Elementi di Apprendimento Automatico

Riferimenti Bibliografici:

Tom Mitchell, Machine Learning, McGraw Hill, 1998

Quando è Necessario l'Apprendimento (Automatico) ?

Quando il sistema deve...

- adattarsi all'ambiente in cui opera (anche personalizzazione automatica);
- migliorare le sue prestazioni rispetto ad un particolare compito;
- scoprire regolarità e nuova informazione (conoscenza) a partire da dati empirici;
- acquisire nuove capacità computazionali.

Perchè non usare un approccio algoritmico tradizionale?

- impossibile formalizzare esattamente il problema (e quindi dare una soluzione algoritmica);
- presenza di rumore e/o incertezza ;
- complessità alta nel formulare una soluzione: non si può fare a mano;
- mancanza di conoscenza "compilata" rispetto al problema da risolvere;

Ruolo dei Dati

Tipicamente...

- si hanno a disposizione (molti ?) dati
 - ottenuti una volta per tutte;
 - acquisibili interagendo direttamente con l'ambiente;
- (forse) conoscenza del dominio applicativo, ma
 - incompleta;
 - imprecisa (rumore, ambiguità, incertezza, errori, ...);

Desiderio: usare i dati per

- ottenere nuova conoscenza;
- raffinare la conoscenza di cui si dispone;
- correggere la conoscenza di cui si dispone;

Es. - Riconoscimento di Cifre Manoscritte

0 1 2 3 1

- impossibile formalizzare esattamente il problema: disponibili solo esempi;
- possibile presenza di rumore e dati ambigui;

Es. - Guidare una Automobile

Es. - Estrarre Conoscenza Medica dai Dati

Patient103 time=1 →

Patient103 time=2

Patient103 time=n

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

Ultrasound: ?

Elective C-Section: ?

Emergency C-Section: ?

. . .

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: YES

PreviousPrematureBirth: no

Ultrasound: abnormal

Elective C-Section: no

Emergency C-Section: ?

...

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

Ultrasound: ?

Elective C-Section: no

Emergency C-Section: **Yes**

...

Linee di Ricerca all'interno dell' Apprendimento Automatico

- induzione di regole/alberi di decisione,
- algoritmi connessionisti (reti neurali),
- "clustering" & "discovery",
- apprendimento basato sulle istanze
- apprendimento Bayesiano,
- apprendimento basato sulla spiegazione,
- apprendimento con rinforzo,
- apprendimento induttivo guidato dalla conoscenza,
- ragionamento per analogia & basato sui casi,
- algoritmi genetici,
- programmazione logica induttiva, ...

Principali Paradigmi di Apprendimento

Apprendimento Supervisionato:

- dato in insieme di esempi pre-classificati, $Tr = \{(x^{(i)}, f(x^{(i)}))\}$, apprendere una descrizione generale che incapsula l'informazione contenuta negli esempi (regole valide su tutto il dominio di ingresso)
- tale descrizione deve poter essere usata in modo predittivo (dato un nuovo ingresso \tilde{x} predire l'output associato $f(\tilde{x})$)
- ullet si assume che un esperto (o maestro) ci fornisca la supervisone (cioè i valori della f() per le istanze x dell'insieme di apprendimento)

Esempio di applicazione: classificazione di caratteri manoscritti

Principali Paradigmi di Apprendimento

Apprendimento Non-supervisionato:

- \bullet dato in insieme di esempi $Tr=\{x^{(i)}\}$, estrarre regolarità e/o pattern (valide(i) su tutto il dominio di ingresso)
- non esiste nessun esperto (o maestro) che ci fornisca un aiuto

Scoperta di Regole (Discovery)

Esempio di applicazione: data mining su database strutturati

Principali Paradigmi di Apprendimento

Apprendimento con Rinforzo:

- Sono dati:
 - agente (intelligente?), che può
 - * trovarsi in uno stato s, ed
 - * eseguire una azione a (all'interno delle azioni possibili nello stato corrente)
 - ed opera in un ambiente e, che applicando una azione a nello stato s restituisce
 - * lo stato successivo, e
 - * una ricompensa r, che può essere positiva (+), negativa (-), o neutra (0).
- Scopo dell'agente è quello di massimizzare una funzione delle ricompense (es. ricompensa scontata: $\sum_{t=0}^{\infty} \gamma^t r_{t+1}$ dove $0 \le \gamma < 1$)

Esempio di applicazione: navigare sul Web alla ricerca di informazione focalizzata

Ingredienti Fondamentali

- Dati di Allenamento
- Spazio delle Ipotesi, H
 - costituisce l'insieme delle funzioni che possono essere realizzate dal sistema di apprendimento;
 - si assume che la funzione da apprendere f possa essere rappresentata da una ipotesi $h \in \mathcal{H}$... (selezione di h attraverso i dati di apprendimento)
 - o che almeno una ipotesi $h \in \mathcal{H}$ sia simile a f (approssimazione);
- Algoritmo di Ricerca nello Spazio delle Ipotesi, alg. di apprendimento

ATTENZIONE: \mathcal{H} non può coincidere con l'insieme di tutte le funzioni possibili e la ricerca essere esaustiva \rightarrow Apprendimento è inutile!!!

Si parla di Bias Induttivo: sulla rappresentazione (\mathcal{H}) e/o sulla ricerca (alg. di apprendimento)

Tassonomia (non completa) dello Spazio delle Ipotesi

Tassonomia (non completa) degli Algoritmi di Apprendimento

