Nombres réels, relations binaires

SOLUTION 1.

1. On a clairement dans le premier cas

d(1,A)=0,

dans le deuxième

d(2, A) = 1,

et dans le troisième

d(1/2, A) = 0.

2. L'ensemble

$$\Omega = \left\{ |x - \alpha| \mid \alpha \in A \right. \right\}$$

est une partie non vide (puisque A est non vide) de \mathbb{R} , Ω est de plus minorée par 0, Ω admet donc une borne inférieure.

- 3. La borne inférieure d(x, A) n'est pas nécessairement un plus petit élément :
 - ▶ si A =]0,1] et x = 0, on a $\Omega =]0,1]$ et d(x,A) = 0 et $0 \notin A$, la borne inférieure n'est donc pas un plus petit élément.
 - \blacktriangleright si A = [0, 1] et x = 0, on a $\Omega = [0, 1]$ et d(x, A) = 0 et $0 \in A$, la borne inférieure est donc un plus petit élément.
- **4.** Soit $\varepsilon > 0$, puisque \mathbb{Q} est dense dans \mathbb{R} ,

$$\mathbb{Q}\cap]x-\varepsilon,x+\varepsilon \neq \emptyset,$$

ainsi $\exists r \in \mathbb{Q}$ tel que

$$|x-r|<\varepsilon$$

et donc $d(x,\mathbb{Q}) \leqslant \varepsilon$. Par définition de la borne inférieure de Ω , $d(x,\mathbb{Q}) \leqslant \varepsilon$. Puisque $d(x,\mathbb{Q}) \geqslant 0$ et

$$\forall \varepsilon > 0$$
 , $d(x, \mathbb{Q}) \leqslant \varepsilon$

on peut conclure que $d(x,\mathbb{Q}) = 0$. $\mathbb{R} \setminus \mathbb{Q}$ étant dense dans \mathbb{R} , on adapte sans peine ce qui précède pour montrer que

$$\forall x \in \mathbb{R}$$
 , $d(x, \mathbb{R} \setminus \mathbb{Q}) = 0$.

5. Soit $(x,y) \in \mathbb{R}^2$. $\forall \alpha \in \mathbb{R}$,

$$|x - a| \leqslant |x - y| + |y - a|,$$

or $\forall \alpha \in A$,

$$d(x, A) \leq |x - a|$$

ainsi $\forall a \in A$

$$d(x, A) - |x - y| \le |y - \alpha|.$$

Le nombre d(x, A) - |x - y| est donc un minorant de l'ensemble

$$\{ |y-\alpha|, \alpha \in A \},$$

d'où

$$d(x, A) - |x - y| \le d(y, A)$$

soit

$$d(x, A) - d(y, A) \leq |x - y|,$$

et puisque x et y jouent des rôles symétriques, on a aussi

$$d(y, A) - d(x, A) \leq |x - y|,$$

ainsi

$$|d(x,A) - d(y,A)| \le |x - y|.$$

SOLUTION 2.

Posons, pour tout réel x,

$$f(x) = \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor - \lfloor nx \rfloor.$$

 \blacktriangleright La fonction f est 1/n-périodique car, pour tout réel x,

$$f(x+1/n) = \sum_{k=0}^{n-1} \left\lfloor x + \frac{1}{n} + \frac{k}{n} \right\rfloor - \left\lfloor n(x+1/n) \right\rfloor$$

$$= \sum_{k=0}^{n-1} \left\lfloor x + \frac{k+1}{n} \right\rfloor - \left\lfloor nx + 1 \right\rfloor$$

$$= \sum_{k=1}^{n} \left\lfloor x + \frac{k}{n} \right\rfloor - \left\lfloor nx \right\rfloor - 1$$

$$= \sum_{k=1}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor + \left\lfloor x + 1 \right\rfloor - \left\lfloor nx \right\rfloor - 1$$

$$= \sum_{k=1}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor + \left\lfloor x \right\rfloor + 1 - \left\lfloor nx \right\rfloor - 1$$

$$= \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor - \left\lfloor nx \right\rfloor$$

$$= f(x)$$

 \diamond Soit alors $x \in [0, 1/n[$. On a |nx| = 0 et

$$\forall 0 \leqslant k \leqslant n-1, \quad 0 \leqslant x + \frac{k}{n} < \frac{n-1+1}{n} = 1$$

d'où

$$\forall 0\leqslant k\leqslant n-1, \quad \left|x+\frac{k}{n}\right|=0,$$

et finalement f(x) = 0.

▶ La fonction f est 1/n-périodique et nulle sur [0, 1/n], elle est donc nulle sur \mathbb{R} .

SOLUTION 3.

1. Soit $n \ge 1$. L'inégalité

$$\frac{1}{\sqrt{n+1}}<2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}$$

est équivalente à

$$\frac{1}{\sqrt{n+1}}<2\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}},$$

i.e.

$$2\sqrt{n}<\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}.$$

Comme

$$\sqrt{n}<\sqrt{n+1},$$

cette dernière inégalité est vraie, d'où l'inégalité initiale.

2. D'après le 1., pour tout $1 \le k \le 9999$, on a :

$$\frac{1}{\sqrt{k+1}}<2(\sqrt{k+1}-\sqrt{k})<\frac{1}{\sqrt{k}}.$$

En additionnant ces 9999 inégalités, on aboutit après telescopage à :

$$\alpha - 1 < 2(\sqrt{1000} - \sqrt{1}) < \alpha - \frac{1}{100}$$

d'où

$$198 + \frac{1}{100} < \alpha < 199$$

ainsi

$$|\alpha| = 198.$$

Solution 4.

Posons, pour tout réel x,

$$f(x) = \left| \frac{\lfloor nx \rfloor}{n} \right| - \lfloor x \rfloor.$$

▶ La fonction f est 1-périodique car, pour tout réel x,

$$f(x+1) = \left\lfloor \frac{\lfloor nx + n \rfloor}{n} \right\rfloor - \lfloor x + 1 \rfloor = \left\lfloor \frac{\lfloor nx \rfloor + n}{n} \right\rfloor - \lfloor x + 1 \rfloor$$
$$= \left\lfloor \frac{\lfloor nx \rfloor}{n} + 1 \right\rfloor - \lfloor x + 1 \rfloor = \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor + 1 - \lfloor x \rfloor - 1 = \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor - \lfloor x \rfloor$$
$$= f(x)$$

▶ Soit alors $x \in [0,1[$. On a $\lfloor x \rfloor = 0$ et $nx \in [0,n[$ d'où $\frac{\lfloor nx \rfloor}{n} \in [0,1[$ et donc

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = 0$$

et finalement f(x) = 0.

 \blacktriangleright La fonction f est 1-périodique et nulle sur [0,1[, elle est donc nulle sur \mathbb{R} .

SOLUTION 5.

