(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(16) International Publication Number WO 01/90301 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US01/11500

9 April 2001 (09.04.2001) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/204,930

17 May 2000 (17.05.2000)

(71) Applicant: PRINCETON UNIVERSITY [US/US]; Office of Patents and Licensing, New South Building, 5th Floor, P.O. Box 36, Princeton (US).

(72) Inventors: WALKER, Suzanne: 148 Poe Road, Princeton, NJ 08540 (US). HA, Sha; Princeton, NJ 08540, 223D Halsey St. (US).

- (74) Agent: DUNN MCKAY, Diane; Mathews, Collins, Shepherd & Gould, P.A., Suite 306, 100 Thanet Circle, Princeton, NJ 08540 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU. AZ. BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ. DE. DK. DM, DZ, EE, ES, FI. GB, GD, GE, GH, GM. HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ. VN, YU, ZA. ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA. GN, GW. ML, MR, NE. SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: METHODS OF MAKING MODELS. METHODS OF USING MODELS OF MURG, COMPOUNDS THAT BIND, INHIBIT OR STIMULATE MURET PROTEINS, AND THERAPEUTIC COMPOSITIONS THEREOF

(57) Abstract: The present invention relates to crystals of the Escherichia coli MurG, a membrane-associated UDP-glycosyltransferase involved in peptidoglycan biosynthesis. The present invention also relates to three-dimensional atomic coordinates of the MurG protein, three-dimensional structures of the protein, and images thereof. The present invention also relates to the atomic coordinates three-dimensional structures of the a-carbon backbone and the α-carbon backbone and conserved acid residue sidechains amino of the MurG protein and images thereof. The present invention further relates to three-dimensional atomic

coordinates of the donor nucleotide binding site, the acceptor binding site, and the membrane association site of the MurG protein, three-dimensional sturctures of the binding domains, and images thereof. The present invention also relates to computer readable media encoded with sets of the three dimensional coordinates described herein. The present invention relates to methods of crystallizing MurG proteins. The present invention relates to models of three dimensional structures of UDP-glycosyltransferases and, in particular, MurG proteins, based on the three dimensional structure dimensional structure of crystals of the Escherichia coli MurG. The present invention also relates to models of the three dimensional structures of the α -carbon backbone and the α -carbon backbone and conserved amino acid residue sidechains of UDP-glycosyltransferases and MurG proteins and of the binding sites thereof. The present invention also relates to methods of drug design using models of this invention, the compounds identified using models of the present invention that bind, inhibit or stimulate UDP-glycosyltransferases or MurG proteins, and compositions comprising compounds identified using the models of this invention for therapeutic or diagnositic uses. Also, the present invention relates to methods of making models of the present invention.

BEST AVAILABLE COPY

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

c

(4

METHODS OF MAKING MODELS, METHODS OF USING MODELS OF MURG, COMPOUNDS THAT BIND, INHIBIT OR STIMULATE MURG PROTEINS, AND THERAPEUTIC COMPOSITIONS THEREOF

FIELD OF THE INVENTION

The present invention relates to crystals of the Escherichia coli MurG, a membraneassociated UDP-glycosyltransferase involved in peptidoglycan biosynthesis. The present invention also relates to three-dimensional atomic coordinates of the MurG protein, three-dimensional structures of the protein, and images thereof. The present invention also relates to the atomic coordinates and three-dimensional structures of the α -carbon backbone of the MurG protein and images thereof. The present invention further relates to the atomic coordinates and three-dimensional structures of the α -carbon backbone and conserved amino acid residue sidechains of the MurG protein and images thereof. The present invention further relates to three-dimensional atomic coordinates of the donor nucleotide binding site, the acceptor binding site, and the membrane association site of the MurG protein, three-dimensional structures of the binding domains, and images thereof. The present invention also relates to computer readable media encoded with sets of the three dimensional coordinates of the E. coli MurG protein, the α-carbon backbone of the MurG protein, the α-carbon backbone and the conserved amino acid residue sidechains of the MurG protein, the donor nucleotide binding site, the acceptor binding site, and the membrane association site. The present invention relates to methods of crystallizing MurG proteins.

The present invention relates to models of three dimensional structures of UDPglycosyltransferases and, in particular, MurG proteins, based on the three dimensional structure of crystals of the Escherichia coli MurG. The present invention also relates to models of the three dimensional structures of the α -carbon backbone of UDPglycosyltransferases and MurG proteins. The present invention further relates to models of the three dimensional structure of the α-carbon backbone and conserved amino acid residue sidechains of gUDP-glycosyltransferases, in particular, MurG proteins. The present invention further relates to models of the three-dimensional structures of donor nucleotide binding sites, acceptor binding sites, and membrane association sites of UDPglycosyltransferases, in particular, MurG proteins. The present invention also relates to methods of drug design using models of this invention. The present invention further relates to compounds identified using models of the present invention that bind, inhibit or stimulate UDP-glycosyltransferases or MurG proteins. The present invention relates to compositions comprising compounds identified using the models of this invention for therapeutic or diagnositic uses. Also, the present invention relates to methods of making models of the present invention.

BACKGROUND OF THE INVENTION

The increasing frequency of resistance to existing antibiotics represents a serious public health threat. Structural and mechanistic information on essential bacterial enzymes could lead to the development of antibiotics that are active against resistant microorganisms. Both gram positive and gram negative bacterial cells are surrounded by a cross-linked carbohydrate polymer, peptidoglycan, which protects them from rupturing under high osmotic pressures. Many of the best antibiotics function by inhibiting peptidoglycan synthesis, which ultimately causes cell lysis. In recent years, intense effort has been focused on determining the structures of the enzymes that synthesize peptidoglycan. Structures of several of the early enzymes in the biosynthetic pathway have been reported (Benson et al., 1995; Bertrand et al., 1997; Fan et al., 1994; Skarzynski et al., 1996); however, the later enzymes have proven more difficult to study because both they and their substrates are membrane-associated.

MurG is the last enzyme involved in the intracellular phase of peptidoglycan synthesis (Bugg & Walsh, 1993). It catalyzes the transfer of N-acetyl glucosamine

(NAG) from DP to the C4 hydroxyl of a lipid-linked Netylmuramoyl pentapeptide (NAM) to form a ?-linked NAG-NAM disaccharide that is transported across the cell membrane where it is polymerized and cross-linked (Fig. 1). In bacterial cells MurG associates with the cytoplasmic surface of the membrane (Bupp & van Heijenoort, 1993). However, we have found that *E. coli* MurG can be solubilized at high concentrations in active form (Ha et al., 1999).

The elucidation of the protein structure of a MurG protein is of importance in the identification and formulation of anti-bacterial agents. Until the discovery of the present invention, the structure and resulting mechanism by which MurG functions was not known. Thus, despite the important role of MurG in peptidoglycan synthesis, development of useful agents for treatment or diagnosis of disease was hindered by lack of structural information of the protein.

In order to obtain structural information on a MurG protein, it is important to have purified, active enzyme. The demonstration of activity requires a suitable assay, which in turn requires access to the natural substrates or analogues thereof. The study of MurG was hampered by difficulties obtaining and handling the lipid-linked NAM substrate (commonly known as Lipid I). This problem was overcome by Walker and coworkers, who developed a synthetic route to a set of substrate analogues of Lipid I that were shown to function as glycosyl acceptors in a glycosyl transfer reaction catalyzed by MurG. Some of these substrate analogues are freely water soluble, making it possible to monitor the activity of purified *E. coli* MurG in buffer in the absence of natural or artificial membranes or detergents.

The linear nucleic acid and amino acid sequences of *E. coli* MurG were reported in 1992. Subsequently, the nucleic acid and amino acid sequence of *B. subtilus* MurG was reported. Since then, many bacterial genomes have been sequenced and the information has been deposited in databases. Information based only on linear sequences, however, cannot accurately predict the three-dimensional structure of the protein and its functional domains.

Therefore, there is a need in the art to elucidate the three-dimensional structure of a MurG protein. One three dimensional structure of a MurG protein can be used to construct models of other MurG proteins and to facilitate the structure determination of crystalline forms of other MurG proteins. Structures and models of MurG proteins can

also be used to design proteins containing only the donor binding site or the acceptor binding site. These proteins can be used in assays, including NMR-based assays, to identify -- or characterize the mode of binding of -- ligands that bind in or near the vicinity of the substrates. These ligands or compounds can then be used as leads for the design of inhibitors that have therapeutic activity. Structures and models of MurG proteins can also be used in computer-based drug design.

SUMMARY OF THE INVENTION

The present invention relates to crystalline Escherichia coli MurG protein. Obtaining such crystals is an unexpected result. It is well known in the protein crystallographic art that obtaining crystals of quality sufficient for determining the structure of a protein is unpredictable. In particular, obtaining crystals of quality sufficient for determining the three-dimensional (3-D) structure of MurG has not been achievable until the crystallization of MurG as disclosed in the present application. As such, determination of the three-dimensional structure of MurG has not been possible until the discovery of the present invention. Additionally, until the discovery of the present invention, derivation of the three-dimensional structure and models of other MurG proteins has not been possible. The present inventors are also the first to define the three-dimensional structure and provide three-dimensional models for drug design for MurG proteins.

Accordingly, one object of the present invention is to provide crystals of sufficient quality to obtain a determination of the three-dimensional atomic coordinates and structures of MurG to high resolution, preferably to the resolution of less than 2.0 angstroms (Å). The present invention also provides methods for producing crystalline MurG protein.

The value of the crystals of E. coli MurG protein extends beyond merely being able to obtain such crystals. The knowledge obtained concerning the MurG crystal structure, for example, has been used by the present inventors to define the heretofore unknown tertiary structure of the MurG protein and to identify the location of the glycosyl donor and glycosyl acceptor binding domains, as well as the location of the amino acid residues that are invariant in all MurG proteins. This information can be used to design inhibitors of MurG that have therapeutic utility. The atomic coordinates of E.

.

coli MurG also are used to model the heretofore unknown tertiary structures of other MurG proteins having substantially related linear amino acid sequences, such as for MurG proteins from other microorganisms. It is anticipated that homology models can be constructed even from amino acid sequences with relatively low homology because the present inventors have identified the location of the invariant amino acid residues in MurG. The relative spatial orientations of such residues is expected to be conserved in all MurG proteins.

Comparison of nucleic acid and amino acid sequences of MurG proteins indicates that the linear amino acid sequences can vary significantly. Homology between MurG proteins from different microorganisms varies from less than 30% to greater than 90%, reflecting the evolutionary relationship between the organisms. The low homology between distantly related MurG homologues is not believed to reflect significantly different folded structures. It is well known that many amino acid sequences are capable of adopting the same general fold. E. coli MurG contains an alpha/beta folding pattern, one of the most common folds known in proteins. It is likely that all MurG homologues contain a similar alpha/beta fold despite the differences in the linear amino acid sequences. What gives these proteins their identity is not the general fold, but the specific details -i.e., the presentation of certain amino acids on the folded structure. The present inventors have identified the location in E. coli MurG of a set of residues that are invariant in all MurG homologues. It is to be expected that these residues would adopt a similar spatial location with respect to the folded structure in all MurG homologues. Therefore, these invariant residues, which have been selected by evolution as the critical residues for the binding and catalytic function of the protein, provide essential information on the location of the active site and on critical contacts to the substrates/products. They also serve as constraints that make it possible to predict the three-dimensional structures even of distantly related MurG homologues. Thus, knowledge of the three-dimensional structure of the E. coli MurG protein has provided a starting point for investigation into the structure of all MurG proteins.

Accordingly, a object of the present invention is to provide information regarding the atomic coordinates and three-dimensional structures of (1) the MurG protein, (2) the α -carbon backbone of the MurG protein, (3) the α -carbon backbone and conserved

amino acid residues of the MurG protein, (4) the donor nucleonde binding site, (5) the acceptor binding site, and (6) the membrane association site MurG proteins.

It is also an object of this invention to solve the three-dimensional structure of UDP-glycosyltransferases, in particular target MURG proteins, and to determine their structure and/or atomic coordinates. Further, it is an object of this invention to use the structure or atomic coordinates of the *E. coli* MurG crystal to solve the structure of different MURG protein crystals, or a crystal of a mutant protein, homolog or co-complex of MurG.

The present invention relates to models of three dimensional structures of UDP-glycosyltransferases, in particular MurG proteins, based on the atomic coordinates of crystalline *E. coli* MurG protein.

It is a further object of this invention to provide UDP-glycosyltransferase enzyme mutants characterized by one or more different properties as compared with wild-type MURG. These properties include altered surface charge, increased stability to subunit dissociation, altered substrate specificity or higher specific activity. MURG mutants are useful to identify those amino acids that are most important for the enzymatic activity of MURG. This information, in turn, allows the design of improved inhibitors of MURG as compared with peptidic MURG inhibitors.

Another object of the present invention is to provide computer readable mediums encoded with a set of three-dimensional coordinates of the $E.\ coli$ MurG protein, the α -carbon backbone of the MurG protein, the α -carbon backbone and conserved amino acid residues of the MurG protein, and the nucleotide donor binding site, the acceptor binding site, the membrane association site of the MurG protein.

Another embodiment of the present invention provides three-dimensional and two-dimensional computer images of the three dimensional structure of MurG protein, the α -carbon backbone of the MurG protein, the α -carbon backbone and conserved amino acid residues of the MurG protein, and the nucleotide donor binding site, the acceptor binding site, the membrane association site of the MurG protein.

The knowledge of the three dimensional structure of MurG also provides a means for designing proteins that have altered beneficial functions by analyzing the structure and interactions between individual amino acids of the protein. For example, the present inventors have shown that E. coli MurG consists of two domains separated by a cleft.

Noncovalent interactions between the two domains are not extensive. The present inventors have shown that the domains fold independently and can, therefore, be expressed independently either alone or as part of a recombinant protein containing the acceptor binding site from one MurG homologue and the donor binding site from another MurG homologue. It would be expected that the domains of other MurG proteins could also be expressed independently, either alone or as chimaeras with other MurG domains. Independently expressed domains of the protein are useful for discovering ligands that bind to the individual domains.

The knowledge of the three-dimensional structure of *E. coli* MurG protein and models of other MurG proteins also provides a means for designing and producing compounds that regulate, inhibit or antagonize functions of the MurG protein (i.e., structure based drug design). For example, chemical compounds can be designed to block binding of UDP-GlcNAc to a MurG protein using various computer programs and models.

It is also an object of this invention to use the structure coordinates and atomic details of MURG, or its mutants or homologues or co-complexes, to design, evaluate computationally, synthesize and use inhibitors of MURG that avoid the undesirable physical and pharmacologic properties of peptidic MURG inhibitors.

Another embodiment of the present invention is a composition comprising MurG protein in a crystalline form.

Yet another embodiment of the present invention is a method for producing crystals of MurG, comprising combining MurG protein in a suitable buffer with a suitable amount of a reservoir buffer containing a detergent, and inducing crystal formation to produce said MurG crystals.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Pathway for peptidoglycan biosynthesis.

Fig. 2. Overall architecture of MurG. A. Stereo view of the MurG structure. The N domain is shown in purple; the C domain is shown in green. The figure was generated with the programs MOLSCRIPT (Klaulis, 1991) and RASTER3D (Merrit & Murphy, 1994). B. Topology diagram of MurG.

Fig. 3. Identification of critical residues in MurG and related glycosyltransferases. A. Sequence alignment of E. coli MurG with homologs from seven other bacterial strains, deliberately chosen to represent a disparate group of organisms. The secondary structure of E. coli MurG is shown above the sequences. Gaps mapping to the loop regions of E. coli MurG suggest that some sequences include other structural elements. Residues highlighted in blue are invariant among the eighteen MurG sequences available. Residues highlighted in yellow are identical in 85% of the eighteen homologs, while in the remaining 15%, only closely related amino acid substitutions are found. Highly conserved residues that do not meet the stringent criteria established for highlighting are shown in the consensus sequence. A consensus motif for UDP-glucuronosyltransferases is also shown. Numbering is with respect to the overexpressed E. coli MurG construct, which contains an additional N-terminal methionine. B. Mapping of the G loops and other highlighted residues from Fig. 3a in red on the MurG structure. Side chains for highly conserved residues are also shown. C. Model for the proposed UDP-binding subdomain found in many UDP-glycosyltransferases based on the E. coli MurG structure. Conserved residues in UDP-glucuronosyltransferases are highlighted in red. Side chains are shown for residues that are located near the cleft and may be involved in substrate binding. The glutamate residue is proposed to interact with the ribose sugar. The dotted loop varies in length within the MurG family and in other UDP-sugar transferases, but the N and Q on the following helix are invariant. Note that the UDPglucuronosyltransferases contain a conserved D preceding the Q, which is not shown on this model.

Fig 4. Structural analysis of the substrate binding pockets in MurG. A. Structural comparison between the C-terminal domain of phage T4?-glucosyltransferase (left) and the C-terminal domain of E. coli MurG (right). The aligned six?-strands are magenta, the aligned?-helices are orange, and the other structural elements are blue. In?-glucosyltransferase, key residues involved in UDP binding are highlighted in yellow. The analogous residues in MurG are also highlighted in yellow. B. A close-up view of the proposed donor binding pocket in the MurG C domain with the docked UDP-GlcNAc. Conserved residues in MurG are colored magenta. The carbonyl oxygen of

of E. coli MurG. The G loops and other conserved residues in MurG are colored magenta. The proposed membrane binding interface is also highlighted with hydrophobic residues in yellow and positively charged residues in blue.

DEFINITIONS

It is to be noted that the term "a" or "an" entity refers to one or more of that entity, for example, a compound refers to one or more compounds or at least one compound. As such, the terms "a" (or "an"), "one or more", and "at least one" can be used interchangeably herein.

It is also to be noted that the terms "comprising", "including" and "having" can be used interchangeably. Furthermore, a compound "selected from the group consisting of' refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds.

According to the present invention, an isolated, or pure, protein, is a protein that has been removed form its natural milieu. As such, "isolated" and "biologically pure" do not necessarily reflect the extent to which the protein has been purified. An isolated protein of the present invention can be obtained from its natural source, can be produced using recombinant DNA technology or can be produced by chemical synthesis.

It is also to be noted that the terms "tertiary" and "three dimensional" can be used interchangeably.

It is also to be noted that reference to a "MurG protein" can also be recited as "MurG" and such terms can be used to refer to the complete MurG protein, a portion of the MurG protein, such as a polypeptide.

The following terms are also used herein:

The term "naturally occurring amino acids" means the L-isomers of the naturally occurring amino acids. The naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, gamma-carboxyglutamic acid, arginine, ornithine and lysine. Unless specifically indicated, all amino acids referred to in this application are in the L-form.

The term "unnatural amino acids" means amino acids that are not naturally found in proteins. Examples of unnatural amino acids used herein, include racemic mixtures of selenocysteine and selenomethionine. In addition, unnatural amino acids include the D or L forms of nor-leucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-p2-benzylpropionic acid, homoarginine, and D-phenylalanine.

The term "positively charged amino acid" includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged naturally occurring amino acids are arginine, lysine and histidine.

The term "negatively charged amino acid" includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged naturally occurring amino acids are aspartic acid and glutamic acid.

The term "hydrophobic amino acid" means any amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples of naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.

The term "hydrophilic amino acid" means any amino acid having an uncharged, polar side chain that is relatively soluble in water. Examples of naturally occurring hydrophilic amino acids are serine, threonine, tyrosine, asparagine, glutamine, and cysteine.

The term "MurG" refers to a UDP-glycosyltransferase that has a two domain structure, where each domain contains a set of invariant residues as shown in Figure 3a, including any mutant, homologue or co-complex or any similar enzyme that catalyzes the transfer of N-acetylglucosamine (GlcNAc) from UDP to the C4 hydroxyl of the lipid-linked MurNAc pentapeptide.

The term "mutant" refers to a MurG polypeptide, i.e., a polypeptide displaying the biological activity of a wild-type MurG, characterized by the replacement of at least one amino acid from the wild-type, E. coli MURG sequence according to lkeda, et al., Nucleic Acids Res. 1990, and Mengin-LeCreuix et al., Nucleic Acids Res. 1990. Such a

mutant may be prepared, for example, by expression of MURG cDNA previously altered in its coding sequence by PCR-based mutagenesis method.

MurG mutants may also be generated by site-specific incorporation of unnatural amino acids into MURG proteins using the general biosynthetic method of Noren, C. J., et al., Science, 244, pp. 182-188 (1989). In this method, the codon encoding the amino acid of interest in wild-type MURG is replaced by a "blank" nonsense codon, TAG, using oligonucleotide-directed mutagenesis (described in detail, infra). A suppressor tRNA directed against this codon is then chemically aminoacylated in vitro with the desired unnatural amino acid. The aminoacylated tRNA is then added to an in vitro translation system to yield a mutant MURG enzyme with the site-specific incorporated unnatural amino acid.

Selenocysteine or selenomethionine may be incorporated into wild-type or mutant MURG by expression of MURG-encoding cDNAs in auxotrophic E. coli strains. Hendrickson, W. A. et al., EMBO J., 9(5), pp. 1665-1672 (1990). In this method, the wild-type or mutagenized MURG CDNA may be expressed in a host organism on a growth medium depleted of either natural cysteine or methionine (or both) but enriched in selenocysteine or selenomethionine (or both).

The term "altered surface charge" means a change in one or more of the charge units of a mutant polypeptide, at physiological pH, as compared to wild-type MURG. This is preferably achieved by mutation of at least one amino acid of wild-type MURG to an amino acid comprising a side chain with a different charge at physiological pH than the original wild-type side chain.

The change in surface charge is determined by measuring the isoelectric point (pl) of the polypeptide molecule containing the substituted amino acid and comparing it to the isoelectric point of the wild-type MURG molecule.

The term "altered substrate specificity" refers to a change in the ability of a mutant MURG to cleave a substrate as compared to wild-type MURG.

The "kinetic form" of MURG refers to the condition of the enzyme in its free or unbound form or bound to a chemical entity at either its active site or accessory binding site.

A "competitive" inhibitor is one that inhibits MURG activity by binding to the same kinetic form, of MURG, as its substrate binds—thus directly competing with the

substrate for the active site of MURG. Competitive inhibition can be reversed completely by increasing the substrate concentration.

An "uncompetitive" inhibitor is one that inhibits MURG by binding to a different kinetic form of the enzyme than does the substrate. Such inhibitors bind to MURG already bound with the substrate and not to the free enzyme. Uncompetitive inhibition cannot be reversed completely by increasing the substrate concentration.

A "non-competitive" inhibitor is one that can bind to either the free or substrate bound form of MURG.

Those of skill in the art may identify inhibitors as competitive, uncompetitive or non-competitive, by computer fitting enzyme kinetic data using standard equations according to Segel, I. H., Enzyme Kinetics, J. Wiley & Sons, (1975). It should also be understood that uncompetitive or non-competitive inhibitors according to this invention may bind to the accessory binding site.

The term "homolog" means a protein having at least 25% amino acid sequence identity with MURG or any functional part of MURG, and including certain invariant amino acid residues corresponding to G14, G15, G18, H19, G104, H124, E125, G190, G191, S192, G194, A195, R261, G263, A264, E269, P281, Q289, N292 and A293 (as numbered in the *E.coli* MurG sequence set forth in Figure 3a) and also including three glycine rich loops. A homolog may contain some or all of the invariant residues.

The term "co-complex" means MURG or a mutant or homologue of MURG in covalent or non-covalent association with a chemical entity or compound.

The term "associating with" refers to a condition of proximity between a chemical entity or compound, or portions thereof, and a MurG molecule or portions thereof. The association may be non-covalent--wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions--or it may be covalent.

The term ".beta.-sheet" refers to the conformation of a polypeptide chain stretched into an extended zig-zig conformation. Portions of polypeptide chains that run "parallel" all run in the same direction. Polypeptide chains that are "antiparallel" run in the opposite direction from the parallel chains.

The terms "atomic coordinates" or "structure coordinates" refer to mathematical coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a

MurG molecule in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are used to establish the positions of the individual atoms within the unit cell of the crystal.

The term "heavy atom derivatization" refers to the method of producing a chemically modified form of a crystal of MURG. In practice, a MurG crystal is soaked in a solution containing heavy metal atom salts, or organometallic compounds, e.g., lead chloride, gold thiomalate, thimerosal, uranyl acetate or mercuric chloride, which can diffuse through the crystal and bind to the surface of the protein. The location(s) of the bound heavy metal atom(s) can be determined by X-ray diffraction analysis of the soaked crystal. This information, in turn, is used to generate the phase information used to construct three-dimensional structure of the enzyme. Blundel, T. L. and N. L. Johnson, Protein Crystallography, Academic Press (1976).

Those of skill in the art understand that a set of structure coordinates determined by X-ray crystallography is not without standard error. For the purpose of this invention, any set of structure coordinates for MURG or MURG homologues or MURG mutants that have a root mean square deviation of protein backbone atoms (N, C.alpha., C and O) of less than 0.75 Å when superimposed--using backbone atoms--on the structure coordinates listed in Table 1, Table 2 or Table 3 shall be considered identical.

The term "unit cell" refers to a basic parallelepiped shaped block. The entire volume of a crystal may be constructed by regular assembly of such blocks. Each unit cell comprises a complete representation of the unit of pattern, the repetition of which builds up the crystal.

The term "space group" refers to the arrangement of symmetry elements of a crystal.

The term "molecular replacement" refers to a method that involves generating a preliminary model of a MurG crystal whose structure coordinates are unknown, by orienting and positioning a molecule whose structure coordinates are known (e.g., MURG coordinates from Table 1, 2, or 3) within the unit cell of the unknown crystal so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This, in turn, can be subject to any of the several forms of refinement to provide a final,

accurate structure of the unknown crystal. Lattman, E., "Ose of the Rotation and Translation Functions", in Methods in Enzymology, 115, pp. 55-77 (1985); M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York, (1972). Using the structure coordinates of MURG provided by this invention, molecular replacement may be used to determine the structure coordinates of a crystalline mutant or homologue of MURG or of a different crystal form of MURG.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the discovery of the three-dimensional structure of the crystalline form of the *E. coli* MurG protein, models of such three-dimensional structures, a method of structure based drug design using such structures, methods to identify ligands or compounds that interact or bind with such structures, the compounds identified by such methods, and the use of such compounds in therapeutic compositions.

More particularly, the present invention relates to novel crystals of *E. coli* MurG protein, methods of production of such crystals, three dimensional coordinates of MurG protein, MurG structures and models derived from the *E. coli* MurG structure, and uses of such structures and models to derive other MurG structures and in ligand discovery and drug design strategies.

The present invention also relates to three-dimensional structures and coordinates of the donor nucleotide binding site, the acceptor binding site, and the membrane association site of the MurG protein, structures and models of the binding sites, and uses of such structures and models to derive the binding sites of other MurG proteins and in drug design strategies.

Solely for ease of explanation, the description of the invention is divided into the following sections: (1) crystals of MurG protein; (2) methods of crystallization; (3) three-dimensional crystal coordinates and structure of E. coli MurG; (4) three-dimensional coordinates and structure of the donor nucleotide binding site of MurG; (5) coordinates and structure of the acceptor binding site of MurG; (5) three dimensional coordinates and structure of the membrane association site; (6) two dimensional and three dimensional images of the protein, α -carbon backbone, α -carbon backbone with conserved amino

acid residues, and binding sites; and (7) computer readable mediums comprising the three dimensional coordinates of the MurG protein, α-carbon backbone, α-carbon backbone with conserved amino acid residues, and binding sites; (8) images of structures of MurG proteins and binding sites; (9) models of MurG proteins and binding sites thereof and methods of using the structure of MurG to determine the structures of other MurG proteins and binding sites; (10) structure based drug design using models of MurG protein and binding site structures; (11) compounds derived from structure based drug design; and (12) therapeutic compositions using drugs designed from structure based drug design.

CRYSTALS

One embodiment of the present invention includes a composition comprising a MurG protein in a crystalline form (i.e., MurG crystals). As used herein, the terms (crystalline MurG" and "MurG crystal" both refer to crystallized MurG protein and are intended to be used interchangeably. More particularly, an embodiment of the present invention includes a composition comprising an E. coli MurG protein in a crystalline form. Preferably, a crystalline MurG is produced using the crystal formation method described herein, in particular according to the method disclosed in Example 1. A MurG crystal of the present invention comprises any crystal structure and preferably precipitates as a triclinic crystal. Preferably, a composition of the present invention includes MurG crystal molecules arranged in a crystalline manner in a P1 space group with two molecules per assymmetric unit so as to form a unit cell of dimensions a=60.613 Å, b=66.356 Å, c=67.902 Å, $\alpha=64.294$, $\beta=83.520$, $\gamma=65.448$. A preferred crystal of the present invention provides X-ray diffraction data for determination of atomic coordinates to a resolution of about 3.0 Å, preferably to about 2.4 Å, and more preferably to about 1.8 Å.

Another embodiment of the present invention includes crystalline MurG protein co-crystallized with a donor nucleotide or substrate or substrate analog. Preferably, a donor nucleotide is UDP or UDP-GlcNAc (UDP-N-acetylglucosamine) or an analog thereof. The substrate or substrate analog is preferably Lipid I or Lipid II, or analogs of Lipid I or Lipid II. More specifically, Lipid I and II analogs are as described in PCT/US99/02187, published as WO99/38958 and US Provisional Application Nos.

60/122,966 filed March 3, 1999 and 60/137,696 filed June 4, 1999, and International Application No. PCT/US00/05554 entitled "Bacterial transglycosylases: Assays for monitoring the activity using lipid II substrate analogs and methods for discovering antibiotics," all incorporated herein by reference in their entirety.

Included in the present invention, a variety of MurG proteins from numerous organisms can be used to prepare MurG crystals, including but not limited to, microorganisms such as bacteria, higher-order bacteria, thermal stable bacteria, spirochetes, small pathogenic organisms, fungi, protozoa, cyanobacteria, and trypanosomes. More particularly, bacteria such as but not limited to, Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum.

In another embodiment of the present invention, the MurG proteins or fragments thereof, mutants or homologs are expressed in, for example, an *E. coli* host cell for use expressing sufficient quantities of sufficiently purified protein to form crystals. The present inventors have demonstrated that it is possible to express *Enterococcus. faecalis* MurG in *E. coli* cells – so the MurG proteins from many organisms can be cloned into expression vectors suitable for expression in *E. coli* cells. This would facilitate obtaining sufficient quantities of isolated or purified MurG proteins. The expression of *E. faecalis* MurG protein in *E. coli* host cells is performed, for example, by expressing the *E. faecalis* MurG gene cloned into a pET21b expression vector and transformed into an *E. coli* host cell. The MurG protein is over-expressed with a C-terminal his tag (LEHHHHHH) which allows the protein to be purified using a His-tag affinity column. The protein is then crystallized and the atomic coordinates are determined using X-ray diffraction and methods known to those skilled in the art.

It is another embodiment of the present invention to provide for the construction and expression of chimeric MurG proteins to enable the crystallization and determination of the three dimensional coordinates of such chimeras. For example, if there are problems obtaining or crystallizing MurGs from other organisms, the present invention

provides information that makes it possible to make chimaeric proteins containing the donor or acceptor binding site from E. coli MurG and the corresponding acceptor or donor binding site from another organism. Chimaeric proteins could be easier to express, handle, or crystallize. For example, we have found that E. faecalis MurG is more difficult to solubilize that E. coli MurG (requiring more detergent). It is believed that the problems are related to the acceptor binding domain having a stronger affinity for the bacterial membranes. To overcome this problem, one can attach the donor binding domain of E. faecalis to the E. coli acceptor binding site and determine structure to see details of E. faecalis donor binding domain.

According to the present invention, crystalline MurG can be used to determine the ability of a chemical compound to bind to a MurG protein in a manner predicted by a structure based drug design method of the present invention. Preferably, a MurG crystal is soaked in a solution containing a chemical compound of the present invention. Binding of the chemical compound to the crystal is then determined by methods standard in the art. Thereby, the co-crystal of MurG and a compound of interest is determined.

METHODS OF CRYSTALLIZATION

The present invention includes a method for producing crystals of MurG proteins, comprising: combining MurG protein with a reservoir solution and inducing crystal formation to produce MurG crystals. Another embodiment of the present invention, a method for producing crystals of MurG protein comprises combining MurG protein with UDP-GlcNAc in a 1:3 ratio and with a reservoir solution and inducing crystal formation to produce MurG crystals.

Preferably, crystals of MurG are formed using a solution containing a range of MurG protein from about 1 mg/ml to about 20 mg/ml, more preferably above 5 mg/ml, limited only by the solubility of the protein, which may vary depending on the specific amino acid sequence.

A reservoir solution contains the buffer, the precipitant, and additives if necessary. A suitable reservoir buffer of the present invention comprises NaMES (2-[N-morpholino]ethanesulfonic acid, sodium salt) buffer, NaHEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid, sodium salt) buffer, Tris (tris[hydroxymethyl]aminomethane) buffer, and any buffer which has the PKa between

5.5 and 8.0. A suitable NaMES buffer solution has a pH range from about 5.6-6.5. Most preferably, the NaMES buffer has a pH of about 6.5. The precipitant comprises ammonium sulfate, saturated sodium and potassium tartrate and polyethylene glycol. A suitable concentration of ammonium sulfate can range from 0.8 M to 1.5 M. Most preferably, the ammonium sulfate concentration is about 0.96 M. A suitable additive comprises detergents like Triton X-100 and n-octyl-beta-glucoside. The concentration of Triton X-100 can range from 0.1% to 1%. Most preferably, the concentration of Triton X-100 is 0.4%.

In a preferred embodiment, MurG crystals are produced by a method comprising concentrating MurG protein in a buffer solution, mixing the protein concentrate with UDP-GlcNAc in a 1:3 molar ratio, mixing equal volumes of protein solution with a reservoir solution, and inducing crystal formation to produce MurG crystals.

In a particular embodiment of the invention, MurG crystals are produced by a method comprising concentrating MurG protein to 10 mg/ml in a buffer of 20 mM Tris-HCl, pH 7.9/150mM NaCl and 50 mM EDTA; mixing the protein concentrate with UDP-GlcNAc in a 1:3 molar ratio; mixing equal volumes of protein solution with a reservoir solution comprising (0.1 M NaMES, pH 6.5, 0.96 M (NH₄)₂SO₄, 0.4% TRITON® X-100, and 10 mM dithiolthreitol (DTT)), and inducing crystal formation using hanging drop vapor-diffusion.. This preferred method is described in greater detail in Example 1.

Supersaturated solutions of MurG protein can be induced to crystallize by several methods including, but not limited to, vapor diffusion, liquid diffusion, batch crystallization, constant temperature and temperature induction or a combination thereof. Preferably, supersaturated solutions of MurG protein are induced to crystallize by vapor diffusion (i.e., hanging drop method). In a vapor diffusion method, a MurG protein solution is combined with a reservoir solution of the present invention that will cause the MurG protein solution to become supersaturated and form MurG crystals at a constant temperature. Vapor diffusion is preferably performed under a controlled temperature in the range of from about 15°C to about 30°C, more preferably from about 20°C to about 25°C, and most preferably at a constant temperature of about 22°C.

In another preferred embodiment, the present invention includes a method to produce crystals of MurG protein comprising the steps of: (a) preparing an about 10

mg/ml solution of MurG protein in a Tris-HCl buffer, (b) mixing UDP-GlcNAc with the MurG protein solution in a 3:1 molar ratio, (c) dropping 2 µl droplet of this protein sample onto a coverslip, (d) adding an equal volume of reservoir solution to this droplet and inverting this over a well containing about 1 ml of the reservoir solution; and (e) incubating until crystals of MurG form.

Any isolated MurG protein can be used with the present method. An isolated MurG protein can be isolated from its natural milieu or produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. To produce recombinant MurG protein, a nucleic acid molecule encoding a MurG protein can be inserted into any vector capable of expressing the nucleic acid in a host cell. Suitable and preferred nucleic acid molecules to include in recombinant vectors of the present invention are as disclosed herein. Such suitable and preferred nucleic acid molecules include numerous MurG encoding genes that have been isolated to date, and that will be isolated in the future. A preferred nucleic acid molecule of the present invention encodes a homologue of MurG. Homologues of MurG can be recognized by the presence of certain conserved amino acid residues or sequences.

A sequence alignment for six MurG sequences is shown in fig. 3A. Highlighted residues include those that are invariant or almost invariant across all MurG proteins. A nucleic acid molecule of the present invention can encode any portion of a MurG protein, preferably a full-length MurG protein or either of the two domains. A more preferred nucleic acid molecule to include in a recombinant vector, and particularly in a recombinant molecule, includes a nucleic acid molecule encoding a protein having the amino acid sequence represented by amino acid sequences of MurG proteins as deposited in the NCBI database and are identified with Accession Nos. CAB51993, A71316, E70579, C71699, F70195, A43727, JC1275, BVECMG, CEECAM, O83535, Q9ZK59, CAB85280, AAF39020, BAA18775, AAD26629, CAB73295, P37585, Q9ZHA9, Q9ZHDC0, Q9ZBA5, Q9X4H4, Q9WY74, P74657, O06224, Q9Z702, O84766, O69552,)67238, O51708, O25770, O07670, O07109, P45065, CAB66324, AAC68356, AAF06830, P18579, P17443, P17952, P16457, P07862, AAE23178, AAD53936, CAA18668, CAA38869, CAA38868, CAA38867, CAA38866, AAD08196, BAA01453, BAA01455, BAA01454, AAD19042, CAA45558, CAA74235, AAD10537, AAD06652, AAC95450, CAA14869, AAC73201, AAC65509, AAC67113, AAC45636, CAB08640,

. . .

- 23

AAC22793, AAC07193, BAA24357, CAB13395, BAA01355, AAB35538, 1904153C, 1808265B, 1808265A, CAA36866, CAA36869, CAA36868, CAA36867, CAA36776, and AAA99436. Further, examples of nucleic acid molecules encoding MurG proteins have been deposited in NCBI, Genbank, and have Accession Nos. AL162758, AE002281, D90917, AF110367, AL139077, AJ242646, AE000520, AE000511, L42023, U00096, NC-000922, AE000783, AE000657, AE001348, AF099188, AR048673, AR048672, AF179611, AL022602, AL109663, X55034, AE000621, D10602, AE001670, X64259, Y13922, U10879, AE001535, AF068902, AJ235271, AE000118, AE001227, AE001176, U94707, Z95388, U32793, AE000727, D84504, Z99111, D10483,X52644, X52540, and L24773. These sequences are known and are publicly available. Further, as additional genomes and genes are sequenced, more MurG encoding nucleotide sequences will become available, and can be used in the present invention.

In specific embodiments of the invention, the protein sequence of E. coli MurG was reported in 1990 (Ikeda et al. Nucleic Acids Res. 1990, 19:4014; and Mengin-Lecreuix, D. et al., Nucleic Acids Res. 1990, 18:2810.). E. coli genomic DNA can be purified from E. coli or purchased from ATCC, or the gene for E. coli MurG is cloned into a plasmid can be obtained from numerous sources. Primers were designed to the portions of the gene corresponding to the N and C termini of the protein. The primers also encoded restriction enzyme sites outside the protein coding region. The gene sequence was amplified; the corresponding double stranded nucleic acid molecule was cut with appropriate restriction enzymes for cloning into a commercially available expression vector (pET expression vectors available from Novagen provide for numerous variations of MurG protein - wild-type or fusion proteins or proteins with affinity tags at N or C terminus. We have worked with several constructs but found that MurG with a His-tag at C-terminus crystallized best; the protein sequence contained an extra methionine at N-terminus and eight extra residues at C terminus, six of which were histidines. The vector used was pET21b. (as described in Ha et al. J. Am. Chem. Soc. 121, (1999) 8415-8426 hereby incorporated by reference in its entirety).

A recombinant vector of the present invention can be either RNA (probably not) or DNA, and typically includes, but is not limited to, a virus or plasmid. Any recombinant vector and host cell that provides for expression of a MurG protein

encoding mucleic acid sequence can be used in the present invention to express MurG protein for crystallization. Preferred vectors are engineered for high level expression in E. coli such as, but not limited to, pET vectors. We have found that over-expression of Murg from either E. coli or E. faecalis in E. coli cells is not toxic and, thus, this approach will work for other MurG proteins.

As used herein, an expression vector is a DNA vector that is capable of transforming a host cell and of affecting expression of a specified nucleic acid molecule. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in recombinant cells of the present invention, including bacterial, fungal, and other microorganisms cells. Preferred expression vectors of the present invention direct expression in bacterial cells from a plasmid. A preferred recombinant molecule of the present invention comprises pET21b with E. coli MurG gene cloned into the Nde1 and Xho1 sites.

An expression vector of the present invention can be transformed into any suitable host cell to form a recombinant cell. A suitable host cell includes any cell capable of expressing a nucleic acid molecule inserted into the expression vector. For example, a procaryotic expression vector can be transformed into a bacterial host cell. If the expression vector contains a T7 promoter then a source of T7 RNA polymerase must be provided to induce expression. Some host cells contain the T7 RNA polymerase gene in a repressed state. Expression of T7 RNA polymerase can be induced with a chemical signal such as IPTG or heat. Alternatively, a source of T7 RNA polymerase can be introduced at the appropriate time by infection with a phage containing a copy of T7 RNA polymerase. A wide range of hosts strains can be infected with a suitable phage. Some host strains have been engineered to contain inducible copies of T7 RNA polymerase gene. Such host strains include BL21(DE3) and derivatives thereof. A preferred host strain of the present invention is BL21(DE3)pLysS or BL21(DE3)pLysE, which are commercially available from Novagen and can be readily transformed with a DNA plasmid vector containing a MurG gene under the control of the T7 promoter. As already stated above, a preferred vector is a pET vector, preferably containing a restriction enzyme site permitting cloning of the gene as a fusion containing a C-terminal his tag.

In a preferred embodiment, one method to isolate MurG protein useful for producing MurG crystals includes recovery of MurG protein having a C-terminal LEHHHHHHH (His tag) sequence purified as described in Ha et al. (1999, J. Amer. Chem. Soc. 121:8415-8426). One of skill in the art is able to modify this procedure in order to purify other proteins can be produced as C-terminal histadine (his) tags. The purification conditions for specific MurG proteins will vary depending upon the particular characteristics of the proteins such as their isoelectric point, molecular weight, etc. It is known that the isoelectric points of different Murg homologues vary a bit, although they are generally relatively high. Also, some Murg homologues may be more hydrophobic than others, which will mean differences in amount of detergent necessary for purification. It is likely that all the Murg homologues can be purified over nickel affinity columns using the C-terminal his-tag as a handle. Those skilled in the art of protein purification will know how to modify purification parameters depending upon the protein characteristics, in order to purify the protein for crystallization.

STRUCTURE OF MURG PROTEIN

One embodiment of the present invention includes a model of a MurG protein, in which the model represents a three dimensional structure of a MurG protein. Another embodiment of the present invention includes the three dimensional structure of a MurG protein. A three dimensional structure of a MurG protein encompassed by the present invention substantially conforms with the atomic coordinates represented in Table 1. According to the present invention, the use of the term "substantially conforms" refers to at least a portion of a three dimensional structure of a MurG protein which is sufficiently spatially similar to at least a portion of a specified three-dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Table 1) to allow the three dimensional structure of another MurG protein to be modeled or calculated using the particular set of atomic coordinates defining the three dimensional configuration of the MurG protein. For example, but not meant to be a limitation, homology modeling can be done using the linear sequence of a different MurG and E. coli coordinates; molecular replacement can allow the solution of a different MurG structure using the E. coli MurG coordinates and experimental data such as x-ray diffraction pattern from a different MurG crystal. According to the present invention, a three dimensional structure of a given portion or chain of a first MurG protein can substantially conform to at least a portion of the atomic coordinates which represent a three dimensional configuration of a second MurG.

More particularly, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 2.5 Å for the α-carbon or C-alpha backbone atoms in secondary structure elements in each domain, and more preferably, less than about 2.0 Å for the C-alpha backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.5 Å, less than about 1.0 Å, less than about 0.7 Å, and more preferably, less than about 0.5 Å for the C-alpha backbone atoms in secondary structure elements in each domain. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average RMSD value, and most preferably, about 100% of such structure has the recited average RMSD value.

In an even more preferred embodiment, the above definition of "substantially conforms" can be extended to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structure which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a three dimensional structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of the common amino acid side chains have an average RMSD value of less than about 1.5 Å, and more preferably, less than about 1.3 Å, and in increasing preference, less than about 1.0 Å, less than about 0.7 Å, and most preferably, less than about 0.3 Å.

In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of the common amino acid side chains have the recited average RMSD value, and more preferably, at least about 90% of the common amino acid side chains have the recited average RMSD value, and most preferably, about 100% of the common amino acid side chains have the recited average RMSD value.

In more preferred embodiments of the present invention, a large number of different "rotamers" or "rotational isomers" of the MurG protein are encompassed by three dimensional structures of the invention in which the amino acid side chains are at a variety of positions in crystalline forms of the protein or for the protein in solution. Different rotamers refer to molecules of identical configuration may be distinguished as having different conformations after rotation about the various molecular bonds. Therefore, while the same or similar amino acids may be present, the exact location will vary depending upon the freedom of rotation of the bonds due to hydrogen bonding, and other molecular forces.

STRUCTURE OF THE α -CARBON BACKBONE OF MURG AND THE α -CARBON BACKBONE AND CONSERVED AMINO ACID RESIDUES

The present invention includes the three dimensional structure of the α -carbon or C-alpha backbone of a MurG protein, in particular the E coli MurG protein. A three dimensional structure of the C-alpha backbone of the MurG protein encompassed by the present invention substantially conforms with the atomic coordinates represented in Table 2.

More particularly, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 2.5 Å for the C-alpha backbone atoms in secondary structure elements in each domain, and more preferably, less than about 2.0 Å for the C-alpha backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.5 Å, less than about 1.0 Å, less than about 0.7 Å, and more preferably, less than about 0.5 Å for the C-alpha backbone atoms in secondary structure elements in each domain. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average RMSD value, and most preferably, about 100% of such structure has the recited average RMSD value. The C-alpha backbone of MurG proteins is expected to be more conserved than the location of the particular amino acid residue side chains.

The present invention also includes the three dimensional structure of the α-carbon or C-alpha backbone and conserved or invariant amino acid residue side chains of a MurG protein, in particular the *E. coli* MurG protein. A three dimensional structure of the C-alpha backbone and conserved amino acid residues of the MurG protein encompassed by the present invention substantially conforms with the atomic coordinates represented in Table 3. The conserved amino acids are highlighted in blue in Figure 3a and include G14, G15, G18, H19, G104, H124, E125, G190, G191, S192, G194, A195, R261, G263, A264, E269, P281, Q289, N292 and A293 (as numbered in the *E. coli* MurG sequence set forth in Figure 3a).

More particularly, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 2.5 Å for the C-alpha backbone and conserved amino acid residue atoms in secondary structure elements in each domain, and more preferably, less than about 2.0 Å for the backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.5 Å, less than about 1.0 Å, less than about 0.7 Å, and more preferably, less than about 0.5 Å for the backbone atoms in secondary structure elements in each domain. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average RMSD value, and most preferably, about 100% of such structure has the recited average RMSD value.

STRUCTURE OF THE DONOR NUCLEOTIDE BINDING SITE OF MURG PROTEINS

An embodiment of the present invention includes the three dimensional structure of a donor nucleotide binding site of a MurG protein, in particular an *E. coli* MurG protein. A more preferred embodiment of the present invention includes a three dimensional structure of a donor nucleotide binding site of a MurG protein wherein the three dimensional structure of the donor nucleotide binding site substantially conforms to the atomic coordinates in Table 4. In a preferred embodiment, the donor nucleotide binding site is a UDP-GlcNAc binding site of a MurG protein.

As described in Example 1, the donor nucleotide binding site is located in the C-terminal domain (see Fig. 4a). This binding site is based on the comparison of β-glucosyltransferase (BGT) and E. coli MurG and based on experiments done in our laboratory showing that the isolated C domain binds to a UDP-hexose column (See Example 1). The atomic coordinates of Table 4 set forth the donor nucleotide binding site three dimensional structure without a donor nucleotide such as UDP-GlcNAc bound to the MurG protein.

According to the present invention, the use of the term "substantially conforms" refers to at least a portion of a three dimensional structure of a donor nucleotide binding site of a MurG protein which is sufficiently spatially similar to at least a portion of a specified three-dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Table 4) to allow the three dimensional structure of the donor nucleotide binding domain to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates defining the three dimensional configuration of the donor nucleotide binding site of a MurG protein. According to the present invention, a three dimensional structure of a given donor nucleotide binding site of a first MurG protein can substantially conform to at least a portion of the atomic coordinates which represent a three dimensional configuration of a second MurG. Since the atomic coordinates of Table 4 were obtained from the E. coli MurG crystal protein without a donor nucleotide bound, there will be some variation from the atomic coordinates of the donor nucleotide binding site when a nucleotide is bound vs. unbound. Therefore, a structure "substantially conforming" to that represented by the atomic coordinates in Table 4, will include a structure obtained from co-crytallization of the protein with a donor nucleotide.

More particularly, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 1.5 Å for the C-alpha backbone atoms in secondary structure elements in each domain, and more preferably, less than about 1.3 Å for the C-alpha backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.0 Å, less than about 0.7 Å, and more preferably less than about 0.5 Å for the C-alpha backbone atoms in secondary structure elements in each domain. In a more preferred embodiment, a structure that

substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average RMSD value.

In an even more preferred embodiment, the above definition of "substantially conforms" can be extended to include atoms of the conserved or invariant amino acid side chains located within the binding site. As used herein, the phrase "conserved amino acid side chains" refers to amino acid side chains that are conserved between MurG proteins within the donor nucleotide binding site. The conserved amino acid residues of the donor nucleotide binding site have been identified as I125, R261, G263, A264, E269, P281, Q289, N292 and A293 (as numbered in the *E. coli* MurG sequence set forth in Figure 3a) and the G loop found between residues numbered 190-195 having residues G190, G191, S192, G194, and A195. Some or all of these conserved residues are necessary for binding the nucleotide donor.

Preferably, a three dimensional structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of the conserved amino acid side chains have an average RMSD value of less than about 1.5 Å, and more preferably, less than about 1.3 Å, and in increasing preference, less than about 1.0 Å, less than about 0.7 Å, and most preferably, less than about 0.3 Å. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of the conserved amino acid side chains have the recited average RMSD value, and more preferably, at least about 90% of the conserved amino acid side chains have the recited average RMSD value, and most preferably, about 100% of the conserved amino acid side chains have the recited average RMSD value.

STRUCTURE OF THE ACCEPTOR BINDING SITE OF MURG PROTEIN
An embodiment of the present invention includes the three dimensional structure of an acceptor binding site of a MurG protein. A three dimensional structure of a acceptor binding site of a MurG protein encompassed by the present invention substantially conforms with the atomic coordinates represented in Table 5. A more preferred embodiment of the present invention includes a three dimensional structure of an

acceptor binding site of a MurG protein wherein the three dimensional structure of the acceptor binding site substantially conforms to the atomic coordinates Table 5.

According to the present invention, the use of the term "acceptors" refers to Lipid I and analogues thereof. For the purposes of obtaining co-crystals containing acceptor analogues bound to the acceptor binding site better, the analogues need not be functional acceptors in a MurG assay. In particular embodiments of the present invention, the acceptor is selected from the group consisting of, but not limited to Lipid I, and analogs of Lipid I (see compounds described in Ha et al., J. Amer. Chem. Soc. 1999, vol. 121:8415-26, incorporated by herein by reference in its entirety).

As described in Example 1, the acceptor binding site is located in the N-terminal domain of a MurG protein (see Fig. 3a and 4c). The acceptor binding site or domain is characterized by three highly conserved regions, two of which are glycine-rich loops (also referred to as "G loops") that face the cleft between the C-terminal and N-terminal domains. The conserved residues of the acceptor binding site comprise G14, G15, G18, H19, G104, H124, and E125 (as numbered in the *E. coli* MurG sequence set forth in Figure 3a) and two conserved G loop structures.

According to the present invention, the use of the term "substantially conforms" refers to at least a portion of a three dimensional structure of an acceptor binding site of a MurG protein which is sufficiently spatially similar to at least a portion of a specified three-dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Table 5) to allow the three dimensional structure of the acceptor binding site to be modeled or calculated (i.e., by homology modeling) using the particular set of atomic coordinates defining the three dimensional configuration of the acceptor binding site of a MurG protein. According to the present invention, a three dimensional structure of a given acceptor binding site of a first MurG protein can substantially conform to at least a portion of the atomic coordinates which represent a three dimensional configuration of a second MurG.

In an even more preferred embodiment, the above definition of "substantially conforms" can be extended to include atoms of the conserved amino acid side chains. As used herein, the phrase "conserved amino acid side chains" refers to the conserved or invariant amino acid side chains that are common to MurG proteins. Preferably, a three dimensional structure that substantially conforms to a given set of atomic coordinates is a

structure wherein at least about 50% of the conserved amino acid side chains have an average RMSD value of less than about 1.5 Å, and more preferably, less than about 1.3 Å, and in increasing preference, less than about 1.0 Å, less than about 0.7 Å, and most preferably, less than about 0.3 Å. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of the conserved amino acid side chains have the recited average RMSD value, and more preferably, at least about 90% of the conserved amino acid side chains have the recited average RMSD value, and most preferably, about 100% of the conserved amino acid side chains have the recited average RMSD value.

STRUCTURE OF A MEMBRANE ASSOCIATION SITE OF MurG PROTEIN

An embodiment of the present invention includes the three dimensional structure of a membrane association site of a MurG protein. A three dimensional structure of a membrane association site of a MurG protein encompassed by the present invention substantially conforms with the atomic coordinates represented in Table 6. A more preferred embodiment of the present invention includes a three dimensional structure of an acceptor binding site of a MurG protein wherein the three dimensional structure of the acceptor binding site substantially conforms to the atomic coordinates in Table 6.

According to the present invention, the use of the term "membrane association site" refers to the region of a MurG protein that associates with cytoplasmic surface of bacterial membranes where it performs the reaction of coupling a soluble donor sugar to the membrane anchored acceptor sugar, Lipid I. Analysis of the *E. coli* MurG protein structure shows a hydrophobic patch consisting of residues I75, L79, F82, W85, and W116 in the N-domain. The membrane association site is where the MurG protein associates with the bacterial membranes, and that it is target for inhibitors if we find that a) we can bind to it with another molecule; b) we can disrupt membrane association by binding to it; or c) disrupting membrane association inhibits activity.

As described in Example 1, the membrane association site is located in the N-terminal domain of a MurG protein (see Fig. 4c). The location of the membrane association site is in close proximity to the acceptor binding site and membrane

association in this patch would bring the two M-terminal G-loops close to the membrane surface where the diphosphate portion of the acceptor is located.

According to the present invention, the use of the term "substantially conforms" refers to at least a portion of a three dimensional structure of a membrane association site of a MurG protein which is sufficiently spatially similar to at least a portion of a specified three-dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Table 6) to allow the three dimensional structure of the membrane association site to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates defining the three dimensional configuration of the membrane association site of a MurG protein. According to the present invention, a three dimensional structure of a given membrane association site of a first MurG protein can substantially conform to at least a portion of the atomic coordinates which represent a three dimensional configuration of a second MurG.

More particularly, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 1.5 Å for the structural elements in the site, and more preferably, less than about 1.3 Å for the structure elements in each site, and, in increasing preference, less than about 1.0 Å, less than about 0.7 Å, less than about 0.5 Å, and more preferably, less than about 0.3 Å for the structural elements in each site. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average RMSD value, and most preferably, about 100% of such structure has the recited average RMSD value.

In an even more preferred embodiment, the above definition of "substantially conforms" can be extended to include atoms of α -carbon backbone and conserved amino acid side chains. As used herein, the phrase "conserved amino acid side chains" refers to amino acid side chains that are conserved between MurG proteins. Preferably, a three dimensional structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 50% of the conserved α -carbon backbone and conserved amino acid side chains have an average RMSD value of less than about 1.5 Å, and more preferably, less than about 1.3 Å, and in increasing preference, less than about 1.0 Å, less

than about 0.7 Å, and most preferably, less than about 0.3 Å. In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of the α -carbon backbone and conserved amino acid side chains have the recited average RMSD value, and more preferably, at least about 90% of the α -carbon backbone and conserved acid side chains have the recited average RMSD value, and most preferably, about 100% of the α -carbon and conserved amino acid side chains have the recited average RMSD value.

COMPUTER READABLE MEDIUM

Another embodiment of the present invention relates to a computer-readable medium encoded with a set three dimensional coordinates selected from the group consisting of the three dimensional coordinates represented in Table 1, the three dimensional coordinates represented in Table 2, the three dimensional coordinates represented in Table 3, the three dimensional coordinates represented in Table 4, the three dimensional coordinates represented in Table 5, or the three dimensional coordinates represented in Table 6, wherein using a graphical display software program, the three dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image. Preferably, the three dimensional image is of a MurG protein, the α -carbon backbone of MurG, the α -carbon backbone and conserved amino acid residue sidechains of MurG, the donor nucleotide binding site of MurG, the acceptor binding site of MurG, or the membrane association site of MurG.

Yet another embodiment of the present invention relates to a computer-readable medium encoded with a set of three dimensional coordinates of a three dimensional structure which substantially conforms to the three dimensional coordinates represented in Table 1, wherein using a graphical display software program, the three dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image. In other embodiments, the present invention relates to a computer-readable medium encoded with a set of three dimensional coordinates of a three dimensional structure which substantially conforms to the three dimensional coordinates represented in Table 2, Table 3, Table 4, Table 5 or Table 6, wherein using a graphical display software program, the three dimensional

coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image. Preferably, the three dimensional image is of a MurG protein, the α -carbon backbone of MurG, the α -carbon backbone and conserved amino acid residue sidechains of MurG, the donor nucleotide binding site of MurG, the acceptor binding site of MurG, or the membrane association site of MurG.

IMAGES

One embodiment of the present invention relates to a two dimensional image of an $E.\ coli$ MurG protein including those illustrated in Figures 3-4. Most of these figures were drawn with the MOLSCRIPT program. Preferably, the two dimensional image is of a MurG protein, the α -carbon backbone of MurG, the α -carbon backbone and conserved amino acid residue sidechains of MurG, the donor nucleotide binding site of MurG, the acceptor binding site of MurG, or the membrane association site of MurG.

Another embodiment of the present invention includes a three dimensional computer image of the three dimensional structure of a MurG protein, preferably the E coli MurG protein. Suitable structures of which to produce three dimensional computer images are disclosed herein. Preferably, a computer image is created to a structure substantially conforming with the three dimensional coordinates represented in Table 1.

Another embodiment of the present invention includes an image of an MurG protein that is generated when a set of three dimensional coordinates comprising the three dimensional coordinates represented in Table 1 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file as a three dimensional image. Suitable structures to image are disclosed herein. Preferably, the three dimensional structures are of a MurG protein, the α-carbon backbone of MurG, the α-carbon backbone and conserved amino acid residue sidechains of MurG, the donor nucleotide binding site of MurG, the acceptor binding site of MurG, or the membrane association site of MurG. Most preferably, the MurG protein is the *E. coli* MurG protein described herein. A computer image of the present invention can be produced using any suitable software program, including, but not limited to, MOLSCRIPT 2.0 (Avatar Software AB, Helenebrgsgatan 21C, SE-11713, Stockholm, Sweden), the graphical display program O (Jones et al., Acta

Crystallography, vol. A47, p. 110, 1991), or the graphs of display program GRASP. Suitable computer hardware useful for producing an image of the present invention are known to those of skill in the art. Preferred computer hardware includes a Silicon Graphics Workstation.

MODELS OF MURG PROTEINS AND BINDING SITES

According to the present invention, a three dimensional structure of the E. coli MurG protein and its binding sites of the present invention can be used to derive a model of the three dimensional structure of another MurG protein and its binding sites (i.e., a structure to be modeled). As used herein, a "structure" of a protein refers to the components and the manner of arrangement of the components to constitute a protein or binding site. Also, as used herein, the term "model" refers to a representation of a tangible medium of the three dimensional structure of a protein, polypeptide or peptide, or binding site of a protein. For example, a model can be a representation of the three dimensional structure in a electronic file, on a computer screen, on a piece of paper (i.e., on a two dimensional medium), and/or as a ball-and-stick figure. Physical threedimensional models are tangible and include, but are not limited to, stick models and space-filling models. The phrase "imaging the model on a computer screen" refers to the ability to express (or represent) and manipulate the model on a computer screen using appropriate computer hardware and software technology known to those skilled in the art. Such technology is available from a variety of sources including, for example, Evans and Sutherland, Salt Lake City, Utah, and Biosym Technologies, San Diego, CA. The phrase "providing a picture of the model" refers to the ability to generate a "hard copy" of the model. Computer screen images and pictures of the model can be visualized in a number of formats including space-filling representations, α carbon traces, ribbon diagrams and electron density maps.

Suitable target MurG proteins and their associated binding sites to model using a method of the present invention include any MurG protein and binding sites that are at least in part structurally related to the *E. coli* MurG protein or its binding sites. A preferred target MurG structure that is at least in part structurally related includes a target MurG structure having an amino acid sequence that is at least about 25%, preferably at least about 30%, more preferably at least about 40%,

even more preferablye at least about 50%, more preferably at least about 60%, more preferably at least about 60%, more preferably at least about 80%, and more preferably at least about 90% identical to an amino acid sequence of the *E. coli* MurG protein, across the full-length of the target MurG structure sequence when using, for example, a sequence alignment program such as DNAsisTM program (available from Hitachi Software, San Bruno, CA) or the MacVectorTM program (available from the Eastman Kodak Company, New Haven, CT) or the GCγTM program (available from the "GCγ", University of Wisconsin, Madison, WI), such alignment being performed for example, using the standard default values accompanying such alignment programs.

Preferred MurG proteins and their binding sites are set forth in the amino acid sequences of MurG proteins as deposited in the NCBI database and are identified with Accession Nos. CAB51993, A71316, E70579, C71699, F70195, A43727, JC1275, BVECMG, CEECAM, O83535, Q9ZK59, CAB85280, AAF39020, BAA18775, AAD26629, CAB73295, P37585, Q9ZHA9, Q9ZHDC0, Q9ZBA5, Q9X4H4, Q9WY74, P74657, O06224, Q9Z702, O84766, O69552, O67238, O51708, O25770, O07670, O07109, P45065, CAB66324, AAC68356, AAF06830, P18579, P17443, P17952, P16457, P07862, AAE23178, AAD53936, CAA18668, CAA38869, CAA38868, CAA38867, CAA38866, AAD08196, BAA01453, BAA01455, BAA01454, AAD19042, CAA45558, CAA74235, AAD10537, AAD06652, AAC95450, CAA14869, AAC73201, AAC65509, AAC67113, AAC45636, CAB08640, AAC22793, AAC07193, BAA24357, CAB13395, BAA01355, AAB35538, 1904153C, 1808265B, 1808265A, CAA36866, CAA36869, CAA36868, CAA36867, CAA36776, and AAA99436. The amino acid sequences are publicly available.

A variety of MurG proteins from numerous organisms can be used to prepare models of MurG proteins and binding sites, including but not limited to, microorganisms such as bacteria, higher-order bacteria, thermal stable bacteria, spirochetes, small pathogenic organisms, fungi, protozoa, cyanobacteria, and trypanosomes. More particularly, bacteria such as but not limited to, Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus

WO 01/90301 PCT/US01/11500

pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum. It is noted that nucleotide and amino acid sequences for many of the above identified organisms are known and publicly available.

Preferred target MurG proteins and binding site structures to model also include, but are not limited to, derivatives of MurG proteins, such as a MurG protein having one or more amino acid residues substituted, deleted or added (referred to herein as MurG mutants), or proteins encoded by natural variants of a nucleic acid molecule encoding a MurG.

In another embodiment of the invention, the process of building a homology model for a protein is divided into the following steps:

- (1) Determine which proteins are related to the model protein;
- (2) Determine structurally conserved regions (SCRs);
- (3) Align the amino acid sequence of the unknown protein with those of the reference protein(s) within the SCRs;
- (4) Assign coordinates in the conserved regions;
- (5) Predict conformations for the rest of the peptide chain, including loops between the SCRs and possibly the N- and C-termini;
- (6) Search for the optimum side chain conformations for residues that differ from those in the reference proteins; and
- (7) Use energy minimization and molecular dynamics to refine the molecular structure so that steric strain introduced during the model-building process can be relieved.

Published sequences are readily available through on-line databases on the Internet, such as SwissProt (http://www.expasy.ch/sprot/sprot-top.html). MurG specific and related sequences are obtained for use for building homology models by text-based or sequence similarity searching. SCRs for MurG is the entire protein, considering the E. coli MurG crystal structure is the only similar sequence with structural data. Alignment of the sequences using an appropriate alignment program and algorithm, such as Clustal W, allows appropriate assignment of the E. coli protein coordinates to a MurG sequence of unknown structure. The Modeler program performs the conformational predictions

for the peptide chain and side chains. Dynamics and minimization using an appropriate program and algorithm, such as Discover.

Modeler Description:

Modeler is an automated homology-modeling scheme designed to find the most probable three-dimensional structure of a protein, given its amino acid sequence and its alignment with related structures. It derives 3D protein models without the time consuming separate stages of core region identification and loop region building or searching that is inherent to manual homology modeling schemes. The related or reference protein structures are used to derive spatial restraints expressed as probability density functions (PDFs) for each of the restrained features of the model. As an example, the main chain conformation of a given residue in the model will be described by restraints that depend upon the residue type, the main chain conformation of equivalent residues in the reference proteins and the local sequence similarity. The probability distribution functions that are used in restraining the model structure are derived from correlations between structural features in a database of families of homologous proteins aligned on the basis of their 3D structure. These functions are used to restrain C-C distances, main chain N-O distances, main chain and side chain dihedral angles, etc. The individual restraints are assembled into a single molecular probability density function (MPDF). The three-dimensional protein model is then obtained by an optimization of this MPDF. The optimization procedure itself consists of a variable target function method (Braun and Go, 1985) with conjugate gradient minimization scheme followed by an optional restrained simulated annealing molecular dynamics scheme.

While several reference structures are used in the traditional homology model building process, only one set of coordinates can be used in any one peptide segment. Modeler is able to simultaneously incorporate structural data from one or more reference proteins. Structural features in the reference proteins are used to derive spatial restraints which in turn are used to generate model protein structures using conjugate gradient and simulated annealing optimization procedures.

Clustal W description:

Clustal W aligns multiple sequences using a progressive pairwise alignment algorithm. It first generates all possible pairwise alignments for a list of sequences and then builds the guide tree based on their pairwise sequence identity, aligning the sequences following the order of the guide tree.

Several unique features in Clustal W improve the sensitivity of the alignment of divergent protein sequences (Thompson et al, 1994a).

- (1) Individual weights are assigned to each sequence in a partial alignment in order to downweight near-duplicate sequences and upweight the most divergent ones.
- (2) Amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned.
- (3) Residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure.
- (4) Positions in early alignments, where gaps have been opened, receive locally reduced gap penalties to encourage the opening of new gaps at these positions.

Discover Description:

The Discover program performs energy minimization, template forcing, torsion forcing, and dynamic trajectories and calculates properties such as interaction energies, derivatives, mean square displacements, and vibrational frequencies. It provides tools for performing simulations under various conditions including constant temperature, constant pressure, constant stress, periodic boundaries, and fixed and restrained atoms.

Homology modeling methods are known to those skilled in the art and are described in the following homology references:

Bacon, D.J.; Anderson, W.F. "Multiple sequence alignment," J. Mol. Biol., 191, 153-161 (1990).

Barker, W. C.; George, D. G.; Hunt, L. T. "Protein Sequence Database," in Methods in Enzymology, 183, 49, Academic Press:San Diego (1990).

Barton, G.J. "Protein multiple sequence alignment and flexible pattern matching," Meth Enzymol, 183, 403-428 (1990).

Benedetti, E.; Morelli, G.; Nemethy, G; Scheraga H. A. "Statistical and Energetic Analysis of Side-chain Conformations in Oligopeptides," Int. J. Peptide Protein Res. 22, 1-15 (1983).

Berger, M.P.; Munson, P.J. "A novel randomized iterative strategy for aligning multiple protein sequences," Comput Appl Biosci, 7, 479-484 (1991).

Blundell, T. L.; Sibanda, B. L.; Sternberg, M. J. E.; Thornton, J. M. "Knowledge-based prediction of protein structures and the design of novel molecules," Nature, 326, 347 (1987).

Blundell, T.L.; Carney, D.; Gardner, S.; Hayes, F.; Howlin, B.; Hubbard, T.; Overington, J.; Singh, D. A.; Sibanda, B. L.; Sutcliff, M. "Knowledge-based protein modelling and design," Eur. J. Biochem., 172, 513 (1988).

Browne, W.J.; North, A.C.T.; Phillips, D. C.; Brew, K.; Vanaman, T. C.; Hill, R. L. "A Possible Three-dimensional Structure of Bovine -Lactalbumin based on that of Hen's Egg-White Lysozyme," J. Mol. Biol., 42, 65 (1969).

Burks, C. et al. "GenBank: Current Status and Future Directions," in Methods in Enzymology, 183, 3-4, Academic Press: San Diego (1990).

Chothia, C. "Hydrophobic Bonding and Accessible Surface Area in Proteins", Nature, 248, 338-339 (1974).

Chothia, C. "The Nature of the Accessible and Buried Surfaces in Proteins," J. Mol. Biol., 105, 1-14 (1976).

Connolly, M.L. "Solvent-Accessible Surfaces of Proteins and Nucleic Acids", Science, 221, 709-713 (1983).

Dayhoff, M. O.; Barker, W. C.; Hunt, L. T. "Establishing Homologies in Protein Sequences," Methods in Enzymology, 91, 524 (1983).

Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. "A model of evolutionary change in proteins," In: Atlas of protein sequence and structure, Dayhoff M.O., Ed., Washington:Natl. Biomed. Res. Found., Vol. 5, Suppl. 3, 345-352 (1978).

Depiereux, E.; Feytmans, E. "Simultaneous and multivariate alignment of protein sequences: correspondence between physicochemical profiles and structurally conserved regions (SCR)," Protein Engng, 4, 603-613 (1991).

Dill, K. "Dominant Forces in Protein Folding", Biochem., 29, 7133-7155 (1990).

Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C.; Wilcox, W. "Hydrophobic Moments and Protein Structure," Faraday Symp. Chem. Soc., 17, 109-120 (1982).

Eisenberg, D.; McLachlan, A.D. "Solvation Energy in Protein Folding and Binding", Nature, 319, 199-203 (1986).

EMBL Data Library; European Molecular Biology Laboratory, Postfach 10.2209, 6900, Heidelberg, Germany

Engelman, D. M.; Steitz, T. A. "The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis," Cell, 23, 411 (1981).

Engelman, D. M.; Steitz, T. A.; Goldman, A. "Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins," Ann. Rev. Biophys. Chem., 15, 321 (1986).

Gamier, J., Robson, B. in Prediction of Protein Structure and the Principles of Protein Conformation, Fasman, G., Ed., Plenum: New York, Ch. 10, 417-465 (1989)

GenBank database; IntelliGenetics, Inc., 700 El Camino Real East, Mountain View, CA 94040

Gonnet, G.H. Cohen, M.A. Brenner, S.A. Science, 256, 1433 (1992).

Greer, J. "Model for haptoglobin heavy chain based upon structural homology," Proc. Nat. Acad. Sci. U.S.A., 77, 3393 (1980).

Greer, J. "Comparative Model-building of the Mammalian Serine Proteases," J. Mol. Biol., 153, 1027 (1981).

Greer, J. "Model Structure for the Inflammatory Protein C5a," Science, 228, 1055 (1985).

Henikoff, S. and Henikoff, J.G. Proc. Natl. Acad. Sci. USA 89, 10915-10919 (1992).

Hopp, T.P.; Woods, K. "Prediction of protein antigenic determinants from amino acid sequences," Proc. Natl. Acad. Sci. USA, 78, 3824-3828 (1981).

Jackson, R.M.; Stemberg, M.J. "Protein Surface Area Define,", Nature, 366, 638 (1993). Janin, J. "Surface and inside volumes in globular proteins," Nature, 277, 491-492 (1979).

Johnson, M.S.; Doolittle, R.F. "A method for the simultaneous alignment of three or more amino acid sequence," J. Mol. Evol., 23, 267-278 (1986).

Kabsch, W.; Sander, C. "Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features," Biopolymers, 22, 2577-2637 (1983).

Kahn, P.; Cameron, G. "EMBL Data Library," in Methods in Enzymology, 183, 26, 31, Academic Press: San Diego (1990).

Karlin, S.; Altschul, S.F. "Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes," Proc. Natl. Acad. Sci. USA, 87, 2264-2268 (1990).

Karlin, S.; Dembo, A.; Kawabata, T. "Statistical composition of high-scoring segments from molecular sequences," Ann. Stat., 18, 571-581 (1990).

Karlin, S.; Brendel, V. "Chance and statistical significance in protein and DNA sequence analysis," Science, 257, 39-49 (1992).

Kyte, J.; Doolittle, R. F. "A Simple Method for Displaying the Hydrophobic Character of a Protein," J. Mol. Biol., 157, 105-132 (1982).

Lee, B.; Richards, F.M. "The Interpretation of Protein Structures: Estimation of Static Accessibility", J. Mol. Biol., 55, 379-400 (1971).

Lipman, D. J.; Pearson, W. R. "Rapid and Sensitive Protein Similarity Searches," Science, 227, 1435-1441 (1985).

Lipman, D.J.; Altschul, S.F.; Kececioglu, J.D. "A tool for multiple sequence alignment," Proc. Natl. Acad. Sci. USA, 86, 4412-4415 (1989).

Mas, M.T.; Smith, K.C.; Yarmush, D.L.; Aisaka, K.; Fine, R.M. "Modeling the anti-CEA antibody combining site by homology and conformational search," Proteins: Struct., Func., and Genet., 14, 483-498 (1992).

McGregor, M. J.; Islam, S. A.; Stemberg, M. J. "Analysis of the Relationship between Side-chain Conformation and Secondary Structure in Globular Proteins," J. Mol. Biol. 198, 195-210 (1987).

Murata, M.; Richardson, J.S.; Sussman, J.L. "Simultaneous comparison of three protein sequences," Proc. Natl. Acad. Sci. USA, 82, 3073-3077 (1985).

Needleman, S. B.; Wunsch, C. D. "A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins," J. Mol. Biol., 48, 443-453 (1970).

Novotny, J.; Bruccoleri, R.; Karplus, M. "An Analysis of Incorrectly Folded Protein Models", J. Mol. Biol., 177, 787-818 (1984).

Ooi, T.; Oobatake, M.; Nemethy, G.; Scheraga, H. "Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides", Proc. Natl. Acad. Sci., 84, 3086-3090 (1987).

Pascarella, S. and Argos, P. "Analysis of insertions/deletions in protein structures", J. Mol. Biol. 224, 461-471 (1992).

Pearson, W. R.; Lipman, D. J. "Improved tools for biological sequence comparison," Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988).

Pearson, W. R. "Rapid and sensitive sequence comparison with FASTP and FASTA," Methods in Enzymology, 183, 63-98 (1990).

PIR/NBRF database, National Biomedical Research Foundation, Georgetown University Medical Center, 3900 Reservoir Rd., NW, Washington, D.C. 20007

Ponder, J. W.; Richards, F. M. "Tentiary Templates in Proteins. Use of Packing Criteria in the Enumeration of Allowed Sequences for Different Structural Classes," J. Mol.Biol., 193, 775-791 (1987).

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes in C, Cambridge University Press: Cambridge (1988).

Prevelige, Jr., P.; Fasman, G. in Prediction of Protein Structure and the Principles of Protein Conformation; Fasman, G., Ed.; Plenum: New York, Ch. 9, 391-416 (1989).

Saitou, N. and Nei, M. "The neighbor-joining method: a new method for reconstructing phylogenetic trees" Mol. Biol. Evol. 4, 406-425 (1987).

Schuler, G.D.; Altschul, S.F.; Lipman, D.J. "A workbench for multiple alignment construction and analysis," Proteins Struct. Func. Gen., 9, 180-190 (1991).

Shenkin, P. S., Private communication (1992).

Shenkin, P. S.; Yarmush, D. L.; Fine, R. M.; Wang, H.; Levinthal, C. "Predicting Antibody Hypervariable Loop Conformation. I. Ensembles of Random Conformations for Ringlike Structures," Biopolymers, 26, 2053-2085 (1987).

Shotton, D. M.; watson, H. C. "Three-dimensional Structure of Tosyl-elastase," Nature, 225, 811 (1970).

Shrake, A.; Rupley, J.A. "Environment and Exposure to Solvent of Protein Atoms. Lysozyme and Insulin", J. Mol. Biol., 79, 351-371 (1973).

Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. "Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics", J. Am. Chem. Soc., 112, 6127-6129 (1990).

Summers, N. L.; Carlson, W. D.; Karplus, M. "Analysis of Side-chain Orientations in Homologous Proteins," J. Mol. Biol. 196, 175-198 (1987).

Thompson, J.D. Higgins, D.G. and Gibson, T.J. "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice" Nucl. Acids Res. 22, 4673-4680 (1994a).

Thompson, J.D. Higgins, D.G. and Gibson, T.J. "Improved sensitivity of profile searches through the use of sequence weights and gap excision" CABIOS, 10, 19-29 (1994b).

Vila, J.; Williams, R.L.; Vasquez, M.; Scheraga, H. A. "Empirical Solvation Models Can be Used to Differentiate Native From Near-native Conformations of Bovine Pancreatic Trypsin Inhibitor", Proteins, 10, 199-218 (1991).

Vingron, M; Argos, P. "A fast and sensitive multiple sequence alignment algorithm," Comput. Appl. Biosci., 5, 115-121 (1989).

von Freyberg, B.; Richmond, T.J.; Braun, W. "Surface Area Included in Energy Refinement of Proteins: A Comparative Study on Atomic Solvation Parameters", J. Mol. Biol., 233, 275-292 (1993).

Wesson, L.; Eisenberg, D. "Atomic Solvation Parameters Applied to Molecular Dynamics of Proteins in Solution", Protein Science, 1, 227-235 (1992).

Allen, F.H.; Kennard, O. "3D Search and Research Using the Cambridge Structural Database", Chemical Design Automation News, 8, 31-37 (1993).

Engh, R.A.; Huber, R. "Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement", Acta Cryst., A47, 292-300 (1991).

Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. "PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures", J. Appl. Cryst., 26: 283 (1993).

MacArthur, M.W.; Thornton, J.M. "Conformational Analysis of Protein Structures Derived From NMR Data", Proteins, 17, 232-251 (1993).

Mardia, K.V. Statistics of Directional Data, Academic Press, New York, p. 133 (1972).

Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. "Stereochemical Ouality of Protein Structure Coordinates", Proteins, 12, 345-364 (1992).

The Modeler Program is known to those skilled in the art and is discussed in the following references:

Bernstein, F.C.; T.F.Koetzle, G.J.B.Williams, E.F.Meyer Jr, M.D.Brice, J.R.Rodgers, O.Kennard, T.Schimanouchi, M.Tasumi, "The protein data bank: A computer based archival file for macromolecular structures," J.Mol. Biol. 112, 535-542 (1977).

Blundell, T. L.; B. L. Sibanda; M. J. E. Sternberg; J. M. Thornton "Knowledge-based prediction of protein structures and the design of novel molecules" Nature (London) 326 347-352 (1987).

Blundell, T. L.; D. Carney; S. Gardner; F. Hayes; B. Howlin: T. Hubbard; J. Overinton; D. A. Singh; B. L. Sibanda; M. Sutcliff "Knowledge-based protein modelling and design" Eur. J. Biochem. 172 513 (1988)

Browne, W. J.; A.C.T. North; D.C. Phillips; K. Brew; T. C. Vanaman; R.C. Hill "A possible three-dimensional structure of bovine-lactalbumin based on that of hen's egg-white lysozyme" J. Mol. Biol. 42 65-86 (1969).

Braun, W. and N. Go "Calculation of protein conformations by proton-proton distance constraints: A new efficient algorithm" J. Mol. Biol. 186, 611-626 (1985).

Brooks, B.R.; R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M.Karplus, J.Comp.Chem. 4, 187 (1983)

Greer, J. "Model for haptoglobin heavy chain based upon structural honology" Proc. Nat. Acad. Sc. U.S.A. 77 3393 (1980).

Greer, J. "Comparative model-building of the mammalian serine proteases" J. Mol. Biol. 153 1027-1042 (1981).

Greer, J. "Model structure for the Inflammatory Protein C5a" Science 228 1055 (1985).

Matsumoto, R., A. ali, N. Ghildyal, M. Karplus, R. L. Stevens "Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells" J. Biol. Chem, 270, 19524-19531 (1995).

Melo, F. & Feytmans, E. "Novel knowledge-based mean force potential at the atomic level" J. Mol. Biol. 267, 207-222 (1997)

Nilsson, L.; M. Karplus, J. Comp. Chem., 7, 591 (1986).

Ponder, Richards, J.Mol. Biol. 194 775-791 (1987).

Sali, A. "Modeling mutations and homologous proteins," Curr. Opin. Biotech., 6 437-451 (1995a).

Sali, A. "Protein modeling by satisfaction of spatial restraints" Molecular Medicine Today, 1 270-277 (1995b).

Sali, A.; T.L. Blundell, "Definition of general topological equivalence in protein structures: A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming," J. Mol. Biol., 212 403-428 (1990).

Sali, A.; T.L. Blundell, "Comparative protein modeling by satisfaction of spatial restraints," Mol. Biol., 234 779-815 (1993a).

Sali, A.; R. Matsumoto, H.P. McNeil, M. Karplus, R.L. Stevens, "Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan-binding regions and protease-specific antigenic epitopes," J. Biol. Chem., 268 9023-9034 (1993b).

Sali, A.; J.P. Overington, "Derivation of rules for comparative protein modeling from a database of protein structure alignments,"

Protein Sci., 31 582-1596 (1994).

Sali, A.; L. Pottertone, F. Yuan, H. van Vlijmen and M. Karplus "Evaluation of comparative protein modeling by MODELLER" Proteins 23, 318-326 (1995).

Shotton, D. M.; H. C. Watson "Three-dimensional STructure of Tosyl-elastase" Nature 225 811 (1970).

The CFF Force Field is known to those skilled in the art and is discussed in the following references:

Baldridge, K.; Fine, R.; Hagler, A. J. Comp. Chem. 15, 1217-1227 (1994).

Dinur, U.; Hagler, A. T. J. Amer. Chem. Soc. 111, 5149-5151 (1989).

Dinur, U.; Hagler, A. T. In Reviews in Computational Chemistry, Vol. 2, K. B.

Lipkowitz; D. B. Boyd, Eds., VCH Publishers:

New York, 99-164 (1991).

Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S., Gordon, M. S.; DeFrees, D. J.;

Pople, J. A. J. Chem. Phys. 77, 3654-3665 (1982).

Hagler, A. T.; Huler, E.; Lifson, S. J. Amer. Chem. Soc. 96, 5319-5327 (1974).

Hagler, A. T.; Lifson, S.; Dauber, P. J. Amer. Chem. Soc. 101, 5122-5130 (1979a).

Hagler, A. T.; Dauber, P.; Lifson, S. J. Amer. Chem. Soc. 101, 5131-5141 (1979b).

Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 28, 213-222 (1973).

Hassan, M.; Nguyen, D. T.; Li, Z.; Hwang, M.-J.; Kitson, D. H.; Hagler, A. T. (in preparation).

Hwang, M.-J.; Stockfisch, T. P.; Hagler, A. T. J. Amer. Chem. Soc. 116, 2515-2525 (1994).

Kurihara, H.; Nguyen, D. T.; Hassan, M.; Hagler, A. T. (in preparation).

Maple, J. R.; Hwang, M.-J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S.;

Hagler, A. T. J. Comp. Chem. 15, 162-182

(1994).

Michalska, D.; Schaad, L. J.; Carsky, P.; Hess, Jr., B. A.; Ewig, C. S. J. Comp. Chem., 9, 495 (1988).

Waldman, M.; Hagler, A. T. J. Comp. Chem. 14, 1077-1084 (1993).

All the references cited above are incorporated by reference in the entireties.

STRUCTURE BASED DRUG DESIGN

The present invention relates to the use of the crystal structure of the E. colimar MurG protein represented by the atomic coordinates in Table 1 to make models of MurG proteins and binding sites thereof. The present invention also relates to the use of the crystal structure, α -carbon backbone, α -carbon backbone plus conserved amino acid residue side chains or binding sites of the E. coli MurG protein to construct models of these structures in other MurG proteins.

For the first time, the present invention permits the use of molecular design techniques to design, select and synthesize chemical entities and compounds, including inhibitory compounds, capable of binding to the active site or accessory binding site of MURG, in whole or in part.

On approach enabled by this invention, is to use the structure coordinates of MURG to design compounds that bind to the enzyme and alter the physical properties of

the compounds in different ways, e.g., solubility. For example, this invention enables the design of compounds that act as inhibitors of the MURG enzyme by binding to, all or a portion of, the active site of MURG.

A second design approach is to probe a MurG crystal with molecules composed of a variety of different chemical entities to determine optimal sites for interaction between candidate MURG inhibitors and the enzyme. For example, high resolution X-ray diffraction data collected from crystals saturated with solvent allows the determination of where each tpe of solvent molecule sticks. Small molecules that bind tightly to those sites can then be designed and synthesized and tested for their MURG inhibitor activity. Travis, J., Science, 262, p. 1374 (1993).

This invention also enables the development of compounds that can isomerize to short-lived reaction intermediates in the chemical reaction of a substrate or other compound that binds to MURG, with MURG. Thus, the time-dependent analysis of structural changes in MURG during its interaction with other molecules is enabled. The reaction intermediates of MURG can also be deduced from the reaction product in cocomplex with MURG. Such information is useful to design improved analogues of known MURG inhibitors or to design novel classes of inhibitors based on the reaction intermediates of the MURG enzyme and MURG-inhibitor co-complex. This provides a novel route for designing MURG inhibitors with both high specificity and stability.

Another approach made possible and enabled by this invention, is to screen computationally small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to the MURG enzyme. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy. Meng, E. C. et al., J. Coma. Chem., 13, pp. 505-524 (1992).

Because MURG may crystallize in more than one crystal form, the structure coordinates of MURG, or portions thereof, as provided by this invention are particularly useful to solve the structure of those other crystal forms of MURG. They may also be used to solve the structure of MURG mutants, MURG co-complexes, or of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of MURG.

One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of MURG, a MurG mutant, or a MurG co-complex, or the crystal of some other protein with significant amino acid sequence homology to any functional domain of MURG, may be determined using the MURG structure coordinates of this invention as provided in Tables 1-6. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.

In addition, in accordance with this invention, MURG mutants may be crystallized in co-complex with known MURG inhibitors. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of wild-type MURG. Potential sites for modification within the various binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between MURG and a chemical entity or compound.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 2-3. ANG. resolution X-ray date to an R value of about 0.20 or less using computer software, such as X-PLOR (Yale University, COPYRGT.1992, distributed by Molecular Simulations, Inc.). See, e.g., Blundel & Johnson, supra, Methods in Enzymoloav, vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985). This information may thus be used to design, synthezic and optimize novel classes of MURG inhibitors.

The structure coordinates of MURG mutants provided in this invention also facilitate the identification of related proteins or enzymes analogous to MURG in function, structure or both, thereby further leading to novel therapeutic modes for treating or preventing UDP-glycosyltransferase mediated diseases.

The design of compounds that bind to or inhibit MURG according to this invention generally involves consideration of two factors. First, the compound must be capable of physically and structurally associating with MURG. Non-covalent molecular interactions important in the association of MURG with its substrate include hydrogen bonding, van der Waals and hydrophobic interactions.

Second, the compound must be able to assume a conformation that allows it to associate with MURG. Although certain portions of the compound will not directly

participate in this association with MURG, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of the binding site, e.g., active site or accessory binding site of MURG, or the spacing between functional groups of a compound comprising several chemical entities that directly interact with MURG.

The potential inhibitory or binding effect of a chemical compound on MURG may be analyzed prior to its actual synthesis and testing by the use of computer modelling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association between it and MURG, synthesis and testing of the compound is obviated. However, if computer modelling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to MURG and inhibit using the assay of Walker et al. patents (cited supra). In this manner, synthesis of inoperative compounds may be avoided.

An inhibitory or other binding compound of MURG may be computationally evaluated and designed by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the individual binding pockets or other areas of MURG.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with MURG and more particularly with the individual binding pockets of the MURG donor nucleotide binding site, acceptor binding site or membrane association site. This process may begin by visual inspection of, for example, the binding sites on the computer screen based on the MURG coordinates in Tables 1-6. Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within an individual binding pocket of MURG as defined supra. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields, such as CHARMM and AMBER.

Specialized computer programs may also assist in the process of selecting fragments or chemical entities, including but not limited to:

- 1. GRID (Goodford, P. J., "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules" J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
- 2. MCSS (Miranker, A. and M. Karplus, "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
- 3. AUTODOCK (Goodsell, D. S. and A. J. Olsen, "Automated Docking of Substrates to Proteins by Simulated Annealing" Proteins: Structure. Function, and Genetics, 8, pp. 195-202 (1990)) (AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.).
- 4. DOCK (Kuntz, I. D. et al., "A Geometric Approach to Macromolecule-Ligand Interactions" J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or inhibitor. Assembly may be proceed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of MURG. This would be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include, but are not limited to:

1. CAVEAT (Bartlett, P. A. et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules". In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.

÷

- 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Martin, Y. C., "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992)).
- 3. HOOK (available from Molecular Simulations, Burlington, Mass.).

Instead of proceeding to build a MurG inhibitor in a step-wise fashion one fragment or chemical entity at a time as described above, inhibitory or other MURG binding compounds may be designed as a whole or "de novo" using either an empty active site or optionally including some portion(s) of a known inhibitor(s). These methods include, but are not limited to:

- 1. LUDI (Bohm, H.-J., "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. ComR. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.
- 2. LEGEND (Nishibata, Y. and A. Itai, Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
- 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).

Other molecular modeling techniques may also be employed in accordance with this invention. See, e.g., Cohen, N. C. et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990). See also, Navia, M. A. and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to MURG may be tested and optimized by computational evaluation. For example, a compound that has been designed or selected to function as a MurG-inhibitor must also preferably traverse a volume not overlapping that occupied by the active site when it is bound to the native substrate. An effective MURG inhibitor must preferably demonstrate a relatively small difference in

energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient MURG inhibitors should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. MURG inhibitors may interact with the enzyme in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the inhibitor binds to the enzyme.

A compound designed or selected as binding to MURG may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the inhibitor and the enzyme when the inhibitor is bound to MURG, preferably make a neutral or favorable contribution to the enthalpy of binding.

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include, but are not limited to: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. COPYRIGHT.1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Francisco, COPYRIGHT.1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. COPYRIGHT.1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif. COPYRIGHT.1994). These programs may be implemented, for instance, using a Silicon Graphics workstation, IRIS Octane or IBM RISC/6000 workstation. Other hardware systems and software packages will be known to those skilled in the art.

Once a MurG-binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted

chemical compounds may then be analyzed for efficiency of nt to MURG by the same computer methods described in detail, above.

COMPOUNDS AND COMPOSITIONS COMPRISING COMPOUNDS DERIVED FROM STRUCTURE BASED DRUG DESIGN

One embodiment of the present invention is a compound that is capable of binding to a MurG protein, inhibiting the activity of a MurG protein, or stimulating the activity of a MurG protein. Suitable inhibitory compounds of the present invention can: (1) inhibit (i.e., prevent or block) the activity of MurG enzyme by binding to a MurG donor nucleotide binding site and interfering with the binding of the donor nucleotide molecule; (2) inhibit the activity of MurG enzyme by binding to the MurG acceptor binding site and interfering with the binding of the acceptor molecule; (3) inhibit the activity of a MurG enzyme by binding to the membrane association site and interfering with the association of the protein with the bacterial membrane and/or acceptor molecule.

Another embodiment of the present invention is a compound that is capable of stimulating MurG activity. Suitable stimulatory compounds of the present invention can stimulate the activity of a MurG enzyme by binding to the protein at a binding site and causing an increase in enzymatic activity, for example, by increasing the enzymes affinity to bind a donor nucleotide, an acceptor molecule or improve the enzymes stability or increasing the binding affinity of a molecule to MurG.

Such compounds that bind to, inhibit or stimulate activity of a MurG protein include, for example, compounds that mimic donor nucleotide molecules. In preferred embodiments, the compound includes, for example, pyrimidine nucleoside analogues. In yet another preferred embodiment, the compounds include compounds comprising a pyrimidine nucleoside with a substituent containing at least one heteroatom attached to the C5 hydroxyl. In more particular embodiments, pyrimidine derivatives make complementary hydrogen bonding contacts to the amide backbone segment containing Ile 245 and also contact glutamate 269.

Another embodiment of the present invention is a compound that binds to the acceptor binding site of the MurG protein, hereinafter referred to a acceptor analogs. An acceptor analog refers to a compound that interacts with (e.g., binds to, associates with, modifies) the acceptor binding site of a MurG protein. An acceptor analog, for example,

is a compound that mimics the natural acceptor molecule, Epid I. Examples of such acceptor analogs are set forth in Ha et al., J. Amer. Chem. Soc. 1999, and PCT/US99/02187, U.S. Provisional Application No. 60/073,376 filed February 2, 1998, incorporated herein by reference.

Another embodiment of the present invention is a compound that binds to the MurG protein, that are enzyme product analogs, hereinafter referred to as Lipid II analogs. A Lipid II analog refers to a compound that interacts with (i.e., binds to, associates with, modifies) the acceptor binding site of a Mur G protein which mimics the product of the transglycosylase reaction.

Inhibitory and stimulatory compounds of the present invention can be identified by various means known to those of skill in the art. For example, binding of an inhibitory compound to, or otherwise interaction with, a MurG protein, can be determined with MurG in solution, for example, using assays described in PCT/US99/02187, U.S. Provisional Application No. 60/073,376 filed February 2, 1998. and PCT/US00/05554, U.S. Provisional Application Nos. 60/122,966 and 60/137,696, incorporated herein by reference.

According to the present invention, suitable compounds of the present invention include peptides or other organic molecules, and inorganic molecules. Suitable organic molecules include small organic molecules. Preferably, a compound of the present invention is not harmful (i.e., toxic) to an animal when administered to an animal.

Compounds of the present invention also can be identified using structure based drug design techniques known to those skilled in the art and described herein above.

Also according to the present invention, compounds are suitable for use in the inhibition of bacterial or microbial growth in an animal, and for example, function as an antibiotic for treatment of bacterial infections in animals.

The present invention also includes compositions comprising compounds of the present invention that inhibit or stimulate MurG activity which function as antibiotics or antimicrobial agents in animals. Compositions of the present invention can be used therapeutically or diagnostically in an animal. Compositions of the present invention comprises at least one compound of the present invention. In a preferred embodiment, compositions of the present invention further comprise a carrier. More particularly, a suitable carrier is a pharmaceutically acceptable carrier known to those skilled in the art.

Ξ.

