Основы матричных вычислений, Экзамен (Теория)

Версия от 27.06.2021 14:06

Содержание

Связь прямой и обратной ошибок через число обусловленности.	2
Критерий сходимости ряда Неймана.	3
Существование и единственность LU и LDL разложений.	4
Теорема о сходимости градиентного спуска для линейной системы с симметричной положительно определенной матрицей.	6
Оценка сходимости метода сопряженных градиентов для линейной системы с произвольной симметричной положительно определенной матрицей. Случай $\lambda_1 >> \lambda_2$.	7
Сходимость степенного метода для диагонализуемых матриц.	9
Вывод двух основных свойств QR алгоритма.	10
Теорема Леви-Деспланка и первая теорема Гершгорина. Теорема Леви-Деспланка.	

Связь прямой и обратной ошибок через число обусловленности.

Предположим, что наша задача обратно устойчива, а именно: $f(\widetilde{x}) = \widetilde{f}(x), \frac{\|\widetilde{x} - x\|}{\|x\|} = \mathcal{O}(\varepsilon_{machine})$

$$\begin{aligned} & \text{forward_err} = \frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} \\ &= \frac{\|f(\widetilde{x}) - f(x)\|}{\|f(x)\|} \\ &= \frac{\|f(x + \Delta x) - f(x)\|}{\|f(x)\|} \\ &= \frac{\|f(x) + f'(x) \cdot \Delta x + \mathcal{O}(\|\Delta x\|^2) - f(x)\|}{\|f(x)\|} \\ &= \frac{\|f'(x) \cdot \frac{\Delta x}{\|\Delta x\|} + \mathcal{O}(\|\Delta x\|)\|}{\|f(x)\|} \cdot \|\Delta x \\ &\leqslant \frac{\|f'(x) \cdot \frac{\Delta x}{\|\Delta x\|}\| + \mathcal{O}(\|\Delta x\|)}{\|f(x)\|} \cdot \|\Delta x \| \\ &\leqslant \frac{\|f'(x) \cdot \frac{\Delta x}{\|\Delta x\|}\| + \mathcal{O}(\|\Delta x\|)}{\|f(x)\|} \cdot \|\Delta x \| \\ &\leqslant \frac{\|f'(x)\| + \mathcal{O}(\|\Delta x\|)}{\|f(x)\|} \cdot \|\Delta x \| \\ &= \frac{\|f'(x)\| \cdot \|x\| + \mathcal{O}(\|\Delta x\|) \cdot \|x\|}{\|f(x)\|} \cdot \frac{\|\Delta x\|}{\|x\|} \\ &= \frac{\|f'(x)\| \cdot \|x\|}{\|f(x)\|} + \frac{\mathcal{O}(\|\Delta x\|) \cdot \|x\|}{\|f(x)\|} \cdot \frac{\|\Delta x\|}{\|x\|} \\ &= (\operatorname{cond}(f, x) + \mathcal{O}(\|\Delta x\|)) \cdot \operatorname{backward_err} \\ &= (\operatorname{cond}(f, x) + \operatorname{O}(\varepsilon_{machine})) \cdot \operatorname{backward_err} \\ &\approx \operatorname{cond}(f, x) \cdot \operatorname{backward_err} \\ &\approx \operatorname{cond}(f, x) \cdot \operatorname{backward_err} \end{aligned}$$

Критерий сходимости ряда Неймана.

Напомним определение спектрального радиуса $\rho(A) = \max_i |\lambda_i(A)| = \lim_{k \to \infty} \left\|A^k\right\|^{1/k}$

Критерий сходимости ряда Неймана: $\sum_{i=0}^k A^k$ сходится $\Longleftrightarrow \rho(A) < 1$.

 \bigoplus : $A = UTU^{-1}$ — разложение Шура (здесь T верхнетреугольная). Введем матрицу $D_{\varepsilon} = \mathrm{diag}\left(1, \varepsilon, \dots, \varepsilon^{n-1}\right)$. Оказывается, что $(D_{\varepsilon}^{-1}TD_{\varepsilon})_{ij} = \varepsilon^{j-i}t_{ij}$, то есть каждый элемент верхнего треугольника домножается на эпсилон в какой-то степени. Нижний треугольник — нули, так как T верхнетреугольная.

