Лабораторная работа 2.04

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ

Цель работы – определение коэффициента внутреннего трения касторового масла методом Стокса. Проверка справедливости формулы Стокса для шариков разного диаметра.

СОДЕРЖАНИЕ РАБОТЫ

В жидкостях (газах) при движении одних слоев относительно других возникают силы трения, направленные по касательной к поверхности слоев. Величина силы внутреннего трения F между соседними слоями пропорциональна их площади ΔS и

градиенту скорости $\frac{dv}{dx}$ слоев, то есть справедливо соотношение

$$F = \eta \frac{dv}{dx} \Delta S. \tag{1}$$

Выражение (1) можно рассматривать как определение коэффициента вязкости (или внутреннего трения) η . Величина η определяется природой жидкости и обычно существенно зависит от ее температуры. В системе СИ коэффициент вязкости η измеряется в $\Pi a \cdot c$.

Градиент скорости $\frac{dv}{dx}$ показывает, как меняется скорость слоев жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1

Рис. 1. Распределение скорости слоев масла при постоянном градиенте скорости

$$\frac{dv}{dx} = const = \frac{v_0}{x_0}.$$

При падении тела, например, небольшого шарика (см. рис.2) в жидкости окружающие тело слои жидкости приходят в движение. Если скорость шарика невелика, завихрений в жидкости не образуется, мы будем рассматривать именно такой случай. Металлический шарик смачивается маслом, поэтому мы фактически наблюдаем взаимодействие покрывающего его тонкого слоя масла и слоёв, на которые разбивается жидкость в сосуде из-за движения шарика. За счёт сил вязкого трения в движение вовлекаются удаленные от шарика слои, взаимодействие между ними

весьма велико, что сказывается на движении шарика. Скорость слоёв жидкости, непосредственно прилегающих к шарику, совпадает с его скоростью, скорость остальных слоёв убывает по мере удаления от шарика. Из-за наличия градиента скорости слоев жидкости на шарик действует сила внутреннего трения, зависящая от коэффициента вязкости η . Эта сила прямо пропорциональна скорости шарика, поэтому, попадая в масло, он движется всё медленнее, а затем его скорость достигает некоторого постоянного значения. Определить величину коэффициента вязкости можно, измерив установившуюся скорость и размеры шарика.

Рис. 2. Распределение скорости в жидкости вблизи падающего шарика.

Согласно закону Стокса, на шарик, движущийся в безграничной жидкости с малой скоростью \mathcal{U} , действует сила сопротивления среды

$$F = 6\pi \eta v r \tag{2}$$

где η – коэффициент вязкости жидкости; v – скорость шарика; r – его радиус.

Опыт проводится в цилиндрическом сосуде. С учетом влияния стенок цилиндра на движение шарика формула (2) приобретает вид

$$F = 6\pi \eta v r / k, \tag{3}$$

$$k = \frac{1}{1 + \frac{2.4r}{R}},\tag{4}$$

где k — поправочный коэффициент; R — радиус цилиндра. Предполагается, что $r \ll R$. Кроме силы сопротивления F, на шарик действует сила тяжести

$$mg = \rho Vg, \tag{5}$$

и сила Архимеда

$$F_A = \rho_0 V g . (6)$$

здесь ρ — плотность шарика; V — его объем; g — ускорение свободного падения, ρ_0 — плотность жидкости.

Если движение шарика имеет установившийся характер, то есть его скорость v = const , то

$$F_A + F = mg. (7)$$

Подставляя (3), (5), (6) в (7), получаем

$$6\pi\eta vr/k = Vg(\rho - \rho_0). \tag{8}$$

Откуда, учитывая, что

$$V = 4/3(\pi r^3), \tag{9}$$

Находим

$$\eta = \frac{2}{9} \frac{r^2 \left(\rho - \rho_0\right)}{v} gk,\tag{10}$$

Таким образом, определение коэффициента вязкости η сводится к измерению скорости v падения шарика в жидкости и его радиуса r. Плотности шарика и жидкости ρ и ρ 0 указаны на установке.

Рис. 3. Схема установки

Лабораторная установка (см. рис. 3) состоит из высокого стеклянного цилиндра, заполненного маслом. Сверху имеется крышка с отверстием по оси цилиндра. На боковую поверхность цилиндра нанесены риски. Для устранения влияния параллакса момент прохождения шариком риски фиксируется при нахождении на одной линии шарика и рисок на противоположных образующих цилиндра. На рис. 3 показано правильное направление взгляда наблюдателя. Необходимо измерять координату шарика, зажмурив один глаз. Для того, чтобы потренироваться следить за движением шарика в масле и измерять время при прохождении им рисок, вы получите один дополнительный шарик для пробного броска. Измерять его диаметр не нужно. Скорость падения шарика определяется по формуле

$$v = l/t, \tag{11}$$

где t — время прохождения расстояния l. При этом верхняя риска должна отстоять от поверхности жидкости, как минимум, на 5 см (см. область I на рис.3), чтобы движение шарика стало равномерным. Нижняя риска должна находиться на таком же расстоянии от дна сосуда (см. область III на рис.3), чтобы замедление шарика в нижних слоях жидкости не отразилось на результатах измерений.

Диаметр шарика определяется с помощью измерительного микроскопа.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Получить у дежурного инженера 4 шарика, один будет использоваться, как пробный, три остальных нужны для проведения измерений.
- 2. Выбрать риски на сосуде с маслом, измерить линейкой расстояние l и оценить его погрешность, записать результаты в таблицу 1. Рекомендуемая величина l не меньше 15 см. Провести с пробным шариком опыт по определению скорости его падения в масле.

