CE-227 Midterm 1

2 - Performance Objectives

$$Pr = 1 - e^{\frac{-t}{RI}}$$

3 Linear Response

General

- Pseudo acceleration: absolute acceleration of a SDF system with
- Spetral displacement: relative displacement.
- · Viscous Damping:
- DBE = $\frac{2}{3}MCE_R$
- MCE_R : roughly 2% exceedance in 50 yrs (ASCE 7).

ASCE 7 Design Spectrum

Damping Effects

Use in Design

placeholder

4 Nonlinear Response

General

$$R = \frac{f_{el}}{f_y} \quad \gamma = \frac{\Delta_{max}}{\Delta_{el}} \quad \mu = \frac{\Delta_{max}}{\Delta_y} \quad \eta = \frac{V_y}{m\ddot{u}_{g,mx}}$$

Generation

Trends

Zone A: $T \ll T_n$

$$\mu = 0.5(1 - F/Q_y)^{-1}$$

$$\gamma = 0.5(R - R^2/2)^{-1}$$

Zone B: $T > T_n$

$$R = \sqrt{2\mu - 1}$$

$$\gamma = \frac{R^2 + 1}{2R}$$

Zone C: $T >> T_p$

 $\mu = R$

 $\gamma = 1.0$

Code

Effects on response

placeholder

5 - Nonlinear SDOF

5.1 Nonlinear RSA (ASCE 7)

5.2 Equivalent Linearization

Iterative process where Δ_{max} is used to find $[K,\zeta]_{eff}$.

Used for base-isolated structures.

- 1. Apply P, obtain V_{base} (Pushover
- 2. Use T_0 and ζ find $\Delta_i = Sa(T_0, \zeta)T_0$

5.3 Capacity Spectrum

1. Guess ζ , find

5.4 Coefficient Method (ASCE 41)

$$\delta_t = C_0 C_1 C_2 S_a \frac{T_e^2}{4\pi^2} g$$

- $C_o(\Phi_n\Gamma)$: converts SDOF spectral displacement to MDOF roof displacement
- $C_1(\gamma)$: amplification for bilinear response
- C_2 : amplification for pinched hysteresis, stiffness degradation, and strength deterioration
- $T_{\rm e} = T_{\rm initial} \sqrt{k_{\rm i}/k_{\rm e}}$

$$\mu_{\text{strength}} = \frac{S_a^e}{V_y/w} C_m$$

$$R_{\text{max}} = \mu_{\text{max}} = \frac{\Delta_d}{\Delta_y} + \frac{|\alpha_e|^{-h}}{4}$$

$$h = 1 + 0.15 \ln T_e$$

$$\alpha_e = \alpha_{P-\Delta} + \lambda (\alpha_2 - \alpha_{P-\Delta})$$

$$\lambda = \frac{0.8 \text{ if } S_{X1} \ge 0.6}{0.2 \text{ if } S_{X1} \le 0.6}$$

6 - MDOF Analysis

1. Linear Static - ELF (ASCE 7)

2. Linear Dynamic - Modal RSA

- 1. Reduce spectrum by $\frac{I_e}{R}$
- 2. Conduct modal analysis subject to $V_b \geq V_{ELF}$

3. Nonlinear Static

- 1. Nonlinear RSA
- 2. Equivalent Linearization
- 3. Capacity Spectrum
- 4. Coefficient Method (ASCE 41)

MDOF -> SDOF

- 1. Bilinearize
- 2. plot V/M_n^* vs $D_1 =$

$$3. \ \omega = \sqrt{\frac{V_{yn}}{M_n^* D_{yn}}}$$

7. Seismic Systems

Moment Frames

Force: V_{beam} , $[N, V, M]_{col}$, V_{int} Displ: M_{beam}

$$Q_i \delta = \frac{2M_p \delta n_{bays}}{(h_i + h_{i+1})/2}$$

Shear Walls

Force: NDispl: M_{base} , V

Coupled Walls

Force: Wall - V, M \mathbf{Displ} : Link - V

CBFs

Force: Beam, col - N, V, M

Displ: Brace - N

BRBFs

EBFs

Force: Beam, column, brace - N, M

Displ: Link - V

Preliminary Design

SDOF - Method I

- 1. Guess T
- 2. Estimate V_h
- 3. Design members for strength
- 4. Check displacement limits
- 5. Validate period

SDOF - Method II

- 1. Find T_{max} for $\Delta_{allowed}$
- 2. Calc K_{min}
- 3. Calc min. strength, $V = Sa(T) \frac{\omega}{R/L_0}$
- 4. Consider capacity design limits
 - $M_p r = R_u C_{pr} F_u Z$
- $\phi V_n \ge \frac{M_p}{h}$ 5. Select Dimensions

Moment Frames

- 1. Find T
- 2. Find $V_b = Sa(T) \frac{\omega}{R/I}$
- 3. Find I_{min} :
 - $\delta = 7$
- 4. Find required flexural capacities
- 5. Select sections
- 6. Capacity design
 - Column N, V, M
 - Joints

Braced Frames

http://claudio.github.io/