"新能源电力系统规划与运行"课程教学大纲

英文名称: Planning and Operation of Power Systems with Renewable Energy

课程编号:

学时: 32 (理论学时: 32)

学分: 2

适用对象: 电气、能动各专业大三、大四本科生

先修课程:《电路》《电磁场》《电机学》,《电力工程概论》或《电力系统分析 I》

使用教材:

[1] 课程讲义.

参考书:

[2] 徐青山,《分布式发电与微电网技术》,北京:人民邮电出版社,2011.

- [3] 刘长浥, 冯双磊 译,《风电并网——联网与系统运行》, 北京: 机械工业出版社, 2011.
- [4] 张兴,曹仁贤,《太阳能光伏并网发电及其逆变控制》,北京:机械工业出版社,2010.
- [5] 王锡凡 主编,《电力系统规划基础》,西安: 西安交通大学出版社,1994.

一、 课程性质和目的(100字左右)

性质: 专业基础课

目的:

- 1. 培养使用电路学原理分析稳态运行的电力系统。
- 2. 培养使用数学方法表达随机波动性新能源模型的初步能力。
- 3. 培养手算和计算机求解电力系统潮流的能力。
- 4. 培养含新能源发电的电力系统规划的能力。
- 5. 培养分析实际系统运行中进行频率和电压调整问题的能力。
- 6. 培养科学、严谨、认真、细致的学习态度。

二、 课程内容简介(200字左右)

新能源电力系统规划与运行,主要涵盖了风能、太阳能等可再生能源的原理、 特点和发电的模型,同时包括通过电力电子变换电路进行并网,继而对含新能源 的电力系统的稳态运行进行分析。

课程涉及到新能源、随机性理论、可靠性、电力电子和电力系统等多个学科的交叉,重点需掌握风力发电、光伏发电等新能源的数学模型、功率预测、规划、可靠性与置信容量、穿透功率极限和系统对之的消纳能力,以及并网之后系统潮流计算、调频和无功补偿问题。

三、 教学基本要求

- 1. 通过该课程学习使学生将已学过的课程有机的结合起来,了解可再生能源的特点、原理、并网及运行方法。
- 2. 使学生基本掌握新能源的规划、运行等应用研究的技术手段。

四、 教学内容及安排

- 1. 新能源电力系统概论(4学时)
 - 1.1 新能源结构

介绍各种能源结构和可再生能源的发电原理。

1.2 并网电力电子变换器特性及拓扑

掌握并网变换器的级联方式及电路模型。

1.3 含新能源发电的微电网和智能电网

介绍微电网、智能电网的基本概念。

1.4 新能源电力系统的特点

掌握新能源系统的联网运行和孤岛运行对系统的影响。

- 2. 风力发电特性分析(4学时)
 - 2.1 风电机组能量获取和功率控制

掌握风力发电机组风轮扫掠面积上获取的能量。

2.2 恒速风电机组的结构与原理

了解感应发电机的结构和原理。

2.3 变速风电机组的结构与原理

掌握双馈风机和永磁直驱风机的结构和原理。

2.4 大规模风电及海上风电场关键问题

了解大规模风电和海上风电场的接线形式及聚合技术。

- 3. 光伏发电特性分析(4学时)
 - 3.1 光伏电池的物理基础

掌握太阳能光伏效应原理。

3.2 光伏电池的模型与等值电路

掌握光伏电池的数学模型和工程分析等值电路。

3.3 太阳能光伏电池的输出特性

掌握不同参数下光伏电池的 I-V 和 P-V 特性曲线。

3.4 光伏发电的最大功率点跟踪技术

掌握常用的三种最大功率点跟踪方法。

- 4. 新能源电力系统稳态运行分析与计算 (10 学时)
 - 4.1 电力系统元件参数和等值电路

重点掌握风电和光伏发电的重要参数、电力线路及变压器参数的数学模型,以及等值电路。

4.2 电力系统稳态潮流分析

熟练掌握电力系统的网络方程式,节点功率方程式,节 点分类,和潮流计算的方法。

4.3 风力、光伏发电并网的稳态潮流模型

熟练掌握风力和光伏发电类型接入电力系统的潮流计算模型。

4.4 新能源并网后电力系统的负荷频率控制

熟悉新能源接入后,对传统调频机组地址及容量的选取的影响,重点掌握一次、二次调频方法,熟悉 PID 控制和状态

反馈控制方法。

4.5 新能源并网后电力系统电压及无功补偿控制

了解新能源高功率因数发电特性对系统关键节点电压 水平的影响,及利用 FACTS 设备进行无功补偿的控制。

5. 新能源电力系统规划(10学时)

5.1 新能源发电的功率预测

熟悉电力负荷曲线,掌握不同风速、温度、日照等气象 参数影响下,新能源发电的出力特性预测技术。

5.2 新能源发电的可靠性计算及容量可信度

熟悉电力系统可靠性和电力电量平衡的基本概念,新能源 发电系统的可靠性计算方法和容量可信度指标。

5.3 新能源穿透功率极限分析

了解新能源的穿透功率极限概念及提高措施。

5.4 新能源并网后电力系统调峰及消纳能力计算

了解新能源出力曲线对系统调度部门的调峰、备用容量 的选取、以及电力电量平衡的影响,以及电力系统对风电、光伏 等新能源的消纳能力分析。

5.5 新能源发电的效益分析

了解新能源发电自身效益以及对电力系统带来的节能减排效益。

5.6 含新能源发电的电力系统规划

了解含大规模新能源发电厂的合理规模及送出问题, 了解电力市场环境下新能源的优化规划计算方法。

五、 实践环节 (12 学时)

- 1. 光伏发电和风力发电出力特性的模拟实验, 3 学时
- 2. 储能单元充放电实验, 3 学时
- 3. 新能源接入对系统影响抑制措施的实验, 6 学时

六、课外学时分配

-	章	内容	参考学时
		课前预习	8

七、 考核方式

期末考试成绩占 70%, 作业、报告占 20%, 平时表现占 10%。

大纲制定者: 刘 俊 大纲审核者: 王秀丽