The Aggregation Dilemma: How Best to Restructure Sovereign Bonds

Carlo Galli

Stéphane Guibaud

Rethinking sovereign debt sustainability and crises EUI, December 10th, 2024

Introduction

- Collective Action Clauses (CACs) key pillar of sovereign debt architecture
- In a bond restructuring, the sovereign makes an offer to bondholders
 - CACs allow qualified majority of consenting creditors to bind dissenting minority
 - ⇒ alleviate 'holdout' problem in sovereign debt workouts
- Adoption
 - o in NY/UK-law EM sovereign bonds since 2003
 - o in euro area domestic law bonds since 2013
- Since 2015, new issues of EM sovereign bonds incorporate 'enhanced' version of CACs

Voting Rules under Enhanced CACs

When restructuring multiple bond series, sovereign can choose among two voting rules:

- Two-limb aggregation: restructuring binds all creditors if
 - approved by $\geq 2/3$ of face value <u>across</u> all series; and
 - approved by $\geq 1/2$ of face value <u>within</u> each series
- Single-limb aggregation: restructuring binds all creditors if
 - approved by $\geq 3/4$ of face value <u>across</u> all series; and
 - offer satisfies 'uniform applicability condition'
 - → no threshold within series

Motivation

- Single-limb aggregation introduced in 2015, viewed as key innovation
 - two-limb CACs adopted since Uruguay 2003
 - single-limb method used effectively (retroactively) in Greek 2012 PSI
 - o no within-series thresholds → more robust defence against holdouts
- Enhanced CACs first tested in August 2020 by Argentina and Ecuador
 - \circ both opted for two-limb aggregation, making \neq offers to \neq bond series

- Meanwhile in euro area: ongoing project to replace two-limb with single-limb
- Goal: "Bring theory as close as possible to policymarkers' questions"

3

This Paper

- Part 1: Formulate problem & solve for government's optimal restructuring method
 - key ingredients: multiple bonds + creditor heterogeneity within & across bonds

- Part 2: Show how CACs design & expected use affect
 - a) potential entry of large player with blocking capacity (vulture)
 - b) equilibrium model of endogenous investor sorting into bonds

4

Related Literature

- Eichengreen and Portes (1995)

 "Loan contracts and bond covenants should specify that a majority of creditors be entitled to alter the terms of the debt agreement [...]"
- Theoretical: single bond restructurings
 - Haldane et al. (2005); Engelen and Lambsdorff (2009); Pitchford and Wright (2012, 2017);
 Bi, Chamon and Zettelmeyer (2016)
- Empirical: bond-level restructuring outcomes
 - Fang, Schumacher and Trebesch (2021); Asonuma, Niepelt and Ranciere (2023)
- Empirical: effects of CACs on bond prices
 - Becker et al. (2003); Eichengreen and Mody (2004); Carletti et al. (2016, 2021); Picarelli et al. (2019); Chung and Papaioannou (2020)

Outline

- Part 1: Optimal restructuring strategy, given creditor heterogeneity within & across bonds
- Part 2.a: CACs design and vulture funds
- Part 2.b: CACs design and endogenous investor sorting
- Conclusion

A Simple Two-Bond Model

- Two bonds to be restructured: bonds H and L, relative size λ and 1λ
- Restructuring offer by sovereign = recovery rates (w_H, w_L) per unit of face value
- Each bond is held by continuum of atomistic investors
 - o holders of bond i have reservation values distributed according to cdf F_i
 - bondholder accepts if offer > individual reservation value
 - o given restructuring offer w_i , consent share within bond i is $F_i(w_i)$
- Heterogeneity
 - o within bond: investors differ wrt discount rates, litigation skills, etc.
 - o across bonds: different bond payment terms and bondholder bases
 - o govt learns F_i's during preliminary talks

Heterogeneity Across Bonds

Assume holders of bond H have higher reservation values:

7

Government Problem

• The government wants to minimize the restructuring payout

$$\min_{w_H, w_I} \frac{\lambda}{\lambda} w_H + (1 - \lambda) w_L$$

under constraints that depend on the voting rule

Two-limb

$$\lambda F_H(w_H) + (1 - \lambda)F_L(w_L) \ge = \frac{\tau_2^{\mathrm{a}}}{F_i(w_i)} \ge \frac{\tau_2^{\mathrm{a}}}{F_i(w_i)}$$
 (aggregate) (series-by-series)

Single-limb

$$\lambda F_H(u) + (1 - \lambda)F_L(u) \ge = \tau_1$$
 (aggregate)
 $w_H = w_L = u$ (uniform applicability)

• Assume $au_2^{\rm s} < au_2^{\rm a} \le au_1 \Rightarrow {\rm aggregate\ constraint\ is\ always\ binding}$

8

Single-Limb Aggregation

• Optimal uniform offer u* is such that

$$\lambda F_{H}(\mathbf{u}^{*}) + (1 - \lambda)F_{L}(\mathbf{u}^{*}) = \tau_{1}$$

Remark

$$F_H(u^*) < \tau_1 < F_L(u^*)$$

• Low λ : $F_H(u^*) < \tau_2^{\mathrm{s}}$

Single-Limb Aggregation

Optimal uniform offer u* is such that

$$\lambda F_H(\mathbf{u}^*) + (1-\lambda)F_L(\mathbf{u}^*) = au_1$$

Remark

$$F_H(u^*) < \tau_1 < F_L(u^*)$$

- Low λ : $F_H(u^*) < \tau_2^{\mathrm{s}}$
- High λ : $F_H(u^*) > \tau_2^{\mathrm{s}}$

Two-Limb Aggregation

Consider auxiliary problem <u>without</u> series-by-series constraints

$$\min_{w_H,w_L} \lambda w_H + (1-\lambda)w_L \qquad ext{s.t.} \qquad \lambda F_H(w_H) + (1-\lambda)F_L(w_L) = au_2^{ ext{a}}$$

• Auxiliary solution $(\widehat{w}_H, \widehat{w}_L)$ pinned down (assuming convex problem) by

$$f_H(\widehat{w}_H) = f_L(\widehat{w}_L)$$
 (FOC) $\lambda F_H(\widehat{w}_H) + (1 - \lambda)F_L(\widehat{w}_L) = \tau_2^{\mathrm{a}}$ (aggregate constraint)

- Check series-by-series constraints: $F_i(\widehat{w}_i) \geq \tau_2^{\mathrm{s}}$
 - if satisfied, optimal offer = auxiliary solution
 - if not satisfied, optimal offer s.t. one constraint binds, e.g. $w_H = F_H^{-1}(\tau_2^{\rm s}) > \widehat{w}_H$
- Optimal method (single- or two-limb)
 ⇔ closest to auxiliary problem solution

Illustration

two-limb, auxiliary problem solution

Assume $F_i(w) = 1 - e^{w/\phi_i}$, with $\phi_H = 0.7, \phi_L = 0.2$. Thresholds $\tau_1 = \tau_2^a = 2/3, \tau_2^s = 1/2$.

Illustration

two-limb, full solution

Assume $F_i(w) = 1 - e^{w/\phi_i}$, with $\phi_H = 0.7, \phi_L = 0.2$. Thresholds $\tau_1 = \tau_2^{\rm a} = 2/3, \tau_2^{\rm s} = 1/2$.

Illustration single-limb

Assume $F_i(w) = 1 - e^{w/\phi_i}$, with $\phi_H = 0.7, \phi_L = 0.2$. Thresholds $\tau_1 = \tau_2^{\rm a} = 2/3, \tau_2^{\rm s} = 1/2$.

Illustration both methods

Assume $F_i(w) = 1 - e^{w/\phi_i}$, with $\phi_H = 0.7, \phi_L = 0.2$. Thresholds $\tau_1 = \tau_2^a = 2/3, \tau_2^s = 1/2$.

Optimal Voting Rule

parametric example

Distribution $F_i(w)=1-\mathrm{e}^{w/\phi_i}$. Two-limb thresholds $au_2^\mathrm{s}=1/2$ and $au_2^\mathrm{a}=2/3$.

