Algèbre de base

Sommaire

- 1 Polynômes sur K
 - Définitions et notations
 - Division euclidienne
 - Fonctions polynômiales
 - Polynôme dérivé
 - Racines d'un polynôme
- 2 Décomposition d'un polynôme
- 3 PGCD
 - Division suivant les puissances croissantes.
- 4 Décompossition en éléments simples
 - Partie entière d'une fraction rationnelle

I). Polynômes sur ${\mathbb K}$

1. Définitions et notations

Dans ce chapitre, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

Définition

On appelle polynôme sur $\ensuremath{\mathbb{K}}$ une expression de la forme

$$a_nX^n + a_{n-1}X^{n-1} + \ldots + a_2X^2 + a_1X + a_0, \quad n \in \mathbb{N},$$

où les a_i sont des éléments de \mathbb{K} (appelés coefficients) et X est l'indéterminée.

L'ensemble des polynômes sur \mathbb{K} est noé $\mathbb{K}[X]$.

Exemple:

- 1 $X^5 + \pi X^4 \sqrt{2}X^2 + 3$ est un polynôme sur \mathbb{R} .
- 2 $X^6 + iX^4 e^{i\frac{\pi}{3}}X^2 + 2i$ est un polynôme sur \mathbb{C} .

Définition

Soit P un polynôme donné par

$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_2 X^2 + a_1 X + a_0$$

- i) Sous cette forme, il est ordonné suivant les puissances décroissantes.
- ii) Sous la forme $P = a_0 + a_1 X + a_2 X^2 + \ldots + a_{n-1} X^{n-1} + a_n X^n$, il est dit ordonné suivant les puissances croissantes.
- iii) Si $a_n \neq 0$, on l'appelle coefficient dominant de P et n est appelée degré de P; on note : $deg(P) = d^oP = n$.
- iv) Si $a_n = 1$, on dit que le polynôme est unitaire.
- v) Une constante $a \neq 0$ est appelée polynôme de degré 0.
- vi) La constante 0 est appelée **polynôme nul**. Par convention il est de degré $-\infty$

Définition

Soient P et Q deux polynômes de $\mathbb{K}[X]$ donnés par $P=a_0+a_1X+a_2X^2+\ldots+a_{n-1}X^{n-1}+a_nX^n,$ $Q=b_0+b_1X+b_2X^2+\ldots+b_{m-1}X^{m-1}+b_mX^m,$ où $n\geq m$ et $\lambda\in\mathbb{K}$. Alors on définit P+Q, λP et PQ comme suit :

1
$$(P+Q)(X) = P(X) + Q(X) = \sum_{i=0}^{n} c_i X^i$$
, où $c_i = a_i + b_i$.

$$(\lambda P)(X) = \lambda P(X) = \sum_{i=0}^{n} c_i X^i, \quad \text{où} \quad c_i = \lambda a_i.$$

$$(PQ)(X) = \sum_{k=0}^{n+m} c_k X^k, \quad \text{où} \quad c_k = \sum_{i+j=k} a_i b_j.$$

Remarques:

- Le quotient de deux polynômes n'est pas, en général, un polynôme.
- Un polnôme est nul si, et seulement si, tous ses coefficients sont nuls.

Définition

Soit $P = a_r X^r + \ldots + a_{n-1} X^{n-1} + a_n X^n$ un polynôme dans $\mathbb{K}[X]$. On appelle valuation de P et on le note $\mathrm{val}(P)$, le plus petit des entiers naturels m tels que $a_m \neq 0$. Ici, si $a_r \neq 0$ alors $\mathrm{val}(P) = r$ et si $a_n \neq 0$ alors $\deg(P) = n$. On a toujours $r \leq n$. C'est à dire que $\mathrm{val}(P) \leq \deg(P)$.

Proposition

Soient P et Q deux polynômes non nuls de $\mathbb{K}[X]$. Alors

- $2 \deg(P+Q) \leq \max(\deg(P);\deg(Q))$
- $\operatorname{val}(P+Q) \geq \min(\operatorname{val}(P); \operatorname{val}(Q))$

Remarques:

- Si $\deg(P) \neq \deg(Q)$ on a $\deg(P+Q) = \max(\deg(P); \deg(Q))$
- Si $val(P) \neq val(Q)$ on a val(P + Q) = min(val(P); val(Q)).
- les inégalités de 2) et 3 peuvent être strictes : $(1 + X + X^2) + (-1 X^2) = X$.

