PREDICTING THE ENERGY OUTPUT OF WIND TURBINE BASED ON WEATHER CONDITION

IBM NALAIYA THIRAN REPORT

Submitted by

S.THAMIZHARASI - 814619106004

A.KAVIYA -814619106001

K.KAVIYA -814619106002

A.VANAJA-814619106302

Department Of

ELECTRONICS AND COMMUNICATION ENGINEERING

Date	18 November 2022
Team ID	PNT2022TMID045948
Project Name	Predicting the output energy of
	wind turbine based on weather
	condition
Maximum Marks	8 Marks

INDUSTRY MENTOR: NIDHI FACULTY MENTOR: RAJA J

TRICHY ENGINEERING COLLEGE

TRICHY - 621 132

LIST OF CONTENTS:

S.NO	TITLE	PAGE NO
1.	INTRODUCTION	3
1.1	PROJECT OVERVIEW	3
1.2	PURPOSE	4
2.	LITERATURE SURVUY	4
2.1	EXISTING PROBLEM	4
2.2	REFERENCE	4
2.3	PROBLEM STATEMENT DEFINITION	6
3.	IDEATION & PROPOSED SOLUTION	7
3.1	EMPATHY MAP CANVAS	7
3.2	IDEATION & BRAINSTORMING	7
3.3	PROPOSED SOLUTION	8
3.4	PROBLEM SOLUTION FIT	8
4.	REQUIREMENT ANALYSIS	10
4.1	FUNCTIONAL REQUIREMENTS	10
4.2	NON-FUNCTIONAL REQUIREMENTS	11
5.	PROJECT DESIGN	12
5.1	DATA FLOW DIAGRAMS	12
5.2	SOLUTION & TECHNICAL ARCHITECTURE	13
6.	PROJECT PLANNING & SCHEDULING	15
6.1	SPRINT PLANNING & ESTIMATION	15
6.2	SPRINT DELIVERY SCHEDULE	15
7.	CODING & SOLUTIONING	15
7.1	FEATURE 1	15
8.	TESTING	20
8.1	TEST CASES	20
9.	RESULTS	21
9.1	PERFORMANCE METRICS	21
10.	ADVANTAGES & DISADVANTAGES	24
11.	CONCLUSION	24
12.	FUTURE SCOPE	25
13.	APPENDIX	25
13.1	SOURCE CODE	25
13.2	GITHUP & PROJECT DEMO LINK	

1.INTRODUCTION:

Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness.

With the global installed wind power capacity rapidly increasing, the wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling.

A precise forecast needs to overcome problems of variable energy production caused by fluctuating weather conditions.

Power generated by wind is highly dependent on the wind speed. Though it is highly non-linear, wind speed follows a certain pattern over a certain period of time. We exploit this time series pattern to gain useful information and use it for power prediction

1.1 PROJECT OVERVIEW :

Category:

Machine Learning

Skills Required:

Python, Python Web Frame Works, Python For Data Visualization, Data Preprocessing Techniques, Machine Learning, IBM Cloud, IBM Watson Studio, Python-Flask.

Project Description:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. For a wind farm that converts wind energy into electricity power, a real-time prediction system of the output power is significant. In this guided project, a prediction system is developed with a method of combining statistical models and physical models. In this system, the inlet condition of the wind farm is forecasted by the auto regressive model.

Technical Architecture:

1.2 PURPOSE:

- Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power.
- For a wind farm that converts wind energy into electricity power, a real-time prediction system of the output power is significant.
- Wind energy plays an increasing role in the supply of energy worldwide.

2.LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

Turbines produce noise and alter visual aesthetics:

Wind farms have different impacts on the environment compared to conventional power plants, but similar concerns exist over both the noise produced by the turbine blades and the visual impacts on the landscape .

• Sound and visual impact are the two main public health and community concerns associated with operating wind turbines. Most of the sound generated by wind turbines is aerodynamic, caused by the movement of turbine blades through the air.

