

AU6986

USB2.0 Universal Flash Disk Controller

Technical Reference

Manual

Table of Contents

1. Introduction	
1.1 Description 1.2 Features	
2. Application Block Diagram	3
3. Pin Assignment	4
4. System Architecture and Reference Design 4.1 AU6986 Block Diagram	
5. Electrical Characteristics	11
5.1 Absolute Maximum Ratings	11
5.2 Recommended Operating Conditions	
5.3 General DC Characteristics	11
5.4 DC Electrical Characteristics of 3.3V I/O Cells	12
5.5 USB Transceiver Characteristics	12
6. Mechanical Information	16
7. Abbreviations	18

i

List of Figures

Figure 2.1 Block Diagram	3
Figure 3.1 AU6986-JHL Pin Assignment Diagram	4
Figure 3.2 AU6986-JIL Pin Assignment Diagram	7
Figure 4.1 AU6986 Block Diagram	10
Figure 6.1 48 LQFP Mechanical Information Diagram	16
Figure 6.2 64 LQFP Mechanical Information Diagram	17
List of Tables	
Table 3.1 AU6986-JHL Pin Descriptions	5
Table 3.2 AU6986-JIL Pin Descriptions	8
Table 5.1 Absolute Maximum Ratings	11
Table 5.2 Recommended Operating Conditions	11
Table 5.3 General DC Characteristics	11
Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells	12
Table 5.5 Electrical characteristics	12
Table 5.6 Static characteristic:Digital pin	13
Table 5.7 Static characteristic : Analog I/O pins (DP/DM)	13
Table 5.8 Dynamic characteristic: Analog I/O pins (DP/DM)	14

1. Introduction

1.1 Description

The AU6986 USB 2.0 Flash Disk Controller is the best high performance solutions for SLC (Single- Level Cell), MLC (Multi-Level Cell) NAND and AG-AND with multiple dies data flash. Its high-speed read (30MB/Sec) and write access performance enable users to transfer and backup data effectively. Besides, AU6986 is certified by USB-IF (USB Implementers Forum), WHQL (Window Hardware Quality Labs) and EMI tests to guarantee the quality and reliability for end-users.

With multiple functions integrated into one chip and external components built inside, AU6986 is pledged to deliver the best performance benchmark and to further reduce the BOM cost of end products adopting this solution. It provides dual channel access and ISP (In-System Programming) technologies, which are the most important features to allow manufacturers building high performance UFD easily and to have the flexibility of adopting different source of flash chips. Same as its siblings of product family, AU6986 features the auto-run function to prompt the designated AP automatically when plugging into PC. In addition to being as a removable storage device, AU6986 can also be configured as a bootable disk for system recovery. Also, its random access performance exceed the minimum requirement of Read Boost feature found in Microsoft Vista operating system, in which randomly access blocks of information are saved into UFD for boosting up the average performance.

To enhance the usefulness and manageability of UFD further, Alcor Micro develops a smart application program iStar (Partition/Password Operation Tool) as a handy utility in managing partition, password and security. Having iStar as the companion of UFD, the data in a UFD could be protected from unauthorized access successfully.

1.2 Features

- PCBs are pin compatible in AU6980, AU6981, AU6982, AU6983, AU6984.
- Integrate build-in regulator
- 8bit/12bit ECC engine
- HardWare Encryption AES256
- Supports SLC and MLC dual channel with high performance
- Supports 4K/Page SLC and MLC dual channel with high performance Integrates hardware DMA engine to tune up the operation performance
- Improve read performance reach 30MB/Sec
- Supports firmware upgrade mechanism(ISP,In-System Programming)
- Integrates hardware DMA engine to tune up the operation performance
- Integrates multi-bit ECC correction mechanism
- Complies with the standards defined in USB v2.0, USB Device Class Definition for Mass Storage and Bulk-Transport v1.0
- Works with default driver under the environments of Windows ME, Windows 2000, Windows XP, Mac 9.2, Mac OS X. Using Alcor Micro's vendor driver for the environment under Windows 98SE
- Concurrent bus operation using multiple FIFO for better performance
- Integrates into flash memory power control switch

