PCA by hand.

Suppose we have the following dataset:  $X = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}$  format.

1) Center the data:

$$\widetilde{X} = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ -1 & -3 \end{bmatrix}$$

$$2 + 4 + 4$$

2) Calculate the covariance Matrix:

$$\sum = \frac{1}{n} \hat{x}^{T} \hat{x}$$

$$\sum_{i=1}^{n} \hat{x}^{T} \hat{x}$$

$$= \frac{1}{3} \begin{bmatrix} -3 & -1 & 4 \\ -1 & -3 & 4 \end{bmatrix} \begin{bmatrix} -3 & -1 \\ 4 & 4 \end{bmatrix}$$

3) Calculate the eigenvalues of the covariance matrix.

$$\det \left\{ \frac{2f}{3} - \lambda \frac{2l}{3} - \frac{2l}{3} \right\} = 0$$

$$\left( \frac{3f}{3} - \lambda \right)^{2} - \left( \frac{2f}{3} \right)^{2} = 0.$$

$$\left( \frac{3f}{3} - \lambda \right)^{2} - \left( \frac{2f}{3} \right)^{2} = 0.$$

$$\left( \lambda^{2} + \frac{176}{9} - \frac{52}{3}\lambda - \frac{179}{9} \right) = 0.$$

$$\left( \lambda^{2} - \frac{37}{3}\lambda + \frac{172}{9} \right) = 0.$$

$$\left( \lambda - \frac{47}{3} \right) \left( \lambda - \frac{4}{3} \right) = 0.$$

$$\lambda_{1} = \frac{4g}{3} = 16 \quad \lambda_{2} = \frac{4}{5}.$$

$$4) \quad \text{(alcolate the eigenvectors of Coverinance matrix.}$$

$$\left( (A - \lambda I) \overrightarrow{y} = 0.$$

$$\left( \frac{26}{3} - \frac{49}{3} \right) = 0.$$

$$\left( \frac{27}{3} - \frac{49}{3} \right) = 0.$$

$$\left( \frac{27}$$

|                                                                                              | $ \begin{array}{c} \frac{22}{3} \\ \frac{26}{3} - \frac{4}{3} \end{array} $ $ \begin{array}{c} V_{21} \\ V_{22} \end{array} $                                                                                               |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{bmatrix} \frac{22}{3} & \frac{21}{3} \\ \frac{21}{3} & \frac{22}{3} \end{bmatrix} $ | $\begin{bmatrix} V_{21} \\ V_{22} \end{bmatrix} = 0$                                                                                                                                                                        |
| $V_{21}$ $\overline{V}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$                          | Vzz hornalize [ \frac{\sqrt{2}}{2} ]  \tag{5}                                                                                                                                                                               |
| 5) Project the                                                                               | data along the eigen-vector corresponding to the largest eigenvalue.                                                                                                                                                        |
|                                                                                              | $C = \begin{bmatrix} -3 & -1 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{pmatrix} \frac{1}{52} \end{pmatrix}$ $= \begin{bmatrix} -4 \\ -4 \end{bmatrix} \begin{pmatrix} \frac{1}{52} \end{pmatrix}$ |
|                                                                                              | 7-2.8<br>-2.9<br>-2.9                                                                                                                                                                                                       |
|                                                                                              | m matrix of eigenvectors, m = # of eigenvectors you want to keep.                                                                                                                                                           |
| 6) Plot the                                                                                  | projected data.                                                                                                                                                                                                             |

