Question 1: What is a random variable in probability theory?

Ans:- In probability theory, a random variable is a variable that represents the outcome of a random phenomenon. It assigns a numerical value to each outcome in a sample space.

There are two main types:

1. Discrete random variable:

Takes on a **countable** number of distinct values.

Example: The number of heads in 3 coin tosses (can be 0, 1, 2, or 3).

2. Continuous random variable:

Takes on an **infinite** number of possible values within a given range.

Example: The time it takes for a bus to arrive (can be any real number within a range).

Key Points:

- It's not "random" in the casual sense—it's a **function** that maps outcomes to numbers.
- Denoted typically by capital letters like XXX, YYY, etc.
- The probability of different values or ranges is described by a **probability distribution**.

Question 2: What are the types of random variables?

Ans:- There are **two main types of random variables** in probability theory:

1. Discrete Random Variable

- **Definition**: A random variable that can take on a **finite or countably infinite** number of distinct values.
- Values: Usually integers or whole numbers.
- Examples:
 - Number of heads in 5 coin tosses (0, 1, 2, 3, 4, 5)
 - Number of students present in a class
- Distribution: Described by a probability mass function (PMF)

2. Continuous Random Variable

- **Definition**: A random variable that can take on **infinitely many values** in a given range (often real numbers).
- Values: Any value within an interval (e.g., from 0 to 1)
- Examples:
 - Height of a person (e.g., 167.5 cm)
 - o Time taken to complete a task
- Distribution: Described by a probability density function (PDF)

Question 3: Explain the difference between discrete and continuous distributions.

Ans:

Feature	Discrete Distribution	Continuous Distribution
Type of Random Variable	Discrete random variable	Continuous random variable
Possible Values	Countable values (finite or countably infinite)	Infinite values over an interval
Example Values	0, 1, 2, 3,	Any real number like 2.1, 2.01, 2.001, etc.
Probability Function	Probability Mass Function (PMF)	Probability Density Function (PDF)
Probability of a Value	P(X=x)>0P(X=x)>0 for specific values	P(X=x)=0P(X=x)=0; probability is over intervals
Example Distributions	Binomial, Poisson, Geometric	Normal, Exponential, Uniform (continuous), Beta
Graph Appearance	Bar graph (individual bars for	Smooth curve (like a bell curve for

Examples:

• Discrete Distribution:

Rolling a die $\to X=\{1,2,3,4,5,6\}X=\{1,2,3,4,5,6\}X=\{1,2,3,4,5,6\}X$ Each outcome has a specific probability.

• Continuous Distribution:

Measuring the height of people $\to X \in [150,200]X \in [150,200]X \in [150,200]$ cm You use the area under the curve to find probabilities over intervals.

Question 4: What is a binomial distribution, and how is it used in probability?

Ans: Binomial Distribution: Definition and Use

The **binomial distribution** is a **discrete probability distribution** that describes the number of **successes** in a fixed number of **independent** trials, where each trial has only **two possible outcomes**:

- Success or
- Failure

When to Use It

You use the binomial distribution when:

- 1. The experiment consists of **n independent trials**
- 2. Each trial has **two outcomes** (success/failure)
- 3. The **probability of success (p)** is the same for each trial
- 4. You're interested in the **number of successes** out of the total trials

Notation

- X~Bin(n,p)X \sim \text{Bin}(n, p)X~Bin(n,p) where:
 - o XXX = number of successes
 - o nnn = number of trials
 - ppp = probability of success in one trial

Probability Formula

 $P(X=k)=(nk)pk(1-p)n-kP(X=k) = \frac{n}{k}p^k (1-p)^n-kP(X=k)=(kn)pk(1-p)n-k$

Where:

- (nk)\binom{n}{k}(kn) is the number of combinations (ways to choose kkk successes from nnn trials)
- ppp = probability of success
- (1-p)(1-p)(1-p) = probability of failure
- kkk = number of successes

Example

Suppose you flip a coin 5 times. What's the probability of getting exactly 3 heads?

• Here, n=5n = 5n=5, p=0.5p = 0.5p=0.5, k=3k = 3k=3

 $P(X=3)=(53)(0.5)3(0.5)2=10 \cdot 0.125 \cdot 0.25=0.3125P(X=3) = \lambda (0.5)^3 (0.5)^2 = 10 \cdot 0.125 \cdot 0.125 \cdot 0.25 = 0.3125P(X=3)=(35)(0.5)3(0.5)2=10 \cdot 0.125 \cdot 0.25=0.3125$

Applications

• Quality control (e.g., how many defective items in a batch)

- Medicine (e.g., number of patients who respond to treatment)
- Finance (e.g., number of profitable trades)

Let me know if you'd like help solving a specific binomial problem!

Question 5: What is the standard normal distribution, and why is it important?

Ans: Definition

The **standard normal distribution** is a special case of the **normal distribution** with:

- **Mean** μ =0\mu = 0 μ =0
- Standard deviation $\sigma=1 \times gma = 1\sigma=1$

It is a **bell-shaped**, **symmetric** curve centered at 0.

