	影部	聲部	時間(sec)
開場主持人		近年來我們專注於各領域之技術發展,包括系統開發、AI 相關應用、自動化設備,我們	
		整合相關技術,並在原有基礎上突破。在工廠中不外乎三個元素人、製程和設備,透過	
		AI 賦能使得工廠成為智慧工廠,我們進一步嘗試將技術應用在能源領域,透過資訊的串	
		接、互聯,讓太陽能案場成為智慧案場。	
		讓我們透過我們自主開發的 MVIX 無代碼戰情監控系統,及 AR 環景來觀賞今天的展	
		出。	
		我們可以透過 MVIX 建置關注機台參數,即可監控關鍵數據。在平台中因為可以透過無	
		代碼視覺化設定並且彈性自定義通報服務、自定義資料來源,因此對於非 IT domain 的	
		人非常簡單易用。	
MVIX 雅真		介紹操作(+字卡跟 chart 使用情境)	
		MVIX 的優勢在於我們對於外部客戶他們屬於台灣中小企業無 IT 開發量能,透過 MVIX	
		解決企業視覺化報表需求,只要透過設定即可監控廠域各設備的參數變化。另一方面透	
		過數據採集,將數據資源分析,結合 AI 進而改善製程良率,以及延伸 PHM,降低設備	
		故障的機率。	
		AR 目前已被廣泛應用到各個領域,我們嘗試將 AR 帶到工廠中藉由 AR 實現即時監控	
		的目的。在我們深入了解各工廠的需求後,發覺多數工廠的目標不外乎與 eSOP 或者巡	
		檢相關議題。於是我們希望建立一套流程讓 user 可用最簡單的形式建立自己所需要的	
AR		AR,並佈署在所需設備中。	
彥廷		之为华佃业沃强严早是世孙供拉挥了运为蚕蛐 Dana 的 Lata . 简华佃	
		這次我們也透過還景掃描設備拍攝了這次實體 Demo 的 Lab,讓我們一起來看一下建立	
		的過程。	
		(影片搭配說明)	

	首先,提供場域空間掃描服務,透過環景掃描器將光線、色彩、空間深度及輪廓蒐集起	
	來,作為後續專案開發使用,接著進入我們所開發的 ARToolkit 平台開始進行專案建	
	置,透過 ARToolkit 工具將開發步驟化繁為簡,使用者僅需透過工具就能快速完成以下	
	步驟,	
	匯入專案所需的空間或圖片素材,新增需要辨識的空間目標,加入想要呈現的影片、圖	
	片或文字,若要內嵌網頁或者呈現 SOP 流程也都沒有問題,最後將所有素材放置到想	
	要呈現的位置後,便可一鍵打包輸出,完成專案後可透過我們開發將安裝檔生成	
	QRCode 的軟體,	
	 或依公司安裝程序部屬置設備上,Hololens 2、Android 手機、平板皆可使用,以下是	
	運行在 Hololens 2 的實際情況。	
	AAS-Cobot-IR	
	現在就讓我們看到在 MVIX 和 AR Toolkit 所建立的環景中,我們在智慧工業服務中研 	
	發的成果。	
主持人	 讓我們進入智慧工廠的介紹中,右下方的畫面中,我們可以看到 cobot 正在塗膠的即時	
	影像回傳,讓我們實際看一段 cobot 的 demo。	
	NOTE BY SOURCE TO COME	
	曲面塗膠的技術重點在於:	
	1. 3D 視覺系統,利用視覺定位的方式,即使物標物有所移動亦能對位	
Cobot	2. 透過建立軌跡演算法,即使是帶有弧度的曲面玻璃,仍能依著末端起伏移動	
Joe	3. 資訊系統與 MVIX/AAS 串接,將機台資訊上拋	
	4. 視覺化 UI 系統,I/O、Camera、Sensor 即時顯示多資訊整合狀態	
	5. 針對需要加強區域,能透過變姿態的方式轉動末端進行額外補強	
L		

