FDITA	/ InfoS	1

240

13/20

Octo	bre	2022
Groupe	. 7	=1

NOM:....

Contrôle Electronique

..... Prénom :

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (6 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

1.	Qu'est-ce qu'un déplacement ordonné de	t ordonné de charges électriques ?		
•	a- Un courant	c- Une résistance		
	b- Une tension	d- Rien de tout cela		

- 2. Une différence de potentiels entre 2 points est :
 - a- Un courant

c- Une résistance

b- Une tension

- d- Rien de tout cela
- 3. L'intensité du courant qui entre dans un générateur est inférieure à l'intensité de celui qui en ressort.
 - a- VRAI

b- FAUX

- 4. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en parallèle avec ce dipôle.
 - a- VRAI

b- FAUX

- 5. Si deux dipôles sont parcourus par le même courant, on dit qu'ils sont :
 - a. En parallèle

b. En série

- 6. Si l'on applique la loi d'Ohm avec U en V et I en mA, on obtient directement R en :
 - a. $M\Omega$

b. *kΩ*

c. $m\Omega$

d. Ω

Exercice 2. Associations de résistances (6 points)

Quelle est la résistance équivalente totale vue depuis les points A et B? (détaillez votre raisonnement – On imagine que le courant « entre » par le point A et « ressort » en B)

Exercice 3. Généralités et Lois de Kirchhoff (9 points)

On considère le circuit ci-contre.

On donne:

$$U_1 = 5 V$$
; $U_3 = 5 V$; $U_7 = -2.5 V$

$$E=15\,V$$
 ; $R_1=500\Omega$; $R_2=1k\Omega$; $R_3=1k\Omega$

1. Dans ce circuit, combien y-a-t-il de :

- a. Nœuds?
- 6
- b. Branches?

c. Mailles?

2. Donner l'expression, puis la valeur numérique de U_5 ?

D'après la loi des mailles,

$$U_3+U_5+U_7=0$$
 done $U_5=-U_3-U_7$ on $U_3=5V$ et
 $U_5=-5V+2,5V=-2,5V$

3. Donner l'expression, puis la valeur numérique de I_5 ?

D'après la loi des novembs,
$$U=RI$$
 $IS+I_1=I_3$ on $I_1=U_1$ et $I_3=U_3$ (lai d'Ohm)

denc $I_5=I_3-I_1$

Dene $I_5=\frac{1}{200}A$
 $I_5=\frac{1}{200}A$
 $I_7=\frac{1}{200}A$
 $I_7=\frac{1}{200}A$
 $I_7=\frac{1}{200}A$

4. En déduire la valeur de R_5 .

5. Flécher et déterminer la valeur du courant dans R_2 .

6. Que vaut R_4 ?

D'après la loi des noends,

$$E-U_1-U_3-U_4=Q$$
 donc $U_4=E-U_1-U_3$
On $E=15V$
 $U_1=5V$
 $U_3=5V$

