Renewal theory based Reinforcement Learning for Markov processes with controlled restarts

Jayakumar Subramanian

Joint work with Jhelum Chakravorty & Aditya Mahajan

McGill University

JOPT2017, May 10, 2017

Reinforcement Learning

Some Application Examples

- Self-driving cars
- Smart home applications NEST
- Game playing AlphaGO

- Conversational Agents / Chatbots
- Recommender Systems
- Portfolio Management

Types of RL

Model-Based RL

- Transitions and rewards are learnt from sample trajectories
- Planning Standard DP or Approximate DP used to find optimal policy

Model-Free RL

- Value or Action Value function or performance estimated directly without estimating T and R
- Optimal policy then determined using these estimates

Model Free RL

Critic Only

- Only (Action) Value Function (Q or V) modelled and estimated
- Implicit Policy function Greedy in Q Values

Actor Only

- Only Policy Function (Q or V) modelled typically a parametrized policy
- Performance is estimated (Implicit Critic)

Actor Critic

- Both (action) value function and policy function modelled and estimated
- Attempts to combine best of both worlds

Basic Algorithm

Policy Evaluation

MC Minimum Mean Squared Error Estimate

TD Maximum Likelihood Estimate

Relative
Convergence
Speed – Open
Question (&
problem
dependent)

TD (λ) – in between TD and MC methods, $\lambda \in [0,1]$

MethodsConcernMonte-Carlo (MC) methodsHigh variance estimatesTemporal Difference (TD) methodsHigh bias estimates

Policy Improvement

Key Steps

- Policy Parametrized by parameters: θ
- Performance: J_{θ}
- Policy Improvement: Gradient Ascent: $\theta_{n+1} = \theta_n + \alpha_n \nabla_{\theta} J_{\theta}$
- Stochastic Finite Difference : $\nabla J_{\theta} \approx \frac{1}{\delta} \big[J_{\theta+\delta} J_{\theta} \big]$
 - SPSA
 - SF
- Quotient Rule: $\theta_{n+1} = \theta_n + \alpha_n [T_{\theta}(s_*^+) R_{\theta+\delta}(s_*^+) R_{\theta}(s_*^+) T_{\theta+\delta}(s_*^+)]$
- Policy Gradient Theorem : $\nabla J_{\theta} = \sum_{t=1}^{\tau(s_{\star}^{-})} f_{\theta}^{score}(S_{t}^{-}, A_{t}) V_{\pi}^{+}(S_{t}^{-})$
- Score function: $f_{\theta}^{score}(s^-, a) = \nabla_{\theta} \log[\pi_{\theta}(s^-, a)]$

Model

Pre-decision State, Action, Post-decision State:

Controlled transition from Pre-decision state to Post-decision state:

$$\mathbb{P}(S_t^+ = s_t^+ | S_{1:t}^- = s_{1:t}^-, A_{1:t} = a_{1:t}, S_{1:t-1}^+ = s_{1:t-1}^+)
= \mathbb{P}(S_t^+ = s_t^+ | S_t^- = s_t^-, A_t = a_t)
=: P^+(s_t^+ | s_t^-, a_t)$$

Uncontrolled transition from post-decision state to next pre-decision state:

$$\mathbb{P}(S_{t+1}^- = s_{t+1}^- | S_{1:t}^- = s_{1:t}^-, A_{1:t} = a_{1:t}, S_{1:t}^+ = s_{1:t}^+)
= \mathbb{P}(S_{t+1}^- = s_{t+1}^- | S_t^+ = s_t^+)
=: P^-(s_{t+1}^- | s_t^+)$$

• Per step reward: $r(S_t^-, A_t, S_t^+)$

Value and Action Value Functions

Regenerative MDPs – Post Decision State Variable

- Regenerative in terms of the post-decision state variable
- Regenerative → Process restarts → Same state revisited infinitely often
- Stopping time: Time till restart: $\tau(s^+)$
- Trajectories between stopping times: Regenerative Cycles
- Regenerative cycles are independent of each other
- (Action) Value function estimated in terms of post-decision state variable

$$\begin{split} V_{\pi}^{+}(s^{+}) &= \mathbb{E}_{A_{t} \sim \pi(S_{t}^{-})} \left[\sum_{s^{-} \in \mathcal{S}^{-}} \gamma^{t-1} r(S_{t}^{-}, A_{t}, S_{t}^{+}) \, \middle| \, S_{0}^{+} = s^{+} \right] \\ V_{\pi}^{+}(s^{+}) &= \sum_{s^{-} \in \mathcal{S}^{-}} P^{-}(s^{-}|s^{+}) V_{\pi}^{-}(s^{-}) \\ V_{\pi}^{-}(s^{-}) &= \sum_{a \in \mathcal{A}} \pi(s^{-}, a) Q_{\pi}(s^{-}, a) \\ Q_{\pi}(s^{-}, a) &= \sum_{s^{+} \in \mathcal{S}^{+}} P^{-}(s^{+}|s^{-}, a) \big[r(s^{-}, a, s^{+}) + \gamma V_{\pi}^{+}(s^{+}) \big] \end{split}$$

Post Decision State: Example

Inventory Control Problem

Stock Evolution Equation:

$$S_{t+1}^- = f(S_t^-, A_t) - W_t$$

 $S_t^+ = f(S_t^-, A_t)$

• Per step cost:

$$c(S_t^-, A_t) = d(S_t^-, A_t) + p(A_t, \lambda)$$

 $r(S_t^-, A_t) = -c(S_t^-, A_t)$

Base-stock strategy (two threshold-based):

$$\theta = [k1, k2]$$
 $A = \mathbb{1}_{S^- > k1}$
 $f(S^-, A = 0) = S^ f(S^-, A = 1) = k2$

Renewal Relationships

Infinite Horizon Performance – Estimated using (finite horizon) Regenerative Cycle

Exp. discounted restart reward

$$R_{\pi}(s^{+}) = \mathbb{E}_{A_{t} \sim \pi(S_{t}^{-})} \left[\sum_{t=1}^{\tau(s^{+})} \gamma^{t-1} r(S_{t}^{-}, A_{t}, S_{t}^{+}) \middle| S_{0}^{+} = s^{+} \right]$$

Exp. discounted restart time

$$T_{\pi}(s^{+}) = \mathbb{E}_{A_{t} \sim \pi(S_{t}^{-})} \left[\sum_{t=1}^{\tau(s^{+})} \gamma^{t-1} \mid S_{0}^{+} = s^{+} \right]$$

For Reference State

$$V_{\pi}^{+}(s_{*}^{+}) = \frac{R_{\pi}(s_{*}^{+})}{T_{\pi}(s_{*}^{+})}$$

For any other State

$$V_{\pi}^{+}(s^{+}) = R_{\pi}(s^{+}) + [1 - (1 - \gamma)T_{\pi}(s^{+})]V_{\pi}^{+}(s_{*}^{+})$$

Renewal Theory: Policy Evaluation

Renewal Theory: Policy Improvement

Remote Estimation Problem

Model

Applications

Algorithm

Optimal Transmitter

$$U_t = f_t^*(X_t, U_{0:t-1}) = f^*(X_t) = \begin{cases} 1, & \text{if } |X_t - a\hat{X}_t| \ge k \\ 0, & \text{if } |X_t - a\hat{X}_t| < k \end{cases}$$

15

Optimal Receiver (Estimator)

$$\hat{X}_t = g_t^*(Y_t) = g^*(Y_t) = \begin{cases} Y_t, & \text{if } Y_t \neq \mathfrak{E}; \\ a\hat{X}_{t-1}, & \text{if } Y_t = \mathfrak{E}. \end{cases}$$

Algorithm

Results -1/2

λ	Threshold k*			Performance $C^*_{\beta}(\lambda)$		
	SA	FIE	Error (Absolute)	SA	FIE	Error (Absolute)
100	4.9355	4.9298	5.7×10^{-3}	5.2511	5.2511	9.1 ×10 ⁻⁶
200	6.3221	6.3086	1.4×10^{-2}	6.5221	6.5221	3.5×10^{-5}
300	7.3421	7.3289	1.3×10^{-2}	7.2208	7.2208	2.4×10^{-5}
400	8.2118	8.1764	3.5×10^{-2}	7.6654	7.6652	1.4×10^{-4}
500	8.9469	8.9177	2.9×10^{-2}	7.9700	7.9700	7.2×10^{-5}
600	9.5830	9.5854	2.5×10^{-3}	8.1886	8.1886	4.7×10^{-7}
700	10.0803	10.1984	1.2×10^{-1}	8.3515	8.3507	8.0×10^{-4}

Difference less than 10⁻² in most cases

Results -2/2

- Results in line with expectation
 - Convergence

Conclusions

- Use of RMC methods in RL
- Applicability in Actor Only and Actor Critic methods
- Networked Control System example
- Extension to other problems

Thank You