ELEC-313 Lab 3: Diode Circuits

September 29, 2013

Date Performed: September 25, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective							
2	Equipment	3						
3	Schematics	3						
4	Procedure 4.1 Rectifier	3 3 5						
5	Results	5						
6	Conclusion 5							
7	Equations 5							
L	List of Figures							
	1 Circuits used in this lab							
List of Tables								
	1 AC input vs. DC output of rectifier circuit, where $R_L=10\mathrm{k}\Omega$. Effect of R_L on DC output							

1 Objective

The objective is to observe the basic operation of a diode. In addition, the Schockley equation (Eq 2) is used to find the diode's reverse saturation current (I_S) and thermal voltage (V_T) using values measured in the lab.

2 Equipment

Diode: 1N4007 Power supply: HP E3631A Function generator: HP 33120A Resistors: $47\,\Omega$ Multimeter: Fluke 8010A Capacitor: $1\,\mu\text{F}$ Oscilloscope: Agilent 54622D

Resistive decade box: HeathKit IN-3117

3 Schematics

(a) Circuit used for Parts A and Part B.

(b) Circuit used for Part C.

Figure 1: Circuits used in this lab.

4 Procedure

4.1 Rectifier

V	S	V_{max}	V_{min}	V_r	V_{DC}	% Ripple
(1	V)	(V)	(V)	(V)	(V)	
	1	0.488	0.369	0.119	0.429	24.4
:	2	1.41	1.10	0.310	1.26	22.0
	3	2.39	1.88	0.510	2.14	21.3
4	4	3.31	2.38	0.930	2.85	28.1
į	5	4.25	3.19	1.06	3.72	24.9

Table 1: AC input vs. DC output of rectifier circuit, where $R_L=10\,\mathrm{k}\Omega$

R_L	V_{max}	V_{min}	V_r	V_{DC}	% Ripple
$\mathrm{k}\Omega$	V	V	V		
1	4.13	0.440	3.69	2.29	89.3%
10	4.25	3.19	1.06	3.72	24.9%
100	4.321	4.193	0.128	4.257	2.962%

Table 2: Effect of R_L on DC output

Figure 2: AC input vs. DC output of circuit, where $R_L=10\,\mathrm{k}\Omega$

				Measured		Calo	culated	
R_L	V_L	I_L	V_{OC}	$V_S(\mathrm{Drop})\mathrm{Meas}(\mathrm{V})$	% reg(VL)	$V_{OC}(V)$	%diffVOC	VS(Drop)PSpice(
Ω	V	mA	V	V		V		V
100	5.163	50.9	6.10	7.5	4.20%	6.12	0.359%	7.5
330	5.318	15.62	7.87	5.9	1.17%	7.88	0.102%	5.8
1000	5.11	5.27	8.60	5.3	5.28%	8.90	3.327%	5.3
No Load	(\inf)	5.38						

Table 3

- 4.2 Voltage Regulator
- 5 Results
- 6 Conclusion
- 7 Equations

$$\%_{diff} = \frac{|nominal - measured|}{nominal} 100\%$$
 (1)

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \tag{2}$$

$$m = \frac{ln(I_2) - ln(I_1)}{V_2 - V_1} = \frac{1}{V_T}$$
(3)