FIG.

CETP Genomic (SEQ ID NO:1) Genbank M32992

120	180 240	0	9	\sim	∞	4	0	9	\sim	∞	4	0	9	02	08	14	20	26	32	38	44	50	0	62	65
agagagag aacatatt	gggggagac ggccgcag	gaaga	cggatagg	ctggccct	tgtgccg	tgccaggg	ctgaagc	agtggagc	ggtcctag	tcactggg	taaagatt	$\boldsymbol{\sigma}$	cccctggc	atgataca	tacag	cagggctg	tatgatc	catcaacc	ď	gggcctg	tccagacc	ccttggc	ggggtag	agctggg	
tatggca attcatg	ayaryyr ctctaga	ctgctgc	ccaggctg	agtcctga		ctgtctgc	gaagcca	atgggc	ttggtgag	cgaccca	tgtcaggg	caaagtc	tgccag	gggaggct	tagacccc	cggctggg	gaggcta	ctagaatt	gag	gggcttgg	ccaaggt	gccatgat	Ξ.	ggaaaggc	
ctctttct	g g g	aag	tatacgg	tggatgaa	ctcgcac	atcagtgc	ctccctgg	cctggga	gtcaagtt	tgtttgtc	agggggt	tctatg	tgtttgt	taagggta	gccagaat	ggttagtg	gtcaggat	tctgtgt	gctttaa	ggag	ccacgaga	ggcgaga	ggcctcgggt	gccacagg	agagcc
attttg tttaag	ayyary gttgaat	atctctg	cata	ataaccat	tcca	gtgtaa	tgccagga	gaggagt	cgccttca	tagggat	agccagg	gttggggg	atcactg	gctcata	aagttca	gtgaggc	gttcc	tcagagc	ccaacc	Ď	ctctagtg	gatat	agtg	ttaaaa	tt
tcatagtcat ctagatatat	agatacto gggtgctc	aaggaggt	gggggct	ccactgcc	ccatgcct	tgaaataa	acacccac	tagcccag	ctcctgac	cagccagg	gttcagat	tatatt	acggaggc	tcagtctc	gagtatcg	categtet	ggatcgtg	tggggtca	gaggccca	catggcca	actgcc	gccagcta	gggttgca	aacagcc	ctacactt
tgtctttttc aagcttattc	agaagt	ggctgggcag	catgttcc	cacttaca	tgggcaat	tcaccaag	cttttcat	gctgccac	tcatcac	gcattgca	tcgagtta	ggaggttggt	agctcagg	tctctggg	ttctaaaa	agtgtcac	ccatttgc	gatctcta	aaacccag	gaggctga	ccctcat	cttcca	agtcaagt	ggagg	actcaggt

か#

CETP Genomic (SEQ ID NO:2) Genbank M32993 ctctttttta aagataggca tttc

+

<	11 (111))					
	tcttttt	lagataggc	ttctaga	atctcc	gtgagcac	ttccctcc	09
	cttcagca	ccagggtt	ctctctcc	gcgttctt	ctggtcac	ctt	\sim
	tctcctct	tgcctcct	tccacttt	gtaccct	gattgatt	gaccaccc	∞
	ataaccta	atcatctc	cacctacc	aaggtcct	acttaacc	acttcata	4
	ggtaacac	gttgagtg	gtacccag	ttgacatg	gggtaaca	ttgcagg	\circ
	ctgtggat	ggaggaca	ttggggggc	tgattcta	ttccaccc	cctagac	9
	aaattggagg	tcc	gctc	gatgacccc	catco	ctcacttcca	420
	taattaaa	catccaga	agccactt	ccatcgcc	cagccagg	gagctggt	∞
	aagccaag	cattgatg	tccattca	acgtgtct	ggtcttca	gggaccct	4
	agtatggc	caccactg	tggtggta	cattcctg	agctgatg	catgccc	0
	gaaatata	ggtggagg	tgaatgag	ctgggtcc	ggctcttt	aggctggg	9
	ttgatcag	cattgact	gagatcga	ctgccatt	cctccaga	aacacaca	\sim
	tgagtatg	tcaagcgt	tctgggga	tgggagct	actccagg	ttggctca	∞
	agagggg	gttgtgca	cagagggt	tggggcca	aaaggagg	gcctggga	4
	ttgcagg	tggggacc	agagctgg	aagctctt	ctggcctg	cagcatgt	0
	ataccatc	atagcgga	ctgccctg	gtcatgtc	gtctccct	agcctgtg	9
	tctggtag	tgcggacc	tgcccctg	tgctacct	ctttccat	gatgataa	02
	catctcca	gggagcga	gtaagtac	caccctgt	ccccattc	gtcgtgcc	08
	tcctgtta	gtgtccac	accactac	gctcaacc	acacaggg	gcttgtgg	14
	ggccaaac	gagggcag	ataccttc	tggggtca	ccatccc	ccatcaat	20
	accctaaa	ctggaaac	caataacc	cagctagt	ctaacagc	ttaagaac	26
	ctgttggc	agcactat	caagccct	catgaatt	ttgatttt	ccttaaaa	32
	aaccctag	tatagatt	gttatcat	ccttttta	tatgggta	ctgagtca	38
	gacaggtt	aaaggaaa	ctcatatc	cggagtcg	cctgcatt	aagcacca	44
	ctaactca	gat	tagccaa	aagtaact	ctg	actcg	50
	actaaggg	gggagtag	cccatttg	cccagact	tctgaccc	aagctga	56
	tcctagat	tttactct	cttccc	gtggggc	ttgtctt	ccaacacc	62
	ctgtcaag	gctgtg	ccccattg	cagaggaa	taacaagg	ggagagt	68
	ctagtca	ccaat	aa	aggcagaagg	gaactggtgg	gtggggtctg	ΖT
	agaggagc	tctattca	ccattttt	tgactctg	gcaagacg	acatgta	80
	aatttgga	ctagacac	tctcgtgt	gtgacagg	tgagcgtc	aggagctg	86
	sactaaag	aattctg	tggtgcca	gttaattc	gggtctga	ccgtgt.	92