Posons pour tout $x \in \mathbb{R}$,

$$g(x) = \left\lfloor \frac{x+1}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor - \lfloor x \rfloor.$$

On a $\forall x \in \mathbb{R}$,

$$g(x+1) = \left\lfloor \frac{x+1+1}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor - \lfloor x+1 \rfloor$$

$$= \left\lfloor \frac{x}{2} + 1 \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor - \lfloor x \rfloor - 1$$

$$= \left\lfloor \frac{x}{2} \right\rfloor + 1 + \left\lfloor \frac{x+1}{2} \right\rfloor - \lfloor x \rfloor - 1$$

$$= g(x)$$

Il suffit donc de prouver que g est nulle sur [0,1[. Soit alors $0 \le x < 1$. On a

$$\frac{x}{2}, \frac{x+1}{2} \in [0,1[,$$

d'où g(x) = 0 + 0 - 0 = 0.

SOLUTION 6.

1. On a clairement

$$\{54,465\} = 0,465$$
 et $\{-36,456\} = 0,544$.

2. Si $x \in \mathbb{Z}$,

$$\{-\mathbf{x}\} = \{\mathbf{x}\}.$$

Si $x \notin \mathbb{Z}$, on a $\lfloor -x \rfloor = -\lfloor x \rfloor - 1$ donc

$$\{-x\} = 1 - \{x\}.$$

3. on a $\forall x \in \mathbb{R}$,

$$\{x+1\}=x+1-\lfloor x+1\rfloor=x+1-\lfloor x\rfloor-1=\{x\}.$$

D'où l'allure du graphe de la partie fraction naire \dots

SOLUTION 7.

Puisque

$$x+y-1<\lfloor x+y\rfloor\leqslant x+y,$$

$$x-1<\lfloor x\rfloor\leqslant x$$

et

$$y - 1 < \lfloor y \rfloor \leqslant y$$

on a

$$-1 < |x + y| - |x| - |y| < 2$$

ainsi

$$|x + y| - |x| - |y| \in \{0, 1\}.$$

Les deux valeurs sont bien prises par l'expression car, par exemple,

$$|0+0|-|0|-|0|=0$$

 et

$$[1.5 + 1.5] - [1.5] - [1.5] = 1.$$

SOLUTION 8.

1. On a $\lfloor \sqrt{k} \rfloor = m$ si et seulement si

$$m \leq \sqrt{k} < m + 1$$

c'est-à-dire

$$m^2 \leqslant k < (m+1)^2.$$

2. On a

$$\begin{split} u_n &= \sum_{m=1}^n \sum_{k=m^2}^{(m+1)^2-1} \lfloor \sqrt{k} \rfloor = \sum_{m=1}^n \sum_{k=m^2}^{(m+1)^2-1} m \\ &= \sum_{m=1}^n m(2m+1) = 2 \sum_{m=1}^n m^2 - \sum_{m=1}^n m \\ &= \frac{m(m+1)(2m+1)}{3} - \frac{m(m+1)}{2} \\ &= \frac{m(m+1)(4m-1)}{6} \end{split}$$

SOLUTION 9.

1. Soit x tel que $\lfloor 2x - 1 \rfloor = \lfloor x + 1 \rfloor$. On a alors,

$$|2x-2| |2x-1| = |x+1| \le x+1$$

et donc 2x - 2 < x + 1, ie x < 3. De même,

$$x < \lfloor x+1 \rfloor = \lfloor 2x-1 \rfloor \leqslant 2x-1$$

et donc x < 2x - 1, ie 1 < x. Ainsi, toute solution de l'équation appartient à]1,3[.

Réciproquement ...

- ▶ Si $1 < x < \frac{3}{2}$, on a $\lfloor 2x 1 \rfloor = 1$ et $\lfloor x + 1 \rfloor = 2$, x n'est donc pas solution.
- ▶ Si $\frac{3}{2} \le x < 2$, on a $\lfloor 2x 1 \rfloor = 2$ et $\lfloor x + 1 \rfloor = 2$, x est donc solution.
- ▶ Si $2 \le x < \frac{5}{2}$, on a $\lfloor 2x 1 \rfloor = 3$ et $\lfloor x + 1 \rfloor = 3$, x est donc solution.
- $\blacktriangleright \ \mathrm{Si} \ \tfrac{5}{2} \leqslant x < 3, \, \mathrm{on} \ \mathrm{a} \ \lfloor 2x 1 \rfloor = 4 \ \mathrm{et} \ \lfloor x + 1 \rfloor = 4, \, x \ \mathrm{n'est} \ \mathrm{donc} \ \mathrm{pas} \ \mathrm{solution}.$

L'ensemble des solutions est donc

$$S = \left[\frac{3}{2}, \frac{5}{2}\right[.$$

2. Soit x tel que |x + 3| = |x - 1|. On a alors,

$$x + 2 < |x + 3| = |x - 1| \le x - 1$$

et donc x + 2 < x - 1, ie 2 < -1, ce qui est absurde. Il n'y a donc aucune solution.

SOLUTION 10.

On a
$$\forall x \geq 3/2$$
,

$$|3/2 - x| = |x - 3/2| = -1 + |x - 1/2|.$$

De même, $\forall x \leq 3/2$,

$$|3/2 - x| = |-x + 3/2| = 1 + |-x + 1/2|.$$

D'où l'allure du graphe de f sur \mathbb{R}

SOLUTION 11.

Posons, pour tout $x \in \mathbb{R}$

$$f(x) = \lfloor nx \rfloor - n \lfloor x \rfloor.$$

Comme

$$\forall x \in \mathbb{R}, \ f(x+1) = f(x),$$

il suffit d'établir l'inégalité sur [0, 1[. Or, sur cet intervalle,

$$\lfloor x \rfloor = 0$$

d'où

$$f(x) = \lfloor nx \rfloor \geqslant 0.$$

De plus, comme nx < n, on a

$$f(x) = \lfloor nx \rfloor \leqslant n - 1.$$

SOLUTION 12.

- 1. $A \neq \emptyset$ car $\emptyset \in A$. En effet, $f(\emptyset) \in [0,1]$ donc $f(\emptyset) \geqslant \emptyset$. A est clairement majorée par 1.
- 2. $0 \in A \text{ donc } 0 \le c$. De plus, 1 est un majorant de A. Comme c est le plus petit majorant de A, $c \le 1$. Par conséquent, $c \in [0, 1].$
- 3. Soit $x \in A$. On a $x \le c$. Comme f est croissante, on a $f(x) \le f(c)$. Comme $x \in A$, $x \le f(x) \le f(c)$. Ceci étant valable pour tout $x \in A$, on obtient après passage à la borne supérieure $c \leq f(c)$.
- 4. On a montré à la question précédente que $c \le f(c)$. Par croissance de f, on a donc $f(c) \le f(f(c))$. Donc $f(c) \in A$. Comme $c = \sup A$, on en déduit que $f(c) \le c$. Finalement f(c) = c et c est un point fixe de f.

SOLUTION 13.

- 1. Soit $n \in \mathbb{N}^*$ et k le nombre de chiffres de l'écriture décimale de n. On a donc $n \ge 10^{k-1}$ i.e. $k \le \log_{10} n + 1$ et $s_n \leq 9k$ puisque tout chiffre est inférieur ou égal à 9. Finalement, on obtient bien $s_n \leq 9(\log_{10} n + 1)$.
- 2. Soit $n \in \mathbb{N}^*$. Notons p le nombre de chiffres 9 par lequel se termine l'écriture décimale de n. Lorsque l'on ajoute 1 à n, on transforme les p derniers chiffres 9 en des 0 et on ajoute 1 au chiffre précédent les p derniers chiffres 9. Ainsi $s_{n+1} = s_n - 9p + 1 \leqslant s_n + 1$. On a donc $\frac{s_{n+1}}{s_n} \leqslant 1 + \frac{1}{s_n} \leqslant 2$ puisque $s_n \geqslant 1$. Bien évidemment, on a également $\frac{s_{n+1}}{s_n}\geqslant 0.$ Ainsi $\left(\frac{s_{n+1}}{s_n}\right)$ est bien bornée.

