ABSTRACT:

The invention relates to a method of generating a maximum entropy speech model for a speech recognition system.

To improve the statistical properties of the generated speech model there is proposed that:

- by evaluating a training corpus, first probability values $p_{ind}(w \mid h)$ are formed for N-grams with $N \ge 0$;
 - an estimate of second probability values $p_{\lambda}(w \mid h)$, which represent speech model values of the maximum entropy speech model, is made in dependence on the first probability values;
 - boundary values m_{α} are determined according to the equation

$$m_{\alpha} = \sum_{(h,w)} p_{ind}(w|h) \cdot N(h) \cdot f_{\alpha}(h,w)$$

where N(h) is the rate of occurrence of the respective history h in the training corpus and $f_{\alpha}(h, w)$ is a filter function which has a value different from zero only for certain N-grams predefined a priori and featured by the index α , and otherwise has the zero value; an iteration of speech model values of the maximum entropy speech model is continued until values $m_{\alpha}^{(n)}$ determined in the nth iteration step according to the formula

$$m_{\alpha}^{(b)} = \sum_{(h,w)} p_{\lambda}^{(n)}(w|h) \cdot N(h) \cdot f_{\alpha}(h,w)$$

sufficiently accurately approach the boundary values m_{α} according to a predefinable convergence criterion.

ľIJ

15

20