Claims

What is claimed is:

1. A compound represented by the formula:

$$R_{16}$$
 R_{17} Y Z R_{23} R_{24} W $(CH_2)_y$ CR_{15} Or NH_2 R_{22}

$$R_{29}$$
 (CH₂)_m R_{7} R_{8} (CH₂)_y R_{15} R_{11} R_{11} R_{11} R_{11} R_{11} R_{12} R_{13} R_{14} R_{15}

wherein

5

20

W is $CR_{27}R_{28}$ or $(CH_2)_nNH$ (CO);

wherein R_{27} and R_{28} are independently selected from the group consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or S;

wherein R₉ and R₁₀ are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH_2 , C_5 - C_{10} aryl, halo or C_5 - C_{10} heteroaryl;

15 R_{11} and R_{16} are independently selected from the group consisting of C_5 - C_{12} alkyl, C_5 - C_{12} alkenyl, C_5 - C_{12} alkynyl, C_5 - C_{12} alkoxy, $(CH_2)_pO(CH_2)_q$, C_1 - C_8 alkyl $(C_5$ - C_{10} aryl) R_{20} , C_1 - C_8 alkyl $(C_5$ - C_{10} heteroaryl) R_{20} , C_1 - C_8 alkyl $(C_5$ - C_{10} cycloalkyl) R_{20} , C_1 - C_{10} alkoxy $(C_5$ - C_{10} aryl) R_{20} , C_1 - C_{10} alkoxy $(C_5$ - C_{10} cycloalkyl) R_{20} ;

wherein R_{20} is H or C_1 - C_{10} alkyl;

 R_{29} is H, halo, C_1 - C_{12} alkyl, C_1 - C_{12} alkenyl, C_1 - C_{12} alkynyl, C_1 - C_{12} alkoxy, $(CH_2)_pO(CH_2)_q$ and $(CH_2)_pNH(CH_2)_q$;

 R_{17} is selected from the group consisting of H, halo, NH₂, C_1 - C_6 alkyl, C_1 - C_6 alkylamino, C_1 - C_1 - C_2 - C_2 - C_2 - C_3 - C_1 - C_2 - C_3 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, (C_1 - C_4 alkyl)OH and (C_1 - C_4 alkyl)NH₂;

R₂₃ is selected from the group consisting of H, F, CO₂H, OH, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

 R_{24} is selected from the group consisting of H, F and PO_3H_2 , or R_{23} together with R_{24} and the carbon to which they are attached form a carbonyl group;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is represented by the formula

$$-X - P \xrightarrow{R_{30}} R_{30} \qquad \text{or} \qquad \begin{array}{c} R_{30} \parallel R_{31} \\ P \\ R_{31} \parallel R_{30} \\ \end{array}$$

15

5

10

wherein R_{12} is selected from the group consisting of O, NH and S; X is selected from the group consisting of O, NH, S, CH₂, CHOH,

CHF,
$$CF_2$$
, and $-C^-$; and

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

y and m are integers independently ranging from 0 to 4; p and q are integers independently ranging from 1 to 10; n is an integer ranging from 0 to 10;

- or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that when W is $CR_{27}R_{28}$, neither R_{30} or R_{31} are C_1 - C_2 alkoxy.
- 2. The compound of claim 1 wherein the compound is represented by the 10 formula:

$$R_{16}$$
 Z
 H
 $CH_2)_nN$
 R_{23}
 R_{24}
 $CH_2)_y$
 CR_{15}
 R_{22}
 NH_2

wherein

5

 R_{16} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkynyl, C_5 - C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$, C_5 - C_{10} $(C_5$ - C_6 aryl) R_{20} , C_5 - C_{10} $(C_5$ - C_6 theteroaryl) R_{20} , C_5 - C_{10} alkoxy(C_5 - C_6 aryl) R_{20} , C_5 - C_{10} alkoxy(C_5 - C_6 heteroaryl) R_{20} and C_5 - C_{10} alkoxy(C_5 - C_6 cycloalkyl) R_{20} ;

R₁₅ is represented by the structure

$$-X-P$$
 R_{30} R_{31} :

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

and R_{23} and R_{24} are independently selected from the group consisting of H, F and C_1 - C_4 alkyl;

or a pharmaceutically acceptable salt or tautomer thereof.