Занести в таблицу 1 параметры установки - R, ρ , ρ_0 , и цену деления микроскопа α .

Таблица 1.

$(R \pm \Delta R) cM$	
$(\rho \pm \Delta \rho) \kappa \ell / M^3$	
$\left(\rho_0 \pm \Delta \rho_0\right) \kappa r / M^3$	
$(\alpha \pm \Delta \alpha)$ мм / дел	
$(l \pm \Delta l)$ cm	

3. По очереди измерить диаметры оставшихся шариков. Для этого необходимо поместить шарик на предметное стекло микроскопа, вращая барабан микроскопа, выставить перекрестие в центре поля зрения (двойной штрих на шкале должен находиться на метке 4 (см рис.4)), вращая регулировочный винт микроскопа, добиться резкого изображения и, перемещая предметное стекло, расположить шарик в центре поля зрения.

Рис 4. Положение перекрестия в центре поля зрения.

4. Любой микроскоп имеет люфт. Для того, чтобы он не повлиял на результаты при выполнении измерений необходимо установить перекрестие с одной стороны от шарика (например, слева) и перемещать его при измерениях только в противоположную сторону (например, вправо см. рис. 5)

Рис 5. Движение перекрестия микроскопа во время измерения диаметра шарика

Записать отсчёт x_1 по линейной шкале микроскопа, которую вы видите в окуляре (целые деления) и по барабану микрометра (сотые доли). Переместить перекрестие на правый край шарика и записать отсчет x_2 . Повторить 4-5 раз измерения x_1 и x_2 ,

поворачивая шарик в поле зрения вокруг вертикальной оси. Результаты измерений занести в таблицу 2.

Первый шарик					
N опыта	1	2	3	4	5
\mathcal{X}_2 дел					
X_1 дел					
d дел					
$\left(\overline{d}\pm\Delta\overline{d} ight)$ дел					
$(r \pm \Delta r)$ MM					
$(t \pm \Delta t) c$					
$ \begin{array}{c c} (v \pm \Delta v) & \textit{M} / c \\ \hline (\eta \pm \Delta \eta) & \textit{\Pi} a \cdot c \end{array} $					
$(\eta \pm \Delta \eta) \ \Pi a \cdot c$					

- 5. Повторить п. 3-4 с двумя другими шариками. Заполнить таблицы 3 и 4, аналогичные таблице 2 для второго и третьего шариков.
- 6. При оформлении отчета найти значения диаметра каждого шарика в делениях шкалы микроскопа $d=x_2-x_1$, и усреднить их для каждого шарика.
- 7. По среднему значению диаметра вычислить средний радиус шарика

$$r = \alpha \overline{d}/2 \quad . \tag{12}$$

Здесь α – цена деления микроскопа.

- 8. Вычислить скорости падения шариков но формуле (11).
- 9. Вычислить по формуле (10) с учетом (4) значения коэффициента вязкости. Для каждого шарика найти погрешность $\Delta \eta$ измерения коэффициента вязкости.

РАСЧЕТ ПОГРЕШНОСТИ

Согласно (10),

$$\frac{\Delta \eta}{\eta} = \left[\left(2 \frac{\Delta r}{r} \right)^2 + \left(\frac{\Delta v}{v} \right)^2 + \left(\frac{\Delta g}{g} \right)^2 + \frac{\left(\Delta \rho \right)^2 + \left(\Delta \rho_0 \right)^2}{\left(\rho - \rho_0 \right)^2} \right]^{\frac{1}{2}}$$
(13)

Погрешность $\frac{\Delta k}{k}$ весьма мала, ею можно пренебречь. Относительную погрешность скорости шарика определим из (11)

$$\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} \tag{14}$$

Относительная погрешность среднего радиуса шарика

$$\frac{\Delta r}{r} = \frac{\Delta d}{d},\tag{15}$$

здесь Δd определяется по результатам повторных измерений величины диаметра для каждого шарика, N - число измерений.

$$\Delta d = K_s \sqrt{\frac{\sum_{i} \left(d_i - \overline{d}\right)^2}{N(N-1)}}$$
 (16)

В отчёте следует привести значения коэффициентов вязкости, полученные для каждого шарика, указать их погрешности.

Сделать вывод, влияет ли размер шарика на результат.

Контрольные вопросы

- 1. Каков физический смысл коэффициента вязкости жидкости?
- 2. В чем заключается метод Стокса определения коэффициента вязкости жидкости?
- 3. Какие силы действуют на шарик при его падении в жидкости?
- 4. Почему по движению шарика мы судим о трении между слоями жидкости, а не о трении между шариком и жидкостью?
- 5. Почему коэффициент вязкости жидкости зависит от температуры?
- 6. Почему скорость падения шарика зависит от диаметра сосуда?
- 7. Имеется два стальных шарика разного диаметра. У какого из них скорость падения в одной и той же жидкости будет больше?
- 8. Начертите примерный вид графиков зависимости ускорения от скорости шарика от времени, начиная от *момента бросания*.

Список литературы

- 1. Савельев И.В. Курс физики (в трех томах), т. 1,-М. Наука, 1990.
- 2. Детлаф А.А., Яворский Б.М. Курс физики, М. Высшая школа, 2000.
- 3. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Метод. указания к лабораторным работам для студентов всех спец./ Под ред. В.А. Самолетова. СПб.: СПбГУНиПТ, 2003. 57 с.