Fabian Düker, Uli Steinbach

Universität Heidelberg, Institut für Computerlinguistik Softwareprojekt, SoSe 2018

Prof Dr. Katja Markert

12.06.2018

Ubersicht I

Übersicht Aufgabe

Inhaltliche Spezifikation inh. Spezifikation

Modularisierung und Aufgabenverteilung Modularisierung und Aufgabenverteilung

Programmarchitektur, Datenstrukturen Programmarchitektur und Datenstrukturen

Ubersicht

Autom. Erstellung eines Lexikons für die Erkennung von **Abusive Words**

Anwendung auf Germeval 2018 Task I ⇒ Binäre Klassifikation von 5000 Tweets

Problemstellung

- ► Problem: Hatespeech ist in ständiger Veränderung begriffen (Neologismen, Ambiguität, Kontext/Domäne)
- ▶ Wiegand et al. 2016: Erstellung eines englischen Lexikons mit guten Ergebnissen auf cross-domain Evaluation
- ► SentiWS: Lexikon mit negativen Wörtern für das Deutsche

Lösungsansatz

- ► Erstellung Baselexikon aus SentiWS neg. Sentiment-Lexikon
- ► Halbautomatische Erweiterung des Baselexikons mit deutschen Schimpwörtern
- ► Autom. Erweiterung mittels graphbasiertem Label-Propagation-Algorithmus
- Anwendung auf Germeval 2018 Datenset und Evaluation

SentiWS

- Extraktion negativer Wörter aus SentiWS
- ► 686 Nomen
- ▶ 420 Verben
- ▶ 708 Adjektive
- ► Problem: Zu wenige explizite Schimpfwörter
- Lösung: Mehr Schimpfwörter hinzufügen

- ► Genius API: Erstellung eines Deutschrapkorpus
- Deutschrap: zeitgemäße Verwendung von Schimpfwörtern (genrespezifisch, aber auch politisch, rassistisch, sexistisch)
- autom. Extraktion von Kandidaten mittels syntaktischer Pattern

- Automatischer Abgleich aller Nomen im Rapkorpus
- mit Schimpfwortliste aus dem Internet
- mit Pattern "du [NN]"
- etwa 280 potentielle Schimpfwörter
- manuelles Aussortieren von false positives (z.B. "Rapper")
- Auswahl der 200 häufigsten Schimpfwörter
- ► Erweiterung durch beleidigende Adjektive
- ► Suche nach Pattern "du [ADJ] Schimpfwort"
- ▶ etwa 280 potentiell beleidigende Adjektive

- ► Lemmatisierung mit IWNLP
- ▶ Lemmatisierung der nicht erkannten Adjektive von Hand
- Beseitigung von Duplikaten
- Finales Baselexikon:
- ▶ 887 Nomen
- ▶ 413 Verben
- ▶ 824 Adjektive
- 2124 Wörter

Rapkorpus

- Texte von 30 Rappern (Auswahl angelehnt an Daten-Journalismus Studie des BR/PULS zum Thema "Diskriminierung im Deutschrap" aus dem Jahr 2016)
- Bushido
- Chakuza
- ► K.I.Z.
- Kay One
- Kollegah & Farid Bang
- Prinz Pi
- Bass Sultan Hengzt
- ► Fler
- Azad
- Kool Savas

Rapkorpus

Auszug der extrahierten Schimpfwörter vor Handselektion

- Rapper
- Kopf
- Arsch
- Bitch
- Schwanz
- Scheiße
- Gangster
- Block
- ► Baby
- Nutte

Baseline

- Baseline 1: Unigram und Bigram SVM
- Baseline 2: Feature Selection (Mutual Information) SVM
- ▶ Preprocessing: Autosarkasmus-SP (SoSe 2016): Alle Tweets wurden tokenisiert, normalisiert und pos-getagged. Zusätzlich Lemmatisierung und stopword removal
- ▶ 10-Fold Cross Validation mit random-seed für bessere Vergleichbarkeit