2.2 REFERENCE:

S.NO	AUTHOR/YEAR	TITTLE	TECHNIQUE	MERITS	DEMERITS
			USED		
1.	A .Clifton /2012	Using	Machine	Strong	Affected by
		machine	learning.	function wind	turbulence
		learning to		speed.	and shear.
		predict wind			
		turbine power			

		output.			
2.	Aman Bahugun /2013	Predicting the energy output of wind turbine based on weather conditions watson auto AI	IBM WATSON AUTO AI machine learning.	Predicted more accurately.	However, in another study it was found that the prediction errors do not satisfy the Kolmogorove Smirnov test for normal distribution.
3.	Haroon Rashid/2020	Forecasting of wind turbine output power using machine Learning.	Machine learning	Accurate predicting of output power.	Absolute errors for the proposed model.
4.	Katya Vladislavleva/ 2019	Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation	wind energy, prediction, genetic programming, DataModeler	A good prediction of the energy output.	However, levels of production of wind energy are hard to predict as they rely on potentially unstable weather conditions present at the wind farm.
5.	J K Lundquist and P.Fleming1/2012	Using machine learning to predict wind turbine power output	Machine learning, classification and regression trees, wind energy, wind turbine	Reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site.	Changes of wind direction with height, non-uniform shear, and the state of the turbine were not considered here but may impact turbine deployment sites.
6.	Aoife M. Foley/2020	Review Current methods and advances in . forecasting of wind power	Meteorology Numerical weather prediction Probabilistic forecasting	Thus wind power forecasting plays a key role in dealing with	Overall accurate wind power prediction reduces the financial and

generation	Wind	the	technical risk
	integration	challenges of	of uncertainty
	wind power	balancing	of wind
	forecasting	supply	power
		and demand	production
		in any	for all
		electricity	electricity
		system, given	market
		the	participants.
		uncertainty	
		associated	
		with the wind	
		farm power	
		output.	

2.3 PROBLEM STATEMENT DEFINITION:

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

BRAINSTROM & IDEA PRIORITIZATION:

Use this template in your own brainstorming sessions so your team can unleash their .Once all sticky notes have been grouped, give each cluster a sentence-like label.

If a cluster is bigger than six stickynotes, tryandseeifyouandbreakitupintosmallersubgroups.

Prioritize

Yourteamshouldallbeonthesamepageaboutwhat's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

Afteryoucollaborate

You can export the mural as an image or pdf to share with members of your company who might find it helpful..

Teamgathering

Definewhoshouldparticipateinthesessionandsendaninvite. Sharerelevantin for mationorpre-workahead.

Setthegoal

Think about the problemyou'llbe focusing on solving in the brain storming session.

$. \ Learnhow to use the facilitation tools$

UsetheFacilitationSuperpowerstorunahappy.

3.3 PROPOSED SOLUTION:

ProposedSolutionTemplate:

Project team shall fill the following information in proposed solution template.

S .No.	Parameter	Description
1.	ProblemStatement(Problemtobe solved)	Our time –tested kombi Box produce gives a higher priority to those forecasts having the lowest prediction error in respective weather situation.
2.	Idea/Solutiondescription	Our aim is to map weather data to energy production
3.	Novelty/ Uniqueness	A good overview on the different methods that were recently applied in forecasting of wind power generation can be found in .
4.	SocialImpact/ CustomerSatisfaction	If there's a lot of wind, you get more energy output than if there's less wind, which means you will likely want to do maintenance when the winds are low to minimize downtime.
5.	BusinessModel(RevenueModel)	Real time projections for solar power, including behind-the-meter generation Grid-oriented forecasts
6.	Scalabilityofthe Solution	The model prediction is then showcased on user interface to predict the energy output of wind turbine

3.4 PROBLEM SOLUTION FIT:

1. CUSTOMERSEGMENT(S):

Windflowsoverthebladescreatinglift (similartotheeffect onairplanewings), which causes the blades to turn.

The blades are connected to a drive shaft that turns an electric generator, which produces (generates).

2JOBS-TO-BE-DONE/PROBLEMS:

Turbinesproducenoiseandaltervisualaesthetics

Wind farms have different impactson the environment compared toconventional powerplants, but similar concerns exist over both the noise produced by the turbine blades and the visual impacts on the landscape.

3. TRIGGERS:

The wind speed is always fluctuating andthus the energy content of the wind is also always changing. Exactly how large the variation is depends both on the weather and onlocal surface conditions and obstacles.

