

Basic Electronics Engineering (Spring 2024)

Resources of PPT:

- www.google.com
- Digital Design, 4th Edition
 M. Morris Mano and Michael D. Ciletti

Analog Electronics

Reference Book:

- 1. R. BOYLESTAD and L. NASHELSKY, "Electronic Devices And Circuit Theory", Prentice Hall.
- 2. Sedra and Smith, "Microelectronic Circuits", Oxford University Press

AND/OR Gate Using pn-junction diode

Va	Vb	Vout
LOW	LOW	LOW
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	HIGH

AND/OR Gate Using pn-junction diode

Ideal Half-wave Rectifier

$$v_{dc} = \frac{1}{T} \int_0^T v_o(t) dt$$

$$V_{\rm dc} = 0.318 V_m$$
 half-wave

Non-ideal Half-wave Rectifier

$$v_{dc} = \frac{1}{T} \int_0^T v_o(t) dt$$

$$V_{\rm dc} \cong 0.318(V_m - V_T)$$

pn-junction diode rectifier

- (a) Sketch the output v_o and determine the dc level of the output for the network.
- (b) Repeat part (a) if the ideal diode is replaced by a silicon diode.
- (c) Repeat parts (a) and (b) if v_m is increased to 200 V

$$V_{\rm dc} = -0.318V_m = -0.318(20 \text{ V}) = -6.36 \text{ V}$$

pn-junction diode rectifier

(b) Using a silicon diode, the output has the appearance of Fig. 2.50 and

$$V_{\rm dc} \cong -0.318(V_m - 0.7 \text{ V}) = -0.318(19.3 \text{ V}) \cong -6.14 \text{ V}$$

The resulting drop in dc level is 0.22 V or about 3.5%.

(c) Eq. (2.7):
$$V_{dc} = -0.318V_m = -0.318(200 \text{ V}) = -63.6 \text{ V}$$

Eq. (2.8):
$$V_{dc} = -0.318(V_m - V_T) = -0.318(200 \text{ V} - 0.7 \text{ V})$$

= $-(0.318)(199.3 \text{ V}) = -63.38 \text{ V}$

which is a difference that can certainly be ignored for most applications. For part c the offset and drop in amplitude due to V_T would not be discernible on a typical oscilloscope if the full pattern is displayed.

Figure 2.50 Effect of V_T on output of Fig. 2.49.

Full-wave Bridge rectifier

Full-wave Bridge rectifier

Full-wave Bridge rectifier

$$V_{\rm dc} = 0.636 V_m$$
 full-wave

$$V_{\rm dc} \cong 0.636(V_m - 2V_T)$$

Clipper

Clipper

Clamper

Positive Cycle:

Figure 2.93 Diode "on" and the capacitor charging to *V* volts.

Negative Cycle:

Clamper

Clamper