Puisque $\frac{s_2}{s_1}=2$, la borne supérieure de $\left\{\frac{s_{n+1}}{s_n}, n \in \mathbb{N}^*\right\}$ est 2 et elle est atteinte (c'est donc un maximum). De plus $\frac{s_{10^k}}{s_{10^k-1}} = \frac{1}{9^k} \xrightarrow[k \to +\infty]{} 0$ donc 0 est la borne inférieure de $\left\{\frac{s_{n+1}}{s_n}, n \in \mathbb{N}^*\right\}$. Cette borne n'est pas atteinte puisque $\frac{s_{n+1}}{s_n} > 0$ pour tout $n \in \mathbb{N}^*$.

Solution 14.

Posons $g(x) = \inf_{y \in B} f(x, y)$ pour tout $x \in A$ et $h(y) = \sup_{x \in A} f(x, y)$ pour tout $y \in B$. Soit $(x,y) \in A \times B$. Alors $g(x) \le f(x,y) \le h(y)$. Ceci étant vrai quelque soit le choix de $x \in A$, h(y) est un majorant de g sur A. Ainsi $\sup_{x \in A} g(x) \leq h(y)$. Cette dernière inégalité est vraie quelque soit le choix de $y \in B$ donc $\sup_{x \in A} g(x)$ est un minorant de h sur B. Ainsi $\sup_{x \in A} g(x) \leq \inf_{y \in B} g(y)$. Cette dernière inégalité est celle demandée par l'énoncé.

SOLUTION 15.

Remarquous que pour tout $x \in \mathbb{R}$, $q(x) = \inf f([x, +\infty[) \text{ et } h(x) = \sup f([x, +\infty[).$ Soit $(x_1, x_2) \in \mathbb{R}^2$ tel que $x_1 \leq x_2$.

Puisque $x_1 \leqslant x_2$, $[x_2, +\infty[\subset [x_1, +\infty[$ puis $f([x_2, +\infty[)\subset f([x_1, +\infty[)$. Il s'ensuit que inf $f([x_1, +\infty[)\leqslant f([x_2, +\infty[)$ i.e. $g(x_1) \leq g(x_2) \text{ et sup } f([x_2, +\infty[)] \leq \sup f([x_1, +\infty[) \text{ i.e. } h(x_2)] \leq h(x_1).$

Ainsi g est croissante et h est décroissante.

SOLUTION 16.

Soit $x \in A \cup B$. Alors, puisque $x \in A$ ou $x \in B$,

$$x \leqslant \max [\sup(A), \sup(B)],$$

 $A \cup B$ est donc majoré et sup $(A \cup B)$ étant le plus petit majorant de $A \cup B$,

$$\sup(A \cup B) \leq \max [\sup(A), \sup(B)].$$

De plus, puisque A et B sont inclus dans $A \cup B$,

$$\sup(A) \leqslant \sup(A \cup B)$$
 et $\sup(B) \leqslant \sup(A \cup B)$,

et ainsi

$$\sup(A \cup B) \geqslant \max[\sup(A), \sup(B)],$$

et finalement

$$\sup(A \cup B) = \max \big[\sup(A), \sup(B) \big].$$

On prouve sans peine selon le même schéma la formule

$$\inf(A \cup B) = \min [\inf(A), \inf(B)].$$

SOLUTION 17.

1. Puisque $\forall n \geqslant 1$,

$$2-\frac{1}{n}\geqslant 1$$

et que $1 \in \mathcal{A}$, cet ensemble admet 1 comme plus petit élément, donc comme borne inférieure. De plus puisque $\forall n \geqslant 1$,

$$2-\frac{1}{n}\leqslant 2$$

et que la suite déléments de \mathcal{A} de terme général 2-1/n tend vers 0, \mathcal{A} admet une borne inférieure qui vaut 2.

2. Puisque $\forall n \ m \in \mathbb{Z}^*$,

$$-1 = 1 - 1 - 1 \leqslant 1 - \frac{1}{n} - \frac{1}{m} \leqslant 3$$

et que $3, -1 \in \mathcal{B}$, cet ensemble admet -1 comme plus petit élément (donc comme borne inférieure) et 3 comme plus grand élément (donc comme borne supérieure).

3. Puisque $\forall n \ m \in \mathbb{Z}^*$ avec $m \neq n$,

$$0 \leqslant 1 - \frac{1}{n - m} \leqslant 2$$

et que $0, 2 \in \mathcal{C}$, cet ensemble admet 0 comme plus petit élément (donc comme borne inférieure) et 2 comme plus grand élément (donc comme borne supérieure).

4. De l'inégalité $(p - q)^2 \ge 0$, on conclut sans peine que

$$\frac{pq}{p^2+q}\leqslant \frac{1}{2}.$$

On en déduit que \mathcal{D} est majoré ; puisque $1/2 \in \mathcal{A}$, 1/2 est le plus grand élément de \mathcal{D} (donc la borne supérieure). De plus \mathcal{O} minore clairement \mathcal{D} et \mathcal{D} contient la suite de terme général

$$u_n = \frac{n}{n^2 + 1},$$

qui tend vers 0, ainsi $\inf(\mathcal{D}) = 0$.

5. 0 minore clairement & et puisque & contient la suite de terme général

$$u_n = \frac{1}{2^n + 3^n},$$

qui tend vers 0, $\inf(\mathcal{E}) = 0$. Prouvons que $\forall m, n \geq 0$,

$$\frac{2^n}{2^m+3^{m+n}}\leqslant \frac{1}{2},$$

c'est-à-dire

$$2^{n+1} \le 2^m + 3^{m+n}$$
.

Si $m \ge 1$, l'inégalité est acquise car alors

$$3^{m+n} \geqslant 3^{n+1} \geqslant 2^{n+1}$$
.

Examinons le cas où m = 0: prouvons par récurrence que $\forall n \ge 0$,

$$3^{n} + 1 \ge 2^{n+1}$$
.

Línégalité est banale pour n=0. Supposons-la vérifiée pour $n\geqslant 0$. On a alors

$$3^{n+1} + 1 \geqslant 3 \times [2^{n+1} - 1] + 1.$$

De plus

$$3 \times [2^{n+1} - 1] + 1 = 2^{n+2} + 2^{n+1} - 2 \ge 2^{n+2},$$

l'inégalité est donc vérifiée au rang n+1, elle est donc vraie $\forall\, n\geqslant 0$ d'après le principe de récurrence . On a donc , puisque $1/2\in\mathcal{E}$, $\sup(\mathcal{E})=1/2$.

