Proximal Neural Networks: Wedding Variational Methods and Artificial Intelligence

II – Proximal algorithms

Audrey $\operatorname{Repetti}^{\dagger}$, Nelly $\operatorname{Pustelnik}^{\diamond}$, $\operatorname{Jean-Christophe}$ $\operatorname{Pesquet}^*$

TUTORIAL – EUSIPCO 2025 – Palermo, Italy

Unified framework

Motivation

•0000000

Inference framework: feed-forward NN

$$egin{align} (orall oldsymbol{x}^{[0]} \in \mathbb{R}^{N_0}) & oldsymbol{x}^{[K]} = \mathfrak{L}_{\Theta}^K(oldsymbol{x}^{[0]}) \ &= \mathfrak{T}_{\Theta_K} \circ \ldots \circ \mathfrak{T}_{\Theta_1}(oldsymbol{x}^{[0]}), \end{split}$$

Layer/iteration

$$\mathfrak{T}_{\Theta_k} \colon \mathbb{R}^{N_{k-1}} o \mathbb{R}^{N_k} \colon oldsymbol{x} \mapsto \mathfrak{D}_{\Lambda_k}(\mathbf{L}_k oldsymbol{x} + oldsymbol{b}_k),$$

- $ightharpoonup \mathbf{L}_k \colon \mathbb{R}^{N_{k-1}} o \mathbb{R}^{N_k} \colon \text{linear operator,}$
- $lackbox{f b}_k \in \mathbb{R}^{N_k}$: shift parameter,
- $lackbox{} \mathfrak{D}_{\Lambda_k} \colon \mathbb{R}^{N_k} \to \mathbb{R}^{N_k} \colon$ nonlinear operator parametrized by Λ_k .

Parameters: $\Theta = \bigcup_{k=1}^K \Theta_k$ with $\Theta_k = \{\Lambda_k, \mathbf{L}_k, \boldsymbol{b}_k\}$.

Basic convex analysis tools

ightharpoonup Hilbert space ${\cal H}$

Motivation

0000000

Moreau subdifferential Let $f: \mathcal{H} \to (-\infty, +\infty]$ and $x \in \mathcal{H}$

$$\partial f(oldsymbol{x}) = \{oldsymbol{t} \in \mathcal{H} \mid (orall oldsymbol{y} \in \mathcal{H}) \ \ f(oldsymbol{y}) \geq f(oldsymbol{x}) + \langle oldsymbol{t} \mid oldsymbol{y} - oldsymbol{x}
angle \}.$$

- ightharpoonup $\Gamma_0(\mathcal{H})$: class of lower-semicontinuous convex functions, finite at least at one point (proper)
- lacktriangledown If $f\in\Gamma_0(\mathcal{H})$ is Gâteaux-differentiable at $m{x}$, then $\partial f(m{x})=\{\nabla f(m{x})\}$
- $lackbox{ Fermat's rule: } \widehat{m{x}} \in \operatorname{Argmin} \ f \quad \Leftrightarrow \quad 0 \in \partial f(\widehat{m{x}})$

Basic convex analysis tools

► Hilbert space \mathcal{H}

Motivation

0000000

Proximity operator Let $f: \mathcal{H} \to (-\infty, +\infty]$ and $x \in \mathcal{H}$

$$\operatorname{prox}_f(\boldsymbol{x}) \in \underset{\boldsymbol{y} \in \mathcal{H}}{\operatorname{Argmin}} \ \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 + f(\boldsymbol{y}).$$

- $ightharpoonup p = \operatorname{prox}_f(x) \Leftrightarrow x p \in \partial f(p) \Leftrightarrow p \in (\operatorname{Id} + \partial f)^{-1}(x)$
- lacktriangle See https://proximity-operator.net for the expression/code of prox_f for many functions f

Basic convex analysis tools

► Hilbert space \mathcal{H}

Motivation

0000000

Proximity operator Let $f: \mathcal{H} \to (-\infty, +\infty]$ and $x \in \mathcal{H}$

$$\operatorname{prox}_f(\boldsymbol{x}) \in \operatorname{Argmin}_{\boldsymbol{y} \in \mathcal{H}} \ \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 + f(\boldsymbol{y}).$$

- ▶ f is ρ -convex if $f \frac{\rho}{2} \| \cdot \|^2$ is convex if $\rho > 0$, f is ρ -strongly convex if $\rho < 0$, f is $(-\rho)$ -weakly convex
- ▶ If f is proper lower-semicontinuous and ρ -convex with $\rho > -1$, then $\operatorname{prox}_f(\boldsymbol{x})$ is uniquely defined for every $\boldsymbol{x} \in \mathcal{H}$.

 $\operatorname{prox}_f(\boldsymbol{x}) \in \operatorname{Argmin}_{\boldsymbol{y} \in \mathcal{Y}} \ \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 + f(\boldsymbol{y}).$

 $(\forall \boldsymbol{x} \in \mathcal{H}) \quad \widetilde{f}(\boldsymbol{x}) = \inf_{\boldsymbol{y} \in \mathcal{H}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 + f(\boldsymbol{y}).$

Basic convex analysis tools

- ► Hilbert space \mathcal{H}
 - Proximity operator Let $f: \mathcal{H} \to (-\infty, +\infty]$ and $x \in \mathcal{H}$

$$ightharpoonup$$
 Argmin $f = \text{Argmin } \widetilde{f}$

▶ If f is proper lower-semicontinuous and ρ -convex with $\rho > -1$, then \widetilde{f} is $\rho/(1+\rho)$ -convex with Lipschitz continuous gradient $\nabla \widetilde{f} = \operatorname{Id} - \operatorname{prox}_f$.

Fixed point algorithm: zeros and fixed points

Let $\mathcal H$ be a Hilbert space. Let $\Phi\colon \mathcal H\to 2^{\mathcal H}$ and $\mathfrak T\colon \mathcal H\to 2^{\mathcal H}.$

The set of fixed points of $\mathfrak T$ is : Fix $\mathfrak T = \{x \in \mathcal H \mid x \in \mathfrak T x\}$. The set of zeros of Φ is : zer $\Phi = \{x \in \mathcal H \mid 0 \in \Phi x\}$.

Goal: Find Φ and $\mathfrak T$ such that $\operatorname{Argmin} \ f = \operatorname{zer} \Phi = \operatorname{Fix} \mathfrak T$

Fixed point algorithm: zeros and fixed points

Let ${\mathcal H}$ be a Hilbert space. Let ${f \Phi}\colon {\mathcal H} o 2^{{\mathcal H}}$ and ${\mathfrak T}\colon {\mathcal H} o 2^{{\mathcal H}}.$

The set of fixed points of $\mathfrak T$ is : Fix $\mathfrak T=\{x\in\mathcal H\,|\,x\in\mathfrak Tx\}.$

The set of zeros of Φ is : $\operatorname{zer} \Phi = \{x \in \mathcal{H} \mid 0 \in \Phi x\}.$

Goal: Find
$$oldsymbol{\Phi}$$
 and $oldsymbol{\mathfrak{T}}$ such that $\operatorname{Argmin} \ f = \operatorname{zer} oldsymbol{\Phi} = \operatorname{Fix} oldsymbol{\mathfrak{T}}$

Example 1: gradient descent

If f differentiable and convex,

$$\mathbf{\Phi} = \nabla f$$
, $\mathfrak{T} = \mathrm{Id} - \nabla f$

Duality

Primal-dual methods

3/41

Let
$$\mathcal H$$
 be a Hilbert space. Let $\Phi\colon \mathcal H\to 2^{\mathcal H}$ and $\mathfrak T\colon \mathcal H\to 2^{\mathcal H}.$

The set of fixed points of \mathfrak{T} is : Fix $\mathfrak{T} = \{x \in \mathcal{H} \mid x \in \mathfrak{T}x\}$. The set of zeros of Φ is : $\operatorname{zer} \Phi = \{x \in \mathcal{H} \mid 0 \in \Phi x\}.$

Goal: Find
$$\Phi$$
 and ${\mathfrak T}$ such that $\operatorname{Argmin} \ f = \operatorname{zer} \Phi = \operatorname{Fix} {\mathfrak T}$

Primal algorithms

Motivation

$$\begin{split} \widehat{x} \in \operatorname{Argmin} \ f & \Leftrightarrow \quad 0 \in \partial f(\widehat{x}) \quad \Leftrightarrow \quad \widehat{x} - \widehat{x} \in \partial f(\widehat{x}) \quad \Leftrightarrow \quad \widehat{x} \in \operatorname{prox}_f(\widehat{x}) \\ \Rightarrow \Phi = \partial f, \quad \mathfrak{T} = \operatorname{prox}_f = \operatorname{Id} - \nabla \widetilde{f} \end{split}$$

Question: How to find a minimizer
$$\hat{x}$$
?

