Pharmakotherapie von M. Parkinson und M. Alzheimer

Antiparkinson-Mittel

Pathophysiologie

Idiopathischer Morbus Parkinson ("Schüttellähmung") (James P. 1817)

- Chronisch progrediente Erkrankung des extrapyramidalen Systems
- Degeneration von DA-Neuronen der Subst. nigra →Striatum (Basalgangl.)
- Syndrom mit typischen Bewegungsstörungen (wenn >70% DA-N. ausfallen)
- Pathologie = S. nigra Depigmentierung (Neuromelanin↓) + Levi-Körperchen
- zusätzlich Degeneration von Neuronen d. L. coerul., dorsal. Vaguskerne

Parkinson-<u>ähnliche</u> Syndrome auch auslösbar durch:

- Pharmaka (Neuroleptika, Reserpin, Methyldopa)
- Neurotoxine (Pethidin-Vorstufe MPTP→MPP+)
 - durch degenerative Hirnerkr. / Hirnschäden (Boxen?)
 - nach CO- oder Methanol-Intoxikation
 - bei Morbus Wilson

1. Idiopath. M. Parkinson: = ca. 90% aller Parkinson-Syndrome

Prävalenz: 0,1%; ab 65 ca. 1%; ab 70 ca. 2% (Ursache unklar);

2. Genetisch: Mutation (mitoch.) Gene z.B: α-Synuclein, PINK1, Parkin, LLRK2

Substantia nigra

normal

Mb. Parkinson

Lewi-Körperchen

Ursachen? DA-Oxidation? Radikale? Viren? Immun. Prozess?

Mutat. mitoch. Gene α-Synuclein;
Mutationen im SNCAGen sind verantwortlich für Synucleinopathien,
wie die erblichen Formen
1 und 4 der ParkinsonKrankheit und der LewyKörperchen-Demenz

Striatum (mit N. caud. und Putamen) etc

Extrapyramidale Koordinierung der Motorik über motor. Schaltkreise a) über Cerebellum und b) über die <u>Basalganglien</u>

Extrapyramidal-motorische Basalganglienschleife

A) beim Gesunden

B) bei M. Parkinson

M. Parkinson: DA-Unterfunktion →verstärkte glutamaterge (und cholinerge) Aktivität → GABAerge Hemm. Thalamus↑ (sensomotor. Filter↑)
© Elsevier GmbH, Urban & Fischer Verlag • 13-01.ing

M. Parkinson Symptomatik:

Kardinalsymptome:

- Rigor (Muskelsteifheit)

- Tremor (Zittern, in Ruhe)

Hypo- oder Akinese (Bewegungsarmut, -starre)

Weitere mögliche Symptome:

- vegetative Störungen (z.B. Speichelfluß↑)
- Seborrhoe (ölige Beschaffenheit der Haut)
- organisches Psychosyndrom:
 - Stimmungslabilität/Depression
 - Verlangsamung geistiger Funktionen/Entwicklung einer Demenz

Hornykiewicz

Wesentliches Prinzip der Pharmakotherapie des Morbus Parkinson:

- A) Förderung der dopaminergen Transmission
- B) Abschwächung/Hemmung der glutamatergen (und cholinergen) Transmission

Dopaminerge Neurotransmission:

Dopamin(DA)-Neuron:

Synthese, Speicherung, Freisetzung, Rezeptoren (D1-, D2-artige), Inaktivierung, Abbau durch MAO + COMT

A) Förderung der dopaminergen Transmission:

- 1. Zufuhr der DA-Vorstufe L-Dopa [warum keine Gabe von DA?]
 - + Hemmung des <u>peripheren</u> Abbaus von L-Dopa [welche Enzyme?]
 Decarboxylase(DC)-Hemmer
 COMT-Hemmer
- 2. Hemmung des Abbaus von DA (im ZNS): MAO-B-Hemmer
- 3. Dopamin (D2)-Rezeptoragonisten:
 - a) Lysergsäure-Derivate (Ergoline)
 - b) neuere (keine Lysergsäure-Derivate)

B) Abschwächung/Hemmung der cholinergen Transmission:

- sehr gut ZNS-gängige Muscarin-Rezeptor-Antagonisten

C) Minderung glutamaterger Einflüsse: NMDA-Rezeptor-Antagonisten Abschwächung der Erregung von GABA-Interneuronen = Verminderung der GABA-ergen Inhibition im Thalamus

Einsatz der Antiparkinsonmittel:

L-DOPA so spät wie möglich (stets + Hemmstoffe des Abbaus)

- jüngere Patienten (<55 J): DA-Rez.-Agonisten,
 eventuell + NMDA-Antag. + MAO-B-Hemmer
- alte Patienten (>70 J): Monotherapie mit L-DOPA;

evtl. Amantadin, MAO-B-Hemmer

- geg. Tremor: mACh-R-Antagonisten

Therapie:

A) Förderung der dopaminergen Transmission

L-Dopa

- L-Dopa + Benserazid (Madopar) + Carbidopa (Nacom)
- -Transport von L-Dopa ins ZNS über Aminosäure-Transporter
- im ZNS Decarboxylierung zu DA (+ Speicherung in restlichen DA-Neuronen)

Carbidopa

Vorteil der Kombination: - periphere DA-Effekte ↓ (s.u.) - L-Dopa-Dosis ↓ (Faktor 5-10)

NW: - peripher über DA (NA, A): Erbrechen, Arrhythmien, orthostat. Störungen - ZNS: Schlaflosigkeit (bei ca. 20% der Patienten)

- ZNS: Schlaflosigkeit (bei ca. 20% der Patienten)

(u.U. Verwirrtheit bis zu Psychosen: CAVE: bestehende Psychosen)

Interaktionen (Wirkung↓) durch: 1) Neuroleptika, Metoclopramid, Methyldopa

2) Proteinreiche Nahrung (L-Dopa-Gabe getrennt von Mahlzeiten)

L-Dopa+DC-H. = Wirksamstes + am besten verträgliches Mittel (Akinese > Rigor > Tremor)

Ungünstig: nach ca 3-7 Jahren:

Wirkungs-Einschränkungen, -fluktuationen ("On-off-Phänomen"), Dyskinesien Daher wichtig: konstanter Wirkspiegel: Gabe von Retard-Tabletten

COMT- und MAO-Hemmer:

Reversibler, peripherer COMT-Hemmer: Entacapon (Comtess)

Kombinationspräparat z.B. Stalevo® (L-Dopa 50 mg, Carbidopa 12.5 mg, Entacapon 200 mg)

Entacapon soll den Abbau von L-Dopa in der Peripherie hemmen

Ind.: Nur zur Kombination mit L-Dopa + DDC-Hemmer

→senkt L-Dopa-Dosis+verbessert L-Dopa-Wirkung

NW: Dyskinesien, Mundtrockenheit, Stör. im GIT

Irreversible MAO-B-Hemmer (ZNS): Selegilin (Movergan)

Soll den Abbau von Dopamin im ZNS hemmen.

- verlängert die Wirkung von Dopamin (im ZNS)
- "neuroprotektiver" Effekt ??
- verursacht keinen "cheese"-Effekt [MAO-A bleibt aktiv]

Ind.: Zur Monotherapie im Frühstadium; später zur Komb.-Th.+ L-Dopa (+DDC-H)

Relativ neu: Rasagilin (Azilect) (Selegilin-Derivat)

Neu: Safinamid (Xadago) reversibler MAO-B-Hemmer plus antiglutamaterg

DA-Rezeptor-Agonisten (vorwiegend Dopamin D₂-Agonisten)

1. Lysergsäurederivate (Ergoline): gut ZNS-gängig

Cabergolin (Cabaseril): wg. langer HWZ weniger Dyskinesien+Fluktuationen Bromocriptin (Pravidel) [Lysergsäure aus Mutterkorn]

Vorteil: lange HWZ: Bromocriptin (50 h), Cabergolin (70 h)

NW: alle Ergoline (selten): retroperitoneale + pleurale Fibrosen

2. Apomorphin als Pen: geg. kurze "Off"-Phasen; Patient muss diese erkennen auch geg. morgendliche Akinese oder nächtliche Dystonien als Infusion (mit Pumpe): komplexe "On-Off"-Phasen!

