MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63

Spring 2008

Lecture #14

Aliasing and Higher Order Models

April 3, 2008

Outline

- Last Time
 - Full Factorial Models
 - Experimental Design
 - Blocks and Confounding
 - Single Replicate Designs
- Today
 - Fractional Factorial Designs
 - Aliasing Patterns
 - Implications for Model Construction
 - Process Optimization using DOE

Fractional Factorial Experiments

- What if we do less than full factorial 2^k?
- Example: run < 2³ experiments for 3 inputs
 - From regression model for 3 inputs:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123z} x_1 x_2 x_3 + \varepsilon$$

We will not be able to find all 8 coefficients

2³⁻¹ Experiment

Consider doing 4 experiments instead of 8; e.g.:

• This is a 2² array

Could also be for 3 inputs if we define

$$x_3 = x_1 x_2$$

2³⁻¹ Experiment

$$x_1$$
 x_2 x_3

$$1 - 1 - 1 + 1$$

$$2 + 1 - 1 - 1$$

$$3 - 1 + 1 - 1$$

$$4 + 1 + 1 + 1$$

But now we can only define 4 coefficients in the model:

e.g.:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

i.e. no interaction terms

2³⁻¹ Experiment

Or we could choose other terms:

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{13} x_1 x_3$$
 or:

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \beta_{12} x_1 x_2 + \beta_3 x_3$$
 or:

. . .

We actually have the following:

$$\widehat{y} = \beta_0 + \beta'_1 z_1 + \beta'_2 z_2 + \beta'_3 z_3$$

 where the z variable represent sums of the various input terms, e.g.

$$z_1 = x_1 x_2 + x_3$$

$$z_2 = x_1 + x_2 x_3 \mathsf{L}$$

 where the specific choice of the experimental array determines what these sums are

2³ Array: (Our **X** matrix)

Test	I	Α	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Consider upper half:

Test	I	Α	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Look at columns for C - no change at all! or C = -I Also AC = -A and BC = -B, and ABC = -AB

Test	I	А	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

 $Contrast_A = [-(1)+a-b+ab]$

AC is an alias of A

 $Contrast_{AC} = [(1)-a+b-ab]$

Note that alias of $A = A^*(-C)$

Defining Relation I = -C

Choice of Design?

Aliases

 Must have one of the pair assumed negligible ("sparsity of effects")

- Balance/Orthogonality
 - Sufficient excitation of inputs
 - Enable short-cut estimation of model effects and model coefficients

Balance and Orthogonality

Test	I	А	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Note: All columns have equal number of + and - signs (Balance)

Sum of product of any two columns = 0 (Orthogonality)

-All combinations occur the same number of times

Balance/Orthogonality in 2³⁻¹

Test	I	А	В	С	AB	AC	ВС	ABC
1	1	-1	-1	-1	1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
С	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

- A and B are balanced; C is not
- A, B and C are orthogonal

Better Subset – Balanced/Orthogonal

Test	I	Α	В	С	AB	AC	ВС	ABC
1	1	-1	-1	-1	1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
С	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

With this array:

- balance for A, B, C
- all but ABC are orthogonal
- defining relation I=ABC

e.g. aliases of A:

A*ABC=A*I

A*A = I

BC aliased with A

Aliases:

A BC

B AC

C AB

I ABC

Design Resolution

- Resolution III
 - No main aliases with other main effects
 - Main interaction aliases
- Resolution IV
 - No alias between main effects and 2 factor effects, but others exist
- Resolution V
 - No main and no 2 factor aliases

Design Resolution

Test	I	Α	В	С	AB	AC	ВС	ABC
1	1	-1	-1	-1	1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
С	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

With this array:

- balance for A, B, C
- all but A B C are orthogonal
- defining relation I=ABC

e.g. aliases of A:

A*ABC=A*I

A*A = I

BC aliased with A

Aliases:

A BC

B AC

C AB

Main effects aliased with interactions only

Smaller Fraction 2^{k-p}

- p = 1 1/2 fraction
- p = 2 1/4 fraction
- p 1/2^p

A Different Fraction

Consider I = AC

Test	I	А	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

A Different Fraction

Consider I = AC

Test	Ι	Α	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
b	1	-1	1	-1	-1	1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
abc	1	1	1	1	1	1	1	1

I=AC Aliases

Balance?

Orthogonality?

A with C

B with ABC

AB with BC

How Decide What Aliasing To Choose?

Prior knowledge of process

- Rules of thumb
 - Sparsity of effects
 - Hierarchy of effects
 - Inheritance of effects

Sparsity of Effects

 An experimenter may list a large number of effects for consideration

 A small number of effects usually explain the majority of the variance

Courtesy of Prof. Dan Frey

Hierarchy

 Main effects are usually more important than twofactor interactions

 Two-way interactions are usually more important than three-factor interactions

And so on

ABC ABD ACD

ABCD

Courtesy of Prof. Dan Frey

BCD

Inheritance

- Two-factor interactions are most likely when both participating factors (parents?) are strong
- Two-way interactions are least likely when neither parent is strong
- And so on

Courtesy of Prof. Dan Frey

Design Resolution

Resolution III

$$2^{3-1}_{III} \quad I = ABC$$

- No main aliases with other main effects
- Main interaction aliases
- Resolution IV

$$2^{4-1}_{IV}$$
 $I = ABCD$

 No alias between main effects and 2 factor effects, but others exist

Resolution V

$$2^{5-1}_{V}$$
 $I = ABCDE$

No main and no 2 factor aliases

	Α	В	С	D
1	-1	-1	-1	-1
2	1	-1	-1	-1
3	-1	1	-1	-1
4	1	1	-1	-1
5	-1	-1	1	-1
6	1	-1	1	-1
7	-1	1	1	-1
8	1	1	-1	-1
9	-1	-1	-1	1
10	1	-1	-1	1
11	-1	1	-1	1
12	1	1	-1	1
13	-1	-1	1	1
14	1	-1	1	1
15	-1	1	1	1
16	1	1	1	1

Four Main Effects Four tests?

Suppose we want to alias A with BCD and ABC

What are the defining relations?

24-2

Suppose we want to alias A with BCD and ABC

		Α	В	AB	С	AC	ВС	ABC	D	AD	BD	CD	ABD	ACD	BCD	ABCD
-1	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
а	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
b	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
ab	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
С	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
ac	1	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1	-1	1	1
bc	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
abc	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
d	1	1	-1	. 1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
ad	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
bd	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
cd	1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1
abd	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
acd	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
bcd	1	1	1	-1	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
abcd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

ABCD = I

Run only (1), bc, ad and abcd

AABC = BC = I

Suppose we want to alias A with BCD and ABC

	l	Α	В	AB	С	AC	ВС	ABC	D	AD	BD	CD	ABD	ACD	BCD	ABCD
(1)	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
bc	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
ad	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
abcd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

A BCD = I

I=BC

A ABC = BC = I (NB AD = I also)

I=AD

Aliases?

I=ABCD

Defining Relations

A - ABC

B-C

C - ABD

D-ABC

A - **D**

B - ABD

C - ACD

D - BCD

A - BCD

B-ACD

Outline

- Fractional Factorial Designs
- Aliasing Patterns

- Implications for Model Construction
- Process Optimization using DOE

Consider Higher Order Model

$$y = \beta_0 + \beta_1 x_1 + \beta_{21} x_1^2$$

Quadratic Model

Now we need all 3 tests

General Quadratic Equation

$$\eta_{m} = \beta_{0} + \sum_{i=1}^{k} \beta_{i} x_{im} + \sum_{i=1}^{k} \beta_{2i} x_{im}^{2} + \sum_{\substack{j=1 \ i < i}}^{k} \sum_{i=1}^{k} \beta_{ij} x_{im} x_{jm} + h.o.t. + \varepsilon_{m}$$

3² Problem

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{21} x_1^2 x_2 + \beta_{12} x_1 x_2^2 + \beta_{222} x_1^2 x_2^2$$

How many levels for each input?

Quadratic Solution

 Same as before with matrix equation: η=Xβ+ε

Experimental Design for Quadratic:

- Full factorial 3^k
 - Three levels per test
- Central Composite Design
 - adding to 2x2 design
- Partial Factorials and Aliases

Consider a Quadratic Model w/Interaction

Includes linear terms, quadratic terms and all first and second-order interactions

$$\bullet$$
 =3^k

	N				
k	No Interactions	Full Model			
1	3	3			
2	5	9			
3	7	27			
4	9	81			
5	11	243			

3² Full Factorial – Quadratic Model

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{21} x_1^2 x_2 + \beta_{12} x_1 x_2^2 + \beta_{222} x_1^2 x_2^2$$

	(1)	Α	В	AB	A2	B2	A2B	B2A	A2B2
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
уЗ	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y 5	1	0	0	0	0	0	0	0	0
y 6	1	1	0	0	1	0	0	0	0
у7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
у9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$$

	(1)	А	В	AB	A2	B2	A2B	B2A	A2B2
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
уЗ	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
у5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
у9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

	(1)	А	В	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
у3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y 5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	О	0	1	O	0	0
у9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

	(1)	А	В	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
уЗ	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
у5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
у8	1	0	1	0	0	1	0	0	0
у9	1	1	1	1	1	1	1	1	1

	(1)	Α	В	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
у3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
y6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	0	0	1	0	0	0
у9	1	1	1	1	1	1	1	1	1

Which Partial Fraction?

	(1)	А	В	AB	A2	B2	A21	B21	AB22
y1	1	-1	-1	1	1	1	-1	-1	1
y2	1	0	-1	0	0	1	0	0	0
у3	1	1	-1	-1	1	1	-1	1	1
y4	1	-1	0	0	1	0	0	0	0
y5	1	0	0	0	0	0	0	0	0
у6	1	1	0	0	1	0	0	0	0
y7	1	-1	1	-1	1	1	1	-1	1
y8	1	0	1	О	0	1	0	0	0
y9	1	1	1	1	1	1	1	1	1

	(1)	А	В	AB	A2	B2
y1	1	-1	-1	1	1	1
y2	1	0	-1	0	0	1
уЗ	1	1	-1	-1	1	1
y4	1	-1	0	0	1	0
y5	1	0	0	0	0	0
y7	1	-1	1	-1	1	1

Quadratic Solution

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$$

$$\begin{vmatrix} \overline{y}_{1} \\ \overline{y}_{2} \\ \overline{y}_{3} \\ \overline{y}_{4} \\ \overline{y}_{5} \\ \overline{y}_{6} \end{vmatrix} = \begin{vmatrix} 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ 1 & x_{1} & x_{2} & x_{1}^{2} & x_{2}^{2} & x_{1}x_{2} \\ \hline{y}_{6} \end{vmatrix} \begin{vmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{12} \end{vmatrix}$$

$$\underline{\beta} = X^{-1}\underline{y}$$

$$\underline{y} = X\underline{\beta}$$

$$\beta = X^{-1} \underline{y}$$

A Quadratic Surface

$$y = 1 + 5x_1 + 5x_2 + x_1x_2 - 10x_1^2 - 5x_2^2$$

A "Standard" 3² Full Factorial Design

Test	x1	X2
1	-1	-1
2	0	-1
3	1	-1
4	-1	0
5	0	0
6	1	0
7	-1	1
8	0	1
9	1	1

Central Composite Design

- Consider the case:
 - First Experiment is 2² with 4 tests
 - Model is shown to have poor fit
 - High SS _{Quad} for intermediate point
 - Decide to go to Quadratic
 - Not Sure of Shape of Surface

Central Composite Design

- Add 5 additional points:
 - One at center
 - One equidistant from center along each axis

Central Composite

			T
Test	x1	X2	
1	-1	-1	
2	+1	-1	original toota
3	-1	+1	> original tests
4	+1	+1	
5	0	0	
6	0	1.414	
7	1.414	0	> additional tests
8	0	-1.414	
9	-1.414	0	

Outline

- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction

Process Optimization using DOE

Process Optimization

Create an Objective Function "J"
 Minimize or Maximize

$$\max_{\underline{x}} J \qquad \min_{\underline{x}} J$$

J=J(factors); $J(\underline{x})$; $J(\alpha)$

Adjust J via factors with constraints, such as....

Methods for Optimization

- Analytical Solutions
 - $-\partial y/\partial x=0$
- Gradient Searches
 - Hill climbing (steepest ascent/descent)
 - Local min or max problem
 - Excel solver given a convex function

Basic Optimization Problem

3D Problem

Analytical

- Need Accurate y(x)
 - Analytical Model
 - Dense x increments in Experiment
- Difficult with Sparse Experiments
 - Easy to missing optimum

Sparse Data Procedure

- Linear models with small increments
- Move along desired gradient
- Near zero slope change to quadratic model

X

Extension to 3D

Linear Model Gradient Following

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

Steepest Descent

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

$$g_{x_1} = \frac{\partial y}{\partial x_1} = \beta_1 + \beta_{12} x_2$$

$$g_{x_2} = \frac{\partial y}{\partial x_2} = \beta_2 + \beta_{12} x_1$$

Make changes in x₁and x₂ along G

$$\Delta x_2 = \frac{g_{x_1}}{g_{x_2}} \Delta x_1$$

Experimental Optimization

WHY NOT JUST PICK BEST POINT?

- Why not optimize on-line?
 - Skip the Modeling Step!
- Adaptive Methods
 - Learn how best to model as you go.
 - e.g. Adaptive OFACT

EVOP

Evolutionary Operation

- Pick "best" y_i
- Re-center process
- Do again.

 \mathbf{X}_1

Confirming Experiments

Checking Intermediate points

Rechecking the "optimum"

- Data only at corners
- Test at interior point
- Evaluate error
- Consider Central Composite?

A Procedure for DOE/Optimization

- Study Physics of Process
 - Define Important Inputs
 - Intuition about model
 - Limits on inputs
- Define Optimization Penalty Function

$$-J=f(x)$$

$$\max_{\underline{x}} J \qquad \min_{\underline{x}} J$$

For us, $\underline{x} = \underline{u}$ or $\underline{\alpha}$

- Identify model (linear, quadratic, terms to include)
- Define inputs and ranges
- Identify "noise" parameters to vary if possible $(\Delta \alpha' s)$
- Perform Experiment
 - Appropriate order
 - randomization
 - blocking against nuisance or confounding effects

- Solve for <u>ß</u>'s
- Apply ANOVA
 - Data significant?
 - Terms significant?
 - Lack of Fit Significant?
- Drop Insignificant Terms
- Add Higher Order Terms as needed

- Search for Optimum
 - Analytically
 - Piecewise
 - Continuously

- Find Optimum value x*
- Perform Confirming experiment
 - Test Model at x*
 - Evaluate error with respect to model
 - Test hypothesis that $y(\underline{x}^*) = \hat{y}(\underline{x}^*)$

- If hypothesis fails
 - Consider new ranges for inputs
 - Consider higher order model as needed
 - Boundary may be optimum!

Summary

- Fractional Factorial Designs
- Aliasing Patterns
- Implications for Model Construction
- Process Optimization using DOE

