```
In [ ]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Reading or Extracting the data into jupyter Notebook

In [277]: df=pd.read_csv("C:/Users/DELL/Desktop/titanic.data.csv")

In [278]: | df.head()

Out[278]:

•	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na
4											•

Exploratory Data Analysis (EDA)

Finding the Null Values

In [279]: df.isnull()

Out[279]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	False	False	False	False	False	False	False	False	False	False	True	
1	False	False	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	True	
3	False	False	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	True	
5	False	False	False	False	False	True	False	False	False	False	True	
6	False	False	False	False	False	False	False	False	False	False	False	
7	False	False	False	False	False	False	False	False	False	False	True	
8	False	False	False	False	False	False	False	False	False	False	True	
9	False	False	False	False	False	False	False	False	False	False	True	
10	False	False	False	False	False	False	False	False	False	False	False	
11	False	False	False	False	False	False	False	False	False	False	False	
12	False	False	False	False	False	False	False	False	False	False	True	
13	False	False	False	False	False	False	False	False	False	False	True	
14	False	False	False	False	False	False	False	False	False	False	True	
15	False	False	False	False	False	False	False	False	False	False	True	
16	False	False	False	False	False	False	False	False	False	False	True	
17	False	False	False	False	False	True	False	False	False	False	True	
18	False	False	False	False	False	False	False	False	False	False	True	
19	False	False	False	False	False	True	False	False	False	False	True	
20	False	False	False	False	False	False	False	False	False	False	True	
21	False	False	False	False	False	False	False	False	False	False	False	
22	False	False	False	False	False	False	False	False	False	False	True	
23	False	False	False	False	False	False	False	False	False	False	False	
24	False	False	False	False	False	False	False	False	False	False	True	
25	False	False	False	False	False	False	False	False	False	False	True	
26	False	False	False	False	False	True	False	False	False	False	True	
27	False	False	False	False	False	False	False	False	False	False	False	
28	False	False	False	False	False	True	False	False	False	False	True	
29	False	False	False	False	False	True	False	False	False	False	True	
861	False	False	False	False	False	False	False	False	False	False	True	
862	False	False	False	False	False	False	False	False	False	False	False	
863	False	False	False	False	False	True	False	False	False	False	True	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
864	False	False	False	False	False	False	False	False	False	False	True	
865	False	False	False	False	False	False	False	False	False	False	True	
866	False	False	False	False	False	False	False	False	False	False	True	
867	False	False	False	False	False	False	False	False	False	False	False	
868	False	False	False	False	False	True	False	False	False	False	True	
869	False	False	False	False	False	False	False	False	False	False	True	
870	False	False	False	False	False	False	False	False	False	False	True	
871	False	False	False	False	False	False	False	False	False	False	False	
872	False	False	False	False	False	False	False	False	False	False	False	
873	False	False	False	False	False	False	False	False	False	False	True	
874	False	False	False	False	False	False	False	False	False	False	True	
875	False	False	False	False	False	False	False	False	False	False	True	
876	False	False	False	False	False	False	False	False	False	False	True	
877	False	False	False	False	False	False	False	False	False	False	True	
878	False	False	False	False	False	True	False	False	False	False	True	
879	False	False	False	False	False	False	False	False	False	False	False	
880	False	False	False	False	False	False	False	False	False	False	True	
881	False	False	False	False	False	False	False	False	False	False	True	
882	False	False	False	False	False	False	False	False	False	False	True	
883	False	False	False	False	False	False	False	False	False	False	True	
884	False	False	False	False	False	False	False	False	False	False	True	
885	False	False	False	False	False	False	False	False	False	False	True	
886	False	False	False	False	False	False	False	False	False	False	True	
887	False	False	False	False	False	False	False	False	False	False	False	
888	False	False	False	False	False	True	False	False	False	False	True	
889	False	False	False	False	False	False	False	False	False	False	False	
890	False	False	False	False	False	False	False	False	False	False	True	

891 rows × 12 columns

