Dijkstra Worksheet

Name: NetID: Signature:
1. What is the defining characteristic of a Max Heap? How can the characteristics of Heaps be used to implement a Priority Queue?
2. Suppose we have an array representation of a Binary Heap. Find the parent, left child, and right child of an element \pmb{i} .
3. How can you insert into a Heap? Assume the Heap is implemented as an array. Write some code!
4. Let's say you have a very important packet to send from your computer to another computer, find the shortest path from your computer to all other nodes in the computer network. Here is Dijkstra:
<pre>def Dijkstra(Graph, start, end):</pre>
PQ = Queue.PriorityQueue()

Dijkstra Worksheet

```
foreach node in Graph:
  node.cost = infinity
start.cost = 0
foreach node in Graph:
  PQ.insert(n,node.cost)
while not(PQ.empty()):
  u = PQ.extract()
  if u == end:
    break
  foreach neighbor v in u.neighbors:
    w = cost from v to u
    newCost = u.cost + w
    if (newCost < v.cost):</pre>
      PQ.decreasekey(v,newcost)
      v.cost = newCost
      v.predecessor = u
```

Here is a graph. Use Dijkstra to find the shortest path from A to all nodes in the graph. Go through iteration by iteration, update the costs, as well as u from the psuedocode. ∞

	и	A	В	С	D	Е	F	G	I
1	A	0	inf	8	30	inf	inf	inf	12
2	AC	0	14	8	30				
3									
4									
5									
6									