Regression and Causal Inference

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

March 20, 2023

Regression: Main Idea

Main Idea of Regression

• A linear regression can help us study the relationship between treatment D_i and outcome Y_i

$$Y_i = \delta + \alpha D_i + \beta X_i + \epsilon_i$$

• We can interpret α as the causal effect of treatment by including all confounding factors X_i in the regression

Main Idea of Regression

An example:

- Possible source of selection bias in estimating effect of attending graduate school on earning is family wealth
 - Since people with higher family wealth might be more likely to go to graduate school
 - Also, they might have higher annual earnings no matter what they do
- Selection bias can be eliminated by including family wealth in the regression
 - Focusing on treatment and control groups with the same family wealth

Regression: Potential Outcomes Framework

Conditional Independence Assumption (CIA)

Conditional Independence Assumption

$$(Y_i^1, Y_i^0) \perp \!\!\!\perp D_i | X_i$$

- CIA asserts that conditional on observable characteristics X, potential outcomes are independent of treatment assigned D
 - In other words, observed covariates X can fully explain the value of potential outcome for treatment and control groups
 - $Y^0 = \mathrm{f}(X)$
 - $Y^1 = f(X)$
- CIA ensures:
 - $\mathbf{E}[Y_i^0|X_i, D_i = 1] = \mathbf{E}[Y_i^0|X_i, D_i = 0]$
 - $\mathbf{E}[Y_i^1|X_i, D_i = 1] = \mathbf{E}[Y_i^1|X_i, D_i = 0]$

Main Idea of Regression

- We can consider regression is a special case of matching methods
 - Because both matching and regression require CIA (selection on observable) to get causal affects
 - But regression needs to assume the functional form of potential outcomes

Regression and Potential Outcome

■ We can run the following regression to get causal effect of *D*

$$Y_i = \delta + \alpha D_i + \beta X_i + \epsilon_i$$

It assumes that **potential outcomes** are determined by the following equations:

$$Y_i^1 = \delta + \alpha + \beta X_i + \epsilon_i$$

$$Y_i^0 = \delta + \beta X_i + \epsilon_i$$

- Assume $E[\epsilon_i|X_i] = 0$
- lacksquare α is the causal effect of treatment

- Based on CIA, including key observed covariates X_i into regression can help us eliminate selection bias
- Therefore, the estimated coefficient of treatment *D* is the following:

$$\alpha(X) = \underbrace{\mathbb{E}[Y_i|X_i, D_i = 1] - \mathbb{E}[Y_i|X_i, D_i = 0]}_{\text{Observed Difference in Average Outcome at given } X_i}$$

$$\begin{split} \alpha(X) &= \underbrace{\mathbb{E}[\mathbf{Y}_i|X_i,D_i=1] - \mathbb{E}[\mathbf{Y}_i|X_i,D_i=0]}_{\text{Observed Difference in Average Outcome at given } X_i \\ &= \mathbb{E}[\mathbf{Y}_i^1|X_i,D_i=1] - \mathbb{E}[\mathbf{Y}_i^0|X_i,D_i=1] \\ &+ \mathbb{E}[\mathbf{Y}_i^0|X_i,D_i=1] - \mathbb{E}[\mathbf{Y}_i^0|X_i,D_i=0] \\ &= \underbrace{\mathbb{E}[\mathbf{Y}_i^1 - \mathbf{Y}_i^0|X_i,D_i=1]}_{\text{Causal Effect (CATT)}} \\ &+ \underbrace{\mathbb{E}[\mathbf{Y}_i^0|X_i,D_i=1] - \mathbb{E}[\mathbf{Y}_i^0|X_i,D_i=0]}_{\text{Selection Bias}} \\ &= \underbrace{\mathbb{E}[\mathbf{Y}_i^1 - \mathbf{Y}_i^0|X_i,D_i=1]}_{\text{Causal Effect (CATT)}} \\ &+ \underbrace{\beta \mathbb{E}[\mathbf{X}_i|X_i,D_i=1] - \beta \mathbb{E}[\mathbf{X}_i|X_i,D_i=0]}_{\text{Selection Bias}} \end{split}$$

$$\alpha(X) = \underbrace{\mathbb{E}[Y_i|X_i,D_i=1] - \mathbb{E}[Y_i|X_i,D_i=0]}_{\text{Observed Difference in Average Outcome at given } X_i$$

$$= \underbrace{\mathbb{E}[Y_i^1 - Y_i^0|X_i,D_i=1]}_{\text{Causal Effect (CATT)}}$$

$$+ \underbrace{\beta \mathbb{E}[X_i|X_i,D_i=1] - \beta \mathbb{E}[X_i|X_i,D_i=0]}_{\text{Selection Bias}}$$

$$= \underbrace{\mathbb{E}[Y_i^1 - Y_i^0|X_i,D_i=1]}_{\text{Causal Effect (CATT)}} + \underbrace{0}_{\text{Selection Bias}}$$

$$= \underbrace{\mathbb{E}[Y_i^1 - Y_i^0|X_i,D_i=0]}_{\text{Causal Effect (CATU)}}$$

$$= \underbrace{\mathbb{E}[Y_i^1 - Y_i^0|X_i]}_{\text{Causal Effect (CATE)}}$$
Causal Effect (CATE)

