

#### Lemma

A polynomial p(x) is irreducible over a field K if and only if k.p(x) is also irreducible over K,  $\forall k \in K$ .

#### Proof.

 $(\Rightarrow)$ : Given that p(x) is irreducible over K.

RTP: k.p(x) is irreducible over K,  $\forall k \in K$ .

If possible, let k.p(x) be reducible over K.

Then, there exist  $f(x), g(x) \in \mathcal{P}_K^n$ , the set of all polynomials of degree < n over the field K, such that

$$k.p(x) = f(x).g(x).$$

Since  $k^{-1} \in K$  exists, we have:

$$p(x) = (k^{-1}.f(x)).g(x) = f'(x).g(x),$$

where  $f'(x) = k^{-1}.f(x) \in \mathcal{P}_{\kappa}^{n}$ .



This shows that p(x) is is reducible polynomial. Hence, it is a contradiction. Consequently, k.p(x) must be irreducible over K.

 $(\Leftarrow)$ : Given k.p(x) is irreducible, ∀k ∈ K.

RTP: p(x) is irreducible.

If possible, assume that p(x) is reducible one.

Then, there exist  $f(x), g(x) \in \mathcal{P}_K^n$ , the set of all polynomials of degree < n over the field K, such that

$$p(x) = f(x).g(x).$$

Now,

$$k.p(x) = k.f(x).g(x) = f'(x).g(x),$$

where  $f'(x) = k.f(x) \in \mathcal{P}_K^n$ .

It shows that k.p(x) is reducible polynomial over the finite field K. But, it is a contradiction from the given condition. Hence, p(x) must be irreducible polynomial over K.



### Modular Polynomial Arithmetic

- Consider the set S of all polynomials of degree n-1 or less over a finite field (Galois field)  $Z_p = GF(p)$ .
- Each polynomial has the following form:

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$
  
= 
$$\sum_{i=0}^{n-1} a_i x^i,$$

where  $a_i \in Z_p = \{0, 1, 2, \cdots, p-1\}.$ 

• There are a total of  $p^n$  different polynomials is S.

# Problem: Find all polynomials in the field $GF(3^2)$



Here, we have the extended Galois field  $GF(p^n)$ , where p=3 and n=2.

Then, 
$$S = \{f(x)|f(x) = \sum_{i=0}^{n-1} a_i x^i = \sum_{i=0}^1 a_i x^i = a_1 x + a_0\}$$
 where  $a_i \in Z_p = Z_3 = \{0, 1, 2\}.$ 

Therefore, there are a total of  $3^2 = 9$  polynomials in the set S, which are given below.

| $a_1$ | $a_0$ | $f(x)=a_1x+a_0$ |
|-------|-------|-----------------|
| 0     | 0     | 0               |
| 0     | 1     | 1               |
| 0     | 2     | 2               |
| 1     | 0     | X               |
| 1     | 1     | <i>x</i> + 1    |
| 1     | 2     | x + 2           |
| 2     | 0     | 2 <i>x</i>      |
| 2     | 1     | 2x + 1          |
| 2     | 2     | 2x + 2          |

# Problem: Find all polynomials in the field $GF(2^3)$



Here, we have the extended Galois field  $GF(p^n)$ , where p=2 and n=3.

Then,  $S = \{f(x)|f(x) = \sum_{i=0}^{n-1} a_i x^i = \sum_{i=0}^2 a_i x^i = a_2 x^2 + a_1 x + a_0\}$  where  $a_i \in Z_p = Z_2 = \{0, 1\}$ . Therefore, there are a total of  $2^3 = 8$  polynomials in the set S, which are given below.

| <b>a</b> <sub>2</sub> | a <sub>1</sub> | $a_0$ | $f(x) = a_2 x^2 + a_1 x + a_0$ |
|-----------------------|----------------|-------|--------------------------------|
| 0                     | 0              | 0     | 0                              |
| 0                     | 0              | 1     | 1                              |
| 0                     | 1              | 0     | X                              |
| 0                     | 1              | 1     | x + 1                          |
| 1                     | 0              | 0     | $\chi^2$                       |
| 1                     | 0              | 1     | $x^2 + 1$                      |
| 1                     | 1              | 0     | $x^2 + x$                      |
| 1                     | 1              | 1     | $x^2 + x + 1$                  |

## Finding the Greatest Common Divisor (gcd)



The polynomial c(x) is said to be the greatest common divisor of the polynomials a(x) and b(x) if

- ② any divisor of a(x) and b(x) is a divisor of c(x), that is,

$$\gcd[a(x),b(x)]=\gcd[b(x),a(x)\bmod b(x)]$$

### Algorithm: EUCLID(a(x), b(x))

- 1: Set  $A(x) \leftarrow a(x)$ ;  $B(x) \leftarrow b(x)$
- 2: **if** B(x) = 0 **then**
- 3: **return** A(x) = gcd[a(x), b(x)]
- 4: end if
- 5: Compute  $R(x) = A(x) \mod B(x)$
- 6: Set  $A(x) \leftarrow B(x)$
- 7: Set  $B(x) \leftarrow R(x)$
- 8: goto Step 2

