

COMPUTATIONAL MODELS IN EMBEDDED DESIGN

The following computational models are commonly used in embedded system design

- Data Flow Graph (DFG) model
- State Machine model
- Concurrent Process model
- Sequential Program model (Flow charts)
- Object Oriented model

DATA FLOW GRAPH/DIAGRAM (DFG) MODEL

- DFG model translates the data processing requirement into a data flow graph
- The model emphasizes on the data and operations on the data which transforms the input data to output data
- In a DFG model, a data path is a data flow path from input to output
- The Contol (CDFG) model is used for modelling applications involving conditional program execution.
 - Contains data flow nodes and decision nodes.
 - control node is represented by a 'diamond' block

- Used for modelling reactive or event-driven embedded systems whose processing behavior are dependent on state transitions
- Embedded systems used in control and industrial applications are typical examples for event driven systems

- The model describes the system behavior with states, events, actions and transitions.
 - > State is a representation of a current situation
 - An *event* is an input to the state
 - > Transition is the movement from one state to another
 - > Action is an activity to be performed by the state machine

➤ A Finite State Machine (FSM) model is one in which the number of states are finite (known)

Eg: A door

2 states: Opened, Closed

Inputs: action

Exercise

- Consider an embedded system for driver/passenger seat belt warning system in an automotive. Design the system using the FSM model.
- The system requirements are captured as:
- 1. When the vehicle ignition is turned on and the seat belt is not fastened within 10 seconds of ignition ON, the system generates an alarm signal for 5 seconds
- 2. The alarm is turned off when the alarm time (5 seconds) expires, or when the driver/passenger fastens the belt or if the ignition is turned off, which ever happens first.

Solution

- States: alarm off, waiting, alarm on
- Events: ignition key on, ignition key off, timer expire, alarm time expire and seat belt on.

Draw the State Machine Model!

FINITE STATE MACHINES (FSM)

There are basically 2 common types of FSMs:

- Mealy FSM
 - Outputs depend on both current state and inputs
 - Asynchronous
 - Requires fewer states
- Moore FSM
 - Outputs depend on current states only
 - Synchronous
 - Requires more states

Mealy Finite State Machine

Current state	Input	Next State	Output
0 0 (A)	0	0 1 (B)	1
0 0 (A)	1	0 0 (A)	1
0 1 (B)	0	10(C)	0
0 1 (B)	1	11(D)	0
10(C)	0	11(D)	0
10(C)	1	10(C)	1
11(D)	0	0 1 (B)	1
11(D)	1	0 0 (A)	1

State table

Mealy: Outputs depends on current state AND input

Moore Finite State Machine

SEQUENTIAL PROGRAM MODEL (FLOW CHARTS)

- ➤ In this model, the functions or processing requirements are executed in sequence
- The program instructions are iterated and executed conditionally and the data gets transformed through a series of operations
 - Flow charts is another tool used for modelling sequential program flow

Flow Chart Standard Symbols

SEQUENTIAL PROGRAM MODEL (FLOW CHARTS)

Example: the seat belt warning system problem

Example flowchart from:

https://commons.wikimedia.org/wiki/File:Flowchart_connector_example.svg

