IFT6135-H2020 Prof : Aaron Courville

Due Date: February 4th (11pm), 2020

Instructions

- For all questions, show your work!
- Use LaTeX and the template we provide when writing your answers. You may reuse most of the notation shorthands, equations and/or tables. See the assignment policy on the course website for more details.
- Submit your answers electronically via Gradescope.
- TAs for this assignment are Jie Fu, Sai Rajeswar, and Akilesh B

Question 1 (4-4-4). Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.

Answer 1.

1.

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• if x > 0:

$$f(x) = \max\{0, x\} = x, H(x) = 1$$

Hence,

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \ \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon}$$
$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \ \frac{x + \epsilon - x}{\epsilon} = 1 = H(x)$$

• if x < 0:

$$f(x) = \max\{0, x\} = 0, H(x) = 0$$

Hence,

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon}$$
$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{0 - 0}{\epsilon} = 0 = H(x)$$

• if x = 0: Hence,

$$\lim_{\epsilon \to 0^{-}} \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon} = \lim_{\epsilon \to 0^{-}} \frac{0 - 0}{\epsilon} = 0$$

$$\lim_{\epsilon \to 0^{+}} \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon} = \lim_{\epsilon \to 0^{+}} \frac{\epsilon - 0}{\epsilon} = 1$$

$$\lim_{\epsilon \to 0^{-}} \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon} \neq \lim_{\epsilon \to 0^{+}} \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon}$$

Hence, derivative of $f(x) = \max\{0, x\}$ doesn't exist at x = 0. For other cases, $\frac{d}{dx}f(x) = H(x)$.

- 2. Below are the two alternate definition of g(x)
 - g(x) = xH(x)
 - g(x) = x(1 H(-x))
- 3. Here,
 - if x > 0 : H(x) = 1

$$\frac{d}{dx}\sigma(x) = \lim_{k \to \infty} \frac{1}{1 + e^{-kx}} = \frac{1}{1 + 0} = 1 = H(x)$$

• if $x = 0 : H(x) = \frac{1}{2}$

$$\frac{d}{dx}\sigma(x) = \lim_{k \to \infty} \frac{1}{1 + e^{-kx}} = \frac{1}{1 + e^0} = \frac{1}{1 + 1} = \frac{1}{2} = H(x)$$

• if x < 0 : H(x) = 0

$$\frac{d}{dx}\sigma(x) = \lim_{k \to \infty} \frac{1}{1 + e^{-kx}} = \frac{1}{1 + \infty} = 0 = H(x)$$

From above, we show that H(x) can be well approximated with a Sigmoid function asymptotically.

Question 2 (3-3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimensional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimensional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 2.

1.
$$S(\boldsymbol{x}+c) = (S(\boldsymbol{x}+c)_1, S(\boldsymbol{x}+c)_2, ..., S(\boldsymbol{x}+c)_K)$$

 $S(\boldsymbol{x}+c)_i = \frac{e^{\boldsymbol{x}_i+c}}{\sum_j e^{\boldsymbol{x}_j+c}} = \frac{e^c e^{\boldsymbol{x}_i}}{e^c \sum_j e^{\boldsymbol{x}_j}} = \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{x}_j}} = S(\boldsymbol{x})_i$

For an arbitrary constant c, we proved that $S(\mathbf{x}+c)_i = S(\mathbf{x})_i$. Hence, $S(\mathbf{x}+c) = S(\mathbf{x})$.

IFT6135-H2020 Prof: Aaron Courville

2.
$$S(c\boldsymbol{x})_i = \frac{e^{c\boldsymbol{x}_i}}{\sum_i e^{c\boldsymbol{x}_j}} \neq \frac{e^{\boldsymbol{x}_i}}{\sum_i e^{\boldsymbol{x}_j}}$$

For an arbitrary constant c, we proved that $S(c\mathbf{x})_i \neq S(\mathbf{x})_i$. Hence, $S(c\mathbf{x}) \neq S(\mathbf{x})$.

, $S(c\boldsymbol{x})_i = \frac{e^{c\boldsymbol{x}_i}}{\sum_j e^{c\boldsymbol{x}_j}} = \frac{e^0}{\sum_j e^0} = \frac{1}{\sum_j 1} = \frac{1}{K}$ Hence, if c=0, our Softmax act as uniform distribution over the input.

