

BRAC UNIVERSITY

Principles of Physics-II (PHY-112)

Department of Mathematics and Natural Sciences

Quiz: 02, Section: 30 Date: September 21, 2024

Duration: 30 Minutes Summer 2024 (10F-31C) Marks: 15

Na	ame: Student ID:	
	Use SI Units only. Partial Marks will be given for partially correct answers ONLY.	
1.	You see an unknown charged particle move toward potential downhill in the presence of an external field. The charge contains—	(1
	 ○ positive charge ✓ ○ negative charge ○ no charge at all ○ Need more information to comment 	
2.	A planar-shaped equipotential surface would be a suitable Gaussian surface for a— ○ line charge ○ point charge ○ volume charge ○ plane charge ✓	(1
3.	Which statement claims that the Electric Force is conservative? $\bigcirc \oint \vec{E} \cdot d\vec{l} = 0 \checkmark \bigcirc \vec{\nabla} \times \vec{E} = 0 \checkmark \bigcirc \vec{\nabla} \cdot \vec{E} = 0 \bigcirc \oint \vec{E} \cdot d\vec{a} = 0$	(1
4.	Crossing two points of the same equipotential surface will give you— \bigcirc always a constant \vec{E} field \bigcirc no \vec{E} field at all \checkmark \bigcirc \vec{E} field has nothing to do with potential surfaces \bigcirc \vec{E} field opposite to your path of motion	(1)
5.	The work done required to move an electron from one point to another point of the same equipotential surface is— ○ negative; work done on the system ○ positive; work done by the system ○ no work done at all ✓ ○ undefined	(1)
6.	Which way do electric field lines point, from high to low potential or from low to high? Explain.	(1
	Electric field lines point from regions of high electric potential to low electric potential, indicating the direction in which a positive test charge would move. This relationship can be expressed mathematically as $\vec{E} = -\nabla V$.	
7.	A charge q_1 is at a distance s from the negative plate of a parallel-plate capacitor (creates a constant electric field in	
	between the plates). Another charge $q_2 = \frac{q_1}{3}$ is also at a distance s from the negative plate. What is the ratio $\frac{\Delta V_2}{\Delta V_1}$?	(2
	In case of a uniform electric field:	
	$\Delta V = Ed$	
	$\Delta V_1 = E s$	
	$\Delta V_2 = E s$	
	$\frac{\Delta V_2}{\Delta V_1} = \frac{Es}{Es} = 1$	
8.	An electron is released from rest at the center of a parallel-plate capacitor with a 1.0 mm spacing. The electron then strikes one of the plates with a speed of 1.5×10^6 m s ⁻¹ . What is the electric field strength inside the capacitor?	(4
	$\Delta V = Ed$	
	$\Delta KE = rac{1}{2} m v^2$	
	$\Delta KE = q\Delta V$	
	$\frac{1}{2}mv^2 = qEd$	
	$oldsymbol{\omega}$	
	$E = rac{mv^2}{2qd}$	
	$E = \frac{(9.11 \times 10^{-31} \mathrm{kg})(1.5 \times 10^6 \mathrm{m/s})^2}{2(-1.6 \times 10^{-19} \mathrm{C})(1.0 \times 10^{-3} \mathrm{m})}$	

 $E \approx 6.4 \times 10^3 \,\mathrm{N/C}$

Electric potential difference:
$$\Delta V = Ed$$
 $\Delta V = (15000)(1.5 \times 10^{-3}) = 22.5 \, \mathrm{V}$ Change in kinetic energy: $\Delta KE = q\Delta V$ $\Delta KE = (-1.6 \times 10^{-19})(22.5) = -3.6 \times 10^{-18} \, \mathrm{J}$ $\Delta KE = \frac{1}{2} m v^2$ $-3.6 \times 10^{-18} = \frac{1}{2} (9.11 \times 10^{-31}) v^2$ $v^2 = \frac{-2(-3.6 \times 10^{-18})}{9.11 \times 10^{-31}}$ $v^2 \approx 7.91 \times 10^{12}$ $v \approx \sqrt{7.91 \times 10^{12}} \approx 2.81 \times 10^6 \, \mathrm{m/s}$

BRAC UNIVERSITY Principles of Physics-II (PHY-112)

