```
In [5]:
          1 import pandas as pd
             import numpy as np
           3 import matplotlib.pyplot as plt
           4 import seaborn as sns
           5 | from statsmodels.stats.outliers_influence import variance_inflation_factor
           6 | from sklearn.model_selection import train_test_split
             \textbf{from} \  \, \textbf{sklearn.linear\_model} \  \, \textbf{import} \  \, \textbf{LinearRegression}
             from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
              import statsmodels.api as sm
          10
             from scipy.stats import shapiro, kstest,normaltest
             import pickle
             import json
             import os
In [ ]:
              Step 1: Problem statement: To predict the co2 emmission based on given data.
```

```
3
   Understanding the Data
   Model 4WD/4X4 = Four-wheel drive
4
5
       AWD = All-wheel drive
6
       FFV = Flexible-fuel vehicle
7
       SWB = Short wheelbase
8
       LWB = Long wheelbase
9
       EWB = Extended wheelbase
   Transmission
                   A = automatic
10
11
       AM = automated manual
12
       AS = automatic with select shift
13
       AV = continuously variable
14
       M = manual
       3 - 10 = Number of gears
15
16 Fuel type
              X = regular gasoline
17
       Z = premium gasoline
18
       D = diesel
19
       E = ethanol (E85)
20
       N = natural gas
21
  Fuel consumption
                       City and highway fuel consumption ratings are shown in
       litres per 100 kilometres (L/100 km) - the combined rating (55% city, 45% hwy)
22
       is shown in L/100 km and in miles per imperial gallon (mpg)
23
   CO2 emissions the tailpipe emissions of carbon dioxide (in grams per kilometre)
24
       for combined city and highway driving
25
26
```

In [10]: 1 df=pd.read_csv('CO2 Emissions_Canada.csv')

Out[10]:

	Make	Model	Vehicle Class	Engine Size(L)	Cylinders	Transmission	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Cor Co
0	ACURA	ILX	COMPACT	2.0	4	AS5	Z	9.9	6.7	
1	ACURA	ILX	COMPACT	2.4	4	M6	Z	11.2	7.7	
2	ACURA	ILX HYBRID	COMPACT	1.5	4	AV7	Z	6.0	5.8	
3	ACURA	MDX 4WD	SUV - SMALL	3.5	6	AS6	Z	12.7	9.1	
4	ACURA	RDX AWD	SUV - SMALL	3.5	6	AS6	Z	12.1	8.7	
7380	VOLVO	XC40 T5 AWD	SUV - SMALL	2.0	4	AS8	Z	10.7	7.7	
7381	VOLVO	XC60 T5 AWD	SUV - SMALL	2.0	4	AS8	Z	11.2	8.3	
7382	VOLVO	XC60 T6 AWD	SUV - SMALL	2.0	4	AS8	Z	11.7	8.6	
7383	VOLVO	XC90 T5 AWD	SUV - STANDARD	2.0	4	AS8	Z	11.2	8.3	
7384	VOLVO	XC90 T6 AWD	SUV - STANDARD	2.0	4	AS8	Z	12.2	8.7	

7385 rows × 12 columns

In [3]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7385 entries, 0 to 7384
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Make	7385 non-null	object
1	Model	7385 non-null	object
2	Vehicle Class	7385 non-null	object
3	<pre>Engine Size(L)</pre>	7385 non-null	float64
4	Cylinders	7385 non-null	int64
5	Transmission	7385 non-null	object
6	Fuel Type	7385 non-null	object
7	Fuel Consumption City (L/100 km)	7385 non-null	float64
8	Fuel Consumption Hwy (L/100 km)	7385 non-null	float64
9	Fuel Consumption Comb (L/100 km)	7385 non-null	float64
10	Fuel Consumption Comb (mpg)	7385 non-null	int64
11	CO2 Emissions(g/km)	7385 non-null	int64
		i.	

dtypes: float64(4), int64(3), object(5)

memory usage: 692.5+ KB

1 x=df.drop(['Make','Model','CO2 Emissions(g/km)'], axis=1)

Out[11]:

