Linear Algebra homework2.3

- 1. 分别写出有这些消元步骤的 3 乘 3 矩阵:
 - (a) E21: 从第 2 行减去第 1 行的 5 倍.
 - (b)E₃₂: 从第 3 行减去第 2 行的-7 倍.
 - (c)P: 交换第 1 行和第 2 行, 然后交换第 2 行和 第 3 行
- 2. 将问题 1 中得到的 E_{21} 及 E_{32} 应用到 $\boldsymbol{b} = (1,0,0)$, 得到 $E_{32}E_{21}\boldsymbol{b} = _$. 对 \boldsymbol{b} 先左乘 E_{32} , 再 左乘 E_{21} ,得到 $E_{21}E_{32}\boldsymbol{b} = _$. 当 E_{32} 先左乘时,第 行对第 行没有影响.
- 5. 假设 $a_{33} = 7$ 以及第三个轴元为 5. 如果改变 a_{33} 为 11,第三个轴元为 _. 如果改变 $a_{33} = 7$ 为 _, 则没有第三个轴元.
- 7. 假设从第3行减去第1行的7倍得到矩阵 E.
 - (a) 要反向该步骤,得到原矩阵,你应该将矩阵 E的_的7倍_行.
 - (b) 能使步骤相反的可逆矩阵 E^{-1} 是什么? $(E^{-1}E=I)$
 - (c) 如果首先使用 E^{-1} (然后是 E), 证明 $EE^{-1}=I$.
- 8. $M = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$ 的行列式是 det M = ad bc. 用第 2

行减去第 1 行的 ℓ 倍,得到一个新的 M^* . 证明对于任意 ℓ , $\det M^*$ = $\det M$. 当 ℓ = c/a 时,轴元的乘积等于行列式: $(a)(d-\ell b)=ad-bc$

9. (a) E_{21} 表示的是用第二行减去第一行, P_{23} 表示的将第二行与第三行交换,先执行 E_{21} 再执行 P_{23} . 同时执行这两个步骤的矩阵 $M=P_{23}E_{21}$ 是什么?,求出矩阵 M.

- (b) P_{23} 表示的是将第二行与第三行交换, E_{31} 表示的是用第三行减去第一行. 先执行 P_{23} 再执行 E_{31} . 同时执行这两个步骤的矩阵 $M=E_{31}P_{23}$ 是什么? 为啥 (a) 与 (b) 中的 M 是相同的然而一个是 E_{21} ,另一个是 E_{31} ?
- 12. 求这些矩阵相乘的结果.

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 4 & 0 \end{bmatrix}$$

- 13. 解释以下事实. 如果矩阵 B 的第三列全为 0,EB 的第三列全为 0(对于任何 E). 如果 B 的第三行 全为 0, EB 的第三行可能不全为 0.
- 15. 写出一个满足 $a_{ij} = 2i 3j$ 的 3 乘 3 矩阵. 此 矩阵满足 $a_{32} = 0$, 使用 E_{32} 乘以该矩阵使得第 二行的第一列和第三行的第一列变为 0,原来的 a_{32} 现在变成了多少? 写出 E_{32} ?
- 17. 抛物线 $y = a+bx+cx^2$ 经过点 (x,y)=(1,4),(2,8),(3,14). 找到关于未知量 (a, b, c) 的矩阵方程并求解.
- 18. 求出 EF, FE

$$E = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix}$$

同时计算 $E^2 = EE$ 和 $F^3 = FFF$. 可以猜测 F^{100} 为多少?

- 20. (a) 假设 B 的每列元素都相同。那么 EB 的每列元素也是相同的,因为每个列都是 E 乘以 _. (b) 假设 B 的每行都是 [1 2 4]. 举例说明 EB 的每行不一定都是 [1 2 4]. 正确的这些行是 __
- 21. 如果 E 表示将第 1 行加到第 2 行, F 表示将第 2 行加到第 1 行, EF 是否等于 FE?
- 22. A 和 x 的元素分别是 a_{ij},x_{j} . 所以 Ax 的第一个分量为 $\sum a_{1j}x_{j} = a_{11}x_{1} + \cdots + a_{1n}x_{n}$. 如果 E_{21} 表示的是用第二行减去第一行得到的矩阵,写出下列式子的表达式:
 - (a) Ax 的第三个分量.
 - (b) $E_{21}A$ 的第二行第一列.
 - (c) $E_{21}(E_{21}A)$ 的第二行第一列.
 - (d) $E_{21}Ax$ 的第一个分量.
- 25. 对 3×4 的增广矩阵 [*A* **b**] 消元。你怎么知道这个方程没有解?更改最后一个数字 6,使得可以找到解.

$$Ax = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$$

26. 方程 Ax = b 和 $Ax^* = b^*$ 具有相同的矩阵 A。在 消元时,您应该使用什么增广矩阵来同时求解这 两个方程? 通过使用 2×4 矩阵求解这两个方程:

$$\begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

27. 通过对这个增广矩阵中的数字 a, b, c 取不同的

值,使得:(a)没有解(b)有无穷多解.

$$[A \quad \boldsymbol{b}] = \begin{bmatrix} 1 & 2 & 3 & a \\ 0 & 4 & 5 & b \\ 0 & 0 & d & c \end{bmatrix}$$

a、b、c或d中的哪几个对方程的解没有影响?

28. 如果 AB=I 和 BC=I,则使用结合律证明 A=C.