DISCRETE DISTRIBUTIONS	mgf Mx	$1 - \theta + \theta e^t$	$(1-\theta+\theta e^t)^n$	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$	$\left(\frac{\theta e^t}{1 - e^t(1 - \theta)}\right)^n$ $\left(\frac{\theta}{1 - e^t(1 - \theta)}\right)^n$
	$\operatorname{Var}[X]$	heta(1- heta)	$n\theta(1- heta)$	~	$\frac{(1-\theta)}{\theta^2}$	$\frac{n(1-\theta)}{\theta^2}$ $\frac{n(1-\theta)}{\theta^2}$
	$\mathrm{E}[X]$	θ	θu	<	$\frac{1}{\theta}$	$\frac{\frac{n}{\theta}}{\frac{n(1-\theta)}{\theta}}$
	cdf F_X				$1-(1- heta)^x$	
	fx	$ heta^x(1- heta)^{1-x}$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$	$\frac{e^{-\lambda}\lambda^x}{x!}$	$(1-\theta)^{x-1}\theta$	$ \binom{x-1}{n-1} \theta^n (1-\theta)^{x-n} $ $ \binom{n+x-1}{x} \theta^n (1-\theta)^x $
	parameters	$ heta \in (0,1)$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	λ∈ℝ+	$\theta \in (0,1)$	$n \in \mathbb{Z}^+, \theta \in (0,1)$ $n \in \mathbb{Z}^+, \theta \in (0,1)$
	range	$\{0,1\}$	$\{0,1,,n\}$	$\{0,1,2,\}$	$\{1, 2,\}$	$\{n, n + 1,\}$ $\{0, 1, 2,\}$
		Bernoulli(heta)	Binomial(n, heta)	$Poisson(\lambda)$	$Geometric(\theta)$	NegBinomial(n, heta) or

The PDF of the multivariate normal distribution is

$$f_{old X}(oldsymbol{x}) = rac{1}{(2\pi)^{K/2} |oldsymbol{\Sigma}|^{1/2}} \exp \Big\{ -rac{1}{2} (oldsymbol{x} - oldsymbol{\mu})^T oldsymbol{\Sigma}^{-1} (oldsymbol{x} - oldsymbol{\mu}) \Big\},$$

for $x \in \mathbb{R}^K$ with Σ a $(K \times K)$ variance-covariance matrix and μ a $(K \times 1)$ mean vector.

The location/scale transformation
$$Y = \mu + \sigma X$$
 gives
$$f_Y(y) = \frac{1}{\sigma} f_X\left(\frac{y - \mu}{\sigma}\right) \qquad F_Y(y) = F_X\left(\frac{y - \mu}{\sigma}\right)$$
$$M_Y(t) = e^{\mu t} M_X(\sigma t) \qquad \text{E}\left[Y\right] = \mu + \sigma \text{E}\left[X\right] \qquad \text{Var}\left[Y\right] = \sigma^2 \text{Var}\left[X\right]$$

The gamma function is given by $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$.