Virtual Machine Monitor

What is a VMM?

 OS offers illusion that each process is running on its own computer

- A VMM virtualizes an entire physical machine
 - VMM offers illusion that OS has full control over the hardware
 - VMM "applications" (OSes) run in virtual machines
- Implication: Can run multiple instances of different OSes simultaneously on a machine

Why do such a crazy thing?

Resource utilization

- Machines today are powerful, multiplex their hardware
- Migrate VMs across machines without shutdown

Software use and development

- Can run multiple OSes simultaneously
 - No need to dual boot
- Can do system (e.g., OS) development at user-level

Many other cool applications

Debugging, emulation, security, fault tolerance, ...

Cool VMM Tricks

- How to experiment with apps, protocols, and systems on future hardware?
 - Example: How to experiment with 100 Gbps network?
- Time dilation
 - VMM slows timer interrupt to make hardware (CPU, disk, network) appear faster to OS and apps
 - Example:
 - OS reads 10 Gb of data from network in 1 second, but thinks only 0.1 second has elapsed
 - But, applications run 10x slower

VMM Requirements

Fidelity

- OSes and applications work without modification
 - (although we may modify the OS a bit)

Isolation

VMM protects resources and VMs from each other

Performance

- VMM is another layer of software → overhead
 - · As with OS, want to minimize this overhead

VMware

- VMware workstation uses hosted model
 - VMM runs unprivileged, installed on base OS
 - Relies upon base OS for device functionality
- VMware ESX server uses hypervisor model
 - VMM runs directly on hardware
- VMware uses software virtualization
 - Dynamic binary rewriting translates code executed in VM
 - Rewrite only privileged instructions to reduce overhead

VMware Hypervisor Model

Xen

- Early versions use "paravirtualization"
 - Fancy word for "we have to modify & recompile OS"
- Xen hypervisor (VMM)
 - VMM runs at privilege, VMs (domains) run unprivileged
 - Trusted OS (Linux) runs in own domain (Domain0), manages privileged operations
- Most recent version does not require OS mods
 - Because of Intel/AMD hardware support
- Commercialized via XenSource, but also open source

Xen Architecture

VMware Hosted Architecture

Hosted Architecture

What needs to be virtualized?

- Exactly what you would expect
 - CPU
 - Events
 - Memory
 - I/O devices
- Isn't this just duplicating OS functionality?
 - Yes and no
 - Approaches will be similar to what OS does
 - Simpler functionality (VMM much smaller than OS)
 - But implements a different abstraction
 - Hardware interface vs. OS interface

Virtualizing Memory

- OS assumes full control over memory
- But VMM partitions memory among VMs
 - VMM needs to control mappings for isolation
 - · OS can only map to a physical page given to it by VMM
- Solution: Need MMU support to handle two-levels of page tables

Shadow Page Tables

- Three abstractions of memory
 - Machine: actual hardware memory
 - 2 GB of DRAM
 - Physical: abstraction of hardware memory managed by OS
 - If a VMM allocates 512 MB to a VM, the OS thinks the computer has 512 MB of contiguous physical memory
 - (Underlying machine memory may be discontiguous)
 - Virtual: virtual address space per process
 - Standard 2³² address space
- In each VM, OS creates and manages page tables for its virtual address spaces without modification

Shadow Page Tables

The Cloud and Datacenters

• Where is the web?

Services

Security	Biometric scan, locked doors	Guard, cards, faraday cages
Environment	A/C!	
Network	Multiple Physical Taps	Multiple Networks
Power	Transformers	Diesel, batteries, flywheels
Weather hardening	Roof!	Earthquake resistance

Datacenter Economics

- Some datacenters run by a single entity
 - Google, Microsoft, University of Michigan
- Others rent space to smaller customers
- Cost of running datacenter combination of:
 - Amortized costs of the building (15 yr)
 - Amortized costs of electrical equipment
 - Amortized costs of servers (3 yr)
 - Power, Bandwidth, Labor
- When you rent space, you pay for:
 - Space, power, bandwidth, maybe labor

Power

- Some numbers from James Hamilton
 - Facility: ~\$200M for 15MW facility
 - Servers: ~\$2k/ea, about 50k of them
 - Power draw at 30% util: 80%
 - Commercial power: 0.07/kWhr

3yr server & 15 yr infrastructure amortization

Datacenter Energy Growth

- Very old data, but... installed base grows 11%/year
- In 2012, 2% of all US energy use

