

Introduction to SU² Code Structure

SU² Release Version 2.0 Workshop Stanford University Tuesday, January 15th, 2013

Amrita K. Lonkar

Department of Aeronautics & Astronautics Stanford University

SU²- Object Oriented Structure

- Why Object Oriented?
 - Easy to add new capabilities
 - Easy to leverage a lot of existing capabilities.

SU² Modules

- SU2_CFD The main PDE solution module
- SU2_DDC The Domain Decomposition Code
- SU2_MAC The Mesh Adaptation Code
- SU2_MDC- The Mesh Deformation Code
- SU2_PBC The Periodic Boundary Condition Code
- SU2 SMC The Sliding Mesh Code

SU2_CFD Module

1a) Read Input

Class: CConfig

Read the config file

1b) Read Mesh

Class: CGeometry

- · Read the mesh file
- · Set up multigrid meshes

trunk/Common/

2) Solve Equations

Pick Solver

Class: CSolution

- Euler Equations: CEulerSolution
- Plasma Equations: CPlasmaSolution
- Adjoint Equations: CEulerAdjSolution
- And others...

3) Write Output

Class: COutput

- Print on screen
- Write solution file
- Write restart file
- Write history file

trunk/Common/

Store Flow Variables

Class: CVariable

- Stores variables at every mesh node.
- Declare & store all flow variables
 - CEulerVariable: Density, energy etc.
 - CNSVariable: + Viscosity
 - CAdjVariable: Adjoint variables
 - And others...

Discretization

Class: CNumerics

Spatial Discretization

- Convective Flux, Jacobian
 - CNumerics:: Roe/JST/etc.
- Viscous Flux, Jacobian
 - CNumerics:: Avg Grad/etc.
- · Source Terms, Jacobian
 - CNumerics:: PieceWiseConst.

Temporal Discretization

- Explicit Euler/ Runge-Kutta
- Implicit Time Integration

Solve Linear System

Class: CSparseMatrix

- BiCSTAB
- GMRES
- LU-SGS
- Preconditioners
 - Linelet
 - Jacobi
- Update solution vector

CGeometry Class

Files in Common/include:

- geometry_structure.hpp
- geometry_structure.inlIn Common/src
- geometry_structure.cpp

CSolution Class

Files in SU2_CFD/include:

- solution_structure.hpp
- solution_structure.inl
 In SU2_CFD/src
- solution_direct_mean.cpp
- solution_adjoint_mean.cpp
- solution_direct_plasma.cpp
- solution_direct_template.cpp
- etc.

CVariable Class

Files in SU2_CFD/include

- variable_structure.hpp
- variable_structure.inl
- SU2_CFD/src
- variable_direct.cpp
- variable_adjoint.cpp
- variable_template.cpp
- etc.

CNumerics Class

More here...

• SU² Paper:

Stanford University Unstructured (SU2): An open-source integrated computational environment for multiphysics simulation and design. AIAA 2013-0287

Developers contact:

susquared-dev@mailman.stanford.edu

Thank you