

Computer Vision Project – Winter Term 2024/25

Face Recognition

Dr.-Ing. Thomas Köhler Pattern Recognition Lab, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg e.solutions GmbH, Erlangen December 9, 2024

Face Recognition Example Use Cases

Unlock smart phones via face recognition¹

¹ https://www.apple.com/iphone-x/#face-id

Face Recognition Example Use Cases

Identification of occupants and personalization of vehicle settings

Scope of this Project

In the lecture:

- Learn how to design and evaluate the core of current facial recognition systems from a technical point of view
- Overview of modern machine learning methods in this field
- · Discussion of their strengths and limitations

In the exercise:

- Implementation of a simple system comprising basic functionality for face verification, identification, and clustering
- Evaluation of face recognition algorithms
- Design own recognition method and participate in a challenge

Organization

- Exercises will be held virtually (start: CW 51/2024)
 - We will propose a couple of available time slots at the beginning of the week
 - Please drop me an e-mail with your availability
 - We will send you an invitation
 - Be well prepared (only 15 30 minutes per group/week)!
- Final submission via StudOn
 - Upload your source codes to StudOn before the submission deadline!
 - We will schedule a meeting to review your final solution
 - · You will present your solution and we will ask questions
 - All exercise partners shall contribute equally to all tasks and shall be able to answer questions on each of the exercises!
 - No certificate without presentation, review, and answering questions!
- Additional exercise
 - Required to gain 10 ECTS
 - Will be a challenge with winners (details to be announced) :-)

Outline

Introduction

Face Representation

Eigenfaces Fisherfaces

Deep Features

Selected Topics in Face Recognition

Distance Measures and Face Verification

Face Identification

Face Clustering

Evaluating Face Recognition Systems

Summary

Introduction

The Face as a Biometric Marker

Biometric markers for identification²:

- Fingerprint
- Iris
- Speech
- Face

Face vs. other markers:

- Face the only marker that can be captured at large distances
- Can work with low-cost hardware

² Jain, Anil K., and Stan Z. Li. Handbook of face recognition. New York, Springer, 2011.

Challenges

Intrinsic conditions:

- High intra-subject variation: expressions, changes in facial hair or pose, aging
- Low inter-subject variation: similar skin or hair color, similar eye glasses

Extrinsic conditions:

- Varying illumination: images captured at day and at night
- Image quality: facial data processed with different image or video codecs

Face Recognition Pipeline

Face Detection, Landmark Localization, and Tracking

- Detection of face region
- Detection of eye regions
- Extracting landmarks to model pose and facial expression
- Alignment using detected landmarks
 - Compensate for different head poses
 - Eyes, nose, and mouth at predefined positions
- Track bounding box and landmarks in video data

Face Representation

Geometric approach:

- Distances, areas, or angles between salient points (eyes, nose, mouth)
- Obtained by feature detection algorithms
- Requires hand-crafted features

Data-driven approach:

- Image intensities form raw features
- Learn suitable representation from exemplars
- Requires training from large datasets

Face Recognition Problem Statements

Verification (one-to-one matching):

- Given one probe image and one gallery image
- Check if both images show the same identity

Identification (one-to-many matching):

- Given one probe image and a set of gallery images with identity labels
- Retrieve identity of probe image

Clustering (many-to-many matching):

- Given a set of unlabeled face images
- Cluster according to the identities captured in the data

Face Representation

Data-Driven Face Representations

How to represent faces in digital images?

