際 事 務 局

特許協力条約に基づいて公開された国際出願

WO 93/03054 (11) 国際公開番号 (51) 国際特許分類 5 C07K 5/06, A61K 37/02 A1 (43) 国際公開日 1993年2月18日(18.02.1993) PCT/JP92/01005 (81) 指定国 (21) 国際出願番号 1992年8月6日(06.08.92) AT(欧州特許), AU, BE(欧州特許), CA, CH(欧州特許), (22) 国際出願日 DE(欧州特許), DK(欧州特許), ES(欧州特許), FR(欧州特許), GB(欧州特許), GR(欧州特許), IE(欧州特許), IT(欧州特許), (30)優先権データ JP, KR, LU(欧州特許), MC(欧州特許), NL(欧州特許), JΡ 特顯平3/223534 1991年8月9日(09.08.91) JP SE(欧州特許), US. 特顯平3/225391 1991年8月12日(12.08.91) 添付公開書類 国際調査報告書 (71) 出願人(米国を除くすべての指定国について) 帝国隊器製薬株式会社 (TEIKOKU HORMONE MFG. CO., LTD.)[JP/JP] 〒107 東京都港区赤坂二丁目5番1号 Tokyo, (JP) (72) 発明者: および (75) 発明者/出願人(米国についてのみ) 榊原恭一(SAKAKIBARA, Kyoichi)[JP/JP] 〒152 東京都目風区八雲4-3-14 Tokyo, (JP) 権藤昌昭(GONDO, Masaaki)[JP/JP] 〒245 神奈川県横浜市泉区緑園 4-3-1 サンステージ緑園都市東の街5-310 Kanagawa, (JP) 宮崎宏一(MIYAZAKI, Koichi)[JP/JP] 〒243-04 神奈川県海老名市国分426-1 えびな国分団地6-406 Kanagawa, (JP) (74) 代理人 弁理士 小田島平吉,外(ODAJIMA, Heikichi et al.) 〒107 東京都港区赤坂1丁目9番15号 日本自転車会館 小田島特許事務所 Tokyo, (JP)

(54) Title: NOVEL TETRAPEPTIDE DERIVATIVE

(54) 発明の名称 新規なテトラペプチド誘導体

(57) Abstract

A tetrapeptide derivative represented by general formula (I) or its salt, having a higher cytostatic activity than dolastatin 10, thus being useful as an antitumor drug wherein R1, R2, R3 and R4 may be the same or different from one another and each represents hydrogen, lower alkyl or aralkyl; and Q represents (a) or -A2-R7, wherein A1 represents a direct bond or -CHR5-, Y represents hydrogen or -COR6, R5 represents hydrogen, lower alkyl or aralkyl, R6 represents hydroxy, lower alkoxy, aralkyloxy or -NR₈R₉ wherein R₈ and R₉ may be the same or different from each other and each represents hydrogen, lower alkyl, phenyl or a 4- to 7-membered heterocyclic group bearing one or two heteroatoms selected among S, O and N, or alternatively R₈ and R₉ may form together with the nitrogen atom to which they are bonded a 4- to 7-membered heterocyclic ring which may further bear one heteroatom selected among S, O and N, A₂ represents a direct bond or lower alkylene, and R₇ represents cycloalkyl, aryl orindolyl, provided that the case where both R₁ and R₂ represent isopropyl, R₃ represents sec-butyl, R₄ represents methyl, and Q represents α-(2-thiazolyl)phenethyl is excluded.

(57) 要約 式

式中、

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、 低級アルキル基又はアラルキル基を表わし;

$$Q$$
は $-A_1$ $-A_2$ $-R_7$ の基を表わし、ここで R_5

A」は直接結合又は-CH-を表わし、

Yは水素原子又は一COR。を表わし、

R5は水素原子、低級アルキル基又はアラルキルを表わし、

R₆はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選 ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基を表わ すか、或いは

R®とR®はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個のヘテロ原子を含んでいてもよい4~7員 の複素環式環を形成していてもよい)を表わし、

A₂は直接結合又は低級アルキレン基を表わし、

R₇はシクロアルキル基、アリール基又はインドリル基を表わす、 ただし、R₁及びR₂がイソプロピル基を表わし、R₃がsecーブ チル基を表わし、 R_4 がメチル基を表わし、そしてQが α -(2-チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩は、ドラスタチン10より も高い細胞増殖抑制作用を有しており、抗腫瘍剤として有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア AU オーストラリア BB バルバードス BB ベルギー BE プルキナ・ファソ BF BG プルガリア BJ ペナン BR ブラジル カナダ 中央アフリカ共和国 CG コンゴ CH スイス ト・ジボアール カメルーン チェッコスロヴァキア ・- ・ - 代加国 チェッコ共和国 ドイツ DK ES

FI フィンランド FR フランス GA ガボン GB イギリス GN ギニア GR ギリシャ HU ie IT JP イタリー 日本 朝鮮民主主義人民共和国 LK LU MC ルクセンブルグ モナ マダガスカル マリ

MR & マラウイオランダ ・ジーランド へー/ スウェーデン スロヴァキア共和国 ウクライナ 米国

明

細 書

新規なテトラペプチド誘導体

1

技術分野

本発明は抗腫瘍作用を有する新規なテトラペプチド誘導体に関し、さらに詳しくは式

$$\begin{array}{c|c} CH_3 \\ CH_8 \end{array} N \begin{array}{c|c} R_1 \\ O \\ CH_3 \end{array} \begin{array}{c} R_2 \\ O \\ CH_3 \end{array} \begin{array}{c} R_3 \\ O \\ CH_3 \end{array} \begin{array}{c} R_4 \\ O \\ O \\ CH_3 \end{array} \begin{array}{c} NH-Q \\ O \\ CH_3 \end{array} \begin{array}{c} (1)$$

式中、

10

15

20

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、低級アルキル基又はアラルキル基を表わし;

A1は直接結合又は一CHーを表わし、

Yは水素原子又は一COR®を表わし、

R₅は水素原子、低級アルキル基又はアラルキルを表わし、

R₆はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選

ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基を表わ すか、

或いは

 R_8 と R_9 はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個のOでの原子を含んでいてもよい4O 負の複素環式環を形成していてもよい)を表わし、

A₂は直接結合又は低級アルキレン基を表わし、

 R_7 はシクロアルキル基、アリール基又はインドリル基を表わす、ただし、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c - ブチル基を表わし、 R_4 がメチル基を表わし、そしてQが α - (2 - チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩に関する。

背景技術

20

海の軟体動物であるアメフラシ類縁のタツナミガイ(Dolabella auric ularia)から細胞生長抑制作用及び/又は抗新生物作用を有するペプチドの単離は今までにいくつかなされており、それらのペプチドはドラスタチン1~15と称されている。このうち、ドラスタチン10は、1987年ペチツト等によりインド洋産のタツナミガイから抽出された下記構造式をもつペンタペプチドで、既知の化合物の中で最強の細胞生長抑制作用を有する化合物として知られている(ペチツト等,ジヤーナル・オブ・ジ・アメリカン・ケミカル・ソサエテイー(J. Am. Chem. Soc.)、109巻、6883頁、(1987年)及び特開平2-167278号公報参照)。

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array} \\ \text{N} \\ \begin{array}{c} \text{N} \\ \text{O} \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{O} \\ \text{CH}_3 \end{array} \\ \end{array}$$

[ドラスタチン10]

また、近年になつて、ドラスタチン10そのものの全合成については 発表がなされたが(アメリカ特許第4978744号参照)、その誘導 体に関しては、現在までのところ全く知られていない。

本発明者らは、ドラスタチン10の誘導体について研究を重ねた結果、前記式(I)で表されるある種のドラスタチン10アナローグが、ドラスタチン10よりも高い細胞増殖制御作用を有することを見いだした。 さらに、これらの化合物の多くはドラスタチン10よりも治療比(最大有効量/30%延命率の用量)が大きく且つ毒性も低いので抗腫瘍剤として優れていることを見いだした。

即ち、ドラスタチン10のアミノ酸アナローグがオリジナルのドラスタチン10よりも高活性を示すばかりでなく、意外なことにそのチアゾール環にカルボキシル誘導体を導入することにより、その作用が格段に増強することを認めた。更に全く驚くべきことに、チアゾール環を除去したような誘導体が、ドラスタチン10よりも遥かに高活性であることを見出した。

発明の開示

20

これらの知見をもとに完成した本発明の態様は以下の三つのカテゴリーに分類し得る。

20

- (1) ドラスタチン10のアミノ酸置換体およびそれらの合成
- (2) チアゾール環のカルボキシル誘導体およびそれらの合成
- (3) チアゾール環を除去したテトラペプチド誘導体およびそれらの合成
- カテゴリー(1)に属する化合物群の合成については後記フローシート1、2、3で説明され、カテゴリー(2)に属する化合物の合成については後記フローシート4、5で説明される。またカテゴリー(3)に属する化合物群の合成については後記フローシート6で説明される。

本明細書において「低級」なる語は、この語が付された基又は化合物 の炭素原子数が6個以下、好ましくは4個以下であることを意味する。

前記式(I)において、「低級アルキル基」は直鎖状又は分枝鎖状のいずれであつてもよく、例えばメチル、エチル、nープロピル、イソプロピル、nーブチル、イソプチル、secーブチル、tertーブチル、イソペンチル、ネオペンチル、イソヘキシル基等が挙げられ、「アラルキル基」はアリールー低級アルキル基の意味であり、例えばベンジル、フェネチル基等が挙げられる。また、「低級アルコキシ基」は低級アルキル部分が上記の意味を有する低級アルキルー〇一基であり、例えばメトキシ、エトキシ、nープロポキシ、イソプロポキシ、tertーブトキシ基等が包含され、「アラルキルオキシ基」はアラルキル部分が上記の意味を有するアラルキルー〇一基であり、例えばベンジルオキシ、フェネチルオキシ基等が包含される。さらに、「低級アルキレン基」は、直鎖状又は分枝鎖状のいずれであつてもよく、例えばメテレン、エチレン、トリメチレン、テトラメチレン、メチルメチレン、プロピレン、エチルエチレン、1,2ージメチルエチレン基等が挙げられ、「シクロア

20

ルキル基」としては、例えばシクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル基等の炭素原子数3~7個を有するシクロアルキル基が挙げられ、「アリール基」としては例えばフエニル、ナフチル基等が挙げられる。

 R_8 又は R_9 において「S、O及びNから選ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基」を表わす場合の該複素環式基の例としては、アゼチジニル、フリル、チエニル、ピリジル、ピペリジニル、アゼビニル、チアゾリル、イミダゾリル、オキサゾリル、ピリミジニル、ピリダジニル基等が挙げられ、一方、 R_8 と R_9 が「それらが結合する窒素原子と一緒になつてさらにS、O及びNから選ばれる1個のヘテロ原子を含んでいてもよい4~7員の複素環式環」を表わす場合の該複素環式環の例としては、アゼチジノ、ヒロリジノ、ピペリジノ、1ーパーヒドロアゼピニル、ヒペラジノ、モルホリノ、チオモルホリノ基等を挙げることができる。

 R_8 しかして、-N の基の例としては、Tミノ、メチルTミノ、エ

チルアミノ、イソプロピルアミノ、tertーブチルアミノ、ジメチルアミノ、ジエチルアミノ、フエニルアミノ、NーメチルーNーフエニルアミノ、フリルアミノ、ピリジルアミノ、2ーチアゾリルアミノ、イミダゾリルアミノ、ピリミジニルアミノ、ピロリジノ、ピペリジノ、モルホリノ基等を挙げることができる。

前記式(I)の化合物において好ましい一群の化合物は、Qが

20

 R_5 (ここで R_5 は前記の意味を有する)を表わす場合の化合物であり、この中でも特に R_1 、 R_2 、 R_3 、 R_4 及び R_5 のうち4つの基がドラスタチン10 (R_1 及び R_2 がイソプロピル基で、 R_3 がs e c e ブチル基で、 R_4 がメチル基で、 R_5 がベンジル基である化合物)と同じ基を表わし、残りの1つの基のみがドラスタチン10と異なる基を表わす場合の化合物がとりわけ好適である。

また、好ましい別の一群の化合物は、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c - ブチル基を表わし、 R_4 がメチル基を表わし、そ

記の意味を有する)を表わす場合の化合物である。

さらに、好ましい別の一群の化合物は、Qが一 A_2 - R_7 (ここで A_2 は低級アルキレン基を表わし、 R_7 は前記の意味を有する)を表わす場合の化合物である、この中でも特に R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c - ブチル基を表わし、 R_4 がメチル基を表わし、そして R_7 がアリール基を表わす化合物が好適りである。

なお、本発明の前記式(I)の化合物において、置換基 R_1 、 R_2 、 R_3 、 R_4 及び R_5 並びにメトキシ基が結合している炭素原子は不整炭素原子であるので、それらは任意のR又はSの立体配置を有することができ、それらは全て本発明の範囲に包含されるが、薬理活性の点からみると、ドラスタチン10と同じ立体配置を有する化合物が好ましい。

本発明により提供される前記指揮(I)の化合物の代表例としては、

化合物No.

