DATA ANALYTICS PIPELINE USING APACHE SPARK

Data Intensive Computing- CSE-587

Jayant Solanki

UBIT Name: jayantso Person Number: 50246821

SPRING 2018 CSE

Anant Gupta

UBIT Name: anantram Person Number: 50249127

SPRING 2018 CSE

INTRODUCTION

This report contains the implementation details for the LAB 3 of DIC-CSE 587. We have successfully completed all the parts of Lab 3.

OBJECTIVES ACHIEVED

We explored the Apache Spark framework and programming: sparkcontext (sc), dataflow operations in transformations, actions, pipelines and MLib. We applied our data analytics knowledge and machine learning skills to perform multi-class classification of text data using Apache Spark. We build a data pipeline using data from sources such as NY Times articles using the APIs provided by the data sources. We assessed the accuracy of our model using a new article for each news "category" and then compared the classification accuracy of three well-known classification algorithms, for a given test data set.

Lastly we applied the knowledge and skills learned to solve classification problems in other domains.

Note: All the data pre-processing has been done in Spark framework using PySpark.

IMPLEMENTATION

Part 1

Understand Apache Spark with Titanic data analysis.

We have loaded the training and testing dataset available from the kaggle website. Few entries from the training data loaded.

Few entry from the training dataframe.

Schema of the dataframe:

```
root
|-- PassengerId: string (nullable = true)
|-- Survived: double (nullable = true)
|-- Pclass: string (nullable = true)
|-- FirstName: string (nullable = true)
```

```
-- FirstName: string (nullable = true)
-- Name: string (nullable = true)
-- Sex: string (nullable = true)
-- Age: double (nullable = true)
-- SibSp: double (nullable = true)
-- Parch: double (nullable = true)
```

-- Ticket: string (nullable = true)
-- Fare: double (nullable = true)
-- Cabin: string (nullable = true)

-- Embarked: string (nullable = true)

-- Mark: string (nullable = false)

Accuracy of logistic regression:

```
print ('AUC ROC of Logistic Regression model is: '+str(testModel(lr)))

AUC ROC of Logistic Regression model is: 0.8369523688232298
```

Accuracy of other models and comparison:

```
13 print (modelPerf)
{'LogisticRegression': 0.8369523688232297, 'DecisionTree': 0.7723828323993885, 'RandomForest': 0.8585392256749873}
```

So, Random Forest model has better accuracy (85.85 %) compared to other 2 models.

Part 2

Here we will use a feature extraction technique along with different supervised machine learning algorithms in Spark.

The overall workflow for the part 2 implementation has been shown in the Figure 1 below.

Figure 1

INPUT:

Input will be a text file which contains the article of a particular category.

EXAMPLE:

moviespage1articles120180506.txt

OUTPUT:

Output should be the category prediction from our model for this article.

EXAMPLE:

ENTERTAINMENT

STEP 1 (Collect data):

First we started with the data collection using the NYT API. We have collected the news articles for 4 popular categories (Sports, Business, Politics and of course entertainment). For each category we used multiple keywords to fire the query to the API.

Some of the keywords used are:

Politics Category – Trump, Election, Democrats, Republican etc.

Business Category - Economy, Trade, Market etc.

Sports Category – Football, Baseball, World Cup, Volleyball etc.

Entertainment Category – Movie, Art, Fashion, etc.

After multiple iteration we finally collected around 1000 articles for each category which are stored in different folders as per the category they belong to. So total articles for first part if 5000 (4000: training set; 1000: testing set).

For 2nd part i.e collecting random data for testing the model we collected 1000 articles

Step 2 (Data Cleaning using Apache Spark):

In Step 1 we collected the articles in text file. Here we have done the cleaning operation by tokenizing the text file data and removing the noisy words (stop words, punctuation, etc).

In order to make it easier to train our machine learning model, we have created csv files for each category.

This csv files has all the articles for a particular news category in the below format. Category is the category name to which the corresponding article entry (Body) belongs.

