A statement that is either true or false is called a logical	SUBSET
. Symbols such as \land , \lor or \Leftrightarrow are called	CONJUNCTION
and are used to combine two .	EQUIVALENCE
Given statements p and q , the expression $p \Leftrightarrow q$ is an	EQUIVILLATION
of p and q and is read ' p if and only if q '.	PRODUCT
In set theory, we write $a \in A$ to express that a is	ELEMENT
of the set A . Taking all that lie in the set A , the	PAIR
$\operatorname{set} B$ or in both creates the $\operatorname{set} A \cup B$, called the	
of A and B . It's important to realise that there are actually no	UNION
duplicates in $A \cup B$ because there is no notion of	PROPOSITION
in set theory. That is, there is no 'repetition' in sets, either an object does lie inside a set, or it doesn't. Of course, both A and B	FREQUENCY
also form a part of $A \cup B$, we write, e.g., $A \subseteq A \cup B$ and say that	
A is a of $A \cup B$. This last concept is crucial for	
the study of relations which are really just of $A \times$	
$B.$ The last set is formed by all (a,b) with $a \in A$	
and $b \in B$ and called the of A and B .	