Exploratory Data Analysis (2)

Task

Understand structure

Summary statistics

Univariate distributions

Categorical analysis

Bivariate relationships

Correlation analysis

Group-wise summaries/Multivariate Visualization

Dimensionality reduction

Clustering and segmentation

Clustering visualization

Hypothesis generation

Tools & Techniques

.info(), .shape, .columns, .dtypes, .head()

.describe(), mean, median, std, IQR, min/max

Histograms, boxplots, density plots

Value counts, bar plots, pie charts

Scatter plots, grouped boxplots, violin plots, faceting

.corr(), heatmaps, pairplots

groupby, aggregation by category

PCA, t-SNE, UMAP (for visualization and structure discovery)

KMeans, DBSCAN, hierarchical clustering, Gaussian Mixture Models (GMM)

PCA/t-SNE scatter plots, cluster heatmaps, dendrograms, parallel coordinates

Observations and questions based on patterns or subgroup differences

Task 5: Bivariate relationship

• A **bivariate relationship** examines how **two variables** are related — whether one tends to change when the other does, or whether group membership affects outcomes.

Type 1	Type 2	Example	Questions to Ask
Numeric	Numeric	Age vs. Fare	Is there correlation? Linear or not?
Categorical	Numeric	Class vs. Fare	Do different classes pay different fares?
Categorical	Categorical	Sex vs. Survived	Are survival rates different by gender?

Pair Type

Recommended Plot(s)

Numeric vs. Numeric

Scatter plot, hexbin, jointplot

Categorical vs. Numeric

Boxplot, violin plot, strip plot

Categorical vs. Categorical

Grouped bar chart, heatmap, mosaic plot

Scatter Plot: Shows the relationship between two numeric variables

Pattern Seen	Interpretation	
Upward trend	Older passengers tend to pay higher fares	
Flat/no pattern	No clear relationship between age and fare	
Clusters	Possible subgroups (e.g., children, seniors)	
Outliers	A few paid unusually high fares (e.g., wealthy passengers)	

- Joint Plot: Combines a **scatter plot** with **histograms or KDEs** (kernel density estimates) for both variables.
- LM Plot (Linear Model Plot): Plots a scatter plot with a fitted regression line.
- Hexbin:Divides the 2D space into **hexagonal bins** and **counts** how many points fall into each.

Feature

Meaning

Darker hexagons

More data points in that age-income range

Linear alignment

Suggests a trend or correlation

Scattered brightness

Indicates noise or spread

Empty regions

No observations in those ranges

- Box Plot (Categorical vs. Numeric):Summarizes the distribution of a **numeric** variable grouped by a categorical variable.
- Violin Plot (Categorical vs. Numeric)
- Strip Plot (Categorical vs. Numeric): Plots each individual observation as a
 dot along a categorical axis; Helps you see all values, detect clusters, and
 spot overlaps.
- Swarm Plot (Categorical vs. Numeric): neatly arranged strip plot, avoids overlap
- Grouped Bar & Stacked Bar (Categorical vs. Categorical): Visualizes the **frequency or proportion** of combinations of two categorical variables.
- Heatmap of Crosstab (Categorical vs. Categorical): Summarizes counts or proportions of two categorical variables in a grid; Each cell shows how often a combination occurs; Heatmap coloring makes differences easy to spot visually.

More examples

- In practice, one does not have to use ALL methods
- Often one tries a few and pick the ones making more senses
- https://www.kaggle.com/datasets/maharshipandya/-spotifytracks-dataset/data

Task 6: Correlation analysis

- Correlation analysis measures the strength and direction of a linear relationship between pairs of numeric variables.
- Pearson Correlation Coefficient

Correlation Value	Interpretation
> 0.8 or < -0.8	Very strong
0.6 – 0.8 or -0.6 – -0.8	Strong
0.4 – 0.6 or -0.4 – -0.6	Moderate
0.2 – 0.4 or -0.2 – -0.4	Weak
≈ 0	Very weak or no linear relationship

Example

Not much linear relationship

A lot of linear relationship

Task 7: multivariate visualization

Go beyond pairwise comparisons to **simultaneously explore multiple variables** (numeric and/or categorical), revealing:

- Interactions between features
- Group patterns across multiple dimensions
- Hidden subgroup structures that wouldn't show up in bivariate plots

Method	Type of Variables	Highlights
Enhanced Scatterplot	numeric + categorical	Quick overview of multiple variable influences
Pairplot with Hue	numeric + categorical	Class-wise exploration across many variables
FacetGrid / Catplot	numeric × categorical	Plots conditioned by group
Parallel Coordinates	numeric + class label	Feature profile comparison
3D Scatterplot (optional)	numeric × 3	Visualize tri-variable structure (interactively)

- Enhanced Scatterplot: A 2D scatterplot enriched with hue, size, and style encodings; Encode up to 4 variables (x, y, color, size/shape); Ideal for continuous + categorical variable combinations
- Pairplot (with Hue): All pairwise scatterplots with grouping information overlaid; hue to highlight subgroup differences
- FacetGrid & Catplot: Grid of plots split by one or two categorical variables
- Parallel Coordinates: Each observation is a line plotted across multiple numeric axes.
- 3D Scatterplot

Example: Iris dataset

- •150 observations of iris flowers
- •3 species of iris:
- •setosa
- versicolor
- •virginica
- •4 numeric features measured in centimeters:
- sepal length (cm)
- sepal width (cm)
- •petal length (cm)
- •petal width (cm)

Iris Versicolor

Iris Setosa

Iris Virginica

Task 8: Dimensionality Reduction & Structure Discovery

- Dimensionality reduction is the process of transforming highdimensional data into a lower-dimensional representation, typically for downstream tasks
- To project high-dimensional data into lower-dimensional space (2D or 3D) in order to:
- Visualize structure that's hard to see in raw features
- Identify clusters, patterns, or anomalies
- Prepare data for further modeling (e.g. classification, clustering)

Type

Linear

Manifold-based

Probabilistic

Neural

Examples

PCA, MDS

Isomap, Laplacian Eigenmap, *Diffusion Maps, *LLE

t-SNE, *UMAP

Autoencoders

Preserves...

Global structure

(variance/distance)

Geometry or topology of curved

spaces

Local neighborhood structure

Learned compressed

representation

- PCA, MDS: looks for orthogonal directions (axes) in the data where the variance is largest
- Isomap, Laplacian Eigenmap, Diffusion Maps, Locally Linear Embedding: All four are manifold learning techniques that aim to unfold or unroll a nonlinear manifold embedded in highdimensional space.
- t-SNE, U-map: Minimizes Kullback-Leibler (KL) divergence between high-D and low-D similarity distributions.
- Autoencoders: An autoencoder is a type of artificial neural network used to learn efficient representations (i.e., encodings) of data, typically for the purpose of dimensionality reduction or denoising.

Example

Dataset one: https://scikit-learn.org/1.5/auto_examples/datasets/plot_digits_last_image.html

Dataset two: https://rasbt.github.io/mlxtend/user_guide/data/wine_data/