• if $c \to \infty$.

- if
$$x_i = x_j = a$$
 $\forall i, j \in \{1, 2, ..., K\},$
 $S(c\mathbf{x}) = \frac{e^{c\mathbf{x}_i}}{\sum_j e^{c\mathbf{x}_j}} = \frac{e^{ca}}{\sum_j e^{ca}} = \frac{1}{K}$

Hence, if all values of x are same, we will end up with a uniform distribution.

- if \boldsymbol{x} has distinct values, $S(c\boldsymbol{x}) \rightarrow [0,0,...,1,..0]$. It will be more like a one-hot representation. The maximum value of x will get close to 1 and rest values will go towards
- if x has multiple max values, their corresponding softmax value will be similar. Let's say the max value occurs r times in x, then for those max values, their softmax value will be $\frac{1}{r}$. While the softmax values of the rest of the entries will go towards 0.
- 3. $\mathbf{x} = [x_1, x_2]$ $S(\boldsymbol{x}) = \left[\frac{e^{x_1}}{e^{x_1} + e^{x_2}}, \frac{e^{x_2}}{e^{x_1} + e^{x_2}}\right] = \left[\frac{e^{x_1}}{e^{x_1} + e^{x_2}}, 1 - \frac{e^{x_1}}{e^{x_1} + e^{x_2}}\right] = \left[\frac{1}{1 + e^{-(x_1 - x_2)}}, 1 - \frac{1}{1 + e^{-(x_1 - x_2)}}\right]$ $S(\boldsymbol{x}) = \left[\sigma(x_1 - x_2), 1 - \sigma(x_1 - x_2)\right] = \left[\sigma(z), 1 - \sigma(z)\right] \quad \text{Here, } z = x_1 - x_2$
- 4. $S(\mathbf{x}) = S([x_1, x_2, x_3, ..., x_K]^{\top})$

Here, we know that softmax is translation invariant (from Que-2(1)). Hence, subtracting x_1 from \boldsymbol{x} , we get the following,

$$S(\mathbf{x}) = S([0, x_2 - x_1, x_3 - x_1, ..., x_K - x_1]^{\top}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top}),$$

Here $y_j = x_{j+1} - x_1$ and $j \in \{1, ..., K-1\}$. Hence, we can see that $S(\boldsymbol{x})$ can be represented with K-1 parameters.

Question 3 (16). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 3. First, let's establish relation between tanh(x) and $\sigma(x)$.

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh(x) + 1 = \frac{2e^{2x}}{e^{2x} + 1} = \frac{2}{1 + e^{-2x}} = 2\sigma(2x)$$

From above,

$$\sigma(x) = \frac{\tanh(\frac{x}{2}) + 1}{2}$$
 (We will use this relation for our purpose.)

$$y(x,\Theta,\sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \omega_{kj}^{(2)} \frac{\left(\tanh\left(\frac{1}{2} \sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)}\right) + 1\right)}{2} + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \tanh\left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)} x_{i}}{2} + \frac{\omega_{j0}^{(1)}}{2} \right) + \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \tilde{\omega}_{kj}^{(2)} \tanh\left(\sum_{i=1}^{D} \tilde{\omega}_{ji}^{(1)} x_{i} + \tilde{\omega}_{j0}^{(1)} \right) + \tilde{\omega}_{k0}^{(2)}$$

From above, we can easily express Θ' as a function of Θ as below,

$$\tilde{\omega}_{kj}^{(2)} = \frac{\omega_{kj}^{(2)}}{2}, \quad \tilde{\omega}_{kj}^{(1)} = \frac{\omega_{kj}^{(1)}}{2} \quad \forall \quad j \in \{1, 2, ..., M\}$$
and,
$$\tilde{\omega}_{j0}^{(1)} = \frac{\omega_{j0}^{(1)}}{2}, \quad \tilde{\omega}_{k0}^{(2)} = \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

That's how we can construct equivalent network for sigmoid and tanh activations.

Question 4 (5-5). Fundamentally, back-propagation is just a special case of reverse-mode Automatic Differentiation (AD), applied to a neural network. Based on the "three-part" notation shown in Table 2 and ??, represent the evaluation trace and derivative (adjoint) trace of the following examples. In the last columns of your solution, numerically evaluate the value up to 4 decimal places.

