Анализ ЭКГ на основе ML ECG Analysis on the ML Algorithms

Исследовательский проект

Выполнила: Зыкова-Мызина Анна Кирилловна, 229 группа, 2 курс

Научный руководитель: Хельвас Александр Валериевич старший преподаватель, МФТИ

Описание предметной области

Анализировалось одно отведение **24-часовых записей холтера**

Предметом анализа являлось **смещение ST-сегмента** — отклонение изоэлектрической линии вверх или вниз, возникающее после QRS-комплекса Обычно его измеряют через 60-80 миллисекунд после J-точки

Актуальность работы

Ручной анализ больших объемов данных холтеровского мониторинга сложен и склонен к ошибкам, а автоматизация позволит врачам быстрее и точнее выявлять потенциально опасные аномалии.

Актуальность данной работы заключается в отсутствии достаточного числа работ, касающихся детекции аномалий **ST** сегмента в данных холтера, а также потенциальной важности проблемы.

Цель и задачи работы

Цель работы – исследовать эффективность альтернативных подходов поиска аномальных эпизодов смещения **ST**-сегмента в записях холтера по одному отведению.

Задачи работы:

- 1. Написать функции для расчета ЧСС и построения спектрограммы по записи холтера
- 2. Изучить соответствующие исследования, связанные с детекцией аномалий ST сегмента
- 3. Написать функцию, которая бы разделяла 24-часовую запись холтера на отдельные удары
- **4.** Написать функцию которая измеряла бы степень отклонения **ST** сегмента и обучить модель **LSTM** автоэнкодер для поиска аномалий в одномерном временном ряду (ΔST segment / time)
- 5. Обучить модель CNN для бинарной классификации ударов сердца (аномальный / нормальный)
- 6. Оценить качество двух построенных моделей

Анализ существующих решений

- 1. В работе Interpretable Assessment of ST-Segment Deviation in ECG Time Series [1] решалась задача многоклассовой классификации:
 - сегментация более длительных записей ЭКГ (одно отведение) на отдельные удары сердца
 - вычленение некоторых признаков (длины сегментов, медианные и средние значения всего сигнала...)
 - дальнейшее обучение векторов признаков (с помощью General Automated Machine learning Assistant, а также LSTM и CNN)
- 2. В работе Deep Learning Networks Accurately Detect ST-Segment Elevation Myocardial Infarction and Culprit Vessel [2] решалась задача бинарной классификации (10 секундных размеченных участков ЭКГ для 12 отведений):
 - были предложены 3 нейронной сети (CNN, LSTM и LSTM CNN)

Описание датасета

Индивидуальные записи **базы данных Long-Term ST** имеют продолжительность от **21** до **24** часов и содержат два или три сигнала ЭКГ.

Также приложена разметка: записаны интервалы эпизодов, во время которых изменение величины ST – сегмента превосходило Vmin = 75 мкВ и длилось не менее Tmin = 30 с

LSTM автокодировщик для поиска аномалий в одномерном временном ряду ($\Delta ST\ segment\ /\ time$)

Разделение записи на Вычисление смещения 24-часовая запись **ST**-сегмента для каждого отдельные удары холтера удара сердца Составление временного Поиск аномалий с Оценка эффективности ряда *ΔST segment /* помощью модели LSTM модели autoencoder time

Смещение ST сегмента вычислялось на основе алгоритма, предложенном в статье Wireless Single-Lead versus Standard 12-Lead ECG, for ST-Segment Deviation during Adenosine Cardiac Stress Scintigraphy[3]

- **1.** Выравнивание изоэлектрической линии
- **2.** Определение точки с наименьшей производной на **RT** интервале

1 этап: Подготовка данных

Удаление размеченных аномалий из тренировочных данных

Использование скользящего среднего для уменьшения шума

Min-Max нормализация

Создание трёхмерного тензора с помощью окон с наложением для **train** и **test**

2 этап: **Обучение на train**

LSTM автокодировщик для поиска

ряду (*\Delta ST segment / time*)

аномалий в одномерном временном

3 этап: **обнаружение аномалий на test**

Расчет ошибки предсказания для каждого интервала

Интервал x помечался аномальным, если **err(x)** > μ + 2,5 σ

Пациент	True Positive	False Positive	False Negative	Precision	Recall
1	4	2	0	0.67	1.00
2	5	3	1	0.62	0.83
3	5	4	1	0.56	0.83
4	5	5	2	0.50	0.71
5	2	1	2	0.67	0.50
6	6	2	2	0.75	0.75
7	7	4	3	0.64	0.70
8	3	1	1	0.75	0.75
9	4	6	1	0.40	0.80
10	16	5	5	0.76	0.76
Bcero	57	33	18	0.64	0.76

Свёрточная нейронная сеть (CNN) для бинарной классификации аномальных и нормальных ударов

Анализ ЭКГ на основе **ML**

Разделение записи на Разметка ударов на 24-часовая запись отдельные удары аномальные \ холтера сердца нормальные* Оценка эффективности Бинарная классификация с помощью СNN модели

^{*} Удар помечался как аномальный, если он попадал в размеченный отрезок (величина смещения >75мВ и продолжительность >30 сек), что является неточной разметкой

1 этап: подготовка данных

Были выделены отдельные удары сердца, начиная с пика S и заканчивая пиком T

Min – Max нормализация

156993 нормальных и 71936 ударов сердца (обработано 30 холтеров)

2 этап: обучение модели - CNN сеть, принимающая на вход одномерный массив и возвращающая значения 0 / 1

3 свёротчных слоя с различным количеством фильтров: 32, 32, 64 с функцией активации relu, а также слои Batch Normalization После 2 и 3 свёрточных слоёв MaxPooling1D с размером окна 2

3 этап: **тестирование** Accuracy - 0.90, Precision - 0.29, Recall - 0.44, F1-Score - 0.35

Класс	Precision	Recall	F1-Score	Support
0	0.96	0.93	0.94	90,099
1	0.287	0.437	0.347	6,142
Accuracy				0.894
Macro avg	0.62	0.68	0.64	96,241
Weighted avg	0.92	0.89	0.90	96,241

Результаты

Написаны функции для первичной обработки данных холтера, а также **2** модели, решающие задачу поиска аномальных эпизодов смещения **ST** – сегмента.

1. **LSTM** автоэнкодер продемонстрировал свою эффективность: метрики составили **Precision** – **0.63** и **Recall** – **0.76**.

Перспективы работ: написать более точную функцию для измерения ST – сегмента.

2. CNN продемонстрировал такие показатели как: Accuracy - 0.90, Precision - 0.29, Recall - 0.44, F1-Score - 0.35, что говорит о низкой эффективности использования данного подхода на базе данных Long-Term ST.

Перспективы работ: протестировать предложенную модель на более тщательно размеченных данных, где каждый сердечный удар отмечен как нормальный или аномальный.

Список использованных источников

- 1) Interpretable Assessment of ST-Segment Deviation in ECG Time Series / Israel Campero Jurado, Andrejs Fedjajevs, Joaquin Vanschoren, Aarnout Brombacher // Sensors. 2022. Vol. 22, no. 13. https://www.mdpi.com/1424-8220/22/13/4919
- 2) Deep Learning Networks Accurately Detect ST-Segment Elevation Myocardial Infarction and Culprit Vessel / Lin wu, Guifang Huang, Xianguan Yu et al. // Frontiers in Cardiovascular Medicine. 2022. 03. Vol. 9.
- 3) 6. Wireless Single-Lead versus Standard 12-Lead ECG, for ST-Segment Deviation during Adenosine Cardiac Stress Scintigraphy / Luna Fabricius Ekenberg, Dan Eik Høfsten, Søren M. Rasmussen et al. // Sensors. 2023. Vol. 23, no. 6. https://www.mdpi.com/1424-8220/ 23/6/2962.

