PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07K 14/705, 14/71, G06F 17/50, 19/00, 159/00

A1

(11) International Publication Number:

WO 99/28347

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/AU98/00998

(22) International Filing Date:

27 November 1998 (27.11.98)

(30) Priority Data:

PP 0585 PP 2598 27 November 1997 (27.11.97) AU

25 March 1998 (25.03.98)

AU

(71) Applicant (for all designated States except US): COMMON-WEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BENTLEY, John, David [AU/AU]; 85 Margaret Street, Macedon, VIC 3440 (AU). COSGROVE, Leah, Jane [AU/AU]; 22 Tarlton Street, Somerton Park, S.A. 5044 (AU). FRENKEL, Maurice, John [AU/AU]; 23 Ellington Street, South Caulfield, VIC 3162 (AU). GARRETT, Thomas, Peter, John [AU/AU]; 2 Gray Street, Brunswick, VIC 3055 (AU). LAWRENCE, Lynne, Jean [AU/AU]; 24 Cook Street, Brunswick, VIC 3055 (AU). LOU, Meizhen [CN/AU]; 10 Roma Street, Scoresby, VIC 3179 (AU). LOVRECZ, George, Oscar [AU/AU]; 2 Tovey Street, North Balwyn, VIC 3104 (AU). McKERN, Neil, Moreton [AU/AU]; Como Road, Lilydale, VIC 3170 (AU).

TULLOCH, Peter, Archibald [AU/AU]; The Estate of Peter Archibald Tulloch, c/o Nicholas O'Donoghue Lawyers, 180 Queen Street, Melbourne, VIC 3000 (AU). WARD, Colin, Wesley [AU/AU]; 903 Rathdowne Street, Carlton, VIC 3053 (AU).

(74) Agent: F.B. RICE & CO.; 605 Darling Street, Balmain, NSW 2041 (AU).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

(57) Abstract

The present invention relates to a method of designing compounds able to bind to a molecule of the insulin receptor family and to modulate the activity mediated by the receptor based on the 3-D structure coordinates of a IGF-1 receptor crystal of Figure 1.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A	L	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
A	M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
A	T	Austria	FR	France	LU	Luxembourg	SN	Senegal
A	U	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
A	Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
В	A	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
В	В	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
В	E	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
B	F	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
В	\mathbf{G}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
В	J	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
В	R	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
В	Y	Belarus	IS	Tceland	MW	Malawi	US	United States of America
C	CA	Canada	lT	Italy	MX	Mexico	UZ	Uzbekistan
C	F	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
C	:G	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
C	H	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
C	I	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
C	CM	Cameroon		Republic of Korea	PL	Poland		
C	EN	China	KR	Republic of Korea	PT	Portugal		
C	ะบ	Cuba	KZ	Kazakstan	RO	Romania		
C	Z	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
ID	E	Germany	LI	Liechtenstein	SD	Sudan		
D	K	Denmark	LK	Sri Lanka	SE	Sweden		
E	EE	Estonia	LR	Liberia	SG	Singapore		
į								

WO 99/28347 PCT/AU98/00998

METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

Field of the Invention

5

10

15

20

25

30

35

This invention relates to the field of receptor structure and receptor/ligand interactions. In particular it relates to the field of using receptor structure to predict the structure of related receptors and to the use of the determined structures and predicted structures to select and screen for agonists and antagonists of the polypeptide ligands.

Background of the Invention

Insulin is the peptide hormone that regulates glucose uptake and metabolism. The two types of diabetes mellitus are associated either with an inability to produce insulin because of destruction of the pancreatic islet cells (Homo-Delarche, F. & Boitard, C.,1996, Immunol. Today 10: 456-460) or with poor glucose metabolism resulting from either insulin resistance at the target tissues, or from inadequate insulin secretion by the islets or faulty liver function (Taylor, S. I., et al., 1994, Diabetes, 43: 735-740).

Insulin-like growth factors-1 and 2 (IGF-1 and 2) are structurally related to insulin, but are more important in tissue growth and development than in metabolism. They are primarily produced in the liver in response to growth hormone, but are also produced in most other tissues, where they function as paracrine/autocrine regulators. The IGFs are strong mitogens, and are involved in numerous physiological states and certain cancers (Baserga, R., 1996, TibTech 14: 150-152).

Epidermal growth factor (EGF) is a small polypeptide cytokine that is unrelated to the insulin/IGF family. It stimulates marked proliferation of epithelial tissues, and is a member of a larger family of structurally-related cytokines, such as transforming growth factor α, amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. & Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197; Walker, F. & Burgess, A. W., 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).

Each of these growth factors mediates its biological actions through binding to the corresponding receptor. The IR, IGF-1R and the insulin receptor-related receptor (IRR), for which the ligand is not known, are closely related to each other, and are referred to as the insulin receptor subfamily. A

10

15

20

25

30

35

large body of information is now available concerning the primary structure of these insulin receptor subfamily members (Ebina, Y., et al., 1985 Cell 40: 747-758; Ullrich, A., et al., 1985, Nature 313: 756-761; Ullrich, A. et al., 1986, EMBO J 5: 2503-2512; Shier, P. & Watt, V. M., 1989, J. Biol. Chem. 264: 14605-14608) and the identification of some of their functional domains (for reviews see De Meyts, P. 1994, Diabetologia 37: 135-148; Lee, J. & Pilch, P. F. 1994 Amer. J. Physiol. 266: C319-C334.; Schaffer, L. 1994, Eur. J. Biochem. 221: 1127-1132). IGF-1R, IR and IRR are members of the tyrosine kinase receptor superfamily and are closely related to the epidermal growth factor receptor (EGFR) subfamily, with which they share significant sequence identity in the extracellular region as well as in the cytoplasmic kinase domains (Ullrich, A. et al., 1984 Nature 309: 418-425; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). Both the insulin and EGF receptor subfamilies have a similar arrangement of two homologous domains (L1 and L2) separated by a cys-rich region of approximately 160 amino acids containing 22-24 cys residues (Bajaj, M., et al., 1987 Biochim. Biophys. Acta 916: 220-226; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). The C-terminal portion of the IGF-1R ectodomain (residues 463 to 906) is comprised of four domains: a connecting domain, two fibronectin type 3 (Fn3) repeats, and an insert domain (O'Bryan, J. P., et al., 1991 Mol Cell Biol 11: 5016-5031). The C-terminal portion of the EGFR ectodomain (residues 477-621) consists solely of a second cys-rich region containing 20 cys residues (Ullrich, A. et al., 1984, Nature 309: 418-

Little is known about the secondary, tertiary and quaternary structure of the ectodomains of these receptor subfamilies. Unlike the members of the EGFR subfamily which are transmembrane monomers which dimerise on binding ligand, the IR subfamily members are homodimers, held together by disulphide bonds. The extracellular region of the IR/IGF-1R/IRR monomers contains an α-chain (~ 703 to 735 amino acid residues) and 192-196 residues of the β-chain. There is a ~23 residue transmembrane segment, followed by the cytoplasmic portion (354 to 408 amino acids), which contains the catalytic tyrosine kinase domain flanked by juxtamembrane and C-tail regulatory regions and is responsible for mediating all receptor-specific functions (White, M. F. & Kahn, C. R. 1994 J. Biol. Chem. 269: 1-4). Chemical analyses of the receptor suggest that the α-chains are linked to the β-chains

10

15

20

25

30

35

via a single disulphide bond, with the IR dimer being formed by at least two α-α disulphide linkages (Finn, F. M., et al., 1990, Proc. Natl. Acad. Sci. 87: 419-423; Chiacchia, K. B., 1991, Biochem. Biophys. Res. Commun. 176, 1178-1182; Schaffer, L. & Ljungqvist, L., 1992, Biochem. Biophys. Res. Comm. 189: 650-653; Sparrow, L. G., et al., 1997, J. Biol. Chem. 47: 29460-29467).

Although the three-dimensional (3D) structures of the ligands EGF, TGF-alpha (Hommel, U., et al., 1992, J. Mol. Biol. 227:271-282), insulin (Dodson, E. J., et al., 1983, Biopolymers 22:281-291), IGF-1 (Sato, A., et al., 1993, Int J Peptide Protein Res 41:433-440) and IGF-2 (Torres, A. M., et al.,1995, J. Mol. Biol. 248:385-401) are known, and numerous analytical and functional studies of ligand binding to EGFR (Soler, C. & Carpenter, G., 1994 In Nicola (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197), IGF-1R and IR (see De Meyts, P., 1994 Diabetologia, 37:135-148) have been carried out, the mechanisms of ligand binding and subsequent transmembrane signalling have not been resolved.

Ligand-induced, receptor-mediated phosphorylation is the signalling mechanism by which most cytokines, polypeptide hormones and membrane-anchored ligands exert their biological effects. The primary kinase may be part of the intracellular portion of the transmembrane receptor protein, as in the tyrosine kinase receptors (for review see Yarden, Y., et al., 1988, Ann. Rev. Biochem. 57:443-478) or the Ser/Thr kinase receptors (Alevizopoulos, A. & Mermod, N., 1997, BioEssays, 19:581-591) or may be non-covalently associated with the cytoplasmic tail of the transmembrane protein(s) making up the receptor complex, as in the case of the haemopoietic growth factor receptors (Stahl, N., et al., 1995, Science 267:1349-1353). The end result is the same, ligand binding leads to receptor dimerization or oligomerization or a conformational change in pre-existing receptor dimers or oligomers, resulting in activation by transphosphorylation, of the covalently attached or non-covalently associated protein kinase domains (Hunter, T., 1995, Cell, 80:225-236).

Many oncogenes have been shown to be homologous to growth factors, growth factor receptors or molecules in the signal transduction pathways (Baserga, R.,1994 Cell, 79:927-930; Hunter, T., 1997 Cell, 88:333-346). One of the best examples is v-Erb (related to the EGFR). Since overexpression of a number of growth factor receptors results in ligand-dependent transformation, an alternate strategy for oncogenes is to regulate

10

15

20

25

30

35

the expression of growth factor receptors or their ligands or to directly bind to the receptors to stimulate the same effect (Baserga, R., 1994 Cell, 79:927-930). Examples are v-Src, which activates IGF-1 R intracellularly; c-Myb, which transforms cells by enhancing the expression of IGF1R; and SV40 T antigen which interacts with the IGF-1R and enhances the secretion of IGF-1 (see Baserga, R.,1994 Cell, 79:927-930 for review). Cells in which the IGF-1R has been disrupted or deleted cannot be transformed by SV40 T antigen. If oncogenes activate growth factors and their receptors, then tumour suppressor genes should have the opposite effect. One good example of this is the Wilm's tumour suppressor gene, WT1, which suppresses the expression of IGF-1R (Drummond, J. A., et al., 1992, Science, 257:275-277). Cells that are driven to proliferate by oncogenes undergo massive apoptosis when growth factor receptors are ablated, since, unlike normal cells, they appear unable to withdraw from the cell-cycle and enter into the G_0 phase (Baserga, R.,1994 Cell, 79:927-930).

The insulin-like growth factor-1 receptor (IGF-1R) is one of several growth-factor receptors that regulate the proliferation of mammalian cells. However, its ubiquitousness and certain unique aspects of its function make IGF-1R an ideal target for specific therapeutic interventions against abnormal growth, with very little effect on normal cells (see Baserga, R., 1996 TIBTECH, 14:150-152). The receptor is activated by IGF1, IGF2 and insulin, and plays a major role in cellular proliferation in at least three ways: it is essential for optimal growth of cells in vitro and in vivo; several cell types require IGF-1R to maintain the transformed state; and activated IGF-1R has a protective effect against apoptotic cell death (Baserga, R., 1996 TIBTECH, 14:150-152). These properties alone make it an ideal target for therapeutic interventions. Transgenic experiments have shown that IGF-1R is not an absolute requirement for cell growth, but is essential for the establishment of the transformed state (Baserga, R., 1994 Cell, 79: 927-930). In several cases (human glioblastoma, human melanoma; human breast carcinoma; human lung carcinoma; human ovarian carcinoma; human rhabdomyosarcoma; mouse melanoma, mouse leukaemia; rat glioblastoma; rat rhabdomyosarcoma; hamster mesothelioma) the transformed phenotype can be reversed by decreasing the expression of IGF-1R using antisense to IGF-1R (Baserga, R., 1996 TIBTECH 14:150-152); or by interfering with its function by antibodies to IGF-1R (human breast carcinoma; human

10

15

20

25

30

35

WO 99/28347 PCT/AU98/00998

5

rhabdomyosarcoma) or by dominant negatives of IGF-1R (rat glioblastoma; Baserga, R.,1996 TIBTECH 14:150-152).

Three effects are observed when the function of IGF-1R is impaired: tumour cells undergo massive apoptosis which results in inhibition of tumourogenesis; surviving tumour cells are eliminated by a specific immune response; and such a host response can cause a regression of an established wild-type tumour (Resnicoff, M., et al., 1995, Cancer Res. 54:2218-2222). These effects, plus the fact that interference with IGF-1R function has a limited effect on normal cells (partial inhibition of growth without apoptosis) makes IGF-1R a unique target for therapeutic interventions (Baserga, R., 1996 TIBTECH 14:150-152). In addition IGF-1R is downstream of many other growth factor receptors, which makes it an even more generalised target. The implication of these findings is that if the number of IGF-1Rs on cells can be decreased or their function antagonised, then tumours cease to grow and can be removed immunologically. These studies establish that IGF-1R antagonists will be extremely important therapeutically.

Many cancer cells have constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. J., et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hines, N. E.,1993, Semin. Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. L., et al., 1989, In Furth & Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab. Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. D., et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of many epithelial cell lines (Aboud-Pirak E., et al., 1988, J. Natl Cancer Inst. 85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR monoclonal antibody showed signs of disease stabilization. The large doses required and the cost of production of humanised monoclonal antibody is likely to limit the application of this type of therapy. These findings indicate that the development of EGF antagonists will be attractive anticancer agents.

Summary of the Invention

The present inventors have now obtained 3D structural information concerning the insulin-like growth factor receptor (IGF-1R). This information can be used to predict the structure of related members of the insulin

10

15

20

25

30

35

receptor family and provides a rational basis for the development of ligands for specific therapeutic applications.

Accordingly, in a first aspect the present invention provides a method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:

- (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
 - (b) a subset of said amino acids, or;
- (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.

The phrase "insulin receptor family" encompasses, for example, IGF-1R, IR and IRR. In general, insulin receptor family members show similar domain arrangements and share significant sequence identity (preferably at least 40% identity).

By "stereochemical complementarity" we mean that the biologically active substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the groove in the receptor site.

In a preferred embodiment of this aspect of the invention, the compound is selected or modified from a known compound identified from a database.

In a further preferred embodiment, the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.

In a further preferred embodiment, the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.

In a further preferred embodiment, the interaction of the compound with the receptor site alters the position of at least one of the L1, L2 or cysteine-

10

15

20

25

30

35

rich domains of the receptor molecule relative to the position of at least one of the other of said domains. Preferably, the compound interacts with the β sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain. Alternatively, the compound interacts with the receptor site in the region of the interface between the L1 domain and the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other. In another preferred embodiment, the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.

In a further preferred embodiment, the stereochemical complementarity between the compound and the receptor site is such that the compound has a K_b for the receptor side of less than 10^{-6} M, more preferably is less than 10^{-8} M.

In a further preferred embodiment or the first aspect of the present invention, the compound has the ability to increase an activity mediated by the receptor molecule.

In a further preferred embodiment, the compound has the ability to decrease an activity mediated by the receptor molecule. Preferably, the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site. It is preferred that the compound has a K_1 of less than 10^{-6} M, more preferably less than 10^{-6} M and more preferably less than 10^{-9} M.

In a further preferred embodiment of the first aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

In a second aspect, the present invention provides a computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:

- (a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;
- (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic

10

15

20

25

30

35

coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;

- (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
- (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and
- (e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.

In a preferred embodiment of the second aspect, the programmed computer includes a data storage system which includes the dtatbase of chemical structures.

In a preferred embodiment of the second aspect, the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

In another preferred embodiment, the computer-assisted method further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.

In another preferred embodiment, the computer-assisted method further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to decrease an activity mediated by the receptor.

In a further preferred embodiment, the computer-assisted method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.

In another preferred embodiment, the computer-assisted method further includes the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor.

In a further preferred embodiment of the second aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

In a third aspect, the present invention provides a method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to the first or second aspects, and testing the WO 99/28347 PCT/AU98/00998

9

compound for the ability to increase or decrease an activity mediated by the receptor.

In a preferred embodiment of the third aspect, the test is carried out in vitro.

In a further preferred embodiment of the third aspect, the test is a high throughput assay.

In a preferred embodiment of the third aspect, the test is carried out in vivo.

10 Brief Description of the Drawings

Figure 1. IGF-1R residues 1-462, in terms of atomic coordinates refined to a resolution of 2.6 Å (average accuracy ≈ 0.3 Å). The coordinates are in relation to a Cartesian system of orthogonal axes.

15

20

25

5

Figure 2. Depiction of the residues lining the groove of the IGF-1R receptor fragment 1-462.

Figure 3. Gel filtration chromatography of affinity-purified IGF-1R/462 protein. The protein was purified on a Superdex S200 column (Pharmacia) fitted to a BioLogic L.C. system (Biorad), equilibrated and eluted at 0.8 ml/min with 40 mM Tris/150 mM NaCl/0.02% NaN3 adjusted to pH 8.0.

(a) Protein eluting in peak 1 contained aggregated IGF-1R/462 protein, peak 2 contained monomeric protein and peak 3 contained the c-myc undecapeptide used for elution from the Mab 9E10 immunoaffinity column. (b) Non-reduced SDS-PAGE of fraction 2 from IGF-1R/462 obtained following Superdex S200 (Fig.1a). Standard proteins are indicated.

Figure 4. Ion exchange chromatography of affinity-purified, truncated IGF1R ectodomain. A mixture of gradient and isocratic elution chromatography
was performed on a Resource Q column (Pharmacia) fitted to a BioLogic
System (Biorad), using 20 mM Tris/pH 8.0 as buffer A and the same buffer
containing 1M NaCl as buffer B. Protein solution in TBSA was diluted at least
1:2 with water and loaded onto the column at 2 ml/min. Elution was
monitored by absorbance (280 nm) and conductivity (mS/cm). Target protein
(peak 2) eluted isocratically with 20 mM Tris/0.14 M NaCl pH 8.0. Inset:

WO 99/28347 PCT/AU98/00998

10

Isoelectric focusing gel (pH 3 - 7; Novex Australia Pty Ltd)of fraction 2. The pI was estimated at 5.1 from standard proteins (not shown).

Figure 5. Polypeptide fold for residues 1-462 of IGF-1R. The L1 domain is at the top, viewed from the N-terminal end and L2 is at the bottom. The space at the centre is of sufficient size to accommodate IGF-1. Helices are indicated by curled ribbon and b-strands by arrows. Cysteine side chains are drawn as ball-and-stick with lines showing disulfide bonds. The arrow points in the direction of view for L1 in Figure 7.

10

15

20

5

Figure 6. Amino acid sequences of IGF-1R and related proteins. a, L1 and L2 domains of human IGF-1R and IR are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for β -strands. Strands are shaded (pale, medium and dark grey) according to the β -sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are labelled below the sequences as open, filled or broken lines. Boxed residues show conservation of physicochemical properties and structurally conserved residues for modules 4-7 are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.

30

25

Figure 7. Stereo view of a superposition of the L1 (white) and L2 (black) domains. Residues numbers above are for L1 and below for L2. The side chain of Trp 176 which protrudes into the core of L1 is drawn as ball-and-stick.

10

15

20

30

35

Figure 8. Schematic diagram showing the association of three β -finger motifs. β -strands are drawn as arrows and disulfide bonds as zigzags.

Figure 9: Sequence alignment of hIGF-1R, hIR and hIRR ectodomains, derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

For assignment of homologous 3D structures see Figure 6.

Gel filtration chromatography of insulin receptor ectodomain Figure 10 and MFab complexes. hIR -11 ectodomain dimer (5 - 20 mg) was complexed with MFab derivatives (15-25 mg each) of the anti-hIR antibodies 18-44, 83-7 and 83-14 (Soos et al., 1986). Flution profiles were generated from samples loaded on to a Superdex S200 column (Pharmacia), connected to a BioLogic chromatography system (Biorad) and monitored at 280 nm. The column was eluted at 0.8 ml/min with 40 mM Tris/150 mM sodium chloride/0.02% sodium azide buffer adjusted to pH 8.0: Profile 0, hIR -11 ectodomain, Profile 1, ectodomain mixed with MFab 18-44; Profile 2, ectodomain mixed with MFab18-44 and MFab 83-14; Profile 3, ectodomain mixed with MFab 18-44, MFab 83-14 and MFab 83-7. The apparent mass of each complex was determined from a plot of the following standard proteins: thyroglobulin (660 kDa), ferritin (440 kDa), bovine gamma globulin (158 kDa), bovine serum albumin (67 kDa), chicken ovalbumin (44 kDa) and equine myoglobin (17 kDa).

Figure 11 Schematic representations of electron microscopy images of the hIR ectodomain dimer.

Detailed Description of the Invention

We describe herein the expression, purification, and crystallization of a recombinant truncated IGF-1R fragment (residues 1-462) containing the L1-cysteine-rich-L2 region of the ectodomain. The selected truncation position is just downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992. J Biol Chem., 267:10759-10763), and occurs at a position where the sequences of the IR and EGFR families diverge markedly (Ward, C. W., et al.,1995, Proteins: Struct., Funct., Genet. 22:141-153; Lax, I., et al., 1988, Molec. Cellul. Biol. 8:1970-1978) suggesting it represents a domain boundary. To

10

15

20

25

30

35

limit the effects of glycosylation, the IGF-1R fragment was expressed in Lec8 cells, a glycosylation mutant of Chinese hamster ovary (CHO) cells, whose defined glycosylation defect produces N-linked oligosaccharides truncated at N-acetyl glucosamine residues distal to mannose residues (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383). Such an approach has facilitated glycoprotein crystallization (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, J., et al., 1996, J. Biol. Chem. 271:33639-33646).

The IGF-1R construct described herein includes a c-myc peptide tag (Hoogenboom, H. R., et al.,1991, Nucleic Acids Res. 19:4133-4137) that is recognised by the Mab 9E10 (Evan, G. I., et al., 1985, Mol. Cell. Biol. 5:3610-3616) enabling the expressed product to be purified by peptide elution from an antibody affinity column followed by gel filtration over Superdex S200. The purified proteins crystallized under a sparse matrix screen (Jancarik, J. & Kim, S.-H., 1991, J. Appl. Cryst. 24:409-411) but the crystals were of variable quality, with the best diffracting to 3.0-3.5Å. Isocratic gradient elution by anion-exchange chromatography yielded protein that was less heterogenous and gave crystals of sufficient quality to determine the structure of the first three domains of the human IGF-1R.

The IGF-1R fragment consisted of residues 1-462 of IGF-1R linked via an enterokinase-cleavable pentapeptide sequence to an eleven residue c-myc peptide tag at the C-terminal end. The fragment was expressed in Lec8 cells by continuous media perfusion in a bioreactor using porous carrier disks. It was secreted into the culture medium and purified by peptide elution from an anti-c-myc antibody column followed by Superdex S200 gel filtration. The receptor fragment bound two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, which recognize conformational epitopes, but could not be shown to bind IGF-1 or IGF-2. Crystals of variable quality were grown as rhombic prisms in 1.7 M ammonium sulfate at pH 7.5 with the best diffracting to 3.0-3.5 Å. Further purification by isocratic elution on an anion-exchange column gave protein which produced better quality crystals, diffracting to 2.6 Å, that were suitable for X-ray structure determination.

The structure of this fragment (IGF-1R residues 1-462; L1-cys rich-L2 domains) has been determined to 2.6 Å resolution by X-ray diffraction. The L domains each adopt a compact shape consisting of a single stranded right-handed β -helix. The cys-rich region is composed of eight disulphide-bonded modules, seven of which form a rod-shaped domain with modules associated

PCT/AU98/00998

5

10

15

20

25

30

35

in a novel manner. At the centre of this reasonably extended structure is a space, bounded by all three domains, and of sufficient size to accommodate a ligand molecule. Functional studies on IGF-1R and other members of the insulin receptor family show that the regions primarily responsible for hormone-binding map to this central site. Thus this structure gives a first view of how members of the insulin receptor family might interact with their ligands.

Another group has reported the crystallization of a related receptor, the EGFR, in a complex with its ligand EGF (Weber, W., et al., 1994, J Chromat. 679:181-189). However, difficulties were encountered with these crystals which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure of this complex (Weber, W., et al., 1994, J Chromat 679:181-189) or the generation of accurate models of structurally related receptor domains such as IGF-1R and IR by homology modelling.

The present inventors have developed 3D structural information about cytokine receptors in order to enable a more accurate understanding of how the binding of ligand leads to signal transduction. Such information provides a rational basis for the development of ligands for specific therapeutic applications, something that heretofore could not have been predicted *de novo* from available sequence data.

The precise mechanisms underlying the binding of agonists and antagonists to the IGF-1R site are not fully clarified. However, the binding of ligands to the receptor site, preferably with an affinity in the order of 10⁻⁸M or higher, is understood to arise from enhanced stereochemical complementarity relative to naturally occurring IGF-1 ligands.

Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as eneumerated by the coordinates set out in Figure 1. The residues lining the groove are depicted in Figure 2. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the biologically active substance within the groove is favoured energetically.

Substances which are complemetary to the shape of the receptor site characterised by amino acids positioned at atomic coordinates set out in

Figure 1 may be able to bind to the receptor site and, when the binding is sufficiently strong, substantially prohibit binding of the naturally occurring ligands to the site.

It will be appreciated that it is not necessary that the complementarity between ligands and the receptor site extend over all residues lining the groove in order to inhibit binding of the natural ligand. Accordingly, agonists or antagonists which bind to a portion of the residues lining the groove are encompassed by the present invention.

5

10

15

20

25

30

35

In general, the design of a molecule possessing stereochemical complementarity can be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, Acc. Chem Res. 1987 20 322; Goodford, J. Med. Chem. 1984 27 557; Beddell, Chem. Soc. Reviews 1985, 279; Hol, Angew. Chem. 1986 25 767 and Verlinde C.L.M.J & Hol, W.G.J. Structure 1994, 2, 577, the respective contents of which are hereby incorporated by reference. See also Blundell et al., Nature 1987 326 347 (drug development based on information regarding receptor structure).

Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the shape of IGF-1R or a related receptor molecule. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.

The geometric approach is illustrated by Kuntz et al., J. Mol. Biol. 1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version 1.0,", the contents of which are

WO 99/28347 15

5

10

15

20

25

30

35

hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the IGF-R1 site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.) and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, U.S.A.), is then searched for molecules which approximate the shape thus defined.

PCT/AU98/00998

Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions.

The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 <u>28</u> 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.). Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl. Favored sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated.

The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Accordingly, crystallographic analysis of IGF-1 bound to the receptor site is expected to provide useful information regarding the interaction between the archetype ligand and the active site of interest.

Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, St. Louis, MO).

10

15

20

25

30

35

Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).

De novo design programs include Ludi (Biosym Technologies Inc., San Diego, CA), Sybyl (Tripos Associates) and Aladdin (Daylight Chemical Information Systems, Irvine, CA).

Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.

The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so

WO 99/28347

5

10

15

20

25

30

35

PCT/AU98/00998

configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

17

Compounds designed according to the methods of the present invention may be assessed by a number of *in vitro* and *in vivo* assays of hormone function. For example, the identification of IGF-1R antagonists of may be undertaken using a solid-phase receptor binding assay. Potential antagonists may be screened for their ability to inhibit the binding of europium-labelled IGF ligands to soluble, recombinant IGF-1R in a microplate-based format. Europium is a lanthanide fluorophore, the presence of which can be measured using time-resolved fluorometry. The sensitivity of this assay matches that achieved by radioisotopes, measurement is rapid and is performed in a microplate format to allow high-sample throughput, and the approach is gaining wide acceptance as the method of choice in the development of screens for receptor agonists/antagonists (see Apell et.al. J. Biomolec. Screening 3:19-27, 1998 : Inglese et. al. Biochemistry 37:2372-2377, 1998).

Binding affinity and inhibitor potency may be measured for candidate inhibitors using biosensor technology.

The IGF-1R antagonists may be tested for their ability to modulate receptor activity using a cell-based assay incorporating a stably transfected, IGF-1-responsive reporter gene [Souriau, C., Fort, P., Roux, P., Hartley, O., LeFranc, M-P. and Weill, M., 1997, Nucleic Acids Res. 25, 1585-1590]. An IGF-1-responsive, luciferase reporter gene has been assembled and transfected in 293 cells. The assay addresses the ability of IGF-1 to activate the reporter gene in the presence of novel ligands. It offers a rapid (results within 6-8 hours of hormone exposure), high-throughput (assay can be conducted in a 96-well format for automated counting) analysis using an extremely sensitive detection system (chemiluminescence). Once candidate compounds have been identified, their ability to antagonise signal transduction via the IGF-1R can be assessed using a number of routine in vitro cellular assays such as inhibition of IGF-1-mediated cell proliferation, induction of apoptosis in the presence of IGF-1 and the ablation of IGF-1driven anchorage-independent cell growth in soft agar [D'Ambrosio, C., Ferber, A., Resnicoff, M. and Baserga, R., 1996, Cancer Res. 56, 4013-4020]. Such assays may be conducted on the P6 cell line, a cell line highly responsive to IGF as a result of the constitutive overexpression of the IGF-1R

(45-50,000 receptors/cell, [Pietrzkowski, Z., Sell, C., Lammers, R., Ullrich, A. and Baserga, R.,1992, Cell Growth.Diff. 3, 199-205]). Ultimately, the efficacy of any antagonist as a tumour therapeutic may be tested *in vivo* in animals bearing tumour isografts and xenografts as described [Resnicoff, M., Burgaud, J-L., Rotman, H. L., Abraham, D. and Baserga, R., 1995, Cancer Res. 55, 3739-3741; Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. and Rubin, R., 1994 Cancer Res. 54: 2218-2222].

Tumour growth inhibition assays may be designed around a nude mouse xenograft model using a range of cell lines. The effects of the receptor antagonists and inhibitors may be tested on the growth of subcutaneous tumours.

10

15

20

25

30

35

A further use of the structure of the IGF-1R fragment described here is in facilitating structure determination of a related protein, such as a larger fragment of this receptor, another member of the insulin receptor family or a member of the EGF receptor family. This new structure may be either of the protein alone, or in complex with its ligand. For crystallographic analysis this is achieved using the method of molecular replacement (Brunger, Meth. Enzym. 1997 276 558-580, Navaza and Saludjian, ibid. 581-594, Tong and Rossmann, ibid. 594-611, Bentley, ibid. 611-619) in a program such as XPLOR. In this procedure diffraction data is collected from a crystalline protein of unknown structure. A transform of these data (Patterson function) is compared with a Patterson function calculated from a known structure. Firstly, the one Patterson function is rotated on the other to determine the correct orientation of the unknown molecule in the crystal. The translation function is then calculated to determine the location of the molecule with respect to the crystal axes. Once the molecule has been correctly positioned in the unit cell initial phases for the experimental data may be calculated. These phases are necessary for calculation of an electron density map from which structural differences may be observed and for refinement of the structure. Due to limitations in the method the search molecule must be structurally related to that which is to be determined. However it is sufficient for only part of the unknown structure (e.g. < 50%) to be similar to the search molecule. Thus the three dimensional structure of IGF-1R residues 1-462 may be used to solve structures consisting of related receptors, enabling a program of drug design as outlined above.

In summary, the general principles of receptor-based drug design can be applied by persons skilled in the art, using the crystallographic results presented above, to produce ligands of IGF-1R or other related receptors, having sufficient stereochemical complementarity to exhibit high affinity binding to the receptor site.

The present invention is further described below with reference to the following, non-limiting examples.

EXAMPLE 1

5

10

15

20

25

30

35

Expression, Purification and Crystallization of the IGF-1R Fragment.

Several factors hamper macromolecular crystallization including sample selection, purity, stability, solubility (McPherson, A., et al., 1995, Structure 3:759-768); Gilliland, G. L., & Ladner, J. E., 1996, Curr. Opin. Struct. Biol. 6:595-603), and the nature and extent of glycosylation (Davis, S. J., et al., 1993, Protein Eng. 6:229-232). Initial attempts to obtain structural data from soluble IGF-1R ectodomain (residues 1-906) protein, expressed in Lec8 cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) and purified by affinity chromatography, produced large, well-formed crystals (1.0 mm x 0.2 mm x 0.2 mm) which gave no discernible X-ray diffraction pattern (unpublished data). Similar difficulties have been encountered with crystals of the structurally-related epidermal growth factor receptor (EGFR) ectodomain, which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure (Weber, W. et al., 1994, J Chromat 679:181-189). This prompted us to search for a fragment of IGF-1R that was more amenable to X-ray crystallographic studies.

The fragment expressed (residues 1-462) comprises the L1-cysteinerich-L2 region of the ectodomain. The selected truncation position at Val462 is four residues downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992, J Biol Chem. 267:10759-10763), and occurs at a position where the sequences of the IR and the structurally related EGFR families diverge markedly (Lax, I., et al., 1988, Molec Cell Biol. 8:1970-1978; Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153), suggesting that it represents a domain boundary. The expression strategy included use of the pEE14 vector (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163) in glycosidase-defective Lec8 cells (Stanley, P., 1989, Molec. Cellul. Biol. 9:377-

PCT/AU98/00998 WO 99/28347

383), which produce N-linked oligosaccharides lacking the terminal galactose and N-acetylneuraminic acid residues (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, T., et al., 1996, J Biol Chem 271:33639-33646.). The construct contained a C-terminal c-myc affinity tag (Hoogenboom, H. R., et al., 1991, Nucl Acids Res. 19:4133-4137), which facilitated immunoaffinity purification by specific peptide elution and avoided aggressive purification conditions. These procedures yielded protein which readily crystallized after a further gel filtration purification step. This provided a general protocol to enhance crystallisation prospects for labile, multidomain glycoproteins.

The structure of this fragment is of considerable interest, since it 10 contains the major determinants governing insulin and IGF-1 binding specificity (Gustafson, T. A. & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Andersen, A. S., et al., 1990, Biochemistry, 29:7363-7366; Schumacher, R., et al., 1991, J. Biol. Chem. 266:19288-19295; Schumacher, R., et al., 1993, J. Biol. Chem. 268:1087-1094; Schäffer, L., et al., 1993, J. Biol. 15 Chem. 268:3044-3047; Williams, P. F., et al., 1995, , J. Biol. Chem. 270:3012-3016), and is very similar to an IGF-1R fragment (residues 1-486) reported to act as a strong dominant negative for several growth functions and which induces apoptosis of tumour cells in vivo (D'Ambrosio, C., et al., 1996, Cancer Res. 56:4013-4020). 20

The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette:

L

AatII 5' GACGTC GACGATGACGATAAG GAACAAAAACTCATC 25 D K E Q K D D D V (EK cleavage) (c-myc tail)

> D L (Stop) N

5

35

TCAGAAGAGGATCTGAAT TAGAATTC GACGTC 3'

30 EcoRI**AatII**

> encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H. R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-1r cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W. J. Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of

the cDNA (Ullrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 5 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 μM 10 methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) (Cosgrove, L., et al., 1995,) using monoclonal 15 antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection(Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks 20 (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 μM MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same supplemention for the next 4-5 weeks. The fermentation production run was 25 carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched medium. Target protein productivity was 30 essentially constant during the period from $\sim \! 100$ to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as the capture antibody and biotinylated Mab 24-31 as the developing antibody.

Soluble IGF-1R/462 protein was recovered from harvested fermentation medium by affinity chromatography on columns prepared by coupling Mab 9E10 to divinyl sulphone-activated agarose beads (Mini Leak;

10

15

20

25

30

35

Kem En Tec, Denmark) as recommended by the manufacturer. Mini-Leak Low and Medium affinity columns with antibody loadings of 1.5-4.5 mg/ml of hydrated matrix were obtained, with the loading range of 2.5-3 mg/ml giving optimal performance (data not shown). Mab 9E10 was produced by growing hybridoma cells (American Tissue Culture Collection) in serum-free medium in the Celligen Plus bioreactor and recovering the secreted antibody (4 g) using protein A glass beads (Prosep-A, Bioprocessing Limited, USA). Harvested culture medium containing IGF-1R/462 protein was adjusted to pH 8.0 with Tris-HCl (Sigma), made 0.02% (w/v) in sodium azide and passed at 3-5 ml/min over 50 ml Mab 9E10 antibody columns at 4° C. Bound protein was recovered by recycling a solution of 2-10 mg of the undecamer c-myc peptide EQKLISEEDLN (Hoogenboom et al., 1991) in 20 ml of Tris-buffered saline containing 0.02% sodium azide (TBSA). Between 65% and 75% of the product was recovered from the medium as estimated by ELISA, with a further 15-25% being recovered by a second pass over the columns. Peptide recirculation (~10 times) through the column eluted bound protein more efficiently than a single, slower elution. Residual bound protein was eluted with sodium citrate buffer at pH 3.0 into 1 M Tris HCl pH 8.0 to neutralize the eluant, and columns were re-equilibrated with TBSA.

Gel filtration over Superdex S200 (Pharmacia, Sweden), of affinitypurified material showed a dominant protein peak at ~63 kDa, together with a smaller quantity of aggregated protein (Figure 3a). The peak protein migrated primarily as two closely spaced bands on reduced, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3b), reacted positively in the ELISA with both Mab 24-60 and Mab 24-31, and gave a single sequence corresponding to the N-terminal 14 residues of IGF-1R. No binding of IGF-1 or IGF-2 could be detected in the solid plate binding assay (Cosgrove et al., 1995, Protein Express Purif. 6:789-798). The IGF-1R/462 fragment was further purified by ion-exchange chromatography on Resource Q (Pharmacia, Sweden). Using shallow salt gradients, protein enriched in the slowest migrating SDS-PAGE band was obtained (data not shown), which formed relatively large, well-formed crystals (see below). Isoelectric focussing showed the presence of one major and two minor isoforms. Protein purified on Resource Q with an isocratic elution step of 0.14 M NaCl in 20 mM TrisCl at pH 8.0 (fraction 2, Figure 4) showed less heterogeneity on isoelectric focussing (Figure 4 inset) and SDS-PAGE (data not shown), and

15

20

25

30

35

produced crystals of sufficient quality for structure determination (see below).

Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10-20 mM Tris-HCl pH 8.0 and 0.02% (w/v) sodium azide, or 100 mM ammonium sulfate and 0.02% (w/v) sodium azide. Crystallization conditions were initially identified using the factorial screen (Jancarik, J. & Kim, S.-H.,1991, J Appl Cryst 24:409-411), and then optimised. Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and RAXIS IIC and IV image plate detectors (Rigaku, Japan).

From the initial crystallization screen of this protein, crystals of about 0.1 mm in size grew in one week. Upon refining conditions, crystals of up to 0.6 x 0.4 x 0.4 mm could be grown from a solution of 1.7-2.0 M $\,$ ammonium sulfate, 0.1 M HEPES pH 7.5. The crystals varied considerably in shape and diffraction quality, growing predominantly as rhombic prisms with a length to width ratio of up to 5:1, but sometimes as rhombic bipyramids, the latter form being favoured when using material which had been eluted from the Mab 9E10 column at pH 3.0. Each crystal showed a minor imperfection in the form of very faint lines from the centre to the vertices. Protein from dissolved crystals did not appear to be different from the protein stock solution when run on an isoelectric focusing gel. Upon X-ray examination, the crystals diffracted to 3.0-4.0 Å and were found to belong to the space group $P2_12_12_1$ with a=76.8 Å, b=99.0 Å, c=119.6 Å. In the diffraction pattern, the crystal variability noted above was manifest as a large (1-2°) and anisotropic mosaic spread, with concomitant variation in resolution. To improve the quality of the crystals, they were grown in the presence of various additives or were recrystallized. These methods failed to substantially improve the crystal quality although bigger crystals were obtained by recrystallization. The variability in crystal quality appeared to be due to protein heterogeneity, as demonstrated by the observation that more highly purified protein, eluted isocratically from the Resource Q column and showing one major band on isoelectric focusing (Figure 4 inset), produced crystals of sufficient quality for structure determination. These crystals diffracted to 2.6 Å resolution with cell dimensions, a = 77.0 Å, b = 99.5 Å, c= 120.1 Å and mosaic spread of 0.5°. Heavy metal derivatives of the IGF-

1R/462 crystals have been obtained and are leading to the determination of an atomic resolution structure of this fragment, which contains the L1, cysteine-rich and L2 domains of human IGF-1R.

5

10

15

20

25

30

35

EXAMPLE 2

Structure of the IGF-1R/1-462

Crystals were cryo-cooled to-170°C in a mother liquor containing 20% glycerol, 2.2 M ammonium sulfate and 100 mM Tris at pH 8.0. Native and derivative diffraction data were recorded on Rigaku RAXIS IIc or IV area detectors using copper K α radiation from a Siemens rotating anode generator with Yale/MSC mirroroptics. The space group was P2₁2₁2₁ with a = 77.39 Å, b = 99.72 Å, and c = 120.29 Å. Data were reduced using DENZO and SCALEPACK (Otwinowski, Z. & Minor, W., 1996, Mode.Meth. Enzym. 276:307-326). Diffraction was notably anisotropic for all crystals examined.

Phasing by multiple isomorphous replacement(MIR) was performed with PROTEIN (Steigeman, W. Dissertation (Technical Univ. Munich, 1974) using anomalous scattering for both UO2 and PIP derivatives. Statistics for data collection and phasing are given in Table 1. In the initial MIR map regions of protein and solvent could clearly be seen, but the path of the polypeptide was by no means obvious. That map was subject to solvent flattening and histogram matching in DM (Cowtan, K.,1994, Joint CCP4 and ESF-EACBM newslett. Protein Crystallogr. 31:34-38). The structure was traced and rebuilt using O (Jones, T. A., et al., 1991, Acta Crystallogr.

A47:110-119) and refined with X-PLOR 3.851 (Brunger, A. T., 1996, X-PLOR ReferenceManual 3.851, Yale Univ., New Haven, CT). After 5 rounds of rebuilding and energy minimisation the R-factor dropped to 0.279 and Rfree = 0.359 for data 7-2.6 Å resolution. The current model contains 458 amino acids and 3 N-linked carbohydrates but no solvent molecules. For residues with B(Ca) > 70, Å atomic positions are less reliable (37-42, 155-159, 305, 336-341, 404-406,453-458). There is weak electron density for residues 459-461, but the c-myc tail appears completely disordered.

The 1-462 fragment consists of the N-terminal three domains of IGF-1R (L1, cys-rich, L2), and contains regions of the molecule which dictate ligand specificity (17-23). The molecule adopts a reasonably extended structure (approximately $40 \times 48 \times 105 \text{ Å}$) with domain 2 (cys-rich region)

25

making contact along the length of domain 1 (L1) but very little contact with the third domain (L2) (see Figure 5). This leaves a space at the centre of the molecule of approximately $24 \text{ Å} \times 24 \text{ Å} \times 24 \text{ Å}$ which is bounded on three sides by the three domains of the molecule. The space is of sufficient size to accommodate the ligand, IGF-1.

Table 1 Summary of Crystallographic data

10	Data set ^a	Resol. (Å)	Mean I/s	R _{merge} b	Completeness (multiplicity)			Phasing power ^d	FOMe
	Native	2.6	18.7	0.064	0.996 (4.1)				0.47 / 0.71
	PIP	3.0	15.8	0.060	0.982 (2.2)	3	0.66	1.71	
	UO2Ac2	4.5	7.5	0.095	0.989 (2.3)	2	0.82	1.17	
1 5									
	Refinement No of refl. N resolution (Å) (free)		No. of A	Atoms	R _{eryst} f	R_{free}^{f}	Bonds ^g (Å)	Angles ^g (Å)	
20	7.0-2.6	24270 (2693)		3903	3	0.237	0.304	0.017	0.048

 $^{^{}a}$ PIP, Di- μ -iodobis(ethylenediamine)diplatinum dinitrate; UO2Ac2, Uranyl acetate.

b $R_{\text{merge}} = \Sigma_{\mathbf{h}} \Sigma_{\mathbf{j}} |I_{\mathbf{h},\mathbf{j}} - I_{\mathbf{h}}| / \Sigma_{\mathbf{h}} \Sigma_{\mathbf{j}} |I_{\mathbf{h}}$, where $I_{\mathbf{h},\mathbf{j}}$ is an intensity measurement \mathbf{j} and $I_{\mathbf{h}}$ is the mean intensity for that reflection \mathbf{h} .

^C $R_{\text{Cullis}} = \Sigma_{\mathbf{h}} ||\mathbf{F}_{\text{PH}}\mathbf{F}_{\text{P}}| - |\mathbf{F}_{\text{Hcalc}}||/\Sigma_{\mathbf{h}}||\mathbf{F}_{\text{PH}}\mathbf{F}_{\text{P}}||$, where \mathbf{F}_{PH} , \mathbf{F}_{P} and $\mathbf{F}_{\text{Hcalc}}$ are, respectively, derivative, native and heavy atom structure factors for centric reflections \mathbf{h} .

^d Phasing power = Σ_h |**F**_{Hcalc}|/ Σ_h ε, where **F**_{Hcalc} is defined above and ε is the lack of closure.

 $^{^{9}}$ FOM(figure of merit) = $<\cos(\Delta\alpha_h)>$, where $\Delta\alpha_h$ is the error in the phase angle for reflection h. Values are given before and after density modification at 3.0 and 2.8 Å resolution, respectively.

 $^{^{\}rm f}$ R_{Cryst} and R_{free} are defined in Brunger, A.T. *XPLOR* reference manual 3.851 (Yale Univ., New Haven, CT, 1996)

g r.m.s. deviation from ideal bond and angle-related (1-3) distances.

The L domains

5

10

15

20

25

30

35

Each of the L domains (residues 1-150 and 300-460) adopts a compact shape (24 x 32 x 37 Å) consisting of a single-stranded right handed β -helix and capped on the ends by short α -helices and disulfide bonds. The body of the domain looks like a loaf of bread, with the base formed from a flat sixstranded β -sheet, 5 residues long and the sides being β -sheets three residues long (Figures 5 & 6). The top is irregular, but in places is similar for the two domains. The two domains are superposable with an rms deviation in Ca positions of 1.6 Å for 109 atoms (Figure 7). Although this fold is reminiscent of other β -helix proteins it is much simpler and smaller with very few elaborations, and thus it represents a new superfamily of domains. One notable difference between the two domains is that the indole ring of Trp 176 from the cys-rich region (Figure 6b) is inserted into the hydrophobic core of L1, and the C-terminal helix is only vestigial (Figure 8). For the insulin receptor family the sequence motif of residues which form the Trp pocket in L1 does not occur in L2 (Figure 6a). However in the EGF receptor, which has an additional cys-rich region after the L2 domain (14, 15), the pocket motif can be found in both L domains and the Trp is conserved in both cys-rich regions (Figure 6b).

The repetitive nature of the β-helix is reflected in the sequence and the first five turns were correctly identified by Bajaj, M., et al. (1987, Biochim.Biophys. Acta 916:220-226), the conserved Gly residues being found in turns making one bottom edge of the domain. However, their conclusions about the fold were incorrect. The "helix-like" repeat is actually a pair of bends at the top edge of the domain. In their Motif V, the Gly is not in a bend but is followed by the insertion of a conserved loop of 7-8 residues (see Figure 6a). Glycine is structurally important in the Gly bends as mutation of these residues compromises folding of the receptor [van der Vorm, E.R., et al., 1992, J. Biol. Chem. 267, 66-71; Wertheimer, E. et al., 1994, J. Biol. Chem. 269, 7587-7592].

Comparison of the L domains with other right-handed β-helix structures such as pectate lyase (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507) and the p22 tailspike protein (Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880) shows some striking similarities as well as differences. In

WO 99/28347 PCT/AU98/00998

27

all cases the ends of the domain are capped by α-helices, but the L domains also have a disulphide bond at each end to hold the termini. The other β helix domains are considerably longer and have significant twist to their sheets, while the L domains have flat sheets. Although the sizes of the helix repeats are similar (here 24-25 residues vs 22-23 for pectate lyase) the crosssections are quite different. The L domains have a rectangular cross-section, while pectate lyase and p22 tailspike protein are V-shaped, and have many, and sometimes quite large, insertions (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507; Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880). In the hydrophobic core a common feature is the stacking of aliphatic residues from successive turns of the β -helix, and near the C-terminus of each L domain there is also a short Asn ladder, reminiscent of the long Asn ladder observed in pectate lyase (Yoder, M. D., et al., 1993, Structure 1:241-251-1507). On the opposite side of the L domains the Gly bend, as well as the two bends and sheet preceding it, have no counterpart in the other β -helix domains. Thus although the L domains are built on similar principles to the other β -helix domains they constitute a separate superfamily.

The cys-rich domain

5

10

15

20

25

30

35

The cys-rich domain is composed of eight disulfide-bonded modules (Figure 6b), the first of which sits at the end of L1, while the remainder make a curved rod running diagonally across L1 and reaching to L2 (Figure 5). The strands in modules 2-7 run roughly perpendicular to the axis of the rod in a manner more akin to laminin (Stetefeld, J., et al., 1996, J.Mol. Biol. 257:644-657) than to TNF receptor (Banner, D. W., et al., 1993, Cell, 73:431-445), but the modular arrangement of the cys-rich domain is different to those of other cys-rich proteins for which structures are known. The first 3 modules of IGF-1R have a common core, containing a pair of disulfide bonds, but show considerable variation in the loops (Figure 6b). The connectivity of these modules is the same as in the first half of EGF (Cys 1-3and 2-4), but their structures do not appear to be closely related to any member of the EGF family. Modules 4 to 7 have a different motif, a β -finger, and best match residues 2152-2168 of fibrillin (Dowling, A. K., et al., 1996, Cell, 85:597-605). Each is composed of three polypeptide strands, the first and third being disulfide bonded and the latter two forming a β -ribbon. The β -ribbon of each β - finger module lines up antiparallel to form a tightly twisted 8-stranded β sheet (Figures 5 and 8). Module 6 deviates from the common pattern, with

WO 99/28347

PCT/AU98/00998

the first segment being replaced by an α -helix followed by a large loop that is likely to have a role in ligand binding (see below). As module 5 is most similar to module 7 it is possible that the four modules arose from serial gene duplications. The final module is a disulfide-linked bend of five residues.

28

The fact that the two major types of cys-rich modules occur separately implies that these are the minimal building blocks of cys-rich domains found in many proteins. Although it can be as short as 16 residues, the motif of modules 4-7 is clearly distinct, and capable of forming a regular extended structure. Thus cys-rich domains such as these can be considered as being made of repeat units each composed of a small number of modules.

Hormone binding

5

10

15

20

25

30

35

Attempts have been made to locate the IGF-1 (and insulin) binding site by examining natural (Taylor, S. I., 1992, Diabetes, 41:1473-1490) and site-directed mutants (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016; Mynarcik, D. C et al., 1996, J. Biol. Chem. 271:2439-2442; Mynarcik, D. C., et al., 1997, J. Biol. Chem. 272:2077-2081), chimeric receptors (Andersen, A. S., et al., 1990, Biochemistry 29:7363-7366; Gustafson, T. A., & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Schumacher, R., 1993, J. Biol. Chem. 268:1087-1094; Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and by crosslinking studies (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258; Fabry, M., 1992, J. Biol. Chem. 267:8950-8956; Waugh, S. M., et al., 1989, Biochemistry, 28:3448-3458; Kurose, T., et al., 1994),.J. Biol. Chem.269:29190-29197-34). IGF-1R/IR chimeras not only show which regions of the receptors account for ligand specificity, but also provide an efficient means of identifying some parts of the hormone binding site. Paradoxically, regions controlling specificity are not the same for insulin and IGF-1. Replacing the first 68 residues of IGF-1R with those of IR confers insulin-binding ability on the chimeric IGF-1R (Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408), and replacing residues 198-300 in the cys-rich region of IR with the corresponding residues 191-290 of IGF-1R allows the chimeric receptor to bind IGF-1 (Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047). Thus a receptor can be constructed which binds both IGF-1 and insulin with near native affinity. From the structure it is clear that if the hormone bound in the central space it could contact both these regions.

From analysis of a series of chimeras examined by Gustafson, T. A., & Rutter, W. J. (J. Biol. Chem. 265:18663-18667, 1990), the specificity determinant in the cys-rich region can be limited further to residues 223-274. This region corresponds to modules 4-6, and includes a large and somewhat mobile loop (residues 255-263, mean B[Cα atoms] = 57 Å2) which extends into the central space (see Figure 5). In IR this loop is four residues bigger, and is stabilised by an additional disulfide bond (Schäffer, L. & Hansen, P.H., 1996, Exp. Clin. Endocrinol. Diabetes, 104: Suppl. 2, 89). The larger loop of IR may serve to exclude IGF-1 from the hormone binding site while allowing the smaller insulin molecule to bind. It is interesting to note that mosquito IR homologue, which has a loop two residues larger than the mammalian IRs, also appears to bind insulin but not IGF-1 (Graf, R., et al., 1997, Insect Molec.Biol. 6:151-163). Analysis of the structure indicates that the insulin/IGF-1 specificity is controlled by residues in this loop (amino acids 253-272 in IGF-1R; amino acids 260-283 in IR)

As chimeras only address residues which differ between the two receptors, a more precise analysis of the site can be obtained from single site mutants. In particular, from an alanine-replacement study, four regions of L1 important for insulin binding were identified (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016). The first three are at similar positions on successive turns of the β -helix and the fourth lies on the conserved bulge on the large β -sheet. Thus there is a footprint for insulin binding to the L1 domain which lies on the first half of the large β -sheet facing into the central space. Residues further along the sheet which are conserved in IGF-1R could also be important. The conservative substitution of leucine for methionine at residue 119 of IR (113 of IGF-1R) causes a mild form of leprechaunism [Hone, J. et al., 1994, J. Med. Genet. 31, 715-716]. This residue is buried, and the mutation could perturb neighbouring residues to affect insulin binding.

The axis of the L2 domain is perpendicular to that of the L1 domain, and the N-terminal end of its β -helix is presented to the hormone-binding site. On this face of the L2 domain the only mutation studied so far is the naturally occurring IR mutant, S323L, which gives rise to Rabson-Mendehall syndrome and severe insulin resistance (Roach, P.,1994, Diabetes 43:1096-1102). As this mutant only affects insulin binding and not cell-surface expression, residue 323 of IR (residue 313 of IGF-1R) is probably at or near the binding site. Structurally this residue lies in the middle of a region

15

WO 99/28347 PCT/AU98/00998

(residues 309-318 of IGF-1R) which is conserved in both IR and IGF-1R, and the surrounding region, 332-345 (of IGF-1R), is also quite well conserved in the these receptors (Figure 6a). Therefore this region is quite likely to form part of the hormone-binding site, but would not have been detected by chimeras. It is interesting to note that in this region IRR is not as well conserved as the other two receptors (Shier, P. & Watt, V.M., 1989, J.Biol.Chem. 264:4605-14608).

The distance from this putative hormone-binding region on L2 to that found on L1 is about 30 Å (Figure 5). Thus L1 and L2 appear too far apart to bind IGF-1 or insulin. However, in the crystal structure there is a deep cleft between part of the cys-rich domain (residue 262)and L2 (residue 305), and this cleft is occupied by a loop from a neighbouring molecule. Thus it seems probable that the position of the L2 domain in the receptor structure or the hormone-receptor complex adopts a different position with respect to the cys-rich domain than that found in the crystal. The movement required to bring L2 sufficiently close to L1 is small, namely a rotation of approximately 25° about residue 298.

A number of IR mutants have been identified which constitutively activate the receptor, and the majority of these are found in the α chain. Curiously all α chain mutants involve changes to or from proline or the 20 deletion of an amino acid, implying that they cause local structural rearrangements. The mutation R86N is similar to wild type, but R86P reduces cell-surface expression and insulin binding while constitutively activating autophosphorylation [Grønskov, K. et al., 1993, Biochem. Biophys. Res. Commun. 192, 905-911]. The proline mutation probably disturbs 25 residues preceding 87 which lie in the interface between the L1 and cys-rich domains, but it could also affect insulin binding. In the cys-rich domain residues 233, 281, 244 and 247 of IR are not conserved in IGF-1R (Figure 6b), yet L233P [Klinkhamer, M.P. et al., 1989, EMBO J. 8, 2503-2507], deletion of N281 [Debois-Mouthon, C. et al., 1996, J. Clin. Endochronol. Metab. 81, 719-30 727] or the triple mutant P243R, P244R and H247D [Rafaeloff, R. et al., 1989, J. Biol. Chem. 264, 15900-15904] cause constitutive kinase activation. Due to their locations each of these three mutants appears likely to compromise the folding of a β-finger domain and, in turn, the structural integrity of the rodlike cys-rich domain. The structural ramifications of these mutations could 35 be significant for the whole receptor ectodomain, as disturbing the L1/cysWO 99/28347 PCT/AU98/00998

31

rich interface or distorting the rod-like domain could affect the relative position of L1 and the cys-rich domain in this context.

L1 has been further implicated, as deletion of K121 on the opposite side of L1 from the cys-rich domain was also found to cause autophosphorylation [Jospe, N. et al., 1994, J. Clin. Endochronol. Metab. 79, 1294-1302]. By contrast this mutation does not affect insulin binding. Thus a possible mechanism emerges for insulin binding and signal transduction. When insulin binds between L1 and L2 it modifies the relative position of L1 and the cys-rich domain in the receptor, perhaps by hinge motion between L2 and the cys-rich domain like that suggested above, and the structural rearrangement is transmitted across the plasma membrane. In the absence of insulin the same signal can be initiated by mutations in the cys-rich region or at the L1/cys-rich interface, but at the expense on insulin binding. The signal can also be initiated more directly by mutations on the opposite side of L1 which affect the interaction of L1 with other parts of the ectodomain, possibly the other half of the receptor dimer.

Ligand Studies

5

10

15

20

25

30

35

Although there is no structural information about an IGF-1/IGF-1R complex a number of studies have probed the nature of this interaction. Results from cross-linking experiments with IGF-1 and insulin and their cognate receptors are consistent with the hormone binding site proposed above. For example B29 of insulin can be cross-linked to the cys-rich region (residues 205-316((Yip, C. C., et al., 1988, Biochim. Biophys. Res. Commun. 157:321-329) or the L1 domain (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258). However, these two regions are reasonably well separated, and those studies may indicate that B29 is mobile. Other studies unfortunately do not map the site any more precisely.

Analogues and site-directed mutants of IGF-1 and IGF-2 have been more fruitful. IGF-1 and IGF-2 contain two extra regions relative to insulin, the C region between B and A and a D peptide at the C-terminus. For IGF-1, replacement of the C region by a four Gly linker reduced affinity for IGF-1R by a factor of 40 but increased affinity for IR 5-fold (Bayne, M.L.,et al., 1988, J. Biol.Chem. 264:11004-11008). Changes in affinity are consistent with the deletion in IGF-1 complementing differences in the cys-rich regions of IGF-1R and IR noted above. Mutation of residues either side of the C region (residue 24 for IGF-1 [Cascieri, M.A., et al., 1988, Biochemistry 27:3229-

WO 99/28347 PCT/AU98/00998

3233], residues 27,43 for IGF-2, [Sakano, K., et al., 1991, J. Biol. Chem. 266:20626-20635]) also has deleterious effects on the affinity of the hormone for IGF-1R, as has truncation of the nearby D peptide in IGF-2 (Roth, B.V., et al., 1991, Biochem. Biophys. Res. Commun. 181:907-914).

Insulin has been extensively mutated. Binding studies [summarised in Kristensen, C. et al., 1997, J. Biol. Chem. 272, 12978-12983] indicate that insulin may bind its receptor via a hydrophobic patch (residues A2, A3, A19, B8, B11, B12, B15 and possibly B23 & B24). However this patch is normally buried, and requires the removal of the B chain's C-terminus from the observed position. Assuming IGF-1, IGF-2 and insulin bind their receptors in the same orientation, these data suggest an approximate orientation for the hormone when bound to the receptor.

One notable feature of IGF-1 and IGF-2 is the large number of charged residues and their uneven distribution over the surface. Basic residues are predominantly found in the C region and, in solution, this region is not well ordered in either IGF-1 or -2 (Sato, A., et al., 1993, Int J Peptide Protein Res. 41:433-440; Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401). In contrast the binding site of the receptor has a sizable patch of acidic residues in the corner where the cys-rich domain departs from L1. Other acidic residues which are specific to this receptor are found along the inside face of the cys-rich domain and the loop (residues 255-263) extending from module 6. Thus it is possible that electrostatic interactions play an important part in IGF-1 binding, with the C region binding to the acidic patch of the cys-rich region near L1 and the acidic patch on the other side of the hormone directed towards a small patch of basic residues (residues 307-310) on the N-terminal end of L2.

Although the structure of this fragment gives significant information about the nature of the hormone binding site, residues outside this region have also been shown to affect binding of ligand. A number of studies have implicated residues 704-715 of IR (Mynarcik, D. C et al., 1996, J. Biol. Chem. 271, 2439-2442; Kurose, T., et al., 1994, J. Biol. Chem.269:29190-29197). These residues could contact insulin on one of the sides left open in the current structure. Using insulin labelled at the B1 residue, Fabry, M., et al.,(1992, J. Biol. Chem. 267:8950-8956) cross-linked insulin to the fragment 390-488, part of which is not near the site as described. The explanation for this could be either the region 390-488 reaches back to the hormone binding

site, or this region could contact another hormone bound to the other half of the receptor. Further structural information is needed to establish how these other regions contact the hormone and to elucidate how binding of the hormone is communicated to the kinase inside the cell.

33

The structure of the L1-cys-rich-L2 domains of IGF-1R presented here represents the first structural information for the extracellular portion of a member of the insulin receptor family. The L domains display a novel fold which is common to the EGF receptor family, and the modular architecture of the cys-rich domain implies that smaller building blocks should be used to describe the composition of cysteine-rich domains. This fragment contains the major specificity determinants of receptors of this class for their ligands. It has an elongated structure with a space in the middle which could accommodate the ligand. The three sides of this site correspond to regions which have been implicated in hormone binding. Although other sites are present in the receptor ectodomain which interact with the ligand, this structure gives us an initial view of how the insulin, IGF-1 and IGF-2 might interact with their cell surface receptors to control their metabolic and mitogenic effects

Such information will provide valuable insight into the structure of the corresponding domains of the IR and insulin receptor-related receptor as well as members of the related EGFR family (Bajaj, M., et al., 1987, Biochim Biophys Acta 916:220-226; Ward, C. W. et al., 1995, Proteins: Struct Funct Genet 22:141-153).

EXAMPLE 3

5

10

15

20

30

35

25 <u>Prediction of 3D Structure of the Corresponding Domains of IRR and IR</u> Based on Structure of IGF-1R Fragment.

The sequence identities between the different members of the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human IGF-1R, IR, and IRR are shown in Figure 9.

