Exercices sur les dérivées

Delhomme Fabien

4 septembre 2018

Contents

1	Dérivée de polynôme de second degré	1
2	Fractions rationnelles	1
3	Composée de fonctions	2

1 Dérivée de polynôme de second degré

Dérivez les fonctions suivantes :

- $f: x \longmapsto -10x^2 8x 10$. $f: x \longmapsto -4x^2 5x + 1$.
- $f: x \longmapsto 10x^2 3x + 10$. $f: x \longmapsto 8x^2 6$.
- $f: x \longmapsto 4x^2 5x$.
- $f: x \longmapsto -5x^2 9x + 2$. $f: x \longmapsto x^2 4x 3$.
- $f: x \longmapsto -7x^2 + 4x + 2$.
- $f: x \longmapsto -3x^2 4x + 4$. $f: x \longmapsto 4x^2 + 5x 3$.

$\mathbf{2}$ Fractions rationnelles

Dérivez les fonctions suivantes :

- $f(x) = \frac{8x+5}{7x+1}$. $f(x) = \frac{-2x-7}{2x-1}$. $f(x) = \frac{5-7x}{8x-2}$. $f(x) = \frac{3x-1}{x-4}$.

•
$$f(x) = \frac{9x+3}{10x-8}$$
.

Plus difficile:)

•
$$f(x) = \frac{-8x^2 - 144x - 136}{x - 9}$$

•
$$f(x) = \frac{-9x^2 - 162x - 648}{x + 4}$$
.

•
$$f(x) = \frac{2x^2 - 28x + 130}{x - 1}$$
.

•
$$f(x) = \frac{-8x^2 - 144x - 136}{x - 9}$$
.
• $f(x) = \frac{-9x^2 - 162x - 648}{x + 4}$.
• $f(x) = \frac{2x^2 - 28x + 130}{x - 1}$.
• $f(x) = \frac{-7x^2 + 140x - 252}{4x - 7}$.
• $f(x) = \frac{5x^2 + 10x - 15}{x + 10}$.

•
$$f(x) = \frac{5x^2 + 10x - 15}{x + 10}$$
.

Quel est l'ensemble de définition de chacune de ces fonctions ?

3 Composée de fonctions

Dérivez les fonctions suivantes :

•
$$f: x \longmapsto -(15x - 25)^4 \operatorname{sur} \mathbb{R}$$
.

•
$$f: x \longmapsto -5(16x - 12)^3 \operatorname{sur} \mathbb{R}$$
.

•
$$f: x \longmapsto 2\left(\frac{4x^2}{5} - 8x + 20\right)^4 \text{sur}\mathbb{R}.$$

•
$$f: x \longmapsto 4\sqrt{2-x} \text{ sur }]-\infty; 2[.$$

•
$$f: x \longmapsto 5\sqrt{-8x-4} \text{ sur }]-\infty; -\frac{1}{2}[.$$

•
$$f: x \longmapsto 5\sqrt{5x^2+3} \text{ sur } \mathbb{R}.$$

•
$$f: x \longmapsto -4\sqrt{12-3x} \text{ sur }]-\infty; 4[.$$

•
$$f: x \longmapsto \sqrt{3}\sqrt{x^2 + 10x + 24} \text{ sur }]-\infty; -6[\cup]-4; +\infty[.$$