## Introduction to deep learning

LATEST SUBMISSION GRADE

100%

| 1. | What does the analogy "AI is the new electricity" refer to?                                                                                             | 1/1 point |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Through the "smart grid", AI is delivering a new wave of electricity.                                                                                   |           |
|    | <ul> <li>Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.</li> </ul>                 |           |
|    | Al is powering personal devices in our homes and offices, similar to electricity.                                                                       |           |
|    | Similar to electricity starting about 100 years ago, Al is transforming multiple industries.                                                            |           |
|    | ✓ Correct Yes. All is transforming many fields from the car industry to agriculture to supply-chain                                                     |           |
| 2. | Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)                                                 | 1/1 point |
|    | Neural Networks are a brand new field.                                                                                                                  |           |
|    | We have access to a lot more computational power.                                                                                                       |           |
|    | Correct Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.           |           |
|    | Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition. |           |
|    | ✓ Correct  These were all examples discussed in lecture 3.                                                                                              |           |
|    | We have access to a lot more data.                                                                                                                      |           |
|    | <ul> <li>Correct</li> <li>Yes! The digitalization of our society has played a huge role in this.</li> </ul>                                             |           |
|    |                                                                                                                                                         |           |



Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.



Faster computation can help speed up how long a team takes to iterate to a good idea.



- It is faster to train on a big dataset than a small dataset.
- Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).



| 4. | When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False? |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ○ True                                                                                                                                                                                                                                         |
|    | False                                                                                                                                                                                                                                          |
|    | ✓ Correct                                                                                                                                                                                                                                      |

Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

O Figure 1:



O Figure 2:



⊕ Figure 3:



O Figure 4:



| 6. | Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer. True/False?  True False  Correct                                                               | 1/1 point |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Yes. Images for cat recognition is an example of "unstructured" data.                                                                                                                                                        |           |
| 7. | A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources. True/False?  True  False | 1/1 point |
|    | Correct A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.                            |           |
| 8. | Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)                                                                                            | 1/1 point |
|    | ✓ It can be trained as a supervised learning problem.                                                                                                                                                                        |           |
|    | ✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French).                                                                                                                                        |           |
|    | It is strictly more powerful than a Convolutional Neural Network (CNN).                                                                                                                                                      |           |
|    | It is applicable when the input/output is a sequence (e.g., a sequence of words).                                                                                                                                            |           |
|    | ✓ Correct Yes. An RNN can map from a sequence of english words to a sequence of french words.                                                                                                                                |           |
|    | RNNs represent the recurrent process of Idea->Code->Experiment->Idea->                                                                                                                                                       |           |

In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis)
represent?

1/1 point



- x-axis is the performance of the algorithm
  - y-axis (vertical axis) is the amount of data.
- x-axis is the input to the algorithm
  - y-axis is outputs.
- x-axis is the amount of data
  - y-axis is the size of the model you train.
- x-axis is the amount of data
  - y-axis (vertical axis) is the performance of the algorithm.



| 10. |   | ming the trends described in the previous question's figure are accurate (and hoping you got the axis<br>s right), which of the following are true? (Check all that apply.) | 1/1 point |
|-----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |   | Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it nay help significantly.                                                  |           |
|     |   | ncreasing the training set size generally does not hurt an algorithm's performance, and it may help ignificantly.                                                           |           |
|     | ~ | Correct  Yes. Bringing more data to a model is almost always beneficial.                                                                                                    |           |
|     |   | Decreasing the training set size generally does not hurt an algorithm's performance, and it may help ignificantly.                                                          |           |
|     |   | ncreasing the size of a neural network generally does not hurt an algorithm's performance, and it nay help significantly.                                                   |           |
|     | ~ | Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.                                                          |           |
|     |   |                                                                                                                                                                             |           |