Fixed point algorithm: convergence

Let $\mathcal H$ be a Hilbert space, $(x^{[k]})_{k\in\mathbb N}$ be a sequence in $\mathcal H$ and $\widehat x\in\mathcal H$. \bullet $(x^{[k]})_{k\in\mathbb N}$ converges strongly to $\widehat x$ if

$$ullet$$
 $(oldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ converges strongly to $\widehat{oldsymbol{x}}$ if

$$\lim_{k \to \infty} \|\boldsymbol{x}^{[k]} - \widehat{\boldsymbol{x}}\| = 0$$

Motivation

00000000

 $\lim_{k\to\infty}\|\boldsymbol{x}^{[k]}-\widehat{\boldsymbol{x}}\|=0.$ It is denoted by $\boldsymbol{x}^{[k]}\to\widehat{\boldsymbol{x}}.$ $\bullet \ (\boldsymbol{x}^{[k]})_{k\in\mathbb{N}} \text{ converges weakly to } \widehat{\boldsymbol{x}} \text{ if }$ $(\forall \boldsymbol{u}\in\mathcal{H}) \qquad \lim_{k\to\infty}\langle \boldsymbol{u},\boldsymbol{x}^{[k]}-\widehat{\boldsymbol{x}}\rangle=0.$ It is denoted by $\boldsymbol{x}^{[k]}\to\widehat{\boldsymbol{x}}.$

$$(\forall \boldsymbol{u} \in \mathcal{H})$$
 $\lim_{k \to \infty} \langle \boldsymbol{u}, \boldsymbol{x}^{[k]} - \widehat{\boldsymbol{x}} \rangle = 0$

Remark: In a finite dimensional Hilbert space, strong and weak convergences are equivalent.

5/41

Banach-Picard theorem

Motivation

Set

00000000

$$\mathfrak{T} \colon \mathcal{H} \to \mathcal{H}$$
 is ω -Lipschitz continuous for some $\omega > 0$ if $(\forall x \in \mathcal{H})(\forall u \in \mathcal{H})$ $\|\mathfrak{T}x - \mathfrak{T}u\| < \omega \|x - u\|$.

 \mathfrak{T} is nonexpansive if it is 1-Lipschitz continuous.

Banach-Picard theorem:

Let $\omega \in [0,1)$, $\mathfrak{T}: \mathcal{H} \to \mathcal{H}$ be a ω -Lipschitz continuous operator, and $x^{[0]} \in \mathcal{H}$.

Then
$$\operatorname{Fiv} \mathfrak{T} = (\widehat{\alpha})$$
 for some $\widehat{\alpha} \in \mathcal{U}$ and we have

Then, Fix $\mathfrak{T} = \{\widehat{x}\}$ for some $\widehat{x} \in \mathcal{H}$ and we have

$$(\forall k \in \mathbb{N}) \quad \|\boldsymbol{x}^{[k]} - \widehat{\boldsymbol{x}}\| < \omega^k \|\boldsymbol{x}_0 - \widehat{\boldsymbol{x}}\|.$$

 $(\forall k \in \mathbb{N}) \quad \boldsymbol{x}^{[k+1]} = \mathfrak{T}\boldsymbol{x}^{[k]}.$

Moreover, $(x^{[k]})_{k\in\mathbb{N}}$ converges strongly to \hat{x} with linear convergence rate ω .

Primal algorithms

Acceleration via inertia

An operator $\mathfrak{T}\colon\mathcal{H}\to\mathcal{H}$ is μ -averaged nonexpansive for some $\mu\in(0,1]$ if, for every $x\in\mathcal{H}$ and $\|\mathfrak{T}\boldsymbol{x} - \mathfrak{T}\boldsymbol{u}\|^2 \le \|\boldsymbol{x} - \boldsymbol{u}\|^2 - \left(\frac{1-\mu}{\mu}\right)\|(\mathrm{Id} - \mathfrak{T})\boldsymbol{x} - (\mathrm{Id} - \mathfrak{T})\boldsymbol{u}\|^2$

$$\mathfrak T$$
 is **firmly nonexpansive** if it is $1/2$ -averaged.

 \mathfrak{T} is **nonexpansive** if and only if \mathfrak{T} is 1-averaged.

Motivation

00000000

 $u \in \mathcal{H}$.

Theorem: Let $\mu \in (0,1)$, let $\mathfrak{T} \colon \mathcal{H} \to \mathcal{H}$ be a μ -averaged nonexpansive operator such that Fix $\mathfrak{T} \neq \emptyset$, and

Duality

Primal-dual methods

let $x^{[0]} \in \mathcal{H}$.

Set $(\forall k \in \mathbb{N})$ $\boldsymbol{x}^{[k+1]} = \mathfrak{T}\boldsymbol{x}^{[k]}$

Then $(x^{[k]})_{k\in\mathbb{N}}$ converges weakly to a point in Fix \mathfrak{T} .

6/41

Conclusion

7/41

Nonlinear operators

Motivation

00000000

Properties of f	$\mathfrak T$	ω -Lipschitz	μ -averaged
f convex	$\mathrm{Id} - \tau \nabla f$	$\omega = 1$	$\mu = \frac{\tau \beta}{2}$
abla f eta -Lipschitz	$\tau \in (0, 2\beta^{-1})$		_
f ρ -strongly convex	$\mathrm{Id} - \tau \nabla f$	$\omega = \max\{(1 - \tau \rho), (\tau \beta - 1)\}$	$\mu = \frac{1+\omega}{2}$
abla f eta -Lipschitz	$\tau \in (0, 2\beta^{-1})$		
$f \in \Gamma_0(\mathcal{H})$	$\operatorname{prox}_{\tau f}$	$\omega = 1$	$\mu = \frac{1}{2}$
	au > 0		_
f ρ -strongly convex	$\operatorname{prox}_{\tau f}$	$\omega = (1 + \tau \rho)^{-1}$	$\mu = \frac{1+\omega}{2}$
	au>0		_

Proximal algorithms

Motivation

0000000

• Minimisation problem :

$$\widehat{oldsymbol{x}} \in \mathop{
m Argmin}_{oldsymbol{x}} \ f_1(oldsymbol{x}) + f_2(oldsymbol{x})$$

with f_1 and f_2 either diff. with Lipschitz gradient or proximable.

Primal algorithms

$$\widehat{m{x}} \in \operatorname{Argmin}_{m{x} \in \mathcal{H}} \Big\{ f(m{x}) = f_1(m{x}) + f_2(m{x}) \Big\}$$

Objective: Let $f_1 : \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_0} \circ (\operatorname{Id} - \tau \nabla f_1)$

▶ Iterations:
$$(\forall k \in \mathbb{N})$$
 $x^{[k+1]} = \text{prox}_{\tau f_2}(x^{[k]} - \tau \nabla f_1(x^{[k]}))$.

$$\widehat{\boldsymbol{x}} \in \operatorname{Argmin}_{\ \boldsymbol{x} \in \mathcal{H}} \Big\{ f(\boldsymbol{x}) = f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) \Big\}$$

Objective: Let $f_1 \colon \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$

- ▶ Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\tau f_0}(x^{[k]} \tau \nabla f_1(x^{[k]}))$.
- lacktriangle Roots in projected gradient method [Levitin, 1966] when $f_2=\iota_C$ for some closed convex set C.
- ▶ If $f_2 = 0$, gradient descent algorithm
- ▶ if $f_1 = 0$, proximal point algorithm.

$$\widehat{m{x}} \in \operatorname{Argmin}_{m{x} \in \mathcal{H}} \Big\{ f(m{x}) = f_1(m{x}) + f_2(m{x}) \Big\}$$

Objective: Let $f_1: \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_0} \circ (\operatorname{Id} - \tau \nabla f_1)$

- ► Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\tau f_0}(x^{[k]} \tau \nabla f_1(x^{[k]}))$.
- ▶ For every $\tau > 0$, zer $(\nabla f_1 + \partial f_2) = \text{Fix } \mathfrak{T}$.

Proof:
$$\mathbf{x} \in \text{Fix } \mathfrak{T} \Leftrightarrow (\text{Id} - \tau \nabla f_1)\mathbf{x} \in (\text{Id} + \tau \partial f_2)\mathbf{x}$$
$$\Leftrightarrow 0 \in \nabla f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

$$\widehat{m{x}} \in \operatorname{Argmin}_{m{x} \in \mathcal{H}} \Big\{ f(m{x}) = f_1(m{x}) + f_2(m{x}) \Big\}$$

Objective: Let $f_1 \colon \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_0} \circ (\operatorname{Id} - \tau \nabla f_1)$

- ▶ Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\tau,t} (x^{[k]} \tau \nabla f_1(x^{[k]}))$.
- ▶ For every $\tau > 0$, zer $(\nabla f_1 + \partial f_2) = \text{Fix } \mathfrak{T}$.
- ▶ $\operatorname{prox}_{\tau f_2}(\operatorname{Id} \tau \nabla f_1)$ is μ -averaged nonexpansive where $\mu = \frac{\mu_1 + \mu_2 2\mu_1\mu_2}{1 \mu_1\mu_2}$ with $\mu_2 = \tau \beta/2$ and $\mu_1 = 1/2$ leading to $\mu = \frac{1}{2 \tau \beta/2} \in (0, 1)$ and $\tau < 2/\beta$.

$$\widehat{m{x}} \in \operatorname{Argmin}_{m{x} \in \mathcal{H}} \Big\{ f(m{x}) = f_1(m{x}) + f_2(m{x}) \Big\}$$

Objective: Let $f_1: \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_0} \circ (\operatorname{Id} - \tau \nabla f_1)$

Theorem [Combettes & Wajs, 2005]:

Let $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ be a sequence generated by the FB algorithm. Let $\tau\in(0,2\beta^{-1})$. Then

- $(x^{[k]})_{k\in\mathbb{N}}$ converges to a minimiser \widehat{x} of f (if there exists one)
- $(f(x^{[k]}))_{k\in\mathbb{N}}$ is a non-increasing sequence converging to $f(\widehat{x})$.