EXAMPLE 4

<u>Single-Molecule Imaging of Human Insulin Receptor Ectodomain and its</u> <u>Fab Complexes</u>

Cloning and expression of hIR -11 ectodomain protein

A full length clone of the human IR exon -11 form (hIR -11) was prepared by exchanging an Aat II fragment, nucleotides 1195 to 2987, of the

10

15

20

25

30

35

exon +11 clone (plasmid pET; Ellis et al., 1986; gift from Dr W. J. Rutter, UCSF) of hIR (Ebina et al., 1985, *Cell* 40, 747-758) with the equivalent Aat II fragment from a plasmid (pHIR/P12-1, ATCC 57493) encoding part of the extracellular domain and the entire cytoplasmic domain of hIR -11 (Ullrich et al., 1985, *Nature* 313, 756-761). The ectodomain fragment of hIR -11 (2901 bp, coding for the 27 residue signal sequence and residues His1-Asn914) was produced by SalI and SspI digestion and inserted into the mammalian expression vector pEE6.HCMV-GS (Celltech Limited, Slough, Berkshire, UK) into which a stop codon linker had been inserted, as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798) for the hIR exon +11 ectodomain.

The resulting recombinant plasmid pHIR II (2 µg) was transfected into glycosylation-deficient Chinese hamster ovary (Lec 8) cells (Stanley, 1989, Molec. Cellul. Biol. 9, 377-383) with Lipofectin (Gibco-BRL). After transfection, the cells were maintained in glutamine-free medium GMEM (ICN Biomedicals, Australia) as described previously (Bebbington & Hentschel, 1987, In DNA Cloning (Glover, D., ectodomain.), Vol III, Academic Press, san Diego; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798). Expressing cell lines were selected for growth in GMEM with 25 µM methionine sulphoximine (MSX, Sigma). Transfectants were screened for protein expression using sandwich ELISA with anti-IR monoclonal antibodies 83-7 and 83-14. Metabolic labelling of cells, immunoprecipitations, insulin binding assays and Scatchard analyses were performed as described previously for the exon +11 form of hIR ectodomain (Cosgrove et al., 1995, , Protein Expression and Purification 6, 789-798).

hIR -11 ectodomain production and purification

The selected clone (inoculum of 1.28 x 108 cells) was grown in a spinner flask packed with 10 g of Fibra-cel disc carriers (Sterilin, U.K.) in 500 ml of GMEM medium containing 10% fetal calf serum (FCS) and 25 μM MSX. Selection pressure was maintained for the duration of the culture.

Ectodomain was recovered from harvested medium by affinity chromatography on immobilized insulin, and further purified by gel filtration chromatography on Superdex S200 (Pharmacia; 1 x 40 cm) in Tris-buffered saline containing 0.02% sodium azide (TBSA) as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798). Solutions of purified hIR -11 ectodomain were stored at 4° C prior to use.

10

15

20

25

30

35

Production of Fab fragments and their complexes with ectodomain

Purification of Mabs 83-7, 83-14 and 18-44 from ascites fluid by affinity chromatography using Protein A-Sepharose, and the production of Fabs, were based on the methodologies described in Coligan et al.,1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons. Fab was produced from monoclonal antibody by mercuripapain digestion for 1-4 h, followed by gel filtration on Superdex S200. Products were monitored by reducing and non-reducing SDS-PAGE. For 83-7 Mab, an IgG Type 1 monoclonal antibody, the bivalent (Fab)2' isolated by this method was reduced to monovalent Fab 83-7 by mild reduction with mM L-cysteine.HCl in 100 mM Tris pH 8.0 (Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons).

Complexes of Fab with hIR -11 ectodomain were produced by mixing ~ 2.5 to 3.5 molar excess of Fab with hIR -11 ectodomain at ambient temperature in TBSA at pH 8.0. After 1-3 h, the complex was separated from unbound Fab by gel filtration over a Superdex S200 column in the same buffer.

Electron microscopy

Uncomplexed hIR -11 ectodomain and the Fab complexes described above were diluted in phosphate-buffered saline (PBS) to concentrations of the order of 0.01-0.03 mg/ml. Prior to dilution, 10% glutaraldehyde (Fluka) was added to the PBS to achieve a final concentration of 1% glutaraldehyde. Droplets of — 3ml of this solution were applied to thin carbon film on 700-mesh gold grids after glow-discharging in nitrogen for 30 s. After 1 min. the excess protein solution was drawn off and followed by application and withdrawal of 4-5 droplets of negative stain [2% uranyl acetate (Agar), 2% uranyl formate (K and K), 2% potassium phosphotungstate (Probing and Structure) adjusted to pH 6.0 with KOH, or 2% methylamine tungstate (Agar) adjusted to pH 6.8 with NH4OH]. In the case of both uranyl acetate and uranyl formate staining, an intermediate wash with 2 or 3 droplets of PBS was included prior to application of the stain. The grids were air-dried and

then examined at 60kV accelerating voltage in a JEOL 100B transmission electron microscope at a magnification of 100,000x. It was found that there was a typical thickness of negative stain in which Fabs were most easily seen. Hence areas for photography had to be chosen from particular zones of the grid. Electron micrographs were recorded on Kodak SO-163 film and developed in undiluted Kodak D19 developer. The electron-optical magnification was calibrated under identical imaging conditions by recording single-molecule images of the antigen-antibody complex of influenza virus neuraminidase heads and NC10 MFab (Tulloch et al., 1986, *J.Mol. Biol.* 190, 215-225; Malby et al., 1994, *Structure*, 2, 733-746).

Image processing

10

15

20

25

30

35

Electron micrographs showing particles in a limited number of identifiable projections were chosen for digitisation. Micrographs were digitised on a Perkin-Elmer model 1010 GMS PDS flatbed scanning microdensitometer with a scanning aperture (square) size of 20 mm and stepping increment of 20 mm corresponding to a distance of 0.2 nm on the specimen. Particles were selected from the digitised micrograph using the interactive windowing facility of the SPIDER image processing system (Frank et al., 1996, *J. Struct. Biol.* 116, 190-199). Particles were scaled to an optical density range of 0.0 - 2.0 and aligned by the PSPC reference-free alignment algorithm (Marco et al., 1996, *Ultramicroscopy*, 66, 5-10). Averages were then calculated over a subset of correctly aligned particles chosen interactively as being representative of a single view of the particle. The final average image presented here is derived from a library of 94 images.

Biochemical characterization of expressed hIR -11 ectodomain

The recombinant protein examined corresponded to the the first 914 residues of the 917 residue ectodomain of the exon -11 form of the human insulin receptor (Ullrich et al., 1986, Nature 313, 756-761). Expressed protein was shown, by SDS-PAGE and autoradiography of immunoprecipitated product from metabolically labelled cells, to exist as a homodimeric complex of $\sim\!270$ - 320 kDa apparent mass, which dissociated under reducing conditions into monomeric α and β' subunits of respective apparent mass $\sim\!120$ kDa and $\sim\!35$ kDa (data not shown).

Purified hIR -11 ectodomain, expressed in Lec8 cells and purified by affinity chromatography on an insulin affinity column, eluted as a symmetrical peak on a Superdex S200 gel filtration column (Figure 10). The

WO 99/28347 PCT/AU98/00998

protein eluted with an apparent mass of ~400 kDa, calculated from a standard curve generated by the elution positions of standard proteins (not shown). As expected for protein expressed in Lec 8 cells, whose glycosylation defect produces truncated oligosaccharides (Stanley, 1989, . *Molec. Cellul. Biol.* 9, 377-383), this value is less than the apparent mass (450 - 500 kDa) reported for hIR +11 ectodomain expressed in wild-type CHO-K1 cells (Johnson et al., 1988, *Proc. Natl Acad. Sci USA* 85, 7516-7520; Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798).

Radioassay of insulin binding to purified ectodomain gave linear Scatchard plots and Kd values of 1.5 - 1.8 x 10-9 M, similar to the values of 2.4 - 5.0 x 10-9 M reported for the hIR -11 ectodomain (Andersen et al., 1990, Biochemistry 29, 7363-7366; Markussen et al., 1991, J. Biol. Chem. 266, 18814-18818; Schaffer, 1994, Eur. J. Biochem. 221, 1127-1132) and the values of ~1.0 - 5.0 x 10-9 M reported for the hIR +11 ectodomain (Schaefer et al., 1992, J. Biol. Chem. 267, 23393-23402; Whittaker et al., 1994, Molec. Endocrinol. 8, 1521-1527; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).

Expression of hIGF-1R ectodomain

10

15

20

30

Cloning, expression and purification of this protein used elements common to those described for hIR -11 ectodomain (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798), and resulted in purified product that was recognised by receptor-specific Mabs 17-69, 24-31 and 24-60 (Soos et al., 1992, J. Biol. Chem. 267, 12955-63) and was composed of α and β ' subunits of mass similar to those of hIR ectodomain.

25 Preparation of hIR -11 ectodomain/MFab complexes

A complex of hIR -11 ectodomain and Fab from antibody 83-14 eluted as a symmetrical peak of 460 -500 kDa (Figure 10), as did complexes generated from a mixture of hIR -11 ectodomain with Fab from antibody 18-44 and a mixture of hIR -11 ectodomain with Fab 83-7 (not shown). A cocomplex of ectodomain with Fabs from antibodies 18-44 and 83-14 eluted at 620 kDa, as did a co-complex with MFabs 83-14/83-7 and another with MFabs 83-7/18-44 (not shown). A complex of hIR -11 ectodomain with all three MFab derivatives, 18-44, 83-7 and 83-14, eluted at an apparent mass of ~710 kDa (Figure 10).

35 Electron microscopy

Imaging of hIR -11 and hIGF-1R ectodomains

WO 99/28347 38

5

10

15

20

25

30

35

PCT/AU98/00998

Single-molecule imaging of uncomplexed dimeric hIR -11 ectodomain was carried out under a variety of negative staining conditions, which emphasised different aspects of the structure of the molecular envelope. Images obtained by this investigation are depicted in Figure 11.

The least aggressive or penetrative stain was potassium phosphotungstate (KPT), which revealed consistent globular particles with very little internal structure other than a suggestion of a division into two parallel bars. Staining with methylamine tungstate also revealed the parallel bar images.

Further investigation using progressively more penetrative, but also potentially more disruptive, stains confirmed the observations above. Staining with uranyl acetate and uranyl formate showed the separation of the parallel bars most clearly, but uranyl acetate showed evidence of disrupting the structure of the particles, i.e. a decrease in the consistency of the particle shape and a tendency for particles to look unravelled or denatured despite having been subjected to chemical cross-linking prior to staining. In areas of thicker stain, parallel bars predominated, whereas in more thinly stained regions, U-shaped particles could be identified, sometimes outnumbering the parallel-bar structures (see Figure 11).

Imaging of hIR -11 ectodomain complexed with 83-7 MFab

This complex was particularly noteworthy for the consistency of the form of the particles, especially under the gentler staining conditions afforded by stains such as KPT and methylamine tungstate. The particles were interpreted as having been restricted in the views they presented, after air-drying on the carbon support film, by the almost diametrically opposite binding of the two Fab arms to the antigen to form a highly elongated complex structure. Under these conditions three distinct views could be recognised (see Figure 11). Two views (interpreted as top-down/bottom-up) show the Fab arms displaced clockwise or anti-clockwise as extensions of the parallel plates with two-fold symmetry. The third view shows an image with the two Fab arms in line roughly through the centre of the receptor on its opposite sides, interpreted as a side projection of binding half-way up the plates.

The use of aggressive uranyl stains operating at lower pHs revealed internal structure of the molecular envelope at the expense of consistency of the particle morphology. For example, staining with uranyl acetate or uranyl

10

15

20

25

30

35

39

formate showed that parallel bars can be seen in particles in which the Fab arms are displaced either clockwise or anticlockwise but not where the intermediate central or axial position of the two Fab arms is presented in projection. These observations show 83-7 MFab binding roughly half-way up the side-edge of each hIR -11 ectodomain plate. The epitope recognised by Mab 83-7 has been mapped to the cys-rich region, residues 191-297, by analysis of chimeric receptors (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* 88, 9858-9862).

Imaging of hIR -11 ectodomain complexed with either 83-14 MFab or 18-44 MFab

Complexes were formed with Fabs from the most insulin-mimetic antibody Mab 83-14. Projections showing the Fab arms bound to and extending out from near the base of the U-shaped particles were identified. A second field of particles showed objects composed of two parallel bars as observed for the undecorated ectodomain, with Fab arms projecting obliquely from diametrically opposite extremities (see Figure 11). Similar but less definitive images were also seen when MFab 18-44 was bound to hIR -11 ectodomain. The epitope for Mab 83-14 is between residues 469-592 (Prigent et al., 1990) in the connecting domain. This domain contains one of the disulphide bonds (Cys524-Cys524) between the two monomers in the IR dimer (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653). The epitope for Mab 18-44 is a linear epitope, residues 765-770 (Prigent et al., 1990, . J. Biol. Chem. 265, 9970-9977) in the β -chain, near the end of the insert domain (O'Bryan et al., 1991, Mol. Cell. Biol. 11, 5016-5031). The insert domain contains the second disulphide bond connecting the two monomers in the IR dimer (Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467).

Imaging of hIR -11 ectodomain co-complexed with two different MFabs per monomer

The double complex of hIR -11 ectodomain with MFabs 83-7 and 18-44 was stained with 2% KPT at pH 6.0, and revealed the molecular envelopes. The particle appears complex in shape, and can assume a number of different orientations on the carbon support film, giving rise to a number of different projections in the micrograph. The predominant view is of an asymmetric X-shape (some examples circled). It shows the 83-7 MFab arms bound at opposite ends of the parallel bars with the two 18-44 MFabs

10

15

20

25

30

35

WO 99/28347 PCT/AU98/00998

40

appearing as shorter projections extending out from either side of each ectodomain.

Images of the double complex of hIR -11 ectodomain with 83-7 and 83-14 MFabs gave X-shaped images similar to those seen with the 83-7/18-44 double complex. In contrast the double complex of hIR -11 ectodomain with 18-44 and 83-14 MFabs did not present the characteristic asymmetric X-shapes described above. Instead, the molecular envelope appeared to be elongated in many views, with only an occasional X-shaped projection. While a detailed interpretation of these images would be premature, it is clear that MFabs 18-44 and 83-14, two of the more potent insulin mimetic antibodies (Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977), can bind simultaneously to the receptor.

Imaging of hIR -11 ectodomain co-complexed with three different MFabs per monomer

A field of particles from a micrograph of hIR -11 ectodomain were complexed simultaneously with MFabs 83-7, 83-14 and 18-44. In the thicker stain regions the molecular envelope was X-shaped, and looked very similar to that of the double complexes of hIR -11 ectodomain with either 83-7 and 18-44 or 83-7 and 83-14. However, in the more thinly stained regions particles of greater complexity were visible, and it was possible occasionally to identify that there are in fact more than four MFabs bound to the ectodomain dimer.

The single-molecule imaging of hIR -11 ectodomain presented here suggests a molecular envelope for this dimeric species significantly different from that of any previously published study. However, an unequivocal determination of the molecular envelope even from the present study is not entirely straightforward. A major complicating factor here has been the relative fragility of the expressed ectodomain when exposed to the rigors of electron microscope preparation by negative staining. For example, staining with potassium phosphotungstate (KPT, pH 6.0-7.0) frequently suggested a denaturation of the dimeric molecules, but when appropriate conditions were satisfied, good seemingly interpretable molecular envelope images were achieved; staining with methylamine tungstate (pH ~7.0) supported the best KPT molecular envelope images, but had the suggestion of a swelling of the molecular structure at neutral pH; and the acid-pH stains of uranyl acetate (pH ~4.2) and uranyl formate (pH~3.0), with their ability to penetrate the

10

15

20

25

30

35

WO 99/28347 PCT/AU98/00998

41

ectodomain structure, appeared to illuminate not so much the molecular envelope as the zones of high projected protein density within the dimer.

An amalgam of impressions from these various staining regimens has led to the following interpretation of single-molecule images of these undecorated, or naked, dimers: the predominant dimeric molecular image encountered here has been that of "parallel bars" of projected protein density. This view is so predominant, indeed, that it suggests there is either a single preferred orientation of the molecules on the glow-discharged carbon support film, or that this impression of parallel bars of density may represent a mixture of superficially similar structure projections, with the subtleties of these different projections being masked by the relatively coarse resolution of this single-molecule direct imaging. The impression of parallel bars of projected protein density is particularly predominant in regions of thicker negative stain. A second view of the molecular envelope, appreciably less well represented in regions of thicker stain but predominant in regions of thin staining, is that of 'open' U's, or V's. These two views of hIR -11 ectodomain were supported by the single-molecule imaging of hIGF-1R ectodomain under comparable conditions of negative staining.

If the assumption is made that these two recognisable projected views, that of parallel bars and of open U's/V's, are different views of the same dimeric molecule, an assumption strongly supported by the MFab complex imaging, a coarse model of the molecular envelope can be rationalized. The model structure is roughly that of a cube, composed of two almost-parallel plates of high protein density, separated by a deep cleft of low protein main-chain and side-chain density able to be penetrated by stain, and connected by intermediate stain-excluding density near what is assumed here to be their base (that is, nearest the membrane-anchoring region). The width of the low-density cleft appears to be of the order of 30-35Å, sufficient to accommodate the binding of the insulin molecule of diameter ca. 30Å, although we have no electron microscopical evidence to support insulinbinding in this cleft at this stage.

It has been established through imaging of bound 83-7 MFab that there is a dimeric two-fold axis normal to the membrane surface between these plates of density. Occasionally, dimer images display a relative displacement of the bars of density, interpreted here as a limited capacity for a shearing of the interconnecting zone between the two plates along their

WO 99/28347 PCT/AU98/00998

42

horizontal axis parallel to the membrane; other images show bars skewed from parallel, implying a limited capacity for the plates to rotate independently around the two-fold axis, again via this interconnecting zone. These two observations each suggest a relatively flexible connectivity between the dimer plates in the membrane-proximal region of intermediate protein density, which could possibly contribute to the transmembrane signalling process.

The approximate overall measured dimensions of the ectodomain dimer are 110 x 90 x 120Å, calibrated against the dimensions of imaged influenza neuraminidase heads, known from the solved X-ray structure (Varghese et al., 1983, Nature 303, 35-40). It can be noted that there is a compatibility here between the molecular weights and molecular dimensions of these two molecular species: the compact tetrameric influenza neuraminidase heads of Mr ~200 kDa occupy a volume almost 100 x 100 x 60 Å; the more open dimeric insulin receptor ectodomains of similar Mr ~240 kDa imaged here occupy a volume approximately 110 x 90 x 120 Å, roughly twice that of the neuraminidase heads, accommodating the slightly higher molecular weight and substantial central low-density cleft.

10

15

20

25

30

35

The low-resolution roughly cubic compact structure proposed here differs substantially from the T-shaped model proposed by Christiansen et al. (1991, *Proc. Natl. Acad. Sci. U. S. A.* 88, 249-252) and Tranum-Jensen et al., (1994, *J. Membrane Biol.* 140, 215-223) for the whole receptor and the elongated model proposed by Schaefer et al. (1992, *J. Biol. Chem.* 267, 23393-23402) for soluble ectodomain. Significantly, those previous studies did not provide any convincing independent electron microscopical evidence that their imaged objects were in fact insulin receptor.

In the present study, the identity of the imaged molecules as hIR -11 ectodomain has been confirmed by imaging complexes of the dimer with Fabs of the three well-established conformational Mabs against native hIR, 83-7, 83-14 and 18-44 (Soos et al.,1986, Biochem. J. 235, 199-208; 1989, Proc. Natl Acad. Sci. USA 86, 5217-5221), bound singly and in combination. In all these instances, virtually every particle in the field of view exhibited MFab decoration through binding to conformational epitopes, establishing not only the identity of the imaged particles but also the conformational integrity of the expressed ectodomains. Furthermore, the cleanliness and uniformity of these hIR -11 ectodomain preparations, both naked and decorated, visualised

10

15

20

25

30

35

here by electron microscopy demonstrate their high suitability for X-ray crystallization trials.

The known flexibility of the Fab arms exacerbates image-to-image variability beyond the limited extent already described for the undecorated dimeric ectodomains, complicating any precise interpretation of these antigen-antibody complexes. Such molecular flexibility also renders largely impractical any single-molecule computer image averaging to facilitate image interpretation, progressively more so with the higher order antigen-antibody complexes studied here.

The most readily interpretable of these images, showing least imageto-image variability, are those of 83-7 MFab bound to dimers where, fortuitously, the antigen-antibody complex is constrained in its degrees of rotational freedom on the carbon support film. Many projected images show the two Fab arms in line roughly through the centre of the antigen on its opposite sides, interpreted as a side projection of binding half-way up the plates from their membrane-proximal base. Other sub-sets of images show the two Fab arms still parallel but displaced clockwise or anticlockwise with 2-fold symmetry, each Fab approximating an extension of one of the parallel bars of antigen density, interpreted here as representing top or bottom projections along the 2-fold axis. The third projection, along the axis of the Fab arms, could not be sampled here because of the constraining geometry of this molecular complex. These observations suggest binding of 83-7 MFab roughly half-way up the side-edge of the hIR -11 ectodomain plate. This then allows an initial attempt at spatially mapping the 83-7 MFab epitope, which has been sequence-mapped to residues 191-297 in the cys-rich region of the insulin receptor (Zhang and Roth, 1991, Proc. Natl. Acad. Sci. USA 88, 9858-9862). The spatial separation and relative orientations of the two binding epitopes of Mab 83-7 on the hIR -11 ectodomain dimer as indicated here appear inconsistent with the proposal that Mab 83-7 could bind intramolecularly to hIR (O'Brien et al., 1987, Biochem J. 6, 4003-4010).

Decoration of the ectodomain dimer with 83-7 MFab established that the two plates of high protein-density are arranged with 2-fold symmetry. Decoration with either 83-14 or 18-44 MFab, on the other hand, allowed sampling of the third projection of the ectodomain dimer precluded by 83-7 MFab binding. Significantly, this third view established unequivocally the U-shaped projection of the hIR -11 ectodomain dimer, something which was

WO 99/28347

5

10

15

20

25

30

35

44

PCT/AU98/00998

only able to be assumed with the undecorated ectodomain images. Further, this projection has allowed a rough spatial mapping close to the base of the U-shaped dimer for the epitopes recognised by 83-14 MFab (residues 469-592, connecting domain) and 18-44 MFab (residues 765-770, b-chain insert domain; exon 11 plus numbering, Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977).

Inherent in the model structure is the implication that, with the twofold axis aligned normal to the membrane surface, the mouth of the lowdensity cleft where insulin binding may occur would lie most distant from the transmembrane anchor, whilst the zone of intermediate density connecting the two high-density plates would be in close proximity to the membrane. It follows, in this model, that the L1/cys-rich/L2 domains(Bajaj et al., 1997, Biochim. Biophys. Acta 916, 220-226; Ward et al., 1995, Proteins: Struct., Funct., Genet. 22, 141-153), which comprise much of the insulinbinding region (see Mynarcik et al., 1997, . J. Biol. Chem. 272, 2077-2081), most probably lie in the membrane-distal upper halves of the two plates, whilst the membrane-proximal lower halves contain the connecting domains, the fibronectin-type domains, the insert domains and the interchain disulphide bonds (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653; Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467). Such a disposition of domains is supported by the images seen with the single MFab decoration, the 83-7 MFab epitope in the cys-rich region being spatially mapped roughly half-way up the side-edge of the ectodomain plates, and the 83-14 and 18-44 MFab epitopes (connecting domain and \betachain insert domain, respectively) being mapped near the base of the plates. Our preference is for a single a-b¢ monomer to occupy a single plate, although the possibility of a single monomer straddling the two plates of protein density cannot be discounted.

The more complex images involving co-binding of two, and even more so of all three, MFabs to each monomer of the ectodomain dimer are not easily interpretable with respect to relative domain arrangements within the monomer at present, not least of all because of the difficulty of finding conditions of negative staining that will simultaneously maintain the integrity of the Fab binding while highlighting recognisable and reproducible details of the internal structure of the dimeric IR ectodomain.

The data presented here demonstrate the ability of single-molecule imaging to give an initial insight into the topology of multidomain structures such as the ectodomain of hIR, and the value of combining this technique with that of either single or multiple monoclonal Fab attachment per monomer as a potential means of epitope, and domain, mapping of the structure. By imaging Fab complexes of other members of the family, such as hIGF-1R ectodomain, and combining available sequence-mapped epitope information with that presented here, a more comprehensive understanding of domain arrangements within the IR family ectodomains should be forthcoming.

EXAMPLE 5

5

10

15

25

30

35

Structure-Based Design of Ligands for the IGF Receptor as Potential **Inhibitors of IGF Binding**

The structure of IGF receptor can be considered as a filter or screen to design, or evaluate, potential ligands for the receptor. Those skilled in the art can use a number of well known methods for de novo ligand design, such as GRID, GREEN, HSITE, MCSS, HINT, BUCKETS, CLIX, LUDI, CAVEAT, SPLICE, HOOK, NEWLEAD, PRO LIGAND, ELANA, LEGEND, GenStar, GrowMol, GROW, GEMINI, GroupBuild, SPROUT, and LEAPFROG, to 20 generate potential agonists or antagonists for IGF-1R. In addition, the IGF-1R structure may be used as a query for database searches for potential ligands. The databases searched may be existing eg ACD, Cambridge Crystallographic, NCI, or virtual. Virtual databases, which contain very large numbers (currently up to 10¹²) of chemically reasonable structures, may be generated by those skilled in the art using techniques such as DBMaker, ChemSpace, TRIAD and ILIAD.

The IGFR structure contains a number of sites into which putative ligands may bind. Search strategies known to those skilled in the art may be used to identify putative ligands for these sites. Examples of two suitable search strategies are described below:

Database Search (i)

The properties of key parts of the putative site may be used as a database search query. For example, the Unity 2.x database software may be used. A flexible 3D search can be run in which a "directed tweak" algorithm is used to find low energy conformations of potential ligands which satisfy the query.

(ii) De novo design of ligands

WO 99/28347

5

10

15

20

The Leapfrog algorithm as incorporated in the software package, Sybyl version 6.4.2 (Tripos Associates, St Louis), may be used to design potential ligands for IGF-1R sites. The coordinates of residues around the site may be taken from the x-ray structure, hydrogens and charges (Kollman all atom dictionary charges) added. From the size, shape and properties of the site, a number of potential ligands may be proposed. Leapfrog may be used to optimize the conformation of ligands and position on the site, to rank the likely strength of binding interactions with IGF-1R, and to suggest modifications to the structures which would have enhanced binding.

PCT/AU98/00998

It is also possible to design ligands capable of interacting with more than one site. One way in which this may be done is by attaching flexible linkers to ligands designed for specific sites so as to join them. The linkers may be attached in such a way that they do not disrupt the binding to individual sites.

All references cited above are incorporated herein in their entirety by reference.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims:

5

10

20

1. A method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:

47

- (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
 - (b) a subset of said amino acids, or;
- (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.
- 15 2. A method according to claim 1, in which the compound is selected or modified from a known compound identified from a database.
 - 3. A method according to claim 1, in which the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.
 - 4. A method according to any one of claims 1 to 3, in which the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.
- 25 5. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.
- 6. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.
- 7. A method according to any one of claims 1 to 4, in which the interaction of the compound with the receptor site alters the position of at least one of the

WO 99/28347

35

L1, L2 or cysteine-rich domains of the receptor molecule relative to the position

PCT/AU98/00998

- of at least one of the other of said domains.
- 8. A method according to claim 7, in which the compound interacts with the β sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain.
- 9. A method according to claim 7, in which the compound interacts with the receptor site in the region of the interface between the L1 domain an the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other.
- 10. A method according to claim 7, in which the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.
- 11. A method according to any one of claims 1 to 10, in which the stereochemical complementarity between the compound and the receptor site is such that the compound has a K_b for the receptor side of less than 10⁻⁶M.
 - 12. A method according to claim 11, in which the K_b is less than 10^{-8} M.
- 25 13. A method according to any one of claims 1 to 12, in which the compound has the ability to increase an activity mediated by the receptor molecule.
- 14. A method according to any one of claims 1 to 12, in which the30 compound has the ability to decrease an activity mediated by the receptor molecule.
 - 15. A method according to claim 14, in which the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site.

WO 99/28347 49

15

20

25

30

16. A method according to claim 14 or claim 15, in which the compound has a K_1 of less than $10^{-6}M$.

PCT/AU98/00998

- 17. A method according to claim 16, in which the compound has a K_1 of less than $10^{-8}M$.
 - 18. A method according to claim 17, in which the compound has a K_1 of less than $10^{-9}M$.
- 10 19. A method according to any one of claims 1 to 18, in which the receptor is the IGF-1R.
 - 20. A method according to any one of claims 1 to 18, in which the receptor is the insulin receptor.

A computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:

- (a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;
- (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;
- (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
- (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and
- (e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.
- A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

WO 99/28347

5

10

15

20

30

A computer-assisted method according to claim 21 or claim 22, which further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.

50

PCT/AU98/00998

- 24. A computer-assisted method according to any one of claims 21 to 23, which further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to decrease an activity mediated by the receptor.
- A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.

A computer-assisted method according to claim 25, further including the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor.

A computer-assisted method according to any one of claims 21 to 26, in which the receptor is the IGF-1R.

- 28. A computer-assisted method according to any one of claims 21 to 26, in which the receptor is the insulin receptor.
 - 29. A method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to any one of claims 1 to 29, and testing the compound for the ability to increase or decrease an activity mediated by the receptor.
 - 30. A method according to claim 29, in which the test is carried out in vitro.
- 35 31. A method according to claim 29, in which the test is a high throughput assay.

WO 99/28347 PCT/AU98/00998

51

32. A method according to claim 29, in which the test is carried out in vivo.

33. A method according to claim 30, in which the test is carried out in vivo.

5

Figure 1

			_				
አም ርመ	1 (0) (3)		57 200				
ATOH	1 CB GLU	1	55.907	11.986		1.00 59.11	AAAA C
HOTA	2 CG GLU	1	56.138	11.019	65.162	1.00 78.17	дала с
ATOH	3 CD GLU	1	57.382	11.319	64.321	1.00 85.10	AAAA C
ATOM	4 OE1 GLU	1	58.404	10.754	64.796	1.00 86.18	AAAA O
ATOM	5 OE2 GLU	1	57.424	12.013			AAAA O
ATOM	6 C GLU	1					
			53.508	12.557			AAAA C
ATOM	7 O GLU	1	52.685	11.863	65.784	1.00 51.27	AAAA O
ATOH	10 H GLU	1	54.256	10.338	67.159	1.00 61.64	AAAA 11
ATOM	12 CA GLU	1	54.602	11.778	67.081	1.00 54.77	AAAA C
ATON	13 11 ILE	2	53,608	13.860		1.00 37.66	
MOTA							AAAA 11
		2	52.768	14.699		1.00 40.87	AAAA C
ATOH	16 CB ILE	2	52.925	16.122	66.160	1.00 41.97	AAAA C
HOTA	17 CG2 ILE	2	52.036	17.122	65.484	1.00 38.50	AAAA C
ATOH	18 CG1 ILE	2	52.560	16.006		1.00 46.58	AAAA C
ATOM	19 CD1 ILE	2					
			53.150	17.176		1.00 32.29	AAAA C
ATOI 1	20 C ILE	2	53.122	14.711	64.139	1.00 46.47	AAAA C
11OTA	21 O ILE	2	54.258	15.029	63.852	1.00 51.66	AAAA O
ATOM	22 11 CYS	3	52.235	14.409	63.196	1.00 49.61	AAAA II
ATOM	24 CA CYS	3					
			52.435	14.677	61.773	1.00 38.93	AAAA C
ATO11	25 C CYS	3	51.429	15.708	61.302	1.00 42.06	AAAA C
ATOH	26 O CYS	3	50.290	15.521	61.690	1.00 42.37	AAAA O
ATON	27 CB CYS	3	52.159	13.415	60.999	1.00 35.66	AAAA C
ATOI4	28 SG CYS	3	53.019	12.004	61.674	1.00 36.98	
ATOM							AAAA S
	. — -	4	51.851	16.709	60.580	1.00 42.39	AAAA II
ATOM	31 CA GLY	4	50.973	17.718	60.003	1.00 47.71	AAAA C
ATOM	32 C GLY	4	51.703	18.407	58.869	1.00 48.23	AAAA C
ATOI1	33 O GLY	4	52.916	18.345	58.884	1.00 55.36	AAAA O
ATOM	34 N PRO	5	51.056	19.212	58.048		
ATOM	35 CD PRO					1.00 49.63	AAAA II
		5	51.637	19.947	56.860	1.00 45.28	AAAA C
ATOM	36 CA PRO	5	49.605	19.341	58.083	1.00 41.57	AAAA C
ATOI:1	37 CB PRO	5	49.397	20.703	57.474	1.00 44.30	AAAA C
HOTA	38 CG PRO	5	50.632	21.036	56.683	1.00 46.43	AAAA C
I 10TA	39 C PRO	5	48.932	18.217		1.00 36.40	
ATOI:1					57.354		AAAA C
		5	49.403	17.094	57.396	1.00 43.35	AAAA O
MOTA	41 N GLY	6	47.787	18.438	56.795	1.00 39.15	II AAAA II
IOTA	43 CA GLY	6	46.896	17.336	56.350	1.00 39.24	AAAA C
ATOM	44 C GLY	6	47.710	16.365	55.529	1.00 33.68	AAAA C
MOTA	45 O GLY	6	48.510	16.863	54.753	1.00 36.00	AAAA O
ATOM	46 N ILE	7	47.586				
ATOM	48 CA ILE	, 7		15.111	55.788	1.00 35.70	и адаа
			48.307	14.053	55.141	1.00 37.65	АААА С
ATOM	49 CB ILE	7	48.556	12.797	55.933	1.00 36.31	АААА С
ATON	50 CG2 ILE	7	49.043	11.700	54.988	1.00 34.67	AAAA C
ATOM:	51 CG1 ILE	7	49.561	12.857	57.067	1.00 39.34	AAAA C
ATOH	52 CD1 ILE	7	49.678	14.249	57.668		
ATOI1						1.00 40.22	AAAA C
		7	47.338	13.762	53.977	1.00 45.00	AAAA C
HOTA	54 O ILE	7	46.150	13.843	54.195	1.00 51.52	AAAA O
IOTA	55 M ASP	8	47.767	13.631	52.751	1.00 45.60	AAAA 11
ATOI:1	57 CA ASP	8	46.938	13.283	51.631	1.00 44.05	AAAA C
ATOM	58 CB ASP	ઇ	47.003	14.469	50.651	1.00 44.21	
ATOH	59 CG ASP						AAAA C
		8	45.909	14.379	49.600	1.00 43.48	AAAA C
ATOM	60 OD1 ASP	8	45.660	13,262	49.096	1.00 51.77	AAAA O
ATOH	61 OD2 ASP	8	45.253	15.374	49.251	1.00 45.84	AAAA O
ATOI1	62 C ASP	8	47.428	12.000	50.992	1.00 42.16	AAAA C
ATOI:1	63 O ASP	8	48.423	12.143	50.330		
ATOH						1.00 48.50	AAAA O
		ā	47.096	10.817	51.321	1.00 42.76	AAAA II
ATOM	66 CA ILE	à	47.441	9.505	50.939	1.00 44.05	AAAA C
ATOH	67 CB ILE	9	47.212	8.483	52.077	1.00 40.82	AAAA C
ATOH	68 CG2 ILE	9	47.669	7.085	51.653	1.00 36.35	AAAA C
HOTA	69 CG1 ILE	9	47.888	8.917			
ATOH					53.364	1.00 41.17	AAAA C
		9	49.376	8.947	53.286	1.00 43.78	AAAA C
ATOH	71 C ILE	9	46.530	9.137	49.794	1.00 51.48	AAAA C
ATOM	72 O ILE	õ	45.338	9.420	49.832	1.00 63.05	AAAA O
ATOH	73 H ARG	10	47.004	8.417	48.812	1.00 54.87	M AAAA
HOTA	75 CA ARG	10	46.283	8.089			
ATOI1					47.600	1.00 54.17	AAAA C
		10	45.703	9.358	47.023	1.00 48.54	AAAA C
HOTA	77 CG ARG	10	46.361	10.169	45.952	1.00 46.55	AAAA C
ATOM	78 CD ARG	10	46.002	11.635	46.264	1.00 52.63	AAAA C
ATOH	79 NE ARG	10	45.082	12.226	45.284	1.00 59.27	AAAA II
ATO!:	81 CZ ARG	10	44.269	13.262	45.498	1.00 56.22	
HOTA	82 HH1 ARG						AAAA C
ATOH		10	44.153	13.891	46.666	1.00 55.14	AAAA N
	85 NH2 ARG	10	43.455	13.803	44.602	1.00 52.29	II AAAA II
ATOH	88 C ARG	10	47.019	7.373	46.492	1.00 57.23	AAAA C
ATO11	89 O ARG	10	48.240	7.288	46.281	1.00 56.32	AAAA O
ATOM:	90 H ASH	11	46.248	6.654	45.629	1.00 57.23	
ATOH	92 CA ASH						II AAAA
		11	46.800	5.917	44.494	1.00 50.73	AAAA C
ATOH	93 CB ASII	11	47.704	6.798	43.671	1.00 44.65	AAAA C
ATOH	94 CG AS11	11	46.878	7.732	42.829	1.00 50.72	AAAA C
ATOH	95 OD1 ASN	11	45.749	7.451	42.403	1.00 72.59	
ATOM	96 HD2 ASH	11	47.499				AAAA O
ATOH				8.869	42.587	1.00 54.38	II AAAA
	99 C ASII	11	47.635	4.736	44.915	1.00 53.07	AAAA C
ATOH	100 O ASN	11	47.303	3.701	44.347	1.00 51.95	AAAA O
ATOH	101 1: ASP	12	48.566	4.822	45.878	1.00 50.96	AAAA II
ATOH	103 CA ASP	12	49.204	3.570	46.263	1.00 55.44	
·	TTT ON NOT	4 =	42.204	3.570	40.203	1.00 22.44	AAAA C

WO 99/28347 PCT/AU98/00998

							2/50		
ATOH	104	CB	ASP	12	50.668	3.568	45.758	1.00 66.47	AAAA C
ATOI I	105	CG	ASP	12	50.879	4.026	44.314	1.00 68.25	AAAA 🗅
ATOH	106	001		12	50.441	3.185	43.457	1.00 58.31	AAAA O
ATOH	107	OD2		12	51.391	5.120	43.989	1.00 70.56	AAAA O
ATON	108	C	ASP	12	49.061	3.322	47.758	1.00 59.23	AAAA C
ATOI1	100	0	ASP	12	49.687	3.849	48.711	1.00 59.65	AAAA O
				13	48.411	2.187	48.036	1.00 59.64	AAAA II
ATOM	110	11	TYR				49.397	1.00 64.06	AAAA C
ATOI-I	112	CA	TTR	13	48.328	1.672		1.00 64.56	AAAA C
ATOH	113	CB	TYR	13	47.968	0.196	49.409		
ATOH	114	CG	TYR	13	47.467	-0.357	50.721	1.00 69.18	AAAA C
HOTA	115		TYR	13	46.216	-0.024	51.248	1.00 72.71	AAAA C
ATOM	116	CEl	TTR	13	45.746	-0.541	52.450	1.00 71.51	AAAA C
ATON	117	CD2	TTR	13	48.233	-1.247	51.457	1.00 70.36	AAAA C
MOTA	118	CE2	TYR	1 3	47.788	-1.778	52.661	1.00 71.64	AAAA C
ATOI1	119	CI	TYR	13	46.542	-1.420	53.160	1.00 71.31	AAAA C
ATOM	120	ОН	TTR	13	46.144	-1.977	54.358	1.00 63.25	AAAA O
			TTR	13	49.622	1.839	50.198	1.00 65.99	AAAA C
ATOH	122	C				2.321	51.354	1.00 65.01	AAAA O
ATOI-I	123	0	TYR .	13	49.621		49.594	1.00 63.51	II AAAA
ATOM	124	11	GLH	14	50.786	1.541			
ATOI4	126	CA	GLH	14	52.078	1.681	50.218	1.00 63.51	AAAA C
ATOM	127	CB	GLII	14	53.174	1.318	49.219	1.00 68.37	AAAA C
ATOM	128	CG	GLII	14	52.863	-0.078	48.686	1.00 84.62	AAAA C
ATON1	129	CD	GLN	14	53.990	-0.515	47.754	1.00 92.28	AAAA C
ATOM	130	OEl	GLII	14	53.945	-0.161	46.573	1.00 94.82	AAAA O
ATOH	131	HE2	GLN	1 4	54.920	-1.254	48.361	1.00 98.03	II AAAA
ATOM	134	C.	GLII	1 4	52.434	3.058	50.753	1.00 61.62	AAAA C
ATOH	135	0	GLII	14	53.266	3.292	51.644	1.00 62.09	AAAA C
ATOH	136	11	GLII	15	51.628	4.038	50.349	1.00 57.02	AAAA II
ATOH	138	CA	GLII	15	51.724	5.399	50.831	1.00 51.71	AAAA C
ATON	139	CB	GLN	15	50.861	6.220	49.911	1.00 43.75	AAAA C
						6.605	48.648	1.00 59.65	AAAA C
ATON	140	CG	GLII	15	51.566			1.00 33.03	AAAA C
ATOH	141	CD	GLH	15	51.554	8.105	48.428		
ATOH	142	OE1	GLN	15	51.168	9.005	49.184	1.00 80.58	AAAA O
ATOH	143	HE2		1.5	52.016	8.378	47.211	1.00 74.17	AAAA II
ATOH	146	C	GLN	15	51.219	5.530	52.258	1.00 50.15	AAAA C
I !OTA	147	O	GLH	15	51.576	6.500	52.940	1.00 48.04	AAAA O
ATOI1	148	11	LEU	16	50.440	4.535	52.688	1.00 46.22	II AAAA
HOTA	150	CA	LEU	16	49.913	4.449	54.019	1.00 45.52	AAAA C
ATOM	151	CB	LEU	16	48.950	3.295	54.159	1.00 37.73	AAAA C
ATOM	152	CG	LEU	16	47.502	3.425	53.707	1.00 41.40	AAAA C
ATOM	153	CD1		16	46.837	2.063	53.790	1.00 42.43	AAAA C
	154	CD2		16	46.687	4.424	54.545	1.00 35.93	AAAA C
ATOM						4.280	55.039	1.00 51.52	AAAA C
ATOM	155	C	LEU	16	51.042			1.00 52.53	AAAA O
ATOM	156	0	LEU	16	50.913	4.601	56.235	1.00 52.55	AAAA II
ATOH	157	11	LYS	17	52.252	3.936	54.560		
ATOH	159	CA	LïS	17	53.422	3.914	55.404	1.00 50.73	AAAA C
ATOH	160	CB	LYS	17	54.609	3.252	54.737	1.00 56.10	AAAA C
ATOH	161	ÇĞ	LTS	17	54.539	1.733	54.831	1.00 62.40	AAAA C
ATOM	162	CD	LYS	17	54.768	1.278	53.387	1.00 63.85	AAAA C
ATOH	163	CE	LYS	17	55.316	-0.141	53.426	1.00 68.40	AAAA C
ATOH	164	HE	LTS	17	56.537	-0.225	52.554	1.00 73.83	AAAA ::
ATOH	168	C	LTS	17	53.944	5.270	55.852	1.00 44.78	AAAA C
ATOH	169	O	LTS	17	54.492	5.262	56.933	1.00 39.39	AAAA O
ATOH:	170	11	ARG	18	53.524	6.344	55.201	1.00 41.15	AAAA 1;
ATOH	172	CA	ARG	18	53.827	7.673	55.676	1.00 43.01	AAAA C
ATOH	173	СВ	ARG	18	53.250	8.702	54.704	1.00 43.97	AAAA C
HOTA	174	CG	ARG	18	53.888	8.764	53.333	1.00 53.60	AAAA C
ATOII	175	CD	ARG	18	52.964	9.362	52.269	1.00 60.34	AAAA C
ATOM	176	NE	ARG	18	52.528	10.703	52.650	1.00 50.00	AAAA 11
							52.021	1.00 48.86	AAAA C
ATOH	178	CS	ARG	18	51.628	11.444		1.00 47.96	AAAA II
ATOH	179	11111	ARG	18	51.068	10.941	50.943		
ATOI:1	182		ARG	18	51.377	12.656	52.555	1.00 43.72	II AAAA
ATOH	185	C	ARG	18	53.268	7.924	57.077	1.00 44.03	AAAA C
ATOH	186	O	ARG	18	53.402	9.010	57.644	1.00 45.53	AAAA O
ATOH	187	11	LEU	10	52.445	7.069	57.632	1.00 46.36	AAAA II
ATOH	189	CA	LEU	19	51.653	7.282	58.794	1.00 50.25	AAAA T
ATOH	190	CB	LEU	19	50.186	6.924	58.674	1.00 50.83	AAAA C
ATOM	191	ÇĞ	LEU	19	49.202	7.371	57.608	1.90 46.43	aaaa c
ATOI1	192	CD1	LEU	19	47.846	6.743	57.852	1.00 22.57	AAAA C
ATOI1	193		LEU	19	49.018	8.866	57.495	1.00 45.88	AAAA C
ATOH	194	C	LEU	19	52.210	6.428	59.912	1.00 49.87	AAAA C
ATON	195	ó	LEU	19	51.970	6.810	61.030	1.00 51.54	AAAA O
ATOM	196	11	GLU	20	53.270	5.708	59.652	1.00 49.35	AAAA II
ATOM	198	CA	GLU	20	53.819	4.833	60.679	1.00 49.60	AAAA C
ATON	199	CB	GLU	20	54.876	3.960	59.982	1.00 57.91	AAAA C
							59.272	1.00 70.16	AAAA C
ATOM	200	CG	GLU	20	55.893	4.840			
ATOH	201	CD	GLU	20	57.095	4.077	58.757	1.00 69.35	AAAA C
MOTA	202		GLU	20	58.123	4.795	58.722	1.00 71.38	AAAA O
ATOH	203		GLU	20	56.993	2.885	58.420	1.00 72.84	AAAA O
ATOH	204	C	GLU	20	54.310	5.417	61.989	1.00 43.55	AAAA C
HOTA	205	0	GLU	20	54.301	4.652	62.937	1.00 40.01	AAAA O
MOTA	206	11	ASH	21	54.633	6.659	62.207	1.00 41.06	AAAA 11
ATOH	208	CA	ASII	21	55.054	7.204	63.454	1.00 47.17	AAAA C
ATOM	209	C	ASH	21	54.066	8.141	64.108	1.00 49.76	AAAA C
ATON	210	Ō	ASII	21	54.228	8.456	65.303	1.00 48.10	AAAA O
	-								

3/58 63.290 ATOH CB ASH 21 56,379 8,003 1.00 59.11D AAAG 211 212 60.796 1.00 68.38 AAAA 🤈 MOTA CC ASH 21 57.413 7.051 ATOH 57.499 63.120 1.00 58.51 C AAAA 213 OD1 ASH 21 5.855 1.00 77.90 HOTA 214 HD2 ASH 21 58.348 7.469 61.890 II AAAA II ATO!! li CYS 22 53.129 63.351 1.00 47.44 II AAAA 216 8.711 ATOH. CA CïS 22 52.107 63,879 1.00 42.99 AAAA C 218 9.614 AAAA C MOTA 219 C CYS 22 51.215 9.089 65.021 1.00 40.43 **ATOM** 220 0 CYS 22 50.750 7.923 65.069 1.00 36.07 AAAA O HOTA 221 CYS 22 51.182 1.00 44.82 AAAA C CB 9.921 62.690 HOTA 222 SG CïS 52.076 1.00 39.51 AAAA S 22 10.328 61.148 1.00 36.24 MAAA 11 HOTA 223 11 THR 23 51.287 9.801 66.137 225 9.482 AAAA C ATOH CA THR 23 50.339 67,204 1.00 43.51 226 1.00 41.38 AAAA C HOTA CB THR 50.944 68,593 23 9.481 ATOM 227 OG1 THR 51.410 68.822 1.00 51.21 AAAA O 23 10.843 HOTA CG2 THR 1.00 33.83 AAAA C 229 23 52.110 8.571 68.838 **ATOH** 230 C THR 10.599 1.00 44.55 AAAA C 23 49.250 67.116 HOTA 231 0 THR 23 48.085 10.414 67.481 1.00 45.95 AAAA O 232 11OTA 11 VAL 24 11.797 66.689 1.00 33.03 AAAA II 49.646 234 1.00 35.29 AAAA C HOTA CA VAL 24 48.732 12.855 66.442 235 13.979 1.00 30.60 AAAA C HOTA CBVAL 48.925 67.456 24MOTA 236 CG1 VAL 15.157 67.082 1.00 27.21 AAAA C 24 48.056 68.886 ATOI: 237 CG2 VAL 24 48.656 13.566 1.00 25.37 AAAA C MOTA 238 \mathcal{C} VAL 48.895 13.447 65.043 1.00 41.52 AAAA C 24 239 13.963 ATO! 1 0 VAL 64.791 1.00 44.40 AAAA O 49.987 24 13.450 1.00 40.13 MOTA 240 11 ILE 47.855 64.203 N AAAA 25 MOTA 242 CA ILE 25 47.908 14.094 62.882 1.00 32.05 AAAA C MOTA CB ILE 1.00 25.85 AAAA C 243 25 47.113 13.299 61.853 HOTA 244 CG2 ILE 25 47.027 14.039 60.542 1.00 18.73 AAAA C 245 CG1 ILE 61.705 AAAA C HOTA 25 47.677 11.896 1.00 29.80 ATCH: 246 CD1 ILE 25 11.155 60.471 1,00 27.41 AAAA C 47.169 AAAA C HOTA 1.00 32.92 247 C ILE 25 47.397 15.490 62.941 1.00 40.91 AAAA O ATOH 25 248 0 ILE 46,223 15.776 63.213 II AAAA ATOH 249 14 GLU 48.264 16.472 63.042 1.00 36.60 26 **ATOH** 251 GLU 17.847 63.226 1.00 29.24 AAAA C CA47.832 26 AAAA C **ATOH** 252 CB GLU 26 48.875 18.703 63.856 1.00 29.92 ATOM 253 CS GLU 20.144 64.116 1.00 38.06 AAAA C 26 48.490 ATO!! 254 GLU 20.762 AAAA C CD49.561 65.013 1.00 37.39 26 **ATOM** 255 OE1 GLU 1.00 41.56 AAAA O 20.937 64.489 26 50.654 ATOM 256 OE2 GLU 26 49.571 21.175 66.182 1.00 49.16 AAAA O ATOM 257 С GLU 18.376 61.869 1.00 37.79 AAAA C 26 47.413 1.00 39.68 258 AAAA O MOTA 0 GLU 19.069 61.181 26 48.161 MOTA 259 11 GLT 27 46.117 18.104 61.582 1.00 37.28 AAAA 11 ATOM 261 CA GL_{i} 27 45.498 18.503 60.320 1.00 31.17 AAAA C 1.00 33.72 C AAAA C ATOM 262 GLY 27 44.531 17.400 59.893 MOTA 263 GLY 27 16.715 1.00 33.29 AAAA O 0 43.988 60.775 **ATOH** 264 TYR 17.209 1.00 29.24 II AAAA II 11 28 44.304 58.604 16.189 AAAA C ATOH 266 CA TYR 43.318 58.253 1.00 28.93 28 **ATOM** 267 CB TYR 16.794 57.217 1.00 31.53 AAAA C 28 42.403 ÇĞ AAAA C HOTA 268 TïR 28 43.058 17.256 55.962 1.00 31.78 CD1 TYR MOTA 16.355 55.116 1.00 36.07 AAAA C 269 28 43.704 CE1 TYR 270 53.967 1.00 28.91 AAAA C **ATOH** 44.361 16.706 28 271 CD2 TYR AAAA C ATOM 18.572 55.606 1.00 30.98 28 43.130 CE2 TYR MOTA 272 43.769 18.972 54.428 1.00 28.77 AAAA C 28 1.00 31.53 ATOM 273 CZTTRAAAA C 28 44.367 18.021 53.652 HOTA 274 OH TYR AAAA O 28 44.971 18.425 52.464 1.00 44.74 MOTA 276 TYR 57.697 1.00 29.23 AAAA C 28 14.946 43.953 HOTA 277 0 TYR28 45.119 15.147 57.383 1.00 35.58 AAAA O 278 MOTA 11 LEU 13.900 57.445 1.00 26.63 AAAA II 29 43.250 ATO:1 LEU 12.730 1.00 29.83 AAAA C 280 CA 29 43.764 56.803 HOTA 281 CB LEU 29 57.856 1.00 27.09 AAAA C 43.830 11.611 AAAA C ATO!1 282 CG LEU 29 44.212 10.258 57.242 1.00 31.90 HOTA CD1 LEU 10.396 56.469 AAAA C 283 29 45.538 1.00 35.03 CD2 LEU HOTA 284 29 44.551 9.203 58.290 1.00 25.05 AAAA C AAAA C ATON 285 C LEU 29 42.897 12.342 55.616 1.00 33.84 ATOH 286 LEU 50 41.689 12.165 55.906 1.00 43.29 AAAA O О ATOH 1.00 35.95 287 11 HIS H AAAA 30 43.389 12.285 54.395 HOTA 289 CA HIS 42.681 11.891 53.197 AAAA C 30 1.00 34.92 HOTA 290 CBHIS 52.027 1.00 32.85 AAAA C 30 42.893 12.801 ATOH 291 CG HIS 42.372 14.155 52.046 1.00 25.08 AAAA C 30 ATO:1 292 CD2 HIS 41.519 14.753 52.907 1.00 40.88 AAAA C 30 MOTA 293 HD1 HIS 42.717 15.120 1.00 33.66 AAAA II 30 51.128 11OTA 42.080 16.281 295 CE1 HIS 1.00 31.33 AAAA C 30 51.444 ATOI: 296 NE2 HIS 52.539 AAAA N 41.329 16.093 1.00 37.27 30 MOTA 298 C HIS 30 43.173 10.538 52.714 1.00 37.68 AAAA C HOTA 299 AAAA O 0 HIS 30 44.357 10.388 52.541 1.00 38.70 ATOH: ILE 42.308 II AAAA 300 11 9.542 52.584 1.00 40.02 31 ATOH. 302 CA ILE 42.750 51.990 AAAA C 31 1.00 39.47 8.271 HOTA CB ILE 303 31 42.668 7.204 53.063 1.00 37.95 AAAA C ATOH 304 CG2 ILE AAAA C 31 43.161 5.830 53.651 1.00 23.86 ATOH 305 CG1 ILE 43.481 7.555 54.335 1.00 41.66 AAAA C 31 ATOU CD1 ILE 306 31 43.170 6.575 55.473 1.00 28.22 AAAA C ATOH C 307 ILE 31 41.884 8.044 50.755 1.00 46.52 AAAA C **ATOH** ILE 308 \circ 40.753 31 7.589 50.827 1.00 43.56 AAAA O ATON 309 LEU 11 32 42.314 49.556 1.00 49.89 II AAAA II 8.489 ATO!1 311 CĀ LEU 32 41.484 8.235 48.380 1.00 49.77 AAAA C

4/58 47.603 1.00 47.48 41.127 9.515 AAAA C ATOH 312 CB TEG 32 47.562 1.00 45.33 AAAA C LEU 32 10.688 ATOH 313 CG42.091 46.673 1.00 35.77 AAAA C NOTA 32 41.517 11.812 CDI LEU 314 AAAA C CD2 LEU 32 42.371 11.229 48.960 1.00 49.18 ATO!! 315 AAAA C 1.00 51.00 ATOH: 316 CLEU 32 42.136 7.296 47.353 1.00 41.36 47.186 O AAAA 32 7.370 **ATOH** 317 0 LEU 43.338 46.497 1.00 50.74 II AAAA 6.722 318 LEU 41.270 ATOM H 33 45.197 1.00 49.92 6.175 AAAA C MOTA 320 LEU 41.602 CA 33 44.182 1.00 34.83 AAAA C 11OTA 321 CB LEU 33 42.091 7.262 1.00 33.92 8.537 44.164 AAAA C MOTA 322 CG LEU 33 41.233 43.298 1.00 37.49 AAAA C **HOTA** 323 CD1 LEU 33 41.892 9.587 13.644 1.00 33.01 AAAA C **ATOH** 324 CD2 LEU 33 39.823 8.313 1.00 48.35 45.287 AAAA C ATO!! 325 C LEU 42.618 5.073 33 1.00 54.14 44.538 AAAA O АТОН 326 LEU 33 43.580 5.077 0 46.254 1.00 47.61 H AAAA ILE 4.212 ATOH 327 11 34 42.543 1LE 3.184 46.540 1.00 51.70 AAAA C **ATOM** 329 CA 43.523 34 47.963 1.00 57.98 AAAA C 330 CB ILE 44.101 3.346 ATOH 34 AAAA C 48.600 1.00 48.98 **HOTA** 331 CG2 ILE 34 44.538 2.043 47.967 1.00 46.70 4.371 AAAA C **ATOM** 332 CG1 ILE 45.267 34 1.00 66.47 49.439 AAAA C 4.704 ATOI: 333 CD1 ILE 34 45.561 46.408 1.00 59.85 AAAA C 42.829 1.844 ATOM: 334 C ILE 34 46.856 335 1.531 1.00 60.11 AAAA O 41.726 **ATOH** O ILE 34 1.00 67.79 MOTA 336 SER 43.622 0.833 46.013 H AAAA H 35 45,922 1.00 68.80 AAAA C **ATOH** 338 CA SER 35 43.048 -0.5111.00 64.16 -0.88244.469 AAAA C CB **ATOM** 339 SER 35 42.767 1.00 75.76 -1.84644.498 AAAA O SER 35 41.731 ATOM 340 OG 46.537 1.00 70.73 AAAA C 35 43.928 -1.564 **ATOH** 342 CSER -1.95445.909 1.00 73.65 AAAA O 11OTA 343 SER 35 44.885 Ο 1.00 74.75 -2.017 **ATOH** 11 LYS 36 43.687 47.740 II AAAA 344 1.00 76.09 48.421 AAAA C ATOH 346 CA LYS 36 44.465 -3.01449.885 1.00 81.22 AAAA C LYS -3.131**ATOM** 347 CB 36 44.046 50.775 1.00 78.87 AAAA C -3.654348 CGLTS 45.147 ATOI1 36 1.00 81.39 AAAA C -4.575 51.887 **ATOH** 349 CDLYS 44.693 36 44.890 1.00 89.38 LïS -6.02551.492 AAAA C HOTA 350 CE 36 -6.98952.506 1.00 91.63 H AAAA ATON 351 11ZLYS 36 44.371 47.753 1.00 81.41 AAAA C **ATOM** 355 C LYS 44.252 -4.362 36 -4.77247.451 1.00 78.20 43.145 AAAA O **HOTA** 356 O LYS 36 47.615 1.00 88.27 H AAAA HOTA 357] [ALA 37 45.371 -5.080 -6.396 46.986 1.00 90.10 AAAA C ATOI1 359 CA45.361 ALA 37 AAAA C CB 37 46.700 -6.655 46.327 1.00 95.49 ATON 360 ALA-7.47347.995 1.00 92.36 AAAA C ATOM: 361 C ALA 37 45.011 1.00 92.35 -7.627 49.012 AAAA O MOTA 362 0 ALA 37 45.668 1.00 94.31 H AAAA -8.30147.622 MOTA 363 \mathbf{H} SER 38 44.031 1.00 95.70 AAAA C -9.352 48.484 MOTA CA SER 43.528 365 38 47.858 1.00 97.44 AAAA C SER 42.405 -10.164 MOTA 366 CB 38 AAAA O SER 42.061 -11.176 48.814 1.00103.48 MOTA 367 OG 38 44.702 -10.263 1.00 96.87 MOTA 369 C SER 38 48.821 AAAA C 370 1.00 98.06 AAAA O **HOTA** O SER 38 44.761 -10.778 49.924 45.584 -10.415 47.852 1.00 97.99 II AAAA ATOH 371 11 ASP 39 47.980 1.00 99.19 AAAA C 373 CA 30 46.821 -11.148 MOTA ASP 47.579 -11.050 46.652 1.00102.13 AAAA C ATOH 374 Ç₿ ASP 39 **ATOH** 375 CG ASP 39 47.696 -12.387 45.949 0.01101.22 AAAA C 376 45.623 HOTA ODI ASP 35 46.644 -12.978 0.01101.42 AAAA O 0.01101.41 C AAAA **ATOM** 377 OD2 ASP 45.718 39 48.833 -12.848 47.660 -10.564 49.105 1.00 99.40 AAAA C 378 \mathbf{C} ATOM: ASP 39 47.692 -11.056 50.224 1.00 99.15 AAAA O 379 ASP HOTA O 39 II AAAA 380 11 TYR 48.354 -9.479 48.818 1.00100.96 ATOI1 40. 1.00101.16 AAAA C ATOH: 382 CATTR 40 49.120 -8.706 49.802 1.00103.67 AAAA C **ATOH** CB TYR 49.511 -7.393 49.130 383 40 CG TYR 1.00107.81 AAAA C **ATOH** 50.159 -6.281 19.887 384 40 49.228 1.00109.56 AAAA C CD1 TYR 50.931 -5.325 LIOTA 385 40 ATOI1 CE1 TYR 51.540 -4.280 49.910 1.00109.67 ааал с 386 40 1.00109.28 AAAA C **ATOM** 387 CD2 TYR 40 50.044 -6.11551.254 AAAA C CE2 TYR 50.618 -5.10251.976 1.00109.83 ATOt1 388 40 AAAA C CE TYR 51.372 51.276 1.00110.16 ATOH 389 4 () -4.181 51.893 1.00109.84 AAAA O ATO!! 350 TTF51.999 -3.127 OH 40 51.100 1.00 99.10 AAAA C ATOI1 392 C TYR 48.343 -8.529 40 393 TTR 47.168 -8.182 51.183 1.00 99.05 AAAA O ATOH! 0 40 ATO!! 394 11 LTS 4) 49.041 -8.653 52.218 1.00 98.62 II AAAA 53.546 AAAA C 48.443 -8.549 1.00100.30 ATO! 396 CA LYS 41 AAAA C CB 49.385 -9.160 54.599 1.00104.42 HOTA 397 LYS 41 CG LYS 49.218 -10.649 54.814 0.01101.06 AAAA C ATOI1 398 41 LYS 54.919 0.01100.66 AAAA C ATOH 399 CD 41 47.776 -11.107 \mathtt{LYS} 47.205 ~10.880 56.308 0.0199.86AAAA C ATOM 400 CE 41 47.982 -11.728 **ATOH** 401 112 LYS 41 57.328 0.01 99.62 II AAAA 1.00 98.99 АААА С MOTA 405 \mathcal{C} LYS 41 48.035 -7.136 53.947 47.615 -6.371 53.057 1.00103.33 AAAA O ATOI1 406 0 LT5 41 1.00 91.75 ATOH 407 !! SER 42 48.198 -6.754 55.221 AAAA II 1.00 85.06 AAAA C **ATOH** 409 CA SER 42 47.825 -5.412 55.604 1.00 95.33 AAAA C **ATOH** 410 CB SER 42 46.385 -5.520 56.147 **ATOH** OG SER 46.547 -6.140 57.426 1.00104.63 AAAA O 411 42 AAAA C ATOM 413 \mathcal{C} SER 42 48.628 -4.715 56.687 1.00 80.78 1.00 81.03 AAAA O ATOH 414 Q SER 42 49.326 -5.259 57.538 48.495 -3.395 56.676 1.00 73.03 AAAA !! ATO11 415 11 TTR 43 ATOI1 417 CA TYR 49.069 -2.488 57.635 1.00 67.25 AAAA C 43

