CMSE 821: Homework 2

Fall 2025

PAGE LIMIT: 25 pages (single-sided). Include a cover page (not counted toward the 25-page limit). Code listings *do* count toward the limit.

Submission. Submit one PDF (derivations, figures, and an AI Appendix) plus a repo/zip with runnable .py or .ipynb. Use sympy, numpy, matplotlib, scipy. No Matlab.

AI Collaboration Policy (Read First). You are encouraged to use AI tools to brainstorm and draft. However:

- **Verification is mandatory.** Every AI-produced formula or code snippet must be validated with *symbolic checks*, *unit tests*, and/or *numerical experiments*.
- **Provenance is required.** Include an *AI Appendix* with (i) your exact prompts; (ii) model name; (iii) date/time; (iv) a brief note on what you accepted or rejected and why.
- **Dual sourcing.** For core derivations, obtain two distinct approaches (e.g., Taylor vs. moment/Vandermonde; direct vs. variational) and reconcile them, or explain any discrepancy.
- Authorship. The final math, code comments, and explanations must be in your own words. Cite AI assistance where used.

Code Documentation (applies to all code).

- Each function/method begins with a header (purpose, author, dates, inputs/outputs with shapes/units, dependencies).
- Keep subroutines focused (about ≤ 1 page each). Factor long logic into helpers.
- Comment why each nontrivial step is done (not only what).
- Provide a minimal usage example or unit test for each public-facing routine.

Part 0 — AI-Assisted Problems (n = 32 experiments)

These four problems come first. Each requires: (i) an AI-produced draft/derivation; (ii) your independent derivation; (iii) a symbolic/numerical verification; (iv) a short discussion. Use n=32 interior points unless noted.

Problem 1. Jacobi vs. Gauss-Seidel on 1D Poisson.

Consider Dirichlet Poisson -u'' = f on [0,1], 3-point stencil, n = 32 interior points (h = 1/(n+1)).

- (a) AI: Derive Jacobi and Gauss-Seidel iteration matrices and state $\rho(T)$ in terms of eigenmodes.
- (b) You: Derive T_J and T_{GS} directly; identify eigenvectors $\phi_k(i) = \sin(\pi ki/(n+1))$.
- (c) **Verify:** Compute $\rho(T)$, run both methods on a manufactured solution, and plot $||u^{(k)} u^{\star}||_2$ vs. k.
- (d) **Discuss:** Why GS converges faster (high-frequency smoothing).

Problem 2. SOR and the role of ω .

- (a) AI: Derive $T_{SOR}(\omega)$; predict how $\rho(T_{SOR})$ varies with $\omega \in (0,2)$.
- (b) You: Implement SOR; sweep $\omega \in \{0.5, 0.8, 1.0, 1.2, 1.5, 1.8\}$; fit asymptotic rate from log E_k .
- (c) Verify: Compare measured rate vs. spectral radius of $T_{SOR}(\omega)$.
- (d) **Discuss:** Identify near-optimal ω for this model problem.

Problem 3. When Jacobi fails.

- (a) **AI:** Provide a 3×3 linear system where Jacobi diverges (e.g., not strictly diagonally dominant).
- (b) You: Prove $\rho(T_J) \geq 1$ for the example; fix it if AI's example is incorrect.
- (c) **Verify:** Run Jacobi and GS; plot error vs. iteration; relate to $\rho(T)$.

Problem 4. Smoothing property on sine modes.

Let A be the 1D Poisson matrix; use weighted Jacobi with weight ω .

- (a) **AI:** Derive the amplification factor $\mu_k(\omega)$ for error mode ϕ_k .
- (b) You: Derive $\mu_k(\omega)$ and evaluate $|\mu_k|$ for n=32, $\omega=2/3$; identify the most damped (high-k) range.
- (c) Verify: Initialize error as ϕ_k , run 15 steps, and compare measured decay with $|\mu_k|^m$.
- (d) **Discuss:** How this underpins multigrid (smooth high-k, coarse-grid fix low-k).

Part 1 — Two-Point Boundary Value Problems

Problem 5. Two-point BVP with integral constraint.

Consider

$$u''(x) = 1$$
, $0 < x < 1$, $u'(0) = 0$, $u'(1) = 1$,

with the constraint $\int_0^1 u(x) dx = 1$.

- (a) Solve analytically.
- (b) Devise and implement a second-order accurate numerical method (you may adapt HW1 code). Verify the observed order.

Part 2 — Simple Iteration Methods

Problem 6. mSOR vs. SOR on model blocks.

Define the mSOR variant via

$$(D-L) u^{GS} = U u^{[k]} + f, \qquad u^{[k+1]} = u^{[k]} + \omega (u^{GS} - u^{[k]}),$$

with A = D - L - U. (Traditional SOR: $Du^{GS} = Lu^{[k+1]} + Uu^{[k]} + f$, same update.)

- (a) For $A = \begin{bmatrix} 1 & \rho \\ -\rho & 1 \end{bmatrix}$: when does Gauss–Seidel converge?
- (b) For the same A: for which ω does mSOR converge? What is the optimal ω ?
- (c) Repeat (a)–(b) for $A = \begin{bmatrix} I_n & S_n \\ -S_n^T & I_n \end{bmatrix}$, where S_n is arbitrary. (Hint: use the SVD of S_n .)

Problem 7. Richardson-type relaxation on a tridiagonal system.

Let $A \in \mathbb{R}^{n \times n}$ be tridiagonal with $a_{ii} = 3$ and $a_{i,i\pm 1} = -1$. Consider

$$x^{k+1} = x^k + \omega(b - Ax^k), \quad k = 0, 1, 2, \dots$$

For which real ω does this converge to the solution of Ax = b for every $x^0 \in \mathbb{R}^n$?

Part 3 — Elliptic PDEs

Problem 8. Nine-point discretization with variable coefficient.

Discretize

$$-\partial_x(a(x,y)u_x) - \partial_y(a(x,y)u_y) = f(x,y), \quad u = 0 \text{ on } \partial\Omega, \quad \Omega = [-1,1]^2,$$

using the nine-point Laplacian approach (adapt to handle a(x,y)). Use natural rowwise ordering and derive the linear system. In the case $a \equiv \text{const}$, your method should be $\mathcal{O}(h^4)$. What is the order in the general case?

Problem 9. SOR implementation and tuning.

Implement SOR in **Python** for the linear system above without explicitly forming the full matrix. Experimentally determine the near-optimal relaxation ω_{opt} .

Problem 10. Order verification for constant coefficient.

Verify $\mathcal{O}(h^4)$ accuracy for

$$a(x,y) = 1$$
, $f(x,y) = 5\pi^2 \sin(\pi(x-1)) \sin(2\pi(y-1))$, $u(x,y) = \sin(\pi(x-1)) \sin(2\pi(y-1))$.

Use $U \equiv 0$ as the initial guess.

Problem 11. Variable coefficient experiment.

Apply your method to

$$a(x,y) = 1 + 3\exp(-3(x+y)^2 - (x-y)^2), \qquad f(x,y) = 1.$$

Use $U \equiv 0$ as the initial guess. Do all of the following:

- (a) Experimentally determine the order of accuracy. Use a very fine-grid solution as "exact."
- (b) For several h, produce a semilogy plot of the L_2 -norm of the residual vs. iteration number.
- (c) From numerical experiments, how does the iteration count depend on h?
- (d) From numerical experiments, how does wall time depend on h? (In Python, time with time.perf_counter() or similar.)

Part 4 — Geometric Multigrid for 1D Helmholtz

Problem 12. Step-by-step geometric multigrid for 1D Helmholtz.

Consider the 1D Helmholtz equation on [0, 1]:

$$-u''(x) + \kappa^2 u(x) = f(x), \qquad u(0) = u(1) = 0,$$

with $\kappa \geq 0$. Use uniform grids with $n=2^L-1$ interior points.

- (a) **Discretization.** Derive the tridiagonal system $A_h u_h = f_h$ with stencil $\frac{1}{h^2} [-1, 2 + \kappa^2 h^2, -1]$. State consistency and second-order accuracy.
- (b) **Smoother.** Implement weighted Jacobi or Gauss–Seidel as a smoother: $u^{(m+1)} = u^{(m)} + \omega D^{-1}(f Au^{(m)})$. Analyze the smoothing factor on sine modes and choose ω .
- (c) **Intergrid transfer.** Define full-weighting restriction I_h^{2h} and linear interpolation I_{2h}^h . Give their stencils and prove that I_{2h}^h reproduces linear functions exactly.
- (d) **Two-grid V-cycle.** Build a symmetric two-grid cycle with ν_1 pre-smooths and ν_2 post-smooths. Measure the convergence factor per V-cycle for several κ and h.
- (e) (Bonus) Discuss how large κh impacts convergence and which modifications (e.g., Krylov acceleration, alternative smoothers) help.