

Computer Network & Network Reference Model

Computer Network & Network Reference Model

- Overview of Computer Network
- OSI Reference Model
- □ TCP/IP Model
- Network Topology
- Network Devices

Networks

- What is a network ?
 - A network is an intricately connected system of objects, devices, or people
- Companies created networks
 - As companies expanded, the need for connecting networks at different sites became very important

Data Networks Classifications

- LAN(Local Area Networks)
- WAN(Wide Area Networks)

LAN/WAN

- ■Local Area Networks (LANs)
 - Operate locally (cover small areas)
 - Multi-user access
 - ■High speeds expected (up to Gbps/10Gbps)
 - Error rate is easily controlled
- ■Wide Area Networks (WANs)
 - Operate over larger areas
 - Access over serial links, optical links, etc.
 - ■Traditionally, have Lower speeds
 - Error rate can not be easily controlled

Internet

- internet:
 - A network whose nodes are networks
- Internet
 - The largest, open, interconnected computer network in the world.
 - TCP/IP is the reference model of Internet
 - Evolved from ARPANET

Internet with Multi-layer ISP structure

☐ Internet Service Providers (ISP)

主机A→本地 ISP→第二层 ISP→NAP→第一层 ISP→NAP→第二层 ISP→本地 ISP→主机B

Internet with Multi-layer ISP structure

LAN Devices

- Multiport repeater, connects PCs; Repeats signals
- LAN segmentation;
 MAC addresses.
- Multiport-bridge;Full bandwidth
- Path determination;Packet switching

WAN Devices

Router

Path determination;Packet switching

Modem CSU/DSU TA/NT1

Analog to Digital;Remote LAN connections

LAN Services and WAN Services

- LAN service: Ethernet, the most popular service
- WAN services...
 - Modem
 - ISDN
 - DSL
 - Frame Relay
 - ATM
 - T1/E1
 - **T**3
 - STS-1, STS-3, STS-48 (SONET/SDH)

Data

- Data is sent in bits, 1s and 0s.
- Data is not the information itself
- Data is an encoded form of information which is a series of electrical impulses/optical signals into which information is transmitted for sending

Protocol

- It is possible for different types of computer systems to communicate
- □ All devices must speak the same "language" or use the same *protocol* (use same set of rules).

Data Packets

- □ For transmission, computer data is often broken into small, easily transmitted units
 - Using the OSI model, these units can be called packets, or frames or segments
- Why data packets?
 - Computers can take turns sending packets
 - If packet is lost, only small amount of data must be retransmitted.
 - Data can take different paths.

Source and Destination

- Source address specifies the identity of the computer sending the packet.
- Destination address specifies the identity of the computer designated to receive the packet.

Media Types

10BASE2 50 Ohm Coax Cable 10BASE5 Thicknet Cable **AIR** carries light, radio, microwave UTP **Fiber Optic Cable Connectors**

Media—material through which data packets travel

Digital Bandwidth

■ Bandwidth is the measure of how much information can flow from one place to another in a given amount of time.

Measured in: bits/second (bps)

Throughput

Actual, measured, bandwidth, at a specific time

Throughput ≤ Bandwidth

Computer Network & Network Reference Model

- Overview of Computer Network
- OSI Reference Model
- TCP/IP Model
- Network Topology
- Network Devices

OSI (Open System Interconnection) Model

- Proposed by International Organization for Standardization (ISO)
- A network model that help network builders implement networks that could communicate and work together
- Describes how information or data moves from one computer through a network to another computer
- □ a *layered* communication process
 - Each layer performs a specific task

The OSI Reference Model

Each layer has a unique function.

7	Application	User interface
6	Presentation	Data presentation and encryption
5	Session	→ Inter-host connection
4	Transport	→ End-to-end connections
3	Network	→ Addresses and best path
2	Data Link	Access to media
1	Physical	Binary transmission

Why a Layered Model?

Reduce Complexity

Standardizes interfaces

Facilitates modular engineering

Ensures interoperable technology

Accelerates evolution

Simplifies teaching and learning

The OSI Reference Model

Application

Presentation

Session

- The top 3 layers are known as the application layers
 - because they deal with the user interface, data formatting, and the application access.