Остаются $|t_{ii}|$ — но это модули собственных значений, а из $\rho(T) < 1$ следует что все меньше единицы. Из этого следует, что $\exists \varepsilon : \|D_{\varepsilon}^{-1}TD_{\varepsilon}\|_1 < 1$. То есть $\sum_{k=0}^{\infty} \left(D_{\varepsilon}^{-1}TD_{\varepsilon}\right)^k = \sum_{k=0}^{\infty} D_{\varepsilon}^{-1}T^kD_{\varepsilon}$ сходится.

Вынесем по матрице слева и справа, сходимость не сломается: $\sum_{k=0}^{\infty} T^k$ сходится.

Теперь занесем по матрице слева и справа, но уже другие, тогда $\sum_{k=0}^{\infty} UT^kU^{-1} = \sum_{k=0}^{\infty} \left(UTU^{-1}\right)^k$ сходится.

 \Leftrightarrow : пусть $\rho(A) \geqslant 1 \implies \exists |\lambda_i| > 1$, но ряд сходится. $\exists \|x\|_2 = 1 : Ax = \lambda_i x \implies A^k x = \lambda_i^k x$. $\|A^k\|_2 = \|A^k\|_2 \|x\|_2 \geqslant \|A^k x\|_2 = \|\lambda^k x\|_2 = |\lambda^k| \|x\|_2 = |\lambda^k| \|x\|_2 = |\lambda^k| \|x\|_2 \Rightarrow 0$, получается ряд не сходится.

Существование и единственность LU и LDL разложений.

Определение. Пусть есть матрица $A \in \mathbb{R}^{n \times n}$. Разложение A = LU называется LU-разложением, если матрица L нижнетреугольная с единицами на диагонали, а матрица U верхнетреугольная.

Определение. Матрица A называется **строго регулярной**, если все её ведущие подматрицы невырождены. (ведущие подматрицы — верхние левые $k \times k$ блоки).

Теорема (Существование LU-разложения). Пусть $\det(A) \neq 0$. Тогда A имеет LU-разложение $\iff A$ строго регулярна.

Доказательство.

 \Longrightarrow

A имеет LU-разложение, то есть A = LU.

Мы знаем, что матрица невырождена, то есть

$$0 \neq \det(A) = \det(L) \det(U) = u_{11} \cdot \ldots \cdot u_{nn}.$$

Следовательно, $u_{kk} \neq 0$ для любого $k \in \{1, ..., n\}$. Дальше нам надо убедиться, что матрица A строго регулярна. То есть, надо проверить что ведущие подматрицы тоже невырождены. Запишем для ведущих подматриц:

$$A = \begin{pmatrix} L_k & 0 \\ * & * \end{pmatrix} \begin{pmatrix} U_k & * \\ 0 & * \end{pmatrix} = \begin{pmatrix} L_k U_k & * \\ * & * \end{pmatrix}.$$

Обозначим $A_k := L_k U_k$. Тогда $\det(A_k) = \det(L_k) \det(U_k) = u_{11} \cdot \ldots \cdot u_{kk} \neq 0$, аналогично случаю с полной матрицей.

Доказываем по индукции. Мы считаем, что пусть для n-1 уже доказано утверждение. Докажем для n.

Пусть матрица $A = \begin{pmatrix} a & c^t \\ b & D \end{pmatrix}$. Здесь a — число, не равное нулю в силу строгой регулярности, D — матрица $n-1 \times n-1$. Мы считаем, что для D мы уже умеем искать LU — разложение. Давайте попробуем преобразовать нашу матрицу, чтобы она привелась к блочно-верхнетреугольному виду:

$$\begin{pmatrix} 1 & 0 \\ -\frac{1}{a}b & I \end{pmatrix} \begin{pmatrix} a & c^t \\ b & D \end{pmatrix} = \begin{pmatrix} a & c^T \\ 0 & D - \frac{1}{a}bc^T \end{pmatrix} =: A'.$$

Блок $D - \frac{1}{a}bc^T$ называется дополнением по Шуру матрицы A. Обозначим $A_1 := D - \frac{1}{a}bc^T$.

