고해상도 태양광 기상자원지도 설명자료

【 2021. 8. 27.(금) / 국립기상과학원 미래기반연구부 】

□ 개요

- 국립기상과학원 미래기반연구부에서는 신재생에너지 생산 확대 지원을 위해 고해상도의 수치자료를 이용하여 남한영역에 대한 태양광 기상자원지도를 만들었습니다.
- 고해상도 수치자료를 만들기 위해 우리나라의 복잡한 **지형 특성을** 고려할 수 있는 규모상세화 기법(참고1)을 개발하고 적용하였습니다.
- 태양광 기상자원지도를 통해 최근 5년('16.7~'21.6) 동안의 평균 적인 일사량 분포특성을 알 수 있습니다.

□ 고해상도(100 m) 태양광 기상자원지도

- 태양광 기상자원지도 종류(2종): 경사면 도달 일사량, 수평면 도달 일사량
 - 기간: 2016년 7월 1일 ~ 2021년 6월 30일(5년)
 - 수평 해상도: 100 m
 - 영역/격자수: 남한전역/6900(동-서)×6750(남-북)
 - 구분: 전체기간, 계절별, 월별, 시간별 평균

[전체기간 평균 경사면 도달 일사량(왼쪽)과 수평면 도달 일사량(오른쪽)]

□ 고해상도(100 m) 태양광 기상자원지도 검증 결과

- 수평면 도달 일사량
 - 기간: 2016.07.01. ~ 2021.06.30. (5년)
 - 자료: 일사량 일 5회 분석장(00, 03, 06, 09, 21 UTC)
 - 지점: 지상관측 42개(ASOS) 지점
 - 결과
 - 검증 기간 동안 남한 전역 수평면 도달 일사량의 평균은 298.2 W/m² (육상 286.6 W/m²)이며, 표준편차는 13.09 W/m²(육상 11.40 W/m²)로 보였음. 관측자료와의 MBE는 42.9 W/m², RMSE는 128.6 W/m² 으로 나타남
 - * MBE(Mean Bias Error): 평균 편향 오차(편의), RMSE(Root Mean Square Error): 평균제곱근 오차

[시간별 수평면 도달 일사량의 MBE와 RMSE]

	수평면 도달 일사량 (W/m²)					
	MBE	RMSE				
06KST	1.1	9.3				
09KST	38.3	99.2				
12KST	73.5	180.0				
15KST	62.1	164.6				
18KST	13.6	56.2				

[계절별 수평면 도달 일사량의 MBE와 RMSE]

	수평면 도달 일사량 (W/m²)				
	MBE	RMSE			
Spring	56.0	139.2			
Summer	40.1	150.8			
Fall	36.7	114.7			
Winter	42.0	97.0			

[월별 수평면 도달 일사량의 MBE와 RMSE]

	수평면 도달 일사량 (W/m²)				
	MBE	RMSE			
Jan.	42.9	95.3			
Feb.	50.8	111.3			
Mar.	64.9	133.3			
Apr.	49.6	138.9			
May.	54.3	145.2			
Jun.	51.1	148.9			
Jul.	39.3	155.0			
Aug.	32.1	147.9			
Sep.	34.8	134.6			
Oct.	35.5	110.9			
Nov.	39.9	95.4			
Dec.	33.0	83.8			

□ 자료 활용 준수사항

- 본 자료는 기상청 국립기상과학원 주요사업으로 수행한 연구개발의 결과물입니다.
- 본 자료의 내용을 영리 목적으로 사용할 수 없으며, 임의 활용에 따른 손해에 관하여 어떠한 경우에도 민형사상 책임을 지지 않습 니다.
- 본 자료의 내용을 인용 또는 게재할 경우에는 출처를 기상청 국 립기상과학원으로 밝혀야 합니다.

참고1 고해상도 태양광 기상자원 규모상세화 기법

□ 규모상세화 기법

- 1.5km 격자 간격을 가지는 기상청 현업 국지예보모델(LDAPS)의 일사량 자료에 고해상도 지형자료*를 이용하여 경사각 및 방위각 보정, 고도 보정, 천공비 보정
 - * 고해상도 지형자료: 30 해상도의 Shuttle Radar Topography Mission(SRTM)

[경사각, 방위각, 고도, 천공비 보정 개념도]

※ 고해상도 지형 자료의 경사각, 경사면, 고도, 천공비와 지형 차폐 효과를 고려하여 실제와 유사한 태양복사량 산출

참고2

태양광 기상자원지도 검증 개요

□ 검증방법

- 기간: 2016.7.1. ~ 2021.6.30.(5년)
- 수치자료: 수평면 도달 일사량 일 5회 분석장(00, 03, 06, 09, 21 UTC)
- 관측자료: 지상관측 42개(ASOS) 지점

[수평면 도달 일사량 검증 지점]

 \bigcirc 검증지수: 평균(\overline{M}), 표준편차(SD), 편의(MBE), 평균 제곱근 오차(RMSE)

$$SD = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} \left(M_i - \overline{M}\right)^2}, \qquad Bias = \frac{1}{n}\sum_{i=1}^{n} \left(M_i - O_i\right), \qquad \text{RMSE} = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(M_i - O_i\right)^2}$$

 $>\!\!\!\!>$ \overline{M} : 평균(Mean), SD: 표준편차(Standard Deviation)

※ MBE: 평균 편향 오차(Mean Bias Error)

※ RMSE: 평균 제곱근 오차(Root Mean Square Error)

※ M; 수치자료

※ O∷ 관측자료

참고3 태양광 기상자원지도 자료구조

□ 파일형식

- 태양광 기상자원지도는 NetCDF 형식으로 제공됩니다.
- 6900(동-서)×6750(남-북) 개의 격자 형태로 저장되어 있으며, 각 격자의 위·경도 정보는 KMAP latlon.nc 자료를 참고해 주시기 바랍니다.

□ 자료종류

○ 태양광 기상자원지도는 2종 44개의 자료로 구성되어 있습니다.

[태양광 기상자원지도 자료종류]

자료종류	전체기간	계절별	월별	시간별
평균 수평면 도달 일사량	0	0	0	0
평균 경사면 도달 일사량	\circ	\circ	\circ	0

- ※ 전체기간: 2016년 7월 ~ 2021년 6월(5년)
- ※ 계절별: 봄/여름/가을/겨울
- ※ 월별: 1월 / 2월 / 3월 / 4월 / 5월 / 6월 / 7월 / 8월 / 9월 / 10월 / 11월 / 12월
- ※ 시간별: 00/03/06/09/21 UTC
- ※ 수평면 도달 일사량: 수평면에 도달하는 직달일사량과 산란일사량의 합
- ※ 경사면 도달 일사량: 지형효과가 고려된 경사면에서의 직달일사량과 산란일사량의 합