VOCAL FOLD DYNAMICS FOR AUTOMATIC DETECTION OF AMYOTROPHIC LATERAL SCLEROSIS FROM VOICE

Jiayi Zhang *

Rita Singh

Lewis-Sigler Institute of Integrative Genomics
Princeton University
Princeton, United States

Language Technologies Institute Carnegie Mellon University Pittsburgh, United States

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that affects motor neurons and causes speech and respiration dysfunctions. Current diagnostic methods are complicated, thus motivating the development of an efficient and objective diagnostic aid. We hypothesize that analyses of features capturing the essential characteristics of the biomechanical process of voice production can distinguish ALS patients from non-ALS controls. In this paper, we represent voices with algorithmically estimated vocal fold dynamics from physical models of phonation. To validate our hypothesis, we explore 2 sets of features: simple statistical measurements (Set 1) and phase-space characterizations (Set 2) of estimated vocal fold displacements and range of displacements. Random Forest Classifiers based on Set 1 and Set 2 features yield average AUC-ROC of 99.6% and 82.3%, respectively, in 10-way cross-validation experiments. These results demonstrate the potential of using vocal fold dynamics for detecting ALS from voice recordings.

Index Terms— Amyotrophic Lateral Sclerosis, Vocal fold dynamics, Adjoint Least-Squares Algorithm, Automatic disease detection

1. INTRODUCTION

Human voice, the result of complex interactions between cognitive and biomechanical processes, carries enormous information about the physiological states of the speaker [1]. In light of recent advancements in bioacoustics and signal processing, a diverse body of literature on automatic disease detection through voices has emerged. The diseases of interest usually involve respiratory pathology (e.g., COVID-19 [2], asthma [3]) or affects the motor system (e.g., Parkinson's Disease (PD) [4], Alzheimer's Disease (AD) [3]). Given that 1) most biomarkers proposed by these diagnosis studies are automatically extracted and analyzed, and 2) voice recordings—the source data of analyses—can be obtained easily

and without obtrusion to patients, detecting diseases through voice offers valuable efficiency and objectivity.

Amyotrophic Lateral Sclerosis (ALS) is a fatal, idiopathic, progressive neurodegenerative disease that affects the upper and lower motor neurons [5]. As a result, patients exhibit an array of symptoms, including limb weakening, dysarthria, and respiratory difficulties, often present at disease onset [5]. These symptoms render ALS a suitable target for voiced-based automated disease detection. Furthermore, as there currently is no definitive diagnostic test or biomarker for ALS [5, 6], detecting ALS through voice, if reliable, can greatly improve the existing diagnostic procedure.

Indeed, previous studies have explored many features derived from voices and speech, including but not limited to physical properties of sounds (acoustic measures), pausing pattern analyses (measures of respiratory function) [7, 8], word choices in question-answering tasks (semantic measures), the intelligibility of utterances [9], etc. So far, jitter [10], percent of pause time [7], select Mel-frequency Cepstral Coefficients (MFCCs) and Linear Predictive Coding Coefficients (LPCCs) [11] have been among the most common and indicative features of ALS. Nonetheless, a standardized protocol regarding vocal biomarkers does not yet exist, and the search for effective features continues.

1.1. Our contribution

In this paper, we report novel and relevant diagnostic features derived from algorithmically estimated vocal fold dynamics. This method has not been used in ALS detection literature to the best of our knowledge. However, novelty is not the sole reason for choosing the current method—with estimated vocal fold dynamics, we can directly infer the motion of the vocal folds that gives rise to previously reported markers such as jitter. Consequently, we yield results with greater resolution and physiological relevance, valuable for clinical purposes. We hypothesize that, with our proposed method of analysis and features, we will be able to detect alterations in vocal fold motion and range of motion in ALS patients and thus differentiate their voices from the voices of non-ALS controls.

^{*}Work completed while at Computational Biology Department, School of Computer Science, Carnegie Mellon University.

2. VOCAL FOLD DYNAMICS ESTIMATION

Crucially, we represent voices as vocal fold oscillation trajectories (displacements and velocities). To achieve this, we solve an appropriate physical model of phonation with parameters fitted for each voice sample (collected from case and control). We describe the physical model employed and the method for inferring parameters for each sample in the following sub-sections.