TABLE 1- ATOMIC COORDINATES OF E. COLI MURG PROTEIN

```
REMARK coordinates from minimization refinementREMARK refinement
resolution: 40.0 - 1.9 AREMARK starting r= 0.2200 free r= 0.2466REMARK
               r= 0.2200 free r= 0.2466REMARK rmsd bonds= 0.005558 rmsd
               1.29505REMARK wa= 1.08391REMARK target= mlf cycles= 1 steps=
30REMARK sg = P1 a = 60.613 b = 66.356 c = 67.902 alpha = 64.294 beta 
83.520 gamma= 65.448REMARK parameter file 1
CNS_TOPPAR:protein_rep.paramREMARK parameter file 2
      TOPPAR:water_rep.paramREMARK parameter file 3
CNS TOPPAR: ion.paramREMARK molecular structure file: gen.mtfREMARK
input coordinates: gen.pdbREMARK reflection file= native.cvREMARK ncs=
noneREMARK B-correction resolution: 6.0 - 1.9REMARK initial B-factor
                                                                             0.747 B22=
                                                                                                     2.098 B33=
correction applied to fobs : REMARK
                                                                B11=
2.845REMARK
                        B12= -1.847 B13= -3.752 B23=
                                                                                6.401REMARK B-factor
                                                                             0.038REMARK bulk solvent:
correction applied to coordinate array B:
density level= 0.351665 e/A^3, B-factor= 43.8282 A^2REMARK reflections
with |Fobs|/sigma_F < 2.0 rejectedREMARK reflections with |Fobs| >
10000 * rms(Fobs) rejectedREMARK theoretical total number of refl. in
resol. range: 68102 (100.0%) REMARK number of unobserved reflections (no
entry or |F|=0):2825(4.1%) REMARK number of reflections rejected:
3288 (4.8 %) REMARK total number of reflections used:
61989 91.0%) REMARK number of reflections in working set: 55765 (81.9%) REMARK number of reflections in test set:
                                                   66.356
                                                                 67.902 64.29 83.52 65.45 P 1
6224 (9.1%)CRYST1 60.613
REMARK FILENAME="minimize5.pdb"REMARK DATE:14-Jan-00 15:25:36
created by user: shaREMARK VERSION:
0.5
MOTA
                      СВ
                             LYS A
                                                          0.142
                                                                        3.434
                                                                                     35.023
                                                                                                   1.00 43.02 AAAA
                 1
                                                                         4.457
                                                                                     35.641
                                                                                                   1.00 46.34 AAAA
ATOM
                 2
                      CG
                              LYS A
                                            7
                                                          1.076
                                                                        5.841
                                                                                     35.634
                                                                                                   1.00 47.39 AAAA
                      CD
                                            7
                                                          0.452
MOTA
                 3
                             LYS A
                                                                        6.846
                                                                                     36.332
                                                                                                   1.00 48.65 AAAA
MOTA
                      CE
                              LYS A
                                            7
                                                          1.345
                 4
                              LYS A
ATOM
                 5
                      N 7.
                                            7
                                                          0.780
                                                                        8.221
                                                                                     36.276
                                                                                                   1.00 51.04 AAAA
                                                                        2.733
                                                                                     34.833
                                                                                                   1.00 39.64 AAAA
                                                         -2.239
ATOM
                 6
                     С
                              LYS A
                                            7
MOTA
                 7
                      0
                                            7
                                                        -2.050
                                                                        1.717
                                                                                     34.160
                                                                                                    1.00 39.64 AAAA
                              LYS A
                 8
                                            7
                                                        -0.974
                                                                        2.320
                                                                                     36.947
                                                                                                    1.00 42.05 AAAA
MOTA
                      Ν
                              LYS A
                                                                        3.245
                                                                                     35.788
                                                                                                   1.00 41.31 AAAA
                                            7
ATOM
                 9
                      CA
                             LYS A
                                                        -1.170
                                                                                     34.773
MOTA
               10
                      N
                              ARG A
                                           8
                                                        -3.357
                                                                        3.451
                                                                                                   1.00 37.24 AAAA
                                                                        3.076
                                                                                     33.906
                                                                                                   1.00 34.91 AAAA
MOTA
                      CA
                             ARG A
                                           8
                                                         -4.469
               11
                             ARG A
                                                                        3.109
                                                                                     34,686
                                                                                                  1.00 36.65 AAAA
MOTA
                                           8
                                                        -5.782
               12
                      CB
                                                                        2.017
                                                                                     35.721
                                                                                                   1.00 39.89 AAAA
                                                        -5.950
ATOM
               13
                      CG
                             ARG A
                                           8
MOTA
                                                        -7.323
                                                                        2.124
                                                                                     36.356
                                                                                                    1.00 42.12 AAAA
                      CD
                             ARG A
                                           8
               14
                                                         -7.663
                                                                        0.960
                                                                                     37.163
                                                                                                    1.00 45.03 AAAA
MOTA
               15
                      ΝE
                             ARG A
                                           8
                                                                                     38.279
                                                                        0.610
                                                                                                   1.00 46.29 AAAA
MOTA
               16
                      CZ
                              ARG A
                                           8
                                                        -7.031
                                                                        1.337
                                                                                     38.725
                                                        -6.015
                                                                                                   1.00 46.88 AAAA
ATOM
               17
                      NH1 ARG A
                                           8
                                                        -7.420
                                                                                     38.952
                                                                       -0.466
                                                                                                   1.00 47.41 AAAA
                     NH2 ARG A
                                           8
ATOM
               18
                                                                        3.999
                                                                                     32.696
                                                                                                   1.00 32.27 AAAA
                                           8
                                                         -4.584
ATOM
               19
                      C
                              ARG A
                                                         -4.602
                                                                                     32.832
ATOM
               20
                     0
                              ARG A
                                           8
                                                                        5.224
                                                                                                   1.00 31.60 AAAA
                                                                        3.403
                                                                                     31.512
                                                                                                   1.00 29.57 AAAA
ATOM
               21
                      Ν
                              LEU A
                                            9
                                                        -4.663
                                                                        4.171
                                                                                     30.283
                                                        -4.792
                                                                                                   1.00 27.45 AAAA
                      CA
                              LEU A
                                            9
ATOM
               22
                                                                        3.954
                                                                                     29.362
                                                                                                   1.00 26.31 AAAA
                                           9
                                                        -3.581
ATOM
               23
                     CB
                             LEU A
                                                        -3.752
                                                                        4.466
                                                                                     27.916
                                                                                                   1.00 25.77 AAAA
                                           9
                             LEU A
MOTA
               24
                      CG
                                                                        5.985
                                                                                     27.895
               25
                      CD1 LEU A
                                            9
                                                        -3.670
                                                                                                   1.00 24.31 AAAA
ATOM
```

WO 01/90301

									Ì			
D TOM		CD3	T = (1) = 2	^		2	679	3.87	26.993	1 00	26.22	7777
MOTA	20		LEU A	9						1.00	20.22	AAAA
ATOM	27	С	LEU A	9		-6.	038	3.762	29.523	1.00	25.97	
ATOM	28	0	LEU A	9		-6.	397	2.587	29.485	1.00	25.57	AAAA
								4.738	28.928		25.37	
MOTA	29	N	MET A	10			713					
MOTA	30	CA	MET A	10		7.	866	4.429	28.101	1.00	24.70	AAAA
MOTA	31	СВ	MET A	.10		- 9	142	5.101	28.612	1.00	25.60	AAAA
											25.77	
MOTA	32	CG	MET A	10		-10.		4.873	27.675			
ATOM	33	·SD	MET A	10		-11.	916	4.958	28.492 .	1.00	26.63	AAAA
ATOM	34	CE	MET A	10		-12.		3.222	28.862	1 00	25.72	α α α α α
ATOM	35,	С	MET A	10		-/.	528	4.943	26.715	1.00	23:31	
ATOM	36	0	MET A	10		-7.	198	6.116	26.544	1.00	24.02	AAAA
	37		VAL A	11			574	4.059	25.727	1.00	22.25	
MOTA		N										
MOTA	38	CA	VAL A	11		-7.	278	4.461	24.359		22.34	
ATOM	- 39	CB	VAL A	11		-6.	444	3.386	23.624	1.00	22.75	AAAA
			VAL A	11			256	3.768	22.158	1.00	20.51	ΔΔΔΔ
MOTA	40							•				
MOTA	41	CG2	VAL A	11		-5.	082	3.239	24.310	1.00	21.75	
MOTA	42	С	VAL A	11		-8.	612	4.654	23.646	1.00	22.94	AAAA
								3.843	23.804	1.00	23.37	
ATOM	43	0 -	VAL A	11								
MOTA	44	N	MET A	12		-8.	722	5.734	22.878	1.00	22.18	AAAA
ATOM	45	CA	MET A	. 12		_ q ·	949	6.034	22.146	1.00	23.10	AAAA
										1.00	22.78	
ATOM	46	CB	MET A	12		-10.		7.399	22.589			
MOTA	47	CG	MET A	:.12		-10.	35.9	7.655	24.096	-1.00	23.92	AAAA
•	48		MET A	12		-10.		9.279	24.657	1.00	25.51	
MOTA												
MOTA	49	CE	MET A	12			641	10.349	24.162	1.00	22.79	
ATOM	50	С	MET A	12		-9.	582	6.072	20.673	1.00	22.97	AAAA
							917		20.226	100	21.16	
MOTA	• 51	0	MET A	12								
MOTA	52	Ν	ALA A	13		-9.	992	5.057	19.921	1.00	26.97	
ATOM	53	CA	ALA A	13		-9	665	5.008	18.498	1.00	30.88	AAAA
								4.212	18.288	1.00	31.18	
MOTA	54	СВ	ALA A	13			. 381					
MOTA	- 55	.C	ALA A	13		-10.	813	4.412	17.685	1.00	34.35	AAAA
ATOM	56	Ō	ALA A	13			328	3.335	18.006	1.00	35.86	AAAA
								•		1.00	37.37	
MOTA	57	N	GLY A	14			. 176	5.127	16.622			
ATOM	58	CA	GLY A	14		-12.	. 287	4.762	15.757	1.00	40.54	AAAA
	. : 59	C	GLY A				. 239	3.583	14.808	1.00	41.52	AAAA
MOTA										1.00	43.26	
MOTA	60	. 0	GLY A	14		-11.	.267	2.831	14.755			
ATOM	. 61	· N ·	GLY A	15		-13	. 322	3.451	.14.042	1.00	42.70	AAAA
	62	CA	GĽY A	15			491	2.363	13.094	1.00	43.13	AAAA
MOTA												
MOTA	63	С	GLY A	15			. 660	2.286	11.825	. 1.00	43.41	
MOTA	64	0	GLY A	15		-13	.212	2.187	10.730	1.00	44.39	AAAA
				16			. 340	2.333	11.966	1.00	43.38	AAAA
MOTA	65	N	THR A									
MOTA	. 66	CA	THR A	16		-10	. 426	2.204	10.833	1.00	43.22	
ATOM	67.	CB	·THR A	16		-10	.120	3.551	10.110	1.00	44.23	AAAA
ATOM	68	'0G1	THR A	16	•		.302	4.375	10.949	1.00	44.41	AAAA
											43.74	
· ATOM	- 69	√CG2	THR A	16		-11	.404	4.286	_: 9.754	1.00		
MOTA	70	· C	THR A	16		-9	. 118	1.679	11.402	1.00	43.06	AAAA
ATOM				16			.728	2.042	12.517	1 00	42.99	AAAA
	71		THR A							1 00	41.81	Λ Λ Λ Λ
· ATOM ·		N	GLY-A	17			.453	0.810	10.649			
ATOM	73	CA	GLY A	17		- 7	. 190	0.268	11.109	1.00	40.71	AAAA
ATOM	74		GLYA	17		-6	.202	1.401	11.275	1.00	39.54	$A_{A}A_{A}$
									12.085		39.73	
ATOM	75		GLY A	17			.275	1.330		1.00	,39.73	~~~
ATOM	76	N	GLY A	18		-6	.413 -	2.460	10.500	1.00	37.79	AAAA
	77	CA		18			.539	3.611	10.572	1.00	35.68	AAAA
MOTA			GLY A									
MOTA	78	: Č	GLY A	18			.394	4.116	11.994	1.00		
ATOM	. 79	0	GLY A	18 -		- 4	. 285	4.441	12.427	1.00	35.21	AAAA
								4.186	12.728	1.00		
MOTA	: 80	N		19			.503			•		
ATOM	- 81	CA.	HIS A	19		-6	.454	4.664	14.110	1.00		
ATOM	: 82		HISA	19			.759	5.371	14.504	1.00	30.28	-AAAA
											28.85	
ATOM	83	CG	HIS A	19			.150	6.504	13.605			
MOTA- ·	8 4	CD2	HIS A	19		-9	. 336	6.808	13.027	1.00		
							.288	7.524	13.265	1.00		$AA^{A}A$
MOTA			HIS A	19 -								
ATOM	∴86	CE1	${\tt HIS\cdot A}$	19		-7	.926	8.407	12.517	1.00		
- ATOM	. 87		HIS A	19			.170	7.996	12.358	1.00	27.45	AAAA
								3.533	15.108	1.00		
MOTA	1-88	C	. HIS A		-		.229					
· ATOM	. 89	0	HIS. A	19		- 5	.480	3.684	16.072	1.00		AAAA
				20			.895	2.407	14.881	1.00		AAAA
MOTA	. 90	N	VAL A									
MOTA	91	CA.	VAL A	20	•	-6	.813	1.271	15.788	1.00	აა.∪შ	~~~

		lacksquare									
MOTA	92	СВ	VAL	Δ	20	-7.875	0.215	15.430	1 00	22 21	
									1.00		
MOTA	93	CG1	l VAL	Α	20	-7.766	-0.982	16.361	1.00	33.91	AAAA
ATOM	94	CG2	2 VAL	А	20	-9.260	0.830	15.540	1.00	34.25	
	95										
ATOM		С	VAL	А	20	-5.452	0.587	15.898	1.00	33.31	AAAA
ATOM	96	0	. VAL	А	20	-4.977	0.337	17.008	1.00		ממממ
ATOM	97	N	PHE		21					22.55	
						-4.823	0.288	14.765	1.00	33.64	AAAA
ATOM	98	CA	PHE	А	21	-3.526	-0.385	14.794	1.00	33.68	AAAA
ATOM	99	СВ	PHE	Α	21	-3.020	-0.648	13.368	1.00	35.58	AAAA
ATOM	100	CG		А	21	-3.900	-1.578	12.577	1.00	39.10	AAA
ATOM	101	CD1	PHE	Α	21	-4.463	-2.701	13.174	1.00	40.50	AAAA
MOTA	102	CD2			21	-4.157	-1.338	11.232			
									1.00	41.05	AAAA
ATOM	103	CEl	. PHE	А	21	-5.271	-3.572	12.446	1.00	41.55	AAAA
ATOM	104	CE2	PHE :	Α	21	-4.964	-2.205	10.492	1.00	41.86	αααα
ATOM	105	CZ	PHE		21	-5.521	-3.323				
								11.103	1.00	42.12	
ATOM	106	С	PHE	А	21	-2.456	0.350	15.605	1.00	32.04	AAAA
MOTA	107	0	PHE	Α	21	-1.789	-0.257	16.443	1.00	31.30	ΔΔΔΔ
ATOM	108	N	PRO		22	-2.277	1.662	15.375			
									1.00	31.37	
ATOM	109	CD	PRO	А	22	-2.939	2.544	14.400	1.00	31.41	AAAA
ATOM	110	CA	PRO	Α	22	-1.259	2.396	16.139	1.00	30.01	AAAA
ATOM	111	СВ	PRO	Δ	22	-1.301	3.799	15.536	1.00	30.97	
MOTA	112	CG	PRO	А	22	-1.892	3.592	14.175	1.00	31.19	
ATOM	113	С	PRO	А	22	-1.620	2.411	17.624	1.00	29.31	AAAA
ATOM	114	0	' PRO	Λ	22	-0.749	2.366	18.489		27.42	
									1.00	-	
ATOM	115	N	GLY	Α	23	-2.918	2.483	17.903	1.00	28.99	AAAA
ATOM	116	CA	GLY	Α	23	-3.380	2.492	19.277	1.00	28.59	AAAA
ATOM	117	С	GLY		23						
						-3.035	1.196	19.990	1.00	29.00	
ATOM	118	0	GLY	А	23	-2.649	1.205	21.160	1.00	28.48	AAAA
ATOM	119	N	LEU	Α	24	-3.168	0.078	19.282	1.00	28.08	ΆΑΑΑ
ATOM	120	CA	LEU		24	-2.863	-1.227	19.859	1.00	28.39	
MOTA	121	СВ	LEU		24	-3.306	-2.347	18.913	1.00	28.16	AAAA
ATOM	122	CG	LEU	Α	24	-4.811	-2.605	18.843	1.00	28.45	AAAA
ATOM	123	CD1	LEU	Α	24	-5.117	-3.583	17.714	1.00	29.25	AAAA
MOTA	124	CD2			24	-5.291	-3.158	20.181	1.00	29.35	
ATOM	125	С	LEU	Α	24	-1.373	-1.350	20.147	1.00	28.37	AAAA
ATOM	126	0	LEU	Δ	24	-0.966	-1.986	21.126	1.00	28.60	AAAA
ATOM	127	N	ALA		25	-0.555	-0.743	19.296	1.00	27.77	AAAA
ATOM	128	CA	ALA	A	25	0.887	-0.795	19.497	1.00	28.98	AAAA
ATOM	129	CB	ALA	А	25	1.616	-0.142	18.321	1.00	27.53	AAAA
ATOM	130	Ċ									
			ALA		25	1.256	-0.093	20.800			AAAA
ATOM	131	0	ALA	Α	25	2.035	-0.618	21.595	1.00	29.49	AAAA
ATOM	132	N	VAL	А	26	0.694	1.094	21.020	1.00	28.82	AAAA
ATOM	133	CA	VAL		26	0.982	1.853	22.233	1.00	28.94	
											AAAA.
ATOM	134	СВ	VAL		26	0.400	3.290	22.157	1.00		AAAA
ATOM	135	CG1	VAL	Α	26	0.691	4.049	23.454	1.00	29.76	AAAA
ATOM	136	CG2	VAL	Δ	26	1.009	4.026	20.981		29.14	AAAA
ATOM	137	C	VAL	А	26	0.409	1.131	23.450		29.18	
ATOM	138	0	VAL	A	26	1.020	1.118	24.518	1.00	29.62	AAAA
ATOM	139	N	ALA	А	27	-0.757	0.518	23.286		27.98	
ATOM	140	CA			27						
			ALA			-1.371	-0.215	24.382		29.32	
ATOM	141	CB	ALA	A	27	-2.719	-0.755	23.950	1.00	.28.32	AAAA
MOTA	142	С	ALA	Α	27	-0.462	-1.372	24.840	1.00	30.04	AAAA
ATOM	143	0	ALA		27	-0.084	-1.454	26.015			
										29.89	
ATOM	144	N	HIS	A	28	-0.120	-2.259	23.907	1.00	30.92	AAAA
ATOM	145	CA	HIS	Α	28	0.734	÷3.413	24.201	1.00	30.62	AAAA
ATOM	146	СВ	HIS		28	1.024	-4.214	22.924		30.20	
ATOM:	147	CG	HIS		28	-0.112	-5.080	22.483	1.00	31.65	AAAA
ATOM	148	CD2	HIS	A	28	-0.764	-5.162	21.299	1.00	31.33	AAAA
ATOM	149		HIS		28	-0.717	-5.996	23.319		31.81	
MOTA	150		HIS	Α	28	-1.696	-6.600	22.670		32.38	
ATOM	151	NE2	HIS	Α	28	-1.747	-6.112	21.443	1.00	32.85	AAAA
ATOM	152	С	HIS		28	2.054	-2.989	24.823			AAAA
ATOM	153	0	HIS		28	2.537	-3.601	25.779	1.00	30.92	AAAA
MOTA	154	N	HIS	Α	29	2.636	-1.939	24.263		30.28	
ATOM	155	CA	HIS		29	3.899	-1.415	24.742		30.76	
ATOM	156	СВ	HIS		29	4.276	-0.195	23.911		31.40	
ATOM	157	CG	HIS	A	29	5.679	0.274	24.122	1.00	33.14	AAAA

		,					,			- 24
MOTA	158.	CD2 HIS A	29	6.	188	1.226	24.939	1.00	33.77	AAAA
							22 420	1 00	34.47	222
MOTA	159	ND1 HIS A								
MOTA	160	CE1 HIS A	29	7.	855 (0.381	23.791	1.00	34.76	AAAA
									34.09	
ATOM	161	NE2 HIS A	29							
ATOM	162	C HIS A	29	3.1	835 -	1.032	26.227	1.00	31.63	AAAA
						1.315			30.76	
MOTA	163		29							
MOTA	164	N LEU A	30	2.	744 -	0.388	26.638	1.00	29.72	AAAA
									30.08	
ATOM	165	CA LEU A	30							
ATOM	166	CB LEU A	.30	1.	631	1.225	28.126	1.00	29.45	AAAA
								1 00	28.69	A A A A
MOTA	167	CG LEU A	30							
MOTA	168	CD1 LEU A	30	1.	026	3.587	27.477	1.00	27.76	AAAA
		CD2 LEU A					28.075		28.99	
MOTA	169		30							
ATOM	170	C LEU A	30	2.	153 -	1.096	28.950	1.00	30.55	AAAA
		O LEU A	30			1.136			31.28	
ATOM	171									
ATOM	172	N MET A	31	1.	340 -:	2.012	28.438	1.00	31.26	AAAA
A TOM	173	CA MET A	31	0	884 -	3.130	29.256	1 00	33.71	ΔΔΔΔ
MOTA										
ATOM	174	CB MET A	31	-0.	118 -	3.999	28.494	1.00	34.12	AAAA.
	175	CG MET A	31	-1.	152 -	3.341	28.249	1 00	34.98	4444
ATOM										
ATOM	176	SD MET A	31	-2.	618 -	4.475	27.485	1.00	38.51	AAAA
ATOM	177	CE MET A	31	2	086 -	4.401	25.803	1.00	37.49	AAAA
ATOM	178	C MET A	31			3.987	29.664		35.03	
ATOM	179	O MET A	31	2	101 -	4.548	30.758	1.00	36.09	AAAA
MOTA	.180	N' 'ALA A	32			4.085	28.776		35.62	
ATOM	181	CA ALA A	32	4	262 -	4.871	29.044	1.00	37.61	AAAA
							27.755		37.79	
ATOM	182	CB ALA A	32	٥.		5.087	-			
ATOM	183	C. ALA A	32	5.	133 -	4.158	30.070	1.00	38.72	AAAA
							30.409		39.48	
ATOM	184	O ALA A	32	6.		4.621				
MOTA	185	N GLN A	33	4.	654 -	3.022	30.560	1.00	38.28	AAAA
						2.275	31.548		38.14	
ATOM	186	CA GLN A	33							
ATOM	187	CB GLN A	33	5.	903 -	0.969	30.941	1.00	39.68	AAAA
						1.210	29.791		42.76	
ATOM	188	CG GLN A	- 33							
ATOM	189	CD GLN A	33	7.	262	0.061	29.096	1.00	44.20	AAAA
	190	OE1 GLN A				0.975	29.717	1 00	46.28	AAAA
MOTA										
MOTA	191	NE2 GLN A	33	7,	002	0.131	27.795	1,.00	44.60	AAAA
ATOM	192	C · GLN A	33	Λ	576 -	2.020	32.787	1:00	36.68	AAAA .
ATOM	193	O GLN A	33	4.	822 -	1.075	33.532	1.00	37.34	AAAA
ATOM	194	N GLY A	34	3	5,8,5 -	2.877	33.000	1.00	35.86	AAAA
			,							
ATOM	195	CA GLY A	34	2.	738 -	2.755	34.170	1.00	35.52	AAAA
ATOM	196	C GLY A	34	1	461 -	1.951	34.008	1.00	34.34	AAAA
									33.67	
ATOM	197	O GLY A	34			1974.	34.897			
ATOM	- 198	N TRP A	35	1.	314 -	1.248	32.890	1.00	34.23	AAAA
						0.435	32.661		33.63	
ATOM	199	CA TRP A	35							
MOTA	200	CB TRP A	35	0.	324	0.509	31.474	1.00	34.84	AAAA
	201	CG TRP A			150 ,	1.722	31.753	1 00	35.09	. 4444
MOT,A										
ATOM	202	CD2 TRP A	35	0.	722	3.087	31.659		36.11	
ATOM	203	CE2 TRP A	35	1	840	3 897	31.957	1.00	36.13	AAAA
MOTA	: 204	CE3 TRP A	35			3.705			37.33	
ATOM	205	CD1 TRP A	. 35	2	469	1.759	32.099	1.00	35.78	AAAA
							32.221		34.49	
ATOM	206	NE1 TRP A				3.062				
ATOM	207	CZ2 TRP A	35	1.	776 '	5.293	31.955	1.00	37.71	AAA
						5.095	31.348		37.99	
MOTA	208	CZ3 TRP A	35							
ATOM	209	CH2 TRP A	35	0.	570 .	5.874	31.650		38.17	
			35			1.228	32.402	1.00	33.77	AAAA
ATOM	210									
MOTA	211	O TRP A	35	-1.	136 -	2.282	31.763		32.95	
		· ·	36			0.704		1.00	32.90	AAAA
MOTA	212									
ATOM	2:13	CA GLN A	36	-3.		1.301	32.696	i '00	33.08	AAAA
	214	CB GLN A		1		1.160	33:937	1,00	34.93	AAAA
MOTA										
ATOM	215	CG GLN A	36	-4.	240 -	2.228	34.992	Ť.00	38.58	AAAA
						2.143	36.103		40.36	
ATOM		CD GLN A								
ATOM	217	OE1 GLN A	36	-5.	295 -	1.186	36.874		42.12	
					•	3.146			42.80	
ATOM	218	NE2 GLN A		٠.						
ATOM	219	C: GLN A	36	-4.	160 -	0.482	31.552		32.42	
		O CINI A		4		0.748	31.583		31.42	
ATOM '		O GLN A								
ATOM	221	N VAL A		-4.	697 -	1.157	30.541	1.00	32.07	AAAA
						0.456	29.403		31.91	
ATOM	222	CA VAL A	- 3/							
ATOM	223	CB VAL A	37	-4.	436 -	-0.656	28.123.	1.00	32.46	A_AA_A
ATOR	223	יא מאי	٠, ر	3 •		•	•	-		

-17.272

ATOM

289

ARG A

45

1.845

12.533

1.00 51.20 AAAA

ILE A

421

ATOM

C

61

- 33

		_						
		_	**		21 050	2 001	. 21 215	1.00 36.29 AAAA
ATOM	422	Ο.	ILE A	61	-21.050		21.215	
MOTA	423	N	ARG A	62	-22.644	4.337	22.728	1.00 39.91 AAAA
					-23.732	4.087	21.797	1.00 43.16 AAAA
ATOM	424	CA	ARG A	62				
MOTA	425	CB.	ARG A	62	-24.818	. 3 . 268	22.494	1.00 44.19 AAAA
•					-26.183	3.312	21.825	1.00 48.33 AAAA
MOTA	426	CG	ARG A	62				_ ·
MOTA	427	CD	ARG A	62	-27.207	2.581	22.680	1.00 50.28 AAAA
	•						22.319	1.00 52.71 AAAA
MOTA	428	NE	ARG A	62	-28.584	2.906		
MOTA	429	CZ	ARG A	62	-29.646	2.419	22.951	1.00 53.14 AAAA
					_			1.00 54.03 AAAA
MOTA	430	NHl	ARG A	62	-29.482	1.586	23.968	
ATOM	431	NH2	ARG A	62	-30.870	2.767	22.573	1.00 53.49 AAAA
							21.280	1.00 44.33 AAAA
MOTA	432	С	ARG A	62	-24.302	5.400		
ATOM	433	0	ARG A	62	-24.942	6.140	22.021	1.00 43.98 AAAA
							20.005	1.00 46.60 AAAA
-MOTA	434	N	ILE A	. 63	-24.053			
ATOM	435	CA	ILE A	63	-24.537	6.912	19.378	1.00 49.26 AAAA
							18.965	1.00 49.17 AAAA
ATOM	436	CB	ILE A	63	-23.369			
ATOM	437	CG2	ILE A	63	-23.903	9.208	18.593	1.00 50.31 AAAA
						_ 1	20.113	1.00 49.48 AAAA
ATOM	438	CGI	ILE A	63	-22.368			
ATOM	439	CD1	ILE A	63	-21.158	8.822	19.775	1.00 49.03 AAAA
					-25.316		18.123	1.00 50.72 AAAA
MOTA	440	С	ILE A	63				
MOTA	441	0	ILE A	63	-24.724	6.219	17.093	1.00 50.90 AAAA
					-26.639		18.209	1.00 52.58 AAAA
MOTA	442	N	SER A	64				
MOTA	443	CA.	ŞER A	64	-27.488	6.235	17.078	1.00 54.45 AAAA
				•			17.574	1.00 54.65 AAAA
ATOM	444	CB	SER A	64	-28.731			
ATOM	445	OG	SER A	64	-29.528	6.329	18.391	1.00 55.29 AAAA
						4	16.242	1.00 55.33 AAAA
ATOM	446	Ç	SER A	.64	-27.927	_		
ATOM	447	0	SER A	64	-27.919	8.571	16.713	1.00 55.34 AAAA
							14.993	1.00 56.31 AAAA
ATOM	448	N	GLY A	65	-28.301			
ATOM	449	CA	GLY A	65	-28.774	8.196	14.090	1.00 57.42 AAAA
					-27.751		13.508	1.00 58.34 AAAA
ATOM	450	С	GLY A	65				
ATOM	451	0	GLY A	65	-28.052	10.333	13.315	1.00 58.53 AAAA
•					-26.552		13.207	1.00 59.08 AAAA
ATOM	452	N	LEU A	66 [.]				
ATOM	453	CA	LEU A	66	-25.514	9.530	12.648	1.00 59.80 AAAA
				66	-24.147	9.153	13.229	1.00 59.99 AAAA
MOTA	454	CB,	LEU A					1.00 60.38 AAAA
ATOM	455	ÇG	LEU A	66	-23.927	9.513	14.704	
			LEU A	66	-23.983	11.026	14.877	1.00 60.37 AAAA
. ATOM	456	CD1						1:00 60.47 AAAA
ATOM	457	CD2	LEU A	· 66	-24.983	8.840	15.565	
				.66	-25.467	9.497	11.121	1.00 60.04 AAAA
MOTA	458	°C	LEU A					
ATOM	459	0	LEU A	·66	-25.049		10.484	
				. 67	-25.892	8.378	10.541	1.00 60.97 AAAA
ATOM	_. 460	N	ARG A					
MOTA	· 461	CA	ARG A	67	-25.923		9.089	
	4 6 2	CB	ARG A	67	26 860	9.273	8.484	1.00 62.96 AAAA
ATOM							8.698	1.00 65.29 AAAA
ATOM	4.63	CG	ARG A	`67·	-28.340			
MOTA .	464	CD	ARG A	67	-29.138	3 10.270	8.842	1.00 66.93 AAAA
							8.611	1.00 68.58 AAAA
ATOM	465	NE	ARG A	67	-30.56			
ATOM	. 466	CZ	ARG A	67	-31.51	10.924	8.980	1.00 69.56 AAAA
				_			9 607	1.00 69.39 AAAA
ATOM	· 467	NHI	ARG A	67	-31.192			1.00 09.99 1222
ATOM	4 6 8	NH2	ARG A	67	-32.788	3 10.665	8.709	1.00 69.97 AAAA
							· 8 409	1.00 61.08 AAAA
· ATOM	469	C;	ARG A	67	-24.558			1.00 01.00 1222
ATOM	470	0	ARG A	· 67	-24.47	8.448	7.191	1.00 61.57 AAAA
					-23.48		9.189	1.00 60.22 AAAA
ATOM	471	Ν	GLY A	68				1 00 50 05 7777
ATOM	472	CA	GLY A	68	-22.16	8.249	8.605	1.00 58.95 AAAA
					-21.53		8.541	1.00 58.19 AAAA
· ATOM	473	· C	GLY A	68				
MOTA	474	0 ·	GLY A	68	-20.37	3 9.763		1.00 58.31 AAAA
					-22.28			1.00 57.03 AAAA
· ATOM·	475	N	LYS A	69				
ATOM			71/0 1	69	-21.74	5 12.009	8.904	. 1.00 55.91 AAAA
	476	CA:	LYSA					
MOTA ·	476		LYS A		_22 01	2 12 1115	9.349	1.00 56.90 AAAA
MOTA	476 477		LYS A	69	-22.81			1.00 56.90 AAAA
	477	СВ	-LYS A	69				1.00 57.91 AAAA
	477 478	CB CG	-LYS A	69 69	-23.82	7 13.368	8.264	1.00 57.91 AAAA
MOTA	477	СВ	-LYS A	69 69 69	-23.82 -23.16	7 13.368 7 14.147	8.264 7.133	1.00 57.91 AAAA 1.00 58.56 AAAA
MOTA	477 478 479	CB CG CD	LYS A LYS A LYS A	69 69 69	-23.82 -23.16	7 13.368 7 14.147	8.264 7.133 6.044	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA
MOTA MOTA	477 478 479 480	CB CG CD CE	LYS A LYS A LYS A	69 69 69	-23.82 -23.16 -24.16	7 13.368 7 14.147 3 14.517	8.264 7.133 6.044	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA
MOTA	477 478 479 480	CB CG CD	LYS A LYS A LYS A	69 69 69	-23.82 -23.16	7 13.368 7 14.147 3 14.517 2 15.327	8.264 7.133 6.044 4.965	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA
MOTA MOTA MOTA	477 478 479 480 481	CB CG CD CE NZ	LYS A LYS A LYS A LYS A	69 69 69 69	-23.82 -23.16 -24.16 -23.52	7 13.368 7 14.147 3 14.517 2 15.327	8.264 7.133 6.044 4.965	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA
ATOM ATOM ATOM ATOM	477 478 479 480 481 482	CB CG CD CE NZ C	LYS A LYS A LYS A LYS A LYS A	69 69 69 69 69	-23.82 -23.16 -24.16 -23.52 -20.52	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078	8.264 7.133 6.044 4.965 9.818	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA
ATOM ATOM ATOM ATOM	477 478 479 480 481 482	CB CG CD CE NZ	LYS A LYS A LYS A LYS A	69 69 69 69	-23.82 -23.16 -24.16 -23.52	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7-12.480	8.264 7.133 6.044 4.965 9.818 9.392	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA
ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483	CB CG CD CE NZ C	LYS A	69 69 69 69 69	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7-12.480	8.264 7.133 6.044 4.965 9.818 9.392	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA
ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483 484	CB CG CD CE NZ C	LYS A GLY A	69 69 69 69 69 69 70	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44 -20.69	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7 12.480 7 11.676	8.264 7.133 6.044 4.965 9.818 9.392	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA 1.00 51.77 AAAA
ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483 484	CB CC CC NZ C O	LYS A GLY A	69 69 69 69 69 69 70	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44 -20.69 -19.57	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7 12.480 7 11.676 5 11.692	8.264 7.133 6.044 4.965 9.818 9.392 11.072	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA 1.00 51.77 AAAA 1.00 48.95 AAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483 484	CB CCD CE NZ C O N CA	LYS A GLY A GLY A	69 69 69 69 69 69 70	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44 -20.69 -19.57	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7 12.480 7 11.676 5 11.692	8.264 7.133 6.044 4.965 9.818 9.392 11.072	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA 1.00 51.77 AAAA 1.00 48.95 AAAA
ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483 484 485	CB CC CC NZ C O	LYS A GLY A GLY A GLY A	69 69 69 69 69 69 70 70	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44 -20.69 -19.57 -19.66	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7 12.480 7 11.676 5 11.692 8 12.687	8.264 7.133 6.044 4.965 9.818 9.392 11.072 11.991 13.129	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA 1.00 51.77 AAAA 1.00 48.95 AAAA 1.00 46.84 AAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481 482 483 484 485	CB CCD CE NZ C O N CA	LYS A GLY A GLY A	69 69 69 69 69 69 70	-23.82 -23.16 -24.16 -23.52 -20.52 -19.44 -20.69 -19.57 -19.66	7 13.368 7 14.147 3 14.517 2 15.327 7 12.078 7 12.480 7 11.676 5 11.692	8.264 7.133 6.044 4.965 9.818 9.392 11.072 11.991 13.129	1.00 57.91 AAAA 1.00 58.56 AAAA 1.00 59.37 AAAA 1.00 59.41 AAAA 1.00 54.19 AAAA 1.00 54.69 AAAA 1.00 51.77 AAAA 1.00 48.95 AAAA 1.00 46.84 AAAA

							2170301/112/00
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	890123456789012345678901234567890123456789012345678	N ILE A A A A A A A A A A A A A A A A A A A	777777777777777777777777777777777777777	-18.515 -18.415 -16.262 -16.839 -17.324 -19.635 -19.154 -19.815 -19.559 -20.140 -19.559 -20.140 -19.559 -21.862 -23.705 -24.760 -22.760 -22.760 -22.938 -21.928 -23.768 -21.928 -23.768 -21.928 -23.768 -21.928 -23.768 -21.928 -23.768 -22.938 -23.768 -21.928 -23.199 -22.938 -23.199 -22.938 -23.199 -22.938 -23.199 -22.938 -23.199 -22.938 -23.199 -22.938 -23.199 -22.938 -23.199 -23.199 -23.199 -23.199 -23.196 -20.605 -20.606 -20.302 -23.114 -23.396 -24.9605 -27.356 -27.460 -27.356 -27.664 -28.619	13.14.14 14.463 15.325 14.463 15.325 14.501 15.935 17.512 15.074 17.512 15.074 13.697 15.16.517 15.16.517 15.16.517 15.16.517 15.16.517 15.16.517 15.16.517 15.16.517 15.16.79 15.16.13 16.17.518 17.518 17.518 18.865 19.18	13.523 14.623 14.959 13.786 16.217 17.471 14.367 15.296 13.112 12.757 11.284 10.516 10.516 10.506 13.003 13.414 12.752 12.954 12.954 12.954 12.959 15.116 16.541 17.055 18.366 18.366 18.366 18.366 17.317 18.5366 18.366 1	1.00 45.26 AAAA 1.00 43.82 AAAA 1.00 42.91 AAAA 1.00 42.86 AAAA 1.00 41.89 AAAA 1.00 43.91 AAAA 1.00 43.71 AAAA 1.00 43.71 AAAA 1.00 43.85 AAAA 1.00 45.17 AAAA 1.00 45.17 AAAA 1.00 45.17 AAAA 1.00 47.65 AAAA 1.00 47.12 AAAA 1.00 47.12 AAAA 1.00 47.12 AAAA 1.00 47.12 AAAA 1.00 43.31 AAAA 1.00 43.31 AAAA 1.00 39.79 AAAA 1.00 39.80 AAAA 1.00 39.80 AAAA 1.00 39.80 AAAA 1.00 39.80 AAAA 1.00 38.15 AAAA 1.00 38.16 AAAA 1.00 38.17 AAAA 1.00 38.18 AAAA 1.00 38.19 AAAA 1.00 38.14 AAAA 1.00 38.12 AAAA 1.00 38.14 AAAA 1.00 38.14 AAAA 1.00 38.14 AAAA 1.00 37.19 AAAA 1.00 37.19 AAAA 1.00 37.19 AAAA 1.00 37.19 AAAA 1.00 38.14 AAAA 1.00 38.15 AAAA 1.00 38.97 AAAA 1.00 38.98 AAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	524 525 526 527 528 529 530 531 532	C ILE A O ILE A N ALA A CA ALA A CB ALA A C ALA A O ALA A N ALA A CA ALA A	75 75 76 76 76 76 77	-23.114 -23.396 -23.816 -24.971 -25.060 -26.268 -27.352 -26.156 -27.326	18.886 19.818 18.602 19.399 19.454 18.847 19.323 17.834 17.225	17.377 18.130 16.283 15.878 14.350 16.455 16.124 17.309 17.935	1.00 38.41 AAAA 1.00 38.12 AAAA 1.00 38.04 AAAA 1.00 37.19 AAAA 1.00 37.36 AAAA 1.00 36.15 AAAA 1.00 35.97 AAAA 1.00 34.42 AAAA 1.00 33.14 AAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	534 535 536 537 538 539 540 541	C ALA A O ALA A N PRO A CD PRO A CA PRO A CB PRO A CG PRO A C PRO A	77 77 78 78 78 78 78 78	-27.125 -26.502 -27.664 -28.619 -27.577 -28.671 -28.703 -27.748	17.311 16.436 18.372	19.443 20.042 20.073	1.00 32.59 AAAA 1.00 31.09 AAAA 1.00 32.06 AAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	542 543 544 545 546 547 548 550 551 552 553	O PRO A N LEU A CA LEU A CB LEU A CD1 LEU A CD2 LEU A C LEU A O LEU A N ARG A CA ARG A CB ARG A	78 79 79 79 79 79 79 79 80 80	-26.874 -28.878 -29.130 -30.573 -31.644 -33.025 -31.450 -28.160 -27.745 -27.794 -26.877 -26.813	16.766 15.619 15.137 16.154 15.542 16.558 14.465 13.795 14.240 13.156	22.334 23.194 23.023 23.435 23.234 24.901 22.950 23.898 21.689 21.348 19.836	1.00 28.95 AAAA 1.00 29.33 AAAA 1.00 29.48 AAAA 1.00 30.82 AAAA 1.00 31.23 AAAA 1.00 30.46 AAAA 1.00 28.58 AAAA 1.00 27.70 AAAA 1.00 27.70 AAAA 1.00 28.33 AAAA 1.00 28.33 AAAA

12.294 19.222 1.00 36.59 AAAA 55,4 ARG A 8.0 -28.037 CG MOTA 1.00 38.91 AAAA 17.915 -27.657 11.616 CD ARG A 80 555 MOTA 1.00 43.51 AAAA 11.189 17.151 80 -28.821 556 ΝE ARG A MOTA 1.00 -29.537 11.991 16.370 44.36 AAAA 557 CZ ARG A 80 **ATOM** 13.270 16.244 1.00 45.19 AAAA 80 -29.207 NH1 ARG A **ATOM** 558 1.00 45.91 AAAA -30.589 11.513 15.721 559 NH2 ARG A 80 MOTA ARG A 21.871 1.00 27.39 AAAA 13.384 560 С 80 -25.464 MOTA 1.00 26.07 AAAA 12.455 22.392 -24.835 561 ARG A 80 **ATOM** 0 1.00 26.19 AAAA 81 -24.950 14.603 21.719 ILE A 562 Ν MOTA 1.00 24.89 AAAA 22.217 -23.608 14.886 563 ILE A 81 MOTA CA 1.00 25.72 AAAA 16.269 21.702 -23.081 564 СВ ILE A 81 MOTA 1.00 26.90 AAAA -24.069 17.373 22.021 565 CG2 ILE A 81 MOTA 1.00 25.98 AAAA 22.332 16.584 CG1 ILE A 81 -21.722ATOM 566 1.00 26.39 AAAA 15.474 22.169 -20.696 567 CD1 ILE A 81 ATOM 23.752 1.00 24.30 AAAA -23.609 · 14.832 ILE A 81 MOTA 568 С. 1.00 22.57 AAAA 14.315 24.365 -22.669 81 MOTA 569 0 ILE A 1.00 22.71 AAAA 15.344 24.367 PHE A 82 -24.672 570 MOTA N 15.333 1.00 22.28 AAAA 25.827 -24.800 571 CA PHE A 82 **ATOM** 1.00 21.54 AAAA -26.099 16.029 26.236 MOTA 572 CB PHE A 82 1.00 20.67 AAAA 27.730 -26.281 16.184 PHE A 82 MOTA 573 CG 16.644 28.538 1.00 21.08 AAAA CD1 PHE A -25.244 82 574 MOTA 1.00 21.44 AAAA -27.512 15.907 28.318 CD2 PHE A 82 MOTA .575 1.00 20.18 AAAA 16.831 29.916 CEI PHE A -25.430 576 82 MOTA 29.700 1.00 19.77 AAAA 16.093 -27.719 CE2 PHE A 82 MOTA 577 16.555 30.497 1.00 20.80 AAAA -26.678 578 CZ PHE A 82 MOTA 1:00 21.61 AAAA -24.797 13.887 26.330 579 С PHE A 82 ATOM 1.00 21.05 AAAA 13.536 27.285 -24.091 PHE A 82 580 0 MOTA 1.00 21.80 AAAA 25.669 13.042 581 ASN A 83 -25:577 N MOTA 11.640 26.045 1.00 22.62 AAAA -25.648 83 **ATOM** 582 ·CA ASN A 1.00 22.62 AAAA 10.969 25.296 -26.806 83 583 CB ASN A MOTA 1.00 25.00 AAAA 25.612 -26.921 9.495 ASN A 83 MOTA 584 CG 1.00 26.80 AAAA 8.677 25.031 . 585 OD1 ASN A 83 -26.227 MOTA 1.00 28.27 AAAA -27.791 26.548 9.153 586 ND2 ASN A 83 MOTA 1.00 21.61 AAAA 25.805 10.888 83 -24.324ASN A 58.7 С ATOM 1.00 22.04 AAAA 10.080 26.639 -23.903 588 ASN A 83 MOTA 0 1.00 19.98 AAAA 24.686 11.150 N . -23.658 MOTA 58.9 ALA A 84 1.00 19.25 AAAA 24,401 10.480 -22.383 590 CA ALA A 84 MOTA 22.981 1.00 20.79 AAAA 10.817 . 591 84 -21.912 CB ALA A MOTA 10.906 25.424 -1.00 19.48 AAAA -21.318 84 59.2 С ALA A MOTA 1.00 18.26 AAAA -20.509 10.095 25.880 8 4 593 0 ALA A MOTA 1.00 17.57 AAAA 25.769 -21.32212.188 59.4 N . TRP A 85 MOTA 1.00 18.15 AAAA 12.736 26.749 85 -20.390 595 CA TRP A MOTA 1.00 17.16 AAAA 26.781 .14.260 ATOM . . -20.561 TRP A 85 596 CB 27.892 1.00 16.32 AAAA 15.007 -19.863 597 CG TRP A 85 MOTA. 28.472 1.00 16.29 AAAA -20.300 16.233 CD2 TRP A 85 598 MOTA 29.445 1.00 15.39 AAAA 16.605 -19.340 599 CE2 TRP A 85 MOTA 1.00 16.28 AAAA -21.413 17.062 28.266 85 MOTA 600 CE3 TRP A 28.519 ...1.00 15.58 AAAA 85 -18.677 14.682 CD1 TRP A 601 MOTA 1.00 14.76 AAAA 29.454 15.639 -18.364 602 NE1 TRP A 85 MOTA 1.00 (14.50 AAAA -19.458 17.762 30.204 603 .CZ2 TRP 85 MOTA Α -1.00 16.55 AAAA 18.218 29.027 -21.530 604 CZ3 TRP Α 85 MOTA 29.988 1.00 15.65 AAAA 18.558 -20.553 CH2 TRP 85 605 Α ATOM 12.099 28.125 1.00 19.04 AAAA -20.639 TRP A 85 606 С MOTA 11.691 1.00 17.64 AAAA 28.820 -19.696 TRP A 85 607 0 · ATOM 1.00 18.52 AAAA 11.986 28.516 . 608 -21.903 ARG A 86 MOTA Ν 1.00 19.34 AAAA 29.803 -22.216 11.375 ARG A 609 CA 86 MOTA 1.00 19.24 AAAA 11.654 30.181 ARG A 86 -23.675610 CB ATOM 30.660 1.00 18.36 AAAA 13.104 86 -23.892 · ATOM 611 CG ARG A 13.357 1.00 19.61 AAAA -25.318 31.154 ARG A - 86 MOTA 612 CD -26.303 : 13.245 30.072. 1.00 19.64 AAAA .ATOM . NE ARG A 86 613 29.807 1.00 21.06 AAAA 12.156 ARG A -27.021MOTA 614 CŻ 86 30.548. 1.00 19.09 AAAA -26.880 11.063 ARG A 86 - ATOM-615 NH1 28.787 1.00 18.59 AAAA -27.879 12.156 NH2 ARG A 86 - ATOM 616 29.576, 1.00 18.93 AAAA -19.846 . 6.687 GLN A 87 0 MOTA 627 28.255 1.00 20.24 AAAA -19.471 8.479 ALA A 88 628 N MOTA 28.412. 1.00 20.23 AAAA -18.023 8.436 ALA A · 88

629

MOTA

CA

5.541

40.183

1.00 38.37 AAAA

-11.784

MOTA

695

CD

LYS A

96

8.802

-18.269.

CD1 TYR A 106

16.400 1.00 34.81 AAAA

. .

ATOM .

761

							•			
	260	•						1 00		-
MOTA	762	CEl	TYR A	4 106	-19.038	7.634	16.323	1.00	36.18	AAAA
MOTA	763	CD2	TYR A	106	-17.581	8.509	14.123	1.00	35.64	αααα
MOTA	764	CE2	TYR A	4 106	-18.343	7.344	14.032	1.00	36.47	AAAA
MOTA	765	CZ	TYR A	3 106	-19.069	6.912	15.133	1.00	37.27	AAAA
MOTA	766	ОН	TYR A		-19.829	5.766	15.027	1.00	38.99	AAAA
ATOM	767	С	TYR A	A 106	-15.678	10.072	17.576	1.00	26.46	AAAA
ATOM	768	0	TYR A	4 106	-15.976	10.897	18.430	1.00	26.55	AAAA
MOTA	769	N	VAL A	A 107	-15.549	8.780	17.858	1.00	25.31	ΔΑΑΔ
MOTA	770	CA	VAL A		-15.783	8.318	19.223		23.91	
ATOM	771	CB	VAL A	107	-15.659	6.772	19.335	1.00	25.47	AAAA
MOTA	772	CG1	VAL A		-14.224	6.327	19.076		26.57	
MOTA	773	CG2	VAL A	A 107	-16.126	6.315	20.711	1.00	24.96	AAAA
							20.223			
ATOM	774	С	VAL A		-14.836	8.993		1.00		
ATOM	775	0	VAL A	A 107	-15.190	9.190	21.389	1.00	23.17	AAAA
	776	N1			-13.650	9.381	19.765	1 00	23.13	ππππ
ATOM		N	SER A							
ATOM	777	CA	SER A	108	-12.676	10.029	20.643	1.00	23.40	AAAA
ATOM	778	СВ	SER A		-11.301	10.108	19.967	1 00	23.85	
ATOM	779	OG	SER A	108	-11.292	11.038	18.899	1.00	25.04	AAAA
MOTA	780	С	SER A		-13.121	11.430	21.044	1 00	23.03	αααα
MOTA	781	0	SER A	A 108	-12.592	12.009	21.993	1.00	22.32	AAAA
ATOM	782	N	GLY A	109	-14.089	11.979	20.310	1.00	21.84	AAAA
ATOM	783	CA.	GLY A	A 109	-14.583	13.307	20.627		21.98	
ATOM	784	c ·	GLY A	2 109	-15.297	13.342	21.972	1.00	20.30	AAAA
ATOM	785	0	GLY A	1 109	-14.898	14.088	22.856	1.00		
ATOM	786	N	PRO A	110	-16.369	12.557	22.155	1.00	20.07	AAAA
					-	11.637			20.80	
ATOM	787	CD	PRO A		-16.992		21.191			
ATOM	788	CA	PRO A	110	-17.085	12.550	23.436	1.00	19.58	AAAA
						11.569	23.199		20.85	
ATOM	789	CB	PRO A	4 110	-18.232					
MOTA	790	CG	PRO A	A 110	-18.398	11.548	21.702	1.00	22.43	AAAA
ATOM	791	C	PRO A		-16.136	12.031	24.524	3 00	18.52	ΔΔΔΔ
ATOM	792	0	PRO A	A 110	-16.184	12.462	25.675	1.00	19.12	AAAA
ATOM	793	N	GLY A	111	-15.286	11.086	24.140	1.00	19.12	AAAA
ATOM	794	CA	GLY A	A 111	-14.332	10.525	25.087		18.87	AAAA
ATOM	795	С	GLY A	111	-13.402	11.601	25.612	1.00	17.97	AAAA
							26.813	1.00	19.32	
ATOM	796	0	GLY A		-13.208	11.730				
MOTA	797	N	GLY A	A 112	-12.822	12.380	24.704	1.00	18.62	AAAA
ATOM	798		GLY A		-11.925	13.451	25.105	1.00	17.38	αααα
		CA								
ATOM	799	С	GLY A	A 112	-12.610	14.509	25.957	1.00	17.36	AAAA
ATOM	800	0	GLY A	112	-12.035	14.997	26.936	1.00	16.49	במממ
ATOM	801	N	LEU A	A 113	-13.837	14.864	25.583	1.00	16.45	AAAA
ATOM	802	CA	LEU A	1113	-14.611	15.866	26.314	1.00	17.35	AAAA
							25.640	1.00	17.68	
ATOM	803	CB	LEU A		-15.974	16.079				
ATOM	804	CG	LEU A	A 113	-16.735	17.409	25.805	1.00	21.99	AAAA
ATOM	805	CD1	LEU A	117	-18.205	17.154	25.511	1.00	20.80	ΔΔΔΔ
ATOM	806	CD2	LEU F	A 113	-16.570	18.007	27.178	1.00	22.94	AAAA
ATOM	807	С	LEU A	1113	-14.836	15.329	27.725	1.00	16.05	AAAA
					-14.695	16.045	28.711		16.63	
MOTA	808	0	LEU A							
ATOM	809	N	ALA A	114	-15.199	14.056	27.801	1.00	16.59	AAAA
ATOM	810	CA	ALA A		-15.442	13.416	29.087	1.00	15.95	ΔΔΔΔ
MOTA	811	CB	ALA A	1114	- 15.859	11.963	28.868		17.72	
ATOM	812	С	ALA A	114	-14.194	13.492	29.968	1.00	15.37	AAAA
ATOM	813	0	ALA A	1 114	-14.260	13.952	31.105		15.94	
ATOM	814	N	ALA A	115	-13.053	13.050	29.452	1.00	16.63	AAA.ª.
						13.098	30.251		15.65	
ATOM	815	CA	ALA A		-11.820					
ATOM	816	CB	ALA A	115	-10.641	12.518	29.450	1.00	15.52	AAAA
ATOM	817	C	ALA A		-11.506	14.530	30.693		16.10	
ATOM	818	0	ALA A	¥ 115	-11.141	14.777	31.841	1.00	15.67	AAAA
ATOM	819	N	TRP A		-11.650	15.480	29.778	1.00	16.71	AAAA
ATOM	820-	CA	TRP F	116	-11.380	16.873	30.100		17.31	
ATOM	821	СВ	TRP A		-11.542	17.723	28.835	1.00	18.91	AAAA
ATOM	822	CG	TRP F		-11.172	19.155	29.003		21.69	
MOTA	823	CD2	TRP A	116	-12.008	20.277	28.740	1.00	23.65	AAAA
MOTA	824	CE2	TRP A	4 TTP	-11.262	21.438	29.048		25.14	
MOTA	825	CF3	TRP A	116	-13.321	20.418	28.268	1.00	26.49	AAAA
						19.658	29.447		23.00	
ATOM	826		TRP F		-9.979					
		ALT: 3	TRP A	116	-10.025	21.032	29.479	1.00	24.96	AAAA
ATOM	827	NE.	ILL							

ATOM

-11.785 22:724 28.902 1.00 26.16 AAAA CZ2 TRP A 116 MOTA 828 1.00 26.44 AAAA -13.842 21.702 28.122 CZ3 TRP A 116 MOTA 829 1.00 25.35 AAAA CH2 TRP A 116 -13.072 22.834 28.439 MOTA 830 1.00 16.50 AAAA -12.292 17.377 31.233 MOTA 831 С TRP A 116 1.00 16.03 AAAA 32.137 18.080 TRP A 116 -11.835 MOTA 832 0 1.00 16.73 AAAA -13.565 16.990 31.200 833 Ν SER A 117 MOTA 1.00 17.06 AAAA 17.399 32.229 CA: SER A 117 -14.528 834 MOTA 1.00 16.18 AAAA 17.116 31.762 SER A 117 -15.961 835 CB **ATOM** 1.00 18.31 AAAA 836 OG SER A: 1:17 -16.270 15.731 31.743 MOTA SER A 117 1.00 18.05 AAAA 16.720 33.586 -14.289 MOTA 837 С 1.00 17.79 AAAA 17.147 34.605 SER A 117 -14.837 838 Ο ATOM 1.00 18.13 AAAA 1.00 19.26 AAAA 33.594 15.678 MOTA 839 N. LEU A 118 -13.466 14.950 34.827 -13.146 LEU A 118 **ATOM** 840 CA 1.00 18.09 AAAA 841 СВ LEU A 118 -13.262 13.441 34.587 MOTA 1.00 20.04 AAAA 34.353 12.932 LEU A 118 -14.686 MOTA 842 CG 1.00 20.30 AAAA -14.659 11.484 33.869 843 CD1 LEU A 118 MOTA 35.646 1.00 20.40 AAAA -15.480 13.064 CD2 LEU A 118 MOTA 844 35.305 1.00 20.78 AAAA LEU A 118 -11.736 15.283 845 С MOTA 36.321 1.00 20.64 AAAA 14.763 846 0 **LEU A 118** -11.267 MOTA 34.566 1.00 21.27 AAAA 16.152 -11.057 847 N GLY A 119 MOTA -9.706 16.537 34.943 1.00 21.97 AAAA GLY A 119, 848 CA MOTA 1.00 21.55 AAAA C GLY A 119 O GLY A 119 15.519 34.550 849 -8..648 MOTA 15.582 35.034 1.00 21.92 AAAA -7.515 GLY A 119 MOTA .850 -9.009 14.584 33.678 1.00 20.43 AAAA 851 N ILE A 120 **ATOM** 33.214 1.00 21.09 AAAA ILE A 120 13.548 -8.082 852 CA MOTA 32.836 1.00 20.95 AAAA 12.270 ILE A 120 -8.853 853 СВ ATOM -7.902 1.00 22.20 AAAA 11.226 32.275 854 CG2 ILE A 120 MOTA 1.00 22.05 AAAA 11.748 34.051 CG1 ILE A 120 -9.624 **ATOM** 855 1.00 21.95 AAAA 33.689 -10.688 10.709 MOTA 856 CD1 ILE A 120 14.088 31.978 1.00 20.81 AAAA ILE A 120 -7.358 MOTA 857 C. -8.001 31.004 1.00 21.35 AAAA 14.465 858 ILE A 120 MOTA 0 859 1.00 20.67 AAAA PRO A 121 -6.013 14.131 31.999 Ν MOTA 33.040 1.00 20.88 AAAA 13.722 MOTA 860 CD PRO A 121 -5.052 1.00 20.52 AAAA 14.658 30.819 -5.320 861 CA PRO A 121 MOTA 1.00 21.37 AAAA 14.649 31,.237 CB PRO A 121 -3.842 862 MOTA 1.00 22.04 AAAA PRO A 121 PRO A 121 -3.777 13.532 32.240 863 CG MOTA -5.580 13.893 1.00 19.38 AAAA 29.536 864 С. MOTA -5.717 PRO A 121 12.671 29.538 1.00 18.17 AAAA **ATOM** 865 0 1.00 20.01 AAAA 14.645 28.442 VAL A 122 -5.647 866 N · MOTA VAL A 122 -5.903 14.102 1.00 19.76 AAAA 27.120 CA MOTA 867 14.866 26.421 1.00 18.63 AAAA -7.047 CB: VAL A 122 MOTA 868 1.00 20.46 AAAA 869. -7.286 14.281 25.033 CG1 VAL A 122 MOTA 14.790 27.264 1.00 20.31 AAAA -8.320 MOTA 870 CG2 VAL A 122 -4.672 14.205 26.223 1.00 19.39 AAAA 871 VAL A 122 С MOTA -4.096 15.282 26.069 1.00 19.66 AAAA 872 VAL A 122 Ο. MOTA 1:00 19.86 AAAA Ν. 25.634 13.079 873 VAL A 123 -4.284 MOTA -3.134 1.00 20.22 AAAA 13.029 24.734 874 VAL A 123 MOTA CA 25.200 1.00 20.59 AAAA -2.086 11.982 875 VAL A 123 MOTA СВ 11.957 24.226 1.00 20.51 AAAA 876 -0.898 CG1 VAL A 123 MOTA 12.317 1.00 17.21 AAAA 877 CG2 VAL A 123 -1.602 26.606 MOTA 1.00 21.06 AAAA 12.600 23.381 -3.684 MOTA 878 С. VAL A 123 1.00 22.10 AAAA -4.482 11.666 23.300 VAL A 123 879 MOTA 0 1.00 21.08 AAAA 22.325 -3.269 13.284 880 Nº. LEU A 124 MOTA 12.952 1.00 21.68 AAAA 1.00 21.81 AAAA CA LEU A 124 20.989 -3.746 MOTA 881 -4.463 14.149 20.366 882 CB. LEU A 124 1.00 21.93 AAAA MOTA 14.805 21.105 CG LEU A 124 -5.629 883 1.00 22.15 AAAA MOTA 20:268 15.980 CD1 LEU A 124 -6.133 MOTA 884 1.00 21.49 AAAA -6.737 13.787 -21.337 CD2 LEU A 124 885 MOTA 12.558 20.038 1.00 21.67 AAAA LEU A 124 -2.628 886 С MOTA O LEU A 124 N HTC 20.170 13.011 1.00 22.39 AAAA -1.493 MOTA 887 19:075 1.00.22.63 AAAA -2.964 11.713 888 MOTA 1.00 24.74 AAAA -2.014 11.336 18.036 HIS A 125 889 CA MOTA 18.244 1.00 24.62 AAAA HIS A 125 -1.429 9.939 8.90 СВ MOTA 17.162 1.00 27.30 AAAA 16.079 1.00 27.23 AAAA 17.072 1.00 29.96 AAAA
 -0.471
 9.540

 -0.629
 8.744
 CG. HIS A 125 MOTA - 891 CD2 HIS A 125 8.92 MOTA 0.806 10.057 893 ND1 HIS A 125

ATOM	894	CE1	HIS A 12	5 1.391	9.597	15.979	1.00	27.40	
									AAAA
ATOM	895	NE2	HIS A 12	5 0.541	8.799	15.358	1.00	28.94	AAAA
MOTA	896	С	HIS A 12	5 -2.763	11.364	16.705	1.00	24.38	AAAA
ATOM	897	0	HIS A 12	5 -3.813	10.741	16.565	1.00	23.93	AAAA
ATOM	898	N	GLU A 12	6 -2.233	12.111	15.744	1.00	24.36	AAAA
									CACANA.
MOTA	899	CA	GLU A 12		12.199	14.420	1.00	26.31	AAAA
ATOM	900	CB	GLU A 12	6 -2.992	13.664	14.005	1.00	25.81	AAAA
ATOM	901	CG	GLU A 12						
					13.861	12.567	1.00	26.62	AAAA
ATOM	902	CD	GLU A 12	6 -4.795	13.196	12.288	1.00	27.69	AAAA
ATOM	903	OE1	GLU A 12	6 -5.785	13.544	12.965	1.00	27.90	
MOTA	904	OE2	GLU A 12	6 -4.855	12.326	11.391	1.00	27.53	AAAA
ATOM	905	С	GLU A 12	6 -1.901	11.472	13.456	1.00	27.49	AAAA
	906		GLU A 12						
ATOM		0			11.819	13.349	1.00	27.87	AAAA
ATOM	907	N	GLN A 12	7 -2.423	10.463	12.765	1.00	28.90	AAAA
MOTA	908	CA	GLN A 12	7 -1.617	9.682	11.834	1.00	30.09	AAAA
MOTA	909	CB	GLN A 12	7 -2.192	8.264	11.688	1.00	28.89	AAAA.
ATOM	910	CG	GLN A 12	7 -2.184	.7.421	12.958	1.00	28.94	AAAA
MOTA	911	CD	GLN A 12		7.578	13.775	1.00	29.34	AAAA
ATOM	912	OE 1	GLN A 12	7 -4.543	7.207	13.329	1.00	29.36	AAAA
MOTA	913	NE2	GLN A 12	7 -3.326	8.131	14.973	1.00	28.70	AAAA
MOTA	914	С	GLN A 12	7 -1.455	10.277	10.438	1.00	30.92	AAAA
ATOM	915	0	GLN A 12	7 -0.428	10.068	9.794	1.00	31.21	AAAA
	916								
ATOM		N .	'ASN A 128		11.038	9.986	1.00	32.48	AAAA
MOTA	917	CA	ASN A 128	3 -2.434	11.596	8.634	1.00	33.12	AAAA
MOTA	918	СВ	ASN A 128		11.589	8.083	1.00	32.20	AAAA
ATOM	919	CG	ASN A 128	-4.606	10.312	8.424	1.00	33.05	AAAA
ATOM	920	OD1	ASN A 128	-5.296	10.236	9.445	1.00	33.34	AAAA
ATOM	921	ND2			9.292	7.584	1.00	31.22	AAAA
ATOM	922	С	ASN A 128	3 -1.809	12.971	8.394	1.00	33.60	AAAA
ATOM	923	0	ASN A 128		13.744	9.327	1.00	34.03	AAAA
MOTA	924	N	GLY A 129	-1.550	13.256	7.117	1.00	33.69	AAAA
ATOM	925	CA	GLY A 129	-0.959	14.524	6.718	1.00	33.68	AAAA
ATOM	926	С	GLY A 129		15.682	6.972	1.00	33.41	AAAA
MOTA	927	0	GLY A 129	-1.482	16.834	7.057	1.00	32.92	AAAA.
ATOM	928	N	ILE A 130	-3.192	15.374	7.070	1.00	33.49	AAAA
	929	CA			16.383	7.361			
ATOM			ILE A 130				1.00	33.06	AAAA
ATOM	930	CB	ILE A 130	-5.204	16.570	6.206	1.00	33.49	AAAA
ATOM	931	CG2	ILE A 130	-4.548	17.358	5.083	1.00	35.66	AAAA
ATOM	932	CG1	ILE A 130		15.209	5.751	1.00	34.45	AAAA
ATOM	933	CD1	ILE A 130	-6.775	15.279	4.665	1.00	35.68	AAAA
ATOM	934	С	ILE A 130	-4.964	15.892	8.584	1.00	32.19	AAAA
ATOM	935	0	ILE A 130		14.733	8.644	1.00	32.07	AAAA
MOTA	936	N	ALA A 131	5.135	16.771	9.561	1.00	31.26	AAAA
ATOM	937	CA	ALA A 131	-5.832	16.404	10.788	1.00	30.63	AAAA
ATOM	938	СВ	ALA A 131		17.547	11.800	1.00	30.70	AAAA
ATOM	939	С	ALA A 131	7.292	16.038	10.556	1.00	30.27	AAAA
ATOM	940	0	ALA A 131		16.682	9.774	1 00	30.54	αααα
MOTA	941	N	GLY A 132		14.987	11.232		29.03	AAAA
MOTA	942	CA	GLY A 132	-9.131	14.587	11.119	1.00	27.98	AAAA
ATOM	943	C	GLY A 132		15.678	11.837			AAAA
ATOM	944	0	GLY A 132	-9.326	16.387	12.660	1.00	25.68	AAAA
ATOM	945	N	LEU A 133	-11.188	15.827	11.543	1.00	26.51	AAAA
ATOM	946		LEU A 133		16.882	12.186		26.70	
		CA							
MOTA	947	СB	LEU A 133	-13.363	16.967	11.538	1.00	28.16	AAAA
ATOM	948	CG	LEU A 133		18.138	11.936		28.52	
ATOM	949		LEU A 133		17.874	13.280		32.18	
ATÓM	950	CD2	LEU A 133	-13.486	19.436	11.960	1.00	30.27	AAAA
ATOM	951	C	LEU A 133		16.713	13.703	1.00		AAAA
MOTA	952	0	LEU A 133	-12.063	17.700	14.444	1.00	26.12	$A_{\cdot}AA_{\cdot}A$
ATOM	953	N	THR A 134		15.475	14.169	1.00		AAAA
ATOM	954	CA	THR A 134		15.230	15.608			AAAA
ATOM	955	CB	THR A 134	-12.605	13.729	15.922	1.00	23.18	AAAA
ATOM	956	OG 1			13.300	15.285	1.00	23.74	AAAA
ATOM	957	CG2	THR A 134		13.511	17.433	1.00		AAAA
MOTA	958	С	THR A 134	-11.071	15.671	16.315	1.00	22.68	AAAA
ATOM	959	Õ			16.368	17.328		21.38	
WI O'M	222	0	THR A 134	-11.110	.10.000	11.520	1.00	21.30	~~~~

		,			15 26		1 00	23.98	n n = -"	÷
MOTA	960.		ASN A 135	-9.927		15.771	1.00	23.98	AAAA	
MOTA	961	CA .	ASN A 135	-8.636	15.623	16.358		24.64		
ATOM	962	CB .	ASN A 135	-7.488	14.936	15.597	1.00	24.49	AAAA	
ATOM	963		ASN A 135	-7.020	13.638	16.264	1.00	25.25	AAAA	
				-6.267	12.856	15.668		25.70		
ATOM	964		ASN A 135							
MOTA	965 ·		ASN A 135	-7.445	13.415	17.504		22.51		
ATOM	966	С	ASN A 135	-8.421	17.135	16.349		25.19		
ATOM	967		ASN A 135	-7.890	17.702	17.301	1.00	24.79	AAAA	
	968		LYS A 136	-8.839	17.792	15.274		26.78		
ATOM						15.177		28.71		
ATOM	969		LYS A 136	-8.661	19.234					
MOTA	970		LYS A 136	-9.165	19.743	13.828		30.84		
ATOM	971	CG	LYS A 136	-8.816	21.195	13.563	1.00	34.68	AAAA	
ATOM	972		LYS A 136	-9.206	21.596	12.148	1.00	36.19	AAAA	
			LYS A 136	-8.810	23.033	11.846	1 00	37.78	AAAA	
MOTA	973				23.414	10.432	1.00			
ATOM	974		LYS A 136	-9.124						
MOTA	975		LYS A 136	-9.370	19.981	16.304	1.00			
ATOM	976	0	LYS A 136	-8.803	20.900	16.902		28.47		
ATOM	977		TRP A 137	-10.606	19.589	16.596	1.00	28.05	AAAA	
ATOM	978		TRP A 137	-11.363	20.243	17.656	1.00	28.85	AAAA	
				-12.855	19.921	17.516		31.86		
MOTA	979		TRP A 137				1.00	34.71		
MOTA	980		TRP A 137	-13.485	20.502	16.282				
MOTA	981	CD2	TRP A 137	-14.788	20.206	15.755		36.70		
ATOM	982	CE2	TRP A 137	-14.982	21.036	14.630	1.00	37.21	AAAA	
ATOM	983		TRP A 137	-15.811	19.321	16.130	1.00	38.46	AAAA	
•				-12.959	21.466	15.471	1.00	36.22		
MOTA	984		TRP A 137				1.00	36.96		
MOTA	985		TRP A 137	-13.851	21.794	14.480				
ATOM	986	CZ2	TRP A 137	-16.160	21.010	13.869		38.57		
MOTA	987	CZ3	TRP A 137	-16.986	19.295	15.373	1.00	39.12	AAAA	
ATOM	988			-17.148	20.136	14.255	1.00	39.31	_AAAA	
	989		TRP A 137	-10.868	19.803	19.029	1.00	28.01	'.AAAA	
MOTA					20.605	19.955		27.04		
MOTA	990	Ο.	TRP A 137	-10.763						
MOTA	991	N	LEU A 138	-10.548	18.520	19.143		27.31		
ATOM	992	CA .	LEU A, 138	-10,072	17.943	20.393		26.35		
ATOM	993	CB	LEU A 138	-9.879	16.444	20.174	1.00	27.79	FAAAA	
ATOM -			LEU A 138	-10.054	15.384	21.262	1.00	30.24	AAAA	
				-11.263	15.650	22.142	1.00	29.67		
MOTA	995		LEU A 138			20.562	1.00	30.06		
MOTA	996		LEU A 138	-10.178	14.036					
ATOM	997	С.	LEU A 138	-8:772		20.834		25.34		
ATOM	998	Ο.	LEU A. 138	-8.532	18.814	22.030	1.00	23.81	LAAAA	
MOTA	999	N	ALA A 139	-7.931	18.953	19.865	1.00	26.03		
ATOM	1000		ALA A 139	-6.657	19.595	20.160	1.00	26.05	: AAAA	
				-5.918	19.934	18.858	1:00			
МОТА	1001	СВ	ALA A 139.			21.002		26.86		
ATOM	1002	C -	ALA A 139	-6.847	20.858					
MOTA	- 1003	0	ALA A.139	-5.929	21.286	21.697	1.00	26.11		
ATOM	1004	Ν.	LYS A. 140	-8.044	21.439	20.952	1.00		AAAA	
ATOM	1005	CA	LYS A 140	-8.329	22.649	21.716	1.00	26.90	AAAA	
ATOM	1006	CB.	LYS A 140	-9.644	23.276	21.238	1.00	29.14	AAAA	
	1007		LYS A 140	-9.665	23.595	19.749	1.00	31.62	AAAA	
ATOM					24.513	19.364		35.02		
ATOM	. 1008		LYS A 140	-8.523						
ATOM	1009	CE	LYS A 140	-8.811	25.975.	19.704	1.00			
MOTA	1010	NZ	LYS A 140	-9.865	26.555	18.812		40.43		
ATOM	1011	C-	LYS A 140.	-8.395	22.414	23.230		25.59		
ATOM	1012	Ö .	LYS A 140	-8.333	23.361	24.004	1.00	24.94	AAAA	L
				-8.526	21.159	23.649		24.13		
ATOM	1013	N	ILE A 141			25.075		23.31		
MOTA	1014	CA	ILE A 141	-8.587	20.844					
MOTA	1015	CB	ILE A 141	-9.971	20.270			22.85		
MOTA	1016	CG2	ILE A 141	-11.046	21.355	25.372		23.89		
ATOM	1017		ILE A 141	-10.313	19.071	24.595	1.00	23.34		
				-11.574	18.339	25.012	100			
MOTA	1018		ILE A 141				1.00			
ATOM	1019	C ·	ILE A 141	-7.524	19.822	25.482				
ATOM	1020	0	ILE A 141	-7.427	19.450	26.655		22.52		
MOTA	1021	Ν -	ALA A 142	-6.724	19.375	24.520	100	21.80	AAAA (4
	: 1022	CA	ALA A 142	-5.695	18.379	24.803	1.00	21.97	AAAA	١
				-5.231	17.739	23.495		20.41		
MOTA	1023	СВ	ALA A 142		18.924	25.580		21.11		
ATOM	1024	С	ALA A 142	-4.491				22.76		
ATOM	1025	0	ALA A 142	-4.132	20.094	23.403	1.00	22.10	, white	•

WO 01/90301		PCT/US01/11500
ATOM 1	1026 N THR A 143 1027 CA THR A 143 1028 CB THR A 143 1029 OG1 THR A 143 1030 CG2 THR A 143 1031 C THR A 143 1032 O THR A 143 1033 N LYS A 144 1034 CA LYS A 144 1035 CB LYS A 144 1036 CG LYS A 144 1037 CD LYS A 144 1037 CD LYS A 144	-3.887 18.056 28.384 1.00 21.92 AAAA 2.604 16.838 23.747 1.00 25.48 AAAA 2.604 16.838 23.747 1.00 27.48 AAAA 3.818 16.373 29.2946 1.00 25.41 AAAA 3.818 16.373 22.946 1.00 27.48 AAAA 3.818 16.373 22.946 1.00 29.11 AAAA
ATOM 1	1039 NZ LYS A 144 1040 C LYS A 144 1041 O LYS A 144 1042 N VAL A 145 1043 CA VAL A 145 1044 CB VAL A 145 1045 CG1 VAL A 145 1046 CG2 VAL A 145 1047 C VAL A 145 1048 O VAL A 145 1049 N MET A 146 1050 CA MET A 146	4.722 17.507 22.587 1.00 28.97 AAAA -0.896 16.595 23.102 1.00 24.77 AAAA -1.688 15.660 23.039 1.00 24.45 AAAA -0.432 17.218 22.030 1.00 24.92 AAAA -0.830 16.793 20.701 1.00 25.14 AAAA -1.510 17.938 19.919 1.00 24.18 AAAA -2.023 17.418 18.591 1.00 24.71 AAAA -2.658 18.528 20.740 1.00 25.82 AAAA 0.420 16.356 19.950 1.00 25.49 AAAA 1.449 17.034 19.995 1.00 25.76 AAAA 0.324 15.208 19.289 1.00 26.18 AAAA 1.421 14.654 18.503 1.00 26.41 AAAA
ATOM 1	1051 CB MET A 146 1052 CG MET A 146 1053 SD MET A 146 1054 CE MET A 146 1055 C MET A 146 1055 C MET A 146 1057 N GLN A 147 1058 CA GLN A 147 1059 CB GLN A 147 1060 CG GLN A 147 1061 CD GLN A 147	2.000 13.396 19.172 1.00 26.85 AAAA 2.826 13.653 20.430 1.00 25.85 AAAA 3.306 12.116 21.269 1.00 28.45 AAAA 1.827 11.741 22.217 1.00 26.47 AAAA 0.860 14.293 17.131 1.00 27.20 AAAA -0.311 13.934 16.998 1.00 25.68 AAAA 1.701 14.395 16.111 1.00 28.03 AAAA 1.294 14.091 14.748 1.00 28.39 AAAA 1.067 15.388 13.979 1.00 28.65 AAAA 2.203 16.371 14.142 1.00 30.13 AAAA 2.006 17.653 13.360 1.00 29.84 AAAA 2.730 18.629 13.565 1.00 32.18 AAAA
ATOM 1	NE2 GLN A 147 LO64 C GLN A 147 LO65 O GLN A 147 LO66 N ALA A 148 LO67 CA ALA A 148 LO68 CB ALA A 148 LO69 C ALA A 148 LO70 O ALA A 148 LO71 N PHE A 149 LO72 CA PHE A 149 LO73 CB PHE A 149 LO74 CG PHE A 149	1.036 17.657 12.453 1.00 29.40 AAAA 2.394 13.274 14.085 1.00 29.45 AAAA 3.570 13.420 14.424 1.00 29.21 AAAA 2.010 12.412 13.150 1.00 29.90 AAAA 2.975 11.563 12.461 1.00 31.39 AAAA 2.254 10.468 11.690 1.00 30.97 AAAA 3.846 12.373 11.514 1.00 32.66 AAAA 5.071 12.231 11.517 1.00 32.76 AAAA 3.205 13.220 10.712 1.00 33.44 AAAA 3.903 14.059 9.744 1.00 35.09 AAAA 3.367 13.814 8.332 1.00 34.59 AAAA 3.200 12.367 7.985 1.00 35.35 AAAA
ATOM 1	LO75 CD1 PHE A 149 LO76 CD2 PHE A 149 LO77 CE1 PHE A 149 LO78 CE2 PHE A 149 LO79 CZ PHE A 149 LO80 C PHE A 149 LO81 O PHE A 149 LO82 N PRO A 150 LO83 CD PRO A 150 LO84 CA PRO A 150 LO85 CB PRO A 150 LO86 CG PRO A 150 LO87 C PRO A 150	1.935 11.789 7.958 1.00 34.17 AAAA 4.304 11.579 7.685 1.00 34.88 AAAA 1.771 10.448 7.637 1.00 34.20 AAAA 4.148 10.236 7.364 1.00 36.09 AAAA 2.878 9.670 7.340 1.00 35.09 AAAA 3.719 15.536 10.056 1.00 36.17 AAAA 2.697 15.939 10.606 1.00 37.06 AAAA 4.709 16.370 9.704 1.00 37.23 AAAA 4.709 16.370 9.704 1.00 37.23 AAAA 6.002 16.078 9.056 1.00 37.75 AAAA 4.569 17.803 9.975 1.00 38.03 AAAA 5.967 18.341 9.682 1.00 38.69 AAAA 6.432 17.448 8.569 1.00 38.52 AAAA 3.510 18.369 9.028 1.00 38.18 AAAA
ATOM 1 ATOM 1 ATOM 1	1088 O PRO A 150 1089 N GLY A 151 1090 CA GLY A 151 1091 C GLY A 151	3.355 17.878 7.912 1.00 38.42 AAAA 2.763 19.374 9.475 1.00 38.74 AAAA 1.749 19.952 8.609 1.00 38.66 AAAA 0.300 19.705 8.996 1.00 38.69 AAAA

							•	,			~ /.
ATOM	1092	0	GLY	A 151		-0.571	20.502	8,-645	1.00	38.08	AAAA
ATOM	1093	N	Δ1.Δ	A 152		0.024	18.602	9.689	1.00	38.70	AAAA
							18.311	10.112		38.90	
MOTA	1094	CA		A 152		-1.343					
MOTA	1095	CB	ALA	A 152		-1.402	16.980	10.859	1.00	38.46	AAAA
ATOM	1096	Ċ		A 152		-1.729	19.461	11.032	1 00	39.30	αααα
MOTA	1097	0	ALA	A 152		-2.753	20.114	10.838		4005	
ATOM	1098	N	PHE	A · 153		-0.887.	19.700	12.031	1.00	39.42	AAAA
						-1.084	20.795	12.971	1 00	39.90	ממממ
ATOM	1099	CA		A 153							
ATOM	1100	CB	PHE	A 153		-1.209;	20.286	14.409	1.00	39.04	AAAA
ATOM	1101	CG	PHE	A 153		-2.478	19.535	14.685	1.00	38.06	AAAA
							18.175	14.419		36.71	
ATOM	1102			A 153		-2.571					
ATOM	1103	CD2	PHE	A 153		-3.582	20.190	15.228	1.00	37.52	AAAA
ATOM	1104			A 153		-3.747	17.475	14.692	1.00	36.39	AAAA
										36.08	
ATOM	1105	CE2		A 153		-4.761 _.	19.500	15.502			
ATOM	1106	CZ	PHE	A 153		-4.842	18.140	15.235	1.00	36.20	AAAA
ATOM	1107	C		A 153		0.143	21.696	12.865	1.00	40.75	AAAA
ATOM	1108	0		A 153		1.238	21.228	12.543		41.03	
ATOM	1109	N	PRO	A 154		-0.026	23.001	13.128	1.00	41.05	AAAA
						-1.328	23.667	13.304		41.17	
ATOM	1110	CD		A 154							
ATOM	1111	CA ·	PRO	A 154		1.052	23.992	13.068	1,00	41.57	AAAA
ATOM	1112	СВ	PRO	A 154		0.339	25.292	13.428	1.00	41.69	AAAA
								12.876		41.76	
ATOM	1113	CG		A 154		-1.024	25.081				
ATOM	1114	C	PRO	A 154		2.260	23.744	13.975	1.00	42.12	AAAA
				A 154		3.400	23.833	13.515	1 00	43.15	AAAA
MOTA	1115	0									
MOTA	1116	N·	ASN	A 155		2.023	23.432	15.249		41.75	
ATOM	1117	CA	ASN	A 155		3.135	23,230	16.180	1.00	41.57	AAAA
						3.180	24.389	17.179	1 00	44.02	αααα
MOTA	1118	СВ		A ·155							
MOTA	1119	CG	ASN	A 155		2.961	25.736	16.522	1.00	45.69	AAAA
ATOM	1120	ODI	ΔSN	A 155		1.862	26.045	16.058	1.00	47.64	AAAA
									1.00	47.43	
MOTA	1121	ND2		A 155		4.010	26.545	16.475			
ATOM	1122	С	ASN	A 155		3.193	21.921	16.970	1.00	40.83	AAAA
ATOM	1123	ō		A 155		3.973	21.814	17.917	1.00	41.17	ΔΔΔΔ
MOTA:	1124	Ν .	ALA	A 156		2390	20.929	16.601	1.00	3883	
MOTA	1125	CA	ALA	A 156		2.400	19.658	17.326	100	37.19	A_AA_A
						1.203	18.811	16.909	1.00	36 03	AAAA.
MOTA:	1126	CB		A 156							
MOTA ·	1127	С	ALA	A 156		3.698	18.882	17.090	1.00	35.95	
ATOM	1128	0	AT.A	A 156		4.206	18.834	15.971	11.00	3555	AAAA
						4.233	18.275	18.146	1.00	35.08	
MOTA	1129	N		A 157							
ATOM	1130	CA	${ t GLU}$	A 157		5.464	17.505	18.022	1.00	33.77	
MOTA	1131	CB	GLU	A 157		5.848	16.881	19.373	1.00	34.33	AAAA
						7.175	16.124	19.352	1.00	34.59	
ATOM	1132	CG .		A:157							
MOTA:	1133	CD	GLU	A 157		7.487	15.430	20.670	1.00	35.45	
ATOM	1134	OF 1		A 157		8.517	-14.729	20.746	1.00	34.09	AAAA
							15.582	21.631	1.00	36.21	
ATOM	1135	OEZ		A 157		6.705					
~ATOM	1136	C	GLU	A 157		5.282	.16.405	16.970	.1.00	32.70	AAAA
ATOM	1137	0		A 157		4.262	15.709	16.952	1.00	31.88	AAAA.
							16.265	16.088		31.00	
MOTA	1138			A: 158		6.268					
MOTA	1139	CA	VAL	A 158		6.230	15.255	15.032		30.25	
ATOM	1140	CB -		A 158		6.926	15.768	13.751	1.00	30.33	AAAA
						7.013	14.653	12.719		,2.9.98	
MOTA	1141			A 158							
ATOM	1142	CG2	\mathtt{VAL}	A 158		6.147	16.953	13.181		30.15	
ATOM	1143	С		A 158		6.937	13.998	15.529	1.00	29.69	AAAA
,							14.020	15.798		29.80	
MOTA	1144	07		A 158		8.142					
ATOM	1145	N	VAL	A 159		6.182	12.909	15.645		28.61	
ATOM	1146	CA		A 159		6.715	11.647	16.149	1.00	29.00	AAAA
							11.250	17.469		28.75	
ATOM	1147	СВ		A 159		6.019					
ATOM	1148	CG1	VAL	A 159		6.129	12.384	18.482	1.00	28.06	AAAA
ATOM				A 159		4.552	10.921	17.197	1.00	28.06	AAAA
	1149										
ATOM	1150	C	VAL	A 159		6.581	10.469	15.186		29.32	
· ATOM	1151	O		A ·159		7.066	9.376	15.479	1.00	29.89	AAAA
							10.688	14.054	1.00		
ATOM	1152	Ν.,		A 160			10.000				
MOTA	1153	CA	GLY	A 160		5.727	9.628	13.075		29.63	
ATOM		C		A 160			8.608	13.483	1.00	29.61	AAAA
										29.30	
MOTA	1155	0	GLY	A 160	•	3.917	8.849	14.416			
ATOM	1.1156	N·		A: 161		4.635	7.475	12.782		29.30	AAAA
	1156					3 677	. 6 4∩1	13.074	1.00		
ATOM	1157	CA		A 161		3.677	6.401	13.074	1.00	29.78	

O 01/90301								P	CT/US0	1/11500	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1158 1159 1160 1161 1163 11665 11667 1177 1177 1177 1177 1177 11	NOONCOCOOOABGICONCOCOOOCOONCCOOOCOOOCOOOCOOOCOOOCOOOC	ASSI ASSI OF PRODUCTION OF PRO	NNNNDDDDDDD	161 162 162 162 163 163 163 163 164 164 164 165 165 166 166 166 166 166 166 166 166	4.855 5.368 4.765 3.619 5.308 7.649 8.364 8.138 9.567 9.839 9.530 10.373 11.577 9.739 10.492 9.697 8.341 7.566 8.048 10.862	7.154 7.461 7.711 5.089 4.810 4.263 4.571 2.389 3.608 2.1068 0.664 1.224 0.363 1.508 0.664 1.224 0.3631 -0.740 -1.770 -3.841 -4.167 -4.740 -7.145 -6.145 -3.841 -4.676 -3.855 -3.869 -4.480 -3.814 -4.605 -3.814 -4.605 -5.568 -7.430 -5.568 -7.430 -5.568 -7.5925	10.400 13.462 13.058 14.251 15.039 14.650 15.553 16.200 13.389 12.531 13.287 12.149 11.417 10.260 10.914 12.652 13.706 11.927 12.339 11.354 9.876 8.997 8.946 8.311 7.671 8.308 12.419 11.537 13.496 13.730 15.177 15.488 16.149 12.749 12.608 11.103 10.642 10.089 9.804 9.937 9.917 9.224	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	30.70 32.18 30.70 31.78 30.88 29.61 29.55 29.65 29.65 29.65 29.30.18 30.44 29.80 31.06 31.83 32.83 32.83 32.83 32.83 33.	AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
AAAA ATOM	1205					10.366	-4.610 -3.667	9.694 8.611	1.00		
AAAA ATOM AAAA	1206	СВ	VAL	Α	167	9.096	-2.888	8.170	1.00	31.53	
ATOM AAAA	1207	CG1	VAL	Α	167	9.485	-1.738	7.248	1.00	30.83	
ATOM AAAA	1208	CG2	VAL	Α	167	8.120	-3.825	7.458	1.00	31.61	
ATOM AAAA	1209	С	VAL	А	167	11.400	-2.657	,	1.00	31.23	
ATOM AAAA	1210	0	VAL			12.320	-2:268	8:380	1.00		
ATOM AAAA	1211	N	LEU				-2.238	10.359	1.00		
ATOM AAAA ATOM AAAA	1212	CA CB	LEU				-1.277 -0.942	10.959	1.00		
AAAA											

AÀAA

ŴO 01/	90301						PC'	T/US01/1	1500.
	ATOM	1214	CG	LEU A 168	10.490	-0.040	12.562	1.00 3	4.46
	AAAA ATOM	1215	CD1	LEU A 168	10.141	0.076	14.041	1.00 3	5.50
	AAAA ATOM	1216	CD2	LEU A 168	10.790	1.338	11.974	1.00 3	4.18
	AAAA ' ATOM	1217	С.	LEU A 168	13.594	-1.790	10.986	1.00 3	2.72
	AAAA ATOM	1218	0 -	LEU A 168	14.538	-1.002	10.923	1.00 3	2.67
	AAAA ATOM	1219	N	ALA A 169	13.752	-3.109	11.076	1.00 3	3.35
	AAAA ATOM	1220	CA	ALA A 169	15.077	-3.725	11.138	1.00 3	4.36
* •	AAAA ATOM	1221	СВ	ALA A 169	14.992	-5.054	11.883	1.00 3	
	AAAA				15.746	-3.939	9.777	1.00 3	
	AAAA AAAA	1222	C	ALA A 169				1.00 3	
	AAAA	1223	0	ALA A 169	16.905	-4.362	9.713		
•	ATOM AAAA	1224	N	LEU A 170	15.030	-3.651	8.695	1.00 3	
•	ATOM AAAA	1225	CA	·LEU A 170	15.590	-3.833	7.358	• • •	34.60
•	ATOM AAAA	1226	СВ	LEU A.170	14.577	-3.423	6.281	1.00 3	34.25
	ATOM AAAA	1227	CG	LEU A 170	13.363	-4.333	6.071	1.00 3	3.98
• .	ATOM AAAA	1228	CD1	LEU A 170	12.393	-3.675	5.101	1.00 3	34.11
	ATOM AAAA	1229	CD2	LEU A 170	13.820	-5.688	5.543	1.00 3	33.52
	MOTA	123,0	C,	LEU A 170	16.880	-3.042	7.163	1.00 3	34.41.
•	AAAA ATOM	1231	Ο·	LEU A 170	17.001	-1.902	7.616	1.00 3	33.45
•	AAAA ATOM	1232	Ν.	PRO A 171	17.867	-3.648	6.486	1.00 3	34.33
	AAAA ATOM	1233	CD	PRO A 171	17.877	-5.028	5.971	1.00 3	34.76
** :	AAAA MOTA	1234	CA.	PRO A 171	19.152	-2.988	6.233	1.00 3	35.17
	AAAA ATOM	1235	СВ	PRO A 171	19.897	-4.005	5.366	1.00	34.52
		1236	CG.	PRO A 171	19.361	-5.308	5.844	1.00 3	34.60
	AAAA ATOM	1237	C.	PRO A 171	18.938	-1.665	5.503	1.00 3	35.39
	AAAA ATOM	1238	0 ~	PRO A 171	17:933	-1.485	4.820	1.00	34.32
:	AAAA ATOM	1239	N.	LEU A 172	19.884	-0.746	5.654	1.00	36.05
	AAAA ATOM	1240	CA.	LEU A 172	19.801	0.555	4.998	1.00	37.43
	AAAA MOTA	1241	СВ	LEU A 172	20.946	1.458	5.468	1.00	37.48
	AAAA ATOM	1242	•	LEU A 172	20.934	1.934	6.925	1.00	38.42
	AAAA ATOM	1243		LEU A 172	19.751		7.158	1.00	37.89
	AAAA			LEU A 172	20.876	0.735	7:859	1.00	
	AAAA	1244					3.479	1.00	
i	ATOM · AAAA	1245	G .	LEU A 172	19.865		2.969	-1.00	
	ATOM AAAA	1246	0 ·	LEU A 172	20.392	-0.591		1.00	
					•			• .	

WO 01/90301								PC	T/US01/11500
ATOM	1247	N	PRO	Α	173	19.329	1.383	2.737	1.00 38.41
AAAA ATOM	1248	CD	PRO	Α	173	18.647	2.586	3.248	1.00 38.12
AAAA ATOM AAAA	1249	CA	PRO	Α	173	19.319	1.367	1.271	1.00 39.54
AAAA ATOM AAAA	1250	СВ	PRO	Α	173	18.853	2.778	0.923	1.00 38.97
ATOM AAAA	1251	CG	PRO	A	173	17.898	3.076	2.029	1.00 38.41
ATOM AAAA	1252	С	PRO	Α	173	20.672	1.027	0.639	1.00 41.06
AAAA ATOM AAAA	1253	0	PRO	A	173	20.751	0.205	-0.276	1.00 41.26
ATOM	1254	N	GLN	A	174	21.734	1.659	1.127	1.00 42.31
AAAA ATOM	1255	CA	GLN	Α	174	23.063	1.401	0.591	1.00 43.56
AAAA ATOM AAAA	1256	СВ	GLN	Α	174	24.118	2.219	1.343	1.00 45.08
ATOM	1257	CG	GLN	А	174	24.197	3.672	0.906	1.00 47.91
AAAA ATOM AAAA	1258	CD	, ĠLN	A	174	25.366	4.413	1.534	1.00 50.04
ATOM	1259	OE1	GLN	Α	174	25.665	5.552	1.164	1.00 50.92
AAAA MOTA	1260	NE2	GLN	Α	174	26.033	3.771	2.491	1.00 50.23
AAAA ATOM	1261	С	GLN	А	174	23.415	-0.076	0.667	1.00 43.25
AAAA ATOM AAAA	1262	0	GLN	A	174	23.955	-0.641	-0.280	1.00 42.73
AAAA ATOM AAAA	1263	N	GLN	A	175	23.098	-0.702	1.794	1.00 43.02
ATOM	1264	CA	GLN	Α	175	23.398	-2.115	1.981	1.00 43.41
AAAA ATOM	1265	СВ	GLN	Α	175	23.206	-2.505	3.449	1.00 44.88
AAAA ATOM AAAA	1266	CG	GLN	Α	175	23.844	-1.544	4.444	1.00 47.91
AAAA ATOM AAAA	1267	CD	GLN	Α	175	25.331	-1.344	4.211	1.00 49.82
ATOM AAAA	1268	OE1	GLN	Α	175	25.747	-0.765	3.203	1.00 50.30
ATOM AAAA	1269	NE2	GLN	Α	175	26.145	-1.826	5.148	1.00 51.04
ATOM	1270	С	GLN	Α	175	22.521	-2.997	1.097	1.00 42.34
AAAA ATOM AAAA	1271	0	GLN	A	175	22.996	-3.961	0.500	1.00 41.64
AAAA ATOM AAAA	1272	N	ARG	A	176	21.238	-2.659	1.016	1.00 41.73
ATOM AAAA	1273	CA	ARG	Α	176	20.285	-3.422	0.216	1.00 41.37
ATOM	1274	СВ	ARG	A	176	18.854	-2.912	0.469	1.00 42.69
AAAA ATOM	1275	CG	ARG	Α	176	17.767	-3.726	-0.232	1.00 44.32
AAAA ATOM	1276	CD	ARG	Α	176	16.338	-3.227	0.066	1.00 46.28
AAAA ATOM	1277	NE	ARG	Α	176	15.922	-2.116	-0.793	1.00 46.82
AAAA ATGM	1278	СZ	ARG	Α	176	16.043	-0.829	-0.479	1.00 47.07
AAAA ATOM	1279	NH1	ARG	A	176	16.567	-0.471	0.686	1.00 47.74

WO 01/90301		1					PC	T/US01/	11500
ATOM	1280	NḤ2	ARG A	176	15.645	0.102	21.337	1.00	16.75
AAAA MOTA	1281	C ·	ARG A	176	20.574	-3.358	-1.279	1.00	10.60
AAAA MOTA	1282	0	AŖG A	176	20.485	-4.366	-1.981	1.00	39.33
AAAA MOTA	1283	Ν,	LEU A	177	20.928	-2.171	-1.757	1.00	40.82
AAAA ATOM	1284	CA-	LEU A	177	21.182	-1.957	-3.177	1.00	41.69
AAAA MOTA	1285	СВ	LEU A	177	20.635	-0.587	-3.580	1.00	41.42
AAAA ATOM	1286	CG	LEU A	177	19.152	-0.376	-3.262	1.00	41.85
AAAA MOTA	1287	CD1	LEU A	177	18.756	1.059	-3.578	1.00	41.44
AAAA MOTA	1288	CD2	LEU A	177.	18.311	-1.358	-4.066	1.00	41.27
AAAA MOTA	1289	С	LEU A	177	22.632	-2.080	-3,636	1.00	42.12
AAAA MOTA	1290	Ο.	LEU A	177	22.923	-1.918	-4.822	1.00	42.57
AAAA ATOM	1291	N. '.	ALA A	178	23.536	-2.374	-2.709	1.00	42.36
AAAA ATOM	1292	CA	ALA A	178.	24.951	-2 _: 505	-3.047	1.00	41.77
AAAA ATOM	1293	СВ	ALA A	178	25.774	-2.711	-1.778	1.00	42.52
AAAA MOTA	1294	C ·	ALA A	178	25.204	-3.649	-4.024	1.00	41.23
AAAA ATOM AAAA	1295	0 .	ALA A	17,8	24.981	-4.818	-3.701	1.00	41.31
ATOM	1296	N	GLY A	179	25.668	-3.299	-5.221	1.00	40.21
AAAA MOTA	1297	CA.	GLY A	179	25.960	-4.298	-6.232	1.00	37.93
AAAA ATOM	1298	C.	GLY A	179	24.747	-4.873	-6.938	1.00	36.85
AAAA MOTA	1299	Ο.	GLY A	179	24.873	-5.797	-7.744	1.00	36.55
AAAA ATOM	1300	$N_{\tau/\tau}$	ARG A	180	23.566	-4.333	-6.654	1.00	3552
AAAA MOTA	1301	CA	ARG A	180	22.362	-4.844	-7.289	1.00	34.04
AAAA ATOM:	1302	CB.	ARG A	180	21.114	-4.428	-6.504	1'.00	31.99
AAAA ATOM	1 3.0 3	CG	ARG A	180	19.840	-5.038	-7.055	1.00	29.72
	. 1304	CD	ARG A	18.0	18.608	-4.609	-6.268	1.00	27.51
AAAA ATOM	. 13.05	ΝĒ	ARG A	180	18.531	-5.233	-4.948	1.00	25.67
	. 1306	CZ	ARG A	180	17.475	-5.139	-4.144	1.00	26.02
AAAA ATOM	. 1307	NH1	ARG A	18,0	16.414	-4.441	-4.533	1.00	24.19
AAAA MOTA	1308	NH2	ARG A	180	17.472	-5.749	-2.961	1.00	23.88
	. 1309	С	ARG A	180	22.251	-4.353	-8.726	1.00	34.92
AAAA ATOM	1310	O : .	ARG A	, i80	22.348	-3.157	-8.995	1.00	35.69
AAAA MOTA	1311	Ŋ:	GLU A	181	2.2 . 05.5	-5.290	-9.646	1:00	34.98
AAAA MOTA	1312	CA	GLU A	181	21.917	-4.969	-11.059	-1.00	35.58
AAAA								•	

ATOM	1313	СВ	GLU	Α	181	23.188	-5.354	-11.822	1.00	37.16
AAAA ATOM	1314	CG	GLU	Α	181	24.411	-4.540	-11.436	1.00	40.11
AAAA	1216	C.D.	CT (I		101	25 666	4 003	12 160	1 00	42 11
ATOM AAAA	1315	CD	GLU	A	181	25.666	-4.963	-12.169	1.00	42.11
ATOM	1316	OEl	GLU	Α	181	26.698	-4.284	-12.056	1.00	42.94
AAAA ATOM	1317	OE2	GLU	Α	181	25.623	-6.033	-12.848	1.00	43.38
AAAA	1318	С	GLU	7	101	20.736	_5 715	-11.615	1 00	34.83
ATOM AAAA	1316	C	GLU	А	101	20.736				
ATOM AAAA	1319	0	GLU	A	181	20.148	-6.577	-10.919	1.00	35.81
ATOM	1320	N	GLY	Α	182	20.387	-5.469	-12.866	1.00	33.11
AAAA ATOM	1321	CA	GLY	А	182	19.279	-6.166	-13.489	1.00	31.63
AAAA										
ATOM AAAA	1322	С	GLY	А	182	17.989	-5.368	-13.523	1.00	30.40
ATOM	1323	0	GLY	Α	182	17.959	-4.210	-13.106	1.00	28.65
AAAA ATOM	1324	Ν	, pro	Α	183	16.898	-5.974	-14.015	1.00	29.29
AAAA ATOM	1325	CD	PRO	70	103	16.829	-7 363	-14.498	1 00	30.43
AAAA	1323	CD								
ATOM AAAA	1326	CA	PRO	A	183	15.589	-5.327	-14.109	1.00	29.46
ATOM	1327	СВ	PRO	A	183	14.675	-6.463	-14.560	1.00	29.59
AAAA ATOM	1328	CG	PRO	Α	183	15.597	-7.333	-15.362	1.00	30.17
AAAA ATOM	1329	С	PRO	Δ	183	15.159	-4 734	-12.771	1.00	29.01
AAAA										
ATOM AAAA	1330	0	PRO	A	183	15.455	-5.289	-11.708	1.00	27.87
MOTA	1331	N	VAL	A	184	14.483	-3.591	-12.826	1.00	27.36
AAAA ATOM	1332	CA	VAL	A	184	14.014	-2.942	-11.613	1.00	25.28
AAAA ATOM	1333	СВ	VAL	А	184	13.506	-1.512	-11.912	1.00	26.16
AAAA		-							1 00	25.72
ATOM AAAA	1334	CGI	VAL	А	184	12.865		-10.673	1.00	23.72
ATOM AAAA	1335	CG2	VAL	Α	184	14.670	-0.648	-12.374	1.00	26.35
MOTA	1336	С	VAL	A	184	12.896	-3.799	-11.032	1.00	23.68
AAAA ATOM	1337	0	VAL	А	184	11.971	-4.195	-11.735	1.00	21.69
AAAA ATOM	1338	N	ARG	۸	105	13.003	-4 102	-9.744	1 00	23.12
AAAA		14								
ATOM AAAA	1339	CA	ARG	A	185	12.015	-4.931	-9.065	1.00	22.35
MOTA	1340	СВ	ARG	A	185	12.687	-5.649	-7.897	1.00	23.23
AAAA ATOM	1341	CG	ARG	А	185	13.910	-6.440	-8.323	1.00	25.75
AAAA								-7.120	*	27.07
ATOM AAAA	1342	CD	ARG	А	700	14.729	-6.847			
ATOM	1343	NE	ARG	A	185	15.976	- 7.502	-7.495	1.00	28.67
AAAA ATOM	1344	CZ	ARG	Α	185	16.784	-8.093	-6.623	1.00	29.19
AAAA	1215		ARG	ת	1 0 5	16.462	-8.100	-5.339	1 . 00	26.72
ATOM AAAA	1345	NUT	מאה	~	100	10.402		3.307		20.72

' WO 01	/00201 °								P (CT/US01	/11500
	ATOM AAAA	1346	NH2	ARG A	185	17.90)3 -8	. 679	-7.032	1.00	31.00
	MOTA	1347	c c	ÁRG A	185	10.86	50 '-4	.066	-8.574	1.00	21.55
-	AAAA ATOM	1348	0	ARG A	185	11.03	3 -3	.228	-7.693	1.00	21.13
	AAAA	1240	N.			9.68)	.263.	-9.166	1 00	21.59
•	ATOM AAAA	1349	N .	VAL A							
	ATOM AAAA	1350	CA	VAL A	186	8.51	.5 -3	.480	-8.805	1.00	21.51
	ATOM	1351	СВ	VAL A	186	7.74	15 -3	.005	-10.064	1.00	21.61
•	AAAA ATOM	1352	CG1	VAL A	186	6.57	74 -2	1.124	-9.656	1.00	21.27
	AAAA ATOM	1353	CG2	VAL A	186	8.68	392	.252	-11.001	1.00	22.25
	AAAA ATOM	1354	C .	VAL A	186	7.56	53 -4	.294	-7.942	1.00	20.09
	AAAA ATOM	1355	0.	VAL A	186	7.06	54 -5	3.330	-8.361	1.00	20.16
	AAAA ATOM	1356	N-	LEU A	197	7.32	25 -7	3.807	-6.735	1.00	20.75
	AAAA							٠			
	AAAA AAAA	1357	CÁ	LEU A	187	6.42	21 -4	1.462	-5.801	1.00	21.10
	ATOM .	1358	СВ	LEU A	187	6.9	79 -4	1.363	-4.379	1.00	22.77
	AAAA ATOM AAAA	1359	CG	LEU A	187	6.49	92 -5	5.359	-3.316	1.00	24.90
	MOTA	1360	CD1	LEU A	187	6.70	63 -4	1.768	-1.932	1.00	23.74
٠	AAAA ATOM	1361	CD2	LEU A	187	5.00	275	5.651	-3.487	1.00	27.67
. •	AAAA ATOM	1362	C	LEU A	187	5.10	04 -3	3.691	-5.871	1,.00	21.37
	AAAA ATOM	1363	:0	LEU A	187	5.0	78 -2	2.491	-5.585	1.00	21.09
	AAAA MOTA	1364	. N	VAL A	188	4.0	34 -4	4.377	-6.262	1.00	21.43
	AAAA MOTA	1365	·CA	VAL A	188	2.7	06 -3	3.774	-6.355	1.00	22.58
	AAAA ATOM	1366	СВ	VAL A	. 188	1.9	88 -4	4.190	-7.657	1.00	22.95
·	AAAA 'ATOM'		CG1	VAL A		0.6	43 –	3.488	-7.765	1.00	22.98
·. ·	AAAA ATOM	1368				2.8			-8.855	1.00	23.03
•.	AAAA								-5.161		
	AAAA			VAL A							
•••	ATOM .	1370	0,	· VAL A	188				-5.051		V 1
: •	MOTA	1371	N	VAL - A	189	1.5	34 -	3.349	-4.267	1.00	23.91
• • • •	AAAA ATOM AAAA	1372	ĊA	VAL	189	0.7	79	3.706	-3.070	1.00	25.11
• • • •	MOTA	1373	CB	VAL A	189	1.5	23 · ' - ,	3.237	-1.800	1.00	25.30
	AAAA ATOM	1374	CG1	VAL A	189	0.7	40	3.635	-0.549	1.00	23.23
•	AAAA	·1375	CG2	VAL A	189	2.9	15	3.828	-1.773	100	22.20
• ••	AAAA ATOM	1376	C:	VAL A	189	-0.6	19	3.096	-3.080	1.00	26.20
		1377	0	VAL A	189	-0.7	70	1.879	3.186	1.00	26.94
:	AAAA ATOM	1378	·N·	GLY	A 190	-1.6	29 -	3.955	-2.975	100	27.50

O 01/90301							PC	CT/US01/11500
ATOM	1379	CA	GLY A	190	-3.007	-3.505	-2.966	1.00 30.27
AAAA ATOM	1380	С	GLY A	190	-3.720	-3.736	-1.641	1.00 32.15
AAAA ATOM AAAA	1381	0	GLY A	190	-4.896	-3.403	-1.499	1.00 32.00
ATOM AAAA	1382	N	GLY A	191	-3.016	-4.299	-0.664	1.00 32.97
ATOM AAAA	1383	CA	GLY A	191	-3.640	-4.550	0.624	1.00 34.29
ATOM AAAA	1384	С	GLY A	191	-4.507	-5.794	0.607	1.00 34.92
ATOM AAAA	1385	0	GLY A	191	-4.741	-6.388	-0.444	1.00 34.34
MOTA AAAA	1386	N	SER A	192	-4.996	-6.183	1.778	1.00 36.47
ATOM AAAA	1387	CA	SER A	192	-5.827	-7.377	1.910	1.00 38.39
MOTA	1388	СВ	SER A	192	-6.389	-7.460	3.335	1.00 39.07
AAAA ATOM	1389	OG	SER A	192	-7.124	-6.291	3.658	1.00 41.25
AAAA MOTA AAAA	1390	c	· ŚER A	192	-6.974	-7.472	0.903	1.00 38.69
ATOM AAAA	1391	0	SER A	192	-7.293	-8.557	0.410	1.00 38.58
AAAA ATOM AAAA	1392	N	GLN A	193	-7.599	-6.344	0.595	1.00 38.60
AAAA ATOM AAAA	1393	CA	GLN A	193	-8.715	-6.367	-0.339	1.00 39.91
AAAA ATOM AAAA	1394	СВ	GLN A	193	-9.787	-5.367	0.110	1.00 41.97
ATOM AAAA	1395	CG	GLN A	193	-10.354	-5.679	1.497	1.00 43.94
AAAA ATOM AAAA	1396	CD	GLN A	193	-10.790	- 7.135	1.640	1.00 45.71
ATOM AAAA	1397	OE1	GLN A	193	-11.677	-7.607	0.922	1.00 46.93
ATOM AAAA	1398	NE2	GLN A	193	-10.162	-7.853	2.567	1.00 45.80
ATOM AAAA	1399	С	GLN A	193	-8.298	-6.098	-1.781	1.00 39.31
ATOM AAAA	1400	0	GLN A	193	-9.076	-6.320	-2.708	1.00 39.52
ATOM AAAA	1401	N	GLY A	194	-7.064	-5.642	-1.961	1.00 38.40
ATOM AAAA	1402	CA	GLY A	194	-6.560	-5.358	-3.291	1.00 38.11
ATOM AAAA	1403	С	GLY A	194	-6.961	-3.987	-3.797	1.00 37.62
ATOM AAAA	1404	0	GLY A	194	-7.904	-3.382	-3.291	1.00 37.80
ATOM AAAA	1405	N	ALA A	195	-6.228	-3.489	-4.787	1.00 36.62
ATOM AAAA	1406	CA	ALA A	195	-6.513	-2.191	-5.387	1.00 36.35
ATOM AAAA	1407	СВ	ALA A	195	-5.290	-1.291	-5.305	1.00 35.75
ATOM AAAA	1408	С	ALA A	195	-6.898	-2.437	-6.842	1.00 36.61
ATOM	1409	0	ALA A	195	-6.038	-2.519	-7.717	1.00 35.93
AAAA ATOM	1410	N	ARG A	196	-8.198	-2.566	-7.080	1.00 36.94
AAAA MOTA AAAA	1411	CA	ARG A	196	-8.741	-2.828	-8.412	1.00 38.03

