Stochastic Programming COMP4691 / 8691

Outline

- Farmer's example
- Two-Stage Stochastic Programming
- L-Shaped Method
- Chance Constraints
- Multi-Stage Stochastic Programming

Available as e-book and physical copy through the ANU library

Springer Series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Introduction to Stochastic Programming

Second Edition

Farmer's Example

- A farmer has 500 acres and need to decide how to split the land for 3 different crops: wheat, corn and sugar beets
- Constraints
 - Land usage (500 acres)
 - At least 200 tons (T) of wheat and 240 T of corn for cattle
- Parameters per crop:
 - yield (T/acre)
 - planting cost (\$/acre)
 - selling price (\$/T)
 - purchase price (\$/T) -

in case it is cheaper to buy wheat/corn instead of producing

• Extra constraint: cap on amount of sugar beets sold

Farmer's Example – Data

	Wheat	Corn	Beets
Yield (T/acre)	2.5	3	20
Plating cost (\$/acre)	150	230	260
Selling price (\$/T)	170	150	36 under 6000 T
			10 above 6000 T
Purchase price (\$/T)	238	210	_
Min. requirement (T)	200	240	_

 All this values comes from historical data the farmer collected over the years

Farmer's Example – Variables

	Wheat	Corn	Beets
Acres allocated	x_{1}	X ₂	X ₃
Amount sold	w_1	W ₂	w ₃ for under 6000T w ₄ for over 6000T
Amount purchased	y_1	y ₂	_

Goal: minimize loss (negative loss == profit)

Famer's Problem LP

min
$$150x_1 + 230x_2 + 238x_3$$

 $+ 238y_1 + 210y_2$
 $- 170w_1 - 150w_2 - 36w_3 - 10w_4$
s.t. $x_1 + x_2 + x_3 \le 500$
 $2.5x_1 + y_1 - w_1 \ge 200$
 $3x_2 + y_2 - w_2 \ge 240$
 $w_3 + w_4 \le 20x_3$
 $w_3 \le 6000$

x_i: land allocated
w_i: amount sold
y_i: amount purchased
wheat → 1
corn → 2
beets → 3 (up to quota)
4 (above)

Recall: minimize loss == maximize profit (negative loss)

Solution

	Wheat	Corn	Beets
Acres allocated	120	80	300
Amount sold	300	240	6000
			(exactly the quota)
Amount purchased	0	0	_

Total Profit: \$118,600

- This is problem as described so far can be solved as a Knapsack problem over profitability
 - 460 \$/acre for beets up to quota, 275 \$/acre for wheat, 220 \$/acre for corn, and -60 \$/acre for beets after 6000 T
- What is the underlying issue with this model? Would you use it in your farm?

The Effect of the Weather

- Consider 2 scenarios: -20% and +20% change in yield due weather
- Opt. solution for each one of the cases and the previous average case:

	-20% yield		average yield			+20% yield			
	Wheat	Corn	Beets	Wheat	Corn	Beets	Wheat	Corn	Beets
Acres allocated	100	25	375	120	80	300	183	66	250
Amount sold	0	0	6000	300	240	6000	350	0	6000
Amount purchased	0	180	_	0	0	_	0	0	_
Total Profit		•	\$59,950		(\$118,600		(\$167,667

- In each solution, we allocate enough to sell 6000 T of beets, then handle wheat and buy corn if needed
- Can we use these 3 solutions?

Two-stage Stochastic Program with Recourse

- The farmer's problem has:
 - -two-stages: decide the land allocation (x) then we observe the weather/yield, and
 - recourse: we can buy the missing (y) wheat or corn if our production is below the requirements
- This is the class of problems we will focus in this lecture
- Expected profit if scenario has probability 1/3
 - Using the oracle: \$115,406
 - Using the average case solution: \$107,240
 - Under produces beets in the -20% case: \$86,600
 - Over produces beets in the +20% case: \$107,683
- Can we do better than using the average case in all weathers?

Stochastic Programming

- Let $g(x, \varepsilon)$ represent the Famer's problem for a yield ε
 - Here ε is a random variable representing the uncertainty in the yield
 - $-P(\epsilon = -20\% \text{ yield}) = 1/3$
- So far we have:

Planning with an Oracle $E_{\varepsilon}[\min_{x} g(x,\varepsilon)]$

Planning for the Future $\min_{\mathbf{x}} \mathsf{E}_{\varepsilon}[\mathsf{g}(\mathsf{x},\varepsilon)] \leq$

Planning for the avg case $\min_{x} g(x, E_{\epsilon}[\epsilon])$

Other names:

Wait-and-See (WS)

- Recourse-Problem (RP)
- Expected-Value Prob. (EV)