```
In [280]: df.isnull().sum()
Out[280]: PassengerId
                             0
           Survived
                             0
           Pclass
                             0
                             0
           Name
           Sex
                             0
                           177
           Age
           SibSp
                             0
           Parch
                             0
           Ticket
                             0
           Fare
                             0
           Cabin
                           687
           Embarked
                             2
           dtype: int64
```

In [281]: sns.heatmap(df.isnull(),yticklabels=False)

Out[281]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fa7a9978>


```
In [282]: sns.set_style("whitegrid")
sns.countplot(x="Survived",data=df)
```

Out[282]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fa77c160>


```
In [283]: sns.set_style("whitegrid")
sns.countplot(x="Survived",hue="Sex",data=df)
```

Out[283]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fb88c080>


```
In [284]: sns.set_style("whitegrid")
sns.countplot("Survived",hue="Pclass",data=df)
```

Out[284]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fb8db080>


```
In [285]: df["Age"].hist(bins=50,color="darkblue")
```

Out[285]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fb9300b8>

In [286]: df["Age"].hist(bins=20,color="darkblue",alpha=0.3)

Out[286]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fb9fea90>


```
In [287]: sns.set_style("whitegrid")
sns.countplot(x="Survived",hue="Age",data=df)
```

Out[287]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fba482b0>

In [288]: sns.countplot(x="SibSp",data=df)

Out[288]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fbd6c400>

In [289]: sns.boxplot(x="Pclass",y="SibSp",data=df)

Out[289]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fbd97fd0>

In [290]: sns.boxplot(x="Sex",y="Pclass",data=df)

Out[290]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fc0756a0>


```
In [291]: sns.boxplot(x="Pclass",y='Age',data=df)
```

Out[291]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6fc0d7320>

Seperating Numerical and Categorical data or values into some variables

