الف) آزمون فرض چند متغیره را تشکیل دهید.

اگر تعریف کنیم

بردار شامل میانگین های ۵ متغیر (P) برای گروه پرندگان زنده: μ_1

بردار شامل میانگین های ۵ متغیر (P) برای گروه پرندگان مرده: μ_2

پس آزمون فرض ما به صورت زیر تعریف میشود

 $\{H_0: \mu_1 = \mu_2 \}$ $\{H_1: \mu_1 \neq \mu_2\}$

ب) آیا میانگین اندازههای بدن گنجشکان زنده با گنجشکان مرده تفاوت دارد؟

> HotellingsT2(Lbird,Dbird)

Hotelling's two sample T2-test

data: Lbird and Dbird

T.2 = 0.89131, df1 = 5, df2 = 43, p-value = 0.4954

alternative hypothesis: true location difference is not equal to c(0,0,0,0,0)

طبق p-مقدار بالا میتوان نتیجه گرفت که فرض H_0 را می پذیریم یعنی بین میانگینهای دو گروه تفاوت معنا داری وجود ندارد یعنی میانگین اندازههای بدن گنجشکان زنده با گنجشکان مرده تفاوت معنا داری ندارد.

ج) برای هر متغیر، یک آزمون تک متغیره انجام دهید و نتایج را با بخش ب مقایسه کنید.

مقایسه میانگین متغیر x1 (طول کل بدن) پرندگان مرده و پرندگان زنده

> t.test(Lbird[,1],Dbird[,1])

Welch Two Sample t-test

data: Lbird[, 1] and Dbird[, 1]

t = -1.0155, df = 46.108, p-value = 0.3152

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.124040 1.028801 sample estimates: mean of x mean of y 157.3810 158.4286

همانطور که مشاهده می شود میانگین طول بدن پرندگان در دو گروه زنده و مرده تفاوت معناداری ندارند چون - مقدار عددی بزرگ است پس فرض H_0 مبنی بر عدم تفاوت را می پذیریم همچنین مشاهده می شود که میانگین طول بدن پرندگان زنده برابر ۱۵۷.۳ و میانگین طول بدن پرندگان مرده برابر ۱۵۸.۴ است.

```
مقایسه میانگین X2 (طول بال) دو گروه گنجشکهای زنده و مرده
> t.test(Lbird[,2],Dbird[,2])
            Welch Two Sample t-test
data: Lbird[, 2] and Dbird[, 2]
t = -0.47421, df = 46.987, p-value = 0.6375
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.243803 2.624755
sample estimates:
mean of x mean of y
240.0476 240.8571
                                                                      مقایسه میانگین X۳ (طول سر و نوک ) دو گروه گنجشکهای زنده و مرده
> t.test(Lbird[,3],Dbird[,3])
            Welch Two Sample t-test
data: Lbird[, 3] and Dbird[, 3]
t = -1.0328, df = 20.581, p-value = 0.3137
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.200880 1.415166
sample estimates:
mean of x mean of y
30.08571 31.47857
                                                                    مقایسه میانگین ۲ و طول استخوان بال ) دو گروه گنجشکهای زنده و مرده
> t.test(Lbird[,4],Dbird[,4])
            Welch Two Sample t-test
data: Lbird[, 4] and Dbird[, 4]
t = 0.34655, df = 45.948, p-value = 0.7305
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2576004 0.3647433
sample estimates:
mean of x mean of y
18.50000 18.44643
                                                                       مقایسه میانگین ۵ X (طول جناغ سیه) دو گروه گنجشکهای زنده و مرده
> t.test(Lbird[,5],Dbird[,5])
            Welch Two Sample t-test
data: Lbird[, 5] and Dbird[, 5]
t = -0.95083, df = 22.305, p-value = 0.3519
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.819826 1.046016
sample estimates:
mean of x mean of y
19.95238 20.83929
```

چون H_0 -مقدارهای بدست آمده در بالا اعداد بزرگی هستند پس تمام فرضهای H_0 مبنی بر عدم تفاوت بین میانگینهای یک متغیر در دو گروه زنده و مرده تفاوت معناداری ندارند.