Optimal Voting Rule

parametric example

Distribution $F_i(w)=1-\mathrm{e}^{w/\phi_i}$. Two-limb thresholds $au_2^\mathrm{s}=1/2$ and $au_2^\mathrm{a}=2/3$.

Outline

• Part 1: Optimal restructuring strategy, given creditor heterogeneity within & across bonds

• Part 2.a: CACs design and vulture funds

• Part 2.b: CACs design and endogenous investor sorting

Conclusion

Extended Setup

- Vulture fund (VF) may acquire share μ_i in bond i from bondholders
- VF holds blocking minority if
 - \circ $\mu_i > 1 au_2^{
 m s}$ under two-limb (assume VF can't block both bonds)
 - $\circ \sum_{i} \lambda_{i} \mu_{i} > 1 \tau_{1}$ under single-limb
- Costs and payoffs
 - Fixed entry cost ϵ_i if $\mu_i > 0$
 - o If CACs are triggered: entry cost $q_i = w_i$, VF payoff w_i
 - o If bond i is blocked: entry cost $q_i = F_i^{-1}(\mu_i)$, VF payoff h_i (reservation value, large)
- ⇒ VF entry only profitable if it blocks something, otherwise negative profits

Results Overview

Assume:

With both methods available, single-limb is a credible off-equilibrium threat

```
VF blocks bond i \Rightarrow govt uses single-limb \Rightarrow VF makes a loss \Rightarrow
```

- \Rightarrow VF does not enter \Rightarrow govt chooses optimal method (Part 1), may be two-limb
- Takeaways
 - o single-limb as an effective off-equilibrium threat, but maybe suboptimal absent VF
 - two-limb likely optimal absent VF, but less effective in preventing VF entry

Outline

- Part 1: Optimal restructuring strategy, given creditor heterogeneity within & across bonds
- Part 2.a: CACs design and vulture funds
- Part 2.b: CACs design and endogenous investor sorting
- Conclusion

Equilibrium Model

- Continuous-time stationary environment
- Continuum of risk-neutral investors with heterogeneous discount rates
 - Discount rate $r \sim G$ on $\mathcal{R} = [r_{\min}, r_{\max}]$.
- Two bonds S and L with exponentially decaying face values
 - decay rate δ_i , with $\delta_S > \delta_L$
 - o coupon rate c;
- Relative face values λ_S and $\lambda_L = 1 \lambda_S$, constant over time
- ullet A restructuring of both bonds may occur, with (exogenous) arrival rate η

Restructuring and Sorting Stages

- Restructuring stage
 - Holder of bond *i* with discount rate *r* has reservation value

$$h_i(r) = \frac{c_i}{r + \delta_i + \kappa}, \quad \kappa \geq 0$$

and accepts restructuring offer if $w_i \ge h_i(r)$

- Sorting stage
 - Prior to restructuring, investor r values bond i at

$$Q_i(r, w_i) = \frac{c_i + \eta w_i}{r + \delta_i + \eta}$$

- Assumption: each investors holds one unit of face value of either bond
- The set of investors who sort into bond *S* is

$$\mathcal{R}_{\mathcal{S}}(\Delta q, \mathbf{w}) = \{r \in \mathcal{R} : Q_{\mathcal{S}}(r, w_{\mathcal{S}}) - Q_{\mathcal{L}}(r, w_{\mathcal{L}}) \ge \Delta q\}, \qquad \Delta q := q_{\mathcal{S}} - q_{\mathcal{L}}$$

Reservation Value Distributions and Equilibrium

• Given sorting partitions $(\mathcal{R}_{S}, \mathcal{R}_{L})$, the distribution of reservation values for bond i is

$$F_i(w) = \operatorname{Prob}(h_i(r) \leq w \mid r \in \mathcal{R}_i)$$

- Equilibrium given by:
 - (i) price differential Δq^*
 - (ii) modification method and offers $\mathbf{w}^* = (w_S^*, w_L^*)$
 - such that
 - method and offers are optimal given F_i
 - o investors sort optimally into bonds
 - the bond market clears

Equilibrium Example

- Consider parametrisation where more patient investors hold the long-term bond
- Market clearing requires $G(\hat{r}) = \lambda_L$

