LECTURER: PROF. McDonald Scribe: Inhak Hwang

15.1 Martingales

Let (Ω, \mathscr{F}) . Define sequence \mathscr{F}_i of σ -algebras s.t. $\mathscr{F}_i \subset \mathscr{F}_{i+1}$ and $\mathscr{F}_0 = \sigma\{\Omega\}$. We call $((\mathscr{F}_i, (X_i)))$ a martingale w.r.t (\mathscr{F}_i) if X_i is \mathscr{F}_i measurable and $E[X_i|\mathscr{F}_{i-1}] = X_{i-1}$ where $\mathscr{F}_i = \sigma(X_1, X_2...X_i)$. Note the following

- $E[X_i] = \mu$
- If $E[X_i|\mathscr{F}_{i-1}] = 0$ call it a martingale difference.

Example 15.1. $Y_0 = E[X_0], Y_1 = X_i - X_{i-1}$

Example 15.2. $\exists X \ s.t. \ can \ create \ \mathscr{F}_i \subset \sigma[X], \ X_i = E[X|\mathscr{F}_i.$

15.2 Azuma's inequality

Let $((\mathscr{F}_i), (y_i))$ be a martingale difference s.t. for (a_i) and (b_i) , $P(Y_i \in [a_i, b_i) = 1$ for all i. Then for $\delta > 0$,

$$P(\frac{1}{n}|\sum Y_i| \le \delta) \le 2\exp^{-\frac{n\delta^2}{\frac{1}{n}\sum\limits_{i=1}^n(b_i-a_i)^2}}$$

Pf: sketch

$$Ee^{\lambda\sum\limits_{i=1}^{n}Y_{i}}=E[E[e^{\lambda\sum\limits_{i=1}^{n}Y_{i}}|\mathscr{F}_{n-1}]]=E[e^{\lambda\sum\limits_{i=1}^{n}Y_{i}}E[e^{\lambda Y_{n}}|\mathscr{F}_{n-1}]$$

Let $Z = f(X_1, ... X_n)$.

Theorem 15.3 (McDiamird's). If f satisfies "bounded differences":

$$\sup_{x_1, x_2, \dots, x_n, x' \in X^{n+1}} |f(x_1, \dots, x_n) - f(x_2, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)| < C_i$$

Then
$$\delta > 0$$
, $P(X - E[Z] > \delta) \le \exp^{-\frac{2\delta}{\sum c_i^2}}$

Pf: sketch

$$Y_0 = E[Z], Y_1 = E[Z|X_1...X_i] = E[Z|X_1...X_{i-1}].$$