1 Linear Regression, Projections and Pseudoinverses

(a) $|y-w|^2=|y-P_X(y)+P_X(y)-w|^2=|y-P_X(y)|^2+|P_X(y)-w|^2+2(y-P_X(y))^\top(P_X(y)-w)$. Since $y-P_X(y)$ is orthogonal to any vector in $\mathrm{range}(X)$, we have $|y-w|^2=|y-P_X(y)|^2+|P_X(y)-w|^2$. It minimizes when $w=P_X(y)$. QED.

 \Leftarrow If $P=UU^{\top}$, then $P=P^T$ trivially holds. $P^2=U(U^{\top}U)U^{\top}=UU^{\top}=P$. Since, $P=UU^{\top}$, we have $\mathrm{rank}(P) \leq \mathrm{rank}(U) \leq d$. $\mathrm{rank}(P) \geq \mathrm{rank}(U^{\top}PU) = \mathrm{rank}(I) = d$. Therefore, we have $\mathrm{rank}(P)=d$.

 \Rightarrow Since P is symmetric, we have $P=Q\Lambda Q^{\top}$, where $Q\in\mathbb{R}^{n\times n}$ is orthogonal and $\Lambda\in\mathbb{R}^{n\times n}$ is diagonal and real. Let λ be a eigenvalue of P and v be its corresponding eigenvector. Then we have $\lambda^2 v=P^2v=Pv=\lambda v$. So the eigenvalues must be 0 or 1. Let U be the matrix of subset of columns of Q whose corresponding eigenvalues are 1. Since $\mathrm{rank}(P)=d$, there are d such columns. Since $P=\sum_{i=1}^n \lambda_i q_i q^{\top}$, we have $P=UU^{\top}$ with $U\in\mathbb{R}^{n\times d}$. Since U is orthogonal, we have $U^{\top}U=I$. **QED.**

(c) tr(P) is the sum of all the eigenvalues of P. we have proved in part (b) that all the eigenvalues are either 0 or 1, and since rank(P) = d, we have tr(P) = d.

(d) Let $X=U\Sigma V^{ op}$ be the SVD of X, where $U\in\mathbb{R}^{n imes d},\Sigma\in\mathbb{R}^{d imes d},V\in\mathbb{R}^{d imes d}$

$$X(X^\top X)^{-1}X^\top = U\Sigma V^\top (V\Sigma U^\top U\Sigma V^\top)^{-1}V\Sigma U^\top = U\Sigma V^\top V(\Sigma^{-1})^2 V^\top V\Sigma U^\top = UU^\top$$

This proves that $X(X^{\top}X)^{-1}X^{\top}$ is a rand-d orthogonal projection matrix. The corresponding matrix U is the matrix of the left singular vectors of X. **QED.**

(e)

Because the row space of X is the orthogonal complement of the null space of X. It is sufficient to show for any $v \in \mathbb{R}^n$, we have $Xv = 0 \Leftrightarrow \forall i, v_i^\top v = 0$.

$$Xv = \sum_{i:\sigma_i>0} \sigma_i u_i(v_i^ op v)$$

Since $\sigma_i u_i$'s are independent vectors, $Xv=0 \Leftrightarrow \forall i, v_i^ op v=0$. **QED.**

(f)

We can write X as the reduced form of the SVD: $X=U_r\Sigma_rV_r^T$. Then by definition of the Moore-Penrose pseudoinverse of X is $X^+=V_r\Sigma_r^{-1}U_r^\top$. Then we have $X^+X=V_rV_r^T$, which is the

orthogonal projection matrix onto the row space of X. If $\mathrm{rank}(X)=d$. Then $X^+X=I$. If $\mathrm{rank}(X)=d$ and n=d, then $XX^+=U_rU_r^\top=I$. So X^+ is the inverse of X, i.e. $X^+=X^{-1}$.