UNIVERSIDADE FEDERAL DE MINAS GERAIS

ELT135 - Introdução ao Reconhecimento de Padrões Exercício 17 - 03/11/2019

Implementação simples de CNN

Hernane Braga Pereira - 2014112627

1. Introdução

Este relatório tem como objetivo demonstrar uma aplicação simples de CNN para classificar uma imagem com "x" ou "c".

2. Implementação da CNN

Para este exercício foram utilizadas 10 imagens para treinamento: metade contendo "x" e a outra metade contendo "c", como pode ser visto na figura 1.

Figura 1. Imagens de treinamento utilizadas

Cada uma das imagens foi submetida aos 4 filtros da figura 2 e em seguida foram submetidos às operações de ReLU e Max Pooling, para então gerar um vetor de características da imagem.

Um exemplo da CNN em execução pode ser visto na figura 3, onde a imagem de treinamento 1 passa pelos filtros, operações de ReLU, Max Pooling e então gera o vetor de características.

Figura 2: Filtros utilizados no treinamento

Figura 3. CNN para a imagem de treinamento 1 - escala de cinza

Ao final do treinamento da rede, os seguintes vetores de características foram encontrados:

Vetor de características - Treinamento

Figura 4. Vetor de características gerado para as 10 amostras de treinamento

As características extraídas da rede foram utilizadas como a entrada de treinamento do método SVM, usando a função *ksvm* da biblioteca *kernlab* do R. No método, a função gaussiana foi usada como kernel, e os parâmetros de entrada foram sigma = 0.5 e parâmetro C = 5. Após o classificador ser treinado, utilizou-se a imagem da figura 5 para teste, onde foi gerado o vetor de características da imagem 6.

Figura 5. Imagem de teste

Vetor de caratcterísticas: imagem de teste

Figura 6. Vetor de características da imagem de teste

Após a execução do teste, a imagem da figura 5 foi classificada como sendo da classe "x", obtendo sucesso.