Pytorch Workflow Fundamentals

- 1. Get data ready
- 2. Build or pick a pre-trained model
- 3. Fit the model to the data and make a prediction
- 4. Evaluate the model
- 5. Imporve through experimentations
- 6. Save and reload the model

```
import torch
from torch import nn # nn contains all of Pytorch's building blocks of neural networks
import matplotlib.pyplot as plt

torch.__version__

'2.5.1+cu124'
```

1. Data(preparing and loading)

Machine learning is a game of two parts:

- 1. Turn your data, whatever it is, into numbers(a representation).
- 2. Pick or build a model to learn the representations as best as possible.

```
weight=0.7
bias=0.3
# create data
start=0
end=1
step=0.02
X=torch.arange(start,end,step).unsqueeze(dim=1)
y=weight*X+bias
X[:10],y[:10]
     (tensor([[0.0000],
               [0.0200],
               [0.0400],
               [0.0600],
               [0.0800],
               [0.1000],
               [0.1200],
               [0.1400],
               [0.1600],
               [0.1800]]),
```

```
tensor([[0.3000],
              [0.3140],
              [0.3280],
              [0.3420],
              [0.3560],
              [0.3700],
              [0.3840],
              [0.3980],
              [0.4120],
              [0.4260]]))
# create train/test split
train split=int(0.8*len(X))
X_train,y_train=X[:train_split],y[:train_split]
X_test,y_test=X[train_split:],y[train_split:]
len(X_train),len(y_train),len(X_test),len(y_test)
→ (40, 40, 10, 10)
# let's plot the dataset
def plot_predictions(train_data=X_train,train_labels=y_train,test_data=X_test,test_labels=y_
  plt.figure(figsize=(10,7))
  plt.scatter(train_data,train_labels,c='b',label="Training Data")
  plt.scatter(test_data,test_labels,c='g',label="Test Data")
  if predictions is not None:
    plt.scatter(test_data,predictions,label="Predictions")
  plt.legend()
plot_predictions()
```


2. Build a Model

```
# create a Linear Regression model in pytorch

class LinearRegressionModel(nn.Module):
    def __init__(self):
        super().__init__()
        #initialize model parameters
        self.weights=nn.Parameter(torch.randn(1,dtype=torch.float),requires_grad=True)
        self.bias=nn.Parameter(torch.randn(1,dtype=torch.float),requires_grad=True)

# forward() defines the computation in the model
    def forward(self,x:torch.Tensor)->torch.Tensor:
        return self.weights*x+self.bias
```

PyTorch module	What does it do?
torch.nn	Contains all of the building blocks for computational graphs (essentially a series of computations executed in a particular way).
torch.nn.Parame ter	Stores tensors that can be used with nn.Module. If requires_grad=True gradients (used for updating model parameters via gradient descent) are calculated automatically, this is often referred to as "autograd".
torch.nn.Module	The base class for all neural network modules, all the building blocks for neural networks are subclasses. If you're building a neural network in PyTorch, your models should subclass nn.Module. Requires a forward() method be implemented.
torch.optim	Contains various optimization algorithms (these tell the model parameters stored in nn.Parameter how to best change to improve gradient descent and in turn reduce the loss).
def forward()	All nn.Module subclasses require a forward() method, this defines the computation that will take place on the data passed to the particular nn.Module (e.g. the linear regression formula above).

set manual seed since nn.Parameter are randomly initialized torch.manual seed(42)

```
model 0=LinearRegressionModel()
list(model_0.parameters())
    [Parameter containing:
      tensor([0.3367], requires_grad=True),
      Parameter containing:
      tensor([0.1288], requires grad=True)]
# we can also get the state of the model using .state_dict()
model 0.state dict()
\rightarrow OrderedDict([('weights', tensor([0.3367])), ('bias', tensor([0.1288]))])
# Make predictions with model
with torch.inference mode():
  y_preds=model_0(X_test)
# check the predictions
print(f"Number of testing samples: {len(X test)}")
print(f"Number of predictions made: {len(y_preds)}")
print(f"Predicted value:\n {y preds}")
Number of testing samples: 10
     Number of predictions made: 10
     Predicted value:
      tensor([[0.3982],
             [0.4049],
             [0.4116],
             [0.4184],
             [0.4251],
             [0.4318],
             [0.4386],
             [0.4453],
             [0.4520],
             [0.4588]])
plot_predictions(predictions=y_preds)
```


y_test-y_preds

3. Train the model

#create the loss function

loss_fun=nn.L1Loss()

optimizer=torch.optim.SGD(params=model_0.parameters(),lr=0.01)

torch.manual seed(42)

