Tutorial 2

- 1. [Submission Problem for Group 1] Prove the following by induction:
 - (a) A graph (or a network) is a structure consisting of a set of objects (also known as vertices or nodes) some pairs of which are connected via edges. Assume that there are no self-edges (or loops). The degree of a vertex is the number of other vertices that share an edge with it. Say we are given a set of k colors. A graph is said to be k-colorable if each vertex can be assigned one of the k colors in a way that all neighboring vertices (i.e., any pair of vertices that share an edge) have different colors. (Some of the k colors may be left unused.) Prove that any graph with maximum degree k is k-colorable.
 - (b) The number of subsets of an *n*-element set is 2^n
 - (c) The number of ways of ranking n different objects is n!.
- 2. [Submission Problem for Group 2] The sequence of Fibonacci numbers $\{F_n\}_{n\in\mathbb{N}\cup\{0\}}$ is defined as follows: $F_0=0, F_1=1, \text{ and } \forall n\geq 2, F_n=F_{n-1}+F_{n-2}$. Prove the following using induction.
 - (a) The Fibonacci number F_{5k} is a multiple of 5, for all integers $k \geq 1$.
 - (b) $F_{n-1}F_{n+1} F_n^2 = (-1)^n$
- 3. [Submission Problem for Group 3] Let P(x), Q(x), and R(x) be the statements "x is a clear explanation", "x is satisfactory", and "x is an excuse", respectively. Suppose that the domain for x consists of all English text. Express each of these statements using quantifiers, logical connectives, and P(x), Q(x) and R(x).
 - (a) All clear explanations are satisfactory.
 - (b) Some excuses are unsatisfactory.
 - (c) Some excuses are not clear explanations.
 - (d) Does (c) follow from (a) and (b)?
- 4. [Submission Problem for Group 4] For each of the following propositions, indicate which of these are false when the domain ranges over a) $\mathbb{Z}_{>0}$, b) \mathbb{Z} , c) \mathbb{R}
 - (a) $\forall x \exists y : 2x y = 0$.
 - (b) $\forall x \exists y : x 2y = 0.$
 - (c) $\forall x, x < 10 \implies (\forall y, y < x \implies y < 9)$
 - (d) $\forall x \exists y, [y > x \land \exists z, y + z = 100]$
- 5. [Bonus] Let P(x,y) be a statement about the variables x and y. Consider the following two statements: $A := (\forall x)(\exists y)(P(x,y))$ and $B := (\exists y)(\forall x)(P(x,y))$. The universe is the set of integers.

- (a) Prove: $(\forall P)(B \implies A)$ ("B always implies A" i.e., for all P, if B is true then A is true).
- (b) Prove: $\neg(\forall P)(A \implies B)$ (i. e., A does not necessarily imply B). In other words, $(\exists P)(A \not\implies B)$. To prove this, you need to construct a counterexample, i. e., a statement P(x,y) such that the corresponding statement A is true but B is false. Make P(x,y) as simple as possible.
- 6. [Bonus] Let r be a positive real number satisfying $r^2 = r + 1$. Using induction, show that for all $n \in \mathbb{N}, F_n \geq r^{n-2}$.
- 7. [Bonus] Problems 3.17, 3.18, 3.49, and 3.50 from https://courses.csail.mit.edu/6.042/spring18/mcs.pdf