NUM 7

Łukasz Kowalik

1 Polecenie

Rozważmy funkcję $y(x) = \frac{1}{1+10x^2}$, zadaną na przedziale $x \in [-1,1]$. Wygeneruj zbiór punktów $\{(x_i, y_i)\}$, gdzie $x_i = -1 + \frac{2i}{n}$ (i = 0, ..., n) jest jednorodną siatką punktów, a $y_i \equiv y(x_i)$. Dla tych danych wygeneruj:

- (a) wielomian interpolacyjny stopnia $\leq n$,
- (b) funkcję sklejaną stopnia trzeciego, s(x), spełniającą warunki $s''(x_0) = s''(x_n) = 0$.

Wyniki porównaj z zaproponowaną funkcją y(x) na wykresie, dla różnej ilości punktów n. W szczególności interesujące są różnice $y(x)-W_n(x)$ oraz y(x)-s(x) pomiędzy węzłami interpolacji. Przeprowadź również podobną analizę dla innych funkcji; czy nasuwają się jakieś wnioski?

Uwaga: Nie można korzystać z procedur bibliotecznych służących do interpolacji (chyba, że do sprawdzenia wyniku). Algorytm należy zaimplementować samodzielnie.

2 Wstęp i opis problemu

Celem zadania była interpolacja funkcji $y(x) = \frac{1}{1+10x^2}$ oraz trzech dodatkowych funkcji testowych:

$$f_1(x) = 12x^5 - 5x^3,$$

$$f_2(x) = \frac{\sin(2e \cdot x^2)}{2 + \pi \cdot x^2},$$

$$f_3(x) = -\frac{\ln(|\sin(\pi x) + 0.1|)}{4}.$$

Interpolacji dokonano na przedziale $x \in [-1, 1]$ przy użyciu dwóch metod:

- 1. wielomianu interpolacyjnego metodą Lagrange'a,
- 2. funkcji sklejanej stopnia trzeciego

Dla różnych liczb węzłów n (n = 10, 20, 30) porównano uzyskane wyniki interpolacji z wartościami rzeczywistymi funkcji oraz obliczono błędy.

1

3 Interpolacja wielomianowa i funkcje sklejane

3.1 Interpolacja Lagrange'a

Interpolacja Lagrange'a opiera się na skonstruowaniu wielomianu $W_n(x)$ stopnia $\leq n$, który przechodzi przez zadane punkty (x_i, y_i) . Wielomian ten przyjmuje postać:

$$W_n(x) = \sum_{i=0}^n y_i \ell_i(x),$$

gdzie wielomiany bazowe $\ell_i(x)$ są zdefiniowane wzorem:

$$\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Metoda ta jest efektywna dla niewielkiej liczby punktów, jednak dla większych n może prowadzić do niestabilności numerycznych.

3.2 Funkcje sklejane stopnia trzeciego

Funkcje sklejane to metoda interpolacji oparta na dopasowaniu wielomianów trzeciego stopnia $s_i(x)$ do każdego przedziału $[x_i, x_{i+1}]$. Przyjęto warunki brzegowe:

$$s''(x_0) = s''(x_n) = 0.$$

Każdy wielomian ma postać:

$$s_i(x) = A_i(x - x_i)^3 + B_i(x - x_i)^2 + C_i(x - x_i) + D_i,$$

gdzie współczynniki A_i, B_i, C_i, D_i zależą od wartości funkcji y_i i drugich pochodnych ξ_i w węzłach.

3.2.1 Wyznaczanie ξ

Aby wyznaczyć ξ_i , rozwiązano układ równań:

$$\begin{bmatrix} 4 & 1 & 0 & \dots & 0 & 0 \\ 1 & 4 & 1 & \dots & 0 & 0 \\ 0 & 1 & 4 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 4 & 1 \\ 0 & 0 & 0 & \dots & 1 & 4 \end{bmatrix} \begin{bmatrix} \xi_2 \\ \xi_3 \\ \xi_4 \\ \vdots \\ \xi_{n-3} \\ \xi_{n-2} \end{bmatrix} = \frac{6}{h^2} \begin{bmatrix} y_1 - 2y_2 + y_3 \\ y_2 - 2y_3 + y_4 \\ y_3 - 2y_4 + y_5 \\ \vdots \\ y_{n-3} - 2y_{n-2} + y_{n-1} \\ y_{n-2} - 2y_{n-1} + y_n \end{bmatrix},$$

gdzie $h = x_{i+1} - x_i$ to stała odległość między węzłami.

3.2.2 Rozwiązanie układu

Macierz powyższego układu jest macierzą trójdiagonalną, co pozwala na jej efektywne rozwiązanie. Wyznaczone wartości ξ są następnie używane do obliczenia współczynników A, B, C, D dla każdego przedziału, zgodnie z poniższymi wzorami:

$$A = \frac{x_{i+1} - x}{h}, \quad B = \frac{x - x_i}{h}, \quad C = \frac{h^2}{6}(A^3 - A), \quad D = \frac{h^2}{6}(B^3 - B).$$

Wyniki interpolacji funkcjami sklejanymi zapewniają ciągłość funkcji, pierwszej i drugiej pochodnej, dzięki czemu metoda ta jest stabilna i precyzyjna nawet dla większej liczby węzłów.

4 Wyniki

Wyniki interpolacji dla funkcji y(x), $f_1(x)$, $f_2(x)$, $f_3(x)$ oraz różnych liczby węzłów (N = 10, 20, 30) przedstawiono na poniższych wykresach. Dla każdej funkcji zaprezentowano wykresy interpolacji oraz błędów.

4.1 Funkcja y(x)

Interpolacja funkcji y(x) dla N = 10.

Interpolacja funkcji y(x) dla N=20.

Interpolacja funkcji y(x) dla N=30.

Błędy interpolacji funkcji y(x) dla N=10.

Błędy interpolacji funkcji y(x) dla N=20.

Błędy interpolacji funkcji y(x) dla N=30.

4.2 Funkcja $f_1(x)$

Interpolacja funkcji $f_1(x)$ dla N = 10.

Interpolacja funkcji $f_1(x)$ dla N=20.

Interpolacja funkcji $f_1(x)$ dla N=30.

Błędy interpolacji funkcji $f_1(x)$ dla ${\cal N}=10.$

Błędy interpolacji funkcji $f_1(x)$ dla N=20.

Błędy interpolacji funkcji $f_1(x)$ dla N=30.

4.3 Funkcja $f_2(x)$

Interpolacja funkcji $f_2(x)$ dla N=10.

Interpolacja funkcji $f_2(x)$ dla N=20.

Interpolacja funkcji $f_2(x)$ dla N=30.

Błędy interpolacji funkcji $f_2(x)$ dla N=10.

Błędy interpolacji funkcji $f_2(x)$ dla N=20.

Błędy interpolacji funkcji $f_2(x)$ dla N=30.

4.4 Funkcja $f_3(x)$

Interpolacja funkcji $f_3(x)$ dla N=10.

Interpolacja funkcji $f_3(x)$ dla N=20.

Interpolacja funkcji $f_3(x)$ dla N=30.

Błędy interpolacji funkcji $f_3(x)$ dla ${\cal N}=10.$

Błędy interpolacji funkcji $f_3(x)$ dla N=20.

Błędy interpolacji funkcji $f_3(x)$ dla N=30.

5 Dyskusja wyników

Uzyskane wyniki pozwoliły na porównanie dwóch metod interpolacji: wielomianowej metodą Lagrange'a oraz funkcji sklejanych stopnia trzeciego.

5.1 Interpolacja wielomianowa

Jak można zauważyć, dla większej liczby węzłów N metoda Lagrange'a zaczęła wykazywać znaczne oscylacje w pobliżu brzegów przedziału $x \in [-1,1]$. Efekt ten, znany jako problem Rungego, wynika z niestabilności numerycznej wielomianów interpolacyjnych o wysokim stopniu.

Dla funkcji $f_1(x)$, $f_2(x)$, a szczególnie dla $f_3(x)$, wielomian interpolacyjny osiąga wartości daleko odbiegające od rzeczywistej funkcji w pobliżu końców przedziału, co zostało przedstawione na wykresie poniżej:

Przykład silnych oscylacji w interpolacji Lagrange'a dla N=30 funckji $f_3(x)$.

Oczekiwałem pewnych problemów z efektem Rungego, jednak skala oscylacji w tym przypadku była zaskakująco duża, szczególnie dla funkcji o bardziej złożonej strukturze, takich jak $f_3(x)$.

5.2 Interpolacja funkcjami sklejanymi

Funkcje sklejane wykazały znacznie większą stabilność numeryczną i precyzję. Dzięki zastosowaniu wielomianów trzeciego stopnia dla każdego przedziału $[x_i, x_{i+1}]$, metoda ta dobrze odwzorowuje funkcję nawet przy większej liczbie węzłów N. Dodatkowo, brak efektu Rungego sprawia, że interpolacja funkcjami sklejanymi jest bardziej niezawodna w praktycznych zastosowaniach.

5.3 Porównanie błędów

Błędy interpolacji dla obu metod były mniejsze w centralnej części przedziału $x \in [-1,1]$ i rosły w pobliżu jego brzegów. Dla funkcji sklejanych błędy były generalnie mniejsze, co potwierdza ich wyższą dokładność i stabilność numeryczną w porównaniu z metodą Lagrange'a.

6 Wnioski

Przeprowadzona analiza interpolacji wielomianowej metodą Lagrange'a oraz funkcji sklejanych stopnia trzeciego pozwoliła na wyciągniecie następujących wniosków:

1. Interpolacja wielomianowa metodą Lagrange'a wykazuje znaczące ograniczenia przy większej liczbie węzłów N, szczególnie w postaci efektu Rungego. Oscylacje w pobliżu brzegów przedziału $x \in [-1,1]$ sprawiają, że metoda ta staje się niestabilna i mniej użyteczna w praktycznych zastosowaniach.

- 2. Funkcje sklejane stopnia trzeciego cechują się znacznie większą stabilnością numeryczną oraz dokładnością. Dzięki segmentacji przedziału na mniejsze odcinki metoda ta jest odporna na problemy związane z dużą liczbą węzłów i dobrze odwzorowuje różnorodne funkcje.
- 3. Porównanie błędów interpolacji pokazało, że funkcje sklejane generują znacznie mniejsze odchylenia od rzeczywistej wartości funkcji w całym przedziale, co czyni je bardziej niezawodnym narzędziem do interpolacji w zastosowaniach numerycznych.
- 4. Przy wyborze metody interpolacji należy brać pod uwagę charakter funkcji oraz liczbę węzłów. Dla funkcji prostych i niewielkiej liczby węzłów metoda Lagrange'a może być wystarczająca, natomiast dla bardziej złożonych funkcji lub większej liczby węzłów lepszym wyborem są funkcje sklejane.