Bibliography

- Aaronson, S. & D. Gottesman, Physical Review A **70** (5) (2004). "Improved simulation of stabilizer circuits". DOI: 10.1103/physreva.70.052328 arXiv:quant-ph/0406196
- Aharonov, Y. & J. Anandan, Phys. Rev. Lett. 58 (16), 1593 (1987). "Phase Change During a Cyclic Quantum Evolution". DOI: 10.1103/PhysRevLett.58.1593
- Alicea, J., Y. Oreg, G. Refael, F. von Oppen, & M. P. A. Fisher, Nat Phys 7 (5), 412 (2011). "Non-Abelian statistics and topological quantum information processing in 1D wire networks". DOI: 10.1038/nphys1915
- Anandan, J., Physics Letters A **133** (4-5), 171 (1988). "Non-adiabatic non-abelian geometric phase". DOI: 10.1016/0375-9601(88)91010-9
- Aspect, A., P. Grangier, & G. Roger, Phys. Rev. Lett. 47 (7), 460 (1981). "Experimental Tests of Realistic Local Theories via Bell's Theorem".
- Barenco, A., C. H. Bennett, R. Cleve, et al., Physical Review A 52 (5), 3457 (1995). "Elementary gates for quantum computation". DOI: 10.1103/physreva.52.3457 arXiv:quant-ph/9503016
- Bell, J. S., Rev. Mod. Phys. **38** (3), 447 (1966). "On the Problem of Hidden Variables in Quantum Mechanics".
- Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, & W. K. Wootters, Phys. Rev. A 54 (5), 3824 (1996). "Mixed-state entanglement and quantum error correction". DOI: 10.1103/PhysRevA.54.3824 arXiv:quant-ph/9604024
- Bennett, C. H. & S. J. Wiesner, Phys. Rev. Lett. **69** (20), 2881 (1992). "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states".
- Bergou, J. A., U. Herzog, & M. Hillery, "Discrimination of Quantum States," in Paris & Rehacek (2004), Chap. 11, pp. 417–465. DOI: 10.1007/978-3-540-44481-7_11

Bernstein, E. & U. Vazirani, "Quantum Complexity Theory," in *Proceedings of the 25th Annual ACM Symposium on the Theory of Computing* (ACM Press, New York, 1993), pp. 11–20.

- Bernstein, E. & U. Vazirani, SIAM Journal on Computing **26** (5), 1411 (1997). "Quantum Complexity Theory". DOI: 10.1137/s0097539796300921
- Berry, M. V., Proc. R. Soc. London A **392**, 45 (1984). "Quantal Phase Factors Accompanying Adiabatic Changes".
- Blum, K., Density Matrix Theory and Applications, Vol. 64 of Springer Series on Atomic, Optical, and Plasma Physics (Springer Berlin Heidelberg, 2012), 3rd ed., ISBN 978-3-642-20560-6.
- Bohr, N., "Discussion with Albert Einstein on Epistemological Problems in Atomic Physics," in *Albert Einstein, Philosopher-Scientist*, edited by Schilpp, P. A. (Harper, Evanston, 1949), Vol. VII of *The Library of Living Philosophers*, pp. 200–241, 1st ed.
- Born, M., Z. Phys. 37 (12), 863 (1926). "Zur Quantenmechanik der Stoßvorgänge".
- Bouwmeester, D., J.-W. Pan, M. Daniell, H. Weinfurter, & A. Zeilinger, Phys. Rev. Lett. 82 (7), 1345 (1999). "Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement".
- Bravyi, S. B. & A. Y. Kitaev, arXiv:quant-ph/9811052 (1998). "Quantum codes on a lattice with boundary".
- Breuer, H.-P. & F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, New York, 2002).
- Browne, D. & H. Briegel, "One-Way Quantum Computation," in *Quantum Information: From Foundations to Quantum Technology Applications*, edited by Bruß, D. & G. Leuchs (Wiley, 2016), pp. 449–473, 2nd ed. DOI: 10.1002/9783527805785.ch21 arXiv:quant-ph/0603226
- Calderbank, A. R. & P. W. Shor, Phys. Rev. A **54** (2), 1098 (1996). "Good quantum error-correcting codes exist".
- Caves, C. M., Phys. Rev. D 23 (8), 1693 (1981). "Quantum-mechanical noise in an interferometer".
- Chefles, A., "Quantum States: Discrimination and Classical Information Transmission. A Review of Experimental Progress," in Paris & Rehacek (2004), Chap. 12, pp. 467–511. DOI: 10.1007/978-3-540-44481-7_12
- Chiaverini, J., Science **308** (**5724**), 997 (2005). "Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System". DOI: 10.1126/science. 1110335

