Lecture 06 -

Chapter 02: Random Variables

Math 4441: Probability and Statistics

Reference: Goodman & Yates – Introduction to Probability and Stochastic Process, 3rd Edition

Summary of Chapter 1: Simple Probability Models

Sample Space: S

- Elements of S can be anything
- Does not facilitate further processing

Probability of Outcomes/Events: $p[\cdot]$

Lack a concise Representation of probabilities

Example 2.1: (Example 1.12)

Procedure: Send 3 packets from a sender to a receiver.

Observation: Number of successes.

$$S = \{FFF, FFD, FDF, FDD, DFF, DFD, DDF, DDD\}$$

Probabilities of Outcomes	P[number of success is 0] = $(1-p)^3$ P[number of success is 1] = $3p(1-p)^2$
$P[FFF] = (1-p)^3$	P[number of success is 2] = $3p^2(1-p)$
$P[FFD] = p(1-p)^2$	$P[\text{number of success is } 3] = p^3$
$P[FDF] = p(1-p)^2$, , , , , , , , , , , , , , , , , , ,
$P[FDD] = p^2(1-p)$	
$P[DFF] = p(1-p)^2$	
$P[DFD] = p^2(1-p)$	
$P[DDF] = p^2(1-p)$	
$P[FDD] = p^3$	

 $p \triangleq \text{probability that a single packet is delivered}$

Each of the deliveries is independent of the others

What do we need?

- Each element of *S* is a number
 - Define a function that converts each element $\omega \in S$ into a real number $x \in R$.
 - $\circ X: S \to R$
- Probabilities in a mathematical way
 - Recalculate the probability of each real number or an interval of numbers as outcome
 - Represent both the real numbers and their probabilities mathematically

Probability Models

Random Variable:

Random variables express the outcome of an experiment by real numbers

- It is a function that generates values (numbers) on demand
- The values generated are random (Not kwon which one will appear)
- Values are related to the events of the experiment
 - Each value has its own chances of appearing
 - But it needs to be related to one event
- Function converts the events into real numbers

<u>Distribution Function</u>:

A distribution function represents a collection of probabilities

- Each probability is related to a real number, x
- Represents the chance of occurring the event represented by x

Random Variable:

How to define the functions?

- Identify the events related to the observations of the experiment
- Find an event space associated with the experiment (Why?)
- Assign a real number to each event based on the problem statement

Type of Random Variables:

- Discrete random variables
 - Possible values are from a discrete set
 - Number of values are either finite or countably infinite
- Continuous random variables
 - Possible values are from an interval
 - Number of values are uncountable
- Mixed random variables

Example 2.1: (Continued)

Procedure: Send 3 packets from a sender to a receiver.

Observation: Number of successes.

$$S = \{FFF, FFD, FDF, FDD, DFF, DFD, DDF, DDD\}$$

Events related to the observations $E_i \triangleq \#$ of success(es) is i $i=0,1,\dots,3$ $E=\{E_0,E_1,E_2,E_3\}$ $S_X=\{$ S

<u>Definition (Random Variable)</u>: The point function $X(\omega)$ is called a *random variable* if

- (a) It is a finite real-valued function defined on the sample space *S* of a random experiment, and
- (b) For every real number x, the set $\{\omega: X(\omega) \leq x\}$ is an event.

$$X: S \to R$$

Distributions Functions:

- Represents the distribution of probabilities on the number line
- A probability is attached to each number on the number line
- Probabilities are non-zero for a number or an interval, only if the random variable can take on that value
- Probability that x is an outcome is related to the event corresponding to x defined by the random variable

Probability Models by Random Variables

Events associated with a random variable are:

- The random variable has a specific value
 - $\{X = x\}$ or more specifically $\{X(\omega) = x\}$
- The random variable has a value which is less than or equal to a specific value:
 - $\{X \leq x\} \text{ or } X(\omega) \leq x\}$
- The random variable has value which is greater than a specific value
 - $\circ \{X \ge x\} \text{ or } \{X(\omega) \ge x\}$

Possible distribution functions are:

Probability Mass function (PMF): The probability that a random variable X
has a specific value x

$$\circ P[X=x]$$

• Cumulative distribution function (CDF): The probability that a random variable has a value which is less than or equal to a specific value \boldsymbol{x}

$$\circ P[X \leq x]$$

ullet Complementary cumulative distribution function (CCDF): The probability that a random variable has a value which is greater than a specific value x

$$\circ P[X > x]$$

Example 2.1: (Continued)

Procedure: Send 3 packets from a sender to a receiver.

