1. MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi Shear Modulus: G = 11200 ksi Yield Strength: $F_{y=} 50$ ksi Ultimate Strength: $Fu_{=} 70$ ksi

Reference: AISC 14th

Eq/Fig/Table

Section

Problem 4.18:

18: E

Select a pair of C10 channels for a tension member subjected to a dead lead of 120 kips and a live load of 275 kips. The channels are placed back to back and connected to a 3/4-in gusset plate by 7/8-in Ø bolts. Assume A588 Grade 50 steel for the channels and assume the gusset plate is sufficient. The member is 25 ft long. The bolts are arranged in two lines parallel to the length of the member. There are two bolts in each line 4 in on center.

Plate	F _{y=}	50	ksi
	Qty =	1	
Plate Width:	$W_{tp} =$	9	in
Plate Thickness:	$t_{tp} =$	3/4	in

FIGURE P4-18

Required:

a) Select C10 channels for tension member

Method:

- i) Determine Controlling Load Combination
- ii) Check for limit states
- iii) Check slenderness Ratio

Solution:

Member Length	L =	25	ft	
Dead Load	DL=	120	kip	
Live Load	LL=	275	kip	
Factors	ϕ_t =	0.9		$\Omega_{\rm t}$ =
	$\phi_r =$	0.75		$\Omega_{\rm t}$ =
Number of Members		2		

 Ω_{t} = 1.5

2 Referenc AISC 14th Section *'Fig/Table/No*

LRFD

1) Demand:

•			
Load	Pu =	584	kip
Yielding:	Ag =	12.98	in ²
Area/Member	Arad =	6.49	in ²

Demand:

ASD

Pa =	395	kip
Ag =	5.27	in ²
Arad =	2 63	in ²

2) Capacity:

Capacity:

Member Selected: C10X30

C10X30

14.551 Advanced Steel Design Ana Gouveia

Assignment # 1

Tension and Compression Members

12/5/2014

Web Thickness:	t _{wch}	0.673	in	t _{wch}	0.673	in
	A _{ch}	8.81	in ²	A _{ch}	8.81	in ²
Eccentricity	xbar	0.649	twch	xbar	0.649	twch
	rmin	1 22	in	rmin	1 22	in

i) Gross Section Yielding:

Ag=	17.62	in ²
Pn=	881.00	kip
φ _t Pn=	792.90	kip

Gross Section Yielding:

Ag=	17.62	in ²
Pn=	881.00	kip
φ _t Pn=	587.33	kip

ii) Tensile Rupture Strength:

Tensile Rupture Strength:

Connection:

# Bolts/Channel/Area:		2	Units
Bolt Size:	φ=	7/8	in
Area bolt holes:	Ah =	2.69	in ²

Connection:

	2	Units
φ=	7/8	in
Ah =	2.69	in ²

Channel Section Strength

Capacity	$\phi_t Pn =$	656.56	kip
Nominal Strength	Pn=	875.42	kip
Effective Area	Ae=	12.51	in ²
Shear Lag	U=	0.84	
Nominal Area	An=	14.93	in ²

Channel Section Strength

An=	14.93	in ²
U=	0.84	
Ae=	12.51	in ²
Pn=	875.42	kip
Pn/Ω=	437.71	kip

iii) Design Check:

Tension Strength	OK
Slenderness Ratio:	OK

Design Check:	Desi	ign	Ch	ec	k:
---------------	------	-----	----	----	----

Design Check

AISC

Table 1-16

on Strength	OK	ОК
erness Ratio:	OK	ОК

LRFD:	2 -	C10X30
-------	-----	--------

ASD: 2 -	C10X30
----------	--------

ANSWER

6.22. MATERIAL PROPERTIES:

Modulus of Elasticity	E =	29000	ksi
	G =	11200	ksi
Yield Strength:	F _y =	36	ksi
	Eu	70	kei

Problem 6.22:

Select the lightest pair of C9 channels to support the loads $P_D = 50$ k and $P_L = 90$ k. The member is to be 20 ft long with both ends pinned and is to be arranged as shown in the accompanying illustration. Use A36 steel and design single lacing and end tie plates, assuming that $\frac{3}{4}$ -in diameter bolts are to be used for connections. Assume that the bolts are located $1\frac{1}{4}$ in from the back of channels. Solve by LRFD and ASD procedures.

