Rank-65839 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_2 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431722409

General information

Number of lines	7
Number of points	29
Number of singular points	2
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	3
Number of Hesse planes	0
Number of axes	0
Type of points on lines	57
Type of lines on points	$4^2, 2^3, 1^{21}, 0^3$

Singular Points

The surface has 2 singular points:

$$\begin{array}{l} 0: \ P_6 = \mathbf{P}(\omega,1,0,0) = \mathbf{P}(2,1,0,0) \\ 1: \ P_7 = \mathbf{P}(\omega^2,1,0,0) = \mathbf{P}(3,1,0,0) \end{array}$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \mathbf{Pl}(0,0,1,1,2,1)_{258}$$

$$\ell_{2} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{82} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{82} = \mathbf{Pl}(0,0,2,3,1,1)_{205}$$

$$\ell_{3} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{81} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{81} = \mathbf{Pl}(0,0,3,2,3,1)_{332}$$

$$\ell_{4} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \mathbf{Pl}(0,0,1,1,3,1)_{318}$$

$$\ell_{5} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{61} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{61} = \mathbf{Pl}(0,0,2,3,2,1)_{265}$$

$$\ell_{6} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{60} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{60} = \mathbf{Pl}(0,0,3,2,1,1)_{212}$$

Rank of lines: (0, 80, 82, 81, 59, 61, 60)

Rank of points on Klein quadric: (0, 258, 205, 332, 318, 265, 212)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{38} = (0,0,1,1) = \ell_1 \cap \ell_4$$

$$P_{53} = (0,0,2,1) = \ell_2 \cap \ell_5$$

 $P_{69} = (0,0,3,1) = \ell_3 \cap \ell_6$

Single Points

The surface has 21 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_5 = (1,1,0,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{43} = (2,1,1,1) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{44} = (3,1,1,1) \ \text{lies on line} \ \ell_4 \\ 5: \ P_{46} = (1,2,1,1) \ \text{lies on line} \ \ell_4 \\ 6: \ P_{48} = (3,2,1,1) \ \text{lies on line} \ \ell_1 \\ 7: \ P_{50} = (1,3,1,1) \ \text{lies on line} \ \ell_1 \\ 8: \ P_{51} = (2,3,1,1) \ \text{lies on line} \ \ell_4 \\ 9: \ P_{59} = (2,1,2,1) \ \text{lies on line} \ \ell_2 \\ 10: \ P_{60} = (3,1,2,1) \ \text{lies on line} \ \ell_5 \end{array}$

 $\begin{array}{l} 11:\ P_{62}=(1,2,2,1)\ \text{lies on line}\ \ell_5\\ 12:\ P_{64}=(3,2,2,1)\ \text{lies on line}\ \ell_2\\ 13:\ P_{66}=(1,3,2,1)\ \text{lies on line}\ \ell_2\\ 14:\ P_{67}=(2,3,2,1)\ \text{lies on line}\ \ell_5\\ 15:\ P_{75}=(2,1,3,1)\ \text{lies on line}\ \ell_3\\ 16:\ P_{76}=(3,1,3,1)\ \text{lies on line}\ \ell_6\\ 17:\ P_{78}=(1,2,3,1)\ \text{lies on line}\ \ell_6\\ 18:\ P_{80}=(3,2,3,1)\ \text{lies on line}\ \ell_3\\ 19:\ P_{82}=(1,3,3,1)\ \text{lies on line}\ \ell_3\\ 20:\ P_{83}=(2,3,3,1)\ \text{lies on line}\ \ell_6\\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 3 points not on any line: The points on the surface but not on lines are:

$$0: P_8 = (1, 0, 1, 0)$$

 $1: P_{11} = (0, 1, 1, 0)$
 $2: P_{12} = (1, 1, 1, 0)$

Line Intersection Graph

	0123456
0	0111111
1	1011100
2	1101010
3	1110001
4	1100011
5	1010101
6	$\begin{array}{c} 0.1111111\\ 0.111100\\ 1.101010\\ 1.10001\\ 1.100011\\ 1.010101\\ 1.001110\\ 1.001110\\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_6	P_6	P_6	P_7	P_7	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_6	P_6	P_6	P_{38}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_5
in point	P_6	P_6	P_6	P_{53}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_6
in point	P_6	P_6	P_6	P_{69}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_7	P_{38}	P_7	P_7

 ${\bf Line~5~intersects}$

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_6
in point	P_7	P_{53}	P_7	P_7

Line 6 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_5
in point	P_7	P_{69}	P_7	P_7

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$7: P_{12} = (1, 1, 1, 0)$	14: $P_{51} = (2, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$8: P_{38} = (0,0,1,1)$	$15: P_{53} = (0, 0, 2, 1)$
$2: P_5 = (1, 1, 0, 0)$	$9: P_{43} = (2, 1, 1, 1)$	16: $P_{59} = (2, 1, 2, 1)$
$3: P_6 = (2, 1, 0, 0)$	$10: P_{44} = (3, 1, 1, 1)$	17: $P_{60} = (3, 1, 2, 1)$
$4: P_7 = (3, 1, 0, 0)$	11: $P_{46} = (1, 2, 1, 1)$	18: $P_{62} = (1, 2, 2, 1)$
$5: P_8 = (1,0,1,0)$	$12: P_{48} = (3, 2, 1, 1)$	19: $P_{64} = (3, 2, 2, 1)$
$6: P_{11} = (0, 1, 1, 0)$	13: $P_{50} = (1, 3, 1, 1)$	$20: P_{66} = (1, 3, 2, 1)$

$21: P_{67} = (2, 3, 2, 1)$	$24: P_{76} = (3, 1, 3, 1)$	$27: P_{82} = (1, 3, 3, 1)$
$22: P_{69} = (0,0,3,1)$	$25: P_{78} = (1, 2, 3, 1)$	$28: P_{83} = (2,3,3,1)$
$23: P_{75} = (2, 1, 3, 1)$	$26: P_{80} = (3, 2, 3, 1)$	