class10

1. Importing candy data

```
candy_file <- read.csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-
candy = data.frame(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruitv	caramel	peanut	yalmondy	nougat	crispedr	icewafer
100 Grand		1	0	1	r	0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar p	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	0		0.732	0	.860	66.97173	
3 Musketeers	0	1	0		0.604	0	.511	67.60294	
One dime	0	0	0		0.011	0	.116	32.26109	
One quarter	0	0	0		0.011	0	.511 4	46.11650	
Air Heads	0	0	0		0.906	0	.511 !	52.34146	
Almond Joy	0	1	0		0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

ncol(candy)

[1] 12

But 3 of those columns aren't candy types, so there are 9 total candy types.

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

2. What is your favorite candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["100 Grand", ]$winpercent
```

[1] 66.97173

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

Side-note: the skimr::skim() function

library("skimr")
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent variable/column seems to be on a different scale than the other variables/columns of the dataset since its mean is 50.316...%, while the other columns' means are between 0-1.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

It represents whether a specific candy contain chocolate. The candy would get a 0 in the candy\$chocolate column if it doesn't contain chocolate and get a 1 if it does.

3. Overall Candy Rankings >Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

	${\tt chocolate}$	fruity	caram	el	peanutyalr	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976

Boston Baked Beans		0	0	0	1	0.313	0.511
Chiclets		0	0	0	1	0.046	0.325
Super Bubble		0	0	0	0	0.162	0.116
Jawbusters		0	1	0	1	0.093	0.511
7	winpercent						
Nik L Nip	22.44534						
Boston Baked Beans	23.41782						
Chiclets	24.52499						
Super Bubble	27.30386						
Jawbusters	28.12744						

Q14. What are the top 5 all time favorite candy types out of this set?

```
head(candy[order(candy$winpercent, decreasing=TRUE), ], n=5)
```

		chocolate	fruity	cara	nel ·	peanutyalr	nondy	nougat
Reese's Peanut Butter co	ир	1	0		0		1	0
Reese's Miniatures	-	1	0		0		1	0
Twix		1	0		1		0	0
Kit Kat		1	0		0		0	0
Snickers		1	0		1		1	1
		crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter c	up		0	0	0	0		0.720
Reese's Miniatures			0	0	0	0		0.034
Twix			1	0	1	0		0.546
Kit Kat			1	0	1	0		0.313
Snickers			0	0	1	0		0.546
		priceperce	ent win	percei	nt			
Reese's Peanut Butter c	up	0.6	651 8 ₄	4.1802	29			
Reese's Miniatures		0.2	279 8	1.8662	26			
Twix		0.9	906 8	1.6429	91			
Kit Kat		0.5	511 7	6.7686	30			
Snickers		0.6	551 7	6.673	78			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```



```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()+
  theme(
    axis.text.y = element_text(size = 4) # Reduce text size
)
```


Adding useful color to the bar chart:

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols) +
   theme(
       axis.text.y = element_text(size = 4)  # Reduce text size
   )
```


Now, for the first time, using this plot we can answer questions like: > Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Nik L Nip

4. Taking a look at pricepercent

```
# How about a plot of price vs win
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures are ranked the highest in terms of winpercent for the least money (located in the bottom right quadrant-ish of the plot).

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip is the most expensive and the least popular. Here are the top 5 most expensive candies:

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

5. Exploring the correlation structure

```
library(corrplot)
```

corrplot 0.95 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

chocolate & fruity, bar & pluribus

Q23. Similarly, what two variables are most positively correlated? winpercent & chocolate, also bar and chocolate

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                         PC3
                                                 PC4
                                                                PC6
                                                                         PC7
                                  PC2
                                                        PC5
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                    PC9
                                           PC10
                                                   PC11
                                                           PC12
Standard deviation
                       0.74530\ 0.67824\ 0.62349\ 0.43974\ 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Now we can plot our main PCA score plot of PC1 vs PC2.

plot(pca\$x[,1], pca\$x[,2])

plot(pca\$x[,1:2], col=my_cols, pch=16)

Make a new data-frame with our PCA results and candy data
my_data <- cbind(candy, pca\$x[,1:3])</pre>

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

library(plotly)

```
Attaching package: 'plotly'
```

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

ggplotly(p)

file:///private/var/folders/_d/vvmf9_190rd4kq5m6g3dy9s00000gn/T/Rtmp4TbjWx/file20d349c7cfca


```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus. This makes sense since a lot of hard fruit candies are sold together in big packs, like Life Savers.