Choi, M.-S., J. Phys.: Condens. Matt. **15** (**46**), 7823 (2003). "Geometric Quantum Computation in Solid-State Qubits". arXiv:quant-ph/0111019

- Clauser, J. F., M. A. Horne, A. Shimony, & R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). "Proposed Experiment to Test Local Hidden-Variable Theories".
- Cleve, R., A. Ekert, C. Macchiavello, & M. Mosca, Proceedings of the Royal Society A **454** (1969), 339 (1998). "Quantum algorithms revisited". DOI: 10.1098/rspa.1998.0164 arXiv:quant-ph/9708016
- Cleve, R. & D. Gottesman, Physical Review A **56** (1), 76 (1997). "Efficient computations of encodings for quantum error correction". DOI: 10.1103/physreva. 56.76 arXiv:quant-ph/9607030
- Cornwell, J. F., Group Theory in Physics, Vol. I (Academic Press, Orlando, 1984).
- Cornwell, J. F., *Group Theory in Physics: An Introduction* (Academic Press, San Diego, 1997).
- Crease, R. P., Physics World **15** (**9**), 19 (2002). "The most beautiful experiment". DOI: 10.1088/2058-7058/15/9/22
- Das, A., Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, & H. Shtrikman, Nat Phys 8 (12), 887 (2012). "Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions".
- Deng, M. T., C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, & H. Q. Xu, Nano Letters 12 (12), 6414 (2012). "Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device".
- Dennis, E., A. Kitaev, A. Landahl, & J. Preskill, Journal of Mathematical Physics 43 (9), 4452 (2002). "Topological quantum memory". DOI: 10.1063/1.1499754 arXiv:quant-ph/0110143
- Deutsch, D., Proc. R. Soc. London A **400**, 97 (1985). "Quantum theory, the Church-Turing principle and the universal quantum computer". DOI: 10.1098/rspa.1985.0070
- Deutsch, D. & R. Jozsa, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences **439** (1907), 553 (1992). "Rapid Solution of Problems by Quantum Computation". DOI: 10.1098/rspa.1992.0167
- Dirac, P. A. M., *The Principles of Quantum Mechanics* (Oxford University Press, Oxford, 1958), 4th ed.
- DiVincenzo, D. P., Fortschr. Phys. **48**, 771 (2000). "The Physical Implementation of Quantum Computation". DOI: 10.1002/1521-3978(200009)48:9/11<771:: AID-PROP771>3.0.C0; 2-E arXiv:quant-ph/0002077

Dum, R., A. S. Parkins, P. Zoller, & C. W. Gardiner, Phys. Rev. A **46** (7), 4382 (1992). "Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs".

- Einstein, A., B. Podolsky, & N. Rosen, Phys. Rev. 47, 777 (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
- Feynman, R., R. B. Leighton, & M. L. Sands, *The Feynman Lectures on Physics*, Vol. III (Addison-Wesley, Redwood City, 1963), 1st ed.
- Fowler, A. G., M. Mariantoni, J. M. Martinis, & A. N. Cleland, Physical Review A 86 (3), 032324 (2012). "Surface codes: Towards practical large-scale quantum computation". DOI: 10.1103/physreva.86.032324 arXiv:1208.0928
- Freedman, M. H., Foundations of Computational Mathematics 1 (2), 183 (2001). "Quantum Computation and the Localization of Modular Functors". DOI: 10.1007/s102080010006
- Giovannetti, V., S. Lloyd, & L. Maccone, Physical Review Letters **96** (1), 010401 (2006). "Quantum Metrology". DOI: 10.1103/PhysRevLett.96.010401 arXiv:quant-ph/0509179
- Gisin, N., Helv. Phys. Acta **62**, 363 (1989). "Stochastic quantum dynamics and relativity". DOI: 10.5169/seals-116034
- Goldstein, S., Phys. Rev. Lett. **72** (13), 1951 (1994). "Nonlocality without inequalities for almost all entangled states for two particles".
- Gottesman, D., Physical Review A **54** (3), 1862 (1996). "Class of quantum error-correcting codes saturating the quantum Hamming bound". DOI: 10.1103/physreva.54.1862 arXiv:quant-ph/9604038
- Gottesman, D., Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology, Pasadena, California (1997). arXiv:quant-ph/9705052
- Gottesman, D., Phys. Rev. A 57 (1), 127 (1998). "Theory of fault-tolerant quantum computation". DOI: 10.1103/PhysRevA.57.127 arXiv:quant-ph/9702029
- Gottesman, D., "The Heisenberg Representation of Quantum Computers," in Group 22: proceedings of XXII International Colloquium on Group Theoretical Methods in Physics: Hobart, July 13-17, 1998, edited by Corney, S. P., R. Delbourgo, & P. D. Jarvis (International Press, Cambridge, MA, 1999), ISBN 978-1571460547. arXiv:quant-ph/9807006
- Greenberger, D. M., M. A. Horne, A. Shimony, & A. Zeilinger, Ame. J. Phys. 58, 1131 (1990). "Bell's theorem without inequalities". DOI: 10.1119/1.16243

Greenberger, D. M., M. A. Horne, & A. Zeilinger, "Going beyond Bell's theorem," in *Bell's Theorem, Quantum Theory, and Conceptions of the Universe*, edited by Kafatos, M. (Kluwer Academic, Dordrecht, The Netherlands, 1989). arXiv:0712.0921

- Griffiths, R. B. & C.-S. Niu, Physical Review Letters **76** (**17**), 3228 (1996). "Semiclassical Fourier Transform for Quantum Computation". DOI: 10.1103/physrevlett.76.3228 arXiv:quant-ph/9511007
- Grover, L. K., "A fast quantum mechanical algorithm for database search," in *Proceedings of the 28th Annual ACM Symposium on the Theory of Computing* (ACM Press, New York, 1996), p. 212. arXiv:quant-ph/9605043
- Grover, L. K., Phys. Rev. Lett. **79** (2), 325 (1997). "Quantum Mechanics Helps in Searching for a Needle in a Haystack".
- Hardy, L., Phys. Rev. Lett. **68 (20)**, 2981 (1992). "Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories".
- Hardy, L., Phys. Rev. Lett. **71**, 1665 (1993). "Nonlocality for two particles without inequalities for almost all entangled states".
- Higgins, B. L., D. W. Berry, S. D. Bartlett, H. M. Wiseman, & G. J. Pryde, Nature 450 (7168), 393 (2007). "Entanglement-free Heisenberg-limited phase estimation". DOI: 10.1038/nature06257 arXiv:0709.2996
- Horodecki, M., P. Horodecki, & R. Horodecki, Phys. Lett. A **223** (1), 1 (1996). "Separability of mixed states: necessary and sufficient conditions". DOI: 10. 1016/0375-9601(95)00930-2
- Horodecki, R., P. Horodecki, M. Horodecki, & K. Horodecki, Rev. Mod. Phys. 81 (2), 865 (2009). "Quantum entanglement". DOI: 10.1103/RevModPhys.81.865
- Hughston, L. P., R. Jozsa, & W. K. Wootters, Physics Letters A 183 (1), 14 (1993). "A complete classification of quantum ensembles having a given density matrix". DOI: 10.1016/0375-9601(93)90880-9
- Jiang, M., S. Luo, & S. Fu, Physical Review A 87 (2) (2013). "Channel-state duality". DOI: 10.1103/physreva.87.022310
- Jönsson, C., Z. Physik **161**, 454 (1961). "Electron Diffraction at Multiple Slits". DOI: 10.1007/BF01342460
- Kitaev, A. Y., Electronic Colloquium on Computational Complexity 3, 3 (1996). "Quantum measurements and the Abelian Stabilizer Problem". arXiv:quant-ph/9511026

Kitaev, A. Y., Russian Mathematical Surveys **52 (6)**, 1191 (1997). "Quantum computations: algorithms and error correction".

- Kitaev, A. Y., Physics-Uspekhi **44** (**10S**), 131 (2001). "Unpaired Majorana fermions in quantum wires". DOI: 10.1070/1063-7869/44/10S/S29 arXiv:cond-mat/0010440
- Kitaev, A. Y., Ann. Phys. **303** (1), 2 (2003). "Fault-tolerant quantum computation by anyons". DOI: 10.1016/S0003-4916(02)00018-0 arXiv:quant-ph/9707021
- Laflamme, R., C. Miquel, J. P. Paz, & W. H. Zurek, Physical Review Letters 77 (1), 198 (1996). "Perfect Quantum Error Correcting Code". DOI: 10.1103/physrevlett.77.198 arXiv:quant-ph/9602019
- Landauer, R., Physics Today 44 (5), 23 (1991). "Information is Physical".
- Lang, S., Introduction to Linear Algebra, Undergraduate Texts in Mathematics (Springer New York, New York, 1986), 2nd ed., ISBN 9781461210702. DOI: 10.1007/978-1-4612-1070-2
- Lang, S., *Linear Algebra* (Springer, Berlin, 1987), 3rd ed., ISBN 978-1-4757-1949-9. DOI: 10.1007/978-1-4757-1949-9
- Loss, D. & D. P. DiVincenzo, Phys. Rev. A 57 (1), 120 (1998). "Quantum comutation with quantum dots".
- Lundeen, J. S., B. Sutherland, A. Patel, C. Stewart, & C. Bamber, Nature 474 (7350), 188 (2011). "Direct measurement of the quantum wavefunction". DOI: 10.1038/nature10120
- Mourik, V., K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, & L. P. Kouwenhoven, Science **336** (6084), 1003 (2012). "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices".
- Nadj-Perge, S., I. K. Drozdov, J. Li, et al., Science **346** (6209), 602 (2014). "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor". DOI: 10.1126/science.1259327 arXiv:http://www.sciencemag.org/content/346/6209/602.full.pdf
- Nakazato, H., Y. Hida, K. Yuasa, B. Militello, A. Napoli, & A. Messina, Physical Review A **74** (6), 062113 (2006). "Solution of the Lindblad equation in the Kraus representation". DOI: 10.1103/physreva.74.062113 arXiv:quant-ph/0606193
- Nielsen, M. & I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, New York, 2011), 10th anniversary ed., ISBN 978-1107002173.

