Outputs inspection half CIFAR100

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.0.5
library("ggpubr")
## Warning: package 'ggpubr' was built under R version 4.0.5
library(LDATS)
## Warning: package 'LDATS' was built under R version 4.0.5
library(ggVennDiagram)
## Warning: package 'ggVennDiagram' was built under R version 4.0.5
library(stringr)
library(abind)
## Warning: package 'abind' was built under R version 4.0.3
```

```
library(patchwork)
## Warning: package 'patchwork' was built under R version 4.0.3
source("utils.R")
## Warning: package 'hash' was built under R version 4.0.5
## hash-2.2.6.1 provided by Decision Patterns
## Warning: package 'reticulate' was built under R version 4.0.5
## Warning: package 'berryFunctions' was built under R version 4.0.5
##
## Attaching package: 'berryFunctions'
## The following object is masked from 'package:ggVennDiagram':
##
##
       circle
##
  The following object is masked from 'package:dplyr':
##
##
       between
## Warning: package 'purrr' was built under R version 4.0.3
## Warning: package 'reshape2' was built under R version 4.0.3
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
```

Visualization on both CIFAR 10 and 100. To better understand the differences between train_training and val_training LDA training methodologies, we focus on pairwise predictions. This allows us to observe the outputs of LDA models without interference from the coupling methods.

CIFAR 10 - validation set of size 500

```
base_dir <- "../data/data_train_val_c10"
repls <- 0:29
folds <- 0:0
classes <- 10

net_pw_results <- read.csv(file.path(base_dir, "net_pw_accuracies.csv"))
ens_pw_results <- read.csv(file.path(base_dir, "ensemble_pw_accuracies.csv"))
net_pw_results[, c("class1", "class2")] <- lapply(net_pw_results[, c("class1", "class2")], as.factor)
ens_pw_results[, c("class1", "class2")] <- lapply(ens_pw_results[, c("class1", "class2")], as.factor)</pre>
```

```
for (ri in repls)
  net_plot <- net_pw_results %>% filter(repli == ri) %>%
    ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~network) +
    xlab("Class") +
    ylab("Class") +
    scale_y_discrete(limits=rev) +
    scale_fill_binned(type="viridis", limits=c(0.92, 1), name="accuracy") +
    coord fixed() +
    ggtitle("Pairwise accuracies networks") +
    theme(plot.title = element_text(hjust = 0.5),
      axis.ticks = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank())
  ens_plot <- ens_pw_results %>% filter(repli == ri & fold == 1) %>%
    ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~train_set) +
    xlab("Class") +
    ylab("Class") +
    scale_y_discrete(limits=rev) +
    coord_fixed() +
    ggtitle("Pairwise accuracies ensembles") +
    scale_fill_binned(type="viridis", limits=c(0.92, 1), name="accuracy") +
    theme(plot.title = element_text(hjust = 0.5),
      axis.ticks = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element blank())
    print((net_plot/ens_plot) + plot_annotation(title=paste("Replication ", ri)))
}
```

Pairwise accuracies networks

Pairwise accuracies networks

Pairwise accuracies ensembles

1.00

0.98 0.96 0.94 0.92

LDA combination is able to improve pairwise probabilities in almost all examples. tt seems to be a little bit more successful than vt. Especially problematic seem classes 3 and 5 - cat and dog.

CIFAR 10 - validation set of size 25000

```
base_dir <- "../data/data_train_val_half_c10"</pre>
repls <- 0:0
folds <- 0:49
classes <- 10
net_pw_results <- read.csv(file.path(base_dir, "net_pw_accuracies.csv"))</pre>
ens_pw_results <- read.csv(file.path(base_dir, "ensemble_pw_accuracies.csv"))</pre>
net_pw_results[, c("class1", "class2")] <- lapply(net_pw_results[, c("class1", "class2")], as.factor)</pre>
ens_pw_results[, c("class1", "class2")] <- lapply(ens_pw_results[, c("class1", "class2")], as.factor)</pre>
for (ri in repls)
  net_plot <- net_pw_results %>% filter(repli == ri) %>%
    ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~network) +
    xlab("Class") +
    ylab("Class") +
    scale_y_discrete(limits=rev) +
    scale_fill_binned(type="viridis", limits=c(0.92, 1), name="accuracy") +
    coord fixed() +
```