ATOM AAAA	1412	CB .	ARG A	196	-10.229	-2.466	-8.450	1.00	40.33
ATOM	1413	CG	ARG A	A 196	-10.526	-0.968	-8.375	1.00	44.08
АДДА АТОМ	1414	CD.	ARG A	A 196	-9.935	-0.306	-7.129	1.00	46.46
AAAA					-10.381	_0 949	-5.894	1.00	18 33
ATOM AAAA	1415	NE	ARG A	196	•				
ATOM AAAA	1416	CZ	ARG A	A ·196	-10.199	-0.439	-4.682	1.00	48.85
MOTA	1417	NH1	ARG A	1 196	-9.581	0.725	-4.538	1 . 0.0	49.51
AAAA ATOM	1418	NH2	ARG A	196	-10.636	-1.093	-3.615	1.00	49.95
AAAA ATOM	1419	С	ARG A	A 196	-8.023	-2.120	-9.558	1.00	37.11
AAAA							-10.583	1 00	36.96
ATOM AAAA	1420	0.	ARG A	A 196	· ·				
ATOM AAAA	1421	N	ILE A	A 197	-7.739	-0.834	-9.392	1.00	35.89
MOTA	1422	CA	ILE A	A 197	-7.071	-0.091	-10.448	1.00	35.67
AAAA `ATOM	1423	ĊB.	'ILE A	4 : 197	-7.049	1.427	-10.161	1.00	36.70
AAAA ATOM	1424	CG2	TIE :	A 197	-6.221	.1.726	-8.918	1.00	36.91
AAAA							-		
ATOM AAAA	1425	CG1	ILE A	A 197	-6.485				•
ATOM AAAA	1426	CD1	ILE /	A 197	-6.529	3.661	-11.272	1.00	38.71
ATOM	1427	С	ILE	A 197	-5.644	-0.580	-10.694	1.00	34.7.3
AAAA ATOM	1428	0	ILE .	A 197	-5.178	-0.575	-11.833	1.00	33.53
AAAA ATOM	1429	N:	LEO	A 198	-4.948	-0.992	-9.638	1.00	32.35
AAAA				A 198	-3.588	-1.494		1.00	31.48
ATOM AAAA	1430	CA							
ATOM AAAA	1431	СВ	LEU	A 198	-2.862	-1.633	-8.467		31.03
` ATOM `	1432	CG	LEU	A 198	-2.548	-0.342	-7.704	1.00	32.00
AAAA MOTA	1433	cdi	LEU	A 198	-1.773	-0.688	-6.442	1.00	30.82
AAAA MOTA	1434	CD2	LEU	A 198.	-1.734	0.607	-8.566	1.00	30.86
AAAA ATOM	14'35	C-	LEH	A 198	-3.668	-2.850	-10.501	1.00	29.72
AAAA								•	
AAAA				A 198					
ATOM AAAA	1437	N·.	ASN	A: 199					
ATOM	1438	CA.	ASN	A 199	-4.848	-4.952	-10.758	1.00	28.66
AAAA MOTA	1439	СВ	ASN	A 199	-5.975	-5.724	-10.066	1.00	27.71
АААА МОТА	1440	CG	ASN	A 199	-5.641	-6.0.69	-8.632	1.00	26.12
AAAA ATOM	1441	ODl	ASN	A 199	-4.501	-5.904	-8.200	1.00	24.15
AAAA ATOM					-6.631				
					-5.144				
AAAA									
ATOM .	1444	0	`ASN	A 199	-4.834	5 . 7.47	-13.024	1.00	30.26

WO 01/90301	(PC"	T/US01	/11500
ATOM	1445	N	GLN	Α	200	-5.746	-3.725	-12.644	1.00	31.15
AAAA ATOM	1446	CA	GLN	A	200	-6.085	-3.498	-14.044	1.00	33.06
AAAA ATOM	1447	СВ	GLN	Α	200	-7.396	-2.706	-14.145	1.00	34.24
AAAA MOTA	1448	CG	GLN	Α	200	-8.590	-3.368	-13.471	1.00	38.64
AAAA ATOM	1449	CD	GLN	Α	200	-8.923	-4.734	-14.050	1.00	41.05
AAAA ATOM	1450	OE1	GLN	Α	200	-9.131	-4.879	-15.256	1.00	43.10
AAAA ATOM	1451	NE2	GLN	Α	200	-8.983	-5.745	-13.185	1.00	43.12
AAAA ATOM	1452	С	GLN			-4.989	-2.753	-14.812	1.00	32.52
AAAA ATOM	1453	0	GLN			-4.809	-2.970	-16.008	1.00	34.23
AAAA ATOM	1454	N	THR			-4.247		-14.120		31.87
AAAA ATOM	1455	CA	THR			-3.207		-14.756		31.72
AAAA ATOM	1456		THR			-3.046		-13.999		32.41
AAAA ATOM	1457		THR			-4.307		-13.976		32.19
AAAA			THR			-2.003		-14.668	•	32.29
ATOM AAAA ATOM	1458					•		-14.925		32.02
ATOM AAAA	1459	С	THR			-1.817		-15.991		31.47
ATOM AAAA ATOM	1460	0	THR			-1.206		-13.892		30.61
ATOM AAAA	1461	N	MET			-1.320				30.10
ATOM AAAA	1462	CA	MET			0.019		-13.963		
ATOM AAAA	1463	CB	MET			0.430		-12.592		29.71
ATOM AAAA	1464	CG	MET			0.564		-11.549		28.99
ATOM AAAA	1465	SD	MET			1.518		-12.098		31.46
ATOM AAAA	1466	CE	MET			3.194		-12.184		29.20
MOTA AAAA	1467	С	MET			0.286		-15.042		29.48
MOTA AAAA	1468	0	MET			1.389		-15.568		29.15
ATOM AAAA	1469	N	PRO			-0.703		-15.379		30.34
MOTA AAAA	1470	CD	PRO			-1.957		-14.677		`30.05
ATOM AAAA	1471	CA	PRO	A	203	-0.415		-16.426		31.11
MOTA AAAA	1472	СВ	PRO	A	203	-1.703	-6.654	-16.500	1.00	31.89
ATOM AAAA	1473	CG	PRO	A	203	-2.188	-6.623	-15.072	1.00	31.09
ATOM AAAA	1474	С	PRO	A	203	-0.103	-5.139	-17.746	1.00	33.02
ATOM AAAA	1475	0	PRO	Α	203	0.800	÷5.530	-18.490	1.00	33.16
ATOM	1476	N _.	GLN	Α	204	-0.855	-4.081	-18.020	1.00	33.88
AAAA ATOM	1477	CA	GLN	Α	204	-0.666	-3.314	-19.242	1.00	34.99

s 23

WO 01/90301									PC	T/US01	/11500
MOTA	1470	СВ	GLN A	A 2	204	-1.83	6	-2.34	-19.431	1.00	37.12
AAAA ATOM	1479	CG	GLN A	Δ 5	204	-3.17	7	-3.067	-19.538	1.00	40.86
AAAA					•						
MOTA AAAA	1480	CD	GLN A	A 2	204	-4.35	4		~19.700	1.00	43.77
ATOM	1481	OE1	GLN A	A 2	204	-4.40	6	-1.330	-20.647	.1.00	45.55
AAAA ATOM	1482	NE2	GLN A	Α 2	204	-5.31	0	-2.198	-18.776	1.00	44.11
AAAA ATOM	1483	C	GLN A	A a	204	0.65	9	-2.573	-19.190	1.00	33.42
дд д АТОМ	1484	0	GLN A	Д :	204	1.33	1	-2.431	-20.206	1.00	34.40
AAAA									-18.002	1 00	32′. 44
ATOM AAAA	1485	N	VAL A	A. A	205	_ 1.04	Э.			•	
ATOM AAAA	1486	CA	VAL A	A 2	205	2.31	.3	-1.417	-17.836	1.00	30.42
MOTA	1487	СВ	VAL A	A 2	205	2.46	6	-0.834	-16.408	1.00	31.72
AAAA ATOM	1488	CG1	VAL A	A :	205	3.90	7	-0.406	-16.169	1.00	28.58
AAAA ATOM	1489	CG2	VAL ,	A :	205	1.54	4	0.356	-16.231	1.00	29.91
AAAA	1490	C	VAL			3.44		-2.407	-18.086	1.00	30.65
AAAA								•			
ATOM AAAA	1491	Ο ·	VAL .	A .	205	4.47	13	-2.062	-18.686	•	29.65
ATOM AAAA	1492	N	ALA .	Α .	206	3.25	5.5	-3.638	-17.616	1:00	29.08
	.1493	CA.	ALA .	A	206	4.25	53	-4.688	-17.796	1,00	30.43
MOTA	14.94	СВ	ALA	A	206	3.76	53	-6.002	-17.169	1.00	27.77
	1495	· C.	ALA	Ą	206	4.51	19	-4.886	-19.288	1.00	30.65
	14.96	0	ALA	A.	206	5.66	68	-5.040	-19.709	1.00	30.70
AAAA : MOTA	1497	N	ALA	Α	2 0.7	3.45	50	-4.879	-20.080	1.00	31.56
AAAA • ATOM • •	1498	CA	ALA.	A -	207	<u>3.5</u> 6	65	-5.053	-21.527	1.00	32.70
AAAA MOTA	1499	.CB	ALA.	Α	207	2.18	88	-4.997	-22.167	1.00	32.49
AAAA ATOM	1500	,C -	ALA	A .	207	4.4	70	-3.990	-22.145	1.00	32.72
AAAA	1501					.5. 2	95	-4.284	-23.007	1.00	33.64
AAAA									-21.692	•	33.07
AAAA	1502						•	•	•	.*	
ATOM AAAA	1503	CA	LYS	A	208		•		-22.216		
	1504	СВ	LÝS	Α	208	4 . 4	77.	-0.313	-21.814	1.00	35.14
MOTA	1505	CG	LYS	A	5 Ö 8	3.1	99	0.044	-22.578	1.00	38.07
AAAA ATOM	-1506	CD	LYS	Ą	208.	2.1	66	-1.062	-22.482	1:00	40.27
AAAA ATOM	1507 -	CE	LYS.	Α	208	0.8	92	-0.731	-23.233	1.00	41.02
AAAA MOTA	1508	NZ	LYS	А	208	-0.0	76	-1.857	-23.126	1.00	42.41
AAAA ATOM	1.5.09		LYS	Α	208	6.5	71	-1.668	-21.779	1.00	32.58
AAAA ATOM						7.4	56	-1.274	-22.544	1.00	31.82
AAAA	1310		. 2.10	••.	-,,,			•			

								.		
ATOM	1511	N	LEU	A	209	6.829	-2.121 -20	7.556	1.00	30.72
AAAA	1510				200		0 1 4 3 0 0			20.40
ATOM	1512	CA	LEU	А	209	8.193	-2.143 -20	0.042	1.00	30.48
AAAA	1512	CD.	LEU	Α.	200	0 101	1 040 10		1 00	29.34
ATOM AAAA	1513	СВ	LEU	~	209	8.191	-1.848 -18	. 5 3 5	1.00	29.34
ATOM	1514	CG	LEU	Δ	209	7.596	-0.498 -18	107	1.00	31.02
AAAA	1314	CG	LLO	'n	209	7.390	-0.430 -10	,.10,	1.00	31.02
ATOM	1515	CD1	LEU	А	209	7.779	-0.318 -16	5.605	1.00	29.42
AAAA	1010	001	220	••	203	, 5	0.510 1		2.00	
ATOM	1516	CD2	LEU	Α	209	8.273	0.641 -18	3.859	1.00	31.39
AAAA					-					
ATOM	1517	С	LEU	Α	209	8.970	-3.432 -20	315	1.00	29.73
AAAA										
ATOM	1518	0	LEU	A	209	10.191	-3.455 -20).174	1.00	31.33
AAAA	1510		a	_	010	0.000	4 404 20		1 00	20 76
ATOM	1519	N	GLY	А	210	8.269	-4.494 -20	0.698	1.00	29.76
AAAA	1520	CA	CTV	Λ	210	8.924	-5.762 -20	986	1 00	29.99
ATOM AAAA	1520	CA	GLY	А	210	0.924	-3.702 -20	7.900	1.00	23.33
ATOM	1521	С	GLY	Δ	210	10.007	-6.188 -20	0.003	1.00	30.99
AAAA	1001	Ü		••	210	10.00				
ATOM	1522	0	GLY	Α	210	9.788	-6.183 -18	3.789	1.00	30.80
AAAA										
MOTA	1523	N	ASP	Α	211	11.181	-6.536 -20).535	1.00	30.05
AAAA										
ATOM	1524	CA	ASP	A	211	12.332	-6.999 -19	9.749	1.00	29.42
AAAA				_			7 470 0		1 00	70 07
ATOM	1525	СВ	ASP	A	211	13.466	-7.479 - 20	0.6/6	1.00	30.83
AAAA	1526	CG	ASP	7	211	13.119	-8.735 -23	449	1.00	32.09
ATOM AAAA	1526	CG	ASE	A	211	13.119	-0.733 -2.	4 4 2	1.00	32.09
ATOM	1527	OD1	ASP	Α	211	13.977	-9.193 -22	2.235	1.00	34.13
AAAA					,					
ATOM	1528	OD2	ASP	Α	211	12.005	-9.269 -23	1.283	1.00	32.72
AAAA										
ATOM	1529	С	ASP	Α	211	12.960	-6.011 -18	3.776	1.00	29.03
AAAA		_		•			C 417 13		1 00	27 60
ATOM	1530	0	ASP	А	211	13.781	-6.417 -17	7.945	1.00	27.69
AAAA ATOM	1531	N	SER	٨	212	12.613	-4.730 -18	8 876	1 00	28.54
AAAA	1551	Į,	SER	~	212	12.013	4.750 10		1.00	20.54
ATOM	1532	CA	SER	А	212	13.204	-3.719 -18	3.002	1.00	27.61
AAAA	1000	0		• •						
MOTA	1533	СВ	SER	Α	212	12.927	-2.308 -18	3.538	1.00	28.62
AAAA										
ATOM	1534	OG	SER	Α	212	11.546	-1.990 -18	3.498	1.00	30.84
AAAA		_			0.1.0		2 005 1/	C E 4 O	1 00	26 21
ATOM	1535	С	SER	A	212 .	12.759	-3.805 -16	5.542	1.00	26.31
AAAA	1526	0	SER	Λ	212	13.395	-3.219 -19	5 666	1 00	25.39
ATOM AAAA	1536	O	254	A	212	13.393	J. 21.		1.00	23.33
ATOM	1537	N	VAI.	А	213	11.675	-4.528 -16	5.284	1.00	25.65
AAAA	100	• •	••••	• •	2.20					
ATOM	1538	CA	VAL	A	213	11.187	-4.671 -14	1.914	1.00	24.52
AAAA										
ATOM	1539	СВ	VAL	Α	213	9.967	-3.747 - 14	1.621	1.00	25.58
AAAA										
ATOM	1540	CG1	VAL	Α	213	10.296	-2.298 -1	1.953	1.00	26.31
AAAA				_		0 750	4 225 11	5 204	1 00	25 15
ATOM	1541	CG2	VAL	A	213	8.758	-4.225 -15	J. J94	1.00	25.15
AAAA	1540	<u> </u>	7.7% T	n	212	10 751	-6.095 -1	1 607	1 00	23.77
ATOM	1542	С	VAL	А	213	10.751	0.000 -1		1.00	23.11
AAAA ATOM	1543	0	זמעז	Δ	213	10.427	-6.874 -1	5.506	1.00	23.79
AAAA	1040	J	4 UT	~	4 ± J	10.32,				

11/90301							-		10	. 170301	11500
ATOM	1544	Ν .	THR	Α	214		10:.770	-6.432	-13.323	1.00	23.49
AAAA ATOM	1545	CA	THR	Α	214		10.326	-7.735	-12.861	1.00	21.50
AAAA ATOM	1546	СВ	THR	Α	214		11.499	-8.600	-12.325	1.00	21.99
AAAA ATOM	1547	og1	THR	Α	214		10.987	-9.870	-11.909	1.00	23.56
AAAA ATOM	1548	CG2	THR	А	214		12.220	-7.921	-11.174	1.00	20.60
AAAA ATOM	1549	С.	THR	A,	214.		9.342	-7.362	-11.760	1.00	21.46
AAAA ATOM	1550	0	THR	А	214		9.657	-6.567	-10.880	1.00	21.12
AAAA ATOM	1551	N	ILE	Α	215		8.150	-7938	-11.827	1:00	21.73
AAAA ATOM	1552	CA	ILE	Α	215		7.083	-7.601	-10.894	1.00	22.01
AAAA ATOM	1553	СВ	ILE	A	215		5.831	-7.139	-11.688	1.00	22.41
AAAA ATOM	1554	CG2	ILE	A	215		4.707	-6.738	-10.734	1.00	22.94
AAAA ATOM	1555	CG1	.I,TE	A	215		6.198	-5.964	-12.599	1.00	22.71
AAAA ATOM	1556	CD1	FLE	A	215		5.078	-5.560	-13.545	1.00	21.71
AAAA. ATOM	1557	C	ILE	А	215		6.617	-8.685	-9.929	1.00	21.67
AAAA MOTA	1558 -	0	ILE	Α	215		6.600	-9.868	-10.257	1.00	20.14
AAAA ATOM	1559	N	TRP	A	216		6.248	-8.247	-8.728	1.00	21.03
AAAA ATOM	1560	CA	TRP	Ą	216		5.677	-9.121	-7.708	1.00	21.08
AAAA MOTA	1561	СВ	TRP	Α.	216		6.541	-9.186	-6.455	1:00	21.14
AAAA	1562	CG ·	TRP	Α	216		5.941	-10.063	-5.370	1.00	21.49
AAAA ATOM	1563	CD2	TRP	A	: 216		6.624	-10.588	-4.226	1.00	21.97
AAAA MOTA	1564	CE2	TRP	A	216		5.674	-11.309	-3.461	1.00	22.67
AAAA ATOM	1565	CE3	TRP	Α	216	•	7.947	-10.521	-3,773	1.00	22,25
	1566	CD1	TRP	A	216		4.639	-10.478	-5.262	1.00	21.72
AAAA ATOM AAAA	1567.	NEl	TRP	A	216		4.472	-11.231	-4.112	1.00	22.34
ATOM AAAA	. 1568.	CZ2	TRP	A.	216				-2.265		
	1569	CZ3	TRP	A	216		8.283	-11.166	-2.582	1.00	23.37
AAAA	1570	CH2	TRP	A,	216;		7.316	-11.872	-1.843	1:00	23.19
AAAA AAAA	15.7.1	C .	TRP	A	216		4.401	-8.352	-7.396	1.00	21.75
MOTA .	1572	0 .	TRP	·A	216		4.442	-7.330	-6.719	.1.00	22.71
מממה									-7.909	*.	
AAAA ATOM	. 1574	·CA	HIS	., A	21.7		1.987	-8.185	7.751	1.00	24.05
MOTA							1.301	-8.167	-9.127	1.00	25.31
	1576	CG	HIS	Ą	217		0.075	-7.312	-9.201	1.00	27.29
AAAA						.,					

-10.257 -12.593

-11.079 -12.292

-11.955 -13.465

-12.724 -13.160

-9.269 -11.932

-0.285

0.966

1.368

2.614

-3.046

1.00 38.70

1.00 40.53

1.00 41.74

1.00 43.70

1.00 34.22

LYS A 221

AAAA

1605

1606

1607

1608

1609

CG

CD

CE

ΝZ

C

MOTA

AAAA

MOTA

AAAA

MOTA

AAAA

ATOM

AAAA

MOTA

W Ö 01/	90301							PCT	Γ/US01/	11500-
	ATOM -	1610	0	LYS A	221	-9.979	-11.076	-3.561	1.00	34.62
	AAAA MOTA	1611	N	GLY A	222	-9.189	-13.180	-3.500	1.00	34.61
	AAAA MOTA	1612	CA	GLY A	222	-9.956	-13.622	-4.651	1.00	34.89
	AAAA ATOM	1613	C.	GLY A	222	-9.598	-13.027	-6.000	1.00	35.07
	AAAA MOTA	1614	0	GLY A	222	-10.325	-13.231	-6.974	1.00	35.62
•	AAAA ATOM	1615	N.	SER A	223	-8.482	-12.309	-6.083	1.00	35.16
	AAAA ATOM	1616	CA	SER A	223	-8.083	-11.691	-7.349	1.00	35.04
	AAAA ATOM	1617	СВ	SER A	223	-7.959	-10.175	~7.173	1.00	35.18
	AAAA ATOM	1618	OG	SER A	223	-9.222	-9.593	-6.913	1.00	36.67
	AAAA ATOM AAAA	1619	С	SER A	223	-6.783	-12.226	-7.949	1.00	34.73
	ATOM AAAA	1620	Ó.	SER A	. 223	-6.343	-11.758	-9.002	1.00	33.65
	ATOM AAAA	1621	N	GLN A	224	-6.176	-13.202	-7.285	1.00	34.35
	AAAA	1622	CA	GLN A	224	-4.922	-13.779	-7.753	1.00	34.39
	AAAA	1623	СВ	GLN A	224	-4.493	-14.910	-6.810		35.22
. `	ATOM AAAA	1624	CG	GLN A	224	-3.016	-15.304	-6.895	1.00	34.71
٠.	ATOM AAAA	1625	CD	GLN A	224	-2.656	-15.983	-8.199	•	35.46
٠	ATOM AAAA	162.6	OE1	GLN A	224		-16.844	-8.680	1	35.81
• ;	ATOM AAAA	1627	NE2	GLN A	A 224	-1.512	2 -15.610	-8.772	• .*	
	ATOM AAAA	1 6.2.8	C	GLN A	224		3 -14.301	-9.188	1, 1,	35.00
. :	MOTA AAAA	1629	0	GLN A	A 224		5 -13.915	-10.062		33.23
• • •	ATOM .	1630	N,	GLN A	• • •		3 -15.160	-9.432	··· :	35.33
	MOTA AAAA	1631	CA	GLN /			3 -15.747			36.18
. •	MOTA AAAA						1 -16.871		•	
	MOTA.	1633		GLN i	•		2 -18.174	: -	· ·	
	AAAA	1634		: '	A _. 225	*	2 -19.274 3 -19.609			, '
	AAAA	1635		GLN A				•		
*, *	MOTA AAAA	1636			A 225		6 -19.850			
• •	MOȚA AAAA	.1637			A 225		4 -14.790	* .	• •	
• •	ATOM AAAA	1638		GLN			3 -15.001			
• . • .	ATOM AAAA	1639	•		A _{, 226}		5 -13.741		• .	
	ATOM. AAAA	1640	· CA	SER		•	9 -12.804			
	ATOM AAAA	1641	СВ	SER -	A 22.6		5 -11.920			
, .		1,642	OG	SER	A 226	-8.46	0 -10.954	-11.300	. 1.00	36.16

WO 01/90301		PCT/US01/11500
-------------	--	----------------

ATOM	1643	С	SER A	226	-6.502	-11.926	-13.090	1.00	32.76
АААА АТОМ	1644	0	SER A	226	-6 343	-11.580	14 260	1 00	22 64
AAAA		O			-0.343	-11.560	-14.260	1.00	32.64
ATOM AAAA	1645	Ņ	VAL A	227	-5.669	-11.566	-12.121	1.00	31.82
ATOM	1646	CA	VAL A	227	-4.498	-10.737	-12.400	1.00	30.69
AAAA ATOM	1647	СВ	VAL A	227	-3 942	-10.117	_11 102	1.00	20 27
AAAA						-10.117	-11.102	1.00	29.27
ATOM AAAA	1648	CG1	VAL A	227	-2.619	-9.413	-11.370	1.00	29.04
MOTA	1649	CG2	VAL A	227	-4.951	-9.117	-10.546	1.00	29.09
AAAA ATOM	1650	С	VAL A	227	-3.418	-11.577	-13.082	1.00	30.43
AAAA									
ATOM AAAA	1651	0	VAL A	227	-2.716	-11.103	-13.973	1.00	29.50
ATOM	1652	N	GLU A	228	-3.297	-12.824	-12.644	1.00	30.82
AAAA ATOM	1653	CA	GLU A	228	-2.333	-13.766	-13.198	1.00	31.98
AAAA	1654	ο'n.	4						
ATOM AAAA	1654	СB	'GLU A	228	-2.456	-15.108	-12.464	1.00	31.67
ATOM AAAA	1655	CG	GLU A	228	-1.607	-16.231	-13.020	1.00	33.79
ATOM	1656	CD	GLU A	228	-0.159	-16.176	-12.559	1.00	34.94
AAAA ATOM	1657	OFI	GLU A	220	0 631	-17.041	.12.000		
AAAA	1057	OEI	GLO A	220	0.631	-17.041	-12,998	1.00	36.44
ATOM AAAA	1658	OE2	GLU A	228	0.190	15.280	-11.761	1.00	35.02
MOTA	1659	С	GLU A	228	-2.658	-13.944	-14.685	1.00	32.05
AAAA ATOM	1660	0	GLU A	228	-1.770	-13.942	-15.539	1 00	32.57
AAAA									
ATOM AAAA	1661	N	GLN A	229	-3.945	-14.082	-14.981	1.00	31.94
ATOM AAAA	1662	C.A	GLN A	229	-4.405	-14.255	-16.351	1.00	32.98
ATOM	1663	СВ	GLN A	229	-5.896	-14.616	-16.359	1.00	35.59
AAAA ATOM	1664	CG	GLN A	220	-6 375	-15.211	-17 674	1 00	20 20
AAAA		CG	GEN A	229	-0.373	-13.211	-17.074	1.00	39.28
ATOM AAAA	1665	CD	GLN A	229	-7.825	-15.665	-17.623	1.00	41.31
ATOM	1666	OE1	GLN A	229	-8.317	-16.307	-18.553	1.00	43.67
AAAA ATOM	1667	NE2	GLN A	229	-8.516	-15.332	-16.538	1.00	43.19
AAAA	1.660								. `
ATOM AAAA	1668	С	GLN A	229	-4.1/1	-12.982	-17.154	1.00	31.60
MOTA	1669	0	GLN A	229	-3.878	-13.037	-18.348	1.00	32.04
AAAA MOTA	1670	N	ALA A	230	-4.296	-11.836	-16.490	1.00	30.96
AAAA	1671	C.P.	2522	2.20	4 000	10 540	:7 121		
ATOM AAAA	1671	CA	ALA A	230	-4.092	-10.542	-17.131	1.00	30.04
ATOM	1672	СВ	ALA A	230	-4.453	-9.423	-16.165	1.00	30.37
AAAA ATOM	1673	С	ALA A	230	-2.649	-10.379	-17.598	1.00	29.65
AAAA		0							
ATOM AAAA	1674	0	ALA A	230	-2.392	-9.869	-10.009	1.00	29.50
ATOM	1675	N	TYR A	231	-1.706	-10.802	-16.762	1.00	27.99
AAAA									

ATOM	1676	ca.	TYR	Α	231	-0.295	-10.707	-17.111	1.00	27.27
AAAA ATOM	1677	СВ	TYR	Α.	231	0.571	-11.065	-15.898	1.00	26.63
AAAA										
ATOM AAAA	1678	CĞ	TYR	A	231	0.829	-9.898	-14.975	1.00	24.33
ATOM AAAA	1679	CD1	TYR	A	231	1.687	-8.866	-15.354	1.00	22.96
ATOM	1680	CE1	TYR	Α	231	1.926	7.786	-14.520	1.00	22.17
AAAA ATOM	1681	CD2	TYR	Α	231	0.210	-9.817	-13.725	1.00	24.32
AAAA ATOM	1682	CE2	TYR	Α	231	0.442	-8.737	-12.879	1.00	21.70
AAAA MOTA	1683	CŻ	TYR	А	231	1.298	-7.729	-13.281	1.00	21.49
AAAA ATOM	1684	ОН	TYR	Δ	231	1 532	-6 662	-12.466	1.00	18 68
AAAA	1004									
ATOM AAAA	1685	С	ŤYR	À	231	0.047	-11.618	-18.285	1.00	28.10
ATOM	1686	0	TYR	A	231	0.834	-11.249	-19.163	1.00	27.39
AAAA ATOM	1687	N · ·	ALA	Α.	232	-0.547	-12.808	-18.297	1.00	28.86
AAAA									:	
ATOM AAAA	1688	CA	ALA	Α.	232	•	-	-19.364		
ATOM	1689	CB .	ALA	Α	232	-1.013	-15.091	-19.046	1.00	30.32
AAAA ATOM	1690	С	ALA	Α	232	-0.814	-13.218	-20.694	1.00	30.76
AAAA A`TOM	1691	0 -	ALA	A.	232	-0.147	-13.336	-21.725	1.00	30.92.
AAAA ATOM	1692	N	GLU	Α	233-	-1.996	-12.614	-20:662	1.00	31.01,
AAAA ATOM	1693	ĊA	GLU	A	233	-2.592	-12.034	-21.857	1,00	32.12
AAAA ATOM	1694	CB	GLU	A:	233	-4.051	-11.659	-21.579	1.00	33.81
AAAA ATOM	1695	CĠ .	GLU	A ⁱ	233	-4.975	-12.871	-21:514	1.00	35.08
AAAA MOTA	1696	CD.	GLU	A.	233	-6.402	-12.523	-21.117	1.00	37.70
AAAA ATOM	1697 ·	OE1	GLU	Α.	233	-6.875	-11.419	-21.473	1.00	37.78
AAAA ATOM	1698	OE2	GLU	Α΄.	233-	-7:056	-13.364	-20.461	1.00	37.69
AAAA					-				. :	
ATOM AAAA					*	•		-22.325		
ATOM	: 1700	ο	GLU	A:	233-	-1.825	-10.463	-23.508	1.00	32.48
AAAA ATOM	1701	N· :	ALA	A.	2 3,4	-1:093	-10.185	-21.398	i:00	30.89
AAAA MOTA	1702	CA'	ALA	Α.	234	-0.283	-9.022	-21.736	1.00	29.79
AAAA								-20.505		
AAAA.										
ATOM AAAA	1704	C -	ALA	A.	2,3'4-	1.070	-9.501	-22,265	1.00	28.79
MOTA	1705	O,	ALA	А	2.34	1:934	-8.697	-22.604	1.00	28.46
	1706-	Ν .	GĿY	A.	235	1:243	-10.818	-22.314	1.00	27.19
AAAA ATOM:	1707	CA.	GLY	A	235-	2.484	-11.388	-22.807	i . 00	26.98
AAAA ATOM								-21,.832		
AAAA					•					

	ATOM AAAA	1709	0	GLY	Α	235	4.798	-11.527	-22.253	1.00	25.26
	ATOM	1,710	N	GLN	Α	236	3.370	-11.226	-20.540	1.00	24.71
	AAAA ATOM	1711	CA	GLN	А	236	4.419	-11.223	-19.518	1.00	24.12
	AAAA ATOM	1712	СВ	GLN	А	236	4.652	-9.806	-18.977	1.00	24.66
	AAAA ATOM	1713	CG	GLN			5.116				25.88
	AAAA								-20.003		
	ATOM AAAA	1714	CD	GLN	А	236	6.454	-9.088	-20.647	1.00	26.71
	ATOM AAAA	1715	OE1	GLN	Α	236	7.410	-9.488	-19.976	1.00	24.90
	ATOM AAAA	1716	NE2	GLN	A	236	6.533	-8.899	-21.960	1.00	26.33
	MOTA	1717	С	GLN	A	236	3.959	-12.132	-18.379	1.00	22.79
	AAAA ATOM	1718	0	GLN	Α	236	3.823	-11.696	-17.233	1.00	22.19
	AAAA ATOM	1719	N	PRO	А	237	3.740	-13.419	-18.679	1.00	22.50
	AAAA ATOM	1720	CD.	, PRO	Α	237	4.087	-14.093	-19.945	1.00	21.90
	AAAA MOTA	1721	CA	PRO	А	237	3.282	-14.395	-17.684	1.00	22.78
	AAAA										
	ATOM AAAA	1722	СВ	PRO	A	237	2.998	-15.626	-18.531	1.00	22.52
	MOTA	1723	CG	PRO	Α	237	4.105	-15.558	-19.543	1.00	23.54
	AAAA ATOM	1724	С	PRO	Α	.237	4.252	-14.695	-16.550	1.00	22.53
	AAAA ATOM	1725	0	PRO	Α	237	3.845	-15.217	-15.512	1.00	23.09
	AAAA ATOM	1726	N	GLN	Α	238	5.521	-14.346	-16.735	1.00	22.30
	AAAA ATOM	1727	CA	GLN	А	238	6.53.9	-14.633	-15.726	1.00	22.49
	AAAA ATOM	1728	СВ	GLN	А	238	7.947	-14.437	-16.304	1.00	22.24
	AAAA ATOM	1729	CG	GLN	А	238	8.376	-12.991	-16.520	1.00	21.45
	AAAA ATOM	1730	CD	GLN				-12.356			22.77
	AAAA ATOM	1731						-13.038			
	AAAA			GLN							22.82
	ATOM AAAA	1732		GLN			7.881	-11.046	-17.870	1.00	22.96
	ATOM AAAA	1733	С	GLN	A	238	6.453	-13.856	-14.426	1.00	21.84
	ATOM AAAA	1734	0	GLN	A	238	7.059	-14.253	-13.427	1.00	21.75
-	ATOM AAAA	1735	N	HIS	Α	239	5.724	-12.748	-14.420	1.00	22.21
	MOTA	1736	CA	HIS	Α	239	5.632	-11.963	-13.202	1.00	22.02
		1737	СВ	HIS	А	239	4.919	-10.638	-13.479	1.00	22.03
	AAAA ATOM	1738	CG	HIS	A	239	5.688	-9.734	-14.392	1.00	22.30
	AAAA ATOM	1739	CD2	HIS	А	239	5.315	-9.057	-15.505	1.00	22.95
	AAAA							·	-14.197		
	AAAA	1740		HIS			7.021				21.95
	ATOM AAAA	1741	CE1	HIS	A	239	7.437	-8.628 ·	-15.149	1.00	23.56
								,			

- /3

MOTA AAAA MOTA MOTA

MOTA

AAAA

1774

OE2 GLU A 243

•

1742	NE2	HIS	A	239
1743	С	ніѕ	A	239
1744	0:	HIS	Α	239

		PC	T/US01/	11500
6.421	-8.378	-15.956	1.00	21.89
4.937	-12.739	-12.092	1.00	20.83
4.036	-13.538	-12.352	1.00	21.43
5.381	-12.506	-10.858	1.00	21.17
4.819	-13.183	-9.687	1.00	22.02
5.840	-13.175	-8.543	1.00	21.72
5.420	-13.918	-7.257	1.00	22.71
6.462	-13.691	-6.163	1.00	23.02
6.155	-14.439	-4.855	1.00	22.89
6.359	-15.920	-4.960	1.00	23.41
3.545	-12.500	-9.214	1.00	21.50
3.527	-11.288	-9.022	1.00	22.79
2.490	-13.282	-9.012	1.00	23.27
1.219	-12.751	-8.527	1.00	23.82
0.111	-12.821	-9.598	1.00	23.97
-1.170	-12.185	-9.057	1.00	24.26
0:563	-12.105	-10.862	1.00	22.10
0.751	-13.565	- .7 .:323	1.00	23.52
0.593	-1-4.781	-7.415	1.00	25.10
0.547	-12.896	-6.195	1.00	24.29
0.083	-13.578	-4.991	1.00	25.34
1176	-1,3.635	-3.892	1.00	23.46
1.633	-12.312	-3.590	1.00	24.62
		-4.351		
-1:144	-12.870	-4.435	1.00	26.25
-1.278	-11.645	-4.534	1.00	25.29
-2.051	-13.647	-3.860	1.00	26.45
-3.256	-13.070	-3.293	1.00	28.18
-4152	-14.184	-2.746	1.00	28.90
-5.463	-13.705	-2.156	1.00	32.51
-6.448	-14.845	-1.957	100	33.27
-6.002	-15.969	-1.646	1.00	33.05
		0 103	1 00	2. 00

-7.665 -14.612

-2.107

.1.00 34.89

O 01/90301								PC	CT/US01/11500
ATOM T	1775	С	GLU	A	243	-2.863	-12.089	-2.194	1.00 27.96
ATOM AAAA	1776	0	GLU	A	243	-3.331	-10.951	-2.164	1.00 28.25
ATOM AAAA	1777	N	PHE	A	244	-1.976	-12.528	-1.308	1.00 28.29
ATOM AAAA	1778	CA	PHE	A	244	-1.509	-11.696	-0.208	1.00 29.32
ATOM AAAA	1779	СВ	PHE	A	244	-2.079	-12.202	1.122	1.00 31.34
ATOM AAAA	1780	CG	PHE	Α	244	-3.571	-12.360	1.139	1.00 32.25
ATOM AAAA	1781	CD1	PHE	A	244	-4.406	-11.249	1.103	1.00 34.11
ATOM AAAA	1782	CD2	PHE	A	244	-4.141	-13.623	1.246	1.00 33.07
ATOM AAAA	1783	CE1	PHE	A	244	-5.794	-11.393	1.179	1.00 34.27
ATOM AAAA	1784	CE2	PHE	Α	244	-5.525	-13.780	1.323	1.00 34.74
ATOM AAAA	1785	CZ	PHE	A	244	-6.353	-12.660	1.291	1.00 34.28
ATOM AAAA	1786	C	'PHE	A	244	0.010	-11.759	-0.103	1.00 29.21
ATOM AAAA	1787	0	PHE	A	244	0.660	-12.503	-0.836	1.00 28.44
ATOM AAAA	1788	N _	ILE	A	245	0.560	-10.962	0.813	1.00 29.58
ATOM AAAA	1789	CA	ILE	A	245	1.993	-10.956	1.116	1.00 30.22
` ATOM AAAA	1790	СВ	ILE	A	245	2.764	-9.766	0.503	1.00 29.45
ATOM AAAA	1791	CG2	ILE	A	245	4.190	-9.741	1.060	1.00 27.25
ATOM AAAA	1792	CG1	ILE	A	245	2.824	-9.887	-1.020	1.00 26.11
ATOM AAAA	1793	CD1	ILE	A	245	3.609	-8.774	-1.661	1.00 27.15
ATOM AAAA	1794	С	ILE	A	245	2.086	-10.822	2.631	1.00 32.52
ATOM AAAA	1795	0	ILE	A	245	1.987	-9.720	3.176	1.00 32.53
ATOM AAAA	1796	N	ASP.	Α	246	2.271	-11.944	3.311	1.00 34.55
ATOM AAAA	1797	CA	ASP.	A	246	2.357	-11.926	4.763	1.00 36.92
ATOM AAAA	1798	СВ	ASP.	A	246	2.222	-13.350	5.304	1.00 40.29
ATOM AAAA	1799	CG	ASP.	A	246	0.831	-13.926	5.075	1.00 43.98
ATOM AAAA	1800	OD1	ASP	A	246	0.659	-15.159	5.218	1.00 46.68
ATOM AAAA	1801	OD2	ASP.	A	246	-0.093	-13.143	4.760	1.00 45.65
ATOM AAAA	1802	С	ASP	A	246	3.650	-11.286	5.247	1.00 36.42
ATOM AAAA	1803	0	ASP.	A	246	3.631	-10.384	6.092	1.00 37.48
MOTA AAAA	1804	N	ASP	A	247	4.771	-11.733	4.694	1.00 35.16
AAAA AAAA	1805	CA	ASP	A	247	6.069	-11.200	5.085	1.00 34.25
ATOM	1806	СВ	ASP	A	247	7.145	-12.268	4.887	1.00 33.07
AAAA MOTA AAAA	1807	CG	ASP	A	247	8.461	-11.901	5.543	1.00 33.19

WO 01/90301			PCT/US01/11500)
MOTA	1803	OD1 ASP A 247	8.689 -10.700 5.802 1.00 31.8	15
AAAA MOTA	1809	OD2 ASP A 247	9.277 -12.816 5.791 1.00 32.3	31
AAAA ATOM AAAA	1810	C ASP A 247	6.422 -9.949 4.275 1.00 34.1	. 8
MOTA AAAA	1811	O ASP A 247 .	7.241 -10.003 3.354 1.00 33.6	52
MOTA AAAA	1812	N MET A 248	5.801 -8.825 4.617 1.00 33.6	56
ATOM AAAA	1813	CA MET A 248	6.069 -7.577 3.916 1.00 33.2	!9
ATOM AAAA	1814	CB MET A 248	5.192 -6.448 4.461 1.00 34.3	30
ATOM AAAA	1815	CG MET A 248	3.852 -6.314 3.757 1.00 36.7	10
ATOM AAAA	1816	SD MET A 248	4.042 -5.940 1.987 1.00 40.2	22
ATOM AAAA	1817	CE MET A 248	2.590 -6.667 1.361 1.00 39.6	6 6
ATOM AAAA	1818	C MET A 248	7.533 -7.180 4.017 1.00 32.6	54
ATOM AAAA	1819	O MET A 248	8.082 -6.587 3.088 1.00 32.5	59
ATOM AAAA	1820	N ALA A 249	8.1667.500 5.142 1.00 30.3	31
ATOM AAAA	1821	CA ALA A 249	9.573 -7.163 5.316 1.00 29.8	31
ATOM AAAA	1822	CB ALA A 249	10.061 -7.597 6.706 1.00 28.8	3 3
ATOM AAAA	1823	C ALA A 249	10.406 -7.837 4.223 1.00 27.7	72
ATOM AAAA	1824	O ALA A 249	11.277 -7.208 3.622 1.00 27.9	98
ATOM AAAA	1825	N ALA A 250	10.127 -9.112 3.960 1.00 27.2	22
ATOM AAAA	1826	CA ALA A 250	10.858 -9.847 -2.937 1.00 26.2	24
ATOM	1827	CB ALA A 250	10.449 -11.305 2.946 1.00 26.	77
MOTA AAAA	1828	C ALA A 250	10.624 -9.250 1.553 1.00 26.	35
ATOM AAAA	1829	O ALA A 250	11.543 -9.192 0.739 1.00 26.	73
ATOM AAAA	1830	N ALA A 251	9.400 :- 8.807 1.279 1.00 25.0	
ATOM AAAA			9.101 -8.225 -0.033 1.00 25.	
ATOM AAAA			7.597 -8.044 -0.205 1.00 24.	
ATOM AAAA			9.816 -6.891 -0.209 1.00 24.	
MOTA AAAA			10.342 -6.586 -1.287 1.00 24.	
MOTA AAAA	1835	N TYR A 252	9.832 -6.097 0.855 1.00 24.	
ATOM	1836	CA' TYR'A 252	10.483 -4.801 .0.838 1.00 24.	62
AAAA ATOM AAAA		CB TYR A 252	10.191 -4.033 2.131 1.00 26.	
AAAA MOTA AAAA			8.815 -3.399 2.214 1.00 28.	84
MOTA	1839	CD1 TYR A 252	8.282 -3.027 3.450 1.00 29.	34
AAAA MOTA AAAA	1840	CE1 TYR A 252	7.048 -2.395 3.547 1.00 30.	51

WO 01/90301						PC	T/US01/11500
ATOM	1841	CD2	TYR A 252	8.066	-3.123	1.064	1.00 28.35
AAAA ATOM AAAA	1842	CE2	? TYR A 252	6.821	-2.485	1.153	1.00 29.76
AAAA ATOM AAAA	1843	CZ	TYR A 252	6.322	-2.125	2.401	1.00 30.32
ATOM AAAA	1844	ОН	TYR A 252	5.103	-1.492	2.515	1.00 29.75
ATOM AAAA	1845	С	TYR A 252	11.998	-4.972	0.694	1.00 25.22
ATOM AAAA	1846	0	TYR A-252	12.668	-4.106	0.139	1.00 24.57
ATOM AAAA	1847	N	ALA A 253	12.527	-6.084	1.204	1.00 23.97
ATOM AAAA	1848	CA	ALA A 253	13.961	-6.355	1.118	1.00 24.84
ATOM AAAA	1849	СВ	ALA A 253	14.311	-7.606	1.906	1.00 23.83
ATOM AAAA	1850	С	ALA A 253	14.319	-6.560	-0.347	1.00 24.16
ATOM AAAA	1851	0	ALA A 253	15.325	-6.045	-0.831	1.00 26.29
ATOM AAAA ATOM	1852	N CA	TRP A 254	13.469 13.640	-7.315 -7.635	-1.032 -2.447	1.00 23.19
ATOM AAAA ATOM	1853 1854	СВ	TRP A 254	12.672	-8.753	-2.827	1.00 22.03
AAAA ATOM	1855	CG	TRP A 254	12.534	-8.968	-4.304	1.00 21.21
AAAA ATOM	1856		TRP A 254	11.508	-8.437	-5.155	1.00 20.22
AAAA ATOM	1857	CE2	TRP A 254	11.766	-8.905	-6.463	1.00 20.36
AAAA ATOM	1858	CE3	TRP A 254	10.397	-7.610	-4.939	1.00 20.38
AAAA ATOM	1859	CD1	TRP A 254	13.353	-9.708	-5.105	1.00 20.80
AAAA ATOM	1860	NE1	TRP A 254	12.895	-9.678	-6.404	1.00 22.48
AAAA MOTA AAAA	1861	CZ2	TRP A 254	10.948	-8.573	-7.559	1.00 21.36
ATOM AAAA	1862	CZ3	TRP A 254	9.582	-7.276	-6.030	1.00 21.09
ATOM AAAA	1863	CH2	TRP A 254	9.867	-7.761	-7.323	1.00 20.78
ATOM AAAA	1864	С	TRP A 254	13.433	-6.468	-3.414	1.00 22.65
ATOM AAAA	1865	0	TRP A 254	14.218	-6.280	-4.345	1.00 23.19
ATOM AAAA	1866	N	ALA A 255	12.376	-5.692	-3.194	1.00 21.49
ATOM AAAA	1867	CA	ALA A 255	12.024	-4.586	-4.086	1.00 21.80
ATOM AAAA	1868	СВ	ALA A 255	10.652	-4.030 -3.420	-3.677 -4.299	1.00 22.15
ATOM AAAA ATOM	1869	С	ALA A 255	13.844	-3.110	-3.469	1.00 21.27
ATOM AAAA ATOM	1870 1871	.O .N	ALA A 255 ASP A 256	12.820	-2.771	-5.447	1.00 21.80
AAAA ATOM	1872	CA	ASP A 256	13.600	-1.590	-5.807	1.00 21.58
AAAA ATOM	1873	СВ	ASP A 256	14.082	-1.686	-7.263	1.00 23.50
AAAA							

3.		
WA	01/90301	
wv	ひまたろひるひょ	

1//0501										
ATOM	1874	CG	ASP	A	256	15.329	-2.542	-7.415	1.00 23	3.21
AAAA ATOM	1875	OD1	ASP	А	256	15.354	-3.417	-8.306	1.00 24	4.63
AAAA ATOM	1876	OD2 [.]	ASP	Α	256	16.289	-2.328	-6.648	1:00 25	5.60
AAAA ATOM	1877	С	ASP	А	256	12.651	-0.397	-5.670	1.00 22	2.26
AAAA ATOM	1878	ο.	ASP	А	256	13053	0.703	-5.300	1.00 22	2.77
AAAA							-0.637	-5.968	1.00 23	
ATOM AAAA	1879	N	VAL			11.379				
ATOM AAAA	1880	CA	VAL.	A	257 ⁻	10.366	0.411	-5.914	1.00 2	3.31
ATOM AAAA	1881	СВ	VAL	A	257	10.313	1.167	-7.267	1.00 2	3.63
ATOM AAAA	1882	CG1	VAL	A	257	9.950	0.206	-8.373	1.00 2	1.70
ATOM	1883	CG2	VAL	A	257	9.312	2.315	-7.205	1.00 2	3.86
AAAA ATOM	1884	С	VAL	Α	257	8.997	-0.197	-5.607	1.00 2	3.39
AAAA ATOM	1885	0	'VAL	A	257	8.735	-1.351	-5.933	1.00 2	2.20
AAAA ATOM	1886	N	VAL	Δ	258	8.127	0.587	-4.978	1.00 2	4.57
AAAA									1.00 2	
ATOM AAAA	1887	CA	VAL			6.792	0.114	-4.627		
ATÓM AAAA	1888	CB	VAL	A	258	6.590	0.100	-3.085	1.00 2	5.0/
ATOM AAAA	1889	CG1	VAL	A	258	5.275	-0.596	-2.731	1.00 2	5.09
MOTA	1890	CG2	VAL	Α	258	7.755	-0.599	-2:406	1.00 2	5.19
AAAA ATOM	1891	С .	VAL	Α	258	5.695	0.993	~5.228	1.00 2	4.77
AAAA ATOM	1892	0	VAL	Ä	258	5.806	2.220	-5.241	1.00 2	5.72
AAAA MOTA	1893	N	VAL	Α	259	4.650	0.352	-5.738	1.00 2	4.90
AAAA ATOM	1894	CA	VAL	A	259	3.495	:1.056	-6.291	1.00 2	4.40
AAAA ATOM	1895	CB.	VÁL	Α	259	3.152	0.593	-7.713	1.00 2	4.26
AAAA ATOM	1896	CG1	VAL	A	259	1.928	1.371	-8.226	1.00 2	2.17
AAAA ATOM		CG2	VAL	Α	259	44.344	0.801	-8.628	1.00 2	1.85
AAAA MOTA	1898				259				1.00 2	5.42
AAAA ATOM	1899				259		-0.528		1.00 2	5.59
AAAA ATOM	1900				260		1.623	-4.685	1.00 2	5.57
AAAA ATCM	1901						1.308			
AAAA MOTA	1902				. 260		0.675			
AAAA ATOM	1903				. 260					
AAAA					260		•		•	
ATOM AAAA										
ATOM AAAA	1905						3.664			
ATOM	1906	N 1	ÄRG	·A	261	-1.164	2.306	-2.547	1.00 2	28.36

WO 01/90301							PC	Γ/US01/	/11500
ATOM	1907	CA'	ARG A 2	61	-1.986	3.391	-2.023	1.00	29.99
AAAA ATOM	1908	СВ	ARG A 2	61	-3.244	2.848	-1.340	1.00	31.35
AAAA MOTA	1909.	CG	ARG A 2	61	-4.237	2.168	-2.258	1.00	33.82
AAAA ATOM	1910	CD	ARG A 2	61	-4.829	3.143	-3.253	1.00	35.21
AAAA MOTA	1911	NE	ARG A 2	61	-5.949	2.547	-3.975	1.00	36.21
AAAA ATOM	1912	CZ	ARG A 2	61	-6.550	3.107	-5.017	1.00	36.46
AAAA ATOM	1913	NH1	ARG A 2	61	-6.138	4.283	-5.470	1.00	36.95
AAAA ATOM	1914	NH2	ARG A 2	61	-7.571	2.493	-5.599	1.00	37.72
AAAA ATOM	1915	С	ARG A 2	61	-1.118	4.076	-0.979	1.00	30.75
AAAA ATOM	1916	0	ARG A 2	61	-0.041	3.575	-0.641	1.00	29.94
AAAA ATOM	1917	N	SER A 2	62	-1.583	5.206	-0.453	1.00	30.70
AAAA ATOM	1918	CA.	SER A 2	62	-0.807	5.924	0.544	1.00	31.00
AAAA ATOM	1919	СВ	SER A 2	62	-0.290	7.245	-0.034	1.00	31.31
AAAA ATOM	1920	OG	SER A 2	62	-1.344	8.016	-0.581	1.00	32.21
AAAA ATOM	1921	С	SER A 2	62	-1.526	6.182	1.868	1.00	30.92
AAAA ATOM	1922	0	SER A 2	62	-1.624	7.322	2.317	1.00	31.37
AAAA ATOM	1923	N	GLY A 2	63	-2.040	5.121	2.483	1.00	30.70
AAAA ATOM	1924	CA	GLY A 2	63	-2.669	5.277	3.779	1.00	29.85
AAAA ATOM	1925	С	GLY A 2	63	-1.510	5.663	4.680	1.00	29.40
AAAA ATOM	1926	0	GLY A 2	63	-0.367	5.287	4.394	1.00	28.65
AAAA ATOM	1927	N	ALA A 2	64	-1.787	6.404	5.751	1.00	28.11
AAAA ATOM	1928	CA	ALA A 2	64	-0.752	6.872	6.674	1.00	28.19
AAAA ATOM	1929	СВ	ALA A 2	64	-1.399	7.563	7.879	1.00	27.89
AAAA ATOM	1930	С	ALA A 2	64	0.249	5.826	7.166	1.00	27.95
AAAA ATOM	1931	0	ALA A 2	64	1.454	6.056	7.117	1.00	28.65
AAAA MOTA	1932	N	LEU A 2	65	-0.239	4.693	7.656	1.00	27.93
AAAA ATOM	1933	CA	LEU A 2	65	0.662	3.659	8.158	1.00	27.76
AAAA MOTA	1934	СВ	LEU A 2	65	-0.141	2.524	8.798	1.00	28.60
AAAA ATOM	1935	CG	LEU A 2	65	-1.049	2.984	9.947	1.00	29.56
AAAA ATOM	1936	CD1	LEU A 2	65	-1.680	1.775	10.615	1.00	28.94
AAAA ATOM	1937	CD2	LEU A 2	65	-0.245	3.797	10.957	1.00	29.94
AAAA MOTA	1938	С	LEU A 2	65	1.566	3.116	7.053	1.00	27.53
AAAA ATOM	1939	0	LEU A 2	65	2.731	2.779	7.297	1.00	25.35
AAAA									

