

SEARCH:

Title: US-10-590-810-26_COPY_13_555
Perfect score: 2763
Sequence: 1 SPKALEEAPWPPPEGAFVGF.....LAVPLEVEVGIGEDWLSAKE 543

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 12150526 seqs, 2531973831 residues

Total number of hits satisfying chosen parameters: 12150526

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Pending_Patents_AA_Main:*

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	2763	100.0	543	27	US-09-791-537-91889	Sequence 91889, A
2	2763	100.0	544	39	US-10-917-157-2	Sequence 2, Appli
3	2763	100.0	544	39	US-10-917-157A-2	Sequence 2, Appli
4	2763	100.0	544	39	US-10-917-157B-2	Sequence 2, Appli
5	2763	100.0	545	39	US-10-917-157-4	Sequence 4, Appli
6	2763	100.0	545	39	US-10-917-157A-4	Sequence 4, Appli
7	2763	100.0	545	39	US-10-917-157B-4	Sequence 4, Appli
8	2763	100.0	552	25	US-09-506-153-1	Sequence 1, Appli
9	2763	100.0	552	32	US-10-216-682-1	Sequence 1, Appli
10	2763	100.0	554	1	PCT-US07-78571-3	Sequence 3, Appli
11	2763	100.0	554	12	US-08-202-032A-6	Sequence 6, Appli
12	2763	100.0	554	19	US-08-931-818-6	Sequence 6, Appli
13	2763	100.0	554	38	US-10-850-816-2	Sequence 2, Appli
14	2763	100.0	554	52	US-12-254-969B-6	Sequence 6, Appli
15	2763	100.0	554	53	US-12-330-201A-2	Sequence 2, Appli
16	2763	100.0	554	54	US-12-441-521A-3	Sequence 3, Appli
17	2763	100.0	558	39	US-10-917-157-5	Sequence 5, Appli
18	2763	100.0	558	39	US-10-917-157A-5	Sequence 5, Appli
19	2763	100.0	558	39	US-10-917-157B-5	Sequence 5, Appli
20	2763	100.0	562	25	US-09-506-153-7	Sequence 7, Appli
21	2763	100.0	562	32	US-10-216-682-7	Sequence 7, Appli
22	2763	100.0	562	35	US-10-590-810-26	Sequence 26, Appli
23	2763	100.0	605	43	US-11-327-195-44	Sequence 44, Appli
24	2763	100.0	605	43	US-11-327-195A-44	Sequence 44, Appli
25	2763	100.0	605	43	US-11-327-195B-44	Sequence 44, Appli

26	2763	100.0	605	43	US-11-327-845-43	Sequence 43, Appl
27	2763	100.0	606	43	US-11-327-195-41	Sequence 41, Appl
28	2763	100.0	606	43	US-11-327-195A-41	Sequence 41, Appl
29	2763	100.0	606	43	US-11-327-195B-41	Sequence 41, Appl
30	2763	100.0	606	43	US-11-327-845-40	Sequence 40, Appl
31	2763	100.0	625	43	US-11-327-195-43	Sequence 43, Appl
32	2763	100.0	625	43	US-11-327-195A-43	Sequence 43, Appl
33	2763	100.0	625	43	US-11-327-195B-43	Sequence 43, Appl
34	2763	100.0	625	43	US-11-327-845-42	Sequence 42, Appl
35	2763	100.0	626	43	US-11-327-195-40	Sequence 40, Appl
36	2763	100.0	626	43	US-11-327-195A-40	Sequence 40, Appl
37	2763	100.0	626	43	US-11-327-195B-40	Sequence 40, Appl
38	2763	100.0	626	43	US-11-327-845-39	Sequence 39, Appl
39	2763	100.0	632	1	PCT-US03-32954-4	Sequence 4, Appli
40	2763	100.0	632	1	PCT-US03-32954-6	Sequence 6, Appli
41	2763	100.0	632	1	PCT-US03-32954-8	Sequence 8, Appli
42	2763	100.0	632	32	US-10-256-705-4	Sequence 4, Appli
43	2763	100.0	632	32	US-10-280-139-4	Sequence 4, Appli
44	2763	100.0	632	32	US-10-280-139-6	Sequence 6, Appli
45	2763	100.0	632	32	US-10-280-139-8	Sequence 8, Appli