```
In [292]: df_cat=df.select_dtypes(include=[object])
    df_num=df.select_dtypes(include=[np.number])
```

In [293]: df_cat.head()

Out[293]:

	Name	Sex	Ticket	Cabin	Embarked
0	Braund, Mr. Owen Harris	male	A/5 21171	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	C85	С
2	Heikkinen, Miss. Laina	female	STON/O2. 3101282	NaN	S
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	C123	S
4	Allen, Mr. William Henry	male	373450	NaN	S

In [294]: df_num.head()

Out[294]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500

In [295]: df_cat.isnull()

Out[295]:

	Name	Sex	Ticket	Cabin	Embarked
0	False	False	False	True	False
1	False	False	False	False	False
2	False	False	False	True	False
3	False	False	False	False	False
4	False	False	False	True	False
5	False	False	False	True	False
6	False	False	False	False	False
7	False	False	False	True	False
8	False	False	False	True	False
9	False	False	False	True	False
10	False	False	False	False	False
11	False	False	False	False	False
12	False	False	False	True	False
13	False	False	False	True	False
14	False	False	False	True	False
15	False	False	False	True	False
16	False	False	False	True	False
17	False	False	False	True	False
18	False	False	False	True	False
19	False	False	False	True	False
20	False	False	False	True	False
21	False	False	False	False	False
22	False	False	False	True	False
23	False	False	False	False	False
24	False	False	False	True	False
25	False	False	False	True	False
26	False	False	False	True	False
27	False	False	False	False	False
28	False	False	False	True	False
29	False	False	False	True	False
861	False	False	False	True	False
862	False	False	False	False	False
863	False	False	False	True	False

	Name	Sex	Ticket	Cabin	Embarked
864	False	False	False	True	False
865	False	False	False	True	False
866	False	False	False	True	False
867	False	False	False	False	False
868	False	False	False	True	False
869	False	False	False	True	False
870	False	False	False	True	False
871	False	False	False	False	False
872	False	False	False	False	False
873	False	False	False	True	False
874	False	False	False	True	False
875	False	False	False	True	False
876	False	False	False	True	False
877	False	False	False	True	False
878	False	False	False	True	False
879	False	False	False	False	False
880	False	False	False	True	False
881	False	False	False	True	False
882	False	False	False	True	False
883	False	False	False	True	False
884	False	False	False	True	False
885	False	False	False	True	False
886	False	False	False	True	False
887	False	False	False	False	False
888	False	False	False	True	False
889	False	False	False	False	False
890	False	False	False	True	False

891 rows × 5 columns

In [296]: df_num.isnull()

Out[296]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
5	False	False	False	True	False	False	False
6	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False
10	False	False	False	False	False	False	False
11	False	False	False	False	False	False	False
12	False	False	False	False	False	False	False
13	False	False	False	False	False	False	False
14	False	False	False	False	False	False	False
15	False	False	False	False	False	False	False
16	False	False	False	False	False	False	False
17	False	False	False	True	False	False	False
18	False	False	False	False	False	False	False
19	False	False	False	True	False	False	False
20	False	False	False	False	False	False	False
21	False	False	False	False	False	False	False
22	False	False	False	False	False	False	False
23	False	False	False	False	False	False	False
24	False	False	False	False	False	False	False
25	False	False	False	False	False	False	False
26	False	False	False	True	False	False	False
27	False	False	False	False	False	False	False
28	False	False	False	True	False	False	False
29	False	False	False	True	False	False	False
861	False	False	False	False	False	False	False
862	False	False	False	False	False	False	False
863	False	False	False	True	False	False	False

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
864	False	False	False	False	False	False	False
865	False	False	False	False	False	False	False
866	False	False	False	False	False	False	False
867	False	False	False	False	False	False	False
868	False	False	False	True	False	False	False
869	False	False	False	False	False	False	False
870	False	False	False	False	False	False	False
871	False	False	False	False	False	False	False
872	False	False	False	False	False	False	False
873	False	False	False	False	False	False	False
874	False	False	False	False	False	False	False
875	False	False	False	False	False	False	False
876	False	False	False	False	False	False	False
877	False	False	False	False	False	False	False
878	False	False	False	True	False	False	False
879	False	False	False	False	False	False	False
880	False	False	False	False	False	False	False
881	False	False	False	False	False	False	False
882	False	False	False	False	False	False	False
883	False	False	False	False	False	False	False
884	False	False	False	False	False	False	False
885	False	False	False	False	False	False	False
886	False	False	False	False	False	False	False
887	False	False	False	False	False	False	False
888	False	False	False	True	False	False	False
889	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False

891 rows × 7 columns

dtype: int64

```
In [298]: df num.isnull().sum()
Out[298]: PassengerId
                             0
           Survived
                             0
           Pclass
                             0
                           177
           Age
           SibSp
                             0
           Parch
                             0
           Fare
                             0
           dtype: int64
```

Removing the null values by using Fillna() Function

```
In [299]:
          df cat.Cabin.fillna(df cat.Cabin.value counts().idxmax(),inplace=True)
          df_cat.Embarked.fillna(df_cat.Embarked.value_counts().idxmax(),inplace=True)
          C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py:6130: Setting
          WithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stab
          le/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-doc
          s/stable/indexing.html#indexing-view-versus-copy)
            self._update_inplace(new_data)
In [300]:
          df_cat.isnull().sum()
Out[300]: Name
                       0
          Sex
                       0
          Ticket
                       0
          Cabin
                       0
          Embarked
          dtype: int64
          df_num.Age.fillna(df_num.Age.value_counts().mean(),inplace=True)
In [301]:
In [302]: | df_num.isnull().sum()
Out[302]: PassengerId
                          0
          Survived
                          0
          Pclass
                          0
          Age
                          0
          SibSp
          Parch
                          0
          Fare
          dtype: int64
```

Concatinating both Categorical and Numerical Values

