E0 230

Computational Methods of Optimization Tutorial 1

Nov. 7, 2020

- 1. Suppose $x, y \in \mathbb{R}^n$. Prove the following statements.
 - (a) $|||x|| ||y||| \le ||x y|| \le ||x|| + ||y||$

Solution:

We start by writing $||x-y||^2 = x^Tx + y^Ty - 2x^Ty = ||x||^2 + ||y||^2 - 2x^Ty$. Next, by Cauchy-Schwartz (derived in class, get familiar with this inequality!) we have $-2||x|||y|| \le -2x^Ty \le 2||x|||y||$. From this, it follows that

$$||x||^2 + ||y||^2 - 2||x|| ||y|| \le ||x - y||^2 \le ||x||^2 + ||y||^2 + 2||x|| ||y||$$

$$\Rightarrow (|||x|| - ||y|||)^2 \le ||x - y||^2 \le (||x|| + ||y||)^2$$

$$\Rightarrow |||x|| - ||y||| \le ||x - y|| \le ||x|| + ||y||$$

(b) $2x^Ty = ||x||^2 + ||y||^2 - ||x - y||^2$

Solution: Recall $||x-y||^2 = x^Tx + y^Ty - 2x^Ty = ||x||^2 + ||y||^2 - 2x^Ty$. Rearranging terms, we can prove the statement.

(c) $||x||_2 \le \sqrt{n} ||x||_{\infty}$

Solution: Suppose (wlog) that $|x_1| = ||x||_{\infty}$. We have

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2} = |x_1|\sqrt{1 + (x_2/x_1)^2 + \dots + (x_n/x_1)^2} \le |x_1|\sqrt{n} = \sqrt{n}||x||_{\infty}$$

(d) $||x||_1 \le n||x||_{\infty}$

Solution: Suppose (wlog) that $|x_1| = ||x||_{\infty}$. We have

$$||x||_1 = |x_1| + \dots + |x_n| = |x_1| (1 + |x_2/x_1| + \dots + |x_n/x_1|) \le |x_1| = n ||x||_{\infty}$$

(e) $||x||_1 \le \sqrt{n}||x||_2$

Solution: We have

$$||x||_1 = |x_1| + \dots + |x_n| = 1 * |x_1| + \dots + 1 * |x_n|$$

$$\leq \left(\sqrt{\sum_{i=1}^n 1}\right) \left(\sqrt{\sum_{i=1}^n |x_1|^2}\right) \quad \text{(by Cauchy-Schwartz)}$$

$$= \sqrt{n}||x||_2$$

We can also write $||x||_1 = x^T s$ where s = sign(x), and apply Cauchy-Schwartz.

- 2. Note that $H_f(x)$ denotes the Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$
 - (a) Show that $e^x \ge 1 + x$.

Solution:

We start by taking the Taylor series: $e^x = \sum_i \frac{x^i}{i!}$. The Lagrange remainder for the linear approximation gives us $e^x = 1 + x + \frac{e^z}{2}x^2$ for some $z \in [0, x]$. Since $e^z x^2 \ge 0$, it follows that $e^x \ge 1 + x$.

We can also think of this as an optimization problem. Note that $e^x \ge 1 + x \Rightarrow e^x - 1 - x \ge 0 \Rightarrow \min_x e^x - 1 - x \ge 0$. So now, let $g(x) = e^x - 1 - x$. $g'(x) = e^x - 1$, which gives us $e^{x^*} = 1 \Rightarrow x^* = 0$. To check optimality, we employ the second order condtions. For that $g''(x) = e^x$ which is always positive. Thus, g(x) is minimized at x = 0, and g(0) = 0. Thus, we prove the statement.

