Mobile robots & Locomotion

Structure

- Motors
- Types of locomotion
- Degrees of freedom
- Wheels
- Legs
- Other types of locomotion (swimming, skating, flying)

Motors

- DC MOTORS
- AC MOTORS
- SERVOS
- STEPPERS
- Linear
- Piezo Motors
- Electroactive Polymers

DC MOTORS

- Spin rapidly when an electric current is passed through them.
- Spin backwards if the current is made to flow in the other direction.
- Change speed by changing the voltage.

AC MOTORS

- Requires AC depend on some generators / adapters wall socket.
- Limited applicability (arms)
- Invented by Nikola Tesla.

STEPPERS

- Do not spin freely like DC motors,
- Rotate in steps of a few degrees at a time, under the command of a controller.
- Easier to control, as the controller knows exactly how far they have rotated, without having to use a sensor.

SERVOS

- Modified DC motors
- Have an encoder.
- Most of them can rotate about 90 to 180 degrees.
- High precision positioning
- Connect the black wire to ground, the red to a 4.8-6V source, and the yellow/white wire to a signal generator (such as from microcontroller)
- Vary the pulse width and the servo will have a known position/velocity
- Can deliver more power to higher speeds than steppers.

Linear motors

http://www.youtube. com/watch? v=txZMLS7YD6Q

Piezo Motors

- Also known as ultrasonic motors.
- Tiny piezoceramic legs, vibrating many thousands of times per second, walk the motor round in a circle or a straight line.
- Piezoelectricity is the ability of some materials (notably crystals and certain ceramics) to generate an electric potential in response to applied mechanical stress.
- □ http://www.youtube.com/watch?v=BS3icZnO_vw

Electroactive Polymers

- These are a class of plastics which change shape in response to electrical stimulation.
- They can be designed so that they bend, stretch or contract,
- So far there are no EAPs suitable for commercial robots, as they tend to have low efficiency or are not robust.
 - All of the entrants in a recent competition to build EAP powered arm wrestling robots, were beaten by a 17 year old girl.

http://www.youtube.com/watch?v=hyycT2IMONk http://www.youtube.com/watch?v=4g3JqUG_u30

Types of Locomotion in Nature

- Crawl
- Sliding
- Running
- Jumping
- Walking
- ? What is missing

Rolling in nature ???

- Concepts found in nature
 - difficult to imitate technically
- Most technical systems use wheels
- Rolling is most efficient, but not found in nature
 - Nature never invented the wheel !

Degrees of freedom

Linear in x-direction

Rotation around x-axis

Linear in y-direction

Rotation around y-axis

Linear in z-direction

Rotation around z-axis

Multiple degrees of freedom

Degrees of Freedom (1)

- Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point.
- Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle.
 - aligning itself to the direction in which it is moving.

Degrees of Freedom (2)

c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point

Main types of locomotion

- Wheels
- Legs

Wheeled vs. legged robots

- Pros of wheeled robot:
 - Easy to construct
 - Easy to control
 - No use of power at stand still
- Cons:
 - Cannot move in complex terrains
 - Catastrophic failure due to motor damage (if few wheels)
- Pros of legged robots:
 - Discrete contacts with the ground (good for passing obstacles)
 - Can tackle a large variety of terrains
 - Robustness against motor failure (because of redundancy)
- Cons:
 - Difficult to design and construct
 - Difficult to control (because of many DOFs)
 - Control required to keep balance

Characteristics of Wheeled Robots

- Stability of a vehicle is guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque

Different Arrangements of Wheels (1)

Different Arrangements of Wheels (2)

Four wheels

Six wheels

Types of drive

- Synchronized
- Differential
- Omni directional

Synchro Drive

- All wheels are actuated synchronously by one motor
 - defines the speed of the vehicle
- All wheels steered synchronously by a second motor
 - sets the heading of the vehicle
- The orientation in space of the robot frame will always remain the same
 - It is therefore not possible to control the orientation of the robot frame.

Differential Drive Robots

A two-wheeled
 drive system
 with independent
 actuators for
 each wheel.