					E /E 0		
T (11/2) 5	418 CP TYR	43	49.086	-1.119	5/58 56.965	1.00 65.37	AAAA C
ATOH ATOH	418 CB TYR 419 CG TYR	:3	49.953	-1.021	55.727	1.00 63.92	AAAA C
ATOH	420 CD1 TYR	43	50.931	-1.935	55.408	1.00 63.87	AAAA C
ATOH	421 CE1 TYR	43	51.698 49.770	-1.781 0.050	54.274 54.870	1.00 66.09 1.00 63.30	AAAA C AAAA C
ATOH ATOH	422 CD2 TYR 423 CE2 TYR	13 13	50.536	0.030	53.728	1.00 67.62	AAAA C
ATOH	424 CS TYR	43	51.508	-0.712	53.432	1.00 66.94	AAAA C
ATOI1	425 OH TYR	43	52.262	-0.563 -2.381	52.305 58.925	1.00 65.23 1.00 64.88	AAAA O AAAA C
ATOM ATOM	427 C TYR 428 O TYR	43 43	48.248 47.088	-2.851	59.030	1.00 62.90	O AAAA
ATOH	429 N ARG	44	48.782	-1.567	59.825	1.00 57.88	AAAA N
ATOH	431 CA ARG	4.4	48.019	-1.285	61.039 61.760	1.00 56.45 1.00 46.51	АААА С АААА С
ATOM ATOM	432 CB ARG 433 CG ARG	4 4 4 4	47.842 47.815	-2.611 -2.375	63.244	1.00 54.66	AAAA C
ATOH	434 CD ARG	44	46.885	-3.327	63.986	1.00 58.54	AAAA C
HOTA	435 HE ARG	44	47.090	-2.927	65.403 66.395	1.00 68.56 1.00 64.82	AAAA II AAAA C
ATOM ATOM	437 CL ARG 438 HH1 ARG	44	46.464 45.644	-3.536 -4.529	66.132	1.00 61.53	II AAAA
ATOH	441 11H2 ARG	44	46.674	-3.139	67.628	1.00 66.03	AAAA II
ATOH	444 C ARG	44	48.811	-0.285	61.845	1.00 55.59 1.00 58.43	AAAA C AAAA O
ATOH	445 O ARG 446 II PHE	4.4 4.5	49.916 48.276	-0.552 0.866	62.320 62.139	1.00 50.43	II AAAA
ATOH ATOH	446 II PHE 448 CA PHE	45	48.865	1.944	62.863	1.00 45.94	AAAA C
MOTA	449 CB PHE	45	48.774	3.249	61.978	1.00 35.89	AAAA C AAAA C
ATOM	450 CG PHE	45 45	49.106 50.373	2.937 3.051	60.554 59.998	1.00 30.29 1.00 45.72	AAAA C
ATOH ATOH	451 CD1 PHE 452 CD2 PHE	45	48.127	2.428	59.728	1.90 35.95	AAAA C
ATOH	453 CE1 PHE	45	50.653	2.715	58.672	1.00 47.76	AAAA C
HOTA	454 CE2 PHE	45	48.358	2.096	58.406 57.967	1.00 39.92 1.00 46.44	AAAA C AAAA C
ATOH ATOH	455 CE PHE 456 C PHE	45 45	49.612 48.181	2.244	64.203	1.00 41.65	AAAA C
ATOH ATOH	457 O PHE	45	47.708	3.223	64.475	1.00 40.99	O AAAA
ATOI:1	458 II FRO	46	48.494	1.338	65.212	1.00 43.20 1.00 47.74	AAAA II AAAA C
ATOM ATOM	459 CD PRO 460 CA PRO	46 46	49.300 48.032	0.097 1.530	65.132 66.560	1.00 43.34	AAAA C
ATON	461 CB PRO	46	48.514	0.319	67.380	1.00 44.92	AAAA C
ATOII	462 CG PRO	46	49.404	-0.464	66.514	1.00 45.48	AAAA C AAAA C
ATOM	463 C PRO 464 O PRO	46 16	48.558 48.329	2.768 2.830	67.233 68.443	1.00 41.30 1.00 44.57	AAAA O
ATOH ATOH	464 O PRO 465 N LYS	47	49.450	3.533	66.676	1.00 39.33	II AAAA II
ATOI-I	467 CA LYS	47	49.991	4.679	67.362	1.00 38.10	АААА С АААА С
ATOM	468 CB LYS 469 CG LYS	47 47	51.378 52.032	4.981 3.995	66.852 65.902	1.00 48.07 1.00 67.95	AAAA C
ATOM ATOM	469 CG LYS 470 CD LYS	47	53.563	3.976	65.891	1.00 61.33	AAAA C
ATOM	471 CE LYS	47	54.115	4.648	67.147	1.00 72.19	AAAA C
ATOM	472 HZ LYS	47 47	54.024 49.014	6.132 5.848	66.874 67.195	1.00 79.29 1.00 39.76	AAAA 11 AAAA C
ATOM ATOM	476 C LYS 477 O LYS	47	49.189	6.827	67.952	1.00 35.45	AAAA O
ATO: 1	478 H LEU	48	48.300	5.886	66.053	1.00 36.45	AAAA N AAAA C
ATOH	480 CA LEU	4 8 4 8	47.370 46.823	7.004 6.919	65.800 64.389	1.00 40.40 1.00 28.59	AAAA C
IOTA 1OTA	481 CB LEU 482 CG LEU	18 45	45.947	7.967	63.787	1.00 31.04	AAAA C
ATOH	483 CD1 LEU	48	46.637	9.310	63.878	1.00 36.86	AAAA C
ATOH	484 CD2 LEU	48	45.591 46.186	7.738 7.022	62.294 66.807	1.00 34.49 1.00 42.21	AAAA C AAAA C
ATOH ATOH	485 C LEU 486 O LEU	48 48	45.271	6.187	66.863	1.00 36.48	AAAA O
ATOM	487 II THR	4.9	46.138	8.041	67.673	1.00 38.95	II AAAA
ATOI1	489 CA THR 490 CB THR	4 9 4 9	45.045 45.548	$8.151 \\ 8.207$	68.574 70.034	1.00 37.96 1.00 48.69	AAAA C AAAA C
ATOM ATOM	490 CB THR 491 OG1 THR	10	46.396	9.340	70.225	1.00 35.90	AAAA O
ATON	493 CG2 THR	10	46.230	6.957	70.529	1.00 31.99	AAAA C
ATOH	494 C THR		44.230 43.111	9.425 9.451	68.321 68.837	1.00 39.48 1.00 34.49	AAAA C AAAA O
ATOH ATOH	495 O THR 496 II VAL		44.735	10.415	67.605	1.00 37.32	AAAA II
ATOI1	498 CA VAL	50	43 995	11.664	67.418	1.00 38.72	AAAA C
ATOM	499 CB VAL		44.293 43.630	12.708 14.066	68.503 68.208	1.00 37.24 1.00 29.96	ААЛА С ААЛА С
ATOH ATOH	500 CG1 VAL 501 CG2 VAL		43.884	12.311	69.913	1.00 32.52	AAAA C
ATOM	502 C VAL		44.271	12.305	66.048	1.00 37.03	AAAA C
ATOII	503 O VAL		45.195	11.863	65.431 65.415	1.00 37.96 1.00 37.49	O AAAA II AAAA
ATOH ATOH	504 N ILE 506 CA ILE		43.319 43.301	12.939 13.575	64.133	1.00 37.49	AAAA C
ATOM	507 CB ILE		42.346	12.864	63.152	1.00 34.51	AAAA C
ATOH	508 CGC ILE		41.995	13.802	61.978	1.00 32.31	AAAA C AAAA C
HOTA	509 CG1 ILE 510 CD1 ILE		43.026 42.358	11.611 10.559	62.671 61.815		AAAA C
ATOH ATOH	510 CDI ILE		42.659	14.939	64.431	1.00 34.14	AAAA C
A'TOI1	512 O ILE	51	41.546	14.830	64.923		AAAA O
ATON	513 N THR 515 CA THR		43.342 42.806	16.058	64.238 64.719		AAAA C
ATOH ATOH	515 CA THR 516 CB THR		43.961	18.338	64.939	1.00 35.39	AAAA C
ATOH	517 OG1 THR	52	44.726	18.567	63.781	1.00 41.28	AAAA O
ATOH	519 CG2 THR		44.775	17.926	66.134 63.863		AAAA C AAAA C
HOTA HOTA	520 C THR 521 O THR		41.741 41.202	17.961 19.030			AAAA O
	542 5 1740	~		,,,,,,,	-		

							0/50		
ATOH	500	11	GLU	53	41.524	17.477	6/58 62.639	1.00 36.93	AAAA II
ATOM	524		GLU	53	40.434	17.953	61.785	1.00 38.38	AAAA C
ATOH	525		GLU	53	41.064	18.512	60.483	1.00 29.76	AAAA C AAAA C
ATOH	526 527		GLU GLU	53 53	42.061 42.517	19.552 20.396	60.834 59.697	1.00 30.48	AAAA C
ATOH ATOH	52 <i>1</i> 528		GLU	53	42.638	19.908	58.556	1.00 57.56	AAAA O
ATOH	529		GLU	53	42.799	21.559	59.931	1.00 35.74	AAAA O
HOTA	530		GLU	53	39.506	16.789	61.388 62.3 8 6	1.00 39.19 1.00 38.95	AAAA C AAAA O
ATOH ATOH	531 532		GLU TYR	53 54	38.922 39.639	16.311 16.353	60.102	1.00 30.60	AAAA II
ATOM	534		TYR	54	38.666	15.342	59.713	1.00 35.96	AAAA C
ATON	535		TYR	54	37.654	15.802	58.636	1.00 30.71 1.00 21.18	AAAA C AAAA C
ATOH ATOH	536 537	CG CD1	TYR TYR	54 54	38.247 38.487	16.476 15.733	57.388 56.305	1.00 20.22	AAAA C
ATON	538	CE1	TTR	54	38.980	16.243	55.086	1.00 21.04	AAAA C
ATOM	539		TYR	54	38.577	17.844	57.307	1.00 23.97 1.00 24.69	AAAA C AAAA C
ATOM ATOM	540 541	CE2 CZ	TYR TYR	54 54	39.049 39.263	18.384 17.569	56.124 55.032	1.00 24.03	AAAA C
ATOM	542	OH	TïR	54	39.763	18.047	53.847	1.00 37.55	AAAA O
ATOH	544	C	TYR	54	39.405	14.115	59.142	1.00 33.87 1.00 30.40	ААА А С ААА А О
ATOM ATOM	545 546	O 11	TTR LEU	54 55	40.513 38.683	14.360 13.021	58.678 59.004	1.00 30.40	AAAA II
ATOM ATOM	548	CA	LEU	5 5	39.111	11.812	58.454	1.00 30.08	AAAA C
ATOI 1	549	СВ	LEU	55	39.011	10.663	59.510	1.00 14.78	AAAA C
ATOH	550 551	CG CD1	LEU LEU	55 55	39.349 40.668	9.314 9.477	58.818 58.040	1.00 26.98 1.00 26.66	A AA A C A AA A C
ATOH ATOH	552		LEU	55 55	39.496	8.093	59.705	1.00 14.45	AAAA C
ATOM	553	C	LEU	55	38.201	11.548	57.238	1.00 37.43	AAAA C
ATOM	554		LEU	55 56	36.995	11.632 11.348	57.427 56.035	1.00 39.55 1.00 41.83	AAAA II
ATOH ATOH	555 557	H CA	LEU	56 56	38.700 37.955	11.201	54.799	1.00 36.98	AAAA C
ATOM	558	CB	LEU	56	37.998	12.446	53.949	1.00 33.29	AAAA C
ATOM	559	CG	LEU	56	37.984	12.514	52.416	1.00 30.35 1.00 47.95	AAAA C AAAA C
ATOM ATOM	560 561	CD1 CD2	LEU	56 56	37.076 37.286	11.460 13.807	51.821 51.985	1.00 47.33	AAAA C
ATOH	562	C	LEU	56	38.595	10.047	54.008	1.00 39.75	AAAA C
ATOM	563	0	LEU	56	39.714	10.205	53.547	1.00 44.38	O AAAA 11 AAAA
HOTA MOTA	564 566	II CA	LEU LEU	57 57	37.846 38.133	9.008 7.832	53.800 53.034	1.00 36. 68 1.00 41.53	AAAA C
ATOM	567	CB	LEU	57	37.944	6.588	53.916	1.00 37.00	AAAA C
ATOM	568	CG	LEU	57	39.064	6.534	55.026	1.00 36.13	АААА С АААА С
NOTA NOTA	569 570	CD1 CD2	LEU LEU	57 57	38.513 39.630	6.890 5.162	56.417 55.039	1.00 33.26 1.00 24.11	AAAA C
HOTA	571	CDZ	LEU	57	37.203	7.825	51.838	1.00 46.03	AAAA C
ATOI4	572	0	LEU	57	35.985	7.993	51.969	1.00 44.78	AAAA O
ATOM	573 575	n Ca	PHE PHE	58 58	37.792 36.895	7.898 8.002	50.642 49.467	1.00 47.07 1.00 48.75	AAAA N AAAA C
АТОИ АТОМ	576	CB	PHE	58	36.704	9.448	49.102	1.00 46.67	AAAA C
ATOI1	577	CG	PHE	58	36.447	9.815	47.692	1.00 54.66	AAAA C AAAA C
ATOH ATOH	578 579	CD1 CD2	PHE PHE	58 58	37.413 35.200	9.706 10.301	46.697 47.326	1.00 55.19 1.00 53.86	AAAA C
ATOH	580	CE1	FHE	58	37.124	10.063	45.396	1.00 50.36	AAAA C
! IOTA	581	CE2	PHE	58	34.885	10.655	46.011	1.00 41.84	AAAA C
ATOH	582 583	CI C	PHE PHE	58 58	35.877 37.351	10.521	45.037 48.379	1.00 46.50 1.00 49.71	AAAA C AAAA C
ATOM ATOM	584	0	PHE	58	38.487	7.073	47.934	1.00 52.16	AAAA O
ATOI-1	585	11	ARG	59	36.471	6.118	47.944	1.00 44.26	AAAA II
ATOH ATOH	58 7 588	CA CB	ARG ARG	59 59	36.753 36.911	5.281 5.993	46.815 45.427	1.00 40.80 1.00 23.79	AAAA C AAAA C
ATOH	589	CG	ARG	50	35.869	7.020	45.121	1.00 46.53	AAAA C
MOTA	590	CD	ARG	59	35.921	7.562	43.706	1.00 37.64	AAAA C
ATOM	591 593	NE CE	ARG ARG	59 5 <u>9</u>	35.822 34.950	6.422 5.832	42.806 42.036	1.00 49.23 1.00 41.36	AAAA 11 AAAA C
ATOI1 ATOI-I	594		ARG	59	33.702	6.277	41.931	1.00 47.00	AAAA II
ATOM	597	11H2	ARG	59	35.237	4.729	41.327	1.00 42.58	II AAAA
ATOLI	500	C	ARG	59	38.037	4.494	47.049 46.232	1.00 42.25 1.00 44.11	AAA A C AA A A O
ATOH ATOH	601 602	11 O·	ARG VAL	59 60	38.981 38.001	4.513 3.625	48.023	1.00 40.84	AAAA II
ATOH	604	CA	VAL	60	39.101	2.743	48.341	1.00 39.14	AAAA C
ATOH	605	CB	VAL	60 60	39.624	3.066	49.751	1.00 40.12 1.00 35.05	AAAA C AAA A C
ATOH ATOH	606 60 7	CG1 CG2	VAL VAL	60 60	40.407 40.425	1.872	50.296 49.893	1.00 33.03	AAAA C
ATOH	608	C	VAL	60	38.539	1.337	48.368	1.00 43.56	AAAA C
ATOLL	609	0	VAL	60	37.535	1.224	49.072	1.00 47.66	AAAA O AAAA II
ATOH ATOH	610 612	И СА	ALA ALA	61 61	39.094 38.617	0.371	47.659 47.749	1.00 41.92 1.00 42.05	AAAA C
ATOM ATOM	613	СВ	ALA	61	38.302	-1.483	46.364	1.00 52.40	AAAA C
ATOM	614	C	ALA	61	39.613	-1.934	48.386	1.00 43.08	AAAA C
I IOTA	615	0	ALA	61	40.757	-1.602	48.670 48.849	1.00 50.59 1.00 45.71	AAAA O AAAA N
ATON ATON	616 618	CA 11	GLY GLY	62 62	39.200 40.136	-3.105 -4.079	48.849	1.00 45.71	AAAA C
ATOH	619	C	GLY	62	40.262	-3.902	50.872	1.00 48.04	AAAA C
ATOH	620	0	GLY	62 63	10.587	-4.835	51.604	1.00 52.34	O AAAA II AAAA
ATOH ATOH	621 623	H CA	LEU	63 63	39.985 40.003	-2.734 -2.443	51.383 52.805		AAAA C
7.14 CT I		٠.١			.0.005	,,,			

					7/58		
ATON	624 CB LEU	53	40.274	-0.953	53.027	1.00 41.41	AAAA II
ATOH	625 CG LEU	63	40.265	-0.423	54.443 55.416	1.00 53.41 1.00 48.27	AAAA C AAAA C
ATON ATON	626 CD1 LEU 627 CD2 LEU	63 63	41.172	-1.164 1.047	54.246	1.00 50.51	AAAA C
ATON	628 C LEU	63	38.643	-2.881	53.323	1.00 54.20	AAAA C AAAA O
ATOH ATOH	629 O LEU 630 H GLU	63 64	37.587 38.658	-2.430 -3.862	52.837 54.190	1.00 57.73 1.00 53.97	II AAAA
ATOM	632 CA GLU	64	37.462	-4.448	54.749	1.00 56.96	C AAAA
ATOH	633 CB GLU	64	37.689 37.832	-5.956 -6.484	54.734 53.293	1.00 65.33 1.00 75.14	AAAA C AAAA C
ATOM ATOM	634 CG GLU 635 CD GLU	64	37.404	-7.940	53.128	1.00 78.10	AAAA C
HOTA	636 OE1 GLU	64	37.424	-8.698 -8.320	54.132 51.978	1.00 63.93 1.00 88.77	AAAA 0 AAAA 0
ATOM ATOM	637 OE2 GLU 638 C GLU	64 64	37.036 37.096	-4.007	56.163	1.00 57.12	AAAA C
HOTA	639 O GLU	64	35.986	-4.332	56.600 56.761	1.00 59.82 1.00 50.64	AAAA 0 AAAA !!
ATOM ATOM	640 H SER 642 CA SER	65 65	37.766 37.539	-3.042 -2.523	58.060	1.00 47.19	AAAA C
ATO!1	643 CB SER	65	37.743	-3.596	59.139	1.00 49.24 1.00 50.90	AAAA C AAAA O
ATOM ATOM	644 OG SER 646 C SER	65 65	37.501 38.516	-2.971 -1.405	60.429 58.432	1.00 30.30	AAAA C
ATOM	647 O SER	65	39.716	-1.692	58.374	1.00 52.75 1.00 41.03	aaaa ii
HOTA NOTA	648 II LEU 650 CA LEU	66 66	38.054 38.956	-0.289 0.758	58.984 59.405	1.00 41.03	AAAA C
ATOM	651 CB LEU	66	38.247	2.083	59.498	1.00 25.25	AAAA C AAAA C
ATOH ATOH	652 CG LEU 653 CD1 LEU	66 66	37.283 36.974	2.476 3.951	58.402 58.512	1.00 34.49 1.00 30.81	AAAA C
ATOH	654 CD2 LEU	66	37.767	2.200	56.994	1.00 34.34	AAAA C
ATOM	655 C LEU 656 O LEU	66 66	39.646 40.762	0.462 0.947	60.734 60.927	1.00 45.39 1.00 41.05	C AAAA O AAAA
ATOM ATOM	657 N GLY	67	39.000	-0.346	61.583	1.00 45.21	AAAA II
ATOM	659 CA GLY 660 C GLY	67 67	39.773 40.998	-0.672 -1.508	62.799 62.445	1.00 48.14 1.00 44.51	AAAA C AAAA C
ATOH ATOH	660 C GLY 661 O GLY	67	41.855	-1.724	63.287	1.00 45.42	AAAA O
ATOM	662 II ASP 664 CA ASP	68 68	41.013 42.194	-2.189 -2.834	61.309 60.738	1.00 47.60 1.00 50.99	AAAA 11 AAAA C
ATOM ATOM	664 CA ASP 665 CB ASF	68	42.012	-3.417	59.361	1.00 39.43	AAAA C
ATOM	666 CG ASP	68 68	41.205 40.912	-4.678 -5.341	59.311 60.320	1.00 45.82 1.00 44.69	AAAA C AAAA O
ATOM ATOM	667 OD1 ASP 668 OD2 ASP	68	40.819	-5.065	58.187	1.00 47.23	AAAA O
ATOM	669 C ASP	68 68	43.363 44.436	-1.837 -2.269	60.596 60.903	1.00 45.89 1.00 44.84	AAAA C AAAA O
ATOM ATOM	670 O ASP 671 N LEU	69	43.145	-0.609	60.247	1.00 42.49	AAAA II
ATOH	673 CA LEU 674 CB LEU	6 <u>9</u> 69	44.175 43.920	0.352 1.393	60.048 58.945	1.00 45.80 1.00 45.25	AAAA C AAAA C
ATOM ATOM	674 CB LEU 675 CG LEU	69	43.902	0.882	57.494	1.00 54.25	AAAA C
ATOM	676 CD1 LEU 677 CD2 LEU	69 69	43.541 45.211	2.037 0.200	56.565 57.113	1.00 47.26 1.00 50.76	AAAA C AAAA C
ATOM ATOM	678 C LEU	69	44.347	1.107	61.350	1.00 49.50	AAAA C
MOTA	679 O LEU 680 II PHE	69 70	45.470 43.296	$\frac{1.210}{1.737}$	61.851 61.869	1.00 54.51 1.00 44.60	O AAAA II AAAA
ATOH ATOH	682 CA PHE	70	43.423	2.564	63.046	1.00 39.67	2 AAAA
ATOI-I	683 CB FHE 684 CG PHE	70 70	42.987 43.465	3.973 4.501	62.700 61.390	1.00 26.08 1.00 45.32	D AAAA D AAAA
ATOH ATOH	684 CG PHE 685 CD1 PHE	70	42.532	4.748	60.384	1.00 47.41	AAAA C
ATOH	686 CD2 PHE 687 CE1 PHE	70 70	44.815 42.945	4.767 5.263	61.130 59.159	1.00 48.77 1.00 56.16	AAAA C AAAA C
ATOH ATOH	688 CE2 PHE	70	45.229	5.256	59.895	1.00 47.24	AAAA C
ATOH	689 CZ PHE 690 C PHE	70 70	44.293 42.655	5.506 1.999	58.896 64.219	1.00 49.54 1.00 40.09	AAAA C AAAA C
ATOH ATOH	691 O PHE	70	41.874	2.734	64.838	1.00 35.74	AAAA O
ATOM ATOM	692 II PRO 693 CD PRO	71 71	43.053 44.269	0.852 0.058	64.768 64.411	1.00 39.19 1.00 39.94	AAAA II AAAA C
ATOM	694 CA PRO	71	42.444	0.237	65.899	1.00 35.30	AAAA C
ATOM ATOM	695 CB PRO 696 CG PRO	71 71	43.308 44.669	-0.983 -0.564	66.246 65.717	1.00 38.03 1.00 38.36	AAAA C AAAA C
ATON	697 C PRO	71	42.453	1.089	67.126	1.00 33.72	AAAA C
ATON	698 O PRO 699 II ASII	71 72	42.005 43.058	0.630 2.220	68.159 67.231	1.00 39.32 1.00 36.55	AAAA O AAAA II
ATOM ATOM	701 CA ASII	7.2	43.204	3.032	68.401	1.00 32.60	AAAA C
ATOH ATOH	702 CB ASH 703 CG ASH	7.2 7.3	44.637	2.916	68.962 69.761	1.00 36.89 1.00 47.03	AAAA C AAAA C
ATOM ATOM	704 OD1 ASII	7.2	44.644	1.619	70.979	1.00 64.42	AAAA O
ATON ATON	705 ND2 ASH 708 C ASH	72 72	44.880 42.875	0.475 4.477	69.169 68.135	1.00 63.17 1.00 30.11	AAAA C
ATOH	709 O ASN	72	43.099	5.201	69.104	1.00 36.53	AAAA O
HOTA HOTA	710 N LEU 712 CA LEU	73 73	42.309	4.809 6.207	66.978 66.730	1.00 27.62 1.00 34.07	AAAA C AAAA C
ATON ATON	712 CA LEU	73	41.476	6.373	65.292	1.00 28.37	AAAA C
ATOH	714 CG LEU	73 73	40.819	7.713 8.721	64.882 64.963	1.00 29.33 1.00 31.86	AAAA C AAAA C
ATOM ATOM	715 CD1 LEU 716 CD2 LEU	73 73	40.202	7.518	63.478	1.00 32.07	AAAA C
HOTA	717 C LEU	73 73	40.929	6.569 5.737		1.00 32.14 1.00 35.02	D AAAA O AAAA
ATOH ATOH	718 O LEU 719 H THR	74	41.081	7.585	68.582	1.00 29.47	AAAA II
ATOI:	721 CA THR	71	40.150	7.826	69.683	1.00 34.80	AAAA C

8/58 722 HOTA CB THR 74 7.744 70.952 41.028 1.00 46.09 AAAA C **ATOM** ?23 OG1 THR 74 41.729 6.485 70.880 1.00 46.30 AAAA O MOTA 725 CG2 THR 72.253 74 40.262 7.831 1.00 39.45 AAAA C MOTA 726 С THR 74 39.424 9.15569.602 1.00 35.48 AAAA C HOTA 727 THR 38.270 9.322 O 74 70.077 1.00 35.32 AAAA O ATON 728 1.00 29.80 11 VAL 75 10.047 10.198 69.073 AAAA II HOTA 730 CA VAL 75 68.892 1.00 34.91 39.351 11.474 AAAA C ATOI: 731 CBVAL 75 12.445 69.955 39.856 1.00 26.03 AAAA C ATO! CG1 VAL 732 75 13.801 69.934 1.00 24.51 39.173 AAAA C **ATOM** 733 CG2 VAL 75 39.675 11.910 71.366 1.00 19.87 AAAA C ATOH 734 С 1.00 37.57 VAL 75 12.045 67.494 39.613 AAAA C ATOM 735 0 VAL 75 67.022 1.00 35.99 40.724 11.808 AAAA O АТОМ 735 11 ILE 12.555 66.796 1.00 35.91 76 38.600 AAAA II ATOH 738 CA ILE 76 13.340 38.696 65.592 1.00 31.48 AAAA C HOTA 739 CB ILE 76 37.831 12.769 64.492 1.00 29.60 AAAA C ATOH 740 CG2 ILE 76 37.856 13.630 63.208 1.00 19.54 AAAA C **ATOM** 741 CG1 ILE 64.277 76 38.222 11.314 1.00 28.52 AAAA C ATOM 742 CD1 ILE 76 10.556 63.478 37.149 1.00 28.85 AAAA C **ATON** 743 C ILE 66.000 76 38.157 14.718 1.00 33.84 AAAA C 744 **ATOM** 0 ILE 76 36.987 14.777 66.274 1.00 38.84 AAAA O ATOM 745 11 ARG 77 38.906 15.733 66.230 1.00 30.32 H AAAA HOTA 747 CA ARG 77 16.901 38.605 67.021 1.00 30.82 AAAA C 748 ATOH: CB ARG 77 17.475 67.461 1.00 26.62 39.961 AAAA C ATO!! 749 CG ARG 77 39.993 18.836 68.058 1.00 52.42 AAAA C ATO!! 750 CD ARG 77 41.290 18.957 68.908 1.00 49.10 AAAA C ATO14 751 NE ARG 77 17.817 1.00 39.23 41.411 69.773 AAAA II MOTA 753 CD ARG 77 40.977 18.016 71.064 1.00 48.79 AAAA C MOTA 754 HH1 ARG 77 1.00 30.34 40.440 19.104 71.610 AAAA II HOTA 757 NH2 ARG 1.00 40.38 77 41.061 17.012 71.941 II AAAA II C MOTA 760 ARG 77 37.643 17.733 66.225 1.00 31.75 AAAA C HOTA 761 0 ARG 77 36.944 18.637 66.664 1.00 31.40 AAAA O MOTA. 762 И GLY 78 37.688 17.661 1.00 32.87 64.884 II AAAA II **ATOH** 764 CA GLï 78 36.982 18.409 63.950 1.00 16.23 AAAA C **ATOM** 765 C GLY 78 37.199 19.880 64.063 1.00 31.58 AAAA C ATOi-I 766 GLï 0 36.363 78 20.775 63.674 1.60 34.03 AAAA O MOTA 767 TRP 11 38.439 20.321 73 64.304 1.00 31.21 H AAAA ATOH 769 CA TRP 79 21.740 38.757 64.337 1.00 30.80 AAAA C ATO! 1 770 CB TRP 79 40.177 21.943 64.845 1.00 39.07 AAAA C **ATOI** TRP 771 CG 79 40.626 23.343 65.164 1.00 36.64 AAAA C 772 ATOi:1 CD2 TRP 79 41.691 24.001 64.433 1.00 28.52 AAAA C **NOTA** 773 CE2 TRP 25.288 1.00 36.49 79 41.826 65.002 AAAA C MOTA 774 CE3 TRP 79 42.473 23.625 63.370 1.00 37.96 AAAA C HOTA 775 CD1 TRP 79 40.199 24.235 66.113 1.00 29.59 AAAA C ATO!1 HE1 TRP 776 79 40.917 1.00 27.67 25.413 66.054 AAAA 11 ATOI-I 778 CZ2 TRP 79 42.770 26.213 64.543 1.00 31.83 AAAA C HOTA 779 CZ3 TRP 24.548 43.389 79 62.876 1.00 46.14 AAAA C **ATOH** CH2 TRP 780 43.525 79 25.794 1.00 35.31 63.470 AAAA C **ATOH** 781 C TRP 79 38.606 22.418 62.986 1.00 28.75 AAAA C ATOH 782 \circ TRP 62.961 79 38.585 23.624 1.00 23.61 AAAA O ATOM 783 11 LYS 80 38.659 21.684 61.895 1.00 31.84 M AAAA N **ATOH** CA 22.153 785 LYS 38.305 1.50 32.78 80 60.573 AAAA C ATOH 786 LTS 39.453 CB 22.498 ያባ 59.689 1.00 41.17 AAAA C АТОН 78**7** CG LïS 39.838 23.911 ខប 59.470 1.00 34.68 AAAA C 788 ATOH CD LïS 80 41.025 24.350 60.306 1.00 44.77 AAAA C HOTA 769 25.811 CE LïS 80 41.276 1.00 50.41 59.898 AAAA C ATOH 790 HE LïS 80 42.530 25.752 59.092 1.00 67.26 II AAAA ATOM 791 C LïS 37.585 20.960 80 59.917 1.00 34.52 AAAA C ATOM 792 0 LïS 37.950 19.843 60.237 1.00 37.62 80 AAAA O **ATOH** 793 11 LEU 21.267 59.207 36.477 81 1.00 31.77 AAAA II 11OTA 795 CA LEU ϵ_1 35.742 20.157 58.600 1.00 31.02 AAAA C ATOM 796 LEU CB 81 34.290 20.315 59.092 1.00 31.20 AAAA C ATOH 797 LEU CG 20.319 34.115 មិរ 60.632 1.00 36.97 AAAA C **ATOM** 798 CD1 LEU 81 32.832 21.080 60.9541.00 27.98 AAAA C ATOI1 799 CD2 LEU 81 34.089 18.955 61.297 1.00 28.77 AAAA C HOTA 800 C LEU 20.023 1.00 29.86 81 35.733 57.104 AAAA C **ATOH** 801 0 LEU 36.082 20.947 81 56.368 1.00 29.34 AAAA O ATOI1 802 11 PHE 82 35.430 18.813 56.594 1.00 27.78 II AAAA ATOH. 804 CA PHE 82 35.176 18.653 55.182 1.00 28.68 AAAA C ATOH 805 CB EHE 35.513 17.226 82 54.795 1.00 32.78 AAAA C ATOH: 806 CC EHE 82 35.348 16.901 53.357 1.00 30.48 AAAA C ATOH 807 CD1 PHE 36.378 17.130 52.447 1.00 32.86 82 AAAA C HOTA 808 CD2 PHE 52.914 82 34.142 16.361 1.00 30.93 AAAA C ATOM ម៊ូហិទិ CE1 FHE 82 36.217 16.769 51.1041.00 43.27 AAAA C HOTA 310 CE2 PHE 51.538 82 33.963 16.061 1.00 26.30 AAAA C **ATOH** CZ 911 PHE 82 35.005 16.238 50.672 1.00 37.73 AAAA C ATOM: 812 CPHE 82 33.670 18.911 54.993 1.00 30.06 AAAA C ATOH 913 0 PHE 18.045 82 32.830 55.278 1.00 27.36 AAAA O ATOH: 814 H TYR 83 33.301 20.148 54.770 1.00 31.68 AAAA 11 ATOH: 815 CA TIR 31.911 20.605 83 54.633 1.00 40.76 AAAA C ATOM: 816 C TYR 83 31.043 19.977 55.726 1.00 44.00 AAAA C **ATOH** 817 0 TTR 83 30.075 19.210 55.487 1.00 50.47 AAAA O LIOTA 818 TTR CB ઇ3 31.359 20.199 53.269 1.00 31.55 AAAA C **ATOM** 919 CG TTR 93 32.196 20.742 52.117 0.01 20.00 AAAA C HOTA 820 CD1 TYR 83 0.01 20.00 33.254 19.982 51.609 AAAA C ATOH 821 CD2 TYR 83 31.90621.998 51.575 0.01 20.00 AAAA C

						9/58		
ATOM	922	CE1 TYR	83	34.027	20.480	50.556	0.01 20.00	AAAA C
ATOH	823	CE2 TYR	93 83	32.679 33.740	22.496 21.737	50.521	0.01 20.00 0.01 20.00	AAAA C AAAA C
ATOM ATOM	824 825	OB TYR OH TYR	83	34.492	22.222	18.989	0.01 20.00	AAAA O
ATOI-1	826	II ASII	84	31.043	20.461	56.924	1.00 40.91 1.00 36.54	AAAA II AAAA C
ATOM ATOM	827 828	CA ASH CB ASH	84 84	30.250 28.763	20.057	58.056 57.700	1.00 47.84	AAAA C
ATON	829	CG ASH	84	28.274	21.164	56.797	1.00 60.75	AAAA C
ATOM	830 831	OD1 ASH	84 84	28.319 27.839	22.343	57.119 55.552	1.00 45.55 1.00 65.98	AAAA O AAAA II
ATOH ATOH	832	C ASII	84	30.686	18.679	58.556	1.00 36.33	AAAA C
ATOLL	833	O ASII	84	30.137 31.455	18.206 17.900	59.580 57.800	1.00 38.24 1.00 32.78	0 AAAA 11 AAAA
ATOM ATOM	834 836	H TYR	85 85	31.433	16.504	58.222	1.00 35.45	AAAA C
ATOH	837	CB TYR	85 85	31.473	15.579	57.000 56.4 5 3	1.00 35.54 1.00 41.35	AAAA C AAAA C
ATOH ATOH	83 8 839	CG TYR	85 85	30.078 29.868	15.733 16.291	55.199	1.00 38.22	AAAA C
ATO!!	840	CE1 TYR	85	28.611	16.445	54.704	1.00 40.83	ДААА С АААА С
ATOM ATOM	841 842	CD2 TYR CE2 TYR	85 85	28.954 27.661	15.371 15.533	57.200 56.705	1.00 47.42 1.00 45.91	AAAA C
ATOM	843	CS TYR	85	27.497	16.072	55.445	1.00 46.06	AAAA C
ATOH ATOH	844 846	OH TYR	85 85	26.258 32.977	16.315 16.367	54.886 58.891	1.00 46.05 1.00 32.08	AAAA O AAAA C
ATOM ATOM	847	O TYR	85	33.943	16.977	58.495	1.00 37.44	AAAA O
ATOH	848	N ALA	86 86	33.027 34.257	15.691 15.325	59.979 60.670	1.00 30.21 1.00 34.10	AAAA 11 AAAA C
HOTA HOTA	850 851	CA ALA	86	33.999	15.370	62.157	1.00 25.48	AAAA C
NOTA	852	C ALA	86	34.729	13.962	60.216 60.577	1.00 32.67 1.00 35.10	AAAA C AAAA O
ATOH ATOH	853 854	O ALA	36 87	35.795 33.832	13.481 13.173	59.597	1.00 28.56	II AAAA
HOTA	856	CA LEU	87	34.188	11.805	59.323	1.00 29.26	AAAA C AAAA C
ATOH ATOH	857 858	CB LEU	87 87	33.798 33.801	10.860 2.363	60.471 60.188	1.00 13.64 1.00 25.77	AAAA C
ATOH	859	CD1 LEU	87	35.140	8.915	59.571	1.00 27.21	AAAA C
ATOH ATOM	860 861	CD2 LEU C LEU	87 87	33.637 33.530	8.432 11.429	61.393 58.021	1.00 23.52 1.00 35.60	AAAA C AAAA C
ATOM ATOM	862	O LEU	87	32.320	11.421	58.001	1.00 38.97	AAAA O
ATOM	863	II VAL	8 8 8 8	34.174 33.438	11.300 11.032	56.875 55.628	1.00 37.86 1.00 33.32	AAAA II AAAA C
ATOH ATOH	865 866	CA VAL	88	33.666	12.085	54.553	1.00 22.38	AAAA C
ATOM	867	CG1 VAL	88	32.974	11.675	53.261 55.042	1.00 19.24 1.00 13.27	AAAA C AAAA C
HOTA HOTA	868 869	CG2 VAL	88 88	33.165 33.898	13. 4 02 9.684	55.114	1.00 31.79	AAAA C
ATOI1	870	O VAL	88	35.069	9.407	55.117	1.00 33.57 1.00 31.08	AAAA O AAAA II
ATOH ATOH	871 973	II ILE	89 89	33.078 33.361	8.728 7.433	54.822 54.280	1.00 31.08	AAAA C
ATOI1	874	CB ILE	89	32.941	6.384	55.296	1.00 30.17	AAAA C AAAA C
ATOH ATOH	875 876	CG2 ILE	8 9	32.898 33.893	4.954 6.420	54.821 56.500	1.00 37.24 1.00 24.92	AAAA C
ATON	877	CD1 ILE	89	33.424	5.613	57.675	1.00 23.96	AAAA C
ATOH ATOH	87 8 979	C ILE	8 8	32.509 31.330	7.206 6.881	53.027 53.205	1.00 40.64 1.00 38.69	AAAA C AAAA O
ATOM	880	11 PHE	àù	33.082	7.464	51.845	1.00 41.45	II AAAA II
ATOH ATOH	882 883	CA PHE CB PHE	90 90	32.346 32.347	7.371 8.776	50.591 50.110	1.00 37.67 1.00 32.17	AAAA C AAAA C
ATO! I	884	CG PHE	90	31.591	9.081	48.865	1.00 39.77	AAAA C
ATCH ATOH	885 886	CD1 PHE CD2 PHE	90 90	30.387 32.052	9.772 8.721	49.025 47.620	1.00 32.02	AAAA C AAAA C
ATOR	887	CE1 PHE	90 20	29.611	10.111	47.938	1.00 33.30	AAAA C
ATOH ATOH	888 889	CE2 PHE CZ PHE	90 90	31.290 30.083	9.086 9.764	46.534 46.687	1.00 43.09 1.00 50.24	AAAA C AAAA C
ATOM	890	C PHE	90	32.856	6.384	49.557	1.00 40.72	AAAA C
1 IOTA	891	O PHE	90	34.027 32.024	6.296 5. 5 19	49.203 49.001	1.00 46.15 1.00 39.16	О ААА А И ААА А
АТОН АТОН	892 894	II GLU CA GLU	91 91	32.248	4.601	47.954	1.00 42.45	AAAA C
ATOM	895	CB GLU	91	32.479	5.231	46.583 46.250	1.00 38.08 1.00 58.86	AAAA C AAAA C
ATOH ATOH	896 897	CG GLU	91 91	31.136 30.955	5.865 5.776	46.250	1.00 63.55	AAAA C
ATOI1	8 6 8	OE1 GLU	91	31.473	6.651	44.082	1.00 64.10 1.00 63.64	O AAAA O AAAA
ATOH ATOH	800 899	OE2 GLU C GLU	91 91	30.059 33.422	4.813	44.573	1.00 63.64	AAAA O
ATOM	901	O GLU	91	34.298	3.411	47.587	1.00 44.71	O AAAA
ATOH ATOH	902 904	H HET	92 92	33.352 34.409	3.209 2.401	49.482 50.088	1.00 46.52 1.00 42.26	11 AAAA 2 AAAA
ATOH	<u>802</u>	CB HET	35	34.299	2.659	51.584	1.00 38.37	AAAA C
ATOH	906 907	CG HET	92 92	35.412 36.802	2.156 3.306	52.420 52.401	1.00 59.29 1.00 57.67	AAAA C AAAA S
ATOH ATOH	908	CE MET	92	36.340	4.405	51.108	1.00 38.36	AAAA C
ATOH	909	C MET	92	34.012	1.005	49.745	1.00 43.37 1.00 45.58	AAAA C AAAA O
ATOH ATCH	910 911	O MET	92 93	33.335 34.449	0.298 0.518	50.523 48.602	1.00 45.58	I AAAA
ATOH	913	CA THR	93	34.175	-0.900	48.273	1.00 47.32	2 AAAA
ATOH ATOH	914 915	CB THR OG1 THR	93 93	34.666 34.013	-1.281 -0.488	46.868 45.892	1.00 55.28 1.00 57.81	AAAA C AAAA O
АТОН	917	CG2 THR	93	34.332	-2.715	46.516	1.00 44.71	FAAA C

					10,00		
ATOH	918 C THR	93	34.885	-1.874	49.186	1.00 51.83	AAAA C
ATOM	919 O THR	93	36.115	-1.777	49.361	1.00 57.91	AAAA O
			34.237	-2.983	49.493	1.00 49.85	ii aaaa
ATO!·I	920 II ASII	94				1.00 45.64	AAAA C
ATOH	922 CA ASH	94	34.747	-4.069	50.285	_	
ATOM:	923 CB ASII	94	36.241	-4.315	50.001	1.00 59.01	AAAA C
ATOH	924 CG ASH	94	36.494	-4.849	48.599	1.00 75.44	AAAA C
ATOH	925 OD1 ASH	94	36.847	-4.081	47.688	1.00 77.49	AAAA O
		94	36.308	-6.153	48.408	1.00 79.63	II AAAA II
ATOH	926 ND2 ASN					1.00 42.58	AAAA C
ATOH	929 C ASII	94	34.522	-3.838	51.763	-	
HOTA	930 O ASII	94	34.752	-4.814	50.501	1.00 46.36	AAAA O
ATOH	931 II LEU	95	34.308	-2.609	52.132	1.00 37.28	II AAAA
ATON	933 CA LEU	95	34.324	-2.277	53.621	1.00 39.96	AAAA C
	•	95	34.185	-0.786	53.851	1.00 34.05	AAAA C
ATOH	934 CB LEU				55.269	1.00 35.81	AAAA C
ATOH	935 CG LEU	95	34.323	-0.296		_	AAAA C
ATOM	936 CD1 LEU	95	35.785	-0.537	55.598	1.00 35.48	
ATOH	937 CD2 LEU	95	33.847	1.177	55.344	1.00 25.46	AAAA C
ATOH	938 C LEU	95	33.163	-2.986	54.275	1.00 43.75	AAAA C
	939 O LEU	95	32.048	-2.936	53.772	1.00 44.04	AAAA O
ATON				-3.863	55.213	1.00 46.50	AAAA II
ATOH	940 H LTS	96	33.451			1.00 42.76	AAAA C
ATOH	942 CA LYS	96	32.364	-4.648	55.779		
ATOM	943 CB LYS	56	32.801	-6.075	55.995	1.00 41.41	AAAA C
ATOH	944 CG LYS	96	32.760	-6.976	54.788	1.00 49.78	AAAA C
ATOH	945 CD LYS	96	32.984	-8.446	55.127	1.00 58.09	AAAA C
	946 CE LYS	96	33.772	-9.160	54.027	1.00 73.43	AAAA C
ATOM				-10.556	54.489	1.00 79.13	AAAA 11
ATOH	947 NZ LYS	96				1.00 45.29	AAAA C
ATOH	951 C LYS	96	31.970	-4.055	57.122		
ATOM	952 O LYS	96	30.978	-4.502	57.691	1.00 46.23	AAAA O
ATOM	953 N ASP	97	32.685	-3.071	57.645	1.00 45.15	II AAAA
ATOH	955 CA ASP	97	32.299	-2.384	58.861	1.00 42.15	AAAA C
		97	32.294	-3.292	60.059	1.00 45.39	AAAA C
ATOH	956 CB ASP					1.00 56.95	AAAA C
HOTA	957 CG ASP	97	33.662	-3.562	60.624		
HOTA	958 OD1 ASP	97	34.579	-2.825	61.012	1.00 59.88	AAAA O
ATOH	959 OD2 ASP	97	33.931	-4.782	60.714	1.00 56.01	AAAA O
ATOM	960 C ASP	97	33.209	-1.224	59,201	1.00 41.25	AAAA C
ATOM	961 O ASP	97	34.160	-1.074	58.437	1.00 47.03	AAAA O
		98	32.822	-0.366	60.129	1.00 40.41	AAAA 11
ATOM					60.340	1.00 37.83	AAAA C
ATOH	964 CA ILE	98	33.675	0.820		1.00 38.99	AAAA C
ATOM	965 CB ILE	98	32.983	2.006	61.006		
ATOH	966 CG2 ILE	98	34.007	3.133	61.207	1.00 38.95	AAAA C
ATOI1	967 CG1 ILE	98	31.835	2.488	60.092	1.00 34.84	AAAA C
ATOH	968 CD1 ILE	98	31.629	3.958	59.948	1.00 39.29	AAAA C
ATOH	969 C ILE	98	34.854	0.322	61.114	1.00 35.11	AAAA C
	970 O ILE	98	35.970	0.669	60.841	1.00 43.05	AAAA O
ATOH				-0.393	62.192	1.00 34.22	AAAA N
ATOM	971 H GLY	99	34.618			1.00 33.74	AAAA C
ATO!	973 CA GLY	õõ	35.477	-0.972	63.121		
ATOH	974 C GLT	àà	36.279	-0.084	64.024	1.00 35.90	AAAA C
ATOH	975 O GLY	99	37.023	-0.572	64.899	1.00 38.21	AAAA O
HOTA	976 II LEU	100	36.190	1.221	63.913	1.00 33.35	II AAAA
ATOM	978 CA LEU	100	36.763	2.215	64.771	1.00 31.65	AAAA C
		100	36.496	3.636	64.294	1.00 29.87	AAAA C
ATOH	979 CB LEU				62.835	1.00 32.13	AAAA C
HOTA	980 CG LEU	100	36.943	3.980			AAAA C
ATOM	681 CD1 FEA	100	36.710	5.479	62.610	1.00 21.38	
ATOH	982 CD2 LEU	100	38.412	3.599	62.644	1.00 37.68	AAAA C
ATOH	983 C LEU	100	36.312	1.976	66.194	1.00 31.94	AAAA C
ATOI1	984 O LEU	100	35.950	2.863	66.979	1.00 31.95	AAAA O
ATOH	985 II TYR	101	36.704	0.851	65.779	1.00 31.87	AAAA II
		101	36.329	0.395	68.071	1.00 33.33	AAAA C
ATOI1	987 CA TYR				68.264	1.00 41.03	AAAA C
ATOI:1	988 CB TYR	101	36.491	-1.104		1.00 46.66	AAAA C
ATON	989 CG TYR	101	37.919	-1.559	68.369		
ATOH	990 CD1 TYR	101	38.571	-1.380	69.587	1.00 51.20	AAAA C
HOTA	991 CE1 TYR	101	39.901	-1.743	69.749	1.00 49.44	AAAA C
ATOH	992 CD2 TYR	101	38.615	-2.112	67.322	1.0045.15	AAAA C
ATOM	993 CE2 TYR	101	39.927	-2.505	67.479	1.00 47.08	AAAA C
ATOM	994 CZ TYR	101	40.548	-2.321	68.688	1.00 49.43	AAAA C
				-2.662	68.997	1.00 55.82	AAAA O
ATOH	995 OH TYR	101	41.834			1.00 33.46	AAAA C
ATOI1	997 C TYR	101	36.989	1.059	69.214		
ATOH	998 O TYR	101	36.630	0.813	70.375	1.00 43.00	AAAA O
ATOI-1	999 II ASII	102	37.752	2.091	69.068	1.00 38.12	II AAAA
ATOI1	1001 CA ASH	102	38.093	2.979	70.223	1.00 30.78	AAAA C
ATOH	1002 CB ASH	102	39.603	2.911	70.363	1.00 48.63	AAAA C
	1002 CG ASU	102	40.112	1.804	71.268	1.00 54.01	AAAA C
ATOM			39.738	1.864	72.454	1.00 47.22	AAAA O
ATOI:	1004 OD1 ASN	102				1.00 47.22	AAAA II
ATOH	1005 HD2 ASH	102	40.864	0.845	70.767		
HOTA	1008 C ASN		37.673	4.385	69.947	1.00 33.82	AAAA C
ATOH	1009 O ASH	102	38.047	5.364	70.592	1.00 39.84	AAAA O
ATOI:1	1010 H LEU		36.845	4.640	68.982	1.00 35.28	AAAA 11
ATOH	1012 CA LEU		36.473	6.040	68.621	1.00 36.57	AAAA C
			35.948	6.140	67.213	1.00 34.77	AAAA C
ATOH	1013 CB LEU						AAAA C
ATOH	1014 CG LEU		35.525	7.482	66.612	1.00 30.32	
ATOH!	1015 CD1 LEU		36.606	8.513	66.646	1.00 23.20	AAAA C
ATCH	1016 CD2 LEU	103	35.199	7.169	65.146	1.00 37.10	AAAA C
ATOH	1017 C LEU	103	35.484	6.508	69.691	1.00 37.31	AAAA C
ATOH	1018 O LEU		34.449	5.874	69.837	1.00 34.24	AAAA O
ATOH	1019 H ARG		35.810	7.456	_		AAAA II
	-		34,920		_		AAAA C
ATOH	1021 CA ARG	194	34.920	,.041	1.000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

ATO:1	1022	CB ARG	104	35.568	7.657	73.018	1.00 38.17	AAAA C
ATO11	1023	CG ARG	104	36.356	5.375	73.165	1.00 48.37	AAAA C
ATOM	1024	CD ARG	104	35.425	5.183	73.248	1.00 50.71	AAAA C
MOTA	1025	NE ARG	104	34.582	5.320	74.413	1.00 52.38	II AAAA
АТОМ	1027	C2 ARG	104	34.900	4.847	75.621	1.00 72.73	AAAA C
ATON	1028	NH1 ARG	104	36.047	4.214	75.800	1.00 81.87	AAAA H
		HH2 ARG	104	33.990	5.070	76.577	1.00 78.27	II AAAA II
ATOM	1031			34.466	9.273	71.540	1.00 32.58	AAAA C
ATOM	1034	C ARG	104			72.223	1.00 39.89	AAAA O
ATO14	1035	O ARG	104	33.553	9.743		1.00 33.47	AAAA II
ATOH	1036	N ASH	105	34.992	10.065	70.637		AAAA C
ATOH	1938	CA ASII	105	34.549	11.450	70.590	1.00 30.97	
ATO11	1044	C ASH	105	34.907	12.149	69.310	1.00 31.00	AAAA C
ATOH	1045	O ASH	105	36.086	12.067	69.050	1.00 37.79	AAAA O
HOTA	1039	CB ASH	105	35.203	12.199	71.721	1.00 12.28	AAAA C
ATOH	1040	CG ASH	105	34.786	13.568	71.756	1.00 24.93	AAAA C
ATON	1041	OD1 ASH	105	35.125	14.549	71.127	1.00 38.14	AAAA O
ATOI1	1042	HD2 ASH	105	33.828	13.985	72.649	1.00 35.96	II AAAA II
ATOM	1046	H ILE	106	33.969	12.669	68.576	1.00 31.90	AAAA II
ATOM	1048	CA ILE	106	34.129	13.551	67.469	1.00 23.39	AAAA C
	1049	CB ILE	106	33.239	13.185	66.307	1.00 16.54	AAAA C
ATOM				33.132	14.408	65.374	1.00 20.38	AAAA C
ATOM	1050	CG2 ILE	106			65.558	1.00 18.30	AAAA C
ATOM	1051	CG1 ILE	106	33.928	12.034		1.00 25.48	AAAA C
ATOM	1052	CD1 ILE	106	33.055	11.293	64.643	1.00 23.40	AAAA C
ATOH	1053	C ILE	106	33.803	14.909	68.009		
ATOM	1054	O ILE	106	32.628	15.106	68.243	1.00 32.86	AAAA O
ATOI:	1055	II THR	107	34.719	15.789	68.350	1.00 30.43	AAAA N
MOTA	1057	CA THR	107	34.532	16.983	69.145	1.00 28.27	AAAA C
ATOH	1058	CB THR	107	35.902	17.607	69.579	1.00 35.78	AAAA C
ATOH	1059	OG1 THR	107	36.819	16.503	69.738	1,00 40.26	AAAA O
HOTA	1061	CG2 THR	107	35.954	18.411	70.855	1.00 28.13	AAAA C
ATOH	1062	C THR	107	33.728	17.950	69.332	1.00 27.95	AAAA C
ATOH	1063	O THR	107	33.392	19.060	68.831	1.00 32.99	AAAA O
NOTA	1064	II ARG	108	33.669	17.777	67.019	1.00 30.28	II AAAA
ATOM	1066	CA ARG	108	33.046	18.809	66.180	1.00 31.25	AAAA C
ATOM	1067	CB ARG	108	33.965	20.011	65.951	1.00 25.13	AAAA C
ATOH	1068	CG ARG	108	33.105	21.174	65.543	1.00 30.68	AAAA C
ATOM	1069	CD ARG	108	33.917	22.444	65.529	1.00 17.12	AAAA C
HOTA	1070	HE ARG	108	33.511	23.376	64.451	1.00 33.40	11 AAAA
ATOM	1072	CZ ARG	108	34.045	23.608	63.266	1.00 46.41	AAAA C
ATOM	1073	NH1 ARG	108	35.162	22.929	62.868	1.00 40.30	II AAAA II
ATOM MOTA	1076	HH2 ARG	108	33.454	24.543	62.494	1.00 39.82	AAAA II
ATOM	1079	C ARG	108	32.701	18.328	64.784	1.00 31.50	AAAA C
ATOM	1080	O ARG	108	33.379	17.381	64.430	1.00 32.67	AAAA O
HOTA	1081	N GLY	109	31.567	18.809	64.284	1.00 32.60	II AAAA II
HOTA	1083	CA GLY	109	31.082	18.385	62.983	1.00 28.87	AAAA C
HOTA	1084	C GLY	109	30.470	17.008	63.001	1.00 32.32	AAAA C
HOTA	1085	O GLY	109	30.471	16.306	64.006	1.00 38.03	AAAA O
HOTA	1086	H ALA	110	29.920	16.560	61.894	1.00 34.11	AAAA 11
HOTA	1088	CA ALA	110	29.086	15.371	61.833	1.00 36.77	AAAA C
ATOH	1089	CB ALA	110	27.708	15.721	61.223	1.00 15.32	AAAA C
ATOH	1090	C ALA	110	29.745	14.335	60.957	1.00 32.12	AAAA C
ATOM	1091	O ALA	110	30.921	14.332	60.687	1.00 34.11	AAAA O
ATOH	1092	II ILE	111	29.030	13.337	60.557	1.00 26.55	II AAAA
ATOM	1094	CA ILE	111	29.569	12.273	59.771	1.00 32.90	AAAA C
	1095	CB ILE	111	29.669	10.967	60.591	1.00 38.07	AAAA C
MOTA		CG2 ILE	111	30.091	11.140	62.036	1.00 34.05	AAAA C
MOTA	1096		111	28.345	10.237	60.684	1.00 26.54	AAAA C
ATOM:	1097	CG1 ILE	111	28.437	8.872	61.407	1.00 27.11	AAAA C
ATOH	1098	CD1 ILE	111	28.738	11.928	58.521	1.00 33.98	AAAA C
ATOH	1099	C ILE	111	27.533	12.179	58.532	1.00 32.15	AAAA O
HOTA	1100	O ILE	112	29.432	11.423	57.501	1.00 30.54	M AAAA
ATOH	1101	H ARG		28.773	11.107	56.247	1.00 27.48	AAAA C
ATO!!	1103	CA ARG	112		12.085	55.169	1.00 26.35	AAAA C
ATOH	1104	CB ARG	112	29.186		53.816	1.00 25.83	AAAA C
HOTA	1105	CG ARG	112	28.548	11.653		1.00 23.03	AAAA C
ATOM	1106	CD ARG	112	28.659	12.912	52.992		AAAA I!
ATOI1	1107	HE ARG	112	27.950	12.726	51.770	1.00 50.34	AAAA C
ATOM	1109	CZ ARG	112	27.778	13.503	50.720	1.00 47.61	AAAA II
ATOM	1110	NH1 ARG	112	28.334	14.695	50.696	1.00 44.92	AAAA II
ATOM	1113	NH2 ARG	112	27.012	12.925	49.789	1.00 46.00	AAAA C
ATOH	1116	C ARG	112	29.200	9.738	55.791	1.00 29.74	AAAA O
ATOH	1117	O ARG	112	30.343	9.611	55.406	1.00 36.52	AAAA II
HOTA	1118	H ITE	113	28.326	8.754	55.886	1.00 33.99	AAAA C
ATOM	1120	CA ILE	113	28.612	7.376	55.555	1.00 36.26	AAAA C
ATOI1	1121	CB ILE	113	28.457	6.461	56.760	1.00 33.27	AAAA C
ATOH	1122	CG2 ILE	113	28.850	5.021	56.449	1.00 15.85	AAAA C
ATOH	1123	CG1 ILE	113	29.374	7.012	57.874	1.00 31.92	
ATOH	1124	CD1 ILE	113	29.324	6.250	59.176	1.00 42.34	AAAA C
ATOH	1125	C ILE	113	27.729	6.959	54.398	1.00 39.26	AAAA C
ATOH	1126	O ILE	113	26.637	6.482	54.664	1.00 50.72	AAAA O
HOTA	1177	il GLU	114	28.175	7.199	53.190	1.00 35.86	II AAAA
	1127			22 (21	7.103	51.935	1.00 38.76	AAAA C
MOTA	1129	CA GLU	114	27.491				
ATOH	1129 1130	CA GLU CB GLU	1.1.4	27.471	8.443	51.216	1.00 25.58	AAAA C
ATOH ATOH	1129 1130 1131	CA GLU CB GLU CG GLU	$\begin{array}{c} 114 \\ 114 \end{array}$	27.471 26.567	8.443 8.402	51.216 49.969	1.00 25.58 1.00 27.97	D AAAA D AAAA
ATOH ATOH ATOH	1129 1130 1131 1132	CA GLU CB GLU CG GLU CD GLU	114 114 114	27.471 26.567 26.349	8.443 8.402 9.840	51.216 49.969 49.578	1.00 25.58 1.00 27.97 1.00 36.85	AAAA C AAAA C AAAA C
ATOH ATOH	1129 1130 1131	CA GLU CB GLU CG GLU	$\begin{array}{c} 114 \\ 114 \end{array}$	27.471 26.567	8.443 8.402	51.216 49.969	1.00 25.58 1.00 27.97	D AAAA D AAAA