WO 01	/90301		•						PC	T/US01/	11500
	ATOM	1940	N _.	THR A	266		1.026	3.043	5.841	1.00	27.19
	AAAA ATOM	1941	CA	THR A	266	-	1.778	2.553	4.689	1.00	27.20
	AAAA ATOM	1942	СВ	THR A			0.859	2.383	3.455	1.00	27.48
	AAAA			Ť			-0.066	1.315	3.697	1.00	27.63
-	AAAA	1943									
	ATOM AAAA	1944	CG2	THR A	266		1.683	2.059	2.202	1.00	
-	ATOM	1945	С	THR A	266		2.916	3.507	_4.341	1.00	27.11
	ATOM	1946	0	THR A	266		4.036	3.072	4.070	1.00	26.97
	MOTA	1947	N	VAL A	267		2.631	4.806	4.352	1.00	26.63
	AAAA ATOM	1948	CA.	VAL A	267		3.649	5.806	4.048	1.00	27.06
	AAAA ATOM	1949	СВ	VAL A	267		3.044	7.236	4.052	1.00	26.30
	AAAA ATOM	1950	CG1	VAL A	267		4.146	8.289	4.011	1.00	26.39
	AAAA	1951		VAL A			2.118	7.398	2.851	1.00	25.02
	AAAA						4.809	5.730	5.044		28.55
	ATOM AAAA	1952	С	VAL A							
	ATOM AAAA	1953	.0	VAL A	267		5.973	5.806	4.653		28.56
	ATOM AAAA	1954	N	SER A	268		4.495	5.581	6.329	1.00	28.38
•	MOTA	1955	CA	SER A	268		5.537	5.492	7.351	1.00	29.48
	AAAA ATOM	1956	·CB	SER A	268		4.915	5.522	8.753	1.00	29.48
•	AAAA ATOM	1957	· og	SER À	-268		4.291	6.768	9.003	1.00	30.64
,	AAAA ATOM	1958	.: с	SER-A	268		6.348	4.208	7.179	1.00	28.97
	AAAA ATOM	1959	O	SER A	268		7.557	4.181	ु.7.399	.1.00	30.06
	AAAA ATOM	1960	N ·	GLU A		•	5.663	3.146	- 6.785	1.00	28.87
	AAAA	1961		GLU A				1.850	6.576	1.00	29.54
	AAAA										
	αααα							0.821		•	
• ,	ΔΔΔΔ							0.594			
	ממממ						. :	-1.562			` '
	'ATOM'	1965	OE1	GLU A	269		3.996	-1.917	7.239	1.00	32.48
• •		1966	· 0E2	GLU A	269		4.100	-1.956	5.048	. 1.00	30.84
· .		1967	C	GLU A	269		7.263	1.910	5.394	1.00	29.59
	AAAA ATOM	1968	0	GLU A	269		.8.355	1.332	5.441	1.00	29.11
	ממממ							2.616			
	AAAA						*	2.763			
	AAAA	1970		•							
. 4.	ממממ			ILE F				3.520			
	MOTA AAAA	1972	CG2	ILE.A	.270		7.948	3.931	0.940	1.00	28.68
	~~~							•			

WO 01/90301			)				PC	CT/US01/11500
ATOM	1973	CG1	ILE A	270	5.845	2.646	1.461	1.00 28.04
AAAA ATOM AAAA	1974	CD1	ILE A	270	6.318	1.366	0.805	1.00 30.11
ATOM	1975	С	ILE A	270	8.978	3.532	3.522	1.00 28.84
AAAA ATOM	1976	0	ILE A	270	10.076	3.194	3.075	1.00 28.96
AAAA ATOM	1977	N	ALA A	271	8.818	4.568	4.340	1.00 28.51
AAAA ATOM	1978	CA	ALA A	271	9.952	5.374	4.768	1.00 28.79
AAAA ATOM	1979	СВ	ALA A	271	9.462	6.576	5.572	1.00 28.12
AAAA ATOM	1980	С	ALA A	271	10.918	4.530	5.603	1.00 29.26
AAAA		_						1.00 29.35
ATOM AAA	1981	Ó	ALA A	2/1	12.136	4.575	5.394	
ATOM AAAA	1982	N	ALA A	272	10.370	3.755	6.534	1.00 28.79
MOTA	1983	CA	ALA A	272	11.187	2.904	7.397	1.00 29.79
AAAA ATOM AAAA	1984	CB.	ÁLA A	272	10.301	2.207	8.430	1.00 29.28
ATOM	1985	С	ALA A	272	11.957	1.872	6.566	1.00 30.22
AAAA ATOM	1986	0	ALA A	272	13.102	1.539	6.876	1.00 29.36
AAAA ATOM	1987	N	ALA A	273	11.327	1.377	5.503	1.00 30.03
AAAA						0.394	4.628	1.00 30.65
ATOM AAAA	1988	CA	ALA A	2/3	11.961			
ATOM AAAA	1989	СВ	ALA A	273	10.914	-0.306	3.782	1.00 29.48
ATOM AAAA	1990	С	ALA A	273	13.005	1.041	3.720	1.00 31.45
ATOM	1991	0	ALA A	273	13.803	0.346	3.090	1.00 31.87
AAAA ATOM	1992	N	GLY A	274	12.998	2.368	3.662	1.00 31.20
AAAA ATOM	1993	CA	GLY A	274	13.937	3.078	2.814	1.00 32.26
AAAA ATOM	1994	С	GLY A	274	13.725	2.683	1.362	1.00 32.80
AAAA ATOM	1995	0	GLY A	274	14.652	2.226	0.692	1.00 33.38
AAAA								1.00 32.88
ATOM AAAA	1996	N	LEU A		12.501		0.873	
ATOM AAAA	1997	CA	LEU A	275	12.169	2.494	-0.497	1.00 32.70
ATOM AAAA	1998	СВ	LEU A	275	11.266	1.262	-0.502	1.00 32.79
ATOM	1999	CG	LEU A	275	11.869	-0.138	-0.431	1.00 33.70
AAAA ATOM	2000	CD1	LEU A	275	10.762	-1.133	-0.114	1.00 33.69
AA.AA ATOM	2001	CD2	LEU. A	275	12.538	-0.484	-1.762	1.00 32.25
AAAA								1.00 33.39
ATOM AAAA	2002	С	LEU A					
ATOM AAAA	2003	0	LEU A	275	10.638	4.320	-0.819	1.00 32.48
ATOM AAAA	2004	N	PRO A	276	11.835	3.654	-2.617	1.00 32.76
ATOM	2005	CD	PRO A	276	13.022	3.048	-3.244	1.00 32.59

. .

									·		
	MOTA	2006	CA	PRO	Ą	276	11.221	4.636	-3.513	1.00	32.07
	AAAA MOTA	2007	СВ	PRO	Α	276	12.049	4.510	-4.791	1.00	32.16
	AAAA MOTA	2008	CG.	PRO	А	276	13.383	4.072	-4.296	1.00	33.28
Į	AAAA	2009	С	PRO			9.794	4.143	-3.722	1.00	31.63
Į	MOTA AAAA										
	MOTA AAAA	2010	0	PRO	A	276	9.531	2.936	-3.651		30.32
	MOTA AAAA	2011	N	ALA	A	277	8.864	5.049	-3.976	1.00	31.27
7	MOTA	2012	CA	ALA	Α	277	7.504	4.604	-4.180	1.00	30.99
	AAAA MOTA	2013	СВ	ALA	Α	2.77	6.764	4.558	-2.842	1.00	30.75
	AAAA MOTA	2014	С	ALA	Α	277.	6.722	5.450	-5.163	1.00	30.92
Į	AAA	2015	0	ALA	Δ	277	6.948	6.652	-5.295	1.00	32.61
1	MOTA AAAA										
	MOTA AAAA	2016	<b>N</b>	LEÚ	A	278	5.809	4.796	-5.865	1.00	31.01
	MOTA AAAA	2017	CA '	LEU	A	278	4.928	5.476	-6.796	1.00	31.08
Ž	MOTA	2018	СВ	LEU	A	278	4.884	4.758	-8.146	1.00	31.98
	AAAA MOTA	2019	CG	LEU	Α	278	4.135	5.526	-9.241	1.00	32.77
	AAAA ATOM	2020	CD1	LEU	Α	278	4.770	6.895	-9.412	1.00	34.58
4	AAAA ATOM	2021	CD2	LEU	А	278	4.181	4.756	-10.543	1.00	31.93
	AAAA						3.576	5.375	-6.101	1.00	30:98
	ATOM AAAA	2022	C ·	LEU							
	MOTA AAAA	2023	0	LEU	Α	278	2.887	4.357	-6.197	1:00	31.03
	ATOM AAAA	2024	N·	PHE	A	279	3.218	6.424	-5.369	1.00	30.84
	ATOM	2025	CA	PHE	A	279	1.964	6.447	-4.633	1.00	29.87
	AAAA ATOM	2026	СВ	PHE	Α	279	2,051	7.460	-3.489	1.00	29.31
	AAAA ATOM	2027	CG	PHE	А	279	2.948	7.033	-2.353	1.00	26.86
	AAAA ATOM	·2028	CD1	PHE	Δ	279	3.961	7.870	-1.902	1:00	27.25
	AAAA						2.751				
	ATOM AAAA	2029									
	ATOM . AAAA		•				4.765				<b>V</b>
	ATOM	2031.	CE2	PHE	A	279	3.549	5.439	-0.630	1.00	25.57
•	AAAA MOTA	2032	CZ	PHE	Α	279	4.555	6.286	-0.186	1.00	25.90
	AAAA ATOM	2033	C	PHE	Α	27,9	0.765	6.773	-5.508	1:00	.30.70
	AAAA ATOM					•	0.790				
	AAAA					•					
	ΔΔΔΔ	. 2035				•	-0.281				
	ATOM AAAA						-1.523			•	
	ATOM	2037	СВ	VAL	A	280	-1.867	4.924	-6.954	1.00	33.12
	AAAA ATOM	2038	CG1	VAL	. A	280	-3.196	5.122	-7.661	1.00	32.63
	AAAA								*		

			,							
ATOM AAAA	2039	CG2	VAL	Α	280	-0.768	4.688	-7.979	1.00	33.54
ATOM	2040	С	VAL	Α	280	-2.598	6.394	-5.036	1.00	33.46
ATOM	2041	0	VAL	Α	280	-3.320	5.478	-4.643	1.00	32.49
AAAA ATOM	2042	N	PRO	Α	281	-2.695	7.640	-4.546	1.00	34.67
AAAA ATOM	2043	CD	PRO	Α	281	-1.917	8.789	-5.036	1.00	34.47
AAAA ATOM	2044	CA	PRO	Α	281	-3.652	8.061	-3.518	1.00	36.79
AAAA ATOM	2045	СВ	PRO	Α	281	-3.475	9.578	-3.478	1.00	36.20
AAAA ATOM	2046	CG	PRO	Α	281	-2.060	9.772	-3.909	1.00	36.53
AAAA ATOM	2047	С	PRO	-		-5.097	7.676	-3.801		38.44
AAAA										
ATOM AAAA	2048	0	PRO			-5.564	7.763	-4.936		38.62
ATOM AAAA	2049	N	PHE	A	282	-5.800	7.237	-2.763	1.00	41.21
ATOM AAAA	2050	CA	PHE	Α	282	-7.206	6.887	-2.910	1.00	44.31
ATOM	2051	СВ	PHE	Α	282	-7.722	6.169	-1.664	1.00	45.63
AAAA ATOM	2052	CG	PHE	А	282	-9.142	5.697	-1.785	1.00	47.68
AAAA ATOM	2053	CD1	PHE	А	282	-9.452	4.570	-2.542	1.00	48.21
AAAA ATOM	2054	CD2	PHE	Δ	282	-10.176	6.387	-1.156	1.00	48.55
AAAA ATOM	2055							-2.673		49.11
AAAA		CEI	PHE	А	202	-10.772	4.136			49.11
ATOM AAAA	2056	CE2	PHE	A	282	-11.501	5.963	-1.280	1.00	49.07
ATOM AAAA	2057	ĊZ	PHE	A	282	-11.799	4.833	-2.041	1.00	48.80
MOTA	2058	С	PHE	Α	282	-7.908	8.233	-3.052	1.00	45.26
AAAA ATOM	2059	0	PHE	Α	282	-7.720	9.121	-2.224	1.00	45.48
AAAA ATOM	2060	N	GLN	Α	283	-8.706	8.387	-4.101	1.00	47.00
AAAA ATOM	2061	CA	GLN	Α	283	-9.399	9.648	-4.339	1.00	48.78
AAAA ATOM	2062	СВ	GLN	A	283	-9.958	9.677	-5.768	1.00	48.98
AAAA ATOM	2063	CG	GLN	Α	283	-10.606	11.000	-6.170	1.00	50.07
AAAA ATOM	2064	CD	GLN	А	283	-9.649	12.179	-6.082	1.00	, · 50.05
AAAA ATOM	2065	OE1	GLN	А	283	-9.206	12.556	-4.997		50.12
AAAA								-7.230		
ATOM AAAA	2066	NE Z	GLN			-9.321	12.762			50.62
ATOM AAAA	2067	С	GLN	Α	283	-10.519	9.918	-3.335	1.00	49.60
ATOM AAAA	2068	0	GLN	A	283	-11.317	9.035	-3.018	1.00	49.68
ATOM AAAA	2069	N	HIS	Α	284	-10.558	11.151	-2.838	1.00	50.76
ATOM	2070	CA	HIS	Α	284	-11.570	11.579	-1.875	1.00	51.60
AAAA ATOM	2071	СВ	HIS	Α	284	-11.329	10.918	-0.515	1.00	52.12
AAAA							•			

O 01/	90301								PC'	T/US01/	11500
	MOTA	2072	CG	HIS	A	284	-12.436	11.140	0.469	1.00	52.63
	AAAA MOTA	2073	CD2	HIS	Α	284	-13.327	10.280	1.017	1.00	52.98
	AAAA ATOM	2074	ND1	HIS	Α	284	-12.733	12.381	0.991	1.00	52.98
	AAAA ATOM	2075	CE1	HIS	A	284	-13.758	12.276	1.817	1.00	52.69
	AAAA ATOM AAAA	2076	NE2	HIS	Α	284	-14.138	11.011	1.851	1.00	52.96
	AAAA ATOM AAAA	2077	C	HIS	A	284	-11.497	13.098	-1.745	1.00	52.04
	ATOM AAAA	2078	0	HIS	Α	284	-10.451	13.697	-2.000	1.00	52.03
	ATOM AAAA	2079	N	LYS	Α	285	-12.604	13.719	-1.347	1.00	52.27
	ATOM AAAA	2080	CA	LYS	Α	285	-12.653	15.171	-1.210	1.00	52.70
	ATOM AAAA	2081	CB	LYS	Α	285	-14.018	15.604	-0.669	1.00	53.61
	ATOM AAAA	2082	CG	LYS	Α	285	-14.256	17.111	-0.701	1.00	55.17
	ATOM AAAA	2083	CD,	ĹYS	Α	285	-14.503	17.634	-2.122	1.00	56.00
	ATOM AAAA	2084	CE	LYS	A	285	-13.244	17.625	-2.984	1.00	56.62
	ATOM AAAA	2085	NZ	LYS	A	285	-13.513	18.075	-4.383	1.00	56.60
,	ATOM AAAA	2086	C ·	LYS	A	285	-11.552	15.746	-0.319	1.00	52.35
	ATOM AAAA	2087	0	LYS	A	285	-10.988	16.800	-0.619	1.00	51.96
	ATOM AAAA	2088	N ·	ASP	A	286	-11.246	15.054	0.773	1.00	51.71
•	ATOM AAAA	2089	CA	ASP	A	286	-10.218	15.521	1.693	1.00	51.34
	ATOM AAAA	2090	СВ	ASP	A	286	-10.405	14.869	3.067	1.00	53.33
•	ATOM AAAA	2091	CG	ASP	A	286	-10.003	1,3.403	3.083	1.00	55.00
	ATOM AAAA	2092	OD1	ASP	A	286	-10.412	12.648	2.174	1.00	56.57
	AAAA	2093	OD2	ASP	A	286	-9.280	13.004	4.018	1.00	56.62
. '		:2094	С	ASP	A	286	-8.817	15.230	1.164	1.00	49.69
	ATOM AAAA	-2095	0	ASP	Α	286		15.829			49.71
	ATOM AAAA	2096	·N.	ARG	A	287	-8.724	14.315	0,203	1.00	47.93
	ATOM AAAA	2097	CA	ÄRG	A	287	-7.436	13.944	-0.380	1.00	45.79
	ATOM AAAA	2098	СВ	ARG	A	287	-6.848	15.121	-1.156	1.00	45.56
	ATOM AAAA	2099	CG	ARG	Α	287	-7.744		-2.251		
٠	ATOM AAAA	2100	CD	ARG	Α	287	-7.172	16.949	-2.301	1.00	45.75
•	ATOM	2101	NE	ARG	Ą	287	-5.999	16.724	-3.637	1.00	46.20
•	AAAA MOTA	2102	CZ	ARG	A	287	-4.981	17.573	-3.733	1.00	46.22
•	AAAA ATOM	2103	NH1	-ARG	٠A	287	-4.986	18.702	-3.037	1.00	46.26
•	AAAA ATOM. AAAA	2104	-NH2	ARG	A	287 .	-3.962	17.297	-4.533	1.00	46.42

WO 01/90301							PC	CT/US01	1/11500
ATOM	2105	С	ARG A	287	-6.464	13.533	0.722	1.00	44.13
AAAA MOTA	2106	0	ARG A	287	-5.279	13.870	0.685	1.00	43.87
AAAA ATOM	2107	N	GLN A	288	-6.975	12.804	1.704	1.00	42.92
AAAA ATOM	2108	CA	GĽN A	288	-6.157	12.359	2.824	1.00	42.41
AAAA ATOM	2109	СВ	GLN A	288	-6.955	11.395	3.704	1.00	42.02
AAAA ATOM	2110	CG	GLN A	288	-6.226	10.947	4.958	1.00	41.95
AAAA ATOM	2111	CD	GLN A	288	-7.033	9.951	5.766	1.00	42.04
AAAA ATOM	2112	OE1	GLN A	288	-7.356	8.860	5.288	1.00	41.14
AAAA ATOM AAAA	2113	NE2	GLN A	288	-7.369	10.322	6.997	1.00	41.32
ATOM AAAA	2114	C	GLN A	288	-4.867	11.682	2.372	1.00	41.36
ATOM AAAA	2115	0	GLN A	288	-3.772	12.113	2.734	1.00	41.61
ATOM AAAA	2116	Ν	GLN A	289	-4.999	10.626	1.575	1.00	41.32
ATOM AAAA	2117	CA	GLN A	289	-3.835	9.886	1.105	1.00	40.21
ATOM AAAA	2118	СВ	GLN A	289	-4.267	8.678	0.280	1.00	39.57
ATOM AAAA	2119	CG	GLN A	289	-5.126	7.703	1.068	1.00	37.69
ATOM AAAA	2120	CD	GLN A	289	-4.976	6.274	0.595	1.00	37.80
ATOM AAAA	2121	OE1	GLN A	289	-4.422	6.014	-0.475	1.00	35.48
ATOM AAAA	2122	NE2	GLN A	289	-5.478	5.337	1.388	1.00	36.57
ATOM AAAA	2123	С	GLN A	289	-2.862	10.744	0.318	1.00	40.38
ATOM AAAA	2124	0	GLN A	289	-1.661	10.469	0.301	1.00	40.11
ATOM AAAA	2125	N	TYR A	290	-3.373	11.782	-0.335		40.27
ATOM AAAA	2126	CA	TYR A		-2.504	12.678	-1.081		39.93
ATOM AAAA	2127	СВ	TYR A		-3.316	13.715			41.72
ATOM AAAA	2128	CG	TYR A		-2.47.3	14.873	-2.352		43.41
ATOM AAAA	2129		TYR A		-1.590	14.716	-3.421	•	44.44
ATOM AAAA	2130		TYR A		-0.764	15.763	-3.836		45.65
ATOM AAAA	2131		TYR A		-2.513	16.109	-1.709		43.91
ATOM AAAA	2132		TYR A		-1.695	17.161	-2.111		45.19
ATOM AAAA	2133	CZ	TYR A		-0.821	16.981	-3.174		46.54
MOTA AAAA	2134	ОН	TYR A		0.003	19.014	-3.566		47.98
ATOM AAAA	2135	C .	TYR A		-1.604	13.399	-0.085		39.33
ATOM AAAA	2136	0	TYR A		-0.396	13.529	-0.296		39.19
ATOM AAAA	2137	N	TRP A	291	-2.202	13.871	1.005	1.00	38.32

11/90301		)				, ,	
АТОМ	2138	CA	TRP A 291	-1.451	14.585	2.025	1.00 37.84
AAAA MOTA	2139	СВ	TRP A 291	-2.409	15.307	2.979	1.00 37.98
AAAA ATOM	2140	CG.	TRP A 291	-3.211	16.366	2.286	1.00 39.40
AAAA ATOM	2141	CD2	TRP A 291	-2.721	17.612	1.778	1.00 39.83
AAAA ATOM	2142	CE2	TRP A 291	-3.810	18.270	1.162	1.00 40.18
AAAA ATOM	2143	CE3	TRP A 291	-1.467	18.238	1.781	1.00 40.07
AAAA ATOM	2144	CD1	TRP A 291	-4.540	16.319	1.969	1.00 38.96
AAAA ATOM	2145	NE1	TRP A 291	-4.908	17.459	1.294	1.00 39.51
AAAA ATOM	2146	CZ2	TRP A 291	-3.684	19.525	0.554	1.00 40.53
AAAA ATOM	2147		TRP A 291	-1.340	19.488	1.177	1.00 41.40
AAAA ATOM	2148		TRP A 291	-2.446	20.116	0.572	1.00 40.92
AAAA ATOM	2149	С	, ,	-0.506		2.803	1.00 36.79
AAAA	2150	0	TRP A 291	0.515	14.141	3.306	1:00 36.64
AAAA ATOM	2151	N	ASN A 292	-0.841	12.397	2.907	1:00 36.82
AAAA ATOM	2152	CA	ASN A 292	0.030	11.467	3.619	1.00 37.08
AAAA	2152	СВ	ASN A 292	-0.658	10.116	3.842	1.00 36.47
ATOM AAAA			ASN A 292		10.203	4.783	1.00 36.02
ATOM AAAA	2154			-1.924	11.104	5.618	1.00 35.88
ATOM AAAA	2155		ASN A 292		9.248	4.667	1.00 35.00
ATOM AAAA	2156		ASN A- 292				1.00 33.20
ATOM AAAA	2157	C .	ASN A 292	1.302		2.803	•
ATOM AAAA	2158	)	ASN A- 292	2.402~	•	3, 3,53	1.00 36.90
ATOM TA	2159	N	ALA A 293	1.138		1.485	1.00 38.20
MOTA AAAA		CA	ALA A' 293	2.253	10.936		• •
ATOM AAAA	2161		ALA A 293				1.00 37.83
ATOM AAAA	·2162	C.	ALA A 293				1.00 39.51
ATOM AAAA	2163	0 .				,	1.00 39.51
ATOM AAAA	2164		LEU A 294				
ATOM AAAA	2165	CA	LEU A 294	3.101	14:575	-0.169	1.00 40.96
ATOM AAAA	2166	СВ	LEU A 294	2.166	15.757	0.101	1.00 41.41
ATOM	2167	CG	LEU A 294	2.666	17.155	-0.272	1.00 41.36
AAAA ATOM		CD1	LEU A 294	3.231	17.168	-1.688	1.00 41.61
AAAA . ATOM	2169	CD2	LEU A 294	1.510	18.136	-0:147	1:00 41.60
	2170	С -	LEU A 294	4.419	14.762	0.585	
AAAA			,				

WO 01	/90301	(							PC	T/US01	/11500
	ATOM	2171	0	LEU	Α	294	5.404	15.228	0.013	1.00	42.14
	AAAA ATOM	2172	N	PRO	А	295	4.459	14.401	1.877	1.00	42.80
	AAAA ATOM AAAA	2173	CD	PRO	Α	295	3.351	14.022	2.772	1.00	42.95
	ATOM AAAA	2174	CA	PRO	A	295	5.706	14.560	2.634	1.00	43.42
	ATOM AAAA	2175	СВ	PRO	Α	295	5.336	14.032	4.015	1.00	43.51
	ATOM AAAA	2176	CG	PRO	Α	295	3.889	14.406	4.128	1.00	43.40
	ATOM AAAA	2177	С	PRO	Α	295	6.900	13.813	2.022	1.00	44.05
	ATOM AAAA	2178	0	PRO	Α	295	8.007	14.349	1.957	1.00	44.17
	ATOM AAAA	2179	N	LEU	A	296	6.682	12.577	1.581	1.00	44.41
	ATOM AAAA	2180	CA	LEU	Α	296	7.766	11.800	0.980	1.00	45.13
	ATOM AAAA	2181	СВ	LEU	Α	296	7.373	10.324	0.852	1.00	44.54
	ATOM AAAA	2182	CG	'ĽEU	A	296	7.424	9.484	2.130	1.00	44.46
	ATOM AAAA	2183	CD1	LEU	A	296	6.951	8.069	1.840	1.00	43.91
	ATOM AAAA	2194	CD2	LEU	A	296	8.844	9.469	2.667	1.00	44.76
	ATOM AAAA	2185	С	LEU			8.151	12.346	-0.391		45.53
	AAAA AAAA	2186	0	LEU			9.333	12.406	-0.732		45.28
	AAAA	2187	N	GLU			7.155	12.747	-1.174		46.35
	AAAA	2188	CA	GLU			7.421	13.291	-2.502		47.94
	AAAA	2189	СВ	GLU			6.113	13.563	-3.251		48.43
	AAAA AEOM	2190	CG	GLU			6.306	14.349	-4.544		<ul><li>49.91</li><li>51.34</li></ul>
	ATOM AAAA ATOM	2191	CD	GLU GLU			5.014 4.562	14.543	-5.318 -5.981		51.89
	AAAA ATOM	2193		GLU			4.446	15.655			52.41
	AAAA ATOM	2194	C	GLU			8.225	14.579	-2.393		48.46
	AAAA ATOM	2195	0	GLU			9.155	14.806			48.78
	AAAA ATOM	2196	N	LYS				15.421	-1.431		49.07
	AAAA ATOM	2197	CA	LYS			8.556	16.685	-1.226		49.76
	AAAA ATOM	2198	СВ	LYS			7.914	17.468			50.85
	AAAA ATOM	2199	CG	LYS			8.644	18.753			52.14
	AAAA ATOM	2200	CD	LYS			8.032	19.429			53.44
	AAAA MOTA	2201	CE	LYS			8.820	20.675		•	53.80
	AAAA ATOM	2202	NZ	LYS			8.281	21.309			54.32
	AAAA MOTA	2203	С	LYS				16.420			49.36
	AAAA										

_								•		
	MOTA	2204	0	LYS A	A 298	10.904	17.180	-1.305	1.00	50.01
	AAAA ATOM	2205	N	ALA A	A 299	10.275	15.335	-0.188	1.00	48.67
	AAAA ATOM	2206	CA	ALA A	A 299	11.635	14.975	0.182	1.00	47.48
	AAAA ATOM	2207	CB	ALA A	A 299	11.615	14.001	1.353	1.00	47.29
	AAAA ATOM	2208	С	ALA A	A 299	12.354	14.356	-1.009	1.00	46.69
	AAAA ATOM	2209	0	•	A 299	13.554	14.098	-0.953	1.00	46.67
	AAAA ATOM	2210	N		A 300	11.613	14.133	-2.090	1.00	45.80
	AAAA ATOM	2211	CA		A 300	12.197	13.538	-3.278		44.79
	AAAA ATOM	2212	c		A 300	12.399	12.042	-3.119		44.04
	AAAA		-			13.343	11.472	-3.665		44.02
	AAAA	2213	0		A 300		,		•	
	ATOM AAAA	2214	N		A 301	11.505		-2.370		43.01
	AAAA	2215	CĂ '		A 301	11.589	9.967	-2.131	•	42.10
	ATOM AAAA	2216	СВ	ALA A	A 301	11.514	9.684	-0.632	1.00	42,.10
	ATOM AAAA	2217	С	ALA A	A 301	10.484	9.209	-2:858	1.00	41.88
	ATOM AAAA	2218	0	ALA A	A 301	10.480	7.976	-2.882	1.00	41.48
,	ATOM AAAA	2219	N	ALA A	A 302	9.549	. 9.941	-3.453	1.00	40.88
	ATOM AAAA	2220	CA	ALA A	A 302	8.451	9.303	-4.156	1:00	40.59
	MOTA	2221	СВ	ALA A	A 302	7.411	8.819	-3.153	1-00	39.61
	AAAA ATOM	2222	C.	ALA	A 302	7.786	10.197	-5.191	1:00	40.72
	AAAA ATOM	2223	0.	ALA A	A 302	8.123	11.372	-5.340	1.00	40.90
	AAAA ATOM	2224	N	LYS	A- 303	6.837	9.610	-5.910	1:00	41.39
	AAAA ATOM	2225	CA	LYS	A`303	6.073	10.309	-6.930	1.00	41.79
	AAAA ATOM	2226	СВ	LYS	A 303	6.455	9.807	-8.325	1.00	41.86
	AAAA ATOM	2227	ĊĠ	LYS	A 303	5.54.0	10.295	-9.442	1:00	43.46
	AAAA ATOM	2228	CD	LYS	A 303	5.608	: 11.807	-9.614	1.00	44.98
	AAAA ATOM	2229 [.]	CE -	LYS	A 303	4.676	12.284	-10.729	1.00	46.33
	AAAA ATOM	2230	NZ	LYS .	A 303	4.767	13.759	-10.957	1.00	46.15
	AAAA ATOM	2231	C ·	LYS .	A 303	4.603	10.022	-6.671	1.00	41.86
	AAAA				A : 303	•				
	AAAA				A 304				• :	
	AAAA					•				
	MOTA AAAA		•		A 304					
	AAAA					1.808				
	ATOM AAAA	2236	CG2	ILE	A 304	0 32-1	11.738	-5.278	1.00	41.77

<b>WO</b> 0	1/90301											F	PCT/US0	1/11500	
	ATOM	2237	CG1	ILE	A 304		2.	554	11.	889	- ų .	159	1.00	42.76	٠.
	AAAA ATOM	2238	CD1	ILE	A 304		2.	094	12.	921	-3.	140	1.00	41.84	
	AAAA ATOM	2239	С		A 304			580		047	-7.	777	1.00	43.43	
	AAAA														
	ATOM AAAA	2240	0	ILE	A 304		1.	818		969	-8.	555		43.89	
	ATOM AAAA	2241	N	ILE	A 305		0.	649	10.	129	-8.	006	1.00	44.38	
	ATOM AAAA	2242	CA	ILE	A 305		-0.	177	10.	164	-9.	199	1.00	45.28	
	MOTA	2243	СВ	ILE	A 305		0.3	287	9.	124	-10.	247	1.00	44.81	
	AAAA ATOM	2244	CG2	ILE	A 305		-0.	610	9.	188	-11.	478	1.00	43.86	
	AAAA ATOM	2245	CG1	ILE	A 305		1.	738	9.	400	-10.	647	1.00	44.38	
	AAAA MOTA	2246			A 305		2	305	8.	405	-11.	647	1.00	45.12	
	AAAA	2247	C		A 305		-1.			870		807		47.13	
	AAAA														
	ATOM AAAA	2248	0 .	ILE	A 305		-1.	985		724		550		46.47	
	ATOM AAAA	2249	N	GLU	A 306		-2.	435	10.	918	-8.	745	1.00	49.50	
	MOTA AAAA	2250	CA	GLU	A 306		-3.	839	10.	761	-8.	396	1.00	51.69	
	ATOM AAAA	2251	СВ	GLU	A 306		-4.	430	12.	110	-7.	987	1.00	51.85	
•	MOTA	2252	CG	GLU	A 306		-3.	603	12.	818	-6.	927	1.00	51.67	
	AAAA ATOM	2253	CD	GLU	A 306		-4.	324	13.	990	-6.	296	1.00	52.25	
	AAAA ATOM	2254	OE1	GLU	A 306		-5.	351	13.	763	<del>-</del> 5.	621		52.52	
	AAAAATO		255		GLU A				.861		.135			1.00 5	
	AAAAATO		256 257	C 0	GLU A GLU A				.552 .180		.202 .515			1.00 5 1.00 5	
	AAAAAATO		258	N	GLU A				. 570		. 376			1.00 5	
	AAAAATO		259	CA	GLN A				. 313		.750			1.00 5	
	AAAAATO		260	CB	GLN A				. 553		.035			1.00 5	
	AAAAAATO		261	CG	GLN A				.213		. 925			1.00 5	
	AAAAATO		262	CD	GLN A				.196	5	.766	-8	.970	1.00 5	9.83
	AAAAATO		263		GLN A			-8	. 110	4	.840	-8	.160	1.00 6	0.26
	AAAAATO	OM 2	264	NE2	GLN A	307		-9.	. 131	5	.807	-9		1.00 6	
	AAAAATO	OM 2	265	С	GLN A				.703		.663			1.00 5	
	AAAAATO		266	0	GLN A				.774		. 208			1.00 5	
	AAAAATO		267	N	PRO A				. 968		. 956			1.00 5	
	AAAAATO		268	CD	PRO A				. 113		. 674			1.00 5	
	AAAAATO	and the second second	269	CA	PRO A				. 334		.825 .209			1,00 5 1.00 5	
	AAAAATO		270 271	CB CG	PRO A				.360 .896		.914			1.00 6	
	AAAAATO		272	C	PRO A				. 318		.723			1.00 5	
	AAAAATO		273	0	PRO A			-	. 685		. 496			1.00 6	
	AAAAATO		274	N	GLN A				.042		.881			1.00 5	
	AAAAATO		275	CA	GLN A				985		.794			1.00 5	
	AAAAATO		276	СВ	GLN A				. 992	12	. 947	-14		1.00 5	
	AAAAATO		277	CG	GLN A				.082		.838			1.00 6	
	AAAAATO		278	CD	GLN A				.077		. 975			1.00 6	
	AAAAATO		279		GLN A				.180		. 974		.997	1.00 6	2.79
	AAAAATO		280		GLN A				. 226		. 956			1.00 6	
	AAAAATO		281	C	GLN A				. 250		. 459			1.00 5	
	AAAAATO		282	Ō	GLN A				.078	10	.358	-14		1.00 5	
	AAAAATO		283	N	LEU A				. 947	9	. 437	-13		1.00 5	
	AAAAATO		284	CA	LEU A			-3.	. 364	8	.107	-13		1.00 5	
	AAAAATO		285	СВ	LEU A				.799	7	. 473	-12		1.00 5	

AAAAATOM	2286	CG	LEU A 310		-3.242	6.108 -11.804	1.00 53.75
					-3.810	4.998 -12.669	1.00 54.14
AAAATOM	2287		LEU A 310				
MOTAAAAA	2288		LEU A 310		-1.727	6.123 -11.876	1.00 52.88
AAAAATOM	2289	С	LEU A 310		-3.813	7.243 -14.740	1.00 52.48
AAAAATOM	2290	0	LEU A 310		-5.003	7.162 -15.044	1.00 53.10
MOTAAAAA	2291	N	SER A 311		-2.852	6.603 -15.395	1.00 49.96
					-3.136	5.748 -16.540	1.00 47.96
MOTAAAAA	2292	CA.	SER A 311				
MOTAAAAA	2293	CB	SER A 311		-3.409	6.599 -17.778	1.00 47.62
AAAAATOM	2294	OG	SER A 311		-2.232	7.287 -18.168	1.00 46.72
AAAAATOM	2295	С	SER A 311		-1.936	4.849 -16.815	1.00 46.16
AAAAATOM	2296	ō ·	SER A 311		-0.873	5.018 -16.212	1.00 45.34
	2297		VAL A 312		-2.113	3.907 -17.736	1.00 44.77
AAAAATOM		N					1.00 43.52
MOTAAAAA	2298	CA	VAL A 312		-1.056	2.972 -18.103	
MOTAAAAA	2299	CB	VAL A 312		-1.496	2.066 -19.278	1.00 43.96
AAAAATOM	2300	CG1	VAL A 312		-0.373	1.112 -19.656	1.00 43.81
AAAAATOM	2301		VAL A 312		-2.740	1.285 ~18.892	1.00 43.95
AAAAATOM	2302	·C	VAL A 312		0.215	3.712 -18.498	1.00 42.79
					1.284	3.488 -17.922	1.00 41.92
MOTAAAAA	2303	0	VAL A 312		_		1.00 42.00
MOTAAAA	2304	Ŋ	ASP A 313		0.096	4.610 -19.470	
AAAAATOM	2305	CA	ASP A 313		1.252	5.364 -19.939	
AAAAATOM	2306	CB	ASP A 313		0.877	6.203 -21.163	1.00 43.96
AAAAATOM	2307	CG	ASP A 313		0.506	5.345 -22.357	1.00 46.32
AAAAATOM	2308		ASP A 313		1.334	4.496 -22.755	1.00 47.81
					-0.610	5.514 -22.896	1.00 48.38
MOŢAAAAA	2309		ASP A 313				1.00 39.53
MOTAAAAA	2310	С	ASP A 313		1.856	6.249 -18.864	
AAAAATOM -	2311	0	ASP A 313		3.069	6.452 -18.832	1.00 39.95
AAAAATOM	2312	N	ALA A 314		1.015	6.768 -17.978	1.00 38.08
AAAAATOM	2313	CA	ALA A 314		1.492	7.629 -16.905	1.00 36.44
AAAAATOM	2314	СВ	ALA A 314		0.306	8.233 -16.156	1.00 36.79
AAAAATOM	2315	c	ALA A 314		2.382	6.844 -15.939	1.00 35.41
	2315		ALA A 314		3.448	7.313 -15.535	1.00 35.44
AAAAATOM		0			1.940	5.648 -15.569	1.00 34.29
AAAAATOM	2317	N	VAL A 315				
MOTAAAAA	2318	CA	VAL A 315		2.708	4.80914.652.	
AAAAATOM	2319	CB	VAL A 315		1.886	3.592 -14.169	1.00 33.40
MOTAAAA	. 2320	CG1	VAL A 315		2.707	. 2.77513.180.	
AAAAATOM	2321	CG2	VAL A 315		0.588	4.059 -13.521	1.00 32.76
AAAAATOM "	2322	C:-	'VAL A 315		3.970	4.295 -15.328	1.00 32.88
	2323	o.	VAL A 315		5.071	4.426 -14.792	1.00 32.35
	2324	И	ALA A 316			3.708 -16.508	
AAAAATOM -			ALA A 316		4.940	3.172 -17.250	1.00 34.17
AAAAATOM	2325	CA				2.616 -18.593	
MOTAAAA	2326	CB	ALA A 316		4.469		
MOTAAAAA	2327	C	ALA A 316		6.002	4.252 -17.456	
AAAAATOM	. 2328	Ο.	ALA A 316		7.190	4.026 -17.211	
AAAAATOM	2329	N	ASN A 317		5.578	5.434 -17.889	1.00 35.49
AAAAATOM	2330	CA	ASN A 317		- 6.524	6.518 -18.108	1.00 35.27
AAAAATOM	2331	CB	ASN A 317		5.815	7.738 -18.694	1.00 37.74
	2332	CG.	ASN A 317		5.395	7.518 -20.128	
AAAAATOM					6.099	6.855 -20.889	1.00 39.80
MOTAAAA	2333		ASN A 317			8.077 -20.511	
MOTAAAA	2334		ASN A 317		4.252		
AAAAATOM	2335	,C	ASN A 317		7.272	6.916 -16.847	
AAAAATOM	2336	0	ASN A 317		8.458	7.239 -16.904	1.00 34.36
AAAAATOM -	2337	N	THR A 318		6.592	6.891 -15.704	1.00 34.31
AAAAATOM	2338	CA	THR A 318		7.251	7.262 -14.456	1.00 34.35
AAAAATOM	2339	CB	THR A 318		6.245	7.358 -13.282	1.00 34.55
					5.353	8.460 -13.498	1.00 34.46
MOTAAAAA	2340		THR A 318			7 669 -11 060	
AAAAATOM	2341		THR A 318		6.984	7.568 -11.969	1.00 34.42
AAAAATOM	. 2342	C ·	THR A 318		8.335	6.252 -14.093	1.00 34.52
MOTAAAAA	2343	0	THR A 318		9.464	6.624 -13.783	1.00 34.11
4	. 2344	N	LEU A 319		-7.987	4.971 -14.139	1.00 35.35
	2345	CA	LEU A 319		8.937	3.918 -13.801	1.00 35.23
			LEU A 319		8.233	2.556 -13.804	
	2346	CB		-	7.142	2.362 -12.743	1.00 34.50
MOTAAAA	2347		LEU A 319	•			
AAAAATOM	2348		LEU A 319	٠	6.445	1.031 -12.95.6	1.00 34.48
AAAAATOM -	2349	CD2	LEU A 319		7.761	2.432 -11.351	1.00 35.13
	2350	C .	LEU A 319		10.107	3.907 -14.777	1.00 35.72
		0	LEU A 319		11.264	3.830 -14:370	1.00 34.85
MOTAAAAA	2351	J	PEO W 213		11,201	. 5.555	,

1.00 36.49

1.00 38.10

1.00 37.58

1.00 38.94

1.00 39.51

1.00 38.88

1.00 38.68

1.00 38.70

1.00 38.64

1.00 38.46

1.00 38.53

1.00 39.41

1.00 40.01

1.00 40.49

1.00 41.27

1.00 40.54

1.00 39.97

1.00 40.69

1.00 41.67

1.00 41.40

1.00 41.69

1.00 38.48

1.00 38.22

1.00 38.13

1.00 38.51 1.00 38.51 1.00 39.52

1.00 38.37

1.00 37.29

1.00 37.86

1.00 37.82

1.00 36.36 1.00 34.77

1.00 33.04

1.00 31.23

1.00 29.95

1.00 28.46

1.00 28.17

1.00 38.78

1.00 38.12

1.00 39.55

1.00 40.60

1.00 42.74

1.00 46.19

1.00 48.10

1.00 49.61

1.00 49.87

1.00 39.88

1.00 39.45

1..00 39.89

1.00 40.25

1.00 40.72

1.00 42.28

1.00 41.64

1.00 39.76

1.00 39.87

1.00 38.46

1.00 37.41

1.00 36.19

1.00 35.32

1.00 35.07

1.00 34.69

1.00 37.39

1.00 36.80

1.00 37.58

1.00 38.35



<b>\</b>									
AAAAATOM	2418	СВ	LEU A 328		20.662	4.368	-5.030	1.00	38.95
AAAAATOM	2419	CG	LEU A 328		21.636	4.544	-3.854	1.00	40.10
					21.303	3.551	-2.752		39.51
MOTAAAAA	2420	CD1	LEU A 328						
MOTAAAAA	2421	CD2	LEU A 328		23.068	4.349	-4.330		40.30
MOTAAAAA	2422	С	LEU A 328		19.039	5.899	-3.926	1.00	38.68
AAAAATOM	2423	0	LEU A 328	}	18.929	5.906	-2.697	1.00	38.65
AAAAATOM	2424	N	THR A 325		19.048	7.004	-4.664	1.00	39.35
AAAAATOM	2425	CA	THR A 329		18.908	8.326	-4.068	1.00	39.98
	2426		THR A 329		19.002	9.433	-5.136		40.05
MOTAAAAA		СВ					-5.782	1.00	
AAAATOM	2427	OG 1	THR A 325		20.280	9.364			41.54
MOTAAAAA	2428	CG2	THR A 329		18.841	10.808	-4.497	1.00	40.35
MOTAAAAA	2429	С	THR A 329	)	17.557	8.425	-3.367	1.00	39.68
AAAAATOM	2430	0.	THR A 329	)	17.485	8.743	-2.179	1.00	39.91
AAAAATOM	2431	N·	MET A 330	)	16.492	8.147	-4.111	1.00	39.51
AAAAATOM	2432	CA	MET A 330		15.143	8.190	-3.564	1.00	38.79
			MET A 33		14.141	7.718	-4.617	1.00	38.09
AAAAATOM	2433	СВ				8.657	-5.804	1.00	36.84
MOTAAAAA	2434	CG	MET A 330		14.011				
MOTAAAAA	2435	SD	MET A 330		12.977	7.980	-7.108	1.00	37.95
AAAAATOM	2436	CE	MET A 33	)	11.332	8.342	-6.478	1.00	37.58
AAAAATOM	2437	С	MET A 33	)	15.037	7.315	-2.319	1.00	39.71
AAAAATOM	2438	0	MET A 33		14.418	7.703	<del>-</del> 1.326	1.00	39.60
AAAAATOM	2439	N	ALA A 33		15.646	6.135	-2.381	1.00	39.50
	2440		ALA A 33		15.625	5.202	-1.266	1.00	40.36
MOTAAAAA		·CA							39.91
MOTAAAAA	2441	CB	ALA A 33		16.378	3.928	-1.634	1.00	
AAAAATOM	2442	С	ALA A 33		16.243	5.843	-0.032	1.00	40.98
MOTAAAAA	2443	0	ALA A 33	Į	15.662	5.805	1.052	1.00	40.34
MOTAAAAA	2444	N	GLU A 33	2	17.422	6.435	-0.201	1.00	41.85
AAAATOM	2445	CA	GLU A 33		18.102	7.087	0.911	1.00	42.77
AAAAATOM -		CB	GLU A 33		19.470	7.607	0.465	1.00	44.04
			GLU A 33		20.414	6.500	0.016	1.00	46.55
AAAAATOM	2447	CG				6.994	-0.248	1.00	48.04
MOTAAAAA	2448	CD	GLU A 33		21.822				
MOTAAAAA	2449	OE1	GLU A 33		21.981	7.923	-1.065	1.00	49.87
AAAAATOM .	2450	OE2	GLU A 33	2	22.770	6.449	0.359	1.00	49.38
AAAAATOM	2451	C	GLU A 33	2	17.246	8.228	1.445	1.00	42.38
AAAAATOM	2452	0	GLU A 33	2	17.156	8.435	2.653	1.00	42.66
AAAAATOM	2453	N	ARG A 33		16.619	8.969	0.540	1.00	41.80
AAAAATOM	2454	CA	ARG A .33		15.752	10.067	0.937	1.00	42.25
					15.212		-0.306	1.00	
MOTAAAA	2455	СВ	ARG A 33				-0.926	1.00	
AAAAATOM	2456		ARG A 33		16.184	11.793			
AAAATOM	2457	CD	`ARG A 33		15.844	12.060	-2.389		48.51
MOTAAAAA	· 2458	NE	ARG A 33		16.415	13.301	-2.913		50.45
AAÁAATOM	2459	CZ	ARG A 33	3.	17.703	13.631	2.859		52.07
AAAAATOM	2460	NH1	ARG A 33	3	18.585	12.814	-2.297	1.00	52.45
MOTAAAA	2461	NH2			18.112	14.784	-3.377	1.00	51.94
	2462	C	ARG A 33		14.594	9.519	1.777.		
			**		14.275		2.8340		40.21
	2463	0	ARG A 33				1.308		40.03
MOTAAAA	2464	N	ALA A 33		13.981	8.435			39.84
MOTAAAA	2465	CA	ALA A 33		12.859	7.825	2.014		
MOŢAAĢĢA	2466	CB	.ALA A 33		12.356	6.612	1.241		38.43
AAAAATOM	2467	С.	ALA A 33	4	13.239	7.417	3.435	1,. QO	40.05
	2468	Ö	ALA A 33		12.493	7.665	4.386	1.00	40.41
MOTAAAA	2469	. N	ARG A 33		14.404	6.797	3.577	1.00	39.11
		_			14.874	6.351	4.881		40.00
AAAAATOM		CA	ARG A 33	<u> </u>		5.506	4.719		39.98
AAAAATOM	2471	CB]	ARG A 33		16.137				
MOTAAAAA		CG	ARG A 33		16.631	4.865	6.000		40.54
MOTAAAAA	2473	CD.	ARG A 33	5 ·	15.653	3.814	6.501		42.08
AAAAATOM	2473 2474 2475	NE	ARG A 33	5	16.263	2.949	7.507		42.95
AAAAATOM	2475	CZ	ARG A 33		16.403	1.634	7373	1.00	43.43
runuari ou.	_ 1, _		ARG A 33		15.972	1.024		1.00	_
MOTAAAA	2476	NHT	. WLO W 73			0.927		1.00	_
MOTAAAAA	2477	NH2	ARG A 33	<b>3</b>	10.505				
AAAAATOM	. 2478	C,	ARG A 33	Έ.	15.167	7.527	5.862	1.00	
AAAAATOM	. 2479	oʻ	ARG A 33	5	14.877	7.479		1.00	
AAAAATOM			ALA A 3.3		15.745	8.581	5.237	1.00	40.52
AAAAATOM	2481	CA	ALA A 33		16.089	9.774	6.001	1.00	41.50
					16 050		5.116		41.05
AAAAATOM			ALA A 33			10.447	6.573	1.00	
MOTAAAAA	2483	.C	ALA A 33	ъ.	14.847	10.44/	0.5/3	1.00	, 42.00

GLU A 344 0.917 20.357 1.00 45.57 AAAAATOM 2536 OE1 GLU A 344 10.311 2.910 19.668 1.00 45.28 2537 OE2 GLU A 344 9.676 MOTAAAAA 2538 GLU A 344 5.856 22.590 1.00 35.95 7.886 MOTAAAAA С 2539 7.751 6.233 23.754 1.00 35.12 MOTAAAAA 0 GLU A 344 7.896 6.689 MOTAAAAA 2540 ARG A 345 21.559 1.00 35.83 N 1.00 36.32 8.127 21.731 ARG A 345 7.759 MOTAAAAA 2541 ÇA 8.803 20.386 ARG A 345 7.999 1.00 38.26 2542 CB AAAAATOM 2543 ARG A 345 3.268 10.280 20.448 1.00 41.85 AAAAATOM CG ARG A 345 9.006 10.686 19.194 1.00 44.45 AAAAATOM 2544 CD 12.128 19.098 1.00 47.27 ARG A 345 9.194 AAAAATOM 2545 ΝE 18.111 9.855 12.721 1.00 47.66 2546 CZARG A 345 AAAAATOM 10.390 11.988 17.144 1.00 48.37 MOTAAAA 2547 NH1 ARG A 345 14.042 18.090 9.974 1.00 48.27 NH2 ARG A 345 MOTAAAAA 2548 ARG A 345 6.384 8.510 22.289 1.00 35.99 2549 MOTAAAAA C 108

-0.316

11.026

35.588

1.00 36.31

ALA A 354

ALA A 354

MOTAAAAA

AAAAATOM

. 2614

2615

C

0

WO 01/90301		PCT/US01/11500
AAAAATOM 2616 AAAAATOM 2617 AAAAATOM 2618 AAAAATOM 2619 AAAAATOM 2620 AAAAATOM 2621 AAAAATOM 2622 AAAAATOM 2622 AAAAATOM 2623 AAAAATOM 2624 AAAAATOM 2625 AAAAATOM 2625 AAAAATOM 2626 AAAAATOM 2627 AAAAATOM 2627 AAAAATOM 2627 AAAAATOM 2630 AAAAATOM 2630 AAAAATOM 2631 AAAAATOM 2633 AAAAATOM 2633 AAAAATOM 2633 AAAAATOM 2634 AAAAATOM 2636 AAAAATOM 2637 AAAAATOM 2637 AAAAATOM 2637 AAAAATOM 2637 AAAAATOM 2638 AAAAATOM 2638	O ARG A 35:  N ALA A 35:  CA ALA A 35:  C ALA A 35:  O ALA A 35:  N LEU A 35:  CA LEU A 35:  CB LEU A 35:  CG LEU A 35:  CD1 LEU A 35:  CD2 LEU A 35:	2.382 11.619 35.852 1.00 41.12 3.837 11.141 35.802 1.00 42.43 3.976 9.627 35.701 1.00 44.93 5.416 9.190 35.457 1.00 47.18 5.482 7.790 35.042 1.00 48.82 5.248 6.754 35.842 1.00 50.06 4.939 6.947 37.117 1.00 50.68 5.302 5.519 35.360 1.00 50.06 2.333 13.125 36.103 1.00 42.42 2.883 13.621 37.086 1.00 42.30 1.660 13.840 35.203 1.00 43.60 1.504 15.289 35.294 1.00 44.67 0.702 15.651 36.547 1.00 45.12 2.830 16.042 35.288 1.00 45.36 2.980 17.042 35.989 1.00 45.40 3.779 15.569 34.487 1.00 45.40 3.779 15.569 34.487 1.00 47.87 6.122 15.212 33.843 1.00 47.62 6.465 14.017 34.734 1.00 47.58 7.330 13.041 33.958 1.00 47.50 5.064 17.438 33.505 1.00 48.87
AAAAATOM 2640 AAAA	OT2 LEU A 35	
ATOM 2641 CB BBBB	LYS B 7	-5.082 -44.913 -47.742 1.00 46.68
ATOM 2642 CG BBBB	LYS B 7	-4.666 -44.949 -49.196 1.00 49.02
ATOM 2643 CD BBBB	LYS B 7	-3.162 -44.896 -49.340 1.00 49.96
ATOM 2644 CE BBBB	LYS B 7	-2.769 -45.054 -50.794 1.00 50.91
ATOM 2645 NZ BBBB	LYS B 7	-1.300 -45.222 -50.954 1.00 52.39
ATOM 2646 C BBBB	LYS B 7	-6.742 -45.658 -46.035 1.00 43.87
ATOM 2647 O	LYS B 7	-7.135 -44.760 -45.287 1.00 43.90
BBBB ATOM 2648 N BBBB	LYS B 7	-7.490 -44.434 -48.090 1.00 46.26
	LYS B 7	-6.512 -45.403 -47.519 1.00 45.28
ATOM 2650 N	ARG B 8	-6.486 -46.895 -45.620 1.00 41.24
BBBB ATOM 2651 CA	ARG B 8	-6.682 -47.303 -44.240 1.00 38.63
BBBB ATOM 2652 CB BBBB	ARG B 8	-7.493 -48.600 -44.201 1.00 40.59
ATOM 2653 CG	ARG B 8	-8.927 -48.466 -44.677 1.00 43.69
BBBB ATOM 2654 CD	ARG B 8	-9.417 -49.774 -45.269 1.00 46.42
BBBB ATOM 2655 NE BBBBATOM 2656 BBBBATOM 2657 BBBBATOM 2658 BBBBATOM 2659 BBBBATOM 2660 BBBBATOM 2661 BBBBATOM 2661 BBBBATOM 2662 BBBBATOM 2663 BBBBATOM 2663 BBBBATOM 2664 BBBBATOM 2665 BBBBATOM 2665 BBBBATOM 2665	CA LEU B SCB LEU B SCC LEU B SCD1 LEU B	-11.268 -49.869 -43.165 1.00 52.20 -13.031 -49.841 -44.631 1.00 53.20 -5.371 -47.512 -43.495 1.00 35.87

-4.513 -47.562 -40.115 1.00 29.67 9 **BBBBATOM** 2667 С LEU B 1.00 28.43 -5.505 -47.101 -39.543 LEU B 9 2668 0 **BBBBATOM** -3.772 -48.541 -39.604 1.00 27.75 N 2669 MET B 10 **BBBBATOM** 1.00 26.66 -4.048 -49.055 -38.275 2670 CA MET B 10 **BBBBATOM** -4.268 -50.571 -38.274 1.00 27.09 MET B 10 CB **BBBBATOM** . 2671 -4.496 -51.113 -36.869 1.00 28.55 2672. CG . MET B 10 **BBBBATOM** -5.474 -52.612 -36.799 1.00 29.60 BBBBATOM MET B 10 2673 SD 1.00 29.41 -7.126 -51.913 -36.618 MET B BBBBATOM 2674 CE 10 1.00 25.08 -2.826 -48.691 -37.448 MET B **BBBBATOM** 2675 C . 10 1.00 24.38 -1.690 -48.971 -37.839 MET B 10 2676 0 **BBBBATOM** -3.062 -48.037 -36.317 1.00 23.45 VAL B 11 2677 N **BBBBATOM** 1.00 23.16 -1.982 -47.605 -35.449 VAL B 11 **BBBBATOM** 2678 CA -2.159. -46.116 -35.029 1.00 23.01 VAL B 11 2679 CB. **BBBBATOM** -0.971 -45.666 -34.184 1.00 20.91 BBBBATOM 2680 CG1 VAL B 11 1.00 23.82 -2.305 -45.225 -36.276 CG2 VAL B 2681 11 BBBBATOM -1.935 -48.461 -34.184 1.00 23.59 VAL B 11 BBBBATOM 2682 С -2.962 -48.712 -33.567 -0.734 -48.902 -33.817 -0.523 -49.707 -32.613 1.00 23.24 VAL B 11 2683 0 BBBBATOM 1.00 23.68 MET B 12 2684 Ν. BBBBATOM 1.00 24.54 MET B 12 **BBBBATOM** 2685 CA 0.192 -51.019 -32.971 1.00 24.28 MET B 12 CB BBBBATOM 2686 -0.402 -51.726 -34.188 1.00 25.19 MET B 12 BBBBATOM 2687 CG 1.00 26.54 0.399 -53.284 -34.669 12 **BBBBATOM** 2688 SD MET B 1.990 -52.691 -35.289 1.00 22.99 MET B ,CE 12 **BBBBATOM** 2689 1.00 25.31 0.361 -48.840 -31.720 MET B 12 2690 С **BBBBATOM** 1.546 -48.645 -32.006 1.00 23.88 MET B 12 2691 0 BBBBATOM 1.00 27.08 -0.224 -48.292 -30.657 ALA B 13 2692 Ν **BBBBATOM** .0.508 -47.410 -29.752 1.00 29.43 ALA B 2693 CA 13 BBBBATOM 0.747 -46.074 -30.429 1.00 28.82 ALA B 2694 CB 13 BBBBATOM 1.00 31.80 -0.239 -47.192 -28.436 2695 ALA B 13 BBBBATOM . C· -1.143 - 46.350 - 28.3521.00 32.16 ALA B 13 BBBBATOM 2696 0 1.00 32.46 0.150 -47.934 -27.405 Ν. GLY B 14 2697 BBBBATOM -0.513 -47.804 -26.120 1.00 33.82 2698 CA GLY B 14 BBBBATOM 1.00 34.82 -0.107 -46.595 -25.299 14 BBBBATOM 2699 C. GLY B 0.975 -46.040 -25.479 1.00 35.47 GLY B 14 2700 0 BBBBATOM -0.986 -46.188 -24.385 1.00 35.56 Ν . GLY B 15 BBBBATOM 2701. 1.00 36.08 -0.700 -45.047 -23.536 15 2702 CA GLY B **BBBBATOM** 0.539 -45.254 -22.683 1.00 36.84 C --GLY B 15 **BBBBATOM** 2703 1.293 -44.311 -22.426 1.00 36.03 15 2704 0 GLY B BBBBATOM 0.755 -46.488 -22.240 1.00 36.65 2705 THR B 16 BBBBATOM N 1.920 -46.787 -21.421 1.00 38.51 THR B 16 **BBBBATOM** 2706 CA 1.926 -48.258 -20.974 1.00 38.51 2707 · CB THR B 16 BBBBATOM -0.686 -48.558 -20.321 1.00 38.39 OG1 THR B 16 2708 **BBBBATOM** 3.075 -48.518 -20.005 1.00 39.11 CG2 THR B 16 **BBBBATOM** 2709 3.158 -46.497 -22.264 1.00 38.35 16 2710 THR B С **BBBBATOM** 1.00 39.90 1.00 37.68 3.191 -46.798 -23.460 16 BBBBATOM · 2711 0 THR B 4.168 -45.897 -21.649 5.367 -45.567 -22.392 17 **BBBBATOM** 2712 Ν GLY B 1.00 36.57 GLY B . 17 -2713 · CA BBBBATOM 5.161 -44.303 -23.211 1.00 35.56 17 2714 GLY B **BBBBATOM** C 6.079 -43.843 -23.890 1.00 35.03 GLY B 17 BBBBATOM 2715 0. 3.949 -43.752 -23.150 1.00 33.83 2716 N GLY B 18 **BBBBATOM** 2717 1.00 33.48 3.631 -42.529 -23.872 GLY B 18 BBBBATOM CA 3.825 -42.593 -25.378 1.00 33.12 GLY B 18 2718 C BBBBATOM 1.00 35.38 4.345 -41.650 -25.984 BBBBATOM: 2719 0 GLY B 18 1.00 30.26 3.416 -43.699 -25.988 .19 HIS B 2720 N. BBBBATOM 3.548 -43.865 -27.435 1.00 28.22 .. 2721 ·CA HIS B 19 BBBBATOM 3.772 -45.349 -27.779 1.00 25.81 19 BBBBATOM 2722 CB . HIS B 4.957 -45.966 -27.094 2723 1.00 25.35 HIS B 19 BBBBATOM · CG 6.281 -45.694 -27.184 1.00 24.18 2724 CD2 HIS B 19 BBBBATOM 4.845 -47.025 -26.217 6.046 -47.380 -25.799 1.00 24.57 19 2725 ND1 HIS B BBBBATOM 1.00 23.08 CE1 HIS B 19 **BBBBATOM** 2726 6.936 -46.589 -26.369 1.00 25.51 NE2 HIS B 19 2727 **BBBBATOM** 1.00 27.91 1.00 26.91 2.280 -43.370 -28.144 HIS B 19 2728 С **BBBBATOM** 2.300 -43.049 -29.337 1.180 -43.310 -27.402 19 BBBBATOM -2729 · O · HIS B 1.00 27.65 20 VAL B . 2730 N BBBBATOM -0.098 -42.894 -27.965 -1.248 -43.080 -26.942 1.00 27.77 20 BBBBATOM VAL B 2731 CA 1.00 28.57 20 VAL B 2732 CB BEBBATOM

BBBBATOM

•				
BBBBATOM	2799	ND1 HIS B	29	0.436 -33.612 -40.583 1.00 37.53
	_			1.055 -33.155 -41.657 1.00 37.93
BBBBATOM	2800	CE1 HIS B	29	
BBBBATOM	2801	NE2 HIS B	29	1.207 -34.154 -42.508 1.00 37.24
	2802	C HIS B	29	-2.567 -36.324 -41.068 1.00 33.00
BBBBATOM				-2.845 -35.674 -42.078 1.00 33.02
BBBBATOM	2803 -	O HIS B	29	22.845 -55.674 -42.070 1.00 33.02
BBBBATOM	2804	N LEU B	30	-2.676 -37.650 -41.012 1.00 31.69
				-3.136 -38.417 -42.162 1.00 32.00
BBBBATOM	2805	CA LEU B	30	3,130 30.14
BBBBATOM	2806	CB LEU B	30	
BBBBATOM	2807	CG LEU B	30	-1.191 -40.099 -42.203 1.00 29.95
				-0.823 -41.550 -41.898 1.00 28.64
BBBBATOM	2808	CD1 LEU B	30	-0.785 -39.736 -43.621 1.00 28.97
BBBBATOM	2809	CD2 LEU B	30	-0.705 55.150 .01.22
BBBBATOM	2810	C LEU B	30	-4.641 -38.332 -42.375 1.00 32.37
				-5.109 -38.414 -43.507 1.00 33.16
BBBBATOM	2811	O LEU B	30	-3.103 30.121 10.00
BBBBATOM	2812	N MET B	31	
	2813	CA MET B	31	-6.849 -38.064 -41.424 .1.00 34.91
BBBBATOM		• • • • • • • • • • • • • • • • • • • •		-7.514 -38.061 -40.048 1.00 35.67
BBBBATOM	2814	CB MET B	31	1.511 50.002
BBBBATOM	2815	CG MET B	31	-7.536 -39.424 -39.391 1.00 36.44
	2816	SD MET B	31	-8.407 -39.436 -37.827 1.00 37.84
BBBBATOM				-7.095 -39.039 -36.719 1.00 37.80
BBBBATOM	2817	CE MET B	31	27.093 -39.037 30.113 1.00 31.00
BBBBATOM	2818	C MET B	31	-7.197 -36.786 -42.173 1.00 35.99
		O MET B	31	-8.224 -36.710 -42.847 1.00 37.36
BBBBATOM	2819	-		-6.326 -35.791 -42.052 1.00 36.39
BBBBATOM	2820	N ALA B	32	
BBBBATOM	2821	CA ALA B	32 -	-0.510 5.1511
			32	-5.622 -33.458 -42.073 1.00 36.85
BBBBATOM	2822	•		-6.151 -34.663 -44.205 1.00 38.60
BBBBATOM	2823	C ALA B	32	
BBBBATOM	2824	O ALA B	32	-6.392 -33.760 -45.013 1.00 38.04
			33	-5.569 -35.809 -44.555 1.00 38.35
BBBBATOM	2825	N GLN B		-5.182 -36.070 -45.938 1.00 38.24
BBBBATOM	2826	CA GLN B	33	
BBBBATOM	- 2827	CB GLN B	33	-3.792 -36.706 -46.011 1.00 39.81
			33	-2.771 -36.162 -45.028 1.00 41.67
BBBBATOM	2828			-2.269 -34.781 -45.384 1.00 41.96
BBBBATOM	2829	CD GLN B	33	
BBBBATOM	2830	OE1 GLN B	33	-1.735 -34.559 -46.471 1.00 41.35
		NE2 GLN B	33	-2.423 -33.843 -44.456 1.00 42.42
BBBBATOM	2831			-6.187 -37.027 -46.556 1.00 36.70
BBBBATOM .	2832.	C GLN B	33	
BBBBATOM	2833.	O GLN B	33	-3.3/0 3.43.2
			34	-7.281 -37.274 -45.845 1.00 36.09
. BBBBATOM .	2834			-8.305 -38.169 -46.353 1.00 35.75
. BBBBATOM	2835	CA GLY B	34	-8 219 -39 600 -45.837 1.00 35.33
. BBBBATOM	2836	C GLY B	34	0.213
	2837	O .GLY B	34	-9.075 -40.426 -46.146 1.00 34.43
BBBBATOM				-7.196 -39.896 -45.042 1.00 35.23
BBBBATOM.	2838	N TRP B	35	
BBBBATOM	- 2839	CA TRP B	35	200 25 02
BBBBATOM	2840	CB TRP B	35	-5.618 -41.400 -43.908 1.00 35.03
			35	-4.511 -41.558 -44.901 1.00 34.87
. BBBBATOM.	2841	CG TRP B		-3.666 -42.704 -45.060 1.00 35.81
BBBBATOM	2842	CD2 TRP B	35	-3.666 -42.704 -43.000 1.00 35.02
BBBBATOM	2843	CE2 TRP B	35	-2.733 -42.399 -46.076 1.00 35.60
			35	-3.605 -43.961 -44.441 1.00 36.59
BBBBATOM	2844	CE3 TRP B		
BBBBATOM	2845	CD1 TRP B	35	-4.075 -40.633 -45.803 1.00 35.62 -3.004 -41.129 -46.513 1.00 34.95 -1.746 -43 305 -46.488 1.00 37.19
BBBBATOM	2846	NE1 TRP B	35	-3.004 -41.129 -40.313 1.00 34.93
	2847	CZ2 TRP B	35	-1.740 43.303 74.144
BBBBATOM		022 111 0		-2.620 -44.865 -44.852 1.00 36.85
BBBBATOM	2848	CZ3 TRP B	35	-1.705 -44.528 -45.867 1.00 36.87
BBBBATOM	2849	CH2 TRP B	35	-1,705 -44,526 -43,667, 1.00 30.57
	2850	C TRP B	35	-8.022 -41.670 -43.449 1.00 34.58
BBBBATOM	•		35	-8.546 -40.850 -42.699 1.00 33.58
BBBBATOM	2851	O TRP B		-8.295 -42.969 -43.410 1.00 34.54
BBBBATOM	2852	N GLN B	36	-8.295 -42.905 -43.410 1.00 34.54
BBBBATOM	2853	CA GLN B	36	-9.175 -43.535 -42.402 1.00 35.40
			36	-10.095 -44.596 -43.003 1.00 37.42
BBBBATOM	2854	CB GLN B	_	-11.219 -44.027 -43.862 1.00 41.66
BBBBATOM	2855	CG GLN B	36	-11.219 -44.027 -43.862 1.00 41.66
	2856		_	-11.996 -45.103 -44.601 1.00 44.12
BBBBATOM				-12.988 -44.816 -45.277 1.00 45.76
BBBBATOM	2857	OE1 GLN B		
BBBBATOM	. 2858	NE2 GLN B	36	
	2859			-8.183 -44.186 -41.451 1.00 34.89
BBBBATOM				-7.272 -44.885 -41.889 1.00 34.58
BBBBATOM	2860	O. GLN B	_	
BBBBATOM	2861	N VAL B	37	
	2862	CA VAL B		-7.417 -44.516 -39.184 1.00 34.16
BBBBATOM				-6.561 -43.417 -38.509 1.00 34.99
BBBBATOM	28,63	.CB VAL B		-5.630 -44.032 -37.479 1.00 34.72
BBBBATOM	2864	CG1 VAL B	. 37	-2.630 -44.032 -31.473 1.00 34.72

0 01/20301		701/000111100
BBBBATOM	2865 CG2 VAL B 37	-5.755 -42.668552 1.00 34.06
BBBBATOM	2866 C VAL B 37	-8.166 -45.288 -38.109 1.00 34.02 -9.207 -44.849 -37.618 1.00 33.01
BBBBATOM	2867 O VAL B 37	-7.629 -46.451 -37.758 1.00 32.20
BBBBATOM	2868 N ARG B 38	-8.219 -47.286 -36.730 1.00 31.56
BBBBATOM	2869 CA ARG B 38	-8.219 -47.286 -30.736 -8.811 -48.554 -37.344 1.00 33.53
BBBBATOM	2870 CB ARG B 38	-8.811 -46.334 -37.341 1.00 36.77 -9.706 -49.324 -36.397 1.00 36.77
BBBBATOM	.2871 CG ARG B 38	-11.107 -49.511 -36.975 1.00 38.80
BBBBATOM	2872 CD ARG B 38	-12.000 -50.108 -35.989 1.00 41.24
BBBBATOM	2873 NE ARG B 38	13 304 -50 293 -36.161 1.00 43.18
BBBBATOM	2874 CZ ARG B 38	12 992 -49 927 -37.294 1.00 43.21
BBBBATOM	2875 NH1 ARG B 38	14 026 -50 839 -35.189 1.00 44.37
BBBBATOM	2010 11112 11112 -	-7 097 -47.628 -35.751 1.00 30.48
BBBBATOM	2017	-5 936 -47.742 -36.134 1.00 29.62
BBBBATOM	2010 0 1110 -	<u>-7 447 -47.782 -34.484 1.00 28.40</u>
BBBBATOM	2013	-6.456 -48.070 -33.471 1.00 27.41
BBBBATOM	2880 CA TRP B 39 . 2881 CB TRP B 39	-6 696 -47.145 -32.291 1.00 27.98
BBBBBATOM	2882 CG TRP B 39	-5.480 -46.788 -31.568 1.00 28.00
BBBBATOM	2883 CD2 TRP B 39	-4.677 -45.627 -31.784 1.00 28.42
BBBBATOM	2884 CE2 TRP B 39	-3.625 -45.673 -30.851 1.00 28.85 -3.625 -44 549 -32.680 1.00 29.78
BBBBATOM BBBBATOM	2885 CE3 TRP B 39	
BBBBATOM	2886 CD1 TRP B 39	
BBBBBATOM	2887 NEI TRP B 39	
BBBBATOM	2888 CZ2 TRP B 39	
BBBBATOM	2889 CZ3 TRP B 39	-3.770 -43.561 -32.610 1.00 29.22 -2.734 -43.639 -31.662 1.00 30.90
BBBBATOM	2890 CH2 TRP B 39	-6.478 -49.517 -32.999 1.00 25.82
BBBBATOM	2891 C TRP B 39	-7.509 -50.176 -33.055 1.00 24.87
BBBBATOM	2892 O TRP B 39	-5.323 -50.004 -32.549 1.00 25.21
BBBBATOM	2893 N LEU B 40	$\epsilon$ 200 -51 364 -32.026 1.00 44.71
BBBBATOM	2894 CA LEU B 40	A 226 _52 221 -32.952 1.00 ∠2·∠⊥
BBBBATOM	2895 CB LEU B 40	-4 416 -53.754 -32.868 1.00 26.95
BBBBATOM	2000 00 220 -	-3 037 -54.334 -32.571 1.00 27.63
BBBBATOM	2001 001 000 0	-5 421 -54.179 -31.81/ 1.00 28.69
BBBBATOM		_4 535 -51.235 -30.655 1.00 23.33 .
BBBBATOM	2000	_3 387 -50.824 -30.563 1.00 23.43
BBBBATOM	2900 O LEU B 40 2901 N GLY B 41	-5 260 -51.567 -29.591 1.00 24.0±
BBBBATOM	2902 CA GLY B 41	-4.691 -51.450 -28.257 1.00 23.47 -202 -52 479 -27.322 1.00 23.99
BBBBATOM BBBBATOM	2903 C GLY B 41	
BBBBATOM	2904 O GLY B 41	
BBBBATOM	2905 N THR B 42	-5.225 -52.225 -26.017 1.00 26.62 -5.787 -53.141 -25.027 1.00 29.84
BBBBATOM	2906 CA THR B 42	-5.787 -53.141 -23.027 1.00 30.17 -4.693 -53.715 -24.092 1.00 30.17
BBBBATOM	2907 CB THR B 42	-4.693 233.713 243.418 1.00 30.77 -4.019 -52.647 -23.418 1.00 30.77
BBBBATOM	2908 OG1 THR B 42	-3.683 -54.514 -24.900 1.00 31.30
BBBBATOM	2909 CG2 THR B 42	c oso _50 420 -24.200 I.00 32.03
BBBBATOM	2910 C THR B 42	-6 737 -51.226 -23.924 1.00 31.27
BBBBATOM	2311	-7 881 -53.160 -23.801 1.00 35.37
BBBBATOM	2312 (1 11-1-1	-9 000 -52.595 -23.04/ 1.00 38.01
BBBBATOM	2913 011 11211 -	-10 063 -53.669 -22.835 1.00 38.45
BBBBATOM	2914 CB ALA B 43 2915 C ALA B 43	-8 671 -51.928 -21./13 1.00 41.00
BBBBATOM BBBBATOM	2916 O ALA B 43	
BBBBATOM	2917 N ASP B 44	
BBBBATOM	2918 CA ASP B 44	
BBBBATOM	2919 CB ASP B 44	
BBBBATOM	2920 CG ASP B 44	-8.646 -53.724 -18.255 1.00 48.65 -9.553 -53.026 -17.753 1.00 50.52
BBBBATOM	2921 OD1 ASP B 44	-9.553 -53.026 -17.753 1.00 35.55 -8.791 -54.943 -18.498 1.00 49.40
BBBBATOM	2922 OD2 ASP B 44	-8.791 -54.943 -16.436 1.00 44.13 -6.236 -51.025 -19.598 1.00 44.13
BBBBATOM	2923 C ASP B 44	-6.236 -51.023 -13.333 1.00 45.05 -5.520 -50.968 -18.595 1.00 45.05
BBBBATOM	2924 O ASP B 44	-6.001 -50.307 -20.692 1.00 42.34
BBBBATOM	2925 N ARG B 45	4 887 -49 367 -20 763 1.00 40 44
BBBBATOM	2926 CA ARG B 43	-3 802 -49.869 -21.725 1.00 41.87
BBBBATOM	2927 CB ARG B 45	_2 935 -50.994 -21.149 1.00 43.00
BBBBATOM	2928 CG ARG B 45	_2 218 -50.541 -19.881 1.00 43.24
BBBBATOM	1 2929 CD ARG B 45	-1.385 -51.582 -19.277 1.00 46.96
BBBBATON	1 2930 NE ARG B 45	* • • • • • • • • • • • • • • • • • • •



	_			
BBBBATOM	2931	CZ ARG B	45	-1.840 -52.753 -18.839 1.00 47.69
	2932	NH1 ARG B	45	-3.130 -53.051 -18.937 1.00 48.59
	2933	NH2 ARG B	45	-1.005 -53.626 -18.289 1.00 48.33
				-5.390 -47.992 -21.195 1.00 38.74
	2934	C ARG B	45	-6.486 -47.866 -21.738 1.00 37.69
	2935	O ARG B	45	-6.486 -47.666 -21.756 1.00 37.05
BBBBATOM	2936	N MET B	46	-4.567 -46.977 -20.955 1.00 37.09
BBBBATOM	2937	CA MET B	46	-4.881 -45.581 -21.249 1.00 36.33
BBBBATOM	2938	CB MET B	-46	-3.644 -44.725 -20.945 1.00 37.92
	2939.	CG MET B	46	-3.873 -43.222 -20.952 1.00 40.65
BBBBATOM	2940	SD. MET B	46	-3.420 -42.436 -22.517 1.00 44.22
BBBBBATOM	2941	CE MET B	46	-1.720 -41.959 -22.168 1.00 41.80
			46	-5.430 -45.239 -22.643 1.00 34.96
BBBBATOM	2942	*		-6.264 -44.338 -22.774 1.00 33.21
	2943	O MET B	46	-4.976 -45.941 -23.678 1.00 32.85
BBBBATOM	2944	N GLU B	47	3.5.0 10.5.2
BBBBATOM	2945	CA GLU B	47	
BBBBATOM	2946	CB GLU B	47	
BBBBATOM	2947	CG GLU B	47	-4.755 -47.922 -26.051 1.00 29.85
BBBBATOM	2948	CD GLU B	47	-3.793 -48.597 -25.082 1.00 29.78
BBBBATOM	2949	OE1 GLU B	47	-3.188 -47.895 -24.247 1.00 28.76
BBBBATOM	2950	OE2 GLU B	47	-3.649 -49.840 -25.156 1.00 29.01
BBBBATOM	2951	C GLU B	47	-6.938 -46.017 -25.191 1.00 31.81
BBBBATOM	2952	O GLU B	47	-7.626 -45.476 -26.055 1.00 31.31
	2953	N ALA B	48	-7.428 -46.924 -24.352 1.00 31.55
BBBBATOM			48	-8.821 -47.344 -24.414 1.00 32.58
BBBBATOM	2954	CA ALA B		-9.085 -48.450 -23.384 1.00 33.19
BBBBATOM	2955	CB ALA B	48	-9.761 -46.168 -24.164 1.00 33.37
BBBBATOM	2956	C ALA B	48	-10.860 -46.114 -24.716 1.00 33.81
BBBBATOM	2957	O ALA B	48	-9.328 -45.232 -23.328 1.00 34.05
BBBBATOM	2958	N ASP B	49	-10 143 -44 065 -23.009 1.00 35.60
BBBBATOM ·	2959	CA ASP B	49	-10.145 44.005 20.000
BBBBATOM	2960	CB ASP B	49	-10.033 -43.736 -21.514 1.00 36.58
BBBBATOM	2961	CG ASP B	49	-10.645 -44.812 -20.628 1.00 39.54
BBBBATOM	2962	OD1 ASP B	49	-11.835 -45.144 -20.825 1.00 40.82
BBBBATOM	2963	OD2 ASP B	49	-9.939 -45.323 -19.730 1.00 39.49
BBBBATOM	2964	. C ASP B	49	-9.768 -42.832 -23.831 1.00 34.79
BBBBATOM	2965	O ASP B	49	-10.637 -42.064 -24.241 1.00 35.85
	2966	'N LEU-B	50	-8.478 -42.648 -24.088 1.00 34.06
BBBBATOM	2967	CA LEU B	50	-8.026 -41.484 -24.840 1.00 33.49
BBBBATOM	2968	CB LEU B	50	-6.526 -41.264 -24.635 1.00 33.25
BBBBATOM	2969	CG LEU B	50	-6.001 -39.986 -25.299 1.00 33.36
BBBBATOM	2970	CD1 LEU B	50	-6.679 -38.771 -24.659 1.00 34.04
BBBBATOM	2971	CD2 LEU B	50	-4.496 -39.894 -25.157 11.00 33.08
BBBBATOM	2972	C LEU B	50	-8.320 -41.486 -26.337 1.00 33.52
BBBBATOM	2973	O. LEU B	50	-8.769 -40.477 -26.862 1.00 32.52
	2974	N VAL B	51	-8.073 -42.605 -27.011 1.00 32.94
	2975	CA VAL B	51	-8.299 -42.641 -28.449 1.00 32.68
BBBBATOM			51	-7.829 -43.982 -29.058 1.00 33.06
BBBBATOM	2976	CB VAL B	51	-8.115 -44.013 -30.565 1.00 31.54
BBBBATOM	2977			-6.329 -44.145 -28.813 1.00 31.45
BBBBATOM	2978	CG2 VAL B	51	-9.747 -42.348 -28.829 1.00 33.08
BBBBATOM	2979	C VAL B	51	-10.000 -41.623 -29.792 1.00 32.88
BBBBATOM	2980	O VAL B	51	-10.721 -42.900 -28.085 1.00 33.67
	2981	N PRO B	52	-10.667 -44.012 -27.119 1.00 33.29
BBBBATOM	2982	CD PRO B	52	
BBBBATOM	2983	CA PRO B	52	
BBBBATOM	2984	CB PRO B	52	
BBBBATOM	2985	CG PRO B	52	
BBBBATOM	2986	C PRO B	52	-12.42241.111 -28.294 1.00 35.67
BBBBATOM	2987	O PRO B	5 <i>2</i>	-13.219 -40.548 -29.048 1.00 36.65
BBBBATOM	2988	N LYS B	53 .	-11.790 -40.478 -27.310 1.00 35.75
BBBBATOM	2989	CA LYS B	53	-11.998 -39.054 -27.064 1.00 36.73
BBBBATOM	2990	CB LYS B	53	-11.334 -38.633 -25.746 1.00 37.14
		CG LYS B	53	-12.020 -39.207 -24.514 1.00 38.38
BBBBATOM	2991		53	-11.368 -38.746 -23.218 1.00 39.34
BBBBATOM	2992	CD LYS B		-12.057 -39.379 -22.012 1.00 40.74
BBBBATOM	2993	CE LYS B	53 53	-11.352 -39.092 -20.725 1.00 40.94
$M \cap T \land G \cap G \cap G$				
BBBBATOM	2994	NZ LYS B		11 445 -38 231 -28 220 1 00 36 11
BBBBATOM	2995	C LYS B	53	-11.445 -38.231 -28.220 1.00 36.11
				-11.445 -38.231 -28.220 1.00 36.11 -11.703 -37.036 -28.323 1.00 36.71

BBBBATOM	2997	N	HIS B	54	-10.688 -38.881 -29.096 1.00 35	. 60
BBBBATOM	2998	CA	HIS B	54	-10.116 -38.212 -30.259 1.00 34	. 62
BBBBATOM	2999	CB	HIS B	54	-8.666 -38.647 -30.464 1.00 34	. 78
BBBBATOM	3000	CG	HIS B	54	-7.676 -37.810 -29.721 1.00 33	
BBBBATOM	3001	CD2	HIS B	54		. 76
BBBBATOM	3002	ND1	HIS B	54	-6.884 -36.869 -30.343 1.00 34	
	3002	CEI	HIS B	54	-6.120 -36.277 -29.441 1.00 34	
BBBBATOM	3003	NE2				. 91
BBBBATOM				54		
BBBBATOM	3005	C	HIS B	54	-10.919 -38.524 -31.512 1.00 34	
BBBBATOM	3006	0	HIS B	54	-10.487 -38.224 -32.620 1.00 34	
BBBBATOM	3007	N	GLY B	55	-12.082 -39.140 -31.325 1.00 34	
BBBBATOM	3008	CA	GLY B	55	-12.938 -39.481 -32.447 1.00 35	
BBBBATOM	3009	C	GLY B	55		. 18
BBBBATOM	3010	0	GLY B	55	-12.883 -40.799 -34.442 1.00 35	
BBBBATOM	3011	N	ILE B	56	-11.490 -41.399 -32.776 1.00 35	
BBBBATOM	3012	CA	ILE B	56		.81
BBBBATOM	3013	СВ	ILE B	56		. 36
BBBBATOM	3014	CG2	ILE B	56		.87
BBBBATOM	3015	CG1	ILE B	56	-8.916 -41.097 -34.029 1.00 32	
BBBBATOM	3016	CD1	ILE B	56	-7.461 -40.792 -33.818 1.00 30	
BBBBATOM	3017	С	ILE B	56		. 45
BBBBATOM	3018	0	ILE B	56		. 26
BBBBATOM	3019	N	GLU B	57		.40
BBBBATOM	3020	CA	GLU B	57		.16
BBBBATOM	3021	CB	GLU B	57	-12.905 -46.769 -34.651 1.00 37	. 41
BBBBATOM	3022	CG	GLU B	57	-14.064 -45.982 -35.244 1.00 42	.10
BBBBATOM	3023	CD	GLU B	57	-14.653 -46.659 -36.465 1.00 45	. 50
BBBBATOM	3024	OE1	GLU B	57	-13.903 -46.875 -37.448 1.00 46	. 39
BBBBATOM	3025	OE2	GLU B	57	-15.866 -46.977 -36.441 1.00 48	.36
BBBBATOM	3026	С	GLU B	57	-11.044 -46.923 -33.005 1.00 33	.01
BBBBATOM	3027	Ō	GLU B	57	-9.931 -46.769 -33.504 1.00 31	. 58
BBBBATOM	3028	N	ILE B	58		.85
BBBBATOM	3029	CA	ILE B	58		. 38
BBBBATOM	3030	CB	ILE B	58		.95
BBBBATOM	3031	CG2	ILE B	58	-10.769 -47.946 -29.205 1.00 31	.48
BBBBATOM	3032	CG1	ILE B	58	-8.553 -49.030 -29.690 1.00 31	.13
BBBBATOM	3033	CD1	ILE B	58	-7.736 -48.437 -28.572 1.00 29	.87
BBBBATOM	3034	C	ILE B	58	-10.647 -50.102 -31.357 1.00 31	. 67
BBBBATOM	3035	Ō	ILE B	58	-11.716 -50.384 -30.801 1.00 30	. 68
BBBBATOM	3036	N	ASP B	59	-9.807 -51.011 -31.844 1.00 30	.76
BBBBATOM	3037	CA	ASP B	59	-10.039 -52.442 -31.720 1.00 31	.09
BBBBATOM	3038	СВ	ASP B	59	-9.732 -53.153 -33.037 1.00 31	.37
BBBBATOM	3039	CG	ASP B	59	-10.766 -52.863 -34.104 1.00 32	. 68
BBBBATOM	3040	ODI	ASP B	59	-11.969 -53.037 -33.812 1.00 32	.40
BBBBATOM	3041		ASP B	59	-10.378 -52.468 -35.224 1.00 33	.40
BBBBATOM	3042	С	ASP B	59	-9.119 -52.950 -30.618 1.00 30	.50
BBBBATOM	3043	0.	ASP B	59	-7.987 <b>-</b> 52.491 -30.492 1.00 30	. 24
BBBBATOM	3044	N	PHE B	60	-9.608 -53.888 -29.815 1.00 30	. 65
BBBBATOM	3045	CA	PHE B	60	-8.809 -54.410 -28.713 1.00 30	. 32
BEBBATOM	3046	CB	PHE B	60	-9.560 -54.239 -27.385 1.00 30	.74
BBBBATOM	3047	CG	PHE B	60	-9.925 <b>-</b> 52.815 <b>-</b> 27.058 1.00 32	.14
BBBBATOM	3048		PHE B	60	-11.250 -52.392 -27.129 1.00 33	.15
BBBBATOM	3049		PHE B	60	-8.955 -51.908 -26.649 1.00 31	.57
BBBBATOM	3050		PHE B	60	-11.605 -51.083 -26.791 1.00 34	.05
BBBBATOM	3051			60	-9.294 -50.598 -26.310 1.00 33	.00
BBBBATOM	3052	CZ	PHE B	60	-10.626 -50.185 -26.380 1.00 33	
BBBBATOM	3053	Č	PHE B	60	-8.430 -55.878 -28.846 1.00 29	
BBBBATOM	3054	Ö	PHE B	60	-9.154 -56.668 -29.445 1.00 29	
BBBBBATOM	3055	N	ILE B	61.	-7.271 -56.229 -28.295 1.00 29	
	3056	CA	ILE B	61	-6.832 -57.616 -28.269 1.00 28	
BBBBATOM	3057	CB	ILE B	61	-5.674 -57.923 -29.258 1.00 28	
BBBBATOM	3057 3058		ILE B	61	-6.123 -57.650 -30.694 1.00 27	
BBBBATOM	3058		ILE B	61	-4.422 -57.126 -28.892 1.00 26	
BBBBATOM				61	-3.177 -57.615 -29.638 1.00 27	
BBBBATOM	3060		ILE B	61	-6.344 -57.855 -26.848 1.00 29	
BBBBATOM	3061 3062	C O	ILE B	61	-6.124 -56.906 -26.091 1.00 28	
BBBBATOM	2002	J	ם פענ	01	0.12. 00.000 20.001 1.00 20	

	BBBBATOM	3063	N	ARG B	62	-6.186 -59.116 -26.473 1.00 29.38
	BBBBATOM	3064	CA	ARG B	62	-5,709 -59.416 -25.133 1.00 30.76
	BBBBATOM	3065	CB	ARG B	62	-6.630 -60.447 -24.461 1.00 32.36
		3066	CG	ARG B	62	-6.130 -60.955 -23.114 1.00 35.99
	BBBBATOM					
	BBBBATOM	3067	CD	ARG B	62	
	BBBBATOM	3068	NE	ARG B	62	-6.297 -58.718 -22.004 1.00 40.01
	BBBBATOM	3069	CZ	ARG B	62	-5.840 -57.504 -21.711 1.00 39.09
	BBBBATOM	3070	NHl	ARG B	62	-4.536 -57.275 -21.690 1.00 39.24
	BBBBATOM	3071	NH2	ARG B	62	-6.686 -56.518 -21.439 1.00 40.03
	BBBBATOM	3072	·C	ARG B	62	-4.274 -59.923 -25.156 1.00 29.32
	BBBBATOM	3073	Ö	ARG B	62	-3.933 -60.809 -25.934 1.00 28.65
						-3.428 -59.342 -24.313 1.00 30.07
	BBBBATOM	3074	. N	ILE B	63	
	BBBBATOM	3075	CA	ILE B	63	-2.036 -59.770 -24.231 1.00 31.38
	BBBBATOM	3076	СВ	ILE B	63	-1.081 -58.745 -24.883 1.00 30.06
	BBBBATOM	3077	CG2	ILE B	63	-1.442 -58.567 -26.353 1.00 30.41
	BBBBATOM	3078	CG1	ILE B	- 63	-1.143 -57.411 -24.137 1.00 29.94
	BBBBATOM	3079	CD1	ILE B	63	-0.128 -56.384 -24.632 1.00 29.62
	BBBBATOM	3080	C	ILE B	63	-1.623 -59.981 -22.775 1.00 33.08
				ILE B	63	-0.444 -59.872 -22.430 1.00 33.21
	BBBBATOM	3081	. 0			-2.603 -60.284 -21.927 1.00 35.38
	BBBBATOM	3082	N	SER B	64	
	BBBBATOM	3083	CA	SER B	64	
	BBBBATOM	3084	CB	, SER B	64	-3.652 -60.912 -19.792 1.00 38.82
	BBBBATOM	3085	OG	SER B	64	-4.558 -59.823 -19.750 1.00 42.88
	BBBBATOM	3086	C	SER B	64	-1.326 -61.622 -20.311 1.00 37.32
	BBBBATOM	3087	Ö	SER B	64	-1.411; -62.682 -20.933 1.00 37.86
	BBBBATOM	3088	N	GLY B	65	-0.356 -61.370 -19.441 1.00 37.81
				GLY B	65	0.679 -62.355 -19.199 1.00 37.13
	BBBBATOM	3089	· CA			
	BBBBATOM	3090	С	GLY B	65	
	BBBBATOM	3091	, O	GLY B	. 65	2.858 -62.889 -20.038 1.00 37.57
	BBBBATOM	3092	N	LEU B	66	1.577 -61.539 -21.307 1.00 34.63
	BBBBATOM	3093	CA	LEU B	66	2.591 -61.413 -22.355 1.00 33.17
	BBBBATOM	3094	CB	LEU B	66	1.936 -61.470 -23.735 1.00 32.08
	BBBBATOM	3095	CG	LEU B	66	1,162 -62.747 -24.061 1.00 32.52
	BBBBATOM	3096		LEU B	66	0.563 -62.626 -25.445 1.00 31.38
		3097		LEU B	66	2.093 -63.957 -23.984 1.00 31.67
	BBBBATOM					3.414 -60.133 -22.246 1.00 32.72
	BBBBATOM	30.98	C	220 2		4.451 -60.002 -22.893 1.00 33.13
	BBBBATOM	3099	0 .	LEU B	66	
	BBBBATOM	3100	- N	· ARG B	67	2.555
	BBBBATOM	3101	CA	ARG B	67	3.671 -57.928 -21.277 1.00 30.90
	BBBBATOM	3102	CB	ARG B	· 67	2.888 -56.984 -20.363 1.00 32.28
	BBBBATOM	3103	· CG ·	ARG B	· 67	1.540 -56.576 -20.913 1.00 34.65
	BBBBATOM .	3104		ARG B	67	0.926 -55.440 -20.097 1.00 36.69
	BBBBATOM	3105			67	-0.259 -54.889 -20.748 1.00 38.28
:		3106	CZ	ARG B	.67	-1.425 -55.519 -20.853 1.00 39.05
	BBBBATOM				67	-1.583 -56.734 -20.341 1.00 39.61
	BBBBATOM	3107	NH1			
	BBBBATOM	3108		ARG B	67	-2.434 -54.935 -21.487 1.00 39.52 5.071 -58.142 -20.713 1.00 29.99
	BBBBATOM	3109	С	ARG B	67	5.294 -59.034 -19.889 1.00 28.67
	BBBBATOM	3110	0	ARG B	67	
	BBBBATOM	3111	N	GLY B	68	6.01457.321 -21.165 1.00 27.75
	BBBBATOM	3112	CA.	GLY B	68	7.380 -57.427 -20.685 1.00 26.79
	BBBBATOM	3113	С	GLY B	68	8.166 -58.579 -21.280 1.00 25.41
	BBBBATOM	3114	Ö	GLY B	68	9.326 -58.779 -20.943 1.00 26.04
	BBBBATOM	3115		LYS B	69	7.546 -59.342 -22.170 1.00 24.55
			N			8.238 -60.463 -22.796 1.00 23.93
	BBBBATOM	3116	CA	LYS B	69	7.284 -61.641 -23.033 1.00 24.12
	BBBBATOM	3117	СВ	LYS B	- 69	
	BBBBATOM	3118	CG	LYS B	69	
	BBBBATOM	3119	· CD	LYS B	69	5.887 -63.553 -22.224 1.00 25.44
	вваватом	3120	CE	LYS B	69	5.357 -64.358 -21.035 1.00 28.3
	BBBBATOM	3121	NZ	LYS B	69	6.468 -64.877 -20.175 1.00 29.7
		3122		LYS B	69	
	BBBBATOM					8.151 -59.404 -24.944 1.00 21.9
	BBBBATOM	3123	0	LYS B	69	10.075 -60.470 -24.374 1.00 22.48
	BBBBATOM	3124	N	GLYB	70	
	BBBBATOM	3125	CA	GLY B	7,0	10.755 -60.229 -25.636 1.00 22.2
	BBBBATOM	3126	- C	GLY B	- 70	10.308 -61.337 -26.588 1.00 22.1
٠.		3127		· GLY B	. 70	9.512 -62.183 -26.195 1.00 21.6
	DEBDATON	3128	"N	ILE B	71	10.819 -61.373 -27.814 1.00 21.8
	BBBBATOM	2170	r.A	ב אונד	, 1	

					<del>-</del>
BBBBATOM	3129	CA	ILE B	71	10.357 -62.386 -28.762 1.00 23.55
BBBBATOM	3130	CB	ILE B	71	10.926 -62.142 -30.181 1.00 23.52
BBBBATOM	3131	CG2	ILE B	71	12.435 -62.375 -30.192 1.00 25.96
BBBBATOM	3132	CG1	ILE B	71	10.264 -63.096 -31.182 1.00 24.18
BBBBATOM	3133	CDI	ILE B	71	8.745 -62.981 -31.263 1.00 25.73
BBBBATOM	3134	C	ILE B	71	10.616 -63.840 -28.359 1.00 23.88
BBBBATOM	3135	0	ILE B	71	9.775 -64.707 -28.592 1.00 21.66
BBBBATOM	3136	N	LYS B	72	11.764 -64.119 -27.751 1.00.23.82
BBBBATOM	3137	CA	LYS B	72	12.038 -65.491 -27.343 1.00 24.92
BBBBATOM	3138	CB	LYS B	72	13.491 -65.634 -26.875 1.00 26.86
BBBBBATOM	3139	CG	LYS B	72	14.496 -65.590 -28.019 1.00 31.29
BBBBATOM	3140	CD	LYS B	72	15.925 -65.791 -27.518 1.00 36.00
ВВВВАТОМ	3141	CE	LYS B	72	16.926 -65.816 -28.671 1.00 38.82
BBBBATOM	3142	NZ	LYS B	72	18.342 -65.957 -28.192 1.00 41.21
BBBBATOM	3143	C	LYS B	72	11.068 -65.925 -26.245 1.00 23.73
BBBBATOM	3144	ŏ	LYS B	72	10.592 -67.062 -26.245 1.00 24.08
BBBBATOM	3145	N	ALA B	73	10.765 -65.016 -25.322 1.00 21.62
BBBBATOM	3146	CA	ALA B	73	9.839 -65.306 -24.233 1.00 21.18
BBBBATOM	3147	СВ	ALA B	73	9.895 -64.196 -23.187 1.00 22.25
BBBBATOM	3148	C	ALA B	73	8.412 -65.454 -24.771 1.00 20.36
BBBBATOM	3149	Ö	ALA B	73	7.619 -66.250 -24.267 1.00 18.97
BBBBATOM	3150	N	LEU B	74	8.076 -64.673 -25.791 1.00 20.23
ВВВВАТОМ	3151	CA	LEU B	74	6.745 -64.762 -26.387 1.00 19.36
BBBBATOM	3152	СВ	LEU B	74	6.540 -63.643 -27.417 1.00 18.42
BBBBATOM	3153	CG	LEU B	74	6.422 -62.208 -26.884 1.00 18.80
BBBBATOM	3154	CDI	LEU B	74	6.473 -61.197 -28.039 1.00 19.86
BBBBATOM	3155	CD2	LEU B	74	5.109 -62.071 -26.104 1.00 19.45
BBBBATOM	3156	С	LEU B	74	6.549 -66.110 -27.069 1.00 19.37
BBBBATOM	3157	0	LEU B	74	5.539 -66.779 -26.863 1.00 20.01
BBBBATOM	3158	N	ILE B	75	7.520 -66.507 -27.883 1.00 20.59
BBBBATOM	3159	CA	ILE B	75	7.434 -67.768 -28.601 1.00 21.18
BBBBATOM	3160	CB	ILE B	75	8.571 -67.896 -29.641 1.00 22.95
BBBBATOM	3161	CG2	ILE B	75	8.334 -69.108 -30.527 1.00 25.38
BBBBATOM	3162	CG1	ILE B	75	8.598 -66.657 -30.540 1.00 26.82
BBBBATOM	3163	CD1	ILE B	75	7.304 -66.442 -31.327 1.00 28.48
BBBBATOM	3164	С	ILE B	75	7.488 -68.942 -27.624 1.00 21.20
BBBBATOM	3165	0	ILE B	75	7.125 -70.063 -27.979 1.00 21.59
BBBBATOM	3166	N	ALA B	76	7.940 -68.680 -26.399 1.00 20.49
BBBBATOM	3167	CA	ALA B	.76	7.996 -69.726 -25.374 1.00 21.72
BBBBATOM	3168	СВ	ALA B	76	9.026 -69.372 -24.305 1.00 21.92
BBBBATOM	3169	C	ALA B	76	6.624 -69.904 -24.732 1.00 21.54
BBBBATOM	3170	0	ALA B	76	6.441 ~70.778 -23.875 1.00 20.75
BBBBATOM	3171	N	ALA B	77	5.668 ~69.066 -25.145 1.00 20.61 4.289 ~69.121 -24.655 1.00 21.07
BBBBATOM	3172	CA	ALA B	77	
BBBBATOM	3173	CB	ALA B	77	3.937 -67.830 -23.924 1.00 20.10 3.383 -69.298 -25.881 1.00 21.69
BBBBATOM	3174	C	ALA B	77	2.567 -68.430 -26.199 1.00 21.93
BBBBATOM	3175	0	ALA B	77 78	3.507 -70.446 -26.564 1.00 22.38
BBBBATOM	3176 3177	N CD	PRO B PRO B	78 78	4.211 -71.603 -25.976 1.00 21.89
BBBBATOM BBBBATOM	3178	CA	PRO B	78	2.772 -70.846 -27.771 1.00 20.95
BBBBATOM	3179	CB	PRO B	78	3.027 -72.350 -27.861 1:00 22.21
BBBBATOM	3180	CG	PRO B	78	4.288 -72.547 -27.117 1.00 24.07
BBBBATOM	3181	C	PRO B	78	1.278 -70.535 -27.813 1.00 21.19
BBBBATOM	3182	0	PRO B	78	0.789 -69.939 -28.776 1.00 19.68
BBBBBATOM	3183	Ŋ	LEU B	79	0.544 -70.961 -26.790 1.00 21.21
BBBBATOM	3184	CA	LEU B	79	-0.896 -70.728 -26.783 1.00 21.32
BBBBATOM	3185	CB	LEU B	79	-1.569 -71.476 -25.630 1.00 20.99
BBBBATOM	3186	CG	LEU B	79	-1.397 -72.988 -25.617 1.00 22.40
BBBBATOM	3187		LEU B	79	-2.504 -73.619 -24.772 1.00 22.01
BBBBATOM	3188		LEU B	79	-1.438 -73.521 -27.021 1.00 23.82
BBBBATOM	3189	C	LEU B	79	-1.275 -69.263 -26.707 1.00 21.17
BBBBATOM	3190	0	LEU B	79	-2.125 -68.800 -27.481 1.00 20.44
BBBBATOM	3191	N	ARG B	80	-0.656 -68.529 -25.788 1.00 20.91
BBBBATOM	3192	CA	ARG B	80	-0.980 -67.115 -25.637 1.00 21.30
BBBBATOM	3193	CB	ARG B	80	-0.444 -66.583 -24.312 1.00 22.12
BBBBATOM	3194	CG	ARG B	80	-1.286 -67.051 -23.118 1.00 24.03
20001100	シェンコ			<b>J J</b>	



BBBBATOM	3195	CD ARG B	0.0	-0.610 -66.738 -21.807 1.00 23.42
			80	0.581 -67.556 -21.610 1.00 24.59
BBBBATOM	3196	NE ARG B	80	
BBBBATOM .	3197	CZ ARG B	80	1.466 -67.351 -20.642 1.00.26.08
			-	21.00
BBBBATOM	3198	NH1 ARG B	80	
BBBBATOM	3199	NH2 ARG B	80	2.514 -68.152 -20.519 1.00 27.22
				-0.526 -66.233 -26.790 1.00 21.29
BBBBATOM		C ARG B	80	
BBBBATOM	3201	O ARG B	80	-1.278 -65.355 -27.223 1.00 21.47
	3202	N ILE B	81	0.683 -66.448 -27.303 1.00 19.29
BBBBATOM				5 113 65 631 30 431 1 00 10 47
BBBBATOM	3203	CA ILE B	81	1.113 -65.621 -28.421 1.00 19.47
BBBBATOM	3204	CB ILE B	81	2.639 -65.793 -28.730 1.00 17.92
				2.949 -67.200 -29.206 1.00 17.33
BBBBATOM	3205	CG2 ILE B	81	
BBBBATOM	3206	CG1 ILE B	81	3.067 -64.753 -29.769 1.00 18.63
	3207	CD1 ILE B	81	2.746 -63.318 -29.346 1.00 17.46
BBBBATOM				0.256 -65.937 -29.654 1.00 18.99
BBBBATOM	3208	C ILE B	81	
BBBBATOM	3209	O ILE B	81	-0.149 -65.028 -30.378 1.00 19.38
	3210	N PHE B	82	-0.056 -67.211 -29.880 1.00 19.39
BBBBATOM				-0.875 -67.582 -31.038 1.00 19.15
BBBBATOM	3211	CA PHE B	82	-0.6/5 -0/.562 -51.050 1.00 19.15
BBBBATOM	3212	CB PHE B	82	-1.057 -69.103 -31.136 1.00 19.27
BBBBATOM	3213	CG PHE B	82	-1.811 -69.548 -32.368 1.00 19.87
				-1.180 -69.602 -33.603 1.00 20.87
BBBBATOM	3214	CD1 PHE B	82	
BBBBATOM	3215	CD2 PHE B	82	-3.154 -69.898 -32.289 1.00 21.11
BBBBATOM	3216	CEL PHE B	82	-1.872 -70.002 -34.753 1.00 21.20
				-3.857 -70.297 -33.429 1.00 22.26
BBBBATOM	3217		82	-3.637 -70.237 33.423 1.00 22.20
BBBBATOM	3218	CZ PHE B	82	-3.212 -70.349 -34.663 1.00 22.14
BBBBATOM	3219	C PHE B	82	-2.250 -66.931 -30.959 1.00 19.94
				-2.777 -66.444 -31.970 1.00 19.64
BBBBATOM	3220	O PHE B	82	
BBBBATOM	3221	N ASN B	8.3	
BBBBATOM	3222	CA ASN B	83	-4.150 -66.332 -29.577 1.00 20.90
			83	-4.693 -66.641 -28.178 1.00 20.55
BBBBATOM	3223			-6.158 -66.244 -28.028 1.00 22.79
BBBBATOM	3224	CG ASN B	83	
BBBBATOM	3225	OD1 ASN B	83	-6.505 -65.374 -27.229 1.00 25.14
		ND2 ASN B		-7.018 -66.877 -28.807 1.00 20.47
BBBBATOM	3226			-4.178 -64.821 -29.812 1.00 20.83
BBBBATOM	3227	C ASN B	83	
BBBBATOM	3228	O ASN B	. 83	-5.086 -64.316 -30.472 1.00 21.92
	3229	N ALA B	84	-3.203 -64.092 -29.275 1.00 19.74
BBBBATOM				-3.177 -62.647 -29.484 1.00 19.30
BBBBATOM	3230	CA ALA B	84	
BBBBATOM	3231	CB ALA B	84	-2.060 -62.008 -28.662 1.00 18.59
	3232	C. ALA B	84	-2.967 -62.380 -30.981 1.00 19.94
BBBBATOM				-3.561 -61.459 -31.552 1.00 19.69
BBBBATOM	3233	O ALAB		500 10 77
BBBBATOM	3234	N TRP B	· 85	
BBBBATOM	3235	CA TRP B	· 85	-1.820 -63.111 -33.032 1.00 20.56
	3236	CB TRP B		-0.754 -64.148 -33.396 1.00 21.46
BBBBATOM		•		0.55
BBBBATOM	3237	CG TRP B		
BBBBATOM	3238	.CD2 TRP B	85	-0.588 -65.232 -35.785 1.00 23.69
BBBBATOM	3239	CE2 TRP B	85	-0.024 -64.835 -37.022 1.00 24.14
				-1.206 -66.486 -35.693 1.00 24.79
BBBBATOM	3240	CE3 TRP B		0.301 -63.189 -35.548 1.00 23.17
BBBBATOM	.3241	CD1 TRP B	85	
BBBBATOM			85	0.509 -63.585 -36.848 1.00 24.28
BBBBATOM	3242	NE1 TRP B		
BBBBATOM	3242 3243	NE1 TRP B CZ2 TRP B	. 85	-0.060 -65.650 -38.160 1.00 24.90
	3242 3243 3244	NE1 TRP B CZ2 TRP B CZ3 TRP B	- 85 85	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45
BBBBATOM BBBBATOM	3242 3243 3244	NE1 TRP B CZ2 TRP B	- 85 85	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15
BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B	85 85 85	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76
BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B	85 85 85 85	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76
BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B O TRP B	85 85 85 85 85	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40
BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B	85 85 85 85 85 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248	NE1       TRP       B         CZ2       TRP       B         CZ3       TRP       B         CH2       TRP       B         CTRP       B         OTRP       B         NARG       B	85 85 85 85 85 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249	NE1       TRP       B         CZ2       TRP       B         CZ3       TRP       B         CH2       TRP       B         C       TRP       B         N       ARG       B         CA       ARG       B	85 85 85 85 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B O TRP B N ARG B CA ARG B CB ARG B	85 85 85 85 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B	85 85 85 85 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B	85 85 85 85 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B	85 85 85 85 86 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B NE ARG B	85 855 885 886 888 888 888 888	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60 -6.626 -68.477 -35.422 1.00 31.45
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B NE ARG B CZ ARG B	85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60 -6.626 -68.477 -35.422 1.00 31.45 -7.185 -69.004 -36.508 1.00 31.37
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B NE ARG B CZ ARG B	85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60 -6.626 -68.477 -35.422 1.00 31.45 -7.185 -69.004 -36.508 1.00 32.19
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B	85555666666666666666666666666666666666	-0.060 -65.650 -38.160 1.00 24.90 -1.243 -67.299 -36.827 1.00 25.45 -0.671 -66.875 -38.045 1.00 25.15 -3.090 -63.354 -33.865 1.00 21.76 -3.339 -62.658 -34.859 1.00 20.40 -3.885 -64.346 -33.467 1.00 22.03 -5.140 -64.660 -34.166 1.00 23.28 -5.754 -65.965 -33.623 1.00 24.72 -4.999 -67.236 -34.021 1.00 27.21 -5.368 -67.725 -35.418 1.00 29.60 -6.626 -68.477 -35.422 1.00 31.45 -7.185 -69.004 -36.508 1.00 32.19
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B CD ARG B CD ARG B NE ARG B NE ARG B NH ARG B NH ARG B NH ARG B	85555666666666666666666666666666666666	-0.060 -65.650 -38.160
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B CD ARG B NE ARG B CZ ARG B NH1 ARG B NH2 ARG B C ARG B C ARG B	85555666666666666666666666666666666666	-0.060 -65.650 -38.160
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B CD ARG B NE ARG B CZ ARG B NH1 ARG B NH2 ARG B C ARG B C ARG B	85555666666666666666666666666666666666	-0.060 -65.650 -38.160
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B O TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B CZ ARG B NE ARG B CZ ARG B NH1 ARG B NH2 ARG B O ARG B	85555666666666666666666666666666666666	-0.060 -65.650 -38.160
BBBBATOM	3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257	NE1 TRP B CZ2 TRP B CZ3 TRP B CH2 TRP B C TRP B N ARG B CA ARG B CB ARG B CG ARG B CD ARG B CZ ARG B NE ARG B CZ ARG B NH1 ARG B NH2 ARG	85555666666666666666666666666666666666	-0.060 -65.650 -38.160



•				
BBBBATOM	3327	CZ TYR B	95	-8.750 -48.826 -40.655 1.00 36.79
BBBBATOM	3328	OH TYR B	95	-8.436 -47.502 -40.874 1.00 37.60
BBBBATOM	3329	C TYR B	95	-9.743 -53.418 -42.538 1.00 34.06
BBBBATOM	3330	O TYR B	95	-9.919 -52.404 -43.214 1.00 33.85
BBBBATOM	3331	N LYS B	96	-8.902 -54.386 -42.896 1.00 33.76
BBBBATOM	3332	CA LYS B	96	-8.104 -54.327 -44.122 1.00 33.85
BBBBATOM	3333	CB LYS B	96	-9.004 -54.476 -45.353 1.00 35.14
BBBBATOM	3334	CG LYS B	96	-9.707 -55.812 -45.463 1.00 37.16
	3335	CD LYS B	96	-10.649 -55.843 -46.661 1.00 38.58
BBBBATOM	3336	CE LYS B	96	-11.388 -57.170 -46.752 1.00 40.07
BBBBATOM BBBBATOM	3337	NZ LYS B	96	-12.319 -57.218 -47.925 1.00 41.29
-	3338	C LYS B	96	-7.278 -53.049 -44.262 1.00 33.75
BBBBATOM	3339	O LYS B	96	-7.489 -52.258 -45.189 1.00 34.55
BBBBATOM	3340	N PRO B	97	-6.326 -52.825 -43.345 1.00 32.59
BBBBATOM	3341	CD PRO B	97	-6.004 -53.620 -42.143 1.00 32.37
BBBBATOM	3342	CA PRO B	97	-5.490 -51.623 -43.419 1.00 31.82
BBBBATOM BBBBBATOM	3343	CB PRO B	. 97	-4.850 <b>-</b> 51.568 <b>-</b> 42.038 1.00 31.66
	3344	CG PRO B	97	-4.686 -53.025 -41.704 1.00 31.53
BBBBATOM	3345	C PRO B	97	-4.458 -51.769 -44.530 1.00 31.60
BBBBATOM	3345	O PRO B	97	-4.052 -52.881 -44.860 1.00 32.52
BBBBATOM	3347	N ASP B	98	-4.037 -50.651 -45.112 1.00 31.25
BBBBATOM			98	-3.049 -50.685 -46.188 1.00 29.78
BBBBATOM	3348	•	98	-3.234 -49.488 -47.117 1.00 32.00
BBBBATOM	3349 3350	CB ASP B	98	-4.562 -49.519 -47.837 1.00 34.21
BBBBATOM	3351	OD1 ASP B	98	-5.281 -48.498 -47.795 1.00 35.37
BBBBATOM	3351	ODI ASP B	98	-4.888 -50.566 -48.443 1.00 35.10
BBBBATOM	3353	C ASP B	98	-1.654 -50.660 -45.603 1.00 28.70
BBBBATOM	.3354	O ASP B	98	-0.672 -50.973 -46.274 1.00 26.48
BBBBATOM	3355	N VAL B	99	-1.573 -50.278 -44.337 .1.00 .26.88
BBBBATOM	3356	CA VAL B	99	-0.296 -50.214 -43.660 1.00 26.75
BBBBATOM	3357	CB VAL B	99	0.500 -48.973 -44.132 1.00 27.35
BBBBATOM	3358	CG1 VAL B	99	-0.305 -47.718 -43.867 1.00 29.45
BBBBATOM	. 3359	CG2 VAL B	99	1.841 -48.908 -43.443 1.00 27.48
BBBBATOM	3360	C VAL B	99	-0.552 -50.134 -42.162 1.00 25.92
BBBBATOM	3361	O VAL B	99	-1.585 -49.627 -41.723 1.00 25.04
BBBBATOM	· 3362	N VAL B	100	0.374 -50.664 -41.377 1.00 24.63
BBBBATOM	3363	CA VAL B	100	0.227 -50.613 -39.936 1.00 23.59
BBBBATOM	3364	CB VAL B	100	0.120 32.320
BBBBATOM	3365	CG1 VAL B	100	0.133 31.3.1
BBBBATOM	3366	CG2 VAL B	100	-1.172 -52.683 -39.782 1.00 22.62 1.428 -49.881 -39.382 1.00 22.74
BBBBATOM	3367	C VAL B	100	
BBBBATOM	3368	O VAL B		2.551 -50.093 -39.830 1.00 24.62 1.178 -49.001 -38.419 1.00 21.89
BBBBATOM	3369	N LEU B	101	2.214 -48.199 -37.797 1.00 21.59
BBBBATOM	3370	CA LEU B		1.823 -46.716 -37.853 1.00 22.86
BBBBATOM	3371			2.850 -45.580 -37.892 1.00 24.72
BBBBATOM	3372	CG LEU B		2.237 -44.385 -37.174 1.00 25.30
BBBBATOM	3373 3374	CD2 LEU B		4.168 -45.954 -37.273 1.00 24.45
BBBBATOM	3375			2.349 -48.604 -36.336 1.00 20.83
BBBBATOM	3376	O LEU B		1.370 -48.581 -35.595 1.00 21.35
BBBBATOM	3377	N GLY B		3.556 -48.986 -35.936 1.00 20.96
BBBBATOM	3378	CA GLY B		3.796 -49.357 -34.549 1.00 19.23
BBBBATOM	3379	C GLY B		4.655 -48.282 -33.918 1.00.18.45
BBBBATOM	3380	O GLY B		5.765 -48.01634.381 1.00 18.70
BBBBATOM	.3381	N MET B		4.155 -47.660 -32.857 1.00 18.01
BBBBATOM	3382	A company of the comp		4.892 -46.597 -32.191 1.00 18.93
BBBBATOM	3383	CB MET B		3.928 -45.477 -31.781 1.00 20.02
BBBBATOM	3384	CG MET B		3.121 -44.888 -32.944 1.00 21.61
BBBBATOM	3385	SD MET B		4 212 -44.135 -34.157 1.00 23.45
BBBBATOM	3386			4.718 -42.680 -33.271 1.00 21.40
BBBBATOM	3387	•		5.612 -47.128 -30.957 1.00 18.98
BBBBATOM	. 3388	•		6.134 -46.357 -30.158 1.00 17.96
BBBBATOM	3389	•		5.640 -48.450 -30.827 1.00 21.56
BBBBATOM	3390			6.275 -49.080 -29.686 1.00 21.89
BBBBATOM	3391	C GLY E	3 104	5.192 -49.614 -28.764 1.00 23.28
BBBBATOM	3392		104	4.009 -49.353 -28.980 1.00 22.50
		· ·		



BBBBATOM   3394   CA   GLV   B   105	вввватом	3393	N	GLY B	105	5.583 -50.364 -27.741 1.00 23.01
BBBBATOM   3395   C   GLY   B   105						
BBBBATOM 3396 O GLY B 105 4.449 -52.844 -28.214 1.00 22.87 BBBBATOM 3397 N TYR B 106 3.818 -54.554 -26.159 1.00 22.37 BBBBATOM 3399 CB TYR B 106 3.818 -54.554 -26.159 1.00 22.37 BBBBATOM 3401 CD1 TYR B 106 4.864 -55.008 -23.929 1.00 28.19 BBBBATOM 3401 CD1 TYR B 106 4.864 -55.008 -23.929 1.00 28.19 BBBBATOM 3401 CD1 TYR B 106 4.864 -55.008 -23.929 1.00 28.19 BBBBATOM 3402 CE1 TYR B 106 6.054 -55.663 1-24.282 1.00 31.96 BBBBATOM 3403 CC2 TYR B 106 6.058 -55.631 -24.282 1.00 31.27 BBBBATOM 3403 CC2 TYR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC2 TYR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC2 TYR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC2 TYR B 106 7.234 -55.501 -22.108 1.00 33.13 BBBBATOM 3406 CD4 TYR B 106 8.388 -54.291 -21.802 1.00 35.95 BBBBATOM 3407 C TYR B 106 2.867 -55.012 -27.100 1.00 20.50 BBBBATOM 3408 C TYR B 106 2.867 -55.012 -27.100 1.00 20.50 BBBBATOM 3408 C TYR B 106 2.867 -55.052 -27.746 1.00 20.50 BBBBATOM 3401 C AVAL B 107 0.557 -54.694 -28.099 1.00 18.06 BBBBATOM 3411 C AVAL B 107 0.557 -54.694 -28.099 1.00 18.06 BBBBATOM 3411 C AVAL B 107 0.557 -54.694 -28.099 1.00 18.06 BBBBATOM 3412 CG1 VAL B 107 -0.407 -52.407 -28.589 1.00 21.39 BBBBATOM 3413 CG2 VAL B 107 -0.407 -52.407 -28.589 1.00 21.39 BBBBATOM 3415 CX VAL B 107 -0.502 -55.536 -30.3146 1.00 17.45 BBBBATOM 3416 N SER B 108 1.991 -53.916 -29.918 1.00 17.45 BBBBATOM 3416 N SER B 108 1.991 -53.916 -29.918 1.00 17.96 BBBBATOM 3416 N SER B 108 1.991 -53.916 -29.918 1.00 17.96 BBBBATOM 3416 N SER B 108 1.991 -53.916 -29.918 1.00 17.96 BBBBATOM 3410 C SER B 108 3.424 -52.691 -31.508 1.00 19.67 BBBBATOM 3420 C SER B 108 3.424 -52.691 -31.508 1.00 19.67 BBBBATOM 3420 C SER B 108 3.424 -52.691 -31.508 1.00 19.67 BBBBATOM 3420 C SER B 108 3.595 -55.995 -30.710 1.00 19.67 BBBBATOM 3420 C SER B 108 3.595 -55.995 -30.710 1.00 19.67 BBBBATOM 3420 C SER B 108 3.595 -55.995 -30.710 1.00 19.67 BBBBATOM 3420 C SER B 108 3.595 -55.995 -30.710 1.00 19.67 BBBBATOM 3420 C SER B 108 3.595 -55.995 -30.710 1.00 19.67 BBBBAT						
BBBBATOM   3399						
BBBBATOM   3398   CA   TKR   B   106   3.818   -54.554   -26.159   1.00   25.08   BBBBATOM   3399   CB   TKR   B   106   4.864   -55.008   -22.929   1.00   28.19   BBBBATOM   3401   CD   TKR   B   106   4.864   -55.008   -22.929   1.00   28.19   BBBBATOM   3402   CE1   TKR   B   106   6.043   -53.915   -22.108   1.00   31.13   BBBBATOM   3402   CE1   TKR   B   106   6.058   -55.631   -24.282   1.00   31.12   BBBBATOM   3404   CE2   TKR   B   106   7.234   -55.400   -23.569   1.00   32.27   BBBBATOM   3405   CZ   TKR   B   106   7.234   -55.400   -23.569   1.00   32.27   BBBBATOM   3405   CZ   TKR   B   106   7.234   -55.501   -27.100   1.00   32.27   BBBBATOM   3406   CH   TKR   B   106   8.388   -54.291   -21.802   1.00   35.95   BBBBATOM   3407   CT   TKR   B   106   2.867   -55.018   -27.100   1.00   20.52   BBBBATOM   3408   CT   TKR   B   106   2.867   -55.018   -27.100   1.00   20.52   BBBBATOM   3408   CT   TKR   B   106   2.867   -56.052   -27.746   1.00   20.52   BBBBATOM   3410   CA   VAL   B   107   0.557   -54.694   -28.099   1.00   18.06   BBBBATOM   3411   CA   VAL   B   107   0.557   -54.694   -28.099   1.00   18.06   BBBBATOM   3412   CG1   VAL   B   107   0.507   -54.493   -28.658   1.00   21.39   BBBBATOM   3413   CG2   VAL   B   107   0.507   -54.493   -28.658   1.00   21.39   BBBBATOM   3415   CG2   VAL   B   107   0.502   -55.36   -30.346   1.00   17.45   BBBBATOM   3415   CA   SER   B   108   1.991   -53.916   -29.918   1.00   17.45   BBBBATOM   3416   CA   SER   B   108   1.991   -53.916   -29.918   1.00   17.45   BBBBATOM   3417   CA   SER   B   108   3.424   -52.691   -31.508   1.00   17.69   BBBBATOM   3416   CA   SER   B   108   3.424   -52.691   -31.508   1.00   19.67   BBBBATOM   3420   CA   SER   B   108   3.424   -52.691   -31.509   1.00   19.67   BBBBATOM   3420   CA   SER   B   108   3.197   -55.187   -31.694   1.00   19.67   BBBBATOM   3420   CA   SER   B   108   3.197   -55.187   -31.594   1.00   19.67   BBBBATOM   3420   CA   SER   B   108   3.197   -55.187   -31.594   1.00						
BBBBATOM 3400 CG TYR B 106 4.864 -55.081 -24.774 1.00 25.08 BBBBATOM 3401 CD1 TYR B 106 4.869 -54.153 -22.830 1.00 31.96 BBBBATOM 3402 CE1 TYR B 106 6.058 -55.631 -24.282 1.00 31.97 BBBBATOM 3403 CD2 TYR B 106 6.058 -55.631 -24.282 1.00 31.27 BBBBATOM 3404 CE2 TYR B 106 6.058 -55.631 -24.282 1.00 31.27 BBBBATOM 3405 CZ TYR B 106 7.219 -54.541 -22.487 1.00 32.27 BBBBATOM 3406 CZ TYR B 106 7.219 -54.541 -22.487 1.00 33.19 BBBBATOM 3406 CZ TYR B 106 7.219 -54.541 -22.487 1.00 33.19 BBBBATOM 3406 CZ TYR B 106 2.719 -55.018 -27.100 1.00 20.52 BBBBATOM 3406 CZ TYR B 106 2.719 -55.018 -27.100 1.00 20.52 BBBBATOM 3407 C TYR B 106 2.719 -55.018 -27.100 1.00 20.55 BBBBATOM 3408 O TYR B 106 2.719 -55.018 -27.100 1.00 20.55 BBBBATOM 3409 N VAL B 107 1.628 -54.270 -27.205 1.00 19.06 BBBBATOM 3410 CG VAL B 107 -0.690 -53.774 -27.978 1.00 20.56 BBBBATOM 3412 CG1 VAL B 107 -0.690 -53.774 -27.978 1.00 20.59 BBBBATOM 3412 CG1 VAL B 107 -0.690 -53.774 -27.978 1.00 20.59 BBBBATOM 3412 CG1 VAL B 107 -0.690 -53.774 -27.978 1.00 20.59 BBBBATOM 3415 O VAL B 107 -1.879 -54.433 -28.658 1.00 21.30 BBBBATOM 3415 O VAL B 107 -0.502 -55.536 -30.346 1.00 16.99 BBBBATOM 3416 CS SER B 108 1.07 -0.502 -55.536 -30.346 1.00 16.99 BBBBATOM 3416 CS SER B 108 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09						
BBBBATOM 3400 CG TXR B 106 4,864 -55.008 -23.929 1.00 28.19 BBBBATOM 3401 CD1 TXR B 106 6.043 -53.915 -22.108 1.00 31.96 BBBBATOM 3402 CE1 TXR B 106 6.058 -55.631 -24.282 1.00 31.27 BBBBATOM 3403 CC2 TXR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC2 TXR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC2 TXR B 106 7.234 -55.400 -23.569 1.00 32.27 BBBBATOM 3405 CC TXR B 106 8.388 -54.291 -21.802 1.00 35.95 BBBBATOM 3406 OH TXR B 106 8.388 -54.291 -21.802 1.00 35.95 BBBBATOM 3407 C TXR B 106 2.867 -56.052 -27.746 1.00 20.52 BBBBATOM 3408 O TXR B 106 2.867 -56.052 -27.746 1.00 20.50 BBBBATOM 3408 O TXR B 106 2.867 -56.052 -27.746 1.00 20.50 BBBBATOM 3401 CA VAL B 107 1.628 -64.270 -27.205 1.00 18.06 BBBBATOM 3411 CB VAL B 107 -0.507 -54.694 -28.099 1.00 18.06 BBBBATOM 3411 CC, VAL B 107 -0.407 -52.407 -28.589 1.00 21.39 BBBBATOM 3412 CCI VAL B 107 -0.407 -52.407 -28.589 1.00 21.39 BBBBATOM 3415 C, VAL B 107 -0.407 -52.407 -28.589 1.00 21.39 BBBBATOM 3415 C, VAL B 107 -0.502 -55.536 -30.346 1.00 17.45 BBBBATOM 3416 C, VAL B 107 -0.502 -55.536 -30.346 1.00 16.99 BBBBATOM 3416 C, VAL B 107 0.502 -55.536 -30.346 1.00 16.99 BBBBATOM 3416 C SER B 108 2.488 -53.892 -31.290 1.00 17.96 BBBBATOM 3416 C SER B 108 2.488 -53.892 -31.290 1.00 17.65 BBBBATOM 3416 CS SER B 108 2.488 -53.892 -31.290 1.00 19.56 BBBBATOM 3420 C SER B 108 3.385 -55.449 -32.884 1.00 21.25 BBBBATOM 3421 C SER B 108 3.385 -55.49 -32.894 1.00 19.56 BBBBATOM 3421 C SER B 108 3.385 -55.49 -32.894 1.00 19.56 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3422 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3423 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3423 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3423 C SER B 108 3.385 -55.49 -32.894 1.00 19.59 BBBBATOM 3424 C SER B						
BBBBATOM 3401 CDI TYR B 106						
BBBBATOM   3402   CE1 TYR B 106   6.043 -53.915 -22.108   1.00   33.127   BBBBATOM   3403   CE2 TYR B 106   6.058 -55.631 -24.282   1.00   33.27   BBBBATOM   3405   CE2 TYR B 106   7.234 -55.631 -24.282   1.00   33.27   BBBBATOM   3405   CE TYR B 106   7.234 -55.400 -23.569   1.00   33.19   BBBBATOM   3406   OH TYR B 106   8.388 -54.291 -21.802   1.00   35.95   BBBBATOM   3407   C TYR B 106   2.867 -56.052 -27.704   1.00   20.52   BBBBATOM   3408   O TYR B 106   2.867 -56.052 -27.704   1.00   20.52   BBBBATOM   3408   O TYR B 106   2.867 -56.052 -27.704   1.00   20.50   BBBBATOM   3410   CA VAL B 107   -0.690 -53.774 -27.978   1.00   10.06   BBBBATOM   3411   CE VAL B 107   -0.690 -53.774 -27.978   1.00   20.95   BBBBATOM   3412   CCI VAL B 107   -0.690 -53.774 -27.978   1.00   21.39   BBBBATOM   3414   C. VAL B 107   -0.407 -52.407 -28.658   1.00   21.39   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   21.39   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.45   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.45   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.45   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3416   C. VAL B 107   -0.502 -55.536 -30.346   1.00   17.66   BBBBATOM   3420   C. VAL B 109   3.595 -55.536 -30.346   1.00   17.66   BBBBATOM   3420   C. VAL B 109   3.595 -55.536 -30.346   1.00   17.66   BBBBATOM   3420   C. VAL B 109   3.595 -55.995 -30.710   1.00   12.56   BBBBATOM   3420   C. VAL B 109   3.595 -55.995 -30.710   1.00   12.56   BBBBATOM   3426   C. VAL B 109   3.595 -55.995 -30.710   1.00   12.56   BBBBATOM			_			
BBBBATOM   3403   CD2 TYR B   106   6.058   -55.400   -23.569   1.00   31.27						
BBBBATOM   3405   CZ						
BBBBATOM   3406   CZ   TYR B   106   7.219   -54.541   -22.487   1.00   33.19   BBBBATOM   3406   CH   TYR B   106   2.719   -55.018   -27.100   1.00   35.95   BBBBATOM   3408   O   TYR B   106   2.719   -55.018   -27.100   1.00   20.52   BBBBATOM   3408   O   TYR B   106   2.867   -56.052   -27.746   1.00   20.50   BBBBATOM   3410   CA   VAL B   107   1.628   -54.270   -27.205   1.00   19.06   BBBBATOM   3411   CR   VAL B   107   -0.597   -54.694   -28.099   1.00   18.06   BBBBATOM   3412   CGI   VAL B   107   -0.690   -53.774   -27.978   1.00   20.95   BBBBATOM   3413   CG2   VAL B   107   -0.407   -52.407   -28.589   1.00   21.39   BBBBATOM   3416   N   SER B   108   10.557   -54.433   -28.658   1.00   21.30   BBBBATOM   3416   N   SER B   108   1.991   -53.916   -29.918   1.00   17.96   BBBBATOM   3416   N   SER B   108   1.991   -53.916   -29.918   1.00   19.67   BBBBATOM   3419   CSER B   108   3.424   -52.691   -31.508   1.00   19.67   BBBBATOM   3419   CSER B   108   3.424   -52.691   -31.508   1.00   19.67   BBBBATOM   3420   CSER B   108   3.197   -55.187   -31.694   1.00   20.38   BBBBATOM   3421   CSER B   108   3.197   -55.187   -32.884   1.00   20.38   BBBBATOM   3422   N   GLY B   109   3.595   -55.995   -30.710   1.00   19.59   BBBBATOM   3425   CSER B   108   3.197   -55.187   -31.694   1.00   20.38   BBBBATOM   3426   N   PRO B   100   3.595   -55.995   -30.710   1.00   19.54   BBBBATOM   3426   CR   PRO B   100   3.595   -55.995   -30.710   1.00   19.44   BBBBATOM   3426   CR   PRO B   110   2.206   -58.606   -31.173   1.00   19.24   BBBBATOM   3426   CR   PRO B   110   2.206   -58.606   -31.173   1.00   19.24   BBBBATOM   3427   CD   PRO B   110   2.206   -58.606   -31.173   1.00   19.94   BBBBATOM   3436   CR   CR   BR   110   2.206   -58.606   -31.173   1.00   19.94   BBBBATOM   3436   CR   CR   BR   BR   BR   BR   BR   BR						
BBBBATOM   3406						
BBBBATOM   3407   C   TYR   8   106   2.867   -56.052   -27.146   1.00   20.52   BBBBATOM   3409   N   VAL   8   107   1.628   -54.270   -27.205   1.00   19.06   BBBBATOM   3410   CA   VAL   8   107   -0.690   -53.774   -27.978   1.00   20.59   BBBBATOM   3411   CB   VAL   8   107   -0.690   -53.774   -27.978   1.00   20.95   BBBBATOM   3412   CG1   VAL   8   107   -0.690   -53.774   -27.978   1.00   20.95   BBBBATOM   3414   C. VAL   8   107   -0.690   -55.366   -3.889   1.00   21.39   BBBBATOM   3415   CVAL   8   107   1.015   -54.743   -29.559   1.00   17.45   BBBBATOM   3416   N   SER   8   108   1.991   -53.316   -29.918   1.00   17.96   BBBBATOM   3416   N   SER   8   108   1.991   -53.316   -29.918   1.00   19.67   BBBBATOM   3416   CA   SER   8   108   1.991   -53.316   -29.918   1.00   19.67   BBBBATOM   3416   CA   SER   8   108   3.424   -52.691   -31.508   1.00   19.66   BBBBATOM   3419   CG   SER   8   108   3.895   -55.449   -30.8371   1.00   19.66   BBBBATOM   3420   C   SER   8   108   3.895   -55.494   -32.884   1.00   20.38   BBBBATOM   3420   C   SER   8   108   3.895   -55.494   -32.884   1.00   20.38   BBBBATOM   3422   N   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3422   N   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3422   N   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3425   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3426   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3427   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3426   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3427   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3426   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3427   C   GLY   8   109   3.595   -55.995   -30.710   1.00   19.67   BBBBATOM   3426   C   GLY   8   110   0.966   -58.606   -51.173   1.00   19.67   BBBBATOM   3						
BBBBATOM   3408						
BBBBATOM   3409   N   VAL   B   107   1.628   -54.270   -27.205   1.00   19.06   BBBBBATOM   3411   CB   VAL   B   107   -0.657   -54.694   -28.099   1.00   18.06   BBBBBATOM   3412   CG1   VAL   B   107   -0.690   -53.774   -27.978   1.00   20.95   BBBBATOM   3413   CG2   VAL   B   107   -1.879   -54.433   -28.658   1.00   21.30   BBBBATOM   3414   C   VAL   B   107   1.015   -54.743   -29.559   1.00   17.45   BBBBATOM   3415   C   VAL   B   107   1.015   -54.743   -29.559   1.00   17.45   BBBBATOM   3416   N   SER   B   108   1.991   -53.916   -29.918   1.00   19.96   BBBBATOM   3416   CA   SER   B   108   1.991   -53.916   -29.918   1.00   19.66   BBBBATOM   3416   CA   SER   B   108   3.424   -52.691   -31.508   1.00   19.66   BBBBATOM   3416   CA   SER   B   108   3.424   -52.691   -31.508   1.00   19.66   BBBBATOM   3420   C   SER   B   108   3.197   -55.187   -31.694   1.00   21.25   BBBBATOM   3422   N   GLY   B   109   3.595   -55.995   -30.710   1.00   19.59   BBBBATOM   3423   CA   GLY   B   109   3.595   -55.995   -31.070   1.00   19.59   BBBBATOM   3424   C   GLY   B   109   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3425   O   GLY   B   109   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3426   C   GLY   B   109   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3427   C   PRO   B   100   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3426   C   SER   B   108   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3427   C   PRO   B   100   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3426   C   SER   B   109   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3427   C   PRO   B   100   3.595   -55.595   -31.023   1.00   19.61   BBBBATOM   3426   C   PRO   B   100   1.251   -59.478   -31.655   -31.023   1.00   19.20   BBBBATOM   3427   C   PRO   B   100   1.251   -59.478   -31.355   -31.00   19.20   BBBBATOM   3428   C   SER   B   100   1.251   -59.478   -31.355   -30.034   -30.00   -30.00   -30.00   -30.00   -30.00   -30.00   -30.00   -30.00   -30.00	BBBBATOM		C			
BBBBATOM   3410   CA   VAL B   107   0.557   -54.694   -28.999   1.00   18.06   BBBBATOM   3411   CB   VAL B   107   -0.690   -53.774   -28.589   1.00   20.95   BBBBATOM   3413   CG2   VAL B   107   -0.407   -52.407   -28.589   1.00   21.39   BBBBATOM   3414   C   VAL B   107   -0.407   -52.407   -28.589   1.00   21.39   BBBBATOM   3415   C   VAL B   107   1.015   -54.743   -29.559   1.00   17.45   BBBBATOM   3416   N   SER B   108   1.991   -53.916   -29.918   1.00   10.979   BBBBATOM   3416   C   SER B   108   1.991   -53.916   -29.918   1.00   10.699   BBBBATOM   3417   CA   SER B   108   2.488   -53.892   -31.290   1.00   19.67   BBBBATOM   3418   CB   SER B   108   3.424   -52.691   -31.590   1.00   19.56   BBBBATOM   3420   C   SER B   108   3.197   -55.187   -31.694   1.00   20.38   BBBBATOM   3421   O   SER B   108   3.197   -55.995   -30.710   1.00   20.38   BBBBATOM   3422   N   GLY B   109   3.595   -55.995   -30.710   1.00   20.38   BBBBATOM   3422   N   GLY B   109   3.595   -55.995   -30.710   1.00   19.59   BBBBATOM   3422   O   GLY B   109   3.591   -57.556   -31.023   1.00   20.03   BBBBATOM   3425   O   GLY B   109   3.591   -58.517   -32.902   1.00   19.61   BBBBATOM   3426   N   PRO B   110   2.206   -58.606   -31.173   1.00   20.03   BBBBATOM   3426   N   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3426   C   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3426   C   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3427   C   PRO B   110   2.206   -58.606   -31.173   1.00   20.03   BBBBATOM   3428   CA   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3428   CA   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3428   CA   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3438   CA   GLY B   111   0.106   -56.702   -34.995   1.00   19.60   BBBBATOM   3438   C   GLY B   111   0.106   -56.702   -34.995   1.00   19.60   BBBBATOM   3439   C   GLY B   112   3.147   -57.783	BBBBATOM	3408	0	TYR B		
BBBBBATOM         3411         CB         VAL         B 107         -0.690         -53.774         -27.878         1.00         22.39           BBBBATOM         3413         CGI         VAL         B 107         -1.879         -54.433         -28.658         1.00         21.39           BBBBATOM         3415         O         VAL         B 107         1.055         -54.743         -29.918         1.00         17.45           BBBBATOM         3416         N         SER         B 108         1.991         -53.916         -29.918         1.00         17.96           BBBBATOM         3416         CA         SER         B 108         2.488         -53.892         -31.290         1.00         19.66           BBBBATOM         3419         OG         SER         B 108         3.424         -52.691         -31.508         1.00         19.66           BBBBATOM         3422         N         CSER         B 108         3.197         -55.187         -31.694         1.00         20.23           BBBBATOM         3422         N         GLY         B 109         3.385         -55.499         -3.70         1.00         19.59           BBBBATOM         3425 </td <td>BBBBATOM .</td> <td>3409</td> <td>N</td> <td>VAL B</td> <td>107</td> <td></td>	BBBBATOM .	3409	N	VAL B	107	
