

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

CMOS áramkörök

Áramköri családok nMOS logikák Statikus CMOS áramkörök

Vizsgált absztrakciós szint

Modern rendszerchip eszközökben alkalmazott logikai áramköri családok

Áttekintés, megvalósítási lehetőségek

- CMOS gyártástechnológia vs. CMOS áramköri kapcsolástechnika
- Az áramköri kapcsolás megalkotásához rendelkezésre álló eszközöket az alkalmazott mikroelektronikai gyártástechnológia határozza meg!
 - Melyek ezek az eszközök? Bip.tr., MOS-FET, poly-R, poly12-C, stb.
 - Mik a jellemző méreteik, karakterisztikáik?
 - Milyen közel, távol, stb. helyezhetők le egymástól, stb. ?
 - tervezési szabályok → DRC (*design rule check*)
 - Milyen határértékek között működnek?
 - Maximal ratings: V_{DD}, max. fr. stb.
- A rendelkezésre álló eszközökből alkotott logikai áramkörök áramköri kapcsolástechnikájának kiválasztása a
 - specifikációban rögzített kívánalmakon és
 - magán a tervezőn múlik.

- Az azonos áramköri kapcsolástechnikával megalkotott logikai kapuáramkörök – melyeknek a be/kimeneti szintjei és a tápfeszültség igényeik megegyeznek – alkotnak egy-egy logikai áramköri családot.
 - nMOS kapcsolástechnika CMOS gyártástechnológián
 - CMOS kapcsolástechnika CMOS gyártástechnológián
 - Statikus CMOS kapcsolástechnika CMOS gyártástechnológián
 - Dinamikus CMOS kapcsolástechnika CMOS gyártástechnológián
 - ECL kapcsolástechnika Bipoláris gyártástechnológián
 - SCL kapcsolástechnika CMOS gyártástechnológián
 - ECL kapcsolástechnika BiCMOS gyártástechnológián
 - CMOS kapcsolástechnika BiCMOS gyártástechnológián
 - TTL, DTL, stb.

Statikus CMOS logika

Dinamikus CMOS logika

- SCL Source Coupled Logic
- Nagysebességű áramkörökben

■ BiCMOS logika

Vertical NPN
Austria Microsystems

- BiCMOS kapcsolástechnika
 - Egyes esetekben nagyáramot igénylő áramköri megoldásokban
 - Nagyfrekvenciás áramkörökben (RF transceiver)
 - Memóriákban, busz-meghajtó áramkörökben

Typical cellular base station or point-to-point radio receiver http://www.st.com/content/st_com/en/about/ innovation---technology/BiCMOS.html

https://www.wirelessdesignmag.com/productrelease/2005/12/sige-bicmos-plays-growing-rolemobile-platform

"By integrating the RF, analog and digital parts on a single chip, ST's BiCMOS SiGe (Silicon-Germanium) technology drastically reduces the number of external components while optimizing power consumption."

Logikai alapáramkörök felépítése

Első lépés: az nMOS inverter

MOS-FET egyszerű modellje

- A működés legegyszerűbb (logikai) modellje:
 - nem vezet (off) / vezet (on)

Készítsünk invertert!

- Ellenállás tápfeszre (V_{DD}) kötve
- Másik vége egy kapcsolóval a földre (GND) kötve
- Kapcsoló vezérlése logikai jellel:
 - 1 (V_{DD} szint) vezet
 - 0 (GND szint) szakadt
- Tekintsük kimenő jelnek a kapcsoló és az ellenállás közös pontját

Készítsünk invertert!

- BE = 1
 - kapcsoló vezet
 - kimenet a GND-re kötve
 - KI = 0

- BE = 0
 - kapcsoló szakadt
 - kimenet V_{DD}-re kapcsolva
 - KI = 1

Készítsünk invertert!

- BE = 1
 - KI = 0

- BE = 0
 - KI = 1

Invertáló alapséma

Logikai alapáramkörök felépítése

Következő lépés: nMOS alapkapuk

Készítsünk egyszerű logikai alapkapcsolást!