4.EMOTIONS:

BEFORE / AFTER

Before: who live in close proximity to windturbines say they experience sleepdisturbances, headaches and concentration problems.

After:Between working long hours, climbingturbinesmultipletimes aday, and dealing with extreme heat in the summer and cold in the winter.

5.AVAILABLESOLUTIONS:

These residential windmills cangenerate electricity by churning thewind through its blades, which in turnrotates the turbine and generatespower, which can meet the needs of asmall family. The energy that is yieldedfrom these wind turbinesisclean, renewable, and are also cost-effective.

6.CUSTOMERCONSTRAINTS:

- Intermittent
- o Low operatingcosts Noise and visual pollution Efficient use of landspace
- o Some adverse environmentalimpact
- Windenergyisajobcreator

7.BEHAVIOUR:

The wind speed is always fluctuating and thus the energy content of the wind is also always changing.

Exactly how largethevariation is depends bothon theweather and on local surface conditions and obstacles.

8.CHANNELSofBEHAVIOUR:

Online:

Anefficientautomatedapproach towindfarmoperationmonitoringispresented.

Offline:

Product is available for offline usage.

9.PROBLEMROOTCAUSE:

The degradation, weakening and debonding of the adhesive layers (in the trailing orleading edges or on the spar/shell joint) isoneofthemain processes leading towind turbine bladefailure.

10.YOURSOLUTION:

Larger rotor diameters allow wind turbines to sweepmore area, capture more wind, and produce moreelectricity. A turbine with longer blades will be able tocapture more of the available wind than shorterblades—eveninareaswithrelativelyless wind.

4. REQUIREMENT ANALYSIS:

4.1. FUNCTIONAL REQUIREMENTS:

Following are the functional requirements of the proposed solution.

FRNo.	FunctionalRequirement(Epic)	SubRequirement(Story/Sub-Task)
FR-1	UserRegistrationandl ogginginbyentering theirusernameand password.	RegistrationthroughForm.
FR-2	User Confirmation byvalidatingtheusernam ewithrespectto thepassword	Confirmation via pop-up Message.
FR-3	Displayingthefurtheri nformationabout Theapplication.	Byselectingtheaboutbuttonthedetailsoftheapplicati onwillbedisplayed.
FR-4	Validatingthecityname.	System checks whether the city entered by theuser is present or not. If present it will collectthefurtherdetailselseitwilldisplaythepopupmessageas error inthecity.
FR-5	Checkingthedatatypeoftheva lue.	Systemchecksforthedatatypeofthevalueenteredb y theuser.
FR-6	Validatingallrequiredfields.	Before predicting the output the systemcheckswhetherallthevaluesareentere dbytheuserand checkswhetherallvaluesarecorrect.
FR-7	Displaying weatherConditionsforagiv encity.	ItdisplaystheweatherofthecitywhichhaveBeensel ected.
FR-8	Displaying predictedEnergyoutp utpower.	The predicted output will be displayed asamountofwindenergypowergenerated.

4.2. NON-FUNCTIONAL REQUIREMENTS:

Following are the non-functional requirements of the proposed solution.

FRNo.	Non-FunctionalRequirement	Description
NFR-1	Usability	Thesystemsatisfiestheusergoalsandtheapplicationi seasytouse.
NFR-2	Security	The data provided to system will be protected from Attacks and unauthorized access
NFR-3	Reliability	The system will provide the consistency in output with outproducing an error.
NFR-4	Performance	Theperformancewillneverdegradeeventhewor kloadis increased.
NFR-5	Availability	Theapplicationisavailablefor24*7
NFR-6	Scalability	Thesystemcanbeusedaswebapplicationaswella s mobile application with a sufficientinternet availability.

5. PROJECT DESIGN:

5.1 DATA FLOW DIAGRAMS:

5.2 SOLUTION & TECHNICAL ARCHITECTURE:

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Wind power generation differs from conventional thermal generation due to the stochastic nature of wind.
- Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output.
- The inlet condition of the wind farm is forecasted by the auto regressive model.
- We report on the correlation of the different variables for the energy output.