```
In [303]: df=pd.concat([df_cat,df_num],axis=1)
```

In [304]: df.head()

Out[304]:

	Name	Sex	Ticket	Cabin	Embarked	Passengerld	Survived	Pclass	Age	SibSp	Pi
0	Braund, Mr. Owen Harris	male	A/5 21171	C23 C25 C27	S	1	0	3	22.0	1	
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	C85	С	2	1	1	38.0	1	
2	Heikkinen, Miss. Laina	female	STON/O2. 3101282	C23 C25 C27	S	3	1	3	26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	C123	s	4	1	1	35.0	1	
4	Allen, Mr. William Henry	male	373450	C23 C25 C27	S	5	0	3	35.0	0	
4											•

In [118]: sns.heatmap(df.isnull(),yticklabels=False)

Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6f76f2f60>


```
In [119]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
          Name
                          891 non-null object
                          891 non-null object
          Sex
                          891 non-null object
          Ticket
                          891 non-null object
          Cabin
          Embarked
                          891 non-null object
                          891 non-null int64
          PassengerId
                          891 non-null int64
          Survived
                          891 non-null int64
          Pclass
          Age
                          891 non-null float64
                          891 non-null int64
          SibSp
          Parch
                          891 non-null int64
                          891 non-null float64
          Fare
          dtypes: float64(2), int64(5), object(5)
```

memory usage: 83.6+ KB

In [120]: df.describe()

Out[120]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	25.411093	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	15.598322	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	8.113636	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	24.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Converting Categorical data into Numerical data by LabelEncoder for model

```
In [121]: from sklearn.preprocessing import LabelEncoder
In [122]: encoder=LabelEncoder()
In [123]: df_cat=df_cat.apply(encoder.fit_transform)
In [124]: df=pd.concat([df_cat,df_num],axis=1)
```

our data is set for model creation

Logistic Regression

```
In [125]:
           df.head()
Out[125]:
                                                                                     SibSp
                      Sex Ticket Cabin
                                        Embarked Passengerld Survived Pclass
                                                                                Age
            0
                 108
                        1
                             523
                                     63
                                                2
                                                             1
                                                                      0
                                                                             3
                                                                                22.0
                                                                                          1
                                                                                                0
                                                                                                    7.2
            1
                 190
                        0
                             596
                                     81
                                                0
                                                             2
                                                                      1
                                                                                38.0
                                                                                                   71.2
            2
                 353
                        0
                             669
                                     63
                                                2
                                                             3
                                                                      1
                                                                                26.0
                                                                                          0
                                                                                                    7.9
            3
                                                2
                 272
                        0
                              49
                                     55
                                                                                35.0
                                                                                                   53.1
                  15
                        1
                             472
                                     63
                                                2
                                                             5
                                                                               35.0
                                                                                                    8.0
           df.drop(["Name", "Embarked", "Sex"], axis=1, inplace=True)
In [143]:
In [144]:
           df.head()
Out[144]:
               Ticket Cabin
                             Passengerld Survived Pclass
                                                         Age SibSp
                                                                      Parch
                                                                                Fare
            0
                 523
                         63
                                       1
                                                          22.0
                                                                   1
                                                                              7.2500
                                                                          0
            1
                 596
                                      2
                                                          38.0
                         81
                                                1
                                                                             71.2833
                                                                   1
            2
                 669
                                       3
                                                          26.0
                         63
                                                                              7.9250
            3
                                       4
                                                          35.0
                  49
                         55
                                                1
                                                                             53.1000
                 472
                         63
                                      5
                                                0
                                                          35.0
                                                                   0
                                                                              8.0500
In [146]:
           x=df.iloc[:,[0,1,2,4,5,7,8]].values
            y=df.iloc[:,3].values
           from sklearn.model_selection import train_test_split
In [147]:
In [148]:
             x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30, randor
In [149]:
           from sklearn.linear_model import LogisticRegression
```

In [150]:

lr=LogisticRegression()

