Sistemas y Señales I

Señales en Tiempo Discreto Teorema de Muestreo

Temario: Cap. 1: Items 1.3.5, 1.5

- <u>Señales en Tiempo Continuo</u>: están definidas en un intervalo continuo de tiempo.
- <u>Señales en tiempo discreto:</u> están definidas sólo en valores discretos de tiempo. Los instantes de tiempo no necesariamente están equiespaciados.
 - En general, las señales en Tiempo Discreto (TD) aparecen cuando se muestrea una señal analógica, es decir, cuando se toman muestras de la señal a instantes discretos de tiempo.
 - Si los instantes de tiempo están equiespaciados, el muestreo se denomina periódico o uniforme

SyS-I

Figura 1: Muestreo uniforme

 F_s : frecuencia de muestreo [Hz]

$$T = \frac{1}{F_S}$$
 : período de muestreo [seg]

SyS-I

- Consideraremos muestreo periódico o uniforme → intervalos entre muestras sucesivas constante.
- Las variables "t" y "n" están relacionadas de acuerdo a:

$$t=nT=\frac{n}{F_S}$$

 Como consecuencia, la frecuencia F (o Ω) de una señal periódica en TC, estará relacionada con la frecuencia f (o ω) de la correspondiente señal muestreada.

Consideremos

$$x_a(t) = A \cos(2\pi F t + \theta)$$

Muestreo
$$F_s = \frac{1}{T}$$

$$x(n) \triangleq x_a(nT) = A \cos(2\pi F nT + \theta)$$

$$= \Omega$$

$$= A \cos(\frac{2\pi nF}{F_S} + \theta)$$

$$= A \cos(2\pi f n + \theta)$$

por lo que:

$$f = \frac{F}{F_{S}}$$

frecuencia

normalizada o relativa

$$\omega = \frac{\Omega}{F_S} = \Omega T$$

- En contraste con las señales senoidales en TC, las señales senoidales en TD verifican:
 - 1. <u>Una señal senoidal en TD es periódica si y sólo si su</u> frecuencia f es un número racional.

Por definición x(n) es periódica si y sólo si $\exists N \ (N>0)$ tal que:

$$x(n + N) = x(n) \quad \forall n$$

El menor valor de *N* que verifica esta propiedad se denomina período fundamental.

Para el caso de una onda senoidal, tendríamos:

$$cos(2\pi f(N+n) + \theta) = cos(2\pi f n + \theta)$$
 $\forall n$

que se verifica si y sólo si: $2\pi f N = 2\pi k \operatorname{con} k$ entero

$$f = \frac{k}{N} \Leftrightarrow \underline{f} \text{ es racional}$$

– Para determinar el período fundamental N de una senoide discreta, expresamos f como el cociente de dos números enteros primos relativos. Entonces el período N es el denominador de esta expresión.

$$f_1 = \frac{30}{60} = \frac{1}{2}$$
 próxima a $f_2 = \frac{29}{60}$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N_1 = 2 \qquad \text{muy distinta} \qquad N_2 = 60$$

2. <u>Señales sinusoidales en TD cuyas frecuencias están separadas un múltiplo entero de 2π son idénticas.</u>

$$cos[(\omega + 2\pi)n + \theta] = cos[\omega n + 2\pi n + \theta] = cos[\omega n + \theta]$$

Como consecuencia todas las secuencias de sinusoides

$$x_k(n) = A \cos(\omega_k n + \theta)$$

donde:
$$\omega_k = \omega + 2\pi k$$

 $-\pi \leq \omega \leq \pi$

son indistinguibles (idénticas).

En particular, una sinusoide con frecuencia en el rango $|\omega| > \pi$ será equivalente a una sinusoide en el rango $|\omega| \le \pi$ ($|f| \le 0.5$) y se la denomina un alias de la sinusoide en el rango $|\omega| \le \pi$.

El rango fundamental de frecuencias de señales en TD es entonces:

$$-\pi \le \omega \le \pi$$
$$-0.5 \le f \le 0.5$$

Mientras que para señales en TC es:

$$-\infty \le \Omega \le \infty$$
 $-\infty \le F \le \infty$

rango de frecuencia de señales en TC

3. La máxima frecuencia de oscilación de una senoide en TD es $\omega = \pi$ (o f = 0.5)

Considerando que:

$$f = \frac{F}{F_S}$$

y que f_{max} =0.5, resulta que la máxima frecuencia F_{max} de la señal en TC que puede muestrearse con una frecuencia F_s sin que se produzca aliasing es:

$$f_{\text{max}} = \frac{1}{2} = \frac{F_{\text{max}}}{F_{S}} \implies F_{\text{max}} = \frac{F_{S}}{2}$$

En otras palabras, para evitar que se produzca aliasing y de esa forma poder reconstruir una señal a partir de las muestras debemos seleccionar:

$$F_{\rm s} > 2 F_{\rm max}$$

donde F_{max} es la máxima frecuencia contenida en la señal analógica.

Teorema de Muestreo: Si la frecuencia más alta contenida en una señal analógica $x_a(t)$ es $F_{max} = B$ y la señal es muestreada con una frecuencia $F_S > 2$ $F_{max} = 2B$, entonces $x_a(t)$ puede ser exactamente recuperada a partir de las muestras como:

$$x_{a}(t) = \sum_{n=-\infty}^{\infty} x_{a}(\frac{n}{F_{S}})g(t - \frac{n}{F_{S}})$$

donde

$$x_{a}(\frac{n}{F_{S}}) \stackrel{\triangle}{=} x_{a}(nT) = x(n)$$

son las muestras de $x_a(t)$ y g(t) es la función de interpolación definida como:

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}$$

Figura 2: Interpolación Ideal – Teorema de Muestreo

A $F_N \stackrel{\triangle}{=} 2B$ se la denomina Tasa de Muestreo de Nyquist.

Ejemplo: Determinar la tasa de muestreo de Nyquist

$$x_a(t) = 3\cos(50\pi t) + 10\sin(300\pi t) - \cos(100\pi t)$$

Solución:

$$F_1 = 25 \text{ Hz}$$
 $F_2 = 150 \text{ Hz}$ $F_3 = 50 \text{ Hz}$

Veamos que
$$F_{max} = 150 \text{ Hz}$$
 \Rightarrow $F_N = 300 \text{ Hz}$

Sin embargo, si muestreamos con $F_s = F_N$, las muestras de la componente

$$10 \sin(300 \pi t)$$
 resultan $10 \sin(\pi n)$

que son idénticamente nulas y obviamente no puede recuperarse la señal a partir de las muestras !!

Ejemplo:

Supongamos que se desea generar y graficar las señales en tiempo continuo $x_1(t)$ y $x_2(t)$ definidas como

$$x_1(t) = \cos(2\pi 50t)$$

 $x_2(t) = \cos(2\pi 550t)$

y las correspondientes señales en tiempo discreto que se obtienen muestreandolas con una frecuencia F_s =500 Hz. Notar que las dos señales tienen asociada la misma señal muestreada

$$x_1(n) = \cos(\frac{2\pi 50n}{500})$$

$$x_2(n) = \cos(\frac{2\pi 550n}{500}) = \cos\left(2\pi n + \frac{2\pi 50n}{500}\right) = x_1(n)$$

 $x_2(n)$ es un **alias** de $x_1(n)$.

SyS-I

Figura 3: Señales $x_1(t)$ (línea azul), $x_2(t)$ (línea roja) y correspondientes muestras $x_1(n) = x_2(n)$ (circulo negro).