- Grayscale image with $M \times N$ pixels and b bits per pixel (e. g. 64×64 , 8 bit) $\rightarrow (2^b)^{M \cdot N}$ different images (e. g. $256^{4096} \gg 10^{1000}$)
- Only a small fraction of images corresponds to valid faces

Manifold of Face Images

Faces are a small subset of the natural image manifold

Learning Face Representations: Eigenfaces

• Let $\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_i \in \mathbb{R}^D$ be a set of n face images with mean:

$$\mu_{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \tag{1}$$

and covariance:

$$\Sigma_{x} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{x}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{x})^{\top}$$
 (2)

• Project each x_i to a M-dimensional space ($M \ll D$):

$$\mathbf{z}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^M \tag{3}$$

• Seek linear transform $\mathbf{W} \in \mathbb{R}^{M \times D}$ that maximizes the variance of $\mathbf{z}_1, \dots, \mathbf{z}_n$:

$$\Sigma_z = \frac{1}{n} \sum_{i=1}^n (\mathbf{y}_i - \boldsymbol{\mu}_z) (\mathbf{y}_i - \boldsymbol{\mu}_z)^\top$$

$$= \mathbf{W}^\top \Sigma_z \mathbf{W}$$
(4)

→ Principal Component Analysis (principal components ≡ Eigenfaces)

Learning Face Representations: Fisherfaces

- Exploit two constraints using class labels (one unique face ≡ one class):
 - · Between-class scatter shall be maximum
 - · Within-class scatter shall be minimum
- Seek the transform $\mathbf{W} \in \mathbb{R}^{M \times D}$ maximizing Fisher's linear discriminant:

$$J(\mathbf{W}) = \frac{\mathbf{W}^{\top} \Sigma_{\text{inter}} \mathbf{W}}{\mathbf{W}^{\top} \Sigma_{\text{intra}} \mathbf{W}}$$
 (5)

Intra-class and inter-class scatter for c classes:

$$\Sigma_{\text{intra}} = \sum_{i=1}^{c} \frac{1}{|\mathcal{X}_i|} \sum_{\mathbf{x}_k \in \mathcal{X}_i} (\mathbf{x}_k - \mu_i) (\mathbf{x}_k - \mu_i)^{\top}$$
 (6)

$$\Sigma_{\text{inter}} = \sum_{i=1}^{c} (\mu_i - \mu)(\mu_i - \mu)^{\top}$$
 (7)

 μ_i is the mean of all faces \mathscr{X}_i in the *i*-th class and μ is the overall mean face

Learning Face Representations: Deep Features

Limitations of the methods discussed so far:

- Determine face representations under a linear model
- Limited robustness against pose or illumination variations

Extension:

• Use a non-linear face representation $f_{\theta}(\mathbf{x})$:

$$f_{\theta}(\mathbf{x})$$
 (8)

- The transform $f_{\theta}(\mathbf{x})$ is implemented by a deep neural network
- Provides a face representation (aka. embedding)
- Parameters θ are learned from exemplars

Recap: Convolutional Neural Networks (CNNs)

Neural network:

- Computation graphs comprising neurons
- Propagation of input signals through the network to obtain outputs

Network design with input, output, and hidden layers:

- Convolutional layer: convolution of input neuron activation with filter kernel
- Pooling layer: fusion of clusters of input neuron activation
- Locally/fully connected layer: weighted sum of input neuron activation

 θ : Parameters of all layers in the network

Face Representation via Classification

- Design neural network to classify face images according to their identity to one out of c > 2 classes
- Fully connected output layer (W, b) to model probability distribution:

$$\rho_i = \frac{\exp\left(\mathbf{w}_i^{\top} \mathbf{x} + b_i\right)}{\sum_{j=1}^{c} \exp\left(\mathbf{w}_j^{\top} \mathbf{x} + b_j\right)}, \qquad i = 1, \dots, c$$
(9)

- Train network parameters on face exemplars by minimizing misclassification error (e.g. cross entropy loss)
- Activation of fully connected layer ≡ embedding

Example: Facebooks DeepFace (trained on 4M faces)³

- Face frontalization for preprocessing
- Eight layer network: convolutional (C1, C3), max-pooling (M2), locally connected (L4, L4, L6), and fully connected layers (F7, F8)
- Feature maps describe face from high-level to low-level
- Activation of F7 fully connected layer used as face representation

³Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level performance in face verification." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014.