Dates	Category	Topic	Page	Body
20180501	business	business	2	SEOUL WITH A FALTERING VOICE AND HER HEAD DOWN THE YOUNGEST DAUGHTER
20180502	business	finance	4	JEFFERSON CITY MO THE LATEST ON THE INVESTIGATION OF MISSOURI GOV ERIC
20180503	business	business	8	WASHINGTON THE TRUMP ADMINISTRATION S SEVEN MAN DELEGATION TO BEIJING F
20180502	business	business	10	REUTERS METLIFE INC REPORTED AN 8 PERCENT RISE IN ADJUSTED FIRST QUARTE
20180504	sports	hockey	1	DALLAS WHEN DALLAS STARS GENERAL MANAGER JIM NILL STARTED HIS THIRD COA
20180501	business	market	3	SOFIA BULGARIA COULD EVENTUALLY BE IN THE MARKET FOR UP TO 10 NEW OR USE
20180505	entertainment	fashion	10	PHOENIX WHEN FORMER VICE PRESIDENT JOSEPH R BIDEN JR TRAVELED TO SENA
20180506	entertainment	entertainment	3	SARA MELINDA BEESLEY AND JOSHUA DAVID SHERMAN WERE MARRIED MAY 5 AT CO
20180504	sports	soccer	4	ON A WARM SATURDAY IN APRIL MOST OF THE BASEBALL DIAMONDS AND SOCCER F
20180507	sports	baseball	5	FEW WOULD DISPUTE THE VALUE TO CHILDREN OF PARTICIPATING IN SPORTS ORGA
20180503	husiness	money	8	REMARKS BY PRESIDENT DONALD TRUMP AND HIS LAWYER RUDY GILLI IANI DIFFER O

Step 3 (Feature Engineering):

Here our aim is to extract the "words" or the "features" characterizing the category. For doing this we have used TF-IDF by importing this HashingTF and IDF from the feature package of pyspark.

TFIDF, short for term frequency—inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.

The tf-idf value increases proportionally to the number of times a word appears in the document and is offset by the frequency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in general.

Step 4 (Data Partitioning) :

Next we have partitioned the collected data into training and testing dataset.

80% as training data and 20% as testing.

Final training and test data looks as below:

Train.csv:

Dates	Category	Topic	Page	Body			
20180501	business	business	2	SEOUL WITH	A FALTERING VO	DICE AND HER HEAD DO	WN THE YOUNGEST DAUGHTER
20180502	business	finance	4	JEFFERSON C	ITY MO THE L	ATEST ON THE INVESTIG	GATION OF MISSOURI GOV ERIC
20180503	business	business	8	WASHINGTON	THE TRUMP AD	MINISTRATION S SEVE	N MAN DELEGATION TO BEIJING
20180502	business	business	10	REUTERS ME	ETLIFE INC REP	ORTED AN 8 PERCENT I	RISE IN ADJUSTED FIRST QUART
20180504	sports	hockey	1	DALLAS WHEN	N DALLAS STAR	S GENERAL MANAGER	JIM NILL STARTED HIS THIRD CO.
20180501	business	market	3	SOFIA BULGA	RIA COULD EVE	NTUALLY BE IN THE MA	RKET FOR UP TO 10 NEW OR US
20180505	entertainment	fashion	10	PHOENIX WHE	N FORMER VIC	E PRESIDENT JOSEPH	R BIDEN JR TRAVELED TO SENA
20180506	entertainment	entertainment	3	SARA MELINDA	A BEESLEY AND	JOSHUA DAVID SHERM	IAN WERE MARRIED MAY 5 AT CO
20180504	sports	soccer	4	ON A WARM S	ATURDAY IN API	RIL MOST OF THE BASE	BALL DIAMONDS AND SOCCER I
20180507	sports	baseball	5	FEW WOULD D	DISPUTE THE VA	LUE TO CHILDREN OF F	PARTICIPATING IN SPORTS ORGA
20180503	husiness	money	8	REMARKS BY	PRESIDENT DOI	NALD TRUMP AND HIS I	AWYER RUDY GILII IANI DIFFER (

