1 Language \mathcal{L}

In this section we define an imperative language \mathcal{L} with memory allocation and deallocation primitives, and for simplification we only use pointers as values.

The syntax of the language \mathcal{L} is as follows.

```
x,y,z,\dots (variables) \in Var
s \text{ (statements)} \quad ::= \quad \text{skip} \mid s_1; s_2 \mid *x \leftarrow y \mid \text{free}(x)
\mid \quad \text{let } x = \text{malloc}() \text{ in } s \mid \text{let } x = \text{null in } s
\mid \quad \text{let } x = y \text{ in } s \mid \text{let } x = *y \text{ in } s
\mid \quad \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2 \mid f(\vec{x})
\mid \quad \text{const}(*x)s \mid \text{endconst}(*x)
d \text{ (proc. defs.)} \quad ::= \quad \{f \mapsto (x_1, \dots, x_n)s\}
D \text{ (definitions)} \quad ::= \quad \langle d_1 \cup \dots \cup d_n \rangle
P \text{ (programs)} \quad ::= \quad \langle D, s \rangle
```

Notation \vec{x} is for a finite sequence $\{x_1, ..., x_n\}$, where we assume that each element is distinct; $|\vec{x'}/\vec{x}|s$ is for a term obtained by replacing each free occurrence of \vec{x} in s with variables $\vec{x'}$.

The Var is a countably infinite set of variables and each variable is a pointer. The statement skip means "does nothing". The statement s_1 ; s_2 is a sequential execution of s_1 and s_2 . The statement $*x \leftarrow y$ updates the content of cell which is pointed to by x with the value y. The statement free(x) deallocates a memory cell which is pointed to by pointer x. The statement let x = e in s evaluates the expression e, binds x to the result, and executes s. The expression malloc() allocates a new memory cell. The expression null evaluates to the null pointer. The expression *y means dereferencing a memory cell pointed to by y. The statement ifnull (*x)then s_1 else s_2 executes s_1 if *x is null and executes s_2 otherwise. The statement $f(\vec{x})$ expresses a procedure f with arguments \vec{x} . The statement const(*x)s means (*x) is a constant in statement s; the statement endconst(*x) means from this point (*x) maybe not constant.

The d represents a procedure definition which maps a procedure name f to its procedure body $(\vec{x})s$; The D represents a set of procedure definitions $\langle d_1 \cup \ldots d_n \rangle$, and each definition is distinct; The pair $\langle D, s \rangle$ represents a program, where D is a set of definitions and s is a main statement; the E represents evaluation context.

1.1 Operational semantics

In this section we introduce operational semantics of language \mathcal{L} . We assume there is a countable infinite set \mathcal{H} of heap addresses ranged over by l.

We use a configuration $\langle H, R, s, n, C \rangle$ to express a run-time state. Each elements in the configuration is as follows.

• H, a heap, is a finite mapping from \mathcal{H} to $\mathcal{H} \cup \{\mathbf{null}\}$;

- R, an *environment*, is a finite mapping from Var to $\mathcal{H} \cup \{\text{null}\}$;
- s is the statement that is being executed;
- n is a natural number that represents the number of memory cells available for allocation.
- C is a set of actions, which contains $\mathbf{const}(*x)$, $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$.

The operational semantics of the language \mathcal{L} is given by a labeled transition relation $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s', n', C' \rangle$. The label ρ is as follows.

$$\rho$$
 (label) ::= **malloc** | **free** | **null**(*x) | \neg **null**(*x) | τ

Notation the **Dom**(f) is a mapping from function name f to its domain; for a map f, the $f\{x \mapsto v\}$ and $f \setminus x$ are defined as follows:

$$f\{x \mapsto v\}(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$
$$(f\backslash x)(w) = \begin{cases} u & \text{if } x = w \\ u & \text{otherwise.} \end{cases}$$

and filter(C, *x) is defined by a pseudcode as follows:

$$filter(C,*x) = let C' = C - \mathbf{const}(*x) in$$
$$if \ \mathbf{const}(*x) \in C' \ then \ return \ C'$$
$$else \ return \ C' \backslash \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$$

Figure 1 depicts the relation $\xrightarrow{\rho}_D$. Several important rules are listed as follows.

- Sem-ConstSkip: That a memory cell pointed to by x is no longer a constant is expressed by doing nothing.
- Sem-ConstSeq: That a memory cell pointed to by x should be a constant in a stamtement s is expressed by adding a statement **endconst**(*x) at the end of statement s.
- SEM-FREE: Deallocation of a memory cell pointed to by x is expressed by deleting the entry for R(x) from the heap. This action increments the number of available cells (i.e., n) by one (i.e., n+1).
- SEM-MALLOC and SEM-OUTOFMEM: Allocation of a memory cell is expressed by adding a fresh entry to the heap. This action is allowed only if the number of available cells is positive; if the number is zero, then the configuration leads to an error state **OutOfMemory**.

- SEM-ASSIGNEXN,SEM-FREEEXN,SEM-DEREFEXN and SEM-FREEEXN: These rules express an illegal access to memory. If such action is performed, then the configuration leads to exceptional state \mathbf{MemEx} . This state \mathbf{MemEx} is not seen as an erroneous state in the current paper, hence a well-typed program may lead to these states. The command $\mathbf{free}(x)$, if x is a null pointer, leads to \mathbf{MemEx} in the current semantics, although it is equivalent to \mathbf{skip} in the C language.
- Sem-Constexn: expresses that if a constant *x is changed in s it will raise **Constex** exception.

Our goal is to guarantee *total* memory-leak freedom and reject memory leaks. By our language \mathcal{L} , they are formally defined as follows:

Definition 1 (total memory-leak freedom). A program $\langle D, s \rangle$ is totally memory-leak free if there is a natural number n such that it does not require more than n cells.

Definition 2 (Memory leak). A configuration $\langle H, R, s, n, C \rangle$ goes overflow if there is σ such that $\langle H, R, s, n, C \rangle \stackrel{\sigma}{\Longrightarrow} \mathbf{OutOfMemory}$. A program $\langle D, s \rangle$ consumes at least n cells if $\langle \emptyset, \emptyset, s, n, \emptyset \rangle$ goes overflow.

2 Type system

2.1 Types

The syntax of the types is as follows.

```
P \quad \text{(behavioral types)} \qquad ::= \quad \mathbf{0} \mid P_1; P_2 \mid \mathbf{malloc} \mid \mathbf{free} \mid \alpha \mid \mu \alpha. P \\ \quad \mid (x)P \mid (*x)(P_1, P_2) \mid \mathbf{const}(*x)P \mid \mathbf{endconst}(*x) \\ \Gamma \quad \text{(variable type environment)} \quad ::= \quad \{x_1, x_2, \dots, x_n\} \\ \Psi \quad \text{(dependent function type)} \quad ::= \quad (\vec{x})P \\ \Theta \quad \text{(function type environment)} \quad ::= \quad \{f_1: \Psi_1, \dots, f_n: \Psi_n\}
```

Behavioral types ranged over by P express the abstaction of behaviors of a program. The type $\mathbf{0}$ represents the do-nothing behavior; the type P_1 ; P_2 represents the sequential execution of P_1 and P_2 ; The type **malloc** represents an allocation of a memory cell exactly once; the type **free** represents a deallocation; the type $\mu\alpha.P$ represents the behavior of α defined by the recursive equation $\alpha = P$; the type $(*x)(P_1, P_2)$ represents that P_1 or P_2 is obtained dependent on *x; the type $P_1 + P_2$ represents the choice between P_1 and P_2 ; the α is a type variable; the type $\mathbf{const}(*x)P$ represents that *x is a constant in behavioral type P; the type $\mathbf{endconst}(*x)$ represents *x no longer be a constant from this point.

A type environments for variables ranged over by Γ is a set of variables. Since our interest is the behavior of a program, not the types of values, a variable type environment does not carry information on the types of variables.

Dependent function types ranged over by Ψ represents the behavior of a function; \vec{x} is the formal arguments of the function.

Function types ranged over by Θ is a mapping from function names to dependent function types.

```
C' = filter(C, *x)
                                                 \overline{\langle H, R, \mathbf{endconst}(*x), n, C \rangle} \rightarrow_D \overline{\langle H, R, \mathbf{skip}, n, C' \rangle}
                                                                                                                                                                             (Sem-ConstSkip)
          \langle H, R, \mathbf{const}(*x)s, n, C \rangle \rightarrow_D \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle (SEM-CONSTSEQ)
                                                             \langle H, R, \mathbf{skip}; s, n, C \rangle \longrightarrow_D \langle H, R, s, n, C \rangle
                                                                                                                                                                                             (SEM-SKIP)
                                                              \langle H, R, s_1, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s_1', n', C' \rangle
                                                                                                                                                                                              (Sem-Seq)
                                                       \overline{\langle H, R, s_1; s_2, n, C \rangle} \xrightarrow{\rho} \overline{\langle H', R', s'_1; s_2, n', C' \rangle}
                \frac{x'\notin\mathbf{Dom}(R)}{\langle H,\ R,\ \mathbf{let}\ x=\mathbf{null}\ \mathbf{in}\ s,n,C\rangle\longrightarrow_{D}\langle H,\ R\left\{ x'\mapsto\mathbf{null}\right\} ,\ [x'/x]\ s,n,C\rangle}\ (\text{Sem-LetNull})
                             \frac{(\text{SEM-LETEQ})}{\langle H, R, \text{ let } x = y \text{ in } s, n, C \rangle \longrightarrow_D \langle H, R \{x' \mapsto R(y)\}, [x'/x] s, n, C \rangle}
                  \frac{H(R(x)) = \mathbf{null}, \mathbf{const}(*x) \notin C}{\langle H, \ R, \ \mathbf{ifnull} \ (*x) \ \mathbf{then} \ s_1 \ \mathbf{else} \ \ s_2, \ n, C \rangle \xrightarrow{\mathbf{null}(*x)}_{D} \langle H, \ R, \ s_1, \ n, C \rangle} \text{(Sem-IfnullT)}
                                                             H(R(x)) \neq \mathbf{null}, \mathbf{const}(*x) \notin C
                  \frac{-1}{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle} \xrightarrow{\neg \text{null}(*x)} D \langle H, R, s_2, n, C \rangle} (\text{Sem-If-Null} (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle
                                                                      H(R(x)) = \mathbf{null}, \mathbf{const}(*x) \in C
            \langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\text{null}(*x)}_D \langle H, R, s_1, n, C \cup \{\text{null}(*x)\} \rangle
                                                                                                                                                                   (SEM-IFCONSTNULLT)
                                                                     H(R(x)) \neq \text{null}, \mathbf{const}(*x) \in C
          \overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\neg \text{null}(*x)} }_D \langle H, R, s_2, n, C \cup \{\neg \text{null}(*x)\} \rangle
                                                                                                                                                                   (SEM-IFCONSTNULLF)
                    \frac{\forall z.R(x) = R(z) \Rightarrow \mathbf{const}(*x) \notin C}{\langle H\{R(x) \mapsto v\}, R, *x \leftarrow y, n, C \rangle \longrightarrow_{D} \langle H\{R(x) \mapsto R(y)\}, R, \mathbf{skip}, n, C \rangle} \text{ (Sem-Assign)}
        \frac{x'\notin\mathbf{Dom}(R)}{\langle H,\ R,\ \mathbf{let}\ x=*y\ \mathbf{in}\ s,n,C\rangle\longrightarrow_{D}\langle H,\ R\left\{x'\mapsto H(R(y))\right\},\ [x'/x]\ s,n,C\rangle}\ (\text{Sem-LetDeref})
                                                                   R(x) \neq \mathbf{null} \text{ and } R(x) \in \mathbf{Dom}(H)
                           \frac{R(x) \neq \text{Hun and } R(x) \in \text{DOM}(R)}{\langle H\{R(x) \mapsto v\}, \ R, \ \text{free}(x), n, C\rangle \xrightarrow{\text{free}}_{D} \langle H \backslash R(x), \ R, \ \text{skip}, n+1, C\rangle} \ (\text{Sem-Free})
                                                                                                 x' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)
      \overline{\langle H,\ R,\ \mathbf{let}\ x = \mathbf{malloc}()\ \mathbf{in}\ s, n, C\rangle \xrightarrow{\mathbf{malloc}}_{D} \langle H\left\{l\mapsto v\right\},\ R\left\{x'\mapsto l\right\},\ [x'/x]\ s, n-1, C\rangle}
\frac{D(f) = (\vec{y})s}{\langle H, R, f(\vec{x}), n, C \rangle \longrightarrow_D \langle H, R, [\vec{x}/\vec{y}]s, n, C \rangle}
                                                                                                        \frac{R(x) = \mathbf{null} \text{ or } R(x) \notin \mathbf{Dom}(H)}{\langle H, R, \mathbf{free}(x), n, C \rangle \xrightarrow{\mathbf{free}}_{D} \mathbf{MemEx}}
                                                                                                                            R(y) = \mathbf{null} \text{ or } R(y) \notin \mathbf{Dom}(H)
         \frac{R(x) = \mathbf{null} \text{ or } R(x) \notin \mathbf{Dom}(H)}{\langle H, \ R, \ *x \leftarrow y, n, C \rangle \longrightarrow_D \mathbf{MemEx}}
                                                                                                                \overline{\langle H, R, \text{ let } x = *y \text{ in } s, n, C \rangle} \longrightarrow_D \mathbf{MemEx}
                                                               (SEM-ASSIGNEXN)
                                                                                                                                                                               (SEM-DEREFEXN)
                                               \frac{\exists z.\mathbf{const}(*z) \in C \text{ and } R(x) = R(z)}{\langle H\{R(x) \mapsto v\}, R, *x \leftarrow y, n, C \rangle \longrightarrow_{D} \mathbf{ConstEx}} \text{(Sem-AssignConstExn)}
                            \langle H, R, \text{ let } x = \text{malloc}() \text{ in } s, 0, C \rangle \xrightarrow{\text{malloc}} D \text{ OutOfMemory} (Sem-OutOfMem)
```

Figure 1: Operational semantics of \mathcal{L} .

Figure 2 depicts semantics of behavioral types with dependent types, and they are given by the labeled transition system. The relation $\langle P, C \rangle \xrightarrow{\rho} \langle P', C' \rangle$ means that P can make an action ρ , and P turns into P' after it makes action ρ ; C and C' record constant value environment before and after making action ρ respectively.

2.2 Typing rules

The type judgment for statements is of the form Θ ; $\Gamma \vdash s : P$, which represents that under the function type environment Θ and the variable type environment Γ , the abstracted behavioral type of statement s is P.

Before showing typing rules for statements in Figure 3, we need explain several important definitions. The first one is $OK_n(P,C)$, a predicate, where P represents the behavior of a program which consumes at most n memory cells under constant value environment C.

Definition 3 $(\sharp_{\rho}(\sigma))$. $\sharp_{\rho}(\sigma)$ is the number of ρ in the sequence σ .

Definition 4.
$$OK_n(P,C)$$
 holds if $\forall P'$ and σ . if $\langle P,C \rangle \xrightarrow{\sigma} \langle P',C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$

Intuitively, $OK_n(P, C)$ represents at very running steps, the number of memory cells a program consumed will not exceed the number of memory cells the program requires.

Definition 5 (Subtyping). $C \vdash P_1 \leq P_2$ is the largest relation such that, for any P'_1 , C' and ρ , if $\langle P_1, C \rangle \xrightarrow{\rho} \langle P'_1, C' \rangle$, then there exists P'_2 such that $\langle P_2, C \rangle \xrightarrow{\rho} \langle P'_2, ' \rangle$ and $C' \vdash P'_1 \leq P'_2$. We write $P_1 \leq P_2$ if $C \vdash P_1 \leq P_2$ for any C.

Figure 3 shows the typing rules. For example, the rule T-IFNULL represents the behavior of **ifnull** (*x) **then** s_1 **else** s_2 is abstracted as $(*x)(P_1, P_2)$ where P_1 and P_2 are the behavior of s_1 and s_2 respectively; this conditional statement means that executing s_1 if (*x) is a null pointer, otherwise s_2 . The typing rule T-PROGRAM represents a program requires at most n memory cells during running under the predication $OK_n(P,C)$, where P is behavioral type of statement s.

2.3 Type soundness

Theorem 2.1. If $\vdash \langle D, s \rangle$: n for some n, then $\langle D, s \rangle$ is totally memory-leak free.

