Assignment 5

Due March 4^{th} 2019

- 1. Self-grade Homework 4.
- 2. Read all sections in note by Prof. Gastpar (link available on course website by lecture note on 02/22). Gastpar's note defines some variables with different symbols, so please use the following table to relate them.

Variable Name	in Class Notes	in Gastpar Notes
signal	f(t) or $x[n]$	x(t)
time shift	u	au
window function	w(t) or $w[n]$	g(t)
mother wavelets	$\Psi_{i,n}(t) \text{ or } \Psi_{s,u}[n]$	$\psi_{m,n}(t)$
father wavelets	$\Phi_{i,n}(t) \text{ or } \Phi_{s,u}[n]$	$\varphi_{m,n}(t)$
detail coeff.	$d_{ m s,u}$	$a_{m,n}$
approximation coeff.	$a_{ m s,u}$	c_n

- 3. Problem 2.49, Oppenheim and Schafer, 3rd ed.
- 4. Determine whether each of the statements is true or false. Explain your reasoning.
 - (a) If $X(e^{j\omega}) = X(e^{j(\omega-\pi)})$, then the odd samples of x[n] are zero.
 - (b) if $X(e^{j(\omega-\pi/2)}) = -X(e^{j(\omega+\pi/2)})$, then the even samples of x[n] are zero.
- 5. From Midterm I fall'13: Practical Spectral Analysis

You are given 512 samples of a signal similar to the one shown in class, that contains two tones. One of the tones has an amplitude of -46db with respect to the other.

You write a python code that crops 128 samples from the signal, multiplies it with a Hann window, zero-pads to 512 samples, computes the DFT and displays the magnitude of the positive frequencies corresponding to $0 \le \omega \le \pi$.

You run the code and the results do not look right. You debug and fix it several times, each time it produces a different result. Finally you go to Frank who helps you fix the problem and come up with the following plot:

Consider that things could have gone wrong in the implementation. Which combination of problems in: cropping, Hann windowing, zero-padding and DFT could explain the resulting spectrum in the following figures. Explain briefly the evidence leading to the choice. (Hint: Look at the side lobe, resolution, main lobe etc.)

a) What happened here?

I got this figure because I forgot to:

\Box Crop the signal	\Box Hann windowed	\square zero-pad	$\Box \mathrm{DFT}$
Evidence:			

b) What happened here?

1.5

2.0

2.5

3.0

I got this figure because I forgot to:

-80 0.0

0.5

1.0

□ Crop the signal	□ Hann windowed	□ zero-pad	$\Box \mathrm{DFT}$	
Evidence:				

c) What happened here?

I got this figure because I forgot to:

□ Crop the signal □ Hann windowed □ zero-pad □DFT

Evidence:

d) What happened here?

2.0

2.5

3.0

1.0

0.5

I got this figure because I forgot to:

□ Crop the signal □ Hann windowed □ zero-pad □DFT

Evidence:

e) *** In this part, all of the operations have been performed, but the order may have been swapped. *** What happened here?

I got this figure because I ordered the operations in the following way (fill in the order of execution):

Crop the signal	$_{}$ Hann windowed	$_{}$ zero-pad	DFT
Evidence:			

6. Redo all midterm questions.