Reinforcement Learning in Multi-Agent Systems

Jalal Arabneydi and Aditya Mahajan ECE Department, McGill University

Motivation

- Multi-agent Reinforcement Learning (RL) arises in many applications ranging from networked control systems, robotics, transportation networks, sensor networks, economics, and smart grids.
- ► Agents have different information that creates discrepancy in perspectives that makes it conceptually challenging to establish cooperation among agents.
- ► Finding team-optimal solution is more challenging when agents have only partial knowledge or no knowledge of system model.

Model

- ▶ Consider $n \in \mathbb{N}$ agents, where $t \in \mathbb{N}$ denotes time.
- ▶ State of system $S_t \in S$ and action of agent $i: A_t^i \in A^i$.
- ▶ Information of agent $i: I_t^i \subseteq \{O_{1:t}^1, \dots, O_{1:t}^n, A_{1:t-1}^1, \dots, A_{1:t-1}^n\}$, where observations are as follows: $(O_t^1, \dots, O_t^n) = h(S_t, A_{t-1}^1, \dots, A_{t-1}^n, V_t)$.

- ► **Assumption**: There exist a sequence of actions (or an action) that reset(s) the environment.
- ► Reward given control strategy \mathbf{g} : $J(\mathbf{g}) = \mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^{\infty} \gamma^t r(S_t, A_t^1, \dots, A_t^n) \right]$.
- ▶ Objective: Develop a (model-based or model-free) reinforcement learning algorithms that guarantees an ϵ -optimal strategy \mathbf{g}^* i.e. $J^* J(\mathbf{g}^*) \leq \epsilon$.

Methodology

- ▶ **Partial History Sharing**: Split $I_t^i = \{M_t^i, C_t\}$, where $C_t = \bigcap_{d>t} \bigcap_{i=1}^n I_d^i$ is common information and M_t^i is local information. Define $Z_t = C_{t+1} \setminus C_t$ as common observation, then $C_{t+1} = Z_{1:t}$.
- \triangleright The update of local information $M_{t+1}^i \subseteq \{M_t^i, A_t^i, O_{t+1}^i\} \setminus Z_t$.
- \triangleright The size of Z_t and the size of $M_t^i, \forall i$, are uniformly bounded in time t.

Main Steps

- ► Common Information Approach (Step 1): For agent i, define prescription function β_t^i that maps local information M_t^i to action A_t^i i.e. $A_t^i = \beta_t^i(M_t^i)$.
- \triangleright Virtual coordinator observes C_t and prescribes $\beta_t := (\beta_t^1, \dots, \beta_t^n) \in \mathcal{G}$.
- ▶ In equivalent coordinated system, $\Pi_t = \mathbb{P}(S_t, M_t^{1:n} | C_t, \beta_{1:t-1})$ is an information state and reward function is $\hat{r}(\Pi_t, \beta_t) := \mathbb{E}(r(S_t, A_t^1, \dots, A_t^n | C_t, \beta_{1:t}))$.
- ► Approximate POMDP RL (Step 2): We define a new notion called Incrementally Expanding Representation (IER) as follows.
- \triangleright IER is a 3-tuple $\langle \{\mathcal{X}\}_{k=1}^{\infty}, \tilde{f}, B \} \rangle$.
 - $\{\mathcal{X}\}_{k=1}^{\infty}$ is a sequence of finite sets such that $\mathcal{X}_1 \subsetneq \mathcal{X}_2 \subsetneq \ldots \mathcal{X}_k \subsetneq \ldots$, and \mathcal{X}_1 is singleton say $\mathcal{X}_1 = \{x^*\}$. Let $\mathcal{X} = \lim_{k \to \infty} \mathcal{X}_k$.
 - For any β and z, and $x \in \mathcal{X}_k$, we have that $\tilde{f}(x,\beta,z) \in \mathcal{X}_{k+1}$.
 - ▶ B is surjective function that maps \mathcal{X} to the reachable set s.t. $\Pi_t = B(X_t)$.
- ho Choose an IER whose components do not depend on unknowns . Construct countable-state MDP Δ with state space \mathcal{X} , action space \mathcal{G} , dynamics \tilde{f} , and reward $\tilde{r}(B(X_t), \beta_t) := \hat{r}_t(\Pi_t, \beta_t)$.
- \triangleright Approximate \triangle by finite-state MDPs \triangle_N with state space \mathcal{X}_N .
- \triangleright Apply a generic finite-state RL algorithm to learn optimal strategy of Δ_N .

Main Theorem

Let J^* be the optimal performance (reward) and \tilde{J} be the performance under the learned strategy. Then,

$$J^* - \tilde{J} \leq \epsilon_N$$

where $\epsilon_N = \frac{2\gamma^{\tau_N}}{1-\gamma}(r_{max} - r_{min}) \leq \frac{2\gamma^N}{1-\gamma}(r_{max} - r_{min})$ and τ_N is a model dependent parameter that is $N \leq \tau_N$. Note that error goes to zero **exponentially** in N.

Salient Features

- ► This approach guarantees ϵ -optimality performance.
- It encompasses a large class of multi-agent systems including delayed sharing, control sharing, mean field sharing, etc.
- ► We combine **common information approach** and **POMDP RL**. Various POMDP RL algorithms may be used in step 2 to obtain different approaches.
- ► The methodology used in Step 2 is a **novel approach** for POMDP RL.

Multi-Agent RL Algorithm

- 1. Given $\epsilon > 0$, choose N such that $\frac{2\gamma^N}{1-\gamma}(r_{max} r_{min}) \leq \epsilon$. Then, construct Δ_N with state space \mathcal{X}_N , action space \mathcal{G} , dynamics \tilde{f} , and reward \tilde{r} .
- 2. At iteration k, pick random prescriptions $\beta_k = (\beta_k^1, \dots, \beta_k^n)$. Agent i takes action a_k^i based on prescription β_k^i and local information m_k^i : $a_k^i = \beta_k^i(m_k^i), \forall i$.
- 3. Based on taken actions, system incurs a reward r_k , evolves, and generates common observation z_k that is observable to every agent. Agents consistently compute next state $x_{k+1} = \tilde{f}(x_k, \beta_k, z_k) \in \mathcal{X}_N$; otherwise, $x_{k+1} = x^*$.
- 4. Using a finite-state RL algorithm, learn coordinated strategy according to reward r_k by performing prescriptions β_k at state x_k and transiting to state x_{k+1} .
- 5. $k \leftarrow k + 1$, and got step 2 until termination.

Example: MABC

- $ightharpoonup S_t = (S_t^1, S_t^2) \in S = \{0, 1\}^2, \quad A_t^i \in \mathcal{A} = \{\text{Do not transmit, transmit}\}$
- \triangleright Packets arrive at user 1 and 2 according to independent Bernoulli processes with rate p and q that are unknown, respectively.
- ► Each user transmits if it has a packet (i.e. $A_t^i \in \{0,1\}$ and $A_t^i \leq S_t^i$).
- $I_t^i = \{S_t^i, A_{1:t-1}^1, A_{1:t-1}^2\}.$
- The objective is to maximize the throughput. Hence, the instantaneous reward is defined as follows: $r(S_t, A_t^1, A_t^2) = A_t^1 + A_t^2 2A_t^1A_t^2$.
- ► Numerical result: $N = 20, p = 0.3, q = 0.6, \gamma = 0.99$.

Figure 1: This figure shows the learning process of MDP Δ_N in a few snapshots.

References

[1] Jalal Arabneydi and Aditya Mahajan.

Reinforcement learning in decentralized stochastic control systems with partial history sharing.

American Control Conference (ACC), 2015.