The proof is based on the following lemmas: preservation and lack of immediate overflow.

Definition 6. consistency (H, R, C): for all x. (1) if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null (3) if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

Definition 7. we write $\Theta \vdash \langle H, R, s, n, C \rangle : \langle P, C \rangle$, if there exists Γ such that $\Theta : \Gamma \vdash s : P$, $OK_n(P,C)$, consistency(H,R,C) and $\Gamma \subseteq \mathbf{Dom}(R)$.

Lemma 2.2 (Preservation). suppose that $\Theta \vdash \langle H, R, s, n, C \rangle : \langle P, C \rangle$, if $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$ then $\exists P'$ and C' s.t. (1) $\Theta \vdash \langle H', R', s', n', C' \rangle : \langle P', C' \rangle$ and (2) $\langle P, C \rangle \xrightarrow{\rho} \langle P', C' \rangle$.

Lemma 2.3 (Lack of immediate overflow). If $\Theta \vdash \langle H, R, s, n, C \rangle : \langle P, C \rangle$, then $\langle H, R, s, n, C \rangle \xrightarrow{\mathbf{malloc}}$ **OutOfMemory**.

$$\langle \mathbf{0}; P, C \rangle \rightarrow \langle P, C \rangle \qquad (\text{TR-SKIP})$$

$$\langle \mathbf{free}, C \rangle \xrightarrow{\mathbf{free}} \langle \mathbf{0}, C \rangle \qquad (\text{TR-FREE}) \qquad \langle \mu \alpha. P, C \rangle \rightarrow \langle [\mu \alpha. P/\alpha] P, C \rangle (\text{TR-REC})$$

$$\frac{\langle P_1, C \rangle \xrightarrow{P} \langle P'_1, C' \rangle}{\langle P_1; P_2, C \rangle \xrightarrow{P} \langle P'_1; P_2, C' \rangle} \qquad (\text{TR-SEQ})$$

$$\langle \mathbf{malloc}, C \rangle \xrightarrow{\mathbf{malloc}} \langle 0, C \rangle \qquad (\text{TR-MALLOC})$$

$$\frac{x' is fresh}{\langle (x) P, C \rangle \rightarrow \langle [x'/x] P, C \rangle} \qquad (\text{TR-BIND})$$

$$\langle \mathbf{const}(*x) P, C \rangle \rightarrow \langle P; \mathbf{endconst}(*x), C \cup \{\mathbf{const}(*x)\} \rangle \qquad (\text{TR-CONST})$$

$$\frac{C' = filter(C, *x)}{\langle \mathbf{endconst}(*x), C \rangle \rightarrow \langle \mathbf{0}, C' \rangle} \qquad (\text{TR-ENDCONST})$$

$$\frac{\mathbf{const}(*x) \notin C}{\langle (*x)(P_1, P_2), C \rangle} \xrightarrow{\mathbf{null}(*x)} \langle P_1, C \rangle \qquad \langle ((*x)(P_1, P_2), C) \xrightarrow{-\mathbf{null}(*x)} \langle P_2, C \rangle \qquad (\text{TR-NOTCONST1})$$

$$\frac{\mathbf{null}(*x) \in C \qquad \mathbf{const}(*x) \in C}{\langle ((*x)(P_1, P_2), C \rangle \rightarrow \langle P_1, C \rangle} \qquad (\text{TR-NULLIN})$$

$$\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin C \qquad \mathbf{const}(*x) \in C}{\langle ((*x)(P_1, P_2), C \rangle \rightarrow \langle P_1, C \rangle} \qquad (\text{TR-NNULLIN})$$

$$\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x), \neg \mathbf{null}(*x) \notin C \qquad \mathbf{const}(*x) \in C}{\langle ((*x)(P_1, P_2), C \rangle \rightarrow \langle P_1, C \rangle} \qquad (\text{TR-NNULLNOTIN1})$$

$$\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x), \neg \mathbf{null}(*x) \notin C \qquad \mathbf{const}(*x) \in C}{\langle ((*x)(P_1, P_2), C \rangle \rightarrow \langle P_1, C \rangle} \qquad (\text{TR-NNULLNOTIN1})$$

Figure 2: semantics of behavioral types with dependent types.

$$\begin{array}{c} \Theta; \Gamma \vdash \mathbf{skip} : \mathbf{0} & (\text{T-Skip}) & \frac{\Theta; \Gamma \vdash s_1 : P_1 \quad \Theta; \Gamma \vdash s_2 : P_2}{\Theta; \Gamma \vdash s_1 : s_2 : P_1; P_2} \ (\text{T-Seq}) \\ \Theta; \Gamma, x, y \vdash *x \leftarrow y : \mathbf{0} \ (\text{T-Assign}) & \Theta; \Gamma, x \vdash \mathbf{free}(x) : \mathbf{free} \ (\text{T-Free}) \\ \hline \Theta; \Gamma, x \vdash s : P & \Theta; \Gamma, x \neq s : P \\ \hline \Theta; \Gamma \vdash \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s : \mathbf{malloc}; (x) P \\ (\text{T-Malloc}) & \Theta; \Gamma, x, y \vdash s : P \\ \hline \Theta; \Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : (x) P \end{array} & \frac{\Theta; \Gamma, x \vdash s : P}{\Theta; \Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : (y/x) P} \ (\mathbf{T-LetPoint}) \\ \hline \Theta; \Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : (x) P \end{array} & \frac{\Theta; \Gamma, x \vdash s : P}{\Theta; \Gamma, y \vdash \mathbf{let} \ x = null \ \mathbf{in} \ s : (x) P} \ (\mathbf{T-LetNull}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{endconst}(*x) : \mathbf{endconst}(*x) : \mathbf{endconst}(*x) \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \end{bmatrix} & (\mathbf{T-Const}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \end{bmatrix} & (\mathbf{T-Const}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : P \end{bmatrix} & (\mathbf{T-IpNull}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{s} : \mathbf{n} \end{bmatrix} & (\mathbf{T-IpNull}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Ipnull}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{T-Sup}) \\ \hline \Theta; \Gamma, x \vdash \mathbf{n} \end{bmatrix} & (\mathbf{n} \vdash \mathbf{n}) \end{bmatrix} & (\mathbf{n} \vdash \mathbf$$

Figure 3: typing rules

3 Proof of Lemmas

Lemma 3.1. If $OK_n(P,C)$ and $\langle P,C \rangle \xrightarrow{\rho} \langle P',C' \rangle$, then

- $OK_{n-1}(P', C')$ if $\rho =$ malloc,
- $OK_{n+1}(P', C')$ if $\rho =$ free,
- $OK_n(P', C')$ if $\rho = Otherwise$

Proof. By induction on $\langle P, C \rangle \xrightarrow{\rho} \langle P', C' \rangle$.

• Case $P = \mathbf{0}; P'$ and $\langle \mathbf{0}; P', C \rangle \rightarrow \langle P', C \rangle$

We need to prove $OK_n(P',C)$. Assume that $OK_n(P',C)$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle P',C\rangle \xrightarrow{\sigma} \langle Q,C'\rangle$, $\sharp_m(\sigma)-\sharp_f(\sigma)>n$.

From the definition of that $OK_n(\mathbf{0}; P', C)$ holds, we have if $\langle \mathbf{0}; P', C \rangle \to \langle P', C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which are in contradiction to the assumption $\sharp_m(\sigma) - \sharp_f(\sigma) > n$. Therefore, $OK_n(P', C)$ holds.

• Case $P = \mathbf{malloc}$ and $\langle \mathbf{malloc}, C \rangle \xrightarrow{\mathbf{malloc}} \langle 0, C \rangle$

we need to prove $OK_{n-1}(0,C)$, which means we need to prove that for all σ and Q, if $\langle 0,C\rangle \xrightarrow{\sigma} \langle Q,C'\rangle$ then $\sharp_m(\sigma)-\sharp_f(\sigma)\leq n-1$. There is no σ and Q such that $\langle 0,C\rangle \xrightarrow{\sigma} \langle Q,C'\rangle$. Therefore, $OK_{n-1}(0,C)$ holds.