2.1. Physical models of phonation

In bio-acoustics studies, vocal fold dynamics can be characterized by "mass-(damper)-string" oscillator models with 1, 2, or multiple masses [12, 13, 14]. These models are parameterized to capture the biophysical properties of the vocal folds—mass, elasticity, volume, etc. Here, we have chosen a single-mass model by Lucero et al. [15] that can characterize asymmetric vocal fold oscillation. This model is based on van der Pol oscillators [15] in the form of:

$$\ddot{x}_r + \beta(1 + x_r^2)\dot{x}_r + x_r - \frac{\Delta}{2}x_r = \alpha(\dot{x}_r + \dot{x}_l),$$
 (1)

$$\ddot{x}_l + \beta(1 + x_l^2)\dot{x}_l + x_l - \frac{\Delta}{2}x_l = \alpha(\dot{x}_r + \dot{x}_l), \quad (2)$$

where x_r and x_l are the displacements of the right and left vocal folds (from the center of the glottis), respectively. β reflects the damping effect of the oscillator; α relates to subglottal pressure; Δ (with $|\Delta| < 2$) captures "asymmetry" [15].

The ability to characterize asymmetry is especially important for our purpose since we hypothesized that ALS patients have affected vocal fold dynamics and that we would be able to detect the pathology from their voices. Asymmetric oscillation is one of the most common forms of irregularity in vocal fold oscillations. It can underlie abnormal voice properties such as hoarseness [16], which is reported in ALS patients' voices [10].

2.2. Parameter estimation with Adjoint Least-Squares (ADLES) Algorithm

Typically, parameter values in phonation models are clinically determined to ensure accuracy [17]. Measurements are needed for each individual to estimate their respective dynamics. However, these measurements are either unavailable in existing datasets or only attainable through manual operations with specific equipment (e.g. through videolaryngostroboscopy). These procedures might cause discomfort to the patient's larynx and thus are not sustainable for ALS diagnostics.

As an alternative, we utilize an *Adjoint Least-Squares* (*ADLES*) *algorithm* proposed by Zhao and Singh [17] to infer optimal parameters directly from voice recordings. Given a sample, ADLES finds parameter values that minimize the squared error between (airflow) volume velocities derived

from 2 methods: one based on inversely filtered vocal signal (i.e. voice recordings), while the other based on displacements of the vocal folds, modeled with a chosen physical model. This method has been shown effective in a prior study on automatic COVID-19 detection through voice recordings [18].

ADLES employs gradient descent and iteratively updates parameter values (β , α and Δ) for each vocal signal. We can then supply the converged parameter values to Lucero et al. [15]'s model. By solving the coupled, non-linear system of equations with these parameter settings, we obtain the phase-space trajectory of variables in the model which corresponds to vocal fold dynamics, including information on vocal fold oscillation trajectory, velocity, and acceleration. In this paper, we apply the above procedure to all voice recordings in our dataset, in a sliding rectangular window of 50ms. This window length is chosen in accordance with previous research [17, 18] and appears to be empirically appropriate for capturing the changing glottal dynamics during phonation. See Fig. 1 for visual representations of sample outputs of the analysis described above.

(a) Symmetrical trajectory

(b) Asymmetrical trajectory

Fig. 1. Estimated vocal fold velocity plotted against estimated displacements of the left and right vocal folds for 2 distinct analysis windows, obtained with the described method. Panel (a) shows periodic and in-sync vocal fold oscillation while (b) shows aperiodic and asymmetrical oscillations.

3. FEATURE SET CONSTRUCTION

Given the estimated vocal fold dynamics data for a speech recording, we extract relevant features to test our hypothesized separation. Here, we explore 2 sets of features: 1) simple statistical measurements, and 2) Phase-space characterizations.

3.1. Set 1: Simple Statistical Measurements

Statistical measurements (e.g., mean, variance, etc.) are obtained for the vocal fold displacement time series data. A total of 10 measurements are implemented and could be further divided into 2 groups according to the type of data that they are generated from:

- Group 1 (n = 4): average, max, min, and variance of vocal fold displacements.
- Group 2 (n=6): average, max, min, variance, center and skew of max range of displacement (MROD). Note, given a time series of displacements (D) of a trajectory (belonging to a single analysis window), its MROD is defined as $D_{\rm max}-D_{\rm min}$.