	Vehicle Class	Engine Size(L)	Cylinders	Transmission	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Consur Comb
0	COMPACT	2.0	4	AS5	Z	9.9	6.7	8.5	_
1	COMPACT	2.4	4	M6	Z	11.2	7.7	9.6	
2	COMPACT	1.5	4	AV7	Z	6.0	5.8	5.9	
3	SUV - SMALL	3.5	6	AS6	Z	12.7	9.1	11.1	
4	SUV - SMALL	3.5	6	AS6	Z	12.1	8.7	10.6	
7380	SUV - SMALL	2.0	4	AS8	Z	10.7	7.7	9.4	
7381	SUV - SMALL	2.0	4	AS8	Z	11.2	8.3	9.9	
7382	SUV - SMALL	2.0	4	AS8	Z	11.7	8.6	10.3	
7383	SUV - STANDARD	2.0	4	AS8	Z	11.2	8.3	9.9	
7384	SUV - STANDARD	2.0	4	AS8	Z	12.2	8.7	10.7	

7385 rows × 9 columns

In [12]:

1 y=df[['CO2 Emissions(g/km)']]
2 y

Out[12]:

	CO2 Emissions(g/km)
0	196
1	221
2	136
3	255
4	244
7380	219
7381	232
7382	240
7383	232
7384	248

7385 rows × 1 columns

```
Fuel Consumption City (L/100 km)
                                                   7385 non-null
               Fuel Consumption Hwy (L/100 km)
           6
                                                                     float64
                                                   7385 non-null
               Fuel Consumption Comb (L/100 km)
                                                   7385 non-null
                                                                     float64
               Fuel Consumption Comb (mpg)
                                                   7385 non-null
                                                                     int64
          dtypes: float64(4), int64(2), object(3)
          memory usage: 519.4+ KB
In [14]:
           1 | x= pd.get_dummies(x, columns=['Vehicle Class'])
In [15]:
           1 x = pd.get_dummies(x, columns=['Transmission'])
In [16]:
           1 x
Out[16]:
                                             Fuel
                                                          Fuel
                                                                      Fuel
                Engine
                                 Fuel Consumption
                                                               Consumption
                                                                                                Vehicle
                                                  Consumption
                       Cylinders
                                                                            Consumption
                                                                                        Class_COMPACT
                Size(L)
                                Type
                                        City (L/100
                                                     Hwy (L/100
                                                                Comb (L/100
                                                                            Comb (mpg)
                                              km)
                                                          km)
                                                                       km)
```

9.9

11.2

6.0

12.7

12.1

...

10.7

11.2

11.7

11.2

12.2

Non-Null Count Dtype

object

float64

int64

object

object

float64

8.5

9.6

5.9

11.1

10.6

...

9.4

9.9

10.3

9.9

10.7

33

29

48

25

27

...

30

29

27

29

26

True

True

True

False

False

False

False

False

False

False

7385 non-null

7385 non-null

7385 non-null

7385 non-null

7385 non-null

6.7

7.7

5.8

9.1

8.7

...

7.7

8.3

8.6

8.3

8.7

7385 rows × 50 columns

In [13]:

1 x.info()

Column

Cylinders

Fuel Type

Vehicle Class

Engine Size(L)

Transmission

#

0

1

2

3

4

5

0

1

2

3

4

...

7380

7381

7382

7383

7384

2.0

2.4

1.5

3.5

3.5

...

2.0

2.0

2.0

2.0

2.0

4

4

4

6

6

...

4

4

4

4

4

Ζ

Ζ

Ζ

Ζ

Ζ

...

Ζ

Ζ

Ζ

Ζ

Ζ

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7385 entries, 0 to 7384 Data columns (total 9 columns):

In [17]: 1 x.replace({True:1,False:0},inplace=True)
2 x

Out[17]:

	Engine Size(L)	Cylinders	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Fuel Consumption Comb (mpg)	Vehicle Class_COMPACT	С
0	2.0	4	Z	9.9	6.7	8.5	33	1	
1	2.4	4	Z	11.2	7.7	9.6	29	1	
2	1.5	4	Z	6.0	5.8	5.9	48	1	
3	3.5	6	Z	12.7	9.1	11.1	25	0	
4	3.5	6	Z	12.1	8.7	10.6	27	0	
7380	2.0	4	Z	10.7	7.7	9.4	30	0	
7381	2.0	4	Z	11.2	8.3	9.9	29	0	
7382	2.0	4	Z	11.7	8.6	10.3	27	0	
7383	2.0	4	Z	11.2	8.3	9.9	29	0	
7384	2.0	4	Z	12.2	8.7	10.7	26	0	