Baseline

- Unigram und Bigram SVM: Es wurde ein SVM Klassifizierer mit Standard-Parametern (Regularisierungs-Parameter C = 1.0, linear Kernel) trainiert. Input-Features sind die auf der Dokument-Term Matrix berechneten tf-idf Werte für Unibzw. Bigramme. Für die Unigramme wurde ein unterer cutoff von mind. 2 Vorkommen festgelegt.
- ► Feature Selection Algorithmus: Berechnung des mutual information score (Manning et. al 2011) zwischen Label und Wort ⇒ 1500 Wörter mit den höchsten mi-scores wurden als Input-Features für den SVM Klassifizierer (Regularisierungsparameter C=1.0, linearer Kernel) benutzt.

Evaluation der Baseline

Table: Baseline: tf-idf unigram SVM

Fold	#train	pos	neg	tok/tw	#test	pos	neg	tok/tw	F1	
1	4500	1524	2976	146.94	500	160	340	144.124	0.7026952348344236	
2	4500	1560	2940	146.73	500	124	376	146.05	0.7430423747345847	
3	4500	1525	2975	146.73	500	159	341	146.0	0.6822048536263124	
4	4500	1505	2995	146.57	500	179	321	147.512	0.6637390819218496	
5	4500	1498	3002	145.94	500	186	314	153.154	0.6466493970138341	
6	4500	1504	2996	147.0	500	180	320	143.568	0.6675527979162865	
7	4500	1504	2996	146.61	500	180	320	147.106	0.6563892890626787	
8	4500	1519	2981	146.16	500	165	335	151.13	0.6681861534976389	
9	4500	1504	2996	147.08	500	180	320	142.86	0.650127611518916	
10	4500	1513	2987	146.83	500	171	329	145.104	0.6737827241885149	
	Total Accuracy: 0.68 (+/- 0.05)									

Evaluation der Baseline

Table: Baseline: tf-idf bigram SVM

Fold	#train	pos	neg	tok/tw	#test	pos	neg	tok/tw	F1
1	4500	1524	2976	146.94	500	160	340	144.124	0.6713317445366677
2	4500	1560	2940	146.73	500	124	376	146.05	0.7143231005141465
3	4500	1525	2975	146.73	500	159	341	146.0	0.6607936275023581
4	4500	1505	2995	146.57	500	179	321	147.512	0.6407256780069586
5	4500	1498	3002	145.94	500	186	314	153.154	0.6004567364407795
6	4500	1504	2996	147.0	500	180	320	143.568	0.636733440679629
7	4500	1504	2996	146.61	500	180	320	147.106	0.6211176439430055
8	4500	1519	2981	146.16	500	165	335	151.13	0.6254687762688433
9	4500	1504	2996	147.08	500	180	320	142.86	0.6184350158030838
10	4500	1513	2987	146.83	500	171	329	145.104	0.6386443278943279
	Total Accuracy: 0.64 (+/- 0.06)								

Evaluation der Baseline

Table: Baseline: Feature-Selection m. Mutual Information

Fold	#train	pos	neg	tok/tw	#test	pos	neg	tok/tw	F1
1	4500	1524	2976	146.94	500	160	340	144.124	0.7506333288282201
2	4500	1560	2940	146.73	500	124	376	146.05	0.8159589743589742
3	4500	1525	2975	146.73	500	159	341	146.0	0.7661802897341697
4	4500	1505	2995	146.57	500	179	321	147.512	0.761125609472951
5	4500	1498	3002	145.94	500	186	314	153.154	0.717136006424597
6	4500	1504	2996	147.0	500	180	320	143.568	0.7715594209711858
7	4500	1504	2996	146.61	500	180	320	147.106	0.7808015386464718
8	4500	1519	2981	146.16	500	165	335	151.13	0.7812137931034483
9	4500	1504	2996	147.08	500	180	320	142.86	0.7738412698412699
10	4500	1513	2987	146.83	500	171	329	145.104	0.7651150793650793
	Total Accuracy: 0.77 (+/- 0.05)								

