

82/AS MATHEMATICS

Calculator-free

NACE Examination 2011

Marking Key

proper construction underpins reliability and validity. when they respond to a question. They are essential to fair assessment because their Marking keys are an explicit statement about what the examiner expects of candidates

of candidate responses. be reviewed at a marking key ratification meeting and modified as necessary in the light When examiners design an examination, they develop provisional marking keys that can

MATHEMATICS 2A/2B 2 MARKING KEY CALCULATOR-FREE

Question 1 (7 marks)

(a) Evaluate:

$$15 - 12 \div 2 \times 3 + 5$$
 (2 marks)

Solution
15 10 0 0 5
$15 - 12 \div 2 \times 3 + 5$
= 15 - 18 + 5
= 2
One sific Pohenicum
Specific Behaviours
√ applies the rule of order for division and multiplication correctly
✓ carries through calculation correctly

(b) Expand and simplify:

$$(2x-3)(x+5)$$
 (2 marks)

	Solution
(2x-3)(x+5)	
$=2x^2 - 3x + 10x - 15$	
$=2x^2+7x-15$	
Speci	ific Behaviours
√ expands the binomial correctly	
√ adds like terms correctly	

- (c) Estimating a calculation can be made easier by first rounding the numbers. One way to round is to round to the **leading** digit, for example, 534 rounds to 500, 39 rounds to 40 and 19 345 rounds to 20 000.
 - (i) Round 189 to the leading digit.

	Solution	
200		
	Specific Behaviours	
√ rounds correctly		

(1 mark)

(ii) Hence, estimate the value of the calculation $189 \times 42\,$ by using the method of rounding to the leading digit. (1 mark)

	Solution
189 × 42	
≈ 200 × 40	
= 8000	
	Specific Behaviours
√ applies specified roundin correctly	g method to both factors to estimate the value

MATHEMATICS 2A/2B 11 MARKING KEY CALCULATOR-FREE

(c) On the same set of axes above sketch the graph $y = 2^x$. (2 marks)

Solution
and smooth
see graph
Specific Behaviours
✓ plots (0,1) and at least two (2) other points correctly on the graph
√ draws a smooth curve through the plotted points

MARKING KEY

CALCULATOR-FREE **MATHEMATICS 2A/2B**

MARKING KEY

CALCULATOR-FREE **MATHEMATICS 2A/2B**

Indonesia has a population of 275 million. Write this number in scientific notation.(1 mark)

 expresses the number in scientific notation correctly
Specific Behaviours
$275000000 = 2.75 \times 10^{8}$
Solution

(10 marks) Question 2

A sequence of shapes is made of matches to form triangles, as shown below.

Shape Mumber 2 Shape Mumber 1

The table of results is shown below:

Number of matches (m)	ε	9	۷	6	l l	
Shape Number (n)	ı	2	3	7	g	

(1 mark) Plot the data from above on the axes below. (a)

(4 marks) Question 6

On the axes below, the graph of $y=4^x$ is plotted.

Show clear use of the graph to determine the value of $4^{2.5}$. (1 mark)

	✓ reads value from graph correctly
aviours	Specific Beh
	Accept 31 – 33
	$\tau_{S-S} = 35$
110	ninine

two (2) decimal places. Show clear use of the graph to determine the value of x if $4^x=40$. Give your answer to (q)

√ reads value from graph correctly
Specific Behaviours
Accept 2.61-2.70
99 [.] 7 ≈ <i>x</i>
Solution

MATHEMATICS 2A/2B	4	MARKING KEY
CALCULATOR-FREE		

(b) Can these points be joined? Explain your answer in the context of the situation.

(1 mark)

Solution
No, as you can only have whole numbers for Shape Numbers. For example, shape
Number 1.5 does not make sense in this context.
Specific Behaviours
✓ answers 'no' and gives appropriate reason

(c) Write a rule linking m and n, where m and n are as defined in the table. (2 marks)

Solution
m=2n+1
Specific Behaviours
✓ identifies gradient
√ determines the correct rule in terms of m and n

(d) Determine the number of matches required for Shape Number 12. (1 mark)

Solution	
m = 2n + 1	
= 2(12) + 1	
= 25	
Specific Behaviours	
✓ determines the correct value, based on response in (c) or correctly continues the pattern	

(e) Justify that the point (20, 41) lies on the line that would pass through the points plotted in (a). (1 mark)

```
Solution

m = 2n + 1
= 2(20) + 1
= 41
therefore the point lies on the line (or not, based on response in(c))

Specific Behaviours

\checkmark shows when n = 20, m = 41 or consistent with response in (c)
```

MATHEMATICS 2A/2B 9 MARKING KEY CALCULATOR-FREE

(c) The median price of a house in a Perth suburb at the end of 2008 was \$300 000. Due to the Global Financial Crisis, the median price dropped by 10% during 2009. During 2010, the market had regained strength and the median house price rose by 10%.

What was the median house price at the end of 2010?