6. Puisque $\forall n, q \geq 0$,

$$\frac{n+2}{n+1} + \frac{q-1}{q+1} = 2 + \frac{1}{n+1} - \frac{2}{q+1},$$

on a

$$1 = 2 + 1 - 2 \leqslant \frac{n+2}{n+1} + \frac{q-1}{q+1} \leqslant 2 + 1 = 0.$$

Puisque $1 \in \mathcal{F}$, $\inf(\mathcal{F}) = 1$. De plus \mathcal{F} contient la suite de terme général

$$v_n = 3 - \frac{2}{n+1},$$

qui tend vers 3 donc $\sup(\mathcal{F}) = 3$.

7. Puisque $\forall n, m \geq 1$,

$$m^2 + 2mn + n^2 \ge 0$$

on a

$$\frac{\mathfrak{m}\,\mathfrak{n}}{\mathfrak{n}^2+\mathfrak{m}\,\mathfrak{n}+\mathfrak{m}^2}\leqslant\frac{1}{3}\,,$$

et puisque $1/3 \in \mathcal{G}$, $\sup(\mathcal{G}) = 1/3$. De plus 0 minore \mathcal{G} et cet ensemble contient la suite de terme général

$$w_n = \frac{n}{n^2 + n + 1},$$

qui tend vers 0 donc $\inf(9) = 0$.

SOLUTION 18.

L'ensemble, que nous noterons A, est non vide et borné car $\forall n \geq 1$,

$$-1\leqslant \frac{(-1)^n}{n}\leqslant 1.$$

A admet donc une borne supérieure et une borne inférieure. Puisque $\forall n \geq 3$,

$$-1<\frac{(-1)^n}{n}<\frac{1}{2},$$

et $1/2, -1 \in A$, $\sup(A) = 1/2$ et il s'agit d'un plus grand élément. De même $\inf(A) = -1$ qui est aussi un plus petit élément.

SOLUTION 19.

Si A et B sont bornées non vides, on a pour tous $a \in A$ et $b \in B$,

$$\inf A \leqslant a \leqslant \sup A$$
 et $\inf B \leqslant b \leqslant \sup B$,

d'où en sommant

$$\forall a \in A, b \in B : \inf A + \inf B \leq a + b \leq \sup A + \sup B.$$

Cela montre que A + B est bornée et possède donc une borne supérieure et une borne inférieure. En plus, ça exhibe inf $A + \inf B$ en tant que minorant de A + B. Or $\inf(A + B)$ est le minorant le plus grand de A + B, d'où

$$\inf A + \inf B \leq \inf (A + B)$$
.

Et de même

$$\sup A + \sup B \geqslant \sup (A + B)$$
.

Il nous reste à voir que ces deux inégalités sont des égalités ; les deux cas étant analogues, nous traiterons uniquement le cas de la borne supérieure. Supposons donc par l'absurde que l'on ait

$$\sup A + \sup B > \sup (A + B)$$
.

Notons

$$\epsilon := \sup A + \sup B - \sup (A + B) > 0.$$

Par définition d'une borne supérieure, il existe $\mathfrak{a} \in A$ et $\mathfrak{b} \in B$ tels que

$$\sup A - \frac{\varepsilon}{2} < \alpha \leqslant \sup A$$

et

$$\sup B - \frac{\varepsilon}{2} < b \leqslant \sup B.$$

Par addition des parties gauches de ces encadrements

$$\sup A + \sup B - \epsilon < a + b$$
.

Par définition de ϵ , cela équivaut à la contradiction

$$\sup(A + B) < a + b$$
.

SOLUTION 20.

Soit r un rationnel. Il existe donc $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $r = \frac{p}{q}$. Posons $u_n = \sqrt{q^2n^2 + 2pn} - \sqrt{q^2n^2}$ pour n suffisamment grand. La suite (u_n) est une suite d'éléments de A et pour tout $n \in \mathbb{N}$,

$$u_n = qn\left(\sqrt{1 + \frac{2p}{q^2n}} - 1\right)$$

 $\mathrm{Comme}\ \sqrt{1+\frac{2p}{q^2n}}-1\underset{n\to+\infty}{\sim}\frac{p}{q^2n},\ \lim_{n\to+\infty}\mathfrak{u}_n=\frac{p}{q}=r.$

On en déduit que $\mathbb{Q} \subset \bar{A}$. Comme \mathbb{Q} est dense dans \mathbb{R} , $\mathbb{R} = \bar{\mathbb{Q}} \subset \bar{\bar{A}} = \bar{A}$. Ainsi A est dense dans \mathbb{R} .

SOLUTION 21.

Soient x < y. On a donc, par stricte croissance sur \mathbb{R} de $x \mapsto \sqrt[3]{x}$,

$$\sqrt[3]{x} < \sqrt[3]{y}$$
.

Comme \mathbb{Q} est dense dans \mathbb{R} , il existe $\mathfrak{r} \in \mathbb{Q}$ tel que

$$\sqrt[3]{x} < r < \sqrt[3]{y}$$

d'où

$$x < r^3 < y$$
.

Ainsi E est dense dans \mathbb{R}

SOLUTION 22.

1. g est dérivable sur [0,1] et pour tout $x \in [0,1]$,

$$g'(x) = e^{-x} \sum_{k=0}^{n-1} \frac{x^k}{k!} - e^{-x} \sum_{k=0}^{n} \frac{x^k}{k!} = -e^{-x} \frac{x^n}{n!}$$

Par conséquent, g'(x) < 0 pour $x \in]0,1]$. g est donc strictement croissante sur [0,1].

- 2. On a en particulier g(1)) < g(0). Or g(0) = 1 et $g(1) = e^{-1} \sum_{k=0}^n \frac{1}{k!}$ d'où l'inégalité voulue.
- **3.** h est dérivable sur [0,1] et pour tout $x \in]0,1]$,

$$h'(x) = g'(x) + e^{-x} \frac{x^{n-1}}{(n-1)!} - e^{-x} \frac{x^n}{n!} = e^{-x} \frac{x^{n-1}}{n!} (n-2x)$$

Comme $n \ge 2$, h'(x) < 0 pour $x \in [0, 1[$. Donc h est strictement croissante sur [0, 1].

- 4. On a en particulier h(0) < h(1). Or h(0) = 1 et $h(1) = e^{-1} \left(\sum_{k=0}^n \frac{1}{k!} + \frac{1}{n!} \right)$ d'où l'inégalité voulue.
- 5. D'après ce qui précède, on a $a_n < n!e < a_n + 1$ avec $a_n = \sum_{k=0}^n \frac{n!}{k!}$. a_n est un entier puisque k! divise n! pour tout $k \in [0,n]$. Supposons $q \le n$. Alors q divise n! et n!e est donc un entier compris strictement entre les deux entiers consécutifs a_n et $a_n + 1$, ce qui est impossible.
- 6. Comme ce qui a été fait est valable pour tout $n \ge 2$. On a q > n pour tout entier $n \ge 2$, ce qui est clairement impossible.

SOLUTION 23.

