We claim:

1. A compound comprising the formula:

$$R_3$$
 R_4
 R_6
 R_8
 R_8

wherein

5

10

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR $_{10}R_{11}$, C(O)R $_{12}$, OH, OAlkyl, OAc, SH, SR $_{12}$, SO $_3$ H, S(O)R $_{12}$, SO $_2$ NR $_{10}R_{11}$, S(O) $_2$ R $_{12}$, NH $_2$, NHR $_{12}$, NR $_{10}R_{11}$, NHCOR $_{12}$, N $_3$, NO $_2$, PH $_3$, PH $_2$ R $_{12}$, H $_2$ PO $_4$, H $_2$ PO $_3$, H $_2$ PO $_2$, HPO $_4$ R $_{12}$, PO $_2$ R $_{11}$ R $_{12}$, CN, and X;

 R_9 is O, S, or NR_{12} ; and

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring;

with the proviso that at least one of R_1 to R_8 is other than hydrogen.

- $\mbox{2.} \qquad \mbox{ The compound of claim 1, wherein at least one of R_1 to R_8 is COOH. }$
- 5 3. The compound of claim 1, wherein at least one of R_1 to R_8 is OH.
 - $\mbox{4.} \qquad \mbox{ The compound of claim 1, wherein at} \\ \mbox{least one of R_1 to R_8 is OAlkyl.}$
- 5. The compound of claim 1, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 6. The compound of claim 1, wherein at least one of R_1 to R_8 is NHCOR7.
 - $\mbox{7.} \qquad \mbox{ The compound of claim 1, wherein two} \\ \mbox{or more of R_1 to R_8 are substituted.}$

5

10

wherein

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂.

9. The compound of claim 1, having the formula

15

wherein Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C \equiv CH, or CH=CH $_2$.

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C = CH, \text{ or } CH = CH_2; \text{ and }$

$$R_{6}$$
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}

5

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5 wherein

E is O, S, NH, NR₁₂, CR₁₁C₁₂, CONR₁₂, SO₂NR₁₂, NR₁₁CONR₁₂, NR₁₁CNHNR₁₂, NR₁₂COO, C \equiv C, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂;

10 R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

$$\begin{array}{c} P_{R_{0}} \\ P_{R_{0}} \\ P_{R_{0}} \end{array}$$

wherein

5

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$R_8$$
 R_8 R_6 R_6 R_8 R_8

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

10

15. The compound of claim 1, having the formula

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$R_8$$
 R_9
 R_9

5

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

10

17. The compound of claim 1, having the formula

$$R_8$$
 R_9
 R_9

15 wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

18. The compound of claim 17, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

19. The compound of claim 1, having the formula

10

15

20. A compound comprising the formula:

$$R_3$$
 R_4
 R_5
 R_6
 R_7

5 wherein

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR₁₀R₁₁, C(O)R₁₂, OH, OAlkyl, OAc, SH, SR₁₂, SO₃H, S(O)R₁₂, SO₂NR₁₀R₁₁, S(O)₂R₁₂, NH₂, NHR₁₂, NR₁₀R₁₁, NHCOR₁₂, N₃, NO₂, PH₃, PH₂R₁₂, H₂PO₄, H₂PO₃, H₂PO₂, HPO₄R₁₂, PO₂R₁₁R₁₂, CN, and X;

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring;

with the proviso that at least one of R_{1} to R_{8} is other than hydrogen.

- $\label{eq:22.} \mbox{The compound of claim 20, wherein at least one of R_1 to R_8 is OH.}$
- $\mbox{23.} \qquad \mbox{ The compound of claim 20, wherein at} \\ \mbox{least one of R_1 to R_8 is COOAlkyl.} \\$
- 5 24. The compound of claim 20, wherein at least one of R_1 to R_8 is OAlkyl.
 - The compound of claim 20, wherein two or more of R_1 to R_8 are substituted.
- The compound of claim 20, having the formula:

15 formula:

10

15

formula:

28. The compound of claim 20, having the

formula:

5

29. The compound of claim 20, having the formula:

30. The compound of claim 20, having the

HOOC

formula:

5

32. The compound of claim 20, having the

formula:

10

wherein

5

10

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

34. The compound of claim 20, having the formula

15

wherein Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C \equiv CH, or CH=CH $_2$.

formula

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$E \leftarrow F \rightarrow n$$

5

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

wherein

5

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

42. The compound of claim 20, having the

10 formula

wherein

E is O, CH_2 , S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

43. The compound of claim 42, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

The compound of claim 20, having the formula

45. A compound comprising the formula:

wherein

5

10

15

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR₁₀R₁₁, C(O)R₁₂, OH, OAlkyl, OAc, SH, SR₁₂, SO₃H, S(O)R₁₂, SO₂NR₁₀R₁₁, S(O) $_2$ R₁₂, NH₂, NHR₁₂, NR₁₀R₁₁, NHCOR₁₂, N₃, NO₂, PH₃, PH₂R₁₂, H₂PO₄, H₂PO₃, H₂PO₂, HPO₄R₁₂, PO₂R₁₁R₁₂, CN, and X;

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring;

with the proviso that at least one of R_1 to R_8 is other than hydrogen.

- 46. The compound of claim 45, wherein at least one of R_1 to R_8 is COOH.
- 47. The compound of claim 45, wherein at least one of R_1 to R_8 is OH.
- 5 48. The compound of claim 45, wherein at least one of R_1 to R_8 is OAlkyl.
 - 49. The compound of claim 45, wherein at least one of R_1 to R_8 is COOAlkyl.
- The compound of claim 45, wherein at least one of R_1 to R_8 is NHAc.
 - 51. The compound of claim 45, having the formula:

5

52. The compound of claim 45, having the

formula:

53. The compound of claim 45, having the

formula:

54. The compound of claim 45, having the

formula:

15

10

formula:

5

56. The compound of claim 45, having the formula:

10

wherein

5

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C \equiv CH, \text{ or } CH = CH_2.$

58. The compound of claim 45, having the formula

15 wherein

wherein Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂.

wherein

5

E is O, S,NR₁₂, CR₁₁C₁₂, CONR₁₂, SO₂NR₁₂, NR₁₁CONR₁₂, $NR_{11}CNHNR_{12}, NR_{12}COO, C \equiv C, \text{ or } CH = CH;$

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C \equiv CH, \text{ or } CH = CH_2; \text{ and }$

$$= \underbrace{\mathsf{F}}_{n}^{\mathsf{Y}}$$

5

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂;

10 R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

wherein

5

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

10

63. The compound of claim 45, having the formula

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

10

64. The compound of claim 45, having the formula

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$\begin{array}{c} O \\ \\ HN \\ \end{array}$$

5 wherein

E is selected O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

66. The compound of claim 45, having the

10 formula

wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

67. The compound of claim 66, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

68. The compound of claim 45, having the formula

69. A combinatorial library of two or more compounds comprising a common ligand variant of a compound of the formula:

wherein

5

10

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR₁₀R₁₁, C(O)R₁₂, OH, OAlkyl, OAc, SH, SR₁₂, SO₃H, S(O)R₁₂, SO₂NR₁₀R₁₁, S(O)₂R₁₂, NH₂, NHR₁₂, NR₁₀R₁₁, NHCOR₁₂, N₃, NO₂, PH₃, PH₂R₁₂, H₂PO₄, H₂PO₃, H₂PO₂, HPO₄R₁₂, PO₂R₁₁R₁₂, CN, and X;

 R_9 is O, S, or NR_{12} ; and

- R₁₀, R₁₁, and R₁₂ each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R₁₀ and R₁₁ together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.
- 70. The combinatorial library of claim 69, wherein at least one of R_1 to R_8 is COOH.

- 71. The combinatorial library of claim 69, wherein at least one of R_1 to R_8 is OH.
- 72. The combinatorial library of claim 69, wherein at least one of R_1 to R_8 is OAlkyl.
- The combinatorial library of claim 69, wherein at least one of R_1 to R_8 is COOAlkyl.
 - $74. \hspace{1cm} \text{The combinatorial library of claim} \\ 69, \hspace{1cm} \text{wherein at least one of } R_1 \hspace{1cm} \text{to } R_8 \hspace{1cm} \text{is NHCOR}_7.$
- The combinatorial library of claim 69, wherein two or more of R_1 to R_5 are substituted.

$$R_8$$
 R_6
 R_6
 R_6
 R_6

5

10

wherein

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

77. The combinatorial library of claim 69, having the formula

$$R_8$$
 R_9 R_9 R_9

15

wherein Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂.

