Predicting Math PhD Student Advising

Scott Atkinson

Introduction

What makes a vibrant mathematics department?

- Active faculty
- Fresh ideas
- Prolific publication
- PhD students

General scenario

A PhD-granting department is hiring.

We provide two models to predict the progeny of a job candidate:

• **Screen**: ≥ 2 students in twenty years.

• **Highlighter**: ≥ 5 students in twenty years.

Screen (≥ 2 students) use

Filter out weak candidates.

Reduce search committee workload by over 81%.

Highlighter (≥ 5 students) use

Identify exceptionally strong (above 3rd quartile) candidates.

 Can be used for novel recommendations for a department expanding research scope.

Data sources

Mathematics Genealogy Project: Online database of PhD mathematicians.

- School
- Year graduated
- Advisor
- Thesis title and classification
- Students

Data sources

MathSciNet: Online database of publications in mathematics. Includes author summary pages.

- Earliest publication
- Total publications
- Total citations
- Collaborators
- Subject classifications

Why 20 years?

Minimize interval to maximize records included.

 Long enough to ensure a distribution similar to unlimited data (sufficient variance).

Target histogram

Why 2 and 5?

Features

Continuous features:

- Publications per year
- Citations per publication
- Collaborators per publication
- Advisor students at graduation

Features

Categorical features:

School

Subjects

Data leakage

The data from MathSciNet are summary in nature, so there is some data leakage in the publication data. In particular, we have to use overall publication data to estimate the variable values for each record at the time before they advised students.

Feature importances

Feature importances

Model selection for Screen

Estimator	Hyperparameters	Mean AUC ROC
RandomForestClassifier	criterion='gini',	0.6748
	$\max_{depth=23}$,	
	<pre>max_features='auto',</pre>	
	n_estimators=233	
AdaBoostClassifier	learning_rate=1,	0.6799
	n_estimators=292	
MLPClassifier pipelined	alpha=0.1,	0.6719
with RobustScaler	\max_{i} ter=500,	
	solver='sgd'	
GradientBoosting	learning_rate=0.01,	0.6716
Classifier	max_depth=7,	
	n_estimators=379	

Threshold tuning for Screen

To filter out the bad: emphasize positive precision.

Selected model: MLPClassifier with RobustScaler with threshold 0.711.

Positive precision: 80%

Positive recall: 27%

Screen precision-recall curve

Screen confusion matrix

Table: Confusion matrix for MLPClassifier with RobustScaler with threshold 0.711 predicting ≥ 2 students

	Predicted False	Predicted True
Actual False	41.4%	3.6%
Actual True	40.3%	14.7%

Note: 92% negative recall.

Model selection for Highlighter

Estimator	Hyperparameters	Mean AUC ROC
RandomForestClassifier	criterion='entropy',	0.7120
	max_depth=31,	
	<pre>max_features='auto',</pre>	
	n_estimators=1000	
AdaBoostClassifier	learning_rate=0.1,	0.7063
	n_estimators=1000	
MLPClassifier	alpha=0.1,	0.7067
	\max_{i} ter=500,	
	solver='sgd'	
GradientBoosting	learning_rate=0.1,	0.7098
Classifier	max_depth=3,	
	n_estimators=316	

Threshold tuning for Highlighter

To identify strong candidates: emphasize positive precision at a cost to positive recall.

Selected model: AdaBoostClassifier with the shold 0.501.

Positive precision: 75%

Positive recall: 5.7%

Highlighter precision-recall curve

Highlighter confusion matrix

Table: Confusion matrix for AdaBoostClassifier with threshold 0.501 predicting ≥ 5 students

	Predicted False	Predicted True
Actual False	77.4%	0.4%
Actual True	20.9%	1.3%

Note: 99.5% negative recall

Summary and conclusion: Screen

Use: filter out bad candidates

Positive precision: 80%

Positive recall: 27%

Negative recall: 92%

Reduces search committee workload by over 81%

Summary and conclusions: Highlighter

Use: identify exceptionally strong candidates

Positive precision: 75%

Positive recall: 5.7%

Negative recall: 99.5%

Useful for a department looking to expand research scope.

Next steps

Refine publication data

Incorporate journal data

 Build a model where the number of students and amount of years are variable