Interval Counterexamples for Loop Invariant Learning

Rongchen Xu¹, Fei He¹, Bow-Yaw Wang²

¹School of Software, Tsinghua University.

²Academia Sinica.

November 8, 2020

- 1 Background
- 2 Motivation
- 3 Approach
- 4 Evaluation
- **6** Conclusion

1 Background

Background •0000

- 2 Motivation
- Approach
- 4 Evaluation
- 6 Conclusion

Background

• The loop invariant is a property that is always maintained when the program enters, iterates, and exits the loop.

Black-box loop invariant inference

Background

- Positive counterexample weakens the hypothesis invariant.
- Negative counterexample strengthens the hypothesis invariant.

Background

Background

• We use decision tree to split all positive/negative examples and use the predicate of the positive as hypothesis invariant.

Decision tree learner

Background

• We use decision tree to split all positive/negative examples and use the predicate of the positive as hypothesis invariant.

Background

• We use decision tree to split all positive/negative examples and use the predicate of the positive as hypothesis invariant.

- 1 Background
- 2 Motivation
- Approach
- 4 Evaluation
- Conclusion

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```

```
Teacher Real Assertion failed

Counterexample Fake CEX Set

Hypothesis Learner
```

• Invariant hypothesis: *True*.

```
int x, y;
    assume(x <= 2);
    assume (v >= 0 \&\& v <= 1);
456789
    while(*){
      if (x > 0) {
        y := y + 1:
10
    assert(y >= 0 && y <= 3);
```


- Invariant hypothesis: *True*.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x=0, y=9 \rangle$$

Interval Counterexamples for Loop Invariant Learning

```
int x, y;
    assume(x <= 2);
    assume (v >= 0 \&\& v <= 1);
    while(*){
      if (x > 0) {
6789
        x := x - 1;
        y := y + 1:
10
    assert(y >= 0 && y <= 3);
```


- Invariant hypothesis: *True*.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x=0, y=9 \rangle$$

Current cex set:

X	0
<u>y</u>	9
Label	Neg

Interval Counterexamples for Loop Invariant Learning

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: *True*.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x=0, y=9 \rangle$$

Current cex set:

$$\begin{array}{c|c}
x & 0 \\
y & 9
\end{array}$$
Label | Neg

Modified hypothesis: False.

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```

Verified Real Assertion failed

Counterexample Fake CEX Set

Hypothesis Invariant Learner

• Invariant hypothesis: *False*.

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: False.
- Positive cex provided by teacher to weaken the invariant:

$$\langle x=2, y=1 \rangle$$

```
int x, y;
    assume(x \le 2);
    assume (v >= 0 \&\& v <= 1);
    while(*){
      if (x > 0) {
6789
        x := x - 1;
        y := y + 1:
10
    assert(y >= 0 && y <= 3);
```


- Invariant hypothesis: False.
- Positive cex provided by teacher to weaken the invariant:

$$\langle x=2, y=1 \rangle$$

Current cex set:

x	0	2
y	9	1
Label	Neg	Pos

Interval Counterexamples for Loop Invariant Learning

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: False.
- Positive cex provided by teacher to weaken the invariant:

$$\langle x=2, y=1 \rangle$$

Current cex set:

X	0	2
У	9	1
Label	Neg	Pos

• Modified hypothesis: $y \le 8$.

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```

Verified Real Assertion failed

Counterexample Fake CEX Set

Hypothesis Invariant Learner

• Invariant hypothesis: $y \le 8$.

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: $y \le 8$.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x=0,y=8\rangle$$

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: $y \le 8$.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x = 0, y = 8 \rangle$$

Current cex set:

X	0	2	0
У	9	1	8
Label	Neg	Pos	Neg

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){
   if (x > 0) {
      x := x - 1;
      y := y + 1;
   }
}
assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: $y \le 8$.
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x = 0, y = 8 \rangle$$

Current cex set:

Х	0	2	0	
У	9	1	8	
Label	Neg	Pos	Neg	

• Modified hypothesis: $y \le 7$.

```
1 int x, y;
2 assume(x <= 2);
3 assume(y >= 0 && y <= 1);
4 while(*){
5 if (x > 0) {
    x := x - 1;
    y := y + 1;
    }
9 }
10 assert(y >= 0 && y <= 3);</pre>
```


- Invariant hypothesis: $y \le 7$
- Negative cex provided by teacher to strengthen the invariant:

$$\langle x = 0, y = 7 \rangle$$

Current cex set:

x		0	2	0	0
y			1	8	7
	Label	Neg	Pos	Neg	Neg

• Modified hypothesis: $y \le 6$

Potential improvement

• A original counterexample is an *information-limited* single program state.

Potential improvement

x y	0 9	2 1	0 8	0 7	 0 4
Label	Neg	Pos	Neg	Neg	 Neg

- A original counterexample is an *information-limited* single program state.
- The generalized counterexamples we call them interval counterexamples look like:

$$\langle x \in (-\infty, \infty), y \in [4, \infty) \rangle$$

is a set of program states but not a single.

- 1 Background
- 2 Motivation
- 3 Approach
- 4 Evaluation
- Conclusion

Core issues

- How to get a generalized interval counterexample?
- How to learn an invariant using interval counterexamples?

Generalization

• Suppose current hypothesis invariant by Learner: *True*.

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){ // Inv: True
    if (x > 0) {
        x := x - 1;
        y := y + 1;
    }
}
assert(y >= 0 && y <= 3);</pre>
```

- Suppose current hypothesis invariant by Learner: *True*.
- The verification condition to prove the assertion via the loop invariant:

```
True \rightarrow y \ge 0 \land y \le 3. (Simplify to y \ge 0 \land y \le 3)
```