Ozawa, M., Physics Letters A **268** (3), 158 (2000). "Entanglement measures and the Hilbert–Schmidt distance". DOI: 10.1016/s0375-9601(00)00171-7

- Pan, J.-W., D. Bouwmeester, M. Daniell, H. Weinfurter, & A. Zeilinger, Nature 403, 515 (2000). "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement".
- Paris, M. & J. Rehacek, eds., Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Springer Berlin Heidelberg, Berlin, 2004), ISBN 9783540444817. DOI: 10.1007/b98673
- Peres, A., Phys. Rev. Lett. **77** (8), 1413 (1996). "Separability Criterion for Density Matrices". DOI: 10.1103/PhysRevLett.77.1413 arXiv:quant-ph/9604005
- Pérez-García, D., M. M. Wolf, D. Petz, & M. B. Ruskai, Journal of Mathematical Physics 47 (8), 083506 (2006). "Contractivity of positive and trace-preserving maps under Lp norms". DOI: 10.1063/1.2218675 arXiv:math-ph/0601063
- Plenio, M. B. & P. L. Knight, Rev. Mod. Phys. **70** (1), 101 (1998). "The quantum-jump approach to dissipative dynamics in quantum optics".
- Plenio, M. B. & S. Virmani, Quant Inf Comput 7 (1&2), 1 (2007). "An introduction to entanglement measures". arXiv:quant-ph/0504163
- Preskill, J., "Lecture Notes on Quantum Information and Computation," unpublished (1998).
- Raussendorf, R. & H. J. Briegel, Phys. Rev. Lett. **86** (22), 5188 (2001). "A One-Way Quantum Computer".
- Raussendorf, R., D. Browne, & H. Briegel, Journal of Modern Optics 49 (8), 1299 (2002). "The one-way quantum computer—a non-network model of quantum computation". DOI: 10.1080/09500340110107487 arXiv:quant-ph/0108118
- Raussendorf, R., D. E. Browne, & H. J. Briegel, Phys. Rev. A **68 (2)**, 022312 (2003). "Measurement-based quantum computation on cluster states". DOI: 10.1103/PhysRevA.68.022312 arXiv:quant-ph/0301052
- Schwinger, J., Proceedings of the National Academy of Sciences **45** (**10**), 1542 (1959). "The Algebra Of Microscopic Measurement". DOI: 10.1073/pnas.45. 10.1542
- Shor, P. W., "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," in *Proceedings of the 35th Annual Symposium on Foundations of Computer Science* (IEEE Computer Society, Washington, DC, USA, 1994), SFCS '94, pp. 124–134. DOI: 10.1109/SFCS.1994.365700

Shor, P. W., SIAM Journal on Computing 26 (5), 1484 (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". arXiv:quant-ph/9508027

- Simon, D. R., SIAM Journal on Computing **26** (5), 1474 (1997). "On the Power of Quantum Computation". DOI: 10.1137/s0097539796298637
- Sjöqvist, E., D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, & K. Singh, New Journal of Physics 14 (10), 103035 (2012). "Non-adiabatic holonomic quantum computation". DOI: 10.1088/1367-2630/14/10/103035 arXiv:1107.5127
- Smolin, J. A. & D. P. DiVincenzo, Phys. Rev. A **53** (4), 2855 (1996). "Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate". DOI: 10.1103/PhysRevA.53.2855
- Steane, A. M., Phys. Rev. Lett. **77** (5), 793 (1996). "Error Correcting Codes in Quantum Theory".
- Størmer, E., *Positive Linear Maps of Operator Algebras* (Springer, Berlin, 2013), ISBN 9783642343698. DOI: 10.1007/978-3-642-34369-8
- Tonomura, A., J. Endo, T. Matsuda, T. Kawasaki, & H. Ezawa, Ame. J. Phys. **57** (2), 117 (1989). "Demonstration of single-electron buildup of an interference pattern". DOI: 10.1119/1.16104
- Vallone, G. & D. Dequal, Physical Review Letters 116 (4), 040502 (2016). "Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function". DOI: 10.1103/physrevlett.116.040502 arXiv:1504.06551
- Vedral, V., A. Barenco, & A. Ekert, Physical Review A **54** (1), 147 (1996). "Quantum networks for elementary arithmetic operations". DOI: 10.1103/physreva. 54.147 arXiv:quant-ph/9511018
- Vedral, V., M. B. Plenio, M. A. Rippin, & P. L. Knight, Physical Review Letters 78 (12), 2275 (1997). "Quantifying Entanglement". DOI: 10.1103/ physrevlett.78.2275
- Wang, C., J. Harrington, & J. Preskill, Annals of Physics **303** (1), 31 (2003). "Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory". DOI: 10.1016/s0003-4916(02)00019-2
- Wehrl, A., Reviews of Modern Physics **50** (2), 221 (1978). "General properties of entropy". DOI: 10.1103/revmodphys.50.221
- Weyl, H., The theory of groups and quantum mechanics (Dover, London, 1931).
- Wigner, E. P., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959), english translation ed.

Wilczek, F. & A. Zee, Phys. Rev. Lett. **52** (**24**), 2111 (1984). "Appearance of Gauge Structure in Simple Dynamical Systems". DOI: 10.1103/PhysRevLett.52.2111

- Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, & K. H. S. Campbell, Nature 385 (6619), 810 (1997). "Viable offspring derived from fetal and adult mammalian cells".
- Wooters, W. K. & W. H. Zurek, Nature 299, 802 (1982). "A single quantum cannot be cloned".
- Zanardi, P. & M. Rasetti, Phys. Lett. A **264** (2-3), 94 (1999). "Holonomic quantum computation". DOI: 10.1016/S0375-9601(99)00803-8 arXiv:quant-ph/9904011
- Zurek, W. H., Phys. Today **44** (10), 36 (1991). "Decoherence and the transition from quantum to classical".
- Zurek, W. H., Nature 404, 130 (2000). "Quantum cloning: Schrodinger's sheep". DOI: 10.1038/35004684
- Zurek, W. H., Los Alamos Science **27**, 2 (2002). "Decoherence and the Transition from Quantum to Classical: Revisited".

Index

Abelian group, 289, 408, 413	change of basis, 364, 367
amplitude damping, 232	channel-state duality, 219
ancillary qubit, 85	Choi isomorphism, 218–221, 398
	Choi matrix, 219, 390, see also Choi
basis, 362, 364	operator
orthonormal basis, 363, 364, 366,	Choi operator, see also Choi matrix, 219,
369	262,398
Bayes' rule, 338	Choi vector, 217, 221
Bayes, T., 338	classical communication channel, 145
Bell basis, see also Bell states, 145	classical feedback control, see also semi-
Bell measurement, 94, 145, 221	classical feedback control, 300
Bell states, 94, 145	classical fidelity, 335
Bell's inequality, 142	Clifford circuit, 298, 299
Bell's test, 142	Clifford group, 292, 293, 297, 331, 332
Bell, J., 142	Clifford operators, see also Pauli opera-
Bernstein-Vazirani algorithm, 148, 156	tors, 292, 311
bilinear mapping, 361	closed system, 14, 201, 208
birthday paradox, 158	closure relation, 211
bit flip, 48	cluster state, 97, 124, 136
bit-flip correction code, 311	CNOT gate, 57, 65, 68, 88, 92, 111, 125,
bit-flip error, 269, 271, 273–275, 309	145, 188, 206, 293, 295, 297, 304
bitwise AND, 83	controlled-NOT gate, 57
Bloch space, 105, 111, 194, 293	multi-qubit controlled-NOT, 84
Bloch sphere, 16, 24, 54	code space, 268, 281
Bloch states, 188	code words, 274
Bloch vector, 16, 24, 253	coherence, 103
Bohr, Niels H. D., 203	complementarity principle, 13
bra-ket notation, 46, 369	completely positive and trace-preserving
bright state, 116	supermap, 209
	completely positive supermap, 209, 210,
Calderbank-Shor-Steane codes, 314	219, 394 – 396, 400, 404
canonical distance, 362	completeness relation, 38, 227, 374
canonical norm, 247, 362	computational basis, see also logical ba-
Cauchy-Schwarz inequality, 264, 265, 361,	sis
426	concave function, 343, 357
center, 286	concavity of entropy, 358