 $\rightarrow F_i$

Assumptions: $r \sim \text{U}([0, 0.55])$, $(\delta_L, \delta_S) = (0.05, 0.25)$, $c_i = \mathbb{E}[r] + \delta_i$, $\lambda_L = 37\%$, $\eta = \kappa = 0.4$

Equilibrium Example

- Consider parametrisation where more patient investors hold the long-term bond
- Market clearing requires $G(\hat{r}) = \lambda_L$

 $\rightarrow F_i$

Assumptions: $r \sim U([0, 0.55])$, $(\delta_L, \delta_S) = (0.05, 0.25)$, $c_i = \mathbb{E}[r] + \delta_i$, $\lambda_L = 37\%$, $\eta = \kappa = 0.4$

Equilibrium Example

- Consider parametrisation where more patient investors hold the long-term bond
- Market clearing requires $G(\hat{r}) = \lambda_L$

 $\rightarrow F_i$

Assumptions: $r \sim \text{U}([0, 0.55])$, $(\delta_L, \delta_S) = (0.05, 0.25)$, $c_i = \mathbb{E}[r] + \delta_i$, $\eta = \kappa = 0.4$, $\lambda_L = 37\%$

Comparative Statics wrt λ_L (1)

Baseline: auxiliary solution feasible ⇒ two-limb dominates

Comparative Statics wrt λ_L (2)

Size effect of $\uparrow \lambda_L$: offers increase, two-limb still optimal

Comparative Statics wrt λ_L (3)

Sorting effect (new) of $\uparrow \lambda_L$: \hat{r} and F_i change, auxiliary offers diverge \Rightarrow heterogeneity \uparrow and single-limb dominates

Comparative Statics wrt λ_L (4)

Total effect of $\uparrow \lambda_L$: sorting effect > size effect

⇒ heterogeneity ↑ and single-limb dominates

Impact of CACs on Bond Market

Outline

- Part 1: Optimal restructuring strategy, given creditor heterogeneity within & across bonds
- Part 2.a: CACs design and vulture funds
- Part 2.b: CACs design and endogenous investor sorting
- Conclusion

Conclusion

- Tradeoff between two aggregation methods
 - o optimal procedure depends on bond heterogeneity, relative size, voting thresholds
 - o single-limb can be optimal when small bond is held by tough creditors
- Off-equilibrium role of single-limb as deterrent against (non-atomistic) vulture
- · Bond-specific reservation value distributions arise endogenously from investor sorting
 - o anticipation of optimal use of CACs affects ex-ante bond market equilibrium
- Analysis of restructuring problem extends to N bonds + uncertainty
 - o sub-aggregation, redesignation, bonds with different versions of CACs

Appendix

Uniform Applicability

ICMA

- exchange, on the same terms, for the same (menu of) instrument(s)
- proposed amendments imply that new bonds have same provisions

Euro Area

- exchange on the same terms, for the same (menu of) instrument(s)
- reduce face value by the same %
- ullet extend maturity by the same time period or the same %

Ecuador 2020: Heterogeneous Offers

Argentina 2020: Heterogeneous Offers & Choices

before Priority Acceptance Procedure

Old Bonds' Maturity (2016-Indenture (Macri) USD bonds)

Argentina 2020: Heterogeneous Offers & Choices

after Priority Acceptance Procedure

Old Bonds' Maturity (2016-Indenture (Macri) USD bonds)

Optimal Voting Rule

Sufficient Conditions

LEMMA

Two-limb dominates if at least one of the following conditions holds

- (i) the optimal single-limb offer u^* satisfies all s.b.s. constraints: $F_i(u^*) \geq \tau_2^s$
 - \rightarrow single-limb has no advantage vs two-limb
- (ii) the auxiliary solution $(\widehat{w}_H, \widehat{w}_L)$ satisfies all s.b.s. constraints: $F_i(\widehat{w}_i) \geq \tau_2^{\rm s}$
 - → two-limb has no disadvantage vs single-limb