						12/50		
HOTA	1134	OE2 GLU	114	25.787	10.106	48.488	1.00 35.53	AAAA O
HOTA	1135	c cru	114	28.039	6.672	50.944	1.00 44.17	AAAA C
ATOM	1136	O GLU	114	29,120	5.538	51.090	1.00 49.97	AAAA O
					5.556	50.096	1.00 40.55	AAAA II
ATOM	1137	N LYS	115	27.191			1.00 41.16	AAAA C
ATOM	1139	CA LTS	115	27.219	4.440	49.242		
ATOM	1140	CB LYS	115	27.275	4.764	47.718	1.00 23.62	AAAA C
ATOM	1141	CG LYS	115	27.019	6.194	47.411	1.00 18.39	AAAA C
ATOM	1142	CD LYS	115	26.537	6.355	45.982	1.00 24.74	AAAA C
HOTA	1143	CE LYS	115	26.751	7.804	45.622	1.00 41.86	AAAA C
ATOM	1144	NO LYS	115	27.165	8.045	44.196	1.00 60.91	II AAAA
HOTA	1148	C LYS	115	28.287	3.421	49.611	1.00 42.39	AAAA C
ATOM	1149	O LYS	115	29.102	3.103	48.749	1.00 46.68	aaaa o
					2.677	50.665	1.00 40.99	II AAAA
ATON	1150	II ASII	116	28.137			1.00 37.33	AAAA C
ATOM	1152	CA ASII	116	29.022	1.570	50.976		AAAA C
ATON	1153	CB ASII	116	29.534	1.868	52.381	1.00 46.12	
ATOH	1154	CG ASH	116	30.372	3.153	52.345	1.00 49.92	AAAA C
ATOI1	1155	OD1 ASU	116	31.337	3.016	51.583	1.00 38.59	AAAA O
HOTA	1156	HD2 ASH	116	29.927	4.174	53.056	1.00 37.35	AAAA 11
ATOH	1159	C ASH	116	28.275	0.277	50.974	1.00 42.52	AAAA C
HOTA	1160	O ASH	116	28.067	-0.361	52.033	1.00 48.24	AAAA O
			117	27.989	-0.188	49.772	1.00 40.94	AAAA 11
ATON	1161	11 ALA					1.00 43.35	AAAA C
ATON	1163	CA ALA	117	27.195	-1.376	49.542		
NOTA	1164	CB ALA	117	27.494	-1.884	48.156	1.00 47.63	AAAA C
MOTA	1165	C ALA	117	27.294	-2.504	50.529	1.00 46.55	AAAA C
11OTA	1166	O ALA	117	26.211	-2.998	50.890	1.00 51.24	AAAA O
MOTA	1167	N ASP	118	28.484	-2.823	51.005	1.00 47.43	AAAA 11
ATOM	1169	CA ASP	118	28.559	-3.980	51.920	1.00 45.74	AAAA C
ATOM	1170	CB ASP	118	29.659	-4.945	51.477	1.00 55.39	AAAA C
					-5.119	49.958	1.00 59.40	AAAA C
ATOM	1171	CG ASP	118	29.684			1.00 64.40	AAAA O
ATOM	1172	OD1 AŞP	118	28.870	-5.976	49.608		
ATOM:	1173	OD2 ASP	118	30.448	-4.447	49.207	1.00 66.73	AAAA O
ATOM	1174	C ASP	118	28.818	-3.586	53.353	1.00 37.29	AAAA C
ATOI1	1175	O ASP	118	29.127	-4.536	54.026	1.00 42.89	AAAA O
ATOH	1176	II LEU	119	28.670	-2.327	53.685	1.00 36.46	II AAAA
ATON	1178	CA LEU	119	28.986	-1.885	55.047	1.00 40.58	AAAA C
ATOM	1179	CB LEU	119	29.159	-0.389	55.145	1.00 34.31	AAAA C
			119	29.640	0.331	56.378	1.00 36.58	AAAA C
ATOM	1180						1.00 35.77	AAAA C
ATOM	1181	CD1 LEU	119	30.950	-0.101	56.948		
ATOI1	1182	CD2 LEU	119	29.791	1.830	56.104	1.00 29.66	AAAA C
MOTA	1183	C LEU	119	27.937	-2.376	56.007	1.00 43.67	AAAA C
MOTA	1184	O LEU	119	26.748	-2.248	55.743	1.00 45.32	AAAA O
ATOM	1185	N CYS	120	28.361	-2.967	57.110	1.00 43.53	AAAA H
ATOM	1187	CA CYS	120	27.378	-3.407	58.089	1.00 38.93	AAAA C
ATOM	1188	C CYS	120	27.881	-2.921	59.426	1.00 41.91	AAAA C
ATON	1189	o cys	120	28.660	-1.960	59.446	1.00 43.66	AAAA O
			120	27.285	-4.907	58.100	1.00 37.59	AAAA C
ATOI1	1190						1.00 58.32	AAAA S
ATOI!	1.191	SG CYS	120	26.568	-5.622	56.639		
LIOTA	1192	II TYR	121	27.328	-3.456	60.509	1.00 38.05	AAAA II
HOTA	1194	CA TYR	121	27.795	-3.010	61.927	1.00 38.68	AAAA C
ATOI1	1195	CB TYR	121	29.189	-3.572	62.130	1.00 34.61	AAAA C
MOTA	1196	CG TYR	121	28.950	-5.032	62.519	1.00 36.52	AAAA C
ATOI-1	1197	CD1 TYR	121	29.087	-6.045	61.582	1.00 33.58	AAAA C
ATOH	1198	CE1 TYR	121	28.852	-7.350	61.980	1.00 41.21	AAAA C
ATOH	1199	CD2 TYR	121	28.560	-5.337	63.817	1.00 36.31	AAAA C
HOTA	1200	CE2 TTR	121	28.297	-6.630	64.201	1.00 39.48	AAAA C
						63.270	1.00 46.07	AAAA C
ATOI-1	1201	CE TYR	121	28.432	-7.641		1.00 49.20	AAAA O
ATOM	1202	OH TYR	121	28.161	-8.924	63.730		AAAA C
ATON	1204	C TYR	121	27.674	-1.523	61.789	1.00 38.83	
ATOH	1205	O TYR	121	28.445	-0.778	62.369	1.00 43.22	AAAA O
LIOTA	1206	N LEU	122	26.587	-1.045	61.180	1.00 39.58	AAAA II
ATOI-1	1208	CA LEU	122	26.361	0.405	61.090	1.00 44.82	AAAA C
ATO! 1	1209	CB LEU	122	25.990	0.715	59.634	1.00 46.48	AAAA C
ATOH	1210	CG LEU	122	26.497	2.014	59.108	1.00 44.44	AAAA C
ATON	1211	CD1 LEU	122	25.778	2.448	57.859	1.00 32.19	AAAA C
HOTA	1212	CD2 LEU	122	26.136	3.057	60.170	1.00 47.76	AAAA C
			122	25.212	0.910	61.935	1.00 44.85	AAAA C
HOTA	1213						1.00 47.66	AAAA O
ATOM	1214	O LEU	122	25.269	1.759	62.839		
ATO11	1215	N SER	123	24.194	0.137	61.843	1.00 40.12	AAAA II
ATO:1	1217	CA SER	123	22.949	0.435	62.703	1.00 33.88	AAAA C
ATOM	1218	CB SER	123	21.754	-0.330	62.239	1.00 19.26	AAAA C
ATON	1219	OG SER	123	21.964	-1.762	62.402	1.00 34.35	AAAA O
ATOH	1221	C SER	123	23.165	0.060	64.159	1.00 37.43	AAAA C
ATOLI	1222	O SER	123	22.326	0.280	65.025	1.00 35.33	AAAA O
ATO11	1223	II THR	124	24.242	-0.698	64.432	1.00 39.03	AAAA II
ATOH	1225	CA THR	124	24.554	-1.165	65.753	1.00 37.79	AAAA C
						65.719	1.00 42.39	AAAA C
ATOH	1226	CB THR	124	25.368	-2.461			AAAA O
ATOM	1227	OG1 THR	124	26.502	-2.020	64.924	1.00 47.70	
ATON:	1229	CG2 THR	124	24.677	-3.622	65.006	1.00 40.93	AAAA C
ATOH	1230	C THR	124	25.522	-0.206	66.445	1.00 39.29	AAAA C
ATOI I	1231	O THR	124	25.948	-0.642	67.499	1.00 41.41	AAAA O
ATOI:	1232	H VAL	125	25.737	1.001	65.985	1.00 37.80	AAAA II
ATON-	1234	CA VAL	125	26.594	1.964	66.661	1.00 41.06	C AAAA
ATOM	1235	CB VAL	125	27.683	2.542	65.714	1.00 39.50	AAAA C
		CG1 VAL		28.570	3.599	66.352	1.00 28.36	AAAA C
ATOH	1236		125				1.00 28.36	AAAA C
ATOH	1237	CG2 VAL	125	28.693	1.565	65.110	1.00 33.07	INTERNAL D

						•		
ATOH	1238	C V	AL 125	25.759	3.127	67.179	1.00 41.17	RAAA C
ATOM	1239		AL 125	24.941	3.750	66.531	1.00 41.00	AAAA O
АТОН	1240		SP 126	26.072	3.636	68.367	1.00 44.54	II AAAA II
ATOM	1242		SP 126	25.310	4.734	68.967	1.00 37.44	AAAA C
	1243		SP 126	24.862	4.335	70.342	1.00 34.73	AAAA C
ATOH			SP 126	23.879	5.303	70,983	1.00 45.53	AAAA C
ATOH	1244			23.699	6.520	70.685	1.00 27.71	AAAA O
ATOH	1245				4.865	71.964	1.00 52.32	AAAA O
ATOM	1246		SP 126	23.220			1.00 40.83	AAAA C
ATO!!	1247		SP 126	26.146	5.985	68.872	1.00 42.78	AAAA O
ATOM	1248		SP 126	26.740	6.400	69.888		N AAAA
ATOM	1249		RP 127	26.029	6.649	67.704	1.00 35.42	
ATOI1	1251	CA T	RP 127	26.777	7.856	67.410	1.00 33.02	AAAA C
ATOI1	1252	CB T	RP 127	26 .5 68	8.296	65.930	1.00 24.89	AAAA C
ATOH	1253	CG = T	RP 127	27.195	7.372	64.907	1.00 34.36	AAAA C
ATOH	1254	CD2 T	RP 127	28.587	7.208	64.518	1.00 28.60	AAAA C
HOTA	1255	CE2 T	RP 127	28.631	6.186	63.579	1.00 29.06	AAAA C
ATOH	1256		RF 127	29.778	7.845	64.873	1.00 35.51	AAAA C
ATOH	1257		RP 127	26.465	6.450	64.188	1.00 18.67	AAAA C
ATOH	1258		RP 127	27.311	5.712	63.394	1.00 42.87	II AAAA II
ATOM ATOM	1260		RP 127	29.792	5.783	62,954	1.00 32.53	C AAAA
ATOM	1261		RP 127	30.972	7.445	64.285	1.00 31.51	AAAA C
			RP 127	30.937	6.405	63.336	1.00 37.86	AAAA C
ATOH	1262			26.558	9.010	68.367	1.00 36.09	AAAA C
ATOH	1263		RP 127		9.977	68.497	1.00 40.87	AAAA O
HOTA	1264		RP 127	27.382			1.00 31.24	AAAA 11
MOTA	1265		ER 128	25.493	8.931	69.171		AAAA C
HOTA	1267		ER 128	25.201	10.041	70.081	1.00 34.04	
ATOH:	1268	CB S	ER 128	23.757	10.042	70.603	1.00 36.87	AAAA C
ATOH	1269	OG S	ER 128	23.433	8.917	71.424	1.00 28.96	AAAA O
ATOH	1271	C S	ER 128	26.133	9.975	71.292	1.00 32.39	AAAA C
ATOH	1272	0 \$	ER 128	26.212	10.857	72.134	1.00 30.91	C AAAA
ATOH	1273		EU 129	26.662	8.792	71.549	1.00 27.18	AAAA 11
ATOH	1275		EU 129	27.701	8.607	72.526	1.00 36.73	AAAA C
ATOM	1276		EU 129	27.920	7.132	72.741	1.00 32.53	AAAA C
ATOH	1277		EU 129	26.795	6.324	73.371	1.00 39.28	AAAA C
ATOH	1278		EU 129	27.292	5.024	73.975	1.00 32.54	AAAA C
	1279		EU 129	26.237	7.117	74.560	1.00 32.12	AAAA C
ATOM			EU 129	29.054	9.226	72.113	1.00 38.04	AAAA C
MOTA	1280		EU 129	29.645	10.001	72.874	1.00 34.50	AAAA O
MOTA	1281			29.316	9.217	70.807	1.00 42.09	AAAA N
ATOH	1282			30.480	9.743	70.144	1.00 41.35	AAAA C
ATOM	1284		LE 130		8.886	68.901	1.00 41.73	AAAA C
MOTA	1285		LE 130	30.793		68.176	1.00 31.95	AAAA C
ATOH	1286		LE 130	31.992	9.434		1.00 26.64	AAAA C
MOTA	1297		LE 130	30.969	7.413	69.347	1.00 42.65	AAAA C
ATOH	1288		LE 130	31.053	6.457	68.165		AAAA C
ATOH	1289	C I	LE 130	30.305	11.178	69.679	1.00 46.48	
A'TOH	1290	O I	LE 130	31.224	11.985	69.966	1.00 38.46	AAAA O
ATOH	1291	l-i T	EU 131	29.089	11.495	69.193	1.00 45.14	AAAA II
ATOH	1293	CA L	EU 131	28.895	12.865	68.651	1.00 41.45	AAAA C
HOTA	1294	CB L	ÆU 131	28.499	12.616	67.259	1.00 46.81	AAAA C
ATOI1	1295	CG = 1	EU 131	28.823	12.805	65.878	1.00 36.79	AAAA C
ATOH	1296	CD1 L	EU 131	29.128	11.405	65.324		AAAA C
ATOH	1297		EU 131	27.625	13.581	65.334	1.00 19.92	AAAA C
ATOH	1298		EU 131	27.661	13.525	69.285	1.00 39.28	AAAA C
ATOH	1299		EU 131	26.599	12.867	69.311	1.00 37.75	AAAA O
ATOH	1300		ASP. 132	27.742	14.811	69.518	1.00 33.73	II AAAA
ATOH	1302		ASP 132	26.610	15.542	70,003	1.00 38.20	AAAA C
ATOH	1303		ASP 132		16.944	70.381		AAAA C
ATOH	1304		ASP 132		17.137	71.834		AAAA C
		OD1 A			16.122	72.521	1.00 47.12	O AAAA
ATOM	1305				18.331	72.208		AAAA O
ATOH	1306	OD2 A			15.659	68.946		AAAA C
ATOH	1307		NSP 132			68.939		AAAA O
HOTA	1308		ASP 132		15.032	67.900		AAAA N
HOTA	1309		ALA 133		16.398			AAAA C
HOTA	1311		ALA 133		16.776	66.773		AAAA C
ATOH	1312		ALA 133		17.987	66.092		AAAA C
ATOM	1313		ALA 133		15.669	65.775		
ATO14	1314	\circ F	ALA 133		15.791	64.517		AAAA O
ATOH	1315	71 11	VAL 134	24.115	14.565	66.219		AAAA II
ATO!1	1317	CA 1	VAL 134	23.813	13.440	65.377		AAAA C
ATOM:	1318	CB /	VAL 134	23.202	12.241	66.120		AAAA C
ATOH	1319	CG1 \	VAL 134		11.441	66.855		AAAA C
ATOH	1320	CG2 \	VAL 134	22.095	12.701	67.068		AAAA C
ATOH	1321	C /	VAL 134	22.735	13.732	64.353		AAAA C
AT'OH	1322		VAL 134		13.106	63.292		AAAA O
ATOH	1323		SER 135		14.777	64.626	1.00 39.65	II AAAA II
ATON	1325		SER 135			63.692		AAAA C
ATOH	1326		SER 135		16.277	64.305		AAAA C
ATOH	1327		SER 135		17.369	64.684		AAAA O
ATOH	1329		SER 135			62.309		AAAA C
						61.359		AAAA O
ATCH	1330		SER 135			62.165		AAAA II
ATOH	1331		ASH 136					AAAA C
ATOH	1333		ASII 138			60.978		AAAA C
ATOH	1334		ASH 136			61.399		
ATOM	1335		ASH 136			61.717		AAAA C
ATOH	1336	OD1 7	ASN 136	22.695	19.079	61.149	1.00 50.81	AAAA O

WO 99/28347 14/58 AAAA II 24.379 19.441 62.585 1.0047.85**ATOH** 1337 HD2 ASH 136 AAAA C 1.00 35.31 60.259 HOTA 1340 Ç ASII 136 24.031 15.230 1.00 38.70 AAAA O 59.194 ATOH 1341 O ASII 136 24.535 15.484 1.00 29.11 II AAAA 24.057 60.793 1342 11 ASH 137 14.035 **HOTA** AAAA C 12.959 60.126 1.00 32.98 1344 137 24.721 ATOH CA ASH 1.00 24.45 24.737 AAAA C ATON! 1345 ASH 137 11.703 61.033 CB AAAA C 1.00 26.63 11.965 62.217 ATOH 1346 CGIIZA 137 25.631 AAAA O 1.00 30.22 26.070 62.369 1347 OD1 ASII 137 13.121 410TA 1.00 18.90 H AAAA HD2 ASH 10.923 63.000 1348 137 25.830 MOTA AAAA C 23.950 12.749 58.817 1.00 35.89 1351 C **ASII** 137 ATOH: 58.855 1.00 38.57 AAAA O **ATOH** 1352 0 ASII 137 22.716 12.755 AAAA II 12.251 1.00 32.86 24.592 57.785 ATOH 1353 11 TTR 138 1.00 30.25 AAAA C TTR 24.093 11.983 56.489 **ATOH** 1355 ÇA 138 AAAA C 55.421 1.00 27.10 1356 TTR 24.682 12.861 ATOH CB 138 1.00 37.89 AAAA C 1357 24.018 12.741 54.078 CGTTR 138 ATOH: 1.00 39.22 13.671 53.648 AAAA C 1358 CD1 TYR 138 23.083 ATOH 52.392 AAAA C 1359 CE1 TYR 22.510 13.579 1.00 37.65 ATOH 138 AAAA C 1.00 44.28 ATOH 1360 CD2 TYR 138 24.357 11.717 53.195 AAAA C 1.0041.97CE2 TYR 23.801 11.615 51.951 ATOH. 1361 138 AAAA C 1.00 39.42 22.868 12.562 51.564 1362 CC TYR 138 ATOH AAAA O

1.00 45.48 22.296 12.504 50.318 1363 TTR 138 ATON OH AAAA C 56.051 1.00 31.33 24.373 10.578 **ATOM** 1365 C TTR 138 1.00 37.76 AAAA O 25.505 10.317 55.797 1366 TYR 138 MOTA 0 1.00 35.40 H AAAA ILE 139 23.461 9.660 56.116 MOTA 1367 11 1.00 34.04 AAAA C 55.935 23.637 1369 CA ILE 139 8.249 ATOH: AAAA C 23.234 7.450 57.171 1.00 28.66 1370 ILE 139 **ATOI1** CB 1.00 21.99 AAAA C 23.640 57.093 1371 CG2 ILE 139 5.984 **ATOM** 1.00 42.81 AAAA C CG1 ILE 23.711 58.469 **ATOM** 1372 139 8.057 CD1 ILE 24.455 59.389 1.00 52.23 AAAA C 1373 139 7.100 ATOH 1.00 35.73 AAAA C 1374 \mathcal{C} ILE 139 22.729 7.708 54.830 ATOM AAAA O 21.538 54.757 1.00 42.61 ATON 1375 Q ILE 139 7.890 II AAAA 23.286 53.873 1.00 35.29 1376 VAL 6.997 ATON 11 1401.00 32.39 AAAA C VNL22.533 52.755 **ATOH** 1378 ÇA 140 6.481 1.00 36.05 21.967 51.881 AAAA C 1379 VAL 7.627 HOTA CB 140 1380 CG1 VAL 22.800 8.375 50.881 1.00 25.88 AAAA C 140 ATOH: AAAA C ATOM 1381 CG2 VAL 140 20.807 7.034 51.047 1.00 34.96 AAAA C 23.422 1.00 41.96 HOTA 1382 C VAL 140 5.670 51.874 AAAA O 24.537 6.172 1.00 44.03 51.637 MOTA 1383 0 VAL 140 1.00 42.66 22.899 AAAA II 1384 4.562 51.402 11 GLY 141 MOTA 23.381 50.278 1.00 30.94 AAAA C 1386 CA GLY 3.805 **ATOM** 141 AAAA C ATOM: 1387 C GLY 141 24.265 2.696 50.835 1.00 38.98 25.132 1.00 35.87 AAAA O 2.003 50.176 **ATOH** 1388 0 GLY 141 52.116 1.00 38.92 II AAAA 23.985 1389 11 ASH 142 2.418 ATOI1 AAAA C 24.858 52.746 1.00 44.32 MOTA 1391 CA IIRA 142 1.390 25.257 AAAA C 54.187 1.00 43.12 ATOH: 1392 CB ASH 142 1.774 AAAA C 1.00 42.00 1393 ASH 26.131 3.022 54.152 ATOM CG142 26.984 AAAA O 53.269 1.00 40.47 ATOH. 1394 OD1 ASH 142 3.077 55.019 1.00 41.98 AAAA II 4.022 1395 HD2 ASH 25.945 ATOLL 142 AAAA C 24.153 1.00 45.84 1398 **ASII** 0.066 52.687 ATOH C 142 52.055 1.00 49.65 AAAA O 1399 142 23.113 -0.015ATON Ö ASH -0.99053.272 1.00 45.23 II AAAA 1400 11 24.574 ATOU LTS 143 AAAA C 24.073 -2.29953.195 1.00 49.14 ATOH 1402 CYLTS 143 AAAA C 1403 CB LYS 143 25.166 -3.328 53.433 1.00 41.49 ATOH 53.832 1.00 44.96 AAAA C 24.750 ATOH 1404 CG LYS 143 -4.686 AAAA C -5.743 53.100 1.00 48.66 25.512 ATOH 1405 CD LTS 143 1.00 38.35 AAAA C 25.043 53.558 ATOH 1406 CE LYS 143 -7.131 53.040 1.00 53.83 II AAAA 26.080 ATOH 1407 112 LYS 143 -8.093 54.169 1.00 52.85 22.902 -2.431AAAA C 1411C LYS ATOH. 143 AAAA O 1412 0 LYS 143 22.960 -2.09955.360 1.00 55.21 ATON L: AAAA 21.806 53.731 1.00 52.39 ATOH 1413 11 PRO 144 -3.04752.315 AAAA C 1.00 52.58 21.617 -3.469 ATOM: 1414 ÇD PRO 144 54.489 1.00 48.30 AAAA C 20.559 -3.118 1415 HOTA CA PRO 144 AAAA C 19.549 53.455 1.00 51.41 1416 CB PRO 144 -3.602 **ATOH** AAAA C 52.099 1.00 50.41 1417 CG PRO 144 20.134 -3.299ATOH 55.659 1.00 44.65 AAAA C 20.621 -4.050 ATOH 1418Ċ PRO 144 1.00 36.84 AAAA O 20.904 55.501 1419 144 -5.236ATOH 0 PRO II AAAA 20.318 -3.533 56.859 1.00 45.12 ATOH 1420 **PRO** 145 11 1.00 38.17 20.123 -2.05457.094 AAAA C ATOH 1421 CDPRO 145 58.128 1.00 40.19 AAAA C -4.233 1422 CA PRO 145 20.448 ATOH AAAA C 59.099 1.00 37.08 1423 145 19.704 -3.288 ATOM CB PRO 58,602 1.00 33.65 AAAA C 1424 145 20.040 -1.910ATOH CG PRO 1.00 47.17 AAAA C 19.993 58.155 **ATOH** 1425 C PRO 145 -5.655 1.00 48.05 AAAA O 20.556 ATOH 1426 0 PRO 145 -6.59258.768 AAAA II 18.979 -5.92457.489 1.00 53.72 MOTA 1427 Π LïS 146 57.295 1.00 56.94 AAAA C 1429 CA LTS 146 18.268 -7.229 HOTA 56.647 1.00 65.44 AAAA C 16.894 ATOH 1430 CB LïS 146 **-7.050** AAAA C LYS 16.220 -8.232 55.982 1.00 64.32 **HOTA** 1431 CG 146 AAAA C 14.797 0.01 62.75 ATO!! 1432 CD LYS 146 -8.422 56.451 AAAA C 55.934 0.01 62.14 **ATOH** 1433 CE LYS 146 14.194 -9.717 10.700 AAAA H 0.01 61.38 LTS -9.61055.753 **ATOH** 1434 $\mathbb{H}\mathbb{Z}$ 146 1.00 61.40 AAAA C 19.138 1438 -8.13856.446 ATOH CLYS 146 19.237 -9.346 1.00 66.22 AAAA O 56.732 HOTA 1439 LTS 146 O 1440 19.779 1.00 62.92 H AAAA -7.649 55.389 ATOH 11 GLU 147

20.827

21.101

-8.446

1442

1443

ATOH

ATOH

CA.

CB

GLU

GLU

147

147

54.742 1.00 67.00

-8.070 53.294 1.00 62.32

AAAA C

AAAA C

15/58 50.567 АТОИ CGGLU 147 -7.5791.00 73.15 AAAA C 1444 19.867 51.093 AAAA C **ATOM** 1445 CDGLŲ 147 -7.4131.00 85.90 20.164 1.00 95.25 1446 OE1 GLU -7.636 50.701 AAAA O MOTA 147 21.339 1447 OE2 GLU ATO11 147 19.201 -7.053 50.376 1.00 87.47 AAAA O **ATOH** 1448 Ç GLU 147 22.136 -8.47055.541 1.00 69.40 AAAA C 22.883 1.00 72.86 AT'OH 1449 0 GLU 1.17 -9.437 55.361 AAAA O 1.00 66.76 1450 14 CYS 56.355 AAAA II ATOH 148 22.506 -7.484 CYS 57.183 1.00 64.65 AAAA C ATOH 1452 CA 148 23.693 -7.588 AAAA C С 1453 CTS -8.702 1.00 65.56 HOTA 148 23.598 58.196 1.00 65.89 1454 0 CYS -9.52458.414 AAAA O ATOM 148 24.473 1455 CYS 23.952 -6.30158.001 1.00 57.29 AAAA C MOTA CB 148 1.00 59.22 ATOH 1456 SG CTS 148 24.565 -5.09156.808 AAAA S 1.00 67.88 GLY ATOH 1457 11 149 22.514 -8.74358.977 II AAAA II 1459 CA GLï -9.7441.00 62.15 AAAA C ATOH. 149 22.387 60.029 C GLT -9.627 1.00 59.18 AAAA C 1460 61.120 ATOH 149 23.443 61.699 1.00 61.11 AAAA O HOTA 1461 0 GLT 149 23.925 -10.603ATOM 1462 11 ASP 150 23.717 -8.426 61.596 1.00 54.88 II AAAA II 24.794 1.00 55.78 ATOM. 1464 CA ASP 150 -8.198 62.533 AAAA C 1.00 49.10 ASP AAAA C 1465 CB 25.041 -6.70362.750 ATOH 150 AAAA C ASP 1.00 58.50 1466 CG150 25.320 -6.034 61.410 ATON 1467 OD1 ASP 25.726 -6.7961.00 57.73 AAAA O HOTA 150 60.480 1468 OD2 ASP -4.819 1.00 49.69 ATOM 150 25.102 61.363 AAAA O 1469 CASP 150 24.519 -8.85463.855 1.00 59.36 AAAA C ATOH AAAA O 1470 0 ASP 1.00 67.48 MOTA 150 23.392 -8.82064.377 64.524 1.00 54.39 1471 LEU -9.369AAAA 11 ATOM М 151 25.532 CA 65.853 1.00 52.79 AAAA C АТОН 1473 LEU 151 25.314 -9.9081474 CB LEU 65.806 1.00 58.55 AAAA C ATOM 151 25.208 -11.409 ATOH 1475 CG LEU 151 24.063 -12.101 65.092 1.00 69.45 AAAA C 24.515 -13.421 1.00 65.26 AAAA C 1476 CD1 LEU ATOH 151 64.489 22.937 -12.372 1.00 65.43 1477 CD2 LEU AAAA C HOTA 151 65.951 1478 C LEU -9.454 1.00 51.93 AAAA C ATOH 151 66.805 26.409 **ATOM** 1479 Q LEU 151 27.598 -9.734 1.00 55.59 AAAA O 66.634 CTS ATOM 1480 11 152 26.024 -8.773 67.849 1.00 48.62 II AAAA 68.740 1482 CA CTS 26.992 -8.189 1.00 56.73 AAAA C HOTA 152 1483 С CYS -9.325AAAA C **ATOH** 152 69.493 1.00 63.58 27.650 1484 0 CYS HOTA 152 27.074 -10.405 69.575 1.00 62.40 AAAA O HOTA 1485 CB CYS 152 26.358 -7.14469.657 1.00 41.99 AAAA C 1486 SG CYS **ATOH** 15225.985 -5.63568.703 1.00 55.83 AAAA S 1487 11 PRO 1.00 68.05 ATON 153 28.826 -9.07270.059 II AAAA 1.00 66.66 MOTA 1488 CD PRO 153 -7.838 AAAA C 29.618 69.903 1489 CA PRO 29.497 -10.094 1.00 70.60 AAAA C ATOM 153 70.851 1490 CB ATOM PRO 153 30.601 -9.32371.557 1.00 69.98 AAAACMOTA 1491 CG PRO 153 -8.15970.690 1.00 70.58 AAAA C 30.861 MOTA 1492 С PRO 28.543 -10.734 1.00 69.64 AAAA C 153 71.850 1493 O **PRO** AAAA O ATOM 153 27.859 ~10.075 72.615 1.00 69.58 1494 И GLY 28.444 -12.049 71.843 1.00 71.23 II AAAA MOTA 154 1496 GLY 1.00 78.07 AAAA C ATOH CA 154 27.610 -12.804 72.745 1497 72.223 **ATOH** С GLT 26.245 -13.230 1.00 81.75 AAAA C 1541498 25.786 -14.318 72.547 ATOU 0 GLY 1.00 80.26 AAAA O 154 1499 11 THR 25.549 -12.468 ATCH 155 71.314 1.00 84.54 II AAAA II ATCH! 1501 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C AAAA C 1502 CB THR 69.705 **ATOH** 155 24.016 ~11.661 1.00 85.07 1593 OG1 THR 70.420 O AAAA ATOH 155 24.063 -10.417 1.00 84.51 ATOH 1505 CG2 THR 155 69.092 AAAA C 22.686 -11.995 1.00 82.27 1506 ATOH 24.060 -14.094 70.353 1.00 93.69 AAAA C ATOH 1507 O THR 155 70.617 1.00 95.92 AAAA O 23.005 -14.664 HOTA 1508 N HET 156 25.003 -14.655 69.617 1.00 97.23 H AAAA 1510 CA HET 69.024 AAAA C ATOH 156 24.884 -15.973 1.00 99.05 AAAA C ATO14 1511 MET 25.907 -16.190 67.896 1.00100.40 CB 156 1512 CG ATO: TBM 156 0.01 99.75 AAAA C 25.456 -15.675 66.542 ATOH 1513 SD HET 23.687 -15.857 0.01 99.72 AAAA S 156 66.255 ATOM 1514 CE MET 0.01 99.59 AAAA C 156 23.664 -17.214 65.087 1.00100.57 **ATOM** 1515 C 25.027 -17.106 AAAA C HET 156 70.032 1516 0 ATOH HET 156 24.353 -18.122 69.835 1.00101.64 AAAA O **ATOH** 1517 11 ALA 157 25.974 -17.057 70.967 1.00100.53 H AAAA H ATOH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C **ATOH** 1520 CB 157 27.317 -18.158 AAAA C ALA 72.766 1.00103.42 1521 72.959 AAAA C ATOH C 157 ALA 24.856 -17.890 1.00101.10 1522 O 157 ATOH ALA 23.893 -18.654 72.921 1.00104.59 AAAA O 1523 H **ATOH** GLU 158 24.984 -16.906 73.841 1.00 98.39 II AAAA 1525 CA ATOH GLU 23.935 -16.629 AAAA C 158 74.781 1.00 97.43 ATON 1526 GLU CB 158 1.00105.93 AAAA C 23.128 - 17.86575.208 ATOH: 1527 CG 21.587 -17.546 AAAA C GLU 158 75.560 1.00113.87 ATOM 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C 1529 OE1 GLU **ATOH** 158 21.284 -15.733 74.096 1.00126.27 AAAA O **ATOH** 1530 OE2 GLU 158 O AAAA 21.199 -15.317 76.282 1.00117.79 ATOI1 1531 Ć GLU 158 76.025 1.00 95.00 AAAA C 24.434 -15.915 ATOH 1532 0 GLU 158 77.145 1.00 95.89 AAAA O 23.988 -16.117 ATOH 1533 II SER 159 75.769 1.00 93.30 AAAA II 25.276 -14.942 HOTA 1535 CA SER 159 25.810 -14.119 76.848 1.00 92.28 AAAA C HOTA 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1537 OG SER 159 1.00 98.08 AAAA O 26.972 -14.427 78.886 1539 0 SER 159 ATOH 26.228 -12.793 76.226 1.00 91.47 AAAA C 1540 0 3ER ATO!! 159 27.368 -12.592 75.810 1.00 92.75 AAAA C

II AAAA

1541 11

PRO

160

25.196 -12.007 75.932 1.00 88.65

MOTA

WO 99/28347 PCT/AU98/00998

16/58 76.395 1.00 86.67 AAAA C ATON 1542 CD FRO 16023.789 ~12.122 AAAA C 75.361 1.00 84.74 ATO:4 1543 CA PRO 160 25.463 -10.701 -9.978 75.456 1.00 84.79 AAAA C 24.125 ATOH 1544 CB PRO 160 76.515 1.00 84.62 AAAA C PRO 23.370 ~10.671 ATOH 1545 $\mathbb{C}\mathsf{G}$ 160 ATOM 1546 C PRO 160 26.503 -10.025 76.236 1.00 79.60 AAAA C 26.319 77.456 1.00 79.70 AAAA O -9.934 ATON 1547 0 PRO 160 1.00 74.45 H AAAA H 27.563 -9.522 75.596 1548 MOTA 11 HET 161 AAAA C 28.530 -8.735 76.378 1.00 67.04 ATOM 1550 CA MET 161 -9.178 76.038 AAAA C MOTA 1551 CB MET 161 29.924 1.00 69.93 AAAA C 30.118 -10.630 75.706 1.00 71.43 ATOI I 1552 CG MET 161 77.094 1.00 85.25 AAAA S 1553 30.716 -11.621 ATOM SD MET 161 78.471 AAAA C 29.841 -10.905 1.00 69.31 ATOM 1554 CE MET 161 -7.234 1.00 61.76 AAAA C ATOt1 1555 HET 161 28.358 76.189 C -6.443 ΑΑΑΑ Ο ATOH 1556 HET 161 28.788 77.034 1.00 58.60 0 II AAAA -6.819 75.095 1.00 54.81 ATOH 1557 И CYS 162 27.681 AAAA C 27.493 -5.38474.938 1.00 49.76 ATOH 1559 ÇA CYS162 -4.777 AAAA C CYS 162 26.306 75.670 1.00 51.52 ATOM 1560 Ĉ 25.224 -5.32475.928 1.00 53.89 AAAA O ATOM 1561 CYS 162 0 AAAA C ATOI 1 1562 CYS 162 27.422 -5.09973.459 1.00 48.31 CB 72.432 1.00 54.02 AAAA S ATOI-1563 SGCLR 152 28.533 -6.064AAAA N GLU 26.409 -3.52276.031 1.00 46.31 ATOH 1564 14 163 76.538 AAAA C 25.355 -2.6751.00 47.19 ATOM 1566 CA GLU 163 AAAA C -1.41277.027 1.00 49.95 ATOM 1567 GLU 163 26.051 ÇВ 26.476 -1.36478.465 1.90 62.30 AAAA C **ATOH** 1568 CG ĞLU 163 AAAA C ATOH 1569 CD GLU 163 25.317 -0.13579.116 1.00 81.67 AAAA O OE1 GLU 26.470 0.473 80.016 1.00 73.22 ATON 1570 163 AAAA O OE2 GLU 24.646 0.208 78.721 1.00 80.93 NOTA 1571 163 24.299 -2.34075.472 1.00 49.05 AAAA C 1572 С GLU 163 ATO/4 -2.42374.234 1.00 45.90 AAAA O ATO11 1573 GLU 163 24.488 0 75.880 AAAA H ATOH 1574 11 LYS 164 23.142 -1.8151.00 47.43 1.00 43.92 75.081 AAAA C -1.499ATOM 1576 CA LïS 164 22.011 75.450 1.00 44.48 AAAA C MOTA 1577 CB LYS 164 20.714 -2.244-3.63974.870 1.00 48.65 AAAA C ATOH 1578 CG LYS 164 20.560 AAAA C ATOH 1579 CD LYS 19,480 -4.432 75.622 1.00 49.04 164 AAAA C 18.409 -5.01274.720 1.00 49.21 ATON 1580 CE LYS 164 LTS 17.951 -6.37275.134 1.00 37.67 H AAAA ATOI1 1581 112 164 -0.040 AAAA C 21.615 75.204 1.00 45.01 ATO:1 1585 C LYS 164 LïS 21.466 0.484 76.282 1.00 45.69 AAAA O **ATOM** 1586 0 164 21.333 74.034 1.00 44.94 H AAAA **ATOM** 1587 \mathbf{H} THR 165 0.570 AAAA C ATOM 1589 20.775 1.943 74.077 1.00 43.13 CA THR 165 73.553 AAAA C AT'OH 1590 21.831 2.952 1.00 47.81 CB THR 165 1.90 39.13 AAAA O 22.053 72.127 ATOI1 1591 OG1 THR 165 2.689 1.00 40.40 1593 CG2 THR 165 23.119 2.842 74.362 AAAA C ATOM 73.189 AAAA C ATOI1 1594 C THR 165 19.532 1.881 1.00 40.92 0.897 1.00 35.91 AAAA O 19.346 72.414 ATOM 1595 0 THR 165 73.173 1.00 39.18 II AAAA ATOH: 1596 THR 18.781 2.985 \mathbb{H} 166 17.689 2.991 72.182 1.00 42.97 AAAA C ATOM 1598 CA THR 166 AAAA C ATOH 1599 CB THR 166 16.297 3.096 72.833 1.00 55.99 O AAAA OG1 THR 72.819 1.00 41.42 **ATOH** 1600 166 15.662 4.385 74.313 1.00 42.83 AAAA C 1602 CG2 THR 16.157 2.740 ATOH 166 1.00 40.17 AAAA C **ATOH** 1603 17.983 4.051 71.137 C THR 166 71.509 HOTA 1604 THR 18.219 5.206 1.00 35.72 AAAA O 0 166 1605 \mathbb{H} ILE 17.912 3.725 69.866 1.00 42.21 H AAAA **ATOM** 167 1.00 41.05 68.777 AAAA C HOTA 1607 CAILE 167 18.182 4.672 67.904 1.00 39.50 AAAA C 1608 157 АТОИ ILE 19.437 4.335 CG2 ILE 5.346 66.716 1.00 15.26 AAAA C **ATOH** 1609 167 19.589 68.724 AAAA C HOTA CG1 ILE 20.722 1.00 36.201610 167 4.305 1.00 35.70 AAAA C CD1 ILE 67.966 ATOM 1611 167 21.899 3.665 1.00 40.94 AAAA C ATOH 1612 CILE 167 16.937 4.524 67.882 1.00 35.51 AAAA O ATOH. 1613 0 ILE 167 16.655 3.435 67.394 II AAAA 1.00 42.29 MOTA 1 1614 16.318 5.635 67.537 11 ASH 168 HOTA 15.112 66.713 1.00 45.22 AAAA C 1616 ASH 168 5.633 CA AAAA C **HOTA** 1617 СB **ASII** 168 15.526 5.253 65.292 1.00 45.69 AAAA C 14.497 64.244 1.00 51.19 ATOH 1618 ÇĞ ASII 168 5.696 AAAA O 1.00 41.75 ATOM 1619 14.344 63.150 OD1 ASH 168 5.112 HD2 ASH 64.522 1.00 48.89 H AAAA II ATOH: 1620 168 13.749 6.763 ATOH 1623 13.954 4.739 67.141 1.00 46.55 AAAA C С ASH 168 AAAA O ATOH 13.544 66.326 1.00 45.95 1624 0 ASII 168 3.879 ATOH 68.433 1.00 45.12 II AAAA 1625 11 ASII 169 13.644 4.728 AAAA C HOTA 1627 12.717 3.759 69.007 1.00 43.67 CA ASII 159 ATOH! 1628 11.315 4.106 68.5401.00 36.84 AAAA C CB ASII 169 10.943 AAAA C 69.093 1.00 42.75 IOTA 1629 CG ASII 169 5.487 70.280 AAAA O ATOI1 1630 OD1 ASN 10.917 5.779 1.00 36.67 169 AAAA 11 ATOH 1631 MD2 ASH 10.658 68.213 1.00 40.74 169 6.448 AAAA C 68.719 1.00 44.69 ATOM: 1634 C ASH 169 13.003 2.306 ATOM 1635 ASII 12.100 68.383 1.00 45.72 AAAA O 0 169 1.544 II AAAA ATOI1 1636 11 GLU 170 14.226 1.907 68.862 1.00 41.64 ATOH 1638 1.00 45.88 AAAA C CA GLU 170 14.655 0.513 68,850 AAAA C ATOM 1639 CB GLU 170 15.283 67.524 1.00 55.92 0.278 ATOH CG GLU 15.028 -0.95366.702 1.00 67.08 AAAA C 1640 170 ATON 1641 CD GLU 170 14.517 -0.60565.294 1.00 74.56 AAAA C ATOH 1642 OE1 GLU 170 13.869 65.049 1.00 77.75 AAAA O 0.466ATOH OE2 GLU 14.763 64.389 1.00 70.71 AAAA O 1643 170-i.437C70.010 1.00 47.10 AAAA C ATOH 1644 GLU 15.647 170 0.37970.213 1.00 49.92 ATOH 1645 0 GLU 170 16.582 1.172 AAAA O

17/58 70.952 ATOH 1546 TTR1.00 49.10 AAAA II 11 171 15.344 -0.460 ATOH 1648 CATTR 171 -0.688 70.097 1.00 51.81 AAAA C 16.231 1.00 49.94 TTR AAAA C ATOH 1649 CB171 15.434 -0.86173.359 1.00 48.90 TTR AAAA C ATOH 1650 CG16.175 74.620 173 -1.168AAAA C CD1 TYR 75.237 1.00 46.46 ATON 1651 171 16.980 -0.210CE1 TYR 76.407 1.90 41.17 AAAA C ATON 1652 171 -0.469 17.634 CD2 TYR 1.00 43.62 AAAA C MOTA 1653 171 16.065 -2.42975.194 CE2 TYR AAAA C -2.6751.00 44.44 1654 171 76.366 ATOL 16.734 TTR 76.973 AAAA C 1655 CI 17.516 -1.7181.00 43.58 ATOH 171 1656 OH TTR -2.017 78.146 1.00 40.16 O AAAA ATOH 171 18.174 C TYR -1.938 71,832 1.00 51.41 AAAA C ATOM 1658 171 17.058 1.00 52.59 -3.024MOTA 1659 O TYR 171 16.519 71.889 AAAA O 1660 1.00 53.70 AAAA II ATOH 11 ASII 172 18.331 -1.75271.493 1.00 52.36 ASII AAAA C 1662 CA 19.203 -2.898 71.193 ATON 172 1.00 55.43 1663 ASII 172 19.085 -3.278 69.709 АЛАЛ С ATOH CBATOH 1664 CGASII 172 18.939 -4.766 69.498 1.00 61.75 AAAA C 1665 ODI ASII 172 19.233 -5.646 70.304 1.00 61.61 AAAA O ATOH: ASH 1.90 57.97 1666 HD2 172 -5.048 68.295 AAAA II ATOH 18.449 1.00 43.81 1669 C ASII 172 -2.712 71.560 AAAA C ATOH 20.665 1670 \circ ASI! 172 -1.76072.213 1.00 39.38 AAAA O ATOH 21.163 ATOM 1671 11 TTR 173 21.373 -3.79671.393 1.00 43.20 II AAAA II 1.00 44.76 71.698 1673 CATIR 173 22.794 -3.929 AAAA C ATOH 1.00 41.66 1674 CB TTR173 23.223 -5.374 71.514 AAAA C ATCH TIR 1.00 45.18 ATO!! 1675 CG173 22.759 -6.274 72,630 AAAA C CD1 TYR 1576 -7.316 72.237 1.00 46.48 AAAA C ATOH 173 21.931 CE1 TYR ATOH 1677 173 21.438 -8.181 73.193 1.00 51.36 AAAA C CD2 TYR AAAA C 1678 173 23.081 -6.132 73.978 1.00 44.86 ATOM 74.916 1679 CE2 TYR 173 22.583 -7.0161.00 46.92 AAAA C ATOH 1680 CC TYR 173 21.757 -8.038 74.535 1.00 50.33 AAAA C ATOH AAAA O 1581 OH TTR 173 21.171 -9.006 75.328 1.00 50.64 ETOH. AAAA C 1683 \mathcal{C} TTR23.673 -3.099 70.762 1.00 46.94 ATOH 173 69.567 1684 O TTR 23.389 -2.983 1.00 49.76 AAAA O ATOH 173 1685 1.00 47.79 11 ARG 174 24.579 -2.31871.366 AAAA N ATOM ATOM 1687 CA ARG 174 25.517 -1.49670.577 1.00 49.13 AAAA C 1688 CB ARG 25.537 -0.13271.233 1.00 44.32 AAAA C ATOH 174 71.234 1.00 48.14 1689 CG ARG AAAA C ATOH 174 24.210 0.623 1690 MOTA CD**A.RG** 23.372 70.003 1.00 51.47 AAAA C 1740.344 ATOH 1691 HE ARG 174 21.974 0.760 70.039 1.00 48.35 I! AAAA CZ 1693 ARG 69.017 1.00 48.23 AAAA C HOTA 174 21.144 0.570 1694 1.00 38.96 HOTA 11H1ARG 174 21.477 0.022 67.864 N AAAA 1697 HH2 ARG 1.00 54.65 MOTA 174 19.909 1.022 69.197 II AAAA 1700 C ARG 174 26.921 -2.09470.461 1.00 45.98 AAAA C ATOM 1701 ARG 71.406 1.00 44.97 AAAA O MOTA 0 174 27.548 -2.557**ATOM** 1702 1.1 CYS 69.294 1.00 46.21 II AAAA 175 27.493 -2.1831704 CA CYS 1.00 45.60 AAAA C **ATOH** 175 28.787 -2.75868.997 ATOM 1705 C CYS 175 -2.395 1.00 46.23 AAAA C 29.407 67.665 1706 -2.018 1.00 44.78 ATOH. 0 CTS 175 28.755 66.665 AAAA O **ETOH** 1707 CB CYS 28.576 -4.25369.167 1.00 35.62 AAAA C 175 CIS 67.827 1708 ŞG 27.812 -5.181 1.00 51.92 AAAA S ATOH 175 1709 13 TRP 67.583 1.00 48.16 AAAA II STOH 176 30.764 -2.5171.00 42.48 ATOM 1711 CATRP -2.09166.325 AAAA C 176 31.430 C AAAA 1712 ATOH CB TRP 176 32.769 -1.40966.564 1.00 36.38 AAAA C TRP 1713 CG 1.00 25.56 ATOH 176 32.689 -0.06967.203 TRF66.480 1.09 23.71 AAAA 🖸 ATOH 1714 CD2 176 32.588 1.186 **ETCH** 1715 CE2 TRP AAAA C 17632.559 67.422 1.00 32.40 1716 CE3 TRP 65.141 1.00 24.31 AAAA C ATON 176 32.535 1.520 AAAA C ATOM: 1717 CD1 TRE 176 32.730 0.25768.525 1.00 28.37 1718 HE1 TRE 68.678 1.00 37.21 H AAAA ATOH 176 32.636 1.636 AAAA C HOTE 1720 CC2 TRP 32.441 67.088 1.00 28.51 176 3.565 HOTA 1721 CZ3 TRP 32.447 2.822 64.789 1.00 22.23 AAAA C 176 AAAA C 1722 CH2 TRP **ATOM** 32.406 65.745 1.00 29.51 176 3.817 AAAA C ATOI1 1723 C TRP 176 31.631 65.408 1.00 39.30 ~3.268 ATOH 1724 -3.121 64.199 1.00 39.15 AAAA O O TRP 176 31.703 AAAA N ATOH: 1725 II THR 177 31.682 -4.460 66.005 1.00 41.33 AAAA C ATON 1727 CA THR 177 31.964 65.161 1.00 49.28 -5.644 1728 CB AAAA C MOTA THR 33.480 -6.062 1.00 43.66 177 65.162 34.309 AAAA O ATOM 1729 OG1 THR 177 64.613 1.00 47.85 -5.025 HOTA 1731 CG2 THR 177 33.676 -7.271 64.283 1.00 58.51 AAAA C ATOH: 1732 C THR 177 31.290 -6.81465.858 1.00 48.76 AAAA C **ATON** 1733 0 THR 177 30.982 67.001 1.00 51.53 O AAAA -6.5391734 11 55.331 1.00 51.96 II AAAA II ATOH: THR 178 31.269 -8.000ATOM 1736 CA THR178 30.924 -9.236 65.946 1.00 58.95 AAAA C ATOM 1737 CB THR 179 31.253 -10.500 65.082 1.00 66.55 AAAA C **ATOM** 1738 OG1 THR 1.00 75.70 AAAA O 178 31.505 -10.066 63.73-ATOH 1740 CG2 THR 178 30.104 -11.489 65.148 2.00 74.23 AAAA C HOTA 1741 C THR 178 31.714 - 9.53967.213 1.00 60.25 AAAA C ATOH 1742 0 178 31.204 -10.202 68.135 1.00 66.05 AAAA O THR32.977 -9.130 MOTA 1743 II ASII 179 67.253 1.00 57.56 AAAA 11 **ATOH** 1745 CA ASH 179 33.793 -9.392 68.443 1.00 53.39 AAAA C ATOH 179 1746 CB ASH 35.130 -10.024 1.00 48.46 AAAA C 68.068 ATOH 1747 ÇG ASII 179 34.997 -11.218 67,128 1.00 56,25 AAAA C ATOH 34.412 -12.294 1748 OD1 ASH 179 67.553 1.00 51.38 O AKAK

ATOH

ATOH

ATOH

1749 HD2 ASH

E.511

ASH

1752 C

1753 0

120

179

179

35.229 -11.063

34.096 -8.199

65.863 1.00 48.10

69.200 1.00 50.78

34.556 -8.377 70.426 1.00 57.97

AAAA II

AAAA C

O AAAA

				22 626	* **			
ATOH	1754		RG 180	33.626	-7.022	68.913	1.00 47.06	II AAAA
ATOH	1756	CA A	RG 180	33.808	-5.820	69.691	1.00 48.25	AAAA C
ATOH	1757	CB A	RG 180	34.925	-4.962	69.074	1.00 49.72	AAAA C
ATOLL	1758	CG A	RG 180	36.324	-5.501	69.285	1.00 60,92	AAAA C
					-4.948	68.279	1.00 70.83	AAAA C
ATON	1759		RG 180	37.288				
ATOH	1760	HE A	RG 180	38.569	-5.605	68.203	1.00 76.18	AAAA 11
ATOH	1762	CC A	RG 180	39.298	-5.895	69.276	1.00 76.59	AAAA C
ATOH	1763	ині А	RG 180	38.877	-5.608	70,498	1.00 80.82	II AAAA II
ATOH	1766	ина А		40.474	-6.478	69.180	1.00 79.33	II AAAA
ATOH	1769	C A	RG 180	32.530	-4.977	69.821	1.00 48.10	AAAA C
ATOI1	1770	O A	RG 180	31.862	-4.476	68.905	1.00 46.99	AAAA O
	1771		YS 181	32.230	-4.728	71.063	1.00 44.80	AAAA II
ATOH								
ATOM	1773	CA C	TS 181	31.199	-3.924	71.619	1.00 45.20	aaaa c
ATOI:1	1774	C C	YS 181	31.646	-2.463	71.692	1.00 44.50	AAAA C
ATOM	1775		7S 181	32.835	-2.227	71.724	1.00 47.09	AAAA O
ATOH	1776		TS 181	30.940	-4.282	73.110	1.00 43.88	AAAA C
ATOM	1777	SG C	YS 181	30.363	-5.944	73.346	1.00 56.08	AAAA S
ATOH	1778	11 G	LH 182	30.659	-1.600	71.690	1.00 39.30	AAAA 11
ATON	1780		LH 182	30.948	-0.177	71.690	1.00 43.43	AAAA C
							1.00 23.99	
ATOH.	1781		LII 182	29.749	0.619	71.196	• • • • • • • • • • • • • • • • • • • •	AAAA C
ATOI:1	1782	CG G	LN 182	29.809	2.085	71.435	1.00 28.57	AAAA C
ATOH	1783	CD G	LII 182	28.757	2.867	70.733	1.00 29.35	AAAA C
ATOM	1784		LD 182	27.898	2.304	70.033	1.00 38.55	AAAA O
ATOH	1785	NE2 G	LII 182	28.857	4.164	70.912	1.00 28.14	II AAAA
ATOH	1798	C G	LII 182	31.218	0.089	73.162	1.00 46.07	AAAA. C
ATOIL	1789		Lii 182	30.458	-0.327	74.041	1.00 47.01	AAAA O
ATOI1	1790		TS 183	32.213	0.866	73.524	1.00 46.98	II AAAA
ATOH	1792	CA L	YS 183	32.479	1.064	74.934	1.00 45.26	AAAA C
ATOH.	1793	CB L	YS 183	33.966	1.275	75.185	1.00 48.68	AAAA C
ATOH:	1794		TS 183	34.865	0.267	74.482	1.00 47.95	AAAA C
ATOI1	1795		TS 183	36.337	0.734	74.523	1.00 48.06	AAAA C
ATOH	1796	CE L	TS 183	37.178	-0.208	73.684	1.00 46.78	AAAA C
ATOH	1797	HE L	YS 183	38.499	-0.654	74.158	1.00 44.00	11 AAAA
ATOM	1801		YS 183	31.659	2.205	75.477	1.00 48.13	AAAA C
ATOH	1802		YS 183	31.679	3.305	74.946	1.00 48.84	AAAA O
ATOH	1803	11 11	ET 184	31.165	2.014	76.698	1.00 52.59	AAAA !!
ATOH	1895	CA 11	ET 184	30.388	3.041	77.413	1.00 53.22	AAAA C
ATOM	1806		ET 184	28.927	2.613	77.537	1.00 54.27	AAAA C
ATOM	1807		ET 184	27.855	2.955	76.536	1.00 56.16	AAAA C
HOTA	1808	SD 11	ET 184	26.911	1.601	75.912	1.00 57.56	AAAA S
MOTA	1809	CE 11	ET 184	26.738	1.855	74.171	1.00 46.57	AAAA C
ATON	1810		ET 184	31.051	3.200	78.770		AAAA C
ATON	1811		ET 184	31.770	2.292	79.116	1.00 48.82	AAAA O
ATOM	1812	II C	TS 185	30.796	4.195	79.565	1.00 53.97	II AAAA
ATOH	1814	CA C	YS 185	31.342	4.365	80.892	1.00 58.63	AAAA C
ATOI-1	1815		YS 185	30.297	4.320	81.989	1.00 65.16	AAAA C
ATOH	1816		TS 185	29,133	4.649	81.761	1.00 65.87	AAAA O
ATOM:	1817	CB C	YS 185	31.965	5,772	81.000	1.00 60.37	AAAA C
ATOH	1818	SG C	YS 185	33.623	5,771	80.312	1.00 60.09	AAAA S
ATO!!	1819		RO 186	30.688	3.978	83.206	1.00 69.41	AAAA II
ATOH	1820	CD &	RO 186	32.066	3.777	83.702	1.00 71.11	AAAA C
ATOH	1821	CA F	RO 186	29.717	3.933	84.304	1.00 69.11	AAAA C
ATOH	1822	CB P	RO 186	30.523	3.487	85.503	1.00 68.03	AAAA C
ATOH	1823		RO 186	31.910	3.920	85.198	1.00 71.02	AAAA C
ATOH	1824		RO 186	29.120	5.320	84.431	1.00 69.47	AAAA C
ATOH	1925	9 0	RO 186	29.820	6.345	84.507	1.00 65.93	AAAA O
LIOTA	1826	11 S	ER 187	27.801	5.367	84.546	1.00 68.78	II AAAA
ATOI1	1828		ER 187	27.050	6.592	84.750	1.00 69.29	AAAA C
ATOLL	1829		ER 187	25.594	6.287	85.129		AAAA C
HOTA	1830	OG S	ER 187	25.474	4.935	85.566	1.00 91.78	O AAAA
MOTA	1832	c s	ER 187	27.630	7.476	85.836	1.00 67.19	AAAA C
MOTA	1833		ER 197	27.606	8.708	85.803	1.00 63.98	AAAA O
ATOM	1834		HR 188	28.108	6.853	86.908	1.00 68.20	AAAA H
ATOM	1836		HR 188	28.870	7.507	87.963	1.00 68.39	AAAA C
ATOM	1837	CB T	HR 188	29.805	6.459	88.618	1.00 73.84	AAAA C
ATOI1	1838	OG1 T	HR 188	28.943	5.365	89.016	1.00 89.33	AAAA O
ATOM	1840	CG2 T		30.605	7.048	89.759	1.00 73.71	AAAA C
ATOM	1841		HR 188	29.802	8.583	87.429	1.00 67.52	AAAA C
ATO:1	1842	O T	HR 188	29.843	9.739	87.834	1.00 68.30	O AAAA
ATOH	1843	11 C	YS 189	30.643	8.247	86.446	1.00 63.89	II AAAA II
ATOH	1845		YS 189	31.583	9.116	85.817	1.00 57.29	AAAA C
ATON	1846		YS 189	30.951	10.331	85.195	1.00 57.70	AAAA 🤈
LIOTA	1847	0 0	73 189	31.648	11.327	85.017	1.00 57.56	AAAA O
ATO!!	1848	CB C	YS 189	32.416	8.372	84.769	1.00 58.67	AAAA C
ATOH	1849		TS 189	33.347	7.001	85.535	1.00 53.46	AAAA S
ATON	1850		LY 190	29.689	10.322	84.806	1.00 56.91	II AAAA
ATOI:1	1852	CA G	LT 190	29.038	11.521	84.323	1.00 57.28	AAAA C
ATOH	1853	C G	LY 190	29.444	11.834	82.886	1.00 59.62	AAAA C
ATOM	1854		LY 190	29.609	10.932	82.082	1.00 57.91	AAAA O
ATOH	1855		TS 191	29.842	13.052	82.524	1.00 62.78	AAAA 11
ATOH	1857	CA L	TS 191	30.359	13.520	81.364	1.00 67.72	AAAA C
ATOH	1958		YS 191	30.058	15.035	81.214	1.00 72.76	AAAA C
ATOM	~ ~				15.288			
e4 ([]])		nn i					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	** ** * * * * * * * * * * * * * * * * *
	1859		.75 191	28.568		81.002	1.00 84.69	AAAA C
ATOH	1859 1860	CD L	.YS 191	28.207	15.288	80.723	1.00 90.25	AAAA C
	1859	CD L						

							10/00		
HOTA	1862	112	LYS	191	26.368	16.182	79,152	1.00 97.62	I AAAA
ATOI1	1866	C	LYS	191	31.868	13.299	81.270	1.00 70.13	AAAA C
ATOI1	1867	Ŏ	LYS	191	32.486	13.935	80.415	1.00 71.76	AAAA O
ATOH	1968	11	ARG	192	32.488	12.441	82.079	1.00 66.29	AAAA ::
ATO!!	1870	CA	ARG	192	33.885	12.171	82.044	1.00 59.95	AAAA C
ATOH	1871	CB	ARG	192	34.505	12.070	83.432	1.00 66.58	AAAA C
ATOI1	1872	CG	ARG	192	34.670	13.400	84.131	1.00 71.59	AAAA C
ATOH	1873	CD	ARG	192	34.386	13.330	85.625	1.00 73.91	AAAA C
ATOH	1874	HE	ARG	192	35.622	13.280	86.377	1.00 85.74	II AAAA
ATOH	1876	CZ	ARG	192	35.968	12.407	87.330	1.00 90.67	AAAA C
ATOM	1877	NH1		192	35.026	11.486	87.600	1.00 88.49	AAAA II
ATQI-1	1880	HH2	ARG	192	37.162	12.463	87.950	1.00 72.95	AAAA II
HOTA	1883	С	ARG	192	34.221	10.851	81.337	1.00 58.83	AAAA C
ATOH	1884	0	ARG	192	33.336	10.007	81.176	1.00 55.13	aaaa o
ATOH	1885	М	ALA	193	35.521	10.795	80.968	1.00 50.19	AAAA !!
ATOH	1887	CA	ALA	193	35.962	9.557	80.355	1.00 46.24	aaaa c
ATOI-1	1888	CB	ALA	193	37.167	9.921	79.541	1.00 45.15	AAAA C
									AAAA C
ATOM	1889	C	ALA	193	36.221	8.525	81.451		
ATOM	1890	0	ALA	193	36.220	8.908	82.616	1.00 44.80	O AAAA
MOTA	1891	14	CYS	194	36.544	7.304	81.065	1.00 50.30	AAAA II
ATOH	1893	CA	CYS	194	36.836	6.302	82.043	1.00 57.50	AAAA C
								1.00 61.25	AAAA C
MOTA	1894	С	CYS	194	37.834	5.304	81.448		
HOTA	1895	0	CYS	194	37.952	5.291	80.216	1.00 61.52	AAAA O
ATOI1	1896	CB	CYS	194	35.510	5.741	82.504	1.00 57.96	AAAA C
ATOH	1897	SG	CYS	194	34.785	4.524	81.402	1.00 54.49	AAAAS
									II AAAA
HOTA	1898	11	THR	195	38.422	4.499	82.311	1.00 58.51	
ATOH	1900	CA	THR	195	39.462	3.584	81.913	1.00 57.42	AAAA C
ATOH	1901	CB	THR	195	40.237	3.142	83.188	1.00 65.73	AAAA C
ATOH	1902	OG1	THR	195	40.288	4.248	84.091	1.00 70.15	C AAAA
ATOH	1904	CG2	THR	195	41.684	2.864	82.745	1.00 77.91	AAAA C
ATOH	1905	\subset	THR	195	38.857	2.404	81.226	1.00 54.59	AAAA C
11OTA	1906	0	THR	195	37.633	2.315	81.318	1.00 58.75	AAAA O
ATOM	1907	11	GLU	196			80.882	1.00 55.95	II AAAA
					39.610	1.408			
ATOM	1909	CA	GLU	196	39.139	0.145	80.364	1.00 60.07	AAAA C
ATOI1	1910	CB	GLU	196	40.395	-0.612	79.914	1.00 68.06	AAAA C
ATOH	1911	CG	GLU	196	40.479	-1.146	78.526	1.00 73.96	AAAA C
ATOM	1912	CD	GLU	196		-0.983	77.670	1.00 83.08	AAAA C
					39.235				
ATOH	1913	OE 1	GLU	196	38.356	-1.884	77.687	1.00 81.19	AAAA O
ATO!1	1914	OE2	GLU	196	39.060	0.041	76.939	1.00 82.10	AAAA C
MOTA	1915	С	GLU	196	38.382	-0.579	81.467	1.00 63.91	AAAA C
ATOM	1916			196				1.00 63.51	AAAA O
		0	GLU		37.690	-1.537	81.159		
ATOH	1917	11	ASH	197	3 8. 666	-0.312	82.739	1.00 67.40	H AAAA
MOTA	1919	CA	ASN	197	38.025	-0.947	83.886	1.00 69.21	AAAA C
ATOH	1920	CB	ASII	197	39.021	-1.394	84.966	1.00 68.49	AAAA C
								0.01 69.09	AAAA C
ATON	1921	CG	ASH	197	39.722	-2.692	84.672		
ATOH	1922	OD1	ASN	197	40.364	-3.273	85.551	0.01 69.04	AAAA O
ATO!1	1923	HD2	ASH	197	39.622	~3.183	83.443	0.01 68.97	AAAA II
ATOM	1926	С	ASH	197	37.033	0.043	84.486	1.00 69.01	AAAA C
	1927							1.00 68.24	AAAA O
ATOH		0	ASII	197	36.845	0.281	85.664		
ATOH	1928	11	ASH	1 98	36.384	0.795	83.607	1.00 69.91	II AAAA II
ATOH	1930	CA	ASII	198	35.356	1.734	84.048	1.00 68.48	AAAA C
ATOH	1931	CB	ASII	198	34.120	0.880	84.373	1.00 60.12	AAAA C
ATOH	1932	CG	ASII	198		0.095	83.102	1.00 69.29	AAAA C
					33.806				
ATOH	1933		ASH	1 98	33.475	0.654	82.054	1.00 73.20	AAAA O
ATOH	1934	HD2	ASH	198	33.980	-1.206	63.268	1.00 65.34	AAAA ::
HOTA	1937	С	ASII	198	35.784	2.563	85.228	1.00 64.01	AAAA 🤆
ATOH.	1938	0	ASII					1.00 64.20	AAAA O
				198	34.992	2.827	86.117		
ATOH	1939	[]	GLU	199	36.955	3.164	85.157	1.00 64.75	AAAA I
ATOH	1941	CA	GLU	199	37.342	4.054	86.255	1.00 64.64	AAAA C
ATOH	1942	CB	GLU	199	38.702	3.624	86.744	1.00 66.11	AAAA C
ATOH	1943	CG	GLU	199	38.846	3.717	88.233	1.00 77.15	AAAA C
ATOH	1944	CD						1.00 80.24	AAAA C
			GLU	199	39.579	2.532	88.832		
ATON	1945		GLU	199	39.385	2.406	90.066		AAAA O
ATOM	1946	OE2	GLU	199	40.282	1.821	88.079	1.00 77.94	AAAA O
ATOM	1947	C	GLU	199	37.314	5.463	85.690	1.00 62.92	AAAA C
ATOH	1948	Ö	GLU	199	37.922	5.676	84.632	1.00 63.62	AAAA O
ATOI1	1949	M	CYS	200	36.605	6.393	86.313	1.00 56.16	II AAAA
HOTA	1951	CA	CXS	200	36.600	7.721	85.740	1.00 55.11	AAAA C
ATOH	1952	С	CYS	200	37.978	8.315	85.521	1.00 57.77	AAAA C
HOTA	1953	Ö	CYS				86.300	1.00 63.79	AAAA Q
				200	38.884	8.058			
ATON	1954	CB	CIS	200	35.824	8.664	86.648	1.00 52.70	AAAA C
ATOH	1955	SG	CYS	200	34.196	8.100	87.098	1.00 55.85	AAAA S
ATOH	1956	11	CYS	201	38.124	9.192	84.540	1.00 54.50	AAAA II
A'TOH	1958	CA	CYS				84.202	1.00 48.19	AAAA C
				201	39.338	9.889			
ATOI-I	1959	Ċ	CïS	201	39.236	11.287	84.786	1.00 42.34	AAAA C
ATOH	1960	0	CYS	201	38.165	11.704	85.156	1.00 54.32	AAAA O
ATOH	1961	CB	CYS	201	39.590	10.070	82.695	1.00 40.90	AAAA C
ATOM	1962	SG	CYS			8.597		1.00 51.42	AAAA S
				201	39.644		81.747		
ATOI-1	1963	11	HIS	202	40.254	12.075	84.675	1.00 39.12	II AAAA
ATOI-1	1965	CA	HIS	202	40.290	13.461	85.128	1.00 41.55	AAAA C
ATOH	1966	C	HIS	202	39.284	14.184	84.289	1.00 46.59	AAAA C
HOTA	1967	0	HIS	202	39.176	13.851	83.103	1.00 51.64	AAAA G
ATOI1	1968	CB	HIS	202	41.712	13.952	84.810	1.00 45.20	AAAA C
ATOH:	1969	CG	HIS	202	41.996	15.330	85.267	1.00 38.71	AAAA 🗅
ATOI!	1970		HIS	202	41.501	16.404	84.550	1.00 51.32	AAAA ::
	•				U % ±	701103			·

