

Description

The VSM90N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =90A

 $R_{DS(ON)}$ =3.4m Ω (typical) @ V_{GS} =10V

 $R_{DS(ON)}$ =6.9m Ω (typical) @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- DC/DC converters
- Synchronous Rectifier

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM90N03-T2	VSM90N03	TO-252	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	90	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	63.6	А
Pulsed Drain Current (Note 1)	I _{DM}	200	А
Maximum Power Dissipation	Б	105	W
Derating factor	P _D	0.7	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	380	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	1.43	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	38	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1	1.7	2.5	V	
Drain-Source On-State Resistance	R _{DS(ON)} -	V _{GS} =10V, I _D =20A	-	3.4	4.2	m0	
Diani-Source On-State Resistance		V _{GS} =4.5V, I _D =20A	6.9 9.5		9.5	— mΩ	
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	20	-	-	S	
Dynamic Characteristics (Note4)			•			•	
Input Capacitance	C _{lss}	V _{DS} =15V,V _{GS} =0V,	-	3568	-	PF	
Output Capacitance	Coss		-	422	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	341	-	PF	
Switching Characteristics (Note 4)			•			•	
Turn-on Delay Time	t _{d(on)}		-	12	-	nS	
Turn-on Rise Time	t _r	V_{DD} =15V, I_{D} =20A V_{GS} =10V, R_{GEN} =3 Ω	-	15	-	nS	
Turn-Off Delay Time	t _{d(off)}		-	40	-	nS	
Turn-Off Fall Time	t _f		-	14	-	nS	
Total Gate Charge	Qg	\/ 45\/ 45A	-	67	-	nC	
Gate-Source Charge	Q _{gs}	V _{DS} =15V,I _D =45A,	-	13.7	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	10.3	-	nC	
Drain-Source Diode Characteristics			•			•	
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	90	А	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	29	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	32	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C, V_{DD}=15V,V_G=10V,L=0.5mH, Rg=25 Ω ;

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 ID Current Derating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance