Calcul Vectoriel dans \mathbb{R}^2 et \mathbb{R}^3

Dans cette feuille, on notera $\vec{i} = (1,0); \ \vec{j} = (0,1) \ \mathrm{dans} \ \mathbb{R}^2$ et

$$\vec{i} = (1,0,0); \ \vec{j} = (0,1,0); \vec{k} = (0,0,1)$$

dans \mathbb{R}^3 . Si $\mathbf{x} = (u, v, w)$ on notera sa norme (ou sa longueur) par

$$\|\mathbf{x}\| = \sqrt{u^2 + v^2 + w^2}.$$

Si \mathbf{x}, \mathbf{y} sont deux vecteurs, on notera par $\mathbf{x}.\mathbf{y}$ leur produit scalaire et $\mathbf{x} \wedge \mathbf{y}$ leur produit vectoriel.

Exercice 1. Se donnant $\mathbf{a} = 9\vec{i} + 7\vec{j}$, $\mathbf{b} = 11\vec{i} - 3\vec{j}$, $\mathbf{c} = -8\vec{i} - \vec{j}$, exprimer les vecteurs suivants en fonction de \vec{i} et \vec{j} .

1.
$$a - 2b$$

2.
$$a + b + c$$

3.
$$2a - b + c$$

Exercice 2. Se donnant les vecteurs $\mathbf{a} = (1, 3, 2), \mathbf{b} = (1, -5, 6), \mathbf{c} = (2, 1, -2), \text{ trouver}$ les coefficients p, q, r tels que

$$p\mathbf{a} + q\mathbf{b} + r\mathbf{c} = (4, 10, -8).$$

Exercice 3. Pour chacun des vecteurs \mathbf{a} suivants, calculer $\|\mathbf{a}\|$ et trouver l'unique vecteur unitaire associé.

1.
$$\mathbf{a} = 3\vec{i} - \vec{j} + 2\vec{k}$$
.

2.
$$\mathbf{a} = -2\vec{i} - 6\vec{j} - \vec{k}$$
. 3. $\mathbf{a} = \vec{i} - 2\vec{k}$.

$$3. \ \mathbf{a} = \vec{i} - 2\vec{k}.$$

Exercice 4. Trouver les vecteurs \mathbf{x} de norme donnée dans les directions suivantes :

- 1. de norme 8 dans la direction $\vec{i} + 2\vec{j} + 4\vec{k}$,
- 2. de norme 5 dans la direction opposée au vecteur $-\vec{i} + 2\vec{j} + 3\vec{k}$.

Exercice 5. Se donnant $\mathbf{a} = (5, 4, -3)$ et $\mathbf{b} = (2, -1, 2)$ trouver

$$(\mathbf{a} + 2\mathbf{b}).(2\mathbf{a} - \mathbf{b}).$$

Exercice 6. Trouver l'angle entre les vecteurs $\mathbf{a} = \vec{i} - \vec{j} + 3\vec{k}$ et $\mathbf{b} = \vec{i} + 2\vec{j} + 2\vec{k}$.

Exercice 7. Montrer que les vecteurs $\mathbf{a} = 2\vec{i} - 3\vec{j} + \vec{k}$ et $\mathbf{b} = 2\vec{i} + \vec{j} - \vec{k}$ sont orthogonaux.

Exercice 8. Se donnant quatre points $A=(1,1,1),\ B=(0,2,5),\ C=(-3,3,2)$ et D=(-1,1,-6) dans \mathbb{R}^3 , calculer l'angle entre les vecteurs \overrightarrow{AB} et \overrightarrow{CD} . Interprétation géométrique.

Exercice 9. Se donnant $\mathbf{a} = \vec{i} + \lambda \vec{j} + 3\vec{k}$ et $\mathbf{b} = 2\vec{i} - \vec{j} + 5\vec{k}$, trouver la valeur de λ pour que \mathbf{a} et \mathbf{b} soient orthogonaux.

Exercice 10. Se donnant $\mathbf{a} = (2, 1, -3)$ et $\mathbf{b} = (3, -2, 1)$ calculer $\mathbf{a} \wedge \mathbf{b}$ ainsi que $\|\mathbf{a} \wedge \mathbf{b}\|$.

Exercice 11. Sachant que les vecteurs \mathbf{a} et \mathbf{b} vérifient $\|\mathbf{a}\| = 4$, $\|\mathbf{b}\| = 5$ et $\mathbf{a}.\mathbf{b} = -6$, trouver $\|\mathbf{a} \wedge \mathbf{b}\|$.