Exercice

Déterminer le degré et la valuation des polynôme P+Q, P+R, PQ et PR dans le cas suivant : $P(X) = X^4 - X^3 + 2X^2 + X + 6$, $Q(X) = X^2 - X + 1$ et $R(X) = 2X^3 - 1$ Les polynômes sont-il unitaire?

2. Division euclidienne

Théorème

Soient A et B deux polynômes de $\mathbb{K}[X]$, avec B non nul. Il existe un unique polynôme Q et un unique polynôme R dans $\mathbb{K}[X]$ tels que : A = QB + R, $\deg(R) < \deg(B)$. Si R = 0, on dit que B divise A, où bien A est divisible par B, ou encore B est un diviseur de A.

Démonstration : Unicité :

Supposons que nous ayons $A=BQ_1+R_1=BQ_2+R_2$ avec $d^oR_1< d^oB$ et $d^oR_2< b^oB$. Alors $B(Q_1-Q_2)=R_2-R_1$. Si $Q_1\neq Q_2$, i.e. $Q_1-Q_2\neq 0$, on a $d^o\big(B(Q_1-Q_2)\big)=d^oB+d^o(G_1-Q_2)\geq d^oB$ et $d^o(R_2-R_1)\leq \max(d^oR_1,d^oR_2)< d^oB$ d'où contradiction.

Existance:

- Si $B \in \mathbb{K}^*$, on a : $A = (\frac{1}{B}A).B + 0$, donc $Q = \frac{1}{B}A$ et R = 0 et $d^oR < d^oB$
- 2 Si $d^oB \ge 1$, posons $B = b_0 + b_1X + b_2X^2 + \ldots + b_{m-1}X^{m-1} + b_mX^m$. Si A = 0, on a : A = 0.B + A et $d^oA \le 0 < d^oB$. Supposons que la propriété est vérifiée pour tout polynôme A de degré $\le n$ et montrons la pour $d^oA = n + 1$. Posons $P = a_0 + a_1X + a_2X^2 + \ldots + a_nX^n + a_{n+1}X^{n+1}$ avec $a_{n+1} \ne 0$.

- Si n+1 < m alors A = 0.B + A avec $d^o A < d^o B$
- Si $n+1 \ge m$, on a $A-\frac{a_{n+1}}{b_m}X^{n+1-m}.B=c_0+c_1X+c_2X^2+\ldots+c_nX^n=C$ avec $d^oC \le n$. Donc par hypothèse de récurrence il existe (Q_1,R_1) tel que $C=Q_1B+R_1$ et $d^oR_1 < d^oB$. Donc $A=(Q_1+\frac{a_{n+1}}{b_m}X^{n+1-m}).B+R_1$, posons alors $Q=Q_1+\frac{a_{n+1}}{b_m}X^{n+1-m}$ et $R=R_1$. CQFD

Exemple : Division de $A(X) = X^3 + 2X^2 + X + 1$ par $B(X) = X^2 + 1$.

$$\begin{array}{c|cccc}
X^3 + 2X^2 + X + 1 & X^2 + 1 \\
-X^3 - X & X + 2 \\
\hline
-X^3 - X & X + 2 \\
\hline
2X^2 + 1 & \\
-2X^2 - 2 & \\
\hline
-1 & \\
\end{array}$$

Le résultat s'écrit :
$$X^3 + 2X^2 + X + 1 = (X^2 + 1)(X + 2) - 1$$
, d'où $Q(X) = X + 2$ et $R(X) = -1$.

Exercice

Effectuer la division euclidienne de A par B dans les cas suivants : $A = X^4 - 2X^2 - X + 1$ et $B = X^2 + X$. $A = X^6 + 5X^4 - X^2 + 1$ et $B = X^2 + 2$.

