STA 702: Lecture 1

Basics of Bayesian Statistics

Merlise Clyde

Ingredients

- (1) **Prior Distribution** $\pi(\theta)$ for unknown θ
- (2) **Likelihood Function** $\mathcal{L}(\theta \mid y) \propto p(y \mid \theta)$ (sampling model)
- (3) Posterior Distribution

$$\pi(heta|y) = rac{\pi(heta)p(y\mid heta)}{\int_{\Theta}\pi(heta)p(y\mid heta)\mathrm{d} heta} = rac{\pi(heta)p(y\mid heta)}{p(y)}$$

(4) **Loss Function** Depends on what you want to report; estimate of θ , predict future Y_{n+1} , etc

Posterior Depends on Likelihoods

Likelihood is defined up to a consant

$$c \mathcal{L}(\theta \mid Y) = p(y \mid \theta)$$

Bayes' Rule

$$\pi(heta|y) = rac{\pi(heta)p(y\mid heta)}{\int_{\Theta}\pi(heta)p(y\mid heta)\mathrm{d} heta} = rac{\pi(heta)c\mathcal{L}(heta\mid y)}{\int_{\Theta}\pi(heta)c\mathcal{L}(heta\mid y)\mathrm{d} heta} = rac{\pi(heta)\mathcal{L}(heta\mid y)}{m(y)}$$

• m(y) is proportional to the marginal distribution of data

$$m(y) = \int_{\Theta} \pi(heta) \mathcal{L}(heta \mid y) \mathrm{d} heta$$

marginal likelihood of this model or "evidence"

Note: the marginal likelihood and maximized likelihood are *very* different!

Binomial Example

$$Y \mid n, heta \sim \mathsf{Binomial}(n, heta)$$

$$p(y \mid heta) = inom{n}{y} heta^y (1- heta)^{n-y}$$
 $\mathcal{L}(heta \mid y) = heta^y (extbf{1}- heta)^{n-y}$

MLE $\hat{\theta}$ of Binomial is $\bar{y} = y/n$ proportion of successes

Recall Derivation:

Marginal Likelihood

$$m(y) = \int_{\Theta} \mathcal{L}(heta \mid y) \pi(heta) \mathrm{d} heta = \int_{\Theta} heta^y (extbf{1} - heta)^{n-y} \pi(heta) \mathrm{d} heta$$

"Averaging" likelihood over prior

Binomial Example

- **Prior** $\theta \sim \mathsf{U}(0,1)$ or $\pi(\theta) = 1$, for $\theta \in (0,1)$
- Marginal

$$m(y) = \int_0^1 heta^y (1- heta)^{n-y} 1 \,\mathrm{d} heta$$

$$m(y) = \int_0^1 heta^{(y+1)-1} (1- heta)^{(n-y+1)-1} \, 1 \, \mathrm{d} heta = B(y+1,n-y+1)$$

Special function known as the **beta function** (see Rudin)

$$B(a,b)=\int_0^1 heta^{a-1}(1- heta)^{b-1}\,\mathrm{d} heta$$

Posterior Distribution

$$\pi(heta \mid y) = rac{1}{B(y+1,n-y+1)} heta^{(y+1)-1} (1- heta)^{(n-y+1)-1} \qquad \quad heta \mid y \sim \mathsf{Beta}((y+1,n-y+1))$$

Beta Prior Distributions

Beta(a,b) is a probability density function (pdf) on (0,1),

$$\pi(heta)=rac{1}{B(a,b)} heta^{a-1}(1- heta)^{b-1}$$

Use the "kernel" trick

$$\pi(\theta \mid y) \propto \mathcal{L}(\theta \mid y)\pi(\theta)$$

Prior to Posterior Updating

- **Prior** Beta(a, b)
- **Posterior** Beta(a + y, b + n y)
- **Conjugate** prior & posterior distribution are in the same family of distributions, (Beta)
- Simple updating of information from the prior to posterior
 - a + b "prior sample size" (number of trials in a hypothetical experiment)
 - a "number of successes"
 - b "number of failures"
- Should be easy to do "prior elicitation " (process of choosing the prior hyperparamters)

Summaries & Properties

Recall that for $\theta \sim \text{Beta}(a,b) \ a+b=n_0$

$$\mathsf{E}[heta] = rac{a}{a+b} \equiv heta_0$$

Posterior mean

$$\mathsf{E}[\theta \mid y] = rac{a+y}{a+b+n} \equiv \tilde{\theta}$$

Rewrite with MLE $\hat{\theta} = \bar{y} = \frac{y}{n}$ and prior mean

$$\mathsf{E}[heta \mid y] = rac{a+y}{a+b+n} = rac{n_0}{n_0+n} heta_0 + rac{n}{n_0+n}\hat{ heta}_0$$

Weighted average of prior mean and MLE where weight for $\theta_0 \propto n_0$ and weight for $\hat{\theta} \propto n$

Properties

$$ilde{ heta} = rac{n_0}{n_0+n} heta_0 + rac{n}{n_0+n}\hat{ heta}$$

- in finite samples we get **shrinkage**: posterior mean pulls the MLE toward the prior mean; amount depends on prior sample size n_0 and data sample size n
- regularization effect to reduce Mean Squared Error for estimation with small sample sizes and noisy data
 - introduces some bias (in the frequentist sense) due to prior mean θ_0
 - reduces variance (bias-variance trade-off)
- helpful in the Binomial case, when sample size is small or $\theta_{\rm true} \approx 0$ (rare events) and $\hat{\theta} = 0$ (inbalanced categorical data)

■ as we get more information from the data $n \to \infty$ we have $\tilde{\theta} \to \hat{\theta}$ and consistency! As $n \to \infty$, $\mathsf{E}[\tilde{\theta}] \to \theta_{\mathrm{true}}$

Some possible prior densities

Prior Choice

- Is the uniform prior Beta(1,1) non-informative?
 - No- if y = 0 (or n) sparse/rare events saying that we have a prior "historical" sample with 1 success and 1 failure (a = 1 and b = 1) can be very informative
- What about a uniform prior on the log odds? $\eta \equiv \log\left(\frac{\theta}{1-\theta}\right)$?

$$\pi(\eta) \propto 1, \qquad \eta \in \mathbb{R}$$

- Is this a **proper** prior distribution?
- what would be induced measure for θ ?
- Find Jacobian

$$\pi(heta) \propto heta^{-1} (1- heta)^{-1}, \qquad heta \in (0,1)$$

lacksquare limiting case of a Beta a o 0 and b o 0 (Haldane's prior)

Formal Bayes

- use of improper prior and turn the Bayesian crank
- calculate m(y) and renormalize likelihood times "improper prior" if m(y) is finite
- formal posterior is Beta(y, n y) and reasonable only if $y \neq 0$ or $y \neq n$ as B(0, -) and B(-, 0) (normalizing constant) are undefined!
- no shrinkage $\mathsf{E}[\theta \mid y] = \frac{y}{n} = \tilde{\theta} = \hat{\theta}$

Invariance

Jeffreys argues that priors should be invariant to transformations to be non-informative

i.e. if we reparameterize with $\theta = h(\rho)$ then the rule should be that

$$\pi_{ heta}(heta) = \left|rac{d
ho}{d heta}
ight|\pi_{
ho}(h^{-1}(heta))$$

Jefferys' rule is to pick $\pi(\rho) \propto (I(\rho))^{1/2}$

Expected Fisher Information for ρ

$$I(
ho) = - \mathsf{E}\left[rac{d^2\log(\mathcal{L}(
ho))}{d^2
ho}
ight]$$

For the Binomial example $\pi(\theta) \propto \theta^{-1/2} (1-\theta)^{-1/2}$

Thus Jefferys' prior is a Beta(1/2, 1/2)

Why?

Chain Rule!

Find Jefferys' prior for θ

Find information matrix for ρ from $I(\theta)$

Show that the prior satisfies the invariance property!

