MAT 108 HW 1

Hardy Jones 999397426 Professor Bandyopadhyay Spring 2015

- Problem 1
- 1. This sentence is a proposition. Since 18 is not a multiple of 12, this proposition is false.
- 2. This sentence is a proposition. Since 3 is prime, this proposition is false.
- 3. This sentence is not a proposition.
- 4. This sentence is a proposition. Since $-\frac{1}{2}$ is rational and 3π is less than 10, this proposition is true.
- 5. This sentence is not a proposition.
- Problem 2
- 1. Since B is a contradiction, this propositional phrase is always false. So this phrase is a contradiction.
- 2. Since B is a contradiction, the inner phrase is always false, and the negation of that will always be true. So this phrase is a tautology.
- 3. Since A is a tautology, this propositional phrase is always true. So this phrase is a tautology.

Problem 3

	P	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$	$P \wedge Q$	$P \wedge R$	$(P \wedge Q) \vee (P \wedge R)$
1.	\overline{T}	Т	Т	Т	T	Т	Т	T
	Τ	Τ	F	Т	T	${ m T}$	F	${ m T}$
	Τ	F	Т	Т	T	F	Т	Т
	Τ	\mathbf{F}	F	F	F	F	F	F
	F	Τ	Т	Т	F	${ m F}$	F	F
	F	Τ	F	Т	F	${ m F}$	F	F
	F	\mathbf{F}	Т	Т	F	\mathbf{F}	F	F
	F	F	F	F	F	${ m F}$	F	F
		_		'		_	' <u>-</u>	

Since the two shaded columns have the same values at all respective locations, the two propositional phrases are equivalent. $P_{+} = P_{+} + P_{-} + P_{-}$

	P	Q	R	$P \wedge Q$	$(P \land Q) \lor R$	$Q \wedge R$	$P \lor (Q \land R)$
	Т	Т	Т	Т	T	Т	T
	Τ	Τ	F	Τ	T	F	T
	Τ	\mathbf{F}	Т	\mathbf{F}	T	F	T
2.	Τ	F	F	F	F	F	${ m T}$
	F	Т	Т	F	${ m T}$	Т	T
	F	Т	F	F	F	F	F
	F	\mathbf{F}	Т	\mathbf{F}	T	F	F
	F	F	F	F	F	F	F

Since the two shaded columns do not have the same values at all respective locations, the two propositional phrases are not equivalent.