Geometria 1

Davide Peccioli Anno accademico 2021-2022

Indice

1	Matrici						
	1.1	Somma	7				
2	Gru	Gruppo					
3	Ope	erazioni con le matrici	9				
	3.1	Moltiplicazione	9				
	3.2	Prodotto tra matrici	10				
		3.2.1 Prodotto tra matrici quadrate	10				
4	Ope	erazioni tra sottospazi vettoriali	16				
5	Fur	nzioni lineari	21				
	5.1	Matrice associata ad una applicazione lineare	23				
	5.2	Immagine di sottospazi vettoriali	25				
	5.3	Retroimmagine di sottospazi	28				
	5.4	Nucleo di una funzione lineare	30				
	5.5	Proprietà delle funzioni lineari	35				
	5.6	Funzioni lineari e cambiamenti di base	38				
		5.6.1 Caso particolare	39				
	5.7	Spazio delle funzioni lineari	42				
		5.7.1 Somma di funzioni lineari	42				
		5.7.2 Prodotto per scalari di funzioni lineari	42				
	5.8	Composizione di funzioni lineari	43				
6	Spazi vettoriali Euclidei						
	6.1	Basi ortogonali e Basi ortonormali	51				
	6.2	Matrici ortogonali	55				
7	Ori	entazione di uno spazio vettoriale (reale)	59				

1 Matrici

Una matrice è una tabella rettangolare di numeri reali $(\in \mathbb{R})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix}$$
 contiene $m \cdot n$ numeri contiene m righe contiene n colonne

 a_{ij} è l'elemento della matrice nella i-esima riga e nella j-esima colonna. $a_{ij} \in \mathbb{R}.$

A è una matrice $m \cdot n$. Se m = n allora A è una matrice quadrata.

Le matrici servono per:

- risolvere sistemi lineari
- studiare spazi vettoriali
- classificarre strutture geometrice (es. coniche)
- presentare funzioni (semplificandone lo studio)

 $\mathbb{R}^{m,n}$ è l'insieme delle matrici $m\cdot n$:

• $\mathbb{Q}^{m,n}$ è l'insieme delle matrici $m \cdot n$ le cui entrate sono elementi di \mathbb{Q} .

Esempi (1.1)

• $\mathbb{R}^{2,2}$: matrici $2 \cdot 2$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \quad \begin{pmatrix} 5 & 6 \\ -1 & \frac{1}{2} \end{pmatrix} \dots \in \mathbb{R}^{2,2}$$

• $\mathbb{R}^{1,1} = \mathbb{R}$

• $\mathbb{R}^{m,1}$:

$$A = egin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} \in \mathbb{R}^{m,1}$$
 anche vettori colonna

 \bullet $\mathbb{R}^{1,n}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix} \in \mathbb{R}^{1,n}$$
 anche **vettori riga**

In $\mathbb{R}^{m,n}$ è sempre definita la **matrice nulla**, in cui tutte le entrate sono nulle. In $\mathbb{R}^{n,n}$ è sempre definita la **matrice identità**:

$$I = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

- In $\mathbb{R}^{1,1}$, I=1
- In $\mathbb{R}^{2,2}$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• In $\mathbb{R}^{3,3}$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La diagonale composta unicamente da 1 nella matrice identità è ila diagonale principale della matrice.

1.1 Somma

Siano $A, B \in \mathbb{R}^{m,n}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ \vdots & & & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

Esempi (1.2)

• In $\mathbb{R}^{1,1}$ la somma tra matrici coincide con la somma usuale di numeri reali.

$$\bullet \ \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -2 & 1 \\ 3 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 3 & -2 & 8 \end{pmatrix}$$

Proprietà della somma

(i) La somma è associativa:

$$\forall A, B, C \in \mathbb{R}^{m,n} \qquad (A+B) + C = A + (B+C)$$

e posso scrivere A + B + C senza ambiguità.

(ii) La somma è commutativa (o abeliana):

$$\forall A, B \in \mathbb{R}^{m,n}$$
 $A + B = B + A$

- (iii) Se $A\in\mathbb{R}^{m,n}$ e $B\in\mathbb{R}^{m,n}$ è la matrice nulla $(B=\underline{0}),$ allora A+B=B+A=A
- (iv) A A = 0:

$$\forall A \in \mathbb{R}^{m,n} \exists -A \in \mathbb{R}^{m,n} \text{ t. c. } A-A=0$$

Definizione Data $A \in \mathbb{R}^{m,n}$,

$$con A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

si definisce -A,

$$con - A = \begin{pmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{pmatrix}$$

Notazione In genere si scrive A - B in luogo di A + (-B), e si considera come una sottrazione di matrici

Definizione Due matrici $A, B \in \mathbb{R}^{m,n}$ sono uguali se hanno le stesse entrate (A = B)

Proprietà $A = B \iff B - A = 0$

2 Gruppo

Definizione Siano A, B due insiemi, si definisce **prodotto cartesiano**:

$$A \times B = \{(a, b) \text{ t. c. } a \in A, b \in B\}$$

in cui conta l'ordine: $(a,b) \neq_{(} b,a)$

$$A \times A = \{(a_1, a_2) \text{ t. c. } a_1, a_2 \in A\}$$

Definizione Sia G un insieme. Una operazione in G è una funzione

$$\star: G \times G \to G$$
$$(g,h) \mapsto g \star h$$

Proprietà

- (i) L'operazione è associativa se $(g \star h) \star k = g \star (h \star k)$
- (ii) L'operazione ha un **elemento neutro** se

$$\exists\, e \in G \text{ t. c. } g \star e = e \star g = g, \, \forall g \in G$$

(iii) Se $g \in G$ chiamiamo inverso di g un elemento

$$k \in G$$
 t.c. $q \star k = k \star q = e$

Definizione Un gruppo è un insieme G con un'operazione \star t. c.

- 1. ★ è associativa
- 2. esiste un elemento neutro
- 3. ogni elemento ha un inverso

Esempi (2.1) Sono gruppi

$$(\mathbb{R}, +), (\mathbb{Z}, +), (\mathbb{Q}, +),$$

 (\mathbb{R}, \cdot) : lo zero non ha un inverso,

$$(\mathbb{R}\setminus\{0\},\cdot),\ (\mathbb{R}^{m,n},+)$$

Definizione Un gruppo (G, \star) è abeliano se

$$g \star h = h \star g \, \forall \, g, h \in G$$

Nel caso di un gruppo abeliano l'operazione è indicata con + e l'elemento neutro con 0.

 $(\mathbb{R}^{m,n},+)$ è un gruppo abeliano

21 set 2021

3 Operazioni con le matrici

3.1 Moltiplicazione

Si può moltiplicare $\lambda \in \mathbb{R}$ con matrici $A \in \mathbb{R}^{m,n}$

$$\lambda A = \lambda \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix}$$

 $-1 \cdot A = -A$ coerente con la definizione di -A

Esempio (3.1)

$$2\begin{pmatrix} 3 & 1 & 0 \\ -1 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 0 \\ -2 & 8 & 2 \end{pmatrix}$$

Osservazione (3.1) $0 \cdot A$ è la matrice nulla $\forall A \in \mathbb{R}^{m,n}$

Proprietà del prodotto per scalari

(i)
$$\lambda(A+B) = \lambda A + \lambda B$$
 $\forall \lambda \in \mathbb{R}, A, B \in \mathbb{R}^{m,n}$

(ii)
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A \quad \forall \lambda \mu \in \mathbb{R}, A \in \mathbb{R}^{m,n}$$

(iii)
$$(\lambda \mu)A = \lambda(\mu A)$$
 $\forall \lambda \mu \in \mathbb{R}, A \in \mathbb{R}^{m,n}$

(iv)
$$1 \cdot A = A \qquad \forall A \in \mathbb{R}^{m,n}$$

 $(\mathbb{R}^{m,n},+)$ è un **gruppo abeliano** in cui è definita una moltiplicazione per scalari in cui valgono le proprietà i-iv (prototipo per gli spazi vettoriali).

3.2 Prodotto tra matrici

$$A, B \text{ t. c. } A \in \mathbb{R}^{m,n}, B \in \mathbb{R}^{n,k} \implies AB \in \mathbb{R}^{m,k}$$

Questo è definito come il prodotto **righe per colonne**. Il numero di colonne della prima matrice deve corrispondere con il numero di righe della seconda matrice.

Definizione Siano $A \in \mathbb{R}^{m,n}$ e $B \in \mathbb{R}^{n,k}$ due matrici, siano a_{ij} gli elementi di A e b_{rs} gli elementi di B [Notazione: $A = (a_{ij}), B = (b_{rs})$]

La matrice $A \cdot B$ è la matrice in $R^{m,k}$ il cui ij-esimo elemento è

$$a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{ni} = \sum_{r=1}^{n} a_{ir} \cdot b_{rj}$$

3.2.1 Prodotto tra matrici quadrate

Siano $A, B \in \mathbb{R}^{m,m}$, $AB \in \mathbb{R}^{m,m}$; in questo caso il prodotto tra matrici definisce una operazione in $\mathbb{R}^{m,m}$.

- i. il prodotto è associativo: $(A \cdot B) \cdot C = A \cdot (B \cdot C), \forall A, B, C \in \mathbb{R}^{m,m}$
- ii. esiste un elemento neutro

Proposizione p.i Sia $I \in \mathbb{R}^{m,m}$ la matrice identità, $A \in \mathbb{R}^{m,m}$

$$\implies A \cdot I = I \cdot A = A \ \forall A \in \mathbb{R}^{m,m}$$

dim. (p.i) Sia (r_{ij}) l'ij-esimo elemento della matrice $A \cdot I$ con $A = (a_{ij})$ e $I = (b_{ij})$

$$r_{ij} = \sum_{n=1}^{m} a_{in} \cdot b_{ni}$$

Si noti che $b_{kh} = 0 \ \forall k, h | k \neq h \implies$

$$r_{ij} = \sum_{n=1}^{m} a_{in} \cdot b_{ni} =$$

$$= \underbrace{a_{ii}b_{1j}} + \underbrace{\cancel{} + a_{ij}b_{jj}} + \underbrace{\cancel{} + a_{in}b_{nj}} =$$

$$= \underbrace{a_{ij} \cdot b_{jj}} = \underbrace{a_{ij} \cdot b_{ij}} =$$

$$\implies r_{ij} = a_{ij}$$

In generale se $A \in \mathbb{R}^{m,m}$ \nexists un inverso per A, cioè non esiste $B \in \mathbb{R}^{m,m}$ tale che $A \cdot B = B \cdot A = I$

Esempio (3.2)

- \bullet Se A è la matrice nulla
 - $\implies A \cdot B = \text{matrice nulla} \neq I$
- Se A ha una riga o una colonna nulla (ovvero fatta tutta di zeri)
 - ⇒ non è invertibile

5 ott 2021

Teorema I Sia V uno spazio vettoriale su campo $\mathbb{K},$ e $W\subseteq V$ un sottospazio vettoriale:

- 1. se V è finitamente generato \implies W è finitamente generato;
- 2. se V è finitamente generato $\implies \dim W \leq \dim V$
- 3. se V è finitamente generato e dim $W = \dim V \implies W = V$

dim. (I)

1. Supponiamo che V sia finitamente generato, e per assurdo che W non lo sia.

V è finitamente generato $\implies V$ ha una base

$$\mathscr{B} = \{v_1, \cdots, v_n\}$$

W non è finitamente generato, e sia $w_1 \in W$, $w_1 \neq \underline{0}$, considero $\mathscr{L}(w_1) \subseteq W$, ma $W \neq \mathscr{L}(w_1)$, altrimenti W sarebbe generato da w_1 . $\Longrightarrow \exists w_2 \in W \land w_2 \notin \mathscr{L}(w_1)$.

Considero $\mathcal{L}(w_1, w_2) \subseteq W$, ma $W \neq \mathcal{L}(w_1, w_2)$, altrimenti W sarebbe generato da $\{w_1, w_2\}$. $\Longrightarrow \exists w_3 \in W \land w_3 \notin \mathcal{L}(w_1, w_2)$.

Itero il procedimento e trovo

$$\{w_1, \cdots, w_{n+1}\} \subseteq W$$
 t.c. $w_{n+1} \notin \mathcal{L}(w_1, \cdots, w_n) \implies$
 $\implies \{w_1, \cdots, w_{n+1}\}$ è un insieme libero

e contiene più elementi di una base \mathcal{B} . Assurdo per teorema precedente.

- 2. Supponiamo V finitamente generato, e sia $W \subseteq V$ un sottospazio vettoriale. W è finitamente generato (per 1.) $\Longrightarrow \exists \mathscr{B} = \{w_1, \cdots, w_m\}$ base di $W \Longrightarrow \mathscr{B} \subseteq V$ è un sottoinsieme libero $\Longrightarrow m \leq \dim V$ $\Longrightarrow \dim W \leq \dim V$
- 3. Sia $W \subseteq V$ uno spazio vettoriale, con V finitamente generato. dim $W = \dim V$.

W ha una base \mathscr{B} con n vettori, dove $n = \dim V \implies \mathscr{B}$ è una base di V.

Se
$$\mathscr{B} = \{w_1, \dots, w_n\} \implies W = \mathscr{L}(w_1, \dots, w_n) = V \implies W = V$$

Osservazione (3.2) Se V è uno spazio vettoriale finitamente generato, e dim $V = n \implies$ ogni insieme libero con n elementi è una base. Infatti se $\mathcal{B} = \{v_1, \dots, v_n\}$ è un insieme libero, se per assurdo esistesse $v \in V \land v \notin \mathcal{L}(v_1, \dots, v_n) \implies \{v_1, \dots, v_n, v\} \subseteq V$ è un insieme libero di cardinalità n+1 (ovvero con n+1 elementi). Assurdo.

