HOMEWORK

Question1

Suppose you have a set of data x_1 , x_2 ,, x_n , show that the sum of deviations(not squared) is zero.

- 1. suppose I have a set of data x_1 , x_2 ,, x_n and I will show that the the sum of deviations(not squared) is zero.
- 2. $\langle x = \frac{x_1 + x_2 + ... + x_n}{n}$
- 3. SUM = $\sum_{i=1}^{n}(x_i \operatorname{x})$ = $\sum_{i=1}^{n}(x_i \operatorname{x})$ = $\sum_{i=1}^{n}(x_i \operatorname{x_1} + x_2 + ... + x_n)$ = $\sum_{i=1}^{n}(x_i \operatorname{x_1} + x_2 + ... + x_n)$ = 0
- 4. Therefore, the sum of deviations is zero.

Question2

For the following set of data 2, 3, 7, 7, 10, 9, 7, 10, 6, 10, 3, 10, 20, 3, 10, 8, 5, 1, 5 provide:

- a) Tukey's 5-number summaries
- b) Interquartile range
- c) A box plot (mark the important values on the plot.)

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data_original = np.array([2, 3, 7, 7, 10, 9, 7, 10, 6, 10, 3, 10, 20, 3, 10, 8
data_sorted = np.sort(data_original)
print("sorted data:", data_sorted)

n = len(data_sorted)
print("number of data points:", n)

minimum = data_sorted[0]
maximum = data_sorted[-1]
mean = np.mean(data_sorted)
print("mean:", mean)
print("minimum:", minimum)
print("minimum:", minimum)
print("maximum:", maximum)
```

```
if n % 2 == 0:
    median = (data sorted[n//2 - 1] + data sorted[n//2]) / 2
else:
    median = data sorted[n//2]
print("median:", median)
if n % 2 == 0:
    Q1 = np.median(data sorted[:n//2])
    Q3 = np.median(data sorted[n//2:])
else:
    Q1 = np.median(data sorted[:(n + 1)//2])
    Q3 = np.median(data sorted[(n +1)//2+1:])
print("Q1:", Q1)
print("Q3:", Q3)
IQR = Q3 - Q1
print("IQR:", IQR)
lower whisker = 01 - 1.5 * IOR
upper whisker = Q3 + 1.5 * IQR
print("lower whisker:", lower whisker)
print("upper whisker:", upper whisker)
print("boxplot of the data:")
fig, ax = plt.subplots()
box = ax.boxplot(data sorted, patch artist=True) # patch artist=True 便于给箱包
for patch in box['boxes']:
    patch.set facecolor('lightblue')
ax.text(1.1, median, f"median: {median:.1f}", va="center")
ax.text(1.3, mean, f"mean: {mean:.1f}", va="center")
ax.text(1.1, minimum, f"min: {minimum:.1f}", va="center")
ax.text(1.3, maximum, f"max: {maximum:.1f}", va="center")
ax.text(1.1, Q1, f"Q1: {Q1:.1f}", va="center")
ax.text(1.1, Q3, f"Q3: {Q3:.1f}", va="center")
ax.text(1.1, lower whisker, f"lower whisker: {lower whisker:.1f}", va="center"
ax.text(1.1, upper whisker, f"upper whisker: {upper whisker:.1f}", va="center"
outliers = [f"outlier: {x}" for x in data sorted if x < lower whisker or x > u
for i, outlier in enumerate(outliers):
    ax.text(1.1, data sorted[np.where(data sorted == float(outlier.split(": ")
ax.set ylim(-10, 25)
plt.title("Box plot of the data")
plt.show()
```

sorted data: [1 2 3 3 3 5 5 6 7 7 7 8 9 10 10 10 10 10 20]

number of data points: 19 mean: 7.157894736842105

minimum: 1 maximum: 20 median: 7 Q1: 4.0 Q3: 10.0 IQR: 6.0

lower whisker: -5.0 upper whisker: 19.0 boxplot of the data:

Question 3

Python problem: Looking at the dataset Housing.csv. The variables are

- medv: median home price in different neighborhoods
- crim: per capita crime rate
- rm: average number of rooms per dwelling
- zn: proportion of large lots (zoned for > 25, 000 feet)
- river: whether a home is near a river (0: No, 1: yes)
- ptratio: pupil-teacher ratio by town

Questions:

a) Show first 8 rows of the dataset.

- b) Given the median and mean of medv.
- c) Calculate 1st and 3rd quantile of crim.
- d) Plot histogram of crime.
- e) On the same plot, draw histograms of medv near a river and not near a river, respectively.
- f) Provide correlation matrix and the corresponding heatmap for the dataset.
- g) Fit a density curve using 10 bins for medv.

