# Contents

| 1 | Gates, Expressions, Circuits, and Analysis 1/13 and 1/15 |                                                |   |
|---|----------------------------------------------------------|------------------------------------------------|---|
|   | 1.1                                                      | Logic Gates                                    | 2 |
|   | 1.2                                                      | Boolean Algebra                                | 4 |
|   | 1.3                                                      | Combinational Logic Circuits                   | 6 |
|   | 1.4                                                      | Standard Design Approach Sum of Products (SOP) | 8 |
|   | 1.5                                                      | Karnaugh Map                                   | 9 |

# 1 Gates, Expressions, Circuits, and Analysis 1/13 and 1/15

#### Topics:

- Digital Logic Gates
- Boolean Algebra
- Combination Logic Circuits
- Sum of Products
- Karnaugh Maps

### 1.1 Logic Gates

A gate has (for example NOT gate):

- 1. Name
- 2. Schematic Diagram
  - Input, A, for example, with boolean (0 or 1)
  - Output, Y, for example, boolean (0 or 1)
- 3. Boolean Expressions, i.e.  $Y = \overline{A}$
- 4. Truth Table

#### Example

We can also have two or more input gates:

- AND  $\rightarrow Y = AB$ , A and B must be true
- OR  $\rightarrow Y = A + B$ , A or B must be true
- $XOR \to Y = A \oplus B$
- $\text{ NAND} \to Y = \overline{AB}$
- $\text{ NOR} \rightarrow Y = \overline{A + B}$
- $XNOR \rightarrow Y = \overline{A \oplus B}$

A nice to know is that if the NOT's are the actual gate, then it would turn, for example,  $X = \overline{A} \overline{B} \neq X = \overline{AB}$ .



Figure 1: It can also have more than 2 inputs as seen here with their truth tables

## 1.2 Boolean Algebra

Symbols and Boolean operators:

$$x \cdot y$$
,  $xy$ ,  $x \wedge y$ , AND $(x,y)$ ,  $x$  AND  $y$   
 $x + y$ ,  $x \vee y$ , OR $(x,y)$ ,  $x$  OR  $y$   
 $\overline{x}$ ,  $x'$ ,  $\neg x$ , NOT $(x)$ , INV $(x)$   
 $\overline{x \cdot y}$ ,  $\overline{x \wedge y}$ ,  $\overline{xy}$ , NAND $(x,y)$ ,  $x$  NAND  $y$   
 $\overline{x + y}$ ,  $\overline{x \vee y}$ , NOR $(x,y)$ ,  $x$  NOR  $y$   
 $x \oplus y$ , XOR $(x,y)$ ,  $x$  XOR  $y$   
 $x \oplus y$ ,  $\overline{x \oplus y}$ , XNOR $(x,y)$ ,  $x$  XNOR  $y$ 

Figure 2: Notation before we get started

Moreover, here are some basic identities of boolean algebra

#### **Basic Identities of Boolean Algebra**

| 1.  | X+0=X                                              | 2.  | $X \cdot 1 = X$                                      |              |
|-----|----------------------------------------------------|-----|------------------------------------------------------|--------------|
| 3.  | X+1=1                                              | 4.  | $X \cdot 0 = 0$                                      |              |
| 5.  | X + X = X                                          | 6.  | $X \cdot X = X$                                      |              |
|     | $\underline{X} + \overline{X} = 1$                 | 8.  | $X \cdot \overline{X} = 0$                           |              |
| 9.  | $\overline{X} = X$                                 |     |                                                      |              |
| 10. | X + Y = Y + X                                      | 11. | XY = YX                                              | Commutative  |
| 12. | X + (Y + Z) = (X + Y) + Z                          | 13. | X(YZ) = (XY)Z                                        | Associative  |
| 14. | X(Y+Z) = XY + XZ                                   | 15. | X + YZ = (X + Y)(X + Z)                              | Distributive |
| 16. | $\overline{X+Y} = \overline{X} \cdot \overline{Y}$ | 17. | $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ | DeMorgan's   |

Figure 3: Some basic identities

#### Definition

Variable Substitution, is a way of substitution that makes it more tangible and math more easy

$$ABC + YZ = (ABC + Y)(ABC + Z)$$
  
Substitute X for ABC  
 $X + YZ = (X+Y)(X+Z)$ 

DeMorgan's Identity is used a lot and is very useful. As shown in these examples:

#### Example

Where the two equivalencies share a truth table due to this Identity

We can also see that it is like "pushing the bubble" as seen in this example:

# 1.3 Combinational Logic Circuits

#### Definition

Stateless Digital Logic Circuits:

- Combinational logic combination of logic gates
- Change input values
- Immediate change in output values
- No Memory
- No feedback

Remark 1. There are specifics types of wire connections



Figure 4: Here are the various ways wires can connect/not connect

Spring 2025

#### Example

Here is an example of a circuit and the resulting algebra to "solve" it and how to simplify it



$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

$$Apply \quad 14. \qquad X(Y+Z) = XY+XZ$$

$$F = \overline{X}Y(Z + \overline{Z}) + XZ$$

$$Apply \quad 7. \qquad X + \overline{X} = 1$$

$$F = \overline{X}Y \cdot 1 + XZ$$

$$Apply \quad 2. \qquad X \cdot 1 = X$$

$$F = \overline{X}Y + XZ$$



Where output variables are either equivalent to 0 or 1 and input is the same. Moreover, simplifying this circuit and circuits in general allow for greater efficiency.

#### 1.4 Standard Design Approach Sum of Products (SOP)

The three step apporach:

- 1. Define truth table
- 2. Write down a Boolean expression for every row with the '1' in the output, for example,  $Y = \overline{CB}A + \overline{C}BA + CB\overline{A} + CBA$
- 3. Wire up all of the gates

# Truth Table

| C | В | A | У |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Figure 5: Here is the truth table given the example

# 1.5 Karnaugh Map

#### Definition

Karnaugh maps, aka k-maps, are graphical representations of truth tables that use a grid with one cell for each row of the truth table



| C | В | A | У |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Figure 6: An example k-map and its respective truth table!

You pretty much put the 1's and 0's onto the cell given the values

Here are some rules given to the k-map

- 1. The groupoing must be in the shape of a rectangle. There are no diagonal adjacencies allowed
- 2. All cells in the rectangle must contain ones. No zeros are allowed
- 3. The number of cells in groupings must be in powers of 2
- 4. Outside edges of K-maps are considered adjacent, so it may wrap around
- 5. Cells may be contained in more than one rectangle, but every rectangle must have at least ONE unique cell to
- 6. Every rectangle must be as large as possible
- 7. Everyone 1 must be covered by at least one rectangle