Epreuve écrite

Examen de fin d'études secondaires 2001	Nom et prénom du candidat
Section: BC Sept 2001	
Branche: Physique	

I. Attraction universelle.

- 1) A partir de la loi d'attraction universelle, établir l'expression vectorielle du champ de gravitation en fonction de la constante de gravitation universelle k, de la masse de la Terre M_T, du rayon terrestre R₀ et de l'altitude z. En déduire la valeur du champ de gravitation à l'altitude z en fonction du champ de gravitation au niveau du sol.
- 2) A quelle altitude doit-on monter pourque la valeur du champ de gravitation terrestre diminue de 10 %? $(R_0 = 6380 \text{ km})$
- 3) La force d'interaction gravitationnelle entre la Terre et la Lune vaut $2 \cdot 10^{20}$ N. La masse de la Terre étant 81 fois plus grande que celle de la Lune, déterminer la distance entre Terre et Lune. ($M_T = 6 \cdot 10^{24}$ kg)
- 4) On considère une planète de masse M_P et de rayon R_P. Sachant que le champ de gravitation à une altitude z₁ = R_P au dessus de la surface de la planète vaut g₁, quelle est la valeur du champ de gravitation g₂ à une altitude z₂ double de la précédente? Justifier la réponse en exprimant g₂ en fonction de g₁.

14(4+3+2+5)

II. Rotation et mouvement dans le champ de pesanteur.

- On fait tourner un corps de masse m au bout d'une corde de longueur R₀ à la vitesse angulaire ω₀
 constante dans un plan horizontal se trouvant à une hauteur h₀ du sol.
 Déterminer la tension T du fil.
- 2. On utilise ensuite un fil de longueur double. Que devient la vitesse linéaire de la masse m si on veut que la tension du fil reste inchangée? Quelle en est la conséquence pour la vitesse angulaire?
- 3. On fait tourner la masse m de nouveau sur la trajectoire de rayon R₀ à la vitesse angulaire ω₀. A un moment donné la corde casse et le corps, soumis à la pesanteur, est projeté à une distance D. On considère un repère ayant comme origine O le point où le mobile se trouve à l'instant de rupture de la corde, comme axe Ox la direction de la vitesse à cet instant et comme axe Oz la verticale orientée vers le bas.
 - a) Indiquer les équations horaires du mouvement de la masse m aprés la rupture de la corde.

b) En déduire l'équation cartésienne de la trajectoire.

c) Sachant que l'altitude de la trajectoire circulaire est h₀, déterminer la durée jusqu'à l'impact.

- d) Déterminer la distance horizontale D entre le point de départ O et le point d'impact en fonction de R_0 , de h_0 et de ω_0 .
- On veut maintenant augmenter la portée D à une valeur double. Deux élèves font les propositions suivantes:
 - a) Il faut faire tourner la masse m plus rapidement. Justifier. Déterminer la nouvelle vitesse angulaire en fonction de $\omega_{\rm 0}$.
 - b) Il faut placer le plan de la trajectoire circulaire plus haut.
 Justifier. Déterminer la nouvelle hauteur h en fonction de h₀.

5. Application:

- a) Déterminer la valeur de ω_0 sachant que $h_0 = 2$ m, $R_{0} = 1,2$ m et D = 10 m.
- b) Déterminer la valeur de la tension T dans ce cas et comparer la au poids du corps sachant que m

Epreuve écrite

Examen de fin d'études secondaires 2001		Nom et prénom du candidat	
Section:	ВС		
Branche:	Physique		

III. Oscillateur mécanique.

- Un oscillateur horizontal est soumis à une force de rappel proportionnelle et de sens contraire à son élongation x. Déterminer l'équation différentielle du mouvement.
- 2) Montrer que $x = a \sin(\omega t + \phi)$ est une solution de l'équation différentielle.
- 3) En déduire l'expression de la période propre de l'oscillateur.
- 4) Montrer que l'énergie mécanique totale de l'oscillateur au passage par l'origine a même valeur qu'au point d'élongation maximale.
- Application:

Un solide de masse m pouvant glisser sans frottement sur un support horizontal est fixé à un ressort de raideur k = 48 N/m. Son élongation x mesurée à partir de sa position d'équilibre est donnée par $x = a \sin (8 t - 3,14)$. Pour faire osciller osciller la masse m on lui fournit une énergie de 0,24 J. Déterminer:

- a) la masse m du solide
- b) l'amplitude du mouvement
- c) la vitesse maximale de l'oscillateur
- d) l'élongation de l'oscillateur pour laquelle l'énergie cinétique est égale à la moitié de l'énergie potentielle
- e) la vitesse et l'accélération en ce point.

16(8 + 8)

IV. Effet photélectrique.

- 1. Expliquer les termes suivants:
 - a) seuil photoélectrique
 - b) courant de saturation
 - c) potentiel d'arrêt.

Décrire le montage permettant l'étude de l'intensité du courant photoélectrique.

- 3. Comment doit-on modifier l'expérience de l'effet photoélectrique pour avoir:
 - a) un courant de saturation d'intensité double?
 - b) un seuil photoélectrique plus faible?
 - c) un potentiel d'arrêt plus grand?
- 4. Le travail d'extraction d'un électron de la cathode vaut W_o = 1,60 eV. Déterminer la longueur d'onde λ_o qui correspond au seuil photoélectrique du métal de la cathode C.
- 5. On éclaire la cellule par une radiation de longueur d'onde λ = 500 nm. La tension entre anode A et cathode C vaut U_{AC} = 7,00 V. Déterminer:
 - a) La valeur v_C de la vitesse maximale des électrons émis par C.
 - b) La valeur de la vitesse v_A à l'arrivée sur l'anode A des électrons émis par la cathode à une vitesse $v = 4,5 \cdot 10^{-5}$ m/s.
- 6. Quelle tension maximale U'_{AC} permettrait d'annuler le courant photoélectrique, lorsque les électrons sont émis avec la vitesse v = 4,5 10 5 m/s?

14(2+2+2+1+5+2)