3. Fonctions polynômiales

Définition

On appelle fonction polynômiale sur $\mathbb K$ toute fonction

$$f: \mathbb{K} \longrightarrow \mathbb{K}$$

 $x \longmapsto f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n$

Le polynôme $a_0 + a_1X + a_2X^2 + ... + a_{n-1}X^{n-1} + a_nX^n$ est appelé polynôme associé à la fonction f.

Remarque:

- Ne jamais confondre la variable x de la fonction polynômiale f et l'indéterminé X du polynôme associé.
- Pour $a \in \mathbb{K}$, on note P(a) la valeur prise par la fonction f au point a.

Proposition

Le reste de la division euclidienne d'un polynôme P par $X - \beta$ est le polynôme constant égal à $P(\beta)$.

Démonstration : d'après la division euclidienne de P par $X-\beta$, il existe un unique polynôme Q et un unique polynôme R dans $\mathbb{K}[X]$ tels que

$$P(X) = Q(X)(X - \beta) + R(X), \quad \deg(R) < \deg(X - \beta) = 1.$$

Comme $\deg(R)$ < 1 alors le polynôme R est une constante c dans \mathbb{K} et $P(\beta) = c.\diamondsuit$

4. Polynôme dérivé

Définition

Soit

$$P(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_{n-1} X^{n-1} + a_n X^n = \sum_{i=0}^n a_i X^i$$

un polynôme de $\mathbb{K}[X]$. On appelle polynôme dérivé de P le polynôme :

$$P'(X) = a_1 + 2a_2X + \ldots + (n-1)a_{n-1}X^{n-2} + na_nX^{n-1} = \sum_{i=0}^{n-1} (i+1)a_{i+1}X^i$$

On note P'', P''', $P^{(4)}$,..., $P^{(k)}$ la suite des polynômes dérivés successifs. On pose également $P^{(0)} = P$.

Les propriétés usuelles des dérivés s'appliquent également aux polynômes.

5. Racines d'un polynôme

Définition

Soit $P \in \mathbb{K}[X]$. On dit que $\alpha \in \mathbb{K}$ est une racine (ou un zéro) de P si $P(\alpha) = 0$.

Théorème

Soit $P \in \mathbb{K}[X]$. Un élément α de \mathbb{K} est racine de P si, et seulement si, P est divisible par $X - \alpha$.

Démonstration : On a : $P(X) = Q(X)(X - \alpha) + P(\alpha)$. Par conséquent P(X) est divisible par $X - \alpha$ si, et seulement si, $P(\alpha) = 0.$ \diamondsuit

Exercice

Soit P le polynôme sur \mathbb{R} défini par $P(X) = X^3 - X^2 - 3X + 3$.

- Déterminer une racine évidente de P.
- 2 En déduire une expression de *P* sous la forme d'un produit d'un polynôme de degré 1 par un polynôme de degré 2.
- 3 En déduire l'ensemble des racines de P.

Définition

Soit $P \in \mathbb{K}[X]$, soit $\alpha \in \mathbb{K}$. On dit que α est une racine d'ordre r, ou de multiplicité r, de P si $P(X) = (X - \alpha)^r Q(X)$ avec $Q(\alpha) \neq 0$.

- Lorsque r = 1, on dit que la racine est simple.
- Lorsque r = 2, on dit que la racine est double.
- Lorsque r = 3, on dit que la racine est triple.

Théorème

Soit $P \in \mathbb{K}[X]$. La racine $\alpha \in \mathbb{K}$ de P est de multiplicité r si et seulement si, pour tout k, $0 \le k \le r - 1$, $P^{(k)}(\alpha) = 0$ et $P^{(r)}(\alpha) \ne 0$.

Exemple : $P = X^3 - X^2 - X + 1$, $P' = 3X^2 - 2X - 1$, P'' = 6X - 2, P(1) = P'(1) = 0 et $P''(1) \neq 0$ donc 1 est une racine double de P

Théorème (Théorème de D'Alembert - admis)

Dans $\mathbb{C}[X]$, tout polynôme non constant admet au moins une racine.

Corollaire

Tout polynôme P, de degré $n \ge 1$, de $\mathbb{C}[X]$ admet exactement n racines complexes (comptés avec leur ordre de multiplicité).

