MAT157: Analysis I — Tutorial 11

Topics: Mean value theorem and friends

Question 1. Suppose $f:(0,3)\to\mathbb{R}$ is differentiable such that f(1)=-1 and f'(x)>1 for all $x\in(0,3)$. Prove that f has a root.

Question 2. Suppose $f:[a,c] \to \mathbb{R}$ is continuous, and for $b \in (a,c)$, f is differentiable on $(a,b) \cup (b,c)$ and not differentiable at b. If f'(x) > 0 for all $x \in (a,b) \cup (b,c)$, prove that f is increasing on (a,c).

Question 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable on [a,b] and f'(a)f'(b) < 0. Prove that there is $c \in (a,b)$ such that f'(c) = 0. Note: f may not be C^1 , so IVT will not work in this case. Hint: Assume without loss of generality f'(a) < 0 < f'(b). Can either of a and b be points where f attains a maximum or minimum on [a,b]?

Question 4. Suppose $a \in \mathbb{R}$ and $f:[a,\infty) \to \mathbb{R}$ is continuous, and differentiable on (a,∞) . If

$$\lim_{x \to \infty} f(x) = f(a)$$

Prove that there is c > a such that f'(c) = 0.

Bonus Problem. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function for which

$$\lim_{x \to \infty} f(x) = 157 \quad \text{and} \quad \lim_{x \to \infty} f'(x) = L$$

Determine the value of L and prove your result.

If you want a challenging *computational* question (for some reason), try the following:

Bonus Problem. Suppose $f:(0,\infty)\to\mathbb{R}$ satisfies $f'(x)=\frac{1}{x}$ for all x>0, and f(1)=0. Compute

$$\lim_{x \to 0} \left(\frac{1}{f(x + \sqrt{x^2 + 1})} - \frac{1}{f(x + 1)} \right)$$