Exercises for Differential Amplifiers

Exercise 1: Compute V_D , V_S , V_{DS} and V_{GS} if I_{D3} = 2 mA, R_D = 500 Ω , V_{OV3} = 0.5 V, and identical Q1 &Q2 with $\mu_n C_{ox}$ (W/L) = 8 mA/V², $V_t=0.5~{\rm V},~~\lambda=0.$ A) For $V_G=0$ and B) For $V_G=1~{\rm V}.~$ Repeat the exercise for $\lambda=0.1~{\rm V}^{-1}.$

- \triangleright This exercise shows that precise biasing of Q1 and Q2 is not necessary as V_s adjusts itself automatically.
- > Inclusion of channel-length modulation does not impact the bias points of Q1 and Q2 (which is set by the current source).

Ignoring channel-length modulation ($\lambda = 0$)

$$I_{D1} = I_{D2} = 0.5I_{D3} = 1 \,\mathrm{mA}$$

KVL:
$$V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V}$$

Assume Saturation

$$1 \times 10^{-3} = I_{D1} = 0.5 \mu_n C_{ox} (W/L) V_{OV1}^2 = 4 \times 10^{-3} V_{OV1}^2$$
$$V_{OV1} = 0.5 \text{ V}$$
$$V_{GS1} = V_{OV1} + V_t = 1 \text{ V}$$

A)
$$V_{G1} = 0$$

 $V_S = V_{G1} - V_{GS1} = 0 - 1 = -1 \text{ V}$
 $V_{DS1} = V_{D1} - V_S = 1.5 - (-1) = 2.5 \text{ V}$
 $V_{DS3} = V_S - (-2) = -1 + 2 = 1 \text{ V}$
 $V_{DS1} > V_{OV1} & V_{DS3} > V_{OV3} \Rightarrow \text{ Saturation}$

A)
$$V_{G1} = 1$$

 $V_S = V_{G1} - V_{GS1} = 1 - 1 = 0$
 $V_{DS1} = V_{D1} - V_S = 1.5 - 0 = 1.5 \text{ V}$
 $V_{DS3} = V_S - (-2) = 0 + 2 = 2 \text{ V}$
 $V_{DS1} > V_{OV1} & V_{DS3} > V_{OV3} \Rightarrow \text{Saturation}$

Note that as the bias voltage of Q1, V_{G1} , changes, V_{S} is adjusted automatically to get the necessary V_{OV1} and I_{D1}

Including channel-length modulation ($\lambda = 0.1$)

$$I_{D1} = I_{D2} = 0.5I_{D3} = 1 \,\text{mA}$$

KVL:
$$V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V}$$

Assume Saturation

$$1 \times 10^{-3} = I_{D1} = 0.5 \mu_n C_{ox} (W/L) V_{OV1}^2 (1 + \lambda_n V_{DS1})$$
$$V_{OV1}^2 (1 + 0.1 V_{DS1}) = 0.25$$

Need to write V_{DS1} in terms of V_{OV1} :

$$\begin{split} V_{DS1} &= V_{D1} - V_S \\ &= V_{D1} + (V_{GS1} - V_{G1}) \\ &= V_{D1} + (V_{OV1} + V_t) - V_{G1} \\ &= V_{OV1} + (V_{D1} + V_t - V_{G1}) \end{split}$$

For a given V_{G1} , we then substitute for V_{DS1} in I_{D} equation which leads to a cubic equation for V_{OV1}

Including channel- length modulation ($\lambda = 0.1$)

