الوحدة 6

مراقبة تطور جملة كيميائية

تصحيح التمارين الأربع

حل التمرين الأول

■ حجم الوسط التفاعلي ثابت.

«الحالة 1:

$$Q_{r,i} = \frac{[C]_{i}[D]_{i}}{[A]_{i}[B]_{i}} = \frac{n_{C}.n_{D}}{n_{A}.n_{B}} = \frac{0x0}{0.5x0.5} = 0$$

:2 كالحالة

$$Q_{r,i} = \frac{[C]_i[D]_i}{[A]_i[B]_i} = \frac{n_C.n_D}{n_A.n_B} = \frac{4x0.5}{0.25x2} = 4$$

:3 at Latin

$$Q_{r,i} = \frac{[C]_i[D]_i}{[A]_i[B]_i} = \frac{n_C.n_D}{n_A.n_B} = \frac{1.5x2}{1x0.5} = 6$$

◄ بالمقارنة بين كسر التفاعل وثابت التوازن نجد:

:1 allul1

Q يتطور التحول في الاتجاه المباشر حسب كتابة معادلة التفاعل.

:2 all ==

وقف تطور التحول (الجملة في حالة $Q_{ij}=K$ توازن).

:1 albul

Q التحول في الاتجاه العكسي حسب Q > K كتابة معادلة التفاعل.

حل التمرين الثاني

تدل زيادة شدة اللون الأزرق على زيادة عدد مولات Cu^{2+} نستنتج أن التفاعل الكيميائي المشارك بالتحول الحاصل هو التفاعل 1.

☑ نقول عن تحول كيميائي أن تلقائي إذا تطور نحو حالة التوازن دون تلقى طاقة بحيث:

إذا كان تطور الجملة نحو حالة التوازن يوافق تزايد قيمة كسر التفاعل نحو قيمة ثابت التوازن $(Q_{r,i} < K)$ نقول أن التطور تلقائي في الاتجاه المباشر حسب كتابة المعادلة.

إذا كان تطور الجملة نحو حالة التوازن يوافق تناقص قيمة كسر التفاعل نحو قيمة ثابت التوازن $(Q_{r,i} > K)$ نقول أن التطور تلقائي في الاتجاه المعاكس حسب كتابة المعادلة.

3

$$Q_{r,i} = \frac{\left[Cu^{2+}\right]_i}{\left[Ag^{+}\right]_i^2} = \frac{1}{0.25} = 4$$

نلاحظ أن $Q_{r,i} < K_1$ إذا يتطور التفاعل تلقائبا نحو حالة التوازن في الاتجاه المباشر للتفاعل هذه النتيجة تتفق مع الملاحظة في زيادة اللون الأزرق.

عل التمرين الثامن

I

«اسم التفاعل: أسترة.

• صفاته : بطيء ، محدود ، لا حراري ،عكوس.

ا تعيين صيغة الكحول:

 $C_{\text{aud}} = C_{\text{lute}} + C_{\text{lute}}$ $C_{\text{c}} = C_{\text{c}} - C_{\text{c}} = 5-2 = 3$

صيغة الكحول المجملة هي: 3H8O

الصيغ المفصلة الممكنة للكحول هي:

اأ- جدول تقدم التفاعل:

	كحول + حمض		ماء + أستر =			
الحالة الابتدائية	mol 0,5	mol 0,5	=	0	0	
الحالة الانتقالية	0,5-x	0,5-x	=	X	X	
حالة التوازن	0,5-x _f	0,5-x _f				
$n_{Acid} = \frac{m}{M} = 0.5 - x_f$ $\frac{10}{60} = 0.5 - x_f \Rightarrow x_f = \frac{1}{3} mol$						

التركين
$$\frac{1}{6}$$
 mol $\frac{1}{6}$ mol $\frac{1}{6}$ mol $\frac{1}{3}$ mol $\frac{1}{6}$ mol $\frac{1}{9}$ $\frac{1}{10}$ $\frac{1}{10$

حل التمرين الرابع عشر

II تميين صيغة الكحول:

$$.{\rm C_4H_9OH}$$
 الكحول هو $14n+18=74 \Rightarrow n=4$ $.{\rm CH_3} - CH_2 - CH_2 - CH_2 - OH$ السمه: بيوتان أول ، صنفه أولي $.{\rm CH_3} - CH_2 - CH_2 - CH_3 - C$

