LAPORAN MESIN LEARNING

Nama: Muhammad Nasih (2341720009)

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG TAHUN 2025

TUGAS STUDI KASUS PEMBELAJARAN MESIN

Clustering dan Approximate Nearest Neighbor (ANN)

LINK GITHUB:

https://github.com/muhnasih/MESIN-LEARNING

LINK COLLAB:

https://colab.research.google.com/drive/1jXD_0NxgHVBGJEnSOmzZnB0bsmUaKTol?usp=sharing

Deskripsi Umum:

Tugas kali ini adalah mengerjakan **studi kasus analisis data dan clustering** menggunakan *unsupervised learning* dengan langkah-langkah sebagai berikut:

1. Preprocessing data

- o Tangani *missing values* (imputasi mean/median/modus sesuai jenis data)
- Normalisasi atau standarisasi data
- o Buat minimal satu fitur baru hasil kombinasi fitur lama

2. Clustering

- o Terapkan K-Means dan DBSCAN
- Bandingkan hasil clustering menggunakan:
 - Silhouette Score
 - Davies-Bouldin Index

3. Approximate Nearest Neighbor (ANN)

- Gunakan Annoy untuk mencari tetangga terdekat dari beberapa query points hasil clustering
- Tampilkan output berupa:
 - Index query point
 - Daftar tetangga terdekat yang ditemukan
 - Nilai jarak kemiripan

Tugas 3 — Heart Disease Dataset

Untuk mahasiswa dengan nomor absen 3, 6, 10, dst.

Dataset: <u>Heart Disease Dataset (UCI)</u>

- **Deskripsi:** Dataset medis untuk melihat pengelompokan pasien berdasarkan fitur kesehatan seperti tekanan darah, kolesterol, umur, dan lain-lain.
- Langkah tambahan:
 - o Tangani nilai kosong (jika ada).
 - o Buat fitur gabungan seperti "CholAge = cholesterol × age".

Output yang Diharapkan

Untuk setiap studi kasus, laporan dan notebook Colab harus memuat:

1. Penjelasan singkat dataset (jumlah sampel, fitur, tipe data).

2. Proses preprocessing (missing values, normalisasi, pembuatan fitur baru).

```
=== PREPROCESSING DATA ===
Missing values tiap kolom:
age
sex
trestbps
chol
restecg
thalach
exang
oldpeak
slope
ca
thal
target
chol_trest_ratio
heart_rate_age_diff
dtype: int64
Fitur baru berhasil ditambahkan (jika kolom tersedia).
Data berhasil dinormalisasi.
Shape data sebelum: (1025, 15)
Shape data sesudah scaling: (1025, 15)
```

- 3. Hasil clustering KMeans dan DBSCAN, lengkap dengan:
 - o Nilai Silhouette dan Davies-Bouldin
 - o Visualisasi 2D (PCA/TSNE opsional)

```
=== CLUSTERING KMEANS & DBSCAN ===

--- KMeans ---
Jumlah Cluster: 3
Silhouette Score: 0.1224
Davies-Bouldin Score: 2.2558

--- DBSCAN ---
Cluster Ditemukan (tanpa -1 noise): 4
Silhouette Score: -0.1669740242604239
Davies-Bouldin Score: 1.223970063339141
```


- 4. Implementasi Annoy:
 - o Pemilihan 3–5 titik query secara acak

o Output index dan tetangga terdekat dengan nilai jaraknya

```
=== Query index: 136 === Query vector (first 8 dims): [ 0.0624 -1.5117  0.0559  0.0222  1.8616 -0.4189  0.8913  0.7343]
Returned neighbors (count=10):

01. idx= 44  distance=0.000000
02. idx= 136  distance=0.000000
03. idx= 203  distance=0.000000
04. idx= 302  distance=0.000000
05. idx= 203  distance=0.000000
06. idx= 602  distance=1.716506
07. idx= 637  distance=1.716506
08. idx= 203  distance=2.003118
09. idx= 617  distance=2.003118
10. idx= 654  distance=2.003118
=== Query index: 612 === Query index: 612 === Query vector (first 8 dims): [ 0.3932 -1.5117 -0.9158  2.1926 -0.4072  2.3873 -1.004 -0.1354]
Returned neighbors (count=10):
01. idx= 135  distance=0.000000
02. idx= 642  distance=0.000000
03. idx= 612  distance=0.000000
04. idx= 819  distance=0.000000
05. idx= 47  distance=0.000000
06. idx= 422  distance=0.000000
07. idx= 452  distance=4.263064
07. idx= 452  distance=4.263064
09. idx= 175  distance=4.368378
10. idx= 294  distance=4.368378
```

Pengumpulan: notebook ipynb link dimasukkan pada laporan tugas berformat pdf. Dikumpulkan pada LMS

- 1. Tulis kesimpulan singkat:
 - a. Perbedaan hasil KMeans dan DBSCAN, mana yang lebih baik diantara kedua model ini dan jelaskan jawaban anda

Aspek	KMeans	DBSCAN
Prinsip kerja	Membagi data ke dalam jumlah cluster tertentu (k).	Mencan cluster beruasarkan
Bentuk cluster	Cenderung membentuk cluster berbentuk bulat (spherical).	liuak belatulah & menueteksi
Parameter utama	Jumlah cluster (k).	eps (radius) & min_samples.
Outlier/Noise	Setiap data masuk ke cluster tertentu.	Dapat mengidentifikasi data sebagai noise (-1).

b. Nilai metrik terbaik (Silhouette, DBI).

- Silhouette Score tertinggi menunjukkan pemisahan cluster terbaik dan jarak antar titik dalam cluster yang rapat.
- Davies–Bouldin Index (DBI) terendah menunjukkan cluster lebih kompak dan berjauhan satu sama lain.

```
=== CLUSTERING KMEANS & DBSCAN ===

--- KMeans ---
Jumlah Cluster: 3
Silhouette Score: 0.1224
Davies-Bouldin Score: 2.2558

--- DBSCAN ---
Cluster Ditemukan (tanpa -1 noise): 4
Silhouette Score: -0.1669740242604239
Davies-Bouldin Score: 1.223970063339141
```

c. Hasil query Annoy: apakah tetangga yang ditemukan termasuk dalam cluster yang sama? Jelaskan jawaban anda.

Jika sebagian besar tetangga terdekat dari titik query berada dalam cluster yang sama, berarti:

- Hasil clustering konsisten dengan struktur ruang vektor Annoy.
- Annoy berhasil menemukan titik-titik yang memang memiliki kemiripan fitur.

Jika banyak tetangga berada di cluster berbeda, maka:

- Bisa jadi cluster kurang terpisah dengan baik.
- Atau dimensi jarak Annoy berbeda dengan struktur cluster yang dibentuk.