Problem (alle DA-Agonisten): Übelkeit/Erbrechen [Domperidon; z.B. 3x10 mg]

3. Neuere Dopamin D_2 -Agonisten = <u>keine</u> Ergoline:

Ropinirol (Requip) (Abbau durch CYP1A2; Interaktionen möglich) Pramipexol (Sifrol)

Rotigotin (Neupro): zur transdermalen Anwendung (24h-Pflaster)

NW: typische NW der DA-R-Agonisten (orthostat. Beschwerden, Emesis, GIT-Stör.) + selten **Narkolepsie** (Einschlafattacken)

Therapieoptionen im Krankheitsverlauf des M. Parkinson. Rotigotin-Pflaster können formal in allen Stadien eingesetzt werden, in Frühstadien ohne L-Dopa, später in Kombination mit L-Dopa. Apomorphin-Pens eignen sich gut zur Behandlung der kurzen Wearing-OFF-Phasen. Bei ausgeprägten Wirkfluktuationen mit engem therapeutischen Fenster werden Pumpensysteme wie die Apomorphin- oder Duodopa-Pumpe eingesetzt.

B) Abschwächung/Hemmung der cholinergen Transmission:

- sehr gut ZNS-gängige Muscarin-Rez.-Antagonisten

Anticholinergika (mACh-Rez-Antagon.): besser ZNS-gängig als Atropin

Benzatropin [Benzyl-Atropin] (Cogentinol)

Biperiden (Akineton)

- v.a. Wirkung auf Tremor (Tremor >Rigor>>Akinese)
- therapeut. Wirkung lässt nach längerer Anwendung nach

NW: <u>peripher</u> anticholinerg:

- Akkomodationsstör.
 - Mundtrockenheit
 - Tachykardie
 - Obstipation
 - Harnretention

zentral anticholinerg (hohe Dosis): Halluzinationen, Erregung, psychot. Zust., Delir (anticholin. Delir)

CAVE: Nicht bei Patienten mit Psychosen oder Demenz

(Verschlechterung einer Demenz!); nicht plötzlich absetzen→ "Entzug"

Die Verordnung von Anticholinergika ist stark rückläufig! Ungünstig bei alten Patienten.

C) Abschwächung glutamaterger Einflüsse:

NMDA-Rez.-Antagonist

Amantadin (PK Merz)

[virustatisch [Influenza A] (hemmt "uncoating" d. Virusnukleins.)]

Wirkmechanismus der Antiparkinsonwirkung

NMDA-Rez.-Antagonismus [Kanalblock]

= verminderte Aktivierung inhibitorischer GABA-Interneurone

(→Thalamus: verminderte GABAerge Inhibition) + vermind. Aktiv. cholinerg. Neurone

Eigenschaften:

- schwächer wirksam als L-DOPA und DA-Agonisten
 Beeinflussung von Akinese+Rigor > Tremor
- Wirkung lässt nach Monaten nach
- häufig kombin. mit DA-Rez.-Agonisten (+MAO-B-Hemmer)
- Mittel der Wahl (i.v.-Gabe) in der <u>akinetischen Krise</u>
 NW: GIT-Stör., Verwirrtheit (bis zu psychotischen Zuständen)

Safinamid (Xadago) antiglutamaterg (Blockade von Na⁺ + Ca²⁺-Kanälen (plus reversible MAO-B-Hemmung): Verlängerung der "On-Zeiten" um ca. 2 h

aus: Dt Ärztebl 104, C 2153 (07)

Ein 63-jähriger Büroangestellter bemerkt zunächst eine Feinmotorikstörung der rechten Hand insbesondere beim Schreiben sowie eine Verkleinerung der Schrift. Im neurologischen Untersuchungsbefund zeigt sich rechts ein leichter Rigor, eine Bradykinese der Handbewegung sowie ein verminderter Armschwung beim Gehen.

- 1. Ropinirol: Symptome zunächst kaum noch bemerkbar. Im Verlauf von 3 Jahren Progredienz mit Übergreifen auf die linke Körperseite.
- 2. Ropinirol gesteigert und dann zusätzlich L-Dopa verordnet. Nach 2 Jahren "end of dose"-Hypokinesien: Starthemmung und deutliche Gehschwierigkeiten.
- 3. Verordnung von Entacapon + Dosisintervalle verkleinert, was die Fluktuation etwas glättet. Im Verlauf weiterer 2 Jahre werden die Fluktuationen ausgeprägter. Der Patient leidet unter "peak dose"-Hyperkinesien und ist nicht alleine gehfähig.
- 4. Apomorphin*-Pumpenbehandlung. Für 1 Jahr ist die Beweglichkeit regelmäßiger, der Patient kann sich in seinem Alltag wieder selbst versorgen. Nach einigen Monaten Apomorphintherapie wegen Hautreaktionen an den Einstichstellen abgebrochen.
- 5. Tiefe Hirnstimulation des Nucleus subthalamicus: Fluktuation kaum noch vorhanden, Medikamente können um die Hälfte reduziert werden.

^{*}DA-Rez.-Agonist (gesteuerte subcutane Abgabe über Pumpe); wird nur selten angewandt [ausgeprägtes ON/OFF-Phänomen]; NW.: Übelkeit, gesteigerter Sexualtrieb, Hautreaktionen

Tiefenstimulation im Nucleus subthalamicus bei Pat. mit schweren On-off-Fluktuationen

Glutamat GABA Dopamin Acetylcholin → Aktiv., —Hemm.

Morbus Alzheimer

Morbus Alzheimer (Alzheimer Demenz)

Demenz nach ICD-10

- chronische oder fortschreitende Krankheit des Gehirns mit Störung kortikaler Funktionen: Gedächtnis, Denken, Orientierung, Auffassung, Rechnen, Lernfähigkeit, Sprache, Sprechen und Urteilsvermögen im Sinne der Fähigkeit zur Entscheidung
- Symptome über mindestens 6 Monate
- Veränderungen der emotionalen Kontrolle, des Sozialverhaltens, der Motivation

Alzheimer-Demenz

Alois Alzheimer "Über eine eigenartige Erkrankung der Hirnrinde" (1907)

Auguste Deter, Patientin, 51 Jahre, mit Eifersuchtsideen gegen den Ehemann.

Schnell zunehmende Gedächtnisschwäche

Findet sich in der Wohnung nicht mehr zurecht, schleppt Gegenstände hin und her, versteckt sie, glaubt, man wolle sie umbringen, schreit laut

Allgemeine Zeitschrift für Psychiatrie und Psychisch-gerichtliche Medizin (1907)

Gespräch

Wie heißen Sie?- "Auguste." Familienname?-,,Auguste." Wie heißt ihr Mann?- zögert, "Ich glaube... Auguste." Ihr Mann?- "Ach so." Wie alt sind Sie?- "51." Wo wohnen Sie?- "Ach, Sie waren doch schon bei uns." Sind Sie verheiratet?- "Ach, ich bin doch so verwirrt." Wo sind Sie hier?- "Hier und überall, hier und jetzt, Sie dürfen mir nichts übel nehmen." Wo sind Sie hier?- "Da werden wir noch wohnen." Wo ist Ihr Bett?- "Wo soll es sein?" Schreiben Sie eine Fünf.- Sie schreibt: "Eine Frau" Schreiben Sie eine Acht.- Sie schreibt: "Auguste"; Sie sagt: "Ich habe mich sozusagen verloren"

Diagnostik

Kognitive Kurztests (z.B. MMST, Uhrentest)

Beispiel Mini-Mental-Status-Test (MMST):

- Orientierung (Jahr, Jahreszeit, Datum, etc)
- Merkfähigkeit (Auto, Blume, Kerze, etc)
- Aufmerksamkeit und Rechenfähigkeit (Rückwärts buchstabieren, Reihensubtraktion)
- Erinnerungsfähigkeit
- Sprache (Benennen (Uhr, Stift); Nachsprechen; Handlungsfolge (Blatt falten); Instruktion ausführen; Schreiben eines Satzes

Diagnostik

Kognitive Kurztests (MMST, Uhrentest)

Beispiel Uhrentest

- Score 1 "perfekt"
- Score 2 "leichte visuell-räumliche Fehler"
- Score 3 "fehlerhafte Uhrzeit bei erhaltener visuell-räumlicher Darstellung"
- Score 4 ,,mittelgradige visuell-räumliche Desorganisation"
- Score 5 "schwergradige visuellräumliche Desorganisation"
- Score 6 ,,keinerlei Darstellung einer Uhr"

