# **Question 1: Unstructured P2P Networks Points:** \_\_\_\_

Assume an unstructured P2P network with two types of resources: 1900 non-popular resources each of which is accessed with probability  $10^{-4}$  and  $n_p$  popular resources each of which is accessed with a probability  $p_p$ . The non-popular resources have only a single copy, whereas the popular resources are found to have 9 copies each as a result of replicating them according to the square root rule. The network has N=1000 nodes.

| a) | Choose the justify your | answer | for the | number | of popular | resources | $(n_p)$ | and |
|----|-------------------------|--------|---------|--------|------------|-----------|---------|-----|
|    | □ 10                    | □ 100  |         | □ 1    | .90        | □ 1900    |         |     |

- b) **Message Flooding**: The search is performed using the Message-Flooding strategy. The out-degree of each node is d=3. When a node receives a query message it forwards the message to its d neighbors, and then each neighbor forwards the message to its d own neighbors, and so on.
  - 1) For *TTL=4*, compute the probability of finding a particular non-popular resource.
  - 2) For *TTL=4*, compute the probability of finding a particular popular resource.
- c) **k-Random Walkers**: Assume now, the search is performed using 2-Random Walkers. For the computations make use of the following assumptions: *The probability of a random walker hitting a node is same as the probability of choosing a particular node uniformly at random from the entire set of nodes. The probability of a random walker hitting a node is independent of the previous nodes it hit.* 
  - 1) For *TTL=5*, compute the probability of finding a particular non-popular resource.
  - 2) For *TTL=5*, compute the probability of finding a particular popular resource.
- d) **Comparison**: Discuss briefly the impact on search latency and network bandwidth consumption for each of the following search strategies: Message Flooding, Expanding Rings, and k-Random Walkers.

## **Question 2: Graph Databases**

Points: \_\_\_\_

The following graph database  $G_1$  is given:



- a) Let [a1] be the language equivalence class of node a1. How many nodes are in this class?
  - $\square$  1  $\square$  2  $\square$  3  $\square$  4
- b) Draw the strong data guide SDG<sub>1</sub> for G<sub>1</sub>.
- c) Add exactly one edge to  $G_1$  such that in the corresponding strong data guide, at least one node identifier appears twice.
- d) Add exactly one node to  $G_1$ , such that the number of nodes in the corresponding strong data guide is the same as in  $SDG_1$ .

e) You are given the following 3 graph databases, identified by  $G_1,\,G_2$  and  $G_3$  from left to right.



Draw a graph schema for  $\mathsf{G}_2$  and  $\mathsf{G}_3$  that is not a graph schema for  $\mathsf{G}_1.$ 

## ANSWER (Q2):

Question 3: Information Retrieval Points: \_\_\_\_

We have already seen a **QueryTerm1** SLOP/x **QueryTerm2** query. The result of this query is a set of documents where each document contains occurrences of **QueryTerm1** within x words of **QueryTerm2** (but not necessarily in that order) and x > 0.

Now, let us extend the idea of SLOP/x queries to answer a slightly different type of query known as the SENT/x query. A SENT/x is very similar to the SLOP/x query. The only difference is that now each document in the result set of a SENT/x query contains occurrences of **QueryTerm1** within x words of **QueryTerm2** (but not necessarily in that order) and **QueryTerm1** and **QueryTerm2** are in the same sentence.

### Answer the following questions:

- a) As you know, the *term-offset index* addresses terms in documents by their position within the document. How to extend this addressing scheme to address terms by their position within a sentence within the document in order to support a *SENT/x* query?
- b) Give the new inverted list  $I_{ki}$  for term  $k_i$  with the information required for answering a SENT/x query.
- c) Suppose we have two inverted lists  $I_{k1}$  and  $I_{k2}$  which are obtained from (b). Give pseudo-codes of algorithms  $MergeSent(I_{k1}, I_{k2}, x)$  and  $MergeSlop(I_{k1}, I_{k2}, x)$  which would be used to "merge" the inverted lists for answering SENT/x and SLOP/x queries respectively. Maximize the efficiency of your algorithms i.e. minimize the number of steps required to merge the inverted lists.

### **Question 4: Classification**

Points: \_\_\_\_

A company's database has the following attributes:

- *type* is the type of the equipment
- recommendation says whether the equipment is recommended for a purchase or not
- *lifetime* is the estimated lifetime of the equipment

A data pre-processing step is performed on the database by *grouping* the tuples with the same values for the attributes *type* and *recommendation* and with similar values for the attributes *lifetime* and *cost*. We consider attribute values as similar if they fall into the same bin (e.g., 31-35). The bins are defined a-priori. The following table is an example of such a group of tuples:

| type  | recommendation | lifetime | cost |
|-------|----------------|----------|------|
| type1 | yes            | 31       | 46K  |
| type1 | yes            | 32       | 47K  |
| type1 | yes            | 34       | 48K  |
| type1 | yes            | 35       | 50K  |

The tuples of one group are then aggregated and the number of tuples in a group is stored in a new *count* attribute. For the above group this results in the following tuple:

| type  | recommendation | lifetime | cost    | count |
|-------|----------------|----------|---------|-------|
| type1 | yes            | 31-35    | 46K-50K | 4     |

The value 4 for the *count* attribute indicates that 4 tuples in the original database are aggregated into this single tuple. Using this process, the company database is transformed as shown in *Table 1*. Now we want to construct a decision tree classifier using the data in *Table 1* as training data, with the attribute *recommendation* as the class label attribute.

| type  | recommendation | lifetime | cost    | count |
|-------|----------------|----------|---------|-------|
| type1 | yes            | 31-35    | 46K-50K | 30    |
| type1 | no             | 26-30    | 26K-30K | 40    |
| type1 | no             | 31-35    | 31K-35K | 40    |
| type2 | no             | 21-25    | 46K-50K | 20    |
| type2 | yes            | 31-35    | 66K-70K | 5     |
| type2 | no             | 26-30    | 46K-50K | 3     |
| type2 | yes            | 41-45    | 66K-70K | 3     |
| type3 | yes            | 36-40    | 46K-50K | 10    |
| type3 | no             | 31-35    | 41K-45K | 4     |
| type4 | yes            | 46-50    | 36K-40K | 4     |
| type4 | no             | 26-30    | 26K-30K | 6     |
| type4 | no             | 31-35    | 46K-50K | 2     |

**Table 1: Training Data** 

Different to the basic decision tree algorithm for categorical attributes, we need to consider the *count* value during the construction, as it indicates the number of samples for a specific class present in the original database.

- a) Discuss how the values of the *count* attribute need to be considered in the computation of information gain for selecting the optimal attribute for splitting.
- b) Use your algorithm to construct a decision tree from the training data given in *Table 1*.
- c) Given the test data (*Table 2*) below, what is the accuracy of the classifier you constructed? Justify your answer.

| □ 60% | □ 70% | □ 80% | □ 90% |
|-------|-------|-------|-------|
|-------|-------|-------|-------|

| type  | recommendation | lifetime | cost |
|-------|----------------|----------|------|
| type3 | no             | 42       | 49K  |
| type1 | no             | 30       | 30K  |
| type1 | yes            | 32       | 47K  |
| type1 | yes            | 34       | 48K  |
| type3 | yes            | 35       | 50K  |
| type4 | yes            | 27       | 47K  |
| type3 | yes            | 50       | 46K  |
| type4 | yes            | 50       | 70K  |
| type2 | yes            | 26       | 32K  |
| type3 | no             | 45       | 42K  |

Page 22 of 28