3. The compound of claim 2 wherein

y is 0 or 1;

n is 1-10;

15 Z is CH_2 ; and

R₁₇ is H.

4. The compound of claim 2 wherein

y is 0 or 1;

m is 0;

5 Z is C_5 - C_6 aryl or C_5 - C_6 heteroaryl;

 ${\bf R}_{16}$ is selected from the group consisting of C5-C12 alkyl C2-C12 alkenyl or C5-C12 alkoxy; and

 R_{17} and R_{23} are each H.

10 5. The compound of claim 4 wherein

Z is C_5 - C_6 aryl;

R₂₄ is H; and

 R_{22} is selected from the group consisting of C_1 - C_4 alkyl, and $(C_1$ - C_4 alkyl)OH.

The compound of claim 1 wherein the compound is represented by the formula:

$$R_{16}$$
 H

 Y Z

 R_{23} R_{24}
 $C(CH_2)_y CR_{15}$
 R_{21}

wherein Z is C5-C6 aryl or C5-C6 heteroaryl;

20 R_{16} is selected from the group consisting of C_5 - C_{12} alkyl, C_5 - C_{12} alkenyl, C_5 - C_{12} alkynyl and C_5 - C_{12} alkoxy;

Y is selected from the group consisting of $CR_{27}R_{28}$, CHOH, CF_2 , CFH, carbonyl, NH, O and S;

W is $CR_{27}R_{28}$;

wherein R₂₇ and R₂₈ are independently selected from the group consisting of H, halo and hydroxy;

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH and $(C_1$ - C_4 alkyl)NH₂;

 R_{23} is selected from the group consisting of H, F, CO₂H, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₂₄ is selected from the group consisting of H, F and PO₃H₂, or R₂₃ together with R₂₄ and the carbon to which they are attached form a carbonyl group;

R₁₅ is represented by the structure

$$-X-P$$
 R_{30}
 R_{31}

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

5

10

15

 R_{30} and R_{31} are independently selected from the group consisting of

y is an integer ranging from 0 to 4;

or a pharmaceutically acceptable salt or tautomer thereof.

7. The compound of claim 6 wherein

R₂₃ and R₂₄ are both H;

 R_{27} and R_{28} are independently selected from the group consisting of H and F;

Z is C₅-C₆ aryl or C₅-C₆ heteroaryl;

R₂₂ is selected from the group consisting of OH, C_1 - C_4 alkyl, and $(C_1$ - C_3 alkyl)OH;

R₁₂ is O;

X is selected from the group consisting of O, CH₂, CHOH and CHF; and y is 0 or 1.

10

8. The compound of claim 6 wherein the compound is represented by the formula:

$$R_{16}$$
 R_{15} R_{15} R_{15} R_{15} R_{15} R_{23} R_{15}

, 15

wherein R_{15} is represented by the structure

$$-x-P < R_{30} R_{31}$$

wherein R_{12} is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

20

 R_{30} and R_{31} are independently selected from the group consisting of

 R_{21} is selected from the group consisting of C_1 - C_3 alkyl and $(C_1$ - C_4 alkyl)OH; R_{23} is selected from the group consisting of H, F, C_1 - C_3 alkyl and $(C_1$ - C_4

5 alkyl)OH;

10

or a pharmaceutically acceptable salt thereof.

9. The compound of claim 8 wherein Y is selected from the group consisting of carbonyl, NH and O.

10. The compound of claim 9 wherein

R₁₅ is represented by the structure

$$-x-P < R_{30} R_{31}$$

wherein X is selected from the group consisting of O, CH2, CHOH and CHF;

R₃₀ and R₃₁ are independently selected from the group consisting of

$$O \longrightarrow O$$
, $O \longrightarrow O$, CH_3CH_2O , CH_3CH_2O , $O \longrightarrow O$, O

R₂₃ is selected from the group consisting of H, F and C₁-C₃ alkyl; or a pharmaceutically acceptable salt thereof.

