Python en Ámbitos Científicos

Facundo Batista & Manuel Carlevaro

16 de abril de 2022

Título: Python en Ámbitos Científicos Autores: Facundo Batista & Manuel Carlevaro

ISBN-13 (versión electrónica): ???-????-??? © Facundo Batista & Manuel Carlevaro Primera Edición (versión preliminar)

Escrito con X₃L^AT_EX.

Licencia: Creative Commons Atribución-NoComercial-Compartirlgual 4.0 Internacional (CC BY-NC-SA 4.0)

Lugar: Olivos y La Plata, Buenos Aires, Argentina

Año: 2021

Web: https://github.com/facundobatista/libro-pyciencia

10 9 8 7 6 5 4 3 2 1

Prefacio

Cuando la Comunidad Científica notó que las computadoras podían facilitar su trabajo, sus integrantes se convirtieron posiblemente en los adoptantes tempranos más entusiastas de la tecnología. Aunque el uso y la potencia de las computadoras crece continuamente en el ámbito científico, poco se ha avanzado en la formación y desarrollo de habilidades en Desarrollo de Software.

El cálculo científico requiere realizar combinaciones de múltiples tareas de diversa clase. Por ejemplo, es necesario registrar automáticamente datos de un experimento y visualizarlos, realizar cálculos numéricos o simbólicos, ordenar, clasificar, simular, etc. Muchas veces podemos utilizar paquetes de software que realizan esas tareas por nosotros, pero muchas otras ocurre que nadie ha implementado un determinado cómputo en la forma que necesitamos, o simplemente queremos probar ideas nuevas. Cualquiera sea la naturaleza de nuestra actividad en la ciencia o en la tecnología, no resulta infrecuente la necesidad de interactuar con computadoras a través de programas propios.

El uso de Python en aplicaciones científicas ha aumentado sostenidamente en los últimos años, sin embargo es difícil encontrar libros o manuales en castellano de Python que no estén pensados para programadores.

Este libro nace con la idea primaria de acercar Python al mundo científico, en un libro pensado para científiques, a partir de nuestra experiencia en el dictado del curso "Herramientas Computacionales para Científicos" que ofrecemos en la Universidad Nacional de La Plata y la Universidad Tecnológica Nacional, desde 2007. De la misma manera, la elección del castellano como idioma de escritura es un factor crítico, porque aunque sabemos que el inglés es una herramienta fundamental tanto para programar como para hacer ciencia, estamos convencidos que no debería ser una barrera de entrada.

Más allá de las secciones básicas de un libro (índice, bibliografía, etc.), el libro tiene dos grandes partes. La primera habla de Python, algunas bibliotecas importantes y otros temas que son fundamentales. En la segunda, mostramos cómo abordar temas científicos básicos utilizando Python, de forma teórica y práctica.

En ambos casos este libro esquiva la pretensión de ser una referencia absoluta, sino que tiene el propósito de allanar el camino de les científiques para dar los primeros pasos en el lengua-je y solucionar los problemas básicos (pero no por eso menos importantes) de la ciencia y la tecnología.

Tanto los textos como el código fuente, ejemplos e imágenes son Copyright de Facundo Batista y Manuel Carlevaro y están compartidos bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) [1], salvo que se especifique puntualmente lo contrario.

Olivos y La Plata, Buenos Aires, Argentina,

Facundo Batista & Manuel Carlevaro

Índice general

	Prefa	acio	2
Ι	Her	ramientas fundamentales	4
II	Ten	nas específicos	5
1.	Elen	nentos de estadística	6
	1.1.	Introducción	6
	1.2.	Números aleatorios	6
	1.3.	Variables aleatorias y distribuciones	10
		1.3.1. Medidas de centralidad	12
		1.3.2. Medidas de dispersión	15
	1.4.	Test de hipótesis	21
	1.5.	Estimación no paramétrica de la FDP	28
	1.6.	Lecturas recomendadas	33
III	Ap	péndices	34
A.	Zen	de Python	35

Parte I Herramientas fundamentales

Los capítulos siguientes desarrollan un conjunto de conocimientos y técnicas fundamentales que serán utilizados en la Parte II al abordar temas de aplicaciones específicas. Se sugiere, a los lectores que no tienen experiencia previa en el uso de Python, un recorrido secuencial a través de los capítulos que componen esta Parte.

Parte II Temas específicos

En esta Parte desarrollaremos capítulos que abordan temas específicos de aplicación de herramientas de Python. Cada capítulo está autocontenido, de forma que el lector o lectora puede acceder directamente al tema de interés sin realizar un recorrido secuencial de los capítulos, aunque serán utilizados conceptos y herramientas tratados en la Parte I.

1 | Elementos de estadística

1.1. Introducción

La estadística comprende la colección, organización y análisis de datos para comprender fenómenos y tomar decisiones. Los métodos estadísticos son necesarios cuando tenemos información incompleta sobre un fenómeno, debido a que es imposible obtener datos de todos los miembros de una *población*, o porque las mediciones que realizamos poseen intrínsecamente una incerteza. Cuando no podemos determinar completamente los valores de una población, podemos obtener una *muestra* elegida aleatoriamente (muestreo sistemático, estratificado, de conglomerados, etc.) y por medio de métodos estadísticos obtener parámetros que permitan hacer inferencias sobre las propiedades de la población, en forma sistemática y con estimaciones.

<u> </u>	
Módulo	Versión
Matplotlib	3.3.4
NumPy	1.19.5
SciPy	1.6.1

Los métodos estadísticos se fundamentan en la teoría de la probabilidad, con la cual podemos modelar incertezas e información incompleta usando variables aleatorias. Como un ejemplo muy común, a partir de la selección aleatoria de una muestra de una población podemos inferir las propiedades de esta última. En la teoría de la probabilidad, cada salida posible de una observación tiene una probabilidad dada, y la probabilidad de todas las posibles salidas constituye la distribución de probabilidad. Dada una función de distribución de probabilidad, podemos calcular las propiedades de la población tales como la media y la varianza, pero si solo conocemos los valores para una muestra obtenida aleatoriamente podemos estimar los valores esperados, o medios, de la población.

1.2. Números aleatorios

La bibloteca estándar de Python provee el módulo random que implementa generadores de números pseudo aleatorios para diversas distribuciones, utilizando el algoritmo Mersenne-Twister como generador [2]. Por otra parte, el módulo random de NumPy brinda una funcionalidad similar con métodos que generan arrays de NumPy, además de ofrecer un número mayor de distribuciones de probabilidad.

Las rutinas para generar números pseudo aleatorios de NumPy utilizan una combinación de un BitGenerator, que son objetos que proveen secuencias de bits aleatorios¹ compuestos de palabras de enteros sin signo con secuencias de 32 o 64 bits, y Generators, que transforman las secuencias de bits aleatorios de un BitGenerator en secuencias de números con una distribución de probabilidad específica (uniforme, normal o binomial, por ejemplo), en un intervalo dado.

¹Sabiendo que los algoritmos solo son capaces de generar números *pseudo aleatorios*, utilizaremos indistintamente el término *aleatorio* para referirnos a los que estrictamente son números *pseudo aleatorios*.

Números aleatorios § 1.2

Un detalle importante es la semilla utilizada para iniciar la secuencia de números aleatorios. Esta semilla se pasa como argumento al objeto BitGenerator en forma de entero o array de enteros. En caso de no pasar ninguna semilla al inicializar el BitGenerator, se tomará un valor del generador de entropía del sistema operativo². En las aplicaciones científicas o tecnológicas es importante emular un proceso aleatorio, pero también lo es que estas secuencias sean reproducibles, por lo que el control y registro de las semillas conforman una buena práctica.

