		ALGE	BRA 2 PRACTICE TES	ST 2				
	nme		Date					
Di	rections: Complete as m	any problems as you can	in the 30 minutes allotte	ed to you. No calculators	.!			
1.	Which is the largest numb	per?						
	(A) $-37\frac{2}{3}$	(B) −37.6	(C) -37.12	(D) $-37\frac{17}{24}$	(E)	$-37\frac{33}{48}$		
2.	$16.7\overline{45}$ is an element of	what set(s) of numbers?						
	I. Irrational	II. Rational	III. Real	(-) - 1	(-)			
	(A) I	(B) II	(C) III	(D) I and III	(E)	II and III		
	Simplify $\left(a^{y+4}\right)^2$							
	(A) a^{2y+8}	(B) $a^{y^2+8y+16}$	(C) a^{y^2+16}	(D) a^{y^2+8}	(E)	a^{y+6}		
4.	Which point does not satisfy the linear equation $y = -\frac{2}{3}x + 3$?							
	(A) $(-6,7)$		(C) $(12,-5)$	(D) $(-9, -6)$	(E)	(3,1)		
5.	Evaluate $g - h(-g - h)$	if $g = -5$ and $h = -2$.						
	(A) -49	(B) −21	(C) −19	(D) 1	(E)	9		
6.	In k more years, Sue will (\mathbf{A}) $h-k-j$		was Sue j years ago? (C) $h+k-j$	(D) $h-k+j$	(E)	h-k		
7.	If $x^{\frac{3}{4}}y^{\frac{2}{3}} = 16$, find the value of $\frac{1}{x^{\frac{3}{4}}}$ when $y^{\frac{2}{3}}$ equals 2.							
	(A) $\frac{1}{14}$	$(B) \frac{1}{8}$	(C) 8	(D) 14	(E)	32		
8.	$4a^2 - \frac{3}{a}$ is equivalent to which of the following?							
	(A) <i>a</i>	(B) a^2	(C) $3\frac{2}{3}a$	(D) 4 <i>a</i> – 3	(E)	$\frac{4a^3-3}{a}$		
	40% 40%		3			и		
9.	Given $\frac{40\%}{x} + \frac{40\%}{x} = 80$). Find x .						
	(A) 0.0025	(B) 0.005	(C) 0.01	(D) 0.1	(E)	1		
10	. If $m = -3k^4 - 2k^3 + 4k$	$k^2 + 1$ and $n = 6k^4 - 8k^3$	$-10k^2 - 5$, find the value	the of $m-n$.				
	$(\mathbf{A}) \ -9k^4 + 6k^3 - 6k^2 +$			(C) $-9k^4 - 10k^3 + 14k$	$x^2 + 6$	I		
	(D) $-9k^4 + 6k^3 + 14k^2$. ,				
11	. If $\left[(x-y)^{0.25} \right]^4 - 7 = -$	-28.12, find the value of	$3 + \left[(x - y)^{0.25} \right]^4$.					
	(A) -38.12	(B) -32.12	(C) -24.12	(D) −21.12	(E)	-18.12		
12	Find the value of $(\sqrt[3]{-x^2})$	$(x^2-4x)^3$ if $2-x=4$.						
	(A) 0	(B) 1	(C) 4	(D) 10	(E)	12		
13	. Solve $\frac{u_1 w_1}{v_1} = \frac{u_2 w_2}{v_2}$ for	v_2 .						
	$(\mathbf{A}) \ \frac{u_2 v_1 w_2}{u_1 w_1}$	(B) $\frac{u_1 w_1}{u_2 v_1 w_2}$	$(\mathbf{C}) \ \frac{u_1 v_1 w_1}{u_2 w_2}$	$\mathbf{(D)} \ \frac{u_2 w_2}{u_1 v_1 w_1}$	(E)	$\frac{u_1v_1u_2}{w_1w_2}$		

14. If
$$v = -0.5$$
, then which of the following is true?