5

11. The compound of claim 1 wherein the compound is represented by the formula:

$$R_{11}$$
 R_{29}
 R_{11}
 R_{20}
 R_{23}
 R_{24}
 R_{25}
 R_{25}
 R_{3}
 R_{15}
 R_{24}
 R_{15}

wherein

10

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkynyl, C_5 - C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$, $(CH_2)_pNH(CH_2)_q$, $(CH_2)_p(CO)(CH_2)_q$, $(CH_2)_p(COO)(CH_2)_q$, C_1 - C_{10} alkyl $(C_5$ - C_6 aryl $)R_{20}$, C_1 - C_{10} alkyl $(C_5$ - C_6 cycloalkyl $)R_{20}$, C_1 - C_{10} alkoxy $(C_5$ - C_6 aryl $)R_{20}$, C_1 - C_{10} alkoxy $(C_5$ - C_6 heteroaryl $)R_{20}$ and C_1 - C_{10} alkoxy $(C_5$ - C_6 cycloalkyl $)R_{20}$;

15

wherein R₂₀ is H or C₁-C₁₀ alkyl;

p and q are integers independently ranging from 1 to 10;

 R_{29} is H, halo, C_1 - C_{12} alkyl, C_1 - C_{12} alkenyl, C_1 - C_{12} alkynyl, C_1 - C_{12} alkoxy, $(CH_2)_pO(CH_2)_q$ and $(CH_2)_pNH(CH_2)_q$;

 R_7 and R_8 are independently selected from the group consisting of O, S, CR_{26} , CHR_{26} , NR_{26} , and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₂₅ is N or CH;

R₃ is selected from the group consisting of C₁-C₄ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NIH₂;

R₁₅ is represented by the structure

$$-X-P$$
 R_{30}
 R_{31}

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH₂, CHOH, CHF, CF₂, and

10

15

 R_{30} and R_{31} are independently selected from the group consisting of $C_1\text{-}C_2$ alkoxy,

 R_{23} is selected from the group consisting of H, F, OH, C_1 - C_4 alkyl, CO_2H and C_1 - C_4 alkyl;

 R_{24} is selected from the group consisting of H, F, C_1 - C_4 alkyl and PO_3H_2 , or R_{23} together with R_{24} and the carbon to which they are attached form a carbonyl group; and

y and m are integers independently ranging from 0 to 4; or a pharmaceutically acceptable salt or tautomer thereof.

12. The compound of claim 11 wherein

m is 0;

y is 0 or 1;

- R_{23} and R_{24} are independently selected from the group consisting of H and F.
 - 13. The compound of claim 11 wherein R_3 is selected from the group consisting of C_1 - C_3 alkyl and $(C_1$ - C_4 alkyl)OH;

R₈ is CH; and

15 R_{25} is N.

5

14. The compound of claim 12 or 13 wherein

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkoxy and $(CH_2)_pO(CH_2)_q$; and

- 20 R₂₉ is selected from the group consisting of H, halo and C₁-C₁₂ alkyl; or a pharmaceutically acceptable salt or tautomer thereof.
 - 15. The compound of claim 12, 13 or 14 wherein

y is 0; and

 R_{15} is represented by the structure

$$-x-\stackrel{O}{\underset{R_{30}}{\parallel}} <_{R_{31}},$$

wherein X is selected from the group consisting of CH2, CHOH, CHF, CF2,

25

16. The compound of claim 12 wherein the compound is represented by the formula:

$$R_{11}$$

$$R_{8}$$

$$NH_{2}$$

$$R_{3}$$

$$R_{3}$$

or

$$R_{1}$$
 R_{8}
 R_{3}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{1}

5 wherein R_{11} is C_5 - C_{18} alkyl or C_5 - C_{18} alkenyl; and R_8 is N, CH or S;

or a pharmaceutically acceptable salt or tautomer thereof.

17. The compound of claim 16 wherein R₁₅ is represented by the structure

$$-x$$
 $\stackrel{O}{=}$
 R_{30}
 R_{31}

wherein X is selected from the group consisting of O, CH₂, CHOH, CHF, CF₂,

10

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

or a pharmaceutically acceptable salt or tautomer thereof.

