

게임 소개

포탈 (PORTAL)

플레이어는 실험체 Chell이 되어, Aperture Science 연구소에서 깨어난다. Al GLaDOS의 지시에 따라 일련의 실험을 수행하며 퍼즐을 해결해 나가야 한다. 하지만 실험은 점점 이상해지고, GLaDOS의 의도도 드러나기 시작한다.

- '포탈건'을 사용해 공간을 이동하며 퍼즐을 푸는 1인칭 플랫포머 게임
- 파란색 / 주황색 포탈을 쏴 공간을 연결
- 중력, 반사, 가속도 등을 활용한 물리 기반 퍼즐

게임명	PORTAL
장르	1인칭 퍼즐 플랫포머
개발	밸브 코퍼레이션
유통	밸브 코퍼레이션
출시일	2007. 10. 09.
개발 엔진	소스 엔진
플랫폼	Windows, PS, NS, Xbox 등

스테이지 구성을 활용한 교차학습 레벨디자인

스테이지 구성

19개의 실험실을 순차적으로 클리어하는 스테이지 구성

처음에는 단일 조작만 가능 ⇒ 점차 기믹이 추가됨 별도의 튜토리얼이 없으나 퍼즐을 통해 점진적으로 기능/규칙을 학습하도록 유도

스테이지 구성을 활용한 교차학습 레벨디자인

스테이지 초반부에 해당 스테이지에서 요구하는 기믹을 안내

스테이지 00 - 02	포탈 사용 X
스테이지 03 - 05	단방향 포탈
스테이지 06 - 08	출입구 연계 인지
스테이지 09 - 11	경사면/가속도 활용
스테이지 12 - 14	양방향 포탈 활용
스테이지 15 - 17	복합 조작과 응용
스테이지 18 - 19	원거리 포탈
엔딩	퍼즐 ⇒ 탈출로의 전환

전형적인 A - B - AB - C - AC - BC - ABC의 레벨디자인 방식 활용 ex) 06에서 버튼-문 개폐 학습 ⇒ 08에서 버튼-박스배치 응용

교차학습 레벨디자인의 장점

플레이어가 이전 경험을 기반으로 자연스럽게 새로운 개념을 습득하고, 이를 바탕으로 점점 더 복잡한 퍼즐을 해결할 수 있도록 설계된 방식 학습 곡선을 완만하게 만들어 몰입감과 성취감을 극대화하는 데 효과적

교차학습 레벨디자인의 장점

1. 자연스러운 학습 유도

- 플레이어가 이전 레벨에서 배운 지식을 활용해 다음 퍼즐을 해결
- 시도-실패-성공의 과정을 통해 능동적으로 규칙을 이해
- 레벨이 점진적으로 복잡해짐 ⇒ 플레이어는 "내가 성장하고 있다"는 피드백을 받게 됨

2. 반복적이지만 지루하지 않은 디자인

- 비슷한 메커니즘을 반복해서 보여주되 조합 방식이 다름
- 이전 메커니즘에 새로운 요소를 얹는 식으로 디자인하여 학습과 응용을 병행

3. 플레이어의 능동적 참여 유도

- 강의식 설명 없이, 플레이어가 직접 조작하고 실험하면서 학습
- 한 레벨에서 익힌 규칙이 이후 레벨에서도 유사하게 적용
- 플레이어는 "이건 전에 해봤던 상황이랑 비슷하군" ⇒ 문제 해결 전략을 스스로 떠올림 ⇒ 몰입 증대

교차학습 사례 - 스테이지 00

전형적인 교차학습 레벨디자인 활용 사례

가장 첫 스테이지로, A - B - A' - A'B 방식으로 플레이어에게 퍼즐을 학습시킴

1층

교차학습 사례 - 스테이지 00

실험실이라는 컨셉에 맞춘 명료한 공간디자인이 특징 직관성은 좋지만 공간이 다소 단조로워질 수 있다는 단점이 있음

직관적인 게임 디자인

- 1. 명확한 색상 구분 포탈의 입구/출구를 비롯해 상호작용이 필요한 기믹들은 명확한 색상+이펙트 사용
- 2. HUD 최소화 팝업창 등으로 기능을 설명하지 않고 인게임 피드백으로 대부분의 정보 전달
- 3. 사운드 디자인 버튼 클릭음, 문 개폐음 등 명확한 신호음 사용
- 4. 직선 구획 다수

단조로움 탈피 방식

(1) 창문을 사용한 예습-복습 공간 활용 창 레이아웃 사이로 시야가 교차되며 플레이어의 흥미를 불러일으키는 역할

단조로움 탈피 방식

(2) 복도에서는 천장을 낮게 눌러주고, 퍼즐 부분에서는 탁 트인 공간을 사용 탁 트인 느낌으로 공간 환기 및 압도감 증진

칼럼

https://medium.com/@ubaidkotwal/the-last-of-us-part-2-level-design-study-364ddaeec36f

라스트 오브 어스 2 레벨 디자이너가 작성한 칼럼

시애틀 시티에서 영감 ⇒ 구글어스 활용 ⇒ 플롯을 기반으로 게임 플레이 흐름과 비트 정의

랜드마크와 보조 POI를 적절히 활용해 플레이어 유도

1 교외 (생존자 캠프 탐색) 2 도시 (창문 활용한 레이아웃 구성, 직관적 유도) 3 호텔 (무너진 건물, 긴장감, 위험함, 바닥 무너뜨림 활용한 밀기 기믹 존재)