Fully-burdened cost of power

- Infrastructure cost/watt
 - Using 15-year amort, 5% interest
 - \$1.28/W/yr
- Energy cost of watt using 0.07 Kwhr
 - \$0.83/W/yr
- Full cost: \$2.11/W/hr

Heat

- Servers account for barely half of power
 - 1W of cooling per 1.5W of IT load
- Managing energy consumption means, to a large extent, managing heat

Cooling the datacenter

Other Sources of Inefficiency

- Energy wasted by idle systems
 - Up to 75% idleness; but idle power ~60% of peak
- Inefficient cool air distribution
 - Hot exhaust recirculation halves cooling efficiency
- Power conversion losses
 - 4+ conversions; some under 70% efficiency
- Poor server performance per watt
 - Embedded sys. up to 5x better on Web 2.0 apps [Lim '08]

Datacenter Efficiency

- Power Usage Effectiveness (PUE)
 - Total Facility Power / IT Equipment Power
 - For each watt, how much to computing?
 - 1.0 means no extra cost at all
 - Facebook claims 1.07
 - The Michigan datacenter we tour is ~2, but others on campus are 1.1
- In principle, you can get <1 by recycling waste heat

Current Challenges

- Whole datacenter must be optimized, not just filled with more efficient computers
 - CPUs only account for 12% of energy!
- Challenges:
 - Power infrastructure very inefficient
 - Utilization & poor energy-proportionality
 - Cooling efficiency

Power Infrastructure

Power Infrastructure

• Solutions:

- Avoid unnecessary transformations on motherboard; use high-quality parts
- Avoid transformations & UPS
- Increase efficiency of conversions
- Bring high voltage close to machines
- Others

• In particular:

 Avoid generator/battery spending by using many smaller distributed datacenters

Utilization

Utilization

- Why so poorly utilized?
 - Work spread over many machines for robustness, data safety
 - Natural variance in load means most times will not be peak
 - Is it ever possible to do more work during off-peak times to reduce work during peak times?
 - Often, no
 - Server-class machines often mismatched to Web workloads
 - Many background tasks mean machines never completely idle

Energy-Proportionality

• Why?

Energy-Proportionality

- No one component dominates
- CPU has better dynamic range than others, esp. on embedded processors
- Other components only Off or On
 - Or for networking, just On!

Energy-Proportionality

- Solutions:
 - Better dynamic range from DRAM, disks, network
 - Build systems that are low peak-perf but highthroughput per\$. Uses embedded & slower processors.

Sharing is Good

- If done well, can greatly reduce costs for all
- If done poorly, can cause contention at hot spots
- In real-life:
 - Time share vacation rentals
 - Library books
 - •
- Someone has to manage the sharing

Sharing Computers and Network

- Standard operating systems today share computer resources across multiple processes (and multiple users)
 - Each process has illusion it alone has the machine
 - Well, kind of

The Cloud

- Rent what you need when you need it
- Can be a lot cheaper
 - Particularly if your demand has high peaks
 - But even if not, due to economies of scale
- But need guarantees of service with provider
 - Service Level Agreements

Do You Trust your Service Provider?

- If you put all your business data in the cloud, someone else is now responsible for it
 - What if they are malicious? Paid off by the competition?
 - What if they are incompetent? How can you catch bugs in their software?
 - What if they go bankrupt? Can you recover your data?
- All addressable concerns, if planned for

A Service:

- Is a logical representation of a repeatable business activity that has a specified outcome (e.g., check customer credit, provide weather data, consolidate drilling reports)
- Is self-contained
- May be composed of other services
- Is a "black box" to consumers of the service

Service vs. API/Object Interface

- All of these are motivated by modularity
- Critical distinguishing feature of service is loose coupling
 - Different process
 - Usually different machine
 - Usually managed by another party
- Invoke service and obtain results through messages.
- Service providers usually guarantee (some)
 characteristics of the service

Service Oriented Architecture

- Service-orientation is a way of thinking in terms of services and service-based development and the outcomes of services
- •SOA is a paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains.
- AWS grew out of Amazon's internal SOA efforts

Interact with Services w/ REST

- GET used to retrieve items from DB
- PUT used to update items in DB
 - Same URL identification of item to update
 - PUT body specifies actual update to apply.
- POST used to insert items into DB
 - URL identifies parent of item inserted
 - Body has content of item
 - Server inserts new item; returns its URL
- DELETE used to delete items from DB