Engenharia de Software

Arquitectura de Software

Luís Morgado

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores

Processo de Desenvolvimento

Análise

Concepção

- Transição análise de requisitos projecto de arquitectura de software
 - Analisar, compreender e verificar a forma de realizar a solução proposta
- Elaborar a arquitectura da solução
 - Conceber e especificar a arquitectura da solução
- Construção
- Verificação

Arquitectura de Software

Architecture is defined by the recommended practice as the <u>fundamental organization of a system</u>, embodied in its <u>components</u>, their <u>relationships</u> to each other and the environment, and the <u>principles</u> governing its design and evolution.

[ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems]

App - Specific Extent Data base (s) Enterprise Architecture App - Specific Extent Data base (s) App - Specific Extent Data base (s) Legacy Data base (s)

McGovern, J., Ambler, S., Stevens, M., Linn, J., Sharan, V., and Jo, E. *A Practical Guide to Enterprise Architecture*. Upper Saddle River, New Jersey: Prentice Hall, 2004

Mozilla Web Browser

Grosskurth, A. and Godfrey, M. "A Reference Architecture for Web Browsers." IEEE Conference on Software Maintenance, 2005

Arquitectura de Software

Especificação de um sistema de software

- Partes
 - Componentes
 - Encapsulam um conjunto coerente de funcionalidades
 - Elementos estruturais
 - Interfaces
 - Comportamento
- Relações entre partes
 - Ligações, conectores
 - Realizam a interligação entre componentes
- Princípios
 - Guiam a concepção e organização

Níveis de Modelação

Três níveis principais de modelação

- Independente do Modelo Computacional (CIM)
 - Também designado *Modelo de Negócio* ou de *Domínio*, descreve o contexto de utilização do sistema e o seu comportamento e características esperadas
 - Arquitectura conceptual
- Independente da Plataforma de Execução (PIM)
 - Descreve o sistema com tanto detalhe quanto possível de forma independente da plataforma de execução
 - · Arquitectura lógica
- Específico da Plataforma de Execução (PSM)
 - Descreve a concretização do sistema para uma plataforma de execução específica
 - Arquitectura detalhada

Níveis de Arquitectura

Níveis de Arquitectura

Subsistemas

- Agregados de mecanismos
- Funcionalidade global

Mecanismos

- Agregados de elementos
- Funcionalidade local

Elementos

- Partes base
- Funcionalidade micro

UML

3 Níveis de Projecto

Projecto de Subsistemas

Âmbito: Subsistemas, Processos, ...

O que é especificado:

- Organização do sistema
- Estratégias de concorrência e comunicação entre processos
- ...

Projecto de Mecanismos

Âmbito: Grupos de classes

O que é especificado:

- Instâncias de Padrões de Arquitectura ("Design Patterns")
- Utilização de classes Contentoras
- Estratégias de gestão de erros (nível intermédio)
- •

Projecto Detalhado

Âmbito: Classes, Interfaces, ...

O que é especificado:

- Detalhes de implementação de atributos e operações
- Definição de algoritmos
- •

Sistema

Inter-objecto

Intra-objecto

Arquitectura de Software

- Métricas
- Princípios
- Padrões

[Booch, 2004]

Complexidade

- Redução
- Controlo

Arquitectura de Software

- Métricas
- Princípios
- Padrões

Métricas de Arquitectura

Coesão

 Nível coerência funcional de um subsistema/módulo (até que ponto esse módulo realiza uma única função)

Acoplamento

Grau de interdependência entre subsistemas

Simplicidade

Nível de facilidade de compreensão/comunicação da arquitectura

Adaptabilidade

 Nível de facilidade de alteração da arquitectura para incorporação de novos requisitos ou de alterações nos requisitos previamente definidos

Coesão e Acoplamento

· Coesão:

- Nível coerência funcional de um subsistema/módulo (até que ponto esse módulo realiza uma única função)
- Característica intra-modular

Acoplamento:

- Grau de interdependência entre subsistemas
- Característica inter-modular

Coesão e Acoplamento

Exemplo

[Laplante, 2007]

Alta coesão Baixo acoplamento Baixa coesão Alto acoplamento

Coesão (intra-modular)

Coesão

Nível de coesão:

- Um módulo com um nível de coesão baixo é mais complexo, logo mais difícil de conceber e de testar
- Um nível de coesão baixo leva a que, em caso de necessidade de alteração de um subsistema, o número de módulos afectados seja elevado
- Se o nível de coesão for elevado, o número de módulos afectados será minimizado