(A) $\frac{1}{v^8} < \frac{1}{v^9} < \frac{1}{v^{10}}$ (B) $\frac{1}{v^{10}} < \frac{1}{v^9} < \frac{1}{v^8}$ (C) $\frac{1}{v^{10}} < \frac{1}{v^8} < \frac{1}{v^9}$ (D) $\frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}}$ (E) $\frac{1}{v^9} < \frac{1}{v^{10}} < \frac{1}{v^8}$

15. If $\frac{12}{4x^2-9} = 6$, then $\frac{(2x-3)(2x+3)}{12} + 7 =$										
(A) $1\frac{1}{6}$	(B) $7\frac{1}{6}$	(C) 9	(D) 11	(E) 13						
16. If $(a^2 + c^2) + d = e$	$+ f$, then $\frac{(a^2 + c^2)^2}{5} =$									
$(\mathbf{A}) \ \frac{\left(e+f-d\right)^2}{5}$	$\mathbf{(B)} \ \frac{\left(e+f-d\right)^2}{25}$	(C) $\frac{\left(e+f+d\right)^2}{5}$	$\mathbf{(D)} \ \frac{\left(e+f\right)^2}{5d}$	$(\mathbf{E}) \ \frac{\left(e+f\right)^2}{25d^2}$						
17. Given $\frac{-1}{x-3} = \frac{1}{y+2}$, what is the value of $x-1$?								
(A) $-y + 4$	(B) $y + 4$	(C) $y-1$	$(\mathbf{D}) - y$	(E) <i>y</i>						
18. If $16 - 8\sqrt[3]{\frac{g+h}{j+k}} = 4$	$4\sqrt[3]{\frac{g+h}{j+k}} - 8 \text{ , then } \sqrt[3]{\frac{g+h}{j+k}}$	$\frac{h}{k} - 6 =$								
(A) $-5\frac{1}{3}$	(B) −4	(C) 0	(D) 2	(E) 6						
19. Find the value of x if	$x = \frac{\left(\frac{x^2 - x - 6}{x - 3}\right)^4}{\left(\frac{x^2 - 3x - 10}{x - 5}\right)^3} = 6 \text{ whe}$	re $x \neq -2,3,5$.								
(A) -3	(B) 1	(C) 0	(D) 4	(E) 5						
20. What fraction of $4x^6$ is $2x^2$?										
(A) $\frac{2}{x^{-4}}$	$\mathbf{(B)} \ \frac{2}{x^4}$	(C) $\frac{1}{2x^4}$	(D) $\frac{1}{2x^{-4}}$	(E) $2x^4$						
21. Solve $2x = \frac{5+6x}{3}$ for x.										
(A) -5	(B) 0	(C) 1	(D) 5	(E) does not exist						
22. If $x = \frac{m^{-4}b^5}{c^{-2}}$ and $c = \frac{m^{-2}}{b^4}$, then $x =$										
	(B) b^{-3}	(C) $m^{-8}b^{13}$	(D) b^{13}	(E) $m^{-8}b^{-11}$						
23. Given $6 + 2 - d + b =$	2 and $8 + d + 2 = 5 - g$, find	If the value of $\frac{(g+b)^2}{2}$.								
(A) 12.5	(B) 18	(C) 32	(D) 50	(E) 60.5						
24. If the mixed fraction	$a - \frac{b}{c}$ is greater than the mixe	d fraction $x \frac{y}{c}$, find the v	value of $a\frac{b}{c} - x\frac{y}{c}$.							
$(\mathbf{A}) \ \frac{acb - xcy}{c}$	$\mathbf{(B)} \ \frac{xc+y-ac+b}{c}$	(C) $\frac{xc + y - ac - b}{c}$	$\mathbf{(D)} \ \frac{ac+b-xc+y}{c}$	$(\mathbf{E}) \ \frac{ac+b-xc-y}{c}$						
25. If golf balls cost <i>y</i> dollars each, how many can you buy if you have <i>x</i> cents?										
$(\mathbf{A}) \ \frac{100x}{y}$	(B) $\frac{x}{y}$	(C) $\frac{y}{x}$	$\mathbf{(D)} \ \frac{y}{100x}$	$(\mathbf{E}) \ \frac{x}{100y}$						
1. C	ALG 2. E	GEBRA 2 TEST 2 ANSWI 3. A	ERS 4. D	5. E						
6. A	7. B	8. E	9. C	10. D						
11. E 16. A	12. C 17. D	13. A 18. B	14. D 19. D	15. B 20. C						
21. E	22. A	23. E	24. E	25. E						