by manipulating the text in binary or byte format.
- ▶ Encodings generally cover a specific set of characters: latin1 covers only basic latin characters, CP1251 contains both latin and cyrillic letters, etc. The unicode standard defines both UTF-8 and UTF-16 encodings and tries to represent any possible character.
- ► The good practice is to keep track of the encoding of files, and, as much as possible, use **unicode** encoding (used by default in python 3)

Useful python library for detecting encoding: $\operatorname{chardet}$

Wiktionary

- Wiktionary is a collaboratively edited multilingual web-based project.
- ► The aim is to produce dictionaries for all the world's languages, currently it covers 171 languages
- Wiktionary data is frequently used in NLP, both in multilingual and in monolingual contexts
 - cf. for instance GLAWI: http://redac.univ-tlse2.fr/lexiques/glawi.html which is a freely distributed resource for French, mapping morphological annotations from GLÀFF to definitions from the French wiktionary.
- ➤ As a consequence of the collaborative nature of the project, Wiktionary is generally deemed to have broad coverage, but unsystematic definitions.

Wiktionary

- Many dictionaries include relevant multilingual information that can be exploited in linguistic applications and experiments.
- ▶ In our case, wiktionary entries often have a "Translations" subsection

... which can be retrieved by parsing the XML dump

```
====Translations==== {{trans-top|large, bulky, corpulent}}

* Finnish: {{t|fi|pönäkkä}}, {{t+|fi|tanakka}}

* Greek: {{t+|el|}}

* Irish: {{t|ga|alpartha}}
```

(dumps are available here: https://dumps.wikimedia.org/)

but it's actually hard work.

More generally, Wiki-based resources such as Wikipedia, Wiktionary, Wikimedia, etc. often display "interlanguage links":

- ► Likewise, they can be retrieved by parsing the XML dump and it can quickly become a time-consuming task.
- ► More info: https://en.wikipedia.org/wiki/Help:Interlanguage_links

Wordnet

The nltk implementation of wordnet boasts multilingual support

- ► The list of all codes for supported languages can be found using wn.langs().
- Synsets can be queried with the lang keyword :

```
>>> wn.synsets('cane', lang='ita')
[Synset('dog.n.01'), Synset('cramp.n.02'),
Synset('hammer.n.01'), Synset('bad_person.n.01'),
Synset('incompetent.n.01')]
```

It's possible to retrieve lemmas in a given language with the functions synset.lemma_names() and synset.lemmas():

```
>>> dog = wn.synset('dog.n.01')
>>> dog.lemmas('ita')
[Lemma('dog.n.01.cane'), Lemma('dog.n.01.Canis_familiaris')]
>>> dog.lemma_names('ita')
['cane', 'Canis_familiaris']
```

Lemmas have a lemma.lang() function that maps to their language code:

```
>>> lemma = dog.lemmas('ita')[0]
>>> lemma.lang()
'ita'
```

The function wn.all_lemma_names() can be restricted to a specific language using the lang keyword.

Babelnet

Babelnet (https://babelnet.org/) is a network of concept mostly based on the integration of wikipedia, wiktionnary and wordnet, with an official Java API. It makes full use of the multilingual structures of Wordnet and Wiki-resources.

- ▶ Babelnet is a collection "Babel synsets", mapping of wordnet synsets to wikipedia pages.
- ► The mapping is initialized by first aligning pages and synsets which are monosemous (wikipedia pages with no disambiguation page associated, and synsets with only one lemmas).
- Redirections are mapped to the synset they redirect to.
- ► The rest of the mapping is computed by selecting the most probable sense in wordnet based on the content of the wikipedia page.

Cross-lingual embeddings requirements

In some NLP applications, different sets of word embeddings from multiple languages are used jointly.

- ▶ To do this we need to project them in a **shared semantic space**, ie. we "**align**" them
- we want to make sure that items with a similar meanings are near one another: even more so when it comes to translation pairs

Cross-lingual embeddings requirements

Aligning word embeddings for two different languages L_1 and L_2 require :

- ightharpoonup a set of embeddings for each of the two languages L_1 and L_2 ,
- ▶ a set of word pairs (w_1, w_2) such that w_1 is a word of L_1 and w_2 is a translation for w_1 in L_2 .

If these are available, various algorithms can be used to transfer the word embeddings in a common space, we'll focus on SVD (Smith et al., 2017).