Veamos entonces cómo se utilizan estas herramientas. Como muestra el *jupyter-notebook* a continuación, en la celda 1 importamos Generator y PCG64 desde numpy random, además de NumPy para la utilización de arrays y Matplotlib para utilidades gráficas, y el submódulo stats de SciPy que utilizaremos más adelante. PCG64 es el objeto BitGenerator que inicializa el generador pseudo aleatorio PCG-64, que a su vez implementa el generador congruencial de permutación de O'Neill [3]. En la celda 2 establecemos primero la semilla del generador utilizando el número de Hardy-Ramanujan³, de modo de hacer reproducible los resultados, e instanciamos el objeto rng de Generator. Luego obtenemos el primer número de la secuencia con el método random de rng, que devuelve un real con distribución uniforme en [0, 1).

```
import matplotlib.pyplot as plt
%config InlineBackend.figure_formats = ['svg']
import numpy as np
from numpy.random import Generator, PCG64
from scipy import stats
plt.rcParams.update({'text.usetex': True})
```

```
np.random.seed(1729)
rng = Generator(PCG64())
rng.random()

0.7729786744289152
```

Si queremos obtener un número aleatorio con distribución uniforme en [a,b) es necesario reescalar la salida de random multiplicándola por (b-a) y sumándole a. Por ejemplo, si el intervalo es [-3,0):

```
CELL 03

(0 + 3) * rng.random() - 3

-1.2834779539089132
```

Tal como anticipamos, podemos obtener no solo números aleatorios aislados sino arrays con las dimensiones deseadas:

²En los sistemas operativos del tipo Unix, estas semillas se originan de los archivos especiales /dev/random, /dev/urandom y /dev/arandom, que colectan ruido ambiental de los dispositivos de la computadora. Se puede ver la implementación en Linux aquí.

 $^{^3}$ 1729 es el número natural más pequeño que puede expresarse como suma de dos cubos positivos, de dos formas diferentes: $1729 = 1^3 + 12^3 = 9^3 + 10^3$. También es conocido como el *número Taxi*, por la anécdota que le da nombre.

Números aleatorios § 1.2

El objeto Generator también ofrece la posibilidad de generar números enteros en un intevalo dado [a,b) (por defecto semiabierto) mediante el método integers (). En el ejemplo siguiente generamos un array de cinco elementos en el intervalo cerrado [10,20], estableciendo que el extremo superior del intevalo puede ser generado con la opción endpoint=True.

```
CELL 05

rng.integers(low=10, high=20, size=5, endpoint=True)

array([20, 12, 15, 14, 14])
```

Otra funcionalidad muy útil que brinda Generator es la generación de una muestra aleatoria de un determinado array, usando para esto el método choice(). En el ejemplo a continuación simulamos una serie de 5 lanzamientos de tres dados. Para ello, en la celda 6 asignamos en la variable dado los posibles resultados del lanzamiento de un dado. En la celda 7 invocamos el método choice sobre el objeto rng, generando los 5 lanzamientos con tres dados, asumiendo que el dado es "honrado" y que cada cara tiene probabilidad 1/6:

```
CELL 06

dado = np.arange(6) + 1
dado

array([1, 2, 3, 4, 5, 6])
```

El argumento replace permite establecer si el muestreo es con o sin reemplazo. La opción por defecto es **True**, lo que significa que los elementos del array dado pueden ser elegidos en múltiples oportunidades.

Por supuesto, podemos asignar probabilidades diferentes para cada elemento del array del cual queremos tomar la muestra. Para ello es necesario especificar mediante otro array la distribución deseada, cumpliendo la condición obvia que la suma debe ser 1. Este array de probabilidades se pasa como argumento p del método choice. En las celdas 8–9 siguientes "cargamos" el dado en la cara 4 asignándole mayor probabilidad que al resto de las caras, y repetimos el experimento de los cinco lanzamientos de los tres dados:

```
pesos = np.array([3/20, 3/20, 3/20, 1/4, 3/20, 3/20])
pesos.sum()

1.0
```

Números aleatorios § 1.2

Podemos comparar la frecuencia con la que son seleccionados los diferentes elementos del array dado para ambos casos, generando un número relativamente grande de selecciones y graficando el histograma correspondiente, tal como vemos en la celda siguiente:

Por último, Generator provee métodos para reordenar o permutar elementos de una secuencia: shuffle y permutation. La principal diferencia entre estos métodos consiste en que shuffle reordena los elementos de la secuencia modificando ésta (*in place*), por lo que la secuencia debe ser un objeto *mutable*, mientras que permutation devuelve una copia si como argumento se le pasa un array, o un rango reordenado si como argumento se le pasa un entero. Podemos ver cómo se reordenan arrays, listas o rangos en las siguientes celdas:

```
CELL 11

array = np.arange(10)

rng.shuffle(array)

array

array([2, 1, 4, 7, 5, 8, 3, 9, 6, 0])
```

```
CELL 12

rng.permutation([1, 2, 3, 4, 5])

array([5, 2, 1, 3, 4])
```

```
CELL 13

rng.permutation(10)

array([2, 0, 4, 7, 9, 6, 8, 5, 3, 1])
```

En el caso que necesitemos reordenar arrays multidimensionales, podemos establecer sobre qué dimensión hacer el reordenamiento indicándolo en el argumento axis. Por ejemplo, si queremos ordenar "por columna":

```
CELL 15

y = rng.permutation(x, axis=1)
y

array([[ 1,  2,  0,  3],
       [ 5,  6,  4,  7],
       [ 9,  10,  8,  11]])
```

mientras que si queremos hacerlo "por fila":

```
Z = rng.permutation(x, axis=0)
z
array([[ 8,  9, 10, 11],
       [ 4,  5,  6,  7],
       [ 0,  1,  2,  3]])
```

1.3. Variables aleatorias y distribuciones

En la teoría de la probabilidad, el conjunto de todos los resultados de un experimento aleatorio se denomina *espacio muestral*, y cada uno de los resultados se llama *punto muestral*. Por lo general habrá más de un espacio muestral para describir los resultados de un experimento, pero usualmente hay solo uno que suministra la mayoría de la información (por ejemplo, para el

experimento de lanzar un dado podríamos tener como espacio muestral el número sobre la cara superior, o si esa cara representa un número par o impar).

Si a cada punto muestral le asignamos un número, podemos definir una función aleatoria (o estocástica) que mapea desde el espacio muestral al conjunto de números reales o enteros, que de este modo constituye una variable aleatoria o estocástica. Por ejemplo, nuestro experimento podría ser lanzar una moneda dos veces de tal forma que nuestro espacio muestral es $E = \{CC, CS, SC, SS\}$ donde C representa cara y S, sello. Con cada punto muestral podemos asociar un número X que sea el número de caras. Nuestra variable aleatoria queda definida entonces por la siguiente tabla:

Punto muestral	CC	CS	SC	SS
X	2	1	1	0

Una variable aleatoria que toma un número finito o infinito contable de valores se denomina variable aleatoria discreta, mientras que una que toma un número infinito no contable de valores se llama variable aleatoria continua. Un problema estadístico usual consiste en mapear el resultado de experimentos en valores numéricos y determinar la distribución de probabilidad de esos valores. En consecuencia, una variable aleatoria se caracteriza por los posibles valores que puede tomar (el recorrido de la variable aleatoria) y por su función de distribución de probabilidad, y en la práctica esto significa trabajar con estas distribuciones. Según la notación tradicional, en el caso discreto se denomina función de distribución de probabilidades mientras que para el caso continuo la denominación es función de densidad de probabilidad. En lo que sigue usaremos indistintamente la notación FDP según el caso sea discreto o continuo.

Los objetos Generator de NumPy permiten generar secuencias de números aleatorios a partir de numerosas distribuciones⁴. Como ejemplo, en la celda siguiente construimos un objeto Generator invocando (a diferencia del ejemplo previo) el constructor por defecto default_random() que lo inicializa con el BitGenerator PCG64, y al que le pasamos la semilla del generador (lo cual es opcional⁵). Luego utilizamos ese objeto para generar arrays con un número n_samples de elementos con distintas distribuciones, que se muestran como histogramas en la figura.

