Non-Deterministic Finite Automata

Automa finito deterministico calcolo finito e deterministico sequenziale, un segmento di Ing dell'input

Automi non deterministici (NFA)

alfabeto =
$$\{a\}$$

alfabeto = $\{a\}$

alfabeto =
$$\{a\}$$

Prima delle due scelte

Prima scelta

Prima scelta

Abbiamo consumato tutto l'input

Seconda scelta

Seconda scelta

Input non può essere tutto usato

un NFA accetta una stringa: Se esiste una computazione che accetta la stringa

Tutta la stringa di input è stata letta e l'automa Si trova in uno stato finale

aa È accettato dal NFA:

"accettato"

Perchè la
Computazione
accetta aa
10/04/2021

Questa computazione è ignorata

12

Esempio computazione che rigettà

a

Prima scelta

Seconda scelta

Seconda scelta

Un altro esempio

Prima scelta

First Choice

Input cannot be consumed

Second Choice

Second Choice

Input non viene tutto consumato

An NFA rejects a string:

Se non vi è una computazione del NFA che accetta la stringa.

Per ogni computazione:

- · tutto l'input è consumato e l'automa
- · non ha raggiunto uno stato finale

0

· L'input non è stato tutto consumato

aaa È rigettato dal NFA:

Tutte le possibili computazioni non raggiungono uno stato finale

Linguaggio accettato: $L = \{aa\}$

Lambda transizione

La testina dell'input non si muove

Tutto l'input è esaminato

"accettato"

stringa aa è accettata

a

(la testina non si muove)

Input non viene analizato tutto

Automa si ferma

"rigettato"

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

stringa aaa è rigettata

Linguaggio accettato: $L = \{aa\}$

Esiste una computazione si Per ogni computazione no

Un altro NFA

Un altra stringa

Linguaggio accettato

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

NFA esempio

Remarks:

- ·Il simbolo λ non appare mai
- ·sul nastro di input
- ·Semplici automata:

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$ $\lambda \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Funzione di transizione δ

$$\delta(q,x) = \{q_1,q_2,\ldots,q_k\}$$

Stati risultanti con una transizione con simbolo x

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Funzione di transizione estesa δ $\hat{}$

La stessa cosa δ ma applicata a stringhe

$$\delta^*(q_0,a) = \{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

In generale

 $q_j \in \delta^*(q_i, w)$: vi è un cammino da q_i a q_j con label w

Grado di non determinismo di un nodo per ogni nodo il numero di archi con la stessa label.

Grado di non determinismo di un automa, il grado massimo di non determinismo di tutti

The Language of an NFA M

Il linguaggio accettato daM è:

$$L(M) = \{w_1, w_2, ..., w_n\}$$

dove
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

E vi è un

$$q_k \in F$$
 (state finale)

 $w_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,aa) = \{q_4,q_5\} \qquad aa \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \longrightarrow ab \in L(M)$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \longrightarrow F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \longrightarrow aaba \in L(M)$$

$$= F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,aba) = \{q_1\} \qquad aba \notin L(M)$$

$$\notin F$$

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\}$$

```
\delta^*(stato, cW)=
delta_*(q,W)
con q elemento dell'insieme {delta(stato, c)}
            q \in \delta^*(q,\lambda) Per ogni stato
```

```
1 \delta *(stato, cW)=
    \delta^*(q,W)
    con q \in \{\delta (stato, c)\}
     q \in \delta^*(q,\lambda) Per ogni stato
```

NFA accettano i linguaggi regolari

Equivalenza tra macchine

Definizione:

macchina M_1 è equivalente alla macchina M_2

se
$$L(M_1) = L(M_2)$$

Esempio di macchine equivalenti

$$L(M_1) = \{10\} *$$

Teorema:

NFA e DFA hanno lo stesso potere di computazione, Accettano gli stessi inguaggi.

dimostrazione: mostreremo

Linguaggi a Accettati da NFA Linguaggi regolari AND Linguaggi a Accettati da NFA

Parte prima

ogni DFA è banalmente un NFA

Ogni linguaggio Laccettato da un DFA È anche accettato da un NFA

Parte seconda

Ogni nfa può essere tradotto in un nfa

Ogni linguaggio L accettato da un NFA È anche accettato da un DFA

Conversione da NFA a DFA

$$\delta^*(q_0,a) = \{q_1,q_2\}$$

$\delta^*(q_0,b) = \emptyset$ Insieme vuoto

Fine della costruzione

Procedura generale

Input: NFA M

Output: un equivalente DFA M' con L(M) = L(M')