Observation: Number of successes.

$$S = \{FFF, FFD, FDF, FDD, DFF, DFD, DDF, DDD\}$$

$$E = \{E_0, E_1, E_2, E_3\}$$

 $X \triangleq \text{Random variable that counts the number of successes}$

$$S_X = \{0, 1, 2, 3\}$$

	E_0	E_1	E_2	E_3
S	FFF	FFD FDF DFF	FDD DFD DDF	DDD
x				
P[X=x]				
$P[X \leq x]$				

<u>Probability Mass Function (PMF)</u>: $P_X(x)$

If the set of possible values of X, $S_X = \{x_1, x_2, \dots, x_n\}$, then

- 1. $P_X(x_i) = 0$, if $x_i \notin S_X$
- 2. $P_X(x_i) = P[X = x_i]$, and hence, $P_X(x_i) > 0$, for i = 1, 2, ..., n
- 3. $\sum_{i=1}^{n} P_X(x_i) = 1$

Example 2.1 (Continued)

$$P_X(x) = \begin{cases} & , & x = 0 \\ & , & x = 1 \\ & , & x = 2 \\ & , & x = 3 \\ 0, & \text{otherwise} \end{cases} \qquad P_X(x) = \begin{cases} & , & x = 0 \\ & , & x = 1 \\ & , & x = 2 \\ & , & x = 3 \\ 0, & \text{otherwise} \end{cases}$$

For
$$p = \frac{1}{2}$$
,

Graphical Representation of the PMF

Example 2.2 (Example 1.13 Continued)

<u>Procedure</u>: Keep sending packets from a sender to a receiver until 1 packet is delivered

Observation: Number of attempts

$$S = \{D, FD, FFD, FFFD, ...\}$$
 $s_X = \{1, 2, 3, ...\}$

	E_1	E_2	E_3	E_4	E_5
S	D	FD	FFD	FFFD	FFFFD
x					
P[X=x]					
$P[X \le x]$					

Example 2.3: (Example 1.14 Continued)

Example 1.14 (Experiment 1.5)

<u>Procedure</u>: Keep sending packets from a sender to a receiver until 3 packets are delivered

Observation: Number of attempts

$$S = \{DDD, FDDD, DFDD, DDFD, FFDDD, \dots\}$$

$$S_X = \{3, 4, 5, \dots\}$$

	E_3	E_4	E_5
S	DDD	FDDD DFDD DDFD	FFDDD FDFDD FDDFD
			DFFDD, DFDFD, DDFFD
\boldsymbol{x}			
P[X=x]			
$P[X \le x]$			

Cumulative Distribution Function (CDF)

$$F_X(x) = P[X \le x]$$

Probability that X will assume a value from the subset of S, where the subset is the point x and all the points to the left of x.

Properties of CDF:

- 1. It is applicable to both discrete and continuous RVs
- 2. It is nonnegative, non-decreasing function of x
- 3. For discreate random variables it is step function
 - a. Jumps at the values of x where $P_X(x) > 0$
 - b. For continuous random variables, it is continuous
- 4.
- a. $F_X(-\infty)=0$
- b. $F_{\nu}(+\infty) = 1$
- 5. If a and b are two real numbers such that a < b

$$P[a < X \le b] = F_X(b) - F_X(a)$$

Which is a direct result of

$$P[X \le b] = P[X \le z] + P[a < X \le b]$$

Example 2.4: Let a discrete random variable X assumes values -1, 1, 2, and 3, with probabilities 0.6, 0.3, 0.08, and 0.02, respectively.

Continuous Random Variables

- Set of possible values of a random variable is uncountable or denumerable
- Set of values are represented by a range of values or by an interval
 - The delay of a packet to reach the destination from the source.
- The probability that a continuous random variable has a specific value is?

Probability Models of Continuous Random variables

Consider a line AB of length 1 unit.

Suppose you randomly choose a point ${\cal C}$ within ${\cal AB}$ that divides the line into two parts ${\cal AC}$ and ${\cal CB}$

Let, the length of the point C from A, AC, is a random variable and is denoted by X Since $S_X = (0,1)$ is an interval, X is a continuous random variable Further there are infinite possible points in between A and B, therefore, the probability that X has any specific value is $\frac{1}{M}$, i.e., intuitively it is zero.

To develop a probability model of X, let us consider a reasonable discrete approximation of X

Let us divide the line segment into n equal segments, each numbered from 1 to n

Since all segments are equal in length, if we randomly select a point from AB, it is equally likely that the selected point will be on any specific segment.

Let *Y* denote a discrete random variable, representing the number of the segment on which the random point lies.

