Examen de rattrapage du Module AP21 : "Algèbre Linéaire" à rendre avant le 22 Septembre 2020 à 23h59 envoyé dans l'adresse Mail m.addam@uae.ac.ma

N.B.: Je demande tous les étudiants de rédiger leurs compte-rendus sur des feuilles blanche de type A4, ceci pour la bonne visibilité de vos rédactions respectives

Exercice 1

Soient E un espace vectoriel de dimension finie sur \mathbb{K} où $\dim(E) = n$. Soit $f \in \mathcal{L}(E)$ un endomorphisme nilpotent avec $f \neq 0_{E,E}$. Pour $x \in E$, on note n(f,x) le plus petit entier k tel que $f^k(x) = 0_E$, soit $n(f,x) = \min\{p, f^p(x) = 0_E\}$. Soit $x \in E$ $(x \neq 0_E), k = n(f,x)$.

- 1. Montrer que le système $\{x, f(x), f^2(x), \dots, f^{k-1}(x)\}$ est libre.
- 2. Montrer que $\forall Q \in \mathbb{K}[X]$, on a $Q(f)(x) = 0_E$ si et seulement si X^k divise Q dans $\mathbb{K}[X]$.
- 3. On note $C(x) = \text{Vect}\{x, f(x), f^2(x), \dots, f^{k-1}(x)\}.$
 - (a) Montrer que C(x) est stable par f.
 - (b) Donner la matrice de la restriction de f à C(x). (Indication : considérer à valeurs dans C(x) dans la base $\mathbb{B} = \{x, f(x), f^2(x), \dots, f^{k-1}(x)\}$).
 - (c) On pose $m_1 = \sup\{n(f, y), y \in E\}$ dans \mathbb{N} . Justifier l'existence de m_1 et montrer qu'il existe $x_1 \in E$ tel que $m_1 = n(f, x_1)$.
- 4. Dans la suite pour $x \in E$, on note \overline{x} la classe de x modulo le sous-espace vectoriel $\mathcal{C}(x_1)$. On considère l'application

$$\overline{f}: E/\mathcal{C}(x_1) \to E/\mathcal{C}(x_1), \quad \overline{x} \mapsto \overline{f}(\overline{x}) = \overline{f(x)}$$

- (a) Montrer que \overline{f} est bien définie et qu'elle est linéaire.
- (b) Soit $x \in E$, montrer que $\forall k \in \mathbb{N}$ on a $\overline{f}^k(\overline{x}) = \overline{f^k(x)}$.
- (c) Montrer \overline{f} est nilpotent.
- (d) Soit $y \in E$, $k = n(\overline{f}, \overline{y})$. Montrer qu'il existe $Q \in \mathbb{K}[X]$ tel que $f^k(y) = Q(f)(x_1)$.
- (e) Montrer que X^k divise Q.
- (f) On pose $Q_1 = Q/X^k$ et $x = y Q_1(f)(x_1)$. Montrer que $\overline{x} = \overline{y}$ et que $n(\overline{f}, \overline{x}) = n(f, x)$.
- (g) Utiliser ce qui précède pour donner une autre preuve de l'existence d'une base de Jordan pour f.