18/19

valores próprios e vetores próprios

página 1/3

Universidade de Aveiro Departamento de Matemática

1. Mostre que:

Se A é uma matriz triangular, então os valores próprios de A são os elementos da sua diagonal principal.

2. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue se a matriz é diagonalizável e, em caso afirmativo, indique uma sua matriz diagonalizante, bem como a matriz diagonal correspondente.

(a)
$$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 3 & 2 & -2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 3 & 2 & -2 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$
 (f)
$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & -2 \\ 3 & 1 & -4 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & -2 \\ 3 & 1 & -4 \end{bmatrix}$$

3. Determine os valores dos parâmetros reais $a \in b$ para os quais (1,1) é um vetor próprio e 0 é um valor próprio da matriz $\begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix}$.

4. Considere as matrizes $A = \begin{bmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \delta & \theta & \mu \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{bmatrix}$ e os vetores u = (1, 1, 1), v = (1, 0, -1) e

w=(1,-1,0), onde $\alpha,\beta,\gamma,\delta,\theta,\mu,a,b,c\in\mathbb{R}$ são parâmetros a determinar. Calcule $\alpha,\beta,\gamma,\delta,\theta,\mu,a,b,c$ de modo a que os vetores u, v e w sejam vetores próprios de A e -1, 0 e 1 sejam valores próprios de B.

- 5. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 1 \\ 0 & 1 & 3 \end{bmatrix}$.
 - (a) Mostre que 1 é um valor próprio de A e determine o subespaço próprio de A associado ao 1.
 - (b) Verifique se A é diagonalizável e, em caso afirmativo, indique uma matriz diagonal semelhante a A.
- 6. Seja A uma matriz quadrada. Mostre que A é singular se e só se 0 é um valor próprio de A.
- 7. Mostre que A e A^T possuem os mesmos valores próprios.
- 8. Seja A uma matriz quadrada de ordem $n \in \lambda_1, \lambda_2, \ldots, \lambda_n$ os seus valores próprios. Mostre que $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- 9. Seja A uma matriz quadrada e λ um valor próprio de A. Mostre que
 - (a) λ^k é um valor próprio de A^k , para $k \in \mathbb{N}$;
 - (b) $\frac{1}{\lambda}$ é um valor próprio de A^{-1} , caso A seja invertível.
- 10. Se A e B são matrizes invertíveis, mostre que AB e BA são matrizes semelhantes.
- 11. Se A é diagonalizável, mostre que
 - (a) A^T é diagonalizável;
 - (b) A^k é diagonalizável, para $k \in \mathbb{N}$;
 - (c) A^{-1} é diagonalizável, caso A seja invertível.
- 12. Considere a matriz $A = \begin{bmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$.
 - (a) Determine os valores próprios e subespaços próprios de A.
 - (b) Verifique que A é diagonalizável e indique uma matriz invertível P tal que $P^{-1}AP$ é diagonal.

18/19

valores próprios e vetores próprios

página 2/3

- (c) Calcule A^5 , utilizando o facto de A ser diagonalizável.
- 13. Considere a matriz $A = \begin{bmatrix} 0 & -1 \\ k & k+1 \end{bmatrix}$.
 - (a) Calcule o polinómio caraterístico de A, assim como os seus valores próprios.
 - (b) Determine os subespaços próprios de A.
 - (c) Indique, justificando, os valores do parâmetro real k para os quais A é diagonalizável.
 - (d) Para os valores de k obtidos na alínea anterior, determine uma matriz diagonal D e uma matriz não singular P tal que $A = PDP^{-1}$.
 - (e) Para k = -1, determine A^{2013} .
- 14. Sejam $A \in \mathbb{R}^{4 \times 4}$ e $X, Y, Z, W \in \mathbb{R}^4$ não nulos tais que $AX = AY = 0, \ AZ = Z$ e AW = -W, sendo $\{X,Y\}$ linearmente independente.
 - (a) Indique o polinómio caraterístico de A e os valores próprios de A.
 - (b) Indique, justificando, se A é diagonalizável e se existe uma base de \mathbb{R}^4 constituída por vetores próprios de A.
- 15. Diagonalize as matrizes simétricas seguintes através de uma matriz P diagonalizante ortogonal:

(a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$$

(a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
; (b) $\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$.

$$(c) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

- 16. Considere a matriz simétrica $A = \begin{bmatrix} 3 & -4 & -4 \\ -4 & 1 & 0 \\ -4 & 0 & 5 \end{bmatrix}$.
 - (a) Mostre que 9 é um valor próprio de A.
 - (b) Diagonalize A através de uma matriz diagonalizante ortogonal.
- 17. Seja A uma matriz simétrica 3×3 tal que (1,0,0) e (0,1,1) são vetores próprios de A associados ao valor próprio 1 e (0, -1, 1) é um vetor próprio de A associado ao valor próprio -3.
 - (a) Determine o subespaço próprio de A associado ao valor próprio 1.
 - (b) Justifique que A é diagonalizável e determine a matriz A.