BBBBATOM   3412   CGI   VAL   B   107	BBBBATOM	3410	CA	VAL B	107	
BBBBATOM   3413   CG2 VAL B 107	BBBBATOM	3411	CB			
BBBBATOM   3414   C, VAL B 107   1.015 - 54.743 - 29.559   1.00   17.45	BBBBATOM	3412	CGI	VAL B	107	
BBBBATOM   3415	BBBBATOM	3413	CG2	VAL B	107	
BBBBATOM   3416   N   SER   B   108   1.991   -53.916   -29.918   1.00   17.96   1.00   17.96   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.67   1.00   19.68   1.00   19.68   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.61   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.56   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.59   1.00   19.50   1.00   19.59   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50   1.00   19.50	BBBBATOM	3414	. C	VAL B	107	
BBBATOM   3417   CA   SER B   108   2.488   -53.892   -31.290   1.00   19.67	BBBBATOM	3415	o	VAL B	107	
BBBBATOM   3418	BBBBATOM	3416	N	SER B	108	
BBBBATOM 3420 C SER B 108	BBBBATOM	3417	CA	SER B	108	
BBBBATOM   3420   C   SER B   108   3.197   -55.187   -31.694   1.00   20.38   BBBBATOM   3421   O   SER B   108   3.385   -55.449   -32.884   1.00   21.25   BBBBATOM   3422   N   GLY B   109   3.595   -55.995   -30.710   1.00   19.59   BBBBATOM   3423   C   GLY B   109   4.251   -57.256   -31.023   1.00   20.03   BBBBATOM   3425   O   GLY B   109   3.579   -58.517   -32.940   1.00   19.61   BBBBATOM   3426   N   PRO B   110   2.206   -58.606   -31.179   1.00   19.24   BBBBATOM   3427   CD   PRO B   110   1.914   -58.528   -29.729   1.00   19.94   BBBBATOM   3428   CA   PRO B   110   1.251   -59.478   -31.855   1.00   18.99   BBBBATOM   3429   CB   PRO B   110   0.198   -59.737   -30.778   1.00   20.41   BBBBATOM   3430   CG   PRO B   110   0.198   -59.737   -30.778   1.00   20.41   BBBBATOM   3431   C   PRO B   110   0.651   -58.761   -33.075   1.00   19.81   BBBBATOM   3432   C   PRO B   110   0.651   -58.761   -33.075   1.00   19.28   BBBBATOM   3433   N   GLY B   111   0.407   -57.462   -32.927   1.00   19.03   BBBBATOM   3435   C   GLY B   111   0.407   -57.462   -32.927   1.00   19.03   BBBBATOM   3436   CA   GLY B   111   0.764   -56.714   -35.226   1.00   19.59   BBBBATOM   3438   CA   GLY B   111   0.303   -56.979   -36.339   1.00   21.10   BBBBATOM   3438   CA   GLY B   112   3.147   -57.783   -36.724   1.00   19.97   BBBBATOM   3439   C   GLY B   112   3.147   -57.783   -36.724   1.00   19.97   BBBBATOM   3442   CA   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3443   CB   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3443   CB   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3444   CG   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445   CA   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445   CA   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445   CA   EU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445   CA   EU B   113   3.265   -60.184   -36.429	BBBBATOM	3418	CB ·	SER B	108	
BBBBATOM   3421	BBBBATOM	3419	OG	SER B	108	
BBBBATOM   3422 N   CA CLY B   109   3.595   -55.995   -30.710   1.00   19.59   BBBBATOM   3424 C   CA CLY B   109   4.251   -57.256   -31.023   1.00   20.03   BBBBATOM   3425 O   CA CLY B   109   3.517   -58.170   -31.792   1.00   19.61   BBBBATOM   3426 N   PRO B   110   2.206   -58.606   -31.173   1.00   19.20   BBBBATOM   3427 CD   PRO B   110   1.914   -58.528   -29.729   1.00   19.20   BBBBATOM   3428 CA   PRO B   110   1.251   -59.478   -31.855   1.00   18.99   BBBBATOM   3429 CB   PRO B   110   0.198   -59.737   -30.778   1.00   20.41   BBBBATOM   3430 CG   PRO B   110   0.198   -59.737   -30.778   1.00   20.41   BBBBATOM   3431 C   PRO B   110   0.651   -58.761   -33.075   1.00   19.20   BBBBATOM   3432 O   PRO B   110   0.406   -59.371   -34.116   1.00   17.13   BBBBATOM   3433 N   CLY B   111   0.407   -57.462   -32.927   1.00   19.03   BBBBATOM   3436 C   CLY B   111   0.160   -56.702   -34.025   1.00   19.60   BBBBATOM   3436 O   CLY B   111   0.330   -56.979   -36.339   1.00   21.10   BBBBATOM   3437 N   CLY B   112   2.043   -56.429   -34.995   1.00   19.78   BBBBATOM   3443 CA   CLY B   112   3.147   -57.783   -36.724   1.00   20.43   BBBBATOM   3439 C   CLY B   112   3.233   -57.996   -37.949   1.00   19.97   BBBBATOM   3440 N   CLY B   112   3.233   -57.996   -37.949   1.00   19.98   BBBBATOM   3441 N   LEU B   113   3.167   -58.828   -35.903   1.00   19.49   BBBBATOM   3444 CB   LEU B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445 CB   LEU B   113   3.467   -58.828   -35.903   1.00   19.49   BBBBATOM   3446 CB   LEU B   113   3.467   -61.219   -34.605   1.00   19.49   BBBBATOM   3446 CB   LEU B   113   3.467   -60.101   -36.892   1.00   18.38   BBBBATOM   3446 CB   LEU B   113   3.467   -60.101   -36.892   1.00   18.38   BBBBATOM   3446 CB   LEU B   113   3.467   -60.910   -36.892   1.00   18.38   BBBBATOM   3445 CB   LEU B   113   3.467   -60.010   -36.892   1.00   18.36   BBBBATOM   3445 CB   LEU B   113   3.467   -60.010   -36.892   1.00   18.36   BBBBATOM   3450 CA	BBBBATOM	3420	С	SER B	108	3.197 -55.187 -31.694 1.00 20.38
BBBBATOM   3423	BBBBATOM	3421	0	SER B	108	3.385 -55.449 -32.884 1.00 21.25
BBBBATOM   3423   CA	BBBBATOM	3422	N	GLY B	109	3.595 -55.995 -30.710 1.00 19.59
BBBBATOM         3424         C         GLY B 109         3.311 -58.170 -31.792 1.00 19.61           BBBBATOM         3425 O         O GLY B 109         3.579 -58.517 -32.940 1.00 19.24           BBBBATOM         3426 N         PRO B 110 2.206 -58.606 -31.173 1.00 19.20           BBBBATOM         3427 CD PRO B 110 1.251 -59.478 -31.855 1.00 18.99           BBBBATOM         3428 CA PRO B 110 0.198 -59.737 -30.778 1.00 20.41           BBBBATOM         3430 CG PRO B 110 0.998 -59.720 -29.515 1.00 19.81           BBBBATOM         3431 C PRO B 110 0.651 -58.761 -33.075 1.00 19.22           BBBBATOM         3433 N GLY B 111 0.407 -57.462 -32.927 1.00 19.03           BBBBATOM         3433 N GLY B 111 0.407 -57.462 -32.927 1.00 19.03           BBBBATOM         3435 C GLY B 111 0.764 -56.702 -34.025 1.00 19.60           BBBBATOM         3435 C GLY B 111 0.764 -56.702 -34.025 1.00 19.95           BBBBATOM         3436 O GLY B 111 0.300 -56.979 -36.339 1.00 21.10           BBBBATOM         3436 C GLY B 112 0.3014 -56.417 -35.226 1.00 19.78           BBBBATOM         3438 CA GLY B 112 0.3014 -56.417 -36.074 1.00 19.97           BBBBATOM         3439 C GLY B 112 0.3014 -56.417 -36.074 1.00 19.97           BBBBATOM         3440 C GLY B 112 0.3014 -55.417 -36.074 1.00 19.94           BBBBATOM         3441 N LEU B 113 0.465 -60.184 -36.429 1.00 19.49           BBBBATO		3423	CA	GLY B	109	4.251 -57.256 -31.023 1.00 20.03
BBBBATOM   3426   N   PRO   B   110   2.206   -58.517   -32.940   1.00   19.20   BBBBATOM   3427   CD   PRO   B   110   1.914   -58.528   -29.729   1.00   19.94   BBBBATOM   3428   CA   PRO   B   110   1.251   -59.478   -31.855   1.00   18.99   BBBBATOM   3429   CB   PRO   B   110   0.198   -59.737   -30.778   1.00   20.41   BBBBATOM   3430   CG   PRO   B   110   0.651   -58.761   -33.075   1.00   19.81   BBBBATOM   3431   C   PRO   B   110   0.651   -58.761   -33.075   1.00   19.81   BBBBATOM   3432   O   PRO   B   110   0.406   -59.371   -34.116   1.00   17.13   BBBBATOM   3433   N   GLY   B   111   0.407   -56.702   -34.025   1.00   19.60   BBBBATOM   3435   C   GLY   B   111   0.764   -56.714   -35.226   1.00   19.59   BBBBATOM   3436   O   GLY   B   112   2.043   -56.429   -34.995   1.00   19.78   BBBBATOM   3438   CA   GLY   B   112   2.043   -56.429   -34.995   1.00   19.78   BBBBATOM   3430   C   GLY   B   112   3.014   -56.417   -36.074   1.00   19.97   BBBBATOM   3440   O   GLY   B   112   3.233   -57.896   -37.949   1.00   19.48   BBBBATOM   3441   N   LEU   B   113   3.265   -60.184   -36.429   1.00   19.26   BBBBATOM   3442   CA   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3444   CG   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3445   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   19.49   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   18.73   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   18.73   BBBBATOM   3447   C   LEU   B   113   3.265   -60.184   -36.429   1.00   18.73   BBBBATOM   3446   CDI   LEU   B   113   3.265   -60.184   -36.429   1.00   18.7			С	GLY B	109	3.311 -58.170 -31.792 1.00 19.61
BBBBATOM   3426   N   PRO   B   110   2.206   -58.606   -31.173   1.00   19.20   19.94   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.88   19.	BBBBATOM	3425	0	GLY B	109	3.579 -58.517 -32.940 1.00 19.24
BBBBATOM         3428         CA         PRO B         110         1.251         -59.478         -31.855         1.00         18.99           BBBBATOM         3429         CB         PRO B         110         0.198         -59.737         -30.778         1.00         20.01         1.00         19.81           BBBBATOM         3431         C         PRO B         110         0.651         -58.761         -33.075         1.00         19.22           BBBBATOM         3432         O         PRO B         110         0.406         -59.371         -34.116         1.00         17.13           BBBBATOM         3433         N         GLY B         111         0.407         -57.462         -32.927         1.00         19.03           BBBBATOM         3434         CA         GLY B         111         0.764         -56.702         -34.025         1.00         19.59           BBBBATOM         3436         O         GLY B         111         0.764         -56.714         -35.226         1.00         19.59           BBBBATOM         3443         CA         GLY B         112         3.014         -56.429         -34.995         1.00         19.78		3426	N	PRO B	110	
BBBBATOM         3428         CA         PRO B 110         1.251 -59.478 -31.855         1.00 18.99           BBBBATOM         3429 CB         CR PRO B 110         0.198 -59.737 -30.778         1.00 20.41           BBBBATOM         3430 CG         PRO B 110         0.998 -59.720 -29.515         1.00 19.81           BBBBATOM         3431 C         PRO B 110         0.651 -58.761 -33.075         1.00 19.22           BBBBATOM         3433 N         GLY B 111         0.406 -59.371 -34.116         1.00 19.03           BBBBATOM         3434 CA         GLY B 111         0.407 -57.462 -32.927 1.00 19.03           BBBBATOM         3435 C         GLY B 111         0.764 -56.702 -34.025 1.00 19.60           BBBBATOM         3436 O         GLY B 111         0.764 -56.714 -35.226 1.00 19.60           BBBBATOM         3437 N         GLY B 112         2.043 -56.479 -34.025 1.00 19.59           BBBBATOM         3437 N         GLY B 112         2.043 -56.479 -34.995 1.00 19.78           BBBBATOM         3438 CA         GLY B 112         3.014 -56.47 -36.074 1.00 20.43           BBBBATOM         3439 C         GLY B 112         3.147 -57.783 -36.724 1.00 29.43           BBBBATOM         3440 O         GLY B 113         3.265 -60.184 -36.429 1.00 19.94           BBBBBATOM	BBBBATOM	3427	CD	PRO B	110	1.914 -58.528 -29.729 1.00 19.94
BBBBATOM 3430 CG PRO B 110 0.998 -59.720 -29.515 1.00 19.81 BBBBATOM 3431 C PRO B 110 0.651 -58.761 -33.075 1.00 19.22 BBBBATOM 3432 O PRO B 110 0.406 -59.371 -34.116 1.00 17.13 BBBBATOM 3433 N GLY B 111 0.407 -57.462 -32.927 1.00 19.03 BBBBATOM 3435 C GLY B 111 -0.160 -56.702 -34.025 1.00 19.60 BBBBATOM 3435 C GLY B 111 0.764 -56.714 -35.226 1.00 19.60 BBBBATOM 3436 O GLY B 111 0.330 -56.979 -36.339 1.00 21.10 BBBBATOM 3437 N GLY B 112 2.043 -56.429 -34.995 1.00 19.78 BBBBATOM 3438 CA GLY B 112 3.014 -56.417 -36.074 1.00 19.97 BBBBATOM 3439 C GLY B 112 3.147 -57.783 -36.724 1.00 19.97 BBBBATOM 3440 O GLY B 112 3.233 -57.896 -37.949 1.00 19.94 BBBBATOM 3441 N LEU B 113 3.167 -58.828 -35.903 1.00 19.26 BBBBATOM 3442 CA LEU B 113 3.265 -60.184 -36.429 1.00 19.49 BBBBATOM 3443 CB LEU B 113 3.265 -60.184 -36.429 1.00 19.49 BBBBATOM 3444 CG LEU B 113 4.777 -61.270 -34.605 1.00 20.59 BBBBATOM 3446 CD2 LEU B 113 4.777 -61.270 -34.605 1.00 20.59 BBBBATOM 3446 CD2 LEU B 113 4.656 -62.059 -33.311 1.00 20.01 BBBBATOM 3448 O LEU B 113 5.794 -61.914 -35.538 1.00 20.23 BBBBATOM 3446 CD2 LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3447 C LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3448 O LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3449 N ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3450 CA ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3450 CA ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3450 CA ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3450 CA ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3450 CA ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3451 CB ALA B 114 -0.288 -59.578 -39.019 1.00 20.57 BBBBATOM 3455 CA ALA B 115 0.662 -66.167 -40.229 1.00 21.84 BBBBATOM 3455 CA ALA B 115 0.662 -66.168 -39.911 1.00 20.57 BBBBATOM 3456 CB ALA B 115 0.666 -66.108 -39.911 1.00 21.58 BBBBATOM 3457 C ALA B 115 0.666 -66.108 -39.911 1.00 21.58		3428	CA	PRO B	110	1.251 -59.478 -31.855 1.00 18.99
BBBBATOM 3431 C PRO B 110	BBBBATOM	3429	CB	PRO B	110	
BBBBATOM 3432 O PRO B 110	BBBBATOM	3430	CG	PRO B	110	
BBBBATOM 3434 CA GLY B 111	BBBBATOM	3431	С	PRO B	110	
BBBBATOM         3434         CA         GLY B 111         -0.160         -56.702         -34.025         1.00         19.60           BBBBATOM         3435         C         GLY B 111         0.764         -56.714         -35.226         1.00         19.59           BBBBATOM         3436         O         GLY B 111         0.330         -56.429         -34.995         1.00         19.78           BBBBATOM         3438         CA         GLY B 112         3.014         -56.417         -36.074         1.00         19.97           BBBBATOM         3440         O         GLY B 112         3.147         -57.783         -36.724         1.00         20.43           BBBBATOM         3441         N         LEU B 113         3.167         -58.828         -35.949         1.00         19.97           BBBBATOM         3442         CA         LEU B 113         3.265         -60.184         -36.429         1.00         19.49           BBBBATOM         3443         CB         LEU B 113         3.265         -60.184         -36.429         1.00         19.49           BBBBATOM         3445         CD1         LEU B 113         3.405         -61.198         -35.289         1	BBBBATOM	3432	0	PRO B	110	
BBBBATOM 3435 C GLY B 111 0.764 -56.714 -35.226 1.00 19.59 BBBBATOM 3436 O GLY B 111 0.330 -56.979 -36.339 1.00 21.10 BBBBATOM 3437 N GLY B 112 2.043 -56.429 -34.995 1.00 19.78 BBBBATOM 3438 CA GLY B 112 3.014 -56.417 -36.074 1.00 19.97 BBBBATOM 3439 C GLY B 112 3.147 -57.783 -36.724 1.00 20.43 BBBBATOM 3440 O GLY B 112 3.233 -57.896 -37.949 1.00 19.94 BBBBATOM 3441 N LEU B 113 3.167 -58.828 -35.903 1.00 19.26 BBBBATOM 3442 CA LEU B 113 3.265 -60.184 -36.429 1.00 19.49 BBBBATOM 3443 CB LEU B 113 3.405 -61.198 -35.289 1.00 18.38 BBBBATOM 3444 CG LEU B 113 4.777 -61.270 -34.605 1.00 20.59 BBBBATOM 3445 CD1 LEU B 113 4.656 -62.059 -33.311 1.00 20.01 BBBBATOM 3446 CD2 LEU B 113 5.794 -61.270 -34.605 1.00 20.23 BBBBATOM 3447 C LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3449 N ALA B 114 0.875 -60.010 -36.892 1.00 18.70 BBBBATOM 3450 CA ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3451 CB ALA B 114 -1.562 -59.855 -36.889 1.00 16.45 BBBBATOM 3453 O ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3454 N ALA B 115 0.082 -58.303 -39.000 1.00 20.57 BBBBATOM 3455 CA ALA B 115 0.082 -58.303 -39.911 1.00 19.85 BBBBATOM 3455 CB ALA B 115 0.636 -56.108 -39.911 1.00 19.85 BBBBATOM 3457 C ALA B 115 0.636 -56.108 -39.911 1.00 19.85 BBBBATOM 3457 C ALA B 115 0.636 -56.108 -39.911 1.00 19.85 BBBBATOM 3457 C ALA B 115 0.636 -56.108 -39.911 1.00 19.85	BBBBATOM	3433	N			
BBBBATOM         3436         O         GLY         B         111         0.330         -56.979         -36.339         1.00         21.10           BBBBATOM         3437         N         GLY         B         112         2.043         -56.429         -34.995         1.00         19.78           BBBBATOM         3438         CA         GLY         B         112         3.014         -56.417         -36.074         1.00         19.97           BBBBATOM         3440         O         GLY         B         112         3.147         -57.783         -36.724         1.00         20.43           BBBBATOM         3440         O         GLY         B         112         3.233         -57.896         -37.949         1.00         19.94           BBBBATOM         3442         CA         LEU         B         113         3.265         -60.184         -36.429         1.00         19.49           BBBBATOM         3443         CB         LEU         B         113         3.405         -61.198         -35.289         1.00         19.49           BBBBATOM         3445         CD1         LEU         B         113         4.777         -61.270	BBBBATOM	3434	CA	GLY B	111	• • • • • • • • • • • • • • • • • • •
BBBBATOM         3437         N         GLY         B         112         2.043         -56.429         -34.995         1.00         19.78           BBBBATOM         3438         CA         GLY         B         112         3.014         -56.417         -36.074         1.00         19.97           BBBBATOM         3440         O         GLY         B         112         3.147         -57.783         -36.724         1.00         20.43           BBBBATOM         3441         N         LEU         B         112         3.233         -57.896         -37.949         1.00         19.94           BBBBATOM         3441         N         LEU         B         113         3.167         -58.828         -35.903         1.00         19.94           BBBBATOM         3443         CB         LEU         B         113         3.265         -60.184         -36.429         1.00         19.49           BBBBATOM         3444         CG         LEU         B         113         4.777         -61.270         -34.605         1.00         20.59           BBBBATOM         3446         CD2         LEU         B         113         5.794         -61.270	BBBBATOM	3435	С			
BBBBATOM 3438 CA GLY B 112 3.014 -56.417 -36.074 1.00 19.97 BBBBATOM 3439 C GLY B 112 3.147 -57.783 -36.724 1.00 20.43 BBBBATOM 3440 O GLY B 112 3.233 -57.896 -37.949 1.00 19.94 BBBBATOM 3441 N LEU B 113 3.167 -58.828 -35.903 1.00 19.26 BBBBATOM 3442 CA LEU B 113 3.265 -60.184 -36.429 1.00 19.49 BBBBATOM 3444 CG LEU B 113 3.405 -61.198 -35.289 1.00 18.38 BBBBATOM 3444 CG LEU B 113 4.656 -62.059 -33.311 1.00 20.59 BBBBATOM 3445 CD1 LEU B 113 4.656 -62.059 -33.311 1.00 20.01 BBBBATOM 3446 CD2 LEU B 113 5.794 -61.914 -35.538 1.00 20.23 BBBBATOM 3448 O LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3448 O LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3449 N ALA B 114 0.875 -60.010 -36.892 1.00 18.44 BBBBATOM 3450 CA ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3451 CB ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3452 C ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3453 O ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3454 N ALA B 115 0.082 -58.303 -39.000 1.00 20.57 BBBBATOM 3455 CA ALA B 115 0.082 -58.303 -39.000 1.00 20.57 BBBBATOM 3456 CB ALA B 115 0.636 -56.108 -39.911 1.00 19.85 BBBATOM 3457 C ALA B 115 0.636 -56.108 -39.911 1.00 21.58	BBBBATOM	3436	0	GLY B	111	
BBBBATOM         3439         C         GLY         B         112         3.147         -57.783         -36.724         1.00         20.43           BBBBATOM         3440         O         GLY         B         112         3.233         -57.896         -37.949         1.00         19.94           BBBBATOM         3441         N         LEU         B         113         3.167         -58.828         -35.903         1.00         19.26           BBBBATOM         3442         CA         LEU         B         113         3.265         -60.184         -36.429         1.00         19.49           BBBBATOM         3443         CB         LEU         B         113         3.405         -61.198         -35.289         1.00         18.38           BBBBATOM         3444         CG         LEU         B         113         4.777         -61.270         -34.605         1.00         18.38           BBBBATOM         3445         CD1         LEU         B         113         5.794         -61.270         -34.605         1.00         20.59           BBBBATOM         3447         C         LEU         B         113         2.040         -60.521	BBBBATOM					
BBBBATOM       3440       O       GLY B 112       3.233 -57.896 -37.949       1.00 19.94         BBBBATOM       3441       N       LEU B 113       3.167 -58.828 -35.903       1.00 19.26         BBBBATOM       3442       CA LEU B 113       3.265 -60.184 -36.429       1.00 19.49         BBBBATOM       3443       CB LEU B 113       3.405 -61.198 -35.289       1.00 18.38         BBBBATOM       3444       CG LEU B 113       4.777 -61.270 -34.605       1.00 20.59         BBBBATOM       3446       CD1 LEU B 113       4.656 -62.059 -33.311       1.00 20.01         BBBBATOM       3446       CD2 LEU B 113       5.794 -61.914 -35.538       1.00 20.23         BBBBATOM       3447       C       LEU B 113       2.040 -60.521 -37.274 1.00 18.73         BBBBATOM       3449       N       ALA B 114       0.875 -60.010 -36.892 1.00 18.44         BBBBATOM       3450       CA       ALA B 114       -0.334 -60.292 -37.661 1.00 18.70         BBBBATOM       3451       CB       ALA B 114       -0.288 -59.578 -39.019 1.00 16.45         BBBBATOM       3453       O       ALA B 114       -0.602 -60.167 -40.052 1.00 20.62         BBBBATOM       3454       N       ALA B 115       0.082 -58.303 -39.000 1.00 20.57	BBBBATOM					
BBBBATOM         3441         N         LEU B 113         3.167 -58.828 -35.903         1.00 19.26           BBBBATOM         3442         CA LEU B 113         3.265 -60.184 -36.429         1.00 19.49           BBBBATOM         3443         CB LEU B 113         3.405 -61.198 -35.289         1.00 18.38           BBBBATOM         3444         CG LEU B 113         4.777 -61.270 -34.605         1.00 20.59           BBBBATOM         3446         CD1 LEU B 113         4.656 -62.059 -33.311         1.00 20.01           BBBBATOM         3446         CD2 LEU B 113         5.794 -61.914 -35.538         1.00 20.23           BBBBATOM         3447         C LEU B 113         2.040 -60.521 -37.274         1.00 18.73           BBBBATOM         3448         O LEU B 113         2.143 -61.252 -38.255         1.00 18.44           BBBBATOM         3449         N ALA B 114         0.875 -60.010 -36.892         1.00 18.70           BBBBATOM         3450         CA ALA B 114         -0.334 -60.292 -37.661         1.00 18.70           BBBBATOM         3451         CB ALA B 114         -0.288 -59.578 -39.019         1.00 19.30           BBBBATOM         3453         O ALA B 114         -0.602 -60.167 -40.052         1.00 20.62           BBBBATOM         3454			С			
BBBBATOM       3442       CA       LEU B 113       3.265 -60.184 -36.429 1.00 19.49         BBBBATOM       3443       CB       LEU B 113       3.405 -61.198 -35.289 1.00 18.38         BBBBATOM       3444       CG       LEU B 113       4.777 -61.270 -34.605 1.00 20.59         BBBBATOM       3445       CD1 LEU B 113       4.656 -62.059 -33.311 1.00 20.01         BBBBATOM       3446       CD2 LEU B 113       5.794 -61.914 -35.538 1.00 20.23         BBBBATOM       3447       C       LEU B 113       2.040 -60.521 -37.274 1.00 18.73         BBBBATOM       3448       O       LEU B 113       2.143 -61.252 -38.255 1.00 18.44         BBBBATOM       3449       N       ALA B 114       0.875 -60.010 -36.892 1.00 18.96         BBBBATOM       3450       CA       ALA B 114       -0.334 -60.292 -37.661 1.00 18.70         BBBBATOM       3451       CB       ALA B 114       -1.562 -59.855 -36.889 1.00 16.45         BBBBATOM       3453       O       ALA B 114       -0.288 -59.578 -39.019 1.00 19.30         BBBBATOM       3454       N       ALA B 115       0.082 -58.303 -39.000 1.00 20.57         BBBBATOM       3456       CB       ALA B 115       0.636 -56.108 -39.911 1.00 19.85         BBBBATOM       3456 <td< td=""><td>BBBBATOM</td><td></td><td>0</td><td></td><td></td><td></td></td<>	BBBBATOM		0			
BBBBATOM       3443       CB       LEU B 113       3.405 -61.198 -35.289 1.00 18.38         BBBBATOM       3444       CG       LEU B 113       4.777 -61.270 -34.605 1.00 20.59         BBBBATOM       3445       CD1 LEU B 113       4.656 -62.059 -33.311 1.00 20.01         BBBBATOM       3446       CD2 LEU B 113       5.794 -61.914 -35.538 1.00 20.23         BBBBATOM       3447       C       LEU B 113       2.040 -60.521 -37.274 1.00 18.73         BBBBATOM       3448       O       LEU B 113       2.143 -61.252 -38.255 1.00 18.44         BBBBATOM       3449       N       ALA B 114       0.875 -60.010 -36.892 1.00 18.96         BBBBATOM       3450       CA       ALA B 114       -0.334 -60.292 -37.661 1.00 18.70         BBBBATOM       3451       CB       ALA B 114       -1.562 -59.855 -36.889 1.00 16.45         BBBBATOM       3453       O       ALA B 114       -0.288 -59.578 -39.019 1.00 19.30         BBBBATOM       3454       N       ALA B 115       0.082 -58.303 -39.000 1.00 20.57         BBBBATOM       3456       CB       ALA B 115       0.636 -56.108 -39.911 1.00 19.85         BBBBATOM       3457       C       ALA B 115       0.636 -56.108 -39.911 1.00 21.58						3.16/ -58.828 -35.903 1.00 19.26
BBBBATOM       3444       CG       LEU B 113       4.777 -61.270 -34.605       1.00 20.59         BBBBATOM       3445       CD1 LEU B 113       4.656 -62.059 -33.311       1.00 20.01         BBBBATOM       3446       CD2 LEU B 113       5.794 -61.914 -35.538       1.00 20.23         BBBBATOM       3447       C LEU B 113       2.040 -60.521 -37.274       1.00 18.73         BBBBATOM       3448       O LEU B 113       2.143 -61.252 -38.255       1.00 18.44         BBBBATOM       3449       N ALA B 114       0.875 -60.010 -36.892       1.00 18.96         BBBBATOM       3450       CA ALA B 114       -0.334 -60.292 -37.661       1.00 18.70         BBBBATOM       3451       CB ALA B 114       -1.562 -59.855 -36.889       1.00 16.45         BBBBATOM       3452       C ALA B 114       -0.288 -59.578 -39.019       1.00 19.30         BBBBATOM       3453       O ALA B 114       -0.602 -60.167 -40.052       1.00 20.62         BBBBATOM       3454       N ALA B 115       0.082 -58.303 -39.000       1.00 20.57         BBBBATOM       3456       CB ALA B 115       0.636 -56.108 -39.911       1.00 19.85         BBBBATOM       3456       CB ALA B 115       0.636 -56.108 -39.911       1.00 21.58 <td>BBBBATOM</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BBBBATOM					
BBBBATOM         3445         CD1         LEU         B 113         4.656         -62.059         -33.311         1.00         20.01           BBBBATOM         3446         CD2         LEU         B 113         5.794         -61.914         -35.538         1.00         20.23           BBBBATOM         3447         C         LEU         B 113         2.040         -60.521         -37.274         1.00         18.73           BBBBATOM         3448         O         LEU         B 113         2.143         -61.252         -38.255         1.00         18.74           BBBBATOM         3449         N         ALA         B 114         0.875         -60.010         -36.892         1.00         18.96           BBBBATOM         3450         CA         ALA         B 114         -0.334         -60.292         -37.661         1.00         18.70           BBBBATOM         3451         CB         ALA         B 114         -1.562         -59.855         -36.889         1.00         16.45           BBBBATOM         3453         O         ALA         B 114         -0.288         -59.578         -39.019         1.00         19.30           BBBBATOM         3454						_
BBBBATOM 3446 CD2 LEU B 113 5.794 -61.914 -35.538 1.00 20.23 BBBBATOM 3447 C LEU B 113 2.040 -60.521 -37.274 1.00 18.73 BBBBATOM 3448 O LEU B 113 2.143 -61.252 -38.255 1.00 18.44 BBBBATOM 3449 N ALA B 114 0.875 -60.010 -36.892 1.00 18.96 BBBBATOM 3450 CA ALA B 114 -0.334 -60.292 -37.661 1.00 18.70 BBBBATOM 3451 CB ALA B 114 -1.562 -59.855 -36.889 1.00 16.45 BBBBATOM 3452 C ALA B 114 -0.288 -59.578 -39.019 1.00 19.30 BBBBATOM 3453 O ALA B 114 -0.602 -60.167 -40.052 1.00 20.62 BBBBATOM 3454 N ALA B 115 0.082 -58.303 -39.000 1.00 20.57 BBBBATOM 3455 CA ALA B 115 0.167 -57.516 -40.229 1.00 21.84 BBBBATOM 3456 CB ALA B 115 0.636 -56.108 -39.911 1.00 19.85 BBBBATOM 3457 C ALA B 115 1.140 -58.192 -41.189 1.00 21.58						
BBBBATOM         3447         C         LEU B 113         2.040 -60.521 -37.274         1.00 18.73           BBBBATOM         3448         O         LEU B 113         2.143 -61.252 -38.255         1.00 18.44           BBBBATOM         3449         N         ALA B 114         0.875 -60.010 -36.892         1.00 18.96           BBBBATOM         3450         CA         ALA B 114         -0.334 -60.292 -37.661         1.00 18.70           BBBBATOM         3451         CB         ALA B 114         -1.562 -59.855 -36.889         1.00 16.45           BBBBATOM         3452         C         ALA B 114         -0.288 -59.578 -39.019         1.00 19.30           BBBBATOM         3453         O         ALA B 114         -0.602 -60.167 -40.052         1.00 20.62           BBBBATOM         3454         N         ALA B 115         0.082 -58.303 -39.000         1.00 20.57           BBBBATOM         3455         CA         ALA B 115         0.167 -57.516 -40.229         1.00 21.84           BBBBATOM         3456         CB         ALA B 115         0.636 -56.108 -39.911         1.00 19.85           BBBBATOM         3457         C         ALA B 115         1.140 -58.192 -41.189         1.00 21.58	BBBBATOM					
BBBBATOM         3448         O         LEU B 113         2.143 -61.252 -38.255 1.00 18.44           BBBBATOM         3449         N         ALA B 114         0.875 -60.010 -36.892 1.00 18.96           BBBBATOM         3450         CA ALA B 114 -0.334 -60.292 -37.661 1.00 18.70           BBBBATOM         3451 CB ALA B 114 -1.562 -59.855 -36.889 1.00 16.45           BBBBATOM         3452 C ALA B 114 -0.288 -59.578 -39.019 1.00 19.30           BBBBATOM         3453 O ALA B 114 -0.602 -60.167 -40.052 1.00 20.62           BBBBATOM         3454 N ALA B 115 0.082 -58.303 -39.000 1.00 20.57           BBBBATOM         3455 CA ALA B 115 0.167 -57.516 -40.229 1.00 21.84           BBBBATOM         3456 CB ALA B 115 0.636 -56.108 -39.911 1.00 19.85           BBBBATOM         3457 C ALA B 115 1.140 -58.192 -41.189 1.00 21.58						
BBBBATOM       3449       N       ALA B 114       0.875 -60.010 -36.892       1.00 18.96         BBBBATOM       3450       CA ALA B 114       -0.334 -60.292 -37.661       1.00 18.70         BBBBATOM       3451       CB ALA B 114       -1.562 -59.855 -36.889       1.00 16.45         BBBBATOM       3452       C ALA B 114       -0.288 -59.578 -39.019       1.00 19.30         BBBBATOM       3453       O ALA B 114       -0.602 -60.167 -40.052       1.00 20.62         BBBBATOM       3454       N ALA B 115       0.082 -58.303 -39.000       1.00 20.57         BBBBATOM       3455       CA ALA B 115       0.167 -57.516 -40.229       1.00 21.84         BBBBATOM       3456       CB ALA B 115       0.636 -56.108 -39.911       1.00 19.85         BBBBATOM       3457       C ALA B 115       1.140 -58.192 -41.189       1.00 21.58						
BBBBATOM       3450       CA       ALA       B 114       -0.334       -60.292       -37.661       1.00       18.70         BBBBATOM       3451       CB       ALA       B 114       -1.562       -59.855       -36.889       1.00       16.45         BBBBATOM       3452       C       ALA       B 114       -0.288       -59.578       -39.019       1.00       19.30         BBBBATOM       3453       O       ALA       B 114       -0.602       -60.167       -40.052       1.00       20.62         BBBBATOM       3454       N       ALA       B 115       0.082       -58.303       -39.000       1.00       20.57         BBBBATOM       3455       CA       ALA       B 115       0.167       -57.516       -40.229       1.00       21.84         BBBBATOM       3456       CB       ALA       B 115       0.636       -56.108       -39.911       1.00       19.85         BBBBATOM       3457       C       ALA       B 115       1.140       -58.192       -41.189       1.00       21.58	BBBBATOM		0			
BBBBATOM       3451       CB       ALA       B 114       -1.562       -59.855       -36.889       1.00       16.45         BBBBATOM       3452       C       ALA       B 114       -0.288       -59.578       -39.019       1.00       19.30         BBBBATOM       3453       O       ALA       B 114       -0.602       -60.167       -40.052       1.00       20.62         BBBBATOM       3454       N       ALA       B 115       0.082       -58.303       -39.000       1.00       20.57         BBBBATOM       3455       CA       ALA       B 115       0.167       -57.516       -40.229       1.00       21.84         BBBBATOM       3456       CB       ALA       B 115       0.636       -56.108       -39.911       1.00       19.85         BBBBATOM       3457       C       ALA       B 115       1.140       -58.192       -41.189       1.00       21.58	BBBBATOM		Ŋ			
BBBBATOM       3452       C       ALA B 114       -0.288 -59.578 -39.019 1.00 19.30         BBBBATOM       3453       O       ALA B 114       -0.602 -60.167 -40.052 1.00 20.62         BBBBATOM       3454       N       ALA B 115 0.082 -58.303 -39.000 1.00 20.57         BBBBATOM       3455       CA       ALA B 115 0.167 -57.516 -40.229 1.00 21.84         BBBBATOM       3456       CB       ALA B 115 0.636 -56.108 -39.911 1.00 19.85         BBBBATOM       3457       C       ALA B 115 1.140 -58.192 -41.189 1.00 21.58	BBBBATOM	3450	CA			
BBBBATOM       3453       O       ALA B 114       -0.602 -60.167 -40.052 1.00 20.62         BBBBATOM       3454       N       ALA B 115 0.082 -58.303 -39.000 1.00 20.57         BBBBATOM       3455 CA ALA B 115 0.167 -57.516 -40.229 1.00 21.84         BBBBATOM       3456 CB ALA B 115 0.636 -56.108 -39.911 1.00 19.85         BBBBATOM       3457 C ALA B 115 1.140 -58.192 -41.189 1.00 21.58	BBBBATOM					
BBBBATOM       3454       N       ALA B 115       0.082 -58.303 -39.000 1.00 20.57         BBBBATOM       3455       CA ALA B 115       0.167 -57.516 -40.229 1.00 21.84         BBBBATOM       3456       CB ALA B 115       0.636 -56.108 -39.911 1.00 19.85         BBBBATOM       3457       C ALA B 115       1.140 -58.192 -41.189 1.00 21.58	BBBBATOM		С			-0.288 -59.578 -39.019 1.00 19.30
BBBBATOM       3455       CA       ALA B 115       0.167 -57.516 -40.229       1.00 21.84         BBBBATOM       3456       CB       ALA B 115       0.636 -56.108 -39.911       1.00 19.85         BBBBATOM       3457       C       ALA B 115       1.140 -58.192 -41.189       1.00 21.58	BBBBATOM	3453	0	ALA B	114	
BBBBATOM       3455       CA       ALA       B 115       0.167       -57.516       -40.229       1.00       21.84         BBBBATOM       3456       CB       ALA       B 115       0.636       -56.108       -39.911       1.00       19.85         BBBBATOM       3457       C       ALA       B 115       1.140       -58.192       -41.189       1.00       21.58	BBBBATOM	3454	N	ALA B	115	
BBBBATOM       3456       CB       ALA       B       115       0.636       -56.108       -39.911       1.00       19.85         BBBBATOM       3457       C       ALA       B       115       1.140       -58.192       -41.189       1.00       21.58		3455	CA	ALA B	115	0.167 -57.516 -40.229 1.00 21.84
BBBBATOM 3457 C ALA B 115 1.140 -58.192 -41.189 1.00 21.58	BBBBATOM	3456	CB	ALA B	115	
	BBBBATOM	3457	С	ALA B	115	
	BBBBATOM		0	ALA B	115	0.815 -58.464 -42.345 1.00 22.14

. . . . . .



BBBBATOM	3525	CD2 I	LEU B	124	6.765	-51.313	-36.003	1.00 22.34
BBBBATOM	3526	C I	LEU B	124	8.452	-47.172	-36.633	1.00 22.36
BBBBATOM	3527	0 I	LEU B	124	9 218	-46.660	-37 461	1.00 20.75
BBBBATOM	3528			125		-46.638		1.00 21.40
BBBBATOM	3529			125		-45.413		1.00 21.42
BBBBATOM	3530	CB H	HIS B	125	7.858	-44.218	-35.067	1.00 21.57
BBBBATOM	3531	CG H	HIS B	125	8.432	-42.948	-34.511	1.00 23.73
BBBBATOM	3532	CD2 F		125	8.300	-42.368	-33.295	1.00 22.15
BBBBATOM	3533			125		-42.127		1.00 26.23
					-	-41.095		1.00 24.20
BBBBATOM	3534			125	-			
BBBBATOM	3535			125	9.054			1.00 26.07
BBBBATOM	3536	C H		125	-	-45.642		1.00 21.70
BBBBATOM	3537	O 1:	HIS B	125	8.378			1.00 19.81
BBBBATOM	3538	N G	SLU B	126	10.444	-45.332	-33.186	1.00 21.20
BBBBATOM	3539	CA G	GLU B	126	10.947	-45.452	-31.817	1.00 22.15
BBBBATOM	3540		-	126		-46.246		1.00 21.99
BBBBATOM	3541			126		-46.206		1.00 22.04
						-46.824		1.00 21.43
BBBBATOM	3542			126				
BBBBATOM	3543			126		-48.014		1.00 21.92
BBBBATOM	3544			126		-46.124		1.00 21.08
BBBBATOM	3545		GLU B	126		-44.027		1.00 21.93
BBBBATOM	3546	.0.0	GLU B	126	12.016	-43.300	-31.908	1.00 21.33
BBBBATOM	3547		GLN B	127	10.520	-43.624	-30.259	1.00 22.62
BBBBATOM	3548			127		-42.270		1.00 22.81
BBBBATOM	3549			127		-41.814		1.00 23.56
	3550					-41.783		1.00 24.46
BBBBATOM				127				1.00 24.40
BBBBATOM	3551			127			-29.687	
BBBBATOM	3552	OE1 C	GLN B	127		-43 <i>.</i> 366		1.00 23.78
BBBBATOM	3553	NE2	GLN B	127	7.119	-43.758	-30.797	1.00 24.91
BBBBATOM	3554	C C	GLN B	127	11.874	-42.087	-28.809	1.00 22.39
BBBBATOM	3555			127	12.399	-40.976	-28.682	1.00 22.43
BBBBATOM	3556			128	12.314	-43.173		1.00 22.35
	3557			128		-43.097		1.00 22.96
BBBBATOM						-44.080		1.00 22.85
BBBBATOM	3558			128				
BBBBATOM	3559			128		-43.919		1.00 23.25
BBBBATOM	3560	OD1 F		128		-44.632		1.00 26.04
BBBBATOM	3561	ND2 P	ASN B	128			-24.556	1.00 22.68
BBBBATOM	3562	C F	ASN B	128		-43.314		1.00 23.87
BBBBATOM	3563	0 <i>i</i>	ASN B	128	15.026	-43.856	-28.830	1.00 24.05
BBBBATOM	3564			129	15.798	-42.885		1.00 24.35
BBBBATOM	3565			129	17.203	-43.019		1.00 25.36
	3566		GLY B		17.642	-44.468		1.00 25.97
BBBBATOM					18.643	-44.836		1.00 25.48
BBBBATOM	3567		GLY B					1.00 26.18
BBBBATOM	3568			130	16.886	-45.290	-26.565	
BBBBATOM	3569	CA I	ILE B	130	17.160	-46.716	-26.488	1.00 28.00
BBBBATOM	3570	CB I	ILE B	130 .		-47.145		1.00 28.45
BBBBATOM	3571	CG2 1	ILE B	130		-46.785		1.00 28.52
BBBBATOM	3572	CG1 I	ILE B	130	17.776	-48.642	-24.986	1.00 29.33
BBBBATOM	3573		ILE B			-49.149		1.00 31.39
BBBBATOM	3574		ILE B			-47.435		1.00 27.44
						-47.103		1.00 28.58
BBBBATOM	3575		ILE B					1.00 26.98
BBBBATOM	3576		ALA B			-48.405		
BBBBATOM	3577		ALA B		14.9/8	-49.139	-28.461	1.00 25.88
BBBBATOM	3578	CB A	ALA B	131	15.485	-50.102	-29.525	1.00 25.02
BBBBATOM	3579	C	ALA B	131	14.171	-49.901	-27.413	1.00 25.20
BBBBATOM	3580		ALA B		14.732	-50.544	-26.533	1.00 25.01
BBBBATOM	3581		GLY B		12.851	-49.814	-27.506	1.00 24.52
	3582		GLY B		12 007	-50.532	-26,568	1.00 24.05
BBBBATOM					12 150	-52.019	-26 831	1.00 23.35
BBBBATOM	3583		GLY B					
BBBBATOM ·	3584		GLY B		12.582	-52.419	-21.304	1.00 22.89
BBBBATOM	3585		LEU B			-52.846		1.00 23.38
BBBBATOM			LEU B	133	11.903	-54.293	-26.020	1.00 24.54
	3586	CA I	רביט די	100				
BBBBBATOM					11.328	-54.996	-24.786	1.00 25.48
BBBBATOM	3587	CB I	LEU B	133	11.328	-54.996	-24.786	
BBBBATOM	3587 3588	CB I	LEU B	133 133	11.328 11.388	-54.996 -56.527	-24.786 -24.780	1.00 27.50
	3587	CB I	LEU B	133 133 133 .	11.328 11.388 12.840	-54.996	-24.786 -24.780 -24.866	

11.209 -54.833 -27.276 1.00 22.84 1.00 21.86 11.784 -55.619 -28.027 1.00 21.72 9.975 -54.401 -27.499 9.202 -54.860 -28.639 1.00 21.22 1.00 20.99 7.716 -54.509 -28.449 1.00 20.94 7.257 -55.075 -27.210 6.872 -55.073 -29.600 1.00 20.64 9.693 -54.326 -29.986 1.00 20.62 9.843 -55.091 -30.932 1.00 20.33 1.00 21.24 .9.932 -53.021 -30.075 1.00 20.50 10.407 -52.419 -31.324 10.637 -50.911 -31.142 1.00 19.58 1.00 19.93 9.457 -50.058 -31.597 1.00 21.78 9.454 -48.837 -31.390 8.467 -50.677 -32.219 1.00 17.21 11.724 -53.064 -31.767 1.00 20.78 11.945 -53.290 -32.953 1.00 20.41 12.595 -53.366 -30.809 1.00 21.46 13.886 -53.949 -31.144 1.00 22.79 14.713 -54.196 -29.879, 1.00 24.70 16.183 -54.424 -30.178 1.00 27.75 16.998 -54.494 -28.902 1.00 30.17 18.479 -54.671 -29.203 1.00 32.33 19.278 -54.641 -27.944 1.00 33.37 13.793 -55.229 -31.966 1.00 23.46 14.561 -55.407 -32.912 1.00 23.71 12.868 -56.127 -31.633 1.00 21.78 1.00 22.06 12.753 -57.345 -32.424 12.361 -58.552 -31.553 1.00 21.20 10.990 -58.525 -30.922 1.00 20.23 1.00 18.68 9.748 -58.877 -31.544 B.743 -58.780 -30.555 1.00 18.97 9.383 -59.270 -32.840 1.00 19.75 1.00 19.62 10.696 -58.231 -29.618 9.349 -58.385 -29.390 1.00 19.31 7.401 -59.058 -30.821 1.00 18.18 8.046 -59.549 -33.107 1.00 18.87 1.00 18.94 7.072 -59.440 -32.099 11.768 -57.202 -33.574 1.00 21.75 11.936 -57.822 -34.623 1.00 21.76 1:00 21.61 10.741 -56.381 -33.386 9.744 -56.188 -34.431 1.00 23.15 8.618 -55.305 -33.886 1.00 23.87 1.00 26.48 7.312 -55.155 -34.664 1.00 25.34 6.672 -56.508 -34.915 1.00 25.90 6.383 -54.267 -33.851 1.00 23.07 10.384 -55.558 -35.676 1.00 22.68 9.958 -55.801 -36.809 1.00 23.34 11.423 -54.763 -35.453 1.00 25.29 12.128 -54.092 -36.542 13.298 -53.287 -35.984 1:00 24.97 1.00 26.83 12.624 -55.064 -37.610 12.829 -54.672 -38.754 1.00 27.29 12.801 -56.332 -37.241 1.00 27.38 13.279 -57.337 -38.182 1.00 28.05 1.00 29.91 13.893 -58.501 -37.401 15.134 -58.057 -36.635 1.00 31.62 15.719 -59.149 -35.757 1.00 33.53 16.974 -58.634 -35.055 1.00 34.46 17.692 -59.713 -34.320 1.00 36.17 1.00 27.83 12.254 -57:833 -39.212 12.602 -58.562 -40.142 1.00 27.80 10.992 -57.445 -39.052 1.00 26.40 9.963 -57.818 -40.016 1.00 26.09 8.854 -58.721 -39.405 1.00 26.39 9.401 -60.118 -39.145 1.00 28.33

BBBBATOM	3657	CG1	ILE B	141	8.298 -58.092 -38.127 1.00 26.45
BBBBATOM	3658	CD1	ILE B	141	7.136 -58.845 -37.549 1.00 26.95
BBBBATOM	3659	С	ILE B	141	9.316 -56.542 -40.530 1.00 25.81
BBBBATOM	3660	ŏ	ILE B	141	8.353 -56.586 -41.305 1.00 26.10
BBBBATOM	3661	N	ALA B	142	9.856 -55.405 -40.097 1.00 23.78
BBBBATOM	3662	CA	ALA B	142	9.331 -54.107 -40.498 1.00 25.03
BBBBATOM	3663	CB	ALA B	142	9.717 -53.046 -39.466 1.00 24.89
BBBBATOM	3664	С	ALA B	142	9.816 -53.680 -41.880 1.00 25.08
BBBBATOM	3665	0	ALA B	142	10.973 -53.894 -42.237 1.00 24.93
BBBBATOM	3666	N	THR B	143	8.920 -53.075 -42.651 1.00 25.03
BBBBATOM	3667	CA	THR B	143	9.262 -52.595 -43.984 1.00 26.10
BBBBATOM	3668	СВ	THR B	143	7.987 -52.318 -44.816 1.00 25.75
BBBBATOM	3669	OG1	THR B	143	7.249 -53.534 -44.970 1.00 25.54
BBBBATOM	3670	CG2	THR B	143	8.345 -51.782 -46.207 1.00 26.92
BBBBATOM	3671	C	THR B	143	10.079 -51.310 -43.863 1.00 26.63
BBBBATOM	3672	ŏ	THR B	143	10.996 -51.061 -44.656 1.00 27.13
BBBBATOM	3673	N	LYS B	144	9.753 -50.506 -42.853 1.00 24.95
					10.436 -49.238 -42.618 1.00 24.73
BBBBATOM	3674	CA	LYS B	144	
BBBBATOM	3675	СВ	LYS B	144	9.688 -48.103 -43.329 1.00 26.20
BBBBATOM	3676	CG	LYS B	144	10.202 -46.710 -43.013 1.00 27.44
BBBBATOM	3677	CD	LYS B	144	11.602 -46.480 -43.558 1.00 29.01
BBBBATOM	3678	CE,	LYS B	144	12.055 -45.051 -43.293 1.00 29.74
BBBBATOM	3679	ΝZ	LYS B	144	13.406 -44.774 -43.854 1.00 31.29
BBBBATOM	3680	С	LYS B	144	10.506 -48.943 -41.125 1.00 24.61
BBBBATOM	3681	0	LYS B	144	9.493 -49.008 -40.423 1.00 23.36
BBBBATOM	3682	N	VAL B	145	11.707 -48.623 -40.656 1.00 23.68
BBBBATOM	3683	CA	VAL B	145	11.947 -48.311 -39.252 1.00 23.62
BBBBATOM	3684	CB	VAL B	145	12.981 -49.279 -38.617 1.00 23.66
BBBBATOM	3685	CG1	VAL B	145	13.083 -49.014 -37.114 1.00 24.44
	3686				12.589 -50.724 -38.878 1.00 23.51
BBBBATOM		CG2	VAL B	145	
BBBBATOM	3687	C	VAL B	145	
BBBBATOM	3688	0	VAL B	145	13.473 -46.545 -39.808 1.00 23.68
BBBBATOM	3689	N	MET B	146	11.902 -46.103 -38.251 1.00 23.84
BBBBATOM	3690	CA	MET B	146	12.338 -44.736 -37.993 1.00 23.15
BBBBATOM	3691	СВ	MET B	146	11.274 -43.729 -38.448 1.00 24.72
BBBBATOM	3692	CG	MET B	146	11:130 -43.577 -39.970 1.00 21.76
BBBBATOM	3693	SD	MET B	146	9.649 -42.636 -40.468 1.00 25.05
BBBBATOM	3694	CE	MET B	146	8.376 -43.846 -40.325 1.00 21.96
BBBBATOM	3695	C		146	12.567 -44.593 -36.488 1.00 24.69
BBBBATOM	3696	Ö	MET B	146	11.963 -45.311 -35.689 1.00 22.43
BBBBATOM	3697	N	GLN B	147	13.456 -43.678 -36.112 1.00 23.37
BBBBATOM	3698	CA	GLN B	147	13.762 -43.418 -34.712 1.00 25.05
BBBBATOM	3699	CB	GLN B	147	15.067 -44.114 -34.301 1.00 24.99
			GLN B		16.259 -43.750 -35.169 1.00 26.10
BBBBATOM	3700	CG		147	<del></del>
BBBBATOM	3701	CD	GLN B		
BBBBATOM	3702		GLN B		18.425 -44.671 -35.637 1.00 28.62
BBBBATOM	3703	NE2			17.615 -44.966 -33.558 1.00 26.05
BBBBATOM	3704	С	GLN B		13.880 -41.911 -34.515 1.00 26.28
BBBBATOM	3705	0	GLN B		14.292 -41.177 -35.430 1.00 25.02
BBBBATOM	3706	N	ALA B		13.518 -41.452 -33.323 1.00 26.58
BBBBATOM	3707	CA	ALA B	148	13.559 -40.032 -33.009 1.00 26.88
BBBBATOM	3708	СВ	ALA B	148	12.853 -39.776 -31.685 1.00 26.71
BBBBATOM	3709	Ċ	ALA B	148	14.983 -39.502 -32.954 1.00 27.88
BBBBATOM	3710	Ō	ALA B		15.293 -38.463 -33.545 1.00 27.38
BBBBATOM	3711	N	PHE B		15.847 -40.219 -32.242 1.00 27.92
BBBBATOM	3712	CA	PHE B		17.239 -39.820 -32.098 1.00 29.39
					17.596 -39.631 -30.617 1.00 28.95
BBBBATOM	3713	CB	PHE B		
BBBBATOM	3714	CG	PHE B		16.549 -38.910 -29.821 1.00 28.91
BBBBATOM	3715	CD1		149	15.745 -39.603 -28.929 1.00 27.96
BBBBATOM	3716	CD2	PHE B		16.372 -37.537 -29.957 1.00 29.03
BBBBATOM	3717	CE1	PHE B	149	14.779 -38.945 -28.178 1.00 28.64
BBBBATOM	3718	CE2	PHE B	149	15.406 -36.866 -29.211 1.00 30.10
вввватом	3719	CZ	PHE B		14.608 -37.575 -28.317 1.00 29.02
BBBBATOM	3720	C	PHE B		18.153 -40.893 -32.673 1.00 30.03
BBBBATOM	3721	Ö	PHE B		17.750 -42.036 -32.849 1.00 30.05
			PRO B		19.401 -40.530 -32.991 1.00 31.73
BBBBATOM	3722	N	EKO B	T 7 O	19.401 40.000 02.991 1.00 91.79

•									
BBBBATOM	3723	CD PRO	O B 150		20 018	-39.192	-33.01	8 1.00	32.39
BBBBATOM	3724		D B 150		20.010	-41.541	-33.53	5 1.00	31.87
BBBBBATOM	3725		D B 150		21 418	-40.698	-34.15	4 1.00	33.07
BBBBATOM	3726		D B 150		21.480	-39.517	-33.23	8 1.00	33.70
BBBBATOM	3727		O B 150		20.809	-42.411	-32.37	6 1.00	31.93
BBBBATOM	3728		O B 150		20.873	-41.945	-31.23	9 1.00	31.39
BBBBATOM	3729	-	Y B 151		21.130	-43.671	-32.65	1 1.00	31.67
BBBBATOM	3730		Y·B 151		21.629	-44.537	-31.59	5 1.00	32.62
BBBBATOM	3731		Y B 151		20.717	-45.655	-31.11	2 1.00	32.88
	3732		Y B 151		21.206	-46.690	-30.65	7 1.00	32.98
BBBBATOM	3733		A B 152		19.403	-45.458	-31.19	6 1.00	32.24
BBBBATOM	3734		A B 152		18.447	-46.476	-30.75	3 1.00	32.71
BBBBATOM	3735		A B 152			-45.924			31.78
BBBBATOM	3736		A B 152			-47.708			33.00
BBBBATOM	3737	O AL	A B 152		18.528	-48.842	-31.16		32.08
BBBBATOM	3738		Е В 153		18.732	-47.462	-32.94	1 1.00	33.66
BBBBATOM	3739		E B 153		18.925	-48.506	-33.93		34.83
BBBBATOM	3740	-	E B 153		17.734	-48.611	-34.89	3 1.00	33.64 32.97
BBBBATOM	3741		E B 153		16.518	-49.244	-34.28	9 1.00	32.97
BBBBATOM	3742	CD1 PH				-48.461			
BBBBATOM	3743	-	E B 153		16.421	-50.628 -49.049	734.10		
BBBBATOM	3744		E B 153	*	14.339	-51.224	-33.20	6 1.00	31.75
BBBBATOM			E.B 153		10.294	-50.435	-33.02	6 1.00	
BBBBATOM	3746		E B 153		20 155	-48.075	-34.72	3 1 00	36.90
BBBBATOM	3747		E B 153		20.133	-46.878	-34 R7		
BBBBATOM	3748		E B 153 O B 154		20.407	-49.040	-35.22	0 1.00	
BBBBATOM	3749 3750		O B 154		20.345	-50.482	-34.93		38.37
BBBBATOM BBBBBATOM	3751		O B 154		22.158	-48.751	-35.99	3 1.00	
BBBBATOM	3752		O B 154		22.706	-50.143	-36.30	1.00	39.31
BBBBBATOM	3753		О В 154		22.274	-50.941	-35.10	8 1.00	39.50
BBBBATOM	3754		O B 154		21.964	-47.921	-37.26	66 1.00	39.90
BBBBATOM	3755		O B 154		22.697	-46.958	-37.49	6 1.00	39.89
BBBBATOM	3756		N B 155		20.979	-48.280	-38.08		40.46
BBBBATOM	3757		N B 155		20.765	-47.568	39.34		41.08
BBBBATOM	3758	CB AS	N B 155			-48.488			43.63
BBBBATOM	3759	CG AS	N B 155		22.618	-48.753	-40.58		45.00
BEBBATOM .	3760	OD1 AS			23.401	-47.861	-40.9	22 1.00	46.41
BBBBATOM	3761		N B 155		23.019	-49.978	-40.25		45.20
BBBBATOM	3762		N B 155		19.393	-46.966	-39.6	27 1.00	40.73
BBBBATOM	3763		N B 155		19.145	-46.501	20.7		
BBBBATOM	3764		A~B 156		18.507	-46.956 -46.407	-30.0	13 1 00	37.55
BBBBATOM	3765.		A B 156		17.170	-46.689	-37 6	18 1 00	37.34
BBBBATOM	3766		LA B 156 LA B 156		17 209	-44.909	-39.1	23 1.00	
BBBBATOM	3767 3768	C AI	A B 156		17 934	-44.171	-38.4	59 1.00	36.95
BBBBATOM	3769	O AI N GI	U B 157		16 428	-44.464	-40.10		35.76
BBBBATOM	3770	CA GI	U B 157		16.367	-43.044	-40.4		34.40
	3771		U B 157		15.375	-42.815	-41.6		34.84
EBBBATOM	3772		LU B 157.		15.246	-41.349	-42.0	55 1.00	34.91
BBBBATOM	3773		U B 157		14.171	-41:123	-43.1	17 1.00	36.66
BBBBATOM	3774.		U B 157		13.952	~39.951	-43.5	09 1.00	
	. 3775		LU B 157		13.543	-42,107	-43.5	63 1.00	35.62
	. 3776		LU B 157		15.922	-42.249	39.2	31 1.00	33.89
	3777	O G1	LU B 157		14.941	-42.605	-38.5		33.04
BBBBATOM	. 3778	N V	AL B 158		16.655	-41.185	-38.9		32.73
BBBBATOM	3779		AL B 158		16.337	-40.344	-37.7	64 1.00	31.16
BBBBATOM .		CB V	AL B 158		17.606	-39.630	-37.2		31.85
BBBBATOM	⁻ 3781		AL' B 158	•		-38.729	-36.0		31.22
BBBBATOM	378'2		AL B 158		18.574	-40.752	-36.7		31.41
BBBBATOM	3783		AL B 158		15.352	-39.260	-38.1	/8 1.00	30.27
BBBBATOM	3784		AL B 158		15.649	-38.445	-39.0		30.18
	. 3785		AL B 159		14.186	-39.241	-3/.5		28.57
BBBBATOM	. 3786		AL B 159		13.155	-38.265	-31.8		28.10
BBBBATOM	3787		AL B 159		11.942	-38.963	-38.5		27.81
BBBBATOM	3788	. CG1 V	AL B 159		12.365	-39.667	-39.8	19 1.00	28.61
			•		•			•	•

. . . .

BBBBATOM	3789	CG2	VAL B	159	11.336	-39.962	-37.548	1.00 27.61
BBBBATOM	3790	С	VAL B		12.636	-37.430	-36.725	1.00 27.64
BBBBATOM	3791	ŏ	VAL B	-		-36.591		1.00 27,97
BBBBATOM	3792		GLY B			-37.662		1.00 27.60
		N						1.00 26.93
BBBBATOM	3793	CA	GLY B			-36.921		
BBBBATOM	3794	С	GLY B			-37.312		1.00 26.66
BBBBATOM	3795	0	GLY B	160	10.757	-38.275	-34.384	1.00 26.71
BBBBATOM	3796	N	ASN B	161	10.797	-36.569	-32.914	1.00 25.68
BBBBATOM	3797	CA	ASN B		9.456	-36.807	-32.375	1.00 25.27
BBBBATOM	3798	CB	ASN B			-36.963		1.00 23.89
BBBBATOM	3799	CG	ASN B			-38.285		1.00 22.91
						-39.335		1.00 22.70
BBBBATOM	3800	OD1						
BBBBATOM	3801	ND2				-38.243		1.00 22.71
BBBBATOM	3802	С	ASN B				-32.670	1.00 25.39
BBBBATOM	3803	0	ASN B	161	9.028	-34.499		1.00 25.45
BBBBATOM	3804	N	PRO B	162		-35.849		1.00 26.08
BBBBATOM	3805	CD	PRO B	162	6.533	-37.140	-32.710	1.00 25.20
BBBBATOM	3806	CA	PRO B			-34.747		1.00 26.14
BBBBATOM	3807	CB	PRO B			-35.431		1.00 25.76
	3808	CG	PRO B			-36.821		1.00 26.48
BBBBATOM							-31.866	1.00 27.00
BBBBATOM	3809	C	PRO B					
BBBBATOM	3810	0	PRO B			-34.102		1.00 25.08
BBBBATOM	3811.	N,	VAL B			-32.446		1.00 27.54
BBBBATOM	3812	CA	VAL E	163		-31.379		1.00 27.75
BBBBATOM	3813	CB	VAL E	163		-30.561		1.00 28.81
BBBBATOM	3814	CG1	VAL E	163	7.839	-29.451	-30.381	1.00 28.20
BBBBATOM	3815	CG2	VAL E			-31.471		1.00 27.87
BBBBATOM	3816	C	VAL E			-30.440		1.00 29.43
			VAL E			-30.227		1.00 28.49
BBBBATOM	3817	0				-29.891		1.00 29.93
BBBBATOM	3818	N	ARG E					
BBBBATOM	3819	CA	ARG E			-28.953		1.00 32.36
BBBBATOM	3820	CB	ARG E			-28.411		1.00 34.56
BBBBATOM	3821	CG	ARG E	164		-29.439		1.00 38.34
BBBBATOM	3822	CD	ARG E	164		-28.889		1.00 41.59
BBBBATOM	3823	NE	ARG E	164	2.481	-27.555	-26.299	1.00 44.08
вввватом	3824	CZ	ARG E	164	2.307	-26.919	-25.144	1.00 45.79
BBBBATOM	3825	NH1	ARG E			-27.499		1.00 46.89
BBBBATOM	3826	NH2	ARG E			-25.705		1.00 47.50
						-27.775		1.00 31.56
BBBBATOM	3827	С	ARG E		5.000	-27.212	_31.101	1.00 30.03
BBBBATOM	3828	0	ARG E			-27.401		1.00 32.06
BBBBATOM	3829	Ŋ	THR E					
BBBBATOM	3830	CA	THR E			-26.307		1.00 31.74
BBBBATOM	3831	СВ	THR E			-26.104	-33.678	1.00 32.51
BBBBATOM	3832	OG1	THR E	165		-27.375		1:00 32.54
BBBBATOM	3833	CG2	THR E	165		-25.239		1.00 32.14
BBBBATOM	3834	С	THR E	165	3.445	-24.976	-32.295	1.00 31.49
BBBBATOM	3835	0	THR E		4.236	-24.238	-32.872	1.00 31.48
BBBBATOM	3836	N	ASP E			-24.664		1.00 30.86
BBBBATOM	3837	CA	ASP E			-23.404		1.00 30.64
BBBBATOM	3838	CB	ASP E			-23.163		1.00 33.08
						-24.400		1.00 35.24
BBBBATOM	3839	CG	ASP E					
BBBBATOM	3840		ASP E			-24.373		1.00 38.19
BBBBATOM	3841	OD2				-25.393		1.00 37.17
BBBBATOM	3842	С	ASP E	166		-23.338		1.00 28.64
BBBBATOM	3843	0	ASP E	166		-22.259		1.00 27.92
BBBBATOM	3844	N	VAL E		5.328	-24.485	-29.773	1.00 27:08
BBBBATOM	3845		VAL E			-24.503		1.00 25.91
BBBBATOM	3846	CB	VAL E			-25.824		1.00 25.96
					D E07	-25.844	-28 586	1.00 24.67
BBBBATOM	3847	CG1						1.00 24.07
BBBBATOM	3848	CG2			0.482	-25.964	20.330	
BBBBATOM	3849	С	VAL E		1.548	-24.361	-30./36	1.00 25.54
BBBBATOM	3850	0	VAL E			-23.642		1.00 25.58
BBBBATOM	3851	N	LEU B	168		-25.059		1.00 26.75
BBBBATOM	3852	CA	LEU E			-25.002		1.00 28.46
BBBBATOM	3853	СВ	LEU E		7.085	-25.930	-34.080	1.00 28.40
BBBBATOM	3854	CG	LEU E			-27.440		1.00 28.67
2,220,1100								

~ 33



	BBBBATOM BBBBATOM	3855 3856		LEU B 168 LEU B 168			-28.161 -27.868		1.00.30.19	
	BBBBATOM	3857	С.	LEU B 168		7.766		-33.632	1.00 29.14	
	BBBBATOM BBBBATOM	3858 _. 3859	И	LEU B 168 ALA B 169		6.741	-23.100	-34.369	1.00 29.37	
	BBBBATOM	3860	CA	ALA B 169		6.580	-21.455	-33.756	1.00 31.43	
	BBBBATOM	3861	СВ	ALA B 169			-21.030 -20.427	-33.624 -33.078	1.00 33.26 1.00 32.03	
	BBBBATOM BBBBATOM	3862 3863	CO	ALA B 169 ALA B 169		7.562	-19.284		1.00 31.95	
	BBBBATOM	3864	N	LEU B 170		8.131	-20.824	-31.993	1.00 30.53	
	BBBBATOM	3865	CA	LEU B 170 LEU B 170		9.002	-19.905 -20.595	-31.268	1.00 29.60 1.00 28.66	
	BBBBATOM BBBBATOM	3866. 3867	CB CG	LEU B 170		8.623	-20.954	-28.923	1.00 28.67	
	BBBBATOM	3868	CD1	LEU B 170		9.322	-21.845	-27.907	1.00 27.66 1.00 27.21	
	BBBBATOM	3869 3870	CDS	LEU B 170 LEU B 170		8.096	-19.675 -19.363	-28.277	1.00 27.21	
	BBBBATOM BBBBATOM	3871	0	LEU B 170		10.670	-20.064	-32.983	1.00 29.07	
	BBBBATOM	3872	N	PRO B 171		10.525	-18.099 -17.138	-31.897	1.00 29.71 1.00 30.67	
	BBBBATOM BBBBATOM	3873 3874	CD CA	PRO B 171 PRO B 171		11.611	-17.130	-32.642	1.00 30.11	
	BBBBBATOM	3875	CB	PRO B 171		11.665	-16.054	-32.033	1.00 29.54	
	BBBBATOM	3876	CG,	PRO B 171			-15.810 -18.226		1.00 30.96 1.00 30.39	
	BBBBATOM BBBBBATOM	3877 3878	.C,	PRO B 171 PRO B 171	~ ·	12.999	-18.933	-31.363	1.00 30.16	
	BBBBATOM	3879	N	LEU B 172		13.883	-18.097	-33.263	1.00 28.62	
	BBBBATOM	3880	CA CB	LEU B 172 LEU B 172		15.15/	-18.780 -18.557	-34.247	1.00 28.33	
	BBBBATOM BBBBATOM	3881 3882	CG	LEU B 172		15.800	-19.149	-35.628	1.00 32.18	
	BBBBATOM	3883	CD1			15.593	-20.656 -18.476	-35.510	1.00 32.75 1.00 33.92	
	BBBBATOM BBBBBATOM	3884 3885	CDS	LEU B 172 LEU B 172		14.573	-18.206	-31.805		
	BBBBATOM	3886		LEU B 172		15.478	-17.093	-31.388	1.00 26.45	
	BBBBATOM	3887 3888	N CD	PRO B 173 PRO B 173		16.735	-18.959 -20.345	-31.190	1.00 24.63	
	BBBBATOM BBBBBATOM	3889	CA	PRO B 173		17.450	-18.550	-29.977	1.00 25.25	
	BBBBATOM	3890	CB	PRO B 173		18.512	-19.635 -20.831	-29.827	1.00 25.04 1.00 24.90	
	BBBBATOM BBBBATOM	3891 3892	CG C	PRO B 173 PRO B 173		18.066	-17.145	-29.999	1.00 24.24	
	BBBBATOM	3893	.0	PRO B 173		17.791	-16.337	-29.116	1.00 22.89	
	BBBBATOM	3894 3895	N CA	GLN B 174 GLN B 174		18.899	-16.850 -15.527	-30.995	1.00 24.48	
	BBBBATOM BBBBATOM	3896	СВ	GLN B 174		20.384	-15.382	-32.313	1.00 26.10	)
	BBBBATOM	3897	CG	GLN B 174		21.173	3 -14.070 5 -12.883	-32.382 -32.812	1.00 26.21	
	BBBBATOM	3898 3899	CD OE1	GLN B 174 GLN B 174		20.634	-11.732	-32.491	1.00 26.98	}
	BBBBATOM	3900		GLN B 174		19.258	3 -13.154	-33.550	1.00 25.58	,
	BBBBATOM	3901	C	GLN B 174 GLN B 174		18.485	5 -14.408 5 -13.432	-30.981	1.00 25.33	
•	BBBBATOM. BBBBATOM	3902 3903	0 N	GLN B 174	•	17.402	2 -14.555	-31.726	1.00 26.49	3
	BBBBATOM	3904	CA	GLN B 175		16.365	5 -13.525 3 -13.819	-31.718	1.00 28.47	
	BBBBATOM BBBBATOM	3905 3906	CB .CG	.GLN B 175 GLN B 175		14.206	5 -12.805	-32.888	1.00 33.70	
	BBBBBATOM	3907	CD	GLN B 175		13.324	-13.006	-34.109		
	BBBBATOM	3908		GLN B 175		12.24	7 -12.422 5 -13.828	-34.215	1.00 38.98	
	BBBBATOM BBBBATOM	3909 3910	NE ₂	GLN B 175 GLN B 175		15.678	3 -13.430	-30.355	1.00 27.54	
•	BBBBATOM	3911	ō	GLN B 175		15.523	1 - 12.346	-29.796	1.00 26.49	
	BBBBATOM	3912	Ņ	ARG B 176		15.288	3 -14.578 1 -14.635	-29.818	1.00 28.19	
	BBBBATOM BBBBATOM.	3913 3914	CA. CB			14.183	3 -16.089	-28.260	1.00.32.12	2
	BBBBATOM	3915	CG	ARG B 176		13.78	3 -16.410	-26.825	1.00 34.93	
	BBBBATOM	3916		ARG B 176 ARG B 176		12.879	9 -17.638 1 -18.749	-20.779	1.00 36.93	
	BBBBATOM	3917 3918	NE CZ	ARG B 176		14.45	3 -19.480	-27.231	1.00 40.44	4
	BBBBATOM	3919	NH:	1 ARG B 176		15,12	1: -19.233	-26.107	1.00 41.22	
	BBBBATOM	3920	NH	2 ARG B 176		14.86	6 -20.451	-20.040	1.00 42.73	•

BBBBATOM	3921	С	ARG B	176	15.449 -14.094 -27.357 1.00 28.58
BBBBATOM	3922	Õ	ARG B		14.933 -13.414 -26.467 1.00 26.70
BBBBATOM	3923	N		177	16.744 -14.382 -27.384 1.00 28.60
BBBBATOM	3924	CA		177	17.673 -13.970 -26.331 1.00 29.90
BBBBATOM	3925	CB	LEU B		18.729 -15.071 -26.140 1.00 30.05
BBBBATOM	3926	CG		177	18.323 -16.402 -25.484 1.00 31.35
BBBBATOM	3927		LEU B		16.893 -16.755 -25.807 1.00 31.63
BBBBATOM	3928		LEU B		19.266 -17.504 -25.948 1.00 30.16
BBBBATOM	3929	C		177	18.384 -12.637 -26.594 1.00 30.48
BBBBATOM	3930	Õ	LEU B		19.148 -12.161 -25.752 1.00 30.67
BBBBATOM	3931	N		178	18.128 -12.036 -27.752 1.00 31.18
BBBBATOM	3932	CA		178	18.766 -10.776 -28.131 1.00 30.78
BBBBATOM	3933	СВ	ALA B		18.238 -10.319 -29.496 1.00 32.30
BBBBATOM	3934	С	ALA B	178	18.639 -9.636 -27.123 1.00 31.11
BBBBATOM	3935	0	ALA B	178	17.537 -9.253 -26.726 1.00 30.59
BBBBATOM	3936	N	GLY B	179	19.792 -9.105 -26.718 1.00 30.45
BBBBATOM	3937	CA	GLY B	179	19.846 -7.993 -25.784 1.00 30.10
BBBBATOM	3938	С	GLY B	179	19.392 -8.298 -24.374 1.00 29.54
BBBBATOM	3939	0	GLY B	179	19.288 -7.405 -23.537 1.00 28.79
BBBBATOM	3940	N	ARG B	180	19.129 -9.568 -24.101 1.00 29.31
BBBBATOM	3941	CA		180	18.676 -9.965 -22.787 1.00 28.97
BBBBATOM	3942	CB,		180	18.120 -11.391 -22.868 1.00 28.73
BBBBATOM	3943 -	CG	ARG B		17.281 -11.815 -21.693 1.00 25.80
BBBBATOM	3944	CD	ARG B		16.813 -13.245 -21.869 1.00 24.21
BBBBATOM	3945	NE	ARG B		15.595 -13.363 -22.665 1.00 23.27
BBBBATOM	3946	CZ	ARG B		14.898 -14.489 -22.776 1.00 24.65 15.316 -15.579 -22.146 1.00 21.06
BBBBATOM	3947	NHl		180	
BBBBATOM	3948			180	
BBBBATOM	3949	C	ARG B		19.818 -9.874 -21.769 1.00 30.52 20.916 -10.398 -21.980 1.00 30.32
BBBBATOM	3950	0	ARG B		
BBBBATOM	3951	N		181	19.562 -9.171 -20.677 1.00 30.40 20.545 -9.027 -19.621 1.00 31.79
BBBBATOM	3952	CA	GLU B		21.157 -7.617 -19.650 1.00 34.59
BBBBATOM	3953 3954	CB CG	GLU B	181 181	22.130 -7.422 -20.826 1.00 38.85
BBBBATOM	3954	CD		181	22.659 -6.001 -20.957 1.00 41.19
BBBBATOM BBBBATOM	3956	OE1		181	23.274 -5.495 -19.996 1.00 43.24
BBBBATOM	3957	_	GLU B		22.467 -5.392 -22.032 1.00 43.11
BBBBATOM	3958	C	GLU B		19.815 -9.307 -18.313 1.00 31.51
BBBBATOM	3959	Ö		181	18.605 -9.543 -18.313 1.00 33.44
BBBBATOM	3960	N	GLY B		20.535 -9.314 -17.203 1.00 29.65
BBBBATOM	3961	CA	GLY B	182	19.871 -9.586 -15.943 1.00 27.75
BBBBATOM	3962	С	GLY B	182	19.989 -11.051 -15.565 1.00 25.32
BBBBATOM	3963	0	GLY B	182	20.573 -11.830 -16.311 1.00 22.00
BBBBATOM	3964	N	PRO B	183	19.414 -11.455 -14.423 1.00 23.79
BBBBATOM	3965	CD	PRO B		18.562 -10.609 -13.572 1.00 24.07
BBBBATOM	3966	CA	PRO B		19.450 -12.832 -13.913 1.00 22.93
BBBBATOM	3967	CB	PRO B		18.480 -12.796 -12.727 1.00 23.23
BBBBATOM	3968	CG			18.549 -11.381 -12.271 1.00 24.61
BBBBATOM	3969	С	PRO B		19.063 -13.912 -14.905 1.00 21.77 18.117 -13.758 -15.683 1.00 21.04
BBBBATOM	3970	0	PRO B		18.117 -13.758 -15.683 1.00 21.04 19.805 -15.011 -14.867 1.00 19.40
BBBBATOM	3971	N.	VAL B		19.524 -16.146 -15.729 1.00 18.01
BBBBATOM	3972	CA	VAL B		20.597 -17.248 -15.549 1.00 17.45
BBBBATOM	3973 3974	CB	VAL B		20.171 -18.534 -16.249 1.00 15.59
BBBBATOM	-		VAL B		21.931 -16.753 -16.121 1.00 18.46
BBBBATOM BBBBATOM	3975 3976	CGZ	VAL B		18.155 -16.650 -15.283 1.00 18.17
BBBBATOM	3977	0	VAL B		17.931 -16.882 -14.092 1.00 16.37
BBBBATOM	3978	N	ARG B		17.244 -16.771 -16.245 1.00 17.91
BBBBATOM	3979	CA	ARG B		15.873 -17.216 -16.011 1.00 17.62
BBBBATOM	3980	CB	ARG B		14.966 -16.622 -17.092 1.00 17.65
BBBBATOM	3981	CG	ARG B		15.036 -15.110 -17.160 1.00 18.62
BBBBATOM	3982	CD	ARG B		14.344 -14.624 -18.420 1.00 20.39
BBBBATOM	3983	NE	ARG B		14.307 -13.173 -18.516 1.00 19.72
BBBBATOM	3984	CZ	ARG B		13.647 -12.520 -19.466 1.00 20.23
BBBBATOM	3985		ARG B		12.977 -13.197 -20.391 1.00 19.85
BBBBATOM	3986		ARG B		13.650 -11.197 -19.487 1.00 23.44

s /2

BBBBATOM	3987	C ·	ARG B 185		15.804 -18.740 -16.037 1.00 16.88
BBBBATOM	3988	0	ARG B 185		15.971 -19.367 -17.087 1.00 15.75
BBBBATOM	3989	N	VAL B 186		15.566 -19.326 -14.870 1.00 15.97
			VAL B 186		15.508 -20.771 -14.741 1.00 16.47
BBBBATOM	3990	CA			
BBBBATOM	3991	CB	VAL B 186		
BBBBATOM	3992	CG1	:VAL B 186		16.316 -22.770 -13.448 1.00 17.66
BBBBATOM	3993	CG2	VAL B 186		17.652 -20.626 -13.430 1.00 16.97
BBBBATOM	3994	C·	VAL B -186		14.076 -21.282 -14.644 1.00 16.41
BBBBATOM	3995	0.	VAL B 186		13.343 -20.920 -13.732 1.00 18.33
BBBBATOM	3996	N	LEU B -187		13.695 -22.128 -15.588 1.00 15.92
BBBBATOM	3997	CA	LEU B 187		12.361 -22.710 -15.604 1.00 16.75
					11.813 -22.701 -17.035 1.00 16.85
BBBBATOM	3998	CB	LEU B 187		10.445 -23.340 -17.276 1.00 18.63
BBBBATOM	3999	CG	LEU B 187		· · ·
BBBBATOM	4000		LEU B 187		J. 500 EL
BBBBATOM	4001	CD2	LEU B 187		10.198 -23.449 -18.783 1.00 19.11
BBBBATOM	4002	С	LEU B 187		12.450 -24.146 -15.085 1.00 16.85
BBBBATOM	4003	0	LEU B 187		13.115 -24.982 -15.688 1.00 17.18
BBBBATOM	4004	N	VAL B 188		11.788 -24.426 -13.964 1.00 18.20
	4005	CA	VAL B 188		11.774 -25.775 -13.381 1.00 18.41
BBBBATOM			VAL B 188		11.902 -25.714 -11.842 1.00 18.98
BBBBATOM	4006	CB			12.088 -27.126 -11.270 1.00 18.50
BBBBATOM	4007	CG1	VAL B 188		
BBBBATOM	4008	.CG2	VAL B 188		15:001 1:001
BBBBATOM	4009 -	G.	VAL B 188		10.434 -26.440 -13.739 1.00 19.88
BBBBATOM	4010	0	VAL B 188		9.371 -25.967 -13.336 1.00 20.39
BBBBATOM	4011	N	VAL B 189		10.493 -27.532 -14.496 1.00 21.55
BBBBATOM	4012	CA	VAL B 189		9.298 -28.234 -14.948 1.00 22.11
BBBBATOM	4013	СВ	VAL B 189		9.299 -28.342 -16.488 1.00 22.50
	4013	CG1			8.009 -29.013 -16.981 1.00 22.70
BBBBATOM					9.470 -26.943 -17.101 1.00 21.26
BBBBATOM	4015	CG2			9.191 -29.639 -14.351 1.00 23.90
BBBBATCM	.4016	С	VAL B 189		J. 131
BBBBATOM	4017	0	VAL B 189		
BBBBATOM	4018	N	GLY B 190		8.111 -29.887 -13.615 1.00 25.60
BBBBATOM	4019	CA	GLY B 190		7.914 -31.188 -12.994 1.00 27.28
BBBBATOM	4020	С	GLY B 190		6.808 -32.026 -13.604 1.00 29.67
BBBBATOM	4021	. 0	GLY B 190		6.668 -33.208 -13.283 1.00 29.86
BBBBATOM	4022	N	GLY B 191		6.025 -31.430 -14.497 1.00 30.56
	4023	CA	GLY B 191		4.935 -32.163 -15.115 1.00 31.94
BBBBATOM			GLY B 191		3.676 -32.104 -14.269 1.00 33.11
BBBBATOM	4024	C			3.691 -31.556 -13.165 1.00 32.14
BEBBATOM	4025	Ö	GLY B 191		2.587 -32.673 -14.779 1.00 34.23
BBBBATOM	4026	. N	SER-B 192		.2.30
BBBBATOM	4027	CA	SER B 192		
BBBBATOM	4028	CB	SER B 192		0.283 -33.532 -14.801 1.00 36.87
BBBBATOM	4029	OG	SER B 192		0.702 -34.887 -14.877 1.00 39.58
BBBBATOM	4030	. C	SER B 192		1.419 -33.128 -12.609 1.00 36.41
BBBBATOM:	4031	0 ~	SER B 192		0.862 -32.499 -11.714 1.00 35.78
BBBBATOM	4032	N	GLN B 193		2.134 -34.225 -12.380 .1.00 37.60
	4033	CA	GLN B 193		2.292 -34.763 -11.033 1.00 38.53
BBBBATOM	4034	CB	GLN B 193		2.584 -36.263 -11.096 1.00 41.10
BBBBATOM			GLN B 193	• •	1.501 -37.082 -11.779 1.00 45.38
BBBBATOM	4035	CG			0.152 -36.948 -11.099 1.00 47.81
BBBBATOM	4036	, CD	GLN B 193		-0.484 -35.892 -11.149 1.00 49.50
BBBBATOM	4037		. GLN B 193		20,484, -33,692, -11,149, 1,00,49,36
BBBBATOM	4038	NE2	GLN B 193		-0.290 -38.023 -10.452 1.00 49.36
BBBBATOM	4039	C	GLN B 193		3.405 -34.072 -10.260 1.00 37.76
BBBBATOM	4040	.0	GLN B 193		3.458 -34.146 -9.030 1.00 37.02
BBBBATOM	4041	N	GLY B 194		4.291 -33.398 -10.986 1.00 36.47
	4042	CA	GLY B 194		5.398 -32.711 -10.350 1.00 35.02
BBBBATOM			GLY B 194		6.584 -33.630 -10.146 1.00 34.51
BBBBATOM	4043	C			6.442 -34.851 -10.191 1.00 34.26
BBBBATOM	4044	. 0	GLY B 194		<b>4.1.</b>
BBBBATOM	4045	N	ALA B 195		
BBBBATOM	4046	CA	ALA B 195		8.977 -33.819 -9.709 1.00 33.12
BBBBATOM	. 4047	СВ	ALA B 195		10.073 -33.387 -10.679 1.00 33.17
BBBBATOM	4048	C	ALA B 195		9.423 -33.590 -8.267 1.00 32.87
BBBBATOM	4049	Ö.	ALA B 195		9.955 -32.533 -7.923 1.00 31.47
	4050	Ŋ	ARG B 196		9.195 -34.592 -7.426 1.00 32.81
BBBBATOM			ARG B 196		9.538 -34.512 -6.010 1.00 32.63
BBBBATOM	4051	CA			9.373 -35.891 -5.361 1.00 35.51
BBBBATOM	4052	· CB	ARG B 196		J. J

BBBBATOM	4053	CG	ARG B 19	96	10.382 -36	5.954	-5.830	1.00 39.68
BBBBATOM	4054		ARG B 19		10.317 -37	7.224	-7.329	1.00 41.52
BBBBATOM	4055		ARG B 19			7.722	-7.738	1.00 43.02
						7.955	-8.997	1.00 42.91
BBBBATOM	4056		ARG B 19			7.735	-9.975	1.00 44.39
BBBBATOM	4057			96				1.00 45.18
BBBBATOM	4058		ARG B 19			3.408	-9.279	
BBBBATOM	4059	С	ARG B 19	96	10.940 -33	3.977	-5.729	1.00 30.96
BBBBATOM	4060	0	ARG B 19	96	11.108 -33	3.035	-4.957	1.00 29.99
BBBBATOM	4061	N	ILE B 15		11.942 -34	4.573	-6.367	1.00 29.47
	4062	CA		97		4.168	-6.164	1.00 28.10
BBBBATOM				97		5.109	-6.946	1.00 28.46
BBBBATOM	4063	СВ				5.041	-8.430	1.00 27.99
BBBBATOM	4064		ILE B 1				-6.657	1.00 28.64
BBBBATOM	4065	CG1		97		4.749		1.00 20.04
BBBBATOM	4066	CDl		97		5.158	-5.281	
BBBBATOM	4067	С	ILE B 1	97	13.579 -32		-6.554	1.00 27.65
BBBBATOM	4068	0	ILE B 1	97	14.378 -32	2.013	-5.921	1.00 27.21
BBBBATOM	4069	N		98	12.897 -32	2.223	-7.590	1.00 27.07
BBBBATOM	4070	CA		98	13.069 -30	0.833	-8.003	1.00 26.58
	4071	CB		98		0.616	-9.412	1.00 25.88
BBBBATOM							-10.524	1.00 25.40
BBBBATOM	4072	CG		98			-11.874	1.00 26.54
BBBBATOM	4073			98				1.00 25.94
BBBBATOM	4074	CD2	LEU B 1	98			-10.493	
BBBBATOM	4075	· C•	LEU B 1	98		9.893	-7.006	1.00 26.41
BBBBATOM	4076	0	LEU B 1	98	12.930 -2	8.835	-6.667	1.00 26.35
BBBBATOM	4077	N		99	11.205 -3	0.274	-6.532	1.00 26.01
BBBBATOM	4078	CA		99	10.497 -2	9.447	-5.563	1.00 27.07
	4079	CB		.99		0.035	-5.238	1.00 26.63
BBBBATOM						0.050	-6.434	1.00 27.62
BBBBATOM	4080	CG	ASN B 1		•	9.434	-7.460	1.00 26.33
BBBBATOM	4081			.99			-6.320	1.00 24.20
BBBBATOM	4082	ND2		.99		0.749		1.00 27.65
BBBBATOM	4083	С	ASN B 1	.99		9.319	-4.282	
BBBBATOM	4084	0	ASN B 1	.99	11.207 -2	8.321	-3.581	1.00 28.19
BBBBATOM	4085	N	GLN B 2	200		0.328	-3.994	1.00 28.38
BBBBATOM	4086	CA		200	12.955 -3	0.326	-2.794	1.00 30.10
	4087	CB		200	13.158 -3	11.764	-2.301	1.00 31.91
BBBBATOM				200		2.453	-1.827	1.00 35.02
BBBBATOM	4088	CG		200		3.956	-1.632	1.00 37.49
BBBBATOM	4089	CD				34.619	-1.032	1.00 38.76
BBBBATOM	4090	OE1		200		34.502	-2.151	1.00 37.28
BBBBATOM	4091	NE2		200			-3.011	1.00 30.18
BBBBATOM	4092	С		200		29.675		
BBBBATOM	4093	0	GLN B 2	200		28.975	-2.135	
BBBBATOM	4094	N		201		29.884	-4.187	1.00 28.94
BBBBATOM	4095	CA	THR B 2	201	16.215 -2	29.345	-4.474	1.00 27.34
BBBBATOM	4096	СВ	THR B 2	201		30.181	-5.567	1.00 28.81
BBBBATOM	4097	OG1		201	16:988 -3	31.553	-5.149	1.00 28.92
	4098	CG2			18.331 -2		-5.817	1.00 28.29
BBBBATOM			THR B 2		16.313 -2	27.871	-4.869	1.00 25.78
BBBBATOM	4099	C	THR B 2		17.137 -2	7 138	-4.331	1.00 24.91
BBBBATOM	4100	0			15.479 -2	7 430	-5.800	1.00 24.08
. BBBBATOM	4101	Ŋ	MET B 2		15.567 -2	26 048	-6.268	1.00 23.68
BBBBATOM	4102	CA	MET B 2		15.507 -2	20.040	-7.397	1.00 22.29
BBBBATOM	4103	CB	MET B 2		14.558 -2	25.821		
BBBBATOM	4104	CG	MET B 2		14.856 -2	26.685	-8.633	1.00 22.80
BBBBATOM	4105	SD	MET B 2	202	16.590 -2	26.61.4	-9.190	1.00 25.93
BBBBATOM	4106	CE	MET B 2	202	16.814 -2	24.877	-9.345	1.00 22.63
BBBBATOM	4107	C	MET B 2		15.489 -2	24.926	-5.229	1.00 23.47
	4108	Õ	MET B 2		16.189 -2	23.929	-5.354	1.00 24.40
BBBBATOM					14.636 -2	25.059	-4.192	1.00 24.12
BBBBATOM	4109	N		203	13.518 -2	25 991	-3.970	1.00 22.27
BBBBATOM	4110	CD	PRO B 2		13.310 -4	23 062	-3.220	1.00 23.84
BBBBATOM	4111	CA		203	14.608 -2	23.703	-2.217	1.00 23.84
BBBBATOM	4112	CB		203	13.553 -2	24.424		
BBBBATOM	4113	CG	PRO B 2	203	12.593 -2	25.178	-3.084	1.00 24.04
BBBBATOM	4114	C	PRO B		15.987 -2	23.731	-2.573	1.00 24.07
	4115	0	PRO B	203	16.395 -2	22.593	-2.343	1.00 23.18
BBBBATOM		Ń	GLN B		16.706 -2	24.814	-2.290	1.00 25.26
BBBBATOM	4116				18.033 -2	24.708	-1.684	1.00 26.34
BBBBATOM	4117	CA	GLN B		18.474 -2	26 078	-1.157	1.00 28.67
BBBBATOM	4118	CB	GLN B	204	10.4/4 -	20.070	1.15.	

				17.555 -26.626 -0.065 1.00 33.65
BBBBATOM		G GLN B 204		17.885 -28.059 0.328 1.00 37.09
BBBBATOM		D GLN B 204		18.991 -28.354 0.792 1.00 39.30
BBBBATOM		E1 GLN B 204	•	16.924 -28.960 0.140 1.00 38.32
BBBBATOM		E2 GLN B 204		19.030 -24.177 -2.717 1.00 25.36
BBBBATOM	4123 C	GLN B 204		
BBBBATOM	4124	GLN B 204		17.705
BBBBATOM	4125 N	N VAL B 205		10.000 24.022
BBBBATOM	4126	CA VAL B:205		13.0.2 4
BBBBATOM		CB VAL'B 205		
BBBBATOM	4128	CG1 VAL B 205		20.035 23.500
BBBBATOM	4129	CG2 VAL B 205		17.017 20.22
BBBBATOM	4130	C VAL B 205		19.511 22.510
BBBBATOM	4131 (	O VAL B 205		20.401 21.102
BBBBATOM	4132	N ALA B 206		10.2.3
BBBBATOM	4133	CA ALA B 206		17,500 20,020
BBBBATOM	4134	CB ALA B 206		16.466 -20.377 -4.908 1.00 21.55 18.700 -19.862 -3.890 1.00 24.09
BBBBATOM	4135	C ALA B 206		19.174 -18.740 -4.081 1.00 24.90
BBBBATOM	-	O ALA B 206		18.768 -20.477 -2.713 1.00 25.15
BBBBATOM		N ALA B 207		19.442 -19.857 -1.576 1.00 26.65
BBBBATOM		CA ALA B 207	•	19.260 -20.710 -0.324 1.00 27.83
BBBBATOM		CB ALA B 207		20.924 -19.686 -1.879 1.00 26.96
BBBBATOM	4140	C , ALA B 207		21.537 -18.693 -1.493 1.00 27.82
BBBBATOM		O' ALA B 207		21.498 -20.651 -2.586 1.00 27.19
BBBBATOM		N LYS B 208		22.915 -20.595 -2.919 1.00 28.31
BBBBATOM	4143 _.	CA LYS B 208		23.432 -21.989 -3.300 1.00 29.85
BBBBATOM .	4144	CB LYS B 208		23.030 -23.088 -2.329 1.00 32.97
BBBBATOM	4145	CG LYS B 208		23.264 -22.667 -0.886 1.00 35.74
BBBBATOM	4146	CD LYS B 208		23.204 223.689 0.084 1.00 37.28
BBBBATOM	4147	CE LYS B 208		21 227 -23.899 -0.135 1.00 35.29
BBBBATOM	4148	NZ LYS B 208		23 237 -19 624 -4.050 1.00 27.83
BBBBATOM	4149	C LYS B 208 O LYS B 208		24 286 -18 978 -4.033 1.00 27.46
BBBBATOM	4150			22 341 -19 517 -5.028 1.00 26.04
BBBBATOM	4151			22 577 -18 640 -6.171 1.00 25 08
BBBBATOM	4152			21.975 -19.268 -7.435 1.00 25.08
BBBBATOM	4153	CB LEU B 209		22.534 -20.638 -7.844 1.00 25.01
BBBBATOM	4154	CD1 LEU B 209		21.797 -21.151 -9.074 1.00 25.67
BBBBATOM	4155 4156	CD2 LEU B 209		24.029 -20.528 -8.119 1.00 25.13
BBBBATOM	4157	C LEU B 209		22.075 -17.200 -6.007 1.00 25.59
BBBBATOM	4157	O LEU B 209		22.496 -16.313 -6.742 1.00 25.26
BBBBATOM BBBBATOM	4159	N GLY B 210		21.185 -16.970 -5.045 1.00 26.27
BBBBATOM	4160.	CA GLY B 210		20.675 -15.628 -4.804 1.00 26.56 20.238 -14.836 -6.030 1.00 27.75
BBBBATOM	4161	C: GLY B 210		
BBBBATOM	4162	O GLY B 210		
BBBBATOM	4163	N ASP B 211		
BBBBATOM	4164	CA ASP B 211		
BBBBATOM	4165	CB ASP B 211		21.011 100 21 42
BBBBATOM	:4166	CG ASP B 211		20.332 2 2 2 2 2 2 2 3 2 4 3
BBBBATOM	4167	OD1 ASP B 211		20.864 -9.469 -5.398 1.00 32.43 19.323 -11.025 -5.249 1.00 33.41
BBBBATOM	4168	OD2 ASP B 211		20.768 -13.035 -8.615 1.00 27.77
BBBBATOM	4169	C ASP B 211		20.320 -12.397 -9.578 1.00 26.32
BBBBATOM	41,70	O ASP B 211		21.616 -14.048 -8.753 1.00.25.75
BBBBATOM	4171	N SER B 212		22.098 -14.474 -10.067 1.00 25.73
BBBBATOM	4172	CA SER B 212		23.331 -15.376 -9.904 1.00 26.63
BBBBATOM	. 4173	CB SER B 212		22.971 -16.596 -9.282 1.00 26.71
BBBBATOM	4174	OG SER B 212		21.062 -15.185 -10.943 1.00 23.61
BBBBATOM	4175	C SER B 212		21 262 -15 334 -12.147 1.00 22.28
BBBBATOM	4176	O. SER B 212		19 969 -15 644 -10.344 1.00 23.16
BBBBATOM	4177	N . VAL B 213		19 925 -16 308 -11 116 1 00 20 76
BBBBATOM	4178	CA VAL B 213		10.952 -17.867 -10.989 1.00.21.69
вввватом		CB VAL B 213		20 318 -18 423 -11 375 1 00 19 84
BBBBATOM	4180	CG1 VAL B 213	•	10 564 -18 288 -9.5/6 1.00 20.30
BBBBATOM	4181	CG2 VAL B 213		17 535 -15 871 -10 677 1.00 21 41
BBBBATOM		C VAL B 213		17 328 -15 396 -9.554 1.00 20.58
BBBBATOM	4183	O VAL B 213		16.593 -16.021 -11.595 1.00 19.82
BBBBATOM		N THR B 214		16.595 10.021 20.00

BBBBATOM	4185	CA	THR B 214	15.204 -15.726 -11.337 1.00 19.60
BBBBATOM	4186	СВ	THR B 214	14.718 -14.478 -12.126 1.00 21.35
BBBBATOM	4187	OG1	THR B 214	13.323 -14.273 -11.870 1.00 21.93
BBBBATOM	4188		THR B 214	14.983 -14.633 -13.622 1.00 19.52
BBBBATOM	4189	C	THR B 214	14.543 -17.021 -11.791 1.00 20.24
BBBBATOM	4190	Ö	THR B 214	14.803 -17.533 -12.893 1.00 18.70
	4191			13.706 -17.569 -10.921 1.00 19.21
BBBBATOM		N	ILE B 215	
BBBBATOM	4192	CA	ILE B 215	13.076 -18.850 -11.169 1.00 18.75
BBBBATOM	4193	CB	ILE B 215	13.417 -19.828 -10.008 1.00 18.82
BBBBATOM	4194		ILE B 215	12.690 -21.157 -10.194 1.00 19.53
BBBBATOM	4195	CG1	ILE B 215	14.934 -20.030 -9.931 1.00 19.76
BBBBATOM	4196		ILE B 215	15.421 -20.656 -8.600 1.00 19.40
BBBBATOM	4197	С	ILE B 215	11.568 -18.837 -11.315 1.00 19.26
BBBBATOM	4198	0	ILE B 215	10.874 -18.025 -10.699 1.00 18.28
BBBBATOM	4199	N	TRP B 216	11.089 -19.737 -12.167 1.00 18.93
BBBBATOM	4200	CA	TRP B 216	9.661 -19.973 -12.378 1.00 19.34
BBBBATOM	4201	CB	TRP B 216	9.222 -19.631 -13.797 1.00 18.97
BBBBATOM	4202	CG	TRP B 216	7.757 -19.897 -14.065 1.00 20.09
BBBBATOM	4203	CD2		7.015 -19.467 -15.211 1.00 19.61
BBBBATOM	4204	CE2	TRP B 216	5.705 -19.988 -15.085 1.00 19.98
BBBBATOM	4205	CE3	TRP B 216	7.329 -18.690 -16.333 1.00 19.39
BBBBATOM	4206	CD1	TRP B 216	6.888 -20.639 -13.303 1.00 19.30
BBBBATOM	4207.	NE1	TRP B 216	5.653 -20.700 -13.914 1.00 20.95
BBBBATOM	4208	CZ2	TRP B 216	4.713 -19.759 -16.043 1.00 22.06
BBBBATOM	4209	CZ3	TRP B 216	6.336 -18.459 -17.288 1.00 20.42
BBBBATOM	4210	CH2	TRP B 216	5.047 -18.993 -17.134 1.00 21.16
BBBBATOM	4211	С	TRP B 216	9.629 -21.479 -12.176 1.00 19.95
BBBBATOM	4212	0	TRP B 216	10.114 -22.241 -13.010 1.00 19.91
BBBBATOM	4213	N	HIS B 217	9.067 -21.897 -11.050 1.00 21.62
BBBBATOM	4214	CA	HIS B 217	9.015 -23.303 -10.680 1.00 21.06
BBBBATOM	4215	СВ	HIS B 217	9.553 -23.419 -9.242 1.00 20.56
BBBBATOM	4216	CG	HIS B 217	9.717 -24.824 -8.747 1.00 21.95
BBBBATOM	4217	CD2		8.915 -25.910 -8.846 1.00 22.12
BBBBATOM	4218		HIS B 217	10.807 -25.219 -8.002 1.00 23.39
BBBBATOM	4219		HIS B 217	10.670 -26.490 -7.663 1.00 21.82
BBBBATOM	4220		HIS B 217	9.530 -26.933 -8.162 1.00 22.14
BEBBATOM	4221	С	HIS B 217	7.596 -23.870 -10.795 1.00 21.27
BBBBATOM	4222	ō	HIS B 217	6.655 -23.334 -10.214 1.00 21.69
BBBBATOM	4223	N	GLN B 218	7.448 -24.940 -11.567 1.00 20.83
BBBBATOM	4224	CA	GLN B 218	6.149 -25.594 -11.735 1.00 24.30
BBBBATOM	4225	СВ	GLN B 218	5.915 -25.935 -13.206 1.00 23.84
BBBBATOM	4226	CG	GLN B 218	4.561 -26.558 -13.495 1.00 25.91
BBBBATOM	4227	CD	GLN B 218	4.637 -28.060 -13.673 1.00 26.52
BBBBATOM	4228		GLN B 218	3.757 -28.793 -13.214 1.00 28.05
BBBBATOM	4229	NE2	GLN B 218	
BBBBATOM				5.680 -28.529 -14.360 1.00 25.20
BBBBATOM	4230		GLN B 218	
	4230	С 0	GLN B 218	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64 6.780 -27.866 -11.199 1.00 25.73
BBBBATOM		С	GLN B 218 GLN B 218	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64
	4230 4231 4232	C 0	GLN B 218 GLN B 218 SER B 219	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64 6.780 -27.866 -11.199 1.00 25.73
BBBBATOM	4230 4231	о О	GLN B 218 GLN B 218 SER B 219 SER B 219	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64 6.780 -27.866 -11.199 1.00 25.73 5.502 -26.756 -9.709 1.00 26.38
BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234	C O N CA CB	GLN B 218 GLN B 218 SER B 219 SER B 219 SER B 219	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64 6.780 -27.866 -11.199 1.00 25.73 5.502 -26.756 -9.709 1.00 26.38 5.463 -27.800 -8.684 1.00 26.73 4.947 -27.188 -7.380 1.00 28.26
BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235	C O N CA CB OG	GLN B 218 GLN B 218 SER B 219 SER B 219 SER B 219 SER B 219	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22
BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236	C O N CA CB OG C	GLN B 218 GLN B 218 SER B 219 SER B 219 SER B 219 SER B 219 SER B 219	5.680 -28.529 -14.360 1.00 25.20 6.173 -26.854 -10.854 1.00 24.64 6.780 -27.866 -11.199 1.00 25.73 5.502 -26.756 -9.709 1.00 26.38 5.463 -27.800 -8.684 1.00 26.73 4.947 -27.188 -7.380 1.00 28.26
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235	C O N CA CB OG	GLN B 218 GLN B 218 SER B 219 SER B 219 SER B 219 SER B 219	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238	CONACB CCOON	GLN B 218 GLN B 218 SER B 219 SER B 219 SER B 219 SER B 219 SER B 219 SER B 219 GLY B 220	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239	CONACB CONCONA	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240	CONCACBOGCONCACC	GLN B 218 GLN B 219 SER B 219 GLY B 220 GLY B 220	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241	CONCACBOCONCACOO	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242	CONCACONCACONCACON	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220 GLY B 220 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       33.93
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243	CONCACONCACONCACONCACONCACONCACONCACONC	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220 GLY B 220 LYS B 221 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244	CONCACONCACONCACB	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221 LYS B 221 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245	CONCACONCACONCACG	GLN B 218 GLN B 219 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221 LYS B 221 LYS B 221 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88         -2.942       -32.055       -8.427       1.00       40.51 </td
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246	CONCA	GLN B 218 GLN B 219 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88         -2.942       -32.055       -8.427       1.00       40.51
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4240 4241 4242 4243 4244 4245 4246 4247	CONCBGCONCCCCCC	GLN B 218 GLN B 219 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88         -2.942       -32.055       -8.427       1.00       40.51
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248	CON ABGOEZ	GLN B 218 GLN B 218 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88         -2.942       -32.055       -8.427       1.00       40.51
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4230 4231 4232 4233 4234 4235 4236 4237 4238 4240 4241 4242 4243 4244 4245 4246 4247	CONCBGCONCCCCCC	GLN B 218 GLN B 219 SER B 219 GLY B 220 GLY B 220 GLY B 220 GLY B 220 LYS B 221	5.680       -28.529       -14.360       1.00       25.20         6.173       -26.854       -10.854       1.00       24.64         6.780       -27.866       -11.199       1.00       25.73         5.502       -26.756       -9.709       1.00       26.38         5.463       -27.800       -8.684       1.00       26.73         4.947       -27.188       -7.380       1.00       28.26         3.563       -26.881       -7.488       1.00       26.22         4.689       -29.096       -8.914       1.00       27.58         5.014       -30.122       -8.320       1.00       26.39         3.662       -29.054       -9.750       1.00       28.58         2.855       -30.242       -9.961       1.00       30.53         1.596       -30.110       -9.111       1.00       31.96         1.523       -29.248       -8.233       1.00       30.92         0.608       -30.965       -9.358       1.00       35.12         -1.573       -32.049       -9.094       1.00       37.88         -2.942       -32.055       -8.427       1.00       40.51

	•			1 187 -29 979 -6.461 1.00 34.79
BBBBATCM	4251	N GLY B 222	-	-1.107 -29.575
BBBBATOM	4252	CA GLY B 222	-	-   173 23.032
BBBBATOM	4253	C GLY B 222		() . 1 1 1 2 2 3 3 3
BBBBATOM	4254	O GLY B 222		0.103
BBBBATOM	4255	N SER B 223		1.150 -25.254
BBBBATOM	4256	CA SER B 223		2.451 -20.954 4.124
BBBBATOM	4257	.CB SER B 223		3.332 23.732
BBBBATOM	4258	OG SER B 223		3.303 -31.168 -4.897 1.00 36.07 2.839 -27.454 -4.504 1.00 33.55
BBBBATOM	4259	C SER B. 223		2.839 -27.434
BBBBATOM	4260	O SER B 223		3.930 -27.063 -4.086 1.00 31.72 1.941 -26.639 -5.044 1.00 33.22
BBBBATOM	4261	N GLN B 224	•	2.187 -25.208 -5.186 1.00 33.71
BBBBATOM	4262	CA GLN B 224		0.954 -24.539 -5.799 1.00.35.45
BBBBATOM	4263	CB GLN B 224		1.160 -23.120 -6.337 1.00 37.82
BBBBATOM	4264	CG GLN B 224		1.344 -22.076 -5.249 1.00 40.08
BBBBATOM	4265	CD GLN B 224		0 669 -22 111 -4.217 1.00 40.97
BBBBATOM	4266	OE1 GLN B 224		2244 - 21.124 - 5.486 1.00 40.08
BBBBATOM	4267	NE2 GLN B 224		2510 - 24.560 - 3.840 1.00 33.86
BBBBATOM	4268	C GLN B 224 O GLN B 224		3 512 -23.856 -3.697 1.00 33.38
BBBBATOM	4269	O GLN B 224		1 659 -24 814 -2.850 1.00 33.06
BBBBATOM	4270	N GLN B 225 CA GLN B 225		1 923 -24 239 -1.519 1.00 32.32
BBBBATOM	4271			0.624 - 24.619 - 0.640 1.00 35.12
BBBBATOM	4272			-0.743 - 24.143 - 1.151 1.00 36.85
BBBBATOM	4273			-1 144 $-24.751$ $-2.495$ 1.00 39.09
BBBBATOM	4274	OE1 GLN B 225		-0.914 $-25.937$ $-2.759$ $1.00$ $39.42$
BBBBATOM	4275	NE2 GLN B 225		-1.768 $-23.937$ $-3.345$ $1.00$ $40.13$
BBBBATOM	4276	C GLN B 225		3.117 -24.606 -0.788 1.00 30.73
BBBBATOM	4277 4278	O GLN B 225		3.766 -23.742 -0.202 1.00 30.36
BBBBATOM	4279	N SER B 226		3.494 -25.878 -0.817 1.00 29.26
BBBBATOM	4279	CA SER B 226		4.701 -26.309 -0.122 1.00 28.30
BBBBATOM	4280	CB SER B 226		4.727 -27.834 0.003 1.00 29.10 4.727 -27.834 -1.254 1.00 32.61
BBBBATOM	4282	OG SER B 226		4.505 -20.401
BBBBATOM	4283			3.991 23.00
BBBBATOM BBBBATOM	4284	O SER B 226		6.930 -23.400
BBBBATOM	4285			0.019 -23.730
BBBBATOM	4286	CA VAL B 227		7.214 20.01
BBBBATOM	4287	CB VAL B 227		7.130 -23.327
BBBBATOM	4288	CG1 VAL B 227		0.300 23.32.
BBBBATOM	4289	CG2 VAL B 227		7.117
BBBBATOM	4290	C VAL B 227		7.333 23.00
BBBBATOM	. 4291	O VAL B 227		8.421 -23.240 -2.281, 1.00.25.30 6.209 -23.035 -2.623 1.00.26.12
BBBBATOM	42,92	N GLU B 228		6.209 -23.033 2.023 1.00 27.23 6.178 -21.592 -2.387 1.00 27.23
BBBBATOM				4.735 -21.075 -2.476 1.00 28.60
BBBBATOM	4294			4 558 -19 586 -2.184 1.00 30.24
BBBBATOM	4295			4 938 -18 688 -3.356 1.00 31.99
BBBBATOM	.429	CD GLU B 228		5 012 -17 452 -3.159 1.00 31.68
BBBBBATOM	429			5 154 -19 212 -4.471 1.00 32.04
BBBBATOM	429			6 746 -21 327 -0.994 1.00 27.97
BBBBATOM	429			7 511 -20.383 -0.787 1.00 27.32
BBBBATOM	. 430	- 000		6 374 -22 178 -0.041 1.00 28 00
BBBBATOM	430			6.853 -22.046 1.329 1.00 28.35
BBBBATOM	430			$\epsilon$ 092 -22 990 2.261 1.00 31.03
BBBBATOM				6.570 -22.946 3.700 1.00 35.46
BBBBATOM	430			5.780 -23.860 4.615 1.00 38.01
BBBBATOM	430	222		4.54823.810 4.645 1.00 39.26
BBBBATOM			,	6 484 -24.697 5.370 1.00 38.61
BBBBATOM				8.338 -22.362 1.40/ 1.00 27.09
BBBBATOM				9.084 -21.697 2.124 1.00 28.29
BBBBATOM	. ~ .			8.771 -23.385 0.677 1.00 26.97
BBBBATOM				10.185 -23.754 0.682 1.00 26.18
BBBBATOM				10.412 -24.984 -0.184 1.00 25.07
BBBBATOM				11.054 -22.588 0.192 1.00 26.36
BBBBATOM				12.11922.317 0.755 1.00 25.04
BBBBATOM		0.31		10.605 -21.895 -0.854 1.00 25.85
BBBBATOM				11:371 -20.766 -1.366 1.00 25.47
BBBBATOM	1 431	LO CA III D		125

- /2

BBBBATOM BBBBBATOM	4317 4318	CB CG	TYR B 231 TYR B 231	10.762 -20.248 11.236 -21.014 12.546 -20.869		00 24.72 00 23.66 00 23.97
BBBBATOM	4319		TYR B 231	13.006 -21.599		00 21.40
BBBBATOM	4320	CEl	TYR B 231 TYR B 231	10.393 -21.905		00 22.63
BBBBATOM	4321		TYR B 231	10.841 -22.641		00 22.71
BBBBATOM BBBBATOM	4322 4323	CZ	TYR B 231	12.151 -22.480		00 21.91
BBBBATOM	4324	OH	TYR B 231	12.600 -23.214		00 21.69
BBBBATOM	4325	C	TYR B 231	11.450 -19.639		00 26.53
BBBBATOM	4326	ō	TYR B 231	12.498 -19.011	<b>.</b> . <b>.</b>	00 26.32
BBBBATOM	4327	N	ALA B 232	10.345 -19.380	• • • • •	00 26.28
BBBBATOM	4328	CA	ALA B 232	10.342 -18.322	<del>-</del>	00 27.51 00 28.09
BBBBATOM	4329	CB	ALA B 232	8.930 -18.109		00 28.03
BBBBATOM	4330	С	ALA B 232	11.303 -18.695 12.069 -17.858		00 27.93
BBBBATOM	4331	0	ALA B 232 GLU B 233	11.263 -19.958		00 29.43
BBBBATOM	4332	N	GLU B 233 GLU B 233	12.145 -20.441		00 30.87
BBBBATOM	4333 4334	CA CB	GLU B 233	11.772 -21.877	4.344 1.	00 33.60
BBBBATOM BBBBATOM	4335	CG	GLU B 233	10.491 -21.973		00 37.67
BBBBBATOM	4336	CD	GLU B 233	10.077 -23.404	<del>-</del>	.00 40.35
BBBBATOM	4337	OE1	GLU B 233	10.964 -24.283		.00 42.97
BBBBATOM	4338	OE2	GLU B 233	8.864 -23.649	- · ·	.00 41.95 .00 30.58
BBBBATOM	4339	Ć	GLU B 233	13.606 -20.369		.00 30.58 .00 30.82
BBBBATOM	4340	0	GLU B 233	14.499 -20.202		.00 29.17
BBBBATOM	4341	N	ALA B 234	13.850 -20.485 15.215 -20.417		.00 28.48
BBBBATOM	4342	CA	ALA B 234 ALA B 234	15.310 -21.110		.00 27.71
BBBBATOM	4343	CB	ALA B 234 ALA B 234	15.649 -18.961	1.588 1	.00 27.73
BBBBATOM	4344 4345	C O	ALA B 234	16.787 -18.677		.00 27.34
BBBBATOM BBBBATOM	4346	Ŋ	GLY B 235	14.731 -18.045		.00 26.74
BBBBATOM	4347	CA	GLY B 235	15.033 -16.627		.00 26.23
BBBBATOM	4348	С	GLY B 235	14.946 -16.009	•	.00 26.13 .00 25.67
BBBBATOM	4349	0	GLY B 235	15.483 -14.924		.00 25.36
BBBBATOM	4350	N	GLN B 236	14.284 -16.696 14.121 -16.198		.00 25.53
BBBBATOM	4351	CA	GLN B 236	14.121 -10.138		.00 25.84
BBBBATOM	4352	CB	GLN B 236 GLN B 236	16.436 -17.074	-2.603 1	.00 27.18
BBBBATOM BBBBATOM	4353 4354	CG CD	GLN B 236	17.080 -15.705		.00 28.96
BBBBATOM	4355	OE1		16.686 -14.850		.00 30.03
BBBBATOM	4356	NE 2		18.092 -15.495		.00 29.39
BBBBATOM	4357	С	GLN B 236	12.641 -16.298	T	.00 24.12
BBBBATOM	4358	0	GLN B 236	12.262 -17.002 11.783 -15.578		.00 24.40
BBBBATOM	4359	N	PRO B 237	12.143 -14.580		.00 24.52
BBBBATOM	4360	CD	PRO B 237 PRO B 237	10.336 -15.587		.00 24.65
BBBBATOM	4361 4362	CA CB	PRO B 237	9.808 -14.798	-0.527 1	.00 25.37
BBBBATOM BBBBATOM	4363	CG	PRO B 237	10.862 -13.773	-0.340 1	.00 25.24
BBBBATOM	4364	C	PRO B 237	9.837 -15.012		.00 25.33
BBBBATOM	4365	0	PRO B 237	8.720 -15.313		.00 24.93
BBBBATOM	4366	N	GLN B 238	10.663 -14.197		00 24.47
BBBBATOM	4367	CA	GLN B 238	10.277 -13.558 11.281 -12.459		00 23.76
BBBBATOM	4368	CB	GLN B 238	12.622 -12.945		.00 25.22
BBBBATOM	4369	CG	GLN B 238 GLN B 238	13.535 -13.523		.00 26.90
BBBBATOM	4370 4371	CD OE:		13.188 -13.550	-3.600 1	1.00 28.05
BBBBATOM BBBBATOM	4371		2 GLN B 238	14.712 -13.98	-5.195 l	1.00 25.61
BBBBATOM	4373	C	GLN B 238	10.108 -14.48	-6.143 1	1.00 23.41
BBBBATOM	4374	Ö	GLN B 238	9.485 -14.11	2 -7.139 1	1.00 20.49
BBBBATOM	4375		HIS B 239	10.655 -15.70		1.00 22.66
BBBBATOM	4376		HIS B 239	10.526 -16.60		1.00 22.08
BBBBATOM	4377	СВ	HIS B 239	11.432 -17.82		1.00 22.41
BBBBATOM	4378	ÇG		12.891 -17.48 13.869 -17.77		1.00 20.99
BBBBATOM	4379	CD	2 HIS B 239	13.488 ~16.74		1.00 20.30
BBBBATOM	4380		1 HIS B 239	14.769 -16.58		1.00 22.38
BBBBATOM	4381	CE	1 HIS B 239 2 HIS B 239	15.025 -17.19		1.00 19.62
BBBBATOM	4382	. 17 E	4 UIO D 200	10.000		

BBBBATOM	4383 C HIS B 239
BBBBATOM BBBBATOM	4384 O HIS B 239 4385 N LYS B 240
BBBBATOM	4386 .CA LYS B 240
BBBBATOM	4387 CB LYS B 240 4388 CG LYS B 240
BBBBATOM BBBBATOM	4389 CD LYS B 240
BBBBATOM	4390 CE LYS B 240 4391 NZ LYS B 240
BBBBATOM BBBBATOM	4392 C LYS B 240
BBBBATOM	4393 O LYS B 240 4394 N VAL B 241
BBBBATOM BBBBATOM	4394 N VAL B 241 4395 CA VAL B 241
BBBBATOM	4396 CB VAL B 241
BBBBATOM BBBBATOM	4397 - CG1 VAL B 241 4398 - CG2 VAL B 241
BBBBATOM	4399 C VAL B 241
BBBBATOM BBBBATOM	4400 O VAL B 241 4401 N THR B 242
BBBBATOM	4402 CA THR B 242
BBBBATOM BBBBATOM	4403 CB THR B 242 4404 OG1 THR B 242
BBBBATOM	4405 GG2 THR B 242
ВВВВАТОМ ВВВВАТОМ	4406 C THR B 242 4407 O THR B 242
BBBBATOM	4408 N GLU B 243
BBBBATOM BBBBATOM	4409 CA GLU B 243 4410 CB GLU B 243
BBBBATOM	4411 CG GLU B 243
BBBBATOM BBBBATOM	4413 OE1 GLU B 243
BBBBATOM	4414 OE2 GLU B 243 4415 C GLU B 243
BBBBATOM BBBBBATOM	4416 O GLU B 243
BBBBATOM	4417 N PHE B 244 4418 CA PHE B 244
BBBBATOM BBBBATOM	4419 CB PHE B 244
BBBBATOM BBBBATOM	4421 CD1 PHE B 244
BBBBATOM	4422 CD2 PHE B 244
- BBBBATOM BBBBATOM	4424 CE2 PHE B 244
BBBBATOM	4425 CZ PHE B 244
BBBBATOM BBBBATOM	4427 O PHE B 244
BBBBATOM	
BBBBATOM BBBBATOM	4430 CB ILE B 245
BBBBATOM	4431 CG2 ILE B 245 4432 CG1 ILE B 245
- BBBBATOM BBBBATOM	4433 CD1 ILE B 245
BBBBATOM	4434 C ILE B 245 4435 O ILE B 245
BBBBATOM BBBBATOM	4436 N ASP B 246
BBBBATOM	
BBBBATOM BBBBBATOM	4439 CG ASP B 246
BBBBATOM	
- BBBBATOM BBBBATOM	4442 C ASP B 246
BBBBATOM	1 4443 O ASP B 246
BBBBATOM BBBBATOM	4445 CA ASP B 247
BBBBATOM	1 4446 CB ASP B 247
BBBBATOM BBBBATOM	100 D 247