⁴Se puede ver la lista completa de distribuciones disponibles en la documentación de NumPy.

⁵En este ejemplo utilizamos el primer primo feliz.

Como vimos, un objeto Generator de NumPy es capaz de producir una secuencia de números aleatorios con una distribución dada. Esto es, de algún modo, equivalente a realizar experimentos estocásticos con esa distribución y obtener salidas de las variables aleatorias que resultan de ese experimento. Una descripción más completa a nivel estadístico se obtiene a partir del submódulo stats de SciPy.

El módulo scipy.stats provee clases para representar variables aleatorias con una extensa lista de distribuciones de probabilidad. Tiene dos clases base para variables aleatorias continuas y discretas: rv.continuous y rv.discrete. Estas clases no son utilizadas directamente sino que se usan como clases base para variables estocásticas con distribuciones específicas, y definen una interfaz común para todas las variables aleatorias en este módulo. A continuación haremos una revisión breve de los principales conceptos que se utilizan para caracterizar una distribución, y la forma de obtener descriptores utilizando convenientemente métodos de NumPy o SciPy.

1.3.1. Medidas de centralidad

Cuando tenemos un conjunto de datos como muestra de una distribución, podemos caracterizar el centro de la distribución con diferentes parámetros: según su valor o por su rango en función del orden en una lista de acuerdo a una magnitud.

1.3.1.1. Media

Por la media de una distribución nos estamos refiriendo a la media aritmética \bar{x} :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

PRELIMINA

Tomemos como ejemplos para analizar las distribuciones obtenidas en la celda 17. Con el método mean() de NumPy podemos obtener las medias:

```
CELL 18

X_normal.mean(), X_f.mean(), X_gamma.mean()

(9.998010521368922, 1.039862209298918, 8.001001879189166)
```

Un problema común que acontece es que el conjunto de datos con el que trabajamos tiene valores perdidos (por errores de medición, registro, etc.) que se representan por NaN (que significa "not a number", o un no-número). En estos casos, NumPy posee métodos que pueden obtener resultados ignorando estos NaN. Por ejemplo, en la celda 19 agregamos un NaN (que numpy representa con numpy nan) a nuestro array con distribución normal. Si calculamos la media de esta nueva distribución, obtenemos un NaN como resultado, pero con el método nanmean() recuperamos el resultado correcto:

```
      X_normal_Nan = np.hstack((X_normal, np.nan))

      X_normal_Nan.mean()

      nan

      Cell 20

      np.nanmean(X_normal_Nan)

      9.998010521368922
```

1.3.1.2. Mediana

La mediana es el valor que separa la mitad superior de la mitad inferior de una lista ordenada de valores. En caso en que dicha lista tenga un número par de valores, la mediana es la media aritmética de los dos valores centrales.

En la celda siguiente podemos ver el resultado de obtener la mediana para dos arrays con números par e impar de elementos:

```
valores_par = np.arange(10)
valores_impar = np.arange(11)
print(f'Mediana par: {np.median(valores_par)} | Mediana impar: {np.median(valores_impar)}')
print(f' Media par: {valores_par.mean()} | Media impar: {valores_impar.mean()}')

Mediana par: 4.5 | Mediana impar: 5.0
Media par: 4.5 | Media impar: 5.0
```

Se puede observar que cuando las distribuciones de valores son simétricas, la media y la mediana coinciden, pero no así cuando las distribuciones no lo son:

```
print(f' Media Normal: {X_normal.mean()}')
print(f'Mediana Normal: {np.median(X_normal)}')
print(f' Media F: {X_f.mean()}')
print(f'Mediana F: {np.median(X_f)}')

Media Normal: 9.998010521368922
Mediana Normal: 9.996573186158033
Media F: 1.039862209298918
Mediana F: 0.9448978239181103
```

En el caso en que tengamos una función de densidad de probabilidad (variable continua), la mediana es el valor tal que si integramos dicha función desde $-\infty$ hasta la mediana, la integral da 0.5.

1.3.1.3. Moda

La moda de un conjunto de datos es el valor que aparece con mayor frecuencia (si la distribución es continua, es el valor máximo). Por ejemplo, si hacemos cinco experimentos lanzando cuatro dados cargados según la FDP que mostramos en la celda 8, podemos obtener la moda en cada eje del array resultante, o de todas las salidas, utilizando el método mode de scipy stats como se muestra en la celda 23:

```
samples = rng.choice(dado, (5, 4), p=pesos, replace=True)
print(samples) # Salida del experimento
print(stats.mode(samples)) # Por defecto axis=0 (conteo por columnas)
print(stats.mode(samples, axis=None)) # Todos los datos

[[2 3 4 2]
[3 5 1 3]
[3 5 6 5]
[4 5 6 2]
[4 3 4 2]]
ModeResult(mode=array([[3, 5, 4, 2]]), count=array([[2, 3, 2, 3]]))
ModeResult(mode=array([3]), count=array([5]))
```

En la primera salida del cálculo de la moda obtenemos un array que muestra cuál es el valor más frecuente en cada columna (axis=0 por defecto) y un array con el número de veces que aparece el valor correspondiente. Si queremos obtener la moda de todos los valores que contiene el array samples, pasamos la opción axis=None como argumento.

En caso que el conjunto de datos a analizar incluya uno o varios NaN, es posible establecer la respuesta de mode mediante el parámetro opcional nan_policy. Si este parámetro es 'propagate' el método mode devuelve NaN (y ésta es la opción por defecto). Si le pasamos 'omit' obtenemos la moda de la distribución omitiendo los NaN y si el valor de este parámetro es 'raise' se lanza una excepción. Cuando existen varias modas en el conjunto, mode() devuelve la menor.

1.3.1.4. Media geométrica

En algunos casos es útil la media geométrica como medida de centralidad de una distribución. Esta magnitud se puede calcular mediante la media aritmética del logaritmo de los valores:

$$\bar{x}_g = \left(\prod_{i=1}^n x_i\right)^{1/n} = \exp\left(\frac{\sum_i \ln(x_i)}{n}\right)$$

FIGURA 1.1: Moda, mediana y media para la distribución F.

Esta función se puede evaluar con el método gmean de scipy.stats. Obviamente, los valores deben ser positivos para que se pueda calcular la media geométrica. En la celda 24 podemos ver las distintas medidas de centralidad sobre la distribución F.

En la figura 1.1 vemos una comparación gráfica de la moda, la mediana y la media para la distribución F cuya asimetría permite distinguir las tres magnitudes. Cabe enfatizar aquí que estas medidas de centralidad corresponden a muestras específicas, si cambiamos la semilla que usamos para el generador, obtendremos otros valores dado que estaríamos analizando una salida de esas mismas variables aleatorias.

1.3.2. Medidas de dispersión

Además de las medidas de centralidad que nos informan acerca de los valores centrales de una distribución de datos, es necesario también conocer alguna cantidad que represente la dispersión de los valores alrededor de las medidas centrales. Veremos a continuación algunas medidas frecuentes.

1.3.2.1. Rango

El rango de una distribución de datos es la diferencia entre los valores máximo y mínimo de dicha distribución, y se obtiene con el método ptp de NumPy (que proviene del inglés *peak-to-peak*):

```
for name, distribucion in zip(n_dists, dists):
    print(f'Rango de {name}: {np.ptp(distribucion)}')

Rango de Normal: 12.845742827626554
Rango de F: 5.944760304157928
Rango de Gamma: 53.84036147711152
```

Esta medida de dispersión incluye los valores atípicos, u *outliers*, que difieren notoriamente del resto de los valores de nuestro conjunto de datos, y pueden ser originados por errores en la medición o registro. Existen criterios para detectar estos *outliers*, tal como el considerar que un valor es atípico cuando se encuentra a $1,5\ IQR$ de distancia de los cuartiles Q_1 y Q_3 , siendo $IQR=Q_3-Q_1$ el rango intercuartílico (que veremos a continuación).

