Q1: Plot the learning curve of the metric with every method. (The Plotting function is provided in the sample code.)

Evaluate

This is our function of evaluation.

It can generally be applied in different regularization-based lifelong learning algorithms in this homework.

```
[10] 1 def evaluate(model, test_dataloader, device):
     2 model.eval()
     3 correct cnt = 0
          total = 0
     4
          for imgs, labels in test_dataloader:
               imgs, labels = imgs.to(device), labels.to(device)
      6
     7
              outputs = model(imgs)
               _, pred_label = torch.max(outputs.data, 1)
     10
               correct_cnt += (pred_label == labels.data).sum().item()
     11
               total += torch.ones_like(labels.data).sum().item()
          return correct_cnt / total
     12
```

The screenshot is the evaluation step with special metrics. From line 9, it takes the max of each data; As a result, we know that "L-inf norm" is used in this part.

Ans: special metric = L-infinity norm

Q3: Paste the code that you implement Omega Matrix for MAS. Ans:

```
output = torch.pow(output, 2)
loss = torch.sum(output, dim=1)
loss = loss.mean()
loss.backward()
```