cases

haiml76

July 2025

Denote $p^{\min} := p^{\min\{0, v_2 + v_{11}\}}$ Denote $\rho := (1 - p^{-1})$

Case 1

$$\begin{array}{l} v_3>v_1\geq v_4>v_2\geq 0\\ \Rightarrow v_{11}\geq -v_2-v_1\\ \Rightarrow \alpha:=\min\{v_2,v_2+v_{11}+v_1\}=\begin{cases} v_2,&v_{11}\geq -v_1\\ v_2-1,v_2-2,\ldots,&v_{11}<-v_1 \end{cases}\\ \text{For }v_{11}\geq -v_2, \text{ we have }p^{\min}\mu(a_{11})(1+\alpha\rho)=p^{v_2}(1+v_2\rho).\\ \text{For }-v_1\leq v_{11}\leq -v_2-1, \text{ we have }p^{\min}\mu(a_{11})(1+\alpha\rho)=\sum_{-v_1}^{-v_2-1}p^{v_2}\rho(1+v_2\rho).\\ \text{For }-v_1\leq v_{11}\leq -v_2-1, \text{ we have }p^{\min}\mu(a_{11})(1+\alpha\rho)=\sum_{-v_1}^{-v_2-1}p^{v_2}\rho(1+v_2\rho)=p^{v_2}\rho(v_1-v_2)+p^{v_2}\rho^2v_2(v_1-v_2).\\ \text{For }-v_2-v_1\leq v_{11}\leq -v_1-1, \text{ we have }p^{\min}\mu(a_{11})(1+\alpha\rho)=\sum_{-v_2-v_1}^{-v_1-1}p^{v_2}\rho(1+\alpha\rho)=\sum_{i=1}^{v_2}p^{v_2}\rho(1+(v_2-i)\rho)=p^{v_2}v_2\rho+p^{v_2}v_2\rho^2-p^{-v_2}\rho\binom{v_2+1}{2}=p^{v_2}v_2\rho+p^{v_2}\rho^2-p^{v_2}\rho^2\binom{v_2+1}{2}\\ \text{So we have }\sum_{v_{11}\geq -v_2-v_1}=p^{v_2}(1+v_2\rho+(v_1-v_2)\rho+v_2(v_1-v_2)\rho^2+v_2\rho+v_2\rho^2-\frac{(v_2+1)v_2}{2}\rho^2). \text{ We compute the differences between }v_1,v_2,v_3,v_4,\\ v_3>v_1\leq v_4>v_2\geq 0\\ \text{Thus, we substitute }v_1\to a+b+c,v_2\to a,v_3\to a+b+c+d,v_4\to a+b, \end{cases}$$

and compute series with the new variables as indices, where a, c > 0 and b, d > 1.

Case 2

We have two sub cases.

$$v_1 \ge v_3 \ge v_4 > v_2 \ge 0$$

$$\Rightarrow v_{11} \ge -v_2 - v_3$$

$$\Rightarrow \alpha := \min\{v_2, v_2 + v_{11} + v_1\} = \begin{cases} v_2, & v_{11} \ge -v_1 \\ v_2 - 1, v_2 - 2, \dots, & v_{11} < -v_1 \end{cases}$$
We have two sub cases.

Sub case I 2.1

 $-v_2 - v_3 \ge -v_1 \Rightarrow v_1 \ge v_2 + v_3$

Here there is no phase transition, because the phase transition occurs at $-v_1 - 1 < -v_2 - v_3 \le v_{11}$

For $v_{11} \ge -v_2$, we have $p^{\min}\mu(a_{11})(1+\alpha\rho) = p^{v_2}(1+v_2\rho)$.

For $-v_2-v_3 \le v_{11} \le -v_2-1$, we have $p^{\min}\mu(a_{11})(1+\alpha\rho) = \sum_{-v_2-v_3}^{-v_2-1} p^{v_2}\rho(1+v_2\rho) = p^{v_2}v_3\rho(1+v_2\rho) = p^{v_2}v_3\rho + p^{v_2}v_3v_2\rho^2$.

So we have $\sum_{v_{11} \geq -v_2 - v_2} = p^{v_2} (1 + v_2 \rho + v_3 \rho + v_2 v_3 \rho^2)$. We compute the differences between v_1, v_2, v_3, v_4 , $v_1 \geq v_2 + v_3 \geq v_3 \geq v_4 > v_2 \geq 0$ But $e = v_2 + v_3 - v_3 = v_2 = a$

$$v_1 \stackrel{d}{\ge} v_2 + v_3 \stackrel{e}{\ge} v_3 \stackrel{c}{\ge} v_4 \stackrel{b}{>} v_2 \stackrel{a}{\ge} 0$$

But
$$e = v_2 + v_3 - v_3 = v_2 = a$$

Thus, we substitute $v_1 \rightarrow 2a+b+c+d, \ v_2 \rightarrow a, \ v_3 \rightarrow a+b+c, \ v_4 \rightarrow$ a+b, and compute series with the new variables as indices, where $a,c,d\geq 0$ and $b \ge 1$.