NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

Import NumPy as np

0:00:05

0:00:05

0:00:05

```
%pip install numpy
import numpy as np
Defaulting to user installation because normal site-packages is not
writeableNote: you may need to restart the kernel to use updated
packages.
Collecting numpy
  Downloading numpy-1.25.2-cp311-cp311-win amd64.whl (15.5 MB)
                                               0.0/15.5 MB ? eta
-:--:--
                                               0.1/15.5 MB 3.2 MB/s eta
0:00:05
                                               0.2/15.5 MB 3.0 MB/s eta
0:00:06
                                               0.3/15.5 MB 2.7 MB/s eta
0:00:06
                                               0.4/15.5 MB 2.9 MB/s eta
0:00:06
                                               0.5/15.5 MB 2.4 MB/s eta
0:00:07
                                               0.7/15.5 MB 2.7 MB/s eta
0:00:06
                                               0.9/15.5 MB 2.8 MB/s eta
0:00:06
                                               1.0/15.5 MB 2.9 MB/s eta
0:00:06
                                               1.2/15.5 MB 2.9 MB/s eta
0:00:05
                                               1.4/15.5 MB 3.0 MB/s eta
0:00:05
                                               1.5/15.5 MB 3.1 MB/s eta
0:00:05
                                               1.6/15.5 MB 3.1 MB/s eta
0:00:05
```

1.7/15.5 MB 2.9 MB/s eta

1.8/15.5 MB 2.9 MB/s eta

1.9/15.5 MB 2.8 MB/s eta

0:00:05	2.0/15.5 MB 2.8 MB/s eta
	2.1/15.5 MB 2.7 MB/s eta
0:00:05	2 2 / 1 5 MD 2 7 MD /
0:00:05	2.2/15.5 MB 2.7 MB/s eta
	2.3/15.5 MB 2.7 MB/s eta
0:00:05	
0:00:05	2.4/15.5 MB 2.7 MB/s eta
0.00.03	2.5/15.5 MB 2.7 MB/s eta
0:00:05	
0.00.05	2.7/15.5 MB 2.6 MB/s eta
0:00:05	2.8/15.5 MB 2.6 MB/s eta
0:00:05	210, 2010 1.12 210 1.12, 0 000
0.00.05	2.8/15.5 MB 2.6 MB/s eta
0:00:05	3.0/15.5 MB 2.6 MB/s eta
0:00:05	310, 1313 115 210 115, 3 CCC
0.00.05	3.1/15.5 MB 2.6 MB/s eta
0:00:05	3.3/15.5 MB 2.7 MB/s eta
0:00:05	313, 1313 11b 217 11b, 3 ccd
	3.5/15.5 MB 2.7 MB/s eta
0:00:05	3.6/15.5 MB 2.7 MB/s eta
0:00:05	3.0/13.3 Tib 2.7 Tib/3 Ctd
	3.8/15.5 MB 2.7 MB/s eta
0:00:05	3.9/15.5 MB 2.7 MB/s eta
0:00:05	3.9/13.3 No 2.7 No/3 eta
	4.0/15.5 MB 2.7 MB/s eta
0:00:05	4.1/15.5 MB 2.7 MB/s eta
0:00:05	4.1/13.3 No 2.7 No/3 eta
	4.2/15.5 MB 2.7 MB/s eta
0:00:05	4.4/15.5 MB 2.7 MB/s eta
0:00:05	4.4/13.3 NB 2.7 NB/3 eta
	4.5/15.5 MB 2.7 MB/s eta
0:00:05	4.6/15.5 MB 2.7 MB/s eta
0:00:04	4.0/13.3 MB 2.7 MB/S eta
	4.8/15.5 MB 2.7 MB/s eta
0:00:04	4 0/15 5 MP 2 9 MP/c 0+0
0:00:04	4.9/15.5 MB 2.8 MB/s eta
	5.1/15.5 MB 2.8 MB/s eta

0:00:04	5 0 / 15 5 MD 0 0 MD /
0:00:04	5.2/15.5 MB 2.8 MB/s eta
0:00:04	5.3/15.5 MB 2.8 MB/s eta
0:00:04	5.5/15.5 MB 2.8 MB/s eta
0:00:04	5.6/15.5 MB 2.8 MB/s eta
	5.6/15.5 MB 2.7 MB/s eta
0:00:04	5.8/15.5 MB 2.7 MB/s eta
0:00:04	6.0/15.5 MB 2.8 MB/s eta
0:00:04	6.1/15.5 MB 2.8 MB/s eta
0:00:04	
0:00:04	6.2/15.5 MB 2.8 MB/s eta
0:00:04	6.4/15.5 MB 2.8 MB/s eta
0:00:04	6.6/15.5 MB 2.8 MB/s eta
0:00:04	6.7/15.5 MB 2.8 MB/s eta
	6.9/15.5 MB 2.8 MB/s eta
0:00:04	7.0/15.5 MB 2.8 MB/s eta
0:00:03	7.2/15.5 MB 2.9 MB/s eta
0:00:03	7.4/15.5 MB 2.9 MB/s eta
0:00:03	
0:00:03	7.6/15.5 MB 2.9 MB/s eta
0:00:03	7.7/15.5 MB 2.9 MB/s eta
0:00:03	7.9/15.5 MB 2.9 MB/s eta
	8.0/15.5 MB 2.9 MB/s eta
0:00:03	8.2/15.5 MB 2.9 MB/s eta
0:00:03	8.4/15.5 MB 2.9 MB/s eta
0:00:03	8.6/15.5 MB 3.0 MB/s eta
0:00:03	
0:00:03	8.8/15.5 MB 3.0 MB/s eta