FIGURE P6-22

Required:

- a) Select C9 channels for compression member
- b) Design Single Lacing For Channels
- c) Design End Tie Plates

Method:

- i) Determine Controlling Load Combination
- ii) Check for limit states
- iii) Check slenderness Ratio

Solution:

Member Length	L =	20	ft			
Dead Load	DL=	50	kip			
Live Load	LL=	90	kip			
Factors	ϕ_t =	0.9		$\Omega_{\rm t}$ =	1.5	
	$\phi_r =$	0.75		$\Omega_{\rm t}$ =	2	
Number of Members		2	Units			
Distance between men	nbers	6	in			Referenc AISC 14th
						Section <u>Eq/Fig/Table</u>
PART A: DESIGN OF CH	ANNELS					F

1) Demand:

Load	Pu =	204	кір	
Compression:				
Assume	K =	1		
	KL/r =	80		
	$\phi F_{cr} =$	25	ksi	

Area required: in² Ag = 8.16 in² Area/Member 4.08 Arqd =

Capacity:

ASD

Pa =	140	кір		
K =	1			
KL/r =	80			
$\phi F_{cr} =$	25	ksi	AISC	Table 4-22
Ag =	5.60	in ²		

in²

Table 1-1

Table 1-1

Table 1-1

Table 1-1

Table 1-1

Table 1-1

Table 1-1 Table 1-1

AISC

AISC

AISC

AISC

AISC

AISC

AISC

AISC

2.80

Capacity:

Arqd =

Member Selected:		C9X15		C9X15	
Web Thickness:	t _{wch}	0.285	in t _{wch}	0.285	in
	A _{ch}	4.41	in ² A _{ch}	4.41	in ²
Eccentricity	xbar	0.586	in xbar	0.586	in
Mom. Inertia, x	I _{xch}	51	in ⁴ I _{xch}	51	in⁴
Mom. Inertia, y	I _{ych}	1.91	in ⁴ I _{ych}	1.91	in⁴
Radius of Gyration, x	r _{xw =}	3.4	in r _{xw =}	3.4	in
Radius of Gyration, y	ryw =	0.659	in ryw =	0.659	in

Built Up Section

Built Up Section

Ana Gouveia

Tension and Compression Members

iii) Design Check:

Design Check:

Design Check

Compressive Strength

OK

OK

LRFD: 2 -	C9X15
-----------	-------

ASD: 2 - C9X15

ANSWER

Min

Table J3.4

PART B: DESIGN OF SINGLE LACING

Lacing	Check:
--------	--------

Boltline distance from channel		1 1/4	in	dc =	1 1/4	in	
Distance between bolt lines		8 1/2	in	db =	8 1/2	in	
Angle between Laces		60	deg	angle =	60	deg	
Length of	Lace	9.8	in	length =	9.8	in	
Smallest Radius of Gyration		0.659	in	rmin =	0.659	in	
Stiffness per Lace		14.9		klace =	14.9		
Stiffness of Member:		70.6		kmember =	70.6		
Check:	Klace <kmember?< td=""><td>ОК</td><td></td><td></td><td>OK</td><td></td><td></td></kmember?<>	ОК			OK		

i Demand Force on lacing bar:

Shear Force	Vu =	4.39	kip	Va =	2.92	kip
Force per side	Vu/2 =	2.19	kip	Vu/2 =	1.46	kip

Compressive Force: Pc = 2.53 Pc = 1.69 Demand Force

ii Capacity

Design of bar:

Width	b =	1	in
Thickness	t =	1/4	in
Area	A =	1/4	in ²
Moment of Inertia	I =	0.00	in ⁴
Radius of Gyration	r =	0.07	in
Assume	K =	1	
	KL/r =	135.8	
Capacity Strength	$\phi F_{cr} =$	12.21	ksi
Area required:	Ag =	0.207	in ²
Width Required:	brqd =	0.829	in
Min Width	bmin =	2.5	in
Width:	b =	2.5	in
Length of Bars:	L =	12.3	in
Length:	L =	12.5	in
LDED			

b =	1	in			
t =	1/4	in	Trial		
A =	1/4	in ²			
I =	0.00	in ⁴			
r =	0.07	in			
K =	1				
KL/r =	39.2		AISC	Table	4-22
$F_{cr/\Omega} =$	16.58	ksi	Capacity	Interpo	olation
Ag =	0.10	in ²			
brqd =	0.407	in			
bmin =	2.5	in			
b =	2.5	in			
L=	9.8	in			
L =	12.5	in			

LRFD: ASD

Assignment # 1

Ana Gouveia

Tension and Compression Members

1/4 2 1/2 12 1/2 in 1/4 2 1/2 12 1/2 in ANS	WER
--	-----

PART C: DESIGN OF END TIE PLATES

Minim	um length		8 1/2	in		8 1/2	in	
Minim	um thickness		0.17	in		0.17	in	
Minim	um Width		11	in		8.5	in	
ı	LRFD:			ASD				
	3/16	8 1/2	12	in2 3/16	8 1/2	12	in2	ANSWER

7.5. MATERIAL PROPERTIES:

Modulus of Elasticity	E =	29000	ksi
	G =	11200	ksi
Yield Strength:	F _{y=}	50	ksi
	Fu _	70	ksi

Problem 7.5:

- 7-5. Determine the available column strength for column AB in the frame shown for which $F_v = 50$ ksi. Otherwise, the conditions are exactly as those described for Prob. 7-3.
 - a. Assume elastic behavior. (Ans. 1095 k, LRFD; 729 k, ASD)
 - b. Assume inelastic behavior and $P_D = 240$ k and $P_L = 450$ k. (Ans. 1098 k, LRFD; 735 k, ASD)

FIGURE P7-5

Required:

- a) Available column strength for elastic behavior
- b) Available column strength for inelastic behavior

Method:

- i) Determine Member Stiffness, Joint Rotational Stiffness and Effective Length Factor
- ii) Determine Strength
- iii) Determine Stiffness Reduction factor and Strength

Solution:

BRACED-FRAME INFORMATION:

#	Member	Section	Length	I	E	Support end A	Support end B	Stiffness
		(Shape)	(ft)	(in ⁴)	(Msi)		(kip.ft)	(kip.ft)
0	No Member	0	0	0	0	0	0	0
1	Column AB	W14X99	14	1110	29	Pin	Normal	2E+06
2	Column BC	W14X99	14	1110	29	Pin	Normal	2E+06

Ana Gouveia

Tension and Compression Members

3	Beam BR	W24X76	30	2100	29	Pin	Normal	2E+06
4	Beam BL	W24X76	30	2100	29	Pin	Normal	2E+06

DETERMINATION OF EFFECTIVE LENGTH FACTOR K (BRACED)

-	#	End	Support	C1	C2	В1	В2	Rotational Stiffness	K			
	(#)	(type)	Units		(Shape,	(ft)	(in ⁴)	(kip.ft)				
,	0	Α	Pin					10.00	1.81	App. 7	Fig.	C-A-7.1
		В	Normal	1	0	3	4	0.566				
		LRFD					ASD					

1) Demand:

Capacity

K = 1.81 rx/ry = 1.66 KL/r = 15.27 ft $\phi_t Pn = 1095.00$ ft

Demand:

K = 1.81 rx/ry = 1.66 KL/r = 15.27 ft $Pn/\Omega = 729.00$ ft Determined above

ANSWER Table 4-1

Ε

PART B: INELASTIC DESIGN

 Ω_{t} = 1.5 Ω_{t} = 2

LRFD ASD

1) Demand:

Load Pu = 1008 kip

Demand:

Pa = 690 kip

2. Stiffness Reduction Factor

Member Shape:	W	W14X99		W	W14X99		
	Ag=	29.1	in ²	Ag=	29.1	in ²	
	Fy =	50	ksi	Fy =	50	ksi	
	Py =	1455	kip	Py =	1455	kip	
	$\alpha =$	1		$\alpha =$	1.6		
Ratio:	αPu/Py=	0.693		αPu/Py=	0.759		
Factor	τb=	0.851		τb=	0.732		
Rotational Stiffness	G =	0.48		G =	0.41		
	K =	1.79		K =	1.77		Determined above
	rx/ry =	1.66		rx/ry =	1.66		
	KL/r =	15.10	ft	KL/r =	14.93	ft	
Capacity	φ _t Pn=	1098.00	ft	Pn/Ω=	735.00	ft	ANSWER Table 4-1
	-		·				

7.6. MATERIAL PROPERTIES:

Modulus of Elasticity	E =	29000	ksi
	G =	11200	ksi
Yield Strength:	$F_{y=}$	50	ksi
	Fu =	70	ksi

Problem 7.6:

7-6. Repeat Prob. 7-5 if $P_D = 225$ k and $P_L = 375$ k and a W12 \times 87 section is used.

Required:

- a) Available column strength for elastic behavior
- b) Available column strength for inelastic behavior

Method:

- i) Determine Member Stiffness, Joint Rotational Stiffness and Effective Length Factor
- ii) Determine Strength
- iii) Determine Stiffness Reduction factor and Strength

Solution:

BRACED-FRAME INFORMATION:

#	Member	Section	Length	I E		Support end A	Support end B	Stiffness
		(Shape)	(ft)	(in ⁴)	(Msi)		(kip.ft)	(kip.ft)
0	No Member	0	0	0	0	0	0	0
1	Column AB	W12X87	14	740	29	Pin	Normal	2E+06
2	Column BC	W12X87	14	740	29	Pin	Normal	2E+06
3	Beam BR	W24X76	30	2100	29	Pin	Normal	2E+06
4	Beam BL	W24X76	30	2100	29	Pin	Normal	2E+06

DETERMINATION OF EFFECTIVE LENGTH FACTOR K (BRACED)

#	End	Support	C1	C2	B1	В2	Rotational Stiffness	К			
(#)	(type)	Units		(Shape,	(ft)	(in ⁴)	(kip.ft)				
0	Α	Pin					10.00	1.76	App. 7	Fig.	C-A-7.1
	В	Normal	1	0	3	4	0.378				
	LRFD					ASD	-	·i			

1) Demand:

Capacity

K = 1.76 rx/ry = 1.75 KL/r = 14.08 ft $\phi_t Pn = 922.00$ ft

Demand: K = 1.76 rx/ry = 1.75 KL/r = 14.08 ft Pn/Ω = 614.00 ft

Determined above

ANSWER Table 4-1

Tension and Compression Members

PART B: INELASTIC DESIGN

Ε

Dead Load DL= 225 kip Live Load LL= 375 kip **Factors** $\phi_t =$ 0.9

 $\phi_r =$ 0.75 $\Omega_t =$ 1.5 Ω_t = 2

LRFD ASD

1) Demand:

Load Pu = 870 kip

Pa =	600	kip	

2. Stiffness Reduction Factor

Member Shape:	W	W12X87		W	W12X87		
	Ag=	25.6	in ²	Ag=	25.6	in ²	
	Fy =	50	ksi	Fy =	50	ksi	
	Py =	1280	kip	Py =	1280	kip	
	$\alpha =$	1		$\alpha =$	1.6		
Ratio:	αPu/Py=	0.680		αPu/Py=	0.750		
Factor	τb=	0.871		τb=	0.750		
Rotational Stiffness	G =	0.33		G =	0.42		
	K =	1.75		K =	1.74		Determined above
	rx/ry =	1.75		rx/ry =	1.75		
	KL/r =	14.00	ft	KL/r =	13.92	ft	
Capacity	φ _t Pn=	925.00	ft	Pn/Ω=	617.00	ft	ANSWER Table 4-1

7.10. MATERIAL PROPERTIES:

Modulus of Elasticity	E =	29000	ksi
	G =	11200	ksi
Yield Strength:	F _y =	50	ksi
	Fu ₌	70	ksi

Problem 7.10:

Use the Effective Length Method, assume elastic behavior, and use both the LRFD and ASD methods. The columns are assumed to have no bending moments.