conditional entropy, 339	eigenvalue, 372
conjugation, 293, 295	eigenvector, 372
continued fraction, 184	Einstein, Albert, 19, 141, 203
control qubit, 58	elementary quantum logic gates, 45
controlled-unitary gate, 57, 72, 173, 200	Elements, 13, 184
multi-control unitary gate, 71, 81	entangled state, 17, 19, 59, 348, 380
controlled-Z gate, see also CZ gate, 63	entanglement, 19, 26, 33, 38, 63, 135,
convergent of a continued fraction	145, 151, 333, 348
continued fraction, 184	entanglement cost, 355
convex function, 337, 357	entanglement distillation, 352
convex linear, 209	entanglement fidelity, 219
coset, 286, 291, 410, 411	entanglement measure, 253
left coset, 411	entanglement witness, 352
right coset, 411	entropy, 333–335
CSS codes, $see\ also\ {\it Calderbank-Shor-}$	entropy of entanglement, 355
Steane codes	environment, 201, 267
cyclic evolution, 123	error operators, 280
cyclic group, 293, 408, 413	error syndrome, 269, 279, 307, 308, 326,
CZ gate, 63, 111–113, 125, 136, 293	328, 329
	error-detection, 269, 271
damping operator, 229, 233, 240	error-recovery, 269
dark state, 116, 136	Euclid of Alexandria, 13, 184
de Broglie, Louis, 203	Euclidean algorithm, 184
decoherence, 19, 26, 32, 209, 267	Euclidean distance, 335
density matrix, see also density operator	Euler rotation, 55, 129
density operator, 20, 21, 201, 208, 209,	Euler angles, 55
219, 235, 252, 341, 373, 383	Euler, L., 55
dephasing, 223, 224	exclusive OR, 60
depolarizing process, 232	
Deutsch-Jozsa algorithm, 148	factor group, see also quotient group
Deutsch-Jozsa problem, 158	Feyman, Richard P., 203
dimension, 362	fidelity, 219, 245, 257, 258, 362
Dirac, P. M. A., 203	field, 359
discrete Fourier transform, 162, 162, 180	flux quantization, 101
discrete Fourier transform, 162, 163, 180 discrete logarithm, 162	Fredkin gate, 88
distillable entanglement, 355	Frobenius inner product, see also Hilbert-
DiVincenzo criteria, 102	Schmidt inner product, 387
double-slit experiment, 202, 205	•
dual basis, 370	gate teleportation, 220
dual vector, 369	gauge transformation, 123
	generalized interaction picture, 240
effective Hamiltonian, 229, 233, 240	generalized measurement, 227
eigenbasis, 372	geometric phase, 115

geometric quantum computation, 121,	
122, 124	247, 387
GHZ state, 62, 96	Hilbert-Schmidt norm, 249, 250, 263
Gibbs' inequality, 336, 337, 346	homomorphism, 409
Gibbs, J. W., 336	Householder reflection, see also House-
Gisin-Hughston-Jozsa-Wooters (GHJW)	holder transformation
theorem, 25	Householder transformation, 190, 191,
golden ratio, 185	195
Gottesman vector, 288, 291, 331, 429	inertial force, 107
Gottesman-Knill theorem, 298	inertial frame, 107
graph state, see also cluster state, 124,	information theory, 333
133, 135, 136, 299	initialization, 103
Gray code, 71, 82	inner product, 361
Gray code sequence, 83	invariant subgroup, 286, 411
Greenberger-Horne-Zeilinger experiment,	inverse quantum Fourier transform
298	quantum Fourier transform, 168
Greenberger-Horne-Zeilinger state, 62,	irreversible population loss, 229
96	Ising exchange interaction, 112, 113
group, 405	
group generators, 284, 300, 407	isomorphism, 409
group theory, 283, 405	joint entropy, 338
Grover operator, 194	joint probability distribution, 337
Grover rotation, 195	Josephson inductance, 101
Grover's algorithm, see also quantum	r
search algorithm, 190	kinetic inductance, 101
Grover's diffusion operator, 191	Klein's inequality, 346, 347, 358, 433
Grover, L. K., 190	Klein's trace inequality, 357
	Klein, O., 346, 357
Hadamard gate, 50, 92, 95, 96, 112, 125,	Kolmogorov distance, 255, 335
127, 145, 293, 295–297	Kolmogorov, A., 255
Hadamard matrix, 50	Kraus elements, 210, 224, 231, 262, 300,
Hardy's test, 143	396
Heisenberg exchange interaction, 111,	orthogonal Kraus elements, 396
112	Kraus maps, see also Kraus elements,
Heisenberg limit, 38	see also Kraus elements
Hermitian, 246	Kraus operator-sum representation, see
Hermitian conjugate, 367, 368	also Kraus representation
Hermitian operator, 209, 368, 372, 393	Kraus operators, see also Kraus elements
Hermitian product, 361, 362, 364, 367, 369, 387	Kraus representation, 210, 215, 396
hidden subgroup problem, 162, 163, 173,	Larmor precession, 105
180, 182	Lindblad basis, 235
Hilbert space, 14, 15, 102, 363	Lindblad equation, 228, 234, 239, 391
Hilbert-Schmidt distance, 245, 252	Lindblad generator, 229, 230, 232, 236