Exemples:

$$x^3 - x^2 - x + 1 = (x - 1)^2 \cdot (x + 1)$$

$$X^4 - 1 = (x + i)(x - i)(x - 1)(x + 1)$$

$$X^4 + 1 = (X - e^{i\pi/4})(X - e^{3i\pi/4})(X - e^{5i\pi/4})(X - e^{7i\pi/4})$$

Exercice

1 Montrer que i est une racine double du polynôme

$$P(X) = X^6 + X^5 + 3X^4 + 2X^3 + 3X^2 + X + 1.$$

2 Déterminer les réels a et b tels que le polynôme

$$P(X) = X^5 + aX^4 + bX^3 - bX^2 - aX - 1$$

admette 1 comme racine de plus grande multiplicité possible.

6. Polynômes irréductibles

Définition

Soit $P \in \mathbb{K}[X]$ un polynôme non constant, on dit que P est irréductible (ou premier) si pour tout $Q \in \mathbb{K}[X]$ divisant P, alors, soit $Q \in \mathbb{K}^*$, soit il existe $\lambda \in \mathbb{K}^*$ tel que $Q = \lambda P$.

Théorème

Les polynômes de degré 1 sont les seuls polynômes irréductibles de $\mathbb{C}[X]$.

Démonstration : D'après le théorème de D'Alembert, tout polynôme P, de degré \geq 2, admet au moins une racine $\alpha \in \mathbb{C}$. P est donc divisible par $(X - \alpha)$, et il n'est pas irréductible. \diamondsuit

Théorème

Les seuls polynômes irréductibles de $\mathbb{R}[X]$ sont

- les polynômes de degré 1.
- les polynômes de degré 2, dont le discriminant $\triangle = b^2 4ac$ est strictement négatif.

Démonstration : Soit $P \in \mathbb{P}[X]$ un polynôme de degré 2.

- 11 Si $\triangle = b^2 4ac \ge 0$, alors P admet deux racines rélles (distinctes ou confondues) et s'écrit $P(X) = a(X \alpha)(X \beta)$. Il n'est pas irréductible.
- 2 Si P est une polynôme de degré > 2, d'après le théorème de D'Alembert, il adment au moins une racine $\alpha \in \mathbb{C}$

- Où bien $\alpha \in \mathbb{R}$, P est divisible par $(X \alpha)$, et il n'est pas irréductible.
- Où bien α ∉ ℝ alors ᾱ est aussi racine de P.
 P est divisible par (X α)(X ᾱ) = X² 2Re(α)X + |α|²
 qui est un polynôme à coefficient réels. Par conséquent, P
 n'est pas irréductible. ◊

Exemples:

- $X^2 1 = (X 1)(X + 1) \in \mathbb{R}[X]$ n'est pas irréductible.
- $X^2 + 1 = (X i)(X + i)$ n'est pas irréductible dans $\mathbb{C}[X]$, mais est irréductible dans $\mathbb{R}[X]$.
- $X^2 + X + 1 = (X j)(X \bar{j})$ n'est pas irréductible dans $\mathbb{C}[X]$ mais est irréductible dans $\mathbb{R}[X]$.

II) Décomposition d'un polynôme en polynômes irréductibles

Théorème

Dans $\mathbb{K}[X]$, tout polynôme P non constant se décompose en produit de polynômes irréductibles.

Proposition (Décomposition dans $\mathbb{C}[X]$)

La décomposition en produit de facteurs irréductibles d'un polynôme non constant de $\mathbb{C}[X]$ est de la forme :

$$P(X) = \beta (X - \alpha_1)^{r_1} \dots (X - \alpha_p)^{r_p}$$

avec $\alpha_i \in \mathbb{C}, \beta \in \mathbb{C}^*, r_i \in \mathbb{N}^* \text{ et } r_1 + \ldots + r_p = n = deg(P).$

Proposition (Décomposition dans $\mathbb{R}[X]$)

La décomposition en produit de facteurs irréductibles d'un polynôme de degré $n \ge 1$ de $\mathbb{R}[X]$ est de la forme :

$$P(X) = \gamma (X - \alpha_1)^{r_1} \dots (X - \alpha_p)^{r_p} (X^2 + \beta_1 X + \gamma_1)^{s_1} \dots (X^2 + \beta_k X + \gamma_k)^{s_k},$$

avec $r_1 + \dots + r_p + 2(s_1 + \dots + s_k) = n = deg(P), et$
 $\beta_i^2 - 4\gamma_i < 0 \text{ pour } i = 1, \dots, k.$

Exemples:

■ $P(X) = 2X^4(X-1)^3(X^2+1)^2(X^2+X+1)$ est déjà décomposé en facteurs irréductibles dans $\mathbb{R}[X]$ alors que sa décomposition dans $\mathbb{C}[X]$ est $P(X) = 2X^4(X-1)^3(X-i)^2(X+i)^2(X-j)(X-\bar{j})$ où $j = e^{\frac{2i\pi}{3}} = \frac{-1+i\sqrt{3}}{2}$.

■ Soit $P(X) = X^4 + 1$. Sur \mathbb{C} . On peut d'abord décomposer $P(X) = (X^2 + i)(X^2 - i)$. Les racines de P sont donc les racines carrées complexes de i et -i. Ainsi P se factorise dans $\mathbb{C}[X]$:

$$P(X) = \left(X - \frac{\sqrt{2}}{2}(1+i)\right) \left(X + \frac{\sqrt{2}}{2}(1+i)\right) \left(X - \frac{\sqrt{2}}{2}(1-i)\right) \left(X + \frac{\sqrt{2}}{2}(1-i)\right).$$

Sur \mathbb{R} . Pour un polynôme **à coefficient réels**, si α est une racine alors $\bar{\alpha}$ aussi. Dans la décomposition ci-dessus on regroupe les facteurs ayant des racines conjuguées, cela doit conduire à un polynôme réel :

$$P(X) = \left[\left(X - \frac{\sqrt{2}}{2} (1+i) \right) \left(X - \frac{\sqrt{2}}{2} (1-i) \right) \right]$$
$$\left[\left(X + \frac{\sqrt{2}}{2} (1+i) \right) \left(X + \frac{\sqrt{2}}{2} (1-i) \right) \right]$$
$$= \left[X^2 + \sqrt{2} X + 1 \right] \left[X^2 - \sqrt{2} X + 1 \right],$$

qui est la factorisation dans $\mathbb{R}[X]$.

III). PGCD

Proposition

Soient $A, B \in [X]$, avec $A \neq 0$ ou $B \neq 0$. Il existe un unique polynôme **unitaire** de plus grand degré qui divise à la fois A et B.

Cet unique polynôme est appelé le **pgcd** (plus grand commun diviseur) de A et B que l'on note pgcd(A, B). Remarques :

- pgcd(A, B) est un polynôme unitaire.
- Si A|B et $A \neq 0$, $pgcd(A,B) = \frac{1}{\lambda}A$, où λ est le coefficient dominant de A.
- Pour tout $\lambda \in \mathbb{K}^*$, $pgcd(\lambda A, B) = pgcd(A, B)$.
- Si A = BQ + R alors pgcd(A, B) = pgcd(B, R). C'est ce qui justifie **l'algorithme d'Euclide**.

Algorithme d'Euclide :

Soient A et B des polynômes, $B \neq 0$.

On calcule les divisions euclidiennes successives,

$$A = BQ_1 + R_1$$
 deg $R_1 <$ deg R
 $B = R_1Q_2 + R_2$ deg $R_2 <$ deg R_1
 $R_1 = R_2Q_3 + R_3$ deg $R_3 <$ deg R_2
 \vdots
 $R_{k-2} = R_{k-1}Q_k + R_k$ deg $R_k <$ deg R_{k-1}
 $R_{k-1} = R_kQ_{k+1}$

Le degré du reste diminue à chaque division. On arrête l'algorithme lorsque le reste est nul. Le pgcd est le dernier reste non nul R_k (rendu unitaire).