Since the motion of the left and right vocal folds are estimated separately, each of the above measurements is calculated for each side, resulting in 20 features per recording. average, max, min, and variance are calculated based on the distribution of D or MRODs pooled from all windows of analyses. center and skew are calculated based on 10-bin histograms generated from pooled MROD distribution. Specifically, center refers to the average of all MRODs of the highest frequency bin; skew is implemented based on the definition of Pearson's Second Coefficient for Skewness:

$$3 \cdot (\mu_{MROD} - Md_{MROD}) / \sigma_{MROD}, \tag{3}$$

where Md_{MROD} denotes the median of MRODs. The magnitude of *skew* reflects the asymmetry in the distribution of MRODs.

Through this set of features, we investigate if/how the vocal fold motion is affected in ALS patients compared to the motion generated by non-ALS individuals. We are interested in inferring if patients have increased/reduced range of vocal fold motion through *max* and MROD features. We can also explore if there is a higher degree of irregularity in the voice of ALS patients through *variance* and *skew*.

3.2. Set 2: Phase-space Characterization

Since the estimated vocal fold dynamics is the output of a non-linear dynamical system, we avail ourselves of established methods for analyzing phase-space trajectories to develop the second set of features. In particular, we explore the Lyapunov and Hurst coefficient spectra.

Lyapunov exponents reflect the "speed of divergence" of a potentially chaotic system [19]. For a discrete-time system f(x), some starting point x_0 , a small perturbation ϵ and some lag of n steps, the Lyapunov exponent λ_n is defined by:

$$\lambda_n \approx \frac{1}{n} \ln \left(\left| \frac{f^n(x_0 + \epsilon) - f^n(x_0)}{\epsilon} \right| \right),$$
 (4)

where $f^n(x_0)$ evaluates to the value of the function after n steps, starting from x_0 [19]. Intuitively, a regular vocal fold oscillation trajectory (whose phase portrait is a torus) will have lower exponents than one of an irregular (potentially pathological) trajectory. We can thus capture the "stability" of vocal fold dynamics of ALS and non-ALS individuals for

comparison. In this paper, we use the highest 5 Lyapunov exponents over all trajectories of a single recording. The highest 5 exponents are chosen to describe the fastest diverging behavior in the system, denoted by $max_{\{1,2,3,4,5\}}$.

Additionally, we extracted features that are derived from the Hurst exponents. The Hurst exponents describe the level of autocorrelation or "long-term memory" in a system [20] and can be found by the rescaled range (R/S) analysis. In our implementation, given some delay timescale τ , we want to find an exponent H such that:

$$Var_{\tau} \propto \tau^{2H},$$
 (5)

where Var_{τ} denotes variance in data that are lag τ apart.

With these features, we aim to further characterize the regularity and/or irregularity in the voices of ALS and non-ALS and explore these established analysis methods for dynamics. We record $\{average, max, var\} \times \{x, \dot{x}\} \times \{\text{left, right}\}$, a total of 12 Hurst exponents for each time series.

4. DATASET AND EXPERIMENTAL SETUP

Our dataset consists of 42 recordings from 41 speakers–32 cases (19M, 12F) and 10 controls (10F)–of prolonged phonation of the vowel [a]. The case samples are collected by a prior study [11]. Age and disease progression information is not available and therefore impossible to control. The non-ALS data are conveniently sampled; none of the controls reported a history of motor or respiratory disease at the time of recording. Subsequently, all 37 features (20 statistical + 17 phase-space) discussed above are obtained from the vocal fold dynamics estimated from each voice recording.

A 10-way cross-validation trial with 70:30 train-test splits is arranged for Set 1 and Set 2 features, respectively. Random Forest Classifiers (with max-depth=2) are chosen for the classification tasks to avoid overfitting. In addition, RFCs provide information about relative feature importance and enable us to compare the effectiveness of features within a set.

5. RESULTS AND DISCUSSIONS

Table 1 . AUC-ROC of RFCs				
	max	min	avg	var
Set 1	100%	96.3%	99.6%	1E-5
Set 2	96.7%	63.3%	82.3%	1.3E-2

Table 1 reports the performance of RFCs with Set 1 features ($\{disp\} \cup \{MROD\}, n=20$) and (separately) with Set 2 features ($\{Lyapunov\} \cup \{Hurst\}, n=17$). Averaged feature importance is reported in Fig. 2.