It is denoted by the random variable:

 $Z^N(0,1)Z \times N(0,1)Z^N(0,1)$

Where:

- ZZZ is called a standard normal variable
- N(0,1)N(0, 1)N(0,1) means "normal distribution with mean 0 and standard deviation 1"

Graphical Shape

- Symmetrical around the mean (0)
- Tails extend infinitely in both directions but get closer to 0
- 68% of data lies between -1-1-1 and +1+1+1
- 95% between -2-2-2 and +2+2+2
- 99.7% between -3-3-3 and +3+3+3 (Empirical Rule)

Why It's Important

1. Basis for Standardization

Any normal distribution can be converted to the standard normal using: $Z=X-\mu\sigma Z = \frac{X - \mu\sigma Z}{mu}$

This helps **compare different datasets** or solve problems involving any normal distribution.

2. Used in Statistical Inference

Many statistical methods (like hypothesis testing, confidence intervals) rely on the standard normal distribution.

3. Widely Applicable

- Many real-world phenomena (heights, test scores, errors) are approximately normally distributed.
- Central Limit Theorem (CLT): Sampling distributions approach normality, even if the original data isn't normal.

Example Use

If a test score XXX is normally distributed with μ =70\mu = 70 μ =70, σ =10\sigma = 10 σ =10, and a student scores 85, we can find their **Z-score**:

$$Z=85-7010=1.5Z = \frac{85 - 70}{10} = 1.5Z=1085-70=1.5$$

This tells us the student scored 1.5 standard deviations above the mean.

Question 6: What is the Central Limit Theorem (CLT), and why is it critical in statistics?

Ans: The Central Limit Theorem (CLT) states that:

"When independent random samples are taken from any population with a finite mean μ \mu μ and standard deviation σ \sigma σ , the **sampling distribution** of the sample mean will approach a **normal distribution** as the sample size nnn becomes large."

In simple terms:

- Regardless of the shape of the original population (skewed, uniform, etc.),
- The distribution of sample means becomes approximately normal as nnn increases.

Mathematically

If:

• X1,X2,...,XnX_1, X_2, ..., X_nX1,X2,...,Xn are i.i.d. (independent and identically distributed) random variables with mean μ\muμ and standard deviation σ\sigmaσ,

Then the sample mean $X^{\t}X^{-}$ follows:

 $X^=N(\mu,\sigma^2n)$ as $n\to\infty$ \bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right) \text{ as } n \to \inftyX^=N(\mu,\n\sigma^2) as $n\to\infty$

Why It's Critical in Statistics

- 1. Allows Use of Normal Approximation
 - Enables us to use the standard normal distribution (Z) to calculate probabilities, even when the original data isn't normal.
- 2. Forms the Foundation for Hypothesis Testing
 - Many statistical tests (t-tests, z-tests) and confidence intervals rely on the CLT.
- 3. Enables Estimation and Prediction
 - Helps in estimating population parameters using sample statistics.
- 4. Works for Almost Any Population Distribution
 - o Powerful because it doesn't require the population to be normally distributed.

Real-Life Example

Suppose the time it takes to assemble a product is **not normally distributed**, but has a mean of 20 minutes and standard deviation of 5 minutes.

- If you take samples of size n=50n = 50n=50,
- The average time from each sample will be approximately normally distributed,
- So you can apply normal distribution techniques to answer probability questions.

Rule of Thumb

- The CLT works well for sample sizes n≥30n \geq 30n≥30 for most distributions.
- For populations that are **very skewed or heavy-tailed**, larger nnn may be needed.

Question 7: What is the significance of confidence intervals in statistical analysis?

Ans: A confidence interval is a range of values, derived from sample data, that is likely to contain the true population parameter (like a mean or proportion) with a certain level of confidence.

Typical Form

For a population mean, a CI is often written as:

 $CI=X^+\pm Z*(\sigma n) \times \{CI\} = \frac{X} \pm Z*(n\sigma) \times \{CI=X^+\pm Z*(n\sigma)\} \times \{CI=X^+\pm$

Where:

- X⁻\bar{X}X⁻ = sample mean
- Z*Z^*Z* = Z-score corresponding to the desired confidence level (e.g., 1.96 for 95%)
- σ\sigmaσ = population standard deviation (or sample standard deviation if population is unknown)
- nnn = sample size

Why Confidence Intervals Are Important

1. Estimation with Uncertainty

- Unlike a single estimate (point estimate), a CI gives a range to express uncertainty in estimates.
- Example: "The average test score is estimated to be between 72 and 78 with 95% confidence."

2. Informed Decision-Making

- CI helps in determining whether a value (like a target or benchmark) is plausible or not.
- If the target value lies outside the CI, it may indicate a statistically significant difference.

3. Foundation for Hypothesis Testing

- If a confidence interval for a difference between two groups includes 0, there
 may be no significant difference.
- Helps evaluate null hypotheses without relying solely on p-values.

4. Communicates Precision

- Narrow intervals = more precise estimates
- Wide intervals = less precise, possibly due to small sample size or high variability

5. Used in All Fields

 Medicine (e.g., drug effectiveness), economics (e.g., income averages), business (e.g., customer satisfaction), etc.