18. The compound of claim 17 wherein R_{11} is C_5 - C_9 alkyl; R_{15} is represented by the structure

$$-X - P
\begin{pmatrix}
 & & \\$$

5

wherein X is selected from the group consisting of O, CH_2 and CHF; R_{30} and R_{31} are independently selected from the group consisting of

10 and R₃ is CH₃.

19. A compound represented by the formula

wherein R₁₁ is selected from the group consisting of C₅-C₁₈ alkyl, C₅-C₁₈ alkenyl, C₅-C₁₈ alkynyl, C₅-C₁₈ alkoxy, (CH₂)_pO(CH₂)_q, C₁-C₁₀ alkyl(C₅-C₆ aryl)R₂₀, ·5 C₁-C₁₀ alkyl(C₅-C₆ heteroaryl)R₂₀, C₁-C₁₀ alkyl(C₅-C₆ cycloalkyl)R₂₀, C₁-C₁₀ alkoxy(C₅-C₆ heteroaryl)R₂₀ and C₁-C₁₀ alkoxy(C₅-C₆ cycloalkyl)R₂₀;

wherein R₂₀ is H or C₁-C₁₀ alkyl;

p and q are integers independently ranging from 1 to 10;

10 R₁₆ is selected from the group consisting of H, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ alkynyl, C₁-C₁₈ alkoxy, (CH₂)_pO(CH₂)_q and (CH₂)_pNH(CH₂)_q; Q is

L is selected from the group consisting of

$$\begin{bmatrix}
R_7 \\
R_8 \\
R_{25}
\end{bmatrix} \text{ and } \begin{bmatrix}
R_7 \\
R_8 \\
R_8 \\
R_{25}
\end{bmatrix}$$

15

wherein R₂₅, R₇ and R₈ are independently selected from the group consisting of O, S, CR₂₆, CHR₂₆, NR₂₆, and N, R₂₆ is H, F or C₁-C₄ alkyl, and m is an integer ranging from 0-4;

R₃ is selected from the group consisting of C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

20 R_{23} is H, F or C_1 - C_4 alkyl, and

R₁₅ is represented by the structure

$$-x-P \xrightarrow{R_{12}} R_{30}$$

wherein R_{12} is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH_2 , CHOH, CHF, CF_2 , and CF_2 :

 R_{30} and $R_{31}\,$ are independently selected from the group consisting of $C_1\text{-}C_2$ alkoxy,

or a pharmaceutically acceptable salt or tautomer thereof.

20. The compound of claim 19 wherein

10 R₁₁ is selected from the group consisting of C₅-C₁₈ alkyl, C₅-C₁₈ alkenyl, C₅-C₁₈ alkynyl, C₅-C₁₈ alkoxy and $(CH_2)_pO(CH_2)_q$;

wherein p and q are integers independently ranging from 1 to 10;

R₁₆ is selected from the group consisting of H, C₁-C₁₀ alkyl,

C2-C10 alkenyl and C2-C10 alkynyl;

15 Q is selected from the group consisting of

L is selected from the group consisting of

m is 0; and

- 5 R_{23} is H or F.
 - 21. The compound of claim 19 wherein the compound is represented by the formula:

wherein Q is selected from the group consisting of

R₂₃ is H or F;

R₁₂ is O; and

X is selected from the group consisting of O, CH_2 , CHOH, CHF, CF_2 , and O

22. The compound of claim 19 wherein the compound is represented by 5 the formula:

$$\begin{array}{c|c} R_{16} & H & R_{23} \\ \hline R_{11} & R_{3} & NH_{2} \end{array}$$

23. The compound of claim 22 wherein

R₃ is selected from the group consisting of C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

10 R₈ is selected from the group consisting of O, S, CR₂₆ and N;

R₂₃ and R₂₆ are independently H or F; and

R₁₅ is represented by the structure

$$-x-P$$
 R_{30}
 R_{31}

wherein X is selected from the group consisting of O, CH2, CHOH, CHF, CF2

15 and -C-

- 24. The compound of claim 23 wherein X is O.
- 25. The compound of claim 23 whereinX is selected from the group consisting of CH₂, CHF and CF₂.
 - 26. The compound of claim 24 or 25 wherein R₃₀ and R₃₁ are the same and are selected from the group consisting of