		先讓我們看到 Cobot 實際的畫面,看一段實踐 Cobot Demo	
		(Joe Lab Demo)	
		針對人員安全的考量,我們也對此提出解決方案,開發電子圍籬,透過視覺技術,智慧	
Cobot	leFence video	辨識	
Joe		(eFence 介紹)	
Cobot		針對設備安全的考量,在 MVIX 上我們同時可以透過各項技術監控 Cobot 運行,像是	
Joe		AAS 即時回傳 Cobot 即時資訊及 IR 溫度量測。	
		AAS 是設備與 MES 資料驗證交握平台,解決雙方溝通的瓶頸,讓機台設備自動化。	
		舉例說明 cobot 數值(用字卡&chart 來介紹)	
		目前我們可以看到台灣許多工廠還處於人工作業,AAS可簡化人員操作來降低成本,機	
		台自動化同時可以防止人員手動操作 s 的錯誤進而提升良率。期許結合 AI 系統進行	
		R2R 進行反饋控制,讓參數調整智能化。	
AAS 雅真	說明 AAS 優勢		
/		Jane V2:目前我們看到台灣許多工廠還處於人工作業,AAS 是一套設備與 MES 資料	
		交握驗證平台,可進行機台狀態檢查、Recipe 驗證、物料檢查等,來解決設備與系統串	
		接的瓶頸,s 而讓機台設備自動化,因此可簡化人員操作來降低成本,機台自動化同時	
		可以防止人員手動操作的錯誤進而提升良率,是工業 3.0 必備的工具。	
		未來可結合 AI 系統進行 R2R 進行反饋控制,讓控制設備智能化。	
主持人		接下來,可以看到在左下方的畫面,呈現 IR 監控 Cobot 的資訊	
		這裡我們可以看到 IR 的熱影像回傳到 MVIX 上,傳統電力系統缺少監測關鍵設備的自	
IR		動化系統,以 Cobot 電控箱為例,加裝工業級 IR 溫度量測模組,透過適當的通訊方	
Peter		式,全時監控電力設備溫度,以此提升環境安全係數,當溫度過高或每分鐘溫升變化大	
		時,可即時通報溫度異常,並透過熱成像影像進行初步溫度異常位置判斷。	

	(是否再增加一些內容?)	
主持人	以上介紹是智慧工廠的應用,我們將已導入各工廠的技術整合展示,並透過通訊串接監	
	控各式資訊,更進一步將開發能量拓展至能源相關領域。	
	接著介紹的是,智慧案場中太陽能案場的應用。	
	在本案場中,我們透過無人機在太陽能案場上飛行並拍攝,蒐集影像後傳入 AI 人工智	
	慧偵測模型中進行瑕疵辨識。	
	其中,我們透過自行開發的 SALA 訓練平台,進行模型訓練。SALA 擁有簡單的介面	
	與易懂的操作流程進行深度學習,包含多樣的影像前處理、資料擴增和模型可選擇,並	
SALA Shan	讓使用者隨時監控訓練進度,更重要的是支援部署功能,提供一個友善的 No-Code 模	
	型訓練平台,目前也已經在各式專案、場域中接有使用,例如協助景碩科技進行產線自	
	動化瑕疵分類等等。	
	回到太陽能案場,在這裡我們使用了一般 RGB 攝影機和紅外線 IR 攝影機,RGB 影	
Solar Detection	像可以辨識太陽能板的外觀表面瑕疵,如鳥類排遺;而 IR 影像則可以辨識太陽能板的	
Shan	異常溫度區域,如熱斑。最後,使用 SALA 訓練出來的模型進行偵測,輸出需要清掃	
	的太陽能板座標。	
	透過辨識太陽能案場的實際應用,模型可以提供髒污模組的真實座標,進而通知人員該	
	片模組需要清潔。對於太陽能電廠而言,定期清潔模組相當重要,清潔模組除了影響模	
轉場	組壽命之外,更會影響發電量甚至影響整體的投資報酬率。	
主持人	因此,透過我們所研發的太陽能板自動清潔機器人,能夠透過感測器在具有傾角的模組	
	上進行全自動的路徑規劃,且有非常好的清潔效果,進而取代傳統人員清潔,並減少維	
	運成本。	
Solar Clean Robot	Solar Clean Robot 介紹	
QT	Solai Clear Nobot 71 Mg	

Solar Clean Robot QT	以上是我們智慧案場的介紹。	
主持人	透過我們技術的整合實踐到各個場域,對內我們已經有許多的案例,對外我們將各個團隊的優勢融合,行銷智慧工業服務解決方案,今天藉由這樣的呈現讓大家了解 AO Team目前的技術發展。	
	(幫忙想一些詞)	
主持人	QA	