- 1. On a $\beta = \frac{\alpha}{\alpha 1}$. Or $\alpha > \alpha 1 > 0$ donc $\beta > 1$. On a également $\alpha = \frac{\beta}{\beta 1}$ donc, si β était rationnel, α le serait aussi.
- 2. a. On a $p\alpha-1 < k \leqslant p\alpha$. L'inégalité large ne peut être une égalité car α est irrationnel. On obtient les premières inégalités en divisant par $\alpha>0$. On procède de même pour les secondes inégalités. En additionnant les deux séries d'inégalités et en tenant compte du fait que $\frac{1}{\alpha}+\frac{1}{\beta}=1$, on obtient p+q-1 < k < p+q, ce qui est absurde puisque p+q-1 et p+q sont deux entiers consécutifs.
 - **b.** Si $A \cap B \neq \emptyset$, il existe $k \in A \cap B$ i.e. il existe $(p,q) \in (\mathbb{N}^*)^2$ tel que $k = \lfloor p\alpha \rfloor = \lfloor q\beta \rfloor$, ce qui est impossible d'après ce qui précède.
- $\mathbf{3.}\quad \mathbf{a.}\ \mathrm{On}\ \mathrm{a}\ \lfloor n\alpha\rfloor > n\alpha 1.\ \mathrm{Or}\ \lim_{n\to +\infty} n\alpha 1 = +\infty\ \mathrm{car}\ \alpha > 0.\ \mathrm{Donc}\ \lim_{n\to +\infty} \lfloor n\alpha\rfloor = +\infty.\ \mathrm{De}\ \mathrm{m\^{e}me},\ \lim_{n\to +\infty} \lfloor n\beta\rfloor = +\infty.$
 - **b.** Notons $E = \{n \in \mathbb{N} \mid \lfloor n\alpha \rfloor < k\}$. E est non vide puisque $0 \in E$. Comme $\lfloor n\alpha \rfloor \xrightarrow[n \to +\infty]{} +\infty$, E est majorée. Enfin E est une partie de \mathbb{N} donc elle admet un plus grand élément que l'on note p. Comme $p+1 \notin E$, $\lfloor (p+1)\alpha \rfloor \geqslant k$. Enfin $k \notin E$, donc $k \neq \lfloor (p+1)\alpha \rfloor$. Ainsi $\lfloor p\alpha \rfloor < k < \lfloor (p+1)\alpha \rfloor$. On montre de la même manière l'existence de q.
 - c. Les inégalités strictes entre entiers $\lfloor p\alpha \rfloor < k < \lfloor (p+1)\alpha \rfloor$ équivalent à $\lfloor p\alpha \rfloor + 1 \leqslant k \leqslant \lfloor (p+1)\alpha \rfloor 1$. Or $\lfloor p\alpha \rfloor > p\alpha 1$ et $\lfloor (p+1)\alpha \rfloor 1 \leqslant (p+1)\alpha 1$. Cette dernière inégalité ne peut être une égalité car α est irrationnel. Ainsi $p\alpha < k < (p+1)\alpha 1$. Il suffit alors de diviser par $\alpha > 0$ pour obtenir les premières inégalités. On procède de même pour les secondes inégalités.

En additionnant les deux séries d'inégalités et en tenant compte du fait que $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, on obtient p + q < k < p + q + 1, ce qui est absurde puisque p + q et p + q + 1 sont deux entiers consécutifs.

d. Si $A \cup B \neq \mathbb{N}^*$, il existe k qui n'est ni dans A ni dans B, ce qui est impossible d'après ce qui précède.

SOLUTION 24.

1. On a $\cos(k+1)\phi + \cos(k-1)\phi = 2\cos\phi\cos k\phi$ ou encore

$$\frac{A_{k+1}}{\left(\sqrt{n}\right)^{k+1}} + \frac{A_{k-1}}{\left(\sqrt{n}\right)^{k-1}} = \frac{2}{\sqrt{n}} \frac{A_k}{\left(\sqrt{n}\right)^k}$$

ce qui équivaut à

$$A_{k+1} + nA_{k-1} = 2A_k$$

- 2. Puisque $A_0 = A_1 = 1$, on montre par récurrence double que les A_k sont des entiers.
- 3. On raisonne par récurrence. $A_0 = 1$ n'est pas divisible par n car $n \ge 3$. Supposons A_k non divisible par n pour un certain $k \in \mathbb{N}$. Si A_{k+1} était divisible par n, alors $2A_k$ le serait également d'après la relation de récurrence de la question précédente. Comme n est impair, 2 est premier avec n et n divise donc A_k d'après le théorème de Gauss, ce qui n'est pas. Ainsi A_{k+1} n'est pas divisible par n. Par récurrence, aucun des A_k n'est divisible par n.
- **4.** Supposons $\frac{\varphi}{\pi}$ rationnel : il existe donc $(\mathfrak{p},\mathfrak{q})\in\mathbb{Z}\times\mathbb{N}^*$ tel que $\frac{\varphi}{\pi}=\frac{\mathfrak{p}}{\mathfrak{q}}$. On en déduit que $2\mathfrak{q}\varphi=2\mathfrak{p}\pi$, puis que $\cos 2\mathfrak{q}\varphi=1$ i.e. $A_{2\mathfrak{q}}=\left(\sqrt{n}\right)^{2\mathfrak{q}}=\mathfrak{n}^{\mathfrak{q}}$. Ainsi $A_{2\mathfrak{q}}=\mathfrak{n}^{\mathfrak{q}}$. Puisque $\mathfrak{q}\geqslant 1$, \mathfrak{n} divise $A_{2\mathfrak{q}}$, ce qui est impossible d'après la question précédente. Notre hypothèse de départ, à savoir que $\frac{\varphi}{\pi}\in\mathbb{Q}$, est donc fausse.

SOLUTION 25.

Raisonnons par l'absurde en supposant $\ln(2) / \ln(3)$ rationnel. Il existe donc deux entiers naturels p et $q \neq 0$ tels que $\ln(2) / \ln(3) = p / q$, ie $q \ln(2) = p \ln(3)$, ie $\ln(2^q) = \ln(3^p)$ d'où $2^q = 3^p$. Puisque $q \geqslant 1$, 2^q est un nombre pair, ce qui est absurde car 3^p est toujours impair.

SOLUTION 26.

Supposons pas l'absurde que

$$r = \sqrt{2} + \sqrt{3} \in \mathbb{O}$$
.

Si ce nombre était rationnel, son carré le serait aussi. Mais alors, $3 = (r - \sqrt{2})^2 = r^2 - 2\sqrt{2}r + 2$ et donc, puisque $r \neq 0$,

$$\sqrt{2}=\frac{r^2-1}{2r}\in\mathbb{Q},$$

ce qui est absurde.

SOLUTION 27.

- 1. On a x + y et xy dans \mathbb{Q} .
- 2. Il peut tout se passer... Par exemple

$$\sqrt{2} + \sqrt{2} = 2\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$$

mais $\sqrt{2}-\sqrt{2}=0\in\mathbb{Q}.$ De même, $\sqrt{2}\times\sqrt{2}=2\in\mathbb{Q}$ mais

$$\sqrt{2}\times\sqrt{3}\in\mathbb{R}\setminus\mathbb{Q}!$$

- **3.** On a $x + y \in \mathbb{R} \setminus \mathbb{Q}$. Si x = 0, $xy = 0 \in \mathbb{Q}$ mais par contre lorsque $x \neq 0$, $xy \in \mathbb{R} \setminus \mathbb{Q}$.
- 4. C'est la même situation qu'au 3.

Solution 28.