ALIGNMENTS

RESULT 1
 US-09-791-537-91889
 ; Sequence 91889, Application US/09791537
 ; GENERAL INFORMATION:
 ; APPLICANT: Bionomix, Inc.
 ; APPLICANT: Debe, Derek
 ; APPLICANT: Danzer, Joseph
 ; TITLE OF INVENTION: THREE DIMENSIONAL STRUCTURES OF PROTEIN FAMILIES AND FAMILY MEMBERS AND
 ; TITLE OF INVENTION: METHODS OF USE THEREOF
 ; FILE REFERENCE: 261/210
 ; CURRENT APPLICATION NUMBER: US/09/791,537
 ; CURRENT FILING DATE: 2001-02-22
 ; NUMBER OF SEQ ID NOS: 153055
 ; SOFTWARE: PatentIn version 3.0
 ; SEQ ID NO 91889
 ; LENGTH: 543
 ; TYPE: PRT
 ; ORGANISM: pdb 1KTQ
 US-09-791-537-91889

Query Match 100.0%; Score 2763; DB 27; Length 543;
 Best Local Similarity 100.0%;
 Matches 543; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 SPKALEEAPWPPPEGAFVGFLSRKEPMWADLLALAAARGGRVHRAPEPYKALRDLKEAR 60
 |||||||

Db 1 SPKALEEAPWPPPEGAFVGFLSRKEPMWADLLALAAARGGRVHRAPEPYKALRDLKEAR 60

Qy 61 GLLAKDLSVLALREGGLPDPMLLAYLLDPSNTTPEGVARRYGEWTEEAGERAALS 120
 |||||||

Db 61 GLLAKDLSVLALREGGLPDPMLLAYLLDPSNTTPEGVARRYGEWTEEAGERAALS 120

Qy	121	ERLFANLWGRLEGEERLLWLYREVERPLSAVLAHMEATGVRLDVAYLRALSLEVAAEIIAR	180
Db	121	ERLFANLWGRLEGEERLLWLYREVERPLSAVLAHMEATGVRLDVAYLRALSLEVAAEIIAR	180
Qy	181	LEAEVFRLAGHPFNLNSRDQLERVLFDELGLPAIGKTEKTGKRSTSAAVLEALREAHPIV	240
Db	181	LEAEVFRLAGHPFNLNSRDQLERVLFDELGLPAIGKTEKTGKRSTSAAVLEALREAHPIV	240
Qy	241	EKILQYRELTKLKSTYIDPLPDLIHPRTGRLHTRFNQTATATGRLSSSDPNLQNIQPVRTP	300
Db	241	EKILQYRELTKLKSTYIDPLPDLIHPRTGRLHTRFNQTATATGRLSSSDPNLQNIQPVRTP	300
Qy	301	LGQRIRRAFIIEEEGWLLVALDYSQIELRVLAHSGDENLIRVFQEGRDIHTETASWMFGV	360
Db	301	LGQRIRRAFIIEEEGWLLVALDYSQIELRVLAHSGDENLIRVFQEGRDIHTETASWMFGV	360
Qy	361	PREAVDPLMRRRAAKTINFGVLYGMSAHRLSQELAIPYEEAQAFIERYFQSFPKVRAWIEK	420
Db	361	PREAVDPLMRRRAAKTINFGVLYGMSAHRLSQELAIPYEEAQAFIERYFQSFPKVRAWIEK	420
Qy	421	TLEEGRGGYVETLFGRRRYVPDLEARVKSREAAERMAFNMPVQGTAADLMKLAMVKLF	480
Db	421	TLEEGRGGYVETLFGRRRYVPDLEARVKSREAAERMAFNMPVQGTAADLMKLAMVKLF	480
Qy	481	PRLEEMGARMLLQVHDELVLEAPKERAEEAVARLAKEVMEGVYPLAVPLEVEVGIGEDWLS	540
Db	481	PRLEEMGARMLLQVHDELVLEAPKERAEEAVARLAKEVMEGVYPLAVPLEVEVGIGEDWLS	540
Qy	541	AKE 543	
Db	541	AKE 543	