اسمه: بيوتان 2 أول ، صنفه ثانوي

$$CH_3 - CH_3 - CH_3$$

OH اسمه: ميتيل 2 بروبان 2 أول ، صنفه ثالثي

$$CH_3 - CH_3 - CH_2 - OH$$

اسمه: ميتيل 2 بروبان 1 أول ، صنفه أولي

 $n_{\theta(ac)} = \frac{m_{ac}}{M_{ac}} = \frac{6}{60} = 0.1 \, mol$

إذاً $n_{\theta(ac)}=n_{\theta(al)}=0.1\,mol$ المزيج متساوي المولات.

3 حساب المردود وتعيين صنف الكحول.

$$_{max} = 100 \times \tau_f = 100 \times \frac{x_f}{x_{max}}$$

$$= 100 \times \frac{n_f}{n_{\theta(min)}} = 100 \times \frac{0.06}{0.1} = 60\%$$
الكحول ثانوي.

OH CH₃COOH + CH₃-CH₂-CH-CH₃= CH₃ CH₃COO-CH-CH₂-CH₃+H₂O اسم الأستر: إيتانوات ميتيل 1 بروبيل.

التوازن	ثابت	حساب	-	ت

	حمض	كحول	=	أستر	ماء
الحالة الايتداتية	0,1 mol	0,1 mol	=	0	0
الحالة	0,1-x	0,1 -x	=	x	x
حالة التواذن	0,1-x _{eq}	0,1-x _{eq}	=	X _{eq}	X _{eq}

 $x_{\rm f}=0.06$ mol من البيان لدينا

$$K = \frac{n_{est(eq)} \times n_{ea(eq)}}{n_{ac(eq)} \times n_{al(eq)}}$$

$$= \frac{\left(x_{eq}\right)^{2}}{\left(0.1 - x_{eq}\right)^{2}} = \frac{\left(0.06\right)^{2}}{\left(0.04\right)^{2}} = 2.25$$

ث- حساب سرعة تشكل الأستر عند اللحظة 10=1. نرسم المماس للبيان عند تلك اللحظة ثم نحسب معامل توجيهه.

$$v_{(1=30h)} = \frac{dn_{est}}{dt} = \frac{n_B - n_A}{t_B - t_A} = \frac{0.06 - 0.03}{20 - 10}$$

 $v = 0.003 \ mol/h$

 $Q_{x,i} = \frac{n_{est(0)} \times n_{ea(0)}}{n_{ac(0)} \times n_{al(0)}} = \frac{0.5 \times 10}{1 \times 2} = 2.5$ $Q_{x,i} > K = 2.25$

التفاعل يسير في الاتجاه المعاكس للتفاعل حب كتابة المعادلة، أي نحو إماهة الأستر.

ب- حساب التركيز المولي للمزيج عند التوازن:

ىيث: x < 0,5 mol					
$Q_{r,eq} = K = \frac{n_{est(eq)} \times n_{ea(eq)}}{n_{ac(eq)} \times n_{al(eq)}}$					
$= \frac{(0,5-x_{eq})(10-x_{eq})}{(1+x_{eq})(2+x_{eq})} = 2,25$ $x_{eq}^{2} + 17,4 x_{eq} - 0,4=0$ $x_{eq} = 0,02 \ mol$ مروفض $x_{eq} = 17,4 \ mol$ مروفض					
ماء أستر = كعول حمض					
1,02 2,02 = 0,48 9,98 mol mol mol					
$r_{\text{(palar)}} = \frac{x_{\text{eq}}}{x_{\text{max}}} \times 100 = \frac{0.02}{0.5} \times 100 = 4\%$ $r_{\text{(palar)}} = 96\%$					

	حمض	كحول +	=	أستر	+ = 4
الحالة الابتدائية	1 mol	2 mol	=	0,5 mol	10 mol
الحالة الانتقالية	1 +x	2 +x	=	0,5 - x	10 - x
حالة التوازن	$1 + x_{eq}$	$2 + x_{eq}$	=	0,5 - X _{eq}	10 - X _{ea}