

In the Claims:

Please amend claims 154, 169, and 171 as well as withdraw claims 155 and 170. All pending claims are reproduced below, including those that remain unchanged.

Claims 1-101 (Cancelled)

102. (Previously Presented): An ion generator configured to create a flow of air comprising:
 - a. a first electrode;
 - b. a second electrode located downstream from the first electrode;
 - c. a trailing electrode located at least partially downstream from the second electrode, wherein at least a portion of the trailing electrode is triangular in shape; and
 - d. a voltage generator operatively coupled to the first electrode, the second electrode and the trailing electrode, wherein the voltage generator causes air to flow from the first electrode to the second electrode and causes the trailing electrode to emit ions.
103. (Previously Presented): The ion generator according to claim 102 wherein the second electrode and the trailing electrode operate at the same polarity.
104. (Previously Presented): The ion generator according to claim 102 wherein the second electrode is configured to collect charged particles in the air.
105. (Previously Presented): The ion generator according to claim 102 wherein the trailing electrode is configured to collect charged particles in the air.
106. (Previously Presented): The ion generator according to claim 102 wherein the trailing electrode is configured to neutralize oppositely charged particles in the air.

BEST AVAILABLE COPY

- 2 -

Attorney Docket No.: SHPR-01041USM
SBattacharya/shpr/1041USM/1041usm.respD.wpd

107. (Previously Presented): The ion generator according to claim 102 wherein the trailing electrode emits negative ions.
108. (Previously Presented): The ion generator according to claim 102 wherein the trailing electrode and the second electrode emit negative ions.
109. (Previously Presented): The ion generator according to claim 102 wherein at least one end of the trailing electrode is pointed.
110. (Previously Presented): The ion generator according to claim 102 wherein the second electrode is adapted to be removably coupled to a housing of an electro-kinetic air transporter conditioner.
111. (Previously Presented): The ion generator according to claim 102 wherein the second electrode is adapted to be removably coupled to a housing of an electro-kinetic air transporter conditioner for cleaning purposes.
112. (Previously Presented): The ion generator according to claim 110 wherein the second electrode is attached to a handle, wherein the handle allows a user to remove the second electrode from the housing of the electro-kinetic air transporter conditioner.
113. (Previously Presented): The ion generator according to claim 110 wherein the housing of an electro-kinetic air transporter conditioner has an elongated shape.
114. (Previously Presented): The ion generator according to claim 113 wherein the second electrode has a shape adapted to fit within the elongated shape of the housing when coupled thereto.

115. (Previously Presented): The ion generator according to claim 110 wherein the second electrode is removable through a top surface of the housing.
116. (Previously Presented): The ion generator according to claim 102 wherein the second electrode further comprises an elongated fin having a first end and a second end configured vertically opposite of the first end.
117. (Previously Presented): The ion generator according to claim 116 wherein the trailing electrode is positioned proximal to the first end.
118. (Previously Presented): The ion generator according to claim 102 wherein the voltage generator is located within an elongated housing of an electro-kinetic air transporter conditioner.
119. (Previously Presented): The ion generator according to claim 102 wherein the second electrode further comprises a plurality of elongated plates each having a first end and a second end configured vertically opposite of the first end, wherein the elongated plates are configured parallel to each other.
120. (Previously Presented): The ion generator according to claim 119 wherein the trailing electrode is positioned proximal to the first end of the second electrode.
121. (Previously Presented): The ion generator according to claim 102 wherein the second electrode further comprises three elongated plates each having a first end and a second end configured vertically opposite of the first end, wherein the elongated plates are configured parallel to each other.

122. (Previously Presented): The ion generator according to claim 102 wherein the first electrode emits positive ions and the second electrode emits negative ions.
123. (Previously Presented): The ion generator according to claim 122 wherein the trailing electrode emits negative ions.
124. (Previously Presented): The ion generator according to claim 102 wherein the first electrode charges particulates in the air and the second electrode collects the charged particulates flowing from the first electrode.
125. (Previously Presented): The ion generator according to claim 102 wherein at least one pointed surface of the trailing electrode is configured to face downstream.
126. (Previously Presented): The ion generator according to claim 102 wherein at least one pointed surface of the trailing electrode is configured to face in a direction substantially perpendicular to the downstream flow of air.