 R_1

 R_2

R4

後記実施例に掲げるものの他に次のものを挙げることができる。

R₃

						,
	1	i-Pr	i-Pr	i-Bu	Ne	S
1 0						
	2	Et	#	s-Bu	i,	-CH(Bz1) N
	3	n-Pr	,,	tt ·	n	on(DZI) ii
	4	i-Bu		#	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n
	5	i-Pr	n-Pr	n	П	"
1 5	6		i-Bu	<i>II</i> .	n .	. "
	7	<i>"</i> .	i-Pr	H	a	n
•	8	tt .	# .	Et	ø	u
	9 ·	H	"	t-Bu	. #	,
	. 10	tt .	n	1-Me-Bu	#	n
20	11	p,	tt	i-Pe	Ħ	U
	12	u	ø	Bz1	n	•
	13	ff .	#	s-Bu	Et	n
	14	n	Ħ	<i>"</i> -	n-Pr	#

	15	Ħ		a	Мe	-CH ₂
	16	<i>s</i> r	# _.	ņ	ø	-CH(i-Pr)
5	17	Ħ	Ħ	r	ø	S COOCH ₃
•	18	B	er .	đ	ø	S_CONHEt
10	19	B	n	ø.	#	-CH(Bz1) N COOH
	20	- п	•	z.	я	-CH(Bz1) COOEt
	21	n	er .	ø	,	-CH(Bz1) N CONHNe
15	22	er .	ø	Ħ	Ħ	-CH(Bz1) CON Et
	23	æ	п	ø	ø	-CH(Bz1) CON Ne
20	24	B	<i>t</i> r .	Ħ	a	-CH(Bz1) N CONH N
	25	B	<i>B</i>	.	Ħ	-CH(Bz1) CON
	26	Ħ	н		g.	-(H)

	27	n	u	, ,	n	-Np
	28	#	n		"	-CH ₂ -(H)
	29	n .	n	. #	#	-CH(Me)CH ₂ -Ph
5	30	<i>II</i>	n	. #	<i>tt</i>	-(CH ₂) ₄ -Ph
	31	"	s-Bu	n	n n	-CH ₂ CH ₂ Ph
	32	a	i-Pr	i-Pr	Ħ	#
	33	tt .	"	n-Pr	ti .	u
	34	<i>II</i>	u	s-Bu	H	u
1 0	35	# .	n	n	Et	. #

上記各基において、Meはメチル基、Etはエチル基、Prはプロピル基、Buはブチル基、Peはペンチル基、Bzlはベンジル基、Phはフエニル基、Npはナフチル基を意味している。

前記式(I)のテトラペブチド誘導体は塩として存在することができ、 そのような塩の例としては、塩酸塩、臭化水素酸塩、トリフルオロ酢酸 塩、p-トルエンスルホン酸塩、酢酸塩を挙げることができる。

本発明によれば、前記式(I)のテトラペプチド誘導体は、例えばペプチド化学の分野で周知の液相合成法(イー・シュレーダー及びケイ・リユブケ著「ザ・ペプタイズ」第1巻、76~136頁、1965年アカデミツク・プレス発行参照)に従つて各アミノ酸又はペプチドフラグメントを縮合させることにより製造することができるが、特に下記式(II)

20

$$\begin{array}{c|c} CH_3 & N & R_2 & R_3 \\ CH_3 & N & 0 & CH_3 & OCH_3 \end{array}$$

式中、 R_1 、 R_2 及び R_3 は前記の意味を有する、 のトリペプチドフラグメントと、下記式 (III)

$$\begin{array}{c}
 & R_4 \\
 & NH-Q_1
\end{array}$$
(III)

式中、R₄は前記の意味を有し、Qは -A₁ -A₂ -R₇

の基を表わし、ここで Y_1 は水素原子又はメトキシカルボニル基を表わし、

A₁、A₂及びR₇は前記の意味を有する、

のフラグメントとを縮合させることにより合成するのが、上記式(II)及び(III)の各フラグメントの合成のし易さ、それらの縮合時においてラセミ化の心配がないこと等から最も好適である。基Qにおいてチアゾール環の4一位の置換基Yがメトキシカルボニル基以外の基-СОR。を表わす場合の化合物を得るためには、Yがメトキシカルボニル基を表わす式(I)の化合物を製造した後、そのメトキシカルボニル基を所望の基-СОR。に変換すればよい。

反応は、一般に、不活性溶媒、例えばクロロホルム、酢酸エチル、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、アセ

15

20

トニトリル等の中で、必要に応じて有機塩基、例えばトリエチルアミン、Nーメチルモルホリン、ジイソプロピルエチルアミン(DIEA)等の存在下に、縮合剤、例えばジシクロヘキシルカルボジイミド(DCC)ジフエニルホスホリルアジド(DPPA)、シアノりん酸ジエチル(DEPC)、いわゆるBOP試薬等で処理することにより行うことができる。

反応温度は、通常-10℃乃至室温、好ましくは0℃前後であり、式(II)の化合物に対する式(III)の化合物、有機塩基及び縮合剤の各々の使用割合は、式(II)の化合物1モル当り式(III)の化合物は少なくとも1モル、好ましくは1.0~1.1モル程度用い、有機塩基は2モル程度、縮合剤は等モル程度用いるのが有利である。

基Qにおけるチアゾール環の4-位の置換基Yがメトキシカルボニル基を表わす化合物から基-CO-R $_6$ を表わす化合物への変換は、例えば、 R_6 がヒドロキシ基を表わす場合はアルカリ加水分解することにより行うことができ、また、 R_6 が他の低級アルコキシ基又はアラルキルオキシ基を表わす場合は、 R_6 がヒドロキシ基を表わす場合の化合物を、常法に従い、エステル化することにより行うことができ、-方、 R_6 が

R₈ -N を表わす場合には、アンモニア、一級アミン又は二級アミン R₉

で処理することにより容易に行うことができる。

かくして、目的とする式(I)のテトラペプチド誘導体が生成し、反応混合物からの単離、精製は、再結晶、イオン交換クロマトグラフィー、ゲルろ過、高速液体クロマトグラフィー等により行うことができる。

なお、前記反応において出発原料として使用される前記式(II)及び前記式(III)の化合物は、従来の文献に未載の新規な化合物であり、 その構成成分である各アミノ酸を液相合成法で縮合することにより容易 に製造することができる。

本発明の式(I)のテトラペプチド誘導体は、ドラスタチン10より も高い細胞増殖抑制作用を有しており、急性骨髄白血病、急性リンパ球 白血病、慢性黒色腫、肺の腺癌、神経芽腫、肺の小細胞癌、胸部癌、結 腸癌、卵巣癌、膀胱癌などの治療に有用である。

細胞成長抑制作用のスクリーニングは、リンパ球白血病P388細胞を用いて行った。この結果を下記表に示す。

麦

		-
	化合物の実施例No.	ED_{50} (μ g/m 1)
	1	3.1×10^{-6}
	4	1.7×10^{-6}
	5	3.1×10^{-5}
15	1 5	2.4×10^{-7}
•	16 .	2.7×10^{-5}
	2 3	$< 1.0 \times 10^{-6}$
	2 5	$< 1.0 \times 10^{-6}$
	2 6	$< 1.0 \times 10^{-6}$
20	28	2.9×10^{-6}
	ドラスタチン10	7.0×10^{-4}

本発明に係る化合物は、薬剤として用いる場合、その用途に応じて、

15

固体形態(例えば錠剤、硬カプセル剤、軟カプセル剤、顆粒剤、散剤、細粒剤、丸剤、トローチ錠など)、半固体形態(例えば坐剤、軟膏など)又は液体形態(注射剤、乳剤、懸濁液、ローション、スプレーなど)のいずれかの製剤形態に調製して用いることができる。しかして、上記製剤に使用し得る無毒性の添加物としては、例えばでん粉、ゼラチン、ブドウ糖、乳糖、果糖、マルトース、炭酸マグネシウム、タルク、ステアリン酸マグネシウム、メチルセルロース、カルボキシメチルセルロース又はその塩、アラビアゴム、ポリエチレングリコール、pーヒドロキシ安息香酸アルキルエステル、シロツプ、エタノール、プロピレングリコール、ワセリン、カーボツクス、グリセリン、塩化ナトリウム、亜硫酸ナトリウム、リン酸ナトリウム、クエン酸等が挙げられる。該薬剤はまた、治療学的に有用な他の薬剤を含有することもできる。

該薬剤中における本発明の化合物の含有量はその剤形に応じて異なるが、一般に固体及び半固体形態の場合には $0.1\sim50$ 重量%の濃度で、そして液体形態の場合には $0.05\sim10$ 重量%の濃度で含有していることが望ましい。

本発明の化合物の投与量は、対象とする人間をはじめとする温血動物の種類、投与経路、症状の軽重、医者の診断等により広範に変えることができるが、一般に1日当たり、0.01~50mg/kg程度とすることができる。しかし、上記の如く患者の症状の軽重、医者の診断に応じて上記範囲の下限よりも少ない量又は上限よりも多い量を投与することはもちろん可能である。上記投与量は1日1回又は数回に分けて投与することができる。

以下、参考例及び実施例により本発明をさらに説明する。

なお、参考例及び実施例において用いる化合物番号に対応する化合物 の構造については、以下のフローシート $1\sim6$ を参照されたい。ここで、 Zはベンジルオキシカルボニル基、Meはメチル基、BU'は ter tープチル基、Bocは ter tープトキシカルボニル基、Bz lはベンジル基を表わし、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 及び $-A_2$ $-R_7$ は前記の意味を有している。

10

15

化合物No.

 R_1

R2

後記実施例に掲げるものの他に次のものを挙げることができる。

Rs

R4

	1	i-Pr	i-Pr	i-Bu	Ne	S
1 0						S11
	2	Et	M	s-Bu		-CH(Bz1)
	3	n-Pr	П	#	n	on(DDI) N
	4	i-Bu	#	· #	n	
	5	i-Pr	n-Pr	n	n	
15	6		i-Bu	<i>n</i> .	n	ø
	7	<i>"</i> .	i-Pr	H	a	"
٠	8	ı,	n .	Et	n	
	9 ·	N	n	t-Bu	n	п
	. 10	i,	p.	1-Ne-Bu	#	ı
20	11	n	"	i-Pe	n	n
	12	n	ø	Bz1	n	n
	13	e	N	s-Bu	Et	7
	14	n	n	<i>n</i> -	n-Pr	n

	15	Ħ		Ħ	Ne	-CH ₂
	16	B	s .	ņ	a	-CH(i-Pr)
5	17	B	ø	Ħ	ø	S_COOCH ₃
	18	E	Ħ	ď	Ħ	SCONHEt
10	19	,	B	a	#	-CH(Bz1) N COOH
	20	. a	•	at .	ø	-CH(Bz1) N COOEt
•	21	ø	R	B	Ħ	-CH(Bz1) N CONHNe
15	22	Ħ	st .	. #		-CH(Bz1) N CON Et
	23	a	π	В	Ħ	-CH(Bz1) CON Ne
20	24	a	ø	r	a	-CH(Bz1) N CONH N
	25	s	B	#	a	-CH(Bz1) CON
	26	Ħ	B		# .	- <u>H</u>

20

	27	Ħ	#	n .	n	-Np
			·			
	28	Ħ	n	"	"	-CH ₂ -(H)
	29	n .	n	. #	n	-CH(Ne)CH ₂ -Ph
5	30	n	n	. "	n	-(CH ₂) ₄ -Ph
	31	"	s-Bu	"	. #	-CH ₂ CH ₂ Ph
	32	n	i-Pr	i-Pr	п	#
	33	li.		n-Pr	n .	tt .
	34	#	<i>II</i>	s-Bu	H	
1 0	3 5	<i>n</i> .	n	. #	Et	

上記各基において、Meはメチル基、Etはエチル基、Prはプロピル基、Buはブチル基、Peはペンチル基、Bzlはベンジル基、Phはフエニル基、Npはナフチル基を意味している。

前記式(I)のテトラペブチド誘導体は塩として存在することができ、 そのような塩の例としては、塩酸塩、臭化水素酸塩、トリフルオロ酢酸 塩、pートルエンスルホン酸塩、酢酸塩を挙げることができる。

本発明によれば、前記式(I)のテトラペプチド誘導体は、例えばペプチド化学の分野で周知の液相合成法(イー・シュレーダー及びケイ・リユブケ著「ザ・ペプタイズ」第1巻、76~136頁、1965年アカデミツク・プレス発行参照)に従つて各アミノ酸又はペプチドフラグメントを縮合させることにより製造することができるが、特に下記式(II)

15

20

$$\begin{array}{c|c} R_1 & R_2 & R_3 \\ \hline CH_3 & N & 0 & CH_3 & OCH_3 \end{array} \tag{II}$$

式中、 R_1 、 R_2 及び R_3 は前記の意味を有する、 のトリペプチドフラグメントと、下記式 (III)

$$\begin{array}{c}
R_4 \\
NH-Q_1
\end{array}$$
(III)

式中、R₄は前記の意味を有し、Qは -A₁ 又は-A₂-R₇

の基を表わし、ここでY₁は水素原子又はメトキシカルボニル基を 表わし、

A₁、A₂及びR₇は前記の意味を有する、

のフラグメントとを縮合させることにより合成するのが、上記式(II)及び(III)の各フラグメントの合成のし易さ、それらの縮合時においてラセミ化の心配がないこと等から最も好適である。基Qにおいてチアゾール環の4一位の置換基Yがメトキシカルボニル基以外の基-СОR。を表わす場合の化合物を得るためには、Yがメトキシカルボニル基を表わす式(I)の化合物を製造した後、そのメトキシカルボニル基を所望の基-СОR。に変換すればよい。

反応は、一般に、不活性溶媒、例えばクロロホルム、酢酸エチル、テトラヒドロフラン (THF)、ジメチルホルムアミド (DMF)、アセ

20

トニトリル等の中で、必要に応じて有機塩基、例えばトリエチルアミン、Nーメチルモルホリン、ジイソプロピルエチルアミン(DIEA)等の存在下に、縮合剤、例えばジシクロヘキシルカルボジイミド(DCC)ジフエニルホスホリルアジド(DPPA)、シアノりん酸ジエチル(DEPC)、いわゆるBOP試薬等で処理することにより行うことができる。

反応温度は、通常-10℃乃至室温、好ましくは0℃前後であり、式 (II) の化合物に対する式 (III) の化合物、有機塩基及び縮合剤の各 々の使用割合は、式 (II) の化合物1モル当り式 (III) の化合物は少 なくとも1モル、好ましくは1.0~1.1モル程度用い、有機塩基は2モル程度、縮合剤は等モル程度用いるのが有利である。

