k近邻算法实战鸢尾花分类

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_excel('iris.xlsx')
    df.head()
```

Out[2]:

	萼片长(cm)	萼片宽(cm)	花瓣长(cm)	花瓣宽(cm)	分类
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [6]: plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], color='
    r')
    plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], color='
    g')
    plt.scatter(X_train[y_train==2, 0], X_train[y_train==2, 1], color='
    b')
    plt.show()
```


In [7]: plt.scatter(X_train[y_train==0, 2], X_train[y_train==0, 3], color='
 r')
 plt.scatter(X_train[y_train==1, 2], X_train[y_train==1, 3], color='
 g')
 plt.scatter(X_train[y_train==2, 2], X_train[y_train==2, 3], color='
 b')
 plt.show()


```
In [8]: from ML.knn import kNN_classify
```

In [9]: predict_X = np.array([[5.1, 3.5, 1.4, 0.2], [5.9, 3. , 5.1, 1.8]])

In [10]: kNN_classify(X_train, y_train, predict_X)

Out[10]: [0.0, 2.0]