FIG. 2B

3240 3300 2040 2220 2280 2520 3180 2100 2160 2340 2400 2460 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3360 gctgactccc ccctgagaag gcagtgggag ttaggaaaaa tcctatgcag ggagggttgg agggccaaca ctggtcaggg tcacaaattt cactgccacc aagcacctgc gccgattttg gtctaggtcc tggcaaagct gaactcagga aaccttctag aaqtqccaca tgaggccctg ggtggacatt caaggtagga tttgtgctct agctcctcct agcgacgtgc caaagcacca attgtggccc tacaagagtc cctgcctgga gagcatactt cttgtctata tggaagtaga tactgtactc qaqaatqaaa cactgaggct ccccatccc agtcccatca ttggtccttt atgcacagga aagcagctgt taacatcatg tcagaagaca gctctgaacc gagacattgg agtcctgggg ggcaggccac acagcagtgg cactcttcct aggatcccag agtgaggctg ccctgccttt cggtccccag cttcctgagc gggacaggtg aagattctcc cagaggggaa cccaggggag ctgcgaggag gcccactaca cgctccatgg tgggtggatc tccctttcct tcccctgtgc ggcctccttt acqtcatctc tctgcatgcc ttgggactgt gattagttat tggcgaaggg ctcatccatg cttggactct tgggaaaaga cagggcaatt ctttcagatg tcctacctgg ggcagccaag gtcatcctct ataattctta ctatgtggcc catcacagcc acacactagg ccttcaggcc tggtcctgaa ggaggctgga atgtggccag aaagagatca acaagctgtg tggctgggca gcccagcttc ttcggcttct cactccgtct tgcgtttctg gacacttgat agaggcatcc cagcccaagt cagacagact tcccacttta gacggtgact agccagcatc tcaaccttat attcctgatg caccagggct aagctt aatgggagtg accctgaagc caccttctcc ccagatctgc acctgctgca ggtgcggctc ttcctcctgc gtgatcccgt ggtgggcagg gctcctccqc agagggctta gtactgacaa ggagcctggt gtgcttgctg gccatgccca tggaaggagg ggctggtgag atctggctct attaagtcca attgctcaca agctgggttt cctacccaga cacacccagg ggatgcaggg tccccaqct tctctgcagg gacaacccca ccctgacccc gagccatgaa gctcattgtg catctccttc tgtggtccag gtgccactcc tctqtctqcc ccagaaagcc caaatgggtg agataattag tacagagcag aagggctcta accetacacq cgttgatctt tccctgacag gttgtgggag cattcctgat gctccttcct ccccadddd ctcactqcaa accacgcagc tccagacaag catgggctct ctgccccttt gtagctgtgt

