Statistique mathématique: TD3

Exercice 1. On lance n fois un dé à 6 faces et on regarde le nombre d'obtentions de la face 6. Si on appelle X_n ce nombre, quelle est la loi de X_n ? La fréquence d'obtention de la face 6 est définie par $Y_n = X_n/n$. Quelle est l'espérance de Y_n ? Peut-on majorer la variance de Y_n ?

Démontrer, à l'aide de l'inégalité de Tchebychev, que la suite de variables aléatoires $(Y_n)_{n\in\mathbb{N}}$ converge en probabilité vers 1/6.

Exercice 2. Soit $(X_i)_{i\leq 50}$ une suite de variables aléatoires indépendantes de loi uniforme sur [0,20]. Les X_i modélisent une note aléatoire obtenue à un examen de probabilité. Soit V_{50} le nombre d'étudiants et étudiantes ayant obtenu plus de 10/20 et T_{50} le nombre d'étudiantes ayant obtenu plus de 16/20.

- 1. Quelle est loi loi de V_{50} ? de T_{50} ?
- 2. Quelles sont les espérances et variances de V_{50} et T_{50} ?
- 3. Donner une majoration de la probabilité que plus de 30 étudiants aient plus de 16/20 ?
- 4. Donner un intervalle de confiance à 95% sur le nombre d'étudiants et étudiantes qui valident le cours.
- 5. Si on note n le nombre total d'étudiants, quelles seraient les limites lorsque n tend vers l'infini de la moyenne de la promotion? Du taux de validation du cours?

Bonus : en quoi cette modélisation est critiquable ? Que proposeriez-vous pour l'améliorer ?

Exercice 3. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes, de loi uniforme sur $\{1,\ldots,6\}$. Les X_i modélisent le résultat d'un lancer de dé à 6 faces, équilibré. Soit $M_n = \max_{1 \le i \le n} X_i$ le plus grand résultat obtenu lors des n premiers lancers.

Montrer que, presque sûrement, $(M_n)_{n\in\mathbb{N}}$ converge vers 6.

Exercice 4. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi uniforme sur [0,20]. Les X_i modélisent une note aléatoire obtenue à un examen de probabilité. Soit $M_n = \max_{1 \le i \le n} X_i$ la plus haute note obtenue.

Montrer que, presque sûrement, $(M_n)_{n\in\mathbb{N}}$ converge vers 20.

Exercice 5. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans \mathbb{R}^+ , indépendantes, dont la loi a une densité f sur \mathbb{R}^+ . On suppose de plus de f ne s'annule pas. Montrer que $M_n = \max_{1 \le i \le n} X_i$ diverge presque sûrement vers $+\infty$.

Exercice 6. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$.

- 1. Quelle est la loi de $S_n = \frac{1}{n} \sum_{i=1}^n X_i$?
- 2. La suite de variables aléatoires $(S_n)_{n\in\mathbb{N}^*}$ converge-t-elle en loi? presque sûrement?
- 3. Soit $V_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. La suite $(V_n)_{n \in \mathbb{N}^*}$ converge-t-elle? En quel sens?
- 4. Soit $T_n = \frac{1}{n} \sum_{i=1}^n X_i^{17}$. La suite $(T_n)_{n \in \mathbb{N}^*}$ converge-t-elle? En quel sens?

Exercice 7. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables indépendantes, satisfaisant

$$\mathbb{P}(X_1 = 1) = p > 1/2 \ et \ \mathbb{P}(X_1 = -1) = 1 - p.$$

On pose $S_n = \sum_{i=1}^n X_i$. Les X_i modélisent les pas d'un marcheur, qui avancerait ou reculerait d'un pas à chaque seconde, de manière aléatoire et indépendante. La variable aléatoire S_n modélise alors la distance du marcheur à 0, son point d'origine.

Montrez que la suite de variables aléatoires S_n diverge presque sûrement vers $+\infty$, c'est à dire

$$\mathbb{P}(\forall M > 0, \exists N \in \mathbb{N}, \forall n \ge N, S_n \ge M) = 1.$$

Exercice 8. On tire une famille i.i.d. de variables aléatoires $(X_i)_{i \in \mathbb{N}}$ uniformes sur le cercle unité de \mathbb{R}^2 , et, pour chaque valeur de i, on cherche à connaître la longueur de la corde reliant X_i au point de coordonnées (1,0).

Exercice 9. Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires définies sur le même espace $(\Omega, \mathcal{F}, \mathbb{P})$, qui convergent presque sûrement vers deux variables X et Y. Montrer que $(X_n + Y_n)_{n\in\mathbb{N}}$ converge presque sûrement vers X + Y.