自動控制

MATLAB使用教學 Version 3.1

教授:張仁宗教授

助教:林柏伸

孫華偉

目錄

- SISO Tool 工具使用說明
- ■利用SISO Tool繪製根軌跡圖
- ■加入極零點,觀察對系統之影響
- ■時域響應
- ■頻域響應
- ■隨堂練習

SISO Tool 工具使用說明(1)

- SISO TOOL是由以下指令之整合的介面 'rlocus'
 - ' plot '
 - 'bode'
 - 'nichols'
- SISO TOOL允許反覆地設計與執行下列事項
 - -用根軌跡技巧來操作閉迴路動態
 - -加上極點或零點補償
 - -觀察閉迴路響應

SISO Tool 工具使用說明(2)

開啟SISOTOOL介面之命令:sisotool

SISO Tool 工具使用說明(3)

利用SISO Tool繪製根軌跡圖(1)

開迴路轉移函數

$$G(s) = \frac{s+1}{s^2}$$

sisotool(tf([1 1],[1 0 0]))

利用SISO Tool繪製根軌跡圖(2)

Ren Jung Chang

加入極零點,觀察對系統之影響

-開迴路加入一極點
$$\frac{1}{(s+a)}$$

$$a=3$$

$$a=8$$

$$a=9$$

$$a = 10$$

觀察上述四圖的變化情形

a=8

a=9

a=10

討論

-開迴路轉移函數加入極點,根軌跡有右移現象。

-加入極點越靠近虛軸,根軌跡愈往右移 閉迴路相對穩定度愈差。

加入極零點,觀察對系統之影響

開迴路轉移函數
$$\frac{1}{s(s+3)}$$

sisotool(tf([1],[1 3 0]))

加入極零點,觀察對系統之影響

開迴路加入一零點 s+5

ŊΑ

加入極零點,觀察對系統之影響

開迴路加入一零點 s+1

討論

-開迴路轉移函數加入零點,根軌跡有左移現象。

-加入零點越靠近虛軸,根軌跡愈往左移 亦即閉迴路相對穩定度愈好。

М

時域響應

工具列 Analysis-Response to Step Command

時域響應

圖上按右鍵-Characteristics

可在圖上指出目前最大超越量、安定時間、上升時間 穩態誤差,以方便設計用。

頻域響應

頻域響應

工具列 Analysis-Closed-Loop Bode

可直接畫出閉迴路波德圖。

頻域響應

圖上按右鍵-Characteristics

可觀察系統閉迴路特性,以設計系統。

隨堂練習

利用sisotool繪製以下之根軌跡圖

設計控制器 $KG_c(s)$ 使此系統性能達:

- (1)穩態誤差為0
- (2)安定時間約4 sec
- (3)Phase Margin約為25°

謝謝各位同學 光機電實驗室12F 研究室91C09

分機:62262