Face Representation via Contrastive Learning

Discussion of the classification-based approach:

- Classification requires class labels (identities)
- Models discriminative features for face recognition only implicitly
- Learned features are not necessarily optimal

Extension to regression-based / contrastive losses:

- Can be used for pre-training or fine-tuning
- No full labeling of dataset required

Triplet Loss

- Let \mathbf{x}_i^a be an anchor face, \mathbf{x}_i^p a face of the same subject (positive) and \mathbf{x}_i^n be a face of different subject (negative)
- Ensure for all triplets $(\mathbf{x}_i^a, \mathbf{x}_i^p, \mathbf{x}_i^n)$ with margin α :

$$\frac{\left|\left|f_{\theta}(\mathbf{x}_{i}^{a}) - f_{\theta}(\mathbf{x}_{i}^{\rho})\right|\right|_{2}^{2} + \alpha < \frac{\left|\left|f_{\theta}(\mathbf{x}_{i}^{a}) - f_{\theta}(\mathbf{x}_{i}^{n})\right|\right|_{2}^{2}}{\text{anchor-to-negative distance}}$$
(10)

· Penalize distances of positive and negative samples w.r.t. the anchor

$$\mathcal{L}_{\text{triplet}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} ||f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{a}) - f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{p})||_{2}^{2} - ||f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{a}) - f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{n})||_{2}^{2} + \alpha \qquad (11)$$

Practical Considerations on Deep Features

Learning:

- Learn $f_{\theta}(\mathbf{x})$ on large datasets (Facebook: 4M faces, Google: 200M faces)
- Computationally very demanding
- Implemented on graphics processing units (GPU)

Inference:

- Determine face representation $f_{\theta}(\mathbf{x})$ by forward pass
- Efficient to compute using additional optimizations (weight quantization)
- Use face representation within lightweight classification or clustering models
- Can be implemented on embedded devices

Selected Topics in Face Recognition

Face Verification

- Given two face images x_1 and x_2 , is the image pair of the same person?
- Define a suitable distance measure $d(x_1, x_2)$, e.g., cosine distance:

$$d(\mathbf{x}_1, \mathbf{x}_2) = \frac{||f_{\theta}(\mathbf{x}_1) - f_{\theta}(\mathbf{x}_2)||_2^2}{||f_{\theta}(\mathbf{x}_1)||_2^2 + ||f_{\theta}(\mathbf{x}_2)||_2^2}$$
(12)

• Verification using the distance measure and threshold au:

$$v(\mathbf{x}_1, \mathbf{x}_2) = \begin{cases} \text{same} & \text{if } d(\mathbf{x}_1, \mathbf{x}_2) \le \tau \\ \text{not same} & \text{if } d(\mathbf{x}_1, \mathbf{x}_2) > \tau \end{cases}$$
 (13)

• Alternatively, use similarity measure $s(\mathbf{x}_1, \mathbf{x}_2) = -d(\mathbf{x}_1, \mathbf{x}_2)$

18

Face Identification

- Given a probe image x_{probe} of unknown identity
- Determine identity $I(x_{probe})$ from labeled images in a gallery

Two protocols:

- Closed-set: all possible identities of probes are contained in the gallery
- · Open-set: identities of some probes are missing in the gallery

Face Identification with Closed-Set Protocol

Repeated face verification using k-nearest neighbors (k-NN) classifier:

- For the probe image x_{probe}, find the k closest gallery images x₁,...,x_k according to a distance d(x_{probe},·)
- Identity of \mathbf{x}_{probe} is the majority (mode) in $\mathbf{x}_1, \dots, \mathbf{x}_k$:

$$I(\mathbf{x}_{\text{probe}}) = \text{mode}(I(\mathbf{x}_1), \dots, I(\mathbf{x}_k))$$
(14)

• Alternatively, we can consider similarities $s(\mathbf{x}_{\text{probe}},\cdot) = -d(\mathbf{x}_{\text{probe}},\cdot)$

Other discriminative classification models:

- Support vector machine (SVM)
- Random forests
- Boosting methods

Face Identification with Open-Set Protocol

Handle open space using thresholded nearest neighbors:

- Extract best matching gallery image \mathbf{x}_{match} with minimum distance to \mathbf{x}_{probe}
- Possibly assign "unknown" identity to x_{probe}:

$$I(\mathbf{x}_{\text{probe}}) = \begin{cases} \text{mode}(I(\mathbf{x}_{1}), \dots, I(\mathbf{x}_{k})) & \text{if } d(\mathbf{x}_{\text{probe}}, \mathbf{x}_{\text{match}}) \leq \tau \\ \text{unknwon} & \text{if } d(\mathbf{x}_{\text{probe}}, \mathbf{x}_{\text{match}}) > \tau \end{cases}$$
(15)

 τ is the face verification threshold

Learning Open-Set Models using Known Unknowns

Extend the training setup of open-set models:

Training set with KCs and known unknown classes (KUCs)

$$\mathscr{T} = \{ (\boldsymbol{x}_i, y_i) \}_{i=1}^T \tag{16}$$

• Labels y_i can encode any KC ($\mathscr{C}_K = y_1, y_2, \dots, y_n$) or unknowns u

$$\mathscr{C} = \mathscr{C}_{\mathsf{K}} \cup u \tag{17}$$

• Learn a likelihood function $h(\mathbf{x}; \mathcal{T})$ from the entire training set \mathcal{T}

Decision function to predict a label \hat{y} with maximum likelihood:

$$\begin{cases} \hat{y} & \max_{y \in \mathscr{C}} h(\mathbf{x}; \mathscr{T}) \ge \tau \text{ and } \hat{y} \ne u \\ u & \text{otherwise} \end{cases}$$
 (18)

Pseudo Labeling for Open-Set Learning

Idea: introduce pseudo labels for KUCs and learn from modified training set

Open-set decision boundary without KUCs (left) and with consideration of KUCs during training (right)4

⁴ Koch, T., Riess, C., Köhler, T. (2023), LORD; Leveraging Open-Set Recognition with Unknown Data, In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4386-4396).

Pseudo Labeling for Open-Set Learning

Single pseudo label (SPL):

- Assumption: all KUC samples form a large background class
- KUCs are treated as a single class with pseudo-label u resulting in the label set:

$$\mathscr{C} = \{ \underbrace{y_1, y_2, \dots, y_n}_{n \text{ KCs}}, u \}$$
 (19)

- Predicts unknowns directly independent of a decision threshold
- Can be used with any open-set / closed-set backbone to learn likelihood function

Pseudo Labeling for Open-Set Learning

Multi pseudo label (MPL):

- Assumption: every KUC sample models a different class
- KUCs are treated as separate classes with a single sample per pseudo label resulting in the label set:

$$\mathscr{C} = \{\underbrace{y_1, y_2, \dots, y_n}_{n \text{ KCs}}, \underbrace{y_{n+1}, y_{n+2}, \dots y_{n+m}}_{m \text{ KUCs}}\}$$
(20)

- Prediction of any pseudo label is mapped to the unknown class
- Can be used with any open-set / closed-set backbone to learn likelihood function but limited due to computational complexity

Face Clustering

- Given n face images $\mathbf{x}_1, \dots, \mathbf{x}_n$, cluster them into $k \leq n$ clusters $\mathscr{C}_1, \dots, \mathscr{C}_k$
- Minimize with cluster centers μ_i and distance measure $d(\cdot, \cdot)$:

$$(\mathscr{C}_1, \dots, \mathscr{C}_k) = \operatorname{argmin}_{\mathscr{C}_1, \dots, \mathscr{C}_k} \sum_{i=1}^k \sum_{\mathbf{x} \in \mathscr{C}_i} d(\mathbf{x}, \mu_i)$$
 (21)

• k-means clustering: $d(\mathbf{x}, \mu_i) = ||\mathbf{x} - \mu_i||_2^2$ and $\mu_i \equiv$ cluster mean

Clustering using k-Means Algorithm

Iterative algorithm:

