# Synthetic Data Generation of Electronic Health Records Using CTGAN, Transformers and Diffusion Models

| Team | Mem | bers |
|------|-----|------|
|------|-----|------|

(THA077BCT012)

Girban Adhikari (THA077BCT017)

Arjan Sapkota

Jivan Acharya (THA077BCT019)

Subarna Ghimire (THA077BCT043)

#### **Supervised By:**

Er. Umesh Kanta Ghimire

Head of Department

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

#### **Presentation Outlines**

- Motivation
- Objectives
- Scope of Project
- Project Applications
- Methodology
- Results
- Discussion of Results
- List of Remaining Tasks
- References

#### **Motivation**

- Increasing challenges in leveraging data for AI applications
  - Growing AI model complexity demands larger, high-quality datasets
- Traditional data collection is costly and time-intensive
  - Gathering and processing real-world data requires significant resources
- Ethical and privacy concerns with real data
  - Real data use risks privacy violations and ethical issues

#### **Objectives**

 To evaluate the effectiveness of CTGAN, Transformers, and Diffusion Models in generating synthetic EHR data

 To compare the quality and performance of synthetic data from each model for various ML and DL tasks

## **Scope of Project**

#### Project Capabilities:

- Generate diverse synthetic data for health related datasets
- Replace sensitive data to ensure privacy compliance
- Improve AI model accuracy with augmented synthetic data

#### Project Limitations:

- Synthetic data may lack perfect realism, affecting model performance
- High-quality generation is computationally intensive and resourcedemanding
- Regulatory bodies may not accept synthetic data for all applications

### **Project Applications**

- Privacy-Preserving Applications
  - Substituting sensitive data with synthetic equivalents to mitigate privacy risks
  - Enhancing AI model training without compromising sensitive health/financial data
- Al Model Training and Performance
  - Augmenting existing datasets with synthetic data to boost model accuracy
  - Facilitating faster iteration and deployment of AI solutions in various fields
- Educational and Training Purposes
  - Providing realistic synthetic datasets for training researchers, students, and professionals
  - Enabling practical experimentation with accessible and diverse datasets

Methodology – [1] (System Implementation Diagram)



#### Methodology – [2] (Working Principle)

- Start with the original dataset
- Split the dataset into training and test datasets
- Train machine learning models (Logistic Regression, XGBoost, Random Forest, MLP) on the original training dataset
- Generate synthetic data using a data synthesizer trained on the original training dataset

## Methodology – [3] (Working Principle)

- Train machine learning models (Logistic Regression, XGBoost, Random Forest, MLP) on the synthetic dataset
- Evaluate models trained on both the original and synthetic datasets using Accuracy, F1-Score, and AUC metrics
- Compare the performance of models trained on original data and synthetic data

## Methodology – [4] (Data Synthesizers)

- CTGAN
- Transformers based model
- Diffusion based model

# Methodology – [5] (Architecture of GAN)



## Methodology – [6] (Architecture of CTGAN)



## Methodology – [7] (Generator of CTGAN)



# Methodology – [8] (Discriminator of CTGAN)



#### Methodology – [9] (Hardware Requirements)

- Processor:
  - NVIDIA Tesla K80, P100, or T4 (Google Colab)
  - NVIDIA Tesla P100 (Kaggle)
- RAM:
  - Up to 25 GB (Google Colab)
  - 13 GB (Kaggle)
- Persistent Storage:
  - 5 GB per notebook (Kaggle)
- GPU Access:
  - Free access to powerful GPUs (Google Colab)

#### Methodology – [10] (Software Requirements)

- Programming Languages: Python
- Development Environments and IDEs: Jupyter Notebook, Google Colab, Kaggle Kernels
- Data Processing and Analysis: Pandas, NumPy, Scikit-learn
- Deep Learning Frameworks: TensorFlow, Keras, PyTorch
- Synthetic Data Generation: GANs TensorFlow and PyTorch
- Model Training and Evaluation: TensorBoard, Weights & Biases
- Data Storage and Management: Google Drive, Kaggle Datasets
- Version Control: GitHub

