## INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203: Complex Analysis and Differential Equations-II

Autumn Semester

Tutorial -4 (Complex Analysis)

- 1. Consider the function  $f(x+iy)=y^3-ix^3$ . Find the subsets of  $\mathbb{C}$ , where the function f is
  - (a) continuous;
  - (b) differentiable;
  - (c) analytic.

Further determine f'(z) on the set where f is differentiable. Justify your answers.

- 2. Consider the function  $f(z) = |z|^2 = x^2 + y^2$ , z = x + iy. The function f can also be thought of as a function from  $\mathbb{R}^2$  to  $\mathbb{R}$  mapping (x, y) to  $x^2 + y^2$ . Moreover, since the partial derivatives of f are continuous throughout  $\mathbb{R}^2$ , it follows that f is differentiable everywhere on  $\mathbb{R}^2$ . Show that f(z) is not complex differentiable at any non-zero point  $z_0$ .
- 3. Suppose f is analytic in a domain D such that |f| is constant in D. Then show that f is a constant in D.
- 4. Let f = u + iv be a non-constant function such that  $\bar{f} = u iv$  be analytic in a domain D. Show that f cannot be analytic in D.
- 5. Find which of the following functions can be real or imaginary part of a complex function f which is differentiable in the region |z| < 1.

(a) 
$$x^2 - axy + y^2$$

(b) 
$$e^x \cos y + xy$$
 Yes

6. If f(z) = u + iv is an analytic function of z = x + iy, and  $u - v = e^x(\cos y - \sin y)$ , find f(z) in terms of z.

Ans:  $f(z) = e^z + c$ .

- 7. Consider the function f = u + iv defined on  $\mathbb{C}$ , where  $u(x,y) = x^2$ ,  $v(x,y) = y^2$ . Consider the set  $D := \{x + iy \in \mathbb{C} : x = y\}$ . Note that u, v satisfies the C-R equations in D, and  $u_x, u_y, v_x, v_y$  are also continuous in D. Prove that f is not analytic on D. Does this fact contradict the related Theorem? If not, explain why.
- 8. Suppose  $f_1(z)$  is analytic at  $z_0$ , while  $f_2(z)$  is non-analytic at  $z_0$ . Then show that  $f_1(z)+f_2(z)$  is not analytic at  $z_0$ . Give an example to show that sum of two non-analytic function can be analytic.
- 9. Suppose f is analytic in a domain D. If f'(z) = 0 for all  $z \in D$ , then f is constant on D. Will the result hold if we take D to be any set instead of domain?
- 10. Is it possible to have an analytic function F in a domain D such that  $F'(z) = |z|^2$  for all  $z \in D$ ? Give reason for your answer.
- 11. If f(z) is an entire function, then show that  $e^{f(z)}$  also an entire function.
- 12. Given an analytic function

$$w = f(z) = u(x, y) + iv(x, y), z = x + iy,$$

the equations  $u(x,y) = \alpha$  and  $v(x,y) = \beta$ ,  $\alpha$  and  $\beta$  are constants, define two families of curves in the complex plane. Show that the two families are mutually orthogonal to each other.

13. Let  $f(z)=z^3$ . For  $z_1=1$  and  $z_2=i$ , show that there do not exist any point c on the line y=1-x joining  $z_1$  and  $z_2$  such that

$$\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$$

(Mean value theorem does not extend to complex derivatives).

