Note: Let Γ be an arbitrary indexing set (possibly infinite and possibly uncountable). A collection of subspaces indexed by Γ is $\{U_{\gamma} \mid \gamma \in \Gamma, U_{\gamma} \text{ is a subspace of } V\}$.

1. (§1.C #11) Prove that the intersection of every collection of subspaces of V is a subspace of V.

Proof. A vector $u \in V$ is in $\bigcap_{\gamma \in \Gamma} U_{\gamma}$ if and only if $u \in U_{\gamma}$ for every $\gamma \in \Gamma$. To prove that $\bigcap_{\gamma \in \Gamma} U_{\gamma}$ is a subspace we will show that $0 \in \bigcap_{\gamma \in \Gamma} U_{\gamma}$ and that $\bigcap_{\gamma \in \Gamma} U_{\gamma}$ is closed under addition and scalar multiplication. Since each U_{γ} is a subspace then $0 \in U_{\gamma}$ for all $\gamma \in \Gamma$. Hence $0 \in \bigcap_{\gamma \in \Gamma} U_{\gamma}$. Likewise, let x and y be arbitrary vectors in $\bigcap_{\gamma \in \Gamma} U_{\gamma}$. Then $x \in U_{\gamma}$ and $y \in U_{\gamma}$ for all $\gamma \in \Gamma$. Since each U_{γ} is a subspace we have $x + y \in U_{\gamma}$ for all $\gamma \in \Gamma$. Hence $x + y \in \bigcap_{\gamma \in \Gamma} U_{\gamma}$. Similarly, since each U_{γ} is a subspace we have that $\lambda x \in U_{\gamma}$ for each $\lambda \in \mathbb{F}$, $x \in U_{\gamma}$ and each $\gamma \in \Gamma$. Thus $\lambda x \in \bigcap_{\gamma \in \Gamma} U_{\gamma}$.

Definition:

We say that a vector space V is the direct sum of subspaces U_1, \ldots, U_n if the following hold true:

(a) $U_i \neq \{0\}$ for each i = 1, ... n.

(b) $U_i \cap (U_1 + \dots U_{i-1} + U_{i+1} + \dots U_n) = \{0\}$ for $i = 1, \dots n$.

(c) $V = U_1 + \ldots + U_n$.

Denote this by $V = U_1 \oplus \ldots \oplus U_n$.

2. Prove the following theorem.

Theorem 0.1. If $U_1, \dots U_n$ are non-trivial subspaces of V, then

$$V = U_1 \oplus \ldots \oplus U_n$$

if and only if every $v \in V$ has a unique representation of the form

$$v = u_1 + \ldots + u_n$$

where $u_i \in U_i$ for each i = 1, ..., n.

Proof. First assume that $V = U_1 \oplus \ldots \oplus U_n$ for some non-trivial subspaces $U_1, \ldots U_n$ as defined above. Let $v \in V$ and suppose that

$$v = v_1 + \ldots + v_n$$

and

$$v = u_1 + \ldots + u_n$$

where $v_i, u_i \in U_i$ for $1 \le i \le n$. Let $j \in \{1, ..., n\}$ and note that

$$-(v_j - u_j) = (v_1 - u_1) + \dots + (v_{j-1} - u_{j-1}) + (v_{j+1} - u_{j+1}) + \dots + (v_n - u_n).$$

Hence,

$$v_i - u_i \in U_i$$

and

$$v_j - u_j \in (U_1 + \ldots + U_{j-1} + U_{j+1} + \ldots U_n)$$

for each $j \in \{1, ..., n\}$. Hence $u_j = v_j$ for each $j \in \{1, ..., n\}$.

Conversely, suppose each $v \in V$ has a unique representation in the form

$$v = u_1 + \ldots + u_n$$
 where each $u_i \in U_i \neq \{0\}$.

Parts (a) and (c) are automatically satisfied. We need to show part (b) of the the definition holds. If

$$w \in U_i$$

and

$$w \in U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots U_n$$

for some $i \in \{1, ..., n\}$ then,

$$0 = w_1 + \dots + w_{i-1} + w + w_{i+1} + \dots + w_n$$

where each $w_j \in U_j$ for $j \in \{1, \ldots, i-1\} \cup \{i+1, \ldots, n\}$. By the unique representation of 0 we have that

$$w_1 = \dots w_{i-1} = w = w_{i+1} = \dots = w_n = 0.$$

Hence (b) is satisfied.

3. (§2.A # 14) Prove that V is infinite dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that v_1, \ldots, v_m is linearly independent for every positive integer m.

Proof. Suppose that V is infinite dimensional. Let $v_1 \neq 0$ and choose v_2, v_3, \ldots by the following procedure: Suppose $v_1, \ldots v_{m-1}$ is chosen, and choose $v_m \in V$ such that $v_m \notin \operatorname{span}\{v_1, \ldots v_{m-1}\}$. Since V is infinite dimensional this is always possible and $\{v_1, \ldots, v_m\}$ is linearly independent for each $m \in \mathbb{N}$. Conversely, suppose V is finite dimensional. Thus V has a finite spanning list. Since the length of every linearly independent list must be less than or equal to the length of any spanning list there does not exist a sequence of vectors such that $v_1, \ldots v_m$ is linearly independent for all $m \in \mathbb{N}$.

4. ($\S 2.A \# 16$) Prove that the real vector space of all continuous real-valued functions on [0,1] is infinite dimensional.

Proof. For each $m \in \mathbb{N}$ we have that $\{1, x, \dots, x^m\}$ is a linearly independent list of vectors in C[0, 1] (continuous functions over [0, 1]) since if

$$a_0 \cdot 1 + \ldots + a_m \cdot x^m = 0$$
 for all $x \in [0, 1]$

then $a_0 = \ldots = a_m = 0$ (the only polynomial with an infinite number of zeros in [0, 1] is the zero polynomial). Hence, by the above problem, polynomials over [0, 1] form a infinite dimensional subspace and hence C[0, 1] is infinite dimensional.

5. (§2.B # 8) Suppose that U and W are subspaces of V such that $V = U \oplus W$. Suppose also that u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1, \ldots u_m, w_1, \ldots, w_n$$

is a basis of V.

Proof. Clearly, $V \subseteq \text{span}\{u_1, \dots u_m, w_1, \dots w_n\}$ since $V = U \oplus W$. We need to show that $\{u_1, \dots u_m, w_1, \dots w_n\}$ is linearly independent. Suppose that

$$a_1u_1 + \dots + a_mu_m + b_1w_1 + \dots + b_nw_n = 0.$$

Note that

$$a_1u_1 + \dots + a_mu_m = -(b_1w_1 + \dots + b_nw_n).$$

Hence,

$$a_1u_1 + \dots a_mu_m \in U \cap W$$

and

$$b_1w_1 + \dots b_nw_n \in U \cap W$$
.

Thus,

$$a_1u_1 + \dots + a_mu_m = b_1w_1 + \dots + b_nw_n = 0$$

and by linear independence of $\{u_1, \ldots, u_m\}$ and $\{w_1, \ldots, w_n\}$ we have

$$a_1 = \dots a_m = b_1 = \dots = b_n = 0.$$