

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2007; month=11; day=28; hr=14; min=49; sec=43; ms=886;
]

=====

Reviewer Comments:

seq Id 45

Total number of bases input in <211> are 139, but calculated 138.

Application No: 10085783 Version No: 3.0

Input Set:

Output Set:

Started: 2007-11-08 09:20:51.713
Finished: 2007-11-08 09:34:28.539
Elapsed: 0 hr(s) 13 min(s) 36 sec(s) 826 ms
Total Warnings: 58994
Total Errors: 2
No. of SeqIDs Defined: 58994
Actual SeqID Count: 58994

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (3)
W 402	Undefined organism found in <213> in SEQ ID (4)
W 402	Undefined organism found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 402	Undefined organism found in <213> in SEQ ID (8)
W 402	Undefined organism found in <213> in SEQ ID (9)
W 402	Undefined organism found in <213> in SEQ ID (10)
W 402	Undefined organism found in <213> in SEQ ID (11)
W 402	Undefined organism found in <213> in SEQ ID (12)
W 402	Undefined organism found in <213> in SEQ ID (13)
W 402	Undefined organism found in <213> in SEQ ID (14)
W 402	Undefined organism found in <213> in SEQ ID (15)
W 402	Undefined organism found in <213> in SEQ ID (16)
W 402	Undefined organism found in <213> in SEQ ID (17)
W 402	Undefined organism found in <213> in SEQ ID (18)
W 402	Undefined organism found in <213> in SEQ ID (19)
W 402	Undefined organism found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2007-11-08 09:20:51.713
Finished: 2007-11-08 09:34:28.539
Elapsed: 0 hr(s) 13 min(s) 36 sec(s) 826 ms
Total Warnings: 58994
Total Errors: 2
No. of SeqIDs Defined: 58994
Actual SeqID Count: 58994

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed
W 213	Artificial or Unknown found in <213> in SEQ ID (43)
E 254	The total number of bases conflicts with running total, Input: 139, Calculated : 138 SEQID(45)
E 253	The number of bases differs from <211> Input: 139 Calculated:138
W 213	Artificial or Unknown found in <213> in SEQ ID (64)
W 213	Artificial or Unknown found in <213> in SEQ ID (71)
W 213	Artificial or Unknown found in <213> in SEQ ID (120)
W 213	Artificial or Unknown found in <213> in SEQ ID (140)
W 213	Artificial or Unknown found in <213> in SEQ ID (153)
W 213	Artificial or Unknown found in <213> in SEQ ID (162)
W 213	Artificial or Unknown found in <213> in SEQ ID (386)
W 213	Artificial or Unknown found in <213> in SEQ ID (410)
W 213	Artificial or Unknown found in <213> in SEQ ID (542)
W 213	Artificial or Unknown found in <213> in SEQ ID (590)
W 213	Artificial or Unknown found in <213> in SEQ ID (705)
W 213	Artificial or Unknown found in <213> in SEQ ID (811)
W 213	Artificial or Unknown found in <213> in SEQ ID (978)
W 213	Artificial or Unknown found in <213> in SEQ ID (1052)
W 213	Artificial or Unknown found in <213> in SEQ ID (1055)
W 213	Artificial or Unknown found in <213> in SEQ ID (1123)
W 213	Artificial or Unknown found in <213> in SEQ ID (1172)
W 213	Artificial or Unknown found in <213> in SEQ ID (1291)

Input Set:

Output Set:

Started: 2007-11-08 09:20:51.713
Finished: 2007-11-08 09:34:28.539
Elapsed: 0 hr(s) 13 min(s) 36 sec(s) 826 ms
Total Warnings: 58994
Total Errors: 2
No. of SeqIDs Defined: 58994
Actual SeqID Count: 58994

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1332) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> ChondroGene Inc.
Liew, C.C.

