クップルドミニク (九州大学)

井智弘 (九州工業大学)

古谷 勇 (北海道大学)

高畠 嘉将 (九州工業大学)

酒井健輔 (九州工業大学)

後藤 啓介 (富士通研究所)

In-Place Re-Pair

LA Symposium 夏 '19 令和元年 7 月 31 日 ~8 月2日

テキスト

fuzzywuzzyuzi


```
A \rightarrow UZ
B \rightarrow AZ
C \rightarrow BY
S \rightarrow fCwCAi
```

```
A \rightarrow UZ
```

 $B \rightarrow Az$

 $C \rightarrow By$

S → fCwCAi

開始記号

・一つの開始記号

- ・一つの開始記号
- 開始記号以外、右辺は2記号

- ・一つの開始記号
- 開始記号以外、右辺は2記号
- ・閉路がない

- ・一つの開始記号
- 開始記号以外、右辺は2記号
- ・閉路がない

- ・一つの開始記号
- 開始記号以外、右辺は2記号
- ・閉路がない
- ・各非終端記号は一つ規則しかない

bigram の定義

- 入力:テキストT
- bigram:文字ペア
- bigram の頻度は重複しない出現の数
- #(b) := bの頻度

fuzzywuzzyuzi

bigram の定義

- 入力:テキストT
- bigram:文字ペア
- bigram の頻度は重複しない出現の数
- #(b) := bの頻度

$$fuzzywuzzyuzi$$
 $\#(zz) = 2$ $\#(fu) = 1$

• SLP 文法圧縮

fuzzywuzzyuzi

- SLP 文法圧縮
- 一番頻度の高い bigram を取って、

$$\#(uz) = 3$$

fuzzywuzzyuzi

- SLP 文法圧縮
- 一番頻度の高い bigram を取って、
 非終端記号に置換する #(uz) = 3
 A → uz

fuzzywuzzyuzi fA_zywA_zyA_i

- SLP 文法圧縮
- 一番頻度の高い bigram を取って、 非終端記号に置換する #(uz) = 3
- 繰り返す

 $A \rightarrow uz$

fuzzywuzzyuzi fA zywA zyA i

$$T_1 = fA_zywA_zyA_i$$

$$T_1 = fA_zywA_zyA_i$$

 $T_1 = fAzywAzyAi$ #(Az) = 2

```
T_1 = fA_zywA_zyA_i

T_1 = fAzywAzyAi

T_2 = fB_ywB_yAi

T_3 = fB_ywB_yAi
```

```
T_1 = fA_zywA_zyA_i

T_1 = fAzywAzyAi

T_1 = fB_ywB_yAi

T_2 = fB_ywByAi

T_2 = fBywByAi

T_2 = fBywByAi

T_3 = fBywByAi
```

```
T_1 = fA_zywA_zyA_i
T_1 = fAzywAzyAi
                        \#(Az) = 2
B \rightarrow Az
T_2 = fB_ywB_yAi
T_2 = fBywByAi
                       \#(By) = 2
                        C \rightarrow By
 T_3 = fC wC Ai
```

```
T_1 = fA_zywA_zyA_i
T_1 = fAzywAzyAi
                           \#(Az) = 2
B \rightarrow Az
T_2 = fB_ywB_yAi

T_2 = fBywByAi
                          \#(By) = 2
                           C \rightarrow By
T_3 = fC wC Ai
T_3 = fCwCAi
```

```
T_1 = fA_zywA_zyA_i
T_1=fAzywAzyAi
                       \#(Az) = 2
B \rightarrow Az
T_2 = fB_yWB_yAi
T_2 = fBywByAi
                       \#(By) = 2
                        C \rightarrow By
T_3 = fC_wC_Ai
T<sub>3</sub>=fCwCAi bigram の頻度は
すべて1
                 ⇒終わり
```

$$A \rightarrow UZ$$
 $B \rightarrow AZ$
 $C \rightarrow By$
 $S \rightarrow fCwCAi$

$$\#(Az) = 2$$
 $B \rightarrow Az$

$$\#(By) = 2$$
 $C \rightarrow By$

$$T_3 = fCwCAi$$

O(n) 時間のアルゴリズム

Larson, Moffat'00:

 $5n + 4 \sigma^2 + 4\pi +$ $n^{1/2}$ words

Bille ら '17:

 $\varepsilon n + n^{1/2}$ words

• n: 入力の文字列の長さ

• σ: アルファベットサイズ

π: 非終端記号の数

• ε: 正の実数

この話

- O(n²) 時間
- 領域 = 入力 + O(1) words のみ
- 入力が書き換えられる

この話

- O(n²) 時間
- 領域 = 入力 + O(1) words のみ
- 入力が書き換えられる

この話

- O(n²) 時間
- 領域 = 入力 + O(1) words のみ
- 入力が書き換えられる

この発表: 文字のサイズは O(1) words

(lg σ bits も可能)

この発表: 文字のサイズは O(1) words (この制限がなくても可能)