• Case P =free and \langle free, $C \rangle \xrightarrow{\text{free}} \langle$ **0**, $C \rangle$

We need to prove $OK_{n+1}(\mathbf{0}, C)$, which means we need to prove $\forall \sigma$ and Q if $\langle \mathbf{0}, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n+1$. There is no Q and σ s.t. $\langle \mathbf{0}, C \rangle \xrightarrow{\sigma} \langle Q, C \rangle$, so (1) holds. Therefore, $OK(\mathbf{0}, C)$ holds.

• Case $P = \mathbf{endconst}(*x)$ and $\frac{C' = filter(C, *x)}{\langle \mathbf{endconst}(*x), C \rangle \rightarrow \langle 0, C' \rangle}$

We need to prove $OK_n(\mathbf{0}, C')$, which means we need to prove $\forall \sigma$ and Q if $\langle \mathbf{0}, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(C') holds. There is no Q and σ s.t. $\langle \mathbf{0}, C \rangle \xrightarrow{\sigma} \langle Q, C \rangle$. So $OK_n(\mathbf{0}, C')$ holds.

• Case P = (x)P' and $\frac{x'isfresh}{\langle (x)P',C \rangle \rightarrow \langle [x'/x]P',C \rangle}$

We need to prove $OK_n([x'/x]P',C)$. Assuming that $OK_n([x'/x]P',C)$ does not hold. Then we have $\exists \sigma$ and Q s.t. $\langle [x'/x]P',C\rangle \xrightarrow{\sigma} \langle Q,C'\rangle$ and $\sharp_m(\sigma)-\sharp_f(\sigma)>n$.

From the definition of $OK_n((x)P',C)$, we have if $\langle (x)P',C\rangle \to \langle [x'/x]P',C\rangle \xrightarrow{\sigma} \langle Q,C'\rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$. Therefore we get the contradiction.

Therefore $OK_n([x'/x]P', C)$ holds.

• Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{const}(*x) \notin C}{\langle (*x)(P_1, P_2), C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, C \rangle} \langle P_1, C \rangle$

We need to prove $OK_n(P_1, C)$. Assume that $OK_n(P_1, C)$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle P_1, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n((*x)(P_1, P_2), C)$ holds, we have if $\langle (*x)(P_1, P_2), C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is in contradiction to the assumption $\sharp_m(\sigma) - \sharp_f(\sigma) > n$. Therefore, $OK_n(P_1, C)$ holds.

• Case $P=(*x)(P_1,P_2)$ and $\frac{\mathbf{const}(*x)\not\in C}{\langle (*x)(P_1,P_2),C\rangle \to \langle P_2,C\rangle}$

We need to prove $OK_n(P_2, C)$. Assume that $OK_n(P_2, C)$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle P_2, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n((*x)(P_1, P_2), C)$ holds, we have if $\langle (*x)(P_1, P_2), C \rangle \xrightarrow{-\mathbf{null}(*x)} \langle P_2, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is in contradiction to the assumption. Therefore, $OK_n(P_2, C)$ holds.

• Case $P=(*x)(P_1,P_2)$ and $\frac{\text{null}(*x)\in C}{\langle (*x)(P_1,P_2),C\rangle \to \langle P_1,C\rangle} \frac{\text{const}(*x)\in C}{\langle (*x)(P_1,P_2),C\rangle \to \langle P_1,C\rangle}$

We need to prove $OK_n(P_1, C)$. Assume that $OK_n(P_1, C)$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle P_1, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n((*x)(P_1, P_2), C)$ holds, we have if $\langle (*x)(P_1, P_2), C \rangle \rightarrow \langle P_1, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is in contradiction to the assumption. Therefore, $OK_n(P_1, C)$ holds.

• Case $P=(*x)(P_1,P_2)$ and $\frac{\neg \mathbf{null}(*x) \in C}{\langle (*x)(P_1,P_2),C \rangle \rightarrow \langle P_2,C \rangle} \frac{\mathbf{const}(*x) \in C}{\langle (*x)(P_1,P_2),C \rangle \rightarrow \langle P_2,C \rangle}$

We need to prove $OK_n(P_2, C)$. Assume that $OK_n(P_2, C)$ does not hold. Then we have $\exists \sigma$ and Q s.t. $\langle P_2, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n((*x)(P_1, P_2), C)$ holds, we have if $\langle (*x)(P_1, P_2), C \rangle \rightarrow \langle P_2, C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is in contradiction to the assumption. Therefore, $OK_n(P_2, C)$ holds.

• Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin C}{\langle (*x)(P_1, P_2), C \rangle} \xrightarrow{\mathbf{null}(*x)} \langle P_1, C \cup \{\mathbf{null}(*x)\} \rangle}$

We need to prove $OK_n(P_1, C \cup \{\mathbf{null}(*x)\})$. Assume that $OK_n(P_1, C \cup \{\mathbf{null}(*x)\})$ does not hold. Then we have $\exists \sigma$ and Q s.t. $\langle P_1, C \cup \{\mathbf{null}(*x)\} \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n((*x)(P_1, P_2), C)$ holds, we have if $\langle (*x)(P_1, P_2), C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, C \cup \{\mathbf{null}(*x)\} \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$. Therefore, we get the contradiction and $OK_n(P_1, C \cup \{\mathbf{null}(*x)\})$ holds.

 $\bullet \ \ \text{Case} \ P = (*x)(P_1,P_2) \ \ \text{and} \ \ \frac{\mathbf{null}(*x),\neg\mathbf{null}(*x) \not\in C}{\langle (*x)(P_1,P_2),C \rangle \xrightarrow{\neg\mathbf{null}(*x)} \langle P_2,C \cup \{\neg\mathbf{null}(*x)\} \rangle}$

Similar to the above.

• Case $P = \mathbf{const}(*x)P'$ and $\langle \mathbf{const}(*x)P', C \rangle \to \langle P'; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x) \rangle$ We need to prove $OK_n(P'; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x))$. Assume that $OK_n(P'; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x))$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle P'; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$.

From the definition of that $OK_n(\mathbf{const}(*x)P',C)$ holds, we have if $\langle \mathbf{const}(*x)P',C\rangle \rightarrow \langle P; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q,C'\rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is in contradiction to the assumption. Therefore, $OK_n(P'; \mathbf{endconst}(*x), C \cup \mathbf{const}(*x))$ holds.

- Case $P = \mu \alpha.P'$ and $\langle \mu \alpha.P', C \rangle \rightarrow \langle [\mu \alpha.P'/\alpha]P', C \rangle$ We need to prove $OK_n([\mu \alpha.P'/\alpha]P', C)$. Assume that $OK_n([\mu \alpha.P'/\alpha]P', C)$ does not hold. Then, we have $\exists \sigma$ and Q s.t. $\langle [\mu \alpha.P'/\alpha]P', C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$. From the definition of that $OK_n(\mu \alpha.P', C)$ holds, we have if $\langle \mu \alpha.P', C \rangle \rightarrow \langle [\mu \alpha.P'/\alpha]P', C \rangle \xrightarrow{\sigma} \langle Q, C' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$, which is a contradiction. Therefore, $OK([\mu \alpha.P'/\alpha]P', C)$
- Case $P = P_1$; P_2 and $\frac{\langle P_1, C \rangle \stackrel{\rho}{\Longrightarrow} \langle P'_1, C' \rangle}{\langle P_1; P_2, C \rangle \stackrel{\rho}{\Longrightarrow} \langle P'_1; P_2, C' \rangle}$ We need to prove $OK_{n'}(P'_1; P_2, C)$, where n' is determined by

holds.

$$n' = \begin{cases} n+1 & \rho = \mathbf{free} \\ n-1 & \rho = \mathbf{malloc} \\ n & \text{Otherwise.} \end{cases}$$

Assume that $OK_{n'}(P'_1; P_2, C')$ does not hold. Then, we have $\exists \sigma, Q \text{ and } C'' \text{ s.t. } \langle P'_1; P_2, C \rangle \xrightarrow{\sigma} \langle Q, C'' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n'$.

From the definition of that $OK_n(P_1; P_2, C)$ holds, we have if $\langle P_1; P_2, C \rangle \stackrel{\rho}{\Longrightarrow} \langle P_1'; P_2, C' \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, C'' \rangle$, then $\sharp_m(\rho\sigma) - \sharp_f(\rho\sigma) \leq n$.

Then we get $n' + \sharp_m(\rho) - \sharp_f(\rho) < \sharp_m(\rho) + \sharp_m(\sigma) - \sharp_f(\rho) - \sharp_f(\sigma) \leq n$. For any ρ , the $n' + \sharp_m(\rho) - \sharp_f(\rho) = n$, therefore we get a contradiction. Therefore, $OK_{n'}(P_1; P_2, F')$ holds.

Lemma 3.2. If consistency(H, R, C) and $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_{D} \langle H', R', s', n', C' \rangle$, then consistency(H', R', C'). Proof. By induction on $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_{D} \langle H', R', s', n', C' \rangle$

• Case: $\langle H, R, \mathbf{const}(*y)s, n, C \rangle \to_D \langle H, R, s; \mathbf{endconst}(*y), n', C \cup \mathbf{const}(*y) \rangle$. We need to prove $consistency(H, R, C \cup \mathbf{const}(*y))$. Form assumption consistency(H, R, C), we have (1) $\forall x$.if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x$.if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then

we have (1) $\forall x. \text{if } \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x. \text{if } \neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

To prove $consistency(H, R, C \cup \mathbf{const}(*y))$, we chose z arbitrarily. (3) Assuming $\mathbf{null}(*z) \in C \cup \mathbf{const}(*y)$. This implies $\mathbf{null}(*z) \in C$. By using (1), we have $\mathbf{const}(*z) \in C$, and this implies $\mathbf{const}(*z) \in C \cup \mathbf{const}(*y)$. Assuming H(R(z)) is defined, then H(R(z)) = null from (1). (4) Assuming $\neg \mathbf{null}(*z) \in C \cup \mathbf{const}(*y)$. This implies $\neg \mathbf{null}(*z) \in C$. By using (2), we have $\mathbf{const}(*z) \in C$. This implies $\mathbf{const}(*z) \in C \cup \mathbf{const}(*y)$. Assuming H(R(z)) is defined, then $H(R(z)) \neq null$ from (2).

Therefore, $consistency(H, R, C \cup \mathbf{const}(*y))$ holds.

• Case: $\langle H, R, \mathbf{endconst}(*y), n, C \rangle \to_D \langle H, R, skip, n, C' \rangle$ where C' = filter(C, *y). We need to prove consistency(H, R, C') where C' = filter(C, *y). From assumption consistency(H, R, C), we have (1) $\forall x$.if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) = null \text{ and } (2) \ \forall x. \text{if } \neg \mathbf{null}(*x) \in C, \text{ then } \mathbf{const}(*x) \in C \text{ and if } H(R(x)) \text{ is defined then } H(R(x)) \neq null.$

To prove consistency(H, R, C'), we chose z arbitrarily. From the definition of function filter(C, *y), we know (3) if $\mathbf{const}(*y) \in (C - \mathbf{const}(*y))$ then we have $C' = C - \mathbf{const}(*y)$, otherwise we have $C' = (C - \mathbf{const}(*y)) \setminus \{\mathbf{null}(*y), \neg \mathbf{null}(*y)\}$. From (3) we have $C' \subseteq C$. (4) Assuming $\mathbf{null}(*z) \in C'$, this implies $\mathbf{null}(*z) \in C$. From (1) we have $\mathbf{const}(*z) \in C$. Now we want to get $\mathbf{const}(*z) \in C'$. We should consider two cases: $z \neq y$ and z = y. If $z \neq y$ then we have $\mathbf{const}(*z) \in C'$ from (3); if z = y, and because $\mathbf{null}(*z) \in C'$, then we have $\mathbf{const}(*z) \in C'$. Assuming H(R(z)) is defined, then we have H(R(z)) = null from (1). (5) Assuming $\neg \mathbf{null}(*z) \in C'$. The similar to (4).

Therefore, consistency(H, R, C') holds.

• Case: $\langle H, R, \mathbf{free}(y), n, C \rangle \xrightarrow{\mathbf{free}}_{D} \langle H \backslash R(y), R, skip, n+1, C \rangle$.

We need to prove $consistency(H \setminus R(y), R, C)$. From assumption consistency(H, R, C), we have (1) $\forall x.$ if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x.$ if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

To prove $consistency(H \setminus R(y), R, C)$, we chose z arbitrarily. (3) Assuming $\mathbf{null}(*z) \in C$. By using (1), we have $\mathbf{const}(*z) \in C$. Assuming H(R(z)) is defined, we have H(R(z)) = null from (1). We know that R(y) has been deallocated from H, so if z = y then $(H \setminus R(y))(R(z))$ is not defined, otherwise $(H \setminus R(y))(R(z))$ is defined and $(H \setminus R(y))(R(z)) = H(R(z)) = null$. (4) Assuming $\mathbf{null}(*z) \in C$, By using (2), we have $\mathbf{const}(*z) \in C$. Assuming H(R(z)) is defined, we have $H(R(z)) \neq null$ from (2). We know that y has been deallocated from H, so if z = y then $(H \setminus R(y))(R(z))$ is not defined, otherwise $(H \setminus R(y))(R(z))$ is defined and $(H \setminus R(y))(R(z)) = H(R(z)) \neq null$.

Therefore, $consistency(H\backslash R(y), R, C)$ holds.

• Case: $\langle H, R, \mathbf{let} \ y = \mathbf{malloc} \ \mathbf{in} \ s, n, C \rangle \xrightarrow{\mathbf{malloc}}_D \langle H\{l \mapsto v\}, R\{x' \mapsto l\}, [x'/y]s, n', C \rangle$ where $x' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$

We need to prove $consistency(H\{l\mapsto v\}, R\{x'\mapsto l\}, C)$. From assumption consistency(H, R, C), we have (1) $\forall x.$ if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x.$ if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

To prove $consistency(H\{l\mapsto v\}, R\{x'\mapsto l\}, C)$, we chose z arbitrarily. (3) Assuming $\mathbf{null}(*z) \in C$. From (1) we have $\mathbf{const}(*z) \in C$. Assuming H(R(z)) is defined, we have H(R(z)) = null from (1). We have $x' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$, so $z \neq x'$. Therefore we get $H\{l\mapsto v\}(R\{x'\mapsto l\}z) = H(R(z)) = null$. (4) Assuming $\neg \mathbf{null}(*z) \in C$. similar to (3).

Therefore, $consistency(H\{l \mapsto v\}, R\{x' \mapsto l\}, C)$ holds.

• Case: $\langle H, R, skip; s, n, C \rangle \to_D \langle H, R, s, n', C \rangle$. Obviously, consistency(H, R, C) holds form assumption. • Case: $\langle H\{R(w) \mapsto v\}, R, *w \leftarrow y, n, C \rangle \rightarrow_D \langle H\{R(w) \mapsto R(y)\}, R, skip, n, C \rangle$ where $\forall z.R(w) = R(z) \Rightarrow \mathbf{const}(*z) \notin C$

We need to prove $consistency(H\{R(w) \mapsto R(y)\}, R, C)$. From assumption consistency(H, R, C), we have (1) $\forall x.$ if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if $H\{R(w) \mapsto v\}(R(x))$ is defined then $H\{R(w) \mapsto v\}(R(x)) = null$ and (2) $\forall x.$ if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if $H\{R(w) \mapsto v\}(R(x))$ is defined then $H\{R(w) \mapsto v\}(R(x)) \neq null$.

To prove $consistency(H\{R(w)\mapsto R(y)\}, R, C)$, we chose m arbitrarily. (3) Assuming $\mathbf{null}(*m)\in C$. By using (1), we have $\mathbf{const}(*m)\in C$. Because we know $\forall z.R(w)=R(z)\Rightarrow \mathbf{const}(*z)\notin C$, we have $m\neq w$. Then assuming $H\{R(w)\mapsto v\}(R(m))$ is defined, we have $H\{R(w)\mapsto v\}(R(m))=null$ from (1). Then we get $H\{R(w)\mapsto R(y)\}(R(m))=H\{R(w)\mapsto v\}(R(m))=null$. (4) Assuming $\neg \mathbf{null}(*m)\in C$. Similar to (3).

Therefore, $consistency(H\{R(w) \mapsto R(y)\}, R, C)$ holds.

