

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 November 2001 (22.11.2001)

PCT

(10) International Publication Number
WO 01/088169 A3

(51) International Patent Classification⁷: C12N 15/82.
9/02, 15/53

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US01/15264

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 11 May 2001 (11.05.2001)

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(25) Filing Language: English

(88) Date of publication of the international search report:
1 August 2002

(26) Publication Language: English

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(30) Priority Data:
09/570,140 12 May 2000 (12.05.2000) US

(71) Applicant: MONSANTO TECHNOLOGY LLC
[US/US]: 800 N. Lindbergh Boulevard, St. Louis, MO
63167 (US).

(72) Inventor: SHEWMAKER, Christine, K.; 1409
Springcreek, Woodland, CA 95776 (US).

(74) Agent: MARSH, David, R.: Arnold & Porter, 555 12th
Street, N.W., Washington, DC 20004-1206 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

WO 01/088169 A3

(54) Title: METHOD FOR PRODUCING CAROTENOID COMPOUNDS IN PLANTS

(57) Abstract: Methods are provided for producing plants and seeds having altered carotenoid compositions by transforming host plants with constructs having a transcriptional initiation region from a gene expressed in a plant seed, a plastid transit peptide, a DNA sequence derived from at least one carotenoid biosynthesis gene coding region, and a transcriptional termination region. The methods find particular use in increasing the carotenoid content in oilseed plants.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/15264

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/82 C12N9/02 C12N15/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, PAJ, SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 06862 A (CALGENE INC (US)) 19 February 1998 (1998-02-19) the whole document, especially page 14, lines 1-6 and page 18, lines 16-22	1-16, 19, 20
X	WO 99 07867 A (CALGENE LLC) 18 February 1999 (1999-02-18) the whole document	1-16, 19, 20
X	WO 96 13149 A (AMOCO CORP) 9 May 1996 (1996-05-09) cited in the application page 7, line 30 -page 10, line 19 page 23, line 15 -page 36, line 21	1-4, 7-10, 14, 19, 20
X	WO 99 55889 A (DU PONT) 4 November 1999 (1999-11-04) the whole document	17, 19-21
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 May 2002	21/05/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer

De Kok, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/15264

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BUCKNER BRENT ET AL: "The y1 gene of maize codes for phytoene synthase." GENETICS, vol. 143, no. 1, 1996, pages 479-488, XP001040499 ISSN: 0016-6731 abstract -----	17,18,22

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. application No	PCT/US 01/15264
---------------------	-----------------

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9806862	A 19-02-1998		AU 4058497 A BR 9713462 A CN 1227609 A EP 0925366 A1 JP 2001505409 T WO 9806862 A1	06-03-1998 28-03-2000 01-09-1999 30-06-1999 24-04-2001 19-02-1998
WO 9907867	A 18-02-1999		AU 8900298 A CN 1275166 T EP 1002117 A1 JP 2001512688 T WO 9907867 A1	01-03-1999 29-11-2000 24-05-2000 28-08-2001 18-02-1999
WO 9613149	A 09-05-1996		US 5618988 A AU 697358 B2 AU 3970195 A CA 2203815 A1 CN 1172416 A EP 0792352 A1 JP 10509309 T NO 971945 A NZ 296012 A PL 319788 A1 WO 9613149 A1	08-04-1997 01-10-1998 23-05-1996 09-05-1996 04-02-1998 03-09-1997 14-09-1998 27-06-1997 28-05-1999 01-09-1997 09-05-1996
WO 9955889	A 04-11-1999		AU 3749199 A AU 3754499 A AU 3864999 A BR 9910038 A EP 1071800 A2 EP 1071801 A2 EP 1071802 A2 WO 9955887 A2 WO 9955888 A2 WO 9955889 A2	16-11-1999 16-11-1999 16-11-1999 09-10-2001 31-01-2001 31-01-2001 31-01-2001 04-11-1999 04-11-1999 04-11-1999

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 November 2001 (22.11.2001)

PCT

(10) International Publication Number
WO 01/88169 A2

(51) International Patent Classification⁷: C12N 15/82, 9/02, 15/53

(21) International Application Number: PCT/US01/15264

(22) International Filing Date: 11 May 2001 (11.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/570,140 12 May 2000 (12.05.2000) US

(71) Applicant: MONSANTO TECHNOLOGY LLC [US/US]; 800 N. Lindbergh Boulevard, St. Louis, MO 63167 (US).

(72) Inventor: SHEWMAKER, Christine, K.; 1409 Springcreek, Woodland, CA 95776 (US).

(74) Agent: MARSH, David, R.; Arnold & Porter, 555 12th Street, N.W., Washington, DC 20004-1206 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/88169 A2

(54) Title: METHODS FOR PRODUCING CAROTENOID COMPOUNDS, AND SPECIALITY OILS IN PLANT SEEDS

(57) Abstract: Methods are provided for producing plants and seeds having altered carotenoid compositions by transforming host plants with constructs having a transcriptional initiation region from a gene expressed in a plant seed, a plastid transit peptide, a DNA sequence derived from at least one carotenoid biosynthesis gene coding region, and a transcriptional termination region. The methods find particular use in increasing the carotenoid content in oilseed plants.

**METHODS FOR PRODUCING CAROTENOID COMPOUNDS, AND
SPECIALITY OILS IN PLANT SEEDS**

5 This application is a continuation-in-part of Application Serial No. 09/023,587, filed February 13, 1998, and a continuation-in-part of Application Serial No. 09/130,549, filed August 6, 1998, which is a continuation-in-part of Application Serial No.08/908,758 filed August 8, 1997 which claims the benefit of the filing date of provisional Application Serial No.60/024,145 filed August 9, 1996.

10

FIELD OF THE INVENTION

The invention relates to genetic modification of plants, plant cells and seeds, particularly altering carotenoid biosynthesis, and fatty acid composition.

15

BACKGROUND OF THE INVENTION

Carotenoids are pigments with a variety of applications. They are yellow-orange-red lipids which are present in green plants, some molds, yeast and bacteria. Carotenoid hydrocarbons are referred to as carotenes, whereas oxygenated derivatives are referred to as xanthophylls. The carotenoids are part of the larger isoprenoid biosynthesis pathway which, in addition to carotenoids, produces such compounds as chlorophyll and tocopherols, Vitamin E active agents. The carotenoid pathway in plants produces carotenes, such as α - and β -carotene, and lycopene, and xanthophylls, such as lutein.

20 The biosynthesis of carotenoids involves the condensation of two molecules of the C₂₀ precursor geranyl PP_i to yield the first C₄₀ hydrocarbon phytoene. In a series of sequential desaturations, phytoene yields lycopene. Lycopene is the precursor of the

cyclic carotenes, β -carotene and α -carotene. The xanthophylls, zeaxanthin and lutein are formed by hydroxylation of β -carotene and α -carotene, respectively.

β -carotene, a carotene whose color is in the spectrum ranging from yellow to orange, is present in a large amount in the roots of carrots and in green leaves of plants.

5 β -carotene is useful as a coloring material and also as a precursor of vitamin A in mammals. Current methods for commercial production of β -carotene include isolation from carrots, chemical synthesis, and microbial production.

10 A number of crop plants and a single oilseed crop are known to have substantial levels of carotenoids, and consumption of such natural sources of carotenoids have been indicated as providing various beneficial health effects. The below table provides levels 15 of carotenoids that have been reported for various plant species.

CAROTENOID CONTENTS OF VARIOUS CROPS
($\mu\text{g/g}$)

15

Crop	Beta-Carotene	Alpha-Carotene	Lycopene	Lutein	Total
Carrots	30-110	10-40	0-0.5	0-2	65-120
Pepper (gr)	2	-	-	2	8
Pepper (red)	15	1	-	-	200
20 Pumpkin	16	0.3	tr	26	100
Tomato	3-6	-	85	-	98
Watermelon	1	tr	19	-	25
Marigold petals	5	4	-	1350	1500
Red palm oil	256	201	8	-	545

25

The pathway for biosynthesis of the carotenoids has been studied in a variety of organisms and the biosynthetic pathway has been elucidated in organisms ranging from bacteria to higher plants. See, for example, Britton, G. (1988) *Biosynthesis of carotenoids*, p. 133-182, In T.W. Goodwin (ed.), *Plant pigments*, 1988. Academic

Press, Inc. (London), Ltd., London. Carotenoid biosynthesis genes have also been cloned from a variety of organisms including *Erwinia uredovora* (Misawa *et al.* (1990) *J. Bacteriol.* 172:6704-6712; *Erwinia herbicola* (Application WO 91/13078, Armstrong *et al.* (1990) *Proc. Natl. Acad. Sci., USA* 87:9975-9979); *R. capsulatus* (Armstrong *et al.* (1989) *Mol. Gen. Genet.* 216:254-268, Romer *et al.* (1993) *Biochem. Biophys. Res. Commun.* 196:1414-1421); *Thermus thermophilus* (Hoshino *et al.* (1993) *Appl. Environ. Microbiol.* 59:3150-3153); the cyanobacterium *Synechococcus* sp. (Genbank accession number X63873). See also, application WO 96/13149 and the references cited therein.

While the genes have been elucidated, little is known about the use of the genes in plants. Investigations have shown that over expression or inhibition of expression of the plant phytoene synthase (Psy1) gene in transgenic plants can alter carotenoid levels in fruits. See, Bird *et al.* (1991) *Biotechnology* 9:635-639; Bramley *et al.* (1992) *Plant J.* 2:343-349; and Fray and Grierson (1993) *Plant Mol. Biol.* 22:589-602. Further, as reported by Fray *et al.* (1995) *The Plant Journal* 8:693-701, constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway.

Application WO 96/13149 reports on enhancing carotenoid accumulation in storage organs such as tubers and roots of genetically engineered plants. The application is directed towards enhancing colored native carotenoid production in specific, predetermined non-photosynthetic storage organs. The examples of the application are drawn to increasing colored carotenoids in transformed carrot roots and in orange flesh potato tubers. Both of these tissues are vegetative tissues, not seeds, and natively have a high level of carotenoids.

Carotenoids are useful in a variety of applications. Generally, carotenoids are useful as supplements, particularly vitamin supplements, as vegetable oil based food products and food ingredients, as feed additives in animal feeds and as colorants.

Specifically, phytoene finds use in treating skin disorders. See, for example, U.S. Patent No. 4,642,318. Lycopene, α - and β -carotene are used as food coloring agents. Consumption of β -carotene and lycopene has also been implicated as having preventative effects against certain kinds of cancers. In addition, lutein consumption 5 has been associated with prevention of macular degeneration of the eye.

Plant oils are useful in a variety of industrial and edible applications. Novel vegetable oils compositions and/or improved means to obtain oils compositions, from biosynthetic or natural plant sources are needed. Depending upon the intended oil use, various different fatty acid compositions are desired. The demand for modified oils with 10 specific fatty acid compositions is great, particularly for oils high in oleic acid. See, Haumann, B. F. (1996) *INFORM* 7:320-334. As reported by Haumann, the ideal frying oil would be a low-saturate, high oleic and low linolenic oil. Furthermore, studies in recent years have established the value of monounsaturated fatty acids as a dietary constituent.

15 Attempts have been made over the years to improve the fatty acid profiles of particular oils. For example, the oxidative stability of vegetable oil is related to the number of double bonds in its fatty acids. That is, molecules with several double bonds are recognized to be more unstable. Thus, scientists have attempted to reduce the content of α -linolenic acid in order to improve shelf life and oxidative stability, 20 particularly under heat.

It is apparent that there is needed a method for producing significant levels of carotenoid compounds in crop plants and particularly in plant seeds. It would 25 additionally be beneficial to alter the fatty acid content of the plants and seeds. Such altered seed products would be useful nutritionally as well as provide a source for producing more stable oils. There is no report of methods to substantially altering the levels and composition of carotenoids produced in a plant seed, particularly with respect

to increasing the level of production of carotenoids. There is therefore needed, a useful method for altering carotenoid levels in plants, particularly seeds, and for producing oils with modified carotenoid composition and/or content.

5

SUMMARY OF THE INVENTION

Transformed plants, plant cells and seeds having altered carotenoid levels and/or modified fatty acid compositions are provided. The plants, plant cells and seeds are transformed with at least one carotenoid biosynthesis gene, or a combination thereof. Methods for making and using the transformed compositions of the invention are also provided. Methods find use in altering carotenoid levels in plants, particularly seeds, as well as increasing particular compounds for molecular farming, such as for production of particular carotenoids. At the same time, the transformed compositions, particularly seeds, provide a source of modified oils, which oils may be extracted from the seeds in order to provide an oil product comprising a natural source of various carotenoids, carotenoid mixtures. In a particular aspect of the present invention, transformed seed can provide a source for particular carotenoid compounds and/or for modified specialty oils having altered carotenoid compositions and/or altered fatty acid composition, particularly having increased levels of oleic acid and decreased levels of linoleic and linolenic acids.

20

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the nucleotide sequence of the SSU/crtB fusion sequence, SEQ ID No. 1.

Figure 2 presents constructs for expression of carotenoid biosynthesis genes in plant seeds. Figure 2A shows plasmid pCGN3390 which con

tains the napin promoter operably linked to the SSU/*crtB* sequence. Figure 2B shows plasmid pCGN3392 which contains the napin promoter operably linked to the SSU/*crtE* sequence. Figure 2C shows plasmid pCGN9010 which contains the napin promoter operably linked to the SSU/*crtI* sequence. Figure 2D shows plasmid pCGN9009 which contains the napin promoter operably linked to the SSU/*crtB* sequence and the napin promoter operably linked to the SSU/*crtI* sequence. Figure 2E shows plasmid pCGN9002 which contains the napin promoter operably linked to the SSU/*crtB* sequence and the napin promoter operably linked to an antisense epsilon cyclase sequence. Figure 2F shows plasmid pCGN9017 which contains the napin promoter operably linked to the SSU/*crtB* sequence and the napin promoter operably linked to an antisense beta cyclase sequence. Figure 2G shows plasmid pCGN6204 which contains the napin promoter operably linked to the SSU/*crtB* sequence and the napin promoter operably linked to the SSU/*crtW* sequence. Figure 2H shows plasmid pCGN6205 which contains the napin promoter operably linked to the SSU/*crtB* sequence and the napin promoter operably linked to the *crtZ* sequence. Figure 2I shows plasmid pCGN6206 which contains the napin promoter operably linked to the SSU/*crtB* sequence, the napin promoter operably linked to the *crtW* sequence and the napin promoter operably linked to the *crtZ* sequence. Figure 2J provides a schematic diagram of the corn expression construct pCGN9039.

Figure 3 shows the results of analyses of saponified samples for control seeds. Figure 4 shows the results of analyses of saponified samples for pCGN3390 transformed seeds.

Figure 5 shows a graph of the fatty acid analysis in pCGN3390 transformed seeds and demonstrates that the increase in 18:1 fatty acids correlates with a decrease in 18:2 and 18:3.

Figure 6 shows a graph of the fatty acid analysis in pCGN3390 transformed seeds and demonstrates that the increase in 18:1 correlates with an increase in both 18:0 and 20:0, but little effect is seen in 16:0.

Figure 7 shows a graph of the fatty acid analysis in pCGN3390 transformed 5 seeds and demonstrates the increase in 18:0 correlates well with an increase in 20:0.

Figure 8 shows a carotenoid biosynthesis pathway.

Figure 9 provides sequence of *B. napus* epsilon cyclase cDNA clone 9-4, SEQ ID No. 2.

Figure 10 provides sequence of *B. napus* epsilon cyclase cDNA clone 7-6, SEQ 10 ID No. 3.

Figure 11 provides sequence of a *B. napus* beta cyclase cDNA clone, SEQ ID No. 4.

Figure 12 provides T2 seed analysis of 3390 transformed *Brassica napus* plants.

Figure 13 provides T3 seed analysis of 3390 transformed *Brassica napus* plants.

15 Figure 14 provides T2 seed analysis of 9002 transformed *Brassica napus* plants.

Figure 15 shows the nucleotide sequence of the SSU/crtZ fusion sequence, SEQ ID No. 5, and the deduced amino acid sequence SEQ ID No. 6.

Figure 16 shows the nucleotide sequence of the SSU/crtW fusion sequence, SEQ ID No. 7, and the deduced amino acid sequence SEQ ID No. 8.

20 Figure 17 shows the HPLC trace for detection of xanthophylls from extractions from seed of 6204 transgenic lines.

Figure 18 provides the results of the expression of the maize phytoene synthase in *Arabidopsis* comparing the levels of B-carotene to total carotenoid levels in 9061 lines.

Figure 19 provides the complete nucleic acid sequence of the maize phytoene synthase sequence SEQ ID No. 9, and the deduced amino acid sequence, SEQ ID No. 10.

5

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the subject invention, methods for increasing production of carotenoid compounds, as well as for altering fatty acid compositions in a plant, particularly in plant seeds, are provided. The method involves transforming a plant cell with at least one carotenoid biosynthesis biosynthesis gene. This has the effect of 10 altering carotenoid biosynthesis, particularly increasing the production of downstream products, as well as providing novel seed oils having desirable fatty acid compositions. A second gene can then be utilized to shunt the metabolic activity to the production of particular carotenoid, or to further alter the fatty acid composition.

Surprisingly, it has been found that transformation of a plant with an early 15 carotenoid biosynthesis gene leads to a significant increase in the flux through the carotenoid pathway resulting in an increase in particular carotenoids. That is, there is an increase in the metabolic activity that can be further manipulated for the production of specific carotenoids. In addition, the transformed seeds may demonstrate altered fatty acid compositions as the result of the carotenoid gene expression, such as seen with the 20 seeds described herein from plants transformed with a phytoene synthase gene.

Thus, using the methods of the invention, seeds are provided which produce high levels of particular carotenoids and/or produce specialty oils having a desired fatty acid composition. In oilseed *Brassica*, for example, transformation with an early carotenoid biosynthesis gene leads to seeds having significant increases in the levels of α -carotene, 25 β -carotene and lutein. In addition, the *Brassica* seeds demonstrate an altered fatty acid composition and yield a vegetable oil which has increased oleic acid content and

decreased linoleic and linolenic acid content. Thus, the transformed seed can provide a source of carotenoid products as well as modified seed oil. In this manner, modified specialty oils can be produced and new sources of carotenoids for extraction and purification are provided.

5 The oils of the present invention also provide a substantial improvement with respect to stability as compared to two other major plant sources of carotenoids, marigold petals and red palm oil (mesocarp). Although instability is observed in seeds stored in air at room temperature as demonstrated by loss of approximately 20-30% of total carotenoids after 4 weeks of storage, the loss after 1-2 weeks is only 10%. Palm
10 mesocarp, by contrast, must be processed within a day or two of harvest in order to avoid major losses of carotenoids. Furthermore, the carotenoid decomposition in the seeds of the present invention may be reduced significantly by storage of the seeds under nitrogen.

15 For the production of a seed having an increase in carotenoid biosynthesis, transformation of the plant with an early carotenoid biosynthesis gene is sufficient. By early carotenoid biosynthesis gene is intended geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and isopentenyl diphosphate (IPP) isomerase. A variety of sources are available for the early carotenoid biosynthesis genes and for the most part, a gene from any source can be utilized. However, it is recognized that
20 because of co-suppression, the use of a plant gene native to the target host plant may not be desirable where increased expression of a particular enzyme is desired.

A number of early carotenoid biosynthesis genes, also referred herein as DNA sequences derived from carotenoid biosynthesis gene coding regions, have been isolated and are available for use in the methods of the present invention. See, for example:

25 IPP isomerase has been isolated from: *R. Capsulatus* (Hahn *et al.* (1996) *J. Bacteriol.* 178:619-624 and the references cited therein), GenBank Accession Nos.

U48963 and X82627, *Clarkia xantiana* GenBank Accession No. U48962, *Arabidopsis thaliana* GenBank Accession No. U48961, *Schizosaccharomyces pombe* GenBank Accession No. U21154, human GenBank Accession No. X17025, *Kluyveromyces lactis* GenBank Accession No. X14230;

5 geranylgeranyl pyrophosphate synthase from *E. Uredovora* Misawa *et al.* (1990) *J. Bacteriol.* 172:6704-6712 and Application WO 91/13078; and from plant sources, including white lupin (Aitken *et al.* (1995) *Plant Phys.* 108:837-838), bell pepper (Badillo *et al.* (1995) *Plant Mol. Biol.* 27:425-428) and *Arabidopsis* (Scolnik and Bartley (1994) *Plant Physiol.* 104:1469-1470; Zhu *et al.* (1997) *Plant Cell Physiol.* 38:357-361).

10 phytoene synthase from a number of sources including *E. Uredovora*, *Rhodobacter capsulatus*, and plants Misawa *et al.* (1990) *J. Bacteriol.* 172:6704-6712, GenBank Accession No. D90087, Application WO 91/13078, Armstrong *et al.* (1989) *Mol. Gen. Genet.* 216:254-268, Armstrong, G. A. "Genetic Analysis and regulation of carotenoid biosynthesis. In R. C. Blankenship, M. T. Madigan, and C. E. Bauer (ed.), 15 *Anoxygenic photosynthetic bacteria; advances in photosynthesis*. Kluwer Academic Publishers, Dordrecht, The Netherlands, Armstrong *et al.* (1990) *Proc. Natl. Acad. Sci USA* 87:9975-9979, Armstrong *et al.* (1993) *Methods Enzymol.* 214:297-311, Bartley and Scolnik (1993) *J. Biol. Chem.* 268:27518-27521, Bartley *et al.* (1992) *J. Biol. Chem.* 267:5036-5039, Bramley *et al.* (1992) *Plant J.* 2:291-343, Ray *et al.* (1992) *Plant Mol. Biol.* 19:401-404, Ray *et al.* (1987) *Nucleic Acids Res.* 15:10587, Romer *et al.* (1994) *Biochem. Biophys. Res. Commun.* 196:1414-1421, Karvouni *et al.* (1995) *Plant Molecular Biology* 27:1153-1162, GenBank Accession Nos. U32636, Z37543, L37405, X95596, D58420, U32636, Z37543, X78814, X82458, S71770, L27652, L23424, 20 X68017, L25812, M87280, M38424, X69172, X63873, and X60441, Armstrong, G. A. (1994) *J. Bacteriol.* 176:4795-4802 and the references cited therein; and,

phytoene desaturase from bacterial sources including *E. uredovora* Misawa *et al.* (1990) *J. Bacteriol.* 172:6704-6712, and Application WO 91/13078 (GenBank Accession Nos. L37405, X95596, D58420, X82458, S71770, and M87280); and from plant sources, including maize (Li *et al.* (1996) *Plant Mol. Biol.* 30:269-279), tomato (Pecker *et al.* (1992) *Proc. Nat. Acad. Sci.* 89:4962-4966 and Aracri *et al.* (1994) *Plant Physiol.* 106:789), and *Capsicum annuum* (bell peppers) (Hugueney *et al.* (1992) *J. Biochem.* 209: 399-407), GenBank Accession Nos. U37285, X59948, X78271, and X68058).

See, generally, Misawa *et al.* (1990) *J. of Bacteriology* 172:6704-6712, E.P. 0393690 B1, U.S. Patent No. 5,429,939, Bartley *et al.* (1992) *J. Biol. Chem.* 267:5036-5039, Bird *et al.* (1991) *Biotechnology* 9:635-639, and US Patent No. 5,304,478, which disclosures are herein incorporated by reference.

Transformation with an early carotenoid gene, (herein referred to as the primary gene), increases the biosynthetic activity of the carotenoid pathway, and can lead to increased production of particular carotenoids such as for example, α - and β -carotene. As described in more detail in the following examples, by expression of phytoene synthase as the primary gene, large increases in the carotenoid content generally, and particularly in the levels of α - and β -carotene, are obtained in seeds of transformed plants. Oil comprising the carotenoids so produced may be extracted from the seeds to provide a valuable source of α - and β -carotenes. Such an oil may find use as a food colorant, for example to add color to margarines, or as a food oil. An edible food oil with high α - and β -carotene levels is of interest for prevention of Vitamin A deficiency which can result in night blindness. Thus, production of transformed plants and extraction of the high α - and β -carotene oil to provide a useful food oil is particularly desirable in regions where night blindness is a widespread problem, such as in India and Asia.

In addition to high α - and β -carotene levels, levels of other carotenoids are also increased in the oils exemplified herein. For example, lutein levels are increased in seeds from plants transformed with a phytoene synthase gene, as well as in seeds from plants transformed with a GGPP synthase gene, *crtE* (3392), or with phytoene

5 desaturase, *crtI* (9010).

Furthermore, additional primary genes may be expressed to provide for even greater flux through the carotenoid pathway. For example, in oilseed *Brassica* seeds transformed with a phytoene synthase gene as described herein, increased levels of phytoene are observed. Thus, increasing the expression of phytoene desaturase as well 10 as phytoene synthase may result in further increases in the levels of carotenoids, such as α - and β -carotene and lutein, produced. Such further modification of carotenoid composition is demonstrated here in transgenic plant seeds transformed with pCGN9009 for the expression of *crtB* and *crtI* genes. Additionally, plants expressing both phytoene synthase and GGPP synthase genes are desirable. Such plants may demonstrate even 15 greater flux through the carotenoid pathway as indicated by the increased production of chlorophyll observed in plants of the present invention which have been transformed to express a GGPP synthase gene (*crtE*) in the absence of *crtB* overexpression.

Interestingly, plants expressing a GGPP synthase gene did not have significant modifications of the tocopherol content. Since GGPP is a branch point of the 20 carotenoid, chlorophyll and tocopherol pathways in plants, these observations suggest that the next enzymatic step in tocopherol biosynthesis, catalyzed by GGPP hydrogenase, is a rate limiting step for tocopherol production. Thus, providing for increased expression of GGPP hydrogenase, alone or in conjunction with increased expression of GGPP synthase would be expected to result in an increase of flux to the 25 tocopherol pathway.

Also of interest are plants which are transformed to express three early carotenoid biosynthesis gens, *crtB*, *crtE*, and *crtI*. Plants expressing two or three different carotenoid biosynthesis genes may be produced by either transforming a plant with a construct providing for expression of the desired genes, using a multiple gene construct or by cotransformation with multiple constructs, or by crossing plants which contain the different desired genes.

In addition to the production of the carotenoids described herein, once the biosynthetic activity has been increased by expression of the primary carotenoid biosynthesis gene or genes, the pathway can be diverted for the production of specific compounds. The diversion involves the action of at least one second gene of interest, (the secondary gene). The secondary gene can encode an enzyme to force the production of a particular compound or alternatively can encode a gene to stop the pathway for the accumulation of a particular compound. For forcing the production of a particular compound, expression of a carotenoid biosynthesis gene in the pathway for the desired carotenoid compound is used. Genes native or foreign to the target plant host may find use in such methods, including, for example, carotenoid biosynthesis genes from sources other than higher plant, such as bacteria, including *Erwinia* and *Rhodobacter* species. For stopping the pathway in order to accumulate a particular carotenoid compound, the secondary gene will provide for inhibition of transcription of a gene native to the target host plant, wherein the enzyme encoded by the inhibited gene is capable of modifying the desired carotenoid compound. Inhibition may be achieved by transcription of the native gene to be inhibited in either the sense (cosuppression) or antisense orientation of the gene.

For example, for alteration of the carotenoid composition towards the accumulation of higher levels of β-carotene derived carotenoids, such as zeaxanthin, zeaxanthin diglucoside, canthaxanthin, and astaxanthin, inhibition of lycopene epsilon

cyclase is desired to prevent accumulation of alpha carotene and its derivative carotenoids, such as lutein. In addition, overexpression of lycopene β -cyclase may be used to increase the accumulation of β -carotene derived carotenoids. Thus, antisense lycopene epsilon cyclase and lycopene β -cyclase are examples of sequences which find use in secondary gene constructs of interest in the present invention. Furthermore, in conjunction with the inhibition of lycopene epsilon cyclase, increased expression of additional secondary genes may be desired for increased accumulation of a particular beta-carotene derived carotenoid. For example, increased β -carotene hydroxylase expression is useful for production of zeaxanthin, whereas increased β -carotene hydroxylase and keto-introducing enzyme expression is useful for production of astaxanthin. Alternatively, for accumulation of lycopene, inhibition of lycopene beta cyclase or of lycopene epsilon cyclase and lycopene beta cyclase is desired to reduce conversion of lycopene to alpha- and beta-carotene.

Thus, the carotenoid pathway can be manipulated by expression of carotenoid biosynthesis genes to increase production of particular carotenoids, or by decreasing levels of a particular carotenoid by transformation with antisense DNA sequences which prevent the conversion of a selected precursor compound into the next carotenoid in the pathway.

Secondary genes of interest in the present application include but are not limited to:

β -carotene hydroxylase or *crtZ* (Hundle *et al.* (1993) *FEBS Lett.* 315:329-334, GenBank Accession No. M87280) for the production of zeaxanthin; genes encoding keto-introducing enzymes, such as *crtW* (Misawa *et al.* (1995) *J. Bacteriol.* 177:6575-6584, WO 95/18220, WO 96/06172) or β -C-4-oxygenase (*crtO*; Harker and Hirschberg (1997) *FEBS Lett.* 404:129-134) for the production of canthaxanthin;

crtZ and *crtW* or *crtO* for the production of astaxanthin;
ε-cyclase and *ε*-hydroxylase for the production of lutein;
ε-hydroxylase and *crtZ* for the production of lutein and zeaxanthin;
lycopene *β*-cyclase (*crtY*) (Hugueney *et al.* (1995) *Plant J.*
5 *8*:417-424, Cunningham FX Jr (1996) *Plant Cell* *8*:1613-1626, Scolnik and
Bartley (1995) *Plant Physiol.* *108*:1343, GenBank Accession Nos. X86452,
L40176, X81787, U50739 and X74599) for increased production of *β*-carotene.
antisense lycopene *ε*-cyclase (GenBank Accession No. U50738) for increased
production of *β*-carotene;
10 antisense lycopene *ε*-cyclase and lycopene *β*-cyclase for the production of
lycopene;
antisense plant phytoene desaturase for the production of phytoene; etc.
In this manner, the pathway can be modified for the high production of any
particular carotenoid compound of interest, or for a particular subset of carotenoid
15 compounds, such as xanthophylls. Such compounds include but are not limited to the
particular compounds described above, as well as, *α*-cryptoxanthin, *β*-cryptoxanthin, *ζ*-
carotene, phytofluene, neurosporane, adonixanthin, echineneone, hydroxycanthaxanthin
and the like. For a review of xanthophyll production, see Misawa, *et al.* (1995) *supra*).
Using the methods of the invention, any compound of interest in the carotenoid pathway
20 can be produced at high levels in a seed.

Secondary genes can also be selected to alter the fatty acid content of the plant
for the production of specialty oils. For example, acyl-ACP thioesterase genes having
specificity for particular fatty acid chain lengths may be used. See, for example, USPN
5,304,481, USPN 5,455,167, WO 95/13390, WO 94/10288, WO 92/20236, WO
25 91/16421, WO 97/12047 and WO 96/36719. Other fatty acid biosynthesis genes of
interest include, but are not limited to, *β*-keto acyl-ACP synthases (USPN 5,510,255),

fatty acyl CoA synthases (USPN 5,455,947), fatty acyl reductases (USPN 5,370,996) and stearoyl-ACP desaturases (WO 91/13972).

Of particular interest is the use of a mangosteen acyl-ACP thioesterase as a secondary gene for fatty acid content modification. As described in WO 96/36719 and 5 WO 97/12047, a high stearate content may be obtained in seeds by expression of a mangosteen acyl-ACP thioesterase. To combine the high oleic acid trait of the 3390 plants described herein with the 5266 high stearate plants described in WO 97/12047, crosses were made between 3390-1 and 5266-35 and between 3390-1 and 5266-5. Seeds resulting from these crosses contained oil having a high stearate, low linoleic, low 10 linolenic and high carotenoid phenotype.

Any means for producing a plant comprising the primary gene or both the primary and secondary genes are encompassed by the present invention. For example, the secondary gene of interest can be used to transform a plant at the same time as the primary gene either by inclusion of both expression constructs in a single transformation 15 vector or by using separate vector, each of which express desired primary or secondary genes. The secondary gene can be introduced into a plant which has already been transformed with the primary gene, or alternatively, transformed plants, one expressing the primary gene and one expressing the secondary gene, can be crossed to bring the genes together in the same plant.

By combining the genes with tissue specific promoters, the carotenoid levels can 20 be altered in particular tissues of the plant. Thus, carotenoid levels in the seed, including embryos and endosperm, can be altered by the use of seed specific transcriptional initiation regions. Such regions are disclosed, for example, in U.S. Patent No. 5,420,034, which disclosure is herein incorporated by reference.

25 In this manner, the transformed seed provides a factory for the production of modified oils. The modified oil may be used or alternatively, the compounds in the oils

can be isolated. Thus, the present invention allows for the production of particular compounds of interest as well as speciality oils.

The primary or secondary genes encoding the enzymes of interest can be used in expression cassettes for expression in the transformed plant tissues. To alter the 5 carotenoid or fatty acid levels in a plant of interest, the plant is transformed with at least one expression cassette comprising a transcriptional initiation region linked to a gene of interest. Such an expression cassette is provided with a plurality of restriction sites for insertion of the gene of interest to be under the transcriptional regulation of the regulatory regions.

10 The transcriptional initiation may be native or analogous to the host or foreign or heterologous to the host. By foreign is intended that the transcriptional initiation region is not found in the wild-type host into which the transcriptional initiation region is introduced.

15 Of particular interest are those transcriptional initiation regions associated with storage proteins, such as napin, cruciferin, β -conglycinin, phaseolin, or the like, and proteins involved in fatty acid biosynthesis, such as acyl carrier protein (ACP). See, U.S. Patent No. 5,420,034, herein incorporated by reference.

20 The transcriptional cassette will include the in 5'-3' direction of transcription, a transcriptional and translational initiation region, a DNA sequence of interest, and a transcriptional and translational termination region functional in plants. The termination region may be native with the transcriptional initiation region, may be native with the DNA sequence of interest, or may be derived from another source. Convenient 25 termination regions are available from the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau et al., (1991), *Mol. Gen. Genet.*, 262:141-144; Proudfoot, (1991), *Cell*, 64:671-674; Sanfacon et al., (1991), *Genes Dev.*, 5:141-149; Mogen et al., (1990), *Plant Cell*, 2:1261-1272;

Munroe et al., (1990), *Gene*, 91:151-158; Ballas et al., (1989), *Nucleic Acids Res.*, 17:7891-7903; Joshi et al., (1987), *Nucleic Acid Res.*, 15:9627-9639).

For the most part, the genes of interest of the present invention will be targeted to plastids, such as chloroplasts, for expression. Thus, the carotenoid biosynthesis gene or 5 genes of interest may be inserted into the plastid for expression with appropriate plastid constructs and regulatory elements. Alternatively, nuclear transformation may be used in which case the expression cassette will contain a gene encoding a transit peptide to direct the carotenoid biosynthesis gene of interest to the plastid. Such transit peptides are known in the art. See, for example, Von Heijne et al. (1991) *Plant Mol. Biol. Rep.* 9:104-126; Clark et al. (1989) *J. Biol. Chem.* 264:17544-17550; della-Cioppa et al. 10 (1987) *Plant Physiol.* 84:965-968; Romer et al. (1993) *Biochem. Biophys. Res Commun.* 196:1414-1421; and, Shah et al. (1986) *Science* 233:478-481. Plant carotenoid genes useful in the invention may utilize native or heterologous transit peptides.

It is noted that where the gene or DNA sequence of interest is an antisense DNA, 15 targeting to a plastid is not required. In addition, where antisense inhibition of a given carotenoid biosynthesis gene is desired, the entire DNA sequence derived from the carotenoid biosynthesis gene is not required.

The construct may also include any other necessary regulators such as plant translational consensus sequences (Joshi, C.P., (1987), *Nucleic Acids Research*, 20 15:6643-6653), introns (Luehrs and Walbot, (1991), *Mol. Gen. Genet.*, 225:81-93) and the like, operably linked to the nucleotide sequence of interest.

