

语法制导翻译方案SDT

▶ 语法制导翻译方案(SDT)是在产生式右部中嵌入了程序片段(称为语义动作)的CFG

〉例

```
D \rightarrow T \{ L.inh = T.type \} L
T \rightarrow int \{ T.type = int \}
T \rightarrow real \{ T.type = real \}
L \rightarrow \{ L_1.inh = L.inh \} L_1, id
...
```

语法制导翻译方案SDT

- ▶ 语法制导翻译方案(SDT)是在产生式右部中嵌入了程序片段(称为语义动作)的CFG
- ▶SDT可以看作是SDD的具体实施方案
- ▶本节主要关注如何使用SDT来实现两类重要的SDD, 因为在这两种情况下,SDT可在语法分析过程中实现
 - ▶基本文法可以使用LR分析技术,且SDD是S属性的
 - ▶基本文法可以使用LL分析技术,且SDD是L属性的

将S-SDD转换为SDT

 \triangleright 将一个S-SDD转换为SDT的方法:将每个语义动作 都放在产生式的最后

〉例

S-SDD

~ ~ ~ ~
语义规则
L.val = E.val
$E.val = E_1.val + T.val$
E.val = T.val
$T.val = T_1.val \times F.val$
T.val = F.val
F.val = E.val
F.val = digit.lexval

SDT

- (1) $L \rightarrow E$ n { L.val = E.val} (2) $E \rightarrow E_1 + T\{E.val = E_1.val + T.val\}$ (3) $E \rightarrow T$ { E.val = T.val} (4) $T \rightarrow T_1 * F$ { $T.val = T_1.val \times F.val$ } (5) $T \rightarrow F$ { T.val = F.val} (6) $F \rightarrow (E)$ { F.val = E.val}

 - (7) $F \rightarrow \text{digit} \{ F.val = \text{digit.lexval} \}$

S-属性定义的SDT实现

 \triangleright 如果一个S-SDD的基本文法可以使用LR分析技术, 那么它的SDT可以在LR语法分析过程中实现 d SLR自动机

〉例

ア・ション ア・シ	$E' \rightarrow \cdot E$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot F$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot d$ $T \rightarrow T * F$ $T \rightarrow T \rightarrow T * F$ $T \rightarrow T \rightarrow T * F$ $T \rightarrow T \rightarrow$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

扩展的LR语法分析栈

在分析栈中使用一个附加的域来存放综合属性值

状态	文法符号	综合属性
	- ' '	• • •

	S_{o}	\$	
	•••	•••	•••
	S_{m-2}	X	X.x
	S_{m-1}	Y	Y.y
top	S_m	Z	Z.z
	•••	•••	•••

- 产若支持多个属性
 - ▶使栈记录变得足够大
 - 产在栈记录中存放指针

将语义动作中的抽象定义式改写成具体可执行的栈操作

例:在自底向上语法分析栈中实现桌面计算器

产生式	语义动作	
$(1)E' \rightarrow E$	print(E.val)	{ print (stack[top].val);}
$(2)E \rightarrow E_1 + T$	$E.val = E_{I}.val + T.val$	{ stack[top-2].val = stack[top-2].val + stack[top].val ; top=top-2; }
$(3)E \rightarrow T$	E.val = T.val	cop cop =, ;
$(4)T \to T_1 * F$	$T.val = T_1.val \times F.val$	{ stack[top-2].val = stack[top-2].val × stack[top].val ; top=top-2; }
$(5)T \rightarrow F$	T.val = F.val	
$(6)F \to (E)$	F.val = E.val	{ stack[top-2].val = stack[top-1].val; top=top-2; }
$(7)F \rightarrow digit$	F.val = digit.lexval	

<u> 状态</u>	符号	<u> 属性</u>
0	\$	
5	d	3

状态	符号	属性
0	\$	-
3	F	3

<u>状态</u>	符号	属性
0	\$	1
2	T	3
7	*	_
5	d	5

<u> 状态</u>	符号	属性
0	\$	ı
2	T	15
7	*	_
10	F	5

状态	符号	属性
0	₩	_
2	T	15

<u> 状态</u>	符号	属性
0	\$\$	1
1	E	15
6	+	_
5	d	4

输入: 3*5+4 †††††

状态	符号	属性
0	\$\$	1
1	E	15
6	+	_
3	F	4

<u>状态</u>	符号	属性
0	\$	١
1	E	19
6	+	_
9	T	4

<u> 状态</u>	符号	属性
0	\$	_
1	E	19

将L-SDD转换为SDT

- ▶将L-SDD转换为SDT的规则
 - ▶ 将计算某个非终结符号A的继承属性的动作插入 到产生式右部中紧靠在A的本次出现之前的位置上
 - ▶ 将计算一个产生式左部符号的综合属性的动作放 置在这个产生式右部的最右端

消除直接左递归

$$A
ightarrow Aa \mid \beta(a \neq \varepsilon, \beta T \vee A T + \xi)$$
 $r = \beta a^*$ $\Rightarrow Aaa$ $\Rightarrow Aaaa$ $\Rightarrow Aaaaa$ $\Rightarrow Aaaaa$

例

>L-SDD

	产生式	语义规则
(1)	$T \rightarrow F'T'$	T'.inh = F.val
		T.val = T'.syn
(2)	$T' \rightarrow F'T_{I_{\bullet}}$	T_1' .inh = T' .inh \times F .val
	, and the second	$T'.syn = T_1'.syn$
(3)	$T' \rightarrow \varepsilon$	T'.syn = T' .inh
(4)	$F \rightarrow \text{digit}$	F.val = digit.lexval

>SDT

T → F { T'.inh = F.val } T' { T.val = T'.syn }
 T' → *F { T₁'.inh = T'.inh × F.val } T₁' { T'.syn = T₁'.syn }
 T' → ε { T'.syn = T'.inh }
 F → digit { F.val = digit.lexval }

L-属性定义的SDT实现

→如果一个L-SDD的基本文法可以使用LL分析技术,那么它的SDT可以在LL或LR语法分析过程中实现 →例

```
    T → F { T'.inh = F.val } T' { T.val = T'.syn }
    T' → *F { T<sub>1</sub>'.inh = T'.inh × F.val } T<sub>1</sub>' { T'.syn = T<sub>1</sub>'.syn }
    T' → ε { T'.syn = T'.inh }
    F → digit { F.val = digit.lexval }
```

```
SELECT (1)= { digit }

SELECT (2)= { * }

SELECT (3)= { $ }

SELECT (4)= { digit }
```

L-属性定义的SDT实现

- ▶如果一个L-SDD的基本文法可以使用LL分析技术, 那么它的SDT可以在LL或LR语法分析过程中实现
 - 产在非递归的预测分析过程中进行语义翻译
 - 产在递归的预测分析过程中进行语义翻译
 - ▶在LR分析过程中进行语义翻译

