```
In [1]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         import warnings
         warnings.filterwarnings('ignore')
         df = pd.read_csv('E:\Data Analyst\Python Projects\Mall\Mall_Customer.csv')
In [2]:
         df.head(5)
In [3]:
Out[3]:
           CustomerID Gender
                              Age Annual Income (k$) Spending Score (1-100)
         0
                                                                        39
                    1
                         Male
                                 19
                                                   15
         1
                    2
                                                                        81
                         Male
                                21
                                                   15
         2
                                                   16
                                                                         6
                    3
                       Female
                                20
         3
                       Female
                                23
                                                   16
                                                                        77
         4
                       Female
                                31
                                                   17
                                                                        40
```

Univariant Analysis

n [4]:	<pre>df.describe()</pre>									
ut[4]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)					
	count	200.000000	200.000000	200.000000	200.000000					
	mean	100.500000	38.850000	60.560000	50.200000					
	std	57.879185	13.969007	26.264721	25.823522					
	min	1.000000	18.000000	15.000000	1.000000					
	25%	50.750000	28.750000	41.500000	34.750000					
	50%	100.500000	36.000000	61.500000	50.000000					
	75%	150.250000	49.000000	78.000000	73.000000					
	max	200.000000	70.000000	137.000000	99.000000					
5]:	<pre>sns.distplot(df['Annual Income (k\$)']);</pre>									


```
df.columns
In [6]:
         Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
Out[6]:
                 'Spending Score (1-100)'],
               dtype='object')
         cols = [ 'Age', 'Annual Income (k$)', 'Spending Score (1-100)']
In [7]:
         for i in cols:
             plt.figure()
             sns.distplot(df[i])
           0.035
           0.030
           0.025
         0.020
0.015
           0.010
```

0.005

0.000

10

20

30

40

Age

50

60

70

80


```
In [9]: cols = [ 'Age', 'Annual Income (k$)', 'Spending Score (1-100)']
for i in cols:
    plt.figure()
    sns.kdeplot(df[i], shade=True, hue= df['Gender']);
```



```
In [10]: cols = [ 'Age', 'Annual Income (k$)', 'Spending Score (1-100)']
for i in cols:
    plt.figure()
    sns.boxplot(data = df, x = 'Gender', y = df[i]);
```



```
In [11]: df['Gender'].value_counts(normalize = True)
```

Out[11]: Female 0.56 Male 0.44

Name: Gender, dtype: float64

Bivariant Analysis

```
In [12]: sns.scatterplot(data = df, x = 'Annual Income (k$)', y = 'Spending Score (1-100)');
```



```
In [13]: #df = df.drop('CustomerID',axis = 1)
sns.pairplot(df,hue = 'Gender')
```

Out[13]: <seaborn.axisgrid.PairGrid at 0x1e81e003580>

In [14]: df.groupby(['Gender'])['Age', 'Annual Income (k\$)', 'Spending Score (1-100)'].mean()

Out[14]:		Age A	nnual Income (k	\$) Spendi	ing Score (1-100)	
	Gender					
	Female	38.098214	59.2500	00	51.526786	
	Male	39.806818	62.2272	73	48.511364	
	16	<i>'</i>				
In [15]:	df.com	^()				
Out[15]:			CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
		CustomerII	1.000000	-0.026763	0.977548	0.013835
		Ag	e -0.026763	1.000000	-0.012398	-0.327227
	Ann	ual Income (k\$	0.977548	-0.012398	1.000000	0.009903
	Spendin	a Score (1-100	0.013835	-0 327227	0.009903	1 000000

Clustering - Univariant, Bivariant, Multivariant

```
In [17]: clustering1 = KMeans(n_clusters = 3)
In [18]: clustering1.fit(df[['Annual Income (k$)']])
Out[18]: KMeans(n_clusters=3)
In [19]: clustering1.labels_
```

```
2, 2])
     df['Income Cluster'] = clustering1.labels_
In [20]:
     df.head()
Out[20]:
       CustomerID Gender Age Annual Income (k$) Spending Score (1-100) Income Cluster
     0
            1
               Male
                   19
                              15
                                          39
                                                   0
     1
            2
                              15
                                          81
                                                   0
               Male
                   21
     2
                             16
                                                   0
            3 Female
                   20
                                          6
     3
                   23
                              16
                                          77
                                                   0
              Female
                                                   0
     4
                              17
                                          40
              Female
                   31
     df['Income Cluster'].value_counts()
In [21]:
        90
Out[21]:
        74
        36
     Name: Income Cluster, dtype: int64
     clustering1.inertia_
In [22]:
     23517.330930930937
Out[22]:
     inertia_scores = []
In [23]:
     for i in range(1,11):
        kmeans = KMeans(n clusters = i)
        kmeans.fit(df[['Annual Income (k$)']])
        inertia_scores.append(kmeans.inertia_)
In [24]:
     inertia_scores
     [137277.28,
Out[24]:
      48660.88888888889,
      23517.330930930937,
      13278.112713472485,
      8493.229304029304,
      5050.904761904762,
      3931.9880952380954,
      2836.3399877899883,
      2229.5897047397048,
      1758.812049062049]
In [25]:
     plt.plot(range(1,11),inertia scores);
```


