Comprensión de los Datos

Emiliano Hervert de la Cruz | A01412606 | Carrera: IDM

```
In [1]: #importa Librerías
import pandas as pd
```

Descripción de Variables

A continuación se presentan todas las variables que tiene el dataset, así como el significado de cada una:

- Pregnancies Número de veces embarazada
- Glucose Concentración de glucosa plasmática a las 2 horas en una prueba de tolerancia a la glucosa oral
- BloodPressure Presión arterial diastólica (mm Hg)
- SkinThickness Espesor del pliegue cutáneo del tríceps (mm)
- Insulin Insulina sérica de 2 horas (mu U/ml)
- **BMI** Índice de masa corporal (peso en kg/(altura en m)^2)
- **DiabetesPedigreeFunction** Función de pedigrí de diabetes
- Age Edad (años)
- Outcome Resultado (tiene diabetes o no)

De igual manera, es importante mencionar que todos los datos provienen de pacientes mujeres de al menos 21 años de edad y de ascendencia indígena Pima.

```
In [2]: #Leer archivo csv con los datos
    df = pd.read_csv("diabetes.csv")

In [3]: #Verificar cuántas filas y columnas se tienen, respectivamente
    df.shape

Out[3]: (768, 9)
    El dataset tienen 768 filas (incluyendo encabezados) y 9 columnas.

In [4]: #Primeros 5 renglones del dataset
    df.head()
```

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
	0	6	148	72	35	0	33.6	(
	1	1	85	66	29	0	26.6	(
	2	8	183	64	0	0	23.3	(
	3	1	89	66	23	94	28.1	(
	4	0	137	40	35	168	43.1	2
	4							•
In [5]:	#Últimos 5 renglones del dataset							

df.tail()

Out[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF ι
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	4.6						_	

In [6]: #Revisa la información mas completa del conjunto de datos usando la función info() #Muestra el total de datos, las columnas y su tipo correspondiente, dice si contien df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

	` '		
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

Como se puede ver, ninguno de los atributos tiene valores nulos, ya que 768 de las 768 filas son non-null. Asimismo, todas las columnas usan números, específicamente datos de tipo entero a excepción del BMI y DiabetesPedigreeFunction que usan flotantes.

```
#Revisar cuántos valores únicos tiene cada atributo del archivo
        df.nunique()
Out[7]: Pregnancies
                                      17
                                     136
        Glucose
         BloodPressure
                                      47
         SkinThickness
                                      51
         Insulin
                                     186
        BMI
                                     248
        DiabetesPedigreeFunction
                                     517
                                      52
        Outcome
         dtype: int64
```

Variables Seleccionadas:

- 1. BMI
- 2. DiabetesPedigreeFunction
- 3. Outcome

```
In [8]: #Nuevo dataframe solamente con mis variables seleccionadas
        df_misvars = df[['BMI','DiabetesPedigreeFunction','Outcome']]
In [9]: df_misvars.head()
Out[9]:
            BMI DiabetesPedigreeFunction Outcome
        0 33.6
                                    0.627
                                                 1
         1 26.6
                                    0.351
                                                 0
        2 23.3
                                    0.672
                                                 1
                                                 0
        3 28.1
                                    0.167
                                                 1
        4 43.1
                                    2.288
```

Exploración de Datos

In [10]: #Estadísticas básicas de los atributos como cantidad de datos totales, su media, de
df_misvars.describe()

Out[

[10]:		ВМІ	DiabetesPedigreeFunction	Outcome
	count	768.000000	768.000000	768.000000
	mean	31.992578	0.471876	0.348958
	std	7.884160	0.331329	0.476951
	min	0.000000	0.078000	0.000000
	25%	27.300000	0.243750	0.000000
	50%	32.000000	0.372500	0.000000
	75%	36.600000	0.626250	1.000000
	max	67.100000	2.420000	1.000000

```
In [11]: #Revisar valores nulos con funcion isnull().sum()
    df_misvars.isnull().sum()
```

```
Out[11]: BMI 0
DiabetesPedigreeFunction 0
Outcome 0
dtype: int64
```

De nuevo, confirmamos que la suma total de los valores nulos para cada uno de estos atributos es 0.

```
Out[12]: array([1, 0])
```

Los valores únicos para BMI y para DiabetesPedigreeFunction son muchos, ya que dependen de cada persona y no es común que coincidan. Sin embargo, aquí podemos ver que los valores únicos de Outcome son solo 0 y 1, es decir, si la paciente tiene o no Diabetes.

Variables Cuantitativas

Medidas de tendencia central

```
In [13]: #DiabetesPedigreeFunction
    #Se obtiene La media, mediana y moda
    mean_pedigree = df_misvars['DiabetesPedigreeFunction'].mean()
    median_pedigree = df_misvars['DiabetesPedigreeFunction'].median()
    mode_pedigree = df_misvars['DiabetesPedigreeFunction'].mode()
    print("Mean_pedigree:",mean_pedigree)
    print("Median_pedigree:",median_pedigree)
    print("Mode_pedigree:",mode_pedigree)
```

```
Mean_pedigree: 0.47187630208333325
Median_pedigree: 0.3725
```

Mode_pedigree: 0 1 0.258

Name: DiabetesPedigreeFunction, dtype: float64

0.254

```
In [14]: #BMI
    #Se obtiene La media, mediana y moda
    mean_bmi = df_misvars['BMI'].mean()
    median_bmi = df_misvars['BMI'].median()
    mode_bmi = df_misvars['BMI'].mode()
    print("Mean_bmi:",mean_bmi)
    print("Median_bmi:",median_bmi)
    print("Mode_bmi:",mode_bmi)
```

Mean_bmi: 31.992578124999998

Median_bmi: 32.0
Mode_bmi: 0 32.0
Name: BMI, dtype: float64

Conclusiones:

Función de pedigrí de diabetes:

- 1. El promedio fue 0.47188
- 2. El valor al centro es 0.3725
- 3. Los valores más repetidos fueron 0.254 y 0.258

Índice de masa corporal:

- 1. El BMI promedio fue 31.99258 (el promedio está dentro de la categoría de obesidad leve)
- 2. El BMI al centro es 32 (al menos la mitad de las personas está en la categoría de obesidad leve o más arriba)
- 3. El BMI más repetido fue 32

Variables Categóricas

De todos los datos, se obtiene que 500 personas no tienen diabetes, mientras que 268 sí tienen.

