Statistical physics of soft matter and biomolecules (T/A) - SoftMatter

\overline{Course}	Statistical physics of soft matter and biomolecules (T/A)
Course No.	SoftMatter

		Teaching			
Category	Type	Language	hours	\mathbf{CP}	Semester
Elective	Lecture with exercises	English	4+2	8	ST

Requirements:

Preparation: Advanced statistical mechanics

Form of Testing and Examination: Oral examination

Length of Course: 1 semester

Aims of the Course: Understanding the molecular structure and mesoscopic properties of various types of soft matter systems, in particular with regard to their role in living cells.

Contents of the Course:

Colloids, polymers and amphiphiles

Biopolymers and proteins

Membranes

Physics of the cell

Recommended Literature:

- J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).
- M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).
- S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).
- G. Gompper, U. B. Kaupp, J. K. G. Dhont, D. Richter, and R. G. Winkler, eds., Physics meets Biology From Soft Matter to Cell Biology, vol. 19 of Matter and Materials (FZ Jülich, Jülich, 2004).
- D. H. Boal, Mechanics of the Cell (Cambridge University Press, Cambridge, 2002).

PDF version of this page.