A PDN struktúrája határozza meg a logikai funkciót.Pl.:

- 2 sorba kötött kapcsoló: NAND kapu
- Ha A és B 1, akkor KI=0
- Ez aNOT (A AND B) függvény,azaz a NAND
- A gyakorlatban max 3..4 bemenetű kapu.
- Ezen a logikán alapulva:
 - Ha vagylagos áramutat alakítunk ki, akkor a NOR függvényt valósíthatjuk meg!
 - Ha negáljuk a kimenetet, akkor AND függvény!
 - Ha NOT (A AND B), akkor A OR B függvény!

Készítsünk egyszerű logikai alapkapcsolást!

A NOR kapu kapcsolási rajza

- 2 párhuzamosan kötött kapcsoló: NOR kapu
- Ha A vagy B 1, akkor KI=0
- Ez a
 NOT (A OR B) függvény,
 azaz NOR

Komplex áramutak kialakításával komplex logikai kapukat tudunk alkotni!

PÁRHUZAMOS áramút

AND vagy **OR**: a kimeneten egy további inverter. De a de Morgan azonosságok miatt erre lényegében nincs szükség.

Komplex logikai kapuk

A logikai függvénynek megfelelő PDN-nel megvalósítva

Soros áramutak párhuzamosan kapcsolva

$$KI = \overline{AB + C + (D + E)F}$$

Tervezés menete:

- 1. Soros áramút \rightarrow AND
- 2. Párhuzamos áramút → OR
- + Invertálás

MOSFET típusok áttekintése

Inverter konstrukciók

Kapcsoló = n csatornás MOS tranzisztor: normally OFF device Ellenállás: egy másik tranzisztor, pl. trióda tartományban

De újabb táp/referencia feszültség kell

Inverter konstrukciók - nMOS kapcsolástechnika

- Egyszerű technológia, de elavult
- Sok hátrány:
 - statikus fogyasztás, ha KI=0
 - ha kimenet logikai 0, az nem lesz tisztán a GND szint
 - aszimmetrikus transzfer karakterisztika
- Load ellenállás helyett MOS tranzisztort használtunk, de az nem kap aktív vezérlést!
- Ez a *passzív terhelésű* inverter

Inverter konstrukciók - nMOS kapcsolástechnika

- Passzív terhelésű inverter
 - Ha BE: $1 \rightarrow 0 \longrightarrow KI: 0 \rightarrow 1$
 - Kiindulás: $U_{GS T2} = 0V \& U_{DS T2} = 5V$
 - Átkapcsolás pillanatától U_{DS} fokozatosan csökken, vele együtt I_D is!

Inverter konstrukciók - nMOS kapcsolástechnika

- Passzív terhelésű inverter
 - Ha BE: $0 \rightarrow 1 \longrightarrow KI: 1 \rightarrow 0$
 - Kiindulás: $U_{GS T2} = 0V \& U_{DS T2} = 0V$
 - Átkapcsolás pillanatától U_{DS} fokozatosan nő, vele együtt I_D is nő!

Logikai alapáramkörök felépítése

CMOS kapcsolástechnika, CMOS inverter

A CMOS kapcsolástechnika

- A név: Complementary MOS
- Ötlet: kapjon a felhúzó áramkör (az nMOS "load") is aktív vezérlést
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] vezet, akkor a felhúzó áramkör [a load helyén lévő tranzisztor] legyen szakadásban (BE = 1, KI = 0)
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] szakadásban van, a felhúzó áramkör [a load helyén lévő tranzisztor] vezessen (BE = 0, KI = 1)
- Ehhez egy olyan normally OFF device kell, ami az nMOS tranzisztorhoz képest ellentett vezérléssel működik
 - Ilyen a növekményes pMOS tranzisztor

A CMOS kapcsolástechnika

- A név: Complementary MOS
- Ötlet: kapjon a felhúzó áramkör (az nMOS "load") is aktív vezérlést
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] vezet, akkor a felhúzó áramkör [a load helyén lévő tranzisztor] legyen szakadásban (BE = 1, KI = 0)
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] szakadásban van, a felhúzó áramkör [a load helyén lévő tranzisztor] vezessen (BE = 0, KI = 1)
- Ehhez egy olyan normally OFF device kell, ami az nMOS tranzisztorhoz képest ellentett vezérléssel működik
 - Ilyen a növekményes pMOS tranzisztor