Example - Solution Architecture Diagram:

Reference: https://github.com/SmartPracticeschool/IISPS-INT-3437-Predicting-the-Energy-Output-of-Wind-Turbine-Based-on-Weather-Conditions-Watson-Auto-

TechnicalArchitecture:

The Deliverable shall include the architectural diagram as below and the information aspert hetable 1 & table 2

Example: Predicting the energy output of wind farmbased on weather conditions.

Reference: https://www.mdpi.com/1996-1073/7/6/3900

Guidelines:

The proposed communication network architecture for the Smart-WPFconsists of three networks: the turbine area network (TAN), the farm area network(FAN), and the control area network (CAN).

It consists of hierarchical architectureswhereLevel1isasensornetworkinasinglewindturbine,Level2isthewindturbine-to-wind turbine interaction in the WPF, Level 3 is the local control center to windturbine interaction, and Level 4 is the farm-to-farm interaction to optimize gridoperation.

Inordertoimplementhierarchicalnetworkarchitectures, ahybridcommunication solution is considered. EPON-based architecture represents a wiredsolution, while ZigBee-Proisconsidered for the wireless solution. In this work, Levels 1 and 2 are explained in more detail, while Levels 3 and 4 are out the scope of this work

6. PROJECT PLANNING & SCHEDULING:

6.1 SPRINT PLANNING & ESTIMATION:

Sprint	SprintStartDate	SprintEndDate(P lanned)	Story PointsCompleted(ason PlannedEndDate)
Sprint-1	01 Nov2022	14 Nov2022	20
Sprint-2	07 Nov2022	14Nov2022	20
Sprint-3	07Nov2022	15Nov2022	20
Sprint-4	09 Nov2022	15Nov2022	20

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	SprintStartDate	SprintEndDate(P lanned)	Story PointsCompleted (ason PlannedEndDate)	SprintReleaseDate(A ctual)
Sprint-1	01 Nov2022	14 Nov2022	20	14 Nov 2022
Sprint-2	07 Nov2022	14Nov2022	20	14 Nov2022
Sprint-3	07Nov2022	15Nov2022	20	15 Nov2022
Sprint-4	09 Nov2022	15Nov2022	20	15 Nov2022

7. CODING & SOLUTIONING:

7.1 FEATURE 1:

Saving Wind Dataset.csv to Wind Dataset.csv

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
```

Data Preprocessing

0	01.01 2018 00:00	380.047791	5.311336	416.328908259.994904
1	01.01 2018	453.769196	5.672167	519.917511 268.641113

	00:10			
2	01 01 2018 00:20	306.376587	5.216037	390.900016272.564789
3	01.01 2018 00:30	419.645904	5.659674	516.127569271.258087
4	01.01 2018 265.674286	380.650696	5.577941	491.702972
ower(KW		0		

ActivePower(KW) 0
WindSpeed(m/s) 0
Theoretical_Power_Curve (KWh) 0
Wind Direction (°) 0
dtype: int64

sns.pairplot(df)

Out[6]:

In [5]: df.isnull().sum()

Out[5]: Time 0


```
In [8]: df["Time"] = pd.to_datetime(df["Time"], format = "%d %m %Y %H %M", errors =
```

Splitting the data to Train and Test

```
y = df["ActivePower(KW)"]
X = df[["Theoretical_Power_Curve (KWh)", "WindSpeed(m/s)"]]
In [9]: from sklearn.model_selection import train_test_split
    train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=0)
```

Model Building

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error,r2_score
forest_model = RandomForestRegressor(n_estimators = 750, max_depth = 4, max_
forest_model.fit(train_X, train_y)
```

```
Out[10]: RandomForestRegressor(max_depth=4, max_leaf_nodes=500, n_estimators=750, random state=1)
```

```
power_preds = forest_model.predict(val_X)
In [11]:
    print(mean_absolute_error(val_y, power_preds))
    print(r2_score(val_y, power_preds))
```

0.911349642890175

In [12]: joblib.dump(forest_model, "power_prediction.sav")

Out[12]: ['power_prediction.sav']

In [13]: d

Out[13]:

	Time	ActivePower(KW)	WindSpeed(m/s)	Theoretical_Power_Curve (KWh)	Wind Direction (°)
0	NaT	380.047791	5.311336	416.328908	259.994904
1	NaT	453.769196	5.672167	519.917511	268.641113
2	NaT	306.376587	5.216037	390.900016	272.564789
3	NaT	419.645904	5.659674	516.127569	271.258087
4	NaT	380.650696	5.577941	491.702972	265.674286
•••	•••				
50525	NaT	2963.980957	11.404030	3397.190793	80.502724
50526	NaT	1684.353027	7.332648	1173.055771	84.062599
50527	NaT	2201.106934	8.435358	1788.284755	84.742500
50528	NaT	2515.694092	9.421366	2418.382503	84.297913
50529	NaT	2820.466064	9.979332	2779.184096	82.274620

50530 rows × 5 columns

:

8.TESTING:

8.1 TEST CASES:

	TestingType	FunctionResult
TestingNo:1	Functionalitytesting	Yes
3 3 3	Usabilitytesting	Yes
	Interfacetesting	Yes
	Performancetesting	Yes(medium)
	Securitytesting	Yes

	TestingType	FunctionResult
TestingNo:2	Functionalitytesting	Yes
	Usabilitytesting	Yes
	Interfacetesting	Yes
	Performancetesting	Yes(medium)
	Securitytesting	Yes

	Testing Type	Function Result
TestingNo:3	Functionality testing	Yes
	Usability testing	Yes
	Interface testing	Yes
	Performance testing	Yes
	Security testing	Yes

	Testing Type	Function Result
TestingNo:4	Functionality testing	Yes
3 3 3	Usability testing	Yes
	Interface testing	Yes
	Performance testing	Yes
	Security testing	Yes

9.RESULT:

9.1 PERFORMANCE METRIES:

DATA PREPROCESSING:

		01 01			
	0	2018	380.047791	5.311336	416.328908
	259.994904 00:00				
		01 01			
Out[4]:	1	2018	453.769196	5.672167	519.917511
	268.641113 00:10				
		01 01			
	2	2018	306.376587	5.216037	390.900016
	272.564789 00:20				
	3 271.2580	01 01 2018 087 00:30	419.645904	5.659674	516.127569
	4	01 01 2018 265.674286	380.650696	5.577941	491.702972

MODEL BUILDING:

FINAL RESULT:

```
import numpy as np
from flask import Flask, request, jsonify, render_template
import joblib
import requests

note: you must manually set API_KEY below using information retrieved from your IBM Cloud account.
API_KEY = "25w_7QoNuv-PziNyHPyre_"fickNYzVDd_vhjdTMSZdli"
token_response = requests.post('https://dom.co/midentity/token', data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'))
header = ('Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken)

* Serving flask app 'app_IBM' (lazy loading)
functional manually set API_KEY below using information retrieved from your IBM Cloud account.

* Serving requests.

* Serving flask app 'app_IBM' (lazy loading)

* Environment: production
MANINING: This is a development server. Do not use it in a production deployment.
Use a production NSGI server instead.

* Debug mode: off
Running on http://127.8.8.1:500g/ (Press CTRL+C to quit)

Activate Windows
Go to Settings to activate Windows.
```

10. ADVANTAGES& DISADVANTAGES:

ADVANTAGES:

- Weather Underground Services provide very accurate Historical Weather Data which increased the accuracy of model.
- Website is more convenient to use due to zero storage.
- With Choosing city, Website can accurately predict power output using weather condition.

DISADVANTAGES:

- Weather API is paid and the free version provide limited API requests per day.
- Android Website can be deployed on IBM Cloud.
- No free server available on IBM Cloud for deploying Backend.

11. CONCLUSION:

lusions In this study we showed that wind energy output can be predicted from publicly available weather data with accuracy at best 80% R2 on the training range and at best 85, 5% on the unseen test data.

We identified the smallest space of input variables (windGust2 and dewPoint), where reported accuracy can be achieved, and provided clear trade-offs of prediction accuracy for decreasing the input space to the windGust2 variable.

We demonstrated that an off-the-shelf data modeling and variable selection tool can be used with mostly default settings to run the symbolic regression experiments as well as variable importance, variable contribution analysis, ensemble selection and validation.

12. FUTURE SCOPE:

Most wind power forecasting models study 'regular' wind conditions.

