B Suppose that the data mining task is to cluster the following points into 3 clusters .A1(2,10), A2(2,5), A3(8,4), B1(5,8), B2(7,5), B3(6,4), C1(1,2), C2(4,9). The distance function is Euclidean distance .Suppose we initially assign A1,B1,C1 as the center of each cluster respectively, Use the k means algorithm to show only a) the three cluster centers after the first round of execution b) The final three clusters. (10)

=>

Initial Centroids:

A1: (2, 10)

B1: (5, 8)

C1: (1, 2)

New Centroids:

A1: (2, 10) ~

B1: (6, 6) -

C1: (1.5, 3.5) ~

Data Points					Cluster	New				
			2	10	5	8	1	2	Cluster	Cluster
A1	2	10	0.00		3.61		8.06		1	
A2	2	5	5.00		4.24		3.16		3	
A3	8	4	8.49		5.00		7.28		2	
B1	5	8	3.61		0.00		7.21		2	
B2	7	5	7.07		3.61		6.71		2	
В3	6	4	7.21		4.12		5.39		2	
C1	1	2	8.06		7.21		0.00		3	
C2	4	9	2.24		1.41		7.62		2	

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

II Subscribe

Current Centroids:

A1: (2, 10)

B1: (6, 6)

C1: (1.5, 3.5)

New Centroids:

A1: (3, 9.5) -

B1: (6.5, 5.25)

C1: (1.5, 3.5)

	Data Points				Cluster	New				
: Da	ita Poir	2	10	6	6	1.5 1.5		Cluster	Cluster	
A1	2	10	0.00		5.66		6.52		1	1
A2	2	5	5.00		4.12		1.58		3	3
A3	8	4	8.49		2.83		6.52		2	2
B1	5	8	3.61		2.24		5.	5.70		2
B2	7	5	7.07		1.41		5.70		2	2
В3	6	4	7.21		2.00		4.53		2	2
C1	1	2	8.06		6.40		1.58		3	3
C2	4	9	2.24		3.61		6.04		2	1

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Current Centroids:

A1: (3, 9.5)

B1: (6.5, 5.25)

C1: (1.5, 3.5)

New Centroids:

A1: (3.67, 9)

B1: (7, 4.33)

C1: (1.5, 3.5)

Da	Data Points				Cluster	New				
Data Politis			3	9.5	6.5	5.25	1.5 3.5		Cluster	Cluster
A1	2	10	1.12		6.54		6.52		1	1
A2	2	5	4.61		4.51		1.58		3	3
A3	8	4	7.43		1.95		6.52		2	2
B1	5	8	2.50		3.13		5.70		2	1
B2	7	5	6.02		0.56		5.70		2	2
В3	6	4	6.26		1.35		4.53		2	2
C1	1	2	7.76		6.39		1.58		3	3
C2	4	9	1.12		4.51		6.04		1	1

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Current Centroids:

A1: (3.67, 9) B1: (7, 4.33)

C1: (1.5, 3.5)

[Da	Data Points				Cluster	New				
:	Da				9	7	4.33 1.5 3.5		Cluster	Cluster	
	-A1	2	10	1.94		7.56		6.52		1	1
	A2	2	5	4.33		5.04		1.58		3	3
	A3	8	4	6.62		1.05		6.52		2	2
	-B1	5	8	1.67		4.18		5.70		1	1
	B2	7	5	5.21		0.67		5.70		2	2
	B3	6	4	5.52		1.05		4.53		2	2
	C1	1	2	7.49		6.44		1.58		3	3
	C2	4	9	0.33		5.55		6.04		1	1

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$
 $k = 2$

=>

Initially m1 and m2 are taken randomly from the set

$$m_1 = 4$$
 $m_2 = 12$
 $m_2 = 12$
 $m_2 = 10, 11, 12, 20, 25, 3d$
 $m_1 = 4$
 $m_2 = 10$
 $m_2 = 10$
 $m_2 = 10$
 $m_2 = 10$

Here, below, m1 and m2 are obtained by taking mean of k1 and k2 respectively

Here, below, m1 and m2 are obtained by taking mean of k1 and k2 respectively

m,=7 m2=25
Thus we are getting same mean we have to stop

 $K_1 = \begin{cases} 2,3,4,10,11,12^3\\ K_2 = \begin{cases} 20,25,30\end{cases} \end{cases}$