Si $\mathfrak n$ est un carré parfait, $\sqrt{\mathfrak n}$ est un entier donc c'est un rationnel. Inversement, par contraposition, si $\mathfrak n$ n'est pas un carré parfait, alors l'un au moins de ses diviseurs premiers, que nous noterons $\mathfrak p$, apparaît avec une puissance impaire dans la décomposition en facteurs premiers de $\mathfrak n$. Si donc $\sqrt{\mathfrak n}$ est rationnel, il s'écrit $\mathfrak a/\mathfrak b$ avec $\mathfrak a$ et $\mathfrak b$ entiers d'où $\mathfrak n\mathfrak b^2=\mathfrak a^2$, ce qui contredit à nouveau l'unicité de la décomposition en facteurs premiers, le nombre $\mathfrak p$ étant nécessairement affecté d'une puissance impaire dans le membre de gauche et d'une puissance paire dans celui de droite.

Solution 29.

Raisonnons par double inclusion.

▶ Soit n = 1. On a alors

$$\left|\frac{1}{n},\frac{2}{n}\right|=]1,2[.$$

Soit $n \ge 2$. On a alors

$$\left[\frac{1}{n},\frac{2}{n}\right]\subset]0,1[.$$

Ainsi

$$\bigcup_{n\geqslant 1}\left]\frac{1}{n},\frac{2}{n}\right[\subset]0,1[\cup]1,2[.$$

▶ Il est équivalent de prouver que

$$]0,1[\subset\bigcup_{n\geqslant2}\left]\frac{1}{n},\frac{2}{n}\right[.$$

Remarquons alors que $\forall n \geq 2$,

$$\frac{1}{n}<\frac{2}{n+1}<\frac{2}{n}.$$

Soit $x \in]0,1[$. il existe un unique entier n tel que

$$n<\frac{2}{x}\leqslant n+1,$$

et puisque 2/x > 2, $n \ge 2$. On a alors

$$x \in \left[\frac{1}{n}, \frac{2}{n} \right[$$

et ainsi

$$x \in \bigcup_{n \geqslant 2} \left[\frac{1}{n}, \frac{2}{n} \right[.$$

SOLUTION 30.

1. On doit vérifier trois propriétés.

Reflexivité: trivial.

Transitivité : soient $a,b,c\in\mathbb{R}$ tels que $a\leqslant_{\phi}b\leqslant_{\phi}c$. Cela signifie que

$$\varphi(b) - \varphi(a) \geqslant |b - a|$$
 et $\varphi(c) - \varphi(b) \geqslant |c - b|$.

En ajoutant ces deux inégalités et en utilisant l'inégalité triangulaire on a

$$\varphi(c) - \varphi(a) \geqslant |c - b| + |b - a|$$
$$\geqslant |c - b + b - a| = |c - a|.$$

Ainsi $a \leq_{\varphi} c$.

Antisymétrie: soient $\mathfrak{a},\mathfrak{b}$ des réels tels que $\mathfrak{a}\leqslant_{\varphi}\mathfrak{b}$ et $\mathfrak{b}\leqslant_{\varphi}\mathfrak{a}.$ Ainsi

$$\varphi(b) - \varphi(a) \geqslant |b - a|$$
 et $\varphi(a) - \varphi(b) \geqslant |a - b|$.

En ajoutant ces deux inégalités on obtient

$$0 \geqslant 2|b-a| \geqslant 0$$

donc a = b.

2. Nous présentons une preuve par chaîne d'équivalences.

$$\begin{array}{lll} & \forall \alpha,b \in \mathbb{R}, & \text{α comparable \grave{a} b} \\ & \iff & \forall \alpha,b \in \mathbb{R}, & \alpha \leqslant_{\phi} b \quad \text{ou} \quad b \leqslant_{\phi} \alpha \\ \\ \iff & \forall \alpha,b \in \mathbb{R}, & \begin{cases} \phi(b) - \phi(\alpha) \geqslant |b - \alpha| \\ & \text{ou} \\ -(\phi(b) - \phi(\alpha)) \geqslant |b - \alpha| \end{cases} \\ \\ \iff & \forall \alpha,b \in \mathbb{R}, & |\phi(b) - \phi(\alpha)| \geqslant |b - \alpha| \end{array}$$

Nous avons utilisé le fait que la valeur absolue |x| est supérieure à y si et seulement x ou son opposé -x est supérieur à y.

3. L'ordre $\leq_{\mathrm{Id}_{\mathbb{R}}}$ est l'ordre habituel \leq .

SOLUTION 31.

- 1. Non, car E n'est pas une partie totalement ordonnée de $\mathcal{P}(X)$. En effet si x, y sont deux éléments distincts de X alors $\{x\}$ et $\{y\}$ sont dans E, mais ne sont pas comparables.
- 2. Oui, X est une borne supérieure de E. Vérification : $X \in \mathcal{P}(X)$ et pour tout $A \in E$ on a $A \subset X$, donc X est un majorant de E. Supposons que $Y' \in \mathcal{P}(X)$ soit aussi un majorant de E avec $Y \subset X$. Ainsi pour tout $x \in X$ on a $\{x\} \subset Y$, d'où $X \subset Y$. Par conséquent X = Y, c'est-à-dire X est le plus petit majorant de E.

SOLUTION 32.

- 1. Il faut vérifier que la relation ≼ est réflexive, antisymétrique et transitive.
 - \diamond Le relation \leq est clairement réflexive.
 - ♦ La relation est antisymétrique.

Soient
$$x = (x_1, x_2)$$
 et $y = (y_1, y_2)$ tels que

$$x \leq y$$
 et $y \leq x$.

On a donc $x_1\leqslant y_1$ et $y_1\leqslant x_1$. Ainsi $x_1=y_1$. On a alors $x_2\leqslant y_2$ et $y_2\leqslant x_2$. Ainsi $x_2=y_2$. d'où

$$x = y$$
.

 \diamond La relation est transitive.

Soient

$$x = (x_1, x_2), y = (y_1, y_2)$$

et $z = (z_1, z_2)$ tels que

$$x \leq y$$
 et $y \leq z$.

Si $x_1 < y_1$, puisque $y_1 \leqslant z_1$, on a $x_1 < z_1$ et donc $x \preccurlyeq z$. Si $x_1 = y_1$ et $y_1 < z_1$, alors $x_1 < z_1$ et donc $x \preccurlyeq z$. Si $x_1 = y_1$ et $y_1 = z_1$, alors $x_1 = z_1$, $x_2 \leqslant y_2$, $x_2 \leqslant z_2$ donc $x_1 \leqslant z_2$. Ainsi $x \preccurlyeq z$.

2. L'ordre est total.

Soient $x = (x_1, x_2)$ et $y = (y_1, y_2)$. Si $x_1 \neq y_1$ alors $x \leq y$ ou $y \leq x$. Si $x_1 = y_1$, puisque soit $x_2 \leq y_2$, soit $y_1 \leq x_1$, on $x \leq y$ ou $y \leq x$.

