Question 2

1. A formal MDP for the given problem:

State Space: $S = \{0, ..., 2k - 1\}$

Action Space: $A = \{CW, CCW\}$

Transition Probability:

$$\forall i, j \in S : P(s_{t+1} = j \mid a_t = CW, s_t = i) = \begin{cases} 1 & j = i+1 \\ 0 & otherwise \end{cases}$$

$$\forall i, j \in S : P(s_{t+1} = j \mid a_t = CCW, s_t = i) = \begin{cases} 1 & j = i - 1 \\ 0 & otherwise \end{cases}$$

Initil State: $s_0 = k$

immediate reward for a given state and action:

$$\forall 1 \le i \le 2k : r(i,a) = 0 \quad a \in A$$

$$i = 0 : r(i, a) = 1$$
 $a \in A$

Return
$$V_{\gamma}^{\pi}(k) = \mathbb{E}^{\pi}[\sum_{t=0}^{\infty} \gamma^{t} \cdot r(s_{t}, a_{t}) \mid s_{0} = k]$$

2. The intuition for the optimal policy is how we can reach to state 0 as fast as possible at any given time, because only when we at state 0 we will get reward of 1. For any other state the reward is 0.

The optimal policy:

$$\pi(s) = \begin{cases} CCW & 0 \le s < k \\ CW & s \le k \le 2k \end{cases}$$

3. Value Iteration formula: $V_{n+1}(s) = \max_{a \in A} \{r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \cdot V_n(s')\}$

we let $V_0(s) = 0 \ \forall s \in S$, after one iteration we will get:

$$V_1(0) = \max\{1 + \gamma V_0(1), 1 + \gamma V_0(2k - 1)\} = 1$$

if
$$i = 1,2,3...,2k - 1$$
:

$$V_1(i) = \max\{\gamma V_0(i-1), 1 + \gamma V_0(i+1)\} = 0$$

4. $V_2(0) = \max\{1 + \gamma V_1(1), 1 + \gamma V_1(2k - 1)\} = 1$

if
$$i = 2,3...,2k - 2$$
:

$$V_2(i) = \max{\{\gamma V_1(i-1), \gamma V_1(i+1)\}} = 0$$

if i = 1 (and the same calculation for 2k - 1):

$$V_2(1) = \max\{\gamma V_1(1-1), 1+\gamma V_1(1+1)\} = \max\{\gamma V_1(0), \gamma V_1(2)\} = \gamma$$

so overall the states 1, 2k - 1 change their value after two iterations

5. $S = \{0,1,2,3\}$, notice that we can reach to 0 from 0 only on odd number of steps.

from 1 or 3 we can reach to 0 in 1 step and from 2 we need 2 steps.

overall:

1-step:

$$V_1(0) = 1$$

 $V_1(i) = \gamma i \in \{1,3\}$ for all i in this calculation

$$V_1(2) = 0$$

2-steps:

$$V_2(0) = 1$$

$$V_2(i) = \gamma$$

$$V_2(2) = \gamma^2$$

3-steps:

$$V_3(0) = 1 + \gamma^2$$

$$V_3(i) = \gamma$$

$$V_3(2) = \gamma^2$$

4-steps:

$$V_4(0) = 1 + \gamma^2$$

$$V_4(i) = \gamma + \gamma^3$$

$$V_4(2) = \gamma^2$$

5-steps:

$$V_5(0) = 1 + \gamma^2 + \gamma^4$$

$$V_5(i) = \gamma + \gamma^3$$

$$V_5(2) = \gamma^2 + \gamma^4$$

6-steps:

$$V_6(0) = 1 + \gamma^2 + \gamma^4$$

$$V_6(i) = \gamma + \gamma^3 + \gamma^5$$

$$V_6(2) = \gamma^2 + \gamma^4$$

6-steps:

$$V_7(0) = 1 + \gamma^2 + \gamma^4 + \gamma^6$$

$$V_7(i) = \gamma + \gamma^3 + \gamma^5$$

$$V_7(2) = \gamma^2 + \gamma^4 + \gamma^6$$

Overall:

$$V^*(0) = \sum_{i=0}^{\infty} \gamma^{2i} = \frac{1}{1 - \gamma^2}$$

$$V^*(1) = V^*(3) = \gamma \sum_{i=0}^{\infty} \gamma^{2i} = \frac{\gamma}{1 - \gamma^2}$$

$$V^*(2) = \gamma^2 \sum_{i=0}^{\infty} \gamma^{2i} = \frac{\gamma^2}{1 - \gamma^2}$$

Question 4

Let *M* be a MDP define under (S, A, P, s_0) and discounted factor $\gamma \in [0,1]$. We want to show that for each $v_1, v_2 \in \mathbb{R}^{|S|}$ it holds: $||T(v_1) - T(v_2)||_{\infty} \le \gamma \cdot ||v_1 - v_2||_{\infty}$

$$||T(v_1) - T(v_2)||_{\infty} \le \gamma \cdot ||v_1 - v_2||_{\infty}$$

Proof:

$$||T(v_1) - T(v_2)||_{\infty} = |T(v_1)(s) - T(v_2)(s)| =$$

$$\begin{split} &\left|\frac{1}{|A|}\sum_{a\in A}\left(r(s,a) + \gamma\sum_{s'\in S}P(s'|a,s)v_{1}(s')\right) - \frac{1}{|A|}\sum_{a\in A}\left(r(s,a) + \gamma\sum_{s'\in S}P(s'|a,s)v_{2}(s')\right)\right| = \\ &\frac{1}{|A|}\gamma \cdot \left|\sum_{a\in A}\sum_{s'\in S}\left(P(s'|a,s)\cdot\left(v_{1}(s') - v_{2}(s')\right)\right)\right| \leq \\ &\frac{1}{|A|}\gamma \cdot \sum_{a\in A}\sum_{s'\in S}\left(P(s'|a,s)\cdot|v_{1}(s') - v_{2}(s')|\right) \leq \\ &\frac{1}{|A|}\gamma \cdot \sum_{a\in A}\sum_{s'\in S}\left(P(s'|a,s)\cdot|v_{1} - v_{2}(s')\right) = \frac{1}{|A|}\gamma \cdot |A| \cdot 1 \cdot \|v_{1} - v_{2}\|_{\infty} = \gamma \cdot \|v_{1} - v_{2}\|_{\infty} \end{split}$$

when the first inequality holds using triangle inequality and the second inequality holds using the definition of $\|\cdot\|_{\infty}$

Overall:

$$\|T(v_1)-T(v_2)\|_\infty \leq \gamma \cdot \|v_1-v_2\|_\infty$$

Programming Part – Question 2

	iteration chg V[0]		
	, itoration	actions	.[0]
0	0	1	0.0
1	1	6	0.0
2	2	5	0.0
3	3	5	0.0563
4	4	1	0.17956
5	5	0	0.18047
6	6	0	0.18047
7	7	0	0.18047
8	8	0	0.18047
9	9	0	0.18047
10	10	0	0.18047
11	11	0	0.18047
12	12	0	0.18047
13	13	0	0.18047
14	14	0	0.18047
15	15	0	0.18047
16	16	0	0.18047
17	17	0	0.18047
18	18	0	0.18047
19	19	0	0.18047

