1 Задание

Найти численное решение задачи поиска устойчивой периодической траектории пассивной системы, приведенной на рисунке 1 статьи на языке руthon. Предполагается абсолютно неупругий удар, как в статье. Проанализировать влияние параметров на устойчивость решения. Получить фазовый портрет движения, анимацию.

2 Теоретическая справка

Отдельный шаговый цикл может быть описан следующим уравнением, записанным в матричной форме:

$$M(\theta)\ddot{\theta} + N(\theta, \dot{\theta})\dot{\theta} + \frac{1}{a}g(\theta) = 0$$

$$M(\boldsymbol{\theta}) = \begin{pmatrix} \beta^2 & -(1+\beta)\beta\cos 2\alpha \\ -(1+\beta)\beta\cos 2\alpha & (1+\beta)^2(\mu+1)+1 \end{pmatrix}$$

$$N(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \begin{pmatrix} 0 & (1+\beta)\beta\dot{\theta}_s\sin(\theta_s-\theta_{ns}) \\ -(1+\beta)\beta\dot{\theta}_{ns}\sin(\theta_s-\theta_{ns}) & 0 \end{pmatrix}$$

$$g(\boldsymbol{\theta}) = \begin{pmatrix} g\beta\sin\theta_{ns} \\ -((\mu+1)(1+\beta)+1)g\sin\theta_s \end{pmatrix}.$$

Однако ходьба циклична, поэтому при смене опорной ноги необходимо выполнить преобразование с вектором обобщенных координат. Для производных обобщенных координат:

$$\dot{\boldsymbol{\theta}}^{+} = (\boldsymbol{Q}^{+}(\alpha))^{-1}\boldsymbol{Q}^{-}(\alpha)\dot{\boldsymbol{\theta}}^{-} = \boldsymbol{H}(\alpha)\dot{\boldsymbol{\theta}}^{-}$$

$$\boldsymbol{Q}^{-}(\alpha) = \begin{pmatrix} -\beta & -\beta + \left(\mu\left(1+\beta\right)^{2} + 2\left(1+\beta\right)\right)\cos 2\alpha \\ 0 & -\beta \end{pmatrix}$$

$$\boldsymbol{Q}^{+}(\alpha) = \begin{pmatrix} \beta\left(\beta - \left(1+\beta\right)\cos 2\alpha\right) & \left(1+\beta\right)\left(\left(1+\beta\right) - \beta\cos 2\alpha\right) \\ & \cdots + 1 + \mu\left(1+\beta\right)^{2} \\ \beta^{2} & -\beta\left(1+\beta\right)\cos 2\alpha \end{pmatrix}$$

Для обобщенных координат: $\Theta^+ = J\Theta^-$, где J – антисимметричная единичная матрица 2x2.

Значение угла α рассчитывается согласно геометрии на рисунке выше.

В решении реализовано "переключение" при смене опорной ноги по примерному периоду системы 0.1 сек, видно из графиков. Это условие переключения не реалистично и принято "заглушкой". Для точного определения момента переключения нужно написать уравнение движения центра масс системы и отслеживать экстремумы.

Система, описывающая движение, имеет второй порядок, поэтому вектор обобщенных координат должен принять вид: $q = [\Theta_s, \Theta_{ns}, \dot{\Theta}_s, \dot{\Theta}_{ns}]^T$. Так мы сведем систему к первому порядку. Решить в явном виде систему нельзя, поэтому необходимо применить численное интегрирование методом Рунге-Кутта. Мною были найдены коэффициенты для метода пятого порядка точности в книге Э. Хайрер, С. Нёрсетт, Г. Ваннер "Решение обыкновенных дифференциальных уравнений. Нежёсткие задачи."

0	1						
1 5 3	1 5						
3 10	3 40	9 40					
<u>4</u> 5	44 45	<u> 56</u>	32				
8 9	19372 6561	$-\frac{25360}{2187}$	64448 6561	$-\frac{212}{729}$			
1	9017 3168	$-\frac{355}{33}$	<u>46732</u> <u>5247</u>	49 176	$-\frac{5103}{18656}$		
1	35 384	0		192	$-\frac{2187}{6784}$	84	
91	35 384	0	500 1113	125	- 2187 6784	11 84	0
91	5179 57600	0	7571 16695	393 640	$-\frac{92097}{339200}$	$\frac{187}{2100}$	1 40

Задача имеет вид $\dot{q} = f(q)$

Определение 1.1. Пусть s — целое положительное число («число стадий», или «этапов») и a_{21} , a_{31} , a_{32} , ..., a_{s1} , a_{s2} , $a_{s,s-1}$, ..., b_1 , ..., b_s , c_2 , ..., c_s — вещественные коэффициенты. Тогда метод $k_1 = f(x_0, y_0)$, $k_2 = f(x_0 + c_2h, y_0 + ha_{21}k_1)$, $k_3 = f(x_0 + c_3h, y_0 + h(a_{31}k_1 + a_{32}k_2))$, $k_s = f(x_0 + c_sh, y_0 + h(a_{s1}k_1 + \dots + a_{s,s-1}k_{s-1}))$, $y_1 = y_0 + h(b_1k_1 + \dots + b_sk_s)$ называется s-стадийным (s-этапным) явным методом Рунге— Кутты (ЯМРК) для задачи

Автоматическое управление длиной шага интегрирования также реализовано. Для этого используется специфичная норма, коэффициенты для которой приведены в последней строчке таблицы. Новый шаг высчитывается по формуле, где все константы известны: $h_{new} = h \cdot \min (facmax, \max (facmin, fac \cdot (tol/err)^{1/(p+1)}))$

3 Обсуждение предварительных результатов

Графики производных и координат в зависимости от времени выглядят не достоверно, это связано с неверным выбором момента переключения. Начальные условия $q_0 = [\Theta_s^0, \Theta_{ns}^0, \dot{\Theta_s}^0, \dot{\Theta_{ns}}^0] = [pi, pi/4, 2, -3],$ Параметры системы имели вид: $\beta = 1, \phi = 30, \mu = 2$.

На последнем графике приведено изменение интервала интегрирования, согласно примененному алгоритму. Начальные условия я выбирала соглас-

но указаниям в статье "Исследование устойчивости движения для модели двуногой ходьбы"С.А. Юдаев. Привожу выдержки из неё.

Первоначальный анализ устойчивости может быть проведен с помощью упрощенной, безразмерной модели. Такая модель предложена в [3]. При этом уравнения движения принимают вид

$$\ddot{\theta}_{st}(t) - \sin(\theta_{st}(t) - \alpha) = 0 \tag{4}$$

$$\ddot{\theta}_{st}(t) - \ddot{\theta}_{sw}(t) + \dot{\theta}_{st}(t)^2 \sin\phi(t) - \cos(\theta_{st}(t) - \alpha) \sin\theta_{sw}(t) = 0. \tag{5}$$

В данном случае можно рассматривать первое уравнение системы независимо. В таком случае фазовый портрет уравнения (4) представляет собой фазовый портрет обыкновенного маятника. Синим цветом выделена линия соединяющая особые точки данной системы с координатами $(\alpha+n\pi,0),n\in Z$. Особая точка с координатами $(\alpha+2n\pi,0)$ представляет собой «седло», особые точки при $(\alpha+(2n+1)\pi,0)$ являются особыми точками типа «центр». При $\dot{\theta}_{st}<0,0\le\theta_{st}\le2\pi$ вышеуказанная линия, проходящая от центра к седлу, является сепаратрисой, разделяющей области различного поведения системы. Очевидно, чтобы удовлетворить начальным условиям (2) необходимо выбрать начальные точки ниже указанной сепаратрисы.

Рис. 2. Фазовые портреты линеаризованной системы.