- 27. The compound of claim 25 wherein R₈ is N.
- 5 28. The compound of claim 25 wherein the compound is represented by the formula:

$$R_{16}$$
 R_{16}
 R_{16}
 R_{17}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{11}

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl and C_5 - C_{18} alkenyl; R_3 is CH_3 ; and

- 10 R_{16} is selected from the group consisting of H, and C_1 - C_4 alkyl.
 - 29. The compound of any of claims 19, 24, 25, or 27 wherein R₁₁ is selected from the group consisting of C₅-C₁₈ alkyl, C₅-C₁₈ alkenyl, C₅-C₁₈ alkynyl, C₅-C₁₈ alkoxy and (CH₂)_pO(CH₂)_q;
- wherein p and q are integers independently ranging from 1 to 10; and R₁₆ is selected from the group consisting of H, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl and C₂-C₁₈ alkynyl.
- 30. The compound of any of claims 19, 24, 25, 27 or 28 wherein R₁₁ is C₅-C₁₈ alkyl or C₅-C₁₈ alkenyl; and R₁₆ is H.

31. A composition comprising a compound of claim 1, 2, 6, 8, 11, 16, 19, 21, 22, 28 or 30 and

a pharmaceutically acceptable carrier.

32. A composition comprising a compound represented by the formula

$$R_{11}$$
 Q
 CHR_{15}
 R_{3}
 NH_{2}

wherein R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkoxy and $(CH_2)_pO(CH_2)_q$;

wherein p and q are integers independently ranging from 1 to 10;

Q is selected from the group consisting of C_5 - C_6 optionally substituted cycloalkyl, C_5 - C_6 optionally substituted heterocyclic, C_5 - C_6 optionally substituted aryl, C_5 - C_6 optionally substituted heteroaryl and -NH(CO)-;

R₃ is selected from the group consisting of H, C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

 R_{23} is H, F or C_1 - C_4 alkyl, and

R₁₅ is represented by the structure

$$-X-P$$
 R_{30}
 R_{31}

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH₂, CHOH, CHF, CF₂, and

5

10

15

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

or a pharmaceutically acceptable salt or tautomer thereof and a pharmaceutically acceptable carrier.

33. The composition of claim 32 wherein

Q is

5

$$R_8$$
 R_{25}

wherein R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CR_{26} , CHR_{26} , NR_{26} , and N; and R_{26} is H, F or C_1 - C_4 alkyl;

10 R_{23} is H or F; and

R₁₅ is represented by the structure

$$-x^{O} < R_{30} < R_{31}$$

wherein X is selected from the group consisting of O, CH2, CHOH,

34. The composition of claim 33 wherein Q is selected from the group consisting of

5

35. The composition of claim 34 wherein

X is selected from the group consisting of CH2, CF2 and CHF; and

 R_{30} and R_{31} are independently selected from the group consisting of $C_1\text{-}C_2$ alkoxy,

10

36. The composition of claim 35 wherein Q is selected from the group consisting of

- or a pharmaceutically acceptable salt or tautomer thereof.
 - 37. A method for modulating the activity of an S1P receptor, said method comprising the step of contacting said receptor with a compound represented by the formula:

$$R_{16}$$
 R_{17} R_{23} R_{24} R_{21} R_{22} R_{22} or

$$R_{29}$$
 (CH₂)_m R_{7} R_{8} (CH₂)_y R_{15} R_{25} R_{2} R_{3}

wherein

5

15

20

W is $CR_{27}R_{28}$ or $(CH_2)_nNH$ (CO);

where in R_{27} and R_{28} are independently selected from the group consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or S;

wherein R_9 and R_{10} are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH_2 , C_5 - C_6 aryl, halo or C_5 - C_6 heteroaryl;

 $R_{11} \text{ is selected from the group consisting of C_5-C_{18} alkyl, C_5-C_{18} alkenyl, C_5-C_{18} alkynyl, C_5-C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$, C_1-C_{10} alkyl(C_5-C_6 aryl)R_{20}$, C_1-C_{10} alkyl(C_5-C_6 teteroaryl)R_{20}$, C_1-C_{10} alkyl(C_5-C_6 cycloalkyl)R_{20}$, C_1-C_{10} alkoxy(C_5-C_6 aryl)R_{20}$; and C_1-C_{10} alkoxy(C_5-C_6 cycloalkyl)R_{20}$;$

wherein R₂₀ is H or C₁-C₁₀ alkyl; and

p and q are integers independently ranging from 1 to 10;

R₁₆ is selected from the group consisting of H, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ alkynyl, C₁-C₁₈ alkoxy, (CH₂)_pO(CH₂)_q and (CH₂)_pNH(CH₂)_q; R₂₉ is H, halo or C₁-C₁₀ alkyl;

 R_{17} is selected from the group consisting of H, halo, NH₂, C_1 - C_6 alkyl, C_1 - C_6 alkylamino, C_1 - C_6 alkylcyano and C_1 - C_6 alkylthio;

 R_2 , and R_{21} are both NH_2 ;

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, (C_1 - C_4 alkyl)OH and (C_1 - C_4 alkyl)NH₂;

R₂₃ is selected from the group consisting of H, F, CO₂H, OH, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₂₄ is selected from the group consisting of H, F and PO₃H₂, or R₂₃ together with R₂₄ and the carbon to which they are attached form a carbonyl group;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is represented by the structure

$$-X-P$$
 R_{30}
 R_{31}

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

15

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

$$N_{H}$$
, N_{H} , N

y and m are integers independently ranging from 0 to 4;

n is an integer ranging from 0 to 10;

or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that W and Y are not both methylene.

38. The method of claim 37 wherein the administered composition comprises a compound represented by the formula:

$$\begin{array}{c|c} R_{16} & R_{23} \\ \hline R_{11} & R_{8} & NH_{2} \end{array}$$

10 wherein

5

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkoxy and $(CH_2)_pO(CH_2)_q$;

wherein p and q are integers independently ranging from 1 to 10;

R₁₆ is selected from the group consisting of H, C₁-C₁₀ alkyl,

15 C_2 - C_{10} alkenyl and C_2 - C_{10} alkynyl;

R₃ is selected from the group consisting of C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

 R_7 and R_8 are independently selected from the group consisting of O, S, CR_{26} , CHR_{26} , NH and N;

R₂₃ and R₂₆ are independently H or F; and

20 R₁₅ is represented by the structure

$$-x-P < R_{30} R_{31}$$

wherein X is selected from the group consisting of O, CH₂, CHOH, CHF, CF₂ $\stackrel{\text{O}}{\parallel}$ and $\stackrel{\text{}}{-}$ C- .

39. A method of providing immuno-modulation to a patient in need thereof, said method comprising the step of administering to said patient a composition comprising a compound represented by the formula:

wherein

15

20

R₁₁ is independently selected from the group consisting of C₅-C₁₂ alkyl, C₅-C₁₂

alkenyl, C₅-C₁₂ alkynyl, C₅-C₁₂ alkoxy, (CH₂)_pO(CH₂)_q, (C₅-C₁₀ aryl)R₄₀, (C₅-C₁₀

heteroaryl)R₄₀, (C₅-C₁₀ cycloalkyl)R₄₀;

wherein R_{40} is selected from the group consisting of H, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, $(C_5$ - C_{10} cycloalkyl) R_{20} , C_1 - C_{10} alkoxy $(C_5$ - C_{10} aryl) R_{20} , C_1 - C_{10} alkoxy $(C_5$ - C_{10} cycloalkyl) R_{20} ;

wherein R_{20} is H or C_1 - C_{10} alkyl;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

 R_3 is selected from the group consisting of C_1 - C_6 alkyl and $(C_1$ - C_4 alkyl)OH; R_{15} is represented by the formula

$$-X - P = \begin{bmatrix} R_{30} & R_{30} & R_{31} \\ R_{30} & R_{31} & R_{31} \end{bmatrix}$$
 or
$$\begin{bmatrix} R_{30} & R_{31} & R_{31} \\ P & R_{31} & R_{30} \end{bmatrix}$$

wherein R₁₂ is selected from the group consisting of O, NH and S;

X is selected from the group consisting of O, NH, S, CH₂, CHOH,

 R_{30} and R_{31} are independently selected from the group consisting of $C_1\text{-}C_2$ alkoxy,

$$0$$
— $\left\langle \ , \ 0$ — $\left\langle \ , \ 0$
 NH_2 and 0
 $\stackrel{+}{N}\stackrel{/}{\sim} \ ;$

y is an integer ranging from 0 to 4;

10

p and q are integers independently ranging from 1 to 10; or a pharmaceutically acceptable salt or tautomer thereof.

40. A method of providing immuno-modulation to a patient in need thereof, said method comprising the step of administering to said patient a composition comprising a compound represented by the formula:

169

$$R_{16}$$
 R_{17} R_{23} R_{24} R_{21} R_{22} R_{22} or

$$R_{29}$$
 (CH₂)_m R_{25} (CH₂)_y R_{23} R_{24} (CH₂)_y R_{15}

wherein

15

20

W is $CR_{27}R_{28}$ or $(CH_2)_nNH$ (CO);

wherein R₂₇ and R₂₈ are independently selected from the group

5 consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or S;

wherein R₉ and R₁₀ are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH_2 , C_5 - C_6 aryl, halo or C_5 - C_6 heteroaryl;

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkynyl, C_5 - C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$, C_1 - C_{10} alkyl $(C_5$ - C_6 aryl $)R_{20}$, C_1 - C_{10} alkyl $(C_5$ - C_6 beteroaryl $)R_{20}$, C_1 - C_{10} alkoxy $(C_5$ - C_6 aryl $)R_{20}$, C_1 - C_{10} alkoxy $(C_5$ - C_6 beteroaryl $)R_{20}$, and C_1 - C_{10} alkoxy $(C_5$ - C_6 cycloalkyl $)R_{20}$;

wherein R₂₀ is H or C₁-C₁₀ alkyl; and

p and q are integers independently ranging from 1 to 10;

 R_{16} is selected from the group consisting of H, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$ and $(CH_2)_pNH(CH_2)_q$; R_{29} is H, halo or C_1 - C_{10} alkyl;

R₁₇ is selected from the group consisting of H, halo, NH₂, C₁-C₆ alkyl, C₁-C₆ alkylamino, C₁-C₆ alkylamino and C₁-C₆ alkylthio;

 R_2 , and R_{21} are both NH_2 ;

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH and $(C_1$ - C_4 alkyl)NH₂;

 R_{24} is selected from the group consisting of H, F and PO_3H_2 , or R_{23} together with R_{24} and the carbon to which they are attached form a carbonyl group;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is represented by the structure

$$-X-P \xrightarrow{R_{12}} R_{30}$$

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

5

10

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

y and m are integers independently ranging from 0 to 4;

n is an integer ranging from 0 to 10;

or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that W and Y are not both methyl.

41. The method of claim 40 wherein the administered composition comprises a compound represented by the formula:

$$\begin{array}{c|c} R_{16} & R_{7} & R_{23} \\ \hline R_{11} & R_{8} & R_{11} & NH_{2} \end{array}$$

10 wherein

5

 R_{11} is selected from the group consisting of C_5 - C_{18} alkyl, C_5 - C_{18} alkenyl, C_5 - C_{18} alkoxy and $(CH_2)_pO(CH_2)_q$;

wherein p and q are integers independently ranging from 1 to 10;

R₁₆ is selected from the group consisting of H, C₁-C₁₀ alkyl,

15 C_2 - C_{10} alkenyl and C_2 - C_{10} alkynyl;

R₃ is selected from the group consisting of C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

 R_7 and R_8 are independently selected from the group consisting of O, S, CR_{26} , CHR_{26} , NH and N;

