Closest Pair

P12. Closest pair of n points

I/P: Given $P=\{p_1, p_2,..., p_n\}$ a set of n points. Each $p_i=(x_i, y_i)$.

O/P: Find the closest pair of points.

P12. Closest pair of n points

I/P: Given $P=\{p_1, p_2,..., p_n\}$ a set of n points. Each $p_i=(x_i,y_i)$.

O/P: Find the closest pair of points.

Closest pair of n points

I/P: Given $P=\{p_1, p_2,..., p_n\}$ a set of n points. Each $p_i=(x_i,y_i)$.

O/P: Find the closest pair of points.

Naïve algorithm:

- 1. For each point p in P, check all points in $P \setminus \{p\}$.
- 2.Compute the minimum distances with respect to p, i.e., min_p
- 3. Repeat step 1 and 2 for all points in P,
- 4. Finally return min of all min_p's.

Let's do the problem in 1-Dimension

y-coordinate of all points are same.

O(nlogn)

1. Sort each point with respect to x-coordinate.

- 2. For each point p_i , check two neighbours p_{i-1} and p_{i+1} .
- 3. Do it for all points and return the minimum.

O(n)

Can we do via divide and conquer?

Here input is not sorted..... Means the point are not sorted with respect to x-coordinate....??

How to apply D&C??

Intuition is to divide points set in equal halves ??— But how??

We need median to partition in two halves....??

Lets apply the unknown algorithm to partition point set in two halves.

P split in two halves P_L and P_R .

Recurse on both halves.

P_L contains the median point (W.L.O.G)...

Prepared by Fawan K. Mishra

Prepared by Fawan K. Mishra

Prepared by Fawan K. Mishra

Prepared by Pawan K. Mishra

Prepared by Fawan K. Mishra

Prepared by Fawan K. Mishra

so, in a box, can have one point.

for green point, do we need to check these red points?

NO? Why?

for green point, we need to check these red points?

Yes? Why?

7 points

for green point, we need to check these red points?

Yes? Why?

7 points

so, for each point, we need to check at most next 7 points.

To get next 7, need to sort

2 dimensions, divide and conquer

Split set of points into two halves by vertical line

Recursively compute closest pair in left and right half

Need to then compute closest pairs across separating line

How can we do this efficiently?

Sorting points by x and y

Given n points $P = \{p_1, p_2, ..., p_n\}$, compute

 \triangleright P_x: P sorted by x coordinate

 \triangleright P_v: P sorted by y coordinate

Divide P by vertical line into equal size sets Q and R.

Need to efficiently compute Q_x , Q_y , R_x , R_y

Sorting points by x and y

Need to efficiently compute

$$Q_x$$
, Q_y , R_x , R_y

- $\triangleright Q_x$ is first half of P_x
- \triangleright R_x is second half of P_x
- When splitting P_x , note the largest x coordinate in Q, x_Q
- Separate P_y as Q_y , R_y by checking x coordinate with x_0 .
- All O(n)

2 dimensions, divide and conquer

- Basic recursive call is ClosestPair(P_x, P_y)
- Set up recursive calls ClosestPair(Q_x , Q_y) and ClosestPair(R_x , R_y) for left and right half of P in time O(n)
- How to combine these recursive solutions?

Combining solutions

- Let d_Q be closest distance in Q
 and d_R be closest distance in R
- Let d be min(d_Q, d_R)
- Only need to consider points across the separator at most distance d from separator
- ➤ Any pair outside this strip cannot be closest pair overall

Combining solutions

- From $Q_{y'}$ $R_{y'}$ extract $S_{y'}$ points in d-band sorted by y coordinate
- Scan S_y from bottom to top,
 comparing each point against next
 7 points in S_y
- Linear scan

Algorithm

```
ClosestPair(P_x, P_v)
         if (|P_{v}| <= 3)
         compute pairwise distances and
         return the closest pair and distance
         Construct (Q_x, Q_y, R_x, R_y)
         (d_0,q_1,q_2) = ClosestPair(Q_x,Q_y)
         (d_R, r_1, r_2) = ClosestPair(R_x, R_y)
         Construct S_v and scan to find (d_{S_v}S_1, S_2)
         Return (d_Q, q_1, q_2), (d_R, r_1, r_2), (d_S, s_1, s_2) depending on which among
                                                             (d_0, d_R, d_S) is minimum
```

Analysis

- Computing (P_x, P_v) from P takes $O(n \log n)$ (before recursion call)
- Recursive algorithm
- \triangleright Setting up (Q_x, Q_y, R_x, R_y) from (P_x, P_y) is O(n)
- \triangleright Setting up S_v from Q_v, R_v is O(n)
- \triangleright Scanning S_v is O(n)

$$T(n) = 2T(n/2) + O(n) = O(n \log n)$$