The OSI Reference Model

4	Transport
3	Network
2	Data Link
1	Physical

- ☐ Layers 1-4 are known as the *data flow layers*
 - because they control the physical delivery of messages over the network.

Layer 1: The Physical Layer

Keywords: Signal and Media

Layer 1: The Physical Layer

- defines the electrical and functional specifications
 for the link between end systems (including media)
- defines voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, physical connectors, and other, similar attributes

Layer 2: The Data Link Layer

Keywords: frame, media access control

7	Application	User interface
6	Presentation	Data presentation and encryption
5	Session	→ Inter-host connection
4	Transport	End-to-end connections
3	Network	Addresses and best path
2	Data Link	Access to media
1	Physical	Binary transmission

Layer 2: The Data Link Layer

- provides reliable transit of data across a physical link
- is concerned with physical (as opposed to logical) addressing, network topology, network access, error notification, ordered delivery of frames, and flow control

Layer 3: The Network Layer

Keywords: Path selection, Routing, Addressing

7	Application	User interface
6	Presentation	Data presentation and encryption
5	Session	→ Inter-host connection
4	Transport	End-to-end connections
3	Network	Addresses and best path
2	Data Link	—→ Access to media
1	Physical	Binary transmission
	Data Link	—→ Access to media

Layer 3: The Network Layer

- Provide connectivity and path selection between two end systems where routing occurs
- These may be located on geographically separated networks

Layer 4: The Transport Layer

Keywords: Reliability, Flow control, Error correction

Layer 4: The Transport Layer

- segments and reassembles data into a data stream
- concerned with how reliable transport over an internetwork is accomplished
- responsible for reliable network communication between end nodes and provides mechanisms for the establishment, maintenance, and termination of virtual circuits, transport fault detection and recovery, and information flow control

Layer 5: The Session Layer

Keywords: Dialog and Conversations

7	Application		User interface
6	Presentation	→	Data presentation and encryption
5	Session		Inter-host connection
4	Transport		End-to-end connections
3	Network	→	Addresses and best path
2	Data Link	→	Access to media
1	Physical		Binary transmission

Layer 5: The Session Layer

- establishes, manages, and terminates sessions between communicating hosts
- synchronizes dialog between presentation layer entities and manages their data exchange
- offers provisions for efficient data transfer, class of service, and exception reporting of session, presentation, and application layer problems
- manages data exchange between presentation layer entities

Layer6: The Presentation Layer

Keywords: Common Format

7	Application	User interface
6	Presentation	Data presentation and encryption
5	Session	→ Inter-host connection
4	Transport	End-to-end connections
3	Network	Addresses and best path
2	Data Link	—→ Access to media
1	Physical	Binary transmission

Layer6: The Presentation Layer

- ensures that information sent by the application layer of one system is readable by the application layer of another system
- translates between multiple data representation formats by using a common data representation format
- concerned with data structures and negotiation of data transfer syntax
- responsible for compression and encryption

Layer 7: The Application Layer

Keyword: Browser

7	Application	User interface
6	Presentation	Data presentation and encryption
5	Session	→ Inter-host connection
4	Transport	End-to-end connections
3	Network	Addresses and best path
2	Data Link	Access to media
1	Physical	Binary transmission

Layer 7: The Application Layer

- closest to the user
- provides network services to user applications
- does not provide services to any other OSI layer

Protocols on ISO layers

Data Encapsulation

Peer-to-Peer Communications

Computer Network & Network Reference Model

- Overview of Computer Network
- OSI Reference Model
- □ TCP/IP Model
- Network Topology
- Network Devices

The TCP/IP Model

- ☐ The U.S. Department of Defense (*DoD*) created the TCP/IP reference model
- ☐ The DoD wants its packets to **get through every** time, under any conditions, from any one point to any other point.
- □It brought about the creation of the TCP/IP model
- □ TCP/IP model has since become the standard on which the Internet has grown

The TCP/IP Model

☐ The TCP/IP model has only four layers.

