A - Classificações de APROG

Faça um programa que leia as classificações de exame de APROG de uma turma com n alunos (para um array). O número de alunos (n) é inserido pelo utilizador.

De seguida, calcule e mostre a média da turma. Finalmente, mostre quantos alunos reprovaram à disciplina (nota <10).

O programa deve mostrar a média da turma (formatada com 1 casa decimal) e quantos alunos reprovaram à disciplina, em linhas separadas e com o seguinte formato:

media=<media>

reprovações> de reprovações>

Exemplo:

Entrada	Saída
5	media=12.2
12	reprovacoes=2
8	
17	
19	
5	

arrays

B - Menores elementos

Faça um programa que leia um conjunto de números inteiros positivos (para um array). A leitura de números termina quando for inserido um número negativo.

De seguida, determine qual o menor elemento do conjunto e quantas vezes foi inserido.

O programa deve mostrar o menor número inserido e quantas vezes foi inserido, em linhas separadas e com o seguinte formato:

menor=<numero>

ocorrencias=<nº de ocorrencias>

Exemplo1:

Entrada	Saída
II I	menor=2
12	ocorrencias=1
2	
17	
19	
 - 5	

Exemplo2:

Entrada	Saída
	menor=5 ocorrencias=3
12	locollencias—3

8 5 17 5 -51	
5	
17	
5	
- 51	

C - Sequência crescente

Faça um programa que verifique se a sequência de números inseridos pelo utilizador é sempre crescente. O programa deve pedir ao utilizador a quantidade de números a inserir e, de seguida, proceder à sua leitura.

No final, o programa deve mostrar uma das seguintes mensagens: "sempre crescente = true" ou "sempre crescente = false" caso a sequência dos números inseridos seja sempre crescente ou não, respetivamente.

Para este efeito construa:

- a) Um método para ler e guardar num array os números inseridos pelo utilizador.
- b) Um método para verificar se a sequência do array é crescente. O método deve retornar true ou false, caso a sequência seja sempre crescente ou não, respetivamente.

Exemplo1:

Entrada	Saída
5	sempre crescente = true
11	
12	
13	
14	
15	

Exemplo2:

Entrada	Saída
6	sempre crescente = false
11	
12	
1	
10	
2	
15	

arrays

D - Frequências das notas

Faça um programa que leia as classificações de um teste de avaliação resolvido por n alunos e calcule as frequências absolutas para as notas obtidas. Pretende-se saber para cada nota, de zero (0), um (1), ..., até vinte (20), quantos alunos obtiveram essa nota.

As classificações são valores inteiros e podem variar entre zero (0) e vinte (20) inclusive.

O programa deve ler o valor de n, seguindo-se a leitura das n notas dos alunos.

O programa deve mostrar a escala zero (0) a vinte (20) e, para cada valor da escala, a quantidade de alunos que obtiveram essa nota, separado por um espaço. Cada nota da escala (de zero a vinte) e respetiva frequência deve aparecer em linhas separadas, no seguinte formato:

0 <n. alunos com nota 0>

1 <n. alunos com nota 1>

...

20 <n. alunos com nota 20>

Implemente as seguintes funcionalidades usando modularização:

- a) Ler e armazenar as notas dos alunos.
- b) Determinar as frequências das notas, de zero a vinte.
- c) Mostrar os valores das frequências

Exemplo1:

Entrada	Saída
7	0 0
17	1 0
9 13	2 0
13	3 0
17	4 0
9	5 0
15	6 0
17	7 0
	8 0
	9 2
	10 0
	11 0
	12 0
	13 1
	14 0
	15 1
	16 0
	17 3
	18 0
	19 0
	20 0

Exemplo2:

Entrada	Saída
8	0 0
12	1 0
13	2 0
10	3 0
5	4 0
12	5 1
10	6 0
12	7 0
10	8 0
	9 0
	10 3
	11 0

•		
	2 3	
	3 1	
	4 0	
	5 0	
	6 0	
	7 0	
	3 0	
	9 0	
20	0 0	

E - Estatísticas de vencimentos

Faça um programa para determinar algumas estatísticas sobre vencimentos de funcionários de uma empresa. O número de funcionários pode variar ao longo do tempo, será pelos menos um, mas nunca será superior a 20.

O programa deve mostrar o valor da média dos vencimentos assim como o nome dos funcionários com vencimentos inferior à média.

Usando modularização, implemente as seguintes funcionalidades:

- a) Ler os nomes e vencimentos dos funcionários da empresa. Para cada funcionário deve ser lido o seu nome e respetivo vencimento. A leitura termina quando for inserido o nome "fim".
- b) Calcular a média dos vencimentos.
- c) Mostrar resultados. Mostrar em linhas separadas, o valor da média (1 casa decimal) e os nomes dos funcionários com vencimento inferior a essa média.

