

INSTITUT FÜR INFORMATIK
LEHRSTUHL FÜR MOBILE UND VERTEILTE SYSTEME

MASTERARBEIT

Titel der Arbeit

Judith Greif

Entwurf vom 23. November 2015

INSTITUT FÜR INFORMATIK

LEHRSTUHL FÜR MOBILE UND VERTEILTE SYSTEME

MASTERARBEIT

Titel der Arbeit

Judith Greif

Aufgabensteller: Prof. Dr. Claudia Linnhoff-Popien

Betreuer: Mirco Schönfeld

Abgabetermin: 1. Januar 2099

	liegende Masterarbeit selbständig verfasst Quellen und Hilfsmittel verwendet habe.
München, den 1. Januar 2099	
	(Unterschrift des Kandidaten)

Abstract

Hier kommt der Abstract hin. Hier kommt der A

Inhaltsverzeichnis

Ba	ckground		
2.1	Bloom	n Filter Operations and Variants	
	2.1.1	Attenuated Bloom Filter	
2.2	Mathe	ematic Principles	
2.3	Query	Processing and Index Structures in Database Systems	
	2.3.1	B-Trees	
		R-Trees	
	2.3.3	R*-Trees	
	2.3.4	Heaps	
2.4	AMBI	IENCE	

1 Einleitung

Wir zitieren hier die Quellen [AT06], [ADI $^+$ 12], [BMS07], [BM04], [BCM02], [DWM10], [HP94], [LC86], [Mit02], [Naf05], [QLC14], [RK14], [SS11], [SBE $^+$ 12], [Sch13], [SW14], [STT $^+$ 09], [WDS15], [YL02], [Zha12], [ZJW04], die in der Datei bibliography.bib stehen.

2 Background

2.1 Bloom Filter Operations and Variants

2.1.1 Attenuated Bloom Filter

[SS11]: 316 u. 318.

2.2 Mathematic Principles

2.3 Query Processing and Index Structures in Database Systems

To support query processing and operations in an efficient manner the internal layer of a database system relies on certain data structures and memory methods. These are called *index structures*. They organize the data to support the required operations using its *indices*.

An *index* (also called *directory*) holds information about the structure of a file. A *file* in this context refers to an entire data structure, i.e. an array, a search tree etc..

One can differentiate between three classes of index structures depending on the manner in which the data is organized:

- Data-organizing index structures are used to organize the actual amount of data. They heavily rely on search trees.
- Space-organizing index structures are used to organize the space that holds the data. They use dynamic hashing.
- Hybrid index structures are a combination of both classes.

[OW12]

2.3.1 B-Trees

[Knu98]

- 2.3.2 R-Trees
- 2.3.3 R*-Trees
- 2.3.4 Heaps

2.4 AMBIENCE

[WDS15].

Literaturverzeichnis

- [ADI⁺12] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Börje Ohlman. A survey of information-centric networking. *Communications Magazine*, *IEEE*, 50(7):26–36, 2012.
- [AT06] S. Agarwal and A. Trachtenberg. Approximating the number of differences between remote sets. In *Information Theory Workshop*, 2006. ITW '06 Punta del Este. IEEE, pages 217–221, March 2006.
- [BCM02] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Fast Approximate Reconciliation of Set Differences. In *BU Computer Science TR*, pages 2002–2019, 2002.
- [BM04] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey. *Internet Mathematics*, 1(4):485–509, 2004.
- [BMS07] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity search. In *Proceedings of the 16th international conference on World Wide Web*, pages 131–140. ACM, 2007.
- [DWM10] Michael Dürr, Martin Werner, and Marco Maier. Re-socializing online social networks. In Green Computing and Communications (GreenCom), 2010 IE-EE/ACM International Conference on & International Conference on Cyber, Physical and Social Computing (CPSCom), pages 786–791. IEEE, 2010.
- [HP94] Joseph M. Hellerstein and Avi Pfeffer. The RD-Tree: An Index Structure for Sets. Technical report, University of Wisconsin-Madison, Computer Sciences Department, 1994.
- [Knu98] Donald Knuth. The art of computer programming, Volume 3, Sorting and searching. Addison Wesley Longman, 1998.
- [LC86] Tobin J. Lehman and Michael J. Carey. A study of index structures for main memory database management systems. In *Proc. VLDB*, 1986.
- [Mit02] Michael Mitzenmacher. Compressed bloom filters. IIEEE/ACM Transactions on Networking (TON), 10(5):604–612, 2002.
- [Naf05] Clemens Nafe. Indexierung lokaler Daten in Peer-to-Peer-Netzwerken. Master's thesis, Universität Rostock, 2005.
- [OW12] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum Akademischer Verlag, 5 edition, 2012.
- [QLC14] Yan Qiao, Tao Li, and Shigang Chen. Fast Bloom Filters and their Generalization. *Parallel and Distributed Systems, IEEE Transactions on*, 25(1):93–103, January 2014.
- [RK14] Peter Ruppel and Axel Küpper. Geocookie: a space-efficient representation of geographic location sets. *Journal of Information Processing*, 22(3):418–424, 2014.

- [SBE⁺12] Mohamed Sarwat, Jie Bao, Ahmed Eldawy, Justin J Levandoski, Amr Magdy, and Mohamed F Mokbel. Sindbad: a location-based social networking system. In *Proceedings or the 2012 ACM SIGMOD International Conference on Management of Data*, pages 649–652. ACM, 2012.
- [Sch13] Rainer Schnell. Getting Big Data but avoiding Big Brother. WP-GRLC, 2, 2013.
- [SS11] H. Sakuma and F. Sato. Evaluation of the Structured Bloom Filters Based on Similarity. In Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference on, pages 316–323, March 2011.
- [STT⁺09] Toru Shiraki, Yuichi Teranishi, Susumu Takeuchi, Kaname Harumoto, and Shojiro Nishio. A Bloom Filter-Based User Search Method Based on Movement Records for P2P Network. In *Applications and the Internet, 2009. SAINT '09. Ninth International Symposium on*, pages 177–180. IEEE, July 2009.
- [SW14] Mirco Schönfeld and Martin Werner. Node wake-up via ovsf-coded bloom filters in wireless sensor networks. In *Ad Hoc Networks*, pages 119–134. Springer, 2014.
- [WDS15] Martin Werner, Florian Dorfmeister, and Mirco Schönfeld. AMBIENCE: A Context-Centric Online Social Network. In 12th IEEE Workshop on Positioning, Navigation and Communications (WPNC '15), 2015.
- [YL02] Congjun Yang and King-Ip Lin. An index structure for improving closest pairs and related join queries in spatial databases. In *Database Engineering and Applications Symposium*, 2002. Proceedings. International, pages 140–149. IEEE, 2002.
- [Zha12] Zhenghao Zhang. Analog Bloom Filter: Efficient simultaneous query for wireless networks. In *Global Communications Conference (GLOBECOM)*, 2012 IEEE, pages 3340–3346. IEEE, 2012.
- [ZJW04] Yifeng Zhu, Hong Jiang, and Jun Wang. Hierarchical Bloom Filter Arrays (HBA): A Novel, Scalable Metadata Management System for Large Cluster-based Storage. In *Cluster Computing*, 2004 IEEE International Conference on, pages 165–174. IEEE, 2004.