Project: Finding Lane Lines on the Road

Develop a pipeline to identify lane lines on the road. You must apply it on a series of individual images, provided in the *test_images* folder.

Once you have a result that looks roughly like the image *line-segments-example* in the examples folder (also shown below), you'll need to try to average and/or extrapolate the line segments you've detected to map out the full extent of the lane lines.

The tools you have are color selection, region of interest selection, grayscaling, Gaussian smoothing, Canny Edge Detection and Hough Tranform line detection. You are also free to explore and try other techniques that were not presented. Your goal is piece together a pipeline to detect the line segments in the image, then average/extrapolate them and draw them onto the image for display (as below).

Your output should look something like this (above) after detecting line segments using the helper functions below

Your goal is to connect/average/extrapolate line segments to get output like this

```
In [1]: #importing some useful packages
import matplotlib.pyplot as plt
import numpy as np
import cv2
%matplotlib inline
```

Read in an Image

```
In [2]: #reading in an image
image = cv2.imread('test_images/solidWhiteRight.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

#printing out some stats and plotting
print('This image is:', type(image), 'with dimensions:', image.shape)
plt.imshow(image) # if you wanted to show a single color channel image called 'gr
```

This image is: <class 'numpy.ndarray'> with dimensions: (540, 960, 3)

Out[2]: <matplotlib.image.AxesImage at 0x250db905b00>

Ideas for Lane Detection Pipeline

Some OpenCV functions that might be useful for this project are:

```
cv2.inRange() for color selection
cv2.fillPoly() for regions selection
cv2.line() to draw lines on an image given endpoints
cv2.addWeighted() to coadd / overlay two images cv2.cvtColor() to grayscale or change
color cv2.imwrite() to output images to file
cv2.bitwise_and() to apply a mask to an image
```

Helper Functions

Below are some helper functions to help get you started.

```
In [111]: import math
          def grayscale(img):
               """Applies the Grayscale transform
              This will return an image with only one color channel
              but NOTE: to see the returned image as grayscale
              (assuming your grayscaled image is called 'gray')
              you should call plt.imshow(gray, cmap='gray')"""
              return cv2.cvtColor(img, cv2.COLOR RGB2GRAY)
              # Or use BGR2GRAY if you read an image with cv2.imread()
              # return cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
          def canny(img, low_threshold, high_threshold):
              """Applies the Canny transform"""
              return cv2.Canny(img, low threshold, high threshold)
          def gaussian blur(img, kernel size):
              """Applies a Gaussian Noise kernel"""
              return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
          def region_of_interest(img, vertices):
              Applies an image mask.
              Only keeps the region of the image defined by the polygon
              formed from `vertices`. The rest of the image is set to black.
               `vertices` should be a numpy array of integer points.
              #defining a blank mask to start with
              mask = np.zeros like(img)
              #defining a 3 channel or 1 channel color to fill the mask with depending on t
              if len(img.shape) > 2:
                  channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
                  ignore_mask_color = (255,) * channel_count
              else:
                  ignore_mask_color = 255
              #filling pixels inside the polygon defined by "vertices" with the fill color
              cv2.fillPoly(mask, vertices, ignore_mask_color)
              #returning the image only where mask pixels are nonzero
              masked image = cv2.bitwise and(img, mask)
              return masked image
          def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
              This function draws `lines` with `color` and `thickness`.
              Lines are drawn on the image inplace (mutates the image).
              If you want to make the lines semi-transparent, think about combining
              this function with the weighted img() function below
              for line in lines:
                  for x1,y1,x2,y2 in line:
                      cv2.line(img, (x1, y1), (x2, y2), color, thickness)
```

```
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    """
    `img` should be the output of a Canny transform.

    Returns an image with hough lines drawn.
    """
    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLengline_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines, thickness = 5)
    return line_img

def weighted_img(img, initial_img, alpha=0.8, beta=1., gamma=0.):
    """
    `img` is the output of the hough_lines(), An image with lines drawn on it.
    Should be a blank image (all black) with lines drawn on it.
    `initial_img` should be the image before any processing.

The result image is computed as follows:
    initial_img * α + img * β + γ
    NOTE: initial_img and img must be the same shape!
    """
    return cv2.addWeighted(initial_img, alpha, img, beta, gamma)
```

Test Images

Build your pipeline to work on the images in the directory "test_images"

```
In [112]:
            import os
            path = "test_images/"
            files = os.listdir(path)
            images = []
            f, plots = plt.subplots((len(files)+3-1)//3, 3, figsize=(20,10))
            plots = [plot for sublist in plots for plot in sublist]
            for file, plot in zip(files, plots):
                 image = cv2.cvtColor(cv2.imread(os.path.join(path, file)), cv2.COLOR_BGR2RGB)
                 plot.set_title(file)
                 plot.imshow(image)
                 images.append((image, file))
                                                          solidWhiteRight.jpg
                          solidWhiteCurve.jpg
                                                                                           solidYellowCurve.jpg
                                                100
                                                400
                         solidYellowCurve2.jpg
                                                           solidYellowLeft.jpg
                                                                                          whiteCarLaneSwitch.ipg
                                                100
                                                300
```

Build a Lane Finding Pipeline

Build the pipeline and run your solution on all test_images.

500

Try tuning the various parameters, especially the low and high Canny thresholds as well as the Hough lines parameters.

```
In [116]: # TODO: Build your pipeline that will draw lane lines segments on the test_images
for i in range(0,5):
    gray_img = grayscale(images[i][0])
    canny_img = canny(gray_img, 180, 250)
    height = 600
    width = 1000
    vertices = [(0, height),(width / 2, height / 2),(width, height),]
    crop_img = region_of_interest(canny_img,(np.array([vertices],np.int32),))
    hough_img = hough_lines(crop_img, 8, np.pi / 180, 150, 5, 25)
    final_img = weighted_img(hough_img, images[i][0])

plt.imshow(final_img)
    plt.show()
```


Improve the draw_lines() function

At this point, you should have the Hough line segments drawn onto the road. Extend your code to define a line to run the full length of the visible lane based on the line segments you identified with the Hough Transform. Try to average and/or extrapolate the line segments you've detected to map out the full extent of the lane lines. The output should draw a single, solid line over the left lane line and a single, solid line over the right lane line. The lines should start from the bottom of the image and extend out to the top of the region of interest.

```
In [114]: # TODO: Build your pipeline that will draw complete lane lines on the test_images
for i in range(0,5):
    gray_img = grayscale(images[i][0])
    canny_img = canny(gray_img, 180, 250)
    height = 600
    width = 1000
    vertices = [(0, height),(width / 2, height / 2),(width, height),]
    crop_img = region_of_interest(canny_img,(np.array([vertices],np.int32),))
    hough_img = hough_lines(crop_img, 7, np.pi / 180, 170, 140, 180)
    final_img = weighted_img(hough_img, images[i][0])
    plt.imshow(final_img)
    plt.show()
```


