Universidade Estadual de Campinas Instituto de Computação

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Professor: Hélio Pedrini

Trabalho 1

1 Especificação do Problema

O objetivo deste trabalho é realizar alguns processamentos básicos em imagens digitais.

1.1 Combinação de Imagens

Converter duas imagens coloridas em imagens de níveis de cinza. Combinar as imagens de mesmo tamanho por meio da média de seus níveis de cinza.

(a) imagem A

(b) imagem B

(c) 0.5*A + 0.5*B

1.2 Planos de Bits

Converter uma imagem colorida em uma imagem de níveis de cinza. Extrair os planos de bits 1 a 8, exibindo cada um deles na tela. O plano 1 contém os bits menos significativos de todos os pixels da imagem, enquanto o plano 8 contém os bits mais significativos de todos os pixels da imagem. Comparar os resultados e explicar as diferenças.

(a) imagem

(b) plano 5

1.3 Comparação entre Imagens

Computar os histogramas de cores das imagens *peppers.png* e *baboon.png* para cada canal de cor e mostrar as curvas. Aplicar uma quantização de 32 *bins* para cada canal de cor.

Para comparar a similaridade das imagens, primeiro normalizar cada histograma de cor tal que a soma dos elementos se torne 1 e então computar a distância Euclidiana dos dois histogramas de cor. Para imagens coloridas, pode-se computar a distância entre os histogramas para cada canal de cor e então calcular a média como a distância final das duas imagens.

Ajustar o número de bins para cada canal com 4, 32, 128 e 256 e computar as distâncias entre as imagens.

1.4 Filtragem

Converter uma imagem colorida em uma imagem de níveis de cinza e aplicar o seguinte filtro da média de dimensões 3×3 pixels. Explicar o efeito do filtro na imagem.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1.5 Mosaicos

Converter uma imagem colorida em uma imagem de níveis de cinza e criar um mosaico de 4×4 blocos da imagem. A disposição dos blocos pode ser escolhida de forma arbitrária ou aleatória.

(a) imagem

(b) mosaico

2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos encontram-se disponíveis no diretório: http://www.ic.unicamp.br/~helio/imagens_png/

3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*) se forem coloridas ou no formato PGM (*Portable GrayMap*) se forem monocromáticas. Os gráficos gerados devem ser exibidos na tela.

4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
 - código fonte: o arquivo final deve estar no formato *zip* ou no formato *tgz*, contendo todos os programas necessários para sua execução.
 - relatório impresso: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, eventuais limitações ou situações especiais não tratadas pelo programa.
- Data de entrega: 09/09/2015
- O trabalho deve ser submetido:

para o e-mail: helio.pedrini@gmail.com

com o assunto: [Processamento de Imagens] Trabalho 1

5 Observações Gerais

- Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente. Trabalhos entregues com atraso terão 10% da nota descontada por dia de atraso. Não serão aceitos trabalhos após 5 dias da data de entrega.
- Os seguintes aspectos serão considerados na avaliação: funcionamento da implementação, clareza do código, qualidade do relatório técnico.