MSE 491 Assignment 2: Classification

By Tony Nguyen - 301286979 (Group 17)

Prepared for:
Mohammed Narimani, PhD, P.Eng

School of Mechatronic Systems Engineering Simon Fraser University - Surrey Campus

1 Introduction

2 Results and Discussion

2.1 Getting Started

- 1. Percent of deceased patients that had anaemia and were smokers: 12.5%
- 2.

b. p-value = 0.27961124573614, therefore not significant

2.2 Logistic Regression

a.

Training Set

Accuracy: 0.7489539748953975 Precision: 0.7209302325581395 Recall: 0.3924050632911392 F1 Score: 0.5081967213114754

Testing Set

Accuracy: 0.783333333333333333

Precision: 0.7

Recall: 0.4117647058823529 F1 Score: 0.5185185185185185

3) I would, personally, not use this model in a real world application. The large inaccuracies, and relatively large false positives this model predicted makes me daily hesitant, especially if this data is meant to be forwarded to the patient.

2.3 K-Nearest Neighbor

For performance metrics and confusion matrices for all the KNN models, please refer to the code.

Training Set

From the graph above, the model where k = 1 was the most accurate; this makes sense as the inputted training data would perfectly

Testing Set

2.4 Feature Extraction

2.5 Multiclass Evaluation

KNN

Classification Report (K-Nearest Neighbour)				
	precision	recall	f1-score	support
APC	0.92	0.92	0.92	410
LBBB	0.94	0.95	0.94	414
NORMAL	0.90	0.91	0.91	381
PVC	0.93	0.92	0.93	393
RBBB	0.96	0.95	0.96	402
accuracy			0.93	2000
macro avg	0.93	0.93	0.93	2000
weighted avg	0.93	0.93	0.93	2000

Decision Tree

Classification	Report (Dec		e) f1-score	support
	precision	recarr	11-30016	suppor c
APC	0.84	0.87	0.85	410
LBBB	0.93	0.89	0.91	414
NORMAL	0.82	0.83	0.83	381
PVC	0.88	0.91	0.89	393
RBBB	0.95	0.92	0.93	402
accuracy			0.88	2000
macro avg	0.88	0.88	0.88	2000
weighted avg	0.89	0.88	0.88	2000

Classification Report (Gaussian Naive Bayes)				
	precision	recall	f1-score	support
APC	0.45	0.23	0.30	410
LBBB	0.75	0.51	0.60	414
NORMAL	0.61	0.60	0.60	381
PVC	0.62	0.78	0.69	393
RBBB	0.57	0.91	0.70	402
accuracy			0.60	2000
macro avg	0.60	0.60	0.58	2000
weighted avg	0.60	0.60	0.58	2000

Gaussian Naive Bayes

Support Vector Machine

Classification	Report (Sup	port Vect	or Machine)	
	precision	recall	f1-score	support
APC	0.71	0.90	0.80	410
LBBB	0.90	0.91	0.90	414
NORMAL	0.84	0.80	0.82	381
PVC	0.89	0.90	0.90	393
RBBB	0.97	0.73	0.83	402
accuracy			0.85	2000
macro avg	0.86	0.85	0.85	2000
weighted avg	0.86	0.85	0.85	2000

The best model to use would be the KNN mode; it provided the most accurate readings of any of the models. Given the uniform size of the data (240 points per beat), KNN wqould provide the best results.

4 Conclusion

5 References

Narimani, M. (2022). *MSE 491 Lab 2 Classification* [Class Handout]. Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC.