Matrix multiplication - Complexity at the recursive alponithm $T(n) = \begin{cases} H(1) & \text{if } n = 1 \\ 8T(\frac{n}{2}) + H(n^2) \end{cases}$ if u>1 $\left(\frac{h}{2}\right)^2 \left(\frac{h}{2}\right)^2 \cdots \left(\frac{n}{2}\right)^2 \longrightarrow \frac{g}{4} n^2$ each level has & himes the modes of the previous level, so s'nodes where each usde hos cost $\left(\frac{n}{2^i}\right)^2 = \frac{cn^2}{4^i}$ $\frac{\log n-1}{2} = \frac{\log 8}{2 + \ln 32}$ The total cost par level leves leves $\frac{1}{2}\left(\frac{2}{4}\right)^{1} cn^{2} = 2^{2} cn^{2}$ $= \sum_{i=1}^{l} 2^{i} \left(u^{2} + \left(H \right) \left(n^{3} \right) \right)$ $= \frac{1 - 2 \log n}{1 - 2} \cdot \cos^{2} = n$ $= \frac{1 - 2 \log n}{1 - 2} \cdot \cos^{2} + \operatorname{co}(n^{3})$ = 1-h. cu 2+ (n3) $= n-1 \cdot (n^{2} + 1) \cdot (n^{3}) = (n^{3} - 1 + 1) \cdot (n^{3}) = (n^{3})$

Exercises a) $T(n) = 9T(\frac{n}{3}) + n$. $f(n) = n \qquad n \log_3 = n^2$ $f(n) = O(n^{2-\varepsilon})$ if $\varepsilon = 1 = D T(n) = O(n^{2})$ b) $T(n) = T\left(\frac{2n}{3}\right) + 1$ $f(n) = 1 \qquad n \log_{32} 1 = 1 = D f(n) = n \log_{6} \alpha$ T(n) = ED(lgn) $L_{>} case 2$ $T(n) = 3T(\frac{h}{4}) + h \lg h$ $f(n) = n \lg h$ $h \log_{4} 3 = h$ $f(n) \stackrel{?}{=} I2 \left(h \log_{4} 3 \epsilon \right) \stackrel{?}{=} n \lg h = I2 \left(h \right)$ $L_{3} \stackrel{?}{=} 0.2$ we need to prove the "regulanty" conclusion $3 + 4 + 4 < c \cdot n + 4$ -D lgh > lgh and if $\frac{3}{4}$ < < 1 + here $\frac{3}{4}$ n < ch to regulanty condition is ventiled, Then T(n)= w(n lg n) (d) $T(n) = 2T(\frac{h}{2}) + n \lg n$ we are between case 2 and 3 = 0 the M.T. $f(n) = n \lg n$ $n \lg^2 = n$ count be applied. H looks like nlon = SL (n'+ E) but is it polynomially smaller? n lgn must be smoller than h by a factor n & hit inten = lgn is not polynomially larger than n & for any E>0