<120> Compositions and Methods Relating to Osteoarthritis

<130> 4231/2002

<140> 10085783
<141> 2002-02-28

<150> US 60/305,340
<151> 2001-07-13

<150> US 60/275,017
<151> 2001-03-12

<150> US 60/271,955
<151> 2001-02-28

<160> 58994

<170> PatentIn version 3.2

<210> 1
<211> 377
<212> DNA
<213> Human

<400> 1
cggaggtgca ggtcctggtg ctgtatggtc gaggccatct cctggccgc ctggcgcaat 60
tccgtggcta aacaggtact gctggccgg aaggtggtgg tcgtacgctg tgaaggcatac 120
accatttctg gcaatttcta cagaaccaag ttgaagtacc tggcttcct ccccaagcgg 180
atgaacacca acccttcccg gggccctat cccttccgg gccccaagcc gattttttg 240
ggcgaccggc gcggggattt ctcccaaaaa accaagcagg ccaggccgtc tctgaccgtt 300
aagggtgttt acggaatcca ccgccccatcga atgaaaagcg atgtgttcct gctgcctatg 360
gtcgtcgtac taatgca 377

<210> 2
<211> 209
<212> DNA
<213> Human

<400> 2
ggaaaggaaa gctgtgggac catcctggca accccgggtgt ttggctgggt tctagcgtag 60
cggctgtat tcggccggtg ggggaccttg cgtcggagtg ggagggccag tttgcaccca 120

agaggtggaa gaggacgggc ttaggctgg aagcgcctta gaggagccat ttttcccagg 180

atgcctgggt tgctttata gtgttaaccc 209

<210> 3

<211> 499

<212> DNA

<213> Human

<400> 3

tttgcgtggcg tggatgtctca cagaaagtgc tccgctccca gacatgggtc cctcggcttc 60

ctgcctcgga agcgcagagc aggcacatcggt ggaagggtgaa gagttccct aaggatgacc 120

cgtccaaagcc ggtccaccc acagccttcc tgggataca ggctggcatg actcacatcg 180

tgcggggagt cgacaggccc ggatcccagg tgtaacacag aaggagggtgg tggtagagctc 240

tttccccatt tgagacacac cacctatggt gtttgtggac tttgtggcc tacgtggaca 300

cctctcgagg tctccgcacc ctacaagact gtctttgtc gagcacatca gtgtatgtt 360

cagaggcggt tctatatgaa ttgcataat ctaagaggag gctttaccag tacttcagac 420

atgcaggatg aggtgcaga gcagctgaga ggactcagca gcatgagaga tctccaagtc 480

atcgtgtcat tgccacacc 499

<210> 4

<211> 406

<212> DNA

<213> Human

<400> 4

aaggaaatgg ctacccaact tgccttcatg cgcctgctgg ccaactatgc ctctcagaac 60

atcacctacc actgcaagaa cagcattgca tacatggatg aggagactgg caacctgaaa 120

aaggctgtca ttctacaggg ctctaattgt gttgaactgt tgctgaggc aacagcaagg 180

tcacttacac ttgttcttgc aggggtgggtg cttaaaagg gcaaattgtat gggggggaggc 240

acatattcga tcacaacaca tagagcctac agcttgcctt ctttgtatt cgccacttgg 300

gactaggttg gcatcgcccg ggtttcttgg ggactggggcc agtcttcaca tagaaagctc 360

atatccatag aaaggttagat ttggataact ctttcttttgc ctacgc 406

<210> 5

<211> 440

<212> DNA

<213> Human

<400> 5

gagacttaga gccaaactgt ttaagctgt a catccaaac aaagtatcct ttcatgaacg 60
ggggcatgca atagcttaag aattgctagg attaaattaa ggaaagtaaa gctactcaga 120
gcagcaggtt ccacaagcac aaactttaca catttgata ctttgaaat gcactacatt 180
aacacattag agcacacatt taaaatacag gcttcttac atacactgag aggttataca 240
cactcagttt cacacggca cactctatac ctctctaaag gtaatatctc aggtctctat 300
aggcagagta ttttactctc taaatctgcc tctctgacca caaaaaaaaaaaa aaaaacctgg 360
ggggtccttc tgggcgcggg ggcccatcga tttccacccg ggggggacca ggaagttccc 420
caatcgctta tgtagtcata 440

<210> 6
<211> 403
<212> DNA
<213> Human

<400> 6
aaaaaatagt ttttcatca gtatttctcg ggaggaccca aaagtttaagg tcagcttg 60
cactgtaatt tctggaaagga gttcaactcag accttcctga attcagatca tctcagaagt 120
cttggggaa atcttgcgaa accctcgaaa gaggactat gttatgttgc tgccaccc 180
cttgggtgcac cgagaactta ctcccttggaa ttaggtcaact tcttgattt ctaataggat 240
gacttccaga gagtgagatt tttatgtct ggcttataaaa ggtaaatata aatataataca 300
tacttaatct aaaaaaaaaaaa aaaaacctcg ggggtctttt tggacgcggg ggcccatcg 360
attcccccccg ggtggggcca aggttaagtac cccaatcgcc tat 403

