Physics 214 PreLab 1: Interference and Diffraction

Name	
Section	Date

Your TA will collect this paper at the beginning of your lab section.

The basic problem is shown in the following figure, which represents light of a given wavelength λ passing through two slits separated by a distance d. The distance to the screen is L. In this lab experiment you will **measure the intensity at a position y** along the screen, which corresponds to a scattering angle θ .

As shown in class, the **phase difference** between the two light beams at position y is:

$$\phi = 2\pi (\delta/\lambda)$$
 where $\delta = d \sin \theta \approx d(y/L)$ (1)

is the path difference between the two beams. From phasor analysis, if the intensity arriving at the screen from each slit is I_1 , the total intensity at y from both slits is:

The more general form for the interference pattern from N slits is: $I = I_1 \left(\frac{\sin(N\phi/2)}{\sin(\phi/2)} \right)^2$

1. Show that this reduces to the 2-slit case when N = 2.

When we consider the **diffraction** of light through a single slit of width a, we find that the single-slit intensity, I_1 , in the above equation is not simply a constant but also depends on angle. The **single-slit pattern** looks like the following plot:

2. Calculate the position of the **first diffraction minimum** assuming a laser wavelength of 633 nm, a slit width of $20~\mu m$, and a screen distance of 1~m.

"DO NOT FORGET TO INDICATE UNITS FOR ALL NUMERICAL ANSWER YOU PROVIDE!!

So the net result due to both **interference and diffraction** is the product of the curves in Figs. 2 and 3 (see also 214 Lecture 3):

3. You should be able to tell what the ratio d/a is by just looking at the above pattern.

d/a =

End of Prelab Exercise Explain your method: