

Technical Report 637

Projecting Attrition by Military Occupational Specialty

Alex G. Manganaris and Edward J. Schmitz

Manpower and Personnel Policy Research Group Manpower and Personnel Research Laboratory

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

U. S. Army

Research Institute for the Behavioral and Social Sciences

July 1984

Approved for public release, distribution allumited

U. S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON Technical Director L. NEALE COSBY Colonel, IN Commander

Technical review by

Robert Ross Hyder Lakhani

NOTICES

DISTRIBUTION: Primary distribution of this report has been made by ARI.

Please address correspondence concerning distribution of reports to: U.S.

Army Research Institute for the Behavioral and Social Sciences, ATTN:

PERI-POT, 5001 Eisenhower Avenue, Alexandria, Virginia 22333.

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

 $\overline{\text{NOTE}}$: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER 2. GOVT	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER				
ARI Technical Report 637 ADA	168 183				
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED				
PROJECTING ATTRITION BY MILITARY OCCUPAT SPECIALTY	November 1983 - July 1984				
	6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(*)	B. CONTRACT OR GRANT NUMBER(+)				
Alex G. Manganaris and Edward J. Schmitz	:				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK				
U.S Army Research Institute for the Beha and Social Sciences	AREA & WORK UNIT NUMBERS				
5001 Eisenhower Ave., Alexandria, VA 223	2Q162722A791 2111 100				
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
U.S. Army Research Institute for the Beh	avioral July 1984				
and Social Sciences	13. NUMBER OF PAGES				
5001 Eisenhower Ave., Alexandria, VA 223	33-5600 54				
14. MONITORING AGENCY NAME & ADDRESS(II different from Con					
	Unclassified				
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)					

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Attrition
Personnel allocation
Regression analysis

Military Occupational Specialty

20. ABSTRACT (Continue as reverse elds if necessary and identify by block number)

This research analyses the attrition rates of various enlisted personnel groups within different Army job assignments. Three regression equations are developed in order to project the attrition rate of eight demographic groups to 76 Military Occupational Specialties (MOS). Education, sex, AFQT, along with MOS assignment are the independent variables. The rates generated by these equations show where important tradeoffs exist with respect to personnel allocation and the expected rate of attrition.

Manpower planning

Manpower allocation

DD 1 JAN 23 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Projecting Attrition by Military Occupational Specialty

Alex G. Manganaris and Edward J. Schmitz

Submitted by
Curtis L. Gilroy, Chief
Manpower and Personnel Policy Research Group

Approved as technically adequate and submitted for publication by Joyce L. Shields, Director Manpower and Personnel Research Laboratory

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES
5001 Eisenhower Avenue, Alexandria, Virginia 22333

Office, Deputy Chief of Staff for Personnel

Department of the Army

July 1984

Army Project Number 20162722A791

Manpower, Personnel and Training

Approved for public release; distribution unfinited

ARI Research Reports and Technical Reports are intended for sponsors of R&D tasks and for other research and military agencies. Any findings ready for implementation at the time of publication are presented in the last part of the Brief. Upon completion of a major phase of the task, formal recommendations for official action normally are conveyed to appropriate military agencies by briefing or Disposition Form.

Acces	sion For	
DTIC Unani	CRA&I TAB nounced ication	
By		
A	vailability	Codes
Dist	Avail and Specia	l or
A-1		

The Manpower and Personnel Policy Research Group of the Army Research Institute for the Behavioral and Social Sciences is concerned with developing better methods of allocating applicants to Army jobs to utilize Army personnel resources more efficiently. This research is another step in the ongoing process of investigating the various tradeoffs involved in the allocation of personnel to jobs. More knowledge about these tradeoffs may lead to improvements in current assignment systems or the development of new and more efficient ways of assigning personnel.

Elgal Johnson
Technical Director

PROJECTING ATTRITION BY MILITARY OCCUPATIONAL SPECIALTY

EXECUTIVE SUMMARY

Requirement:

To be able to project variation in the rate of attrition of various demographic groups within different Military Occupational Specialties (MOS) using data available at the time of enlistment. The rates developed here can be used in deriving costs for optimization models or in the evaluation of policy alternatives.

Procedure:

Using a multiple regression procedure and a longitudinal accession file, MOS-specific attrition rates were developed for 76 MOS across 8 demographic groups. Education, sex, and the Armed Forces Qualification Test (AFQT) scores were used to define the 8 demographic groups.

Findings:

Historical attrition rates can be explained using data available at the time of enlistment. The results show that 67 of the 76 MOS used in this research have variations in the rate of attrition greater than 20% depending on what group is assigned.

Utilization of Findings:

This research shows that alternative policies in assigning enlistees to jobs may lead to a reduction in overall first-term attrition. This reduction in attrition may have a profound impact on force structure and overall Army readiness.

PROJECTING ATTRITION BY MILITARY OCCUPATIONAL SPECIALTY

CON	TENTS		
		I	Page
ı.	INTRO	ODUCTION	1
II.	BACK	GROUND	2
III.	APPRO	DACH	5
IV.	MOS-S	SPECIFIC EQUATION	11
v.	GENE	RIC MOS EQUATIONS	21
VI.	DISC	USSION OF RESULTS	28
VII.	CONCI	LUSIONS	30
REF	ERENCI	ES	31
APP	ENDIX	A. Projected Attrition Rates by Category	A-1
APP	ENDIX	B. Female Attrition Rates by MOS	B-1
APP	ENDIX	C. F-Statistic as a Measure of Variable Inclusion	C-1
		LIST OF TABLES	
Tab	le 1.	Attrition Sample Size by MOS	8
	2.	Definition of Categorical Variables used in the MOS-Specific Equation	11
	3.	MOS-Specific Equation Results	13
	4.	Descriptive Statistics for MSE Coefficients	18
	5.	Variability of Equation Coefficients by MOS	20
	6.	Reduction of Attrition for High School Graduates	20
	7.	Categorical Variables used in the Generic MOS Equation	22
	8.	Generic MOS Equation Coefficients	24
	9.	GME Predicted Rates with Score Level 90	26
	10.	GME Predicted Rates with Score Level 100	26
	11.	Generic MOS Equation Coefficients (Female)	28
	12.	Range of Male Rates	29

I. INTRODUCTION

The retention behavior of enlisted personnel is one of the central concerns of manpower and personnel planning in the military. While all organizations are concerned with maintaining adequate levels of qualified and trained personnel, the military faces the unique situation of contracting individuals for a specified term of service. As a result, individuals leaving prematurely cannot be easily replaced by skilled personnel. Also, among the enlisted ranks, senior level positions (NCO's) are filled by those who have begun their careers in the military at the "lowest" levels. Therefore, the rate of first term attrition/retention affects the future composition and quality of the enlisted force.

Most of the attrition research has emphasized either methods to screen applicants or socio-military factors influencing attrition. This research will examine attrition rates as a function of job assignment characteristics and characteristics of the individual that are known at the time of job enlistment. If there is variability in attrition for demographic groups within different job assignments, then the overall retention rate could be increased without altering both the composition of accessions and changing the numbers of individuals assigned to various MOS. To investigate whether changes in allocation policies can alter the overall attrition rate, certain questions must be answered. Can attrition rates be predicted accurately using data available at the time of job Can variation within MOS attrition be explained by assignment? sex. AFQT Group, and education? Is variation within differential rates large enough to present sizable tradeoff opportunities?

Therefore the objectives of this research are to:

- o predict accurately the percentage of first tour attrition
- o explain variability in attrition within MOS
- o identify sizable tradeoffs that can influence assignment policies

Section II of this research will describe relevant past research. Section III will explain how this paper relates to past attrition research, explain the data used, and the methodological approach taken. Sections IV and V will explain the specific equations used and their results. Section VI will compare the results. Conclusions are presented in Section VII.

II. BACKGROUND

Interest in attrition has increased considerably in the years following the inception of the All Volunteer Force (AVF) (Goodstadt and Yedlin 1980). Much of the interest in attrition has been generated due to the high costs associated with premature separation. During fiscal years 1974 through 1977 the General Accounting Office (GAO) estimated that attrition in the military costs the government 5.2 billion dollars in veterans unemployment and compensation (Comptroller General. 1980). Most of the GAO recommendations were concerned with changes in management practices and policies. improved management were, information changes the developement of systematic approaches in developing and evaluating personnel policy, and a more definitive system of criteria for discharge. Also emphasized in this report, is the importance of abolishing attrition goals and ceilings.

In general, Wiskoff, Atwater and Houle (1980) classify attrition research into four areas:

- Selection prediction, accessioning personnel, accessioning process and societal influences
- 2. In-Service Concerns individual variables, organizational practices and organizational change
- 3. Attrition Decisions attritees, exit information, societal influences and organizational decision-making
- 4. Methodological theoretical models, optimum attrition rates, economics of attrition, statistical analysis and the role of behavioral scientists

The approach taken in this paper is comprised of two topics from the above outline. These topics are prediction and accessioning process, from the selection area, and statistical analysis under the methodological area.

One concern in attrition research is the distinction between causal analysis and descriptive analysis. Siebold (1981) emphasises the difference between the "cause of attrition" and "variation" in attrition and points out that many researchers substitute the word cause when actually they are explaining variation. This research focuses on variation in the percentage of attrition by MOS, AFQT Group, Sex, and Education. This is not a causal analysis. When observable differences occur between groups no attempt will be made to determine "why" there are differences.

Since the word attrition will be used throughout this analysis, it is important to develop a precise definition. Siebold describes four generic definitions of attrition (1981, p. 1100):

- Attrition the reduction in the number of personnel of a specified category through separation (the process).
- Amount of Attrition the number of personnel of a specified category lost through separation. (The count rather than the process).
- Rate of attrition the number of personnel of a specified category lost through separation within a specified period of time. (count/time)
- 4. Percentage of attrition the number of personnel of a specified category lost through separation compared to the total population of which the specified category is a primary part.(count/population)

Attrition in this paper can be interpreted as the percentage of attrition (although it may also be called the rate of attrition by the authors.)

To put this analysis within a structural paradigm it is important to understand the broad hypotheses regarding the nature and causes of attrition. Goodstadt and Yedlin (1980) offer several areas of thought regarded as being prevalent in attrition research:

- o The "cause" of attrition resides in the individual.
- o The "causes" of attrition lie in the nature of the organization.
- o The hypothesis that attrition is a function of both the individual and the organization.

Goodstadt and Yedlin suggest certain individual and background factors that have been shown to be related to attrition (individual cases):

- o Reading Ability
- o Education
- o High school experiences, self image
- o AFQT and ASVAB Scores
- o Demographic characteristics

Research in the Navy by Guthrie, Lakota and Matlock (1978) showed that sailors who discharge early are likely to be young, white, have one or more dependents, have less then ten years of education, and to be in the highest mental categories.

Research by the Rand Corporation found that age, education and marital status were significant determinants in the level of post training attrition (Buddin, 1981). Buddin examined Air Force and Army enlisted personnel. Although this work was not MOS specific, it did use five (5) broad occupational areas.

In the mid 1970's research began to place greater emphasis on the relationship between organizational factors and attrition (Goodstadt and Yedlin 1980, p. 27). Factors such as quality of lifestyle, living conditions, variety and control of work, organizational climate and disconfirmation of expectations have

been seen as possible determinants of attrition. Other factors such as training and job mismatch, characteristics of leaders and occupational experiences are also offered as possible organizational causes of attrition.

III. APPROACH

This research takes the perspective that attrition is a function of both organizational factors, individual factors and their interaction. The simple input/output model in Figure 1 shows this relationship.

Figure 1

I/O Model of Attrition

An individual's Military Occupational Specialty (MOS) will be used as a surrogate for organizational factors. While not covering all aspects of the organization, MOS does represent much of the lifestyle, living conditions, variety of work, and the occupational experiences associated with the Army.

on the individual side, AFQT group, sex and education are used as attrition predictors. The most important aspect of this research is that it is MOS-specific in examining attrition rates. Also, all variables and are available at the time an individual is assigned to an occupation at the Military Enlistment Processing Station (MEPS). The model accounts for interaction between organizational and individual factors, represented by the dotted line. Other research points to the importance of allowing for this interaction when researching military attrition (Wiskoff, Atwater and Houle 1980, p. 22).

Using Defense Manpower Data Center data (DMDC) resources, a longitudinal data base was developed (Cohort 76/78). The data used are comprised of non-prior service accessions who entered the Army between January 1976 and September 1978. These data have been further refined to improve their reliability for analysis. First, those cases where ASVAB 5 (Armed Services Vocational Aptitude Battery) or ACB 73 (Army Classification Battery) were used have been eliminated from the data. Also, the data have been "cleaned" to the extent that miscoded test scores have been eliminated. To avoid cell size problems, 76 of the larger MOS are used in this analysis. These 76 MOS represent nearly 90% of the total non-prior service accessions and are shown in Table 1.

Table 1
Attrition Sample Size (N) by MOS

MOS	Descriptive Title	<u> </u>
05B	Radio Operator	394
05C	Radio Teletype Operator	545
05G	Signal Security Specialist	80
05H	EW/Signal Morse Interceptor	298
05K	EW/SIGINI NON-MORSE Interceptor	188
11B	Infantryman	23325
12B	Combat Engineer	5799
120	Bridge Crewman	1391
12E	Atomic Demolition Munitions Specialist	415
13B	Cannon Crewman	9109
13E	Cannon Fire Direction Specialist	2416
15D	Lance Missile Crew Member	632
15E	Pershing Missile Crewmember	880
16B	Hercules Missile Crewmember	1470
16J	Defense Acquisition Radar Operator	464
16P	A.D.A. Short Range Missile Creman	2416
16R	A.D.A Short Range Gunnery Crewman	977
17C	Field Artillery Targe Acquisition Speciali	640
17K	Ground Surveillance Radar Crewman	1286
27E	Tow/Dragon Repairer	450
31E	Field Radio Repairer	377
31M	Multichannel Communication Equipment Operat	2439
31N	Tactical Circuit Controller	334
32D	Station Technical Controller	187
33S	EW/Intercept Systems Repairer	304
36C	Wire Systems Installer/operator	1249
36K	Tactical Wire Operations Specialist	4401
41C	Fire Control Instrument Repairer	79
43E	Parachute Rigger	763
45K	Tank Turret Repairer	476
51B	Carpentry and Masonry Specialist	250

51K	Plumber	128
52C	Utilities Equipment Repairer	132
52D	Power Generation Equipment Repairer	712
54E	NBC Specialist	557
55B	Ammunition Specialist	524
55G	Nuclear Weapons Maintenance Specialist	305
57H	Terminal Operations Coordinator	301
61B	Watercraft Operator	138
62B	Construction Equipment Repairer	1115
62E	Heavy Construction Equipment Operator	194
62F	Lifting and Loading Equipment Operator	167
63G	Fuel and Electrical Ssytems Repairer	430
63H	Track Vehicle Repairer	1625
64C	Motor Transport Operator	7107
67N	Utility Helicopter Repairer	731
67U	Medium Helicopter Repairer	403
67V	Observation/Scout Helicopter Repairer	686
67Y	Attack Helicopter Repairer	869
71C	Stenographer	291
71D	Legal Clerk	89
71L	Administrative Specialist	65
71M	Chapel Activities Specialist	162
71N	Traffic Management Coordinator	95
73C	Finance Specialist	543
75B	Personnel Administration Specialist	2100
75C	Personnel Management Specialist	115
75D	Personnel Records Specialist	1047
75E	Personnel Actions Specialist	253
76J	Medical Supply Specialist	383
76P	Material Control and Accounting Specialist	1059
76V	Material Harbling and Storage Specialist	600
76W	Petroleum Supply Specialist	1240
76Y	Unit Supply Specialist	3399
82C	Field Artillery Surveyor	1731
91B	Medical Specialist	6322

COMMENSACIONAL PROPERTY OF COMME

91C	Patient Care Specialist	367
91D	Operating Room Specialist	739
91E	Dental Specialist	303
91P	X-Ray Specialist	291
91Q	Pharmacy Specialist	258
91R	Veterinary Specialist	107
94B	Food Service Specialist	7304
95B	Hilitary Police	8249
98C	BW/SIG INT Analyst	546
98G	EW/SIGINT Voice Interceptor	511

Total N = 118,262

*(Note: 71B should have been used instead. 71B was the largest clerical MOS in the years used in this analysis. Currently 71L has the greater number of enlistees.)

Using a sample of 76 MOS, accounting for 118,262 accessions, the following sets of equations are developed.

- o The MOS Specific Equation (MSE)
- o The Generic MOS Equations (GME)

The MOS specific equation (MSE) examines variation in the attrition rate as a function of MOS assignment, AFQT group, and education. The attrition rates generated by this model will smooth historical differences while providing a coherent set of rates. This model is restricted to males.

The generic prediction equations will generate expected attrition rates based upon historical patterns. The equations will not be MOS specific, but will characterize the MOS through a set of descriptors. These descriptors will be the aptitude area composite used for assignment and the level of the aptitude area qualifying score. Separate equations are developed for males and females.

The reasons for the development of the second set of equations are twofold. First, individuals must be assigned to all MOS, not just the ones used in this research. Because some MOS have had too few accessions historically it becomes difficult to characterize rates on a limited number of observations. (This is the reason only 76 MOS were used in this analysis). Second, there are times when a new MOS is created, or an existing MOS is changed. In this case the use of historical data may be misleading or inappropriate. It would be desirable to project attrition based upon general characteristics of the MOS. Also the GME provides a vehicle for generating rates for the over 250 entry level MOS in the Army.

IV. MOS SPECIFIC EQUATION (MSE)

Structure of the Equation The MSE is a multiple regression model whose function is to derive a set of MOS specific attrition rates for the selected groups. The largest 76 MOS were examined, and rates were generated based upon MOS, Education and AFQT Group. Table 2 describes the variables. It should be noted that the AFQT groups used differ from those traditionally found in most Army research. Recent work by Moore et al (1983) have proposed alternate mission box categories to more accurately reflect aptitude differences within the accession population. Also, AFQT Groups IIIB and IV have been combined into one group because both groups exhibited similar attrition behavior.

Table 2: Definition of Categorical Variables Used in the MOS Specific Equation

	AFQT Group	
AFQT RANGE		AFQT CATEGORY
75-99		I-IIIA+ (constant)
50-74		I-IIIA- (M2)
11-49		IIIB-IV (M3)
	Education	
High School		Non-High School
	Mos	
	See Table 1	

The attrition rate is defined as one minus the rentention rate (equation 1), where the retention rate is the number of people reenlisting (REUP), plus the number of people reaching the end of their term of service (ETS), divided by the total number of accesions.

(1) ATTRITION = 1 - (ETS+REUP)/TOTAL ACCESSIONS

The structure of the MSE is provided by equation 2.

(2) $Y = a + b_1 G + b_2 M + b_3 E*G + b_4 E*M$

where:

G = AFQT Group (I-IIIA+, I-IIIA-, IIIB-IV)

E = Education (High School or Non-High School)

M = MOS O5B, O5C, ..., 98C

The equation is composed of two categorical terms and two interaction terms. Education is used as an interaction term with both AFQT Groups and MOS.

Results. The MSE accounted for approximately 89% of the variation in the dependent variable ATTRITION, while the regression equation was significant at the .0001 level. The regression coefficients appear in Table 3. The standard error of estimate was .052. (AFQT I-IIIA+ is the omitted AFQT Group. MOS 98G is the omitted categorical variable for the MOS groups).

Variables in Table 3 can be identified as follows:

The first line in Table 3 is the constant (a). The default categories included in the constant are MOS 98G, non high school, and AFQT Category I-IIIA+.

M2 = I-IIIA-, M3 = IIIB-IV.

MO5B through M98C are MOS specific coefficients.

I1 = the interaction term between AFQT I-IIIA- and Education (high school graduate). I2 = the interaction between AFQT IIIB-IV and Education (high school graduate).

IO5B through I95B represent interaction between MOS and Education. In this case MOS 98C is the reference category.

TABLE 3
MOS SPECIFIC EQUATION RESULTS (MSE)

_	VARIABLE	В	t Le	vel of Significance
	(CONSTANT)	0.29977	9.840	0.0000
		AFQT I	EFFECTS	
	M2	0.04284	3.450	0.0006
	M3	0.07480	6.666	0.0000
		MOS ASSIGNE	MENT EFFECTS	
	M75C	-0.06098	-1.435	0.1522
	M338	-0.13912	-3.275	0.0012
	M32D	0.00151	0.035	0.9717
	MO5K	-0.07000	-1.648	0.1004
	M05G	-0.13423	-3.160	0.0017
	M91Q	-0.05276	-1.242	0.2152
	M71D	-0.00745	-0.157	0.8755
	M91D	-0.02929	-0.737	0.4618
	M91P	-0.11661	-2.933	0.0036

M91C	-0.03840	-0.966	0.3348
M71N	0.03317	0.834	0.4047
M71H	0.00919	0.231	0.8174
M55G	0.02410	0.606	0.5448
MO5H	-0.07801	-1.962	0.0506
N52C	0.09673	2.192	0.0291
M61B	0.22544	4.594	0.0000
M17C	0.26541	6.494	0.0000
M41C	0.25044	4.083	0.0001
M63G	0.10964	2.485	0.0135
M76W	0.14959	3.390	0.0008
M76V	0.16869	3.823	0.0002
M16R	0.18161	4.443	0.0000
M57H	0.13831	2.819	0.0051
M11B	0.20233	4.950	0.0000
M16P	0.19265	4.714	0.0000
M16J	0.16949	4.147	0.0000
M16B	0.16306	3.990	0.0001
M15E	0.20440	5.001	0.0000
MO5B	0.25659	6.278	0.0000
M31M	0.14059	3.440	0.0007
M12E	0.15885	3.887	0.0001
M12B	0.11939	2.921	0.0037
MO5C	0.27159	6.645	0.0000
M36C	0.15258	3.733	0.0002
M12C	0.12840	3.141	0.0018
M15D	0.24239	5.931	0.0000
M13E	0.17997	4.403	0.0000
M13B	0.18197	4.452	0.0000
M36K	0.10753	2.631	0.0089
M52D	0.11199	2.740	0.0065
M45K	0.19371	4.740	0.0000
M63H	0.12605	3.084	0.0022
M62B	0.09040	2.212	0.0277
M67N	0.07293	1.784	0.0753

M64C	0.12677	3.102	0.0021
M67Y	0.00091	0.022	0.9823
M75B	0.11916	2.915	0.0038
M76Y	0.15286	3.740	0.0002
M82C	0.14948	3.657	0.0003
M95B	0.10404	2.546	0.0114
M94B	0.24163	5.912	0.0000
M91B	0.12705	3.109	0.0020
M31N	0.23743	5.381	0.0000
M17K	0.09115	2.066	0.0396
M67U	0.12804	2.902	0.0040
M43E	0.25068	5.681	0.0000
M31E	0.12799	2.901	0.0040
M54E	0.22103	5.009	0.0000
M27E	0.14727	3.338	0.0009
M75D	0.16259	3.685	0.0003
M67V	0.12093	2.741	0.0065
M76J	0.12511	2.835	0.0049
M76P	0.15618	3.540	0.0005
M62F	-0.03230	-0.658	0.5108
M71C	0.17988	3.671	0.0003
M91R	0.02544	0.415	0.6786
M51K	0.00044	0.007	0.9943
M51B	0.04210	0.687	0.4929
M62E	0.14396	2.347	0.0195
M75E	0.13826	2.254	0.0248
M73C	-0.16870	-2.740	0.0065
M55B	0.19306	4.375	0.0000
	AFQT/EDUCA	TION INTERACTION	<u>i</u>
I1	-0.01873	-1.220	0.2233
12	-0.03308	-2.397	0.0171
	2.23300	_ • _ • .	

MOS/EDUCATION INTERACTION

195B	-0.18728	-4.916	0.000
194B	-0.20194	-5.301	0.0000
191E	-0.06383	-1.606	0.1093
191B	-0.19740	-5.182	0.0000
182C	-0.17461	-4.584	0.0000
176Y	-0.13743	-3.608	0.0004
176P	-0.16951	-4.078	0.0001
191R	-0.11721	-1.911	0.0569
176W	-0.15965	-3.590	0.0004
176V	-0.22963	-5.163	0.0000
163G	-0.21710	-4.881	0.0000
162F	-0.03713	-0.752	0.4526
151K	-0.04148	-0.674	0.5011
I17C	-0.27343	-6.690	0.0000
161B	-0.22209	-3.406	0.0007
141C	-0.37374	-4.992	0.0000
176J	-0.20844	-5.015	0.0000
175E	-0.16739	-2.813	0.0052
175D	-0.19026	-4.578	0.0000
175B	-0.17798	-4.672	0.0000
173C	0.09314	1.559	0.1200
171C	-0.11614	-2.487	0.0134
167Y	-0.17150	-4.502	0.0000
167V	-0.27352	-6.581	0.0000
167U	-0.26670	-6.417	0.0000
167N	-0.20398	-5.355	0.0000
164C	-0.18274	-4.797	0.0000
157H	-0.17313	-3.216	0.0014
155B	-0.24304	-4.923	0.0000
163H	-0.19332	-5.075	0.0000
162E	-0.23563	-3.959	0.0001
162B	-0.13405	-3.519	0.0005
154E	-0.19607	-4.717	0.0000

1520	-0.21107	-5.541	0.0000
I51B	-0.15316	-2.574	0.0105
I45K	-0.17109	-4.491	0.0000
143E	-0.14677	-3.531	0.0005
136K	-0.19659	-5.161	0.0000
136C	-0.21502	-5.645	0.0000
I31N	-0.21126	-5.083	0.0000
131M	-0.17061	-4.479	0.0000
127E	-0.14866	-3.577	0.0004
131E	-0.22194	-5.340	0.0000
I17K	-0.12331	-2.967	0.0032
116R	-0.18238	-4.788	0.0000
116P	-0.22604	-5.934	0.0000
I16J	-0.21173	-5.558	0.0000
I16B	-0.16963	-4.453	0.0000
152C	-0.24669	-3.998	0.0001
I15E	-0.14206	-3.729	0.0002
I15D	-0.19649	-5.158	0.0000
I13E	-0.17296	-4.540	0.0000
I13B	-0.18740	-4.920	0.0000
I12E	-0.21966	-5.767	0.0000
I12C	-0.18449	-4.843	0.0000
I12B	-0.21740	-5.707	0.0000
I11B	-0.18359	-4.820	0.0000
105C	-0.22888	-6.008	0.0000
105B	-0.19198	-5.040	0.0000
198C	-0.15222	-3.829	0.0002

Table 3 shows that all MOS/Education interaction terms (IO5B...I98C), except MOS 73C, are negative. These negative coefficients indicate that high school graduates are less likely to leave prematurely regardless of MOS assignment. However, the size of these interaction terms exhibit variability. For example, line 2 of the education/MOS interaction terms show a coefficient of -.20194 (20 percent reduction) for MOS 94B, while line 3 shows this interaction to be -.06383 (6 percent reduction) for MOS 91E. It is important to note findings such as these because they demonstrate the differential effects of education by job assignment on the rate of attrition. Also, the higher the AFQT group the lower the attrition, since M2 (.04284) and M3 (.07480) are positive. Table 4 shows the range, mean, and standard deviation of both the MOS/Education interaction terms and the MOS terms.

Table 4

	Descriptive	Statistics	s for MSE	Coefficients
_	MAX	MEAN	MIN	STD DEV
Mos	.2716	.1070 -	.1687	.1061
MOS/EDUC	.0931 -	.1821 -	.3737	.0645

The reason for the inclusion of the MOS/Education interaction is twofold. First, the addition of MOS/Education interaction terms decreased the standard error of the estimate by 4%. Second, the MSE with separate education and MOS terms explained 86% of the variation, while the interaction (unrestricted) equation explained

This increase in explained variation and the concomitant decrease in standard error is significant when using a comparative F statistic and considering the number of linear restrictions imposed(see Appendix C). Table 3 also shows the t values of the coefficients, and their level of significance. While many of these coefficients are significant at the .05 level, it should be noted that this may be misleading. Since this is a categorical variable regression, the size and sign of the coefficients are determined by the reference group or omitted category. Suppose there exists some distribution P which is composed of all attrition rates. this is a categorical variable regression the size and sign of all regression coefficients depend upon which MOS is used as the reference category. If for example, the omitted MOS is picked from the area located near the mean, then there will be a fairly equal number of negative and positive coefficients and significance values. Also few coefficients will be large and therefore few t values will be significant. This is because the coefficient is in the numerator of the t equation (see equation 5). In contrast, if

(5) $t = bi/(standard\ error\ of\ bi)$

where:

bi = unstandardized coefficient

either extremal MOS is used as the reference category, then all coefficients and t values will be negative or positive (depending on which tail is used). Also in the extreme case only a few MOS will have small bi and t values since there is a low density in the tails of distribution P. Therefore it is important to examine the descriptive statistics of the coefficients (see Table 4). Two important results are the MOS specific and education coefficients. These coefficients (for non high school I-III A +) show considerable variability with mean results ranging from 16.1% to 56.5% for the same characteristic group of personnel. Table 5 shows the number of MOS associated with each interval. As can be seen there is a

large amount of variation within one demographic group. Similarly, Table 6 illustrates the range in attrition reduction found across MOS due to education. The attrition reduction from the assignment of high school graduates can be over 30% in one MOS, and have virtually no impact in another MOS.

Table 5
Variability of Equation Coefficients by MOS
(for non-high school I-III A+)

Interval	Number	of MOS
10-19.9%		5
20-29.9%		9
30-39.9%		13
40-49.9%		33
50% and above		12

mean attrition rate 40.0% standard deviation 11.0%

Interval	Number of MOS
Increased attrition	1
reduction of 0-9.9%	3
reduction of 10-14.9%	8
reduction of 15-19.9%	25
reduction of 20-24.9%	23
reduction of 25-29.9%	3
reduction of over 30%	1
mean reduction	18.4%
standard deviation	5.9\$

The MSE shows consistent behavior. First, high school graduates have lower attrition than non-high school graduates within categories of AFQT and MOS assignment. This relationship has been a long standing fact in the manpower planning of military personnel (Kissler 1980). Second, as AFQT Group increases, attrition (This relationship can be seen on Table 3). and Morris (1982) found similar AFQT Group findings in their research on non-high school Army enlistees. Although their work used the traditional AFQT categories, the overall effects of AFQT Group attrition term are in agreement with findings presented here. And finally, MOS show differential attrition behavior within categories of AFQT Group and Education. ferential attrition, based upon job assignment, is an important finding in view of the allocation decisions made when an applicant signs a contract.

V. GENERIC MOS EQUATIONS (GME)

Generic MOS Equation (Males) The GME is a regression equation similar to the MSE, except that it is not MOS specific. This model uses the aptitude area composite and the required aptitude area score level as a generalized representation for MOS. The same data are used in deriving the regression coefficients. As stated previously, these equations provide predicted percentages of attrition where it does not exist historically or where cell size is too small.

The variables used in this model are described in Table 4. The form of the GME is shown in equation 3.

(3) $Y = a + b_1 G + b_2 C + b_3 S + b_4 G*S + b_5 E*G + b_6 E*C + b_7 E*S$

where:

G and E are described above

C = Aptitude area composite

S = Aptitude area score level

This model is composed of three categorical variables (E,G,C,), one continuous variable (S), and four interaction terms. It can be seen that the variable E (education) is used in interaction with all other variables and is therefore excluded from the regression equation itself. The coefficient b4 represents the interaction between AFQT group and the level of the aptitude area score used for assignment. AFQT I-IIIA+, education (non-high school) and the aptitude area ST (Skilled Technical) are the omitted categories.

AFQT Range	AFQT Category Model
75-99	I-IIIA+
50-74	I-IIIA-
11-49	IIIB-IV

Education

Нi	gh.	School	

Non-High School

Aptitude Area Composite

(A6)	CO-Combat	(A5)	SC-Survellance
(A7)	FA-Field Artillery	(A4)	MM-Mech. Maintenance
(A2)	EL-Electronics	(A3)	CL-Clerical
(8A)	OF-Operators/Food	(A1)	GM-Gen. Maintenance
(A Q)	ST_Svilled Technical		

(A9) ST-Skilled Technical

Ap	ti	tude	Area	Qualify:	in	Score
80	=	0		105	=	6
85	Ξ	1		110	=	7
90	=	2		115	=	8
95	=	3		120	=	9
400		lı.				

Results. The equation for males was able to explain approximately 74 percent of the variation in attrition and was significant at the .0001 level. The standard error of the estimate was .071, compared to .052 for the MSE. While the GME accounted for less variation then the MSE, it still has considerable value for providing an estimated or surrogate rate for a particular MOS. The regression equation coefficients are presented in Table 8.

The variables in Table 8 can be identified as follows:

- M2 = I-IIIA-. M3 = IIIB-IV.
- A1 through A8 are the aptitude area scores (see Table 7)
- A9 (Skilled Technical) is the ommitted category.
- CS is the apritude area score level used for assignment.
- All through Al8 are the interactions between aptitude area score and education (high school graduate).
- CE is the interaction between education (high school) and the level of the aptitude area score used for assignment.
- C1 is the interaction between CS and AFQT Group I-IIIA-, while C2 is the interaction between CS anf AFQT IIIB-IV.
- I1 is the interaction between Education (high school) and I-IIIA-, while I2 is the interaction between high school graduates and AFQT Group IIIB-IV.

Table 8
Generic MOS Equation Coefficients (Male)

. 001.	0. 10		3
			Level of Significance
	0.34630	15.825	
- M2	0.09613		0.0003
M3.	0.1.1074	4.805	0.0000
CE	-0.03607	-7.076	0.0000
C 1	-0.01150		0.1954
C 2	-0.00341	-0.434	0.6648
T 4	-0.05663	-2 022	0.0037
I 1			0.0000
I 2	-0.07484	-4.459	0.0000
CS	0.01294	1.638	0.1021
00	0.07297	,,,,,,	
A 5	0.12800	5.662	0.0000
A 2	0.04440	2.134	0.0334
A 4	0.00046	0.025	0.9800
A 3	0.03260	1.683	0.0930
A 7	0.09578	2.521	0.0121
A 6	0.06843	2.829	0.0049
A 8	0.09779	5.450	0.0000
A 1	0.04110	2.089	0.0372
AI2	-0.04175	-1.633	0.1033
AI3	-0.02110	-0.948	0.3436
AI8	-0.09566	-4.572	0.0000
A I 7	-0.12098	-2.361	0.0187
A16	-0.11642	-3.760	0.0002
-A I 1	-0.07727	-3.427	0.0007
AI5	-0.10588	~3.739	0.0002
A I 4	-0.07618	-3.382	0.0008

In its simplest form the equation (Y = a) represents the expected attrition rate (.3463) of a non-high school AFQT I-IIIA+ male who is assigned to an MOS with an ST requirement of 80. No such MOS exist at this time having these requirements; this would be the expected attrition rate if such an MOS were created and non-high school males in AFQT category I-IIIA+ were assigned to it.

Table 9 shows the predicted attrition rates using the Male These rates are for categories of AFQT, education and Aptitude Area when the score used for assignment is 90. Table 10 shows predicted rates for the same categories when the aptitude area score used for assignment is 100. Comparing the rates from these two tables shows that as aptitude area score requirements increase from 90 to 100, differences in attrition between high school graduates and non-graduates become greater. These tables highlight the differential attrition of accessions based on MOS difficulty. Also these results show the effect of the "type" of job assignment. example, Mechanical Maintenance (MM) and Clerical (CL) have very different rates of attrition for all AFQT and education groups. has the lowest rates of attrition, while CL has the highest. An-AFQT point is that differences more pronounced in the non-high school categories, although there are still sizable differences in the high school graduate groups.

Table 9

GME Predicted Rates with Score Level 90 (Males)

	High School			Non-High	h Schoo	<u>1</u>
<u>-</u>	AFQ	T Group		AFQT	Group	
	I-IIIA+	I-IIIA-	IIIB-IV	I-IIIA+	I-II	IA- IIIB-IV
GM	.264	.292	.296	.413	.498	.520
EL	.303	.331	.335	.416	.501	.523
CL	.312	.340	.344	.405	.490	.512
MM	.224	.252	.256	.372	.457	.479
sc	.322	.350	.354	.500	.585	.607
СО	.252	.280	.284	.440	.525	.547
FA	.275	.303	.307	.468	.553	.575
OF	.302	.330	.334	.470	.555	.577
ST	.300	.328	.332	.372	.457	.479

Table 10

GME Predicted Rates with Score Level 100

(Males)

	High	n School		Non-Hi	gh School	
	AF	QT Group		AFÇ	T Group	
	I-IIIA+	I-IIIA-	IIIB-IV	I-IIIA+	I-IIIA-	IIIB-IV
GM	.218	.246	.250	.439	.524	.546
EL	.257	.285	.289	.442	.527	.549
CL	.266	.294	.298	.431	.516	.538
MM	.178	.206	.210	.398	.483	.505
SC	.276	.304	.308	.526	.611	.633
СО	.206	.234	.238	.466	.551	.573
FA	.229	.257	.261	.494	.579	.601
OF	.256	.284	.288	.496	.581	.603
SI	.254	.282	.286	.398	.483	.505

Generic MOS Equation (Female)

The construction of the female GME is similar to the male counterpart using AFQT Group and aptitude area as the independent variables (equation 4). Education is not used as an independent variable since few female accessions are non-high school graduates. Also, only two AFQT Groups (I-IIIA and IIIB-IV) are used because of the limited observations available for females. Since the aptitude area score level did not seem to have an appreciable effect on explaining variation in attrition, it was dropped from the female equation.

(4)
$$Y = a + b_1 G + b_2 C$$

where:

G = AFQT Group

C = Aptitude Area Score used for assignment

The above model is composed of two categorical variables. I-IIIA is the omitted AFQT Group, and ST is the omitted aptitude area score. Also, the aptitude area score FA (Field Artillery) and CO (Combat Arms) are not used since females are not assigned to combat MOS.

Results. As expected the female GPM results are not as profound as the male GME. However, aptitude area score used for assignment did show interesting differences with respect to variability in predicting attrition rates. The female GPM explained approximately 32 percent of the variation in attrition. Compared to the strengths of the other two models, this model is far less powerful. This is to be expected, since there was no variability due to education. However, it is still capable of providing differences which reflect real trade-offs in differential assignment to MOS. Table 11 shows the regression equation coefficients and their significance. The entire equation was significant at the .0001 level while the standard error of the estimate was .072.

Table 11
Generic MOS Equation Coefficients (Female)

VARIABLE	COEFFICIENT	t	Level of Significance
(CONSTANT)	0.38533	22.235	0.0000
M 2	0.01137	0.686	0.4947
A 8	0.11884	3.519	0.0007
A 5	0.17717	2.378	0.0199
A 4	0.13519	4.677	0.0000
A 2	0.09866	3.394	0.0011
A 1	0.10265	3.677	0.0004
A 3	0.05707	2.725	0.0080

Overall, the male GME is a superior equation to the female GME in terms of explained variation. There are reasons for this: First, the female data base used in the regression is considerably smaller than the data used for males. Also, policy effects, in relation to first term attrition, may play a greater role in female rates than in the attrition rate of males. And finally, there is less variability in the kinds of jobs to which females are assigned. Even though the R-square was lower than the male equation, the standard error was almost the same.

VI. DISCUSSION OF RESULTS

Table 12 shows the summary statistics for the male rates generated by the MSE and the male GME. Overall, .6462 is the highest predicted rate of attrition (MOS 05C, for a non-high school graduate of AFQT group IIIB-IV). The lowest predicted rate for males is .1292 for a AFQT I-IIIA+ high school graduate assigned to MOS 67Y. When comparing the mean, the largest differences are in the high school and non-high school groups, .2811 and .4792, respectively. Within categories of AFQT there are sizable differences when comparing group means. Appendix A lists all rates for males. (The symbol * denotes when the GME was used).

Table 12
Range of Male Rates

	Max	Mean	Min	Std dev	N
	 -		. <u> </u>		
High School	.4454	.2811	.1292	.0606	228
Non-High School	.6462	.4792	.1739	.0677	228
AFQT I-IIIA+	.5714	.3460	.1292	.1009	152
AFQT I-IIIA-	.6142	.3842	.1533	.1182	152
AFQT IIIB-IV	.6462	.4102	.1709	.1254	152
All Categories	.6462	.3802	.1292	.1181	456

Table 13 shows the summary statistics for the female rates. As can be seen there is less variation within the predicted female rates. This is not unexpected since the female GME had a low R-square when compared to the male equations. Female rates range from .3853 to .5739, with an average rate of .4727. This average rate is considerably higher than that for males (.3802). The range of rates for females is still sizable, showing a reasonable amount of variation.

Table 13
Range of Female Rates

	Max	Mean	Min	Std dev	N	
AFQT I-IIIA	.5625	.4669	.3853	.0522	68	
AFQT IIIB-IV	.5739	.4783	.3967	.0522	68	
All Categories	.5739	.4727	.3853	.0542	136	

The predicted rates of attrition for females is presented in Appendix B.

VII. CONCLUSIONS

The MOS specific and generic equations provide for a way of estimating the first-term attrition of different groups of enlisted personnel within the U.S. Army. These estimates of attrition rates can be used as cost measures when allocating personnel in the future. At this point it would be difficult to determine what savings (with respect to lower attrition), if any, could be had with alternative allocation policies and systems. However, the importance of these findings is that there exists the potential for reducing the overall rate of first term attrition. The results have shown that:

- o Historical attrition can be explained by organizational factors (MOS, Aptitude Area) and individual factors (Sex, AFQT, Education)
- o There exists interaction between organizational factors and individual factors, (The significant inclusion of the MOS/Education interaction terms show this.)
- o Variation in the range of attrition is sizable, ranging from about 12 to 64 percent, to present many significant tradeoffs; indeed 67 of the 76 MOS used in this analysis (or 88 percent) show more than a 20 percent range in attrition within various demographic groups (Education, Sex, AFQT).

The most important finding is that attrition rates can be projected using data that exists prior to MOS assignment. The implication of this is that changes in allocation policies or systems can increase first term retention. While additional screening mechanisms, recruiting effort or other policies can improve retention, they often involve considerable direct costs. However, by understanding real trade offs in allocation retention can be increased with virtually no additional cost.

REFERENCES

- Blandin, James S. and Morris, James H., "Predicting Attrition Among Non-High School Graduate Army Enlistees", Armed Forces and Society, Vol. 8 No.4,
- Buddin, Richard "The Role of Service Experience in Post Training Attrition in the Army and Air Force", Rand Corporation Report R-2682 MRAL, November 1981 Summer 1982 643-655
- Comptroller General, United States General Accounting Office, Report to the Congress FPCD-80-10, "Attrition in the Military--An Issue Needing Management Attention". February 1980
- Goodstadt, Barry E. and Yedlin, Nancy C. "First Tour Attrition: Implications for Policy and Research", U.S. Army Research Institute, Research Report 1246, June 1980
- Kissler, Gary D. "Military Attrition: A Framework for R & D", Navy Personnel Research and Developement Center, Unpublished, October 1978
- Maddala, G.S., "Econometrics" (McGraw Hill Book Company, 1977)
- Schmitz, Edward J., Moore, David W. and McWhite, Peter B. "The Categorization of Personnel Supply for MOS Allocation", U.S. Army Research Institute, Alexandria, Unpublished Working Paper, October 1983.
- Siebold, Guy L. "Attrition: Causality, Explanation and Level of Analysis", Proceedings of the 23rd Annual Conference of the Military Testing Association, Arlington, Virginia 1981
- Wiskoff, Martin F., Atwater, David C. and Houle, Martha M., "Enlisted First-Term Attrition: Literature Review and Discussion", Navy Personnel Research and Development Center, Working Paper, August 1930 Center, Working Paper, August 1980

APPENDIX A

PROJECTED ATTRITION RATES BY CATEGORY

Education	AFQT Category	Mos	Attrition Rate
NHS	I-IIIA-	053 SC 90	0.599200
NES	III-IV	05B SC 90	0.631200
HS	I-II <i>I</i> A+	05B SC 90	0.364499
HS	I-IIIA-	05B SC 90	0.388500
HS	III-IV	05B SC 90	0.496100
NH3	+ <i>F</i> III - I	05C SC 95	0.571490
NH3	I-IIIA-	05C SC 95	0.614200
NHS	III-IV	05C SC 95	0.646200
HS	I-II IA+	05C SC 95	0.342500
HS	I-II IA-	05C SC 95	0.366500
HS	III-IV	05C SC 95	0.384200
NHS	I-IIIA+	05G SC 95	0.513120 *
NH3	I-IIIA-	05G SC 95	0.574750 *
MIS	III-IV	05G SC 95	0.613630 *
HS	I-IIIA+	05G SC 95	0.165500
HS	I-IIIA-	05G SC 95	0.199700
HS	III-IV	05G SC 95	0.207300
NHS	I-IIIA+	05H ST 95	0.395120 *
NHS	I-II IA-	05H ST 95	0.446750 *
NIS	III-IV	05H ST 95	0.485630 *
HS	I-IIIA+	05H ST 95	0.221800
HS	I-IIIA-	05H ST 95	0.245900
НЗ	III-IV	05H ST 95	0.263590
NHS	I-IIIA+	05K ST 95	0.385120 *
NHS	1-111A-	05K ST 95	0.446750 *
NHS	III-IV	05K ST 95	0.485630 *
HS	I-IIIA+	05K ST 95	0.229900
HS	I-II 1A-	05K ST 95	0.253900
HS	III-IV	05K ST 95	0.271500

NHS	I-IIIA+	11X CO 85	0.502100
NHS	I-IIIA-	11X CO 85	0.544900
NHS	III-IV	11X CO 85	0.576900
HS	I-IIIA+	11X CO 85	0.318500
HS	I-IIIA-	11X CO 85	0.342600
HS	III-IV	11x CO 85	0.360200
NHS	I-IIIA+	12B CO 85	0.419200
NHS	I-IIIA-	12B CO 85	0.462000
NHS	III-IV	12B CO 85	0.494000
HS	I-II IA+	12B CO 85	0.201900
HS	I-IIIA-	12B CO 85	0.225900
HS	III-IV	12B CO 85	0.243500
בבנו	111-14	122 00 03	0.2.000
NHS	I-II IA+	12C MM 85	0.428200
NHS	I-II IA-	12C MM 85	0.471000
NHS	III-IV	12C MM 85	0.503000
	I-IV I-II IA+	12C MM 85	0.243700
HS		12C MM 85	0.267900
HS	I-IIIA-	12C MM 85	0.285400
HS	III-IV	12C M 65	0.203400
NT 17	T TTT8.4	12E CO 95	0.458600
NHS	I-IIIA+	12E CO 95	0.433000
NHS	I-IIIA-		0.533499
NHS	III-IV	12E CO 95	
HS	I-IIIA+	12E CO 95	0.239000
HS	I-II IA-	12E CO 95	0.263100
HS	III - IV	12E CO 95	0.280700
			0.401700
NHS	I-IIIA+	13B FA 95	0.481700
NHS	I-II IA-	13B FA 85	0.524600
NH3	III - IV	13B FA 95	0.556500
HS	I-II IA+	13B FA 85	0.294300
HS	I-IIIA-	13B FA 85	0.318400
HS	III-IV	138 FA 95	0.33 6000
NHS	I-IIIA+	13E ST 95	0.479700 *
NHS	I-IIIA-	13E ST 95	0.522600 *
NHS	III-IV	13E ST 95	0.554500
HS	I-IIIA+	13E ST 95	0.306800
HS	I-II IA-	13E ST 95	0.330900
HS	III-IV	13E ST 95	0.349500
NHS	I-IIIA+	15D OF 95	0.542200
NHS	I-IIIA-	15D OF 95	0.595000
NHS	III-IV	15D OF 95	0.617000
HS	I-IIIA+	15D OF 95	0.345700
HS	I-11114-	15D OF 95	0.369800
HS	III-IV	15D OF 95	0.387400
		-	

NHS	I-IIIA+	15E OF 95	0.504200
	I-II IA-	15E OF 95	0.547000
NHS	III-IV	15E OF 95	0.579000
NHS	I-IIIA+	15E OF 95	0.362100
HS	I-IIIA-	15E OF 95	0.336200
HS		15E OF 95	0.403900
HS	III-IV	250 02	
*****	I-IIIA+	16B OF 85	0.462800
NHS	I-IIIA-	16B OF 85	0.505700
NHS	III-IV	16B OF 85	0.537600
NHS	I-IIIA+	16B OF 85	0.293200
HS		16B OF 85	0.317300
HS	I-IIIA-	16B OF 85	0.334900
HS	III-IV	165 01 05	
	I-IIIA+	16J OF 95	0.469300
NHS	I-111A-	16J OF 95	0.512100
NHS	III-IV	16J OF 95	0.544100
NHS	I-IIIA+	16J OF 95	0.257500
H3		16J OF 95	0.281600
HS	I-II IA-	16J OF 95	0.299300
HS	III-IV	100 01 22	
	I-IIIA+	16P OF 85	0.492400
NHS	I-IIIA-	16P OF 85	0.535300
NHS		16P OF 85	0.567200
NHS	III-IV	16P OF 95	0.266400
hs	I-IIIA+	16P OF 85	0.290500
H5	I-IIIA-	16P OF 85	0.309100
HS	III-IV	101 01 33	
1570	I-IIIA+	16R SC 100	0.481490 *
NHS	I-IIIA-	16R SC 100	0.524200 *
NHS	111-IV	16R SC 100	0.556200
nhs		16R SC 100	0.299000
HS	I-II IA+	16R SC 100	0.323100
HS	I-IIIA-	16R SC 100	0.340700
IIS	III-IV	10.0 3C 103	
MIC	I-IIIA+	17C SC 95	0.565200
NHS	I-IIIA-	17C SC 95	0.608000
ihs	III-IV	17C SC 95	0.640000
NHS	I-IIIA+	17C SC 95	0.291700
HS		17C SC 95	0.315900
HS	I-II IA-	17C SC 95	0.333500
HS	III-ĪV	1,0 00 20	
NHS	I-IIIA+	17K SC 95	0.513120 *
nhs Nhs	I-IIIA-	17K SC 95	0.433800
nhs NHS	II I-IV	17K SC 95	0.465700
NFIS HS	I-111A+	17K SC 95	0.267600
	I-IIIA-	17K SC 95	0.291700
HS	II I-IV	17K SC 95	0.309300
HS	TY 1-1A	=	

NHS	I-IIIA+	27E EL 95	0.429520 *
	I-IIIA-	27E EL 95	0.489900
NHS	III-IV	27E EL 95	0.521900
NHS	I-II IA+	27E EL 95	0.298400
HS		27E EL 95	0.322500
HS	I-IIIA-	27E EL 95	0.340100
HS	III-IV	2/2 100 93	0.0.00
****	T TTTN .	31E EL 110	0.468340 *
NHS	I-IIIA+	31E EL 110	0.470600
NHS	I-IIIA-	31E EL 110	0.502500
NHS	III-IV	31E EL 110	0.205800
HS	I-IIIA+	31E EL 110	0.229900
HS	I-111A-	31E EL 110	0.247500
HS	III-IV	312 55 110	0.21,30.,
NHS	I-IIIA+	31M EL 95	0.440400
	I-IIIA-	31M EL 95	0.483200
NHS	III-IV	31M EL 95	0.515200
NHS	I-II IA+	31M EL 95	0.269700
HS	I-IIIA-	31M EL 95	0.293900
HS		31M EL 95	0.311500
HS	III-IV		00000
NHS	I-IIIA+	31N EL 95	0.429520 *
NHS	I-111A-	31N EL 95	0.580000
NHS	III-IV	31N EL 95	0.612000
HS	I-IIIA+	31N EL 95	0.325900
	I-II IA-	31N EL 95	0.350100
HS	111-17	31N EL 95	0.367700
HS	111-11		
NHS	I-IIIA+	32D EL 95	0.429520 *
NHS	I-IIIA-	32D EL 95	0.491150 *
NIS	III-IV	32D EL 95	0.530030 *
HS	I-IIIA+	32D EL 95	0.301300
HS	I-IIIA-	32D EL 95	0.325400
HS	III-IV	32D EL 95	0.343000
NEIS	I-IIIA+	33S MM 95	0.385590 *
NHS	I-IIIA-	335 MM 95	0.447220 *
NHS	III-IV	338 M4 95	0.436100 *
HS	I-IIIA+	335 MH 95	0.160600
HS	I-II IA-	335 MM 95	0.194300
HG	III-IV	335 M1 95	0.202400
NHS	I-IIIA+	36C EL 90	0.452300
NHS	1-111A-	36C EL 90	0.495200
NHS	III-IV	36C EL 90	0.527100
HS	I-IIIA+	36C EL 90	0.237300
HS	I-IIIA-	36C EL 90	0.261400
HS	II I-IV	36C EL 90	0.279000

SONO SONO BOSO SONO BREEZES SONO BOSO SONO S

の日間ならいのからこれのことのとのとの

			a 407200
NHS	I-IIIA+	36K EL 90	0.407300
NES	I-IIIA-	36K EL 90	0.450100
NHS	III-IV	36K EL 90	0.432100
HS	I—IIIA+	36K EL 90	0.210700
HS	I-IIIA-	36K EL 90	0.234900
HS	III-IV	36K EL 90	0.252400
NHS	I-IIIA+	41C @1 90	0.413280 *
NHS	I-IIIA-	41C G1 90	0.486410 *
NHS	III-IV	41C GM 90	0.625000
HS	I-IIIA+	41C GM 90	0.263970 *
HS	I-IIIA-	41C GM 90	0.297500 *
HS	III-IV	41C GM 90	0.219200
NHS	I-IIIA+	43E G1 85	0.400340 *
NHS	I-IIIA-	43E GM 85	0.593300
NHS	III-IV	43E GM 85	0.625290
HS	I-II IA+	43E G1 85	0:403700
HS	I-IIIA-	43E GM 85	0.427900
HS	III-IV	43E G1 85	0.445470
			_
NHS	I-IIIA+	45K GM 95	0.493500
NHS	I-IIIA-	45K G1 95	0.536300
NHS	III-IV	45K GM 95	0.569300
HS	I-IIIA+	45K GM 95	0.322400
HS	I-II IA-	45K GM 95	0.345500
HS	II I-IV	45K G1 95	0.364100
NHS	I-IIIA+	51B GN 85	0.400340 *
NHS	I-11 IA-	51B GM 95	0.494970 *
NHS	III-IV	51B GM 95	0.416700
HS	I-IIIA+	51B GM 85	0.183700
HS	I-IIIA-	51B G4 95	0.212900
HS	III-IV	51B G 1 85	0.230400
125			
NHS	I-11 IA+	51K GP1 85	0.400340 *
NHS	I-111A-	51K GM 85	0.484970 *
NHS	III-IV	51K G1 85	0.375000
HS	I-IIIA+	51K G1 85	0.287000 *
HS	I-11 IA-	51K GM 85	0.232800
HS	III-IV	51K G1 85	0.300400
ns.	222 24		
NHS	I-111A+	52C GM 95	0.425220 *
NHS NHS	I-111A-	52C @1 95	0.439300
nas NHS	III-IV	52C @1 95	0.471300
NES HS	I-IIIA+	52C Q1 95	0.240740 *
ns HS	I-111A-	52C G1 95	0.173900
ns HS	III-IV	52C GM 95	0.305350 *
172	TT Y-7 A	 - -	

