QI	5	
Qz	4	
D 3	l	
Q4	4	•
Qs	lo	
Q6	10	
07	1	
08	5	
Q9	4	
Q 10	7	
Total	51/70	good.

> You must show that C attained. 2 2 m f(x) 0 JE50, JM=0 X=M S(x) 0/28 E=1 f(x)/<1 50>0 50 5(x)</ 415) Set poinds [QM]. We have continuous bound timetion, 59 by EVT, we have c's.t. 3(c)-max. Let C=mox ESCO, 13 C will be max of f () from O to D. 1 Goal 19-4/2 5 > | S(g)-S(x) < E [54]-8(1)= M | y -x | 5 + 18(y)-8(x) | = | y -x | < 8 (515)

156y-8(x) | < 8 (9)-8(x) | < M6 (515)

E=M6 | | y-x | < 8 > 18(y)-8(x) | < E $3 a \le c \le b$ so $5 (a) \le 5(c) \le 5(b) c = 5(c)$ Set d= att shell whet 15 (a), 5(b), 5 (d) elect (16) See what to set you bounds as a and by Check to see if the value is satisfied on arry, if not, set new bounds of either a, b, d where the value of a and FCC) can be found in between thom, Set a and b, and then d, = 9 th. Repeat notific= fle) is found You can apply the IVT to glx)= flx)->c.

> You must resity that of is Using Roffes Thm, if $g(x) = \frac{5}{4}(x)$, then $g(x) = \frac{1}{2}(x)$, then g'(x) = 0 for $x \in (\mathbb{C}, d)$. If $g(x) = \frac{1}{2}(x)$, then g'(x) = f''(x), so $f(x) \in (\mathbb{C}, d)$ s. I dif. then lim 5(xo)-5(x) exists exists, F(xoth) - 5(xoh) 2+hz= 26-h, +2h, lim f (x+hz)-f(x) lim & Goth - F(xoh) b) function | x| at x = 0 | him whit-10th = 2m h-3 2m 2-1 = 2m 2 = 0 | hit not 1. Pform to 1.1.

(10/10) $f'(x) = \lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty$ 6.) f(x) can be written as g(h(x)) where gisx2 SIG h'(x) be (x²) +(sinx) +(cosx) = 2x + cosx - sinx. which is ZVX2+smx+cosx · (Zx +cosx-sinx) Be coreful? Say Sis also Open, then x & S Jo 20, 1. (Y-0, x+0) S 5 rot closed of S and RIS more late. doesn' come points of Sierrounder Copen, then the end hat I there is a the autordia of I to mat it there is a the outside of both meaning RS isn't think of the which is a contradiction,

8 x² and x³ are dif on R and so is 5(1).

S(x³) is a chain rule of h(x)=x³ so foh is

dif with S(x³) = 5(x³).3x² By product rules, x^2 and $5(x^3)$ are dif so $g'(x) = (x^2)'f(x^3) + x^2f'(x^3) = 2xf(x^3) + x^3f'(x^3) \cdot 3x^2$ $g'(x) = 2xf(x^3) + 3x^4f'(x^3)$ A Let y=sin'x - + siny=x If we dit. both sides

HIS we get dix cosy=| plug y back in, we get dy cos (arcsin(x))=1 $Sin \theta = \frac{Q}{h} = \chi$ $\theta = \sin(\chi)$ $\cos \theta = \frac{Q}{h} = \frac{\sqrt{1-r^2}}{l}$ $\frac{\sqrt{1-\chi^2}}{d\chi}\cos(\alpha r \cos(\alpha r)) = \frac{dy}{d\chi}\sqrt{1-\chi^2} = 1$ Why is arcsin dy = \(\frac{1}{\sqrt{1-\frac{1}{2}}} \left(\arcsin(\frac{1}{2}) \right)^1 = \frac{1}{\sqrt{1-\frac{1}{2}}} \) You must explain Oan $ny^{1}(x-y) \le x^n - y^n \le nx^{n-1}(x-y)$ $f(y) = y^n \le [0]$ No $ny^{1} = x^{n-1} - x^{n-1} = x^{n-1$ $\frac{1}{2\sqrt{1+x}} = \sqrt{1+x} - 1$ $\frac{1}{2\sqrt{1+x}} = 2(\frac{\sqrt{1+x}-1}{x}) = \frac{1}{\sqrt{1+x}} = \frac{1}{\sqrt{1+x}} = 2(\frac{\sqrt{1+x}-1}{x}) = \frac{1}{\sqrt{1+x}} = \frac$