Pulsar Timing and Instrumental Polarization

International Pulsar Timing Array 2012 Science Meeting

Willem van Straten

Pulsar Polarization

- variation with pulse phase
 - Rotating Vector Model
 - Orthogonally Polarized Modes
- variation with radio frequency
 - Faraday rotation
- variation with time
 - e.g. mode-changing
 - instrumental distortion

Electromagnetic Radiation

$$e(t) = \begin{pmatrix} e_0(t) \\ e_1(t) \end{pmatrix}$$

Coherency Matrix

$$\boldsymbol{\rho} \equiv \langle \boldsymbol{e} \, \boldsymbol{e}^{\dagger} \rangle = \begin{pmatrix} \langle e_0 e_0^* \rangle & \langle e_0 e_1^* \rangle \\ \langle e_1 e_0^* \rangle & \langle e_1 e_1^* \rangle \end{pmatrix}$$

$$oldsymbol{
ho}=oldsymbol{
ho}^\dagger$$

Stokes Parameters

$$\boldsymbol{\rho} = S_k \, \boldsymbol{\sigma}_k / 2$$
$$S_k = \text{Tr}(\boldsymbol{\sigma}_k \boldsymbol{\rho})$$

$$oldsymbol{\sigma}_0 = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
 $oldsymbol{\sigma}_1 = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$ $oldsymbol{\sigma}_2 = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ $oldsymbol{\sigma}_3 = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$

Stokes 4-vector

Total intensity (time-like)

$$S_0 = I$$

Polarization vector (space-like)

$$S = (S_1, S_2, S_3)$$

Stokes Vector – Polarisation Ellipse

Transformations

Linear transformations of electric field

Rotations:

- rotate $oldsymbol{S}$ about an axis by an angle
- leave S_0 unchanged

Boosts:

- boost along an axis by an impact factor
- modify both $S_{\it O}$ and S

Instrumental Distortion

- Non-orthonormality of receptors:
 - differential gain (along S_1 axis)
 - cross-coupling (along S_2 & S_3 axes)
- Mixing of S_0 and S depends on Sulleteta
- Produce pulse phase dependent distortions of total intensity profile

Template Matching

$$\dot{\varphi}_k \equiv \left. \frac{\partial \varphi}{\partial b_k} \right|_{\beta=0} = \frac{\sum \operatorname{Im}[S_k^*(\nu_m)S_0(\nu_m)]\nu_m}{\pi \sum |S_0(\nu_m)|^2 \nu_m^2}$$

$$\dot{arphi}_eta \equiv |\dot{oldsymbol{arphi}}|$$

$$\tau_{\beta} \equiv 5 \times 10^{-3} \dot{\varphi}_{\beta} P$$

Pulsar	$\hat{\sigma}_{arphi}$	$\hat{\sigma}_{ ilde{arphi}}$	$\tau_{\beta} \; (\mathrm{ns})$
J0437-4715	0.85	1.43	207
J0613 - 0200	0.92	1.46	59
J0711 - 6830	0.88	1.54	81
J1022+1001	0.68	1.65	282
J1024 - 0719	0.74	2.11	34
J1045-4509	0.88	1.48	338
J1600 - 3053	0.90	1.39	115
J1603 - 7202	0.85	1.55	142
J1643-1224	0.91	1.40	266
J1713+0747	0.85	1.58	6
J1730-2304	0.71	1.70	198
J1732 - 5049	0.96	1.38	185
J1744 - 1134	1.56	6.43	105
J1824 - 2452A	0.88	2.56	18
J1857 + 0943	0.89	1.43	124
J1909 - 3744	1.02	1.51	22
J1939+2134	0.95	1.49	44
J2124 - 3358	0.85	1.45	127
J2129-5721	1.15	1.61	211
J2145 - 0750	0.95	1.44	147

$$\mathbf{C}_{\tau}(f) = \mathbf{\Upsilon}\mathbf{C}_{\beta}(f)\mathbf{\Upsilon}^{T}$$

$$\Upsilon_j^k \equiv \frac{\partial \tau_j}{\partial b_k} = P_j \frac{\partial \varphi_j}{\partial b_k}$$

$$c_{AB} = rac{\dot{oldsymbol{arphi}}_A \cdot \dot{oldsymbol{arphi}}_B}{|\dot{oldsymbol{arphi}}_A||\dot{oldsymbol{arphi}}_B|}$$

Calibration Methods

- Measurement Equation Modeling (MEM; van Straten 2004)
 - unknown source and calibrators observed over a range of parallactic angles
- Matrix Template Matching (MTM; van Straten 2006)
 - known source matched to a single (short) observation; no calibrator input

METM

- Use 0437-4715 as polarized reference
- Merge MEM and MTM methods
 - match template to multiple observations
 - incorporate and constrain calibrator
 - polarization of noise diode not assumed
 - model time-variations
 - parallactic angle, drifting gains and phases, etc.

METM Workflow

- 1) Derive 50 MEM solutions (~8hr each)
 - J0437-4715 & wide range in parallactic angle
- 2) MTM Integrate into standard (~150hr)
 - reduced χ^2 within 4% of unity in each fit
- 3) Derive 350 MEM/MTM solutions (~3.5hr)
 - both receiver and noise diode estimated
- 4) Apply solutions to another pulsar

Pulsar	$\hat{\sigma}_{arphi}$	$\hat{\sigma}_{ ilde{arphi}}$	$\tau_{\beta} \; (\mathrm{ns})$
J0437-4715	0.85	1.43	207
J0613 - 0200	0.92	1.46	59
J0711 - 6830	0.88	1.54	81
J1022+1001	0.68	1.65	282
J1024 - 0719	0.74	2.11	$\overline{34}$
J1045 - 4509	0.88	1.48	338
J1600 - 3053	0.90	1.39	115
J1603 - 7202	0.85	1.55	142
J1643 - 1224	0.91	1.40	266
J1713 + 0747	0.85	1.58	6
J1730 - 2304	0.71	1.70	198
J1732 - 5049	0.96	1.38	185
J1744 - 1134	1.56	6.43	105
J1824 - 2452A	0.88	2.56	18
J1857 + 0943	0.89	1.43	124
J1909 - 3744	1.02	1.51	22
J1939+2134	0.95	1.49	44
J2124 - 3358	0.85	1.45	127
J2129 - 5721	1.15	1.61	211
J2145 - 0750	0.95	1.44	147

Arrival Time Comparison

Method	$\sigma_{ au} \; (\mu \mathrm{s})$	$\chi^2/N_{ m free}$
IFA-STI	1.9	2.2
$\mathbf{METM}\!\!-\!\!\mathbf{STI}$	1.4	2.1
IFA-MTM	0.92	1.1
METM-MTM	0.89	1.0

278 TOAS spanning 6.9 years

Conclusions

 Instrumental polarization introduces correlated systematic timing error

 Long-term stability of MSP polarization can be used to calibrate instrumentation

 In some cases, Matrix Template Matching is better than doubling integration length

Conclusions

 METM and MTM can potentially reduce the cost of the SKA (for timing)

 PSR J1022+1001 is a great timer and should be observed by every PTA