Universidade Estadual do Rio Grande do Sul Engenharia de Computação

Disciplina de Organização de Computadores Lista de exercícios 1

Cálculo de desempenho, CPI, tempo de CPU, ciclos por instrução.

Profa. Débora Matos

Questão 1 - Considere duas implementações diferentes da mesma arquitetura do conjunto de instruções. Existem 4 classes de instruções: A, B, C e D. A taxa de clock e o CPI de cada implementação são dados na tabela a seguir.

Processador	Taxa de clock	CPI classe A	CPI classe B	CPI classe C	CPI classe D
P1	1.5GHz	1	2	3	4
P2	2GHz	2	2	2	2

- a) Qual implementação é mais rápida se o programa tiver 110 instruções divididas em classes das seguintes formas: 10% classe A, 20% classe B, 50% classe C e 20% classe D?
- b) Qual é o CPI global para cada implementação?
- c) Quantos ciclos de clock são requeridos em cada caso?

Questão 2 - A tabela abaixo mostra o número de instruções requeridas para a execução de um determinado programa.

a)	Aritmética	Store	Load	Desvio	Total
	200	40	60	50	350

Considerando que as instruções aritméticas levam 1 ciclo, load e store levam 5 ciclos e instruções de desvio levam 2 ciclos, qual é o tempo de execução do programa em um processador de 1,5GHz?

- b) Qual é o CPI para o programa?
- c) Se houver uma redução de 1/3 nas instruções de carga, qual será o ganho de velocidade e o novo CPI?

Questão 3 - Considere a tabela abaixo:

	Número de instruções					
	Cálculo Load Store Desvio Total					Total
а	Programa 1	1000	400	50	60	1510
b	Programa 2 1500 200 70 80 1850					

- a) Supondo que os cálculos necessitem de 1 ciclo, as instruções de load e store, 10 ciclos e as instruções de desvio precisem de 3 ciclos. Qual o tempo de execução de cada programa em um processador MIPS de 3GHz.
- b) Suponha que foi feita uma alteração no HW e que as instruções de cálculo sejam executadas em 3 ciclos, qual o tempo de execução em cada programa em um processador MIPs de 3GHz?
- c) Qual o ganho de velocidade do programa 1 se as instruções de load puderem ser reduzidas pela metade e as instruções de cálculos utilizarem 2 ciclos, as instruções de load e store utilizarem 1 ciclo e as de desvio utilizarem 3 ciclos?

Questão 4- (questão prova): Considere o número de instruções MIPS para a execução de um programa X, conforme a tabela abaixo:

Número de instruções					
Cálculo Load Store Desvio Total					Total
Programa X	100	60	50	30	240

- a) Supondo que os cálculos necessitem de 4 ciclos, as instruções de load e store de 7 ciclos e as instruções de desvio de 3 ciclos, qual o tempo de execução do programa em um processador MIPS operando a 2GHz?
- b) Suponha que foi feita uma alteração no HW que aumentou o número de registradores. Com isso foi possível reduzir pela metade as instruções de carga e reduzir em 20% as instruções de escrita na memória. Qual foi a redução de tempo de execução do programa com estas alterações em relação a questão a?
- c) Qual o ganho de velocidade do programa (em porcentual) em relação a questão a, se o CPI das instruções de cálculo forem igual a 3?
- d) Qual o CPI médio do programa alterado da questão c.

Questão 5- (questão prova)Suponha que tenhamos desenvolvido duas versões de um processador chamado Apolo, conforme tabela abaixo:

Processador	Versão	Tensão	Período (T)	Taxa de clock
Apolo	1	1,5V	0,625ns	1.6 GHz
	2	1,25V	0,5ns	2 GHz

- a) Em quanto é reduzido o valor da carga capacitiva entre as versões se a potência dinâmica for reduzida em 35% da versão 1 para a versão 2?
- b) Em quanto é alterada a potência dinâmica se a carga capacitiva não mudar?

Questão 6 – (questão prova) Suponha que tenhamos desenvolvido duas versões de um processador conforme tabela abaixo:

Versão	Taxa de clock
1	1.8 GHz
2	2.2 GHz

- a) Em um projeto relacionando as mesmas versões o que se sabe sobre as cargas capacitivas é que a versão 2 tem 80% da carga capacitiva da versão 1. Ache a voltagem para a versão 2 se a potência dinâmica da versão 2 for reduzida em 40% a partir da versão 1 considerando a tensão de 1,5V na versão 1?
- b) Em quanto é alterada a potência dinâmica se a tensão da versão 2 reduzir 30% em relação a versão 1 e se a carga capacitiva da versão 1 for de 15pF e da versão 2 de 9pF?

Questão 7 - Suponha que tenhamos desenvolvido novas versões de um processador com as características a seguir:

Processador	Versão	Tensão	Taxa de clock
_	1	1,75V	1.5 GHz
a	2	1,2V	2 GHz
	1	1,1V	3 GHz
D	2	0,8V	4 GHz

- a) Em quanto é alterado o valor da carga capacitiva entre as versões se a potência dinâmica for reduzida em 10%?
- b) Em quanto foi reduzida a potência dinâmica se a carga capacitiva não mudar?

Questão 8 - Considere os valores mostrados na tabela a seguir para a dissipação de potência estática e dinâmica para duas tecnologias de processadores.

Tecnologia	Potência dinâmica (W)	Potência estática (W)	Tensão (V)
180nm	50	10	1,2
70nm	90	60	0,9

- a) Ache a porcentagem da potência total dissipada compreendida por potência estática.
- b) Se a potência total dissipada for reduzida em 10% mantendo a estática para a taxa de potência total da questão a, quanto a tensão deve ser reduzida para que a corrente de vazamento continue igual?
- c) Determina a razão entre potência estática e potência dinâmica para cada tecnologia com relação a tabela 1.

Questão 9 - Considere três diferentes processadores: P1, P2 e P3 com as seguintes informações. Ache os IPCs para cada processador.

Programa	Processador	Taxa de clock	Número de instruções	Tempo
	P1	3 GHz	20 x 10 ⁹	8 s
Α	P2	2.5 GHz	30 x 10 ⁹	10 s
	P3	4.5 GHz	80 x 10 ⁹	9 s
	P1	2 GHZ	25 x 10 ⁹	6 s
В	P2	2 GHz	30 x 10 ⁹	7 s
	P3	4 GHZ	20 x 10°	7 s