In [48]: # Crear columna con variable Obesidad que clasifique como True a las personas que t # Debido a una advertencia que dice "A value is trying to be set on a copy of a sli

•		ВМІ	DiabetesPedigreeFunction	Outcome	Obesidad
	0	33.6	0.627	1	True
	1	26.6	0.351	0	False
	2	23.3	0.672	1	False
	3	28.1	0.167	0	False
	4	43.1	2.288	1	True
	•••				
	763	32.9	0.171	0	True
	764	36.8	0.340	0	True
	765	26.2	0.245	0	False
	766	30.1	0.349	1	True
	767	30.4	0.315	0	True

768 rows × 4 columns

Se agregó una nueva columna para poder categorizar fácilmente a las personas que tienen obesidad y a las que no.

Consulta

```
In [50]:
         # Acceder a la primera fila
         df_misvars.iloc[0]
Out[50]: BMI
                                       33.6
          DiabetesPedigreeFunction
                                      0.627
          Outcome
                                          1
          Obesidad
                                       True
          Name: 0, dtype: object
In [51]: # Acceder a las dos primeras filas
         df_misvars.iloc[:2]
Out[51]:
             BMI DiabetesPedigreeFunction Outcome Obesidad
          0 33.6
                                    0.627
                                                         True
          1 26.6
                                    0.351
                                                  0
                                                         False
```

In [52]: #Seleccionar columnas, indicando entre corchetes [nombreColumna, nombreColumna]
 df_misvars[['BMI','DiabetesPedigreeFunction']]

Out[52]:		ВМІ	DiabetesPedigreeFunction
	0	33.6	0.627
	1	26.6	0.351
	2	23.3	0.672
	3	28.1	0.167
	4	43.1	2.288
	•••		
	763	32.9	0.171
	764	36.8	0.340
	765	26.2	0.245
	766	30.1	0.349
	767	30.4	0.315

768 rows × 2 columns

```
In [53]: #Selección de filas [indicar dataframe[columna] operador valor]
personas_sin_infrapeso = df_misvars[df_misvars['BMI'] >= 18.5]
```

In [54]: personas_sin_infrapeso

Out[54]:		ВМІ	DiabetesPedigreeFunction	Outcome	Obesidad
	0	33.6	0.627	1	True
	1	26.6	0.351	0	False
	2	23.3	0.672	1	False
	3	28.1	0.167	0	False
	4	43.1	2.288	1	True
	•••				•••
	763	32.9	0.171	0	True
	764	36.8	0.340	0	True
	765	26.2	0.245	0	False
	766	30.1	0.349	1	True
	767	30.4	0.315	0	True

753 rows × 4 columns

Aquí se hace una selección de solamente aquellas filas que NO contienen a pacientes con infrapeso (BMI < 18.5)

In [55]: #ordenar usando funcion sort_values(by=atributo, ascending=True/false)
 personas_sin_infrapeso.sort_values(by='DiabetesPedigreeFunction', ascending=True)

Out[55]:		вмі	DiabetesPedigreeFunction	Outcome	Obesidad
	268	25.1	0.078	0	False
	180	23.2	0.084	0	False
	149	27.3	0.085	0	False
	567	32.0	0.085	0	True
	135	33.8	0.088	0	True
	•••			•••	
	45	42.0	1.893	1	True
	370	38.4	2.137	1	True
	4	43.1	2.288	1	True
	228	36.7	2.329	0	True
	445	59.4	2.420	1	True

753 rows \times 4 columns

La selección de personas sin infrapeso es ordenada en base al valor de la función de pedigrí de diabetes de cada paciente, de manera ascendente.

In [56]: #Agrupar por un atributo y calcular función de agregación utilizando groupby(atribu personas_sin_infrapeso.groupby('Obesidad')['DiabetesPedigreeFunction'].mean()

Out[56]: Obesidad

False 0.429267 True 0.498642

Name: DiabetesPedigreeFunction, dtype: float64

De esta selección de personas, se agrupan aquellos datos de pacientes con Obesidad y de aquellos sin Obesidad para obtener el promedio de la función de pedigrí de cada grupo.

Posteriormente, se consigue un subconjunto de las personas con su valor de la función de pedigrí de diabetes por arriba del promedio:

personas_con_pedigree_arribadelpromedio = df_misvars[df_misvars['DiabetesPedigreeFu

personas_con_pedigree_arribadelpromedio In [58]:

Out[58]: BM I	DiabetesPedigreeFunction	Outco

	ВМІ	DiabetesPedigreeFunction	Outcome	Obesidad
0	33.6	0.627	1	True
2	23.3	0.672	1	False
4	43.1	2.288	1	True
11	38.0	0.537	1	True
12	27.1	1.441	0	False
•••				
745	30.0	0.488	0	True
747	46.3	1.096	0	True
750	31.2	1.182	1	True
755	36.5	1.057	1	True
760	28.4	0.766	0	False

295 rows × 4 columns