1.3.2.2. Cuantiles

Los cuantiles son valores específicos de la variable aleatoria que dividen el rango de la distribución de probabilidad en intervalos continuos de igual probabilidad. Los cuantiles más usuales tienen nombre propio: cuartiles (cuatro grupos), deciles (diez grupos) y percentiles (100 grupos). Un caso particular es la mediana, que divide la distribución en dos regiones de igual probabilidad.

Para analizar cuantitativamente los cuantiles es útil definir la *función de distribución acumulada* CDF (por su sigla en inglés) como función de la integral de la FDP:

$$CDF(x) = \int_{-\infty}^{x} FDP(x') dx'$$
(1.1)

Conocer la CDF facilita el cálculo de la probabilidad de encontrar un valor de x en el intervalo (a,b), dado que

$$P(a \le X \le b) = \int_a^b \text{FDP}(x) dx = \text{CDF}(b) - \text{CDF}(a)$$

Naturalmente, para distribuciones discretas, las integrales deben reemplazarse por sumas. La figura 1.2 muestra la representación gráfica de la PDF(x) y CDF(x) para una distribución normal, destacando en ambos paneles el valor de CDF(x=1).

Dado que la CDF es una función monótona creciente, su inversa CDF $^{-1}$ existe, y a partir de ésta se determinan los cuantiles. Por ejemplo, la ya mencionada mediana es simplemente CDF $^{-1}(0,5)$. Del mismo modo se pueden encontrar rangos que incluyan un porcentaje dado de los datos. Si queremos obtener el rango $(x_{\rm inf}, x_{\rm sup})$ que incluye el 95 % de la distribución, tenemos:

$$x_{\text{inf}} = \text{CDF}^{-1}(0.025), \quad x_{\text{sup}} = \text{CDF}^{-1}(0.975)$$

Como mencionamos, otros cuantiles muy usados son los cuartiles Q_1 , Q_2 y Q_3 , que corresponden a los percentiles 25 (CDF⁻¹(0,25)), 50 (CDF⁻¹(0,5)) y 75 (CDF⁻¹(0,75)), respectivamente. Estos cuartiles se utilizan para generar los gráficos de caja (boxplots), y la diferencia $IQR = Q_3 - Q_1$ se denomina rango intercuartílico, que se utiliza en uno de los métodos para identificar outliers.

FIGURA 1.2: Función de densidad de probabilidad (FDP, panel izquierdo) y función de distribución acumulada (CDF, panel derecho), para una distribución normal con media $\mu=0$ y desviación estándar $\sigma=1$.

El submódulo stats de SciPy tiene la función iqr() que calcula, por defecto, el rango intercuartílico de una distribución. Sin embargo, podemos modificar este comportamiento estableciendo el rango correspondiente a otros percentiles. Por ejemplo, para calcular el rango de una distribución podemos pasar como argumento rng=(0, 100) que equivale a utilizar la función ptp. En el ejemplo mostrado en la celda 26 vemos cómo podemos calcular la mediana como el percentil 50, y el rango intercuartílico como diferencia de los percentiles 75 y 25.

El uso de cuartiles premite representar distribuciones mediante los populares gráficos de caja o boxplots. En la celda 27 generamos nuevas distribuciones (normal, lognormal y Gumbel) y representamos los valores obtenidos mediante cajas que abarcan el 50 % de los datos, desde el primer cuartil Q_1 hasta el tercer Q_3 (es decir, el rango intercuartílico IQR). La linea horizontal dentro de la caja representa la mediana o segundo cuartil Q_2 . Los "bigotes" (lineas negras en ambos lados la caja) se extienden hasta $Q_1-1.5\ IQR$ y $Q_3+1.5\ IQR$, y establecen el rango fuera del cual los valores de la distribución se consideran outliers, que en la figura se muestran con cruces. Estos bigotes pueden representar valores alternativos como: los valores mímino y máximo, una desviación estándar alrededor de la media de los datos, los percentiles 9 y 91 o los percentiles 2 y 986.

Para más información sobre cómo construir estos gráficos, invitamos a leer la documentación de Matplotlib.

```
CELL 27
n2_samples = 500 # Número de muestras
# Tomamos muestras de tres distribuciones
X2_normal = rng_dist.normal(15, 3, size=n2_samples)
X2_logn = rng_dist.lognormal(1, 1, size=n2_samples)
X2_gumb = rng_dist.gumbel(6, 4, size=n2_samples)
dists_2 = [X2_normal, X2_logn, X2_gumb]
nombres_dist = ['Normal(15,3)', 'Lognormal(1,1)', 'Gumbel(6,4)']
fig2, ax2 = plt.subplots(figsize=(8,4))
bp = plt.boxplot(dists_2, notch=True, sym='+', vert=True, whis=1.5)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], marker='x')
# Trazamos una grilla horizontal de color tenue para no distraer
# la lectura de los datos.
ax2.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
               alpha=0.5)
# Etiquetamos los boxplots
xtickNames = plt.setp(ax2, xticklabels=nombres_dist)
plt.setp(xtickNames, rotation=45, fontsize=8)
 50
 40
 30
 20
```

1.3.2.3. Varianza y desviación estándar

El cálculo de la varianza de una población con n valores discretos se define como

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{1.2}$$

y la correspondiente desviación estándar es simplemente σ . En caso en que los valores disponibles no correspondan a toda la población, sino solamente a una *muestra* de la misma, se sabe que la

ecuación (1.2) es un estimador sesgado que subestima la varianza de la población. Se puede demostrar que un estimador no sesgado está dado por

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
(1.3)

que se conoce como la varianza muestral, y la correspondiente raíz cuadrada como la desviación estándar muestral. La notación usual consiste en representar con letras del alfabeto griego los parámetros poblacionales y con letras latinas los correspondientes muestrales. La diferencia con la varianza poblacional es que dividimos por n-1 en vez de n. La razón de esto es que se ha eliminado un grado de libertad de la muestra al calcular el valor medio \bar{x} , por lo que quedan disponibles n-1 grados de libertad. Esta diferencia en la forma de calcular varianzas y desviaciones estándar se refleja en la forma en que invocamos funciones en NumPy. En la celdas 28 y 29 vemos cómo utilizar las funciones var y std de Numpy para calcular estas magnitudes en ambos casos.

```
# Varianza y desviación estándar poblacional
var = np.var(X2_normal)
std = np.std(X2_normal)
print(f'σ² = {var}, σ = {std}')

σ² = 7.6544508825934985, σ = 2.7666678301873353
```

```
# Varianza y desviación estándar muestral

var_m = np.var(X2_normal, ddof=1)

std_m = np.std(X2_normal, ddof=1)

print(f's²(m) = {var_m}, s(m) = {std_m}')

s²(m) = 7.669790463520539, s(m) = 2.7694386549480634
```

Al igual que en otras funciones, NumPy ofrece también versiones de estas funciones que ignoran la presencia de NaN en los datos (nanvar() y nanstd()).

1.3.2.4. Error estándar

El error estándar (EE) es la estimación de la desviación estándar de un parámetro que se calcula a partir de una dada muestra. Por ejemplo, si estimamos la media de una distribución a partir de las medias de diversas muestras obtenidas de esa distribución, la desviación estándar de esas medias muestrales es el error estándar de la muestra (EEM).

