Aufgabenblatt 3

Philipp Stassen, Felix Jäger, Lisa Krebber

2. Mai 2018

Aufgabe 8

- (1) Es sei $L = \{+, \cdot, 0, 1, <\}$, die Axiome für geordete Körper sind.
 - 1. $\forall x \, \forall y : x + y \equiv y + x$
 - 2. $\forall x \, \forall y : x \cdot y \equiv y \cdot x$
 - 3. $\forall x: 0+x \equiv x$
 - 4. $\forall x : 1 \cdot x \equiv x$
 - 5. $\forall x \,\exists y : x \cdot y \equiv 1$
 - 6. $\forall x \,\exists y : x + y \equiv 0$
 - 7. $\forall x \forall y \forall z : x \cdot (y+z) \equiv x \cdot y + x \cdot z$
 - 8. $\forall x \, \forall y \, \forall z : x + (y+z) \equiv (x+y) + x \cdot z$
 - 9. $\forall x \, \forall y \, \forall z : x \cdot (y \cdot z) \equiv (x \cdot y) \cdot z$
- (2) Es sei $L_f = \{+, \cdot, 0, 1, <, f\}$
 - a) $\forall x \, \forall y : x < y \rightarrow fx < fy$ b) $\forall x \, \forall y :$

Aufgabe 9

- (1) Es sei Φ_1 eine definitorische Erweiterung von Φ_0 . Wir wollen zeigen, dass für jede S_0 -Formula φ gilt: $\Phi_0 \models \varphi \iff \Phi_1 \models \varphi$.
- Beweis. " \Longrightarrow " Es sei $\Phi_0 \vDash \varphi$, da $\Phi_0 \subseteq \Phi_1$, folgt, dass $\Phi_1 \vDash \varphi$ aus Theorem 33. " \Leftarrow " Es sei $\mathcal{M} \vDash \Phi_0$ ein Modell von Φ_0 . Nach Definition von $\Phi_1 \vDash \varphi$ erfüllt ein beliebiges Modell $\mathcal{M}' \vDash \Phi_1$ auch φ . Da φ eine S_0 -Formel ist, werden nur Symbole aus S_0 auf der gleichen Variablenmenge benutzt. Da durch die Axiome in Φ_1 keine weiteren Variablen gebunden werden, ist $\mathcal{M} \upharpoonright \text{free}(\varphi) = \mathcal{M}' \upharpoonright \text{free}(\varphi)$. Damit folgt die Aussage aus Theorem 28.

(2) Wir schreiben $\varphi_0 \approx_{\Phi} \varphi_1$, falls für alle Modelle $\mathfrak{M} \models \Phi$ gilt, dass $\mathfrak{M} \models \varphi_0 \Leftrightarrow \mathfrak{M} \models \varphi_1$. Die Relation \approx ist eine *Kongruenz*. Dies werde ich nicht beweisen, es kann allerdings in Wolfgang Rautenbergs Einführung in die Logik nachgelesen werden. Er benutzt allerdings andere Zeichen.

Wir zeigen die Aussage zuerst für die um eine n-stellige Relation erweiterte Sprache $S_1 = S_0 \cup \{R\}$.

Beweis. Es sei $\mathcal{M} \models \Phi_0$ ein S_0 -Modell. Wir können \mathfrak{M} zu einem S_1 -Modell $\mathfrak{M}' \models \Phi_1$ erweitern, indem wir für alle \vec{t} definieren, dass $\mathfrak{M}'(R(\vec{t})) = \mathfrak{M}(\varphi_R(\vec{t}))$ ist.

Umgekehrt wird aus jedem S_1 -Modell $\mathfrak{M}' \models \Phi_1$ ein S_0 -Modell, indem wir \mathfrak{M}' auf $\{\forall\}$ und S_0 beschränken.

Deshalb können wir die Modellklasse von Φ_1 beschreiben durch $\operatorname{Mod}^{S_1}\Phi_1 = \{\mathfrak{M}' | \mathfrak{M} \models \Phi_0\}.$

Ist nun φ eine S_1 -Formel, so meint φ^{red} die Formel, in der von links beginnend die Teilformeln $R\vec{t}$ durch $\varphi_R(\vec{t})$ ersetzt werden. Daraus folgt, dass für alle $\varphi \in \mathcal{F}^{S_1}$ gilt, dass $\mathfrak{M}' \models \varphi \Leftrightarrow \mathfrak{M}' \models \varphi^{red}$. Hierei nutzen wir die Tatsache, dass \approx eine Kongruenz ist, oder präziser, dass \approx verträglich mit Formelbildung ist, zum Beispiel: $a \approx b \Rightarrow \neg a \approx \neg b$.

Daraus folgt:

$$\Phi_1 \vDash \varphi \Leftrightarrow \mathfrak{M}' \vDash \varphi \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{1}$$

$$\Leftrightarrow \mathfrak{M}' \vDash \varphi^{red} \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{2}$$

$$\Leftrightarrow \mathfrak{M} \vDash \varphi^{red} \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{3}$$

$$\Leftrightarrow \Phi_0 \vDash \varphi^{red},\tag{4}$$

wobei wir in (3) erneut Theorem 28 benutzen.

Jetzt zeigen wir die Aussage für Sprachen, die um eine n-stellige Funktion erweitert worden sind, $S_1 = S_0 \cup \{f\}$.

Beweis. Die Situation ist wie zuvor. Wir müssen das S_0 -Modell \mathfrak{M} so erweitern, dass wir S_1 -Formeln auf S_0 -Formeln reduzieren können. Dafür definieren wir wieder ein rekurvies Verfahren um das neue Funktionsymbol aus einer Formel φ zu eliminieren.

Es ist $\varphi=\varphi_0\frac{f\vec{t}}{y}$ für geeignetes φ_0 und $y\notin {\rm var}(\varphi)$. Deshalb können wir folgern, dass

$$\varphi \approx_{\Phi_1} \exists y (\varphi_0 \land y \equiv f\vec{t}) \tag{5}$$

$$\approx_{\Phi_1} \exists y (\varphi_0 \land \psi_f) a =: \varphi_1$$
 (6)

Falls f noch in φ_1 vorkommt, dann wiederholt man das Prozdere, bis alle f eliminiert sind. Wir schreiben φ^{red} für die Formel, in der f vollständig eliminiert ist. Wie schon zuvor ist $\varphi^{red} \approx_{\Phi_1} \varphi$.

Damit folgt genau wie schon vorher:

$$\Phi_1 \vDash \varphi \Leftrightarrow \mathfrak{M}' \vDash \varphi \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{7}$$

$$\Leftrightarrow \mathfrak{M}' \vDash \varphi^{red} \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{8}$$

$$\Leftrightarrow \mathfrak{M} \vDash \varphi^{red} \text{ für alle } \mathfrak{M} \vDash \Phi_0 \tag{9}$$

$$\Leftrightarrow \Phi_0 \vDash \varphi^{red},\tag{10}$$

Der allgemeine Fall lässt sich nun auf diese beiden Fälle zurückführen. Ist nämlich $S_n = S_0 \cup \{s_1,..,s_n\}$, so folgt die Aussage indem man schrittweise S_0 immer um ein weiteres Symbol erweitert. $S_1 = S_0 \cup \{s_1\}$, $\S_2 = S_1 \cup \{s_2\}$, ... und $S_n = S_{n-1} \cup \{s_n\}$. In jedem Fall ist s_i entweder ein Funktions oder Relationssymbol.