## Dataset Creation – [1] (MIMIC III)

- MIMIC-III (Medical Information Mart for Intensive Care III)
  - A large database comprising health-related data from ICU patients
- Collected from hospital databases
  - Includes demographics, vital signs, medications, and more
- Access Requirements
  - Training: "Human Research" training through the Collaborative Institutional Training Initiative (CITI) program
  - Certification: "Data or Specimens Only Research" through CITI
  - Access Process: Data Use Agreement (DUA)

## Dataset Creation – [2] (MIMIC III)

#### Structure

- Tables: Over 50 tables
- Schema: Organized into various tables such as ADMISSIONS, PATIENTS, ICUSTAYS, CHARTEVENTS, etc
- Linkages: Tables are linked via unique identifiers (e.g., subject\_id, hadm\_id, icustay\_id)

# Dataset Exploration – [1] (Pima Indian Diabetes Dataset)

| Attribute           | Details                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------|
| Dataset Name        | Pima Indian Diabetes Dataset                                                                                   |
| Dataset Type        | Tabular                                                                                                        |
| Source              | National Institute of Diabetes and Digestive and Kidney Diseases                                               |
| Size                | 768 x 9                                                                                                        |
| Information Covered | Medical predictor variables and one target variable, Outcome                                                   |
| Context             | The dataset includes diagnostic measurements to predict diabetes in female Pima Indians at least 21 years old. |
| Predictor Variables | Number of pregnancies, BMI, insulin level, age, and other medical measurements                                 |

# Dataset Exploration – [2] (Pima Indian Diabetes Dataset)

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunction | Age | Outcome |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
| 5 | 5           | 116     | 74            | 0             | 0       | 25.6 | 0.201                    | 30  | 0       |
| 6 | 3           | 78      | 50            | 32            | 88      | 31.0 | 0.248                    | 26  | 1       |
| 7 | 10          | 115     | 0             | 0             | 0       | 35.3 | 0.134                    | 29  | 0       |
| 8 | 2           | 197     | 70            | 45            | 543     | 30.5 | 0.158                    | 53  | 1       |
| 9 | 8           | 125     | 96            | 0             | 0       | 0.0  | 0.232                    | 54  | 1       |

# Dataset Exploration – [3] (Indian Liver Patient Dataset)

| Attribute           | Details                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| Dataset Name        | Indian Liver Patient Dataset                                                                                          |
| Dataset Type        | Tabular                                                                                                               |
| Source              | Medical Records                                                                                                       |
| Size                | 583 x 11                                                                                                              |
| Information Covered | Age, Gender, Total Bilirubin, Direct Bilirubin, Total Proteins, Albumin, A/G Ratio, SGPT, SGOT, Alkphos, and Selector |
| Context             | Records of 416 patients diagnosed with liver disease and 167 patients without liver disease                           |
| Response            | The class label 'Selector' indicating the presence or absence of liver disease                                        |

## Dataset Exploration – [4] (Indian Liver Patient Dataset)

|   | Age | Gender | ТВ   | DB  | Alkphos | Sgpt | Sgot | TP  | ALB | A/G Ratio | Selector |
|---|-----|--------|------|-----|---------|------|------|-----|-----|-----------|----------|
| 0 | 65  | Female | 0.7  | 0.1 | 187     | 16   | 18   | 6.8 | 3.3 | 0.90      | 1        |
| 1 | 62  | Male   | 10.9 | 5.5 | 699     | 64   | 100  | 7.5 | 3.2 | 0.74      | 1        |
| 2 | 62  | Male   | 7.3  | 4.1 | 490     | 60   | 68   | 7.0 | 3.3 | 0.89      | 1        |
| 3 | 58  | Male   | 1.0  | 0.4 | 182     | 14   | 20   | 6.8 | 3.4 | 1.00      | 1        |
| 4 | 72  | Male   | 3.9  | 2.0 | 195     | 27   | 59   | 7.3 | 2.4 | 0.40      | 1        |
| 5 | 46  | Male   | 1.8  | 0.7 | 208     | 19   | 14   | 7.6 | 4.4 | 1.30      | 1        |
| 6 | 26  | Female | 0.9  | 0.2 | 154     | 16   | 12   | 7.0 | 3.5 | 1.00      | 1        |
| 7 | 29  | Female | 0.9  | 0.3 | 202     | 14   | 11   | 6.7 | 3.6 | 1.10      | 1        |
| 8 | 17  | Male   | 0.9  | 0.3 | 202     | 22   | 19   | 7.4 | 4.1 | 1.20      | 2        |
| 9 | 55  | Male   | 0.7  | 0.2 | 290     | 53   | 58   | 6.8 | 3.4 | 1.00      | 1        |

# Dataset Exploration – [5] (Stroke Prediction Dataset)

| Attribute           | Details                                                                                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dataset Name        | Stroke Prediction Dataset                                                                                                                                                            |
| Dataset Type        | Tabular                                                                                                                                                                              |
| Source              | Confidential Source (Use only for educational purposes)                                                                                                                              |
| Size                | 5110 x 12                                                                                                                                                                            |
| Information Covered | Unique patient identifiers, demographic information, health conditions, lifestyle factors, and stroke occurrence                                                                     |
| Context             | Each row provides relevant information about a patient, used to predict the likelihood of a stroke based on various input parameters like gender, age, diseases, and smoking status. |
| Attributes          | id, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status, stroke                                                |

# Dataset Exploration – [6] (Stroke Prediction Dataset)

|   | id    | gender | age  | hypertension | heart_disease | ever_married | work_type     | Residence_type | avg_glucose_level | bmi  | smoking_status  | stroke |
|---|-------|--------|------|--------------|---------------|--------------|---------------|----------------|-------------------|------|-----------------|--------|
| 0 | 9046  | Male   | 67.0 | 0            | 1             | Yes          | Private       | Urban          | 228.69            | 36.6 | formerly smoked | 1      |
| 1 | 51676 | Female | 61.0 | 0            | 0             | Yes          | Self-employed | Rural          | 202.21            | NaN  | never smoked    | 1      |
| 2 | 31112 | Male   | 80.0 | 0            | 1             | Yes          | Private       | Rural          | 105.92            | 32.5 | never smoked    | 1      |
| 3 | 60182 | Female | 49.0 | 0            | 0             | Yes          | Private       | Urban          | 171.23            | 34.4 | smokes          | 1      |
| 4 | 1665  | Female | 79.0 | 1            | 0             | Yes          | Self-employed | Rural          | 174.12            | 24.0 | never smoked    | 1      |
| 5 | 56669 | Male   | 81.0 | 0            | 0             | Yes          | Private       | Urban          | 186.21            | 29.0 | formerly smoked | 1      |
| 6 | 53882 | Male   | 74.0 | 1            | 1             | Yes          | Private       | Rural          | 70.09             | 27.4 | never smoked    | 1      |
| 7 | 10434 | Female | 69.0 | 0            | 0             | No           | Private       | Urban          | 94.39             | 22.8 | never smoked    | 1      |
| 8 | 27419 | Female | 59.0 | 0            | 0             | Yes          | Private       | Rural          | 76.15             | NaN  | Unknown         | 1      |
| 9 | 60491 | Female | 78.0 | 0            | 0             | Yes          | Private       | Urban          | 58.57             | 24.2 | Unknown         | 1      |

# Dataset Exploration – [7] (MIMIC-III Dataset)

| Attribute           | Details                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dataset Name        | MIMIC-III (Medical Information Mart for Intensive Care III)                                                                                                                                                                                                          |
| Dataset Type        | Tabular                                                                                                                                                                                                                                                              |
| Source              | Beth Israel Deaconess Medical Center, Boston, MA                                                                                                                                                                                                                     |
| Size                | 58976 x 16                                                                                                                                                                                                                                                           |
| Information Covered | Unique patient identifiers, demographic information, admission and discharge times, diagnoses, procedures, medications, vital signs, lab results, length of stay, and mortality                                                                                      |
| Attributes          | Subject_ID, HADM_ID, ICUSTAY_ID, Age, ADMISSION_TYPE, MARITAL_STATUS, HOSPITAL_EXPIRE_FLAG, GENDER, NUMCALLOUT, NUMCPTEVENTS, NUMDIAGNOSIS, NUMOUTEVENTS, NUMRX, NUMPROCEVENTS, NUMMICROLABEVENTS, NUMPROC, NUMTRANSFERS, NUMINPUTEVENTS, NUMLABEVENTS, NUMNOTEVENTS |