$$V_{D1} = 1.5 \text{ V}$$

$$V_{OV1}^{2} (1 + 0.1 V_{DS1}) = 0.25$$

$$V_{DS1} = V_{D1} + (V_{OV1} + V_{t}) - V_{G1}$$

C)
$$V_{G1} = 0$$

$$V_{DS1} = V_{OV1} + (1.5 + 0.5 - 0) = V_{OV1} + 2.0$$

$$V_{OV1}^2 [1 + 0.1(V_{OV1} + 2.0)] = 0.25$$

$$0.1V_{OV1}^3 + 1.2V_{OV1}^2 - 0.25 = 0$$

$$V_{OV1} = 0.448 \text{ V}$$

$$V_{GS1} = V_{OV1} + V_t = 0.948 \text{ V}$$

$$V_S = V_{G1} - V_{GS1} = 0 - 0.948 = -0.948 \text{ V}$$

$$V_{DS1} = 2.0 + V_{OV1} = 2.448 \text{ V}$$

$$V_{DS3} = V_S - (-2) = -0.948 + 2 = 1.052 \text{ V}$$

D)
$$V_{G1} = 1 \text{ V}$$

$$V_{DS1} = V_{OV1} + (1.5 + 0.5 - 1) = V_{OV1} + 1.0$$

$$V_{OV1}^2 [1 + 0.1(V_{OV1} + 1.0)] = 0.25$$

$$0.1V_{OV1}^3 + 1.1V_{OV1}^2 - 0.25 = 0$$

$$V_{OV1} = 0.467 \text{ V}$$

$$V_{GS1} = V_{OV1} + V_t = 0.967 \text{ V}$$

$$V_S = V_{G1} - V_{GS1} = 1 - 0.967 = +0.033 \text{ V}$$

$$V_{DS1} = 1.0 + V_{OV1} = 1.467 \text{ V}$$

$$V_{DS3} = V_S - (-2) = 0.033 + 2 = 2.033 \text{ V}$$

 \blacktriangleright Bias voltage of Q1 and Q2 (V_G) does not affect I_{D1} as V_S adjusts itself automatically. V_G affects only V_{DS1} and V_{DS3} and precise biasing is NOT necessary.

Specified

parameters

$I_{D1} = I_{D2}$	$=1.0\mathrm{mA}$	1.0 mA	1.0 mA	1.0 mA
$V_{OV1} = V_{OV}$	$_{V2} = 0.500 \text{ V}$	0.500 V	0.448 V	0.467 V
$V_{G1} = V_{G2}$	=0 V	1.0 V	0	1.0 V
$V_{\scriptscriptstyle S}$	= -1.00 V	0	$-0.948\mathrm{V}$	0.033 V
$V_{\scriptscriptstyle DS1}$	= 2.50 V	1.50 V	2.448 V	1.467 V
$V_{\scriptscriptstyle DS3}$	=1.00 V	2.0 V	1.052 V	2.033 V
			<i>_</i> 7	1

Inclusion of channel-length modulation does not impact the bias points of Q1 and Q2 (which is set by the Q3 current source).

Exercise 2: Find the differential gain and (W/L) of all transistors in the circuit below, Q3 & Q4 are matched, Q1 & Q2 are matched, all transistors have V_{OV} = 0.2 V, $\mu_n C_{ox}$ = 400 $\mu A/V^2$, $\mu_p C_{ox}$ = 100 $\mu A/V^2$, and V_{An} = $|V_{Ap}|$ = 3.6 V. Ignore channel-length modulation in biasing calculations.

For symmetric circuits:

$$v_{o2} = -v_{o1} \rightarrow v_{o,d} = v_{o2,d} - v_{o1,d} = -2v_{o1,d}$$

$$A_d = \frac{v_{o,d}}{v_d} = -2 \times \frac{v_{o,1d}}{v_d} = \frac{v_{o,1d}}{-0.5v_d}$$

Since transistors are matched and have the same V_{OV} :

$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = 100 \ \mu\text{A}$$

$$100 \times 10^{-6} = I_{D1} = 0.5 \mu_n C_{ox} (W/L)_1 V_{OV1}^2$$

$$(W/L)_1 = 12.5 = (W/L)_2$$

$$100 \times 10^{-6} = I_{D3} = 0.5 \mu_p C_{ox} (W/L)_3 V_{OV3}^2$$

$$(W/L)_3 = 50 = (W/L)_4$$

$$A_{d} = \frac{v_{o,d}}{v_{d}} = \frac{v_{o,1d}}{-0.5v_{d}}$$
$$= -g_{m1}(r_{o1} || r_{o3})$$

$$g_{m1} = \frac{2I_{D1}}{V_{OV1}} = 10^{-3} \text{ A/V}$$
 $r_{o1} = \frac{V_{A1}}{I_{D1}} = 36 \text{ k}$ $r_{o3} = \frac{V_{A3}}{I_{D3}} = 36 \text{ k}$

$$r_{o1} = \frac{V_{A1}}{I_{D1}} = 361$$

$$r_{o3} = \frac{V_{A3}}{I_{D3}} = 361$$

$$A_d = -g_{m1}(r_{o1} || r_{o3}) = -10^{-3}(36 \text{ k} || 36 \text{ k}) = -10^{-3} \times 18 \times 10^3 = -18$$

Differential Mode Half Circuit

Exercise 3: The differential amplifier below should achieve a differential gain of 40 with a power consumption of 2 mW. All transistors operate with the same V_{OV} . Find (W/L) of all transistors, V_{G3} , V_{G4} , and V_{G5} . $(\mu_n C_{ox} = 400~\mu\text{A/V}^2, \, \mu_p C_{ox} = 100~\mu\text{A/V}^2, \, \lambda_n = 0.1~\text{/V}, \, \lambda_p = 0.2~\text{/V}, \, \text{and} \, V_{tn} = |V_{tp}| = 0.4~\text{V}.$ Ignore channel-length modulation in biasing.

