Parallelization of Abstracted Abstract Machines

Leif Andersen

Matthew Might

University of Utah

• What is Control Flow Analysis?

- What is Control Flow Analysis?
- What is Abstract Interpretation?

- What is Control Flow Analysis?
- What is Abstract Interpretation?
- How can Control Flow Analysis be parallelized?

- What is Control Flow Analysis?
- What is Abstract Interpretation?
- How can Control Flow Analysis be parallelized? (Using Scala)

What is Control Flow Analysis?

```
(define (output t)
  (if (token? t)
      (let ([n (token-name t)]
            [v (token-value t)])
        (match n
          ['KEYWORD (display (format "(~a ~a)\n" n v))]
          ['LIT (display (format "(\sima \sima)\n" n v))]
          [else (display (format "(~a \"~a\")\n" n v))]))
      (display (format (\sim a) \n'' t))
(define (call-lexer lexer ς port)
  (let ([ς* (lexer ς port)])
    (when ς* (call-lexer lexer ς* port))))
(call-lexer lexer-code 'start
            (input-port-append
             #f (open-input-string "\n")
             (current-input-port)))
```

(define (output 1)
(if (token 1)
(if (token

(effice (crept t)

If (taken t)

(set () (case-come t))

(set () (case-come t))

(set () (case-come t))

(set () (case-come t))

("UT (dailys) (front "(-a-b)'s" s v))

("UT (dailys) (front "(-a-b)'s" s v))

(set (set (sailys) (front "(-a-b)'s" s v)))

(call-tes (sailys) (front "(-a-b)'s" s v)))

(call-tes (sailys) (front "(-a-b)'s" s v))

(define (output 1)

(if (taken 2)

(if (taken 2)

(if (taken 3)

(

(define (output 1)
(If (today 1)
(If (today

Control Environment Store Kontinuation

CESK

CESK

Control

Expression

Expression Environment

Expression Registers

Expression Registers Store

Expression Registers Heap

Expression
Registers
Heap
Kontinuation

Expression
Registers
Heap
Stack

Environment

Environment $VAR \rightarrow CLO + halt$

Where: $CLO = \mathbf{Lambda} \times Env$

Environment

 $\rho: VAR \rightarrow Addr$

Store

 $\sigma: Addr \rightarrow CLO + \mathbf{halt}$

Continuation Passing Style

Environment

 $\rho: VAR \rightarrow Addr$

Environment

 $\rho: VAR \rightarrow Addr$

Store

 $\sigma: Addr \rightarrow CLO + \mathbf{halt}$

Store

$$\sigma: \widehat{Addr} \to \mathcal{P}(\widehat{CLO} + \mathbf{halt})$$

Use Widening

Loses Precision

Loses Precision

Solution:

Solution:

Parallelization

Where?

$$\mathcal{I}: \mathsf{Prog} \to \widehat{\Sigma}$$

$$\mathcal{I}(pr) = (pr, [], [])$$


```
def anaivefix(in: Map[State,Set[State]]):
      Map[State,Set[State]] = {
    var next = in
    for(i <- in.values; j <- i</pre>
        if(!next.contains(j))) {
      val step = anaivestep(j)
      next += (j -> step)
    if(in == next) return next
                    return anaivefix(next)
    else
```

```
def aexplore(in: Map[State,Set[State]]):
    Map[State, Set[State]] = {
  var next = in
  var producers =
    new StateIterator[(State,StateProducer)]
  for(i <- in) getProducers(producers, i. 2)</pre>
  for(i <- producers) {</pre>
    var tmpStep = Set[State]()
    for(j <- i. 2.iterator) tmpStep ++= j</pre>
    next += (i. 1 -> tmpStep)
    getProducers(producers, tmpStep)
  return next
```

```
case ApplyState(f, x, s) => {
  val b = for (c <- x) yield aevalState(c)
  for(a <- aevalState(f)
      if (a.e.isInstanceOf[LambExp])
      if (a.e.asInstanceOf[
            LambExp].param.length == b.length))
  yield aapply(a, b, s);
}</pre>
```

```
case ApplyState(f, x, s) => {
  val tmpProducers =
    for(c <- x) yield new EvalProducer(c);</pre>
  val b = for (c <- tmpProducers) yield {</pre>
    var tmpSet = Set[Closure]()
    for(i <- c.iterator) tmpSet ++= i</pre>
    tmpSet
  for(a <- aevalState(f))</pre>
    yield closureToEval(aapply(a, b, s), s)
}
```

Results

Worst Case:

Worst Case: Omega

```
((λ (x) (x x))
(λ (x) (x x)))
```

No Speedup

No Speedup

Best Case:

Best Case: Factorial

Factorial Size	Speedup
10	7.32
15	7.39
20	7.42

Factorial Size	Speedup
10	7.32
15	7.39
20	7.42

Average Case:

Average Case: Collatz Conjecture

```
(letrec ((even? (λ (n)
                (if (= n 0)
                  #t
                  (if (= n 1)
                    #f
                     (even? (- n 2)))))))
  (letrec ((div2* (\lambda (n s)
                  (if (= (* 2 n) s)
                     n
                     (if (= (+ (* 2 n) 1) s)
                       n
                       (div2* (- n 1) s)))))
    (letrec ((div2 (λ (n)
                    (div2* n n))))
      (letrec ((hailstone* (λ (n count)
                            (if (= n 1)
                              count
                              (if (even? n)
                                (hailstone*
                                  (div2 n) (+ count 1))
                                (hailstone*
                                  (+ (* 3 n) 1)
                                  (+ count 1)))))))
        (letrec ((hailstone (λ (n)
                             (hailstone* n 0))))
          (hailstone 5))))))
```

Hailstone Size Speedup 5 2.3

Hailstone Size Speedup 5 2.3

Implementation

Implementation

https://github.com/LeifAndersen/CPSLambdaCalc

Questions?

Where?

• Explore

Where?

- Explore
- Function Application

$$explore : \Sigma \to \mathcal{P}(\Sigma)$$

$$explore(\varsigma) = \{\varsigma' \mid \varsigma \to^* \varsigma'\}$$

$$\mathcal{A} : \mathsf{ENV} \times \widehat{ENV} \times \widehat{Store}$$
$$[((\lambda \ (v_1 \dots v_n) \ ce)], \rho') = \mathcal{A}(f, \rho, \sigma)$$