

(43) International Publication Date 8 February 2001 (08.02.2001)

PCT

(10) International Publication Number WO 01/08797 A1

(51) International Patent Classification?: B01J 23/10. C01F 17/00, C01G 25/02

(21) International Application Number: PCT/US00/20141

(22) International Filing Date: 25 July 2000 (25.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/363.505 29 July 1999 (29.07.1999) US

- (71) Applicant: W.R. GRACE & CO.-CONN. [US/US]; 1114 Avenue of the Americas, New York, NY 10036 (US).
- (72) Inventors: BREZNY, Rasto; 214 Forest Spring Lane, Catonsville, MD 21228 (US). KORANNE, Manoj, M.; 6500 Cashell Court, Clarksville, MD 21029 (US).
- (74) Agent: MAGGIO, Robert, A.; W.R. Grace & Co.-Conn.. 7500 Grace Drive, Columbia, MD 21044 (US).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A 76780

(54) Title: THERMALLY STABLE SUPPORT MATERIAL AND METHOD FOR MAKING THE SAME

(57) Abstract: A novel process for the preparation of mixed oxide compositions of cerium oxide and at least one non-noble metal oxide is disclosed. The process involves contacting a salt solution containing a cerium (IV) salt with hydrogen peroxide and thereafter, treating the resulting solution with excess base to precipitate a mixed oxides. Mixed oxide compositions produced by the process maintain a high specific surface area after prolonged exposure to high temperatures.

PCT/US00/20141

THERMALLY STABLE SUPPORT MATERIAL AND METHOD FOR MAKING THE SAME

5

FIELD OF THE INVENTION

The present invention relates to novel compositions based on mixed oxides of cerium oxide and at least one non-noble metal oxide. The novel oxide compositions exhibit a high specific surface area and excellent heat resistance.

10 resistance

In particular, this invention relates to a process for the preparation of the oxide compositions, and to the use thereof as catalyst and/or catalyst supports for the purification and/or conversion of exhaust gases from internal combustion engines.

15

BACKGROUND OF THE PRIOR ART

Cerium oxide and zirconium oxide are known compounds that are particularly useful constituents, either alone or in combination, in a wide variety of catalyst compositions, e.g., multifunctional catalyst compositions, especially catalysts suited for the treatment or conversion of exhaust gases emanating from internal combustion engines. By "multi-functional" is intended a catalyst capable of effecting not only the oxidation, in particular, of carbon monoxide and of hydrocarbons present in the exhaust gas, but also the reduction of the oxides of nitrogen also present in such gas ("three-way" catalysts).

25

20

To meet stringent air emissions regulations, catalysts are being placed closer and closer to the engine thus subjecting them to higher temperatures. In order to maintain their effectiveness, they should not sinter and loose surface area. Consequently, there exists a need for catalysts that maintain high surface area even after prolonged exposure to temperatures of 900°C.

30

Further, when a catalyst structure consists of a mixture of various catalytic components, such as ceria and zirconia, it follows that a more intimate mixture of the components will result in a more effective catalyst structure.

10

15

20

25

Attempts to prepare mixed oxides of cerium and zirconium having a high and thermally stable surface area are known. For example, U.S. Patent 5,717,218 discloses a thermally-stable, high surface area ceria-zirconia mixed oxide having a pure monophasic CeO₂ crystalline habit. The mixed oxides are prepared by subjecting a mixture of oxide solutions to thermohydrolysis, preferably in a nitrogen atmosphere and under pressure, to form the desired oxide. This process is undesirable since it is time consuming and requires expensive equipment such as high pressure reactors.

U.S. Patent 5,532,198 also discloses a process of preparing a high surface area cerium/zirconium mixed oxide. The oxides are prepared by admixing a zirconium sol with a cerium sol, spray drying the admixture and calcining the dried material. The process requires that the ratio of the mean size of the zirconium sol particle to the mean size of the cerium sol be within a specified range in order to obtain a product having a sufficiently high surface area.

It has also been proposed in Japanese Patent Application No. (Kokai) 55,315/1992 to prepare fine powders of cerium oxide and zirconium oxide having a high specific surface area and excellent heat resistance by a coprecipitation process. The powders are prepared by mixing a water-soluble zirconium salt with a water soluble salt of cerium (III) or cerium (IV) to form a mixed salt solution, and thereafter treating the salt solution with excess base to precipitate a mixed oxide powder. Where the cerium salt is a cerium (III) salt, the Japanese reference teaches adding hydrogen peroxide to the salt solution simultaneous or subsequently with the precipitation step to oxidize the trivalent cerium to the tetravelant state. The highest surface area reported for cerium/zirconium powders produced in accordance with the process disclosed in this reference was only 26.5 m²/g.