O(n³) 時間

一番頻度の大きい bigram b を探す

- 一番頻度の大きい bigram b を探す
- b のある出現位置を i とすると、
 - -#(b) = #(T[i]T[i+1]) $= \max_{1 \le j \le n} \#(T[j]T[j+1])$ ある

- 一番頻度の大きい bigram b を探す
- ・bのある出現位置を上海病験
 - -#(b) = #(T[i]T[i+1])
 - $= \max_{1 \leq j \leq n} \#(T[j]T[j+1])$ である
 - O(n2) 時間で計算できる

- 一番頻度の大きい bigram b を探す
- b のある出現位置を i ちる時間
 -#(b) = #(T[i]T[i+1])
 - $= \max_{1 \leq j \leq n} \#(T[j]T[j+1])$ である
 - O(n²) 時間で計算できる
- O(n) 時間で b の出現を置換できる

- 一番頻度の大きい bigram b を探す
- b のある出現位置を i とすると、O(n) 時間 -#(b)=#(T[i]T[i+1])
 - $= \max_{1 \leq j \leq n} \#(T[j]T[j+1])$ である
 - O(n²) 時間で計算できる
- O(n) 時間で b の出現を置換できる
- 異なる bigram の数は高々 n である

- 一番頻度の大きい bigram b を探す
- b のある出現位置を i とすると、
 - $-\#(b) = \#(T[i]T[i+1]) \qquad \bigcirc O(n) 時間$ $= \max_{1 \le j \le n} \#(T[j]T[j+1]) \qquad \text{である}$
 - O(n²) 時間で計算できる
- O(n) 時間で b の出現を置換できる
- 異なる bigram の数は高々 n である
 - **⇒** O(*n*³) 時間

・置換の後、入力の領域を空ける

・置換の後、入力の領域を空ける⇒もっと頻度を保存できる

- ・置換の後、入力の領域を空ける⇒もっと頻度を保存できる
- algorithm を round で区切る

- ・置換の後、入力の領域を空ける⇒もっと頻度を保存できる
- algorithm を round で区切る
- k 番目の round の初め:
 - *f*_k: 保存できる頻度の数

- ・置換の後、入力の領域を空ける
 - ⇒もっと頻度を保存できる
- algorithm を round で区切る
- *k* 番目の round の初め:
 - f_k: 保存できる頻度の数
 - $-f_k$ の一番大きい頻度を計算する

$$f_k$$

$$\begin{cases} #(zb) = 33 \\ #(wy) = 33 \\ #(cx) = 31 \\ ... \end{cases}$$

 T_i f_k

k 番目 round, 規則の数: i

k 番目 round, 規則の数: i

保存しない bigram の中に 一番頻度が高い

#(cx) = 20
$$f_{k} = \begin{cases} \#(zb) = 33 \\ \#(wy) = 33 \\ \#(cx) = 31 \end{cases}$$

$$f_{k} = \begin{cases} \#(ao) = 19 \\ \#(wy) = 17 \\ \#(cy) = 13 \end{cases}$$
…

 T_i f_k

k 番目 round, 規則の数: i+j

保存しない bigram の中に 一番頻度が高い

 T_i f_k

k 番目 round, 規則の数: *i*+*j*

保存しない bigram の中に 一番頻度が高い

$$T_{i+j}$$
 f_{k+1}

k+1 番目 round, 規則の数: i+j

algorithm

- 最初の round: $f_1 = O(1) = 定数$
- f₁ 個の最大の頻度を計算し、
- 最大の頻度の bigram を置換し、
- 保存した頻度を修正する

fuzzywuzzyuzi

```
      fuzzywuzi
      #(uz) = 3

      \#(zz) = 2

      \#(zy) = 2
```

```
fuzzywuzi #(uz) = 3
#(zz) = 2
#(zy) = 2
```

```
\begin{array}{ccc} A \rightarrow uz \\ & \text{fuzzywuzzyuzi} & \frac{\#(uz) = 3}{\#(zz) = 0} \\ & \text{fAzywAzyAi} & \#(zy) = 2 \\ & \#(Az) = 2 \end{array}
```

- 各置換した位置:
 - 高々2つの頻度が減る可能性

$$#(fu) = 1$$

 $#(zz) = 2$

- ・各置換した位置: fuzz
 - 高々2つの頻度が減る可能性

$$#(fu) = £0$$

 $#(zz) = £1$

- 各置換した位置: 「」
 - 高々2つの頻度が減る可能性

$$fA_z$$

$$#(fu) = 1$$

 $#(zz) = 2$

- 各置換した位置:
 - 高々2つの頻度が減る可能性
 - ⇒round k の終わり:

$$f_{k+1} \geq f_k + \frac{1}{2}f_k$$

$$#(fu) = 1$$

 $#(zz) = 2$

- 各置換した位置:
 - 高々2つの頻度が減る可能性
 - ⇒round *k* の終わり:

$$f_{k+1} \ge f_k + \frac{1}{2} f_k$$
 全部の bigram の頻度を保存できる!

$$\Leftrightarrow f_{k+1} \ge (1.5)^k f_1$$

- $k = O(\lg n)$ なら $f_k = O(n)$

$$#(fu) = 1$$

 $#(zz) = 2$

- 各置換した位置:
 - 高々2つの頻度が減る可能性
 - ⇒round *k* の終わり:

$$f_{k+1} \ge f_k + \frac{1}{2} f_k$$
 全部の bigram の頻度を保存できる!

