#codeFor15 Challenge14.1 A Perfect Permutation

A *permutation* is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Let's denote the i-th element of permutation p as pi. We'll call number n the size of permutation p1, p2, ..., pn.

Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A *perfect* permutation is such permutation p that for any i $(1 \le i \le n)$ (n is the permutation size) the following equations hold ppi = i and $pi \ne i$. Nickolas asks you to print any perfect permutation of size n for the given n.

Input

A single line contains a single integer n ($1 \le n \le 100$) — the permutation size.

Output

If a perfect permutation of size n doesn't exist, print a single integer -1. Otherwise print n distinct integers from 1 to n, p1, p2, ..., pn — permutation p, that is perfect. Separate printed numbers by whitespaces

Examples

input
1
output
-1
input
2
output
2 1
input
4
output
2 1 4 3