7554

150 COPY NO.

TECHNICAL REPORT 4105

USE OF A REACTION RATE METHOD ŢO PREDICT FAILURE TIMES OF ADHESIVE BONDS AT **CONSTANT STRESS**

ELISE MCABEE DAVID W. LEVI

DECEMBER 1970

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

> PICATINNY ARSENAL DOVER, NEW JERSEY

INFORMATION SERVICE

Technical Report 4105

USE OF A REACTION RATE METHOD TO PREDICT FAILURE TIMES OF ADHESIVE BONDS AT CONSTANT STRESS

by

Elise McAbee David W. Levi

December 1970

This document has been approved for public release and sale; its distribution is unlimited.

AMCMS Code 4016.28.9.02003

Materials Engineering Laboratory
Feltman Research Laboratories
Picatinny Arsenal
Dover, N. J.

ACKNOWLEDGEMENTS

The authors are grateful to Mr. Raymond Wegman for furnishing the data and for helpful advice. Thanks are also due to Mr. Michael Bodnar for useful discussions and to Mrs. Dorothy Teetsel for assistance with the manuscript.

TABLE OF CONTENTS

		Page No.
Object		1
Summa	ry	1
Introdu	ction	2
Results	and Discussion	2
Refere	nces	6
Distrib	ution List	22
Tables		
1	Failure data for AF126 adhesive (aluminum adherends) under constant stress	8
2	Comparison of calculated and experimental failure times at 90-95% relative humidity	9
3	Comparison of calculated and experimental failure times at 333 K and 90-95% relative humidity	10
4	Failure data for AF126 adhesive (aluminum adherends) under constant stress at 50% relative humidity	11
5	Comparison of calculated and experimental failure times at 50% relative humid. 'y	12
6	Failure data for AF126 adhesive (aluminum adherends) under constant stress at 20%	13

Figures

1	Log t_f vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 90-95% relative humidity	14
2	The data for AF126 adhesive at 90-95% relative humidity plotted according to Equation 8	15
3	Arrhenius plots for evaluation of \triangle H \neq at 90-95% relative humidity	16
4	Log $t_{\rm f}$ vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 50% relative humidity	17
5	The data for AF126 adhesive at 50% relative humidity, plotted according to Equation 8	18
6	Arrhenius plots for evaluation of \triangle H \neq at 50% relative humidity	19
7	Log t_f vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 20% relative humidity ($\Delta = 322^{\circ}$ K; $\bullet = 333^{\circ}$; $O = 344^{\circ}$ K)	20
8	The data for AF126 adhesive at 20% relative humidity plotted according to Equation 8	21

OBJECT

The object of this work was to determine whether a reaction rate method could be used to predict failure times of adhesive bonds under constant stress conditions.

SUMMARY

A reaction rate method was successfully used to predict failure times for adhesive bonds under constant stress at 90-95% and at 50% relative humidity. The method was found to be not very useful when the experiments were performed at 20% relative humidity. The results suggest that the method should be particularly useful under high humidity, bond-degrading conditions such as exist in the tropics.

INTRODUCTION

Tobolsky and Eyring (Ref 1) first considered the lifetime of a material subjected to mechanical restraint to be a process according to a rate equation. Application of reaction rate theory to polymer mechanical behavior has been reported by a number of investigators (Refs 2 to 5). Recently, it has been shown that such a treatment is applicable to some adhesive data under constant rate of loading conditions (Ref 6). In the present report, an attempt is made to apply these ideas to some data from constant stress measurements of the strength of adhesive bonds.

RESULTS AND DISCUSSION

The constant stress data was obtained with Sharpe jigs (Ref 9) at the various temperatures and humidities listed later in this report. Details of the experiments will be published in a subsequent report (Ref 7). Failures were predominantly cohesive within the adhesive layer although there is some indication that the percent cohesive failure decreases with increasing time to failure regardless of the temperature or relative humidity (Ref 7).

It has been shown (Refs 2, 4, and 8) that, by integrating the rate equation and making certain reasonable assumptions, it is possible to obtain an expression of the form:

$$\log t_f = C - \log T + \frac{\Delta H \neq}{2.3RT} - b \frac{S}{T}$$
 (1)

where tf is failure time

C and b are constants

T is absolute temperature

 \triangle H \neq /2.3RT is an activation energy term

S is the stress.

At constant temperature, the experimental data should give a straight line according to

$$\log t_f = D - b \frac{S}{t} . \tag{2}$$

The apparent activation energy may then be evaluated by extrapolating several constant temperature lines to the vertical intercept (S/T = 0) and plotting according to

$$\log t_{f} = \frac{\Delta H^{\neq}}{2.3RT} + C. \tag{3}$$

If the above reasoning is valid, the data should give a straight line passing through the origin when plotting according to

$$\log \frac{t_f T}{C} - \frac{\Delta H}{2.3RT} = b \frac{S}{T}. \tag{4}$$

An alternative procedure has been worked out (Ref 6) for cases where isothermal data is lacking. In such cases, if we multiply Equation 1 through by T and consider a data point t_f and S_1 at T_1 , we obtain

$$T_1 \log t_{f1} T_1 = CT_1 + \frac{\Delta H^{\neq}}{2.3R} - b S_1$$
 (5)

We may then write a similar expression for t_{f_2} , s_2 and r_2 :

$$T_2 \log t_{f_2} T_2 = CT_2 + \frac{\Delta H^{\neq}}{2.3R} - b S_2.$$
 (6)

Assuming the constancy of $\triangle H \neq$

$$\frac{\Delta H \neq}{2.3R} = T_1 \log t_{f_1} T_1 - CT_1 + b S_1 = T_2 \log t_{f_2} T_2 - CT_2 + b S_2$$
 (7)

Rearranging and dividing through by $T_1 - T_2$, we obtain

$$\frac{T_1}{T_1 - T_2} \log t_{f_1} T_1 - \frac{T_2}{T_1 - T_2} \log t_{f_2} T_2 = C + b \frac{(S_2 - S_1)}{(T_1 - T_2)}$$
(8)

For every possible pair of data points, the left hand side of Equation 8 may be plotted against $(S_2-S_1)/(T_1-T_2)$. C and b may then be evaluated as the intercept and slope, respectively. After C and b are determined, we may go back to Equation 1 in the form

$$\log t_f T - C + b \frac{S}{T} = \frac{\Delta H \neq}{2.3RT}$$
 (9)

The left hand side of Equation 9 is plotted against 1/T to evaluate \triangle H \neq .

Table 1 shows the data for an AF126 adhesive with aluminum adherends (Ref 7) at 90 - 95% relative humidity. In each case, at least 4 samples were loaded at each stress indicated. The table gives average failure times. As may be expected for adhesive data, the scatter was quite pronounced. Details of the scatter will be published later (Ref 7).

In order to evaluate the parameters considered in the reaction rate equations, the data was plotted in two ways. Figure 1 shows a plot according to Equation 2. A second plot, in accord with Equation 8, is given in Figure 2. Arrhenius plots for the evaluation of Δ H \neq are shown in Figure 3. After evaluation of parameters, the following final equations relating failure time to stress and temperature were arrived at:

Method I, based on Equations 2 and 3

$$\log t_f = 7.4 + 5130 (1/T) - \log T - 0.45 (S/T)$$
 (10)

Method II, Two-Point Method

$$\log t_f = 8.07 + 5300 (1/T) - \log T - 0.45 (S/T) (11)$$

A least squares method was used to determine the line in Figure 2. The correlation coefficient was 0.90. The value b=0.45 was then used to draw the lines in Figure 1. The fit to the data appears to be quite good. From Equations 10 and 11, it is noted that $H \neq 24$ k calby both methods. Using two methods of data treatment in this way does give added confidence in the results.

Equations 10 and 11 were used to calculate failure times for each of the experimental points given in Table 1. Results of the calculations are shown in Table 2 where they are compared with the experimental values. Taking into account the usual scatter of adhesive mechanical property data, the agreement between experimental and calculated values is considered to be quite good.

To get an independent test of the validity of Equations 10 and 11 for estimating lifetimes of bonds with AF126 adhesive, a series of experiments was performed at a different temperature (333 K) and the experimental lifetimes were compared with those calculated in terms of Equations 10 and 11. Table 3 gives the results. The reasonably good agreement found by such an independent experiment gives further confidence in the validity of the treatment.

Comparable constant stress experiments with the same adhesive and adherends were also performed at 50% and at 20% relative humidity. Table 4 shows the data and Figures 4 and 5 show the plots for 50% relative humidity according to the two methods outlined above. In this case, the scatter is somewhat more troublesome than for the higher humidity. A visual comparison of Figures 2 and 5 indicates that the results in the latter case are not as good. The correlation coefficient for the line (least squares) in Figure 5 is 0.86. Figure 6 shows the Arrhenius plots for the two methods. In both cases, apparent activation energy is 41 k cal for the higher humidity. Apparently the environment has a considerably less weakening effect on the bond at the lower humidity. Then a higher energy is required to cause rupture. It seems reasonable that a greater scatter would result at lower humidities, since the lack of bond weakening by moisture would make random flaws more important in the failure process.