It may be beneficial to include 5' leader sequences in the expression cassette which can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' 25 noncoding region) (Elroy-Stein, O., Fuerst, T.R., and Moss, B. (1989) *PNAS USA* 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus)

(Allison et al., (1986); MDMV leader (Maize Dwarf Mosaic Virus); *Virology*, 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP), (Macejak, D.G., and Sarnow, P., (1991), *Nature*, 353:90-94; untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), (Jobling, S.A., and Gehrke, L., 5 (1987), *Nature*, 325:622-625; tobacco mosaic virus leader (TMV), (Gallie, D.R. et al., (1989), *Molecular Biology of RNA*, pages 237-256; and maize chlorotic mottle virus leader (MCMV) (Lommel, S.A. et al., (1991), *Virology*, 81:382-385. See also, Della-Cioppa et al., (1987), *Plant Physiology*, 84:965-968.

Depending upon where the DNA sequence of interest is to be expressed, it may 10 be desirable to synthesize the sequence with plant preferred codons, or alternatively with chloroplast preferred codons. The plant preferred codons may be determined from the codons of highest frequency in the proteins expressed in the largest amount in the particular plant species of interest. See, EPA 0359472; EPA 0385962; WO 91/16432; Perlak et al. (1991) *Proc. Natl. Acad. Sci. USA* 88:3324-3328; and Murray et al. (1989) 15 *Nucleic Acids Research* 17: 477-498. In this manner, the nucleotide sequences can be optimized for expression in any plant. It is recognized that all or any part of the gene sequence may be optimized or synthetic. That is, synthetic or partially optimized sequences may also be used. For the construction of chloroplast preferred genes, see USPN 5,545,817.

In preparing the transcription cassette, the various DNA fragments may be 20 manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate in the proper reading frame. Towards this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction 25 sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction,

annealing, resection, ligation, or the like may be employed, where insertions, deletions or substitutions, e.g. transitions and transversions, may be involved.

The recombinant DNA molecules of the invention can be introduced into the plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant, i.e. monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection (Crossway *et al.* (1986) *BioTechniques* 4:320-334), electroporation (Riggs *et al.* (1986) *Proc. Natl. Acad. Sci. USA* 83:5602-5606, *Agrobacterium* mediated transformation (Hinchee *et al.* (1988) *Biotechnology* 6:915-921) and ballistic particle acceleration (see, for example, Sanford *et al.*, U.S. Patent 4,945,050; and McCabe *et al.* (1988) *Biotechnology* 6:923-926). Also see, Weissinger *et al.* (1988) *Annual Rev. Genet.* 22:421-477; Sanford *et al.* (1987) *Particulate Science and Technology* 5:27-37(onion); Christou *et al.* (1988) *Plant Physiol.* 87:671-674(soybean); McCabe *et al.* (1988) *Bio/Technology* 6:923-926 (soybean); Datta *et al.* (1990) *Biotechnology* 8:736-740(rice); Klein *et al.* (1988) *Proc. Natl. Acad. Sci. USA*, 85:4305-4309(maize); Klein *et al.* (1988) *Biotechnology* 6:559-563 (maize); Klein *et al.* (1988) *Plant Physiol.* 91:440-444(maize); Fromm *et al.* (1990) *Biotechnology* 8:833-839; and Gordon-Kamm *et al.* (1990) *Plant Cell* 2:603-618 (maize).

Alternatively, a plant plastid can be transformed directly. Stable transformation of chloroplasts has been reported in higher plants, see, for example, Svab *et al.* (1990) *Proc. Nat'l. Acad. Sci. USA* 87:8526-8530; Svab & Maliga (1993) *Proc. Nat'l Acad. Sci. USA* 90:913-917; Staub & Maliga (1993) *Embo J.* 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination. In such methods, plastid gene expression can be accomplished by use of a plastid gene promoter or by transactivation of a silent plastid-borne transgene positioned for expression from a selective

promoter sequence such as that recognized by T7 RNA polymerase. The silent plastid gene is activated by expression of the specific RNA polymerase from a nuclear expression construct and targeting of the polymerase to the plastid by use of a transit peptide. Tissue-specific expression may be obtained in such a method by use of a 5 nuclear-encoded and plastid-directed specific RNA polymerase expressed from a suitable plant tissue specific promoter. Such a system has been reported in McBride *et al.* (1994) *Proc. Natl. Acad. Sci., USA* 91:7301-7305.

The cells which have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick *et al.*, *Plant Cell Reports* 10 (1986), 5:81-84. These plants may then be grown, and either self or crossed with a different plant strain, and the resulting homozygotes or hybrids having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.

15 As a host cell, any plant variety may be employed. Of particular interest, are plant species which provide seeds of interest. For the most part, plants will be chosen where the seed is produced in high amounts, a seed-specific product of interest is involved, or the seed or a seed part is edible. Seeds of interest include the oil seeds, such as oilseed *Brassica* seeds, cotton seeds, soybean, safflower, sunflower, coconut, palm, 20 and the like; grain seeds, e.g. wheat, barley, oats, amaranth, flax, rye, triticale, rice, corn, etc.; other edible seeds or seeds with edible parts including pumpkin, squash, sesame, poppy, grape, mung beans, peanut, peas, beans, radish, alfalfa, cocoa, coffee, tree nuts such as walnuts, almonds, pecans, chick-peas etc.

It is noted that the methods of the present invention have been demonstrated to 25 provide increased carotenoid production in both oilseed *Brassica*, which has a green embryo, and in cotton, which has a white embryo.

In seed of cotton plants transformed with phytoene synthase, increases of total carotenoid levels ranging from 10 to 300 fold may be obtained. The majority of the increase in carotenoid levels, in this case, about 80%, is observed as an increase in phytoene levels. Increases in lutein levels are also obtained in this case, ranging from 5 1.5 to a 5 fold increase. In addition, α -carotene and β -carotene levels are also increased 10 to 100 fold, with β -carotene levels being 20 fold higher than α -carotene levels. Thus, as seen with Brassica, a second early carotenoid biosynthesis gene, such as phytoene desaturase, may be used with *crtB* to increase the metabolic flux through the carotenoid/isoprenoid pathway in cotton to produce a particular carotenoid.

10 Furthermore, it should also be noted that the methods of the present invention have also been demonstrated herein to provide increased carotenoid production in additional plant species, such as *Arabidopsis* and corn.

In seed of *Arabidopsis* plants transformed with phytoene synthase, increases of total carotenoid levels ranging from 3 to at least approximately 20 fold may be obtained. 15 A large increase in the level of β -carotene, ranging from 10 to 70 fold, are observed in seeds of transgenic *Arabidopsis* plants. Increases in lutein levels are also obtained in this case, ranging from 1.5 to a 3 fold increase. In addition, phytoene, α -carotene and lycopene levels are also increased. However, such increases in α -carotene, phytoene and lycopene are difficult to quantify as these levels are too low to measure in 20 nontransformed control plants. Thus, as seen with Brassica and cotton, a second early carotenoid biosynthesis gene may be used with *crtB* to increase the metabolic flux through the carotenoid/ isoprenoid pathway in cotton to produce a particular carotenoid and to reduce the increased levels of phytoene.

In seed of corn plants transformed with phytoene synthase, increases of total 25 carotenoid levels ranging from 2 to at least approximately 5 fold are obtained. The majority of the increase is seen in the levels of phytoene, while additional increases were

observed in β -carotene levels. Increases of up to about 15 fold increases in β -carotene levels were obtained. Thus, again as with *Brassica*, cotton, and *Arabidopsis*, a second early carotenoid biosynthesis gene can be employed with the *crtB* to increase the metabolic flux through the carotenoid/ isoprenoid pathway in corn to produce a particular carotenoid and to reduce the increased levels of phytoene. Additionally, additional genes, including secondary carotenoid biosynthesis genes can also be used to direct the production of particular carotenoids and xanthophylls.

In one embodiment of the invention, seed transcriptional initiation regions are used in combination with at least one carotenoid biosynthesis gene. This increases the activity of the carotenoid pathway and alters carotenoid levels in the transformed seed. In this manner, particular genes can be selected to promote the formation of compounds of interest. Where the gene selected is an early carotenoid biosynthesis gene the transformed seed has a significant increase in carotenoid biosynthesis as the result of an increase in the flux through the pathway. For *Brassica* seeds transformed with an early carotenoid biosynthesis gene, significant increases in the production of α -carotene, β -carotene and smaller increases in lutein in the seed oil, as well as altered oil fatty acid compositions are obtained. Seeds obtained from corn plants transformed with an early carotenoid biosynthesis gene also demonstrate an increased amount of carotenoid production.

Where the early carotenoid biosynthesis gene is phytoene synthase, significant increases of a particular carotenoid include those ranging from a 10 to a 50 fold increase, preferably at least a 50 to a 100 fold increase, more preferably, at least a 50 to a 200 fold increase, such as the increases seen in α -carotene and β -carotene levels. Lutein levels, in this case, are also increased, but lower increases of 1.5 - 2 fold are obtained. At the same time, total carotenoid levels may be increased at least 10 to 25 fold, preferably 25 to 60 fold, and more preferably 25 to 100 fold. Thus, a seed of the invention

transformed with a phytoene synthase gene has a substantial increase in levels of α - and β -carotene and total carotenoids, as well as smaller increases in lutein and other carotenoids, including phytoene. In some cases, it is not possible to quantitate the fold increase in a given carotenoid compound, as the levels are too low to detect in seeds from comparable non-transformed plants. In *Brassica napus*, for example, α -cryptoxanthin, lycopene, phytoene and phytofluene are all detected in various levels in seeds transformed with a *crtB* gene, but are not detectable in seeds from untransformed *Brassica napus* plants.

Where the early carotenoid biosynthesis gene is GGPP synthase or phytoene desaturase, 1.5 to 2 fold increases in lutein and β -carotene have been obtained in at least one transgenic plant for each gene. Lycopene is also detected in seeds from *Brassica napus* plants transformed with a *crtE* (GGPP synthase) gene. Total carotenoids in *crtE* or *crtI* transformants are also increased approximately 2 fold. Chlorophyll levels are also increased in *B. napus* transgenic plants expressing a *crtE* gene suggesting an increase in the levels of geranylgeranyl pyrophosphate (GGPP), which is the branch point substrate for carotenoid, chlorophyll and tocopherol biosynthesis. Increases in chlorophyll levels of 1.5 to 2 fold may be obtained in developing and mature seeds. Thus, also of interest as sources of carotenoids are plants which have been engineered to express increased levels of both *crtB* and *crtE*.

As demonstrated herein, the effect of one early carotenoid biosynthesis gene on the metabolic energy flux through the carotenoid pathway may be further effected by the addition of a second early carotenoid biosynthesis gene. Thus, the addition of a second early carotenoid biosynthesis gene for increasing the metabolic flow through the carotenoid biosynthesis pathway is also of interest in the present invention, and may find use for production of particular carotenoids either in the presence or absence of a secondary carotenoid biosynthesis gene.

Where the early carotenoid biosynthesis gene phytoene synthase is cotransformed into *Brassica napus* with a second early carotenoid biosynthesis gene, phytoene desaturase, significant increases of particular carotenoids include increases in α-carotene, β-carotene, and lutein such as observed by expression of *crtB* alone. In 5 addition, lycopene and phytoene levels are also increased in such plants, but increases are difficult to quantitate as these levels are too low to be detected in untransformed *Brassica napus* plants.

Furthermore, when *crtI* and *crtB* are both expressed, total carotenoid levels greater than those observed with *crtB* alone may be obtained. In at least one plant, total 10 carotenoid levels of 1.5 fold those observed in *crtB* plants were obtained. Lycopene levels are also increased over levels obtained in seeds of plants transformed with *crtB* alone. Lycopene levels may be increased from 4 to 15 fold over those obtained in seed of a homozygous *crtB* plant. In addition, a reduction in the ratio of phytoene to total 15 carotenoids is also obtained, and as a result, levels of α-carotene and β-carotene are increased 1.2 to 1.8 fold over those obtained with *crtB* alone. In seeds of plants transformed with phytoene synthase alone, phytoene levels constituted as much as 20% of total carotenoids, while in plants cotransformed with phytoene synthase and phytoene desaturase, phytoene levels represent only 4% to 7% of the total carotenoids.

This metabolic energy effected by transformation with an early carotenoid gene 20 can be funneled into a metabolic compound of choice by transformation with a second gene. As discussed above, the second gene is designed to promote the synthesis of a particular carotenoid by promoting the formation of the carotenoid of interest or alternatively by stopping the pathway to allow for the buildup of compounds. Therefore, significant amounts of carotenoids of interest can be produced in the 25 transformed seeds of the present invention.

Where the primary carotenoid biosynthesis gene phytoene synthase is cotransformed with a secondary carotenoid biosynthesis gene, β -carotene ketolase, increases in levels of α -carotene, β -carotene and phytoene, such as those seen with transformation with *crtB* alone, are obtained. Furthermore, echinenone and canthaxanthin levels are also increased. However, such increases are difficult to quantitate as echinenone and canthaxanthin are either not produced in *Brassica napus*, or the levels are too low to be detected in *B. napus* plants expressing phytoene synthase alone and nontransformed control plants. Thus, for the production of a specific carotenoid, such as astaxanthin, the addition of a third carotenoid biosynthesis gene, such as β -carotene hydroxylase (*crtZ*), may find use in the present invention.

Furthermore, the addition of a fourth carotenoid biosynthesis gene, such as phytoene desaturase, may also find use in the present invention.

It should be noted that the carotenoid echinenone is a reaction intermediate in the production of canthoxanthin from β -carotene. The β -carotene ketolase (*crtW*) could react with the β -ring of α - or β -carotene. One β -ring reaction in β -carotene results in echinenone, two β -ring reactions in β -carotene form canthaxanthin, and one β -ring reaction in α -carotene makes 4-keto- α -carotene. This enzyme can not react with the ε -ring of α -carotene. Thus, two additional peaks on the HPLC chromatogram are produced in similar amounts, one representing echinenenone, and the other may represent 4-keto- α -carotene.

Where the primary carotenoid biosynthesis gene phytoene synthase is cotransformed with an antisense secondary carotenoid biosynthsis gene, ε -cyclase, large increases in levels of α -carotene, β -carotene and phytoene, such as those seen with transformation with *crtB* alone, are obtained. Some difference in the ratio of β -carotene to α -carotene is observed as compared to plants transformed with *crtB* alone, but large increases in both α -carotene and β -carotene levels are still observed. Lutein levels, on

the other hand, are either unchanged, increased, or in some cases decreased by as much as 80% as compared to seeds of untransformed control plants.

Initiation of carotenoid biosynthesis begins at approximately 15 days post anthesis in *B. napus* seeds, while expression of transformed genes utilizing the napin promoter begins about 18 days post anthesis. Thus, in order to more tightly control the α-carotene pathway to allow for the build up of β-carotene pathway carotenoids using antisense ε-cyclase, an earlier promoter, such as that of the *Lesquerella kappa* hydroxylase (described in pending U.S. patent application 08/898,038, filed 18 July, 1997), may find use. Thus, for increasing levels of a particular carotenoid using antisense, an earlier seed specific transcriptional initiation region, may be used with a secondary carotenoid biosynthesis gene.

The seeds of the invention which have been transformed with the primary early carotenoid biosynthesis gene also provide a source for novel oil compositions. The use of phytoene synthase as the primary gene, for example, results in substantial increases in oleic acid content in seed oil. By substantial increase is intended an increase of from about 5% to about 40%, specifically from about 20% to about 40%, more specifically from about 30% to about 40%. Thus, the seeds of the invention which have been transformed with a primary early carotenoid biosynthesis gene provide a source for modified oils having a high oleic acid content. That is, carotenoid biosynthesis genes, particularly early carotenoid biosynthesis genes can be used to produce seeds having at least 70% oleic acid, on a weight percentage basis. The oleic acid content in any seed can be altered by the present methods, even those seeds having a naturally high oleic acid content. Alteration of seeds having naturally high oleic acid contents by the present methods can result in total oleic acid contents of as high as 80%.

Importantly, there is also a decrease in linoleic and linolenic acid content. By decrease in linoleic fatty acid content is intended a decrease from about 10% to about

25%, preferably about 25% to about 40%, more preferably about 35% to about 60%. By decrease in linolenic fatty acid content is intended a decrease from about 10% to about 30%, preferably about 30% to about 60%, more preferably about 50% to about 75%. Thus, the methods of the invention result in oils which are more oxidatively stable than 5 the naturally occurring oils. The modified oils of the invention are low-saturate, high oleic and low linolenic. Furthermore, the present invention provides oils high in monounsaturated fatty acids which are important as a dietary constituent.

Based on the methods disclosed herein, seed oil can be modified to engineer an oil with a high oleic acid content as well as a high level of a carotenoid of interest. High 10 oleic acid and high α - and β -carotene oils would have a longer shelf life as both the oleic acid and α - and β -carotene content would lend stability. It is also noted that such oils are more desirable as sources of carotenoids than the natural red palm oil, which oil contains high levels of saturated fatty acids.

The transformed seed of the invention can thus provide a source of carotenoid 15 products as well as modified fatty acids. Where the intent is to produce particular carotenoid compounds of interest, methods are available in the art for the purification of the carotenoid compounds. In the same manner, methods available in the art can be utilized to produce oils purified of carotenoids. See, generally, WO 96/13149 and Favati *et al.* (1988) *J. Food Sci.* 53:1532 and the references cited therein.

The transformed seed and embryos additionally find use as screenable markers. That is, transformed seed and embryos can be visually determined and selected based on 20 color as a result of the increased carotenoid content. The transformed seeds or embryos display a color ranging from yellow to orange to red as a result of the increased carotenoid levels. Therefore, where plant transformation methods involve an embryonic stage, such as in transformation of cotton or soybean, the carotenoid gene can be used in 25 plant transformation experiments as a marker gene to allow for visual selection of

transformants. Likewise, segregating seed can easily be identified as described further in the examples.

The following examples are offered by way of illustration and not by way of limitation.

5

EXPERIMENTAL

Example 1 Expression Construct and Plant Transformation

A. SSU fusions to *E. uredovora* carotenoid biosynthesis genes

(1) Phytoene Synthase

10 The SSU leader and *crtB* gene sequences were joined by PCR. The sequence of the SSU/*crtB* fusion is shown in Figure 1. The *crtB* gene from nucleotides 5057 to 5363 (numbering according to Misawa *et al.* (1990) *supra*) was joined to the SSU leader as follows. A *Bgl*II site was included upstream of the SSU leader start site to facilitate cloning. The thymidine nucleotide at 5057 of *crtB* was changed to an adenine to make the first amino acid at the SSU leader/*crtB* junction a methionine, and the splice site a cys-met-asn. The native splice site for SSU is cys-met-gln. Note that Misawa *et al.* (1990) *supra*) indicates that the start site for the coding region for *crtB* is at nucleotide 5096. Thus, there are 13 amino acids upstream of the published start of the coding region for *crtB* and after the SSU splice site in the *crtB*/SSU fusion. Twelve of these amino acids are translated from *Erwinia* *crtB* upstream sequence and one is the added methionine. The *crtB* from 5363 (*EcoRV*) to 6009 (*EcoRI*) was then attached to the SSU-*crtB* fusion to obtain a complete SSU-*crtB* fusion construct designated pCGN3373 (Fig. 1).

