Imię i Nazwisko:	Data éwiczenia:		
Malwina Cieśla	19.03.2021r		
Narzędzia modelowania w inżynierii			
Kierunek studiów:	Ocena:		
Inżynieria Obliczeniowa			

Cel ćwiczenia:

Modelowanie wymiany ciepła podczas chłodzenia kręgów walcowanych na gorąco.

Zadanie:

W zadaniu należało przeprowadzić analizę wpływu chłodzenia kręgów w warstwach na czas ich chłodzenia. W tym celu przeprowadzić należało symulację chłodzenia z różną ilością kręgów: 1, 2, 3, 4 i 5. Czas chłodzenia kręgu należało wyznaczyć w momencie osiągnięcia maksymalnej temperatury równej 80°C. Po utworzeniu figur, wprowadzeniu parametrów symulacji oraz uruchomieniu otrzymałam poniższe wyniki:

Ilustracja 1: Symulacja dla jednego kręgu

Symulacja dla jednego kręgu służy jako próba sprawdzająca sytuację bez sąsiadów oraz do późniejszego porównania czasów chłodzenia.

Ilustracja 2: Symulacja dla dwóch kręgów

Ilustracja 3: Uruchomiona symulacja dla trzech kręgów

Ilustracja 4: Rozkład temperatury otrzymany dla czterech kręgów

Ilustracja 5: Rozkład temperatury otrzymany w symulacji dla pięciu kręgów

Następnie należało porównać czasy chłodzenia uzyskane dla wszystkich przypadków. W tym celu utworzyłam tabelkę:

1	2	3	4	5
112500	117000	126500	128000	137000

Ilustracja 6: Tabela z uzyskanymi wynikami (w sekundach)

Na podstawie tabelki utworzyłam wykres przedstawiający zależność czasu od ilości użytych kręgów:

Ilustracja 7: Wykres zależności czasu od ilości użytych kręgów

Wnioski:

Analizując wyniki przedstawione na wykresie oraz w tabeli można zauważyć, że wraz ze wzrostem liczby sąsiadów wzrasta także czas chłodzenia potrzebny do uzyskania temperatury 80°C. Można również zauważyć, że największe skoki czasu występują przy zmianie z dwóch na trzy kręgi oraz przy zmianie z czterech na pięć kręgów. Jest to związane z umiejscowieniem kręgów względem siebie – trzeci jak i piąty krąg znajdują się nad pierwszym, drugi i czwartym kręgiem stykając się z nimi ścianami przez co chłodzenie między kręgami nie odbywa się w sposób równomierny, a sam proces chłodzenia trwa dłużej.