IOB-UART, a RISC-V UART

User Guide, V0.1, Build e10e536

February 14, 2022

IOB-UART, a RISC-V UART

USER GUIDE, V0.1, BUILD E10E536

Contents

		oduction	5
2	Sym	abol	5
3	Feat	iures	5
4	Ben	efits	6
5	Deli	verables	6
6	Bloc	ck Diagram and Description	6
7	Inte	rface Signals	8
8	Soft	ware Accessible Registers	9
9	Impl	ementation Results	9
Li	ist c	of Tables	
Li	ist c	of Tables General interface signals	8
Li			
Li	1	General interface signals	8
Li	1	General interface signals	8
Li	1 2 3	General interface signals	8 8
	1 2 3 4 5	General interface signals. RS232 Interface Signals	8 8
	1 2 3 4 5	General interface signals. RS232 Interface Signals. CPU Native Slave Interface Signals. UART software accessible registers. FPGA results for Kintex Ultrascale (left) and Cyclone V GT (right).	8 8

IOB-UART, a RISC-V UART

USER GUIDE, V0.1, BUILD E10E536

1 Introduction

The IObundle UART is a RISC-V-based Peripheral written in Verilog, which users can download for free, modify, simulate and implement in FPGA or ASIC. It is written in Verilog and includes a C software driver. The IObundle UART is a very compact IP that works at high clock rates if needed. It supports full-duplex operation and a configurable baud rate. The IObundle UART has a fixed configuration for the Start and Stop bits. More flexible licensable commercial versions are available upon request.

2 Symbol

Figure 1: IP core symbol.

3 Features

- Supported in IObundle's RISC-V IOb-SoC open-source and free of charge template.
- IObundle's IOb-SoC native CPU interface.
- · Verilog basic UART implementation.
- · Soft reset and enable functions.
- · Runtime configurable baud rate
- · C software driver at the bare-metal level.
- Simple Verilog testbench for the IP's nucleus.
- System-level Verilog testbench available when simulating the IP embedded in IOb-SoC.
- Simulation Makefile for the open-source and free of charge Icarus Verilog simulator.
- FPGA synthesis and implementation scripts for two FPGA families from two FPGA vendors.
- · Automated creation of FPGA netlists
- Automated production of documentation using the open-source and free Latex framework.

- IP data automatically extracted from FPGA tool logs to include in documents.
- Makefile tree for full automation of simulation, FPGA implementation and document production.
- AXI4 Lite CPU interface (premium option).
- · Parity bits (premium option).

4 Benefits

- · Compact and easy to integrate hardware and software implementation
- · Can fit many instances in low cost FPGAs and ASICs
- · Low power consumption

5 Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code, and respective synthesis and implementation scripts
- ASIC or FPGA verification environment by simulation and emulation
- · Bare-metal software driver and example user software
- User documentation for easy system integration
- Example integration in IOb-SoC (optional)

6 Block Diagram and Description

A high-level block diagram of the core is presented in Figure 2, followed by a brief description of each of the blocks.

Figure 2: High-level block diagram.

SERIAL TRANSMIT CONTROLLER: This block serializes the data written to the UART_TXDATA by the CPU, and sends it to the txd ouput.

SERIAL REICEIVE CONTROLLER: This block deserializes the data received from the pin rxd input, and writes it to the UART_RXDATA register, so the CPU can read it.

7 Interface Signals

The interface signals of the core are described in the following tables.

Name	Direction	Width	Description

Table 1: General interface signals.

Name	Direction	Width	Description	
interrupt	OUTPUT	1	to be done	
txd	OUTPUT	1	Serial transmit line	
rxd	INPUT	1	Serial receive line	
cts	INPUT	1	Clear to send; the destination is ready to receive a transmission sent by the UART	
rts	OUTPUT	1	Ready to send; the UART is ready to receive a transmission from the sender.	

Table 2: RS232 Interface Signals

Name	Direction	Width	Description		
valid	INPUT	1	Native CPU interface valid signal		
address	INPUT	ADDR_W	Native CPU interface address signal		
wdata	INPUT	DATA_W	Native CPU interface data write signal		
wstrb	INPUT	DATA_W/8	Native CPU interface write strobe signal		
rdata	OUTPUT	DATA_W	Native CPU interface read data signal		
ready	OUTPUT	1	Native CPU interface ready signal		

Table 3: CPU Native Slave Interface Signals

8 Software Accessible Registers

The software accessible registers of the core are described in the following tables. The tables give information on the name, read/write capability, word aligned addresses, used word bits, and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
UART_SOFTRESET	W	0x00	0:0	0	Bit duration in system clock cycles.
UART_DIV	W	0x04	15:0	0	Bit duration in system clock cycles.
UART_TXDATA	W	0x08	7:0	0	TX data
UART_TXEN	W	0x0c	0:0	0	TX enable.
UART_TXREADY	R	0x10	0:0	0	TX ready to receive data
UART_RXDATA	R	0x14	7:0	0	RX data
UART_RXEN	W	0x18	0:0	0	RX enable.
UART_RXREADY	R	0x1c	0:0	0	RX data is ready to be read.

Table 4: UART software accessible registers.

9 Implementation Results

Resource	Used
LUTs	100
Registers	112
DSPs	0
BRAM	0

Resource	Used
ALM	87
FF	121
DSP	0
BRAM blocks	0
BRAM bits	0

Table 5: FPGA results for Kintex Ultrascale (left) and Cyclone V GT (right).