Uhren-Test (Uhrzeit 10 nach 11)

Pathophysiologie

Charakteristisch: Verlust cholinerger Neurone → cholinerges Defizit

Pathophysiologie

Amyloid Plaques Neurofibrilläre Tangles (Tau)

Fehlerhafte Spaltung des APP (Amyloid Precursor Proteins) durch Secretasen und Ablagerung der Produkte (→Amyloid-Plaques)

Alzheimer-Therapie (1)

AcetylcholinMangel
durch
neuronale
Degeneration

Alzheimer-Therapie (2)

Acetylcholinesterase-Hemmer und Memantin

Präparat	Applikationsform	Einnahmeintervall	Startdosis	Zieldosis
A) Acetylcho	linesterase-Hemmer	1	!	•
Donepezil (Arizept)	Tabletten (5 mg, 10 mg) Schmelztabletten (5 mg, 10 mg)	1-mal täglich	2,5-5 mg tägl. abends	10 mg/Tag abends
Galantamin (Reminyl)	Retardierte Hartkapsel (8 mg, 16 mg, 24 mg) Lösung (1ml entspricht 4 mg)	1-mal täglich 2-mal täglich	8 mg retard morgens 2-mal 4mg	16-24 mg/Tag morgens
Rivastigmin (Exelon)	Hartkapseln (1,5 mg, 3 mg, 4,5 mg, 6 mg) Lösung (1ml entspricht 2 mg) Transdermales Patch (4,6 mg/24h, 9,5 mg/24h)	2-mal täglich 2-mal täglich 1-mal täglich	2-mal 1,5 mg 2mal 1-1,5mg 4,6 mg/24h	6-12 mg/Tag 6-12 mg/Tag 9,5 mg/24h
B) NMDA-A	ntagonist			
Memantin (Axura)	Tabletten (10 mg, 20 mg; für die Aufdosierung: 5 mg und 15 mg erhältlich) Tropfen (1 ml entspricht 20 Tropfen, enthält 10mg)	1- oder 2-mal täglich 2-mal täglich	5mg 1-mal täglich	Kreatininclearance >60ml/min/1,73m ² : 20 mg/Tag Kreatininclearance 40bis60ml/min/1,73 m ² : 10mg/Tag

Nebenwirkungen:

- A) M-Rez.: Übelk., Schwitzen, Harninkont., Bronchokonstrikt, Blutdruck, Bradykardie; N-Rez.: Muskelkrämpfe, Aggression, Schlaflosigkeit, Krampfanfälle
- B) Schwindel, Kopfschmerz, Unruhe, Obstipation, Blutdruck , Schläfrigkeit, Krampfanfälle

Therapie neurodegenerativer Demenzen, hier: Alzheimer-Erkrankung

Leitlinien der Deutschen Gesellschaft für Neurologie, 4. Auflage

	Stoffklasse	Wirkmechanismus	Wirktyp	Bewertung
1.	a. Hemmer der β- ochb. Immunisierung vsc. Statine (?)d. Plaque-auflösende	s. Amyloid-Peptid (51-54)	"kausal"	befinden sich noch im experimentellen Stadium
2.	Prednison, Diclofenac	antientzündliche Wirkung	"kausal"	positiv nur in epidemiologi- schen, nicht aber in pro- spektiven Therapie-Studien
2.	Vitamin E	antioxidativer Effekt	sympto- matisch	nicht in allen Studien wirk- sam, keine etabl. Therapie
2.	NMDA-Rezeptor- Antagonisten (z.B. Memantin)	Verminderung der durch Glutamat hervorgerufenen Exzitotoxizität	sympto- matisch	wirksam bei mittelschwerer bis schwerer Erkrankung
3.	Acetylcholineste- rase-Hemmstoffe	kompensieren das cholinerge Defizit	sympto- matisch	wirksam bei leichter bis mittelschwerer Erkrankung
4.	Ginkgo-Präparate	Blutviskosität verringert?	sympto- matisch	Stellenwert umstritten
4.	Nootropika: Piracetam, Nicergolin, Hydergin, Nimodipin	unterschiedlich und wenig verstanden	sympto- matisch	nicht in allen Studien wirksam, keine etablierte Therapie

