파이썬 Pandas 패키지

2018. 1. 29

목차

- 1. Pandas 자료 구조 소개
- 2. Pandas 핵심 기능
- 3. 계층적 색인
- 4. 병합과 조인
- 5. 피봇 테이블&데이터 분석 예

Pandas?

- NumPy 기반에서 개발되었으며, 고수준의 자료 구조와 파이썬을 통한 데이터 분석 도구를 포함
 - Pandas를 설치하기 앞서 NumPy가 설치되어야 함
 - 아나콘다(Anaconda)를 설치하는 경우, 이미 설치 완료

Pandas 주요 기능

- 시계열 데이터와 비시계열 데이터를 함께 다룰 수 있는 통합 자료 구조 제공
- 누락된 데이터를 유연하게 처리
- SQL 같은 일반 데이터베이스 처럼 합치고 관계 연산을 수행

- Series
 - import pandas as pd
 - •obj=pd.Series([4,7,-5,3])
 - ■obj 0 4 1 7 2 -5

dtype: int64

- Series
 - obj.values

```
array([4, 7, -5, 3], dtype=int64)
```

obj.index

RangeIndex(start=0, stop=4, step=1)

Series

■obj2.index

Index(['d', 'b', 'a', 'c'], dtype='object')

- Series 색인
 - ■데이터의 값을 선택하거나 대입할 때는 색인을 이용하여 접근
 - obj2['a']
 - ■obj2['d']=6
 - obj2[['c', 'a', 'd']]

- Series
 - ■고정 길이의 정렬된 사전형
 - ■'b' in obj2

True

•'e' in obj2
False

- 사전형 데이터로 부터 Series 데이터 생성
 - sdata = {'Ohio':35000, 'Texa':71000, 'Oregon':16000, 'Utah: 5000}
 - obj3 = pd.Series(sdata)

```
      Ohio
      35000

      Oregon
      16000

      Texa
      71000

      Utah
      5000
```

dtype: int64

- 사전형 데이터와 리스트 활용
 - states = {'California', 'Ohio', 'Oregon', 'Texa'}
 - obj4 = pd.Series(sdata, index=states)

```
California NaN
Oregon 16000.0
Texa 71000.0
Ohio 35000.0
dtype: float64
```

• Series 데이터 'NA' 값확인

Pd.isnull(obj4)
California True
Oregon False
Texa False
Ohio False
dtype: bool

pd.notnull(obj4)
California False
Oregon True
Texa True
Ohio True
dtype: bool

- 색인이 다른 Series 데이터의 산술 연산
 - print(obj3 + obj4)

California	NaN	
Ohio	70000.0	
Oregon	32000.0	
Texa	142000.0	
Utah	NaN	
<u> </u>	r a	

dtvpe: float64

- DataFrame
 - 스프레드시트 형식의 자료 구조
 - ■여러 개의 열은 서로 다른 종류의 값(숫자, 문자, 불리언 등)을 가질 수 있음
 - ■DataFrame은 데이터를 내부적으로 2차원 형식으로 저장

- DataFrame
 - data = {'state':['Ohio','Ohio','Nevada','Nevada']
 - ,'year':[2000,2001,2002,2001,2002],'pop':[1.5,1.7,3.6,2.4,2.9]}
 - frame=pd.DataFrame(data)
 - print(frame)

	pop	state	year
0	1.5	Ohio	2000
1	1.7	Ohio	2001
2	3.6	Ohio	2002
3	2.4	Nevada	2001
4	2.9	Nevada	2002

- DataFrame
 - data = {'state':['Ohio','Ohio','Nevada','Nevada']
 - 'year':[2000,2001,2002,2001,2002],'pop':[1.5,1.7,3.6,2.4,2.9]}

- ■# 열은 정렬되어 저장되나, 원하는 순서대로 재지정 가능
- print(pd.DataFrame(data, columns=['year', 'state', 'pop']))

- DataFrame
 - Serises와 동일하게 없는 값을 추가하면 NA 값이 저장
 - frame2= pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],index=['one', 'two', 'three', 'four', 'five'])
 - print(frame2)

- DataFrame
 - 열은 Series 처럼 사전 형식 또는 속성 형식으로 접근
 - print(frame2['state'])
 - print(frame2.year)

- DataFrame
 - 행은 ix, loc 와 같은 메서드를 통하여 접근
 - print(frame2.ix['three'])
 - print(frame2.loc['three'])