## Dataset Exploration – [8] (MIMIC-III Dataset)

|   | ADMISSION_TYPE   | MARITAL_STATUS | HOSPITAL_EXPIRE_FLAG | GENDER | NUMCALLOUT | NUMCPTEVENTS | NUMDIAGNOSIS | NUMOUTEVENTS | NUMRX |
|---|------------------|----------------|----------------------|--------|------------|--------------|--------------|--------------|-------|
| 0 | <b>EMERGENCY</b> | MARRIED        | 0                    | F      | 0.0        | 0.0          | 7            | 7.0          | 0.0   |
| 1 | ELECTIVE         | MARRIED        | 0                    | М      | 0.0        | 0.0          | 8            | 62.0         | 69.0  |
| 2 | <b>EMERGENCY</b> | MARRIED        | 0                    | М      | 1.0        | 6.0          | 10           | 29.0         | 69.0  |
| 3 | EMERGENCY        | SINGLE         | 0                    | М      | 0.0        | 4.0          | 4            | 2.0          | 26.0  |
| 4 | <b>EMERGENCY</b> | MARRIED        | 0                    | М      | 0.0        | 4.0          | 4            | 59.0         | 67.0  |

| NUMRX | NUMPROCEVENTS | NUMMICROLABEVENTS | NUMPROC | NUMTRANSFERS | NUMINPUTEVENTS | NUMLABEVENTS | NUMNOTEV |
|-------|---------------|-------------------|---------|--------------|----------------|--------------|----------|
| 0.0   | 0.0           | 1.0               | 3.0     | 2            | 6.0            | 91.0         |          |
| 69.0  | 0.0           | 1.0               | 7.0     | 4            | 180.0          | 208.0        |          |
| 69.0  | 4.0           | 1.0               | 1.0     | 5            | 0.0            | 221.0        |          |
| 26.0  | 0.0           | 0.0               | 6.0     | 3            | 50.0           | 99.0         |          |
| 67.0  | 0.0           | 2.0               | 9.0     | 4            | 483.0          | 315.0        |          |