基Qにおけるチアゾール環の4 - 位の置換基Yがメトキシカルボニル基を表わす化合物から基- CO- R $_6$ を表わす化合物への変換は、例えば、 R_6 がヒドロキシ基を表わす場合はアルカリ加水分解することにより行うことができ、また、 R_6 が他の低級アルコキシ基又はアラルキルオキシ基を表わす場合は、 R_6 がヒドロキシ基を表わす場合の化合物を、常法に従い、エステル化することにより行うことができ、-方、 R_6 が

R₈
/
-N を表わす場合には、アンモニア、一級アミン又は二級アミンR₉

で処理することにより容易に行うことができる。

かくして、目的とする式(I)のテトラペプチド誘導体が生成し、反 応混合物からの単離、精製は、再結晶、イオン交換クロマトグラフィー、 ゲルろ過、高速液体クロマトグラフィー等により行うことができる。 なお、前記反応において出発原料として使用される前記式 (II) 及び前記式 (III) の化合物は、従来の文献に未載の新規な化合物であり、 その構成成分である各アミノ酸を液相合成法で縮合することにより容易 に製造することができる。

本発明の式(I)のテトラペプチド誘導体は、ドラスタチン10より も高い細胞増殖抑制作用を有しており、急性骨髄白血病、急性リンパ球 白血病、慢性黒色腫、肺の腺癌、神経芽腫、肺の小細胞癌、胸部癌、結 腸癌、卵巣癌、膀胱癌などの治療に有用である。

細胞成長抑制作用のスクリーニングは、リンパ球白血病P388細胞を用いて行った。この結果を下記表に示す。

麦

		
	化合物の実施例No.	ED_{50} (μ g/m 1)
	1	3.1×10^{-6}
	4	1.7×10^{-6}
	5	3.1×10^{-5}
15	1 5	2.4×10^{-7}
•	16 .	2.7×10^{-5}
	2 3	$<1.0\times10^{-6}$
	2 5	$<1.0\times10^{-6}$
	2 6	$< 1.0 \times 10^{-6}$
20	28	2.9×10^{-6}
	ドラスタチン10	7.0×10^{-4}

本発明に係る化合物は、薬剤として用いる場合、その用途に応じて、

20

固体形態(例えば錠剤、硬カプセル剤、軟カプセル剤、顆粒剤、散剤、細粒剤、丸剤、トローチ錠など)、半固体形態(例えば坐剤、軟膏など)又は液体形態(注射剤、乳剤、懸濁液、ローション、スプレーなど)のいずれかの製剤形態に調製して用いることができる。しかして、上記製剤に使用し得る無毒性の添加物としては、例えばでん粉、ゼラチン、ブドウ糖、乳糖、果糖、マルトース、炭酸マグネシウム、タルク、ステアリン酸マグネシウム、メチルセルロース、カルボキシメチルセルロース又はその塩、アラビアゴム、ポリエチレングリコール、pーヒドロキシ安息香酸アルキルエステル、シロツプ、エタノール、プロピレングリコール、ワセリン、カーボツクス、グリセリン、塩化ナトリウム、亜硫酸ナトリウム、リン酸ナトリウム、クエン酸等が挙げられる。該薬剤はまた、治療学的に有用な他の薬剤を含有することもできる。

該薬剤中における本発明の化合物の含有量はその剤形に応じて異なるが、一般に固体及び半固体形態の場合には 0.1~50重量%の濃度で、そして液体形態の場合には 0.05~10重量%の濃度で含有していることが望ましい。

本発明の化合物の投与量は、対象とする人間をはじめとする温血動物の種類、投与経路、症状の軽重、医者の診断等により広範に変えることができるが、一般に1日当たり、0.01~50mg/kg程度とすることができる。しかし、上記の如く患者の症状の軽重、医者の診断に応じて上記範囲の下限よりも少ない量又は上限よりも多い量を投与することはもちろん可能である。上記投与量は1日1回又は数回に分けて投与することができる。

以下、参考例及び実施例により本発明をさらに説明する。

なお、参考例及び実施例において用いる化合物番号に対応する化合物 の構造については、以下のフローシート $1\sim6$ を参照されたい。ここで、 Zはベンジルオキシカルボニル基、Meはメチル基、BU'はter t-ブチル基、Bocはter t-ブトキシカルボニル基、Bz 1はベンジル基を表わし、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 及び $-A_2$ - R_7 は前記の意味を有している。

10

15

1 5

20

フローシート1

フローシート2

フローシート3

15

フローシート 4

参考例 1 2
$$(R_6=0\text{Me}\to 0\text{CH}_2\text{Ph})$$
 BocNH COR_6 化合物 1 3 $(R_6=0\text{Me}\to 0\text{CH}_2\text{Ph})$ BocNH R_4 COR_6 R_4 R

フローシート 5

参考例1-A

一方マロン酸モノメチルエステルカリウム塩17.16g(110ミリモル)と無水塩化マグネシウム7.60g(80ミリモル)とをテトラヒドロフラン150mlにけん濁させ55°の水浴上で加温しつつ6時間撹拌する。ついでこの反応液を氷冷し、これに上記の反応液を一度に注入し直ちに冷却浴を除いて室温にて24乃至48時間撹拌をつづける。

反応液に水少量を加え、析出したワックス状沈澱から澄明な上清液をデカントし、これを減圧濃縮して油状物を得る。上記ワックス状残渣およびこの油状物それぞれに酢酸エチルおよび氷冷した4N塩酸を加えてふりまぜて溶かし両方合せたのち分液し、水層を再び酢酸エチルで抽出する。酢酸エチル層を氷冷2N塩酸および飽和重曹水で洗い、乾燥し、溶媒を留去して淡黄色油状物13.50gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:酢酸エチルーnーヘキサン(1:1))で精製し、無色~微黄色の油状物として目的の化合物1ーAを得る。12.96g(92.9%)。

 $[\alpha]_{p^{26}-17.7^{\circ}}$ (c=1.01, MeOH)

20

 $^{1}\text{H}-\text{NMR}$ (CDC1₃, δ) 1.38(3H, d, J=7.1 Hz), 3.55(2H, s), 3.72(3 H, s), 4.45(1H, m, J=7.1 Hz), 5.11(2H, s), 5.25~5.55(1H, m), 7.34(5H, s)

参考例1-Aと全く同様にして参考例1-B、1-C、1-D、1-E を行ない、化合物1-B、1-C、1-D、1-Eをそれぞれ油状物として得た。

10

15

参考例 化合物	化合物	Rs	収率 [α] *	[a]D*	¹H-NMR (CDCl3, 8)
1-B	1-8	CH3CH2CH2~	88.9%	N. D.	0.75~1.05(6H, m), 1.1~2.1(4H, m), 3.54(2H, s), 3.72(3H, s), 4.1~4.6(1H, m), 5.11(2H, s), 5.2~5.5(1H, m), 7.34(5H, s)
1-c	1-C	CH ₃ CH-	87.5%	-22. 3° (26°)	0.82(3H, d, J=6.8 Hz), 1.03(3H, d, J=6.8 Hz), 2.0~2.4(1H, m), 3.54(2H, s), 3.72(3H, s), 4.2~4.6(1H, m), 5.11(2H, s), 5.1~5.5 (1H, m), 7.34(5H, s)
1-D	1-1	CH ₃ >CH-CH ₂ -	93.7%	-35. 2° (26°)	0.8~1.05(6H, m), 1.1~1.9(3H, m), 3.55 (2H, s), 3.71(3H, s), 4.1~4.6(1H, m), 5.11(2H, s), 7.33(5H, s)
다 표	# #	C2H5 CH-	99. 2%	-27. 6° (26°)	0.6~1.5(9H, m), 3.54(2H, s), 3.71(3H, s), 4.2~4.5(1H, m), 5.10(2H, s), 5.15~5.45 (1H, m), 7.34(5H, s),

*) c=1.00, NeOH

15

1 6

15

20

参考例2-A

化合物2-A (化合物2においてR₃=CH₃である化合物)の製造 参考例1-Aで得た化合物1-A12.96g(46.45ミリモル)をメタノール380m1に溶かし、-78°で撹拌しつつ水素化ホウ素ナトリウム3.56g(93.67ミリモル)を一度に投入する。冷却撹拌を6時間つづけたのち氷冷した1N塩酸を徐々に加え、酸性になったことを確認したら減圧濃縮し、析出した油状物を酢酸エチルで抽出する。酢酸エチル層を飽和重曹水で洗ったのち乾燥し、溶媒を留去すると結晶12.93が得られる。イソプロピルエーテルから再結晶して目的の化合物2-Aが融点78°の無色針状晶として得られる。11.09g(85.0%)。

 $[\alpha]_{D^{28}-4.4^{\circ}}$ (c=1.00, MeOH)

C14H19NO5 として

計算値 C=59.77% H=6.81% N=4.98%

実測値 C=59.83% H=6.92% N=5.07%

¹H-NMR (CDC1₈, δ) 1.15(3H, d, J=6.8 Hz), 2.35~2.55(2H, m), 3.70(3H, s), 3.85~4.15(1H, m), 5.09(2H, s), 7.34(5H, s)

参考例2-Aと全く同様にして参考例2-B、2-C、2-D、2-E を行ない、化合物2-B、2-C、2-D、2-Eを得た。

5	1H-NMR (CDC13, 8)	0.75~1.05(3H, m), 1.1~1.7 (4H, m), 2.35~2.55(2H, m), 3.69(3H, s), 3.8~4.15 (1H, m), 4.65~4.95(1H, m), 5.10(2H, s), 7.34(5H, s)	0.87(3H, d, J=6.5 Hz), 0.95 (3H, d, J=6.5 Hz), 1.9~ 2.35(1H, m), 2.4~2.6 (2H, m), 3.18(1H, br, d), 3.69(3H, s), 4.45~4.80 (1H, m), 5.10(2H, s), 7.34(5H, s)	0.90(3H, d, J=6.2 Hz), 0.92 (3H, d, J=6.2 Hz), 1.1~1.8 (3H, m), 2.35~2.55(2H, dd), 3.69(3H, s), 3.8~4.15 (1H, m), 4.65~4.95(1H, m), 5.10(2H, s), 7.34(5H, s)
10	分析值	C ₁₆ H ₂₃ NO ₅ 計 C 62, 12% H 7. 49% N 4. 53% 実 C 61, 99% H 7. 51% N 4. 75%	C ₁₆ H ₂ sNO ₅ 計 C 62. 12% H 7. 49% N 4. 53% 実 C 62. 16% H 7. 51% N 4. 70%	C1,1H25NO5 計C 63,14% H 7,79% N 4,33% 実C 63,05% H 7,76% N 4,62%
	旋光度*	-13.6° (27°)	+9.6° (28°)	-21.5° (26°)
15	融点	126°	81°	100°
	坂路	88. 1%	80. 7%	81.9%
20	R ₃	CH3CH2CH2~	CH ₃ >CH-	CH ₃ >CH-CH ₂ -
	化合物	2-B	2-C	2-D
	参光 例	2-B	2-C	2-D

*) c=1.00, MeOH

			_
分析值		旋光度*	
7Н ₂ 63. 4. 63.	C ₁₇ H ₂ s _N O ₅ 0.8~1.05(6H, m)、1.3~1.95 計C 63.14% (3H, m)、2.4~2.6(2H, m)、 H 7.79% 3.1~3.25(1H, br, d)、 N 4.33% 3.69(3H, s)、3.8~4.15 実C 63.12% (1H, m)、4.66(1H, br, d)、 H 7.78% 5.10(2H, s)、7.34(5H, s) N 4.35%	+6.9° (27°)	

. 10

15

20

参考例2一続

参考例3-A

化合物 3 - A (化合物 3 においてR₃ = CH₃である化合物)の製造 参考例 2 - Aで得た化合物 2 - A 9. 78g (34.80ミリモル)をジメチルホルムアミド100m1に溶かし、酸化銀40.0g (172.41ミリモル)とヨウ化メチル50m1を加え、35°の水浴中5時間撹拌する。濾過し、酸化銀をジメチルホルムアミドで洗い、濾洗液を合せて50°以下で減圧濃縮する。残渣を酢酸エチルで充分抽出し、酢酸エチル層を5%チオ硫酸ナトリウムついで飽和重曹水で洗い、乾燥し、溶媒を留去して黄色油状物10.43gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:ベンゼンー酢酸エチル (5:1))で精製して目的の化合物 3 - Aを微黄色油状物として得る。7.63g (71.0%)。

 $[\alpha]_{D}^{25}-39.8^{\circ}$ (c=1.03, MeOH)

¹H-NMR (CDCl₃, δ) 1.21(3H, d, J=6.8 Hz), 2.47(2H, d, J=6.2 Hz), 2.80(3H, s), 3.38(3H, s), 3.64(3H, s), 5.13(2H, s), 7.34(5H, s)

参考例3-Aと全く同様にして参考例3-B、3-C、3-D、3-Eを行ない、化合物3-B、3-C、3-D、3-Eをそれぞれ油状物として得た。

1H-NWR (CDC13, δ)	0.75~1.05(3H, m), 1.05~1.8(4H, m), 2.48 (2H, t, J=5.5 Hz), 2.75(3H, s), 3.36, 3.38 (3H, s), 3.63(3H, s), 5.13(2H, s), 7.34(5H, s)	0.8~1.15(6H, m), 1.8~2.2(1H, m), 2.4~2.6(2H, m), 2.80(3H, s), 3.31, 3.38 (3H, s), 3.65, 3.66(3H, s), 5.13(2H, s), 7.33(5H, s)	0.7~1.0(6H, m), 1.25~1.6(3H, m), 2.47 (2H, t, J=5.6 Hz), 2.74(3H, s), 3.35, 3.37 (3H, s), 3.62(3H, s), 5.13(2H, s), 7.33(5H, s)	0.7~1.1(6H, m)、1.1~1.9(3H, m)、 2.4~2.6(2H, m)、2.78(3H, s)、3.29, 3.38 (3H, s)、3.66(3H, s)、3.75~4.2(2H, m)、 5.13(2H, s)、7.33(5H, s)
$[\alpha]_{D}^{*}$	-50.7° (25°)	-20.7° (26°)	-34. 2° (26°)	-4.0° (27°)
収率	72.5%	67.9%	83.9%	74. 4%
R ₃	CH₃CH₂CH₂−	CH ₃ >CH-	CH ₃ >CH-CH ₂ -	C₂H₅ CH₃
化合物	3-B	3-C	Q- E	3-E
参考例	3-B	3-C	3-D	3-E