Exercícios suplementares (com alguma dificuldade acrescida)

- 18. Seja $A = \begin{bmatrix} 0 & & & & \\ \vdots & & I_{n-1} & & \\ 0 & & & & \\ \hline a_0 & a_1 & \cdots & a_{n-1} \end{bmatrix} \in \mathbb{R}^{n \times n}$, onde $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, com polinómio caraterístico $p_A(\lambda)$.
 - (a) Verifique que $p_A(\lambda) = 0$ se e só se $\lambda^n = a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$.
 - (b) Mostre que, se λ é um valor próprio de $A, X_{\lambda} = (1, \lambda, \dots, \lambda^{n-1})$ é um vetor próprio associado a λ .
 - (c) Justifique que o espaço próprio associado a cada valor próprio λ é $U_{\lambda} = \langle X_{\lambda} \rangle$. [Sugestão: as última n-1 colunas de $A-\lambda I$ são linearmente independentes, logo...]
 - (d) Sejam $n=3, a_0=0, a_1=-1$ e $a_2=2$. Verifique as propriedades das alíneas anteriores e prove que A não é diagonalizável.

Considere a sucessão de valores reais (x_k) , com $k \in \mathbb{N}_0$, e seja (V_k) a sucessão de vetores em \mathbb{R}^n definida por $V_k = (x_k, x_{k+1}, \dots, x_{k+n-1})$ — sendo, portanto, $V_{k+1} = (x_{k+1}, x_{k+2}, \dots, x_{k+n})$.

- (e) Prove que (x_k) satisfaz a equação de recorrência $x_{k+n} = a_{n-1}x_{k+n-1} + \cdots + a_1x_{k+1} + a_0x_k$ se e só se $V_{k+1} = AV_k$, para cada $k \in \mathbb{N}_0$.
- (f) Se $V_{k+1} = AV_k$, verifique que $V_k = A^kV_0$ para cada $k \in \mathbb{N}_0$. O que acontece quando A é diagona-

ficha de exercícios 5

18/19

valores próprios e vetores próprios

página 3/3

- 19. Seja $P = \begin{bmatrix} X_1 & \cdots & X_m \end{bmatrix} \in \mathbb{R}^{n \times m}$ uma matriz cujas colunas são m vetores próprios de $A \in \mathbb{R}^{n \times n}$ e $D \in \mathbb{R}^{m \times m}$ a matriz que contém, na diagonal, os correspondentes valores próprios $\lambda_1, \ldots, \lambda_m$. Note-se que os vetores próprios não têm de ser linearmente independentes, nem têm de ser distintos (ou não nulos) os valores próprios.
 - (a) Demonstre a equação matricial dos vetores próprios: AP = PD.
 - (b) Justifique que $A^2P = PD^2$ e deduza que $A^kP = PD^k$, $\forall k \in \mathbb{N}_0$.

Para m = n, suponha-se que $det(P) \neq 0$.

- (c) Mostre que $\mathcal{B} = (X_1, \dots, X_n)$ é uma base (ordenada) de \mathbb{R}^n .
- (d) Verifique que $P=M_{\mathcal{C}\leftarrow\mathcal{B}}$ é a matriz de mudança da base \mathcal{B} para a base canónica de \mathbb{R}^n .
- (e) Prove que, para qualquer $X \in \mathbb{R}^n$ e qualquer $k \in \mathbb{N}_0$,

$$\left[A^k X\right]_{\mathfrak{B}} = D^k [X]_{\mathfrak{B}}.$$

Aplicações (exercícios optativos)

