ASSIGNMENT 10

LEELA MADHURI

JAN 5 , 2021

QUESTION AND FIGURE

The input frequency for the given counters 1 MHz, the output frequency observes at Q4 is

TIMING DIAGRAM AND SOLUTION

CONTINUATION OF SOLUTION

The time period doubles for very successive pass from one flip-flop to other. Let the initial time period and frequency be T,F as the time period is getting doubles so time period at Q_1 =2T

Similarly at Q_2 =4T; at Q_3 =8T; at Q_4 =16T

so the time period is getting increased in the form of 2^nT where n can take the value of required output.

So, frequency at Q_4 can be $F = \frac{1}{T \text{ at } Q_4}$

 $F = \frac{1}{16}$

(as initially F=1MHz so T at initial=1 sec)

Also frequency can be written as F= $\frac{1}{2^4}$ = $\frac{1}{16}$ =62.5KHz