

Universidade Federal de Minas Gerais Departamento de Matemática - ICEX Análise II - 2021 Exame Especial - 06/09/2021

- 1. (20 pontos) Sejam $f, g : \mathbb{R}^n \to \mathbb{R}$ tais que $g(x) = f(x) + (f(x))^5$. Se $g \in C^r$ (de classe C^r) então $f \in C^r$ (é de classe C^r).
- 2. (20 pontos) Sejam $g:[0,+\infty) \to \mathbb{R}$ contínua, com g(t)>0 para todo $t\geq 0$ e $U=\{(x,y)\in \mathbb{R}^2: 0< x< y\}$. Defina $f:U\to \mathbb{R}^2$ pondo

$$f(x,y) = \left(\int_0^{x+y} g(t)dt, \int_0^{y-x} g(t)dt\right).$$

Mostre que f é um difeomorfismo sobre um aberto de \mathbb{R}^2 .

- 3. (20 pontos) Defina $f:[-1,1]\times[0,1]\to\mathbb{R}$ por f(x,y)=x, se $y\in\mathbb{Q}$ e f(x,y)=0 em outro caso. Mostre:
 - $\int_0^1 \int_{-1}^1 f(x,y) dx dy$ existe, mas $\int_{-1}^1 \int_0^1 f(x,y) dy dx$ não existe.
 - Calcule $\int_{-1}^{1} \overline{\int_{0}^{1}} f(x,y) dy dx$ e $\int_{-1}^{1} \int_{0}^{1} f(x,y) dy dx$.
 - Mostre que f não é integrável em $[-1,1] \times [0,1]$.
- 4. (20 pontos) Seja $f: \mathbb{R}^m \to \mathbb{R}^m$ de classe C^1 tal que para cada $x, v \in \mathbb{R}^m$ quaisquer tem-se

$$\langle f'(x) \cdot v, v \rangle \ge |\alpha| |v|^2,$$

onde $\alpha > 0$ é uma constante. Prove que $|f(x) - f(y)| \ge \alpha |x - y|$ para todo $x, y \in \mathbb{R}^m$ arbitrários. Conclua que $f(\mathbb{R}^m)$ é fechado, e daí, que f é um difeomorfismo de \mathbb{R}^m em \mathbb{R}^m .

5. (20 pontos) Seja A um conjunto J-medível \mathbb{R}^m e seja $\epsilon>0$ arbitrário. Mostre que existe um conjunto compacto J-medível $C\subset A$ tal que

$$\int_{A-C} 1 < \epsilon.$$

Professor Arturo Fernández