<210> 7
<211> 231
<212> DNA
<213> Human

<400> 7
ctttgcagat ctttccgac acacatgtct gaagacttat tttcaaagac agcacat 60
tggaaactaa tctctttcc gtaatatttc ctttatttca atgattctca gaaggccat 120
tcaaacaacccccat ttttttttttta agggcttttta gggttatagg ataaaattgg gtccttagag 180
tttagcccccc agtagagcta ggaaagcccc actcgtatat ttgttccctt c 231

<210> 8
<211> 114
<212> DNA
<213> Human

<400> 8
tgcttctatt accaggctgt aatagctggt atagttttt attttctct taaggtgttc 60
ttttattagt ctgaggacag ccattttttt ttttaaggg aaaatatcag tcag 114

<210> 9
<211> 166
<212> DNA
<213> Human

<400> 9
aagtatgatg ctttttggc ctcagagtct ctgatcaagc agattccacg aatcctcgac 60
ccaggttaaa ataaggcagg aaagttccct tccctgctca cacaaaaacg gaaacatgg 120
ggccaaagtg gattaggtga agtccccat caagtttcc caatga 166

<210> 10
<211> 297
<212> DNA
<213> Human

<400> 10
ttttttttt gaataataga ggcaatattt ttaatcagtt cccagataag gtcaattaga 60
aacatgcact gctaaaatgc aagttacaat tcaaattggta ccataaataa ttagggtaca 120
cactgagcat tttcaggaat cagttccat atcttgcattt actaaatggg gagggtttc 180
aggacacggc cccttacccc tttatcaca gagggggagg aatttaaggg tcgcctcatg 240
gacactttac agtaaatcgg gacacattt a ttgagttaca ctat tagac atgtaaa 297

<210> 11
<211> 218
<212> DNA
<213> Human

<400> 11
cttggatgaa gagaggaccg tgagggtccc catgatgtcg gaccctaagg ctgtttacg 60
ctatggctt gattcagatc tcagctgcaa gattgccag ctgcccttga ccggaaggca 120
ttagtatcat tttttcctg cccctgttaag tgcaccagaa tttgacccctt atagaggaga 180
gcctcaacct ccgagttcat tcatgacata gaccgaga 218

<210> 12
<211> 232
<212> DNA
<213> Human

```
<400> 12
cttcagggtg atgccagggtt ctatggga atttatatac aacctgcttg ggtggagaag 60
ccattgtctt cgaaacctt ggtgttagtt gaacctgata agttactttt gtgacctgaa 120
gttcaccatt aaaaggggat tacccaaggc aaaatcatgg gattggtata aaagggattg 180
ttgggcaatc cattgcaata tattcaaaaa ttgaataatg ggccccataaa aa 232
```

```
<210> 13
<211> 136
<212> DNA
<213> Human

<400> 13
gcagaatcac atggcaaaag ctttgaaaat cataaaagata taagttggtg tggctaaagat 60
ggaaacaggg ctgattcttg attcccaatt ctcaactctc ctttcctat ttgaatttct 120
ttqqqqctgt aqaaac 136
```

```
<210> 14
<211> 251
<212> DNA
<213> Human

<400> 14
cttttatgtatccatccccatctaaaaactcttcaaaactccacttggttcagtctgaaatgc 60
agctccctgtccaagtgccttggagaactcacagcagcacggcttaatca aagggtttta
ccagcccttg gacactattggaggaggc aagagtagacacaatttggtaaaagcaagga 180
aaccacagatgtctttcac tagtcatttagcatggttatcatccaagactactctac
cctqcaacaaat 251
```

```
<210> 15
<211> 251
<212> DNA
<213> Human

<400> 15
cagagatgta ctgttattag ctgggaagac caattctaac agcaaataac agtctgagac 60
tcctcataacc ctcaagtggtt agaagcatgt ctcttttagt ctacagtaga gggggaggga 120
tttttgtgta gtcaagtcac catgctggaa tgtacactga ttcctctatg atgactgctt 180
aactccccac tgtcctgtcc cagagaggct ttccaatgta gctcagtaat tcctcttact 240
ctacaqacaq q 251
```

<210> 16
<211> 162
<212> DNA
<213> Human

<400> 16
attgcattgca agtttgcgtga gctgaaggaa aagattgtatc gcccgttctg ggtaaaaatg 60
cttggaaaggat gggccctaaa attcttgaag tctgggtgat gctgcccatt gttgatatgg 120
gtccccggca agcccatatcc tttttgagag gcttctcaga ct 162

