4. Entity
Relationship
(ER)
Modeling

Database Design & Business Application Development

Learning Objectives

- After completing this class, you will be able to:
 - Identify the main characteristics of entity relationship components
 - Describe how relationships between entities are defined, refined, and incorporated into the database design process
 - See how ERD components affect database design and implementation
 - Understand that real-world database design often requires the reconciliation of conflicting goals

The Entity Relationship Model (ERM)

Forms the basis of an entity relationship diagram (ERD)

 Conceptual database as viewed by end user Database's main components

- Entities
- Attributes
- Relationships

Entities

Object of interest to the end user

 Refers to the entity set and not to a single entity occurrence

ERM corresponds to a table—not to a row—in the relational environment

 ERM refers to a table row as an entity instance or entity occurrence

In Chen, Crow's Foot, and UML notations, an entity is represented by a rectangle that contains the entity's name

• The entity name, a noun, is usually written in all capital letters

Attributes (1 of 7)

- Characteristics of entities
 - Required attribute: must have a value and cannot be left empty
 - Optional attribute: does not require a value and can be left empty
 - Domain: set of possible values for a given attribute
 - Identifier: one or more attributes that uniquely identify each entity instance
 - Composite identifier: primary key composed of more than one attribute
 - Composite attribute: attribute that can be subdivided to yield additional attributes
 - Simple attribute: attribute that cannot be subdivided
 - Single-valued attribute: attribute that has only a single value
 - Multivalued attributes: attributes that have many values

Attributes (2 of 7)

Attributes (3 of 7)

Attributes (4 of 7)

- Requirements of multivalued attributes
 - Create several new attributes, one for each component of the original multivalued attribute
 - Develop a new entity composed of the original multivalued attribute's components
- Derived attribute: attribute whose value is calculated from other attributes
 - Derived using an algorithm

Attributes (5 of 7)

Attributes (6 of 7)

Attributes (7 of 7)

Table 4.2	Advantages and Disadvantages of Storing Derived Attributes	
	Derived Attribute: Stored	Derived Attribute: Not Stored
Advantage	Saves CPU processing cycles Saves data access time Data value is readily available Can be used to keep track of historical data	Saves storage space Computation always yields current value
Disadvantage	Requires constant maintenance to ensure derived value is current, especially if any values used in the calculation change	Uses CPU processing cycles Increases data access time Adds coding complexity to queries

Relationships, Connectivity, and Cardinality

- Association between entities that always operate in both directions
 - Participants: entities that participate in a relationship
- Connectivity: describes the relationship classification
 - Include 1:1, 1:M, and M:N
- Cardinality: expresses the minimum and maximum number of entity occurrences associated with one occurrence of related entity
 - In the ERD, cardinality is indicated by placing the appropriate numbers beside the entities, using the format (x, y)

Existence Dependence

Existence dependence

• Entity exists in the database only when it is associated with another related entity occurrence

Existence independence

- Entity exists apart from all of its related entities
- Referred to as a strong entity or regular entity

Relationship Strength

Weak (non-identifying) relationship

 Primary key of the related entity does not contain a primary key component of the parent entity

Strong (identifying) relationships

 Primary key of the related entity contains a primary key component of the parent entity

Weak Entities (1 of 3)

Conditions of a weak entity

- Existence-dependent
- Has a primary key that is partially or totally derived from parent entity in the relationship

Database designer determines whether an entity is weak

Based on business rules

Weak Entities (2 of 3)

Weak Entities (3 of 3)

FIGURE 4.11 A WEAK ENTITY IN A STRONG RELATIONSHIP

Table name: EMPLOYEE

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_DOB	EMP_HIREDATE
1001	Callifante	Jeanine	J	12-Mar-64	25-May-97
1002	Smithson	∨∕illiam	K	23-Nov-70	28-May-97
1003	Washington	Herman	Н	15-Aug-68	28-May-97
1004	Chen	Lydia	В	23-Mar-74	15-Oct-98
1005	Johnson	Melanie		28-Sep-66	20-Dec-98
1006	Ortega	Jorge	G	12-Jul-79	05-Jan-02
1007	O'Donnell	Peter	D	10-Jun-71	23-Jun-02
1008	Brzenski	Barbara	A	12-Feb-70	01-Nov-03

Table name: DEPENDENT

EMP_NUM	DEP_NUM	DEP_FNAME	DEP_DOB
1001	1	Annelise	05-Dec-97
1001	2	Jorge	30-Sep-02
1003	1	Suzanne	25-Jan-04
1006	1	Carlos	25-May-01
1008	1	Michael	19-Feb-95
1008	2	George	27-Jun-98
1008	3	Katherine	18-Aug-03

Database name: Ch04_ShortCo

Relationship Participation (1 of 3)

Optional participation

One entity occurrence does not require a corresponding entity occurrence in a particular relationship

Mandatory participation

One entity occurrence requires a corresponding entity occurrence in a particular relationship

Relationship Participation (2 of 3)

Relationship Participation (3 of 3)

Relationship Degree (1 of 2)

- Indicates the number of entities or participants associated with a relationship
 - Unary relationship: association is maintained within a single entity
 - Binary relationship: two entities are associated
 - Ternary relationship: three entities are associated
 - Recursive relationship: relationship exists within a single entity type

Relationship Degree (2 of 2)

Recursive Relationships (1 of 2)

Relationship can exist between occurrences of the same entity set

Naturally, such a condition is found within a unary relationship

Common in manufacturing industries

One common pitfall when working with unary relationships is to confuse participation with referential integrity

Similar because they are both implemented through constraints on the same set of attributes

Recursive Relationships (2 of 2)

Associative (Composite) Entities (1 of 2)

Used to represent an M:N relationship between two or more entities

Has a 1:M relationship with the parent entities

 Composed of the primary key attributes of each parent entity

May also contain additional attributes that play no role in connective process

Associative (Composite) Entities (2 of 2)

Developing an ER Diagram (1 of 11)

- Activities involved in building and ERD
 - Create a detailed narrative of the organization's description of operations
 - Identify business rules based on the descriptions
 - Identify main entities and relationships from the business rules
 - Develop the initial ERD
 - Identify the attributes and primary keys that adequately describe entities
 - Revise and review ERD

Developing an ER Diagram (2 of 11)

Developing an ER Diagram (3 of 11)

Developing an ER Diagram (4 of 11)

Developing an ER Diagram (5 of 11)

Developing an ER Diagram (6 of 11)

Developing an ER Diagram (7 of 11)

Developing an ER Diagram (8 of 11)

Developing an ER Diagram (9 of 11)

Developing an ER Diagram (10 of 11)

Developing an ER Diagram (11 of 11)

Table 4.4	Components of the ERM		
Entity	Relationship	Connectivity	Entity
SCHOOL	operates	1:M	DEPARTMENT
DEPARTMENT	has	1:M	STUDENT
DEPARTMENT	employs	1:M	PROFESSOR
DEPARTMENT	offers	1:M	COURSE
COURSE	generates	1:M	CLASS
SEMESTER	includes	1:M	CLASS
PROFESSOR	is dean of	1:1	SCHOOL
PROFESSOR	chairs	1:1	DEPARTMENT
PROFESSOR	teaches	1:M	CLASS
PROFESSOR	advises	1:M	STUDENT
STUDENT	enrolls in	M:N	CLASS
BUILDING	contains	1:M	ROOM
ROOM	is used for	1:M	CLASS
	Note: ENROLL is the composite entity that implements the M:N relationship "STUDENT enrolls in CLASS."		

Database Design Challenges: Conflicting Goals (1 of 2)

- Database designers must often make design compromises that are triggered by conflicting goals
 - Database design must conform to design standards
 - High processing speed may limit the number and complexity of logically desirable relationships
 - Maximum information generation may lead to loss of clean design structures and high transaction speed

Database Design Challenges: Conflicting Goals 12 of 2) FIGURE 4.38 VARIOUS IMPLEMENTATIONS OF THE 1:1 RECURSIVE RELATIONSHIP

Summary

The ERM uses ERDs to represent the conceptual database as viewed by the end user

Connectivity describes the relationship classification (1:1, 1:M, or M:N)

In the ERM, an M:N relationship is valid at the conceptual level

ERDs may be based on many different ERMs

Unified Modeling Language (UML) class diagrams are used to represent the static data structures in a data model

Database designers, no matter how well they can produce designs that conform to all applicable modeling conventions, are often forced to make design compromises

References

- Concepts of Database Management, 10th Edition | Lisa Friedrichsen, Lisa Ruffolo, Ellen Monk, Joy Starks, Philip Pratt, Mary Last | ISBN: 978-0357422083 © 2020 | Publisher Course Technology – Cengage Learning
- Database Concepts, 9th Edition | David M. Kroenke, David Auer, David J. Auer, Scott L. Vandenberg, Robert C. Yoder | ISBN: 978-0135188392 © 2020 | Publisher Pearson Education
- Database System Concepts 7E, Abraham Silberschatz, Henry F. Korth, S. Sudarshan ©2020 McGraw Hill
- DATABASE SYSTEMS Design, Implementation, and Management 13E, Carlos Coronel | Steven Morris, SBN-13: 978-1337627900 © 2018 Cengage Learning, Inc.
- Microsoft SQL documentation https://docs.microsoft.com/en-us/sql/?view=sql-server-ver15
- Educational SQL resources https://docs.microsoft.com/en-us/sql/sql-server/educational-sql-resources?view=sql-server-ver15
- SQL Server Technical Documentation https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
- SQL Developer Documentation https://docs.oracle.com/cd/E12151 01/index.htm