Power Consumption:

$$P = 1.8I_{D5} = 2 \times 10^{-3} \rightarrow I_{D5} = 1.11 \text{ mA}$$

 $I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5I_{D5} = 0.556 \text{ mA}$

$$A_d = \frac{v_{o,d}}{v_d} = \frac{v_{o,1d}}{-0.5v_d}$$
$$= -g_{m1}(r_{o1} || r_{o3})$$

$$r_{o1} = \frac{1}{\lambda_n I_{D1}}$$

$$r_{o3} = \frac{1}{\lambda_p I_{D3}} = \frac{1}{\lambda_p I_{D1}} = \frac{\lambda_n}{\lambda_p} \times \frac{1}{\lambda_n I_{D1}} = \frac{\lambda_n}{\lambda_p} \times r_{o1} = 0.5 r_{o1}$$

$$r_{o1} \parallel r_{o3} = \frac{r_{o1} \times (0.5 r_{o1})}{r_{o1} + 0.5 r_{o1}} = \frac{r_{o1}}{3}$$

$$|A_{d}| = +g_{m1}(r_{o1} || r_{o3}) = \frac{1}{3} g_{m1} r_{o1}$$

$$= \frac{1}{3} \times \frac{2I_{D1}}{V_{OV1}} \times \frac{1}{\lambda_{n} I_{D1}} = \frac{2}{0.3 V_{OV1}} = 40$$

$$V_{OV1} = 0.167 \text{ V}$$

Differential Mode Half Circuit

$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5I_{D5} = 0.556 \text{ mA}$$

 $V_{OV1} = V_{OV2} = V_{OV3} = V_{OV4} = V_{OV5} = 0.167 \text{ V}$

$$I_{D1} = 0.5 \mu_n C_{ox} (W/L)_1 V_{OV1}^2$$

$$0.556 \times 10^{-3} = 0.5 \times 400 \times 10^{-6} (W/L)_1 \times (0.167)^2$$

$$(W/L)_2 = (W/L)_1 = 100$$

$$I_{D3} = 0.5 \mu_p C_{ox} (W/L)_3 V_{OV3}^2$$

$$0.556 \times 10^{-3} = 0.5 \times 100 \times 10^{-6} (W/L)_3 \times (0.167)^2$$

$$(W/L)_4 = (W/L)_3 = 400$$

$$I_{D5} = 0.5 \mu_n C_{ox} (W/L)_5 V_{OV5}^2$$

$$1.11 \times 10^{-3} = 0.5 \times 400 \times 10^{-6} (W/L)_5 \times (0.167)^2$$

$$(W/L)_5 = 200$$

$$V_{SG3} = V_{OV3} + |V_{tp}| = 0.167 + 0.4 = 0.567 \text{ V}$$

 $V_{G3} = V_{S3} - V_{SG3} = 1.8 - 0.567 = 1.233 \text{ V}$

$$V_{GS5} = V_{OV5} + V_{tn} = 0.167 + 0.4 = 0.567 \text{ V}$$

 $V_{G5} = V_{GS5} + V_{S5} = 0.567 + 0 = 0.567 \text{ V}$

Exercise 4: The circuit below is fabricated with $V_{An}=|V_{Ap}|=3.6~{\rm V},$ $\mu_n C_{ox}=100~{\rm \mu A/V^2}$ & $\mu_p C_{ox}=25~{\rm \mu A/V^2}.$ All transistors operate with $V_{OV}=0.5~{\rm V}.$ Find (W/L) of all transistors and the differential gain of the circuit.

$$\lambda_n = \lambda_p = \frac{1}{V_A} = \frac{1}{3.6} = 0.278 \text{ /V}$$

$$I_{D1} = I_{D2} = \dots = I_{D8} = 0.5I_{D9} = 100 \text{ } \mu\text{A}$$

$$V_{OV1} = V_{OV2} = \dots = V_{OV8} = V_{OV9} = 0.5 \text{ V}$$

$$g_{m1} = g_{m2} = \dots = g_{m8} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 100 \times 10^{-6}}{0.5} = 0.4 \text{ mA/V}$$

$$r_{o1} = r_{o2} = \dots = r_{o8} = \frac{1}{\lambda I_{D1}} = \frac{1}{0.278 \times 100 \times 10^{-6}} = 36 \text{ k}$$

