- 5.2, 信源的个各个消息 a,b,c,d.信源A = 00, B = 01, C = 10, D = 11 每个二进制码元的长度 为5ms。
- 1) 信源等概率分布, 平均信息传输率

$$H = \log 4 = 2b/s$$

$$H_t = H/t = 200 bps$$

2)信源概率分布为1/5,1/4,1/4,3/10计算平均信息率。

$$H = 1.985 b/s$$

$$H_t = 198.55 bps$$

3) 一一对应的定长编码, 还是前面的结果。

5.4若消息符号对应概率分布和二进制编码如下:

1)符号熵

$$H(X) = 7/4b/s$$

2)每个符号的平均二进制码个数。

平均码长
$$\bar{K} = 7/4$$

- 3)各消息符号相互独立,求编码后对应的二进制码序列出现
- 0,1的无条件概率 p_0, p_1 ,以及码序列中的一个二进制码熵,并求相邻码间的条件概率p(1/1), p(0/1), p(1/0), p(0/0)

$$p_0 = 1/2 \times 1/\bar{K} + 1/4 \times 1/2 \times 2/\bar{K} + 1/8 \times 1/3 \times 3/\bar{K} = 1/2$$

$$p_1 = 1/4 \times 4/7 + 1/8 \times 2 \times 4/7 + 1/8 \times 3 \times 4/7 = 1/2$$

$$p_0 = 1/2 + 1/4 \times 1/2 + 1/8 \times 1/3 = 2/3$$

 $p_1 = 1/4 \times 1/2 + 1/8 \times 2/3 + 1/8 \times 1 = 1/3$

相邻码间的条件概率p(1/1), p(0/1), p(1/0), p(0/0) 出现00要求一个0后必须出现消息1,因此p(0/0)=1/2 那么p(1/0)=1/2

出现一个1,那么这个1有2/7概率是消息2,有2/7的概率是消息3,有3/7的概率是消息4。

消息2必定是10,概率为2/7。消息3中的1,有1/2概率为后1,产生10,概率为2/7×1/2,而消息4中的1,有1/3概率为最后的1,接消息1后产生10,概率为3/7×1/3×1/2

那么出现10的概率为

$$p(0/1) = 2/7 + 1/7 + 1/14 = 1/2$$

 $p(1/1) = 1/2 = 2/7 \times 1/2 + 3/7 \times 2/3 + 3/7 \times 1/3 \times 1/2$

5.6p0 = 0.005, p1 = 0995, 信源输出L = 100的二元序列在长为<math>L = 100的信源序列中只对含有 3个或小于3个0 的个信源序列构成一一对应的一组定长码。

- 1) 求码字所需的最小长度;
- 一一对应的定长码,因 此用不着编码定理,必 须要码长 容纳下所有要编的码

码的数量 =
$$1 + C_{100}^1 + C_{100}^2 + C_{100}^3 = 167246$$

 $2^{L} \ge 167246$, $L \ge \log_2 167246 = 17.35$

因此L最少需要18。

2)考虑没有给予编码的信源序列出现的概率,问错误概率。 出现未编码的信源序列 即发生错误。即总的概 率减去正确的概率 $1-1*0.995^{100}-C_{100}^1*0.995^{99}*0.005-C_{100}^2*0.995^{98}*0.005^2$ $-C_{100}^3*0.995^{97}*0.005^3=0.0016$

- 5.13.9个符号信源用三进制编码
- 1) 费诺码和哈夫曼码, 求编码效率 三进制费诺码

1/4	a			\boldsymbol{a}	1
1/4	b	а		ba	2
1/8	b	b		bb	2
1/8	С	a		ca	2
1/16	C	b	a	cba	3
1/16	\boldsymbol{c}	b	b	cbb	3
1/16	C	c	a	cca	3
1/32	С	С	b	ccb	3
1/32	C	C	C	ccc	3