7385 rows × 50 columns

In [18]: 1 x['Fuel Type'].unique()

Out[18]: array(['Z', 'D', 'X', 'E', 'N'], dtype=object)

In [19]: 1 x['Fuel Type'].replace({'Z':3, 'D':5, 'X':4, 'E':2, 'N':1},inplace=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7385 entries, 0 to 7384 Data columns (total 50 columns): Column Non-Null Count Dtype -----------------0 Engine Size(L) float64 7385 non-null Cylinders int64 1 7385 non-null 2 Fuel Type 7385 non-null int64 3 Fuel Consumption City (L/100 km) 7385 non-null float64 4 Fuel Consumption Hwy (L/100 km) 7385 non-null float64 Fuel Consumption Comb (L/100 km) 7385 non-null 5 float64 Fuel Consumption Comb (mpg) 7385 non-null 6 int64 Vehicle Class_COMPACT 7 7385 non-null 8 Vehicle Class FULL-SIZE 7385 non-null int64 Vehicle Class_MID-SIZE 7385 non-null 9 int64 7385 non-null 10 Vehicle Class_MINICOMPACT int64 Vehicle Class_MINIVAN 7385 non-null int64 11 12 Vehicle Class_PICKUP TRUCK - SMALL 7385 non-null int64 Vehicle Class_PICKUP TRUCK - STANDARD 7385 non-null int64 Vehicle Class_SPECIAL PURPOSE VEHICLE 14 7385 non-null int64 Vehicle Class_STATION WAGON - MID-SIZE 7385 non-null int64 15 Vehicle Class_STATION WAGON - SMALL 7385 non-null int64 16 Vehicle Class_SUBCOMPACT 17 7385 non-null int64 Vehicle Class_SUV - SMALL 7385 non-null int64 Vehicle Class_SUV - STANDARD 19 7385 non-null int64 7385 non-null 20 Vehicle Class_TWO-SEATER int64 21 Vehicle Class_VAN - CARGO 7385 non-null int64 Vehicle Class_VAN - PASSENGER 22 7385 non-null int64 23 Transmission_A10 7385 non-null int64 24 Transmission_A4 7385 non-null int64 7385 non-null 25 Transmission A5 int64 Transmission_A6 7385 non-null 26 int64 27 Transmission A7 7385 non-null 28 Transmission_A8 7385 non-null int64 29 Transmission_A9 7385 non-null int64 Transmission_AM5 30 7385 non-null int64 31 Transmission_AM6 7385 non-null int64 32 Transmission AM7 7385 non-null int64 33 Transmission_AM8 7385 non-null int64 Transmission_AM9 34 7385 non-null int64 7385 non-null 35 Transmission_AS10 int64 36 Transmission AS4 7385 non-null int64 37 Transmission AS5 7385 non-null int64 38 Transmission_AS6 7385 non-null int64 39 Transmission_AS7 7385 non-null int64 40 Transmission_AS8 7385 non-null int64 41 Transmission_AS9 7385 non-null int64 42 Transmission AV 7385 non-null int64 43 Transmission_AV10 7385 non-null int64

7385 non-null

7385 non-null

7385 non-null

7385 non-null

7385 non-null

7385 non-null

int64

int64

int64

int64

int64

int64

dtypes: float64(4), int64(46)

Transmission_AV6

Transmission_AV7

Transmission_AV8

Transmission M5

memory usage: 2.8 MB

48 Transmission_M6

49 Transmission_M7

44

45

46

4. Feature Selection

```
In [21]:
```

1 df=pd.concat([x,y], axis=1)

2 df

Out[21]:

	Engine Size(L)	Cylinders	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Fuel Consumption Comb (mpg)	Vehicle Class_COMPACT	С
0	2.0	4	3	9.9	6.7	8.5	33	1	
1	2.4	4	3	11.2	7.7	9.6	29	1	
2	1.5	4	3	6.0	5.8	5.9	48	1	
3	3.5	6	3	12.7	9.1	11.1	25	0	
4	3.5	6	3	12.1	8.7	10.6	27	0	
7380	2.0	4	3	10.7	7.7	9.4	30	0	
7381	2.0	4	3	11.2	8.3	9.9	29	0	
7382	2.0	4	3	11.7	8.6	10.3	27	0	
7383	2.0	4	3	11.2	8.3	9.9	29	0	
7384	2.0	4	3	12.2	8.7	10.7	26	0	

7385 rows × 51 columns

Tn []:

1 Assumption 1 Linearity - to check the linearity between dependent and independent va

In [22]: 1 df.corr()

	Engine Size(L)	Cylinders	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Fue Consumptio Comb (mpg
Engine Size(L)	1.000000	0.927653	-0.276888	0.831379	0.761526	0.817060	-0.75785
Cylinders	0.927653	1.000000	-0.312808	0.800702	0.715252	0.780534	-0.71932
Fuel Type	-0.276888	-0.312808	1.000000	-0.464904	-0.428890	-0.457629	0.41428
Fuel Consumption City (L/100 km)	0.831379	0.800702	-0.464904	1.000000	0.948180	0.993810	-0.92705
Fuel Consumption Hwy (L/100 km)	0.761526	0.715252	-0.428890	0.948180	1.000000	0.977299	-0.89063
Fuel Consumption Comb (L/100 km)	0.817060	0.780534	-0.457629	0.993810	0.977299	1.000000	-0.92557
Fuel Consumption Comb (mpg)	-0.757854	-0.719321	0.414283	-0.927059	-0.890638	-0.925576	1.00000
Vehicle Class_COMPACT	-0.203355	-0.159493	-0.013841	-0.211595	-0.246223	-0.226017	0.23587
Vehicle Class_FULL- SIZE	0.122829	0.158072	-0.057081	0.096558	0.015905	0.070079	-0.07118
Vehicle Class_MID- SIZE	-0.085230	-0.096560	0.041311	-0.177091	-0.239639	-0.201011	0.22946
Vehicle Class_MINICOMPACT	-0.035092	0.001623	-0.120724	-0.060727	-0.056456	-0.059913	0.03400
Vehicle Class_MINIVAN	0.018929	0.010588	0.039049	0.035833	0.031265	0.034732	-0.04586
Vehicle Class_PICKUP TRUCK - SMALL	-0.006167	-0.059599	0.155465	0.022606	0.066215	0.038082	-0.06561
Vehicle Class_PICKUP TRUCK - STANDARD	0.274497	0.214065	0.047591	0.251740	0.328656	0.281617	-0.25312
Vehicle Class_SPECIAL PURPOSE VEHICLE	-0.064312	-0.081929	0.017549	-0.017083	0.012040	-0.007504	-0.01126
Vehicle Class_STATION WAGON - MID-SIZE	-0.002824	0.003864	-0.004941	-0.022640	-0.020634	-0.021841	0.02007
Vehicle Class_STATION WAGON - SMALL	-0.171660	-0.150949	0.089400	-0.162310	-0.143792	-0.158060	0.17190
Vehicle Class_SUBCOMPACT	-0.024449	0.007365	-0.121674	-0.025072	-0.070775	-0.041416	0.01208
Vehicle Class_SUV - SMALL	-0.212082	-0.238477	0.181754	-0.136099	-0.067386	-0.114150	0.04168
Vehicle Class_SUV - STANDARD	0.277005	0.240228	-0.042850	0.287485	0.335603	0.307492	-0.27659
Vehicle Class_TWO- SEATER	0.100990	0.141004	-0.183037	0.095279	0.059803	0.084318	-0.07682
Vehicle Class_VAN - CARGO	0.080514	0.065873	-0.034523	0.130020	0.172451	0.146337	-0.09125
Vehicle Class_VAN - PASSENGER	0.136153	0.098698	-0.009820	0.256174	0.286653	0.269795	-0.16211
Transmission_A10	0.115444	0.073244	-0.003898	0.047660	0.053677	0.050234	-0.05124
Transmission_A4	0.035005	0.021429	0.002715	0.092999	0.138233	0.109781	-0.05800
Transmission_A5	0.082283	0.046335	0.060460	0.082107	0.076236	0.080967	-0.08325
Transmission_A6	0.180285	0.103520	0.035965	0.240401	0.250183	0.247124	-0.20349
Transmission_A7	0.059610	0.093366	-0.065945	0.068980	0.073339	0.071227	-0.06932
Transmission_A8	0.222896	0.177551	0.009605	0.144139	0.115927	0.136018	-0.15362
Transmission_A9	-0.037827	-0.012209	-0.021471	-0.009958	-0.016534	-0.012002	-0.02427
Transmission_AM5	-0.037136	-0.033299	-0.018056	-0.037955	-0.032358	-0.036421	0.05156
Transmission_AM6	-0.116859	-0.108555	0.033012	-0.136236	-0.124887	-0.133960	0.19565
Transmission_AM7	0.043440	0.099700	-0.161241	0.048440	0.041557	0.047236	-0.05377