(b) Suppose n=1, and $f^{(k)}$, the kth derivative of f w.r.t x is absolutely continuous. Show that given

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{k!}f^{(k)}(x_0)(x - x_0)^k + R_k$$

we have

$$R_k = \int_{x_0}^x \frac{f^{(k+1)}(t)}{k!} (x-t)^k dt.$$

Solution: We prove the statement by induction for all R_k . First, for k=1, we use the fundamental theorem of calculus: $f(x) = f(x_0) + \int_{x_0}^x f'(s)ds$. Then, we assume the statement holds for arbitrary k. Then, consider the term

$$R_k = \int_{x_0}^{x} \frac{f^{(k+1)}(t)}{k!} (x-t)^k dt$$

We apply integration by parts, giving us

$$R_{k} = \int_{x_{0}}^{x} \frac{f^{(k+1)}(t)}{k!} (x-t)^{k} dt = -\left[\frac{f^{(k+1)}(t)}{(k+1)!} (x-t)^{k+1}\right]_{x_{0}}^{x} - \int_{x_{0}}^{x} \frac{-f^{(k+2)}(t)}{(k+1)!} (x-t)^{k+1}$$

$$= \frac{f^{(k+1)}(x_{0})}{(k+1)!} (x-x_{0})^{k+1} + \int_{x_{0}}^{x} \frac{f^{(k+2)}(t)}{(k+1)!} (x-t)^{k+1} = \frac{f^{(k+1)}(x_{0})}{(k+1)!} (x-x_{0})^{k+1} + R_{k+1}$$

Thus, we prove the statement.

(c) Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, such that $\max_{x,i} |\lambda_i(H_f(x))| = M < \infty$, where $\lambda_i(H_f(x))$ is the *i*th eigenvalue of $H_f(x)$. Show that there exists a constant L such that, for each x, y, we have

$$f(y) - f(x) \le \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

Solution: We apply the Taylor series expansion to f(y) centered at x:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} H_{f}(x) (y - x) + R_{2}(x)$$

$$= f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} H_{f}(z) (y - x) \text{ for some } z$$

$$\leq f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} (\lambda_{max} (H_{f}(z)) I) (y - x)$$

$$\leq f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} \max_{i, w} |\lambda_{i} (H_{f}(w))| ||y - x||^{2}$$

$$= f(x) + \nabla f(x)^{T} (y - x) + \frac{M}{2} ||y - x||^{2} \text{ (proof holds with } L = M)$$

- 3. Suppose we have matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times n}$, $m \neq n$
 - (a) Suppose A has n orthogonal eigenvectors. Show that we can write $A = V^T \Lambda V$, where the columns of V are the eigenvectors of A, and the diagonal elements of Λ are the eigenvalues of A. When are we unable to use this decomposition?

Solution: Let (λ_i, v_i) be an eigenpair of A. Then, we have $Av_i = \lambda_i v_i$. Taking the matrix $V = [v_1, ..., v_n]$, it follows that $AV = V\Lambda$ where Λ is a diagonal matrix with $\Lambda_{ii} = \lambda_i$. Next, recall that $V^T = V^{-1}$ since the columns are orthogonal. Thus, it follows that $AVV^T = V\Lambda V^T = A$.

(b) Suppose B is of rank r. What are the ranks of BB^T and B^TB ? With this result, what can you say about the row and column ranks of B and B^T ?

Solution:

From the rank-nullity theorem, we have $\operatorname{rank}(B) + \operatorname{nullity}(B) = \min\{m,n\}$. Thus, $Bx = 0 \Rightarrow B^TBx = 0$, since $B^TBx = 0 \Rightarrow x^TB^TBx = (Bx)^TBx = 0$. Thus, $\operatorname{rank}(B) = \operatorname{rank}(B^TB)$. Similarly, we can show that $B^Ty = 0 \Rightarrow BB^Ty = 0 \Rightarrow \operatorname{rank}(B^T) = \operatorname{rank}(BB^T)$. Next, we know that the columns of B^TB are linear combinations of the columns of $B^T \Rightarrow \operatorname{rank}(B^TB) \leq \operatorname{rank}(B^T)$. Similarly, the columns of BB^T are linear combinations of the columns of $B \Rightarrow \operatorname{rank}(BB^T) \leq \operatorname{rank}(B)$. Thus, we get $\operatorname{rank}(B) = \operatorname{rank}(B^TB) \leq \operatorname{rank}(B^T)$ and $\operatorname{rank}(B^T) = \operatorname{rank}(BB^T) \leq \operatorname{rank}(B)$. This only holds if $\operatorname{rank}(B) = \operatorname{rank}(B^T)$.

