HW#5

박성빈, 수학과, 20202120

I'll first write the definition of terminologies related to semisimplicity and simplicity.(Ref. *Algebra*, Lang.)

For a division ring R with 1, (as we only consider R = K[G], where K is a field in this homework.)

Definition 1. R-module E is simple if it is non-zero and has no submodule other than 0 or E.

Note that this is same as irreducibile module.

Definition 2. R-module E is semisimple if for any submodule F of E, there exists a submodule F' such that $E = F \oplus F'$. For a ring R with $1 \neq 0$, it is semisimple if it is semisimple as a left module over itself.

1(S 6.1) I'll first prove (i) \rightarrow (ii). Let $F = \{\sum_{s \in G} a_s s \in K[G] : \sum_{s \in G} a_s = 0\}$. It is k[G] submodule of K[G] since for any $s' \in G$,

$$s' \cdot \left(\sum_{s \in G} a_s s\right) = \sum_{s \in G} a_s s' s = \sum_{s \in G} a_{(s')^{-1} s} s \in F.$$

$$\tag{1}$$

By the definition of semisimple module (or ring), there should exists a submodule F' such that $K[G] = F \oplus F'$. Since F, F' are K-vector space, it can be viewed as a decomposition of the vector space. For K-linear $\phi: K[G] \to K$ by $\phi(\sum_{s \in G} a_s s) = \sum_{s \in G} a_s$, it is surjective and F is the kernel, so dim F = |G| - 1. It means dim F' = 1. Now, assume it is spanned by $u = \sum_{s \in G} a_s s \in F'$, then $\sum_{s' \in G} s' u = \sum_{s \in G} \sum_{s' \in G} a_{s'} s \in F' \cap F$ as

$$\sum_{s \in G} \sum_{s' \in G} a_{s'} = g \sum_{s' \in G} a_{s'} = 0.$$
 (2)

It means $\sum_{s \in G} \sum_{s' \in G} a_{s'} s = 0$ and $\sum_{s \in G} a_s = 0$, implying that $u \in F' \cap F$, so zero. This is impossible. Therefore, F is not a direct summand of K[G] and K[G] is not semisimple.

Conversely, assume char $K \nmid g$, then $\frac{1}{g}$ is non-zero in K, so $p^0 = g^{-1} \sum_{s \in G} sps^{-1}$ for K-linear projection from K[G] to F is well-defined and the same argument in theorem 1 in 1.3 is well-applied. It shows that K[G] is a semisimple.

2(S 6.2) By the definition of $\langle \cdot, \cdot \rangle$, it is bilinear. Also, by the construction of $\tilde{\rho}_i$ and linearlity of Tr_{W_i} , the formula for $\langle u, v \rangle$ is also bilinear. Therefore, I can reduce to the case $u, v \in G$. For $a, b \in G$,

$$\langle a,b\rangle = g \sum_{s \in G} \delta_{s^{-1}a} \delta_{sb} = g \delta_{ab}. \tag{3}$$

Also, by the corollary 5.2 in the chapter 2,

$$\langle a,b\rangle = \sum_{i=1}^{h} n_i \operatorname{Tr}_{W_i}(\rho_i(ab)) = \sum_{i=1}^{h} n_i \chi_i(ab) = g\delta_{ab}.$$
 (4)

Therefore, we get

$$\langle u, v \rangle = \sum_{i=1}^{h} n_i \operatorname{Tr}_{W_i}(\tilde{\rho}_i(uv))$$
 (5)

3-6(S 6.3) Note: Since $\mathbb{C}[G]$ is \mathbb{C} -algebra isomorphic to product of matrix algebras over \mathbb{C} , it is not multiplicative group as some elements does not have inverse. Therefore $\mathbb{C}[G]$ is not itself a multiplicative group.

(a) Since U contains G, $s^{-1}u \in U$ for $s \in G$. As U is finite, $(s^{-1}u)^{|U|} = 1$, which implies that $(\tilde{\rho}_i(s^{-1}u))^{|U|} = \tilde{\rho}_i((s^{-1}u)^{|U|}) = I$ and the minimal polynomial of $\tilde{\rho}_i(s^{-1}u)$ should divide $x^{|U|} - 1 = 0$. Since \mathbb{C} is algebraically closed field of characteristic 0 and $x^{|U|} - 1$ is separable, $\tilde{\rho}_i(s^{-1}u)$ is diagonalizable and eigenvalues are roots of unity.

Since u'u = 1, $\tilde{\rho}_i(u's)\tilde{\rho}_i(s^{-1}u) = I$. As an inverse matrix of a diagonalizable matrix, each eigenvalue of $\tilde{\rho}_i(u's)$ is inverse of an eigenvalue of $\tilde{\rho}_i(s^{-1}u)$, and we have shown that each eigenvalues have absolute value 1 above. Therefore,

$$\operatorname{Tr}_{W_i}(\rho_i(s^{-1})u_i)^* = \operatorname{Tr}_{W_i}(\tilde{\rho}_i(s^{-1}u))^* = \operatorname{Tr}_{W_i}(\tilde{\rho}_i(u's)) = \operatorname{Tr}_{W_i}(u_i'\rho_i(s))$$
(6)

As Tr(AB) = Tr(BA) for matrices A and B, we get

$$\operatorname{Tr}_{W_i}(\rho_i(s^{-1})u_i)^* = \operatorname{Tr}_{W_i}(\rho_i(s)u_i') \tag{7}$$

Using Fourier inversion formula, we get $u(s)^* = u'(s^{-1})$.