20/58 1.00 47.62 85.178 AAAA C 17.528 41.887 1971 CE1 HIS 202 **ATOH** 1.00 39.59 AAAA C 86.340 CD2 HIS 42.665 15.813 202 ATON 1972 II AAAA II 1.00 43.48 17.207 86.258 HE2 HIS 202 42.563 1973 ATOH II AAAA 1.00 47.74 15.293 84.711 1975 PRO 203 38.738 HOTA 11 1.00 46.97 AAAA C 86.082 38.758 15.840 1976 203 ATOM CD PRO 1.00 46.44 AAAA C 15.987 83.879 37.780 MOTA 1977 CV PRO 203 AAAA C 1.00 39.47 17.107 84.742 37.248 1978 CB PRO 203 ATOH 1.00 43.37 AAAA C 17.210 85.910 1979 203 38.131 CG PRO ATON 1.00 53.27 AAAA C 16.519 82.607 1980 \mathbf{C} PRO 203 38.440 ATOM 1.00 53.16 AAAA O 17.045 81.731 37.698 **ATOM** 1981 0 **FRO** 203 AAAA II 16.535 82.561 1.00 50.34 39.792 204 **ATOH** 1982 11 GLU AAAA C 17.139 81.381 1.00 50.50 10.439 1984 CA GLU 204 ATOH AAAA C 1.00 48.58 41.727 17.891 81.804 1985 CB GLU 204 ATOH AAAA C 1.00 43.74 19.251 82.397 1986 CG GLU 204 41.397 ATOH 1.00 55.26 AAAA C 20.282 81.501 ATOI1 1987 CD GLU 204 40.778 1.00 64.04 AAAA O 80.248 20.344 40.766 **ATOH** 1988 OE1 GLU 204 O AAAA 1.00 57.66 21.198 82.141 40.226 OE2 GLU 204 MOTA 1989 1.00 45.71 AAAA C 80.319 40.718 16.084 GLU 1990 C 204 ATOH 1.00 46.56 FAAA O 79.251 41.238 16.405 204 1991 GLU O HOTA AAAA II 1.00 42.05 40.612 14.830 80.735 1992 CYS 205 АТОН 11 1.00 45.81 AAAA C 79.838 13.764 1994 CA CYS 205 40.997 **ATOH** AAAA C 78.819 1.00 49.20 13.628 39.892 1995 С CTS 205 ATOI1 79.133 1.00 50.34 AAAA O 13.920 38.746 CYS 205 ATOH 1996 0 AAAA C 80.572 1.00 51.55 41.288 12.491 205 1997 CBCTS HOTA 1.00 52.89 AAAA S 12.246 81.251 SG 42.923 1998 CYS 205 MOTA 1.00 49.88 AAAA II 13.579 77.520 40.232 1999 11 LEU 206 MOTA AAAA C 76.533 1.00 41.49 13.446 LEU 206 39.169 2001 CAATOH 1.00 48.66 AAAA C 75.462 14.505 LEU 39.266 HOTA 2002 CB 206 74.305 1.00 47.45 AAAA C 38.274 14.365 206 2003 CG LEU MOTA 1.00 45.79 AAAA C 14.243 74.895 CD1 LEU 36.879 2004 206 HOTA 1.00 50.71 AAAA C 73.420 CD2 LEU 38.331 15.599 206 **ATOH** 2005 AAAA C 12.109 75.912 1.00 38.44 C LEU 206 39.310 ATOI1 2006 1.00 36.59 AAAA O 75.813 40.400 11.568 2007 O LEU 206 ATOM 1.00 42.41 75.681 AAAA N 11.359 38.264 2008 GLY207 MOTA 1:1 AAAA C 10.098 74.978 1.00 40.57 38.403 207 NOTA 2010 CA GLï AAAA C 1.00 47.15 38.466 9.061 76.058 2011 207 ATOH C GLï 1.00 45.04 AAAA O 76.057 О GLY 207 37.668 8.102 2012 ATOH II AAAA 1.00 50.36 76.760 39.622 9.079 2013 J-1 SER 208 MOTA 1.00 48.27 AAAA C 77.660 39.832 7.898 2015 CA SER 208 MOTA 1.00 35.77 AAAA C 76.787 39.909 6.631 **ATOH** 2016 CB SER 208 77.461 1.00 61.34 AAAA O 40.600 5.597 2017 SER **ATOH** OG 208 AAAA C 78.377 1.00 49.17 41.144 8.068 SER 2019 С 208 **ATOM** 1.00 48.24 AAAA O 41.781 9.084 78,163 2020 SER 208 **ATOM** $^{\rm O}$ 1.00 52.04 H AAAA 41.599 79.189 2021 CYS 209 7.123 11 **ATOH** AAAA C 1.00 55.98 79.964 42.824 7.307 MOTA 2023 CA CYS 209 AAAA C 1.00 57.41 43.453 80.484 6.035 CYS 209 MOTA 2024 С 80.423 1.00 58.33 O AAAA 42.862 4.963 2025 0 CYS 509 ATOI4 1.00 52.51 AAAA C 81.146 42.629 8.258 2026 CB CYS 209 **HOTA** 1.00 58.22 AAAA S 82.261 41.380 7.602 2027 SG CYS 209 **АТОИ** 1.00 59.37 AAAA !! 80.883 210 44.734 6.145 **ATOM** 2028 11 SER 1.00 58.10 AAAA C 45.506 4.950 81.318 ATOH 2030 CASER 210 aaaa c 81.105 1.00 55.07 47.022 5.083 210 2031 CB SER **ATOH** 1.00 64.49 O AAAA 47.546 6.20481.818 2032 OG SER 210 HOTA AAAA C 82.826 1.00 56.34 210 45.331 4.713 CSER ATOM: 2034 1.00 54.42 AAAA O 83.326 2035 SER 210 45.529 3.614 **ATOH** 0 1.00 52.79 AAAA II 83.548 45.105 5.806 ATOI1 2036 11 ALA 211 1.00 56.60 AAAA C 44.980 85.004 5.684 2038 CA ALA 211 ATOH AAAA C 85.649 1.00 63.41 46.333 5.926 211 ATOH 2039 CB ALA 85.395 1.00 56.58 AAAA C 43.962 6.747 CALA 211 **ATOH** 2040 AAAA O 1.00 50.78 7.792 84.711 211 43.957 2041 ALA ATOH О 1.00 55.93 AAAA II 86.359 43.117 6.416 MOTA 2042 PRO 212 H 1.00 55.86 AAAA C 87.115 43.042 5.166 ATOI I 2043 CD PRO 212 1.00 55.50 AAAA C 41.951 7.257 86.575 PRO **ATOH** 2044 CA 212 AAAA C 87.556 1.00 59.65 6.470 41.104 PRO 212 **ATOH** 2045 CB AAAA C 1.00 54.56 42.021 5.483 88.175 212 2046 CG PRO ATOH! AAAA C 1.00 53.64 87.177 212 42.409 8.535 **FIOTA** 2047 C PRO 1.00 57.48 AAAA O 8.725 87.393 43.611 MOTA 2048 PRO 212 0 1.00 53.87 H AAAA 87.347 41.537 9.492 ATOH 2049 11 ALA 213 AAAA C 10.710 88.057 1.00 59.41 2051 213 41.912 ALA **ATOH** CA AAAA C 1.00 66.40 10.255 39.541 41.783 2052 CB ALA 213 ATO14 1.00 61.40 AAAA C 87.907 43.289 11.300 2053 C 213 ATOI I ALA AAAA O 88.652 1.00 60.03 12.202 43.728 ATOH 2054 0 ALA 213 1.00 64.80 AAAA !! 86.899 44.068 10.999 2055 11 ASH 214 ATOI1 1.00 63.36 AAAA C 86.596 11.551 2057 ASII 214 45.366 **ATOH** CA AAAA C 12.284 85.251 1.00 61.56 45.300 214 HOTA 2063 C ASII O AAAA 1.00 58.38 84.117 45.198 11.794**ATOH** 2064 ASN 214 O AAAA O 1.00 67.32 10.379 86.608 ASII 214 46.336 ATOH: 2058 CB AAAA C 10.896 1.00 75.48 47.697 86.362 2059 ASH 214 HOTA ÇG AAAA O 85.302 1.00 83.64 2060 OD1 ASII 48.254 11.105 HOTA 214 1.00 90.05 AAAA II 87.427 2061 HD2 ASH 214 48.513 11.170 ATOH AAAA 11 1.00 59.78 13.565 85.305 FIOTA 2065 11 ASP 215 45.666 1.00 56.47 AAAA C 45.618 14.432 84.143 ATOH 2067 CA ASP 215 AAAA C 1.00 40.19 84.446 15,926 CB ASP 215 45.430 ATOH. 2068 AAAA C 84.986 1.00 56.36 CG ASP 215 46.671 16.543 ATOH 5069 85.473 1.00 56.17 C AAAA 315 17.699 OD1 ASP 46.590 ATCH. 2070

				21,00			
ATOH	2971 OD2 ASP	215	47.766 15.926	84.941	1.00 60.51	AAAA O	
ATOH	2072 C ASP	215	46.818 14.315	83.221	1.00 53.78	AAAA C	
			46.998 15.148		1.00 53.58	AAAA O	
HOTA	2073 O ASP	215			1.00 50.87	AAAA !!	
ATOH	2074 H THR	216	47.719 13.425				
HOTA	2076 CA THR	216	48.883 13.114		1.00 45.76	AAAA C	
ATOH	2077 CB THR	216	50.201 13.176	83.529	1.00 53.46	AAAA C	
			50.403 11.977		1.00 45.14	AAAA O	
ATOM	2078 OGI THR	216			1.00 41.38		
ATOH	2080 CG2 THR	216	50.436 14.314				
HOTA	2081 C THR	216	48.681 11.712	82.158	1.00 48.34		
	2082 O THR	216	49.596 11.282	81.444	1.00 47.49	AAAA O	
ATO(1					1.00 49.65	II AAAA	
ATOM	2083 II ALA	217	47.559 11.057				
ATOH	2085 CA ALA	217	47.259 9.760	81.845	1.00 51.83	AAAA C	
ATOH	2086 CB ALA	217	46.908 8.775	82.943	1.00 52.62	AAAA C	
		217	46.207 9.747		1.00 50.60	AAAA C	
ATOH					1.00 49.13	AAAA O	
ATOM	2088 O ALA	217	45.775 8.633				
ATOH .	2089 H CYS	218	45.744 10.905	80.226	1.00 43.56	AAAA II	
ATOH	2091 CA CYS	218	44.802 11.030	79.157	1.00 48.09	AAAA C	
			45,166 10.331		1.00 47.06	AAAA C	
ATOM	2092 C CTS	218				AAAA O	
ATOH	2093 O CYS	218	46.300 9.96		1.00 55.57		
HOTA	2094 OB CYS	218	44.536 12.50	78.775	1.00 51.54	AAAA C	
	2095 SG CYS	218	44.256 13.49	80.302	1.00 56.98	AAAA S	
ATOH					1.00 43.40	M AAAA	
HOTA	2096 II VAL	219	44.226 10.085				
ATOM	2098 CA VAL	219	44.575 9.54	75.654	1.00 35.22	AAAA C	
MOTA	2099 CB VAL	219	43.693 8.42	75,242	1.00 32.26	даал с	
			43.952 7.87		1.00 36.19	AAAA C	
ATOH	2100 CG1 VAL	219				AAAA C	
ATOM	2101 CG2 VAL	219	43.811 7.14		1.00 45.51		
HOTA	2102 C VAL	219	44.453 10.75	74.735	1.00 32.06	AAAA C	
ATOH	2103 O VAL	219	45.303 10.89	73.874	1.00 42.27	O AAAA	
					1.00 24.24	AAAA II	
ATOH	2104 !I ALA	226	43.728 11.75			AAAA C	
ATOH	2106 CA ALA	220	43.630 12.98	5 74.385	1.00 27.09		
ATOH	2107 CB ALA	220	42.536 12.91	73.331	1.00 28.42	AAAA C	
			43.292 14.07		1.00 29.21	AAAA C	
ATOH	2108 C ALA	220	· - · · · · · · · · · · · · · · · · · ·			AAAA O	
ATON	2109 O ALA	220	42.846 13.60		1.00 37.88		
MOTA	2110 H CTS	221	43.285 15.33	4 75.058	1.00 30.27	AAAA II	
ATOH	2112 CA CYS	221	42.753 16.38	2 75.875	1.00 35.55	AAAA C	
					1.00 47.06	AAAA C	
ATOH	2113 C CYS	221		_			
ATOH	2114 O CYS	221	41.265 17.59		1.00 49.57		
ATOM	2115 CB CYS	221	43.804 17.47	8 76.063	1.00 47.45	AAAA C	
	2116 SG CYS	221	45.494 16.93		1.00 47.06	AAAA S	
ATOM					1.00 51.47	AAAA 11	
ATOM	2117 H ARG	222	40.503 17.13				
ATOH	2119 CA ARG	222	39.281 17.90		1.00 51.86	AAAA C	
ATOI1	2120 CB ARG	222	38.647 18.07	4 77.712	1.00 54.53	AAAA C	
	2121 CG ARG	222	37.314 18.68		1.99 45.56	AAAA C	
HOTA					1.00 54.45	AAAA C	
ATOH	2122 CD ARG	222	36.538 18.33	_			
ATOM	2123 HE ARG	222	36.272 16.94	7 79.269	1.00 65.53	H AAAA	
	2125 CZ ARG	222	35.534 16.08	0 78.617	1.00 67.60	AAAA C	
MOTA					1.00 70.26		
ATON	2126 UH1 ARG	222	34.925 16.59				
ATOH	2129 UH2 ARG	222	35.342 14.78		1.00 54.11	AAAA II	
ATOH	2132 C ARG	222	39.562 19.28	6 75.740	1.00 50.66	AAAA C	
	2133 O ARG	222	38.737 19.84	5 75.009	1.00 58.34	AAAA O	
ATON					1.00 45.65	II AAAA	
HOTA	2134 H HIS	223	40.556 19.98				
ATOH	2136 CA HIS	223	40.988 21.29	1 75.921	1.00 46.93		
ATOH1	2137 CB HIS	223	41.057 22.25	1 77.011	1.00 49.51	AAAA C	
	2138 CG HIS	223	39.710 22.34		1.00 58.83	AAAA C	
ATOM					1.00 61.08	AAAA C	
ATOH	2139 CD2 HIS	223	38.820 23.36				
HOTA	2140 HD1 HIS	223	39.082 21.38	8 78.425	1.00 63.28	II AAAA	
ATOH.	2142 CE1 HIS	223	37.881 21.81	5 78.759	1.06 58.01	AAAA C	
	2143 HE2 HIS	223	37.681 23.01	0 78.232	1.00 48.56	AAAA 11	
ATOH					1.00 50.78		
HOTA	2145 C HIS	223	42.363 21.26				
ATOH	2146 O HIS	223	42.506 20.75		1.00 47.43		
ATOH	2147 H TTR	224	43.359 21.84	7 75.769	1.00 49.20		
ATOM	2149 CA TYR	224	44.712 21.99	2 75.259	1.00 48.17	AAAA C	
		224	45.144 23.43		1.00 44.07	AAAA C	
ATOH			44.318 24.23			AAAA C	
ATOH			34 KIN 73.73	4 /4.41/	1 13(1 5 1 / /	INNUT -	
ATOM	2151 CG TYR	224			1.00 51.77	- nnn	
	2151 CG TYR 2152 CD1 TYR	224 224	43.193 24.86		1.00 51.77	AAAA C	
ΙΙΟΥΔ	2152 CD1 TYR	224	43.193 24.86	9 74.904		AAAA C AAAA C	
ATOH	2152 CD1 TYR 2153 CE1 TYR	224 224	43.193 24.86 42.401 25.63	9 74.904 3 74.089	1.00 48.94 1.00 48.41	AAAA C	
MOTA	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR	224 224 224	43.193 24.86 42.401 25.63 44.623 24.35	9 74.904 3 74.089 8 73.065	1.00 48.94 1.00 48.41 1.00 54.82	AAAA C AAAA C	
	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR	224 224 224 224	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13	9 74.904 3 74.089 8 73.065 1 72.233	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09	AAAA C AAAA C AAAA C	
ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR	224 224 224 224	43.193 24.86 42.401 25.63 44.623 24.35	9 74.904 3 74.089 8 73.065 1 72.233	1.00 48.94 1.00 48.41 1.00 54.82	AAAA C AAAA C AAAA C AAAA C	
ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR	224 224 224 224 224 204	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09	AAAA C AAAA C AAAA C	
ATOH ATOH ATOH ATOH	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR	224 224 224 224 224 224	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70	AAAA C AAAA C AAAA C AAAA C AAAA O	
ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR	224 224 224 224 224 204 204 204	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70	AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C	
ATOH ATOH ATOH ATOH	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR	224 224 224 224 224 224 224 224	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892 3 77.111	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75	AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C AAAA O	
ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR	224 224 224 224 224 224 224 224	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892 3 77.111	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70	AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C AAAA O AAAA H	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 N TYR	224 224 224 224 224 224 224 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892 3 77.111 4 75.077	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75	AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C AAAA O	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR	244 224 224 224 224 224 225 225 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.65	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892 3 77.111 4 75.077 75.555	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA II AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR	224 224 224 224 224 224 225 225 225 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 95 75.892 77.111 4 75.077 75.555 74.548	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR	244 224 224 224 224 224 225 225 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR	244 244 224 224 224 244 244 244 255 245 24	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR	2444444444 2000000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85	9 74.904 3 74.089 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 75.817	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 43.57	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR	244 224 224 222 222 223 223 225 225 225 225 225 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 3 77.111 4 75.077 75.555 74.548 74.954 76.173	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26	AAAA CAAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR	44444444444 00000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.22 50.487 18.40	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 76.173 76.173 774.421	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR	244 224 224 222 222 223 223 225 225 225 225 225 225	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 75.817 71.75 74.421 74.781	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 43.02 1.00 46.95 1.00 47.26 1.00 52.82 1.00 53.94	AAAA CAAAA CAAAAA CAAAAAA	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR	34444444444 330000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 12 72.017 15 75.892 17 7111 14 75.077 15 74.548 16 74.954 17 76.173 17 74.421 17 74.781	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR 2170 CZ TYR	44444444444 990000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79 51.639 16.76	9 74.904 3 74.089 8 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 76.173 76.173 774.421 74.781 75.644	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82 1.00 53.94 1.00 52.31	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR 2170 CZ TYR 2171 OH TYR	44444444444 900000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79 51.639 16.76 52.986 16.19	9 74.904 3 74.089 73.065 1 72.233 5 72.766 2 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 75.817 76.173 774.421 74.781 75.644 75.905	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82 1.00 53.94 1.00 50.71	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR 2170 CZ TYR 2171 OH TYR 2173 C TYR	44444444444 990000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79 51.639 16.76 52.986 16.19	74.904 74.089 73.065 72.233 5 72.766 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 76.173 77.173 77.173 77.173 77.173 77.173 77.173	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82 1.00 53.94 1.00 50.71 1.00 47.13	AAAA CAAAA CAAAAA CAAAA CAAAAA CAAAAAA	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR 2170 CZ TYR 2171 OH TYR	44444444444 900000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79 51.639 16.76 52.986 16.19	74.904 74.089 73.065 72.233 5 72.766 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 75.817 76.173 74.421 74.781 75.644 75.905 75.793 75.150	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 55.75 1.00 48.79 1.00 43.02 1.00 43.02 1.00 46.95 1.00 47.26 1.00 52.82 1.00 52.82 1.00 53.94 1.00 50.71 1.00 47.13 1.00 53.97	AAAA C	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2152 CD1 TYR 2153 CE1 TYR 2154 CD2 TYR 2155 CE2 TYR 2156 CZ TYR 2157 OH TYR 2159 C TYR 2160 O TYR 2161 H TYR 2163 CA TYR 2164 CB TYR 2165 CG TYR 2166 CD1 TYR 2166 CD1 TYR 2167 CE1 TYR 2168 CD2 TYR 2169 CE2 TYR 2170 CZ TYR 2171 OH TYR 2173 C TYR	44444444444 990000000000000000000000000	43.193 24.86 42.401 25.63 44.623 24.35 43.847 25.13 42.739 25.74 41.915 26.52 45.725 21.09 45.776 20.91 46.584 20.51 47.655 19.69 48.020 18.63 49.286 17.93 49.299 16.85 50.450 16.23 50.487 18.40 51.656 17.79 51.639 16.76 52.986 16.19	9 74.904 74.089 73.065 72.233 5 72.766 72.017 75.892 77.111 4 75.077 75.555 74.548 74.954 75.817 76.173 74.421 74.781 75.644 75.905 75.793 75.150	1.00 48.94 1.00 48.41 1.00 54.82 1.00 56.09 1.00 54.23 1.00 61.70 1.00 48.19 1.00 48.79 1.00 43.02 1.00 42.32 1.00 46.95 1.00 47.26 1.00 52.82 1.00 53.94 1.00 50.71 1.00 47.13	AAAA CAAAA CAAAAA CAAAA CAAAAA CAAAAAA	

22/58 21.001 77.172 1.00 56.83 AAAA 🤆 226 ATOH 2177 CA TTR50.814 77.785 1.00 59.51 AAAA C 2178 CB TTR 226 22.343 ATOH 50.455 AAAA C TTR 77.941 1.00 65.45 ATOH 2179 CG 51.741 23.126 226 AAAA C 1.00 69.12 52,121 23.557 79.197 **ATOH** 2180 CD1 TYR 226 AAAA C 1.00 70.77 53.289 24.275 79.400 2181 CE1 TYR 226 ATOH AAAA C 1.00 69.38 23.409 76.864 CD2 TYR 52.580 LIOTA 2182 226 1.00 70.94 CE2 TYR 53.758 77.920 AAAA C 24.118 ATOM 2183 226 1.00 72.96 AAAA C CI 226 54.099 24.549 78.301 HOTA 2184 TTR 78.435 1.00 70.84 AAAA O 55.267 ATO!1 2185 OH TTR 226 25.254 AAAA C 78.165 1.00 57.55 51.784 20.356 **ATOM** 2187 C TTR 226 79.350 1.00 56.90 AAAA O 2188 20.133 51.492 HOTA 0 TYR 226 227 77.642 1.00 53.82 AAAA II 20.080 2189 52.978 ATOH 11 ALA 78.440 1.00 51.82 AAAA C 19.557 2191 CA ALA 227 54.061 ATOH 20.620 79.428 1.00 55.81 AAAA C 2192 CBALA 227 54.528 **ATOM** 1.00 53.56 AAAA C 2193 \mathbf{C} ALA 227 53.600 18.309 79.170 ATOI1 1.00 49.63 AAAA O 18.218 80.413 ATO11 2194 0 ALA 227 53.663 228 1.00 50.68 H AAAA 17.360 78.393 ATOI! 2195 53.076 11 GLT 79.028 AAAA C 16.135 1.00 49.02 2197 CA 52.585 ATOI-1 GLT 228 16.330 79.861 1.00 51.61 AAAA C 2198 C 228 51.312 **ATO11** GLY2199 1.00 51.10 AAAA O 0 GLY 51.028 15.538 80.776 HOTA 228 2200 1.00 47.09 AAAA !! 17.495 79.791 11 VAL 229 50.643 ATOH 80.635 1.00 51.11 AAAA C ATOH 2202 VAL 229 49.489 17.671 CA AAAA C 1.00 56.52 2203 CB VAL 229 49.908 18.610 81.774 **ATOH** 1.00 38.39 AAAA C 18.896 82.566 229 ATOI1 2204 CG1 VAL 48.627 1.00 50.16 AAAA C 2205 CG2 VAL 229 51.002 18.035 82.682 ATO14 1.00 51.37 AAAA C 79.873 2206 C VAL 229 48.255 18.173 PIOLE AAAA O 1.00 53.71 2207 229 19.279 79.309 MOTA Ŏ VAL 48.344 1.00 42.21 II AAAA 17.518 80.036 ATOH 2208 11 CYS 230 47.100 1.00 40.32 AAAA C 79.471 2210 CA CYS 45.881 18.117 TOH 230 80.228 1.00 38.42 AAAA C 2211 \mathcal{C} CYS 19.350 ATOH 230 45.456 2212 19.248 81.321 1.00 41.62 AAAA C 0 CYS 230 44.964 ATOH AAAA C ATOH 2213 CYS 44.746 17.132 79.370 1.00 31.54 CB 230 1.00 43.61 AAAA S ATOH 2214 SG CYS 230 45.149 15.753 78.266 1.00 39.83 AAAA II 20.534 79.731 **ATOI1** 2215 11 VAL231 45.637 2217 1.00 46.57 AAAA C 21.769 80.462 HOTA CA VAL 231 45.445 1.00 50.99 AAAA C 2218 22.736 80.088 CB VAL 231 46.518 ATON 23.878 81.053 1.00 50.41 AAAA C ATOM 2219 CG1 VAL 231 46.798 1.00 44.95 AAAA C ATOI1 2220 CG2 VAL 231 47.838 21.913 80.506 1.00 52.59 AAAA C 80.057 ATOM: 2221 Ç VAL 231 44.111 22.321 1.00 55.30 AAAA O 2222 78.936 MOTA 231 43.599 22.183 0 VAL 1.00 54.28 H AAAA 2223 80.913 11 PRO 43.482 23.105 ATOM 232 1.00 54.25 AAAA C 2224 CD 43.830 23.385 82.320 HOTA PRO 232 1.00 54.39 AAAA C 23.625 80.575 **ATOM** 2225 CA **PRO** 232 42.153 AAAA C 1.00 53.73 MOTA 2226 CB PRO 232 41.537 23.877 81.928 1.00 55.00 AAAA C 2227 82.765 ATOM CG PRO 232 42.683 24.287 AAAA C 79.795 1.00 56.37 2228 Ç **PRO** 24.913 HOTA 232 42.361 AAAA O 1.00 55.79 ATOH 2229 232 25.482 79.137 0 **ERO** 41.498 2230 79.901 1.00 54.76 AAAA II **ATOM** 43.615 25.400 11 ALA 233 AAAA C 1.00 49.93 2232 CA26.569 79.124 ATOH ALA 233 43.998 AAAA C 2233 79.746 1.00 35.43 ATOM CB ALA 233 43.440 27.807 1.00 49.79 AAAA C 2234 45.502 78.974 ATOH CALA 233 26.662 1.00 51.41 AAAA O 2235 25.879 79.616 MOTA O ALA 233 46.195 2236 78.072 1.00 45.07 AAAA 1: STS 27.508 HOTA] [234 45.984 AAAA C 2238 CA 27.518 77.907 1.00 48.63 ATOM CIS 234 47.430 HOTA 2239 C CIS 234 48.001 28.340 79.076 1.00 50.93AAAA C AAAA O 1.00 47.57 2240 O 79.250 ATOH CYS 234 47.650 29.513 2241 76.511 1.00 43.10 AAAA C CB 28.034 ATOH CTS 234 47.816 75.226 1.00 43.04 AAAA S ATOH 2242 SG CYS 234 47.608 26.789 1.00 49.55 II AAAA ATOH 2243 11 PRO 235 27.853 79.599 49.127 79.207 1.00 48.75 AAAA C HOTA 2244 CDPRO 235 49.692 26.557 AAAA C 1.00 51.69 28.569 80.599 HOTA 2245 CA PRO 235 49.911 1.00 50.80 AAAA C 27.581 2246 235 80.975 MOTA CB PRO 50.984 AAAA C 1.00 50.06 HOTA 2247 235 26.417 80.077 CG PRO 50.910 1.00 57.11 AAAA C 80.050 ATOH 2248 C PRO 235 50.487 29.852 1.00 59.60 AAAA O 29.957 78.870 ATOH 2249 O PRO 235 50.848 II AAAA 1.00 59.85 MOTA 2250] [PRO 236 50.676 30.875 80.887 AAAA C 1.00 55.85 2251 30.822 82.363 **ATOH** CD PRO 236 50.405 1.00 52.27 AAAA C 2252 51.323 80.493 HOTA CA PRO 236 32.143 AAAA C 2253 32.814 1.00 53.62 **ATOH** CBPRO 236 51.695 81.826 AAAA C 1.00 56.73 2254 CG32.277 82.754 HOTA PRO 236 50.652 2255 AAAA C ATOH FRO 52.545 31.886 79.671 1.00 44.21 C236 AAAA O 1.00 43.40 **ATOI1** 2256 0 PRO 236 53.219 30.892 79.928 78.716 AAAA II **ATOH** 2257 1.00 46.54 11 ASH 237 52.837 32.757 AAAA C 1.00 45.94 **ATCH** 2259 CA 237 32.623 77.716 ASII 53.895 1.00 58.65 AAAA C 78.456 2260 CB ATON ASH 237 55.259 32.653 2261 55.357 1.00 58.51 AAAA C 237 33.855 79.371 HOTA CG ASII 1.00 72.25 80.379 AAAA O **ATOH** 2262 OD1 ASH 237 56.044 33.783 **ATCH** 2263 HD2 ASH 237 34.910 79.051 1.00 62.99 AAAA II 54.631 AAAA C АТОИ 2266 C ASII 237 53.897 31.425 76.788 1.00 46.87 1.00 54.50 C AAAA ATOH 2267 O ASII 237 54.963 30.935 76.326 2268 1.00 42.91 AAAA II **ATOH** THR 76.692 11 238 52.817 30.657 1.00 40.20 AAAA C 2270 CA THR 238 52.61? 29.567 75.780 ATOM: 1.00 42.62 AAAA C ATOH 2271 THR 28.248 76.466 СB 238 52,461 1.00 50.88 AAAA O 51.227 77.237 **ATOH** 2272 OG1 THR 238 28.343 27,886 77,424 1.00 34,84 AAAA C AT'OH 2274 CG2 THR 233 53.552

ATOH	2275	C TH	R 238	51.279	29.875	75.078	1.00 42.59	AAAA C
ATOH	2276	O TH	R 238	50.669	30.864	75.500	1,00 42.51	O AAA.
ATOI:1	2277	H TT		51.051	29.488	73.832	1.00 42.62	AAAA II
								AAAA C
ATOM	2279	CA TY.		49.949	29.959	73.024	1.00 41.87	
ATOM	2280	CB TT	R 239	50.457	30.907	71.931	1.00 44.86	AAAA C
ATOM:	2281	CG TT	R 239	51.099	32.125	72.564	1.00 42.05	AAAA C
ATOH	2282	CD1 TY		52.467	32.086	72.815	1.00 39.41	AAAA C
ATON	2283	CE1 TY		53.092	33.152	73.415	1.00 43.27	AAAA C
ATOI1	2284	CD2 TY	R 239	50.376	33.230	72.923	1.00 44.15	AAAA C
ATOM	2285	CE2 TY	R 239	50.972	34.310	73.536	1.00 46.22	AAAA C
ATOH	2286	CD TY		52.339	34.243	73.779	1.00 50.49	AAAA C
ATOII	2287	OH TY	R 239	53.013	35.289	74.387	1.00 55.47	AAAA O
ATOH	2289	C = TT	R 239	49.232	28.813	72.315	1.00 45.54	AAAA C
ATOM	2290	O TY	R 239	49.922	27.810	72.021	1.00 46.66	AAAA O
							1.00 40.62	
ATOM	2291	II AR		47.895	28.990	72.126		II AAAA
ATOH	2293	CA AR	G 240	47.177	27.892	71.426	1.00 38.78	AAAA C
ATOH:	2294	CB AR	G 240	45.675	28.127	71.452	1.00 39.77	AAAA C
ATOI:	2295	CG AR		45.116	28.944	72.588	1.00 43.37	AAAA C
PIO.LY	2296	CD AR		43.573	28.957	72.683	1.00 38.60	AAAA C
HOTA	2297	HE AR	G 240	43.114	29.683	71.455	1.00 53.98	H AAAA H
ATOH!	2299	CZ AR	G 240	43.123	31.015	71.530	1.00 48.07	AAAA C
ATOM	2300	HH1 AR		43.513	31.562	72.668	1.00 47.65	AAAA N
ATOH	2303	DH2 AR		42.788	31.778	70.533	1.00 51.03	AAAA N
1 to TA	2306	C AR	G 240	47.627	27.737	69.979	1.00 31.72	AAAA C
ATOM	2307	O AR	G 240	47. 9 37	28.730	69.302	1.00 32.37	AAAA O
ATO! 1	2308	H PH		47.779	26.542	69.549	1.00 27.95	AAAA N
ATOH	2310	CA PH		48.182	26.269	68.183	1.00 30.41	AAAA C
ATOH	2311	CB PH	E 241	49.678	25.940	68.151	1.00 34.83	AAAA C
ATOH	2312	CG PHI	E 241	50.235	25.653	66.773	1.00 26.84	AAAA C
							1.00 25.31	
ATOH	2313	CD1 PH		50.165	26.567	65.753		AAAA C
ATOI1	2314	CD2 PH	E 241	50.785	24.417	66.573	1.00 27.38	AAAA C
ATOH	2315	CE1 PH	E 241	50.676	26.232	64.509	1.00 37.24	AAAA C
ATOI1	2316	CE2 PHI		51.294	24.101	65.320	1.00 38.45	AAAA C
ATOI 1	2317	CZ PH		51.281	25.010	64.281	1.00 21.17	AAAA C
ATOH	2318	C PH	E 241	47.382	25.089	67.621	1.00 35.77	аааа с
ATOM:	2319	O PH	E 241	47.543	24.013	68.186	1.00 36.77	AAAA O
ATOI-1	2320	N GL		46.738	25.301		1.00 32.30	AAAA II
						66.468		
ATOM	2322	CA GL	J 242	45.964	24.269	65.805	1.00 35.43	AAAA C
ATOM	2323	CB GL	J 242	46.953	23.144	65.472	1.00 37.98	AAAA C
ATOH	2324	CG GL	3 242	47.867	23.415	64.314	1.00 38.63	AAAA C
	2325	CD GL			23.965	63.075	1.00 39.27	AAAA C
ATON				47.207				
MOTA	2326	OE1 GL	U 242	46.380	23.205	62.517	1.00 42.79	AAAA O
ATOM	2327	OE2 GL	J 242	47.354	25.109	62.626	1.00 36.36	AAAA O
ATOH	2 328	C GL	U 242	44.752	23.771	66.600	1.00 34.36	AAAA C
							1.00 28.53	AAAA O
ATOM	2329	O GL		44.390	22.611	66.511		
ATOH	2330	H GL	7 243	44.135	24.589	67.449	1.00 36.94	H AAAA
ATOH	2332	CA GL	i 243	43.048	24.154	68.303	1.00 34.57	аааа с
ATOH	2333	C GL		43.428	23.107	69.319	1.00 37.76	AAAA C
							1.00 43.00	AAAA O
ATOH1	2334	O GL		42.474	22.473	69.746		
NOTA	2335	H TR		44.637	22.636	69.611	1.00 39.53	II AAAA
ATOH	2337	CA TR	P 244	44.797	21.536	70.566	1.00 40.85	AAAA C
ATOH	2338	CB TR	P 244	44.774	20.271	69.764	1.00 26.76	AAAA C
ATOH	2339	CG TR		46.012	19.885	69.028	1.00 43.19	AAAA C
ATOM	2340	CD2 TR		47.019	18.983	69.498	1.00 39.55	AAAA C
ATOM	2341	CE2 TR	P 244	47.998	18.906	68.489	1.00 36.50	AAAA C
ATOH	2342	CE3 TR	P 244	47.186	18.254	70.692	1.00 32.18	AAAA C
ATOH	2343	CD1 TR		46.424	20.308	67.779	1.00 43.37	AAAA C
ATOH	2344	ME1 TR		47.595	19.727	67.469	1.00 38.89	AAAA N
ATOH!	2346	CE2 TR	P 244	49.150	18.128	68.620	1.00 39.01	AAAA C
ATOH	2347	CL3 TR	P 244	48.336	17.478	70.815	1.00 43.98	AAAA C
ATOH	2348	CH2 TR		49.322	17.425	69.784	1.00 42.50	AAAA C
ATOH	2349	C TR				71.509	1.00 42.98	AAAA C
				45.998	21.517		_	
ATOH	2350	Q TR		46.253	20.501		1.00 42.70	AAAA O
ATCH	2351	H AR	G 245	46.888	22.485	71.435	1.00 44.16	AAAA N
ATO!!	2353	CA AR	3 245	48.163	22.472	72.095	1.00 46.47	AAAA C
ATOM	2354	CB AR		49.203	21.602	71.367	1.00 47.30	AAAA C
				_				
ATOI1	2355	CG AR		49.885	22.309	70.203	1.00 48.97	AAAA C
ATO: 1	2356	CD AR	3 245	51.129	21.552	69.819	1.00 39.28	AAAA C
ATO:1	2357	HE AR	3 245	51.586	21.665	68.444	1.00 50.86	AAAA 11
ATON	2359	CS AR		52.629	21.044	67.895	1.00 46.73	AAAA C
ATOM	2360	IIII1 AR		53.344	20.236	68.653	1.00 50.15	AAAA H
ATOH	2363	HH2 AR	G 245	53.072	21.126	66.638	1.00 41.69	II AAAA
POTA	2366	C AR	G 245	48.771	23.863	72.271	1.00 46.01	AAAA C
ATOH	2367	O AR		48.394	24.793	71.541	1.00 47.44	AAAA O
							-	
ATOI1	2368	H CY:		49.625		73.317	1.00 42.08	AAAA 11
ATOH	2370	CA CY		50.246	25.199	73.628	1.00 43.48	AAAA C
ATOH	2371	C C73	5 246	51.695	25.217	73.183	1.00 43.38	AAAA C
ATOH	2372	o cz.		52.476		73.320	1.00 42.51	AAAA O
ATOII	2373	CB CY		50.102	25.392	75.138	1.00 48.91	AAAA C
ATOH	2374	SG CY	3 246	48,386	25.049	75.797	1.00 43.68	AAAA S
ATOM	2375	H VA	L 247	52,121	26.288	72.564	1.00 41.21	II AAAA
ATCI1	2377	CA VA		53.417	26.468	71.982	1.00 36.51	AAAA C
ATOH	2378	CB VA		53.568		70.444	1.00 36.87	AAAA C
ATOI1	2379	CG1 VA		53,089		70.024		AAAA C
HOTA	2380	CG2 VA	L 247	53.129	27.602	59.729	1.00 28.20	AAAA C

AAAA C 72.373 1.00 39.37 27.312 53.969 247 ATOH 2381 C VAL1.00 38.80 AAAA O 72.540 28.770 247 53.230 Q VAL 2382 ATO! 1 1.00 45.21 II AAAA II 72.711 55.291 27.820 ASP 248 2383 11 **ATOM** AAAA C 1.00 40.19 73.098 55.895 29.115 2385 CA ASP 248 ATOI1 1.00 42.63 AAAA C 73.953 28.946 57.091 **ATOH** 2386 CB ASP 248 1.00 58.81 AAAA C 27.997 73.394 58.126 CG ASP ATOI:1 2387 248 AAAA O 1.00 53.06 74.187 59.067 27.795 OD1 ASP 248 2388 HOTA AAAA O 1.00 69.51 72.313 58.167 27.395 OD2 ASP 248 2389. **ATOH** AAAA C 1.00 36.99 71.839 29.883 56.315 ASP 248 MOTA 2390 C AAAA O 29.288 70.772 1.00 39.70 56.292 2391 0 ASP 248 MOTA 1.00 30.72 II AAAA II 71.918 56.545 31.163 ARG 249 ATOH 2392 11 1.00 36.17 AAAA C 70.906 56.950 32.057 249 CA ARG ATOI1 2394 AAAA C 1.00 21.29 71.491 57,223 33.485 2395 CB ARG 249 **ATOII** 1.00 24.96 AAAA C 70.326 34.424 57.594 2396 CG ARG 249 ATOI1 1.00 21.23 70.843 AAAA C 35.811 57.814 ARG 249 2397 CDHOTA II AAAA 71.689 1.00 39.75 36.150 56.658 2398 HE ARG 249 **ATOM** AAAA C 1.00 39.35 71.101 36.823 55.632 $C\Sigma$ ARG 249 11OTA 2400 H AAAA II 1.00 25.41 69.801 37.118 55.642 545 2401 TIH1 ARG HOTA 1.00 44.04 II AAAA 37.118 71.946 54.641 249 2404 TIH2 ARG HOTA 1.00 40.63 AAAA C 70.010 31.685 249 58.134 C ARG MOTA 2407 AAAA O 68.7971.00 44.79 31.923 58.086 ARG 249 MOTA 2408 0 1.00 41.87 AAAA N 70.468 30.974 59.149 ASP 250 2409 11 HOTA AAAA C 1.00 46.90 30.739 69.606 250 60.287 CA ASP MOTA 2411 AAAA C 1.00 53.11 70.154 30.726 61.740 250 ASP **ATOM** 2412 ÇВ AAAA C 1.00 71.49 70.081 32.122 250 62.421 ASP 2413 CG NOTA 1.00 58.53 AAAA O 69.176 32.682 OD1 ASP 250 63.124 2414 ATOM. AAAA O 1.00 70.30 71.071 32.928 62.272 2415 OD2 ASP 250 ATOI4 AAAA C 1.00 41.22 29.536 68.771 59.881 HOTA 2416 CASP 250 1.00 39.06 AAAA O 29.443 67.616 60.291 250 ASP ATOH: 2417 0 AAAA 11 1.00 36.13 69.299 28.609 59.116 251 PHE ATOH 2418 AAAA C 1.00 34.88 68.489 58.457 27.601 2420 251 CA FHE ATOM: AAAA C 1.00 29.82 69.256 26.746 PHE 251 57.468 CB 2421 ATO!! AAAA C 1.00 41.50 68.385 25.801 2422 PHE 251 56.701 ATOI4 CG AAAA C 1.00 30.66 68.263 57.101 24.479 MOTA 2423 CD1 PHE 251 AAAA C 1.00 37.78 67.686 55.559 26.213 251 CD2 PHE **ATOH** 2424 AAAA C 1.00 29.30 23.597 67.424 56.414 2425 CE1 PHE 251 ATOI: AAAA C 1.00 36.09 66.856 54.847 25.372 CE2 PHE 251 2426 HOTA AAAA C 1.00 36.21 66.715 24.070 55.294 2427 CZPHE 251 HOTA AAAA C 1.00 39.28 28.290 67.338 2428 C PHE 251 57.624 ATOM AAAA O 1.00 30.27 28.010 66.144 57.811 PHE 251 **ATOM** 2429 O II AAAA 1.00 35.13 29.225 67.713 252 56.734 2430 14 CYS **ATOM** AAAA C 1.00 38.80 66.728 55.895 29.870 CYS 252 2432 CA **ATOM** AAAA C 1.00 44.73 30.598 65.747 56.827 CYS 252 ATOM 2433 C 1.00 43.20 AAAA O 64.536 30.534 CYS 252 56.552 2434 0 ATOH AAAA C 1.00 35.65 67.379 30.778 54.903 CB CYS 252 2435 ATOI4 AAAA S 66.459 1.00 39.03 31.544 252 53.562 MOTA 2436 SG CYS H AAAA 1.00 41.53 31.256 66.285 57.872 253 2437 11 ALA **ATCH** AAAA C 1.00 40.39 32.071 65.415 253 58.687 ALA HOTA 2439 CA 1.00 36.07 AAAA C 66.172 ALA 253 59.529 33.088 2440 CB ATOH: AAAA C 1.00 42.88 64.539 31.167 59.551 2441 C ALA 253 11OTA AAAA O 31.735 63.640 1.00 47.42 60.147 **ATOH** 2442 0 ALA 253 II AAAA 1.00 38.75 29.859 64.700 59.657 ASII 254 2443 11 MOTA 63.928 1.00 42.94 AAAA C 60.54629.073 ASIJ 254 CA2445 HOTA 64.847 1.00 48.09 AAAA C AS!1 254 61.667 28.497 MOTA 2446 CB AAAA C 65.031 1.00 49.54 62.696 29.635 CG ASH 254 2447 ATOH AAAA O 64.081 1.00 61.38 29.840 254 ATOH. 2448 ODI ASH 63.468 AAAA 11 1.00 48.38 65.144 30.321 254 62.607 ND2 ASN ATOI1 2449 AAAA C 1.00 53.72 27.959 63.135 254 59.907 2452 C ASII HOTA 62.804 1.00 51.19 AAAA O 60.552 26.965 254 MOTA 2453 ASH О 62.766 1.00 57.77 II AAAA 28.136 58.612 2454 ILE 255 MOTA 11 AAAA C 62.134 1.00 53.28 27.107 ILE 255 57.828 **ATOH** 2456 CAAAAA C 62.304 1.00 50.41 27.322 255 56.329 2457 CB 1 LE HOTA AAAA C 61.246 1.00 51.95 55.477 26.595 255 CG2 ILE ATOH 2458 AAAA C 63.553 1.00 40.59 26.675 55.778 CG1 ILE 255 ATOI1 2459 AAAA C 64.006 1.00 38.97 54.479 27.317 255 2460 CD1 ILE ATOH. AAAA C 60.651 1.00 52.62 58.127 26.886 255 2461 \subset ILE HOTA 1.00 53.96 AAAA O 25.709 60.252 255 58.196 2462 О ILE ATOI I AAAA II 1.00 49.96 59.918 58.290 27.960 2463 LEU 256 11 LIOTA 58.516 1.00 63.68 AAAA C 58.680 27.764 HOTA 2465 CA LEU 256 AAAA C 57.799 1.00 56.80 29.012 256 58.175 2466 CB LEU ATOH AAAA C 1.00 59.11 56.671 29.196 57.864 256 LEU **ATOH** 2467 CG 57.645 1.00 43.31 AAAA C 30.654 CD1 LEU 256 56.310 2468 HOTA AAAA C 56.928 1.00 55.88 28.222 55.965 2469 CD2 LEU 256 ATOH AAAA C 58.355 1.00 66.23 27.622 256 60.193 HOTA 2470 C LEU AAAA O 57.245 1.00 70.29 60.691 27.511 256 2471 0 LEU ATOI1 59.430 1.00 64.61 II AAAA 27.559 SER 257 60.942 2472 ATOI1 [] 59.534 1.00 69.23 AAAA C 257 62.352 27.529 2474 CASER MOTA 60.955 1.00 62.45 AAAA C 62.924 27.318 2475 CB SER 257 ATOI-O AAAA 61.074 1.00 56.18 25.980 ATOM 2476 OG SER 257 63.381 AAAA C 58.610 1.00 70.77 257 62.973 26.497 SER ATOH 2478 C AAAA O 1.00 72.50 59.246 26.731 SER 257 64.127 2479 0 MOTA II AAAA II 58.320 1.00 74.61 25.389 258 62.322 LIOTA 2480 11 ALA 57.343 1.00 76.34 AAAA C 258 62,933 24.488 **ATOH** 2482 CA ALA AAAA C 57.584 1.00 80.82 ALA258 62.570 23.039 ATOH 2483 CB AAAA C 55.921 1.00 78.21 24.964 ATOH: 2484 C ALA 258 62.663

						25/30		
ATOH	2485	O AL	A 358	62.880	24.139	55.020	1.00 79.60	AAAA O
ATOH	2486	() GL		62.069	26.109	55.651	1.00 79.05	AAAA II
ATOH	2488	CA GL		61.742	26.621	54,342	1.00 83.84	AAAA C
ATOH	2489	CB GLI		60.226	26.457	54.135	1.00 86.99	AAAA C
ATOH	2490	ce en		59.687	25.049	54.314	1.00 89.38	AAAA C
ATO:1	2491	CD GF		58.364	25.032	55.057	1.00 97.77	AAAA C
ATOH	2492	OE1 GL	U 259	58.080	24.088	55.838	1.00101.45	AAAA 0
ATOH	2493	OE2 GL	U 259	57.598	26.002	54.837	1.00 94.58	AAAA O
HOTA	2494	C GU	U 259	62.117	28.978	54.083	1.00 85.43	AAAA C
ATOH	2495	O GL		62.059	29.009	54.903	1.00 88.01	AAAA O
ATOH	2496	II SE		62.298	28.338	52.799	1.00 84.66	AAAA II
							1.00 84.03	AAAA C
ATOH	2498	CA SE		62.725	29.625	52.254		
MOTA	2499	CB SE		63.753	29.269	51.173	1.00 87.24	AAAA C
ATO!!	2500	OG SE		63.306	29.419	49.835	1.00 93.65	AAAA O
ATOH	2502	C SE	R 260	61.558	30.466	51.789	1.00 80.84	AAAA C
ATOH	2503	O SEI	R 260	61.496	30.889	50.635	1.00 81.31	O AAAA
MOTA	2504	II SE	R 261	60.617	30.785	52.685	1.00 78.56	AAAA 11
HOTA	2506	CA SE		59.423	31.540	52.308	1.00 72.13	AAAA C
ATOM	2507	CB SE		58.179	31.297	53.170	1.00 67.30	AAAA C
ATOM	2508	OG SE		57.436	30.334	52.451	1.00 74.74	AAAA O
							1.00 66.90	
ATOM	2510	C SEI		59.683	33.032	52.318		AAAA C
NOTA	2511	O SE		60.048	33.588	53.334	1.00 63.24	AAAA O
ATOH	2512	N AS	P 262	59.364	33.659	51.204	1.00 65.30	II AAAA
ATOM:	2514	CA AS	P 262	59.358	35.071	50.915	1.00 58.55	AAAA C
HOTA	2515	CB AS	P 262	59.268	35.285	49.400	1.00 64.85	AAAA C
ATOM	2516	CG AS	P 262	59.389	36.713	48.931	1.00 76.42	AAAA C
ATOI1	2517	OD1 AS		59.473	37.708	49.701	1.00 79.81	AAAA O
ATOH	2518	OD2 AS		59.404	36.873	47.671	1.00 80.46	O AAAA
							1.00 56.88	AAAA C
ATOH	2519	C AS		58.121	35.706	51.529		
ATOM	2520	Q As		57.851	36.918	51.510	1.00 52.48	AAAA O
ATOH	2521	H SE	R 263	57.259	34.849	52.118	1.00 53.43	AAAA II
ATOH	2523	CA SE	R 263	56.047	35.352	52.734	1.00 52.84	AAAA C
ATOH	2524	CB SE	R 263	55.020	34.245	52.885	1.00 46.60	AAAA C
ATOM	2525	OG SE		55.149	33.348	51.791	1.00 66.80	AAAA O
ATOH	2527	C SE		56.310	35.965	54.117	1.00 49.52	AAAA C
ATOH	2528	O SE		57.396	35.737	54.709	1.00 42.33	O AAAA
					36.783		1.00 38.93	II AAAA
ATOI1	2529	ii GLi		55.320		54.540		
ATOM	2531	CA GL		55.362	37.222	55.921	1.00 36.70	AAAA C
ATOII	2532	CB GL		5 4.35 9	38.337	56.208	1.00 43.71	AAAA C
HOTA	2533	CG GL	U 264	54.575	39.482	55.218	1.00 37.74	AAAA C
ATOI1	2534	CD GL	U 264	55.374	40.632	55.793	1.00 34.36	AAAA C
HOTA	2535	OE1 GL	U 264	55.493	40.600	57.034	1.00 41.55	AAAA O
MOTA	2536	OE2 GL		55.832	41.576	55.146	1.00 39.60	AAAA O
ATOH	2537	C GL		55.098	36.056	56.827	1.00 35.84	AAAA C
ATOI1	2538						1.00 39.60	AAAA C
				54.368	35.151			
ATOM	2539	H GL		55.801	35.938	57.962	1.00 35.64	II AAAA
ATOM	2541	CA GL		. 55.671	34.690	58.727	1.00 40.30	AAAA C
HOTA	2542	C GL	Y 265	54.622	34.716	59.829	1.00 39.51	AAAA C
ATOH	2543	O GL	Y 265	53.951	35.699	60.135	1.00 37.20	AAAA O
ATOI1	2544	11 PH	E 266	54.537	33.569	60.516	1.00 35.75	AAAA !!
ATOH	2546	CA PH	E 266	53.637	33.434	61.625	1,00 33.70	AAAA C
ATCH1	2547	CB PH		53.924	32.155	62.396	1.00 28.20	AAAA C
ATOI-I	2548	CG PH		53.356	30.958		1.00 37.07	AAAA C
ATOH	2549	CD1 PH		53.760	30.618	60.377	1.00 34.72	AAAA C
ATOH	2550	CD2 PH		52.383	30.195	62.313	1.00 25.65	AAAA C
							1.00 37.72	AAAA C
ATOH	2551	CE1 PH		53.225	29.506	59.760		
ATOH	2552	CE2 PH		51.879	29.094	61.672	1.00 24.63	AAAA C
ATOH	2553	CZ PH		52.260	28,708	60.402	1.00 23.58	AAAA C
ATOH	2554	C PH	E 266	53.571	34.570	62.608	1.00 35.82	C KAAA
ATOI 1	2555	O PH	E 266	54.446	35.372	62.879	1.00 39.23	AAAA O
NOTA	2556	II VA	L 267	52.360	34.763	63.161	1.00 37.10	AAAA II
ATOI1	2558	CA VA	L 267	52.118	35.812	64.113	1.00 36.09	AAAA C
HOTA	2559	CB, VA		51.315	36,974	63.567	1.00 39.01	AAAA C
MOTA	2560	CG1 VA		51.626	37.601	62.230	1.00 31.10	AAAA C
ATOH	2561	CG2 VA		49.890	36,400	63.570	1.00 36.88	AAAA C
ATOH	2562	C VA		51.506	35.260	65.400	1.00 33.55	AAAA C
ATOH	2563	O AY		51.202	34.098	65.515	1.00 32.41	AAAA O
MOTA	2564	II IL		51.539	36.088	66.477	1.00 35.88	AAAA !!
ATOH	2566	CA IL	E 268	50.867	35.573	67.681	1.00 39.79	AAAA 🤈
HOTA	2567	CB IL	E 268	51.791	35.232	68.849	1.00 31.17	AAAA C
ATOH	2568	CG2 IL		50.922	35.253	70.150	1.00 32.66	AAAA C
ATOH	2569	CG1 IL		52.403	33.866	68.724	1.00 23.56	AAAA C
ATON	2570	CD1 IL		53.421	33.546	69.806	1.00 25.93	AAAA C
ATOM	2570	C IL		49.806	36.608	68.060	1.00 42.44	AAAA C
ATOH	2572	O IL		50.116	37.767	68.327	1.00 39.99	AAAA O
ATOH	2573	HI HI		48.528	36.292	67.864	1.00 44.26	AAAA II
ATOH	2575	CA HI		47.491	37.320	68.173	1.00 44.28	AAAA C
ATOH	2576	CB HI	S 269	46.885	37.876	66.901	1.00 45.48	AAAA C
ATOH	25 77	CG HI	S 269	45.915	38.986	67.079	1.00 54.33	AAAA C
ATON	2578	CD2 HI		44.551	39.014	67.096	1.00 46.61	AAAA C
ATOH	2579	HD1 HI		46.356	40.280	67,307	1.00 51.86	AAAA 11
ATOH	2591	CE1 HI		45.282	41.057	67.437	1.00 55.17	AAAA I
ATOH	2582	HE2 HI		44.175	40.324	67.369	1.00 46.97	II AAAA
ATOI1	2584	C HI		46.423	36.740	69,074	1.00 45.54	AAAA C
ATOH	2585	O HI	S 269	46.076	35.552	69.007	1.00 42.94	AAAA O

26/58 AAAA II 37.526 70.059 1.00 49.82 270 45.952 HOTA 2586 11 ASP 1.00 48.03 AAAA C 44.948 37.025 71.001 CA ASP 270 HOTA 2588 AAAA C 1.00 63.63 270 43.573 37.014 70.338 HOTA 2589 CB ASP 70.294 1.00 80.82 AAAA C 42,919 38.393 2590 CG ASP 270 HOTA 38.379 69.835 1.00 90.92 AAAA O 270 41.737 ATOH 2591 OD1 ASP 1.00 86.49 AAAA O 2592 OD2 43.407 39.494 70.652 ASP 270 ATOH AAAA C 35.667 71.594 1.00 44.66 2593 C ASP 270 45.226 MOTA AAAA O 71.576 1.00 45.54 2594 ASP 270 44.357 34.782 HOTA 0 AAAA II 46.477 35.379 711.924 1.00 41.63 2595 271 11 GLT HOTA 72.506 1.00 37.20 AAAA C 34.117 2597 CA GLï 271 46.839 HOTA 46.818 32.998 71.537 1.00 39.15 AAAA C 2598 C 271 GLY АТОН 1.00 46.56 AAAA O 2599 271 46.775 31.865 72.039 O GLY АТОН 1.00 41.49 II AAAA II 70.251 MOTA 2600 [-] GLU 272 47.015 33.292 AAAA C 69.371 1.00 43.56 272 47.108 32.092 2602 GLU **ATOH** CA 1.00 37.58 AAAA C 45.752 31.737 68.876 CB GLU 272 2603 ATOM AAAA C 272 45.778 30.600 67.839 1.00 45.30 2604 GLU ATOH CG AAAA C 1.00 36.92 2605 CD **GLU** 272 44.413 30.528 67.149 MOTA 1.00 48.41 AAAA O 31.345 67.533 HOTA 2606 OE 1 GLU 272 43.545 1.00 44.10 AAAA O 44.223 29.696 66.286 OE2 GLU 272 **ATOM** 2607 68.335 1.00 40.32 AAAA C 32.324 272 48.211 2608 \mathbb{C} GLU ATOH 1.00 37.04 AAAA O 48.445 33.447 67.896 2609 GLU 272 MOTA 0 1.00 38.83 AAAA N 31.237 68.138 2610 11 CYS 273 48.942 **ATOH** 1.00 40.27 AAAA C CYS 273 50.046 31.187 67.188 ATOH 2612 CA1.00 42.16 AAAA C 273 49.321 30.810 65.883 2613 C CYS ATCH AAAA O 29.712 65.831 1.00 40.86 CYS 273 48.713 ATOM 2614 0 1.00 40.21 AAAA C CYS 273 51.098 30.148 67.529 2615 CB **ATOM** 66.260 1.00 39.79 AAAA S 29.825 2616 SG CYS 273 52.337 ATOH 1.00 33.70 II AAAA II 31.749 64.933 274 49.373 ATOH 2617 11 MET 1.00 36.68 AAAA C HET 274 48.586 31.351 63.720 2619 CA ATON AAAA C 63.847 1.00 29.11 2620 CB HET 274 47.136 31.861 ATOH 1.00 36.51 · AAAA C 46.923 33.379 63.691 **ATOH** 2621 CG MET 274 AAAA S 33.921 64.677 1.00 40.00 2622 SD MET 274 45.477 HOTA AAAA C 1.00 22.47 35.658 64.754 2623 CE HET 274 45.659 ATOH! 1.00 39.35 AAAA C 274 49.426 31.900 62.608 2624 Ç HET ATOH AAAA O 274 50.167 32.880 62.672 1.00 41.00 2625 0 HET ATOH: 1.00 42.55 II AAAA ATO!! 2626 11 GLH 275 49.378 31.353 61.428 1.00 37.69 AAAA C 275 50.041 31.834 60.232 **ATOH** 2628 CA GLII AAAA C 1.00 34.01 275 30.765 59.242 2629 CB GLH 49.618 ATOH 57.864 1.00 56.40 AAAA C GLII 275 49.329 31.274 **ATOM** 2630 CG 275 49.275 30.190 56.812 1.00 66.46 AAAA C 2631 CD GLN MOTA AAAA O 2632 OE1 GLH 275 49.941 29.151 56.910 1.00 67.24 **ATOH** 1.00 78.29 M AAAA N **NE2 GLN** 30.436 55.799 MOTA 2633 275 48.451 1.00 35.41 AAAA C 33.195 59.720 49.721 MOTA 2636 C GLII 275 AAAA O 33.831 59.064 1.00 35.95 2637 275 50.526 AT'OI I 0 GLII II AAAA 18.566 33.754 60.056 1.00 41.70 2638 И GLU 276 **ATOH** AAAA C 48.222 59.571 1.00 43.96 2640 GLU 276 35.080 ATOM CA 1.00 42.40 AAAA C 34.884 58.245 ATOH: 2641 CB GLU 276 47.387 57.650 AAAA C 36.269 1.00 53.84 CG GLU 276 47.154 ATOH 2642 AAAA C 1.00 61.37 GLU 276 48.359 37.198 57.460 MOTA 2643 CD36.595 56.943 1.00 67.32 AAAA O OE1 GLU 49.356 2644 276 ATOH 1.00 45.10 38.411 57.811 AAAA O OE2 GLU 276 48.242 ATOH 2645 AAAA C \mathbf{C} GLU 276 47.444 35.935 60.540 1.00 39.74 NOTA 2646 1.00 45.06 AAAA O 46.769 61.444 ATOM: 2647 0 GLU 276 35.449 II AAAA 60.500 1.00 38.69 11 CYS 277 37.235 HOTA 2648 47.495 61.332 CYS 46.718 1.00 46.11 AAAA C 27? 38.089 ATOH 2650 CA 60.9941.00 52.70 AAAA C 277 37.938 2651 C CïS 45.205 ATOM 59.936 1.00 49.43 AAAA O CYS 277 44.760 37.511 HOTA 2652 0 AAAA C 1.00 45.56 ATOI-1 2653 CB CiS 277 47.039 39.537 61.11161.645 1.00 52.86 AAAA S 40.083 **ATOH** 2654 SG CYS 277 48.629 II AAAA 61.993 1.00 54.63 2655 278 44.380 38.261 HOTA PRO 11 38.778 1.00 57.20 AAAA C PRO 278 44.824 63.311 2656 CD ATOH: AAAA C 278 42.946 38.185 61.899 1.00 55.82 ATOI1 2657 CA PRO AAAA C 63.267 1.00 55.61 **ATOI1** 2658 CB PRO 278 42.445 38.635 64.153 1.00 55.58 AAAA C I-IOTA 2659 CG PRO 278 43.605 38.670 60.781 1.00 52.55 AAAA C 42.487 39.116 2660 278 ATOI1 C PRO 60.631 1.00 48.76 AAAA O 278 40.195 2661 0 PRO 43.083 ATOH 60.143 1.00 49.35 II AAAA 279 41.370 38.845 HOTA 2662 13 SER 59.140 1.00 52.03 40.815 39.720 AAAA C HOTA 2664 CA SER 279 AAAA C 58.975 1.00 47.62 279 39.280 39.572 ATOI1 2665 CB SER AAAA O 279 39.320 57.785 1.00 68.16 HOTA 2666 QG SER 38.778 59.173 1.00 55.40 AAAA C 279 41.003 41.209 **HOTA** 2668 C SER 58.059 1.00 55.40 41.225 41.740 O AAAA 279 ATO:1 2669 SER О 60.247 1.00 55.32 AAAA II HOTA 2670 11 GLY 580 40.775 41.962 59.868 1.00 48.58 AAAA C ATO!! 2672 CA GLY 40.968 43.406 560 60.479 1.00 55.98 2673 AAAA C **ATOH** C GLT 280 42.248 43.890 AAAA O 42.249 60.772 1.00 56.00 2674 280 45.097 ATOM 0 GLï H AAAA II 1.00 55.42 43.213 60.742 ATOM 2675 11 PHE 281 42.983 1.00 52.94 AAAA C 61.262 HOTA 2677 CA PHE 281 44.506 43.411 62.523 1.00 61.20 AAAA C HOTA 2678 CB PHE 281 44.938 42.644 AAAA C PHE 43.958 42.792 63.637 1.00 53.66 **ATOH** 2679 CG 281 64.630 1.00 60.47 AAAA C CD1 PHE ATOH 2680 281 44.140 43.702 CD2 PHE 281 42.939 41.992 63.712 1.00 60.98 AAAA C HOTA 2691 HOTA 2682 CE1 PHE 281 43.272 43.901 65.678 1.00 64.71 AAAA C 64.755 1.00 63.18 AAAA C ATOM: 2683 CE2 PHE 281 41.931 42.162 2684 CS PHE 42.141 43.115 AAAA C 65.744 1.00 58.88 HOTA 281

