Deepfake Detection

2022.05.20

최종욱

1. Survey

1. Survey

- Survey list
 - (1) Deepfake generation and detection, a survey (2020)
 - (2) Handbook of Digital Face Manipulation and Detection (2022)

- (1) Deepfake generation and detection, a survey (2020)
 - 1. Background
 - SVM, RNN, LSTM, CNN, GAN, Transfer learning
 - 2. Type of Deepfake
 - Face Swap, Facial reenactment
 - 3. Detection method
 - Feature based, Machine learning based
 - Dataset
 - 4. Challenge
 - Evolving technology
 - Lack of high-quality dataset
 - Lack of benchmark

- Type of Deepfake Generation
 - Face Swap
 - Identity Swap
 - Facial reenactment
 - Face synthesis
 - Attribute manipulate
 - + Face morphing, Expression swap

- Type of Deepfake Detection
 - Feature based method
 - Biometric feature -> 얼굴의 생체적 특징
 - Model feature -> GAN fingerprint
 - Media feature -> temporal, inter-frame dissimilarities,
 semantic, noise, multilevel, frequency, optical flow, ...
 - Machine learning based method
 - Traditional machine learning methods
 - Deep learning methods

(a) Fake

(b) Fake after GANprintR

Detection Dataset

Datasets	Type	Number of images	Number of Videos	Year
Flickr-Faces-HQ (FFHQ) [46]	Images	70,000 (fake)	-	2019
CelebA [45]	Images	30,000 (1024×1024)	-	2017
UADFV [58]	Videos	-	98 (49 real + 49 fake)	2018
WildDeepfake [99]	Videos	-	707	2020
Ding et al. [23]	Images	-	420,053	2019
FaceForensics [80]	Images, videos	1,500,000	1004	2019
FaceForensics++ [81]	Images, videos	1,800,000	3000	2019
DeepfakeTIMIT datasets [53]	Videos	-	320	2018
Celeb-DF [60]	Videos	-	1203 (408 real + 795 fake)	2020
MFC Datasets [35]	Videos, images	35,000,000(100,000 manipulated)	300,000 (4000 manipulated)	2019
FFW [50]	Images	53,000	150	2018
VidTIMIT [55]	Videos	_	620	2019
DFDC Preview [24]	Videos	_	5214	2019
DFDC [25]	Videos	_	4113	2020
DeepfakeDetection [21]	Videos	_	3363	2019

Table 1.2 Identity swap: Publicly available databases

Database	Real videos	Fake videos
1st generation		
UADFV (2018) [58]	49 (Youtube)	49 (FakeApp)
DeepfakeTIMIT (2018) [11]	_	620 (faceswap-GAN)
FaceForensics++ (2019) [20]	1000 (Youtube)	1000 (FaceSwap) 1000 (DeepFake)
2nd generation		<u>'</u>
DeepFakeDetection (2019) [66]	363 (Actors)	3068 (DeepFake)
Celeb-DF (2019) [56]	890 (Youtube)	5639 (DeepFake)
DFDC Preview (2019) [59]	1131 (Actors)	4119 (Multiple)
DFDC (2020) [67]	23,654 (Actors)	104,500 (Multiple)
DeeperForensics-1.0 (2020) [60]	50,000 (Actors)	1000 (DeepFake)
WildDeepfake (2020) [61]	3805 (Internet)	3509 (DeepFake)
	*	·

- 1st Generation
 - UADFV, DeepfakeTIMIT, FaceForensic++
 - 1. Face synthesis method
 - 2. Face detection and alignment method
 - 3. Rearrangement method

- 2nd Generation
 - DeepFakeDetection
 - Quality 분류
 - Celeb-DF
 - Deepfake generation method 개선
 - DFDC
 - 8개의 서로 다른 face-swapping 방법 사용
 - DeeperForensics-1.0
 - End-to-End face-swapping framework 사용
 - WildDeepfake
 - Real-world 를 가정해 higher diversity dataset

- Challenges
 - Evolving technologies
 - Black-box, white-box, distortion-minimize attack
 - Add adversarial perturbation
 - Shallow reconstruction to diminish artifact pattern
 - Lack of high-quality dataset
 - 2nd generation dataset
 - Lack of benchmark
 - 범용성 있는 벤치마크 Detection method 필요

2. 최신연구경향

2022 CVPR accepted papers

- Self-supervised Learning of Adversarial Examples: Towards Good Generalizations for Deepfake Detection
 - Open-set, pristine <-> reference
- 2. Detecting Deepfakes with Self-Blended Images
 - Open-set, pristine = reference
- 3. Protecting Celebrities from DeepFake with Identity Consistency Transformer
 - Closed-set
- 4. DeepFake Disrupter: The Detector of DeepFake Is My Friend
 - 논문 안 나옴
- 5. Voice-Face Homogeneity Tells Deepfake
 - 논문 안 나옴

Overview of model

Figure 3. Overview of our model. The synthesizer network (i.e. generator) outputs three forgery configurations that are further used to synthesize a new forgery, and these forgery configurations are also used as labels to guide the detector network (i.e. discriminator). We train the generator and discriminator in an adversarial manner. Please refer to the text for details.

Example of region selection and blending

- Blending type
 - 0. alpha blending

(a) Pristine

(b) Random reference Comb. No. 2 & 3

(j) No. 7. Comb. No. 2 & 3

(n) Forgery by alpha blending

- Blending type
 - 1. poisson blending

(a) Pristine

(b) Random reference Comb. No. 2 & 3

(j) No. 7. Comb. No. 2 & 3

(p) Forgery by Poisson blending

- Blending type
 - 2. mix-up blending

(a) Pristine

(b) Random reference final mask

(m) deformed final mask

$$\mathbf{I}_a = A_g \times \mathbf{M}_d * (\mathbf{I}_f - \mathbf{I}_p) + \mathbf{I}_p$$

(o) Forgery by mixup blending

- Blending type, 2. mix-up blending
 - Gaussian blur with random kernel size

(j) No. 7. Comb. No. 2 & 3

(m) deformed final mask

- Blending type, 2. mix-up blending
 - Blending ratio -> continuous number, [0, 1]

(m) deformed final mask

(m) deformed final mask

- Joint Training with Self-Supervised Tasks
 - Main task loss $\rightarrow \mathcal{L}_{Main}$
 - AM-Softmax Loss

(Angular -> intra-class variability], Margin -> inter-class variability 1)

- Forgery region estimation loss $\rightarrow \mathcal{L}_R$
 - $\mathcal{L}_R = \frac{\|\mathbf{M}_{gt} \mathbf{M}_e\|_1}{H/16 \times W/16}$
- Blending type estimation loss $\rightarrow \mathcal{L}_T$
 - $T \rightarrow \{0, 1, 2, 3, 4\}$
 - AM-Softmax Loss
- Blending ratio estimation loss $\rightarrow \mathcal{L}_A$
 - $\blacksquare \quad \mathcal{L}_A = \tau \times ||A_{gt} A_e||_1$
 - T=2, T = 1 <-> otherwise, T = 0

$$\mathcal{L}_{Main} + \alpha \mathcal{L}_R + \mu \mathcal{L}_T + \gamma \mathcal{L}_A$$

- Adversarial Training
 - Synthesizer network $\rightarrow G(\cdot, \theta)$
 - Discriminator network $\rightarrow D(\cdot, w)$

$$\min_{w} \max_{\theta} \mathcal{L}, \text{ s.t. } \mathcal{L}(\theta, w) = \mathcal{L}_{Main} + \alpha \mathcal{L}_{R} + \mu \mathcal{L}_{T} + \gamma \mathcal{L}_{A}$$

- Minimize $\rightarrow w^{t+1} = w^t \eta \frac{1}{N} \sum_{n=1}^{N} \nabla_{w^t} \mathcal{L}_n(\theta^t, w^t)$
- Maximize $\rightarrow \theta^{t+1} = arg \max_{\theta^t} \mathcal{L}(w^{t+1}, \theta^t)$

$$\theta^{t+1} = \theta^t + \epsilon \nabla_{\theta^t} \mathcal{L}_b \qquad \mathcal{L}_b = \frac{1}{N} \sum_{n=1}^N \mathcal{L}_n(w^{t+1}, \theta^t)$$
$$\approx \theta^t + \epsilon \frac{1}{M} \sum_{m=1}^M \mathcal{L}_b \nabla_{\theta^t} \log p_m$$

REINFORCE algorithm

- Generalizability Comparisons
 - Dataset
 - Compression

Method		DF			F2F			FS			NT		Ava
Wethod	DFDC	CelebDF	DF1.0	Avg.									
Xception [41]	0.654	0.681	0.617	0.708	0.598	0.745	0.708	0.601	0.605	0.646	0.625	0.838	0.669
Face X-ray [24]	0.609	0.554	0.668	0.633	0.684	0.766	0.646	0.697	0.795	0.613	0.703	0.866	0.686
F3Net [39]	0.682	0.664	0.658	0.679	0.654	0.761	0.679	0.636	0.651	0.672	0.689	0.932	0.696
RFM [47]	0.758	0.723	0.717	0.736	0.663	0.732	0.714	0.591	0.714	0.726	0.600	0.846	0.710
SRM [30]	0.679	0.650	0.720	0.687	0.693	0.775	0.671	0.643	0.771	0.656	0.651	0.936	0.711
Ours	0.772	0.730	0.742	0.787	0.781	0.786	0.742	0.800	0.695	0.741	0.759	0.889	0.769

Table 1. Generalizability comparisons with state-of-the-art methods in the term of AUC. The best results are in bold. The first row denotes the training data, and the second row shows the corresponding test dataset. Our method performs favorably among the models compared.

			Test	t set	
Training set	Method	L	Q	Н	Q
		DF	FS	DF	FS
	Xception [41]	0.587	0.517	0.770	0.718
	Face X-ray [24]	0.571	0.510	0.585	0.779
NT	F3Net [39]	0.583	0.519	0.805	0.612
NI	RFM [47]	0.558	0.516	0.798	0.639
	SRM [30]	0.555	0.529	0.838	0.795
	Ours	0.628	0.568	0.846	0.721

Table 2. Generalizability comparisons across different compression levels in the term of AUC. Our method achieves comparable performance against existing methods.

- State-of-the-art Comparisons
 - Multi-task → classify, localization
 - State-of-the-art detector

Training set	Method	Test set			
Training set	Wiction	F2F	FS		
	LAE [14]	0.909	0.632		
F2F	ClassNSeg [34]	0.928	0.541		
Г2Г	Forensic-Trans [9]	0.945	0.726		
	Ours	0.960	0.848		

Table 3. Comparisons with models adopt multi-task learning in the term of ACC. Our model performs favorably against these arts.

Method	FF++	CelebDF
Two-stream [59]	0.701	0.538
Meso4 [1]	0.847	0.548
MesoInception4 [1]	0.830	0.536
FWA [27]	0.801	0.569
DSP-FWA [27]	0.930	0.646
Xception [41]	0.997	0.653
VA-MLP [33]	0.664	0.550
Headpose [53]	0.473	0.546
Capsule [35]	0.966	0.575
SMIL [25]	0.968	0.563
Two-branch [32]	0.932	0.734
SPSL [29]	0.969	0.724
MADD [57]	0.998	0.674
Ours	0.984	0.797

Table 4. Extensive evaluations with other state-of-the-art methods in the term of AUC. The models are trained on FF++ dataset. Our method performs favorbly when tested on FF++, and it outperforms others when tested on CelebDF.

- Ablation Study
 - Adversarial learning (adv, ran)
 - Data augmentations (ops, aug)

Method	l	DF			F2F			FS			NT		Avg.
Wethod	DFDC	CelebDF	DF1.0	Avg.									
Xception [41]	0.654	0.681	0.617	0.708	0.598	0.745	0.708	0.601	0.605	0.646	0.625	0.838	0.669
Xception w/ adv													
Ours w/ ran	0.763	0.663	0.690	0.763	0.745	0.696	0.738	0.700	0.650	0.705	0.666	0.810	0.716
Ours	0.772	0.730	0.742	0.787	0.781	0.786	0.742	0.800	0.695	0.741	0.759	0.889	0.769

Table 5. Ablation studies regarding the effectiveness of the adversarial training. The metric is AUC. Please see Sec. 4.4 for detailed experiment settings.

Method		DF			F2F			FS			NT		Avg.
Wiethou	DFDC	CelebDF	DF1.0	Avg.									
Ours w/ ran ops	0.735	0.666	0.782	0.694	0.647	0.827	0.737	0.601	0.646	0.691	0.685	0.812	0.710
Ours w/ ops [55]													
Ours w/ aug [24]	0.722	0.692	0.712	0.722	0.710	0.739	0.719	0.726	0.640	0.714	0.669	0.841	0.717
Ours w/ aug [58]													
Ours	0.772	0.730	0.742	0.787	0.781	0.786	0.742	0.800	0.695	0.741	0.759	0.889	0.769

Table 6. Ablation studies regarding the effectiveness of the data augmentation strategies. The metric is AUC. Please see Sec. 4.4 for detailed experiment settings.

- Ablation Study
 - Self-supervised tasks

				DF			F2F			FS			Avg.		
\mathcal{L}_R	\mathcal{L}_T	\mathcal{L}_A	DFDC	CelebDF	DF1.0	Avg.									
√	✓	-	0.770	0.686	0.687	0.768	0.714	0.779	0.722	0.709	0.653	0.735	0.720	0.856	0.733
										0.636					
						1				0.698					
-										0.644					
✓	✓	✓	0.772	0.730	0.742	0.787	0.781	0.786	0.742	0.800	0.695	0.741	0.759	0.889	0.769

Table 7. Effectiveness of the proposed self-supervised auxiliary tasks. The metric is AUC. We disable the self-supervised task by assigning a zero weight to the corresponding loss.

감사합니다