7-10. Repeat Prob. 7-9, assuming that the outside columns are fixed at the bottom.

Design W14 columns for the bent shown in the accompanying figure, with 50 ksi steel. The columns are braced top and bottom against sidesway out of the plane of the frame so that $K_y = 1.0$ in that direction. Sidesway is possible in the plane of the frame, the x-x axis. Design the interior column as a leaning column, $K_x = K_y = 1.0$ and the exterior columns as a moment frame columns, K_x determined from the alignment chart. (Ans. (Interior) W14 \times 176, LRFD; W14 \times 193, ASD – (Exterior) W14 × 211, LRFD and ASD)

Required:

- a) Design W14 columns for the frame in Figure P7-9 above (interior)
- b) and Exterior

Method:

- i) Determine Member Stiffness, Joint Rotational Stiffness and Effective Length Factor
- ii) Determine Strength
- iii) Determine Stiffness Reduction factor and Strength

Solution:

MOMENT-FRAME INFORMATION:

# M	ember Se	ection	Length	I	E	Support end A	Support end B	Stiffness	
	(Si	Shape)	(ft)	(in ⁴)	(Msi)		(kip.ft)	(kip.ft)	
0 No l	Member	0	0	0	0	0	0	0	
1 Co	terior olumn <mark>W1</mark> terior	14X176	18	2140	29	Fixed	Normal	3E+06	LRFD/ASD
2 Co		14X176	18	2140	29	Pin	Normal	3E+06	LRFD
3 Colu	mn ASD W1	14X193	18	2400	29	Pin	Normal	4E+06	ASD
4 Be	am BR <mark>W2</mark>	27X114	28	4080	29	Pin	Normal	2E+06	Adjusted for pin
5 Be	am BL <mark>W2</mark>	27X114	28	4080	29	Pin	Normal	2E+06	Adjusted page

DETERMINATION OF EFFECTIVE LENGTH FACTOR K (MOMENT)

#	End	Support	C1	C2	B1	В2	Rotational Stiffness	K	
(#)	(type)	Units		(Shape,	(ft)	(in ⁴)	(kip.ft)		
1	Α	Fixed					1.00	1.4	App. 7 Fig. C-A-7.2
	В	Normal	1	0	0	5	1.63	1	_
2	Α	Pin					10.00	1	Given, x
	В	Normal	2	0	4	5	0.816	1	Given, y
3	Α	Pin					10.00	1	Given, x
	В	Normal	3	0	4	5	0.915	1	Given, y

PART A: INTERIOR CO	LUMN				Е
Dead Load	DL=	500	kip		
Live Load	LL=	800	kip		
Factors	$\phi_t =$	0.9	Кір	Ω_{t} = 1.5	
1 400013	$\phi_r =$	0.75		Ω_t = 2	
	Ψr [—]	0.75		sat− ∠	
LRFD			=	ASD	
1) Demand:				Demand:	
Load	Pu =	1880	kip	Pa = 1300 kip	Demand
_	KLy =	18.00	ft	KLy = 18.00 ft	From factors above
2) Capacity	φ _t Pn=	1890.00	ft	Pn/ Ω = 1380.00 ft	Capacity Table 4-1
3) Design Check: Strength		ОК		Design Check: OK	Design Check
Use	LRFD:	W14X176		ASD: W14X193	ANSWER
PART B: EXTERIOR CO	LUMN				E
Dead Load	DL=	250	kip	DL= 250 kip	
Live Load	LL=	400	kip	LL= 400 kip	
Leaning Column Load	LCL =	940	kip	LCL = 650 kip	
Factors	φ _t =	0.9		Ω_{t} = 1.5	
	ϕ_r =	0.75		Ω_{t} = 2	
LRFD			=	ASD	
1) Demand:				Demand:	
Leaning Load	Pu =	1880	kip	Pa = 1300 kip	
Individual Load	Pu =	940	kip	Pa = 650 kip	
Individual Load					
_	KLy =	0.00	ft	KLy = 0.00 ft	From factors above
2) Capacity	φ _t Pn=	1890.00	ft	Pn/Ω= 1270.00 ft	Capacity
3) Design Check:				Design Check:	Design Check
Strength		OK		OK	
Leaning Load					
	Kx =	1.40		Kx = 1.40	
Facility 14	rx/ry =	1.6	C.	rx/ry = 1.6	
Equivalent K	KL/r =	0.00	ft	KL/r = 0.00 ft Pn/Ω= 1317.00 kin	
2) Capacity	φ _t Pn=	1980.00	kip	1317.00 Kip	Capacity Table 4-1
3) Design Check:		01/		Design Check:	Design Check
Strength		OK		OK	

