After Class Questions: 1

he following questions were among those asked at the end of class by some students. They appear informative enough to merit a discussion.

Problem 1.

- **a.** Can we always argue that T(n+c) is asymptotically O(T(n)) for any constant $c \ge 1$ and use it in our arguments?
- **b.** Suppose f(n) and g(n) are two non-negative, monotonically increasing functions. Is it true that one of f(n) = O(g(n)) or g(n) = O(f(n)) holds.

For super-exponential functions, that is, functions that grow faster than exponential functions, T(n+c) may not be O(T(n)). Simple example is T(n) = n!. Then, T(n+1) = (n+1)T(n) and is not O(T(n)). But for polynomial functions, that is, $T(n) = n^{O(1)}$, this would be true. Let $T(n) = O(n^d)$, so that $T(n) \leq an^d$, asymptotically. So there exists a constant β such that

$$(n+c)^d = n^d (1+c/n)^d \le n^d (1+\beta/n) = n^d + \beta n^{d-1} \le 2n^d$$

for sufficiently large n. Hence, T(n+c) = O(T(n)).

The solution to part [b.] is more complicated. Let us design two functions f(n) and g(n) that are monotonically non-decreasing functions such that neither f(n) = O(g(n)) nor g(n) = O(f(n)). Extending this to increasing functions requires just a small modification.

Let f and g be defined to be 1 for $n=0,1,\ldots,5$. We will construct these functions in the range $n=7k,7k+1,\ldots,7k+5,7k+6$, as $k=1,2,\ldots$ Informally, the construction proceeds as follows. Let $k=\lfloor n/7 \rfloor$. At n=7k, define $f(n)=g(n)=k^k$.

Fix k, and consider the 6 numbers $7k + 1, \dots, 7k + 6$. Let

$$f(7k+j) = f(7k) \times k^{\lfloor j/2 \rfloor} .$$

Then, f(7k+1) = f(7k), $f(7k+2) = f(7k) \cdot k = f(7k+3)$ and $f(7k+4) = f(7k) \cdot k^2 = f(7k+5)$ and $f(7k+6) = f(7k) \cdot k^3$. We want g(7k+j) to be significantly (i.e., super-constant) larger than f(7k+j) for some values of j and be significantly smaller than f(7k+j) at a few other values of j (and may equal f(7k+j) at some other values as well). So define

$$g(7k+j) = g(7k) \cdot k^{1.5\lfloor j/3 \rfloor}$$

Then, g(7k+1) = g(7k+2) = g(7k), $g(7k+3) = g(k) \cdot k^{1.5} = g(7k+4) = g(7k+5)$ and $g(7k+6) = g(k) \cdot k^3 = f(7k+6)$.

The points of interest are n of the form 7k+2 and 7k+3. Note that $f(7k+2)=k^{k+1}$ and $g(7k+2)=k^k$. Also, $f(7k+3)=k^{k+1}$ and $g(7k+3)=k^{k+1.5}$. Hence, in every span of the multiple of 7, there is an n_1 of the form 7k+2 such that $f(n_1)/g(n_1)$ is super-constant and, there is an n_2 of the form 7k+3 such that $g(n_2)/f(n_2)$ is super-constant.

Hence, f(n) = O(g(n)) does not hold and g(n) = O(f(n)) also does not hold.