

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

	-11
	_/ 1
	IJ
	7 /
L 1	

A REPORT	ELUMIIT CLMS	• ~	7742	I PAGE	ARKINGS		
	ASSIFIED			1			
2a. SECURITY	CLASSIFICATI	ION AUTHORITY		3. DISTRIBUTION/A			
2b. DECLASS	IFICATION/DOV	NNGRADING SCHED	ULE	Approved for unlimited.	public rele	ease; dist	ribution
. PERFORM	NG ORGANIZA	TION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION REP	ORT NUMBER	(S)
				AFOSR-	TR. 84	0036	3
		ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONIT	ORING ORGANIZA	ATION	
	ichusetts I iology	Institute of	(-,	Air Force Of	fice of Scie	entific Re	search
	(City, State and	ZIP Code)	<u> </u>	7b. ADDRESS (City,	State and ZIP Code)		
Labor	atory for	Computer Scie	ence, 545	Directorate of Mathematical & Information			
Techn	ology Squa	are, Cambridge	e MA 02139	Sciences, Bo	lling AFB DO	20332	
le. NAME OF ORGANIZ	FUNDING/SPOR	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT IDEN	TIFICATION N	NUMBER
	AFOSR		NM	AFOSR-80-025	0		
k. ADDRESS	(City, State and	ZIP Code)		10. SOURCE OF FUN			
	Bolling AF	FB DC 20332		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNI
1. TITLE (In	ciude Security Ch	assification)		1			
SEE PEMA				61102F	2304	A4	
	L AUTHOR(S)						
ise Type of Inter		13b. TIME C		14. DATE OF REPOR	IT (Yr., Mo., Day)	15. PAGE	COUNT
	ENTARY NOTA		7630/0/62	20 JUN 83		13	4
ie. sorrcem	ENTANT NOTA	1104				O'	175
					·		ECTOR
FIELD	GROUP	SUB. GR.	18. SUBJECT TERMS <i>(C</i>	ECT TERMS (Continue on reverse if necessary and identify by			81'5'
7,000	GAOOF	308, GA.				E.	
			l		····		<u> </u>
			identify by block number				

Barry Trager continued his doctoral thesis research on the integration of algebraic function while working at IBM Research in Yorktown Heights. The report on this work previously submitted still gives a very good account of this line of research. approach he has taken is to determine the minimal extension field in which the integral can be expressed. This can lead to a tremendous improvement in both the running time and the size and complexity of the expression that is produced.

CONTINUED		
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFE	CATION
UNCLASSIFIED/UNLIMITED 🖾 SAME AS RPT. 🖾 DTIC USERS 🗆	UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL	225 TELEPHONE NUMBER Include Area Code:	22c OFFICE SYMBOL
22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Robert N. Buchal		22c OFFICE SYMBOL

DD FORM 1473, 83 APR

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

ITEM #11, TITLE: RESEARCH IN ALGEBRAIC MANIPULATION,
1 JULY 81 - 30 JUNE 82.

ITEM #19, ABSTRACT, CONTINUED: The major effort in the last few months of the period was on the solution of ordinary differential equations (ODEs) by a Japanese visitor, Professor Shunro Watanabe. Professor Watanabe has begun to develop a subsystem of MACSYMA that solves ODEs by converting them to P-functions, originally studied by Riemann. One example of this approach to solving ODEs is given within. One goal of this work is to solve a large percentage of Kamke's equations using this general approach.

Accessi	on For			
NTIS C	RASI	፟ 🔀 .	;	
DIIC TA	1B	11	ì	
บกวกกอง	maed	L		
Justif	ication			٥
			_{i • .	A.
By_•			—\ .	2
Distri	butiom/			
Avail	ability	Codes	<u> </u>	
	Avail a	nd/er	1	
Dist	Speci	al		
• 1	1		}	
	1		1	
$\Lambda - I$	1		į	
/1.	!			

AFOSR-TR- 2 2000

PROGRESS REPORT FOR THE 1981-82 PERICD

This document indicates (1)

This was a transitional year. One in which we phased down research on was proved to the integration of algebraic functions (described in last year's report), and one in which we began a new line of research on the solution of ordinary differential equations in closed form, began.

Barry Trager continued his doctoral thesis research on the integration of algebraic function while working at IMB Research in Yorktown Heights. The report on this work previously submitted still gives a very good account of this line of research. The approach he has taken is to determine the minimal extension field in which the integral can be expressed. This can lead to a tremendous improvement in both the running time and the size and complexity of the expression that is produced.

The major effort in the last few months of the period was on the solution of ordinary differential equations (ODEs) by a Japanese visitor, Prof. Shunro Watanabe. Professor Watanabe has begun to develop a subsystem of MACSYMA that solves ODEs by converting them to P-functions, originally studied by Riemann. One example of this approach to solving ODEs is given below. One goal of this work is to solve a large percentage of Kamke's equations using this general approach.

```
PALGS FASL DSK SWATAN being loaded
Loading done
we solve
y=(X-1)
PALG4 FASL DSK SWATAN being loaded
Loading done
POHAS2 FASL DSK SWATAN being loaded
Loading done
   K1 T (2 SQRT(T + T + 1) + SQRT(3) (T + 1)) (X - 1)
                           3 1
(T - 1)
           (SQRT(3) (T + 1) - 2 SQRT(T + T + 1)) (X - 1)
                           \frac{3}{(T-1)}
where t=x^(1/3)
Time= 13449 msec.
            (2 SQRT(T + T + 1) + SQRT(3) (T + 1)) (X - 1)
                             (T - 1)
                                                 1/12
                                           (T - 1)
Time: 15278 msec.
(D9)
                                  BATCH DONE
(C10) closefile(buffer, save);
                                          AIR FURCE OF THIS OF DELINTIFIED
                                          NOTICE OF TRANSPORT AND A TOTAL OF
                                          197.31
                                          Distribution:
```

MATTHEW J. KELLY.

Chief, Technical Information Division

```
[DSK. SWATAN]
(D2)
(C3) showtime: true$
Time- 5 msec.
(C4) batch(examp1,12);
                                                         Ramke example 406
(C5) k406:16*(X^3-1)^2*'DIFF(Y,X,2)+27*X*Y*0:
Time= 41 msec.
                                     --- + 27 X Y = 0
(D5)
                        16 (X - 1)
                                     ďΧ
(C6) k406t:48*x^2*(x-1)^2*'diff(y,x,2)+32*x*(x-1)^2*'diff(y,x)+9*x*y=0;
Time: 50 msec.
                        2 2 d Y
(D6)
                             --- + 32 (X - 1) X -- + 9 X Y = 0
              48(X-1)X
                                                 dX
                             dX
(C7) Toadfile(pmain_fas1):
PMAIN FASL DSK SWATAN being loaded
Loading done
Time- 426 msec.
                                     DONE
\{D7\}
(C8) lode2(k406t);
                 dX
we solve
               3 X
         4X
                      16 X - 32 X + 16 X
SOLVE FASL DSK MACSYM being loaded
Loading done
PHYPGM FASL DSK SWATAN being loaded
Loading done
the type is hypergeometric
the solution may be written by Riemann's P-functions as follows
        1 INF
                 (x)
```

PMGMP FASL DSK SWATAN being leaded Leading done

FILMED
3-84

DTIC