Matrix multiplication as a vector function

The multiplication C = A B of a matrix A of shape $(M \times N)$ and a matrix B of shape $(N \times P)$ is of shape $(M \times P)$. The cell $\langle i, j \rangle$ in C will have as value the dot product between the i^{th} row vector in A and the j^{th} column vector in B:

Therefore the multiplication of a vector \vec{v} of shape $(1 \times d)$ and a matrix A of shape $(d \times d')$ is a vector $\vec{v'} = \vec{v}A$, of shape $(1 \times d')$

Thus a matrix of shape $(d \times d')$ can be seen as a linear transformation, ie. a function mapping vectors from a space of dimension d to another space of dimension d'.

13

Cross-lingual embeddings

- To align two word embedding spaces, we need to compute for each of them a linear transformation that projects the vectors into a shared space
- SVD decomposes a transformation into a rotation, followed by a scaling, and then a second rotation

$$M = U \cdot \Sigma \cdot V^*$$

(image from wikipedia)

it requires that the two sets of embeddings we align can be described as matrices where the ith row in the one corresponds to the translation of the word for the ith row in the other

Understanding SVD alignment

We first need to assess what sort of function is needed to map one space to the other : we do that using the **matrix product**.

In this example, high values on the y axis in W_1 map to low values on the y^\prime axis in W_2 . This will be captured in the dimension wise-product:

$$P = W_1^T W_2$$

This product defines the conjunction of the distributional descriptions of word vectors: the cell $\langle y,y'\rangle$ corresponding to the importance of y in W_1 to compute y' in W_2 will be given a low coefficient. Rows in P will correspond to dimensions in W_1 , and columns to dimensions in W_2 .

Understanding SVD alignment

We can then use $\ensuremath{\mathsf{SVD}}$ to see how we would need to rotate the two spaces so that they match.

- In linear algebra, SVD is a factorization of a Matrix M in three terms, U, Σ and V, such as $M = U \Sigma V^T$
- Σ is a diagonal matrix, and U and V are unitary matrix, ie. U $U^T = U^T$ U = I and V $V^T = V^T$ V = I
- ▶ When M is a square matrix (of shape $K \times K$), U and V^T can be seen as rotations and Σ as a scaling factor.
- ► U is is a set of eigenvectors for the row vectors of M, and V likewise for the column vectors of M
- in the case of our two semantic spaces W_1 and W_2 , if we define M as the conjunction of the effects in W_1 and W_2 , ie. $M = W_1^T W_2$, we can therefore see U as the rotation mapping W_1^D to its natural description in a shared semantic space, and an approximation of the necessary rotation for W_1 ; likewise, we can see V as a natural description of W_2 .

Understanding SVD alignment

The function we saw previsouly was proposed by Smith et al. (2017). In detail, they use the following procedure to align two embedding matrices W_1 and W_2 , using a bilingual lexicon $D = \langle w_1^i, w_2^i \rangle$:

- I First compute W_1^D and W_2^D , the subsets of the matrices W_1 and W_2 containing only vectors of words present in D.
- II Compute the matrix product $P=W_1^{DT}\ W_2^D$, which can be seen as pairing up W_1^D and W_2^D based on the vectors components.
- III Then retrieve the rotations by computing the SVD: $P = U\Sigma V^T$
- IV Apply the first rotation to W_1 , and the second to W_2 : $W_1' = W_1 U$ and $W_2' = W_2 V$.

This is akin to rotating both word embedding spaces so that they are projected in the same space: we use the transformation U on the embedding space W_1 , the superset of W_1^D as both relates to the rows of the dimension-wise product $P = W_1^{DT} \ W_2^D$; likewise we use V on W_2 . This allows us to mesh together the semantic spaces.

Parallel corpora

Machine translation has been a long standing goal of NLP (The term was first coined by Warren Weaver in 1949)

- Machine translation (generally) requires parallel data: linguistic elements from a given source language must be mapped to another target language
- ► This alignment can be made at any linguistic level
- Today, most statistical & neural MT systems rely on parallel corpora of sentences in natural language

Existing parallel corpora

This entails that many sentence-level parallel corpora can be found

- see for instance the corpora available at WMT: http://www.statmt.org/wmt19/translation-task.html
- ... or the opensubtitles datasets : http://opus.nlpl.eu/OpenSubtitles.php
- you can even find English-Inuktitut parliamentary parallel data : http://www.inuktitutcomputing.ca/NunavutHansard/info.php

Parallel corpora

Source

What does a parallel corpus look like?

