This entire lecture is adopted (with permission) directly from a *legend* of the read-mapping world

Approximate Matching

Ben Langmead 🗼

Department of Computer Science

We have focused on *exact* matching...
... in reality, we have to deal with *differences*

Read

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

Reference

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC **ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA** ACAAAGAACCCTAACACCAGCCTAACC/ ATTTCAAATT **ITTGGCGGTATGCAC** TTTTAACAGTCACCCCCAACTAACA ATTATTTTCCCCT CATACTACTAAT CTCATCAATACAACCCCCGCCCAT/ TACCCAGCACACACAC CTAACCCCATA CCCCGAACCAACCAAACCCCAAACCCCCCCCACAGTTTATGT CCTCCTCAAA GCAATACACTGACCCGCTCAAAC CCTGGATTTTGGATCCACCCA TTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAG AAGATTACACATGCAAGCATCCC TCCAGTGAGT TCACCCTCTAAATCACCACGATC AAAGGAACAAGCATCAAGCACG **AATGCAGCTC** AAAACGCTTAGCCTAGCCACACC\ \CACGGGAAACAGCAGTGATTAA TTAGCAATAA ACGAAAGTTTAACTAAGCTATACT ACCCCAGGGTTGGTCAATTTCGT CCAGCCACCGC GGTCACACGATTAACCCAAGTCAAN GAAGCCGGCGTAAAGAGTGTT TAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGA TTGTAAAAAACTCCAGT **MACAAAATAGAC** TACGAAAGTGGCTTTAACATATCTGAACA CAATAGCTAAG GGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACA GCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCAT AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGC CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTAC ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTC AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAA AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCC **AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAA** CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAAG GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG **AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA** TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA CTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC **ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC AAGTCATTATTACCCTCACTGTCAACCCAACACAGGCATGCTCATAAGGAAAGGTTAAAA AAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAACATCACCTCTAGC ATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAACGGCCGCGGTACCCT**

Sequence differences occur because of...

Read

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

Reference

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC **ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA** ACAAAGAACCCTAACACCAGCCTAACC/ ATTTCAAATT **ITTGGCGGTATGCAC** TTTTAACAGTCACCCCCAACTAAC ATTATTTCCCC CATACTACTAAT CTCATCAATACAACCCCCGCCCAT/ TACCCAGCACACACA CTAACCCCATA CCCCGAACCAACCAAACCCCAAAC CACCCCCCACAGTTTATG CCTCCTCAAA GCAATACACTGACCCGCTCAAAC CCTGGATTTTGGATCCACCC TTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAG AAGATTACACATGCAAGCAT TCCAGTGAGT TCACCCTCTAAATCACCACGATC AAAGGAACAAGCATCAAGCACG AATGCAGCTC TTAGCAATAA ACGAAAGTTTAACTAAGCTATACT ACCCCAGGGTTGGTCAATTTCGT CCAGCCACCGC GGTCACACGATTAACCCAAGTCAAN GAAGCCGGCGTAAAGAGTGTT **TAGATCACCCCC** TCCCCAATAAAGCTAAAACTCACCTGA TTGTAAAAAACTCCAGT **M**CAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACA CAATAGCTAAG GGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACA GCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCAT AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGC CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTAC **ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTT AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAA** AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCC **AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACA** CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAĀĞ GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG **AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA** TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC **ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA** CTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC **ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC AAGTCATTATTACCCTCACTGTCAACCCAACACAGGCATGCTCATAAGGAAAGGTTAAAA AAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAAACATCACCTCTAGC ATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAACGGCCGCGGTACCCT**

Sequence differences occur because of...

- 1. Sequencing error
- 2. Genetic variation

```
7: G G A A A A A G A G G T A G C G G C G T T T A A C A G T A G

| | | | | | | | |

P: G T A A C G G C G

Mismatch

(Substitution)
```


Hamming distance

For X & Y where |X| = |Y|, hamming distance = minimum # substitutions needed to turn one into the other

X: GAGGTAGCGGCGTT

Y: GTGGTAACGGGGTT

Hamming distance

For X & Y where |X| = |Y|, hamming distance = minimum # substitutions needed to turn one into the other

Hamming distance = 3

(AKA Levenshtein distance)
For X & Y, edit distance = minimum # edits
(substitutions, insertions, deletions) needed to turn one into the other

X: T G G C C G C G C A A A A A C A G C

Y: TGACCGCGCAAAACAGC

(AKA Levenshtein distance)
For X & Y, edit distance = minimum # edits
(substitutions, insertions, deletions) needed to turn one into the other

```
X: T G G C C G C A A A A A C A G C
| | | | | | | | | | | | | | | Edit distance = 2
Y: T G A C C G C G C A A A A - C A G C
```

(AKA Levenshtein distance)
For X & Y, edit distance = minimum # edits
(substitutions, insertions, deletions) needed to turn one into the other

X: G C G T A T G C G G C T A A C G C

Y: GCTATGCGGCTATACGC

(AKA Levenshtein distance)
For X & Y, edit distance = minimum # edits
(substitutions, insertions, deletions) needed to turn one into the other

Like exact matching, but *pattern P* may be within a certain *distance* (usually Hamming or edit) of *T*. Each such place is an *approximate match*.

