8.4 电压比较器

运放的工作 状态:

线性

非线性

确定运放工作区的方法:判断电路中有无负反馈。

判别

有无反馈?

运放 非线性

上页

下页

判别

有无反馈?

有 ⇒

无

运放 线性

正反馈

负反馈

⇒ 运放非 线性

上页

下页

运放线性

$$u_{\rm O} = (1 + \frac{R_2}{R_1}) \ u_{\rm I} = 3u_{\rm I}$$

$$u_{\rm I} = 10 \text{mV}$$
 $u_{\rm O} = 30 \text{mV}$

$$u_{\rm I} = -30 \, {\rm mV}$$
 $u_{\rm O} = -90 {\rm mV}$

线性

无反馈

运放非线性

$$u_{\rm O} = -A_{\rm ud}u_{\rm I}$$

理想运放

$$A_{\rm ud} \approx \infty$$

$$u_{\rm I} = 10 \,\mathrm{mV}$$
 $u_{\rm O} \approx -V_{\rm cc}$

$$u_{\rm I} = -30 \,\mathrm{mV}$$
 $u_{\rm O} \approx V_{\rm cc}$

非线性

上页

 $\frac{$ 线性应用: 是指由运放组成的电路处于线性状态,输出与输入的关系 $u_0 = f(u_1)$ 是线性函数。

反相比例器、加法器、积分器等

特点:电路存在负反馈

"虚短"、"虚断"是分析工具

特点: 1."虚短"不成立

- 2. 输入电阻仍可以认为很大,可用"虚断"
- 3. 输出电阻仍可以认为是0

8.4 电压比较器

功能:用来比较输入电压相对大小的电路。

输入端的信号有

比较电压(基准电压或参考电平)

被比较的输入电压

输出端的信号状态——只有高电平和低电平。

工作原理——输入信号偏离参考电压时,输出电压将发生跃变。

将输出电压发生跃变的现象称为比较器翻转。

何为跃变?

高电平 🔷 低电平

低电平 🔷 高电平

将输出电压发生跃变的现象称为比较器翻转。

8.4.1 单门限比较器

- 1. 零电平比较器
 - (1) 电路组成
 - (2) 电路特点
 - a. 运放工作于开环状态

b.
$$u_{b1} = u_{I}$$
, $u_{b2} = 0$

c. 输出电压u₀≈±V_{CC}

(3) 工作原理

$$u_0 \approx +V_{\rm CC}$$

$$u_{\rm o} \approx -V_{\rm cc}$$

(4) 传输特性

$$u_0 = f(u_1)$$

 u_{I} 与零电平(电位)进行比较, 故称为零电平比较器。

上页

下页

(5) 实际应用

例: 利用零电平电压比较器将正 弦波变为方波。

(5) 电路存在的问题

- a. 输出电压基本由电源电压确定。
- b. 输出电平易受电源波动、饱和深度的影响。
- c. 输出电平不易改变。

改进型的零电平比较器

传输特性

输入保护电路

双向限幅稳压管

输出电压 $u_0 = \pm U_Z$

2. 非零电平比较器

(1) 电路组成

(2) 电路特点

a. 运放工作于开环状态

b.
$$u_{b1} = u_{I}$$
 $u_{b2} = u_{R}$

c. 输出电压 $u_{O} \approx \pm U_{Z}$

(3) 工作原理

 \mathbf{a} . 当 $\mathbf{u}_{\mathrm{I}} - \mathbf{U}_{\mathrm{R}} < 0$,即 $\mathbf{u}_{\mathrm{I}} < \mathbf{U}_{\mathrm{R}}$

$$u_{\rm o} \approx + U_{\rm z}$$

b. 当 $u_{\rm I} - U$ 的 0

$$u_{\rm o} \approx -U_{\rm z}$$

(4) 传输特性

$$u_{\mathrm{O}} = f(u_{\mathrm{I}})$$

(5) 实际应用

例: 利用零电平电压比较器将 正弦波变为矩形波。

零电平比较器

工作原理

a. 当 $u_{\rm I} < 0$ 时, $u_{\rm O} \approx + U_{\rm Z}$

b. 当 $u_{\rm I} > 0$ 时,

$$u_{\rm o} \approx -U_{\rm Z}$$

传输特性

a. 当 $u_{
m I} < 0$ 时, $u_{
m O} pprox -U_{
m Z}$ b. 当 $u_{
m I} > 0$ 时, $u_{
m O} pprox +U_{
m Z}$

