Faculté des Sciences et Techniques de Limoges Master 2 — Sécurité de l'Information et Cryptologie — Parcours MCCA Cryptographie à clé publique 2019-2020

Contrôle du 3 décembre 2020 (durée 1h30)

Documents autorisés : Notes personnelles manuscrites.

Les exercices sont indépendants.

A. El Gamal

Soient p un nombre premier et g un entier d'ordre p-1 modulo p. On suppose que p-1 possède un petit facteur k.

- **1.** − Soit A un entier tel que $p \nmid A$. Montrer que A est une puissance k-ième modulo p si et seulement si $A^{(p-1)/k} \equiv 1$ modulo p.
- **2.** −Soit $a \in \{0, 1, ..., p-2\}$ tel que $A \equiv g^a$ modulo p. Ecrire un algorithme permettant de calculer $a \mod k$ (lorsque k est petit). Evaluer le coût de votre algorithme en fonction de k et p.
- 3. ─ On utilise le nombre premier p pour faire du chiffrement El Gamal. Montrer que ce chiffrement n'est pas sémantiquement sûr.
 - 4. Proposer une modification pour remédier à ce défaut (tout en gardant le même module p).

B. Courbe elliptique

On rappelle que, pour $P_1 = (x_1, y_1)$ et $P_2 = (x_2, y_2)$ deux points sur une courbe elliptique d'équation $y^2 = x^3 + ax + b$, les coordonnées (x_3, y_3) du troisième point P_3 de E aligné avec P_1 et P_2 s'expriment avec les formules :

$$\begin{cases} x_3 = m^2 - x_1 - x_2, \\ y_3 = y_1 + m(x_3 - x_1) \end{cases} \quad \text{où} \quad m = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{si } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{si } P_1 = P_2 \end{cases}$$

On rappelle aussi que le point $P_1 + P_2 = -P_3$ a pour coordonnées $(x_3, -y_3)$.

On considère la courbe E définie sur le corps \mathbb{F}_7 par l'équation $y^2 = x^3 + 3x + 1$.

- \checkmark 5. Montrer que E est une courbe elliptique.
- χ 6. Quel est l'ordre du point de coordonnées affines (0,1) sur E?
- $\sqrt[6]{7}$. Quel est l'ordre du point de coordonnées affines (6,2) sur E?
 - 8. Quel est l'ordre du groupe E?

C. Générateur aléatoire Blum-Blum-Shub

Un entier de Blum est un produit N=pq de deux nombres premiers distincts tels que $p\equiv q\equiv 3$ modulo 4. Dans $\mathbb{Z}_N=\{0,\ldots,N-1\}$ on considère les deux sous-ensembles :

$$\mathbb{Z}_N^+ = \{x \in \mathbb{Z}_N \mid (x/N) = 1\}$$
 (où (\bullet/\bullet) désigne un symbole de Jacobi) $Q = \{x^2 \mod N \mid x \in \mathbb{Z}_N, \operatorname{pgcd}(x, N) = 1\} \subseteq \mathbb{Z}_N^+.$

9. — Rappeler pourquoi la restriction de l'application

$$s: \begin{cases} \mathbb{Z}_N \to Q \\ x \mapsto x^2 \bmod N \end{cases}$$

à Q est une bijection.

10. – Pour $a \in Q$, a-t-on $(-a) \mod N \in \mathbb{Z}_N^+$? A-t-on $(-a) \mod N \in Q$? Pour $a_0 \in \mathbb{Z}_N^+$, on pose

$$a_i = s(a_{i-1})$$
 et $r_i = a_i \mod 2$, pour $1 \leqslant i \leqslant \ell$.

Lorsque $2^{k-1} < N \le 2^k$ (les éléments de \mathbb{Z}_N s'écrivent sur k bits), on obtient un (k, ℓ) -générateur aléatoire F dont on se propose d'étudier la sécurité.

- 11. Notons r_1, \ldots, r_ℓ les bits générés par F. Montrer que le générateur aléatoire F' générant les mêmes bits mais dans l'ordre inverse r_ℓ, \ldots, r_1 est sûr si est seulement si F est sûr.
- 12. En déduire que F est sûr si et seulement si, pour chaque $u \in [0, \ell 1]$, il n'existe pas d'extrapoleur de bit **précédent** :

$$E_{\ell-u}:(r_{\ell-u+1},\ldots,r_{\ell})\longmapsto r_{\ell-u}.$$

autres que d'avantage négligeable.

13. – En déduire que F est sûr si et seulement si, pour chaque $u \in [0, \ell - 1]$, il n'existe pas d'extrapoleur de bit initial:

$$E_0:(r_1,\ldots,r_u)\longmapsto r_0.$$

autres que d'avantage négligeable. Ici r_0 est $(\pm a_0 \mod N) \mod 2$, le signe $(\epsilon = \pm)$ valide étant celui pour lequel $\epsilon a_0 \mod N \in Q$.

14. — Considérons l'algorithme B suivant.

Entrée : $a \in \mathbb{Z}_N^+$.

Sortie : Un élément de $\{0,1\}$ (1 pour $a \in Q$, 0 sinon).

 $a_0 \leftarrow a$

Pour i de 1 à u, calculer $a_i = a_{i-1}^2 \mod N$ et $r_i = a_i \mod 2$

 $r_0 \leftarrow E_0(r_1,\ldots,r_u)$

Si $r_0 = a \mod 2$ alors retourner 1 sinon retourner 0.

On suppose que E_0 est un extrapoleur de bit initial, d'avantage ϵ non négligeable. Montrer que l'algorithme B détermine si $a \in Q$ avec avantage non négligeable.

15. — Quelle hypothèse algorithmique plausible doit-on faire pour conclure que le générateur F est sûr ?