User Datagram Protocol (UDP)

Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

¹FH Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

Inhalt

Transportschicht allgemein

Sockets, Ports & Transportdienste

User Datagram Protocol (UDP)

Transportschicht in der TCP/IP Protokollfamilie

Anwendungsschicht	Hypertext Transfer Protocol (HTTP)	Domain Name System (DNS)	Simple Mail Transfer Protocol (SMTP)	Internet Message Access Protocol (IMAP)	Post Office Protocol (POP3)	DHCP, SSH, SIP, RTP, SNMP, Telnet,	
Transportschicht	Transmission Control Protocol (TCP)			Quick UDP Internet Connections (QUIC)			
				User Datagram Protocol (UDP)			
Internetschicht	Internet Protocol (IP) v4			4 und v6 Internet Control Message Protocol (ICMP) v4 und v6			
	Address Resolution Protocol (ARP) Neighbor Discovery Protocol (NDP)						
Netzanschlussebene	z. B. IEEE 802.x (Ethernet, WLAN,)						

Aufgabe der Transportschicht

Bedarfsgerechter Transportdienst zwischen zwei Prozessen (Anwendungen) auf (nicht notwendigerweise) verschiedenen Systemen (Ende-zu-Ende, End-to-End).

- ▶ Bedarfsgerecht = so wie es von der Anwendung gebraucht wird
- ► Ende-zu-Ende = es kommunizieren die absoluten Endpunkte (es gibt nur mehr den Nutzer vor dem Rechner)

Sockets & Ports

Transportdienste im Internet

- ▶ Die Netzwerkanwendung (bzw. deren Entwickler) wählt das zu verwendende Transportprotokoll auf Basis der Anforderungen der Netzwerkanwendung.
- Anforderung Zuverlässigkeit (Reliability) = Sicherstellung, dass Daten vollständig und korrekt beim Empfänger ankommen → Transmission Control Protocol (TCP)
- ► Anforderung Latenzminimierung = Minimierung von Verzögerungen (Delays) in der Kommunikation → User Datagram Protocol (UDP)
- ► Anforderung World Wide Web = Beseitigung der Schwächen von TCP für die Nutzung im World Wide Web → Quick UDP Internet Connections (QUIC)

Anwendungen + Transportprotokoll + Port (Beispiele)

Anwendung	Transportprotokoll	Port
File Transfer Protocol (FTP)	TCP	21
Secure Shell (SSH)	TCP	22
Simple Mail Transfer Protocol (Secure) (SMTP(S))	TCP	25, 465, 587
Domain Name System (DNS)	UDP + TCP	53
Dynamic Host Configuration Protocol (DHCP)	UDP	67, 68
Hypertext Transfer Protocol (Secure) $(HTTP(S)) \leq 2$	TCP	80, 443
Hypertext Transfer Protocol Secure (HTTPS/3)	UDP + QUIC	443
Post Office Protocol (Secure) (POP3(S))	TCP	110, 995
Network Time Protocol (NTP)	UDP	123
Internet Message Access Protocol (Secure) (IMAP4(S))	TCP	143, 993
Simple Network Management Protocol (SNMP)	UDP	161, 162
Realtime Transfer Protocol (RTP)	UDP	Dynamisch
Remote Desktop Protocol (RDP)	TCP + UDP	3389
Session Initiation Protocol (SIP)	TCP + UDP	5060, 5061

Sockets und (aktive) Verbindungen

► Tools netstat (deprecated) bzw. ss: Anzeigen von Sockets und (aktiven) Verbindungen auf einem System.