Duality

Acceleration via inertia

Motivation

$$\boldsymbol{x} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathcal{H}} \left\{ f(\boldsymbol{x}) = f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) \right\}$$

Primal-dual methods

Conclusion

11/41

Objective: Let $f_1: \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$

Theorem [Briceno-Arias & Pustelnik, 2005]

Primal algorithms

Let $(x^{[k]})_{k\in\mathbb{N}}$ be a sequence generated by the FB algorithm.

- Suppose that f_1 is ρ -strongly convex, and $\tau \in (0, 2\beta^{-1})$. Then \mathfrak{T} is $\omega(\tau)$ -Lipschitz continuous with $\omega(\tau) := \max\{|1 - \tau \rho|, |1 - \tau \beta|\} \in (0, 1)$
- In particular, the minimum is achieved at $\tau^* = \frac{2}{2 + \beta}$ and $\omega(\tau^*) = \frac{\beta \rho}{\beta + \beta}$

$$\widehat{\boldsymbol{x}} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathcal{H}} \Big\{ f(\boldsymbol{x}) = f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) \Big\}$$

Objective: Let $f_1 \colon \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$

Theorem [Briceno-Arias & Pustelnik, 2005]

Let $(x^{[k]})_{k\in\mathbb{N}}$ be a sequence generated by the FB algorithm.

- Suppose that f_1 is ρ -strongly convex, and $\tau \in (0, 2\beta^{-1})$. Then $\mathfrak T$ is $\omega(\tau)$ -Lipschitz continuous with $\omega(\tau) := \max \big\{ |1 \tau \rho|, |1 \tau \beta| \big\} \in (0, 1)$
 - In particular, the minimum is achieved at $\tau^*=\frac{2}{\rho+\beta}$ and $\omega(\tau^*)=\frac{\beta-\rho}{\beta+\rho}$
 - Suppose that f_2 is ρ -strongly convex , and $\tau \in (0, 2\beta^{-1})$. Then $\mathfrak T$ is $\omega(\tau)$ -Lipschitz continuous with $\omega(\tau) := \frac{1}{1+\tau\rho} \in (0,1)$

In particular, the minimum is achieved at $\tau^* = \frac{2}{\beta}$ and $\omega(\tau^*) = \frac{\beta}{\beta+2a}$

$$\widehat{m{x}} \in \operatorname{Argmin}_{m{x} \in \mathcal{H}} \Big\{ f(m{x}) = f_1(m{x}) + f_2(m{x}) \Big\}$$

Objective: Let $f_1 \colon \mathcal{H} \to \mathbb{R}$ a convex, proper and β -Lipschitz differentiable function and $f_2 \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\mathfrak{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$

- Convergence may be slow in practice...
 - Use Nesterov acceleration (inertia/momentum)
 - Use second order information (preconditioning)
 - Use multilevel strategy
- What if $prox_{\gamma_h f_2}$ does not have a closed form?
 - Use sub-iterations (e.g. dual FB algorithm)
 - Use more advanced methods (e.g. primal-dual algorithms)

ACCELERATION VIA INERTIA

Duality

Goal: Inertia aims to use information from the **previous iterate(s)** $(x^{[k']})_{k' < k}$

Motivation

Primal algorithms

QUESTION: How to choose $\widetilde{\mathfrak{T}}_k$?

$$(\forall k \in \mathbb{N}) \quad \boldsymbol{x}^{[k+1]} = \mathfrak{T}_k(\boldsymbol{x}^{[k]}) \text{ where } \mathfrak{T}_k = \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

For FB we have

Primal-dual methods

Conclusion

14/41

Introducing inertia would lead to $(\forall k \in \mathbb{N}) \quad \boldsymbol{x}^{[k+1]} = \widetilde{\mathfrak{T}}_k(\boldsymbol{x}^{[1]}, \dots, \boldsymbol{x}^{[k]})$

REMARK: In general $\widetilde{\mathfrak{T}}_k$ only depends on $(x^{[k]}, x^{[k-1]})$ to avoid memory issues

Acceleration via inertia

to build the next iterate $x^{[k+1]}$.

Particular case: Inertia for GD algorithm

Let $f_2 \equiv 0$. In this case $\operatorname{prox}_{f_2} = \operatorname{Id}$.

The path taken by the iterates $(x^{[k]})_{k\in\mathbb{N}}$ is determined by the opposite of the gradient direction:

$$(\forall k \in \mathbb{N}) \quad \boldsymbol{x}^{[k+1]} = \boldsymbol{x}^{[k]} - \tau_k \nabla f_1(\boldsymbol{x}^{[k]})$$

Acceleration: Nesterov-type accelerated GD algorithm [Nesterov, 1983]

$$(orall k \in \mathbb{N})$$
 $egin{aligned} oldsymbol{x}^{[k+1]} &= oldsymbol{y}^{[k]} - au
abla f_1(oldsymbol{y}^{[k]}) & ext{with } au \in (0, 1/eta] \ oldsymbol{y}_{k+1} &= oldsymbol{x}^{[k+1]} + lpha_{oldsymbol{k}}(oldsymbol{x}^{[k+1]} - oldsymbol{x}^{[k]}) \end{aligned}$

Particular case: Inertia for GD algorithm

Let $f_2 \equiv 0$. In this case $\operatorname{prox}_{f_2} = \operatorname{Id}$.

The path taken by the iterates $(x^{[k]})_{k\in\mathbb{N}}$ is determined by the opposite of the gradient direction:

$$(\forall k \in \mathbb{N}) \quad \boldsymbol{x}^{[k+1]} = \boldsymbol{x}^{[k]} - \tau_k \nabla f_1(\boldsymbol{x}^{[k]})$$

Acceleration: Nesterov-type accelerated GD algorithm [Nesterov, 1983]

$$egin{aligned} (orall k \in \mathbb{N}) & oldsymbol{x}^{[k+1]} = oldsymbol{y}^{[k]} - au
abla f_1(oldsymbol{y}^{[k]}) & ext{with } au \in (0, 1/eta] \ oldsymbol{y}_{k+1} = oldsymbol{x}^{[k+1]} + lpha_{oldsymbol{k}}(oldsymbol{x}^{[k+1]} - oldsymbol{x}^{[k]}) \end{aligned}$$

- Each iteration takes nearly the same computational cost as GD
- **not** a *descent* method (i.e. we may not have $f_1(x^{[k+1]}) < f_1(x^{[k]})$)

Inertial FB

► [Beck & Teboulle, 2009]
Adopt the inertia (momentum) strategy proposed by Nesterov

$$\alpha_k = \frac{\theta_k - 1}{\theta_{k+1}}$$
 with $\theta_{k+1} = \frac{1 + \sqrt{1 + 4\theta_k^2}}{2}, \theta_1 = 0$

Primal algorithms

Motivation

Let
$$(x^{[k]})_{k\in\mathbb{N}}$$
 be generated by FB iterations with $au\in(0,eta^{-1}].$

$$(f(\pmb{x}^{[k]}))_{k\in\mathbb{N}}$$
 converges to $f(\widehat{\pmb{x}})$ at the rate $O(1/k)$:
$$f(\pmb{x}^{[k]}) - f(\widehat{\pmb{x}}) \leq \frac{\beta}{2k} \|\pmb{x}^{[0]} - \widehat{\pmb{x}}\|^2$$

Let
$$(oldsymbol{x}^{[k]})_{k\in\mathbb{N}}$$
 be generated by Inertial FB .

$$(f(x^{[k]}))_{k\in\mathbb{N}}$$
 converges to $f(\widehat{x})$ at the rate

$$(f(x^{[k]}))_{k\in\mathbb{N}}$$
 converges to $f(\widehat{x})$ at the rate

$$(f({m x}^{[k]}))_{k\in\mathbb{N}}$$
 converges to $f(\widehat{m x})$ at the rate

 $(f(\boldsymbol{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\boldsymbol{x}})$ at the rate $O(1/k^2)$:

) at the rate
$$O(1/k^2)$$
: $f(m{x}^{[k]}) - f(\widehat{m{x}}) \leq rac{2eta}{(k+1)^2} \|m{x}^{[0]} - \widehat{m{x}}\|^2$

Duality

Primal-dual methods

Conclusion

17/41

Convergence rate for Inertial FB

Let
$$(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$$
 be generated by FB iterations with $\tau\in(0,\beta^{-1}]$. $(f(\boldsymbol{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\boldsymbol{x}})$ at the rate $O(1/k)$:
$$f(\boldsymbol{x}^{[k]}) - f(\widehat{\boldsymbol{x}}) \leq \frac{\beta}{2k} \|\boldsymbol{x}^{[0]} - \widehat{\boldsymbol{x}}\|^2$$

Let
$$(oldsymbol{x}^{[k]})_{k\in\mathbb{N}}$$
 be generated by Inertial FB .

 $(f(\boldsymbol{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\boldsymbol{x}})$ at the rate $O(1/k^2)$: $f(\boldsymbol{x}^{[k]}) - f(\widehat{\boldsymbol{x}}) \leq \frac{2\beta}{(k+1)^2} \|\boldsymbol{x}^{[0]} - \widehat{\boldsymbol{x}}\|^2$

- (Almost) same computational complexity per iteration as FB
- Issue : Does the sequence $(x^{[k]})_{k\in\mathbb{N}}$ converge?

Let $(x^{[k]})_{k\in\mathbb{N}}$ be generated by FB iterations with $\tau\in(0,\beta^{-1}]$.

$$(f(\boldsymbol{x}^{[k]}))_{k\in\mathbb{N}}$$
 converges to $f(\widehat{\boldsymbol{x}})$ at the rate $O(1/k)$:
$$f(\boldsymbol{x}^{[k]}) - f(\widehat{\boldsymbol{x}}) \leq \frac{\beta}{2k} \|\boldsymbol{x}^{[0]} - \widehat{\boldsymbol{x}}\|^2$$

Let
$$(oldsymbol{x}^{[k]})_{k\in\mathbb{N}}$$
 be generated by $oldsymbol{\mathsf{Inertial}}$ FB .

 $(f(\boldsymbol{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\boldsymbol{x}})$ at the rate $O(1/k^2)$:

$$f(\boldsymbol{x}^{[k]}) - f(\widehat{\boldsymbol{x}}) \le \frac{2\beta}{(k+1)^2} \|\boldsymbol{x}^{[0]} - \widehat{\boldsymbol{x}}\|^2$$

Let $(x^{[k]})_{k\in\mathbb{N}}$ be generated by Inertial FB with Chambolle-Dossal rule $\alpha_k = \frac{\theta_k - 1}{\theta_{k+1}}$ with $\theta_{k+1} = \left(\frac{k+a}{a}\right)^d$ with $d \in (0,1]$ and $a > \max\{1, (2d)^{1/d}\}$ Then the sequence $(x^{[k]})_{k\in\mathbb{N}}$ converges weakly to a minimiser of f.

Duality

[Komodakis & Pesquet, 2015]

Duality

Primal-dual methods

Conclusion

19/41

Minimization problem

Primal algorithms

Motivation

$$\widehat{\boldsymbol{x}} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathcal{H}} f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x})$$

- $f_1: \mathbb{R}^N \to \mathbb{R}$ is convex and β -Lipschitz differentiable
- $ightharpoonup f_2 \in \Gamma_0(\mathcal{H})$

Acceleration via inertia

▶ $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$: space of linear continuous operators

Use FB algorithm?

How to compute $\operatorname{prox}_{\tau(f_2+g\circ \mathbf{W})}$?

➤ Use primal-dual methods

Conjugate function

The conjugate of a function $f \colon \mathcal{H} \to]-\infty, +\infty]$ is the **convex** function f^* defined as

$$\begin{array}{cccc} f^* \colon & \mathcal{H} & \to & [-\infty, +\infty] \\ & \boldsymbol{u} & \mapsto & \sup_{\boldsymbol{x} \in \mathcal{H}} \langle \boldsymbol{x} \mid \boldsymbol{u} \rangle - f(\boldsymbol{x}) \end{array}$$

Graphical illustration: $f^*(u)$ is the supremum of the signed vertical distance between the graph of f and that of the linear functional $\langle \cdot \mid u \rangle$

Conjugate function

The conjugate of a function $f \colon \mathcal{H} \to]-\infty, +\infty]$ is the **convex** function f^* defined as

$$\begin{array}{cccc} f^* \colon & \mathcal{H} & \to & [-\infty, +\infty] \\ & \boldsymbol{u} & \mapsto & \sup_{\boldsymbol{x} \in \mathcal{H}} \langle \boldsymbol{x} \mid \boldsymbol{u} \rangle - f(\boldsymbol{x}) \end{array}$$

Example :

$$f = \frac{1}{2} \|\cdot\|^2 \Rightarrow f^* = \frac{1}{2} \|\cdot\|^2$$
.

Conjugate function

Motivation

The conjugate of a function $f\colon \mathcal{H} \to]-\infty, +\infty]$ is the **convex** function f^* defined as

$$f^* \colon \quad \mathcal{H} \quad \to \quad [-\infty, +\infty] \\ \quad \quad \boldsymbol{u} \quad \mapsto \quad \sup_{\boldsymbol{x} \in \mathcal{H}} \langle \boldsymbol{x} \mid \boldsymbol{u} \rangle - f(\boldsymbol{x})$$

Moreau-Fenchel theorem

Let \mathcal{H} be a Hilbert space and $f \colon \mathcal{H} \to (-\infty, +\infty]$ be a proper function.

$$f$$
 is l.s.c. and convex $\Leftrightarrow f^{**} = f$.

In general, f^{**} is the lower semi-continuous convex enveloppe of f.

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

1.
$$\left(orall (oldsymbol{x}, oldsymbol{u}) \in \mathcal{H}^2
ight) \qquad f(oldsymbol{x}) + f^*(oldsymbol{u}) \geq \left\langle oldsymbol{x} \mid oldsymbol{u}
ight
angle$$

2.
$$(\forall (\boldsymbol{x}, \boldsymbol{u}) \in \mathcal{H}^2)$$
 $\boldsymbol{u} \in \partial f(\boldsymbol{x}) \Leftrightarrow f(\boldsymbol{x}) + f^*(\boldsymbol{u}) = \langle \boldsymbol{x} \mid \boldsymbol{u} \rangle.$

If
$$f \in \Gamma_0(\mathcal{H})$$
, then

$$ig(orall (oldsymbol{x},oldsymbol{u})\in \partial f(oldsymbol{x}) \ \Leftrightarrow \ oldsymbol{x}\in \partial f^*(oldsymbol{u}).$$

Equivalently, $\partial f^* = (\partial f)^{-1}$.

Conjugate: Moreau decomposition

Moreau decomposition formula: Let $\mathcal H$ be a Hilbert space, $f\in\Gamma_0(\mathcal H)$ and $\gamma>0.$

$$(\forall x \in \mathcal{H})$$
 $\operatorname{prox}_{\gamma f^*}(x) = x - \gamma \operatorname{prox}_{\gamma^{-1} f}(\gamma^{-1} x).$

Conjugate: Moreau decomposition

Moreau decomposition formula: Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma > 0$. $(\forall \boldsymbol{x} \in \mathcal{H}) \qquad \operatorname{prox}_{\gamma f^*}(\boldsymbol{x}) = \boldsymbol{x} - \gamma \operatorname{prox}_{\gamma^{-1} f}(\gamma^{-1} \boldsymbol{x}).$

Example: If
$$C$$
 is a nonempty closed convex set of \mathcal{H} , its indicator function is

$$(orall oldsymbol{x} \in \mathcal{H}) \quad \iota_C(oldsymbol{x}) = egin{cases} 0 & ext{if } oldsymbol{x} \in C \ +\infty & ext{otherwise}. \end{cases}$$

The conjugate of ι_C is the support function of C: $(\forall \boldsymbol{u} \in \mathcal{H}) \quad \iota_C^*(\boldsymbol{u}) = \sup_{\boldsymbol{x} \in \mathcal{H}} \langle \boldsymbol{u} \mid \boldsymbol{x} \rangle$ and $\operatorname{prox}_{\iota_C^*} = \operatorname{Id} - \operatorname{proj}_C$.

Special case:
$$\mathcal{H} = \mathbb{R}^N$$
, $C = [-\delta, \delta]^N$ with $\delta > 0$, $\iota_C^* = \delta \| \cdot \|_1$
 $\Rightarrow \operatorname{prox}_{\iota_C^*} = \operatorname{Id} - \operatorname{proj}_{[-\delta, \delta]^N}$: soft-thresholding with threshold δ

Primal problem

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces.

Let $f: \mathcal{H} \to (-\infty, +\infty]$, $g: \mathcal{G} \to (-\infty, +\infty]$. Let $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

We want to

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}).$$

Dual problem

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let $f: \mathcal{H} \to (-\infty, +\infty]$, $g: \mathcal{G} \to (-\infty, +\infty]$. Let $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

We want to

$$\underset{\boldsymbol{u} \in \mathcal{C}}{\operatorname{minimize}} f^*(-\mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u}).$$

Weak duality

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces. Let f be a proper function from $\mathcal H$ to $(-\infty,+\infty]$, g be a proper function from $\mathcal G$ to $(-\infty,+\infty]$, and $\mathbf W\in\mathcal B(\mathcal H,\mathcal G)$. Let

$$\mu = \inf_{\boldsymbol{x} \in \mathcal{H}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}) \quad \text{and} \quad \mu^* = \inf_{\boldsymbol{u} \in \mathcal{G}} f^*(-\mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u}).$$

We have $\mu \geq -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is called the duality gap.

Weak duality

Motivation

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces. Let f be a proper function from $\mathcal H$ to $(-\infty,+\infty]$, g be a proper function from $\mathcal G$ to $(-\infty,+\infty]$, and $\mathbf W\in\mathcal B(\mathcal H,\mathcal G)$. Let

$$\mu = \inf_{\boldsymbol{x} \in \mathcal{H}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x})$$
 and $\mu^* = \inf_{\boldsymbol{u} \in \mathcal{G}} f^*(-\mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u}).$

We have $\mu \geq -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is called the **duality gap**.

Proof: According to Fenchel-Young inequality.

$$f(x) + g(\mathbf{W}x) + f^*(-\mathbf{W}^*u) + g^*(u) > \langle x \mid -\mathbf{W}^*u \rangle + \langle \mathbf{W}x \mid u \rangle = 0.$$

Strong duality

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. If $\operatorname{int}(\operatorname{dom} g) \cap \mathbf{W}(\operatorname{dom} f) \neq \emptyset$ or $\operatorname{dom} g \cap \operatorname{int} \big(\mathbf{W}(\operatorname{dom} f)\big) \neq \emptyset$, then

$$\mu = \inf_{\boldsymbol{x} \in \mathcal{H}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}) = -\min_{\boldsymbol{u} \in \mathcal{G}} f^*(-\mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u}) = -\mu^*.$$

Duality theorem (2)

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces.

Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

▶ If there exists $(\widehat{x}, \widehat{u}) \in \mathcal{H} \times \mathcal{G}$ such that $-\mathbf{W}^* \widehat{u} \in \partial f(\widehat{x})$ and $\mathbf{W} \widehat{x} \in \partial g^*(\widehat{u})$, then \widehat{x} (resp. \widehat{u}) is a solution to the primal (resp. dual) problem.

If $(\widehat{x}, \widehat{u}) \in \mathcal{H} \times \mathcal{G}$ is such that $-\mathbf{W}^* \widehat{u} \in \partial f(\widehat{x})$ and $\mathbf{W} \widehat{x} \in \partial g^*(\widehat{u})$, then $(\widehat{x}, \widehat{u})$ is called a Kuhn-Tucker point.

FORWARD-BACKWARD ITERATIONS IN THE DUAL

Dual FB algorithm

Let $z \in \mathcal{H}$, $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Primal problem: $\widehat{x} = \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) + \frac{1}{2} ||x - z||^2 + g(\mathbf{W}x)$

Dual problem: $\widehat{\boldsymbol{u}} \in \operatorname{Argmin} \ \widetilde{f^*}(\boldsymbol{z} - \mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u})$ $oldsymbol{u} \in \mathbb{R}^M$

Dual FB algorithm

Let $z \in \mathcal{H}$, $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Primal problem: $\widehat{x} = \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) + \frac{1}{2} ||x - z||^2 + g(\mathbf{W}x)$

Dual problem: $\widehat{u} \in \text{Argmin } \widetilde{f}^*(z - \mathbf{W}^*u) + g^*(u)$ $u \in \mathbb{R}^M$

- $\widetilde{f^*}$ is the Moreau enveloppe of f^*
- $\widetilde{f^*}$ is differentiable and $\nabla \widetilde{f^*} = \operatorname{Id} \operatorname{prox}_{f^*} = \operatorname{prox}_f$ 1-Lipschitz continuous
- Use FB on the dual problem!

Duality

Primal-dual methods

Conclusion

29/41

Acceleration via inertia

Dual problem:
$$\widehat{\boldsymbol{u}} \in \operatorname{Argmin}_{\boldsymbol{u} \in \mathbb{R}^M} \ \widetilde{f^*}(\boldsymbol{z} - \mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u})$$

Choose
$$m{u}_0 \in \mathbb{R}^M$$
 and $au \in (0,2/\|\mathbf{W}\|^2)$.
For $k=0,1,\ldots$

$$egin{aligned} egin{aligned} oldsymbol{x}^{[k]} &= \operatorname{prox}_f \Big(oldsymbol{z} - \mathbf{W}^* oldsymbol{u}^{[k]} \Big) \ oldsymbol{u}^{[k+1]} &= \operatorname{prox}_{ au g^*} \Big(oldsymbol{u}^{[k]} + au \mathbf{W} oldsymbol{x}^{[k]} \Big) \end{aligned}$$

Motivation

Primal algorithms

Dual FB algorithm

The sequence $(u^{[k]})_{k\in\mathbb{N}}$ converges weakly to a solution to the dual problem \widehat{u} .

The sequence $(x^{[k]})_{k\in\mathbb{N}}$ converges strongly to a solution to the primal problem $\hat{x} = \operatorname{prox}_f(z - \mathbf{W}^* \hat{u})$.

Conclusion

30/41

ADMM

Augmented Lagrangian method

ADMM algorithm (Alternating-direction method of multipliers)

$$\Rightarrow$$
 Lagrangian interpretation

$$\underset{\boldsymbol{x} \in \mathcal{H}}{\text{minimize}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}) \quad \Leftrightarrow \quad \underset{\boldsymbol{x} \in \mathcal{H}, \boldsymbol{u} \in \mathcal{G}}{\text{minimize}} f(\boldsymbol{x}) + g(\boldsymbol{u})$$

$$\bullet \ \, \mathsf{Lagrange} \ \, \mathsf{function} : \, \mathcal{L}(\boldsymbol{x},\boldsymbol{u},\boldsymbol{v}) = f(\boldsymbol{x}) + g(\boldsymbol{u}) + \langle \boldsymbol{v} \mid \mathbf{W}\boldsymbol{x} - \boldsymbol{u} \rangle$$

 $\Rightarrow v \in \mathcal{G}$ is the Lagrange multiplier.

Augmented Lagrangian method

ADMM algorithm (*Alternating-direction method of multipliers*) ⇒ Lagrangian interpretation

$$\underset{\boldsymbol{x} \in \mathcal{H}}{\text{minimize}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}) \quad \Leftrightarrow \quad \underset{\boldsymbol{x} \in \mathcal{H}, \boldsymbol{u} \in \mathcal{G}}{\text{minimize}} f(\boldsymbol{x}) + g(\boldsymbol{u})$$

- Lagrange function : $\mathcal{L}(x, u, v) = f(x) + g(u) + \langle v \mid \mathbf{W}x u \rangle$ $\Rightarrow v \in \mathcal{G}$ is the Lagrange multiplier.
- ullet Idea : iterations for finding a saddle point $(\widehat{m{x}},\widehat{m{u}},\widehat{m{v}})$:

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} \boldsymbol{x}^{[k]} \in \operatorname{Argmin} \ \mathcal{L}(\cdot, \boldsymbol{u}^{[k]}, \boldsymbol{v}^{[k]}) \\ \\ \boldsymbol{u}^{[k+1]} \in \operatorname{Argmin} \ \mathcal{L}(\boldsymbol{x}^{[k]}, \cdot, \boldsymbol{v}^{[k]}) \\ \\ \boldsymbol{v}^{[k+1]} \text{ such that } \mathcal{L}(\boldsymbol{x}^{[k]}, \boldsymbol{u}^{[k+1]}, \boldsymbol{v}^{[k+1]}) \geq \mathcal{L}(\boldsymbol{x}^{[k]}, \boldsymbol{u}^{[k+1]}, \boldsymbol{v}^{[k]}). \end{cases}$$

But convergence not guaranteed in general!

Augmented Lagrangian method

ADMM algorithm (*Alternating-direction method of multipliers*) ⇒ **Lagrangian interpretation**

$$\underset{\boldsymbol{x} \in \mathcal{H}}{\text{minimize}} f(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x}) \quad \Leftrightarrow \quad \underset{\boldsymbol{x} \in \mathcal{H}, \boldsymbol{u} \in \mathcal{G}}{\text{minimize}} f(\boldsymbol{x}) + g(\boldsymbol{u})$$

- Lagrange function : $\mathcal{L}(x, u, v) = f(x) + g(u) + \langle v \mid \mathbf{W}x u \rangle$ $\Rightarrow v \in \mathcal{G}$ is the Lagrange multiplier.
- Solution : introduce an Augmented Lagrange function:

$$\widetilde{\mathcal{L}}(x, u, w) = f(x) + g(u) + \gamma \langle w \mid \mathbf{W}x - u \rangle + \frac{\gamma}{2} \|\mathbf{W}x - u\|^2$$

 \Rightarrow The Lagrange multiplier is $v = \gamma w$ with $\gamma > 0$.

32/41

Alternating-direction method of multipliers

Algorithm for finding a saddle point:

$$(\forall k \in \mathbb{N}) \qquad \begin{cases} \boldsymbol{x}^{[k]} \in \mathop{\mathrm{Argmin}}_{\boldsymbol{x} \in \mathcal{H}} \quad \widetilde{\mathcal{L}}(\boldsymbol{x}, \boldsymbol{y}^{[k]}, \boldsymbol{w}^{[k]}) \\ \boldsymbol{y}^{[k+1]} \in \mathop{\mathrm{Argmin}}_{\boldsymbol{y} \in \mathcal{G}} \quad \widetilde{\mathcal{L}}(\boldsymbol{x}^{[k]}, \boldsymbol{y}, \boldsymbol{w}^{[k]}) \\ \boldsymbol{w}^{[k+1]} \text{ such that } \widetilde{\mathcal{L}}(\boldsymbol{x}^{[k]}, \boldsymbol{y}^{[k+1]}, \boldsymbol{w}^{[k+1]}) \geq \widetilde{\mathcal{L}}(\boldsymbol{x}^{[k]}, \boldsymbol{y}^{[k+1]}, \boldsymbol{w}^{[k]}). \end{cases}$$

By performing a gradient ascent on the Lagrange multiplier.

$$(\forall k \in \mathbb{N}) \qquad \begin{cases} \boldsymbol{x}^{[k]} \in \operatorname{Argmin} \quad f(\boldsymbol{x}) + \gamma \left\langle \boldsymbol{w}^{[k]} \mid \mathbf{W} \boldsymbol{x} - \boldsymbol{y}^{[k]} \right\rangle + \frac{\gamma}{2} \|\mathbf{W} \boldsymbol{x} - \boldsymbol{y}^{[k]}\|^{2} \\ \boldsymbol{y}^{[k+1]} \in \operatorname{Argmin} \quad g(\boldsymbol{y}) + \gamma \left\langle \boldsymbol{w}^{[k]} \mid \mathbf{W} \boldsymbol{x}^{[k]} - \boldsymbol{y} \right\rangle + \frac{\gamma}{2} \|\mathbf{W} \boldsymbol{x}^{[k]} - \boldsymbol{y}\|^{2} \\ \boldsymbol{w}^{[k+1]} = \boldsymbol{w}^{[k]} + \frac{1}{\gamma} \nabla_{\boldsymbol{w}} \widetilde{\mathcal{L}}(\boldsymbol{x}^{[k]}, \boldsymbol{y}^{[k+1]}, \boldsymbol{w}^{[k]}) \end{cases} \\ \Leftrightarrow \quad (\forall k \in \mathbb{N}) \qquad \begin{cases} \boldsymbol{x}^{[k]} \in \operatorname{Argmin} \quad \frac{1}{2} \left\| \mathbf{W} \boldsymbol{x} - \boldsymbol{y}^{[k]} + \boldsymbol{w}^{[k]} \right\|^{2} + \frac{1}{\gamma} f(\boldsymbol{x}) \\ \boldsymbol{y}^{[k+1]} = \operatorname{prox}_{\frac{g}{\gamma}} \left(\boldsymbol{w}^{[k]} + \mathbf{W} \boldsymbol{x}^{[k]} \right) \\ \boldsymbol{w}^{[k+1]} = \boldsymbol{w}^{[k]} + \mathbf{W} \boldsymbol{x}^{[k]} - \boldsymbol{y}^{[k+1]}. \end{cases}$$

Augmented Lagrange method

ADMM algorithm (Alternating-direction method of multipliers)

Let
$$f \in \Gamma_0(\mathcal{H})$$
 et $g \in \Gamma_0(\mathcal{G})$. Let $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ such that $\mathbf{W}^*\mathbf{W}$ is an isomorphism and $\gamma > 0$.

$$\left\{egin{aligned} oldsymbol{x}^{[k]} \in & rgmin_{oldsymbol{x} \in \mathcal{H}} rac{1}{2} \left\| oldsymbol{W} oldsymbol{x} - oldsymbol{y}^{[k]} + oldsymbol{w}^{[k]}
ight\|^2 + rac{1}{\gamma} f(oldsymbol{x}) \ oldsymbol{s}^{[k]} = oldsymbol{W} oldsymbol{x}^{[k]} \ oldsymbol{y}^{[k+1]} = & \operatorname{prox}_{rac{g}{\gamma}} \left(oldsymbol{w}^{[k]} + oldsymbol{s}^{[k]}
ight) \ oldsymbol{w}^{[k+1]} = oldsymbol{w}^{[k]} + oldsymbol{s}^{[k]} - oldsymbol{y}^{[k+1]}. \end{aligned}$$

Augmented Lagrange method

ADMM algorithm (Alternating-direction method of multipliers)

Let $f \in \Gamma_0(\mathcal{H})$ et $g \in \Gamma_0(\mathcal{G})$. Let $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ such that $\mathbf{W}^*\mathbf{W}$ is an isomorphism and $\gamma > 0$.

Let

$$\left\{egin{aligned} oldsymbol{x}^{[k]} \in & \operatorname{Argmin}_{oldsymbol{x} \in \mathcal{H}} & rac{1}{2} \left\| oldsymbol{W} oldsymbol{x} - oldsymbol{y}^{[k]} + oldsymbol{w}^{[k]}
ight\|^2 + rac{1}{\gamma} f(oldsymbol{x}) \ oldsymbol{s}^{[k]} = oldsymbol{W} oldsymbol{x}^{[k]} \ oldsymbol{y}^{[k+1]} = & \operatorname{prox}_{rac{oldsymbol{x}}{\gamma}} \left(oldsymbol{w}^{[k]} + oldsymbol{s}^{[k]}
ight) \ oldsymbol{w}^{[k+1]} = oldsymbol{w}^{[k]} + oldsymbol{s}^{[k]} - oldsymbol{y}^{[k+1]}. \end{aligned}$$

We assume that $\operatorname{int}(\operatorname{dom} g) \cap \mathbf{W}(\operatorname{dom} f) \neq \emptyset$ or $\operatorname{dom} g \cap \operatorname{int}(\mathbf{W}(\operatorname{dom} f)) \neq \emptyset$ and that $\operatorname{Argmin}(f + g \circ \mathbf{W}) \neq \emptyset$.

- $\mathbf{x}^{[k]} \rightharpoonup \widehat{\mathbf{x}} \in \operatorname{Argmin} (f + g \circ \mathbf{W})$
- $ightharpoonup \gamma w^{[k]}
 ightharpoonup \widehat{v} \in \operatorname{Argmin} (f^* \circ (-\mathbf{W}^*) + g^*).$

Augmented Lagrange method

ADMM algorithm (Alternating-direction method of multipliers)

Let $f \in \Gamma_0(\mathcal{H})$ et $g \in \Gamma_0(\mathcal{G})$. Let $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ such that $\mathbf{W}^*\mathbf{W}$ is an isomorphism and $\gamma > 0$.

Let

$$\begin{cases} \boldsymbol{x}^{[k]} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathcal{H}} \ \frac{1}{2} \left\| \mathbf{W} \boldsymbol{x} - \boldsymbol{y}^{[k]} + \boldsymbol{w}^{[k]} \right\|^2 + \frac{1}{\gamma} f(\boldsymbol{x}) \\ \boldsymbol{s}^{[k]} = \mathbf{W} \boldsymbol{x}^{[k]} \\ \boldsymbol{y}^{[k+1]} = \operatorname{prox}_{\frac{g}{\gamma}} \left(\boldsymbol{w}^{[k]} + \boldsymbol{s}^{[k]} \right) \\ \boldsymbol{w}^{[k+1]} = \boldsymbol{w}^{[k]} + \boldsymbol{s}^{[k]} - \boldsymbol{y}^{[k+1]}. \end{cases}$$
 We assume that $\operatorname{int}(\operatorname{dom} g) \cap \mathbf{W}(\operatorname{dom} f) \neq \varnothing$ or $\operatorname{dom} g \cap \operatorname{int} \left(\mathbf{W}(\operatorname{dom} f) \right) \neq \varnothing$ and that $\operatorname{Argmin} \left(f + \mathbf{W} \right) = \mathbf{W} \cdot \mathbf{W} \cdot \mathbf{W}$

 $g \circ \mathbf{W}) \neq \varnothing$.

Primal-dual methods

Conclusion

34/41

Acceleration via inertia

Motivation

PRIMAL-DUAL FORWARD-BACKWARD ITERATIONS

Primal-dual problem formulation

Let
$$f_1 \in \Gamma_0(\mathcal{H})$$
, $f_2 \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Primal problem:
$$\hat{x} \in \text{Argmin } f_1(x) + f_2(x) + g(\mathbf{W}x)$$

Dual problem:
$$\widehat{\boldsymbol{u}} \in \operatorname{Argmin} (f_1 + f_2)^* (-\mathbf{W}^* \boldsymbol{u}) + g^* (\boldsymbol{u})$$

 $u \in \mathcal{G}$

Primal-dual problem formulation

Let
$$f_1 \in \Gamma_0(\mathcal{H})$$
, $f_2 \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Primal problem: $\widehat{x} \in \operatorname{Argmin}_{x \in \mathcal{H}} f_1(x) + f_2(x) + g(\mathbf{W}x)$

Dual problem: $\widehat{\boldsymbol{u}} \in \operatorname{Argmin}_{\boldsymbol{u} \in \mathcal{G}} (f_1 + f_2)^* (-\mathbf{W}^* \boldsymbol{u}) + g^* (\boldsymbol{u})$

Lagrangian-like formulation: Another formulation of the Primal-Dual problem is to combine them into the search of a saddle point of the function:

$$(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{u}}) \in \operatorname*{Argmin} \max_{\boldsymbol{u} \in \mathcal{G}} f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) - g^*(\boldsymbol{u}) + \langle \mathbf{W} \boldsymbol{x}, \boldsymbol{u} \rangle$$

Duality

Primal-dual methods

Conclusion

35/41

Let
$$f_1 \in \Gamma_0(\mathcal{H})$$
, $f_2 \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$ and $\mathbf{W} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Primal problem:
$$\hat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f_1(x) + f_2(x) + g(\mathbf{W}x)$$

Acceleration via inertia

Dual problem: $\hat{\boldsymbol{u}} \in \text{Argmin } (f_1 + f_2)^*(-\mathbf{W}^*\boldsymbol{u}) + g^*(\boldsymbol{u})$

Motivation

Primal algorithms

Lagrangian-like formulation: Another formulation of the Primal-Dual problem is to combine them into the search of a saddle point of the function:
$$(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{u}}) \in \mathop{\rm Argmin} \max_{\boldsymbol{x} \in \mathcal{H}} f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) - g^*(\boldsymbol{u}) + \langle \mathbf{W}\boldsymbol{x}, \boldsymbol{u} \rangle$$

Karush-Kuhn-Tucker conditions: Assume that
$$\operatorname{dom} g \cap \mathbf{W}(\operatorname{dom} f) \neq \emptyset$$
 and f_2 differentiable. $(\widehat{x}, \widehat{u}) \in \mathcal{H} \times \mathcal{G}$ is a solution to the Primal-Dual problem if and only if

$$egin{pmatrix} egin{pmatrix} oldsymbol{0} & oldsymbol{0} & egin{pmatrix} oldsymbol{0} & oldsymbol{0} &$$

$$\begin{cases} \mathsf{KKT:} \\ \mathbf{0} \in \partial f_1(\widehat{\boldsymbol{x}}) + \mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \\ \mathbf{0} \in -\mathbf{W} \widehat{\boldsymbol{x}} + \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{x}) + \mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \\ \mathbf{0} \in -\mathbf{W} \widehat{x} + \partial g^*(\widehat{u}) \end{cases}$$

