Statistically Speaking: Multiple Testing Correction

DAVID L. TABB, PH.D.

NOVEMBER 23, 2017

Overview

- Type I and Type II error
- Controlling Family-Wide Error Rate (FWE):Bonferroni
- False Discovery Rate (FDR): Benjamini-Hochberg
- Olive Jean Dunn

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Why do we need Multiple Testing Correction?

probe_set_id	HMEO_1	HNEU_2	HNEU_3	HME60_1	HNE60_2	HNE60_3
1007_s_at	8.6888	8.5025	8.5471	8.5412	8.5624	8.3073
1053_at	9.1558	9.1835	9.4294	9.2111	9.1204	9.2494
117_at	7.0700	7.0034	6.9047	9.0414	8.6382	9.2663
121_at	9.7174	9.7440	9.6120	9.7581	9.7422	9.7345
1255_g_at	4.2801	4.4669	4.2360	4.3700	4.4573	4.2979
1294_at	6.3556	6.2381	6.2053	6.4290	6.5074	6.2771
1316_at	6.5759	6.5330	6.4709	6.6636	6.6438	6.4688
1320_at	6.5497	6.5388	6.5410	6.6605	6.5987	6.7236
1405_i_at	4.3260	4.4640	4.1438	4.3462	4.3876	4.6849
1431_at	5.2191	5.2070	5.2657	5.2823	5.2522	5.1808
1438_at	7.0155	6.9359	6.9241	7.0248	7.0142	7.0971
1487_at	8.6361	8.4879	8.4498	8.4470	8.5311	8.4225
1494_f_at	7.3296	7.3901	7.0886	7.2648	7.6058	7.2949
1552256_a_at	10.6245	10.5235	10.6522	10.4205	10.2344	10.3144
1552257_a_at	10.3224	10.1749	10.1992	10.2464	10.2191	10.2405

Type I and Type II

- ■Each p-value from a t-test estimates how frequently data these differential or more would be, given no actual difference (H_0) .
- To incorrectly reject the null hypothesis is to claim difference when none exists. This is a *type I error*, with probability alpha (α).
- •To incorrectly judge that no difference exists for a real difference is a *type II error* (β).

With no real differences, do we still "detect" differences?


```
trials <- 1000
genes <- 10000
positives <- rep (0,trials)
for (counter in 1:trials) {
  tvals <- rep(0,genes)
  for (gcounter in 1:genes) {
          a<- rnorm(5)
          b < rnorm(5)
          tvals[[gcounter]] <- t.test(a,b)$p.value
  hits <- subset(tvals, tvals<0.05)
  positives[[counter]] <- length(hits);</pre>
```


Expected values

- If you perform twenty t-tests and use 0.05 as a threshold, you should expect one false "hit" (1.0 = 20 * 0.05).
- If you perform 100 t-tests and use 0.01 as a threshold, you should expect one false "hit."
- You must choose your threshold before seeing how many "hits" you will get!

Multiple testing correction: **Bonferroni** protects against *any* errors

- Family-Wide Error Rate (FWE) estimates the probability that *none* of the claimed differences are incorrect.
- Carlo Bonferroni, an Italian financial mathematician, framed a set of inequalities used in the "union bound" of probability.
- Olive Dunn, American biostatistician, adapted these inequalities to FWE control.

The Bonferroni method

$$\blacksquare T_a = \frac{T_o}{n}$$

- $\blacksquare T_o$ is original p-value threshold
- $\blacksquare T_a$ is adjusted p-value threshold
- $\blacksquare n$ is number of difference tests to perform
- •If I compare 40 cytokines and want no false positives in my difference list to α < 0.05,

•My adj. threshold =
$$0.00125 = \frac{0.05}{40}$$

The Manhattan plot

- SNPs are evenly spaced for the x-axis.
- ■Height is the –log of p-value for one SNP.
- Correcting for multiple comparisons requires

 $p < \frac{0.05}{103,611}$ for a "hit" to protect against any false hits. (Bonferroni)

www.tau.ac.il/

~ybenja/

- •Controlling against any errors with a large number of comparisons is too punitive.
- Limiting errors to be no greater than a defined fraction of all claimed differences is *much* less damaging to sensitivity.
- Instead of Family-Wide Error (FWE), B-H controls False Discovery Rate (FDR).

www.tau.ac.il/ ~ybenja/

- ■We return to our 40 cytokine example.
- Sort our 40 p-values from lowest to highest.
- Threshold for *each* p-value: $T_a = \frac{r}{n}T_o$, where r is rank.
- Effective thresholds: 0.00125,0.00250, 0.00375, 0.00500,0.00625, 0.00750, 0.00875...

Common multiple testing complaints

- "All my hits vanished after MTC."
 - Maybe the null distribution was correct!
 - Maybe your experiment was underpowered.
- "Dr. X published without MTC, so why must I?"
 - ■People publish bad statistics all the time. Don't be one of them.
- "I did five groups, so I just compared between each pair of groups."
 - Comparing between all pairs in five groups yields ten comparisons; you must correct!

$$\frac{n(n-1)}{2} = \frac{5*4}{2} = 10$$

Completed Mathematics B.A. and M.A. at UCLA in 1936 and 1951, respectively. Defended her Ph.D. in 1956.

Photo from collaborator, Dr. Ruth Mickey

- •After three years as assistant professor at lowa State College, she returned to UCLA in 1959, joining the department of biostatistics.
- In 1968, she was named "fellow" of American Statistical Association. She also served in the American Association for the Advancement of Science and the American Public Health Assoc.

Humility

"The method given here is so simple and so general that I am sure it must have been used before this. I do not find it, however, so can only conclude that perhaps its very simplicity has kept statisticians from realizing that it is a very good method in some situations. In any case, the users of statistics in the main seem unaware of it, so I feel that it is worth presenting."

Takeaways

- Experiments producing many statistical tests require multiple testing correction.
- Bonferroni prevents making any wrong calls, but it requires very low p-values for a "hit."
- BH is a more liberal correction, controlling rate with a threshold that "steps up."
- While Bonferroni and Benjamini-Hochberg are dominant methods for MTC, others exist.