√ calculates a 10% increase correctly

(3 marks)

```
Solution

End of 2009 price = 300 000 × 0.9 = $270 000

End of 2010 price = 270 000 × 1.1 = $297 000

Or

End of 2009 price = $300 000 − 10% of $300 000

= 300 000 − 30 000

= $270 000

End of 2010 price = $270 000 + 10% of $270 000

= 270 000 + 27 000

= $297 000

Specific Behaviours

✓ calculates 10% decrease from $300 000 correctly
```

(d) Sonya is at the supermarket to purchase muesli. She notices it is packaged in two sizes: 500 g and 275 g. The larger size costs \$5 and the smaller size \$2.45. Which is the better buy? (Assume that she doesn't mind what size she buys). Justify your answer.

✓ uses \$270 000 to calculate the percentage increase correctly

(2 marks)

```
Solution

Buying two smaller muesli packets

Weight = 2 × 275 g = 550 g

Price = 2 × 2.45 = $4.90

Therefore get more muesli for less money if buying the 275 g packet 275 g packet best buy

Specific Behaviours

✓ compares weight and price correctly
✓ concludes 275 g packet as best buy
```

		CALCULATOR-FREE
WARKING KEY	9	MATHEMATICS 2A/2B

(f) Madeline has 50 matches. What is the biggest Shape Number she would be able to marks)

Note: Full marks for answer of 24 without working	
representation of the control of	
correctly	
\checkmark solves for n , correctly, based on response in (c) or uses the pattern to determine n	
Specific Behaviours	
therefore the biggest shape number she could make is Shape Number 24.	
$S \cdot \mathcal{V} \mathcal{I} = \mathcal{U}$	
$6t = u\zeta$	
$0S = I + n\Delta$	
Solution	

(g) Write a recursive rule for the original table of results. (2 marks)

	√ states T
ve part of the rule	✓ determines the correct recursive.
Specific Behaviours	
	$T_{n+1} = T_n + 2$ where $T_1 = 3$
Pointion	

MATHEMATICS 2A/2B 8 MARKING KEY CALCULATOR-FREE

Question 5 (10 marks)

An antique dealer paid \$200 for an old ceramic jug. He decides to sell the jug with at least 60% profit. What is his minimum selling price? (2 marks)

The profit from a family business was shared by three brothers, Paul, Greg and John, in the ratio of 3:2:1 respectively. If Paul's share was \$24 000, what was the total profit? (3 marks)

P: G: J 3: 2: 1 24 000:16 000:8 000 $\Rightarrow 5. 2: 1$ $\Rightarrow 48 000$ $\Rightarrow 5. 24 000$ $\Rightarrow 5. 24 000$ $\Rightarrow 5. 24 000$ $\Rightarrow 6. 24 000$ $\Rightarrow 6. 24 000$ $\Rightarrow 6. 24 000$ $\Rightarrow 7. 24 000$ $\Rightarrow 7. 24 000$ $\Rightarrow 7. 24 000$ $\Rightarrow 7. 24 000$ $\Rightarrow 8. 24 000$ $\Rightarrow 8. 24 000$ $\Rightarrow 8. 24 000$ $\Rightarrow 9. 2$

Solution

√ calculates total profit correctly

MATHEMATICS 2A/2B CALCULATOR-FREE

6

MARKING KEY

Question 3 (3 marks)

Cate works as an apprentice hairdresser. She has been asked to order shampoo from a bulk supplier. Her employer gives her the graph below which shows the total cost (\$) of ordering a given quantity of shampoo (in litres).

(a) Determine the gradient of the line.

(1 mark)

Solution	
$\frac{7}{2} = 3.5$	
Specific Behaviours	
√ calculates the gradient of the straight line correctly	

(b) What does the value of the gradient indicate in this context?

(1 mark)

Solution	
The price of shampoo is \$3.50 per litre	
Specific Behaviours	
✓ interprets the gradient in cost per litre	

(c) Cate has to order 12 litres of shampoo. What will this cost?

(1 mark)

Solution		
$12 \times 3.5 = 42		
	Specific Behaviours	
√ calculates cost correctly		

MATHEMATICS 2A/2B CALCULATOR-FREE

MARKING KEY

Question 4 (6 marks)

Solve the following equations and inequalities **algebraically**. Show all workings.

(a)
$$5(n+2) = 2n+1$$
 (2 marks)

Solution	
5(n+2) = 2n+1	
5n + 10 = 2n + 1	
3n = -9	
n = -3	
Specific Behaviours	
√ expands brackets correctly	
√ collects like terms correctly and states correct solution	

(b) $2k - 6 \le 15$ (2 marks)

Solution	
$2k - 6 \le 15$	
$2k \le 21$	
<i>k</i> ≤ 10.5	
Specific Behaviours	
✓ isolates <i>k</i> correctly	
√ uses the correct inequality sign	

(c)
$$2^m + 7 = 23$$
 (2 marks)

Solution	
$2^m + 7 = 23$	
$2^m = 16$	
$2^m = 2^4$	
m = 4	
	Specific Behaviours
✓ isolates 2 ^m correctly ✓ correctly determines m	
· correctly determines in	