Number theory in cryptography

- Exercise set 4 -

The exercises T4.3 and P4.1 have to be handed in on Tuesday, 19th March 2024, 8:30 at latest. As usual, theoretical exercises have to be uploaded on **Moodle**, as a PDF file (e.g., a scan of a handwritten version or a PDF obtained from a LaTeX file). Programming exercises have to be done in the relevant file in the CoCalc project.

THEORETICAL QUESTIONS

T 4.1 Let p be an odd prime and let q be a prime such that p (viewed as an element mod q and hence, of \mathbb{F}_q) is a primitive element of \mathbb{F}_q^{\times} (i.e., that p generates the cyclic group \mathbb{F}_q^{\times}). Consider the polynomial

$$f(X) = \frac{X^q - 1}{X - 1} = X^{q-1} + \dots + X + 1 \in \mathbb{F}_p[X].$$

Let α be a root of f(X) and $\mathbb{F}_p(\alpha)$ be the finite field extension of \mathbb{F}_p generated by α .

- a) If $\mathbb{F}_p(\alpha) \cong \mathbb{F}_{p^d}$, show that $q \mid (p^d 1)$.
- b) Show that d = q 1 and deduce that f is irreducible.
- c) Show that $f(\alpha^{p^i}) = 0$ for all $i \in \{0, 1, ..., q 2\}$.
- d) Let α be as above. Show that the set of elements $\{\alpha, \dots, \alpha^{q-1}\}$ is the same as the set of elements $\{\alpha^{p^0}, \alpha^{p^1}, \dots, \alpha^{p^{q-2}}\}$.
- e) Deduce that $\{\alpha^{p^1}, \ldots, \alpha^{p^{q-1}}\}$ is a normal basis for $\mathbb{F}_{p^{q-1}}$ over \mathbb{F}_p . In fact, one calls this basis an *optimal normal basis*.
- **T 4.2** Prove that if g is a primitive element (= multiplicative generator) of $\mathbb{F}_{p^n}^{\times}$ and if $d \mid n$ then $g^{(p^n-1)/(p^d-1)}$ is a primitive element of $\mathbb{F}_{p^d}^{\times}$.
- **T 4.3** We have seen in class that we can construct \mathbb{F}_9 by adjoining to \mathbb{F}_3 the roots of an irreducible monic polynomial of degree 2.
- a) Check that $f(X) = X^2 X 1 \in \mathbb{F}_3[X]$ is an irreducible polynomial and call α a root of this polynomial (in some algebraic closure of \mathbb{F}_3). All the elements of \mathbb{F}_9 can be written as $a + b\alpha$ for some $a, b \in \mathbb{F}_3$ (you don't need to prove this). Show that α is a generator of the multiplicative group \mathbb{F}_9^{\times} (explain in detail your computations).
- b) Find the discrete logarithm of $\alpha 2$ to the base $\alpha 1$, if it exists. That is, find an integer $n \in \mathbb{Z}$ such that $(\alpha 1)^n = \alpha 2 \in \mathbb{F}_9$.

PROGRAMMING EXERCISES

- **P 4.1** Implement Montgomery_mult and Montgomery_exp corresponding to the Montgomery multiplication and exponentiation respectively. Test the correctness of your functions using the % operator and compare the timing.
- **P 4.2** Construct with Sage the finite fields \mathbb{F}_p , \mathbb{F}_{p^n} and $\mathbb{F}_p[X]/(P(X))$ for some irreducible polynomial P(X) over $\mathbb{F}_p[X]$.

For various values of prime numbers p and integers n > 1 (e.g. p = 23, n = 10), find what irreducible polynomial $f(X) \in \mathbb{F}_p[X]$ is used in SAGE to construct the finite field \mathbb{F}_{p^n} .

- **P 4.3** We say that $x \in \mathbb{F}_p^{\times}$ is a square (or a quadratic residue) if there exists $y \in \mathbb{F}_p^{\times}$ such that $x = y^2$. Write a program counting how many squares there are in \mathbb{F}_p^* . Compute this number for all p < 100 and give a formula for this number. Prove this formula. Prove that $x \neq 0$ is a square if and only if $x^{\frac{p-1}{2}} = 1$ in \mathbb{F}_p^* .
- **P 4.4** Write a function computing the euclidean division between two polynomials in $\mathbb{F}_p[X]$.