Application
Transport
Internet
Network Access

The TCP/IP Model - Application Layer

- ☐ Handles high-level protocols, issues of representation, encoding, and session control
- ☐TCP/IP combines all application-related issues into one layer, and assures this data is properly packaged for the next layer.

The TCP/IP Model - Transport Layer

- □Deals with the quality-of-service issues of reliability, flow control, and error correction.
 - □Transmission Control Protocol (TCP)
 - □User Datagram Protocol(UDP)
 - □It package application layer information into units called <u>segments</u>

The TCP/IP Model - Internet Layer

- □ Purpose: Send source packets from any network on the internetwork and have them arrive at the destination <u>independent of the path and networks</u>
- □ Best path determination and packet switching occur at this layer
- □Internet protocol (IP)

The TCP/IP Model – Network Access Layer

- □ Is also called the *host-to-network* layer.
- ☐ It is concerned with all of the issues that an IP packet requires to actually make a physical link, and then to make another physical link.
- ☐ It includes the LAN and WAN technology details, and all the details in the OSI physical and data link layers.

Common TCP/IP Protocols

Common TCP/IP Protocols

Protocol Graph: TCP/IP

- FTP File Transfer Protocol
- HTTP Hypertext Transfer Protocol
- SMTP Simple Mail Transfer protocol
- □ DNS Domain Name System
- ☐ *TFTP* Trivial File Transfer Protocol

Similarities of TCP/IP and OSI

- both have layers, networking professionals need to know both
- both have application layers, though they include very different services
- both have comparable transport and network layers
- packet-switched (not circuit-switched) technology is assumed

Differences of TCP/IP and OSI

- TCP/IP appears simpler because it has fewer layers
- TCP/IP protocols are the standards around which the Internet developed, so the TCP/IP model gains credibility just because of its protocols.
- Typically networks aren't built on the OSI protocol, even though the OSI model is used as a guide.

Computer Network & Network Reference Model

- Overview of Computer Network
- OSI Reference Model
- □ TCP/IP Model
- Network Topology
- Network Devices

Topology

- □ Defines the structure of the network
- Physical topology: the actual layout of the wire (media)
 - bus, star, ring, extended star, hierarchical, mesh
- Logical topology: defines how the media is accessed by the hosts
 - token passing

Network Topologies

Network Topologies--Bus

■Physical Perspective

Each host is wired to a common wire.

- □Advantage: all hosts can communicate directly.
- □Disadvantage: A break in the cable disconnects hosts from each other.

■Logical Perspective

Every networking device to see all signals from all other devices (advantage?)

Network Topologies--Ring

■Physical Perspective

□All devices wired directly to each other in what is called a daisy-chain.

Logical Perspective

□ In order for information to flow, each station must pass the information to its adjacent station.

■Physical Perspective

- □A dual ring topology is the same as a ring topology, except that there is a second, redundant ring, that connects the same devices.
- Advantages: provide reliability and flexibility

Logical Perspective

□A dual ring topology acts like two independent rings, of which, only one at a time is used.

Network Topologies—Star

■Physical Perspective

A star topology has a central node with all links radiating from it.

- □ Advantage: it allows all other nodes to communicate with each other, conveniently. It also might be desirable for security or restricted access reasons
- ☐ disadvantage: if the central node fails, the whole network becomes disconnected. Depending on the type of networking device used, collisions can be a problem.

□Logical Perspective

The flow of all information would go through one device.

Network Topologies—Tree

- ☐The tree topology uses a trunk node from which it branches to other nodes.
 - binary tree (each node splits into two links)
 - backbone tree (a backbone trunk has branch nodes with links hanging from it).

■Physical Perspective

The trunk is a wire that has several layers of branches.

□Logical Perspective

The flow of information is hierarchical.

Network Topologies— Complete (Mesh)

- □Physical Perspective
 - □has distinct advantages and disadvantages
 - ■Advantage: the maximum connectivity and reliability.
 - □Disadvantage: the amount of media for the links, and the amount of connections to the links becomes overwhelming.
- ■Logical Perspective
 - ■The behavior of a complete, or mesh topology depends greatly on the devices used.