Докажем, что A_1 строго регулярна (было в ДЗ). A' получилась из A с помощью n-1-го элементарного преобразования первого типа (вычесть из строки другую, домноженную на коэффициент). Помним, что такие элементарные преобразования не меняют определитель матрицы, поэтому $0 \neq \Delta_k(A) = \Delta_k(A')$ для любого $k \in \{1, \ldots, n\}$. (здесь $\Delta_k(A) = 1$ главный угловой минор матрицы A). Но в матрице A' мы видим угол нулей, поэтому A'0 е A'1 строго регулярна. Продолжим доказательство теоремы. По предположению индукции тогда считаем, что A'1 имеет A'2 имеет A'3 имеет A'4 имеет A'4 имеет A'4 имеет A'5 горого регулярна.

 $D - \frac{1}{a}bc^T = A_1 = L_1U_1$. Этого уже достаточно для того, чтобы построить LU-разложение самой матрицы A:

$$\begin{pmatrix} 1 & 0 \\ \frac{1}{a}b & L1 \end{pmatrix} \begin{pmatrix} a & c^T \\ 0 & U_1 \end{pmatrix} = \begin{pmatrix} a & c^T \\ b & \frac{1}{a}bc^T + L_1U_1 \end{pmatrix} = \begin{pmatrix} a & c^T \\ b & D \end{pmatrix}.$$

Утверждение. *LU*-разложение определяется единственным образом.

Доказательство.

Предположим, что есть два разложения:

$$A = L_1 U_1 = L_2 U_2.$$

Преобразуем равенство:

$$L_2^{-1}L_1 = U_2U_1^{-1}.$$

Обратная к нижнетреугольной матрице — нижнетреугольная матрица, и произведение нижнетреугольных — тоже нижнетреугольная. Для верхнетреугольных то же самое. Значит, $L_2^{-1}L_1$ — диагональная матрица. Более того, это единичная матрица (в силу того, что на диагонали матриц L_2 и L_1 стоят 1). Значит,

$$L_1 = L_2;$$

$$U_1 = U_2.$$

Следствие (LDL-разложение). Пусть $A\in\mathbb{C}^{n\times n}$ является строго регулярной и $A=A^*$. Тогда $\exists L$ — нижнетреугольная и D — диагональная, такие что

$$A = LDL^*$$
.

Доказательство.

A — строго регулярна, следовательно,

$$A = LU = L D D^{-1}U = A^* = (U^*D^{-*})(D^*L^*)$$

$$diag(u_{11},...,u_{nn})$$

Но LU-разложение единственно, следовательно, $L=U^*D^{-*}$. Значит, $U=DL^*$. Доказали.

Теорема о сходимости градиентного спуска для линейной системы с симметричной положительно определенной матрицей.

Оценка сходимости метода сопряженных градиентов для линейной системы с произвольной симметричной положительно определенной матрицей. Случай $\lambda_1 >> \lambda_2$.

Предложение. Для $A = A^{\top} > 0$ и любого многочлена $h(\lambda) : h(0) = 1$ степени k верно:

$$||e_k||_A \le \max_i |h(\lambda_i)|||e_0||_A$$

В общем случае мы использовали многочлен вида:

$$t_k(\lambda) = \frac{T_k \left(\frac{\lambda_1 + \lambda_n - 2\lambda}{\lambda_1 - \lambda_n}\right)}{T_k \left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)}$$

Где T_k - многочлен Чебышева. Такой t_k меньше всего отклоняется от 0 на отрезке $[\lambda_n, \lambda_1]$, однако чем больше отрезок тем больше мы отклоняемся. Вообще говоря нас интересует отклонение только в точках $\lambda \in \{\lambda_1, \lambda_2, \dots, \lambda_n\}$. Давайте рассмотрим другой многочлен:

$$p_k(\lambda) = \frac{T_{k-1} \left(\frac{\lambda_2 + \lambda_n - 2\lambda}{\lambda_2 - \lambda_n}\right)}{T_{k-1} \left(\frac{\lambda_2 + \lambda_n}{\lambda_2 - \lambda_n}\right)} \left(1 - \frac{\lambda}{\lambda_1}\right)$$

(Заметка: на лекции путаница с знаком знаменателя аргумента T_i)

Тоесть мы уменьшили отрезок, а также пожертвовав степенью многочлена Чебышева, мы добавили множитель который обращается в 0 при $\lambda=\lambda_1$

Нам нужно оценить $\max\limits_{i}|p_k(\lambda_i)|$, заметим, что:

$$\max_i |p_k(\lambda_i)| \leq \max_{\lambda \in [\lambda_n, \lambda_2] \cup \{\lambda_1\}} |p_k(\lambda)| = \max_{\lambda \in [\lambda_n, \lambda_2]} |p_k(\lambda)|$$