Claims 127-153 (Cancelled)

154. (Currently Amended): An electro-kinetic air transporter-conditioner having an ion generator comprising:
 - a. a first electrode assembly;
 - b. a second electrode assembly downstream of the first electrode assembly;
 - c. a trailing electrode at least partially downstream of the second electrode assembly, the trailing electrode including a plurality of pointed ends and having at least a portion configured triangular in shape; and

BEST AVAILABLE COPY

- 5 -

Attorney Docket No.: SHPR-01041USM
SBhattacharya/shpr/1041USM/1041usm.respD.wpd

- d. a voltage generator electrically coupled to the second electrode assembly and the trailing electrode, wherein the second electrode assembly and the trailing electrode are charged at the same potential.
155. (Withdrawn) An ion generator for use in an electro-kinetic device, the ion generator comprising:
- a. a first electrode;
 - b. a second electrode located downstream of the first electrode;
 - c. a trailing electrode downstream and having a portion directly in-line with the second electrode, wherein at least a portion of the trailing electrode is triangular in shape; and
 - d. a voltage generator electrically coupled to the first and second electrodes, the voltage generator configured to apply a positive charge to the first electrode and a negative charge to the second electrode to create an airflow from the first electrode downstream to the second electrode, the voltage generator electrically coupled to the trailing electrode such that the trailing electrode produces negative ions in the airflow.
156. (Cancelled)
157. (Cancelled)
158. (Previously Presented): The ion generator according to claim 171 wherein the second electrode assembly is configured to collect charged particles in the air.
159. (Previously Presented): The ion generator according to claim 171 wherein the trailing electrode is configured to collect charged particles in the air.
160. (Previously Presented): The ion generator according to claim 171 wherein the trailing electrode is configured to neutralize oppositely charged particles in the air.

161. (Previously Presented): The ion generator according to claim 171 wherein the trailing electrode emits negative ions.
162. (Previously Presented): The ion generator according to claim 171 wherein the trailing electrode and the second electrode emit negative ions.
163. (Previously Presented): The ion generator according to claim 171 wherein the second electrode assembly is removable through a top surface of a housing.
164. (Previously Presented): The ion generator according to claim 171 wherein the first electrode assembly emits positive ions and the second electrode assembly emits negative ions.
165. (Previously Presented): The ion generator according to claim 164 wherein the trailing electrode emits negative ions.
166. (Cancelled)
167. (Previously Presented): The ion generator according to claim 171 wherein a pointed end of the trailing electrode is configured to face the downstream direction.
168. (Previously Presented): The ion generator according to claim 171 wherein a pointed end of the trailing electrode is configured to face in a direction substantially perpendicular to the downstream direction.
169. (Currently Amended): A method of providing an air conditioner comprising:
 - a. providing a housing;
 - b. configuring a first electrode in the housing;

- c. configuring a second electrode in the housing downstream from the first electrode;
 - d. configuring a trailing electrode in the housing at least partially downstream from the second electrode, wherein at least a portion of the trailing electrode is triangular in shape; and
 - e. coupling a voltage generator electrically to the first electrode and the second electrode.
170. (Withdrawn) An air conditioner having an ion generator disposed within a housing having an inlet and an outlet, wherein the ion generator moves air downstream from the inlet to the outlet upon activation, the ion generator comprising:
- a. a first electrode proximal to the inlet;
 - b. a second electrode downstream of the first electrode;
 - c. a trailing electrode downstream and directly in-line with the second electrode and positioned near a bottom end of the second electrode, wherein the trailing electrode is triangular in shape; and
 - d. a voltage generator electrically coupled to the first electrode and the second electrode.
171. (Currently Amended): An air conditioner having an ion generator comprising:
- a. a first electrode assembly;
 - b. a second electrode assembly downstream of the first electrode assembly;
 - c. a trailing electrode at least partially downstream of the second electrode assembly, the trailing electrode having at least a portion configured triangular in shape; and
 - d. a voltage generator electrically coupled to the second electrode assembly and the trailing electrode, wherein the second electrode assembly and the trailing electrode are charged at the same potential.
172. (Previously Presented): The ion generator according to claim 154 wherein the first electrode assembly further comprises a plurality of wire-like electrodes.

173. (Previously Presented): The ion generator according to claim 154 wherein the second electrode assembly further comprises a plurality of plates parallel to one another.
174. (Previously Presented): The ion generator according to claim 171 wherein the first electrode assembly further comprises a plurality of wire-like electrodes.
175. (Previously Presented): The ion generator according to claim 171 wherein the second electrode assembly further comprises a plurality of plates parallel to one another.

- 9 -

Attorney Docket No.: SHPR-01041USM
SBhattacharya/shpr/1041USM/1041usm.respD.wpd

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.