For 50% relative humidity the equations relating failure time to stress and temperature are:

Method I, based on Equations 2 and 3:

$$\log t_f = -22.45 + 11,000 (1/T) - \log T - 0.71 (S/T)$$
 (12)

Method II, Two-Point Method:

$$\log t_f = -22.06 + 11,000 (1/T) - \log T - 0.71 (S/T)$$
 (13)

Equations 12 and 13 were used to obtain the calculated $log t_f$ values shown in Table 5.

The results of the 20% relative humidity experiments are shown in Table 6 and in Figures 7 and 8. The correlation coefficient for the least squares line in Figure 8 is only 0.54. The positions of possible lines in Figure 7 are also quite uncertain. It appears that the reaction rate method is not useful in this case. As was mentioned earlier in this report, longer failure times tend to give more adhesive failure. For the lower humidities considerably higher stresses must be used to give reasonably short time failures. In addition, at lower humidities there should not be as much environmental weakening of bonds and hence random flaws probably play a more prominent role. Thus, it appears that a combination of several reasons may have caused the failure of the method at low humidity.

REFERENCES

- 1. A. V. Tobolsky and H. Eyring, J. Chem. Phys 11, 125 (1943)
- 2. B. D. Coleman and A. G. Knox, Textile Res. J. 27, 393 (1957)
- 3. P. H. Graham, C. N. Robinson, and C. B. Henderson, Int. J. Fracture Mechanics 5 (1), 57 (1969)
- 4. W. E. Wolstenholme and C. F. Stark, Reports 1 and 4, Final Report, Contract DA-18-035-AMC-139 (A)

- 5. E. McAbee and D. W. Levi, <u>J. Appl. Polymer Sci.</u> 11, 2067 (1967); 13, 1899 (1969)
- 6. E. McAbee, W. C. Tanner and D. W. Levi, "Prediction of Failure Times for Some Adhesive-bonded Joints", J. of Adhesion 2, 66 (1970)
- 7. R. F. Wegman, Evaluation of Adhesive Bonding Processes used in Helicopter Manufacture, to be published
- 8. E. McAbee and D. W. Levi, "Prediction of Lifetimes of Nylon Samples at Various Stress Levels", P. A. Technical Report 3871 (1969)
- 9. L. H. Sharpe, "Some Aspects of the Permanence of Adhesive Joints, Structural Adhesives Bonding", Interscience Publishers, 1966, pp. 353 359

TABLE 1
Failure data for AF126 adhesive (aluminum adherends)
under constant stress

Temperature, K	$t_{\mathbf{f}^c}$ min	S, psi	Relative Humidity (RH). %
296	533	3080	90
	4, 320	2600	
	10,080	2200	
	38,880	1760	
322	15,840	1760	95
	19,440	1540	
	23,760	1320	
	9,360	1100	
	64,800	880	
344	860	1760	9 5
	900	1540	
	3,756	1320	
	2,700	1100	
	6,900	880	
	248	1980	
	308	1760	
	214	1540	

TABLE 2

Comparison of calculated and experimental failure times at 90-95% relative humidity

			Calcd id	og t _f , min
T, OK	S, psi	Exptl $\log t_{f}$, min	Method I (Eq 10)	Method II (Eq 11)
296	3080	2.73	2.78	2.68
	2600	3.64	3.51	3.41
	2200	4.00	4.12	4.02
	1760	4.59	4.78	4.68
322	1760	4.20	3.56	3.42
	1540	4.29	3.87	3.73
	1320	4.38	4.18	4.03
	1100	3.97	4.48	4.34
	880	4.81	4.79	4.65
344	1760	2.94	2.67	2.50
	1540	2.95	2.96	2.79
	1320	3.58	3.24	3. 07
	1100	3.43	3.53	3.36
	880	3.84	3.82	3. 65
	1980	2.39	2.38	2.21
	1760	2.49	2.67	2.50
	1540	2.33	2, 96	2.79

TABLE 3

Comparison of calculated and experimental failure times at 3330K and 90-95% relative humidity

		Calcd log tf, min			
S, psi	Expt1 log t _f , min	Method I (Eq 10)	Method II (Eq 11)		
1540	3.85	3.39	3.23		
1760	3. 55	3.09	2.93		
1980	2.75	2.79	2.63		
2200	2.14	2.50	2.34		
2420	2.26	2.20	2,04		

TABLE 4

Failure data for AF126 adhesive (aluminum adherends) under constant stress at 50% relative humidity

Temperature, ^O K	$t_{\mathbf{f}}$, min	S, psi
322	18,720	2420
	6,300	2640
	340	2860
333	11,200	1760
	7,510	1980
	1,150	2200
	350	2420
344	14,200	1320
	10,720	1540
	4,620	1760
	300	1980
	610	2200