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation: $\begin{cases} -\tau \big(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\boldsymbol{x}}) \\ \boldsymbol{\sigma} \mathbf{W} \widehat{\boldsymbol{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$

KKT: $\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{W}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{W} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$

Multiply by
$$\tau > 0$$
 the first equation and $\sigma > 0$ the second equation:
$$\begin{cases} -\tau (\mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x})) \in \tau \partial f_1(\widehat{x}) \\ \sigma \mathbf{W} \widehat{x} \in \sigma \partial g^*(\widehat{u}) \end{cases}$$

These equations are equivalent to

These equations are equivalent to
$$\begin{cases} \widehat{\boldsymbol{x}} - \tau \big(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \big) - \widehat{\boldsymbol{x}} \in \tau \partial f_1(\widehat{\boldsymbol{x}}) \\ \\ \widehat{\boldsymbol{u}} + \sigma \mathbf{W} \widehat{\boldsymbol{x}} - \widehat{\boldsymbol{u}} \in \sigma \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation:

KKT:

$$\begin{cases}
\mathbf{0} \in \partial f_1(\widehat{x}) + \mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \\
\mathbf{0} \in -\mathbf{W} \widehat{x} + \partial g^*(\widehat{u})
\end{cases}$$

 $\begin{cases} -\boldsymbol{\tau} \big(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\boldsymbol{x}}) \\ \boldsymbol{\sigma} \mathbf{W} \widehat{\boldsymbol{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$

These equations are equivalent to
$$\begin{cases} \widehat{\boldsymbol{x}} - \tau \big(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \big) - \widehat{\boldsymbol{x}} \in \tau \partial f_1(\widehat{\boldsymbol{x}}) \\ \widehat{\boldsymbol{u}} + \sigma \mathbf{W}(2\widehat{\boldsymbol{x}} - \widehat{\boldsymbol{x}}) - \widehat{\boldsymbol{u}} \in \sigma \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$

Duality

Primal-dual methods

Conclusion

36/41

Acceleration via inertia

From KKT to fixed-point equations...

KKT:

$$\begin{cases}
\mathbf{0} \in \partial f_1(\widehat{x}) + \mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \\
\mathbf{0} \in -\mathbf{W} \widehat{x} + \partial g^*(\widehat{u})
\end{cases}$$

Primal algorithms

Motivation

$$\begin{cases} -\tau (\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}})) \in \tau \partial f_1(\widehat{\boldsymbol{x}}) \\ \sigma \mathbf{W} \widehat{\boldsymbol{x}} \in \sigma \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$

These equations are equivalent to

These equations are equivalent to
$$\underbrace{\left\{ \underbrace{\widehat{x} - \tau \left(\mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \right)}_{\overline{x}} - \underbrace{\widehat{x}}_{\overline{p}} \in \tau \partial f(\underbrace{\widehat{x}}_{\overline{p}}) \right.}_{\overline{p}} \sim \operatorname{prox}_{\sigma g^*} \\ \underbrace{\left\{ \underbrace{\widehat{u} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x})}_{\overline{x}} - \underbrace{\widehat{u}}_{\overline{p}} \in \sigma \partial g^*(\underbrace{\widehat{u}}_{\overline{p}}) \right.}_{\overline{p}} \sim \operatorname{prox}_{\sigma g^*}$$

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation:

Prox characterisation:
$$\overline{x} - \overline{\mathbf{p}} \in \gamma \partial \psi(\overline{\mathbf{p}}) \Leftrightarrow \overline{\mathbf{p}} = \mathrm{prox}_{\gamma \psi}(\overline{x})$$

Primal-dual methods

Duality

Conclusion

36/41

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation:

Acceleration via inertia

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{x}) + \mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \\ \mathbf{0} \in -\mathbf{W} \widehat{x} + \partial g^*(\widehat{u}) \end{cases}$$

Primal algorithms

Motivation

KKT:

$$\begin{cases} -\tau \left(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}})\right) \in \tau \partial f_1(\widehat{\boldsymbol{x}}) \\ \sigma \mathbf{W} \widehat{\boldsymbol{x}} \in \sigma \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$
These equations are equivalent to
$$\begin{cases} \widehat{\boldsymbol{x}} - \tau \left(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}})\right) - \widehat{\boldsymbol{x}} \\ \widehat{\boldsymbol{y}} \end{cases} \in \tau \partial f(\widehat{\boldsymbol{x}}) \end{cases} \xrightarrow{\boldsymbol{v}} \operatorname{prox}_{\tau f_1}$$

$$\begin{cases}
\underbrace{\widehat{u} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x})}_{\overline{\mathbf{p}}} - \underbrace{\widehat{u}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\widehat{u}) & \leadsto \operatorname{prox}_{\sigma g^*} \\
\underbrace{\widehat{u} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x})}_{\overline{\mathbf{p}}} - \underbrace{\widehat{u}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\widehat{u}) & \leadsto \operatorname{prox}_{\sigma g^*} \\
\Leftrightarrow \begin{cases}
\widehat{x} = \operatorname{prox}_{\tau f_1} \left(\widehat{x} - \tau (\mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x})) \right) \\
\widehat{u} = \operatorname{prox}_{\sigma g^*} \left(\widehat{u} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x}) \right)
\end{cases}$$

Primal-dual methods

Duality

36/41

Conclusion

Acceleration via inertia

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{x}) + \mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \\ \mathbf{0} \in -\mathbf{W} \widehat{x} + \partial g^*(\widehat{u}) \end{cases}$$

Motivation

KKT:

Multiply by
$$\tau > 0$$
 the first equation and $\sigma > 0$ the second equation:
$$\begin{cases} -\tau (\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}})) \in \tau \partial f_1(\widehat{\boldsymbol{x}}) \\ \sigma \mathbf{W} \widehat{\boldsymbol{x}} \in \sigma \partial g^*(\widehat{\boldsymbol{u}}) \end{cases}$$

Primal algorithms

These equations are equivalent to
$$\begin{cases} \widehat{\underline{x}} - \tau \left(\mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \right) - \underbrace{\widehat{x}}_{\overline{\mathbf{p}}} \in \tau \partial f(\underbrace{\widehat{x}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\sigma g^*} \\ \widehat{\underline{u}} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x}) - \underbrace{\widehat{u}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\underbrace{\widehat{u}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\sigma g^*} \\ & \Leftrightarrow \begin{cases} \widehat{x} = \operatorname{prox}_{\tau f_1} \left(\widehat{x} - \tau \left(\mathbf{W}^* \widehat{u} + \nabla f_2(\widehat{x}) \right) \right) \\ \widehat{u} = \operatorname{prox}_{\sigma g^*} \left(\widehat{u} + \sigma \mathbf{W}(2\widehat{x} - \widehat{x}) \right) \end{cases} & \leadsto \textit{Fixed}$$

$$egin{aligned} igtriangledown f_2(\widehat{m{x}}) \end{pmatrix} &
ightharpoons Fixed-point equations \end{aligned}$$

Fixed-point algorithm

From the fixed-point equations:

$$\begin{cases} \widehat{\boldsymbol{x}} = \operatorname{prox}_{\tau f_1} \left(\widehat{\boldsymbol{x}} - \tau \left(\mathbf{W}^* \widehat{\boldsymbol{u}} + \nabla f_2(\widehat{\boldsymbol{x}}) \right) \right) \\ \widehat{\boldsymbol{u}} = \operatorname{prox}_{\sigma g^*} \left(\widehat{\boldsymbol{u}} + \sigma \mathbf{W} (2\widehat{\boldsymbol{x}} - \widehat{\boldsymbol{x}}) \right) \end{cases}$$

we derive a fixed-point algorithm:

```
For k = 0, 1, \dots
\begin{vmatrix} \boldsymbol{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \left( \boldsymbol{x}^{[k]} - \tau \left( \mathbf{W}^* \boldsymbol{u}^{[k]} + \nabla f_2(\boldsymbol{x}^{[k]}) \right) \right) \\ \boldsymbol{u}^{[k+1]} = \operatorname{prox}_{\sigma q^*} \left( \boldsymbol{u}^{[k]} + \sigma \mathbf{W} (2\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]}) \right) \end{vmatrix}
```

Remark:

Algorithm known as the Condat-Vũ algorithm

Acceleration via inertia

Primal problem:
$$\hat{x} \in \text{Argmin } f_1(x) + f_2(x) + g(\mathbf{W}x)$$

Duality

Primal-dual methods

Conclusion

38/41

Dual problem: $\widehat{\boldsymbol{u}} \in \operatorname{Argmin} (f_1 + f_2)^* (-\mathbf{W}^* \boldsymbol{u}) + g^* (\boldsymbol{u})$

Choose au>0 and $\sigma>0$ such that $\frac{1}{\tau}-\sigma\|\mathbf{W}\|^2>\frac{\beta}{2}$ with ∇f_2 β -Lipschitz gradient. For $k=0,1,\ldots$ $\left|\begin{array}{c} \boldsymbol{x}^{[k+1]}=\operatorname{prox}_{\tau f_1}\Big(\boldsymbol{x}^{[k]}-\tau\big(\nabla f_2(\boldsymbol{x}^{[k]})+\mathbf{W}^*\boldsymbol{u}^{[k]}\big)\Big)\\ \boldsymbol{u}^{[k+1]}=\operatorname{prox}_{\sigma g^*}\Big(\boldsymbol{u}^{[k]}+\sigma\mathbf{W}(2\boldsymbol{x}^{[k+1]}-\boldsymbol{x}^{[k]})\Big) \end{array}\right|$

Primal algorithms

Motivation

The sequence $(x^{[k]})_{k\in\mathbb{N}}$ converges weakly to a solution to the primal problem.