```
1.00 22.98
9.076 -17.024 -7.4.33
                -6.490
                         1.00 21.86
8.293 -17.161
8.727 -17.209 -8.703
                         1.00 21.76
                         1.00 23.26
               -9.105
7.375 -17.589
                         1.00 23.38
7.112 -17.102 -10.534
5.718 -17.385 -11.079
                        1.00 24.06
5.701 -17.155 -12.585
                        1.00 23.93
                        1.00 23.72
4.315 -17.309 -13.193
                        1.00 21.82
3.478 -16.129 -12.884
                         1.00 23.38
7.149 -19.091 -9.046
               -9.607
-8.378
                         1.00 23.06
7.922 -19.871
                         1.00 23.98
6.075 -19.497
                -8.277
                         1.00 23.78
5.740 -20.911
                         1.00 24.03
                -6.833
5.858 -21.428
                         1.00 24.14
5.548--22.923
               -6.803
                -8.723 1.00 24.15
-8.184 1.00 24.63
-9.710 1.00 24
               -6.281
7.242 -21.144
               -8.723
4.299 -21.136
3.380 .-20.528
4.103 -22.000
2.758 -22.301 -10.177
                         1.00 25.93
2.513 -21.812 -11.615
                        1.00 25.89
 3.466 -22.419 -12.492 1.00 27.48
 2.639 -20.299 -11.697 1.00 26.82
 2.555 -23.809 -10.135
                          1.00 26.29
                          1.00 26.75
 3.503 -24.577 -10.303
                          1.00 26.70
 1.319 -24.228
                -9.898
                          1.00 27.03
                -9.837
 0.999 -25.651
                          1.00 29.00
                -9.445
-0.473 - 25.828
                          1.00 30.88
                 -8.962
-0.831 -27.218
                          1.00 33.00
-2.297 -27.341
                 -8.583
                           1.00 33.66
                 -8.048
-2.682 -28.402
                           1.00 32.17
-3.063 -26.383 -8.827
                          1.00 26.61
 1.256 -26.289 -11.202
 1.841 -27.370 -11.304
                          1.00 26.48
                          1.00 26.54
 0.807 -25.602 -12.248
0.964 -26.068 -13.620 1.00 26.54
-0.376 -26.553 -14.186 1.00 29.14
                          1.00 30.15
-1.110 -27.531 -13.307
-0.622 -28.817 -13.107 1.00 32.26
-2.318 -27.172 -12.716 1.00 31.10
-1.335 -29.744 -12.328 1.00 33.63
                          1.00 32.04
 -3.040 -28.083 -11.938
                          1.00 32.59
 -2.549 -29.371 -11.744
                          1.00 25.60
  1.420 -24.915 -14.507
  1.604 -23.794 -14.053 1.00 24.93
1.591 -25.223 -15.786 1.00 27.02
1.932 -24.242 -16.802 1.00 28.48
 1.591 -25.223 -15.786
  3.441 -24.226 -17.159 1.00 28.41
  3.676 -23.348 -18.399 1.00.27.05
  4.245 -23.663 -15.983 1.00.27.10
  5.734 -23.543 -16.256 1:00 27.28
                           1.00 30.75
  1.127 -24.721 -18.000
                            1.00 31.41
  1.428 -25.753 -18.595
                           1.00 33.46
  0.071, -23.997, -18.331
                           1.00 36.00
 -0.754 -24.396 -19.457
-2.143 -23.754 -19.342
                           1.00 39.42
                           1.00 42.83
 -2.083 -22.246 -19.141
 -1.447 -21.795 -18.162 1.00 44.54
                           1.00 45.41
 -2.678 -21.511 -19.962
  -0.088 -24.020 -20.780 1.00 35.70
  -0.155 -24.768 -21.758 1.00 38.58
0.582 -22.876 -20.794 1.00 33.18
1.245 -22.392 -21.999 1.00 30.74
  -0.155 -24.768 -21.758
   0.936 -20.904 -22.182 1.00 29.62
   1.344 -20.380 -23.548 1.00 30.15
   2.161 -21.036 -24.225 1.00 27.57
                           ٠٠..
```

 $s \in \mathbb{R}^3$ 

	_
	4
	1

BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	4449 4450 4451 4452 4453 4455 4456 4457 4458 4459 4460 4461 4462 4463	OD2 ASP B 247 C ASP B 247 O ASP B 247 N MET B 248 CA MET B 248 CB MET B 248 CG MET B 248 SD MET B 248 SD MET B 248 CE MET B 248 C MET B 248 O MET B 248 N ALA B 249 CA ALA B 249 C ALA B 249 C ALA B 249	0.854 -19.296 -23.935
BBBBATOM	4464	O ALA B 249	4.942 -20.241 -23.983 1.00 23.39
BBBBATOM	4465	N ALA B 250 CA ALA B 250	5.188 -18.933 -23.390 1.00 21.78
BBBBATOM	4466 4467	CA ALA B 250 CB ALA B 250	3.898 -18.376 -22.797 1.00 23.21
BBBBATOM BBBBATOM	4467	C ALA B 250	6.277 -19.011 -22.313 1.00 21.84
BBBBATOM	4469	O ALA B 250	7.091 -18.092 -22.176
BBBBATOM	4470	N . ALA B 251	0.231 -20.033 -21.04
BBBBATOM	4471	CA ALA B 251	7.301 -20.259 -20.501 1.00 20.85 6.920 -21.405 -19.568 1.00 19.79
BBBBATOM	4472	CB ALA B 251	8.685 -20.512 -21.123 1.00 20.95
BBBBATOM	4473	C ALA B 251 O ALA B 251	9.689 -19.980 -20.648 1.00 21.14
BBBBATOM	4474 4475	O ALA B 251 N TYR B 252	8.723 -21.314 -22.184 1.00 21.2/
BBBBATOM BBBBATOM	4476	CA TYR B 252	9.972 -21.616 -22.886
BBBBATOM	4477	CB TYR B 252	
BBBBATOM	4478	CG TYR B 252	9.662 -24.100 -23.505 1.00 23.34 9.003 -25.065 -24.261 1.00 22.88
BBBBATOM	4479	CD1 TYR B 252 CE1 TYR B 252	8 961 -26 392 -23.861 1.00 24.81
BBBBATOM	4480	CE1 TYR B 252 CD2 TYR B 252	10.288 -24.505 -22.319 1.00 22.30
BBBBATOM BBBBATOM	4481 4482	CE2 TYR B 252	10.253 -25.838 -21.912 1.00 23.56
BBBBATOM	4483	CZ TYR B 252	9.590 -26.772 -22.687 1.00 24.26 9.554 -28.088 -22.305 1.00 25.57
BBBBATOM	4484	OH TYR B 252	9.554 -28.088 -22.305 1.00 25.57 10.566 -20.354 -23.516 1.00 23.57
BBBBATOM	4485	C TYR B 252	11 784 -20.180 -23.550 1.00 23.91
BBBBATOM	4486	O TYR B 252 N ALA B 253	9.699 -19.473 -24.007 1.00 23.22
BBBBATOM	4487 4488	CA ALA B 253	10.131 -18.224 -24.636 1.00 23.54
BBBBATOM BBBBATOM	4489	CB ALA B 253	8.931 -17.512 -25.275 1.00 24.59
BBBBATOM	4490	C ALA B 253	10.78317.503 23.01
BBBBATOM	4491	O ALA B 253	11.699 -16.546 -23.945 1.00 23.04 10.299 -17.369 -22.379 1.00 20.49
BBBBATOM	4492	N TRP B 254 CA TRP B 254	10.829 -16.534 -21.303 1.00 19.76
BBBBATOM	4493	254	9 808 -16.467 -20.151 1.00 19.5/
BBBBATOM BBBBATOM	4494 4495	CB TRP B 254	10.381 -15.981 -18.841 1.00 19.5/
BBBBATOM	4496	CD2 TRP B 254	10.870 -16.796 -17.762 1.00 19.25 11.369 -15.922 -16.771 1.00 18.94
BBBBATOM	4497	CE2 TRP B 254	11.369 -15.922 -16.771 1.00 18.94 10.939 -18.178 -17.543 1.00 19.18
BBBBATOM	4498	CE3 TRP B 254	10.591 -14.691 -18.470 1.00 19.03
BBBBATOM	4499		11 185 -14 643 -17.226 1.00 20.30
BBBBATOM	4500		11 931 -16.382 -15.572 1.00 20.01
BBBBATOM BBBBATOM	4501 4502		11.504 -18.642 -16.346 1.00 20.05
BBBBATOM	4503		11.991 -17.743 -15.380 1.00 18.31 12.156 -17.059 -20.755 1.00 19.33
BBBBATOM	4504	C TRP B 254	
BBBBATOM	4505		13.084 -16.293 -20.496 1.00 19.25 12.234 -18.373 -20.597 1.00 18.90
BBBBATOM	4506		13.399 -19.025 -20.003 1.00 19.51
BBBBATOM	4507		13.082 -20.507 -19.788 1.00 18.83
BBBBATOM	4508		14.737 -18.901 -20.713 1.00 18.88
BBBBATOM	4509 4510		14.803 -18.688 -21.918 1.00 19.40
BBBBATOM BBBBATOM	4511	05.6	15.803 -19.036 -19.927 1.00 19.01
BBBBATOM	4512	CA ASP B 256	17.176 -19.026 -20.434
BBBBATOM	4513	3 CB ASP B 256	
BBBBATOM	4514	1 CG ASP B 256	17.954 -16.699 -19.795 1.00 18.05

BBBBATOM	4515 OD1 ASP B 256	
BBBBATOM BBBBBATOM	4516 OD2 ASP B 256 4517 C ASP B 256	
BBBBATOM	4518 O ASP B 256	
BBBBATOM BBBBATOM	4520 CA VAL B 257	
BBBBATOM	4521 CB VAL B 257 4522 CG1 VAL B 257	
BBBBATOM BBBBATOM	4523 CG2 VAL B 257	
BBBBATOM BBBBATOM	4524 C VAL B 257 4525 O VAL B 257	
BBBBATOM	4526 N VAL B 258	
BBBBATOM BBBBATOM	4528 CB VAL B 258	
BBBBATOM BBBBATOM	4529 CG1 VAL B 258 4530 CG2 VAL B 258	
BBBBATOM	4531 C VAL B 258	
BBBBBATOM BBBBBATOM	4533 N VAL B 259	
BBBBATOM BBBBATOM	4534 CA VAL B 259 4535 CB VAL B 259	
BBBBATOM	4536 CG1 VAL B 259	
BBBBATOM BBBBATOM	4538 C VAL B 259	
BBBBATOM BBBBATOM	4539 O VAL B 259 4540 N CYS B 260	
BBBBATOM	4541 CA CYS B 260	
BBBBATOM BBBBATOM	4543 SG CYS B 260	
BBBBATOM BBBBATOM	4544 C CYS B 260 4545 O CYS B 260	
BBBBATOM	4546 N ARG B 261	
BBBBATOM BBBBBATOM	4548 CB ARG B 261	
BBBBATOM BBBBBATOM	4549 CG ARG B 261 4550 CD ARG B 261	
BBBBATOM	4551 NE ARG B 261 4552 CZ ARG B 261	
BBBBATOM BBBBATOM	4553 NH1 ARG B 261	
BBBBATOM BBBBATOM	4555 C ARG B 261	
BBBBATOM BBBBATOM	4556 O ARG B 261 4557 N SER B 262	
BBBBATOM	4558 CA SER B 262	
BBBBATOM BBBBATOM	4560 OG SER B 262	
BBBBATOM BBBBATOM	4561 C SER B 262 4562 O SER B 262	
BBBBATOM	4563 N GLY B 263 4564 CA GLY B 263	
BBBBATOM BBBBATOM	4565 C GLY B 263	
BBBBATOM BBBBATOM	4566 O GLY B 263 4567 N ALA B 264	
BBBBATOM	4568 CA ALA B 264 4569 CB ALA B 264	
BBBBATOM BBBBATOM	4570 C ALA B 264	
BBBBATOM BBBBATOM	4571 O ALA B 264 4572 N LEU B 265	
BBBBATOM	4573 CA LEU B 265	
BBBBATOM BBBBATOM	4575 CG LEU B 265	
BBBBATOM BBBBATOM	4576 CD1 LEU B 265 4577 CD2 LEU B 265	
BBBBATOM	4578 C LEU B 265	
BBBBATOM BBBBATOM		

17.845 -15.944 -18.806 1.00 16.89 17.983 -16.287 -20.982 1.00 19.53 17.657 -20.481 -20.379 1.00 18.01 18.459 -20.929 -21.198 1.00 16.11 1.00 17:49 17.147 -21.216 -19.396 17.535 -22.603 -19.194 1.00 18.53 18.831 -22.681 -18.332 1.00 17.72 1.00 19.19 18.586 -22.069 -16.966 1.00 20.40 19.286 -24.129 -18.200 1.00 18.31 16.400 -23.363 -18.501 1.00 19.74 15.659 -22.795 -17.703 1.00 18.74 16.263 -24.643 -18.818 1.00 19.32 15.208 -25.456 -18.234 14.328 -26.100 -19.337 1.00 19.89 13.101 -26.754 -18.714 1.00 19.81 13.907 -25.041 -20.364 1.00 21.59 1.00 19.70 15.799 -26.585 -17.389 1.00 18.96 16.808 -27.175 -17.758 1.00 20.24 15.167 -26.861 -16.253 1.00 19.85 15.581 -27.957 -15.374 15.850 -27.483 -13.936 1.00 20.08 16.222 -28.689 -13.059 1.00 20.22 1.00 17.86 16.966 -26.453 -13.930 14.382 -28.890 -15.371 1.00 20.02 13.301 -28.500 -14.942 1.00 21.88 1.00 21.70 14.562 -30.111 -15.867 1.00 22.00 13.454 -31.055 -15.946 1.00 22.77 12.494 -30.618 -17.057 1.00 22.15 13.297 -30.506 -18.711 13.903 -32.478 -16.242 1.00 21.86 1.00 21.34 15.087 -32.730 -16.496 12.937 -33.397 -16.212 1.00 22.34 1.00 23.75 13.170 -34.800 -16.515 1.00 27.16 11.964 -35.663 -16.104 11.376 -35.337 -14.738 1.00 31.82 11.490 -36.473 -13.732 1.00 36.33 12.865 -36.721 -13.323 1.00 38.48 13.218 -37.176 -12.125 1.00 37.25 12.295 -37.433 -11.204 1.00 38.46 12.295 -37.433 -11.204 1.00 36.79 14.499 -37.370 -11.848 1.00 23.98 13.351 -34.871 -18.032 1.00 22.44 13.117 -33.883 -18.746 1.00 22.00 13.740 -36.038 -18.527 1.00 23.18 13.975 -36.189 -19.948 15.481.-36.377 -20.203 1.00 24.45 16.043 -37.326 -19.311 1.00 25.79 1.00 22.90 13.173 -37.263 -20.676 13.738 -38.179 -21.274 1.00 23.25 1.00 22.74 11.850 -37.151 -20.619 11.026 -38.079 -21.361 1.00 22.85 11.392 -37.793 -22.813 1.00 24.06 11.908 -36.705 -23.121 1.00 22.75 11.130 -38.739 -23.708 1.00 23.37 1.00 24.25 11.482 -38.564 -25.115 .1.00 24.58 11.133 -39.829 -25.894 1.00 24.29 10.843 -37.343 -25.783 11.523 -36.572 -26.470 1.00 24.33 .1.00 24.44 9.541 -37.167. -25.596 1.00 24.66 8.846 -36.037 -26.205 1.00 25.33 7.332 -36.183 -26.011 6.760 -37.544 -26.426 1.00 27.97 5.242 -37.541 -26.258 1.00 28.21 1.00 27.40 7.146 -37.856 -27.878 1.00 24.47 9.331 -34.717 -25.613 9.374 -33.693 -26.301 1.00 23.85 9.702 -34.747 -24.338 1.00 22.12

BBBBATOM	4581	CA THR B 266	10.194 -33.557 -23.657 1.00 22.34
BBBBATOM	4582	CB THR B 266	10.348 -33.803 -22.140 1.00 22.35
BBBBATOM	4583	OG1 THR B 266	9.061 -34.087 -21.583 1.00 24.46
	4584	CG2 THR B 266	10.945 -32.573 -21.444 1.00 24.00
BBBBATOM	4585	C THR B 266	11.535 -33.117 -24.226 1.00 21.15
BBBBATOM	4586	O THR B 266	11.761 -31.926 -24.442 1.00 20.35
BBBBATOM	4587	N VAL B 267	12.427 -34.075 -24.461 1.00 20.46
BBBBATOM	4588	CA VAL B 267	13 730 -33 762 -25.023 1.00 21.11
BBBBATOM		CB VAL B 267	14 614 -35 039 -25 114 1.00 21.54
BBBBATOM	4589	CG1 VAL B 267	15 903 -34 740 -25.865 1.00 20.72
BBBBATOM	4590	CG2 VAL B 267	14 938 -35.541 -23.708 1.00 20.45
BBBBATOM	4591 4592	C VAL B 267	13.548 -33.138 -26.416 1.00 21.34
BBBBATOM	4593	O VAL B 267	14.188 -32.135 -26.747 1.00 19.99
BBBBATOM	4594	N SER B 268	12.663 -33.717 -27.222 1.00 21.61
BBBBATOM	4595	CA SER B 268	12.411 -33.191 -28.567 1.00 21.96
BBBBATOM	4596	CB SER B 268	11.474 -34.121 -29.344 1.00 21.57
BBBBATOM BBBBATOM	4597	OG SER B 268	12.141 -35.316 -29.721 1.00 24.06
BBBBATOM	4598	C SER B 268	11.817 -31.790 -28.519 1.00 21.81
BBBBATOM	4599	O SER B 268	12.158 -30.933 -29.336 1.00 22.60
BBBBATOM	4600	N GLU B 269	10.928 -31.563 -27.557 1.00 21.64
BBBBATOM	4601	CA GLU B 269	10.282 -30.272 -27.378 1.00 21.95
	4602	CB GLU B 269	9.213 -30.399 -26.292 1.00 24.72
BBBBATOM	4603	ĆG GLU B 269	8.480 -29.128 -25.940 1.00 27.67
BBBBATOM BBBBATOM	4604	CD GLU B 269	7.385 -29.380 -24.908 1.00 30.05
	4605	OE1 GLU B 269	6.325 -29.915 -25.287 1.00 31.50
BBBBATOM	4606	OE2 GLU-B 269	7.591 -29.057 -23.719 1.00 29.84
BBBBATOM BBBBATOM	4607	C GLU B 269	11.321 -29.214 -26.999 1.00 21.68
BBBBATOM	4608	O GLU B 269	11.301 -28.095 -27.518 1.00 18.12
BBBBATOM	4609	N ILE B 270	12.224 -29.581 -26.092 1.00 19.43
BBBBATOM	4610	CA ILE B 270	13.295 -28.698 -25.638 1.00 20.62 14.157 -29.391 -24.533 1.00 20.30
BBBBATOM	4611	CB ILE B 270	14.10/ 20.004
BBBBATOM	4612	CG2 ILE B 270	15.415 -28.595 -24.266 1.00 19.17
BBBBATOM	4613	CG1 ILE B 270	13.337 -29.574 -23.254 1.00 21.32 13.337 -29.574 -23.254 1.00 23.40
BBBBATOM	4614	CD1 ILE B 270	12,520 20,252
BBBBATOM	4615	C ILE B 270	14.214 20,000 100 00 00
BBBBATOM	4616	O ILE B 270	14.595 -27.151 25.604 1.00 31 30
BBBBATOM	4617	N ALA B 271	19,077 20,000
BBBBATOM	4618	CA ALA B 271	13.440 23.650 100 13 36
BBBBATOM	4619	CB ALA B 271	13.741 30.310
BBBBATOM	4620	C ALA B 271	14.700 -20.004 20.000 1.00 23 57
BBBBATOM	4621	O ALA B 271	15.400 -27.130 30.000 1.00 31 91
BBBBATOM	4622	N ALA B 272	13.473 20.000 1.00 27 17
BBBBATOM	4623	CA ALA B 272	12.719 27.331 300 22 15
BBBBATOM	4624	CB ALA B 272	11.333 -20.033 31.355 1.00 33 78
BBBBATOM	4625	C ALA B 272	12.330
BBBBATOM	4626	O ALA B 272	
BBBBATOM	4627	N ALA B 273	12.473 20.00 100 21 27
BBBBATOM	4628	CA ALA B 273	12.301 2.707 20 040 1 00 20 63
BBBBATOM	4629		20 460 1 00 21 93
BBBBATOM	4630		20 244 1 00 22 67
BBBBATOM	4631		14 773 -24.621 -28.656 1.00 20.90
BBBBATOM	4632		16 093 -24.023 -28.709 1.00 21.07
BBBBATOM	4633		16 498 -23.549 -27.327 1.00 21.48
BBBBATOM	4634		16.961 -22.421 -27.154 1.00 20.01
BBBBATOM	4635		16.331 -24.420 -26.333 1.00 19.66
BBBBATOM	4636	07	16.666 -24.057 -24.966 1.00 19.78
BBBBATOM	4637	0.7	15.402 -24.068 -24.102 1.00 21.30
BBBBATOM	4638		14.451 -22.870 -24.202 1.00 24.60
BBBBATOM	4639		5 13.220 -23.136 -23.349 1.00 26.44
BBBBATOM			5 15.159 -21.609 -23.725 1.00 24.02
BBBBATOM			17 698 -24.970 -24.318 1.00 18.79
BBBBATOM			17 679 -26.180 -24.524 1.00 19.36
BBBBATOM		3 O LEU B 27	18 634 -24.389 -23.554 1.00 17.27
BBBBATOM			18 925 -22.955 -23.416 1.00 16.95
BBBBATOM			0 10.723 25 20 22 275 1 20 16 62
BBBBATOM	464	6 CA PRO B 27	0 13.022

BBBBATOM BBBBATOM BBBBBATOM	4710 CA HIS B 284 4711 CB HIS B 284

