UNIVERSITY OF TORONTO

Faculty of Arts and Science Final Examinations, April 2012 MAT301H1S Groups and Symmetry

Instructor: Patrick Walls

8 questions :: 80 points total :: 3 hours :: No aids allowed

- 1. Let G be a group and let $a \in G$ such that |a| = n.
 - (a) [5 points] Show that $|gag^{-1}| = n$ for all $g \in G$.
 - (b) [5 points] Is the subset $G_n = \{g \in G : g^n = e\}$ a subgroup of G? Justify your answer. (Hint: Consider $G = S_3$.)
- 2. Let G be a group and let H and K be subgroups of G with $H \triangleleft G$. Define the subset of G

$$HK = \{hk : h \in H \text{ and } k \in K\}.$$

- (a) [5 points] Show that HK is a subgroup of G.
- (b) [5 points] If K is also normal in G, show that $HK \triangleleft G$.
- 3. Consider the following subgroup of S_4

$$H = \{ (1), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432) \}.$$

(You don't need to prove that H is a subgroup of S_4 .)

- (a) [5 points] Show that $K = \{(1), (13)(24)\}$ is a normal subgroup of H.
- (b) [5 points] Show that $H/K \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- 4. Consider the following subgroup of $GL(2,\mathbb{R})$

$$C = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, c, d \in \mathbb{R} \text{ and } ad \neq 0 \right\}$$

and define

$$\varphi: C \longrightarrow \mathbb{R}^{\times}: \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \mapsto d^2$$
.

(You don't need to prove that C is a subgroup of $GL(2,\mathbb{R})$.)

- (a) [5 points] Show that φ is a homomorphism.
- (b) [5 points] Find ker φ and im φ .
- (c) [5 points] Show that $C/\ker\varphi$ has no elements of finite order (other than the identity).

CONTINUED ON NEXT PAGE

5. Let G be a finite abelian group of odd order and define

$$\varphi: G \longrightarrow G: g \mapsto g^2$$
.

- (a) [5 points] Show that φ is a homomorphism and that $\ker \varphi = \{e\}$.
- (b) [5 points] Show that φ is an automorphism of G.
- 6. [5 points] The group Inn(G) of inner automorphisms of a group G is the image of the homomorphism

$$c: G \longrightarrow \operatorname{Aut}(G): a \mapsto c_a$$

where c_a is conjugation by $a \in G$, $c_a(g) = aga^{-1}$. Show that $Inn(G) \triangleleft Aut(G)$.

- 7. (a) [5 points] Classify abelian groups of order 175 (up to isomorphism).
 - (b) [5 points] Show that every abelian group of order 175 has an element of order 35.
- 8. (a) [5 points] Show that the centralizer of (1 2 3) in S_4 is $\langle (1 2 3) \rangle$.
 - (b) [5 points] Show that not all 5-cycles in A_5 are conjugate (in A_5).