Geração de Números Primos

Ranieri S. Althoff¹

¹Universidade Federal de Santa Catarina Departamento de Informática e Estatística Segurança em Computação

1. Introdução

Números inteiros maiores que um são ditos primos se seus únicos divisores são 1 e o próprio número. Em segurança computacional utilizamos números primos em várias situações, algoritmos e protocolos. Precisamos, portanto, de um banco de números primos (uma lista pré computada) ou, gerar tais números quando são necessários.

Não é simples a geração de números primos para uso em sistemas de segurança computacional. Normalmente, estamos interessados em números grandes, da ordem de grandeza de centenas a milhares de dígitos binários. No Brasil, por exemplo, para assinar documentos eletrônicos, você vai precisar ter chaves criptográficas geradas a partir de números primos de 2048 bits.

Uma forma de se gerar números primos é primeiro gerar um número aleatório (grande) e depois testá-lo para saber se é primo.

2. Linear congruential generator

Um gerador congruencial linear (LCG) é um algoritmo que produz uma sequência de números pseudoaleatórios calculados com base em uma função linear descontínua definida por partes [Knuth 1997], ou seja, uma função com várias sentenças cuja definição depende da variável independente. O LCG é um dos algoritmos geradores de números pseudoaleatórios (PRNG) mais antigos e bem conhecidos.

Uma das vantagens de se usar o LCG é de que sua teoria é bastante simples, portanto é fácil de ser implementado e executa com rapidez, especialmente em computadores com aritmética modular eficiente implementada com truncagem.

Um LCG é definido pela seguinte relação de recorrência:

$$X_{n+1} = (aX_n + c) \pmod{m}$$

Onde X é a sequência de números pseudoaleatórios e

- m, 0 < m, o módulo
- a, 0 < a < m, o multiplicador
- $c, 0 \le c < m$, o incremento
- $X_0, 0 \le X_0 \le m$, o valor inicial ou seed

são constantes inteiras que especificam o gerador. Se c=0 o gerador é chamado de gerador congruencial multiplicativo (MCG) ou gerador de Lehmer, caso contrário pode ser chamado de gerador congruencial misto.

Por ser definido como uma função linear, a complexidade para se gerar um número usando um LCG é constante, ou seja O(1).

2.1. Período da sequência

O máximo período possível de um LCG é m pela natureza da aritmética modular, e para algumas escolhas de parâmetros o período é muito menor. O LCG somente terá máximo período para qualquer valor inicial se e somente se:

- m e c são relativamente primos
- a-1 é divisível por todos os fatores primos de m
- a-1 é divisível por 4 se m é divisível por 4

Estes requerimentos são conhecidos como Teorema de Hull-Dobell [Severance 2001]. Ao passo que LCGs são capazes de produzir sequências que passam testes de aleatoriedade, a escolha de parâmetros é de suma importância.

2.2. Implementação

O algoritmo de LCG foi implementado em Python, por ser uma linguagem mais simples e de melhor conhecimento do autor. Os parâmetros do gerador foram definidos com base nos utilizados pela *glibc* e o significado das variáveis comentado ao lado das mesmas com a mesma fórmula usada anteriormente.

```
class LinearCongruentialGenerator:
    mul = 1103515245  # a, 0 < a < m
    inc = 12345  # c, 0 <= c < m
    mod = 2 ** 31  # m, 0 < m

def __init__(self, seed):
    self.seed_ = seed % self.mod  # X[0], 0 <= X[0] < m

def rand(self):
    # X[n + 1] = (a * X[n] + c) mod m
    self.seed_ = (self.seed_ * self.mul + self.inc) % self.mod
    return self.seed_</pre>
```

Para utilizar o gerador, basta instanciar a classe com o valor inicial desejado e utilizar o método rand para gerar um número aleatório e avançar o estado. Por exemplo, para gerar 10 números a partir do valor 42:

```
seed = 42
generator = LinearCongruentialGenerator(seed)

# for (i = 0; i < 10; ++i)
for i in range(10):
    print("{0}), {1}".format(i, generator.rand()))</pre>
```

Os primeiros números gerados por este código no terminal podem ser vistos na figura 1.

3. Teste de primalidade de Fermat

O teste de primalidade de Fermat é um teste probabilístico para determinar se um número é provavelmente primo. Um número provavelmente primo é um inteiro que satisfaz alguma condição específica que é satisfeita por todos os números que são primos, mas não é satisfeita pela maioria dos números compostos [Cormen et al. 2001].

```
0) 1250496027

1) 1116302264

2) 1000676753

3) 1668674806

4) 908095735

5) 71666532

6) 896336333

7) 1736731266

8) 1314989459

9) 1535244752
```

Figura 1. Primeiros 10 números gerados a partir de 42

3.1. Conceitos

O teste é baseado no teorema de Fermat, que prova que para um primo p tal que 0 < a < p, então $a^{p-1} \equiv 1 \pmod{n}$.

