

Part 13
Network Security

Goals of Network Security (1)

- Confidentiality
 - Information is only accessible to the intended party
 - Unknown existence of message also part of confidentiality
- Authentication
 - Sender and receiver need to confirm identity of the other party involved in the communication
- Message Integrity
 - Ensure that the contents of the communication is not altered – either malicious or by accident

Goals of Network Security (2)

- Nonrepudiation
 - Proof of transmission
 - Sender and receiver should be unable to deny transmission
- Access control Authorisation
 - Only authorized people should have access to a target system
- Availability
 - System should be up and running
 - Data is available to authorized parties

Security Threats

Passive Attacks

- Eavesdropping on transmissions
 - Goal is to obtain information
- Release of message contents
 - Outsider learns content of transmission
- Traffic analysis
 - By monitoring frequency and length of messages, even encrypted, nature of communication may be guessed
- Difficult to detect
 - Does not involve any alteration to data
- Can be prevented
 - E.g. masking contents by using encryption

Active Attacks (1)

- Masquerade
 - Pretending to be a different entity
 - Usually includes another active attack
- Replay
 - Involves passive capture of data units
 - Retransmitted to produce an unauthorised effect
- Modification of messages
 - Legitimate message is altered, delayed or reordered to produce an unauthorised effect

Active Attacks

- Denial of service attacks
 - Prevents the network form providing normal services
 - E.g flooding the network with messages
 (SYN flooding) → over consuming resources
 - Routing tables modifications
- Easy to detect
 - Detection may lead to deterrent
- Hard to prevent

Defense (1)

- Threat monitoring
 - Check for suspicious patterns of activity
- Audit logs
 - Record the time, user and all accesses to objects by users
 - Log files can become very large opt to scan system periodically

Defense (2)

- Passwords have good password policy
 - Expire passwords after a time, require change
 - Lock after repeated attempts
 - Logon procedures
 - Restrict logon only from certain hosts
 - Minimum password lengths
- Encryption make message or data undecipherable ; see later

Defense (3)

- Packet filtering
 - Can be based on source and destination
 IP addresses and Port numbers
 - E.g. restrict HTTP connections to specific list of public web servers
 - E.g. deny all network from a specific host or network
 - ICMP message types and TCP SYN or ACK
 - Only reply ICMP messages are allowed
 - Prevents e.g. external clients form making TCP connections with internal hosts

Defense (4)

- Firewalls
 - Replaces IP router with multihomed host that does not forward all packets.
 - Acts as an application gateway
- Host authentication confirm that host is the intended one
- User authentication
 - Confirm that user is the right one
- Key authentication
 - Session keys are commonly to indicate a communication rendezvous between parties willing to communicate.

Firewalls

- Common hardware approach to network security
- Types of firewalls include filtering at level 2 (frames) and level 3 (packets)
- Monitor all transactions between two systems

Components

- Plain text (m)
 - Original data or message that is fed into the algorithm
- Encryption algorithm (E)
 - Performs substitutions and transformations to the plaintext
- Secret key (K)
 - Determines the exact substitutions and transformations in the encryption algorithm
- Cipher text
 - Scrambled message produced as output
- Decryption algorithm (D)
 - Takes the cyphertext and the secret key to produce the original plaintext

Conventional Encryption

Requirements for Security

- Strong encryption algorithm
 - Even if known, should not be able to decrypt or work out key
 - Even if a number of cipher texts are available together with plain texts of them
- Sender and receiver must obtain secret key securely
- Once key is known, all communication using this key is readable

Attacking Encryption

- Crypt analysis
 - Relay on nature of algorithm plus some knowledge of general characteristics of plain text
 - Attempt to deduce plain text or key
- Brute force
 - Try every possible key until plain text is achieved

Basic Techniques (1)

Substitution

 take each letter in plaintext message and substitute letter which is k letters later, I.e. k is the key(eg. K=4)

Plaintext alphabet:	a	b	С	d	е	f	g	h	-	j	k		
Ciphertext alphabet:	е	f	g	h	i	j	k		m	n	0	p	
Plaintext:	T		L	O	V	Е		Y	O	U			
Ciphertext:	M		P	S	Z			С	S	Y			

Basic Techniques (2)

Randomised substitution – monoalphabetic cipher

Plaintext alphabet:	a	b	С	T	Ψ	f	O	J		j	k		m
	n	0	p	q	r	S	t	u	V	W	X	У	Z
Ciphertext alphabet:	Z	h	X	k	m	р	f	а	W	t	u	b	У
	g	С	V	d	c	j		a		0	q	r	S
Plaintext:	Τ		L	0	V	Е		X	0	U			
Ciphertext:	W		В	C	I	M		R	С	Е			

Basic Techniques (2)

 Transposition – use a key to reorder the plaintext characters in groups based on column

Q Key	U /	1	С	K	S	Α	N	D <-
7	9	4	2	5	8	1	6	3
p		е	a	S	е	-	S	е
n	d	-	m	e	-	а	-	m
i			i	0	n	-	r	а
n	d	-	a	S	-	S	0	0
n	-	a	S	-	p	0	S	S
i	b		е	-	-	-	-	_

The plaintext is: please send me a million rand as soon as possible

- A symmetric-key encryption standard
 - Also called a private key cryptosystem
 - Published in 1977 and updated in1993 by the NBS (now NIS) for commercial and non-classified US Gov. use

Data Encryption Standard (2) (DES)

- A Block cipher
 - Processes plain text in fixed block sizes of 64-bits producing block of cipher text of equal size
 - Uses 64-bit key
 - 8 bits of the 64 bits are for odd parity → every 8th bit in the key is not used
 - DES key is effectively 56 bits.
- Operation
 - Two permutation steps (first and last)
 - 16 identical rounds of operations in between

DES Encryption n Algorithm

DES Single Iteration Li=Ri-1 ⊕ f(Ri-1, Ki)

Strength of DES (1)

- In 1997 RSA Data security Inc. launched a DES challenge contest
 - Crack a short phrase encrypted using 56bit DES
 - "Strong cryptography makes the work a safer place"
 - Cracked in about four months after trying out 18 quadrillion keys – a quarter of the search space. Claimed US\$ 10,000.