- 3. La partie A n'est pas mojorée au contraire de B. Cette dernière admet une borne supérieure.
 - \diamond La partie A n'est pas majorée. En effet, soit $(x,y) \in \mathbb{N}^2$. Il existe alors $p \in \mathbb{N}$ tel que p > x donc (x,y) ne peut majorer A.
 - \diamond La partie B est majorée par (3,0). Déterminons l'ensemble $\mathcal M$ des majorants de B ; $(x,y) \in \mathcal M$ si et seulement si

$$\forall p \in \mathbb{N}$$
, $(2, 10^p) \leq (x, y)$,

ie 2 < x car on ne peut avoir $\forall p \in \mathbb{N}$, $y \ge 10^p$. Ainsi

$$\mathcal{M} = \{ (3, y), y \in \mathbb{N} \}.$$

L'ensemble \mathcal{M} admet clairement un plus petit élément : (3,0). Ainsi B admet une borne supérieure valant (3,0) mais pas de plus grand élément puisque $(3,0) \notin B$.

SOLUTION 33.

- 1. Il faut vérifier que la relation ≼ est réflexive, antisymétrique et transitive.
 - ♦ La relation est clairement réflexive.
 - ♦ La relation est antisymétrique d'après le principe de double inclusion.
 - \diamond La relation est transitive.

Soient A, B et C trois parties de E telles que $A \subset B$ et $B \subset C$. On a alors $A \subset C$.

- 2. L'ordre n'est pas total dès que E contient au moins deux éléments distincts a et b puisqu'alors les ensembles { a } et b } ne sont pas comparables par inclusion .
- 3. Il faut revenir aux définitions du cours.
 - \diamond Déterminons l'ensemble \mathcal{M} des majorants de $U = \{A, B\}$; $F \in \mathcal{M}$ si et seulement si

$$A \subset F$$
 et $B \subset F$,

ie $A \cup B \subset F$ et ainsi \mathcal{M} est l'ensemble des parties de E contenant $A \cup B$; cet ensemble \mathcal{M} admet donc clairement un plus petit élément qui vaut $A \cup B$. Ainsi U admet une borne supérieure valant $A \cup B$.

 \diamond Déterminons l'ensemble m des minorants de l'ensemble $U = \{A, B\}$; $F \in m$ si et seulement si

$$F \subset A$$
 et $F \subset B$,

ie $F \subset A \cap B$ et ainsi \mathfrak{m} est l'ensemble des parties de E contenues dans $A \cap B$; cet ensemble \mathfrak{m} admet donc clairement un plus grand élément qui vaut $A \cap B$. Ainsi U admet une borne inférieure valant $A \cap B$.

4. En reprenant pas à pas les raisonnemlents menés ci-dessus, on prouve que toute partie non vide \mathcal{F} de $\mathcal{P}(\mathsf{E})$ admet ine borne inférieure et une borne supérieure valant

$$\sup(\mathcal{F}) \, = \, \bigcup_{A \, \in \, \mathcal{F}} \, A$$

 et

$$\inf(\mathfrak{F}) = \bigcap_{A \in \mathfrak{F}} A.$$

SOLUTION 34.

Tout d'abord, toute classe d'équivalence est non vide puisque pour tout $x \in E$, xRx (réflexivité) et donc $x \in C(x)$. On en déduit également que tout élément x de E appartient à une classe d'équivalence (la sienne).

Enfin, soient $x,y \in E$ tels que $C(x) \cap C(y)\varnothing$. Il existe donc $z \in C(x) \cap C(y)$. Soit $u \in C(x)$. Alors $x\mathcal{R}u$ et $x\mathcal{R}z$. Par symétrie, on a également $z\mathcal{R}x$ puis $z\mathcal{R}u$ par transitivité. Mais on a également $y\mathcal{R}z$ donc $y\mathcal{R}u$ par transitivité. On en déduit que $u \in C(y)$. Ainsi $C(x) \subset C(y)$. En échangeant les rôles de x et y, on a également $C(y) \subset C(x)$. Par conséquent C(x) = C(y). Deux classes d'équivalences sont donc disjointes ou confondues.

Ceci prouve que les classes d'équivalence forment une partition de E.

SOLUTION 35.

- 1. On pose $f(t) = \frac{t}{e^t}$ pour $t \in \mathbb{R}$ et on remarque que $x\mathcal{R}y \iff f(x) = f(y)$. Il est alors évident que \mathcal{R} est une relation d'équivalence.
- 2. Une étude rapide donne le tableau de variations suivant pour f.

Soit $x \in \mathbb{R}$.

- ▶ Si $x \in]0,1[\cup]1,+\infty[$, $f(x) \in]0,\frac{1}{e}[$ et le théorème des valeurs intermédiaires garantit que l'équation f(y)=f(x) d'inconnue $y \in \mathbb{R}$ possède exactement deux solutions (dont l'une est évidemment x). Autrement dit, la classe d'équivalence de x possède deux éléments.
- ▶ Si x = 1, la classe d'équivalence de x ne possède qu'un élément (x lui-même) car les variations de f montrent que f ne prend qu'une seule fois la valeur $f(1) = \frac{1}{e}$.
- ▶ Si $x \le 0$, $f(x) \le 0$ et le théorème des valeurs intermédiaires garantit que l'équation f(y) = f(x) d'inconnue $y \in \mathbb{R}$ possède une seule solution (x lui-même). Autrement dit, la classe d'équivalence de x possède un unique élément.

Solution 36.

Le fait que \mathcal{R} est une relation d'équivalence est quasi évident (il suffit d'écrire les trois axiomes). Les classes d'équivalence sont des cercles (quitte à identifier les complexes à leurs images dans le plan complexe).

SOLUTION 37.

On remarque que pour $(x,y) \in \mathbb{Z}^2$, $x\mathcal{R}y$ si et seulement si x et y ont la même parité. Le fait que \mathcal{R} est une relation d'équivalence est alors quasi évident.

La classe de 0 est évidemment $2\mathbb{Z}$ et la classe de 1 et $2\mathbb{Z} + 1$. De plus, $2\mathbb{Z} \cup (2\mathbb{Z} + 1) = \mathbb{Z}$ donc ce sont les deux seules classes d'équivalence.

SOLUTION 38.

En remarquant que $x\mathcal{R}y \iff x^2-x=y^2-y$, il est quasi évident que \mathcal{R} est une relation d'équivalence. Soit $(x,y) \in \mathbb{R}^2$.

$$x\mathcal{R}y \iff (x-y)(x+y) = x-y$$

 $\iff (x-y)(x+y-1) = 0$ $\iff y = x \text{ ou } y = 1-x$

La classe d'équivalence de $x \in \mathbb{R}$ est donc formée des réels x et 1-x.

- ▶ Si $x = \frac{1}{2}$, alors x = 1 x et la classe d'équivalence de x est de cardinal 1.
- ▶ Si $x \neq \frac{1}{2}$, alors $x \neq 1 x$ et la classe d'équivalence de x est de cardinal 2.

SOLUTION 39.

1. a. Réflexivité : Soit $f \in E^E$. Id_E est une bijection de E dans E et $f = Id_E^{-1} \circ f \circ Id_E$. Ainsi $f \sim f$. Symétrie Soit $(f,g) \in (E^E)^2$ tel que $f\mathcal{R}g$. Il existe donc une bijection ϕ de E dans E telle que $f = \phi^{-1} \circ g \circ \phi$. Mais alors

$$q = \phi \circ q \circ \phi^{-1} = (\phi^{-1})^{-1} \circ f \circ \phi^{-1}$$

Comme ϕ^{-1} est également une bijection de E dans E, $g \sim f$.