	Engine Size(L)	Cylinders	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Fue Consumptio Comb (mpg
Transmission_AM8	0.005782	0.037235	-0.071368	-0.002122	-0.007263	-0.003825	-0.01084
Transmission_AM9	0.005061	0.004245	-0.015636	-0.008389	0.015936	0.000174	-0.00413
Transmission_AS10	0.058960	0.058953	0.048585	0.069644	0.092925	0.078809	-0.08413
Transmission_AS4	-0.009239	-0.014540	0.013313	-0.007790	-0.003638	-0.006402	0.00345
Transmission_AS5	0.014415	-0.004990	0.033590	0.010405	0.033420	0.018613	-0.02672
Transmission_AS6	-0.141620	-0.161483	0.161032	-0.066854	-0.049297	-0.062428	0.03926
Transmission_AS7	0.135143	0.135097	-0.132085	0.063726	0.073514	0.067832	-0.08083
Transmission_AS8	0.054816	0.127267	-0.178939	0.070785	0.007875	0.049413	-0.08543
Transmission_AS9	-0.014005	-0.020678	-0.028921	-0.018226	-0.017687	-0.018381	-0.00462
Transmission_AV	-0.165001	-0.163178	0.158423	-0.263754	-0.210674	-0.248187	0.35263
Transmission_AV10	-0.005862	-0.007232	-0.007703	-0.040751	-0.038925	-0.040942	0.04646
Transmission_AV6	-0.052374	-0.076331	0.085100	-0.133728	-0.083574	-0.117963	0.13448
Transmission_AV7	-0.085643	-0.078310	0.051741	-0.124949	-0.106043	-0.119910	0.13054
Transmission_AV8	-0.040485	-0.041885	-0.018030	-0.049058	-0.023289	-0.040648	0.03260
Transmission_M5	-0.160277	-0.149358	0.113679	-0.145531	-0.128692	-0.141211	0.14789
Transmission_M6	-0.155131	-0.154826	0.003904	-0.118235	-0.151254	-0.130877	0.11522
Transmission_M7	0.046261	0.045005	-0.086635	0.014994	-0.004302	0.008220	-0.03188
CO2 Emissions(g/km)	0.851145	0.832644	-0.255974	0.919592	0.883536	0.918052	-0.90742

51 rows × 51 columns

```
In [23]: 1 df.corr().tail(1)
```

Out[23]:

	Engine Size(L)	Cylinders	Fuel Type	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	Fuel Consumption Comb (L/100 km)	Fuel Consumption Comb (mpg)	Cli
CO2 Emissions(g/km)	0.851145	0.832644	-0.255974	0.919592	0.883536	0.918052	-0.907426	_

1 rows × 51 columns

In [24]: 1 plt.figure(figsize=(40,1))

2 sns.heatmap(df.corr().tail(1),annot=True)

Out[24]: <Axes: >

- In []: 1 Assumption 2: No multicolinearity
 - there should not be any relation between independent variables
 - 3 variance_inflation_factor is used to check the same
 - 4 vif = 1/1-r2_Score

```
In [25]: 1 vif_index = variance_inflation_factor(x,0)
2 vif_index
```