Lindblad operators, 229	null space, 344
linear algebra, 359	
linear dependent, 362	observable, 357
linear map, 365	octant phase gate, 56, 92, 298
linear operator, 365	one-way quantum computation, see also
linearly dependent, 360	measurement-based quantum com
linearly independent, 360	putation
logarithmic negativity, 355	open quantum system, 201, 208, 389
logical basis, 15, 291	operation time, 105
logical operators, 290–292, 299–301, 310	operator-sum representation, 219, 391, 395
Mach-Zender interferometer, 203, 204	oracle, 192
Markov approximation, 228	order-finding algorithm, 187, 189
Markov assumption, 230	order-finding problem, 162, 175, 187
maximally entangled state, 40, 97, 206,	orthogonality, 361
218,219,265	orthonormal basis, 40, 374
maximally mixed state, 342, 346	
measurement, 45, 103, 209	parallel transport, 124
measurement operators, 38, 227	partial trace, 25, 211, 220, 222, 399, 400
measurement-based quantum computation, 124, 281	partial transposition, 349, 395, 401, 403, 404
metric, 245	path ordering, 123
mixed state, 19, 24, 25, 31, 222, 373	Pauli gates, see also Pauli operators
modular exponentiation, 180, 187, 188	Pauli group, 283, 284, 289, 293, 307, 406,
modular multiplication, 175, 187, 188	412, 413
momentum basis, 179	Pauli operators, 46, 96, 103, 137, 145,
mutual information, 339	283, 284, 288, 292
	Pauli X, 46
Newton's laws of motion, 13	Pauli Y, 48
Newton, Isaac, 13	Pauli Z, 47
no-cloning theorem, 34, 61, 144, 267	period-finding algorithm, 181, 187, 188
noiseless coding theorem, 340	phase damping, 224, 231
non-Abelian gauge potential, 123	phase flip, 48
non-Abelian geometric phase, 115	phase gate, 95
non-Hermitian Hamiltonian, 229, 240	phase-flip correction code, 311
non-inertial effect, 107, 122	phase-flip error, 271–273, 275
non-negative operator, see also positive	planar codes, 318, 324
semidefinite operator	planar exchange interaction, see also XY
non-selective measurement, 227	exchange interaction
nonlocality, 19, 141, 142	plaquette defect, 329, 330
norm, 246, 362	plaquette operator, 319, 320, 322, 325
normal operator, 368, 372	point group, 293
normalizer, 292	polar decomposition, 263, 265, 278, 378,
NOT gate, 111	429

INDEX INDEX

position basis, 179	inverse quantum Fourier transform,
positive definite Hermitian product, 361	168
positive definite operator, see also posi-	quantum gate teleportation, 221, 262
tive operator	quantum information theory, 333, 391
positive operator, 22, 209, 219, 252, 341,	quantum jump approach, 229, 239
373, 374, 378, 393, 394, 403	quantum jump operators, see also Lind-
positive partial transposition criterion,	blad operators, 229, 233
349, 355	quantum logic gate, 57, 101
positive semidefinite operator, 211, 373,	quantum logic gate operation, 45
374	quantum Markovian dynamics, 229
postulates of quantum mechanics, 13	quantum master equation, see also Lind-
POVM, 39, 40, 264, 428	blad equation, 234
POVM elements, 39, 40	quantum mutual information, 347
principle of complementarity, 203	quantum operation, 202, 208, 209, 219,
principle of deferred measurement, 169	227, 250, 262, 279
product group, 413	quantum operation formalism, 33
projection operator, 220, 398	quantum oracle, 148, 149, 154, 159, 181,
projective measurement, 38	195, 200
pure state, 14, 19, 24, 25, 31, 35	quantum parallelism, 148, 154
purification, 21, 25, 258, 259, 347	quantum phase estimation, 70, 97, 162,
	172, 173, 179–181, 187, 188
quadrant phase gate, 56, 92, 293, 295-	quantum register, 52, 60
297	quantum search algorithm, 190
quantum channel, 209	quantum state, 14
quantum circuit model	quantum statistical mechanics, 391
quantum circuit diagram, 45	quantum teleportation, 19, 63, 140, 144,
quantum communication, 34	221, 301
quantum computer, 101	qubit, 15, 45, 102
quantum computer architecture, 101	quantum bit, 45
quantum decoherence, see also decoher-	quotient group, 286, 410, 412
ence	
quantum efficiency, 103	Rabi oscillation, 107, 122
quantum entanglement, see also entan-	Rabi frequency, 107
glement	random variable, 334
quantum entangler circuit, 59, 94	reduced density matrix, see also reduced
quantum entropy, see also von Neumann	density operator, 97
entropy	reduced density operator, 346
quantum error-correction conditions, 278,	reference space, 218
280,307	relative entropy, 335, 336
quantum factorization algorithm, 139,	relative Shannon entropy, 335, 344, 346
158, 162, 172, 187, 189	representation, 363–367
quantum Fourier transform, 164, 174,	resonance, 107
175, 178, 179	rotating frame, 107

