Building a Tweet Classifier (Binary)

Pang Hong Xiang 18th Mar 2023

Understanding the Problem

† twitter users following topic of Formula 1

† auto-racing related accounts and tweets

Fans are flocking to Twitter to discuss the twists and turns of motorsport's most prestigious competition.

↑ complicated to differentiate tweet topics

To maximize relevant tweets on news feeds and minimize spam,

Build a classifier that is able to differentiate Formula 1 related tweets from MotoGP related tweets.

Problem-Solving Process

Data Collection, Exploration & Processing

02

Modeling & Evaluation

03

Conclusion & Recommendations

Data Collection

Data Exploration

Data Exploration

Data Exploration

Data Processing

Modeling Techniques

MultiNomial Naive-Bayes

Probability of a class, given the occurrence rate of features

Logistic Regression

Models the relationship between the class and the features

Modeling Approach

Build a model (M1) using tweet as feature and evaluate the model.

Build a model (M2) using hashtag as feature and evaluate the model.

If hashtag is overly dominant as a predictor, re-evaluate performance of M1 on text-only.

Improve on M1 (M3) by incorporating other features such as tweet length, tweet word count, number of likes, and number of retweets.

Determine best threshold to maximize recall and F1 scores.

Best Naive-Bayes Model

Using tweet, tweet length, word count, number of likes, number of retweets

Model (M3, 0.5)

Tweet: 91.9% Text-Only: 91.6%

Precision

Tweet: 91.9% Text-Only: 91.6%

Accuracy

Tweet: 89.9% Text-Only: 89.5%

F1 Score

Tweet: 87.9% Text-Only: 87.5%

Recall

Tweet: 96.1% Text-Only: 95.7%

ROC AUC

Best Log-Regression Model

Using tweet, tweet length, word count, number of likes, number of retweets

Model (M3, 0.3)

Tweet: 99.4% Text-Only: 98.1%

Precision

Tweet: 99.4% Text-Only: 94.0%

Accuracy

Tweet: 99.2% Text-Only: 92.3%

F1 Score

Tweet: 99.1% Text-Only: 87.1%

Recall

Tweet: 99.9% Text-Only: 99.3%

ROC AUC

Recommendation

To maximize relevant tweets on news feeds and minimize spam,

Build a classifier that is able to differentiate Formula 1 related tweets from MotoGP related tweets.

Conclusion

Key Limitation

 Tweet length, word count, number of likes, number of retweets are all features which could vary greatly among individual users, hence performance may drop further.

<u>Suggested area for improvement</u>

 Scrape tweets from individual users instead and manually classify for training data.