Omnidirectional Drive

Rolling Robots

- Spherical robots
- Ballbot
- Two-wheeled balancing

Spherical robot

http://www.youtube.com/watch? v=OWkK-o4Vq-A

Ballbot

- Carnegie Mellon University
- balances on a ball instead of legs or wheels.
- self-contained, battery-operated, omnidirectional robot that balances dynamically on a single urethane-coated metal sphere.
- weighs 95 pounds, height and width of a person.
- Because of its long, thin shape and ability to maneuver in tight spaces, it has the potential to function better than current robots can in environments with people.
- http://www.youtube.com/watch? v=W7Svj3DcO_0&feature=related

Two-wheeled balancing:

- While the Segway is not commonly thought of as a robot, it can be thought of as a component of a robot. Several real robots do use a similar dynamic balancing algorithm, and NASA's Robonaut has been mounted on a Segway.
- http://www.youtube.
 com/watch?
 v=edmeLXXwTwU

Legs, Gait

The problems of legged locomotion control

- A robot cannot follow arbitrary motion commands!
 - Need to take advantage of the robot's dynamics
 - Need to coordinate multiple degrees of freedom
 - Need to keep balance
 - Need to modify the gait for different speeds and directions
 - Obstacle avoidance
 - Visually-guided feet placements
 - Adapting to perturbations

Static, Dynamic, Passive Walking

- Static = maintains a static equilibrium while walking.
- Dynamic = does not. The projected center of mass is allowed outside of the area inscribed by the feet, and the walker may essentially be falling during parts of the gait cycle.

- Passive walking = A natural steady gait maintained by gravitational forces. No actuators!
- http://www.youtube.com/watch?v=CK8IFEGmiKY

Number of Joints of Each Leg

- A minimum of two DOF is required to move a leg forward
 - a lift and a swing motion.
- Three DOF for each leg in most cases
- Fourth DOF for the ankle joint
 - might improve walking
 - however, additional joint (DOF) increase the complexity of the design and especially of the locomotion control.

Most Obvious Gaits with 4 legs

Most Obvious Gait with 6 legs

Types of locomotion in legged robots

- Hopping
- Walking (humanoid, biped, 4 legs, etc)

Hopping

- Several robots, built in the 1980s by Marc Raibert at the MIT Leg Laboratory, successfully demonstrated very dynamic walking. Initially, a robot with only one leg, and a very small foot, could stay upright simply by hopping. The movement is the same as that of a person on a pogo stick. As the robot falls to one side, it would jump slightly in that direction, in order to catch itself.
- The algorithm was generalized to two and four legs.
- http://www.youtube.com/watch?v=moENDzu_rS0

Humanoid Robots-bipedal robots

http://www.youtube.com/watch?v=Q3C5sc8b3xM

- Advanced Step in Innovative MObility
 - no connections with ASIMOV
- 54 kg, 130 cm, 2.7 km/h (walking), 6 km/h (running)

Walking Robots with Four Legs (Quadruped)

AIBO

Walking Robots with 8 Legs

http://www.youtube.com/watch?v=DJJv2ddCm-A

Wheels + legs = SHRIMP

- Objective
 - Passive locomotion concept for rough terrain
- Results: The Shrimp
 - 6 wheels
 - one fixed wheel in the rear
 - two boogies on each side
 - one front wheel with spring suspension
 - robot size is around 60 cm in length and 20 cm in height
 - highly stable in rough terrain
 - overcomes obstacles up to 2 times its wheel diameter
- http://www.youtube.com/watch?v=n4ZB8Rg8La0

SHRIMP

Special locomotion

- Flying
- Snake
- Skating
- Swimming
- Others...

Flying

- A modern passenger airliner is essentially a flying robot, with two humans to attend it.
- The autopilot can control the plane for each stage of the journey, including takeoff, normal flight and even landing.
- Other flying robots are completely automated, and are known as **Unmanned** Aerial Vehicles (UAVs).
 They can be smaller and lighter without a human pilot, and fly into dangerous territory for military surveillance missions.

Snake

Mimicking the way real snakes move, these robots can navigate very confined spaces, meaning they may one day be used to search for people trapped in collapsed buildings.

Skating

- Titan VIII a multi-mode walking and skating device. It has four legs, with unpowered wheels, which can either step or roll.
- http://www.youtube.com/watch?v=4cAwzSZqO_w
- Another robot, Plen, can use a miniature skateboard or rollerskates, and skate across a desktop

Swimming

- It is calculated that some fish can achieve a propulsive efficiency greater than 90%.
- Furthermore, they can accelerate and manoeuver far better than any man-made boat or submarine, and produce less noise and water disturbance.
- Notable examples are the Essex University Computer Science Robotic Fish, and the Robot Tuna built by the Institute of Field Robotics.
- http://www.youtube.com/watch?v=GOSK4IVRTFw

Propeller-based versus swimming robots

- Pros of propeller-based robots:
 - Easy to construct
 - Easy to control
- Cons:
 - Limited agility
 - Bad speed/power ratio

- Pros of swimming robots:
 - Great agility (e.g. turning and acceleration)
 - Good speed/power ratio (good use of turbulences)
- Cons:
 - Difficult to design and construct
 - Difficult to control