							27/58		
HOTA	2685	Ç	PHE	281	45.630	43.217	60.240	1.00 48.00	AAAA C
ATON	2686	0	PHE	281	45.738	42.395	59.327 60.557	1.00 38.84 1.00 49.55	O AAAA 11 AAAA
ATOH ATOH	2687 2689	H CA	ILE	282 282	46.670 47.907	43.990 43.984	59.748	1.00 45.00	AAAA C
ATOH	2690	CB	ILE	282	47.945	45.188	58.799	1.00 30.25	AAAA C AAAA C
ATOH ATOH	2691 2692	CG2 CG1	I LE I LE	282 282	48.041 49.092	46.494 45.022	59.507 57.795	1.00 24.60 1.00 38.71	AAAA C
ATOH	2693		ILE	282	49.194	46.043	56.669	1.00 33.38	AAAA C
ATOH	2694	С	ILE	282	49.081	43.889	60.6 7 3 61.759	1.00 44.30	AAAA C AAAA O
ATOM ATOM	2695 2696	11 O	ILE ARG	282 283	49.078 50.126	44.447 43.153	60.298	1.00 48.68	AAAA N
ATOM	2698	CA	ARG	283	51.396	43.094	61.048	1.00 39.30	AAAA C
ATOM ATOM	2699 2700	CB CG	ARG ARG	283 283	52.300 52.295	42.200 40.696	60.286 60.515	1.00 41.10 1.00 29.19	дада с Адаа с
ATOM	2701	CD	ARG	283	53.078	39.986	59.451	1.00 29.85	AAAA C
ATOM	2702	HE	ARG	283	52.823	38.545 38.024	59.404 58.646	1.00 29.39 1.00 37.61	AAAA C
ATOM ATOM	2704 2705	CS NH1	ARG ARG	283 283	51.962 51.065	38.846	57.944	1.00 31.41	AAAA H
MOTA	2708	11H2	ARG	283	51.651	36.722	58.596	1.00 31.97	AAAA II
ATOM ATOM	2711 2712	0	ARG ARG	283 283	51.945 51.931	44.498 45.228	61.190 60.173	1.00 42.27 1.00 43.42	AAAA C AAAA O
ATOM ATOM	2713	11	MSA	284	52.362	44.886	62.422	1.00 39.49	AAAA II
ATOM	2715	CA	ASII	284	52.733 54.078	46.311 46.656	62.574 61.929	1.00 42.07 1.00 41.64	AAAA C AAAA C
ATOM ATOM	2721 2722	С О	ASH ASH	284 284	54.431	47.798	61.742	1.00 39.01	AAAA O
MOTA	2716	СВ	ASII	284	52.734	46.760	64.032	1.00 37.33	AAAA C AAAA C
ATOM ATOM	2717 2718	CG OD1	HZA	284 284	53.917 54.609	46.028 45.104	64.611 64.192	1.00 50.21 1.00 44.30	AAAA O
ATOH	2719	11D2		284	54.323	46.432	65.842	1.00 42.46	AAAA II
ATOH	2723	li Gan	GLY GLY	295 285	54.931 55.971	45.699 45.815	61.562 60.593	1.00 40.10 1.00 26.91	AAAA C
ATOM ATOM	2725 2726	CA C	GLY	285	56.091	44.468	59.848	1.00 33.12	AAAA C
ATOH	2727	0	GLY	285	55.584	43.331	60.187	1.00 29.51	O AAAA 11 AAAA
ATOH ATOH	2728 2730	ti CA	SER SER	286 286	56.915 57.109	44.619 43.3 8 5	58.766 57.975	1.00 26.53 1.00 32.67	AAAA II
ATOI1	2731	CB	SER	286	57.944	43.681	56.757	1.00 33.19	AAAA C
ATOM	2732 2734	OG C	SER	286 286	58.283 57.750	42.480	56.014 58.836	1.00 31 .95 1.00 34 .57	AAAA C
ATOH ATOH	2735	0	SER SER	286	58.700	42.495	59.607	1.00 44.29	O AAAA
ATOH	2736	11	GLN	287	57.227	41.148	58.940	1.00 34.45 1.00 35.25	AAAA C
ATOM ATOM	2738 2739	CA CB	GLN GLN	287 287	57.738 59.139	40.005 39.610	59.634 59.083	1.00 33.23	AAAA C
ATOM	2740	CG	GLN	287	59.037	39.234	57.664	1.00 26.61	AAAA C
ATOM ATOM	2741 2742	CD OE1	GLII GLII	287 287	58.539 58.192	37.963 37.023	57.130 57.845	1.00 21.25 1.00 28.18	AAAA C AAAA O
ATOM	2743	HE2		287	58.492	37.838	55.782	1.00 27.55	AAAA II
ATOM	2746	C O	GLN	287 287	57.773 58.163	40.286 39.415	61.111 61.908	1.00 30.25 1.00 32.78	AAAA C A AA A O
MOTA 1 IOTA	2747 2748	11	GLN SER	288	57.021	41.217	61.624	1.00 32.49	II AAAA
ATOH	2750	CA	SER	288	56.696	41.322	63.043	1.00 28.98 1.00 35.79	AAAA C AAAA C
ATOH ATOH	2751 2752	CB OG	SER SER	289 288	56.024 55.639	42.675 42.612	63.313 64.701	1.00 36.61	AAAA O
ATO14	2754	C	SER	288	55.665	40.285	63.442	1.00 28.96	AAAA C
ATOH ATOH	2755 2756	0	SER	288 289	54.993 55.774	39.776 39.720	62.553 64.621	1.00 31.16 1.00 32.51	O AAAA II AAAA
ATOM	2758	CA	HET	289	54.975	38.697	65.105	1.00 34.53	AAAA C
ATOI-I	2759	CB	HET	289	55.507	37.823	66.153 65.680	1.00 30.31 1.00 40.50	AAAA C AAAA C
ATOM ATOM	2760 2761	CG SD	T3M T3M	289 289	56.571 56.977	36.872 35.623	66.881	1.00 31.65	AAAA S
ATOM	2762	CE	TET	289	55.745	34.315	66.508	1.00 30.47	AAAA C
ATOH ATOH	2763 2764	С 0	MET	289 289	53.557 52.630	39.286 38.512	65.703 66.014	1.00 35.55 1.00 38.37	AAAA C AAAA O
ATOM	2765	11	TYR	290	53.380	40.565	65.742	1.00 29.54	II AAAA
ATOM	2767 2768	CA CB	TYR	290 290	52.363 52.947	41.358	66.297 67.042	1.00 38.81 1.00 36.72	AAAA C AAAA C
HOTA HOTA	2769	CG	TYR TYR	290	53.570	42.184	68.351	1.00 41.94	AAAA C
ATOM	2770	CD1		290	54.932	41.780	68.350	1.00 37.79 1.00 32.60	2 AAAA C 2 AAAA C
ATOH ATOH	2771 2772	CD2	TYR TYR	290 290	55.548 52.987	41.368	69.503 69.570	1.00 32.00	AAAA C
ATOI1	2773	CE2	TTR	290	53.501	41.750	70.748	1.00 36.16	AAAA C
ATOH ATOH	2774 2775	OH CE	TYR TYR	290 290	54.822 55.581	41.355	70.693 71.751	1.00 38.85 1.00 43.41	AAAA C AAAA O
ATOH	2777	C	TYR	290	51.361	41.955	65.270	1.00 45.54	AAAA C
ATOH	2778	0	TTR	290 291	51.733 50.071	42.520 41.698	64.227 65.537	1.00 47.10 1.00 44.68	O AAAA II AA AA
ATON ATON	2779 2781	CA 11	CYS CYS	291 291	49.017	42.205	64.685	1.00 47.20	AAAA C
ATOH	2782	C	CYS	291	48.295	43.434	65.194	1.00 46.06	AAAA C
ATOM ATOM	2783 2784	O CB	CYS	291 291	47.892 47.973	43.550	66.343 64.483	1.00 49.45 1.00 43.44	AAA A O AAAA C
ATON	2785	SG	Cis	291	49.766	39.715	63.683	1.00 45.49	AAAA S
ATOH	2786	li Ca	ILE	292	48.136	44.453	64.365	1.00 46.82 1.00 50.64	AAAA II AAAA C
ATOH ATOH	2788 2789	CA CB	ILE	292 292	47.399 48.267	45.651 46.932	64.755 64.779	1.00 30.64	AAAA C
ATOH	2790	CG2	ILE	292	49.291	46.885	65.861	1.00 44.39	AAAA C
ATO!	2791	CG1	ILE	292	48,920	47.095	63.402	1.00 44.25	AAAA C

								. 30 35 33	2002
ATOH .	2792	CD1	ILE	392	49.234	48.568	63.108	1.00 32.80	2 AAAA
ATOH	2793	C	LLE	292	46.240	46.003	63.806	1.00 50.01	AAAA C
							62.670	1.00 46.64	AAAA O
ATOH	2794	0	LLE	292	46.165	45.526		•	
HOTA	2795	H	PRO	293	45.150	46.507	64.385	1.00 51.86	II AAAA
ATOI1	2796	CD	PRO	293	45.009	46.804	65.839	1.00 51.05	AAAA C
						46.930	63.675	1.00 51.40	AAAA C
ATOM	2797	CA	PRO	293	43.958				AAAA C
HOTA	2798	CB	PRQ	293	43.170	47.784	64.681	1.00 49.00	
ATOH	2799	CG	PRO	293	43.533	47.112	65.951	1.00 53.73	AAAA C
				293	44.253	47.870	62.525	1.00 51.68	AAAA C
HOTA	2800	C	PRO					1.00 51.92	AAAA O
ATOH	2801	O	PRO	293	45.053	48.788	62.737		
ATOH	2802	11	CYS	294	43.607	47.621	61.408	1.00 50.66	II AAAA II
			CYS	294	43.811	48.464	60.254	1.00 57.90	AAAA C
ATOH	2804	CA						1.00 59.59	AAAA C
ATOH:	2805	C	CYS	294	43.219	49.848	60.345		
ATOI1	2806	O	CYS	294	43.744	50.814	59.785	1.00 60.87	AAAA O
ИОТА	2807	CB	CYS	294	43.229	47.686	59.046	1.00 57.59	AAAA C
							58.563	1.00 51.12	AAAA S
HOTA	2808	SG	CYS	294	44.408	46.460			
ATOI-I	2809	11	ALA	295	42.009	50.031	60.854	1.00 65.87	AAAA 11
ATOH	2811	CA	ALA	295	41.391	51.386	60.804	1.00 71.19	AAAA C
						52.459	61.393	1.00 63.82	AAAA C
PIOTA	2812	CB	ALA	295	42.311				
HOTA	2813	C	ALA	295	40.971	51.770	59.370	1.00 69.17	AAAA C
ATOM	2814	0	ALA	295	41.421	52.717	58.762	1.00 64.70	AAAA O
					40.153	50.920	58.775	1.00 71.30	AAAA 11
ATOM	2815	11	GLY	296					AAAA C
ATO14	2817	CA	$\operatorname{GL} Y$	296	39.640	51.049	57.416	1.00 72.66	
ATOI:1	2818	С	GLY	296	39.895	49.686	56.769	1.00 74.20	AAAA C
						48.819	57.490	1.00 75.04	AAAA O
HOTA	2819	Q	GLY	296	40.408				II AAAA
ATOI1	2820	1-1	PRO	297	39.561	49.540	55.497	1.00 71.98	
ATOH	2821	CD	PRO	297	38.928	50.561	54.637	1.00 72.15	AAAA C
			PRO	297	39.958	48.344	54.777	1.00 68.23	AAAA C
ATOH	2822	CA						1.00 72.57	AAAA C
MOTA	2823	CB	PRO	297	39.488	48.603	53.369		
ATOH	2824	CG	PRO	297	38.470	49.687	53.490	1.00 74.04	AAAA C
	2825	C	PRO	297	41.480	48.306	54.860	1.00 65.78	AAAA C
ATOH						49.323	54.997	1.00 62.72	AAAA Q
HOTA	2826	O	PRO	297	42.147				AAAA II
ATOH	2827	{ }	CYS	298	42.039	47.135	55.073	1.00 63.85	
ATOH	2829	CA	CYS	298	43.464	46.953	55.248	1.00 54.47	AAAA C
ATOH	2830	С	CYS	298	44.109	47.303	53.908	1.00 54.56	AAAA C
					43.621	47.030	52.820	1.00 54.83	AAAA O
I IOTA	0831	O	CYS	298				1.00 47.65	AAAA C
ATOH	2932	CB	CYS	298	43.665	45.544	55.669		
HOTA	2833	SG	CYS	298	43.501	45.115	57.371	1.00 46.12	AAAA S
ATOI1	2834	11	PRO	299	45.310	47.876	53.967	1.00 49.83	AAAA II
	2835	CD	PRO	299	46.087	48.168	55.194	1.00 48.14	AAAA C
HOTA							52.787	1.00 43.67	AAAA C
ATOM	2836	CA	PRO	599	46.055	48.212			
ATOH	2837	CB	PRO	299	47.267	48.965	53.281	1.00 44.08	AAAA C
ATOH	2838	CG	PRO	299	47.454	48.361	54.628	1.00 51.38	AAAA C
ATOH	2839	C	PRO	299	46.341	46.969	52.010	1.00 38.86	AAAA C
						45.874	52.546	1.00 42.85	AAAA O
HOTA	2840	0	PRO	299	46.372				AAAA II
MOTA	2841	11	LYS	300	46.310	47.073	50.712	1.00 38.30	
ATOI4	2843	CA	LYS	300	46.484	45.958	49.812	1.00 42.62	AAAA C
ATOH	2844	CB	LYS	300	45.176	45.226	49.595	1.00 34.29	AAAA C
				300	45.346	43.901	48.920	1.00 41.45	AAAA C
ATOH	2845	CG	LYS					1.00 48.31	AAAA C
ATOI1	2846	CD	LYS	300	44.013	43.413	48.378		
ATOH	2847	CE	LYS	300	44.388	42.027	47.737	1.00 48.57	AAAA C
ATOM	2848	211	LYS	300	43.662	42.031	46.478	1.00 63.70	AAAA II
		Ç		300	46.964	46.479	48,432	1.00 48.72	AAAA C
ATOH	2852		LYS					1.00 46.09	AAAA O
ATOH	2853	O	LTS	300	46.413	47.383	47.776		
ATOH	2854	14	VAL	301	48.150	45.984	48.054	1.0048.15	II AAAA
ATOH	2856	CA	VAL	301	48.802	46.462	46.871	1.00 44.52	AAAA C
						46.729	47.074	1.00 51.52	AAAA C
ATOM	2857	CB	VAL	301	50.292				AAAA C
ATOI:1	2858	CG1	VAL	301	51.008	47.200	45.796	1.00 43.07	
ATO14	2859	CG2	VAL	301	50.495	47.794	48.141	1.00 49.50	AAAA C
MOTA	2860	Ć	VAL	301	48.526	45.410	45.837	1.00 44.59	AAAA C
ATOH	2861	ò	VAL	301	48.913	44.291	46.060	1.00 43.70	AAAA O
							44.718	1.00 47.98	II AAAA
ATOM	2862	[-]	CYS	302	47.910	45.816			AAAA C
ATOH	3864	CA	CYS	302	47.645	44.735	43.739	1.00 55.19	
HOTA	2865	C	CYS	302	48.594	44.968	42.583	1.00 57.64	AAAA C
MOTA	2866	Ö	CYS	322	48.852	46.152	42.313	1.00 60.23	AAAA O
							43.330	1.00 68.30	AAAA C
ATOH	2867	CB	CAS	302	46.186	44.630		1.00 00.30	AAAA S
ATON	2868	SG	CYS	300	45.070	44.360	44.751		
ATO!!	2869	11	GLU	303	49.183	43.921	42.075	1.00 58.15	II AAAA
ATOH	2871	CA	GLU	303	50.174	43.932	41.034	1.00 62.85	AAAA C
				303	51.603	44.006	41.595	1.00 67.85	AAAA C
HOTA	2872	CB	GLU					0.01 67.46	AAAA C
ATOH	2873	CG	GLU	303	51.760	43.487	43.014		
ATOH	2874	CD	GLU	303	51.989	41.992	43.097	0.01 67.94	AAAA C
ATOI1	2875	OE 1		303	53.011	41.514	42.561	0.01 67.67	O AAAA.
	2876		GLU	303	51.14?	41.290	43.697	0.01 67.65	AAAA O
ATOI1								1.00 64.12	AAAA C
ATOM	2877	С	GLU	303	50.096	42.662	40.194		
ATOM	2878	0	GLU	303	50.162	41.562	40.708	1.00 65.08	AAAA O
ATOH	2879	11	GLU	304	49.867	42.794	38.904	1.00 67.37	II AAAA
HOTA	2881	CA	GLU	304	49.672	41.583	38.094	1.00 74.63	AAAA C
								1.00 71.71	AAAA C
ATOM	2882	CB	GLU	304	48.285	41.596	37.458		
ATO!!	2983	CG	GLU	304	47.339	42.663	38.031	1.00 84.54	AAAA C
ATOH	2884	CD	GLU	304	45.930	42.152	38.195	1.00 87.56	AAAA C
	2885	OE:		304	45.438	41.571	37.179	1.00 89.13	AAAA O
ATOH								1.00 93.19	AAAA O
ATCH	2886		2 GLU	304	45.249	42.269	39.233		
MOTA	2887	Ċ	GLU	304	50.866	41.307	37.190	1.00 76.10	AAAA C
HOTA	2888	Ó	GLU	304	51.911	41.962	37.217	1.00 74.78	AAAA O
-	•				-				

						20 500	1 20 77 21	יו בהתי
ATOH	2889	H GLU	305	50.899	40.126	36.558	1.00 77.31	AAAA II
HOTA	2991	CA GLU	305	51.932	39.656	35.674	1.00 75.90	AAAA C
HOTA	2892	CB GLU	305	51.467	38.380	34.970	1.00 79.95	AAAA C
	2993	CG GLU	3 05	52.307	37.937	33.807	1.00 87.28	AAAA C
ATOH						32.886	0.01 83.39	AAAA C
ИОТА	2894	CD GLU	305	51.758	36.891			
ATOH	2895	OE1 GLU	305	50.762	36,234	33.252	0.01 83.66	AAAA O
HOTA	2896	OEC GLU	305	52.310	36.700	31.780	0.01 83.73	AAAA O
ATOH	2897	C GLU	305	52.276	40.737	34.666	1.00 75.97	AAAA C
	2898	O GLU	305	53.381	41.268	34.613	1.00 76.54	AAAA O
ATOH						33.888	1.00 78.22	AAAA II
ATOH	5800	II LYS	306	51.291	41.181			
ATOH	2901	CA LTS	306	51.479	42.328	33.004	1.00 75.99	AAAA C
ATOH	2902	CB LYS	306	50.467	42.253	31.855	1.00 79.78	AAAA C
ATOH	2903	CG LYS	306	51.208	42.227	30.527	1.00 94.52	AAAA C
	2904	CD LYS	306	50.313	42.191	29.314	1.00 92.78	AAAA C
ATOH						28.261	1.00 97.10	AAAA C
ATOI1	2205	CE LYS	306	50.740	43.227			
HOTA	2906	HZ LYS	306	50.938	44.554	28.929	1.00 84.87	II AAAA
ATOI1	2910	C LYS	306	51.381	43.669	33.703	1.00 73.85	AAAA C
ATOH	2911	O LYS	306	50.703	43.862	34.718	1.00 76.08	AAAA O
			307	52.000	44.700	33.180	1.00 71.15	II AAAA
NOTA	2912						1.00 69.45	AAAA C
ATOI-I	2914	CA LYS	307	51.934	46.053	33.692		
MOTA	2915	CB LYS	307	53.022	46.903	33.008	1.00 79.64	C AAAA
ATOM	2916	CG LYS	397	54.419	46.837	33.564	1.00 78.88	AAAA C
ATOH	2917	CD LYS	307	55.257	48.084	33.374	1.90 85.84	AAAA C
					48.215	31.924	1.00 97.07	AAAA C
ATOM	2918	CE LYS	307	55.708				
ATOM	2919	NZ LYS	307	54.649	48.840	31.067	1.00 97.80	AAAA II
ATOH	2923	C LYS	307	50.562	46.716	33.525	1.30 67.97	AAAA C
ATOH	2924	O LYS	307	50.010	47.369	34.431	1.00 64.46	AAAA O
ATOH	2925	II THR	308	49.979	46.661	32.323	1.00 65.84	AAAA :I
			308	48.709	47.319	32.091	1.00 64.56	AAAA C
ATOH	2927	CA THR					1.00 59.91	AAAA C
ATOH	2928	CB THR	308	48.714	47.977	30.711		
MOTA	2929	OG1 THR	308	49.834	48.843	30.577	1.00 61.97	AAAA O
ATOH	2931	CG2 THR	308	47.392	48.742	30.561	1.00 63.64	AAAA C
ATOI1	2932	C THR	308	47.514	46.379	32.234	1.00 61.82	AAAA C
			308	47.412	45.415	31.477	1.00 62.05	AAAA O
ATOH	2933						1.00 55.66	AAAA II
HOTA	2934	H LYS	309	16.675	46.719	33.211		
ATOM	2936	CA LYS	309	45.456	45.926	33.445	1.00 54.67	Ā AA A C
ATOI:	2937	CB LTS	309	45.043	45.880	34.904	1.00 56.82	ааал с
ATOH	2938	CG LYS	309	43.601	45.541	35.223	1.00 57.50	AAAA C
ATOM	2939	CD LYS	309	43.390	44.039	35.086	1.00 59.50	AAAA C
				42.703	43.448	36.324	1.00 57.31	AAAA C
ATOH	2940	CE LYS	309					AAAA II
ATOM	2941	NZ LYS	309	42.758	41.954	36.236	1.00 57.22	
MOTA	2945	C LYS	309	44.391	46.570	32.548	1.00 51.21	AAAA C
11OTA	2946	O LYS	309	44.074	47.763	32.680	1.00 47.23	AAAA O
ATOM	2947	N THR	310	43.895	45.772	31.610	1.00 47.67	II AAAA
			310	42.862	46.328	30.733	1.00 51.89	AAAA C
ATON	2949						1.00 54.81	AAAA C
ATOI1	2950	CB THR	310	43.161	46.015	29.266		
ATOII	2951	OG1 THR	310	41.909	45.710	28.635	1.00 66.29	AAAA O
1-10TA	2953	CG2 THR	310	44.032	44.791	29.139	1.00 55.18	AAAA C
ATOH	2954	C THR	310	41.468	45.841	31.117	1.00 51.15	AAAA C
1-10TA	2955	O THR	310	41.162	44.680	30.991	1.00 49.27	AAAA O
						31.732	1.00 50.18	II AAAA II
ATOH	2956	H ILE	311	40.684	46.706			
ATOI1	2958	CA ILE	311	39.363	46.453	32.275	1.00 48.67	AAAA C
ATOI1	2959	CB ILE	311	39.120	47.396	33.462	1.00 49.27	AAAA C
ATOH	2960	CG2 ILE	311	37.655	47.596	33.759	1.00 50.72	AAAA C
ATOH	2961	CG1 ILE	311	39.896	46.930	34.699	1.00 41.34	AAAA C
ATOH	2962	CD1 ILE	311	39.847	48.073	35.739	1.00 52.22	AAAA C
							1.00 45.37	AAAA C
ATOH	2963	C ILE	311	38.334	46.729	31.186		AAAA O
ATOi:i	2964	O ILE	311	38.132	47.875	30.758	1.00 37.14	
HOTA	2965	II ASP	312	37.871	45.678	30.524	1.00 50.10	AAAA H
ATOH	2967	CA ASP	312	36.991	45.842	29.377	1.00 56.35	\Box AAA A
ATOM	2968	CB ASP	312	37.546	45.152	28.128	1.00 59.45	AAAA C
	2969	CG ASP	312	37.761	43.671	28.382	1.00 65.64	AAAA C
ATOH							1.00 72.60	AAAA O
ATOI:1	2970	OD1 ASP	312	38.525	43.034	27.636		
HOTA	2971	OD2 ASF	312	37.154	43.176	29.348	1.00 66.86	AAAA O
NOTA	2972	C ASP	312	35.589	45.337	29.693	1.00 59.39	AAAA C
HOTA	2973	O ASP	312	34.729	45.007	28.867	1.00 61.00	AAAA O
ATOH.	2974	II SER		35.278	45.290	30.976	1.00 61.17	II AAAA II
ATOH	2976	CA SER		34.053	44.683	31.459	1.00 55.73	AAAA C
							1.00 48.22	AAAA C
ATON	2977	CB SER		34.121	43.201	31.093		
ATOH	2978	OG SER		34.373	42.514	32.202	1.00 57.89	AAAA O
ATOH	2980	C SER	313	33.998	44.818	32.241	1.00 57.87	AAAA C
ATOI1	2981	O SER		34.802	45.506	33.537	1.00 66.47	AAAA O
ATOI1	2982	H VAL		33.001	44.205	33.545	1.00 64.35	AAAA H
				32.849	44.305	35.016	1.00 64.39	AAAA C
ATOI1	2984	CA VAL						AAAA C
ATOH	2985	CB VAL		31.360	44.340	35.343	1.00 69.57	
ATOH	2986	CG1 VAL	314	31.024	43.693	36.691	1.00 65.60	AAAA C
ATOH	2987	CG2 VAL	314	30.927	45.823	35.319	1.00 65.27	AAAA C
ATOH1	2988	C VAL		33.492	43.088	35.638	1.00 62.65	AAAA C
					43.141	36.704	1.00 63.92	AAAA O
ATOH	2989			34.029				
ATOH	2990	II THR		33.468	42.011	34.878	1.00 61.82	II AAAA
ATOI1	3992	CA THR	315	34.029	40.752	35.284	1.00 63.44	AAAA C
ATOH	2993	CB THR	315	33.618	39.628	34.314	1.09 65.54	AAAA C
ATOH	5964	OG1 THR		32.403	40.004	33.634	1.00 74.05	AAAA O
ATOH	2996	CG2 THR		33.339	38.366	35.104	1.00 64.86	AAAA C
ATOH		C THR			40.871	35.323	1.00 65.62	AAAA C
ALUII	2997	© Ink	315	35.541	40.5/1	30.323	1.00 00.02	1 W W W T

						30/58		
ATOLL	5098 O	THR	315	36.217	40.339	36.206	1.00 66.41	AAAA O
ATOH ATOH	2999 H 3001 CA	SER SER	316 316	36.071 3 7. 500	41.593	34.332 34.215	1.00 63.28 1.00 58.72	AAAA 11 AAAA C
ATOH	3002 CB	SER	316	37.795	42.537	32.900	1.00 52.20	AAAA C
ATOH ATOH	3003 OG 3005 C	SER SER	316 316	37.298 38.077	43.859 42.573	32.933 35.387	1.00 48.04	AAAA O AAAA C
ATOH	3006 0	SER	316	39.293	42.522	35.520	1.00 59.86	AAAA O
ATOH ATOH	3007 II 3009 CA	ALA ALA	317 317	37.310 37.750	43.362	36.111 37.191	1.00 55.86 1.00 57.17	AAAA H AAAA C
ATOH	3010 CB	ALA	317	36.833	45.409	37.269	1.00 54.23	AAAA C
ATOH ATOH	3011 C 3012 O	ALA ALA	317 317	37.689 37.702	43.487 44.128	38.538 39.599	1.00 62.05 1.00 60.30	AAAA C AAAA O
ATOH	3013 11	GLH	318	37.361	42.205	38.523	1.00 67.91	II AAAA II
HOTA HOTA	3015 CA 3016 CB		318 318	37.185 36.857	41.380 39.956	39.713 39.293	1.00 70.72 1.00 74.48	AAAA C AAAA C
ATOI1	3017 CG	GLII	318	36.624	38.947	40.383	1.00 89.82	AAAA C
ATOH ATOH	3018 CD 3019 OE		318 318	35.265 34.256	39.080 38.807	41.048 40.391	1.00 92.69 1.00 98.57	AAAA C AAAA O
ATOH:	3020 HE	2 GLN	318	35.356	39.509	42.308	1.00 92.51	AAAA N
ATOM ATON	3023 C 3024 O	GLII GLII	318 318	38.380 38.294	41.413	40.653 41.804	1.00 72.63 1.00 68.92	AAAA C AAAA O
NOTA	3025 11	HET	319	39.562	41.062	40.153	1.00 75.18	11 AAAA
HOTA HOTA	3027 CA 3028 CB	MET MET	319 319	40.846 41.950	41.175 40.960	40. 8 26 39.772	1.00 71.85 1.00 82.00	АААА С АААА С
ATOH	3029 CG	HET	319	41.740	39.644	39.050	1.00 91.16	AAAA C
ATOH ATOM	3030 SD 3031 CE		319 3 1 9	43.123 42.486	38.482 37.105	39.185 38.231	1.00106.72 1.00 97.56	AAAA S AAAA C
ATOH	3032 C	HET	319	41.118	42.509	41.471	1.00 67.68	AAAA C
ATOH ATOH	3033 O 3034 II	NET Leu	319 320	41.577	42.541 43.639	42.612 40.887	1.00 69.73 1.00 62.95	O AAAA II AAAA
HOTA	3036 CA	LEU	320	40.907	44.938	41.531	1.00 62.31	AAAA C
ATOH ATOM	3037 CB 3038 CG		320 320	40.440 41.091	46.085 46.163	40.623 39.238	1.00 54.93 1.00 53.48	АААА С АААА С
ATOH1	3039 CD	1 LEU	320	41.005	47.552	38.692	1.00 51.31	AAAA C
ATON ATON	3040 CD 3041 C	2 LEU LEU	320 320	42.557 40.209	45.709 45.008	39.403 42.881	1.00 58.43	AAAA C AAAA C
ATOH	3942 0	LEU	320	40.344	45.969	43.661	1.00 58.72	AAAA O
ATOH ATOH	3043 II 3045 CA	GLN GLN	321 321	39.267 38.482	44.106 44.128	43.112 44.343	1.00 59.62 1.00 63.50	AAAA II AAAA C
ATOH	3046 CB	GLII	321	37.373	43.089	44.250	1.00 62.52	AAAA C
ATOH ATOH	3047 CG 3048 CD		321 321	36.611 35.337	42.854 42.064	45.522 45.291	1.00 56.83 1.00 68.77	AAAA C AAAA C
ATOM	3049 OE		321	35.362	40.969	44.718	1.00 70.37	AAAA O
ATOH ATOH	3050 NE 3053 C	2 GLN GLN	321 321	34.218 39.367	42.632 44.030	45.764 45.594	1.00 63.77 1.00 60.97	AAAA II AAAA C
ATOM	3054 0	GLH	321	40.262	43.196	45.782	1.00 57.29	AAAA O
HOTA HOTA	3055 II 3057 CA	GLY	322 322	39.092 3 9 .855	44.928 44.928	46.546 47.790	1.00 57. 62 1.00 60.63	AAAA II AAAA C
ATOH	3058 C	GLY	322	41.126	45.773	47.812	1.00 61.78	AAAA C AAAA O
ATOH ATOH	3059 O 3060 H	GLY CYS	322 323	41.584 41.719	46.198 46.124	48.889 46.676	1.00 60.16 1.00 60.03	AAAA II
ATON ATON	3062 CA 3063 C		323	42.938	46.845	46.528	1.00 54.20 1.00 53.48	AAAA C AAAA C
ATOM	3064 O	CTS CTS	323 323	42.924 42.105	48.307 49.148	46.910 46.503	1.00 55.48	AAAA C
ATON ATON	3065 CB 3066 SG		323	43.458	46.822	45.086	1.00 53.33 1.00 66.22	AAAA C AAAA S
ATOH	3067 11	THR	323 324	43.325 43.994	45.222 48.718	44.248 47.580	1.00 49.83	H AAAA
ATOH ATOH	3069 CA 3070 CB		324 324	44.164 44.623	50.161 50.324	47.811 49.264	1.00 52.29 1.00 52.84	АААА С АААА С
ATOH	3071 OG	1 THR	324	45.245	49.087	19.634	1.00 59.82	AAAA O
ATON ATON	3073 CG 3074 C	2 THR THR	324 324	43.432 45.154	50.517 50.802	50.193	1.00 60.00 1.00 48.91	АААА С АААА С
ATOM	3075 0	THR	324	45.277	52.016	46.710	1.00 46.90	AAAA O
ATOH ATOH	3076 N 3078 CA	ILE ILE	325 325	46.021 47.114	49.963 50.511	46.254 45.445	1.00 46.87 1.00 45.10	AAAA N AAAA C
ATON	3079 CB	ILE	325	48.473	50.577	46.183	1.00 43.60	AAAA C
ATOH ATOH		2 ILE 1 ILE	325 325	49.586 48.394	50.905 51.623	45.163 47.294	1.00 47.47 1.00 34.03	AAAA C AAAA C
HOTA	3082 CD	1 ILE	325	49.595	52.010	48.028	1.00 41.94	AAAA C
HOTA HOTA	308 3 C 3084 O	ILE	325 325	47,265 47,406	49.642	44.469	1.00 42.88 1.00 42.99	AAAA C AAAA O
ATOH	3085 11	PHE	326	47,170	50.238	43.042	1.00 41.19	II AAAA
ATOH ATOH	3087 CA 3088 CB		326 326	47.312 46.166	49.334 49.437	41.880 40.877	1.00 42.98 1.00 39.15	AAAA C AAAA C
ATOI1	3089 CG	PHE	326	46.403	48.474	39.738	1.00 38.03	AAAA C
ATOH ATOH	3090 CD 3091 CD	1 PHE 2 PHE	326 326	46.186 46.917	47.125 48.892	39.951 38.525	1.00 39.68 1.00 37.31	AAAA C AAAA C
ATOH	3092 CE	1 PHE	326	46.447	46.139	39.023	1.00 36.52	AAAA C
ATOH ATOH	3093 CE 3094 CZ		326 326	47.136 46.924	47.919 46.570	37.551 37.787	1.00 45.74 1.00 39.92	АААА С АААА С
HOTA	3095 C	BHE	326	48.682	49.673	41.280	1.00 48.78	AAAA C
ATOH ATOH	3096 O 3097 II	PHE LTS	326 327	49.024 49.623	50.826 48.751	40.966 41.379	1.00 51.39	O AAAA 11 A AA A
ATOM	3099 CA	LYS	327	50.964	48,963	40.831	1.00 51.49	AAAA C
ATOH	3100 CB	LTS	327	50.050	48.091	41.519	1.00 58.64	AAAA C

31/58 **ATOM** CG 41.981 AAAA C 3101 LTS327 53.254 48.897 1.0059.153102 CD 327 54.528 41.617 ATOI: LTS 48.257 1.00 63.49 AAAA C HOTA 3103 ÇE LïS 327 55.400 48.951 10.592 1.00 68.12 AAAA C 3104 LYS HOTA 112 327 56.260 47.889 39.938 1.00 71.97 II AAAA II ATOH 3108 C LYS 327 50.895 48.464 39.391 1.00 45.70 AAAA C 3109 ATOH 0 LYS 327 50.901 47.245 1.00 49.55 39.127 AAAA O 3110 1.00 39.68 ATOM 11 GLï 49.397 328 50.760 38.502 II AAAA ATOM 3112 CA GLT 328 50.64749.038 37.080 1.00 39.44 AAAA C **ATOH** 3113 C GLY 328 49.845 50.161 36.427 1.00 39.49 AAAA C 36.881 1.00 31.92 ATO:1 3114 O GLY 328 49.858 51.307 AAAA O MOTA 3115 ASH 49.813 11 329 35.289 1.00 41.47 49.286 AAAA II 3117 CA **ATOH** ASII 329 50.750 1.00 45.72 48.467 34.543 AAAA C ATO!1 3118 CB ASH 329 49.185 50.942 33.211 1.00 42.50 AAAA C АТОН ASN AAAA C 3119 CG 329 50.624 51.426 33.357 1.00 42.26 HOTA 3120 OD1 ASII 329 50.954 52.331 34.156 1.00 34.77 AAAA O **ATOM** 3121 HD2 ASH 329 51.425 50.769 32.530 1.00 30.62 II AAAA 3124 C **IIZA** HOTA 329 47.038 50.207 34.357 1.00 50.37 AAAA C ATO11 3125 IIZA O 329 46.736 49.015 34.119 1.00 50.17 AAAA O 3126 **ATOH** LEU ;; 330 46.090 51.143 34.413 1.00 47.13 AAAA N CA LEU HOTA 3128 330 50.860 34.151 1.00 42.53 AAAA C 44.691 **PLOLU** 3129 CB LEU 330 43.751 51.530 35.153 1.00 42.84 AAAA C 3130 CG LEU ATOM 330 43.768 50.995 36.598 1.00 38.65 AAAA C **ATOM** 3131 CD1 LEU 330 42.864 51.924 37.417 1.00 38.12 AAAA C CD2 LEU ATO!! 3132 49.565 330 43.283 36.669 1.00 38.74 AAAA C 32.758 MOTA 3133 C LEU 51.377 1.00 39.10 330 44.352 AAAA C 3134 LEU 1 1OTA 0 330 52.545 32.460 44.509 1.00 40.71 AAAA O ATOM: 3135 11 LEU 331 50.516 31.904 1.00 36.10 43.933 II AAAA ATOM 3137 CA LEU 331 43.367 50.869 30.625 1.00 43.10 AAAA C ATO! 3138 CB LEU 49.894 29.585 331 43.958 1.00 42.29 AAAA C CG 1.00 40.89 ATOI1 3139 LEU 28.221 331 43.301 49.960 AAAA C ATOM 3140 CD1 LEU AAAA C 51.319 27.627 331 43.501 1.00 46.64 3141 CD2 LEU 27.367 1.00 48.76 ATOM 331 43.844 48.834 AAAA C ATOM: 3142 C LEU 331 30.705 41.872 50.568 1.00 41.12 AAAA C ATOM 3143 LEU 41.562 O 331 49.365 30.779 1.00 40.08 AAAA O **ATOH** ILE 3144 11 332 41.029 51.566 30.862 1.00 41.13 II AAAA ATOM 3146 CA ILE 39.606 332 51.241 31.044 1.00 36.90 AAAA C CBILE 52.085 ATOI1 3147 332 38.885 32.076 1.00 34.77 AAAA C ATOH 3148 CG2 ILE 332 37.413 51.612 32.195 1.00 34.66 AAAA C 3149 **ATOM** CG1 ILE 332 39.550 51.895 33.452 1.00 33.64 AAAA C 3150 CD1 ILE **ATOM** 332 AAAA C 39,479 53.152 34.337 1.00 48.21 ATOM 3151 C ILE 332 38.959 51.367 29.688 1.00 34.03 AAAA C 3152 0 ILE 11OTA 29.200 332 38.867 52.489 1.00 35.89 AAAA O **ATOM** 3153 ASII Н 333 50.273 29.094 1.00 35.25 38.569 N AAAA ATOM 3155 CA ASII 333 50.283 38.014 27.737 1.00 40.34 AAAA C 3156 CB ATO!! ASN 333 38.960 49.499 26.797 1.00 50.50 AAAA C **ATOM** 3157 CG ASN 333 38.668 49.493 25.310 1.00 59.29 AAAA C ATOI1 3158 OD1 ASH 333 37.845 48.711 24.784 1.00 64.54 AAAA O 3159 HD2 ASH MOTA 333 24.467 39.290 50.350 1.00 45.83 II AAAA HOTA 3162 C ASH 333 27.755 36.566 49.581 1.00 47.63 AAAA C ATOH 3163 Q ASN 333 36.462 48.409 27.398 1.00 44.40 AAAA O ATO!! 3164 11 ILE 334 35.644 50.213 28.315 1.00 54.13 AAAA II ATOI4 3166 CA ILE AAAA C 334 34.332 49.537 28.460 1.00 59.07 3167 CB AAAA C ATO!! ILE 334 33.788 49.826 29.876 1.00 61.98 ATOH 3168 CG2 ILE 334 1.00 54.04 32.362 49.355 30.047 AAAA C HOTA 3169 CG1 ILE 34.737 49.224 30.915 1.00 60.43 AAAA C HOTA 3170 CD1 ILE 32.317 1.00 68.57 AAAA C 334 34.346 49.687 ATOH 3171 27.476 1.00 59.45 \Box ILE 334 33.271 50.032 AAAA C ATOH! 3172 0 ILE 334 51.136 27.635 1.00 56.22 32.726 AAAA O I-IOTA 3173 14 ARG 335 32.919 49.181 26.550 1.00 59.69 AAAA N HOTA 3175 1.00 73.93 CA ARG 335 31.910 49.567 25.573 AAAA C MOTA 3176 CB ARG 335 32.262 48.903 24,240 1.00 74.44 AAAA C MOTA 3177 CG AAAA C ARG 335 33.729 48.932 23.918 1.00 82.97 **ATOH** 3178 CD ARG 335 34.102 22.500 1.00 86.49 AAAA C 49.289 ATOH 3179 ИE ARG 335 34.361 21.777 1.00 89.83 II AAAA 48.040 MOTA 3181 CZ ARG 335 34.011 47.838 20.496 1.00 93.67 AAAA C **ATOII** 3182 HH1 ARG 335 48.852 33.409 19.843 1.00 87.24 AAAA II 19.877 1.00 75.31 ATOM 3185 NH2 ARG 335 34.256 46.674 H AAAA C ATOH 3188 ARG 335 30.492 49.233 26.021 1.00 81.52 AAAA C HOTA 3189 335 Q ARG 29.664 50.115 26.239 1.00 84.11 AAAA O HOTA 3190 336 30.208 26.234 11 ALA 47.953 1.00 87.51 II AAAA **ATOH** 3192 CAALA 336 28.878 47.484 26.601 1.00 92.40 AAAA C MOTA 3193 CB ALA 336 28.835 45.980 26.633 1.00 94.03 AAAA C **ATOH** 3194 C ALA 336 28.479 48.058 27.953 1.00 96.61 AAAA C HOTA 3195 336 29.316 0 ALA 48.019 28.855 1.00 96.96 AAAA O **ATOH** 3196 337 27,298 GLT 48.685 28.039 1.00 99.74 11 II AAAA **ATOI1** 3198 CA GLY 337 26.986 49.385 29.272 1.00103.11 AAAA C HOTA 3199 C GLT 337 29.763 1.00105.51 25.568 49.303 AAAA C ATOIL 3200 GLT 337 0 24.801 50.267 29.596 1.00106.64 AAAA O **ATOM** 3201 11 112A 338 25.243 48.146 30.346 1.00105.41 AAAA II ATOH 3203 CA IIZA 338 23.886 48.017 30.908 1.00106.92 AAAA C MOTA 3204 ASH CB 338 23.714 46.689 31.624 1.00109.14 AAAA C ATO11 3205 CG ASN 338 30.928 1.00112.30 AAAA C 24.403 45.544 **ATOH** OD1 ASN 3206 338 30.625 1.00117.94 25.598 45.595 AAAA O ATOH. 3207 HD2 ASH 338 23.604 30.683 1.00113.72 44.508 AAAA II

ATON

3210

Ĺ

ASN

338

23.790

49.160 31.931 1.00105.84

AAAA C

32/58 23.544 50.345 31.739 1.00103.97 AAAA O ATOH. 3211 0 ASH 338 33.099 1.00105.47 II AAAA II 3212 11 ASH 339 24.290 48.762 ATO: 1 24.529 34.159 1.00107.10 AAAA C 3214 €A ASII 339 49.740 HOTA 23,252 49.915 34.945 1.00109.15 AAAA C ATOM 3215 CB ASII 339 22.777 35.003 0.01107.52 AAAA C 3216 51.351 ATOH CGASII 339 51.931 0.01107.49 ATOH 3217 ASII 339 22.715 36.088 AAAA O OD1 33.859 0.01107.46 AAAA H 3218 HD2 ASH 22.441 51.932 **ATOH** 339 49,237 1.00106.33 AAAA C 3221 35.007 **ATOH** C ASII 339 25.697 3222 48.390 35.886 1.00108.82 AAAA O ASII 25.520 AT OI1 0 339 3223 ILE 340 26.897 49.527 34.510 1.00101.36 II AAAA II ATOH 1-1 1.00 97.43 AAAA C MOTA 3225 CAILE 340 28.136 49.101 35.138 1.00 93.63 29.040 34.151 AAAA C 3226 CB ILE 48.354 ATON 340 1.00 99.38 47.252 33.489 AAAA C 3227 CG2 ILE 28.194 ATOU 340 1.00 85.50 3228 CG1 ILE 29.726 49.158 33.070 AAAA C ATOH 340 CD1 ILE 28.897 49.634 31.915 1.00 92.53 AAAA C ATOM 3229 340 HOTA 3230 ILE 28.783 50.357 35.706 1.00 95.32 AAAA C C 340 1.00 97.86 3231 29.472 51.099 34.997 AAAA O **ATOH** 0 ILE 340 1.00 89.89 50.739 36.915 II AAAA 3232 ALA 28.409 ATOH 11 341 52.008 37.450 1.00 88.45 AAAA C ATOM 3234 CA ALA 28.892 341 53.201 37.006 1.00 84.56 AAAA C 3235 CB 28.068 ATOI: ALA 341 51.968 38.970 1.00 85.37 AAAA C 3236 28.786 ATOM C ALA 341 52.935 ATOM 3237 28.910 39.690 1.00 86.09 AAAA O 0 ALA 341 50.877 39.386 1.00 84.24 AAAA II HOTA 3238 11 SER 342 28.204 1.00 82.05 27.910 50.601 40.780 AAAA C MOTA 3240 CA SER 342 1.00 85.51 AAAA C 3241 CB SER 26.426 50.667 41.112 ATO! 342 1.00 86.02 3242 OG SER 26.145 51.271 42.361 AAAA O ATOM 342 28.487 49.196 40.965 1.00 76.62 AAAA C ATOM 3244 C SER 342 3245 29.119 48.966 41.964 1.00 71.76 O AAAA ATOH oSER 342 1.00 76.23 28.373 48.409 39.905 AAAA II 3246 H GLU НОТА 343 3248 CAGLU 29.001 47.109 39.820 1.00 74.59 AAAA C ATON 34.3 46.300 1.00 78.62 AAAA C ATO!! 3249 CB GLU 343 28.595 38.616 1.00 85.33 27.118 46.105 38.316 AAAA C ATOM 3250 CG GLU 343 3251 26.898 1.00 92.76 AAAA C ATOI1 CD GLU 45.121 37.169 343 3252 OE1 GLU 43.911 37.310 1.00 96.41 AAAA O ATOH 27.209 343 MOTA 3253 OE2 GLU 26.423 45.517 36.082 1,00 98.55 AAAA O 343 3254 47.319 1.00 77.75 AAAA C ATOH: C GLU 343 30.525 39.804 3255 31.273 46.787 10.637 1.00 75.73 AAAA O 0 GLU ATOM 343 3256 31.022 48.237 38.966 1.00 75.65 II AAAA ATOM 11 LEU 344 48.596 1.00 72.36 **ATOH** 3258 CA LEU 32.415 38.839 AAAA C 344 3259 CB LEU 32.760 49.697 37.808 1.00 64.33 AAAA C MOTA 344 3260 49.397 36.311 1.00 50.12 AAAA C HOTA CG LEU 32.687 344 50.577 35.519 1.00 57.00 AAAA C 3261 CD1 LEU 33.224 ATO14 344 1.00 51.62 AAAA C ATOM 3262 CD2 LEU 33.401 48.127 35.905 344 1.00 69.74 AAAA C ATOH 3263 C LEU 32.963 49.130 40.174 344 3264 O LEU 34.079 48.739 40.551 1.00 69.12 AAAA O **ATOM** 344 49.959 40.822 1.00 63.10 H AAAA ATOH 3265 И GLU 345 32.166 42.061 32.555 50.591 1.00 65.42 AAAA C ATON 3267 CAGLU 345 1.0055.59AAAA C 3268 CB GLU 31.592 51.714 42.478 ATOH 345 32.267 1.00 68.78 AAAA C ATOH 3269 CG GLU 52.607 43.486 345 1.00 81.31 **ATOH** 3270 CDGLU 31.324 53.374 44.376 AAAA C 345 54.320 1.00 85.60 AAAA O ATOM1 3271 OE1 GLU 345 30.614 43.976 OE2 GLU 3272 53.078 45.595 1.00 88.79 AAAA O **ATOI1** 31.237 345 43.255 3273 32.706 49.652 1.00 63.31 AAAA C ATOH CGLU 345 ATOH 3274 49.913 44.134 1.00 60.06AAAA O 0 GLU 345 33.501 43.202 1.00 62.25 AAAA II HOTA 3275 HSA 346 32.151 48.462 11 AAAA C 3277 44.173 1.00 63.82 MOTA CA112A 346 32,285 47.403 AAAA C 3278 46.498 44.095 1.00 61.66 LIOTA CBASII 31.024 346 AAAA C MOTA 3279 CG 45.292 45.006 1.00 58.73 ASH 346 31.110 1.00 69.11 AAAA O MOTA 3280 OD1 ASH 346 31.188 45.352 46.224 1.00 51.10 AAAA II ATOH 3281 ND2 ASH 31.155 44.092 44.444 346 1.00 63.71 AAAA C ATOM 3284 C 43.870 ASII 346 33.532 46.580 AAAA O HOTA 3285 ASII 33.636 45.336 43.905 1.00 65.65 O 346 HOTA 3286 1.00 63.23 AAAA II PHE 34.419 47.173 43.066 11 347 AAAA C HOTA 3288 CA PHE 347 35.540 46.411 42.506 1.00 61.39 AAAA C HOTA 3289 PHE 35.123 41.170 1.00 61.38 CB 347 45.854 ATOH 1.00 65.57 AAAA C 3290 PHE 34.457 44.534 41.142 CG347 **ATOI1** 3291 CD1 PHE 40.982 1.00 75.25 AAAA C 33.090 347 44.438 ATOH. 3292 CD2 PHE 347 35.148 43.351 41.267 1.00 77.15 AAAA C 1.00 75.55 HOTA 3293 CE1 PHE AAAA C 347 32.425 43.224 40.951 1.00 72.86 AAAA C ATOH! 3294 CE2 PHE 34.512 42.130 41.249 347 1.00 72.74 AAAA C MOTA 3295 CZ33.152 PHE 347 42.051 41.095 **ATOII** 3296 42.440 1.00 57.70 AAAA C Ç FHE 347 36.712 47.375 MOTA 3297 PHE 37.770 42.354 1.00 59.92 AAAA O 0 347 46.820 ATO!! 3298 11 HET 348 36.482 48.676 42.319 1.00 50.56 II AAAA II AAAA C 1.00 42.86 **ATOH** 3300 CA HET 348 37.500 49.630 41.964 ATOH 3301 CB37.402 40.493 1.00 31.72 NAAA C HET 348 50,096 ATOH: 3302 CG HET 37.426 48.933 39.471 1.00 33.42 AAAA C 348 **ATOH** AAAA S 3303 SD HET 348 37.566 49.448 37.732 1.00 44.79 ATOM 3304 CE HET 38.408 50.999 37.791 1.00 59.57 AAAA C 348 ATOII 3305 C MET 348 37.368 42.867 1.00 45.88 AAAA C 50.831 ATOH. 3306 HET 51.772 42.901 1.00 43.33 AAAA O О 348 38.210 ATOH 3307 11 GLY 3.19 36.296 50.793 43.683 1.00 45.30 II AAAA 3309 CA ATOH GLT 349 35.998 51.965 44.504 1.00 49.19 AAAA C ATOH: 3310 C GLï 349 36.980 45.620 1.00 52.77 AAAA C 52.189

ATOH.

