

PACKET PROCESSING PERFORMANCE & POWER EFFICIENCY

Ma Liang Senior Software Engineer INTEL 07, Sep, 2019

Mapping Power Usage to Network Traffic

Summary Table of Power Management Features

Feature	Summary	
P-state	Changing frequency, works per core. Execution continues.	
C-state	Turning off execution of cores and instructions. Fast Exit(C1) and Longer Exit (C6), power saving versus exit latency.	
Turbo Boost	Allows for exceeding base frequencies, opportunistic frequency increase. Can be controlled per core.	
Uncore Frequency Scaling (UFC)	Interconnect and L3 shared cache frequency scaling for energy efficiency	
Hardware P-State	Intel® Speed Select Technology (Hardware P-state, HWP) is a capability for cooperative hardware + software performance control	
Intel® SST-Base Frequency	Intel® Speed Select Technology (Base Frequency) is a capability which allow application to choose High Priority or Standard Priority cores	

P-States Overview

Frequency range in GHz of Scalable 8180

Intel® SST-Base Frequency

- Trade off base frequency between higher and lower priority cores
- Improve overall performance by giving critical cores higher frequency
- Intel® Speed Select
 Technology Base
 Frequency (Intel® SST-BF) is
 enabled in BIOS at boot
 time; activated/deactivated
 at run time

All SKUs, frequencies, and performance estimates are <u>PRELIMINARY</u> and can change without notice.

Intel® SST-Core Power

- TDP is Fixed
- Distribute surplus power to cores based on SW assigned weights/priorities
- Improve performance by directing frequency to high priority cores
- Best Effort

All SKUs, frequencies, and performance estimates are **PRELIMINARY** and can change without notice.

Performance Gain Potential

Many use cases: boosting 1-2 cores will benefit workloads

Existing DPDK Power Capabilities

DPDK API Reference

rte power.h File Reference

```
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_string_fns.h>
```

Go to the source code of this file.

Data Structures

struct rte power core capabilities

Typedefs

```
typedef uint32_t(* rte_power_freqs_t )(unsigned int lcore_id, uint32_t *freqs, uint32_t num)
typedef uint32_t(* rte_power_get_freq_t )(unsigned int lcore_id)
typedef int(* rte_power_set_freq_t )(unsigned int lcore_id, uint32_t index)
typedef int(* rte_power_freq_change_t )(unsigned int lcore_id)
typedef int(* rte_power_get_capabilities_t )(unsigned int lcore_id, struct_rte_power_core_capabilities_t *caps)
```

Functions

```
int rte_power_set_env (enum power_management_env env)
void rte_power_unset_env (void)
enum power_management_env rte_power_get_env (void)
int rte_power_init (unsigned int lcore_id)
int rte_power_exit (unsigned int lcore_id)
```

Variables

```
rte_power_freq_change_t rte_power_freq_up
rte_power_freq_change_t rte_power_freq_down
rte_power_freq_change_t rte_power_freq_max
rte_power_freq_change_t rte_power_freq_min
rte_power_freq_change_t rte_power_turbo_status
rte_power_freq_change_t rte_power_freq_enable_turbo
rte_power_freq_change_t rte_power_freq_disable_turbo
```


DETERMINING AND PREDICTING LOAD

Meeting the needs of an on demand network

Scale always on DPDK performance with the network demand Common Challenges

- Always On
 - Adjust PMD cores frequency to adjust to packet demand
 - Potential to save power drawn per core using frequency scaling
 - ++ from sleeping

Speed of Re(Action)

- Challenge: Fast Scale Up to react to increases in n/w traffic
- Time = queueing/buffering

Challenge: Fast Monitor & Reaction Time

Closer to hardware gives faster reaction time

Move to Policy based control

Apply Power Where and When it's needed

Poll Loop Work Rate Detection (PMD Load%)

- CPU Load is always 100% for DPDK PMD Poll Loops
- Actual workload may be zero (processing zero packets)
- Use PMU counters to calculate the actual work done
- Use the ratio between Branch Hits and Branch Misses
- Ratio is low when tight code loop (empty polling), and significantly is higher when processing packets (due to larger code path)
- Almost linear with traffic rate

Empty Poll Number Driven Model

Empty Polls Per Interval vs. Throughput (@ 3 CPU Frequencies)

Latency Comparison

ECO-SYSTEM ENABLEMENT

Telemetry Integration

- Metric Busy Indication
- Metric PkgWatts
- collectd (next) with new dpdk_plugin, updated platform power metrics
- DPDK 19.08 with new telemetry mode sample

Metric #1 Busy Indication	Metric #2 PkgWatts	Action
No	No	Steady State
Yes	No	Backoff
No	Yes	Backoff

Kubernetes Integration Example

Software Reference

- DPDK APIs available
 - Application APIs to support in band and out of band use cases
 - http://dpdk.org/doc/api/rte__power_8h.html
- Sample applications
 - L3fwd-power
- Presentations
 - https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day2-8-Power.pdf
 - https://www.dpdk.org/wp-content/uploads/sites/35/2018/10/pm-01-DPDK_Summit18_PowerManagement.pdf
- Power Tools Repo Info
 - https://github.com/intel/commspowermanagement