(c) Let $p(l) = \det(lI - A)$. For any A, we have p(A) = 0 (this is the Cayley-Hamilton theorem). Show that $p(A) = p(P^{-1}AP)$ for any invertible matrix P. What does this say about the eigenvalues of A and $P^{-1}AP$?

Solution: Recall that $p(l) = \sum_i a_i l^i$, and $p(\lambda) = 0$ for any eigenvalue λ . We have $p(A) = \sum_i a_i A^i$. Next, note that $(P^{-1}AP)^n = (P^{-1}AP)(P^{-1}AP)... = P^{-1}A^nP$. Thus,

$$p(P^{-1}AP) = \sum_{i} a_i (P^{-1}AP)^i = \sum_{i} a_i P^{-1}A^i P = P^{-1} \left(\sum_{i} a_i A^i\right) P.$$

What this shows is that p(A) = 0 implies $p(P^{-1}AP) = 0$, which in turn implies that the characteristic polynomials share roots.

Another way to think about this is as follows. Let $C = P^{-1}AP \Rightarrow A = PCP^{-1}$. Then, $Av = \lambda v = PCP^{-1}v \Rightarrow CP^{-1}v = \lambda P^{-1}v$. This implies the eigenvalues are maintained, and the eigenvectors are transformed by P^{-1} .

(d) Show that we can decompose $B = U\Sigma V^T$, where Σ is diagonal and positive-semidefinite, and U and V have orthogonal columns.

Solution: Let V be a matrix containing the eigenvectors of nonzero eigenvalues of B^TB and let U be a matrix containing the eigenvectors of nonzero eigenvalues of BB^T . Let the eigenvalues be σ_i^2 . Furthermore, we can write $u_i = \frac{1}{\sigma_i} B v_i$ (why? $BB^T u_i = BB^T (B v_i) / \sigma_i = \sigma_i^2 B v_i / \sigma_i$). From this, it follows we can write $U = BV \Sigma^{-1} \Rightarrow U\Sigma = BV \Rightarrow B = U\Sigma V^T$ since $VV^T = I$.

(e) Show that A, B are equivalent if and only if, for all vectors $v \in \mathbb{R}^n$, Av = Bv.

Solution: If A = B, then Av = Bv holds trivially. Now, suppose Av = Bv We need to show that A = B. Let $v = e_i$, where e_i is the *i*th coordinate vector. Then, $Ae_i = Be_i$, which implies the *i*th column of A is equivalent to the *i*th column of B for all i. Thus, we prove the statement.

(f) The Frobenius norm of a matrix is given by $||B||_F = \sqrt{\text{Tr}(B^T B)}$. Show that $||B||_F = \sqrt{\sum_k \sigma_k(B)^2}$, where $\sigma_k(B)$ is the kth largest singular value of B.

Solution: We can write $B = U\Sigma V^T$. Then, we have

$$\begin{split} \|B\|_F &= \sqrt{\mathrm{Tr}\left(B^T B\right)} = \sqrt{\mathrm{Tr}\left(V \Sigma^T U^T U \Sigma V^T\right)} \\ &= \sqrt{\mathrm{Tr}\left(V \Sigma^T \Sigma V^T\right)} = \sqrt{\mathrm{Tr}\left(\Sigma^T \Sigma V^T V\right)} = \sqrt{\mathrm{Tr}\left(\Sigma^2\right)} \\ &= \sqrt{\sum_k \sigma_k^2}. \end{split}$$

More simply, the singular values of B are the eigenvalues of B^TB ; thus, by the definition of trace, the expression holds.