• Case: $\langle H, R, \mathbf{let} \ z = y \ \mathbf{in} \ s, n, C \rangle \to_D \langle H, R\{z' \mapsto R(y)\}, [z'/z]s, n, C \rangle$ where $z' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$

We need to prove $consistency(H, R\{z' \mapsto R(y)\}, C)$. From assumption consistency(H, R, C), we have (1) $\forall x.$ if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x.$ if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

To prove $consistency(H, R\{z' \mapsto R(y)\}, C$, we chose m arbitrarily. (3) Assuming $\mathbf{null}(*m) \in C$. By using (1), we have $\mathbf{const}(*m) \in C$. Then assuming H(R(m)) is defined, we have H(R(m)) = null from (1). Because we have $z' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$, we have $m \neq z'$, then we have $H(R\{z' \mapsto R(y)\}(m)) = H(R(m)) = null$. (4) Assuming $\neg \mathbf{null}(*m) \in C$. By using (2), we have $\mathbf{const}(*m) \in C$. Then assuming H(R(m)) is defined, we have $H(R(m)) \neq null$ from (2). Because we have $z' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$, we have $m \neq z'$, then we have $H(R\{z' \mapsto R(y)\}(m)) = H(R(m)) \neq null$.

Therefore, $consistency(H, R\{z' \mapsto R(y)\}, C)$ holds.

- Case: $\langle H, R, \mathbf{let} \ z = *y \ \mathbf{in} \ s, n, C \rangle \to_D \langle H, R\{z' \mapsto H(R(y))\}, [z'/z]s, n, C \rangle$ where $R(y) \notin \mathbf{Dom}(H)$ and $z' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$ Similar to above.
- Case: $\langle H, R, \mathbf{let} \ z = \mathbf{null} \ \mathbf{in} \ s, n, C \rangle \rightarrow_D \langle H, R\{z' \mapsto \mathbf{null}\}, [z'/z]s, n, C \rangle$ where $z' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$ Similar to above.
- Case: $\langle H, R, \mathbf{ifnull} \ (*y) \ \mathbf{then} \ s_1 \ \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\mathbf{null} (*y)}_D \langle H, R, s_1, n, C \rangle$ where $H(R(y)) = null \ \mathbf{and} \ \mathbf{const} (*y) \notin C$

Obviously, consistency(H, R, C) holds from assumption.

• Case: $\langle H, R, \mathbf{ifnull} \ (*y) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\neg \mathbf{null} (*y)}_{D} \langle H, R, s_2, n, C \rangle$ where $H(R(y)) \neq null$ and $\mathbf{const} (*y) \notin C$ Obviously, consistency(H, R, C) holds from assumption. • Case: $\langle H, R, \text{ifnull } (*y) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\text{null}(*y)}_D \langle H, R, s_1, n, C \cup \text{null}(*y) \rangle$ where $H(R(y)) = null \text{ and } \text{const}(*y) \in C$

We need to prove $consistency(H, R, C \cup \mathbf{null}(*y))$. From assumption consistency(H, R, C), we have (1) $\forall x.$ if $\mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then H(R(x)) = null and (2) $\forall x.$ if $\neg \mathbf{null}(*x) \in C$, then $\mathbf{const}(*x) \in C$ and if H(R(x)) is defined then $H(R(x)) \neq null$.

To prove $consistency(H, R, C \cup null(*y))$, we chose z arbitrarily. (3) Assuming $null(*z) \in C \cup null(*y)$. This implies $null(*z) \in C$ or null(*z) = null(*y). First, let us consider $null(*z) \in C$. By using (1), we have $const(*z) \in C$. This implies $const(*z) \in C \cup null(*y)$. Assuming H(R(z)) is defined, then we have H(R(z)) = null from (1). Then let us consider null(*z) = null(*y). Because we have H(R(y)) = null and $const(*y) \in C$, then we get H(R(z)) = null and $const(*z) \in C$. $const(*z) \in C$ implies $const(*z) \in C \cup null(*y)$ (4) Assuming $\neg null(*z) \in C \cup null(*y)$. This implies $\neg null(*z) \in C$. By using (2), we have $const(*z) \in C$. This implies $const(*z) \in C \cup null(*y)$. Assuming H(R(z)) is defined, then we have $H(R(z)) \neq null$ from (2).

Therefore, $consistency(H, R, C \cup \mathbf{null}(*y))$ holds.

- Case: $\langle H, R, \mathbf{ifnull} \ (*y) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle \xrightarrow{-\mathbf{null} \ (*y)} D \langle H, R, s_2, n, C \cup \neg \mathbf{null} \ (*y) \rangle$ where $H(R(y)) \neq null \ \text{and} \ \mathbf{const} \ (*y) \in C$ Similar to above.
- Case: $\langle H, R, f(\vec{x}), n, C \rangle \to_D \langle H, R, [\vec{x}/\vec{y}]s, n, C \rangle$ where $D(f) = (\vec{y})s$ Obviously, consistency(H, R, C) holds from assumption.
- Case: $\langle H, R, s_1; s_2, n, C \rangle \xrightarrow{\rho}_{D} \langle H', R', s'_1; s_2, n', C' \rangle$ if $\langle H, R, s_1, n, C \rangle \xrightarrow{\rho}_{D} \langle H', R', s'_1, n', C' \rangle$ We need to prove consistency(H', R', C'). We have the assumption consistency(H, R, C). consistency(H', R', C') holds obviously by induction hypothesis.

Proof of Lemma 2.2: By induction on the derivation of $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$.

• Case: $\langle H, R, \mathbf{const}(*x)s, n, C \rangle \to \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle$ From the assumption $\Theta \vdash \langle H, R, \mathbf{const}(*x)s, n, C \rangle : \langle P, C \rangle$, we have $\exists \Gamma$ s.t. $\Theta : \Gamma \vdash \mathbf{const}(*x)s : P$, $OK_n(P,C)$, consistency(H,R,C) and $\Gamma \subseteq \mathbf{Dom}(R)$. From the inversion of typing rules, we get $\Theta : \Gamma \vdash s : P''$ and $\mathbf{const}(*x)P'' \leq P$ for some P''. By subtyping, we have P''; $\mathbf{endconst}(*x) \leq Q$ and $\langle P, C \rangle \Longrightarrow \langle Q, C \cup \{\mathbf{const}(*x)\} \rangle$ for some Q.

we need to find P' and C' s.t. $\exists \Gamma'\Theta : \Gamma' \vdash s : \mathbf{endconst}(*x) : P'$, $OK_n(P', C'), \langle P, C' \rangle \Longrightarrow \langle P', C' \rangle$ and consistency(H, R, C'). Taking Q as P', $C \cup \{\mathbf{const}(*x)\}$ as C' and Γ as Γ' . Therefore $\langle P, C \rangle \to \langle P', C' \rangle$ and $\Gamma \subseteq \mathbf{Dom}(R)$ hold, and then $OK_n(P', C')$ and consistency(H, R, C') hold from Lemma 3.1 and Lemma 3.2. From $\Theta : \Gamma \vdash s : \mathbf{endconst}(*x) : P'' : \mathbf{endconst}(*x)$, P''; $\mathbf{endconst}(*x) \leq Q$ and $\Gamma : SUB$, $\Theta : \Gamma \vdash s : \mathbf{endconst}(*x) : P'$ holds.

• Case: $\langle H, R, \mathbf{endconst}(*x), n, C \rangle \rightarrow \langle H, R, \mathbf{skip}, n, C' \rangle$ where C' = filter(C, *x)

From the assumption $\Theta \vdash \langle H, R, \mathbf{endconst}(*x), n, C \rangle : \langle P, C \rangle$, we have $\exists \Gamma$ s.t. $\Theta ; \Gamma \vdash \mathbf{endconst}(*x) : P, OK_n(P,C) \ consistency(H,R,C) \ \text{and} \ \Gamma \subseteq \mathbf{Dom}(R)$. From the inversion of typing rules, we get $\Theta ; \Gamma \vdash \mathbf{endconst}(*x) : \mathbf{endconst}(*x) \ \text{and} \ \mathbf{endconst}(*x) \le P$. By subtyping , we get $0 \le Q$ and $\langle P, C \rangle \rightarrow \langle Q, C \rangle$ for some Q.

we need to find P' and C' s.t. $\exists \Gamma'$ s.t. $\Theta; \Gamma' \vdash \mathbf{skip} : P', OK_n(P', C'), \langle P, C \rangle \Longrightarrow P', C' \rangle$, consistency(H, R, C') and $\Gamma' \subseteq \mathbf{Dom}(R)$. Taking Q as P', C as C' and Γ as Γ' , then $\langle P, C \rangle \to \langle P', C' \rangle$ and $\Gamma' \subseteq \mathbf{Dom}(R)$ hold, and then $OK_n(P', C')$ and consistency(H, R, C') hold from Lemma 3.1 and Lemma 3.2. From T-SKIP, T-SUB and $0 \le Q$, then $\Theta; \Gamma \vdash \mathbf{skip} : P'$ holds.