NMOS: Q1, Q2, Q3, & Q4:

$$I_{D1} = 0.5 \mu_n C_{ox} (W/L)_1 V_{OV1}^2$$

$$100 \times 10^{-6} = 0.5 \times 100 \times 10^{-6} (W/L)_1 \times (0.5)^2$$

$$(W/L)_4 = (W/L)_3 = (W/L)_2 = (W/L)_1 = 8$$

PMOS: Q5, Q6, Q7, & Q8:

$$I_{D5} = 0.5 \mu_p C_{ox} (W/L)_5 V_{OV5}^2$$

$$100 \times 10^{-6} = 0.5 \times 25 \times 10^{-6} (W/L)_1 \times (0.5)^2$$

$$(W/L)_8 = (W/L)_7 = (W/L)_6 = (W/L)_5 = 32$$

$$A_d = \frac{v_{o,d}}{v_d} = -2 \times \frac{v_{o,1d}}{v_d} = \frac{v_{o,1d}}{-0.5v_d}$$

 $g_{m1} = g_{m2} = ... = g_{m8} = 0.4 \text{ mA/V}$ $r_{o1} = r_{o2} = ... = r_{o8} = 36 \text{ k}$

Method 1: Use formula for Cascode Amplifier on Lecture Set 6, slide 14 (which assumes $g_m r_o >> 1$):

$$A_d = \frac{v_{o,1d}}{-0.5v_{\odot}} = -0.5 (g_m r_o)^2$$

$$A_d = -0.5(0.4 \times 10^{-3} \times 36 \times 10^3)^2 = -104$$

Method 2: Use multistage amplifier calculations (similar to Lecture Set 6, slide 14 but not assuming $g_m r_o >> 1$):

$$R'_{L} = r_{o5}(1 + g_{m5}r_{o7}) + r_{o7}$$
$$= 36 \times 10^{3} \times (1 + 0.4 \times 36) + 36 \times 10^{3} = 590 \text{ k}$$

$$A_{\nu Q3} = v_{o1,d} / v_1 \approx g_{m3} (r_{o3} \parallel R_L')$$

= 0.4×10⁻³ × (36 k || 590k) = 13.6

$$R_{i3} = \frac{r_{o3} + R'_L}{1 + g_{m3}r_{o3}} = 40.6 \text{ k}$$

$$A_{vQ1} = v_1 / (-0.5v_d) = -g_{m1}(r_{o1} \parallel R_{i3})$$
$$= -0.4 \times 10^{-3} \times (36 \text{ k} \parallel 40.6 \text{k}) = -7.63$$

Differential Mode Half Circuit

$$g_m r_o >> 1$$
 is a good approximations

$$A_d = A_{vQ3} A_{vQ1} = -103.8$$

Exercise 5: Assume Q3 and Q4 as well Q1 and Q2 are identical. Compute the differential gain.

This is a practice problem in constructing half-circuit.

Half-circuit for differential Gain Zero voltage at symmetry line

Replace Q3 by Elementary R forms

$$A_{d} = \frac{v_{o,d}}{v_{d}} = \frac{v_{o,1d}}{-0.5v_{d}}$$
$$= -g_{m1}(r_{o1} || r_{o3} || R_{P})$$

Exercise 6: Compute the differential gain.

This problem has it all, half circuit, constructing resistances from elementary R form, and Cascode amplifier.

Differential-Mode half-circuit

Since R_p value is not given, we cannot simplify R_L expression using $g_m r_o >> 1$.

$$A_{vQ3} = v_{o1,d} / v_1 \approx g_{m3}(r_{o3} \parallel R_L') \qquad R_{i3} = \frac{r_{o3} + R_L'}{1 + g_{m3}r_{o3}} \qquad A_{vQ1} = v_1 / (-0.5v_d) = g_{m1}(r_{o1} \parallel R_{i3})$$

$$A_d = A_{vQ3} A_{vQ1} = -g_{m1} g_{m3} (r_{o1} || R_{i3}) (r_{o3} || R'_L)$$

Exercise 7: What is the input common-mode range in the circuit below. Q1 and Q2 are Identical and $R_{\rm D}$ = 500.

Use
$$\mu_n C_{ox} \left(W/L \right) = 8 \text{ mA/V}^2$$
 , $V_t = 0.5 \text{ V}$ and $V_{G3} = -1 \text{ V}$.

- ➤ The input common-mode level is the range of DC values that can be applied to the gate of Q1 and Q2 (bias + signal) for which transistors remain in saturation.
 - Basically we are looking for range of DC voltages (i.e., bias) that can be applied to Q1 and Q2 while keeping them in saturation.
 - Then, for any given bias voltage, we can calculate the range of common-mode signals that can be applied to the circuit.
- ➤ There are two limits: 1) for Q1 and Q2 remain in saturation, 2) for Q3 to remain in saturation.
- It is straight forward to extend this to active loads.

