Übungen zu Mathematik 1

Blatt 5

- 1) Bestimmen Sie sämtliche Lösungen der folgenden Gleichungen:
 - (a) $z^3 = j$
 - (b) $z^4 = -16$

und veranschaulichen Sie diese Werte in der Gaußschen Zahlenebene.

- 2) Berechnen Sie sämtliche Lösungen der Gleichungen:
 - (a) $z^3 = 3 \sqrt{3}j$
 - (b) $z^2 + 2z + 5 = 0$.
- 3) In der Vorlesung haben Sie für $n \in \mathbb{N}$ die Menge der Einheitswurzeln E_n über den komplexen Zahlen kennengelernt, d.h. die Lösungen der Gleichung $z^n = 1$. Zeigen Sie, daß (E_n, \cdot) , d.h. die Einheitswurzeln mit der komplexen Multiplikation als Verknüpfung, eine Gruppe bilden.
- 4) Auf der Menge $G = \{a, b, c, d, e, f\}$ sei eine binäre Verknüpfung \circ erklärt gemäß folgender Verknüpfungstafel

0	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	c	a	e	f	d
c	c	a	b	f	d	e
d	$ \begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \end{array} $	f	e	a	c	b
e	e	d	f	b	a	c
f	f	e	d	c	b	a

- (a) Überprufen Sie die Gültigkeit des Assoziativgesetzes anhand von einigen Wahlen von Elementen aus G.
- (b) Wie lautet das neutrale Element?
- (c) Zu welchen Elementen von G existieren inverse Elemente und wie lauten diese?
- 5) Zeigen oder widerlegen Sie, daß die folgenden algebraischen Gebilde (abelsche) Gruppen sind.
 - (a) Die Potenzmenge $\mathbb{P}(M)$ einer beliebigen Menge M mit der Operation Δ erklärt durch

$$A\Delta B := (A \cup B) \setminus (A \cap B)$$

für $A, B \in \mathbb{P}(M)$

(b) Die Menge S_n der Permutationen auf $\{1,...,n\}$ und \circ die Operation der Verkettung.