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

$$\bigcap_{R_{9}}^{R_{7}}\bigcap_{R_{9}}^{R_{7}}\bigcap_{R_{9}}^{R_{9}}\bigcap_{R_{9}}^{R_{7}}\bigcap_{R_{9}}^{R_{9}}\bigcap_{R$$

5

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

$$\bigcap_{\mathsf{HN}} \mathsf{R}_{\mathsf{g}} \qquad \bigcap_{\mathsf{R}_{\mathsf{g}}} \mathsf{R}_{\mathsf{g}}$$

wherein

5

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

82. The combinatorial library of claim 69, having the formula

$$\bigcap_{\mathsf{HN}} \mathsf{R_{\mathsf{B}}} \qquad \bigcap_{\mathsf{R_{\mathsf{B}}}} \mathsf{R_{\mathsf{B}}}$$

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂; and

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}

wherein

5

10

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C=CH, or CH=CH $_2$; and

84. The combinatorial library of claim 69, having the formula

$$R_{6}$$
 R_{6}
 R_{7}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{9}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}
 R_{8

5 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

85. The combinatorial library of claim 69, having the formula

$$R_8$$
 R_6 R_6

wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

86. The combinatorial library of claim 85, wherein n is greater than 4 and E is CH_2CH_2OCH or $CH_2CH_2SCH.$

87. The combinatorial library of claim 69, having the formula

10

88. A combinatorial library of two or more compounds comprising a common ligand variant of a compound of the formula:

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

wherein

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR_{10}R_{11}, C(O)R_{12}, OH, OAlkyl, OAc, SH, SR_{12}, SO_3H, S(O)R_{12}, SO_2NR_{10}R_{11}, S(O)_2R_{12}, NH_2, NHR_{12}, NR_{10}R_{11}, NHCOR_{12}, N_3, NO_2, PH_3, PH_2R_{12}, H_2PO_4, H_2PO_3, H_2PO_2, HPO_4R_{12}, PO_2R_{11}R_{12}, CN, and X;

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.

- 89. The combinatorial library of claim 88, wherein at least one of R_1 to R_8 is COOH.
- 90. The combinatorial library of claim 88, wherein at least one of R_1 to R_8 is OH.
- 5 91. The combinatorial library of claim 88, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 92. The combinatorial library of claim 88, wherein at least one of R_1 to R_8 is OAlkyl.
 - 93. The combinatorial library of claim 88, wherein two or more of R_1 to R_8 are substituted.
 - 94. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

10

10

95. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

96. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

10

97. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

98. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

10

99. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

5

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C \equiv CH, or CH=CH $_2$.

103. The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

$$\bigcup_{N=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$$

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$\bigcup_{n=1}^{\infty} \mathbb{E}_{n}$$

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C=CH, or CH=CH $_2$; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

111. The combinatorial library of claim 110, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

The combinatorial library of claim 88, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

113. A combinatorial library of two or more compounds comprising a common ligand variant of a compound of formula:

$$R_3$$
 R_4
 R_6
 R_7
 R_8

wherein

5

10

15

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR $_{10}$ R $_{11}$, C(O)R $_{12}$, OH, OAlkyl, OAc, SH, SR $_{12}$, SO $_3$ H, S(O)R $_{12}$, SO $_2$ NR $_{10}$ R $_{11}$, S(O) $_2$ R $_{12}$, NH $_2$, NHR $_{12}$, NR $_{10}$ R $_{11}$, NHCOR $_{12}$, N $_3$, NO $_2$, PH $_3$, PH $_2$ R $_{12}$, H $_2$ PO $_4$, H $_2$ PO $_3$, H $_2$ PO $_2$, HPO $_4$ R $_{12}$, PO $_2$ R $_{11}$ R $_{12}$, CN, and X;

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.

114. The combinatorial library of claim 20 113, wherein at least one of R_1 to R_8 is COOH.

- 115. The combinatorial library of claim 113, wherein at least one of R_1 to R_8 is OH.
- 116. The combinatorial library of claim 113, wherein at least one of R_1 to R_8 is OAlkyl.
- The combinatorial library of claim 113, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 118. The combinatorial library of claim 113, wherein at least one of R_1 to R_8 is NHCOR7.
- 119. The combinatorial library of claim
 10 113, wherein at least one of the compounds in the library
 is a common ligand variant of a compound having the
 formula:

5

121. The combinatorial library of claim
113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

15

10

10

122. The combinatorial library of claim
113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

123. The combinatorial library of claim
113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

10

125. The combinatorial library of claim
113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

wherein

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

5

wherein

wherein Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONH₂, C=CH, or CH=CH₂.

