

Sri Lanka Institute of Information Technology Faculty of Computing

IT2120 - Probability and Statistics

Ms. K. G. M. Lakmali

Year 02 and Semester 01

REGRESSION ANALYSIS

Numerical Variables??

- Weight
- Height
- Temperature etc.

Paired Numerical Variables??

Paired Variables

ID_No (Females)	Age	Systolic BP
001	45	151
002	25	138
003	48	143
004	37	140
005	24	136

Unpaired Variables

Age of Females	Systolic BP of Males			
45	149			
25	150			
48	138			
37	142			
24	139			

Dependent Variable??

The variable we wish to explain

Independent Variable??

The variable we use to explain the dependent variable

How to identify Relationships??

Basically, we will learn three main methods. They are,

- Scatter plot (Graphical Method)
- Correlation
- Regression Analysis

Scatter Plot

Types of Relationships

Correlation??

Correlation

- This measures **strength** and the **direction** of the **linear relationship** between two numerical variables.
- Correlation is a value in between -1 & +1.

This is also known as Pearson product-moment correlation coefficient.

Sample correlation coefficient (r)

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

$$r=0$$

No Linear Relationship

Perfect Positive Linear Relationship

Exercise:

In the pursuit of finding whether the age is related with systolic blood pressure of females, the following data were observed from 10 randomly selected females between ages 40 and 82.

Age	Systolic BP		
63	151		
70	149		
74	164		
82	157		
60	144		
44	130		
80	157		
71	160		
71	121		
41	125		

Correlation – Hypothesis Testing

- A hypothesis test can be carried out to find whether the population correlation is zero.
- $H_0: \rho = 0 \text{ Vs. } H_1: \rho \neq 0$
- Under H_0 ,

$$T = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{n-2}$$

Regression??

Regression

- The process of finding a mathematical equation that best fits the noisy data is known as regression analysis.
- In this chapter, only Simple Linear Regression model and Multiple Linear Regression model will be discussed.
- The primary usage of a regression model is prediction.

Simple Linear Regression Model

$$Y = \alpha + \beta X + \varepsilon$$

- α y Intercept
- β Regression Coefficient (Slope)
- ε Random Error
- This model is defined for population data.
- Should be careful when making predictions outside the observed range.

- α and β in the regression model are population characteristics which cannot be measured straightaway.
- Therefore, they should be estimated by using sample data.
- Estimated regression model would be as follows.

$$\hat{y} = \hat{\alpha} + \hat{\beta}X$$

$$\hat{\beta} = b = rac{\sum\limits_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum\limits_{i=1}^{n} x_i^2 - n \bar{x}^2}$$

$$\hat{\alpha} = a = \bar{y} - b\bar{x}$$

Significance of Regression Coefficient

- A hypothesis test can be carried out to find whether the true slope (β) is actually zero (This is same as testing whether the regression model is significant).
- An ANOVA table is used to evaluate the test statistic for this test.

ANOVA Table

Model	Df (Degrees of Freedom)	Sum of Squares (SS)	Mean Sum of Square (MSS)	F Statistic	P Value
Regression	1	SSR	MSSR	F Statistic	
Error / Residual	n-2	SSE	MSSE		
Total	n-1	SST			

•
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

•
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

•
$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

•
$$SST = SSR + SSE$$

•
$$MSSR = SSR/1$$

•
$$MSSE = SSE/(n-2)$$

•
$$P \text{ value} = Pr(F > F_{Cal})$$

Coefficient of Determination (R^2)

One way to measure the strength of the relationship between the response variable (y) and the predictor variable (x) is to calculate coefficient of determination.

This refers to the proportion of the total variation that is explained by the linear regression of y on x. In other words, R^2 is percentage of variation of Y explained by the X variable in the fitted model.

$$R^2 = \frac{SSR * 100}{SST}$$

Regression Assumptions

- The model is linear in parameters
- $E(\varepsilon_i) = 0$ (Mean of residuals is zero)
- $V(\varepsilon_i) = \sigma^2$ (Variance of residuals is constant)
- The residuals (ε_i) are normally distributed.
- The residuals (ε_i) are independent.

Important

Remember that, neither correlation nor regression imply any causation between variables.

Thanks!

Any questions?

