

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

	STUDENT NUMBER								Letter	
Figures										
Words										

MATHEMATICAL METHODS (CAS)

Written examination 1

Wednesday 6 November 2013

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 14 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (5 marks)

If $y = x^2 \log_e(x)$, find $\frac{dy}{dx}$.		
$\mathbf{I}_{ab} f(x) = a^{2}$		
Let $f(x) = e^x$.		
Find $f'(3)$.		3
$\operatorname{Let} f(x) = e^{x^2}.$ $\operatorname{Find} f'(3).$		3:
Find $f'(3)$.		3:
Find $f'(3)$.		3

Question 2 (2 marks)
Find an anti-derivative of $(4-2x)^{-5}$ with respect to x .
Question 3 (2 marks) The function with rule $g(x)$ has derivative $g'(x) = \sin(2\pi x)$.
Given that $g(1) = \frac{1}{\pi}$, find $g(x)$.

Question	4	(2	marks)
----------	---	----	--------

Solve the equation sin	$\left(\frac{x}{2}\right)$	$=-\frac{1}{2} \text{ for } x \in [2\pi, 4\pi].$
------------------------	----------------------------	--

Question 5 (4 marks)

a.	Solve the	equation 2	$2\log_3(5) -$	$\log_3(2) +$	$\log_3(x) =$	= 2 for x
----	-----------	------------	----------------	---------------	---------------	-------------

2 marks

b. Solve the equation 3	$6^{-4x} = 9^{6-x}$ for x.
--------------------------------	----------------------------

On	estion	6	(3	marks)
V u	COLLOII	v	\ J	munico

Let $g: R \to R$, $g(x) = (a - x)^2$, where a is a real constant.

The average value of g on the interval [-1, 1] is $\frac{31}{12}$. Find all possible values of a

Find all possible values of a.				

Question 7 (6 marks)

The probability distribution of a discrete random variable, *X*, is given by the table below.

x	0	1	2	3	4
Pr(X=x)	0.2	$0.6p^2$	0.1	1-p	0.1

a.	Show that $p = \frac{2}{3}$ or p	= 1.
----	------------------------------------	------

	.	2
b.	Let $p =$	$\frac{1}{3}$.

Calculate $E(X)$.	2 r

l.	Find $Pr(X \ge E(X))$.

Question 8 (3 marks)

A continuous random variable, *X*, has a probability density function

$$f(x) = \begin{cases} \frac{\pi}{4} \cos\left(\frac{\pi x}{4}\right) & \text{if } x \in [0, 2] \\ 0 & \text{otherwise} \end{cases}$$

Given that	$\frac{d}{dx}\bigg(x\sin$	$\left(\frac{\pi x}{4}\right)$	$\frac{\pi x}{4}\cos\left(\frac{\pi x}{4}\right)$	$\left(\frac{\pi x}{4}\right) +$	$\sin\!\left(\frac{\pi x}{4}\right)$, find $E(X)$.

CONTINUES OVER PAGE

Question 9 (6 marks)

The graph of $f(x) = (x - 1)^2 - 2$, $x \in [-2, 2]$, is shown below. The graph intersects the *x*-axis where x = a.

a.	Find the value of <i>a</i> .	1 mark

b. On the axes above, sketch the graph of g(x) = |f(x)| + 1, for $x \in [-2, 2]$. Label the end points with their coordinates.

- **c.** The following sequence of transformations is applied to the graph of the function $g: [-2, 2] \rightarrow R$, g(x) = |f(x)| + 1.
 - a translation of one unit in the negative direction of the x-axis
 - a translation of one unit in the negative direction of the y-axis
 - a dilation from the x-axis of factor $\frac{1}{3}$

Find

	age of g after the sequence of transformations has been applied.	
e domain of the ima	age of g after the sequence of transformations has been applied.	
e domain of the ima		
e domain of the ima	age of g after the sequence of transformations has been applied.	
e domain of the ima	age of g after the sequence of transformations has been applied.	
e domain of the ima	age of g after the sequence of transformations has been applied.	
e domain of the ima	age of g after the sequence of transformations has been applied.	

Question 10 (7 marks)

Let
$$f: [0, \infty) \to R, f(x) = 2e^{-\frac{x}{5}}$$
.

A right-angled triangle OQP has vertex O at the origin, vertex Q on the x-axis and vertex P on the graph of f, as shown. The coordinates of P are (x, f(x)).

ind the area, A , of the triangle OQP in terms of x .	

Find the maximum area of triangle OQP and the value of x for which the maxi	mum occurs.

c. Let S be the point on the graph of f on the y-axis and let T be the point on the graph of f with the y-coordinate $\frac{1}{2}$.

Find the area of the region bounded by the graph of f and the line segment ST.

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

THIS PAGE IS BLANK

Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$

curved surface area of a cylinder: $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

volume of a cylinder: $\pi r^2 h$ area of a triangle: $\frac{1}{2}bc\sin A$

volume of a cone: $\frac{1}{3}\pi r^2 h$

Calculus

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_e |x| + c$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

$$Pr(A) = 1 - Pr(A')$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

 $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$ transition matrices: $S_n = T^n \times S_0$

mean: $\mu = E(X)$ variance: $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Probability distribution		Mean	Variance	
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$	
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	