• Case: $\langle H, R, \mathbf{free}(x), n, C \rangle \xrightarrow{\mathbf{free}} \langle H', R, \mathbf{skip}, n+1, C \rangle$ From the assumption $\Theta \vdash \langle H, R, \mathbf{free}(x), n, C \rangle : \langle P, C \rangle$, we have $\exists \Gamma$ s.t. $OK_n(P, C)$, consistency(H, R, C), $\Theta; \Gamma \vdash \mathbf{free}(x) : P$ and $\Gamma \subseteq \mathbf{Dom}(R)$. From inversion of the typing rules, we have $\Theta; \Gamma \vdash \mathbf{free}(x) : \mathbf{free}$ and $\mathbf{free} \subseteq P$. By the subtyping, we have $\langle P, F \rangle \xrightarrow{\mathbf{free}} \langle Q, C \rangle$ and $\mathbf{0} \subseteq Q$ for some Q.

We need to find P' and C' such that $\exists \Gamma'$ s.t. $\langle P, C \rangle \xrightarrow{\mathbf{free}} \langle P', C' \rangle$, $\Theta; \Gamma' \vdash \mathbf{skip} : P'$, $OK_{n+1}(P', C')$, consistency(H, R, C') and $\Gamma' \subseteq \mathbf{Dom}(R)$. Take Q as P', C as C' and Γ as Γ' . Then, $\langle P, C \rangle \xrightarrow{\mathbf{free}} \langle P', C' \rangle$ and $\Gamma' \subseteq \mathbf{Dom}(R)$ hold, and $OK_{n+1}(P', C')$ and consistency(H', R, C) hold from Lemma 3.1 and Lemma 3.2. We also have $\Theta; \Gamma \vdash \mathbf{skip} : P'$ from T-SKIP, $\mathbf{0} \subseteq Q$ and T-SUB.

• Case: $\langle H, R, \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s, n, C \rangle \xrightarrow{\mathbf{malloc}} \langle H\{l \mapsto v\}, R\{x' \mapsto l\}, [x'/x]s, n-1, C \rangle$ where $l \notin \mathbf{Dom}(H)$ and $x' \notin \mathbf{Dom}(H) \cup \mathbf{Dom}(R) \cup fv(C)$ From the assumption $\Theta \vdash \langle H, R, \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s, n, C \rangle : \langle P, C \rangle$, we have $\Theta \colon \Gamma \vdash \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s \colon P, \ OK_n(P, C), \ consistency(H, R, C) \ \mathrm{and} \ \Gamma \subseteq \mathbf{Dom}(R)$. By the inversion of typing rules, we have $\Theta \colon \Gamma, x \vdash s \colon P''$ and $\mathbf{malloc}(x)P'' \subseteq P$ for some P''. By subtyping, we get $\langle P, C \rangle \xrightarrow{\mathbf{malloc}} \langle Q, C \rangle$ and $\langle x \rangle P'' \subseteq Q$ for some Q.

We need to find P' and C' such that $\exists \Gamma'$ s.t. $\Theta; \Gamma' \vdash [x'/x]s : P', \langle P, C \rangle \xrightarrow{\mathbf{malloc}} \langle P', C' \rangle$, $consistency(H', R', C'), OK_{n-1}(P', C')$ and $\Gamma' \subseteq \mathbf{Dom}(R\{x' \mapsto l\})$. Take Q as P', C as C' and Γ, x' as Γ' . Then $\langle P, C \rangle \xrightarrow{\mathbf{malloc}} \langle P', C' \rangle$ and $\Gamma' \subseteq \mathbf{Dom}(R\{x' \mapsto l\})$ hold, and then $OK_{n-1}(P', C')$ and $consistency(H\{l \mapsto v\}, R\{x' \mapsto l\}, C)$ hold by Lemma 3.1 and Lemma 3.2. From $\Theta; \Gamma, x \vdash s : P''$ and $\mathbf{malloc}; (x)P'' \subseteq P$, by replacing x with x'', we have $\Theta; \Gamma, x'' \vdash [x''/x]s : [x''/x]P''$ and $\mathbf{malloc}; [x''/x]P'' \subseteq P$, and then by the definition of subtyping we have $[x''/x]P'' \subseteq Q'$ for some Q'. Therefore, we get $\Theta; \Gamma, x'' \vdash [x''/x]s : Q'$. Take x'' as x' and Q' as P', then $\Theta; \Gamma, x' \vdash [x'/x]s : P'$ holds.

• Case: $\langle H, R, \mathbf{skip}; s, n, C \rangle \rightarrow \langle H, R, s, n, C \rangle$

From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{skip}; s, n, C \rangle : \langle P, C \rangle$, we have Θ ; $\Gamma \vdash \mathbf{skip}; s : P$, $OK_n(P,C)$ and consistency(H,R,C). From the inversion of the typing rules, we get Θ ; $\Gamma \vdash s : P''$ and $0; P'' \leq P$. From the definition of subtyping, we have $\langle P, C \rangle \Longrightarrow \langle Q, C \rangle$ and P'' < Q for some Q.

We need to find P' and C' such that $\Theta; \Gamma \vdash s : P'$ and $\langle P, C \rangle \to \langle P', C' \rangle$ and $OK_n(P', C')$. Take Q as P' and C as C'. Then $\langle P, C \rangle \Longrightarrow \langle P', C' \rangle$ holds, and then $OK_n(P', C')$ and consistency(H, R, C') hold. We also have $\Theta; \Gamma \vdash s : P'$ from T-Sub, $\Gamma \vdash s : P''$ and $P'' \leq Q$.

- Case: $\langle H, R, *x \leftarrow y, n, C \rangle \rightarrow \langle H', R, \mathbf{skip}, n, C \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, *x \leftarrow y, n, C \rangle : \langle P, C \rangle$, we have $\Theta; \Gamma \vdash *x \leftarrow y : P$, $OK_n(P,C)$ and consistency(H,R,C). From the inversion of typing rules, we have $0 \leq P$. We need to find P' and C' such that $\Theta; \Gamma \vdash \mathbf{skip} : P', \langle P, C \rangle \Longrightarrow \langle P', C' \rangle$ and $OK_n(P', C')$. Take P as P' and C as C'. Then $\langle P, C \rangle \Longrightarrow \langle P', C' \rangle$ holds, and then $OK_n(P', C')$ and consistency(H', R, C') hold from Lemma 3.1 and Lemma 3.2. We also have $\Theta; \Gamma \vdash \mathbf{skip} : P'$ from T-Skip, $0 \leq P$ and T-Sub.
- Case: $\langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle \to \langle H, R', [x'/x]s, n, C \rangle$ From the assumption $\Theta : \Gamma \vdash \langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle : \langle P, C \rangle$, we have $\Theta : \Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : P, \ OK_n(P, C)$ and consistency(H, R, C). From the inversion of typing rules, we have $\Theta : \Gamma, x, y \vdash s : P''$ and $\mathbf{let} \ x = y \ \mathbf{in} \ P'' \le P$ for some P''. By subtying, we have $\langle P, C \rangle \to \langle Q, C \rangle$ and $[x'/x]P'' \le Q$ for some Q.

We need to find P' and C' such that $\Theta; \Gamma, x', y \vdash [x'/x]s : P'$, $\langle P, C \rangle \rightarrow \langle P', C' \rangle$, $OK_n(P', C')$ and consistency(H, R', C'). Take Q as P' and C as C'. Then $\langle P, C \rangle \Longrightarrow \langle P', C' \rangle$ and $OK_n(P', C')$ hold. From $\Theta; \Gamma, x, y \vdash s : P''$ and $\operatorname{let} x = y$ in $P'' \leq P$, we have $\Theta; \Gamma, x'', y \vdash [x''/x]s : [x''/x]P''$ and $\operatorname{let} x'' = y$ in $[x''/x]P'' \leq P$, and then by subtying we have $[x''/x]P'' \leq Q'$ for some Q'. Therefore, we have $\Theta; \Gamma, x'', y \vdash [x''/x]s : Q'$. Take x'' as x' and Q' as P', then $\Theta; \Gamma, x', y \vdash [x'/x]s : P'$ holds.

