4. (8 points) Suppose that the graph of f is as shown:

Let
$$G(x) = \int_{x}^{x^2+x} tf(t) dt$$
. Find $G'(1)$.

5. (4 points) Find the volume of the solid shown below. Each cross-section (slice) is a square.

6. (8 points) At each time $t \ge 0$, \mathcal{R}_t is the region above the *x*-axis, below the curve $y = e^{-x^2}$, with left side on the line $x = -t^2$ and right side on the line $x = t^3$ (see the figure). Let A(t) be the area of \mathcal{R}_t . Find $\frac{dA}{dt}$ at time t = 1.

3. (6 points) Let

$$E(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt,$$

and let

$$G(x) = E(\sqrt{x}).$$

Compute G'(x).

5. (8 points) Find

$$\lim_{x\to 0}\frac{\int_0^x \cos(t^2)dt}{x}.$$

- 6. (12 total points) The region between the curve $y = e^{x^3}$ and the lines y = 0, x = 1, and x = t is rotated about the vertical line x = 1. Here t > 1 is not further specified.
 - (a) (8 points) Write down an integral for the volume of the resulting solid. **Do not evaluate this integral.**

(b) (4 points) The volume from part (a) is a function of t; call it V(t). Find the derivative V'(2).