Decision Trees

Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Catching tax-evasion

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tax-return data for year 2011

A new tax return for 2012 Is this a cheating tax return?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

An instance of the classification problem: learn a method for discriminating between records of different classes (cheaters vs non-cheaters)

Example of a Decision Tree

categorical continuous

	_	_		
Tid	Refund	Marita I Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Start from the root of tree.

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

Test Set

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's

Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Constructing decision-trees (pseudocode)

```
GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F)=true then

a. leaf = createNode()

b. leaf.label= Classify(S)

c. return leaf

2. root = createNode()

3. root.test_condition = findBestSplit(S,F)

4. V = {v| v a possible outcome of root.test_condition}

5. for eachvalue v∈V:

a. S<sub>v</sub>: = {s | root.test_condition(s) = v and s ∈ S}<sub>i</sub>

b. child = GenDecTree(S<sub>v</sub>,F)<sub>i</sub>

c. Add child as a descent of root and label the edge (root→child) as v
```

return root

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Family CarType Luxury
Sports

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Small

Multi-way split: Use as many partitions as distinct values.

Large

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

Size

Medium

What about this split?

Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary Decision: (A < v) or (A ≥ v)</p>
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

□ Gini Index

Entropy

Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

□ Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=	0.000
C2	6
C1	0

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=0.444	

C1	3	
C2	3	
Gini=0.500		

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/6)^2 - (2/6)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/6)^2 - (4/6)^2$$

= 0.528

	N1	N2								
C1	5	1								
C2	2	4								
Gini=0.333										

Gini(Children)

= 7/12 * 0.194 +

5/12 * 0.528

= 0.333

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType	!									
	Family	Sports	Luxury									
C 1	1	2	1									
C2	4	1	1									
Gini		0.393										

Two-way split (find best partition of values)

	CarType									
	{Sports, Luxury}	{Family}								
C1	3	1								
C2	2	4								
Gini	0.400									

	CarT	уре
	{Sports}	{Family, Luxury}
C1	2	2
C2	1	5
Gini	0.4	19

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 - = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v</p>
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No		No		Yes		Yes Yes		es	No		No		No		No				
			Taxable Income																					
Sorted Values	→		60		70)	7	5	85	•	90)	9	5	10	00	12	20	12	25		220		
Split Positions		5	5	65		7	2	8	30 8		92		2	9	97 1		10 1		22	17	172		230	
- μ		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	>	
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
	Gini	0.4	20	0.4	0.400 0.375		75 0.343		0.4	0.417		7 0.400		<u>0.300</u>		0.343		375	0.4	00 0.420		20		

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO...

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - floor Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Splitting Criteria

For a 2-class problem:

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Stopping Criteria for Tree Induction

Stop expanding a node when all the records belong to the same class

Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.
- You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Other Issues

- Data Fragmentation
- Expressiveness

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision
- You can introduce a lower bound on the number of items per leaf node in the stopping criterion.

Expressiveness

- A classifier defines a function that discriminates between two (or more) classes.
- The expressiveness of a classifier is the class of functions that it can model, and the kind of data that it can separate
 - When we have discrete (or binary) values, we are interested in the class of boolean functions that can be modeled
 - If the data-points are real vectors we talk about the decision boundary that the classifier can model

Decision Boundary

- •Border line between two neighboring regions of different classes is known as decision boundary
- •Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value
 = True
 - Class = o if there is an odd number of Boolean attributes with truth value
 = True
 - For accurate modeling, must have a complete tree
- Less expressive for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Practical Issues of Classification

Underfitting and Overfitting

Missing Values

Costs of Classification

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:

 $0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$

Triangular points:

 $sqrt(x_1^2+x_2^2) > 0.5 or$

 $sqrt(x_1^2+x_2^2) < 1$

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

Overfitting results in decision trees that are more complex than necessary

Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

Estimating Generalization Errors

- \blacksquare Re-substitution errors: error on training (Σ e(t))
- \Box Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances): Training error = 10/1000 = 1%

Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

How to Address Overfitting

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Example of Post-Pruning

Class = Yes	20
Class = No	10
Error = 10/30	

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

PRUNE!

		PRUI
A 4		N 4
A1		\ 4
A2	A3	

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

Computing Impurity Measure

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Missing value

Before Splitting:

Entropy(Parent)

 $= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$

	Class = Yes	Class = No
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No)

 $= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$

Entropy(Children)

= 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = $0.9 \times (0.8813 - 0.551) = 0.3303$

Distribute Instances

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Class=Yes	0
Class=No	3

Cheat=Yes	2
Cheat=No	4

Tid	Refund		Taxable Income	Class
10	?	Single	90K	Yes

Probability that Refund=Yes is 3/9
Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Classify Instances

Regression trees

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
M	Yes	1	0	72
:	:	:	:	:

Average (fit a constant) using training data at the leaves

Scalable Decision Tree Induction Methods

- □ SLIQ (EDBT'96 Mehta et al.)
 - Builds an index for each attribute and only class list and the current attribute list reside in memory
- □ SPRINT (VLDB'96 J. Shafer et al.)
 - Constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - Integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)
- BOAT (PODS'99 Gehrke, Ganti, Ramakrishnan & Loh)
 - Uses bootstrapping to create several small samples

Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train disGnct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea

Example of Bagging

Sampling with replacement

Data ID				Training Data						
Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each data point has probability $(1 1/n)^n$ of being selected as test data
- Training data = $1-(1-1/n)^n$ of the original data

Bagging Example

CART decision boundary

100 bagged trees

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of malributes instead of all alributes

Random Forests

Figure 5.40. Random forests.

Random Forests Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \{\hat{C}_b(x)\}_1^B$.

Decision trees are in XBox

[J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake. Real-Time Human Pose

Decision trees are in XBox: Classifying body parts

Trained on million(s) of examples

Trained on million(s) of examples

Results:

Applications of Decision Trees

- Can express any Boolean function, but most useful when function depends critically on few attributes
- Bad on: parity, majority functions; also not well-suited to continuous attributes
- Practical Applications:
 - ► Flight simulator: 20 state variables; 90K examples based on expert pilot's actions; auto-pilot tree
 - ► Yahoo Ranking Challenge
 - Random Forests: Microsoft Kinect Pose Estimation