CONTROL OF PROTEIN FUNCTION IN CELL

Dr. Zhiyi Wei SUSTC

Regulation is everywhere

Traffic

Logistics

Finance

Interpersonal relationship

Body is a highly delicate machine

Regulation is vital for cellular function

Protein function is precisely regulated in cell

- Gene expression regulation
- Transcriptional regulation
- Translational regulation
- Protein regulation

Proteins play functions in a highly crowded environment

- A typical bacterial cell
 - Containing ~250,000 protein molecules
 - Size: ~1 μm in length

Mechanisms of regulations

- Regulation by location
- Regulation by molecules
- Regulation by covalent modification
- Regulation by protein quantity and lifetime
- Combination of different regulation mechanisms

Regulation by location

- Protein can be targeted to specific locations
 - Tissue
 - Cell
 - Cellular compartments
 - Molecular complexes
- Not all proteins are absolutely specific and may have multi-function
- Protein can be targeted by
 - Signal sequence
 - Chemical modification
- Protein is usually maintained in an inactive conformation when it is not in the location where it is needed

Regulation by molecules

- Protein function can be controlled by the binding of effector molecules
- The binding of effectors may induce conformational changes that produce inactive or active forms of the protein
- Effectors are ranged from proton to macromolecule
 - Protein-ligand interaction
 - Protein-protein interaction
- Effectors are most common in enzyme, for examples
 - Competitive inhibitor to the active site
 - Allosteric effector to the remote site

Regulation by covalent modification

- Binding of effector may lead to covalent changes in a protein
- The common way for covalent modification is posttranslational modification
 - Phosphorylation/Dephosphorylation
 - Glycosylation
 - Methylation
 - Acetylation
 - ...
- Such modifications may either activate or inactivate the protein
- Signal cascade by covalent modification for signal amplification

Regulation by protein quantity and lifetime

- Control protein lifetime at post-translational level
 - Protease (lysosome)
 - Proteasome
- Protein digestion by lysosome
 - Protein targeting
 - Location
- Specific protein degradation by proteasome
 - Covalent attachment
 - Modification

Combination of different regulation mechanisms

Protein interaction domains

- The flow of information within the cell is regulated and integrated by the combinatorial use of small protein domains that recognize specific ligands
- Interaction domain / recognition module
 - Folded modules
 - 35-150 residues in length
 - Many of them having their C- and N-termini close together in space, while the ligand-binding site being located on the opposite face, which allow an interaction domain to be inserted into a loop region
- Interaction domain can be classified by sequence, structure, and ligand-binding properties
 - SH3, WW and EVH1
 - Recognizing proline-rich sequences
 - SH2 and PTB
 - Recognizing phosphotyrosine containing sequences
 - 14-3-3, FHA, PBD and WD40
 - Recognizing phosphoserine and phosphothreonine motifs
 - PH, PX and FYVE
 - Recognizing phospholipids

SNARE

WD40

LRR

Function: protein-protein

Function: protein-protein interactions in pathway that triggers apoptosis Specificity: other DD domains through heterodimers

Example: FADD

Example: Swi6 Function: protein-protein interactions Specificity: various

Function: electrostatic switch Specificity: phospholipids

Function: protein-protein interactions Specificity: phosphotyrosine

Function: protein-protein interactions Specificity: Other BH domains through heterodimers

BIO446 Protein Structure and Function

SH₂

Example: Src

Function: protein-protein

interactions

Specificity: phosphotyrosine

SH3

Example: Sem5

Function: protein-protein

interactions

Specificity: proline-rich sequences

Example: PLC-δ

Function: recruitment of proteins to the membrane Specificity: phosphoinositides

Example: EphA4

Function: protein-protein interactions via homo- and

heterodimers

SAM

Specificity: other SAM domains

Bromo

Example: P/CAF

Function: protein-protein

interactions in chromatin remodeling

Specificity: acetylated lysine

PDZ

Example: PSD-95 Function: protein-protein interactions, often involving transmembrane proteins or

ion channels

Specificity: -XXXV/I-COOH

Example: CD2

Function: protein-protein

interactions

Specificity: proline-rich

sequences

Chromo

Example: Mouse modifier protein 1

Function: protein-protein

interactions in chromatin remodeling

Specificity: methylated lysine

FYVE

Example: Vps27p Function: Regulation of

signaling

Specificity: phosphatidylinositol-3-phosphate

RING finger

Example: c-Cbl Function: protein-protein interactions in ubiquitindependent degradation and transcription regulation

WW

Example: Pin1

Function: protein-protein

interactions

Specificity: proline-rich

sequences

LIM

Example: CRP2 Function: protein-protein interactions, usually in transcription regulation Specificity: various

F-box

Example: Skp2

Function: protein-protein

interactions in ubiquitin-dependent

protein degradation Specificity: various

Example: PKC

Function: recruitment of proteins to the membrane Specificity: phospholipids

Fibronectin

Specificity: various

Example: Fibronectin III Function: protein-protein interactions in cell

adhesion to surfaces

Specificity: RGD motif of integrins

Src Tyrosine Kinase

PDB101 link: http://pdb101.rcsb.org/motm/43