<210> 17
<211> 225
<212> DNA
<213> Human

<400> 17
gcagactgaca gaggaagccg ctcaaatacc ttcacaataa atagtggcaa tatatatata 60
gtttaagaag gctctccatt tggcatcggtt taatttataat gttatgttct aagcacagct 120
ctcttctcct attttcatcc tgcaagcaac tcaaaatatt taaaataaaag tttacatatg 180
tagttatattt caaatcttg ctttataagt attaagagat atgtg 225

<210> 18
<211> 215
<212> DNA
<213> Human

<400> 18
ccctgacagc cagttatattt acaacaggag tgtgaacagt gcagggcttc acacgggtgca 60
gagagcaccc cgactgaacc acccgcttga gcagatagac tctcaactaa gactacctca 120
tagcgcacac ccctcgaa aaccaccatc cgcttcagcc ttggcacctt agaatgtatt 180
tagtacggct ttaagcagtg ttttattaca ccaca 215

<210> 19
<211> 285
<212> DNA
<213> Human

<400> 19
gtcgcccgctg cgaaggggagc cgccggccatg tctgcgtatc tgcaatggat ggtcggtgg 60
aactgctcca gtttccgtat caagaggata agcagaccta cagcactgag cccaaataact 120
tgaaggcccc caatttcttc cgctacaacg gacttattca acgccaagac tggggcggt 180
gagcccccgac accgacggca aaagggtgttc gttgggtgggt caataagcgg agattcccc 240

cagcggaaagc cttccacctt ctatgtgcgg agcaccaata acaag 285

<210> 20
<211> 307
<212> DNA
<213> Human

<400> 20
ctcggtccga attcggcacg agcggcacga gctggagttg gcgacttcga tattaacaag 60
gatggcggcg gccgcagcaa gtcggataag tcgggccaaa gctgggccta ccgtaagatt 120
cgcatccact tatgtcagcg ctgcggccggc agccaggcg tcagggactt cattgagaac 180
cgctacgtgg agctgaggag ggcgaatccc gacctaccca tcctaatccg cgaattctcc 240
gatgtgcagc ccaagctctg gcccgcctacg catttggcca gagacgaatg tcctttgaca 300
acttcag 307

<210> 21
<211> 138
<212> DNA
<213> Human

<400> 21
gtcgcgccga catggccaaa cgtaccaaga aagtccggat cgtcggtaaa tacggggacc 60
cgctattggg gccttccttc ggaaaattgt gtaaggaaaa ttgaaattca gccagcacgg 120
ccaagtgaca ctttgctc 138

<210> 22
<211> 138
<212> DNA
<213> Human

<400> 22
aaagaagtag caaattatct tcagtataat ccatggtaat gtatgcagta attcaaattg 60
atctctctct caatagggtt ctaacaatc ttaaacttgg aacatcaatg gttaatttc 120
agggaccttt ttggggtt 138

<210> 23
<211> 132
<212> DNA
<213> Human

<400> 23
ccctacgaca agaaaaagcg gatggtggtt tctgctgcct caaggtcgtg cgtcttaagg 60
cctacaagga aaggttggct aatcttgggc ggcttgctta agaaggttgc ttgaagtacc 120

aagcagttac aa 132

<210> 24
<211> 247
<212> DNA
<213> Human

<400> 24
ctcacgcaag catggtaac gtcctaaaa cccgcggac tttctgttaag aagtgtggca 60
agcaccaacc ccataaaagtg acacagtaca aggagggcaa ggattctctg tacggccagg 120
gaaagccgcc ttatgacaag aagcagagat ggttattgtt ggcaaactaa gccgatttc 180
cgaaaaaagg ctaaaactac acagaagagt tgtgctaagg ctctagtgcg ctgagcccc 240
ctccaga 247

<210> 25
<211> 213
<212> DNA
<213> Human

<400> 25
gtttgagaag tccccctgc gggtaagaa cttcgggatc tggctgcgt atgacttccg 60
gagcggcacc cacaacatgt accgggaata cgggacctg aacaacgcag gcgcgtgtcac 120
ccagtgctac cgagacatgg gtgccccggca ccgcggccga gcccaactca ttcaagatcat 180
gtaagggttga ggagatcgcg gccagcaagt gtc 213

