

IEL – protokol k projektu

Vojtěch Kališ xkalis03

19. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	4
4	Příklad 4	6
5	Příklad 5	7

1. Příklad 1

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
E	115	55	485	660	100	340	575	815	255	225

$$\begin{array}{l} R_{34} = \frac{R_3*R_4}{R_3+R_4} = \frac{100*340}{100+340} = 77.273\,\Omega \\ R_{234} = R_2 + R_{34} = 660 + 77,273 = 737.273\,\Omega \end{array}$$

Dostanu obvod:

Pro následující výpočet rezistorů mezi uzly označenými jako A, B a C budu muset použít převod trojúhelník \rightarrow hvězda.

$$\begin{array}{l} R_A = \frac{R_1*R_{234}}{R_1+R_{234}+R_5} = \frac{485*737,273}{485+737,273+575} = 198.96 \, \Omega \\ R_B = \frac{R_1*R_5}{R_1+R_{234}+R_5} = \frac{485*575}{485+737,273+575} = 155.166 \, \Omega \\ R_C = \frac{R_{234}*R_5}{R_1+R_{234}+R_5} = \frac{737,273*575}{485+737,273+575} = 235.86 \, \Omega \end{array}$$

Dostanu obvod:

Po tomto zjednodušení je již vidno, že mohu lehce dopočítat R_{EKV} .

$$\begin{array}{l} R_{B7} = R_B + R_7 = 155, 166 + 255 = 410.166\,\Omega, \\ R_{B7C6} = \frac{R_{B7}*R_{C6}}{R_{B7}+R_{C6}} = \frac{410,166*1050,86}{410,166+1050,86} = 295.0167\,\Omega \end{array}$$

Pak:
$$R_{EKV} = R_A + R_{B7C6} + R_8 = 198, 96 + 295, 0167 + 225 = \underline{718.9767 \,\Omega}$$

 $U = U_1 + U_2 = 115 + 55 = \underline{170 \, V}, \quad I = \frac{U}{R_{EKV}} = \frac{170}{718,9767} = 0.236\,447 \,A = \underline{236.447 \, mA}$

Abychom mohli vypočítat U_{R6} , potřebujeme vědět proud, který rezistorem protéká, což bude stejný proud který protéká prvkem R_{C6} (z 1. kirchhoffova zákona). Tudíž: $U_{R6} = I_{RC6} * R_6$. Pro výpočet I_{RC6} je zase zapotřebí znát U_{RC6} , nebo U_{RB7C6} (2. kirch. z.).

$$\begin{array}{l} U_{RB7C6} = I*R_{B7C6} = 0,236447*295,0167 = 69.756\,\mathrm{V} \\ I_{RC6} = \frac{U_{RB7C6}}{R_{C6}} = \frac{69,756}{1050,86} = 0.066\,379\,\mathrm{A} = \underline{66.379\,\mathrm{mA}} = I_{R6} \end{array}$$

A nakonec $U_{R6} = I_{R6} * R_6 = 66,379 * 815 = \underline{54.099 \Omega}$

2. Příklad 2

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	50	100	525	620	210	530	100

$$R_{45} = R_4 + R_5 = 210 + 530 = 740\,\Omega$$

Z Theveninova teorému: $I_{R3} = \frac{u_i}{R_3 + R_i}$. Pro výpočet R_i překreslím obvod bez R_3 , uzel nad ním si určím jako A a dolní uzel jako B, napěťový zdroj nahradím zkratem a nakonec dopočítám R_i .

Dostanu obvod:

$$\begin{split} R_{12} &= \frac{R_1*R_2}{R_1+R_2} = \frac{100*525}{100+525} = 84\,\Omega \\ R_{456} &= \frac{R_{45}*R_6}{R_{45}+R_6} = \frac{740*100}{740+100} = 88.0952\,\Omega \\ R_i &= R_{456} + R_{12} = 88,0952 + 84 = 172.0952\,\Omega \end{split}$$

Pro výpočet U_i využiju napěťový dělič (jelikož R_6 a R_{45} jsou ve dvou větvích, na kterých je stejné napětí).

$$U_{R6} = U * \frac{R_6}{R_2 + R_6} = 50 * \frac{100}{525 + 100} = 8 \text{ V}$$
 $U_{R45} = U * \frac{R_{45}}{R_1 + R_{45}} = 50 * \frac{740}{100 + 740} = 44.0476 \text{ V}$
 $U_i = |U_{R6} - U_{R45}| = |8 - 44,0476| = 36.0476 \text{ V}$

Dostanu obvod:

Poté už stačí pouze dosadit do vzorce: $I_{R3} = \frac{u_i}{R_3 + R_i} = \frac{36,0476}{620 + 172,0952} = 0.045\,509\,\mathrm{A} = \underline{45.509\,\mathrm{mA}}$ Z toho pak: $U_{R3} = I_{R3} * R_3 = 0,045509 * 620 = \underline{28.216\,\mathrm{V}}$

3. Příklad 3

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

		·- ·	102	U				.,, _
sk .	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
E	135	0.55	0.65	52	42	52	42	21

Přepočítám napěťový zdroj na zdroj proudový a odpory na vodivosti.

a odpory na vodivosti.
$$I_3 = \frac{U}{R_1} = \frac{135}{52} = 2.5962 \text{ A}$$

$$G_1 = \frac{1}{R_1} = \frac{1}{52} \text{S} \qquad G_2 = \frac{1}{R_2} = \frac{1}{42} \text{S}$$

$$G_3 = \frac{1}{R_3} = \frac{1}{52} \text{S} \qquad G_4 = \frac{1}{R_4} = \frac{1}{42} \text{S}$$

$$G_5 = \frac{1}{R_5} = \frac{1}{21} \text{S}$$
Destroy aboved:

$$G_1 = \frac{1}{R} = \frac{1}{52}$$
S

$$G_2 = \frac{1}{R_2} = \frac{1}{42}S$$

$$G_3 = \frac{1}{R_3} = \frac{1}{52}$$

$$G_4 = \frac{1}{R_4} = \frac{1}{42}$$

$$G_5 = \frac{1}{R_5} = \frac{1}{21}S$$

Dostanu obvod:

Sestavím rovnice uzlů:

A)
$$-I_3 + G_1U_A + G_2U_A + G_3(U_A - U_B) = 0$$

B)
$$-I_1 + G_5(U_B - U_C) - G_3(U_A - U_B) = 0$$

C) $I_1 - G_5(U_B - U_C) + G_4U_C - I_2 = 0$

C)
$$I_1 - G_5(U_B - U_C) + G_4U_C - I_2 = 0$$

Upravím rovnice uzlů:

A)
$$U_A(G_1 + G_2 + G_3) + U_B(-G_3) = I_3$$

B)
$$U_A(-G_3) + U_B(G_5 + G_3) + U_C(-G_5) = I_1$$

C)
$$U_B(-G_5) + U_C(G_5 + G_4) = I_2 - I_1$$

Přepíši je do maticového tvaru:

$$\begin{bmatrix} G_1 + G_2 + G_3 & -G_3 & 0 \\ -G_3 & G_5 + G_3 & -G_5 \\ 0 & -G_5 & G_5 + G_4 \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} I_3 \\ I_1 \\ I_2 - I_1 \end{bmatrix}$$

Dosadím hodnoty:

$$\begin{bmatrix} \frac{17}{273} & -\frac{1}{52} & 0\\ -\frac{1}{52} & \frac{73}{1092} & -\frac{1}{21}\\ 0 & -\frac{1}{21} & \frac{1}{14} \end{bmatrix} \cdot \begin{bmatrix} U_A\\ U_B\\ U_C \end{bmatrix} = \begin{bmatrix} 2.5962\\ 0.55\\ 0.1 \end{bmatrix}$$

Vypočítám determinanty pomocí Sarrusova pravidla:

$$\Delta = \begin{vmatrix} \frac{17}{273} & -\frac{1}{52} & 0 \\ -\frac{1}{52} & \frac{73}{1092} & -\frac{1}{21} \\ 0 & -\frac{1}{21} & \frac{1}{14} \end{vmatrix} = 0.00029734 + 0 + 0 - 0 - \frac{17}{120393} - \frac{1}{37856} = 1.2971989 \cdot 10^{-4} = 0.0001297$$

$$\Delta_1 = \begin{vmatrix} 2.5962 & -\frac{1}{52} & 0 \\ 0.55 & \frac{73}{1092} & -\frac{1}{21} \\ 0.1 & -\frac{1}{21} & \frac{1}{14} \end{vmatrix} = 0.0123968 + 0 + \frac{1}{10920} - 0 - 0.0058871 + \frac{11}{14560} = 7.3567696 \cdot 10^{-3} = 0.0073567$$

Pomocí Cramerova pravidla vypočítám U_A : $U_A = \frac{\Delta_1}{\Delta} = \frac{7.3567696 \cdot 10^{-3}}{1.2971989 \cdot 10^{-4}} = 56.71273 \text{ V}$ Z čehož potom: $U_{R2} = U_A = \frac{56.71273 \text{ V}}{1.2971989 \cdot 10^{-4}}$

Pomocí Ohmova zákona pak získám proud I_{R2} : $I_{R2}=\frac{U_{R2}}{R_2}=\underline{1.35\,\mathrm{A}}$

4. Příklad 4

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

									200
$\operatorname{sk}.$	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
\mathbf{E}	50	30	14	13	130	60	100	65	90

5. Příklad 5

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
A	40	50	10	16