Assume Q1 and Q2 in Saturation

$$1 \times 10^{-3} = I_{D1} = 0.5 \mu_n C_{ox} (W/L) V_{OV1}^2 = 4 \times 10^{-3} V_{OV1}^2$$

$$V_{OV1} = 0.5 \text{ V}$$

$$V_{GS1} = V_{OV1} + V_t = 1 \text{ V}$$

$$V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V}$$

$$V_{OV3} = V_{GS3} - V_t = V_{G3} - V_{S3} - V_t = -1 - (-2) - 0.5 = 0.5 \text{ V}$$

$$V_{DS3} \ge V_{OV3}$$

$$V_{D3} - V_{S3} = V_S - (-2) \ge 0.5$$

$$V_S \ge -2 + 0.5 = -1.5 \text{ V}$$

$$V_{DS1} \ge V_{OV1}$$

$$V_{D1} - V_{S1} = 1.5 - V_S \ge 0.5$$

$$V_S \le 1.5 - 0.5 = 1 \text{ V}$$

$$-1.5 \le V_S \le 1 \text{ V}$$

$$V_{GS1} = V_{CM} - V_{S}$$

$$V_{\rm S} = V_{CM} - 1$$

$$-1.5 \le V_{CM} - 1 \le 1$$

$$-0.5 \le V_{CM} \le 2 \text{ V}$$

Exercise 8: Circuit below is designed to operate at zero bias voltage at the gate of Q1 and Q2 (Q1 & Q2 are matched and λ = 0). The practical circuit, however includes a slight mis-match of R_{D1} = R_D – 0.5 ΔR_D and R_{D2} = R_D + 0.5 ΔR_D (ΔR_D / R_D is small).

- A) If $v_1 = v_2 = 0$, find $V_o = v_{o2} v_{o1}$ (Differential DC voltage at the output).
- B) For what values of V_{OS} = $v_{\rm 2}$ $v_{\rm 1}$, the DC output voltage will be zero. Ignore channel-length modulation.

- ➤ No amplifier chip can be manufactured with perfect symmetry. Mis-matches not only affect CMRR but DC voltages.
- ightharpoonup Differential DC voltage at the output and the input offset voltage, V_{OS} , are important specs. Chips typically include pins for feedback to zero out these voltages.
- Note: v_1 and v_2 are DC values in this problem, they can be viewed either as mis-matched bias (and no signal) and/or signal (but with a matched "zero" bias).

A) If $v_1 = v_2 = 0$, find $V_o = v_{o2} - v_{o1}$ (Differential DC voltage at the output):

$$R_{D1} = R_D - 0.5\Delta R_D$$
 & $R_{D2} = R_D + 0.5\Delta R_D$

Since transistors are matched and $V_{GS1} = V_{GS2}$ (because $v_1 = v_2$):

$$I_{D1} = I_{D2} = 0.5I_o$$

$$\begin{aligned} v_{o1} &= V_{D1} = V_{DD} - R_{D1}I_{D1} = V_{DD} - 0.5I_o(R_D - 0.5\Delta R_D) \\ v_{o2} &= V_{D2} = V_{DD} - R_{D2}I_{D2} = V_{DD} - 0.5I_o(R_D + 0.5\Delta R_D) \end{aligned}$$

$$V_o = v_{o2} - v_{o1} = -0.5I_o \Delta R_D$$
 Output Offset Voltage

B) For what values of $V_{OS} = v_2 - v_1$, the DC output voltage will be zero. Ignore channel-length modulation.

$$V_o = v_{o2} - v_{o1} = -0.5I_o \Delta R_D$$

 $I_{D1} = I_{D2} = 0.5I_o$

Output Offset Voltage

Method 1: Viewing V_{OS} as the signal.

The bias voltages remain at zero and V_o has the above value. A differential signal v_d = V_{OS} is applied to the circuit leading to a differential output , $v_{o,d}$. We want to find V_{OS} such that $v_{o,d}$ + V_o = 0

$$v_{1} = -0.5 V_{OS} \text{ and } v_{2} = +0.5 V_{OS}$$

$$v_{o1,d} = -g_{m} R_{D1} (-0.5 V_{OS}) = +0.5 g_{m} R_{D1} V_{OS}$$

$$v_{o2,d} = -g_{m} R_{D2} (+0.5 V_{OS}) = -0.5 g_{m} R_{D2} V_{OS}$$

$$v_{o,d} = v_{o2,d} - v_{o1,d} = -0.5 g_{m} V_{OS} (R_{D2} + R_{D1})$$

$$v_{o,d} = -0.5 g_{m} V_{OS} [R_{D} + \Delta R_{D} + R_{D} - \Delta R_{D}]$$

$$v_{o,d} = -g_{m} V_{OS} R_{D} = -V_{o}$$

$$g_{m} R_{D} V_{OS} = -0.5 I_{o} \Delta R_{D} \rightarrow \frac{2I_{D}}{V_{OS}} R_{D} V_{OS} = -I_{D1} \Delta R_{D}$$