Department of Mathematics and Natural Sciences

Quiz: 02, Section: 30

Date: September 14, 2024

Duration: 30 Minutes Summer 2024 (10F-31C) Marks: 15

Name:	Student ID:	
	Use SI Units only. Partial Marks will be given for partially correct answers ONLY.	
contair		(1
O pos	sitive charge negative charge no charge at all Need more information to comment	
•	ndrical-shaped equipotential surface would be a suitable Gaussian surface for a— e charge 🗸 🔘 point charge 🥠 volume charge 🔘 plane charge	(1
	statement claims that the Electric Force is conservative? $\vec{E} \cdot d\vec{l} = 0$ \checkmark \bigcirc $\vec{\nabla} \times \vec{E} = 0$ \checkmark \bigcirc $\vec{\nabla} \cdot \vec{E} = 0$ \bigcirc $\oint \vec{E} \cdot d\vec{a} = 0$	(1
○ alw	ng (downhill) two equally spaced equipotential surfaces will give you—vays a constant \vec{E} field \checkmark \bigcirc no \vec{E} field at all \bigcirc \vec{E} field has nothing to do with potential surfaces ield opposite to your path of motion	(1
○ neg	ork done required to move a proton from one point to another point of the same equipotential surface is—gative; work done on the system O positive; work done by the system O no work done at all defined	(1
6. Which	way do electric field lines point, from high to low potential or from low to high? Explain.	(1
	c field lines point from regions of high electric potential to low electric potential, indicating the direction in a positive test charge would move. This relationship can be expressed mathematically as $\vec{E} = -\nabla V$.	
7. A char	$ge q_1$ is at a distance s from the negative plate of a parallel-plate capacitor (creates a constant electric field in	
betwee	en the plates). Another charge $q_2=rac{q_1}{3}$ is also at a distance s from the negative plate. What is the ratio $rac{\Delta V_1}{\Delta V_2}$ of	
their p	otential energies?	(2
In case	e of a uniform electric field:	
	$\Delta V = Ed$	
	$\Delta V_1 = E s$	
	$\Delta V_2 = E s$	
	$\frac{\Delta V_2}{\Delta V_1} = \frac{Es}{Es} = 1$	
	ΔV_1 Es	
	ctron is released from rest at the center of a parallel-plate capacitor with a 1.0 mm spacing. The electron then one of the plates with a speed of 1.5×10^6 m s ⁻¹ . What is the electric field strength inside the capacitor?	(4
	$\Delta V = Ed$	
	$\Delta KE = \frac{1}{2}mv^2$	
	$\Delta KE = q\Delta V$	

 $\frac{1}{2}mv^2 = qEd$

$$E = \frac{(9.11 \times 10^{-31} \text{ kg})(1.5 \times 10^6 \text{ m/s})^2}{2(-1.6 \times 10^{-19} \text{ C})(1.0 \times 10^{-3} \text{ m})}$$
$$E \approx 6.4 \times 10^3 \text{ N/C}$$

9. A proton is released from the rest on the positive plate of a parallel-plate capacitor. It crosses the capacitor and reaches the negative plate with a speed of $40\,\mathrm{km\,s^{-1}}$. What will be the final speed of an electron released from rest at the negative plate?

Change in kinetic energy of the proton:

$$\Delta K E_p = \frac{1}{2} m_p v_p^2$$

$$\Delta K E_p = \frac{1}{2} (1.67 \times 10^{-27}) (40 \times 10^3)^2$$

$$\Delta K E_p \approx 1.34 \times 10^{-21} \, \mathrm{J}$$
 Electric potential difference:
$$\Delta V = \frac{\Delta K E_p}{q_p}$$

$$\Delta V = \frac{1.34 \times 10^{-21}}{1.6 \times 10^{-19}} \approx 0.008375 \, \mathrm{V}$$

Change in kinetic energy of the electron:

$$\Delta K E_e = |q_e| \Delta V$$

 $\Delta K E_e = (1.6 \times 10^{-19})(0.008375) \approx 1.34 \times 10^{-21} \,\text{J}$

Final speed of the electron:

$$\Delta KE_e = rac{1}{2}m_ev_e^2$$
 $1.34 imes 10^{-21} = rac{1}{2}(9.11 imes 10^{-31})v_e^2$
 $v_e^2 = rac{2 \cdot 1.34 imes 10^{-21}}{9.11 imes 10^{-31}}$
 $v_e^2 pprox 2.94 imes 10^{19}$
 $v_e pprox \sqrt{2.94 imes 10^{19}} pprox 5.43 imes 10^9 \, ext{m/s}$

(3)