```
ggtitle("Pairwise accuracies networks") +
    theme(plot.title = element_text(hjust = 0.5),
      axis.ticks = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank())
  for (fi in folds)
    ens_plot <- ens_pw_results %>% filter(repli == ri & fold == fi) %>%
      ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~train_set) +
      xlab("Class") +
      ylab("Class") +
      scale_y_discrete(limits=rev) +
      coord_fixed() +
      ggtitle("Pairwise accuracies ensembles") +
      scale_fill_binned(type="viridis", limits=c(0.92, 1), name="accuracy") +
      theme(plot.title = element_text(hjust = 0.5),
        axis.ticks = element_blank(),
       panel.grid.major = element_blank(),
       panel.grid.minor = element_blank())
    print((net_plot/ens_plot) + plot_annotation(title=paste("Replication ", ri, ", fold ", fi)))
}
```

Replication 0, fold 0

Pairwise accuracies networks

Replication 0, fold 1

Pairwise accuracies networks

Pairwise accuracies networks

Pairwise accuracies networks

Pairwise accuracies networks

Pairwise accuracies ensembles

accuracy

1.00

0.98 0.96 0.94 0.92

Networks are same across all the folds. vt and tt for a given fold have no special relationship, they are displayed together just for convenience. tt again seems to be more successfull at improving the parwise probabilities.

CIFAR 10 - validation set of size 25000

```
base_dir <- "../data/data_train_val_half_c100"</pre>
repls <- 0:9
folds <- 0:4
classes <- 100
net_pw_results <- read.csv(file.path(base_dir, "net_pw_accuracies.csv"))</pre>
ens_pw_results <- read.csv(file.path(base_dir, "ensemble_pw_accuracies.csv"))</pre>
net_pw_results[, c("class1", "class2")] <- lapply(net_pw_results[, c("class1", "class2")], as.factor)</pre>
ens_pw_results[, c("class1", "class2")] <- lapply(ens_pw_results[, c("class1", "class2")], as.factor)</pre>
for (ri in repls)
{
  net_plot <- net_pw_results %>% filter(repli == ri) %>%
    ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~network) +
    xlab("Class") +
    vlab("Class") +
    scale_y_discrete(limits=rev, breaks=seq(0, classes, 20)) +
    scale x discrete(breaks=seq(0, classes, 20)) +
```

```
scale_fill_binned(type="viridis", name="accuracy", limits=c(0.7, 1)) +
  coord_fixed() +
  ggtitle("Pairwise accuracies networks") +
  theme(plot.title = element_text(hjust = 0.5),
    axis.ticks = element_blank(),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank())
for (fi in folds)
  ens_plot <- ens_pw_results %>% filter(repli == ri & fold == fi) %>%
    ggplot(mapping=aes(x=class2, y=class1, fill=accuracy)) + geom_raster() + facet_wrap(~train_set) +
    xlab("Class") +
    ylab("Class") +
    scale_y_discrete(limits=rev, breaks=seq(0, classes, 20)) +
    scale_x_discrete(breaks=seq(0, classes, 20)) +
    coord_fixed() +
    ggtitle("Pairwise accuracies ensembles") +
    scale_fill_binned(type="viridis", name="accuracy", limits=c(0.7, 1)) +
    theme(plot.title = element_text(hjust = 0.5),
      axis.ticks = element_blank(),
      panel.grid.major = element_blank(),
     panel.grid.minor = element blank())
  print((net_plot/ens_plot) + plot_annotation(title=paste("Replication ", ri, ", fold ", fi)))
}
```

Pairwise accuracies networks

Pairwise accuracies networks

Pairwise accuracies ensembles

accuracy

1.0

0.9

0.7

Need some other way to visualize this.