一维磁流体力学激波 — 第 4 次作业*

徐均益[†] 余航[‡] 陈字韬[§]

中国科学技术大学核科学技术学院,合肥 230026 中国科学技术大学物质科学研究院等离子所,合肥 230026

摘要

研究讨论一维磁流体力学 (MHD, Magnetohydrodynamics) 激波问题的有限差分数值解法, 主要采用守恒形式的 *Lax-Wendroff* 格式,结合理论分析讨论磁声波的特性,以及分析数值格式的计算效果。以及其他格式如隐格式和迭代法的相关尝试。

1 引言

磁流体力学 (MHD, Magnetohydrodynamics) 是磁流体的宏观描述, MHD 方程将流体力学, 麦克斯韦方程以及洛仑兹力结合起来, 是一个多元非线性方程。其对应的 MHD 模拟是太阳物理里面非常常用的手段, 比如磁绳爆发模拟等等。在本次作业中, 我们在上次一维气体激波管问题的基础上, 添加磁流体力学方程组, 对一维磁流体力学激波问题进行模拟和分析。

2 理论介绍

本次我们采用无量纲数值的守恒形式,将磁流体力学方程表示为

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0 \tag{1}$$

^{*2023} 年春季磁流体力学的数值模拟方法

 $^{^{\}dagger} \text{ID: SA22214015}$ Email: jyxu@mail.ustc.edu.cn

 $^{^{\}ddagger} \text{ID: SA22168021 Email: yh131996@mail.ustc.edu.cn}$

 $[\]$ ID: SA22214014 Email: chenyut@mail.ustc.edu.cn

其中

$$U = \begin{bmatrix} \rho \\ \rho v^{2} + H_{y}^{2} + H_{z}^{2} + \frac{\beta p}{\gamma - 1} \\ \rho v_{x} \\ \rho v_{y} \\ \rho v_{z} \\ H_{y} \\ H_{z} \end{bmatrix}, \qquad (2)$$

$$F = \begin{bmatrix} \rho v_x \\ \rho v_x \left(v^2 + \frac{\gamma}{\gamma - 1} \frac{\beta p}{\rho} \right) + 2(H_y^2 v_x + H_z^2 v_x - H_x H_y v_y - H_x H_z v_z) \\ \rho v_x^2 + \frac{\beta}{2} p + \frac{1}{2} (H_y^2 + H_z^2) \\ \rho v_x v_y - H_x H_y \\ \rho v_x v_z - H_x H_z \\ v_x H_y - v_y H_x \\ v_x H_z - v_z H_x \end{bmatrix}$$
(3)

这里 $v^2 = v_x^2 + v_y^2 + v_z^2$. 若取 $\rho_0 = 1$, $p_0 = 1$, $v_0 = 1$, $H_0 = 1/\sqrt{4\pi}$, 则 $\beta = 2$.

3 数值格式介绍

本次实验我们尝试设计多种格式,但是经调试,只有 Lax-Wendroff 格式可以维持住慢激波的形状,其他格式以及快激波等都没能完全实现。

3.1 Lax-Wendroff 格式

Lax-Wendroff 格式适用于守恒型方程

$$\frac{\partial \mathbf{w}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = 0 \tag{4}$$

其中差分格式为

$$u_{j}^{n+1} = u_{j}^{n} - \frac{\Delta t}{2\Delta x} (F_{j+1}^{n} - F_{j-1}^{n}) + \frac{\Delta t^{2}}{2\Delta x^{2}} \left[A_{j+1/2}^{n} (F_{j+1}^{n} - F_{j}^{n}) - A_{j-1/2}^{n} (F_{j}^{n} - F_{j-1}^{n}) \right]$$
(5)

其中 $A = \frac{\partial F}{\partial u}$, A 的表达式为

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{(\gamma-1)v^2-2v_x^2}{2} & \frac{\gamma-1}{2} & (3-\gamma)v_x & (1-\gamma)v_y & (1-\gamma)v_z & (2-\gamma)H_y & (2-\gamma)H_z \\ -v_xv_y & 0 & v_y & v_x & 0 & -H_x & 0 \\ -v_xv_z & 0 & v_z & 0 & v_x & 0 & -H_x \\ \frac{H_xv_y-H_yv_x}{\rho} & 0 & \frac{H_y}{\rho} & -\frac{H_x}{\rho} & 0 & v_x & 0 \\ H_xv_z-H_zv_x & 0 & \frac{H_z}{\rho} & 0 & -\frac{H_x}{\rho} & 0 & v_x \end{bmatrix}$$
(6)

矩阵第二行7个元素分别为

$$-\frac{2(H_y^2 + H_z^2)v_x(1-\gamma) - 2H_x(H_yv_y + H_zv_z)(1-\gamma) - pv_x\beta\gamma + v_xv^2(2-3\gamma+\gamma^2)\rho}{(1-\gamma)\rho}$$
(7a)

$$\gamma v_x$$
 (7b)

$$-((-\gamma E\rho + (\gamma - 2)H_y^2\rho + (\gamma - 2)H_z^2\rho + 3(\gamma - 1)m_x^2 + (\gamma - 1)m_y^2 + (\gamma - 1)m_z^2)/\rho^2)$$
 (7c)

$$-((2(H_x H_y \rho + (\gamma - 1)m_x m_y))/\rho^2)$$
 (7d)

$$-((2(H_x H_z \rho + (\gamma - 1)m_x m_z))/\rho^2)$$
 (7e)

$$-((2(H_x m_y + (\gamma - 2)H_y m_x))/\rho)$$
 (7f)

$$-((2(H_x m_z + (\gamma - 2)H_z m_x))/\rho) \tag{7g}$$

其中 $m_x = \rho v_x, m_y = \rho v_y, m_z = \rho v_z$. 单元边界上的值可以取

$$A_{j\pm 1/2}^n = A(u_{j\pm 1/2}^n), \qquad u_{j\pm 1/2}^n = \frac{1}{2}(u_j^n + u_{j\pm 1}^n)$$
 (8)

3.2 数值实验设计

考虑下列初值问题

$$U(x,t)|_{t=0} = \begin{cases} U_L, & x < x_0 \\ U_R, & x > x_0 \end{cases}$$
 (9)

或者

$$W(x,t)|_{t=0} = \begin{cases} W_L, & x < x_0 \\ W_R, & x > x_0 \end{cases}$$
 (10)

的有限差分数值计算. 这里 U 的表达式由方程 (2) 给出, 具体实验时需要将 W 转化成 U, 然后再代入数值程序中进行计算。

$$W = \begin{bmatrix} \rho, p, v_x, v_y, v_z, H_y, H_z \end{bmatrix}^T.$$
(11)

上标 T 表示转置操作. 取 $\gamma = 5/3$, $\mu = 1$, $H_x = 5$. 分别就如下初值条件设计实验

3.2.1 较弱的快激波

取 $x_0 = 0.0$, 快激波条件为

$$W_L = \begin{bmatrix} 2.121, 4.981, -13.27, -0.163, -0.6521, 2.572, 10.29 \end{bmatrix}^T,$$

$$W_R = \begin{bmatrix} 1, 1, -15.3, 0, 0, 1, 4 \end{bmatrix}^T.$$
(12)

3.2.2 较弱的慢激波

取 $x_0 = 0.0$, 慢激波条件为

$$W_{L} = \begin{bmatrix} 2.219, 0.4442, 0.5048, 0.0961, 0.0961, 1, 1 \end{bmatrix}^{T},$$

$$W_{R} = \begin{bmatrix} 1, 0.1, -0.9225, 0, 0, 1, 1 \end{bmatrix}^{T}.$$
(13)

3.2.3 一维 MHD 快激波

取 $x_0 = 0.2$, 快磁声激波的初值条件为¹

$$W_L = \begin{bmatrix} 3.896, 305.9, 0, -0.058, -0.226, 3.951, 15.8 \end{bmatrix}^T,$$

$$W_R = \begin{bmatrix} 1, 1, -15.3, 0, 0, 1, 4 \end{bmatrix}^T.$$
(14)

3.3 一维 MHD 慢激波

同样取 $x_0 = 0.2$, 慢磁声激波的初值条件为

$$W_L = \begin{bmatrix} 3.108, 1.4336, 0, 0.2633, 0.2633, 0.1, 0.1 \end{bmatrix}^T,$$

$$W_R = \begin{bmatrix} 1, 0.1, -0.9225, 0, 0, 1, 1 \end{bmatrix}^T.$$
(15)

4 实验结果及分析

这里填入实验的图 5 和图 2 和分析内容。 实验的图 5 和图 2 和分析内容。

¹根据附件 Excel 表计算得到, 和文献 Dai et al. (1994) 稍有出入.

图 3: 较弱的慢激波。取 $x_0 = 0.0$ 使用 Upwind 和 TVD 格式。

图 4: 较弱的慢激波。取 $x_0=0.0\,$ 使用 Upwind 和 TVD 格式。

图 5: 较弱的慢激波。取 $x_0 = 0.0$ 使用 Upwind 格和 TVD 式。

5 其他数值方法尝试与分析

这里填入其他数值方法的尝试和分析,如果周四前还填不了就把这一节给删掉

6 附件

- 1. assign4.tex-本报告 IATFX 源文件
- 2. assign4.pdf-本报告 PDF (Portable Document Format) 输出文件
- 3. References.bib 文献文件
- 4. WFast077.eps-初值条件 (12) 情况下的快激波数值结果 (TVD 格式), 133 网格, 对应图 ?? (a)
- 5. WFast261.eps-初值条件 (12) 情况下的快激波数值结果 (TVD 格式), 261 网格, 对应图 ?? (b)
- 6. FShockNum.eps-初值条件 (14) 情况下 (快磁声激波) 数值计算得到的物理量各时刻图形 (TVD 格式), 对应图 ??
- 7. SShockNum.eps-初值条件 (15) 情况下 (慢磁声激波) 数值计算得到的物理量各时刻图形 (TVD 格式), 对应图 ??
- 8. MHDShock.xlsx 快慢激波两侧态分析的 EXCEL 表格文件

参考文献

DAI W, WOODWARD P R, 1994. Extension of the piecewise parabolic method to multi-dimensional ideal magnetohydrodynamics[J]. J. Comput. Phys., 115: 485-514.