25 (2) Phytoene Desaturase

A plasmid comprising a *E. uredovora crtI* gene fused to the transit peptide sequence of the pea Rubisco small subunit was described by Misawa *et al.* (*The Plant Journal* (1993) 4:833-840). An approximately 2.1 kb *Xba*I/*Eco*RI fragment of this plasmid containing the SSU-*crtI* fusion and a nos 3' termination region was cloned in position for expression from a napin 5' promoter.
5

(3) GGPP Synthase

A similar construct containing the SSU transit fused to an *E. uredovora crtE* gene was obtained. The SSU-*crtE* fusion is present on an approximately 1.2 kb *Bgl*II/*Bam*HI fragment in pCGN3360.

B. SSU fusions to *A. aurantiacum* carotenoid biosynthesis genes(4) beta-Carotene Hydroxylase (*crtZ*)

The SSU leader and *crtZ* gene sequences were joined by PCR. The *crtZ* gene (Misawa, *et al.* (1995) *supra*) nucleotide sequence was resynthesized to adjust for plant codon usage. The re synthesized *crtZ* gene was joined to the SSU leader by PCR as follows. A *Bgl*II site was included upstream of the SSU leader translation start site and a *Xho*I site was included downstream of the *crtZ* stop codon to facilitate cloning in the napin expression cassette. The nucleotide sequence of the complete ssu:*crtZ* fusion is shown in Figure 15.

(5) beta-Carotene Ketolase (*crtW*)

The SSU leader and *crtW* gene sequences were joined by PCR. The *crtW* gene (Misawa, *et al.* (1995) *supra*) nucleotide sequence was resynthesized to adjust for plant codon usage. The re synthesized *crtW* gene was joined to the SSU leader by PCR as follows. A *Bgl*II site was included upstream of the SSU leader translation start site and a *Xho*I site was included downstream of the stop codon to facilitate cloning in the napin expression cassette. The nucleotide sequence of the complete ssu:*crtW* fusion is shown in Figure 16.

20

C. Expression Constructs for Plant Transformation

(1) Phytoene Synthase

pCGN3373 carrying the complete SSU/*crtB* fusion was cut with *Bgl*II and *Bam*HI to excise the SSU/*crtB* fusion. The resulting fragment was ligated into the napin expression cassette in pCGN3223 at the *Bam*HI site (see WO 94/10288 for description of napin expression cassette). The resulting construct, pCGN3389, was digested with

HindIII to excise the napin 5'-SSU/crtB-napin 3' fragment, which was then cloned into HindIII cut pCGN1559PASS yielding pCGN3390. pCGN1559PASS is a binary vector for *Agrobacterium*-mediated transformation such as those described by McBride *et al.* (*Plant Mol. Biol.* (1990) 14:269-276) and is prepared from pCGN1559 by substitution of the pCGN1559 linker region with a linker region containing the following restriction digestion sites: *Asp718/AscI/PacI/XbaI/BamHI/SwaI/Sse8387(PstI)/HindIII*. A map of pCGN3390 is provided in Figure 2A. For expression of phytoene synthase in the corn endosperm, the crtB coding sequence from *E. herbicola* (Application WO 91/13078, Armstrong *et al.* (1990) *supra*) was cloned to be expressed under control from the rice glutelin, pGt1, promoter (Leisy, D.J. et al., *Plant Mol. Biol.* 14 (1989) 41-50) and the HSP70 intron sequence (U.S. Patent Number 5,593,874). This cassette also includes the transcriptional termination region downstream of the cloning site of nopaline synthase, nos 3' (Depicker *et al.*, *J. Molec. Appl. Genet.* (1982) 1: 562-573) to create the vector pCGN9039 (Figure 2J) for transformation into corn.

The phytoene synthase coding sequence from corn (Figure 19) was also PCR amplified, fused with the SSU leader and cloned to be expressed from the napin promoter to create the expression construct pCGN9061.

(2) Phytoene Desaturase

A fragment comprising a napin 5'/SSU-crtI fusion/nos 3' construct as described above was cloned into a binary vector for plant transformation resulting in pCGN9010. A map of pCGN9010 is provided in Figure 2C.

(3) GGPP Synthase

pCGN3360 carrying the complete SSU/crtE fusion was cut with *Bgl*II and *Bam*HI to excise the SSU/crtE fusion. The resulting 1.2 kb fragment was ligated into the napin expression cassette in pCGN3223 at the *Bam*HI site. The resulting construct,

pCGN3391, was digested with *Hind*III to excise the napin promoter-SSU/*crtE* napin 3' fragment, which was then cloned into *Hind*III cut pCGN1559PASS yielding pCGN3392. A map of pCGN3392 is provided in Figure 2B.

(4) Phytoene Synthase + Phytoene Desaturase

5 The napin 5'-SSU/*crtB*-napin 3' fragment from pCGN3389 and the napin 5'/SSU-*crtI* fusion/nos 3' as present in pCGN9010 were inserted into a binary vector resulting in pCGN9009, shown in Figure 2D.

(5) Antisense Epsilon Cyclase + Phytoene Synthase

Brassica napus epsilon cyclase genes are isolated by PCR using primers 10 designed from an *Arabidopsis* epsilon cyclase gene (Cunningham FX Jr (1996) *Plant Cell* 8:1613-1626). Sequence of *B. napus* epsilon cyclase genes is provided in Figures 9 (clone 9-4) and 10 (clone 7-6). An antisense construct is prepared by cloning 15 an *Xho*I/*Bam*HI fragment of cDNA clone 9-4 into a napin expression cassette (pCGN3223) digested with *Xho*I and *Bgl*II. The napin 5'-antisense epsilon cyclase-napin 3' fragment is cloned along with a napin 5'-SSU/*crtB*-napin 3' fragment, fragment into a binary vector for plant transformation, resulting in pCGN9002, shown in Figure 2E.

(6) Antisense Beta Cyclase + Phytoene Synthase

Brassica napus beta cyclase genes are isolated by PCR using primers designed 20 from an *Arabidopsis* beta cyclase gene (Cunningham FX Jr (1996) *Plant Cell* 8:1613-1626). Sequence of a *B. napus* beta cyclase cDNA, 32-3, is provided in Figures 11. An antisense construct is prepared by cloning an *Xho*I fragment of the beta cyclase cDNA 25 clone into a napin expression cassette (pCGN3223) digested with *Xho*I. A clone containing the beta cyclase in the antisense orientation is selected. The napin 5'-antisense beta cyclase-napin 3' fragment is cloned along with a napin 5'-SSU/*crtB*-napin

3' fragment into a binary vector for plant transformation, resulting in pCGN9017, shown in Figure 2F.

(7) beta-Carotene Hydroxylase + Phytoene synthase

The vector pCGN9003 was constructed by removing the restriction sites between 5 the *crtB* coding sequence and the napin 3' sequence by digestion with *Cla*I and *Xho*I and filling the ends with klenow creating the vector pCGN9000. PCGN9000 was digested with *Asp*718, and the fragment containing the napin 5'/SSU:*crtB*/napin 3' was ligated into the binary vector pCGN5139.

A binary vector for plant transformation, pCGN5139, was constructed using the 10 neomycin phospho-transferase (*nptII*) kanamycin resistance gene driven by the CAMV 35S transcriptional initiation region (35S 5') and transcription termination (35S 3') sequences (Fraley et al., *Proc. Natl. Acad. Sci* (1983) 80:4803-4807, Gardner et al., (1986) *Plant Mol Biol* 6:221-228). The 35S 5'-*nptII*-35S 3' fragment was then cloned 15 into a vector containing ori322, Right border (0.5Kb), lacZ, Left Border (0.58Kb), as an *Xho* I fragment between the Right border-lacZ and Left border sequences. The ColEI and pRi origins of replication as well as the Gentamycin resistance gene were aquired from a derivative of pCGN1532 (McBride and Summerfelt, *Plant Molecular Biology*, (1990), 14:269-276). Finally, a linker containing unique restriction sites was 20 synthesized and cloned into the *Asp* 718/ *Hind* III (within the lacZ sequence) sites to create the binary vector pCGN5139.

The plastid targeted ssu:*crtZ* fusion was cloned into the napin pCGN3223 seed expression cassette as a *Bgl* II -*Xho* I fragment to generate pCGN6203. The plasmid pCGN6203 carrying the complete napin cassette with ssu:*crtZ* was digested with *Not*I to excise the napin cassette containing the ssu:*crtZ* coding region. The excised fragment 25 was ligated into the *Not* I site of the binary pCGN9003 carrying the napin SSU:*crtB* construct. The resulting construct, pCGN6205 (Figure 2H)

is a binary vector for Agrobacterium-mediated transformation such as those described by McBride et al. (Plant Mol. Biol. (1990) 14:269-276) and is prepared from pCGN1559 by substitution of the pCGN1559 linker region with a linker region containing the following restriction digestion sites: Asp718/AsclI/PacI/XbaI/BamHI/SwaI/Sse8387(PstI)/HindIII. A map of pCGN6205 is provided in Figure 2H.

(8) beta-Carotene Ketolase + Phytoene synthase

The ssu crtW plastid targeted fusion was cloned into the napin pCGN3223 seed expression cassette as a Bgl II -Xho I fragment to generate plasmid pCGN6202.

The plasmid pCGN6202 carrying the napin cassette with ssu:crtW was digested with NotI to excise a DNA fragment containing the napin cassette with ssu:crtZ. The resulting fragment was ligated into the Not I site of the binary pCGN9003 (described above) carrying the SSU:crtB napin construct. The resulting pCGN6204 (Figure 2G) is a binary vector for Agrobacterium-mediated transformation such as those described by McBride et al. (Plant Mol. Biol. (1990) 14:269-276) and is prepared from pCGN1559 by substitution of the pCGN1559 linker region with a linker region containing the following restriction digestion sites: Asp718/AsclI/PacI/XbaI/BamHI/SwaI/Sse8387(PstI)/HindIII. A map of pCGN6204 is provided in Figure 2G.

(9) Phytoene synthase+ beta-Carotene hydroxylase+ beta-Carotene Ketolase

Construct pCGN6203 containing the napin cassette and ssu:crtZ was digested with Hind III to excise the fragment containing napin ssu:crtZ. The resulting HindIII fragment was cloned into the Hind III site of pCGN6204 to generate a triple crt genes binary pCGN6206 that contains napin ssu:crtB+ napin ssu:crtW+ napinssu:crtZ (Figure 2I).

25 D. Plant Transformation

Transformed *Brassica napus* plants containing the above described constructs are obtained as described in Radke *et al.* (*Theor. Appl. Genet.* (1988) 75:685-694 and *Plant Cell Reports* (1992) 11:499-505).

Transformed cotton plants, *Gossypium hirsutum*, containing phytoene synthase 5 may be obtained using methods described in issued U.S. patent No. 5,004,863, and 5,159,135, and in Umbeck *et al.* (1987) *Bio/Technology* 5:263-266, or as described in copending application 08/539,176.

Transgenic *Arabidopsis thaliana* plants containing phytoene synthase may be obtained by *Agrobacterium*-mediated transformation as described by Valverkens *et al.*, 10 (*Proc. Nat. Acad. Sci.* (1988) 85:5536-5540), or as described by Bent *et al.* ((1994), *Science* 265:1856-1860), or Bechtold *et al.* ((1993), *C.R.Acad.Sci, Life Sciences* 316:1194-1199).

Microparticle bombardment methods, such as described by Klein *et al.* (*Bio/Technology* 10:286-291) may also be used to obtain nuclear transformed plants.

15

Example 2 Analysis of Transgenic Plants

A. Visual Observations and Segregation Ratios

The napin-SSU leader/*crtB* plants in 212/86 were tagged at 21 days, 28 days and 35 days post anthesis. When the first plant, 3390-1 was harvested at 28 days, some of 20 the seeds were obviously orange. At 35dpa, the orange was obvious enough that a segregation ratio could be obtained. This trend of orange seeds has continued and is seen in each of the 17 lines harvested that have been obtained. A table of the segregation ratios is included below in Table 3.

TABLE 3

Generation	Plant #	Orange	Green	Ratio	Chi Square
5	T2 3390-1	291	88	3 to 1	0.64
	T2 3390-2	150	22	No fit	
	T2 3390-8	293	87	3 to 1	0.90
	T2 3390-4	277	82	3 to 1	0.89
	T2 3390-5	243	62	3 to 1	1.90
10	T2 3390-7	236	89	3 to 1	0.99
	T2 3390-6	307	5	63 to 1	0.00
	T2 3390-3	121	50	No fit	1.64
	T2 3390-11	294	105	3 to 1	0.37
	T2 3390-15	287	83	3 to 1	1.30
15	T2 3390-16	187	65	3 to 1	0.08
	T2 3390-17	105	104	No fit	
	T2 3390-12	119	28	3 to 1	2.78
	T2 3390-14	283	107	3 to 1	1.23
	T2 3390-19	238	94	3 to 1	1.94
20	T2 3390-20	251	4	63 to 1	0.00
	T2 3390-27	229	4	63 to 1	0.04

B. Carotenoid Analysis of Developing Seeds

Carotenoids were extracted from seeds harvested at approximately 35 days post-anthesis as follows. Eight seed samples of orange seeds from transgenic plant 3390-1 and eight seed samples of a 212/86 variety rapeseed control plant were ground in 200µl of 70% acetone/30% methanol. The ground seed mixture was then spun in a microcentrifuge for approximately 5 minutes and the supernatant removed. Two additional 70% acetone/30% methanol extractions were conducted with the pelleted seed material and all three supernatants pooled and labeled A/M extract.

At this point in the extraction, the control seed pellets are white, whereas the seed pellets from the transgenic seeds have a yellow color. The pellets are then extracted twice with ether and the resultant supernatants pooled and labeled E extract. The A/M extract was then transferred to ether as follows. 450 μ l ether and 600 μ l of water were added to the extracts, followed by removal of the ether layers. The A/M extracts were then washed two more time with 400 μ l of ether, and the ether fractions from the three A/M washes pooled. The E extracts described above were washed once with 400 μ l of water and pooled with the A/M ether fractions. The pooled ether fractions were blown down to a volume of approximately 300 μ l with nitrogen gas and filtered using a syringe microfilter. The sample vials were rinsed with approximately 100 μ l ether and the rinse was similarly filtered and pooled with the initial filtrate, yielding total volume of approximately 150 μ l. A 50 μ l aliquot was stored at -20°C until further analysis and the remaining 100 μ l sample was saponified as follows. 100 μ l of 10% potassium hydroxide (KOH) in methanol was added to each 100 μ l sample and the mixture stored in the dark at room temperature for approximately 2 hours. 400 μ l of water was then added to the samples and the ether phase removed. For better phase separation, saturated NaCl may be substituted for the water. The water solution was then extracted twice more with 100 μ l of ether and the ether samples pooled and washed with water.

The saponified samples were then analyzed by HPLC analysis on a Rainin microsorb C18 column (25cm length, 4.6mm outside diameter) at a flow rate of 1.5ml per minute. The gradient used for elution is as follows:

A = acetonitrile

B = hexane/methylene chloride (1:1)

C = methanol.

The initial solution was 70:20:10 (A:B:C). At 2.5 minutes the solution is ramped over 5 minutes to 65:25:10 (A:B:C) and held at this for 12.5 minutes. The solution is then ramped to 70:20:10 (A:B:C) over two minutes followed by a three minute delay prior to injection of the next sample. The absorbance of the eluting samples is continuously monitored at 450 and 280 nm and known chemical and biological standards were used to identify the various absorbance peaks.

In Figures 3 and 4, results of analyses of saponified samples are provided for control and pCGN3390 transformed seeds, respectively. Clear increases in the levels of α - and β -carotene and phytoene in the transgenic plant seeds are observed, as well as smaller increases in levels of the hydroxylated carotenoid, lutein.

C. Carotenoid and Tocopherol Analysis of Mature Seeds from *crtB* Transgenic Plants

Mature 3390 T2 seed were sent to an analytical laboratory for quantitative analysis using standard HPLC methods known in the art. These results of these analysis are shown in Table 4 below. Compound levels are presented as $\mu\text{g/g}$.

Seeds designated "Maroon" were selected based on seed color. The seeds which have orange embryos appear maroon colored at maturity as opposed to the black-brown appearance of seeds from wild type plants of this cultivar. Seeds designated as "Random" were not selected for color. As 3390-1 is segregating 3 to 1 for Kan, the "Random" population includes a proportion of nulls. The maroon population contains only transgenics. Due to an effort to exclude nulls from this population, the inclusion of homozygotes may be favored.

TABLE 4

	COMPOUND	CONTROL	3390-1 RANDOM	3390-1 MAROON
5	Lutein	7.2	18	26
	Zeaxanthin	nd*	nd	nd
	α -cryptoxanthin	nd	8	15
	β -cryptoxanthin	nd	nd	nd
	Lycopene	nd	2.3	5.1
10	cis-Lycopene	nd	2.9	5.4
	α -carotene	0.6	124	244
	β -carotene	0.9	177	338
	cis- β -carotene	0.2	12	26
	Other	6	34	51
15	Total colored carotenoids	14.9	378.2	710.5
	Phytoene	nd	62	139
	Phytofluene	nd	24	54
	Total all carotenoids	14.9	464.2	903.5
20	Alpha-tocopherol	74	93	109
	Gamma-tocopherol	246	188	95
	Delta-tocopherol	3	5	5

*nd = not detected

25

In the non-transgenic sample, "other" includes mostly very polar compounds, such as neoxanthin, violaxanthin, etc. In the transgenic sample "other" includes these and additional compounds, such as zeta-carotene, neurosporene, and mono-cyclic carotenoids.

30

Results of carotenoid analysis of 3390 T2 seeds from transformed plants of *B. napus* variety Quantum (SP30021) are presented in Figure 12.

