#### Programación de Dispositivos Móviles (2017-2018) Grado en Ingeniería Informática Universidad de Granada

# Tutorial 1

## Juan Alberto Martínez López Alberto Armijo Ruiz

6 de abril de 2018



## Índice

1 Evaluación de tiempos

3

### Introducción

Para esta práctica hemos desarrollado el algoritmo Miller-Rabin para decidir si un número es posible primo o no es primo, para ello hemos desarrollado dos versiones del algoritmo: Una en la que se realizan n aplicaciones para comprobar la primalidad y otro con una lista de números naturales con los que se comprueba el test para el primo y cada una de las bases de la lista. Para calcular la primalidad utilizamos el algoritmo de logaritmo discreto en el que comprobamos la existencia dado a,b y p de  $\log_a(b)$  mód n y si se cumple el número es primo.

### 1. Evaluación de tiempos

| Número Primo    | Tiempo ejecución (seg) |
|-----------------|------------------------|
| 57347           | 0.008280               |
| 468577          | 0.009140               |
| 5555567         | 0.013386               |
| 87654337        | 0.012030               |
| 987654323       | 0.014271               |
| 3141592661      | 0.019104               |
| 11111111113     | 0.020818               |
| 121212121223    | 0.021233               |
| 2718281828489   | 0.025449               |
| 16180339892149  | 0.027566               |
| 800000000000017 | 0.031171               |

Tabla 1.1: Tabla tiempos de ejecución para el algoritmo Miller Rabin

| A       | В               | P               | Solución  | Tiempos (s) |
|---------|-----------------|-----------------|-----------|-------------|
| 6       | 50628           | 57347           | 7         | 0.001187    |
| 8       | 449605          | 468577          | 11        | 0.004052    |
| 207     | 4374842         | 5555567         | 104       | 0.018117    |
| 4007    | 8515459         | 87654337        | 430       | 0.080128    |
| 40756   | 118205788       | 987654323       | 10748     | 0.289543    |
| 20544   | 253647140       | 3141592661      | 113       | 0.735911    |
| 112354  | 9048018943      | 11111111113     | 5658      | 1.506318    |
| 1245628 | 49579028347     | 121212121223    | 568985    | 5.264323    |
| 87569   | 1342094524016   | 2718281828489   | 5749833   | 29.752512   |
| 568236  | 14717101287551  | 16180339892149  | 389567512 | 76.744032   |
| 4555786 | 778596955901441 | 800000000000017 | 785951    | 612.546521  |

Tabla 1.2: Tabla análisis de logaritmo.

## Tiempo ejecución (seg) frente a Longitud clave



Figura 1.1: Tiempos vs Longitud clave

El algoritmo además ocupa una gran cantidad de RAM, para la clave de mayor tamaño ha llegado a ocupar  $4.2~\mathrm{Gb}$ 

| Longitud clave | Tiempo ejecución (seg) |
|----------------|------------------------|
| 5              | 0.001187               |
| 6              | 0.004052               |
| 7              | 0.018117               |
| 8              | 0.080128               |
| 9              | 0.289543               |
| 10             | 0.73591                |
| 11             | 1.506318               |
| 12             | 5.264323               |
| 13             | 29.752512              |
| 14             | 76.744032              |
| 15             | 612.546521             |

Tabla 1.3: Tabla tiempos