- Note that there are as many causal effects (CATE or CATT) as the number of value in X_i
- People might find it useful to boil a set of estimates down to a single summary measure
 - e.g. Average treatment effect
- Again, applying the law of iterated expectations (LIE), we can identify ATT, ATU, and ATE
 - Take average of CATT, CATU, and CATE over all subgroups (all possible X-values)

Regression: Estimation

Regression: Estimation

- \blacksquare Again, if we have population data, we can get the above causal effect α
- However, we usually only have sample (i.e. part of population data)
- lacktriangle We need to use sample data to estimate lpha

Review: Ordinary Least Squares Estimation

- Regression analysis assigns values to model parameters (δ and α) so as to make \hat{Y}_i as close as possible to Y_i
- Ordinary Least Squares (OLS) estimation accomplish it by choosing values that minimize the sum of squared residuals

$$(\hat{\delta}, \hat{\alpha}) = \min_{\delta, \alpha} \frac{1}{N} \sum_{i=1}^{N} (Y_i - \delta - \alpha D_i)^2$$

OLS estimator for treatment effect α :

$$\hat{\alpha} = \frac{Cov(Y_i, D_i)}{V(D_i)}$$

- Failure to include enough (right) control variables in the regression would result in selection bias
- The OLS version of the selection bias generated by inadequate controls is called Omitted Variable Bias (OVB)

Suppose the true model is:

$$Y_i = \delta + \alpha D_i + \beta X_i + \epsilon_i$$

- \blacksquare X_i is the observed characteristics (e.g. family wealth)
- But we estimate this model:

$$Y_i = \delta + \alpha D_i + u_i$$

- where $u_i = \beta X_i + \epsilon_i$
- Assume $E[\epsilon_i|X_i]=0$

OVB formula:

$$\hat{\alpha} \stackrel{p}{\to} \alpha + \frac{Cov(u_i, D_i)}{V(D_i)}$$
$$= \alpha + \beta \frac{Cov(X_i, D_i)}{V(D_i)}$$

- The difference between estimated treatment effect $\hat{\alpha}$ and true effect α depends on two components:
 - 1 β : The effect of omitted variable X_i on outcome variable Y_i
 - 2 $\frac{Cov(X_i, D_i)}{V(D_i)}$: The relationship between omitted variable X_i and treatment variable D_i

- The confounding factor *X* can result in the co-movement between treatment *D* and outcome *Y*
- Even if treatment D has no causal effect on outcome Y

Example

OVB formula:

$$\hat{\alpha} \stackrel{p}{\to} \alpha + \frac{Cov(u_i, D_i)}{V(D_i)}$$
$$= \alpha + \beta \frac{Cov(X_i, D_i)}{V(D_i)}$$

- The difference between estimated effect of attending graduate school $\hat{\alpha}$ and true effect of attending graduate school α depends on two components:
 - 1 β : The effect of family wealth (omitted) X_i on earnings Y_i
 - 2 $\frac{Cov(X_i, D_i)}{V(D_i)}$: The relationship between family wealth X_i and attending graduate school D_i

■ In RCT, we can eliminate OVB since treatment assignment D_i is unrelated to other confounding factors X_i

■ In the regression, we can eliminate OVB by including other **observed** confounding factors X_i into regression

■ When we include X_i in regression model, $u_i = \epsilon_i$ which is unrelated to treatment status D_i

- OVB formula is a tool that allows us to consider the impact of controlling for variables we wish we had
- We cannot use data to check the consequences of omitted variables that we do not observe
- But we can use the OVB formula to make a educated guess as to the likely consequences of their omission

$$\hat{\alpha} \stackrel{P}{\to} \alpha + \beta \frac{Cov(X_i, D_i)}{V(D_i)}$$

We estimate the following regression and want to test whether there is treatment effect:

$$Y_i = \delta + \alpha D_i + \beta X_i + \epsilon_i$$

- 1. Choose a null hypothesis:
 - We usually test whether there is no average effect of treatment
 - $H_0: \alpha = 0$

2. Choose a test statistic

- We use a t-statistic to measure whether our sample estimates support/against this null hypothesis
- $t = \frac{(\hat{\alpha} \alpha)}{\hat{\operatorname{SE}}(\hat{\alpha})}$

3. Estimate standard error of the estimator

$$\bullet \hat{\mathrm{SE}}(\hat{\alpha}) = \sqrt{\frac{V(\overline{D_i}\epsilon_i)}{N_s(\hat{\sigma_{\overline{D}}})^4}}$$

- lacksquare $\hat{\sigma_{\overline{D}}}$ is the standard deviation of $\overline{D_i}$
- $\overline{D_i}$ is the residual from a regression of D_i on all other regressors X_i
- The addition of covariates X has two opposing effects on $\hat{SE}(\hat{\alpha})$.
 - $1~\sigma_{\overline{D}}$ might decrease since addition covariates explain some of the variation in other regressors
 - 2 The residual variance $V(\overline{D_i}\epsilon_i)$ falls when covariates that predict Y_i are added to the regressions
- This is known as robust standard errors