En las celdas 30–31 construimos una distribución normal con media 5 y desviación estándar 1. A continuación tomamos n_muestras = 100 muestras de esa distribución, con n_valores = 60 valores cada una, y guardamos en el array medias los valores medios de cada muestra. El valor medio de este array es una buena estimación de la media de la distribución. La dispersión de estos valores se representa en estas figuras como la línea anaranjada que están a una desviación estándar de la media. Para valores normalmente distribuidos, el error estándar de la media (EEM) se define como

$$EEM = \frac{s}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n} (x - \bar{x})^2}{n - 1}}$$
 (1.4)

 $^{^7\}mathrm{Un}$ estimador es una función que se calcula a partir de los valores muestrales, utilizado para estimar un parámetro desconocido de la población. Un estimador es sesgado cuando la diferencia entre su esperanza matemática y el valor numérico es diferente de cero.

que se representa con las líneas de trazos verdes en la figura.

```
from math import sqrt
from scipy.stats import norm
rv = norm(5, 1)
```

```
CELL 31
n_{muestras} = 100
n valores = 60
medias = np.zeros(n muestras)
for i in range(n_muestras):
    sample = rv.rvs(n_valores)
    medias[i] = sample.mean()
media = medias.mean()
std = medias.std()
EEM = np.std(medias, ddof=1) / sqrt(n_muestras)
print(f'Media de medias: {media}')
print(f'Error estándar de la media: {EEM}')
plt.plot(medias, '.')
plt.axhline(y = media, color='red', label='Media')
plt.axhline(y = media - std, color='tab:orange', linestyle='dashdot', label='Desviación estándar')
plt.axhline(y = media + std, color='tab:orange', linestyle='dashdot')
plt.axhline(y = media - EEM, color='tab:green', linestyle='--', label='Error estándar')
plt.axhline(y = media + EEM, color='tab:green', linestyle='--')
plt.legend()
plt.show()
Media de medias: 4.970356897826361
Error estándar de la media: 0.013853918499575835
 5.4
                                             Media
                                             Desviación estándar
 5.3
                                             Error estándar
 5.2
 5.1
 5.0
 4.9
 4.8
 4.7
          0
                          20
                                                           60
                                                                            80
                                           40
                                                                                            100
```

El submódulo stats de SciPy tiene una función especializada para el cálculo del error estándar de la media (sem), que permite operar sobre los diferentes ejes del array de entrada y configurar la manipulación de NaN:

CELL 32

stats.sem(medias)

0.013853918499575835

1.3.2.5. Intervalos de confianza

Cuando se realiza un análisis estadístico de datos es usual informar el intervalo de confianza de la estimación de un parámetro. El intervalo de confianza (IC) del α % representa el rango que contiene el valor verdadero de ese parámetro con una probabilidad del α %.

Si la distribución muestral es simétrica y unimodal, es posible aproximar el intervalo de confianza de la media por:

$$IC = \bar{x} \pm Z_{\alpha} \frac{s}{\sqrt{n}}$$

Para determinar el valor de Z_{α} es necesario conocer la distribución teórica del parámetro que se intenta determinar. Sin embargo, para tamaños de muestras n grandes la media muestral está distribuida normalmente, por lo cual la determinación de Z_{α} consiste en encontrar el cuantil $(1-\alpha)/2$ de la distribución normal. Por ejemplo, para el intervalo de confianza del 95 %:

```
CELL 33

print(stats.norm.interval(.95, np.mean(medias), scale=stats.sem(medias)))

(4.943203716522439, 4.997510079130282)
```

En caso que la muestra sea pequeña (n < 30) sue le usarse como distribución teórica la distribución t de Student⁸.

1.4. Test de hipótesis

Es frecuente la necesidad de tomar decisiones sobre poblaciones a partir de la información muestral disponible de las mismas. En estos casos conviene hacer determinados supuestos o hipótesis acerca de las poblaciones que se estudian. Incluso en algunas ocasiones se formulan hipótesis con el solo propósito de rechazarlas. Por ejemplo, si se quiere demostrar que una moneda está "cargada", se formula la hipótesis de que es "honesta", lo que significa que la probabilidad de que un lanzamiento resulte cara o sello es 0,5, y se hace un ensayo para validar (o rechazar) estadísticamente esta hipótesis.

El proceso de ensayo o test de hipótesis involucra entonces la evaluación de dos afirmaciones mutuamente excluyentes utilizando para ello los datos de una muestra. La idea principal es que siempre existe una situación que puede ser considerada por defecto, de no cambio (respecto de la opinión actual), de no diferencia, no mejora, $statu\ quo$, etc., que se denomina $hipótesis\ nula$ o H_0 . Por otro lado, la hipótesis alternativa H_1 asume que hay algún cambio respecto de la situación actual. El propósito del test de hipótesis es determinar si los datos muestrales respaldan la hipótesis nula o la alternativa.

En virtud de la naturaleza estadística del método de ensayo, las decisiones que se toman con un número limitado de datos (la muestra) pueden ser erróneas. Si se rechaza la hipótesis nula cuando debería ser aceptada se produce un *error tipo I*, mientras que si se no se rechaza H_0 siendo esta falsa en la población, se está cometiendo un *error tipo II*. Los ensayos de hipótesis

 $^{^8}$ Se pueden ver más detalles de la distribución t de Student en la entrada de Wikipedia.

FIGURA 1.3: Test de hipótesis para una distribución normal ($\mu=0,\,\sigma=1$). a) Ensayo de dos colas. b) Ensayo de una cola. Las sumas de las áreas en rojo correspondientes a valores en las regiones críticas representan el nivel de significancia del test.

deben diseñarse entonces de forma que minimicen los errores de decisión, pero esto no es tan simple ya que en general, un intento de disminuir un tipo de error produce un incremento en el otro. En la práctica un tipo de error suele tener más importancia que el otro (generalmente el error tipo I), por lo que se suele poner una limitación al error de mayor importancia. La única forma de reducir efectivamente ambos errores es aumentar el tamaño de la muestra, pero esto no siempre es posible.

La máxima probabilidad con la que estaríamos dispuestos a arriesgarnos a un error tipo I se denomina *nivel de significancia del test*. Esta probabilidad se suele establecer antes de generar la muestra, de modo que los resultados obtenidos no tengan influencia en esta decisión. Por lo general se utiliza un nivel de significancia de 0.05 o 0.01. Si, por ejemplo, decidimos usar un nivel de 0.05 o 5 %, habrá 5 oportunidades en 100 de que rechacemos la hipótesis cuando debería ser aceptada. Es decir, siempre que la hipótesis nula sea verdadera, tenemos un 95 % de confianza en que tomaremos la decisión correcta.

Otro aspecto a tener en cuenta se refiere al tipo de comparación a realizar. Por ejemplo, podríamos establecer como hipótesis nula que el tiempo promedio que tarda una persona en llegar a su trabajo es de 30 minutos, o que este tiempo es superior a 30 minutos. En estos casos, los valores críticos que definen el rechazo de H_0 se toman como los valores extremos de una distribución de dos colas (con el correspondiente nivel de significancia), o como el valor extremo de una sola cola (que en este caso es la superior). En el primer caso, si el nivel de significancia es del 5 %, los valores críticos son los que limitan la distribución en 2,5 % de su área a cada lado, mientras que en el segundo el 5 % corresponde solo al límite superior de la distribución, tal como se ejemplifica en la figura 1.3.

Una vez que se definieron H_0 y H_1 , se deben colectar los datos de la muestra (por ejemplo a través de mediciones, encuestas, etc.). El paso siguiente consiste en encontrar un estadístico que se pueda calcular a partir de la muestra y cuya distribución de probabilidad sea conocida asumiendo la hipótesis nula. Luego calculamos, a partir de los datos, la probabilidad de obtener el valor observado del estadístico utilizando la función de distribución que implica asumir la hipótesis nula. Esta probabilidad se denomina p-valor. Si el p-valor es menor que el umbral predeterminado establecido por el nivel de significancia, podemos concluir que los datos observados probablemente no son descriptos por la distribución correspondiente a H_0 , y en este caso podemos rechazar la hipótesis nula en favor de H_1 . El procedimiento para realizar el test de hipótesis consiste entonces en los siguientes pasos:

1. Formular la hipótesis nula y la alternativa.

2. Seleccionar un estadístico tal que la distribución de la muestra bajo la hipótesis nula sea conocida (en forma exacta o aproximada).

- 3. Obtener los datos de la muestra.
- 4. Calcular el estadístico a partir de los datos y obtener su p-valor bajo la hipótesis nula.
- 5. Si el p-valor es menor que el nivel de significancia α predeterminado, rechazamos la hipótesis nula. Si es mayor, H_0 no puede ser rechazada.

En el procedimiento anterior, la mayor dificultad la plantea la determinación de la distribución de probabilidad del estadístico. Sin embargo, muchos ensayos de hipótesis pertenecen a unas pocas categorías usuales para las cuales estas distribuciones son conocidas. En la Tabla 1.1 se muestran algunos casos comunes para H_0 , las distribuciones asociadas y las funciones de SciPy que calculan el estadístico y el p-valor.

TABLA 1.1: Diversos ensayos de hipótesis y sus distribuciones asociadas.

Hipótesis nula	Distribuciones	Funciones de SciPy
Evaluar si la media de una población tiene un valor dado	Normal o t de Student	stats.ttest_1samp
Evaluar si la media de dos variables aleatorias son iguales	t de Student	<pre>stats.ttest_ind, stats.ttest_rel</pre>
Evaluar la calidad de ajuste de una distribución continua a datos	Kolmogorov-Smirnov	stats.ktest
Evaluar la frecuencia de ocurrencia de datos categóricos	χ^2	stats.chisquare
Evaluar la igualdad de varianza en muestras de dos o mas variables	F	<pre>stats.barlett, stats.levene</pre>
Evaluar la no correlación entre dos variables	Beta	stats.peraronr, stats.spearmanr
Evaluar si dos o mas variables tienen la misma media poblacional (análisis de varianza - ANO-VA)	F	stats.f_oneway, stats.kuskal

Veamos un ejemplo. Uno de los casos más frecuentes es el de afirmar que la media μ de una población tiene el valor μ_0 . Obtenemos entonces una muestra de esa población, y utilizamos la media muestral \bar{x} para construir el estadístico

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

donde como es usual, n es el tamaño de la muestra. Si la población es grande y se conoce su varianza σ , es razonable asumir que el estadístico Z está distribuido normalmente. Si la varianza es desconocida podemos reemplazarla por la varianza muestral s. Entonces el estadístico sigue una distribución t de Student, que en el límite de grandes números se aproxima a una distribución normal.

En la celda 35 generamos una distribución normal X con media mu y desviación estándar sigma, y luego tomamos una muestra de n valores de esta distribución que almacenamos en X_muestra. Entonces, nuestras hipótesis son:

- H_0 : $\mu = \mu_0$
- $H_1: \mu \neq \mu_0$

```
mu_0, mu, sigma = 2.0, 1.82, 0.5
X = stats.norm(mu, sigma)
n = 100
X_muestra = X.rvs(n)
```

A continuación calculamos los estadísticos Z (asumiendo una distribución normal con σ conocida) y t (con desviación estándar muestral s). Si definimos que nuestro nivel de significancia es del 5 % ($\alpha=0.05$), calculamos el valor crítico con una distribución normal de dos colas, utilizando para ello la función norm.ppf() que devuelve el valor de $Z_{\alpha/2}$, como se muestra en la figura 1.3 (panel a).

```
Z = (X_muestra.mean() - mu_0) / (sigma / np.sqrt(n))
Z
-2.720519876366154
```

```
t = (X_muestra.mean() - mu_0) / (X_muestra.std(ddof=1) / np.sqrt(n))
t
-2.7205218379193887
```

```
valor_critico = stats.norm().ppf(0.025)
valor_critico
-1.9599639845400545
```

Podemos ver que los valores de Z y t caen fuera del intervalo (-1,96,1,96) que corresponde a la zona de aceptación de H_0 , lo cual nos permite rechazar la hipótesis nula con nivel de significa del 5%. Podemos calcular también los p-valores utilizando para ello tanto la distribución normal como la t de Student, para calcular el área de las dos colas (por eso el factor 2) limitadas por los estadísticos correspondientes. Vemos que ambos valores están por debajo del nivel de significancia preestablecido, lo que confirma la decisión anterior de rechazar H_0 .

```
p_valor_n = 2 * stats.norm().cdf(-abs(Z))
p_valor_t = 2 * stats.t(df=(n-1)).cdf(-abs(t))
p_valor_n, p_valor_t

(0.0065179353263593535, 0.007700231797543924)
```

Hemos hecho estos cálculos "manualmente" para comprender los detalles de cómo tomar la decisión de aceptar o rechazar la hipótesis nula, pero podemos ahorrarnos este trabajo utilizando directamente las funciones provistas por SciPy para ello. En la celda 40 utilizamos la función ttest_1samp de stats para comparar la media de la muestra con mu_0 tal como afirma H_0 . Esta función nos devuelve el valor del estadístico y el p-valor:

Tal como vimos previamente, el *p*-valor devuelto nos permite rechazar la hipótesis nula. En la celda siguiente comparamos la distribución de datos de la muestra (histograma), con la distribución real (linea verde) y una distribución aproximada a partir de los datos de la muestra (línea roja, ver sección siguiente 1.5). Pese a que las distribuciones son muy similares, el *test* de hipótesis con solo 100 valores nos permite afirmar (con una probabilidad menor al 5 % de cometer un error tipo I) que la media muestral no es mu_0.

Otro caso muy frecuente consiste en la comparación de las medias de dos muestras diferentes en la cual la hipótesis nula consiste en asumir que las medias poblacionales de las dos variables aleatorias representadas por las muestras son iguales. Para realizar el *test* de hipótesis, generaremos dos variables aleatorias con distribución normal y medias elegidas aleatoriamente. De cada una de estas distribuciones seleccionaremos muestras de 30 valores:

```
n, sigma = 30, 1.0
mu_1, mu_2 = np.random.random(2)
X_1 = stats.norm(mu_1, sigma)
X_2 = stats.norm(mu_2, sigma)
X_1_muestra = X_1.rvs(n)
X_2_muestra = X_2.rvs(n)
```

La función ttest_ind() realiza un ensayo para la hipótesis nula de que dos muestras independientes tienen la misma media asumiendo por defecto que tienen idéntica varianza. La distribución utilizada en este caso es la t de Student con un test de dos colas, y obtenemos el valor

del estadístico y el p-valor:

```
t, p = stats.ttest_ind(X_1_muestra, X_2_muestra)
t, p

(-1.2353053231429025, 0.2216974276096801)
```

Vemos que el p-valor está muy por encima de 0.05 (considerando un nivel de significancia del 5 %), lo cual no nos permite rechazar la hipótesis nula. En la celda siguiente graficamos los histogramas correspondientes a cada muestra, así como sus distribuciones aproximadas. La escasa cantidad de valores no permite afirmar estadísticamente que las diferencias sean significativas.

```
fig, ax = plt.subplots(figsize=(8,3))
ax.hist([X_1\_muestra, X_2\_muestra], density=True, rwidth=0.85, label=['Muestra X_1', 'Muestra X_2'])\\
kde_1 = gaussian_kde(X_1_muestra)
kde_2 = gaussian_kde(X_2_muestra)
x = np.linspace(*X 1.interval(0.999), num=100)
ax.plot(x, kde_1(x), color='tab:blue', label='KDE 1')
ax.plot(x, kde_2(x), color='tab:orange', label='KDE 2')
ax.legend()
plt.show()
 0.8
                                                                                      Muestra X_1
                                                                                      Muestra X_2
                                                                                       KDE 1
 0.6
                                                                                       KDE 2
 0.4
 0.2
 0.0
```

Sin embargo, si mostramos los valores elgidos estocásticamente para mu_1 y mu_2 vemos que son bien diferentes:

```
CELL 45
mu_1, mu_2
(0.04154576848611169, 0.4911986914774764)
```

Incrementando la muestra 50 valores, el p-valor obtenido es menor a 0,05, permitiendo en ese caso rechazar H_0 . Esto muestra la importancia del muestreo en la toma de decisiones basada en el test de hipótesis.