Para testar se p é primo, são escolhidos as aleatórios no intervalo e verifica-se se a equivalência prevalece. A probabilidade de que p não seja primo é cada vez mais baixa conforme mais valores de a são testados.

Um número que não seja primo e passa no teste para uma base a se chama pseudoprimo de base a. De forma análoga, um número a que acusa a composição de um número é chamado de testemunha da composição de a.

Existe uma classe de números chamada de **números de Carmichael** que satisfaz o teste de Fermat para todas as bases *a* possíveis, mesmo não sendo primos. Estes números são substancialmente mais raros do que números primos, mas são suficientes para que o teste de Fermat não seja tão confiável quanto outras alternativas.

3.2. Exemplo

Suponha que desejamos verificar se p=221 é primo. Aleatoriamente se escolhe uma base 1 < a < 221, por exemplo, a=38 e se aplica o teorema de Fermat:

$$a^{n-1} = 38^{220} \equiv 1 \pmod{221}$$

Como a equivalência prevalece, ou 221 é primo, ou é pseudoprimo para a base a=38. Aplicando o teorema com outra base, por exemplo, a=24, podemos verificar com mais precisão se p é primo:

$$a^{n-1} = 24^{220} \equiv 81 \not\equiv \pmod{221}$$

Conclui-se que 221 não é primo e era apenas pseudoprimo de base 38.

3.3. Implementação

O algoritmo do teste de Fermat foi implementado também em Python. O significado das variáveis foi comentado ao lado das mesmas e os métodos devidamente explicados. O teste é repetido de acordo com o parâmetro tests, por padrão 20 vezes.

```
def fermat(p, tests=20):
    for i in range(tests):
        # assuma generator sendo um gerador de numeros qualquer
        # modulo e soma necessarios para que 0 < a < p
        a = (generator.rand() % (p - 1)) + 1

# algoritmo de exp. modular, aka a^(p - 1) mod p
    if pow(a, p - 1, p) != 1:
        return False

return True</pre>
```

A parte relevante do algoritmo, a exponenciação modular $(a^{p-1} \pmod p)$ é um método já embutido em várias linguagens, o que torna a implementação do teste de primalidade de Fermat bastante simples.

Para gerar 10 números aleatoriamente e verificar com o teste de Fermat sua primalidade pode ser usado o seguinte código:

```
1  # for (i = 0; i < 10; ++i)
2  for i in range(10):
3     rand = generator.rand()
4     print("{0}_primo?_{{1}}".format(rand, fermat(rand)))</pre>
```

O gerador de números usado pelo teste de primalidade pode ser o mesmo gerador usado para obter números. O resultado do código pode ser visto na figura 2.

```
1250496027 primo? False
1000676753 primo? False
908095735 primo? False
896336333 primo? False
1314989459 primo? False
391441865 primo? False
1206814703 primo? False
1974836613 primo? False
1413854219 primo? True
1376947140 primo? False
```

Figura 2. 10 números gerados e sua primalidade

3.4. Comparação com Miller-Rabin

Um outro teste de primalidade, o de Miller-Rabin (MR) também consiste em usar uma propriedade que é verdadeira para todos os números primos e que não é verdadeira para a maioria dos números compostos.

O algoritmo MR utiliza a um número primo p e uma base a qualquer, dado que 1 < a < p. p-1 necessariamente é par e pode ser expresso na forma $2^s \times d$, onde s e d são maiores que zero e d é ímpar por definição.

O teorema de MR afirma que, se p é primo e a não tem um divisor em comum com p, então $a^d \equiv 1 \pmod p$ ou existe um $r \in 0, 1, \ldots, s-1$ tal que $a^{2^r \times d} \equiv 1 \pmod p$. Assim como no teste de Fermat, uma base a que não satisfaz o teorema é chamada de testemunha contra a primalidade de p.

O teste de MR é mais forte que o de Fermat porque ele não possui a falha de não conseguir detectar os números de Carmichael, embora sua precisão seja a mesma com os outros números. Ou seja, sua precisão é semelhante, mas não existe um tipo de número "difícil" para o algoritmo de MR, o que o torna mais forte.

4. Gerando números grandes

Os parâmetros escolhidos pela maioria das implementações de LCGs não são adequados para gerar números grandes o suficiente para aplicações criptográficas, porque em geral são gerados números para representação em 32 ou 64 bits, e não 1024, 2048 ou 4096 como pode ser necessário para uso em chaves criptográficas fortes.

Para gerar números grandes, é necessário alterar os parâmetros. Por exemplo, um gerador para números de 4096 bits deve ter $m \geq 2^{4096}$ e é necessário encontrar um a e um c que mantenham as relações definidas no tópico 2.1. Isso possui um custo computacional grande por usar números de ordens de magnitude muito altas, de mais de mil dígitos decimais.