Test.csv:

А	В	С	D	E	F	G
Dates	Category	Topic	Page	Body		
20180505	business	business	2	CAIRO EGYPT	WILL HAVE TO D	EEPEN ITS IMF
20180502	business	money	5	WANT TO GET	THIS BRIEFING E	Y EMAIL HERES
20180501	politics	trump	6	WASHINGTON	US PRESIDENT	DONALD TRUM
20180501	business	economy	3	WITH THE ARRI	VAL IN BEIJING	THIS WEEK OF A
20180504	entertainment	music	9	ON THURSDAY	SOON AFTER A	JURY CONVICTE
20180504	entertainment	entertainment	9	FRIDAY PUZZLE	SOMETIMES T	HERE ARE TRAD
20180504	business	business	8	HONG KONG P	ING AN HEALTH	CARE AND TECH
20180502	politics	election	10	WASHINGTON	PRESIDENT DON	NALD TRUMP IS
20180504	entertainment	fashion	2	LOS ANGELES	IF LESLEY MAN	VILLE S OSCAR N
20180504	business	business	2	HONG KONG LO	ONDON HSBC S	NEW CHIEF EXE
20180507	business	business	8	HOUSTON CON	NOCOPHILLIPS IS	S TRYING TO SE
20180501	politics	election	3	WANT TO GET	THIS BRIEFING E	Y EMAIL HERES

Step 5 (Multi-class Classification):

Here we implement a machine learning model and then train it using the training dataset. After training our model we use the testing dataset to evaluate our model performance.

Output table for the prediction made by Logistic Regression:

```
predictions = lrModel.transform(testData)
   predictions.filter(predictions['prediction'] == 0) \
       .select("Body","Category","probability","label","prediction") \
13
14
       .orderBy("probability", ascending=False) \
15
       .show(n = 20, truncate = 30)
                        Body| Category|
                                                             probability|label|prediction|
| DALIAN MANILA CHINA PLANS ... |
                                  business [0.9993406144602194,1.38312...]
                                                                                     0.0
LONDON FRANKFURT GERMANY S...
                                  business [0.9980119859619365,4.94516...]
                                                                          0.01
                                                                                     0.0
                                  business|[0.997918087143643,0.001395...|
SYDNEY AUSTRALIA S BIGGEST...
                                                                          0.01
                                                                                    0.0
PARIS SOCGEN S CHIEF EXECU...
                                  business [0.997250963812292,0.001054...]
                                                                          0.0
                                                                                    0.0
ADEN YEMEN THE YOUNG MOTH...
                                  business [0.9964283193746383,8.25149...]
ADEN YEMEN THE YOUNG MOTH...
                                  business [0.9964283193746383,8.25149...]
                                                                          0.0
                                                                                     0.0
HONG KONG A GADGET MAKER ...
                                  business | [0.9952530049599432,0.00187...|
                                                                          0.0
                                                                                    0.0
HONG KONG A GADGET MAKER ...
                                  business [0.9952530049599432,0.00187...]
                                                                          0.0
                                                                                     0.0
|HONG KONG A GADGET MAKER ...|entertainment|[0.9952530049599432,0.00187...|
                                                                          3.0
                                                                                     0.0
      THE SIZE OF FUND FIN...
                                  business [0.9947368764797554,0.00136...]
LPC
                                                                          0.01
                                                                                    0.0
LPC
      THE SIZE OF FUND FIN...
                                  business [0.9947368764797554,0.00136...]
                                                                          0.0
                                                                                    0.0
LOS ANGELES LONDON SWISS B...
                                  business [0.9943281572841745,0.00255...]
                                                                          0.0
                                                                                     0.0
TORONTO FOR ABOUT AN HOUR ...
                                  business | [0.9940307922171391,0.00146...|
                                                                          0.01
                                                                                    0.0
BEIJING HONG KONG CHINESE ...
                                  business [0.9933015793572394,0.00104...]
                                                                          0.0
                                                                                    0.0
PARIS THE FRENCH FINANCE M...
                                  business [0.9916311890367605,0.00552...]
                                                                          0.0
                                                                                     0.0
REUTERS TYSON FOODS INC ...
                                  business [0.991278126599585,0.004102...]
                                                                          0.0
                                                                                    0.0
FRANKFURT THE EUROPEAN CEN...
                                  business | [0.9905817826204851,0.00543...|
                                                                          0.0
                                                                                     0.0
LONDON BRITISH MANUFACTURI...
                                  business | [0.9902443588753802,0.00720...|
                                                                          0.0
                                                                                     0.0
PARIS PRESSURE ON AIR FRAN...
                                  business [0.9902183367998199,0.00498...]
                                                                          0.0
                                                                                     0.0
PARIS PRESSURE ON AIR FRAN...
                                  business [0.9902183367998199,0.00498...]
                                                                          0.0
                                                                                    0.01
<del>|</del>
```