Results of carotenoid analysis of 3390 T3 seeds from transformed plants of *B. napus* variety 212/86 (SP001) are presented in Figure 13.

The above results demonstrate that α - and β -carotenes levels are significantly increased in the mature seeds as the result of expression of the *crtB* gene. Generally, the overall increase in carotenoids is quite high, nearly 50 fold for colored carotenoids and up to 60 fold if phytoene and phytofluene are included. It is clear that the flux through the isoprenoid pathway has been dramatically increased. Additionally it is noted that the α -tocopherol (Vitamin E) levels are also increased by nearly 50%.

D. Germination Studies

Ten mature seeds of 3390-1 and 10 seeds of 212/86 control were planted in soil and grown in a walk-in growth chamber. The transgenics emerged 1 to 2 days later than the controls, however, all 10 seeds did germinate. The transgenics were yellowish-pink when they first emerged but greened up in one to two days. At the emergence of the first true leaf, no difference in color was observed. Plants germinated from both the transgenic and control seeds developed normally.

E. Fatty Acid Analysis

Fatty acid composition of mature seeds was determined by GC analysis of single T2 seeds harvested from transgenic plants 3390-1 and 3390-8. Single seeds from both Random (R) and Maroon (M) populations (as defined above) were analyzed and compared to seeds from a 212/86 control (SP001-1). The results of these analyses are provided in Table 5 below as weight % total fatty acids.

TABLE 5
FATTY ACID COMPOSITION OF 3390-1 AND 3390-8 LINES

SAMPLE	10:0	12:0	14:0	16:0	16:1	18:0	18:1	18:2	18:3	20:0	20:1	20:2	22:0
CONTROL	1.5	0	0.1	5.1	0.4	1.7	59.9	17.1	12.0	0.6	1.2	0.1	0.3
CONTROL	1.8	0	0.1	5.1	0.4	1.7	60.1	16.6	12.1	0.6	1.2	0.1	0.3
CONTROL	2.0	0	0.1	5.0	0.4	1.6	60.5	16.2	12.0	0.6	1.2	0.1	0.3
CONTROL	2.2	0	0.1	5.2	0.4	1.6	57.2	18.2	12.7	0.6	1.3	0.1	0.4
CONTROL	1.6	0	0.1	4.7	0.4	1.8	62.7	15.3	11.3	0.6	1.2	0.1	0.3
3390-1-R	2.8	0	0.1	4.8	0.5	3.6	69.9	10.6	4.8	1.2	1.1	0.0	0.6
3390-1-R*	1.5	0	0.1	4.7	0.3	1.5	58.1	19.3	12.3	0.5	1.2	0.1	0.3
3390-1-R	3.5	0	0.1	4.2	0.3	2.6	71.1	9.6	5.8	1.0	1.2	0.0	0.6
3390-1-R*	1.5	0	0.1	4.7	0.3	1.9	61.0	17.8	10.4	0.7	1.3	0.1	0.3
3390-1-R	2.2	0	0.1	4.4	0.3	3.1	73.6	8.9	4.4	1.2	1.1	0.0	0.7
3390-1-R	1.9	0	0.1	4.5	0.3	2.4	72.7	10.6	4.7	0.9	1.3	0.1	0.6
3390-1-R	2.5	0	0.1	4.2	0.3	3.4	71.7	10.0	5.1	1.1	1.0	0.0	0.6
3390-1-R	1.7	0	0.1	4.4	0.3	2.6	73.5	10.0	4.5	1.0	1.2	0.1	0.6
3390-1-R	1.9	0	0.1	4.2	0.3	2.3	72.4	9.9	6.3	0.9	1.2	0.1	0.5
3390-1-R	2.5	0	0.1	4.2	0.3	2.7	72.0	10.1	5.1	1.0	1.2	0.1	0.6
3390-1-R*	1.5	0	0.1	4.7	0.3	1.7	58.5	18.5	12.6	0.6	1.2	0.1	0.3
3390-1-R	2.8	0	0.1	4.6	0.4	3.7	71.8	9.1	4.2	1.3	1.2	0.0	0.7
3390-1-R	1.8	0	0.1	4.0	0.3	2.3	72.4	11.1	5.2	0.9	1.3	0.1	0.5
3390-1-R	1.7	0	0.1	4.4	0.3	2.7	73.9	9.9	4.2	1.0	1.2	0.1	0.6
3390-1-R	1.7	0	0.1	4.6	0.4	2.6	71.4	10.9	5.5	1.0	1.3	0.1	0.6
3390-1-R	2.7	0	0.1	4.2	0.3	2.8	72.1	9.9	5.0	1.1	1.3	0.0	0.6
3390-1-R	2.0	0	0.1	4.5	0.3	3.0	72.5	9.7	4.6	1.2	1.3	0.1	0.7
3390-1-R	1.8	0	0.1	4.9	0.4	3.4	71.8	10.4	4.2	1.2	1.2	0.0	0.7
3390-1-R*	0.9	0	0.1	4.5	0.3	1.7	55.9	18.8	15.6	0.5	1.3	0.1	0.3
3390-1-R*	1.4	0	0.1	4.8	0.4	1.7	57.1	18.0	14.4	0.6	1.2	0.1	0.3
3390-1-R*	1.4	0	0.1	4.5	0.3	1.7	57.8	18.5	13.5	0.6	1.3	0.1	0.3
3390-1-R	2.2	0	0.1	4.5	0.3	2.5	73.4	9.7	4.6	0.9	1.2	0.0	0.5
3390-1-R	1.5	0	0.1	3.8	0.3	2.7	75.9	8.1	4.6	1.0	1.4	0.0	0.6
3390-1-R	1.6	0	0.1	4.5	0.3	2.6	71.9	10.6	5.5	1.0	1.3	0.1	0.6
3390-1-R*	1.3	0	0.1	6.2	0.5	1.4	53.6	21.7	13.2	0.5	1.1	0.1	0.3
3390-1-R	2.1	0	0.1	4.3	0.3	2.4	72.3	10.7	5.1	0.9	1.2	0.0	0.6
3390-1-R*	1.3	0	0.1	5.0	0.3	1.6	57.8	18.8	13.0	0.5	1.3	0.1	0.3
3390-1-R	2.1	0	0.1	4.4	0.3	3.3	72.7	9.2	4.8	1.2	1.2	0.0	0.7
3390-1-R	1.5	0	0.1	4.5	0.3	3.3	72.6	10.1	4.6	1.2	1.1	0.1	0.7
3390-1-R*	1.2	0	0.1	4.7	0.3	1.9	59.9	17.1	12.6	0.6	1.3	0.1	0.4
3390-1-M	2.8	0	0.1	4.0	0.3	2.8	69.8	10.6	7.1	0.9	1.2	0.0	0.4
3390-1-M	2.0	0	0.1	4.9	0.4	3.3	70.3	11.1	4.9	1.2	1.2	0.1	0.7
3390-1-M	1.5	0	0.1	4.4	0.3	3.2	73.4	9.5	4.3	1.3	1.3	0.0	0.8
3390-1-M	1.5	0	0.1	4.5	0.3	2.8	72.7	10.0	5.1	1.1	1.3	0.0	0.7
3390-1-M	1.8	0	0.1	4.2	0.3	3.1	73.5	9.6	4.7	1.1	1.2	0.0	0.6
3390-1-M	1.5	0	0.1	4.7	0.3	2.9	71.6	10.7	5.1	1.1	1.2	0.1	0.7
3390-1-M	1.5	0	0.1	4.5	0.3	3.2	72.6	10.2	4.3	1.2	1.3	0.0	0.8
3390-1-M	1.8	0	0.1	4.4	0.3	2.9	72.0	10.4	5.2	1.1	1.2	0.1	0.6
3390-1-M	1.5	0	0.1	4.4	0.3	2.6	73.6	10.0	4.5	1.1	1.2	0.1	0.7
3390-1-M	2.3	0	0.1	4.3	0.3	3.0	73.0	9.7	4.5	1.1	1.2	0.0	0.6

SAMPLE	10:0	12:0	14:0	16:0	16:1	18:0	18:1	18:2	18:3	20:0	20:1	20:2	22:0
3390-8-R*	1.0	0	0.1	4.9	0.3	1.6	59.2	18.9	11.9	0.5	1.2	0.1	0.3
3390-8-R	2.1	0	0.1	4.2	0.3	2.7	71.9	10.2	5.6	1.0	1.2	0.1	0.6
3390-8-R	1.5	0	0.1	4.4	0.3	2.3	72.5	10.4	5.7	0.9	1.4	0.1	0.6
3390-8-R*	1.2	0	0.1	4.9	0.3	1.7	59.7	18.2	11.6	0.6	1.3	0.1	0.4
3390-8-R*	1.5	0	0.1	4.7	0.3	1.6	58.7	18.5	12.2	0.6	1.3	0.1	0.4
3390-8-R	1.8	0	0.1	4.2	0.3	2.9	73.4	9.2	5.2	1.1	1.3	0.0	0.6
3390-8-R*	1.1	0	0.1	4.7	0.3	1.5	56.9	19.3	14.1	0.5	1.1	0.1	0.2
3390-8-R	2.2	0	0.1	4.6	0.3	3.0	71.4	10.0	5.2	1.1	1.2	0.1	0.7
3390-8-R	1.7	0	0.1	4.6	0.4	2.4	72.5	11.0	4.8	0.9	1.3	0.1	0.5
3390-8-R	2.4	0	0.1	4.7	0.3	2.9	74.0	8.4	4.0	1.1	1.2	0.0	0.7
3390-8-R	1.9	0	0.1	4.6	0.4	3.0	72.7	9.7	4.8	1.0	1.2	0.0	0.6
3390-8-R	2.0	0	0.1	4.4	0.3	2.8	73.2	9.7	4.5	1.0	1.3	0.0	0.6
3390-8-R	1.5	0	0.1	4.3	0.3	2.6	71.8	10.7	5.8	1.0	1.3	0.1	0.6
3390-8-R	1.5	0	0.1	4.4	0.3	2.7	72.6	10.5	4.9	1.0	1.3	0.1	0.6
3390-8-R	2.0	0	0.1	4.9	0.4	3.3	71.1	10.4	4.9	1.1	1.1	0.1	0.6
3390-8-R	2.1	0	0.0	4.5	0.4	3.6	73.0	8.8	4.3	1.3	1.2	0.0	0.7
3390-8-R	2.2	0	0.1	5.1	0.4	2.9	67.6	12.3	6.5	1.1	1.2	0.1	0.7
3390-8-R	1.8	0	0.1	4.2	0.3	2.6	73.5	9.9	4.8	1.0	1.3	0.1	0.6
3390-8-R	1.7	0	0.1	4.7	0.3	3.0	72.5	9.9	4.6	1.2	1.3	0.1	0.7
3390-8-R	1.7	0	0.1	4.6	0.4	2.8	73.7	9.5	4.1	1.1	1.3	0.1	0.7
3390-8-R	1.5	0	0.1	4.5	0.3	3.0	74.7	8.5	4.2	1.2	1.2	0.0	0.7
3390-8-R	1.5	0	0.1	4.4	0.4	1.9	70.0	11.8	7.2	0.8	1.4	0.1	0.5
3390-8-R	1.7	0	0.1	4.4	0.3	2.5	71.8	11.1	5.2	1.0	1.3	0.1	0.6
3390-8-R	1.4	0	0.1	4.5	0.4	2.8	73.3	9.7	4.9	1.1	1.2	0.1	0.6
3390-8-R	1.5	0	0.1	4.8	0.4	3.0	72.6	10.6	4.1	1.1	1.2	0.1	0.7
3390-8-R*	1.4	0	0.1	5.8	0.4	2.9	54.0	20.0	13.0	0.8	1.1	0.1	0.4
3390-8-R	1.4	0	0.1	4.4	0.3	2.7	71.2	10.8	6.0	1.0	1.3	0.1	0.6
3390-8-R	1.7	0	0.1	4.6	0.4	2.8	72.6	10.0	5.1	1.0	1.2	0.1	0.6
3390-8-R*	1.0	0	0.1	4.6	0.3	1.6	59.6	18.5	12.3	0.5	1.2	0.1	0.3
3390-8-R*	1.1	0	0.1	4.6	0.3	1.4	56.5	20.4	13.4	0.5	1.3	0.1	0.3
3390-8-M	1.8	0	0.1	4.7	0.4	3.3	70.1	11.1	5.5	1.2	1.1	0.1	0.7
3390-8-M	1.5	0	0.1	4.3	0.3	3.0	73.0	10.3	4.3	1.1	1.2	0.1	0.7
3390-8-M	1.9	0	0.1	4.5	0.4	3.7	73.1	8.9	4.2	1.3	1.2	0.0	0.7
3390-8-M	1.6	0	0.1	4.4	0.3	2.5	73.4	9.7	5.1	1.0	1.3	0.1	0.7
3390-8-M	1.3	0	0.1	4.4	0.3	3.0	73.7	9.6	4.4	1.1	1.3	0.0	0.7
3390-8-M	2.1	0	0.1	4.3	0.3	3.2	74.0	8.9	4.1	1.2	1.2	0.1	0.6
3390-8-M	2.1	0	0.1	3.9	0.3	1.6	71.6	11.9	5.7	0.7	1.5	0.1	0.5
3390-8-M	1.6	0	0.1	4.6	0.3	2.8	71.0	11.8	4.8	1.0	1.3	0.1	0.6
3390-8-M	2.1	0	0.1	4.8	0.4	3.2	70.3	10.7	5.2	1.2	1.2	0.1	0.7
3390-8-M	1.6	0	0.1	4.5	0.3	2.9	72.7	9.9	4.8	1.1	1.3	0.0	0.7

The above data demonstrate a substantial increase in oleic acid (18:1) in seeds from each of the transgenic lines. The increase in oleic acid is at the expense of linoleic and linolenic acids, both of which were decreased in the transgenic lines. Increases in 18:0 and 20:0 fatty acids were also observed. Based on these data, the null seeds present 5 in the Random population can be identified, and are marked on Table 5 with an asterisk (*). All of the seeds in the Maroon populations from each transgenic line have the observed altered fatty acid composition, confirming that the altered fatty acid composition is the result of expression of the *crtB* gene.

10 The trends in fatty acid composition data in the transgenic seeds which indicate positive and negative correlations of fatty acid composition changes with the observed increase in 18:1 levels are provided in Figures 5-7. The increase in 18:1 correlates with the decreases in 18:2 and 18:3. (Figure 5). The increase in 18:1 also correlates with an increase in both 18:0 and 20:0, but little effect on 16:0 was seen (Figure 6). The increase in 18:0 also correlated with an increase in 20:0 (Figure 7).

15 F. Carotenoid Analysis of Mature Seeds from *crtE* Transgenic Plants

Carotenoids were analyzed in mature T2 seeds of 3392 *B. napus* plants transformed to express the *E. uredovora crtE* gene. Approximately two fold increases in levels of lutein and β-carotene was observed in seeds of plant 3392-SP30021-16. Lycopene was also detected in these seeds and is undetectable in seeds of untransformed 20 control plants. Analysis of seeds from 7 additional 3392 transformants did not reveal significant increases in the carotenoid levels.

G. Analysis of Chlorophyll and Tocopherol Levels in *crtE* Transgenic Plants

Chlorophyll levels were analyzed using a spectrophotometric assay (Bruinsma, J. 1961, A comment on the spectrophotometric determination of chlorophyll, Biochem 25 Biophy Acta, 52:576-578) in mature T2 seeds of transgenic 3392 *B. napus* plants. Levels in 3392 transgenic plants were compared to seeds of transgenic *B. napus* plants

expressing phytoene synthase (*crtB*) and to nontransformed control plants. Results are shown in Table 6 below.

5

TABLE 6

		Pigment concentration (µg/gFW)	
		Total carotenoids	Total chlorophyll
10			
	Phytoene synthase		
	27 DPA SP001 control	53	676
	27 DPA T4 3390-1-6	354	282
15	40 DPA SP001 control	47	471
	40 DPA T4 3390-1-6	534	179
	50 DPA SP001 control	16	125
	50 DPA T4 3390-1-6	648	125
20	GGPP synthase		
	35 DPA SP30021 control	68	407
	35 DPA T2 3392-4	65	660
	35 DPA T2 3392-16	73	648
25	Mature SP30021 control	21	35
	Mature T2 3392-4	25	31
	Mature T2 3392-16	50	60

Chlorophyll concentrations of the 35 DPA seeds of two lines were increased by approximately 60% compared to the levels of the control plant. The initial results demonstrate that the GGPP synthase gene increased the GGPP substrate availability for chlorophyll biosynthesis during seed development. Mature seeds of the 3392-16 line had higher chlorophyll and carotenoid concentrations than those of the control.

H. Carotenoid Analysis of Mature Seeds from *crtI* Transgenic Plants.

Carotenoids were analyzed in mature T2 seeds of 9010 *B. napus* plants transformed to express the antisense lycopene ϵ -cyclase gene. Seeds of nine transgenic plants were analyzed for carotenoid content. An approximately two fold increase in levels of lutein, β -carotene and total carotenoids was observed in seeds of one line, 5 9010-SP30021-10, when compared to control plants.

I. Carotenoid Analysis of Mature Seeds from *crtB + crtI* Transgenic Plants

Carotenoid levels of Mature 9009 T2 seeds were extracted and quantified on an HPLC as follows. Approximately 100mg of seeds were ground in a mortar and pestle in 3ml extraction solvent (hexane/acetone/ethanol (50/25/25 v/v) with 0.2ml of an internal standard (5mg/ml β -apo-8' carotinal (dissolved in 100 μ l hexane), in acetonitrile/methylene chloride/methanol (50/40/10, v/v)). The extraction solution was transferred to a new glass tube, and the remaining seed was again extracted with the extraction solvent and pooled with first extraction solution. The extraction was repeated until no color was visible in the extraction solution. Pooled extracts were mixed by vortexing briefly, then centrifuged for approximately 5 minutes. The resulting supernatant was transferred to a new tube and dried under nitrogen gas. The residue was resuspended in 2ml of hexane. Potassium hydroxide, in methanol, was added to a final concentration of 5%, and the solution was incubated overnight in the dark at 4°C.