Exemplo1:

Entrada	Saída
ana	1925.0
1000	ana
berta	berta
500	carla
carla	
1200	
daniela	
5000	
fim	

Exemplo2:

Entrada	Saída	
ana	325.6	
150.5 berta	ana	
berta		
500.7		
fim		

F - Aplicação financeira

Faça um programa que realize a simulação de uma aplicação financeira ao fim de 6 meses. A aplicação consiste num depósito bancário inicial com juros capitalizáveis, isto é, no final de cada mês o montante em depósito será acrescido do juro respetivo desse mês.

O funcionamento do programa deve obedecer à seguinte sequência de intruções:

- 1. Ler as taxas de juro para cada um dos meses (6).
- 2. Ler o valor do depósito inicial.
- 3. Mostrar o montante final após os 6 meses de depósito, usando duas casas decimais, no seguinte formato: "valor final=<valor>"

Exemplo1:

Entrada	Saída
0.15	valor final=16569.63
0.20	
0.11	
0.01	
0.02	
0.05	
10000	

arrays

G - Inverter sequência

Faça um programa modular que leia uma sequência de N números inteiros e os mostre pela ordem inversa da inserção. O valor de N é inserido, inicialmente, pelo utilizador.

Exemplo1:

Entrada	Saída	
5	50	
10	40	
20	30	
30	20	
40	10	
30 40 50		

arrays

H - Rodar sequência

Faça um programa modular que leia uma sequência de N números inteiros. O valor de N é inserido, inicialmente, pelo utilizador.

De seguida, o programa deve ler os N números inteiros.

Finalmente, o programa deve aceitar 3 comandos possíveis- "direita", "esquerda" e "sair" cujas funcionalidades são:

"direita" - rodar 1 posição a sequência de números para a direita (ex: 1 2 3 4 → 4 1 2 3)

"esquerda" - rodar 1 posição a sequência de números para a esquerda (ex: 1 2 3 4 → 2 3 4 1)

"sair" - termina o programa

O programa deve aceitar comandos "direita" ou "esquerda" até ser inserido o comando "sair" que termina o programa. Sempre que for executado o comando "direita" ou "esquerda" deve ser mostrado o resultado da sequência.

Cada sequência deve ser visualizada numa linha única e cada um dos seus elementos deve ser mostrado entre parêntesis retos, no seguinte formato:

"[a][b]...[n]"

Exemplo1:

Entrada	Saída
5	[50][10][20][30][40]
10	[40] [50] [10] [20] [30]
20	[50][10][20][30][40]
30	
40	
50	
direita	
direita	
esquerda	
sair	

arrays

I - Condomínio

Considere um prédio de apartamentos com 3 entradas e 4 pisos, completamente ocupados.

Faça um programa modular que leia o nome do proprietário de cada um dos apartamentos.

De seguida, o programa deve ler um dado nome inserido pelo utilizador, procurar e mostrar para esse nome qual é a respetiva entrada e piso, no seguinte formato:

Se existirem múltiplas soluções (vários proprietários com o mesmo nome), deve indicar todas as possibilidades.

Caso não exista um proprietário com esse nome no prédio, deve imprimir a mensagem "Nao mora no predio".

Exemplo:

piso			
3	Luisa Lima	Hercilia Hora	Maria Mota
2	Carla Costa	Gloria Gomes	Luisa Lima
1	Berta Barata	Francisca Fé	Joana Jales
0	Ana Anacleta	Elsa Eira	Ines Iris
	0	1	2

[&]quot;nome=<nome>"

[&]quot;entrada=<nº da entrada>"

[&]quot;piso=<no do piso>"

entrada

Exemplo1: (procurar Luisa Lima)

Ana Anacleta Berta Barata Carla Costa Luisa Lima Elsa Eira Francisca Fé Gloria Gomes nome=Luisa Lima entrada=0 piso=3 nome=Luisa Lima entrada=2 piso=2	Entrada	Saída
Hercilia Hora Ines Iris Joana Jales Luisa Lima Maria Mota Luisa Lima	Ana Anacleta Berta Barata Carla Costa Luisa Lima Elsa Eira Francisca Fé Gloria Gomes Hercilia Hora Ines Iris Joana Jales Luisa Lima Maria Mota	nome=Luisa Lima entrada=0 piso=3 nome=Luisa Lima entrada=2

Exemplo2: (procurar Zita Zulmira)

Entrada	Saída
Ana Anacleta Berta Barata Carla Costa Luisa Lima Elsa Eira Francisca Fé Gloria Gomes	Nao mora no predio
Hercilia Hora Ines Iris Joana Jales Luisa Lima Maria Mota Zita Zulmira	

arrays

J - **Top 3**

Escreva um programa que leia o nome e salário dos funcionários de uma empresa. A leitura termina quando for inserido "FIM" como o nome de um funcionário.