Предложение. С лекции 14 нам известно:

$$\frac{T_k\left(\frac{a+b-2\lambda}{a-b}\right)}{T_k\left(\frac{a+b}{a-b}\right)} \le 2\left(\frac{\sqrt{\frac{a}{b}}-1}{\sqrt{\frac{a}{b}}+1}\right)^k$$

Теперь оценим p_k на множестве $[\lambda_n, \lambda_2]$:

$$p_k(\lambda) = \frac{T_{k-1}\left(\frac{\lambda_2 + \lambda_n - 2\lambda}{\lambda_2 - \lambda_n}\right)}{T_{k-1}\left(\frac{\lambda_2 + \lambda_n}{\lambda_2 - \lambda_n}\right)} \left(1 - \frac{\lambda}{\lambda_1}\right) \le 2\left(1 - \frac{\lambda}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} \le 2\left(1 - \frac{\lambda_n}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1}$$

Осталось заметить, что $\left|1-\frac{\lambda_n}{\lambda_1}\right| \leq 1$, тогда:

$$p_k(\lambda) \le 2\left(1 - \frac{\lambda_n}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} \le 2\left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1}$$

Заметим, что:

$$0 \le 2 \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1} \right)^{k-1} \implies |p_k(\lambda)| \le 2 \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1} \right)^{k-1}$$

Используя первое предложение можно сделать вывод:

$$||e_k||_A \le 2 \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} ||e_0||_A$$

Сходимость степенного метода для диагонализуемых матриц.

Дано: A — диагонализуемая и $\lambda^{(1)}$ — простое $(|\lambda^{(1)}| > |\lambda^{(2)} \geqslant \ldots \geqslant |\lambda^{(n)})$. Доказать: отношение Релея $R(Ax_k, x_k) = \frac{(Ax_k, x_k)}{(x_k, x_k)} = (Ax_k, x_k)$ сходится к $\lambda^{(1)}$ — старшему собственному значению.

Доказательство. Поскольку A диагонализуемая, то существует n линейно независимых собственных векторов $v^{(i)}$, далее считаем, что $\|v^{(i)}\|=1$. В таком случае $x_0=\alpha_1v^{(1)}+\cdots+\alpha_nv^{(n)}$. **Ключевой момент:** считаем, что $\alpha_1\neq 0$. Мы используем это в доказательстве, а в противоположном случае метод вообще сойдётся не пойми куда, но точно не туда, куда надо было.

$$x_{k} = \frac{Ax_{k-1}}{\|Ax_{k-1}\|_{2}} = \frac{A^{k}x_{0}}{\|A^{k}x_{0}\|_{2}} = \frac{\alpha_{1}(\lambda^{(1)})^{k}v^{(1)} + \dots + \alpha_{n}(\lambda^{(n)})^{k}v^{(n)}}{\|\alpha_{1}(\lambda^{(1)})^{k}v^{(1)} + \dots + \alpha_{n}(\lambda^{(n)})^{k}v^{(n)}\|_{2}}$$

$$= \left(\frac{\lambda^{(1)}}{|\lambda^{(1)}|}\right)^{k} \cdot \frac{v^{(1)} + \frac{\alpha_{2}}{\alpha_{1}} \left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^{k}v^{(2)} + \dots + \frac{\alpha_{n}}{\alpha_{1}} \left(\frac{\lambda^{(n)}}{\lambda^{(1)}}\right)^{k}v^{(n)}}{\left\|v^{(1)} + \frac{\alpha_{2}}{\alpha_{1}} \left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^{k}v^{(2)} + \dots + \frac{\alpha_{n}}{\alpha_{1}} \left(\frac{\lambda^{(n)}}{\lambda^{(1)}}\right)^{k}v^{(n)}\right\|_{2}}$$

$$= e^{i\varphi} \cdot \frac{v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^{k}\right)}{\left\|v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^{k}\right)\right\|_{2}} \bigoplus$$

Отсюда имеем:

$$R(x_k) = (Ax_k, x_k) = (A \cdot (e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k))))^T \cdot (e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)))$$

$$= (e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)))^T A (e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)))$$

$$= (e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)))^T (e^{i\varphi} \cdot (\lambda^{(1)}v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)))$$

$$= \lambda^{(1)} \cdot \left\| e^{i\varphi} \cdot (v^{(1)} + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right)) \right\|_2$$

$$= \lambda^{(1)} \cdot (1 + O\left(\left(\frac{\lambda^{(2)}}{\lambda^{(1)}}\right)^k\right))$$

9

Вывод двух основных свойств QR алгоритма.

