N₂1

Условие

Образ всюду плотного множества при сюръективном непрерывном отображении всюду плотное

Решение

 $\forall U \in T_Y \neq \emptyset, \implies f^{-1}(U) \in T_X \neq \emptyset$ и $\forall K$ окрестности точки $f^{-1}(x), f^{-1}(U) = K$ благодаря сюръекции и непрерывности (были отображены все множества (сюръекция) и все они открыты (непрерывность)))

$$f^{-1}(U)=K$$
 $f(A)=B$ Так как $Cl(A)=X \implies K\cap A
eq \emptyset$ $\implies orall x\in K\cap A,\; f(x)\in U\cap B$

Следовательно, раз $\forall U$ выполняется вышеописанное, то Cl(B)=Y

№2

Условие

Непрерывно ли в топологическом пространстве с индуцированной из канонической топологии на $\mathbb R$ отображение $f:\ [0,2] o [0,2]$ $f(x)=egin{cases} x, & x\in [0,1) \ 3-x, & x\in [1,2] \end{cases}$

Решение

 $f:\ X o Y$ - непрерывно \iff прообраз любого открытого в Y множества открыт.

Каноническая топология на ${\mathbb R}$ это топология, базой которой служат открытые круги, т. е.

$$U \in T \iff egin{cases} U = \emptyset \ orall x \in U & \exists V : V = \{x | (x - x_0) < \epsilon\} : & V \in U \end{cases}$$

Предположим, что $x \in [0,1)$

Пусть $V_{f(x)}$ - окрестность f(x) на Y.

Предположим, что часть окрестности $K\subset V_{f(x)}$ лежит в другой части отрезка $K\subset [1,2].$ Также возьмём $V_{f(x)}\neq Y.$

Тогда, прообраз $f^{-1}\left(V_{f(x)}ackslash K
ight)\subset U_x$, где U_x - окрестность x на X.

Однако $f^{-1}\left(K
ight)\cup f^{-1}\left(V_{f(x)}ackslash K
ight)
ot\in\mathcal{T}_X$ по построению (между $f^{-1}\left(K
ight)$ и $f^{-1}\left(V_{f(x)}ackslash K
ight)$ будет

некоторое непустое множество, не лежащее ни в одном из вышеописанных множеств) (Вдобавок, $f^{-1}(K) \cap U_x \neq f^{-1}(K)$).

Следовательно раз прообраз $V_{f(x)}$ не открыт, то, по определению непрерывности, функция не непрерывна.

P. S. Можно было доказать с помощью примера, взяв (1.5, 2], но я решил расписать в общем случае

P.~P.~S.~ Ещё можно было пойти через лекционное определение (f:~X o Y - непрерывные в точке $x_0 \in X \iff \forall V$ - окрестность точки $f(x_0) \;\; \exists U$ - окрестность точки $x_0: f(U) \subset V)$

Nº3

Условие

Может ли множество быть всюду плотным и нигде не плотным

Решение

Перефразируем условия:

Существует ли $A \in X: \ Cl(A) = X$ и $Cl\left(Int(X \backslash A)\right) = X$

Рассмотрим условия, которые должны выполняться:

$$A
eq X$$
, так как $Cl(Int(Xackslash A)) = Cl(\emptyset) = \emptyset
eq X$

 $A
eq \emptyset$, так как $Cl(A) = \emptyset
eq X$

A - не замкнуто, так как иначе Cl(A)=A
eq X

A - не открыто, так как иначе Cl(Int(Xackslash A)) = Xackslash A

P.~S.~4-е условие было добавлено как теоретическое. Оно не нужно для получения противоречия, но мне было бы интересно узнать, действительно ли $Int(X\backslash A)=X\backslash A$? $X\backslash A\not lpha T$, так как иначе $Cl~(Int(X\backslash A))=Cl(X\backslash A)=X\backslash A$

Пусть
$$\exists A \in X: \ A=X, \ Cl\left(Int(X \backslash A)\right)=X$$
 $A \neq \emptyset \quad A \neq X \quad X \backslash A \not \prec T$

Возьмём $\exists U\in T
eq\emptyset:\ U\subset X\backslash A$, так как иначе $Int\left(X\backslash A\right)=\emptyset$ и $Cl(Int(X\backslash A))=\emptyset
eq X$ $X\backslash A$ - не пустое

Но тогда $A\subset X\backslash U\implies Cl(A)\subset X\backslash U$ (так как $X\backslash U$ - замкнуто) $\implies Cl(A)\neq X$ Получили противоречие.

Значит не существует множества, удовлетворяющего условиям