3311 0

GLY

349

37.033

53.299 46.156 1.00 53.43

AAAA 0

33/58 AAAA II 51.159 45.025 1.00 56.17 37.791 350 3312 11 LEU ATOH AAAA C 1.0058.0451.256 47.001 38.735 350 CALEU ATOH 3314 1.00 49.00 AAAA C 47.834 49.949 38.873 CBLEU 350 3315 ATOH AAAA C 1.00 50.79 49.031 50.020 LEU 37.871 350 3316 $\mathbb{C}\mathbb{G}$ **ATOH** AAAA C 1.00 52.92 48.680 49.700 37.705 LEU 350 3317 CD1 АТОМ AAAA C 50.038 1.00 56.11 51.106 38.247 3318 CD2 LEU 350 HOTA 1.00 61.34 AAAA C 46.685 51.727 40.144 C LEU 350 **ATOH** 3319 AAAA O 1.00 63.52 40.931 51.962 47.618 LEU 350 3320 0 HOTA 1.00 57.89 AAAA N 45.372 51.677 ILE 351 40.446 3321 11 HOTA AAAA C 1.00 48.69 52.088 44.873 41.729 CA ILE 351 3323 HOTA AAAA C 43.352 1.00 48.19 41.814 51.912 3324 CB ILE 351 **HOTA** AAAA C 1.00 40.01 52.416 42.757 43.121 3325 CG2 ILE 351 **ATOH** AAAA C 1.00 36.87 43.058 50.418 41.535 ILE ATOH 3326 CG1 351 AAAA C 1.00 36.46 50.351 41.581 41.172 CD1 ILE 351 3327 HOTA 1.00 46.80 AAAA C 53.533 45.178 42.031 351 CILE 3328 MOTA C AAAA 1.00 42.87 44.626 351 41.367 54.358 3329 ILE O ATOH! AAAA II 1.00 50.61 53.866 46.015 43.002 GLU 352 3330 11 **ATOH** AAAA C 1.00 51.20 46.248 55.241 43.381 3332 CA GLU 352 **ATOH** AAAA C 1.00 52.12 47.678 55.353 43.907 352 3333 CB GLU ATOM AAAA C 1.00 65.55 55.769 48.735 42.912 352 3334 CG GLU **ATOH** AAAA C 1.00 71.49 49.947 54.834 43.034 GLU 352 3335 CD ATOH 1.00 66.09 AAAA O 50.765 43.881 55.244 **35**2 OE1 GLU 3336 ATOI1 O AAAA 1.00 76.07 50.009 53.799 42.330 OE2 GLU 352 3337 **ATOH** 1.00 47.43 AAAA C 45.314 55.751 44.502 3338 C GLU 352 ATOM 1.00 40.38 AAAA O 56.951 45.182 352 44.798 GLU 3339 Ú ATOM AAAA 11 1.00 43.54 54.838 44.852 45.342 353 3340 VAL ATOM 11 1.00 43.71 AAAA C 44.078 46.512 55.236 CA VAL 353 3342 ATOH AAAA C 1.00 45.01 55.540 44.911 47.759 353 3343 CB VAL MOTA AAAA C 1.00 30.84 46.387 47.766 55.261 CG1 VAL 353 3344 ATOM AAAA C 1.00 42.55 44.310 54.844 48.988 CG2 VAL 353 3345 LIOTA AAAA C 42.957 1.00 41.41 54.233 46.828 ATOI1 3346 \mathbf{C} VAL 353 AAAA O 1.00 39.19 46.843 53.003 43.172 3347 \circ VAL 353 ATOI1 AAAA 11 1.00 36.31 41.816 47.074 54.855 354 11 VAL ATOM 3348 1.00 43.97 AAAA C 40.651 54.092 VAL 354 47.586 3350 CAHOTA AAAA C 1.00 40.86 39.407 46.725 54.390 3351 CB VAL 354 ATOM: 1.00 36.72 AAAA C 53.896 38.123 47.347 HOTA 3352 CG1 VAL 354 AAAA C 1.00 35.35 45.293 53.849 39.678 CG2 VAL 3353 354 HOTA AAAA C 1.00 44.56 40.388 49.043 54.510 \mathbf{C} VAL 354 3354 MOTA AAAA O 1.00 43.32 40.288 55.718 49.366 3355 O VAL 354 MOTA AAAA 11 1.00 43.83 40.431 53.561 49.972 3356 11 THR 355 HOTA 1.00 44.85 AAAA C 40.284 53.914 51.392 3358 CA THR 355 ATOM AAAA C 1.00 42.40 40.653 52.799 52.374 THR 355 ATOI4 3359 CB AAAA O 1.00 45.30 51.744 39.695 52.273 OG1 THR 355 MOTA 3360 AAAA C 1.00 38.13 52.194 42.039 52.210 CG2 THR 355 ATOI1 3362 AAAA C 1.00 43.84 38.851 51.746 54.339 355 3363 \mathbb{C} THR ATOM AAAA O 1.00 44.26 38.697 55.334 52.463 THR 355 **ATOH** 3364 0 1.00 41.16 II AAAA 53.704 37.870 51.127 GLT 356 3365] [ATOH 1.00 37.91 AAAA C 36.470 54.073 51.358 CA GLT 356 MOTA 3367 1.00 38.07 AAAA C 35.955 55.204 50.505 GLY 356 ATOH 3368 C1.00 34.65 AAAA O 56.261 36.615 50.364 GLT 356 3369 0 ATOU H AAAA II 1.00 38.47 55.004 34.800 49.910 3370 11 TïR 357 HOTA 1.00 38.03 AAAA C 34.205 48.982 55.973 357 3372 CA TYR ATOH AAAA C 1.00 31.44 56.343 32.805 49.557 3373 CBTYR 357 ATOH AAAA C 31.812 1.00 33.04 55.219 TTR 49.473 357 3374 CG ATOH AAAA C 48.333 54.842 31.077 1.00 32.86 CD1 TYR 357 PLOTE 3375 AAAA C 30.175 1.00 32.83 48.352 53.779 357 CE1 TYR 14OTA 3376 31.606 1.00 34.28 AAAA C 54.465 CD2 TYR 357 50.639 3377 ATOH 30.720 1.00 32.51 AAAA C 50.706 53.402 3378 CE2 TYR 357 **ATOH** 30.007 1.00 37.26 AAAA C 53.068 49.552 **ATOH** 3379 CITYR 357 AAAA O 29.166 1.00 35.85 51.997 49.726 357 TYR **HOTA** 3380 CH AAAA C 1.00 38.55 34.150 47.582 55.368 357 TYR 3382 C **ATOH** 1.00 36.11 AAAA O 34.088 357 47.458 54.127 TYR **ATOM** 3383 O AAAA II 1.00 40.98 33.814 56.216 46.593 VAL 358 3384 11 **ATOH** AAAA C 1.00 38.90 55.798 33.639 45.197 3386 CA VAL 358 ATOM 1.00 49.15 AAAA C 34.610 56.502 358 44.211 VAL ATOM 3387 CBAAAA C 1.00 33.12 42.815 55.883 34.484 CG1 VAL 358 3388 **ATOM** 1.00 29.20 AAAA C 36.043 44.748 56.437 CG2 VAL 358 ATOH 3389 1.00 35.64 AAAA C 32.234 56.194 358 44.760 3390 C VAL HOTA AAAA O 1.00 34.58 57.358 31.885 44.792 VAL 358 HOTA 3391 0 II AAAA II 1.00 36.00 31.461 44.387 55.188 LïS 359 **HOTA** 3392 **}**] AAAA C 1.00 41.27 55.419 30.117 43.898 LYS 350 CA **ATOIL** 3394 1.00 37.40 AAAA C 22.174 44.845 54.707 359 LTS HOTA 3395 CB AAAA C 1.00 45.19 27.770 44.340 54.473 LYS 359 **ATOH** 3396 CG 1.00 43.40 AAAA C 26.750 55.317 359 45.040 CD LïS ATOM 3397 AAAA C 1.00 43.56 25.986 359 45.958 54.402 3398 CE LïS ATOH 1.00 47.98 AAAA II 53.937 24.680 LïS 359 45.416 3399 112 ATOH AAAA C 54.979 29.939 1.00 42.14 359 42.423 LYS ATOM: 3403 Ç O AAAA O 1.00 40.40 30.006 53.791 359 42.056 3404 LYS ATOH: 0 L AAAA II 29.572 1.00 37.16 55.974 41.602 ILE 360 ATOI1 3405 11 AAAA C 55,742 29.334 1.00 40.02 40.164 CA ILE 360 ATOH 3407 AAAA C 1.00 38.10 30.048 39.297 56.804 360 ILE MOTA 3408 CB AAAA C 1.00 39.4256.277 29.932 37.887 CG2 ILE 360 ATOH 3409

39.769

39.423

39.888

CG1 ILE

CD1 ILE

C

īLE

ATOH

ATOH

ATOM

3410

3411

3412

360

360

360

57.111

56.037

31.481

32.491

55.837 27.834 1.00 39.49

D AAAA

AAAA 0

AAAA C

1.00 28.54

1.00 33.16

AAAA O

AAAA C

AAAA C

AAAA C

34/58 27.235 1.00 37.32 40.014 56.942 3413 Ō ILE 360 ARG 39.567 54.721 27.221 1.00 34.34 3414 11 361 25.744 1.00 41.24 CA ARG 361 39.472 54.782 3416 1.00 47.92 54.213 25.148 3417 CB ARG 361 40.783 1.00 50.39 54.203 23.646 CG ARG 351 40.805 3418 1.00 51.36 53.357 23.116 ARG 41.943 3419 CD 361

ATOH AAAA II HOTA AAAA C ATOH AAAA C HOTA AAAA C HOTA. AAAA C ATOH 51.974 23.263 1.00 50.97 II AAAA HOTA 3420 ARG 41.473 IJΞ 361 1.00 55.78 AAAA C 3422 CZ ARG 42.297 50.962 23.490 HOTA 361 1.00 51.62 II AAAA 51.074 23.616 ATOH 3423 THI ARG 361 43.612 1.00 54.52 23.631 II AAAA TIH2 ARG 49.719 41.834 **ATOH** 3426 361 1.00 42.06 25.246 AAAA C 3429 53.866 C ARG 361 38.382 **ATOH** 52.661 1.00 38.93 AAAA O 25.499 ATOH ARG 361 38.336 3430 0 24.373 1.00 46.19 II AAAA 11 HIS 362 37.514 54.342 АТОН 3431 36.372 53.555 23.885 1.00 49.34 AAAA C ATOH: 3433 CAHIS 362 52.300 23.266 1.00 40.94 AAAA C ATOH 3434 CB HIS 362 37.000 AAAA C 22.084 1.00 42.78 3435 52.610 HOTA CG HIS 362 37.849 AAAA C 1.00 48.32 53.765 21.411 ATOH CD2 HIS 362 38.049 3436 51.676 21.469 1.00 43.59 II AAAA 362 38.628 HOTA 3437 HD1 HIS 20.465 1.00 46.01 AAAA C 39.256 52.247 ATOH 3439 CEI HIS 362 AAAA :: HE2 HIS 38.923 53.515 20.408 1.00 49.22 **ATOM** 3440 362 24.913 1.00 50.32 AAAA C C HIS 362 35.295 53.113 ATCH 3442 1.00 41.31 52.030 24.795 AAAA O ATOM 3443 0 HIS 362 34.686 35.222 53.875 26.013 1.00 46.96 AAAA 11 SER 363 **ATOH** 3444 ř! 27.139 1.00 52.19 AAAA C 34.402 53.456 11OTA 3446 CA SER 363 AAAA C 28.400 1.00 53.73 35.231 53.837 HOTA 3447 CB SER 363 3448 35.713 52.558 28.816 1.00 41.72 AAAA O SER 363 ATOM ΟG 54.072 1.00 49.08 **ATOH** 3450 CSER 363 33.005 27.046 AAAA C 1.00 37.49 AAAA O 55.040 27.694 **ATOH** 3451 0 SER 363 32.653 1.60 52.25 26.058 53.577 II AAAA 1452 364 32.243 ATOM 11 HIS 25.717 3454 30.954 54.173 1.00 53.66 AAAA C CA HIS **ATOH** 364 AAAA C 53.937 26.760 1.00 48.77 HIS 364 29.879 ATOH: 3455 \subset AAAA C ATOH1 3456 HIS 364 29.297 54.899 27.280 1.00 51.44 O 53.699 24.348 1.00 49.83 AAAA C **ATOH** 3457 CB HIS 364 30.485 AAAA C 23.338 1.00 51.51 HIS 31.493 54.182 **ATOM** 3458 CG 364 3459 HD1 HIS 55.502 23.156 1.00 44.83 AAAA !! 31.870 ATOH: 364 3460 55.533 22.214 1.00 28.57 AAAA C CE1 HIS 32.798 ATOH 364 32.194 53.393 22.472 1.00 38.62 AAAA C ATOM 3461 CD2 HIS 364 21.810 II AAAA ATOM: 3462 HE2 HIS 364 32.992 54.274 1.00 41.44 1.00 47.53 AAAA 11 29.949 52.819 27.427 ATOM 3464 11 ALA 365 AAAA C 29.211 52.488 28.621 1.00 44.41 HOTA 3466 CA ALA 365 AAAA C 29.678 51.133 29.150 1.00 40.28 14OTA 3467 CB ALA 365 AAAA C 29.768 1.00 44.70 HOTA 3468 365 29.318 53.473 C ALA 1.00 45.28 53.206 30.726 AAAA O ATOM 3469 O ALA 365 28.576 AAAA II 3470 11 LEU 366 30.158 54.517 29.762 1.00 40.80 HOTA CA 55.243 30.968 1.00 42.21 AAAA C ATOI1 3472 LEU 366 30.415 31.350 1.00 43.78 AAAA C LEU 366 55.241 HOTA 3473 CB 31.885 AAAA C 32.740 54.037 31.667 1.00 51.52 MOTA 3474 ÇĢ LEU 366 CD1 LEU AAAA C 54.373 32.043 1.00 51.77 ATOH 3475 366 34.192 53.305 32.834 1.00 51.17 AAAA C 3476 CD2 LEW 32.118 ATOH 366 30.896 3477 LEU 29.974 56.687 1.00 46.36 AAAA C ATOH 366 57.248 29.849 1.00 48.40 AAAA O **ATOM** 3478 0 LEU 366 30.305 1.00 43.68 II AAAA ATOH 3479 VAL357 29.521 57.275 32.015 11 29.072 58.675 AAAA C 31.940 1.00 44.18 HOTA 3481 CAVAL 367 AAAA C 58.727 32.376 1.00 48.80 CB VAL 367 27.557 ATOH 3482 HOTA 3483 CG1 VAL 367 26.923 60.073 32.571 1.00 41.69 AAAA C CG2 VAL 1.00 34.00 AAAA C HOTA 3484 367 26.697 57.949 31.365 1.00 44.90 AAAA C 32.845 367 29.923 59.518 ATOH 3485 C VAL 1.00 44.75 AAAA O 32.720 **ATOH** 29.965 60.751 3486 VAL367 0 1.00 48.72 H AAAA SER 30.591 58.818 33.757 ATOI1 3487 11 368 AAAA C 31.487 59.465 34.742 1.00 52.70 LIOTA 3489 CA SER 368 AAAA C SER 59.706 36.000 1.00 55.32 ATOH 3490 CB368 30.658 1.00 64.86 AAAA O 3491 60.298 37.091 HOTA OG SER 368 31.300 1.00 52.76 AAAA C HOTA 32.590 58.497 35.179 3493 SER 368 C 57.299 AAAA O 32.352 34.976 1.00 48.99 ATOI1 3494 SER 368 O 35.831 1.00 53.86 II AAAA ATOI1 3495 11 LEU 369 33.631 59.012 AAAA C **ATOH** 3497 CA LEU 369 34.716 58.129 36.274 1.00 60.15 AAAA C 3498 35.784 1.0955.91HOTA CBLEU 369 36.073 58.630 AAAA C 1,00 45.96 58.736 ATOH 3499 CG LEU 369 36.325 34.271 AAAA C 34.154 1.00 53.97 **HOTA** 3500 CDI LEU 369 37.669 59.428 AAAA C CD2 LEU 33.619 1.00 38.77 ATON 369 36.207 57.384 3501 1.00 62.52 AAAA C ATOH 3502 C LEU 369 58.036 37.811 34.645 1.00 59.33 AAAA O **ATOH** 3503 LEU 369 35.569 57.700 38.595 0 1.00 56.26 AAAA II **ATCH** 3504 11 SER 370 33.437 58.401 38.285 1.00 53.88 AAAA C 3506 370 33.089 58.431 39.690 ATO11 CASER AAAA C 39.816 1.00 57.50 HOTA 3507 CB SER 370 31.673 59.052 1.00 69.12 AAAA O HOTA 3508 SER 370 30.771 58.061 39.261 OG 1.00 47.97 AAAA C 3510 370 33.060 57.085 40.412 **ATOH** Ç SER **ATOH** 3511 33.228 56.943 41.596 1.00 41.93 AAAA O SER 370 0 HOTA 3512 PHE 371 55.936 39.792 1.00 45.48 II AAAA II 11 32.967 1.00 46.29 ATOH 3514 CA PHE 371 33,223 54.643 40.356 AAAA C 39.287 ATOH 3515 CBPHE 371 32.952 53.596 1.00 43.53 AAAA C 1.00 56.45 AAAA C ATOH 3516 CG PHE 371 33.724 53.629 38.012

52.807

54.515

52.842

34.805

33.371

35.498

37.764

37.004

1.00 58.95

1.00 53.92

36.570 1.00 59.50

ATOH

ATOH:

ATOH

3517

3518

3519

CD1 PHE

CD2 PHE

CE1 PHE

371

371

371

35/58 35.817 1.00 56.49 AAAA C 54.546 3520 CE2 PHE 34.048 HOTA 371 1.00 56.39 AAAA C C3 PHE 35.119 53.716 35.579 HOTA 3521 371 1.00 54.84 AAAA C 40.895 3522 Ç PHE 371 34.654 54.467 **ATOH** 1.00 52.23 AAAA O 53.592 41.728 **ATOM** 3523 0 PHE 371 35.005 1.00 50.17 II AAAA II 55.305 40.510 35.633 ATOH 3524 11 LEU 372 1.00 46.25 AAAA C 55.395 41.109 36.928 3526 CA LEU 372 **ATOH** AAAA C 55.812 40.276 1.00 44.82 3527 СB LEU 38.171 **ATOH** 372 AAAA C 54.800 39.114 1.00 36.78 3528 LEU 38.411 HOTA CG372 1.00 45.04 AAAA C 37.934 3529 CD1 LEU 372 38.853 55.643 ATOM: 1.00 35.55 AAAA C 39.565 CD2 LEU 39.260 53.657 ATOM: 3530 372 42.243 AAAA C 1.00 42.26 56.392 C LEU 36.715 HOTA 3531 372 1.00 38.37 AAAA O 57.507 42.364 37.224 FIO'LY **3**532 0 LEU 372 43.192 1.00 47.06 AAAA II 35.970 55.862 3533 LYS 373 MOTA 14 1.00 50.19 AAAA C 35.527 56.509 44.415 MOTA 3535 CA LYS 373 AAAA C 1.00 56.74 34.546 55.521 45.077 HOTA 3536 CB LYS 373 1.00 59.64 AAAA C 46.119 ATOI! 3537 CG LYS 373 33.645 56.162 AAAA C 45.441 0.01 60.17 LYS 32.529 56.955 ATO!! 3538 CD 373 0.01 60.45 AAAA C 46.460 31.674 57.687 3539 CE LTS 373 **ATOLL** 45.899 0.01 60.38 AAAA II 58.933 31.083 HOTA 3540 112 LYS 373 45.366 1.00 49.72 36.646 56.863 AAAA C HOTA 3544 ¢ LYS 373 AAAA O 1.00 42.42 36.636 57.960 45.907 HOTA 3545 0 LïS 373 II AAAA II 1.00 54.43 45.513 **HOTA** 3546 11 ASII 374 37.657 55.986 1.00 59.92 AAAA C 46.410 38.765 56.352 ASN HOTA 3548 CA 374 1.00 63.16 AAAA C 39.080 55.154 47.314 3549 CB ASH 374 LIOTA 38.009 54.978 48.396 1.00 64.53 AAAA C 3550 ASN ATOM CG 374 1.00 66.40 AAAA O 374 37.892 53.972 49.096 MOTA 3551 OD1 ASN 1.00 52.88 II AAAA 55.965 MOTA 3552 IID2 ASII 374 37.160 48.578 45.786 1.00 62.35 AAAA C 56.892 40.043 **HOTA** 3555 Ç ASN 374 1.00 63.08 AAAA O 46.479 41.031 57.223 3556 374 ATOI-I 0 ASII 44.438 1.00 58.34 AAAA II 40.091 56.893 ATOH 3557 LEU 375 11 AAAA C 41.305 57.374 43.795 1.00 54.73 ATOH 3559 CA LEU 375 1.00 56.41 AAAA C LEU 41.099 57.359 42.288 **ATOH** 3560 CB375 1.00 54.12 AAAA C 57.422 41.459 3561 CG LEU 375 42.396 **ATOH** 1.00 37.88 AAAA C 56.112 41.689 MOTA 3562 CD1 LEU 375 43.135 1.00 40.97 AAAA C 42.030 57.796 40.041 CD2 LEU 375 ATOH 3563 1.00 52.37 AAAA C 44.245 C LEU 41.712 58.754 ATOH 3564 375 43.877 1.00 52.11 AAAA O 59.777 ATOH 3565 0 LEU 375 41.151 1.00 55.16 II AAAA ARG 42.801 58.874 44.982 ATON 3566 11 376 AAAA C 1.00 55.45 60.155 45.434 **ATOM** 3568 CA ARG 376 43.320 AAAA C 1.00 58.68 46.928 3569 43.706 60.222 ATOH: СB ARG 376 1.00 69.10 AAAA C 44.288 58.907 47.415 ATOI1 3570 CG ARG 376 48.944 1.00 81.17 AAAA C 58.817 ARG 44.286 HOTA 3571 CD376 45.377 57.926 49.410 1.00 84.46 H AAAA H 3572 ME ARG ATOM 376 AAAA C 3574 46.618 58.380 49.598 1.00 85.64 CZARG 376 ATOH: AAAA N 1.00 81.84 ATON 3575 NH1 ARG 376 46.966 59.645 49.383 1.00 94.15 II AAAA 3578 50.012 ATO!! 47.571 57.548 THE ARG 376 1.00 50.16 AAAA C 60.544 44.633 44.556 ATO:1 3581 \subset ARG 376 1.00 44.25 14.465 AAAA O ATOH 3582 ARG 44.746 61.728 О 376 44.219 1.00 50.99 AAAA II 3583 LEU 377 45.375 59.578 ATOH 11 1.00 49.40 AAAA C ATCH. 3585 CA LEU 377 46.526 59.942 43.379 1.00 64.72 AAAA C 47.596 44.329 ATOH 3586 CB LEU 377 60.4111.00 70.76 44.667 AAAA C LEU 48.806 59.577 ATOH 3587 CG 377 60.157 AAAA C 43.954 1.00 63.32 3588 CD1 LEU 377 50.031 ATOH CD2 LEU 46.179 1.00 68.60 AAAA C 377 49.010 59.696 ATO!! 3589 47.043 59.022 42.311 1.00 46.33 AAAA C 3590 C LEU 377 ATOH AAAA O 1.00 45.17 57.788 42.286 ATOI1 3591 O LEU 377 46.868 41.199 1.00 45.12 H AAAA 59.675 ATOH 3592 11 ILE 378 47.448 40.042 1.00 49.10 AAAA C 58.976 MOTA 3594 CA ILE 378 48.042 1.00 46.36 AAAA C 47.342 59.303 38.724 ATOH 3595 CB ILE 378 AAAA C 1.00 34.36 48.115 58.696 37.574 3596 CG2 ILE 378 **ATOH** 38.829 AAAA C 1.00 38.59 ATOI1 3597 CG1 ILE 378 45.871 58.862 AAAA C 37.765 1.00 37.18 44.999 59.515 ATO11 3598 CD1 ILE 378 AAAA C 40.003 1.00 49.87 49.524 59.381 HOTA 3599 Ç ILE 378 40.040 1.00 44.72 AAAA O 49.801 60.595 ATOH 3600 0 ILE 378 40.067 1.00 49.97 II AAAA 50.454 58.423 3601 LEU 379 HOTA 11 AAAA C 1.00 48.48 **ATON** 3603 CA LEU 379 51.866 58.712 40.344 AAAA C 1.00 48.44 52.575 41.054 ATOH 3604 СB LEU 379 57.531 42.554 1.00 50.28 AAAA C CG LEU 52.234 **ATOH** 3605 379 57.363 CD1 LEU 43.217 1.00 39.89 AAAA C 52.926 56.187 HOTA 379 3606 CD2 LEU 43.300 1.00 42.89 AAAA C 3607 379 52.616 58.625 ATOH AAAA C 52.609 59.019 39.080 1.00 50.94 HOTA 3608 \mathbf{C} LEU 379 AAAA O ATOI1 3609 LEU 379 53.576 59.788 39.139 1.00 54.23 0 37.972 1.00 48.67 AAAA II ATOH: 3610 11 GLY 380 52.175 58.423 AAAA C 1.00 49.94 52.931 58.715 36.702 ATOH 3612 CA GLï 380 54.249 1.00 52.70 AAAA C 58.155 36.624 ATOH 3613 GLY 380 AAAA O 35.803 1.00 49.94 HOTA 55.026 58.657 3614 GLY 380 Ò 37.272 1.00 52.51 H AAAA ATOI1 11 GLU 54.549 57.033 3615 381 AAAA C 37.243 1.00 52.33 ATOH: 3617 CA GLU 381 55.849 56.386 AAAA C 56.055 55.310 38.323 1.00 45.22 ATOI1 3618 CB GLU 381 AAAA C 3619 GLU 55.402 55.779 39.636 1.00 52.91 ATOH: СĞ 381 AAAA C ATOH: 3620 GLU 381 56.050 55.192 40.873 1.00 42.11 CD 53.966 AAAA O 1.00 40.26 HOTA 3621 OE1 GLU 391 56.160 40.890 41.754 1.00 51.32 AAAA O 56.379 56.014 HOTA 3622 OE2 GLU 381 AAAA C 35.859 1.00 55.86 ATOH 3623 GLU 381 56.078 55.784 C 57.216 55.652 35.345 1.00 54.61 AAAA O ATOI1 GLU 381 3624 0

				7.00		55	25	1 10 50 65	
ATOH	3625	11	GLU	382	54.980	55.449	35.157	1.00 53.56	AAAA II
ATOH	3627	CA	GLU	382	55.091	55.C18	33.766	1.00 48.15	AAAA C
ATOH	3628	CB	GLU	382	55.051	53.550	33.532	1.00 35.27	AAAA C
ATOH	3629	CG	GLU	382	54.739	53.225	32.051	1.00 49.69	AAAA C
	3630	CD	GLU	382	54.676	51.719	31.807	1.00 56.45	AAAA C
ATOH									
ATOM	3631	OE1		382	55.062	50.924	32.705	1.00 61.66	AAAA O
ATOH	3632	OE2	GLU	382	54.264	51.201	30.745	1.00 57.69	AAAA O
HOTA	3633	C	GLU	382	54.006	55.732	32.973	1.00 50.84	AAAA C
MOTA	3634	0	GLU	382	53.097	56.282	33.598	1.00 49.44	AAAA O
			GLN	383	54.347	56.256	31.780	1.00 52.25	II AAAA
ATOM	3635	11							
ATOH	3637	CA	GLN	383	53,498	57.153	31.016	1.00 40.15	AAAA C
ATOM	3638	CB	GLII	383	53.914	58.609	31.155	1.00 28.50	AAAA C
ATOM	3639	CG	GLH	383	54.489	58.909	32.542	1.00 31.10	AAAA C
ATOI-I	3640	CD	GLII	383	54,950	60.301	32.752	1.00 33.19	AAAA C
				383	55.186	60.840	31.683	1.00 40.34	AAAA O
HOTA	3641		GLII						
MOTA	3642	HE2		383	55.043	60.943	33.934	1.00 36.30	AAAA II
MOTA	3645	C	GLH	383	53.426	56.744	29.563	1.00 40.45	AAAA C
ATOI1	3646	0	GLH	383	54.131	55.858	29.139	1.00 43.45	AAAA O
ATOH	3647	11	LEU	384	52.375	57.195	28.860	1.00 42.54	AAAA II
ATOH	3649	CA	LEU	384	52.257	56.889	27.443	1.00 43.24	AAAA C
ATOM	3650		LEU	384	50.814	57.011	26.949	1.00 43.79	AAAA C
ATOI1	3651	CG	LEU	384	49.818	56.235	27.861	1.00 41.21	AAAA C
ATOI1	3652	CD1	LEU	384	48.611	57.095	28.221	1.00 33.99	AAAA C
MOTA	3653	CD2	LEU	384	49.405	54.968	27.149	1.00 33.20	AAAA C
ATOM	3654	C	LEU	384	53.204	57.809	26.672	1.00 40.51	AAAA C
ATOI1	3655		LEU	384	53.582	58.872	27.177	1.00 29.66	AAAA O
ATOM	365 6	11	GLU	385	53.659	57.319	25.531	1.00 45.22	AAAA II
ATOH	3658	CA	GLU	385	54.410	58.116	24.570	1.00 49.98	AAAA C
ATOI1	3659	CB	GLU	385	54.424	57.475	23.174	1.00 60.50	AAAA C
ATON	3660		GLU	385	55.045	56.095	23.106	1.00 68.76	AAAA C
			GLU	385	54.195			1.00 72.07	AAAA C
ATON	3661					54.951	23.592	_	
HOTA	3662	OE1		385	53.150	55.213	24.244	1.00 81.88	AAAA O
ATOH	3663	OE2	GLU	385	54.565	53.786	23.301	1.00 73.13	AAAA O
ATON	3664	Ç	GLU	385	53.828	59.515	24.450	1.00 47.41	AAAA C
ATOH	3665	O	GLU	385	52.635	59.706	24.184	1.00 54.43	AAAA O
ATOM	3666	ы	GLY	386	54.614	60.470	24.902	1.00 43.69	AAAA II
									-
ATOM	3668	CA	GLY	386	54.181	61.870	24.897	1.00 40.34	AAAA C
ATOM	3669	C	GLY	386	54.286	62.449	26.308	1.00 40.65	AAAA C
ATOM	3670	O	GLY	386	53.930	63.615	26.491	1.00 39.75	AAAA O
ATO14	3671	11	ASII	387	54.441	61.537	27.272	1.00 40.75	AAAA II
MOTA	3673	CA	ASH	387	54.479	61.912	28.675	1.00 49.18	AAAA C
ATOU	3674	CB	ASII	387	55.500	63.084	28.874	1.00 44.41	AAAA C
									AAAA C
HOTA	3675	CG	ASII	387	56.925	62.541	28.722	1.00 61.51	
ATOI-I	3676	ODI		387	57.199	61.313	28.677	1.00 57.85	AAAA O
HOTA	3677	11D2	ASH	387	58.063	63.251	28.592	1.00 61.96	AAAA N
ATOH	3680	С	ASH	387	53.095	62.100	29,299	1.00 48.46	AAAA C
ATOM:	3681	O	ASII	387	52.836	62.891	30.218	1.00 48.99	AAAA O
ATON	3682	11	TIR	388	52.214	61.116	29.058	1.00 46.29	AAAA II
ATOM	3684	CA	TTR	388	50.846	61.199	29.540	1.00 45.09	AAAA C
ATOH	3685	CB	TTR	398	49.823	60.957	28.399	1.00 40.70	А АЛА С
ATOH	3686	CG	TTR	388	49.925	62.056	27.373	1.00 42.24	AAAA C
ATOH	3687	CDI	TTR	388	50.343	61.854	26.064	1.00 44.39	A.A.A. C
ATOH	3688	CEI	TYR	388	50.401	62.885	25.157	1.00 35.51	AAAA C
ATOM	3689	CD2		388	49.625	63.356	27.709	1.00 44.67	AAAA C
									AAAA C
HOTA	3690	CE2		388	49.699	64.428	26.830	1.00 38.14	
MOTA	3691	CZ	TYR	388	50.087	64.148	25.555	1.00 41.27	AAAA C
ATOH	3692	OH	TiR	388	50.151	65.181	24.604	1.00 50.18	AAAA O
ATOM	3694	С	TTR	388	50.563	60.288	30.714	1.00 41.88	AAAA C
MOTA	3695	0	TYR	388	50.727	59.092	30.511	1.00 32.99	AAAA O
ATOH	3696	14	SER	389	50.020	60.917	31.753	1.00 45.42	II AAAA
								1.00 50.13	AAAA C
ATOM	3698	CA	SER	389	49.591	60.131	32.931		
ATOM	3699	CB	SER	389	49.798	60.894	34.261	1.00 45.57	AAAA C
HOTA	3700	OG	SER	389	51.185	60.899	34.504	1.00 51.11	AAAA O
ATOM	3702	C	SER	389	48.097	59.813	32.804	1.00 48.11	AAAA C
ATOH	3703	O	SER	389	47.686	58.792	33.336	1.09 49.25	AAAA O
ATOH:	3704	1 1	PHE	390	47.321	60.685		1.00 42.56	AAAA II
ATON	3706	CA	PHE	390	45.867	60.595		1.00 40.76	AAAA C
ATON	3707	CB	PHE	390	45.241	61.581	33.139	1.00 44.80	AAAA C
ATOH	3708	CG	PHE	390	13.764	61.358	33.328	1.00 40.53	AAAA C
ATOH	3709	CD1	PHE	390	43.406	60.273	34.089	1.00 40.80	AAAA C
ATCH	3710	CD2	PHE	390	42.768	62.157	32.748	1.00 35.59	AAAA C
ATOH	3711	CEI		390	42.050	59.985		1.00 47.09	AAAA C
ATOH	3712	CE2		390	41.454	61.824		1.00 44.50	AAAA C
								_	
ATOM	3713	CZ	PHE	390	41.063	60.745		1.00 34.54	AAAA C
HOTA	3714	С	PHE	390	45.372	60.829		1.00 38.54	AAAA C
HOTA	3715	0	PHE	390	45.542	61.918	30.126	1.00 40.29	AAAA O
ATOM	3716	11	TYR	391		59.818	30.096	1.00 33.49	II AAAA
ATOM	3718	CA	TïR	391		59.782	28.663	1.00 38.58	AAAA C
MOTA	3719	CB	TYR	391	45.579	58.871	27.972	1.00 38.95	AAAA C
MOTA	3720		$T \cap R$	391		59.006		1.00 44.54	AAAA C
ATOH	3721	CD1	TYR	391	46.822	59.815	26.952	1.00 47.14	AAAA C
ATOH	3722	CEI	TTR	3 % 1	47.057	59.993	24.722	1.00 46.03	AAAA C
ATOH	3723	CD2		391		58.390		1.00 46.94	AAAA C
ATOH	3724	CES		391		58.560		1.00 47.45	AAAA C
ATOH	3725	CE		391				1.00 47.45	AAAA C
COLUMN		<u></u>	111	ψ ±′ dL	46.207	59.350	23.830	1.00 40.04	r Mr M. M. 3 1 m/

37/58 AAAA O 22.481 1.00 44.70 59,492 391 46.374 3726 OH TTR **ATOH** AAAA C 1.00 39.74 28.349 59.232 43.194 3728 Ç TTR 391 ATOH 1.00 38.49 AAAA O 58,103 28.730 3729 O TTR 391 42.841 ATO!! 1.00 37.07 AAAA 1! 60.158 27.779 42.417 393 3730 VAL **ATOH** 11 AAAA C 1.00 39.52 27.603 59.874 392 40.958 VAL ATOI1 3732 CA 1.00 41.12 AAAA C 60.880 28.440 40.075 VAL 392 3733 CB **ATOM** 1.00 37.96 AAAA C 28.472 38.612 60.464 392 3734 CG1 VAL **ATOH** AAAA C 1.00 33.19 29.841 61.041 CG2 VAL 392 40.666 3735 **ATOM** 1.00 31.08 AAAA C 26.182 60.092 40.531 C VAL 392 3736 ATOI:1 AAAA O 1.00 34.71 25.804 61.277 392 40.508 3737 О VAL **ATOH** AAAA II 1.00 34.62 59.113 25.383 40.299 LEU 393 ATO11 3738 1:1 1.00 38.12 AAAA C 59.259 23.977 39.948 LEU 393 3740 CA ATOH AAAA C 1.00 42.49 23.096 LEU 393 41.200 59.036 CB 3741 ATOI:1 1.00 26.48 AAAA C 21.586 41.023 58.649 3742 CG LEU 393 MOTA AAAA C 20.753 1.00 26.57 59.879 41.128 3743 CD1 LEU 393 HOTA AAAA C 1.00 29.98 21.244 57.589 42.078 MOTA 3744 CD2 LEU 393 AAAA C 23.482 1.00 39.15 58.375 38.821 LEU 393 ATOM 3745 \circ 1.00 37.90 AAAA O 23.799 38.760 57.173 0 LEU 393 3746 ATO!1 AAAA II 1.00 43.38 22.565 58.973 38.015 ASP 394 37.17 11 **ATOH** AAAA C 1.00 44.77 21.975 58.215 ASP 394 36.888 3749 CA HOTA AAAA C 1.00 44.80 21.120 37.445 57.073 3750 ÇB ASP 394 ATOM: 1.00 47.14 AAAA C 20.156 56.477 36.466 ASP 394 3751 CG ATOH. 1.00 52.91 AAAA O 19.333 55.577 36.750 OD1 ASP 394 3752 **ATOH** AAAA O 1.00 49.27 20.180 35.311 56.948 394 3753 OD2 ASP ATOH. 1.00 43.17 AAAA C 23.021 57.619 35.936 ASP 394 3754 C HOTA 1.00 43.51 AAAA O 23.212 35.831 56.385 ASP 394 3755 0 NOTA H AAAA 23.746 1.00 39.90 35.299 58.495 11 ASII 395 ATOM 3756 1.00 46.32 AAAA C 58.158 24.776 34.305 ASH 395 MOTA 3758 CA AAAA C 26.212 1.00 42.96 58.512 34.804 CB ASH 395 3759 ATOI: AAAA C 1.00 36.92 26.579 57.619 35.992 395 3760 CG ASII **ATOH** 1.00 21.65 AAAA O 26.796 55.394 36.013 OD1 ASH 395 ATOM1 3761 1.00 27.87 AAAA N 26.559 58.409 37.075 HD2 ASH 395 3762 HOTA 1.00 40.44 AAAA C 58.816 24.541 32.932 ATOM1 3765 C ASN 395 1.00 37.06 AAAA O 24.882 32.749 59.982 ASII 395 ATOH 3766 O 1.00 46.74 II AAAA 58.055 23.877 32.073 3767 11 GLN 396 ATOI1 AAAA C 1.0052.9323.421 30.771 58.582 396 3769 GLN ATOH CA AAAA C 1.00 52.29 22.744 57.567 396 29.848 3770 CB GLH **HOTA** 1.00 46.42 AAAA C 21.257 57.405 3771 CG GLN 396 30.173 HOTA 1.00 55.21 AAAA C 55.991 20.840 29.817 3772 CD GLN 396 ATOM 1.00 61.17 AAAA O 21.312 55.421 28.835 3773 MOTA OE1 GLH 396 AAAA 11 1.00 55.79 55.411 19.971 30.628 3774 ME2 GLD 396 PIO.LY AAAA C 1.00 48.64 24.458 29.874 59.224 C GLN 396 **ATOM** 37**77** AAAA O 1.00 51.63 24.113 60.287 29.407 3778 0 GLH 396 ATO14 1.00 48.95 AAAA N 25.633 29.717 58.681 3779 11 ASII 397 **ATOM** 1.00 51.72 AAAA C 26.632 59.196 28.783 397 HOTA 3781 CA ASH AAAA C 1.00 35.94 57.959 27.093 27.969 3782 397 ÇB **HSA** ATOH AAAA C 1.00 49.09 25.860 27.231 57.430 397 CG ASU 3783 AT'OI I AAAA O 1.00 49.32 25.229 58.304 26.591 3794 ODI ASU 397 ATOH 1.00 43.31 H AAAA II 25.431 56.175 27.258 HD2 ASH 397 HOTA 3785 1.00 52.98 AAAA C 27.800 59.945 29.367 397 3788 C ASII ATOM 1.00 53.33 O AAAA 60.344 28.627 28.586 ATOI1 3789 ASII 397 Ō II AAAA II 1.00 55.73 59.990 28.001 30.682 LEU 399 3790 11 ATOH RAAA C 1.0052.1229.179 60.550 LEU 398 31.312 3792 CA ATOI1 1.00 48.47 AAAA C 29.149 32.927 60.388 LEU 398 3793 CB ATOM 1.00 41.81 AAAA C 60.283 30.460 CG LEU 398 33.606 ATOI4 3794 1.00 40.35 AAAA C 31.135 58.939 33.417 ATOH 3795 CD1 LEU 398 AAAA C 1.00 39.03 30.082 35.070 60.508 CD2 LEU 398 A'TOH 3796 AAAA C 1.00 52.35 61.995 29.353 30.923 LEU 3797 C 398 ATOM 1.00 49.91 AAAA O 28.681 LEU 31.422 62.909 398 3798 0 ATOH 1.00 58.76 H AAAA 62.225 30.469 30.241 3799 GLH 399 11 HOTA AAAA C 1.00 60.03 30.796 29.688 63.558 ATOM 3801 CAGLH 399 AAAA C 1.00 59.55 31.262 28.236 63.331 300 **ATOI** 3802 CB GLN AAAA C 1.00 73.07 63.962 30.316 GLII 27.235 399 CGHOTA 3893 1.00 78.39 AAAA C 30.340 25.944 63.146 399 CD GLN **ATOH** 3804 1.00 71.79 AAAA O 63.455 31.194 399 25.097 CEL GLN HOTA 3805 1.00 69.88 II AAAA 29.440 62.158 HE2 GLH 399 25.856 **ATOH** 3806 1.00 54.49 AAAA C 31.989 64.252 30.490 **ATOH** 3809 \mathbf{C} GLH 399 AAAA O 1.00 51.96 65.477 32.068 30.528 399 ATO! 1 3810 0 GLII 1.00 50.44 AAAA D 32.734 31.058 63.389 100 3811 GLII ATOH 11 AAAA C 1.00 53.83 31.938 63.948 33.756 CA GLH 400 ATON 3813 1.00 54.97 AAAA C 35.049 31.215 64.314 GLH 400 ATOH 3814 CB AAAA C 1.00 58.99 35.897 30.717 63.150 GLH 400 ATOM 3815 ÇG AAAA C 1.00 65.82 37.389 30.678 63.430 400 3816 CD GLH MOTA AAAA O 1.00 68.10 37.962 64.502 30.906 3817 OE1 GLD 400 ATOI1 1.00 55.35 AAAA II 38.222 62,444 30.341 HE2 GLH 400 HOTA 3818 AAAA C 1.00 52.08 63.008 34.052 400 33.113 HOTA 3821 CGLII 1.00 51.90 AAAA O 61.783 33.942 3922 GLE 400 33.107 **ATOH** 0 1.00 49.58 II AAAA 63.580 34.751 34.073 3823 11 LEU 401 HOTA AAAA C 1,00 49.57 35.334 62.844 35.175 HOTA 3825 CA LEU 401 AAAA C 35.260 1.00 47.94 63.803 36.379 CB LEU 401 **ATOH** 3826 AAAA C 1.00 46.61 64.237 33.772 LEU 401 36.638 MOTA 3927 ÇG AAAA C 1.00 39.09 65.326 33.677 401 37.658 ATOH: 3828 CD1 LEU AAAA C 1.00 40.72 31,860 CD2 LEU 401 36.919 63.069 **ATOH** 3655 AAAA C 1.00 51.23 36.734 \mathcal{C} LEU 401 34.866 62.357 HOTA 3830 AAAA O 36.892 1.00 49.06 61.299 0 LEU 401 34.258 HOTA 3931

							38/58		
ATOH	3832	31	TRP	402	35.297	63.140	37.690	1.00 54.58	AAAA II
ATOH	3834	CA	TRP	402	34.975	63.090	39.097	1.00 59.76	AAAA C
ATOII	3835	CB	TRP	402	36.279	62.953	39.933	1.00 59.56	AAAA C
ATOH ATOH	3836 3837	CG CD2	TRP TRP	402 402	36.971 37.981	61.624 61.243	39.737 38.784	·1.00 58.17 1.00 53.18	AAAA C AAAA C
ATOH	3838		TRP	402	38.286	59.897	39.002	1.00 56.61	AAAA C
ATOI 1	3839		TRP	402	38.643	61.917	37.764	1.00 43.25	AAAA C
ATOH	3840		TRP	402	36.719	60.517	40.459	1.00 53.50	AAAA C
ATON	3841	HEI		402	37.488	59.467	40.032 38.249	1.00 57.66 1.00 51.44	AAAA 11 AAAA C
NOTA HOTA	3843 3844		TRP TRP	402 402	39.212 39.546	59.160 61.199	37.026	1.00 51.44	AAAA C
ATOH	3845	CH2		402	39.820	59.857	37.263	1.00 50.75	AAAA C
ATOH	3846	C	TRP	402	34.223	64.389	39.429	1.00 64.09	AAAA C
ATOM	3847	0	TRP	402	34.408	65.449	38.808	1.00 61.98	AAAA O
ATOH ATOH	384 8 3850	N CA	ASP ASP	403 403	33.503 32.947	64.418 65.668	40.551 41.068	1.00 68.85 1.00 67.83	AAAA 11 AAAA C
ATOH	3851	CB	ASP	403	31.918	65.343	42.151	1.00 72.19	AAAA C
ATOI1	3852	CG	ASP	403	30.853	66.417	42.306	1.00 73.08	AAAA C
ATOH	3853	OD1	ASP	403	31.177	67.625	42.297	1.00 71.67	AAAA O
ATOH ATOH	3854 3855	OD2 C	ASE ASE	403 403	29.693 34.005	65.979 66.607	42.454 41.607	1.00 75.08 1.00 66.63	AAAA O AAAA C
ATOH	3856	0	ASP	403	34.245	66.672	42.811	1.00 67.18	AAAA O
ATOH	3857	[]	TRP	404	34.449	67.588	40.846	1.00 69.29	AAAA H
ATOH	3859	CA	TRP	404	35.412	68.588	41.291	1.00 77.11	AAAA C
HOTA	3860	CB	TRP	404	35.859	69.409	40.063	1.00 79.10	AAAA C
ATOH ATOH	3861 3862	CG CD2	TRP TRP	404 404	36.504 37.294	68.509 67.346	39.047 39.322	1.00 82.59 1.00 84.82	AAAA C AAAA C
ATON	3863		TRP	404	37.686	66.813	38.081	1,00 84.56	AAAA C
ATOI1	3864		TRP	404	37.703	66.710	40.506	1.00 80.95	AANA C
ATOI1	3865		TRP	4 Q 4	36.460	68.622	37.694	1.00 83.37	AAAA C
ATON	3866	HEI		404	37.165	67.617	37.111	1.00 80.33	AAAA 11
ATOH ATOH	3868 3869		TRP TRP	404 404	38.477 38.471	65.662 65.573	37.982 40.392	1.00 85.91 1.00 86.3 6	AAAA C AAAA C
ATOI1	3870	CH2		404	38.860	65.051	39.133	1.00 85.05	AAAA C
ATON:	3871	C	TRP	404	35.034	69.517	42.420	1.00 81.60	AAAA C
ATOH	3872	0	TRP	404	35.387	70.709	42.504	1.00 84.57	AAAA O
ATOH ATOH	3873 3875	ri CA	ASP ASP	405 405	34.281 33.771	69.063 69.861	43.393	1.00 84.45 1.00 87.48	AAAA 11 AAAA C
ATOM	3876	CB	ASP	405	32.352	70.365	44.262	1.00 87.48	AAAA C
ATON	3877	CG	ASP	405	32.274	71.612	43.409	1.00 92.54	AAAA C
ATON	3878		ASP	405	33.306	72.285	43.207	1.00 94.82	AAAA O
ATOM	3879	OD2		405	31.130	71.854	42.955	1.00 95.26	AAAA O
ATOH ATOH	3880 3881	0	ASP ASP	405 405	33.730 34.245	68.906 69.224	45.693 46.743	1.00 87.80 1.00 92.18	AAAA C AAAA O
ATON	3882	11	ALA	406	33.239	67.709	45.460	1.00 84.46	AAAA II
ATOM	3884	CA	ALA	406	33.176	66.671	46.451	1.00 82.87	AAAA C
ATO11	3885	CB	ALA	406	31.943	65.805	46.133	1.00 76.32	AAAA C
ATOH ATCH	38 8 6 38 8 7	С 0	ALA ALA	406 406	34.445 34.470	65.840 64.823	46.459 47.185	1.00 85.77 1.00 89.38	AAA A C AAAA O
ATON	3888	11	ARG	407	35.433	66.073	45.577	1.00 83.74	AAAA 1i
ATOH	3890	CA	ARG	407	36.541	65.151	45.400	1.00 79.60	AAAA C
ATOH	3891	CB	ARG	407	36.165	64.140	44.297	1.00 77.84	AAAA C
ATOH	3892	CG	ARG	107	35.457	62.950	44.921	1.00 81.91 1.00 86.97	AAAA C AAAA C
ATOH ATOH	3893 3894	NE	ARG ARG	407 407	35.362 36.281	61.688 60.660	44.113	1.00 86.94	AAAA 11
ATOH	3896	CO	ARG	407	37.564	60.583	44.279	1.00 92.14	AAAA C
ATON	3897		ARG	407	38.169	61.441	43.469	1.00 97.06	H AAAA
ATOH	3900		ARG	407	38.309	59.616	44.770	1.00 96.33	AAAA II
ATOH ATOH	3903 3904	C C	ARG ARG	407 407	37.880 37.989	65.749 66.774	45.048 44.410	1.00 76.72	AAA A C AAAA O
ATON	3905	-	ASN	408		65.081		1.00 75.75	AAAA 11
ATON	3907	CA	ASII	408	40.311	65.556	45.173	1.00 73.79	AAAA C
ATOH	3908	CB	ASII	408	40.938	66.240	46.388	1.00 74.46	AAAA C
ATOH ATOH	3909 3910	CG OD1	ASH	108	41.986	67.242	45.947	1.00 82.51 1.00 90.33	AAAA C AAAA O
ATON	3911		ASII ASII	408 408	41.813 43.028	68.429 66.821	46.240 45.253	1.00 90.33	II AAAA
ATOM	3914	C	ASII	408	41.257	64.468	44.654	1.00 65.97	AAAA C
ATOH	3915	0	ASN	408	41.251	63.374	45.151	1.00 63.82	AAAA C
ATOM	3916	H	LEU	409	42.041	64.793	43.650	1.00 61.41	AAAA II
ATOH ATOH	3919 3918	CA CB	LEU	409 409	42.896 42.153	63.872 63.250	42.947 41.768	1.00 60.90 1.00 62.98	AAAA C AAAA C
ATON	3920	CG.	LEU	409	42.992	62.553	40.704	1.00 59.77	AAAA C
ATOM	3921		LEU	409	43.488	61.205	41.197	1.00 54.06	aaaa c
ATON	3922		LEU	409	42.094	62.445	39.486	1.00 55.74	AAAA C
HOTA	3923	Ö.	LEU	100	44.151	64.599	42.485	1.00 61.19	AAAA C AAAA O
ATOH ATOH	3924 3925	O 11	LEU THR	409 410	44.141 45.281	65.809 63.903	42.370 42.424	1.00 60.64	I AAAA
ATOH	3927	CA	THR	410	46.588	64.462	42.131	1.00 60.44	AAAA C
ATOH	3928	CB	THR	410	47.454	64.676	43.385	1.00 67.08	AAAA C
ATOH	3929	0G1		410	46.870	65.746	44.157	1.00 74.29	AAAA O
ATOH ATOH	3931 3932	CG2 C	THR THR	410	48.909	65.103	43.162	1.00 48.56 1.00 56.62	AAAA C AAAA C
ATOH	3932 3933	o O	THR	410 410	47.426 47.382	63.565 62.354	41.218	1.00 54.99	AAAA O
ATOH	3934	11	ILE	411	48.077	64.245	40.288	1.00 53.97	AAAA II
ATOH	3936	CA	ILE	411	48.897	63.562	39.291	1.00 53.29	C AAAA

39/58 ATOH 3937 CB ILE 411 48.409 63.854 37,864 1.00 49.81 AAAA C AAAA C 3938 CG2 ILE 36.806 1.00 30.86 **ATOH** 411 49.216 63.128 3939 CG1 ILE 37.729 1.00 40.83 AAAA C HOTA 411 46.911 63.489 3940 CD1 ILE 63.547 36.338 1.00 38.51 AAAA C ATO11 411 46.322 3941 CILE 64.018 39.568 1.00 55.38 AAAA C 411 50.319 ATOH 65.179 ATOM 3942 \circ 1LE 411 50.656 39.291 1.00 57.59 AAAA O 63.182 1.00 54.26 **ATOH** 3943 П SER 51.073 40.270 H AAAA 412 3945 CA SER 63.502 40.689 1.00 54.46 AAAA C HOTA 412 52.434 CB SER 62.210 41.248 1.99 55.78 3946 53.071 AAAA C ATOM 412 3947 OG SER 412 53.756 62.536 42.434 1.00 67.12 AAAA O **ATOM** MOTA 3949 CSER 412 53.326 63.910 39.523 1.00 55.52 AAAA C 39.527 3950 SER 54.081 64.876 1.00 55.04 HOTA 0 412 O AAAA 3951 ы ALA 63.124 1.00 50.12 HOTA 413 53.254 38.438 AAAA H 3953 CA ALA 63.402 37.281 1.00 50.01 AAAA C HOTA 413 54.064 37.365 CB 62.520 HOTA 1 3954 ALA 413 55.334 1.00 34.96 AAAA C 3955 CALA 413 53.301 63.078 35.994 1.00 48.71 AAAA C MOTA 3956 0 ALA 413 52.495 62.168 35.998 1.00 48.81 AAAA O ATOH: 3957 ATOM 11 GLY 414 53.675 63.690 34.895 1.00 47.92 AAAA N 3959 CA GLY63.454 33.607 1.00 51.75 AAAA C ATOH 414 53.057 AAAA C C GLY 33.294 1.00 52.77 HOTA 3960 414 52.017 64.524 3961 0 GLY 414 51.684 65.370 34.114 1.00 53.23 AAAA O ATOH 3962 11 LïS 51.385 64.406 32.138 1.00 56.31 н аааа **ATOH** 415 50.289 31.759 3964 CA LYS 65.317 1.00 52.49 MOTA 415 AAAA C 3965 CB LïS 66.358 30.833 1.00 50.94 AAAA C ATOH 415 50.884 $\mathbb{C}\mathbb{G}$ LYS 29.429 ATOH 3966 415 51.198 65,855 1.00 54.39 AAAA C 3967 CD LYS ATQI4 415 52.288 66.691 28.765 1.00 53.96 AAAA C 3968 1.00 56.01 CE LYS 52.785 66.151 27.441 AAAA C ATOH 415 HZ 3969 LYS 52.426 67.032 26.284 AAAA II MOTA 415 1.00 66.36 3973 \mathbb{C} LYS 415 64.576 31.155 1.00 50.04 AAAA C ATOM 49.110 HOTA 3974 0 LYS 415 49.077 63.337 31.036 1.00 49.77 AAAA O 3975 HET 65.353 30.771 ATO!! 11 416 48.091 1.00 48.34 II AAAA 30.186 1.00 46.77 AAAA C 3977 CA HET 46.890 64.734 HOTA 416 3978 СB MET 65.186 ATOI: 45.629 30.949 1.00 42.79 AAAA C 416 **ATOH** 3979 CGMET 65.880 AAAA C 416 45.836 32.273 1.00 40.91 HOTA 3980 SDMET 416 44.511 65.636 33.517 1.00 56.20 AAAA S 3981 CE MET HOTA 416 44.002 67.366 33.690 1.00 35.94 AAAA C 3982 C MET ATOM 416 46.623 65.064 28.728 1.00 40.40 AAAA C 3983 HET ATO11 0 416 46.963 66.137 28.247 1.00 34.84 AAAA O HOTA 3984 14 TTR 45.893 417 64.169 28.104 1.00 38.49 II AAAA CA MOTA 3986 TYR 417 45.355 64.387 26.765 1.00 39.50 AAAA C 3987 CB TYR **ATOH** 417 46.156 63.471 25.831 1.00 32.02 AAAA C AAAA C ATOH 3988 CGTYR 417 45.583 63.430 24.428 1.00 39.48 3989 CD1 TYR AAAA C ATOM 417 45.730 64.501 23.511 1.00 39.29 1.00 34.56 NOTA 3990 CE1 TYR 417 45.196 64.429 22.253 AAAA C 1.00 36.81 **ATOH** 3991 CD2 TYR 62.321 24.005 AAAA C 417 44.884 3992 CE2 TYR 62.241 22.722 AAAA C **HOTA** 417 44.379 1.00 38.80 3993 CE TYR 21.872 HOTA 417 44.535 63.292 AAAA C 1.00 44.20 ATOH 3994 ОН TYR417 44.053 63.361 20.552 1.00 58.10 AAAA O 64.065 HOTA 3996 \mathbf{C} TYR 417 43.853 26.698 1.00 44.18 AAAA C 3997 ATO: 0 TYR 417 62.974 27.135 1.00 42.19 AAAA O 43.376 3998 11 **ATOLI** PHE 64.971 1.00 45.84 418 43.068 26.100 N AAAA 11 $\mathbb{C}\mathbb{A}$ HOTA 4000 PHE 64.701 25.910 1.00 45.87 AAAA C 418 41.644 CB **ATOH** 4001 EHE 40.772 65.657 26.730 1.00 47.19 AAAA C 118 ATON 4002 $\mathbb{C}\mathbb{G}$ PHE 418 40.675 65.264 28.177 1.00 43.44 AAAA C 29.132 ATOH 4003 CD1 PHE 418 AAAA C 41.552 65.685 1.00 38.43 ATOH 4004 CD2 PHE AAAA C 418 28.544 1.00 51.21 39.638 64.417 CE1 PHE ATOH 4005 65.291 30.440 1.00 46.44 AAAA C 418 41.402 ATOM: 4006 CE2 PHE 418 29.845 1.00 46.63 AAAA C 39.486 64.023 4007 CZAAAA C NOTA PHE 418 40.358 64.454 30.801 1.00 44.68 24.440 1.00 44.64 ATOM: 4008 С PHE 418 41.251 AAAA C 64.730 4009 FIO.LY Q PHE 418 AAAA O 41.375 65.762 23.812 1.00 47.60 ATOH 4010 AAAA N 11 ALA 419 40.554 63.713 23.936 1.00 43.06 HOTA 4012 CA ALA 419 40.015 63.793 22.607 1.00 39.21 AAAA C ATOM 4013 CB AAAA C ALA 419 41.090 63.562 21.555 1.00 30.88 4014 C AAAA C ATOM: ALA 419 38.837 62.846 22.366 1.00 41.77 ATOH 4015 419 22.557 1.00 36.08 AAAA O ALA 38.871 0 61.628 ATOI1 4016 PHE 420 AAAA II -11 37.829 63.398 21.618 1.00 40.41 HOTA 4018 CA PHE 420 36.742 62.621 21.070 1.00 40.03 AAAA C ATO:I CB PHE AAAA C 4019 420 37.157 61.430 20.180 1.00 45.54 **ATOH** 4020 CGPHE 420 37.832 61.909 18.912 1.00 54.18 AAAA C CDI PHE ATOI4 4021 39.221 AAAA C 420 61.987 18.751 1.00 49.23 ATOH 4022 CD2 PHE 420 AAAA C 37.006 62.345 17.871 1.00 47.65 **ATOH** 4023 CE1 PHE 420 39.783 62.496 17.567 1.00 46.00 AAAA C 1 TOTA 4024 CE2 PHE 37.572 AAAA C 450 62.833 16.725 1.00 51.10 ATO! 1 4025 CZPHE 420 AAAA C 38.964 62.928 16.549 1.00 44.01 4026 AAAA C ATOH C PHE 420 35.762 62.146 22.136 1.00 41.65 4027 MOTA 0 PHE 420 35.352 60.991 22.215 1.00 38.35 AAAA O 4028 ATO14 ASII ŀi 421 35.459 63.024 23.049 1.00 45.35 M AAAA ATOH 4030 CA ASII 421 AAAA C 34.477 62.960 24.112 1.00 46.86 ATOH 4031 CB ASH 421 35.183 63.276 25.449 AAAA C 1.00 43.60 **ATOH** 4032 CG ASH 431 36.407 AAAA C 62.401 25.654 1.00 47.90 ATO!! 4033 OD1 ASH 421 36.426 61.147 25.714 AAAA O 1.00 44.83 11OTA IID2 ASII 1034 37.541 AAAA II 421 63.101 25.732 1.00 37.46 11OTA 4037 C ASII 421 23.835 1.00 47.83 AAAA C 33.432 64.069 ATOH: 4038 O ASII 431 33.617 65.233 24.237 1.00 38.85 аааа с

40/58 22.968 422 63.777 1.00 47.86 AAAA II NOTA 4039 11 PRO 32.453 22.372 AAAA C 1.00 44.11 ATOH 4040 CD PRO 422 32.213 62.423 1.00 47.85 AAAA C CA64.776 22.605 4041 PRO 31.463 HOTA 422 21.446 1.00 44.86 AAAA C 4042 CB PRO 422 30.731 64.084 **ATOM** 21.606 1.00 43.01 AAAA C 4043 CG PRO 30.947 62.623 ATOI4 422 AAAA C C30.577 65.284 23.735 1.00 51.16 HOTA 4044 PRO 422 23.744 1.00 48.54 30.223 66,486 AAAA O HOTA 4045 0 PRO 422 1.00 52.90 AAAA H 30.320 24.774 1046 11 LTS 423 64.487 ATOH 64.908 25.865 1.00 58.82 AAAA C 4048 ÇA LïS 423 29.431 ATOH LYS 28.556 63.721 26.360 1.00 52.93 AAAA C **ATOH** 4049 CB423 25.196 1.00 70.55 AAAA C 4050 CGLYS 423 28.209 62.810 ATOH AAAA C 1.00 73.79 CD LYS 423 26.743 62.448 24,996 **ATOH** 4051 1.00 77.06 ÇE 63.374 24.021 AAAA C 4052 LYS 26.030 ATOM 423 112 25.949 64.748 24.614 1.00 64.99 II AAAA 4053 LïS 423 **ATOH** ATOM 4057 C LïS 423 30.158 65.482 27.071 1.00 57.43 AAAA C 29.582 65.478 28.152 1.00 55.22 AAAA O ATOM 4058 0 LYS 423 1.00 55.95 65.859 26.862 AAAA II 4059 11 LEU 31.425 ATOM 424 1.00 57.07 LEU 32.261 66.162 28.017 AAAA C 4061 CA424 MOTA €B LEU 33.463 65.250 28.237 1.00 49.16 AAAA C 4062 424 ATOH 29.370 1,00 68.27 AAAA C ATOH: 4063 CG LEU 424 34.390 65.748 1.00 60.66 AAAA C 33.821 65.362 30.734 HOTA 4064 CDI LEU 424 29.123 1.00 60.35 AAAA C CD2 LEU 65.276 4065 424 35.825 ATOH 32.709 1.00 56.29 C 67.585 27.878 AAAA C ATOI1 4066 LEU 424 0 LEU 33.696 67.861 27.201 1.00 59.98 AAAA O ATOM 4067 424 31.995 1.00 58.76 4068 11 CYS 425 68.488 28.492 AAAA II ATO!! 1.00 60.39 CYS 425 32.342 69.916 28.406 AAAA C ATO14 4070 CAÇ 28.810 1.00 62.59 AAAA C 4071 CYS 425 33.771 70.119 MOTA 4072 69.665 O CYS 425 34.288 29.831 1.00 64.45 AAAA O ATOH CB 31.249 29.214 1.00 68.23 4073 CYS 425 70.644 AAAA C ATOH SG CIS 425 29.916 71.303 28.086 1.00 81.03 AAAA S ATON 4074 34.529 28.102 1.00 65.31 **ATOH** 4075 Ħ VAL 426 70.953 AAAA N CA 28.358 1.00 65.49 HOTA 4077 VAL 35,943 71.149 AAAA C 426 72.022 1.00 66.66 AAAA C 4078 ÇВ VAL 36,644 27.310 ATON: 426 1.00 62.49 4079 CG1 VAL 36,715 71.413 25.925 AAAA C ATOH 426 27.239 ATOM 4080 CG2 VAL 426 35.962 73.365 1.00 60.92 AAAA C AAAA C 29.757 1.00 65.99 HOTA 4081 C VAL 426 36.105 71.711 0 71.724 1.00 64.51 O AAAA ATOH 4082 VAL 37.180 30.388 426 SER 72.361 30.267 1.00 67.67 AAAA II 4083 11 427 35.090 **ATOM** 72.927 31.599 1.00 66.85 AAAA C **FIOTA** 4085 CASER 427 35.091 AAAA C ATOM 4086 CB SER 427 33.685 73.499 31.864 1.00 61.16 1.00 67.05 AAAA O ΟG SER 34.088 74.860 32.098 ATO14 4087 427 35.515 71.972 32.701 1.00 64.24 AAAA C MOTA 4089 C SER 427 1090 0 72.328 33.573 1.00 63.66 AAAA O NOTA SER 427 36.332 32.618 **ATOM** 4091 11 GLU 428 34.965 70.771 1.00 58.75 AAAA 11 1.00 63.39 AAAA C 4093 CA. GLU 69.753 33**.58**5 ATOH 428 35.384 33.240 1.00 68.67 AAAA C ATOH 4094 CB GLU34.594 68.485 428 33.537 1.00 66.59 AAAA C 4095 CGGLU 33.115 68.560 **ATOM** 428 35.023 ATOM 4096 CD GLU 428 32.785 68.560 1.00 72.33 AAAA C AAAA O 4097 OE1 32.729 67.522 35.722 1.00 81.62 ATOH GLU428 OE2 GLU 69.688 35.517 1.00 70.97 AAAA O ATOH 4098 428 32.581 33.429 CGLU 69.485 1.00 61.63 AAAA C **ATOH** 4099 428 36.870 \mathbf{C} GLU 69.696 34.307 1.00 62.03 AAAA O 4100428 37,671 ATOH II AAAA II ATOH 410111 ILE 429 37.265 69.262 32.165 1.00 61.26 AAAA C 69.038 31.789 ATOH 4103 CA ILE 45 ö 38.631 1.00 61.09 ATOH4104 CB ILE 429 38.759 68.933 30.263 1.00 59.32 AAAA O 1.00 45.93 AAAA C CG2 ILE 40.257 29.895 ATOH. 4105 429 68.915 29.794 1.00 57.66 AAAA C ATOH 4106 CG1 ILE 429 37.968 67.719 AAAA C ATOH 4107 CD1 ILE 429 38.038 67.555 28.285 1.00 53.48 AAAA C 1.00 61.90 ATOH 4108 \mathcal{C} ILE 429 39.498 70.166 32.323 70.017 1.00 61.28 AAAA O 4109 40.592 32.867 ATOH O ILE 429 32.200 1.00 65.34 AAAA II HOTA 4110 11 TYR 430 38.987 71.384 32.719 1.00 68.10 AAAA C **ATOH** 4112 CA TTR430 39.729 72,543 AAAA C 32.099 1.00 71.02 4113 CB TYR39.180 73.822 ATOM 430 1.00 75.98 AAAA C MOTA 4114 TYR 39.538 74.006 30.639 CG430 CD1 TYR AAAA C ATOH 4115 73.821 29.599 1.00 77.60 430 38.653 28.270 1.00 75.72 AAAA C 73.977 HOTA 4116 CEI TYR 430 38.953 4117 CD2 TYR 40.810 74.401 30.260 1.00 75.95 AAAA C ATOM 430 AAAA C CE2 TYR 74.575 1.00 74.81 ATOH 4118 430 41.155 28.937 1.00 78.51 AAAA C ATOH 1115 C_{2} TTR 430 40.221 74.359 27.952 4120 26.616 1.00 85.40 AAAA O ATON: OH T:R430 40.564 74.542 AAAA C ATOH: 4122 \mathcal{C} 72.634 1.00 63.72 TYR 430 39.779 34.241 1.00 58.26 O AAAA **ATCH** 4123 O TYR 430 40.654 73.321 34.758 1.00 65.53 72.017 LAAA II HOTA 4124 ARG 38.819 34.907 11 431 1.00 68.15 AAAA C 4126 CA ARG 4.31 72.043 36.356 ATOM 38.747 1.00 73.32 AAAA C ATOH 4127 CB ARG 431 37.348 71.748 36.898 ATOH 4128 CG ARG 431 37.345 71.815 38.430 1.00 82.99 AAAA C AAAA C ATOH 4129 CD ARG 431 37.270 73.279 38.860 1.00 88.39 1.00 92.48 II AAAA HOTA 4130 HE ARG 73.472 40.258 431 37.698 CZ 41.259 1.00 94.93 AAAA C ATOH 4132 ARG 431 36.835 73.258 HHI ARG L AAAA ATOH: 4133 431 35.610 72.872 40.872 1.00 87.40 ATOH 4136 HH2 ARG 73.371 42.567 1.00 95.17 AAAA II 431 37.021 AAAA C HOTA 4139 CARG 431 39.718 70.986 36.877 1.00 67.75 MOTA 4140 0 ARG 71.292 37,629 1.00 66.74 AAAA O 131 40.637 1.00 63.87 MOTA 4141 # HET 432 39.541 69.79136.305 AAAA II