Graph-basierter Ansatz für autom. Erweiterung des Baselexikons

- Erstellung von pos + neg seed-Liste mit annotierten
 Schimpwörtern aus Baselexikon (+) und häufigsten Wörtern
 (-)
- Graph mit Kanten zw. Wörtern auf Basis von Kosinusähnlichkeit zwischen Word Embeddings Vektoren (auf Twitter Korpus trainiert)
- Propagierung der Seed-Labels auf ungelabelte Knoten/Wörter mittels graphbasiertem Label-Propagation-Algorithmus (Adsorption Algorithmus, Talukdar et al. 2008)

Graph-basierter Ansatz für autom. Erweiterung des Baselexikons

Figure: Label Propagation Graph aus Wiegand et al. 2018

- ▶ Paketierung: Aufsplittung des Gesamtpakets in kleinere Module
- Python-Pogrammierung (objektorientierte Implementierung)
- "split und shared tasks"

Modul		Uli	Fabian
Erstellung Baselexikon			
	Extraktion negativer Wörter aus SentiWS		X
	Erstellung Rapkorpus	×	
	PAT-basierte Extraktion von NNs/ADJs	X	X
	Autom. Abgleich von Nomen mit Schimpfwortliste und Patterns		х
	Handselektion der beleidigenden Nomen		x
	Lemmatisierung des Lexikons mit IWNLP Lemmatizer		х
	Korrektur und Restlemmatisierung des Lexikons		х
	Skript für Erstellung eines Annotations-Testsets	×	
	Skript für autom. Auswertung d. Annotations-Testsets		х
Erstellung Baselines			
_	Implementation manuelle 10-Fold Cross Validation	x	
	Integration Autosarkasmus-Tweet Preprocessing	x	
	Erweitertes Preprocessing (Lemmatisierung, Stopwörter)	x	
	Implementation Unigram/Bigram SVM Baseline	×	
	Implementation Mutual Information (Manning et. al 2011)	x	
	Implementation Feature Selection (MI) SVM Baseline	×	
	Evaluation und Output	x	
Erstellung Word-Similarity Graph	·		
	Word Embeddings auf Twitter Daten	×	x
	Erstellung des Wortähnlichkeitsgraphen auf Basis von Kosinusähnlichkeiten	X	X
	Unknown Words Handhabung (character-level embeddings?)	×	x
	Erstellung der Seed Listen (pos + neg)	x	x
Label Propagation	3 (1 - 2)		
. 5	Implementation Adsorption Algorithmus (Talukdar 2008)	x	x
	Erweiterung des Baselexikons mit Output	×	x
Anwendung und Evaluation	·		
	Test auf Germeval Daten	×	×
	Verbesserungen und Erweiterungen	×	x
	Visualisierung des Outputs	×	x
	Präsentation der Ergebnisse	×	x

x x

Abschlussbericht

Aufgabenverteilung

Modularisierung

Zeitplan

Programmarchitektur

Programmarchitektur

Programmarchitektur

Datenstrukturen

Literatur

- ► Talukdar, Pereira 2008 Expermiments in Graph-based Semi-Supervised Learning Methods for Class-Instance Acquisition
- Velikovich et al. 2010 The Viability of Web-derived Polarity Lexicons
- Wiegand et al. 2018 Inducing a Lexicon of Abusive Words -A Feature-Based Approach
- Manning et al. 2011
- Autosarkasmus Gruppe 2016
- ► BR/PULS Studie 2016

Ressourcen

- Schimpfwortliste http://www.hyperhero.com/de/insults.htm
- ► **SentiWS** http://wortschatz.uni-leipzig.de/en/download/
- ► **Genius** API https://genius.com/
- spaCy https://spacy.io/