Out[25]: 10.643168639918391

```
In [19]:
               # vif_list= [variance_inflation_factor(x,i) for i in range(0,x.shape[1])]
           step 5 Model Training
In [26]:
               x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=1)
               x_train
Out[26]:
                                                 Fuel
                                                               Fuel
                                                                            Fuel
                                                                                         Fuel
                                   Fuel
                                                                                                        Vehicle
                 Engine
                                         Consumption
                                                      Consumption
                                                                    Consumption
                         Cylinders
                                                                                  Consumption
                                                                                                                С
                                                                                               Class_COMPACT
                                            City (L/100
                                                         Hwy (L/100
                                                                     Comb (L/100
                  Size(L)
                                   Type
                                                                                   Comb (mpg)
                                                 km)
                                                               km)
                                                                            km)
                                4
                                      4
                                                 11.1
            580
                     2.4
                                                                8.3
                                                                             9.8
                                                                                           29
                                                                                                             0
            3998
                                4
                                                                                                             0
                     2.0
                                      4
                                                 11.2
                                                                7.6
                                                                             9.8
                                                                                           29
           2228
                     2.0
                                4
                                      3
                                                 11.2
                                                                             9.9
                                                                                           29
                                                                                                             0
                                                                8.4
            2954
                                4
                                      4
                                                  8.7
                                                                             7.7
                                                                                           37
                     2.5
                                                                6.5
               4
                     3.5
                                6
                                      3
                                                 12.1
                                                                8.7
                                                                            10.6
                                                                                           27
                                                                                                             0
            905
                                6
                                      3
                                                 11.9
                                                                            10.4
                     3.4
                                                                8.6
                                                                                           27
                                                                                                             0
            5192
                                4
                                      3
                                                                7.3
                     2.0
                                                  9.3
                                                                             8.4
                                                                                           34
                                                                                                             0
            3980
                                4
                     2.0
                                      3
                                                 10.7
                                                                8.5
                                                                             9.7
                                                                                           29
                                                                                                             0
            235
                     2.4
                                4
                                      4
                                                 12.2
                                                                8.6
                                                                            10.6
                                                                                           27
                                                                                                             0
            5157
                     3.0
                                6
                                      3
                                                 11.8
                                                                8.7
                                                                            10.4
                                                                                           27
                                                                                                             0
           5908 rows × 50 columns
In [27]:
                lin_reg=LinearRegression()
            1
             2
               lin_reg
Out[27]:
           ▼ LinearRegression
           LinearRegression()
               lin_reg.fit(x_train,y_train)
In [28]:
Out[28]:
           ▼ LinearRegression
           LinearRegression()
In [29]:
            1
               y_pred=lin_reg.predict(x_test)
               y_pred
             2
Out[29]: array([[220.0692432],
                   [213.71540441],
                   [165.18833474],
                   [173.39675343],
                   [ 94.52234477],
                   [192.09987737]])
In [30]:
            1
               y_pred_train = lin_reg.predict(x_train)
             2
               y_pred_train
Out[30]: array([[220.99693219],
                   [225.34882152],
```

[218.24451026],

[204.64528846], [241.73841597], [235.94050767]])

. . . ,

Step 6 Model Evaluation: model is being evaluated in this step

```
In [31]:
              residual = y_test - y_pred
           2
              residual
Out[31]:
                CO2 Emissions(g/km)
          2196
                        -18.069243
          5688
                         0.284596
                          8.811665
          7198
          6476
                         -7.893289
          4909
                          9.949096
          6773
                         -5.612443
          2984
                         9.429215
          4396
                          3.603247
          5911
                         19.477655
                          1.900123
          3554
          1477 rows × 1 columns
In [32]:
           1 residual_train = y_train - y_pred_train
In [33]:
           1 | mse_test = mean_squared_error(y_test,y_pred)
           2 mse_test
Out[33]: 190.58098602127004
             mae_test = mean_absolute_error(y_test,y_pred)
In [34]:
           2 mae test
Out[34]: 10.392285274136775
In [29]:
          1 np.sqrt(mse_test)
Out[29]: 13.805107244106075
In [37]:
           1 | mse_train = mean_squared_error(y_train,y_pred_train)
           2 mse_train
Out[37]: 183.98298277284985
In [36]:
           1 | mae_train = mean_absolute_error(y_train,y_pred_train)
           2 mae_train
Out[36]: 10.270380939705657
In [38]:
          1 | np.sqrt(mse_train)
Out[38]: 13.564032688431928
In [39]:
           1 | r2score_test=r2_score(y_test,y_pred)
           2 r2score_test
Out[39]: 0.9440266939018702
In [40]:
             r2score_train=r2_score(y_train,y_pred_train)
           1
           2 r2score_train
Out[40]: 0.9463243086961876
In [41]:
              adjusted\_r2\_test = 1 - ((x\_test.shape[0]-1)*(1-r2score\_test))/(x\_test.shape[0]-x\_test)
              adjusted_r2_test
Out[41]: 0.9420640955113327
```

```
In [42]: 1 adjusted_r2_train = 1 - ((x_train.shape[0]-1)*(1-r2score_train))/(x_train.shape[0]-x
2 adjusted_r2_train
```

