SYDNEY TECHNICAL HIGH SCHOOL YEAR 12 HSC ASSESSMENT TASK 2 MARCH 2007 MATHEMATICS

Extension 1

Time Allo	wed:	
-----------	------	--

70 minutes

Instructions:

Attempt all questions

Start each question on a new page

Show all necessary working

The marks for each question are indicated next to the question

Marks may be deducted for careless or badly arranged work

Marks indicated are a guide only and may be varied if necessary

	Teacher:	•
Name:	Teacher	

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total .
					Bay, a til de legge () tverke i stellerlikke jähelegide kaltus () () enkeleten	

QUESTION 1 - (9 marks)

a) You are given
$$\int_{0}^{a} f(x)dx = A$$
. Evaluate $\int_{-a}^{a} f(x) dx$ if 2

- i) f(x) is an even function
- ii) f(x) is an odd function

b) Evaluate
$$\int_{0}^{2} (4-2x)^3 dx$$
 2

- c) For what values of x is $f(x) = x^5 5x^4$ concave down?
- d) The diagram shows the graph of $f^{1}(x)$ which is the derivative of a certain function f(x)

Given that f(0) = 0, sketch the graph of f(x)

a) Find a primitive of $\frac{1}{2x^2}$

1

4

Part of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is shown above

The following table gives values for the graph

- i) Use Simpsons rule and all 5 function values to find an approximation to the area under the curve shown above (2 dec).
- ii) If the area of the whole ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab , use this result and your answer above to find an approximate value of π to 2 decimal places.
- c) Find $\int \frac{x}{\sqrt{4-x}} dx$ using the substitution x = 4-u

a) i) Show that the sum of

 $1 + 2^{a} + 2^{2a} + \dots + 2^{(n-1)a} = \frac{2^{na} - 1}{2^{a} - 1}$

3

5

Using 100 inscribed rectangles as shown above, find an approximation for

$$\int_{0}^{1} 2^{x} dx$$

you may use the result in part (i)

b)

The sketch above shows $y = 4 - x^2$ and y = 3x for $x \ge 0$

- i) Find the co-ordinates of A and B
- ii) The shaded area is rotated around the y axis. Find the volume of the solid formed.

QUESTION 4 - (8 Marks)

- Suppose the cubic $f(x) = x^3 + ax^2 + bx + c$ has a relative maximum at $x = \alpha$ and a a) relative minimum at $x = \beta$.
 - 3

5

- Prove that $\alpha + \beta = -\frac{2}{3}a$ i)
- Deduce that the point of inflexion occurs at $x = \frac{\alpha + \beta}{2}$ ii)
- b)

- Find the co-ordinates of A, the vertex of the parabola. i)
- By completing the square, make y the subject of $x=4y-y^2$ ii)
- Hence or otherwise find the shaded area iii)

QUESTION 5 - (8 Marks)

- The number of unemployed people u at time t was studied over a period of time. At the start of this period, the number of unemployed was 800 000.
 - i) Throughout the period, $\frac{du}{dt} < 0$.

 What does this say about the number of unemployed during the period?
 - ii) It is also observed that, throughout the period, $\frac{d^2u}{dt^2} > 0$. Sketch a graph of u against t.
- b) An isosceles trapezium ABCD is drawn with its vertices on a semicircle centre O and diameter 20cm (see diagram).
 - A $\frac{E}{2}$ $\frac{x}{2}$ $\frac{O}{2}$ F

6

- i) If EO = OF = $\frac{x}{2}$, show that: BE = $\frac{1}{2}\sqrt{400-x^2}$
- ii) Show that the area (A cm²) of the trapezium ABCD is given by:

$$A = \frac{1}{4}(x+20)\sqrt{400-x^2}$$

iii) Show that
$$\frac{dA}{dx} = \frac{1}{4} \left[\frac{400 - 20x - 2x^2}{\sqrt{400 - x^2}} \right]$$

iv) Hence find the length of BC so that the area of trapezium ABCD is a maximum.

QUESTION 6 (8 Marks)

a) i) Solve
$$\frac{x+1}{(x-1)^2} > 0$$

For the curve
$$y = \frac{x+1}{(x-1)^2}$$

- ii) Write down the equations of the asymptotes
- iii) Find the co-ordinates of the stationary point and determine its nature.
- iv) Sketch the curve showing the stationary point, the asymptotes and any intercepts.
- v) Mark on your graph, labelling clearly, the approximate position of any points of inflexion.