Answer 4.

TABLE 1 – Forward AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.

	Forward evaluation trace					
	v_{-1}	$=x_1$	=3			
	v_0	$=x_2$	=6			
₩	v_1	$= v_{-1} + v_0$	= 9			
	v_2	$=rac{1}{v_1} \ = v_0^2$	$=\frac{1}{9}$			
	v_3	$=v_0^{\frac{1}{2}}$	36			
	v_4	$= cos(v_{-1})$	= cos(3)			
	v_5	$= v_2 + v_3 + v_4$	=35.12111			
	y	$=v_5$	= 35.12111			

	Forward derivative trace						
	$=\dot{v}_{-1}$	\dot{x}_1	= 1				
	$=\dot{v}_0$	\dot{x}_2	=0				
	\dot{v}_1	$=\dot{v}_{-1} + \dot{v}_0$	= 1 + 0				
	\dot{v}_2	$= \frac{-\dot{v}_1}{v_1^2}$	$=\frac{-1}{81}$				
\Downarrow	\dot{v}_3	$=2v_0\dot{v}_0$	=0				
	\dot{v}_4	$= -sin(v_{-1})\dot{v}_{-1}$	=-0.14112				
	\dot{v}_5	$= \dot{v}_2 + \dot{v}_3 + \dot{v}_4$	=-0.15346				
	$=\dot{y}$	\dot{v}_5	=-0.15346				

IFT6135-H2020 Prof : Aaron Courville

TABLE 2 – Reverse AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ can be computed together.

	Forward evaluation trace				
	v_{-1}	$=x_1$	=3		
	v_0	$=x_2$	=6		
	v_1	$= v_{-1} + v_0$	= 9		
	v_2	$=rac{1}{v_1} \ = v_0^2$	$=\frac{1}{9}$		
	v_3	$= v_0^2$	36		
	v_4	$= cos(v_{-1})$	= cos(3)		
	v_5	$= v_2 + v_3 + v_4$	= 35.12111		
	y	$=v_5$	=35.12111		

	Reverse adjoint trace					
	\bar{x}_1	$=\bar{v}_{-1}$	=-0.15346			
	\bar{x}_2	$=\bar{v}_0$	=11.98765			
\uparrow	\bar{v}_0	$= \bar{v}_0 + \bar{v}_1 \frac{\partial v_1}{\partial v_0}$	=11.98765			
	\bar{v}_{-1}	$= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	=-0.15346			
	\bar{v}_1	$= \bar{v}_2 \frac{\partial v_2}{\partial v_1}$	$=\frac{-1}{81}$			
	\bar{v}_0	$=\bar{v}_3\frac{\partial v_3}{\partial v_0}$	=12			
	\bar{v}_{-1}	$= \bar{v}_2 \frac{\partial v_2}{\partial v_1}$ $= \bar{v}_3 \frac{\partial v_3}{\partial v_0}$ $= \bar{v}_4 \frac{\partial v_4}{\partial v_{-1}}$	=-sin(3)			
	\bar{v}_4	$= \bar{v}_5 \frac{\partial v_{-1}}{\partial v_4}$	=1			
	\bar{v}_3	$=\bar{v}_5 \frac{\partial v_5}{\partial v_3}$	=1			
	\bar{v}_2	$= \bar{v}_5 \frac{\partial v_5}{\partial v_2}$	=1			
	\bar{v}_5	$=\bar{y}$	= 1			

Question 5 (6). Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 5. Full: [1, 2, 5, 8, 6, 8]; Valid: [5, 8]; Same: [2, 5, 8, 6].

Question 6 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 6.

- 1. The output dimension of the last layer is 24.
- 2. For the last layer, we need 131072 parameters.

Question 7 (4-4-6). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide a correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape (o) of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).

- (a) Assume we are not using padding or dilation.
- (b) Assume d = 2, p = 2.
- (c) Assume p = 1, d = 1.

Answer 7. Fill up the following table,

		i	p	d	k	s	0
1.	(a)	64	3	1	8	2	32
	(b)	64	7	7	3	2	32
2.	(a)	32	0	1	3	4	8
	(b)	32	0	1	8	4	7
3.	(a)	8	0	1	5	1	4
	(b)	8	2	2	5	1	4
	(c)	8	1	1	3	2	4