Assignment: assign each face to the cluster with closest center

$$\mathscr{C}_{i}^{t} = \left\{ \mathbf{x} : ||\mathbf{x} - \mu_{i}||_{2}^{2} \le ||\mathbf{x} - \mu_{j}||_{2}^{2} \text{ for all } i \ne j \right\}$$
 (22)

2. Update: re-calculate cluster centers from current assignment $\mathcal{C}_1^t, \dots, \mathcal{C}_k^t$

$$\mu_i^{t+1} = \frac{1}{|\mathscr{C}_i^t|} \sum_{\mathbf{x} \in \mathscr{C}_i^t} \mathbf{x}$$
 (23)

Evaluating Face Recognition Systems

Face identification with closed-set protocol:

• Rank of a probe image $\mathbf{x}_{\text{probe}}$ for gallery \mathscr{G} with true matching image $\mathbf{x}_{\text{match}}$:

$$\operatorname{Rank}(\mathbf{\textit{x}}_{\operatorname{probe}}) = \left| \left. \left\{ \mathbf{\textit{x}}' \in \mathscr{G} \ : \ \mathbf{\textit{s}}(\mathbf{\textit{x}}', \mathbf{\textit{x}}_{\operatorname{probe}}) \geq \mathbf{\textit{s}}(\mathbf{\textit{x}}_{\operatorname{match}}, \mathbf{\textit{x}}_{\operatorname{probe}}) \right\} \right. \right| \tag{24}$$

 $Rank(\mathbf{x}_{probe}) = 1$ if \mathbf{x}_{probe} is correctly associated with \mathbf{x}_{match}

Rank-k Identification rate on a test set \(\mathcal{T} \):

$$IR(r) = \frac{\left| \left\{ \mathbf{x}' \in \mathcal{T} : Rank(\mathbf{x}') \ge r \right\} \right|}{\left| \mathcal{T} \right|}$$
 (25)

For r = 1 it is equivalent to the accuracy

Evaluating Face Recognition Systems

Face identification with open-set protocol:

- Trade-off between true identifications and unknowns that are incorrectly detected as knowns (false alarms) depending on similarity threshold θ
- Detection and identification rate for test set of knowns ${\mathscr K}$:

$$DIR(\theta) = \frac{\left| \left\{ \mathbf{x}' \in \mathcal{K} : \mathbf{s}(\mathbf{x}', \mathbf{x}_{gallery}) \ge \theta \text{ and } Rank(\mathbf{x}') = 1 \right\} \right|}{\left| \mathcal{K} \right|}$$
(26)

ullet False alarm rate for complementary test set of unknowns ${\mathscr U}$:

$$FAR(\theta) = \frac{\left| \left\{ \mathbf{x}' \in \mathcal{U} : \mathbf{s}(\mathbf{x}', \mathbf{x}_{gallery}) \ge \theta \text{ for any } \mathbf{x}_{gallery} \in \mathcal{G} \right\} \right|}{\left| \mathcal{U} \right|}$$
(27)

DIR Curve for Comparison of Face Recognition Algorithms

Depict $DIR(\theta)$ at different $FAR(\theta)$ with semi-logarithmic axes:

Summary

Take Home Messages

- Widespread application domains of face recognition
- Still a hard problem under uncontrolled conditions (e.g. difficult poses)
- Face representation is a key component for modern face recognition systems
 - Learned on large training datasets
 - Different methodologies: Eigenfaces, Fisherfaces, deep features
- Recognition tasks (verification, identification, clustering) solved by common machine learning algorithms
 - Based on suitable face representation
 - Today also applicable on embedded devices

31

Further Readings

Overview on face image analysis and recognition techniques: Anil K. Jain and Stan Z. Li. "Handbook of face recognition". Springer, 2011

Eigenfaces, Fisherfaces, and other classical methods:

Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection." IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 1997, 711-720.

Deep learning based methods:

- Yaniv Taigman et al. "Deepface: Closing the gap to human-level performance in face verification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014
- Florian Schroff, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015
- Yandong Wen *et al.* "A discriminative feature learning approach for deep face recognition." European Conference on Computer Vision, 2016.

Thanks for listening.

Any questions?