In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df1=pd.read_csv(r'C:\Users\user\Downloads\18_world-data-2023.csv')
df1

Out[2]:

	Country Density\n(P/Km2)		Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call Co
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	ç
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	NaN	7.20	37
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	5
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	8
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	96
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	26
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	26
405 mayor w 25 aphymana								

195 rows × 35 columns

In [3]:

df=df1.head(50)
df

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	
1	Albania	105	AL	43.10%	28,748	9,000	11.78	3
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	2
3	Andorra	164	AD	40.00%	468	NaN	7.20	3
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	2
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	3
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	
9	Austria	109	AT	32.40%	83,871	21,000	9.70	
10	Azerbaijan	123	AZ	57.70%	86,600	82,000	14.00	ξ
11	The Bahamas	39	BS	1.40%	13,880	1,000	13.97	
12	Bahrain	2,239	ВН	11.10%	765	19,000	13.99	ξ
13	Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	8
14	Barbados	668	ВВ	23.30%	430	1,000	10.65	
15	Belarus	47	BY	42.00%	207,600	155,000	9.90	3
16	Belgium	383	BE	44.60%	30,528	32,000	10.30	
17	Belize	17	BZ	7.00%	22,966	2,000	20.79	Ę
18	Benin	108	BJ	33.30%	112,622	12,000	36.22	2
19	Bhutan	20	ВТ	13.60%	38,394	6,000	17.26	ξ
20	Bolivia	11	ВО	34.80%	1,098,581	71,000	21.75	Ę
21	Bosnia and Herzegovina	64	ВА	43.10%	51,197	11,000	8.11	3
22	Botswana	4	BW	45.60%	581,730	9,000	24.82	2
23	Brazil	25	BR	33.90%	8,515,770	730,000	13.92	
24	Brunei	83	BN	2.70%	5,765	8,000	14.90	6
25	Bulgaria	64	BG	46.30%	110,879	31,000	8.90	3
26	Burkina Faso	76	BF	44.20%	274,200	11,000	37.93	2
27	Burundi	463	ВІ	79.20%	27,830	31,000	39.01	2
28	Ivory Coast	83	CI	64.80%	322,463	27,000	35.74	2
29	Cape Verde	138	CV	19.60%	4,033	1,000	19.49	2
30	Cambodia	95	KH	30.90%	181,035	191,000	22.46	8
31	Cameroon	56	СМ	20.60%	475,440	24,000	35.39	2
32	Canada	4	CA	6.90%	9,984,670	72,000	10.10	

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
33	Central African Republic	8	CF	8.20%	622,984	8,000	35.35	2
34	Chad	13	TD	39.70%	1,284,000	35,000	42.17	2
35	Chile	26	CL	21.20%	756,096	122,000	12.43	
36	China	153	CN	56.20%	9,596,960	2,695,000	10.90	
37	Colombia	46	CO	40.30%	1,138,910	481,000	14.88	
38	Comoros	467	KM	71.50%	2,235	NaN	31.88	2
39	Republic of the Congo	16	NaN	31.10%	342,000	12,000	32.86	2
40	Costa Rica	100	CR	34.50%	51,100	10,000	13.97	ξ
41	Croatia	73	HR	27.60%	56,594	18,000	9.00	3
42	Cuba	106	CU	59.90%	110,860	76,000	10.17	
43	Cyprus	131	CY	12.20%	9,251	16,000	10.46	3
44	Czech Republic	139	CZ	45.20%	78,867	23,000	10.70	4
45	Democratic Republic of the Congo	40	CD	11.60%	2,344,858	134,000	41.18	2
46	Denmark	137	DK	62.00%	43,094	15,000	10.60	
47	Djibouti	43	DJ	73.40%	23,200	13,000	21.47	2
48	Dominica	96	DM	33.30%	751	NaN	12.00	
49	Dominican Republic	225	DO	48.70%	48,670	71,000	19.51	

50 rows × 35 columns

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 35 columns): Column Non-Null Count Dtype ---------50 non-null 0 Country object 1 Density (P/Km2)50 non-null object 2 Abbreviation 49 non-null object 3 Agricultural Land(%) 50 non-null object 4 Land Area(Km2) 50 non-null object 5 Armed Forces size 47 non-null object 6 Birth Rate float64 50 non-null 7 Calling Code 50 non-null float64 8 Capital/Major City 50 non-null object 9 Co2-Emissions 50 non-null object 10 CPI 47 non-null object 11 CPI Change (%) 48 non-null object 12 Currency-Code 46 non-null object Fertility Rate 13 50 non-null float64 Forested Area (%) 50 non-null object 15 Gasoline Price 48 non-null object 16 GDP 50 non-null object 17 Gross primary education enrollment (%) 49 non-null object Gross tertiary education enrollment (%) 48 non-null object 19 Infant mortality 50 non-null float64 Largest city 49 non-null object float64 Life expectancy 21 49 non-null 22 Maternal mortality ratio 48 non-null float64 Minimum wage 42 non-null object Official language 50 non-null object Out of pocket health expenditure 49 non-null object Physicians per thousand 26 50 non-null float64 Population object 27 50 non-null Population: Labor force participation (%) object 28 47 non-null Tax revenue (%) 44 non-null object Total tax rate 30 48 non-null object Unemployment rate 47 non-null object 32 Urban population 50 non-null object Latitude float64 33 50 non-null 34 Longitude 50 non-null float64 dtypes: float64(9), object(26) memory usage: 13.8+ KB

localhost:8888/notebooks/world data 2023.ipynb

In [5]:

df.describe()

Out[5]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	La
count	50.00000	50.000000	50.00000	50.000000	49.000000	48.000000	50.000000	50.0
mean	19.64860	291.820000	2.62600	22.618000	72.312245	174.041667	1.929800	17.6 ⁻
std	10.67511	272.353663	1.41232	22.042368	7.988498	248.707549	1.782451	24.0
min	7.20000	1.000000	1.27000	1.900000	52.800000	2.000000	0.040000	-38.4
25%	10.75000	56.250000	1.66000	5.225000	66.600000	13.750000	0.272500	5.0
50%	14.89000	240.000000	1.94000	11.750000	74.900000	50.000000	1.665000	16.7
75%	24.68500	375.750000	2.98250	35.375000	78.100000	242.750000	2.972500	39.0
max	42.17000	994.000000	5.92000	84.500000	82.700000	1140.000000	8.420000	56.2
4								•

In [6]:

df.columns

Out[6]:

```
Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
%)',
        'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Cod
e',
        'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
        'Currency-Code', 'Fertility Rate', 'Forested Area (%)', 'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
        'Gross tertiary education enrollment (%)', 'Infant mortality',
        'Largest city', 'Life expectancy', 'Maternal mortality ratio',
        'Minimum wage', 'Official language', 'Out of pocket health expendit
ure',
        'Physicians per thousand', 'Population',
        'Population: Labor force participation (%)', 'Tax revenue (%)',
        'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitud
е',
        'Longitude'],
      dtype='object')
```

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1633f059a90>

In [8]:

```
sns.distplot(df['Latitude'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='Latitude', ylabel='Density'>

In [9]:

sns.displot(df["Latitude"])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x16341aee9d0>

In [10]:

In [11]:

```
sns.heatmap(df1.corr())
```

Out[11]:

<AxesSubplot:>

In [12]:

df2=df.dropna() df2

Out[12]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Cal C
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	!
1	Albania	105	AL	43.10%	28,748	9,000	11.78	3
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	2
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	!
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	3
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	1
10	Azerbaijan	123	AZ	57.70%	86,600	82,000	14.00	9!
13	Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	8
14	Barbados	668	ВВ	23.30%	430	1,000	10.65	
16	Belgium	383	BE	44.60%	30,528	32,000	10.30	;
17	Belize	17	BZ	7.00%	22,966	2,000	20.79	51
18	Benin	108	ВЈ	33.30%	112,622	12,000	36.22	2:
22	Botswana	4	BW	45.60%	581,730	9,000	24.82	21
23	Brazil	25	BR	33.90%	8,515,770	730,000	13.92	;
25	Bulgaria	64	BG	46.30%	110,879	31,000	8.90	3
26	Burkina Faso	76	BF	44.20%	274,200	11,000	37.93	2:
28	Ivory Coast	83	CI	64.80%	322,463	27,000	35.74	2:
29	Cape Verde	138	CV	19.60%	4,033	1,000	19.49	2
31	Cameroon	56	CM	20.60%	475,440	24,000	35.39	2
32	Canada	4	CA	6.90%	9,984,670	72,000	10.10	
35	Chile	26	CL	21.20%	756,096	122,000	12.43	ļ
36	China	153	CN	56.20%	9,596,960	2,695,000	10.90	ł
37	Colombia	46	СО	40.30%	1,138,910	481,000	14.88	;
40	Costa Rica	100	CR	34.50%	51,100	10,000	13.97	51
41	Croatia	73	HR	27.60%	56,594	18,000	9.00	3
44	Czech Republic	139	CZ	45.20%	78,867	23,000	10.70	4:
45	Democratic Republic of the Congo	40	CD	11.60%	2,344,858	134,000	41.18	24
49	Dominican Republic	225	DO	48.70%	48,670	71,000	19.51	

29 rows × 35 columns

```
In [13]:
x=df2[['Birth Rate', 'Calling Code', 'Fertility Rate', 'Infant mortality', 'Life expectar
       'Physicians per thousand', 'Longitude']]
y=df2[['Latitude']]
In [14]:
from sklearn.model_selection import train_test_split
In [15]:
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [16]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for
Out[16]:
LinearRegression()
In [17]:
print(lr.intercept_)
[283.83519972]
In [18]:
coef= pd.DataFrame(lr.coef_)
coef
Out[18]:
                                                                        7
0 -14.36857 0.074022 95.436574 -2.367838 -2.610929 0.111034 -17.168228 -0.114326
In [19]:
print(lr.score(x_test,y_test))
```

-1.413435545360601

```
In [20]:
```

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[20]:

<matplotlib.collections.PathCollection at 0x16343fcda30>

In [21]:

```
lr.score(x_test,y_test)
```

Out[21]:

-1.413435545360601

In [22]:

```
lr.score(x_train,y_train)
```

Out[22]:

0.7842632409415833

In [23]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [24]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[24]:

Ridge(alpha=10)

In [25]:

```
rr.score(x_test,y_test)
```

Out[25]:

-0.5309083344834791

```
In [26]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[26]:
Lasso(alpha=10)
In [27]:
la.score(x_test,y_test)
Out[27]:
-0.42983435687656235
Elastic Net
In [28]:
from sklearn.linear_model import ElasticNet
en = ElasticNet()
en.fit(x_train,y_train)
Out[28]:
ElasticNet()
In [29]:
print(en.coef_)
[-2.25983692 0.04752295
                          3.35204329 -0.18078492 0.24441088 0.09352671
 -2.79209609 -0.0887008 ]
In [30]:
print(en.intercept_)
[12.93141471]
In [31]:
prediction=en.predict(x_test)
print(prediction)
[ 7.52520198  3.47465736  1.22471925  11.79603899  21.7750669
                                                               7.4587633
 -1.01813325 -1.05395385 19.77104156]
In [32]:
print(en.score(x_test,y_test))
```

-0.5104359613129894

Evaluation Metrics

In [33]:

from sklearn import metrics

In [34]:

print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))

Mean Absolute Error: 26.657764171680267

In [35]:

print("Mean Squared Error:", metrics.mean_squared_error(y_test, prediction))

Mean Squared Error: 891.1897898028604

In [36]:

print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))

Root Mean Squared Error: 29.852802042737302