Neue Alzheimer Medikamente in Entwicklung (Stand Oktober 2018)

		& `	,
Lilly Pharma	Solanezumab	hemmt Bildung von Plaques durch Bindung an lösliches Beta-Amyloid	Phase III ¹
Roche / Morphosys	Gantenerumab	fördert Abbau von Plaques	Phase III
Biogen / Eisai / Neurimmune	Aducanumab	fördert Abbau von Plaques	Phase III
Roche / AC Immune	Crenezumab	fördert Abbau von Plaques	Phase III
Eisai / Biogen	Elenbecestat (E2609)	hemmt die Beta-Sekretase (BACE1) und damit die Bildung von Plaques	Phase III
Novartis / AMGEN	AMG-520 (CNP-520)	hemmt die Beta-Sekretase (BACE) und damit die Bildung von Plaques ²	Phase III
Kuros Biosciences / Novartis	CAD-106	therapeutischer Impfstoff gegen Beta-Amyloid-Plaques	Phase III
AZTherapies	Natrium-Cromolyn + Ibuprofen	hemmt Polymerisierung von Beta-Amyloid-Peptiden zu Plaques	Phase III
AB Science	Masitinib	hemmt bestimmte Kinasen	Phase III
TauRx Pharmaceuticals	Leuko-Methylthioninium	hemmt die Aggregation von Tau-Fibrillen	Phase III
Accera	Caprylat-Triglycerid (Tricaprilin)	fördert Energieversorgung der Nervenzellen	Phase III
SK Holdings	SK-PC-B70M (aus der Pflanze <i>Pulsatilla koreana</i>)	k. A.	Phase III
vTv Therapeutics	Azeliragon	wirkt als Antagonist am Rezeptor RAGE	Phase III
Grifols	Humanalbumin	entzieht dem Gehim lösliches Beta-Amyloid; dazu wird wiederkehrend ein Teil des Blutplasmas durch Humanalbumin-Lösung (zugelassen zur Behandlung von Blutverlust) ersetzt	Phase III
Archer Pharmaceuticals	Nilvadipin	entfernt Beta-Amyloid (zugelassen als Kalziumkanal-Antagonist gegen Bluthochdruck)	Phase III
Biohaven Pharmaceuticals	Trigliluzol	Antagonist von Glutamat und bestimmten Dopaminrezeptoren und Natriumkanälen	Phase III

Medikamente ohne Empfehlung

Nootropika: Piracetam (4800mg-9600mg; 3x täglich oral); OTC in USA

Gingko biloba

- EGb 761 Trockenextrakt zugelassen als OTC Präparat
- 120 bis 240 mg Dragees 1-2 x täglich (erstattungsfähig)
- Wirkung: Durchblutungsförderung im Gehirn?
- Stellenwert umstritten, Studiendesign kritisch S3-Leitlinie: Behandlung kann erwogen werden bei Pat. mit leichter/mittelschw. AD oder VD und nicht-psychot.
- Verhaltenssymptomen

Hormonersatztherapie: Keine Wirksamkeit

NSAIDs, Nimodipin: - keine Wirksamkeit in klinischen Studien

First LANCET Commission on Dementia Prevention and Care (2017)

Künftig eventuell Therapie mit APOE-Antikörpern?

ß-Amyloid offensichtlich allein nicht ausreichend um eine Demenz auszulösen, denn ohne funktionierendes APOE ist ß-Amyloid <u>nicht</u> toxisch: über Interaktionen mit ß-Amyloid kann APOE offenbar die Tau-Verklumpung triggern.

(Hinweis aus Humangenetik bei Frau Kolumbianerin mit Mutation im a) Presenelin-1-Gen plus b) Mutation (homozygot) im APOE3-Gen ("Christchurch").

Wegen a) zeigte die Frau (Alter = 45 Jahre) hohe Ablagerungen von ß-Amyloid aber ohne Anzeichen einer Demenz, da die Frau zusätzlich eine protektive Mutation im APOE3-Gen hatte.

APOE-Antikörper könnten auch noch bei beginnender Demenz erfolgreich sein!

Arboleda-Velasquez et al. (2019) Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nature Medicine 25, 1680-1683

https://doi.org/10.1038/s41591-019-0611-3