Syntactic Objects

if true then false else true

sort

if true then false else true: Exp

sort

if true then false else true: Exp

true: Exp

false: Exp

```
if — then — else — : (Exp \times Exp \times Exp) \rightarrow Exp
```

true: Exp

false: Exp

if true then false else true: Exp

Abstract Syntax

```
if(-, -, -): (Exp \times Exp \times Exp) \rightarrow Exp
true: Exp
false: Exp
if(true, false, true): Exp
```

Abstract Syntax Trees

```
plus: Exp \times Exp \rightarrow Exp
```

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

plus(num[4], num[42]): Exp

Abstract Syntax Trees: Variables

```
times: Exp \times Exp \rightarrow Exp
```

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

variable $\longrightarrow x : Exp$

num[4]: Exp

times(x, num[4]) : Exp

Abstract Syntax Trees: Variable Substitution

```
plus : Exp \times Exp \rightarrow Exp
```

times: Exp × Exp → Exp

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

times(plus(num[4], num[42]), num[4]): Exp

Abstract Syntax Trees: Variable Substitution

```
plus : Exp \times Exp \rightarrow Exp
```

times: Exp × Exp → Exp

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

times(plus(num[4], num[42]), num[4]): Exp

Abstract Syntax Trees Defined

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators o of sort s with arity $\operatorname{ar}(o)=(s_1,\ldots,s_n)$, and $\{\chi_s\}_{s\in S}$ be a sort-indexed family of variables s of sort s. The family $A[s]=A[s]_{s\in S}$ of abstract syntax trees (ASTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in A[\chi]_s$
- if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$ and $a_1 \in A[\chi]_{s_1}, ..., a_n \in A[\chi]_{s_n}$, then $o(a_1, ..., a_n) \in A[\chi]_s$

Abstract Syntax Trees Defined

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators o of sort s with arity $ar(o)=(s_1,\ldots,s_n)$, and $\{\chi_s\}_{s\in S}$ be a sort-indexed family of variables s of sort s. The family $A[\chi]=A[\chi_s]_{s\in S}$ of abstract syntax trees (ASTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in A[\chi]_s$
- if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$ and $a_1 \in A[\chi]_{s_1}, ..., a_n \in A[\chi]_{s_n}$, then $o(a_1, ..., a_n) \in A[\chi]_s$

Exercise: Come up with three example ASTs.

Abstract Syntax Trees: Structural Induction

To show that a property P for every AST it suffices to show P(a) holds for every $a \in A[\chi]$, which holds when:

- 1. (Base Case) if $x \in \chi_s$, then $P_s(x)$, and
- 2. (Step Case) if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$, then if $P_{s_1}(a_1), ..., P_{s_n}(a_n)$ all hold, then $P_s(o(a_1, ..., a_n))$ holds.

Abstract Syntax Trees: Structural Induction

Lemma: If $\mathcal{X} \subseteq \mathcal{Y}$, then $A[\mathcal{X}] \subseteq A[\mathcal{Y}]$.

Proof. By structural induction.

- 1. (Base Case) If $x \in \mathcal{X}_s$ which implies that $x \in A[\mathcal{X}]_s$, then by assumption $x \in \mathcal{Y}$, and hence, by definition $x \in A[\mathcal{Y}]_s$.
- 2. (Step Case) Suppose $o \in \mathcal{O}_s$, $\operatorname{ar}(o) = (s_1, \ldots, s_n)$, $\mathcal{X} \subseteq \mathcal{Y}$. Then by induction: $a_1 \in A[\mathcal{X}]_{s_1} \iff a_1 \in A[\mathcal{Y}], \ldots, a_n \in A[\mathcal{X}] \iff a_n \in A[\mathcal{Y}]_{s_n}$. Then by definition $o(a_1, \ldots, a_n) \in A[\mathcal{X}]_s \iff o(a_1, \ldots, a_n) \in A[\mathcal{Y}]_s$.

Abstract Syntax Trees: Substitution

Variables are given their meaning through substitution.

```
[num[42]/x](plus(x, mult(num[3], x))
```

- = plus([num[42]/x]x, [num[42]/x]mult(num[3], x)
- = plus([num[42]/x]x, mult([num[42]/x]num[3], [num[42]/x]x)
- = plus(num[42], mult(num[3], num[42])

Abstract Syntax Trees: Substitution

Substitution $[b_1/x]b_2 \in A[\mathcal{X}]_{s_2}$ on any AST $A[\mathcal{X}]$ where x is a variable of sort $s_1, b_1 \in A[\mathcal{X}]_{s_1}, b_2 \in A[\mathcal{X}, x]_{s_2}$ is defined as follows:

- 1. $[b_1/x]x = b_1$
- 2. $[b_1/x]y = y$, when $x \neq y$
- 3. $[b_1/x]o(a_1,...,a_n) = o([b_1/x]a_1,...,[b_1/x]a_n)$

Abstract Syntax Trees: Extension

Let \mathcal{X} be a sort-indexed family of variables. Then: (\mathcal{X},x) where x is a variable of sort s such that $x \notin \mathcal{X}_s$, to stand for the sort-indexed family \mathcal{Y} such that $\mathcal{Y}_s = \mathcal{X}_s \cup \{x\}$ and $\mathcal{Y}_{s'} = \mathcal{X}_{s'}$ for all $s' \neq s$.

This is also known a adjoining.