Basic Properties of fixed points, stability, and existence and uniqueness of solutions

A particle travels on the half-line x>0 with a velocity given by $\dot{x}=-x^c$.

a. Find all values of c such that the origin is a fixed point:

Sketching Phase portraits for Vector fields and Gradient Systems

Gradient Systems

Consider the dynamical system $\dot{x} = -\frac{dV}{dx}$ with V(x) plotted below.

Consider the dynamical system $\dot{x} = ax - x^3$ where a is a real number that can be positve, negative, or zero.

a. For all 3 cases, find the fixed point, classify stability, and sketch the graph of $\mathbf{x}(t)$ for different initial conditions:

Case 1:

$$\dot{x} = ax - x^3$$

Case 1:

$$\dot{x} = ax - x^3$$

Case 1:

$$\dot{x} = ax - x^3$$

b. For all 3 cases, calculate and plot the potential function $V(x)$	

Relationship between solution curves, vector fields, and phase portraits

For the following equations, sketch the vector fields on the real line; if possible, find all fixed points, classify their stability, and sketch the graph of $\mathbf{x}(t)$ for different initial conditions:

a.
$$\dot{x} = 4x^2 - 16$$

b.
$$\dot{x} = x - x^3$$

c.
$$\dot{x} = 1 + 2\sin x$$

d.
$$\dot{x} = e^{-x}(\sin x - \cos x)$$

In the figure below several solution curves $\mathbf{x}(\mathbf{t})$ to the system $\dot{x} = f(x)$ are illustrated. Which of the following phase portraits are consistent with these solution curves.

Consider the following system where $r, a \in R$:

$$\dot{x} = rx + ax^2 - x^3$$

- a. For each a, there is a bifurcation diagram in the parameter r. As a varies, these bifurcations can undergo qualitative changes. Sketch all of the qualitatively different bifurcation diagrams that can be obtained by varying a.
- b. Summarize your results by plotting a "phase diagram" in the parameters r and a. That is, plot the regions in the (r,a) plane that correspond to qualitatively different class of vector fields. Bifurcations occur on the boundaries of these regions; identify the types of bifurcations that occur.