- 20. A sucessão de Fibonacci $(0,1,1,2,3,5,8,\ldots)$ é definida pela equação de recorrência $x_{k+2}=x_{k+1}+x_k$, sendo $k \in \mathbb{N}_0$, $x_0=0$ e $x_1=1$. Seja $V_k=(x_k,x_{k+1})\in \mathbb{R}^2$ para cada $k \in \mathbb{N}_0$. Usando a notação e os resultados do exercício 18,
 - (a) determine a matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $V_{k+1} = AV_k$ para $k \in \mathbb{N}_0$;
 - (b) determine o polinómio caraterístico $p_A(\lambda)$ e calcule os valores próprios de A;
 - (c) prove que A é diagonalizavel e determine uma matriz diagonalizante e a matriz diagonal correspondente;
 - (d) determine uma fórmula para calcular x_k para qualquer $k \in \mathbb{N}_0$ e indique o valor de x_{22} .
- 21. **Modelo de Leontief de economia fechada**. Este modelo descreve uma economia em que todos os bens (ou serviços) produzidos são consumidos pelos próprios setores produtivos. Portanto, em comparação com o modelo apresentado no exercício 47 da primeira folha prática, neste caso não há *procura final* e a *procura* (que corresponde à *procura intermédia*) é igual à produção.

Suponha-se que existem n indústrias I_1, \ldots, I_n e que, num dado período de tempo, a indústria I_i produz B_i unidades do bem b_i e consome C_{ij} unidades do bem b_j produzido por I_j , com $i, j = 1, \ldots, n$. Então,

 $a_{ij} = \frac{C_{ij}}{B_i}$ é a fração do total de bens produzidos pela indústria j que é utilizado pela indústria i.

Seja $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. Sendo a economia fechada, para todo o $j = 1, \dots, n$ tem-se que

$$a_{1j} + \dots + a_{nj} = \frac{C_{1j}}{B_j} + \dots + \frac{C_{nj}}{B_j} = \frac{C_{1j} + \dots + C_{nj}}{B_j} = 1,$$

pois o numerador (o total do bem b_j que foi consumido) é igual ao denominador (a quantidade B_j que foi produzida). Isto significa que a soma das entradas de cada coluna de A é igual a 1.

Considere-se agora o seguinte problema: é possível determinar o preço p_i de cada bem b_i para que os custos de produção de cada indústria, para adquirir os bens de que precisa, sejam iguais à receita obtida com a venda do bem produzido (condição de equilíbrio)? Para I_i , a receita é $B_i p_i$ e os custos são $C_{i1}p_1+\cdots+C_{in}p_n$. Logo, a condição de equilíbrio é $B_i p_i = C_{i1}p_1+\cdots+C_{in}p_n = a_{i1}B_1p_1+\cdots+a_{in}B_np_n$ para todo o $i=1,\ldots,n$.

- (a) Verifique que, definindo o vetor $X = (B_1 p_1, \dots, B_n p_n)$, a condição de equilíbrio é X = AX.
- (b) Seja $Y = (1, ..., 1) \in \mathbb{R}^n$. Explique por que razão $A^{\top}Y = Y$.
- (c) Justifique que existe sempre um vetor X que satisfaz X = AX (ou seja, um preço p_i para cada bem b_i que permite atingir a condição de equilíbrio).

18/19

valores próprios e vetores próprios

página 1/2

- 2. (a) Valores próprios: $\lambda = 0$; vetores próprios associados: $X_0 = \alpha(1,0,0), \alpha \in \mathbb{R} \setminus \{0\}$; não é diagonalizável: é uma matriz 3×3 que possui apenas um vetor próprio linearmente independente.
 - (b) Valores próprios: $\lambda \in \{-2,1,3\}$; vetores próprios associados: $X_{-2} = \alpha(0,0,1)$, $X_1 = \alpha(6,3,8)$, $X_3 = \alpha(0,5,2)$, $\alpha \in \mathbb{R} \setminus \{0\}$; é diagonalizável: é uma matriz 3×3 com três valores próprios distintos; uma matriz diagonalizante e a correspondente matriz diagonal são, respetivamente,

$$\begin{bmatrix} 0 & 6 & 0 \\ 0 & 3 & 5 \\ 1 & 8 & 2 \end{bmatrix} \quad e \quad \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (c) Valores próprios: $\lambda \in \{1,3\}$; vetores próprios associados: $X_1 = \alpha(1,-2,0,0) + \beta(0,0,-2,1)$, $X_3 = \gamma(1,0,0,0)$, $\alpha,\beta \in \mathbb{R}$ não simultaneamente nulos, $\gamma \in \mathbb{R} \setminus \{0\}$; nao é diagonalizável: é uma matriz 4×4 que possui no máximo três vetores próprios linearmente independentes.
- (d) Valores próprios: $\lambda \in \{1,3\}$; vetores próprios associados: $X_1 = \alpha(-1,0,1), X_3 = \alpha(5,2,-3), \alpha \in \mathbb{R} \setminus \{0\}$; não é diagonalizável: é uma matriz 3×3 que possui no máximo dois vetores próprios linearmente independentes.
- (e) Valores próprios: $\lambda \in \{2,4\}$; vetores próprios associados: $X_2 = \alpha(1,0,0) + \beta(0,1,-1)$, $X_4 = \gamma(-1,1,1)$, $\alpha,\beta \in \mathbb{R}$ não simultaneamente nulos, $\gamma \in \mathbb{R} \setminus \{0\}$; é diagonalizável: é uma matriz 3×3 que possui três vetores próprios linearmente independentes; uma matriz diagonalizante e a correspondente matriz diagonal são, respetivamente,