12/5/2014 11/ .

Tension and Compression Members

Use

LRFD: ft=

ASD: ft=

ANSWER

Problem 7.11:

Required:

- a) Design W14 columns for the frame in Figure P7-9 above (interior)
- b) and Exterior

Method:

- i) Determine Member Stiffness, Joint Rotational Stiffness and Effective Length Factor
- ii) Determine Strength
- iii) Determine Stiffness Reduction factor and Strength

Solution:

MOMENT-FRAME INFORMATION:

#	Member	Section	Length	I	E	Support end A	Support end B	Stiffness
	•	(Shape)	(ft)	(in ⁴)	(Msi)		(kip.ft)	(kip.ft)
0	No Member	0	0	0	0	0	0	0
1	Bottom		15					
1	Column	W14X109	15	1240	29	Fixed	Normal	2E+06
2	Top Column	W14X90	13	999	29	Pin	Normal	2E+06
3	Beam Bottom	W18X50	25	800	29	Moment	Moment	928000
4	Beam Top	W18X55	25	890	29	Moment	Moment	1E+06

DETERMINATION OF EFFECTIVE LENGTH FACTOR K (MOMENT)

#	End	Support	C1	C2	B1	B2	Rotational Stiffness	К	_
(#)	(type)	Units		(Shape	, (ft)	(in ⁴)	(kip.ft)		_
1	Α	Fixed					1.00	1.7	A
	В	Normal	1	2	0	3	4.98	1	G

App. 7 Fig. C-A-7.2 Given, y

F	XΤ	F	RI	O	R	CO	П	H	M	٨
ᆮ	ΛІ	Е	N	v	\mathbf{r}	u	, L	u	IVI	ı١

Ł

Dead Load

DL= 250 ki

DL= 250 kip

Given

14.551 Advanced S	Steel Design
-------------------	--------------

Assignment # 1

12/5/2014 12/ .

Ana Gouveia

Tension and Compression Members

Live Load	LL=	500	kip
Leaning Column Load	LCL =	0	kip
Factors	ϕ_t =	0.9	
	$\phi_r =$	0.75	

LL=	500	kip	Given
LCL =	0	kip	No Leaning Columns
Ω_{t} =	1.5		
Ω_{t} =	2		

LRFD

ASD

1) Demand:

Leaning Load Individual Load

Pu =	1100	kip
Pu =	1100	kip

Demand

Pa =	750	kip
Pa =	750	kip

Individual Load

2) Capacity

KLy =	15.00	ft	
φ _t Pn=	1210.00	kip	

ОК

3) Design Check:

Strength

Leaning Load

Equivalent K

Kx =	1.70	
rx/ry =	1.67	
KL/r =	15.27	ft
φ _t Pn=	1205.00	kip

3) Design Check:

2) Capacity

Strength

OK

KLy =	15.00	ft
Pn/Ω=	808.00	kip
Design Check:		

ОК

Kx =	1.70	
rx/ry =	1.67	
KL/r =	15.27	ft
Pn/Ω=	803.00	kip

Design Check:

Capacity Table 4-1

From factors above

Capacity Table 4-1

Design Check

Design Check

ОК

Use

LRFD: W14X109

ASD: W14X109

ANSWER