Exemples:

■ Calculons le pgcd de $A = X^4 - 1$ et $B = X^3 - 1$.

$$X^4 - 1 = (X^3 - 1) \times X + X - 1$$

 $X^3 - 1 = (X - 1) \times (X^2 + X + 1) + 0$

Donc $pgcd(X^4 - 1, X^3 - 1) = X - 1.$

■ Calculons le pgcd de $A = X^5 + X^4 + 2X^3 + X^2 + X + 2$ et $B = X^4 + 2X^3 + X^2 - 4$. $X^5 + X^4 + 2X^3 + X^2 + X + 2 = (X^4 + 2X^3 + X^2 - 4) \times (X - 1) + 3X^3 + 2X^2 + 5X - 2$ $X^4 + 2X^3 + X^2 - 4 = (3X^3 + 2X^2 + 5X - 2) \times \frac{1}{9}(3X + 4) - \frac{14}{9}(X^2 + X + 2)$ $3X^3 + 2X^2 + 5X - 2 = (X^2 + X + 2) \times (3X - 1) + 0$ Ainsi $pgcd(A, B) = X^2 + X + 2$.

Définition

Soient $A, B \in [X]$. On dit que A et B sont premiers entre eux si pgcd(A, B) = 1.

textbfExemple : $pgcd(X^4 + 1, X^3 - 1) = 1$. En effet :

$$X^{4} + 1 = X(X^{3} - 1) + X + 1$$

$$X^{3} - 1 = (X + 1)(X^{2} - X + 1) - 2$$

$$X + 1 = -2(-\frac{1}{2}X - \frac{1}{2}) + 0$$

Ainsi, $pgcd(X^4+1,X^3-1)=\frac{1}{-2}(-2)=1$ par conséquent, ils sont premiers entre eux.

Division suivant les puissances croissantes

S

oit deux polynômes A et B avec $B(0) \neq 0$ et un entier naturel n. Alors il existe un unique couple (Q, R) de polynômes tel que

$$A = BQ + X^{n+1}R$$
 et $d^{o}Q \le n$.

Q et *R* sont respectivement le quotient et le reste de la division suivant les puissances croissantes de par *A* par *B* à l'ordre *n*.

Exemple:
$$A = 4X + 6X^2 + X^3$$
, $B = 2 + 3X + 2X^2$, $n = 3$.

$$\begin{array}{c|c}
4X + 6X^2 + X^3 & 2 + 3X + 2X^2 \\
\hline
-4X - 6X^2 - 4X^3 & 2X - \frac{3}{2}X^3 \\
\hline
-3X^3 \\
3X^3 + \frac{9}{2}X^4 + 3X^5 \\
\hline
X^4(\frac{9}{2} + 3X) \\
\end{array}$$
Ainsi $A = B(2X - \frac{3}{2}X^3) + X^4(\frac{9}{2} + 3X)$

IV). Décompossition en éléments simples

Définition

On appelle fraction rationnelle à une indéterminée tout couple (P,Q) de $\mathbb{K}[X] \times \mathbb{K}[X]^*$. On note $\frac{P}{Q}$ cette fraction rationnelle.

L'ensemble des fractions rationnelles est noté $\mathbb{K}(X)$.

On appelle les pôles de la fraction rationnelle $R = \frac{P}{Q}$, les racines du polynôme Q.

Si a est une racine d'ordre r de Q, on dit que a est un pôle d'ordre r de F.

Exemple :
$$F = \frac{X^2}{(X^2 - 1)^2}$$

1 et −1 sont deux pôles d'ordre 2 de F

Partie entière d'une fraction rationnelle

Définition

Soit $R = \frac{P}{Q}$ une fraction écrite sous forme irréductible (pgcd(P,Q)=1). Il existe un unique polynôme E (appelé partie entière de la fraction R) et un unique polynôme P_1 tels que :

$$\frac{P}{Q} = E + \frac{P_1}{Q}$$
 et $\deg(P_1) < \deg(Q)$.

Cette écriture est équivalente à $P = QE + P_1$ ce qui est équivalent à dire que P_1 est le reste de la division euclidienne de P par Q et E est le quotient de cette division.

Exemple: La division euclidienne de

$$P(X) = 2X^4 + 3X^3 - X + 1$$
 par $Q(X) = X^2 - 3X + 1$ s'écrit :

$$2X^4 + 3X^3 - X + 1 = (X^2 - 3X + 1)(2X^2 + 9X + 25) + (65X - 24)$$

on a donc

$$\frac{2X^4+3X^3-X+1}{X^2-3X+1}=2X^2+9X+25+\frac{65X-24}{X^2-3X+1}.$$

D'après la définition présidente on voit qu'on peut toujours se ramener à une fraction $F=\frac{P}{Q}$ telle que $\deg(P)<\deg(Q)$ et pgcd(P,Q)=1

1. Décomposition en éléments simples dans $\mathbb{C}(X)$

Théorème

Soit $F = \frac{P}{Q}$ une fraction rationnelle de $\mathbb{C}(X)$ telle que $\deg(P) < \deg(Q)$ et pgcd(P,Q) = 1 et a_i un pôle d'ordre r_i de F $(1 \le i \le n)$, c'est à dire $F = \frac{P}{(X - a_1)^{r_1}(X - a_2)^{r_2} \dots (X - a_n)^{r_n}}$. Alors il existe une suite de complexes (λ_{ij}) $(1 \le i \le n)$ et $1 \le j \le r_i$ de complexes tels que $F = \sum_{j=1}^{r_1} \frac{\lambda_{1j}}{(X - a_1)^j} + \sum_{j=1}^{r_2} \frac{\lambda_{2j}}{(X - a_2)^j} + \dots + \sum_{j=1}^{r_n} \frac{\lambda_{nj}}{(X - a_n)^j}$

$$\sum_{j=1}^{r_i} \frac{\lambda_{ij}}{(X-a_i)^j} = \frac{\lambda_{i1}}{(X-a_i)} + \frac{\lambda_{i2}}{(X-a_i)^2} + \dots + \frac{\lambda_{ir_i}}{(X-a_i)^{r_i}} \text{ est}$$
 appelée partie polaire associée au pôle a_i , et les éléments
$$\frac{\lambda_{ij}}{(X-a_i)^j} \text{ sont appelés éléments simples de la fraction } F.$$

Exemple:
$$F = \frac{2X}{(X-1)^2(X+2)^3} = \frac{a}{(X-1)^2} + \frac{b}{(X-1)^2} + \frac{c}{(X+2)^2} + \frac{d}{(X+2)^2} + \frac{e}{(X+2)^3}$$

partie polaire de 1 partie polaire de 2

Techniques de calcul des coefficients d'une décomposition :

 λ_{ir_i} (le coefficient de l'élément simple de plus grand degré dans une partie polaire) se calcule comme suit :

$$\lambda_{ir_i} = \lim_{X \longrightarrow a_i} (X - a_i)^{r_i} F(X)$$

$$F = \frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)} = \frac{a}{X - 1} + \frac{b}{(X - 1)^2} + \frac{c}{X + 2}$$

$$b = \lim_{X \to 1} (X - 1)^2 F(X) = 2$$

$$c = \lim_{X \longrightarrow -2} (X+2)F(X) = 3$$
 (pôle simple)

D'où
$$\frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)} = \frac{a}{X - 1} + \frac{2}{(X - 1)^2} + \frac{3}{X + 2}$$

On peut substituer à X des valeurs particulières et résoudre le système obtenu. Par exemple pour calculer a dans la décomposition :

$$\frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)} = \frac{a}{X - 1} + \frac{2}{(X - 1)^2} + \frac{3}{X + 2}, \text{ on remplace } X \text{ par 0 puis on déduit } a = -1.$$

Parfois on calcule des limites en ∞ . Par exemple $\lim_{x \to \infty} (X - 1)F(X) = a + c = 2$. ainsi a = -1

Détermination pratique : Supposons que

$$F = \frac{P}{(X-a)^r Q_1} = \frac{\lambda_1}{(X-a)} + \frac{\lambda_2}{(X-a)^2} + \dots + \frac{\lambda_r}{(X-a)^r} + F_0.$$

Pour déterminer les coefficients de la décomposition associés au pôle a d'ordre r, on effectue la division euclidienne suivant les puissances croissantes de P(X + a) par $Q_1(X + a)$ à l'ordre r - 1 (càd jusqu'à obtenir un reste qui est un multiple de X^r).