- Supports bad block management
- Supports dynamic serial number modification via mass production software
- Supports software write protection
- Support Auto Run function
- Support erasable and read-only mode AP Disk
- Companion application program with UFD iStar available for users
 - > To have UFD partition management function
 - > To do password protection for the security in data access
 - > To guard data files with software write protection function
 - > To lock up PC by UFD as the key
- Available in 48-pin LQFP 7x7mm package to support 4CE pin flashx2pcs
- Available in 64-pin LQFP 7x7mm package to support 4CE pin flashx4pcs

2. Application Block Diagram

The following figure shows the application diagram of a typical flash disk product with AU6986. By connecting the flash disk to a desktop or notebook PC through USB bus, AU6986 is then turned into a bus-powered, high speed USB disk, which can be used as a bridge for data transfer between Desktop PC and Notebook PC.

PC with USB Host Controller

Notebook with USB Host Controller

Figure 2.1 Block Diagram

PC with USB Host Controller

3. Pin Assignment

Depending on the application, the AU6986 is available in two different packages. Below figure shows signal name for each pin and the table in the page after describes each pin in detail.

FMDATL7 FMDATL6 FMDATL0 FMRBN3 **FMCLE FMALE** 48 46 45 44 43 42 41 40 39 38 37 GND **FMWRN** 36 **FMRDN** VDD 2 35 DM FMDATH0 3 34 FMDATH1 DP 4 33 **REXT** 5 32 FMDATH2 **ALCOR MICRO** VD33 6 FMDATH3 31 **AU6986-JHL** VS33P FMDATH4 7 **48PIN LQFP** 30 FMDATH5 VSSA 8 29 9 FMDATH6 ΧI 28 XO 27 FMDATH7 10 VDDA FMRBN2 11 26 25 FMRBN1 AGND5V 12 15 17 18 19 20 21 22 23 24 13 14 16 FMWP VDD3V V18 VDD33C VDDH HSSA GP00 FMENABN3 FMENABN2 FMENABN1 AVDD5\ **FMENABNO**

Figure 3.1 AU6986-JHL Pin Assignment Diagram

Table 3.1 AU6986-JHL Pin Descriptions

Pin #	Pin Name	I/O	Description
1	GND	I/ GND	"1" Force Chip into USB 1.1 operation mode Ground
2	VDD	ı	1.8V power
3	DM	I/O	USB DM
4	DP	I/O	USB DP
5	REXT	I	External resistor 330 to ground
6	VD33	I	3.3V power
7	VS33P	GND	Ground
8	VSSA	GND	Ground
9	XI	I	12 MHz oscillator input
10	XO	0	12 MHz oscillator output
11	VDDA	I	1.8V power for PLL
12	AGND5V	I	Ground
13	AVDD5V	I	5V input power pin
14	VDD3V	0	3.3V output power pin
15	V18	0	1.8V output for Core
16	VDD33C	0	3.3V output for flash chip
17	VDDH	I	3.3V input power pin
18	VSSH	I	Ground '1' AND Flash, '0' NAND flash
19	GPO0	0	blanking when system access
20	FMWP	I	Reserved for firmware
21	FMENABN3	0	Flash 3 select pin
22	FMENABN2	0	Flash 2 select pin
23	FMENABN1	0	Flash 1 select pin
24	FMENABN0	0	Flash 0 select pin
25	FMRBN1	I	Flash 1 ready pin
26	FMRBN2	I	Flash 2 ready pin
27	FMDATH7	I/O	Flash high data 7 pin
28	FMDATH6	I/O	Flash high data 6 pin
29	FMDATH5	I/O	Flash high data 5 pin
30	FMDATH4	I/O	Flash high data 4 pin