OUESTION 1	i) $A = \frac{1}{3} \left[3 + 0 + 4(2.9 + 1.98) + 2(2.6) \right]$
a) i) 2A	$A = \frac{1}{3} \left[3 + 0 + 4(2.9 + 1.48) + 2(2.8) \right]$
(ii) 0	= 9.24
b) 2/ 3 / 7 ²	
b) $2 \int (4-2x) dx = \left[\frac{4-2x}{8} \right]^{2}$	ii) $\pi ab = 9.24 \times 4 a = 4 b = 3$
, , , , ,	$12\pi = 9.24 \times 4$
$= 0 - \left(\frac{4}{8}\right)$	T = 3.08
= 32	
c) concare + 5(3) 40	c) = 4-11 M=4-3C
$f(x) = x^2 - 5x^4$	<u>du</u> = -1
$f'(x) = Sx^{4} - 20x^{3}$	
$f''(x) = 20x^3 - 60x^2$	$d\alpha = -du$
20313-60312 <0	$\int \frac{x}{\sqrt{4-x}} dx = \int \frac{4-u}{\sqrt{u}} - du$
$20x^{2}(x-3) < 0$	J14-3 J 14
	$=-\int (4-u)u^{-1/2} du$
/ 103	
<u>ac<0</u> , <u>0<ac<3< u=""></ac<3<></u>	$= -\left(4u - u\right)^{\frac{1}{2}} du$
d) y=f(x)	
y=t(x)	$= - \left[\frac{4u}{m} - \frac{3}{m} \right] + c$
	12 3/2
-11 3	= -8 Tu + 2 Tu3 + c
	3
	$=-8\sqrt{4-x}+\frac{2}{3}\sqrt{(4-x)^3}+c$
QUESTION 2	3
a) $\frac{1}{2} \left(x^{-2} dx = \frac{1}{2} \left[x^{-1} \right] + c \right)$	
2 2 2 1 3	Ouestion 3
= -1 + c	a) $q=1$ $r=2^{a}$ $(n-1)^{a}$
2 %	i) 1 + 2 ⁹ + 2 ²⁹ + · · · 2
	T_1 , T_2 , T_3 , T_n
b) 2 0 1 2 3 4	/ na
5 3 2.9 2.6 198 0	$S_{n} = \frac{1(2-1)}{2a-1} $ required
F y, y 2 y 3 L	2 - 1

$y-2=\pm\sqrt{4-x}$	ii) A = 1 h (a+b)
$u = 2 \stackrel{?}{=} \sqrt{4-\infty}$	Irap
J	$=\frac{1}{3}\left(\frac{1}{3}\sqrt{400-x^2}\right)\left(\frac{20+x}{20+x}\right)$
use y = 2 - 14-x	<u> </u>
40	$= \bot (x+20)(\sqrt{400-x^2})$
$A = \left(2 - (4-1)^{1/2} \text{ obs.}\right)$	
3/2 74	iii) $u = \frac{1}{4}(x+20)$ $v = (400-x^2)^{-1}$
$= \left[2x + \frac{2(4-x)^{3/2}}{2} \right]_{0}^{4}$	$u' = \frac{1}{4} e' \qquad v' = \frac{1}{2} \cdot -2 \circ e' \left(400 - x^2\right)^{1/2}$
5	2. 20(100 %)
=8 - (0 + 16)	v = - &
= 3 unit2	V400-x2
	$0/A = \sqrt{400-x^2} - \alpha (x+20)$
QUESTION 5	cha 4 4 400-x=
a) ii)	
	$= 400-x^2 - x(x+20)$
800,000	4 \ 400 - 312
	2 2
	$= 400 - 31^2 - 31^2 - 2071$ $4\sqrt{400 - 31^2}$
i) no. unemployed decreasing	7 400-32
B	- L 400 -2x2-20x
10 (radius)	= 4 \ \ \sqrt{400 - xi^2}
	0=1A tq 12 (v)
Ex	$400 - 2)1^2 - 20x = 0$
$10^2 = \left(\frac{\alpha}{2}\right)^2 + \left(BE\right)^2$	$200 - 31^2 - 10 = 0$
•	$(\chi-10)(\chi+20)=0$
(BB) = 100- x	N = 10
100 = 32	7 10 10 10
BE= 4.00 22	x 10 10 10 10 10 10 10 10 10 10 10 10 10
2 h = 2	
$BE = \frac{1}{2} \sqrt{400 - 3c^2}$	Max x = 10
	BC= 10 cm