Another 2ml of hexane was then added to the solution with 1ml of saturated sodium chloride. The solution was mixed briefly by vortexing and centrifuged for approximately 5 minutes. The upper hexane layer was removed and transferred to a new glass tube. The remaining bottom phase was again extracted with hexane and centrifuged. The upper phase was combined with the previous hexane phase. This was repeated until the hexane phase was colorless. The pooled hexane phases were dried under nitrogen gas, and the residue was dissolved in 2.0ml of acetonitrile/methylene chloride/methanol (50/40/10 v/v). The solution was filtered through a 0.45 μ m filter and collected in a brown autopsampler vial. Carotenoid concentrations were determined on a Hewlett Packard 1050 High-Performance Liquid Chromatograph (HPLC), and isocratic separation of carotenoids was performed on a Hewlett Packard reverse phase C-18 (5 μ) column (4.6 mm x 20cm) at 30°C. The mobile phase was acetonitrile/ methylene chloride/ methanol (80/10/10, v/v) with a flow rate of 1.0ml/min and a sample injection

volume of 20 μ l (running time of 22min). Routine detection of colored carotenoids is at 450 nm, phytoene at 280 nm, and phytofluene at 365 nm. Spectral scans for peak purity were made at 250 nm and 600 nm. Spectra of peaks at the upslope, apex, and downslope are normalized and overlaid. Superimposing spectra were taken as evidence of peak purity. The results are shown in Table 7 below. Carotenoid levels are presented as μ g/gFW.

10 TABLE 7

	Sample ID #	Lutein	Lycopene	α -Carotene	β -Carotene	Phytoene	Total
15	SP30021 control 3390-SP001-1-6-15	36	ND	ND	4	ND	40
	(T5 Homo)	54	4	552	638	277	1525
	9009-SP30021-1	44	44	336	691	42	1157
	9009-SP30021-6	53	87	689	1118	152	2099
20	9009-SP30021-9	48	34	487	798	194	1561
	9009-SP30021-10	33	25	248	489	34	829
	9009-SP30021-12	31	ND	ND	2	ND	33
	9009-SP30021-14	42	37	404	791	81	1355
	9009-SP30021-15	37	15	137	278	ND	467
25	9009-SP30021-16	50	38	428	828	65	1409

The results demonstrate that as with plants transformed to express *crtB* alone, plants expressing *crtB* and *crtI* contain significant increases in total carotenoid levels. Furthermore, it is apparent that expression of *crtI* with *crtB*, leads to further modification of the phytoene pools which accumulate in *crtB* transformants. Phytoene levels were reduced from about 20% of total carotenoids in lines transformed with *crtB* alone, to 4% to 7% of total carotenoids in the *crtB* + *crtI* lines. This indicates that phytoene desaturase can have a synergistic effect with phytoene synthase in increasing the metabolic flux through the carotenoid/ isoprenoid pathway, and provides for even

greater increases in a desired carotenoid compound, such as α -carotene and β -carotene, than is obtained by expression of *crtB* alone. The increased flux also appears to result in increased total carotenoid production, in addition to the composition shift from phytoene. For example, the carotenoid levels in the segregating T2 seed populations of 5 9009-10 are significantly higher than those detected in the 3390 homozygous seed population in 3390-1-6-15.

J. Carotenoid Analysis of mature Seeds from *crtB* + Antisense ϵ -Cyclase Transgenic Plants

10 Carotenoids from mature seeds from 9002 transformants were extracted and analyzed using the method described in example 2I above. These results are shown in Figure 14.

15 The initial results show a modification to the ratio of β -carotene to α -carotene. In addition, several lines show a significant reduction in lutein levels when compared to nontransgenic controls. In 9002 T2 lines, β -carotene to α -carotene ratios averaged 1.5, ranging from 1.1 to 2.5. For comparison, T2 3390 lines containing *crtB*, the ratio of β -carotene to α -carotene averaged 1.9, ranging from 1.5 to 2.4.

K. Carotenoid Analysis of Mature Seeds from *crtB* Transgenic Cotton Plants

20 Mature 3390 T2 seeds from cotton were collected and carotenoid extracts were prepared and analyzed according to the method described in 2I above. These results are shown in Table 8 below. Carotenoid levels are presented as $\mu\text{g/gFW}$.

TABLE 8

25

Sample ID #	Lutein	Lycopene	α -Carotene	β -Carotene	Phytoene	Total
C130 control	2	ND	ND	ND	ND	2
3390-C130-5-1	7	ND	486	420	517	

30

An approximately 3 fold increase in lutein was observed in seeds of plant 3390-C130-5-1. Alpha-carotene, β-carotene and phytoene were also observed in this line and are undetectable in nontransformed control plants. With β-carotenoid levels being 20 fold higher than those of α-carotene. Total carotenoid levels were increased by more than 250 fold, with phytoene accounting for approximately 80% of that total.

L. Carotenoid Analysis of Mature Seed from *crtB + crtW* Transgenic Plants

Carotenoid levels of Mature 6204 T2 seeds were extracted and quantified on an HPLC as follows. Approximately 100mg of seeds were ground in a mortar and pestle in 5 3ml extraction solvent (hexane/acetone/ethanol (50/25/25 v/v) with 0.3ml of an internal standard (5mg/ml β -apo-8' carotinal (dissolved in 100 μ l hexane), in acetonitrile/methylene chloride/methanol (50/40/10, v/v/)). The extraction solution was transferred to a new glass tube, and the remaining seed was again extracted with the 2 ml extraction solvent and pooled with first extraction solution. The extraction was repeated 10 until no color was visible in the extraction solution. Pooled extracts were mixed by vortexing briefly, then centrifuged for approximately 5 minutes. The resulting supernatant was transferred to a new tube and dried under nitrogen gas. The dried sample was stored in the dark overnight at 4°C. The residue was resuspended in 3ml of hexane and 1 ml methanol, and 1 ml of saturated sodium chloride was added and mixed. The 15 samples were centrifuged briefly, and the upper phase was transferred to a new tube. The remaining bottom phase was again extracted with 2 ml hexane and centrifuged. The upper phase was combined with the previous hexane phase. This was repeated until the hexane phase was colorless. The pooled hexane phases were dried under nitrogen gas, and the residue was dissolved in 2.0ml of acetonitrile/methylene chloride/methanol 20 (50/40/10 v/v). The solution was filtered through a 0.45 μ m filter and collected in a brown autosampler vial. Carotenoid concentrations were determined on a Hewlett Packard 1100 High-Performance Liquid Chromatograph (HPLC), and isocratic separation of carotenoids was performed on a Spherisorb ODS2 reverse phase C-18 (25 5 μ) column (4.6 mm x 25cm) at 30°C. The mobile phase was 82 acetonitrile/ 10 dioxane /8 methanol (v/v) containing 150 mM ammonium acetate/ 0.1 triethylamine, with a flow rate of 1.0ml/min and a sample injection volume of 20 μ l (running time of 46

min). Routine detection of colored carotenoids is at 450 nm, phytoene at 280 nm, and phytofluene at 365 nm. Spectral scans for peak purity were made at 250 nm and 600 nm. Spectra of peaks at the upslope, apex, and downslope are normalized and overlaid. Superimposing spectra were taken as evidence of peak purity. The results are shown in 5 Table 10 below, and an HPLC chromatogram is shown in Figure 17. Table 9 below describes the relevant peak retention times shown in Figure 17. Carotenoid levels are presented as $\mu\text{g/gFW}$.

Table 9.

Ret Time [min]	Area [mAU*s]	Amt/Area	Amount [$\mu\text{g/gFW}$]	Compound Name
3.500				Astaxanthin
5.428	721.34	4.3×10^{-3}	59.33	Lutein
5.831	169.38	4.26×10^{-3}	13.81	Zeaxanthin
6.533	527.83	4.45×10^{-3}	44.88	Canthaxanthin
7.651	553.82	3.59×10^{-3}	38.02	Internal Std
14.403				Echinone
18.453	68.21	7.02×10^{-3}	9.16	Lycopene
22.278				Neurosporene
31.363	2966.38	3.52×10^{-3}	199.36	α -carotene
33.870	2854.27	3.86×10^{-3}	210.64	β -carotene
44.166	524.14	1.59×10^{-2}	158.86	Phytoene
Totals:			734.05	

Table 10. Carotenoid concentrations of canola seeds from selected T2 6204-SP30021 lines.

Sample ID	Segreg ratio	Carotenoid Concentration ($\mu\text{g}/\text{g FWt.}$)							Total
		Lutein	Canth	Lycopene	a-Carotene	b-Carotene	Phytoene		
SP30021	homo	21	ND	ND	ND	ND	ND	21	
3390-SP30021-12	homo	44	ND	9	416	578	279	1326	
6204-SP30021-1	3:1	41	22	9	223	252	192	744	
6204-SP30021-2	15:1	43	24	9	231	283	236	831	
6204-SP30021-3	3:1	51	8	6	165	268	65	568	
6204-SP30021-5	63:1	56	25	11	292	296	305	992	
6204-SP30021-6	no fit	61	47	9	206	218	165	720	
6204-SP30021-7	3:1	41	13	8	180	232	160	634	
6204-SP30021-8	3:1	41	16	6	68	108	54	299	
6204-SP30021-9	>63:1	57	39	10	233	245	245	837	
6204-SP30021-10	no fit	33	9	7	165	24	103	343	
6204-SP30021-11	3:1	39	7	9	198	266	145	662	
6204-SP30021-12	15:1	40	15	10	212	281	172	734	
6204-SP30021-13	15:1	52	44	9	207	223	247	788	
6204-SP30021-15	no fit	54	20	8	205	291	160	738	
6204-SP30021-21	3:1	44	11	8	142	216	126	551	
6204-SP30021-24	3:1	47	9	9	149	202	89	509	
6204-SP30021-25	15:1	37	33	8	235	257	243	819	
6204-SP30021-28	15:1	46	11	9	225	288	123	707	
6204-SP30021-29	null	18	ND	ND	ND	ND	ND	18	
6204-SP30021-30	3:1	33	11	8	203	246	154	659	
6204-SP30021-36	15:1	31	17	7	197	275	95	628	
6204-SP30021-37	3:1	38	10	7	137	181	117	490	
6204-SP30021-41	3:1	42	9	8	250	339	170	821	
6204-SP30021-42	3:1	32	4	6	178	216	103	539	
6204-SP30021-43	15:1	54	25	10	242	304	151	792	
6204-SP30021-44	no fit	48	27	7	226	249	129	692	

The initial results demonstrate that as with plants transformed to express *crtB* alone, plants expressing *crtB* and *crtW* contain significant increases in total carotenoid levels. Furthermore, the results show an increase in the levels of canthaxanthin, when compared to the levels obtained from seeds of plants transformed with *crtB* alone, as

well as nontransformed control plants. In addition, other products were also produced in plants expressing *crtB* and *crtW*. Increased levels of echineone, a reaction intermediate, as well as a putative 4-keto- α -carotene (Figure 17).

M. Carotenoid Analysis of Mature Seeds from *crtB* Transgenic *Arabidopsis* Plants

5 Mature 3390 T2 seeds from *Arabidopsis* were collected and carotenoid extracts were prepared and analyzed according to the method described in 2I above. These results are shown in Table 11 below. Carotenoid levels are presented as $\mu\text{g/g FW}$.

10 **Table 11.** Carotenoids of T2 *Arabidopsis* seeds transformed with *crtB*.

15 Sample ID	Carotenoid concentration ($\mu\text{g/g FWt.}$)					Total
	Lutein	Lycopene	α -Carotene	β -Carotene	Phytoene	
AT001-50 VAR	18	ND	ND	2	ND	20
3390-AT001-1	24	ND	7	20	7	58
3390-AT001-2	57	5	68	139	98	368

20

Initial results indicate that seeds from one line of *Arabidopsis* transformed with napin-*crtB* had an 18-fold increase in total carotenoid concentration. This line also demonstrate an approximately 70 fold increase in β -carotene levels (Table 11).

25 N. Carotenoid Analysis of Mature Seeds from *crtB* Transgenic Corn Plants

Mature 9039 T2 seeds from transgenic corn were collected and carotenoid and tocopherol extracts were prepared and analyzed according to the method described in 2I above. These results are shown in Table 12 below. Carotenoid and tocopherol levels are presented as $\mu\text{g/g FW}$.

30

55

Table 12. Carotenoid and tocopherol concentrations of T2 corn seeds transformed with *crtB*.

Sample ID #	Carotenoid concentration ($\mu\text{g/g FW}$)				Tocopherol concentration ($\mu\text{g/g FW}$)				Total-T 55	
	Lutien	Zeaxanthin	Lycopene	a-Carotene	b-Carotene	Phytoene	Total-C	d-Tocop	g-Tocop	
Control-1	7	1.92	ND	0.44	0.33	4	13	2	63	18
Control-2	8	2.18	ND	0.43	0.27	8	18	3	83	19
Control-3	8	2.16	ND	0.40	0.41	6	17	3	83	19
Control-4	10	2.33	ND	0.23	0.32	4	17	3	81	16
ZM-S4783	8	1.70	ND	0.22	1.25	82	94	5	78	14
ZM-S4784	5	1.53	ND	0.38	0.38	14	22	3	53	6
ZM-S4785	5	1.5	ND	0.13	0.75	36	44	6	113	21
ZM-S4789	2	0.79	ND	0.16	0.47	34	37	3	48	7
ZM-S4790	3	0.93	ND	0.17	0.16	6	10	3	63	11
ZM-S4791	4	1.42	ND	0.32	1.93	54	62	6	103	20
ZM-S4795	4	1.05	ND	0.39	0.57	10	17	3	64	13
ZM-S4796	3	0.93	ND	0.34	0.48	14	18	3	72	17
ZM-S4801	6	1.95	ND	0.29	0.9	16	25	4	88	19
ZM-S4805	7	1.65	ND	0.60	0.39	6	16	1	21	ND
ZM-S4814	7	1.64	ND	0.12	0.40	5	13	4	78	19
ZM-S4815	5	1.24	ND	0.27	0.41	7	13	4	91	19
ZM-S4816	2	0.92	ND	0.14	0.62	36	40	3	68	14
ZM-S4819	9	3.65	ND	0.19	0.81	9	23	6	52	16
ZM-S4820	3	0.97	ND	0.11	0.27	4	8	3	62	15
ZM-S4821	9	2.11	ND	0.36	0.43	4	16	2	23	18
ZM-S4825	3	0.87	ND	0.20	0.64	29	33	3	65	15
ZM-S4826	2	0.72	ND	ND	0.46	35	38	3	65	17

56

ZM-S4827	3	0.84	ND	0.08	0.54	3	52	17	72
ZM-S4830	4	1.32	ND	0.19	0.96	12	18	3	50
ZM-S4833	4	1.07	ND	0.19	0.27	2	7	1	75
ZM-S4839	4	1.21	ND	0.25	0.55	14	20	3	75
ZM-S4842	5	0.97	ND	0.26	0.19	2	9	3	57
ZM-S4847	3	0.94	ND	0.27	0.47	5	10	3	35
ZM-S4848	2	0.97	ND	0.12	0.80	19	23	2	9
ZM-S4849	6	2.85	ND	0.26	0.33	2	12	4	14
ZM-S4853	6	1.68	ND	0.30	0.47	30	38	3	10
ZM-S4854	3	1.51	ND	0.19	1.53	39	45	2	15
ZM-S4855	5	1.49	ND	0.14	0.59	33	40	4	11
ZM-S4856	3	0.95	ND	0.20	0.44	32	36	4	11
ZM-S4858	4	1.89	ND	0.15	0.21	4	11	2	17
ZM-S4861	3	1.09	ND	0.08	0.43	62	67	2	47
ZM-S4862	9	2.83	ND	0.58	0.42	7	19	4	55
ZM-S4864	5	1.68	ND	0.36	0.37	3	11	4	91
ZM-S4865	6	1.68	ND	0.37	0.32	4	12	3	17
ZM-S4866	3	0.88	ND	0.14	0.61	40	45	3	83
ZM-S4868	4	1.25	ND	0.23	0.49	29	35	2	21
ZM-S4874	8	2.55	ND	0.38	0.41	6	18	2	86
ZM-S4875	11	3.98	ND	0.34	0.53	3	20	4	18
ZM-S4878	4	1.44	ND	0.11	0.67	49	55	2	15
ZM-S4880	7	1.57	ND	0.43	0.39	3	12	3	49
ZM-S4881	6	2.45	ND	0.31	0.56	5	14	3	77
ZM-S4882	5	1.72	ND	0.42	0.46	6	14	3	20
ZM-S4884	11	2.73	ND	0.31	0.34	6	20	4	78
ZM-S4886	4	1.81	ND	0.17	0.35	38	44	4	110
ZM-S4889	8	2.46	ND	0.72	0.69	6	18	3	83

57

ZM-S4892	9	3.57	ND	0.29	1.21	50	64	4	74	19	97
ZM-S4893	5	1.51	ND	0.29	0.82	42	50	5	101	19	125

Seeds from 48 transgenic corn lines were analyzed for carotenoid and tocopherol concentrations (Table 12). Total carotenoid concentration was increased up to 5 fold. The major change was phytoene (up to 15 fold increase), with a small increase in b-carotene in some lines. The total carotenoid concentration of transgenic corn seeds was only 5%-10% with respect to that of the *Brassica* seeds transformed with *crtB*. The substantial accumulation of phytoene indicates that phytoene desaturase of corn could be rate limiting. Therefore, the *crtB* effect was basically limited to phytoene biosynthesis and blocked to the later steps of the carotenoid pathway. These wild type corn seeds accumulate some zeaxanthin, but it is only about ¼ that of lutein. In order to produce more zeaxanthin in corn seeds, at least three genes (*crtB*, *crtI*, and *crtZ*) may be required.

O. Expression of Maize phytoene synthase in *Arabidopsis*

Mature 9061 T2 seeds from *Arabidopsis* were collected and carotenoid extracts were prepared and analyzed according to the method described in 2I above. These results are shown in Table 13 below and in Figure 18. Carotenoid levels are presented as µg/gFW.