NHS	I-IIIA+	52D GM 95	0.411900
NHS	I-IIIA-	52D G4 95	0.454600
NHS	III-IV	52D GM 95	0.486690
HS	I-II IA+	52D GM 95	0.200700
HS	I-11 IA-	52D GM 95	0.224800
	III-IV	52D G1 95	0.242400
HS	111-10	<i>325</i> G., 33	
	T TTT% 1	54E ST 90	0.372190 *
NHS	I-IIIA+	54E ST 90	0.563600
neis	I-II IA-	54E ST 90	0.595600
NHS	III-IV		0.324700
HS	I-IIIA+	54E ST 90	0.348900
HS	I-IIIA-	54E ST 90	
HS	III–IV	54E ST 90	0.366400
			0 400040 +
NHS	I-IIIA+	55B GM 85	0.400340 *
NHS	I-IIIA-	55B Q1 85	0.535700
MIS	III-IV	55B QM 85	0.567600
H3	I-IIIA+	55B GM 85	0.287000 *
HS	I-IIIA-	55B GM 85	0.332130 *
HS	III-IV	55B GM 85	0.291500
127			
NHS	I-IIIA+	55G GM 95	0.426220 *
	I-II IA-	55G GM 95	0.497850 *
NHS	III-IV	55G GM 95	0.526730 *
NHS		55G Gt 95	0.323900
HS	I-IIIA+	55G GM 95	0.349000
HS	I-IIIA-		0.365600
HS	III-IV	55G GM 95	0.333500
		57H G4 85	0.400340 *
NHS	I-IIIA+	=	0.494970 *
NHS	I-IIIA-	57H GM 85	0.512900
NHS	III—IV	57H GM 85	
H3	I-II IA+	57H GM 85	0.287000 *
HS	I-II IA-	57H GM 85	0.332130 *
HS	III-IV	57H GM 95	0.306700
NHS	I-II IA+	61B M1 95	0.385590 *
NHS	I-II IA-	61B :M 95	0.447220 *
NHS	III-IV	61B MM 95	0.600000
HS	I-11 IA+	61B MM 95	0.201200 *
	I-II IA-	61B MM 95	0.223330 *
HS	111-IV	61B MM 95	0.344800
hs	111-14	020 21 30	
	* ****	62B MM 85	0.390200
NHS	I-IIIA+	62B MM 85	0.433000
NHS	I-IIIA-	62B MM 85	0.465000
NHS	III-IV	_	0.256100
HS	I-IIIA+	-	0.230200
HS	I-IIIA-	62B MM 85	0.297800
HS	II I–IV	62B M 85	0.27/800

NHS	I-IIIA+	62E G1 85	0.400340 *
NHS	I-IIIA-	62E GM 85	0.484970 *
NHS	III-IV	62E G4 85	0.518500
HS	I-II IA+	62£ G4 85	0.203100
HS	I-IIIA-	62E G1 85	0.232200
HS	II I–IV	62E G1 85	0.249900
123	111 11	0.2 0.1	
NHS	I - II IA+	62F G4 85	0.400340 *
NHS	I-IIIA-	62F G1 85	0.484970 *
NHS	III-IV	62F G1 85	0.342300
HS	I-II IA+	62F GM 85	0.287000 *
HS	I-111A-	62F GM 85	0.254400
HS	III-IV	62F G1 85	0.272100
133	111-1V		<u>-</u>
NHS	I-II IA+	63G MM 100	0.398530 *
	I-IIIA-	63G MM 100	0.452300
NHS	III-IV	63G MM 100	0.484200
NHS	I-IIIA+	63G MM 100	0.178070 *
HS	I-IIIA-	63G M1 100	0.216400
HS		63G MM 100	0.234000
HS	III-IV	033 M 100	0123 1703
NT 17	I-IIIA+	63H M1 85	0.425800
NHS	I-IIIA-	63H MM 85	0.463700
NHS		63H MM 85	0.500600
NHS	III-IV	63H MM 85	0.232500
HS	I-II IA+	63H MM 85	0.256600
HS	I-IIIA-	63H M1 85	0.274200
HS	II I–IV	636 44 63	0.2/4200
MIC	T_TT TX 4	64C OF 85	0.426500
NHS	I-IIIA+	64C OF 85	0.469400
NHS	I-IIIA-	64C OF 85	0.501300
NHS	III-IV	64C OF 85	0.243800
HS	I-IIIA+	64C OF 85	0.267900
HS	I-IIIA-		0.285500
HS	III-IV	64C OF 85	0.205500
1770	T TTTN .	67N MM 100	0.372700
NHS	I-111A+	67N MM 100	0.415500
NHS	I-IIIA-	67N MM 100	0.447500
NHS	III-IV	67N MM 100	0.169700
HS	I-IIIA+		0.192900
HS	I-II IA-	67N MM 100 67N MM 100	0.210400
HS	II I–IV	6 /N WI 100	0.210400
1710	T TYTA .	670 184 100	0.398530 *
NHS	I-IIIA+	67U MM 100	0.470700
NHS	I-II IA-	67U MM 100 -	0.502600
NHS	III-IV	• • • • •	0.161100
HS	I-IIIA+	67U MM 100	0.185200
HS	I-111A-	67U MM 100	0.185200
HS	III-IV	67U MM 100	0.202500

MUC	I-IIIA+	67V M1 100	0.398530 *
NHS	I-IIIA-	67V MM 100	0.463500
NHS	III-IV	67V M1 100	0.495500
NHS	I-IIIA+	67V MM 100	0.147200
HS	I-II IA-	67V M4 100	0.171300
HS	II I–IV	67V M1 100	0.189900
HS	111-14	0,4 11. 250	•
	I-IIIA+	67Y MM 100	0.300700
NHS	I-IIIA-	67Y M4 100	0.343500
NHS	III-IV	67Y MM 100	0.375500
NHS	I-IIIA+	67Y MM 100	0.129200
HS	I-IIIA-	67Y MM 100	0.153300
HS	III-IV	67Y MM 100	0.170900
HS	TTT-TA	0,1 11. 200	
NHS	I-IIIA+	71C CL 95	0.417720 *
NIIS	I-IIIA-	71C CL 95	0.522500
	III-IV	71C CL 95	0.554400
NHS	I-IIIA+	71C CL 95	0.363500
HS	I-II IA-	71C CL 95	0.397600
HS	_	71C CL 95	0.405200
HS	III-IV	710 02 33	
NIIS	I-IIIA+	71D CL 110	0.456540 *
NHS	I-IIIA-	71D CL 110	0.433670 *
Neis Neis	III-IV	71D CL 110	0.546920 *
Nns HS	I-IIIA+	71D CL 110	0.292300
	I-IIIA-	71D CL 110	0.316499
HS	III-IV	71D CL 110	0.273490
HS	111-14	125	
NHS	I-IIIA+	71L CL 95	0.417720 *
NHS	I-IIIA-	71L CL 95	0.479350 *
NHS	III-IV	71L CL 95	0.519230
HS	I-IIIA+	71L CL 95	0.289410 *
HS	I-IIIA-	71L CL 95	0.310540 *
HS	III-IV	71L CL 95	0.341500
110			
NHS	I-IIIA+	71M CL 95	0.417720 *
NHS	I-IIIA-	71M CL 95	0.479350 *
NHS	III-IV	71M CL 95	0.518230 *
HS	I-IIIA+	71M CL 95	0.309000
HS	I-IIIA-	71M CL 95	0.333100
	III-IV	71M CL 95	0.350700
HS	777_74		
NHS	I-IIIA+	71N CL 95	0.417720 *
NHS	I-IIIA-	71N CL 95 .	0.479350 *
nis	111-IV	71N CL 95	0.519230 *
HS	I-II IA+	71N CL 95	0.332900
HS	I-II IA-	71N CL 95	0.357000
HS	III-IV	71N CL 95	0.374700

NHS NHS NHS HS HS	I-IIIA+ I-IIIA- III-IV I-IIIA+ I-IIIA- III-IV	73C CL 95 73C CL 95 73C CL 95 73C CL 95 73C CL 95 73C CL 95	0.417720 * 0.173900 * 0.518230 * 0.224200 0.248300 0.265900
NHS NHS	I-II IA+ I-II IA-	75B CL 95 75B CL 95	0.418900 0.461900
NHS	III-IV	75B CL 95	0.493700
HS	I-II IA+	75B CL 95	0.240900
HS	I-II IA-	75B CL 95	0.265100
HS	III-IV	75B CL 95	0.292700
NHS	I-IIIA+	75C CL 95	0.417720 * 0.479350
NHS	I-IIIA-	75C CL 95 75C CL 95	0.518230
NHS	III-IV	75C CL 95 75C CL 95	0.317230
HS	I-IIIA+	75C CL 95	0.262900
HS	I-IIIA- III-IV	75C CL 95	0.280500
HS	111-1V	75C CD 75	0.250308
NHS	I-IIIA+	75D CL 95	0.417720 *
NHS	I-II I\-	75D CL 95	0.505200
NHS	III-IV	75D CL 95	0.537200
HS	I-IIIA+	75D CL 95	0.272100
HS	I-IIIA-	75 D CL 9 5	0.296200
HS	III-IV	75D CL 95	0.313800
NHS	I-IIIA+	75E CL 95	0.417720 *
NHS	I-IIIA-	75E CL 95	0.479350 *
NHS	III-IV	75E CL 95	0.512800
HS	I-111A+	75E CL 95	0.270600
HS	I-II IA-	75E CL 95	0.294700
HS	III-IV	75E CL 95	0.312400
NHS	I-IIIA+	76J CL 95	0.417720 *
NHS	I-IIIA-	76J CL 95	0.467700
NHS	III-IV	76J CL 95	0.499700
HS	1-111A+	76J CL 95	0.216400
HS	I-IIIA-	76J CL 9 <u>5</u>	0.249600
HS	III-IV	761 CL 95	0.259200
NHS	I-IIIA+	76P CL 90	0.404780 *
NHS	I-II IA-	76P CL 90	0.499800
NHS	III-IV	76P CL 90	0.530700
HS	I-IIIA+	76P CL 90	0.286400
HS	I-IIIA-	76P CL 90	0.310600
HS	III-IV	76P CL 90	0.328200