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, C=CH, or CH=CH₂; and

5

10

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR_{12} , SH, COOH, SO_2OH , X, CN, N_3 , $CONH_2$, $CONH_2$,

 $C\equiv CH$, or $CH=CH_2$; and

5

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, C=CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONH₂, C=CH, or CH=CH₂; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONH₂, C=CH, or CH=CH₂; and

5

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONH₂, C=CH, or CH=CH₂; and

wherein

5

15

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

134. The combinatorial library of claim
113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

$$E_n$$

wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

135. The combinatorial library of claim 134, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

136. The combinatorial library of claim

113, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

10

137. A combinatorial library of two or more bi-ligands comprising the reaction product of a specificity ligand and a common ligand mimic having the formula:

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_8

wherein

5

10

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR₁₀R₁₁, C(O)R₁₂, OH, OAlkyl, OAc, SH, SR₁₂, SO₃H, S(O)R₁₂, SO₂NR₁₀R₁₁, S(O)₂R₁₂, NH₂, NHR₁₂, NR₁₀R₁₁, NHCOR₁₂, N₃, NO₂, PH₃, PH₂R₁₂, H₂PO₄, H₂PO₃, H₂PO₂, HPO₄R₁₂, PO₂R₁₁R₁₂, CN, and X;

 R_9 is 0, S, or NR_{12} ; and

- R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.
- 20 138. The combinatorial library of claim 137, wherein at least one of R_1 to R_8 is COOH.

- 139. The combinatorial library of claim 137, wherein at least one of R_1 to R_8 is OH.
- 140. The combinatorial library of claim 137, wherein at least one of R_1 to R_8 is OAlkyl.
- 5 141. The combinatorial library of claim 137, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 142. The combinatorial library of claim 137, wherein at least one of R_1 to R_8 is NHCOR7.
- 143. The combinatorial library of claim 137, wherein two or more of R_1 to R_8 are substituted.
 - 144. The combinatorial library of claim 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

10

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

145. The combinatorial library of claim 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C \equiv CH, or CH=CH $_2$.

wherein

5

10

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

10

147. The combinatorial library of claim 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

148. The combinatorial library of claim 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

$$R_0$$
 R_0
 R_0

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C=CH, or CH=CH $_2$; and

$$R_{6}$$
 R_{6}
 R_{6}
 R_{6}
 R_{6}

wherein

5

10

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$R_{s}$$
 R_{s}
 R_{s

wherein

5

10

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

n is an integer between 0 and 5, inclusive.

153. The combinatorial library of claim 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

$$R_8$$
 R_8 R_6 R_8 R_9 R_9

15 wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

154. The combinatorial library of claim 153, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

155. The combinatorial library of claim
5 137, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

10

156. A combinatorial library of two or more bi-ligands comprising the reaction product of a specificity ligand and a common ligand mimic having the formula:

5

20

$$R_3$$
 R_4
 R_5
 R_6
 R_7

wherein

R₁ to R₈ each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR₁₀R₁₁, C(O)R₁₂, OH, OAlkyl, OAc, SH, SR₁₂, SO₃H, S(O)R₁₂, SO₂NR₁₀R₁₁, S(O) $_2$ R₁₂, NH₂, NHR₁₂, NR₁₀R₁₁, NHCOR₁₂, N₃, NO₂, PH₃, PH₂R₁₂, H₂PO₄, H₂PO₃, H₂PO₂, HPO₄R₁₂, PO₂R₁₁R₁₂, CN, and X;

 R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.

- 157. The combinatorial library of claim 156, wherein at least one of R_1 to R_8 COOH.
- 158. The combinatorial library of claim 156, wherein at least one of R_1 to R_8 is OH.
- 5 159. The combinatorial library of claim 156, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 160. The combinatorial library of claim 156, wherein at least one of R_1 to R_8 is OAlkyl.
- 161. The combinatorial library of claim 10 156, wherein two or more of R_1 to R_8 are substituted.
 - 162. The combinatorial library of claim
 156, wherein the common ligand mimic comprises a compound
 of the formula:

10

163. The combinatorial library of claim
156, wherein the common ligand mimic comprises a compound
of the formula:

164. The combinatorial library of claim
156, wherein the common ligand mimic comprises a compound
of the formula:

10

165. The combinatorial library of claim
156, wherein the common ligand mimic comprises a compound
of the formula:

166. The combinatorial library of claim
156, wherein the common ligand mimic comprises a compound
of the formula:

167. The combinatorial library of claim
15 156, wherein the common ligand mimic comprises a compound of the formula:

10

168. The combinatorial library of claim
156, wherein the common ligand mimic comprises a compound of the formula:

169. The combinatorial library of claim 156, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein

D is alkylene, alkenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

10

170. The combinatorial library of claim 156, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

wherein Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂.

