

Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

Departamento de Matemática e Aplicações	1° Teste :: 30 de março de 2016

Nome (Número	
,	,	_

A resposta ao Exercício 1 deve ser dada na folha de enunciado.

Exercício 1. [3 valores] Considere o conjunto $A=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 4 \text{ e } x^2+4y^2>4\}.$

- a) Apresente um esboço do conjunto A.
- b) Preencha a tabela usando os símbolos \in e \notin .
- c) Diga, justificando, se A é ou não um conjunto fechado.

	A	\mathring{A}	\bar{A}	∂A
(1,0)				
(0,1)				
(1,1)				
(2,0)				
(0,2)				
(2,2)				

Exercício 2. [4 valores] Considere a função definida por $f(x,y) = \sqrt{25 - 4x^2 - y^2}$.

- a) Identifique o domínio da função f.
- b) Descreva ou esboce as curvas de nível 0, 4, 5 e 6 de f.
- c) Identifique a superfície definida pelo gráfico de f.
- d) A função f é limitada? Justifique.

Exercício 3. [3 valores] Calcule, ou justifique que não existe:

a)
$$\lim_{(x,y)\to(1,0)} \frac{x^2 \sin y}{x^2 + y^4};$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{y^2 \sin y}{x^2 + y^4}$$
.

Exercício 4. [2 valores] Considere a função $f:\mathbb{R}^2\setminus\{(0,1)\}\to\mathbb{R}$ definida por

$$f(x,y) = \frac{xy}{\sqrt{x^2 + (y-1)^2}}.$$

- a) Justifique que f é contínua.
- b) É possível prolongar continuamente a função f a \mathbb{R}^2 ? Justifique.

Exercício 5. [4 valores] Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^4y}{x^4 + y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- a) Justifique que f é contínua.
- b) Calcule Df((0,0);(u,v)) para qualquer $(u,v) \in \mathbb{R}^2$.
- c) Indique, caso exista, o valor de $f_x(0,0)$ e de $f_y(0,0)$.
- d) Verifique se f é derivável em (0,0).

Exercício 6. [4 valores] Considere a função $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $f(x, y, z) = (xyz^2, ye^{xy})$.

- a) Calcule a matriz jacobiana de f.
- b) Justifique que a função f é derivável.
- c) Calcule a derivada de f no ponto (1, 1, 2).
- d) Calcule Df((1,1,2);(1,0,1)).