Practical Number 4

Aim: To find all the primitive roots of the group $G = \langle Zp^*, * \rangle$

Theory: In the group $G=\langle Z_n^*, x \rangle$, when the order of an element is the same as $\Phi(n)$ i.e. the order of the group, that element is called the primitive root of the group.

The order of a group, |G| is the number of elements in the group.

The order of an element a in a group, ord(a), is the smallest integer n such that $a^n = e$. i.e. the order of an element is the order of the cyclic group it generates.

Example: Consider the group $G = \langle \mathbb{Z}_7^*, x \rangle$

The order of the group i.e. Φ (7) = 6. Z_7 * = {1, 2, 3, 4, 5, 6} and the identity element e = 1 We now find the cyclic group generated by each of the element of this group

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
a = 1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1
a = 2	x: 2	x: 4	x: 1	x: 2	x: 4	x: 1
a = 3	x: 3	x: 2	x: 6	x: 4	x: 5	x: 1
a = 4	x: 4	x: 2	x: 1	x: 4	x: 2	x: 1
a = 5	x: 5	x: 4	x: 6	x: 2	x: 3	x: 1
a = 6	x: 6	x: 1	x: 6	x: 1	x: 6	x: 1

Since ord(3) = ord(5) = 6 which is the order of the group, 3 and 6 are the primitive roots of the given group.

It has been proved that the group $G=\langle Z_n^*, x \rangle$ has a primitive root only if $n=2, 4, p^t$, or $2p^t$, where p is an odd prime and t is an integer.

If the group has $G=\langle Z_n^*, x \rangle$ has any primitive root, the number of primitive roots is $\Phi(\Phi(n))$.

The concept of primitive roots is used in many cryptographic algorithms including ElGamal cryptosystem and Diffie-Hellman key exchange algorithm.

Conclusion: The concepts of primitive roots have been understood and the algorithm to find primitive roots has been implemented.