171. The combinatorial library of claim
156, wherein at least one of the compounds is a common
ligand variant of a compound having the formula:

15 wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

n is an integer between 0 and 5, inclusive.

172. The combinatorial library of claim

156, wherein at least one of the compounds is a common ligand variant of a compound having the formula:

10 wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C \equiv CH, \text{ or } CH = CH_2; \text{ and }$

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

wherein

5

10

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

$$e^{O}$$

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

10 and

5

$$HN$$
 S H E n NH_2

wherein

5

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

n is an integer between 0 and 5, inclusive.

179. The combinatorial library of claim 178, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .

5

181. A combinatorial library of two or more bi-ligands comprising the reaction product of a specificity ligand and a common ligand mimic having the formula:

5

10

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_8

wherein

 R_1 to R_8 each independently are selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, heterocycle, COOH, COOAlkyl, CONR_{10}R_{11}, C(O)R_{12}, OH, OAlkyl, OAc, SH, SR_{12}, SO_3H, S(O)R_{12}, SO_2NR_{10}R_{11}, S(O)_2R_{12}, NH_2, NHR_{12}, NR_{10}R_{11}, NHCOR_{12}, N_3, NO_2, PH_3, PH_2R_{12}, H_2PO_4, H_2PO_3, H_2PO_2, HPO_4R_{12}, PO_2R_{11}R_{12}, CN, and X;

- R_{10} , R_{11} , and R_{12} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, and heterocycle, or R_{10} and R_{11} together with the nitrogen to which they are attached can be joined to form a heterocyclic ring.
- 20 182. The combinatorial library of claim 181, wherein at least one of R_1 to R_8 is COOH.

- 183. The combinatorial library of claim 181, wherein at least one of R_1 to R_8 is OH.
- 184. The combinatorial library of claim 181, wherein at least one of R_1 to R_8 is OAlkyl.
- 5 185. The combinatorial library of claim 181, wherein at least one of R_1 to R_8 is COOAlkyl.
 - 186. The combinatorial library of claim 181, wherein at least one of R_1 to R_8 is NHCOR₇.
- 187. The combinatorial library of claim
 10 181, wherein the common ligand mimic comprises a compound
 of the formula:

188. The combinatorial library of claim
15 181, wherein the common ligand mimic comprises a compound of the formula:

.

10

189. The combinatorial library of claim 181, wherein the common ligand mimic comprises a compound of the formula:

190. The combinatorial library of claim
181, wherein the common ligand mimic comprises a compound
of the formula:

191. The combinatorial library of claim
181, wherein the common ligand mimic comprises a compound
15 of the formula:

10

192. The combinatorial library of claim
181, wherein the common ligand mimic comprises a compound
of the formula:

193. The combinatorial library of claim
181, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

15 wherein

D is alkylene, alenylene, alkynylene, aryl, or heterocycle; and

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂.

194. The combinatorial library of claim
181, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

5

wherein

wherein Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C \equiv CH, or CH=CH₂.

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C=CH, or CH=CH $_2$; and

5

10

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR $_{12}$, SH, COOH, SO $_2$ OH, X, CN, N $_3$, CONH $_2$, CONHR $_{12}$, C=CH, or CH=CH $_2$; and

197. The combinatorial library of claim
181, wherein at least one of the compounds in the library
is a common ligand variant of a compound having the
formula:

5

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂;

R is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heterocycle; and

5

wherein

E and F each independently are selected from the group consisting of O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{12}COO$, $C\equiv C$, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, C=CH, or CH=CH₂; and

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C \equiv CH, \text{ or } CH = CH_2; \text{ and }$

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH;

F independently is selected from the group consisting of O, S, NR_{12} , $CR_{11}R_{12}$, $CONR_{12}$, $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, C=C, and CH=CH;

Y is OH, NHR₁₂, SH, COOH, SO₂OH, X, CN, N₃, CONH₂, CONHR₁₂, $C = CH, \text{ or } CH = CH_2; \text{ and }$

5

10

wherein

E is O, S, NR_{12} , $CR_{11}C_{12}$, $CONR_{12}$, SO_2NR_{12} , $NR_{11}CONR_{12}$, $NR_{11}CNHNR_{12}$, $NR_{12}COO$, $C\equiv C$, or CH=CH; and

5

10

wherein

E is CH_2 , CH_2CH_2OCH or CH_2CH_2SCH and n is an integer between 1 and 10, inclusive.

203. The combinatorial library of claim 202, wherein n is greater than 4 and E is CH_2CH_2OCH or CH_2CH_2SCH .