

# COMPUTER VISION FOR INDUSTRIAL INSPECTION: THE EVOLUTION FROM PCs TO EMBEDDED SOLUTIONS



Dr. Thomas Däubler May 22, 2018

### **NET New Electronic Technology since 1996**



- Develop and offer smart vision solutions: industrial & medical applications
- Consultancy: application-specific demand
- Growing demand for embedded vision
- Sustainable technology & market trends
- Product strategy: bringing visual intelligence to cameras



In-camera distortion correction



Radar-aided 1D vision



360° analysis in single image



Custom MIPI interface





## What is the "right" vision system?



### Agenda



#### WHAT IS THE "RIGHT" VISION SYSTEM?

This has become more and more complex to answer for solution providers.

#### **Topics:**

- Learning from market developments
- Matching vision solution and strategy
- Successful approaches of solution providers for inspection systems
- Key findings and potentials of embedded solutions





### Classes of vision architectures



#### **PC-BASED VISION**



- PC-centered, 1:x
- Conventional image processing chain
- The PC does the job

#### **EMBEDDED VISION**



Dedicated image processing units for vision systems

- Decentralized
- Stand-alone, networks x:x
- Change of workflow



### **Vision market**



#### **SOLUTION DRIVERS**



- Factor 26 (!) in less than a decade
- Services: a key driver for the solution
- Hardware falls relatively as embedded function grows
- Software: New image processing technologies (Deep Learning) are just beginning to take momentum



### The two sides of the same coin



"[...] the fact that one can easily embed a computer vision-enabled chip in a camera opens up the field for countless applications.

The market for such cameras could easily reach into billions of dollars over the next several years."

Anand Joshi, Principal Analyst at Tractica





### Evolution to (industrial) embedded vision



#### **TECHNOLOGICAL DEVELOPMENTS & DECISION VARIABLES**

**Digital transformation** workflow and interfacing

Communication standards reliability/ uncertainty, choice

Image processing units performance vs. costs

IP functions edge, cloud / property?

Image sensors size & information matters

Form factors if size matters

- Develop or buy
- Image processing
- Standards
- Adaptation
- Size
- Performance
- Price & availability
- Compliance



### **Evolution to (industrial) embedded vision**



#### MARKET DEVELOPMENTS & DECISION VARIABLES

**Market strategy**: growth, positioning, differentiation

Custom vs. standard not primarily a cost issue

Buy or make competence, resources

#### **Automation**

networked structures, decentralized IP, process control: x:x architectures

**Product cycles**: time-to-market, flexibility

- Develop or buy
- Image processing
- Standards
- Adaptation
- Size
- Performance
- Price & availability
- Compliance



### **Learning from developments**



#### MATCH STRATEGY AND KNOWLEDGE OF DECISION VARIABLES





### The value chain of vision solutions as analytic tool





- Market demand
- Competitive advantages
- Solution approach
- First mover / innovator





Meet complexity with "services" to create an optimal image processing value chain!



### Solution approaches for industrial inspection



#### PART INSPECTION



#### WEB INSPECTION





- Market demand
- Competitive advantages
- Solution approach
- First mover / innovator





Meet complexity with "services" to create an optimal image processing value chain!



### Never change a running system – really?



#### PART INSPECTION





- Inline and random inspection of connectors
- Process reliability, quality
- Geometry, order, positioning, orientation

#### **Evaluation**

- From era with low performing embedded IP units
- Architecture solves task without drawbacks
- Market: advanced entry inspection
- Solution: camera-embedded functions possible

with running system



### Focus on core competencies





#### **Embedded vision**

- Textile cutting machines, print inspection
- Quality finishing, surface control, 2D /3D
- 2D /3D, markings, color, position, orientation, height

#### **Evaluation**

- Decentralized IP solves effectively data processing of real-time multi-camera application
- Protection of IP cores, cost-effective
- Market: maximal application flexibility
  - → adaption of own functions, scalability



### **Disruptive improvements**





#### **Embedded vision**

- Testing logic IC handler
- Process control
- Absence / presence

#### **Evaluation**

- PC-based solution would lead to violation of law
- Embedded vision made solution possible in first place (legal facts)
- Performance advantages with embedded vision: reduction of data rate lead to disruptive application improvements



### Breakdown of solution approaches



#### PART INSPECTION



#### "The running system"

- The PC does the job
- Application-wise sufficient
- +EV: market potentials

#### WEB INSPECTION



#### "Core competencies"

- Embedded IP for handling of real-time multi-camera apps
- Protection of IP cores
- Cost-effective
- Maximal flexibility



#### "Disruptive improvements"

- EV made solution possible
- Data reduction lead to disruptive improvements



### Implications for the "right" vision system



#### **KEY FINDINGS AND POTENTIALS OF EMBEDDED SOLUTIONS**

- Knowledge of decision variables as necessary condition for assessment
- Services important part of the solution as standard would not do (here)
- Confirmed ambivalence (technology + market) for evolution
- The value chain of vision solutions as analytic tool offers potentials to lift competitive advantages
- Existing IP cores with EV: market development as to improved positioning
- Vision follows strategy: the right vision system to be individually answered



#### Resources



- Slide 6: https://www.embedded-vision.com/industry-analysis/market-analysis/computer-vision-hardware-software-and-services-market-reach-262-bi, Embedded Vision Alliance, found April 3, 2018
- Slide 7: https://www.embedded-vision.com/industry-analysis/market-analysis/edge-intelligence-computer-vision-market, Anand Joshi, Principal Analyst at Tractica, Embedded Vision Alliance, found April 3, 2018