10

15

20

25

30

SUMMARY OF THE INVENTION

To overcome the deficiencies hereto associated with prior processes and mixed oxide compositions, the present invention provides a simple, economical and novel process for the preparation of compositions based on mixed oxides of cerium and other non-noble metals. The process provides high surface area oxide compositions via a coprecipitation method without the need for expensive high pressure techniques.

The process of the present invention includes the steps of treating a homogeneous, aqueous solution of a cerium IV salt and at least one non-noble metal salt with an aqueous hydrogen peroxide solution. The peroxide treated solution is thereafter coprecipitated with an excess of a base. The precipitate is filtered, washed and spray dried to form a powder. The dried powder is calcined to convert the resulting hydroxide particles to particles of cerium oxide and at least one non-noble metal oxide.

The present invention also provides improved mixed oxide compositions for promoting oxidation formed by the process above. The oxide composition possesses a specific surface area of greater than $100 \text{ m}^2/\text{g}$ and maintains an increased surface area after prolonged exposure to thermal conditions. Advantageously, the oxide compositions of the invention are intimately mixed as exhibited by X-ray diffraction techniques.

The process and compositions of the present invention provide a catalyst/catalyst support having outstanding durability under harsh conditions at elevated temperatures. The catalyst/catalyst supports produced in accordance with the present invention have a decreased loss in surface area under thermal conditions when compared to catalyst/catalyst supports prepared using oxide powders produced by earlier processes.

DETAILED DESCRIPTION OF THE INVENTION

The process for the preparation of the mixed oxide composition according to the invention will now be more fully described.

10

15

20

25

30

As indicated above, the first stage of the process of the invention entails preparing a mixture comprising a homogeneous, aqueous salt solution of a cerium IV salt and at least one non-noble metal salt. The aqueous solution is obtained by preparing individual solutions of a water-soluble cerium IV salt and the desired non-noble metal salts and then mixing, in any order, said solutions.

Salts useful in the process of the present invention herein include any aqueous soluble salt of cerium IV and the desired non-noble metals. Suitable salts include, but are not limited to, nitrates and sulfates. The nitrates are preferred herein. Aqueous nitrate solutions can be obtained, for example, by reacting nitric acid with the suitable hydrated compound, e.g. cerium (IV) hydroxide.

Cerium (IV) salts useful in the process of the invention may contain, without disadvantage, a small amount of cerium in the cerous state.

Preferably, the cerium IV salts contain at least 85% of cerium IV, most preferably greater than 95% of cerium IV.

Suitable non-noble metal salts useful in the invention include, without limitation, salts of transition metals, rare earth metals, and combinations thereof. In a preferred embodiment of the invention, the non-noble metal salt is a salt having a non-noble metal component selected from the group consisting of zirconium and a rare earth metal. In a more preferred embodiment of the invention, the non-noble metal salt is zirconium salt used alone or in combination with a salt of lanthanum, yttrium, praeseodymium, or mixtures thereof.

The amount of cerium, zirconium and rare earth metal salts used to prepare the salt solution useful in the process of the invention will vary depending upon the desired concentration of oxides in the final mixed oxide composition. Generally, the amount of cerium, zirconium and rare earth metal salt will correspond to the stoichiometric proportions of mixed oxides in the final compositions.

10

15

20

25

In a second stage of the process according to the invention, the salt solution is treated with an aqueous solution of hydrogen peroxide. In general, hydrogen peroxide is added in an amount equal to the weight of oxides desired in the final oxide composition. Preferably the amount of hydrogen peroxide is at least 2.5 moles per molar equivalent of cerium in the salt solution; most preferably the amount of hydrogen peroxide added to the aqueous solution is about 2.5 to about 4.5 moles per molar equivalent of cerium in the salt solution.

The peroxide treated salt solution is thereafter treated with a base to coprecipitate the corresponding hydroxide. Suitable bases include, for example, a solution of ammonia or alkali metal hydroxides, e.g., sodium, potassium, and the like. The preferred base is aqueous ammonia.

In general, the base is added to the peroxide treated salt solution in an excess. Preferably, the amount of base added to the peroxide treated solution is in the range of about 4 to about 8 moles per moles cation, preferably, about 5 to about 6 moles per moles of cation, to provide a final pH of greater than about 8.0.