<210> 26
<211> 237
<212> DNA
<213> Human

<400> 26
gaaaaattagatgtttcctt ctcaggagag ctcttagaca acaagcaaag aatgtcaatg 60
aaattttaa gtgctcagtgttccaggccaa gactacagag ggagggacac tttgtgtct 120
ttcagtcctt tcttttaat tgtattgatt ctttcctcg gtaataaata agtgcatact 180
agtgtttatt aaggaaagac aggtacaagc caaattgtat tcatttaatc atattcg 237

<210> 27
<211> 132
<212> DNA
<213> Human

<400> 27

cctgtgccga aattcgac gaggcttgcg ggaatccat tcacccttgt ccttctacc 60
taaatcctgc agcctggctt cctgacccaa tgaatccctt aggtgaattt cgtcagttca 120
agagccccctt gg 132

<210> 28
<211> 110
<212> DNA
<213> Human

<400> 28
cagagatgaa ctgagggtcct tgtttgttt tgttcataat acaaagggtgc taattaatag 60
tatttcagat acttgaggaa ttttgatggt cctagaggaa tttgagaggg 110

<210> 29
<211> 257
<212> DNA
<213> Human

<400> 29
gccgttctgg taaaaagctg gaagatggcc ctaaattctt gaagtctggt gatgctgcca 60
ttgttgatat gggttcctgg caagcccatg tgtgttgagg agcttctcaa gctatccacc 120
tttgggtcgg tttgtgttc gggatatgag gacaagacaa gtgcgggggg tgtcatcaaa 180
ggcaggtggc aaggaggctg ctgggagctg gcaaggtcac aagtctgccc agaaagctca 240
gagggctaaa tgaatat 257

<210> 30
<211> 361
<212> DNA
<213> Human

<400> 30
tgtcaatctt gcctggacag cagaaacag taacacgcgc ttggaaatag cagccaagac 60
tcagattgac cctgacggct gttctcgcc taaagtgaac aacttcacgc ctgataggtt 120
tagggataca actcaggact ctaaagccag gtattaaact gacaactgtc agctttctg 180
aatggcaaga acgtcaatgc tggggccac aagcttggc taggactgga atttcaagca 240
taaatgaata ctgtacattt ttaattttt aactatttgc agcatagcta cttcagagt 300
gtagtgtatc ttaatgttg tatgtctgtt tgcagtattt ctaatatgtt agccctcaga 360
t 361

<210> 31

<211> 398
<212> DNA
<213> Human

<400> 31
ccggcacaga tgaaaaggct cttattgaaa tcctggccac tcggaccaat gctgaaatcc 60
gggcatcaa tgaggcctat aaggaggact atcacaagtc cctggaggat gctctgagct 120
cagacacatc tggccacttc aggaggatcc tcatttctct ggcacgggg catcgtgagg 180
aggaggagaa acctggacag gcacggaaga tgccaggtgc tcctgagatc ttggaaatag 240
cagacacacc agtgagacaa acttccttga gacacgttc atgacgatct ctctaccgga 300
gctatcgaac ctccgagagt cttcaggagt tcatcaagat gacactatga cgtgagacac 360
atcagaggag atgtctggga ttaggaatg catttgtg 398

<210> 32
<211> 210
<212> DNA
<213> Human

<400> 32
cggcacgagt agtgcacagac cggtggcatg ttagaactaa ggaaggggaa aaacttatga 60
agccctgttc ttctactaaa ttacctgcgt gtatttgcacc aatgcaaata aaccaggcaa 120
tatccagtgt ttggaatatt aaagtaattc atggataat ttttagtggg ttagagcctc 180
taattaaagc ttaatatata ttaagtgcac 210

<210> 33
<211> 275
<212> DNA
<213> Human

<400> 33
ggcttgcac gcaatggcca agatcaaggc tcgagatctt cgcggaaaga agaaggagga 60
gctgctgaaa cagctggacg acctgaaggt ggagctgttc ccagctgcgc gtgcggaaag 120
tacaggcggt cggcctccaa gctctctaag atccgagtcg tccggaaatc cattgcccgt 180
tttctaacag ttatcca gactcagaag gaaacctcag gaaattctac aaggcaagag 240
gtacaagccc ttggacctgc ggcctaagag acacg 275

<210> 34
<211> 131
<212> DNA
<213> Human

<400> 34
cagtcttgc ttattcatcc tccatctcaa aatgaacttg gaattaaata ttgtaagata 60
tgtataatgc tggccatTTT aaaggggtt tctcaaaagg taaacctttt gttattgact 120
tgtgttttg c 131