- DataFrame
 - 열에는 특정 값이나 배열의 값을 대입할 수 있음
 - frame2.debt = 16.5
 - frame2['debt']) = np.arange(5)
 - # 리스트나 배열의 값은 행의 수와 일치해야 함. 없는 색인에는 값이 대입되지 않음

- DataFrame
 - frame2['eastern'] = frame2.state =='Ohio'
 - frame2

			pop	debt	eastern
one	2000	Ohio	1.5	0	True
two	2001	Ohio	1.7	1	True
three	2002	Ohio	3.6	2	True
four	2001	Nevada	2.4	3	False
five	2002	Nevada	2.9	4	False

■del frame2['eastern'] # 사전형의 삭제와 동일

- 중첩된 사전형 데이터 활용
 - pop = {'Nevada':{2001: 2.4, 2002: 2.9}, 'Ohio':{2000: 1.5, 2001:1.7, 2002:3.6}} # {키1: {키2: 값2}} 키1은 열, 키2는 행
 - frame3 = pd.DataFrame(pop)
 - frame3

	Nevada	Ohio
2000	NaN	1.5
2001	2.4	1.7
2002	2.9	3.6

- reindex
 - ■새로운 색인에 맞도록 객체를 재생성
 - •obj=pd.Series([4.5, 7.2,-5.3, 3.6], index=['d', 'b', 'a', 'c'])
 - ■obj
 - •obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

```
d 4.5 a -5.3 b 7.2 c 3.6 a -5.3 d 4.5 c 3.6
```

dtype: float64 dtype: float64

- reindex
 - obj.reindex(['a','b','c','d','e'], fill_value=0)

```
a -5.3
b 7.2
c 3.6
d 4.5
e 0.0
dtype: float64
```

- reindex
 - obj3 = pd.Series(['blue','purple','yelow'], index=[0,2,4])

0

3

5

blue

blue

purple

purple

velow

yelow

dtype: object

- obj3
- obj3.reindex(range(6), method = 'ffill')
- obj3.reindex(range(6), method = 'bfill')

```
0 blue
2 purple
4 yelow
dtype: object
```

- 하나의 행 또는 열 삭제하기
 - obj = pd.Series(np.arange(5), index=['a','b','c','d','e'])
 - obj
 - new_obj = obj.drop('d')
 - new_obj

- b 1
- c 2
- e 4

- Series 색인하기, 선택하기, 거르기
 - obj = pd.Series(np.arange(4), index=['a','b','c','d'])
 - obj['b'] / obj[1]
 - obj[2:4] / obj['b', 'c', 'd']
 - obj[[1,3]]
 - obj[obj <2]
 - obj['b':'c']

- DataFrame 색인하기, 선택하기, 거르기
 - data = pd.DataFrame(np.arange(16).reshape((4,4)), index=['Ohio',
 'Colorade','Utah','NewYork'], columns=['one', 'two', 'three', 'four'])
 - data

	one	two	three	four
Ohio	0	1	2	3
Colorade	4	5	6	7
Utah	8	9	10	11
NewYork	12	13	14	15

- DataFrame 색인하기, 선택하기, 거르기
 - data['two']
 - data[['three', 'one']]
 - ■data[:2]
 - data[data['three']>5]

- DataFrame 색인하기, 선택하기, 거르기
 - print(data.loc[:,["one"]])
 - print(data.loc['Colorado'])
 - print(data.loc['Colorado',['two','three']])
 - print(data.loc[['Colorado','Utah']])
 - print(data.loc[['Colorado','Utah'],['two','three']])

- DataFrame 정렬하기
 - print(data.sort_index())
 - print(data.sort_index(axis=1))

	one	two	three	four
Colorado	4	5	6	7
NewYork	12	13	14	15
Ohio	0	1	2	3
Utah	8	9	10	11

	four	one	three	two
Ohio	3	0	2	1
Colorado	7	4	6	5
Utah	11	8	10	9
NewYork	15	12	14	13

- DataFrame 정렬하기 by
 - print(data.sort_values(by=['one']))
 - print(data.sort values(by=['one', 'two']))

- DataFrame 기술통계 계산과 요약
 - print(data.sum())

print(data.sum(axis=1))

Ohio 6
Colorado 22
Utah 38
NewYork 54
dtype: int64

dtype: int64

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7
Utah	8	9	10	11
NewYork	12	13	14	15