*) c=1.00, MeOH

20

参考例 4 - A

化合物4-A (化合物4においてR₃=CH₃である化合物)の製造 参考例3-Aで得た化合物3-A6.60g(21.36ミリモル)をジオキサン100m1に溶かし、1N水酸化ナトリウム23.5m1 (23.5ミリモル)を加えて室温で2乃至3時間撹拌する。反応液に20%クエン酸を加えてpH4.0としたのち減圧濃縮し、折出した油 状物を酢酸エチルで抽出する。酢酸エチル層を飽和食塩水で洗い、乾燥し溶媒を留去すると無色~微黄色の油状物が残る。

これをジクロルメタン60m1に溶かし濃硫酸0.8m1を加え、耐圧瓶中にてイソブテン25m1と室温にて48乃至96時間振りまぜる。反応液を飽和重曹水に注入し、窒素ガスを吹き込んでイソブテンと大部分のジクロルメタンを除去したのち析出した油状物を酢酸エチルで抽出し、酢酸エチル層を飽和重曹水で洗浄し乾燥する。溶媒を留去して残った黄色油状物(7.32g)をシリカゲルクロマトグラフィ(溶出液:ベンゼン一酢酸エチル(10:1))で精製し目的の化合物4-A6.31g(84.1%)を無色~微黄色の油状物として得る。

 $[\alpha]_{D^{27}}$ -33.0° (c=1.02, MeOH)

¹H-NMR (CDCl₃, δ) 1.21(3H, d, J=6.8 Hz), 1.44(9H, s), 2.38(2 H, d, J=6.2 Hz), 2.82(3H, s), 3.38(3H, s), 3.5~3.85(1H, m), 3.85~4.4(1H, m), 5.13(2 H, s), 7.34(5H, s)

参考例 4-A と全く同様にして参考例 4-B、4-C、4-D、4-Eを行ない、化合物 4-B、4-C、4-D、4-Eをそれぞれ油状物として得た。

10

1 5

	ൂവ		16	75
¹ H-NMR (CDCl ₃ , δ)	0, 7~1.05(3H, m), 1.44(9H, s), 2.25~2.5 (2H, m), 2.77(3H, s), 3.37, 3.38(3H, s), 3.5~3.75(1H, m), 3.75~4.25(1H, m), 5.13(2H, s), 7.33(5H, s)	0.8~1.1(6H, m), 1.45(9H, s), 1.75~2.25 (1H, m), 2.25~2.5(2H, m), 2.81(3H, s), 3.31, 3.39(3H, s), 3.7~4.05(2H, m), 5.13(2H, s), 7.33(5H, s)	0.7~1.0(6H, m), 1.44(9H, s), 2.25~2.5 (2H, m), 2.77(3H, s), 3.36(3H, s), 3.45~3.75(1H, m), 3.8~4.4(1H, m), 5.13(2H, s), 7.33(5H, s)	0.7~1.05(8H, m), 1.45(9H, s), 1.65~1.75 (1H, m), 2.3~2.45(2H, m), 2.79(3H, s), 3.29, 3.39(3H, s), 3.75~4.2(2H, m), 5.13(2H, s), 7.33(5H, s)
$[\alpha]_{D}^*$	-42.0° (27°)	-17.8° (27°)	-28. 9° (26°)	-12.0° **
収率	84. 0%	75. 2% -17. 8° (27°)	75.8%	87. 6%
Rs	CH3CH2CH2-	CH ₃ >CH-	CH ₈ >CH-CH ₂ -	C₂H₅ CH₃
化合物	4-B	4-C	4-D	4-E
参考例	4-B	4-C	4-D	4-E

*) c=1.00, MeOH **) CHC1₃

20

参考例5-A

る化合物)の製造

参考例4-Aで得た化合物4-A0.70g(2.00ミリモル)を
t-ブタノール・水(9:1)20mlに溶かし5%パラジウム炭素の.
1gを加え水素気流下2時間撹拌する。反応後触媒を濾別、洗浄し、濾
洗液を減圧濃縮する。残る油状物をベンゼン30mlに溶かし、再び減
圧濃縮し、更にこの操作をもう一回くり返す。得られた油状物をZーバリン0.56g(2.23ミリモル)と共にアセトニトリル10mlに溶かし氷冷撹拌下DCC 0.43g(2.09ミリモル)を投入する。まもなく結晶が析出する。少くとも3時間0°で、その後氷のとけるにまかせ一夜撹拌をつづけたのち反応液を酢酸エチルでうすめ、結晶を濾別し酢酸エチルで洗う。滤洗液を減圧濃縮しシロップ状残渣を酢酸エチルに溶かし不溶物があれば濾別したのち酢酸エチル溶液を水冷2N塩酸および飽和重曹水で洗い、乾燥し、溶媒を留去して無色油状物1.01gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:ベンゼンー酢酸エチル(5:1))で精製して目的の化合物5-A0.67g(74.4%)を無色油状物として得る。

 $[\alpha]_{D}^{28}-31.4^{\circ}$ (c=1.02, MeOH)

¹H-NMR (CDC1₃, δ) 0.8~1.1(6H, m), 1.17(3H, d, J=6.8 Hz), 1.45(9H, s), 2.25~2.45(2H, m), 3.00(3H, s), 3.37(3H, s), 3.68(1H, dd, J=12.1 Hz, 6.2 Hz), 4.35~4.75(2H, m), 5.09(2H, s), 5.56

(1H, br, d), 7.33(5H, s)

参考例5-Aと全く同様にして以下の化合物を得た。

10

15

5	1 H-NMR (CDC1 $_3$, δ)	0.7~1.1(9H, m), 1.45(9H, s), 2.25~2.45(2H, m), 2.98(3H, s), 3.37(3H, s), 3.6~3.8(1H, m), 4.3~4.7(2H, m), 5.10(2H, s), 5.50(1H, br, d), 7.33(5H, s)	0. 75~1.1(12H, m), 1.46(9H, s), 2.25~2.45(2H, m), 2.97(3H, s), 3.35(3H, s), 3.7~4.0(1H, m), 4.3~4.7(2H, m), 5.09(2H, s), 5.48(1H, br, d), 7.32(5H, s)	0. 7~1. 2(14H, m), 1. 46(9H, s), 2. 25~2. 45(2H, m), 2. 99(3H, s), 3. 34(3H, s), 3. 6~4. 0(1H, m), 4. 35~ 4. 65(2H, dd, J=9. 5Hz, 6. 6Hz), 5. 09 (2H, s), 5. 41(1H, br, d), 7. 32(5H, s)	0.7~1.1(12H, m), 1.46(9H, s), 2.3~2.45(2H, m), 2.97(3H, s), 3.35(3H, s), 3.5~3.8(1H, m), 4.4~4.7(2H, m), 5.08(2H, s), 5.3~5.6(1H, br, d), 7.34(5H, s)
	[a]p*	-46. 2° (27°)	-32. 9° (25°)	-33.6°	-41. 1° (27°)
15	収率	80. 2%	73.6%	76.6%	85. 4%
,	Rs	CH3CH2CH2-	CH ₃ >CH-	CH ₃ >CH-	CH3 >CH-CH2-
20	R2	CH ₃ >CH-	CH _s >CH-	C2H6 CGH-	CH₃ CH₃
	化合物	5-B	ည်	5-D	5-E
	参売の	5-8	. 5-C .	5-D	5-E
		_	<u> </u>		

10

15

* c=1.00, MeOH

参考	参考例5一続					
参考例	参考例 化合物	R2	R3	中	[a]p*	¹H-NMR (CDCI3, S)
5-F	5-F	Н	C₂H₅ CH₃	58.7%	-11.0° (27°)	0. 7~1. 1(6H, m), 1. 45(9H, s), 2. 3~2. 45(2H, m), 2. 82(3H, s), 3. 36(3H, s), 3. 75~4. 15(3H, m), 5. 12(2H, s), 5. 8(1H, br), 7. 34(5H, s)
5-C	5–G	CH _s >CH-	C₂H₅ CH₃	81.3%	-22. 2° (26°)	0. 65~1. 1(12H, m), 1. 45(9H, s), 2. 25~2. 45(2H, m), 2. 96(3H, s), 3. 34(3H, s), 3. 75~4. 05(1H, m), 4. 35~4. 7(2H, m), 5. 10(2H, s), 5. 50(1H, br, d), 7. 33(5H, s)
5-Н	5-Н	C ₂ H ₅ CCH-	C ₂ H ₅ CH-	62. 6%	-26.5° (24°)	0. 7~1.1(12H, m), 1.45(9H, s), 2. 25~2.45(2H, m), 2.97(3H, s), 3.34(3H, s), 3.7~4.05(1H, m), 4.35~4.7(2H, m), 5.09(2H, s), 5.43(1H, br, d), 7.32(5H, s)
5-I	5-I	PhCH ₂ -	C ₂ H ₅ CCH-	59, 3%	-4.8° (26°)	0.65-1.1(9H, m), 1.48(9H, s), 2.1-2.3(2H, m), 2.9-3.1(2H, m), 3.31(3H, s), 3.5-4.0(2H, m), 4.3-4.7(1H, m), 5.06(2H, s), 5.55(1H, br. d), 7.25(5H, s), 7.31(5H, s)

15

参考例6-A

$$CH_3$$
 CH_3 化合物 6 において R_1 $=$ CH_3 CH_3 CH_3 CH_3

ー、R₃=CH₃ーである化合物)の製造

参考例5-Aで得た化合物5-A0.65g(1.44ミリモル)を
t-ブタノール・水(9:1)15m1に溶かし、5%パラジウム炭素
50mgを加え、水素気流下2時間撹拌する。反応後触媒を濾別、洗浄
し、濾洗液を減圧濃縮する。油状残渣をベンゼン30m1に溶かし再び
減圧濃縮、この操作を更にもう一回くり返す。得られた油状物をジメチ
ルホルムアミド6m1に溶かし、N,Nージメチルバリン0.25g
(1.72ミリモル)とDEPC 0.29g(1.78ミリモル)と
を加え、均一な溶液になるまで室温で撹拌したのち氷冷し、トリエチル
アミン0.17g(1.68ミリモル)をジメチルホルムアミド1m1
に溶かした液を4分間で滴下する。その後少くとも4時間0°で、氷の
とけるにまかせ一夜撹拌したのち透明な反応液を酢酸エチルでうすめ、
酢酸エチル溶液を飽和重曹水で充分洗ったのち乾燥する。溶媒を留去し
て残った淡褐色油状物0.66gをシリカゲルのクロマトグラフィー(溶
出液:酢酸エチル・ヘキサン(1:1))で精製して目的の化合物6A0.46g(71.9%)を無色油状物として得た。

 $[\alpha]_{p^{27}-56.5}^{\circ}$ (c=1.00, MeOH)

1 H-NMR (CDC1₃, δ) 0.8~1.1(12H, m), 1.15(3H, d, J=7.0 Hz),
1.45(9H, s), 2.27(6H, s), 3.05(3H, s),
3.38(3H, s), 3.55~3.85(1H, m), 4.35~

4.65(1H, m), 4.65~4.95(1H, m), 0.88(1H,

br, d)

参考例6-Aと全く同様にして以下の化合物を得た。

5

10

15

	37	· (s (;	ć ć
1H-NMR (CDC13, 8)	0.7~1.1(12H, m), 1.46(9H, s), 2.28(6H, s), 3.01(3H, s), 3.37 (3H, s), 3.5~3.85(1H, m), 4.45~4.95(3H, m), 7.65(1H, br, d)	0.75~1.05(12H, m), 1.25 (3H, d, J=7.0 Hz), 1.46(9H, s), 2.25(6H, s), 3.01(3H, s), 3.35(3H, s), 3.7~4.05(1H, m), 4.73(1H, dd, J=9.5Hz, 6.6Hz), 7.62(1H, br, d)	0.7~1.1(12H, m), 1.46(9H, s), 2.30(6H, s), 2.85(3H, s), 3.37(3H, s), 3.8~4.0(1H, m), 4.0~4.2(2H, m), 4.4~4.65 (1H, m), 7.0~7.15(1H, br)
融点 [α])*	-52.7° (26°)	-42. 9° (26°)	-14.5° (26°)
融点	担	坦	坦
及	58.1%	61.8%	90.3%
Rs	CH ₃ >CH-CH ₂ - 58.1%	C₂H ₆ >CH−	C2H5 CH3
R2	CH ₃	CH₃ >CH− CH₃	н
R ₁	Ħ	CH3	CH₃ >CH-
化合物	6-B	၁-9	Q-9
参考例 化合物	6-B	J-9	Q-9