R₂₃ and R₂₆ are independently H or F; and

R₁₅ is represented by the structure

$$-x-P < R_{30} R_{31}$$

wherein X is selected from the group consisting of O, CH2, CHOH, CHF, CF2

5

- 42. The method of claim 41 further comprising the step of administering a second immuno-modulatory agent selected from the group consisting of cyclosporine, tacrolimus, rapamycin, azathioprine, and corticosteroids such as prednisolone and prednisone.
- 43. The method of claim 42 wherein the compound has the general formula:

$$R_{11}$$
 R_{8}
 R_{11}
 R_{15}
 R_{11}
 R_{15}

wherein R_{11} is selected from the group consisting of C_1 - C_{22} alkyl, C_2 - C_{22} alkenyl and C_2 - C_{22} alkynyl;

R₃ is selected from the group consisting of C_1 - C_6 alkyl, -(C_1 - C_4 alkyl)OH, and -(C_1 - C_4 alkyl)NH₂;

R₈ is selected from the group consisting of O, S and N.

44. A method of promoting wound healing in a warm blooded vertebrate, said method comprising the step of administering a composition comprising a compound of the general structure:

5 wherein R₁₁ is C₅-C₁₈ alkyl or C₅-C₁₈ alkenyl;

Q is selected from the group consisting of C₃-C₆ optionally substituted cycloalkyl, C₃-C₆ optionally substituted heterocyclic, C₃-C₆ optionally substituted aryl, C₃-C₆ optionally substituted heteroaryl and -NH(CO)-;

 R_3 is selected from the group consisting of H, C_1 - C_4 alkyl and $(C_1$ - C_4 alkyl)OH;

R₂₃ is H or C₁-C₄ alkyl, and

R₁₅ is represented by the structure

$$-X-P \xrightarrow{R_{12}} R_{30}$$

wherein R₁₂ is selected from the group consisting of O and S;

15 X is selected from the group consisting of O, S, CH₂, CHOH, CHF, CF₂, and

 $R_{30}\, \text{and}\,\, R_{31}$ are independently selected from the group consisting of $C_1\text{-}C_2$ alkoxy,

$$N_{H}$$
, N_{H} , N

or a pharmaceutically acceptable salt or tautomer thereof.

45. The method of claim 44 wherein

Q is selected from the group consisting of -NH(CO)-,

and R₁₅ is represented by the structure

$$-x-P < R_{30} R_{31}$$

5

10

wherein X is selected from the group consisting of O, CH₂, CHOH and CHF; R₃₀ and R₃₁ are independently selected from the group consisting of C₁-C₂ alkoxy,

46. The method of claim 45 wherein

Q is selected from the group consisting of

 R_{15} is OH;

or a pharmaceutically acceptable salt or tautomer thereof.

5

47. A method for treating a patient suffering from a disease associated with abnormal cell growth, said method comprising the steps of administering a compound of the general structure:

$$R_{11}$$
 Q
 CHR_{15}
 R_{3}
 NH_{2}

10

wherein R_{11} is located in the meta or para position and is selected from the group consisting of C_5 - C_{18} alkyl and C_5 - C_{18} alkenyl;

Q is selected from the group consisting of C_3 - C_6 optionally substituted cycloalkyl, C_3 - C_6 optionally substituted heterocyclic, C_3 - C_6 optionally substituted aryl C_3 - C_6 optionally substituted heteroaryl and -NH(CO)-;

15

 R_3 is selected from the group consisting of H, C_1 - C_4 alkyl and (C_1 - C_4 alkyl)OH;

R₂₃ is H or C₁-C₄ alkyl, and

 R_{15} is represented by the structure

$$-X-P \xrightarrow{R_{12}} R_{30}$$

20

wherein R₁₂ is selected from the group consisting of O and S;

X is selected from the group consisting of O, S, CH2, CHOH, CHF, CF2, and

 R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

or a pharmaceutically acceptable salt or tautomer thereof.

48. The method of claim 47 wherein

Q is selected from the group consisting of -NH(CO)-;

and R₁₅ is represented by the structure

$$-x-P < R_{30} R_{31}$$

5

wherein X is selected from the group consisting of O, CH_2 , CHOH and CHF; R_{30} and R_{31} are independently selected from the group consisting of C_1 - C_2 alkoxy,

wherein R_{12} is O or S.

49. The method of claim 48 wherein

5 Q is selected from the group consisting of

or a pharmaceutically acceptable salt or tautomer thereof.