(g) Consider the function $f: U \to \mathbb{R}$, where $f(x) = x^T A x$ and U is the set of all unit vectors of dimension n. Show that, if A is symmetric, range $(f) \subseteq [\lambda_{min}(A), \lambda_{max}(A)]$.

Solution:

Note that since A is symmetric, we can write $A = Q\Lambda Q^T$, where Q is an orthogonal matrix. Furthermore, let y = Qx, and note that $||y|| = \sqrt{x^T Q^T Q x} = \sqrt{x^T x} = ||x|| = 1$. Thus, $f(x) = x^T Q^T \Lambda Q x = y^T \Lambda y = \lambda_1 y_1^2 + ... + \lambda_n y_n^2$. Then, it follows that $\lambda_{\min} \leq \lambda_1 y_1^2 + ... + \lambda_n y_n^2 \leq \lambda_{\max}$

(h) What is the solution to

$$s^* = \max_x \frac{\|Bx\|_2}{\|x\|_2}?$$

Remark: s^* is the Spectral norm of B, denoted by $||B||_2$.

Solution:

First, note that

$$\max_{x} \frac{\|Bx\|_{2}}{\|x\|_{2}} = \max_{x} \frac{\|Bx\|_{2}^{2}}{\|x\|_{2}^{2}} = \max_{x} \frac{x^{T}B^{T}Bx}{x^{T}x}.$$

Now, we can write $B^TB=Q^T\Lambda Q$. Then, we denote y=Qx, and get

$$\frac{x^TB^TBx}{x^Tx} = \frac{x^TQ^T\Lambda Qx}{x^TQ^TQx} = \frac{y^T\Lambda y}{y^Ty} = \frac{\sum_i \lambda_i y_i^2}{\sum_i y_i^2} \leq \lambda_{\max}.$$

Here, λ_{max} is the largest eigenvalue of $B^T B$, and is thus the largest singular value $\sigma_{\text{max}}(B)$.

(i) Suppose $\sum_{i=1}^n \sigma_i u_i v_i^T = B \in \mathbb{R}^{m \times n}$. Show that $B_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ satisfies $\|B - B_k\|_F \le \|B - C\|_F$ for any $C \in \mathbb{R}^{m \times n}$ of rank k.

Solution: Let $B = \sum_{i=1}^n \sigma_i u_i v_i^T$ and $C = \sum_{j=1}^K \rho_j x_j y_j^T$, and $\sigma_1 \geq ... \geq \sigma_n$ and $\rho_1 \geq ... \rho_n$. Using the definition of the Frobenius norm, we get

$$\begin{split} \|B - C\|_F^2 &= \operatorname{Tr}((B - C)^T (B - C)) = \operatorname{Tr}(B^T B) + \operatorname{Tr}(C^T C) - 2\operatorname{Tr}(B^T C) \\ &= \sum_i \sigma_i^2 + \sum_j \rho_j^2 \operatorname{Tr}(y_j x_j^T x_j y_j^T) - 2\operatorname{Tr}(\sum_i \sum_j \sigma_i \rho_j v_i u_i^T x_j y_j^T) \\ &= \sum_i \sigma_i^2 + \sum_j \rho_j^2 \operatorname{Tr}(y_j x_j^T x_j y_j^T) - 2\sum_i \sum_j \sigma_i \rho_j \operatorname{Tr}(v_i u_i^T x_j y_j^T) \\ &= \sum_i \sigma_i^2 + \sum_j \rho_j^2 x_j^T x_j y_j^T y_j - 2\sum_i \sum_j \sigma_i \rho_j u_i^T x_j \operatorname{Tr}(v_i y_j^T) \\ &= \sum_i \sigma_i^2 + \sum_j \rho_j^2 x_j^T x_j y_j^T y_j - 2\sum_i \sum_j \sigma_i \rho_j u_i^T x_j v_i^T y_j \end{split}$$