20 **Table 13: Results of Carotenoid composition determined by HPLC on *A.t.* 9061 lines**

Strain ID	Lutein	Lycopene	α-Carotene	β-Carotene	Phytoene	Total-Major-C	%phytoene
AT001	27	0	0	8	0	34	0
9061-AT001-1	36	4	20	82	15	157	9.7
9061-AT001-2	61	6	115	295	115	591	19.3
9061-AT001-3	29	4	22	82	24	160	15.0
9061-AT001-4	68	5	78	251	60	461	12.9
9061-	42	6	62	163	63	336	18.7

AT001-5							
9061-AT001-6	46	4	59	167	60	337	17.8
9061-AT001-7	31	4	17	61	6	119	4.9
9061-AT001-8	58	7	80	230	85	460	18.4
9061-AT001-9	27	4	24	57	25	138	17.9
9061-AT001-10	64	6	82	243	78	473	16.5
9061-AT001-11	52	6	79	225	72	434	16.4
9061-AT001-12	53	5	74	222	69	424	16.3
9061-AT001-13	43	5	62	217	55	382	14.3
9061-AT001-14	49	5	73	185	83	395	20.9
9061-AT001-15	26	4	13	60	9	112	8.4
9061-AT001-16	33	5	52	157	50	297	16.7
9061-AT001-17	69	6	93	293	86	547	15.7
9061-AT001-18	41	5	46	164	24	280	8.5
9061-AT001-19	55	6	85	206	103	455	22.7
9061-AT001-20	71	6	116	244	125	562	22.3
9061-	61	5	88	226	89	469	18.9

AT001-21							
9061-AT001-22	49	6	66	198	76	395	19.2
9061-AT001-23	44	4	44	167	22	282	7.8
9061-AT001-24	59	6	70	219	57	411	13.9
9061-AT001-25	58	6	65	228	70	426	16.4
9061-AT001-26	57	6	81	212	80	436	18.2
9061-AT001-27	17	0	8	18	0	44	0
9061-AT001-28	55	5	76	176	65	378	17.2

Transgenic *Arabidopsis* expressing the maize phytoene synthase demonstrate an increase in total carotenoid levels. There are 11 lines of pCGN 9061 that have total carotenoids in excess of 400 ppm. This is higher than the highest pCGN 3390 line which is 381ppm. There are three *Arabidopsis* lines containing the maize phytoene synthase with total carotenoids between 550ppm and 590ppm.

Also, transgenic *Arabidopsis* lines containing the maize phytoene synthase produce less phytoene as a percentage of total carotenoids. The pCGN 9061 lines that accumulate the most carotenoids have only 16%-22% phytoene. The pCGN 3390 lines that accumulate the most carotenoids have a percent phytoene range from 25%-31% phytoene. The β -carotene is also significantly increased (Figure 18).

Example 3 Crosses of *crtB* Plants

A. Transgenic Oil Traits

To evaluate the high oleic trait of the napin-*crtB* transgenic plants in conjunction with expression of other oil traits, crosses off 3390-1-6-8 with a mangosteen thioesterase (5266) and a nutmeg thioesterase (3854; see WO 96/23892) were made. Crosses were also made with two low linoleic (LPOO4 and LP30108) varieties. Half-seed analyses of carotenoids and fatty acid composition were conducted on the segregating seeds, and the average of the half seed values are shown below in Tables 13 and 14.

TABLE 13

Carotenoid Levels in Half Seeds Resulting from 3390 Crosses

15	Cross	Lutein	Lycopene	α -Carotene	β -Carotene	Total
	F1 3390-SP001-1-6-8 x SP30021	21.6	26.2	271.5	413.1	732.4
	F1 3390-SP001-1-6-8 x 5266-SP30021-5-26	18.0	21.7	187.9	284.1	511.7
	F1 3390-SP001-1-6-8 x 5266-SP30021-35-2	16.2	22.1	223.0	318.4	579.7
	F1 3390-SP001-1-6-8 x 5266-SP30021-35-12	19.5	22.9	196.8	312.8	552.0
20	F1 3390-SP001-1-6-8 x LP30108-19	23.7	22.7	213.4	355.0	614.8
	F1 LP30108-19 x F1 3390-SP001-1-6-8	16.4	19.6	156.7	224.5	417.2

TABLE 14

Fatty Acid Composition in Half Seeds Resulting from 3390 Crosses

25	STRAIN_ID	%14:0 %16:0 %18:0 %18:1 %18:2 %18:3 %20:0
	(3390-SP001-1-6-8 X SP30021)	0.05 3.55 1.70 74.78 11.29 5.71 0.73

(3390-SP001-1-6-8 X 5266-SP30021-35-12)	0.06	3.84	11.37	62.86	11.06	5.08	3.38
(3390-SP001-1-6-8 X 5266-SP30021-35-2)	0.06	3.68	11.27	64.80	9.81	5.16	3.04
3390-SPOO1-1-6-8 X 5266-SP30021-5-26	0.06	3.66	15.36	60.78	9.30	4.77	3.87
(3390-SP001-1-6-1 X 3854-SP30021-20-3)	2.69	9.80	3.65	64.62	9.72	4.57	1.51
(3390-SP001-1-6-1 X 3854-SP30021-20-1)	6.14	16.35	5.12	54.91	8.23	4.23	2.03
(3390-SP001-1-6-1 X 5266-LP004-2-31)	0.07	3.82	11.67	64.52	11.46	3.14	3.08
(3390-SP001-1-6-8 X LP30108-19)	0.05	3.80	1.44	73.66	14.02	3.93	0.67
(LP30108-19 X 3390-SP001-1-6-8)	0.04	3.31	1.79	79.69	9.26	2.97	0.75
SPOO1-4-10	0.07	4.44	0.99	56.06	21.79	14.31	0.44
3390-SPOO1-1-6-8	0.04	3.46	1.44	77.26	9.30	5.71	0.63

As the above results demonstrate, a dramatic increase (100 to 200 fold) in α - and β -carotene as well as a 60 fold increase in total carotenoids may be obtained by transformation of plants for expression of an early carotenoid biosynthesis gene under 5 the regulatory control of promoter preferentially expressed in plant seed tissue. This increase in flux primes the pathway for the production of specialty products as described above, and also results in increased production of α -tocopherol (Vitamin E).

Furthermore, it is evident that the fatty acid composition can also be altered in the transgenic plant seeds. In this manner, seeds can be used to produce novel products, 10 to provide for production of particular carotenoids, to provide high oleic oils, and the like.

All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains.

All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

IN THE CLAIMS

What is claimed is:

1. A method for altering the carotenoid content in seed of a host corn plant, comprising:

transforming cells of a host corn plant with a construct comprising as operably linked components, a transcriptional initiation region from a gene preferentially expressed in a plant seed, a plastid transit peptide, a DNA sequence derived from a carotenoid biosynthesis gene coding region, and a transcriptional termination region,

producing a transformed host corn plant from said transformed cells, and

growing said transformed host corn plant or progeny thereof containing said construct under conditions whereby seed is produced having an altered carotenoid content.

2. The method according to Claim 1, wherein said altered carotenoid content is increased.

3. The method according to Claim 1, wherein said carotenoid biosynthesis gene is an early carotenoid biosynthesis gene.

4. The method according to Claim 3, wherein said early carotenoid biosynthesis gene is selected from the group consisting of geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and isopentenyl diphosphate isomerase.

5. The method according to Claim 1, further comprising introducing into a host corn cell a second construct comprising as operably linked components, a promoter functional in a corn seed cell, a second carotenoid biosynthesis gene, and a transcriptional termination region functional in a corn seed cell.

6. The method according to Claim 5, wherein said second carotenoid biosynthesis gene is selected from geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, isopentenyl diphosphate isomerase, β -carotene hydroxylase, the astaxanthin biosynthesis enzyme encoded by *crtW*, and ϵ -hydroxylase, or wherein said secondary gene results in inhibition of transcription of an endogenous plant gene encoding lycopene ϵ -cyclase, lycopene β -cyclase or phytoene desaturase.

7. A method for the alteration of carotenoid content in the endosperm of a host plant, comprising:

transforming cells of a host plant with a construct comprising as operably linked components, a transcriptional initiation region from a gene preferentially expressed in a plant seed endosperm, a plastid transit peptide, a DNA sequence derived from a carotenoid biosynthesis gene coding region, and a transcriptional termination region, producing a transformed host corn plant from said transformed cells, and growing said transformed host corn plant or progeny thereof containing said construct under conditions whereby seed is produced having an endosperm having an altered carotenoid content.

8. The method according to Claim 7, wherein said carotenoid content is increased.

9. The method according to Claim 7, wherein said carotenoid biosynthesis gene is an early carotenoid biosynthesis gene.

10. The method according to Claim 7, wherein said early carotenoid biosynthesis gene is selected from the group consisting of geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and isopentenyl diphosphate isomerase.

11. The method according to Claim 7, further comprising introducing into a host corn cell a second construct comprising as operably linked components, a promoter functional in a corn seed cell, a second carotenoid biosynthesis gene, and a transcriptional termination region functional in a corn seed cell.

12. The method according to Claim 11, wherein said second carotenoid biosynthesis gene is selected from geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, isopentenyl diphosphate isomerase, β -carotene hydroxylase, the astaxanthin biosynthesis enzyme encoded by *crtW*, and ϵ -hydroxylase, or wherein said secondary gene results in inhibition of transcription of an endogenous plant gene encoding lycopene ϵ -cyclase, lycopene β -cyclase or phytoene desaturase.

13. A method for screening transformed corn seeds or transformed endosperms, comprising:

transforming a host corn plant with an expression cassette comprising as operably linked components, a transcriptional initiation region from a gene preferentially expressed in a plant seed, a transit peptide, a DNA coding sequence of at least one carotenoid biosynthesis gene, and a transcriptional termination region, and

selecting said transformed seeds or transformed endosperms exhibiting a yellow, orange or red color.

14. The method according to Claim 13, wherein said early carotenoid biosynthesis gene encodes an enzyme selected from the group consisting of geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and isopentenyl diphosphate isomerase.

15. The method according to Claim 13, further comprising introducing into a host corn cell a second construct comprising as operably linked components, a promoter

functional in a corn seed cell, a second carotenoid biosynthesis gene, and a transcriptional termination region functional in a corn seed cell.

16. The method according to Claim 15, wherein said second carotenoid biosynthesis gene is selected from geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, isopentenyl diphosphate isomerase, β -carotene hydroxylase, the astaxanthin biosynthesis enzyme encoded by *crtW*, and ϵ -hydroxylase, or wherein said secondary gene results in inhibition of transcription of an endogenous plant gene encoding lycopene ϵ -cyclase, lycopene β -cyclase or phytoene desaturase.

17. A nucleic acid sequence encoding a phytoene synthase from corn.

18. The nucleic acid sequence according to Claim 17, wherein said sequence is the sequence set forth in Figure 19.

19. A method for altering carotenoid composition in a seed from a host plant, said method comprising transforming said host plant with a construct comprising as operably linked components, a transcriptional initiation region from a gene preferentially expressed in a plant seed, a plastid transit peptide, a nucleic acid sequence encoding a carotenoid biosynthesis gene from eukaryotic source, and a transcriptional termination region.

20. The method according to Claim 19, wherein said carotenoid biosynthesis gene is phytoene synthase.

21. The method according to Claim 19, wherein said carotenoid biosynthesis gene is from corn.

22. The method according to Claim 19, wherein said carotenoid biosynthesis gene is encoded by the nucleic acid sequence set forth in Figure 19.

SEQUENCE LISTING

<110> Monsanto Technology LLC

<120> Methods for Producing Carotenoid Compounds, and Speciality Oils in Plant Seeds

<130> 16516.002

<150> 09/570,140
<151> 2000-05-12

<160> 10

<170> PatentIn version 3.0

<210> 1
<211> 1232
<212> DNA
<213> Artificial

<220>
<223> SSU/crtB (*Erwinia uredovora*) fusion sequence

<400> 1

agatctgcta gagagcttg caattcatac agaagtgaga aaaatggctt ctatgatatc	60
ctcttcgcgt gtgacaacag tcagccgtgc ctctaggggg caatccgccc cagtggctcc	120
atccggcgcc ctcaaattcca tgactggatt cccagtgaag aaggtcaaca ctgacattac	180
ttccattaca agcaatggtg gaagagtaaa gtgcattaat aatccgtcgt tactcaatca	240
tgcggtcgaa acgatggcag ttggctcgaa aagttttgcg acagcctcaa agttatttga	300
tgcaaaaacc cggcgcagcg tactgatgct ctacgcctgg tgccgcatt gtgacgatgt	360
tattgacgat cagacgctgg gctttcaggc ccggcagcct gccttacaaa cgccccgaaca	420
acgtctgatg caacttgaga tgaaaacgcg ccaggcctat gcaggatcgc agatgcacga	480
acccgcgttt gcggcttttc aggaagtggc tatggctcat gatatcgccc cggcttacgc	540
gtttgatcat ctggaaggct tcgccccatggaa tgtacgcgaa ggcataataca gccaactggaa	600
tgatacgctg cgctattgct atcacgttgc aggccgttgc ggcttgcgtatga tggcgcaaat	660
catgggcgtg cgggataacg ccacgcgttgc ccgcgcctgt gaccttgggc tggcatttca	720
gttgcaccaat attgctcgcg atattgtggaa cgatgcgcatt gcggggccgt gttatctgcc	780
ggcaagctgg ctggagcatg aaggcttgcgaa caaagagaat tatgcggcac ctgaaaaaccg	840
tcaggcgctg agccgtatcg cccgtcgatggc ggtgcaggaa gcagaacctt actatttgc	900
tgccacagcc ggcctggcag ggttgcgcgtt gcgttccgc tggcaatcg ctacggcgaa	960
gcagggtttac cggaaaaatag gtgtcaaagt tgaacaggcc ggtcagcaag cctggatca	1020

gcggcagtca acgaccacgc ccgaaaaatt aacgctgctg ctggccgcct ctggtcaggc	1080
ccttacttcc cgatgcggg ctcatcctcc ccgcctcgcatctctggc agcgccccgt	1140
ctagcgccat gtctttcccg gagcgtccga attatcgatg aattcgagct cggtacccgg	1200
ggatcctcta gagtcgacct gcaggcatgc aa	1232

<210> 2
<211> 962
<212> DNA
<213> Brassica napus

<400> 2	
tgaattgtaa tacgactcac tatagggcga attggccct ctagatgcat gctcgagcgg	60
ccgcccagtgt gatggatatac tgcagaattc ggcttgttt tggtcctgct ggtttagcct	120
tggctgcaga atcagcaagg ttaggtctca aagttggact cattggcct gatcttcctt	180
tcactaacaatc acgggtgtt tggaaagatg agttcaacga tcttggctt caaaaatgtt	240
ttgagcatgt ttggagagat acccttgtt atctggacga tgacaatcctt attaccattt	300
gtcgtgctta tggaaagatgtt agtcgacgtt tacttcacga ggagctctt aggaggtgtt	360
tggagtcagg tgtctcgat cttagctcca aagttgagag cataacagaa gctcctgatg	420
gccttaggct tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc	480
cttctggagc agcttctggg aagcttctgc aatacgaagt tggagggcctt agagtctgtt	540
tccaaactgc ttacggctt gaggttgagg tggaaaagag tccatatgtt ccagagcaga	600
tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc	660
atccaaactgc ttacggctt gaggttgagg tggaaaagag tccatatgtt ccagagcaga	720
gtctcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc	780
tagagacact cggatccga atactaaaga cttacgaaga ggaatggct tatatcccag	840
taggtggttc cttgccaac acgaaacaaa agaatctcgc ctttggcgtt gcagcttagca	900
tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc	960
ga	962

<210> 3
<211> 1272
<212> DNA
<213> Brassica napus

<400> 3

gtgaattgtta atacgactca ctatagggcg aattggccct tctagatgca tgctcgagcg	60
--	----

ccgcggcagg tgatggatat ctgcagaatt cggcttgc ttgttttagcc
ttggcggtg aatcagctaa gtaggactt aaagttggac tgattggc tgacccct
ttcactaaca actacggtgt ttggaaagat gagttcaacg atcttggc ttgttttagcc
attgagcatg tttggagaga tacccttgc tatctggacg atgacaatcc tattaccatt
ggtcgtgtt atgaaagagt tagtcgacgt ttacttcacg aggagttc ttgttttagcc
gtggagtcag gtgtctcgta tcttagctcc aaagttgaga gcataacaga agctcctgat
ggccttaggc ttgtttcctg tgaacaaaac acccttgc ttgttcaggct tgccactgtt
gtttctggag cagcttctgg gaagctttg caatacgaag ttggagggcc tagagtctgt
gtccaaactg cttacggc ttgtttcctg tgaacaaaac acccttgc ttgttcaggct tgccactgtt
atggtgttca tggattacag agattataca aacgaaaaa tccggagc ttgttttagcc
tatccaacgt ttctctacgc catgcctatg acaaagacca gagttttc ttgttttagcc
tgtcttgctt caaaagatgt catgccctt gatttgctt aaaaagact cttgttgc
tttagagacac tcggaatccg aatactaaag acttacgaag aggaatggc ttatatcc
gttaggtggtt cttgcacaa cacggacaa aagaatctcg cttggc ttgttttagcc
atggttcattt ctgcacacgg ctattcagg gttagatc ttgttgc
gcattcattt acatggatggc ttgttttagcc
aacaccaata tttcaagaca agcttggat actttatggc caccagaaag gaaacgc
agagcattct ttctaaagccg aattccagca cactggcggc cgttactgtt ggatccg
tcggtacca gcttggcgtt atcatggc tagctttc ttgttttagcc
ctcacaattt cacacaacat acgagccggc agcataaagt gtaaagcctg gggtcctaa
tgagttagt aa

