Završni ispit iz Raspoznavanja uzoraka

22.1.2009

Teorijski dio (ukupno 20 bodova)

- 1. (7 bodova) Fisherova linearna diskriminantna analiza. Kriterijska funkcija $J(\vec{w})$ i generalizirani problem svojstvenog vektora
- 2. (4 boda) Bayesovo decizijsko pravilo predočeno u obliku koji minimizira uvjetni rizik $R(\alpha_i|\vec{x})$.
- (4 boda) Nacrtati model neurona kao informacijsko-procesne jedinice. Opisati pojedine građevne komponente.
- (5 bodova) Pokazati zašto se zahtijeva da aktivacijska funkcija neurona u neuronskoj mreži s propagacijom pogreške unatrag mora biti derivabilna.

Problemski dio (ukupno 20 bodova)

1. (6 bodova) Za skup uzoraka

$$\omega_1 = \{[0, 0]^T\}$$
 $\omega_2 = \{[0, 1]^T, [1, 0]^T, [0, -1]^T\}$

Tražimo granicu između razreda strojem s potpornim vektorima i to u obliku polinoma drugog stupnja. Rješavanjem dualnog problema SVM dobili smo rješenje

$$[\lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4] = [8/3 \ 1 \ 2/3 \ 1]$$

Kako glasi jednadžba granice između razreda u obliku

$$ax_1^2 + bx_2^2 + cx_1x_2 + dx_1 + ex_2 + f = 0$$

2. (8 bodova) Zadana je neuronska mreža arhitekture kao na slici

Neka na početku težinski faktori neurona imaju slijedeće vrijednosti

$$w_{30} = 0.1$$
 $w_{40} = 0.1$ $w_{50} = 0.3$ $w_{60} = 0.6$ $w_{70} = 0.3$ $w_{80} = 0.9$ $w_{81} = 0.3$ $w_{41} = 0.9$ $w_{51} = 0$ $w_{63} = 0.5$ $w_{73} = 0.2$ $w_{84} = 0.8$ $w_{85} = 0.7$ $w_{85} = 0.7$

Za te težine i ulaze $x_1 = 0$ i $x_2 = 1$ izlazi pojedinih neurona neuronske mreže su

$$y_3 = 0.7109$$
 $y_4 = 0.6225$ $y_5 = 0.7311$ $y_6 = 0.7802$ $y_7 = 0.6758$ $y_8 = 0.8710$

Ako su željeni izlazi neuronske mreže bili $d_6=0$, $d_7=1$, $d_8=0$ Izračunajte koliki će, nakon korekcije backpropagation algoritmom, biti težinski faktori neurona 5. Stopa učenja neka je $\eta=1$.

3. (6 bodova) Na raspolaganju su uzorci dvaju razreda za koje se pretpostavlja da slijede višedimenzionalnu normalnu razdiobu. Uzorci iz razreda ω_1 imaju središte u $\vec{m}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ i kovarijacijsku matricu $C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Uzorci iz razreda

 ω_2 imaju središte u $\vec{m}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ i kovarijacijsku matricu $C_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Pretpostavite da su vjerojatnosti pojavljivanja uzoraka iz ω_1 i ω_2 jednake. Napišite jednadžbu granice između razreda koju za ovakve uzorke daje Bayesov klasifikator, i to u obliku $a \cdot x_1^2 + b \cdot x_2^2 + c \cdot x_1 \cdot x_2 + d \cdot x_1 + e \cdot x_2 + f = 0$