Pin #	Pin Name	I/O	Description		
31	FMDATH3	I/O	Flash high data 3 pin		
32	FMDATH2	I/O	Flash high data 2 pin		
33	FMDATH1	I/O	Flash high data 1 pin		
34	FMDATH0	I/O	Flash high data 0 pin		
35	FMRDN	0	Flash read signal		
36	FMWRN	0	Flash write signal		
37	FMDATL7	I/O	Flash low data 7 pin		
38	FMDATL6	I/O	Flash low data 6 pin		
39	FMDATL5	I/O	Flash low data 5 pin		
40	FMDATL4	I/O	Flash low data 4 pin		
41	FMDATL3	I/O	Flash low data 3 pin		
42	FMDATL2	I/O	Flash low data 2 pin		
43	FMDATL1	I/O	Flash low data 1 pin		
44	FMDATL0	I/O	Flash low data 0 pin		
45	FMCLE	0	Flash command latch pin		
46	FMALE	0	Flash address latch pin		
47	FMRBN3	Ι	Flash 3 ready pin		
48	FMRBN0	I	Flash 0 ready pin		

The following figure shows signal name of each pin in 64-pin package and the table in the page after describes each pin in detail.

FMDATAL5 FMDATAL6 FMDATAL7 FMDATAL2 FMDATAL4 S S 2 NC FMWRN 2 47 FMRDN NC NC FMDATAH0 46 FMENABN4 FMDATAH1 45 FMENABN5 FMDATAH2 44 GND 43 FMDATAH3 **ALCOR MICRO** VDD FMDATAH4 **AU6986-JIL** DM 41 FMDATAH5 DP FMDATAH6 40 **64PIN LQFP** FMDATAH7 REXT 39 FMRBN2 VD33 FMRBN1 VS33P 37 13 36 NC VSSA NC ΧI 14 35 15 NC ΧO 34 VDDA NC FMWP GP00 VDDH **HSSA** FMENABN3 FMENABN2 FMENABN1 FMENABNO \sim FMENABN7 FMENABN6

Figure 3.2 AU6986-JIL Pin Assignment Diagram

Table 3.2 AU6986-JIL Pin Descriptions

Pin #	Pin Name	I/O	Description
1	NC		NC
2	NC		NC
3	NC		NC
4	FMENABN4	0	Flash 4 select pin
5	FMENABN5	0	Flash 5 select pin
6	GND	I/GND	"1" Force Chip into USB 1.1 operation mode/Ground
7	VDD	I	1.8V power
8	DM	I/O	USB DM
9	DP	I/O	USB DP
10	REXT	I	External resistor 330 to ground
11	VD33	I	3.3V power
12	VS33P	GND	Ground
13	VSSA	GND	Ground
14	ΧI	I	12 MHz oscillator input
15	XO	0	12 MHz oscillator output
16	VDDA	I	1.8V power for PLL
17	AGND5V	I	Ground
18	AVDD5V	I	5V input power pin
19	VDD3V	0	3.3V output power pin
20	V18	0	1.8V output for Core
21	VDD33C	0	3.3V output for flash chip
22	VDDHM	I	3.3V input power pin
23	VSSHM	I	Ground/ '1' AND Flash, '0' NAND flash
24	FMENABN7	0	Flash 7 select pin
25	FMENABN6	0	Flash 6 select pin
26	GPO0	0	blanking when system access
27	FMWP	I	Reserved for firmware
28	FMENABN3	0	Flash 3 select pin
29	FMENABN2	0	Flash 2 select pin
30	FMENABN1	0	Flash 1 select pin
31	FMENABN0	0	Flash 0 select pin

