2021-2022-1 通信原理 A 卷答案

1. (1) 码元速率
$$R_B = 1/T_B = 10^4$$
 Baud

信息速率
$$R_b = R_B \log_2 16 = 4 \times 10^4 \text{ b/s}$$

(2) 总信息量
$$I = R_b \cdot t = 4 \times 10^4 \times 10 \times 60 = 24 \text{ Mb/s}$$

总码元数 $N = R_B \cdot t = 10^4 \times 10 \times 60 = 6 \text{ Mb/s}$,

误码率
$$P_e = \frac{N_e}{N} = \frac{10}{6 \times 10^6} \approx 1.67 \times 10^{-6}$$
 (2分)

(3) 16PSK 星座图如下:

2.

AMI 码	+1	0	-1	0	0	0	+1	-1	0	0	+1	-1	+1	0
译码	1	0	1	0	0	0	1	1	0	0	1	1	1	0

HDB3 码	+1	0	-1	0	0	0	-1	+1	0	0	+1	-1	+1	0
译码	1	0	1	0	0	0	0	0	0	0	0	1	1	0

3. (1) 抽样速率满足的**条件:** $f_s \ge 2f_H = 6kHz$

(2) 原信号频谱
$$M(f) = 2[\delta(f-3) + \delta(f+3)]$$

抽样信号频谱为
$$M_s(f) = f_s \sum_{n=-\infty}^{\infty} M(f - nf_s) = 8 \sum_{n=-\infty}^{\infty} M(f - 8n)$$

频谱图如下:

(3)
$$I_s = \frac{-1.5}{4} \times 2048\Delta = -768\Delta$$

因为 I_s 为负,所以极性码 $C_1 = 0$;

因为 $512 < |I_s| < 1024$,所以段落码 $C_2C_3C_4 = 110$;

因为(768-512)/32=8, 所以段内码 $C_5C_6C_7C_8=1000$;

编码电平为 $I_c = -(512 + 8 \times 32) = -768\Delta$

译码电平为
$$I_D = I_c - \Delta V_i / 2 = -768 - 32 / 2 = -784 \Delta$$
 (1分)

译码后的量化误差为
$$I_s$$
- I_D = 784Δ - 768Δ = 16Δ (1分)

- 4. (1) 信息速率 $R_b = f_s \cdot N = 60000 \times 1 = 60 \text{ kb/s}$ (2分)
 - (2) 由不过载条件 $\left| \frac{dm(t)}{dt} \right|_{\max} \le \sigma \cdot f_s$ 可得,应满足 $\sigma \ge \frac{A\omega_k}{f_s} = 0.314V$

因此, σ=0.1V 时, **会发生过载失真**。

(3) 矩形脉冲宽度
$$\tau = \frac{1}{2}T_b$$
, 故**带宽** $B = \frac{1}{\tau} = 2R_b = 120 \, kHz$ (2分)

5. (1) 最高码元速率
$$R_{B\text{max}} = 2f_N = \frac{2}{1+\alpha}B = \frac{2}{1.2} \times 6k = 10^4 Baud$$
 (2分)

(2)
$$R_B = \frac{R_b}{\log_2 M} = \frac{15k}{2} = 7.5 \times 10^3 Baud$$

与
$$R_{Bmax}$$
 不是整数关系,故 有码间串扰 (3分)

(3)
$$R_B = \frac{1}{T_B} = \frac{1}{0.2 \times 10^{-3}} = 5 \times 10^3 Baud$$

与
$$R_{B \max}$$
 是整数倍关系,故 没有码间串扰 (3分)

6. (1) 码元速率
$$R_B = \frac{R_b}{\log_2 M} = \frac{128}{2} = 64 \text{kBaud}$$
 (2分)

(2) 信号波形: (2分

调制框图: (2分)

(3) **带宽**
$$B = (1 + \alpha)R_B = 1.5 \times 64k = 96kBaud$$
 (2分)

频带利用率
$$\eta = \frac{R_b}{B} = \frac{128}{96} = 1.33b / s / Hz$$
 (2分)

7. (1) 带宽
$$B = 2R_B = \frac{2}{T}$$
 (2分)

(2) 最佳匹配滤波器的接收机原理图如下

$$r(t)$$
 $h_1(t)=s_1(T-t)$ 比较判决 $y(t)$ $h_0(t)=s_0(T-t)$ (4 分)

(3)
$$E_b = \int_0^T s_1^2(t)dt = \int_0^T s_2^2(t)dt = \frac{A^2T}{2}$$

$$\rho = \frac{\int_0^T s_1(t) s_2(t) dt}{E_b} = -1$$

最小误码率为
$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b(1-\rho)}{2n_0}} \right) = \frac{1}{2} erfc \left(\sqrt{\frac{A^2T}{2n_0}} \right)$$
 (6分)

8. (1) (3分)

(2)(2分)级数为 n=3,故**周期为** $m=2^n-1=7$

(2分) 一个周期的序列: 1110100

a_1	a_0	输出
1	1	
1	1	1
0	1	1
1	0	1
0	1	0
0	0	1
1	0	0
1	1	0
	1 0 1 0 0	1 1 1 1 0 1 1 0 0 1 1 0 0 0 0

(3) 总游程数为 2ⁿ⁻¹ = 4

长度为**1**的游程数占
$$\frac{1}{2^l}$$
,故有**2**个 (1分)

长度为 2 的游程数占
$$\frac{1}{2^2}$$
,故有 1 个 (1分)

长度为3的游程数:即连1游程,有1个 (1分)

故
$$M = 2^{R_b/NR_B} = 2^{(512 \times 10^3)/(128 \times 2 \times 10^3)} = 4$$
,即采用 QPSK(或 4PSK) (3 分)

(2) $B = (N+1)R_B = 129 \times 2 \times 10^3 = 258 \times 10^3 Hz$

$$\eta = \frac{R_b}{B} = \frac{512 \times 10^3}{258 \times 10^3} = 1.98bit / s / Hz$$
 (3 $\%$)

10. (1)
$$R_{b1} = f_s \times N = 8k \times 8 = 64kb/s$$
 (2 $\%$)

(2)
$$T$$
 路信号的码元速率 $R_B = \frac{R_b}{\log_2 M} = \frac{TR_{b1}}{\log_2 M} = T \cdot 16kBaud$

占用带宽 $B' = 2R_B = T \cdot 32kHz$

由
$$B \le B$$
 , 得 $T \le \frac{B}{B_1} = \frac{288 \times 10^3}{32 \times 10^3} = 9$, 即**最多 9 路** (4 分)

(3)
$$T$$
 路信号的码元速率 $R_B = \frac{R_b}{\log_2 M} = \frac{TR_{b1} \times n/k}{\log_2 M} = \frac{T \times 64k \times 12/8}{\log_2 16} = T \cdot 24kBaud$

占用带宽 $B' = (1 + \alpha)R_B = T \cdot 36kHz$

$$T \le \frac{B}{B_0} = \frac{288 \times 10^3}{36 \times 10^3} = 8$$
,最多8路 (4分)

11. (1) 典型生成矩阵为
$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

典型监督矩阵为
$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (4 分)

$$n=8, k=4$$
 (2 $\%$)

(2) (1111)对应的系统码组: $A = [1 \ 1 \ 1 \ 1] \cdot G' = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$ (3 分)

(3) 校正子
$$S = R \cdot H^T = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$
, S 不为 **0**, 故接收码组 **R 为错误码组**。 (3 分)