The EU funded project called 'Safewind' aims to improve wind power prediction overchallenging and extreme weather periods and at different temporal and spatial scales.

Development activities are on-going to reduce error in the wind power prediction, to improve regionalized wind power forecasting for on - shore windfarms and to derive methods for wind power prediction for offshore wind farms.

It is possible that use of ensemble and combined weather prediction methods methods together may enhance forecasting.

If the error in wind power forecasting and prediction is reduced then electricity markets can trade with more certainty.

Contract errors as a function of time in electricity markets can be as high as 39% for a forecasting lead time of 4 h Gubina et al.

present a new tool called the WILMAR and ANEMOS scheduling Methodology (WALT) to reduce the number of thermal generators on stand-by or in reserve using the probability of generation outages and load shedding are system reliability criteria instead of generation adequacy based solely on generation outage.

The wind and load forecast errors are modelled using a Gaussian stochastic variable approach.

However, in another study it was found that the prediction errorsdo not satisfy the KolmogoroveSmirnov test for normal distribution.

In Ramìrez and Carta, it was shown that, the use of autocorrelated (and thus not independent) successive hourly mean wind speeds, though invalidating all of the usual statistical tests, has no appreciable effect on the shape of the pdf estimated from the data.

13. APPENDIX:

13.1 SOURCE CODE:

app.py

```
import numpy as
npimport streamlit
as stimport pandas
as
pdimportdatetime
importplotly.graph_objectsasgoi
mportbase64
import
timeimporttensor
flow
st.set_page_config(page_ti
tle="DEEPWIND",page_icon
="=="
old_models=tensorflow.keras.models.load_model('model.h5')
#setbackground,usebase64toreadlocalfiledef
get_base64_of_bin_file(bin_file):
  withopen(bin_file,'rb')asf:d
    ata=f.read()
  returnbase64.b64encode(data).decode()
defset_png_as_page_bg(png_file):
bin_str=get_base64_of_bin_file(png_file)
page_bg_img=""
<style>
  body {
  background-
  image:url("data:image/png;base64,%s");background
  -size:cover;
```

```
//style>
"'%bin_str

st.markdown(page_bg_img,unsafe_allow_html=True)re
    turn

set_png_as_page_bg('gr.gif')

defhome():
    return"welcome"

def
    predict(temperature,pressure,wind_speed,wind_direction):values=np.array([[temperature,pressure,wind_speed,wind_direction]])
```

```
prediction=old models.predict(values.reshape(-
1,1,4),batch_size=1)print(prediction)
         returnprediction
       defmain():
                                                                         Navigation Bar  </h1>",
       st.sidebar.markdown("<h1style='text-
       align:center;color:black;'>unsafe allow html=True)
         nav =st.sidebar.radio("",["Home ","User defined Prediction-","Forecasting [2]])
         ifnav =="Home
       st.markdown("<h1 style ='color:black; text_align:center;font-family:times new roman;font-
       size:20pt; font-weight: bold;'>DEEPWINDS </h1>", unsafe_allow_html=True)
       st.markdown("<h1style='color:brown;text_align:center;font-weight:bold;font-
       size:19pt;'>MadebyQuadTechieswith</h1>",unsafe allow html=True)
       st.markdown("<h1 style ='color:black; text align:center;font-family:times new roman;font-
       weight:bold;font-size:16pt;'>◆WINDPOWERPREDICTIONDLWEB-
       APP \( h1>", unsafe allow html=True )
         if nay =="User definedPrediction-":
       set_png_as_page_bg('gra(1).jpg')
       st.markdown("<h1 style='text-align: center; color: green;'>UserInput Parameters <a></h1>",</a>
       unsafe_allow_html=True)
       withst.beta expander("Preferences"):
       st.markdown("<h1style='text-align:left;font-weight:bold;color:black;background-
       color:white;font-
                                                     1/2(°C) </h1>",unsafe_allow_html=True)