Pin #	Pin Name	I/O	Description
32	NC		NC
33	NC	1	Hardware test T0
34	NC	1	Hardware test T1
35	NC	I	Hardware test T2
36	NC		
37	FMRBN1	1	Flash 1 ready pin
38	FMRBN2	1	Flash 2 ready pin
39	FMDATH7	I/O	Flash high data 7 pin
40	FMDATH6	I/O	Flash high data 6 pin
41	FMDATH5	I/O	Flash high data 5 pin
42	FMDATH4	I/O	Flash high data 4 pin
43	FMDATH3	I/O	Flash high data 3 pin
44	FMDATH2	I/O	Flash high data 2 pin
45	FMDATH1	I/O	Flash high data 1 pin
46	FMDATH0	I/O	Flash high data 0 pin
47	FMRDN	0	Flash read signal
48	FMWRN	0	Flash write signal
49	FMDATL7	I/O	Flash low data 7 pin
50	FMDATL6	I/O	Flash low data 6 pin
51	FMDATL5	I/O	Flash low data 5 pin
52	FMDATL4	I/O	Flash low data 4 pin
53	FMDATL3	I/O	Flash low data 3 pin
54	FMDATL2	I/O	Flash low data 2 pin
55	FMDATL1	I/O	Flash low data 1 pin
56	FMDATL0	I/O	Flash low data 0 pin
57	FMCLE	0	Flash command latch pin
58	FMALE	О	Flash address latch pin
59	FMRBN3	I	Flash 3 ready pin
60	FMRBN0	I	Flash 0 ready pin
61	NC		NC
62	NC		NC
63	NC		NC
64	NC		NC

4. System Architecture and Reference Design

4.1 AU6986 Block Diagram

5 V

Figure 4.1 AU6986 Block Diagram

12MHz XTAL

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DDH}	Power Supply	-0.3 to V _{DDH} +0.3	V
V _{IN}	Input Signal Voltage	-0.3 to 3.6	V
V _{OUT}	Output Signal Voltage	-0.3 to V _{DDH} +0.3	V
T _{STG}	Storage Temperature	-40 to 150	°C

5.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Units
A _{DD}	5V Power Supply	4.75	5.0	5.0	V
V_{DDH}	Power Supply	3.0	3.3	3.6	V
V _{DD}	Digital Supply	1.62	1.8	1.98	V
V _{IN}	Input Signal Voltage	0	3.3	3.6	V
T _{OPR}	Operating Temperature	0		70	°C

5.3 General DC Characteristics

Table 5.3 General DC Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{IN}	Input current	No pull-up or pull-down	-10	±1	10	μΑ
I _{OZ}	Tri-state leakage current		-10	±1	10	μΑ
C _{IN}	Input capacitance	Pad Limit		2.8		ρF
C _{OUT}	Output capacitance	Pad Limit		2.8		ρF
C _{BID}	Bi-directional buffer capacitance	Pad Limit		2.8		ρF

5.4 DC Electrical Characteristics of 3.3V I/O Cells

Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells

Symbol	Parameter	Conditions		Limits		Unit
Syllibol	Parameter	Conditions	Min.	Тур.	Max.	Oilit
V_{DDH}	Power supply	3.3V I/O	3.0	3.3	3.6	V
V _{il}	Input low voltage	LVTTL			0.8	V
V_{ih}	Input high voltage	LVIIL	2.0			V
V _{ol}	Output low voltage	$ I_{ol} = 2\sim 16mA$			0.4	V
V_{oh}	Output high voltage	\mid I _{oh} \mid =2~16mA	2.4			V
R_{pu}	Input pull-up resistance	PU=high, PD=low	55	75	110	ΚΩ
R_{pd}	Input pull-down resistance	PU=low, PD=high	40	75	150	ΚΩ
I _{in}	Input leakage current	$V_{in} = V_{DDH}$ or 0	-10	±1	10	μ A
l _{oz}	Tri-state output leakage current		-10	±1	10	μ A

5.5 USB Transceiver Characteristics

Table 5.5 Electrical characteristics

	14210 010 2100011041 0114140001104100								
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
VD33	Analog supply Voltage		3.0	3.3	3.6	V			
VDDU VDDA	Digital supply Voltage		1.62	1.8	1.98	V			
I _{cc}	Operating supply current	High speed operating at 480 MHz			55	mA			
I _{CC (susp)}	Suspend supply current	In suspend mode, current with 1.5k Ω pull-up resistor on pin RPU disconnected			120	μΑ			

Table 5.6 Static characteristic: Digital pin

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Input levels					
V_{IL}	Low-level input voltage				0.8	V
V _{IH}	High-level input voltage		2.0			V
		Output levels				
V _{OL}	Low-level output voltage				0.2	V
V _{OH}	High-level output voltage		VDDH-0.2			V