The highest-ranking features in Set 1 are *disp: var* and *MROD:* {avg, var}, both sides, accounting for 81.0% of feature weight. Interestingly, we observe asymmetry of relative

Fig. 2. Averaged relative importance of Set 1 (left) and Set 2 (right) features in the RFC. Select top-ranking features are highlighted for visual purposes. See Section 3 for full feature descriptions. Note the y-axes of the sub-figures are not shared.

ranking between left and right measurements, though the significance of such differences is unknown. The 3 highest-ranking features in Set 2 are *Hurst:* {avg_dx_L, avg_dx_R, avg_x_L}. Together, they account for 31.5% of relative feature weight. Features derived from Lyapunov exponents, in comparison, do not appear to be as effective in current classification trials.

In addition to classification trials, a Mann-Whitney U test is conducted for each feature to test the statistical significance of separation between the case and control. All of the top Set 1 features mentioned above have raw p-values <5E-5 (and are still significant after a Bonferroni correction). Notably, case recordings almost always have lower values for these markers compared to the controls. The top 3 Set 2 features have raw p-values: 0.0015, 0.0040, 0.0036. Access to all result values is available upon request.

As shown above, the classifiers based on our features yield promising results. In particular, RFCs with Set 1 features are capable of distinguishing voices from ALS patients and non-ALS individuals with consistently high accuracy across runs. Features that had statistically significant differences in distributions (MROD: {avg, var} and disp: var) were ranked the most important among all Set 1 features. Comparatively, classifiers with Set 2 features are not as accurate and stable. We observe a much more significant variance in the accuracy across runs. Hurst: {avg, max} seems most important for the separation among Set 2 features, though they do not show statistically significant differences in distribution across groups (after a multiple-comparison correction). Meanwhile, the Lyapunov exponents have less contribution to effective separation.

6. CONCLUSIONS AND DISCUSSIONS

Overall, we conclude that it is surprisingly easy to detect the presence of ALS with high accuracy based on features derived from vocal fold dynamics. Numerically, our model performance is on par or even higher than that reported in prior studies. Like previous work, we demonstrate that voice is a feasible source of data for the detection of ALS and that there is a wealth of features that could be extracted for analysis.

In addition, we find a decreased variability in vocal fold motion through decreased variances in vocal fold displacements and maximum range of displacements in ALS patients compared to non-ALS controls. This corroborates with prior observations that ALS patients experience a decreased range of vocal fold motion and abnormalities in vocal fold dynamics [21]. We would like to highlight the interpretability of features derived from vocal fold dynamics and its advantages over many indirect markers.

While we demonstrated promising results, we want to point out a few limitations and directions for future study. First, future studies should pool or collect larger datasets to improve the generalizability and significance of findings. Though ALS is relatively rare and highly heterogeneous, voice recording is among the easiest and least invasive samples to acquire. Future datasets can also include more variations as the current task (sustained phonation of [a]) might have limited the range of vocal fold motion involved. Second, our method is based on a single-mass model of phonation proposed by Lucero et al. [15]. Though this model is capable of capturing the asymmetry of motion of the left and right vocal folds, many other factors and complexities are not taken into consideration. Future research can explore the space of models and conduct a principled model selection. Finally, we have yet to construct a more systematic characterization or to relate the estimated physical behavior of the folds and trends of such behavior to more detailed underlying physiological and neurological mechanisms. Finding potential neurological explanations is especially relevant considering ALS is a neurodegenerative disease.

7. ACKNOWLEDGMENT

We thank Dr. Marcelo Magnasco and Dr. Guillermo A. Cecchi for offering access to the dataset used in this paper.

8. REFERENCES

[1] Rita Singh, *Profiling humans from their voice*, Springer, 2019.