Теорема Леви-Деспланка и первая теорема Гершгорина.

Теорема Леви-Деспланка.

Определение. Матрица A обладает строгим строчным диагональным преобладанием, если $\forall i \ |a_{ii}| > \sum_{i=1,i\neq i}^{n} |a_{ij}|$.

Определение. Матрица A обладает строгим столбцовым диагональным преобладанием, если $\forall j \ |a_{jj}| > \sum_{i=1,i\neq j}^n |a_{ij}|$.

Теорема (Леви-Деспланка). Матрица, обладающая строгим строчным (столбцовым) диагональным преобладанием является невырожденной.

Доказательство.

Докажем для строгого строчного, для столбцового аналогично.

Представим A в следующем виде: $A = diag(A)(I + diag(A)^{-1})(A - diag(A))$, где матрица diag(A) – это диагональная матрица, у которой на диагонали стоят диагональные элементы матрицы A. Раскрыв скобки, можно проверить, что равенство действительно выполняется.

Вспомним немного из курса линала:

- Матрица A обратима \Leftrightarrow матрица A невырожденна
- Если A = BC, то $det(A) = det(B) \cdot det(C)$

Таким образом, нам необходимо и достаточно доказать обратимость матриц diag(A) и $(I + diag(A)^{-1})(A - diag(A))$.

Обратимость первой почти очевидна: если бы на диагонали могли стоять нулевые элементы, то матрица A не обладала бы строгим строчным диагональным пребладанием.

Теперь заметим, что $(I + diag(A)^{-1})(A - diag(A))$ обратима $\Leftrightarrow \exists \sum_{k=0}^{\infty} (-diag(A)^{-1})(A - diag(A))^k$ (вспоминаем про ряды Неймана).

Осталось доказать, что такой ряд Неймана сходится. Не будем использовать критерий, а используем признак: докажем, что $||diag(A)^{-1})(A - diag(A)|| < 1$ для некоторой нормы.

Рассмотрим бесконечную норму: $||diag(A)^{-1})(A-diag(A)||_{\infty}<1$. Пусть это неравенство не выполняется, тогда: $\max_i \frac{\sum_{j=1,j\neq i}^n |a_{ij}|}{|a_{ii}|} \geqslant 1$ (это я просто руками записала бесконечную норму для матрицы). Но тогда выходит, что A не обладает строгим строчным диагональным преобладанием – противоречие $\Rightarrow ||diag(A)^{-1})(A-diag(A)||_{\infty}<1 \Rightarrow \sum_{k=0}^{\infty} (-diag(A)^{-1})(A-diag(A))^k$ – сходится $\Rightarrow (I+diag(A)^{-1})(A-diag(A))$ обратима.

Таким образом, A представляет собой произведение обратимых матриц $\Rightarrow A$ и сама обратима, то есть, невырожденна.

Теорема Гершгорина.

Теорема (1-я теорема Гершгорина). Пусть $A \in \mathbb{C}$, тогда собственные значения матрицы A находятся внутри

$$D = D_1 \cup D_2 \cup \ldots \cup D_n$$

где

$$D_k = \{ z \in \mathbb{C} : |a_{kk} - z| \leqslant \sum_{i \neq k} |a_{ki}| \}$$

Доказательство.

Пусть $\lambda \notin D \Rightarrow A - I\lambda$ обладает строгим строчным диагональным преобладанием (просто посмотрите на то как мы определяем D_k , на то, что условие в D_k для данной λ не выполняются, и на строение матрицы A) \Rightarrow (по предыдущей теореме) $A - \lambda I$ — невырожденна, но тогда λ не может являться собственным значением A (вспоминаем курс линала: характеристический многочлен и его корни). Получили противоречние.

Определение. Матрица D_k – круги Гершгорина.

Теорема (2-я теорема Гершгорина без доказательства). Если есть m кругов Гершгорина, образующих область G, то в G находится ровно m собственных значений.