Por último mostraremos un ejemplo de *test* de hipótesis que generaliza el test anterior a dos o más poblaciones, siendo uno de los casos de análisis de varianza (ANOVA: *ANalysis Of VAriance*), y que se basa en la idea de dividir la varianza total en la varianza entre diferentes grupos y la varianza dentro de cada grupo, y ver si estas distribuciones satisfacen la hipótesis nula de que todos los grupos pertenecen a la misma distribución. Las variables que distinguen los diferentes grupos se denominan habitualmente *factores* o *tratamientos*. En el caso en que cada

grupo corresponda a un valor diferente de una sola variable categórica, se utiliza un ANOVA de una vía o unidireccional (one-way ANOVA), mientras que si se intenta determinar el efecto de dos variables categóricas, se utiliza un ANOVA bidireccional (o two-way ANOVA). Es posible realizar también estudios de tres o más variables categóricas pero son poco comunes y puede ser difícil interpretar los resultados si se utilizan demasiados factores.

Un estudio ANOVA básico consiste en realizar los siguientes pasos. Primeramente se calcula la media de cada uno de los grupos, y a continuación se compara la varianza de estas medias (*intervarianza*) con la varianza promedio dentro de cada grupo (*intravarianza*, no explicada por la variable grupo, intervarianza). Según la hipótesis nula, todas las observaciones proceden de la misma población con lo que la intervarianza será igual a la varianza promedio dentro de los grupos. Se asumen las siguientes suposiciones:

- Las distribuciones están normalmente distribuidas.
- Homogeneidad de varianza, las variaciaciones dentro de cada grupo son similares en todos los grupos.
- Las observaciones de cada grupo son independientes entre sí, y las observaciones dentro de cada grupo se obtuvieron en forma aleatoria.

En estas condiciones, para un ANOVA unidireccional las hipótesis son:

- H_0 (hipótesis nula): $\mu_1 = \mu_2 = \ldots = \mu_k$ (las medias de los k grupos son iguales).
- H_1 (hipótesis alternativa): al menos una media es diferente del resto.

Se construye entonces el estadístico F, que es el cociente entre la varianza de las medias de los grupos y el promedio de la varianza dentro de los grupos, y que tiene una distribución "F de Fisher-Snedecor". Si H_0 se satisface, F adquiere un valor cercano a 1 debido a que la intervarianza será igual a la intravarianza. Por otro lado, si las medias de los grupos difieren, mayor será la varianza entre medias en comparación con el promedio de las varianzas dentro de los grupos, generando valores de F mayores a 1 y en consecuencia, menor es la probabilidad de que la distribución adquiera valores tan extremos (obteniéndose de este modo un p-valor menor).

Veamos cómo realizar un ANOVA unidireccional mediante la función f_oneway del módulo scipy.stats. Para ello queremos comparar el rendimiento en un examen de un grupo de 30 alumnos, en función de dónde se sientan cuando asisten a clase: adelante, al medio o atrás. La hipótesis nula consiste en afirmar que la ubicación en el aula no afecta al rendimiento. La hipótesis alternativa indica entonces que la ubicación afecta al rendimiento.

En la celda 46 agrupamos el resultado de una evaluación en tres grupos según la ubicación habitual en el aula durante las clases de 30 alumnos, con 10 alumnos por grupo. Para tener una idea gráfica de estos rendimientos, generamos un gráfico con los *boxplots* de cada grupo a los que hemos superpuesto los resultados individuales, lo que nos da una idea de la dispersión de los resultados.

A continuación, en la celda 47 importamos e invocamos la función f_{oneway} (pasando como argumentos los grupos de datos) que realiza todos los cálculos necesarios para obtener el estadístico F y calcular el p-valor a partir de los resultados muestrales. Vemos que el valor de F es cercano a 1, y el p-valor es suficientemente grande como para evitar el rechazo de H_0 . Podemos intepretar esto afirmando que para los datos disponibles, no hay evidencia estadística que permita distinguir el efecto de la ubicación en las clases con el rendimiento de los alumnos°.

[&]quot;Por supuesto, esto es solo un ejemplo de utilización de la función f_oneway() y no representa un estudio real (y serio) del rendimiento en los exámenes según la ubicación de los alumnos en clase.

```
CELL 46
frente = [92, 79, 70, 76, 91, 80, 93, 82, 81, 84]
medio = [80, 84, 76, 72, 85, 79, 81, 85, 82, 89]
atras = [74, 67, 81, 78, 69, 80, 89, 84, 90, 67]
grupos = [frente, medio, atras]
nombres_grupos = ['Frente', 'Medio', 'Atrás']
fig, ax = plt.subplots(figsize=(8,4))
bp = plt.boxplot(grupos, sym='+', vert=True, whis=1.5)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
for i, g in enumerate(grupos):
   x = np.random.normal(i + 1, 0.05, size=len(g))
   plt.plot(x, g, 'ro', alpha=0.4)
ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
# Etiquetamos los boxplots
xtickNames = plt.setp(ax, xticklabels=nombres_grupos)
plt.setp(xtickNames, rotation=45, fontsize=12)
 80
 75
 70
```

```
from scipy.stats import f_oneway
f_oneway(frente, medio, atras)

F_onewayResult(statistic=1.2490092470277412, pvalue=0.30283594892105703)
```

1.5. Estimación no paramétrica de la FDP

Dada una muestra, podemos asumir que representan valores aleatorios que siguen una determinada distribución de probabilidad caracterizada por ciertos parámetros (por ejemplo, media y varianza de una distribución normal). Estos parámetros pueden ser ajustados a partir de los valores muestrales usando, por ejemplo, una optimización de máxima verosimilitud. De este modo, los métodos estadísticos basados en estas funciones de distribución (tales como los *tests* de hipótesis) representan *métodos paramétricos*. En estos casos estamos realizando una suposición

Figura 1.4: Algunos kernels más utilizados. a) Gaussiano; b) uniforme; c) Epanechnikov; d) exponencial; e) lineal y f) coseno.

fuerte al determinar la función de distribución que sigue nuestro proceso aleatorio.

Una forma alternativa consiste en intentar describir la distribución a partir de los datos sin hacer ninguna suposición sobre su distribución. Tal vez la manera más frecuente es la de realizar un histograma que divide el rango de valores que contiene la muestra en intervalos iguales (o bins) y calcula la cantidad de datos en cada intevalo, o la frecuencia si normalizamos el histograma de modo que el área total de todos los bins sume 1. Como resultado obtenemos una descripción empírica discontinua de la distribución que depende del número de intervalos y de sus localizaciones, por lo que la elección de estos parámetros pueden conducir a representaciones cuantitativamente diferentes de la distribución.

Una *kernel density estimation* (KDE) es una función cuyo propósito es el de estimar la función de distribución de probabilidad de una manera no paramétrica, que puede expresarse como:

$$f(x) = \frac{1}{nh} \sum_{i=0}^{n} K\left(\frac{x - x_i}{h}\right)$$
 (1.5)

donde como es usual, n es el tamaño de la muestra (el número de valores), x_i son los valores que componen la muestra, K es una función kernel y h es el ancho de banda o bandwidth. Un kernel es una función de distribución de probabilidad que debe satisfacer tres condiciones:

- 1. Simetría: K(x) = K(-x).
- 2. No negativa: $\forall x, K(x) \geq 0$.
- 3. Área igual a 1: $\int_{-\infty}^{\infty} K(x) dx = 1$.