NFA ha gli stati

 q_0, q_1, q_2, \dots

DFA ha gli stati definiti dall'insieme delle parti

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Step della procedura

step

1. Stato iniziale NFA: q_0

stato iniziale del DFA: $\{q_0\}$

esempio

2. per ogni stato DFA

$$\{q_i,q_j,...,q_m\}$$

calcolo nel NFA

$$\begin{array}{c}
\delta^*(q_i,a) \\
\cup \delta^*(q_j,a)
\end{array} = \begin{cases}
q'_k, q'_1, \dots, q'_n \end{cases}$$

$$\cdots$$

$$\cup \delta^*(q_m,a)$$
unione
$$= \{q'_k, q'_1, \dots, q'_n \}$$

addiziona questa nuova transizione al DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

esempio
$$\delta^*(q_0, a) = \{q_1, q_2\}$$

NFA M

DFA M'

$$\delta(\{q_0\},a) = \{q_1,q_2\}$$

3. Ripeti lo step 2 per ogni stato nel DFA e simboli nell'alfabeto finchè non vi sono più stati che possono essere addizionati al DFA

esempio

4.

$$\{q_i,q_j,...,q_m\}$$

Per ogni stato DFA

```
Se qualche q_j è uno stato di accettazione del NFA Allora \{q_i,q_j,...,q_m\} è uno stato di accettazione del DFA
```

Example

Step della procedura

step

1. Stato iniziale NFA: q_0

stato iniziale del DFA: $\{q_0\}$

2. per ogni stato DFA

$$\{q_i,q_j,...,q_m\}$$

calcolo nel NFA

$$\begin{array}{c}
\delta * (q_i, a) \\
 \cup \delta * (q_j, a)
\end{array}
= \{q'_k, q'_1, ..., q'_n\} \\
 \dots \\
 \cup \delta * (q_m, a)$$

addiziona questa nuova transizione al DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

3. Ripeti lo step 2 per ogni stato nel DFA e simboli nell'alfabeto finchè non vi sono più stati che possono essere addizionati al DFA

4. Per ogni stato del DFA $\{q_i,q_j,...,q_m\}$

se è presente uno stato q_j finale, accettante, del NFA

allora, $\{q_i, q_j, ..., q_m\}$ è uno stato accettante del DFA

Lemma:

Se traduciamo un NFA M in un DFA M' Allora i due automata sono equivalenti:

$$L(M) = L(M')$$

dimostrazione:

Dobbiamo dimostrare che: $L(M) \subseteq L(M')$

$$L(M) \supseteq L(M')$$

Mostriamo che:
$$L(M) \subseteq L(M')$$

NFA contenuto in DFA

Dobbiamo provare che:

$$w \in L(M)$$
 $w \in L(M')$

considera $w \in L(M)$ NFA

ricordiamo

Simboli, lng 1

Denota un sotto cammino tale che

simboli

Mostriamo che se

$$w \in L(M)$$

$$\begin{array}{c} \mathsf{DFA} \ M' : \longrightarrow \stackrel{\sigma_1}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \stackrel{\sigma$$

In modo piu generale, mostreremo che se in ${\cal M}$:

(stringa arbitraria) $v = a_1 a_2 \cdots a_n$

NFA
$$M: -q_0 q_i q_i q_j q_j q_m$$

allora

DFA
$$M'$$
: $\xrightarrow{a_1}$ $\xrightarrow{a_2}$ $\xrightarrow{a_2}$ $\underbrace{\{q_1,\ldots\}}$ $\underbrace{\{q_l,\ldots\}}$ $\underbrace{\{q_m,\ldots\}}$

Dimostrazione per induzione su |v|

Base induzione:
$$|v|=1$$
 $v=a_1$

NFA
$$M: -q_0 q_i$$

DFA
$$M'$$
: $\xrightarrow{\{q_0\}} \xrightarrow{\{q_i,\ldots\}}$

[vero per come costruito M']

$$1 \le |v| \le k$$

$$v = a_1 a_2 \cdots a_k$$

Supponiamo valga

NFA
$$M: -q_0 q_i q_i q_j q_j q_j q_d$$

$$\mathsf{DFA}\ M': \longrightarrow \underbrace{ a_1 }_{\{q_0\}} \underbrace{ a_2 }_{\{q_i, \ldots\}} \underbrace{ a_2 }_{\{q_j, \ldots\}} \underbrace{ a_k }_{\{q_c, \ldots\}} \underbrace{ a_k }_{\{q_d, \ldots\}}$$

Step induttivo:
$$|v| = k + 1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

Vero per costruzione di M'

NFA
$$M: q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_2}{\longrightarrow} q_c \stackrel{a_k}{\longrightarrow} q_d \stackrel{a_{k+1}}{\longrightarrow} q_e$$

$$w \in L(M)$$

$$\begin{array}{c} \mathsf{DFA} \ M' : \longrightarrow \stackrel{\sigma_1}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \stackrel{\sigma$$

allora:
$$L(M) \subseteq L(M')$$
 dimostrato
$$L(M) \supseteq L(M') \quad \text{banale}$$

$$e \qquad L(M)\!\supseteq\!L(M') \qquad \text{banale}$$

quindi:
$$L(M) = L(M')$$

Fine lemma