- DataFrame 기술통계 계산과 요약
 - print(data.cumsum())
 - print(data.idxmax())
 - print(data.describe())

	one	two	three	four
count	4.000000	4.000000	4.000000	4.000000
mean	6.000000	7.000000	8.000000	9.000000
std	5.163978	5.163978	5.163978	5.163978
min	0.000000	1.000000	2.000000	3.000000
25%	3.000000	4.000000	5.000000	6.000000
50%		7.000000		9.000000
			11.000000	
max	12.000000	13.000000	14.000000	15.000000

3. 계층적 색인

- 축에 대한 다중(둘 이상) 색인 단계를 지정할 수 있음
 - 고차원 데이터를 낮은 차원의 형식으로 다룰 수 있게 해줌
 - 계층적으로 색인된 객체는 데이터의 부분 집합을 부분적 색인으로 접근하는 것이 가능

3. 계층적 색인

data = pd.Series(np.random.randn(10), index=[['a','a','a','b','b','c','c','d','d'],[1,2,3,1,2,3,1,2,2,3,]])

```
2 0.385137

3 -0.747420

b 1 -0.895881

2 -1.215567

3 -1.320514

c 1 0.012055

2 -0.328112

d 2 2.452141
```

-0.691429

1.306733

3. 계층적 색인

print(data.index)

```
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1,
2, 0, 1, 1, 2]])
```

- print(data['b'])
- print(data['b':'c'])
- print(data.loc[['b','d']])
- ■data[:,2]

3. 계층적 색인

data.unstack()

	1	2	3
a	1.306733	0.385137	-0.747420
b	-0.895881	-1.215567	-1.320514
c	0.012055	-0.328112	NaN
d	NaN	2.452141	-0.691429

data.unstack().stack()

```
a 1 1.306733
2 0.385137
3 -0.747420
b 1 -0.895881
2 -1.215567
3 -1.320514
c 1 0.012055
2 -0.328112
d 2 2.452141
3 -0.691429
```

4. 병합과 조인

• df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})

df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],
'hire_date': [2004, 2008, 2012, 2014]})

print(df1, df2)

4. 병합과 조인

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df2

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

4. 병합과 조인 - 일대일 조인

- \blacksquare df3 = pd.merge(df1, df2)
- df3

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

4. 병합과 조인 – 다대일 조인

•df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],
'supervisor': ['Carly', 'Guido', 'Steve']})

print(df3)

print(df4)

df3

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

d£4

	group	supervisor
0	Accounting	Carly
~	Engineering	Guido
2	HR	Steve

4. 병합과 조인 – 다대일 조인

print(pd.merge(df3, df4))

pd.merge(df3, df4)

	employee	group	hire_date	supervisor
0	Bob	Accounting	2008	Carly
1	Jake	Engineering	2012	Guido
2	Lisa	Engineering	2004	Guido
3	Sue	HR	2014	Steve

4. 병합과 조인 – 다대다조인

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df5

	group	skills
0	Accounting	math
1	Accounting	spreadsheets
2	Engineering	coding
3	Engineering	linux
4	HR	spreadsheets
5	HR	organization

4. 병합과 조인 – 다대다조인

print(pd.merge(df1, df5))

pd.merge(df1, df5)

	employee	group	skills
0	Bob	Accounting	math
1	Bob	Accounting	spreadsheets
2	Jake	Engineering	coding
3	Jake	Engineering	linux
4	Lisa	Engineering	coding
5	Lisa	Engineering	linux
6	Sue	HR	spreadsheets
7	Sue	HR	organization

pd.merge(df1, df2, on='employee')

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df2

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

pd.merge(df1, df2, on='employee')

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

•df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'salary': [70000, 80000, 120000, 90000]})

pd.merge(df1, df3, left_on="employee", right_on="name")

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df3

	name	salary
0	Bob	70000
1	Jake	80000
2	Lisa	120000
3	Sue	90000

•df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'salary': [70000, 80000, 120000, 90000]})

pd.merge(df1, df3, left_on="employee", right_on="name")

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df3

	name	salary
0	Bob	70000
1	Jake	80000
2	Lisa	120000
3	Sue	90000

ppd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)

	employee	group	name	salary
0	Bob	Accounting	Bob	70000
1	Jake	Engineering	Jake	80000
2	Lisa	Engineering	Lisa	120000
3	Sue	HR	Sue	90000

	employee	group	salary
0	Bob	Accounting	70000
1	Jake	Engineering	80000
2	Lisa	Engineering	120000
3	Sue	HR	90000

