SECURITY FEATURES

- 1. CONTROL FLOW INTEGRITY
 - A. ROP ATTACK MITIGATION
 - B. COP/ JOP ATTACK MITIGATION
- 2. POINTER SAFETY
- 3. ENCRYPTED ISLANDS

GOALS:

- ELEVATE RISC-V SECURITY BY INTRODUCING ARCHITECTURAL FEATURES VIA SIMPLE ISA EXTENSIONS
- ENSURE THERE IS NO PATENT/ IP INFRINGEMENT IN ANY WAY/ CO-DEVELOP WITH COMMUNITY PARTNERS

1 A. CFI – ROP ATTACK MITIGATION

THREAT MODEL:

Asset	·	Security Property C - Confidentiality I - Integrity A - Availability	Threat	Entry Point of Threat	1	Mitigation/ Security Requirement
Stack	System Stack	I		Stack smashing by either buffer overrun or injecting code into the stack – Return Oriented Programming (ROP) attacks	CVSS v3.1 Vector AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N	Use shadow stack to compare return addresses for control flow transfer instructions, if mismatch then raise exception or copy shadow stack over

1A. CFI - ROP ATTACK MITIGATION JAL, JALR, SP & SP# both are Memory BEQ, BNE, updated the same way XLEN-1 BLE, BGT together x0 / zero x1 SP x2 x3 x4 x5 **RET instr?** x6 29387982 x7 8x 929863a1 x9 x10 aacc5271 x11 x12 fff18379 x13 x14 SP == SP#?x15 x16 x17 x18 x19 U-mode invisible register x20 x21 H/S/M mode can access Mismatch x22 29387982 x23 x24 929863a1 x25 x26 Shadow stack pages are protected aacc5271 OR x27 by hardware MMU, MPU Exception Copy x28 fff18379 x29 shadow x30 Configured by M/S/H mode SW x31 stack over XLEN XLEN-1 рс XLEN SP# shall also be considered part of a process/ VM's context space M/S/H mode software needs to update SP# as part mode/context switch

Figure 2.1: RISC-V base unprivileged integer register state.

1A. CFI - ROP ATTACK MITIGATION

PROPOSED PRIVILEGE ISA EXTN

Mnemonic: SLOAD

Opcode: TBD

Operation: Only S/ H/ M mode software can use this instruction to load stack address to the shadow stack pointer at every mode/ context switch

Behavior: S/ H/ M mode – valid; U mode - trapped

Note: Loading this shadow stack pointer is not enough, but also the shadow stack needs to be protected with MMU/ MPU via configuration

1B. CFI - COP/ JOP ATTACK MITIGATION

THREAT MODEL:

4							
Asset	Description	Security Property	Threat	Entry Point of Threat	Impact of Vulnerability	Severity	Mitigation/
1 '	1		'	'		(CVSS v3 Rating)	Security Requirement
l '	1	C - Confidentiality	'	'			
A '	1	I - Integrity	'	1		https://nvd.nist.gov/vuln-	
/ '	1	A - Availability	'	'		metrics/cvss/v3-calculator	
Call/	Indirect call/	I	Tamper	Tampering the code to perform	Control flow hijack	HIGH: 7.5	Track indirect call/ jump instructions and
Jump	jump target	1	'	indirect call/ jump to invalid	1	CVSS v3.1 Vector	permitting only valid call/ jump locations
Targets	addresses		'	locations		AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N	of the code with special instruction and
 '	<u></u> '	,					state machine

1B. CFI - COP/ JOP ATTACK MITIGATION

1B. CFI - COP/ JOP ATTACK MITIGATION

PROPOSED PRIVILEGE ISA EXTN

Mnemonic: VJMP

Opcode: TBD

Operation: Its like a NOP instruction but CPU activates a state machine to look for if the next instruction is a VJMP or not. If yes, then continues execution. Else the execution is halted with an exception raised for control flow integrity violation

Behavior: S/ H/ M mode – valid; U mode - trapped

2. POINTER SAFETY

THREAT MODEL:

Asset	Description	Security Property	Threat	Entry Point of Threat	Impact of Vulnerability	Severity	Mitigation/
						(CVSS v3 Rating)	Security Requirement
		C - Confidentiality					
		I - Integrity				https://nvd.nist.gov/vuln-	
		A - Availability				metrics/cvss/v3-calculator	
Pointer	Memory		Tamper	Misusing the pointers to access	Memory Safety	HIGH: 7.5	Unused upper bits of pointer virtual
	Pointers			illegal memory, manipulating		CVSS v3.1 Vector	address to hold, type, permissions and tag
				stack, heap regions, executing		AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N	inserted by malloc function and checked
				data pointers, use after freeing,			by MMU during page walk to prevent
				out of range access, etc.			memory misuse

2. POINTER SAFETY

POINTER CREATION

pBuf = malloc(16 * WORD_SIZE);

Memory Manager (Kernel)

2. POINTER SAFETY

2. POINTER SAFETY **Physical Address** Virtual address EXT L2 L1 L0 Offset Offset **MMU EXTENSIONS** PPN PPN Flags 511 PPN Flags Page Directory PPN Flags Page Directory satp Page Directory 10 9 8 7 6 5 4 3 2 1 0 Physical Page Number RSWDAGUXWRV Reserved V - Valid 8 bits R - Readable W - Writable TYPE | R/W/E | TAG U - User G - Global A - Accessed D - Dirty (0 in page directory) Reserved for supervisor software 00: Read Figure 3.2: RISC-V address translation details. 01: Write 10: Execute 11: Reserved 01: Data 0x0 - 0xF

02: Code 03: Heap 04: Reserved

3. ENCRYPTED ISLANDS

THREAT MODEL:

Asset	·	Security Property C - Confidentiality I - Integrity A - Availability	Threat	Entry Point of Threat	,	<u> </u>	Mitigation/ Security Requirement
-	Software code and data	С		Vulnerable OS or Hypervisor can be exploited with privilege escalation to view code/data of application or hosted software		CVSS v3.1 Vector AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N	Encrypt code/ data via hardware mechanisms with hardware generated keys invisible to underlying OS or Hypervisor
•	Software code and data	1		Vulnerable OS or Hypervisor can be exploited with privilege escalation to tamper code/ data of application or hosted software	secrets		Integrity checking of code/ data by hardware that us attested by the hardware which can be verified remotely

TBD