Las funciones kernel determinan la forma en que se distribuye la influencia de cada observación. En la gran mayoría de los casos se usa un kernel gaussiano, pero existen otras posibilidades como las que se enumeran en la Tabla 1.2 y sus correspondientes representaciones gráficas en la figura 1.4. En SciPy está disponible el kernel gaussiano, mientras que todas las que aparecen en la Tabla 1.2 pueden utilizarse con el módulo scikit-learn¹⁰

El ancho de banda h controla el ancho de las distribuciones que se ubican alrededor de cada x_i , lo que afecta en forma importante el suavizado del KDE. Para muestras pequeñas, es recomendable usar un h grande de modo que la inclusión de más puntos provea un contexto adecuado. Para muestras grandes, es mejor usar un h pequeño ya que cada punto está rodeado de muchos

¹⁰Se puede ver la documentación aquí.

Tabla 1	.2:	Kernels	usuales.
---------	-----	---------	----------

Kernel	Ecuación
Gaussiano	$\frac{1}{h\sqrt{2\pi}}\exp(-x^2/(2h^2))$
Uniforme	$\frac{1}{2h}, x \le h$
Epanechnikov	$\frac{3}{4h}(1-x^2/h^2), x \le h$
Exponencial	$\frac{1}{2h}\exp(- x /h)$
Lineal	$\frac{1}{2h}(1 - x/h), x \le h$
Coseno	$\frac{\pi}{4h}\cos(\pi x/2h), x \le h$

otros, lo cual brinda un buen contexto. Existen diversos criterios para obtener el h óptimo, pero para KDE gaussianos existen algunas "reglas del pulgar" como la regla de Silverman:

$$h = \frac{0.9}{\sqrt[5]{n}} \min\left(s, \frac{IQR}{1,349}\right)$$

(recordemos que IQR es el rango intercuartílico, ver subsección 1.3.2.2). Veamos cómo generamos un KDE gaussiano a partir de una muestra y el efecto que tiene la elección de h.

En la celda 48 definimos la función k_gauss() que utilizaremos para graficar las funciones gaussianas que componen la KDE (notar que no están normalizadas, ya que las usaremos solo con fines de visualización) y una función auxiliar, hacer_figura(), para construir los gráficos de las celdas siguientes. Esta última función grafica un histograma que agrupa los datos en n_bins, traza la KDE y por defecto traza también los kernels sobre los valores individuales (que podemos desactivar con plt_kernels=False). Adicionalmente, esta función añade una pequeña marca en cada valor de la muestra sobre el eje horizontal (lo que se denomina un $rug\ plot$). En la celda 49 generamos una muestra pequeña (X_chica), establecemos el valor de h=0.05 y calculamos la KDE sobre la muestra).

```
CELL 48
def k gauss(x, xi, h):
    return np.exp(-(x-xi)**2/(2*h**2))
def hacer_figura(datos, kde, n_bins, plot_kernels=True):
    """Función que grafica un histograma de los datos y el KDE asociado,
    junto con las funciones gaussianas de cada valor y un rug plot."""
    fig, ax = plt.subplots(figsize=(8,3))
   ax.hist(datos, bins=n_bins, density=True, alpha=0.35)
   x_c = np.linspace(datos.min(), datos.max(), num=200)
    ax.plot(datos, np.full\_like(datos, -0.05), 'k|', markeredgewidth=1.0, alpha=0.5)
    ax.plot(x_c, kde(x_c), color='tab:red', label='KDE')
   if plot_kernels:
        for x_i in datos:
            ax.plot(x_c, k_gauss(x_c, x_i, h), color='k', alpha=0.25)
    ax.set_xlabel(r'$x$')
   ax.set_ylabel(r'PDF($x$)')
    plt.show()
```


En la figura generada, las curvas grises tenues representan cada gaussiana centrada en los valores de la muestra, que componen (cuando están correctamente normalizadas, no como en la figura) la función KDE que se muestra en línea roja. Dado que usamos un valor de h muy chico, cada función gaussiana abarca una zona angosta alrededor de los valores x_i , dando como resultado una KDE excesivamente estructurada.

Si ahora elegimos un valor de h exageradamente grande, como en la celda 50, vemos que las gaussianas individuales son tan anchas que todas abarcan al conjunto entero que compone la muestra, y en consecuencia la KDE resulta muy "plana".

Finalmente, en la celda 51 seleccionamos como argumento de bw_method la cadena 'siverman', que aplicará esa regla para determinar el h óptimo. Podemos mostrar el valor de h obtenido mediante el atributo factor de la KDE, que ahora resulta una distribución que representa mejor la distribución de los datos. Tal como dijimos previamente, dado que la muestra es chica resulta un

ancho de banda relativamente grande de modo que las gaussianas individuales son relativamente anchas.

Para finalizar, veamos un ejemplo en el que tenemos una muestra bimodal de n=1000 valores que construimos en la celda 52. En este caso, el método por defecto para el cálculo del ancho de banda óptimo es el de Scott, utilizado en el cálculo de la KDE de la celda 53. Se puede ver que la KDE obtenida representa de una manera suave el histograma de los datos.

```
n = 1000
X_1 = stats.norm(2.5, 0.5)
X_muestra = X.rvs(n)
X_muestra[int(0.3 * n):] += 2
```

Lecturas recomendadas § 1.6

1.6. Lecturas recomendadas

- Thomas Haslwanter. *An introduction to statistics with python.* en. 1.ª ed. Statistics and Computing. Cham, Switzerland: Springer International Publishing, 2016. DOI: 10.1007/978-3-319-28316-6.
- John J. Schiller, R. Alu Srinivasan y Murray R. Spiegel. *Schaum's outline of probability and statistics*. en. 4.ª ed. Schaum's outline series. New York, NY: McGraw-Hill Professional, dic. de 2012.

Parte III Apéndices

A | Zen de Python

Incluimos aquí las frases traducidas correspondientes al Zen de Python [6].

- Bello es mejor que feo.
- Explícito es mejor que implícito.
- Simple es mejor que complejo.
- Complejo es mejor que complicado.
- Plano es mejor que anidado.
- Espaciado es mejor que denso.
- La legibilidad es importante.
- Los casos especiales no son lo suficientemente especiales como para romper las reglas.
- Sin embargo la practicidad le gana a la pureza.
- Los errores nunca deberían pasar silenciosamente.
- A menos que se silencien explícitamente.
- Frente a la ambigüedad, evitar la tentación de adivinar.
- Debería haber una, y preferiblemente solo una, manera obvia de hacerlo.
- A pesar de que esa manera no sea obvia a menos que seas Holandés.
- Ahora es mejor que nunca.
- A pesar de que nunca es muchas veces mejor que *ahora* mismo.
- Si la implementación es difícil de explicar, es una mala idea.
- Si la implementación es fácil de explicar, puede que sea una buena idea.
- Los espacios de nombres son una gran idea, ¡tengamos más de esos!

Bibliografía

- [1] URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es.
- [2] Makoto Matsumoto y Takuji Nishimura. «Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator». En: *ACM Trans. Model. Comput. Simul.* 8.1 (ene. de 1998), págs. 3–30. DOI: 10.1145/272991.272995. URL: https://doi.org/10.1145/272991.272995.
- [3] Melissa E. O'Neill. *PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation*. Inf. téc. HMC-CS-2014-0905. Claremont, CA: Harvey Mudd College, sep. de 2014.
- [4] Thomas Haslwanter. *An introduction to statistics with python.* en. 1.ª ed. Statistics and Computing. Cham, Switzerland: Springer International Publishing, 2016. DOI: 10.1007/978-3-319-28316-6.
- [5] John J. Schiller, R. Alu Srinivasan y Murray R. Spiegel. *Schaum's outline of probability and statistics*. en. 4.ª ed. Schaum's outline series. New York, NY: McGraw-Hill Professional, dic. de 2012.
- [6] Tim Peters. The Zen of Python. 19 de ago. de 2004. URL: https://www.python.org/dev/peps/pep-0020/.