Contents

review	. 1
1 variable EDA	. 1
1 variable transformations	. 1
2 variable EDA	. 1
1 variable inference	. 2
Statistical Model Primer	. 3
Simple Linear Regression	. 3
Nonlinear Relationships?	. 4
Multiple Regression	. 4
including categorical explanatories?	. 5
what if categorical explanatories <i>have</i> interaction?	

review

- big picture of applied stats: see 36200 image idk
- we have statistics $(\overline{x}, \hat{p}, ...)$ and standard error $(SE_{\overline{x}}, SE_{\hat{p}}, ...)$
- population: literally everyone, hard to measure
- sample: subset of population
- parameter: perfect summary (e.g. mean height)
- statistic: measurable summary (e.g. mean height of sample)
- stderr of stat: typical variation due to random sampling.
 - diff error formulae for each stat.
 - this course: simply calc with software
- inference: give estimate and measure of how far off it might be
 - if statistic is random and sampling distribution known, we have probabilistic inference; can get p-value or margin or err

1 variable EDA

- categorical
 - ▶ bar graph
 - percent summaries
- quantitative
 - histogram
 - center: \overline{x} , median
 - spread: stddev, IQR, range
 - ▶ five number summary/box plot

1 variable transformations

- need normal distributions?
- $x^{\frac{1}{n}}$, $\log(x+c)$ so everything is > 1.
- the above's inverses
- quantile plots (qqplot) can help us diagnose if normal enough (look for straight line)

2 variable EDA

• explanatory x axis \rightarrow response y axis

Review of 2 Variable EDA (graphs and summaries to explore bivariate relationships)

[Reference: prerequisite course]

1 variable inference

- statistics $(\overline{x},S_x,\ldots)$ predicts parameters (μ,σ,\ldots)
- components:
 - point estimation: estimate via single number calculated
 - interval estimation: give plausible interview and how plausible
 - ▶ significance testing about hypotheses: assess evidence for/against claim about
- 95% confidence interval for μ is $\overline{X} \pm 2 \cdot SE_{\overline{X}}$
 - (works for arbitrary parameter/statistic estimate)
 - any sample Standard Error SE is $\frac{S}{\sqrt{n}}$ with sample stddev S (but remember, we just use software)
 - technically, 2 should be $t_{\rm crit}$ which varies with n, but it approximates to 2 for 95% confidence when large n
- · hypotheses testing

- H_0 vs H_A
- "p value is compared to significance level. we do (not) reject the null hypothesis. we do (not) have sufficient evidence that ..."
- \triangleright remember: p finds boolean evidence of difference from norm, not magitude of difference

Statistical Model Primer

- statistical models are often of form: quantity = expectation + error
- in 1 variable, eg: $Y_i = \mu + \varepsilon_i$ where μ is the prediction and ε_i is the error at i.
 - we also specify the distribution and mean + stddev of the errors
- in 2 variables, eg: for some X axis value, $Y_i = \mu_{Y|X} + \varepsilon_i$
 - we also specify the shape, center, spread of the distribution of errors

Simple Linear Regression

- our model idea is $Y_i = \beta_0 + \beta_1 X + \varepsilon_i$ where we assume the errors are
 - ▶ independent, mean 0, constant stddev/spread (for required for least squares)
 - are normal (required for inference)
 - (can be denoted iid, $N(\mu = 0, \text{variance} = \sigma^2)$)
- our **sample** regression equation is $\hat{y} = b_0 + b_1 X$
- notice that we have three parameters: β_0, β_1, σ
 - they are estimated by b_0, b_1 (when using least squares), and $\hat{\sigma}$: what R calls "Residual standard error"
- to apply the model:
 - 1. **state** the model
 - eg: "we use the SLR model. vision distance = $\beta_0 + \beta_1 \cdot age + \varepsilon_i$ where errors are independent, mean 0, constant stddev, normal.
 - 2. **validate** the data works for the model
 - linearity: visual inspection
 - errors are:
 - independent: residual plot. residuals "patternlessly" above and below 0 line.
 - mean 0: residual plot. reasonably centered around 0.
 - constant stddev: residual plot. reasonably constant spread, scanning left to right
 - if there are problems, consider diff model/transformations
 - 3. **estimate** the parameters
 - use software to find $b_0, b_1, \hat{\sigma}$
 - 4. **inference**: is data probably showing a relationship between *X* and *Y*?
 - t test for $\beta_1 = \text{or} \neq 0$
 - 5. **measure strength** of model with \mathbb{R}^2 (if not chance)
 - ullet R² is the percent of variability in Y that can be attibuted to the linear relationship with X
 - ▶ "Multiple R-squared" in R. NOT "Adjusted"
 - 6. **predict** of Y from X (for individual with X or all people with X)
 - ▶ the equation predicts the point estimate of *Y* given *X*
 - get prediction vs confidence interval via R for probable values of Y for individual or all at X

Nonlinear Relationships?

- can use a nonlinear model (same four error assumptions)
- can transform it
- transformations often preferred: fewer parameters make a simpler model
- make sure to not overfit!