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(f) Valores próprios: $\lambda \in \{-2, -1, 0\}$; vetores próprios associados: $X_{-2} = \alpha(1, 1, 2)$, $X_{-1} = \alpha(1, 0, 1)$, $X_0 = \alpha(1, 1, 1)$, $\alpha \in \mathbb{R} \setminus \{0\}$; é diagonalizável: é uma matriz 3×3 com três valores próprios distintos; uma matriz diagonalizante e a correspondente matriz diagonal são, respetivamente,

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \quad e \quad \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- 3. a = b = 1.
- 4. $\alpha = \beta = \gamma = \delta = \theta = \mu = 1, a = c = 0 \text{ e } b = 1.$
- 5. (a) 1 é um valor próprio de $A; U_1 = \langle (5,4,-2) \rangle$. (b) A é diagonalizável e semelhante a $\begin{bmatrix} 1+\sqrt{5} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1-\sqrt{5} \end{bmatrix}$.
- 12. (a) Os valores próprios de A são 1, 2 e 4 e os subespaços próprios são $U_1 = \langle (-1,1,1) \rangle, U_2 = \langle (1,0,0) \rangle$ e $U_4 = \langle (7,-4,2) \rangle$. (b) $P = \begin{bmatrix} -1 & 1 & 7 \\ 1 & 0 & -4 \\ 1 & 0 & 2 \end{bmatrix}$; (c) $A^5 = \begin{bmatrix} 32 & -1147 & 1178 \\ 0 & 683 & -682 \\ 0 & -341 & 342 \end{bmatrix}$.
- 13. (a) $p_A(\lambda) = \lambda^2 (k+1)\lambda + k$ e os valores próprios são $\{1, k\}$. (b) $U_1 = \langle (x, -x) \rangle$ e, para $k \neq 1$, $U_k = \langle (x, -kx) \rangle$. (c) $k \in \mathbb{R} \setminus \{1\}$. (d) $D = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$ e $P = \begin{bmatrix} 1 & 1 \\ -1 & -k \end{bmatrix}$. (e) A.
- 14. (a) $p_A(\lambda) = \lambda^4 \lambda^2$ e os valores próprios são -1, 0 e 1. (b) Sim, sim.
- 15. (a) $P = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$ é uma matriz ortogonal tal que $P^TAP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (b) $P = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & -\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \end{bmatrix}$ é uma matriz ortogonal tal que $P^TAP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$.

soluções 5

18/19

valores próprios e vetores próprios

página 2/2

(c)
$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$
 é uma matriz ortogonal tal que $P^TAP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

16. (b)
$$P = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 é uma matriz ortogonal tal que $P^TAP = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

17. (a)
$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : y = z\}$$
. (b) A é diagonalizável, pois A é simétrica e $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$.

20. (a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
; (b) $p_A(\lambda) = \lambda^2 - \lambda - 1$, com valores próprios $\phi = \frac{1+\sqrt{5}}{2}$ (número áureo) e $-\frac{1}{\phi} = 1 - \phi = \frac{1-\sqrt{5}}{2}$; (c) uma matriz diagonalizante é $P = \begin{bmatrix} 1 & -\phi \\ \phi & 1 \end{bmatrix}$ e a matriz diagonal correspondente $D = \begin{bmatrix} \phi & 0 \\ 0 & -\frac{1}{\phi} \end{bmatrix}$; (d) $x_k = \begin{bmatrix} 1 & 0 \end{bmatrix} V_k = \begin{bmatrix} 1 & 0 \end{bmatrix} PD^k P^{-1} V_0 = \frac{\phi^k - (-\phi)^{-k}}{\sqrt{5}}$ (nota: $|P| = 1 + \phi^2 = \sqrt{5}\phi$), sendo $x_{22} = 17711$.