Exercises to Section 6

Exercises marked with a star * are for submission to your tutor.

Integrability

1. Let f be a bounded monotone function on [0,1]. Prove that

$$\int_0^1 f(x)dx - \frac{1}{n} \sum_{k=1}^n f(k/n) = O(1/n), \quad n \to \infty.$$

- 2. Let f be bounded on [a, b] and such that $|f| \in \mathcal{R}[a, b]$; does it follow that $f \in \mathcal{R}[a, b]$?
- 3. For an interval Δ , prove the identity

$$\sup_{x,x'\in\Delta}|f(x)-f(x')|=\sup_{x\in\Delta}f(x)-\inf_{x\in\Delta}f(x).$$

Proceed as follows. Denote $M = \sup_{x \in \Delta} f(x), \, m = \inf_{x \in \Delta} f(x).$

- (a) Prove that $\sup_{x,x'\in\Delta}(f(x)-f(x'))\leqslant M-m.$
- (b) Conclude that $\sup_{x,x'\in\Delta}|f(x)-f(x')|\leqslant M-m.$
- (c) Argue that for any $\varepsilon > 0$, there exist $x_1, x_2 \in \Delta$ such that $f(x_1) > M \varepsilon$ and $f(x_2) < m + \varepsilon$.
- (d) From here prove that $\sup_{x,x'\in\Delta}(f(x)-f(x'))\geqslant M-m-2\varepsilon.$
- (e) Conclude that $\sup_{x,x'\in\Delta}|f(x)-f(x')|\geqslant M-m.$
- 4.*Let $f \in \mathcal{R}[a,b]$ and $[c,d] \subset [a,b]$; prove that the restriction $f|_{[c,d]}$ is Riemann integrable on [c,d].
- 5. Prove the Lemma in the "Oscillatory discontinuities" subsection of the lecture notes. Proceed as follows. Given $\varepsilon > 0$, let P be a partition of $[a + \varepsilon, b \varepsilon]$ such that

$$U(P, f) - L(P, f) < \varepsilon$$
.

Add the points a,b to the partition P; we obtain a partition P^* of [a,b]. Estimate the difference $U(P^*,f)-L(P^*,f)$ by using the previous inequality on $[a+\varepsilon,b-\varepsilon]$ and the boundedness of f on $[a,a+\varepsilon]$ and $[b-\varepsilon,b]$. You should get an inequality of the form

$$U(P^*, f) - L(P^*, f) < C\varepsilon,$$

where C depends on the upper bound for f. Now use Riemann's criterion.

6. Let $f \in \mathcal{R}[a,b]$; prove that there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of continuous functions on [a,b] such that

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

Hint: use piecewise linear interpolation

Challenging exercises

- 7. Prove that any countable set of point on $\ensuremath{\mathbb{R}}$ has measure zero.
- 8. Prove that Thomae's function f_T is integrable on [0,1], and $\int_0^1 f_T(x) dx = 0$.
- 9. Let $f \in \mathcal{R}[a,b]$ and let $[c,d] \subset (a,b)$. Prove that f has the following property of *continuity* in the mean:

$$\lim_{h \to 0} \int_{c}^{d} |f(x+h) - f(x)| dx = 0.$$