Allowing edits is more challenging than just allowing mismatches

We'll return to edits

```
def naive_approx_hamming(p, t, maxDistance):
    occurrences = []
    for i in range(len(t) - len(p) + 1): # loop over alignments
        nmm = 0
        for j in range(len(p)):
                                  # Loop over characters
            if t[i+j] != p[j]:
                                          # compare characters
                                          # mismatch
                nmm += 1
                if nmm > maxDistance:
                    break
                                          # exceeded max hamming dist
        if nmm <= maxDistance:</pre>
          occurrences.append(i)
                                          # approximate match
    return occurrences
```

http://bit.ly/CG_NaiveApprox

Wanted: way to apply exact matching algorithms to approximate matching problems

If *P* occurs in *T* with 1 edit, then *u* or *v* appears with no edits

If *P* occurs in *T* with 1 edit, then *u* or *v* appears with no edits

If *P* occurs in *T* with 1 edit, then *u* or *v* appears with no edits

If *P* occurs in *T* with up to *k* edits...

If *P* occurs in *T* with up to *k* edits...

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

5 partitions 4 edits (X)

Pigeonhole principle: *k*+1 pigeons, *k* holes.

At least one has >1 pigeon!

We have k pigeons, k+1 holes, at least one...

We have *k* pigeons, *k*+1 holes, at least one... is *empty*

7

What algorithm can we use?

7

What algorithm can we use?

Any exact matching algorithm

7

What algorithm can we use?

Any exact matching algorithm

If we have a k-mer index, we can use that

7

What algorithm can we use?

Any exact matching algorithm

If we have a k-mer index, we can use that Naive exact matching

7

What algorithm can we use?

Any exact matching algorithm

If we have a k-mer index, we can use that

Naive exact matching

Boyer-Moore

For Hamming distance, verification is essentially just the inner loop of naive_approx_hamming from before

Advantages

Disadvantages

Advantages

Disadvantages

Reuse favorite exact matching algos; fast and easy

Advantages

Disadvantages

Reuse favorite exact matching algos; fast and

Flexible; works for Hamming and edit distance*

* we don't know how to do edit distance verification yet

Advantages

Reuse favorite exact matching algos; fast and easy. Flexible; works for Hamming and edit distance*

Disadvantages

Large *k* yields small partitions matching many times by chance; lots of verification work

* we don't know how to do edit distance verification yet

Advantages

Reuse favorite exact matching algos; fast and easy. Flexible; works for Hamming and edit distance*

Disadvantages

Large *k* yields small partitions matching many times by chance; lots of verification work *k*+1 exact matching problems, one per partition

^{*} we don't know how to do edit distance verification yet

Implementation of pigeonhole principle with Boyer-Moore as exact matching algorithm: http://j.mp/

CG_ApproxBM

	Boyer-Moore, exact			Boyer-Mo with	oore, ≤1 m n pigeonh		Boyer-Moore, ≤2 mismatches with pigeonhole		
	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches
P: "tomorrow" T: Shakespeare's complete works	786 K	1.91s	17						
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	32.5 M	67.21 s	336						

^{*} GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Implementation of pigeonhole principle with Boyer-Moore as exact matching algorithm: http://j.mp/

CG_ApproxBM

	Boyer-Moore, exact			Boyer-Moore, ≤1 mismatch with pigeonhole			Boyer-Moore, ≤2 mismatches with pigeonhole		
	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches
P: "tomorrow" T: Shakespeare's complete works	786 K	1.91s	17	3.05 M	7.73 s	24			
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	32.5 M	67.21 s	336	107 M	209 s	1,045			

^{*} GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Implementation of pigeonhole principle with Boyer-Moore as exact matching algorithm: http://j.mp/

CG_ApproxBM

	Boyer-Moore, exact			Boyer-Mo with	ore, ≤1 m n pigeonh		Boyer-Moore, ≤2 mismatches with pigeonhole		
	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches	# character comparison s	wall clock time	# matches
P: "tomorrow" T: Shakespeare's complete works	786 K	1.91s	17	3.05 M	7.73 s	24	6.98 M	16.83 s	382
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	32.5 M	67.21 s	336	107 M	209 s	1,045	171 M	328 s	2,798

^{*} GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

what would we have to change for "at least two of"?

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

what would we have to change for "at least two of"?

If *P* occurs in *T* with up to *k* edits, then at least two of _____ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

what would we have to change for "at least two of"?