Out[42]: 0.9458660903992453

Assumption 3 Normality of residual

Visualization Techniques

```
In [43]: 1 sns.kdeplot(residual,fill=True)
```

Out[43]: <Axes: ylabel='Density'>


```
In [44]: 1 sns.kdeplot(residual_train,fill=True)
```

Out[44]: <Axes: ylabel='Density'>

In [45]: 1 sns.histplot(residual)

Out[45]: <Axes: ylabel='Count'>

In [46]: 1 sns.displot(residual_train)

Out[46]: <seaborn.axisgrid.FacetGrid at 0x1c2265e9d90>

In [47]: 1 sns.displot(residual)

Out[47]: <seaborn.axisgrid.FacetGrid at 0x1c2294bf5d0>

Hypothesis Testing

shapiro test

```
In [ ]:
           1 kstest
In [42]:
              _,p_value=normaltest(residual_train)
In [52]:
           1 normaltest(residual_train)
Out[52]: NormaltestResult(statistic=array([297.04677434]), pvalue=array([3.14132246e-65]))
In [53]:
              if p_value>0.05:
                  print('residual >> normally distributed')
           3
              else:
           4
                  print('residual >> not normally distributed')
```

residual >> not normally distributed

skewness

```
In [45]:
           1 residual.skew()
Out[45]: CO2 Emissions(g/km)
                               -0.437417
         dtype: float64
In [46]:
             from scipy.stats import skew
             skew(residual)
Out[46]: array([-0.43697275])
             -0.5 to 0.5 >> symmetrically distributed
In [ ]:
           2
             -1 to-0.5 >> negetively skewed
           3 0.5 to 1 >> positively skewed
             1> highly positively skewed
             -1< highily negetively skewed
 In [ ]:
             Assumption 4: Homoskedesticity
           2
                  if the value of residual goes on incresing as y increses, it is called as hetros
           3
                 Residual should be homoskedastic
           4
In [54]:
           1 plt.scatter(x= y_test,y= residual)
```

Out[54]: <matplotlib.collections.PathCollection at 0x1c229663e10>


```
conclusion: model is performing well as
      1. we have low bias and low varience
2
```

```
def get_input_row(make,model,Vehicle_Class, Engine_Size, Cylinders,Transmission, Fue)
In [37]:
           1
                                ,Fuel_Consumption_City1, Fuel_Consumption_Hwy1
                                ,Fuel_Consumption_Comb2, Fuel_Consumption_Comb3):
           3
           4
                  df1=pd.DataFrame(np.zeros(shape=(50)))
           5
                  df1.index=x.columns
                  df2=df1.T
           6
           7
                  df2['Engine Size(L)']=Engine_Size
                  df2['Cylinders']=Cylinders
           8
                  df2['Fuel Consumption City (L/100 km)']=Fuel_Consumption_City1
           9
                  df2['Fuel Consumption Hwy (L/100 km)']=Fuel_Consumption_Hwy1
          10
                  df2['Fuel Consumption Comb (L/100 km)']=Fuel_Consumption_Comb2
          11
          12
                  df2['Fuel Consumption Comb (mpg)']=Fuel_Consumption_Comb3
                  df2['Fuel Type']=Fuel_Type
          13
          14
                  col_name='Vehicle Class_'+ Vehicle_Class
                  df2[col\_name] = 1
          15
          16
                  col_name1='Transmission_'+ Transmission
          17
                  df2[col_name1]=1
                  df2['Fuel Type'].replace({'Z':3, 'D':5, 'X':4, 'E':2, 'N':1},inplace=True)
          18
          19
                  return df2
             input_df=get_input_row('Suraj', 'SUV', 'COMPACT', 2.0, 4, 'AS5', 'Z', 9.9, 6.7, 8.6,
In [42]:
           1
           2
             y_predicted = lin_reg.predict(input_df)
              predicted_co2_emmission = y_predicted[0][0]
In [18]:
             with open('linear_regression.pkl','wb') as f:
                  pickle.dump(lin_reg,f)
              dict1 = {'columns_x' : x.columns.to_list() }
In [25]:
              with open('project_data.json','w') as f:
           2
           3
```

2. R2_score and r2_adjusted score is > 0.9

json.dump(dict1,f)

3