Ecological Dynamics Introduction

Dr. Tarik C. Gouhier (tarik.gouhier@gmail.com)

Northeastern University http://blackboard.neu.edu

January 12, 2015

Instructor information

- Instructor: Dr. Tarik C. Gouhier
- Office: Holmes 071 (Boston) & Marine Science Center 61 (Nahant)
- Email: tarik.gouhier@gmail.com
- Office hours: Immediately following lectures on Mon and Thursday

Textbooks

Gotelli (2001) Required

Otto & Day (2007)
Recommended

Bolker (2008) Suggested

Course organization

Lectures

- Two 1.5-hour lectures every week
- Each lecture will have the following structure:
 - Describe the motivating biological topic
 - Oerive the models and the the analytical tools used to address the topic
 - Obscribe potential worthwhile model extensions for student projects

Lecturing style

- I tend to speak quickly, so ask questions if something is unclear
- I will make use of both digital slides and the (black or white)board
- All lectures will be recorded via Tegrity and made available on Blackboard shortly after each class

Labs

- Sessions: Monday and Thursday from 2-5 PM in Holmes 070 (GIS lab)
- Software: http://www.r-project.org http://www.rstudio.com
- Course manual: Available as a PDF on Blackboard
- Course manual contains a thorough introduction to R and Rmarkdown
- Lab activities will be distributed at the beginning of each week to ensure that labs remain synced with lectures
- Attendance mandatory (-1% per absence)
- No labs in week 1, but must read chapter 2 of the course manual

Gouhier (2014) **Required**

Installing R

Download R by using the appropriate link:

- For Macs: http://cran.rstudio.com/bin/macosx/
- For Windows: http://cran.rstudio.com/bin/windows/base/
- For Linux: http://cran.rstudio.com/bin/linux/ and select the appropriate distribution

Download RStudio by selecting the appropriate link on the following page: http://www.rstudio.com/products/rstudio/download/

Install both programs and then run RStudio, which will launch R in the background.

Student evaluation

Type of evaluation	Weight
Assignments	20%
Project proposal	20%
Peer-review of project proposal	5%
Project report	40%
Presentation of project	15%

Assignments

- A total of 3 assignments, scheduled every other week (each takes up to 10 hours to complete)
- Assignment questions assess understanding of lecture material and R
- Must be completed using the dynamics-assnTemplate.Rmd file posted on Blackboard
- This R markdown file should include the R code used to solve the problems along with your interpretation of the results
- Submit the source R markdown file along with the compiled PDF to me via email by the due date
- 5% penalty per (unexcused) day late
- Note: To get R markdown to work, you will need to download and install a LATEX distribution on your computer (see instructions in dynamics-assnTemplate.Rmd)

Project proposal

- Submit 2-page (single-spaced, 1-inch margins, Arial size 10 font) proposal for project on Thursday March 19
- The proposal will have the following structure:
 - Introduction & Background: describe an open question/topic in a biological field and outline its importance
 - Questions & Goals: delineate the questions the project will address along with hypotheses/predictions
 - Methodological Approach: describe how you plan to carry out the research
 - Expected Results & Implications: describe expected results and implications for the broader public

Peer review of project proposal

Students will use form dynamics-review.doc to review the proposals of their peers by assessing them on a scale of 1 (Poor) to 5 (Excellent) for each of the following criteria:

- Clarity
- Novelty
- Feasibility
- Potential societal impact

All reviews and proposals will be anonymous.

Project presentation

- Students will prepare and deliver a 15- to 30-minute long presentation of their project during the the last week of classes
- Presentations should be prepared in PowerPoint/Keynote/Beamer and articulate the rationale, methodology, results and main conclusions of the project
- Sufficient information should be given to convey the importance of the project to a "generic" scientist (not necessarily a biologist or ecologist)
- Each presentation will be followed by a 5-10 minute question & answer period

Project report

- Students will submit a scientific manuscript based on their proposal that adheres to the format of a Letter for the journal Ecology Letters by Friday May 01
- The manuscript will present a novel model that tackles the topic described in the proposal. The paper will also include an appendix describing the rationale for the model derivation and analysis, along with the R code used to produce the results
- The manuscript should have the following sections: "Abstract", "Introduction", "Methods & Materials", "Results", "Discussion", "References", "Tables", "Figures" and no more than 5,000 words and 6 tables/figures
- See the author guidelines for greater details about the format of the manuscript
- I suggest using a Citation Manager such as Zotero to organize your references

Course evaluation

- Students are expected to complete the student survey known as TRACE (Teaching Rating and Course Evaluation)
- Accessible via the MyNEU website

Course goals

- Understand mathematical theory needed to build models
- Learn practical computational aspects of model-building
- Oevelop models to address modern biological problems

Course syllabus (1/2)