A CMOS kapcsolástechnika

- A név: Complementary MOS
- Ötlet: kapjon a felhúzó áramkör (az nMOS "load") is aktív vezérlést
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] vezet, akkor a felhúzó áramkör [a load helyén lévő tranzisztor] legyen szakadásban (BE = 1, KI = 0)
 - ha az nMOS lehúzó áramkör [driver (kapcsoló) tranzisztor] szakadásban van, a felhúzó áramkör [a load helyén lévő tranzisztor] vezessen (BE = 0, KI = 1)
- Ehhez egy olyan normally OFF device kell, ami az nMOS tranzisztorhoz képest ellentett vezérléssel működik
 - Ilyen a növekményes pMOS tranzisztor

MOSFET típusok áttekintése

A CMOS inverter

- Egy n és egy p típusú növekményes tranzisztorból áll
- Aktív terhelésű inverter: a két tranzisztort egyszerre vezéreljük

Állandósult állapotban a két tranzisztor közül mindig csak az egyik vezet (on), a másik "szakadásban" van, azaz nem vezet (off).

CMOS inverter

CMOS inverter

CMOS inverter keresztmetszeti képe

- nMOS-hoz képest többlet maszkok és többlet lépések, nagyobb helyfoglalás
 - n-zseb kialakítása, p-csatornás tranzisztorok S/D régiói
- Többletköltségek ellenére hatalmas előnyök az nMOS-hoz képest:
 - tiszta feszültségszintek (1 = V_{DD}, 0 = GND),
 - Gyakorlatilag zéró statikus fogyasztás,
 - szimmetrikus karakterisztikák

CMOS technológia

- Többlet maszkok:
 - n-zseb (vagy p-zseb, a szubsztrát típusától függően)
 - p diffúzió (vagy n-diffúzió, a szubsztrát típusától függően)
- Több fémréteges CMOS:
 - minden fémréteghez saját maszk,
 - kontaktusok, viák
- Több poli réteg is lehetséges (analóg CMOS)
- Tipikus: 15..20 maszk
- Bizonyos szabályok betartandók a gyárthatósághoz: tervezési szabályok (Design Rules)
 - a technológiából következnek, IC gyár adja

CMOS inverter

Inverter konstrukciók - CMOS kapcsolástechnika

CMOS alapkapuk

Statikus CMOS áramköri logikák

- nMOS kapcsolóhálózat szerkesztése:
 - soros áramút: NAND kapcsolat
 - párhuzamos áramút: NOR kapcsolat
 - ezek kombinációja: komplex kapu
- 2. Kapcsolók helyett nMOS tranzisztorok
- 3. Load helyett nMOS áramkör duálisa:

- A CMOS inverterben mindkét tranzisztort vezéreljük
- A kapuk esetében egy "felső" (pMOS PUN) ill. "alsó" (nMOS PDN) hálózat fog megjelenni, mindkét hálózat annyi tranzisztorból áll, ahány bemenete van a függvénynek.
 - Azoknál a bemeneti kombinációknál, ahol a függvény értéke 0, az alsó hálózat rövidzár a kimenet és a föld között, míg a felső hálózat szakadás a kimenet és a táp között
 - ha a függvény értéke 1, akkor az alsó hálózat szakadás, a felső hálózat rövidzár
- A p ill. n tranzisztorokkal duális hálózatokat kell megvalósítani!
- Azonos bemenetek tranzisztorait össze kell kötni

NOR és NAND kapu

■ Egy n bemenetű CMOS kapuhoz 2n db tranzisztorra van szükség (passzív terhelésű kapuknál csak n+1 kell)

- nMOS hálózat: GND-re húzza le a kimenetet: Pull-Down Network
- pMOS hálózat: VDD-re húzza fel a kimenetet: Pull-Up Network
- PUN a PDN duálisa

Egy CMOS áramkör layout részlete

A layout jól visszafejthető (extract): ellenőrzés, valós késleltetések

Még "átlátható" komplex kapu kapcsolások

Mikroelektronika BMEVIEEAB01

- Komplex CMOS kapuk szerkesztésének lépései:
 - duális topológia (hurokból vágat, vágatból hurok)
 - duális alkatrészekkel: nMOS helyett pMOS
 - azonos bemenetekhez tartozó tranzisztorok gate-jeit összekötni
 - W/L arányok helyes méretezése

$$F = \overline{A + BC}$$