非零电平比较器

电路

工作原理

a.当
$$u_{
m I} < u_{
m R}$$
时, $u_{
m O} pprox + U_{
m Z}$ b.当 $u_{
m I} > u_{
m R}$ 时, $u_{
m O} pprox - U_{
m Z}$

传输特性

a. 当
$$u_{\rm I} < u_{\rm R}$$
 时, $u_{\rm O} pprox - U_{\rm Z}$ b. 当 $u_{\rm I} > u_{\rm R}$ 时, $u_{\rm O} pprox + U_{\rm Z}$

是比较器吗?

电路:

是比较器吗?

运放处于<mark>线性状态,</mark>但外围 电路有非线性元件——稳压 二极管。

限幅器

上页

下页

门:零电平比较器非零电平比较器区别

与联系?

只与一个电位比较:单门限

单门限电压比较器的特点

电路简单 灵敏度高

抗干扰能力差

上页下页后退

单门限比较器抗干扰性能差的波形图

8.4.2 多门限比较器

正反馈的作用

加速输出翻转过程

给电路提供双极性参考电平

a. 工作原理

输出电压

$$u_{\rm O} = \pm U_{\rm Z}$$

反馈电压

$$U_{\rm R} = \pm K U_{\rm Z}$$

$$K = R_2/(R_2 + R_3)$$

上页

下页

上页 下页 后退

如果 $u_{\rm I} > U_{\rm R}$ $u_{\rm O} \equiv -U_{\rm Z}$

上页

下页

上页 下页 后退

反相输入迟滞比较器传输特性

上页

下页

实际应用

例:利用反相迟滞电压比较器将正弦波变为方波。

与单门限比较器有何不同?

两个翻转点!

说明迟滞比较器抗干扰性能的波形图

输入信号

输出信号

上页 下页

迟滞比较器的特点

- (1) 提高了电路抗干扰能力。
- (2) 降低了电路的灵敏度

(3) 不能分辨 $2KU_Z$ 范围内变化的信号。

不能分辨区

传输特性的画法:

- 1. 画出坐标系
- 2. 标出特征点
- 3. 画出翻转曲线
- 4.标注翻转的方向

传输特性的要求:

, 四个基本点

方向 结果

(2) 同相输入迟滞比较器

- a.电路
- b.特性分析

由图可知

$$u_{\rm b1}=0$$

$$u_{\text{b2}} = \frac{R_3}{R_2 + R_3} u_{\text{I}} + \frac{R_2}{R_2 + R_3} u_{\text{O}}$$

$$u_{\rm O} = \pm U_{\rm z}$$

$$u_{b2} = \frac{R_3}{R_2 + R_3} u_{I} + \frac{R_2}{R_2 + R_3} (\pm U_{z})$$

根据比较器的特性, 当 $u_{b2} = u_{b1}$ 时电路翻转。

得比较器的翻转电平为

$$U_{\rm H} = KU_{\rm Z}$$

$$U_{\rm L} = -KU_{\rm Z}$$

$$K = R_2/R_3$$

即当 $u_{\rm I}$ =± $KU_{\rm Z}$ 时 $u_{\rm b2}$ =0

模拟电子技术基础

模拟电子技术基础

c. 特性平移的迟滞比较器

图中

$$u_{\rm b1} = u_{\rm I}$$

$$u_{b2} = \frac{R_3}{R_2 + R_3} U_R + \frac{R_2}{R_2 + R_3} u_O$$

$$u_{\rm O} = \pm U_{\rm z}$$

$$\Rightarrow u_{b2} = u_{b1}$$

得电路的翻转电平为

$$U_{\rm L} = U_{\rm R} R_3/(R_2 + R_3) - U_{\rm z} R_2/(R_2 + R_3)$$
 $U_{\rm H} = U_{\rm R} R_3/(R_2 + R_3) + U_{\rm z} R_2/(R_2 + R_3)$

