Groups 4 Subgroups

U= { Z E C | LZ | = 13 = C Consider

Note each elem of Note each even on

U is defined by

- B ([0,247) = R277

Every angle O(Rzrr given by

f: U> (z) = 6 for z=e

 $f':\mathbb{R}^{54}\to 0$ $f'=e_{10}$

Consider U w/ moltiplication Let Z,=e'; Z2=e'&2 E V then $z_1 \cdot z_2 = e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$ where O, Oz (Rzt) O, tu Oz (Ratt

Let V 13 (1000) Whole muniplication

2, 2, 60

Definition

Let & be a set

Let & be a binary operation on S

* : 5 x 5 > 5

(5, *) is an elgebraic structure

So $(U_1.) + (R_{211} + z_{21})$ are alg. strocts. s.t.

"1-1" bluen $U + R_{211}$ and

operations are preserved $(U_1.) \stackrel{\sim}{\sim} (R_{211} + z_{211})$ of $U \stackrel{\sim}{\sim} R_{211}$

[Somesonsm

To show 2 alg. strocts
are isomorphic,
find a bijective for that preserves
the operations

Isomorphic structures share the same abgebraic properties

(associativity, commutative, distributive, ...)

To show 2 alg structs are not isomorphic, find a property that they don't share.

(the easiest is to check the cardinality)

Examples

 $(N, +) \neq (Z, +)$ bus not all elems $(Z^*, \cdot) \neq (Q^*, \cdot)$ of Z^* have inverses $(N_n)^* = N_n$

(R +) V/1R.) bre v*x+1=0

is solvable in (R_1+) : Zx+1=0but ansolvable in (R_1-) : $x^2+1=0$