```
In [ ]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Read the data from the csv file
        data Housing = pd.read csv('Housing.csv')
        try:
            data Housing = pd.read csv('Housing.csv')
            print("data Housing loaded successfully.")
        except FileNotFoundError:
            print("Error: 'Housing.csv' file not found.")
        # show the shape of the data
        print("shape of the data:", data Housing.shape)
        # show the first 8 rows of the data
        print("first 8 rows of the data:\n", data Housing.head(8))
        # show the nedian and mean of the 'medy' column
        medv median = data Housing['medv'].median()
        medv mean = data Housing['medv'].mean()
        print(f"median of the 'medv' column: {medv median:.2f}")
        print(f"mean of the 'medv' column: {medv mean:.2f}")
        # show the 1sd, 3sd quantiles of the 'crim' column
        data crim = data Housing['crim']
        data crim sorted = np.sort(data_crim)
        n = len(data crim sorted)
        if n % 2 == 0:
            Q1 crim = np.median(data crim sorted[:n//2])
            Q3 crim = np.median(data crim sorted[n//2:])
        else:
            Q1 crim = np.median(data crim sorted[:n//2])
            Q3 crim = np.median(data crim sorted[(n//2)+1:])
        print(f"Q1 of the 'crim' column: {Q1 crim:.2f}")
        print(f"Q3 of the 'crim' column: {Q3 crim:.2f}")
        # show the histogram of the 'crim' column
        print("\n the histogram of the 'crim' column:")
        plt.hist(data crim, bins=10)
        plt.xlabel('crim')
        plt.ylabel('count')
```

```
plt.title('Histogram of the crim column')
 plt.show()
 #on the same plot, draw histograms of medv near a river and not near a river,
 print("\n the histogram of the medv column, near a river and not near a river,
 plt.figure(figsize=(8, 6))
 river yes = data Housing[data Housing['river'] == 1]['medv']
 river no = data Housing[data Housing['river'] == 0]['medv']
 plt.hist(river yes, bins=10, alpha=0.5, label='near a river', color='red')
 plt.hist(river no, bins=10, alpha=0.5, label='not near a river', color='green'
 plt.xlabel('medv')
 plt.ylabel('count')
 plt.title('medv respectively near a river yes and no')
 plt.legend()
 plt.show()
 #Provide correlation matrix and the corresponding heatmap for the dataset
 corr matrix = data Housing.corr()
 print("\n Correlation matrix:\n", corr matrix)
 plt.figure(figsize=(8, 6))
 seaborn.heatmap(corr matrix, annot=True)
 plt.title('Heatmap of the correlation matrix')
 plt.show()
 #the density plot of the 'medv' column(10bins)
 print("\n the density plot of the 'medv' column:")
 plt.figure(figsize=(8, 6))
 sns.histplot(data Housing['medv'], bins=10, kde=True, color='red')
 plt.xlabel('medv')
 plt.ylabel('density')
 plt.title('Density plot of the medv column')
 plt.show()
data Housing loaded successfully.
shape of the data: (506, 6)
first 8 rows of the data:
              zn river
       crim
                            rm ptratio medv
0 0.00632 18.0
                     0 6.575
                                  15.3 24.0
1 0.02731 0.0
                     0 6.421
                                  17.8 21.6
2 0.02729 0.0
                     0 7.185
                                 17.8 34.7
3 0.03237 0.0
                    0 6.998
                                  18.7 33.4
4 0.06905 0.0
                    0 7.147
                                  18.7 36.2
5 0.02985 0.0
                     0 6.430
                                  18.7 28.7
6 0.08829 12.5
                                  15.2 22.9
                     0 6.012
7 0.14455 12.5
                     0 6.172
                                  15.2 27.1
median of the 'medv' column: 21.20
mean of the 'medv' column: 22.53
01 of the 'crim' column: 0.08
Q3 of the 'crim' column: 3.68
 the histogram of the 'crim' column:
```


the histogram of the medv column, near a river and not near a river, respectively:

medv respectively near a river yes and no

Correlation matrix:

	crin	n zr	n rive	r r	n ptratio	o medv
crim	1.000000	-0.200469	-0.055892	-0.219247	0.289946	-0.388305
zn	-0.200469	1.000000	-0.042697	0.311991	-0.391679	0.360445
river	-0.055892	-0.042697	1.000000	0.091251	-0.121515	0.175260
rm	-0.219247	0.311991	0.091251	1.000000	-0.355501	0.695360
ptratio	0.289946	-0.391679	-0.121515	-0.355501	1.000000	-0.507787
medv	-0.388305	0.360445	0.175260	0.695360	-0.507787	1.000000

the density plot of the 'medv' column:

medv