Digital Signatures

Tutorial

g: one-time secret k repeated what will happen.

will happen. $(S_2,S_1)-m$ $m = S_xk + X_AS_1 \qquad (S_2,S_1)-m$ s, = 9 $m' = S_2'k + X_A S_1'$ k, X_A 5 = 9 K $m-m'=k(S_2-S_2)+X_A(S_1-S_1)$

 \Rightarrow m-m' = $k\left(S_2 - S_2'\right)$

$$= \frac{m-m'}{s_2-s_2'}$$

solving DLP.

: 2p, g-generaler
p-large prime

choose
$$x \in 2p$$

public key $y=9^x \in 2p$

Declare $(9,7,p)$

Signalure Algorithm: (r, +) signalure on m.

$$m = H(m)$$
 $T = g^k \mod p$, where k , $(k, \phi(p)) = 1$.

 $S = [k^{-1}x - k^{-1}r - k^{-1}m] \pmod{p}$.

Q1: Design Ite Signelare Vorigicalion Algorithm (m, (8,3)) (g, y, p) known S= k-(2-7-m) KS= 2-8-M ks = 2 - (r+m) 2 = Ks+ (Y+m) $g^{\chi} = g^{ks+(r+m)}$ y = 8.9 (x+m) Verification Spriken

q) finite field
$$\mathcal{F}_{[0]}$$
 with base-point $g=12$

> solets $z=28$

random $k=13$
 $H(m)=m=21$ (assume).

If the signalure with decided steps?

Ind the signalure with decided steps?

As o verification inducal.?

Verification: $\gamma^2 g^{7+m} = 58 = 53 + 12 \pmod{0}$.

= 92

= 9

$$y = g^{2} = 12 \pmod{101} = 92$$

$$T = g^{2} \pmod{101}, (k, \phi(p)) = 1$$

$$T = k^{2} (nod 101), (k, \phi(p)) = 1$$

$$T = k^{2} (nod 101), (k, \phi(p)) = 1$$

$$T = k^{2} (nod 101) = 1$$

$$T = 12^{2} (nod 101) = 53$$

$$K^{2} = 13^{2} = 77 (nod 100)$$

$$T = 77 (28 - 53 - 21)$$

$$T = 78$$

$$T = 78$$