California State University Sacramento - Math 101 $\mathbf{Quiz}~\#8$

Name: _____

- 1) (a) State the Binomial Theorem.
- (b) Prove that $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$ for all integers $n \ge 1$.

- **2)** Let $X = \{1, 2, ..., n\}$, $A = \{A \subseteq X : 1 \notin A\}$ and $B = \{B \subseteq X : 1 \in B\}$.
- (a) In the case that n=3, write down all of the elements of \mathcal{A} , all of the elements of \mathcal{B} , and a bijection f from \mathcal{A} to \mathcal{B} .
- (b) Give a formula for a function $f: \mathcal{A} \to \mathcal{B}$ that defines a bijection from \mathcal{A} to \mathcal{B} and is valid for every n.

3) What is the coefficient of x^3 in $(x+1)^{12}$? Simplify your answer as much as possible.

4) Prove that $n2^{n-1} = \sum_{r=1}^{n} r \binom{n}{r}$ for all integers $n \ge 1$.

5) Simplify $\sum_{r=1}^{n} \binom{n}{r}$ as much as possible. Your final answer should involve two terms, one of which depends on n.