```
int x, y;
assume(x <= 2);
assume(y >= 0 && y <= 1);
while(*){ // Inv: True
    if (x > 0) {
        x := x - 1;
        y := y + 1;
    }
}
assert(y >= 0 && y <= 3);</pre>
```

 Suppose the negative counterexample provided by Teacher:

$$x = 0 \land y = 9$$

17 / 34

 Suppose the negative counterexample provided by Teacher:

$$x = 0 \land v = 9$$

• Consider the constraint:

$$y \ge 0 \land y \le 3 \\ (VC) \land x = 0 \land y = 9$$

 Suppose the negative counterexample provided by Teacher:

$$x = 0 \land y = 9$$

Consider the constraint:

$$y \ge 0 \land y \le 3$$
 (VC) (VC)

• The UNSAT core is $\{y = 9\}$.

Generalization by variable elimination

 Suppose the negative counterexample provided by Teacher:

$$x = 0 \land v = 9$$

Consider the constraint:

$$y \ge 0 \land y \le 3$$
 (VC) (VC)

- The UNSAT core is $\{y = 9\}$.
- We get a generalized counterexample:

$$\langle x \in (-\infty, \infty), y = 9 \rangle$$

Generalization by boundary constraints

• Variable elimination: Rough and not widely general.

Generalization by boundary constraints

- Variable elimination: Rough and not widely general.
- Intuition: Find the generalization boundaries among some pre-defined distances.

Generalization by boundary constraints

Consider distances (0,5) and new constraints to replace

$$x = 0$$
 and $y = 9$:

Background

$$y \ge 0 \land y \le 3 \land \bigwedge \begin{cases} x \ge -5 \\ x \ge 0 \\ x \le 0 \\ x \le 5 \end{cases} \land \bigwedge \begin{cases} y \ge 4 \\ y \ge 9 \\ y \le 9 \\ y \le 14 \end{cases}$$

Generalization by boundary constraints

 Consider distances (0,5) and new constraints to replace x = 0 and y = 9:

$$y \ge 0 \land y \le 3 \land \bigwedge \begin{cases} x \ge -5 \\ x \ge 0 \\ x \le 0 \\ x \le 5 \end{cases} \land \bigwedge \begin{cases} y \ge 4 \\ y \ge 9 \\ y \le 9 \\ y \le 14 \end{cases}$$

Approach

0000000000000

• The UNSAT core may be: v > 4.

Background

Generalization by boundary constraints

• Consider distances (0,5) and new constraints to replace x = 0 and y = 9:

$$y \ge 0 \land y \le 3 \land \bigwedge \begin{cases} x \ge -5 \\ x \ge 0 \\ x \le 0 \\ x \le 5 \end{cases} \land \bigwedge \begin{cases} y \ge 4 \\ y \ge 9 \\ y \le 9 \\ y \le 14 \end{cases}$$

- The UNSAT core may be: $y \ge 4$.
- More general counterexample:

$$\langle x \in (-\infty, \infty), y \in [4, \infty) \rangle$$

Background

Generalization by boundary constraints

 Consider distances (0,5) and new constraints to replace x = 0 and y = 9:

$$y \ge 0 \land y \le 3 \land \bigwedge \begin{cases} x \ge -5 \\ x \ge 0 \\ x \le 0 \\ x \le 5 \end{cases} \land \bigwedge \begin{cases} y \ge 4 \\ y \ge 9 \\ y \le 9 \\ y \le 14 \end{cases}$$

- The UNSAT core may be: v > 4.
- More general counterexample:

$$\langle x \in (-\infty, \infty), y \in [4, \infty) \rangle$$

Generalization by interval digging

• UNSAT core may not the best range. $(y \ge 4 \text{ or } y \ge 9?)$

Generalization by interval digging

- UNSAT core may not the best range. $(y \ge 4 \text{ or } y \ge 9?)$
- Intuition: Dig out all intervals which contains program states can not be generalized.

Background

• Rearrange the constraints:

$$y \ge 0 \land y \le 3 \land \bigwedge \left\{ \begin{matrix} \neg(x > 5) \\ \neg(x > 0 \land x \le 5) \\ \neg(x < 0 \land x \ge -5) \\ \neg(x < -5) \end{matrix} \right\} \land \bigwedge \left\{ \begin{matrix} \neg(y > 14) \\ \neg(y > 9 \land y \le 14) \\ \neg(y < 9 \land y \ge 4) \\ \neg(y < 4) \end{matrix} \right\}$$

Background

• Rearrange the constraints:

$$y \ge 0 \land y \le 3 \land \bigwedge \left\{ \begin{matrix} \neg(x > 5) \\ \neg(x > 0 \land x \le 5) \\ \neg(x < 0 \land x \ge -5) \\ \neg(x < -5) \end{matrix} \right\} \land \bigwedge \left\{ \begin{matrix} \neg(y > 14) \\ \neg(y > 9 \land y \le 14) \\ \neg(y < 9 \land y \ge 4) \\ \neg(y < 4) \end{matrix} \right\}$$

• Now the UNSAT core is **unique**: $\neg(y < 4)$.

Background

Rearrange the constraints:

$$y \ge 0 \land y \le 3 \land \bigwedge \left\{ \begin{matrix} \neg(x > 5) \\ \neg(x > 0 \land x \le 5) \\ \neg(x < 0 \land x \ge -5) \\ \neg(x < -5) \end{matrix} \right\} \land \bigwedge \left\{ \begin{matrix} \neg(y > 14) \\ \neg(y > 9 \land y \le 14) \\ \neg(y < 9 \land y \ge 4) \\ \neg(y < 4) \end{matrix} \right\}$$

- Now the UNSAT core is **unique**: $\neg (y < 4)$.
- The counterexample is $\langle x \in (-\infty, \infty), y \in [4, \infty) \rangle$.

- Avoid crossing examples first
- But also allow examples crossing

	Х	у	Label
1	[-2,-1]	[-2, 1]	+
2	[0,1]	[1,4]	+
3	[0,3]	[-2,0]	-
4	[2,5]	[3,4]	+
5	[4,5]	[-2,2]	-

Interval decision tree

	Х	у	Label
1	[-2,-1]	[-2, 1]	+
2	[0,1]	[1,4]	+
3	[0,3]	[-2,0]	-
4	[2,5]	[3,4]	+
5	[4,5]	[-2,2]	-

Predicted invariant:

$$x < 0 \lor (x \ge 0 \land x < 2 \land y \ge 1) \lor (x \ge 0 \land x \ge 2 \land y \ge 3)$$

•000

- 1 Background
- 3 Approach
- 4 Evaluation

Experiment on generalization methods

• We implement prototype¹ of three generalization methods and also an interval counterexample supported decision tree.

Available at: https://doi.org/10.5281/zenodo.3898483.

²Pranav Garg et al. Learning Invariants Using Decision Trees and Implication Counterexamples. POPL 2016

Available at: https://github.com/sosy-lab/sv-benchmarks/

Experiment on generalization methods

- We implement prototype¹ of three generalization methods and also an interval counterexample supported decision tree.
- Total 94 benchmarks are from ICE-DT² and SV-COMP 2019³.

Available at: https://doi.org/10.5281/zenodo.3898483.

²Pranav Garg et al. Learning Invariants Using Decision Trees and Implication Counterexamples. POPL 2016

 $^{^3 {\}it Available at: https://github.com/sosy-lab/sv-benchmarks/}$

Experiment on generalization methods

- We implement prototype¹ of three generalization methods and also an interval counterexample supported decision tree.
- Total 94 benchmarks are from ICE-DT² and SV-COMP 2019³.

	Solved	R	T(s)	$T_C(s)$	$T_L(s)$
ICE-DT	90	3007	135.79	20.95	97.51
Elim	91	1916(36.3%)	87.47(35.6%)	17.48(16.6%)	52.46(46.2%)
Boundary	91	1717(42.9%)	72.27(46.8%)	15.15(27.7%)	42.41(56.5%)
Digging	91	1712(43.1%)	73.41(45.9%)	15.87(24.2%)	42.55(56.4%)

Table 1: Summary results on interval generalization methods

Available at: https://doi.org/10.5281/zenodo.3898483.

²Pranav Garg et al. Learning Invariants Using Decision Trees and Implication Counterexamples. POPL 2016

Available at: https://github.com/sosy-lab/sy-benchmarks/

Experiment on learning methods

• How much efficiency improvement comes from the interval decision tree?

- How much efficiency improvement comes from the interval decision tree?
- Replace interval examples with representative state examples.

Experiment on learning methods

- How much efficiency improvement comes from the interval decision tree?
- Replace interval examples with representative state examples.

Rongchen Xu, Fei He, Bow-Yaw Wang

School of Software, Tsinghua University. Academia Sinica.

Experiment on learning methods

• Iteration rounds are similar, but time?

(a) Total time comparison

(b) Learn time comparison

- 1 Background
- 2 Motivation
- 3 Approach
- 4 Evaluation
- 6 Conclusion

• The introduction of interval counterexamples which represent a set of counterexamples from constraint solvers.

Conclusion

- The introduction of interval counterexamples which represent a set of counterexamples from constraint solvers.
- Three different generalization techniques to compute interval counterexamples.

- The introduction of interval counterexamples which represent a set of counterexamples from constraint solvers.
- Three different generalization techniques to compute interval counterexamples.
- An improved decision tree algorithm to adapt interval counterexamples.

- The introduction of interval counterexamples which represent a set of counterexamples from constraint solvers.
- Three different generalization techniques to compute interval counterexamples.
- An improved decision tree algorithm to adapt interval counterexamples.
- A prototype and over 40% improvement on learning rounds and verification time compared with existing methods.