```
In [151]: lr.fit(x train,y train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logistic.py:43
          3: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a
          solver to silence this warning.
            FutureWarning)
Out[151]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept scaling=1, max iter=100, multi class='warn',
                   n_jobs=None, penalty='12', random_state=None, solver='warn',
                   tol=0.0001, verbose=0, warm start=False)
In [152]: predictions=lr.predict(x_test)
In [153]: predictions
Out[153]: array([1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
                 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                 0, 0, 0, 0], dtype=int64)
In [154]: from sklearn.metrics import confusion matrix
In [155]: | cm=confusion_matrix(y_test,predictions)
In [156]: cm
Out[156]: array([[150,
                       12],
                       34]], dtype=int64)
                 <sup>72</sup>,
In [157]: from sklearn.metrics import classification report
In [158]: | cr=classification_report(y_test,predictions)
In [159]:
Out[159]:
                        precision
                                     recall f1-score
                                                        support\n\n
                                                                                     0.
                 0.93
                           0.78
                                      162\n
                                                             0.74
                                                                       0.32
                                                                                 0.45
          68
                                                      1
                                                      0.69
                                                                         macro avg
                   micro avg
                                   0.69
                                             0.69
                                                                 268\n
          106\n\n
          0.71
                   0.62
                             0.61
                                        268\nweighted avg
                                                               0.70
                                                                         0.69
                                                                                   0.65
          268\n'
          from sklearn.metrics import accuracy score
In [160]:
```

```
In [161]: score=accuracy_score(y_test,predictions)
In [162]: score
Out[162]: 0.6865671641791045
```

Decision Tree

```
In [163]:
           df.head()
Out[163]:
                           Passengerld Survived Pclass
                                                     Age SibSp
              Ticket Cabin
                                                                  Parch
                                                                          Fare
                523
           0
                                    1
                                             0
                                                      22.0
                       63
                                                                         7.2500
           1
                596
                       81
                                    2
                                             1
                                                      38.0
                                                               1
                                                                       71.2833
           2
                669
                                    3
                                                      26.0
                                             1
                                                                         7.9250
                       63
            3
                 49
                       55
                                                      35.0
                                                                       53.1000
                472
                       63
                                    5
                                             0
                                                      35.0
                                                               0
                                                                         8.0500
                                                    3
In [164]:
           x1=df.iloc[:,[0,1,2,4,5,6,7,8]].values
           y=df.iloc[:,3].values
In [165]:
           from sklearn.model selection import train test split
In [166]: x1_train, x1_test, y_train, y_test = train_test_split(x1, y, test_size=0.30, rand)
In [167]:
           from sklearn.tree import DecisionTreeClassifier
In [172]:
           dt=DecisionTreeClassifier()
In [173]: | dt.fit(x1_train,y_train)
Out[173]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                       max_features=None, max_leaf_nodes=None,
                       min impurity decrease=0.0, min impurity split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                       splitter='best')
In [174]: | predictions1=dt.predict(x1_test)
```

```
In [175]: | predictions1
Out[175]: array([0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,
                 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0,
                 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
                 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
                 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
                 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,
                 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
                 0, 0, 0, 1], dtype=int64)
In [176]: from sklearn.metrics import confusion matrix
In [177]: cm1=confusion_matrix(y_test,predictions1)
In [178]: cm1
Out[178]: array([[116, 46],
                 [ 45, 61]], dtype=int64)
In [179]: from sklearn.metrics import classification report
In [180]: cr1=classification report(y test,predictions1)
In [181]: cr1
Out[181]: '
                         precision
                                      recall f1-score
                                                         support\n\n
                                                                                       0.
          72
                  0.72
                            0.72
                                       162\n
                                                       1
                                                               0.57
                                                                         0.58
                                                                                   0.57
                                              0.66
                                                        0.66
                                                                   268\n
          106\n\n
                    micro avg
                                    0.66
                                                                           macro avg
          0.65
                    0.65
                              0.65
                                         268\nweighted avg
                                                                 0.66
                                                                           0.66
                                                                                     0.66
          268\n'
In [182]: | from sklearn.metrics import accuracy_score
In [183]: | score1=accuracy score(y test,predictions1)
In [184]: score1
Out[184]: 0.6604477611940298
```

Random Forest

In [185]: df.head()

Out[185]:

	Ticket	Cabin	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	523	63	1	0	3	22.0	1	0	7.2500
1	596	81	2	1	1	38.0	1	0	71.2833
2	669	63	3	1	3	26.0	0	0	7.9250
3	49	55	4	1	1	35.0	1	0	53.1000
4	472	63	5	0	3	35.0	0	0	8.0500