- 4. Evaluate whether the sample estimator is against null hypothesis or not
 - Goal: Calculate p-value
 - p-value: Given null hypothesis is true, the probability of obtaining the sample estimates or more extreme ones
 - If this probability is high, it means the sample estimate might support for null hypothesis
 - If this probability is low, it means the sample estimate might be against null hypothesis

- Evaluate whether the sample estimator is against null hypothesis or not
 - In order to calculate this probability (p-value), we need to know the distribution of the t-statistic under the null hypothesis
 - If sample size is sufficiently large, using Central Limit Theorem (CLT), t-statistic will have standard normal distribution

- Evaluate whether the sample estimator is against null hypothesis or not
 - Based on standard normal distribution and sample estimator, we can get p-value
 - We reject the null hypothesis $H_0: \alpha = 0$ when p-value is sufficiently low
 - We usually select an arbitrarily pre-defined threshold value θ , which is referred to as the **level of significance**
 - By convention, θ is commonly set to 0.1 or 0.05
 - If p-value is smaller than θ , we would say the sample estimate is significantly different from the null hypothesis

Interpretation of Regression Results

Suppose the estimated regression is the following:

$$\hat{\mathbf{Y}}_{i} = 35000 + 5000D_{i} + 0.5X_{i}$$

Suppose the estimated standard error is:

$$\hat{SE}(\hat{\alpha}) = 1000$$

■ So the t-statistic for testing H_0 : $\alpha = 0$:

$$t = \frac{(\hat{\alpha} - \alpha)}{\hat{SE}(\hat{\alpha})} = \frac{5000 - 0}{1000} = 5$$

Interpretation of Regression Results

- Using t-statistic, we can compute the p-value = 0.00001, which is much lower than 0.05 or 0.01
 - Given null hypothesis $H_0: \alpha = 0$ is true, our estimate is unlikely to happen (but it happens!!)
 - It suggests our estimate is against the null hypothesis
 - Thus, we should reject the null hypothesis

Interpretation of Regression Results

- $lue{}$ Based on sample estimates and its standard deviation, we can construct a confidence interval for lpha
- Note that the t-statistic for 5% two-sided significance level is 1.96

$$\hat{\alpha} \pm 1.96 \hat{SE}(\hat{\alpha}) = 5000 \pm 1.96 \times 1000$$

- The 95% confidence interval does not include zero
- Null hypothesis H_0 : $\alpha = 0$ is rejected at the 5% level

- reg: Linear regression
- Syntax:

```
reg depvar [indepvars] [if] [in] [weight] [,options]
```

■ Please see **reg.do**

```
reg incwage college i.health age year i.race, vce(
    robust)
predict incwage_hat
predict incwage_hat_std, stdp
```

- To examine the effect of college degree on wage by controlling many demographic factors
- Option vce(robust): use robust standard error
- predict: creates newvar containing linear prediction xb for whole sample
- Option stdp: creates newvar containing the standard error of the linear prediction xb

Output

. reg incwage college i.health age year i.race, vce(robust)

Linear regression Number of obs = 46,299 $\frac{F(22, 46275)}{Prob > F} = .$ R-squared = 0.1106Root MSE = 48789

incwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
college	32653.63	658.7384	49.57	0.000	31362.49	33944.76
health very good	-1385.204	661.5773	-2.09	0.036	-2681.905	-88.50227
good	-7219.177	672.5077	-10.73	0.000	-8537.302	-5901.052
fair	-17981.89	775.4887	-23.19	0.000	-19501.86	-16461.92
poor	-25661.95	771.2066	-33.28	0.000	-27173.53	-24150.37

Output

	incwage	incwage_hat	incwage_ha~d
1	15000	53263.65	858.3494
2	42000	53174.29	854.6627
3	29000	49778.7	813.7073
4	-	22020.95	561.3401
5		21484.8	575.526

```
reg incwage college i.health age year i.race if sex ==1, vce(robust)
predict incwage_hat_m if e(sample)
```

- Option if: restrict sample to specific subgroup
- Option if e(sample): obtain linear prediction for male (if sex == 1)

Output

. reg incwage college i.health age year i.race if sex==1, vce(robust)

Linear regression

incwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
college	43120.23	1206.212	35.75	0.000	40755.96	45484.49
health						
very good	-2554.815	1126.348	-2.27	0.023	-4762.537	-347.0923
good	-9808.018	1160.95	-8.45	0.000	-12083.56	-7532.473
fair	-23376.74	1418.75	-16.48	0.000	-26157.59	-20595.89
poor	-34504.03	1383.097	-24.95	0.000	-37215	-31793.06

Suggested Readings

- Chapter 2, Mastering Metrics: The Path from Cause to Effect
- Chapter 3, Mostly Harmless Econometrics
- Chapter 2, Causal Inference: The Mixtape