set the number of epochs(how many times the model will pass over the training data)
epochs=100

```
# create empty loss lists to track the values
train_loss_values=[]
test loss values=[]
epoch_count=[]
for epoch in range(epochs):
  ### Training
  # put the model in training mode(this is the default state of the model)
  model 0.train()
  # 1. Forward pass on the train data using forward() method inside
  v pred=model 0(X train)
  # 2. calculate the loss(how different are our models predictions to the ground truth)
  loss=loss fun(y pred,y train)
  # 3. Zero grad of the optimizer
  optimizer.zero grad()
  # 4. loss backwards
  loss.backward()
  # 5. Progress the optimizer
  optimizer.step()
  ### Testing
  # Put the model in evaluation mode
  model 0.eval()
  with torch.inference mode():
    # 1. Forward pass on the test data
    test pred=model 0(X test)
    # 2. Calculate loss on the test data
    test_loss=loss_fun(test_pred,y_test.type(torch.float))
    # Print out what is happening
    if epoch%10==0:
      epoch count.append(epoch)
      train_loss_values.append(loss.detach().numpy())
      test_loss_values.append(test_loss.detach().numpy())
      print(f"Epoch:{epoch} | MAE Train loss: {loss} | MAE Test loss: {test_loss}")
→ Epoch:0 | MAE Train loss: 0.31288138031959534 | MAE Test loss: 0.48106518387794495
     Epoch:10 | MAE Train loss: 0.1976713240146637 | MAE Test loss: 0.3463551998138428
     Epoch:20 | MAE Train loss: 0.08908725529909134 | MAE Test loss: 0.21729660034179688
     Epoch:30 | MAE Train loss: 0.053148526698350906 | MAE Test loss: 0.14464017748832703
     Epoch:40 | MAE Train loss: 0.04543796554207802 | MAE Test loss: 0.11360953003168106
     Epoch:50 | MAE Train loss: 0.04167863354086876 | MAE Test loss: 0.09919948130846024
     Epoch:60 | MAE Train loss: 0.03818932920694351 | MAE Test loss: 0.08886633068323135
```

```
Epoch:70 | MAE Train loss: 0.03476089984178543 | MAE Test loss: 0.0805937647819519

Epoch:80 | MAE Train loss: 0.03132382780313492 | MAE Test loss: 0.07232122868299484

Epoch:90 | MAE Train loss: 0.02788739837706089 | MAE Test loss: 0.06473556160926819
```

plot the loss curves

```
plt.plot(epoch_count,train_loss_values,label="Train loss values")
plt.plot(epoch_count,test_loss_values,label="Test Loss value")
plt.title("Training and loss value curves")
plt.ylabel("Loss")
plt.xlabel("Epochs")
plt.legend()
```

<matplotlib.legend.Legend at 0x7906b8dd5ad0>

find the model parameters
print(f"The model learned the following values for weights and bias: {model_0.state_dict()}'
print(f"Original values for weights and bias: {weight} and {bias}")

The model learned the following values for weights and bias: OrderedDict([('weights', te Original values for weights and bias: 0.7 and 0.3

→

4. Making predictions with a pre_trained Pytorch model(inference)

```
# 1. Set the model in evaluation mode
model_0.eval()
# 2. Setup the inference mode context manager
with torch.inference_mode():
  # 3. Make sure the calculations are done with the model and data on the same device
  # in our case, we haven't setup device-agnostic code yet so our data and model are
  # on the CPU by default.
 # model 0.to(device)
  # X_test = X_test.to(device)
  y preds = model 0(X test)
y_preds
→ tensor([[0.8141],
             [0.8256],
             [0.8372],
             [0.8488],
             [0.8603],
             [0.8719],
             [0.8835],
             [0.8950],
             [0.9066],
             [0.9182]]
```

plot_predictions(predictions=y_preds)


```
y_test-y_preds
```

5. Loading a model and saving a Pytorch model

from pathlib import Path

#1. Create models directory

```
01. Pytorch Workflow Fundamentals.ipynb - Colab
Model Path=Path("models")
Model_Path.mkdir(parents=True,exist_ok=True)
# 2. Create model save path
model name="01 pytorch workflow model 0.pth"
model_save_path=Model_Path/model_name
# 3. Save the model state dict
print(f"Saving model to : {model save path}")
torch.save(obj=model_0.state_dict(),f=model_save_path)
     Saving model to: models/01_pytorch_workflow_model_0.pth
# check the saved model file path
!ls -l models/01 pytorch workflow model 0.pth
→ -rw-r--r-- 1 root root 1680 Feb 28 05:01 models/01 pytorch workflow model 0.pth
# loading a saved pytorch model's state dict()
loaded model 0=LinearRegressionModel()
loaded_model_0.load_state_dict(torch.load(f=model_save_path))
    <ipython-input-58-0ccbbce14452>:5: FutureWarning: You are using `torch.load` with `weigh
       loaded_model_0.load_state_dict(torch.load(f=model_save_path))
```