Exercises to Section 2

Exercises in red are from the list of the typical exercises for the exam. Exercises marked with a star * are for submission to your tutor.

Continuity

- 1. A factory produces square metal plates with the side length $L_0=$ 10cm. What is the maximum accepted deviation δ of the side length from L_0 , if the area of the plate must be within the bounds $100\text{cm}^2 \pm \varepsilon$, where the tolerance ε for the area is (a) $\varepsilon = 1\text{cm}^2$; (b) $\varepsilon = 0.1\text{cm}^2$; (c) $\varepsilon = 0.01\text{cm}^2$?
- 2. Let f(x)=1/x for x>0, let $\varepsilon=0.001$ and let (a) $x_0=0.1$; (b) $x_0=0.01$; (c) $x_0=0.001$. Find the maximal possible number $\delta=\delta(\varepsilon,x_0)$ such that $|x-x_0|<\delta$ implies $|f(x)-f(x_0)|<\varepsilon$.
- 3. Using the trigonometric identity

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$$

and the inequality $|\sin x| \le |x|$, prove the continuity of the function $f(x) = \sin x$. Follow the " ε - δ definition".

- 4. For what value of the parameter a (if any) are the following functions continuous?
 - (a) $f(x) = \frac{\sin x}{|x|}$ if $x \neq 0$ and f(0) = a;
 - (b) $f(x) = \sin x \sin(1/x)$ if $x \neq 0$ and f(0) = a;
 - (c) $f(x) = e^{-\frac{1}{x}}$ of $x \neq 0$ and f(0) = a;
 - (d) $f(x) = x \log(x^2)$ if $x \neq 0$ and f(0) = a;
 - (e) $f(x) = x^x$ if x > 0 and f(0) = a.

Types of discontinuity

- 5. For each of the following functions, find the points of discontinuity and determine their nature (i.e. removable, jump, infinite or oscillatory).
 - (a) $f(x) = \frac{x}{(1+x)^2}$;
 - (b) $f(x) = \frac{1+x}{1+x^3}$;
 - (c)* $f(x) = \frac{\frac{1}{x} \frac{1}{x+1}}{\frac{1}{x-1} \frac{1}{x}};$
 - (d) $f(x) = \operatorname{sign}(\sin(\pi/x));$
 - (e) $f(x) = \tan^{-1}(1/x)$;
 - (f) $f(x) = \sqrt{\frac{1 \cos(\pi x)}{4 x^2}}$.

The algebra of continuous functions

- 6. Determine whether $f \circ g$ and $g \circ f$ are continuous on \mathbb{R} , where
 - (a) f(x) = sign(x) and $g(x) = 1 + x^2$
 - (b)*f(x) = sign(x) and $g(x) = x(1 x^2)$
 - (c) f(x) = sign(x) and $g(x) = 1 + x \lfloor x \rfloor$
- 7. For each of the following statements, determine whether they are true or false. If they are true, give a brief argument to support your claim. If they are false, give a counterexample.
 - (a) If f is continuous and g is discontinuous at x_0 , then f(x) + g(x) is discontinuous at x_0 .
 - (b) If both f and g are discontinuous at x_0 , then f(x) + g(x) is discontinuous at x_0 .
 - (c)*If f is continuous and g is discontinuous at x_0 , then f(x)g(x) is discontinuous at x_0 .
 - (d) If both f and g are discontinuous at x_0 , then f(x)g(x) is discontinuous at x_0 .
 - (e) If f has a jump discontinuity at x_0 , and g is continuous on \mathbb{R} , then $g \circ f$ has a jump discontinuity at x_0 .

Challenging exercises

8. Prove that if the functions f and g are continuous on (a,b), then the functions

$$\varphi(x) = \min\{f(x), g(x)\} \quad \text{ and } \quad \psi(x) = \max\{f(x), g(x)\}$$

are also continuous on (a, b).

Hint: first prove that if $|u-u'|<\varepsilon$ and $|v-v'|<\varepsilon$, then

$$|\min\{u, v\} - \min\{u', v'\}| < \varepsilon,$$

$$|\max\{u, v\} - \max\{u', v'\}| < \varepsilon.$$

- 9. Complete the proof of the theorem from the lecture notes *All discontinuities of a monotonic function are jump discontinuities*. Proceed as follows. Let f be a non-decreasing function and let x_0 be a point in the domain of f. The set $f((-\infty,x_0))$ is bounded above, and let M be its supremum. Prove that $\lim_{x\to x_0-} f(x) = M$ by using the " $\varepsilon-\delta$ definition" of the limit. Repeat this for the right limit $\lim_{x\to x_0+} f(x)$.
- 10. Let $E \subset (0,1)$ be a countable set. Construct a function on [0,1] which has a discontinuity at every point of E.
- 11. A function f is called left continuous (resp. right continuous) at x, if $f(x) = \lim_{x' \to x_-} f(x)$ (resp. $f(x) = \lim_{x' \to x_+} f(x)$). Let f be a bounded function on [a, b]. Prove that the functions

$$m(x) = \inf_{a \leqslant \xi < x} f(\xi) \quad \text{ and } \quad M(x) = \sup_{a \leqslant \xi < x} f(\xi)$$

are left continuous on [a, b].