Taking the gradients of this function w.r.t. each x_i and y_i , we get

$$\rho_j^2 x_j - \rho_j \sum_i \sigma_i v_i^T y_j u_i = 0$$
 and $\rho_j^2 y_j - \rho_j \sum_i \sigma_i u_i^T x_j v_i = 0$ for all $j \in [k]$

Thus, it follows that $y_j = \frac{1}{\rho_j} \sum_i \sigma_i u_i^T x_j v_i$. Substituting the expression back into the gradient w.r.t. x_j , we get

$$\begin{split} \rho_j^2 x_j &= \rho_j \sum_i \sigma_i v_i^T y_j u_i = \rho_j \sum_i \sigma_i v_i^T \left(\frac{1}{\rho_j} \sum_l \sigma_l u_l^T x_j v_l \right) u_i \\ &= \sum_i \sigma_i^2 u_i^T x_j u_i = \sum_i \sigma_i^2 u_i u_i^T x_j \\ \Rightarrow \rho_j^2 \sum_i \alpha_i u_i = \sum_i \sigma_i^2 u_i u_i^T \left(\sum_l \alpha_l u_l \right) = \sum_i \sigma_i^2 \alpha_i u_i \\ \Rightarrow 0 &= \sum_i (\rho_j^2 - \sigma_i^2) \alpha_i u_i \end{split}$$

The last equality holds if $\alpha_j = 1$, $\alpha_i = 0$ for $i \neq j$, and $\sigma_j = \rho_j$. Thus, $x_j = u_j$ and using a similar technique, we get $y_j = v_j$. This is a minimum because the second derivatives w.r.t. x_j or y_j are positive definite for all j. Thus, we prove the statement. Alternatively. we use the Von Neumann Trace inequality: $|\text{Tr}(B^TC)| \leq \sum_i \sigma_i \rho_i$. We then get

$$||B - C||_F^2 = \sum_i \sigma_i^2 + \sum_j \rho_j^2 - 2 \text{Tr}(B^T C) \ge \sum_i \sigma_i^2 + \sum_j \rho_j^2 - 2 |\text{Tr}(B^T C)|$$

$$\ge \sum_i \sigma_i^2 + \sum_j \rho_j^2 - 2 \sum_j \sigma_i \rho_j = \sum_j (\sigma_j^2 + \rho_j^2 - 2\sigma_j \rho_j) + \sum_{i > k} \sigma_i^2$$

$$= \sum_j (\sigma_j - \rho_j)^2 + \sum_{i > k} \sigma_i^2.$$

This is minimized when $\sigma_i = \rho_i$ for $i \leq k$. Thus, the optimal $C = B_k$.

For the Von Neumann trace inequality, see *Matrix Analysis* Chapter 8.7.6 by Horn and Johnson. For a geometric proof of this theorem (a.k.a. the Eckart-Young-Mirsky Theorem) see *Foundations of Data Science* Chapter 3.1-3.3 by Hopcroft, Blum, and Kannan.

4. Consider the polynomial

$$p(x, y, z) = x^4y^2 + x^2y^4 + z^6 - 3x^2y^2z^2.$$

Show that

$$f^* = \inf_{x,y,z} p(x,y,z) = 0.$$

Solution: In this problem, we're essentially asked to prove that $p(x, y, z) \ge 0$. To do so, we employ the AM-GM inequality (given positive $\{a_i\}_{i=1}^n$, $\frac{1}{n}\sum_i a_i \ge (a_1...a_n)^{1/n}$) on the first three monomials:

$$\frac{x^4y^2 + x^2y^4 + z^6}{3} \ge \left(x^6y^6z^6\right)^{\frac{1}{3}}$$

from which we see that the statement holds.

5. Suppose A, B are symmetric and that the problems

(P1)
$$\underset{x}{\operatorname{argmin}} x^T A x$$
 and (P2) $\underset{x}{\operatorname{argmin}} x^T B x$

have unique solutions $x_{P1} = x_{P2} = 0$. What is the solution to

$$\underset{x}{\operatorname{argmin}} x^T A B x,$$

and is it unique? (hint: every symmetric PD matrix has a unique, positive definite square root - can you prove this?)