- $\Leftrightarrow f_{k+1} \geq (1.5)^k f_1$
- $k = O(\lg n)$ なら $f_k = O(n)$
 - ⇒ 最後の round は高々 O(lg *n*) 番目である

• f_k 個の bigram の頻度を計算する:

 $O(n^2)$ 時間 $+ sort(f_k)$ の時間

 $= O(n^2)$ 時間 (∵ $f_k \leq n$)

- f_k 個の bigram の頻度を計算する:
 O(n²) 時間 + sort(f_k) の時間
 - = $O(n^2)$ 時間 (∵ $f_k \leq n$)
- O(lg n) 回、頻度を計算する

- f_k 個の bigram の頻度を計算する: $O(n^2)$ 時間 + $sort(f_k)$ の時間 = $O(n^2)$ 時間 (∵ $f_k \leq n$)
- O(lg *n*) 回、頻度を計算する ⇒ O(*n*² lg *n*) 時間

- f_k 個の bigram の頻度を計算する: $O(n^2)$ 時間 + $sort(f_k)$ の時間 = $O(n^2)$ 時間 (∵ $f_k \leq n$)
- O(lg n) 回、頻度を計算する
 - \Rightarrow O(n^2 lg n) 時間
- しかし、O(n²) 時間にしたい!

今の道具:ソート

• f_k: 頻度を計算したい bigram の数

今の道具:ソート

- f_k : 頻度を計算したい bigram の数
- 結果:
 - O(f_k) 領域 (入力が含む)
 - $-O(f_k \lg f_k)$ 時間で頻度をソートできる

[Williams'64: heapsort]

• bigram の計算を速める

- bigram の計算を速める
- 空き領域: f_k 箇所

T_i	f_k

- bigram の計算を速める
- 空き領域: f_k 箇所

 T_i f_k

- bigram の計算を速める
- 空き領域: f_k 箇所
- blocks B_j で分割する, $|B_j| = \frac{1}{2}f_k$

$\frac{1}{2}f_k$	$\frac{1}{2}f_k$	$\frac{1}{2}f_k$	$\frac{1}{2}f_k$	4
B_1	B_2	B_3	B_4	
T_i				f_k

 B_1 で現れる bigram に対した T_i の中の頻度を計算し

 B_1 で現れる bigram に対した T_i の中の頻度を計算し

 B_2 で現れる bigram に対した T_i の中の頻度を計算し

 B_1 で現れる bigram に対した T_i の中の頻度を計算し

 B_2 で現れる bigram に対した T_i の中の頻度を計算し

 B_3 で現れる bigram に対した T_i の中の頻度を計算し

 B_3 で現れる bigram に対した T_i の中の頻度を計算し

• #merge = # $B_j \le n / f_k$, $|T_i| \le |T| = n$

 $B_{\scriptscriptstyle 3}$ で現れる bigram に対した $T_{\scriptscriptstyle i}$ の中の頻度を計算し

- #merge = # $B_j \leq n / f_k$, $|T_i| \leq |T| = n$
- B_i で頻度を計算する時間: $O(n \lg f_k)$ (2分探索)
- 各 merge の時間: $O(f_k \lg f_k)$
- 全部の時間: O((n² lg f_k)/ f_k)

$$\sum_{k=0}^{O(\lg n)} \frac{n^2}{f_k} \lg f_k = O\left(n^2 \sum_{k=0}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$$

round の数は高々 O(lg n) である

$$\sum_{k=0}^{O(\lg n)} \frac{n^2}{f_k} \lg f_k = O\left(n^2 \sum_{k=0}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$$

round の数は高々 O(lg n) である

$$\sum_{k=0}^{O(\lg n)} \frac{n^2}{f_k} \lg f_k = O\left(n^2 \sum_{k}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$$

$$f_k = 1.5^k f_1 = O(1.5^k)$$

まとめ

- 極限領域での Re-Pair
 - O(n³) 時間:<u>簡単</u>
 - O(n²) 時間: 今回の発表
 - 領域なしソート
 - バッチ処理で bigram の頻度を計算し
 - o(n²) 時間できるかな?

まとめ

- 極限領域での Re-Pair
 - -O(n³) 時間:簡単
 - O(n²) 時間: 今回の発表
 - 領域なしソート
 - バッチ処理で bigram の頻度を計算し
 - o(n²) 時間できるかな?

終わり- 質問は大歓迎です!