TABLE 5

Comparison of calculated and experimental failure times at 50% relative humidity

			Calcd le	og t _f , min
T, OK	S, psi	Exptl log t _f , min	Method I (Eq 12)	Method II (Eq 13)
322	2420	4.27	3.87	4.26
	2640	3.80	3.39	3.78
	2860	2.53	2.90	3.29
333	1760	4,05	4.31	4.70
	1980	3.88	3.84	4.23
	2200	3.06	3.37	3.76
	2420	2.54	2.90	3.29
344	1320	4.15	4.27	4.66
	1540	4,03	3.81	4.20
	1760	3.67	3.36	3.75
	1980	2.48	2.90	3.29
	2200	2.79	2, 45	2.84

TABLE 6

Failure data for AF126 adhesive (aluminum adherends) under constant stress at 20% relative humidity

Temperature, ^O K	t _f , min	S, psi
322	11,340	2420
	490	2640
	150	2860
	260	3080
	230	3300
333	56	2200
	130	2420
	153	2640
	147	2860
	28	3000
344	720	1760
	490	1980
	160	2200
	110	2420
	75	2640

Fig 1 Log t_f vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 90-95% relative humidity

Fig 2 The data for AF126 adhesive at 90-95% relative humidity plotted according to Equation 8

Fig 3 Arrhenius plots for evaluation of \triangle H \neq at 90-95% relative humidity

Fig 4 Log t_f vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 50% relative humidity

Fig 5 The data for AF126 adhesive at 50% relative humidity, plotted according to Equation 8

Fig 6 Arrhenius plots for evaluation of $\Delta H \neq at$ 50% relative humidity

Fig 7 Log t_f vs S/T for AF126 adhesive (aluminum adherends) under constant stress at 20% relative humidity (Δ = 322°K; ● = 333°K; O = 344°K)

Fig 8 The data for AF126 adhesive at 20% relative humidity plotted according to Equation 8

Ī	IN	CI	ASS	(Fr	[ዜጎ]	1
۹	JIN	V.I	1000		r. 1	

Security Classification			
	TROL DATA - R	& D	
(Security classification of titta, body of abstract and industr		intered when the	
1. ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION
		UN	CLASSIFIED
Picatinny Arsenal, Dover, N. J.		25. GROUP	
S REPORT TITLE		<u> </u>	
USE OF A REACTION RAT		O PREDIC	CT FAILURE TIMES
OF ADHESIVE BONDS AT CONSTANT	STRESS		•
4. OESCRIPTIVE NOTES (Type of report and inclusive dates)			
S. AUTHORISI (First name, middle initial, leat name)			
Elise McAbee			
David W. Levi			
S. REPORT OATE	74. TOTSL NO. O	F PAGES	75. NO. OF REFS
DECEMBER 1970	35		9
SA. CONTRACT OR GRANT NO.	Se. ORIGINATOR	S REPORT NUM	(BE N(\$)
b. PROJECT NO.	_ , , ,	D = 4.4	105
	Technical	Report 4	105
• AMCMS Code 4010.28.9.02003		RT HOIS) (Any o	other numbers that may be assigned
	this report)		
4			
This document ha	s been appro	ved for pu	blic release and sale;
its distribution is unlimited.			
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	IVITY
IS. ADSTRACT			
3			P=11 At
A reaction rate method was success hesive bonds under constant stress at			
			<u> </u>
method was found to be not very usefu		•	<u>-</u>
20% relative humidity. The results so useful under high humidity, bond degr			
userul under high numicity, bond degr	ading conduct	ns such a	s exist in the tropics.
V.			

DD . 1473 REPLACES DO FORM 1875, 1 JAM SO, WHICH IS

UNCLASSIFIED Security Classification

UNCLASSIFIED

Security Classification			LINK & LINK C			
KEY WORDS	ROLE	· · · · · · · · · · · · · · · · · · ·		ROLE WT ROLE		
			NO EE			WT
Reaction rate method			ļ			
Failure time, predictions of						
Adhesive bonds						
Constant stress						
Relative humidity: 90-95%, 50%, and 20%						
Degradation of bond						
Tropic conditions						
AF126 adhesive						
Aluminum adherends						
Arrhenius plots						. 4
Sharpe jigs		ļ				
Polymer mechanical behavior						
		İ				
						į
		·				ì
					ļ :	
					Ĺ	
					1	
	ł					
					ļ	
	i i	· '				
		i				1
		ļ				
	ļ	ļ	ļ		ļ '	10
		1				
		<u> </u>	i	<u></u>		

UNCLASSIFIED
Security Classification