<210> 35
<211> 155
<212> DNA
<213> Human

<400> 35
gtggcgataa gggagagccc ggtgaaaagg ggcccagagg tcttcctggc ttaaagggga 60
cacaatggat tgcaaggtct gcctggtat cggctggtca accatgggtg atcaagggtg 120
cctcctggct ccgtggggtc ctcttggtcc ttggg 155

<210> 36
<211> 150
<212> DNA
<213> Human

<400> 36
gtcagctctg aatgaggagg ggagaagccc ctgggtctt tctttaaaag gaatcccgct 60
gcttgagggc ttgcctccct tcaatggtgc tccgtttcgt ttctttccc tgaccggact 120
ttttatattt caagaggtac ctattgcaaa 150

<210> 37
<211> 199
<212> DNA
<213> Human

<400> 37
ctgaaatcta gcagagttt aactttctgc ctccatgtct gtcacttata attcaggttc 60
tgctgttggc ttcaaaat gaggcaggagg atcgttttat gcttagttat tgcaatcaat 120
ggtgaaactc aacttaggga aagggttcca atgtataagg caatgggctg cttctcccc 180
atcctcccta acaatttgc 199

<210> 38
<211> 315
<212> DNA
<213> Human

<400> 38
catcatctcc tgtgatcgag gatgctcgac acccacacaa ataccgcattt ctcattcgaa 60

tggtggatgt gatctatcct gaatgtggcc cagccagtcc cagaccccgaa gttgtggccc 120
ttaatgcccc cacctccct gcgtaatgga ggacaatttg tgatttccat taaggccaaac 180
ctcaattact tcacaagcgt aagccgaggc cggtgtttc ctccgaagtg aaaaggatgc 240
aacaaggaga caatgaggcc gcaggagcag gttgaccctt agccaatatt aaagagacca 300
atcccggtgcc gtggg 315

<210> 39
<211> 160
<212> DNA
<213> Human

<400> 39
ctaactcctc tgacacgtcc ttgcgcgttc ttgagcgctt gtgcattact ttccatgag 60
ggtctgtgct tcacagcaac ctgacagtgg cgttcgaaaa cgttgttccc gtacgttagag 120
gacgtggagc gtcacaacag gcagtggagc ccaacgtcag 160

<210> 40
<211> 220
<212> DNA
<213> Human

<400> 40
gtaagattgg cctaagagcc ctgcctgacc acgtgagcat tggacccca agatgagata 60
ctgccccacca cccccatctc agaacagaag ggtggggagc cagagccgc ctgcctgac 120
ccagccagtc ccaacagcat aacagggtct tcttggcagc tgtattctgg agtctggatg 180
ttgtctgtta aggacttta gtaaaatttt gtacaaagac 220

<210> 41
<211> 355
<212> DNA
<213> Human

<400> 41
cctcgccga ggtcacaccc tcaaattctg tctctaaggc cagaacccaa gtggcccttc 60
tgtgaacagg tcctgggtc acttctcacc ttcttaagct gatggaggcc tggcttagca 120
gccggaaagcc taccaggcac tgtgcactat gagcatgtgt kcaaagagta ctctctctga 180
gccaaggcat gcctgctcat ctccccgttg gcagaaggga gcctgaggg ggcctttcc 240
ataggctggg cccgagcatt gagtccaggt ggctggtag gcttggccg cacctcagag 300
gtccagacat actttgatga gtaattccc catctggta ctatttcctg gaagg 355

<210> 42
<211> 330
<212> DNA
<213> Human

<400> 42
gcctatctgg acgaaggcgc tggcaacctc aagaaggccc tgctcatcca gggctccaat 60
gacgtggaga tccgggcaga gggcaatagc aggttcacgt acactgcctt gaaggattgg 120
ctgcacgraa cataccggta agttggcaa gacttttacg gagtaccgtt cacagaagac 180
ctcacgcctc cccatcattt acatttcacc catggacata ggagggcccg agcaggaatt 240
cggttttgcac ataggccgg tttttttt gtaaaacctg aacccagaaa caacacattc 300
tttgcaaaacc aaaggaccaa gtattccat 330

<210> 43
<211> 210
<212> DNA
<213> artificial sequence

<220>
<223> est clone BFCN0082

<220>
<221> misc_feature
<222> (18)..(18)