

ELETRÔNICA I

TEMA DA AULA: REVISÃO DE CONCEITOS FUNDAMENTAIS

PROF. Me. MATHEUS TAUFFER DE PAULA

Ponta Grossa - PR, 2024

SUMÁRIO

- Corrente, tensão, resistência, potência e energia
- Lei da conservação da energia, Lei de Ohm
- Resistores
- Circuito aberto e curto-circuito
- Efeito Joule
- Elementos armazenadores de energia
- Fontes de tensão e fontes de corrente
- Ramo, nó, laço, 1ª Lei de Kirchhoff e 2ª Lei de Kirchhoff

CORRENTE ELÉTRICA

 "Corrente elétrica consiste no fluxo de cargas elétricas por unidade de tempo"

$$i \triangleq \frac{dq}{dt}$$

1 ampère = 1 coulomb/segundo

Bateria

- Em condutores metálicos se deve a elétrons carregados negativamente
- A corrente pode ser contínua (CC) ou alternada (CA)

CORRENTE ELÉTRICA

Corrente Contínua x Corrente Alternada – Exemplos

CORRENTE ELÉTRICA

- Corrente Contínua x Corrente Alternada
 - Historicamente, esse paradigma data do século XIX
 - Filme: "Batalha das Correntes"
 - CC defendida por Thomas Edison
 - CA defendido por George Westinghouse (venceu a disputa)

TENSÃO E RESISTÊNCIA ELÉTRICA

"Tensão elétrica está relacionada ao trabalho para deslocar as cargas elétricas"

$$v_{ab} \triangleq \frac{dw}{dq}$$

 "Resistência elétrica de um elemento representa sua capacidade de resistir ao fluxo de corrente elétrica"

POTÊNCIA

• "Potência é a velocidade com que se fornece ou se absorve energia, medida

em watts (W)"

$$p \triangleq \frac{dw}{dt}$$

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$$

$$p = vi$$

Figura 1.8 Polaridades referenciais para potência usando a convenção do sinal passivo: (*a*) absorção de potência; (*b*) fornecimento de potência.

ENERGIA

- "Energia é a capacidade de realizar trabalho e é medida em joules (J)"
 - Obs: a energia também pode ser medida em watts-hora (Wh)

$$1 \text{ Wh} = 3.600 \text{ J}$$

$$w = \int_{t_0}^t p \, dt = \int_{t_0}^t vi \, dt$$

LEI DA CONSERVAÇÃO DA ENERGIA

Pela Lei da Conservação da Energia em circuitos elétricos: "a soma algébrica da potência em um circuito, a qualquer instante de tempo, deve ser zero".

$$\sum p = 0$$

LEI DE OHM

Lei de Ohm

"A tensão sobre um resistor é diretamente proporcional a corrente

que por ele circula"

$$v = iR$$

OBS: é válida para resistores lineares

LEI DE OHM

- Lei de Ohm Analogia
 - Altura Tensão
 - Vazão Corrente
 - Restrição Resistência

Resistores

$$R = \rho \frac{\ell}{A}$$

Figura 2.1 (a) Resistor; (b) símbolo de resistência usado em circuitos.

- Resistividade
 - É uma propriedade dos materiais!

Tabela 2.1 • Resistividade de alguns materiais comuns.					
Material	Resistividade ($\Omega \cdot$ m)	Emprego			
Prata	$1,64 \times 10^{-8}$	Condutor			
Cobre	$1,72 \times 10^{-8}$	Condutor			
Alumínio	2.8×10^{-8}	Condutor			
Ouro	$2,45 \times 10^{-8}$	Condutor			
Carbono	4×10^{-5}	Semicondutor			
Germânio	47×10^{-2}	Semicondutor			
Silício	$6,4 \times 10^2$	Semicondutor			
Papel	10 ¹⁰	Isolante			
Mica	5×10^{11}	Isolante			
Vidro	10^{12}	Isolante			
Teflon	3×10^{12}	Isolante			

Fixos e variáveis -(a) (a) (b)

(b)

- Onde são usados?
 - Em praticamente

todos os circuitos!

ELETRÔNICA I

15

Figure 1N.12 Voltage dividers in a function generator: dividers are not just for beginners [Krohn-Hite 1400 function generator].

Resistores em série

$$R_{\text{eq}} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

Resistores em paralelo

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Código de cores de resistores

Cor	1ª Faixa	2ª Faixa	Faixa multiplicadora	Tolerância
Preto	0	0	×1Ω	-
Marrom	1	1	×10Ω	±1%
Vermelho	2	2	×100Ω	±2%
Laranja	3	3	×1kΩ	-
Amarelo	4	4	×10kΩ	-
Verde	5	5	×100kΩ	±0,5%
Azul	6	6	×1MΩ	±0,25%
Violeta	7	7	×10MΩ	±0,1%
Cinza	8	8	7	±0,05%
Branco	9	9	-	-
Dourado	-	-	×0,10Ω	±5%
Prateado	-	-	×0,01Ω	±10%
Sem cor	-	-	-	±20%

CIRCUITO ABERTO E CURTO-CIRCUITO

$$i = \lim_{R \to \infty} \frac{v}{R} = 0$$

EFEITO JOULE

 Relaciona a corrente (ou tensão) que circula em um resistor com a potência dissipada nesse componente

$$P = I_{\rm RMS}^2 R = \frac{V_{\rm RMS}^2}{R}$$

Notar a relação NÃO LINEAR

$$I_{\rm ef} = \sqrt{\frac{1}{T}} \int_0^T i^2 \, dt$$

$$V_{\rm ef} = \sqrt{\frac{1}{T}} \int_0^T v^2 \, dt$$

OBS: os subscritos "RMS" e "ef" são equivalentes

RMS – Root Mean Square

Ef – Abreviatura para a palavra eficaz

EFEITO JOULE

 A potência dissipada em um resistor é uma função não linear da corrente ou tensão

 Como R é sempre uma quantidade positiva, a potência em um resistor é sempre positiva. Portanto, um resistor sempre absorve potência do circuito

CAPACITORES

$$q = Cv$$

$$i = C \frac{dv}{dt}$$

$$w = \frac{1}{2}Cv^2$$

Dielétrico com permissividade ϵ

CAPACITORES

Capacitores em série

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Capacitores em paralelo

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots + C_N$$

INDUTORES

$$v = L \frac{di}{dt}$$

$$w = \frac{1}{2}Li^2$$

INDUTORES

Indutores em série

$$L_{\text{eq}} = L_1 + L_2 + L_3 + \dots + L_N$$

Indutores em paralelo

$$\frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

FONTE DE TENSÃO IDEAL

- Uma fonte de tensão ideal é um elemento ativo que fornece uma tensão especificada que é completamente independente dos outros elementos do circuito
 - É capaz de fornecer qualquer corrente para manter a tensão entre seus terminais

FONTE DE TENSÃO IDEAL

Associação de fontes de tensão

 Fontes de tensão só podem ser associadas em série

FONTE DE CORRENTE IDEAL

 Uma fonte de corrente ideal é um elemento ativo que fornece uma corrente especificada que é completamente independente dos outros elementos do circuito

• É capaz de aplicar qualquer tensão entre seus terminais para manter a corrente

através da fonte

FONTE DE CORRENTE IDEAL

Associação de fontes de corrente

Fontes de corrente só podem ser associadas em paralelo

RAMOS, NÓS E LAÇOS

Ramo representa um elemento único como fonte de tensão ou resistor.

Nó é o ponto de conexão entre dois ou mais ramos.

Laço é qualquer caminho fechado em um circuito.

 OBS: um laço inicia-se em um nó, passa por uma série de nós e retorna ao nó de partida sem passar por qualquer outro mais de uma vez

I^a LEI DE KIRCHHOFF (LKC)

"'A soma algébrica das corrente que entram em um nó é nula"

$$\sum_{n=1}^{N} i_n = 0$$

N – n° de ramos conectado ao nó

2^a LEI DE KIRCHHOFF (LKT)

 "A soma algébrica de todas as tensões em torno de um caminho fechado é nula"

$$\sum_{m=1}^{M} v_m = 0$$

M – n° de tensões no laço