| Printed Pages: 4    | 280          | NCS-301           |
|---------------------|--------------|-------------------|
| (Following Paper II |              | be filled in your |
|                     | Answer Book) |                   |
| Paper ID :110301    | Roll No.     |                   |

#### B.Tech.

# (SEM. III) THEORY EXAMINATION, 2015-16 DATA STRUCTURES USING C

[Time:3 hours] [MaximumMarks:100

### Section-A

- Q.1 Attempt all parts. All parts carry equal marks. Write answer of each part in short.  $(10\times2=20)$ 
  - (a) Given a 2-D array A [-100:100,-5:50]. Find the address of element A [99,49] considering the base address 10 and each element requires 4 bytes for storage. Follow row major order.
  - (b) What are the various asymptotic notations? Explain the Big Oh notation.
  - (c) What are the notations used in evaluation of arithmetic expressions using prefix and postfix forms?
  - (d) Classify the hashing functions based on the various methods by which the key value is found.
  - (e) What is the maximum height of any AVL tree with 7 nodes?

- (f) If the Tower of Hanoi is operated on n=10 disks, calculate the total number of moves.
- (g) Define connected and strongly connected graph.
- (h) Translate infix expression into its equivalent post fix expression: A\*(B+D)/E-F\*(G+H/K).
- (i) For tree construction which is the suitable and efficient data structure and why?
- (j) Explain the application of sparse matrices?

# Section-B

Note: Attempt any five questions from this section.

 $(5 \times 10 = 50)$ 

- Consider the linear arrays AAA[5:50], BBB[-5:10] and CCC [1:8]
  - a) Find the number of elements in each array.
  - b) Suppose base (AAA).=300 and w=4 words per memory cell for AAA. Find the address of AAA[15],AAA[35] and AAA[55].
- 3. Describe all rotations in AVL tree. Construct AVL tree from the followings nodes: B, C, G, E, F, D, A.
- 4. Explain binary search tree and its operations. make a binary search tree for the following sequence of numbers, show all steps: 45,32,90,34,68,72,15,24,30,66,11,50,10.

- 5. Explain Djiksatra's algorithm with suitable example.
- 6. Write a C-Function for Linked List Implementation of stack. Write all the Primitive Operations.
- 7. Draw a binary tree which following traversal:

Inorder: DBHEA1FJCG

Preorder: ABDEHCFIJG

Q8. Consider the following undirected graph.



- a) Find the adjacency list representation of the graph.
- b) Find a minimum cost spanning tree by Kruskal's algorithm.

9. How do you calculate the complexity of sorting algorithms? Also write a recursive function in 'C' to implement the merge sort on given set of integers.

## Section-C

Attempt any two questions from this section.

 $(2 \times 15 = 30)$ 

10. What are doubly linked lists? Write a C program to create doubly linked list.

## OR

How do you find the complexity of an algorithm? What is the relation between the time and space complexities of an algorithm? Justify your answer with an example.

- 11. Write an algorithm for finding solution to the Tower of Hanoi problem. Explain the working of your algorithm (with 4 disks) with diagrams.
- 12. Define a B-Tree. What are the applications of B-Tree? Draw a B-Tree of order 4 by insertion of the following keys in order: Z, U, A, I, W, L, P, X, C, J, D, M, T, B, Q, E, H, S, K, N, R, G, Y, F, O, V.

...,