Out[27]: Age Annual Income (k\$) Spending Score (1-100)

Income	Cluster	
		20

0	39.500000	33.486486	50.229730
1	38.722222	67.088889	50.000000
2	37.833333	99.888889	50.638889

Bivariant Clustering

```
In [28]: clustering2 = KMeans(n_clusters = 5)
    clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    clustering2.labels_
    df['Spending and Income Cluster'] = clustering2.labels_
    df.head()
```

Out[28]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
	0	1	Male	19	15	39	0	3
	1	2	Male	21	15	81	0	1
	2	3	Female	20	16	6	0	3
	3	4	Female	23	16	77	0	1
	4	5	Female	31	17	40	0	3

```
In [29]: inertia_scores2 = []
```

```
for i in range(1,11):
    kmeans2 = KMeans(n_clusters = i)
    kmeans2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    inertia_scores2.append(kmeans2.inertia_)

plt.plot(range(1,11),inertia_scores2);
```



```
In [30]: centers = pd.DataFrame(clustering2.cluster_centers_)
    centers.colums=['x','y']
```

```
In [31]: plt.figure(figsize=(10,8))
#plt.scatter(x=centers['x'], y=centers['y']),s=100,c='black',marker='*')
sns.scatterplot(data=df, x='Annual Income (k$)', y='Spending Score (1-100)', hue='Spending Score (1-100)', hue='Spending Score (1-100)'
```


<pre>In [32]: pd.crosstab(df['Spending and Income Cluster'],df['Gender'],normalize ='index')</pre>
--

Out[32]:	Gender	Female	Male
	Spending and Income Cluster		
	0	0.592593	0.407407
	1	0.590909	0.409091
	2	0.457143	0.542857
	3	0.608696	0.391304
	4	0.538462	0.461538

In [33]: df.groupby('Spending and Income Cluster')['Age', 'Annual Income (k\$)', 'Spending Score

Out[33]:

Age Annual Income (k\$) Spending Score (1-100)

Spending and Income Cluster			
0	42.716049	55.296296	49.518519
1	25.272727	25.727273	79.363636
2	41.114286	88.200000	17.114286
3	45.217391	26.304348	20.913043
4	32 692308	86 538462	82 128205

Multivariant Cluster

```
from sklearn.preprocessing import StandardScaler
In [34]:
          scale = StandardScaler()
In [35]:
          df.head()
In [36]:
                                                       Spending Score
                                                                          Income Spending and Income
Out[36]:
                                              Annual
             CustomerID Gender Age
                                         Income (k$)
                                                               (1-100)
                                                                          Cluster
                                                                                                Cluster
          0
                       1
                            Male
                                   19
                                                  15
                                                                   39
                                                                               0
                                                                                                     3
          1
                       2
                            Male
                                   21
                                                  15
                                                                   81
                                                                               0
                                                                                                     1
          2
                          Female
                                   20
                                                  16
                                                                    6
                                                                               0
                                                                                                     3
                       3
          3
                                                                   77
                                                                               0
                          Female
                                   23
                                                  16
                                                                                                     1
          4
                                                  17
                                                                               0
                                                                                                     3
                          Female
                                   31
                                                                   40
          dff = pd.get_dummies(df,drop_first = True)
In [37]:
          dff.head()
```

Out[37]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	Gender_Male
	0	1	19	15	39	0	3	1
	1	2	21	15	81	0	1	1
	2	3	20	16	6	0	3	0
	3	4	23	16	77	0	1	0
	4	5	31	17	40	0	3	0

```
dff.columns
In [38]:
         Index(['CustomerID', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)',
Out[38]:
                 'Income Cluster', 'Spending and Income Cluster', 'Gender_Male'],
               dtype='object')
In [39]: dff = dff[['Age', 'Annual Income (k$)', 'Spending Score (1-100)', 'Gender_Male']]
```

dff.head()

```
Out[39]:
              Age Annual Income (k$) Spending Score (1-100) Gender_Male
           0
               19
                                   15
                                                           39
                                                                          1
                                                                          1
           1
               21
                                   15
                                                           81
           2
               20
                                   16
                                                            6
                                                                          0
           3
               23
                                   16
                                                           77
                                                                          0
                                   17
                                                                          0
           4
               31
                                                           40
```

```
In [40]: dff = pd.DataFrame(scale.fit_transform(dff))
```

```
In [41]:
    inertia_scores3 = []
    for i in range(1,11):
        kmeans3 = KMeans(n_clusters = i)
        kmeans3.fit(dff)
        inertia_scores3.append(kmeans3.inertia_)

plt.plot(range(1,11),inertia_scores3);
```



```
In [42]: df.to_csv('E:\Data Analyst\Python Projects\Mall\Clustering.csv')
```

In []: