Savings, Savings, Savings

Gabriel C-Parent

Overview

- cvrp problem
- implementation details
- improvement procedures
- construction procedure
- genetic algorithm
- tabu search
- QA

The Problem

The Problem 3/33

Capacitated Vehicle Routing

The Problem 4/33

Implementation

Implementation 5/33

Implementation Details

Implementation 6/33

Implementation Details

- reuse basic operators
- modularity
- concise

Implementation 7/33

Improvement

Improvement 8/3

2-opt descent

- uses common 2-opt operator
- calculates all possible 2-opt for each iteration
- chooses the best available

Improvement 9/33

2-opt example

Improvement 10/33

λ_1 -interchange definition

- λ -interchange, Osman, 1991
- exchange of customers between routes
- only feasible exchanges (capacity constraint)
- insertion (1, 0) and (0, 1) or interchange (1, 1)
- chooses the best option at each iteration
- apply 2-opt descent on routes implicated

mprovement 11/3:

λ_1 -interchange example

Improvement 12/33

Construction

Construction 13/33

Random Savings Definition

- iterated local search
- variant of parallel savings
- at each iteration select randomly from top k best savings
- k=1 o normal parallel savings
- once finished, apply improvement method

Construction 14/33

Random Savings, k=5

Construction 15/33

Random Savings, k=10

Construction 16/33

Best result in 60 secs

Construction 17/33

Genetic Algorithm

Genetic Algorithm 18/33

Overview

Genetic Algorithm 19/33

Crossover

Genetic Algorithm 20/33

Mutation Description

- reuse the λ_1 -interchange operator
- use a fixed (in this case 5) number of iterations
- serves as local exploration and changes clusters of clients

Genetic Algorithm 21/3

Mutation example

Genetic Algorithm 22/33

Results

Genetic Algorithm 23/33

Tabu Search

Tabu Search 24/33

Tabu Search Description

- Neighbourhood Structure
- Tabu List
- Diversification

Tabu Search 25/33

Neighbourhood Structure

- λ_1 -interchange
- only feasible solutions

Tabu Search 26/33

Tabu List

- avoid reversing a move
- remember pairs (client, route)
- $max{7, -40 + 9.6 \times ln(n \times v)}$

Tabu Search 27/33

Diversification by Multi-Start

- takes a parameter called patience
- patience replenish after a new best is found
- patience runs out → random savings

Tabu Search 28/33

Best Results in 60 sec

Tabu Search 29/33

Overall Performance

Overall Performance 30/33

Overall Performance

- complexity: [RS, GA, Tabu]
- speed: [Tabu, RS, GA]
- quality: [GA/Tabu, RS]

Overall Performance 31/33

QA

QA 32/33