             size:11pt;'>Temperaturecol1,col2=st
             .beta_columns(2)
             withcol1:
       min temp=st.number input('\Minimum Temperature(°C)',min value=-
       89,max value=55,value=-15,step=1)
             withcol2:
```

```
wind speed =st.slider('Wind Speed \(\bigcirc\)[m/s]',min value=min speed, step=1,
       max value=max speed, value=max speed)
       wind_direction =st.slider('Wind Direction ➡= = [deg]', 0, 1, 360)
          result=""
          ifst.button("Predict"):
             result =
       predict(temperature, pressure, wind speed, wind direction)st.balloons(
       st.success('PredictedPoweris{}kW'.format(result))
           if nav =="Forecasting ==":
       set png as page bg('04.gif')
       st.markdown("<h1 style='text-align: center; color:black;'>>> FORECASTING> </h1>",
       unsafe allow html=True)
          #Setup fileupload
       st.markdown("<h1 style='text-align:center; color:white;background-color:black;font-
       size:14pt'>> Upload yourCSV orExcel file. (200MB max) >></h1>", unsafe allow html=True)
       uploaded file = st.file uploader(label="",type=['csv',
            'xlsx'])global df
            ifuploaded fileis not None:
              print(uploaded file)
       st.markdown("<h1 style='text-align:center; color:black;background-
       color:lightgreen;font-size:14pt'>>> Fileupload
       successful >></h1>",unsafe allow html=True)
              try:
                df=pd.read csv(uploaded file)s
       t.write(df)
              exceptExceptionase:
```

```
st.markdown("<h1style='text-align:center;color:black;background-color:powderblue;font-
size:14pt'>#INPUTDATAINTERMSOFNO. OFHOURS //</hl>",
unsafe allow html=True)
                   trace = go.Scatter(x = df1.index,y = df['Power generated by system | (kW)'],mode =
'lines',name ='Data')
                  layout = go.Layout(title = "",xaxis = {'title' : "No. of hours"},yaxis = {'title' : 
"Powergeneratedby system (kW)"})
                   fig=go.Figure(data=[trace],layout=layout)#f
                    ig.show()
st.write(fig)
                   from sklearn.preprocessing import
                   MinMaxScalerscaler=MinMaxScaler(feature range=
                   (0,1))df1=scaler.fit transform(np.array(df1).reshape
                   (-1,1)
          ##splitting dataset into train and test
splittraining size=int(len(df1)*0.65)test siz
e=len(df1)-training size
                   train data, test data=df1[0:training size,:], df1[training size:len(df1),:1]
                  import numpy
               # convert an array of values into a dataset
                                                 matrix#convertan
      arrayofvaluesintoadatasetmatrixdefcreate data
                                      set(dataset,time_step=1):
                         dataX,dataY=[],[]
                                  foriinrange(len(dataset)-time step-1):
                                                      a = dataset[i:(i+time step), 0]###i=0, 0,1,2,3----
                                         99100dataX.append(a)
```

```
dataY.append(dataset[i + time step,
           0])returnnumpy.array(dataX),numpy.array(data
           Y)
  #reshapeintoX=t,t+1,t+2,t+3andY=t+4tim
e_step=30
X_train, y_train = create_dataset(train_data,
time_step)X_test,ytest=create_dataset(test_data,
time_step)
  #reshapeinputtobe[samples,timesteps,features]whichisrequiredforLSTMX trai
n=X_train.reshape(X_train.shape[0],X_train.shape[1], 1)
X_test=X_test.reshape(X_test.shape[0],X_test.shape[1],1)#
  Create the BILSTM model
      from tensor flow. keras. models import Sequential
      fromtensorflow.keras.layersimportDense
      from tensor flow. keras. layers import LSTM
      from tensor flow. keras. layers import Bidirectional\\
      model=Sequential()
model.add(Bidirectional(LSTM(250,input_shape=(1,30))))m
odel.add(Dense(1))
model.compile(loss='mae',optimizer='adam')
```

```
model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=10,batch_size=64,verbose=1)
