Assignment - 27 - MACHINE LEARNING - 7

By Prakash Ghosh

Problem Statement:

Predict how many points NBA players scored in the 2013-2014 season using the K-nearest neighbors algorithm

A look at the data

- Before we dive into the algorithm, let's take a look at our data. Each row in the data contains information on how a player performed in the 2013-2014 NBA season.
- Download 'nba 2013.csv' file from this link: https://www.dropbox.com/s/b3nv38jjo5dxcl6/nba 2013.csv' file from this link: https://www.dropbox.com/s/ba 2013.csv' file from this link: https://www.dropbox.com/s/ba 2013.csv' file from this link: <a href="htt (https://www.dropbox.com/s/b3nv38jjo5dxcl6/nba 2013.csv?dl=0)

Here are some selected columns from the data: player - name of the player pos - the position of the player g - number of games the player was in gs - number of games the player started pts - total points the player scored

There are many more columns in the data, mostly containing information about average player game performance over the course of the season. See this site for an explanation of the rest of them.

We can read our dataset in and figure out which columns are present:

import pandas with open("nba 2013.csv", 'r') as csvfile: nba = pandas.read csv(csvfile)

```
In [76]: # Import Libraries
         import numpy as np
         import pandas as pd
         import xgboost as xgb
         import seaborn as sns
         sns.set(font scale = 1.5)
         import matplotlib.pyplot as plt
         from sklearn import metrics, model selection, preprocessing, tree
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy score, classification report, confusion matrix
         from sklearn.model selection import GridSearchCV
         from sklearn.linear_model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.preprocessing import Imputer
         from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, AdaBoostClassifier
```

Load Data

```
In [77]: # Read the dataset
         csvfile="nba_2013.csv"
         nba = pd.read_csv(csvfile)
```

In [79]: nba.head(5)

Out[79]:

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.		drb	trb	ast	stl	blk	tov	pf	pts	season	season_end
0	Quincy Acy	SF	23	ТОТ	63	0	847	66	141	0.468	:	144	216	28	23	26	30	122	171	2013- 2014	2013
1	Steven Adams	C	20	OKC	81	20	1197	93	185	0.503	:	190	332	43	40	57	71	203	265	2013- 2014	2013
2	Jeff Adrien	PF	27	тот	53	12	961	143	275	0.520		204	306	38	24	36	39	108	362	2013- 2014	2013
3	Arron Afflalo	SG	28	ORL	73	73	2552	464	1011	0.459		230	262	248	35	3	146	136	1330	2013- 2014	2013
4	Alexis Ajinca	С	25	NOP	56	30	951	136	249	0.546		183	277	40	23	46	63	187	328	2013- 2014	2013

5 rows × 31 columns

```
In [80]: # Rename the column name - remove . from the name
         col_name=['player', 'pos', 'age', 'bref_team_id', 'g', 'gs', 'mp', 'fg', 'fga',
                'fg_2', 'x3p', 'x3pa', 'x3p_2', 'x2p', 'x2pa', 'x2p_2', 'efg_2', 'ft',
                'fta', 'ft_2', 'orb', 'drb', 'trb', 'ast', 'stl', 'blk', 'tov', 'pf',
                'pts', 'season', 'season_end']
         nba.columns=col_name
```

Analyze Data

In [81]: nba.describe()

Out[81]:

	age	g	gs	mp	fg	fga	fg_2	х3р	х3ра	x3p_2	<u> </u>
count	481.000000	481.000000	481.000000	481.000000	481.000000	481.000000	479.000000	481.000000	481.000000	414.000000	<u></u>
mean	26.509356	53.253638	25.571726	1237.386694	192.881497	424.463617	0.436436	39.613306	110.130977	0.285111	
std	4.198265	25.322711	29.658465	897.258840	171.832793	368.850833	0.098672	50.855639	132.751732	0.157633	<u> </u>
min	19.000000	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	<u> </u>
25%	23.000000	32.000000	0.000000	388.000000	47.000000	110.000000	0.400500	0.000000	3.000000	0.234355	Ī
50%	26.000000	61.000000	10.000000	1141.000000	146.000000	332.000000	0.438000	16.000000	48.000000	0.330976	Ī
75%	29.000000	76.000000	54.000000	2016.000000	307.000000	672.000000	0.479500	68.000000	193.000000	0.375000	
max	39.000000	83.000000	82.000000	3122.000000	849.000000	1688.000000	1.000000	261.000000	615.000000	1.000000	