If *P* occurs in *T* with up to *k* edits, then at least two of $p_1, p_2, ..., p_{k+2}$ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let $p_1, p_2, ..., p_j$ be a partitioning of P. If P occurs with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must occur with $\leq ???$ edits.

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let $p_1, p_2, ..., p_j$ be a partitioning of P. If P occurs with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must occur with $\leq floor(k / j)$ edits.

At least one of $p_1, p_2, ..., p_5$ occurs with...

$$-$$

k = 4 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

-----*P*

X X X X

k = 4 edits ≤ 0 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

-----*P*

X X X

k = 4 edits ≤ 0 edits

X X X X

k = 5 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

P

X X X

k = 4 edits ≤ 0 edits

X X X X

k = 5 edits ≤ 1 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

 $X \mid X \mid X \mid k = 4 \text{ edits} \leq 0 \text{ edits}$

X X X X X k=5 edits ≤ 1 edits

XX XX X XX XX XX k=9 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

XX XX XX XX XX k = 9 edits ≤ 1 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

k = 4 edits ≤ 0 edits k = 5 edits ≤ 1 edits |XX| k=9 edits ≤ 1 edits k = 10 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

k = 4 edits ≤ 0 edits k = 5 edits ≤ 1 edits |XX| k=9 edits ≤ 1 edits **XX XX XX** k = 10 edits ≤ 2 edits

At least one of $p_1, p_2, ..., p_5$ occurs with...

etc

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let j = k + 1

Why?

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_i$ must appear with floor(k/j) edits

Specific

General

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits Let j = k + 1

Why?
Smallest value s.t. floor(k / j)
= 0

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0?

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0? So we can use exact matching

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0? So we can use exact matching

Why is smaller j good?

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0? So we can use exact matching

Why is smaller j good?
Yields fewer, longer partitions

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0? So we can use exact matching

Why is smaller j good?
Yields fewer, longer partitions

Why are long partitions good?

General

pecific

Pigeonhole principle

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let j = k + 1

Why? Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0? So we can use exact matching

Why is smaller j good?
Yields fewer, longer partitions

Why are long partitions good?

Makes exact-matching filter more specific, minimizing # candidates

A different principle

We partitioned *P* into non-overlapping substrings

Now consider overlapping substrings

A different principle

We partitioned *P* into non-overlapping substrings

Now consider overlapping substrings

Say substrings are length q. There are n - q + 1 such substrings.

Say substrings are length q. There are n - q + 1 such substrings.

Say substrings are length q. There are n - q + 1 such substrings.

1 edit to *P* changes *at most q* substrings

Say substrings are length q. There are n - q + 1 such substrings.

1 edit to *P* changes *at most q* substrings

Minimum # of length-q substrings unedited after k edits?

Say substrings are length q. There are n - q + 1 such substrings.

1 edit to *P* changes *at most q* substrings

kq is worst case; could be < kq

Minimum # of length-q substrings unedited after k edits? n - q + 1 - kq

Say substrings are length q. There are n - q + 1 such substrings.

1 edit to *P* changes *at most q* substrings

could be < kq

kq is worst case;

If *P* occurs in *T* with up to *k* edits, alignment contains an exact match of length *q*, where $q \ge floor(n / (k + 1))$

Obtained by solving for q: $n - q + 1 - kq \ge 1$

If *P* occurs in *T* with up to *k* edits, alignment contains an exact match of length q, where $q \ge floor(n / (k + 1))$

Obtained by solving for q: $n - q + 1 - kq \ge 1$

Exact matching filter: find matches of length floor(n / (k + 1)) between T and any substring of P. Check vicinity for full match.

Approximate matching principles

Non-overlapping substrings

Overlapping substrings

General

Specific

 $p_1, p_2, ..., p_j$ is a partitioning of P. If P occurs with $\leq k$ edits, at least one partition matches with $\leq floor(k/j)$ edits.

Pigeonhole principle with j = k + 1

Pigeonhole principle

 $p_1, p_2, ..., p_{k+1}$ is a partitioning of P. If P occurrs in T with $\leq k$ edits, at least one partition matches exactly.

q-gram lemma

If *P* occurs with $\leq k$ edits, alignment contains *t* exact matches of length *q*, where $t \geq n - q + 1 - kq$

q-gram lem ma with t = 1

If *P* occurs with $\leq k$ edits, alignment contains an exact match of length *q* where $q \geq floor(n / (k + 1))$

Sensitivity

Sensitivity = fraction of "true" approximate matches discovered by the algorithm

Lossless algorithm finds all of them, lossy algorithm doesn't necessarily

We've seen *lossless* algorithms. Most everyday tools are *lossy*. Lossy algorithms are usually much speedier & still acceptably sensitive.

Example lossy algorithm: pick q > floor(n / (k + 1))