- df1a = df1.set_index('employee')
- df2a = df2.set_index('employee')
- print(df1a, df2a)

df1a

	group
employee	
Bob	Accounting
Jake	Engineering
Lisa	Engineering
Sue	HR

df2a

	hire_date
employee	
Lisa	2004
Bob	2008
Jake	2012
Sue	2014

pd.merge(df1a, df2a, left_index=True, right_index=True)

	group	hire_date
employee		
Lisa	Engineering	2004
Bob	Accounting	2008
Jake	Engineering	2012
Sue	HR	2014

•df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'], 'food': ['fish',
'beans', 'bread']},columns=['name', 'food'])

df7 = pd.DataFrame({'name': ['Mary', 'Joseph'], 'drink': ['wine', 'beer']},

columns=['name', 'drink'])

pd.merge(df6, df7)

df6

	name	food
0	Peter	fish
1	Paul	beans
2	Mary	bread

df7

		name	drink
	0	Mary	wine
1	1	Joseph	beer

pd.merge(df6, df7)

	name	food	drink		
0	Mary	bread	wine		

pd.merge(df6, df7, how='inner')

	name	food	drink		
0	Mary	bread	wine		

pd.merge(df6, df7, how='outer')

	name	food
0	Peter	fish
1	Paul	beans
2	Mary	bread

	name	drink
0	Mary	wine
1	Joseph	beer

_	-				
	name	name food			
0	Peter	fish	NaN		
1	Paul	beans	NaN		
2	Mary	bread	wine		
3	Joseph	NaN	beer		

```
df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
```

'rank': [1, 2, 3, 4]})

•df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'rank': [3, 1, 4, 2]})

pd.merge(df8, df9, on="name")

	name	rank
0	Bob	1
1	Jake	2
2	Lisa	3
3	Sue	4

	name	rank
0	Bob	3
1	Jake	1
2	Lisa	4
3	Sue	2

	name	rank_x	rank_y
0	Bob	1	3
1	Jake	2	1
2	Lisa	3	4
3	Sue	4	2

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])

	name	rank
0	Bob	1
1	Jake	2
2	Lisa	3
3	Sue	4

	name	rank
0	Bob	3
1	Jake	1
2	Lisa	4
3	Sue	2

	name	rank_L	rank_R
0	Bob	1	3
1	Jake	2	1
2	Lisa	3	4
3	Sue	4	2

- import numpy as np
- import pandas as pd
- import seaborn as sns
- titanic = sns.load_dataset('titanic')

•titanic.head()

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no

titanic.groupby('sex')[['survived']].mean()

	survived
sex	
female	0.742038
male	0.188908

titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

class	First	Second	Third	
sex				
female	0.968085	0.921053	0.500000	
male	0.368852	0.157407	0.135447	

titanic.pivot_table('survived', index='sex', columns='class')

class First		Second	Third	
sex				
female	0.968085	0.921053	0.500000	
male	0.368852	0.157407	0.135447	

- age = pd.cut(titanic['age'], [0, 18, 80])
- titanic.pivot_table('survived', ['sex', age], 'class')

	class	First	Second	Third
sex	age			
famala	(0, 18]	0.909091	1.000000	0.511628
female	(18, 80]	0.972973	0.900000	0.423729
la	(0, 18]	0.800000	0.600000	0.215686
male	(18, 80]	0.375000	0.071429	0.133663

- fare = pd.qcut(titanic['fare'], 2)
- titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

	fare	[0, 14.454]			(14.454, 512.329]			
	class	First	Second	Third	First	Second	Third	
sex	age							
female	(0, 18]	NaN	1.000000	0.714286	0.909091	1.000000	0.318182	
lemale	(18, 80]	NaN	0.880000	0.444444	0.972973	0.914286	0.391304	
male	(0, 18]	NaN	0.000000	0.260870	0.800000	0.818182	0.178571	
	(18, 80]	0.0	0.098039	0.125000	0.391304	0.030303	0.192308	

•titanic.pivot_table(index='sex', columns='class',
aggfunc={'survived':sum, 'fare':mean})

	fare				survived		
class	First	Second	Third	First	Second	Third	
sex							
female	106.125798	21.970121	16.118810	91.0	70.0	72.0	
male	67.226127	19.741782	12.661633	45.0	17.0	47.0	