Transitivité Soit $(f, g, h) \in (E^E)^3$ tel que $f\mathcal{R}g$ et $g\mathcal{R}h$. Il existe donc deux bijections φ et ψ de E dans E telles que $f = \varphi^{-1} \circ g \circ \varphi$ et $g = \psi^{-1} \circ h \circ \psi$. Mais alors

$$f = \phi^{-1} \circ \psi^{-1} \circ h \circ \psi \circ \phi = (\psi \circ \phi)^{-1} \circ h \circ (\psi \circ \phi)$$

Comme $\psi \circ \varphi$ est une bijection de E dans E, $f \sim h$.

- **b.** Soit f conjuguée à Id_E . Alors il existe une bijection ϕ de E dans E telle que $f = \phi^{-1} \circ \mathrm{Id}_E \circ \phi$, d'où $f = \mathrm{Id}_E$. La classe d'équivalence de Id_E est $\{\mathrm{Id}_E\}$.
- c. Soit $f \in E^E$ une application constante. Il existe donc $a \in E$ tel que f(x) = a pour tout $x \in E$. Soit maintenant g une application conjuguée à f. Il existe donc une bijection ϕ de E dans E telle que $g = \phi^{-1} \circ f \circ \phi$. Ainsi pour tout $x \in E$, $g(x) = \phi^{-1}(f(\phi(x))) = \phi^{-1}(a)$. Ainsi g est constante. Réciproquement, soit $g \in E^E$ une application constante. Il existe donc $b \in E$ tel que g(x) = b pour tout
 - $x \in E. \text{ Posons } \phi(x) = \begin{cases} b & \text{si } x = a \\ a & \text{si } x = b \text{. Remarquons que cette définition est valide même si } a = b \text{. On vérifie que } x & \text{sinon} \end{cases}$

 $\phi \circ \phi = \mathrm{Id}_E$ donc ϕ est bijective en tant qu'involution. On vérifie également que $f = \phi^{-1} \circ g \circ \phi$ donc g est conjuguée à f.

Ainsi la classe d'équivalence de f est formée de toutes les applications constantes. Autrement dit, les applications constantes forment une classe d'équivalence.

- 2. a. Posons $\varphi(x) = \alpha x$ pour tout $x \in \mathbb{R}$. Puisque $\alpha \neq 0$, φ est bijective et $\varphi^{-1}(x) = \frac{x}{\alpha}$ pour tout $x \in \mathbb{R}$. On vérifie que $g = \varphi^{-1} \circ f \circ \varphi$. Ainsi f et g sont conjuguées.
 - **b.** Supposons que sin et cos soient conjuguées. Il existe donc une bijection ϕ de $\mathbb R$ dans $\mathbb R$ telle que $\cos = \phi^{-1} \circ \sin \circ \phi$ ou encore $\phi \circ \cos = \sin \circ \phi$. En particulier, $\phi(\cos(1)) = \sin(\phi(1))$ et $\phi(\cos(-1)) = \sin(\phi(-1))$. Puisque cos est paire, $\sin(\phi(1)) = \sin(\phi(-1))$.

Mais on a encore $\varphi(1) = \varphi(\cos(0)) = \sin(\varphi(0)) \in [-1,1]$ et $\varphi(-1) = \varphi(\cos(\pi)) = \sin(\varphi(\pi)) \in [-1,1]$. Or sin est injective sur [-1,1] et $\sin(\varphi(1)) = \sin(\varphi(-1))$ donc $\varphi(1) = \varphi(-1)$, ce qui contredit la bijectivité de $\varphi(1)$ (l'injectivité en fait).

SOLUTION 40.

L'interprétation géométrique de la relation est claire : $\mathcal{C} \leqslant \mathcal{C}'$ signifie que le cercle \mathcal{C} est à l'intérieur de \mathcal{C}' . Notons que cela implique nécessairement $R' \geqslant R$.

► La réflexivité est évidente.

- ▶ Si $\mathcal{C} \leqslant \mathcal{C}'$ et $\mathcal{C}' \leqslant \mathcal{C}$, alors $OO' \leqslant R' R$ et $O'O \leqslant R R'$. Cela implique $R' \geqslant R$ et $R \geqslant R'$, donc R = R', et donc OO' = 0, d'où O = O'. Ainsi les deux cercles \mathcal{C} et \mathcal{C}' ont même centre et même rayon, donc sont égaux. La relation est donc antisymétrique.
- ▶ Soient trois cercles $\mathcal{C}, \mathcal{C}', \mathcal{C}''$ tels que $\mathcal{C} \leqslant \mathcal{C}'$ et $\mathcal{C}' \leqslant \mathcal{C}''$. On a $OO' \leqslant R' R$ et $O'O'' \leqslant R'' R'$. D'après l'inégalité triangulaire, on en déduit :

$$OO'' \leq OO' + O'O'' \leq (R' - R) + (R'' - R') = R'' - R$$

ce qui prouve bien que $C \leq C''$. La relation est donc transitive.

SOLUTION 41.

- 1. La réflexivité est claire : pour tout $p \in \mathbb{N}^*$, $p\mathcal{R}p$ puisque $p = p^1$.
 - Soient $(p,q) \in (\mathbb{N}^*)^2$ tels que $p\mathcal{R}q$ et $q\mathcal{R}p$. Il existe alors $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ tels que $q = p^n$ et $p = q^m$. Cela implique que $p^{nm} = p$. Puisque $p \neq 0$,

$$p^{nm} = p \iff p^{nm-1} = 1 \iff p = 1 \text{ ou } nm = 1$$

Si p = 1, on a $q = 1^n = 1 = p$, et si nm = 1, on a n = m = 1 d'où $q = p^1 = p$.

La relation est donc antisymétrique.

— Soient $(p, q, r) \in (\mathbb{N}^*)^3$ tels que $p\mathcal{R}q$ et $q\mathcal{R}r$. Il existe alors $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ tels que $q = p^n$ et $r = q^m$, ce qui implique $r = p^{nm}$, donc $p\mathcal{R}r$. La relation est donc transitive.

L'ordre n'est pas total puisque par exemple aucune des relations 2R3 ni 3R2 n'est vraie.

2. Supposons que $\{2,3\}$ admette un majorant p. On a alors $2\mathcal{R}p$ et $3\mathcal{R}p$, donc il existe $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ tels que $p = 2^n$ et $p = 3^m$. Ainsi p est à la fois pair et impair, ce qui est absurde. Ce raisonnement par l'absurde prouve que $\{2,3\}$ n'est pas majorée.

SOLUTION 42.

- ► La réflexivité est évidente.
- ▶ Si xRy et yRx, alors $f(x) \le f(y)$ et $f(y) \le f(x)$. On en déduit par antisymétrie de \le sur F que f(x) = f(y), ce qui implique que x = y puisque f est injective.

La relation \mathcal{R} est donc antisymétrique.

▶ Soient $(x, y, z) \in E^3$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. On a alors $f(x) \leq f(y)$ et $f(y) \leq f(z)$, d'où $f(x) \leq f(z)$ par transitivité de \leq sur F, et donc $x\mathcal{R}z$.

La relation \mathcal{R} est donc transitive.