Computer Animation and Games I CM50244

Skeletal Motion Capture

Some slides from Prof. Christian Theobalt, MPII

Overview

- Recap pre-knowledge of skeletal motion capture
 - Motion capture
 - Skeleton structure and motion
- Skeletal Motion Capture and Main Technologies
- Marker based Skeletal Motion Capture

Recap: Motion Capture

- Record live action
- Transform to virtual character

Motion Capture in Movies

Recap: Skeleton Structure

Animation/kinematic skeleton: inspired by anatomic skeleton

Anatomic skeleton

Kinematic skeleton

Recap: Skeleton Structure

Skeleton = tree.

Recap: Skeleton Motion

- Skeleton = tree.
- Joints = predefined transformations in an coord. frame

Recap: Skeleton Motion

- Skeleton = tree.
- Joints = predefined transformations in an coord. frame

Recap: Skeleton Motion

- Skeleton = tree.
- Joints = predefined transformations in an coord. frame
- Hierarchy of transformations (usually rigid body)

Other joints – relative transformation,

Recap: Forward Kinematics

- Find joint parameters: $(R_{\text{root}}, t_{\text{root}})$, (R_1, t_1) , ..., (R_n, t_n) .
- Around 40+ parameters (degrees of freedom).
- For every time step of a motion.

Kinematic skeleton

Overview

- Recap pre-knowledge of skeletal motion capture
 - Motion capture
 - Skeleton structure and motion
- Skeletal Motion Capture and Main Technologies
- Marker based Skeletal Motion Capture

Skeletal Motion Capture

Sensor data

Model: Kinematic skeleton

Motion Capture Technology (1)

- Sensor (active sensing) based systems
 - o accelerometer, gyroscope, etc.

[Xsens]

Motion Capture Technology (2)

Marker-based optical systems

Active markers

Motion Capture Technology (3)

Marker-less motion capture

[Elhayek et al., Outdoor human motion capture by simultaneous optimization of pose and camera parameters, Computer Graphics Forum, 2014]

Overview

- Recap pre-knowledge of skeletal motion capture
 - Motion capture
 - Skeleton structure and motion
- Skeletal Motion Capture and Main Technologies
- Marker based Skeletal Motion Capture

Calibration

Passive markers: IR filters + IR light on camera

Triangulation and tracking.

Triangulation \rightarrow 3D position

Triangulation and tracking.

Triangulation \rightarrow 3D position

Triangulation and tracking.

[Carleton University]

[Motion Capture Processing 102 - Youtube]

- Marker cleanup
 - Repair broken trajectories.
 - Semi-automatic vendor specific tools.

- Bone lengths.
- Joint locations

Initialization motion

Adam G. Kirk, James F. O'Brien, and David A. Forsyth. 2005. Skeletal Parameter Estimation from Optical Motion Capture Data. CVPR 2005.

- Labeled marker sets (body segments).
- Most software joint locations over time.

[Motion Capture Processing 103 - Youtube]

Inverse kinematics / skeleton solve

- (labeled) marker trajectories.
- Joint positions.

- Bones.
- Parameters for all joints $(R_{\text{root}}, t_{\text{root}}), (R_1, t_1), ..., (R_n, t_n).$

[Motion Capture Processing 105 - Youtube]

[Rise of the tomb raider]