Билет 39

Условие непрерывности монотонной функции

Теорема

f — монотонна на промежутке X

$$f(X) = Y$$
, где Y — промежуток $\Rightarrow f$ — непрерывна на X

Здесь под промежутком имеется в виду как открытый, полуоткрытый, так и закрытый промежуток

Доказательство

Без ограничения общности пусть f — монотонно возрастающая. Докажем, что f — непрерывна слева в $\widetilde{X}:=\{x\in X\mid \exists x'\in X: x'< x\}=X\setminus \{x\in X\mid \forall x'\in X: x\leq x'\}.$

 $\widetilde{X} = X \setminus \{\min X\}$, если $\exists \min X$. $\widetilde{X} = X$, если его не существует.

Иными словами:

$$\begin{array}{c|cc} X & \widetilde{X} \\ \hline (a;b) & (a;b) \\ (a;b] & (a;b] \\ \hline [a;b) & (a;b) \\ \hline [a;b] & (a;b] \\ \hline \end{array}$$

Докажем, что f — непрерывна слева в $\forall x_0 \in \widetilde{X}$:

Для этого будем рассматривать f на $\widetilde{X}_L:=\{x\in \hat{X}\mid x< x_0\}$ и $\widetilde{X}_R:=\{x\in \hat{X}\mid x_0\geq x\}$

1. Найдём $\lim_{x \to x_0 = 0} f(x)$:

$$(\forall x \in \widetilde{X}_L) \ f(x) \le f(x_0) \Rightarrow \exists \sup f(\widetilde{X}_L)$$

$$g := \sup f(\widetilde{X}_L) \Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : f(x_0 - \delta) > g - \varepsilon \Rightarrow$$

$$\Rightarrow (\forall x \in (x_0 - \delta; x_0)) \ g - \varepsilon < f(x_0 - \delta) \le f(x) \le g \Rightarrow g - \varepsilon < f(x) \le g \Rightarrow \lim_{x \to x_0 - 0} f(x) = g$$

2. Докажем, что $f(x_0) = g$

$$\Box f(x_0) < g \Rightarrow \Box \varepsilon = g - f(x_0) > 0 \ \exists x \in \widetilde{X}_L : g - \varepsilon < f(x) \Rightarrow f(x_0) < f(x), \text{ но } x < x_0 \tag{1}$$

$$\Box f(x_0) > g, \ (f(x) \le g \ \forall x \in \widetilde{X}_L) \land (f(x_0) \le f(x) \ \forall x \in \widetilde{X}_R) \Rightarrow$$

$$\Rightarrow (g; f(x_0)) \not\subset Y, \text{ но } Y - \text{промежуток}$$

$$(1) \land (2) \Rightarrow f(x_0) = g$$

Таким образом, была доказана непрерывность слева для внутренних точек X и $\max X$, если он существует. Аналогично доказывается непрерывность справа для внутренних точек X и $\min X$, если он существует.

Таким образом для любой внутренней точки x_0 промежутка X:

$$\lim_{x \to x_0 - 0} f(x) = f(x_0) \land \lim_{x \to x_0 + 0} f(x) = f(x_0) \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$$

Из этого следует, что f — непрерывна на X \square .