# Finding the multiplicative inverse of a polynomial b modulo m(x) in $GF(p^n)$

```
If gcd(m(x), b(x)) = 1, then b(x) has a multiplicative inverse b(x)^{-1}
modulo m(x), where m(x) is irreducible polynomial over GF(p^n).
Algorithm: EXTENDED EUCLID(m(x), b(x))
```

- 1: Initialize:  $(A1(x), A2(x), A3(x)) \leftarrow (1, 0, m(x))$  and  $(B1(x), B2(x), B3(x)) \leftarrow (0, 1, b(x))$
- 2: **if** B3(x) = 0 **then**
- **return** A3(x) = gcd[m(x), b(x)]; no inverse
- 4: end if
- 5: **if** B3 = 1 **then**
- **return**  $B3(x) = gcd[m(x), b(x)]; B2(x) = b(x)^{-1} \pmod{m(x)}$
- 7: **end** if
- 8: Set  $Q(x) = \lfloor \frac{A3(x)}{B3(x)} \rfloor$ , quotient when A3(x) is divided by B3(x)
- 9: Set  $[T1(x), T2(x), T3(x)] \leftarrow$ [A1(x) - Q(x).B1(x), A2(x) - Q(x).B2(x), A3(x) - Q(x).B3(x)]
- 10: Set  $[A1(x), A2(x), A3(x)] \leftarrow [B1(x), B2(x), B3(x)]$
- 11: Set  $[B1(x), B2(x), B3(x)] \leftarrow [T1(x), T2(x), T3(x)]$
- 12: goto Step 2



**Problem:** Find the multiplicative inverse of  $(x^7 + x + 1)$  modulo an irreducible polynomial  $m(x) = x^8 + x^4 + x^3 + x + 1$  in  $GF(2^8)$ .

Initialization:

$$A1(x) = 1$$
;  $A2(x) = 0$ ;  $A3(x) = m(x) = x^8 + x^4 + x^3 + x + 1$   
 $B1(x) = 0$ ;  $B2(x) = 1$ ;  $B3(x) = x^7 + x + 1$ 

Iteration 1:

$$Q(x) = \left\lfloor \frac{A3(x)}{B3(x)} \right\rfloor = x$$

$$T1(x) = A1(x) - Q(x).B1(x) = 1$$

$$T2(x) = A2(x) - Q(x).B2(x) = -x = x \pmod{2}$$

$$T3(x) = A3(x) - Q(x).B3(x) = x^4 + x^3 + x^2 + 1$$



#### Iteration 1 (Continued...):

$$A1(x) = B1(x) = 0; A2(x) = B2(x) = 1;$$
  
 $A3(x) = B3(x) = x^7 + x + 1$   
 $B1(x) = T1(x) = 1; B2(x) = T2(x) = x;$   
 $B3(x) = T3(x) = x^4 + x^3 + x^2 + 1$ 

#### Iteration 2:

$$Q(x) = \left\lfloor \frac{A3(x)}{B3(x)} \right\rfloor = x^3 + x^2 + 1$$

$$T1(x) = A1(x) - Q(x).B1(x) = x^3 + x^2 + 1$$

$$T2(x) = A2(x) - Q(x).B2(x) = x^4 + x^3 + x + 1$$

$$T3(x) = A3(x) - Q(x).B3(x) = x$$



#### Iteration 2 (Continued...):

$$A1(x) = B1(x) = 1; A2(x) = B2(x) = x;$$
  
 $A3(x) = B3(x) = x^4 + x^3 + x^2 + 1$   
 $B1(x) = T1(x) = x^3 + x^2 + 1;$   
 $B2(x) = T2(x) = x^4 + x^3 + x + 1;$   
 $B3(x) = T3(x) = x$ 

#### Iteration 3:

$$Q(x) = \left\lfloor \frac{A3(x)}{B3(x)} \right\rfloor = x^3 + x^2 + x$$

$$T1(x) = A1(x) - Q(x).B1(x) = x^6 + x^2 + x + 1$$

$$T2(x) = A2(x) - Q(x).B2(x) = x^7$$

$$T3(x) = A3(x) - Q(x).B3(x) = 1$$



• Iteration 4: Since B3(x) = 1, so

$$\gcd[m(x),b(x)]=B3(x)=1$$

and

$$b(x)^{-1} \mod m(x) = B2(x)$$

$$= (x^7 + x + 1)^{-1} \mod x^8 + x^4 + x^3 + x + 1$$

$$= x^7.$$



## Finite field of the form $GF(2^n)$

#### **Computational Considerations**

- A polynomial f(x) in  $GF(2^n)$ ,  $f(x) = a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ =  $\sum_{i=0}^{n-1} a_i x^i$ , where  $a_i \in Z_2 = \{0,1\}$ , can be uniquely expressed by its n binary co-efficients  $(a_{n-1}a_{n-2}\cdots a_1a_0)$ , since  $a_i \in Z_2$ .
- Thus, every polynomial in GF(2<sup>n</sup>) can be represented by an n-bit number.
- For example, every polynomial in  $GF(2^8)$  can be represented by an 8-bit number  $(a_7a_6a_5a_4a_3a_2a_1a_0)$ , which is a byte. If  $f(x) = x^6 + x^4 + x^2 + x + 1$  in  $GF(2^8)$ , then we can express  $f(x) = 0.x^7 + 1.x^6 + 0.x^5 + 1.x^4 + 0.x^3 + 1.x^2 + 1.x + 1$  = (0101 0111) (in binary) = {57} (in hexadecimal).



## Finite field of the form $GF(2^n)$

#### Addition

- Addition of two polynomials in  $GF(2^n)$  coprresponds to a bitwise XOR operation (modulo 2 operation).
- **Example.** Consider the two polynomials in  $GF(2^8)$ :  $f(x) = x^6 + x^4 + x^2 + x + 1$ , and  $g(x) = x^7 + x + 1$ . Note that  $f(x) = (0101\ 0111) = \{57\}$ , and  $g(x) = (1000\ 0011) = \{83\}$ . Then

$$f(x) + g(x) = (01010111) \oplus (10000011)$$

$$= (11010100)$$

$$= x^7 + x^6 + x^4 + x^2$$

$$= \{d4\}.$$



#### Finite field of the form $GF(2^n)$

#### Multiplication

- In AES (Advanced Encryption Standard),  $GF(2^8)$  has irreducible polynomial  $m(x) = x^8 + x^4 + x^3 + x + 1$ .
- The technique is based on the observation that  $x^8 \pmod{m(x)} = [m(x) x^8] \pmod{2}$ =  $x^4 + x^3 + x + 1$ = (0001 1011).
- In general, in  $GF(2^n)$  with  $n^{th}$ -degree polynomial p(x), we have  $x^n \pmod{p(x)} = [p(x) x^n]$ .



#### Finite field of the form $GF(2^n)$

#### Multiplication

- In  $GF(2^8)$ , a polynomial is of the form  $f(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$ , which is also a byte  $(b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0)_2$ .
- Then  $x \times f(x)$ =  $x \times (b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0)$ =  $b_7 x^8 + (b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x + 0)$ .
- Thus,

$$x \times f(x) = \begin{cases} (b_6b_5b_4b_3b_2b_1b_00), & \text{if } b_7 = 0\\ (b_6b_5b_4b_3b_2b_1b_00) \oplus (0001 \ 1011), & \text{if } b_7 = 1. \end{cases}$$



#### Finite field of the form $GF(2^n)$

#### Multiplication

- $x^2 \times f(x) = x \times [x \times f(x)]$
- $\bullet$   $x^3 \times f(x) = x \times [x^2 \times f(x)]$
- $\bullet x^4 \times f(x) = x \times [x^3 \times f(x)]$
- $\bullet$   $x^n \times f(x) = x \times [x^{n-1} \times f(x)]$



#### Finite field of the form $GF(2^n)$

• **Problem:** Given an irreducible polynomial  $m(x) = x^8 + x^4 + x^3 + x + 1$  in the finite field  $GF(2^8)$ . Compute the product of two bytes  $\{A4\}$  and  $\{75\}$ , where  $\{\cdot\}$  represents a hexadecimal number as a 8-bit binary number, in  $GF(2^8)$  with respect to m(x).



## Finite field of the form $GF(2^n)$

#### Solution:

• Let  $f(x) = \{A4\} = (1010\ 0100) = x^7 + x^5 + x^2$ ,  $g(x) = \{75\} = (0111\ 0101) = x^6 + x^5 + x^4 + x^2 + 1$ .

 $f(x) \times g(x) = x^7 \times g(x) \oplus x^5 \times g(x)$ 

 $x^3 \times g(x) = 10000101$ 

 $x^4 \times g(x) = 00010001$ 

 $x^5 \times g(x) = 00100010$ 

Then

(9)

(10)

(11)



#### Finite field of the form $GF(2^n)$

#### Solution (Continued...):

We have,

$$x^6 \times g(x) = 01000100$$
 (12)

$$x^7 \times g(x) = 10001000$$
 (13)

 Finally, using Equations (8), (11) and (13), from Equation (6), we obtain:

$$f(x) \times g(x) \pmod{m(x)} = 11001111$$

$$\oplus 00100010$$

$$= 01100101$$

$$= \{65\}$$

$$= x^{6} + x^{5} + x^{2} + 1.$$



# Thank you!