The range of values of Y, S_Y , is

$$S_Y = \{1, 2, ..., n\}$$

Two important questions to be answered are:

- 1. The relation between random variable X and the random variable Y
- 2. How well does Y approximate the value of X.

From the Figure, we can easily see that

$$Y = [nX]$$

If we denote $\{X = x\}$ and $\{Y = [nX]\}$ as two events, we have

$${X = x} \subset {Y = [nX]}$$
, and it implies

$$P[X = x] \le P[Y = [nX]] = P[X = x] \le \frac{1}{n}$$

$$P[X = x] \le \lim_{n \to \infty} P[Y = \lceil nX \rceil = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$P[X = x] \leq 0$$

However, according to the 1st Axioms of Probability $P[X = x] \ge 0$, hence

$$P[X=x]=0$$

PMF as a Probability Model for Continuous Random Variables:

Since $P_X(x) = P[X = x]$ and P[X = x] = 0 for continuous random variables,

- The probability that a continuous RV has a specific value is always zero.
- The MPF is meaningless for a continuous random variable.

<u>Distribution Functions for Continuous Random Variables</u>

- The probability of a continuous random variable for a specific value is not defined.
- However, probability for a range of values, an interval, is well defined
 P[a < X ≤ b] is well defined
- All points in [0,1] are equally likely to be selected as point C
- Assume a=0 and c=0.5, intuitively we can say that 50% of the time point C will be selected in the interval [0,0.5]
- ullet Probability that X has a value between 0 and 0.5 is

$$P[a < X \le b] = P[0 < X \le 0.5] = \frac{0.5}{1.0} = 0.5$$

• Further assume that $a = \infty$ and b = x then

$$P[a \le X \le b] = P[-\infty < X \le x] = P[X \le x] = F_X(x)$$

Cumulative Distribution Function (CDF) of Continuous Random Variables

The cumulative distribution function of a continuous random variable X is denoted as $F_X(x)$, and is defined as

$$F_X(x) = P[X \le x]. \tag{3.9}$$

The CDF of the example Random variable is

$$F_X(x) = \begin{cases} 0, & \text{for } x < 0; \\ x, & \text{for } 0 \le x < 1; \\ 1, & \text{for } x \ge 1. \end{cases}$$

Properties of CDF for Continuous Random Variables

1. The CDF of a continuous random variable for a value of $-\infty$ is zero:

$$F_X(-\infty) = P[X \le -\infty] = 0.$$

2. The CDF of a continuous random variable for a value of $+\infty$ is one, i.e.,

$$F_X(+\infty) = P[X \le +\infty] = 1.$$

3. The probability that a continuous random variable for a value within the interval (a, b] can be given in terms of its CDF

$$P[a < X \le b] = F_X(b) - F_X(a).$$

4. For continuous random variables, following four possibilities are equal due to the fact that P[X=x]=0.

$$P[a \le X \le b] = P[a < X \le b] = P[a < X < b] = P[a \le X \le b].$$

- 5. For continuous random variables, if a < b, then $F_X(a) < F_X(b)$.
- 6. The CDF of a continuous random variable is non-decreasing and continuous function of x.

Example 2. 10: The CDF of a continuous random variable is

$$F_X(x) = \begin{cases} 0, & \text{for } x < 0; \\ \frac{x}{4}, & \text{for } 0 \le x < 4; \\ 1, & \text{for } x \ge 1. \end{cases}$$

- a) Draw the CDF curve.
- b) Find the values of $F_X(-1)$, $F_X(1)$, $P[2 < X \le 3]$ and $F_X(1.5)$.

$$F_X(-1)=0.$$

$$F_X(1) = \frac{1}{4}.$$

$$P[2 < X \le 3] = F_X(3) - F_X(2) = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}.$$

<u>Probability Density Function (PDF)</u>

PMF: Distribution of probabilities (one unit) on the number line

For continuous Random variable defined in (0, 1)

- Distribute one unit of probability in the interval [0, 1] on the number line
- Infinite points, cannot assign probability to a specific point, P[X = x] = 0
- Though, can assign probability for a range of values, e.g., 0.25 unit in [0,0.25]
 0.50 unit in [0, 0.50]
- Distribution can be <u>uniform</u> or <u>non-uniform</u>