Teorema II (del completamento di una base) Sia V uno spazio vettoriale su un campo $\mathbb K$ finitamente generato. Sia $\mathscr B=\{v_1,\cdots,v_n\}$ una base di V e sia $I=\{a_1,\cdots,a_l\}\subseteq V$ un sottoinsieme libero. Esiste sempre $\mathscr B'$ base di V i cui primi l-elementi sono a_1,\cdots,a_l e i restanti n-l-elementi sono elementi di $\mathscr B$.

$$\mathscr{B}' = \{a_1, \dots, a_l, w_1, \dots, w_{n-l}\} \text{ con } w_1, \dots, w_{n-l} \in \mathscr{B}$$

 $\operatorname{\textit{dim.}}$ (II) Applico il metodo degli scarti successivi

l = n l'enunciato è banale (I è già una base e non va completata);

$$l < n \implies \mathcal{L}(a_1, \cdots, a_l) \subsetneq V$$

 $\implies \exists w_1 \in \mathscr{B}$ t. c. $w_1 \notin \mathscr{L}(a_1, \cdots, a_l)$. Infatti, se tutti i generatori appartenenti a \mathscr{B} fossero combinazioni lineari di a_1, \cdot, a_l , non sarebbero più tutti linearmente indipendenti. $\implies I_1 = \{a_1, \cdot, a_l, w_1\}$ è libero.

Se I_1 è una base, la dimostrazione si conclude, altrimenti $\exists w_2 \in \mathcal{B}$ t. c. $w_2 \notin \mathcal{L}(a_1, \dots, a_l, w_2)$ $\Longrightarrow I_1 = \{a_1, \cdot, a_l, w_1, w_2\}$ è libero.

Se I_2 è una base la dimostrazione si conclude, altrimenti si itera fino a

$$I_{n-l} = \{a_1, \cdot, a_l, w_1, \cdots, w_{n-l}\} \text{ con } w_1, \cdots, w_{n-l} \in \mathscr{B}.$$

 I_{n-l} è libero con n vettori $\implies I_{n-l}$ è una base

Esempio (3.3) $S(\mathbb{R}^{3,3}) = \{ A \in \mathbb{R}^{3,3} \text{ t. c. } {}^{t}A = A \}$

Cerco una base. Sia $A \in \mathcal{S}(\mathbb{R}^{3,3})$ generica:

$$A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \text{ con } a, b, c, d, e, f \in \mathbb{R}$$

$$A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Siano
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, e \sin \mathscr{B} = \{E_1, \dots, E_6\}$$

Dato

$$I = \left\{ A_1 = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ A_3 = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right\} \subseteq \mathcal{S}(\mathbb{R}^{3,3})$$

insieme libero, si trovino tre elementi $w_1, w_2, w_3 \in \mathcal{B}$ tali per cui $I \cup \{w_1, w_2, w_3\}$ sia una base di $\mathcal{S}(\mathbb{R}^{3,3})$.

$$A_1 = E_1 + 2E_2; A_2 = E_1 - E_4 + E_6; A_3 = E_2 - E_3$$

e rispetto alla base \mathcal{B}

$$A_1 = (1, 2, 0, 0, 0, 0), A_2 = (1, 0, 0, -1, 0, 1), A_3 = (0, 1, -1, 0, 0, 0)$$

 $E_1 = (1, 0, \dots, 0), E_2 = (0, 1, 0, \dots, 0), \dots, E_6 = (0, \dots, 0, 1)$

Si studia l'appartenenza di $E_1 \in \mathcal{L}(A_1, A_2, A_3)$. Studio il sistema

$$E_1 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3$$

$$\begin{cases} 1 = \lambda_1 + \lambda_2 \\ 0 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_1 = 0 \\ \lambda_1 = 1 \\ 0 = \lambda_2 \end{cases} \implies \text{Il sistema non ha soluzione}$$

$$\implies E_1 \notin \mathcal{L}(A_1, A_2, A_3) \implies I_2 = \{A_1, A_2, A_3, E_1\}$$

Si studia l'appartenenza di $E_2 \in \mathcal{L}(A_1, A_2, A_3, E_1)$. Studio il sistema

$$E_2 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 1 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_4 = -\frac{1}{2} \\ \lambda_3 = 0 \\ \lambda_2 = 0 \\ \lambda_1 = \frac{1}{2} \end{cases} \implies \text{Il sistema ha soluzione}$$

$$\implies E_2 \in \mathcal{L}(A_1, A_2, A_3, E_1) \implies \text{scarto } E_2$$

Si studia l'appartenenza di $E_3 \in \mathcal{L}(A_1, A_2, A_3, E_1)$. Studio il sistema

$$E_3 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases}
0 = \lambda_1 + \lambda_2 + \lambda_4 \\
0 = 2\lambda_1 + \lambda_3 \\
1 = -\lambda_3 \\
0 = -\lambda_2 \\
0 = 0 \\
0 = \lambda_2
\end{cases}
\implies
\begin{cases}
\lambda_4 = -\frac{1}{2} \\
\lambda_3 = -1 \\
\lambda_2 = 0 \\
\lambda_1 = \frac{1}{2}
\end{cases}
\implies$$
 Il sistema ha soluzione

$$\implies E_3 \in \mathcal{L}(A_1, A_2, A_3, E_1) \implies \text{scarto } E_3$$

Si studia l'appartenenza di $E_4 \in \mathcal{L}(A_1, A_2, A_3, E_1)$. Studio il sistema

$$E_4 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases}
0 = \lambda_1 + \lambda_2 + \lambda_4 \\
0 = 2\lambda_1 + \lambda_3 \\
0 = -\lambda_3 \\
1 = -\lambda_2 \\
0 = 0 \\
0 = \lambda_2
\end{cases} \implies \begin{cases}
\lambda_2 = 0 \\
\lambda_2 = -1 \\
\dots\end{cases}$$
 Il sistema non ha soluzione

$$\implies E_4 \notin \mathcal{L}(A_1, A_2, A_3, E_1) \implies I_2 = \{A_1, A_2, A_3, E_1, E_4\}$$

Si studia l'appartenenza di $E_5 \in \mathcal{L}(A_1, A_2, A_3, E_1, E_4)$. Studio il sistema

$$E_5 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1 + \lambda_5 E_4$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 0 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 + \lambda_5 \\ 1 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} 1 = 0 \\ \cdots \end{cases} \implies \text{II sistema non ha soluzione}$$

$$\implies E_5 \in \mathcal{L}(A_1, A_2, A_3, E_1, E_4) \implies I_3 = \{A_1, A_2, A_3, E_1, E_4, E_5\}$$

La soluzione è $\mathcal{B}' = \{A_1, A_2, A_3, E_1, E_4, E_5\}$

4 Operazioni tra sottospazi vettoriali

Sia V uno spazio vettoriale su un un campo \mathbb{K} , e siano W_1 e $W_2 \subseteq V$ due sottospazi vettoriali.

Si consideri

$$W_1 \cap W_2 = \{x \mid x \in w_1 \land x \in w_2\}$$

Proposizione p.ii $W_1 \cap W_2$ è sempre sottospazio vettoriale

dim. (p.ii) Siano $x, y \in W_1 \cap W_2$

$$\implies \begin{cases} x, y \in W_1 \implies (x+y) \in W_1 \\ x, y \in W_2 \implies (x+y) \in W_2 \end{cases} \implies (x+y) \in W_1 \cap W_2$$

7 ott 2021

Proposizione p.iii Sia V uno spazio vettoriale e W, W_1 e W_2 sottospazi di V.

Se W contiene W_1 e W contiene W_2 allora W contiene $W_1 + W_2$ (cioè $W_1 + W_2$ è il più piccolo sottospazio di V che contiene sia W_1 che W_2)

dim. (p.iii) Sia $x + y \in W_1 + W_2$, $x \in W_1 \implies x \in W, y \in W_2 \implies y \in W \implies x + y \in W$, poiché W è un sottospazio vettoriale. Quindi ogni $v \in W_1 + W_2$ è elemento di $W \implies W_1 + W_2 \subseteq W$.

La somma si generalizza a più sottospazi. Siano $W_1, \dots, W_l \subseteq V$ sottospazi vettoriali, allora si definisce

$$W_1 + \dots + W_l = \{x_1 + \dots + x_l | x_1 \in W_1, \dots, x_l \in W_l\} \subseteq V$$

è un sottospazio vettoriale ed è il più piccolo sottospazio che contiene tutti i W_1, \cdots, W_l

Esercizio Si trovino somma e intersezione dei seguenti sottospazi vettoriali di \mathbb{R}^4

a.
$$W_1 = \{(x_1, x_2, 0, 0) | x_1, x_2 \in \mathbb{R}\}, W_2 = L(e_4)$$

b.
$$W_1 = \{(x_1, x_2, 0, 0) | x : 1, x : 2 \in \mathbb{R} \},\ Z_2 = \{(0, x_2, 0, x_4) | x_2, x_4 \in \mathbb{R} \}$$

Soluzione

a.
$$W_1 + W_2 = \{(x_1, x_2, 0, x_4) | x_1, x_2, x_4 \in \mathbb{R}\}, W_1 \cap W_2 = \{\underline{0}\}$$

b.
$$W_1 + Z_2 = \{(x_1, x_2, 0, x_4) | x_1, x_2, x_4 \in \mathbb{R}\},$$

 $W_1 \cap Z_2 = \{(0, x_2, 0, 0) | x_2 \in \mathbb{R}\}$

Proposizione p.iv Sia V spazio vettoriale su un campo \mathbb{K} e $W_1, W_2 \subseteq V$ due sottospazi. Sono fatti equivalenti le seguenti proposizioni:

- 1. $W_1 \cap W_2 = \{\underline{0}\}$ (hanno intersezione banale)
- 2. ogni $v \in W_1 + W_2$ si scrive in modo unico come v = x + y con $x \in W_1$ e $y \in W_2$

dim. (p.iv)

1. \implies 2. Suppongo $W_1 \cap W_2 = \{\underline{0}\}$ e considero $v \in W_1 + W_2$. Scrivo $v = x_1 + y_1$, $v = x_2 + y_2$ e dimostro che $x_1 = x_2$ e $y_1 = y_2$

$$\begin{cases} x_1 - x_2 \in W_2 \implies x_1 - x_2 \in W_1 \cap W_2 \\ y_2 - y_1 \in W_1 \implies y_2 - y_1 \in W_1 \cap W_2 \end{cases}$$

$$\implies \begin{cases} x_1 - x_2 = \underline{0} \implies x_1 = x_2 \\ y_2 - y_1 = \underline{0} \implies y_1 = y_2 \end{cases}$$

2. \implies 1. Suppongo che ogni $v \in W_1 + W_2$ si scriva in modo unico come v = x + y con $x \in W_1$ e $y \in W_2$ e dimostro che $W_1 \cap W_2 = \{\underline{0}\}$

Sia $v \in W_1 \cap W_2$. Sia $v \in W_1 + W_2$, v = x + y = x + v + y - v, con $x + v \in W_1$, $y - v \in W_2$. Quindi se $v \neq 0$, le due scritture v = x + y, v = (x + v) + (y - v) sono diverse e ciò non è possibile per ipotesi

Notazione Se $W_1 \cap W_2 = \{\underline{0}\}$ si scrive $W_1 \oplus W_2$ invece che $W_1 + W_2 \oplus$ si legge "somma diretta"

Esempio (4.1) $\mathbb{K}^{n,n} = S(\mathbb{K}^{n,n}) \oplus A(\mathbb{K}^{n,n})$

Esempio (4.2) $R^2 = \mathcal{L}(e_1) \oplus \mathcal{L}(e_2)$

Proposizione p.v Sia V uno spazio vettoriale su un campo \mathbb{K} . Siano $W_1, \dots, W_l \subseteq V$ sottospazi vettoriali. Sono fatti equivalenti le seguenti proposizioni

- 1. $W_i \cap (W_1 + \cdots + W_{i-1} + W_{i+1} + \cdots + W_l) = \{0\} \ \forall i = 1, \cdots, l$
- 2. Ogni $v \in W_1 + \cdots + W_l$ si scrive in modo unico come $v = x_1 + \cdots + x_l$ con $x_1 \in W_1, \cdots, x_l \in W_l$

Se vale 1. si scrive $W_1 \oplus W_2 \oplus \cdots \oplus W_l$

Esempio (4.3) Considero V spazio vettoriale di dimensione finita e $\mathscr{B} = \{v1, \dots, v_n\} \implies V = \mathscr{L}(v_1) \oplus \dots \oplus \mathscr{L}(v_l)$

Sia V spazio vettoriale su un campo \mathbb{K} , finitamente generato. Sia $W \subseteq V$ un sottospazio vettoriale, sia $\mathscr{B} = \{w_1, \dots, w_l\}$ una base di W. Possiamo completare \mathscr{B} con una base dello spazio $\mathscr{B}' = \{w_1, \dots, w_l, v_1, \dots, v_m\}$. Sia

$$Z = \mathcal{L}(v_1, \cdots, v_m) \subseteq V$$

un sottospazio vettoriale, e per costruzione $V=W\oplus Z$

Osservazione (4.1) Sia V spazio vettoriale di dimensione finita con $V=W\oplus Z$ Siano $\mathscr{B}=\{w1,\cdots,w_l\}$ una base di W e $C=\{z_1,\cdots,z_m\}$ una base di Z. Ogni elemento di V si scrive in modo unico come v=x+y con $x\in W$ e $y\in Z$ \mathscr{B} base di W

 $\implies x$ si scrive in modo unico come $x = \lambda_1 w_1 + \cdots + \lambda_l w_l$

 $\mathscr C$ base di $Z\implies y$ si scrive in modo unico come

$$y = \mu_1 z_1 + \dots + \mu_n z_n$$

 $\implies v$ si scrive in modo unico come

$$v = \lambda_1 w_1 + \dots + \lambda_l w_l + \mu_1 z_1 + \dots + \mu_n z_n$$

$$\implies B \cup C = \{w1, \cdots, w_l, z_1, \cdots, z_l\}$$
è una base di V

$$\implies \dim V = \dim W + \dim Z$$

Teorema III Sia V uno spazio vettoriale su un campo \mathbb{K} finitamente generato. Siano $W_1, W_2 \subseteq V$ due sottospazi vettoriali t. c. $V = W_1 + W_2$. Allora

$$\dim V = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

Questa è la **Formula di Grassmann**.

dim. (III) Chiamo

$$\dim V = n, \dim W_1 = l, \dim W_2 = p, \dim(W_1 \cap W_2) = r$$

In particolare $l, p \leq n, r \leq l, p$

1.
$$r = l \implies W_1 \cap W_2 = W_1 \implies W_1 \subseteq W_2 \implies W_1 + W_2 = W_2 = V$$

2.
$$r = p \implies W_1 \cap W_2 = W_2 \implies W_2 \subseteq W_1 \implies W_1 + W_1 = W_1 = V$$

3. si assume $r \leq l, p$ e sia

$$\mathcal{B} = \{a_1, \cdots, a_r\}$$
base di $W_1 \cap W_2$

Completo \mathscr{B} con una base \mathscr{C} di W_1 ,

$$\mathscr{C} = \{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l\}$$

e completo \mathscr{B} con una base \mathscr{D} di W_2 ,

$$\mathscr{D} = \{a_1, \cdots, a_r, c_{r+1}, \cdots, c_p\}$$

Si verifica che l'insieme

$$\{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l, c_{r+1}, \cdots, c_p\}$$

è una base di V. In questo modo si ottiene

$$\dim V = l + (p - r)$$

cioè la tesi.

Ovviamente risulta

$$\mathcal{L}(a_1,\cdots,a_r,b_{r+1},\cdots,b_l,c_{r+1},\cdots,c_p)=V$$

in quanto contiene i generatori sia di W_1 che di W_2 , e quindi anche della loro somma. Verifichiamo che l'insieme

$$\{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l, c_{r+1}, \cdots, c_p\}$$

sia libero. Supponiamo

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu r + 1 + b_{r+1} + \dots + \\ + \dots + \mu_l b_l + \gamma_{r+1} c_{r+1} + \dots + \gamma_p c_p = \underline{0} * * \\ (\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l) = (-\gamma_{r+1} c_{r+1} - \dots - \gamma_p c_p)$$

Sia

$$c = (-\gamma_{r+1}c_{r+1} - \dots - \gamma_p c_p) =$$

= $(\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l)$

sicuramente $c \in W_2$

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l \in W_1$$

$$\implies c \in W_1 \cap W_2 = \mathcal{L}(a_1, \cdots, a_r)$$

$$\implies c = \beta_1 a_1 + \dots + \beta_r a_r, \text{ vado a sostituire in **}$$

$$(\beta_1 a_1 + \dots + \beta_r a_r) + (\gamma_{r+1} c_{r+1} + \dots + \gamma_p c_p) = \underline{0}$$

$$\implies \begin{cases} \beta_1 = \dots = \beta_r = 0 \\ \gamma_{r+1} = \dots = \gamma_p = 0 \end{cases}$$

Ho ottenuto

$$\gamma_{r+1} = \dots = \gamma_p = 0$$

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l = 0$$

Poiché l'insieme

$$\mathscr{C} = \{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l\}$$

è libero

$$\implies \lambda_1 = \dots = \lambda_r = \mu_{r+1} = \dots = \mu_l = 0$$

$$\implies \{a_1, \dots, a_r, b_{r+1}, \dots, b_l, c_{r+1}, \dots, c_p\} \text{ è libero}$$

2 nov 2021

5 Funzioni lineari

V e W spazi vettoriali sullo stesso campo \mathbb{K} e una funzione $F:V\to W, F$ è lineare se verifica $F(\lambda v + \mu w) = \lambda F(v) + \mu F(w) \ \forall \lambda, \mu \in \mathbb{K}, v, w \in V$

Teorema IV (di esistenza e unicità) Siano V e W spazi vettoriali su un campo \mathbb{K} con V finitamente generato.

Sia
$$\mathscr{B} = \{v_1, \dots, v_n\}$$
 una base di $V \in a_1, \dots, a_n \in W$.

Allora esiste un'unica funzione lineare $F: V \to W$ tale che $F(v_i) = a_i$ $\forall i = 1, \dots, n$

dim. (IV)

Esistenza Sia $v \in V$, v si scrive in modo unico come $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$ per $x_1, \cdots, x_n \in \mathbb{K}$

Si definisce

$$F(v) = F(x_1v_1 + x_2v_2 + \dots + x_nv_n) := x_1a_1 + \dots + x_na_n$$

F definisce una funzione $V \to W$ tale che $F(v_i) = a_i$ per $i = 1, \dots, n$. Verifico che F è lineare.

Siano $\lambda, \mu \in \mathbb{K}$ e $v, w \in V$ e dimostro che $F(\lambda v + \mu w) = \lambda F(v) + \mu F(w)$

Scrivo

$$v = \sum_{k=1}^{n} x_k v_k$$

e

$$w = \sum_{r=1}^{n} y_r v_r$$

$$\lambda v + \mu w = \sum_{k=1}^{n} (\lambda x_k \mu y_k) v_k$$

Quindi per come è definita F risulta che

$$F(\lambda v + \mu w) = F\left(\sum_{k=1}^{n} (\lambda x_k \mu y_k) v_k\right) =$$

$$= \sum_{k=1}^{n} (\lambda x_k \mu y_k) a_k =$$

$$\lambda \sum_{k=1}^{n} \lambda x_k a_k + \mu \sum_{k=1}^{n} y_k a_k =$$

$$= \lambda F(v) + \mu F(w)$$

 $\implies F$ è lineare

Unicità Supponiamo di avere due funzioni lineari $F,G:V\to W$ tali che $F(v_i)=G(v_i)=a_i \ \forall i=1,\cdots,n$ e dimostro che F=G, cioè che $F(v)=G(v) \ \forall v\in V$ Possiamo scrivere $v=\sum_{k=1}^n x_k v_k$ quindi

$$F(v) = F\left(\sum_{k=1}^{n} x_k v_k\right)$$

$$= \sum_{k=1}^{n} x_k F(v_k)$$

$$= \sum_{k=1}^{n} x_k a_k$$

Inoltre

$$G(v) = G\left(\sum_{k=1}^{n} x_k v_k\right)$$

$$= \sum_{k=1}^{n} x_k G(v_k)$$

$$= \sum_{k=1}^{n} x_k a_k$$

$$\implies F(v) = G(v) \ \forall v \in V$$

$$\implies F = V$$

5.1 Matrice associata ad una applicazione lineare

Siano V e W spazi vettoriali su un campo \mathbb{K} con V, W entrambi finitamente generati. Supponiamo dim V=n e dim W=m.

Considero $F:V\to W$ lineare, e fisso $\mathscr{B}=\{v_1,\cdots,v_n\}$ base di V e $\mathscr{C}=\{w_1,\cdots,w_n\}$ base di W.

$$F(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m = \sum_{k=1}^m a_{k1}w_k$$

$$F(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m = \sum_{k=1}^m a_{k2}w_k$$

$$\dots$$

$$F(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m = \sum_{k=1}^m a_{kn}w_k$$

Tutto questo determina $A=(a_{ij})\in\mathbb{K}^{m,n}, A$ è determinata da $F,\mathcal{B},\mathcal{C}$ Sia $v\in V$ un vettore generico $v=\sum_{k=1}^n x_k v_k, x_1,\cdots,x_n\in\mathbb{K}$

$$F(v) = F\left(\sum_{k=1}^{n} x_k v_k\right) = \sum_{k=1}^{n} x_k F(v_k) =$$

$$= x_1 F(v_1) + x_2 F(v_2) + \dots + x_n F(v_n) =$$

$$= x_1 \sum_{k=1}^{m} a_{k1} w_k + x_2 \sum_{k=1}^{m} a_{k2} w_k + \dots + x_n \sum_{k=1}^{m} a_{kn} w_k =$$

$$= \sum_{k=1}^{m} (a_{k1} x_1) w_k + \sum_{k=1}^{m} (a_{k2} x_2) w_k + \dots + \sum_{k=1}^{m} (a_{kn} x_n) w_k =$$

$$= \left(\sum_{r=1}^{n} a_{1r} x_r\right) w_1 + \left(\sum_{r=1}^{n} a_{2r} x_r\right) w_2 + \dots + \left(\sum_{r=1}^{n} a_{mr} x_r\right) w_m$$

Se
$$(v)_{\mathscr{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\implies (F(v)) = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\implies (F(v)) = A(v)_{\mathscr{B}}$$

Notazione Si indica A con $M^{\mathcal{B},\mathcal{C}}(F)$, matrice che rappresenta F rispetto alle basi \mathcal{B} e \mathcal{C}

Esempio (5.1) Sia $I: V \to V$ funzione identità, e calcoliamo $M^{\mathcal{B},\mathcal{B}}(I)$ dove \mathcal{B} è una base fissata di V. Se $\mathcal{B} = \{v_1, \dots, v_n\}$ risulta $I(v_i) = v_i$ $\forall i = 1, \dots, n$

 $\implies M^{\mathcal{B},\mathcal{B}}(I) = Id$ matrice identità

Esempio (5.2) Sia $F: \mathbb{R}^3 \to \mathbb{R}^2$,

$$F(x_1, x_2, x_3) = (3x_1 - x_2, 2x_2 + 3x_3)$$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 e \mathscr{C} la base canonica di \mathbb{R}^2 , voglio trovare $M^{\mathscr{B},\mathscr{C}}(F)$

Possiamo scrivere
$$F\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=M^{\mathscr{B},\mathscr{C}}(F)\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$$

Sono noti F(1,0,0) = (3,0), F(0,1,0) = (-1,2) e F(0,0,1) = (0,3), quindi

$$M^{\mathcal{B},\mathcal{C}}(F) = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$

In generale data $F: \mathbb{R}^n \to \mathbb{R}^m$ espressa in termini della base canonica di \mathbb{R}^n e \mathbb{R}^m la matrice che rappresenta F è la matrice le cui colonne sono $F(e_1), \cdots, F(e_n)$

Esempio (5.3) Data $F: \mathbb{R}^3 \to \mathbb{R}^2$: $(x_1, x_2, x_3) \mapsto (4x_1 - x_3, x_1 + x_2 + x_3)$

Si ha

$$M^{\mathscr{B},\mathscr{C}}(F) = \begin{pmatrix} 4 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

Esempio (5.4) $F: \mathbb{K}^{n,n} \to \mathbb{K}: A \mapsto \operatorname{tr}(A)$ e determino la matrice che rappresenta F rispetto alla base canonica di $\mathbb{K}^{n,n}$, $\mathscr{B} = E_{i_1j}$ e alla base canonica di $\mathbb{K} \mathscr{C} = \{1\}$

Si ha

$$M^{\mathscr{B},\mathscr{C}}(F) = \left(\operatorname{tr}(E_{11}) \operatorname{tr}(E_{12}) \cdots \operatorname{tr}(E_{1n}) \operatorname{tr}(E_{21}) \operatorname{tr}(E_{22}) \cdots \operatorname{tr}(E_{nn})\right)$$

Per esempio se n=2 risulta $M^{\mathcal{B},\mathcal{C}}(F)=\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$

Esempio (5.5) Sia $a \in V_3$ e $F: V_3 \to V_3$: $x \mapsto a \wedge x$ funzione lineare.

Sia $\mathscr{B} = \{i, j, k\}$ base ortonormale positiva di V_3 e calcolo $M^{\mathscr{B}, \mathscr{B}}(F)$, scriviamo $a = a_1i + a_2j + a_3k$

$$F(i) = a \wedge i = (a_1i + a_2j + a_3k) \wedge i = -a_2k + a_3j$$

$$F(j) = a \wedge j = (a_1i + a_2j + a_3k) \wedge j = a_1k - a_3j$$

$$F(k) = a \wedge k = (a_1i + a_2j + a_3k) \wedge k = -a_1j + a_2i$$

Si ha

$$M^{\mathscr{B},\mathscr{B}}(F) = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$$

Esercizio Sia
$$F: \mathbb{R}^3 \to \mathbb{R}^{2,2}, F(a,b,c) = \begin{pmatrix} a & a+b \\ a+b+c & 0 \end{pmatrix}$$

Sia ${\mathscr B}$ base canonica di ${\mathbb R}^3$ e ${\mathscr C}$ base canonica di ${\mathbb R}^{2,2}$

Si trovi $M^{\mathcal{B},\mathcal{C}}(F)$

Soluzione Da risolvere

5.2 Immagine di sottospazi vettoriali

Siano V e W spazi vettoriali su un campo \mathbb{K} e sia $F:V\to W$ lineare, sia $H\subseteq V$ sottospazio vettoriale, F(H) immagine di H tramite F, tale che $F(H)\subseteq W$, $F(H)=\{F(h)|h\in H\}$

Proposizione p.vi F(H) è sempre un sottospazio vettoriale di W

dim. (p.vi) Siano $w_1, w_2 \in F(H), \lambda, \mu \in \mathbb{K}$ e dimostriamo che $\lambda w_1 + \mu w_2 \in F(H)$

$$w_1 \in F(H) \implies w_1 = F(h_1)$$
per qualche $h_1 \in H$
 $w_2 \in F(H) \implies w_2 = F(h_2)$ per qualche $h_2 \in H$

$$\lambda w_1 + \mu w_2 = \lambda F(h_1) + \mu F(h_2) = F(\lambda h_1 + \mu h_2)$$

Poiché H è un sottospazio vettoriale, risulta che, dato $h = \lambda h_1 + \mu h_2$

$$\implies \lambda w_1 + \mu w_2 = F(h)$$
 per qualche $h \in H$

$$\implies \lambda w_1 + \mu w_2 \in F(H)$$

$$\implies F(H)$$
 sottospazio vettoriale di V

Supponiamo dim H = n, dim F(H) = ?

Sia $\mathscr{B} = \{h_1, \dots, h_n\}$ base di H, sappiamo che $\{F(h_1), \dots, F(h_n)\}$ è un insieme di generatori di F(H)

$$\implies \dim F(H) \le n$$

Esercizio Sia $F: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare data da

$$F(x_1, x_2, x_3) = (2x_1 - x_3, x_1 + x_2 + x_3, x_1 - x_2, x_2 - x_3)$$

Sia $H\subseteq\mathbb{R}^3$ il sottospazio $H=\{(x_1,x_2,x_3\in\mathbb{R}^3|x_1+x_2=0\},\,\dim H=2$ Si trovi una base di F(H)

Soluzione

- 1. Trovo una base di H, per esempio $\{(1, -1, 0), (0, 0, 1)\}$
- 2. Calcolo le immagini dei vettori della base

$$F(1,-1,0) = (2,0,2,-1)$$

$$F(0,0,1) = (-1,1,0,-1)$$

Questi due vettori sono linearmente indipendendenti, allora formano una base di ${\cal F}(H)$

Definizione Sia $F:V\to W$ lineare, F(V) (che è un sottospazio vettoriale di W) si dice l'immagine di F

Osservazione (5.1) F è suriettiva $\iff F(V) = W \iff \dim F(V) = \dim W$ (criterio per testare la suriettività di una funzione lineare)

Esercizio Sia $F : \mathbb{R}^3 \to \mathbb{R}^3$, F(x, y, z) = (2x + 2y, x + z, x + 3y - 2z)

- 1. Dire se F è suriettiva e in caso contrario trovare $w \in \mathbb{R}^3$ tale che $w \notin F(\mathbb{R}^3)$
- 2. Sia $a = (1,0,1), b = (0,1,1), H = \mathcal{L}(a,b)$. Dire se $(4,3,-2) \in F(H)$

Soluzione

1. $F(\mathbb{R}^3) = \mathcal{L}(F(e_1), F(e_2), F(e_3))$

$$F(e_1) = (2, 1, 1)$$

$$F(e_2) = (2,0,3)$$

$$F(e_3) = (0, 1, -2)$$

Si osserva che $F(e_1) = F(e_2) + F(e_3)$, quindi i tre vettori sono linearmente dipendenti

Ma $F(e_2)$ e $F(e_3)$ sono linearmente indipendenti

 $\implies F(\mathbb{R}^3)$ ha dimensioone 2, ed i vettori (2,0,3),(0,1,-2) ne formano una base. F non è suriettiva

 $w \in \mathbb{R}^3$, $w \notin F(\mathbb{R}^3) \iff w$ non è combinazione lineare di (2,0,3),(0,1,-2).

Per esempio w=(1,0,0) va bene, poiché non esistono $\lambda,\mu\in\mathbb{R}$ tali che $(1,0,0)=\lambda(2,0,3)+\mu(0,1,-2)$

2. $F(H)=\mathcal{L}(F(a),F(b))$. F(a)=(2,2,-1), F(b)=(2,1,1). F(a), F(b) sono linearmente indipendenti, quindi dim F=2

$$(4,3,-2) \in F(H) \iff \exists \lambda, \mu \in \mathbb{R} \text{ tali che } (4,-3,-2) = (2\lambda + 2\mu, 2\lambda + \mu, -\lambda + \mu)$$

Il sistema non ha soluzione, pertanto $(4,3,-2) \notin F(H)$

4 nov 2021

Definizione Data $F: V \to W$ applicazione lineare tra spazi vettoriali su uno stesso campo, il rango di F (rank F) è la dimensione di F(V)

Se \mathscr{B} è una base di V e \mathscr{C} è una base di W, ad F si associa la matrice $M^{\mathscr{B},\mathscr{C}}(F)$ che rappresenta F rispetto alle basi fissate.

$$(F(v))_{\mathscr{C}} = M^{\mathscr{B},\mathscr{C}}(F) \cdot (v)_{\mathscr{B}}$$

Il rango di F coincide con il rango della matrice $M^{\mathcal{B},\mathcal{C}}(F)$

 \implies tutte le matrici associate ad F hanno lo stesso rango.

5.3 Retroimmagine di sottospazi

 $F:V\to W$ applicazione lineare, sia $K\subseteq W$ un sottospazio

$$F^{-1}(K) = \{ w \in K | w = F(v) \text{ per qualche } v \in V \}$$

Si noti che $F^{-1}(K) \neq \emptyset$: sicuramente K contiene $\underline{0}_W$ e sappiamo che $F(\underline{0}_V) = \underline{0}_W$.

Proposizione p.vii $F^{-1}(K)$ è sempre un sottospazio vettoriale di V, $\forall K \subseteq W$ sottospazio vettoriale

dim. (p.vii) Fisso $v, w \in F^{-1}(K), \lambda, \mu \in \mathbb{K}$ e dimostro che $\lambda v + \mu w \in F^{-1}(K)$

$$\begin{cases} v \in F^{-1}(K) \implies v = F^{-1}(x) \text{ per qualche } x \in K, F(v) = x \\ w \in F^{-1}(K) \implies v = F^{-1}(y) \text{ per qualche } y \in K, F(w) = y \end{cases}$$

$$F(\lambda v + \mu w) = \lambda F(v) + \mu F(w) = \lambda x + \mu y \in K$$

poiché K è un sottospazio vettoriale

$$\implies F(\lambda v + \mu w) \in K$$

$$\implies \lambda v + \mu w \in F^{-1}(K)$$

$$\implies F^{-1}(K)$$
 sottospazio vettoriale di W

$$\dim F(H) \leq \dim H,$$
 se $K \subseteq F(V) \implies \dim F^{-1}(K) \geq \dim K$

Esercizio

$$F: \mathbb{R}^3 \to \mathbb{R}^4, F(x_1, x_2, x_3) = (x_1 + x_2, 2x_1 + x_2 + x_3, x_1 + x_3, x_2 - x_3)$$

$$K = \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 | y_1 + y_2 = 0\} \dim K = 3$$
 Si determini $F^{-1}(K)$

Soluzione Voglio trovare le $(x_1, x_2, x_3) \in \mathbb{R}^3$ tali che $F(x_1, x_2, x_3) \in K$

$$F(x_1, x_2, x_3) \in K \iff (x_1 + x_2) + 2x_1 + x_2 + x_3 = 0$$

 $3x_1+2x_2+x_3=0$ è l'equazione di $F^{-1}(K)$ ($\dim F^{-1}(K)=2)$

Trovo una base di $F^{-1}(K)$

$$\begin{cases} x_1 = t \\ x_2 = s \\ x_3 = -3t - 2s \end{cases}$$

$$\mathcal{B} = \{(1,0,-3),(0,1,-2)\}$$
 è una base di $F^{-1}(K)$

Altro approccio risolutivo:

Fisso una base di K, per esempio

$$\{w_1 = (1, -1, 0, 0), w_2 = (0, 0, 1, 0), w_3 = (0, 0, 0, 1)\}$$

$$F^{-1}(K) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | F(x_1, x_2, x_3) = \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3 \}$$

per qualche $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$

Ottengo il sistema

$$\begin{cases} x_1 + x_2 = \lambda_1 \\ 2x_1 + x_2 + x_3 = -\lambda_1 \\ x_1 + x_3 = \lambda_2 \\ x_2 - x_3 = \lambda_3 \end{cases}$$

Si risolve il sistema in x_1, x_2, x_3, x_4

$$\begin{pmatrix} 1 & 1 & 0 & \lambda_1 \\ 2 & 1 & 1 & -\lambda_1 \\ 1 & 0 & 1 & \lambda_2 \\ 0 & 1 & -1 & \lambda_2 \end{pmatrix} \xrightarrow{\text{si riduce per righe}} \begin{pmatrix} 1 & 1 & 0 & \lambda_1 \\ 0 & -1 & 1 & -3\lambda_1 \\ 0 & 0 & 0 & \lambda_2 + 2\lambda_1 \\ 0 & 0 & 0 & \lambda_3 + 3\lambda_1 \end{pmatrix}$$

Affinché il sistema sia risolubile si deve avere

$$\lambda_{2} + 2\lambda_{1} = 0; \qquad \lambda_{3} + 3\lambda_{1} = 0$$

$$\begin{cases} x_{1} + x_{2} = \lambda_{1} \\ -x_{2} + x_{3} = -3\lambda_{1} \\ \lambda_{2} + 2\lambda_{1} = 0 \\ \lambda_{3} + 3\lambda_{1} = 0 \end{cases} \implies \begin{cases} x_{1} = -2\lambda_{1} - \mu \\ x_{2} = \mu + 3\lambda_{1} \\ x_{2})\mu \end{cases}$$

Da qui si deduce una base di $F^{-1}(K)$

5.4 Nucleo di una funzione lineare

V, W spazi vettoriali su un campo $\mathbb{K}, F: V \to W$ lineare

- $\implies \{\underline{0}_W\}$ è sottospazio vettoriale di W
- $\implies F^{-1}(\underline{0}_W)$ sottospazio vettoriale di V

Definizione $F^{-1}(\underline{0}_W)$ si dice nucleo di F (kernel di F) e si indica con $\ker(F)$

$$\ker F = \{v \in V | F(v) = \underline{0}_W\}$$

Teorema V F è iniettiva $\iff \ker F = \underline{0}_V$

dim. (V)

"
$$\Longrightarrow$$
 " Supponiamo F iniettiva e sia $v \in \ker F$
$$\Longrightarrow F(v) = \underline{0}_W, \text{ ma poiché } F \text{ è lineare risulta } F(\underline{0}_V) = \underline{0}_W$$

$$\Longrightarrow F(v) = F(\underline{0}_V) \text{ e poiché } F \text{ è iniettiva risulta } v = \underline{0}_W$$

$$\Longrightarrow \ker F = \{\underline{0}_V\}$$
 " \Longleftarrow " Per ipotesi $\ker F = \{\underline{0}_V\}, \text{ siano } v_1, v_2 \in V \text{ tali che } F(v_1) = F(v_2)$

$$\Rightarrow F(v_1) - F(v_2) = \underline{0}_W, \text{ poiché } F \text{ è lineare si ottiene } F(v_1 - v_2) = \underline{0}_W$$

$$\Rightarrow v_1 - v_2 \in \ker F$$

$$\Rightarrow v_1 - v_2 = \underline{0}_V$$

$$\implies v_1 = v_2$$
, quindi F è iniettiva.

Supponiamo V, W di dimensione finita, dim V = n e dim W = m, siano $\mathcal{B} = \{v_1, \dots, v_n\}$ base di V e $\mathcal{C} = \{w_1, \dots, w_m\}$ base di W, e si consideri $M^{\mathcal{B},\mathcal{C}(F)}$

$$\begin{split} \ker F &= \{v \in V | F(v) = \underline{0}_W\} = \\ &= \{v \in V | (F(v))_{\mathscr{C}} = \underline{0}_{\mathbb{K}^m}\} = \\ &= \{v \in V | M^{\mathscr{B},\mathscr{C}}(F)(v)_{\mathscr{B}} = \underline{0}_{\mathbb{K}^m}\} = \\ &= \{v \in V | (v)_{\mathscr{B}} \text{ appartiene al null-space di } M^{\mathscr{B},\mathscr{C}}(F)\} \end{split}$$

In particolare

 $\dim \ker F =$

= dim(null-space di
$$M^{\mathcal{B},\mathscr{C}}(F)$$
) =
= dim V - rank $M^{\mathcal{B},\mathscr{C}}(F)$ =
= dim V - rank F

$$\dim V = \dim \ker F + \operatorname{rank} F$$

Questo sopra enunciato è il teorema di nullità più rango in termini di una funzione lineare.

Esercizio Sia $F: V \to W$ lineare. Fisso $w_0 \in W$, e definisco

$$F^{-1}(w_0) = \{ v \in V | F(v) = w_0 \}$$

Si diano condizioni necessarie e sufficienti affinché $F^{-1}(w_0)$ sia sottospazio.

Soluzione

Esercizio Sia $\mathcal{B} = \{v_1, v_2, v_3\}$ una base di uno spazio vettoriale V, 3-dim, $\mathcal{E} = \{w_1, w_2, w_3, w_3\}$ una base di uno spazio vettoriale W, 4-dim

Sia $g:V\to W$ la funzione lineare determinata dalle relazioni

$$\begin{cases} g(v_1) = w_1 + 2w_2 + w_3 \\ g(v_2) = w_1 + w_2 + w_4 \\ g(v_3) = w_2 + w_3 - w_4 \end{cases}$$

Si calcolino g(V) e ker g

Soluzione Possiamo calcolare $M^{\mathcal{B},\mathcal{C}}(g)$

$$M^{\mathcal{B},\mathscr{C}}(g) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Per calcolare ker g devo calcolare il null-space di $M^{\mathscr{B},\mathscr{C}}(g)$, cioè

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Riduco $M^{\mathscr{B},\mathscr{C}}(g)$ per righe:

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} x_1 + x_2 = 0 \\ x_2 - x_3 = 0 \end{pmatrix} \to \begin{cases} x_1 = -\lambda \\ x_2 = \lambda \\ x_3 = \lambda \end{cases}$$

Quindi

$$\ker g = \{-\lambda v_1 + \lambda v_2 + \lambda v_3 | \lambda \in \mathbb{K}\} = \mathcal{L}(v_1 - v_2 - v_3)$$

g(V) ha dimensione 2. Per esercizio si trovi una base di g(V)

Notazione Spesso l'immagine di una funzione lineare F si indica con Im(F)

Teorema VI Sia $F: V \to W$ una funzione lineare tra spazi vettoriali su un campo \mathbb{K} .

Fè iniettiva $\iff F$ porta insiemi liberi di vettori di V in insiemi liberi di vettori di W

dim. (VI)

" \Longrightarrow " Supponiamo F iniettiva e sia $\{v_1, \dots, v_l\} \subseteq V$ un insieme libero, e dimostriamo che $\{F(v_1), \dots, F(v_l)\}$ è un insieme libero in W

Considero $\lambda_1, \dots, \lambda_l \in \mathbb{K}$ tali che

$$\lambda_1 F(v_1) + \lambda_2 F(v_2) + \dots + \lambda_l F(v_l) = \underline{0}_W$$

Poiché F è lineare risulta

$$F(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l) = \underline{0}_W$$

 $\implies \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l \in \ker F$, ma poiché F iniettiva $\ker F = \{0_W\}$

$$\implies \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l = \underline{0}_V$$
, ma $\{v_1, \dots, v_l\}$ è libero

$$\implies \lambda_1 = \dots = \lambda_l = 0$$

$$\implies \{F(v_1), \cdots, F(v_l)\}$$
 è libero

"
—" Per ipotesi Fporta insiemi liberi in insiemi liberi. Si fiss
a $v \in V,$ $v \neq \underline{0}_V,$ quindi $\{v\}$ è libero

$$\implies \{F(v)\}$$
 è libero

$$\implies F(v) \neq \underline{0}_W$$

$$\implies \ker F = \{\underline{0}_V\}$$

$$\implies F$$
 è iniettiva

Definizione Una funzione lineare sia iniettiva che suriettiva si dice un isomorfismo

$$F: V \to W$$
 è un isomorfismo $\iff \operatorname{Im}(F) = W \text{ e ker } F = \{\underline{0}_V\}$

Teorema VII

1. Sia $F:V\to W$ lineare con V,W finitamente generati e tali che $\dim V=\dim W.$

F è iniettiva \iff F è suriettiva

2. $F:V\to V$ lineare con V finitamente generato è un isomorfismo \iff iniettiva \iff suriettiva

Definizione Un isomorfismo $F: V \to V$ si dice un automorfismo di V

dim. (VII)

- 1. $\dim V = \dim W$, $\dim V = \dim \ker(F) + \dim \operatorname{Im}(F)$
 - $\implies \dim W = \dim \ker(F) + \dim \operatorname{Im}(F)$
 - \bullet Se F è suriettiva

$$\implies \dim W = \dim \operatorname{Im}(F)$$

$$\implies \dim \ker(F) = 0$$

$$\implies \ker F = \{0_V\}$$

 \implies F è iniettiva

 \bullet Se F è iniettiva

$$\implies$$
 dim ker $F = 0$

$$\implies \dim W = \dim \operatorname{Im} F$$

$$\implies W = \operatorname{Im} F$$

⇒ F è suriettiva

2. Segue dal punto 1.

Esempio (5.6) V spazio vettoriale su un campo \mathbb{K} , \mathscr{B} base di V

$$V \xrightarrow{L_{\mathscr{B}}} \mathbb{K}^n$$
$$v \mapsto (v)_{\mathscr{B}}$$

è un isomorfismo

5.5 Proprietà delle funzioni lineari

8 nov 2021

Proposizione *p.*viii La composizione di funzioni lineari è sempre una funzione lineare

dim. (p.viii) Siano V, W, Z spazi vettoriali su un campo $\mathbb{K}, F: V \to W$ $G: W \to Z$ funzioni lineari, e prendiamo

$$V \xrightarrow{F} W \xrightarrow{G} Z$$

ovvero $G \circ F$, quindi $G \circ F(v) = G(F(v))$

Siano $v, w \in V, \lambda \mu \in \mathbb{K}$

$$G \circ F(\lambda v + \mu w) =$$

dato che F è lineare

$$= G(F(\lambda v + \mu w)) = G(\lambda F(v) + \mu F(w)) =$$

dato che G è lineare

$$= \lambda G(F(v)) + \mu G(F(w))) = \lambda (G \circ F)(v) + \mu (G \circ F)(w)$$

Proposizione p.ix Siuano V, W spazi vettoriali su un campo \mathbb{K} , sia $F: V \to W$ lineare biettiva (F è un isomorfismo),

$$F^{-1}: W \to V$$
 è lineare

Questa proprietà ci mostra quanto sia rigida la linearità di una funzione

dim. (p.ix) $F^{-1}(a)$ è l'unico $x \in V$ tale che F(x) = a

Siano $a, b \in W$, $\lambda \mu \in \mathbb{K}$, dimostro che

$$F^{-1}(\lambda a + \mu b) = \lambda F^{-1}(a) + \mu F^{-1}(b)$$

Denoto $x = F^{-1}(a)$ e $y = F^{-1}(b)$: ciò significa F(x) = a e F(y) = b

$$F(\lambda x + \mu y) = \lambda F(x) + \lambda F(y) = \lambda a + \mu b$$

 \implies per come è definita F^{-1} questo implica

$$F^{-1}(\lambda a + \mu b) = \lambda x + \mu y = \lambda F^{-1}(a) + \mu F^{-1}(b)$$

$$\implies F^{-1}$$
 è lineare

Esempi (5.7)

• $V = \mathbb{K}^n$, $A \in \mathbb{K}^{n,n}$ invertibile,

$$F_A: \mathbb{K}^n \to \mathbb{K}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Se A è invertibile, esiste $A^{-1} \in \mathbb{K}^{n,n}$ tale che $A^{-1}A = AA^{-1} = \operatorname{Id}$ dove $\operatorname{Id} \in \mathbb{K}^{n,n}$ è la matrice identita.

Posso considerare

$$F_A^{-1}: \mathbb{K}^n \to \mathbb{K}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$F_{A^{-1}} \circ F_A(x) = F_{A^{-1}}(F_A(x)) = A^{-1}(Ax) = \operatorname{Id} x = x$$

 $\implies F_{A^{-1}}\circ F_A$ è la funzione identità $I:\mathbb{K}^n\to\mathbb{K}^n$

 $\implies F_A$ è invertibile e la sua inversa è $F_{A^{-1}}$

• Sia V uno spazio vettoriale su un campo \mathbb{K} , finitamente generato.

Fisso $\mathcal{B} = \{v_1, \cdots, v_n\}$ una base di V,

$$F: V \to \mathbb{K}^n$$

$$v = \sum_{i=1}^n x_i v_i \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

funzione lineare iniettiva, poiché il suo nucleo è banale; poiché V e \mathbb{K}^n hanno la stessa dimensione, la funzione è un isomorfismo

Si noti che

$$F(v_1) = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

con un unico 1 nella posizione i-esima, quindi la base di V viene portata tramite F nella base canonica di \mathbb{K}^n

Definizione Due spazi vettoriali V, W sullo stesso campo \mathbb{K} sono isomorfise esiste $F: V \to W$ isomorfismo

Proposizione p.x Supponiamo che V e W siano due spazi vettoriali su un campo \mathbb{K} , entrambi finitamente generati.

V è isomorfo a $W \iff V$ e W hanno la stessa dimensione

dim. (p.x)

" \Longrightarrow " Supponiamo che esiste $F: V \to W$ isomorfismo,

F iniettiva \implies dim Im(F) = dim V

F suriettiva \implies dim $F(V) = \dim W$

 $\implies \dim V = \dim W$

" \Longleftarrow " Supponiamo dim $V=\dim W=n$. Sia $\mathscr B$ base di V e $\mathscr C$ base di W

$$F: V \to \mathbb{K}^n$$

 $v \mapsto (v)_{\mathscr{B}}$

un isomorfismo,

$$G: W \to \mathbb{K}^n$$

 $w \mapsto (w)_{\mathscr{B}}$

un isomorfismo

$$V \xrightarrow{F} \mathbb{K}^n \xleftarrow{G} W \quad \Longrightarrow \quad V \xrightarrow{F} \mathbb{K}^n \xrightarrow{G^{-1}} W$$

Considero $G^{-1} \circ F$, biettiva

 $\implies G^{-1}\circ F$ è un isomorfismo

$$\implies V, W$$
 sono isomorfi

5.6 Funzioni lineari e cambiamenti di base

Siano V, W spazi vettoriali su un campo K, entrambi finitamente generati

$$\dim V = n, \dim W = m$$

Considero $F: V \to W$ lineare, e fisso \mathscr{B} base di V e \mathscr{C} base di W.

F è rappresentata da una matrice $A=M^{\mathscr{B},\mathscr{C}}(F)\in\mathbb{K}^{m,n}$ tramite la relazione

$$(F(v))_{\mathscr{C}} = M^{\mathscr{B},\mathscr{C}}(F) \cdot (v)_{\mathscr{B}}$$

Questo è un diagramma commutativo

Considero altre due base \mathscr{B}' di V e \mathscr{C}' di W.

Rispetto a queste basi, ad F corrisponde un'altra matrice $M^{\mathscr{B}',\mathscr{C}'}(F)$, voglio campire come $M^{\mathscr{B},\mathscr{C}}(F)$ e $M^{\mathscr{B}',\mathscr{C}'}(F)$ sono relazionate.

Indico
$$A = M^{\mathcal{B},\mathcal{C}}(F)$$
 e $A' = M^{\mathcal{B}',\mathcal{C}'}(F)$

Sia $v \in V$ quindi

$$(v)_{\mathscr{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x \in \mathbb{K}^n$$

e

$$(v)_{\mathscr{B}'} = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = x' \in \mathbb{K}^n$$

So che x=Px' con $P\in\mathbb{K}^{n,n}$ invertibile del cambiamento di base da \mathscr{B} a \mathscr{B}' . Considero $F(v)\in W$

$$(F(v))_{\mathscr{C}} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = y \in \mathbb{K}^m$$

$$(F(v))_{\mathscr{C}'} = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix} = y' \in \mathbb{K}^m$$

So che y=Qy', con Q matrice del cambiamento di base da $\mathscr C$ a $\mathscr C'$, dove $Q\in\mathbb K^{m,m}$ è invertibile

$$y = Ax, y' = A'x, x = Px', y = Qy'$$

$$Qy' = Ax \implies Qy' = APx'$$

$$\implies y' = Q^{-1}APx'$$

$$\implies A'x' = Q'APx' \ \forall x' \in \mathbb{K}^n$$

$$\implies A' = Q^{-1}AP$$

5.6.1 Caso particolare

W=V, quindi $F:V\to V$ e considero $\mathscr{C}=\mathscr{B}'$ e $\mathscr{C}'=\mathscr{B}'$ ($\Longrightarrow Q=P$).

In questo caso la formula implica $A' = P^{-1}AP$ dove P è la matrice del cambiamento di base da \mathcal{B} a \mathcal{B}'

Definizione Due matrici $A,B\in\mathbb{K}^{n,n}$ sono simili se esiste $P\in\mathbb{K}^{n,n}$ matrice invertibile tale che $B=P^{-1}AP$

Esercizio Siano $A, B \in \mathbb{K}^{n,n}$ matrici simili

$$\implies \det A = \det B, \operatorname{tr} A = \operatorname{tr} B, \operatorname{rank} A = \operatorname{rank} B$$

Soluzione Supponiamo A,B simili, allora esiste $P\in\mathbb{K}^{n,n}$ invertibile tale che $B=P^{-1}AP$

Per il teorema di Binet:

$$\det B = \det(P^{-1}) \det A \det P = \det A$$

Poi

$$\operatorname{tr} B = \operatorname{tr}(P^{-1}AP) = \operatorname{tr}(P^{-1}PA) = \operatorname{tr} A$$

Poiché P e P^{-1} hanno rango n, risulta

$$\operatorname{rank}(P^{-1}AP) = \operatorname{rank} A$$

Esercizio Si verifichi che la similitudine (la proprietà di due matrici di essere simili) in $\mathbb{K}^{n,n}$ è una relazione di equivalenza

Soluzione Indico con \sim la relazione

$$A \sim B$$
se esiste $P \in \mathbb{K}^{n,n}$ invertibile | $B = P^{-1}AP$

- \sim è riflessiva, $A = (\mathrm{Id})^{-1} A \cdot \mathrm{Id} \implies A \sim A$
- \sim è simmetrica, infatti, se $A \sim B$

$$\implies B = P^{-1}AP$$

$$\implies A = PBP^{-1}$$

$$\implies B \sim A$$

 $\bullet\,$ Supponiamo $A \sim B$ e $B \sim C$ e dimostro $A \sim C$

$$A \sim B \implies B = P^{-1}AP \quad B \sim C \implies C = Q^{-1}BQ$$

$$\implies C = Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ)$$

$$\implies A \sim C$$

Esercizio In \mathbb{R}^3 considero la base canonica $\mathscr{B} = e_1, e_2, e_3$ e la base data dai tre vettori

$$v_1 = (1, 2, 0), v_2 = (1, 0, 1), v_3 = (-1, 0, -2)$$

- 1. Si verifichi che $\mathscr{C} = \{v_1, v_2, v_3\}$ sia una base di \mathbb{R}^3
- 2. Sia F la funzione lineare $F: \mathbb{R}^3 \to \mathbb{R}^3$ determinata dalle relazioni

$$F(v_1) = v_1 + v_2$$

$$F(v_2) = 2v_1 - v_2$$

$$F(v_3) = -v_2 + v_3$$

Si trovi la matrice che rappresenta F rispetto alla base $\{v_1, v_2, v_3\}$ e la matrice che rappresenta F rispetto alla base canonica \mathcal{B}

Soluzione

1. Sia

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & -2 \end{pmatrix}$$

si noti che det $A \neq 0$, quindi i tre vettori sono linearmente indipendenti, ovvero sono una base

2.

$$M^{\mathscr{C},\mathscr{C}}(F) = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

 $M^{\mathcal{B},\mathcal{B}}(F)$: per quanto visto oggi $M^{\mathcal{C},\mathcal{C}}(F)=P^{-1}M^{\mathcal{B},\mathcal{B}}(F)P$ $\implies M^{\mathcal{B},\mathcal{B}}(F)=PM^{\mathcal{C},\mathcal{C}}(F)P^{-1}$

Definizione Sia V uno spazio vettoriale di dimensione finita, e sia $F: V \to V$ lineare. Se \mathcal{B} è la base fissata di V, allora $M^{\mathcal{B},\mathcal{B}}(F)$, si definisce

$$\det F = \det(M^{\mathcal{B},\mathcal{B}}(F))$$

e

$$\operatorname{tr} F = \operatorname{tr}(M^{\mathscr{B},\mathscr{B}}(F))$$

Per un risultato precedente, trF e detF sno ben definiti, ovvero non dipendono dalla base fissata, mentre $M^{\mathcal{B},\mathcal{B}}(F)$ sì

Attenzione Esistono matrici $A, B \in \mathbb{K}^{n,n}$ tali che tr $A = \operatorname{tr} B$, det $A = \det B$, rank $A = \operatorname{rank} B$ ma non simili

Esempio (5.8)

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2,2} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2,2}$$

Notiamo che det $A=\det B,\, \operatorname{tr} A=\operatorname{tr} B,\, \operatorname{rank} A=\operatorname{rank} B,\, \operatorname{ma}\, A\in B$ non sono simili, infatti

$$P^{-1}AP = \operatorname{Id} \forall P \in \operatorname{GL}(2, \mathbb{R}), B \neq \operatorname{Id}$$

5.7 Spazio delle funzioni lineari

5.7.1 Somma di funzioni lineari

Siano V,W spazi vettoriali sullo stesso campo \mathbb{K} . Siano $F,G:V\to W$ lineari. Si introduce

$$F + G : V \to W$$

 $v \mapsto F(v) + G(v)$

funzione da V in W

Esercizio Si dimostri che F + G è funzione lineare

Soluzione Da fare

5.7.2 Prodotto per scalari di funzioni lineari

Si introduce inoltre, se $\lambda \in \mathbb{K}$, la funzione

$$\lambda F: V \to W$$
$$v \mapsto \lambda F$$

Esercizio Si dimostri che λF è funzione lineare

Soluzione Da fare

Indico con

$$L(V,W) = \{F: V \to W | F \text{ lineare}\}$$

L(V, W) eredita una struttura di spazio vettoriale su \mathbb{K} , dove il vettore nullo di L(V, W) è la funzione costante

$$0_{L(V,W)}: V \to W$$
$$v \mapsto \underline{0}_W$$

9 nov 2021 Suppongo che V e W abbiano dimensione finita, dim $V=n,\dim W=m.$ Fisso $\mathcal B$ base di V e $\mathscr C$ base di W, ogni $F\in L(V,W)$ induce la matrice $M^{\mathscr B,\mathscr C}(F)\in \mathbb K^{m,m}$

Abbiamo quindi una funzione

$$M^{\mathcal{B},\mathcal{C}}:L(V,W)\to\mathbb{K}^{m,m}$$

Esercizio La funzione $M^{\mathcal{B},\mathcal{C}}$ è un isomorfismo di spazi vettoriali:

• $M^{\mathcal{B},\mathcal{C}}$ è lineare cioè

$$M^{\mathcal{B},\mathcal{C}}(F+G) = M^{\mathcal{B},\mathcal{C}}(F) + M^{\mathcal{B},\mathcal{C}}(G)$$
$$M^{\mathcal{B},\mathcal{C}}(\lambda F) = \lambda M^{\mathcal{B},\mathcal{C}}(F)$$

- $\ker(M^{\mathcal{B},\mathcal{C}}) = \underline{0}_{L(V,W)} \implies M^{\mathcal{B},\mathcal{C}}$ è iniettiva
- $M^{\mathcal{B},\mathcal{C}}$ è suriettiva, cioè

$$M^{\mathscr{B},\mathscr{C}}\bigg(L(V,W)\bigg) = \mathbb{K}^{m,n}$$

Soluzione Da fare

5.8 Composizione di funzioni lineari

Siano V, W, Z spazi vettoriali sullo stesso campo \mathbb{K} .

$$V \xrightarrow{F} W \xrightarrow{G} Z \implies G \circ F : V \to Z$$
è lineare

Supponiamo che V, W, Z abbiano dimensione finita. Siano $\mathscr B$ una base di $V, \mathscr C$ una base di W e $\mathscr D$ una base di Z. Abbiamo $M^{\mathscr B,\mathscr C}(F)$ e $M^{\mathscr C,\mathscr D}(G)$ matrici, con

$$M^{\mathscr{B},\mathscr{C}}(F)\cdot (v)_{\mathscr{B}}=(F(v))_{\mathscr{C}} \text{ e } M^{\mathscr{C},\mathscr{D}}(G)\cdot (w)_{\mathscr{C}}=(G(v))_{\mathscr{D}}$$

Considero

$$\begin{split} \left((G \circ F)(v) \right)_{\mathscr{D}} &= \left(G(F(v)) \right)_{\mathscr{D}} = \\ &= M^{\mathscr{C}, \mathscr{D}}(G) \cdot (F(v))_{\mathscr{C}} = \\ &= M^{\mathscr{C}, \mathscr{D}}(G) \cdot M^{\mathscr{B}, \mathscr{C}}(F) \cdot (v)_{\mathscr{B}} \end{split}$$

cioè la matrice che rappresenta $G\circ F$ rispetto alle basi $\mathscr B$ e $\mathscr D$ è il prodotto della matrice che rappresenta G per la matrice che rappresenta F

Esercizio Siano $F: \mathbb{R}^4 \to \mathbb{R}^3$, $H: \mathbb{R}^4 \to \mathbb{R}^2$ le funzioni lineari definite come

$$F\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ x_2 - x_3 + 3x_4 \\ 2x_1 + 2x_2 - x_3 - x_4 \end{pmatrix}$$

$$H\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 - 3x_4 \\ x_1 + x_2 + x_3 - 2x_4 \end{pmatrix}$$

Si determini (se esiste) una funzione lineare $G: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $H = G \circ F$

Soluzione F è rappresentata dalla matrice

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 2 & 2 & -1 & -1 \end{pmatrix} \in \mathbb{R}^{3,4}$$

H è rappresentata dalla matrice

$$B = \begin{pmatrix} 1 & 2 & 0 & -3 \\ 1 & 1 & 1 & -2 \end{pmatrix}$$

Sia C la matrice che rappresenta G

 $\implies C$ soddisfa $B=C\cdot A$ con B e A note e C matrice incognita. Studio il sistema matriciale, che posso scrivere nella forma ${}^tB={}^tAX$, con $X={}^tC$

Osservazione (5.2) Siano $A \in \mathbb{K}^{m,n}$, $B \in \mathbb{K}^{p,m}$, con $BA \in \mathbb{K}^{p,n}$. Si noti che

$$\operatorname{rank} BA \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$$

Motivazione geometrica: A induce

$$F_A: \mathbb{K}^n \to \mathbb{K}^m$$

 $x \mapsto Ax$

 $e \operatorname{rank} A = \dim \operatorname{Im}(F_A)$

B induce

$$F_B: \mathbb{K}^m \to \mathbb{K}^p$$

 $x \mapsto Bx$

 $e \operatorname{rank} B = \dim \operatorname{Im}(F_B)$

BA induce

$$F_{BA}: \mathbb{K}^n \to \mathbb{K}^p$$

 $x \mapsto BAx$

e rank $BA = \dim \operatorname{Im}(F_{BA})$

Ma $\operatorname{Im}(F_{BA}) \subseteq \operatorname{Im}(F_B)$, perché $F_{BA} = F_B \circ F_A$:

$$\mathbb{K}^n \xrightarrow{F_A} \mathbb{K}^m \xrightarrow{F_B} \mathbb{K}^p$$

$$\implies \dim \operatorname{Im}(F_{BA}) \subseteq \dim \operatorname{Im}(F_B) \implies$$

$$\operatorname{rank} BA \leq \operatorname{rank} B$$

Si noti che $\ker F_A \subseteq \ker F_{BA}$; per il teorema del rango

$$n - \operatorname{rank} A \le n - \operatorname{rank} BA$$

 \implies rank $BA \le \operatorname{rank} A$

Ottengo quindi che

$$\operatorname{rank} BA \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$$

Definizione Sia V uno spazio vettoriale su un campo \mathbb{K} e sia $F:V\to V$ lineare (un automorfismo). F è nilpotente se $\exists k\in\mathbb{N}$ tale che

$$\underbrace{F \circ F \circ \cdots \circ F}_{k-\text{volte}} = 0$$

con $0:V\to V$ funzione identicamente nulla

Esempio (5.9)

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ 0 \end{pmatrix}$$

F è lineare e $F \circ F \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, F è nilpotente.

Fè rappresentata dalla matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A,$ infatti $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Definizione Una matrice $A \in \mathbb{K}^{n,n}$ tale che A^k è la amtrice nulla per qualche $k \in \mathbb{N}$ si dice nilpotente

Definizione Data $F:V \to V$ lineare nilpotente, F ha grado di nilpotenza k se

$$\underbrace{F \circ \cdots \circ F}_{k-\text{volte}} = 0 \, \wedge \underbrace{F \circ \cdots \circ F}_{k-1-\text{volte}} \neq 0$$

Esercizio Si trovi una funzione $F: \mathbb{R}^4 \to \mathbb{R}^4$ nil
potente con grado di nilpotenza 2

Soluzione Da fare

 $F:V\to V$ lineare con V di dimensione finita. Possiamo usare il teorema di nullità più rango:

$$\dim V = \dim \ker(F) + \dim(\operatorname{Im}(F))$$

ma in generale

$$V \neq \ker(F) + \operatorname{Im}(F)$$

6 Spazi vettoriali Euclidei

Si consideri V spazio vettoriale su $\mathbb R$

Definizione Un prodotto scalare su V è una funzione $\cdot : V \times V \to \mathbb{R}$ tale che:

- 1. $v \cdot w = w \cdot v$ (simmetria)
- 2. $(v_1 + v_2) \cdot w = v_1 \cdot w + v_2 \cdot w$
- 3. $(\lambda v) \cdot w = \lambda (v \cdot w)$
- 4. $v \cdot v \ge 0$ e $v \cdot v = 0$ se e solo se $v = \underline{0}$ (· è definito positivo)

Si noti che \cdot è lineare in ogni componente

Esempio (6.1) In V_3 è definito il prodotto scalare $v \cdot w = ||v|| ||w|| \cos v \hat{w}$.

"." definisce un prodotto scalare in V_3

Conseguenza Su ogni spazio vettoriale di dimensione finita esiste un prodotto scalare, infatti se V è uno spazio vettoriale di dimensione finita, si fissa una base $\mathcal{B} = \{v_1, \dots, v_n\}$ si definisce per $x, y \in V$

$$x \cdot y = \left(\sum_{i=1}^{n} x_i v_i\right) \cdot \left(\sum_{j=1}^{n} y_j v_j\right) := \sum_{i=1}^{n} x_i y_i$$

Esempio (6.2) Anche $\mathbb{R}^{m,n}$ ha un prodotto scalare canonico, dato da

$$A \cdot B := \operatorname{tr}(^t B \cdot A)$$

- 1. Per le proprietà della traccia $\operatorname{tr}({}^tB\cdot A)=\operatorname{tr}({}^t({}^tB\cdot A))=\operatorname{tr}({}^tAB)=B\cdot A$ \implies è simmetrico
- 2.

$$(A+C) \cdot B = \operatorname{tr}({}^{t}B(A+C)) = \operatorname{tr}({}^{t}BA) + \operatorname{tr}({}^{t}BC) = A \cdot B + C \cdot B$$

 \implies la proprietà 2 è verificata

3.

$$(\lambda A) \cdot B = \operatorname{tr}({}^{t}B(\lambda A)) = \lambda \operatorname{tr}({}^{t}BA) = \lambda A \cdot B$$

 \implies la proprietà 3 è verificata

$$4. A \cdot A = \operatorname{tr}(^t A A);$$

Esempio (6.3) Si consideri lo spazio vettoriale

$$\mathbb{R}_n[x] = \{ p \in \mathbb{R}[x] | \deg p \le n \}$$

spazio vettoriale su \mathbb{R} di dimensione n+1

Se $p, q \in \mathbb{R}_n[x]$ possiamo scrivere $p(x) = \sum_{k=0}^n a_k x^k$, $q(x) = \sum_{k=0}^n b_k x^k$ Si definisce $p \cdot q$ come

$$p \cdot q := \sum_{k=0}^{n} a_k b_k$$

Definizione Uno spazio vettoriale euclideo è uno spazio vettoriale su \mathbb{R} di dimensione finita in cui è stato fissato un prodotto scalare, indicato generalmente con (V, \cdot)

In uno spazio vettoriale euclideo è definita la norma di un vettore come

$$||v|| = \sqrt{v \cdot v}$$

||v|| definisce una funzione $||v||:V\to\mathbb{R}_+$ dove $\mathbb{R}_+=\{t\in\mathbb{R}|t\geq 0\}$. Si noti che

$$||\lambda v|| = \sqrt{(\lambda v) \cdot (\lambda v)} = \sqrt{\lambda^2 v \cdot v} = |\lambda| \sqrt{v \cdot v} = |\lambda| \, ||v||$$

Esempio (6.4) Su \mathbb{R}^3 si consideri il prodotto scalare

$$x \cdot y = 2x_1y_1 + 3x_2y_2 + 5x_3y_3.$$

Rispetto a questo prodotto scalare risulta

$$||x|| = \sqrt{2x_1^2 + 3x_2^2 + 5x_3^2}.$$

Definizione Due vettori v, w in uno spazio vettoriale euclideo sono ortogonali se $v \cdot w = 0$

Esercizio In \mathbb{R}^3 con il prodotto scalare

$$x \cdot y = 2x_1y_1 + 3x_2y_2 + 5x_3y_3$$

si trovino tutti i vettori ortogonali a (1,1,0)

Soluzione Da fare

Proposizione p.xi La norma associata ad un prodotto scalare ha le 11 nov 2021 seguenti proprietà:

- 1. $||v|| \ge 0$ e $||v|| = 0 \iff v = 0$
- 2. $||\lambda v|| = |\lambda|||v||$
- 3. Teorema di Pitagora: Siano $v, w \in V$. $vw = 0 \iff ||v+w||^2 = ||v||^2 + ||w||^2$
- 4. Disuguaglianza di Cauchy-Swartz: $|v \cdot w| \le ||v|| ||w||$ L'uguaglianza vale $\iff v$ e w sono linearmente dipendenti
- 5. Disuguaglianza triangolare: $||v + w|| \le ||v|| + ||w||$

Osservazione (6.1) \mathbb{R} è uno spazio vettoriale su \mathbb{R} di dimensione 1.

 $\cdot:\mathbb{R}\times\mathbb{R}\to\mathbb{R},\,x\cdot y=xy,$ dove a destra vi è la moltiplicazione in $\mathbb{R}.$ · è un prodotto scalare.

Si noti che

$$||x|| = \sqrt{x * x} = \sqrt{x^2} = |x|$$

La 5. è coerente con la disuguaglianza triangolare soddisfatta dal valore assoluto in $\mathbb R$

dim. (p.xi)

- 1. 2. già viste
 - 3. si considera $||v+w||^2$

$$||v + w||^2 = (v + w) \cdot (v + w) =$$

= $v \cdot v + v \cdot w + w \cdot v + W \cdot w =$
= $||v||^2 + 2v \cdot w + ||w||^2$

Segue la proprietà

4. Sicuramente la formula vale se $v = \underline{0}$ o $w = \underline{0}$. Supponiamo $v, w \neq \underline{0}$. Per $\lambda \in \mathbb{R}$ sia $p(\lambda) = ||\lambda v + w||^2$

$$p(\lambda) = (\lambda v + w) \cdot (\lambda v + w) = \lambda^2 ||v||^2 + 2\lambda v \cdot w + ||w||^2$$

$$\implies p(\lambda) \in \mathbb{R}_2[\lambda]$$

Sappiamo che $p(\lambda) \ge 0 \ \forall \lambda \in \mathbb{R}$

 \implies il suo Δ soddisfa $\Delta \leq 0$.

$$\Delta = 4(v \cdot w)^2 - 4||v||^2||w||^2$$

Si ottiene che $(v \cdot w)^2 \le ||v||^2 ||w||^2$

$$\implies |v \cdot w| \le ||v|| \, ||w||$$

Vale l'uguaglianza $\iff \Delta = 0$, quindi se $\exists \lambda \in \mathbb{R}$ per cui $p(\lambda) = 0$

$$p(\lambda) = 0 \iff ||\lambda v + w|| = 0 \iff \lambda v + w = \underline{0}$$

 $\iff v \in w$ sono linearmente dipendenti

5.
$$||v + w||^2 = ||v||^2 + ||w||^2 + 2v \cdot w$$
.

Per Cauchy-Swartz $|v \cdot w| \le ||v|| ||w||$

$$\implies -||v|| ||w|| \le |v \cdot w| \le ||v|| ||w||$$

$$\implies ||v + w||^2 \le ||v||^2 + ||w||^2 + 2||v|| ||w|| = (||v|| ||w||)^2$$

$$\implies ||v+w|| \le ||v|| \, ||w||$$

Applicazione di Cauchy-Swartz Siano $v, w \in V, v, w \neq 0$: so che $|v \cdot w| \leq ||v|| \, ||w||$

$$\implies -1 \le \frac{v \cdot w}{||v|| \, ||w||} < 1$$

 $\implies \exists\, \theta \in [0,\pi] \text{ tale che } \frac{v \cdot w}{||v|| \, ||w||} = \cos \theta$

$$\theta = \arccos\left(\frac{v \cdot w}{||v|| \cdot ||w||}\right)$$

 θ è per definizione l'angolo tra ve w,e dipende dal prodotto scalare considerato

Osservazione (6.2)

• Se considero V_3 , il prodotto scalare è stato definito come $v \cdot w = ||v|| \cdot ||w|| \cdot \cos v \hat{w}$. Anche in questo caso l'angolo che formano i due vettori è

$$\hat{vw} = \arccos\left(\frac{v \cdot w}{||v|| \cdot ||w||}\right)$$

• Se $v,w\in V$ e $v,w\neq 0$ si dicono ortogonali se $v\cdot w=0\iff$ l'angolo formato dai due vettori sia $\frac{\pi}{2}$

Definizione Se A è un insieme si definisce una distanza su A come una funzione $d: A \times A \to \mathbb{R}_+$ che soddisfa le seguenti proprietà

- 1. $d(a,b) = 0 \iff a = b$
- 2. d(a,b) = d(b,a)
- 3. $d(a,c) \le d(a,b) + d(b,c)$ (Disuguaglianza triangolare)

(A,d) si dice uno spazio metrico.

Esempio (6.5) \mathbb{R} con la distanza d(x,y) = |x-y|

Se (V,\cdot) è uno spazio vettoriale euclideo si definisce $d:V\times V\to\mathbb{R}_+$

$$d(v, w) = ||v - w||.$$

Per la proposizione precedente d definisce una distanza su V

Definizione Se $v \in V$ con $v \neq \underline{0}$, il versore di v è il vettore

$$\operatorname{vers}(v) := \frac{v}{||v||}$$

Osservazione (6.3) $||\operatorname{vers}(v)|| = \left|\left|\frac{v}{||v||}\right|\right| = \frac{||v||}{||v||} = 1$

v ha la stessa direzione, stesso verso di v ma norma 1

6.1 Basi ortogonali e Basi ortonormali

 (V,\cdot) uno spazio vettoriale Euclideo, $\mathscr{B}=\{v_1,\cdots,v_n\}$ una base.

- \mathcal{B} è ortogonale se $v_i \cdot v_j = 0 \ \forall i \neq j$
- \bullet ${\mathcal B}$ è ortonormale se è ortogonale e tutti i vettori della base hanno norma 1

$$v_i \cdot v_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

In generale si scrive δ_{ij} per indicare

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

e prende il nome di "Delta di Knonecker"

Esempi (6.6)

- La base canonica in \mathbb{R}^n è ortonormale rispetto al prodotto scalare standard $(x \cdot y = \sum_{k=1}^n x_k y_k)$
- In $\mathbb{R}^{m,n}$ la base canonica E_{ij} è ortonormale rispetto al prodotto scalare:

$$A \cdot B = \operatorname{tr}(^t B A)$$

Esercizio In \mathbb{R}^3 con il prodotto scalare

$$x \cdot y = 5x_1y_1 + 3x_2y_2 + 4x_3y_3$$

si trovi una base ortonormale

Soluzione $\mathscr{B} = \{e_1, e_2, e_3\}$ base canonica di \mathbb{R}^3

$$e_1 \cdot e_1 = 5$$

$$e_1 \cdot e_2 = 0$$

$$e_1 \cdot e_3 = 0$$

$$e_2 \cdot e_2 = 3$$

$$e_2 \cdot e_3 = 0$$

$$e_3 \cdot e_3 = 4$$

 \mathcal{B} è una base ortogonale, ma non ortonormale.

$$\mathscr{B}' = \left\{ \frac{1}{\sqrt{5}} e_1, \frac{1}{\sqrt{3}} e_2, \frac{1}{2} e_3 \right\}$$

è una base ortonormale

Esercizio Sia (V, \cdot) uno spazio vettoriale Euclideo, sia $\{v_1, \dots, v_l\} \subseteq V$ tale che $v_i \cdot v_j = \delta_{ij} \ \forall i, j = 1, \dots, l$

Si dimostri che $\{v_1, \dots, v_l\}$ sia sempre libero.

$$(\implies l \le \dim V, l = \dim V \iff \{v_1, \dots, v_l\}$$
è una base)

Soluzione Suppongo

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l = 0$$

e dimostro $\lambda_i = 0 \ \forall i = 1, \cdots, l$

$$(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l) \cdot v_i = 0$$

$$\lambda_1 v_1 v_i + \lambda_2 v_2 v_i + \dots + \lambda_l v_l v_i = 0$$

$$\implies \lambda_i = 0$$

$$\implies \lambda_1 = \lambda_2 = \dots = \lambda_3 = 0$$

Sia (V, \cdot) spazio vettoriale Euclideo e $\mathcal{B} = \{e_1, \cdots, e_n\}$ base ortonormale di V rispetto a \cdot

Sia $v \in V$,

$$v = \sum_{k=1}^{n} x_k e_k$$

quindi

$$v \cdot e_r = \sum_{k=1}^n x_k(e_k e_r)$$

$$\implies x_r = v \cdot e_r$$

Rispetto ad una base ortonormale ogni v si scrive come

$$v = \sum_{k=1}^{n} (v \cdot e_k) e_k$$

Teorema VIII (Gram-Schmidt) Sia (V, \cdot) uno spazio vettoriale Euclideo e sia $\mathcal{B} = \{v_1, \dots, v_n\}$ una base.

Esiste $\mathscr{B}' = \{e_1, \dots, e_n\}$ base ortonormale di (V, \cdot) tale che

$$\mathscr{L}(v_1,\dots,v_k) = \mathscr{L}(e_1,\dots,e_k) \quad \forall k=1,\dots,n$$

dim. (VIII) La dimostrazione corrisponde all'algoritmo di Gram-Schmidt $\mathscr{B} = \{v_1, \dots, v_n\}$. Per e_1 non ho facoltà di scelta:

$$e_1 = \frac{v_1}{||v_1||}$$

Sia $e_2' = v_2 - (v_2 \cdot e_1)e_1$, si noti che $e_2' \cdot e_1 = v_2 \cdot e_1 - v_2 \cdot 1 = 0$

 e_2' è ortogonale a $e_1;$ $\mathcal{L}(e_1,e_2')=\mathcal{L}(v_1,v_2).$ Ad e_2' manca solo la proprietà di avere norma 1

A questo punto si può definire e_2 come

$$e_2 = \frac{v_2 - (v_2 \cdot e_1)e_1}{||v_2 - (v_2 \cdot e_1)e_1||}$$

Itero fino ad ottenere

$$e_j = \frac{v_j - \sum_{i=1}^{j-1} (v_j \cdot e_i) e_i}{||v_j - \sum_{i=1}^{j-1} (v_j \cdot e_i) e_i||}$$

15 nov 2021 **Esercizio** In \mathbb{R}^3 si consideri la base $\mathscr{B} = v_1, v_2, v_3,$

$$v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (2, 1, 2).$$

Si applichi l'algoritmo per ottenere una base ortonormale di \mathbb{R}^3 rispetto al prodotto scalare

$$x \cdot y = \sum_{k=1}^{3} x_k y_k$$

Soluzione $e_1 = \frac{v_1}{||v_1||}$, con $||v_1|| = \sqrt{2}$: quindi

$$e_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$e_2 = \frac{v_2 - (v_2 \cdot e_1)e_1}{||v_2 - (v_2 \cdot e_1)e_1||}; v_2 \cdot e_1 = \frac{1}{\sqrt{2}};$$

$$\begin{aligned} v_2 - (v_2 \cdot e_1)e_1 &= \\ &= (0, 1, 1) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) = \\ &= \left(-\frac{1}{2}, 1, \frac{1}{2} \right) = \frac{1}{2} (-1, 2, 1) \end{aligned}$$

$$||v_2 - (v_2 \cdot e_1)e_1|| = \frac{1}{2}||(-1, 2, 1)|| = \frac{1}{2}\sqrt{6}$$

$$\implies e_2 = \frac{1}{\sqrt{6}}(-1, 2, 1)$$

$$e_{3} = \frac{v_{3} - (v_{3} \cdot e_{2})e_{2} - (v_{3} \cdot e_{1})e_{1}}{||v_{3} - (v_{3} \cdot e_{2})e_{2} - (v_{3} \cdot e_{1})e_{1}||}; v_{3} \cdot e_{1} = 4/\sqrt{2}; v_{3} \cdot e_{2} = 2/\sqrt{6}$$

$$v_{3} - (v_{3} \cdot e_{2})e_{2} - (v_{3} \cdot e_{1})e_{1} =$$

$$= (2, 1, 2) - \frac{2}{\sqrt{6}} \frac{1}{\sqrt{6}} (1, -2, 1) - \frac{4}{\sqrt{2}} \frac{1}{\sqrt{2}} (1, 0, 1) =$$

$$= (2, 1, 2) - \frac{1}{3} (-1, 2, 1) - 2(1, 0, 1) = \left(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right) =$$

$$= \frac{1}{3} (1, 1, -1)$$

$$e_{3} = \frac{1}{\sqrt{3}} (1, 1, -1)$$

 $\implies \{e_1, e_2, e_3\}$ base ortonormale.

6.2 Matrici ortogonali

Definizione Sia $A \in \mathbb{R}^{n,n}$, A si dice ortogonale se ${}^tA = A^{-1}$ (ortogonale \Longrightarrow invertibile)

Proposizione p.xii Valgono le seguenti proprietà:

- 1. se A è ortogonale $\implies A^{-1}$ è ortogonale
- 2. se A è ortogonale $\implies {}^t\!A$ è ortogonale
- 3. se A, B sono ortogonali $\implies AB$ è ortogonale
- 4. se $A \in O(n) \implies \det(A) \in \{-1, 1\}$

Indico con

$$\mathcal{O}(n) = \{A \in \mathbb{R}^{n,n} | A \text{ è ortogonale}\} \in \mathrm{GL}(n,\mathbb{R})$$

Definizione Sia (G, \cdot) un gruppo. Un sottoinsieme H di G è un sottogruppo se

$$h^{-1} \in H \,\forall \, h \in H \quad e \quad h_1 \cdot h_2 \in H \,\forall \, h_1, h_2 \in H$$

Le prime due proprietà implicano che O(n) è un sottogruppo di $GL(n,\mathbb{R})$

dim. (p.xii)

1.
$$A \in O(n)$$

$$\implies {}^{t}A = A^{-1}$$

$$\implies A = {}^{t}(A^{-1}) = ({}^{t}A)^{-1}$$

$$\implies A^{-1} \in \mathcal{O}(n)$$

$$A \in O(n)$$

$$\implies A^t A = \operatorname{Id}$$

 $\implies {}^t\!A$ è invertibile e A è la sua inversa

3. A, B ortogonali

$$\implies A^t A = \operatorname{Id} e B^t B = \operatorname{Id}$$

$$\implies AB^t(AB) = AB^tB^tA = A^tA = Id$$

$$\implies AB^t(AB) = \operatorname{Id}$$

$$\implies AB \in O(n)$$

4. Se
$$A \in O(n)$$

$$\implies A^t A = \operatorname{Id}$$

$$\implies \det({}^t AA) = 1$$

$$\stackrel{\text{Binet}}{\Longrightarrow} \det({}^t\!A)\det(A) = 1$$

$$\implies (\det(A))^2 = 1$$

$$\implies \det(A) \in \{-1, 1\}$$

Ne risulta che

$$\mathcal{O}(n) = \{A \in \mathcal{O}(n) \mid \det(A) = 1\} \amalg \{A \in \mathcal{O}(n) \mid \det(A) = -11\}$$

con \amalg "unione disgiunta"

Si indica con $SO(n) = \{A \in O(n) \mid \det(A) = 1\}$ sottogruppo di O(n), detto delle matrici ortogonali speciali, infatti se $A, B \in SO(n)$

$$\bullet \ \det(A^{-1}) = \frac{1}{\det A} = 1$$

$$\implies A \in SO(n);$$

•
$$\det(AB) = \det A \det B = 1$$

 $\implies A, B \in SO(n)$

Teorema IX Sia $A \in \mathbb{R}^{n,n}$. Sono fatti equivalenti:

- 1. $A \in O(n)$
- 2. Le righe di A, R_1, \dots, R_n formano una base ortonormale di \mathbb{R}^n con il prodotto scalare canonico
- 3. Le colonne di A, C_1, \dots, C_n formano una base ortonormale di \mathbb{R}^n con il prodotto scalare canonico

dim. (IX)

$$2 \iff 3 \text{ poiché } A \in \mathcal{O}(n) \iff {}^t A \in \mathcal{O}(n)$$

$$2 \iff 1 \text{ Infatti } A \in \mathcal{O}(n) \iff A^t A = \text{Id}, A = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix}, {}^t A = \begin{pmatrix} R_1 & \cdots & R_n \end{pmatrix}$$

 $(A^t A)_{ij} = R_i \cdot R_j$ dove · è il prodotto scalare canonico in \mathbb{R}^n .

Quindi

$$A^t A = \operatorname{Id} \iff R_i \cdot R_j = \delta_{ij}$$

 $\iff \{R_1, \dots, R_n\} \text{ base ortonormale di } (\mathbb{R}^n, \cdot)$

Descriviamo O(2) e SO(2)

Descrivo tutte le basi ortonormali di (\mathbb{R}^2, \cdot) , una base ortonormale è della forma $\mathscr{B} = \{e_1, e_2\}$ con $||e_1|| = ||e_2|| = 1$, e $e_1 \cdot e_2 = 0$

Fissiamo e_1 . Sia α l'angolo tra e_1 e l'asse x

$$\implies e_1 = (\cos \alpha, \sin \alpha)$$

Per e_2 ho solo le due possibilità:

- $e_2 = (-\sin \alpha, \cos \alpha)$
- $e_2 = (\sin \alpha, -\cos \alpha)$

Ogni $A \in O(2)$ è della forma

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

oppure

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \in SO(2)$$

Teorema X Considero (V, \cdot) spazio vettoriale Euclideo, e $\mathscr{B} = \{e_1, \cdots, e_n\}$ base ortonormale. Sia \mathscr{B}' una seconda base

 \mathscr{B}' è ortonormale \iff la matrice del cambiamento di base da \mathscr{B} a \mathscr{B}' è ortogonale

dim. (X) $\mathscr{B} = \{e_1, \dots, e_n\}$ ortonormale, $\mathscr{B}' = \{v_1, \dots, v_n\}$

$$v_i = \sum_{j=1}^n a_{ij} e_j \,\forall \, i = 1, \cdots, n$$

 \mathcal{B}' è ortonormale se e solo se

$$v_i \cdot v_j = \delta_{ij} \, \forall \, i, j = 1, \cdots, n$$

Risulta

$$v_i \cdot v_j = \left(\sum_{k=1}^n a_{ik} e_k\right) \cdot \left(\sum_{s=1}^n a_{js} e_s\right) =$$

$$= \sum_{k=1}^n \sum_{s=1}^n a_{ik} a_{js} \underbrace{e_k e_s}_{\delta_{ks}} = \sum_{k=1}^n a_{ik} a_{jk}$$

Quindi \mathcal{B}' è ortonormale

$$\iff \sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij}$$

 \iff le righe della matrice $A=(a_{ij})$ formano una base ortonormale di \mathbb{R}^n con il prodotto scalare canonico

 $\begin{tabular}{ll} \Longleftrightarrow \\ \operatorname{per il teorema} \end{array} A$ è ortogonale

 \iff la matrice del cambiamento di base da \mathscr{B} a $\mathscr{B}' \in \mathrm{O}(n)$

Esercizio Si trovi in \mathbb{R}^3 con il prodotto scalare canonico una base ortonormale il cui primo vettore sia

$$u = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

Soluzione Approccio risolutivo: trovo v in \mathbb{R}^3 ortogonale a u, con ||v||=1 e quindi si considera z come $z=u \wedge v$

 $\implies \{u, v, z\}$ base ortonormale di \mathbb{R}^3

7 Orientazione di uno spazio vettoriale (reale)

Sia V spazio vettoriale su \mathbb{R} finitamente generato, siano \mathscr{B} e \mathscr{B}' due basi e sia $M^{\mathscr{B},\mathscr{B}'}$ la matrice del cambiamento di base $M^{\mathscr{B},\mathscr{B}'} \in \mathrm{GL}(n,\mathbb{R})$

- $\implies \det(M^{\mathscr{B},\mathscr{B}'}) \neq 0$
- ⇒ ci sono due possibilità:
 - 1. $\det(M^{\mathcal{B},\mathcal{B}'}) > 0$: si dice che \mathcal{B} e \mathcal{B}' hanno la stessa orientazione
 - 2. $\det(M^{\mathscr{B},\mathscr{B}'}) < 0$: si dice che \mathscr{B} e \mathscr{B}' hanno orientazione opposta

Esempio (7.1) Consideriamo \mathbb{R} come spazio vettoriale su \mathbb{R} . Le basi di \mathbb{R} sono del tipo $\mathscr{B} = \{t_0\}$, con $t_0 \neq 0$

- $\implies \mathscr{B} = \{t_0\}$ e $\mathscr{B}' = \{t_0'\}$ hanno la stessa orientazione
- $\iff t_0 \in t_0'$ hanno lo stesso segno

Sia V spazio vettoriale su $\mathbb R$ finitamente generato. Basi(V) insieme di tutte le basi di V. In Basi(V) si considera la relazione \sim dove due basi $\mathscr B$ e $\mathscr B'$ sono in relazione

⇔ hanno la stessa orientazione

$$\mathscr{B} \sim \mathscr{B}' \iff \det(M^{\mathscr{B},\mathscr{B}'}) > 0$$

Proposizione $p.xiii \sim è$ una relazione di equivalenza e nel quoziente Basi $(B)/\sim$ ci sono solo due classi

Esempio (7.2) Basi(\mathbb{R}) = $\{\{t_0\} | t_0 \neq 0\}$, $\{t_0\} \sim \{t'_0\} \iff t_0 \in t'_0$ hanno lo stesso segno.

 \sim è una relazione di equivalenza, e Basi(R)/ \sim consta di sole due classi, infatti, prendendo le classi

$$[\{1\}], [\{-1\}],$$

una qualsiasi base $\{t_0\}$ o è in relazione con $[\{1\}]$ o con $[\{-1\}]$

dim. (p.xiii) Idea della dimostrazione: dimostro che \sim è riflessiva, simmetrica e transitiva.

- \sim riflessiva, infatti se $\mathscr{B} \in \text{Basi}(V)$ si ha che $M^{\mathscr{B},\mathscr{B}} = \text{Id}$ $\implies \det M^{\mathscr{B},\mathscr{B}} = 1$ $\implies \mathscr{B} \sim \mathscr{B}$
- ~ simmetrica, infatti siano \mathscr{B} e $\mathscr{B}' \in \mathrm{Basi}(V)$, supponiamo $\mathscr{B} \sim \mathscr{B}'$, cioè det $M^{\mathscr{B},\mathscr{B}} > 0$

$$\implies (v)_{\mathscr{B}} = M^{\mathscr{B}, \mathscr{B}'}(v)_{\mathscr{B}'} \,\,\forall \, v \in V$$

$$\iff (v)_{\mathscr{B}'} = (M^{\mathscr{B}, \mathscr{B}'})^{-1}(v)_{\mathscr{B}} \,\,\forall \, v \in V, \,\, \mathrm{cioè} \,\, M^{\mathscr{B}', \mathscr{B}} = (M^{\mathscr{B}, \mathscr{B}})^{-1}$$

$$\implies \det(M^{\mathscr{B}', \mathscr{B}}) = \frac{1}{\det M^{\mathscr{B}, \mathscr{B}'}} > 0$$

$$\implies \mathscr{B}' \sim \mathscr{B}$$

- $\bullet \ \sim$ transitiva, infatti siano $\mathscr{B}, \mathscr{B}', \mathscr{B}'' \in \mathrm{Basi}(V)$ con
 - $-\mathscr{B} \sim \mathscr{B}' \iff \det(M^{\mathscr{B},\mathscr{B}'}) > 0$
 - $-\mathscr{B}' \sim \mathscr{B}'' \iff \det(M^{\mathscr{B}',\mathscr{B}''}) > 0$

$$\begin{split} \det(M^{\mathcal{B},\mathcal{B}''}) &= \det(M^{\mathcal{B},\mathcal{B}'} \cdot M^{\mathcal{B}',\mathcal{B}''}) = \\ &\stackrel{\mathrm{Binet}}{=} \det(M^{\mathcal{B},\mathcal{B}'}) \cdot \det(M^{\mathcal{B}',\mathcal{B}''}) > 0 \quad \Box \end{split}$$