VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Ústav elektrotechnologie

LABORATORNÍ CVIČENÍ Z PŘEDMĚTU VYBRANÉ PARTIE Z OBNOVITELNÝCH ZDROJŮ A UKLÁDÁNÍ ENERGIE (BPC-OZU)

Číslo úlohy: 5

Název úlohy: Akumulace elektrické energie pomocí setrvačníku

Jméno a příjmení, ID:	Atmosférický tlak:	_	Relativní vlhkost:
Tomáš Vavrinec, 240893	988.2 hPa		30.9%
Měřeno dne: 25.2.2023	Odevzdáno dne:	Ročník, stud. skupina: 2	Kontrola:

Spolupracovali:

Kateřina Koudelková

Zadání

U předložených setrvačníků zjistěte hodnotu výsledné práce W, kterou je setrvačník schopen po získání kinetické energie dodat do zátěže. Vyneste do grafu rozběhové a brzdící křivky setrvačníku I=F(t), dále okamžité hodnoty výkonu setrvačníků P=F(t). V grafu rozběhové křivky identifikujte ztráty způsobené konstrukcí zařízení. Porovnejte velikosti výkonů dodaných setrvačníky vzhledem k odporové zátěži. Zjistěte velikost momentu hybnosti a kinetické energie akumulované setrvačníky. Setrvačníky seřaďte dle množství akumulované energie. Definujte, které parametry setrvačníku jsou k akumulaci energie nejdůležitější. Na základě hmotnosti a přiložené výkresové dokumentace setrvačníku zjistěte, z jakých materiálů jsou vyrobeny.

Hmotnosti setrvačníků: m1=9,3kg; m2=8,25kg; m3=3,05kg; m4=3,055kg

Hodnoty odporů zátěže: $R1 = 1\Omega$; $R2 = 2, 2\Omega$; $R3 = 4\Omega$;

0.1 Měření

setrvačník	m_1	m_2	m_3	m_4
výkon $P[W]$	1,429	0,805	0,013	0,000

Table 1: Porovnání výkonu setrvačníků v čase t=8,250[s] při zátěži $2,2[\Omega]$

Příklad výpočtu:

$$P_{m1} = UI = I^2R = (0,806^2 \cdot 2,2)[W] = 1,429$$

setrvačník	m_1	m_2	m_3	m_4
práce $W[J]$	64,813	55,097	29,502	5,267

Table 2: Porovnání práce setrvačníků předané zatěžovacímu rezistoru $2,2[\Omega]$

Příklad výpočtu:

$$W_{m1} = \int_a^b P(t) dt \doteq h(\frac{P(t_0) + P(t_n)}{2} + P(t_1) + P(t_2) + \dots + P(t_{n-1})) =$$

$$= 0,375(\frac{0,771 + 0,000}{2} + 20,681 + 18,938 + \dots + 0,000) = 64,813[J]$$

setrvačník	m_1	m_2	m_3	m_4
otáčky $n[ot/min]$	676	650	663	674
hmotnost $m[kg]$	9,3	8,25	3,05	3,055
moment setrvačnosti $J[kgm^2]$	0,071	0,075	0,073	0,032
kinetická energie $E_k[J]$	177,708	173,746	175,117	78,833
poloměr $r[mm]$	123,5	127	125	82,5
průměrný udržovací výkon $P_u[W]$	0,809	0,431	0,136	0,120
náročnost udržování energie $\frac{P_u}{E_k}[ms]$	4,776	2,406	0,784	1,540

Table 3: Porovnání momentů setrvačnosti a kinetických energii

Příklady výpočtů:

$$J_{m1} = \frac{1}{2}mr^2 = (\frac{1}{2}9, 3 \cdot (123, 5 \cdot 10^{-3})^2)[kgm^2] = 0,071[kgm^2]$$

$$E_{k-m1} = \frac{1}{2}J_{m1}\omega_{m1}^2 = \frac{1}{2}\cdot 0,071\cdot (\frac{676\cdot 2\pi}{60})^2 = 177,708[J]$$

$$P_{u-m1} = \frac{1}{n} \sum_{t(a)}^{t(b)} I(t)^2 \cdot R_z = (\frac{1}{8} \sum_{t(23,250)}^{t(29,625)} I(t)^2 \cdot 2, 2)[W] = 0,759[W]$$

$$\frac{P_u}{E_k} = \frac{0.809}{177,708}[s] = 0,004776[s] = 4,776[ms]$$

K akumulaci energie je z měřených setrvačníků nejvhodnější setrvačník m_3 , protože má nejmenší náročnost udržení energie. Pro uchování kinetické energie jednoho joulu je zapotřebí dodávat jen 0,784[W].

setrvačník	m_1	m_2	m_3	m_4
objem $O[cm^3]$	1065	1065	1108	442
hustota $\rho[kg/m^3]$	8732	7559	2753	6907
materiál	Nikl	Železo	Hliník	Cín

Table 4: Materiál setrvačníků

Příklady výpočtů:

$$O_{m1} = \left(\frac{247 \cdot 10^{-3}}{2}\right)^{2} \cdot \pi \cdot 38 \cdot 10^{-3} - \left(\frac{\pi 16 \cdot 10^{-3}}{3} \left(\left(\frac{182 \cdot 10^{-3}}{2}\right)^{2} + \frac{182 \cdot 10^{-3}}{2} \cdot \frac{157 \cdot 10^{-3}}{2} \cdot \left(\frac{157 \cdot 10^{-3}}{2}\right)^{2}\right) + \frac{\pi 17 \cdot 10^{-3}}{3} \left(\left(\frac{182 \cdot 10^{-3}}{2}\right)^{2} + \frac{182 \cdot 10^{-3}}{2} \cdot \frac{157 \cdot 10^{-3}}{2} \cdot \left(\frac{157 \cdot 10^{-3}}{2}\right)^{2}\right) + \left(\frac{50 \cdot 10^{-3}}{2}\right)^{2} \cdot \pi \cdot \left(\left(21 + 22\right) - 38\right) \cdot 10^{-3}\right) = 0,001065[m^{3}] = 1065[m^{3}]$$

$$\rho_{m1} = \frac{9,3}{0,001065} = 8732[kg/m^{3}]$$

0.2 Závěr

Parametr setrvačníku který určuje jeho schopnost akumulovat energii je jeho moment hybnosti, který je určen geometrií a vahou setrvačníku. Neustálí odběr energie i po roztočení setrvačníku je způsoben primárně třením v uložení setrvačníku.

K akumulaci energie je z měřených setrvačníků pravděpodobně nejvhodnější setrvačník m_3 , protože má nejmenší náročnost udržení energie. Pro uchování kinetické energie jednoho joulu je zapotřebí dodávat jen 0,784[W].

setrvačník	m_1	m_2	m_3	m_4
objem $O[cm^3]$	1065	1065	1108	442
hustota $\rho[kg/m^3]$	8732	7559	2753	6907
materiál	Nikl	Železo	Hliník	Cín

Table 5: Materiál setrvačníků