The sequence $(u^{[k]})_{k\in\mathbb{N}}$ converges weakly to a solution to the dual problem.

Particular cases

CONDAT-VŨ ALGORITHM: [Vũ, 2013][Condat, 2013]

```
PROBLEM: Find \hat{x} \in \operatorname{Argmin}_{x \in \mathcal{H}} f_1(x) + f_2(x) + g(\mathbf{W}x)
```

Choose $\tau > 0$ and $\sigma > 0$ such that $\frac{1}{\tau} - \sigma \|\mathbf{W}\|^2 > \frac{\beta}{2}$ with f_2 β -Lipschitz.

For
$$k=0,1,\ldots$$

$$egin{aligned} oldsymbol{x}^{[k+1]} &= \operatorname{prox}_{ au f_1} \left(oldsymbol{x}^{[k]} - au(
abla f_2(oldsymbol{x}^{[k]}) + oldsymbol{\mathbf{W}}^* oldsymbol{u}^{[k]}
ight) \ oldsymbol{u}^{[k+1]} &= \operatorname{prox}_{\sigma g^*} \left(oldsymbol{u}^{[k]} + \sigma oldsymbol{\mathbf{W}} (2 oldsymbol{x}^{[k+1]} - oldsymbol{x}^{[k]})
ight) \end{aligned}$$

Duality

Primal-dual methods

Conclusion

39/41

Motivation

CONDAT-VŨ ALGORITHM: [Vũ, 2013][Condat, 2013]

Primal algorithms

PROBLEM: Find
$$\hat{x} \in \operatorname{Argmin}_{x \in \mathcal{H}} f_1(x) + f_2(x) + g(\mathbf{W}x)$$

Choose
$$au>0$$
 and $\sigma>0$ such that $\frac{1}{\tau}-\sigma\|\mathbf{W}\|^2>\frac{\beta}{2}$ with f_2 β -Lipschitz. For $k=0,1,\ldots$
$$\left|\begin{array}{l} \boldsymbol{x}^{[k+1]}=\operatorname{prox}_{\tau f_1}\left(\boldsymbol{x}^{[k]}-\tau\big(\nabla f_2(\boldsymbol{x}^{[k]})+\mathbf{W}^*\boldsymbol{u}^{[k]}\big)\right)\\ \boldsymbol{u}^{[k+1]}=\operatorname{prox}_{\sigma g^*}\left(\boldsymbol{u}^{[k]}+\sigma\mathbf{W}(2\boldsymbol{x}^{[k+1]}-\boldsymbol{x}^{[k]})\right) \end{array}\right|$$

CHAMBOLLE-POCK (CP) ALGORITHM: $f_2 \equiv 0$ [Chambolle & Pock, 2011]

Acceleration via inertia

PROBLEM: Find
$$\widehat{\boldsymbol{x}} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathcal{H}} f_1(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x})$$

Choose $\tau > 0$ and $\sigma > 0$ such that $\sigma \tau \|\mathbf{W}\|^2 < 1$.

$$\left\{ \begin{array}{l} \mathsf{For}\ k=0,1,\dots \\ \boldsymbol{x}^{[k+1]} = \mathrm{prox}_{\tau f_1} \big(\boldsymbol{x}^{[k]} - \tau \mathbf{W}^* \boldsymbol{u}^{[k]}\big) \\ \boldsymbol{u}^{[k+1]} = \mathrm{prox}_{\boldsymbol{\tau} \boldsymbol{e}^*} \big(\boldsymbol{u}^{[k]} + \sigma \mathbf{W} (2\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]})\big) \end{array} \right.$$

Particular cases

CONDAT-VŨ ALGORITHM: [Vũ, 2013][Condat, 2013]

PROBLEM: Find
$$\hat{x} \in \operatorname{Argmin}_{x \in \mathcal{H}} f_1(x) + f_2(x) + g(\mathbf{W}x)$$

Choose $\tau > 0$ and $\sigma > 0$ such that $\frac{1}{\tau} - \sigma \|\mathbf{W}\|^2 > \frac{\beta}{2}$ with f_2 β -Lipschitz.

$$egin{aligned} oldsymbol{x}^{[k+1]} &= \operatorname{prox}_{ au f_1} \Big(oldsymbol{x}^{[k]} - au ig(
abla f_2(oldsymbol{x}^{[k]}) + oldsymbol{\mathbf{W}}^* oldsymbol{u}^{[k]} ig) \ oldsymbol{u}^{[k+1]} &= \operatorname{prox}_{\sigma g^*} \Big(oldsymbol{u}^{[k]} + \sigma oldsymbol{\mathbf{W}} (2 oldsymbol{x}^{[k+1]} - oldsymbol{x}^{[k]}) \Big) \end{aligned}$$

Douglas-Rachford (DR) algorithm: $f_2 \equiv 0$, $\mathbf{W} = \mathrm{Id}$ and $\tau = 1/\sigma$

PROBLEM: Find
$$\hat{x} \in \operatorname{Argmin}_{x \in \mathcal{H}} f_1(x) + g(x)$$

Choose $\sigma > 0$.
For $k = 0, 1, \dots$

$$egin{aligned} oldsymbol{x}^{[k+1]} &= \operatorname{prox}_{\sigma^{-1}f_1}ig(oldsymbol{s}_kig) \ oldsymbol{s}_{k+1} &= oldsymbol{s}_k - oldsymbol{x}^{[k+1]} - \operatorname{prox}_{\sigma^{-1}q}ig(2oldsymbol{x}^{[k+1]} - oldsymbol{s}_kig) \end{aligned}$$

CP algorithm and strong convexity

$$\widehat{\boldsymbol{x}} \in \operatorname{Argmin}_{\boldsymbol{x} \in \mathbb{R}^N} f_1(\boldsymbol{x}) + g(\mathbf{W}\boldsymbol{x})$$

CHAMBOLLE-POCK ALGORITHM: [Chambolle & Pock, 2011]

```
\begin{cases} \mathsf{Choose}\ \tau > 0 \ \mathsf{and}\ \sigma > 0 \ \mathsf{such\ that}\ \sigma\tau \|\mathbf{W}\|^2 < 1. \\ \mathsf{For}\ k = 0, 1, \dots \\ \mathbf{z}^{[k+1]} = \mathrm{prox}_{\tau f_1} \big( \boldsymbol{x}^{[k]} - \tau \mathbf{W}^* \boldsymbol{u}^{[k]} \big) \\ \mathbf{u}^{[k+1]} = \mathrm{prox}_{\sigma \sigma^*} \big( \boldsymbol{u}^{[k]} + \sigma \mathbf{W} (2\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]}) \big) \end{cases}
```

Accelerated version: $f_1 \rho$ -strongly convex [Chambolle & Pock, 2011]

```
\begin{cases} \mathsf{Choose} \ \tau_0 > 0 \ \mathsf{and} \ \sigma_0 > 0 \ \mathsf{such that} \ \sigma_0 \tau_0 \|\mathbf{W}\|^2 < 1. \\ \mathsf{For} \ k = 0, 1, \dots \\ \mathbf{x}^{[k+1]} = \mathsf{prox}_{\tau_k f_1} \big( \mathbf{x}^{[k]} - \tau_k \mathbf{W}^* \mathbf{u}^{[k]} \big) \\ \alpha_k = \big( 1 + 2\rho \tau_k \big)^{-1/2} \\ \tau_{k+1} = \alpha_k \tau_k \\ \sigma_k = \sigma_k \alpha_k^{-1/2} \\ \mathbf{y}^{[k+1]} = \mathbf{x}^{[k+1]} + \alpha_k \big( \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]} \big) \\ \mathbf{u}^{[k+1]} = \mathsf{prox}_{\sigma_{k+1} g^*} \big( \mathbf{u}^{[k]} + \sigma \mathbf{W} \mathbf{y}^{[k+1]} \big) \end{cases}
```

41/41

Optimization algorithms

Forward-Backward	$f_1 + f_2$	f_1 grad. Lipschitz	[Combettes,Wajs,2005]
		$\operatorname{prox}_{f_2}$	
ISTA	$f_1 + f_2$	f_1 grad. Lipschitz	[Daubechies et al, 2003]
		$f_2 = \lambda \ \cdot \ _1$	
Douglas-Rachford	$f_1 + f_2$	$\operatorname{prox}_{f_1}$	[Combettes,Pesquet, 2007]
		$\operatorname{prox}_{f_2}$	
PPXA	$\sum_i f_i$	$\operatorname{prox}_{f_i}$	[Combettes,Pesquet, 2008]
PPXA+	$\sum_i g_i \circ \mathbf{W}_i$	$\operatorname{prox}_{g_i}$	[Pesquet, Pustelnik, 2012]
	-	$(\sum_{i=1}^m \mathbf{W}_i^* \mathbf{W}_i)^{-1}$	
ADMM	$f + g \circ \mathbf{W}$	prox_f	[Eckstein, Yao, 2015]
		$(\mathbf{W}^*\mathbf{W})^{-1}$	
Chambolle-Pock	$f + g \circ \mathbf{W}$	prox_f	[Chambolle, Pock, 2011]
		prox_q	
Condat-Vũ	$f_1 + f_2 + g \circ \mathbf{W}$	prox_f	[Condat, 2013][Vũ, 2013]
		prox_g	
		f_2 grad. Lipschitz	