- Case: $\langle H, R, \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$ Similar to the above.
- Case: $\langle H, R, \mathbf{let} \ x = *y \ \mathbf{in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$ Similar to the above.
- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\text{null}(*x)} \langle H, R, s_1, n, C \rangle \text{ if } H(R(x)) = \text{null and } \text{const}(*x) \notin C$

From assumption Θ ; $\Gamma \vdash \langle H, R$, if null(*x) then s_1 else $s_2, n, C \rangle : \langle P, C \rangle$, we have Θ ; $\Gamma \vdash$ if null(*x) then s_1 else $s_2:P$, $OK_n(P,C)$ and consistency(H,R,C). From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1:P_1$, Θ ; $\Gamma \vdash s_2:P_2$ and $(*x)(P_1,P_2) \leq P$. According to the rule Tr-NotConst1 and $const(*x) \notin C$, we have $\langle (*x)(P_1,P_2) \rangle \xrightarrow{null(*x)} \langle P_1,C \rangle$, and then by definition of subtyping, we get $\langle P,C \rangle \xrightarrow{null(*x)} \langle Q,C \rangle$ and $P_1 \leq Q$ for some Q.

We need to find P' and C' such that $\Theta; \Gamma \vdash s_1 : P', \langle P, C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', C' \rangle$ and $OK_n(P', C')$. Take Q as P' and C as C'. Then $\langle P, C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', C' \rangle$ and $OK_n(P', C')$ hold. We also have $\Theta; \Gamma \vdash s_1 : P'$ from T-Sub, $\Theta; \Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.

- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\neg \text{null}(*x)} \langle H, R, s_1, n, C \rangle \text{ if } H(R(x)) \neq \text{null and } \text{const}(*x) \notin C$ Similar to the above.
- Case: $\langle H, R, \mathbf{ifnull} \ (*x) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\mathbf{null} (*x)} \langle H, R, s_1, n, C' \rangle \mathbf{if} \ H(R(x)) = \mathbf{null}, \mathbf{const} (*x) \in C \mathbf{and} \ C' = C \cup \{\mathbf{null} (*x)\}$

From assumption Θ ; $\Gamma \vdash \langle H, R$, if $\mathbf{null}(*x)$ then s_1 else $s_2, n, C \rangle : \langle P, C \rangle$, we have Θ ; $\Gamma \vdash \mathbf{ifnull}(*x)$ then s_1 else $s_2: P$, $OK_n(P,C)$ and consistency(H,R,C). From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1: P_1$, Θ ; $\Gamma \vdash s_2: P_2$ and $(*x)(P_1,P_2) \leq P$. According to rule Tr-NNullNotIn1, $\mathbf{const}(*x) \in C$ and $C' = C \cup \mathbf{null}(*x)$, we have $\langle (*x)(P_1,P_2) \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1,C \cup \mathbf{null}(*x) \rangle$, and then by the definition of subtyping, we get $\langle P,C \rangle \xrightarrow{\mathbf{null}(*x)} \langle Q,C \cup \{\mathbf{null}(*x)\} \rangle$ and $P_1 \leq Q$ for some Q.

We need to find P' and C' such that $\Theta; \Gamma \vdash s_1 : P', \langle P, C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', C' \rangle$, $OK_n(P', C')$ and consistency(H, R, C'). Take Q as P' and $C \cup \{\mathbf{null}(*x)\}$ as C'. Then $\langle P, C \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', c' \rangle$ holds, and then $OK_n(P', C')$ and consistency(H, R, C') hold by Lemma 3.1 and Lemma 3.2. We also have $\Theta; \Gamma \vdash s_1 : P'$ from T-SUB, $\Theta; \Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.

- Case: $\langle H, R, \mathbf{ifnull} \ (*x) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\neg \mathbf{null} (*x)} \langle H, R, s_2, n, C' \rangle \mathbf{if} \ H(R(x)) \neq \mathbf{null}, \mathbf{const} (*x) \in C \mathbf{and} \ C' = C \cup \{\neg \mathbf{null} (*x)\}$ Similar to the above proof.
- Case: $\langle H, R, s_1; s_2, n, C \rangle \to \langle H', R', s_1'; s_2, n', C' \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, s_1; s_2, n, C \rangle : \langle P, C \rangle$, we have $\Theta; \Gamma \vdash s_1; s_2 : P, OK_n(P, C)$ and consistency(H, R, C). By inversion of typing rules, we have $\Theta; \Gamma \vdash s_1 : P_1, \Theta; \Gamma \vdash s_2 : P_2$ and $P_1; P_2 \leq P$ for some P_1 and P_2 .

By IH on $\langle H, R, s_1, n, C \rangle$ with derivation $\langle H, R, s_1, n, C \rangle \xrightarrow{\rho} \langle H', R', s'_1, n', C' \rangle$, we have $\exists P'_1, C'_1 \text{ s.t. } \Theta; \Gamma \vdash \langle H', R', s'_1, n', C' \rangle : \langle P'_1, C'_1 \rangle \text{ and } \langle P_1, C \rangle \xrightarrow{\rho} \langle P'_1, C'_1 \rangle.$

By subtyping we have $\langle P, C \rangle \xrightarrow{\rho} \langle Q, C_1' \rangle$ and $P_1'; P_2 \leq Q$ for some Q.

We need to find P' and C' s.t. $\langle P, C \rangle \xrightarrow{\rho} \langle P', C' \rangle$, $OK_n(P', C')$ and $\Theta; \Gamma \vdash s_1'; s_2 : P' \rangle$. Take Q as P' and C_1' as C', $\langle P, C \rangle \xrightarrow{\rho} \langle P', C' \rangle$ and $OK_n(P', C')$ hold. By T-Sub, $\Theta; \Gamma \vdash s_1'; s_2 : P_1'; P_2$ and $P_1'; P_2 \leq Q$, we have $\Theta; \Gamma \vdash s_1'; s_2 : P'$ holds.

We write $\langle H, R, s, n, C \rangle \xrightarrow{\rho}$ if there is a transition $\xrightarrow{\rho}$ from $\langle H, R, s, n, C \rangle$.

Lemma 3.3. If $\Theta \vdash \langle H, R, s, n, C \rangle : \langle P, C \rangle$ and $\langle H, R, s, n, C \rangle \stackrel{\rho}{\Longrightarrow} and \rho \in \{ \mathbf{malloc}, \mathbf{free}, \mathbf{null}(*x), \neg \mathbf{null}(*x) \},$ then there exists P' and C' such that $\langle P, C \rangle \stackrel{\rho}{\Longrightarrow} \langle P', C' \rangle$.

Proof. Induction on the derivation of Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle$: $\langle P, C \rangle$.

Proof of Lemma 2.3:

By contradiction. Assume $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \mathbf{OutOfMemory}$. Then, n is 0 and $\rho = \mathbf{malloc}$ from Sem-OutOfMem. From the assumption we have $\Theta; \Gamma \vdash s : P$ and $OK_0(P, C)$. From Lemma 3.3, there exists P' and C' such that $\langle P, C \rangle \xrightarrow{\mathbf{malloc}} \langle P', C' \rangle$. However, this contradicts $OK_0(P, C)$.

Proof of Theorem 2.1:

We have Θ ; $\emptyset \vdash s: P, \vdash D: \Theta$, $OK_n(P, C)$ and consistency(H, R, C).

Suppose that there exists σ such that $\langle \emptyset, \emptyset, s, n, C \rangle \xrightarrow{\sigma} \langle H', R', s', n', C' \rangle \xrightarrow{\rho} \mathbf{OutOfMemory}$. Then, n' = 0 and $\rho = \mathbf{malloc}$. From Lemma 2.2, there exists P' and C' such that $\Theta; \Gamma' \vdash s' : P'$, $\langle P,C\rangle \stackrel{\sigma}{\Longrightarrow} \langle P',C'\rangle,\ OK_0(P',C')$ and consistency(H',R',C'). So if $\langle H',R',s',0,C'\rangle \stackrel{\mathbf{malloc}}{\longrightarrow}$, it will contradict the Lemma 2.3.