
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=11; day=25; hr=16; min=13; sec=19; ms=585;

Validated By CRFValidator v 1.0.3

Application No: 10583415 Version No: 3.0

Input Set:

Output Set:

Started: 2009-11-13 09:17:41.643

Finished: 2009-11-13 09:17:44.386

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 743 ms

Total Warnings: 15

Total Errors: 0

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Error code		Error Descripti	ion								
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)

SEQUENCE LISTING

<110>	MEYER, ROMAN	
	SCHUTZ, MICHAEL	
	GRALLERT, HOLGER	
	GRASSL, RENATE	
	MILLER, STEFAN	
<120>	ENDOTOXIN DETECTION METHOD	
<130>	DEBE:067US	
<140>	10583415	
	2009-11-13	
<150>	PCT/DE2004/002778	
<151>	2004-12-20	
	DE 103 60 844.3	
<151>	2003-12-20	
<160>	1 5	
<100>	15	
<170>	PatentIn version 3.3	
<210>	1	
<211>	78	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Synthetic primer	
<400>	1	
	tacta gtcatatggc tagctggagc cacccgcagt tcgaaaaagg cgccagtaat	60
gaagga	acta gecatatgge tagetggage caceegeage tegaaaaagg egecagtaat	00
aataca	tatc aacacgtt	78
<210>	2	
<211>	54	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Synthetic primer	
<400>	2	
	aaag cttgtcgacg gatcctatca ttcttttacc ttaattatgt agtt	54
J - J - J		_
<210>	3	
<211>	78	
< 21 2 \	DMA	

<213> artificial sequence

```
<223> Synthetic primer
<400> 3
gaaggaacta gtcatatggc ttgttggagc cacccgcagt tcgaaaaagg cgccagtaat
                                                                     60
aatacatatc aacacgtt
                                                                     78
<210> 4
<211> 78
<212> DNA
<213> artificial sequence
<220>
<223> Synthetic primer
<400> 4
gaaggaacta gtcatatggc tagctggagc cacccgcagt tcgaaaaagg cgcctgtaat
                                                                     60
aatacatatc aacacgtt
                                                                     78
<210> 5
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 5
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
                                   10
                                                       15
1
Thr Tyr Gln
<210> 6
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 6
Met Ala Cys Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
                                   10
1
                5
                                                       15
```

<220>

```
<210> 7
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 7
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Cys Asn Asn
                                   10
                                                       15
1
Thr Tyr Gln
<210> 8
<211>
       539
<212> PRT
<213> artificial sequence
<220>
<223>
      Synthetic peptide
<400> 8
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
                                   10
                                                       15
1
Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val Lys Phe Asp Pro
            20
                                25
                                                   30
Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val Gln Ala Ile
        35
                            40
                                                45
Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro Asp Ala Ser Ser
    50
                        55
                                           60
Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Glu Val Ile Asp
65
                    70
                                                           80
                                        75
Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr Leu Ala Thr Arg
                85
                                    90
                                                        95
```

Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly Leu Thr Arg Tyr

105

110

100

Ser Thr	Asp 115	Asp	Glu	Ala	Ile	Ala 120	Gly	Val	Asn	Asn	Glu 125	Ser	Ser	Ile
Thr Pro		Lys	Phe	Thr	Val 135	Ala	Leu	Asn	Asn	Val 140	Phe	Glu	Thr	Arg
Val Ser 145	Thr	Glu	Ser	Ser 150	Asn	Gly	Val	Ile	Lys 155	Ile	Ser	Ser	Leu	Pro 160
Gln Ala	Leu .	Ala	Gly 165	Ala	Asp	Asp	Thr	Thr 170	Ala	Met	Thr	Pro	Leu 175	Lys
Thr Gln				Val	_							Pro 190	Ser	Lys
Asn Ala	Ala 195	Thr	Glu	Ser	Glu	Gln 200	Gly	Val	Ile	Gln	Leu 205	Ala	Thr	Val
Ala Gln 210		Arg	Gln	Gly	Thr 215	Leu	Arg	Glu	Gly	Tyr 220	Ala	Ile	Ser	Pro
Tyr Thr 225	Phe	Met	Asn	Ser 230	Thr	Ala	Thr	Glu	Glu 235	Tyr	Lys	Gly	Val	Ile 240
Lys Leu	Gly	Thr	Gln 245	Ser	Glu	Val	Asn	Ser 250	Asn	Asn	Ala	Ser	Val 255	Ala
Val Thr	_	Ala 260	Thr	Leu	Asn	Gly	Arg 265	Gly	Ser	Thr	Thr	Ser 270	Met	Arg
Gly Val	Val 275	Lys	Leu	Thr	Thr	Thr 280	Ala	Gly	Ser	Gln	Ser 285	Gly	Gly	Asp
Ala Ser 290		Ala	Leu	Ala	Trp 295	Asn	Ala	Asp	Val	Ile 300	His	Gln	Arg	Gly
Gly Gln 305	Thr	Ile	Asn	Gly 310	Thr	Leu	Arg	Ile	Asn 315	Asn	Thr	Leu	Thr	Ile 320
Ala Ser	Gly	Gly	Ala 325	Asn	Ile	Thr	Gly	Thr 330	Val	Asn	Met	Thr	Gly 335	Gly

Tyr Ile Gln Gly Lys Arg Val Val Thr Gln Asn Glu Ile Asp Arg Thr Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp Ser Leu Pro Ser Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser Ala Ser Asp Cys Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly Gly Ser Ser Ser Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val Arg Gly Ser Gly Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly Asn Asp Gln Phe Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly Tyr Val Gly Glu Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala Gly Gly Phe Gly Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg Asn Ser Arg Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr Arg Pro Trp Asn

Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu
530

<210> 9

<211> 527

<212> PRT

<213> artificial sequence

<223> Synthetic peptide

<400> 9

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val

1 10 15

Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30

Gln Ala Ile Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro
35 40 45

Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln 50 60

Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly
85 90 95

Leu Thr Arg Tyr Ser Thr Asp Asp Glu Ala Ile Ala Gly Val Asn Asn 100 105 110

Glu Ser Ser Ile Thr Pro Ala Lys Phe Thr Val Ala Leu Asn Asn Val
115 120 125

Phe Glu Thr Arg Val Ser Thr Glu Ser Ser Asn Gly Val Ile Lys Ile 130 135 140

Ser Ser Leu Pro Gln Ala Leu Ala Gly Ala Asp Asp Thr Thr Ala Met
145 150 150 160

Thr Pro Leu Lys Thr Gln Gln Leu Ala Val Lys Leu Ile Ala Gln Ile 165 170 175

Ala Pro Ser Lys Asn Ala Ala Thr Glu Ser Glu Gln Gly Val Ile Gln
180 185 190

Leu Ala Thr Val Ala Gln Ala Arg Gln Gly Thr Leu Arg Glu Gly Tyr

195 200 205

Ala	Ile 210	Ser	Pro	Tyr	Thr	Phe 215	Met	Asn	Ser	Thr	Ala 220	Thr	Glu	Glu	Tyr
Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly		_		Ser			Leu		_		Ala 285	Asp	Val	Ile
His	Gln 290	Arg	Gly	Gly	Gln	Thr 295	Ile	Asn	Gly	Thr	Leu 300	Arg	Ile	Asn	Asn
Thr 305	Leu	Thr	Ile	Ala	Ser 310	Gly	Gly	Ala	Asn	Ile 315	Thr	Gly	Thr	Val	Asn 320
Met	Thr	Gly	Gly	Tyr 325	Ile	Gln	Gly	Lys	Arg 330	Val	Val	Thr	Gln	Asn 335	Glu
			340		Pro			345				_	350		_
		355					360					365			Ser
	370					375					380				Gly
385					970 390					395					400
				405					410					415	Gly
Asn	Asp	Gln	Phe 420	Gly	Lys	Pro	Arg	Leu 425	Gly	Val	Gly	Cys	Thr 430	Gly	Gly

Tyr Val Gly Glu Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala

435 440 445

Gly Gly Phe Gly Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg
450 455 460

Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 480

Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg
485 490 495

Asn Ser Arg Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 500 510

Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 525

<210> 10

<211> 527

<212> PRT

<213> artificial sequence

<220>

<223> Synthetic peptide

<400> 10

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val

1 10 15

Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30

His Ala Ala Ile Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro
35 40 45

Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Ile Pro Thr Glu Gln 50 55

Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Thr Val Tyr Gly
85 90 95

Leu	Thr	Arg	Tyr 100	Ser	Thr	Asn	Asp	Glu 105	Ala	Ile	Ala	Gly	Val 110	Asn	Asn
Glu	Ser	Ser 115	Ile	Thr	Pro	Ala	Lys 120	Phe	Thr	Val	Ala	Leu 125	Asn	Asn	Ala
Phe	Glu 130	Thr	Arg	Val	Ser	Thr 135	Glu	Ser	Ser	Asn	Gly 140	Val	Ile	Lys	Ile
Ser 145	Ser	Leu	Pro	Gln	Ala 150	Leu	Ala	Gly	Ala	Asp 155	Asp	Thr	Thr	Ala	Met 160
Thr	Pro	Leu	Lys	Thr 165	Gln	Gln	Leu	Ala	Ile 170	Lys	Leu	Ile	Ala	Gln 175	Ile
Ala	Pro	Ser	Glu 180	Thr	Thr	Ala	Thr	Glu 185	Ser	Asp	Gln	Gly	Val 190	Val	Gln
Leu	Ala	Thr 195	Val	Ala	Gln	Val	Arg 200	Gln	Gly	Thr	Leu	Arg 205	Glu	Gly	Tyr
Ala	Ile 210	Ser	Pro	Tyr	Thr	Phe 215	Met	Asn	Ser	Ser	Ser 220	Thr	Glu	Glu	Tyr
Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly	Gly 275	Asp	Ala	Ser	Ser	Ala 280	Leu	Ala	Trp	Asn	Ala 285	Asp	Val	Ile
Gln	Gln 290	Arg	Gly	Gly	Gln	Ile 295	Ile	Tyr	Gly	Thr	Leu 300	Arg	Ile	Glu	Asp
Thr 305	Phe	Thr	Ile	Ala	Asn 310	Gly	Gly	Ala	Asn	Ile 315	Thr	Gly	Thr	Val	Arg 320

Met Thr Gly Gly Tyr Ile Gln Gly Asn Arg Ile Val Thr Gln Asn Glu

325 330 335

Ile Asp Arg Thr Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp 340 345 350

Ser Leu Pro Ser Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser 355 360 365

Ala Ser Asp Cys Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly 370 380

Gly Asn Pro Ser Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val 385 390 395 400

Arg Gly Ser Gly Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly
405
410
415

Asn Asp Gln Phe Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly 420 425 430

Tyr Val Gly Glu Val Gln Ile Gln Gln Met Ser Tyr His Lys His Ala 435 440 445

Gly Gly Phe Gly Glu His Asp Asp Leu Gly Ala Phe Gly Asn Thr Arg 450 455 460

Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 480

Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Glu Ser Gln Arg
485 490 495

Asn Ser Lys Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 500 510

Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 525

<210> 11

<211> 518

<212> PRT

<213> artificial sequence

<400> 11

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Lys Tyr Val 1 5 10 15

Lys Phe Asp Pro Val Gly Ser Asn Phe Pro Asp Thr Val Thr Thr Val 20 25 30

Gln Ser Ala Leu Ser Lys Ile Ser Asn Ile Gly Val Asn Gly Ile Pro 35 40 45

Asp Ala Ser Met Glu Val Lys Gly Ile Ala Met Ile Ala Ser Glu Gln 50 60

Glu Val Leu Asp Gly Thr Asn Asn Ser Lys Ile Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Leu Tyr Pro Asn Ala Thr Glu Thr Lys Tyr Gly
85 90 95

Leu Thr Arg Tyr Ser Thr Asn Glu Glu Thr Leu Glu Gly Ser Asp Asn 100 105

Asn Ser Ser Ile Thr Pro Gln Lys Leu Lys Tyr His Thr Asp Asp Val 115 120 125

Phe Gln Asn Arg Tyr Ser Ser Glu Ser Ser Asn Gly Val Ile Lys Ile 130 135 140

Thr Pro Leu Lys Thr Gln Lys Leu Ala Ile Lys Leu Ile Ser Gln Ile 165 170 175

Ala Pro Ser Glu Asp Thr Ala Ser Glu Ser Val Arg Gly Val Val Gln
180 185