Input Offset Voltage

$$V_{OS} = -0.5V_{OV1} \times \frac{\Delta R_D}{R_D}$$

Method 2: Viewing V_{OS} as the bias voltage:

For:
$$V_{G1} = V_{G2} = 0 \Rightarrow I_{D1} = I_{D2} = 0.5I_o = 0.5\mu_n C_{ox}(W/L)V_{OV}^2$$

Find: $V_{G2} = +0.5V_{os}$ and $V_{G1} = -0.5V_{os}$ such that $V_o = v_{o2} - v_{o1} = 0$
 $I_{D1} = 0.5\mu_n C_{ox}(W/L)(V_{OV} - 0.5V_{OS})^2$ Dropping V_{OS}^2 assuming $V_{OS} << V_{OV}$ assuming $V_{OS} << V_{OV}$ Dropping $V_{OS}^2 << V_{OV}^2 << V_{OS}^2 << V_{OV}^2 << V_{OS}^2 << V_{OV}^2 << V_{OS}^2$

Exercise 9: Consider the circuit below with $\mu_n C_{ox}$ = 90 μ A/V², $\mu_p C_{ox}$ = 30 μ A/V², V_{tn} = $-V_{pn}$ = 0.7 V and V_{An} = $-V_{Ap}$ = 20 V. The circuit is to operate such that all transistors operate at V_{OV} = 0.5 V, I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{ref} = 0.2 mA, and $(W/L)_5$ = $(W/L)_6$.

- a) Design the circuit (i.e., find (W/L) of all transistors).
- b) Find the differential gain.
- c) Find the common mode response at v_{o1} (i.e., v_{o1}/v_{CM}).
- d) Find the input common-mode range
- e) Find the allowable range of the output voltage. Ignore channel-length modulation in biasing calculations.

4) Qref: The reference leg of current mirror for the circuit

6) Q7: Providing "I_{ref}" for Q6

a) Find (W/L of all transistors)

$$\begin{split} I_{D1} &= I_{D2} = I_{D3} = I_{D4} = I_{ref} = 0.2 \text{ mA,} \\ \text{and } (W/L)_5 &= (W/L)_6 \;. \end{split}$$

Step 1: Compute all currents.

$$I_{D5} = I = I_{D1} + I_{D2} = 0.4 \text{ mA}$$

$$I_{D6} = \frac{(W/L)_6}{(W/L)_5} \times I_{D5} = 0.4 \text{ mA}$$

$$I_{D7} = I_{D6} = 0.4 \text{ mA}$$

Step 2: Compute (W/L)s (V_{ov} = $0.5~{
m V}$)

NMOS: Qref, Q3, Q4, and Q7

$$0.2 \times 10^{-3} = I_{ref} = 0.5 \mu_n C_{ox} (W/L)_{ref} V_{OV}^2 = 0.5 \times 90 \times 10^{-6} (W/L)_{ref} (0.5)^2$$
$$(W/L)_{ref} = 17.8$$

$$I_{D3} = I_{D4} = I_{ref} = 0.2 \text{ mA} \implies (W/L)_3 = (W/L)_4 = (W/L)_{ref} = 17.8$$

$$I_{D7} = 2I_{ref} = 0.4 \text{ mA} \implies (W/L)_7 = 2(W/L)_{ref} = 35.6$$

PMOS: Q1, Q2, Q5, and Q6

$$0.2 \times 10^{-3} = I_{D1} = 0.5 \mu_p C_{ox} (W/L)_1 V_{OV}^2 = 0.5 \times 30 \times 10^{-6} (W/L)_1 (0.5)^2$$
$$(W/L)_1 = 53.3$$

$$I_{D2} = I_{D1} = 0.2 \text{ mA} \implies (W/L)_2 = (W/L)_1 = 53.3$$

$$I_{D5} = I_{D6} = 2I_{D1} = 0.4 \text{ mA} \implies (W/L)_5 = (W/L)_6 = 2(W/L)_1 = 107$$