4.1. Alternativa: escala de gerador menor

Uma possibilidade é escalar os números de um gerador para números menores pela proporção entre o módulo deste gerador e o módulo de um hipotético gerador para números maiores (no exemplo, de 512 bits), como é feito no código abaixo:

```
def rand512():
    rand = generator.rand() / generator.mod
    return rand * (2 ** 512)
```

Existe um custo adicional para converter o tipo de um número de inteiro para decimal, e os dois fatores da divisão na linha 2 precisam ser convertidos para que a operação seja efetuada, embora isso geralmente seja efetuado em tempo constante.

Multiplicar por um número de tamanho arbitrário também não é uma operação trivial: a complexidade da multiplicação na biblioteca GMP é da ordem de $O(n^{k/(k-2)})$, onde n é a quantidade de dígitos e k é relacionado com o funcionamento interno do algoritmo.

A complexidade é, portanto, maior do que o próprio gerador, porém não afetada pelo mesmo. Um número leva alguns milissegundos para ser gerado desta forma.

Onde generator é um gerador qualquer, podendo ser o citado nos exemplos acima com $m=2^{31}$. O que este código faz é transformar o inteiro gerado $X_n \in [0,2^{31})$ em um número decimal $Y_n \in [0,1)$ proporcionalmente, e posteriormente multiplica pelo módulo desejado (neste caso, $[0,2^{512})$).

Essa alternativa requer que a linguagem também possua números decimais de precisão arbitrária, já que é necessário transformar $m=2^{512}$ em um número decimal para efetuar a multiplicação. Em Python e na maioria das linguagens, a precisão de números decimais vai até $\approx 1.8 \times 10^{308}$, o que impossibilita o uso desta alternativa para $m \geq 2^{1024}$.

Outro problema desta alternativa é que essencialmente é uma multiplicação dos resultados de um gerador limitado, o que não aumenta a quantidade de possíveis resultados. Ou seja, se escalado a partir de um gerador de $m=2^{31}$, só existirão 2^{31} possíveis números pseudoaleatórios, independente do tamanho pelo qual será multiplicado.

4.2. Alternativa: concatenando números menores

Outra possibilidade é a de se gerar números de escala menor e concatenar até que tenham o tamanho desejado. Utilizando gerador de números de 32 bits, seria necessário concatenar números de 32 bits suficientes para formar um maior:

Essa alternativa é simples e o custo de calcular um número grande apenas muda a constante da complexidade, e não a classe, portanto um número é gerado em questão de milissegundos ou até menos.

O problema desta alternativa está no fato de que, para o LCG e outros geradores cujo estado é o último número gerado, a sequência é sempre a mesma, e o período fica menor na mesma proporção que o número fica maior.

No exemplo acima, são usados $2^9/2^5=2^4=16$ números do gerador para cada número grande. Na prática isso quer dizer que, se antes o ciclo tinha período 2^{32} , para gerar números grandes o período é reduzido para $2^{32}/2^4=2^{28}$, o que é imprático para gerar uma grande quantidade de números.

Uma boa heurística é que, se o algoritmo será usado para gerar n números, ele deve ter um período de pelo menos n^2 números [Malone 2001]. Se o algoritmo for usado para gerar chaves com mais de 2^{12} bits, essa alternativa tem período de 2^{20} (≈ 1 milhão), o que é imprático dado que precisam ser gerados milhões de valores **diferentes**.

4.3. Encontrando parâmetros melhores

Para o LCG, encontrar parâmetros melhores que suportem geração de números maiores é uma tarefa árdua, mas é a maneira mais plausível de se solucionar o problema de gerar números grandes.

Para tal, é necessário fatorar o módulo m e encontrar todos os seus divisores para as duas primeiras regras, de que c deve ser relativamente primo à m e de que a-1 deve ser divisível por todos os fatores primos de m.

Encontrar todos os fatores primos de um número é extremamente custoso, já que não há nenhum algoritmo eficiente, apenas força bruta. Um estudo conduzido em 2010 sugeriu que fatorar um inteiro de 1024 bits poderia levar mais de 2 mil anos [Aoki et al. 2010], portanto, não é prático encontrar novos fatores para um LCG.

Além disso, como citado anteriormente, a necessidade de utilização de uma biblioteca de números de tamanho árbitrário aumenta a complexidade da manipulação destes primos grandes, o que faz com que gerar um número de milhares de bits seja um processo mais custoso do que um número de 32 ou 64 bits.

Referências

- Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik, D. A., te Riele, H., Timofeev, A., and Zimmermann, P. (2010). Factorization of a 768-bit rsa modulus. http://eprint.iacr.org/2010/006.pdf. Acesso em: 28 abr 2016.
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). *Introduction to Algorithms*. McGraw-Hill, 2nd edition.
- Knuth, D. E. (1997). Seminumerical algorithms. In *The Art of Computer Programming*, pages 10–26. Addison-Wesley, 3rd edition.
- Malone, M. (2001). Tifu by using math.random(). https://medium.com/@betable/tifu-by-using-math-random-f1c308c4fd9d. Acesso em: 28 abr 2016.
- Severance, F. (2001). System Modeling and Simulation. John Wiley & Sons, Ltd.