VD33=3.0V~3.6V; VDDU, VDDA=1.62V~1.98V; Temp=0°C~70°C

Table 5.7 Static characteristic : Analog I/O pins (DP/DM)

Table 5.7 Static characteristic : Analog 1/0 phils (DP/DN)							
Symbol		Conditions	Min.	Тур.	Max.	Unit	
	USB	2.0 Transceiver (HS)					
	Input Lev	els (differential receiv	er)				
V _{HSDIFF}	High speed differential input sensitivity	V _{I (DP)} -V _{I (DM)} measured at the connection as application circuit	300			mV	
V _{HSCM}	High speed data signaling common mode voltage range		-50		500	mV	
V _{HSSQ}	High speed squelch detection threshold	Squelch detected			100	mV	
		No squelch detected	150			mV	
V _{HSDSC}	High speed disconnection detection threshold	Disconnection detected	625			mV	
		Disconnection not detected			525	mV	
		Output Levels					
V_{HSOI}	High speed idle level output voltage(differential)		-10		10	mV	
V_{HSOL}	High speed low level output voltage(differential)		-10		10	mV	
V_{HSOH}	High speed high level output voltage(differential)		-360		400	mV	
V_{CHIRPJ}	Chirp-J output voltage (differential)		700		1100	mV	
V _{CHIRPK}	Chirp-K output voltage (differential)		-900		-500	mV	
Resistance							
R _{DRV}	Driver output impedance	Equivalent resistance used as internal chip only	3	6	9	Ω	

		Overall resistance including external resistor	40.5	45	49.5			
	Termination							
V _{TERM}	Termination voltage for pull-up resistor on pin RPU		3.0		3.6	V		
USB1.1 Transceiver (FS/LS)								
Input Levels (differential receiver)								
V _{DI}	Differential input sensitivity	V _{I (DP)} -V _{I (DM)}	0.2			V		
V _{CM}	Differential common mode voltage		0.8		2.5	٧		
Input Levels (single-ended receivers)								
V _{SE}	Single ended receiver threshold		0.8		2.0	V		
Output levels								
V _{OL}	Low-level output voltage		0		0.3	V		
V_{OH}	High-level output voltage		2.8		3.6	V		

VD33=3.0V~3.6V; VDDU, VDDA=1.62V~1.98V; Temp=0°C~70°C

Table 5.8 Dynamic characteristic : Analog I/O pins (DP/DM)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	Driver Characteristics							
	High-Speed Mode							
t _{HSR}	High-speed differential rise time		500			ps		
t _{HSF}	High-speed differential fall time		500			ps		
	Full-Speed Mode							
t _{FR}	Rise time	CL=50pF; 10 to 90% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FF}	Fall time	CL=50pF; 90 to 10% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FRMA}	Differential rise/fall time matching (t _{FR} / t _{FF})	Excluding the first transition from idle mode	90		110	%		
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3		2.0	V		
	Low-Speed Mode							
t _{LR}	Rise time	CL=200pF-600pF; 10 to 90% of V _{OH} -V _{OL} ;	75		300	ns		
t _{LF}	Fall time	CL=200pF-600pF; 90 to 10% of V _{OH} -V _{OL} ;	75		300	ns		

t _{LRMA}	Differential rise/fall time matching (t _{LR} / t _{LF})	Excluding the first transition from idle mode	80	125	%
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3	2.0	V
V _{OH}	High-level output voltage		2.8	3.6	V

6. Mechanical Information

Figure 6.1 48 LQFP Mechanical Information Diagram

Figure 6.2 64 LQFP Mechanical Information Diagram

7. Abbreviations

In this chapter some of the terms and abbreviations used throughout the technical reference manual are listed as follows.

DC Electrical Direct Current Electrical

PLL Phase Lock Loop, which is a closed-loop frequency control

system.

ECC Error Checking and Correcting

XTAL Crystal

UFD USB Flash Disk

iStar Partition/Password Operation Tool - the smart application

program developed by Alcor Micro as a companion handy

tool for managing the UFD.

About Alcor Micro, Corp.

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California. Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.