CS 240 Module 3

Graham Cooper

May 4th, 2015

Selection

Given an array A[a...n-1] and $0 \le k \le n-1$ return the kth largest element in A.

0.1 1) Selection-sort Idea:

Scan A k times, deleting max each time.

Cost: $\Theta(kn)$

0.2 - 2)

Sort A, return A[n-k]

Cost: $\Theta(nlogn)$

$0.3 \quad 3)$

Scan the array once, and keep k largest seen so far in the min-heap.

Cost: $\Theta(nlogk)$

Eg: [6,5,3,8,7,4], k = 3

We put in 6, 5 then 3 into the min heap. After we look at the rest of the elements and keep the min heap the size of k and add new elements if an element in the array is larger than the root of the min-heap. Continue through the array and at the end pick the root of the min heap.

0.4 - 4)

Heapify(A) then call $deleteMax\ k$ times.

Cost: $\Theta(n + klogn)$ For median selection (k = n/2) then it is the same as sorting so $\Theta(n)$

Partition Algorithm

Given an array A[0...n-1] and $0 \le k \le n-1$, find the element at position k of the sorted A.

Observation:

$$\overline{\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 7, 3, 2, 4, 6, 1 \end{bmatrix}}
\text{Sorted}(\mathbf{A}) = \begin{bmatrix} 1, 2, 3, 4, 6, 7 \end{bmatrix}$$

What is the position of A[3](4) in the sorted A. the answer is the number of elements < A[3] in A[0..2] and A[4,5]

<u>Idea:</u> choose one element (pivot) and partition the data into: (items < pivot), pivot, (items > pivot). If position(pivot) == k, done, otherwise, continue either on the left or on the right, depending on the position of the pivot.

WHAT WE WANT TO DO:

Implicit
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 9 & 4 & 5 & 8 & 6 & 3 & 2 \end{bmatrix}$$

Lets pick A[2] as the pivot, swap A[2] and A[0]
$$A = [5,4,9,8,6,3,2]$$

<u>Idea:</u> Find the outermost wrongly positioned pair and swap.

```
advance i, backup j. 

A = [5, 4, 9, 8, 6, 3, 2] i < j so we should swap i 

A = [5, 4, 2, 8, 6, 3, 9] Advance i, backup j 

A = [5, 4, 2, 8, 6, 3, 9] i < j swap i 

A = [5, 4, 2, 3, 6, 8, 9] advance i, backup j 

A = [5, 4, 2, 3, 6, 8, 9] j < i stop, swap, A[0] wiht A[j] 

A = [3, 4, 2, 5, 6, 8, 9] Return 3.
```

Quick Select(A,K)

```
\begin{split} P &= \operatorname{choosePivot}(A) \\ i &= \operatorname{partition}(P) \\ \text{if } i &= k \\ \text{return } A[i] \\ \text{if } i &> k: \\ \text{return QuickSelect}(A[0...i-1], \, k) \\ \text{if } i &< k: \\ \text{return QuickSelect}(A[i+1...n-1], \, k-i-1) \end{split}
```

0.4.1 Cost of Quick Select

Let
$$T(n)$$
 e cost of QuickSelect $T(n) = \Theta(n) + \Theta(1)$, if $n = k$ $T(i)$ if $i > k$ $T(n-i-1)$, if $i < k$

Best Case: $T(n) = \Theta(n)$ if i = k

(first chosen pivot if the element at position k, no recursive calls)

Worst Case: i = 0 or i = n-1

Recursive call has size n - 1

(if we pick the first element as the pivot, then an array sorted in ascending or descending order will give the worst case runtime.)

$$\begin{split} &\mathbf{T}(\mathbf{n}) = \\ &\mathbf{d} \text{ if } \mathbf{n} = 1 \\ &\mathbf{T}(\mathbf{n}\text{-}1) + \mathbf{c} \mathbf{n} \text{ if } \mathbf{n} \geq 2 \\ &\mathbf{T}(\mathbf{n}) = \mathbf{c} \mathbf{n} + \mathbf{c}(\mathbf{n}\text{-}1) + \mathbf{c}(\mathbf{n}\text{-}2) + \dots + \mathbf{c}(2) + \mathbf{d} \\ &= c) \frac{n(n+1)}{2} - c + d \in \Theta(n^2) \end{split}$$

What if hte partition is balanced

A[p] is always close to median

$$T(n) = T(\frac{n}{2}) + cn \text{ if } n \ge 2$$
d if $n = 1$

Assume n is a power of 2:
$$2^x$$

 $T(2^x) = c \cdot 2^x + c \cdot 2^{x-1} + \dots + c \cdot 2 + d$
 $= c(2^{x+1} - 2) + d$
 $= 2c(n-1) + d \in \Theta(n)$

 $\underline{\textbf{Average-Case analysis}}$: Average cost over all inputs of size n as function of n.

Observation: behaviour of QuickSelect depends on relative ordering, and not on actual values. [1,3,5,7] will yield the same worst case behaviour as [4,5,6,7].

Assume all keys are unique, $x_1, x_2, ...x_n$ then there are n! possible orderings on these keys. and each ordering is equally likely

After we pick the pivot, what iwll the split look like? L(num of items) | R(num of items)

L(num of items)	R(num of items)
0	n-1
1	n-2
k - 1	n - k
k	n - k - 1
k + 1	n - k - 2
•••	•••
n - 1	0

For each choce of pivot (n possible pivots) there are (n-1)! permutations of non-pivot elements, each of the splits is equally likely

After Partiction:

$$A = [0...x...]$$

Define T(n,k) an average cost for selecting kth item from a size n array.

$$T(n,k) = cn + \frac{1}{n}T(n-1,k-1)x + \frac{1}{n}(n-2,k-2) + \dots$$

Put in summation notation.