Week	Date	Lecture	Readings
1	Mon Jan. 12	Introduction	O 1
'	Thu Jan. 15	Philosophy of modeling	O1
2	Mon Jan. 19	MLK day: no class	O 2
	Thu Jan. 22	Constructing models	02
3	Mon Jan. 26	Population growth (1/2)	G 1, G 2
3	Thu Jan. 29	Population growth (2/2)	G1, G2
4	Mon Feb. 02	Matrix models	G 3, O 10
4	Thu Feb. 05	Competition (1/2)	G 5, O 10
5	Mon Feb. 09	Competition (2/2)	G 5
3	Thu Feb. 12	Predation (1/2)	G 5
6	Mon Feb. 16	Presidents' day: no class	G 6
0	Thu Feb. 19	Predation (2/2)	Go
7	Mon Feb. 23	Food chains (1/2)	G 6
,	Thu Feb. 26	Food chains (2/2)	Go
8	Mon Mar. 02	Food webs (1/2)	Selected papers
0	Thu Mar. 05	Food webs (2/2)	Selected papers
9	Mon Mar. 09	Spring break: no class	
9	Thu Mar. 12	Spring break: no class	

Course syllabus (2/2)

Week	Date	Lecture	Readings
10	Mon Mar. 16	Epidemiological models (1/2)	O 3
10	Thu Mar. 19	Epidemiological models (2/2)	03
11	Mon Mar. 23	Spatial models (1/2)	G 4
11	Thu Mar. 26	Spatial models (2/2)	G4
12	Mon Mar. 30	Environmental change (1/2)	Selected papers
12	Thu Apr. 02	Environmental change (2/2)	Selected papers
13	Mon Apr. 06	Fitting models to data (1/2)	B 7
13	Thu Apr. 09	Fitting models to data (2/2)	B/
14	Mon Apr. 07	Project presentations	
14	Thu Apr. 10	Project presentations	
15	Mon Apr. 13	Project presentations	
13	Thu Apr. 16	Project presentations	
16	Mon Apr. 20	Project presentations	
10	Fri May 01	Projects due	

A brief (and biased) history of ecology (1/2)

1910s	1920s	1930s	1940s	1950s	
Succession Niche	Succession Niche	Coexistence	SADs	Niche Density-(in)dependence	
Clements (1916) Grinnell (1917)	Gleason (1926) Elton (1927)	Gause (1934)	Kendall (1948) Preston (1948)	Hutchinson (1957) Nicholson (1954) Andrewartha and Birch (1954)	

A brief (and biased) history of ecology (2/2)

1960s	1970s	1980s	1990s	2000s
Competition Biogeography Metapopulation	Ecosystems Predation	Trophic cascades Spatial ecology	Biodiversity Metabolic scaling	Phylogenetics Metacommunity Eco-evo dynamics
MacArthur (1958) MacArthur and Wilson (1967) Levins (1969)	Odum (1969) Paine (1966)	Oksanen et al. (1981) Levin (1992)	Tilman et al. (1996) West et al. (1997)	Silvertown et al. (2006) Leibold et al. (2004) Hairston et al. (2005)

References I

- Andrewartha, H. G. and L. C. Birch. 1954. The distribution and abundance of animals. University of Chicago Press, Chicago.
- Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Number 242, Carnegie Institution of Washington.
- Elton, C. S. 1927. Animal ecology. University of Chicago Press.
- Gause, G. F. 1934. The struggle for existence. Williams and Wilkins, Baltimore, Maryland.
- Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, **53**:7–26.
- Grinnell, J. 1917. The niche-relationships of the california thrasher. The Auk, pages 427–433.
- Hairston, N. G., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters, 8:1114–1127.

References II

- Hutchinson, G. E. 1957. Concluding remarks: Cold spring harbor symposium. Quantitative Biology, **22**:415–427.
- Kendall, D. G. 1948. On some modes of population growth leading to Fisher, R.A. logarithmic series distribution. Biometrika, **35**:6–15.
- Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, **7**:601–613.
- Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology, **73**:1943–1967.
- Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, **15**:237–240.
- MacArthur, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology, **39**:599–619.

References III

- MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey, USA.
- Nicholson, A. J. 1954. An outline of the dynamics of animal populations. Australian Journal of Zoology, **2**:9–65.
- Odum, E. P. 1969. The strategy of ecosystem development. Science, **164**:262–270.
- Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118:240–261.
- Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist, **100**:65–75.
- Preston, F. W. 1948. The commonness, and rarity, of species. Ecology, **29**:254–283.

References IV

- Silvertown, J., M. Dodd, D. Gowing, C. Lawson, and K. McConway. 2006. Phylogeny and the hierarchical organization of plant diversity. Ecology, **87**:S39–S49.
- Tilman, D., D. Wedin, J. Knops, et al. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, **379**:718–720.
- West, G. B., J. H. Brown, and B. J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science, **276**:122–126.