Clustering - Victor Kitov

Clustering

Victor Kitov

Table of Contents

- M-means
- 2 Hierarchical clustering

K-means algorithm

- Suppose we want to cluster our data into g clusters.
- Cluster *i* has a center μ_i , i=1,2,...g.
- Consider the task of minimizing

$$\sum_{n=1}^{N} \rho(x_n, \mu_{z_n})^2 \to \min_{z_1, \dots z_N, \mu_1, \dots \mu_g}$$
 (1)

where $z_i \in \{1, 2, ...g\}$ is cluster assignment for x_i and $\mu_1, ...\mu_g$ are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (1).

K-means algorithm

```
Initialize \mu_j, j=1,2,...g. repeat while stop condition not satisfied: for i=1,2,...N: find cluster number of x_i: z_i = \arg\min_{j \in \{1,2,...g\}} ||x_i - \mu_j|| for j=1,2,...g: \mu_j = \frac{1}{\sum_{n=1}^N \mathbb{I}[z_n=j]} \sum_{n=1}^N \mathbb{I}[z_n=j] x_i
```

Possible stop conditions:

- cluster assignments $z_1, ... z_N$ stop to change (typical)
- maximum number of iterations reached
- cluster means $\{\mu_i, i = 1, 2, ...g\}$ stop changing significantly

K-means properties

- Only local optimum is found
- Results depends on initialization
 - It is common to run algorithm multiple times with different initializations and then select the result minimizing criterion in (1).
- Complexity: O(NDgI), where g is the number of clusters and I is the number of iterations. Why?
 - If clusters exist, algorithm converges with few iterations and complexity is O(NDg)

Gotchas

• K-means assumes that clusters are convex:

- It always finds clusters even if none actually exist
 - need to control cluster quality metrics

K-means for non-convex clusters

K-means for data without clusters

Table of Contents

- 1 K-means
- 4 Hierarchical clustering

Hierarchical clustering

Hierarchical clustering may be:

- top-down
 - hierarchical K-means
- bottom-up
 - agglomerative clustering

Bottom-up clustering demo

Agglomerative clustering

Agglomerative clustering - distances

- Consider clusters $A = \{x_{i_1}, x_{i_2}, ...\}$ and $B = \{x_{j_1}, x_{j_2}, ...\}$.
- We can define the following natural distances
 - nearest neighbour (or single link)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

furthest neighbour (or complete-link)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

group average link

$$\rho(A,B) = \mathsf{mean}_{a \in A, b \in B} \rho(a,b)$$

• centroid distance $(\mu_U = \frac{1}{|U|} \sum_{x \in U} x)$

$$\rho(A,B) = \rho(\mu_A,\mu_B)$$

• median distance $(m_U = median_{x \in U}\{x\})$

$$\rho(A,B) = \rho(m_a,m_b)$$

Agglomerative clustering - distance properties¹

- nearest neighbour may create stretched clusters
- furtherst neighbour creates very compact clusters.
- group average link, centroid and median distance give the compromise.
 - however centroid and median distance may lead to non-monotonous joining distance sequences in agglomerative algorithm.
 - so average link is apriori preferred

¹How similarity matrix is modified on each merge of 2 clusters for single/complete/group average link distances?