21
 1688
 DNA
Thermus aquaticus

CDS			
(3)...(1688)			
21			
cc atg gcc tct ggt ggc ggt ggc tgg ggt ggc ggt ggc agc ccc aag			47
Met Ala Ser Gly Gly Gly Cys Gly Gly Gly Ser Pro Lys			
1 5 10 15			
gcc ctg gag gag gcc ccc tgg ccc ccg ccg gaa ggg gcc ttc gtg ggc			95
Ala Leu Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly			
20 25 30			
ttt gtg ctt tcc cgc aag gag ccc atg tgg gcc gat ctt ctg gcc ctg			143
Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu			
35 40 45			
gcc gcc gcc agg ggg ggc cgg gtc cac ccg gcc ccc gag cct tat aaa			191
Ala Ala Ala Arg Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys			
50 55 60			
gcc ctc agg gac ctg aag gag gcg cgg ggg ctt ctc gcc aaa gac ctg			239
Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu			
65 70 75			
agc gtt ctg gcc ctg agg gaa ggc ctt ggc ctc ccg ccc ggc gac gac			287

Ser Val Leu Ala Leu Arg Glu Gly Leu Gly	Leu Pro Pro Gly Asp Asp	
80 85 90 95		
ccc atg ctc ctc gcc tac ctc ctg gac cct tcc aac acc acc ccc gag		335
Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu		
100 105 110		
ggg gtg gcc cgcc tac ggc ggg gag tgg acg gag gag gcg ggg gag		383
Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu Ala Gly Glu		
115 120 125		
cgg gcc gcc ctt tcc gag agg ctc ttc gcc aac ctg tgg ggg agg ctt		431
Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu		
130 135 140		
gag ggg gag gag agg ctc ctt tgg ctt tac cgg gag gtg gag agg ccc		479
Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro		
145 150 155		
ctt tcc gct gtc ctg gcc cac atg gag gcc acg ggg gtg cgc ctg gac		527
Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp		
160 165 170 175		
gtg gcc tat ctc agg gcc ttg tcc ctg gag gtg gcc gag gag atc gcc		575
Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala		
180 185 190		
cgc ctc gag gcc gag gtc ttc cgc ctg gcc ggc cac ccc ttc aac ctc		623
Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu		
195 200 205		
aac tcc cgg gac cag ctg gaa agg gtc ctc ttt gac gag cta ggg ctt		671
Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu		
210 215 220		
ccc gcc atc ggc aag acg gag aag acc ggc aag cgc tcc acc agc gcc		719
Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala		
225 230 235		
gcc gtc ctg ggg gcc ctc cgc gag gcc cac ccc atc gtg gag aag atc		767
Ala Val Leu Gly Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile		
240 245 250 255		
ctg cag tac cgg gag ctc acc aag ctg aag acg acc tac att gac ccc		815
Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro		
260 265 270		
ttg ccg gac ctc atc cac ccc agg acg ggc cgc ctc cac acc ccc ttc		863
Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe		
275 280 285		
aac cag acg gcc acg ggc agg cta agt acg tcc gat ccc aac		911
Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn		
290 295 300		
ctc cag aac atc ccc gtc cgc acc ccc ctt ggg cag agg atc cgc cgg		959
Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg		
305 310 315		
gcc ttc atc gcc gag gag ggg tgg cta ttg gtg acc ctg gac tat agc		1007
Ala Phe Ile Ala Glu Gly Trp Leu Leu Val Thr Leu Asp Tyr Ser		
320 325 330 335		
cag ata gag ctc agg gtg ctg gcc cac ctc tcc ggc gac gag aac ctg		1055
Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu		
340 345 350		
atc cgg gtc ttc cag gag ggg cgg gac atc cac acg gag acc gcc agc		1103
Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser		
355 360 365		
tgg atg ttc ggc gtc ccc cgg gag gcc gtg gac ccc ctg atg cgc cgg		1151
Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg		
370 375 380		
gcg gcc aag acc atc aac ttc ggg gtc ctc tac ggc atg tcg gcc cac		1199
Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His		
385 390 395		
cgc ctc tcc cag gag cta gcc atc cct tac gag gag gcc cag gcc ttc		1247
Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe		
400 405 410 415		
att gag cgc tac ttt cag acg ttc ccc aag gtg cgg gcc tgg att gag		1295

Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu			
420	425	430	
aag acc ctg gag gag ggc agg agg cgg ggg tac gtg gag acc ctc ttc			1343
Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val Glu Thr Leu Phe			
435	440	445	
ggc cgc cgc tac gtg cca gac cta gag gcc cgg gtg aag agc gtg			1391
Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val			
450	455	460	
cgg gag gcg gcc gag cgc atg gcc ttc aac atg ccc gtc cag ggc acc			1439
Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr			
465	470	475	
gcc gcc gac ctc atg aag ctg gct atg gtg aag ctc ttc ccc agg ctg			1487
Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu			
480	485	490	495
gag gaa atg ggg gcc agg atg ctc ctt cag gtc cac gac gag ctg gtc			1535
Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val			
500	505	510	
ctc gag gcc cca aaa gag ggg gcg gag gcc gtg gcc cgg ctg gcc aag			1583
Leu Glu Ala Pro Lys Glu Gly Ala Glu Ala Val Ala Arg Leu Ala Lys			
515	520	525	
gag gtc atg gag ggg gtg tat ccc ctg gcc gtg ccc ctg gag gtg gag			1631
Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu			
530	535	540	
gtg ggg ata ggg gag gac agg ctc tcc gcc aag gag gcg gcc gca ctg			1679
Val Gly Ile Gly Glu Asp Arg Leu Ser Ala Lys Glu Ala Ala Ala Leu			
545	550	555	
gtg ccg cgc			1688
Val Pro Arg			
560			

W550 tryptophan

SEQ ID NO:26 is Thermus aquaticus

EAST SEARCH:

US 7488816 11/065,943 (Wilder exmnrr)

IS&R	L1	1	("7417133").PN. US-PGPUB; USPAT; USOCR 2010/07/12 10:22
BRS	L3	16	W550 USPAT 2010/07/12 10:31
BRS	L4	62051	Polymerase USPAT 2010/07/12 10:35
BRS	L5	17552	14 and tryptophan USPAT 2010/07/12 10:35
BRS	L6	561	14 and tryptophan.clm. USPAT 2010/07/12 10:36
BRS	L7	4440	"550".clm. USPAT 2010/07/12 10:56
BRS	L8	108	14 and 17 USPAT 2010/07/12 10:57

d his

(FILE 'HOME' ENTERED AT 11:32:56 ON 12 JUL 2010)

FILE 'MEDLINE, CAPLUS, BIOSIS, BIOTECHNO, EMBASE, JAPIO' ENTERED AT
11:36:07 ON 12 JUL 2010

L1	1642496 S POLYMERASE
L2	0 S L1 AND W550
L3	4979 S L1 AND TRYPTOPHAN
L4	3 S L3 AND 550

L5 1522 S L1 AND 550
L6 2207 S L3 AND (MUTA? OR VARIAN? OR SUBSTIT?)
L7 12 S L6 AND TAQ
L8 8 DUP REM L7 (4 DUPLICATES REMOVED)

FILE 'MEDLINE, BIOSIS, CAPLUS, BIOTECHNO, EMBASE, JAPIO' ENTERED AT
13:52:04 ON 12 JUL 2010
L9 1642496 S POLYMERASE
L10 245 S L9 AND 827
L11 0 S L10 AND TRYPTOPHAN
L12 2 S L10 AND TAQ
L8 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2010 ACS on STN
AN 2004:171780 CAPLUS
DN 140:351362

TI A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance *in vitro*
AU Wang, Yan; Prosen, Dennis E.; Mei, Li; Sullivan, John C.; Finney, Michael; Vander Horn, Peter B.
CS Department of Research and Development, MJ Bioworks Inc., South San Francisco, CA, 94080, USA
SO Nucleic Acids Research (2004), 32(3), 1197-1207
CODEN: NARHAD; ISSN: 0305-1048
PB Oxford University Press
DT Journal
LA English
AB Mechanisms that allow replicative DNA polymerases to attain high processivity are often specific to a given polymerase and cannot be generalized to others. Here the authors report a protein engineering-based approach to significantly improve the processivity of DNA polymerases by covalently linking the polymerase domain to a sequence non-specific dsDNA binding protein. Using Sso7d from *Sulfolobus solfataricus* as the DNA binding protein, the authors demonstrate that the processivity of both family A and family B polymerases can be significantly enhanced. By introducing point mutations in Sso7d, the authors show that the dsDNA binding property of Sso7d is essential for the enhancement. The authors present evidence supporting two novel conclusions. First, the fusion of a heterologous dsDNA binding protein to a polymerase can increase processivity without compromising catalytic activity and enzyme stability. Second, polymerase processivity is limiting for the efficiency of PCR, such that the fusion enzymes exhibit profound advantages over unmodified enzymes in PCR applications. This technol. has the potential to broadly improve the performance of nucleic acid modifying enzymes.

OSC.G 26 THERE ARE 26 CAPLUS RECORDS THAT CITE THIS RECORD (27 CITINGS)
RE.CNT 53 THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT