

# **Sustainable Aviation (SA)**



https://aero.engin.umich.edu/research/research-areas/sustainable-aviation/

Sustainable aviation is a multi-disciplinary field that seeks solutions to improve the environmental and societal impacts of air transportation. It aims to reduce aviation's contribution to climate change through new practices and radical innovation





Low-Order Modeling for Conceptual Aircraft Design and Development of the D8 Transport Concept Mark Drela MIT Aero & Astro

# Energy $\propto CO_2$ footprint



#### CES Edupack Prof. Ashby

#### Future Sustainable Air vehicule



Breakdown of energy into that associated with each life phase

Hydrogen, SAF, Electric/Hybrid Propulsion...



# Our idea is to define a Material-based approach for OAD (without physical simulations)



Breakdown of energy into that associated with each life phase

FBOBEST 2025 4

#### Summary

- 1. Eco-design, LCA & MDAO
- 2. Environmental assessment of aircraft manufacturing and production
- 3. A material-based approach in AD
- 4. Use-case scenario of methodology

#### Summary

# 1.Eco-design, LCA & MDAO

- 2. Environmental assessment of aircraft manufacturing and production
- 3. A material-based approach in AD
- 4. Use-case scenario of methodology

# Life Cycle Assessment



#### ISO norm:

- Proper goal and scope definition, including functional unit
- Inventory analysis and the database problem
- Selection of impacts, and difference between raw flux, midpoint, and endpoint impacts



AFROBEST 2025

## Eco-design and MDAO

#### MDAO

- Custom code or software
- Many simulations on low amounts of variables
- Engineering teams

#### Life Cycle Assessment (LCA)

- Independent software (OpenLCA, Simapro, etc...)
- Single calls on large external databases (*Ecoinvent*, *ILCD*, etc...)
- Dedicated teams or consultancies

# LCA4MDO;)

 Aerobest 2023: (Duild PYMOO + OPENCONCEPT (OpenMDAO) + LCA4MDO (Ecoinvent+Brightway2) = Automatic Tradeoff Range / GWP for the Hybridised King Air C90GT electric aircraft

LCA scope include building the aircraft and flying 1000 cycles at max range with fuel and electricity

Functional unit is a kilometre flown





https://github.com/mid2SUPAERO/LCA4MDAO

### LCA and OAD



• Pollet, F., Lutz, F., Planès, T., Delbecq, S., & Budinger, M. A Comprehensive and Generic Life Cycle Assessment Tool for Overall Aircraft Design. *Available at SSRN 5211853*.



#### Summary

- 1. Eco-design, LCA & MDAO
- 2. Environmental assessment of aircraft manufacturing and production
- 3. A material based approach in AD
- 4. Use-case scenario of methodology

# System boundaries



<sup>[1]</sup> E. Pierrat et al. Global environmental mapping of the aeronautics manufacturing sector. Journal of Cleaner Production, 2021.

AFROREST 2025

<sup>[2]</sup> N. Thonemann et al. Towards sustainable regional aviation: Environmental potential of hybrid-electric aircraft and alternative fuels. Sustainable Production and Consumption, 2024.

# Material Composition of Airframe

#### Metal airframe: e.g. a320



Source: planespotters.net

#### Carbon fiber airframe: e.g. a350



Source: www.airliners.net





#### 4 Main materials:

- Aluminium
- Titanium
- Steel
- CFRP

14

Environmental Assessment: Bottom-up approach



### Environmental Assessment: Bottom-up approach



### Environmental Assessment: Bottom-up approach



### Environmental Assessment: Input data

| Property | Unit  | Aluminium   | Steel | Titanium | CFRP          |
|----------|-------|-------------|-------|----------|---------------|
| BtF      | kg/kg | 5           | 6     | 10       | 1.5           |
| Energy   | MJ/kg | 163         | 20    | 536      | 514           |
|          |       |             |       |          |               |
|          |       |             |       |          |               |
|          |       | Energy inte |       |          | ive materials |

- Metals have high BtF subtractive manufacturing
- CFRP has low BtF Formative manufacturing

[1] Average values taken from literature. Dataset available on: github.com/mid2SUPAERO/pLCA-MDO/blob/main/Environmental\_Impact\_Manufacturing\_Calculations.xlsx.

AEROBEST 2025 18

[1]

#### Environmental Assessment: Results – 1 Aircraft level



### Environmental Assessment: Results – year 2023



- Single aisle aircraft have highest share in energy consumption – potential for including ecodesign approach
- Scope for material composition selection that would MINIMIZE energy consumption in materials
- Same trend for CO<sub>2</sub> PP

ROBEST 2025 20

### Environmental Assessment: Results - year 2023



 Despite the big difference in deliveries, Non-recyclable waste from Single-aisle and A350/B787 is almost same

 Scope for material composition selection that would MINIMIZE non-recyclable waste

AEROBEST 2025 22

#### Summary

- 1. Eco-design, LCA & MDAO
- 2. Environmental assessment of aircraft manufacturing and production
- 3. A material-based approach in AD
- 4. Use-case scenario of methodology

#### Multiobjective Optimization (discrete) problem

#### Conceptualize the material system as "effective material"



#### Multiobjective Optimization problem



#### Find optimal weight fractions for minimum:

- Effective density
- Energy consumption
- Cost
- Non recyclable waste

#### **Constraints:**

- Sum of weight fractions = 100%
- Minimum quantity of materials (min value from aircraft compositions)
- Titanium ≥ 25% as that of CFRP (Literature + observation)

AFROBEST 2025 25



#### MOO for estimating

best material composition for Aircraft ....from 4 materials only



SEDODEOT OOOF

Other, 0%

**Aluminium** 

**CFRP** 

**Titanium** 

Steel



CFRP, 10% Other, 0%



https://pymoo.org



min<sub>w</sub>
subject to:

$$\{\text{Cost}, \text{Energy}, \text{Waste}, \rho_{\text{eff}}\}$$

$$W_O$$

$$\sum_{i=1}^{4} w_i = 1$$

$$w_1 > 0.15$$
,  $w_2 > 0.01$ ,  $w_3 > 0.01$ ,  $w_4 > 0.01$ 

$$w_3 > 0.25 \times w_4$$

$$Energy_m = w_m \times e_m \times BtF_m$$

$$Cost_m = w_m \times c_m \times BtF_m$$

Waste<sub>m</sub> = 
$$w_m \times (BtF_m - 1) \times nrw_m$$
,  $m = 1, \dots, 4$ 

$$Total impact = \sum_{i=1}^{4} Parameter_{i} \quad Parameter = \{Energy, Cost, Waste\} \mid = 4 \quad \text{material } S$$

$$\rho_{\text{eff}} = \sum_{i=1}^{4} x_i \rho_i$$

AEROBEST 2025 28

### MOO results: Density versus Energy (+Cost)



EROBEST 2025 29

### MOO results: Density versus Cost (+Energy)



Lower cost, possible improvement energy and density

## MOO results: Density versus Waste (+Energy)



#### Summary

- 1. Eco-design, LCA & MDAO
- 2. Environmental assessment of aircraft manufacturing and production
- 3. A material based approach in AD
- 4. Use-case scenario of methodology

### Industrial use case

 Redesign A320 with a new composition on pareto front keeping same weight as original aircraft

EROBEST 2025 33

# Use-case scenario (Let's zoom N)

Redesign A320 with a new composition on pareto front keeping same weight as original aircraft



FBOBEST 2025 34

#### Use-case scenario

Redesign A320 with a new composition on pareto front keeping same weight as original aircraft



### Use-case scenario A320 new: results

#### Less CFRP, Less Titanium, more Aluminium and Steel

| Parameter | Unit | Existing composition | New Composition | % Change |
|-----------|------|----------------------|-----------------|----------|
| Aluminium | %    | 72                   | 78.7            | +9%      |
| Titanium  | %    | 6                    | 2.5             | -58%     |
| Steel     | %    | 9                    | 10.5            | +17%     |
| CFRP      | %    | 10                   | 8.3             | -17%     |
| Energy    | GJ   | 39804                | 34040           | -14%     |
| Waste(NR) | ton  | 11.4                 | 9.73            | -14%     |
| Cost      | M\$  | 1.46                 | 1.11            | -24%     |

Lower energy, waste and COST !!!!

AEROBEST 2025 36

# Link With MDO using OAS (A320 type)



| Short-Medium Range aircraft   | Unit  |            |            |
|-------------------------------|-------|------------|------------|
| Material                      |       | Aluminium  | CFRP       |
| Fuel Burn                     | kg    | 9809       | 8996       |
| Mass of Wingbox               | kg    | 5086       | 1748       |
| Cost of fuel                  | \$/kg | 0.85       | 0.85       |
| CO2 / flight                  | kg    | 35901      | 32925      |
| Number of flights in lifetime |       | 70000      | 70000      |
| CO2 operations                | kg    | 2513087833 | 2304723960 |
| Fuel cost operations          | \$    | 583640617  | 535250100  |



AFROBEST 2025

#### Conclusions

- Single aisle aircraft have a larger environmental impact because of their huge volumes need an optimized composition to reduce their environmental impact in early phase.
- LCA data specific to aerospace grade materials should be taken for better quality of results
- Current MDO results are limited to wingbox
- The current methodology simplifies material selection by not accounting for example strength properties etc...needed by MDO tools

AEROBEST 2025 38

### Future Works in MDO

Add more physics from AD <a href="https://github.com/fast-aircraft-design/FAST-OAD">https://github.com/fast-aircraft-design/FAST-OAD</a>
 with VAE for continuous material representation



Llorente et al. (2024). A hybrid machine learning and evolutionary approach to material selection and design optimization for eco-friendly structures. *Structural and Multidisciplinary Optimization*, 67(5), 69.