De seguida, calcule e mostre o top três (3) dos funcionários mais bem pagos. Caso haja igualdade de vencimentos, a escolha deve seguir a ordenação alfabética crescente do nome.

Mostre em linhas separadas o nome e salário de cada funcionário, ordenados de forma decrescente do salário, no seguinte formato:

"#<ordem>:<nome>:<salario>"

<ordem> indica o lugar no top.

<nome> nome do funcionário

<salario> valor do salário

Exemplo1:

Entrada	Saída
Ana Anacleta	#1:Elsa Eira:5000
1000	#2:Ana Anacleta:1000
Berta Barata	#3:Berta Barata:1000
1000	
Carla Costa	
100	
Luisa Lima	
125	
Elsa Eira	
5000	
Francisca Fé	
123	
Gloria Gomes	
55	
Hercilia Hora	
250	
FIM	

arrays

K - Sem repetições

Escreva um programa que leia um conjunto N de números inteiros e os visualize pela mesma ordem mas sem repetições.

O programa deve ler, primeiro, o valor de N e, de seguida, os N números do conjunto.

Cada um dos elementos do conjunto resultado deve ser visualizado em linhas separadas.

Exemplo1:

Entrada	Saída
7	10
10	20
20	50
50	60
10	
10	
60	
20	

arrays

L - Vizinhos

Escreva um programa que leia um conjunto números inteiros e visualize todos os números maiores que os seus vizinhos.

Um número é maior que os seus vizinhos quando é, simultaneamente, maior que o número anterior e que o número seguinte.

A leitura termina quando for inserido um número negativo. O tamanho do conjunto de números nunca será superior a 30.

Os elementos do resultado devem ser visualizados em linhas separadas.

8, 2, <u>4</u>, 1, 6, <u>12</u>, 5, 9, -1

Exemplo1:

Entrada	Saída
8	4
2	12
4	
1	
6	
12	
5	
9	
-1	

arrays

M - Algarismos diferentes

Escreva um programa que leia um conjunto números inteiros positivos e visualize, para cada um, quantos algarismos diferentes o constituem.

A leitura termina quando for inserido um número negativo.

Os elementos do resultado devem ser visualizados em linhas separadas, no seguinte formato: <nºinserido>:<algarismos diferentes>

Exemplo1:

Entrada	Saída
12123518	12123518:5
2222	2222:1
400	400:2
12345	12345:5
 -1	

arrays

N - Diagonais

Escreva um programa que leia uma matriz quadrada de números inteiros e escreva os valores correspondentes às várias diagonais com o mesmo sentido da diagonal principal e da direita para a esquerda. O programa deve ler um valor N ($1 < N \le 20$) correspondendo à dimensão da matriz. De seguida, deve ler N linhas contendo, cada uma, N números separados por espaços.

Os elementos de cada diagonal devem ser visualizados em linhas separadas e no seguinte formato: [a]...[z].

Exemplo1:

Entrada	Saída
3 10 20 30 50 60 70 90 100 110	[30] [20][70] [10][60][110] [50][100] [90]

arrays

O - Quadrantes

Escreva um programa que leia uma matriz quadrada de números inteiros e visualize a soma dos números de cada um dos seus quadrantes.

Se dividir-mos ao meio uma matriz na vertical e na horizontal obtemos 4 quadrantes (q1, q2, q3, q4) na seguinte ordem:

q2	q1
q3	q4

Cada quadrante possui elementos próprios, não partilhados com outros quadrantes.

O programa deve ler um valor N correspondendo à dimensão da matriz ($1 \le N \le 20$). De seguida, deve ler N linhas contendo, cada uma, N números separados por espaços.

No final deve ser visualizado o valor dos 4 quadrantes da seguinte forma:

[q2][q1]

[q3][q4]

Exemplo1:

Entrada	Saída	
4 10 20 30 40 50 60 70 10 90 100 110 1 1 2 3 4	[140] [150] [193] [118]	

arrays

P - Fatorial dos algarismos

Escreva um programa que leia um número inteiro N ($0 \le N \le 10000000$) e um inteiro X ($0 \le X \le 10000000$) e determine quantos dos números positivos de zero até N (inclusive) possuem a soma dos fatoriais dos seus algarismos superior a X.

exemplo: para N=5 e X=10

0:0!=1

1:1!=1

2:2!=2

3:3!=6

4:4!=24

5:5!=120

saída: 2

Implemente uma solução eficiente.

Exemplo1:

Entrada	Saída
5 10	2