```
20.619 -24.162 -22.317
                         1.00 17.27
20.408 -22.957 -23.195
                         1.00 18.59
                         1.00 17.23
18.900 -25.900 -21.746
                         1.00 15.14
17.944 -25.340 -21.189
19.316 -27.110 -21.396
                         1.00 17.01
18.638 -27.807 -20.321
                         1.00 15.80
                         1.00 17.01
17.641 -28.805 -20.895
                         1.00 17.37
19.591.-28.526 -19.382
20.710 -28.891 -19.755
                         1.00 17.09
19.147 -28.673 -18.138
                         1.00 17.14
                         1.00 18.48
19.896 -29.429 -17.145
20.140 -28.619 -15.869
                         1.00 19.19
21.084 -29.308 -14.868
                         1.00 20.85
21.283 -28.411 -13.668
                         1.00 21.11
20.497 -30.647 -14.433
                         1.00 19.16
18.884 -30.535 -16.898
                         1.00 19.62
17.870 -30.330 -16.218
                         1.00 20.77
                         1.00 19.50
19.149 -31.691 -17.495
                         1.00 21.59
1.00 21.07
18.266 -32.838 -17.392
 18.385 -33.700 -18.651
                          1.00 19.35
 17.740 -33.099 -19.876
                          1.00.19.42
 18.481 -32.898 -21.035
 16.379 -32.794 -19.888
                          1.00 18.16
                          1.00 19.06
 17.874 -32.405 -22.203
                          1.00 17.65
 15.759 -32.298 -21.052
 16.515 -32.108 -22.208
                          1.00 15.61
 18.525 -33.709 -16.167
                          1.00 22.86
 19.671 -34.065 -15.871
                          1.00 23.32
                          1.00 23.88
 17.445 -34.037 -15.461
                          1.00 25.67
 17.502 -34.902 -14.281
                          1.00 26.89
 16.883 -34.223 -13.048
                          1.00 28.12
 16.954 -35.159 -11.847
 17.631 -32.929 -12.742
                          1.00 27.70
                          1.00 25.65
 16.690 -36.136 -14.658
 15.509 -36.239 -14.346
                          1.00 24.57
                          1.00 27.09
 17.324 -37.080 -15.370
 18.750 -37.057 -15.726
                          1.00 27.31
                          1.00 29.05
 16.698 -38.320 -15.824
                          1.00 29.44
 17:851 -39.071 -16.492
 18.791 -37.992 -16.895
                          1.00 29.67
 16.092 -39.121 -14.684 1.00 31.51
                          1.00 32.26
  16.675 -39.223 -13.603
  14.908 -39.668 -14.923
                          1:00 33.83
                          1.00 37.13
  14.246 -40.496 -13.926
                          1:.00 38.38
  12.818 -40.808 -14.372
  12.032 -41.606 -13.377 1.00 40.57
                          1.00 41.80
  11.720 -41.074 -12.130
  11.590 -42.886 -13.689
  10.975 -41.806 -11.209
                          1.00 42.03
  10.843 -43.628 -12.773
                          b.00 42.49
                          1.00 41.74
  10.536 -43.085 -11.532
                          1.00 38.09
  15.078 -41.776 -13.880
  15.357 -42.373 -14.921
                          1.00 38.33
                           1.00 39.70
  15.492 -42.197 -12.690
                           1.00 41.11
  16.319 -43.395 -12.591
  17.010 -43.477 -11.223 1.00 41.41
                           1.00 42.60
  17.953 -44.676 -11.096
  19.143 -44.605 -12.051
                           1.00 42.87
  20.199 -44.068 -11.712
                           1.00 43.66
                           1.00 42.45
  18.969 -45.135 -13.254
                           1.00 41.60
  15.543 -44.679 -12.846
  14.382 -44.809 -12.462 1.00 40.91
  16.211 -45.618 -13.511 1.00 42.92
  15.641 -46.917 -13.843 1.00 43.69
  14.508 -46.760 -14.858 1.00 43.91
13.795 -48.039 -15.165 1.00 44.71
```

. . . .

DDDDATOM	.4717	CD2 H	HIS B 284		12.574 -48.489 -14.793 1.00 44.80
BBBBATOM	4713				14.360 -49.044 -15.923 1.00 44.69
BBBBATOM	4714		HIS B 284		
BBBBATOM	4715		HIS B 284		
BBBBATOM	4716	NE2 F	HIS B 284		12.425 -49.747 -15.325 1.00 44.90
BBBBATOM	4717	C I	HIS B 284		16.749 -47.788 -14.424 1.00 44.09
BBBBATOM	4718		HIS B 284		17.602 -47.302 -15.164 1.00 43.02
	4719		LYS B 285		16.740 -49.074 -14.085 1.00 44.90
BBBBATOM					17.767 -49.993 -14.571 1.00 45.34
BBBBATOM	4720		LYS B 285		
BBBBATOM	4721		LYS B 285		17.300
BBBBATOM	4722	CG I	LYS B 285		201012
BBBBATOM	4723	CD 1	LYS B 285		18.140 -53.802 -13.807 1.00 51.08
BBBBATOM	4724	CE I	LYS B 285		19.325 -54.759 -13.780 1.00 51.58
BBBBATOM	4725		LÝS B 285		18.931 -56.115 -13.292 1.00 52.11
	4726		LYS B 285		17.969 -49.853 -16.079 1.00 45.02
BBBBATOM			LYS B 285		19.067 -50.070 -16.595 1.00 45.49
BBBBATOM	4727				16.903 -49.478 -16.777 1.00 44.33
BBBBATOM	4728	_	ASP B 286		16.949 -49.299 -18.222 1.00 43.26
BBBBATOM	4729		ASP B 286		10,515
BBBBATOM	4730		ASP B 286		13.332
BBBBATOM	4731	CG .	ASP B 286		15.511 -49.354 -20.304 1.00 48.32
BBBBATOM	4732	OD1	ASP B 286		15.971 -50.338 -20.925 1.00 49.52
BBBBATOM	4733	OD2	ASP B 286		15.037 -48.346 -20.872 1.00 51.04
BBBBATOM	4734		ASP B 286		17.573 -47.947 -18.582 1.00 40.92
	4735		ASP B 286		18.179 -47.796 -19.643 1.00 40.31
BBBBATOM					17.415 -46.972 -17.689 1.00 38.60
BBBBATOM	4736				17.951 -45.623 -17.883 1.00 36.28
BBBBATOM	4737		ARG B 287		19.477 -45.650 -17.910 1.00 37.28
BBBBATOM	4738		ARG B 287		19.477 43:030
BBBBATOM	4739	CG	ARG B 287		20.110
BBBBATOM	4740	CD	ARG B 287		21.605 -46.395 -16.906 1.00 42.34
BBBBATOM	4741	NE	ARG B 287		22.291 -45.113 -16.802 1.00 44.33
BBBBATOM	4742		ARG B 287		23.449 -44.842 -17.392 1.00 45.20
BBBBATOM	4743		ARG B 287		24.045 -45.764 -18.135 1.00 45.60
			ARG B 287		24.019 -43.656 -17.227 1.00 45.68
BBBBATOM	4744				17.449 -45.005 -19.180 1.00 33.59
BBBBATOM	4745				18.167 -44.255 -19.844 1.00 32.61
BBBBATOM	4746		ARG B 287		10.107
BBBBATOM	4747	N	GLN B 288		10.02
BBBBATOM	4748	CA	GLN B 288		13.022
BBBBATOM	4749	CB	GLN B 288		14.143 -45.158 -20.810 1.00 30.59
BBBBATOM	4750	CG	GLN B 288		13.473 -44.772 -22.109 1.00 29.73
BBBBATOM	4751	CD	GLN B 288		11.981 -44.971 -22.044 1.00 28.04
BBBBATOM	4752		GLN B 288		11.294 -44.295 -21.279 1.00 29.59
	4753	NE2	GLN B 288		11.468 -45.905 -22.838 1.00 26.98
BBBBATOM	4754	C	GLN B 288		15.783 -43.291 -20.885 1.00 29.70
BBBBATOM			GLN B 288		16.268 -42.801 -21.902 1.00 29.79
BBBBATOM	4755	0			15.378 -42.554 -19.857 1.00 29.38
BBBBATOM	4756	N	GLN B 289		15.474 -41.099 -19.904 1.00 29.46
BBBBATOM	4757	CA	GLN B 289		
BBBBATOM	4758	CB	GLN B 289		
BBBBATOM	4759	CG	GLN B 289		
BBBBATOM	4760	CD	GLN B 289		12.575 -39.585 -17.826 1.00 29.84
BBBBATOM	4761	OE1	GLN B 289		13.191 -38.728 -17.188 1.00 29.52
BBBBATOM	4762		GLN B 289		11.281 -39.821 -17.647 1,00 28.95
BBBBATOM	4763	C	GLN B 289	•	16.906 -40.613 -20.005 1.00 29.36
	4764	Õ	GLN B 289		17.173 -39.557 -20.585 1.00 29.12
BBBBATOM			TYR B 290		17.835 -41.374 -19.442 1.00 28.95
BBBBATOM	4765	N			19.228 -40.984 -19.550 1.00 29.55
BBBBATOM	4766	CA	TYR B 290		20.136 -41.934 -18.768 1.00 31.40
BBBBATOM	4767	CB	TYR B 290		
BBBBATOM	4768	CG	TYR B 290		
BBBBATOM	4769	CD1	TYR B 290		22.332 -40.682 -18.717 1.00 34.57
BBBBATOM	4770	CE1	TYR B 290		23.644 -40.490 -19.148 1.00 35.97
BBBBATOM	4771	CD2			22.192 -42.684 -20.017 1.00 34.90
	4772	CE2	TYR B 290		23.497 -42.500 -20.453 1.00 36.03
BBBBATOM			TYR B 290		24.214 -41.402 -20.019 1.00 36.29
BBBBATOM	4773	CZ			25.499 -41.215 -20.475 1.00 39.44
BBBBATOM	4774	ОН	TYR B 290	•	19.593 -41.042 -21.032 1.00 28.80
BBBBATOM	4775	С	TYR B 290		
BBBBATOM	4776	0	TYR B 290		
BBBBATOM	4777	N	TRP B 291		
BBBBATOM	4778	CA	TRP B 291		19.542 -42.282 -23.116 1.00 28.07
ווס ז שמחלומים	, , , ,				

- 73

BBBBATÓM		CB TRP B 291 CG TRP B 291	19.217 -43.705 -23.599 1.00 29.42 20.070 -44.750 -22.936 1.00 31.82
BBBBATOM BBBBBATOM		CG TRP B 291 CD2 TRP B 291	21.487 -44.908 -23.069 1.00 33.22
BBBBATOM		CE2 TRP B 291	21.873 -45.966 -22.213 1.00 33.81
BBBBATOM		CE3 TRP B 291	22.470 -44.257 -23.826 1.00 33.13
BBBBATOM	4784	CD1 TRP B 291	19.663 -45.695 -22.035 1.00 32.62
BBBBATOM	4785	NE1 TRP B 291	20.741 -46.428 -21.595 1.00 33.43 23.203 -46.387 -22.093 1.00 34.69
BBBBATOM	4786	CZ2 TRP B 291	23.794 -44.676 -23.707 1.00 35.41
BBBBATOM	4787 4788	CZ3 TRP B 291 CH2 TRP B 291	24.146 -45.732 -22.845 1.00 35.26
BBBBATOM BBBBATOM	4789	C TRP B 291	18.808 -41.256 -23.978 1.00 26.84
BBBBATOM	4790	O TRP B 291	19.283 -40.900 -25.058 1.00 26.55
BBBBATOM	4791	N ASN B 292	17.658 -40.779 -23.508 1.00 25.52 16.902 -39.784 -24.270 1.00 26.06
BBBBATOM	4792	CA ASN B 292	16.902 -39.784 -24.270 1.00 26.06 15.484 -39.599 -23.709 1.00 24.78
BBBBATOM	4793	CB ASN B 292 CG ASN B 292	14.590 -40.811 -23.928 1.00 24.46
BBBBATOM	4794 4795	CG ASN B 292 OD1 ASN B 292	14.842 -41.641 -24.798 1.00 25.33
BBBBATOM BBBBATOM	4796	ND2 ASN B 292	13.523 -40.900 -23.146 1.00 23.83
BBBBATOM	4797	C ASN B 292	17.605 -38.427 -24.258 1.00 25.99
BBBBATOM	4798	O ASN B 292	17.566 -37.687 -25.244 1.00 26.18 18.242 -38.105 -23.139 1.00 25.66
BBBBATOM	4799	N ALA B 293	18.242 -38.105 -23.139 1.00 25.66 18.926 -36.822 -22.979 1.00 25.69
BBBBATOM	_	CA ALA B 293 CB ALA B 293	18.940 -36.422 -21.506 1.00 24.17
BBBBATOM	4801 4802	CB ALA B 293 C ALA B 293	20.346 -36.800 -23.521 1.00 25.67
BBBBATOM BBBBBATOM	4803	O ALA B 293	20.855 -35.743 -23.902 1.00 25.52
BBBBATOM	4804	N LEU B 294	20 978 -37 969 -23 560 1 00 25 62 22 354 -38 088 -24 032 1 00 25 90
вввватом	4805	CA LEU B 294	
BBBBATOM	4806	CB LEU B 294	22.745 -39.566 -24.121 1.00 26.51 24.226 -39.864 -24.350 1.00 28.12
BBBBATOM	4807 4808	CG LEU B 294 CD1 LEU B 294	25.085 -39.055 -23.380 1.00 28.29
BBBBATOM BBBBBATOM	4809	CD2 LEU B 294	24.470 -41.368 -24.169 1.00 28.15
BBBBATOM	4810	C LEU B 294	22.644 -37.392 -25.359 1.00 25.66
BBBBATOM	4811	O LEU B 294	23.677 -36.741 -25.507 1.00 24.79 21.748 -37.532 -26.351 1.00 26.24
BBBBATOM	4812	N PRO B 295 CD PRO B 295	21.748 -37.532 -26.351 1.00 26.24 20.560 -38.400 -26.437 1.00 25.75
BBBBATOM	4813 4814	CD PRO B 295 CA PRO B 295	21.998 -36.870 -27.635 1.00 26.15
BBBBATOM	4815	CB PRO B 295	20.740 -37.201 -28.439 1.00 26.70
BBBBATOM	4816	CG PRO B 295	20.382 -38.548 -27.932 1.00 26.84 22.219 -35.358 -27.480 1.00 25.78
BBBBATOM	4817	C PRO B 295	22.219 -35.358 -27.480 1.00 25.78 23.138 -34.792 -28.069 1.00 25.05
BBBBATOM	4818	O PRO B 295 N LEU B 296	21.375 -34.703 -26.688 1.00 25.66
BBBBATOM BBBBATOM	4819 4820	N LEU B 296 CA LEU B 296	21.521 -33.265 -26.481 1.00 25.42
BBBBATOM	4821	CB LEU B 296	20.283 -32.685 -25.779 1.00 24.45
BBBBATOM	4822	CG LEU B 296	19.066 -32.458 -26.679 1.00 25.59 17.968 -31.718 -25.911 1.00 23.56
BBBBATOM	4823	CD1 LEU B 296	17.968 -31.718 -25.911 1.00 23.56 19.496 -31.630 -27.893 1.00 25.87
BBBBATOM	4824	CD2 LEU B 296 C LEU B 296	22.784 -32.935 -25.688 1.00 26.07
BBBBATOM BBBBATOM	4825 4826	C LEU B 296	23.435 -31.917 -25.944 1.00 25.26
. BBBBATOM	4827	N GLU B 297	23.143 -33.785 -24.730 1.00 26.14
BBBBATOM	4828	CA GLU B 297	24.354 -33.530 -23.953 1.00 28.78 24.470 -34.483 -22.755 1.00 29.05
BBBBATOM	4829	CB GLU B 297	24.470 -34.483 -22.755 1.00 29.05 25.716 -34.210 -21.908 1.00 30.81
BBBBATOM	4830	CG GLU B 297 CD GLU B 297	25.812 -35.087 -20.671 1.00 31.84
BBBBATOM	4831 4832	CD GLU B 297 OE1 GLU B 297	25.655 -34.555 -19.551 1.00 31.74
BBBBATOM BBBBATOM	4833	OE2 GLU B 297	26.045 -36.307 -20.820 1.00 31.56
BBBBATOM	4834	C GLU-B 297	25.577 -33.686 -24.846 1.00 29.06 26.528 -32.910 -24.746 1.00 29.11
BBBBATOM	4835	O GLU B 297	
BBBBATOM	4836	N LYS B 298	25.543 -34.688 -25.722 1.00 31.21 26.644 -34.947 -26.648 1.00 31.90
BBBBATOM	4837	CA LYS B 298 CB LYS B 298	26.379 -36.216 -27.464 1.00 33.65
BBBBATOM BBBBATOM	4838 4839	CG LYS B 298	26.519 -37.514 -26.680 1.00 36.05
BBBBATOM	4.840	CD LYS B 298	26.251 -38.734 -27.568 1.00 37.69
BBBBATOM	4841	CE LYS B 298	26.461 -40.033 -26.801 1.00 38.51 26.094 -41.235 -27.607 1.00 39.05
BBBBATOM	4842	NZ LYS B 298	26.094 -41.235 -27.607 1.00 39.05 26.829 -33.768 -27.598 1.00 31.69
BBBBATCM	4843	C LYS B 298	27.945 -33.455 -27.998 -1.00 30.87
BBBBATOM	4844	O LYS B 298	

BBBBATOM	4845	N	ALA B 299	25.725 -33.116 -27.952 1.00 31.63
BBBBATOM	4846		ALA B 299	25.773 -31.965 -28.847 1.00 30.38
BBBBATOM	4847		ALA B 299	24.415 -31.778 -29.521 1.00 30.22
BBBBATOM	4848		ALA B 299	26.173 -30.685 -28.106 1.00 29.94
BBBBATOM	4849		ALA B 299	26.278 -29.615 -28.709 1.00 30.96
BBBBATOM	4850		GLY B 300	26.398 -30.796 -26.801 1.00 27.41
BBBBATOM	4851		GLY B 300	26.777 -29.635 -26.017 1.00 26.18
BBBBATOM	4852		GLY B 300	25.619 -28.665 -25.810 1.00 25.19
BBBBATOM	4853		GLY B 300	25.832 -27.466 -25.644 1.00 24.70
BBBBATOM	4854		ALA B 301	24.392 -29.179 -25.820 1.00 23.51
BBBBATOM	4855		ALA B 301	23.214 -28.333 -25.638 1.00 22.50
BBBBATOM	4856		ALA B 301	22.174 -28.644 -26.717 1.00 23.44
BBBBATOM	4857	c	ALA B 301	22.591 -28.510 -24.254 1.00 22.09
BBBBATOM	4858	Ō	ALA B 301	21.705 -27.746 -23.863 1.00 19.90
BBBBATOM	4859	N	ALA B 302	23.066 -29.504 -23.507 1.00 20.94
BBBBBATOM	4860	CA	ALA B 302	22.516 -29.770 -22.186 1.00 21.78
BBBBATOM	4861	CB	ALA B 302	21.243 -30.595 -22.327 1.00 20.10
BBBBATOM	4862	C	ALA B 302	23.503 -30.507 -21.288 1.00 22.69
BBBBATOM	4863	ŏ	ALA B 302	24.561 -30.948 -21.739 1.00 22.25
BBBBATOM	4864	N	LYS B 303	23.156 -30.613 -20.009 1.00 24.62
BBBBATOM	4865	CA	LYS B 303	23.979 -31.340 -19.048 1.00 25.86
BBBBATOM	4866	CB	LYS B 303	24.632 -30.401 -18.036 1.00 27.85
BBBBATOM	4867	CG	LYS B 303	25.466 -31.146 -16.986 1.00 29.37
BBBBATOM	4868	CD	LYS B 303	26.150 -30.186 -16.025 1.00 32.41
BBBBATOM	4869	CE	LYS B 303	27.083 -30.912 -15.056 1.00 33.22
BBBBATOM	4870	NZ	LYS B 303	27.827 -29.952 -14.181 1.00 33.62
BBBBATOM	4871	C	LYS B 303	23.083 -32.319 -18.302 1.00 26.41
BBBBATOM	4872	0	LYS B 303	22.015 -31.948 -17.802 1.00 25.76
BBBBATOM	4873	N	ILE B 304	23.520 -33.570 -18.234 1.00 25.65
BBBBATOM	4874	CA	ILE B 304	22.753 -34.598 -17.550 1.00 27.17 22.786 -35.946 -18.316 1.00 27.06
<b>BBBBATOM</b>	4875	СВ	ILE B 304	22.700 33.310
BBBBATOM	4876	CG2	ILE B 304	21.377
BBBBATOM	4877	CG1	ILE B 304	22.242 33.103
BBBBATOM	4878	CD1	ILE B 304	22.300
BBBBATOM	4879	С	ILE B 304	25.500 51.000
BBBBATOM	4880	0	ILE B 304	24.511 -35.012 -15.986 1.00 27.46 22.428 -34.869 -15.168 1.00 27.22
BBBBATOM	4881	N	ILE B 305	22.843 -35.178 -13.813 1.00 29.01
BBBBATOM	4882	CA	ILE B 305	22.713 -33.977 -12.858 1.00 28.91
BBBBATOM	4883	CB	ILE B 305	23.063 -34.416 -11.432 1.00 30.98
BBBBATOM	4884	CG2	ILE B 305 ILE B 305	23.660 -32.855 -13.299 1.00 29.51
BBBBATOM	4885	CG1 CD1		23.674 -31.653 -12.367 1.00 29.43
BBBBATOM	4886 4887	CDI	ILE B 305	21.934 -36.302 -13.351 1.00 29.64
BBBBATOM	4888	0	ILE B 305	20.806 -36.067 -12.932 1.00 29.25
BBBBATOM BBBBBATOM	4889	N	GLU B 306	22.429 -37.532 -13.467 1.00 32.18
BBBBATOM	4890	CA	GLU B 306	21.664 -38.702 -13.061 1.00 34.65
BBBBATOM	4891	CB	GLU B 306	22.356 -39.989 -13.530 1.00 34.79
BBBBATOM	4892	CG	GLU B 306	22.529 -40.067 -15.035 1.00 36.39
BBBBATOM	4893	CD	GLU B 306	23.114 -41.388 -15.504 1.00 36.86
BBBBATOM	4894		GLU B 306	22.468 -42.433 -15.289 1.00 36.59
BBBBATOM	4895		GLU B 306	24.214 -41.378 -16.099 1.00 37.75
BBBBATOM	4896	С	GLU B 306	21.531 -38.704 -11.552 1.00 35.50
BBBBATOM	4897	0	GLU B 306	22.241 -37.984 -10.858 1.00 35.55
BBBBATOM	4898	N	GLN B 307	20.612 -39.514 -11.048 1.00 38.41
BBBBATOM	4899	CA	GLN B 307	20.377 -39.599 -9.613 1.00 40.54
BBBBATOM	4900	CB	GLN B 307	19.397 -40.734 -9.322 1.00 40.99
BBBBATOM	4901	CG	GLN B 307	18.896 -40.769 -7.896 1.00 42.76
BBBBATOM	4902	CD	GLN B 307	17.879 -41.867 -7.681 1.00 44.33 18 181 -43.051 -7.847 1.00 44.46
BBBBATOM	4903	OE 1		10.10.
BBBBATOM	4904	NE2		10.055
BBBBATOM	4905	С	GLN B 307	21.01
BBBBATOM	4906	0	GLN B 307	
вввватом	4907	N	PRO B 308	22,300
BBBBATOM	4908		PRO B 308	22.100
BBBBATOM	4909		PRO B 308	23.828 -40.891 -8.484 1.00 43.20 24.533 -41.954 -9.329 1.00 43.16
BBBBATOM	4910	CB	PRO B 308	24.555 -41.554 -5.525 1.00 45.10
			-	

. . . . . .

		•
BBBBATOM	4911 CG PRO B 308	23.395 -42.708 -9.938 1.00 43.10
BBBBATOM	4912 C PRO B 308	24.719 -39.668 -8.250 1.00 43.82
BBBBBATOM	4913 'O PRO B 308	25.652 -39.724 -7.449 1.00 44.24
BBBBBATOM	4914 N GLN B 309	24.442 -38.569 -8.944 1.00 44.04
BBBBATOM	4915 CA GLN B 309	25.247 -37.361 -8.787 1.00 43.46
BBBBATOM	4916 CB GLN B 309	26.071 -37.104 -10.056 1.00 44.98
BBBBATOM	4917 CG GLN B 309	27.183 -38.113 -10.329 1.00 46.93
BBBBBATOM	4918 CD GLN B 309	26.683 -39.437 -10.885 1.00 47.93
BBBBATOM	4919 OE1 GLN B 309	27.459 -40.376 -11.054 1.00.48.87
BBBBATOM	4920 NE2 GLN B 309	25.388 -39.515 -11.179 1.00 49.17
BBBBATOM	4921 C GLN B 309	24.417 -36.119 -8.479 1.00 42.87
BBBBATOM	4922 O GLN B 309	24.955 -35.013 -8.404 1.00 43.33 23.113 -36.297 -8.289 1.00 41.06
BBBBATOM	4923 N LEU B 310	23.113 30.27
BBBBATOM	4924 CA LEU B 310	72,236 00
BBBBATOM	4925 CB LEU B 310	20.779 -35.549 -8.330 1.00 39.95 19.730 -34.437 -8.480 1.00 39.98
BBBBATOM	4926 CG LEU B 310	19.545 -33.699 -7.166 1.00 41.39
BBBBATOM	4927 CD1 LEU B 310	20.160 -33.472 -9.580 1.00 40.19
BBBBATOM	4928 CD2 LEU B 310	22.342 -34.659 -6.591 1.00 38.83
BBBBATOM	4929 C LEU B 310	22.246 -35.428 -5.634 1.00 39.25
BBBBATOM	4930 O LEU B 310	22.541 -33.354 -6.457 1.00 36.17
BBBBATOM	4931 N SER B 311 4932 CA SER B 311	22.660 -32.714 -5.154 1.00 34.90
BBBBATOM		24 059 -32.928 -4.569 1:00:35.08
BBBBATOM	4933 CB SER B 311 4934 OG SER B 311	25.022 -32.135 -5.248 1.00 33.92
BBBBATOM	4934 OG SER B 311	22.434 -31.227 -5.357 1.00 33.51
BBBBATOM	4936 O. SER B 311	22.476 -30.741 -6.485 1.00 33.60
BBBBATOM BBBBATOM	4937 N VAL B 312	22.202 -30.509 -4.266 1.00 32.42
BBBBBATOM	4938 CA VAL B 312	21.990 -29.074 -4.341 1.00 31.50 21.707 -28.482 -2.938 1.00 31.69
BBBBATOM	4939 CB VAL B 312	21.70
BBBBATOM	4940 CG1 VAL B 312	21.340 20.770
BBBBATOM	4941 CG2 VAL B 312	20.445 -29.106 -2.362 1.00 31.93 23.228 -28.417 -4.946 1.00 31.40
BBBBATOM	4942 C VAL B 312	23.123 -27.612 -5.875 1.00 30.04
BBBBATOM	4943 O VAL B 312 4944 N ASP B 313	24 406 -28 780 -4 444 1 .00 30 .18
BBBBATOM		25 642 -28.202 -4.957 1.00 29.61
BBBBATOM	4945 CA ASP B 313 4946 CB ASP B 313	26 840 -28 656 -4 120 1.00 32 36
BBBBATOM BBBBATOM	4947 CG: ASP B 313	26.817 -28.085 -2.718 1.00 34.21
BBBBATOM	4948 OD1 ASP B 313	26.662 -26.855 -2.578 1.00 36.52
BBBBATOM	4949 OD2 ASP B 313	26.958 -28.865 -1.751 1.00 38.92
BBBBATOM	4950 C ASP B 313	25.910 -28.516 -6.425 1.00 28.84 26.442 -27.677 -7.146 1.00 28.96
BBBBATOM	4951 O ASP B:313	20.442
BBBBATOM	4952 N . ALA B 314	23,333
BBBBATOM	4953 CA ALA B 314	25.782 -30.099 -8.254 1.00 26.47 25.441 -31.575 -8.460 1.00 26.05
BBBBATOM.	4954 CB ALA B 314	24.928 -29.220 -9.174 1.00 25.78
BBBBATOM	4955 C ALA B 314	25.412 -28.714 -10.187 1.00 24.94
BBBBATOM	4956 O ALA B 314 4957 N VAL B 315	23 661 -29.046 -8.815 1.00 25.00
BBBBATOM BBBBATOM		22.755 -28.215 -9.612 1.00 25.33
BBBBATOM	4959 CB VAL B 315	21.305 -28.298 -9.088 1.00 24.74
BBBBATOM	4960 CG1 VAL B 315	20.392 -27.382 -9.898 1.00 23.53
вврватом	4961 CG2 VAL B 315	20.810 -29.738 -9.172 1.00 25.69
вввватом	4962 C VAL B 315	23.222 -26.764 -9.561 1.00 25.02 23.398 -26.125 -10.590 1.00 25.73
BBBBATOM	4963 O. VAL B 315	23.330 29.555
BBBBATOM	4964 N ALA B 316	23.113 =
BBBBATOM	4965 CA ALA B 316	23.000 24.012
BBBBATOM	4966 CB ALA B 316	24.059 -24.545 -6.714 1.00 27.12 25.185 -24.584 -8.955 1.00 28.17
BBBBATOM		25.289 -23.572 -9.652 1.00 27.04
BBBBATOM	1.0.co DCN D 317	26.178 -25.463 -8.823 1.00 28.72
. BBBBATOM		27.444 -25.246 -9.518 1.00 28.52
BBBBATOM		28.493 -26.271 -9.081 1.00 31.30
BBBBATOM		28.940 -26.068 -7.645 1.00 34.01
BBBBATOM		29.091 -24.933 -7.183 1.00 33.87
BBBBATOM		29 170 -27.171 -6.933 1.00 35.63
BBBBATOM BBBBATOM		27, 270 -25, 310 -11, 026 1,00 27, 23
BBBBATOM		27.887 -24.543 -11.765 1.00 26.36
SUCURION		

BBBBATOM	4977 4978 4979 4981 4983 4988 4988 4988 4988 4989 4999 4999	C GLY B 321  O GLY B 321  N TRP B 322  CA TRP B 322  CB TRP B 322  CD2 TRP B 322  CE2 TRP B 322  CE3 TRP B 322  CE1 TRP B 322  CE2 TRP B 322  CE3 TRP B 322  CE4 TRP B 322  CE5 TRP B 322  CE5 TRP B 322  CE6 TRP B 322  CE7 TRP B 322  CE7 TRP B 322  CE8 TRP B 322  CE9 TRP B 322	26.424 -26.224 -11.482
		O ARG B 324	24.540 -16.611 -23.341 1.00 17.56
BBBBATOM	5032	N GLU B 325	26.597 -15.975 -22.686 1.00 17.74
			27.220 -16.368 -23.954 1.00 16.96
			29 361 -16 398 -25.319 1.00 18.50
	5035 5036		30.844 -16.068 -25.454 1.00 19.03
BBBBATOM BBBBATOM	5036		31.446 -16.562 -26.433 1.00 18.89
BBBBATOM	5038	OE2 GLU B 325	31.408 -15.325 -24.615 1.00 20.56
вввватом	5039	C GLU B 325	27.164 -17.894 -24.110 1.00 16.65
BBBBATOM	5040		26.838 -18.428 -25.172 1.00 15.39 27.500 -18.603 -23.042 1.00 16.67
BBBBATOM	5041		27.500 -18.603 -23.042 1.00 16.67 27.460 -20.055 -23.070 1.00 16.39
BBBBATOM	5042	CA THR B 326	27.400 -20.033 23.070 1.00 10.33

. . . . .

WO 01/90301			
W O 01/20301		•	
BBBBATOM		CB THR B 326	
BBBBATOM		OG1 THR B 326	
		CG2 THR B 326 C THR B 326	
BBBBATOM BBBBBATOM		C THR B 326 O THR B 326	
BBBBATOM		N LEU B 327	
BBBBATOM		CA LEU B 327	
BBBBBATOM		CB LEU B 327	
BBBBATOM		CG LEU B 327	
BBBBATOM		CD1 LEU B 327	
BBBBATOM	_	CD2 LEU B 327	
BBBBATOM		C LEU B 327	
BBBBATOM	5055	O LEU B 327	
BBBBATOM	5056	N LEU B 328	
BBBBATOM	5057	CA LEU B 328	
BBBBATOM	5058	CB LEU B 328	
BBBBATOM	5059	CG LEU B 328	
BBBBATOM	5060	CD1 LEU B 328	
BBBBATOM	5061	CD2 LEU B 328 C LEU B 328	
BBBBATOM	5062 5063	C LEU B 328 O LEU B 328	
BBBBATOM BBBBBATOM		N THR B 329	
BBBBATOM	5065	CA THR B 329	
BBBBATOM	5066	CB THR B 329	
BBBBATOM	5067	OG1 THR B 329	
BBBBATOM	5068	CG2 THR B 329	
BBBBATOM	5069	C THR B 329	
BBBBATOM	5070	O THR B 329	
BBBBATOM	5071	N MET B 330	
BBBBATOM	5072	CA MET B 330 CB MET B 330	
BBBBATOM	5073	CB MET B 330 CG MET B 330	
BBBBATOM BBBBATOM	5074 5075	SD MET B 330	
BBBBATOM	5076	CE MET B 330	
BBBBATOM	5077	C MET B 330	
BBBBATOM	5078	O MET B 330	
BBBBATOM	5079	N ALA B 331	
BBBBATOM	5080	CA ALA B 331	
BBBBATOM	5081	CB ALA B 331	
BBBBATOM	5082	C ALA B 331	
BBBBATOM	5083 5084	O ALA B 331 N GLU B 332	
BBBBATOM BBBBATOM	5085	N GLU B 332 CA GLU B 332	
BBBBATOM	5086	CB GLU B 332	
BBBBATOM	5087	CG GLU B 332	
BBBBATOM	5088	CD GLU B 332	
BBBBATOM	5089	OE1 GLU B 332	
BBBBATOM	5090	OE2 GLU B 332	
вввватом	5091	C GLU B 332	
BBBBATOM	5092	O GLU B 332	
BBBBATOM	5093	N ARG B 333	
BBBBATOM	5094	CA ARG B 333 CB ARG B 333	
BBBBATOM	5095	CB ARG B 333 CG ARG B 333	
BBBBATOM BBBBATOM	5096 5097	CD ARG B 333	
BBBBATOM	5098	NE ARG B 333	٠.
BBBBATOM	5099	CZ ARG B 333	
BBBBBATOM	5100	NH1 ARG B 333	
BBBBATOM	5101	NH2 ARG B 333	
BBBBATOM	5102	C ARG B 333	
	C 1 0 2	0 700 0 333	

5103

5104

5105

5106

5107

5108

0

N

CA

CB

С

0

ARG B 333

ALA B 334

ALA B 334

ALA B 334

ALA B 334

334

ALA B

**BBBBATOM** 

BBBBATOM

BBBBATOM

BBBBATOM .

BBBBATOM .

BBBBATOM

1.00 16.62 27.967 -20.635 -21.725 29.346 -20.294 -21.561 27.804 -22.143 -21.690 1.00 18.20 1.00 17.40 26.034 -20.551 -23.321 25.817 -21.478 -24.107 1.00 16.65 1.00 17.90 25.068 -19.932 -22.643 23.659 -20.305 -22.780 1.00 17.27 1.00 17.35 22.791 -19.514 -21.791 22.922 -19.919 -20.309 1.00 16.74 22.192 -18.930 -19.416 1.00 14.82 22.361 -21.312 -20.129 1.00 18.13 1.00 17.58 23.145 -20.096 -24.198 22.352 -20.899 -24.692 1.00 16.08 1.00 17.87 23.584 -19.014 -24.845 23.175 -18.745 -26.222 1.00 17.39 23.706 -17.379 -26.690 1.00 17.84 23.475 -17.021 -28.173 1.00 18.65 21.988 -17.112 -28.494 1.00 16.92 1.00 18.47 23.984 -15.608 -28.460 23.716 -19.868 -27.111 1.00 17.74 23.003 -20.400 -27.953 1.00 17.59 24.977 -20.244 -26.910 1.00 20.12 1.00 21.30 25.567 -21.335 -27.688 27.069 -21.556 -27.336 1.00 22.69 27.866 -20.591 -28.029 1.00 25.80 1.00 24.48 27.533 -22.957 -27.757 24.819 -22.644 -27.457 1.00 20.40 24.552 -23.382 -28.398 1.00 20.34 24.494 -22.933 -26.200 1.00 20.31 23.771 -24.153 -25.870 1.00 19.91 1.00 20.88 23.642 -24.292 -24.350 24.957 -24.571 -23.647 1.00 21.37 1.00 22.76 24.805 -24.609 -21.855 1.00 22.37 24.118 -26.250 -21.622 22.389 -24.149 -26.519 1.00 19.43 21.924 -25.167 -27.029 1.00 20.85 1.00 18.81 21.737 -22.996 -26.504 20.412 -22.871,-27.098 1.00 18.49 19.868 -21.462 -26.859 1.00 17.16 1.00 19.04 20.481 -23.162 -28.594 19.644 -23.879 -29.130 1.00 18.16 1.00 19.87 1.00 21.47 21.489 -22.613 -29.269 21.626 -22.827 -30.704 22.709 -21.912 -31.274 1.00 22.13 22.328 -20.455 -31.143 1.00 24.10 23.428 -19.522 -31.572 1.00 26.61 1.00 26.92 24.594 -19.765 -31.197 23.118 -18.542 -32.273 1.00 27.58 21.921 -24.280 -31.025 1.00 22.44 1,00 22.84 21.412 -24.814 -32.006 22.739 -24.923 -30.200 1.00 22.30 1.00 23.77 23.040 -26.330 -30.408 24.117 -26.789 -29.427 1.00 25.03 1.00 26.79 25.503 -26.222 -29.737 26.443 -26.467 -28.570 1.00 28.88 27.810 -26.041 -28.846 1.00 29.09 28.772 -26.001 -27.932 28.514 -26.361 -26.678 29.990 -25.596 -28.269 1.00 30.32 1.00 32.07 1.00 31.36 21.763 -27.147 -30.218 1.00 23.13 21.548 -28.151 -30.895 1.00 23,45 20.907 -26.713 -29.299 1.00 22.82 19.648 -27.420 -29.063 1.00 22.83 18.778 -27.333 -30.317 1.00 22.86 18.285 -28 320 18.285 -28.339 -30.827 1.00 21.38

BBBBATOM	5109 N	ARG B 335	18.602 -26.114 -30.815 1.00 23.14
			17.795 -25.892 -32.002 1.00 23.54
BBBBATOM	5110 CA		17.815 -24.407 -32.361 1.00 25.17
BBBBATOM	5111 C		17.815 -24.407 -32.301 1.00 25.17
BBBBATOM	5112 C		16.804 -23.995 -33.418 1.00 26.90
BBBBATOM	5113 CI	D ARG B 335	15.381 -24.129 -32.891 1.00 30.87
BBBBATOM	5114 N	E ARG B 335	14.435 -23.414 -33.736 1.00 33.71
BBBBATOM	5115 C	Z ARG B 335	13.607 -22.469 -33.301 1.00 35.57
BBBBATOM		H1 ARG B 335	13.601 -22.123 -32.016 1.00 34.54
BBBBATOM		H2 ARG B 335	12.791 -21.862 -34.157 1.00 35.17
			18.348 -26.724 -33.163 1.00 23.86
BBBBATOM	5118 C		17.595 -27.360 -33.902 1.00 22.38
BBBBATOM	5119 0		19.671 -26.737 -33.297 1.00 25.17
BBBBATOM	5120 N		
BBBBATOM	5121 C		20.330 -27.477 -34.372 1.00 26.85
BBBBATOM	5122 C		21.830 -27.174 -34.374 1.00 26.27
BBBBATOM	5123 C	ALA B 336	20.101 -28.985 -34.288 1.00 27.80
BBBBATOM	5124 O	ALA B 336	20.052 -29.665 -35.308 1.00 27.33
BBBBATOM	5125 N		19.959 -29.501 -33.072 1.00 29.45
BBBBATOM	5126 C		19.740 -30.925 -32.865 1.00 30.89
	5127 C		20.205 -31.320 -31.467 1.00 31.47
BBBBATOM			18.267 -31.276 -33.047 1.00 32.47
BBBBATOM	5128 C		
BBBBATOM	5129 O		17.007
BBBBATOM	5130 . N		1,
BBBBATOM	5131 C	CA SER B 338	16.008 -30.432 -33.408 1.00 32.41
вввватом	5132 C	B SER B 338	15.286 -29.140 -33.029 1.00 31.94
BBBBATOM	5133 O	G SER B 338	13.921 -29.196 -33.385 1.00 34.53
BBBBATOM	5134 C		15.593 -30.822 -34.829 1.00 33.16
BBBBATOM	5135 C		16.274 -30.503 -35.801 1.00 32.25
BBBBATOM	5136 N		14.466 -31.523 -34.921 1.00 33.44
BBBBATOM		CA ILE B 339	13.882 -31.941 -36.187 1.00 34.35
-		CB ILE B 339	13.989 -33.472 -36.384 1.00 35.51
BBBBATOM			13.271 -33.880 -37.658 1.00 35.53
BBBBATOM		G2 ILE B 339	15.463 -33.887 -36.450 1.00 36.09
BBBBATOM		CG1 ILE B 339	
BBBBATOM		CD1 ILE B 339	10.000
BBBBATOM	5142		12.416 -31.518 -36.059 1.00 34.84
BBBBATOM	5143	D ILE B 339	11.601 -32.229 -35.479 1.00 35.09
BBBBATOM	5144 N	N PRO B 340	12.068 -30.344 -36.611 1.00 34.93
BBBBATOM	5145	CD PRO B 340	12.999 -29.525 -37.409 1.00 35.06
BBBBATOM		CA PRO B 340	10.733 -29.730 -36.600 1.00 34.94
BBBBATOM		CB PRO B 340	10.994 -28.349 -37.194 1.00 35.58
BBBBATOM		CG PRO B 340	12.052 -28.642 -38.205 1.00 36.27
BBBBATOM		C PRO B 340	9.551 -30.409 -37.284 1.00 34.07
		O PRO B 340	8.410 -30.222 -36.861 1.00 34.18
BBBBATOM			9.803 -31.180 -38.334 1.00 33.42
BBBBATOM			8.711 -31.820 -39.056 1.00 33.33
BBBBATOM			8.802 -31.448 -40.536 1.00 35.03
BBBBATOM		CB ASP B 341	
BBBBATOM		CG ASP B 341	
BBBBATOM		OD1 ASP B 341	
BBBBATOM	5156	OD2 ASP B 341	10.102 -32.200 -42.367 1.00 40.57
BBBBATOM	5157	C ASP B 341	8.655 -33.336 -38.899 1.00 32.11
BBBBATOM	5158	O ASP B 341	8.377 -34.066 -39.854 1.00 30.74
BBBBATOM		N ALA B 342	8.908 -33.807 -37.683 1.00 30.63
BBBBATOM		CA ALA B 342	8.875 -35.238 -37.411 1.00 29.09
BBBBATOM		CB ALA B 342	9.174 -35.496 -35.927 1.00 28.28
BBBBATOM		C ALA B 342	7.530 -35.844 -37.792 1.00 28.32
	•	O ALA B 342	7.475 -36.901 -38.416 1.00 29.88
BBBBATOM			6.441 -35.177 -37.427 1.00 28.28
BBBBATOM			5.115 -35.696 -37.744 1.00 28.55
BBBBATOM		CA THR B 343	3.998 -34.765 -37.205 1.00 29.04
BBBBATOM		CB THR B 343	4 119 -34.642 -35.782 1.00 28.04
BBBBATOM		OG1 THR B 343	
BBBBATOM	5168	CG2 THR B 343	2.628 -35.330 -37.528 1.00 28.54
BBBBATOM	5169	C THR B 343	4.934 -35.882 -39.254 1.00 29.50
BBBBATOM	5170	O THR B 343	4.533 -36.952 -39.711 1.00 28.08
BBBBATOM	5171	N GLU B 344	5.234 -34.843 -40.030 1.00 30.76
BBBBATOM	5172	CA GLU B 344	5.085 -34.933 -41.480 1.00 32.00
	5173	CB GLU B 344	5.414 -33.589 -42.142 1.00 34.02
BBBBATOM		CG GLU B 344	4.412 -32.483 -41.814 1:00 38.27
BBBBATOM	5174	CG GEO D 344	4,110 00,110 10,100 00,10

. . .

BBBBATOM	5175 CD GLU B 344 5176 OE1 GLU B 344 5177 OE2 GLU B 344 5178 C GLU B 344 5179 O GLU B 345 5180 N ARG B 345 5181 CA ARG B 345 5182 CB ARG B 345 5183 CG ARG B 345 5184 CD ARG B 345 5186 CZ ARG B 345 5187 NH1 ARG B 345 5188 NH2 ARG B 345 5189 C ARG B 345 5190 O ARG B 345 5191 N VAL B 346 5192 CA VAL B 346 5193 CB VAL B 346 5194 CG1 VAL B 346 5195 CG2 VAL B 346 5196 C VAL B 346 5197 O VAL B 346 5198 N ALA B 347 5200 CB ALA B 347 5200 CB ALA B 347 5200 CB ALA B 347 5201 C ALA B 347 5200 CB ALA B 347 5201 C ALA B 347 5200 CB ALA B 347 5200 CB ALA B 347 5200 CB ALA B 347 5201 C ALA B 347 5200 CB ALA B 347 5201 C ALA B 347 5200 CB ALA B 347 5200 CB ALA B 347 5201 C ALA B 348 5206 CG ASN B 348 5207 OD1 ASN B 348 5206 CG ASN B 348 5207 OD1 ASN B 348 5208 ND2 ASN B 348 5209 C ASN B 348 5200 CB ASN B 348 5201 O ASN B 348 5202 CB GLU B 349 5213 CB GLU B 349 5214 CG GLU B 349 5215 CD GLU B 349 5216 OE1 GLU B 349 5217 OE2 GLU B 349 5218 C GLU B 349	
BBBATOM BBBBATOM	5200         CB         ALA         B         347           5201         C         ALA         B         347           5202         O         ALA         B         347           5203         N         ASN         B         348           5204         CA         ASN         B         348           5205         CB         ASN         B         348           5206         CG         ASN         B         348           5207         OD1         ASN         B         348           5208         ND2         ASN         B         348           5209         C         ASN         B         348           5209         C         ASN         B         348           5210         O         ASN         B         348           5211         N         GLU         B         349           5212         CA         GLU         B         349           5213         CB         GLU         B         349           5214         CG         GLU         B         349           5215         CD         GLU         B	
BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM BBBBATOM	5235 CB ARG B 352 5236 CG ARG B 352 5237 CD ARG B 352 5238 NE ARG B 352 5239 CZ ARG B 352	

4.807 -31.661 -40.594 1.00 40.96 5.252 -32.252 -39.582 1.00 41.33 4.665 -30.419 -40.649 1.00 42.30 1.00 31.14 5.970 -36.032 -42.056 1.00 - 32 - . 33 5.534 -36.805 -42.909 7.209 -36.106 -41.587 1.00 30.66 8.138 -37.123 -42.067 1.00 31.44 1.00 33.54 9.494 - 36.986 - 41.376 1.00 37.73 10.293 -35.772 -41.793 11.716 -35.880 -41.284 1.00 40.70 12.580 -34.864 -41.873 1.00 44.36 1.00 45.65 13.901 -34.841 -41.739 1.00 46.05 14.514 -35.782 -41.031 14.608 -33.881 -42.322 1.00 47.38 1.00 30.89 7.626 -38.545 -41.854 7.724 -39.387 -42.746 1.00 29.98 7.086 -38.818 -40.670 1.00 29.72 1.00 28.61 6.578 -40.151 -40.384 6.197 -40.298 -38.885 1.00 27.90 5.612 -41.680 -38.625 1.00 27.30 7.419 -40.060 -38.024 1.00 27.32 5.361 -40.435 -41.252 1.00 28.33 1.00 28.30 5.248 -41.511 -41.847 4.457 -39.465 -41.335 1.00 28.76 1.00 28.96 3.249 -39.617 -42.137 1.00 28.49 2.363 -38.387 -41.994 3.596 -39.844 -43.606 1.00 30.26 2.948 -40.641 -44.279 1.00 30.12 4.613 -39.142 -44.098 1.00 32.77 1.00 34.56 5.035 -39.286 -45.493 1.00 35.68 6.045 -38.195 -45.868 1.00 37.21 5.384 -36.846 -46.123 1.00 38.48 4.157 -36.719 -46.081 6.199 -35.831 -46.393 1.00 38.38 5.633 -40.668 -45.765 1.00 34.90 5.433 -41.233 -46.841 1.00 34.59 1.00 35.20 6.366 -41.212 -44.794 6.954 -42.540 -44.956 1.00 34.86 8.004 -42.814 -43.879 1.00 34.59 1.00 38.16 9.404 -42.385 -44.259 9.865 -42.992 -45.579 1.00 38.74 9.806 -44.232 -45.735 - 1.00 40.12 10.292 -42.225 -46.461 1.00 39.64 5.872 -43.607 -44.895 1.00 33.96 5.942 -44.621 -45.591 1.00 33.99 4.875 -43.377 -44.051 1.00 33.91 3.767 -44.306 -43.919 2.848 -43.907 -42.744 1.00 33.79 1.00 33.70 1.554 -44.695 -42.798 ·1.00 ·32.22 3.568 -44.154 -41.425 1.00 32.24 2.969 -44.274 -45.217 1.00 34.78 1.00 34.85 1.00 35.34 2.411 -45.285 -45.645 2.925 -43.102 -45.844 1.00 36.67 2.196 -42.946 -47.095 1.00 37.32 2.024 -41.462 -47.425 1.241 -41.292 -48.590 2.958 -43.639 -48.222 1.00 37.74 1.00 37.35 2.365 -44.309 -49.064 1.00 36.85 1.00 37.89 4.277 -43.482 -48.223 1.00 40.03 5.114 -44.088 -49.251 6.557 -43.600 -49.114 1.00 41.58 7.470 -44.069 -50.232 1.00 44.46 8.906 -44.157 -49.759 1.00 47.36 9.097 -45.271 -48.832 1.00 49.57 10.234 -45.524 -48.191 1.00 50.54 11.287 -44.738 -48.372 1.00 50.88

× 73

BBBBATOM 5279 OT1 LEU B 357 BBBBATOM 5280 OT2 LEU B 357 BBBBATOM 5280 OT2 LEU B 357 BBBBATOM 5281 OH2 WAT W 1 -20.568 11.549 41.653 1.00 24.11 WATR ATOM 5282 OH2 WAT W 4 -7.219 -67.275 -41.843 1.00 35.35 WATR ATOM 5283 OH2 WAT W 5 20.119 -17.520 -22.473 1.00 21.13 WATR ATOM 5284 OH2 WAT W 6 18.858 -19.701 -23.468 1.00 18.31 WATR ATOM 5285 OH2 WAT W 7 2.329 -28.724 -15.978 1.00 27.32 WATR ATOM 5286 OH2 WAT W 8 9.484 -48.435 -27.938 1.00 23.67 WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	BBBBATOM	526 526 526 526 526 527 527 527 527 527 527 527	C O N C B C C C C C C C C C C C C C C C C C	ARG ARG VAL VAL VAL ALA ALA ALA ALA ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	B 353 B 354 B 354 B 354 B 355 B 357 J B 357 J B 357	10.321 -46.566 -47.373
WATR ATOM 5282 OH2 WAT W 4 -7.219 -67.275 -41.843 1.00 35.35 WATR ATOM 5283 OH2 WAT W 5 20.119 -17.520 -22.473 1.00 21.13 WATR ATOM 5284 OH2 WAT W 6 18.858 -19.701 -23.468 1.00 18.31 WATR ATOM 5285 OH2 WAT W 7 2.329 -28.724 -15.978 1.00 27.32 WATR ATOM 5286 OH2 WAT W 8 9.484 -48.435 -27.938 1.00 23.67 WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	BBBB				_	
WATR ATOM 5283 OH2 WAT W 5 20.119 -17.520 -22.473 1.00 21.13 WATR ATOM 5284 OH2 WAT W 6 18.858 -19.701 -23.468 1.00 18.31 WATR ATOM 5285 OH2 WAT W 7 2.329 -28.724 -15.978 1.00 27.32 WATR ATOM 5286 OH2 WAT W 8 9.484 -48.435 -27.938 1.00 23.67 WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	WATR				4	-7.219 -67.275 -41.843 1.00 35.35
ATOM 5284 OH2 WAT W 6 18.858 -19.701 -23.468 1.00 18.31 WATR ATOM 5285 OH2 WAT W 7 2.329 -28.724 -15.978 1.00 27.32 WATR ATOM 5286 OH2 WAT W 8 9.484 -48.435 -27.938 1.00 23.67 WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	WATR	•	OH2 W	AT W	5	20.119 -17.520 -22.473 1.00 21.13
WATR ATOM 5285 OH2 WAT W 7  ATOM 5286 OH2 WAT W 8  WATR ATOM 5286 OH2 WAT W 8  P.484 -48.435 -27.938 1.00 23.67  WATR ATOM 5287 OH2 WAT W 9  ATOM 5288 OH2 WAT W 10  WATR ATOM 5288 OH2 WAT W 10  WATR ATOM 5289 OH2 WAT W 11  S289 OH2 WAT W 11  S289 OH2 WAT W 12  WATR ATOM 5290 OH2 WAT W 12  T.842 -13.432 -21.178 1.00 25.85  WATR ATOM 5291 OH2 WAT W 14  ATOM 5292 OH2 WAT W 14		5284 (	OH2 W	AT W	6	18.858 -19.701 -23.468 1.00 18.31
WATR ATOM 5286 OH2 WAT W 8 9.484 -48.435 -27.938 1.00 23.67 WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	WATR					
WATR ATOM 5287 OH2 WAT W 9 7.645 -57.693 -27.177 1.00 21.03 WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	WATR			•		,
WATR ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35						
ATOM 5288 OH2 WAT W 10 -1.542 -8.422 1.824 1.00 29.71 WATR ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35		5287	OH2 W	W TA	9	
ATOM 5289 OH2 WAT W 11 5.875 -50.793 -32.396 1.00 20.21 WATR ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	MOTA	5288	OH2 W	AT W	10	-1.542 -8.422 1.824 1.00 29.71
ATOM 5290 OH2 WAT W 12 27.592 -18.174 -27.779 1.00 22.52 WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35		5289	OH2 W	AT W	11	5.875 -50.793 -32.396 1.00 20.21
WATR ATOM 5291 OH2 WAT W 13 7.842 -13.432 -21.178 1.00 25.85 WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35	WATR	5290	OH2 W	W TA	12	27.592 -18.174 -27.779 1.00 22.52
WATR ATOM 5292 OH2 WAT W 14 4.845 -57.924 -27.444 1.00 24.35		5291	OH2 N	W TAI	13	7.842 -13.432 -21.178 1.00 25.85
	WATR ATOM				•	

~ /3

		•
MOTA	5293 OH2 WAT W 15	0.473 -58.751 -17.746 1.00 35.49
WATR ATOM	5294 OH2 WAT W 16	7.998 -52.522 -25.785 1.00 22.34
WATR		-8.656 11.300 18.872 1.00 23.81
ATOM WATR	5295 OH2 WAT W 17	0.030 21.300 20.00
MOTA	5296 OH2 WAT W 18	8.711 -45.913 -29.121 1.00 21.55
WATR' ATOM	5297 OH2 WAT W 19	2.957 -68.158 -38.242 1.00 29.43
WATR ATOM	5298 OH2 WAT W 20	16.486 -11.742 -16.567 1.00 22.13
WATR		
ATOM WATR	5299 OH2 WAT W 21	0.202
ATOM	5300 OH2 WAT W 22	12.670 -47.636 -24.808 1.00 25.87
WATR ATOM	5301 OH2 WAT W 23	6.513 -15.597 -22.517 1.00 26.31
WATR	5302 OH2 WAT W 24	7.536 -66.906 -21.753 1.00 21.48
ATOM WATR -		25 405 1 00 21 00
ATOM WATR	5303 OH2 WAT W 25	25.000
MOTA	5304 OH2 WAT W 26	-5.240 10.154 13.527 1.00 29.62
WATR . ATOM	5305 OH2 WAT W 27	29.942 -20.139 -19.237 1.00 20.38
WATR	.5306 OH2 WAT W 28	18.996 -28.763 -24.427 1.00 20.28
ATOM .WATR		8.755 -51.080 -27.990 1.00 20.66
ATOM WATR	5307 OH2 WAT W 29	0.733
MOTA	5308 OH2 WAT W 30	4.215 -64.684 -43.328 1.00 39.67
. WATR . ATOM	5309 OH2 WAT W 31	14.708 -11.936 -1.749 1.00 24.57
WATR	5310 OH2 WAT W 32	28.140 -13.870 -21.266 1.00 18.93
MOTA WATR		20 20 20
ATOM WATR	5311 OH2 WAT W 33	4.057
MOTA	5312 OH2 WAT W 34	4.784 -56.759 -43.904 1.00 25.99
WATR ATOM	.5313 OH2 WAT W .35	-22.733 10.283 33.238 1.00 24.60
WATR ATOM	5314 OUQ URM N 36	0.540 14.225 10.932 1.00 26.89
WATR		-7.560 11.931 12.593 1.00 27.76
ATOM WATR		,
MOTA	5316 OH2 WAT W 38	7.500
WATR ATOM	534 3 000 CIAM CI 30	6.716 -55.314 -42.959 1.00 25.72
WATR ATOM	534 0 000 FEB FL 40	6.833 -32.402 -3.845 1.00 32.49
WATR		30.445 -20.104 -25.459 1.00 27.97
ATOM WATR	· · · · · · · · · · · · · · · · · · ·	·
MOTA	1 5320 OH2 WAT W 42	1.475 -15.304 -22.128 1.00 30.57
TAW MOTA	(170 (170 (170 (170 (170 (170 (170 (170	15.703 -42.835 -31.237 1.00 26.74
WATE	EROR OUR CIRM OF AA	7.131 -6.595 -18.003 1.00 29.47
MOTA [·] TAW	i 3322 3,12 4,14 4	30.256 -23.202 -11.163 1.00 33.81
OTA .		30.233 23.00
ATO	M 5324 OH2 WAT W 46	0.10
TAW IOTA		17.631 -17.241 -5.864 1.00 28.69
WAT		
		A # 4

. . . . .

ATOM	5326	OH2 W	W TAI	48	13.436 -59.821 -27.855 1.00 28.71
WATR ATOM	5327	он2 и	AT W	49	11.395 -15.293 2.925 1.00 29.36
WATR ATOM	5328	он2 и	ነለጥ 61	50	19.218 -21.377 -34.248 1.00 31.41
WATR	3320	Onz v	AWI M	50	
ATOM WATR	5329	OH2 V	W TAN	51	11.973 -11.890 -15.788 1.00 35.59
ATOM	5330	OH2 .V	W TAV	52	9.140 -8.260 -23.371 1.00 40.29
WATR ATOM	5331	OH2 I	W TAV	53	-19.061 14.438 38.966 1.00 38.01
WATR	3331				
ATOM WATR	5332	OH2 V	W TAN	54	-3.895 -70.510 -28.249 1.00 25.56
MOTA	5333	OH2 1	W TAN	55	20.909 -23.456 -34.213 1.00 26.74
WATR ATOM	5334	OH2 1	W TAW	56	-8.505 11.136 10.323 1.00 30.97
WATR	3334	0112	WAI W		
ATOM	5335	OH2	W TAW	57	22.022 -15.529 -23.223 1.00 26.74
WATR ATOM	5336	OH2	W TAW	58	13.860 -49.304 -42.490 1.00 27.91
WATR			,	<b>5.0</b>	-9.455 -6.552 -9.720 1.00 41.70
ATOM WATR	5337	OH2	W TAW	59	
ATOM	5338	OH2	WAT W	60	13.798 -49.732 -23.016 1.00 41.60
WATR	5220	OH3	WAT W	61	15.881 -60.461 -31.910 1.00 48.66
ATOM WATR	5339	OHZ	MAI N	01	
MOTA	5340	OH2	W TAW	62	-9.797 12.718 13.997 1.00 29.14
WATR ATOM	5341	OH2	WAT W	63	16.793 0.356 -6.115 1.00 26.17
WATR	53.40	0110	(120 m - f		3.173 18.778 20.793 1.00 31.13
ATOM WATR	5342	OH Z	WAT W	64	
MOTA	5343	OH2	WAT W	65	13.433 -11.079 0.672 1.00 27.40
WATR ATOM	5344	он2	WAT W	1 66	3.118 -0.813 0.729 1.00 24.68
WATR					-22.179 3.583 26.978 1.00 32.28
ATOM WATR	5345	OH2	WAT W	1 67	
MOTA	5346	OH2	WAT	v 68	24.433 -30.481 -1.783 1.00 41.91
WATR ATOM	5347	OH2	TAW	٧ 69	4.384 -66.131 -41.203 1.00 34.75
WATR					20.398 -7.386 -4.280 1.00 30.85
ATOM WATR	5348	OH Z	TAW	N 70	
ATOM	5349	OH2	WAT	W 71	-2.444 -70.752 -22.067 1.00 25.46
WATR ATOM	5350	OH2	WAT	w 72	-3.963 -4.914 -5.711 1.00 29.67
WATR	5351	OU 2	WAT	w 73	17.663 -11.040 -34.488 1.00 30.24
ATOM WATR	2221				
ATOM	5352		WAT	W 74 WAT W	21.404 -42.041 -26.621 1.00 31.41 75 -1.110 -15.319 -1.089 1.00 31.51
WATRA WATRA		5353 5354		W TAW	76 0.688 19.730 22.519 1.00 26.71
WATRA		5355	OH2	W TAW	12.113 -69.335 -26.593 1.00 27.11
WATRA		5356		WAT W	78
WATRA		5357		W TAW W TAW	79 -25.519 9.450 22.092 1.00 28.18 80 -14.673 6.584 16.023 1.00 31.37
WATRA		5358 5359		WAT W	81 -2.250 -0.253 -1.741 1.00 29.99
WATRA WATRA		5360		WAT W	82 -7.300 12.943 8.415 1.00 32.39
WATRA		5361		W TAW	83 1.712 -13.629 -13.904 1.00 34.08
WATRA		5362	OH2	W TAW	84 4.709 -17.478 -6.557 1.00 29.67
WATRA		5363	OH2	W TAW	85 10.070 -57.496 -44.450 1.00 48.39 86 8.040 -30.281 -10.117 1.00 28.59
WATRA		5364		W TAW	70 70 70 70 70 70 71 75
WATRA	MOTA	5365	OH2	WAT W	87 -1.967 -32.3/2 -38.643 1.00 31.55

		-3.178 -64.576 -25.506 .1.00 33.66
WATRATOM	5366 OH2 WAT W 88	15.762 -9.860 -10.400 1.00 34.29
WATRATOM	5367 OH2 WAT W 89	5.654 -30.990 -27.758 1.00 35.84
WATRATOM	5368 OH2 WAT W 90 .	J. 054 50.550 E
WATRATOM	5369 OH2 WAT W 91	11.555
WATRATOM	5370 OH2 WAT W 92	10.13
WATRATOM	5371 OH2 WAT W 93	1,100
WATRATOM	5372 OH2 WAT W 94	-14.574 22.522 18.870 1.00 49.48
WATRATOM	5373 OH2 WAT W 95	-11.031 -42.768 -39.637 1.00 37.63
WATRATOM	5374 OH2 WAT W 96	9.906 -35.479 -19.203 1.00 29.59
WATRATOM	5375 OH2 WAT W 97	-0.990 -0.781 36.951 1.00 37.27
WATRATOM	5376 OH2 WAT W 98	-11.422 9.059 11.252 1.00 30.43
WATRATOM	5377 OH2 WAT W 99	8.118 -36.710 -22.371 1.00 34.85
	5378 OH2 WAT W 100	12.414 -67.326 -22.791 1.00 31.24
WATRATOM	5379 OH2 WAT W 101	28 541 -24 603 -31 049 1 00 40 14
WATRATOM	5380 OH2 WAT W 102	16.276 -10.934 -3.673 1.00 33.80
WATRATOM		30.979 -13.264 -22.953 1.00 24.73
WATRATOM	3301 3.12 1.111	12.759 -31.636 -31.838 1.00 26.40
WATRATOM		23.507 -29.661 -32.187 1.00 29.62
WATRATOM		21.292 -13.141 -24.874 1.00 37.83
WATRATOM	333.	10.171 -32.960 -15.580 1.00 26.59
WATRATOM	5385 OH2 WAT W 107	-2.207 2.376 2.034 1.00 27.55
WATRATOM	5386 OH2 WAT W 108	2.20
WATRATOM	5387 OH2 WAT W 109	0.501 22.000
WATRATOM	5388 OH2 WAT W 110	14.500
WATRATOM	5389 OH2 WAT W 111	10.012
WATRATOM	5390 OH2 WAT W 112	
WATRATOM	5391 OH2 WAT W 113	0,510 00.70
WATRATOM	5392 OH2 WAT W 114	14.3/3 201/20
WATRATOM	5393 OH2 WAT W 115	24,100
WATRATOM	5394 OH2 WAT W 116	
WATRATOM	5395 OH2 WAT W 117	24.005
WATRATOM	5396 OH2 WAT W 118	10.772
WATRATOM	5397 OH2 WAT W 119	-5.862 6.629 4.446 1.00 39.57
WATRATOM	5398 OH2 WAT W 120	14.133 -57.303 -28.159 1.00 30.19
WATRATOM	5399 OH2 WAT W 121	-16.538 -6.724 21.638 1.00 40.50
WATRATOM	5400 OH2 WAT W 122	19.669 -18.487 -33.216 1.00 38.38
WATRATOM	5401 OH2 WAT W 123	15.481 1.078 -4.048 1.00 32.28
WATRATOM	5402 OH2 WAT W 124	20.395 -13.033 -2.072 1.00 49.69
WATRATOM	5403 OH2 WAT W 125	15.526 -1.437 -15.842 1.00 36.06
WATRATOM	5404 OH2 WAT W 126	7.297 -29.419 -1.509 1.00 34.75
	5405 OH2 WAT W 127	9.994 -12.069 -21.013 1.00 32.21
WATRATOM WATRATOM		17.433 -42.825 -16.713 1.00 31.02
	5407 OH2 WAT W 129	-15.855 20.882 21.019 1.00 44.11
WATRATOM	310	-6 351 -7.687 -14.067 1.00 35.04
WATRATOM		7.954 -17.872 -1.475 1.00 28.45
WATRATOM		13 526 -34 593 -31.844 1.00 31.12
WATRATOM		9 992 -41.228 -23.098 1.00 26.45
WATRATOM		8 434 18 132 16 019 1:00 32 97
WATRATOM		-1 208 -33.658 -36.216 1.00 38.33
WATRATOM		-14 502 9.100 12.433 1.00 43.21
WATRATOM		14 394 -43.675 -17.325 1.00 32.32
WATRATOM		-4 809 -30.333 <b>-</b> 46.416 1.00 42.65
WATRATOM		18.861 -35.072 -35.671 1.00 43.56
WATRATOM		-10.162 -60.139 -32.862 1.00 35.41
WATRATOM		6.740 -32.411 -35.303 1.00 38.57
WATRATOM		-12.257 -60.854 -39.307 1.00 32.90
WATRATOM		18.910 -40.984 -13.084 1.00 43.43
WATRATOM		18.857 -49.375 -28.645 1.00 31.34
WATRATON		0.235 -17.424 -16.608 1.00 38.85
WATRATON	5423 OH2 WAT W 145	14.236 -11.252 -24.086 1.00 27.79
WATRATON	1 5424 OH2 WAT W 146	14.236 -11.252 -24.066 1.00 27.73 31 513 -22.336 -22.128 1.00 43.18
WATRATO	1 5425 OH2 WAT W 147	
WATRATON	1 5426 OH2 WAT W 148	
WATRATO		-7.717 -64.969 -36.808 1.00 26.30
61 አ ጥ D እ ጥ 🔿 ነ		22.584 -12.594 -4.179 1.00 46.91
WATRATO		_12 388  9 493  36.619  1.00 32.82
•		_14 517 16 479 .37.760 1.00 39.54
WATRATO		-10.095 -34.647 -29.068 1.00 41.08
WATRATO	M 5431 OH2 WAT W 153	

. 2

WATRATOM	5432 OH2 WAT W 154	-5.233 -4.134 31.160 1.00 35.31
WATRATOM	5433 OH2 WAT W 155	-6.322 11.278 -1.883 1.00 35.75
WATRATOM	5434 OH2 WAT W 156	10.262 -9.572 -16.736 1.00 42.40
WATRATOM	5435 OH2 WAT W 157	22.929 -10.414 -23.566 1.00 36.66
WATRATOM	5436 OH2 WAT W 158	-15.987 3.994 16.559 1.00 37.22
WATRATOM	5437 OH2 WAT W 159	13.385 -44.923 -46.826 1.00 41.55
WATRATOM	5438 OH2 WAT W 160	26.508 -13.616 -18.049 1.00 25.93
WATRATOM	5439 OH2 WAT W 161	4.671 -66.907 -17.861 1.00 31.54 -12.589 12.262 11.825 1.00 32.71
WATRATOM	5440 OH2 WAT W 162	
WATRATOM	5441 OH2 WAT W 163	13:033
WATRATOM	5442 OH2 WAT W 164	-31.000 10.000
WATRATOM	5443 OH2 WAT W 165	9.797 -47.899 -25.140 1.00 26.79 0.877 -51.774 -25.619 1.00 30.02
WATRATOM	5444 OH2 WAT W 166	0.01
WATRATOM	5445 OH2 WAT W 167	-17.088 16.246 37.180 1.00 25.63 0.855 -52.086 -22.078 1.00 40.99
WATRATOM	5446 OH2 WAT W 168	-14.873 18.295 21.203 1.00 40.28
WATRATOM	5447 OH2 WAT W 169	11.913 -62.134 -35.641 1.00 41.33
WATRATOM	5448 OH2 WAT W 170	25 783 -23.984 -33.162 1.00 44.03
WATRATOM	5449 OH2 WAT W 171 5450 OH2 WAT W 172	7.169 -50.047 -23.737 1.00 47.85
WATRATOM		20 074 -42.845 -14.939 1.00.32.87
WATRATOM	5451 OH2 WAT W 173 5452 OH2 WAT W 174	8.765 5.909 9.193 1.00 34.30
WATRATOM	5453 OH2 WAT W 175	-4.953 -64.494 -45.351 1.00 47.11
WATRATOM	5454 OH2 WAT W 176	11.889 -61.263 -22.531 1.00 36.63
WATRATOM WATRATOM	5455 OH2 WAT W 177	2.149 -49.169 -24.836 1.00 39.21
WATRATOM	5456 OH2 WAT W 178	-14.051 6.399 13.353 1.00 39.89
WATRATOM	5457 OH2 WAT W 179	8.488 -46.760 -23.118 1.00 45.24
WATRATOM	5458 OH2 WAT W 180	-1.152 -23.348 -11.975 1.00 30.36
WATRATOM	5459 OH2 WAT W 181	-7.002 3.531 7.051 1.00 44.50 -2.002 3.531 7.051 1.00 44.50
WATRATOM	5460 OH2 WAT W 182	-12.320 -54.772 -29.990 1.00 38.61 6.790 -54.559 -47.733 1.00 44.05
WATRATOM	5461 OH2 WAT W 183	
WATRATOM	5462 OH2 WAT W 184	
WATRATOM	5463 OH2 WAT W 185	20.402 -58.179 -34.391 1.00 46.11 8.061 -31.341 -19.653 1.00 41.37
WATRATOM	5464 OH2 WAT W 186	-7.549 -15.619 -5.482 1.00 40.60
WATRATOM	5465 OH2 WAT W 187	-31.099 11.941 25.471 1.00 38.80
WATRATOM	5466 OH2 WAT W 188	28.566 -25.441 -15.103 1.00 34.75
WATRATOM	5467 OH2 WAT W 189	-5.613 -40.109 -50.158 1.00 49.21
WATRATOM	5468 OH2 WAT W 190 5469 OH2 WAT W 191	17 024 -13.428 1.709 1.00 39.93
WATRATOM	3403 0112 11111	-22.114 10.176 37.673 1.00 32.53
WATRATOM	5470 OH2 WAT W 192 5471 OH2 WAT W 193	10.204 -29.330 -20.066 1.00 27.24
WATRATOM	5471 OH2 WAT W 194	27.893 -25.793 -21.862 1.00 38.9/
WATRATOM WATRATOM	5473 OH2 WAT W 195	-5.582 17.681 32.898 1.00 43.64
WATRATOM	5474 OH2 WAT W 196	23.004 -45.224 -27.870 1.00 43.04
WATRATOM	5475 OH2 WAT W 197	5.189 -58.857 -25.016 1.00 28.15 -7.740 -56.165 -24.052 1.00 35.98
WATRATOM	5476 OH2 WAT W 198	
WATRATOM	5477 OH2 WAT W 199	
WATRATOM	5478 OH2 WAT W 200	23.286 -32.333 -33.400 1.00 38.12 30.646 -14.180 -20.528 1.00 31.01
WATRATOM	5479 OH2 WAT W 201	30.010
WATRATOM	5480 OH2 WAT W 202	-8.238 -4.609 29.299 1.00 39.76 19.370 0.814 -7.532 1.00 35.83
WATRATOM		0.885 -27.619 -1.442 1.00 47.04
WATRATOM		16.084 -56.649 -26.382 1.00 45.97
WATRATOM		-0.698 -19.360 -9.869 1.00 37.53
WATRATOM		0 682 -14.985 -15.794 1.00 33.35
WATRATOM	* . * C * ** C * * C * C * C * C * C * C	1 646 17.427 31.991 1.00 40.39
WATRATOM	200 UND WAD 14 200	-21.611 1.533 20.359 1.00 31.04
WATRATOM	7 . 00 0110 UNIT W 210	-5.143 -55.137 -45.825 1.00 30.17
WATRATOM		-9.645 13.045 37.660 1.00 42.93
WATRATOM		22.096 -11.242 -30.224 1.00 48.12
MOTASTAW		-5.759 2.610 -15.984 1.00 41.67
WATRATOM	5	-4.323 7.731 -7.331 1.00 37.92
WATRATON		-5.450 7.197 10.632 1.00 33.99
WATRATON		2.330 -32.635 -34.500 1.00 38.85
WATRATON	5 4 0 5 0 1 2 MAT W 217	-26.827 16.219 13.451 1.00 38.12
WATRATO! WATRATO!	4 5496 OH2 WAT W 218	10.887 -51.427 -23.191 1.00 39.81
WATRATO		-9.020 19.746 -3.698 1.00 46.58
MALICATOR		154

WATRATOM	5498 OH2 WAT W 220	9.054 6.622 -0.709 1.00 34.14
WATRATOM	5499 OH2 WAT W 221	4.173 -7.985 -23.786 1.00 32.75 0.983 16.806 3.910 1.00 40.83
WATRATOM	5500 OH2 WAT W 222	0.983 16.806 3.910 1.00 40.83 2.222 -16.848 -6.783 1.00 33.50
WATRATOM	5501 OH2 WAT W 223	13.627 1.072 -15.114 1.00 37.51
WATRATOM	5502 OH2 WAT W 224 5503 OH2 WAT W 225	12 533 -14.212 -9.007 1.00 38.40
WATRATOM		1.404 -7.852 5.396 1.00 38.55
WATRATOM	5504 OH2 WAT W 226 5505 OH2 WAT W 227	31.159 -24.354 -31.143 1.00 37.67
WATRATOM WATRATOM	5506 OH2 WAT W 228	-13.047 -60.728 -42.282 1.00 42.18
WATRATOM	5507 OH2 WAT W 229	8.956 -37.681 -16.765 1.00 41.45
WATRATOM	5508 OH2 WAT W 230	28.749 -13.637 -16.860 1.00 42.34 -4.461 19.451 8.684 1.00 36.17
WATRATOM	5509 OH2 WAT W 231	
WATRATOM	5510 OH2 WAT W 232	-9.703
WATRATOM	5511 OH2 WAT W 233	10.673 -41.619 -20.678 1.00 36.58 -15.694 1.684 32.613 1.00 44.04
WATRATOM	5512 OH2 WAT W 234	3.345 1.229 9.738 1.00 35.70
WATRATOM	5513 OH2 WAT W 235 5514 OH2 WAT W 236	-6 256 -68 913 -30 401 1.00 36.72
WATRATOM		28.344 -21.326 -30.399 1.00 36.45
WATRATOM	5515 OH2 WAT W 237 5516 OH2 WAT W 238	2.876 -34.368 -17.344 1.00 42.48
WATRATOM WATRATOM	5517 OH2 WAT W 239	15.355 -11.202 2.371 1.00 38.84
WATRATOM	5518 OH2 WAT W 240	27.066 -22.336 -6.437 1.00 37.37 2.222 18 464 26.994 1.00 35.75
WATRATOM	5519 OH2 WAT W 241	2,222 10,102 1 00 44 31
WATRATOM	5520 OH2 WAT W 242	
WATRATOM	5521 OH2 WAT W 243	10.331
WATRATOM	5522 OH2 WAT W 244	-13.173 14.269 38.605 1.00 41.30 -7.569 9.658 0.793 1.00 37.62
WATRATOM	5523 OH2 WAT W 245	-2.167 -47.395 -19.605 1.00 45.90
WATRATOM	5524 OH2 WAT W 246	7 166 2 400 15.830 1.00 42.90
WATRATOM	3323 3	-11 231 -10.901 -10.057 1.00 45.28
WATRATOM	5526 OH2 WAT W 248 5527 OH2 WAT W 249	5 684 -16.094 -26.796 1.00 44.76
WATRATOM WATRATOM	5528 OH2 WAT W 250	-4.745 3.667 -18.932 1.00 46.20
WATRATOM	5529 OH2 WAT W 251	-0.505 -22.136 -9.079 1.00 42.89
WATRATOM	5530 OH2 WAT W 252	16.668 -37.987 -7.767 1.00 35.76 2.454 -18.256 -26.130 1.00 43.33
WATRATOM	5531 OH2 WAT W 253	2,13,1
WATRATOM	5532 OH2 WAT W 254	-0.507
WATRATOM	5533 OH2 WAT W 255	15.642 7.805 9.633 1.00 47.78 13.660 -24.331 1.932 1.00 42.50
WATRATOM	5534 OH2 WAT W 256 5535 OH2 WAT W 257	11.567 -6.104 -23.359 1.00 37.10
WATRATOM		18.941 -16.698 0.528 1.00 40.97
WATRATOM	5536 OH2 WAT W 258 5537 OH2 WAT W 259	-11.441 -63.514 -39.126 1.00 43.17
WATRATOM WATRATOM	5538 OH2 WAT W 260	28.664 -39.605 -22.853 1.00 42.65
WATRATOM	5539: OH2 WAT W 261	6.795 -6.961 31.114 1.00 38.28 7.077 -14 349 -24.858 1.00 41.00
WATRATOM	5540 OH2 WAT W 262	7.07
WATRATOM	5541 OH2 WAT W 263	-2.259 -48.991 -29.099 1.00 34.96 21.812 -44.128 -35.641 1.00 44.51
. WATRATOM	5542 OH2 WAT W 264	-27.570 4.389 13.296 1.00 48.63
WATRATOM	5543 OH2 WAT W 265	13 573 -27 185 0.220 1.00 43.56
WATRATOM		16 549 8 451 -13 582 1 00 44 84
WATRATOM		-9.142 9.107 36.872 1.00 37.66
WATRATOM WATRATOM		5 648 -11 797 -24 893 1 00 45 /9
WATRATOM		3.619 -14.850 -23.652 1'.00 34.09
WATRATOM	5549 OH2 WAT W 271	-8.129 -11.098 -16.064 1.00 39.37 -17.342 8.563 9.979 1.00 46.38
WATRATOM	5550 OH2 WAT W 272	-17.342 8.563 9.979 1.00 46.38 8.798 -36.348 -46.119 1.00 37.71
WATRATOM	5551 OH2 WAT W 273	9.190 -10.509 -35.865 1.00 45.80
WATRATOM		13.545 -13.441 3.898 1.00 42.83
·· WATRATOM		-7.844 0.944 -2.560 1.00 46.27
WATRATOM		0 478 -47.721 -55.170 1.00 46.25
WATRATOM	020	24 658 -18.359 -11.005 1.00 36.33
. WATRATOM		-4.675 21.561 12.155 1.00 37.17
WATRATON		0.382 20.486 4.930 1.00 41.40
MATRATON MATRATON		5 919 18.010 25.033 1.00 41.72
WATRATON		0 007 62 751 -22 983 1 10 43.79
WATRATO	M 5561 OH2 WAT W 283	8.990 -33.134 -17.898 1:00 40.17 0.155 -61.872 -48.384 1.00 49.87
WATRATO	M 5562 OH2 WAT W 284	0 155 -61.8/2 -48.304 1.00 42.0
WATRATO		-10.443 -56.965 -24.681 1.00 48.02

- 23



		1	0112	t.1 n m	C. I	206	18.915 -33.048 -3.930 1.00 37.81
WATRATO			OH2		W	286	-16.181 11.706 12.277 1.00 41.77
WATRATO		565		TAW	W	287	10.101
WATRATO	M 5	566		TAW	W	288	
WATRATO	M 5	567	OH2	TAW	W	289	31.334 20.133 20.033
WATRATO	M 5	568	OH2	TAW	W	290	15.252
WATRATO	M 5	569	OH2	TAW	W	291	9.450 -27.963 -1.396 1.00 41.29
WATRATO	M 5	570	OH2	WAT	W	292	-1.800 13.139 -9.983 1.00 41.60
WATRATO	м 5	571	OH2	TAW	W	293	-7.766 5.988 9.798 1.00 40.11
WATRATO		572	OH2	WAT	W	294	7.973 4.338 14.321 1.00 39.97
WATRATO	-	573	OH2	WAT	W	295	23.449 -40.563 -27.347 1.00 40.59
WATRATO		574	OH2	WAT	W	296	-3.537 -28.260 -15.925 1.00 42.10
		575	OH2	WAT			28.052 -32.620 -12.168 1.00 48.03
WATRATO			OH2				20.655 -43.315 -28.829 1.00 40.17
WATRATO	)M 3	576	Onz	MWI	**	200	
WATR		_	CO.4	~	,		1.273 -70.953 -23.009 1.00 22.99
MOTA	5577	S	SO4	5	1		1.275 7,0.755 250000
SO4				_			1.720 -71.882 -24.053 1.00 21.18
ATOM	5578	01	SO4	S	1		1.720 =71.002 24.033 1.00 22.10
SO4							0.908 -69.659 -23.626 1.00 22.47
MOTA	5579	02	SO4	S	1		0.908 -69.659 -23.626 1.00 22.47
SO4							2 337 -70.752 -22.018 1.00 23.88
ATOM-	5580	03	SO4	S	1		2.337 -70.752 -22.018 1.00 23.88
SO4							
ATOM	5581	04	ŚÓ4	S	1		0.088 -71.522 -22.328 1.00 22.50
SO4							
TEREND							
エニジアいり							



## BACKBONE ATOMS

20014	2640 6	CA T	YS B	7	-6.512 -45.403 -47.519 1.00 45.28 BBBB
MOTA					
MOTA	2651		ARG B	8	0,002
ATOM 1	2662 (	CA L	EU B	9	-4.034 47.032 12.1.
ATOM		CA M	IET B	LO	-4.048 -49.055 -38.275 1.00 26.66 BBBB
				11	-1.982 -47.605 -35.449 1.00 23.16 BBBB
ATOM					-0.523 -49.707 -32.613 1.00 24.54 BBBB
ATOM				12	0.525
MOTA	2693	CA P	ALA B	13	0.500
MOTA	2698	CA G	GLY B	14	-0.513 -47.804 -26.120 1.00 33.82 BBBB
ATOM				15	-0.700 -45.047 -23.536 1.00 36.08 BBBB
				16	1.920 -46.787 -21.421 1.00 38.51 BBBB
MOTA			-		5.367 -45.567 -22.392 1.00 36.57 BBBB
MOTA				17	J. 307 43.507 20 070 1 00 22 40 DDDD
MOTA	2717	CA (	GLY B	18	J. UJI 42.32
ATOM	2721	CA I	HIS B	19	3.548 -43.865 -27.435 1.00 28.22 BBBB
MOTA				20	-0.098 -42.894 -27.965 1.00 27.77 BBBB
				21	0.517 -39.136 -28.160 1.00 29.00 BBBB
MOTA					2.986 -39.252 -31.086 1.00 26.12 BBBB
ATOM				22	2.300
ATOM	2756			23	
MOTA	2760	CA .	LĘU B	24	2,201 0,1
ATOM.				25	-0.197 -36.754 -34.013 1.00 25.94 BBBB
	2773		VAL B	26	0.466 -38.955 -37.056 1.00 25.70 BBBB
MOTA					-3.116 -40.222 -37.199 1.00 26.15 BBBB
MOTA	2780		ALA B	27	-4.574 -36.702 -37.190 1.00 29.32 BBBB
ATOM	2785	CA	HIS B	28	
ATOM	2795	CA	HIS B	29	
ATOM	2805	CA	LEU B	30	-3.136 -38.417 -42.162 1.00 32.00 BBBB
MOTA	2813		MET B	31	-6.849 -38.064 -41.424 1.00 34.91 BBBB
			ALA B	32	-6.510 -34.511 -42.722 1.00 37.55 BBBB
ATOM	2821				-5.182 -36.070 -45.938 1.00 38.24 BBBB
ATOM	2826	CA	GLN B	33	-8.305 -38.169 -46.353 1.00 35.75 BBBB
MOTA	2835	CA	GLY B	34	-0.303 30.103 10.000
MOTA	2839	CA	TRP B	35	
MOTA	2853	CA	GLN B	36	
ATOM	2862	CA	VAL B	37	-7.417 -44.516 -39.184 1.00 34.16 BBBB.
	2869	CA	ARG B	38	-8.219 -47.286 -36.730 1.00 31.56 BBBB
MOTA			TRP B	39	-6 456 -48.070 -33.471 1.00 27.41 BBBB
MOTA	2880	CA			-5.200 -51.364 -32.026 1.00 24.71 BBBB
MOTA	2894	CA	LEU B	40	3,200
MOTA	2902	CA	GLY B	41	
ATOM	2906	CA	THR B	42	-5.707 -55.141 25.027
MOTA	2913	CA	ALA B	43	-9.000 -J2.595 25.01
ATOM	2918	CA	ASP B	44	-7.455 -51.942 -19.632 1.00 44.47 BBBB
MOTA	2926	CA	ARG B	45	-4.887 -49.367 -20.763 1.00 40.44 BBBB
			MET B	46	-4.881 -45.581 -21.249 1.00 36.33 BBBB
MOTA	2937	CA		47	-5.458 -45.655 -25.029 1.00 31.79 BBBB
MOTA	2945	CA	GLU B		3 1 00 30 FO DDDD
MOTA	2954	CA	ALA B	48	-0.021
MOTA	2959	CA.	ASP B	49	=10.143 =44.003 25.003 1.00 30
MOTA	2967	CA	LEU B	50	V1040 121111
MOTA	2975	CA	VAL B	51	-8.299 -42.641 -28.449 1.00 32.68 BBBB
ATOM	2983	CA	PRO B	52	-12.111 -42.601 -28.453 1.00 34.43 BBBB
	2989	CA	LYS B	53	_11 998 _39.054 -27.064 1.00 36.73 BBBB
ATOM				54.	
MOTA	2998	CA	HIS B		-12.938 -39.481 -32.447 1.00 35.34 BBBB
MOTA	3008	CA	GLY B	55	12.733
MOTA	3012	CA	ILE B	56	
MOTA	3020	ÇA	GLU B	57	
MOTA	3029	CA	ILE B	58	-10.217 -48.658 -31.553 1.00 31.38 BBBB
MOTA			ASP B	59	-10.039 -52.442 -31.720 1.00 31.09 BBBB
				60	-8.809 -54.410 -28.713 1.00 30.32 BBBB
MOTA			PHE B		-6.832 -57.616 -28.269 1.00 28.55 BBBB
MOTA			ILE B	61	
ATOM	3064	CA	ARG B		
MOTA			ILE B	63	-/. (/36 -3/). / / C
ATOM		•		64	-2.356 -60.520 -20.505 1.00 37.51 BBBB
			GLY B		0.679 -62.355 -19.199 1.00 37.13 BBBB
ATOM					2.591 -61.413 -22.355 1.00 33.17 BBBB
ATOM					2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
ATOM	1 3101	L CA	ARG B	67	J. 071 J. 1940 Jane

s 23

ATOM	3112	CA	GLY B 68	7.380 -57	.427 -20.685	1.00	26.79	BBBB
ATOM	3116	CA	LYS B 69	8 238 -60	.463 -22.796	1.00		BBBB
								0000
ATOM	3125	CA	GLY B 70		.229 -25.636		22.26	BBBB
ATOM	3129	CA	ILE B 71	10.357 -62	.386 -28.762	1.00	23.55	BBBB ·
ATOM	3137	CA	LYS B 72		.491 -27.343	1.00		BBBB
ATOM	3146	CA	ALA B 73		.306 -24.233			BBBB
ATOM	3151	CA	LEU B 74	6.745 -64	.762 -26.387	1.00	19.36	BBBB
ATOM.	3159	CA	ILE B 75		.768 -28.601		21.18	
ATOM	3167	CA	ALA B 76		.726 -25.374	1.00	21.72	BBBB
ATOM	3172	CA	ALA B 77	4.289 -69	.121 -24.655	1.00	21.07	BBBB
ATOM	3178	CA	PRO B 78		.846 -27.771	1 00	20.95	BBBB
MOTA	3184	CA	LEU B 79	-0.896 -70	.728 -26.783		21.32	_
ATOM	3192	CA ·	ARG B 80	-0.980 -67	.115 -25.637	1.00	21.30	BBBB
ATOM	3203	CA	ILE B 81	1 113 -65	.621 -28.421	1 00	19.47	BBBB
ATOM	3211	CA	PHE B 82		.582 -31.038			BBBB
ATOM	3222	CA	ASN B 83	-4.150 -66	3.332 -29.577	1.00	20.90	BBBB
ATOM	3230	CA	ALA B 84	-3 177 -62	.647 -29.484	1.00	19.30	BBBB
			<del>-</del>					
MOTA	3235	CA	TRP B 85		3.111 -33.032	1.00	20.56	
ATOM	3249	CA	ARG B 86	-5.140 -64	.660 -34.166	1.00	23.28	BBBB
ATOM	3260	CA	GLN B 87	-7 101 -61	.802 -32.567	1 00	24.07	BBBB
ATOM	3269	CA	ALA B 88		0.183 -34.355		23.78	
ATOM	3274	CA	ARG B 89	-5.285 -61	111 -37.636	1.00	24.94	BBBB
ATOM.	3285	CA	ALA B 90		.151 -37.383		26.16	BBBB
ATOM	3290	CA	ILE B 91	-9.108 -57			26.97	BBBB
ATOM	3298	CA	MET B 92	-6.872 <b>-</b> 56	5.693 -39.717	1.00	29.03	BBBB
ATOM	3306	CA	LYS B 93		9.038 -42.050		33.20	BBBB
ATOM	3315	CA	ALA B 94		7.157 -41.183		33.62	
ATOM	3320	CA	TYR B 95	-10.504 -53	3.620 -41.224	1.00	33.83	BBBB
ATOM	3332	CA	LYS B 96	-8.104 -54	4.327 -44.122	1.00	33.85	BBBB
							31.82	
MOTA	3342	CA	PRO B 97		1.623 -43.419			
ATOM	3348	CA	ASP B 98		0.685 -46.188		29.78	BBBB
ATOM	3356	CA	VAL B 99	-0.296 -50	0.214 -43.660	1.00	26.75	BBBB
					0.613 -39.93		23.59	BBBB
ATOM	3363	CA	VAL B 100					
ATOM	3370	CA	LEU B 10	2.214 -48	8.199 -37.79		21.59	
ATOM	3378	CA	GLY B 103	3.796 -4	9.357 -34.549	1.00	19.23	BBBB
			MET B 10	1 892 -4	6.597 -32.19	1.00	18.93	BBBB
MOTA	3382	CA						
ATOM	3390	CA	GLY B 10		9.080 -29.68		21.89	
ATOM	3394	CA	GLY B 10	4.593 -5	0.905 -26.82	1.00	23.54	BBBB
ATOM	3398	CA	TYR B 10	3.818 -5			22.37	BBBB
							18.06	BBBB
MOTA	3410	CA	VAL B 10	0.557 <del>-</del> 5				
ATOM	3417	CA	SER B 10		3.892 -31.29		19.67	8888
ATOM	3423	CA	GLY B 10	4.251 -5	7.256 -31.02	3 1.00	20.03	BBBB
					9.478 -31.85		18.99	BBBB
ATOM	3428	CA						
MOTA	3434	CA	GLY B 11		6.702 -34.02		19.60	вввв
MOTA	3438	CA	GLY B 11	3.014 -5	6.417 -36.07	4 1.00	19.97	BBBB
ATOM	3442	CA	LEU B 11	3 265 -6	0.184 -36.42	9 1.00	19.49	BBBB
					0.292 -37.66		18.70	
ATOM	3450	CA	ALA B 11					
ATOM	3455	CA	ALA B 11	0.167 -5	7.516 -40.22		21.84	
ATOM	3460	CA	TRP B 11	3.365 -5	9.126 -41.47	B 1.00	23.22	BBBB
		CA	SER B 11		2.573 -41.87		22.61	BBBB
ATOM	3474							
MOTA	3480	CA	LEU B 11	-1.069 -6	0.957 -43.88	2 1.00	`25.70	
MOTA	3488	CA	GLY B 11	1.354 -5	9.174 -46.19	2 1.00	27.80	BBBB
		CA	ILE B 12		5.744 -44.73		24.85	
ATOM	3492			0.500 -5	2 477 44 60			
MOTA	3501	CA	PRO B 12	3.625 -5	3.477 -44.59	1.00	22.63	
ATOM	3507	CA	VAL B 12		2.594 -41.08		22.03	BBBB
ATOM	3514	CA	VAL B 12		9.184 -40.31		20.82	BBBB
				7 740 4	8.485 -36.91	5 1 00	22.10	
MOTA	3521	CA	LEU B 12	1.149 -4	0.400 -00.91			
MOTA	3529	CA	HIS B 12	8.814 -4	5.413 -34.98	1.00	21.42	
ATOM	3539	CA	GLU B 12	10.947 -4	5.452 -31.81	7 1.00	22.15	BBBB
				10 600 4	2.270 -29.73	5 1 00	22.81	
MOTA	3548	CA	GLN B 12	10.002 -4	2.270 23.73	6 1 00		
MOTA	3557	CA	ASN B 12	13.406 -4	3.097 -27.21	0 1.00	22.96	
MOTA	3565	CA		17.203 -4	3.019 -27.29	4 1.00	25.36	BBBB
				17 160 -4	6.716 -26.48	8 1 00	28.00	
MOTA	3569	CA			0.710 20.40	1 1 00		
MOTA	3577	CA			9.139 -28.46	1.00	25.88	
ATOM	3582	CA			0.532 -26.56	8 1.00	24.05	BBBB
					4.293 -26.02	0 1 00	24.54	
MOTA	3586	CA	LEU B 13	11.503	,,5 20.02	- 1.00	_ ,	

- : 3

ATOM	3594 C	:A '	THR B 134		9.202 -54.860 -28.639 1.00 21.22 BBBB
ATOM			ASN B 135		10.407 -52.419 -31.324 1.00 20.50 BBBB
ATOM			LYS B 136		13.886 -53.949 -31.144 1.00 22.79 BBBB
ATOM			TRP B 137		12.753 -57.345 -32.424 1.00 22.06 BBBB
ATOM			LEU B 138		9.744 -56.188 -34.431 1.00 23.15 BBBB
ATOM			ALA B 139		12.128 -54.092 -36.542 1.00 25.29 BBBB
ATOM			LYS B 140		13.279 -57.337 -38.182 1.00 28.05 BBBB
ATOM			ILE B 141		9.963 -57.818 -40.016 1.00 26.09 BBBB
ATOM			ALA B 142		9.331 -54.107 -40.498 1.00 25.03 BBBB
ATOM			THR B 143		9.262 -52.595 -43.984 1.00 26.10 BBBB
ATOM	3674 C	CA	LYS B 144		10.436 -49.238 -42.618 1.00 24.73 BBBB
MOTA	3683 C	CA	VAL B 145		11.947 -48.311 -39.252 1.00 23.62 BBBB
ATOM	3690		MET B 146		12.338 -44.736 -37.993 1.00 23.15 BBBB
MOTA			GLN B 147		13.762 -43.418 -34.712 1.00 25.05 BBBB 13.559 -40.032 -33.009 1.00 26.88 BBBB
ATOM			ALA B 148		
ATOM		CA	PHE B 149		17.239 -39.820 -32.098 1.00 29.39 BBBB 20.310 -41.541 -33.535 1.00 31.87 BBBB
MOTA		CA	PRO B 150		21.629 -44.537 -31.595 1.00 32.62 BBBB
ATOM		CA	GLY B 151		18.447 -46.476 -30.753 1.00 32.71 BBBB
MOTA		CA	ALA B 152		18.925 -48.506 -33.937 1.00 34.83 BBBB
MOTA		CA	PHE B 153 PRO B 154		22:158 -48.751 -35.993 1.00 38.97 BBBB
MOTA		CA	ASN B 155		20.765 -47.568 -39.346 1.00 41.08 BBBB
ATOM		CA CA	ALA B 156		17.170 -46.407 -38.843 1.00 37.55 BBBB
ATOM		CA	GLU B 157		16 367 -43.044 -40.460 1.00 34.40 BBBB
MOTA MOTA	-		VAL B 158		16.337 -40.344 -37.764 1.00 31.16 BBBB
ATOM		CA	VAL B 159		13.155 -38.265 -37.889 1.00 28.10 BBBB
ATOM		CA	GLY B 160		12.724 -36.921 -34.355 1.00 26.93 BBBB
ATOM		CA	ASN B 161		9.456 -36.807 -32.375 1.00 25.27 BBBB
ATOM		CA	PRO B 162		6.315 -34.747 -33.004 1.00 26.14 BBBB
ATOM		CA	VAL B 163		6.456 -31.379 -31.216 1.00 27.75 BBBB
MOTA	3819	CA	ARG B 164		3.667 -28.953 -30.246 1.00 32.36 BBBB
ATOM	3830	CA	THR B 165		3.038 -26.307 -32.924 1.00 31.74 BBBB 3.252 -23.404 -30.466 1.00 30.64 BBBB
MOTA		CA	ASP B 166		
MOTA		CA	VAL B 167		
MOTA	3852	CA	LEU B 168		7.780 -25.002 -33.075 1.00 28.46 BBBB 6.580 -21.455 -33.756 1.00 31.43 BBBB
MOTA	3860	CA	ALA B 169		9.002 -19.905 -31.268 1.00 29.60 BBBB
ATOM	3865	CA	LEU B 170 PRO B 171		11.611 -17.457 -32.642 1.00 30.11 BBBB
ATOM	3874	CA ·	LEU B 172		15 157 -18.780 -33.062 1.00 28.33 BBBB
MOTA ATOM	3880 3889	CA.	PRO B 173		17,450 -18.550 -29.977 1.00 25.25 BBBB
MOTA	3895	CA.	GLN B 174		19.526 -15.527 -31.049 1.00 25.46 BBBB
MOTA	3904	CA	GLN B 175		16.365 -13.525 -31.718 1.00 28.47 BBBB
ATOM	3913	CA	ARG B 176	•	14.611 -14.635 -28.525 1.00 29.01 BBBB
ATOM	3924	CA	LEU B 177		17.673 -13.970 -26.331 1.00 29.90 BBBB
MOTA	3932	CA.	ALA B 178	:	18.766 -10.776 -28.131 1.00 30.78 BBBB
ATOM -	3937	CA	GLY B 179		19.846 -7.993 -25.784 1.00 30.10 BBBB 18.676 -9.965 -22.787 1.00 28.97 BBBB
MOTA	3941	CA	ARG B 180		18.676 -9.965 -22.787 1.00 28.97 BBBB 20.545 -9.027 -19.621 1.00 31.79 BBBB
ATOM	3952	CA	GLU B 181		19.871 -9.586 -15.943 1.00 27.75 BBBB
ATOM		. CA	GLY B 182		19.871 -9.586 -15.943 1.00 27.75 BBBB 19.450 -12.832 -13.913 1.00 22.93 BBBB
· ATOM	3966	CA	PRO B 183		19.524 -16.146 -15.729 1.00 18.01 BBBB
MOTA	3972	CA	VAL B 184 ARG B 185		15.873 -17.216 -16.011 1.00 17.62 BBBB
ATOM ATOM	· 3979 3990	. CA			15.508 -20.771 -14.741 1.00 16.47 BBBB
ATOM	3997	CA			12 361 -22.710 -15.604 1.00 16.75 BBBB
ATOM	4005	CA.			11.774 -25.775 -13.381 1.00 18.41 BBBB
ATOM	4012		VAL B 189		9.298 -28.234 -14.948 1.00 22.11 BBBB
MOTA	4019	CA	· · · · · · · · · · · · · · · · · · ·		7.914 -31.188 -12.994 1.00 27.28 BBBB
ATOM	4023		GLY B 191		4.935 -32.163 -15.115 1.00 31.94 BBBB
MOTA	4027		SER B 192		1.313 -32.665 -14.064 1.00 35.91 BBBB
MOTA	4033	CA	GLN B 193		2.292 -34.763 -11.033 1.00 38.53 BBBB
ATOM	4042	CA	GLY B 194		5.398 -32.711 -10.350 1.00 35.02 BBBB
· ATOM	4046	CA	ALA B 195		8.977 -33.819 -9.709 1.00 33.12 BBBB
ATOM	4051	CA	ARG B 196	• '	9.538 -34.512 -6.010 1.00 32.63 BBBB
MOTA .	4062	CĄ			13.329 -34.168 -6.164 1.00 28.10 BBBB 13.069 -30.833 -8.003 1.00 26.58 BBBB
MOTA		CA			
MOTA	.4078	, CA	ASN B 199		10.497 -29.447 -5.563 1.00 27.07 BBBB

ATOM	4086	CA	GLN B 200	12.955 -30.326 -2.794 1.00 30.10 BBBB
MOTA	4095	CA	THR B 201	16.215 -29.345 -4.474 1.00 27.34 BBBB
ATOM	4102	CA	MET B 202	15.567 -26.048 -6.268 1.00 23.68 BBBB
				· <del>-</del>
ATOM	4111	CA	PRO B 203	14.608 -23.963 -3.220 1.00 23.84 BBBB
MOTA	4117	CA	GLN B 204	18.033 -24.708 -1.684 1.00 26.34 BBBB
ATOM	4126	.CA	VAL B 205	19.672 -24.033 -5.043 1.00 24.44 BBBB
ATOM	4133	CA	ALA B 206	17.980 -20.610 -5.013 1.00 22.84 BBBB
MOTA	4138	CA	ALA B 207	19.442 -19.857 -1.576 1.00 26.65 BBBB
ATOM	4143	CA	LYS B 208	22.915 -20.595 -2.919 1.00 28.31 BBBB
ATOM	4152	CA	LEU B 209	22.577 -18.640 -6.171 1.00 25.68 BBBB
ATOM	4160	CA	GLY B 210	20.675 -15.628 -4.804 1.00 26.56 BBBB
			ASP B 211	20.370 -12.647 -7.190 1.00 28.28 BBBB
ATOM	4164	CA		
MOTA	4172	CA	SER B 212	22.098 -14.474 -10.067 1.00 25.73 BBBB
ATOM	4178	CA	VAL B 213	18.925 -16.308 -11.116 1.00 20.76 BBBB
ATOM	4185	CA	THR B 214	15.204 -15.726 -11.337 1.00 19.60 BBBB
ATOM	4192	CA	ILE B 215	13.076 -18.850 -11.169 1.00 18.75 BBBB
ATOM	4200	CA	TRP B 216	9.661 -19.973 -12.378 1.00 19.34 BBBB
				9.015 -23.303 -10.680 1.00 21.06 BBBB
MOTA	4214	CA	HIS B 217	
MOTA	4224	CA	GLN B 218	6.149 -25.594 -11.735 1.00 24.30 BBBB
ATOM	4233	CA	SER B 219	5.463 -27.800 -8.684 1.00 26.73 BBBB
ATOM	4239	CA	GLY B 220	2.855 -30.242 -9.961 1.00 30.53 BBBB
ATOM	4243	CA	LYS B 221	-0.657 -30.914 -8.628 1.00 35.12 BBBB
MOTA	4252	CA	GLY B 222	
MOTA	4256	CA	SER B 223	2.451 -28.934 -4.418 1.00 33.98 BBBB
ATOM	4262	CA	GLN B 224	2.187 -25.208 -5.186 1.00 33.71 BBBB
MOTA	4271	CA	GLN B 225	1.823 -24.239 -1.519 1.00 32.32 BBBB
ATOM	4280	CA	SER B 226	4.701 -26.309 -0.122 1.00 28.30 BBBB
	4286	CA	VAL B 227	7.214 -25.247 -2.791 1.00 24.28 BBBB
ATOM				6.178 -21.592 -2.387 1.00 27.23 BBBB
MOTA	4293	CA	GLU B 228	
MOTA	4302	CA	GLN B 229	
ATOM	4311	CA	ALA B 230	10.185 -23.754
MOTA	4316	CA	TYR B 231	11.371 -20.766 -1.366 1.00 25.47 BBBB
MOTA	4328	CA	ALA B 232	10.342 -18.322 1.368 1.00 27.51 BBBB
ATOM	4333	CA	GLU B 233	12.145 -20.441 3.966 1.00 30.87 BBBB
ATOM	4342	CA	ALA B 234	15.215 -20.417 1.714 1.00 28.48 BBBB
	4347	CA	GLY B 235	15.033 -16.627 1.815 1.00 26.23 BBBB
ATOM				14.121 -16.198 -1.870 1.00 25.53 BBBB
ATOM	4351	CA	GLN B 236	
MOTA	4361	CA	PRO B 237	
ATOM	4367	CA	GLN B 238	10.277 -13.558 -4.945 1.00 24.29 BBBB
MOTA	4376	CA	HIS B 239	10.526 -16.608 -7.201 1.00 22.08 BBBB
MOTA	4386	CA	LYS B 240	7.375 -17.589 -9.105 1.00 23.26 BBBB
ATOM	4395	CA	VAL B 241	5.740 -20.911 -8.277 1.00 23.78 BBBB
ATOM	4402	CA	THR B 242	2.758 -22.301 -10.177 1.00 25.93 BBBB
ATOM	4409	CA	GLU B 243	0.999 -25.651 -9.837 1.00 27.03 BBBB
				0.964 -26.068 -13.620 1.00 26.54 BBBB
ATOM	4418	CA	PHE B 244	
ATOM	4429	CA	ILE B 245	1.932 -24.242 -16.802 1.00 28.48 BBBB
MOTA	4437	CA	ASP B 246	-0.754 -24.396 -19.457 1.00 36.00 BBBB
MOTA	4445	CA	ASP B 247	1.245 -22.392 -21.999 1.00 30.74 BBBB
ATOM	4453	CA	MET B 248	4.625 -24.136 -22.138 1.00 28.41 BBBB
ATOM	4461	CA	ALA B 249	5.512 -22.216 -25.290 1.00 24.67 BBBB
ATOM	4466	CA	ALA B 250	5.188 -18.933 -23.390 1.00 21.78 BBBB
				7.301 -20.259 -20.501 1.00 20.85 BBBB
ATOM	4471	CA	ALA B 251	
MOTA	4476	CA	TYR B 252	9.972 -21.616 -22.886 1.00 22.78 BBBB
MOTA	4488	CA	ALA B 253	10.131 -18.224 -24.636 1.00 23.54 BBBB
MOTA	4493	CA	TRP B 254	10.829 -16.534 -21.303 1.00 19.76 BBBB
ATOM	4507	CA	ALA B 255	13.399 -19.025 -20.003 1.00 19.51 BBBB
ATOM	4512	CA	ASP B 256	17.176 -19.026 -20.434 1.00 17.58 BBBB
			VAL B 257	17.535 -22.603 -19.194 1.00 18.53 BBBB
MOTA	4520	CA		15.208 -25.456 -18.234 1.00 19.32 BBBB
ATOM	4527	CA		13.200 -23.430 -10.234 1.00 13.32 DDDD
MOTA	4534	CA		15.581 -27.957 -15.374 1.00 19.85 BBBB
MOTA	4541	CA		13.454 -31.055 -15.946 1.00 22.00 BBBB
ATOM	4547	CA		13.170 -34.800 -16.515 1.00 23.75 BBBB
ATOM	4558	CA		13.975 -36.189 -19.948 1.00 23.18 BBBB
	4564	CA		11.026 -38.079 -21.361 1.00 22.85 BBBB
ATOM				11.482 -38.564 -25.115 1.00 24.25 BBBB
ATOM	4568			
ATOM	4573	CA	LEU B 265	8.846 -36.037 -26.205 1.00 24.66 BBBB





## TABLE 3 ATOMIC COORDINATES OF E.COLI MURG C-ALPHA BACKBONE AND CONSERVED AMINO ACID RESIDUES

. . . . . .

ATOM	2967	CA	LEU B	50	-8.026 -41.484 ~24.840 1.00 33.49 BBBB
ATOM	2975	CA	VAL B	51	-8.299 -42.641 -28.449 1.00 32.68 BBBB
ATOM	2983	CA	PRO B	52 .	-12.111 -42.601 -28.453 1.00 34.43 BBBB
MOTA	2989	CA	LYS B		-11.998 -39.054 -27.064 1.00 36.73 BBBB
ATOM	2998	CA	HIS B	54	-10.116 -38.212 -30.259 1.00 34.62 BBBB
MOTA	3008	CA	GLY B	55	-12.938 -39.481 -32.447 1.00 35.34 BBBB
MOTA	3012	CA	ILE B	56	-10.909 -42.517 -33.514 1.00 33.81 BBBB
ATOM	3020	CA	GLU B	57	-12.228 -46.083 -33.467 1.00 34.16 BBBB
ATOM	3029	CA	ILE B	58	-10.217 -48.658 -31.553 1.00 31.38 BBBB
ATOM ATOM	3037 3045	CA CA	ASP B PHE B	59 60	-10.039 -52.442 -31.720 1.00 31.09 BBBB -8.809 -54.410 -28.713 1.00 30.32 BBBB
ATOM	3056	CA	ILE B	61	-6.832 -57.616 -28.269 1.00 28.55 BBBB
ATOM	3064	CA	ARG B	62	-5.709 -59.416 -25.133 1.00 30.76 BBBB
ATOM	. 3075	CA	ILE B	63	-2.036 -59.770 -24.231 1.00 31.38 BBBB
ATOM	3083	CA	SER B	64	-2.356 -60.520 -20.505 1.00 37.51 BBBB
ATOM	3089	CA	GLY B	65	0.679 -62.355 -19.199 1.00 37.13 BBBB
ATOM	3093	CA	LEU B	66	2.591 -61.413 -22.355 1.00 33.17 BBBB
ATOM	3101	CA	ARG B	67	3.671 -57.928 -21.277 1.00 30.90 BBBB
ATOM	3112	CA	GLY B	68	7.380 -57.427 -20.685 1.00 26.79 BBBB 8.238 -60.463 -22.796 1.00 23.93 BBBB
ATOM ATOM	3116 3125	CA CA	LYS B GLY B	69 70	10.755 -60.229 -25.636 1.00 22.26 BBBB
ATOM	3123	CA	ILE B	71	10.357 -62.386 -28.762 1.00 23.55 BBBB
ATOM	3137	CA.	LYS B	72	12.038 -65.491 -27.343 1.00 24.92 BBBB
ATOM	3146	CA	ALA B	73	9.839 -65.306 -24.233 1.00 21.18 BBBB
ATOM	3151	CA	LEU B	74	6.745 -64.762 -26.387 1.00 19.36 BBBB
MOTA	3159	CA	ILE B	75	7.434 -67.768 -28.601 1.00 21.18 BBBB
MOTA	3167	CA	ALA B	76	
ATOM	3172	CA	ALA B	77	4.289 -69.121 -24.655 1.00 21.07 BBBB 2.772 -70.846 -27.771 1.00 20.95 BBBB
ATOM	3178 3184	CA	PRO B LEU B	78 79	-0.896 -70.728 -26.783 1.00 21.32 BBBB
MOTA MOTA	3192	CA CA	ARG B	80	-0.980 -67.115 -25.637 1.00 21.30 BBBB
ATOM	3203	CA	ILE B	81	1.113 -65.621 -28.421 1.00 19.47 BBBB
ATOM	3211	CA	PHE B	82	-0.875 -67.582 -31.038 1.00 19.15 BBBB
MOTA	3222	CA	ASN B	83	-4.150 -66.332 -29.577 1.00 20.90 BBBB
ATOM	3230	CA	ALA B	84	-3.177 -62.647 -29.484 1.00 19.30 BBBB -1.820 -63.111 -33.032 1.00 20.56 BBBB
ATOM ATOM	3235 3249	CA CA	TRP B ARG B	85 86	-1.820 -63.111 -33.032 1.00 20.56 BBBB -5.140 -64.660 -34.166 1.00 23.28 BBBB
ATOM	3260	CA	GLN B	87	-7.101 -61.802 -32.567 1.00 24.07 BBBB
ATOM	3269	CA	ALA B	88	-4.996 -59.183 -34.355 1.00 23.78 BBBB
MOTA	3274	CA	ARG B	89	-5.285 -61.111 -37.636 1.00 24.94 BBBB
MOTA	3285	CA	ALA B	90	-9.088 -61.151 -37.383 1.00 26.16 BBBB
ATOM	3290	CA	ILE B	91	-9.108 -57.400 -36.733 1.00 26.97 BBBB
MOTA	3298	CA	MET B	92	-6.872 -56.693 -39.717 1.00 29.03 BBBB -8.735 -59.038 -42.050 1.00 33.20 BBBB
ATOM ATOM	3306 3315	CA CA	LYS B ALA B	93 94	-11.943 -57.157 -41.183 1.00 33.62 BBBB
ATOM	3320	CA	TYR B	95	-10.504 -53.620 -41.224 1.00 33.83 BBBB
ATOM	3332	CA	LYS B	96	-8.104 -54.327 -44.122 1.00 33.85 BBBB
ATOM	3342	CA	PRO B	97	-5.490 -51.623 -43.419 1.00 31.82 BBBB
ATOM	3348	CA	ASP B	98	-3.049 -50.685 -46.188 1.00 29.78 BBBB
ATOM	3356	CA	VAL B	99	-0.296 -50.214 -43.660 1.00 26.75 BBBB
ATOM ATOM	3363 3370	CA CA	VAL B LEU B		0.227 -50.613 -39.936 1.00 23.59 BBBB 2.214 -48.199 -37.797 1.00 21.59 BBBB
ATOM	3378	CA	GLY B		3.796 -49.357 -34.549 1.00 19.23 BBBB
ATOM	3382	CA	MET B		4.892 -46.597 -32.191 1.00 18.93 BBBB
MOTA	3389	N	GLY B		5.640 -48.450 -30.827 1.00 21.56 BBBB
MOTA	3390	CA	GLY B	104	6.275 -49.080 -29.686 1.00 21.89 BBBB
ATOM	3391	С	GLY B		5.192 -49.614 -28.764 1.00 23.28 BBBB
MOTA	3392	0	GLY B		4.009 -49.353 -28.980 1.00 22:50 BBBB
ATOM	3394	CA	GLY B		4.593 -50.905 -26.827 1.00 23.54 BBBB
ATOM	3398	CA CA	TYR B VAL B		3.818 -54.554 -26.159 1.00 22.37 BBBB 0.557 -54.694 -28.099 1.00 18.06 BBBB
ATOM ATOM	3410 3417	CA			2.488 -53.892 -31.290 1.00 19.67 BBBB
ATOM	3417	CA			4.251 -57.256 -31.023 1.00 20.03 BBBB
MOTA	3428	CA			1.251 -59.478 -31.855 1.00 18.99 BBBB
ATOM	3434	ĊA			-0.160 -56.702 -34.025 1.00 19.60 BBBE
ATOM	3438	CA			3.014 -56.417 -36.074 1.00 19.97 BBBE

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3442 CA LEU B 113 3450 CA ALA B 114 3455 CA ALA B 115 3460 CA TRP B 116 3474 CA SER B 117 3480 CA LEU B 118 3488 CA GLY B 119 3492 CA ILE B 120 3501 CA PRO B 121 3507 CA VAL B 122 3514 CA VAL B 123 3521 CA LEU B 124 3528 N HIS B 125 3530 CB HIS B 125 3530 CB HIS B 125 3531 CG HIS B 125 3531 CG HIS B 125 3532 CD2 HIS B 125 3533 ND1 HIS B 125 3534 CE1 HIS B 125 3535 NE2 HIS B 125 3536 C HIS B 125 3537 O HIS B 125 3538 N GLU B 126 3540 CB GLU B 126 3541 CG GLU B 126 3542 CD GLU B 126 3544 OE2 GLU B 126 3545 C GLU B 126 3546 O GLU B 126 3547 CA ASN B 128 3565 CA GLY B 130 3577 CA ASN B 128 3569 CA ILE B 130 3577 CA ALA B 131 3582 CA GLY B 132 3586 CA GLY B 132 3586 CA GLY B 132 3586 CA GLY B 132 3567 CA ASN B 128 3569 CA ILE B 130 3577 CA ALA B 131 3601 CA ASN B 135 3609 CA LEU B 136 3618 CA TRP B 137 3632 CA LEU B 133 3640 CA ALA B 131 3662 CA ALA B 131 3662 CA ALA B 132 3667 CA THR B 134 3601 CA ASN B 155 3765 CA ALA B 143 3690 CA ALA B 137 3632 CA LEU B 138 3640 CA ALA B 137 3632 CA LEU B 138 3640 CA ALA B 137 3632 CA LEU B 138 3690 CA ALA B 137 3636 CA ALA B 144 3674 CA PRO B 150 3730 CA GLY B 151 3734 CA ALA B 145 3690 CA ALA B 143 3690 CA ALA B 143 3690 CA ALA B 144 3667 CA THR B 144 3669 CA ALA B 145 3698 CA GLN B 147 3707 CA ALA B 145 3712 CA PHE B 149 3724 CA PRO B 150 3730 CA GLU B 158 3757 CA ASN B 155 3765 CA ALA B 155 3779 CA VAL B 158 3779 CA VAL B 158 3779 CA VAL B 158 3779 CA VAL B 159 3793 CA GLU B 156 3797 CA ASN B 161	20.765 -47.568 -39.346 17.170 -46.407 -38.843 16.367 -43.044 -40.460 16.337 -40.344 -37.764 13.155 -38.265 -37.889	1.00 25.88 8BBB 1.00 24.05 BBBB 1.00 24.54 BBBB 1.00 21.22 BBBB 1.00 20.50 BBBB 1.00 22.79 BBBB 1.00 22.06 BBBB 1.00 23.15 BBBB 1.00 25.29 BBBB 1.00 26.09 BBBB 1.00 26.09 BBBB 1.00 26.10 BBBB 1.00 26.10 BBBB 1.00 24.73 BBBB 1.00 24.73 BBBB 1.00 25.05 BBBB 1.00 23.62 BBBB 1.00 23.62 BBBB 1.00 25.05 BBBB 1.00 25.05 BBBB 1.00 26.88 BBBB 1.00 26.88 BBBB 1.00 26.88 BBBB 1.00 31.87 BBBB 1.00 32.62 BBBB 1.00 32.71 BBBB 1.00 32.71 BBBB 1.00 34.83 BBBB 1.00 34.83 BBBB 1.00 34.83 BBBB 1.00 34.83 BBBB 1.00 37.55 BBBB 1.00 34.83 BBBB 1.00 37.55 BBBB 1.00 34.83 BBBB 1.00 34.83 BBBB 1.00 38.97 BBBB
		. 165	

1.23

MOTA	3806	CA	PRO B 162	6.315 -34.747 -33.004 1.00 26.14	DDOD
				0.313 -34.747 -33.004 1.00 20.14	0000
MOTA	3812	CA	VAL B 163	6.456 -31.379 -31.216 1.00 27.75	
ATOM	3819	CA	ARG B 164		BBBB
MOTA	3830	CA	THR B 165	3.038 -26.307 -32.924 1.00 31.74	BBBB
ATOM	3837	CA	ASP B 166	3.252 -23.404 -30.466 1.00 30.64	BBBB
ATOM	3845			6.746 -24.503 -29.440 1.00 25.91	
		CA	VAL B 167		
ATOM	3852	CA	LEU B 168	7.780 -25.002 -33.075 1.00 28.46	BBBB
MOTA	3860	CA	ALA B 169	6.580 -21.455 -33.756 1.00 31.43	BBBB
ATOM	3865	CA	LEU B 170	9.002 -19.905 -31.268 1.00 29.60	
MOTA	3874	CA	PRO B 171		BBBB
ATOM	3880	CA	LEU B 172	15.157 -18.780 -33.062 1.00 28.33	BBBB
ATOM	3889	CA	PRO B 173	17.450 -18.550 -29.977 1.00 25.25	BBBB
ATOM	3895	CA	GLN B 174	19.526 -15.527 -31.049 1.00 25.46	BBBB
ATOM	3904	CA	GLN B 175	16.365 -13.525 -31.718 1.00 28.47	BBBB
MOTA	3913	CA	ARG B 176	14.611 -14.635 -28.525 1.00 29.01	BBBB
ATOM	3924	CA	LEU B 177	17.673 -13.970 -26.331 1.00 29.90	BBBB
ATOM -	3932	CA	ALA B 178	18.766 -10.776 -28.131 1.00 30.78	BBBB
ATOM	3937	CA	GLY B 179	19.846 -7.993 -25.784 1.00 30.10	BBBB
				18.676 -9.965 -22.787 1.00 28.97	BBBB
ATOM	3941	CA		the contract of the contract o	
MOTA	3952	CA	GLU B 181	20.545 -9.027 -19.621 1.00 31.79	
MOTA	3961	CA	GLY B 182		BBBB
MOTA	3966	CA	PRO B 183	19.450 -12.832 -13.913 1.00 22.93	BBBB
ATOM	3972	CA	VAL B 184	19.524 -16.146 -15.729 1.00 18.01	BBBB
				- + ·	
ATOM	3979	CA	ARG B 185	15.873 -17.216 -16.011 1.00 17.62	BBBB
ATOM	3990	CA	VAL B 186	15.508 -20.771 -14.741 1.00 16.47	BBBB
ATOM	3997	CA	LEU B 187	12.361 -22.710 -15.604 1.00 16.75	BBBB
ATOM	4005	CA	VAL B 188	11.774 -25.775 -13.381 1.00 18.41	BBBB
			VAL B 189	9.298 -28.234 -14.948 1.00 22.11	BBBB
MOTA	4012	CA			
ATOM	4018	N	GLY B 190	8.111 -29.887 -13.615 1.00 25.60	
ATOM	4019	CA	GLY B 190	7.914 -31.188 -12.994 1.00 27.28	BBBB
ATOM	4020	С	GLY B 190	6.808 -32.026 -13.604 1.00 29.67	BBBB
ATOM	4021	Ö	GLY B 190	6.668 -33.208 -13.283 1.00 29.86	
MOTA	4022	N	GLY B 191	6.025 -31.430 -14.497 1.00 30.56	
ATOM	4023	CA	GLY B 191	4.935 -32.163 -15.115 1.00 31.94	BBBB
MOTA	4024	C	GLY B 191	3.676 -32.104 -14.269 1.00 33.11	BBB8
ATOM	4025	0	GLY B 191	3.691 -31.556 -13.165 1.00 32.14	BBBB
ATOM	4026	N	SER B 192	2.587 -32.673 -14.779 1.00 34.23	BBBB
				1.313 -32.665 -14.064 1.00 35.91	BBBB
ATOM	4027	CA	SER B 192		
MOTA	4028	CB	SER B 192	0.283 -33.532 -14.801 1.00 36.87	
ATOM	4029	OG	SER B 192	0.702 -34.887 -14.877 1.00 39.58	BBBB
MOTA	4030	С	SER B 192	1.419 -33.128 -12.609 1.00 36.41	BBBB
ATOM	4031	0	SER B 192	0.862 -32.499 -11.714 1.00 35.78	BBBB
ATOM	4033	CA	GLN B 193	2.292 -34.763 -11.033 1.00 38.53	
ATOM	4041	N	GLY B 194	4.291 -33.398 -10.986 1.00 36.47	
MOTA	4042	CA	GLY B 194	5.398 -32.711 -10.350 1.00 35.02	
ATOM	4043	С	GLY B 194	6.584 -33.630 -10.146 1.00 34.51	BBBB
ATOM	4044	0	GLY B 194	6.442 -34.851 -10.191 1.00 34.26	
ATOM	4045	N	ALA B 195	7.761 -33.045 -9.938 1.00 33.54	
			ALA B 195	8.977 -33.819 -9.709 1.00 33.12	
ATOM	4046	CA		• • • • • • • • • • • • • • • • • • • •	
MOTA	4047	СВ	ALA B 195	10.073 -33.387 -10.679 1.00 33.17	
ATOM	4048	С	ALA B 195	9.423 -33.590 -8.267 1.00 32.87	BBBB
MOTA	4049	0	ALA B 195	9.955 -32.533 -7.923 1.00 31.47	BBBB
ATOM	4051	СA	ARG B 196	9.538 -34.512 -6.010 1.00 32.63	
MOTA	4062	CA	ILE B 197	13.329 -34.168 -6.164 1.00 28.10	
MOTA	4070	CA	LEU B 198	13.069 -30.833 -8.003 1.00 26.58	
ATOM	4078	CA	ASN B 199	10.497 -29.447 -5.563 1.00 27.07	BBBB
ATOM	4086	CA	GLN B 200	12.955 -30.326 -2.794 1.00 30.10	
	4095		THR B 201	16.215 -29.345 -4.474 1.00 27.34	
ATOM		CA			
ATOM	4102	CA	MET B 202	15.567 -26.048 -6.268 1.00 23.68	
ATOM	4111	CA	PRO B 203	14.608 -23.963 -3.220 1.00 23.84	BBBB
ATOM	4117	CA	GLN B 204	18.033 -24.708 -1.684 1.00 26.34	BBBB
ATOM	4126	CA	VAL B 205	19.672 -24.033 -5.043 1.00 24.44	
MOTA	4133	CA	ALA B 206		
MOTA	4138	, CA	ALA B 207	19.442 -19.857 -1.576 1.00 26.65	
MOTA	4143	CA	LYS B 208	22.915 -20.595 -2.919 1.00 28.31	BBBB
	4152	CA	LEU B 209	22.577 -18.640 -6.171 1.00 25.68	BBBB

		20 675 -15 628 -4.804 1.00 26.56 BBBB
MOTA	4160 CA GLY B 210	
ATOM	4164 CA ASP B 211	201310 121011
ATOM	4172 CA SER B 212	22.098 -14.474 -10.067 1.00 25.73 BBBB
	4178 CA VAL B 213	18.925 -16.308 -11.116 1.00 20.76 BBBB
MOTA		15.204 -15.726 -11.337 1.00 19.60 BBBB
ATOM	4185 CA THR B 214	13,404 13,404 ==
MOTA	4192 CA ILE B 215	
MOTA	4200 CA TRP B 216	9.661 -19.973 -12.378 1.00 19.34 BBBB
ATOM	4214 CA HIS B 217	9.015 -23.303 -10.680 1.00 21.06 BBBB
	4224 CA GLN B 218 .	6.149 -25.594 -11.735 1.00 24.30 BBBB
MOTA		5.463 -27.800 -8.684 1.00 26.73 BBBB
ATOM -	4233 CA SER B 219	3,103 - 112
MOTA	4239 CA GLY B 220	
MOTA	4243 CA LYS B 221	-0.657 -30.914 -8.628 1.00 35.12 BBBB
ATOM	4252 CA GLY B 222	-1.195 -29.899 -5.011 1.00 35.34 BBBB
		2.451 -28.934 -4.418 1.00 33.98 BBBB
ATOM		2.187 -25.208 -5.186 1.00 33.71 BBBB
MOTA	4262 CA GLN B 224	2.10
ATOM	4271 CA GLN B 225	1.025 21.25
MOTA	4280 CA SER B 226	4.701 -26.309 -0.122 1.00 28.30 BBBB
ATOM	4286 CA VAL B 227	7.214 -25.247 -2.791 1.00 24.28 BBBB
		6.178 -21.592 -2.387 1.00 27.23 BBBB
ATOM		6.853 -22.046 1.329 1.00 28.38 BBBB
MOTA	4302 CA GLN B 229	0.000
MOTA	4311 CA ALA B 230	101100
ATOM	4316 CA TYR B 231	11.371 -20.766 -1.366 1.00 25.47 BBBB
ATOM	4328 CA ALA B 232	10.342 -18.322 1.368 1.00 27.51 BBBB
ATOM	4333 CA GLU B 233	12 145 -20.441 3.966 1.00 30.87 BBBB
		15.215 -20.417
MOTA		15 033 -16 627 1.815 1.00 26.23 BBBB
ATOM	4347 CA GLY B 235	14 121 -16.198 -1.870 1.00 25.53 BBBB
ATOM -	4351 CA GLN B 236	
MOTA	4361 CA PRO B 237	10.336 -15.587 -1.720 1.00 24.65 BBBB
MOTA	4367 CA GLN B 238	10.277 -13.558 -4.945 1.00 24.29 BBBB
ATOM	4376 CA HIS B 239	10.526 -16.608 -7.201 1.00 22.08 BBBB
•	4386 CA LYS B 240	7.375 -17.589 -9.105 1.00 23.26 BBBB
MOTA		5.740 -20.911 -8.277 1.00 23.78 BBBB
ATOM	4395 CA VAL B 241	2.758 -22.301 -10.177 1.00 25.93 BBBB
ATOM	4402 CA THR B 242	0.999 -25.651 -9.837 1.00 27.03 BBBB
ATOM	4409 CA GLU B 243	0.999 -25.651 -9.637 1.00 27.03 BBBB
MOTA	4418 CA: PHE B 244	
ATOM	4429 CA ILE B 245	1.932 -24.242 -16.802 1.00 28.48 BBBB
ATOM	4437 CA ASP B 246	-0.754 -24.396 -19.457 1.00 36.00 BBBB
ATOM	4445 CA ASP B 247	1.245 -22.392 -21.999 1.00 30.74 BBBB
ATOM	4453 CA MET B 248	4.625 -24.136 -22.138 1.00 28.41 BBBB
		5.512 -22.216 -25.290 1.00 24.67 BBBB
MOTA		5.188 -18.933 -23.390 1.00 21.78 BBBB
MOTA	4466 CA ALA B 250	
MOTA	4471 CA ALA B 251	
MOTA	4476 CA TYR B 252	9.972 -21.616 -22.886 1.00 22.78 BBBB
ATOM	4488 CA ALA B 253	10.131 -18.224 -24.636 1.00 23.54 BBBB
ATOM	4493 CA TRP B 254	10.829 -16.534 -21.303 1.00 19.76 BBBB
ATOM		13.399 -19.025 -20.003 1.00 19.51 BBBB
MOTA	4512 CA ASP B 256	17.176 -19.026 -20.434 1.00 17.58 BBBB
		17.535 -22.603 -19.194 1.00 18:53 BBBB
ATOM		15.208 -25.456 -18.234 1.00 19.32 BBBB
MOTA	4527 CA VAL B 258	
MOTA	4534 CA VAL B 259	
ATOM	4541 CA CYS B 260	13.454 -31.055 -15.946 1.00 22.00 BBBB
MOTA	4546 N ARG B 261	12.937 -33.397 -16.212 1.00 22.34 BBBB
ATOM	4547 CA ARG B 261	13.170 -34.800 -16.515 1.00 23.75 BBBB
ATOM	4548 CB ARG B 261	11.964 -35.663 -16.104 1.00 27.16 BBBB
		11.376 -35.337 -14.738 1.00 31.82 BBBB
ATOM		11.490 -36.473 -13.732 1.00 36.33 BBBB
MOTA	4550 CD ARG B 261	12.865 -36.721 -13.323 1.00 38.48 BBBB
MOŢA	4551 NE ARG B 261	
ATOM	4552 CZ ARG B 261	13.218 -37.176 -12.125 1.00 37.25 BBBB
MOTA		12.295 -37.433 -11.204 1.00 38.46 BBBB
ATOM	4554 NH2 ARG B 261	14.499 -37.370 -11.848 1.00 36.79 BBBB
		24 271 10 222 1 20 22 20 22 28
MOTA		10 746 1 00 33 44 8888
ATOM	4556 O ARG B 261	10 010 1 00 02 10 0000
MOTA	4558 CA SER B 262	
MOTA	4563 N GLY B 263	
ATOM	4564 CA CLY B 263	11.026 -38.079 -21.361 1.00 22.85 BBBB
	4565 C GLY B 263	11.392 -37.793 -22.813 1.00 24:06 BBBB

S (3)

ATOM 4568 CA ALA B 264	9.84 BBBB 1.68 BBBB 3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB
ATOM 4568 CA ALA B 264	3.37 BBBB 3.25 BBBB 3.29 BBBB 3.33 BBBB 3.34 BBBB 3.34 BBBB 3.34 BBBB 3.37 BBBB 3.38 BBBB 3.39 BBBB 3.39 BBBB 3.30 BBBB 3.30 BBBB 3.31 BBBB 3.32 BBBB 3.32 BBBB 3.33 BBBB 3.32 BBBB 3.34 BBBB 3.39 BBBB 3.30 BBBB 3.31 BBBBB 3.31 BBBBB 3.31 BBBBB 3.31 BBBBB 3.31 BBBBB 3.31 BBBBB 3.31 BBBBBB 3.31 BBBBBB 3.31 BBBBBBBBB 3.31 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4568 CA ALA B 264	1.25 BBBB 1.58 BBBB 1.29 BBBB 1.33 BBBB 1.66 BBBB 1.66 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.12 BBBB 1.12 BBBB 1.12 BBBB 1.13 BBBB 1.14 BBBB 1.15 BBBB 1.15 BBBB 1.15 BBBB 1.15 BBBB 1.16 BBBB 1.17 BBBB 1.18 BBBB 1.19 BBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBBBBB 1.10 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4569 CB ALA B 264	1.58 BBBB 1.29 BBBB 1.33 BBBB 1.66 BBBB 1.66 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.12 BBBB 1.12 BBBB 1.12 BBBB 1.13 BBBB 1.14 BBBB 1.15 BBBB 1.16 BBBB 1.16 BBBB 1.17 BBBB 1.18 BBBB 1.19 BBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBBB 1.10 BBBBB 1.10 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4569 CB ALA B 264	1.58 BBBB 1.29 BBBB 1.33 BBBB 1.66 BBBB 1.66 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.11 BBBB 1.12 BBBB 1.12 BBBB 1.12 BBBB 1.13 BBBB 1.14 BBBB 1.15 BBBB 1.16 BBBB 1.16 BBBB 1.17 BBBB 1.18 BBBB 1.19 BBBB 1.10 BBBBB 1.10 BBBBB 1.10 BBBBBB 1.10 BBBBB 1.10 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4570 C ALA B 264 10.843 -37.343 -25.783 1.00 24 ATOM 4571 O ALA B 264 11.523 -36.572 -26.470 1.00 24 ATOM 4573 CA LEU B 265 8.846 -36.037 -26.205 1.00 24 ATOM 4581 CA THR B 266 10.194 -33.557 -23.657 1.00 21 ATOM 4595 CA SER B 268 12.411 -33.191 -28.567 1.00 21 ATOM 4600 N GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4601 CA GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4602 CB GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4603 CG GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4604 CD GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4605 OE1 GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4606 OE2 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4608 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4628 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4628 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 18.266 -32.838 -17.392 1.00 21 ATOM 4656 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 25	1.29 BBBB 1.33 BBBB 1.66 BBBB 2.34 BBBB 1.11 BBBB 1.96 BBBB 1.95 BBBB 1.95 BBBB 1.95 BBBB 1.95 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.69 BBBB 1.68 BBBB 1.69 BBBB 1.69 BBBB 1.60 BBBBB 1.60 BBBBB 1.60 BBBBBB 1.60 BBBBB 1.60 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4571 O ALA B 264 11.523 -36.572 -26.470 1.00 24 ATOM 4573 CA LEU B 265 8.846 -36.037 -26.205 1.00 24 ATOM 4581 CA THR B 266 10.194 -33.557 -23.657 1.00 22 ATOM 4588 CA VAL B 267 13.730 -33.762 -25.023 1.00 21 ATOM 4595 CA SER B 268 12.411 -33.191 -28.567 1.00 21 ATOM 4600 N GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4601 CA GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4608 O GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4618 CA ALA B 271 15.440 -29.058 -25.638 1.00 20 ATOM 4623 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.770 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4637 CA LEU B 275 16.6666 -24.057 -24.966 1.00 19 ATOM 4657 CA LEU B 275 18.638 -27.807 -20.321 1.00 16 ATOM 4657 CA LEU B 275 18.638 -27.807 -20.321 1.00 16 ATOM 4657 CA LEU B 275 18.638 -27.807 -20.321 1.00 16 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 16 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4656 CA PHE B 279 18.266 -32.838 -17.392 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25 A	1.33 BBBB 1.66 BBBB 2.34 BBBB 2.34 BBBB 2.34 BBBB 2.11 BBBB 2.96 BBBB 3.95 BBBB 3.72 BBBB 3.72 BBBB 3.05 BBBB 3.05 BBBB 3.12 BBBB 3.13 BBBB 3.14 BBBB 3.15 BBBB 3.16 BBBB 3.17 BBBB 3.18 BBBB 3.19 BBBB 3.10 BBBB 3.10 BBBB 3.11 BBBB 3.12 BBBB 3.12 BBBB 3.13 BBBB 3.14 BBBB 3.15 BBBB 3.16 BBBB 3.17 BBBB 3.18 BBBB 3.19 BBBB 3.10 BBBBB 3.10 BBBBBBB 3.10 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4581 CA THR B 266 10.194 -33.557 -23.657 1.00 24 ATOM 4588 CA VAL B 267 13.730 -33.5762 -25.023 1.00 21 ATOM 4595 CA SER B 268 12.411 -33.191 -28.567 1.00 21 ATOM 4600 N GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4601 CA GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 21 ATOM 4608 O GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4652 CA PRO B 276 19.896 -29.429 -17.145 1.00 18 ATOM 4655 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.66 BBBB 2.34 BBBB 2.34 BBBB 1.11 BBBB 1.96 BBBB 1.95 BBBB 1.72 BBBB 1.67 BBBB 1.67 BBBB 1.50 BBBB 1.50 BBBB 1.50 BBBB 1.50 BBBB 1.50 BBBB 1.50 BBBB 1.62 BBBB 1.62 BBBB 2.45 BBBB 2.45 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB
ATOM 4581 CA THR B 266	2.34 BBBB 1.11 BBBB 1.96 BBBB 1.95 BBBB 1.72 BBBB 1.67 BBBB 1.67 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.69 BBBB 1.69 BBBB 1.69 BBBB 1.69 BBBB 1.68 BBBB 1.69 BBBB 1.69 BBBB 1.69 BBBB 1.69 BBBB 1.69 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.90 BBBBB 1.90 BBBBBBB 1.90 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4588 CA VAL B 267	1.11 BBBB 1.96 BBBB 1.64 BBBB 1.72 BBBB 1.72 BBBB 1.72 BBBB 1.73 BBBB 1.50 BBBB 1.50 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.62 BBBB 1.62 BBBB 1.97 BBBB
ATOM 4595 CA SER B 268	1.96 BBBB 1.64 BBBB 1.95 BBBB 1.72 BBBB 1.72 BBBB 1.67 BBBB 1.50 BBBB 1.50 BBBB 1.62 BBBB 1.62 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.90 BBBB 1.91 BBBB 1.92 BBBB 1.93 BBBB 1.94 BBBB 1.95 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.90 BBBB 1.90 BBBB 1.91 BBBB 1.92 BBBB 1.93 BBBB 1.94 BBBB 1.95 BBBB 1.96 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBBB 1.99 BBBB 1.90 BBBBBB 1.90 BBBBB 1.90 BBBBB 1.90 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ATOM 4600 N GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4601 CA GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4667 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.64 BBBB 1.95 BBBB 1.72 BBBB 7.67 BBBB 0.05 BBBB 1.50 BBBB 1.50 BBBB 1.68 BBBB 1.62 BBBB 1.62 BBBB 2.45 BBBB 2.45 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.91 BBBB 1.91 BBBB
ATOM 4600 N GLU B 269 10.928 -31.563 -27.557 1.00 21 ATOM 4601 CA GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 18 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4667 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.64 BBBB 1.95 BBBB 1.72 BBBB 7.67 BBBB 0.05 BBBB 1.50 BBBB 1.50 BBBB 1.68 BBBB 1.62 BBBB 1.62 BBBB 2.45 BBBB 2.45 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.99 BBBB 1.91 BBBB 1.91 BBBB
ATOM 4601 CA GLU B 269 10.282 -30.272 -27.378 1.00 21 ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4608 O GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4623 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 16 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 21 ATOM 4657 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.95 BBBB 1.72 BBBB 7.67 BBBB 0.05 BBBB 1.50 BBBB 1.50 BBBB 1.68 BBBB 1.62 BBBB 2.45 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.98 BBBB 1.99 BBBB 1.99 BBBB 1.97 BBBB 1.97 BBBB
ATOM 4602 CB GLU B 269 9.213 -30.399 -26.292 1.00 24 ATOM 4603 CG GLU B 269 8.480 -29.128 -25.940 1.00 27 ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.72 BBBB 7.67 BBBB 0.05 BBBB 1.50 BBBB 1.68 BBBB 1.68 BBBB 1.68 BBBB 1.62 BBBB 1.62 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.98 BBB 1.98 BBB 1.99 BBBB 1.99 BBBB 1.99 BBBB
ATOM 4603 CG GLU B 269	7.67 BBBB 0.05 BBBB 1.50 BBBB 1.68 BBBB 1.68 BBBB 1.62 BBBB 2.45 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.97 BBBB 1.07 BBBB 1.08 BBBB 1.62 BBBB 1.62 BBBB
ATOM 4604 CD GLU B 269 7.385 -29.380 -24.908 1.00 30 ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4633 CA GLY B 274 12.361 -24.596 -28.407 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	0.05 BBBB 1.50 BBBB 9.84 BBBB 1.68 BBBB 3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4605 OE1 GLU B 269 6.325 -29.915 -25.287 1.00 31 ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.50 BBBB 9.84 BBBB 1.68 BBBB 3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4606 OE2 GLU B 269 7.591 -29.057 -23.719 1.00 29 ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	9.84 BBBB 1.68 BBBB 3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB
ATOM 4607 C GLU B 269 11.321 -29.214 -26.999 1.00 21 ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.68 BBBB 3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	3.12 BBBB 0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4608 O GLU B 269 11.301 -28.095 -27.518 1.00 18 ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4610 CA ILE B 270 13.295 -28.698 -25.638 1.00 20 ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	0.62 BBBB 2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4618 CA ALA B 271 15.440 -29.058 -28.776 1.00 22 ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	2.45 BBBB 2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4623 CA ALA B 272 12.719 -27.451 -30.898 1.00 22 ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	2.17 BBBB 1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4628 CA ALA B 273 12.361 -24.596 -28.407 1.00 21 ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.97 BBBB 1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4633 CA GLY B 274 16.093 -24.023 -28.709 1.00 21 ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.07 BBBB 9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4637 CA LEU B 275 16.666 -24.057 -24.966 1.00 19 ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	9.78 BBBB 6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4646 CA PRO B 276 19.651 -25.199 -22.875 1.00 16 ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	6.62 BBBB 5.80 BBBB 8.48 BBBB
ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	5.80 BBBB 8.48 BBBB
ATOM 4652 CA ALA B 277 18.638 -27.807 -20.321 1.00 15 ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	8.48 BBBB
ATOM 4657 CA LEU B 278 19.896 -29.429 -17.145 1.00 18 ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	8.48 BBBB
ATOM 4665 CA PHE B 279 18.266 -32.838 -17.392 1.00 21 ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	-
ATOM 4676 CA VAL B 280 17.502 -34.902 -14.281 1.00 25	1.37 0000
· · · · · · · · · · · · · · · · · · ·	
ATOM 4682 N PRO B 281 17.324 -37.080 -15.370 1.00 27	
	7.31 BBBB
ATOM 4684 CA PRO B 281 16.698 -38.320 -15.824 1.00 29	9.05 BBBB
ATOM 4685 CB PRO B 281 17.851 -39.071 -16.492 1.00 29	9.44 BBBB
ATOM 4686 CG PRO B 281 18.791 -37.992 -16.895 1.00 29	9.67 BBBB
ATOM 4687 C PRO B 281 16.092 -39.121 -14.684 1.00 31	1.51 BBBB
	2.26 BBBB
	7.13 BBBB
	1.11 BBBB
	3.69 BBBB
	5.34 BBBB
	3.26 BBBB
	6.28 BBBB
	0.77 BBBB
ATOM 4756 N GLN B 289 15.378 -42.554 -19.857 1.00 29	9.38 BBBB
ATOM 4757 CA GLN B 289 15.474 -41.099 -19.904 1.00 29	9.46 BBBB
	9.25 BBBB
	9.32 BBBB
	9.84 BBBB
	9.52 BBBB
and the second of the second o	8.95 BBBB
	9.36 BBBB
	9.12 BBBB
	9.55 BBBB
	8.07 BBBB
	5.52 BBBB
	6.06 BBBB
	4.78 BBBB
	4.46 BBBB
	25.33 BBBB
	23.83 BBBB
111011 111011 - 111111 - 111111	25.99 BBBB
	26.18 BBBB
	25.66 BBBB
ATOM 4800 CA ALA B 293 18.926 -36.822 -22.979 1.00 2	25.69 BBBB
	24.17 BBBB

			20 346 -36.800 -23.521 1.00 25.67 BBBB
MOTA	4802 C	ALA B 293	20.340 50.000 23.322
ATOM	4803 O	ALA B 293	20.855 -35.743 -23.902 1.00 25.52 BBBB
			22.354 -38.088 -24.032 1.00 25.90 BBBB
MOTA	4805 CA	LEU B 294	22.554 30.000 2
MOTA	4814 CA	PRO B 295	21.550
		LEU B 296	21.521 -33.265 -26.481 1.00 25.42 BBBB
ATOM			0-1
MOTA	4828 CA	GLU B 297	24,554
ATOM	4837 CA	LYS B 298	26.644 -34.947 -26.648 1.00 31.90 BBBB
			25.773 -31.965 -28.847 1.00 30.38 BBBB
MOTA	4846 CA		23.773
MOTA	4851 CA	GLY B 300	20.777
*	4855 CA	ALA B 301	23.214 -28.333 -25.638 1.00 22.50 BBBB
MOTA			22.516 -29.770 -22.186 1.00 21.78 BBBB
MOTA	4860 CA	ALA B 302	22.310
MOTA	4865 CA	LYS B 303	23.373
			22.753 -34.598 -17.550 1.00 27.17 BBBB
MOTA	4874 CA		1 00 00 01 DDDD
ATOM	4882 CA	ILE B 305	22.045
ATOM	4890 CA	GLU B 306	
			20.377 -39.599 -9.613 1.00 40.54 BBBB
ATOM	4899 CA		
ATOM	4909 CA	PRO B 308	23.020 10.032
	4915 CA	GLN B 309	25.247 -37.361 -8.787 1.00 43.46 BBBB
MOTA			22.232 -35.166 -8.022 1.00 39.65 BBBB
MOTA	4924 CA	LEU B 310	22.232
ATOM	4932 CA	SER B 311	22,000
	4938 CA		21.990 -29.074 -4.341 1.00 31.50 BBBB
MOTA			25.642 -28.202 -4.957 1.00 29.61 BBBB
MOTA	4945 CA		23.042 20.200
ATOM	4953 CA	ALA B 314	23.702 30.033 0.111
			22.755 -28.215 -9.612 1.00 25.33 BBBB
MOTA	4958 CA		22.,30
MOTA	4965 CA		25.000 - 1 00 20 52 0000
ATOM	4970 CA	ASN B 317	27.444 25.010
		·	26 174 -26.371 -12.906 1.00 27.04 BBBB
MOTA	4978 CA		
MOTA	4985 CA	LEU B 319	
ATOM	4993 CA	ALA B 320	20.443 20.332 22.22
			28.934 -22.031 -14.591 1.00 24.34 BBBB
MOTA			26.738 -21.007 -17.521 1.00 21.72 BBBB
MOTA	5002 ·CP		
ATOM	5016 CF	SER B 323	
			24.725 -15.741 -21.112 1.00 18.09 BBBB
MOTA			27.220 -16.368 -23.954 1.00 16.96 BBBB
ATOM	5033 CA	A GLU B 325	27.220 10.00 10.00 10.00 00.00
MOTA	5042 CA	A THR B 326	27.400 20.000 ==
	5049 C		23.659 -20.305 -22.780 1.00 17.27 BBBB
MOTA			23.175 -18.745 -26.222 1.00 17.39 BBBB
MOTA	5057 C		
MOTA	5065 C	A THR B 329	
ATOM	5072 C		23.771 -24.153 -25.870 1.00 19.91 BBBB
			20.412 -22.871 -27.098 1.00 18.49 BBBB
ATOM.	5080 C		21.626 -22.827 -30.704 1.00 21.47 BBBB
. ATOM	5085 C		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ATOM	5094 C	A ARG B 333	23.040 20.330 30
	5105 C		19.648 -27.420 -29.063 1.00 22.88 BBBB
ATOM		7 707 0 335	17.795 -25.892 -32.002 1.00 23.54 BBBB
MOTA	5110 C		
ATOM	5121 C	A ALA B 336	
ATOM	5126 · C		19.740 -30.925 -32.865 1.00 30.89 8888
			16 008 -30,432 -33,408 1.00 32,41 BBBB
MOTA			13.882 -31.941 -36.187 1.00 34.35 BBBB
MOTA	· 5137 C	A ILE B 339	
MOTA		:A PRO B 340	
		A ASP B 341	8.71131.820 -39.056 1.00 33.33 8888
MOTA			8.87535.238 -37.411 1.00 29.09 BBBB
MOTA.	5160 C	CA ALA B 342	
MOTA	5165	CA THR B 343	
			5.085 -34.933 -41.480 1.00 32.00 BBBB
MOTA			8.138 -37.123 -42.067 1.00 31.44 BBBB
MOTA	5181		
MOTA	5192	CA VAL B 346	6.578 -40.151 -40.384 1.00 28.61 BBBB
		CA ALA B 347	3 249 -39.617 -42.137 1.00 28.96 8888
MOTA			5.035 -39.286 -45.493 1.00 34.56 BBBB
MOTA			
MOTA		CA GLU B 349	
			3.767 -44.306 -43.919 1.00 33.79 BBBB
MOTA		`	
MOTA		CA SER B 351	
ATOM	5234	CA ARG B 352	
		CA VAL B 353	5 089 -47.587 -47.737 1.00 42.78 8888
ATOM			1 336 -47.957 -48.212 1.00 47.24 8888
ATOM			1.00 F1 024 1 00 F2 71 BBBB
ATOM		CA ARG B 355	
		CA ALA B 356	4 453 -49,913 -51.809 1.00 34.93 8888
MOTA		OR REA 0 350	
MOTA	5273	CA LEU B 357	1.023

END

## TABLE 4 ATOMIC COORDINATES OF THE DONOR NUCLEOTIDE BINDING SITE

REMARK ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1 N LEU B 187 2 CA LEU B 187 3 C LEU B 187 4 O LEU B 187 5 CB LEU B 187 6 CG LEU B 187 7 CD1 LEU B 187 9 N VAL B 188 10 CA VAL B 188 11 C VAL B 188 12 O VAL B 188 13 CB VAL B 188 14 CG1 VAL B 188 15 CG2 VAL B 189 17 CA VAL B 189 18 C VAL B 189 19 O VAL B 189 20 CB VAL B 189 21 CG1 VAL B 189 22 CG2 VAL B 189 23 N GLY B 190 24 CA GLY B 190 25 C GLY B 190 26 O GLY B 190 27 N GLY B 191 28 CA GLY B 191 29 C GLY B 191 30 O GLY B 191 30 O GLY B 191 31 N ALA B 195 33 C ALA B 195 33 C ALA B 195 34 O ALA B 195 35 CB ALA B 195 36 N LEU B 198 37 CA LEU B 198 38 C LEU B 198 39 O LEU B 198 30 CB LEU B 198 31 CA LEU B 198 32 CA ALA B 195 33 C ALA B 195 34 O ALA B 195 35 CB ALA B 195 36 N LEU B 198 37 CA LEU B 198 38 C LEU B 198 39 O LEU B 198 40 CB LEU B 198 41 CG LEU B 198 42 CD1 LEU B 198 43 CD2 LEU B 198 44 N TYR B 252 45 CA TYR B 252 46 C TYR B 252 50 CD1 TYR B 252 51 CD2 TYR B 252 51 CD2 TYR B 252	FORMAT V. 2.0, 11-MAY-2000  13.695 -22.128 -15.588	zooouzouoouozouozouozouozouozouozouozou
MOTA MOTA MOTA	49 CG TYR B 252 50 CD1 TYR B 252 51 CD2 TYR B 252	9.662 -24.100 -23.505 1.00 23.34 9.003 -25.065 -24.261 1.00 22.88 10.288 -24.505 -22.319 1.00 22.30 8.961 -26.392 -23.861 1.00 24.81	0000

- 73

							_		
	ATOM	E 0	O WAT	D 350	16 000	27 176	17 750	1 00 19 06	_
		59		B 258		-27.175		1.00 18.96	0
	ATOM	60	CB VAL	B 258	14.328	-26.100	-19.337	1.00 19.89	С
•	MOTA	61	CG1 VAL	B 258	13.101	-26.754	-18.714	1.00 19.81	С
	ATOM	62				-25.041		1.00 21.59	Ċ
	ATOM	63	N VAL	B. 259		-26.861		1.00 20.24	N
	MOTA	64	CA VAL	B 259	15.581	-27.957	-15.374	1.00 19.85	C
	ATOM	65	C VAL	B 259		-28.890		1.00 20.02	Č
								1.00 21.88	
	MOTA	66		B 259		-28.500			0
	MOTA	67	CB VAL	B 259	15.850	-27.483	-13.936	1.00 20.08	С
	ATOM	68	CG1 VAL	B 259	16.222	-28.689	-13.059	1.00 20.22	С
	ATOM	69		B 259	16 966	-26.453	-13 930	1.00 17.86	Ċ
	MOTA	70	N CYS	в 260		-30.111		1.00 21.70	N
	MOTA	71	CA CYS	В 260	13.454	-31.055	-15.946	1.00 22.00	C
	ATOM	72	C CYS	B 260	13.903	-32.478	-16.242	1.00 21.86	С
	ATOM	73	O CYS	B 260		-32.730		1.00 21.34	Ō
	MOTA	74	CB CYS	B 260		-30.618		1.00 22.77	С
	MOTA	75	SG CYS	B 260	13.297	-30.506	-18.711	1.00 22.15	S
	MOTA	76	N ARG	B 261	12.937	-33.397	-16.212	1.00 22.34	Ν
	ATOM	77		B 261		-34.800		1.00 23.75	C
	MOTA	78		B 261		-34.871		1.00 23.98	С
	ATOM	79	O ARG	B 261		-33.883		1.00 22.44	0
	ATOM	80	CB ARG	B 261	11.964	-35.663	-16.104	1.00 27.16	С
						-35.337		1.00 31.82	Č
	ATOM	81	CG. ARG						
	MOTA	82	CD ARG			-36.473		1.00 36.33	С
	ATOM	83	NE ARG	B 261	12.865	-36.721	-13.323	1.00 38.48	N
	ATOM	8 4	CZ ARG	B 261	13 218	-37.176	-12.125	1.00 37.25	С
								1.00 38.46	N
	ATOM	85	NH1 ARG			-37.433			
	MOTA	86	NH2 ARG	B 261	14.499	-37.370		1.00 36.79	N
	ATOM	87	N SER	B 262	13.740	-36.038	-18.527	1.00 22.00	N
	ATOM	88		B 262	13 975	-36.189		1.00 23.18	С
								1.00 22.90	. č
	ATOM	89		B 262	13.173				
	ATOM	90	O SER	B 262	13.738			1.00 23.25	0
	ATOM	91	CB SER	B 262	15.481	-36.377	-20.203	1.00 24.45	C
	ATOM	92		B 262	16.043	-37.326		1.00 25.79	0
	ATOM	93				-37.151		1.00 22.74	N
	ATOM	94		B 263		-38.079		1.00 22.85	С
	MOTA	95	C GLY	B 263	11.392	-37.793	-22.813	1.00 24.06	С
	ATOM	96	O GLY	B 263	11.908	-36.705	-23.121	1.00 22.75	0
	ATOM	97		B 264		-38.739		1.00 23.37	N
		-							
	MOTA	98	CA ALA				-25.115	1.00 24.25	С
	MOTA	99	C ALA	B 264	10.843	-37.343	-25.783	1.00 24.29	C
	ATOM	100		B 264	11.523	-36.572	-26.470	1.00 24.33	0
	ATOM	101	CB ALA			-39.829		1.00 24.58	C
	ATOM	102	N LEU			-37.167		1.00 24.44	N
	ATOM	103	CA LEU	B 265		-36.037		1.00 24.66	С
	ATOM	104	C LEU	B 265	9.331	-34.717	-25.613	1.00 24.47	С
	ATOM	105		B 265		-33.693		1.00 23.85	0
	ATOM	106				-36.183		1.00 25.33	č
				B 265					_
	ATOM	107		B 265		-37.544		1.00 27.97	C
	MOTA	108	CD1 LEU	B 265	5.242	-37.541	-26.258	1.00 28.21	С
	ATOM	109	CD2 LEU		7.146	-37.856		1.00 27.40	С
	ATOM	110		B 266		-34.747		1.00 22.12	N
	MOTA	111		B 266				1.00 22.34	С
	ATOM	112	C THR	B 266	11.535	-33.117	-24.226	1.00 21.15	С
	ATOM	113		B 266	11.761		-24.442	1.00 20.35	0
							-22.140	1.00 22.35	·Č
	MOTA	114		B 266	10.348				
	ATOM	115		B 266		-34.087		1.00 24.46	0
	ATOM	116	CG2 THR	В 266	10.945	-32.573	-21.444	1.00 24.00	С
	ATOM	117		B 267				1.00 20.46	N
	ATOM	118		B 267			-25.023	1.00 21.11	C
	ATOM	119	C VAL	В 267	13.548		-26.416	1.00 21.34	С
	ATOM	120		B 267	14.188		-26.747	1.00 19.99	0
						-35.039		1.00 21.54	Č
	MOTA	121		В 267					~
	MOTA	122	CG1 VAL	. в 267			-25.865	1.00 20.72	C
	MOTA	123	CG2 VAL	. в 267	14.938	-35.541	-23.708	1.00 20.45	С
	ATOM	124		B 268			-27.222	1.00 21.61	N
	W 1 Ot 1	144	, 3EK		12.000	33			

ATOM	125 CA 126 C 127 O	SER B 268 SER B 268 SER B 268		12.411 -33.191 -28.567 1.00 21.96 11.817 -31.790 -28.519 1.00 21.81 12.158 -30.933 -29.336 1.00 22.60	:
ATOM ATOM	128 CB 129 OG 130 N	SER B 268 SER B 268 GLU B 269		11.474 -34.121 -29.344 1.00 21.57 12.141 -35.316 -29.721 1.00 24.06 10.928 -31.563 -27.557 1.00 21.64	<b>1</b>
MOTA	131 CA 132 C	GLU B 269 GLU B 269		11.321 -29.214 -26.999 1.00 21.68	
	133 O 134 CB	GLU B 269 GLU B 269		9.213 -30.399 -26.292 1.00 24.72	C .
	135 CG 136 CD	GLU B 269 GLU B 269		7.385 -29.380 -24.908 1.00 30.05	C C O
		GLU B 269 GLU B 269		7.591 -29.057 -23.719 1.00 29.84	0 0
ATOM ATOM	139 N 140 CA	ILE B 270 . ILE B 270		13.295 -28.698 -25.638 1.00 20.62	C
MOTA MOTA	141 C 142 O	ILE B 270 ILE B 270		14.595 -27.151 -26.954 1.00 20.50	0 C
MOTA MOTA	143 CB 144 CG1			13.337 -29.574 -23.254 1.00 21.32	C.
ATOM ATOM		ILE B 270		12.926 -28.291 -22.583 1.00 23.40	C N
ATOM ATOM	147 N 148 CA	ALA B 277 ALA B 277	•	18.638 -27.807 -20.321 1.00 15.80 19.591 -28.526 -19.382 1.00 17.37	C
MOTA MOTA	149 C 150 O	ALA B 277 ALA B 277 ALA B 277			0 C
ATOM ATOM	151 CB 152 N . 153 CA	LEU B 278 LEU B 278		19.147 -28.673 -18.138 1.00 17.14 19.896 -29.429 -17.145 1.00 18.48	N C
ATOM ATOM ATOM	154 C 155 O			18.884 -30.535 -16.898 1.00 19.62 17.870 -30.330 -16.218 1.00 20.77	C 0
ATOM ATOM	156 CB 157 CG	LEU B 278 LEU B 278		20.140 -28.619 -15.869 1.00 19.19 21.084 -29.308 -14.868 1.00 20.85	C
ATOM ATOM	158 CD1	L LEU B 278 2 LEU B 278		21.283 -28.411 -13.668 1.00 21.11 20.497 -30.647 -14.433 1.00 19.16	C C .
ATOM ATOM	160 N 161 CA	PHE B 279 PHE B 279		19.149 -31.691 -17.495 1.00 19.50 18.266 -32.838 -17.392 1.00 21.59 18.525 -33.709 -16.167 1.00 22.86	и С С
MOTA. MOTA.	162. C 163.0	PHE B 279 PHE B 279	٠.	18.525 -33.709 -16.167 1.00 22.86 19.671 -34.065 -15.871 1.00 23.32 18.385 -33.700 -18.651 1.00 21.07	0 0
MOTA' MOTA .	164 CB 165 CG	PHE B 279 PHE B 279		17.740 -33.099 -19.876 1.00 19.35 18.481 -32.898 -21.035 1.00 19.42	C C
ATOM	167 CD	1 PHE B 279 2 PHE B 279		16.379 -32.794 -19.888 1.00 18.16 17.874 -32.405 -22.203 1.00 19.06	C
MOTA . ATOM . ATOM	168 CE 169 CE 170 CZ	1 PHE B 279 2 PHE B 279 PHE B 279	*	15.759 -32.298 -21.052 1.00 17.65 16.515 -32.108 -22.208 1.00 15.61	C C
MOTA MOTA	171 N 172 CA	VAL: B 280		17.445 -34.037 -15.461 1.00 23.88 17.502 -34.902 -14.281 1.00 25.67	С
. ATOM ATOM	173 C 174 O	VAL B 280 VAL B 280		16.690 -36.136 -14.658 1.00 25.65 15.509 -36.239 -14.346 1.00 24.57	0 0
MOTA .	175 CB 176 CG	1 VAL B 280		16.883 -34.223 -13.048 1.00 26.89 16.954 -35.159 -11.847 1.00 28.12 17.631 -32.929 -12.742 1.00 27.70	CCC
. ATOM ATOM	177 . CG 178 . N	PRO B 281		17.631 -32.929 -12.742 1.00 27.70 17.324 -37.080 -15.370 1.00 27.08 16.698 -38.320 -15.824 1.00.29.05	N C
ATOM .	179 CA 180 C	PRO B 281		16.092 -39.121 -14.684 1.00 31.51 16.675 -39.223 -13.603 1.00 32.26	C
ATOM . ATOM	181 O 182 CE			17.851 -39.071 -16.492 1.00 29.44 18.791 -37.992 -16.895 1.00 29.67	C
ATOM ATOM	183 .CC	PRO B 281	:	18.750 -37.057 -15.726 1.00 27.31 14.908 -39.668 -14.923 1.00 33.83	C N
ATOM ATOM	.185 N 186 CA			14.246 -40.496 -13.926 1.00 37.13 15.078 -41.776 -13.880 1.00 38.09	C
MOTA MOTA	187 C 188 O 189 CI	PHE B 282		15.357 -42.373 -14.921 1.00 38.33 12.818 -40.808 -14.372 1.00 38.38	C
ATOM .	189 CI 190 C	·		12.032 -41.606 -13.377 1.00 40.57	С

ATOM	101	CDI	OUE D	202	11 720 41 074 12 120 1 00 41	
	191	CD1			11.720 -41.074 -12.130 1.00 41	
ATOM	192	CD2	PHE B			1.65 C
ATOM	193.	CEI	PHE B	-		2.03 C
ATOM	194	CE2	PHE B	_		2.49 C
ATOM	195	CZ	PHE B			1.74 C
ATOM	196	N	GLN B			0.94 N
ATOM	197	CA	GLN B			0.77 C
MOTA	198	С	GLN B			9.70 C
ATOM	. 199	0	GLN B	288		9.79 0
ATOM	200	CB	GLN B	288	14.143 -45.158 -20.810 1.00 30	0.59 c
ATOM	201	CG	GLN B	288	13.473 -44.772 -22.109 1.00 29	9.73 C
MOTA	202	CD	GLN B	288	11.981 -44.971 -22.044 1.00 28	8.04 C
ATOM	203	OE 1	GLN B	288	11.294 -44.295 -21.279 1.00 29	9.59 0
ATOM	204	NE2	GLN B	288	11.468 -45.905 -22.838 1.00 2	6.98 N
ATOM	205	N	GLN B		15.378 -42.554 -19.857 1.00 2	9.38 N
ATOM	206	CA	GLN B			9.46 C
ATOM	207	С	GLN B		16.906 -40.613 -20.005 1.00 2	
ATOM	208	Ō	GLN B			9.12 0
ATOM	209	СB	GLN B			9.25 C
ATOM	210	CG	GLN B			9.32 C
ATOM	211	CD	GLN B			9.84 C
ATOM	212		GLN B			9.52 0
ATOM	213		GLN B			8.95 N
ATOM	214	N	TYR E			8.95 N
ATOM	215	CA	TYR E			9.55 C
ATOM	216	C	TYR E		+ · · · ·	8.80 C
ATOM	217	Õ	TYR E			9.22 0
ATOM	218	СВ	TYR E			1.40 C
ATOM	219	CG	TYR E			3.37 C
ATOM	220	CD1	TYR E			4.57 C
ATOM	221		TYR E			4.90 C
ATOM	222	CE1	TYR E		•	5.97 C
ATOM	223	CE2				6.03 C
ATOM	224	CZ	TYR E			6.29 C
ATOM	225	ОН	TYR E			9.44 0
ATOM	226	N	ASN E		17.658 -40.779 -23.508 1.00 2	
ATOM	227	CA	ASN E			6.06 C