```
In [187]: x2=df.iloc[:,[0,1,2,4,5,6,7,8]].values
          y=df.iloc[:,[3]].values
In [188]: from sklearn.model selection import train test split
In [189]: x2 train, x2 test, y train, y test = train test split(x2, y, test size=0.30, rand
In [190]:
          from sklearn.ensemble import RandomForestClassifier
In [191]: rf=RandomForestClassifier()
In [192]: rf.fit(x2 train,y train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:246: Futu
          reWarning: The default value of n estimators will change from 10 in version 0.2
          0 to 100 in 0.22.
            "10 in version 0.20 to 100 in 0.22.", FutureWarning)
          C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.py:1: DataConvers
          ionWarning: A column-vector y was passed when a 1d array was expected. Please c
          hange the shape of y to (n samples,), for example using ravel().
            """Entry point for launching an IPython kernel.
Out[192]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                      max_depth=None, max_features='auto', max_leaf_nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, n estimators=10, n jobs=None,
                      oob score=False, random state=None, verbose=0,
                      warm_start=False)
```

In [194]: prediction2=rf.predict(x2 test)

```
In [195]: prediction2
Out[195]: array([1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
                 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                0, 0, 0, 0], dtype=int64)
In [196]: from sklearn.preprocessing import StandardScaler
In [197]: | sc=StandardScaler()
In [198]: x2_train=sc.fit_transform(x2_train)
          x2 test=sc.transform(x2 test)
In [199]: sc
Out[199]: StandardScaler(copy=True, with mean=True, with std=True)
In [200]: from sklearn.metrics import confusion matrix
In [201]: cm2=confusion matrix(y test,prediction2)
In [202]: cm2
Out[202]: array([[141, 21],
                [ 54,
                       52]], dtype=int64)
In [203]: | from sklearn.metrics import classification_report
In [204]: cr2=classification report(y test,prediction2)
In [205]: cr2
Out[205]:
                        precision
                                     recall f1-score
                                                       support\n\n
                                                                                    0.
                 0.87
                                                                      0.49
                                                                                0.58
          72
                           0.79
                                      162\n
                                                     1
                                                             0.71
          106\n\n
                                   0.72
                                            0.72
                                                      0.72
                                                                 268\n
                   micro avg
                                                                        macro avg
          0.72
                   0.68
                             0.69
                                       268\nweighted avg
                                                               0.72
                                                                        0.72
                                                                                  0.71
          268\n'
In [206]: from sklearn.metrics import accuracy score
In [207]: | score2=accuracy_score(y_test,prediction2)
```

```
In [208]: score2
```

Out[208]: 0.7201492537313433

K Nearest Neighbour (KNN)