The temperature at which the precipitation step is conducted ranges from about 20°C to about 100°C. Preferably, the temperature ranges from about 60°C to about 80°C.

Preferably the pH of the reaction medium is maintained between 8 to 9 during precipitation.

Following addition of the base, the precipitate is optionally aged at a temperature range of about 80°C to about 100°C for about 0.5 to about 6 hours. Preferably, the precipitate is aged at a temperature of about 90°C for about 2 hours. The pH of reaction medium is maintained at greater than 7.5 during the aging process.

At the end of the precipitation step, a solid product is recovered which can be separated from the reaction medium using conventional solid/liquid

separation techniques such as, for example, filtration, settling, decanting or centrifugation.

The recovered product is subjected to washings which are preferably carried out using deionized water. To eliminate residual water, the washed product is dried at a temperature ranging from about 90°C to about 350°C, preferably from about 100°C to about 200°C. In a preferred embodiment, the washed product is dried by spray drying.

Lastly, the recovered product, after washing and/or drying if appropriate, may be calcined. Generally, the recovered product is calcined at a temperature ranging from about 400°C to about 800°C for about 1 to about 6 hours. Preferably, the recovered product is calcined at a temperature ranging from about 500°C to about 600°C for about 2 to about 4 hours.

Mixed oxide powders produced by the process of the present invention are comprised of particles of cerium oxide and at least one non-noble metal oxides selected from the group consisting of transition metal oxides, rare earth metal oxides and mixtures thereof. Preferably, the non-noble metal oxide is selected from the group consisting of zirconium oxide, a rare earth oxide and mixtures thereof. Preferred rare earth oxides include, but are not limited to, lanthanide, yttria, praeseodymia, or mixtures thereof.

20

25

15

5

10

Mixed oxide compositions of the invention comprise about 20 to about 80 weight % CeO₂ and about 20 to 80 weight % non-noble metal oxide, preferably, about 30 to about 70 weight % CeO₂ and about 30 to about 70 weight % non-noble metal oxide, most preferably, about 40 to about 60 weight % CeO₂ and about 60 to about 40 weight % non-noble metal oxide, In a preferred embodiment, the composition include about 40 to about 60 weight % ZrO₂, about 60 to 40 weight % CeO₂, and 0 to 20 rare earth metal oxide, e.g., lanthana or yttria. In still a more preferred embodiment, the composition include about 45 to about 55 weight % ZrO₂, about 55 to 45 weight % CeO₂, and 0 to 10% rare earth metal, e.g., lanthana or yttria.

10

15

20

25

30

Mixed oxide compositions prepared by the process of the invention have an initial BET specific surface area of about 40 to about 150 m²/g. Even after calcination or aging at high temperatures, e.g., about 800°C to about 900°C, for extended periods of time, e.g., about 2 to about 6 hours, the composition according to the invention retain an exceptionally high BET specific surface area of at least 30 m²/g.

The remarkably high and thermally stable specific surface areas of the mixed oxide compositions prepared according to the invention permit them to be used for numerous applications. They are particularly well suited for catalysis applications, as catalysts and/or as catalyst supports. Notably, they can be employed as catalysts or catalyst supports for carrying out a wide variety of reactions such as, for example, dehydration hydrosulfurization, hydrodenitrification, desulfurization, hydrodesulfurization, dehydrohalogenation, reforming, vapor-reforming, hydrocracking, hydrogenation, dehydrogenation, isomerization, dismutation, oxychlorination, dehydrocyclization of hydrocarbons or other organic compounds, oxidation and/or reduction reactions, the Claus reaction, the treatment of exhaust gases from internal combustion engines, methanation, shift conversion, and the like.

One of the most important applications for mixed oxide compositions according to the invention, as emphasized above, is their use as constituents of catalysts intended for the treatment or conversion of exhaust gases emanating from internal combustion engines. For this application, the mixed oxide compositions of the invention are generally admixed with alumina before or after impregnation by catalytically active elements, such as precious metals. Such mixtures are then either shaped to form catalysts, for example in the form of beads, or used to form a lining of a refractory body such as a ceramic or metallic monolith, this lining per se being well known to this art as a "washcoat".

In order to further illustrate the present invention and the advantages thereof, the following specific examples are given. The examples are given as

specific illustrations of the claimed invention. It should be understood, however, that the invention is not limited to the specific details set forth in the examples. All part and percentages in the examples as well as the remainder of the specification are by weight unless otherwise specified.