Strength of DES (2)

- 1998 DES challenge III cracked in about 22 hours by Electronic Frontier Foundation using a DES cracker machine. Scooped US\$250,000
- DES declared insecure in 1998
- DES now worthless

Triple DES

- Run 56-bit algorithm multiple times
 - Take 64-bit output from one iteration as input to next DES iteration
 - Use different encryption key each time
- Triple DES is proposed standard (1999)
- Uses 3 keys and 3 executions of DES algorithm
- Effective key length 168 bit

Link Encryption

- With link encryption each communication link is equipped at both ends with an encryption device
- All traffic secure
- High level of security
- Requires lots of encryption devices
- Message must be decrypted at each switch to read address (virtual circuit number)
- Security vulnerable at switches
 - Particularly on public switched network

End to End Encryption

- Encryption done at ends of system
- Data in encrypted form crosses network unaltered
- Destination shares key with source to decrypt
- Host can only encrypt user data
 - Otherwise switching nodes could not read header or route packet
- Traffic pattern not secure
- Use both link and end to end

LKey Distribution

- Key selected by A and physically delivered to B
- Third party selects key and physically delivers to A and B
- If A and B recently used a key → use old key to encrypt new key and transmit new key from A to B
- A and B have encrypted connection to third party C → C can deliver key on encrypted links to A and B

Automatic Key Distribution (1)

- Session Key
 - Used for duration of one logical connection
 - Destroyed at end of session
 - Used for user data, all user data are encrypted with a one-session key

Automatic Key Distribution

- Permanent key
 - Used between entities for distributing session keys
 - Key distribution center
 - Determines which systems may communicate with each other
 - When permission is granted → provides one session key for that connection
 - Front end processor
 - Performs end to end encryption
 - Obtains keys for host

Public Key Cryptography

- Private key systems suffer from the key distribution problem
- Use two keys: one public and one private with the following requirements:
 - D(E(P)) = P
 - Very difficult to deduce D from E P=plaintext
 - E cannot be broken by a chosen plaintext attack
- Publish the public key and keep private key secret
- Anyone can send you encrypted messages, but only you can decrypt.

E=encryption algorithm

D=decryption algorithm

Message Authentication

- Protection against active attacks
 - Falsification of data
 - Eavesdropping
- Message is authentic if it is genuine and comes from the alleged source
- Authentication allows receiver to verify that message is authentic
 - Message has not altered
 - Message is from authentic source
 - Message timeline

Authentication Using Encryption

- Assumes sender and receiver are only entities that know key
- Message includes:
 - error detection code no alterations
 - sequence number have been made
 - time stamp

Authentication Without Encryption

- Authentication tag generated and appended to each message
- Message not encrypted
- Useful for:
 - Messages broadcast to multiple destinations
 - Have one destination responsible for authentication → cheaper and more reliable
 - One side heavily loaded and cannot afford time to decrpyt
 - Encryption adds to workload
 - Can authenticate random messages
 - Programs authenticated without encryption can be executed without decoding

Message Authentication Code

- Generate authentication code based on shared key and message
- Common key shared between A and B
- If only sender and receiver know key and code matches:
 - Receiver assured message has not altered
 - Receiver assured message is from alleged sender
 - If message has sequence number, receiver assured of proper sequence

One Way Hash Function

- Variation of message authentication code
- Accepts variable size message and produces fixed size tag (message digest)
- Advantages of authentication without encryption
 - Encryption is slow
 - Encryption hardware expensive
 - Encryption hardware optimized to large data
 - Algorithms covered by patents
 - Algorithms subject to export controls (from USA)

only sender and receiver share encryption key

no encryption for message authentication both parties share a common secret value

Secure Hash Functions

- Hash function must have following properties:
 - Can be applied to any size data block
 - Produce fixed length output
 - Easy to compute
 - Not feasible to reverse
 - Not feasible to find two message that give the same hash

SHA-1

- Secure Hash Algorithm 1
- Input message less than 2⁶⁴ bits
 - Processed in 512 bit blocks
- Output 160 bit digest

Public Key Encryption

- Based on mathematical algorithms
- Asymmetric
 - Use two separate keys
- Ingredients
 - Plain text
 - Encryption algorithm
 - Public and private key
 - Cipher text
 - Decryption algorithm

Public Key Encryption (diag)

(a) Encryption

(b) Authentication

Public Key Encryption - Operation

- One key made public
 - Used for encryption
- Other kept private
 - Used for decryption
- Infeasible to determine decryption key given encryption key and algorithm
- Either key can be used for encryption, the other for decryption

Steps

- User generates pair of keys
- User places one key in public domain
- To send a message to user, encrypt using public key
- User decrypts using private key

Digital Signature

- Sender encrypts message with their private key
- Receiver can decrypt using senders public key
- This authenticates sender, who is only person who has the matching key
- Does not give privacy of data
 - Decrypt key is public

RSA Algorithm

Key Generation

Select p, q

p and q both prime

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e

 $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate d

 $d = e^{-1} \mod \phi(n)$

Public key

 $KU = \{e, n\}$

Private key

 $KR = \{d, n\}$

Encryption

Plaintext:

M < n

Ciphertext:

 $C = M^{\ell} \pmod{n}$

Decryption

Ciphertext:

C

Plaintext:

 $M = C^d \pmod{n}$

RSA Example