```
In [209]:
          df.head()
Out[209]:
                          Passengerld Survived Pclass Age SibSp Parch
              Ticket Cabin
                                                                          Fare
                523
                                    1
                                            0
                                                      22.0
                                                                        7.2500
           0
                       63
           1
                596
                       81
                                    2
                                            1
                                                     38.0
                                                                     0 71.2833
                                                              1
           2
                669
                                   3
                       63
                                                     26.0
                                                                        7.9250
           3
                 49
                       55
                                                      35.0
                                                                       53.1000
                472
                       63
                                   5
                                            0
                                                     35.0
                                                              0
                                                                        8.0500
In [210]: x3=df.iloc[:,[0,1,2,4,5,6,7,8]].values
           y=df.iloc[:,3].values
In [211]:
          from sklearn.model selection import train test split
In [212]: x3_train, x3_test, y_train, y_test = train_test_split(x3, y, test_size=0.30, rand)
In [213]:
          from sklearn.neighbors import KNeighborsClassifier
In [214]:
          knn=KNeighborsClassifier()
In [215]: knn.fit(x3_train,y_train)
Out[215]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                      metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                      weights='uniform')
          from sklearn.preprocessing import StandardScaler
In [216]:
In [217]:
          sc3=StandardScaler()
In [218]:
          x3 train=sc3.fit transform(x3 train)
           x3 test=sc3.transform(x3 test)
In [219]: sc3
Out[219]: StandardScaler(copy=True, with_mean=True, with_std=True)
In [220]: prediction3=knn.predict(x3_test)
```

```
In [221]: prediction3
1, 1, 1, 1], dtype=int64)
In [222]: from sklearn.metrics import confusion matrix
In [223]: | cm3=confusion matrix(y test,prediction3)
In [224]: cm3
Out[224]: array([[
             0, 162],
             0, 106]], dtype=int64)
In [225]:
      from sklearn.metrics import classification report
In [226]: cr3=classification_report(y_test,prediction3)
      C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:11
      43: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
      to 0.0 in labels with no predicted samples.
        'precision', 'predicted', average, warn_for)
      C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:11
      43: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
      to 0.0 in labels with no predicted samples.
        'precision', 'predicted', average, warn_for)
      C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:11
      43: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
      to 0.0 in labels with no predicted samples.
        'precision', 'predicted', average, warn_for)
In [227]:
Out[227]:
                precision
                        recall
                             f1-score
                                     support\n\n
                                                        0.
                                   1
                                                     0.57
      00
           0.00
                  0.00
                         162\n
                                        0.40
                                               1.00
                                           268\n
      106\n\n
                       0.40
                             0.40
                                    0.40
             micro avg
                                                macro avg
      0.20
                          268\nweighted avg
             0.50
                   0.28
                                          0.16
                                                0.40
                                                      0.22
      268\n'
In [228]: | from sklearn.metrics import accuracy_score
      score3=accuracy score(y test,prediction3)
```

```
In [230]: score3
```

Out[230]: 0.39552238805970147

Support Vector Machine (SVM)

```
In [231]: df.head()
Out[231]:
              Ticket Cabin Passengerld Survived Pclass Age SibSp Parch
                                                                         Fare
                523
                                            0
                                                     22.0
           0
                       63
                                   1
                                                                       7.2500
           1
                596
                       81
                                   2
                                            1
                                                   1 38.0
                                                                    0 71.2833
                                   3
           2
                669
                       63
                                                   3 26.0
                                                                       7.9250
           3
                 49
                       55
                                                     35.0
                                                                      53.1000
                472
                       63
                                   5
                                            0
                                                   3 35.0
                                                                       8.0500
In [232]: x4=df.iloc[:,[0,1,2,4,5,6,7,8]].values
           y=df.iloc[:,3].values
In [233]:
          from sklearn.model selection import train test split
In [234]:
            x4_train, x4_test, y_train, y_test = train_test_split(x4, y, test_size=0.30, ra
In [235]:
          from sklearn.svm import LinearSVC
In [236]:
          svm=LinearSVC()
In [237]: | svm.fit(x4_train,y_train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:931: Convergence
          Warning: Liblinear failed to converge, increase the number of iterations.
             "the number of iterations.", ConvergenceWarning)
Out[237]: LinearSVC(C=1.0, class weight=None, dual=True, fit intercept=True,
                intercept_scaling=1, loss='squared_hinge', max_iter=1000,
                multi class='ovr', penalty='12', random state=None, tol=0.0001,
                verbose=0)
          from sklearn.preprocessing import StandardScaler
In [238]:
In [239]:
          sc4=StandardScaler()
In [241]: | x4 train=sc4.fit transform(x4 train)
           x4 test=sc4.transform(x4 test)
In [242]: sc4
Out[242]: StandardScaler(copy=True, with mean=True, with std=True)
```