      importtensorflowas tf
train_predict=model.predict(X_train)test_predict=model.predict(X_te
st)
  #Transformback to original
formtrain predict=scaler.inverse transform(train predict)test predict=
scaler.inverse_transform(test_predict)
  ###CalculateRMSEperformancemetricsim
      portmath
      fromsklearn.metricsimportmean_squared_error
math.sqrt(mean_squared_error(y_train,train_predict))
  ###TestDataRMSEmath.sqrt(mean squared error(ytest,test predict))
  ### Plotting
  # shift train predictions for
plottinglook_back=30
trainPredictPlot=numpy.empty_like(df1)t
rainPredictPlot[:,:] =np.nan
trainPredictPlot[look back:len(train predict)+look back,:]=train predict#
  shift test predictions forplotting
testPredictPlot =
numpy.empty_like(df1)testPredictPlot[:,
:] =numpy.nan
testPredictPlot[len(train_predict)+(look_back*2)+1:len(df1)-1, :] =
  test predict#plot baselineand predictions
st.markdown("<h1style='text-align:center;color:black;background-color:powderblue;font-
size:14pt'> TRAINANDTEST DATA
                                            </h1>",unsafe allow html=True)
      #plt.plot(scaler.inverse transform(df1))plt.plot(scaler.inverse transfor
m(df1), color="blue", linewidth=1, linestyle="-")plt.xlabel('No.ofhours')
```

```
# Set the y axis label of the current
axis.plt.ylabel('Powergeneratedbysystem|(k
W)')
plt.plot(trainPredictPlot,label='Train Data',color="black",linewidth=2, linestyle="--
")plt.plot(testPredictPlot,label='Test Data',color="orange",linewidth=2, linestyle="--
")plt.legend(loc="upperleft")
   #plt.show()
st.pyplot(plt)
x_input=test_data[len(test_data)-30:].reshape(1,-
1)temp_input=list(x_input)temp_input=temp_inp
ut[0].tolist()
  #demonstratepredictionfornext24hoursfr
      omnumpy import array
lst_output=[
]n_steps=30i
=0
```

```
while(i<24):if(len(temp i
        nput)>30):#print(temp
        _input)
x_input=np.array(temp_input[1:]
)x_input=x_input.reshape(1,-1)
x_input = x_input.reshape((1, n_steps,
1))yhat = model.predict(x_input,
verbose=0)temp_input.extend(yhat[0].to
list())temp_input=temp_input[1:]lst_out
put.extend(yhat.tolist())
i=i+1
        else:
x_input = x_input.reshape((1,
n_steps,1))yhat=model.predict(x_input,v
erbose=0)
         print(yhat[0])temp_inpu
t.extend(yhat[0].tolist())
         print(len(temp_input)
)lst_output.extend(yhat.tolist())
i=i+1
      print(lst_output)day_new=np.arange(
1,31)day_pred=np.arange(len(df1),len(df1)+2
4)
      import matplotlib.pyplot as
      pltprint(len(df1))progress=st.
      progress(0)
      for i in
range(100):time.sleep(0.
1)progress.progress(i+1)s
t.balloons()
```

```
st.write(scaler.inverse_transform(lst_output))
       ifname____=="main":
       main()
model.py
       import pandas as
       pdimport
       datetimeimportnum
       pyasnp
       fromkeras.model
       simportSequenti
       alfromkeras.layer
       simportDense
       fromkeras.layersimportLSTM
       fromkeras.layersi
       mportBidirectional
       importpandas as
       pd
       importkeras
       "Loadingdata"
       df =
       pd.read_excel('
       Dataset.csv')df
       =df.drop(colum
       ns=['DateTime']
       )" Cleaning
       Data
       ""#dataframe.d
       rop['Date'].valu
```

es

```
df['Power generated by system | (kW)'].replace(0,
np.nan,
inplace=True)df['Powergeneratedbysystem|(kW)'].filln
a(method='ffill',inplace=True)
X=df.drop(columns=['Powergeneratedb
y system | (kW)'])Y = df[['Power
generated by system |
(kW)']]X=np.array(X).reshape(-1,1,4)
Y=np.array(Y).reshape(-1,1,1)
model=Sequential()
model.add(Bidirectional(LSTM(100,
activation='relu',input shape=(-
1,1,4))))model.add(Dense(1))
model.compile(loss='mae',optimizer='adam',metrics=['accuracy'])
model.fit(X,Y,epochs=100,callbacks=[keras.callbacks.EarlyStopping(patience=3)])
test_data = np.array([[-
4.858,0.989741,6.651,273]])o=model
.predict(test data.reshape(-
1,1,4),batch_size=1)print(o)
# Saving
model to
diskmodels=
model.save('
model.h5').
```