AAAA C

4143 CA HET

432

40.437

68.703 36.652 1.00 64.40

HOTA

ATOH	4144	CB MET	432	40.237	67.522	35.718 35.971	1.00 54.25	AAAA C AAAA C
ATOH ATOH	4145 4146	CG HET SD HET	432 432	41.254 40.829	66.426 64.925	35.112	1.00 52.21	AAAA S
ATOM	4147	CE MET	432	41.582	63.681	36.137	1.00 54.89	AAAA C
HOTA	4148	C HET	132	41.891	69.170 68.992	36.626 37.653	1.00 64.65 1.00 65.88	AAAA C AAAA O
ATOH ATOH	4149 4150	O HET H GLU	432 433	42.530 42.331	69.811	35.556	1.00 65.78	AAAA N
ATOH	4152	CA GLU	433	43.622	70.469	35.510	1.00 69.16	AAAA C
ATOI1	4153	CB GLU	133	43.704	71.506 70.967	34.401 33.048	1.00 69.58 1.00 76.91	AAAA C AAAA C
ATOH ATOH	4154 4155	CG GLU	433 433	44.121 44.623	72.149	32.242	1.00 82.02	AAAA C
ATOH	4156	OE1 GLU	433	44.718	73.224	32.874	1.00 86.82	AAAA O
ATOH	4157	OE2 GLU	433	44.905	72.050 71.219	31.042 36.781	1.00 88.26 1.00 71.29	AAAA O AAAA C
ATOM ATOM	4158 4159	C GLU O GLU	433 433	44.016 45.133	71.083	37.294	1.00 74.29	AAAA O
ATOM	4160	N GLU	434	43.178	72.120	37.280	1.00 72.93	II AAAA
HOTA	4162	CA GLU	434	43.505	72.873 73.916	38.485 38.840	1.00 72.86 1.00 81.36	AAAA C AAAA C
ATOM ATOM	4163 4164	CB GLU	434 434	42.458 41.191	73.956	38.032	1.00 83.34	AAAA C
ATOM	4165	CD GLU	434	40.181	75.004	38.432	1.00 97.32	AAAA C
ATOH	4166	OE1 GLU	434	39.521	74.928	39.505 37.583	1.00 97.34 1.00 99.95	AAAA O AAAA O
ATOH ATOH	4167 4168	OE2 GLU C GLU	434 434	40.080 43.675	75.941 71.886	39.632	1.00 71.46	AAAA C
ATOM	4169	O GLU	434	44.728	71.858	40.251	1.00 78.49	AAAA O
HOTA	4170	N VAL	435	42.670	71.095	39.926	1.00 66.34 1.00 62.49	AAAA N AAAA C
ATOH ATOH	4172 4173	CA VAL CB VAL	435 435	42.711 41.451	70.129 69.217	41.001 40.972	1.00 60.38	AAAA C
ATOH	4174	CG1 VAL	435	41.547	68.214	42.104	1.00 52.32	AAAA C
ATOH	4175	CG2 VAL	135	40.203	70.073	41.029	1.00 50.79 1.00 60.74	AAAA C AAAA C
ATOH ATOH	4176 4177	C VAL	435 435	43.939 44.607	69.253 69.165	41.018 42.034	1.00 62.37	AAAA O
ATOH	4178	AHT II	436	44.282	68.506	39.988	1.00 60.67	AAAA N
ATOI1	4180	CA THR	436	45.335	67.516	39.936	1.00 56.36	AAAA C AAAA C
ATOM	4181 4182	CB THR OG1 THR	436 436	45.199 44.913	66.565 67.283	38.736 37.503	1.00 50.92 1.00 47.03	AAAA O
ATON ATON	4184	CG2 THR	136	44.108	65.526	38.901	1.00 54.38	AAAA C
MOTA	4185	C THR	436	46.701	68.184	39.930	1.00 60.55	AAAA C AAAA O
ATOH ATOH	4186 4187	O THR H GLY	436 437	47.714 46.836	67.490 69.496	40.024 39.835	1.00 60.61 1.00 60.65	AAAA N
ATOM	4189	CA GLT	437	48.102	70.164	39.749	1.00 59.47	AAAA C
110TA	4190	C GLY	437	48.800	69.864	38.424	1.00 64.78 1.00 62.70	AAAA C AAAA O
ATOM ATOM	419 1 4192	O GLY 11 THR	437 438	49.983 48.112	70.254 69.387	38.245 37.380	1.00 63.79	II AAAA
ATOM	4194	CA THR	438	48.731	69.169	36.076	1.00 65.09	AAAA C
ATOM	4195	CB THR	438	47.967	68.027 68.385	35.411 35.731	1.00 66.87 1.00 62.22	AAAA C AAAA O
ATOM ATOM	4196 4198	OG1 THR CG2 THR	438 438	46.600 48.208	66.659	36.019	1.00 68.74	AAAA C
ATOH	4155	C THR	438	48.590	70.415	35.220	1.00 66.14	AAAA C AAAA O
ATOH	4200 4201	O THR	438 439	49.003 48.089	70.543 71.481	34.070 35.822	1.00 68.05 1.00 67.37	AAAA U
ATOH ATOH	4201	CA LTS	439	47.927	72.757	35.154	1.00 71.08	AAAA C
ATOH	4204	CB LYS	439	47.114	73.708	36.034	1.00 69.23	AAAA C AAAA C
ATOH ATOH	4205 4206	CG LYS	439 439	46.677 45.832	74.938 75.942	35.265 36.014	1.00 77.26 1.00 81.65	AAAA C
ATOH	4207	CE LYS	439	44.385	75.475	36.182	1.00 87.39	AAAA C
ATOI1	4208	HZ LYS	439	43.667	76.431	37.100	1.00 93.85 1.00 73.01	AAAA 11 AAAA C
ATOH ATOH	4212 4213	C LYS O LYS	439 439	49.249 49.996	73.396 73.986	34.752 35.541	1.00 73.01	O AAAA
ATON	4214	II GLT	440	49.517	73.453	33.441	1.00 73.33	II AAAA
ATOH	4216	CA GLY	440	50.733	74.167	33.014	1.00 71.39	AAAA C AAAA C
ATOH ATOH	4217 4218	C GLY O GLY	440 440	51.716 52.684	73.204 73.650	32.389 31.822	1.00 72.70	AAAA O
ATOH	4219	II ARG	441	51.445	71.908	32.436	1.00 72.99	II AAAA
ATOI1	4221	CA ARG	441	52.343 52.617	70.945 69.740	31.831 32.716	1.00 74.12 1.00 69.44	AAAA C AAAA C
ATOM ATOM	4222 4223	CB ARG CG ARG	441 441	51.847	69.695	34.003	1.00 63.34	AAAA C
ATOII	4224	CD ARG	441	52.060	68.314	34.595	1.00 67.64	AAAA C
ATOH	4225	HE ARG	441 441	52.244 52.326	68.395 67.357	36.030 36.831	1.00 61.00 1.00 59.21	AAAA II AAAA C
HOTA HOTA	4227 4228	HH1 ARG	441	52.258	66.117	36.395	1.00 60.57	AAAA II
ATOLL	4231	HH2 ARG	441	52.468	67.596	38.128	1.00 72.94	AAAA II AAAA C
ATOH ATOH	4234 4235	C ARG O ARG	441 441	51.760 52.195	70.446 69.424	30.511 30.012	1.00 73.50 1.00 74.73	AAAA O
ATOH	4236	H GLH	442	50.732	71.114	30.043	1.00 74.69	AAAA II
ATOM	4238	CA GLM	442	49.959	70.646	28.914	1.00 75.13 1.00 68.73	AAAA C AAAA C
ATOH ATOH	4239 4240	CB GLH CG GLH	442 442	48.457 47.669	70.875 69.576	29.126 29.195	1.00 68.73	AAAA C
ATOM	4241	CD GLN	442	47.623	69.028	30.607	1.00 70.98	аааа с
ATOM	4242	OE1 GLN	442	47.714	67.822	30.868	1.00 78.66 1.00 66.86	AAAA O II AAAA
ATOI1 ATOI1	4243 4246	HE2 GLH C GLH	442 442	47.477 50.326	69.907 71.359	31.584	1.00 66.66	AAAA C
MOTA	4247	O GLN	445	50.227	72.569	27.530	1.00 75.57	O AAAA
ATOI!	4248	II ALA	443	50.474	70.554	26.575	1.00 81.54 1.00 82.95	AAAA H AAAA C
ATOH ATOH	4250 4251	CA ALA CB ALA	443 443	50.643 51.104	71.149	25.236 24.220	1.30 81.69	AAAA C

ATOH	4252	С	ALA	443		49.259	71.706	24.952	1.00 83.73	AAAA C
ATOH	4253		ALA	443		48.398	71.744	25.830	1.00 83.87	AAAA C
ATOI1	4254		LïS	444		48.914	72.052	23.713	1.00 86.20	II AAAA II
ATOH	4256	CA	LTS	444		47.559	72.524	23.482	1.00 85.88	AAAA C
A'TOI 1	4257	CB	LYS	444		47.426	73.997	23.128	1.00 83.99	AAAA C
ATOM	4258	CG	LYS	444		46.673	74.734	24.241	1.00 93.60	AAAA C
ATOI1	4259		LYS	444		45.883	73.841	25.186	1.00 95.14	AAAA C
ATOI1	4260		\mathtt{LYS}	444		46.390	73.786	26.614	1.00 97.04	AAAA C
1 1OTA	4261		LYS	444		45.368	73.090	27.473	1.00 97.22	II AAAA
ATOI:	4265		LYS	444		46.659	71.779	22.508	1.00 84.20	AAAA C
ATOI1	4266	0	LYS	444		45.428	71.901	22.635	1.00 85.63	AAAA O
ATOI-I	4267	11	GLY	445		47.214	70.734	21.916	1.00 78.85	AAAA II AAAA C
ATOI-I	4269		GLY	445		46.368	69.786	21.208	1.00 75.06 1.00 72.30	AAAA C
MOTA	4270		GLY	445		45.803	68.844	22.260	1.00 74.90	AAAA O
ATOH	4271		GLY	445		44.963	67.993 68.981	21.940 23.492	1.00 74.90	AAAA II
ATOM	4272		ASP ASP	446		46.300 45.914	68.174	24.642	1.00 62.81	AAAA C
ATOM ATOM	4274 4275	CA CB	ASP	446 446		46.754	68.552	25.873	1.00 55.24	AAAA C
ATOM	4276		ASP	446		48.213	68.169	25.801	1.00 54.07	AAAA C
ATOM	4277		ASP	446		48.693	67.385	24.946	1.00 45.08	AAAA O
MOTA	4278		ASP	446		49.091	68.595	26.593	1.00 50.12	AAAA O
ATOH	4279	C	ASP	446		44.438	68.274	25.016	1.00 58.07	AAAA C
ATOH	4280		ASP	446		43.610	67.369	25.127	1.00 55.59	AAAA O
ATOM	4281	И	ILE	447		44.043	69.527	25.226	1.00 54.13	II AAAA
ATON	4283	CΛ	ILE	447		42.652	69.822	25.510	1.00 54.09	AAAA C
ATOI:1	4284	CB	ILE	447		42.505	70.502	26.877	1.00 48.92	AAAA C
ATOI1	4285	CG2	ILE	447		41.030	70.663	27.182	1.00 41.02	AAAA C
HOTA	4286	CG1	ILE	447		43.211	69.621	27.932	1.00 52.36	AAAA C
11OTA	4287	CD1	ILE	447		43.468	70.323	29.237	1.00 48.47	AAAA C
ATON	4288	C	ILE	447		42.027	70.591	24.364	1.00 53.06	AAAA C
ATOH	4289	0	ILE	4.47		41.718	71.772	24.423	1.00 56.08	AAAA O
ATOH	4290	11	ASII	448		41.625	69.915	23.307	1.00 53.17	AAAA 1
LIOTA	4292	CA	ASII	448		41.013	70.642	22.202	1.00 54.61	AAAA C
LIOTA	4293	CB	ASH	448		41.283	69.982	20.863	1.00 49.17	AAAA C
MOTA	4294	CG	ASH	448		40.415	68.786	20.577	1.00 49.40	AAAA C
ATOM	4295	OD1	ASH	448		39.287	68.977	20.113	1.00 52.34	O AAAA !! AAAA
MOTA	4296		IIZA	448		40.990	67.622	20.871	1.00 52.49 1.00 56.44	AAAA C
ATOH	4299	C	ASH	448		39.518	70.824	22.402 22.939	1.00 55.83	AAAA O
ATOH	4300	0	ASH	448		38.816	69.974	21.764	1.00 58.52	II AAAA
ATOM	4301		THR	449		39.071 37.682	71.917 72.351	21.704	1.00 58.62	AAAA C
ATOM	4303 4304	CA CB	THR THR	449 449	•	37.602	73.845	22.169	1.00 55.90	AAAA C
ATOM ATOM	4304	OG1	THR	449		37.437	74.485	20.943	1.00 68.89	AAAA O
HOTA	4307	CG2	THR	449		38.354	74.352	23.310	1.00 59.06	AAAA C
ATOI1	4308	C	THR	449		36.920	72.053	20.628	1.00 56.82	AAAA C
ATOH	4309	ō	THR	449		35.750	72.381	20.473	1.00 60.87	AAAA C
ATOI:	4310	11	ARG	450		37.539	71.304	19.757	1.00 55.76	AAAA II
ATOII	4312	CA	ARG	450		36.887	70.935	18.507	1.00 54.66	AAAA C
ATOH:	4313	CB	ARG	450		37.845	71.179	17.377	1.00 48.33	AAAA C
ATOH	4314	CG	ARG	450		38.385	69.975	16.645	1.00 54.81	AAAA C
A'TOI 1	4315	CD	ARG	450		39.487	70.561	15.696	1.00 44.92	AAAA C
HOTA	4316	HE	ARG	450		40.706	70.719	16.488	1.00 52.49	AAAA !:
ATOH	4318	CZ	ARG	450		41.544	69.757	16.882	1.00 39.08	AAAA C
ATOH	4319	HHI	ARG	450		41.176	68.572	16.466	1.00 41.07	AAAA II
ATOI-1	4322			450		42.601	70.001	17.610	1.00 45.18	II AAAA
ATOM	4325	C	ARG	450		36.267	69.553	18.557	1.00 56.82	AAAA C AAAA O
ATOM	4326	0	ARG	450		35.186	69.303	17.992	1.00 58.15 1.00 56.66	AAAA U
ATOM	4327	[]	ASH	451		36.800	68.583	19.324 19.434	1.00 50.27	AAAA C
HOTA	4329	CA	ASH	451 451		36.107 36.725	67.311 66.127	18.760	1.00 48.54	AAAA C
ATOH ATOH	4330 4331	CB CG	ASII ASII	451		38.243	66.143	18.764	1.00 40.54	AAAA C
ATOH	4331		ASH	451		38.779	66.279	19.855	1.00 53.45	AAAA O
ATOH	4333		ASII	451		38.707	65.976	17.506	1.00 54.88	AAAA II
ATON	4336	C	ASII	451		35.849	66.854	20.869	1.00 52.97	AAAA C
ATOH	4337	ō	ASII	451		35.330	65.750	21.096	1.00 49.71	AAAA C
ATOH	4338	11	ASII	452		36.126	67.668	21.951	1.00 51.98	AAAA II
HOTA	4340	CA	IISA	452		35.769	67.485	23.229	1.00 55.88	AAAA C
MOTA	4341	€B	ASH	452		36.947	67.873	24.136	1.00 54.62	AAAA C
ATOI:1	4342	CG	ASU	452		37.936	66.736	24.285	1.00 60.96	AAAA C
1 IOTA	4343	OD1	ASH	452		37.646	65.633	24.735	1.00 51.30	AAAA C
ATOH	4344		ASII	452		39.153	67.098	23.855	1.00 56.75	AAAA 17
ATOH	4347	C	112A	452		34.603	68.385	23.689	1.00 58.11	AAAA 🕾
ATOH	4348	0	ASH	452		34.785	69.629	23.657	1.00 55.07	AAAA C
ATOM	4349	[]	GLY	453		33.444	67.813	23.985	1.00 55.08	AAAA C
ATOH	4351	CA	GLY	453		32.313	68.658	24.296	1.00 59.47 1.00 64.95	AAAA C
ATOH	4352	Ċ	GLY	453		31.500	69.269 69.603	23.174 23.276	1.00 64.95	AAAA O
ATOH ATOH	4353 4354	0	GLY GLU	453 454		30.302 31.910	69.603	21.910	1.00 63.71	AAAA 1
ATON	4356	CA	GLU	454 454		31.266	69.543	20.690	1.00 63.63	AAAA C
ATOM	4356	CB	GLU	454		31.739	68.818	19.401	1.00 53.71	AAAA C
ATOM ATOM	4357	CG	GLU	454		32.348	67.430	19.738	1.00 49.50	AAAA C
ATOM	4359	C D	GLU	454		32.368	66.620	18.454	1.00 43.50	AAAA C
ATOH	4355	OE1		454		31.368	66.637	13.404	0.01 54.10	AAAA c
ATOH	4361		GLU	454		33.417	66.003	18.160	0.01 54.17	AAAA C
ATOH	4362	C	GLU	454		29.762	69.301	20.767	1.00 65.41	AAAA C
	_									

							40/50		
ATOH	4363	O	GLU	454	29.022	70.089	20.169	1.0067.85	AAAA O
			ARG	455	29.288	68.187	21.333	1.00 66.45	AAAA II
ATOH	1364	11						1.00 69.33	AAAA C
HOTA	4366	CA	ARG	455	27.843	67.997	21.371		
ATO: 1	4367	CB	ARG	455	27.448	66.733	20.652	1.00 73.38	AAAA C
ATOH	4368	CG	ARG	455	28.467	65.912	19.924	1.00 74.27	AAAA C
ATOH	4369	CD	ARG	455	27.775	64.740	19.240	1.00 79.54	AAAA C
	4370	NE	ARG	455	27.301	63.638	20.052	1.00 86.31	AAAA N
ATOM						62.412	20.189	1.00 88.60	AAAA C
ATOM	4372	C2	ARG	455	27.802				II AAAA
ATOM	4373	ΝН1	ARG	455	28.990	61.997	19.538	1.00 84.51	
ATOH	4376	IIH2	ARG	455	27.225	61.523	21.003	1.00 87.36	AAAA II
ATOH	4379	С	ARG	455	27.213	67.934	22.756	1.00 67.35	дада С
			ARG	455	26.423	67.025	22.961	1.00 66.26	AAAA O
ATOH	4380	0					23.623	1.00 66.52	AAAA II
ATOM	4381	11	ALA	456	27.499	68.879		_	AAAA C
ATOH	4383	CA	ALA	456	26.947	68.906	24.964		
ATOH	4384	CB	ALA	456	27.832	68.147	25.939	1.00 61.84	AAAA C
ATOM	4385	С	ALA	456	26.802	70.379	25.371	1.00 75.25	AAAA C
ATOI-1	4386	Q	ALA	456	27.706	71.219	25.202	1.00 81.30	AAAA O
		11	SER	457	25.653	70.720	25.939	0.50 71.91	AAAA N
ATOH	4387					_	26.358	0.50 69.64	AAAA C
MOTA	4389	CA	SER	457	25.431	72.095			AAAA C
HOTA	4390	CB	SER	457	23.991	72.247	26.836	0.50 73.30	
ATOH	4391	OG	SER	457	23.422	73.294	26.060	0.50 73.31	AAAA O
ATOI-1	4393	C	SER	457	26.418	72.510	27.437	0.50 69.27	AAAA C
ATOM	4394	Ō	SER	457	26.458	71.957	28.530	0.50 67.32	AAAA O
					27.197	73.531	27.117	0.50 70.44	AAAA II
ATOH	4395	11	CYS	458				0.50 72.57	AAAA C
HOTA	4397	CA	CYS	458	28.287	73.960	27.972		
ATOM	4398	C	CYS	458	27.949	75.205	28.757	0.50 72.54	AAAA C
ATOH	4399	0	CYS	458	27.065	75.128	29.606	0.50 76.63	AAAA O
ATOH	4400	СВ	CTS	458	29.527	74.171	27.089	0.50 75.38	AAAA C
ATOH	4401	SG	CYS	458	30.844	73.032	27.490	0.50 72.18	AAAA S
					28.607	76.306	28.441	0.50 70.13	AAAA II
ATOII	4402	11	ALA	459					AAAA C
ATOH	4404	CA	ALA	459	28.445	77.572	29.116	0.50 70.05	
ATO!!	4405	CB	ALA	459	27.046	78.149	28.996	0.50 70.57	AAAA C
ATO!!	4406	С	ALA	459	28.826	77.461	30.601	0.50 70.13	AAAA C
ATOM	4407	0	ALA	459	29.080	78.556	31.154	0.50 69.96	AAAA O
ATOM	4407	OT	ALA	459	28.855	76.301	31.054	0.50 68.22	AAAA O
		C1	HAG	461	59.581	7.102	61.119	1.00 88.13	AAAA C
ATOH	4522					7.338	59.697	1.00 91.94	AAAA C
ATOH	4524	C2	NAG	461	59.964			1.00 92.72	AAAA II
ATOM	4526	H2	HAG	461	58.738	7.699	58.920		
MOTA	4528	C7	HAG	461	58.400	9.020	58.999	1.00 96.97	AAAA C
ATON	4529	07	MAG	461	58.879	9.774	59.726	1.00 98.62	AAAA O
MOTA	4530	C8	NAG	461	57.323	9.390	58.043	1.00100.60	AAAA C
ATOI1	4534	C3	HAG	461	60.725	6.225	59.085	1.00 94.77	AAAA C
	4536	03	NAG	461	61.417	6.725	57.930	1.00 98.51	AAAA O
ATOM						5.869	60.064	1.00 96.01	AAAA C
ATOI:1	4538	C4	NAG	461	61.873			1.00 99.20	AAAA O
ATOI-1	4540	04	NAG	461	62.661	4.821	59.484		
ATO14	4542	C5	NAG	461	61.359	5.529	61.474	1.00 95.13	AAAA C
ATOI1	4545	C6	NAG	461	62.465	5.321	62.495	1.00 93.66	AAAA C
ATOH	4548	06	HAG	461	62.745	6.364	63.354	1.00 92.13	AAAA O
		05	NAG	461	60.625	6.648	61.949	1.00 91.92	AAAA O
ATOM	4544						72.938	1.00 43.58	AAAA C
HOTA	4550	C1	HAG	463	33.054	15.249			AAAA C
ATOII	4552	C2	HAG	463	31.644	15.282	73.412	1.00 43.62	
ATOH	4554	112	MAG	463	30.709	14.527	72.541	1.00 42.16	II AAAA
HOTA	4556	C7	NAG	463	29.912	13.584	73.099	1.00 40.84	AAAA C
ATOH	4557	07	HAG	463	29.928	13.406	74.222	1.00 40.10	AAAA O
ATOH	4558	C8	MAG	463	28.975	12.694	72.394	1.00 35.47	AAAA C
				463	31.150	16.675	73.448	1.00 45.40	AAAA C
ATOH	4562	C3	NAG					1.00 45.99	AAAA O
ATCH	4564	03	HAG	463	29.979	16.555	74.196		
ATOH	4566	C4	HAG	463	32.117	17.617	74.171	1.00 50.36	AAAA C
ATOH	4568	04	NAG	163	31.596	18.919	73.891	1.00 53.97	AAAA O
ATOH	4569	C5	NAG	463	33.589	17.477	73.725	1.00 48.50	AAAA C
ATOM	4572	C6	HAG	463	34.490	17.996	74.742	1.00 48.34	AAAA C
ATOM	4575	06	HAG	463	34.906	18.739	75.671	1.00 57.11	AAAA O
	-						73.583	1.00 48.58	AAAA O
ATOH	4571	05	HAG	463	33.942	16.120			AAAA C
ATOH	4576	Cl	FUC	464	34.544	19.954	76.083	1.00 81.45	
HOTA	4578	C2	FUC	464	35.179	21.173	75.463	1.00 86.35	AAAA C
ATOH	4579	02	FUC	464	35.153	21.169	74.021	1.00 92.94	AAAA O
MOTA	4582	С3	FUC	464	34.252	22.284	75.945	1.00 86.79	AAAA C
ATOH	4584	03	FUC	464	34.691	23.613	75.596	1.00 87.83	AAAA O
HOTA	4586	C4	FUC	464	33.871	22.274	77.412	1.00 86.67	AAAA C
							78.115	1.00 87.06	AAAA O
ATOH	1588	04	FUC	464	34.598	23.297		1.00 85.85	AAAA C
HOTA	4590	C5	FUC	164	33.921	20.894	78.040		
ATO! I	4593	C6	FUC	464	34.279	20.768	79.512	1.00 83.37	AAAA C
ATOH	4592	05	FUC	464	35.042	20.150		1.00 82.43	AAAA O
ATOH	4597	Cl	HAG	465	31.575	19.813	74.940	1.00 64.68	AAAA C
ATOI1	4599	C2	HAG	465	31.267	21.207	74.437	1.00 69.57	AAAA C
ATOH	4601	112	MAG	465	32.480	21.642	73.690	1.00 71.25	II AAAA II
							72.381	1.00 73.86	AAAA C
ATOH	4603	C7	IIAG	465	32.401	21.953			
ATOI1	4604	07	NAG	465	31.373	21.835	71.881	1.00 74.80	AAAA O
14OTA	4605	C8	NAG	465	33.679	22.401		1.00 76.00	AAAA C
ATOH	4609	C3	NAG	465	31.050	22.214	75.546	1.00 72.71	AAAA C
ATOH	4611	93	HAG	465	30.713	23.517	75.108	1.00 71.03	AAAA O
ATON	4613	C4	IIAG	465	30.035	21.654			AAAA C
						22,409			AAAA O
ATOH	4615	04	NAG	465	29.993				AAAA C
ATOH	1617	C5	HAG	465	30.498	20.238			
HOTA	4620	C6	NAG	465	29.461	19.647	77.930	1.00 75.64	AAAA C

							44/58		
ATOH	4623	06	HAG	465	28.385	19.238	77.142	1.00 76.25	λΑλΑ Ο
ATOH ATOH	4619 462 5	05 C1	HAG HAG	465 467	30.514 49.927	19.425 11.058	75.807 87.926	1.00 71.44 1.00 96.51	AAAA O AAAA C
ATOM	4627	C2	MAG	467	50.538	11.751	89.100	1.00 99.92	AAAA C
ATOH ATOH	4629 46 3 1	112 C7	NAG NAG	467 467	49.662 49.299	12.898 13.021	89.458 90.759	1.00101.79	11 AAAA C
ATOH	4632	07	HAG	467	49.541	12.267	91.586	1.00105.48	O AAAA
ATOM ATOM	4633 4637	C8 C3	NAG NAG	467 467	48.526 51.967	14.239 12.134	91.102 88.802	1.00105.02	AAAA C AAAA C
ATOM	4639	03	HAG	467	52.535	12.761	89.949	1.00100.89	AAAA O
ATOH ATOH	4641 4643	C4 O4	NAG NAG	467 467	52.643 54.067	10.771 10.834	88.506 88.441	1.00101.15	AAAA C AAAA O
ATOH	4645	C5	DAII	467	52.039	10.160	87.218	1.00100.16	AAAA C
ATOH ATOH	4648 4651	C6 O6	NAG NAG	467 467	52.746 52.088	8.852 7.704	86.934 87.302	1.00 99.75 1.00101.54	AAAA C A AAA O
ATOH	4647	05	HAG	467	50.671	9.918	87.503	1.00 98.59	AAAA O
HOTA HOTA	4653 4655	C1 C2	HAG HAG	169 169	55.375 56.601	46.143	66.863 66.861	1.00 48.45 1.00 50.42	AAAA C AAAA C
ATOH	4657	112	NAG	469	57.106	47.015	65.451	1.00 51.50	II AAAA
ATOH ATOH	4659 4660	€7 07	NAG NAG	469 469	57.235 56.849	48.143 49.101	64.746 65.234	1.00 48.88 1.00 55.62	AAAA C AAAA O
ATOM	4661	C8	NAG	469	57.838	48.134	63.394	1.00 43.70	AAAA C
HOTA HOTA	4665 4667	03 03	HAG HAG	469 469	57.608 58.640	46.491 47.461	67.844 68.031	1.00 49.62 1.00 47.76	A AA A C A AA A O
ATOM	1669	C4	NAG	469	56.843	46.263	69.172	1.00 48.47	AAAA C
ATOH ATOH	4671 4672	O4 C5	HAG HAG	469 469	57.826 55.847	45.800 45.130	70.134 68.959	1.00 50.06 1.00 50.81	AAAA O AAAA C
ATOM	4675	C6	NAG	469	55.190	44.720	70.239	1.00 53.92	AAAA C
ATOH ATOH	4678 4674	06 05	HAG HAG	469 469	54.829 54.914	45.551 45.599	71.193 68.043	1.00 56.25 1.00 55.45	AAAA O AAAA O
ATOH	4679	Cl	FUC	470	53.830	46.395	71.203	1.00 61.17	AAAA C
ATOI1	4681 4682	C2 O2	FUC FUC	470 470	53.642 54.861	47.121 46.876	72.534 73.241	1.00 59.23 1.00 55.14	AAAA C AAAA O
ATOM	4685	C3	FUC	470	53.421	48.429	71.757	1.00 58.39	AAAA C
ATOM ATOM	4687 4689	O3 C4	FUC FUC	470 470	53.381 52.245	49.515 48.255	72.637 70.809	1.00 56.30 1.00 61.24	AAAA O AAAA C
ATOI1	4691	04	FUC	470	51.061	47.904	71.544	1.00 63.74	AAAA O
ATOH ATOH	4693 4696	C5 C6	FUC FUC	470 470	52.455 51.462	47.086 46.723	69.828 68.784	1.00 62.20 1.00 59.15	AAAA C AAAA C
ATOIT	4695	05	FUC	470	52.567	45.889	70.781	1.00 64.68	AAAA O
ATOM ATOM	4700 4702	C1 C2	NAG NAG	471 471	58.034 58.977	46.760	71.149 72.186	1.00 37.00 1.00 40.30	AAAA C AAAA C
ATO14	4704	112	HAG	471	58.958	44.787	72.509	1.00 36.82	AAAA II
ATOM ATOM	4706 4707	C7 07	HAG HAG	471 471	57.856 56.892	44.183 44.744	72.903 72.885	1.00 44.21 1.00 51.50	АААА С АААА О
HOTA	4708	C8	MAG	471	58.202	42.814	73.323	1.00 46.02	AAAA C AAAA C
ATOH ATOH	4712 4714	C3 O3	HAG HAG	471 471	58.901 59.698	47.250 46.917	73.291 74. 3 85	1.00 34.50 1.00 35.84	AAAA O
ATO11	4716	C4	DAI1	471	59.645	48.488	72.694	1.00 38.52 1.00 37.44	AAAA C AAAA O
ATOM ATOM	4718 4719	Q4 Q5	NAG NAG	471 471	59.754 59.056	49.464 48.958	73.694 71.332	1.00 36.94	AAAA C
ATOH1	4722	06	HAG	471	60.116	49.692	70.525	1.00 36.14 1.00 43.49	AAAA C AAAA O
HOTA	4725 4721	06 05	HAG HAG	47 1 471	61.106 58.853	50.390 47.785	71.080 70.530	1.00 34.98	O AAAA
ATCI-I	4727	Cl	HAH	472	61.035	49.984	73.959	1.00 53.37 1.00 56.72	АААА С АААА С
ATOH ATOH	4729 4730	C2 O2	HAH	472 472	60.920 59.924	51.497 51.584	74.260 75.272	1.00 62.11	AAAA O
ATOH	4733	C3	HAH	472	62.216	52.031	74.840 75.383	1.00 60.70 1.00 60.70	AAAA C AAAA O
ATOH ATOH	4735 4736	O3 C4	HAH	472 472	62.028 62.787	53.337 51.161	75.932	1.00 55.46	AAAA C
ATOLL	4738 4740	C5	HAH	472 472	64.085 62.797	51.595 49.685	76.171 75.511	1.00 57.16 1.00 52.10	AAAA O AAAA C
HOTA HOTA	4743	C6	HAH	472	63.458	48.905	76.595	1.00 50.32	AAAA C
ATOH	4746 4742	06 05	HAH	472 472	62.990 61.443	48.969 49.407	77.885 75.200	1.00 51.02 1.00 53.33	AAAA O AAAA O
HOTA HOTA	4748	Cl	MAU	473	62.594	54.401	74.672	1.00 72.61	AAAA C
ATOH ATOH	4750 4751	C2 Q2	HAH	473 473	62.417 63.378	55.679 56.709	75.569 75.348	1.00 75.28 1.00 74.98	AAAA C AAAA O
ATON	4754	C3	HAH	473	60.977	56.163	75.493	1.00 78.65	AAAA C
ATOH ATOH	4756 4758	C4 O3	HAH	473 473	60.341 60.344	57.447 56.204	76.148 74.114	1.00 79.16	AAAA O AAAA C
ATOM	4760	04	HAH	473	58.983	56.571	74.178	1.00 78.93	- AAAA O
ATOH ATOH	4762 4765	C5 C6	HAH HAH	473 473	60.499 59.968	54.802 54.490	73.474 72.091	1.00 76.89	AAAA C AAAA C
MOTA	4768	Q6	IIAi1	473	60.239	55.469	71.138	1.00 71.38	AAAA O
ATOH ATOH	4408 4408	05 08	HAH	473 479	61.916 42.462	54.562 74.494	73.463 16.374	1.00 74.97	AAAA O BBBB C
ATOM	4409	C	ALA	479	40.017	74.702	17.001	1.00 91.42	BBBB C
ATOH ATOH	4410 4413	H Ö	ALA ALA	479 479	40.393 40.696	75.108 74.461	18.103 14.624	1.00 96.11	8888 O 8888 II
ATOM	4415	CA	ALA	479	41.033	74.108	16.033	1.00 89.85	BBBB C
ATOH ATOH	4416 4418	U CA	ALA ALA	480 480	38.749 37.684	74.752 75.264	16.610 17.467	1.00 92.12	BBBB II BBBB C
ATOH	1418	CB	ALA	180	37.925	76.731	17.769	1.00 86.84	BBBB C
ATOI-!	4420	C	ALA	480	36.306	75.030	16.849	1.00 91.39	BBBB C

HOTA	4421	O ALA	180	35.413	74.647	17.610	$1.00 \ 93.79$	BBBB O
ATOH	4422	H GLH	481	36.135	75.304	15.564	0.0189.69	BBBB II
ATOH	4424	CA GLU	481	34,832	75.164	14.915	1.00 87.19	BBBB C
			481	34.471	76.492	14.224	0.01 92.74	BBBB C
ATOI1	4425	CB GLN					1.00 99.93	BBBB C
ATOM	4426	OG GLN	481	34.277	77.627	15.220		
ATOH	4427	CD GLH	481	34.067	79.003	14.626	1.00103.59	BBBB C
ATOH	4428	OE1 GLN	481	35.011	79.777	14.381	1.00103.27	88 8 8 0
ATOH	4129	NE2 GLN	481	32.792	79.328	14.398	1,00108.00	BBBB 11
							1.00 85.31	BBBB C
ATOI1	4432	C GLN	481	34.755	73.947	14.005		
ATOI1	4433	O GLII	481	33.736	73.508	13.456	1.00 83.41	BBBB O
ATOM	4434	II LTS	482	35.849	73.188	13.908	1.00 82.85	BBBB II
	1436		482	35.982	71.990	13.089	1.00 73.49	BBBB C
ATOII							1.00 73.13	BBBB C
ATOI-I	4437	CB LYS	482	37.377	71.930	12.480		
ATOM	4438	CG LYS	482	38.287	73.128	12.494	1.00 76.33	BBBB C
ATOH	4439	CD LYS	482	39.413	72.968	11.471	1.00 80.62	BBBB C
ATOH	4440	CE LYS	482	39.985	74.310	11.027	0.01 76.66	BBBB C
					74.136	10.262	0.01 76.20	BBBB II
ATOH	4441	HZ LYS	482	41.252				
HOTA	4445	C LYS	482	35.779	70.701	13.872	1.00 67.70	BBBB C
ATOH	4446	O LTS	482	35.879	70.744	15.092	1.00 69.99	BBBB O
HOTA	4447	II LEU	183	35.530	69.585	13.199	1.00 61.47	BBBB II
ATOM	4449	CA LEU	483	35.193	68.356	13.896	1.00 59.03	BBBB C
							1.00 55.20	BBBB C
HOTA	4450	CB LEU	483	34.256	67.529	13.039		
HOTA	4451	CG LEU	483	32.779	67.860	12.875	1.00 61.94	BBBB C
MOTA	4452	CD1 LEU	483	32.405	69.154	13.595	1.00 44.78	BBBB C
ATOH	4453	CD2 LEU	483	32.433	67.707	11.395	1.00 44.63	BBBB C
			483	36.421	67.509	14.229	1.00 59.73	BBBB C
ATOI1	4454	C LEU						
ATOH	4455	O LEU	483	36.465	66.709	15.165	1.00 57.22	BBBB O
ATOI1	4456	H ILE	484	37.345	67.543	13.262	1.00 56.21	PBBB II
ATOH	4458	CA ILE	484	38.597	66.820	13.367	1.00 52.58	BBBB C
ATOH	4459	CB ILE	181	38.490	65.390	12.870	1.00 50.27	BBBB C
								BBBB C
HOTA	4160	CG2 ILE	484	37.769	65.319	11.524	1.00 44.85	
HOTA	4461	CG1 ILE	484	39.870			1.00 39.78	BBBB C
MOTA	4462	CD1 ILE	484	39.888	63.291	12.404	1.00 30.43	BBBB C
HOTA	4463	C ILE	484	39.623	67.645	12.608		BBBB C
					68.568	11.942		BBBB 0
ATOH	4464	O ILE	484	39.158				
ATOH	4465	II SER	485	40.911	67.499	12.887		BBBB N
ATOH	4467	CA SER	485	41.898	68.335	12.209	1.00 49.78	BBBB C
ATOM	4468	CB SER	485	41.969	69.753	12.747	1.00 46.06	BBBB C
ATOH	4469	OG SER	485	43.190	70.035	13.376		BBBB O
							1.00 50.57	
ATOM	4471	C SER	485	43.294	67.711	12.240		
MOTA	4472	O SER	485	43.510	66.601	12.740		BBBB O
ATOH	4473	II GLU	486	44.246	68.389	11.604	1.00 52.16	BBBB N
ATOH	4475	CA GLU	486	45.624	67.874	11.509	1.00 59.12	BBBB C
ATOH	4476	CB GLU	486	46.547	68.683	10.598	1.00 59.71	BBBB C
							1.00 76.75	BBBB C
ATOM	4477	CG GLU	486	46.221	70.162	10.568		
ATON	4478	CD GLU	486	47.370	71.045	10.983	1.00 80.53	BBBB C
ATON	4479	OE1 GLU	486	48.315	70.404	11.472	1.00 91.67	BBBB O
HOTA	4480	OE2 GLU	486	47.480		10.897	1.00 86.00	BBBB O
					67.773	12.896	1.00 56.50	BBBB C
ATOM	4481	c grn	486	46.272				
ATO!1	4482	o glu	486	46.768	66.747	13.326	1.00 49.83	BBBB O
ATOM	4483	H GLU	487	45.955	68.738	13.732	1.00 58.37	
ATOH.	4485	CA GLU	487	46.129	68.736	15.169	1.00 59.36	BBBB C
ATON	4486	CB GLU	487			15.729		BBBB C
	4487	CG GLU	187	45.645	70.232	17.159		BBBB C
ATOI4							1.00 86.09	BBBB C
HOTA	4488	CD GLU	487	46.397	71.545	17.177		
HOTA	1189	OE1 GLU	487	45.768	72.610	17.320	1.00 92.00	PBBB O
HOTA	4490	OE2 GLU	487	47.637	71.452	17.026	1.00 96.51	BBBB O
ATOI1	4491	c GLU	487	45.735	67.436	15.841	1.00 58.84	BBBB C
ATOM ATOM	4492	O GLU	187		67.018	16.761		BBBB O
ATOH	4493	H ASP	188		66.661	15.474		
ATOH	4495	CA ASP	488			15.932		
ATOH	4496	OB ASP	488	42.947	64.977			BBBB C
ATOH	4497	CG ASP	188	42.047	66.008	16.267	1.90 45.27	BBBB C
HOTA	4498	OD1 ASP	488	42.114	66.563	17.387	1.00 56.45	BBBB 0
					66.399	15.492	1.00 55.11	BBBB 0
ATOH	4499	OD2 ASP	188	41.154				
MOTA	4500	C ASP	188	45.206	64.211	15.238	1.00 58.91	BBBB C
ATOM	4501	O ASP	488	44.967	63.042	15.634	1.00 57.00	BBBB O
ATOH	4502	II LEU	489	45.933	64.513	14.163	1.00 57.39	BBBB II
HOTA	4504	CA LEU	489	46.659	63.426	13.528	1.00 64.03	BBBB C
ATON	4505	CB LEU	489	46.722	63.677	12.024	1.00 62.69	BBBB C
ATON	4506	CG LEU	489	45.746	62.788	11.226	1.00 53.71	BBBB C
ATOH	4507	CD1 LEU	180	44.324	63.243	11.514	1.00 51.88	BBBB C
ATOM	4508	CD2 LEU	489	46.072	62.967	9.766	1.00 55.20	BBBB C
ATOH	4509	C LEU	489	48.017	63.355	14.210	1.00 68.12	BBBB C
ATOM	4510	O LEU	489	48.860	62.560	13.838	1.00 71.57	BBBB 0
							1.00 68.24	BBBB II
ATOH	4511	II ASII	450	48.306	64.318	15.063		
ATOII	4513	CA ASII	490	49.497	64.424	15.855	1.00 75.04	BBBB C
ATOH	4514	CB ASN	490	49.734	65.910	16.187	1.00 84.46	BBBB C
ATOH	4515	CG ASN	490	51.191	66.105	16.589	1.00 98.83	BBBB C
				52.082	65.342	16.178	1.00 97.25	BBBB 0
ATOH	4516	OD1 ASII	490					
ATOH	4517	HD2 ASH	490	51.459	67.128	17.407	1.00100.47	BBBB II
ATOH	4520	C ASH	490	49.350	63.610	17.139	1.00 80.30	BBBB C
ATOH	4521	O ASH	490	49.891	62.484	17.264	1.00 80.97	BBBB 0
ATOH	4521	OT ASII	490	48.510	64.012	19.001	1.00 89.51	BBBB 0
		S SUL		37.234	-7.808	65.465	1.00108.87	DDDD S
ATOH	4770	2 2017	493	37.234	-7.808	65.465	1.00100.01	2000 2

ATOH	4771	01	SUL	493	38.452	-7.921	65.345	1.00112.65	DDDD O
ATOH	4772	02	SUL	493	37.611	-7.873	64.020	1.00110.21	DDDD 0
ATOH	4773	03	SUL	493	36.533	-6.555	65.856	1.00109.93	DDDD O
HOTA	4774	04	SUL	493	36.333	-8.978	65.639	1.00107.58	DDDD O
ATON	4775	S	SUL	494	56.567	19.753	66.302	1.00107.38	DDDD S
ATOM	4776	01	SUL	494	56.597	19.733	67.659	1.00107.98	DDDD O
ATON	4777	02	SUL	494	57.964	20.027	65.795	1.00112.59	DDDD O
ATOH	4778	03	SUL	494	55.749	21.006	66.267	1.00111.35	DDDD O
	4779		SUL					1.00111.33	DDDD O
ATOH ATOH		04		494	55.886	18.792	65.379		DDDD S
ATOH	4780	S	SUL	495	34.533	11.240	75.722	1.00114.67	DDDD O
ATOH	4781	01	SUL	495	35.274	12.213	76.595	1.00111.38	
ATON	4782	02	SUL	495	35.476	10.329	74.974	1.00113.60	DDDD O
ATON	4783	03	SUL	495	33.552	11.860	74.748	1.00112.77	DDDD O
HOTA	4784	04	SUL	495	33.773	10.278	76.604	1.00113.18 1.00 50.73	DDDD O DDDD S
ATOH	4785	S	SUL	496	35.466	24.844	59.093		
ATOI I	4786	01	SUL	496	35.613	24.843	60.607	1.00 62.59	DDDD O
ATOI:	4787	02	SUL	496	36.002	23.581	58.571	1.00 48.59	DDDD O
ATOM	4788	03	SUL	496	35.880	26.084	58.455	1.00 56.74	DDDD O
ATOM	4789	04	SUL	196	33.958	24.953	59.034	1.00 59.34	DDDD O
ATOM	4790	S	SUL	197	47.653	-2.303	70.199	1.00 68.98	DDDD S
ATOM	4791	01	SUL	497	47.849	-1.058	70.996	1.00 68.52	DDDD O
ATOM	4792	02	SUL,	197	48.594	-2.509	69.072	1.00 70.94	DDDD O
ATOM	4793	03	SUL	497	46.187	-2.393	69.810	1.00 73.47	DDDD O
ATOI-I	4794	04	SUL	497	47.799	-3.446	71.129	1.00 71.33	DDDD O
ATOM	4795	S	SUL	498	56.527	35.758	75.513	1.00 71.48	DDDD S
ATOH	4796	01	SUL	158	55.870	35.013	76.621	1.00 72.97	DDDD O
ATOH	4797	02	SUL	498	57.759	34.996	75.167	1,00 69.11	DDDD O
ATOM	4798	03	SUL	498	56.619	37.237	75.785	1.00 72.45	DDDD O
ATOH	4799	O+.	SUL	458	55.623	35.809	74.330	1.00 72.74	DDDD O
ATOM	4800	S	SIIL	100	10.639	27.365	69.499	1.00 74.04	DDDD S
ATON	4801	01	SUL	499	40.218	26.039	70.045	1.00 76.00	DDDD C
ATOH	4802	00	SUL	400	42.089	27.608	69.835	1.00 75.15	DDDD O
ATOH	4803	03	SUL	499		28.467	70.098	1.00 77.27	O DDDD
ATOM	4804	O4	SUL	499	40.424	27.245	68.018		DDDD O
NOTA	4805	S	SUL	500	44.996	53.228	20.568	1.00 83.89	DDDD S
ATOH	4806	01	SUL	500	45.080	54.400	21.461	1.00 84.79	DDDD O
ATOH	4807	02	SUL	500	46.109	52.266	20.827	1.00 90.38	DDDD O
ATOM	4808	03	SUL	500	45.032	53.674	19.135	1.00 92.23	DDDD O
MOTA	4809	04	SUL	500	43.762	52.396	20.723	1.00 91.61	DDDD O
ATOM	4810	QW	TAW	501		6.904	77.713	1.00 34.84	DDDD O
ATOM	4813	ОМ	WAT	502	42.522	18.998	78.232	1.00 55.27	DDDD O
ATOM	4816	OW	WAT	503	37.561	21.003	67.518	1.00 41.63	DDDD O
ATON-	4819	OW	WAT	504		5.721	63.485	1.00 57.37	DDDD O
ATOM	4822	OM	WAT	505		24.854	72.729		DDDD O
ATOI1	4825	OW	WAT	506		57.695	22.727		DDDD O
MOTA	4828	OIA	TAW	507	55.123	37.781	61.204	1.00 43.71	DDDD O
ATOM	4831	WO	WAT	508	17.414	-9.070	74.793	1.00 48.79	DDDD O
ATOH	1834	VIQ	TAW	509	44.263	20.885	63.811	1.00 28.64	DDDD O
HOTA	4837	OM	WAT	510		19.708	84.433	1.00 49.09	DDDD O
ATOM ATOM	4840	WO	WAT	511		1.927	71.115		DDDD O
ATOH ATOH	4843 4846	OM OM	WAT	512		4.902	75.254	1.00 55.23 1.00 57.51	DDDD O
ATOM	4849	ÖΜ	TAW TAW	513	11.502	-0.835	58.996	1.00 57.31	DDDD O
ATOM	4852	OW	TAN	514 515	24.591	17.207	\$6.665	1.00 36.47	DDDD O
ATOH	4855	OM	WAT	516	56.947 58.092	34.914	62.552 66.234	1.00 30.34	DDDD O
ATOH	4858	OW	WAT	517		39.983 40.726	56.768	1.00 81.69	DDDD O
ATON	4861	OM	WAT	518	48.308 25.776	2.355	85.630	1.00 66.34	DDDD O
ATON	4864	OW	WAT	519	30.644	68.108	30.765	1.00 82.28	O GGGG
ATOM	4867	OW	TAW	520	38.739	54.257	43.611	1.00 43.41	O DDDD
ATOU	4970	OW	WAT	521	22.886	4.470	64.871	1.00 48.71	DDDD C
ATOH	4873	OW	WAT	522	30.938	50.249	19.364	1.00 48.71	DDDD 0
ATOM	4876	OW	WAT	523		9.061	42.441	1.00 44.45	DDDD O
ATOH	4879		TAW	524	41.019	42.560	55.653	1.00 43.40	DDDD O
HOTA	4882	Ol-1	WAT	525	54.268	51.393	37.513	1.00 55.10	DDDD O
ATOH	4885	OW	WAT	526	_	13.599	81.397		DDDD O
ATOH	1888	OW	WAT	527	42.585	10.244	84.472	1.00 35.95	DDDD O
ATOH	1891	ON	WAT	528	43.661	61.633	18.450	1.00 41.05	O DDDD
ATOH	4894	OH	WAT	529	27.980	19.862	53.348	1.00 54.59	DDDD O
ATOH	4897	OW	MAT	530	59.527	38.520	64.116	1.00 37.96	ODDD O
ATOH	4900	OW	WAT	531		1.046	57.437	1.00 59.31	O DDDD
MOTA	4903	OW	WAT	532	30.380	16.123	70.205	1.00 40.39	DDDD O
ATOH	4906	OW	TAU	533	46.835	27.888	65.854	1.00 52.34	DDDD O
ATOM	1909	OW	WAT	534	39.446	49.001	45.379	1.00 46.05	DDDD O
ATON	4912	OW	WAT	535	46.992	51.272	50.722	1.00 52.62	DDDD O
ATOII	4915	OW	WAT	536		13.776	73.017	1.00 40.61	DDDD O
MOTA	4918	OM	WAT	537	33.670	58.861	20.848	1.00 51.56	DDDD O
ATOII	4921	OW	WAT	538	52.469	21.639	73.804	1.00 61.98	DDDD O
ATOH	4924	Olv	WAT	539	49.985	44.871	37.324	1.00 45.45	DDDD O
MOTA	4927	OW	WAT	540	24.074	-1.791	60.077	1.00 40.40	DDDD O
ATOH	1930	OW	WAT	541		0.714	79.039	1.00 51.34	DDDD O
ATOI1	4933	OW	WAT	542	31.231	-1.176	62.362	1.00 48.33	DDDD O
ATOH	4936	OW	WAT	543	41,726	-5.156	55.290	1.00 60.67	DDDD O
ATOH	1535	OW	MAT	544	48.564	37.335	72.612	1.00 71.69	DDDD O
ATOI1	4942	OW	WAT	545	49.501	40.030	67.582	1.00 44.88	DDDD O
ATOH	4945	OW	WAT	E46	54.851	7.997	60.018	1.00 49.91	DDDD Q
•				. •				· · · · · · · · · · · · · ·	v

47/58

ATOH 4948 OW WAT 547 30.459 -14.058 70.554 1.00 84.42 DDDD 0 ATOH 4951 OW WAT 548 57.310 32.779 60.848 1.00 50.77 DDDD 0

EHD

	48/58
	335R 336R 7) 338N
Face 3	310T 9K 312D (316S) 313S 315T 314V (344)
	309 19M 318Q 2 347F 346Q
	305E 302C)319M 318Q (322G)321Q 347F 346G
Cleft 2	الا 80 ع
	\$ 264E (283R) = 282l \$ 298(\$ 298(
Face 2	53 53 79
_	259E 256L 256L 256F 27 256F 27 270E 270D 270D
Cleff 1	259E 2618 256L 26 266F 275Q 53E 242E 241F (274M) 80K 79W 272E 240R V 108R 240R
	(6G) 5P 88Y (27G) 24 4Y 53E 24 F 80K 79 Y 80K 79
Face 1	(12D) 11N 10R 8D (6G) 5P 266 (61A) 59R 58F 56L 54Y 53E 242E 241F 90F (88V) 83Y 80K 79W 270F (140V) 138Y 813
	(1) (61A) (61A)

Figure 2

Figure 3

Figure 4

Figure 5

a THE POST OF GIDIAN DYOOLKALEWCIVIEGHLOILLMFKT RPEDFAD

1 LEEKKVCO GTSNKLOFLSLORMFNNCEVVLGNLEITYVORN

GIGIGE()NATNIKHFKNCTSISGDLHILPVAFR()PPLDPOE

KVCHLLEGEKTID SVTSAQELAGCTVINGSLIINIAGGN NLAAELE

KVCEEEKKTXIID SVTSAQELAGCTVINGSLIIINIAGGN NLAAELE

KVCEEEKKTXIID SVTSAQELAGCTIFKGNLLINIAGGN NIASELE IGPIR LI 48 IR L1 1 EGFR L1 1 EGFR L2 311 IR L2 310 IGF1R L2 300 51 367 355 345 EYLLER VAGLES L COLFP NLTV | RGWX L FY WYALV | FE M V H L K E L G L COY L L L FR V Y G L ES L K D L FP N L T V I R G S R L F F N Y A L V I FE M V H L K E L G L G Y V L I A L N T V E R I P L E N L O I I R G N M Y Y E N S Y A L A V L S N Y D A N K I G L G F L L I O A W P E N R T D L H A F E N L E I I R G E T L E I G N Y S F Y A L D N Q N L R G L W D G Y Y K I R R S Y A L V S L S F E R K L R L I R G E T L E I G N Y S F Y V L D N Q N L Q Q L W D G Y Y K I R R S H A L V S L S F L K N L R L I L G K E Q L E G W Y S P Y V L D N Q N L Q Q L W D Y R F P K L I L S F L K T I L S F L K T V A N L G L I E N F M G L V E T E V T ST Q 426 413 D AVSNNYIV
D SVEDNHIV
S SDFLSNMSMD
GT SGQKTKII
GTKGRQERNDIALK
GTKGRQSKGDVNTR G G G C A Z S CYLSTYDWSLIL CYLATIDWSALL CNYESIOWRDIV CYANTINWKKLF CYANTINWKKLF CYANTINWKKLF CYANTINWKKLF CYSEIHKMEEVS CYSEIYRMEEVT YNLR NI YNLMN! K(2) PMRNLQE! RSLKE! W SKHNL T! W DHRNL T! TRGAIRIE KNADL TRGSVRIE KNNEL LHGAVRFSNNPAL SDGDVIISGNKNL TOGKLFFHYNPKL KAGKMYFAFNPKL 157 165 477 470 b 150 D L C P G T M E E K P M C E K T T I N N E Y N Y R C W T T N R C Q K
157 D I C P G T A K G K T N C P A T V I N G Q F V E R C W T H S H C Q K
165 K C D P S C P N G S C W G A G E E N C Q K L T K I
480 Q V G H A L C S P E G C W G P E P R D C V 183 190 IGF1R IR 189 EGFR D2 scrnvsrgrecydk 515 EGFR D4 Module 1 GECSAPDNDTACVACRHYYYAGYCVPACPPN 237
GNCSQPDDPTKCVACRNFYLDGRCVETCPPP 244
AGCTGPR ESDCLVCRKFRDEATCKDTCPPL 243
LTCTGRG PDNC1QCAHYIDGPHCVKTCPAG 575 MCPSTCGKRACTE NNECCHPECL VCPTICKSHGCTA EGLCCHSECL CAQQCS GRCRGKSPSDCCHNQCA ckiiegeprelvenseciqCHPECL 243 Module 4 Module 3 Module 2 DFCANIL SAESSOSEGFVIND GECM Q 275 SFCODLHHKCKNSRRQGCHQYVIHN NKCI P 296 KCP RNYVVTDHGSCYR 285 TYRE GWRCVDR
YYMFO DWRCVNF
MLYNPTTYOMDVNPEGKYSFG ATCVK
VMGE NNTLVWKYADAGHVCH I egcptngpkips chpactygetg Module 6 Module 5 ECPS GF/ RWG50SMYCI PCEGPCP 299 ECPS GYTMNSSN LLCTPCLGPCP 309 ACGADSYEMEEDGVRKCKKCEGPCR 310 Module 8 Module 7

Figure 6

Figure 7

55/58

Figure 9: Sequence Alignment of hIGF-1R, hIR and hIRR ectodomains.

 \wedge

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

```
Symbol Comparison table: GenRunData:PileUpPep.Cmp CompCheCk: 1254
                  GapWeight: 3.0
             GapLengthWeight: 0.1
                     Len: 972 CheCk: 1781 Weight: 1.00
 Name: Higflr
                       Len: 972 CheCk: 2986 Weight: 1.00
 Name: Hir
 Name: Hirr
                              972 CheCk: 9819 Weight: 1.00
                       Len:
Higflr .....EICGP GIDIRNDYQQ LKRLENCTVI EGYLHILLIS K..AEDYRSY 43
  Hir HLYPGEVC.P GMDIRNNLTR LHELENCSVI EGHLQILLMF KTRPEDFRDL 49
 Hirr ....MNVC.P SLDIRSEVAE LRQLENCSVV EGHLQILLMF TATGEDFRGL 45
Higflr RFPKLTVITE YLLLFRVAGL ESLGDLFPNL TVIRGWKLFY NYALVIFEMT 93
  Hir SFPKLIMITD YLLLFRVYGL ESLKDLFPNL TVIRGSRLFF NYALVIFEMV 99
  Hirr SFPRLTQVTD YLLLFRVYGL ESLRDLFPNL AVIRGTRLFL GYALVIFEMP 95
Higflr NLKDIGLYNL RNITRGAIRI EKNADLCYLS TVDWSLILDA VSNNYIVGNK 143
   Hir HLKELGLYNL MNITRGSVRI EKNNELCYLA TIDWSRILDS VEDNYIVLNK 149
 Hirr HLRDVALPAL GAVLRGAVRV EKNQELCHLS TIDWGLLQPA PGANHIVGNK 145
Higflr PPK.ECGDLC PGTMEEKPM. CEKTTINNEY NYRCWTTNRC QKMCPSTCGK 191
  Hir DDNEECGDIC PGTAKGKTN. CPATVINGQF VERCWTHSHC QKVCPTICKS 198
  Hirr LG.EECADVC PGVLGAAGEP CAKTTFSGHT DYRCWTSSHC QRVCPCPHG. 193
Higflr RACTENNECC HPECLGSCSA PDNDTACVAC RHYYYAGVCV PACPPNTYRF 241
   Hir HGCTAEGLCC HSECLGNCSQ PDDPTKCVAC RNFYLDGRCV ETCPPPYYHF 248
  Hirr MACTARGECC HTECLGGCSQ PEDPRACVAC RHLYFQGACL WACPPGTYQY 243
                         *----*
Higflr EGWRCVDRDF CANILSAES. ... SDSEGFV IHDGECMQEC PSGFIRNGSQ 287
  Hir QDWRCVNFSF CQDLHHKCKN SRRQGCHQYV IHNNKCIPEC PSGYTMNSSN 298
 Hirr ESWRCVTAER CASLHSVPG. ....RASTFG IHQGSCLAQC PSGFTRNSS. 287
Higflr SMYCIPCEGP CPKVCEEEKK TKTIDSVTSA QMLQGCTIFK GNLLINIRRG 337
  Hir .LLCTPCLGP CPKVCHLLEG EKTIDSVTSA QELRGCTVIN GSLIINIRGG 347
 Hirr SIFCHKCEGL CPKECKV..G TKTIDSIQAA QDLVGCTHVE GSLILNLRQG 335
Higflr NNIASELENF MGLIEVVTGY VKIRHSHALV SLSFLKNLRL ILGEEQLEGN 387
  Hir NNLAAELEAN LGLIEEISGY LKIRRSYALV SLSFFRKLRL IRGETLEIGN 397
  Hirr YNLEPQLQHS LGLVETITGF LKIKHSFALV SLGFFKNLKL IRGDAMVDGN 385
Higflr YSFYVLDNQN LQQLWDWDHR NLTIKAGKMY FAFNPKLCVS EIYRMEEVTG 437
  Hir YSFYALDNON LRQLWDWSKH NLTITQGKLF FHYNPKLCLS EIHKMEEVSG 447
 Hirr YTLYVLDNON LOOLGSWVAA GLTIPVGKIY FAFNPRLCLE HIYRLEEVTG 435
```

		* !End	of 1-462 fragment	:
Higflr	TKGRQSKGDI NTRNNGERAS	CESDV LHF	TS TTTSKNRIII TWE	IRYRPPDY 487
Hir	TKGRQERNDI ALKTNGDQAS	CENEL LKF	SY IRTSFDKILL RWE	PYWPPDF 497
Hirr	TRGRQNKAEI NPRTNGDRAA	COTRT LRF	VS <u>NVT</u> EADRILL RWE	RYEPLEA 485
*			<u> </u>	
Higflr	RDLISFTVYY KEAPFKNVTE	YDGQDA <i>C</i> GSN	SWNMVDVDLP	PNKDV 532
Hir	RDLLGFMLFY KEAPYQNVTE	FDGQDA <i>C</i> GSN	SWTVVDIDPP LRSNI	PKSQN 547
Hirr	RDLLSFIVYY KESPFQNATE	HVGPDACGTQ	SWNLLDVELP L	.SRTQ 530
Higflr	EPGILLHGLK PWTQYAVYVK	አኒም፣ ምለህድክክ	HIDCAKSETI VIDTN	ASVPS 582
Hir	HPGWLMRGLK PWTQYAIFVK			ATNPS 596
Hirr	EPGVTLASLK PWTQYAVFVR		_	PAAPT 580
Higflr	IPLDVLSASN SSSQLIVKWN			
Hir	VPLDPISVSN SSSQIILKWK		—	
Hirr	VPQDVISTSN SSSHLLVRWK	PPTQRNGNLT	YYLVLWQRLA EDGDL	YLNDY 630
	*		* ** ** *	
Higflr	CSKD.KIPIR KYADGTIDIE	EVTENPKTEV	CGGEKGPCCA CP	KTEAE 678
Hir	CLKGLKLPSR TWS.PPFESE	DSQKHNQSE.		
Hirr	CHRGLRLPTS N.NDPRFDGE	DGDPEAEME.	SDCCP COHPP	PGQVL 673
		α	><β	
_	KQAEKEEAEY RKVFENFLHN			
Hir				· · · · · · · · · · · · · · · · · · ·
Hirr	PPLEAQEASF QKKFENFLHN	AITIPISPWK	VTSINKSPOR D.SGR	HRRAA 722
				•
Hiaf1-	AADTYNIT DPEELETEYP	FFFSDVDNKF	ביי די ד	THS# 776
-	AAFPNTSSTS VPTSPEEHRP			
	GPLRLGGNSS DFEIQEDKVP			~
	OT HILLOOMSS DE EL QUEDITAL		INTERPOLICIE ILINE	DIIMO 704
	*			
Higflr	NHEAEKLGCS ASNFVFARTM	PAEGADDIPG	PVTWEPRPEN SIFLK	WPEPE 826
Hir	NQDTPEERCS VAAYVSARTM	PEAKADDIVG	PVTHEIFENN VVHLM	WQEPK 836
Hirr	NHAAHTVGCS AATFVFARTM	PHREADGIPG	KVAWEASSKN SVLLR	WLEPP 814
		*	*	
Higflr	~		-	
Hir			-	
Hirr	DPNGLILKYE IKYRRLGEEA	TVLCVSRLRY	AKFGGVHLAL LPPGN	YSARV 864
Hiaflr	QATSLSGNGS WTDPVFFYVQ	AKTGYENFIH	L	906
	RATSLAGNGS WTEPTYFYVT			917
Hirr				895
				

1

Figure 10

58/58

Schematic interpretations of EM images							
Sample	Projection y axis	Projection along: y axis z axis x axi					
hIR							
hIR/ 83-7							
hIR/ 83-14							
hIR/ 18-44/83-14							
hIR/ 83-7/18-44							
hIR/ 83-7/83-14							

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU 98/00998

A.	CLASSIFICATION OF SUBJECT MATTER					
Int Cl ⁶ :	C07K 14/705, 14/71; G06F 17/50, 19/00, 159:00					
According to	International Patent Classification (IPC) or to both	national classification and IPC				
В.	FIELDS SEARCHED					
Minimum docu	Minimum documentation searched (classification system followed by classification symbols)					
Documentation	searched other than minimum documentation to the ext	tent that such documents are included in t	the fields searched			
	base consulted during the international search (name of N-LINE: keywords :keywords	f data base and, where practicable, search	terms used)			
C.	DOCUMENTS CONSIDERED TO BE RELEVANT	Γ				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
X	WO 90/00562 (DEMEYTS) 25 January 1990 See whole document		1-33			
P,X	Protein Science, 1997, no. 6, pages 2663-2666 No of the first 3 domains of the human idsulin-lila government	Ackern, NM et al, "Crystallization growth factor -1 receptor	1-33			
X	Further documents are listed in the continuation of Box C	X See patent family an	nex			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document of particular relevance; the claimed invention can be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance.						
	Date of the actual completion of the international search Date of mailing of the international search report					
12 January 19		2 8 JAN 1999 Authorized officer				
AUSTRALIAN PO BOX 200 WODEN ACT	ling address of the ISA/AU N PATENT OFFICE T 2606	OI LEE CHAI				
AUSTRALIA Facsimile No.:	(02) 6285 3929	Telephone No.: (02) 6283 2482				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU 98/00998

C (Continuat	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	Nature, vol 394, published 23 July 1998, pages 395-399. Garrett TPJ et al, "Crystal Structure of the first 3 domains of the type -1 insulin-litu growth factor-1 receptor See whole document	1-33

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/AU 98/00998

END OF ANNEX

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	Report		Patent Family Member					
wo	90/ 0056 2	AU	39822/89	DE	68927854	EP	378671	
		JP	3501487	US	5227466			
			•					