8/9/2024 26

## Results (Pima Dataset Description) – [1]

|                           | Pregnancies                                                            | Glucose                                                        | BloodPressure                                            | SkinThickness                                                | Insulin                                                       | BMI                                                          | DiabetesPedigreeFunction                                   | Age                                                            | <b>Outcome</b>                                             |
|---------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|
| count                     | 768.000000                                                             | 768.000000                                                     | 768.000000                                               | 768.000000                                                   | 768.000000                                                    | 768.000000                                                   | 768.000000                                                 | 768.000000                                                     | 768.000000                                                 |
| mean                      | 3.845052                                                               | 120.894531                                                     | 69.105469                                                | 20.536458                                                    | 79.799479                                                     | 31.992578                                                    | 0.471876                                                   | 33.240885                                                      | 0.348958                                                   |
| std                       | 3.369578                                                               | 31.972618                                                      | 19.355807                                                | 15.952218                                                    | 115.244002                                                    | 7.884160                                                     | 0.331329                                                   | 11.760232                                                      | 0.476951                                                   |
| min                       | 0.000000                                                               | 0.000000                                                       | 0.000000                                                 | 0.000000                                                     | 0.000000                                                      | 0.000000                                                     | 0.078000                                                   | 21.000000                                                      | 0.000000                                                   |
| 25%                       | 1.000000                                                               | 99.000000                                                      | 62.000000                                                | 0.000000                                                     | 0.000000                                                      | 27.300000                                                    | 0.243750                                                   | 24.000000                                                      | 0.000000                                                   |
| 50%                       | 3.000000                                                               | 117.000000                                                     | 72.000000                                                | 23.000000                                                    | 30.500000                                                     | 32.000000                                                    | 0.372500                                                   | 29.000000                                                      | 0.000000                                                   |
| 75%                       | 6.000000                                                               | 140.250000                                                     | 80.000000                                                | 32.000000                                                    | 127.250000                                                    | 36.600000                                                    | 0.626250                                                   | 41.000000                                                      | 1.000000                                                   |
| max                       | 17.000000                                                              | 199.000000                                                     | 122.000000                                               | 99.000000                                                    | 846.000000                                                    | 67.100000                                                    | 2.420000                                                   | 81.000000                                                      | 1.000000                                                   |
|                           |                                                                        |                                                                |                                                          |                                                              |                                                               |                                                              |                                                            |                                                                |                                                            |
|                           | Pregnancies                                                            | Glucose                                                        | BloodPressure                                            | SkinThickness                                                | Insulin                                                       | BMI                                                          | DiabetesPedigreeFunction                                   | Age                                                            | Outcome                                                    |
| count                     | Pregnancies<br>500.000000                                              | <b>Glucose</b> 500.000000                                      | BloodPressure<br>500.00000                               | SkinThickness<br>500.000000                                  | Insulin 500.000000                                            | <b>BMI</b> 500.000000                                        | DiabetesPedigreeFunction 500.000000                        | <b>Age</b> 500.000000                                          | <b>Outcome</b> 500.000000                                  |
| count                     |                                                                        |                                                                |                                                          |                                                              |                                                               |                                                              |                                                            |                                                                |                                                            |
|                           | 500.000000                                                             | 500.000000                                                     | 500.00000                                                | 500.000000                                                   | 500.000000                                                    | 500.000000                                                   | 500.000000                                                 | 500.000000                                                     | 500.000000                                                 |
| mean                      | 500.000000                                                             | 500.000000<br>112.278000                                       | 500.00000<br>71.06800                                    | 500.000000<br>18.712000                                      | 500.000000<br>99.646000                                       | 500.000000                                                   | 500.000000<br>0.581848                                     | 500.000000<br>35.018000                                        | 500.000000                                                 |
| mean<br>std               | 500.000000<br>2.928000<br>3.584482                                     | 500.000000<br>112.278000<br>38.044493                          | 500.00000<br>71.06800<br>20.90755                        | 500.000000<br>18.712000<br>12.896577                         | 500.000000<br>99.646000<br>114.092624                         | 500.000000<br>32.351200<br>7.803099                          | 500.000000<br>0.581848<br>0.378371                         | 500.000000<br>35.018000<br>14.112406                           | 500.000000<br>0.462000<br>0.499053                         |
| mean<br>std<br>min        | 500.000000<br>2.928000<br>3.584482<br>0.000000                         | 500.000000<br>112.278000<br>38.044493<br>0.000000              | 500.00000<br>71.06800<br>20.90755<br>0.00000             | 500.000000<br>18.712000<br>12.896577<br>0.000000             | 500.000000<br>99.646000<br>114.092624<br>0.000000             | 500.000000<br>32.351200<br>7.803099<br>0.000000              | 500.000000<br>0.581848<br>0.378371<br>0.078000             | 500.000000<br>35.018000<br>14.112406<br>21.000000              | 500.000000<br>0.462000<br>0.499053<br>0.000000             |
| mean<br>std<br>min<br>25% | 500.000000<br>2.928000<br>3.584482<br>0.000000<br>0.000000<br>1.000000 | 500.000000<br>112.278000<br>38.044493<br>0.000000<br>84.000000 | 500.00000<br>71.06800<br>20.90755<br>0.00000<br>63.00000 | 500.000000<br>18.712000<br>12.896577<br>0.000000<br>3.750000 | 500.000000<br>99.646000<br>114.092624<br>0.000000<br>9.000000 | 500.000000<br>32.351200<br>7.803099<br>0.000000<br>26.875000 | 500.000000<br>0.581848<br>0.378371<br>0.078000<br>0.292750 | 500.000000<br>35.018000<br>14.112406<br>21.000000<br>24.000000 | 500.000000<br>0.462000<br>0.499053<br>0.000000<br>0.000000 |

#### kind kind 0.07 real real real 0.16 fake \_\_\_\_ fake fake 0.06 0.06 0.14 0.05 -0.05 0.12 ≥ 0.10 ≥ 0.04 € 0.04 g 0.08 ₾ 0.03 -0.03 0.06 0.02 -0.02 -0.04 0.01 -0.01 0.02 0.00 0.00 0.00 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0 25 50 75 100 125 150 175 200 20 40 60 80 100 Pregnancies Glucose BloodPressure 0.25 kind kind kind 0.14 real real real 0.06 \_\_\_\_ fake \_\_\_\_ fake \_\_\_\_ fake 0.12 0.20 -0.05 0.10 0.04 0.15 € 0.08 분 0.03 -0.10 -0.02 0.04 0.05 -0.01 0.02 0.00 0.00 0.00 10 20 30 40 800 20 30 40 SkinThickness Insulin kind kind kind real real Fake fake 0.14 fake 0.6 Real 0.08 -0.12 0.5 0.10 -0.06 0.08 -0.3 0.06 0.2 -0.04 0.02 0.1 -0.02 0.00 0.00 0.5 1.0 1.5 2.0 2.5 20 30 40 50 60 Outcome DiabetesPedigreeFunction

Distribution per feature

#### Results (Pima) – [3]

#### Absolute Log Mean and STDs of numeric data



#### Results (Pima) – [4]



#### Results (Pima) – [5]

#### CTGAN loss function



### Results (Pima) – [6]

Real vs. Synthetic Data for column 'Age'



## Results (Pima) – [7] (ROC & PR Curve on Real Data)





## Results (Pima) – [8] (ROC & PR Curve on Synthetic Data)







# Results (Stroke)



# Results (MIMIC)



# Discussion of Results (Pima) – [1]

| Model                  | Dataset Type | Accuracy | F1-Score | ROC-AUC |
|------------------------|--------------|----------|----------|---------|
| Logistic<br>Regression | Real         | 0.71     | 0.71     | 0.81    |
|                        | Synthetic    | 0.73     | 0.73     | 0.81    |
| XG Boost               | Real         | 0.75     | 0.75     | 0.79    |
|                        | Synthetic    | 0.72     | 0.73     | 0.82    |
| Neural Network         | Real         | 0.73     | 0.73     | 0.77    |
|                        | Synthetic    | 0.74     | 0.72     | 0.8     |
| Random Forest          | Real         | 0.77     | 0.77     | 0.83    |
|                        | Synthetic    | 0.73     | 0.73     | 0.81    |

# Discussion of Results (ILPD) – [2]

| Model      | Dataset Type | Accuracy | F1-Score | ROC-AUC |
|------------|--------------|----------|----------|---------|
| Logistic   | Real         | 0.64     | 0.66     | 0.82    |
| Regression | Synthetic    | 0.58     | 0.6      | 0.82    |
| XG Boost   | Real         | 0.62     | 0.65     | 0.72    |
|            | Synthetic    | 0.68     | 0.7      | 0.8     |
| Neural     | Real         | 0.72     | 0.73     | 0.8     |
| Network    | Synthetic    | 0.73     | 0.68     | 0.73    |
| Random     | Real         | 0.74     | 0.64     | 0.76    |
| Forest     | Synthetic    | 0.68     | 0.7      | 0.82    |

# Discussion of Results (Stroke) – [3]

| Model      | Dataset Type | Accuracy | F1 Score | ROC-AUC |
|------------|--------------|----------|----------|---------|
| Logistic   | Real         | 0.74     | 0.8      | 0.85    |
| Regression | Synthetic    | 0.79     | 0.84     | 0.82    |
| XG Boost   | Real         | 0.92     | 0.91     | 0.79    |
|            | Synthetic    | 0.87     | 0.89     | 0.74    |
| Neural     | Real         | 0.8      | 0.84     | 0.76    |
| Network    | Synthetic    | 0.85     | 0.87     | 0.72    |
| Random     | Real         | 0.91     | 0.9      | 0.82    |
| Forest     | Synthetic    | 0.92     | 0.91     | 0.79    |

# Discussion of Results (MIMIC) – [4]

| Model                  | Dataset Type | Accuracy | F1-Score | ROC-AUC |
|------------------------|--------------|----------|----------|---------|
| Logistic<br>Regression | Real         | 0.76     | 0.8      | 0.82    |
|                        | Synthetic    | 0.72     | 0.77     | 0.8     |
| XG Boost               | Real         | 0.58     | 0.66     | 0.81    |
|                        | Synthetic    | 0.7      | 0.76     | 0.78    |
| Neural<br>Network      | Real         | 0.83     | 0.86     | 0.88    |
|                        | Synthetic    | 0.78     | 0.82     | 0.77    |
| Random                 | Real         | 0.92     | 0.91     | 0.87    |
| Forest                 | Synthetic    | 0.9      | 0.89     | 0.83    |

### Discussion of Results – [5]

- Real datasets shows higher accuracy and F1-scores across all models and datasets
- Synthetic datasets performs comparably, with some variations

- Logistic Regression
  - Consistent performance between real and synthetic datasets
- XGBoost
  - But in case of Pima and ILPD shows greater accuracy and F1-scores for synthetic datasets

### Discussion of Results – [6]

- Neural Network
  - In case of Pima and Stroke shows greater accuracy, F1-scores and ROC for synthetic datasets
- Random Forest
  - Exceptional performance on MIMIC and Stroke Datasets

## **List of Remaining Tasks**

 Implement synthetic data generation with Transformers and Diffusion Models

 Compare performance of CTGAN, Transformer, and Diffusion Model-generated synthetic data

Explore advanced evaluation metrics for synthetic data quality

# References – [1]

- [1] D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," in *International Conference on Learning Representations* (ICLR), 2013.
- [2] I. J. Goodfellow, J. Pouget-Abadie and M. Mirza, "Generative Adversarial Networks," in *Advances in Neural Information Processing Systems (NIPS)*, 2014, pp. 2672-2680
- [3] E. Choi, S. Biswal and B. Malin, "Generating Multi-label Discrete Patient Records using Generative Adversarial Networks," in Proceedings of Machine Learning Research, 2017

# References – [2]

- [4] L. Xu, . M. Skoularidou, A. Cuesta-Infante and . K. Veeramachaneni, "Modeling tabular data using conditional GAN," in *Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI)*, 2019.
- [5] M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein GAN," in *Proceedings of the 34th International Conference on Machine Learning (ICML)*, Sydney, Australia, 2017.
- [6] A. Vaswani, N. Shazeer and N. Parmar, "Attention is All You Need," in Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, 2017.

# References – [3]

- [7] J. C. L. Borges, R. M. Lima and C. R. M. A. C. Silva, "Deep Unsupervised Learning using Nonequilibrium Thermodynamics," in Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018.
- [8] J. Ho and X. Jiang, "Denoising Diffusion Probabilistic Models," in Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 2020.
- [9] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016.

# References – [4]

[10] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[11] O. Ceritli, J. Doe and A. Smith, "Synthesizing Mixed-type Electronic Health Records using Diffusion Models," IEEE Transactions on Medical Informatics, vol. 22, no. 4, pp. 123-135, 2024.

[12] J. Solatorio, M. Green and P. Lee, "REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers," IEEE Transactions on Artificial Intelligence, vol. 10, no. 3, pp. 456-468, 2024.

# References – [5]

- [13] Kaggle, "Pima Indians Diabetes Database," 2024. [Online]. Available: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. [Accessed July 2024].
- [14] R. Bendi and V. N, "Indian Liver Patient Dataset," UCI Machine Learning Repository, 2012. [Online]. Available: https://doi.org/10.24432/C5D02C. [Accessed June 2024].
- [15] F. Soriano, "Stroke Prediction Dataset," Kaggle, 2021. [Online]. Available: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset. [Accessed June 2024].

# References – [6]

[16] A. E. Johnson, T. J. Pollard and L. Shen, "MIMIC-III, a freely accessible critical care database," MIT Laboratory for Computational Physiology, 2016. [Online]. Available: https://physionet.org/content/mimiciii/1.4/. [Accessed June 2024].