Small signal parameters:

$$g_{m2} = g_{m1} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 0.2 \times 10^{-3}}{0.5} = 8 \times 10^{-4} \quad \text{A/V}$$

$$r_{o2} = r_{o1} = \frac{V_{A1}}{I_{D1}} = \frac{20}{0.2 \times 10^{-3}} = 100 \text{ k}$$

$$r_{o4} = r_{o3} = \frac{V_{A3}}{I_{D3}} = \frac{20}{0.2 \times 10^{-3}} = 100 \text{ k}$$

$$r_{o5} = \frac{V_{A5}}{I} = \frac{20}{0.4 \times 10^{-3}} = 50 \text{ k}$$

b) Find the differential gain:

c) Find common mode response, v_{o1} :

$$A_d = \frac{v_{o,1d}}{-0.5v_d} = -g_{m1}(r_{o1}||r_{o3})$$
$$A_d = -8 \times 10^{-4} (100k || 100k) = -40$$

$$\frac{v_{o1,c}}{v_c} = -\frac{g_{m1}r_{o3}}{1 + 2g_{m1}r_{o5} + r_{o3}/r_{o1}}$$

$$\frac{v_{o1,c}}{v_c} = -\frac{8 \times 10^{-4} \times 100 \times 10^3}{1 + 2 \times 8 \times 10^{-4} \times 50 \times 10^3 + 1}$$

$$\frac{v_{o2,c}}{v_c} = \frac{v_{o1,c}}{v_c} = -\frac{80}{1 + 80 + 1} = -0.98$$

d) Find input common mode range:

$$V_{S1} - V_{CM} = V_{OV} + |V_{tp}| = 1.2 \text{ V} \implies V_{S1} = V_{CM} + 1.2$$

The above equation indicates V_{S1} changes and tracks V_{CM} as V_{CM} changes. V_{S1} is limited by two criteria below:

1) Q5 in saturation:

$$V_{SD5} = 2.5 - V_{D5} \ge V_{OV} \implies V_{S1} = V_{D5} \le 2.5 - 0.5 = 2 \text{ V}$$

2) Q1/Q3 in saturation:

$$\begin{vmatrix} V_{SD1} \ge V_{OV1} \\ V_{DS3} \ge V_{OV3} \end{vmatrix} - \begin{vmatrix} V_{SD1} + V_{DS3} \ge V_{OV} + V_{OV} = 1 \text{ V} \\ V_{S1} - (-2.5) \ge 1 \implies V_{S1} \ge -1.5 \end{vmatrix}$$

$$-1.5 \le V_{CM} + 1.2 \le 2.0 \text{ V}$$

 $-1.5 \le V_{S1} \le 2.0 \text{ V}$

$$-2.7 \le V_{CM} \le 0.8 \text{ V}$$

Note that the requirement on Q1/Q3 in saturation is usually more restrictive than above as Q1/Q3 do not usually reach saturation together (calculation above represents "the best case"). However, correct solution requires that we include channel-length modulation and calculate the relationship between V_{SD1} & V_{DS3} (same arguments apply to part e).

e) Find allowable range of output voltage:

1) Q3 in saturation:

$$V_{DS3} = v_{o1} - (-2.5) \ge V_{OV}$$

 $v_{o1} \ge -2.5 + 0.5 = -2 \text{ V}$

2) Q1/Q5 in saturation:

$$V_{SD1} \ge V_{OV}$$

$$V_{SD5} \ge V_{OV}$$

$$\begin{array}{c} V_{SD1} \geq V_{OV} \\ V_{SD5} \geq V_{OV} \end{array} \\ \begin{array}{c} V_{SD5} + V_{SD1} \geq 2V_{OV} = 1 \text{ V} \\ V_{SD5} + V_{SD1} = 2.5 - v_{o1} \geq 1 \\ v_{o1} \leq 1.5 \text{ V} \end{array}$$

 $-2.0 \le v_{o1} \le 1.5 \text{ V}$

Exercise 10: Consider the circuit below with $\mu_n C_{ox}$ = $400~\mu\text{A/V}^2$, $\mu_p C_{ox}$ = $100~\mu\text{A/V}^2$, and V_{tn} = $-V_{pn}$ = 0.4~V. All transistors operate at V_{OV} = 0.2~V and I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = I_{ref} = 0.2~mA

- a) Design the circuit (i.e., find (W/L) of all transistors)
- b) Find the input common-mode range
- c) Find the differential gain ($\lambda = 0.2 \text{ V}^{-1}$)

5) Q3/Q4: asymmetric active load for differential amplifier

4) Qref: The reference leg of current mirror for the circuit

3) Q5: Currentmirror bias for differential 1) Q1 & Q2: NMOS Differential amplifier with single-ended output (1st stage)

a) Find (W/L of all transistors).

Step 1: Compute all currents.

$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = I_{ref} = 0.2 \text{ mA}$$

$$I_{D5} = I_{D1} + I_{D2} = 0.4 \text{ mA}$$

$$I_{D7} = I_{D6} = 0.2 \text{ mA}$$

Step 2: Compute (W/L)s (V_{ov} = $0.2~{ m V}$)

NMOS: Qref, Q1, Q2, and Q7 (all have same I_D and V_{OV})

$$0.2 \times 10^{-3} = I_{ref} = 0.5 \mu_n C_{ox} (W/L)_{ref} V_{OV}^2 \implies (W/L)_{ref} = 25$$

$$I_{D1} = I_{D2} = I_{D7} = I_{ref} = 0.2 \text{ mA} \implies (W/L)_1 = (W/L)_2 = (W/L)_7 = (W/L)_{ref} = 25$$

$$I_{D5} = 2I_{ref} = 0.4 \text{ mA} \implies (W/L)_5 = 2(W/L)_{ref} = 50$$

PMOS: Q3, Q4, and Q6 (all have same I_D and V_{OV})

$$0.2 \times 10^{-3} = I_3 = 0.5 \mu_p C_{ox} (W/L)_3 V_{OV}^2 \implies (W/L)_3 = 100$$

$$I_{D3} = I_{D4} = I_{D6} = 0.2 \text{ mA} \implies (W/L)_3 = (W/L)_4 = (W/L)_6 = 100$$

b) Find input common mode range:

$$V_{CM} - V_{S1} = V_{GS1} = V_{OV} + V_{tn} \implies V_{S1} = V_{CM} - 0.6 \text{ V}$$

Similar to problem 9, we look at $V_{\rm S1}$ limits:

1) Q5 in saturation:

$$V_{DS5} = V_{D5} - (-1) \ge V_{OV} \implies V_{S1} = V_{D5} \ge 0.2 - 1 = -0.8 \text{ V}$$

2) Q1/Q3 and Q2/Q4 in saturation (because the circuit is NOT symmetric, we need to consider both cases and choose the most restrictive one).

2A) Q1/Q3

$$V_{SD3} = V_{SG3} = V_{OV3} + |V_{tp}| = 0.6 \text{ V}$$

$$V_{SD3} = 1 - V_{D3} \implies V_{D3} = 0.4 \text{ V} = V_{D1}$$

$$V_{DS1} = V_{D1} - V_{S1} = 0.4 - V_{S1} \ge V_{OV} = 0.2 \text{ V}$$

$$V_{S1} \leq 0.2 \text{ V}$$

2B) Q2/Q4

$$V_{SG6} = V_{OV6} + |V_{tp}| = 0.6 \text{ V}$$

$$V_{SG6} = 1 - V_{G6} \implies V_{G6} = 0.4 \text{ V} = V_{D2}$$

$$V_{DS2} = V_{D2} - V_{S2} = 0.4 - V_{S1} \ge V_{OV} = 0.2 \text{ V}$$

$$V_{S1} \leq 0.2 \text{ V}$$

$$-0.8 \le V_{S1} \le 0.2 \text{ V}$$
 $\Rightarrow -0.8 \le V_{CM} - 0.6 \le 0.2 \text{ V}$ $\Rightarrow -0.2 \le V_{CM} \le 0.6 \text{ V}$

$$-0.2 \le V_{CM} \le 0.6 \text{ V}$$

c) Find the differential gain ($\lambda = 0.2 \text{ V}^{-1}$):

$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = 0.2 \text{ mA}$$

$$I_{D5} = I_{D1} + I_{D2} = 0.4 \text{ mA}$$

$$I_{D6} = I_{D7} = 0.2 \text{ mA}$$

$$g_{m2} = g_{m1} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 0.2 \times 10^{-3}}{0.2} = 2 \times 10^{-3} \text{ A/V}$$

$$r_{o2} = r_{o1} = \frac{1}{\lambda I_{D1}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}$$

$$r_{o4} = r_{o3} = \frac{1}{\lambda I_{D3}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}$$

$$r_{o5} = \frac{1}{\lambda I_{D5}} = \frac{1}{0.2 \times 0.4 \times 10^{-3}} = 12.5 \text{ k}$$

$$g_{m6} = \frac{2I_{D6}}{V_{OV6}} = \frac{2 \times 0.2 \times 10^{-3}}{0.2} = 2 \times 10^{-3} \quad \text{A/V}$$
$$r_{o6} = \frac{1}{\lambda I_{D6}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}$$

$$r_{o7} = \frac{1}{\lambda I_{D7}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}$$

Q1 & Q2: NMOS Differential amplifier with single-ended output (1st stage)

$$\frac{v_x}{v_d} = -g_{m1}(r_{o1} || r_{o3} || R_L)$$

$$\frac{v_x}{v_d} = -2 \times 10^{-3} (25k || 25k) = 25$$

Q6: PMOS CS amplifier (2nd stage)

$$\frac{v_o}{v_x} = -g_{m6}(r_{o6} || r_{o7})$$

$$\frac{v_o}{v_x} = -2 \times 10^{-3} (25k || 25k) = 25$$

$$R_{i2} = \infty$$

$$A_d = \frac{v_o}{v_d} = \frac{v_o}{v_x} \times \frac{v_x}{v_d} = 25 \times 25 = 625$$