Model Performance:

Logistic Regression Performance:

only showing top 20 rows

```
In [9]: #printing the accuracy for test data, internal partition
    evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
    print(str(evaluator.evaluate(predictions)*100)+"%")
65.66287185364578%
```

Naive Bayes Performance:

```
In [18]: #printing the accuracy for test data, internal partition
    evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
    print(str(evaluator.evaluate(predictions)*100)+"%")
71.43992853147192%
```

Random Forest Performance:

```
In [23]: #printing the accuracy for test data, internal partition
    evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
    print(str(evaluator.evaluate(predictions)*100)+"%")

48.32796582928188%
```

So we can see from the above performance output, the Naive Bayes Prediction model has the best accuracy which is 71.44 %

Step 6 (Testing):

Here we repeat Step 1 to collect a new dataset for each category. Next we perform the preprocessing using Apache Spark and then pass this dataset to our implemented model for its prediction.

Below are the model performance for the new test dataset:

Logistic Regression Performance:

```
In [16]: #printing accuracy for test data
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
print(str(evaluator.evaluate(predictions)*100)+"%")
79.79084922846847%
```

Naive Bayes Performance:

```
In [21]: evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
    print(str(evaluator.evaluate(predictions)*100)+"%")
    76.94682115429076%
```

Random Forest Performance:

```
In [25]: evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
    print(str(evaluator.evaluate(predictions)*100)+"%")
51.71334098816666%
```

So we can see from the above performance output, the Naive Bayes Prediction model has the best accuracy which is 79.80 %

Step 7 (Documentation):

The Part-2-Spark-Text-Classifier.ipynb notebook can be found in the code directory.

DIRECTORY LAYOUT

There are 2 folders under **lab 3** directory:

- code:
 - 1. **Part 1:** Contains the data and the jupyter notebook for part 1.
 - 2. **Part 2**: Contains the data and the jupyter notebook for part 2.
 - **A. articles-test.csv** and **articles-train.csv** contains the processed articles data which is later for model prediction.
 - **B.** textcorpus folder contains the raw articles in text format, which was collected in data collection phase using NYT API. Data has been stored is subdirectory where the subdirectory names represents the category of the article.

- **C. NYTimesDataGen.ipynb:** used for NY Times article fetching and generation of the textcorpus data in the form of csv file.
- **D. Part-2-Spark-Text-Classifier.ipynb:** contains the main python file for parsing the csv file and performing the article classification.
- **report:** Contains the ipynb files for Lab 3 and the report.

SOFTWARE/HARDWARE USED

- Anaconda
- Jupyter Notebook
- Apache Spark
- Python 3.6 Environment based on Anaconda
- Ubuntu 17, Intel core i7 processor
- PySpark library

REFERENCES

- 1. http://spark.apache.org/
- 2. https://benfradet.github.io/blog/2015/12/16/Exploring-spark.ml-with-the-Titanic-Ka ggle-competition
- 3. https://6chaoran.wordpress.com/2016/08/13/__trashed/
- 4. https://datascienceplus.com/multi-class-text-classification-with-pyspark/