Source Coding Basics

Information Theory

1. Consider the binary codes below:

Message	Code A	Code B	Code C	Code D	Code E	Code F
$\overline{s_1}$	00	0	0	0	0	0
s_2	01	10	01	100	110	10
s_3	10	110	011	11	10	11
s_4	11	1110	0111	110	111	110

For each code:

- a. Verify the Kraft inequality
- b. Determine if the code is instantaneous / uniquely decodable
- c. Draw the graph

2. Consider a memoryless source with the following distribution:

$$S: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

For this source we use two separate codes:

Message	Code A	Code B
$\overline{s_1}$	00	0
s_2	01	10
s_3	10	110
s_4	11	111

1

Requirements:

- a. Compute the average lengths of the two codes
- b. Compute the efficienty and redundancy of the two codes
- c. Encode the sequence $s_2s_4s_3s_3s_1$ with each code

- d. Decode the sequence $\tt 011010101011111000010101$ with each code
- 3. Fill in the missing bits (marked with ?) such that the resulting code is instantaneous.

Message	Codeword
$\overline{s_1}$??
s_2	1??
s_3	11?
s_4	0?
s_5	??

(just replace the '?'; do not add additional bits)