CETP Genomic (SEQ ID NO:3) Genbank M32997

tggtg	gcct		cttggtggct	gaggtagaca	atcgcttgaa	
ctgggacg	ggaggttgca	ga	gcca	gccctcca	Ö	\sim
gagtgaga	gtc	caaaaaaa	aaaa	agaaa	aC	∞
gtccta	caaa	gtgctgg	gaactttcct	cggttttcag		4
ctaagcc	sacgtg	atccttgc	tctccagtcc	agtgga	aatcagg	0
ccctgag	ggagggtt	tctctgct	ggaaga	tggctc	Ţ	9
tttctct	caggat	tgactacc	caggcct	ttctaa	aaagctc	\sim
tta	ggattt	gta	gcagagaa	aagggg	ggtcaactcc	∞
caaacct	cctg	tggagtca	acaggg	ggtgttgg	gggaaatg	4
gacaatt	tctggg	atgggctg	tgcaggga	ataagacc	cctagat	0
aatcttc	gaa	ggctccag	gaatgga	ctgccag	gaagg	9
agctatg	caaaagca	tgcta	ttaga	ctttccca	ggatgtta	\sim
ggagggg	caatggag	tcaaatta	gcttt	tat	acacca	∞
gactgtt	aa	aggtag	cttggat	actgggggg	aataagtcct	4
tgggacc	act	agcagg	gagggcc	aggaaa	ggca	0
ccaaaag	gtgaccag	ggtcca	gtctct	tgaccctt	ctg	9
atgtctt	ggagag	tgtgttgc	aatga	gtg	gattggg	02
ttaggca	cagtactg	agcagc	ctccctggac	caattt	gtgg	08
tgggctag	actg	cccca	ggaaa		ggcacc	14
ctgggg	aacgga	ga	atttt	gatgg	catgaggatg	20
atgcttgt	aggccgt	agcatctgcc	tgg	tgc	gggagg	26
tcaccatg	tttgat	agca	cgagtcc	agc	cctgcagtca	32
tgatcac	tgtg	ccctgaggtc	tgtc	agtgtgggct	ggagggaaa	1380
ctgggtgccg	ctg	tacca	caccttt			42

661 accctggtgt ctcctccagc gtggtggaag ttgggttagg agtacggaga tggagattgg

721 ctcccaactc ctccctatcc taaaggccca ctggcattaa agtgctgtat ccaagagctg

781 cggagtcctt cttctgtggc tggcgggtag aggggggggg aagggattgt ctcaccagtg

841 ccgtccacct cttttcagcc cttccaagca gctgccccca aaccctccaa gctt

FIG. 4

CETP Genomic Sequence (SEQ ID No. 4)

+

ggatgggttg ggagctcaag ttttgggggca gaagggaatt ttttttggca gcagagtgca agccctgccg ccaggcaaac tctgctcttc ctcatcctca gaagcacttg ctcactctgc taaatcaaag tgaaacgcat gtttacagaa tattggtcca aaagggtctc agcatctccc 181 actacccagg gtgcagagcc tcgggccggc cttgctcccc aagaagggct gactggggct 241 ctgtcccctc gcccagggct cgaggtagtg tttacagccc tcatgaacag caaaggcgtg 301 agcctcttcg acatcatcaa ccctgagatt atcactcgag atgtgagtac aaagccccc 361 tcaccagccc ctgttcctgg ggagagaggc ccagacagga ttcctgggggt gactgggggc 421 tgttggggag acagacagag gggcctctac cagcttggct ccctcctggt ggcctgggag 481 tcagcccagc tcgcccctct ctcctactgc ccctcccrtc agggcttoct gctgctgcag 541 atggactttg gcttccctga gcacctgctg gtggatttcc tccagagctt gagctagaag 601 tctccaagga ggtcgggatg gggcttgtag cagaaggcaa gcaccaggct cacagctgga M32998 Genbank No.: 121 61

+

CETP Alleles

Intron 1 (707):

Allele 1:GTTCTTTGGT \underline{G} AGAAGGTCCT(SEQ ID No. Allele 2:GTTCTTTGGT \underline{A} AGAAGGTCCT(SEQ ID No.

Intron 8 (3707):

Allele 1:TGGCCTGAAC \underline{C} TGATCGCGGACC(SEQ ID No. Allele 2:TGGCCTGAAC \underline{I} TGATCGCGGACC(SEQ ID No.

8

Intron 8 (3946):

Allele 1:GATGATCTAG \underline{A} GGGCCGGGGG (SEQ ID No. 9) Allele 2:GATGATCTAG $\underline{1}$ GGGCCGGGGG (SEQ ID No. 10)

Promoter (VNTR):

GAAA and GAA repeats between -2144 and -1974 from translational start site. Alleles are defined by variation in size.

Insertion (307):

Allele 1:GAATGGAGGG AGGGCCTGGC(SEQ ID No. 11)

Allele 2:GAATGGAGGG CTGCCAGGAAGAAGG AGGGCCTGGC(SEQ ID No. 12)

Intron 15 (493):

G CCCCTCTCTC (SEQ ID No. 13)

▲ CCCCTCTCTC (SEQ ID No. 14) 1:AGCCCAGCTC Allele

2:AGCCCAGCTC Allele

FIG. 6