Solution:

Since P1 and P2 have unique solutions, it follows that A, B are positive definite. We know that symmetric PD matrices have a PD square root, since each symmetric PD matrix C can be decomposed as $C = V\Lambda V^T = V\Lambda^{1/2}V^TV\Lambda^{1/2}V^T$. Thus, $C^{1/2} = V\Lambda^{1/2}V^T$. Then, we know that the spectrum of B is the same as the spectrum of PAP^{-1} for any invertible matrix P. Thus, the eigenvalues of B are the same as the eigenvalues of $C = A^{1/2}BA^{-1/2} \succ 0$. Thus, we see that $AB = A^{1/2}CA^{1/2}$, and $X^TABX = Y^TCY$ where $Y = A^{1/2}X$. Since C is PD, X = X = X = X.

6. Suppose we have m scalar data points $\{x_i\}_{i=1}^m$. What is the solution to

$$z_2 = \operatorname*{argmin}_{z} \sum_{i} (x_i - z)^2.$$

Solution: Let $f(z) = \sum_i (x_i - z)^2$. To find the extreme points $f'(z) = \sum_i 2(z - x_i) = 0 \Rightarrow 2nz = 2\sum_i x_i \Rightarrow z = \frac{1}{n}\sum_i x_i$. Furthermore, we have f''(z) = 2 > 0, so the minimum is unique.

7. Suppose we have m pairs of data points (x_i, y_i) , where $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Solve

$$w_* = \operatorname*{argmin}_{w} \sum_{i} (y_i - w^T x_i)^2.$$

What if there are only $r < \min\{m, n\}$ linearly independent data points? Will you still have a unique solution (show why or why not).

7

Solution:

Define $Y \in \mathbb{R}^n$, where $Y_i = y_i$, and $X \in \mathbb{R}^{m \times n}$ where the ith column of X is x_i . Then, $f(w) = \sum_i (y_i - w^T x_i)^2 = \|Y - Xw\|^2 = w^T X^T X w + Y^T Y - 2Y^T X w$. The Hessian of f(w) is $X^T X$, which is positive definite if there are m linearly independent data points (in which case, a unique minimum exists), or PSD if there are r < m LI datapoints (in which there may be infinitely many equally good minima). To solve this problem, we set $\nabla f(w^*) = 0 \Rightarrow 2X^T X w^* = 2X^T Y \Rightarrow w^* = (X^T X)^{-1} X^T Y$, or, if $\operatorname{rank}(X) = r < m$, we can use the Psuedoinverse $w^* = (X^T X)^{\dagger} X^T Y$, where $A^{\dagger} = V \hat{\Sigma} U^T$, where $\hat{\Sigma}_i i = \frac{1}{\Sigma_i i}$ if $\Sigma_i i \neq 0$.

8. Suppose we have positive definite $A \in \mathbb{R}^{n \times n}$, and linearly independent vectors $\{v_i\}_{i=1}^m$, where m < n. How would you convert the problem

$$\underset{x}{\operatorname{argmin}} x^{T} A x \text{ such that } x \in \operatorname{span}\left(v_{1},...,v_{m}\right)$$

into an unconstrained problem? Does this problem have a unique solution? If so, under what conditions would this problem not have a unique solution?

Solution:

We have $f(x) = x^T A x$. If we write $x = \sum_i \alpha_i v_i = V \alpha$, where the *i*th column of V is v_i , we get

$$f(x) = g(\alpha) = (V\alpha)^T A (V\alpha) = \alpha^T V^T A V \alpha.$$

Next, since $A \succ 0$, it follows that $V^TAV \succ 0$ as well, since $f(x) > 0 \Leftrightarrow g(\alpha) > 0$. Thus, $g(\alpha)$ has a unique minimum as well. The problem would not have a unique solution if A is PSD and if at least 1 v_i is in the nullspace of A.