8 rows × 27 columns

```
In [82]: nba.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 481 entries, 0 to 480
Data columns (total 31 columns):
                481 non-null object
player
                481 non-null object
pos
                481 non-null int64
age
bref_team_id
                481 non-null object
                481 non-null int64
gs
                481 non-null int64
                481 non-null int64
mр
fg
                481 non-null int64
                481 non-null int64
fga
fg_2
                479 non-null float64
х3р
                481 non-null int64
                481 non-null int64
x3pa
x3p_2
                414 non-null float64
x2p
                481 non-null int64
x2pa
                481 non-null int64
x2p_2
                478 non-null float64
efg_2
                479 non-null float64
ft
                481 non-null int64
fta
                481 non-null int64
ft_2
                461 non-null float64
orb
                481 non-null int64
drb
                481 non-null int64
                481 non-null int64
trb
                481 non-null int64
ast
stl
                481 non-null int64
blk
                481 non-null int64
tov
                481 non-null int64
pf
                481 non-null int64
                481 non-null int64
pts
                481 non-null object
season
                481 non-null int64
season end
dtypes: float64(5), int64(22), object(4)
memory usage: 116.6+ KB
```

Prepare Data

```
In [83]: # Fill null values with mean
         nba.fg_2.fillna(nba.fg_2.mean(), inplace=True)
         nba.x3p_2.fillna(nba.x3p_2.mean(), inplace=True)
         nba.x2p_2.fillna(nba.x2p_2.mean(), inplace=True)
         nba.efg_2.fillna(nba.efg_2.mean(), inplace=True)
         nba.ft_2.fillna(nba.ft_2.mean(), inplace=True)
```

```
In [84]: nba.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 481 entries, 0 to 480
Data columns (total 31 columns):
                481 non-null object
player
                481 non-null object
pos
                481 non-null int64
age
bref_team_id
                481 non-null object
                481 non-null int64
gs
                481 non-null int64
                481 non-null int64
mр
fg
                481 non-null int64
                481 non-null int64
fga
fg_2
                481 non-null float64
х3р
                481 non-null int64
                481 non-null int64
x3pa
x3p_2
                481 non-null float64
x2p
                481 non-null int64
x2pa
                481 non-null int64
x2p_2
                481 non-null float64
efg_2
                481 non-null float64
ft
                481 non-null int64
fta
                481 non-null int64
ft_2
                481 non-null float64
orb
                481 non-null int64
drb
                481 non-null int64
                481 non-null int64
trb
                481 non-null int64
ast
stl
                481 non-null int64
blk
                481 non-null int64
tov
                481 non-null int64
pf
                481 non-null int64
                481 non-null int64
pts
                481 non-null object
season
                481 non-null int64
season end
dtypes: float64(5), int64(22), object(4)
memory usage: 116.6+ KB
```

```
In [85]: # Convert Categorical Variable to Numerical Variable for Train Dataset
         for feature in nba.columns:
             if nba[feature].dtype == 'object':
                 nba[feature] = pd.Categorical(nba[feature]).codes
         nba.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 481 entries, 0 to 480
Data columns (total 31 columns):
player
                481 non-null int16
                481 non-null int8
pos
                481 non-null int64
age
bref team id
                481 non-null int8
                481 non-null int64
g
                481 non-null int64
gs
                481 non-null int64
mр
fg
                481 non-null int64
                481 non-null int64
fga
fg_2
                481 non-null float64
хЗр
                481 non-null int64
                481 non-null int64
x3pa
x3p_2
                481 non-null float64
x2p
                481 non-null int64
x2pa
                481 non-null int64
x2p_2
                481 non-null float64
efg_2
                481 non-null float64
ft
                481 non-null int64
fta
                481 non-null int64
ft 2
                481 non-null float64
orb
                481 non-null int64
                481 non-null int64
drb
trb
                481 non-null int64
                481 non-null int64
ast
stl
                481 non-null int64
blk
                481 non-null int64
                481 non-null int64
tov
pf
                481 non-null int64
pts
                481 non-null int64
                481 non-null int8
season
                481 non-null int64
season end
dtypes: float64(5), int16(1), int64(22), int8(3)
memory usage: 103.9 KB
```

```
In [86]: # Drop unwanted features
         nba.drop(['season','season_end','player','pos','bref_team_id'], axis=1, inplace=True)
```

```
In [87]: | nba.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 481 entries, 0 to 480
         Data columns (total 26 columns):
                   481 non-null int64
         age
                   481 non-null int64
         g
         gs
                   481 non-null int64
                   481 non-null int64
         mр
                  481 non-null int64
         fg
         fga
                   481 non-null int64
         fg_2
                  481 non-null float64
         хЗр
                   481 non-null int64
                   481 non-null int64
         x3pa
         x3p_2
                   481 non-null float64
         x2p
                   481 non-null int64
                   481 non-null int64
         x2pa
         x2p_2
                  481 non-null float64
         efg_2
                   481 non-null float64
         ft
                   481 non-null int64
         fta
                   481 non-null int64
         ft 2
                   481 non-null float64
         orb
                   481 non-null int64
         drb
                   481 non-null int64
         trb
                   481 non-null int64
                  481 non-null int64
         ast
         stl
                  481 non-null int64
         blk
                  481 non-null int64
                  481 non-null int64
         tov
         pf
                   481 non-null int64
                  481 non-null int64
         pts
         dtypes: float64(5), int64(21)
         memory usage: 97.8 KB
In [88]: # Target and Feature selection
         nba y=nba.pop('pts')
         nba_x=nba
```