Alors le quotient de la division euclidienne est :

$$\begin{aligned} &\lambda_{r} + \lambda_{r-1}X + \dots + \lambda_{2}X^{r-1} + \lambda_{1}X^{r} \\ &\textbf{Exemple}: F = \frac{X^{2} + 1}{(X - 1)^{4}(X + 1)} = \\ &\frac{\lambda_{1}}{(X - 1)} + \frac{\lambda_{2}}{(X - 1)^{2}} + \frac{\lambda_{3}}{(X - 1)^{3}} + \frac{\lambda_{4}}{(X - 1)^{4}} + \frac{b}{X + 1} \\ &P(X) = X^{2} + 1, \ Q_{1}(X) = X + 1, \ P(X + 1) = 2 + 2X + X^{2}, \\ &Q_{1}(X + 1) = 2 + X. \ \text{le quotient de la DESPC de } P(X + 1) \ \text{par} \\ &Q_{1}(X + 1) \ \grave{a} \ l'ordre \ 3 \ \text{est} \ 1 + \frac{1}{2}X + \frac{1}{4}X^{2} - \frac{1}{8}X^{3}. \ \text{Donc} \\ &F = \frac{X^{2} + 1}{(X - 1)^{4}(X + 1)} = \\ &\frac{1}{8} \frac{1}{(X - 1)^{4}(X + 1)} + \frac{1}{2} \frac{1}{(X - 1)^{3}} + \frac{b}{(X - 1)^{4}} + \frac{b}{X + 1} \end{aligned}$$

Les Décomposition en éléments simples dans $\mathbb{R}(X)$

Décomposition en éléments simples dans $\mathbb{R}(X)$.

Théorème

Soit $\frac{P}{Q}$ une fraction rationnelle sur \mathbb{R} . Le dénominateur Q peut s'écrire sous la forme du produit $\lambda(X-a_1)^{p_1}(X-a_2)^{p_2}\dots(X-a_k)^{p_k}(X^2+b_1X+c_1)^{q_1}(X^2+b_2X+c_2)^{q_2}\dots(X^2+b_\ell X+c_\ell)^{q_\ell},$ où les p_i et q_i sont des entiers et les a_i , b_i , c_i et λ des réels tels que $b_i^2-4c_i<0$.

Il existe alors un polynôme E, des éléments d_{ij} de \mathbb{R} et des polynômes A_{ij} de degré inférieur ou égal à 1 tels que :

igspace Décomposition en éléments simples dans $\mathbb{R}(X)$

$$\begin{split} &\frac{P}{Q} = \\ &E + \frac{d_{11}}{(X - a_1)} + \frac{d_{12}}{(X - a_1)^2} + \ldots + \frac{d_{1p_1}}{(X - a_1)^{p_1}} + \ldots + \frac{d_{kp_k}}{(X - a_k)^{p_k}} + \\ &\ldots + \frac{A_{11}}{(X^2 + b_1 X + c_1)} + \frac{A_{12}}{(X^2 + b_1 X + c_1)^2} + \ldots + \\ &\frac{A_{1q_1}}{(X^2 + b_1 X + c_1)^{q_1}} + \ldots + \frac{A_{\ell q_\ell}}{(X^2 + b_\ell X + c_\ell)^{q_\ell}}. \end{split}$$

- le polynôme E s'appelle la **partie entière** de $\frac{P}{Q}$,
- les fractions de la forme $\frac{d_{ij}}{(X-a_i)^j}$ s'appellent des éléments simples de première espèce,
- les fractions de la forme $\frac{A_{ij}}{(X^2 + b_i X + c_i)^j}$ des **éléments** simples de seconde espèce.

Exemple : Soit $F(X) = \frac{X^3 + 1}{X(X - 1)(X^2 + 1)^3}$ une fraction rationnelle.

Une décomposition théorique de la fraction rationnelle F(X) est donnée par

$$F(X) = \frac{a}{X} + \frac{b}{X-1} + \frac{cX+d}{X^2+1} + \frac{eX+f}{(X^2+1)^2}.$$

Par un calcul élémentaire, nous trouvons a = -1, b = 1/2, c = 1, d = -1, e = 1 et f = 0. Dans ce cas, on a

$$F(X) = -\frac{1}{X} + \frac{1}{2(X-1)} + \frac{X-1}{X^2+1} + \frac{X}{(X^2+1)^2}.$$