Example

If you estimate the mean height of students in a school from a sample and find:

 $\text{text}\{95\% \text{ CI}\} = [165.2, 170.8] \text{ text}\{\text{ cm}\}\$

It means you are 95% confident that the **true mean height** of all students falls between **165.2** cm and **170.8** cm.

Question 8: What is the concept of expected value in a probability distribution?

Ans: The expected value (also called mean or expectation) of a random variable is the long-run average outcome of a random experiment if repeated many times.

It represents the **center** or **"balancing point"** of a probability distribution.

Mathematical Definitions

1. For a Discrete Random Variable XXX:

 $E(X) = \sum [xi \cdot P(xi)]E(X) =$

Where:

- xix_ixi = each possible value
- P(xi)P(x_i)P(xi) = probability of xix_ixi

2. For a Continuous Random Variable XXX:

 $E(X) = \int -\infty x \cdot f(x) dx = \int -\infty x \cdot f(x) dx = \int -\infty x \cdot f(x) dx$

Where:

• f(x)f(x)f(x) = probability density function (PDF)

Why Expected Value Matters

1. Predicts Long-Term Outcomes

If you repeated an experiment many times, the **average result** would approach the expected value.

2. Used in Decision-Making

Especially in economics, finance, insurance, and game theory to evaluate risks and

maximize gains.

3. Foundation for Other Measures

Variance and standard deviation are calculated based on the expected value.

Example (Discrete)

You roll a fair 6-sided die. What's the expected value?

$$E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=216=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=216=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+\cdots +6 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16+2 \cdot 16=21=3.5 \\ E(X)=1 \cdot 16+2 \cdot 16$$

You never actually roll a 3.5, but it's the average result over many rolls.

Real-Life Example

In a lottery:

- Win \$100 with probability 0.01
- Lose \$10 with probability 0.99

Expected value:

$$E(X)=100(0.01)+(-10)(0.99)=1-9.9=-8.9E(X)=100(0.01)+(-10)(0.99)=1-9.9E(X)=100(0.01)+(-10)(0.01)$$

So on average, you **lose \$8.90 per play** — a losing game!

Question 9: Write a Python program to generate 1000 random numbers from a normal distribution with mean = 50 and standard deviation = 5. Compute its mean and standard deviation using NumPy, and draw a histogram to visualize the distribution.

Ans: import numpy as np import matplotlib.pyplot as plt

Set random seed for reproducibility (optional) np.random.seed(42)

```
# Generate 1000 random numbers from N(50, 5^2)
data = np.random.normal(loc=50, scale=5, size=1000)
# Compute mean and standard deviation
mean = np.mean(data)
std dev = np.std(data)
# Print results
print(f"Mean: {mean:.2f}")
print(f"Standard Deviation: {std dev:.2f}")
# Plot histogram
plt.hist(data, bins=30, color='skyblue', edgecolor='black')
plt.title('Histogram of Normally Distributed Data')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
Sample Output (Values will vary slightly)
vaml
Copy
Edit
Mean: 50.03
Standard Deviation: 4.98
```

Question 10: You are working as a data analyst for a retail company. The company has collected daily sales data for 2 years and wants you to identify the overall sales trend. daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260] ● Explain how you would apply the Central Limit Theorem to estimate the average sales with a 95% confidence interval. ● Write the Python code to compute the mean sales and its confidence interval.

Ans: How to Apply the CLT

You are given a **sample of daily sales** data:

```
daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260]
```

This is a **sample**, and you want to estimate the **population mean sales** using a **95% confidence interval**. Here's how you can apply the **Central Limit Theorem (CLT)**:

Steps Using CLT:

- 1. **Treat the list as a sample** from a larger population.
- 2. **Assume the population distribution is unknown** (doesn't need to be normal due to CLT).
- 3. **CLT states** that the sampling distribution of the sample mean is approximately **normal**.
- 4. Use the formula for the **confidence interval of the mean**:

 $CI=X^{\pm}Z*\cdot(sn)\cdot CI=X^{\pm}Z*\cdot(sn)\cdot CI=X^{\pm}Z*\cdot(ns)$

Where:

- X⁻\bar{X}X⁻ = sample mean
- sss = sample standard deviation
- nnn = sample size
- $Z*Z^*Z* = Z$ -score for 95% confidence ≈ 1.96

Python Code to Compute Mean and 95% CI

```
std_dev_sales = np.std(sales_array, ddof=1) # use ddof=1 for sample
std dev
n = len(sales_array)

# 95% confidence interval (Z-distribution, large sample or unknown
population std)
z_score = 1.96
margin_of_error = z_score * (std_dev_sales / np.sqrt(n))

# Confidence interval
lower_bound = mean_sales - margin_of_error
upper_bound = mean_sales + margin_of_error

# Output
print(f"Mean Daily Sales: {mean_sales:.2f}")
print(f"95% Confidence Interval: ({lower_bound:.2f},
{upper_bound:.2f})")
```

Sample Output (your values may vary slightly)

Mean Daily Sales: 249.25

95% Confidence Interval: (241.93, 256.57)