Hamiltonian in the rotating frame,	Stirling's approximation, 357, 433
107	Stirling, J., 357, 433
time-evolution operator in the rotat-	subadditivity, 347, 358
ing frame, 107	super-mapping, see also supermap
rotating-wave approximation, 110	superdense coding, 140
rotation operator, 54, 105	supermap, 208, 209, 219, 389, 390, 392
	superoperator, 228, 383, 389, 395, 404
scalable system, 102	superposition, 267, 277, 359, 360, 365
scalar, 359	support of operator, 344
Schmidt decomposition, 17, 349, 379,	surface codes, 318, 328, 329
381	SWAP gate, 65, 88, 111, 136, 140
Schmidt number, see also Schmidt rank, 380	$\sqrt{\text{SWAP}}$ gate, 67, 111, 112, 136
Schmidt rank, 18, 353, 380	target qubit, 58
Schmidt, E., 379	Taylor series expansion, 375
selective measurement, 227	tensor product, 379, 399
semiclassical feedback control, see also	tensor-product basis, 17
classical feedback control, 300	tensor-product space, 17, 40, 379, 381
separable state, 17, 380	time ordering, 122
Shannon entropy, 334, 341–343, 346	time-evolution operator, 29
Shannon, C. E., 334	Toffoli gate, 86, 88, 92, 298
Shor's algorithm, see also quantum fac-	topological quantum computation, 124
torization algorithm, 139	toric codes, 318, 325
Shor, Peter W., 139	trace, 209
Simon's algorithm, 148, 158	trace distance, 245, 252, 253, 255
Simon's problem, 158	trace norm, 247–249, 257, 263, 355
singular-value decomposition, 249, 263,	translational freedom of Lindblad opera-
264, 377 – 379, 426	tors, 230
singular values, 249, 263	transposition, 394, 403
special theory of relativity, 142	matrix transposition, 394, 403
spectral decomposition, 25, 211, 220,	triangle inequality, 347, 362
248, 263, 373, 376	two-level unitary transformation, 74, 76
spin, 102	84, 90
stabilizer, 281–283, 285, 299, 300, 331	two-level unitary matrix, 80, 82
stabilizer circuit, 298, 299	, ,
stabilizer codes, 280, 285, 289, 314	Uhlmann's theorem, 258, 259
stabilizer formalism, 135, 281, 299	Uhlmann's formula, 259, 265
stabilizer subgroup, see also stabilizer,	Uhlmann, A., 258, 259
see also stabilizer	uncertainty principle, 34
standard quantum limit, 38	unconditional security, 34
standard tensor-product basis, 379	unitary freedom, 21
state vector, 14	unitary freedom in purification, 21, 25
statistical ensemble, 19	unitary freedom of density operator, 21
statistical mixture, 383	25

```
unitary freedom of Kraus elements, 216,
        229, 230
unitary freedom of Lindblad operators,
        229 - 231
unitary group, 46
unitary matrix, 46, 367
unitary operator, 367, 368, 372
unitary representation, 210
universal quantum computation, 46, 74,
        82, 92
    universal set of quantum logic gates,
        90, 103
universal set of classical logic gates, 90
unstructured search, 190, 192
vector, 360
    orthogonal vectors, 361
    parallel vectors, 361
vector space, 360
vector space of linear maps, 387
vector space of linear operators, 21, 383,
        387
vertex defect, 329, 330
vertex operator, 319, 320, 325, 330
von Neumann entropy, 27, 341
von Neumann measurement, see also von
        Neumann scheme of measure-
        ment
von Neumann scheme of measurement,
        35, 178
von Neumann, J., 35
wave-particle duality, 13, 203, 359
XOR, see also exclusive OR
XY exchange interaction, 112
```