ATOM	228	C	ASN E			5.99 C
ATOM	229	0	ASN E			6.18 0
ATOM	230	CB	ASN E			4.78 C
ATOM	231	CG	ASN E			4.46 C
ATOM	232		ASN E		14.842 -41.641 -24.798 1.00 2	
ATOM	233		ASN E			3.83 N
ATOM	234	N	ALA E			5.66 N
ATOM	235	CA	ALA E		18.926 -36.822 -22.979 1.00 2	
ATOM	236	С	ALA E	3 293	20.346 -36.800 -23.521 1.00 2	5.67 C
ATOM	237	0	ALA E		20.855 -35.743 -23.902 1.00 2	
ATOM	238	CB		3 293	18.940 -36.422 -21.506 1.00 2	
MOTA	239	N		3 296	21.375 -34.703 -26.688 1.00 2	
ATOM	240	CA	LEU E		21.521 -33.265 -26.481 1.00 2	
ATOM	241	С	LEU E		22.784 -32.935 -25.688 1.00 2	26.07 C
ATOM	242	Ō		3 296	23.435 -31.917 -25.944 1.00 2	
ATOM	243	ČВ	LEU I		20.283 -32.685 -25.779 1.00 2	
ATOM	244	ĊĞ	LEU E		19.066 -32.458 -26.679 1.00 2	
ATOM	245		LEU I		17.968 -31.718 -25.911 1.00 2	23.56 C
ATOM	246		LEU I		19.496 -31.630 -27.893 1.00 2	
ATOM	247	N N	ALA I		23.066 -29.504 -23.507 1.00 2	
ATOM	248	CA	ALA I		22.516 -29.770 -22.186 1.00 2	
					23.503 -30.507 -21.288 1.00 2	
ATOM	249	С	ALA I		24.561 -30.948 -21.739 1.00 2	
ATOM	250	0	ALA I			
ATOM	251	СВ	ALA			
MOTA	252	N	LYS		23.156 -30.613 -20.009 1.00 2	
MOTA	253	CA	LYS		23.979 -31.340 -19.048 1.00 2	
ATOM	254	C ·	LYS		23.083 -32.319 -18.302 1.00 2	
ATOM	255	0	LYS		22.015 -31.948 -17.802 1.00 2	
MOTA	256	СВ	LYS	B 303	24.632 -30.401 -18.036 1.00 2	27.85 C

MOTA	257	CG	LYS B	303	25.466	-31.146	-16.986		29.37	С
ATOM	258	CD.	LYS B	303	26.150		-16.025	1.00	32.41	С
ATOM	259	CE .	LYS B	303	27.083	-30.912	-15.056	1.00	33.22	С
MOTA	260	NZ	LYS B	303	27.827	-29.952		1.00	33.62	N
ATOM	261	N	ILE B	304	23.520	-33.570	-18.234	1.00	25.65	N
ATOM	262	CA	ILE B	304	22.753	-34.598	-17.550	1.00	27.17	С
ATOM	263	С.	ILE B	304	23.308	-34.855	-16.160	1.00	27.00	C
ATOM	264	0	ILE B	304	24.511	-35.012	-15.986	1.00	27.46	0
ATOM	265	СВ	ILE B	304	22.786	-35.946	-18.316	1.00	27.06	С
ATOM	266	CG1	ILE B	304	22.242	-35.769	-19.733	1.00	27.61	С
ATOM	267	CG2	ILE B	304	21.977	-36.996	-17.555	1.00	28.49	С
MOTA	268	CD1	ILE B	304	22.380	-37.009	-20.599	1.00	27.05	C
MOTA	269	N	ILE B	305	22.428	-34.869		1.00	27.22	N
ATOM	270	CA	ILE B	305	22.843	-35.178	-13.813	1.00	29.01	С
ATOM	271	C	ILE B	305	21.934	-36.302	-13.351	1.00	29.64	C
ATOM	272	ō	ILE B	305	20.806	-36.067	-12.932	1.00	29.25	0
ATOM	273	СВ	ILE B	305	22.713	-33.977	-12.858	1.00	28.91	С
ATOM	274	CG1	ILE B	305	23.660	-32.855	-13.299	1.00	29.51	С
ATOM	275	CG2	ILE B	305	23.063	-34.416	-11.432	1.00		С
ATOM	276	CD1	ILE E		23.674	-31.653	-12.367	1.00	29.43	С
	TER					*				



## TABLE 5 ATOMIC COORDINATES OF ACCEPTOR BINDING SITE

													-
	REMARK	4 1	MIIR	COMPT	TES	เมาาย	FORMAT V	2 0	1.1	-MAY-200	10		
	ATOM											00.55	
		1	N	MET	В	12				-33.817	1.00	23.68	N
	ATOM	2	CA	MET	В	12	-0.523	-49.	707	-32.613	1.00	24.54	С
	ATOM	3	С	MET	В	12	0.361	-48.	840	-31.720	1.00	25.31	Ċ
	ATOM	4	0	MET	В	12				-32.006		23.88	
													0
	ATOM	5	CB	MET	В	12				-32.971	1.00	24.28	С
	ATOM	6	CG	MET	В	12	-0.402	-51.	726	-34.188	1.00	25.19	С
	ATOM	7	SD	MET	В	12	0 399	-53	284	-34.669		26.54	S
	ATOM	8											
			CE	MET	В	12				-35.289		22.99	С
	ATOM	9	N	ALA	В	13	-0.224	-48.	292	-30.657	1.00	27.08	N
	ATOM	10	CA	ALA	В	13	0.508	-47.	410	-29.752	1.00	29.43	С
	ATOM	11	С	ALA	В	13				-28.436		31.80	Ċ
	ATOM	12	Ö										
				ALA	В	13				-28.352	1.00	32.16	0
	ATOM	13	CB	ALA	В	13				-30.429	1.00	28.82	С
	ATOM	14	N	GLY	В	14	0.150	-47.	934	-27.405	1.00	32.46	N
	ATOM	15	CA	GLY	В	14	-0.513	-47.	804	-26.120	1.00	33.82	C
	ATOM	16	C	GLY	В	14	-0.107						
												34.82	С
	ATOM	17	0	GLY	В	14				-25.479	1.00	35.47	0
	ATOM	18	N	${ t GLY}$	В	15	-0.986	-46.	188	-24.385	1.00	35.56	N
	ATOM	19	CA.	GLY	В	15	-0.700				1.00	36.08	С
	ATOM .	20	C	GLY	В	15				-22.683	1.00		
													С
	ATOM	21	0		В	15				-22.426	1.00	36.03	0
	ATOM	22	N	THR	В	16	0.755	-46.	488	-22.240	1.00	36.65	N
	ATOM	23	CA	THR	В	16	1.920	-46.	787	-21.421	1.00	38.51	С
	ATOM	24	C	THR		16	3.158			-22.264		38.35	Č
	ATOM	25	0	THR	В	16	3.191			-23.460		39.90	0
	ATOM	26	CB	THR	В	16	1.926	-48.	258	-20.974	1.00	38.51	С
	MOTA	27	OG1	THR	В	16	0.686	-48.	558	-20.321	1.00	38.39	0
	ATOM	28	CG2		В	16				-20.005	1.00		č
								-					
	ATOM	29	N	GLY	В	17				-21.649	1.00		N
	MOTA	30	CA	GLY	В	17	5.367	-45.	567	-22.392	1.00	36.57	С
	MOTA	31	С	GLY	В	17	5.161	-44.	303	-23.211	1.00	35.56	C
	ATOM	32	0	GLY	В	17	6.079	-43.	843	-23.890	1.00	35.03	0
	ATOM	33	N	GLY	В	18				-23.150		33.83	N
	ATOM	34	CA	GLY	В	18				-23.872	1.00		С
	ATOM	35	С	${ t GLY}$	В	18	3.825	-42.	593	-25.378	1.00	33.12	С
	ATOM	36	0	GLY	В	18	4.345	-41.	650	-25.984	1.00	35.38	0
	ATOM	37	N	HIS	В	19	3.416	-43.	699	-25.988	1.00	30.26	N
	ATOM	38	CA	HIS	В	19	3.548			-27.435		28.22	
													C
	ATOM	39	C	HIS	В	19				-28.144		27.91	С
	ATOM	40	0	HIS	В	19	2.300	-43.	049	-29.337	1.00	26.91	0
	ATOM	41	CB	HIS	В	19	3,772	-45.	349	-27.779	1.00	25.81	С
	ATOM	42	CG	HIS	В	19	4.957			-27.094		25.35	Č
	ATOM	43		HIS	В	19	4.845			-26.217		24.57	И
•	MOTA	44		HIS	В	19	6.281		-	-27.184	1.00	24.18	С
	MOTA	45	CE1	HIS	В	19	6.046	-47.	380	-25.798	1.00	23.03	С
	ATOM	46	NE2	HIS	В	19	6.936	-46.	589	-26.369	1.00	25.51	N
	ATOM	47	N		В	20				-27.402		27.65	
													N
	ATOM	48	CA	VAL		20				-27.965		27.77	Ċ
	ATOM	49	. C	VAL	В	20	-0.140	-41.	452	-28.470	1.00	27.57.	C
	ATOM	50	0	VAL	В	20	-0.771	-41.	172	-29.486	1.00	27.12	0
	ATOM	51	CB	VAL		20				-26.942		28.57	Č
													-
	MOTA	52		VAL		20				-25.787		30.03	С
	ATOM	53	CG2	VAL	В	20	-2.602	-42.	873	-27.631	1.00	26.82	С
	ATOM	54	N	LEU	В	40	-5.323	-50.	.004	-32.549	1.00	25.21	N
	ATOM	55	CA	LEU		40				-32.026		24.71	C
	ATOM	56	C	LEU		40				-30.655		23.33	C
	ATOM	57	0	LEU	В	40	-3.387	-50.	. 824	-30.563	1.00	23.43	0
	ATOM	58	СВ	LEU	В	40	-4.326	-52	. 221	-32.952	1.00	25.21	С
	MOTA	59	CG	LEU		40				-32.868		26.95	Č
	ATOM	60		LEU		40	-3.037			-32.571		27.63	С
	ATOM	61	CD2	LEU	В	40	-5.421	-54	. 179	-31.817	1.00	26.69	C
	ATOM	62	N	GLU	В	47	-4.976	-45	. 941	-23.678		32.85	N
										-25.029			
	MOTA	63	CA	GLU	D	47	-5.458	- 4 )		-23.029	1.00	31.79	С

- 13

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	64 C GLU B 47 65 O GLU B 47 66 CB GLU B 47 67 CG GLU B 47 68 CD GLU B 47 69 OE1 GLU B 47 70 OE2 GLU B 47 71 N ILE B 63 72 CA ILE B 63 73 C ILE B 63 74 O ILE B 63 75 CB ILE B 63 76 CG1 ILE B 63 77 CG2 ILE B 63 78 CD1 ILE B 63 79 N ARG B 67 80 CA ARG B 67 81 C ARG B 67 82 O ARG B 67 83 CB ARG B 67 84 CG ARG B 67 85 CD ARG B 67 86 NE ARG B 67 87 CZ ARG B 67 87 CZ ARG B 67 88 NH ARG B 67	-7.626 -45.476 -26.055 -4.624 -46.402 -26.080 -4.755 -47.922 -26.051 -3.793 -48.597 -25.082 -3.188 -47.895 -24.247 -3.649 -49.840 -25.156	1.00 31.81 C 1.00 30.62 C 1.00 29.85 C 1.00 29.78 C 1.00 29.01 O 1.00 30.07 N 1.00 31.38 C 1.00 33.08 C 1.00 33.21 O 1.00 30.06 C 1.00 29.94 C 1.00 30.41 C 1.00 30.41 C 1.00 29.62 C 1.00 31.54 N 1.00 30.90 C 1.00 29.99 C 1.00 32.28 C 1.00 32.28 C 1.00 34.65 C 1.00 38.28 N 1.00 39.05 C 1.00 39.05 C
MOTA MOTA	89 NH2 ARG B 67 90 N GLY B 68	-2.434 -54.935 -21.487 6.014 -57.321 -21.165	1.00 39.52 N 1.00 27.75 N
ATOM ATOM	91 CA GLY B 68 92 C GLY B 68	7.380 -57.427 -20.685 8.166 -58.579 -21.280	1.00 26.79 C 1.00 25.41 C
ATOM	93 O GLY B 68	9.326 -58.779 -20.943	1.00 26.04 O
ATOM ATOM	94 N GLY B 102 95 CA GLY B 102	3.556 -48.986 -35.936 3.796 -49.357 -34.549	1.00 20.96 N 1.00 19.23 C
MOTA	96 C GLY B 102	4.655 -48.282 -33.918	1.00 18.45 C
ATOM ATOM	97 O GLY B 102 98 N MET B 103	5.765 -48.016 -34.381 4.155 -47.660 -32.857	1.00 18.70 O 1.00 18.01 N
ATOM	99 CA MET B 103	4.892 -46.597 -32.191	1.00 18.93 C
ATOM ATOM	100 C MET B 103 101 O MET B 103	5.612 -47.128 -30.957 6.134 -46.357 -30.158	1.00 18.98 C 1.00 17.96 O
ATOM	102 CB MET B 103	3.928 -45.477 -31.781	1.00 20.02 C
ATOM ATOM	103 CG MET B 103 104 SD MET B 103	3.121 -44.888 -32.944 4.212 -44.135 -34.157	1.00 21.61 C 1.00 23.45 S
ATOM	105 CE MET B 103	4.718 -42.680 -33.271	1.00 21.40 C
ATOM ATOM	106 N GLY B 104 107 CA GLY B 104	5.640 -48.450 -30.827 6.275 -49.080 -29.686	1.00 21.56 N 1.00 21.89 C
ATOM	107 CA GLI B 104	5.192 -49.614 -28.764	1.00 23.28 C
ATOM ATOM	109 O GLY B 104 110 N GLY B 105	4.009 -49.353 -28.980 5.583 -50.364 -27.741	1.00 22.50 O 1.00 23.01 N
ATOM	111 CA GLY B 105	4.593 -50.905 -26.827	1.00 23.54 C
ATOM ATOM	112 C GLY B 105	4.358 -52.380 -27.078 4.449 -52.844 -28.214	1.00 23.17 C 1.00 22.69 O
ATOM	113 O GLY B 105 114 N TYR B 106	4.018 -53.118 -26.026	1.00 22.87 N
MOTA	115 CA TYR B 106	3.818 -54.554 -26.159 2.719 -55.018 -27.100	1.00 22.37 C 1.00 20.52 C
ATOM ATOM	116 C TYR B 106 117 O TYR B 106	2.867 -56:052 -27.746	1.00 20.50 O
ATOM	118 CB TYR B 106	3.632 -55.181 -24.774 4.864 -55.008 -23.929	1.00 25.08 C 1.00 28.19 C
ATOM ATOM	119 CG TYR B 106 120 CD1 TYR B 106	4.869 -54.153 -22.830	1.00 31.96 C
MOTA	121 CD2 TYR B 106	6.058 -55.631 -24.282	1.00·31.27 C
ATOM ATOM	122 CE1 TYR B 106 123 CE2 TYR B 106	6.043 -53.915 -22.108 7.234 -55.400 -23.569	1.00 32.27 C
ATOM	124 CZ TYR B 106	7.219 -54.541 -22.487	1.00 33.19 C
ATOM ATOM	125 OH TYR B 106 126 N VAL B 107	8.388 -54.291 -21.802 1.628 -54.270 -27.205	1.00 35.95 O 1.00 19.06 N
MOTA	127 CA VAL B 107	0.557 -54:694 -28.099	1.00 18.06 C
MOTA	128 C VAL B 107 129 O VAL B 107	1.015 -54.743 -29.559 0.502 -55.536 -30.346	1.00 17.45 C 1.00 16.99 O
	5 7.10 5 107		· = -

ATOM	130	CB	VAL B 1	.07	-0.690	-53.774	-27 978	1.00	20.95	_
ATOM	131	CG1	VAL B 1	0.7		-52.407			21.39	C
ATOM					-0.407	- 32 . 40 7	-20.303			С
	132	CGZ		.07	-1.879	-54.433	-28.658	1.00	21.30	С
ATOM	133	N	SER B 1	.08	1.991	-53.916	-29.918	1.00	17.96	N
MOTA	134	CA	SER B 1	.08	2.488		-31.290			
ATOM				-					19.67	С
	135	С	SER B 1		3.197	-55.187		1.00	20.38	С
ATOM	136	0	SER B 1	.08	3.385	-55.449	-32.884	1.00	21.25	Ö
ATOM	137	СВ	SER B 1		3.424					
							-31.508		19.56	С
ATOM	138	OG		.08	4.666	-52.824	-30.837	1.00	19.63	0
ATOM	139	N	GLY B 1	.09	3,595	-55.995	-30.710	1.00	19.59	N
MOTA	140	CA	GLY B 1		4.251		-31.023			
									20.03	С
ATOM	141	С	GLY B 1	.09	3.311	-58.170	-31.792	1.00	19.61	C
ATOM	142	Ο.	GLY B 1	.09	3.579	-58.517	-32.940	1.00	19.24	0
ATOM	143	N	PRO B 1	10	2 206	-58.606	-31 173		19.20	
ATOM	144	CA								N
				.10		-59.478		1.00	18.99	С
ATOM	145	С	PRO B 1	.10	0.651	-58.761	-33.075	1.00	19.22	С
ATOM	146	0	PRO B 1	.10	0.406	-59.371	-34.116	1.00	17.13	0
ATOM	147	СВ	PRO B 1			-59.737				
									20.41	С
ATOM	148	CG		.10	0.998	-59.720	-29.515	1.00	19.81	C
ATOM	149	CD	PRO B 1	.10	1.914	-58.528	-29.729	1.00	19.94	С
MOTA	150	N	HIS B 1			-46.638			21.40	
ATOM	151									N
		CA		.25		-45.413		1.00	21.42	С
ATOM	152	C .	HIS B 1	.25	9.196	-45.642	-33.519	1.00	21.70	С
ATOM	153	0	HIS B 1	25	8.378		-32.725		19.81	Ō
ATOM	154	СВ								
						-44.218			21.57	С
ATOM	155	CG	HIS B 1	.25	8.432	-42.948	-34.511	1.00	23.73	C
ATOM	156	ND1	HIS B 1	.25	9.274	-42.127	-35.236	1 00	26.23	N
ATOM	157			.25		-42.368				
									22.15	С
ATOM	158		HIS B 1	.25	9.631	-41.095	-34.490	1.00	24.20	С
ATOM	159	NE2	HIS B 1	.25	9.054	-41.218	-33.307	1.00	26.07	N
ATOM	160	N	GLU B 1	.26	10 444	-45.332	-33 186	1.00	21.20	N
ATOM	161	CA		.26		-45.452				
									22.15	С
MOTA	162	C	GLU B 1		11.205	-44.027	~31.326	1.00	21.93	С
MOTA	163	0	GLU B 1	.26	12.016	-43.300	-31.908	1.00	21.33	0
MOTA	164	СВ	GLU B 1	26	12.252		-31.790		21.99	
ATOM	165									C.
		CG		.26		-46.206			22.04	C
ATOM	166	CD	GLU B 1	.26	12.119	-46.824	-29.338	1.00	21.43	С
ATOM	167	OE1	GLU B 1	.26	11.767	-48.014	-29.471		21.92	Ō
ATOM	168	OF 2		26		-46.124				
									21.08	0
ATOM	169	N		.27		-43.624		1.00	22.62	N
ATOM	170	CA	GLN B 1	.27	10.682	-42.270	-29.735	1.00	22.81	С
ATOM	171	С	GLN B 1	.27	11.874	-42.087	-28.809	1 00	22.39	C
ATOM	172	Ō		27		-40.976				
									22.43	0
ATOM	173	СВ		.27	9.414	-41.814			23.56	С.
ATOM	174	CG	GLN B 1	.27	8.147	-41.783	-29.830	1.00	24.46	С
ATOM	175	CD	GLN B 1	27		-43.041			25.85	Č
ATOM	1,76		GLN B 1	27						
						-43.366			23.78	0
ATOM	177	NE2	GLN B 1	27	7.119	-43.758	-30.797	1.00	24.91	N
ATOM	178	N	ASN B 1	28	12.314	-43.173	-28.177		22.35	N
MOTA	179	CA	ASN B 1	28		-43.097			22.96	
ATOM	180									C
		C	ASN B 1			-43.314			23.87	С
ATOM	181	0	ASN B 1		15.026	-43.856	-28.830		24.05	0
ATOM	182	CB	ASN B 1	28	13.136	-44.080	-26.064		22.85	C
ATOM	183	CG	ASN B 1			-43.919		1 00	23.25	
										C
ATOM	184		ASN B 1			-44.632			26.04	0
ATOM	185	ND2	ASN B 1	28	11.597	-42.975	-24.556	1.00	22.68	N
ATOM	186	N	GLY B 1			-49.814			24.52	N
ATOM	187	CA	GLY B 1							
						-50.532			24.05	С
MOTA	188	С	GLY B 1		12.150	-52.019	-26.831	1.00	23.35	С
MOTA	189	0	GLY B 1	32	12.582	-52.419	-27.904		22.89	0
ATOM	190	N	LEU B 1			-52.846			23.38	
										N
ATOM	191	CA	LEU B 1			~54.293			24.54	С
ATOM	192	С	LEU B 1		11.209	-54.833	-27.276	1.00	22.84	С
ATOM	193	0	LEU B 1	33		-55.619			21.86	Ō
ATOM	194	СB	LEU B 1			-54.996				
									25.48	C
ATOM	195	CG	LEU B 1	33	11.388	-56.527	-24.780	1.00	27.50	С

MOTA	196	CD1	LEU	В	133		12.840	-56.984	-24.866	1.00	28.69	(	С
MOTA	197	CD2		В	133			-57.059		1.00	28.04		Ċ
ATOM	198	N		_	134			-54.401		1.00	21.72		N
ATOM	199	CA	THR	В	134		9.202	-54.860		1.00	21.22		С
ATOM	200	C	THR	_	134		9.693	-54.326	-29.986	1.00	20.62		С
ATOM	201	ō		В	134		9.843	-55.091	-30.932	1.00	20.33		0
ATOM	202	СВ	THR	В	134		7.716	-54.509	-28.449	1.00	20.99		С
ATOM	203	OG1	THR	В	134		7.257	-55.075	-27.210	1.00	20.94		0
MOTA	204	CG2	THR	В	134		6.872		-29.600	1.00	20.64		С
ATOM	205	N	ASN	В	135			-53.021		1.00	21.24		N.
ATOM	206	CA	ASN	В	135		10.407	-52.419		1.00	20.50		С
MOTA	207	С	ASN	В	135		11.724		-31.767	1.00	20.78		С
MOTA	208	0	ASN	В	135		11.945	-53.290		1.00	20.41		0
ATOM	209	CB	ASN	В	135	*	10.637		-31.142		19.58		С
ATOM	210	CG	ASN	В	135		9.457		-31.597		19.93		С
ATOM	211	OD1	ASN	В	135		9.454		-31.390	_	21.78		0
ATOM	212	ND2	ASN	В	135		8.467				17.21		N.
ATOM	213	N	LEU	В	138		10.741			1.00	21.61		Ŋ
ATOM	214	CA	LEU	В	138		9.744			1.00	23.15		C
MOTA	215	С	LEU	В	138		10.384		-35.676	1.00	23.07		C
ATOM	216	Ó	LEU	В	138		9.958			1.00	22.68		0
ATOM	217	CB	LEU	В	138		8,618		-33.886	1.00	23.87		С
. ATOM .	218	CG	TEO	В	138		7.312		-34.664	1.00		,	C
ATOM	219	CD1	LEU	В	138	•	6.672			1.00		•	C
ATOM	220	CD2	LEU	В	138	•	6.383	-54.267	-33.851	1.00	25.90		С
	TER'								••				



# TABLE 6 ATOMIC COORDINATES OF MEMBRANE ASSOCIATION SITE

REMARK	4 1	MUR	COMPL	IES WITH	FORMAT V	. 2.0. 1	1-MAY-200	00		
ATOM	1	N	MET		-0.734	-48.902	22 017		22 (0	
									23.68	N
MOTA	2	CA	MET	B 12	-0.523	-49.707	-32.613	1.00	24.54	С
ATOM	3	С	MET	B 12	0.361	-48.840	-31720	1.00	25.31	C
MOTA	4	0	MET	B 12		-48.645			23.88	
ATOM	5									0
		CB		B 12		-51.019		1.00	24.28	С
MOTA	6	CG	MET	B 12	-0.402	-51.726	-34.188	1.00	25.19	С
ATOM	7	SD	MET	B 12	0.399	-53.284	-34.669	1 00	26.54	s
ATOM	8	CE		B 12		-52.691				
ATOM	9							1.00	22.99	С
		N		В 40		-50.004		1.00	25.21	N
ATOM	10	CA	LEU	B 40	-5.200	-51.364	-32.026	1.00	24.71	С
ATOM	11	С	LEU	B 40		-51.235		1.00	23.33	Ċ
ATOM	12	0		B 40		-50.824				
								1.00	23.43	0
ATOM	13	CB		B 40		-52.221		1.00	25.21	С
ATOM	14	CG	LEU	B 40	-4.416	-53.754	-32.868	1.00	26.95	С
ATOM	15	CD1	LEU	B 40	-3.037	-54.334	-32.571	1.00	27.63	. С
ATOM	16	CD2	LEU	B 40		-54.179		1.00	26.69	č
ATOM	17									
		Ŋ		B 61		-56.229		1.00	29.38	N
ATOM	18	CA [.]		B 61	-6.832	-57.616	-28.269	1.00	28.55	С
ATOM	19	С	ILE	B 61	~6.344	-57.855	-26.848	1.00	29.13	С
ATOM	20	0	ILE	B 61		-56.906			28.80	
MOTA	21									0
		CB		B 61		-57.923		1.00	28.48	C
ATOM	22	CG1	ILE	B 61	-4.422	-57.126	-28.892	1.00	26.70	С
ATOM	23	CG2	ILE	B 61	-6.123	-57.650	-30.694	1.00	27.65	С
ATOM	24	CD1	ILE	B 61		-57.615		1.00	27.03	Ċ
ATOM	25	N		B 62		-59.116				
								1.00	29.38	N
ATOM	26	CA		B 62		-59.416		1.00	30.76	С
ATOM	27	С	ARG	В 62	-4.274	-59.923	-25.156	1.00	29.32	С
MOTA	28	0	ARG	B 62	-3.933	-60.809	-25.934	1.00	28.65	0
ATOM	29	СВ		B 62		-60.447		1.00	32.36	
ATOM	30									C
		CG		B 62		-60.955		1.00	35.99	С
ATOM	31	CD	ARG	B 62		-59.859		1.00	37.86	С
ATOM	32	NE	ARG	B 62	-6.297	-58.718	-22.004	1.00	40.01	N
ATOM	33	CZ	ARG	B 62		-57.504		1.00	39.09	C
ATOM	34	NH1		B 62		-57.275				
								1.00	39.24	N
ATOM	35	NH2		B 62		-56.518		1.00	40.03	N
ATOM	36	N	ILE	B 63	-3.428	-59.342	-24.313	1.00	30.07	N
ATOM	37	CA	ILE	B 63	-2.036	-59.770	-24.231	1.00	31.38	С
ATOM	38	С	ILE	В 63		-59.981		1.00	33.08	
ATOM	39	Ö								C
				B 63		-59.872		1.00	33.21	0
ATOM	40	CB		В 63	-1.081	-58.745	-24.883	1.00	30.06	С
ATOM	41	CG1	ILE	B 63	-1.143	-57.411	-24.137	1.00	29.94	С
ATOM	42	CG2	ILE	B 63	-1.442	-58.567	-26.353	1.00	30.41	C
ATOM	43	CD1		В 63		-56.384		1.00		
ATOM	44	N	SER						29.62	С
						-60.284		1.00	35.38	N
ATOM	45	CA	SER	B 64	-2.356	-60.520	-20.505	1.00	37.51	С
ATOM	46	С	SER	B 64	-1.326	-61.622	-20.311	1.00	37.32	С
ATOM	47	0	SER			-62.682			37.86	Ö
ATOM	48	СВ	SER							
						-60.912		1.00		С
ATOM	49	OG	SER			-59.823			42.89	0
ATOM	50	N	GLY	B 65	-0.356	-61.370	-19.441	1.00	37.81	N
ATOM	51	CA	GLY 1	B 65		-62.355		1.00	37.13	C
ATOM	52	C	GLY			-62.283		1.00		~
								-	36.76	C
ATOM	53	0	GLY !			-62.889			37.57	0
ATOM	54	N	LEU	B 66	1.577	-61.539	-21.307	1.00	34.63	N
ATOM	55	CA	LEU	B 66	2.591	-61.413	-22.355	1.00	33.17	С
ATOM	56	С	LEU			-60.133		1.00	32.72	Č
ATOM	57	0	LEU			-60.002		1.00	33.13	0
ATOM	58	CB	LEU		1.936	-61.470	-23.735	1.00	32.08	С
ATOM	59	CG	LEU	B 66	1.162	-62.747	-24.061	1.00	32.52	С
ATOM	60	CD1	LEU			-62.626			31.38	С
-	-					·		_ , _ ,		_

0200000020222000

ATOM ATOM ATOM	61 62 63	N	LEU B ARG B ARG B	66 67 67		2.093 2.953 3.671		-21.440	1.00 31.67 1.00 31.54 1.00 30.90
ATOM	64		ARG B	67		5.071	-58.142	-20.713	1.00 29.99
ATOM	65		ARG B	67		5.294	-59.034 -56.984	-19.889 -20.363	1.00 28.67 1.00 32.28
MOTA MOTA	66 67		ARG B	67 67				-20.913	1.00 32.20
MOTA	68		ARG B	67			-55.440		1.00 36.69
MOTA MOTA	69 70		ARG B	67 67		-0.259 -1.425	-54.889 -55.519		1.00 38.28 1.00 39.05
ATOM	71	NHl	ARG B	67		-1.583	-56.734	-20.341	1.00 39.61
ATOM	72 73		ARG B GLY B	67		-2.434 6.014	-54.935 -57.321	-21.487	1.00 39.52 1.00 27.75
ATOM ATOM	7.3 7.4		GLY B	68 68		7.380	-57.427	-20.685	1.00 26.79
ATOM	75		GLY B	68			-58.579 -58.779		1.00 25.41 1.00 26.04
ATOM ATOM	. 76		GLY B LYS B	68 69			-59.342		1.00 24.55
MOTA	78	CA	LYS B	69		8.238	-60.463	-22.796	1.00 23.93
ATOM ATOM	79 80		LYS B	69 69			-60.062 -59.404		1.00 23.32 1.00 21.96
ATOM	8 1	CB	LYS B	69		7.284	-61.641	-23.033	1.00 24.12
ATOM	82 83		LYS B	69 69			-62.360 -63.553		1.00 25.08 1.00 25.44
ATOM ATOM	: 84		LYS B	69		5.357	-64.358		1.00 28.31
ATOM	85		LYS B	69		6.468	-64.877 -60.470		1.00 29.71 1.00 22.48
ATOM OTA	8 6		GLY B GLY B	70 70			-60.470		1.00 22.46
MOTA	. 88	C,	GLY B	70		10.308	-61.337	-26.588	1.00 22.17
ATOM ATOM	90		GLY B ILE B	7.0 7.1			-62.183 -61.373		1.00 21.62 1.00 21.85
MOTA	91	L CA	ILE B	71		10.357	-62.386	-28.762	1.00 23.55
ATOM ATOM	· 92	•	ILE B	71 71		10.616 9.775		-28.359 -28.592	1.00 23.88 1.00 21.66
ATOM	. 94	1 CB	ILE B	71		10.926	-62.142	-30.181	1.00 23.52
MOTA ATOM	99			71 71		10.264	-63.096 -62.375		1.00 24.18 1.00 25.96
ATOM	9	7 ·CD1	ILE B	71		8.745	-62.981	-31:263	1.00 25.73
ATOM ATOM	91		LYS B LYS B	72 72	٠.	11.764 12.038		-27.751 -27.343	1.00 23.82 1.00 24.92
ATOM	10	D .C	LYS B	72		11.068	-65.925	-26.245	1.00 23.73
ATOM .	10 10		LYS B	72 72	•	10.592		2 -26.245 1 -26.875	1.00 24.08 1.00 26.86
ATOM .			LYS B				-65.590	-28.019	1.00 31.29
ATOM			LYS B	72		15.925		L -27.518 5 -28:671	1.00 36.00 1.00 38.82
ATOM .	10 10		LYS B LYS B	72 72	:	18.342	-65,957	7 -28.192	1.00 38.82
MOTA	10	7 .N·	ALA B	73		10.765	-65.016	5, -25.322	1.00 21.62 1.00 21.18
ATOM :	10 10	_	ALA B ALA B	73	٠.			5 -24.233 4 -24.771	1.00 21.16
MOTA	11	0 0	ALÁ B	73		7.619	-66.250	0, -24.267	
ATOM	. 11 11		ALA B LEU B	73				5 -23.187 3 -25.791	1.00 22.25 1.00 20.23
ATOM	. 11	3 CA	LEU B	74		6.745	-64.76	2 -26.387	1.00 19.36
MOTA ,	. 11	4 C 5 O	LEU B	74 74		6.549	9 -66 110 9 -66 77	0 -27.069 9 -26.863	1.00 19.37
ATOM	11		LEU B	74		6.540	-63.64	3 -27.417	1.00 18:42
. ATOM			LEU B					8 -26.884 7 -28.039	1.00 18.80
· ATOM	· 11		L LEU B LEU B			5.10	9 -62.07	1 -26.104	1.00 19.45
MOTA .	12	0 N ·	ILE B	75	•	7.52	0 -66.50	7 -27.883	1.00 20.59
MOTA MOTA	12 12		ILE B		-	7.48	4 -61.16 8 -68.94	8 -28.601 2 -27.624	1.00 21.18 1.00 21.20
ATOM	12	3 0	ILE B	75	· .	7.12	5 -70.06	3 - 27.979	1.00 21.59
ATOM		4 : CB	ILE B					6 -29.641 7 -30.540	
ATOM ATOM	· 12		2 ILE 8					8 -30.527	

ATOM	127	CD1	ILE B	75	7.304 -66.442 -31.327 1.00 28.48	
ATOM	128	N	ALA B			С
ATOM				76	7.940 -68.680 -26.399 1.00 20.49	Ν
	129	CA	ALA B	76	7.996 -69.726 -25.374 1.00 21.72	C
ATOM	130	С	ALA B	76	6.624 -69.904 -24.732 1.00 21.54	
ATOM	131	0	ALA B	76	6 441	С
ATOM	132	ČВ				0
		-	ALA B	76	9.026 -69.372 -24.305 1.00 21.92	С
MOTA	133	N	ALA B	77	5.668 -69.066 -25.145 1.00 20.61	N
ATOM	134	CA	ALA B	77	4.289 -69.121 -24.655 1.00 21.07	
ATOM	135	С	ALA B	77	3 303 60 000 07 0-1	С
ATOM	136	ō				С
			ALA B	77	2.567 -68.430 -26.199 1.00 21.93	0
ATOM	137	CB	ALA B	77	3.937 -67.830 -23.924 1.00 20.10	С
ATOM	138	N	PRO B	78	3.507 -70.446 -26.564 1.00 22.38	N
ATOM	139	CA	PRO B	78	2.772 -70.846 -27.771 1.00 20.95	
MOTA	140	C	PRO B	78		C
ATOM					1.278 -70.535 -27.813 1.00 21.19	С
	141	0	PRO B	78	0.789 -69.939 -28.776 1.00 19.68	0
ATOM	142	СВ	PRO B	78		C
ATOM	143	CG	PRO B	78		C
ATOM	144	CD	PRO B	78	4 23 2 3 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	
ATOM	145	N	LEU B	79	0.544 70.061 04.55	С
						N
MOTA	146	CA	LEU B	79	-0.896 -70.728 -26.783 1.00 21.32	С
MOTA	147	C	LEU B	79		С
MOTA	148	0	LEÚ B	79	0 105 60 000	
ATOM	149	CB .	LEU B	79	1 550 71 175	0
ATOM					1 200 000 000	С
	150	CG	LEU B	79	-1.397 -72.988 -25.617 1.00 22.40	С
ATOM	151	CD1	LEU B	79		С
MOTA	152	CD2	LEU B	79	1 120 20 20 20 20 20 20 20 20 20 20 20 20 2	Č
ATOM	153	N	ARG B	80		
ATOM	154	CA	ARG B			N
				80		C
MOTA	155	С	ARG B	80	-0.526 -66.233 -26.790 1.00 21.29	С
ATOM	156	0	ARG B	80	1 070 66 054	0
ATOM	157	CB	ARG B	80		
ATOM	158	CG	ARG B	80	1 000	C
ATOM						С
	159	CD /		80		С
ATOM	160	NE	ARG B	-80	0.581 -67.556 -21.610 1.00 24.59	Ν
ATOM	161	CZ	ARG B	Ω8		C
ATOM	162	NH1	ARG B	80		N
ATOM	163	NH2	ARG B	80		
ATOM	164					N
		N	ILE B	81	0.683 -66.448 -27.303 1.00 19.29	N
MOTA	165	CA	ILE B	81	1.113 -65.621 -28.421 1.00 19.47	С
ATOM	166	С	ILE B	81		С
ATOM	167	0	ILE B	81		ŏ
ATOM	168	СВ	ILE B	81	0 400 45 500	
MOTA	169	CG1		81		С
						С
MOTA	170	CG2	ILE B	81	2.949 -67.200 -29.206 1.00 17.33	С
ATOM	171	CD1	ILE B	81		С
MOTA	172	N	PHE B	82		N
ATOM	173	CA	PHE B	82		
ATOM	174	C	PHE B			С
				82		С
ATOM	175	0	PHE B	82	-2.777 -66.444 -31.970 1.00 19.64	0
ATOM	176	CB	PHE B	82		Ç
ATOM	177	CG	PHE B	82		Č
MOTA	178	CD1	PHE B	82		0
ATOM	179					С
		CD2		82	-3.154 -69.898 -32.289 1.00 21.11	С
MOTA	180	CEl	PHE B	82	-1.872 -70.002 -34.753 1.00 21.20	С
ATOM	181	CE2	PHE B	82		С
ATOM	182	CZ	PHE B	82		
ATOM	183	N	ASN B			С
				83		Ν
MOTA	184	CA	ASN B	83	-4.150 -66.332 -29.577 1.00 20.90	С
MOTA	185	С	ASN B	83	-4.178 -64.821 -29.812 1.00 20.83	С
MOTA	186	0	ASN B	83		ō
ATOM	187	СВ	ASN B	83		
						С
ATOM	188	CG	ASN B	83		С
ATOM	189	OD1	ASN B	83	-6.505 -65.374 -27.229 1.00 25.14	0
ATOM	190	ND2	ASN B	83		N
ATOM	191	N	ALA B	84		
						N
ATOM	192	CA	ALA B	8 4	-3.177 -62.647 -29.484 1.00 19.30	С

	ATOM	19	3 C	: ,	ALA .	В	84		_	2.967	7 .	-62.3	380	-30.98		1.00			С
	ATOM	19	-		ALA		84							-31.55		1.00 1.00			0
	ATOM ATOM	19 19	_		ALA TRP		84 85							-28.66 -31.60	_	1.00			C N
	MOTA	19			TRP		85		-	1.820	) .	-63.1	111	-33.03	2	1.00	20.56	5	C.
	MOTA	19		•	TRP		85							-33.86		1.00			С
	ATOM ATOM	19 20			TRP · TRP		85 85							-34.85 -33.39	-	1.00 1.00			0.0
	ATOM	20			TRP		85							-34.85		1.00			C
	ATOM	20			TRP		85							-35.54		1.00			С
	MOTA ATOM	20 20			TRP TRP		85 85				-			-35.78 -36.84		1.00			C N
	ATOM-	20			TRP		85							-37.02		1.00			C
	ATOM	20			TRP		85							-35,69		1.00			C
	ATOM ATOM	20 20			TRP TRP		.85 .85							-38.16 -36.82		1.00			C
	ATOM	20			TRP -		85		-	0.67	1	-66.1	875	-38.04	15	1.00	25.15	5	С
	ATOM	. 21			ARG		86							-33.46 -34.16		1.00			N C
	ATOM ATOM	21			ARG ARG		. 86 86	•						-34.10		1.00			C
	MOTA	. 21	.3 .0		ARG		86		_	6.89	0	-63.	195	-34.94	2	1.00	21.3	7	0
	ATOM :	21			ARG		86							-33.62 -34.02		1.00			C
	ATOM ATOM	21			ÁRG ARG		86 86.							-34.02			29.6		C
	ATOM	21	.7 .1		ARG		86			6.62	б	-68.	477	-35.42	22	1.00	31.4	5	N
	ATOM -	21			ARG ARG		86, 86							-36.50 $-37.69$			31.3		C N
	ATOM	22			ARG.		86:							-36.40		1.00	31.3		N
	ATOM	22	21 8		GLN		87							-32.82			22.9		N
٠	ATOM .				GLN GLN		-87 -87							-32.56 -33.45			24.0		. C
	ATOM.	22	24 (	э.	GLN	В.	.87		-	7.61	3	-60.	012	-34.0	77	1.00	24.0	2	0
	MOTA MOTA		25 ( 26 (		GLN GLN		.87 87							-31.09			24.3		C
	MOTA			CG. CD	GLN		87							-28.72		1.00	28.8		Ċ.
	ATOM .	. 22	28 (		GLN		.87							-27.90		1.00	33.2		0
	ATOM ATOM		-		GLN ALA		87 88							-28.3° -33.5°		1.00	29.9 23.3		N
	ATOM				ALA				-	-4.99	6	-59.	183.	-34.3	55	1.00	23.7	8	С
	ATOM				ALA		88							-35.83 -36.5			24.7		C 0
•	MOTA .				ALA ALA		88 88							-34.1			23.3		c
	MOTA	2	35	Ņ	ARG	В.	89 .		-	-5.03	8	-60.	735	-36,.2	44		24.2		Ŋ
	ATOM ·				ARG ARG		89 89							-37.6	36 13	1.00	24.9		C C
	ATOM,			0.	ARG		89							-39.1			24.2		0
	ATOM .			CB	ARG		-89							-37.8			25.1		C
	ATOM ATOM			CG CD	ARG ARG		89 89							-38.3 -38.5			24.5		C
	ATOM		42	NE.	ARG		89			-3.80	9	-64.	901	-39,6	41	1.00	. 24.9	3	N
				CZ	ARG		89			-3.32				-40.8 -41.1		1.00	25.9		C N
	ATOM				ARG ARG		89 89	. ,						-41.8			26.3		N
	ATOM	2	46	N	GLY	В	105.			5.58	33	-50.	364	-27.7	41	1.00	23.0	1	N
	MOTA MOTA			CA . C	GLY GLY							-50. -52.		-26.8 -27.0			23.5		C
	MOTA		_	Ö	GLY					4.44	19	-52	. 844	-28.2	14		. 22.6		0
	ATOM	. 2	50	N	TYR	В	106			4.01	8 1	-53	.118	-26.0	26		22.8		N
•	ATOM ATOM			CA C			.106. 106		•			-54. -55.				1.00	22.3		. C
	ATOM			Õ			.106-			2.88	57	-56	.052	-27.7	46	1.00	20.5	50	- 0
	MOTA	_ 2	54	СВ	TYR	В	.106					-55					25.0		C
	ATOM .	2		.CG .CD1			106 106			4.86	54 69	55 - 54	. 008 . 153	-23.9 -22.8	30	1.00	28.1 31.9		C
٠	ATOM .				TYR					6.09	5'8	-55	.631	-24.2	82	1.00	31.2	27	C
	ATOM	2	58	CEl	TYR	В	106			6.0	43	-53	.915	-22.1	.08	1.00	33.	13	С

ATOM	259	CE2	TYR	В 10	5 7 234	-55.400	-23.569	1.00 32	27
ATOM	260	CZ	TYR		7.219	-54.541	-23.303	1.00 32	•
ATOM	261	ОН	TYR		6 8.388			1.00 35	
MOTA	262	N	VAL					1.00 19	
ATOM	263	CA	VAL	B 10			-28.099		• •
ATOM	264	C	VAL	B 10				1.00 18	
ATOM	265	Õ	VAL	B 10		-55.536	-29.559	1.00 17	
ATOM	266	СВ	VAL	B 10		-53.774	-30.346	1.00 16	
MOTA	267		VAL	B 10				1.00 20	
ATOM	268		VAL			-54.433	-28.589	1.00 21	
ATOM	269	N		B 10	1.991			1.00 21	
MOTA	270	CA		B 10			-29.918	1.00 17	
ATOM	271	C		B 10		-55.187	-31.290	1.00 19	_
ATOM	272	õ		B 10		-55.449	-31.694	1.00 20	
ATOM	273	СВ	SER			-52.691		1.00 21	
ATOM	274	OG		B 10				1.00 19	_
ATOM	275	N	GLY	B 10		-52.824 -55.995	-30.837	1.00 19	
ATOM	276	CA	GLY	B 10			-30.710	1.00 19.	
ATOM	277	C	GLY	B 10		-57.256		1.00 20.	
ATOM	278	Ö	GLY	B 10			-31.792	1.00 19	
ATOM	279	N	PRO	B 11				1.00 19.	
ATOM	280	CA	PRO	B 11		-58.606	-31.1/3	1.00 19.	
ATOM	281		PRO	B 11	1.251	-59.478		1.00 18.	_
ATOM	282	0	PRO	B 11		-58.761 -59.371		1.00 19.	
ATOM	283	СВ	PRO	B 11				1.00 17.	
ATOM	284	CG	PRO	B 11		-59.737		1.00 20.	
ATOM	285	CD		B 11		-59.720		1.00 19.	
ATOM	286	N		B 11		-58.528		1.00 19.	
ATOM	287	CA	GLY	B 11		-57.462	-32.927	1.00 19.	
ATOM	288	C		B 11		-56.702		1.00 19	
ATOM	289	Ö	GLY	B 11		-56.714		1.00 19.	
ATOM	290	И		B 11		-56.979	-36.339	1.00 21	
ATOM	291	CA	GLY			-56.429		1.00 19	
ATOM	292	C	GLY	B 11			-36.074	1.00 19	
ATOM	293	0	GLY			-57.783		1.00 20	
ATOM	294	N	LEU	B 11			-37.949	1.00 19	
ATOM	295	CA	LEU	B 11				1.00 19	
ATOM	296	CA	LEU	B 11			-36.429	1.00 19	
ATOM	297	0	LEU	B 11				1.00 18	
ATOM	298	СВ	LEU	B 11		-61.252	-38.255	1.00 18	
ATOM	299	CG	LEU	B 11		-61.198 -61.270	-35.289	1.00 18	
ATOM	300			B 11			-34.605	1.00 20	.59 C
ATOM	301			B 11			-33.311	1.00 20	
ATOM	302	N		B 11		-60.010	-35.538 -36.892	1.00 20	
ATOM		CA					-30.892 -37.661	1.00 18	
ATOM	304	C		B 11		-59.578	-37.001		
ATOM	305	Õ		B 11		-60.167		1.00 19.	
ATOM	306	СВ		B 11		-59.855		1.00 20.	
ATOM	307	Ŋ		B 11		-58.303			
ATOM	308	CA		B 11		-57.516		1.00 20.	
ATOM	309	C		B 11		-58.192			
ATOM	310	ŏ		B 11		-58.464		1.00 21	
ATOM	311	СВ		B 11		-56.108		1.00 22	
ATOM	312	N		B 11				1.00 19	
ATOM	313	CA		B 11		-59.126		1.00 22	
ATOM	314	C		B 11		-60.434			
ATOM	315	0		B 11				1.00 23	
ATOM	316	СВ		B 11		-60.643 -59.367		1.00 22	
ATOM	317	CG		B 11				1.00 26	
ATOM	317	CD1				-60.136		1.00 27	
				B 11			-42.271	1.00 28	
MOTA	319			B 11		-61.418		1.00 28	
MOTA	320			B 11		-60.742		1.00 29	
MOTA	321		TRP					1.00 30	
ATOM	322					-62.308		1.00 30	
ATOM	323		TRP			-62.981		1.00 31	
ATOM	324	CZ3	TRP	B 11	6.485	-63.510	-39.653	1.00 31	.85 C

		_	
ATOM	325 CH2 TRP B 116	7.541 -63.834 -40.527 1.00 32.27	С
		2.231 -61.304 -41.338 1.00 21.35	
MOTA	326 N SER B 117		N
MOTA	327 CA SER B 117	1.735 -62.573 -41.873 1.00 22.61	С
ATOM	328 C SER B 117	0.665 -62.383 -42.940 1.00 23.56	С
ATOM	329 O SER B 117	0.463 -63.262 -43.780 1.00 23.11	Ō
		1.167 -63.462 -40.756 1.00 20.72	
ATOM	330 CB SER B 117		С
MOTA	331 OG SER B 117	0.010 -62.889 -40.169 1.00 22.72	0
ATOM	332 N · LEU B 133	11.788 -52.846 -25.860 1.00 23.38	N
ATOM	333 CA LEU B 133	11.903 -54.293 -26.020 1.00 24.54	С
		11.209 -54.833 -27.276 1.00 22.84	C
ATOM	334 C LEU B 133		
MOTA	. 335 O LEU B 133	11.784 -55.619 -28.027 1.00 21.86	0
ATOM	336 CB LEU B 133	11.328 -54.996 -24.786 1.00 25.48	С
ATOM `	337 CG LEU B 133	11.388 -56.527 -24.780 1.00 27.50	С
ATOM	338 CD1 LEU B 133	12.840 -56.984 -24.866 1.00 28.69	C
		10.735 -57.059 -23.509 1.00 28.04	č
MOTA.	339 CD2 LEU B 133		
MOTA	, 340 N THR B 134	9.975 -54.401 -27.499 1.00 21.72	N
ATOM	341 CA THR B 134	9.202 -54.860 -28.639 1.00 21.22	С.
ATOM	342 C THR B 134	9.693 -54.326 -29.986 1.00 20.62	С
		9.843 -55.091 -30.932 1.00 20.33	0
MOTA			
ATOM	344 CB THR B 134	7.716 -54.509 -28.449 1.00 20.99	С
ATOM	345 OG1 THR B 134	7.257 -55.075 -27.210 1.00 20.94	0
MOTA	346 CG2 THR B 134	6.872 -55.073 -29.600 1.00 20.64	С
ATOM	3608 N LYS B 136	12.595 -53.366 -30.809 1.00 21.46	N
		13.886 -53.949 -31.144 1.00 22.79	Ċ
MOTA	3609 CA LYS B 136		
MOTA	3610 CB LYS B 136	14.713 -54.196 -29.879 1.00 24.70	C
MOTA	3611 CG LYS B 136	16.183 -54.424 -30.178 1.00 27.75	C
MOTA	3612 CD LYS B 136	16.998 -54.494 -28.902 1.00 30.17	С
ATOM	3613 CE LYS B 136	18.479 -54.671 -29.203 1.00 32.33	С
			N
MOTA	3614 NZ LYS B 136	2310:0 0::	
MOTA	3615 C LYS B 136	13.793 -55.229 -31.966 1.00 23.46	С
ATOM .	3616 O LYS B 136	14.561 -55.407 -32.912 1.00 23.71	0
ATOM	347 N TRP B 137	12.868 -56.127 -31.633 1.00 21.78	N
	348 CA TRP B 137	12.753 -57.345 -32.424 1.00 22.06	С
. ATOM			č
ATOM	. 349 C TRP B 137		
MOTA	350, O TRP B 137	11.936 -57.822 -34.623 1.00 21.76	<b>O</b> , .
MOTA	351 CB TRP B 137	12.361 -58.552 -31.553 1.00 21.20	C
ATOM	352 CG TRP B 137	10.990 -58.525 -30.922 1.00 20.23	С
ATOM	353 CD1 TRP B 137	10.696 -58.231 -29.618 1.00 19.62	С
		9.748 -58.877 -31.544 1.00 18.68	Č
. ATOM	354 CD2 TRP B 137	9,740 - 50, 307 - 31,344 1,00 10,00	Ŋ
. ATOM	355 NE1 TRP B 137	9.349 -58.385 -29.390 1.00 19.31	
. ATOM	: 356 CE2 TRP B 137	8.743 -58.780 -30.555 1.00 18.97	C
MOTA	357, CE3 TRP B 137	9.383 -59.270 -32.840 1.00 19.75	C
. ATOM .		7.401 -59.058 -30.821 1.00 18.18	С
		8.046 -59.549 -33.107 1.00 18.87	С
. ATOM .		7.072 -59.440 -32.099 1.00 18.94	č
. ATOM		7.072 -59.440 -52.099 1.00 10.94	-
ATOM	361 N LEU B 138	10.741 -56.381 -33.386 1.00 21.61	N
. ATOM	362 CA LEU B 138	9.744 -56.188 -34.431 1.00 23.15	С
MOTA	363 C LEU B 138	10.384 -55.558 -35.676 1.00 23.07	С
	364 O LEU B 138	9.958 -55.801 <b>-</b> 36.809 1.00 22.68	0
		8.618 -55.305 -33.886 1.00.23.87	С
ATOM			Ċ
ATOM.		7.312 -55.155 -34.664 1.00 26.48	Č
MOTA	367. CD1 LEU B 138	6.672 -56.508 -34.915 1.00 25.34	C
. ATOM.	368 CD2 LEU B 138	6.383 -54.267 -33.851 1.00 25.90	С
. ATOM.	3644 N LYS B 140	12.801 -56.332 -37.241 1.00 27.38	N
		13.279 -57.337 -38.182 1.00 28.05	· C
MOTA	3645 'CA LYS B 140	13,273 -37,337 30,102 1,00 20,03	
MOTA	. 3646. CB LYS B 140	13.893 -58.501 -37.401 1.00 29.91	C
ATOM	3647 CG LYS B 140	15.134 -58.057 -36.635 1.00 31.62	С
ATOM	3648 CD LYS B 140	15.719 -59.149 -35.757 1.00 33.53	С
		16.974 -58.634 -35.055 1.00 34.46	С
ATOM	3649 CE LYS B 140	17.692 -59.713 -34.320 1.00 36.17	N
ATOM	3650 NZ LYS B 140		
ATOM	3651 C LYS B 140	12.254 -57.833 -39.212 1.00 27.83	C
MOTA	3652 O LYS B 140	12.602 -58.562 -40.142 1.00 27.80	0
ATOM	369 N ILE B 141	10.992 -57.445 -39.052 1.00 26.40	N.
		9.963 -57.818 -40.016 1.00 26.09	С
·ATOM	370 CA ILE B 141	9.316 -56.542 -40.530 1.00.25.81	Č.
· ATOM		9.310 -30.342 -40.330 1.00.23.01	Ö
- ATOM	372 O .ILE B 141	8.353 -56.586 -41.305 1.00 26.10	U
		·	



ATOM '	373	CB	ILE E	3 141	8.854 -58.721 -39.405 1.00 26.39	С
ATOM	374	CG1	ILE F	3 141		C
MOTA	375	CG2	ILE 8	3 141	9.401 -60.118 -39.145 1.00 28.33	c
ATOM	376	CDl	ILE 9	3 141		C
	TER				,	C

The following examples are presented for purposes of illustration only and are not intended to limit the scope of the invention in any way.

#### **EXAMPLE 1**

This example describes the crystallization of the *E. coli* MurG protein and the determination of the coordinates of the three-dimensional crystal structure. This example also describes the identification of the donor nucleotide binding site, the acceptor binding site and the membrane association site of the MurG protein.

#### Abstract

The 1.9 Å X-ray structure of a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis is reported. This enzyme, MurG, contains two ?/? open sheet domains separated by a deep cleft. The C-terminal domain contains the UDP-GlcNAc binding site while the N-terminal domain contains the acceptor binding site and likely membrane association site. Combined with sequence data from other MurG homologs, this structure provides insight into the residues that are important in substrate binding and catalysis. We have also noted that a conserved region found in many UDP-sugar transferases maps to a ?/?/?/? supersecondary structural motif in the donor binding region of MurG, an observation that is be helpful in glycosyltransferase structure prediction.

#### Methods

#### Crystallization

E. coli MurG containing a C-terminal LEHHHHHHH sequence was purified as described(Ha et al., 1999) and concentrated to 10 mg ml⁻¹ in 20 mM Tris-HCl, pH 7.9/150 mM NaCl/ 50 mM EDTA. The protein concentrate was mixed with UDP-GlcNAc

in a 1:3 molar ratio. Crystals were grown at room temperature using the hanging-drop vapor-diffusion method by mixing equal volumes of protein with reservoir solution (0.1 M NaMES, pH 6.5/ 0.96 M (NH₄)₂SO₄/ 0.4% Triton X-100/ 10 mM DTT). Triclinic crystals with a typical size of 0.2 mm X 0.1 mm X 0.1 mm grew within a week. The crystals belong to the P1 space group, with two molecules per asymmetric unit. The cell dimensions are a=60.613 Å, b=66.356 Å, c=67.902 Å, ?=64.294, ?=83.520, ?????????????????

### Data collection and processing

All data sets were collected at 100 K on previously flash frozen crystals. Crystals were equilibrated in a cryoprotectant buffer with 0.1 M NaMES, pH 6.5, 1.44 M (NH₄)₂SO₄, 0.4% Triton X-100, and 20% glycerol. Heavy-atom soaks were carried out in the same buffer containing one of the following heavy-atom solutions: 2 mM HgCl₂, 1 mM (NH₄)₂WS₄, 1 mM (NH₄)₂OsBr₆. Crystals were flash-frozen in liquid nitrogen. HgCl₂ (form A derivative) and (NH₄)₂OsBr₆ derivative data were collected at an R-AXISIIC imaging plate detector mounted on a Rigaku 200HB generator. Native, HgCl₂ (form B derivative), and (NH₄)₂WS₄ derivative diffraction data were collected at beam-line BioCARS-14B at the Advanced Photon Source, at wavelengths 1.0092 Å, 0.9900 Å and 1.2147 Å respectively. Collection of data on the HgCl₂ derivative was initially designed for MAD phasing; however, the mercury derivative proved to be unstable to X-rays, and after a two-hour exposure to synchrotron radiation the form A derivative metamorphosed into a different mercury derivative (form B) that was suitable for MIR phasing. All the data were reduced using DENZO and SCALEPACK (Otwinowski & Minor, 1997), and processed with CCP4 programs (CCP4, 1994).

#### Structure determination and refinement

The structure was solved by multiple isomorphous replacement combined with anomalous scattering of mercuric derivatives (Table 1). Initial MIR phases calculated with program MLPHARE had a mean figure of merit of 0.44 to 2.5 Å, and were improved by solvent flattening and histogram matching using DM. An MIR map was generated which had continuous electron density for most regions of the protein. A model was built with the program O (Jones et al., 1991), and the structure was refined against 1.9 Å data using energy minimization, simulated annealing and B-factor

refinement with the program CNS (Brunger et al., 1998). The N-terminal six residues and the C-terminal His-tag had no electron density and were not included in this model. There was no electron density for UDP-GlcNAc.

#### Results and discussion

#### Overall fold

The crystal structure of *E. coli* MurG was solved by a combination of multiple isomorphous replacement and anomalous scattering, and refined to 1.9 Å resolution (Table 1).

Data set	Native	HgCl ₂ (form A derivative)	HgCl ₂ (form B derivative)	(NH ₄ ) ₂ WS ₄	(NH ₄ ) ₂ OsB
Resolution (Å)	1.9	2.0	1.9	2.4	2.3
Observations	288,150	101,913	245,320	44,366	106,606
Unique reflections	65,567	53,391	65,581	27,950	36,443
R _{sym} l (last shell)	0.032 (0.187)	0.043 (0.200)	0.042 (0.296)	0.031 (0.080)	0.056 (0.30
I/? (last shell)	41.9 (7.0)	20.4 (2.9)	29.0 (3.7)	24.6 (8.2)	19.6 (2.5)
Completeness (last shell)	97.7% (96.4%)	91.4% (66.6%)	97.4% (94.0%)	83.8% (62.0%)	94.3% (78.6
MIR analysis ( 40.0 - 2.5 Å	.)				
Mean isomorphous differer	nce ²	0.163	0.130	0.068	0.134
Phasing power ³ (last shell)		1.09 (0.73)	0.57 (0.50)	0.61 (0.24)	0.61 (0.58
R _{cullis} 4(last shell)		0.81 (0.91)	0.94 (0.96)	0.92 (0.99)	0.94 (0.95
Anomalous R _{cullis} 4(last sl	hell)	0.96 (1.00)	0.95 (1.00)	,	*
Refinement statistics					
Resolution	40.0 - 1.9 Å		R. m. s. d. ⁷		
Reflections (  F  > 2? )	61,989		Bonds (Å)		0.006
Protein atoms (a. u.)	5,280		Angles (°)		1.29
Water Atoms	298				
Sulfate groups	1		Ramachandran plot8		
R-factor ⁵	22.0%		Residues in most favor	ed region `	94.6%
R-free ⁶	24.7%		Residues in additional	-	5.4%

 $R_{\text{sym}} = P_{\text{i}} I_{\text{i}} - \langle 1 \rangle I_{\text{i}}$ , where  $I_{\text{i}}$  is the intensity of a reflection, and  $\langle 1 \rangle$  is the average intensity of that reflection.

²Mean isomorphous difference = ? |FpH - Fp| / ?FpH, where FpH and Fp are the derivative and native structure factors respectively.

³Phasing power is the ratio of the mean calculated derivative structure factor to the mean lack of closure error.

⁴R_{cullis} is the mean residual lack of closure error divided by the dispersive or anomalous difference.

⁵R-factor = ? :  $|F_{obs}| - |F_{calc}| / ? |F_{obs}|$ 

⁶R-free is the R-factor calculated using 10% of the reflection data chosen randomly and omitted from the start of refinement.

⁷R. m. s. d., root-mean-square deviations from ideal bond lengths and bond angles.

⁸Calculated with program PROCHECK.

The structure consists of two domains separated by a deep cleft (Fig. 2a). Both domains exhibit an ?/? open-sheet structure and have high structural homology despite minimal sequence homology (RMSD = 2.02 over 85 aligned C? atoms). The N-domain includes residues 7-163 and 341-357, and contains seven parallel ?-strands and six ?-helices, the last of which originates in the C-domain (Fig. 2b). The C-domain comprises residues 164-340 and contains six parallel ?-strands and eight ?-helices, including one irregular bipartite helix (?-link) that connects the N-domain to the first ?-strand of the C-domain. The ?-strands in both domains are ordered as for a typical Rossman fold. The N- and C-domains are joined by a short linker between the seventh ?-strand of the N-domain and the ?-link of the C-domain. This inter-domain linker and the peptide segment that joins the last helix of the C-domain to the last helix of the N-domain define the floor of the cleft between the two domains. The cleft itself is about 20 Å deep and 18 Å across at its widest point. Contacts < 4 Å across the cleft are limited primarily to interactions between residues from C-?5 to the loop connecting N-?5 to N-?5.

The ?/? open-sheet motif (Rossman fold) adopted by both the N- and C-domains of MurG is characteristic of domains that bind nucleotides (Branden & Tooze, 1998). Classical Rossman domains typically contain at least one conserved glycine rich motif, with the consensus sequence GXGXXG, located at a turn between the carboxyl end of one ?-strand and the amino terminus of the adjacent ?-helix (Baker et al., 1992). This motif is involved in binding the negatively charged phosphates (Carugo & Argos, 1997). There are three glycine rich loops (G loops) in E. coli MurG (Fig. 3a) that may be variants on the phosphate binding loops found in other dinucleotide binding proteins (see below).

# Sequence homology

Amino acid sequences for eighteen MurG homologs are now available. The sequence similarity between E. coli MurG and homologs from other bacterial strains ranges from less than 30% to more than 90% depending on the evolutionary relationship between the organisms. In all MurG homologs, however, there are several invariant residues. Fig. 3a shows a sequence alignment for a subset of MurG homologs with the invariant and



highly conserved residues indicated. These residues, which include the three G loops, have been highlighted in the *E. coli* MurG structure (Fig. 3b). Almost all of the invariant residues are located at or near the cleft between the two domains. Two of the G loops are found in the N domain (between N-?1/N-?1 and N-?4/N-?4) and one is found in the C-domain (between C-?1/C-?1). The strict conservation of the highlighted residues among different bacterial strains, and their location as determined from the *E. coli* MurG structure, implicates them in substrate binding and catalytic activity.

# Structural homology reveals the donor binding site

The three-dimensional backbone structure of E. coli MurG was compared to known protein structures, including the three other NDP-glycosyltransferase structures that have been reported (Charnok & Davies, 1999; Gastinel et al., 1999; Vrielink et al., 1994). The C-terminal domain was found to have significant structural homology (RMSD= 2.218 Å for 89 aligned C? atoms) to the C-terminal domain of phage T4 ?glucosyltransferase (BGT), an enzyme that catalyzes the glucosylation of hydroxymethyl-cytosines in duplex DNA. A co-crystal structure of BGT with UDP bound in the C-terminal domain reveals the topology of the UDP binding pocket and also shows important contacts to the nucleotide (Moréra et al., 1999; Vrielink et al., 1994). These contacts include: a) hydrogen bonds from the backbone amide of I238 to the N3 and O4 positions of the base; b) hydrogen bonds between the carboxyl side chain of E272 and the O2' and O3' hydroxyls of the ribose ring; and c) contacts from a GGS motif in the loop following the first ?-strand of the C domain to the alpha phosphate of UDP. The structurally homologous C-domain of MurG contains a topologically similar pocket (Fig. 4a). Furthermore, even though the two domains share only 11% sequence identity overall, there are identical residues in the same spatial location in E. coli MurG and in BGT. Based on this comparison, we have concluded that the C-domain of E. coli MurG is the UDP-GlcNAc binding site.

We have docked UDP-GlcNAc into the C-domain of E. coli MurG using the information on how UDP binds to BGT as a guide. As shown in Figure 4b, the uracil is held in place by contacts from the N3 and O4 atoms to the backbone amide of I245. The O2' and O3' hydroxyls on the ribose sugar are within hydrogen bonding distance of the invariant glutamate residue (E269) in the middle of helix C-?4. The conserved GGS

motif in G loop 3 is positioned to contact the alpha phosphate. When these contacts are made, the UDP-GlcNAc substrate fits nicely into a pocket in the C-domain, where it is surrounded by many of the invariant residues identified through sequence analysis of other MurG homologs. It is possible to propose roles for some of these invariant residues from the model. For example, the side chain of R261 can be rotated to contact the second phosphate; this contact may help explain why UDP binds significantly better to MurG than UMP. We propose that R261 plays an important role in catalysis by stabilizing the UDP leaving group via electrostatic interactions. The side chain of Q289 is within hydrogen bonding distance of the C4 hydroxyl of the GlcNAc sugar: This contact may explain why MurG can discriminate between UDP-GlcNAc and its C4 axial

#### The acceptor binding site

isomer, UDP-GalNAc (Ha et al., 1999).

Structural considerations suggest that the primary acceptor binding site is located in the N-terminal domain of MurG. This domain contains three highly conserved regions, two of which are glycine-rich loops that face the cleft (Fig 3a and 4c). These G loops are reminiscent of the phosphate binding loops found in other nucleotide binding proteins, and are most likely involved in binding to the diphosphate on Lipid I. The N-termini of the helices following each G loop form opposite walls of a small pocket between the G loops. The helix dipoles create a positively charged electrostatic field in the pocket that can stabilize the negative charged diphosphates. When the diphosphate of the acceptor is anchored in the pocket created by the G-loops, the MurNAc sugar emerges into the cleft between domains and the C4 hydroxyl can be directed towards the anomeric carbon of the GlcNAc for attack on the face opposite the UDP leaving group. The third conserved region in the N domain spans the loop from the end of N-?5 to the middle of N-?5. Kinetic analysis of mutants is required to evaluate the roles of these residues (Ha et al., 1999; Men et al., 1998).

# Proposed membrane association site

MurG associates with the cytoplasmic surface of bacterial membranes where it couples a soluble donor sugar to the membrane anchored acceptor sugar, Lipid I. Analysis of the *E. coli* MurG structure shows that there is a hydrophobic patch consisting of residues

I75, L79, F82, W85 and W116 in the N-domain, which is surrounded by basic residues (K72, K140, K69, R80, R86, R89). We propose that this is the membrane association site and that association involves both hydrophobic and electrostatic interactions with the negatively charged bacterial membrane. The location of this patch in MurG is also consistent with the proposed acceptor binding site: membrane association at this patch would bring the two N-terminal G loops close to the membrane surface where the diphosphate portion of the acceptor is located (Fig. 4c). Moreover, the cleft between the two domains would remain accessible, consistent with the biochemical requirement that the soluble UDP-GlcNAc donor be able to find its binding site from the cytoplasm.

# Implications for other glycosyltransferases

Glycosyltransferases that utilize an activated nucleotide sugar as a donor comprise a large family of enzymes in both prokaryotes and eukaryotes, and they play central roles in many important biological processes (Dennis et al., 1999; Koya et al., 1999; Verbert & Cacan, 1999). Glycosyltransferases are typically classified according to the nucleotide sugar they utilize, and it has frequently been noted that there is no significant sequence homology even among glycosyltransferases in the same family. This has made it difficult to identify common structural features and residues important in binding and catalysis. There are only three other glycosyltransferase structures available, and although none of them shows any sequence homology to MurG, a structural comparison indicates that one of them, BGT, contains a related donor binding site.

In addition to this structural homology, we have identified a strikingly similar sequence motif in the MurG family and certain other UDP-glycosyltransferase families. This sequence motif spans about a thirty amino acid stretch in the C-domain of MurG and includes most of the invariant residues found in that domain. As shown in Figure 3a, a similar motif is found in the UDP-glucuronosyltransferases (Mackenzie, 1990). Certain residues are identical, including a number of prolines and glycines, and the spacing between them is invariant. This suggests that the UDP-glucuronosyltransferases contain a region of ?/? supersecondary structure that is involved in a similar function as the corresponding region in MurG (Fig. 3c). This region binds the donor sugar. By analyzing the similarities and differences between the conserved residues in this subdomain in the MurG family and other UDP-glycosyltransferase families, it may be

possible to identify – and perhaps alter - residues that are involved in determining donor selectivity. We note that it would be useful to be able to manipulate donor specificity because it would extend the utility of glycosyltransferases as reagents for glycosylation

of complex molecules. Altered glycosyltransferases could also be useful for remodeling

cell surfaces and for probing the biological roles of particular carbohydrate structures.

#### Conclusion

This first structure of a member of the MurG family of glycosyltransferases lays the groundwork for further mechanistic and structural investigations, which may lead to the design of inhibitors and perhaps even new antibiotics. The work also shows that there can be conserved subdomains even in very different glycosyltransferase families. Information on conserved subdomains will be useful for structure prediction and may help guide experiments directed towards changing substrate specificity.

#### EXAMPLE 2

This example describes a method of isolating the C-terminal domain of the *E. coli* MurG protein, expressing the domain in *E. coli* cells and utilizing nuclear magnetic resonance (NMR) to determine the ability of compounds to bind.

MurG can also be used to determine the ability of a chemical compound to bind to the C domain by a) determining the start of c domain based on the MurG crystal structure; b) independently expressing the C domain; and c) using NMR methods to identify binding site and/or bound conformation of ligand. The same procedure is used for the acceptor binding domains.

NMR methods are used to identify the protein binding sites nad screen for ligands that bind. The MurG C-terminal domain region of the protein has been expressed independently. The C domain has a much lower molecular weight than the full-length protein. Therefore, the expression of the C domain results in much sharper NMR peaks which will facilitate the NMR interpretation. Also the protin chemical shifts are very sensitive to their environment. Binding of a compound will introduce local environment changes, thus changing the proton chemical shifts. In this way, residues involved in the binding can be differentiated easily from other amino acid residues not involved in

٠..,

A CONTRACT NAME OF STREET



binding a ligand. This method has also been used to identify ligands that bind to low molecular weight drug targets (i.e., small proteins).

Relevant references to NMR techniques are: Discovering high-affinity ligands for proteins: SAR by NMR, S. Shuker, P. Hajduk, R. Meadows, and S. Fesik, Science 274, 1531 (1996); Lin Y, Nageswara Rao BD. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 1. Adenosineconformations by proton two-dimensional transferred nuclear Overhauser effect spectroscopy. Biochemistry. 2000 Apr 4;39(13):3636-46; and Fejzo J, et al., Chem Biol 1999 Oct;6(10):755-69 (incorporated herein by reference).

The SHAPES strategy is also useful for NMR identification of binding residues, ligands and drug discover which is an NMR-based approach for lead generation in drug discovery. Recently, it has been shown that nuclear magnetic resonance (NMR) may be used to identify ligands that bind to low molecular weight protein drugtargets. Recognizing the utility of NMR as a very sensitive method for detecting binding, we have focused on developing alternative approaches that are applicable to larger molecular weight drug targets and do not require isotopic labeling. A new method for lead generation (SHAPES) uses NMR to detect the binding of a limited but diverse library of small molecules to a potential drug target. The compound scaffolds are derived from shapes most commonly found in known therapeutic agents. NMR detection of low (microM-mM) affinity binding is achieved using either differential line broadening or transferred NOE (nuclear Overhauser effect) NMR techniques. The SHAPES method for lead generation by NMR is useful for identifying potential lead classes of drugs early in a drug design program, and is easily integrated with other discovery tools such as virtual screening, high-throughput screening and combinatorial chemistry.

### **EXAMPLE 3**

This example describes the method of using the three-dimensional structure of *E. coli* MurG to determine the crystal structures of its mutant, enzyme-ligand complex, and MurG homologs, which share the same folding motif.

First, a crystalline form of the new protein or the protein complex should be obtained. The E.coli MurG mutants should crystallized in a condition very similar to

what we have showed in the method section. The protein-ligand complex can be obtained by soaking the protein crystals in a ligand-containing buffer. Other MurG homologs can be expressed in a His-tagged fashion and purified using affinity colume. Presumably they can be crystallized in a similar way using a detergent as the additive Next, the diffraction data should be collected and processed. After the data collection, the molecular replacement method is used to determine the unknown structure. Either the whole E. coli MurG protein or one single domain can serve as a search model. This search model can be rotated and translated until the correct orientation is located in the unit cell of this unknown structure. The search model may only represent part of the contents of the asymmetric unit. However, the location of the first model is now already available. While the first location of the search model is fixed, the second round of translation search can be carried out to search more molecules or domains in the asymmetric unit cell. The phases from the final model generated by molecular replacement can be used to calculate the electron density map. Finally, a model is built based on the electron density map, and the model needs to be refined using program CNS or XPLOR.

# EXAMPLE 4

This example describes the method of using the three-dimensional coordinate structure of E. coli MurG to produce a protein fragment that can be used in an NMR-based lead discovery program. The crystal structure reveals the boundaries of the C domain and permits us to design a gene containing only the C domain from the gene containing both domains. The C domain starting at residue 164 and ending at residue 340 was cloned into an expression vector to generate a C-terminal His tag fusion. It was over-expressed in E. coli cells and purified by affinity colume. The protein was shown to be monomeric by size exclusion chromatography and to be soluble at least up to 0.15 mM, a concentration more than adequate for NMR analysis. C domains from other Murg homologues can be similarly expressed and used.

EXAMPLE 5

. . . . .

This example describes the co-crystallization of a MurG protein with a ligand. A MurG-ligand complex is formed by either co-crystallizing MurG protein with appropriate ligand or soaking the MurG crystals in buffers containing appropriate ligand. Co-crystallization is done by pre-mixing the protein sample with a certain amount of substrate or substrate analogs. Then the hanging drop method is used to produce crystals as described infra.

Alternatively, ligans are incorporated into the crystals by soaking the protein crystals in the ligand containing buffer for a period of time to allow for infiltration into the crystal. The time ranges from a couple of hours to a couple of days. The concentration of ligand in the buffer ranges from several milimolar to several hundred mili molar.

# **DEPOSIT OF COORDINATES**

The crystal structure three-dimensional coordinates of the *E. coli* MurG as set forth in Table 1 were deposited with the Protein Data Bank and have been assigned the indicated ID Code (Accession No.) 1F0K.

Although the invention is described in detail with reference to specific embodiments thereof, it will be understood that variations which are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

#### References

Baker PJ, Britton KL, Rice DW, Rob A, Stillman TJ. 1992. Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold: Implications for nucleotide specificity. J. Mol. Biol. 228: 662-671.

Benson TE, Filman DJ, Walsh CT, Hogle JM. 1995. An enzyme-substrate complex involved in bacterial cell wall biosynthesis. *Nature Struct. Biol.* 2: 644-653.

Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, van Heijenoort J, Dideberg O. 1997. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J. 16: 3416-3425.

Branden C, Tooze J. 1998. Introduction to Protein Structure. New York: Gerland Publishing, Inc.

Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges N, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. 1998. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. *Acta Crystallogr. D* 54: 905-921.

Bugg TDH, Walsh CT. 1993. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. *Nat. Prod. Rep.*: 199-215.

Bupp K, van Heijenoort J. 1993. The final step of peptidoglycan subunit assembly in Escherichia coli occurs in the cytoplasm. J. Bacteriol. 175: 1841-1843.

Carugo O, Argos P. 1997. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. *Proteins* 28: 10-28.

CCP4. 1994. The CCP4 suite: programs for protein crystallography. *Acta Crystallogr. D* 50: 760-763.

Charnok SJ, Davies GJ. 1999. Structure of the nucleotide-diphospho sugar transferase, SpsA from *Bacillus subtilis*, in native and nucleotide-complexed forms. *Biochemistry* 38: 6380-6385.

Dennis JW, Granovsky M, Warren CE. 1999. Glycoprotein glycosylation and cancer progression. *Biochim. Biophys. Acta* 1473: 21-34.

Fan C, Moews PC, Walsh CT, Knox JR. 1994. Vancomycin resistance: Structure of Dalanine: D-alanine ligase at 2.3A resolution. *Science 266*: 439-443.

Gastinel LN, Cambillau C, Bourne Y. 1999. Crystal structures of the bovine b4 galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. *EMBO J.* 18: 3546-3557.

Ha S, Chang E, Lo M-C, Men H, Park P, Ge M, Walker S. 1999. The kinetic characterization of *Escherichia coli* MurG using synthetic substrate analogues. *J. Am. Chem. Soc.* 121: 8415-8426.

Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. *Acta Crystallogr. A* 47: 110-119.

Klaulis PJ. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946-950.

Koya D, Dennis JW, Warren CE, Takahara N, Schoen FJ, Nishio Y, Nakajima T, Lipes MA, King GL. 1999. Overexpression of core 2 N-acetylglycosaminyltransferase enhances cytokine actions and induces hypertrophic myocardium in transgenic mice. *FASEB J.* 13: 2329-2337.

Mackenzie PI. 1990. Structure and regulation of UDP glucuronosyltransferases. In: Ruckpaul K, Rein H eds. In Frontiers in Biotransformation: Principles, Mechanisms and Biological Consequences of Induction, pp. 211-243. Berlin: Akademie-Verlag.

Men H, Park P, Ge M, Walker S. 1998. Substrate synthesis and activity assay for MurG. J. Am. Chem. Soc. 120: 2484-2485.

Merrit EA, Murphy ME. 1994. Raster3D Version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50: 869-873.

Moréra S, Imberty A, Aschke-Sonnenborn U, Rüger W, Freemont PS. 1999. T4 phage b-glucosyltransferase: Substrate binding and proposed catalytic mechanism. *J. Mol. Biol.* 292: 717-730.

Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* 276: 307-326.

Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. *Structure 4*: 1465-1474.

Verbert A, Cacan R. 1999. Trafficking of oligomannosides released during N-glycosylation: a clearing mechanism of the rough endoplasmic reticulum. *Biochim. Biophys. Acta 1473*: 137-146.

Vrielink A, Rüger W, Driessen HPC, Freemont PS. 1994. Crystal structure of the DNA modifying enzyme b-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. *EMBO J.* 13: 3413-3422.

. .

### WHAT IS CLAIMED IS:

- 1. A composition comprising the E. coli MurG protein in crystalline form.
- 2. A composition comprising a MurG protein in crystalline form.
- 3. A three dimensional structure of the crystalline form of an *E. coli* MurG protein, wherein the three dimensional structure substantially conforms to the atomic coordinates represented in Table 1.
- 4. A three dimensional structure of the crystalline form of a MurG protein, wherein the three dimensional structure substantially conforms to the atomic coordinates represented in Table 1.
- 5. A three dimensional structure of the  $\alpha$ -carbon backbone of the crystalline form of an E. coli MurG protein, wherein the three dimensional structure substantially conforms to the atomic coordinates represented in Table 2.
- 6. A three dimensional structure of the  $\alpha$ -carbon backbone and conserved amino acid residues of an E .coli MurG protein, wherein the three dimensional structure substantially conforms to the atomic coordinates represented in Table 3.
- 7. A three dimensional structure of a donor nucleotide binding site of a MurG protein wherein the three dimensional structure structure of the donor nucleotide binding site substantially conforms to the atomic coordinates in Table 4.
- 8. The three dimensional structure of claim 7, wherein the donor nucleotide is UDP-GlcNAc.
- 9. A three dimensional structure of an acceptor binding site of a MurG protein substantially conforming to the atomic coordinates in Table 5.
- 10. A three dimensional structure of a membrane association site of a MurG protein substantially conforming to the atomic coordinates in Table 6.
- 11. A three-dimensional computer image of the three-dimensional structure of a MurG protein.
- 12. The image of claim 11, wherein the structure substantially conforms with the three-dimensional coordinates listed in Table 1.
- 13. The image of claim 11, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 1 are analyzed on a computer using a graphical display software

program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.

- 14. The image of claim 11, wherein the three-dimensional computer image is represented by a two dimensional image selected from the group consisting of Fig. 2a, 3a, or 4c.
- 15. The image of claim 11, wherein the three-dimensional computer image is used to design a compound.
- 16. A three dimensional computer image of the three dimensional structure of the  $\alpha$ -carbon backbone of a MurG protein.
- 17. The image of claim 16, wherein the structure substantially conforms with the three-dimensional coordinates listed in Table 2.
- 18. The image of claim 16, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 2 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.
- 19. The image of claim 16, wherein the three-dimensional computer image is used to design a compound.
- 20. A three dimensional image of the three dimensional image of an  $\alpha$ -carbon backbone and conserved amino acid residues of a MurG protein.
- 21. The image of claim 20, wherein the structure substantially conforms with the three-dimensional coordinates in Table 3.
- 22. The image of claim 21, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 3 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.
- 23. The image of claim 21, wherein the three-dimensional computer image is used to design a compound.
- 24. A three-dimensional computer image of the three-dimensional structure of a donor nucleotide binding site of a MurG protein.

- 25. The image of claim 24, wherein the structure substantially conforms with the three-dimensional coordinates in Table 4.
- 26. The image of claim 24, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 4 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.
- 27. The image of claim 24, wherein the three-dimensional computer image is represented by a two dimensional image selected from the group consisting of Fig. 3c, 4a or 4b.
- 28. The image of claim 24, wherein the three-dimensional computer image is used to design a compound.
- 29. A three-dimensional computer image of the three-dimensional structure of an acceptor binding site of a MurG protein.
- 30. The image of claim 29, wherein the structure substantially conforms with the three-dimensional coordinates Table 5.
- 31. The image of claim 29, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 5 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.
- 32. The image of claim 29, wherein the three-dimensional computer image is represented by the two dimensional image of Fig. 4a.
- 33. The image of claim 29, wherein the three-dimensional computer image is used to design a compound.
- 34. A three-dimensional computer image of the three-dimensional structure of a membrane association site of a MurG protein.
- 35. The image of claim 34, wherein the structure substantially conforms with the three-dimensional coordinates Table 6.
- 36. The image of claim 34, wherein the computer image is that is generated when a set of three-dimensional coordinates comprising the three-dimensional coordinates represented in Table 6 are analyzed on a computer using a graphical display software



program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.

- 37. The image of claim 34, wherein the three-dimensional computer image is represented by the two dimensional image of Fig. 4a.
- 38. The image of claim 34, wherein the three-dimensional computer image is used to design a compound.
- 39. A computer readable medium encoded with a set of three-dimensional coordinates of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 1, wherein using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
- 40. A computer readable medium encoded with a set of three-dimensional coordinates of an  $\alpha$ -carbon backbone of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 2, wherein using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
  - 41. A computer readable medium encoded with a set of three-dimensional coordinates of an α-carbon backbone and conserved amino acid residues of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 3, wherein using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
  - 42. A computer readable medium encoded with a set of three-dimensional coordinates of a donor nucleotide binding site of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 4, wherein using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
  - 43. A computer readable medium encoded with a set of three-dimensional coordinates of an acceptor binding site of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 5, wherein using

- a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
- 44. A computer readable medium encoded with a set of three-dimensional coordinates of a membrane association site of a MurG protein having a three-dimensional structure that substantially conforms to the atomic coordinates of Table 5, wherein using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing said electronic file as a three dimensional image.
- 45. A method for identifying a potential inhibitor of a UDP-glycosyltransferase enzyme, the method comprising the steps of:
- a. using a three-dimensional structure of UDP-glycosyltransferase enzyme as defined by atomic coordinates of UDP-glycosyltransferase enzyme according to FIG. 5;
- b. employing said three-dimensional structure to design or select said potential inhibitor;
- c. synthesizing said potential inhibitor; and
- d. contacting said potential inhibitor with said UDP-glycosyltransferase enzyme in the presence of a substrate to test the ability of said potential inhibitor to inhibit said UDP-glycosyltransferase enzyme.
- 46. The method according to claim 45, wherein said potential inhibitor is selected from a database.
- 47. The method according to claim 45, wherein said potential inhibitor is designed de novo.
- 48. The method according to claim 45, wherein said potential inhibitor is designed from a known inhibitor.
- 49. The method according to claim 45, wherein said step of employing said three-dimensional structure to design or select said potential inhibitor comprises the steps of:
- a. identifying chemical entities or fragments capable of associating with UDP-glycosyltransferase enzyme; and
- b. assembling the identified chemical entities or fragments into a single molecule to provide the structure of said potential inhibitor.

- 50. The method according to claim 45, wherein the potential inhibitor is a competitive inhibitor of mutant UDP-glycosyltransferase enzyme.
- 51. The method according to claim 45, wherein said potential inhibitor is a non-competitive or uncompetitive inhibitor of mutant UDP-glycosyltransferase enzyme.
- 52. A model of a UDP-glycosyltransferase, wherein the model represents a three-dimensional structure that substantially conforms to the atomic coordinates of Table 1.
- 53. The model of claim 52, wherein the structure substantially conforms to the atomic coordinates and B-values represented by Table 1.
- 54. The model of claim 52, wherein the structure is monomeric.
- 55. The model of claim 52, wherein at least about 50% of the structure has an average root-mean-square deviation (RMDS) of less than about 2.5 Å for backbone atoms in secondary structure elements in each domain of the structure.
- 56. The model of claim 52, wherein the MurG protein comprises an amino acid a sequence that is at least about 25% identical to the amino acid sequence of the E. coli MurG protein.
- 57. The model of claim 52, wherein the MurG protein comprises an amino acid sequence that is at least about 40% identical to the amino acid sequence of the *E. coli* MurG protein.
- 58. The model of claim 52, wherein the MurG protein comprises an amino acide sequence that is at least about 60% identical to the amino acid sequence of the E. coli MurG protein.
- 59. The model of claim 52, wherein the MurG protein comprises an amino acid sequence selected, from the group consisting of the amino acid sequence of a MurG protein from Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum, a mutant of any of the amino acid sequences, and a variants of any of the amino acid sequences.

- 60. The model of claim 52, wherein the MurG protein comprises an amino acid sequence selected from the group consisting of the amino acid sequences of MurG proteins as deposited in the NCBI database and identified with Accession Nos. CAB51993, A71316, E70579, C71699, F70195, A43727, JC1275, BVECMG, CEECAM, O83535, Q9ZK59, CAB85280, AAF39020, BAA18775, AAD26629, CAB73295, P37585, Q9ZHA9, Q9ZHDC0, Q9ZBA5, Q9X4H4, Q9WY74, P74657, O06224, Q9Z702, O84766, O69552, )67238, O51708, O25770, O07670, O07109, P45065, CAB66324, AAC68356, AAF06830, P18579, P17443, P17952, P16457, P07862, AAE23178, AAD53936, CAA18668, CAA38869, CAA38868, CAA38867, CAA38866, AAD08196, BAA01453, BAA01455, BAA01454, AAD19042, CAA45558, CAA74235, AAD10537, AAD06652, AAC95450, CAA14869, AAC73201, AAC65509, AAC67113, AAC45636, CAB08640, AAC22793, AAC07193, BAA24357, CAB13395, BAA01355, AAB35538, 1904153C, 1808265B, 1808265A, CAA36866, CAA36869, CAA36868, CAA36867, CAA36776, and AAA99436.
- 61. The model of claim 52, wherein the MurG protein comprises an amino acid sequence obtained from an organism selected from the group consisting of bacteria, small pathogenic organisms, cyano bacteria, higher-order bacteria, spirochetes and thermal stable bacteria.
- 62. The model of claim 52, wherein the MurG protein comprises an amino acid sequence obtained from an organism selected from the group consisting of Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum.
- 63. The model of claim 52, wherein the MurG protein is a structural homologue of the E. coli MurG protein.
- 64. The model of claim 52, wherein the structure comprises an n-terminal and C-terminal domain connected by a covalent peptide linker, and wherein each domain has an alpha/beta fold.
- 65. The model of claim 52, wherein the RMSD is less than 2.5 Å over at least 80 aligned C-alpha atoms in each domain.

- 66. The model of claim 52, wherein the N-terminal domain comprises two glycine rich loops.
- 67. The model of claim 66, wherein the amino acid sequence of the two glycine rich loops comprises GGTGGH and G-GGYVSG.
- 68. The model of claim 52, wherein the C-terminal domain comprises one glycine rich loop.
- 69. The model of claim 68, wherein the glycine rich loop comprises the amino acid sequence GGSQGAR or GGS-GAR.
- 70. The model of claim 52, wherein the atomic coordinates are generated by the method comprising the steps of:
  - (a) providing a MurG protein in crystalline form;
  - (b) generating an electron-density map of the crystalline MurG protein; and
  - (c) analyzing the electron-density map to produce the atomic coordinates.
- 71. The model of claim 70, wherein the crystalline MurG protein is produced by a method comprising the steps of:
  - (a) combining MurG protein with UDP-GlcNAc, and
  - (b) inducing crystal formation to produce said crystalline MurG protein.
- 72. The model of claim 70, wherein the crystalline MurG protein is produced by the hanging drop method in which MurG in buffer is at a concentration of at least 5 ug/ml and is combined with a reservoir solution and crystallizes.
- 73. The model of claim 72, wherein the buffer has a pH range from about 6.5 to about 9.0, and a buffer concentration range from about 10 mM to about 200 mM.
- 74. The model of 73, wherein the buffer is a Tris or a Hepes buffer, having a pH from about 7.0 to about 8.5.
- 75. The model of 74, wherein the buffer has a pH of about 7.9.
- 76. The model of claim 73, wherein the buffer further comprises at least one salt, chelating agent, or reducing agent.
- 77. The model of claim 72, wherein the reservoir solution has a pH range from about 5.0 to about 9.0 and the buffer concentration ranges from about 10 mM to about 1M.
- 78. The model of claim 77, wherein the reservoir solution further comprises at least one suitable precipitant, a detergent, and a reducing agent.
- 79. The model of claim 78, wherein the reservoir solution comprises a NaMES or sodium citrate buffer having a pH from about 6.0 to about 7.0.

. . . . . .

- 80. The model of claim 79, wherein the buffer has a pH of about 6.5.
- 81. The model of claim 78, wherein the precipitant is selected from the group consisting of ammonium sulfate and sodium potassium tartrate.
- 82. The model of 78, wherein the detergent is TritonX-100.
- 83. The model of 78, wherein the reducing agent is DTT, DTE or betamercaptoethanol.
- 84. The model of claim 71, wherein the MurG protein and the UDP-GlcNAc are in a 1:3 molar ratio.
- 85. The model of claim 71, wherein the buffer comprises 0.1 M NaMES, pH6.5, 0.9M (NH₄)₂SO₄, 0.4% TRITON X-100®, and 10 mM dithiothreitol (DTT).
- 86. The model of claim 71, wherein the step of generating an electron-density map comprises analyzing the crystalline MurG protein by X-ray diffraction.
- 87. The model of claim 70, wherein the model is a computer image generated by a computer-readable medium encoded with a set of three-dimensional coordinates of the three-dimensional structure, wherein, using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing the electronic file as a three-dimensional image.
- 88. A model of a donor nucleotide binding site of a UDP-glycosyltransferase (MurG) protein, wherein the model represents a three-dimensional structure that substantially conforms to the atomic coordinates of Table 4.
- 89. The model of claim 88, wherein the donor nucleotide binding site is located within the MurG C-terminal domain.
- 90. The model of claim 88, wherein the structure substantially conforms to the atomic coordinates and B-values of Table 4.
- 91. The model of claim 88, wherein at least about 50% of the structure has an average root-mean-square (RMSD) of less than about 2.5Å for the conserved amino acid residues for the donor nucleotide binding site of the E. coli MurG.
- 92. The model of claim 88, wherein the donor nucleotide binding site comprises an amino acid sequence that is at least about 70% identical to the conserved amino acid residues of the donor nucleotide binding site of E. coli MurG.
- 93. The model of claim 88, wherein the donor nucleotide binding site comprises an amino acid sequence that is at least about 80% identical to the conserved amino acid residues of the donor nucleotide binding site of the E. coli MurG.

- 94. The model of claim 88, wherein the donor nucleotide binding site comprises an amino acid sequence that is at least about 90% identical to the conserved amino acid residues of the donor nucleotide binding site of the E. coli MurG.
- 95. The model of claim 88, wherein the donor nucleotide binding site comprises an amino acid sequence that is at least about 95% identical to the conserved amino acid residues of the donor nucleotide binding site of the E. coli MurG.
- 96. The model of claim 88, wherein the atomic coordinates are generated by a method comprising the steps of:
  - a) providing a Murg protein in a crystalline form:
  - b) generating an electron-density map of said crystalline MurG protein; and
  - c) analyzing the electron-density map to produce the atomic coordinates.
- 97. The model of claim 88, wherein the model is a computer image generated by a computer-readable medium encoded with a set of three-dimensional coordinates of the three-dimensional structure, wherein, using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing the electronic file as a three-dimensional image.
- 98. A model of an acceptor binding site of a UDP-glycosyltransferase (MurG) protein, wherein the model represents a three-dimensional structure that substantially conforms to the atomic coordinates of Table 5.
- 99. The model of claim 98, wherein the structure substantially conforms to the atomic coordinates and B-values of Table 5.
- 100. The model of claim 98, wherein at least about 50% of the structure has an average root-mean-square (RMSD) of less than about 1.5Å for the conserved amino acid residues in the acceptor binding site.
- 101. The model of claim 98, wherein the acceptor binding site comprises an amino acid sequence that is at least about 70% identical to the conserved amino acid residues of the acceptor binding site of E. coli MurG.
- 102. The model of claim 98, wherein the acceptor binding site comprises an amino acid sequence that is at least about 80% identical to the conserved amino acid residues of the acceptor binding site of E. coli MurG.
- 103. The model of claim 98, wherein the acceptor binding site comprises an amino acid sequence that is at least about 90% identical to the conserved amino acid residues of the E. coli MurG.

- 104. The model of claim 98, wherein the acceptor binding site comprises an amino acid sequence that is at least about 95% identical to the conserved amino acid residues of the acceptor binding site of the E. coli MurG.
- 105. The model of claim 98, wherein the acceptor binding site comprises an amino acid sequence that is at least about 70% identical to the amino acid sequence selected from the group consisting of Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum.
- 106. The model of claim 98, wherein the atomic coordinates are generated by the method comprising the steps of:
  - a) providing a MurG protein in a crystalline form:
  - b) generating an electron-density map of said crystalline MurG protein; and
  - c) analyzing the electron-density map to produce the atomic coordinates.
- 107. The model of claim 98, wherein the model is a computer image generated by a computer-readable medium encoded with a set of three-dimensional coordinates of the three-dimensional structure, wherein, using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing the electronic file as a three-dimensional image.
- 108. A model of a membrane association site of a UDP-glycosyltransferase (MurG) protein, wherein the model represents a three-dimensional structure that substantially conforms to the atomic coordinates of Table 6.
- 109. The model of claim 108, wherein the structure substantially conforms to the atomic coordinates and B-values of Table 4.
- 110. The model of claim 108, wherein at least about 50% of the structure has an average root-mean-square (RMSD) of less than about 1.5Å for conserved amino acid residues in the E. coli membrane association site.
- 111. The model of claim 108, wherein the membrane association site comprises an amino acid sequence that is at least about 70% identical to the conserved amino acid residues of the membrane association site of E. coli MurG.

- 112. The model of claim 108, wherein the membrane association site comprises an amino acid sequence that is at least about 80% identical to the conserved amino acid residues of the membrane association site of the E. coli MurG.
- 113. The model of claim 108, wherein the membrane association site comprises an amino acid sequence that is at least about 90% identical to the conserved amino acid residues of the membrane association site of the E. coli MurG.
- 114. The model of claim 108, wherein the membrane association site comprises an amino acid sequence that is at least about 95% identical to the conserved amino acid residues of a membrane association site of the E. coli MurG.
- 115. The model of claim 108, wherein the membrane association site comprises an amino acid sequence that is at least about 70% identical to the amino acid sequence from organisms selected from the group consisting of Escherichia coli, Bacillus subtilis, Aquefex aeolicus, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecais, Enterococcus hirae, Haemophilus influenzae, Helicobacter pylori J99, Helicobacter pylori, Mycobacterium tuberculosis, Porphyromonas gingivalis, Rickettsia prowazekii, Streptomyces coelicolor, Streptomyces collinus, Streptococcus pneumoniae, Synechocystis sp. (strain PCC6803), Thermotoga maritime, and Treponema pallidum.
- 116. The model of claim 108, wherein the model is a computer image generated by a computer-readable medium encoded with a set of three-dimensional coordinates of the three-dimensional structure, wherein, using a graphical display software program, the three-dimensional coordinates create an electronic file that can be visualized on a computer capable of representing the electronic file as a three-dimensional image.
- 117. A computer-assisted method of structure based drug design; of bioactive compounds, comprising the steps of:
  - (a) providing a model of a UDP-glycosyltransferase (MurG)protein or a donor nucleotide binding site, acceptor binding site or membrane association site; and
  - (b) designing a chemical compound using said model.
- 118. The method of claim 117, further comprising the step of synthesizing the chemical compound.
- 119. The method of claim 118, further comprising the step of evaluating the bioactivity of the synthesized chemical compound.

- 120. The method of claim 118, wherein the model of the UDP-glycosyltransferase (MurG) protein represents a three-dimensional structure comprising the atomic coordinates listed in Table 1.
- 121. The method of claim 118, wherein the model of the donor nucleotide binding site represents a three-dimensional structure comprising the atomic coordinates Table 4.
- 122. The method of claim 118, wherein the model of the acceptor binding site represents a three-dimensional structure comprising the atomic coordinates in Table 5.
- 123. The method of claim 118, wherein the model of the membrane association site represent a three-dimensional structure comprising the atomic coordinates in Table 6.
- 124. The method of claim 118, wherein the model comprises a computer image generated when the atomic coordinates listed in Table 1 are analyzed on a computer using a graphical display software program to create an electronic file of the image and visualizing the electronic file on a computer capable of representing the electronic file as a three-dimensional image.
- 125. The method of claim 118, wherein the step of designing comprises computational screening of one or more databases of chemical compounds in which the three dimensional structure of said compounds are known.
- 126. The method of claim 125, further comprising interacting a compound identified by the screening step with the model by computer.
- 127. The method of claim 118, wherein the step of designing comprises directed drug design.
- 128. The method of claim 118, wherein the step of designing comprises random drug design.
- 129. The method of claim 118, wherein the step of designing comprises grid-based drug design.
- 130. The method of claim 118, wherein the step of designing comprises selecting compounds which are predicted to mimic the three-dimensional structure of the three-dimensional structure of the MurG protein.
- 131. The method of claim 118, wherein the step of designing comprises selecting compounds which are predicted to bind to the three-dimensional structure of the MurG protein.
- 132. The method of claim 118, wherein the bioactivity is selected from the group consisting of inhibiting binding of a nucleotide donor compound to the MurG protein,

inhibiting binding of an acceptor compound to the MurG protein, or inhibiting association of the MurG Protein to a membrane.

- 133. A model of the three dimensional structure of a MurG protein, wherein the model is produced by the following method comprising the steps of:
- (a) providing an amino acid sequence of a MurG protein and the amino acid sequence of the Escherichia coli MurG protein;
- (b) identifying structurally conserved regions shared between the the MurG : protein and the E. coli MurG protein; and
- (c) determining atomic coordinates for the MurG protein by assigning the structurally conserved regions of the MurG protein to a three dimensional structure using a three dimensional structure of the MurG protein which substantially conforms to the atomic coordinates represented in Table 1, to derive a model of the three dimensional structure of the MurG protein amino acid sequence.
- 134. The model of claim 133, wherein the MurG protein amino acid sequence comprises the sequence of an amino acid sequence selected from the group consisting of the amino acid sequences of MurG proteins as deposited in the NCBI database and identified with Accession Nos. CAB51993, A71316, E70579, C71699, F70195, A43727, JC1275, BVECMG, CEECAM, O83535, Q9ZK59, CAB85280, AAF39020, BAA18775, AAD26629, CAB73295, P37585, Q9ZHA9, Q9ZHDC0, Q9ZBA5, Q9X4H4, Q9WX74, P74657, O06224, Q9Z702, O84766, O69552, )67238, O51708, O25770, O07670, O07109, P45065, CAB66324, AAC68356, AAF06830, P18579, P17443, P17952, P16457, P07862, AAE23178, AAD53936, CAA18668, CAA38869, CAA38866, CAA38866, AAD08196, BAA01453, BAA01455, BAA01454, AAD19042, CAA45558, CAA74235, AAD10537, AAD06652, AAC95450, CAA14869, AAC73201, AAC65509, AAC67113, AAC45636, CAB08640, AAC22793, AAC07193, BAA24357, CAB13395, BAA01355, AAB35538, 1904153C, 1808265B, 1808265A, CAA36866, CAA36869, CAA36868, CAA36867, CAA36867, CAA36776, and AAA99436.
- 135. A composition for inhibiting the activity of a glycosyltransferase comprising a compound that inhibits the activity of a glycosyltransferase, wherein the compound is identified by the method comprising the steps of:
  - (a) providing a three-dimensional structure of a MurG protein;

- (b) using the three-dimensional structure of the MurG protein to design a chemical compound that inhibits activity of a glycosyltransferase;
- (c) synthesizing the chemical compound; and
- (d) evaluating the ability of the chemical compound to inhibit the activity of a glycosyltransferase.
- 136. e composition of claim 135, wherein the glycosyltransferase is a MurG protein.
- 137. The composition of claim 135, wherein the three-dimensional structure of the MurG protein substantially conforms to atomic coordinates represented by Table 1.
- 138. The composition of claim 135, wherein the compound is selected from the group consisting of an inorganic and an organic compound.
- 139. The composition of claim 135, wherein the compound is a substituted pyrimidine analogs
- 140. The composition of claim 135, wherein the compound is selected from the group consisting of an analog of a MurG protein, a substrate analog of a MurG protein, a donor molecule analog of a MurG protein, and a membrane analog of a MurG protein.
- 141. The composition of claim 135, further comprising a component selected from the group consisting of an excipient an adjuvant, and a carrier.
- 142. A composition for stimulating the activity of a glycosyltransferase comprising a compound that stimulates the activity of a glycosyltransferase, wherein the compound is identified by the method comprising the steps of:
  - (a) providing a three-dimensional structure of a MurG protein;
  - (b) using the three-dimensional structure of the MurG protein to design a chemical compound that inhibits activity of a glycosyltransferase;
  - (c) synthesizing the chemical compound; and
- (d) evaluating the ability of the chemical compound to stimulate the activity of a glycosyltransferase.
- 143. A method to determine a three-dimensional structure of a MurG protein comprising the steps of:
- (a) providing an amino acid sequence of a MurG protein, wherein the three-dimensional structure of the MurG protein is not known;
- (b) analyzing the pattern of folding of the amino acid sequence in a threedimensional conformation by fold recognition; and

- (c) comparing the pattern of folding of the MurG protein amino acid sequence with the three dimensional structure of the E. coli MurG protein, wherein the three-dimensional structure of the E. coli MurG protein substantially conforms to the atomic coordinates represented in Table 1.
- 144. A method to derive a model of the three-dimensional structure of a MurG protein comprising the steps of:
  - (a) providing an amino acid sequence of a MurG protein;
- (b) identifying structurally conserved regions shared between the MurG protein and the E. coli MurG protein;
- (c) determining atomic coordinates for the MurG protein structure by assigning the structurally conserved regions of the MurG protein to a three-dimensional structure using a three dimensional structure of the E. coli MurG protein based on atomic coordinates represented in Table 1 to derive a model of the three dimensional structure of the MurG protein amino acid sequence.
- 145. The method of claim 144, further comprising assigning atomic coordinates for side chains of said MurG protein by determining sterically allowable positions using a library of rotamers.
  - 146. A method to derive a three dimensional structure of a crystallized MurG protein comprising the steps of:
  - (a) comparing the Patterson function of a crystallized MurG protein with the Patterson function of crystalline E. coli MurG protein to produce an electron-density map of the crystallized MurG protein; and
  - (b) analyzing the electron-density map to produce the three dimensional structure of the crystallized MurG protein.
- 147. The method of claim 146, further comprising the step of rotating the Patterson function of the crystallized MurG protein on the Patterson function of the crystalline E coli MurG protein to determine the correct orientation of the crystallized MurG proteir in a crystal of said crystallized MurG protein to identify the initial phases of the crystallized MurG protein.
  - 148. The method of claim 146, further comprising the step of electronically stimulating the three dimensional structure of the crystallized MurG protein to derive a computer image of the three dimensional structure of the crystallized MurG protein.



F19



Fig. 2b



E. Coli         N P2         N P2         N P3         N P3         N P4         G 100         110         N 24         N P3         N P4         G 100         2         N P4         G 100         C 100         N P4         G 100         C 100         N P4         G 100         D N P4         G 100	N β 7 16 C α - IRRA FOR C α - IRRA FOR LACK - SECTION OF THE C α - IRRA FOR LACK - SECTION OF THE CONTRIBUTION OF THE CONTRIB	230         240         260         260         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360
N   10   20   30   30   30   30   30   30   3	E. coli 1.00 N B 7 100 N B 7 10	240 C G G C G C G C G C G C G C G C G C G
E. coli Haemophilus influenzae Enterococcus fraeciilis Enterococcus hirae Streptococus preumoniae Rickettsia prowazekii Rickettsia prowazekii Mycobacterium tuberculosis Cunsunsus	E. coli Haemophilus influenzae Enterococcus faccalis Enterococcus preumoniae Streptococus preumoniae "ickettsia prowazekii acillus subtilis Mycobacterium tuberculosis	E coli di controllo di controll

Fig. 3b



Fig. 3c





Fig. 4

## (19) World Intellectual Property Organization International Bureau



### 

## (43) International Publication Date 29 November 2001 (29.11.2001)

#### PCT

## (10) International Publication Number WO 01/90301 A3

(51) International Patent Classification⁷: C12N 9/00

(21) International Application Number: PCT/US01/11500

(22) International Filing Date: 9 April 2001 (09.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/204,930 17 May 2000 (17.05.2000) US

- (71) Applicant: PRINCETON UNIVERSITY [US/US]; Office of Patents and Licensing, New South Building, 5th Floor, P.O. Box 36, Princeton (US).
- (72) Inventors: WALKER, Suzanne: 148 Poe Road, Princeton, NJ 08540 (US). HA, Sha; Princeton, NJ 08540, 223D Halsey St. (US).
- (74) Agent: DUNN MCKAY, Diane; Mathews. Collins. Shepherd & Gould, P.A., Suite 306, 100 Thanet Circle, Princeton, NJ 08540 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report:
  18 April 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CRYSTALLIZING MURG PROTEIN, METHODS OF MAKING AND USING MODELS THEREOF FOR INHIBITION AND STIMULATION VIA COMPOUNDS

(57) Abstract: The present invention relates to crystals of the Escherichia coli MurG, a membrane-associated UDP-glycosyltransferase involved in peptidoglycan biosynthesis. The present invention also relates to three-dimensional atomic coordinates of the MurG protein, three-dimensional structures of the protein, and images thereof. The present invention also relates to the atomic coordinates and three-dimensional structures of the  $\alpha$ -carbon backbone and the  $\alpha$ -carbon backbone and conserved amino acid residue sidechains of the MurG protein and images thereof. The present invention further relates to three-dimensional atomic coordinates of the donor nucleotide binding site, the acceptor binding site, and the membrane association site of the MurG protein, three-dimensional sturctures of the binding domains, and images thereof. The present invention also relates to computer readable media encoded with sets of the three dimensional coordinates described herein. The present invention relates to methods of crystallizing MurG proteins. The present invention relates to models of three dimensional structures of UDP-glycosyltransferases and, in particular, MurG proteins, based on the three dimensional structure dimensional structure of crystals of the Escherichia coli MurG. The present invention also relates to models of the three dimensional structures of the  $\alpha$ -carbon backbone and the  $\alpha$ -carbon backbone and conserved amino acid residue sidechains of UDP-glycosyltransferases and MurG proteins and of the binding sites thereof. The present invention also relates to methods of drug design using models of this invention, the compounds identified using models of the present invention that bind, inhibit or stimulate UDP-glycosyltransferases or MurG proteins, and compositions comprising compounds identified using the models of this invention for therapeutic or diagnositic uses. Also, the present invention relates to methods of making models of the present invention.

BEST AVAILABLE COPY



A. CLASSIFICATION OF SUBJECT MATTER				
US CL :	IPC(7) :C12N 9/00 US CL :435/183			
	o International Patent Classification (IPC) or to both national classification and IPC			
	DS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)				
U.S. :	U.S. : +35/183			
Documentat searched	ion searched other than minimum documentation to the extent that such documents are	included in the fields		
Electronic d	lata base consulted during the international search (name of data base and, where practical	le, search terms used)		
STN: West				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	* Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	WO 99/38958 A1 (PRINCETON UNIVERSITY) 05 August 1999, see entire document.	1-2		
х	US 5,068,191 A (CLAUSEN et al.) 26 November 1991, see entire document.			
	·			
Furt	her documents are listed in the continuation of Box C. See patent family annex.			
· Sp	ecial categories of cited documents: "T" later document published after the in	ternational filing date or priority		
"A" do	cument defining the general state of the art which is not considered the principle or theory underlying to be of particular relevance	plication but cited to understand		
"X" document of particular relevance; the claimed invention cannot be				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other  "Y" document of narticular relevance: the claimed invention cannot be				
"O" do	special reason (as specified)  considered to involve an inventive step when the document is combined			
"P" do				
Date of the actual completion of the international search  Date of mailing of the international search report  13 FEB 2002				
24 JANUARY 2002				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT  AMY BARTER				
	n, D.C. 20231			

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international report has not been established in respect of certain claims under Article 17(2)(a) for the follo	wing reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
	y				
2. Claims Nos.:  because they relate to parts of the international application that do not comply with the prescrib such an extent that no meaningful international search can be carried out, specifically:	ped requirements to				
5. Claims Nos.:					
because they are dependent claims and are not drafted in accordance with the second and third sente	nces of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This International Searching Authority found multiple inventions in this international application, as follows:	lows:				
Please See Extra Sheet.					
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2. As all searchable claims could be searched without effort justifying an additional fee, this Authori of any additional fee.	ity did not invite payment				
3. X As only some of the required additional search fees were timely paid by the applicant, this in covers only those claims for which fees were paid, specifically claims Nos.:	iternational search report				
1-2: +5-51	• • • • • • • • • • • • • • • • • • •				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
Remark on Protest The additional search fees were accompanied by the applicant's protest	est				
No protest accompanied the payment of additional search fees.					

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)*

### BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

Group I, Claims 1-2, drawn to the crystalline form of the MurG protein

Group II, Claims 3-6, drawn to the 3-D structure of the crystalline form of the MurG protein.

Group III, Claims 7-8, drawn to the 3-D structure of the donor nucleotide binding site of the MurG protein.

Group IV. Claim 9, drawn to the 3-D structure of the acceptor binding site of the MurG protein.

Group V, Claim 10, drawn to the 3-D structure of the membrane association site of the MurG protein.

Group VI, Claims 11-19, drawn to the computer image of the 3-D MurG protein.

Group VII, Claims 20-23, drawn to the 3-D image of the 3-D image of an alpha-carbon backbone.

Group VIII, Claims 2+-28, drawn to the 3-D computer image of the 3-D structure of a donor nucleotide of a donor nucleotide binding site of the MurG protein.

Group IX. Claims 29-33, drawn to the 3-D computer image of a 3-D structure of an acceptor binding site of the MurG protein.

Group X, Claims 34-38, drawn to the 3-D computer image of the 3-D structure of a membrane association site of the MurG protein.

Group X1. Claims, 39-41, drawn to the computer readable medium encoded with a set of 3-D coordinates of a MurG protein.

Group XII, Claim 42, drawn to the computer readable medium encoded with a set of 3-D coordinates of a donor nucleotide binding site of a MurG protein.

Group XIII, Claim 48, drawn to the computer readable medium with a set of 3-D coordinates of an acceptor binding site of the MurG protein.

Group XIV, Claim 44, drawn to a computer readable medium encoded with 3-D coordinates of a membrane association site of the MurG protein.

Group XV, Claim's +5-51, drawn to a method for identifying a potential inhibitor of a UDP-glycotransferase enzyme.

Group XVI, Claims 52-87, drawn to a model of UDP-glycotransferase where the model represents a 3-D structure.

Group XVII, Claims 88-97, drawn to a model a donor nucleotide binding site of a UDP-glycosyltransferase protein.

Group XVIII, Claims 98-107, drawn to a model of an acceptor binding site of a UDP-glycotransferase protein.

Group XIX, Claims 108-116, drawn to a model of a membrane association site of a UDP-glycotransferase protein.

Group XX, Claims 117-132, drawn to a computer-assisted method of structure based drug design of bioreative compounds.

Group XXI, Claims 183-184, drawn to a model of a 8-D structure of a MurG protein.

Group XXII, Claims 135-141, drawn to a composition for inhibiting the activity of a glycotransferase.

Group XXIII, Claim 142, drawn to a composition for stimulating the activity of glycotransferase.

Group XXIV, Claims 1+3-1+8, drawn to a method to determine the 3-D structure of a MurG protein.

This International Searching Authority considers the international application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below: The inventions listed in Groups 1-24 do not relate a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical feature for Group 1 is that the MurG is being claimed in its crystalline form. In Group II the special technical feature is that the 3-D structure of the crystalline form of the MurG protein is being claimed. Group III's special technical feature is that the Group is claiming the 3-D structure of the binding site of MurG. In Group IV the special technical feature emerges as the 3-D structure of the acceptor binding site of the MurG protein. Group V embraces the special technical feature of the 3-D structure of a membrane association site. In Group VI the special technical feature is that of the 3-D computer image of the 3-D structure of the MurG protein. Group VII has the special technical feature of a 3-D structure of a 3-D structure of an alpha-carbon backbone of the MurG protein. Group VIII deals with the special technical feature of the 3-D computer image of the 3-D structure of a donor nucleotide binding site of the instant protein. Group IX involves the special technical feature of the 3-D computer image of the 3-D structure of an acceptor binding site. Group X develops the special technical feature of the 3-D computer image of the 3-D structure of a membrane association site of the MurG protein. In Group XI the subject of the special technical feature of a computer readable medium encoded within a set of 3-D coordinates of the MurG protein are described. Group XII addresses the technical feature of a computer readable medium that is encoded with a set of 3-D coordinates of a donor nucleotide binding site of the MurG protein. In Group XIII is drawn to the special technical feature of a computer readable medium with a 3-D set of coordiantes to accommodate the acceptor binding site of a MurG protein. Group IV involves the special technical feature of a computer readable medium that is encoded with a set of 3-D coordinates that is used for the membrane association site of the MurG protein. Group V is involved with the special technical feature of a method for identifying a potential inhibitor a UDP-glycotransferase enzyme. The special technical feature of Group XVI is that of a 3-D model of UDP-glycotransferase. Group XVII addresses the special technical feature of a model of a donor nucleotide binding site of UDP-glycotransferase. Group XVIII addresses the special technical feature of the model of an acceptor binding site of a UDP glycotransferase. Group XIX consists of the special technical feature of a model of the membrane association site of a UDP-glycotransferase. In Group XX we see that the special

technical feature is that of a computer-assisted method of structure based drug design. In Group XXI the special technical feature that emerges is that of a model of a 3-D structure of a MurG protein. Group XXII deals with the special technical feature of a composition for inhibiting the activity of a glycotransferase. Group XXIII addresses the special technical feature of a composition for the stimulation of activity of a glycotransferase. Finally Group XXIV speaks to the special technical feature of a method to determine the 3-D structure of the MurG protein.

# THIS PAGE BLANK (USPTO)