In [89]: nba_x.head(2)

Out[89]:

	age	g	gs	mp	fg	fga	fg_2	х3р	х3ра	x3p_2	 fta	ft_2	orb	drb	trb	ast	stl	blk	tov	pf
0	23	63	0	847	66	141	0.468	4	15	0.266667	 53	0.660	72	144	216	28	23	26	30	122
1	20	81	20	1197	93	185	0.503	0	0	0.285111	 136	0.581	142	190	332	43	40	57	71	203

2 rows × 25 columns

In [90]: # Split into train/test dataset (70%:30%)

x_train, x_test, y_train, y_test = model_selection.train_test_split(nba_x, nba_y, test_size = 0.3, random_state = 1)

In [91]: x_train.head(5)

Out[91]:

	age	g	gs	mp	fg	fga	fg_2	х3р	х3ра	x3p_2	 fta	ft_2	orb	drb	trb	ast	stl	blk	tov	pf
344	31	68	68	1997	456	914	0.499	25	67	0.373134	 243	0.811	17	138	155	388	36	9	151	86
218	21	71	71	2496	532	1237	0.430	123	344	0.357558	 338	0.861	52	207	259	433	108	23	190	163
343	34	29	0	242	52	118	0.441	24	60	0.400000	 11	0.727	1	19	20	52	14	1	26	17
162	23	80	80	2898	577	1362	0.424	182	500	0.364000	 464	0.864	64	478	542	283	151	22	224	198
98	33	81	0	1353	134	241	0.556	4	17	0.235294	 93	0.710	116	177	293	104	30	28	71	187

5 rows × 25 columns

In [92]: y_train.head(5)

Out[92]: 344 1134

1478 218

343 136

162 1737

338 98

Name: pts, dtype: int64

In [93]: x_test.head(5)

Out[93]:

	age	g	gs	mp	fg	fga	fg_2	х3р	х3ра	x3p_2	 fta	ft_2	orb	drb	trb	ast	stl	blk	tov	pf
293	22	45	10	897	113	300	0.377	22	59	0.372881	 43	0.744	18	61	79	120	22	9	39	69
283	22	54	45	1564	170	419	0.406	71	178	0.398876	 36	0.528	15	140	155	477	48	4	150	76
34	23	41	0	387	65	156	0.417	10	33	0.303030	 32	0.813	16	58	74	33	9	7	18	31
399	25	70	1	1006	119	281	0.423	1	23	0.043478	 39	0.564	31	98	129	179	49	13	65	66
432	28	64	9	1298	129	307	0.420	102	247	0.412955	 41	0.805	33	135	168	42	19	15	23	82

5 rows × 25 columns

```
In [94]: y_test.head(5)
Out[94]: 293
                280
         283
                430
         34
                166
         399
                261
         432
                393
         Name: pts, dtype: int64
In [95]: curr_col_name=nba.columns
         curr_col_name
Out[95]: Index(['age', 'g', 'gs', 'mp', 'fg', 'fga', 'fg_2', 'x3p', 'x3pa', 'x3p_2',
                'x2p', 'x2pa', 'x2p_2', 'efg_2', 'ft', 'fta', 'ft_2', 'orb', 'drb',
                'trb', 'ast', 'stl', 'blk', 'tov', 'pf'],
               dtype='object')
```

```
In [96]: # Imp feature selection using Random Forest Classifier
         rnd_forest_classifier = RandomForestClassifier(n_estimators=100)
         rnd_forest_classifier.fit(x_train[curr_col_name], y_train)
         rfc_importance = pd.DataFrame.from_dict({'cols':curr_col_name, 'importance': rnd_forest_classifier.feature_importances
         _})
         rfc_importance = rfc_importance.sort_values(by='importance', ascending=False)
         plt.figure(figsize=(20,15))
         sns.barplot(rfc_importance.cols, rfc_importance.importance)
         plt.xticks(rotation=90)
```

```
Out[96]: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                17, 18, 19, 20, 21, 22, 23, 24]),
          <a list of 25 Text xticklabel objects>)
```



```
In [97]: important features = importance[importance.importance >= 0.04].cols.values
         print(important features)
         ['fg' 'ft_2' 'fga' 'x2p' 'x2p_2' 'mp' 'stl' 'fg_2' 'efg_2']
```

K-nearest neighbors algorithm

K-Value: 2 : Accuracy: 92.8983756208887 %

```
In [99]: # Accuracy for K Values
          for K in range(6):
              K \text{ value} = K+1
              KNeighbors = KNeighborsClassifier(n neighbors = K value, weights='uniform', algorithm='auto')
              KNeighbors.fit(x_train[important_features], y_train)
              y_pred = KNeighbors.predict(x_test[important_features])
              print("K-Value: ", K value, " : Accuracy: ",(y pred.sum()/y test.sum())*100,"%")
          K-Value: 1 : Accuracy: 98.92334541549201 %
          K-Value: 2 : Accuracy: 92.8983756208887 %
          K-Value: 3 : Accuracy: 89.72882266075983 %
          K-Value: 4 : Accuracy: 87.6896227681568 %
          K-Value: 5 : Accuracy: 85.51080681970734 %
          K-Value: 6 : Accuracy: 84.31735803463553 %
In [100]: KNeighbors = KNeighborsClassifier(n neighbors = 2, weights='uniform', algorithm='auto')
          KNeighbors.fit(x train[important features], y train)
          y_pred=KNeighbors.predict(x_test[important_features])
          print("K-Value: 2 : Accuracy: ", (y pred.sum()/y test.sum())*100,"%")
```

```
In [101]: x_test['Actual_PT']= y_test
          x_test['Predicted_PT']= y_pred
```

C:\Users\praka\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versuscopy

"""Entry point for launching an IPython kernel.

C:\Users\praka\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versusсору

In [102]: # Actual and Predcited values

X_test.head(10)

Out[102]:

	age	g	gs	mp	fg	fga	fg_2	х3р	х3ра	x3p_2	 trb	ast	stl	blk	tov	pf	Actual_pts	Predicted_pts	Actual_pts2	Pı
293	22	45	10	897	113	300	0.377	22	59	0.372881	 79	120	22	9	39	69	280	273	280	27
283	22	54	45	1564	170	419	0.406	71	178	0.398876	 155	477	48	4	150	76	430	378	430	37
34	23	41	0	387	65	156	0.417	10	33	0.303030	 74	33	9	7	18	31	166	110	166	11
399	25	70	1	1006	119	281	0.423	1	23	0.043478	 129	179	49	13	65	66	261	248	261	24
432	28	64	9	1298	129	307	0.420	102	247	0.412955	 168	42	19	15	23	82	393	298	393	29
364	30	14	0	95	7	14	0.500	0	0	0.285111	 25	1	3	1	5	15	20	14	20	14
349	29	62	62	1207	87	193	0.451	0	1	0.000000	 305	67	26	32	90	177	211	265	211	26
66	23	26	0	224	26	86	0.302	3	30	0.100000	 28	41	13	3	16	19	64	54	64	5∠
250	22	59	25	1312	157	371	0.423	48	142	0.338028	 219	95	32	45	47	147	472	404	472	4(
31	28	42	39	1257	222	502	0.442	30	108	0.277778	 222	45	14	52	58	100	558	401	558	4(

10 rows × 29 columns