

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

Prof. Manoel Guilherme Moraes

Formado em matemática, com pós-graduação em Segurança da informação, Didática do Ensino superior, Mestrando em Astrofísica e física computacional e Mestrando em Educação.

Atua a mais de 15 anos com segurança da informação e tecnologia em grandes empresas do varejo, indústria e finanças.

professor@manoelmoraes.pro.br

https://bit.ly/3OMWXur

https://steamcommunity.com/id/tectoy

Apresentação da Turma!

- Nome
- Trabalho
- O que gosta de fazer?
- Objetivos com a BCC?
- O que acha que verá nessas aulas?

Vamos começar nossa Jornada!

Para Refletir!

Immanuel Kant

Science is organized Knowlegede. Wisdom is Organized life.

Ouse Saber! (Sapere aude)

Como será a avaliação?

	Valor	
Prova 1	30%	10 Questões (4 discursivas, 4 Multipla escol
Prova 2	30%	2 estilo Enade)
Projeto	20%	Definiremos a data de entrega após a 3 aula
Exercícios em aula	20%	Serão 7 listas

Nota final = Prova1 + Prova2 + Projeto + Exercícios

O que é ciência da computação?

*Computação distribuída *Comunicação *Redes *Internet: rede de redes *Aplicações

7. Redes

1. Computação

*Problemas *Algoritmos *Crescimento Exponencial *Problemas difíceis

2. Algorítmica

*Introduções à algorítmica *Indução e gráficas *Recursividade *Busca exaustiva *Reduza e vencerás *Divide e vencerás *Ordens de crescimento

6. Computadores

*Transistores e funções de comutação *Portas lógicas e circuitos integrados *Arquitetura de computadores *Linguagens de baixo nível *Sistemas operacionais

*Software de aplicação

Ciência da Computação

3. Programação

*Introdução *Noções básicas de Scheme *Abstração com dados

- Ciência da Computação é o estudo dos problemas que podem ou não podem computados, com ou sem de uso computadores.
- Na ciência da computação também estuamos o abstrato. O cientista da computação deve ser capaz de ver o problema e a solução de forma abstrata, separando a lógica (abstrata) do meio físico.

5. Abstração

*A abstração *Modelos de Computação *Lógica *Análise de problemas

4. Informação

*Símbolos *Representando o mundo por meio de bits *Medindo informação

Fonte: https://www.researchgate.net/publication/320995759

Vamos acender lâmpadas?

Com se acende uma lâmpada?

Binários e Lâmpadas

E se eu tiver várias lâmpada??

Binários e Lâmpadas

Binários e Lâmpadas

Binários e Lâmpadas

Se eu tiver muitas lâmpada e quiser acender algumas e deixar outras apagadas?

Se eu tiver muitas lâmpada e quiser acender algumas e deixar outras apagadas?

Sistemas de Numeração

O que é um número?

É a ideia de quantidade que temos quando ordenamos, contamos ou/e medimos.

Então estamos pensando em números:

- contamos os gols de uma partida de futebol
- enumeramos a posição de um carro no grid de largada
- Medimos o peso de um produto .

Os sistemas de numeração na história

1	<u>~</u>	3	4	五 5
1 6	Ł 7	^ 8	1 6	†
東沙	百100	F 1,000	7 ,	-

~	k	XXX	*	松	*	280		***	A
_	2	20	77	v	9	1-	œ	6	2

1 → 1
$V \rightarrow 5$
$X \rightarrow 10$
$L \rightarrow 50$
C→ 100
D→ 500
M→ 1000

Sistemas de Numeração

O que é um Sistema Numérico?

Sistemas numéricos são todo conjunto de regras para a criação sistemática de numerais e associa-los a números.

No caso de sistemas de numeração escrita, a produção dos numerais é feita através de combinações de algarismos e eventuais símbolos não numéricos. (como a vírgula por exemplo, ou a exclamação)

Veja esse vídeo!

Série Bits e Bytes 01 Os números e a invenção do computador

https://www.youtube.com/watch?v=PUrQX7-oa3k

Sistema Genérico

Uma base genérica b em uma sequencia numérica d, é aquela que podemos aplicar em qualquer sistema numérico:

Para bases > 10, utilizaremos letras para representar os algarismos

Sistema decimal

Como sugere o nome, esse sistema utiliza 10 dígitos, ou seja possui a base 10

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Os números serão expressos em somas de potencias de 10.

Sistema decimal

Vamos o nosso Exemplo:

Fazendo toda a soma: 3000 + 400 + 20 + 2 = 3422

Voltamos as lâmpadas!!!

Como sugere o nome, esse sistema utiliza 2 dígitos, ou seja possui a base 2

[0, 1]

Os números serão expressos em somas de potencias de 2.

Vamos o nosso Exemplo:

$$(101100)_2 = 1x2^5 + 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 0x2^0$$

Fazendo toda a soma: 32 + 0 + 8 + 4 + 0 + 0 = 44

Vamos fazer rápido:

a) 0101

a) 5

b) 1100

b) 12

c) 1110

c) 14

d) 0001

d) 1

e) 0011

e) 3

f) 1010

f) 10

g) 1111

g) 15

h) 0100

h) 4

Tabela para consulta:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	
7	
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	
15	

Como fazemos a conversão de base entre Decimal e Binário?

$$(N)_{10} = (?)_2$$

É feita de maneira diferente, para números inteiros e frações

Divide-se o número por 2.

Se o resultado for inteiro, a divisão é representada pelo número binário "1".

Caso o resultado da divisão for fracionário, esta é representada pelo número binário "0".

Deve-se dividir o número inteiro por 2 até que este seja igual a zero.

Exemplo:

$$(214)_{10} = (?)_2$$

Sistema Octal

Como sugere o nome, esse sistema utiliza 8 dígitos, ou seja possui a base 8

Os números serão expressos em somas de potencias de 8.


```
10
11
12
13
14
15
```

```
Qual o valor de

125<sub>(8)</sub> em decimal?

1 .8<sup>2</sup> (64) = 64

2 .8<sup>1</sup> (8) = 16

5 .8<sup>0</sup> (1) = 5

Soma = 85
```

```
Qual o valor de 129<sub>(10)</sub> em octal?

129<sub>(10)</sub> 8

1 16 8

0 2

R: 201
```

Sistema Hexadecimal

Como sugere o nome, esse sistema utiliza 16 dígitos, ou seja possui a base 16. Com uma interessante ressalva, do digito 10 ao 15 é representado por letras.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]

Os números serão expressos em somas de potencias de 16.


```
11
12
13
14
15
```

```
Qual o valor de 5A1_{(16)} em decimal?

5 . 16^2 (256) = 1.280

A . 16^1 (16) = 160

1 . 16^0 (1) = 1

Soma = 1.441
```


Dúvidas?

ATÉ A PRÓXIMA AULA!