Coesão

Coesão lógica

Partes do mesmo tipo são agrupadas num módulo

Coesão temporal

 Partes que são executadas em momentos próximos no tempo são agrupadas num módulo

Coesão funcional

 Partes que contribuem para uma função específica bem definida são agrupadas num módulo

Acoplamento

Acoplamento estrutural

 Uma parte depende estruturalmente de outra parte, podendo directamente utilizar, aceder ou alterar outra parte

Acoplamento estrutural comum

Múltiplas partes podem aceder ou alterar uma parte comum

Acoplamento funcional

 Uma parte depende de um contracto funcional (interface), independentemente da parte que o implementa

Acoplamento denotacional (semântico)

 Uma parte depende do significado associado a uma característica ou funcionalidade, independentemente da parte que o implementa e do contracto funcional com que é definido

Acoplamento (inter-modular)

Acoplamento

A redução do nível de acoplamento permite:

- Maior facilidade de desenvolvimento, instalação, manutenção e expansão
- Melhor escalabilidade, devido à possibilidade de distribuição e replicação de módulos que prestem serviços, sem que isso tenha um impacto significativo nos clientes desses subsistemas/módulos
- Maior tolerância a falhas, logo maior robustez, uma vez que a falha de um subsistema/módulo tem um impacto restrito

Tipos de Acoplamento

Organização estática

Nível de acoplamento

Organização dinâmica

Arquitectura de Software

- Métricas
- Princípios
- Padrões

Princípios de Arquitectura

- Abstracção
- Modularidade
- Encapsulamento
- Factorização

Subjacente

- Maximização da coesão
- Minimização do acoplamento

Abstracção

O processo de descrição de conhecimento a diferentes níveis de detalhe (quantidade de informação) e tipos de representação (estrutura da informação)

[Korf, 1980]

Abstracção

Abstracção

- Abstracção é uma ferramenta base para lidar com a complexidade
 - Identificação de características comuns a diferentes partes
 - Criação de ordem de forma progressiva
 - realçar o que é essencial, omitir detalhes não relevantes
 - Modelos
- Desenvolvimento de um sistema complexo
 - Processo iterativo guiado por conhecimento

Modularidade

Decomposição

- De um sistema em partes coesas
 - Para sistematizar interacções
 - Para lidar com a explosão combinatória

Encapsulamento

- Isolamento dos detalhes internos das partes de um sistema em relação ao exterior
 - Para reduzir dependências (interacções)
 - Relacionar estrutura e função no contexto de uma parte
 - Acesso exclusivo através das interfaces disponibilizadas

Interfaces

Contractos funcionais para interação com o exterior

Factorização

Redundância

Uma das principais causas de anomalias no desenvolvimento de software

Redução de redundância por factorização

Mecanismos de Factorização

HERANÇA

- Nível de acoplamento alto
- B **é** A

Β**é**Α

DELEGAÇÃO

- Nível de acoplamento baixo
- B utiliza A
- Agregação de partes
- Acoplamento pode variar dinamicamente

B utiliza A

Herança / Delegação

Redução de redundância em modelos estruturais

- Herança
 - Nível de acoplamento alto
 - BéA
 - Ênfase na estrutura
 - Arquitecturas orientadas a objectos

Delegação

- Nível de acoplamento baixo
- B utiliza A
- Ênfase na funcionalidade
- Agregação de partes
- Acoplamento pode variar dinamicamente
 - Padrões de interacção podem ser determinados em tempo de execução
 - Arquitecturas orientadas a serviços

Bibliografia

[Pressman, 2003]

R. Pressman, Software Engineering: a Practitioner's Approach, McGraw-Hill, 2003.

[Gamma et al., 1995]

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley, 1995.

[Shaw & Garlan, 1996]

M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

[Vernon, 2013]

V. Vernon, Implementing Domain Driven Design, Addison-Wesley, 2013.

[Parnas, 1972]

D. Parnas, On the Criteria to Be Used in Decomposing Systems into Modules, Communications of the ACM 15-12, 1968.

[Kruchten, 1995]

F. Kruchten, Architectural Blueprints - The "4+1" View Model of Software Architecture, IEEE Software, 12-6, 1995.

[Schach, 2010]

S. Schach, Object-Oriented and Classical Software Engineering, 8th Edition, McGraw-Hill, 2010.

[Booch, 2004]

G. Booch, Software Architecture, IBM, 2004.

[Korf, 1980]

R. Korf, Toward a model of representation changes, Artificial Intelligence, Volume 14, Issue 1, 1980.

[Laplante, 2007]

P. Laplante, What Every Engineer Should Know About Software Engineering, CRC Press, 2007.

