Extended BC1

April 10, 2020

Γ_1

For a sequence of events $\{E_n\}_{n\in\mathbb{N}}$ with respect to probability measure p, if there is $p(E_n^c\cap E_{n+1})<\infty$ and $\lim_{n\to\infty}E_n=0$, then $p(E_n\ i.o.)=1$

Proof. Let $G_m = \bigcup_{n>m} E_n$ and $G'_m = \bigcup_{n\geq m} (E_n^c \cap E_{n+1})$. Then there is:

$$G'_m = \bigcup_{n \ge m} (E_n^c \cap E_{n+1}) = (\bigcup_{n > m} E_n) / (E_m \cap E_{m+1}) = G_m / (E_m \cap E_{m+1})$$

Then use (1.9,b) and (1.10,a) in textbook there is:

$$p(E_n i.o.) = p(\cap_{m \in \mathbb{Z}^+} G_m) \le p(G_m) \le p(G'_m) + p(E_m)$$

As $p(G'_m) \leq \sum_{n \geq m} (E_n^c \cap E_{n+1})$, let $m \uparrow \infty$ there is $\lim_{m \to \infty} p(G'_m) = 0$. By assumption there is $\lim_{m \to \infty} p(E_m) = 0$.

Combining the two result, let $m \uparrow \infty$ there is

$$0 \le p(E_n i.o.) \le \lim m \to \infty p(G'_m) + p(E_m) = 0$$

Now construct a condition that does not fit the condition of normal BC1 but fit this condition: For a point x on [0,1], E_n is that x is smaller than $\frac{1}{n}$, so $p(E_n) = \frac{1}{n}$ (thus $p(E_n) \downarrow 0$) and $p(E_{n-1}^c \cap E_n) = 0$ (thus the sum is $0 < \infty$), while $\sum_n p(E_n) = \infty$.

It is obvious that $p(E_n i.o.) = 0$ (only x = 0 makes it infinitely often).