传输特性

迟滞回环沿着 坐标横轴平移

 $U_{\rm M}=U_{\rm R}\,R_3/(R_2+R_3)$

设 U_R>0, 右移

上页 下页

两种反相迟滞比较器对比:

上页

下页

两种同相迟滞比较器对比:

上页

总结

- 电压比较器的分析步骤:
- 1.观察运放的工作状态---(线性or非线性)
- 2.运放工作状态非线性—电压比较器
- 3.分析比较器类型(单门限or迟滞比较器)
- 4.同相输入or反相输入比较器(确定翻转的方向)
- 5.分析比较器的翻转点($U_{\rm L}$ 与 $U_{\rm H}$)
- 6.画出传输特性(一个中心,四个基本点)
- 7.其它分析(若给出输入信号,画出输出波形等)

2. 窗口比较器

(1) 电路

2. 工作原理

(设
$$U_{\rm H}>U_{\rm L}>0$$
)

(a) 当 $u_{\rm I} > U_{\rm H}$ 时

A₁输出高电平, A₂输出低电平。

D₁导通,D₂截止

晶体管T 饱和导通

输出电压 $u_0 = -V_{CC}$

(b) 当 $u_{\rm I} < U_{\rm L}$ 时

A₁输出低电平

A₂輸出高电平

D1截止, D2导通

晶体管T饱和导通

输出电压 $u_{\rm O} = -V_{\rm CC}$

A₁输出低电平

A₂输出低电平

D₁截止, D₂截止

晶体管T截止

输出电压 $u_{\rm o} = +V_{\rm CC}$

传输特性

窗口比较器的主要应用

用于工业控制系统,测量温度、压力、液面等的范围。

7.4.3 集成电压比较器

LM111系列的封装形式和引脚排列

LM111系列典型应用电路

基本应用电路

具有选通的接法

LM111系列实现的施密特电路

电路 $U_{\rm I} = R_{\rm I}$ $U_{\rm R} = R_{\rm 2}$ $R_{\rm F}$ $0 + V_{\rm CC}$ $3K\Omega$ $U_{\rm R} = R_{\rm I}$ $U_{\rm R} = R_{\rm I}$

传输特性

本章小结

- 例 1 电路如图所示,已知集成运A₁、A₂的性能理想。
- (1) 写出 u_{01} 与 u_{11} 、 u_{12} 关系式。
- (2)设 t=0 时, $u_0=12$ V , $u_C(0)=0$ V。当 $u_{11}=-10$ V , $u_{12}=0$ V时,那么经过多长时间 u_0 翻转到-12V。

上页

卜页

- (3) Mu_0 翻转到-12V的时刻起 u_{11} =-10V, u_{12} =15V , 又经过多长时间 u_0 再次翻回12V。
 - (4) 画出 u_{I1} u_{I2} 与 的波形。

解(1)由图可知,运放 A_1 组成了积分电路。故

$$u_{01} = -\frac{1}{R_1 C} \int_{-\infty}^{t} u_{11} dt - \frac{1}{R_2 C} \int_{-\infty}^{t} u_{12} dt$$

$$u_{O1} = -\frac{1}{R_{1}C} \int_{-\infty}^{t} u_{11} dt - \frac{1}{R_{2}C} \int_{-\infty}^{t} u_{12} dt$$

$$= -\frac{1}{R_{1}C} \int_{-\infty}^{t} (u_{11} + u_{12}) dt$$

$$= -\frac{1}{R_{1}C} \int_{-\infty}^{0} (u_{11} + u_{12}) dt - \frac{1}{R_{1}C} \int_{0}^{t} (u_{11} + u_{12}) dt$$

$$= -10 \int_{0}^{t} (u_{11} + u_{12}) dt + u_{O1}(0)$$

(2)由于运放 A_2 组成了反相输入迟滞电压比较器。故 u_0 翻转的条件是

$$u_{\text{O1}} = \frac{R_4}{R_4 + R_5} u_{\text{O}} = \frac{2}{2 + 10} \times (\pm 12) = \pm 2V$$

已知
$$t=0$$
 时, $u_{\rm O}=12{\rm V}$, $u_{\rm C}(0)=0{\rm V}$ 。 当 $u_{\rm II}=-10{\rm V}$, $u_{\rm I2}=0{\rm V}$ 时

$$u_{O1} = -10 \int_0^t (u_{I1} + u_{I2}) dt + u_{O1}(0)$$
$$= 100 t$$

$$\Rightarrow u_{01} = 100 t = 2V$$

得uo翻转到-12V的时间为

$$t_1 = 20 \mathrm{ms}$$

(3) 当 $u_{01} = -2V$ 时 u_0 再次由-12V翻转到12V。

即
$$-10 \times (-10 + 15)(t_2 - t_1) + 2 = -2$$

解得
$$t_2 - t_1 = 80 \text{ms}$$

(4) u_{11} 、 u_{i2} 、 u_{01} 与 u_{0} 的波形图

例2 在图示电路中,已知稳压管 D_{Z1} 、 D_{Z2} 的击穿电压分别为 U_{Z1} =3.4V, U_{Z2} =7.4V,正向压降皆为 U_{D1} = U_{D2} =0.6V,运放A具有理想的特性。画出 u_I 由-6V变至+6V,再由+6V变至-6V时电路的电压传输特性曲线。

解(a) 由图可知电路的输出电压极限值

$$U_{\text{omax}} = U_{\text{Z1}} + U_{\text{D2}} = 3.4 + 0.6 = 4\text{V}$$

$$U_{\text{omin}} = -U_{\text{D1}} - U_{\text{Z2}} = -0.6 - 7.4 = -8V$$

(b) 运放反相输入端电压

$$U_{R} = \frac{R_{2}}{R_{1} + R_{2}} \times 12$$
$$= \frac{4.7}{24 + 4.7} \times 12$$
$$\approx 2V$$

同相输入端电压

$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} u_{I} + \frac{R_{3}}{R_{3} + R_{4}} u_{O}$$

当输入电压 $u_{\rm I}$ 由-6V向+6V方向变化时,如果同相输入端的电压 u_+ 低于 $U_{\rm R}$,输出电压 $u_{\rm O}$ 为 $U_{\rm omin}$;

当同相输入端的电压 u_+ 略高于 U_R 时,比较器翻转,输出电压 u_0 为 U_{omax} 。

设此时的输入电压为 U_{H}

曲
$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} U_{H} + \frac{R_{3}}{R_{3} + R_{4}} U_{omin} = U_{R}$$
 得

$$U_{\rm H} = 5.3 {
m V}$$

当 u_I 由+6V向-6V方向变化时,如果 u_+ 高于 U_R ,输出电压 u_O 为 U_{omax} ;

当 u_+ 略低于 U_R 时,比较器再次翻转,输出电压 u_0 为 U_{omin} 。

设此时的输入电压为 $U_{
m L}$

$$R_1$$
 24k Ω
 R_2 4.7k Ω + R_5 u_0
 2.1 2.1

曲
$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} U_{L} + \frac{R_{3}}{R_{3} + R_{4}} U_{\text{omax}} = U_{R}$$
 得
$$U_{L} = 1.3V$$

由此可画出电路的传输特性

传输特性

