Aufgabe 1

- (a) Geben Sie einen möglichst einfachen regulären Ausdruck für die Sprache L, = aja2— an n > 3,a; \in a, b für allei =1,...,n und a, a, an.
- (b) Geben Sie einen möglichst einfachen regulären Ausdruck für die Sprache Ly = $w \in a,b^* \mid w$ enthält genau ein b und ist von ungerader Länge an
- (c) Beschreiben Sie die Sprache des folgenden Automaten A, möglichst einfach und präzise in ihren eigenen Worten.

1

(d) Betrachten Sie folgenden Automaten A_2 :

2

Im Original sind die Zustände mit q_x benannt. Damit wir die Schnittmenge besser bilden können, wird hier z_x verwendet.

Konstruieren Sie einen endlichen Automaten, der die Schnittmenge der Sprachen $L(A_1)$ und $L(A_2)$ akzeptiert.

A_1		
	a	b
0	1	0 2
1	0 3 3	2
2	3	0
2 3	3	3
A_2		
	a	b
0	1	1
1	0	0

1https://flaci.com/Arz003ccg

²https://flaci.com/Ap9qbkumc

Neuer	Neuer Endzustand: q_{32}			
	a	b		
$q_0 z_0$	q_1z_1	q_0z_1		
q_1z_0	q_0z_1	q_2z_1		
$q_2 z_0$	$q_{3}z_{1}$	$q_0 z_1$		
$q_{3}z_{0}$	$q_{3}z_{1}$	$q_3 z_1$		
$q_0 z_1$	$q_1 z_0$	$q_0 z_0$		
q_1z_1	$q_0 z_0$	$q_2 z_0$		
q_2z_1	$q_{3}z_{0}$	$q_0 z_0$		
q_3z_1	$q_{3}z_{0}$	$q_3 z_0$		