Europarl En \longleftrightarrow De

europarl-v7.de-en.en	europarl-v7.de-en.de							
1 Resumption of the session	1 Wiederaufnahme der							
	Sitzungsperiode							
2 I declare resumed the	2 Ich erkläre die am Freitag,							
session of the European	dem 17. Dezember							
Parliament adjourned on	unterbrochene Sitzungsperiode							
Friday 17 December 1999,	des Europäischen Parlaments							
and I would like once	für wiederaufgenommen,							
again to wish you a happy	wünsche Ihnen nochmals alles							
new year in the hope that	Gute zum Jahreswechsel und							
you enjoyed a pleasant	hoffe, da Sie schöne Ferien							
festive period.	hatten.							
3 Although, as you will have	3 Wie Sie feststellen konnten,							
seen, the dreaded	ist der gefürchtete 21							

Target

Universal annotations

Another type of multilingual resources are those concerned with universal annotation schemes.

- Although Chinese and Japanese have classifier whereas French doesn't, one can try to make an inventory of all the possible PoS-tags, and use it consistently across languages
- ► This idea has been seriously considered : cf. for instance the Universal PoS tagset of Petrov, Das, and McDonald (2012)
- Likewise, efforts have been made to consistently annotate morphosyntactical features across languages (for instance Interset by Zeman (2008) has been used to map features across languages, by deriving an "interlingua" representation)
- Lastly, much research has been made to present a cross-lingual dependency annotation scheme, called "Universal Dependencies" (UD, cf. http://universaldependencies.org).

Universal Dependencies

- the UD project is an open collaboration, mainly coordinated by Joakim Nivre
- the UD project proposes dependency corpora in 79 languages across many linguistic phyla, from Akkadian to Yoruba and from Old French to Swedish Sign language.
- the annotation scheme is based on an integration of the Stanford Dependency annotations, the universal PoS tagset and the Interset interlingua for morphological features.
- ▶ the main idea of the UD project is to be both accessible to the non-specialist (learner, human annotator or NLP engineer) and linguistically accurate for each language (despite being universal).
- the corpora are each split in three (train, dev and test), and are available both as raw .txt format and as .conllu format

.conllu format

The .comllu format is a widely adopted format for dependency tree banks

- ▶ Each sentence is represented as the list of its tokens, eventually preceded by meta-information (eg. sentence ID or plain text) signalled by a # character at the start.
- Each token contains fields or "columns", separated by tabs, listed in a specific order :
 - 1. **ID**: its index in the sentence
 - 2. **FORM**: its word form
 - 3. **LEMMA**: its lemma, if available
 - 4. **UPOS**: its universal PoS tag
 - 5. **XPOS**: its language-specific PoS tag
 - 6. **FEATS**: its morphosyntactic features
 - 7. **HEAD**: the index of its head, or 0 if it is the root
 - 8. **DEPREL**: the dependency relation that it holds with respect to its head
 - 9. DEPS: an enhanced graph annotation
 - 10. MISC: any remaining miscellaneous annotation

Any unspecified or missing information is represented using the _ character. ID cannot be missing. In UD tree banks, the UPOS, HEAD and DEPREL columns must not be unspecified or missing.

blank lines separate sentences

Sentence-level resources UD example I

# sent	_id = ani	nodis.er	_00007												
# text	= Amélio	oration	de la sécu	rité											
1	Amélio	ration	améliora	tion	NOUN	_	Gender=Fem Number=Sing	0	root	_		_			
2	de	de	ADP	_	_	4	case								
3	la	le	DET	_	Defini	te=Def	Gender=Fem Number=Sing Pro	n	Type=Art		4	d/	et	_	_
4	sécuri	té	sécurité		NOUN	_	Gender=Fem Number=Sing	1	nmod	_		_			


```
# sent id = annodis.er 00029
 text = En 1996, la municipalité étudie la possibilité d'une construction neuve.
       En
                        ADP
                                                         case
        1996
                1996
                                         NumType=Card
                                                                 obl:mod
                                                                                 SpaceAfter=No
                        PUNCT
                                                         punct
                                        Definite=Def|Gender=Fem|Number=Sing|PronType=Art
                        DET
                                                                                                          det
                                                         Gender=Fem|Number=Sing 6
        municipalité
                        municipalité
                                        Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin
        étudie étudier VERB
                        DET
                                         Definite=Def|Gender=Fem|Number=Sing|PronType=Art
        possibilité
                        possibilité
                                         NOTIN
                                                         Gender=Fem|Number=Sing 6
                        ADP
                                                         case
                                                                         SpaceAfter=No
                                         Definite=Ind|Gender=Fem|Number=Sing|PronType=Art
10
                        DET
                                                                                                  11
                                                         Gender=Fem|Number=Sing 8
11
       construction
                        construction
                                                                                          nmod
                                         Gender=Fem | Number=Sing 11
                nenf
                                                                         amod
                                                                                          SpaceAfter=No
13
                        PUNCT
                                                         punct
```