(b) Note that

$$uu' = \sum_{s \in G} \left(\sum_{s' \in G} u(ss')u'((s')^{-1}) \right) s.$$
 (8)

Since uu' = 1, $\sum_{s' \in G} u(s')u'((s')^{-1}) = \sum_{s' \in G} u(s')u(s')^* = \sum_{s \in G} |u(s)|^2 = 1$.

- (c) By (b), we get u(s) are all zero except one which is equal to ± 1 . As it contains G and U is contained in $G \cup (-G)$.
- (d) Let $u \in Z[G]$ has finite order about multiplication, then $U = \langle u, G \rangle$ is a finite subgroup of multiplicative group of Z[G] as the generators are commutative and have finite order. By (c), U is contained in $G \cup (-G)$, so $u \in G \cup (-G)$. It proves the proposition.

7(S 6.4) Note that χ_i is a class function on G for each i, so for any conjugacy class $c \subset G$, $\chi_i(s_1^{-1}) = \chi_i(s_2^{-1})$ for $s_1, s_2 \in c$. Therefore, p_i is in the center of $\mathbb{C}[G]$. Also,

$$\omega_i(p_j) = g^{-1} \sum_{s \in G} \chi_j(s^{-1}) \chi_i(s) = \delta_{ij}$$
 (9)

from the theorem 3 in chapter 2. Since $(\omega_i)_{1 \le i \le h}$ defines an algebra isomorphism from center of $\mathbb{C}[G]$ to \mathbb{C}^h , which is \mathbb{C} -vector space isomorphism, and each $(p_i)_{1 \le i \le h}$ maps onto the basis of \mathbb{C}^h , p_i forms a basis of center of $\mathbb{C}[G]$.

The rest properties are the consequence of calculations. Since

$$\omega_i(p_i p_k) = \omega_i(p_i)\omega_i(p_k) = \delta_{ii}\delta_{ik},\tag{10}$$

and $(\omega_i)_{1 \le i \le h}$ is an isomorphism, $p_i^2 = p_i$ and $p_i p_j = 0$. Also, $\omega_i(1) = 1$ for all i, and

$$(\omega_i)_{1 \le i \le h} : \sum_{i=1}^h p_j \mapsto (1, 1, \dots, 1),$$
 (11)

so $\sum_{j=1}^{h} p_{j} = 1$.

Now, I'll prove the theroem 8 of 2.6. For a representation $\rho: G \to GL(V)$, $\rho(p_i)^2 = \rho(p_i)$, so $\rho(p_i)$ is a projection matrix. Also, $\operatorname{Im} \rho(p_i) \cap \operatorname{Im} \rho(p_j) = 0$ for $i \neq j$ for $p_i p_j = 0$. Finally, as $\sum_{i=1}^h p_i = 1$, $\bigoplus_{i=1}^h \operatorname{Im} \rho(p_i) = V$. Now, I need to show $\operatorname{Im} \rho(p_i) = V_i$, which is constructed by collecting irreducible submodules isomorphic to W_i .

For $j \neq i$, assume that there exists a irreducible submodule $v \in L \subset V$ which is isomorphic to W_j and $\rho(p_i)(v) \neq 0$. Since p_i is in center of $\mathbb{C}[G]$ and L is irreducible, we can restrict the domain of $\rho(p_i)$ by L and get $\operatorname{End}_{\mathbb{C}[G]}(L)$. By Schur's lemma, $\rho(p_i)$ is a homothety and $\operatorname{Tr}(\rho(p_i)) = \frac{n_i}{g} \sum_{s \in G} \chi_i(s^{-1}) \chi_j(s) = 0$. Therefore, it is contradiction, and it implies $\sum_{j \neq i} V_j \subset \ker \rho(p_i)$. It shows that $\ker \rho(p_i) = V_i$, which ends the proof.

8(**S** 6.5) Let ϕ be the algebra homomorphism from center of $\mathbb{C}[G]$ to \mathbb{C} . Since $\sum_{i=1}^h p_i = 1 \in \mathbb{C}[G]$ is maps to 1 in \mathbb{C} , there should exists p_{i_0} such that p_{i_0} is maps to non-zero a. Assume it is not 1, then $\frac{1}{a}p_{i_0}$ maps to 1, so $\sum_{i=1}^h p_i - \frac{1}{a}p_{i_0}$ maps to 0. However,

$$\phi: \left(\sum_{i=1}^{h} p_i - \frac{1}{a} p_{i_0}\right) p_{i_0} = \left(1 - \frac{1}{a}\right) p_{i_0}^2 = \left(1 - \frac{1}{a}\right) p_{i_0} \mapsto a - 1 \neq 0, \tag{12}$$

which is contradiction. Therefore, a=1. Since $\phi(p_{i_0}p_j)=\phi(p_{i_0})\phi(p_j)=0$ for $j\neq i_0$, $\phi(p_j)=0$ except i_0 , and it should be same as ω_{i_0} . It shows that each homomorphism of center of $\mathbb{C}[G]$ is equal to one of the ω_i .

9(S 6.6) Let $\{c_i\}_{i=1}^h$ be the conjugacy classes of G. The center of $\mathbb{C}[G]$ is $\bigoplus_{i=1}^h \mathbb{C}e_i$ where $e_i = \sum_{s \in c_i} s$. Therefore, $\bigoplus_{i=1}^h \mathbb{Z}e_i$ is contained in the center of $\mathbb{Z}[G]$. Conversely, if u is in the center of $\mathbb{Z}[G]$, then us = su for all $s \in G$ and \mathbb{C} is in the center of $\mathbb{C}[G]$, so uu' = u'u for all $u' \in \mathbb{C}[G]$. Therefore, $u \in (\bigoplus_{i=1}^h \mathbb{C}e_i) \cap \mathbb{Z}[G] = \bigoplus_{i=1}^h \mathbb{Z}e_i$.