Performance indices

Regression

 $\label{eq:January the 4th 2021} \mbox{ Jean Christophe Meunier} \\ \mbox{ January the 4th 2021, Becode Al/data science bootcamp}$

Error-based indicators

Characteristics

- Distance observed (y) -- predicted (y' or ŷ)
 - The lower the best
- Not readily interpretable, but useful:
 - For comparing nested models (error is data set dependent)
 - In conjunction with other indicators
- · Many indicators:
 - E.g. MAE, MSE, RMSE, MPE, MPA,...
 - Each of them covering different aspects: amount of error, bias, specific outliers,...

Mean absolute error (MAE)

- Absolute distance :
 - + and distance do not cancel each other out
- Typical magnitude of the residuals
 - Same metric as variable of interest

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Root Mean Squared Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

- Distance 'manipulation':
 - 1. Squared:
 - - and + do not cancel each other out
 - larger error are exponentially weighted
 - 2. Square root:
 - Turn back in the same metric as variable of interest

MAE vs. RMSE

- MAE
 - Easier to interpret (distance is not 'manipulated')
 - Errors contribute linearly to the overall error
- RMSE
 - More useful when large errors are particularly undesirable (outliers)

CASE 1: Evenly distributed errors				CASE 2: Small variance in errors				CASE 3: Large error outlier			
ID			Error^2	ID			Error^2	ID			Error^2
1	2	2	4	1	1	1	1	1	0	0	0
2	2	2	4	2	1	1	1	2	0	0	0
3	2	2	4	3	1	1	1	3	0	0	0
4	2	2	4	4	1	1	1	4	0	0	0
5	2	2	4	5	1	1	1	5	0	0	0
6	2	2	4	6	3	3	9	6	0	0	0
7	2	2	4	7	3	3	9	7	0	0	0
8	2	2	4	8	3	3	9	8	0	0	0
9	2	2	4	9	3	3	9	9	0	0	0
10	2	2	4	10	3	3	9 ,	10	20	20	400]
		MAE	RMSE			MAF	RMSE			MAE	RMSE
		2.000	2.000			2.000	2.236			2.000	6.325

MAE vs. RMSE

• Both provide information on amount of error but not on bias

with |abs| and ()²

+ and – distances are no longer identifiable

. Igare 2.11. Pecision & Bia

Mean Absolute Percentage of Error (MAPE)

- Average proportion of error
 - Ex: ŷ = 11 vs. y = 10 indicates a 10% error
- Independent of the metric
 - Ex: 1 vs. 10 same as 100 vs. 1000
- Absolute value
 - - and + distances do not cancel each other out

Mean Absolute Percentage of Error (MAPE)

- Average proportion of error
 - Ex: $\hat{y} = 11$ vs. y = 10 indicates a 10% error
- Independent of the metric
 - Ex: 1 vs. 10 same as 100 vs. 1000
- · Absolute value
 - - and + distances do not cancel each other out

Weakness of MAPE: predictions that are systematically either higher or lower are not equally weighted

Mean Percentage of Error (MPE)

- Same as MAPE but without |abs|
 - + and canceled out
- No information on performance
- Identify bias
 - underestimation (more negative error)
 - overestimation (more positive error)

$$MPE = \frac{100\%}{n} \Sigma \left(\frac{y - \hat{y}}{y} \right)$$

Mean Percentage of Error (MPE)

• Provide information on bias but not on amount of error

Figure 2.1: Precision & Bias

without |abs|

+ and – distances are now identifiable

Alternative indicators

• Median absolute error

$$MedAE(y, \hat{y}) = median(|y_1 - \hat{y}_1|, ..., |y_n - \hat{y}_n|)$$

- Not affected by outliers
- Max error
 - worst case error between the predicted value and the true value

$$\operatorname{Max} \operatorname{Error}(y, \hat{y}) = max(|y_i - \hat{y}_i|)$$

```
Entrée [40]: from sklearn.metrics import mean_absolute_error
   Sklearn
                                                 from sklearn.metrics import mean_squared_error
                                                 from sklearn.metrics import mean_absolute_percentage_error
                                                 from sklearn.metrics import median_absolute_error
                                                 from sklearn.metrics import max_error
                                   Entrée [41]: mean_absolute_error(y_ess1, y_pred1)
                                       Out[41]: 0.7406040153701986
                                   Entrée [42]: mean_squared_error(y_ess1, y_pred1)
                                       Out[42]: 0.8623720997604472
                                   Entrée [43]: mean_absolute_percentage_error(y_ess1, y_pred1)
                                       Out[43]: 0.5803582139093125 New in sklearn 0,24
Mean percentage error (MPE) not available in
                                   Entrée [44]: median_absolute_error(y_ess1, y_pred1)
                                       Out[44]: 0.6155660119853823
                                   Entrée [45]: max_error(y_ess1, y_pred1)
                                       Out[45]: 2.742975648344551
```

Scores

Based on explained variance

MSE baseline = Var(y)

Χ -

Characteristics

- MSE Comparison between
 - Regression model
 - Baseline inept model
 - Predict nothing but the mean : \hat{y} always = \bar{y}
 - In this case MSE is stricly equal to Var(y)

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$
 = $Var(y) = \frac{1}{n} \sum_{j=1}^{n} (y_j - \bar{y})^2$

Characteristics

- A score (not an error)
 - The higher the best
 - Range between
 - 0 (0% of variance explained)
 - 1 (100% of variance explained)

R-square or determination coefficient

 \bullet Proportion or % of variance explained

$$R^2 = 1 - \frac{\sum_{j=1}^n \left(y_j - \widehat{y}_j \right)^2}{\frac{n}{\sum_{j=1}^n \left(y_j - \overline{y} \right)^2}} = 1 - \frac{\underset{\text{baseline MSE or Var}(y)}{r}}{\underset{\text{Complementary proportion of variance explained by model}}{\underbrace{\sum_{j=1}^n \left(y_j - \overline{y} \right)^2}_{n}} = 1 - \frac{\underset{\text{Complementary proportion of Variance explained by model}}{r}$$

Sklearn's 'explained_variance_score'

- Very similar to R²
 - Same but Mean Error substract from residual MSE-

$$explained\ variance\ score\ = 1 - \frac{\frac{\sum_{j=1}^{n} (y_{j} - \hat{y}_{j})^{2} - \textit{Mean\ Error}}{n}}{\frac{\sum_{j=1}^{n} (y_{j} - \hat{y})^{2}}{n}}$$

- If best-fit line reached, ME always = 0
 - Thus, almost always R² = 'explained variance score'
- Usefulness?

Sklearn's 'explained_variance_score'

- Very similar to R²
 - Same but Mean Error substract from residual MSE-

$$explained\ variance\ score\ = 1 - \frac{\frac{\sum_{j=1}^{n} \left(y_{j} - \widehat{y}_{j}\right)^{2} - \textit{Mean}\ \textit{Error}}{n}}{\frac{\sum_{j=1}^{n} \left(y_{j} - \widehat{y}_{j}\right)^{2}}{n}}$$

- If best-fit line reached, ME always = 0
 - Thus, almost always R² = 'explained variance score'

- When estimator is biased (model not yet converged)
 - If R² = 'explained variance score' → convergence reached
 - If R^2 < 'explained variance score' \rightarrow convergence not yet reached


```
Entrée [46]: from sklearn.metrics import explained_variance_score, r2_score

Entrée [47]: explained_variance_score(y_ess1, y_pred1)

Out[47]: 0.9664748981730923

Entrée [48]: r2_score(y_ess1, y_pred1)

Out[48]: 0.9664748981730923
```