Systematic Literature Review of Testing Tools and Techniques for Reinforcement Learning Agents

Groza Iulia, Havirneanu Andrei, Ilie Andreea

Position

Fig. 4. *Mountain Car* problem.

Fig. 3. Cart-Pole balancing problem.

Approach	L	Statistics	Artificial time series	Real time series
<i>Q</i> La	5	μ	472.02%	40.00%
		σ	32.79%	139.09%
		Confidence interval	[407.76%, 536.29%]	[-226.73%, 306.73%]
KebRL	5	μ	435.42%	-7.99%
		σ	41.13%	131.26%
		Confidence interval	[354.81%, 516.02%]	[-265.26%, 249.28%]
<i>Q</i> La	22	μ	337.68%	92.92%
		σ	40.80%	149.28%
		Confidence interval	[257.71%,417.64%]	[-199.66%, 385.50%]
KbRL	22	μ	216.61%	13.20%
		σ	49.98%	153.34%
		Confidence interval	[118.64%, 314.58%]	[-287.34%, 313.74%]

Table 1. Statistics about the final cumulative returns.

Figure 27: PPO Hyperparameter Importances on Brax Ant (left), Halfcheetah (middle) and Humanoid (right).

Figure 28: DQN Hyperparameter Importances on Acrobot (left), MiniGrid Empty (middle) and MiniGrid DoorKey (right).

Figure 29: SAC Hyperparameter Importances on Pendulum (left) and Brax Ant(right).

Figure 30: SAC Hyperparameter Importances on Brax Halfcheetah (left) and Humanoid (right).

Figure 1: (*Left*: ALE. *Right*: TOYBOX.) Images of near-start frames for both Atari and TOYBOX implementations of Breakout.

Figure 1: Super Mario Bros. Up: Reference Trace and Boundary States. Down: Reference Trace and Fuzz Traces.

Figure 3: Safety Testing: Relative frequency of fail verdicts

Fig. 1. Example: A car moves with velocity \vec{v} towards a fixed obstacle at distance Δ , learning how to brake. The control policy chooses a deceleration with which to brake. The agent receives a reward based on the location where stopped and updates the policy

Fig. 8. Mutation results with generic tests for SARSA/Expected SARSA (left) and case studies (right).

Figure 1. An overview of our work. c-MARL algorithm could be attacked from three aspects, namely state, action and reward. We test the robustness of c-MARL from these aspects.

Figure 1: Performance of RL Agent vs Random Agent

Figure 2: First 200 games of RL Agent vs Random Agent

References:

- 1. "A Search-Based Testing Approach for Deep Reinforcement Learning Agents", Zolfagharian, Amirhossein and Abdellatif, Manel and Briand, 2023
- 2. "Testing of Deep Reinforcement Learning Agents with Surrogate Models", Biagiola, Matteo and Tonella, Paolo, 2024
- 3. "Testing Different Reinforcement Learning Configurations for Financial Trading: Introduction and Applications", Francesco Bertoluzzo and Marco Corazza, 2012
- 4. "Hyperparameters in Reinforcement Learning and How To Tune Them", Eimer, Theresa and Lindauer, Marius and Raileanu, Roberta, 2023
- 5. "TOYBOX: Better Atari Environments for Testing Reinforcement Learning Agents", Foley, John and Tosch, Emma and Clary, Kaleigh and Jensen, David, 2019
- 6. "Search-Based Testing of Reinforcement Learning", Martin Tappler and Filip Cano Córdoba and Bernhard K. Aichernig and Bettina Könighofer, 2022
- 7. "Testing the Plasticity of Reinforcement Learning Based Systems" by Biagiola, Matteo and Tonella, Paolo, 2022
- 8. "Formal Specification and Testing for Reinforcement Learning", Mahsa Varshosaz and Mohsen Ghaffari and Einar Broch Johnsen and Andrzej Wąsowski, 2023
- 9. "Towards Comprehensive Testing on the Robustness of Cooperative Multi-agent Reinforcement Learning", Jun Guo and Yonghong Chen and Yihang Hao and Zixin Yin and Yin Yu and Simin Li, 2022
- 10. "Reinforcement Learning Agents in Colonel Blotto", Joseph Christian G. Noel, 2022