5

In the examples which follow, all surface areas are understood to be expressed as the B.E.T. specific surface as determined by nitrogen adsorption in accordance with ASTM standards.

Example 1

10

A mixed oxide composition comprising 42 wt% ZrO₂, 56 wt% CeO₂, and 2 wt% lanthana was prepared in accordance with the invention.

The procedure involves dissolving cerium (IV) hydroxide (46.5g) in concentrated nitric acid (74.0g) to make an aqueous solution of cerium (IV) nitrate. The solution was completely transparent and had a dark cranberry color. An aqueous solution of zirconyl nitrate (104.0g) was added to provide 42 wt% of zirconia in the final product. Lanthanum nitrate (3.5g) was added. At this point a transparent aqueous solution of cerium, zirconium and lanthanum nitrates which had a red-orange color was obtained. To this solution was added a 30% solution of an aqueous hydrogen peroxide in an amount of 2.5 moles per molar equivalent of cerium in the salt solution.

20

15

The peroxide treated nitrate solution was coprecipitated in a vessel with 5N ammonia (500 ml). A temperature of 70°C and pH between 8-9 was maintained. After all of the solution had been added the precipitate was aged at 90°C and pH>8 for 4 hours.

25

The precipitate was filtered, washed with 3 Vol.Eq. of 70°C water and spray dried. The dried powder was calcined at 500°C for 1 hour to yield a product having surface area of 125 m²/g. After aging at 900°C for 4 hours in air the powder had a surface area of 44 m²/g.

10

15

20

Comparative Example 1

The procedure of Example 1 was repeated except the aging step at 90°C for 4 hours was replaced by a 70°C hold for 30 minutes of the precipitate in the mother liquor. The surface area of the 900°C powder after aging for 4 hours was 28 m²/g.

Comparative Example 2

The procedure for Example 1 was repeated except no peroxide was added. The precipitate was aged at 90°C for 4 hours. The surface area of the powder after aging at 900°C for 4 hours was 29 m²/g.

Comparative Example 3

The procedure of Example 1 was repeated except only half the peroxide was added until the solution became clear. The surface area of the powder after aging at 900°C for 4 hours was 21 m²/g.

Comparative Example 4

A cerium (III) nitrate solution was prepared by dissolving 58g of cerium carbonate in 135g water and 43g concentrated nitric acid. To this was added 107.7g zirconyl nitrate (20 wt% oxide) and 3.5g lanthanum nitrate to yield 2 wt% La₂O₃ in final product. No hydrogen peroxide was added. The nitrates were coprecipitated as in Example 1. The surface area of the powder after aging at 900°C for 4 hours was 20 m²/g.

25

Comparative Example 5

The procedure of Example 5 was repeated except 50g of hydrogen peroxide was added to the precipitate. The surface area of the powder after aging at 900°C for 4 hours was 21 m²/g.

PCT/US00/20141

While the invention has been described in terms of various preferred embodiments, the skilled artisan will appreciate that various modifications, substitutions, omissions, and changes may be made without departing from the spirit thereof.

5

WHAT IS CLAIMED IS:

1. A process for preparing a powder of cerium oxide and at least one other non-noble metal oxide in solid solution, the process comprising the steps of:

preparing a homogeneous, aqueous solution of a cerium IV salt and at least one non-noble metal salt;

contacting the salt solution with an aqueous hydrogen peroxide solution;

treating the peroxide-treated solution with an excess of a base to precipitate a cerium hydroxide and the at least one non-noble metal hydroxide; and

washing and drying the precipitate; and

calcining the precipitate at a temperature sufficient to form particles of cerium oxide and at least one non-noble metal oxide, wherein the non-noble metal oxide comprises about 10 to about 90 wt% of the total mixed oxide.

- 2. The process of Claim 1, wherein the cerium IV salt is selected from the group consisting of nitrates and sulfates.
- 3. The process of Claim 1, wherein the non-noble metal salt is selected from the group consisting of nitrates and sulfates.
- 4. The process of Claim 1, wherein the non-noble metal oxide is selected from the group consisting of transition metal oxides, rare earth metal oxides, and mixtures thereof.