\$ sudo	netstat	-Wtau	ipen					
Active	Internet	t conr	nections (servers and	established)				
Proto R	ecv-Q Se	end-Q	Local Address	Foreign Address	State	User	Inode	PID/Program name
tcp	0	0	127.0.0.1:587	0.0.0.0:*	LISTEN	0	23349	2194/sendmail: MTA:
tcp	0	0	127.0.0.1:6379	0.0.0.0:*	LISTEN	110	33821	1587/redis-server 1
tcp	0	0	0.0.0.0:53	0.0.0.0:*	LISTEN	0	36045	2304/dnsmasq
tcp	0	0	0.0.0.0:22	0.0.0.0:*	LISTEN	0	24572	1206/sshd
tcp	0	0	127.0.0.1:5432	0.0.0.0:*	LISTEN	107	1699	1385/postgres
tcp	0	0	127.0.0.1:25	0.0.0.0:*	LISTEN	0	23348	2194/sendmail: MTA:
tcp	0	1	185.252.75.38:22	218.92.0.211:42846	FIN_WAIT1	0	0	-
tcp	0	220	185.252.75.38:22	90.146.138.18:53328	ESTABLISHED	0	1561065	25305/sshd: monitor
tcp6	0	0	::1:6379	:::*	LISTEN	110	33822	1587/redis-server 1
tcp6	0	0	:::53	:::*	LISTEN	0	36047	2304/dnsmasq
tcp6	0	0	:::22	:::*	LISTEN	0	24574	1206/sshd
tcp6	0	0	::1:5432	:::*	LISTEN	107	1698	1385/postgres
tcp6	0	0	:::8443	:::*	LISTEN	0	16168	2322/python3
udp	0	0	0.0.0.0:53	0.0.0.0:*		0	36044	2304/dnsmasq
udp	0	0	0.0.0.0:67	0.0.0.0:*		0	36041	2304/dnsmasq
udp	0	0	0.0.0.0:68	0.0.0.0:*		0	16776	919/dhclient

User Datagram Protocol (UDP) I

- ► User Datagram Protocol (UDP) RFC 768
- ► Verbindungslose und unzuverlässige Übertragung von Datagrammen zwischen Prozessen auf (nicht notwendigerweise) unterschiedlichen Systemen.
- ▶ UDP \approx IP + Port-Information
- Warum und wann UDP?
 - ► Geringer Overhead in der Dateneinheit (kleiner Header, kein Verbindungsauf- und -abbau) und auf Systemen (kein Aufwand für z. B. die Verwaltung von Verbindungszuständen) → Eignung für zeitkritische Anwendungen (Echtzeitanwendungen).
 - Mehr Flexibilität für die Anwendung, Anwendung entscheidet selbst, welche Funktionalität sie nutzten möchte (z. B. QUIC über UDP).
 - ▶ Broadcast- und Multicast-Kommunikation (keine Unterstützung durch TCP).

User Datagram Protocol (UDP) II

Header

16	16	16	16	2 ¹⁶ - 16 Bytes Header = max.65520 Bytes
Source Port	Destination Port	Length	Checksum	Anwendungsdaten

- ► Source (Quell-) Port: Port des sendenden Prozesses am Quellsystem.
 - ightharpoonup Client ightharpoonup Server: Dynamic/Private Port ightharpoonup 49152
 - Server → Client: Well-Known oder Registered Port des Services
- Destination (Ziel-) Port: Port des empfangenden Prozesses am Zielsystem.
 - ► Client → Server: Well-Known oder Registered Port des Services
 - ► Server → Client: Dynamic/Private Port > 49152
- ▶ Length (Länge): Länge des Datagramms mit dem Header in Bytes (mind. 8).

User Datagram Protocol (UDP) III

Quell-/Ziel-Information

User Datagram Protocol (UDP) IV

Wichtige Aspekte

- ▶ UDP betrachtet von der Anwendung kommende Daten (via sendto() Call) als eine untrennbare Einheit (ein Byte-Block) → Anwendungsdaten werden wie von dort kommend paketiert und an die Netzwerkschicht weitergegeben.
- ▶ UDP lässt der Anwendung die Freiheit, selbst über weitere Funktionalitäten zu entscheiden. UDP stellt einen Andockmöglichkeit an IP zur Verfügung.
- ➤ Anwendungen können daher z. B. durchaus Zuverlässigkeit über UDP realisieren (z. B. QUIC für HTTP/3).

Referenzen I