Recourse-Problem

- What does it mean min_x $E_{\epsilon}[g(x,\epsilon)]$?
 - We need to decide on x and then observe the uncertainty ε
 - Nothing is preventing us from planning for contingencies
 - E.g., If ε is -20% yield, then and only then I will buy corn
- We exploit the recourse actions to find a good decision for x that we can fix it later if needed
- We do so by separating each scenario after we observe ε
 - $-y_i$ becomes y_{i1} , y_{i2} , y_{i3} for scenarios 1 (+20%), 2 (avg) and 3 (-20%)
 - same with w_i

Recourse-Problem LP

$$\begin{array}{lll} & \text{min} & 150x_1 + 230x_2 + 238x_3 \\ & + 1/3 * (238y_{11} + 210y_{21} - 170w_{11} - 150w_{21} - 36w_{31} - 10w_{41}) \\ & + 1/3 * (238y_{12} + 210y_{22} - 170w_{12} - 150w_{22} - 36w_{32} - 10w_{42}) \\ & + 1/3 * (238y_{13} + 210y_{23} - 170w_{13} - 150w_{23} - 36w_{33} - 10w_{43}) \end{array}$$

x_i: land allocated w_{ik}: amount sold y_{ik}: amount purchased wheat \rightarrow 1 $corn \rightarrow 2$ beets \rightarrow 3 (up to quota) 4 (above) $k \rightarrow scenario index$

s.t.
$$x_1 + x_2 + x_3 \le 500$$

Scenario 1 (+20%)

$$3x_1 + y_{11} - w_{11} \ge 200$$

 $3.6x_2 + y_{21} - w_{21} \ge 240$
 $w_{31} + w_{41} \le 24x_3$
 $w_{31} \le 6000$

Scenario 2 (avg)

$$3x_1 + y_{11} - w_{11} \ge 200$$
 $2.5x_1 + y_{12} - w_{12} \ge 200$
 $3x_2 + y_{21} - w_{21} \ge 240$ $3x_2 + y_{22} - w_{22} \ge 240$
 $3x_1 + w_{41} \le 24x_3$ $3x_2 + w_{42} \le 20x_3$
 $3x_3 \le 6000$ $3x_4 + w_{42} \le 20x_3$
 $3x_3 \le 6000$

Scenario 1 (-20%)

$$2x_1 + y_{13} - w_{13} \ge 200$$

 $2.4x_2 + y_{23} - w_{23} \ge 240$
 $w_{33} + w_{43} \le 16x_3$
 $w_{33} \le 6000$

Recourse-Problem Solution

		Wheat	Corn	Beets
First Stage (x)	Acres allocated	170	80	250
scenario 1	Yield (T)	510	288	6000
(+20% yield)	Sold/Purchased (T)	310	48	6000
scenario 2 Yield (T) (avg yield) Sold/Purchased (T)	425	240	5000	
	Sold/Purchased (T)	225	0	5000
/ 200/ viold)	Yield (T)	340	192	4000
	Sold/Purchased (T)	140	-48	4000

Total Profit: \$108,390

• Key differences:

- Allocate land for beets to reach quota at best case
- Allocate land for corn to meet constraint in the average case
- Left over land for wheat

Comparing Solutions

Wait-and-See (WS)Recourse-Problem (RP)Expected-Value Prob. $E_{\epsilon}[\min_{x} g(x,\epsilon)]$ $\leq \min_{x} E_{\epsilon}[g(x,\epsilon)]$ $\leq \min_{x} g(x,E_{\epsilon}[\epsilon])$ -\$115,406-\$108,390-\$107,240

- How much should we pay for a perfect prediction of the future?
 - -WS RP = -115,406 (-108,390) = -\$7,016
 - Known as the Expected Value of Perfect Information (EVPI)
- How much is Stochastic Programming helping us?
 - -RP E[EV] = -108,390 (-107,240) = -\$1,150
 - Known as the Value of the Stochastic Solution (VSS)
- Stochastic Programming leverages information about the distribution of the uncertain outcomes to improve the quality of the solution

Sampling

- What if
 - 1) we have a complicated or black-box model, e.g., weather forecast?
 - 2) we have a continuous distribution?
- Sampling can solve both
 - In some cases, (2) can be solved analytically
- The samples is treated as scenarios of equal probability
 - Referred as the sample average approximation (SAA)
- Better results with more samples
- Different sampling methods can also improve the solution:
 - Importance sampling
 - Quasi-Monte Carlo
 - Conditional Sampling

Evaluating Candidate Solutions

- More samples increase the size of the LP
- However, evaluating a solution is much faster than solving the LP:
 - Take the solutions of the first-stage x (e.g., land allocation)
 - Sample a scenario (e.g., -50% yield)
 - Compute the recourse-actions y (e.g., how corn and wheat to buy)
- Compute a solution using N samples and evaluate it on M different samples (M >> N)
- Using the Central Limit Theorem, we can get a confidence interval bound on the solution:
 - $\text{mean}(g(x,\varepsilon)) \pm z_{\alpha} \text{sem}(g(x,\varepsilon))$
 - sem is the standard error of the mean \rightarrow sample standard dev/ \sqrt{n}
 - 95% confidence interval for $z_{\alpha} = 1.96$

Handling Large Problem

 If you have several scenarios or samples in the farmer's example, the LHS of our constraints will look like this:

x_i: land allocated for i w_{ik}: amount sold y_{ik}: amount purchased k → scenario index i → wheat, corn, beets

- Each scenario is only connected through the first-stage variables (x)
- Where have we seen this before?

L-Shaped Method (aka Benders Decomp)

- Use Benders Decomposition
 - Instead of one big sub-problem, we have K independent small subproblems
- From Benders Lecture adapted notation:

General Recourse Problem

$$\min_{x,z} \qquad f^{\mathsf{T}}x + \sum_{k=1}^{K} c_k^{\mathsf{T}} z_k \qquad \text{RMP} \qquad \text{S.}$$

$$\mathrm{s.t.} \qquad Ax = b$$

$$B_k x + D z_k = d_k \quad \forall k \in \{1, \dots, K\} \quad \text{``sub`problems}$$

$$x, z \geq 0$$

Benders Reduced Master Problem

$$\min_{x,\eta} f^{\mathsf{T}}x + \eta$$
s.t. $Ax = b$

$$\eta \ge \pi_e^{\mathsf{T}}(d_k - B_k x) \quad \forall k, \pi_e \in \bar{E}_k$$

$$0 \ge r_q^{\mathsf{T}}(d_k - B_k x) \quad \forall k, r_q \in \bar{Q}_k$$

$$x \ge 0$$

(Primal) Sub-Problem k

$$\min_{z_k \ge 0} \{ c_k^{\mathsf{T}} z_k : D z_k = d_k - B_k \hat{x} \}$$

Complete Recourse

- A problem has complete recourse when, for all possible observations of the uncertainty ε , there is a recourse action that makes the problem feasible.
- This implies that all sub-problems in the Benders decomposition are feasible regardless of the value of x
- The farmer's example has complete recourse:
 - 1. Can by as much wheat and corn to satisfy constraint of at least 200 T and 240 T each
 - 2. Everything produced can be sold

RMP for Complete Recourse Problems

$$\min_{x,\eta} f^{\mathsf{T}}x + \eta$$
s.t. $Ax = b$

$$\eta \ge \pi_e^{\mathsf{T}}(d_k - B_k x) \quad \forall k, \pi_e \in \bar{E}_k$$

$$x > 0$$

Outline

- Farmer's example
- Two-Stage Stochastic Programming
- L-Shaped Method
- Chance Constraints
- Multi-Stage Stochastic Programming

Available as e-book and physical copy through the ANU library

Springer Series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Introduction to Stochastic Programming

Second Edition

Chance Constraints

- So far in the course, we have seen:
 - (hard) constraints: must be satisfied
 - soft constraints: penalize if not satisfied
- Chance constraints: a probabilistic constraint

$$P(a^Tx \le b) \ge \alpha$$

where either a or b depends on a random variable

- Famer's problem example:
 - P(producing less than 6000 T of beets) ≤ 0.25
 - P(buy 20 T or less of corn and wheat) ≥ 0.8

Modeling Chance Constraints

- For discrete distributions and sampling:
 - 1. use binary variables to count the constraint violations
 - 2. constraint the sum of scenario probability where violation occurred
- Famer's problem example: P(buy 20 T or less of corn and wheat) ≥ 0.8
 - 1. for each scenario k:
 - $z_k \in \{0,1\}$: constraint violated implies $z_k = 1$
 - What is the maximum amount of corn and wheat needed?
 440 from the specification (200 wheat, 240 corn)
 - Use this tight upper bound for a Big-M constraint $y_{1k} + y_{2k} \le 20 + 420z_k$
 - 2. in the main problem: $\Sigma_k p_k z_k \leq 0.2$
 - Note that we modeled the complement, i.e., 1 P(buy 20T or less) ≤ 1 0.8

Multi-Stage Stochastic Programming

- Multi-stage is a series of two-stage problems:
 - Superscript denotes discrete time step
- In the farmer's example:
 - crop rotation: rotate field every year t
 - beets production quota over multiple seasons
- Issue: curse of dimensionality
 - exponential growth of scenarios wrt horizon
- Key techniques:
 - Nested Benders Decomposition
 - Better Sampling

Stochastic Programming

- More realistic decision making
 - Model uncertainty and the sequential decisions
- Can be used with any model: LP, MIPs, QPs, Convex Programs, etc.
 - There are special branch-and-bound techniques for it
- Successful in multiple industries
 - Used in Tasmania by energy operator
- Key challenges:
 - Curse of dimensionality / good sampling
 - Handling large problems

Available as e-book and physical copy through the ANU library

Springer Series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Introduction to Stochastic Programming

Second Edition

