Results

Repeated Measurements

Welcome to Statkat! This tool will help you to find an appropriate statistical method given the measurement level of your data. Make sure you have correctly defined the measurement levels of your variables on the Data tab. You can change the measurement level of a variable via the Setup button on the Data tab, or by double clicking on a column header of interest. You have selected the Repeated Measurements option. This is the place to be if you are interested in differences between related variables. To get started, drop two or more related variables in the white box below Related Variables. Our tool will then come up with a statistical method that may be appropriate for your data! Note: Our advice is based on the measurement level of your data and on the number of related variables entered. There can be details related to your data, task, or assignment that may render the advice moot. Always check the assumptions made by the statistical method before interpreting the results. We always try to come up with the least complicated method that might be applicable given your data. Keep in mind that there may be other, more advanced, methods that might be applicable as well.

Scatter Plot

Relationships, Prediction, and Group Comparisons

You have entered a dichotomous dependent variable and several independent variables. Hence, <u>logistic regression analysis</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > 2 Outcomes - Binomial

- Drop your dependent variable in the box below Dependent Variable
- Drop your independent variables in the box below Covariates. Independent variables of nominal or ordinal measurement level that consist of more than two groups should be transformed into code variables before they are included in the analysis. Independent variables of nominal or ordinal measurement level that consist of two groups can be transformed into code variables, but they don't need to be, as long as numbers are used to indicate group membership, not letters (these dichotomous variables actually are code variables already, but you may like to change the coding). In jamovi, instead of transforming your categorical independent variables into code variables yourself, you can also put the untransformed categorical independent variables in the box below Factors. jamovi will then make the code variables for you 'behind the scenes'

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Descriptives

Descriptives

	Cured	Intervention
N	113	113
Missing	0	0

Frequencies

Frequencies of Cured

Levels	Counts	% of Total	Cumulative %
Not Cured	48	42.5 %	42.5 %
Cured	65	57.5 %	100.0 %

Frequencies of Intervention

Levels	Counts	% of Total	Cumulative %
No Treatment	56	49.6 %	49.6 %
Intervention	57	50.4 %	100.0 %

Plots

Cured

Intervention

Descriptives

Descriptives

	Duration
N	113
Missing	0
Mean	7.08
Std. error mean	0.111
95% CI mean lower bound	6.86
95% CI mean upper bound	7.30
Median	7.00
Standard deviation	1.18
Minimum	4.00
Maximum	10.0
Skewness	0.0419
Std. error skewness	0.227
Kurtosis	0.424
Std. error kurtosis	0.451
Shapiro-Wilk W	0.925
Shapiro-Wilk p	< .001

Plots

Duration

Binomial Logistic Regression

Model Fit Measures

						Overall Model Test		
Model	Deviance	AIC	R ² McF	R ² CS	R^2_N	χ²	df	р
1	144	150	0.0644	0.0841	0.113	9.93	2	0.007

Omnibus Likelihood Ratio Tests

Predictor	χ²	df	р
Intervention	9.31701	1	0.002
Duration	0.00198	1	0.964

[3]

Model Coefficients - Cured

						95% Confidence Interval		
Predictor	Estimate	SE	Z	р	Odds ratio	Lower	Upper	
Intercept Intervention:	-0.23466	1.221	-0.1923	0.848	0.791	0.0723	8.65	
Intervention – No Treatment Duration	1.23353 -0.00784	0.415 0.176	2.9755 -0.0445	0.003 0.964	3.433 0.992	1.5235 0.7028	7.74 1.40	

Note. Estimates represent the log odds of "Cured = Cured" vs. "Cured = Not Cured"

Assumption Checks

Collinearity Statistics

	VIF	Tolerance
Intervention	1.08	0.930
Duration	1.08	0.930

[3]

References

- [1] The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Retrieved from https://www.jamovi.org.
- [2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).
- [3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.