```
In [243]: prediction4=svm.predict(x4 test)
In [244]: prediction4
1, 1, 1, 1], dtype=int64)
In [245]: from sklearn.metrics import confusion matrix
In [246]: cm4=confusion_matrix(y_test,prediction4)
In [247]: cm4
Out[247]: array([[ 1, 161],
         0, 106]], dtype=int64)
In [248]: from sklearn.metrics import classification report
In [249]: | cr4=classification_report(y_test,prediction4)
In [250]:
     cr4
Out[250]:
            precision
                  recall f1-score
                            support\n\n
                                          1.
             0.01
                           1
                                        0.57
     00
         0.01
                   162\n
                               0.40
                                    1.00
                      0.40
                           0.40
                                 268\n
     106\n\n
          micro avg
                 0.40
                                    macro avg
     0.70
          0.50
              0.29
                    268\nweighted avg
                                0.76
                                     0.40
                                         0.23
     268\n'
In [251]: | from sklearn.metrics import accuracy_score
In [252]: | score4=accuracy_score(y_test,prediction4)
In [253]: score4
Out[253]: 0.39925373134328357
```

Naive Baiyes (GaussianNB)

```
In [254]: df.head()
```

Out[254]:

	Ticket	Cabin	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	523	63	1	0	3	22.0	1	0	7.2500
1	596	81	2	1	1	38.0	1	0	71.2833
2	669	63	3	1	3	26.0	0	0	7.9250
3	49	55	4	1	1	35.0	1	0	53.1000
4	472	63	5	0	3	35.0	0	0	8.0500

```
x5=df.iloc[:,[0,1,2,4,5,6,7,8]].values
          y=df.iloc[:,3].values
In [256]: from sklearn.model_selection import train_test_split
In [257]: x5_train, x5_test, y_train, y_test = train_test_split(x5, y, test_size=0.30, rand)
In [258]: from sklearn.naive_bayes import GaussianNB
In [259]: nb=GaussianNB()
In [260]: | nb.fit(x5_train,y_train)
Out[260]: GaussianNB(priors=None, var_smoothing=1e-09)
In [261]: | from sklearn.preprocessing import StandardScaler
In [262]: sc5=StandardScaler()
In [263]:
          x5_train=sc5.fit_transform(x5_train)
          x5 test=sc5.transform(x5 test)
In [264]: sc5
Out[264]: StandardScaler(copy=True, with_mean=True, with_std=True)
In [265]: prediction5=nb.predict(x5_test)
```

```
In [266]: | prediction5
1, 1, 1, 1], dtype=int64)
In [267]: from sklearn.metrics import confusion matrix
In [268]: cm5=confusion matrix(y test,prediction5)
In [270]: cm5
Out[270]: array([[ 4, 158],
        [ 0, 106]], dtype=int64)
In [271]: from sklearn.metrics import classification report
In [272]: cr5=classification report(y test,prediction5)
In [273]:
    cr5
Out[273]:
                  recall f1-score
                           support\n\n
            precision
                                         1.
                                  1.00
    00
        0.02
             0.05
                  162\n
                          1
                             0.40
                                       0.57
                          0.41
    106\n\n
         micro avg
                 0.41
                      0.41
                               268\n
                                   macro avg
    0.70
         0.51
              0.31
                   268\nweighted avg
                              0.76
                                   0.41
                                        0.26
    268\n'
In [274]: from sklearn.metrics import accuracy score
In [275]: | score5=accuracy_score(y_test,prediction5)
In [276]: score5
Out[276]: 0.41044776119402987
In [ ]:
```