Adam Frazee Homework 6 10/22/2105CSE 278

B.11 [5] i4.2, B.2, B.3i Assume that X consists of 3 bits, x2 x1 x0. Write four logic functions that are true if and only if

• X contains only one 0

 $\underline{F} = \overline{x}_2 \cdot x_1 \cdot x_0 + x_2 \cdot \overline{x}_1 \cdot x_0 + x_2 \cdot x_1 \cdot \overline{x}_0$

	<u>-</u>	1 000	1 00 2 00
$\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$	x_1	x_0	result
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

 $\bullet~$ X contains an even number of 0s

 $F = \overline{x}_2 \cdot \overline{x}_1 \cdot \underline{x}_0 + \underline{x}_2 \cdot \overline{x}_1 \cdot \underline{x}_0 + \overline{x}_2 \cdot \underline{x}_1 \cdot \underline{x}_0 + \underline{x}_2 \cdot \underline{x}_1 \cdot \underline{x}_0$

$F = x_2 \cdot x_1 \cdot x_0 + x_2 \cdot x$				
x_2	x_1	x_0	result	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

• X when interpreted as an unsigned binary number is less than

 $F = \overline{x}_2$

- '	~ 4		
x_2	x_1	x_0	result
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

• X when interpreted as a signed (two complement) number is negative

$r - x_2$					
x_2	x_1	x_0	result		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	1		

B.14 [5] ¡B.2, B.3; Implement a switching network that has two data inputs (A and B), two data outputs (C and D), and a control input (S). If S equals 1, the network is in pass-through mode, and C should equal A, and D should equal B. If S equals 0, the network is in crossing mode, and C should equal B, and D should equal A.