We lack to quantify the amount of probability for a specific value of X

 p_1 : probability that X is within x_1 and $x_1 + \Delta$ p_2 : probability that X is within x_2 and $x_1 + \Delta$

$$p_1 = P[x_1 < X \le x_1 + \Delta] = F_X(x_1 + \Delta) - F_X(x_1)$$

$$p_2 = P[x_2 < X \le x_2 + \Delta]$$

= $F_X(x_2 + \Delta) - F_X(x_2)$

$$p = P[x < X \le x + \Delta]$$

$$= F_X(x + \Delta) - F_X(x)$$

$$= \frac{F_X(x + \Delta) - F_X(x)}{\Delta} \times \Delta$$

Average amount of Probability per unit length

Density: measure of amount of mass in a given space (volume)

Probability Density: Measure of the amount of probability per unit length

$$f_X(x) = \lim_{\Delta \to 0} \frac{F_X(x + \Delta) - F_X(x)}{\Delta}$$

$$f_X(x) = \frac{d}{dx} F_X(x)$$

Area Under the Curve (AUC)

$$P[a < X \le b] = \int_a^b f_X(x) dx$$

$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$P[-\infty < X \le x] = \int_{-\infty}^{x} f_X(x) dx$$
$$= P[X \le x]$$
$$= F_X(x).$$

Example 2.11: For the CDF $F_X(x)$ given in Example 3.11, find the following:

- 1. $f_X(x)$, from the CDF
- 2. $F_X(x)$, from the PDF
- 3. $P[2 < X \le 3] = ?$
- 4. Draw the PDF curve

$$f_X(x) = \frac{d}{dx} F_X(x)$$

$$= \frac{d}{dx} \frac{x}{4}$$

$$= \frac{1}{1}$$

$$= \frac{\frac{d}{dx} \frac{x}{4}}{1}$$

$$= \frac{dx}{dx} \frac{x}{4}$$

$$= \frac{1}{4}.$$

$$= \frac{1}{4}.$$

$$f_X(x) = \begin{cases} \frac{1}{4}, & \text{for } 0 \le x \le 4; \\ 0, & \text{ohterwise.} \end{cases}$$

$$= \frac{x}{4} \Big|_{0}^{x}$$

$$= \frac{x}{4} - \frac{0}{4} = \frac{x}{4}$$

$$= \frac{x}{4} - \frac{0}{4} = \frac{x}{4}$$

$$F_X(x) = \begin{cases} 0, & \text{for } x < 0; \\ \frac{x}{4}, & \text{for } 0 \le x < 4; \\ 1, & \text{for } x \ge 1. \end{cases}$$

 $F_X(x) = \int_{-\infty}^x f_X(x) dx$

 $= \int_0^x \frac{1}{4} dx$

$$P[2 < X \le 3] = \int_{2}^{3} f_X(x) dx$$

$$= \int_{2}^{3} \frac{1}{4} dx$$

$$= \frac{x}{4} \Big|_{x=2}^{x=3}$$

$$= \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$$

Example 2.13: The PDF of a continuous random variable X is

$$f_X(x) = \begin{cases} cxe^{-x/2}, & \text{for } x \ge 0; \\ 0, & \text{ohterwise.} \end{cases}$$

- 1. Find the value of the constant c.
- 2. Find the CDF of the random variable X.
- 3. Find the probability $P[2 \le X \le 5]$ from the PDF of X.
- 4. Find the probability $P[2 \le X \le 5]$ from the CDF of X.

$$\int_{-\infty}^{+\infty} f_X(x) dx = \int_0^{\infty} cx e^{-x/2} dx$$

$$= cx(-2)e^{-x/2} \Big|_{x=0}^{x=\infty} - \int_0^{\infty} 1 \cdot (-2)e^{-x/2} dx$$

$$= 0 + 2c \int_0^{\infty} e^{-x/2} dx$$

$$= 2c(-2)e^{-x/2} \Big|_{x=0}^{x=\infty}$$

= 0 + 4c = 4c

 $4c = 1 \text{ and } c = \frac{1}{4}.$

$$F_X(x) = \int_{-\infty}^{\infty} \frac{1}{4} x e^{-x/2} dx$$
$$= \frac{1}{4} x (-2) e^{-x/2} \Big|_{x=0}^{x=0}$$

 $= \frac{1}{4}x(-2)e^{-x/2}\Big|_{x=0}^{x=\infty} - \frac{1}{4}\int_{0}^{\infty} 1.(-2)e^{-x/2}dx$

 $= -\frac{1}{2}xe^{-x/2} + \frac{1}{2}\int_{0}^{\infty} e^{-x/2}dx$

 $= -\frac{1}{2}xe^{-x/2} + \frac{1}{2}(-2)e^{-x/2}\bigg|_{x=0}^{x=\infty}$

 $=-\frac{1}{2}xe^{-x/2}-e^{-x/2}+1$

 $=1-e^{-x/2}-\frac{1}{2}xe^{-x/2}.$