0:00:03	9.0/15.5 MB 3.0 MB/s eta
0:00:03	9.2/15.5 MB 3.0 MB/s eta
	9.4/15.5 MB 3.1 MB/s eta
0:00:03	9.5/15.5 MB 3.1 MB/s eta
0:00:02	9.6/15.5 MB 3.0 MB/s eta
0:00:02	9.9/15.5 MB 3.1 MB/s eta
0:00:02	
eta 0:00:02	10.1/15.5 MB 3.1 MB/s
eta 0:00:02	10.3/15.5 MB 3.1 MB/s
eta 0:00:02	10.5/15.5 MB 3.1 MB/s
eta 0:00:02	10.7/15.5 MB 3.2 MB/s
	10.9/15.5 MB 3.2 MB/s
eta 0:00:02	11.2/15.5 MB 3.2 MB/s
eta 0:00:02	11.4/15.5 MB 3.2 MB/s
eta 0:00:02	11.7/15.5 MB 3.3 MB/s
eta 0:00:02	
eta 0:00:02	11.9/15.5 MB 3.3 MB/s
eta 0:00:02	12.1/15.5 MB 3.4 MB/s
eta 0:00:01	12.3/15.5 MB 3.4 MB/s
eta 0:00:01	12.6/15.5 MB 3.5 MB/s
	12.8/15.5 MB 3.6 MB/s
eta 0:00:01	13.1/15.5 MB 3.7 MB/s
eta 0:00:01	13.3/15.5 MB 3.7 MB/s
eta 0:00:01	13.4/15.5 MB 3.7 MB/s
eta 0:00:01	13.7/15.5 MB 3.7 MB/s
eta 0:00:01	
eta 0:00:01	13.9/15.5 MB 3.8 MB/s
	14.2/15.5 MB 3.9 MB/s

```
eta 0:00:01
                                       14.4/15.5 MB 3.9 MB/s
eta 0:00:01
                                       14.7/15.5 MB 4.0 MB/s
eta 0:00:01
                                       14.8/15.5 MB 3.9 MB/s
eta 0:00:01
                                       15.0/15.5 MB 4.0 MB/s
eta 0:00:01
    -----
                                       15.3/15.5 MB 4.1 MB/s
eta 0:00:01
                                       15.5/15.5 MB 4.1 MB/s
eta 0:00:01
                                       15.5/15.5 MB 4.1 MB/s
    -----
eta 0:00:01
                                       15.5/15.5 MB 4.1 MB/s
eta 0:00:01
    ----- 15.5/15.5 MB 4.0 MB/s
eta 0:00:00
Installing collected packages: numpy
Successfully installed numpy-1.25.2
[notice] A new release of pip is available: 23.1.2 -> 23.2.1
[notice] To update, run: python.exe -m pip install --upgrade pip
```

Create an array of 10 zeros

```
z=np.zeros(10)
z
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
```

Create an array of 10 ones

```
z=np.ones(10)
z
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

Create an array of 10 fives

```
z=np.ones(10)*5
z
array([5., 5., 5., 5., 5., 5., 5., 5., 5.])
```

Create an array of the integers from 10 to 50

```
import numpy as np
np.linspace(10,50,41)
```

```
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50.])
```

Create an array of all the even integers from 10 to 50

Create a 3x3 matrix with values ranging from 0 to 8

```
import numpy as np
x= np.arange(0,9).reshape(3,3)
print(x)

[[0 1 2]
  [3 4 5]
  [6 7 8]]
```

Create a 3x3 identity matrix

Use NumPy to generate a random number between 0 and 1

```
import numpy as np
import random
np.random.random()
0.5593499211529527
```

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

```
import numpy as np
import random
print(np.random.normal(0,1,25))
```

```
[ 0.25666295  0.1765813  0.08935592  0.71554638  0.31772528  0.13960271  -0.27556937  -0.91890022  0.91582708  0.89823057  -0.56046579  -1.05365761  -0.456346  -0.0067909  1.899661  0.55512837  0.12422298  0.85500805  -1.57487987  -0.09736449  -0.75267979  0.26571669  0.51717864  -0.1892066  -0.46504901]
```

Create the following matrix:

```
import numpy as np
x= np.arange(0.01,1.01,0.01).reshape(10,10)
print(x)

[[0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 ]
  [0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 ]
  [0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 ]
  [0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 ]
  [0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 ]
  [0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 ]
  [0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 ]
  [0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 ]
  [0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 ]
  [0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1. ]]
```

Create an array of 20 linearly spaced points between 0 and 1:

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
[16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
import numpy as np
mat = np.arange(1, 26).reshape(5, 5)
mat1=mat[2:,1:]
mat1
array([[12, 13, 14, 15],
       [17, 18, 19, 20],
       [22, 23, 24, 25]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
import numpy as np
mat = np.arange(1, 26).reshape(5, 5)
mat1=mat[3:4,4:]
mat1
array([[20]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
import numpy as np
mat = np.arange(1, 26).reshape(5, 5)
mat1=mat[0:3,1:2]
mat1
array([[ 2],
       [7],
       [12]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
import numpy as np
mat = np.arange(1, 26).reshape(5, 5)
mat1=mat[4:,0:]
mat1
array([[21, 22, 23, 24, 25]])
```

Now do the following

Get the sum of all the values in mat

```
import numpy as np
mat = np.arange(1,26).reshape(5,5)
mat1= np.sum(mat)
mat1
```

Get the standard deviation of the values in mat

```
import numpy as np
mat = np.arange(1,26).reshape(5,5)
mat1= np.std(mat)
mat1
7.211102550927978
```

Get the sum of all the columns in mat

```
import numpy as np
mat = np.arange(1,26).reshape(5,5)
mat1= sum(mat)
mat1
array([55, 60, 65, 70, 75])
```