- [2] Soham Deshmukh, Mahmoud Al Ismail, and Rita Singh, "Interpreting glottal flow dynamics for detecting covid-19 from voice," in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1055–1059.
- [3] DC Shubhangi and AK Pratibha, "Asthma, alzheimer's and dementia disease detection based on voice recognition using multi-layer perceptron algorithm," in 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2021, pp. 1–7.
- [4] Tao Zhang, Yajuan Zhang, Hao Sun, and Haoran Shan, "Parkinson disease detection using energy direction features based on emd from voice signal," *Biocybernetics and Biomedical Engineering*, vol. 41, no. 1, pp. 127–141, 2021.
- [5] Matthew C Kiernan, Steve Vucic, Benjamin C Cheah, Martin R Turner, Andrew Eisen, Orla Hardiman, James R Burrell, and Margaret C Zoing, "Amyotrophic lateral sclerosis," *The lancet*, vol. 377, no. 9769, pp. 942–955, 2011.
- [6] National Institute of Neurological Disorders, Stroke-Office of Neuroscience Communications, and Engagement, "Amyotrophic lateral sclerosis (als) fact sheet," 2022.
- [7] Kristen M Allison, Yana Yunusova, Thomas F Campbell, Jun Wang, James D Berry, and Jordan R Green, "The diagnostic utility of patient-report and speechlanguage pathologists' ratings for detecting the early onset of bulbar symptoms due to als," *Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration*, vol. 18, no. 5-6, pp. 358–366, 2017.
- [8] Panying Rong, Yana Yunusova, Jun Wang, and Jordan R Green, "Predicting early bulbar decline in amyotrophic lateral sclerosis: A speech subsystem approach," *Behavioural neurology*, vol. 2015, 2015.
- [9] Carla Agurto, Mary Pietrowicz, Elif K Eyigoz, Elizabeth Mosmiller, Emily Baxi, Jeffrey D Rothstein, Promit Roy, James Berry, Nicholas J Maragakis, Omar Ahmad, et al., "Analyzing progression of motor and speech impairment in als," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019, pp. 6097–6102.
- [10] Jerzy Tomik, Barbara Tomik, Maciej Wiatr, Jacek Składzień, Paweł Strek, and Andrzej Szczudlik, "The evaluation of abnormal voice qualities in patients with amyotrophic lateral sclerosis," *Neurodegenerative Diseases*, vol. 15, no. 4, pp. 225–232, 2015.

- [11] Raquel Norel, Mary Pietrowicz, Carla Agurto, Shay Rishoni, and Guillermo Cecchi, "Detection of amyotrophic lateral sclerosis (als) via acoustic analysis," *bioRxiv*, p. 383414, 2018.
- [12] J Flanagan and Lois Landgraf, "Self-oscillating source for vocal-tract synthesizers," *IEEE Transactions on Audio and Electroacoustics*, vol. 16, no. 1, pp. 57–64, 1968.
- [13] Kenzo Ishizaka and James L Flanagan, "Synthesis of voiced sounds from a two-mass model of the vocal cords," *Bell system technical journal*, vol. 51, no. 6, pp. 1233–1268, 1972.
- [14] Anxiong Yang, Michael Stingl, David A Berry, Jörg Lohscheller, Daniel Voigt, Ulrich Eysholdt, and Michael Döllinger, "Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model," *The Journal of the Acoustical Society of America*, vol. 130, no. 2, pp. 948–964, 2011.
- [15] Jorge C Lucero, Jean Schoentgen, Jessy Haas, Paul Luizard, and Xavier Pelorson, "Self-entrainment of the right and left vocal fold oscillators," *The Journal of the Acoustical Society of America*, vol. 137, no. 4, pp. 2036– 2046, 2015.
- [16] Ulrich Eysholdt, F Rosanowski, and U Hoppe, "Vocal fold vibration irregularities caused by different types of laryngeal asymmetry," *European Archives of Oto-rhinolaryngology*, vol. 260, no. 8, pp. 412–417, 2003.
- [17] Wenbo Zhao and Rita Singh, "Speech-based parameter estimation of an asymmetric vocal fold oscillation model and its application in discriminating vocal fold pathologies," in *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2020, pp. 7344–7348.
- [18] Mahmoud Al Ismail, Soham Deshmukh, and Rita Singh, "Detection of covid-19 through the analysis of vocal fold oscillations," in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1035–1039.
- [19] Jonathan B Dingwell, "Lyapunov exponents," Wiley encyclopedia of biomedical engineering, 2006.
- [20] Jan W Kantelhardt, "Fractal and multifractal time series," *arXiv preprint arXiv:0804.0747*, 2008.
- [21] Raymond D Kent, "Vocal tract acoustics," *Journal of Voice*, vol. 7, no. 2, pp. 97–117, 1993.