

ROLE OF LOW-COST MISSIONS in preparing for human Mars Exploration

MICHELLE RUCKER, NASA JSC March 29, 2022

Intended Audience: Low-Cost Science Mission Concepts for Mars Exploration Workshop

Presentation Objectives: ideas for how low-cost science missions can enable eventual human Mars exploration

MARS EXPLORATION PROGRAM ANALYSIS GROUP (MEPAG) GOAL IV OBJECTIVES: PREPARE FOR HUMAN EXPLORATION

Α	Inform EDL Risks	A1. Aspects of the atmospheric state that affect orbital capture/EDL for human scale missions
		A2. Characterize orbital debris environment around Mars
		A3. Assess landing-site characteristics and environment related to human-scale landers.
В	Inform EVA Risks	B1. Assess risks to crew health/performance from (1) ionizing radiation, (2) possible toxicity of martian dust
		B2. Characterize surface particulates that could affect performance/life of hardware
		B3. Assess climatological risk of dust storms in the human exploration zone
		B4. Assess landing-site characteristics/environment related to safe operations and trafficability
	Inform ISRU	C1. Understand resilience of atmospheric In Situ Resource Utilization systems to martian environment
	Opportunities	C2. Characterize potentially extractable water resources to support ISRU for long-term human needs
	Inform Planetary Protection Risks	D1. Determine martian environmental niches that meet definition of "Special Region" at exploration zone
		D2. Determine if martian environments to be contacted by humans are free of biohazards
		D3. Determine if martian materials or humans exposed to environment can be certified free of biohazards that
		might have adverse effects on the terrestrial environment and species if returned to Earth
		D4. Determine the astrobiological baseline of the human landing site prior to human arrival
		D5. Determine survivability of terrestrial organisms exposed to Mars (characterize forward contamination risk)
Ε	Inform Phobos &	E1. Understand the geological, compositional, and geophysical properties of Phobos or Deimos sufficient to
	Deimos Explora-	establish specific scientific objectives, operations planning, and any potentially available resources.
	tion Risks and opportunities	E2. Understand conditions at the surface/low orbital environment so as to design an operations plan

The following are examples of relatively low-cost partnership ideas that could help us whittle away at Goal JV

WHAT: Remote-controlled aerial scout

Bonus features: bigger payload capacity/longer time of flight

WHY: assess ability to support various contingencies or crew risk mitigations

- Deploy communications relay to a terrain high-point
- Local weather assessment: real-time dust or wind conditions aloft to support critical crew ascent or landing decisions
- Emergency aerial illumination
- Rapid point-to-point small object delivery
- Science bonus: local, high resolution contextual data could support surface operations

WEATHER STATIONS

WHAT: More Weather Stations in More Locations

- Bonus feature: if combined with Ingenuity, could deliver a weather station to a high terrain point
- Bonus feature: include radiation monitoring

WHY: we'll need to understand weather all the way to the ground (and how to forecast it) for Entry, Descent, Landing, and Ascent planning

 Science Bonus: a network of monitoring stations could foster better understanding of Mars' climate

SOLAR POWER

DEMONSTRATOR

WHY: we've got data on fixed solar panels on rovers, but other configurations, dust mitigation materials or mechanisms could improve reliability

 Science Bonus: power available from each rig can be used to power science experiments

WHAT: Solar Power Test Rig

 Bonus feature: multiple test rigs, with different types of arrays or different types of dust removal schemes, some potentially derived from Artemis lunar applications

LONG DURATION WITNESS PLATES

WHAT: Mars-equivalent of the Long Duration Exposure Facility (LDEF), in orbit and/or on surface

- Witness plates with various spacecraft and space suit materials exposed to the surface environment
- Note: best if combined with in situ robotic materials assessment capability

WHY: if we pre-deploy equipment before crew arrives, we need to be sure the environment won't degrade materials

 Science Bonus: micrometeoroid data, possibly planetary-protection tie-in's

RETRO

REFLECTORS

WHAT: more retroreflectors in more places

WHY: support future laser-based instrumentation, navigation/landing aids

 Science Bonus: laserbased science instruments

AROUND-THE-CLOCK

LIVE STREAM

WHAT: stationary camera streaming continuous, high-resolution video

- Bonus feature: night-vision, multiple cameras, pan/tilt
- Note: only possible with supporting communications infrastructure

WHY: to help us train the first human visitors to Mars

- Enables integrated comm system reliability assessments
- Live-stream from Mars can serve as a "virtual window" for a Mars analog mission on Earth
 - Adds realism, lets us analog how the view will change with season, sunlight, dust storms, or time of day
- Science Bonus: we may capture environmental phenomena we've never seen before, because we just weren't looking

There are a number of relatively simple potential add-on's to Mars science missions that would enable future human exploration

Questions?

