

Technical note

Improvements of subgroup method based on fine group slowing-down calculation for resonance self-shielding treatment

Song Li, Zhijian Zhang*, Qian Zhang*, Qiang Zhao

Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China

Guillermo Ibarra

Nuclear Engineering Research Seminar, March 9th, 2021

Image credit: Cacuci, D. G. (Ed.). (2010). Handbook of Nuclear Engineering: Springer Science & Business Media.

Energy Self-Shielding

Energy Self-Shielding

Spatial Self-Shielding

Self shielding factors:

► Fuel composition

- ► Fuel composition
- ► Fuel to coolant ratio

- ► Fuel composition
- ► Fuel to coolant ratio
- ► Fuel pin spatial arrangement within the lattice,

- ► Fuel composition
- ► Fuel to coolant ratio
- ► Fuel pin spatial arrangement within the lattice,
- Fuel region subdivision, and

- ► Fuel composition
- ► Fuel to coolant ratio
- ► Fuel pin spatial arrangement within the lattice,
- Fuel region subdivision, and
- Temperature.

Traditional solution methods:

► Equivalence theory

- ► Equivalence theory
- Ultrafine group method

- Equivalence theory
- Ultrafine group method
- Subgroup method

Fine-mesh Subgroup Method (FSM) Proposal

Traditional solution methods:

▶ 408 group structure: 56 fast, 289 resonance, 63 thermal

Fine-mesh Subgroup Method (FSM) Proposal

- ▶ 408 group structure: 56 fast, 289 resonance, 63 thermal
- Micro level interpolation optimization

- ▶ 408 group structure: 56 fast, 289 resonance, 63 thermal
- Micro level interpolation optimization
- ► Condensed 47 group structure with 16 resonance groups

- ▶ 408 group structure: 56 fast, 289 resonance, 63 thermal
- Micro level interpolation optimization
- ► Condensed 47 group structure with 16 resonance groups
- Only down-scattering source for resonance groups

Single Cell Problems

Typical UO₂ Pellet

Table 2

Calculating cost and eigenvalue error of UO₂ pellet.

Method	Fixed source equation number	Time (s)	k _{eff} (pcm)	
MCNP	-	-	1.53226	-
FSM	1830	34.5	1.53272	46
UFG	204,000	1399.5	1.53208	-18
SGM	636	19.2	1.52675	-551

Burnup UO₂ Pellet

Table 3					
Calculating	cost and	eigenvalue	error of	burn-up	UO2 pellet.

Method	Fixed source equation number	Time (s)	k _{eff} (pcm)	
MCNP	_	_	1.18932	_
FSM	6900	835.1	1.18914	18
UFG	5,440,000	7269.2	1.18868	-64
SGM	6920	634.4	1.18347	-584

lattice Problems

Table 4

Calculating cost and eigenvalue error of UO₂ - MOX lattice.

-	1.35551	-
911.5	1.35633	82
2357.2	1.35588	37
682.3	1.35053	-498
	911.5 2357.2	911.5 1.35633 2357.2 1.35588

lattice Problems

Pin 1 - Gd

BWR lattice with Gadolinium

Table 5					
Calculating cost and eigenvalue	еггог	of BV	VR lattice	with	Gadoliniums.

Method	Fixed source equation number	Time (s)	k _{eff} (pcm)	
MCNP	_	_	1.22763	_
FSM	282,406	596.4	1.22914	151
UFG	284,920,000	9927	1.22867	104
SGM	241,344	382.3	1.22411	-402

Thoughts

► Only downscattering source term

Thoughts

- Only downscattering source term
- ► How important is the speed up?

Thoughts

- Only downscattering source term
- How important is the speed up?
- Micro optimization worth exploring

Thanks!

Questions?