三进制哈夫曼码

1/4		1/4		1/4		1/4	c c	1
1/4		1/4		1/4	a	<u>1/2</u>	a aa	2
1/8		1/8		1/8	C	<u>1/2</u>	a ac	2
1/8		1/8	a	1/4		1/4	b ba	2
1/16		1/16	b	1/4		1/4	b, bb	2
1/16		1/16	С	1/4		1/4	b bc	2
1/16	a	1/8		1/8	b	<u>1/2</u>	a aba	3
1/32	b	1/8		1/8	b	<u>1/2</u>	a abb	3
1/32	$\boldsymbol{\mathcal{C}}$	<u>1/8</u>		<u>1/8</u>	b	1/2	a abc	3

- 2)c后不能紧跟c,则1不能有单独c,2编码中不能有cc,
- 3,有c开头的码就没有c结尾的码,反之依然。

由3可得不能是满树哈夫曼码不然必然有c开头和c结尾的。 开始选2个最小的概率开始编试一试

三进制哈夫曼码

1/4		1/4		1/4		1/4	<i>a</i> <u>11/16</u>	a aa	2
1/4		1/4		1/4		1/4	c <u>11/16</u>	a ac	2
1/8		1/8		1/8	a	<u>5/16</u>	<u>5/16</u>	b ba	2
1/8		1/8		1/8	b	<u>5/16</u>	<u>5/16</u>	b bb	2
1/16		1/16	a	<u>3/16</u>		<u>3/16</u>	<i>b</i> <u>11/16</u>	a,aba	2
1/16		1/16	b	<u>3/16</u>		<u>3/16</u>	<i>b</i> <u>11/16</u>	a abb	3
1/16		1/16	C	<u>3/16</u>		<u>3/16</u>	<i>b</i> <u>11/16</u>	a abc	3
1/32	a	<u>1/16</u>		<u>1/16</u>	c	<u>5/16</u>	<u>5/16</u>	b bca	4
1/32	b	<u>1/16</u>		<u>1/16</u>	C	<u>5/16</u>	5/16	b bcb	4

5.14信源发出的数字1,2,3,4,5,6,7, 概率为1/3,1/3,1/9,1/9, 1/27,1/27,1/27.

1编出二进制哈夫曼码, 求编码效率。

1编出三进制哈夫曼码, 求编码效率。

效率 = 2.29/1.44/1.58=1

5.16离散无记忆信源发出 *A*, *B*, *C*,3种符号,其概率分布 为5/9,1/3,1/9,引用算术编码对序列 CABA编码。并解码 信源符号 概率分布 积累概率

$$P() = 0, p() = 1$$

$$P(c) = P() + p()P_c = 0 + 8/9 = 0, p(c) = 8/9$$

$$P(ca) = P(c) + p(c)P_a = 8/9 + 1/9 \times 0 = 8/9, p(ca) = 5/81$$

$$P(cab) = P(ca) + p(ca)P_b = 8/9 + 5/81 \times 5/9 = 673/729, p(cab) = 5/243$$

$$P(caba) = P(cab) + p(cab)P_a = 673 / 729 + 5 / 243 \times 0 = 673 / 729$$

$$p(caba) = 25 / 2187$$

码长
$$L = -\log_2 25/2187 = 6.4 = 7$$

$$P(caba)$$
化二进制 = 0.1110110 ****,

算术编码与香农码不同之处最后的****不为0时,需要进位得编码 因此编码为1110111 译码:译第一位

C = 1110111,恢复小数C = 0.93

0.93 ∈ (8/9,1),因此第一位是c,

译第二位,去掉第一位的积累概率并根据第一位放大

$$(0.93 - 8/9) \div 1/9 = 0.37$$

0.37 ∈ (0,5/9),因此第二位是 a

第三位

$$(0.37-0)\div5/9=0.667$$
,第三位是 b

第四位

 $(0.667-5/9)\div1/3=0.334$,第四位是a。

算术译码是译不完的, 需知道码长译码。