5

15

ţ
ď
Ē
뉡
4

	1H-NMR (CDC13, δ)	0.7~1.1(15H, m), 1.45(9H, s), 2.25(6H, s), 3.02(3H, s), 3.37 (3H, s), 3.5~3.85(1H, m), 4.35~4.65(1H, m), 4.74 (1H, dd, J=9.2Hz, 6.4Hz), 6.84(1H, br, d)	0.7~1.15(18H, m), 1.46(9H, s), 2.25(6H, s), 3.02(3H, s), 3.35(3H, s), 3.7~4.0(1H, m), 4.3~4.6(1H, m), 4.65~4.9 (1H, m), 6.86(1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), 2.25(6H, s), 3.01(3H, s), 3.36(3H, s), 3.5~3.8(1H, m), 4.80(1H, dd, J=9.2Hz, 6.2Hz), 6.85(1H, br, d)
	[\alpha] D	-62.8° (28°)	-51.0°	-57.8°
	融点	埋	122°	甲
	収率	70.3%	77, 5%	79. 2%
	Rs	>CH- CH₃CH₂CH₂-	13 >CH- CH3 >CH-	1s >CH- CHs CCH-CH2- 7
	R2	CH ₃ >CH-	CH ₃ >CH-	CH ₃ >CH-
	. Rı	CH ₃ >CH-	CH₃ >CH-	CH3 >CH-
5 一元	化合物	6-E	6-F	9-9
奓考例 6 一続	参考例	3 –9	6-F	9-9

15

¹ H-NMR (CDC1 ₃ , 8)	0.65~1.15(18H, m), 1.46 (9H, s), 2.26(6H, s), 3.01 (3H, s), 3.35(3H, s), 3.7~4.05(1H, m), 4.80 (1H, dd, J=9.2 Hz, 6.4Hz), 6.89(1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), 2.24(6H, s), 3.01(3H, s), 4.5~4.95(2H, m), 6.95 (1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), -43.3° 2.25(6H, s), 3.01(3H, s), (27°) 3.34(3H, s), 3.7~4.0(1H, m), 4.5~4.95(2H, m), 6.90 (1H, br, d)
融点 [α]D	-44. 4° (27°)	-59. 2° (26°)	(27°)
電流	112°	걛	93°
母母	84. 7% 112° (27°)	80.1%	68.6%
Ra	2sHs >CH− CHs	CH _s >CH-CH ₂ - 80, 1% 油	C2H; >CH-
R2	CH ₃ CCH-	CH ₃	C ₂ H ₅ CH-
R1	-EX- ES- ES- ES-	C2H6 CH3	C2H6 CCH-
化合物	H-9	6-I	6-1
参考例 化合物	н-9	I-9	6-1

.5

1 5

20

参老例6一統

		35	s), 3.31 1.3- 1=8.8Hz, 7.26(5H,), 34 82
	, S)	46(9H, s.) H, s.), 3. m), 4.7 ⁷ =6, 4Hz),	48(9H, s),)H, s), 3.31 l, m), 4.3- l, dd, J=8.8Hz, r, d), 7.26(5H,	46(9H, s) 3H, s), 3, 1, m), 4.8
	1H-NMR(CDC13, 8)	H, m), 1.), 3.00(3) 7-4.0(1H, =9.0Hz, J	I, m), 1.), 2.76(5) 6-3.9(1) 5.26(1) 87(11, b)	I, m), 1.), 3.01(5) 7-4.0(11 =9.2Hz, J
	1-H ₁	0.7-1.1(12H, m), 1.46(9H, s), 2.42(6H, s), 3.00(3H, s), 3.35 (3H, s), 3.7-4.0(1H, m), 4.74 (1H, dd, J=9.0Hz, J=6.4Hz), 7.75(1H, br. d)	0. 7-1. 0(15H, m), 1. 48(9H, s), 2. 19(6H, s), 2. 76(3H, s), 3. 31 (3H, s), 3. 6-3. 9(1H, m), 4. 3- 4. 7(1H, m), 5. 26(1H, dd, J=8. 8Hz 7. 7Hz), 6. 87(1H, br, d), 7. 26(5Hs)	0. 7-1. 1(18H, m), 1. 46(9H, s), 2. 27(6H, s), 3. 01(3H, s), 3. 34 (3H, s), 3. 7-4. 0(1H, m), 4. 82 (1H, dd, J=9. 2Hz, J=7. 0Hz), 6. 80(1H, br, d)
·		0.430.5	0.93, 4.5. y	0.42,0.0
	[\alpha] b	** -25. 7° (24°)	-18.0°	-45.7° (27°)
-	融点	坦	坦	104°
	収率	72. 7%	86. 0%	72.5%
·	Rs	C ₂ H ₅ CH- CH-	C2H5 CH- CH3	C ₂ H ₅ CH- CH-
	R2	CH ₃ CH- CH-	PhCH ₂	C ₂ H ₅ CH- CH-
	Rı	Н	CH ₃ CH- CH ₈	CH ₃ CH-
HOL.	化合物	9-К	9-L	N-9
	参考例	6-К	7-9	₩-9

* c=1.00, MeOH

参考例7

化合物 7 ー A (化合物 7 においてR4=Hである化合物)の製造 無水テトラヒドロフラン10 m 1 に 23.8% L D A テトラヒドロフラン: ヘキサン (1:1)溶液 7 m 1 (15.5ミリモル)を-20℃で窒素雰囲気下、撹拌しながら滴下する。ついでドライアイスーアセトン浴で-78℃に冷却する。酢酸ベンジル2.3g (15ミリモル)を30分間かけて滴下し、-78℃で5分間撹拌した後、Boc-L-プロリナール2.0g (10ミリモル)をテトラヒドロフラン10 m 1 に溶かした溶液を1時間かけて滴下する。-78℃で10分間撹拌した後、氷冷した1 N塩酸30 m 1を加え、室温まで温度を上げる。酢酸エチル

で抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的の化合物7-A1. 12g(32.0%) を油状物として得た。

 $[\alpha]_{D}^{25}$ -23.7° (c=1.26, CHC1₃)

MS 331, 276

¹H-NMR (CDCl₃, δ) 1.46(9H, s), 2.47(2H, d, J=6.8 Hz), 3.7~ 4.3(2H, m), 5.15(2H, s), 7.2~7.4(5H, m)

参考例8

15

化合物8-A (化合物8においてR₄=Hである化合物)の製造 参考例7で得た化合物7-A560mg (1.6ミリモル)をジクロルメタン27m1に溶かし氷-食塩で冷却下BF₃・Et₂O 202μ1 (1.6ミリモル)を加え、ジアゾメタン (32ミリモル)のエーテル溶液を30分間で滴下する。氷-食塩で冷却下さらに2時間撹拌後飽

和重曹水2m1を加える。不溶物を濾過して除いた後、酢酸エチル抽出 して水洗し、乾燥する。溶媒を減圧で留去してヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精 製し、油状の目的の化合物8-Aを378mg(65.0%)得た。

 $[\alpha]_{p^{25}-58.7}^{\circ}$ (c=0.52, CHCl₃)

MS 241, 218

¹H-NMR (CDC1₃, δ) 1.46(9H, s), 2.47(2H, d, J=7.5 Hz), 3.34(3 H, s), 3.6~4.3(2H, m), 5.14(2H, s), 7.2~7.4(5H, m)

8 参考例 9

融点 81.0~84.1℃

MS 232 (M⁺), 159

 1 H-NMR (CDCl₃, δ) 1.24(3H, d, J=6.6 Hz), 1.45(9H, s), 2.1(1 H, br), 4.42(1H, d, J=8.1 Hz)

参考例10

化合物10-A(化合物10においてR₅=CH₈である化合物)の製造 参考例9で得た化合物9-A1.34g(5.77ミリモル)と二酸 化マンガン12.5gをベンゼン58ml中55℃で1.5時間撹拌する。懸濁液を濾過して溶媒を減圧で留去し、ヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製した。目的の化合物10-Aを油状物として、118mg(9.0%)得た。

 $[\alpha]_{D}^{22}-36.0^{\circ}$ (c=1.29, CH₂Cl₂)

MS 228(M⁺) 172

 $^{1}\text{H}-\text{NMR}$ (CD₂Cl₂, δ) 1.43(9H, s), 1.56(3H, d, J=7.2 Hz), 4.9 \sim 5.2(2H, m), 7.26(1H, d, J=3.3 Hz), 7.67 (1H, d, J=3.3 Hz)

参考例11-A

20

化合物 1 1 - A (化合物 1 1 において R₄ = H、 R₅ = P h C H₂である) 化合物の製造

参考例8で得た化合物8-A 2 2 0 m g (0.604ミリモル)を t ーブタノール:水(9:1)9 m l に溶かしパラジウム炭素を 50 m g 加え水素気流下撹拌する。反応終了後、反応液を濾過して溶媒を減圧下留去すると固形物が165 m g (0.604ミリモル)得られる。これをアセトニトリル3 m l に溶かしBOP試薬 267 m g (0.604ミリモル)、既知化合物である化合物 10 ーB(化合物 10 において R_5 = CH_2 Phである化合物)から得られるトリフルオロ酢酸塩 192 m g (0.604ミリモル)を加え、氷冷下ジイソプロピルエチルアミン 195 m g (1.51ミリモル)を滴下する。室温で 1 晩撹拌した後、

溶媒を減圧下留去してジクロルメタンに溶かし、10%クエン酸、飽和重曹水、飽和食塩水で洗い、乾燥した。溶媒を減圧で留去し、得られた粗生成物をジクロルメタンーメタノール(50:1)を溶出液とするシリカゲルのカラムクロマトグラフィーで精製した。目的の化合物11-Aを無定形粉末として262mg(94.4%)得た。

 $[\alpha]_{P}^{27}-86.4^{\circ}$ (c=0.43, MeOH)

MS 428 368

¹H-NMR (CDC1₃, δ) 1.47(9H, s), 2.29(2H, d, J=6.2 Hz), 3.27(3 H, s), 5.63(1H, m), 7.1~7.3(6H, m), 7.40(1 H, d, J=3.3Hz)

参考例11-B

10

20

化合物 11-B (化合物 11 において $R_4=CH_8$ 、 $R_5=CH_8$ の化合物)の製造 参考例 11-A と全く同様に、既知化合物である化合物 8-B (化合物 8 において $R_4=CH_8$ である化合物)と参考例 10 で得た化合物 10-A を処理して、目的の化合物 11-B を得た。収率 62.0%、油状物。

 $[\alpha]_{D^{26}}-100^{\circ}$ (c=1.3, MeOH)

MS 365, 324, 309

¹H-NMR (CDC1₃, δ) 1. 26(3H, d, J=6. 7 Hz), 1. 48(9H, s), 1. 63(3 H, d, J=6. 7 Hz), 3. 43(3H, s), 5. 2~5. 6(1H, m), 7. 23(1H, d, J=3. 3 Hz), 7. 69(1H, s, J=3. 3 Hz)

参考例12-A

化合物 13-C (化合物 13 において $R_6=OCH_2Ph$ である化合物)

の製造

既知物である化合物 13-A (化合物 13において $R=OCH_3$ である化合物) 0.87g (2.4ミリモル)をエタノール5m1に溶かし 1N水酸化ナトリウム3m1を加える。室温で30分間撹拌後溶媒を減圧で留去して水を加えクエン酸で酸性とした後、酢酸エチルで抽出した。水洗して無水硫酸ナトリウムで乾燥し、溶媒を減圧で留去すると化合物 13-B (化合物 13 において $R_6=OH$ である化合物)の結晶 0.6 8g (83.3%)が得られた。

この結晶 70 mg (0. 2ミリモル)をジクロルメタン0. 5 mlに 溶かし、4ージメチルアミノピリジン2. 4 mg (0. 02ミリモル)、ベンジルアルコール30 mg (2. 4ミリモル)を加え、氷冷下DCC 50 mg (2. 4ミリモル)を加える。氷冷下1時間撹拌後室温で1 晩撹拌する。析出した結晶を遮別した後、濾液を酢酸エチルでうすめ、飽和重曹水、飽和食塩水で洗い、乾燥する。溶媒を減圧で留去し得られた粗生成物を、TLC [展開溶媒、ヘキサン:酢酸エチル=2:1]で精製して融点 111. 5~113. 4°の結晶 (化合物 13 - C) 79. 6 mg (91. 0%)を得た。

 $[\alpha]^{26}_{D}$ +8.38° (c=0.37, MeOH)

MS 438(M+) 382 365

¹H-NMR (CDCl₃, δ) 1.38(9H, s), 3.31(2H, br. d, J=5.5 Hz),
5.1~5.3(2H, m), 5.4(2H, s), 7.0~7.5(10H,
m), 8.04 (1H, s)

参考例12-B

化合物13-D (化合物13においてR₆=NHPhである化合物)の

製造

化合物 1 3 - B 2 8.2 mg (0.0809ミリモル)をジクロルメタン 0.5 mlに溶かし、BOP試薬 3 5.8 mg (1.0当量)及びアニリン9 mg (1.2当量)を加え、水冷下ジイソプロピルエチルアミン 1 5.7 mg (1.5当量)を滴下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし 10%クエン酸水飽和重曹水飽和食塩水で洗い乾燥した。粗組成物をヘキサン一酢酸エチル (2:1)を展開溶媒とするpreparative TLCで精製し目的の化合物 13-D 35 mg (100%)を結晶として得た。

 $[\alpha]^{26}$ _D -15.7° (c=0.305, MeOH)

MS 423, 368

¹H-NMR (CDC1₃, δ) 1.42(9H, s), 3.31(2H, d J=6.4), 4.9-5.4 (2H, m), 7.0~7.8(11H, m), 8.09(1H, s)

同様にして参考例12-C、12-Dを行ない、以下の化合物を得た。

15

20

¹H-NMR(CDC1s, δ)	1. 40(9H, s), 1. 49(9H, s), 3. 27(2H, d, J=5. 9Hz), 5. 0-5. 4(2H, m), 7. 0-7. 4 (6H, m), 7. 93(1H, s)	1.41(9H, s), 3.25(2H, d, J=6.4Hz), 3.76(8H, br.), 5.0-5.5(2H, m), 6.9-7.3 (6H, m), 7.84(1H, s)
MS	404	417
[α] ο	-21. 0° (c=0. 315, CHC1 ₈) (25°)	-28. 2° (c=0. 355, CHC1 ₃ (25°)
収率	100%	96. 4%
R_{6}	-NH-Bu	٥
化合物	13-E	13-F
参考例	12-C	12-D

参考例13-A

化合物 15-A (化合物 15 において R_4 = CH_3 、 R_6 = OCH_3 である 化合物) の製造

既知物である化合物13-A330mg(0.91ミリモル)をジクロルメタン1.4mlに溶かし氷冷下、トリフルオロ酢酸を0.6ml加え室温で1.5時間撹拌する。溶媒を減圧で留去してエーテルを加えると結晶化する。この白色結晶を濾取して乾燥する。収量339mg(98.9%)。

この結晶 3 1 4 m g (0.835 ミリモル)をアセトニトリル4.2 m 1 に溶かし、BOP試薬 3 6 9 m g (0.835 ミリモル)及び既知物である化合物 1 4 (R4=CH3) 2 4 0 m g (0.835 ミリモル)を加え、氷冷下ジイソプロピルエチルアミン2 7 0 m g (2.09 ミリモル)を滴下する。室温で1晩撹拌した後反応液を酢酸エチルでうすめ、10% クエン酸水、飽和重曹水、飽和食塩水で洗い、乾燥した。粗生物をジクロルメタンーメタノール(50:1)を溶出液とするシリカゲルのカラムクロマトグラフィーで精製し、目的の化合物 15 - A 4 3 1 m g (97.1%)を粉末として得た。

 $[\alpha]^{29}_{D}$ -61.5° (c=1.02, MeOH)

MS 499, 440

 1 H-NMR (CDC1₃, δ) 1.12(3H, d, J=7.0 Hz), 1.47(9H, s), 3.35 (3H, s), 3.95(3H, s), 5.4~5.7(1H, m), 7.22(6H, m), 8.05(1H, s)

参考例13-Aと同様にして以下の化合物を得た。

¹H-NMR(CDCl₃, δ)	1, 21(3H, d, J=7.0Hz), 1, 46(9H, s), 3, 34(3H, s), 5, 40(2H, s), 5, 56(1H, m), 7, 1-7, 5(11H, m), 8, 05(1H, m)	1.46(9H, s), 3.27(3H, s), 3.95(3H, s), 5.60(1H, m), 7.0-7.3(6H, m), 8.05(1H, s)	1.15(3H, d, J=7.0Hz), 1.48(9H, s), 3.38(3H, s), 7.1-7.8(11H, m), 8.08(1H, s)
SW	607 575	518 490	593
[\alpha] \bar{n} (MeOH)	-55.8° (c=1.11) (25°)	-67. 2° (c=1. 96) (25°)	-38.5° (c=0.33) (27°)
収率	86.8%	83. 7%	99. 7%
Re	OCH 2Ph	OCH ₃	NHPh
R4	CH3	н	CH ₃ :
化合物	15-B	15-C	15-D
参考例	13-B	13-C	13-D

	•		
	¹H-NWR(CDC13, δ)	1. 14(3H, d, J=7. 0Hz)、 1. 48(18H, s)、2. 05(2H, br.)、3. 36(3H, s)、7. 0-7. 4(6H, m)、7. 92(1H, s)	1.14(3H, d, J=6.8Hz), 1.48(9H, s), 3.36(3H, s), 7.0-7.4(6H, m), 7.82(1H, s)
:	SM	572 540	587 554
	$[\alpha]_{b}$	-62. 3° (c=0. 326) (27°)	-57.5° (c=0.323) (26°)
	収率	96.9%	100%
	$R_{m{\theta}}$	NH-Bu+	O _N -
-	R4	СИз	CH3
	化合物	15-E	15-F
(続き)	参考例	13-E	13-F

1 5

参考例14-A

化合物 1 7 - A (化合物 1 7 において - A 2 - R 7 = C H 2 C H 2 - P h の 化合物) の製造

既知化合物 8-B (化合物 8 において R_4 = CH_8 の化合物)から参考例 11 にしたがって得られるカルボン酸 30.5 mg (0.106 ミリモル)をアセトニトリル 1 ml に溶かし、BOP 試薬 51.6 mg (1.1 当量)及びフエネチルアミン 14.1 mg (1.1 eq)を加え、氷冷下ジイソプロピルエチルアミン 20.6 mg (1.5 当量)を滴下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし 10 % クエン酸水、飽和重曹水飽和食塩水で洗い乾燥した。粗生成物をジクロルメタンーメタノール(10:1)を展開溶媒とする preparative TLCで精製し、目的の化合物 17-A 38.3 mg (92.5%) を粉末として得た。

 $[\alpha]^{26}_{D}$ -21.6° (c=1.02, MeOH)

NS 358, 317

 $^{1}\text{H}-\text{NMR}$ (CDC1₃, δ) 1.19(3H, d, J=7.0 Hz), 1.48(9H, s), 3.37 (3H, s), 7.1-7.4(5H, m)

参考例14-Aと全く同様にして以下の化合物を得た。

5		\$),	s),	s),	' (s
10	1H-NMR(CDC13, 8)	1.33(3H, d, J=7.0Hz), 1.48(9H, s), 3.51(3H, s), 7.0-7.7(5H, m)	1. 26(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 42(3H, s), 4. 43(2H, d, J=5. 7Hz), 7. 30(5H, s)	1. 22(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 44(3H, s), 7. 1∼7. 4(5H, m)	1.23(3H, d, J=7.0Hz), 1.45(9H, s), 3.40(3H, s), 7.1~7.4(5H, m)
	SH	330 289	303	372 331	391 358
	$[\alpha]_{\mathfrak{D}}$ (MeOH)	-59. 4° (c=0. 204) (29°)	-19. 2° (c=0. 285) (29°)	-36. 1° (c=0. 23) (28°)	-111. 6° (c=0. 865) (25°)
15	収率	80. 6%	86.6%	87. 2%	87. 7%
	-A2-R7	√h-	CH ₂ Ph	-CH2CH2CH2Ph	CH ₃ (S)/ -CH ₂ Ph
20	化合物	17-B	17-C	17-D	17-E
	参考例	14-B	14-C	14-D	14-E

5	¹H-NMR(CDC1s, δ)	1. 23(3H, d, J=6. 8Hz)、 1. 48(9H, s)、3. 44(3H, s)	1. 20(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 37(3H, s), 7. 2-8. 2(7H, m)	1. 35(3H, d, J=7.0Hz), 1. 47(9H, s), 3. 51(3H, s), 6. 97(1H, d, J=3.7Hz), 7. 45(1H, d, J=3.7Hz)
	MS	397 364	440	337 296
	[a] p (MeOH)	-36.5° (c=1.145) (26°)	-27. 2° (c=0. 328) (29°)	-73. 2° (c=0. 342) (29°)
15	収率	Н 66.8%	91.2%	71.7%
	-A2-R7	-CH2CH2 -(H)	-CH2CH2	
20	化合物	17-F	17-G	17-H
(統含)	参考例	14-F	14-6	14-H

15

参考例15

化合物 18-A (-A₂-R₇=CH₂CH₂ の化合物)の製造

化合物8を出発原料とし、フローシート6に示したごとく脱ベンジル化(参考例11参照)、脱BOC化、Z化の各工程を経由して得たZ化カルボン酸とトリプタミンとから参考例14-Aと同様にして化合物18-Aを得た。

 $[\alpha]^{28}D$ -6.4° (c=1.41, MeOH)

MS 593, 560

¹H-NMR (CDC1₃、δ) 1.0-1.3(3H, m)、3.28(3H, s)、6.9-8.0(6H, m) 実施例 1

$$CH_3$$
 $R_3 = CH - CH_2$ 、 $R_4 = CH_3$ 、 $R_5 = PhCH_2$ である化合 CH_3

物)の製造

参考例6-Gで得た化合物6-G108mg(0.222ミリモル)に氷冷下濃塩酸1mlを加え1時間撹拌する。減圧乾固したのちジメチルホルムアミド2mlに溶かし氷冷しながらトリエチルアミン0.15mlを加える。トリエチルアミン塩酸塩が析出してくるがそのまま減圧乾固して乾燥する。一方既知化合物である化合物11-C(化合物11

15

20

において R_4 = CH_3 、 R_5 = $PhCH_2$ である化合物)105mg(0.2221リモル)を酢酸エチル0.4m1に溶かし氷冷下2N塩化水素 /酢酸エチル6.3m1加える。室温で1時間撹拌したのち溶媒を減 圧で留去し、乾燥する。得られた吸湿性結晶をジメチルホルムアミド1.6m1に溶かし上記のトリペプチドカルボン酸に加え氷冷下90%DE PC 40mg(0.2221リモル)とトリエチルアミン $62\mu1$ (0.4441リモル)を加える。氷冷下1時間撹拌後、室温で1晩撹拌する。溶媒を減圧で留去してジクロルメタンに溶かし飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタンーメタノール(20:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的物を含むフラクションを、更にヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセファデックスLH-20クロマトグラフィーで精製した。目的の化合物12-Aを無定形粉末として137mg(78.4%)得た。

 $[\alpha]_{D^{27}}-89.0^{\circ}$ (c=0.60, MeOH)

NS 741, 693

¹H-NMR (CDC1₃, δ) 2.32(6H, s), 2.96(3H, s), 3.32(3H, s), 3.40(3H, s), 5.56(1H, m), 6.8~7.3(9H, m), 7.73(1H, d, J=3.3 Hz)

実施例2-14

実施例1と全く同様にして実施例2~14を行ない、以下の化合物を 得た。

1H-NMR (CD ₂ CI ₂ , δ)	2. 29(6H, s), 2. 82 (3H, s), 3. 31(3H, s), 3. 33(3H, s), 5. 52(1H, m), 6. 9~7. 4(9H, m), 7. 73 (1H, d, J=3. 3 Hz)	1. 24(3H, d, J=7.0 Hz), 1. 60(3H, d, J=7.0 Hz), 2. 23(6H, s), 2. 99(3H, s), 3. 30(3H, s), 3. 39(3H, s), 6. 75(1H, d, J=9.2 Hz), 7. 12(1H, d, J=8.1 Hz), 7. 25(1H, d, J=3.3 Hz), 7. 66(1H, d, J=3.3 Hz),	2. 48(6H, s), 3. 02 (3H, s), 3. 32(6H, s), 7. 0~7. 4(9H, s), 7. 71(1H, d, J=3. 3 Hz)
MS	742(M+) 699 667	999	770(M ⁺) 727 679
旋光度 (NeOH)	-61. 6° (25°) c=1. 30	-84. 9° (26°) c=1. 02	-79. 4° (23°) c=0. 33
R5	-61, 6° PhCH ₂ - (25°) c=1, 30	СИз	PhCH ₂ -
R4	CH3	CH3	CH3
Rs	C ₂ H ₅ CH CH ₃	C ₂ H ₅ CCH- C	CH _s CH-
R2	H	GBs >CB-	CH ₃ >CH-
R ₁	CH ₃	12-C CH ₃ CCH- CH ₃	CH3 >CH-
化合物	12-B	12-C	12-D CH _s
実施例 化合物	. 23	က	4

1 5

!	0 集	
	1	
	1 4	
	γ	
	6	
	格鱼	

¹ H-NMR (CD ₂ Cl ₂ , δ)	2. 27(6H, s), 3. 02(3H, s), 3. 25(3H, s), 5. 62(1H, m), 6. 88 (1H, d, J=9. 0 Hz), 7. 1~7. 3(6H, m), 7. 59 (1H, d, J=7. 9 Hz), 7. 73(1H, d, J=3. 3 Hz),	2. 21(6H, s), 2. 96(3H, s), 3. 32(3H, s), 5. 52(1H, m), 6. 85 (1H, d, J=8. 8 Hz), 7. 0~7. 3(7H, m), 7. 72(1H, d, J=3. 3 Hz),	2.21(6H, s), 3.01(3H, s), 3.31(6H, s), 5.51(1H, m), 6.79(1H, d, J=9.2 Hz), 7.1~7.5(7H, m), 7.71 (1H, d, J=3.3 Hz),
SI	-76.1° 770(M ⁺) (28°) 727 c=0.47 679	798(N+) 755 741	812(H+) 755 721
旋光度 (NeOH)	-76. 1° (28°) c=0. 47	-87.5° (24°) c=0.33	-80. 6° (24°) c=0. 37
Rs	PhCH2-	PhCH ₂ -	PhCH ₂ -
R4	æ	E CH	СН3
R3	C₂H₅ CH₃	CH ₃ CH-CH ₂ - CH ₃	C₂H₅ CH₃
R2	CH3 CH3	GB. CB-	C₂H₅ CH₃
R ₁	-#5	12-F C2H5 CH-	C2H5 CH3
化合物	CH ₃	12-F	12-G
実施例 化合物	വ	9	7

15

実施例2~14~続

		· · · · · · · · · · · · · · · · · · ·	(62	
1H-NMR(CDCl3, 8)	2. 97(3H, s), 3. 24 (3H, s), 3. 36(3H, s), 5. 63(1H, m), 7. 1-7. 3 (7H, m), 7. 73(1H, d, J=3. 3Hz)	3. 02(3H, s) 3. 33 (6H, s) 5. 56(1H, m) 7. 1-7. 3(7H, m) 7. 73 (1H, d, J=3, 1Hz)	2. 97(3H, s) 3. 33 (6H, s), 5. 56(1H, m), 7. 1~7. 3(7H, m), 7. 73 (1H, d, J=3. 1Hz)	3. 28(3H, s). 3. 33(6H, s). 5. 56(1H, m). 7. 1 -7. 3(7H, m). 7. 73(1H, d, J=
SE.	770	798 755	770	742 699
$\begin{bmatrix} \alpha \\ \text{MeOH} \end{bmatrix}$	-90. 2° (c=0. 34) (27°)	-70. 4° (c=0. 26) (27°)	-82. 9° (c=0. 21) (26°)	-79. 1° (c=0, 665) (25°)
Rs	PhCH ₂ -	PhCH ₂ -	PhCH ₂ -	PhCH ₂ -
R4	PH	CH3	GB.	CH3
R ₃	CH ₂ CH-CH ₂ CH-CH ₂ CH ₃ CH-CH ₂ CH ₂ CH ₂ CH ₃ CH-CH ₂ CH ₂ CH ₃ CH-CH ₂ CH ₂ CH ₂ CH ₃ CH-CH ₂ CH ₃ CH-CH ₂ CH ₃ CH-CH ₃ CH ₃ CH-CH ₂ CH ₃ CH-CH ₃	C ₂ H ₅ .	CH3CH2CH2-	°HЭ.
R ₂	CH ₃ CH-	C ₂ H ₅ CH- CH ₃	GB. GF	GH ₃
R ₁	CH ₃ CH-	CH3 CH-	CH3 CH-	CH ₃
化合物	12-н	12-I	12-J	12-K
実施例	∞	. 6	10	11

実施例2~14-続き

1 × / 12		,							
実施例	化合物	R ₁	R ₂	Rs	R4	Rs	[α] (MeOH)	NS N	1H-NMR(CDC13, 6)
12	12-L	н	CH _s CH-	C ₂ H ₅ CH- CH ₃	CH3	PhCH2-	-79.3° (C=0,545) (24°)	742	2. 65(6H, s), 3. 01 (3H, s), 3. 33(6H, s), 5. 55(1H, m), 7. 1- 7. 3(7H, m), 7. 73(1H, d, J=3. 1Hz)
13	12-M	CH ₃	PhCH ₂ ~	C ₂ H ₅ CH- CH ₃	CHs	PhCH ₂ -	-67.8° (c=0.905) (25°)	832 789	2.90(3H, s), 3, 33 (3H, s), 3, 34(3H, s), 5.56(1H, m), 7, 1- 7.3(7H, m), 7.72(1H, d, J=3, 3Hz)
14	12-N	CH3	CH ₃ CH-	C ₂ H ₆ CH-	E	PhCH ₂ -	-80.6° (c=0.17) (26°)	756 665	2, 44(6H, s), 3, 02 (3H, s), 3, 33(6H, s). 5, 40(1H, m), 7, 1- 7, 3(7H, m), 7, 73(1H, d, J=3, 1Hz)

10 .

5

15

実施例15

$$CH_3$$
 C_2H_5 CH_3 CH_3 $CH_4 = CH_3$, $R_6 = OCH_3$ CH_3

化合物)の製造

15

20

化合物 6 - H 9 3 m g (0. 192 ミリモル) に氷冷下濃塩酸

0. 5 m l を加え l 時間撹拌する。減圧乾固したのち、ジメチルホルム
アミド 2 m l に溶かし、氷冷しながらトリエチルアミン 0. 15 m l を
加える。トリエチルアミン塩酸塩が析出してくるが、そのまま減圧乾固
して乾燥する。

一方、参考例13-Aで得た化合物15-A102mg(0.192ミリモル)を酢酸エチル0.4m1に溶かし、氷冷下2N塩化水素/酢酸エチルを3.3m1加える。室温で1時間撹拌後溶媒を減圧で留去し乾燥する。得られた吸湿性結晶をジメチルホルムアミド0.8m1に溶かし、上記のトリペプチドカルボン酸に加え氷冷下90%DEPC 35mg(0.192ミリモル)とトリエチルアミン54μ1(0.384ミリモル)を加える。氷冷下1時間撹拌後、室温で1晩撹拌する。

溶媒を減圧で留去してジクロルメタンに溶かし、飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタン:メタノール (30:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的物フラクションをさらにヘキサン:ジクロルメタン:

メタノール (2:7.5:2.5) を溶出液とするセファデックスLH -20クロマトグラフィーで精製した。目的の化合物 16 -A を無定形 粉末として 100 mg (62.0%) 得た。

 $[\alpha]^{27}_{D}$ -64.7° (c=0.66, MeOH)

MS 799, 751

1H—NMR (CDC1₈、δ) 2.33(6H, s), 3.02(3H, s), 3.32(6H, s), 3.95(3H, s), 5.53(1H, m), 6.8~7.5(7H, m), 8.05(1H, s)

実施例16-22

実施例15にしたがって実施例16~22を行ない、以下の化合物を 4た。

20

化合物	R ₁	Rs	Rs	R4	Re	$\begin{bmatrix} \alpha \\ \text{NeOH} \end{bmatrix}$	SX	1 H-NMR (CDC18, &)
	Cits	E E	C ₂ H ₅	Ë	OCH.Ph	-61.6° (c=0.83)	886 875	2. 51 (6H, br.) 3. 02 (3H, s), 3. 32 (6H, s), 5. 39 (2H, s), 5. 52
10-10 21-01	G. S.	CH ₃	CH3			(25,5)	843	公 合
	CH³	GH ₃	C ₂ H ₅	:	1130	-73.3	828 7828	3.02(3H, s) 3.26 (6H, s) 3.95(3H, s) 7.7.7.7.7.8 9.05
16-c	CH ₃	- E	CH ₃	=	s S S	(26°)	6	(1H, s)
	EB	CH ₃	CH3	5	noo	-71.0°	842 700	2. 32(6H, s), 2. 97 (3H, s), 3. 32(3H, s),
16-0	-E	-E	CH ₃	S C C	ОСИЗ	(26°)	2	(%B
	CB3	EB.	CH ₃	•		-76.8%	828	2. 98(3H, s), 3. 24 (3H, s), 3. 34(3H,
16-E	GE .	# # # # # #	CH ₃	==	UCH3	(27°)	69)	5. 60(1H, m), 7. 1~ 7. 3(6H, m), 8. 05 (1H, s)

1 5

			1						
実施例	化合物	R ₁	R2	R3	R4	Re	$\begin{bmatrix} \alpha \end{bmatrix}_{\text{MeOH}}$	WS.	¹H-NMR(CDC13, ô)
	,	CH3	GH.s.	C2H8	E.	-NHPh	-42.9° (c=0.385)	.093 803	3. 00(3H, s), 3. 33 (3H, s), 3. 34(3H, s), 5. 55(1H, m), 5. 55
07	16-1	CH ₃	E. S.	CH ₃			(27°)		(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
		CH3	CH ₃	C ₂ H ₆	Ę	-NHR ₁₁ t	-60, 7°	888 888 888	1, 48(9H, s), 2, 51 (6H, br.), 3, 03(3H s), 3, 33(6H, s),
21	16-6	ER.	CH ₃	CH3			(282)	3	5. 49(1H, m), 7. 1- 7. 3(6H, m), 7. 90 (1H, s)
		CH3	E E	C ₂ H ₆	£	2	-64.4° (c=0.341)	897 854	2. 44(6H, br.) 3. 03 (3H, s) 3. 33(6H, s). 5. 56(1H, m) 7. 1-
25	16-H	-E. S.	E S	CH ₃	3				7.3(6H, m)、7.82 (1H, s)

実施例23

$$CH_3$$
 C_2H_5
 $CH-$, $R_3=$ $CH-$, $R_4=CH_3$, $R_6=OBu$ 'Table CH₃
 CH_3 CH_3

化合物)の製造

10

15

- - 2. 上記カルボン酸30mg(0.024ミリモル)をジクロルメタン0.5mlに溶かし、ドライアイスーアセトンで冷却下濃硫酸10μlとイソブテン1mlを加え、封管中2日撹拌する。反応液に飽和重曹水5mlを加えてジクロルメタンで抽出し、水洗後乾燥する。溶媒を減圧で留去しヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセファデックスLH-20クロマトグラフィーで精製し、目的物の化合物16-Iを無定形粉末として13mg(62.5

10

15

%) 得た。

 $[\alpha]^{25}$ _D -60.6° (c=0.35, MeOH)

MS 841, 840, 793

1H-NMR (CD₂Cl₂, δ) 1.58(9H, s), 2.57(6H, br.), 3.02(3H, s), 3.31(6H, s), 5.46(1H, m), 7.0~7.4(7H, m), 7.93(1H, s)

実施例24

 CH_3 C_2H_5 CH_3 $CH_4 = CH_3$, $R_6 = -NH_5$ CH_3 CH_3 CH_8

である化合物)の製造

化合物 16 カルボンサン(R_6 =OH) 21.5 mg(0.026 ミリモル)をアセトニトリル0.5 m1に溶かし、BOP試薬11.5 mg(1 当量)及び2-アミノチアゾール2.6 mg(1 当量)を加え、氷冷下ジイソプロピルエチルアミン5 mg(1.5 当量)を滴下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし、10 %クエン酸水、飽和重曹水、飽和食塩水で洗い乾燥した。粗生成物をジクロルメタン-メタノール(10:1)を展開溶媒とするpreparative Tして分取し、目的物フラクションをさらにヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセフアデックスLHー20 クロマトグラフイーで精製し、目的の化合物 16-J 13.7 mg

(57.7%)を無定形粉末として得た。

 $[\alpha]^{28}$ _D -48.8° (c=0.25, MeOH)

MS 910, 867

¹H-NMR (CDC1₈、δ) 3.01(3H, s), 3.33(3H, s), 3.37(3H, s), 5.52(1H, m), 7.05(1H, d, J=3.5Hz), 7.2-7.3 (6H, m), 7.50(1H, d, J=3.3Hz), 8.16(1H, s)

実施例25

10

20

 CH_3 C_2H_5 $CH-、R_3=$ $CH-、R_4=CH_3、R_6=NH_2$ である化 CH_3 CH_3

合物)の製造

化合物 16-A21mg(0.025ミリモル)をアンモニアー飽和 メタノール 3 m 1 に溶かし室温に 1 時間放置する。溶媒を減圧で留去してヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセファデックス LH-20クロマトグラフィーで精製し、目的の化合物 16-Kを無定形粉末として 20mg(96.0%)得た。

 $[\alpha]^{25}$ _D -65.8° (c=0.41, MeOH)

MS 784, 736

¹H-NMR (CDC1₃, δ) 2.48(6H, s), 3.06(3H, s), 3.33(6H, s), 5.50(1H, m), 7.0~7.6(7H, m), 8.04(1H, s)

実施例26-27

実施例25の「ンモニア飽和メタノールの代りに70%エチルアミン 水溶液又は5%ジメチルアミン水溶液を用いて下表に示す化合物を得た。

5

10

15

		4			-			٤	(a 1997) and 11
化合物	J.	K ₁	K2	Кз	K4	В	(WeOH)	Q E	· H-NMK(CDCL3, O)
		 B	CH ₃	C ₂ H ₅	ŧ	II CIII	-63.5°	812	2. 48(6H, s), 3. 02 (3H, s), 3. 32(6H, s),
16-L		-E \ E	CH.	EI	<u></u>	-NHC2H5	(c=0, 32) (25°)	104	5. 40(11, m)、 (. 0- 7. 5(7H, m)、 7. 92 (1H, s)
		E E	Œ,	C ₂ H ₆		CH3.	-67.1°	885	1. 67(6H, s), 3. 16 (3H, s), 3. 33(3H,
16-M		CH ₃	CH _s	-t ct-	CH ₃	N CHs	(c=0.255) (28°)	812	s)、7.1-7.3(6H, m)、 7.26(1H, s)

1 5

10

15

20

実施例28

$$CH_3$$
 C_2H_5 CH_3 CH_3 CH_4 CH_4 CH_5 CH_5 CH_5 CH_7 CH_8 CH_8 CH_8

合物)の製造

化合物 6 - H 27.7 mg (0.057ミリモル)をジクロルメタン0.3 mlに溶かし、氷冷下トリフルオロ酢酸 0.3 mlを加える。室温で1時間撹拌後、溶媒を減圧で留去したのち、充分減圧乾燥する。一方化合物 7 - A 22.3 mg (0.057ミリモル)を氷冷下 2 N塩化水素/酢酸エチルに溶かし室温で1時間撹拌する。溶媒を減圧で留去し乾燥し、ジメチルホルムアミド 0.5 mlに溶かし、上記のトリペプチドカルボン酸に加え、氷冷下 95% DEPC 9.8 mg (1.0当量)とトリエチルアミン16μ1(2当量)を加える。氷冷下 1時間撹拌後、室温で一晩撹拌する。

溶媒を減圧で留去してジクロルメタンに溶かし、飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタンーメタノール(10:1)を展開溶媒とするpreparative TLCで分取し、目的物フラクションをさらにヘキサン: $CH_2Cl_2: MeOH(2:7.5:2.5)$ を溶出液とするセフアデツクスLH-20クロマトグラフィーで精製した。目的の化合物19-Aを35.8 mg (89.5%) を無定形粉末として得た。

 $[\alpha]^{25}_{D}$ -38.0° (c=0.566, MeOH)

MS 701, 658

 $^{1}H-NMR$ (CD₂C1₂, δ) 1.16(3H, d, J=7.0Hz), 2.23(6H, s), 3.00

(3H, s), 3.30(3H, s), 3.34(3H, s)

実施例28と同様にして以下の化合物を得た。

10

15

			•	
5	1H-NMR(CDC13, 8)	1. 36(3H, d, J=7. 0Hz)、 3. 02(3H, s)、3. 34 (3H, s)、3. 47(3H, s)、7. 0-7. 7(6H, m)	1. 28(3H, d, J=7. 0Hz), 2. 33(6H, br.), 3. 01 (3H, s), 3. 30(3H, s), 3. 39(3H, s), 7. 2- 7. 4(5H, m)	1. 28(3H, d, J=7. 0Hz), 2. 36(6H, s), 3. 00 (3H, s), 3. 33(3H, s), 3. 41(3H, s), 7. 1- 7. 3(5H, m)
	SE .	673 630	688	716 672
	[\alpha] \cdot (\me0\mu)	-52. 6° (c=0. 352) (28°)	-35.8° (c=0.330) (28°)	-47. 1° (c=0. 312) (27°)
10	-A2R7	-Ph	-CH2Ph	-CH2CH2CH2Ph
15	R _S	C ₂ H ₅ CH-	C ₂ H ₅ CH- CH ₃	C ₂ H ₅ CH- CH ₃
	R2	CH ₃ CH-	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	CH ₃ CH-
20	R ₁	CH ₃	CH ₃ CH- CH ₃	CH _S CH- CH-
	化合物	19-B	19-C	19-D
	美施例	29	30	31

(統令)		20		15				5	
実施例	化合物	Rı	R2	R3	-A2R7	$\begin{bmatrix} \alpha \end{bmatrix}_{D}$	MS	¹ H-NMR(CDC1 ₃ , δ)	
32	19-E	CH ₃	CH ₃ CH-	C ₂ H ₅ CH- CH ₃	CH ₃ (S) -CH -CH Ph	-94. 8° (c=0. 335) (28°)	658	1. 49(3H, d, J=7. 0Hz), 2. 44(6H, br.), 3. 02 (3H, s), 3. 33(3H, s), 3. 38(3H, s), 7. 2- 7. 4(5H, m)	
33	19-F	CH ₃ CH-	CH ₃ CH-	C ₂ H ₅ CH-	-CH2CH2-(H)	-48. 3° (c=0, 265) (28°)	644	2. 48(6H, br.) 3. 02 (3H, s), 3. 33(3H, s), 3. 41(3H, s)	
34	19-G	CH ₃	GH _s	C ₂ H ₅ CH- CH ₃	-CH ₂ CH ₂ -	-34. 1° (c=0, 347) (29°)	708	3. 00(3H, s), 3. 29 (3H, s), 3. 34(3H, s), 7. 2-8. 3(7H, m)	
35	19-н	G. G.	E E	C ₂ H ₅ CH- CH ₈		-61.9° (c=0.315) (29°)	637	1. 40(3H, d, J=7. 0Hz), 2. 51(6H, s), 3. 15(3H, s), 3. 37(3H, s), 3. 42 (3H, s), 6. 93(1H, d, J= 3. 5Hz), 7. 48(1H, d, J= 3. 7Hz)	

PCT/JP92/01005

	, -				
5		1H-NMR(CDCL3, δ)	1. 21(3H, d, J=7. 0Hz), 2. 42(6H, s), 2. 98 (3H, s), 3. 35(6H, s), 7. 1-7. 4(5H, m)	1. 21(3H, d, J=7. 3Hz), 2. 44(6H, s), 2. 98 (3H, s), 3. 35(6H, s), 3. 38(3H, s), 7. 1-7. 3 (5H, m)	2. 92(3H, s)、3. 31 (3H, s)、3. 36(3H, s)、 7. 1-7. 4(10H, m)
	ļ	SN	659 644 627	701 658	749
		[a] b (MeOH)	-54. 7° (c=0. 625) (29°)	-53. 3° (c=0. 368) (28°)	-18.7° (c=0.307) (30°)
10		-A2R7	-CH2CH2Ph	-CH2CH2Ph	-CH2CH2Ph
15		Rs	CH3 CHCH2- CH3	CH3 CHCH2-	C ₂ H ₅ CH- CH-
		R2	CH ₃ CH-	CH ₃	PhCH ₂ -
20		R ₁	н	CH _s	CH _s CH- CH _s
		化合物	19-I	19-7	19-K
	(統令)	実施例	36	37	38

実施例39

$$C H_3$$
 $C H_5$
 $C H_7$
 $C H_2 C H_2$
 $C H_2 C H_3$
 $C H_3$
 $C H_3$
 $C H_3$
 $C H_3$

化合物)の製造

化合物 18-Aを参考例 5-Aにしたがって 2を除去した生成物と、 10 化合物 6-Hとを実施例 28にしたがって反応して目的の化合物 19-Lを得た。

 $[\alpha]^{27}_{D}$ -25.9° (c=0.255, MeOH)

MS 740, 697

¹H-NMR (CDC1₃, δ) 2.64(6H, br.), 3.03(3H, s), 3.30(6H, s), 7.0-7.7(5H, m), 8.4(1H, m)

76 請求の範囲

1. 式

式中、

10

15

20

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、 低級アルキル基又はアラルキル基を表わし;

A1は直接結合又は一CH-を表わし、

Yは水素原子又は一COR6を表わし、

R₅は水素原子、低級アルキル基又はアラルキルを表わし、 R₅はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

$$R_8$$
 $-N$ (ここで、 R_8 及び R_9 は同一もしくは相異なり、それぞ

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基を表わすか、或いは

 R_8 と R_9 はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個のOテロ原子を含んでいてもよい4O7 員

の複素環式環を形成していてもよい)を表わし、

A₂は直接結合又は低級アルキレン基を表わし、

 R_7 はシクロアルキル基、アリール基又はインドリル基を表わす、ただし、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c - ブチル基を表わし、 R_4 がメチル基を表わし、そしてQが α - (2 - チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩。

$$R_5$$
 (ここで R_5 及び Y は請求の範囲第 1 項の

意味を有する)を表わす請求の範囲第1項記載のテトラペプチド誘導体 又はその塩。

- 3. Yが水素原子を表わす請求の範囲第2項記載のテトラペプチド誘導体又はその塩。
- 4. R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c ブチル基を表わし、 R_4 がメチル基を表わし、 R_5 がベンジル基を表わし、そして Yが- C O R_6 (ここで R_6 は請求の範囲第1項の意味を有する)を表わす請求の範囲第2項記載のテトラペプチド誘導体又はその塩。
 - 5. Qが $-A_2-R_7$ の基を表わし、ここで A_2 が低級アルキレン基を表わす請求の範囲第1項記載のテトラペプチド誘導体又はその塩。
 - 6. R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c ブチル基を表わし、 R_4 がメチル基を表わし、そして R_7 がアリール基を表わす請求の範囲第 5 項記載のテトラペプチド誘導体又はその塩。
 - 7. 請求の範囲第1項記載のテトラペプチド誘導体又はその塩を有効

成分とする抗腫瘍剤。

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/01005

I. CLASS	IFICATION OF SUBJECT MATTER (if several classif	Scation symbols apply, indicate all) 6				
	to International Patent Classification (IPC) or to both National					
Int	. C1 ⁵ C07K5/06, A61K37/02					
II. EIELD	S SEARCHED					
11. 1122	Minimum Documen	station Searched 7				
Classificati		Classification Symbols				
-						
IP	C C07K5/00, A61K37/02	·.				
	Documentation Searched other the to the Extent that such Documents	han Minimum Documentation are included in the Fields Searched ^a				
·						
	MENTS CONSIDERED TO BE RELEVANT		<u>,</u>			
Category •	Citation of Document, 11 with Indication, where appr		Relevant to Claim No. 13			
X	Biochem. Pharmacol., Vol. George R. Pettit et al., " activity studies with chir and with segments of the a	Structure- al isomers	1-3, 7			
	marine peptide dolastatin pp. 1859-1864		·			
х	George R. Pettit et al., "Chiral modifications of dolastatin 10: the potent cytostatic peptide (19aR) - isodolastatin 10" pp. 3132-3133					
A	Biochem. Pharmacol., Vol. George R. Pettit et al., "activity studies with chir and with segments of the amarine peptide dolastatin pp. 1859-1864	Structure- al isomers antimitotic	4-6			
A J. Med. Chem., Vol. 33, No. 12 (1990), 4-6 Geroge R. Pettit et al., "Chiral modifications of dolastatin 10: the						
*Special categories of cited documents: 10 "T" later document published after the international filling date or						
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "Comment of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance.						
filing date "L" document which may throw doubts on priority claim(s) or which is clief to establish the publication date of another. "Y" document of particular relevance; the claimed invention cannot						
cital "O" doc othe "P" doc	ion or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or r means iment published prior to the international filing date but than the priority date claimed	be considered to involve an inventi is combined with one or more of combination being obvious to a pe "a" document member of the same par	her such documents, such rson skilled in the art			
<u> </u>	FICATION					
	Actual Completion of the International Search	Date of Mailing of this International Se	arch Report			
i	ber 28, 1992 (28. 10. 92)	November 17, 1992				
Internation	al Searching Authority	Signature of Authorized Officer				
Jap	anese Patent Office		•			

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET					
potent cytostatic peptide (19aR) - isodolastatin 10" pp. 3132-3133	·				
V OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1					
This international search report has not been established in respect of certain claims under Article 17(2) (a) for	or the following reasons:				
This international search report has not been established in respect of contain defined to be searched by the	s Authority, namely:				
•					
2. Claim numbers , because they relate to parts of the international application that do not connected requirements to such an extent that no meaningful international search can be carried out, specific requirements.	mply with the prescribed ically:				
3. Claim numbers , because they are dependent claims and are not drafted in accordance w sentences of PCT Rule 6.4(a).	ith the second and third				
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2					
This International Searching Authority found multiple inventions in this international application as follows:	ows:				
	·				
1. As all required additional search fees were timely paid by the applicant, this international search reclaims of the international application.					
2. As only some of the required additional search fees were timely paid by the applicant, this international those claims of the international application for which fees were paid, specifically claims:	acaicii icpoit covers why				
No required additional search fees were timely paid by the applicant. Consequently, this international so the invention first mentioned in the claims; it is covered by claim numbers:	earch report is restricted to				
As all searchable claims could be searched without effort justifying an additional fee, the International S invite payment of any additional fee. Remark on Protest	earching Authority did not				
The additional search fees were accompanied by applicant's protest.					
No protest accompanied the payment of additional search fees.	•				

			_,
1.発	明の属する分野の分類 .		· · · · · · · · · · · · · · · · · · ·
国際特許	分類 (IPC)		
	Int. CL		
	C07K5/06,A61	K37/02	
11. 国界	祭調査を行った分野		
/\ # =	調査を行っ	た最小限資料	
	体系 分	類 記 号	
II	C07K5/00,A61	K37/02	
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	料で調査を行ったもの	
		·	
777 88:			
	重する技術に関する文献 		T
引用文献の カテゴリー ※	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	請求の範囲の番号
x	Biochem, Pharmacol, ,	第40条 第8号(1090)	1-3.7
•	George R. Pettit, et a		' ' ' ' '
	activity studies with	•	
	and with segments of		
.	marine peptide dolast		
	pp. 1859-1864		·
X	J. Med. Chem. ,第33卷,	第12号(1990)	1 - 3, 7
	George R Pettit, et al		
1	ations of dolastatin	-	·
	cytostatic peptide (1	9 a R) — isodolastatin	
	10 J pp. 3132-3133		
A	Biochem, Pharmacol.,	740条 98号(1990)	4-6
A	George R. Pettit, et a		4-6
	activity studies with	•	•
		CHILDI IDOMOID	
※引用文	献のカテゴリー	「T」国際出願日又は優先日の後に公表	された文材でホッナ山
	関連のある文献ではなく、一般的技術水準を示すもの	顧と矛盾するものではなく、発明の	
	文献ではあるが、国際出願日以後に公表されたもの	のために引用するもの	•
	権主張に疑義を提起する文献又は他の文献の発行日 くは他の特別な理由を確立するために引用する文献	「X」特に関連のある文献であって、当ま 規性又は進歩性がないと考えられる	
	由を付す)	「Y」特に関連のある文献であって、当	
	による関示、使用、展示等に含及する文献	文献との、当業者にとって自明では	
	出願日前で、かつ優先権の主張の基礎となる出願の 後に公表された文献	歩性がないと考えられるもの 「&」同一パテントファミリーの文献	
		・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
IV. EE		Γ	
国際調査を発		国際調査報告の発送日	
	28, 10, 92	17.	11.92
国際調査機	X	権限のある職員	4 H 8 3 1 8
 日:	本国特許庁(ISA/JP)	特許庁審査官 前田	# #
			.:

第2~	ージから続く情報	
	(異機の続き)	
A	and with segments of the antimitatic marine peptide dolastatin 10 pp. 1859-1864 J. Med. Chem., 第33巻,第12号(1990) George R Pettit, et al 「Chiral modifications of dolastatin 10: the potent cytostatic peptide (19aR)—isodolastatin 10 pp. 3132-3133	4 — 6
v. 🗌	一部の請求の範囲について国際調査を行わないときの意見	
調査報告	マイス (東京) アイス (東京) ア	
1. 🗆	請求の範囲は、国際調査をすることを要しない事項を内容とするもので	ある。
	請求の範囲は、有効な国際調査をすることができる程度にまで所定の要 い国際出願の部分に係るものである。	:
3. 🗌	請求の範囲は、従属請求の範囲でありかつ PCT 規則 6.4(a)第 2 文の規定	とに従って起草され
	ていない。	
VI.	発明の単一性の要件を満たしていないときの意見	
次汇单	らべるようにこの国際出願には二以上の発明が含まれている。	
·	追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は ての調査可能な請求の範囲について作成した。	
2. 🗌	追加して納付すべき手数料が指定した期間内に一部分しか納付されなかったので、と 手数料の納付があった発明に係る次の請求の範囲について作成した。	の国際調査報告は、
	静心の範囲	*却失み きせの節
3. 🗌	追加して納付すべき手数料が指定した期間内に納付されなかったので、この国際調理に最初に記載された発明に係る次の請求の範囲について作成した。	3.代口で、 の小い名
4. 🗆	請求の範囲 追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲と	こついて 調査するこ
	とができたので、追加して納付すべき手数料の納付を命じなかった。	
追加	F数料異議の申立てに関する注意 追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされた。	
	追加して納付すべき手数料の納付に際し、追加手数料異談の申立てがされなかった。	1