◆ Back

Optimal Voting Rule

Comparative Statics

PROPOSITION

- Two-limb is optimal
 - o if there is little heterogeneity across bonds
 - if bond H is relatively large, i.e., λ is high
 - when bond H is very small ($\lambda \approx 0$) and $\tau_1 > \tau_2^{\rm a}$.
- Under some technical conditions on densities f_H and f_L , single-limb is optimal
 - ullet when $\lambdapprox 0$ and $au_1= au_2^{
 m a}$
 - $\circ \ \ \text{when} \ \lambda \approx \widetilde{\lambda} \text{, where} \ \widetilde{\lambda} \ \text{is such that} \ \widehat{w}_L(\widetilde{\lambda}, \tau_2^{\mathfrak{s}}) = \widehat{w}_H(\widetilde{\lambda}, \tau_2^{\mathfrak{s}}) < F_H^{-1}(\tau_2^{\mathfrak{s}}) \text{, and} \ \tau_1 \approx \tau_2^{\mathfrak{s}}.$

◆ Back

γs

Comparative Statics in λ

Assuming
$$F_i(w) = 1 - e^{w/\phi_i}$$
, $\phi_H = 0.7$, $\phi_L = 0.2$ and $\tau_1 = \tau_2^{\rm a}$

Comparative Statics: Role of Heterogeneity

Assuming $F_i(w) = 1 - e^{w/\phi_i}$ and $\tau_1 = \tau_2^{\rm a}$, for various ϕ_H/ϕ_L

Optimal Voting Rule

Equilibrium

DEFINITION

Given distribution G on \mathcal{R} , bond characteristics (c_i, δ_i) and relative sizes λ_S, λ_L , default arrival rate η , and parameter κ , an equilibrium consists of

- (i) a price differential Δq^* and a partition $(\mathcal{R}_S,\mathcal{R}_L)$
- (ii) a modification method and a pair of offers \mathbf{w}^*

such that

- 1. the government chooses the modification method and restructuring offers optimally given the implied distributions F_S and F_L ,
- 2. investors optimally choose which bond to hold: $\mathcal{R}_i = \mathcal{R}_i(\Delta q^*, \mathbf{w}^*)$,
- 3. the market clears for each bond, $\int_{\mathcal{R}_i} dG = \lambda_i$.

Size Effect of $\uparrow \lambda_L$

Role of Bond Heterogeneity

Assumptions: taking deviation around baseline $\widetilde{c}_L = c_L + \epsilon_L$

Sorting & Total Effect of $\uparrow \lambda_L$

Full Comparative Statics wrt λ_I

Equilibrium Example

• Investor r holding bond i accepts w_i iff $r \geq \bar{r}_i(w_i) := \frac{c_i}{w_i} - (\delta_i + \kappa_i)$

• With $r \sim \text{Uniform}[r_{\min}, r_{\max}]$, we get

d back

$$F_{L} = \frac{G(\hat{r}) - G(\bar{r}_{L}(w_{L}))}{\lambda_{L}} = \left(\frac{\lambda_{L}(r_{\text{max}} - r_{\text{min}}) + \delta_{L} + \kappa + r_{\text{min}}}{\lambda_{L}r_{\text{max}} - r_{\text{min}}}\right) - \left(\frac{c_{L}}{\lambda_{L}(r_{\text{max}} - r_{\text{min}})}\right) \frac{1}{w_{L}}$$

$$F_{S} = \frac{1 - G(\bar{r}_{S}(w_{S}))}{\lambda_{S}} = \left(\frac{(r_{\text{max}} - r_{\text{min}}) + \delta_{S} + \kappa + r_{\text{min}}}{\lambda_{S}(r_{\text{max}} - r_{\text{min}})}\right) - \left(\frac{c_{S}}{\lambda_{S}(r_{\text{max}} - r_{\text{min}})}\right) \frac{1}{w_{S}}$$

Auxiliary Problem SOCs

The objective function is strictly convex if

$$\frac{d\log f_L(w_L)}{dw_L} < \frac{d\log f_H[g(w_L)]}{dw_L}.$$

A sufficient condition is that the two densities f_H and f_L are strictly decreasing