Multiple Regression

- we're often interested in predicting a Y from multiple explanatory X_i
- when contribution from each X_i is linear, we have multiple linear regression:

$$Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon_i$$

where errors are

- independent
- ▶ mean 0
- contant stddev
- ▶ normal
- p+2 parameters: $\beta_{\{0-p\}}$ and σ
 - like SLR, σ is stddev of errors, ie typical deviation of Y from regression hyperplane
 - $\hat{\sigma}$ in R is still "residual standard error"
- each β_i is the avg change in Y when X_i increases by 1 unit and the other Xs remain fixed
- eg school.mod = lm(GPA ~ IQ + SelfConcept, data=school)
- to apply the model:
 - 1. **state** the model
 - 2. validate the data works for the model with EDA
 - ▶ scatterplots of Y against each explanatory (w/pairs plot). linearity: visual inspection
 - error conditions (also just use a residuals/qqplot):
 - independent: residual plot. residuals "patternlessly" above and below 0 line.
 - mean 0: residual plot. reasonably centered around 0.
 - constant stddev: residual plot. reasonably constant spread, scanning left to right
 - if there are problems, consider diff model/transformations
 - low multicollinearity (each X_i weakly correlated with each other) (might otherwise get mathematically impossible/conceptually inappropriate, misleading results. see media/high multicollinearity)
 - can informally investigate via: correlation matrix, odd parameter estimates, oddly large estimate stderrs
 - mathematically diagonse via variance inflation factor (vif)
 - let a model be $Y \sim X_1 + X_2 + X_3$
 - vif of X_i is $\frac{1}{1-R^2}$, with R^2 from $X_i \sim$ the other Xes.
 - i.e., vif of X_1 depends on $X_1 \sim X_2 + X_3$
 - BUT: just use software.

- when high multicol., drop variables: check diff subsets of *X*es, recheck diagnostics for each. find best model with R's *adjusted R-squared* (adjusts for different number of explanatory variables. otherwise, R-squared would be higher with more variables, rmbr?)
- BUT: also just use software (best subsets routine)
- vif ≥ 2.5 is concerning
- 3. estimate parameters w/ software
- 4. **inference**: is data probably showing a relationship between X_i and Y?
 - F-statistic: tests if any of \boldsymbol{X}_i are important for predicting \boldsymbol{Y}
 - ullet individual T-tests: tests if each X_i is a significant predictor in the presence of all other explanatories
- 5. **predict**: use model, with R^2 for its effectiveness
 - multiple R-squared: proportion of variation in Y that can be explained by all of X_i . has a few properties:
 - closer to 1 = better "fit"
 - can only increase with more predictors
 - diminshing returns

including categorical explanatories?

• check for no interaction between predictors

parallel lines iff X_2 doesn't depend on X_1 iff no interaction between X_1 and X_2 iff X_1 effect doesn't depend on X_2 .

why is this so verbose from the slides:/

- assuming no interaction between predictors:
 - ▶ include a binary indicator/dummy variable (1 if smoker, 0 else)
 - call the category defined as 0 a "baseline" category
- if a categorical variable has, say, 3 options, we get 2 dummy variables, both binary with 0 representing baseline group.
 - "controlling for years of seniority, dept A makes X less than dept C on average"
 - "holding dept constant, we estimate for every extra year of seniority, salary increases by X on average"

what if categorical explanatories have interaction?

• let us investigate a situation where calories ~ carbs, but with slopes that differ depending on whether the item is meat.

• new model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 \cdot \text{DummyMEAT} + \beta_3 (X_1 \cdot \text{DummyMEAT}) + \varepsilon$$

- capture the difference in slopes with an "interaction term" (the β_3 term above)
- ▶ lm(Calories ~ Carbs + Meat + Carbs:Meat, data=fastfood)
- · assumptions:
 - population relationship linear within each level of Dummy
 - within each level of Dummy, the errors are indep, mean 0, const stddev, normal (i.i.d., $N(0, \sigma^2)$)
- IMPT: if interaction term stat. significant, then those explanatories must be kept (regardless of their individual variable p-values)
 - ▶ this just means that their slopes are indeed different, i think
 - ▶ so if they are not significant go back to normal multiple regression ig
- coefficient β_3 interpretation:
 - 1. difference in slopes; i.e., how the quantitative X_1 effect depends on the group Dummy value

- "For every unit increase in X_1 , the change in Y is β_3 greater/less on avg in Dummy₁ than in Dummy₀
- 2. equivalently: how the vertical difference between the lines changes; i.e., how the group Dummy effect depend son the quantitative X_1 value
 - "For a particular value x_1 of the quantitative variable,"

ok yknow what tbh just look at this interpretation:

• and here's a nice lil summary from the notes:

The Multiple Linear Regression Model with Interaction between a Quantitative Predictor and a Two-Level Categorical Predictor

If X_1 is a quantitative variable, and X_2 is a categorical variable with two levels, then the multiple linear regression model with interaction proposes the population relationship is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2) + \varepsilon$$

Along with the following assumptions of the model:

- That the population relationship is linear within each level of X2
- That, within each level of X₂, the population errors ε are:

i.i.d., N(0, σ^2)
["independent and identically distributed, Normally with mean 0 and variance σ^{2n}]

- Independent
- Have mean = 0
- Have constant standard deviation σ (for all x)
- · Are Normally distributed

good luck on exam 1 <3