- 5. The process of Claim 4, wherein the non-noble metal oxide is selected from the group consisting of zirconium oxide, a rare earth oxide and mixtures thereof.
- 6. The process of Claim 5, wherein the non-noble metal oxide is zirconium oxide.
- 7. The process of Claim 6, wherein the non-noble metal oxide further comprises a rare earth metal oxide.
- 8. The process of Claim 7, wherein the rare earth metal oxide is selected from the group consisting of lanthana, yttria, praeseodymia, or mixtures thereof.
- 9. The process of Claim 1, wherein the salt solution is contacted with aqueous hydrogen peroxide solution in an amount of at least 2.5 moles per molar equivalent of ceria.
- 10. The process of Claim 9, wherein the salt solution is contacted with aqueous hydrogen peroxide solution is in an amount from about 2.5 to about 4.5 moles per molar equivalent of cerium.
- 11. The mixed oxide composition formed by the process of Claim 1.
- 12. The mixed oxide composition formed by the process of Claim 7.

- 13. The mixed oxide composition of Claim 12, wherein the weight percentage of zirconium oxide in the composition is between about 20 and about 80 and the weight percent of rare earth metal oxide between about 0 to 20.
- 14. The composition of Claim 12, wherein the mixed oxide particles have a specific surface area of at least 30 m²/g after heat treatment at 900°C for 4 hours.
- 15. A catalyst/catalyst support comprising the mixed oxide composition of Claim 11 coated onto a substrate.
- 16. A catalyst/catalyst support of Claim 15 having a noble metal catalyst deposited onto the mixed oxide composition.

INTERNATIONAL SEARCH REPORT

I. .ational Application No PCT/US 00/20141

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B01J23/10 C01F17/00 C01G25/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
X	WO 97 43214 A (BLANCHARD GILBERT; AUBERT MARYLINE (FR); BIRCHEM THIERRY (FR); RHO) 20 November 1997 (1997-11-20) page 2, line 29 -page 3, line 35 page 4, line 6 -page 5, line 14 page 6, line 1 -page 8, line 7 page 8, line 18 - line 23	1-8, 11-16				
X	EP 0 778 071 A (TOYOTA MOTOR CO LTD) 11 June 1997 (1997-06-11) page 2, line 7 - line 18 page 2, line 34 - line 39 page 3, line 44 -page 4, line 9 page 6, line 8 - line 14 page 6, line 52 -page 7, line 11 page 7, line 41 - line 51 page 8, line 17 -page 9, line 24 page 21, line 4 - line 31	1-6, 11-16				
	-/					

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.	
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family 	
Date of the actual completion of the international search	Date of mailing of the international search report	
16 November 2000	24/11/2000	
Name and mailing address of the ISA	Authorized officer	
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk TeL (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Cubas Alcaraz, J	

1

INTERNATIONAL SEARCH REPORT

PCT/US 00/20141

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
(WO 98 45212 A (RHODIA) 15 October 1998 (1998-10-15) page 3, line 17 - line 28 page 7, line 9 -page 9, line 30 page 22, line 17 -page 23, line 14; claim 21	1-6,11	
(DATABASE WPI Section Ch, Week 199215 Derwent Publications Ltd., London, GB; Class E33, AN 1992-118001 XP002152961 & JP 04 055315 A (DAINICHISEIKA COLOR & CHEM MFG), 24 February 1992 (1992-02-24) cited in the application abstract	9–12	
X	WO 98 20968 A (GRACE W R & CO) 22 May 1998 (1998-05-22) claims 1,4-6,14	11-13, 15,16	

INTERNATIONAL SEARCH REPORT

Information on patent family members

rational Application No PCT/US 00/20141

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9743214	Α .	20-11-1997	FR 2748740 A AU 716835 B AU 2965897 A BR 9709236 A CA 2255571 A EP 0906244 A JP 2000501061 T NO 985313 A	21-11-1997 09-03-2000 05-12-1997 10-08-1999 20-11-1997 07-04-1999 02-02-2000 15-01-1999
EP 0778071	Α	11-06-1997	JP 9155192 A JP 9221304 A US 5958827 A	17-06-1997 26-08-1997 28-09-1999
WO 9845212	Α	15-10-1998	US 6133194 A AU 6876098 A NO 994794 A CN 1255105 T EP 0971855 A	17-10-2000 30-10-1998 01-12-1999 31-05-2000 19-01-2000
JP 4055315	Α	24-02-1992	JP 2641108 B	13-08-1997
WO 9820968	Α	22-05-1998	US 5919727 A AU 5243898 A EP 0946289 A	06-07-1999 03-06-1998 06-10-1999