Network Topologies—Cellular

- □Physical Perspective
 - □The cellular topology is for wireless technology
 - Sometimes the receiving nodes move (e.g. cell phone), and sometimes the sending nodes move (e.g. satellite)
- ■Logical Perspective
 - ■Nodes communicate with each other directly (though sometimes extremely difficult), or communicate only with their adjacent cells, which is extremely inefficient.

Computer Network & Reference Model

- Overview of Computer Network
- OSI Reference Model
- TCP/IP Model
- Network Topology
- Network Devices

LAN Devices in a Topology

- Hosts—devices connected directly to network segment
 - printers, computers, servers, FAX, copier
- Hosts—not part of any layer, but the functions of the OSI model are performed in software inside host

LAN Devices in a Topology

NICs – Layer 2

- Carries a unique code called a MAC address
- Is used to control data communication for the host on the network
- Translates parallel signal produced by computer into serial format to send over_{生成发送的数据} 把帧发送到局域网 the network
- Transceiver used to convert signals as well as send and receive bits

处理收到的数据 从局域网接收帧

Provides the host's access to the medium

NICs – Layer 2

Media – Layer 1

Carries a flow of information in bits

The means by which signals travel

from one networked device to another

Repeaters – Layer 1

- used to extend the length of the network
- clean, amplify, and 'resend signals that are weakened by long cable

- regenerate (amplify) and retime network signals at the bit level to allow them to travel a longer distance on the media
- perform no filtering

Hubs – Layer 1

- used to regenerate and retime network signals
- propagate signals
- cannot filter traffic
- cannot determine the best path
- used as network concentration points

sometimes called multiport repeaters

Repeaters/Hubs - Differences

- Repeater typically has only two ports and a hub generally has from four to twenty or more ports.
- Repeater receives on one port and repeats on the other, while hubs receive on one port and transmit on all other ports.
- ☐ Hubs most commonly found in Ethernet 10Base T or 100Base T networks.

Hub

Bridges – Layer 2

- purpose is to filter traffic on a LAN—to keep traffic local—yet allow connectivity to other segments of the LAN for traffic that is directed there
- keep track of MAC addresses that are on each side of the bridge and make decisions based on this MAC address list
- more intelligent than hubs
- collect and pass packets between segments
- create collision domains
- maintain address tables

Loading:

Switches – Layer 2

- used to concentrate connectivity
- combine the connectivity of a hub with the traffic regulation of a bridge
- switch frames from incoming ports to outgoing ports providing each port with full bandwidth
- provide separate data paths

Routers – Layer 3

- important traffic-regulating device in large networks
- Make decisions based on network addresses
- examine packets (Layer 3 data), choose the best path for them, and then switch them out the proper outgoing port
- two primary purposes: path selection and switching of packets to best route

Clouds – Layers 1-7

 all the devices that connect your computer to some very distant computer, perhaps on another continent contain NICs,
 switches, bridges,
 routers, gateways,
 and other net-working
 devices

Evolution of Networking Devices and the OSI Layers

Evolution of Networking Devices and the OSI Layers

- □ hosts and servers operate at Layers 1 7; they perform the *encapsulation* process
- transceivers, repeaters, and hubs are all considered active Layer 1 devices because they act only on bits and require energy
- patch cables, patch panels, and other interconnection components are considered passive Layer 1 components because they simply provide some sort of conducting path

Evolution of Networking Devices and the OSI Layers

- NICs are Layer 2 devices because they are the location of the MAC address; but because they often handle signaling and encoding, they are also Layer 1 devices.
- Bridges and switches are Layer 2 devices because they use Layer 2 information to make decisions about whether to forward packets.
- Routers are Layer 3 devices because they use Layer 3 addresses to choose best paths and to switch packets to proper route.

Packet Flow Through Clouds

- **□**NICs
- ■Switches
- Bridges
- Routers
- □Gateways (protocol transformation)
- □PCs
 (all devices that operate at all levels of the OSI model)

