Problem 1: In the table below you have two columns, each with a choice for p,q, the prime-number parameters in the RSA. For each column, determine the public and secret keys, and compute the encryption of M=5.

Note: In both cases, you must use the smallest correct value of the public exponent e.

11000. In both cases, you must use the smallest correct value of the public exponent e.		
p and q	p = 5 , q = 19	p = 3 , q = 23
n =		
$\phi(n) =$		
e =		
d =		
public key =		
secret key =		
encrypt $M = 5$		

Problem 2: Solve the recurrence equation $A_n = A_{n-1} + 3A_{n-2}$, for A_0 the steps below.	$= 0, A_1 = 13.$ Follow
(a) Characteristic polynomial and its roots:	
(b) General solution:	
(c) Equations for initial conditions and its solution:	
(d) Final answer:	CS111-S15 QUIZ 3A, May 5, 9-9:30AM