NHS	I-IIIA+	76V CL 90	0.404790 *
NHS	I-IIIA-	76V CL 30	0.511300
NHS	III-IV	76V CL 90	0.543300
	I-IIIA+	76V CL 90	0.311540 *
HS	I-IIIA-	76V CL 90	0.262900
HS	III-IV	76V CL 90	0.280500
HS	111-1V	707 CD 90	002000
	T TTTN 4	76N CL 90	0.404780 *
NHS	I-IIIA+	76% CL 90	0.492200
NHS	I-IIIA-	761 CL 90	0.524200
NHS	III-IV	76% CL 90	0.311540 *
HS	I-IIIA+	76√1 CL 90	0.313800
HS	I-IIIA-	764 CL 90	0.331400
HS	III-IV	75N CL 90	0.332403
\#1C	I-IIIA+	76Y CL 95	0.452600
NHS		76Y CL 95	0.495500
NHS	I-IIIA-	76Y CL 95	0.527400
NHS	III-IV	76Y CL 95	0.315200
HS	I-II IA+	761 CL 95	0.339300
HS	I-IIIA-		0.356900
HS	II I–IV	76Y CL 95	0.336933
	T TTTN +	82C ST 95	0.449300
NHS	I-IIIA+	82C ST 95	0.492100
NHS	I-IIIA-	82C ST 95	0.524000
NHS	III-IV	82C ST 95	0.274600
HS	I-IIIA+		0.299700
HS	I-IIIA-		0.316400
HS	III-IV	82C ST 95	0.310400
NHS	I-IIIA+	91B ST 95	0.426900
NIS	I-IIIA-	91B ST 95	0.469700
	III-IV	91B ST 95	0.501600
NH3	I-IIIA+	91B ST 95	0.229400
HS	I-II IA-	91B ST 95	0.253500
HS		91B ST 95	0.271100
HS	III-IV	91B S1 93	012/1200
MUC	I-IIIA+	91C ST 95	0.385120 *
NHS NHS	I-IIIA-	91C ST 95	0.446750 *
_	III-IV	91C ST 95	0.485630 *
NHS		91C ST 95	0.261400
HS	I-IIIA+	91C ST 95	0.285500
HS	I-IIIA-	91C ST 95	0.303100
HS	III-IV	310 91 33	0.00000
NHS	I-IIIA+	91D ST 95	0.395120 *
	I-IIIA-	91D ST 95	0.446750 *
NHS	III-IV	91D ST 95	0.485630 *
NHS	I-IIIA+	91D ST 95	0.270500
HS		91D ST 95	0.294600
HS	I-IIIA-	91D ST 95	0.312200
HS	II I–IV	710 31 33	0.012.00

\#\C	T . TT TN .4	91E ST 95	0.385120 *
NHS	I-IIIA+	91E ST 95	0.446750 *
NHS	I-IIIA-	91E ST 95	0.485630 *
NHS	III-IV	91E ST 95	0.235900
HS	I-IIIA+	91E ST 95	9.260000
HS	I-IIIA-	* · · · ·	0.277700
HS	III-IV	91E ST 95	0.277700
NHS	I-IIIA+	91P ST 100	0.398060 *
NHS	I-IIIA-	91P ST 100	0.448190 *
NHS	III-IV	91P ST 100	0.495160 *
	I-IIIA+	91P ST 100	0.183200
HS HS	I-IIIA-	91P ST 100	0.207300
	III-IV	91P ST 100	0.224900
HS	111-14	711 01 1 70	• • • • • • • • • • • • • • • • • • • •
NHS	I-IIIA+	910 ST 95	0.385120 *
NHS	I-IIIA-	91Q ST 95	0.446750 *
NHS	III-IV	91Q ST 95	0.485630 *
HS	I-II IA+	91Ω ST 95	0.247000
HS	I-II IA-	91Q ST 95	0.271100
HS	III-IV	910 ST 95	0.288700
1.15	111 11		
NHS	I-IIIA+	91R ST 100	0.398060 *
NHS	I-111A-	91R ST 100	0.443190 *
NHS	III-IV	91R ST 100	0.400000
HS	I-IIIA+	91R ST 100	0.203000
IIS	I-IIIA-	91R ST 100	0.232100
HS	III-IV	91R ST 100	0.249700
ns	111-14	32 11 33 23 4	
NHS	I-II IA+	94B OF 85	0.541400
NHS	I-II IA-	94B OF 85	0.584200
NHS	III-IV	94B OF 95	0.616200
HS	I-IIIA+	94B OF 85	0.339400
HS	I-IIIA-	94B OF 85	0.363600
HS	111-IV	94B OF 85	0.381200
пэ	111-14	2 22 23 22	
NHS	I-IIIA+	95B ST 100	0.403800
NHS	I-IIIA-	95B ST 100	0.446600
NHS	III-IV	95B ST 100	0.478600
HS	I-IIIA+	953 ST 100	0.216500
HS	I-II IA-	95B ST 100	0.249600
HS	III-IV	95B ST 100	0.258300
			0.411000 +
Neis	I-IIIA+	99C ST 105	0.411000 *
NHS	I-II IA-	98C ST 105	0.449630 *
NHS	III - IV	98C ST 105	0.504690 *
HS	I-IIIA+	98C ST 105	0.147600
HS	L-IIIA-	98C ST 105	0.171700
HS	III-IV	98C ST 105	0.189300
		000 cm 05	0.395120 *
NHS	I-IIIA+	98G ST 95	0.446750 *
NHS	I-IIIA-	98G ST 95	0.485630 *
NHS	III-IV	98G ST 95	
HS	I-IIIA+	98G ST 95	0.299900
HS	I-IIIA-	98G ST 95	0.323900
HS	III-IV	98G ST 95	0.341520 *

APPENDIX B

FEMALE ATTRITION RATES BY MOS

AFQT GROUP I-IIIA

05B	0.5625
05C	0.5625
05G	0.5625
05н	0.3853
05K	0.3853
12C	0.5205
15D	0.5042
15E	0.5042
16B	0.5042
16J	0.5042
17C	0.5625
27E	0.4840
31E	0.4840
31M	0.4840
31N	0.4840
32D	0.4840
33s	0.5205
36C	0.4840
36K	0.4840
41C	0.4880
· · · · -	
43E	0.4880
45K	0.4880
51B	0.4880
51K	0.4880
52C	0.4880
52D	0.4880
54E	0.3853
55B	0.4880
55G	0.4880
57H	0.4880
61B	0.5205
62B	0.5205
62E	0.4880
62F	0.4880
63G	0.5205
63H	0.5205
64C	0.5042
67N	0.5305
67U	0.5205
67V	0.5205
67Y	0.5205
71C	0.4424
71D	0.4424
71L	0.4424
71M	0.4424

71N	0.4424
73C	0.4424
75B	0.4424
75C	0.4424
75D	0.4424
75E	0.4424
76J	0.4424
76P	0.4424
76V	0.4424
76W	0.4424
76Y	0.4424
82C	0.3853
91B	0.3853
91C	0.3853
91D	0.3853
91E	0.3853
91P	0.3853
9 1Q	0.3853
91R	0.3853
94B	0.5042
95B	0.3853
98C	0.3853
98G	0.3853

AFQT GROUP IIIB-IV

0.5739
0.5739
0.5739
0.3967
0.3967
0.5319
0.5156
0.5156
0.5156
0.5156
0.5739
0.4954
0.4954
0.4954
0.4954
0.4954
0.5319
0.4954
0.4954
0.4994
0.4994
0.4994
0.4994

51K	0.4994
52C	0.4994
52D	0.4994
54E	0.3967
55B	0.4994
55G	0.4994
57H	0.4994
61B	0.5319
62B	0.5319
62E	0.4994
62F	0.4994
63G	0.5319
63H	0.5319
64C	0.5156
67N	0.5319
67 U	0.5319
67V	0.5319
67Y	0.5319
71C	0.4538
71D	0.4538
71L	0.4538
71M	0.4538
71N	0.4538
73C	0.4538
75B	0.4538
75C	0.4538
75D	0.4538
75E	0.4538
76J	0.4538
76P	0.4538
76V	0.4538
76W	0.4538
76Y	0.4538
82C	0.3967
91B	0.3967
91C	0.3967
91D	0.3967
91E	0.3967
91P	0.3967
91Q	0.3967 0.3967
91R	0.3967
94B	0.3967
95B	
98C	0.3967 0.3967
98 G	0.396/

APPENDIX C

F-STATISTIC AS A MEASURE OF VARIABLE INCLUSION

WHERE:

SS = SUM OF SQUARES OF THE RESIDUAL

R = THE NUMBER OF LINEAR INDEPENDENT RESTRICTIONS

N - THE NUMBER OF OBSERVATIONS

K - DEGREES OF FREEDOM IN UNRESTRICTED EQUATION

F = 1.575

D.F. = 57/321 F IS SIGNIFICANT AT THE 1% LEVEL

(MADDALA, G. S.: 194-199)