<210> 4
<211> 1590
<212> DNA
<213> Brassica napus

<400> 4

gagctcgat ccactagtaa cgccgcggaa ttccgttct atcttgtacc 60
aaattgtga tcatcttagc aagaggaaca gttcccttcg tcatgatctc caacctcgag 120
gtattagaag catgcgagaa gagcgacagc ccgaagaaca ccagggtccgg gagaaacagc 180
ctcgacgaca agaaaaccatg ccagtaacgc ggttccaggt ccaaagaacgc atcaaagaac 240
ctcttagat catccaaatc aagtttcggc aaaatatcca tcccaaaaaca gaagaactcc 300

ctctgtctcc	gcctctcaat	aggccacaag	tctctccaca	cctcagccga	gagctcatct	360
cctctcaagg	cgttgttgg	accaccacca	agtaccgca	ctatagcggt	tgcaactatc	420
ggagcagctg	caagagtcct	agcaaccatg	taaccagtcg	aaggatgaac	catccccgcc	480
gtaccgccaa	tgccaacaac	tcttgaggc	aagaccggt	aaggacctcc	catagggatc	540
acacaacgct	cgtttccctc	aatccgcttc	acgttgatcc	ccaaatgttt	cagcctcgca	600
accatccctc	cttggatatc	ttccatcttc	agacccggcc	tagccacaag	agacgtctct	660
tcaagaaaaga	tcctgttgg	agaaaacggc	atcgctaca	ggaacgtagg	gatcttgctg	720
ttcccgcttt	taacctcagg	gtacgctca	agatgcttat	ctctccagtc	catgaacacc	780
atcttatcca	catcaaacgg	gtgaccatcg	acctcagcaa	tgataccata	agctacttga	840
tacccagggt	tataaggctt	atcatactga	accaagcatc	ttgaaaaacc	agtagcgctg	900
agaacaacag	aagcctgaat	cttcacaccg	tcactgcaga	caacagtgg	gttaacctcc	960
tcgtgaacca	cgtcagtgac	tttagcctga	tggaatctaa	caccgttgg	gatgcacttc	1020
tgaagcatct	tggatttgag	ctgttacgg	ttcactctcc	cgtaaggccg	ggacagggtcc	1080
ttttcggagc	cgtcgttgc	gttagacgacg	gcccggacc	aggtgggtgc	gaggcagtct	1140
agcaagtcca	tggcttcgaa	ctcgtaacc	caaactccgt	agttgttagg	ccaaatgagt	1200
ttgggggaag	gatcgatgga	gcagacagag	agtccagctt	cgagacttg	ctgagccacg	1260
gctaaaccag	cggggccgcc	gccaacgata	gctagatcaa	caactttgtt	cagggaaagt	1320
tcgtttaaag	gaaggcctaa	gtcgagattc	tccttcttgg	tttcaggaac	aagatccaaa	1380
agagcactac	tagcactagt	gatactacta	ccgattctga	ttgctctttt	cttcaaacca	1440
agcttaaccc	ttgaaggatt	tggacttaat	ctctcgaacc	catgaaactg	agggatgaaa	1500
aactcgagct	tgttgggtgt	tttcaacaga	gtatccatcg	aattctgcag	atatccatca	1560
cactggcggc	cgctcgagca	tgcatactaga				1590

<210> 5

<211> 660

<212> DNA

<213> Artificial

<220>

<223> SSU/crtZ (A. aurantiacum) fusion sequence

<400> 5

atggcttcta	tgatatcctc	ttccgctgtg	acaacagtca	gccgtgcctc	tagggggcaa	60
tccgcccag	tggctccatt	cggcggcctc	aaatccatga	ctggattccc	agtgaagaag	120

gtcaacactg acattacttc cattacaaggc aatggtgaa gagtaaagtgc catgaccaac 180
 ttcttgcgtcgatcg ttgtcgctac cgttttgggtt atggagttga ctgcttactc cgtccacaga 240
 tggatcatgc acggccatt gggttgggtt tggcacaagt cccaccacga ggagcacgac 300
 cacgcttgg agaagaacga cttgtacggt ttggtttcg ctgttatcgc taccgtcttgc 360
 ttcaccgttg gttggatctg ggctccagtt ttgtggtggc tcgctttggg tatgactgtc 420
 tacggttga tctacttcgt tttgcacgt ggtttggtcc accaaagatg gccattcaga 480
 tacatcccaa gaaagggtta cgctagaaga ttgtaccaag ctcacagatt gcaccacgct 540
 gtcgagggtta gagaccactg tggttcttc ggtttcatct acgctccacc agttgataag 600
 ttgaagcaag acttgaagat gtccggtgtc ttgagagctg aggctcaaga gagaacctag 660

<210> 6
<211> 219
<212> PRT
<213> Artificial

<220>
<223> deduced protein SSU/crtZ (A. aurantiacum) fusion sequence
<400> 6

Met Ala Ser Met Ile Ser Ser Ser Ala Val Thr Thr Val Ser Arg Ala
 1 5 10 15

Ser Arg Gly Gln Ser Ala Ala Val Ala Pro Phe Gly Gly Leu Lys Ser
 20 25 30

Met Thr Gly Phe Pro Val Lys Lys Val Asn Thr Asp Ile Thr Ser Ile
 35 40 45

Thr Ser Asn Gly Gly Arg Val Lys Cys Met Thr Asn Phe Leu Ile Val
 50 55 60

Val Ala Thr Val Leu Val Met Glu Leu Thr Ala Tyr Ser Val His Arg
 65 70 75 80

Trp Ile Met His Gly Pro Leu Gly Trp Gly Trp His Lys Ser His His
 85 90 95

Glu Glu His Asp His Ala Leu Glu Lys Asn Asp Leu Tyr Gly Leu Val
 100 105 110

Phe Ala Val Ile Ala Thr Val Leu Phe Thr Val Gly Trp Ile Trp Ala
 115 120 125

Pro Val Leu Trp Trp Ile Ala Leu Gly Met Thr Val Tyr Gly Leu Ile
 130 135 140

Tyr Phe Val Leu His Asp Gly Leu Val His Gln Arg Trp Pro Phe Arg
 145 150 155 160

Tyr Ile Pro Arg Lys Gly Tyr Ala Arg Arg Leu Tyr Gln Ala His Arg

165

170

175

Leu His His Ala Val Glu Gly Arg Asp His Cys Val Ser Phe Gly Phe
 180 185 190

Ile Tyr Ala Pro Pro Val Asp Lys Leu Lys Gln Asp Leu Lys Met Ser
 195 200 205

Gly Val Leu Arg Ala Glu Ala Gln Glu Arg Thr
 210 215

<210> 7
<211> 902
<212> DNA
<>213> Artificial

<220>
<223> SSU/crtW (*A. aurantiacum*) fusion sequence

<400> 7

atggcttcta tgatatcctc ttccgctgtg acaacagtca gccgtgcctc tagggggcaa	60
tccggcgag tggctccatt cggcgccctc aaatccatga ctggattccc agtgaagaag	120
gtcaacactg acattacttc cattacaagc aatggtgaa gagtaaagtg catgtccgct	180
cacgcttgc caaaggctga cttgactgct acctccttga tcgtctccgg tggtatcatc	240
gctgcttgg tggcttgca cggtcacgct ttgtggttct tggacgctgc tgctcaccca	300
atcttggcta tcgctaaactt cttgggtttg aactgggtgt ctgtcggttt gttcatcatc	360
gctcacgacg ctatgcacgg ttccgttgac ccaggttagac caagagctaa cgctgctatg	420
ggtaattgg ttttgtgggt gtacgctgg tttcttggaa gaaagatgat cgttaagcac	480
atggctcacc acagacacgc tggtaactgat gacgacccag atttcgacca cggtgttcca	540
gttagatggt acgctagatt catcggtact tacttcggtt ggagagaggg tttgttgg	600
ccagtcatcg ttaccgttta cgcttgatc ttgggtgaca gatggatgta cggtgttcc	660
tggccattgc catccatctt ggcttctatc caattgtcg tttcggtac ctgggttgc	720
cacagaccag gtcacgacgc tttccagac agacacaacg ctgcgtcctc cagaatctct	780
gatccagttt cttgttgac ctgtttccac ttccgggtt accaccacga gcaccacttg	840
cacccaactg tccccatggtg gagattgcca tccaccagaa ccaagggtga caccgcttag	900
ta	902

<210> 8
<211> 299
<212> PRT
<213> Artificial

<220>

<223> deduced protein SSU/crtW (*A. aurantiacum*) fusion sequence

<400> 8

Met Ala Ser Met Ile Ser Ser Ser Ala Val Thr Thr Val Ser Arg Ala		
1	5	10
15		

Ser Arg Gly Gln Ser Ala Ala Val Ala Pro Phe Gly Gly Leu Lys Ser		
20	25	30

Met Thr Gly Phe Pro Val Lys Lys Val Asn Thr Asp Ile Thr Ser Ile		
35	40	45

Thr Ser Asn Gly Gly Arg Val Lys Cys Met Ser Ala His Ala Leu Pro		
50	55	60

Lys Ala Asp Leu Thr Ala Thr Ser Leu Ile Val Ser Gly Gly Ile Ile		
65	70	75
80		

Ala Ala Trp Leu Ala Leu His Val His Ala Leu Trp Phe Leu Asp Ala		
85	90	95

Ala Ala His Pro Ile Leu Ala Ile Ala Asn Phe Leu Gly Leu Asn Trp		
100	105	110

Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly Ser		
115	120	125

Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ala Met Gly Gln Leu Val		
130	135	140

Leu Trp Leu Tyr Ala Gly Phe Ser Trp Arg Lys Met Ile Val Lys His		
145	150	155
160		

Met Ala His His Arg His Ala Gly Thr Asp Asp Asp Pro Asp Phe Asp		
165	170	175

His Gly Gly Pro Val Arg Trp Tyr Ala Arg Phe Ile Gly Thr Tyr Phe		
180	185	190

Gly Trp Arg Glu Gly Leu Leu Pro Val Ile Val Thr Val Tyr Ala		
195	200	205

Leu Ile Leu Gly Asp Arg Trp Met Tyr Val Val Phe Trp Pro Leu Pro		
210	215	220

Ser Ile Leu Ala Ser Ile Gln Leu Phe Val Phe Gly Thr Trp Leu Pro		
225	230	235
240		

His Arg Pro Gly His Asp Ala Phe Pro Asp Arg His Asn Ala Arg Ser		
245	250	255

Ser Arg Ile Ser Asp Pro Val Ser Leu Leu Thr Cys Phe His Phe Gly		
260	265	270

Gly Tyr His His Glu His His Leu His Pro Thr Val Pro Trp Trp Arg		
275	280	285

Leu Pro Ser Thr Arg Thr Lys Gly Asp Thr Ala

290

295

<210> 9
<211> 1304
<212> DNA
<213> Zea mays

<400> 9

aattcgccct	tcctcctcga	gcgggatcca	tggccatcat	actcgtacga	gcagcgtcgc	60
cggggctctc	cgccgcccac	agcatcagcc	accagggac	tctccagtgc	tccaccctgc	120
tcaagacaa	gaggccggcg	gcgcgccggt	ggatgccctg	ctcgctcctt	ggcctccacc	180
cgtgggaggc	tggccgtccc	tccccccgcg	tctactccag	cctcgccgtc	aaccggcgg	240
gagaggccgt	cgtctcgicc	gagcagaagg	tctacgacgt	cgtgctcaag	caggccgcat	300
tgctcaaacg	ccagctgcgc	acgcgggtcc	tgcacgcccag	gccccaggac	atggacatgc	360
cacgcacacgg	gctcaaggaa	gcctacgacc	gctgcggcga	gatctgtgag	gagtatgcca	420
agacgtttta	cctcggaact	atgttcatgt	cagaggagcg	gcccggcgcc	atatggccca	480
tctatgtgtg	gtgttaggagg	acagatgagc	ttttagatgg	gccaaacgccc	aactacatta	540
caccaacacgc	tttggaccgg	tgggagaaga	gacttgagga	tctgttcacg	ggacgtcctt	600
acgacatgct	tgtgccgct	ctctctgata	ccatctcaag	gttccccata	gacattcagc	660
cattcaggga	catgattgaa	ggatgagga	gtgatcttag	gaagacaagg	tataacaact	720
tcgacgagct	ctacatgtac	tgctactatg	ttgtggAAC	tgtcgggtta	atgagcgtac	780
ctgtgatggg	catcgcaacc	gagtctaaag	caacaactga	aacgtatac	agtgctgcct	840
tggctctggg	aattgcgaac	caactcacga	acatactccg	ggatgttgg	gaggatgcta	900
gaagaggaag	gatatatattt	ccacaagatg	agcttgcaca	ggcagggctc	tctgtatgagg	960
acatcttcaa	aggggtcgtc	acgaaccgg	ggagaaactt	catgaagagg	cagatcaaga	1020
ggccaggat	gtttttttag	gaggcagaga	gaggggtaaa	ttagctctca	caggctagca	1080
gatggccagt	atgggcttcc	ctgttgtgt	acaggcagat	cctggatgag	atcgaagcca	1140
acgactacaa	caacttcacg	aagagggcgt	atgttggtaa	aggaaagaag	ttgttagcac	1200
ttcctgtggc	atatggaaaa	tcgctactgc	tcccatgttc	attgagaaat	ggccagacct	1260
agccaccaga	gaagctgcag	gtcctccctc	gagactgaag	ggcg		1304

<210> 10
<211> 425
<212> PRT
<213> Zea mays

<220>

<221> Unsure
 <222> (411)..(411)
 <223> Unsure at Xaa

<220>
 <221> UNSURE
 <222> (423)..(423)
 <223> Unsure at Xaa

<400> 10

Met Ala Ile Ile Leu Val Arg Ala Ala Ser Pro Gly Leu Ser Ala Ala
 1 5 10 15

Asp Ser Ile Ser His Gln Gly Thr Leu Gln Cys Ser Thr Leu Leu Lys
 20 25 30

Thr Lys Arg Pro Ala Ala Arg Arg Trp Met Pro Cys Ser Leu Leu Gly
 35 40 45

Leu His Pro Trp Glu Ala Gly Arg Pro Ser Pro Ala Val Tyr Ser Ser
 50 55 60

Leu Ala Val Asn Pro Ala Gly Glu Ala Val Val Ser Ser Glu Gln Lys
 65 70 75 80

Val Tyr Asp Val Val Leu Lys Gln Ala Ala Leu Leu Lys Arg Gln Leu
 85 90 95

Arg Thr Pro Val Leu Asp Ala Arg Pro Gln Asp Met Asp Met Pro Arg
 100 105 110

Asn Gly Leu Lys Glu Ala Tyr Asp Arg Cys Gly Glu Ile Cys Glu Glu
 115 120 125

Tyr Ala Lys Thr Phe Tyr Leu Gly Thr Met Leu Met Thr Glu Glu Arg
 130 135 140

Arg Arg Ala Ile Trp Ala Ile Tyr Val Trp Cys Arg Arg Thr Asp Glu
 145 150 155 160

Leu Val Asp Gly Pro Asn Ala Asn Tyr Ile Thr Pro Thr Ala Leu Asp
 165 170 175

Arg Trp Glu Lys Arg Leu Glu Asp Leu Phe Thr Gly Arg Pro Tyr Asp
 180 185 190

Met Leu Asp Ala Ala Leu Ser Asp Thr Ile Ser Arg Phe Pro Ile Asp
 195 200 205

Ile Gln Pro Phe Arg Asp Met Ile Glu Gly Met Arg Ser Asp Leu Arg
 210 215 220

Lys Thr Arg Tyr Asn Asn Phe Asp Glu Leu Tyr Met Tyr Cys Tyr Tyr
 225 230 235 240

Val Ala Gly Thr Val Gly Leu Met Ser Val Pro Val Met Gly Ile Ala
 245 250 255

Thr Glu Ser Lys Ala Thr Thr Glu Ser Val Tyr Ser Ala Ala Leu Ala
260 265 270

Leu Gly Ile Ala Asn Gln Leu Thr Asn Ile Leu Arg Asp Val Gly Glu
275 280 285

Asp Ala Arg Arg Gly Arg Ile Tyr Leu Pro Gln Asp Glu Leu Ala Gln
290 295 300

Ala Gly Leu Ser Asp Glu Asp Ile Phe Lys Gly Val Val Thr Asn Arg
305 310 315 320

Trp Arg Asn Phe Met Lys Arg Gln Ile Lys Arg Ala Arg Met Phe Phe
325 330 335

Glu Glu Ala Glu Arg Gly Val Asn Glu Leu Ser Gln Ala Ser Arg Trp
340 345 350

Pro Val Trp Ala Ser Leu Leu Leu Tyr Arg Gln Ile Leu Asp Glu Ile
355 360 365

Glu Ala Asn Asp Tyr Asn Asn Phe Thr Lys Arg Ala Tyr Val Gly Lys
370 375 380

Gly Lys Lys Leu Leu Ala Leu Pro Val Ala Tyr Gly Lys Ser Leu Leu
385 390 395 400

Leu Pro Cys Ser Leu Arg Asn Gly Gln Thr Xaa Pro Pro Glu Lys Leu
405 410 415

Gln Asp Pro Pro Arg Asp Xaa Arg Ala
420 425

BglII				
AGATCTGCTA	GAGAGCTTTG	CAATTCTAC	AGAAAGTGAGA	AAAATGGCTT
				CTATGATATC
60				
CTCTTCGGCT	GTGACACACAG	TCAGCCGTGC	CTCTAGGGGG	CAATCCGGCG
				CAGTGGCTCC
				120
ATTGGGGGC	CTCAAATCCA	TGACTGGATT	CCCAGTGAAG	AAGGTCAACA
				CTGACATTAC
				180
TTCATTACA	AGCAAATGGTG	GAAGAGTAA	GTGCTATGAAT	AATCCGTCGT
				TACTCAATCA
				240
TGCGGTGAA	ACGATGGCAG	TGGCTCGAA	AAGTTTTGCG	ACAGCCTCAA
				AGTTTATTTGA
				300
TGCAAAACC	CGGGCAGGG	TACTGATGCC	CTACGCCCTGG	TGCCCCCATT
				GTGACGATGT
				360
TATTGACGAT	CAGACGGCTGG	GCTTTCAAGGC	CGGGCAGGCC	GCCTTACAAA
				CGCCCGAACAA
				420
ACGTCCTGATG	CAACTTGAGA	TGAAAACCGCG	CCAGGGCTAT	GCAGGGATCGC
				AGATGCCAGA
				480
ACCGGGGT	TGGGCTTTTC	AGGAAGTGGC	TATGGCTCAT	GATACTGCC
				CGGCTTACGC
				540
GTTTGATCAT	CTGGAAGGCT	TCGCCATGGA	TGTACGGAA	GGCAATACA
				GCCAACTGGAA
				600
TGATACGGCTG	CGCTTATGCT	ATCACGTTGC	AGGCCTTGTGC	GGCTTGTATGA
				TGGCGCAAAAT
				660

FIGURE 1

CATGGCGTG	CGGGATAACG	CCACGCTGGA	CCGGGCCCTGT	GACCTTGGGC	TGGCATTTC	720
GTTGACAAT	ATTGCTCGG	ATATGTTGGA	CGATGCCAT	GCGGGCCGT	GTATCTGCC	780
GGCAAGCTGG	CTGGAGCATG	AAGGTCTGAA	CAAAGAGAAT	TATGCCGCAC	CTGAAAACCG	840
TCAGGGCTTG	AGCCGTATCG	CCCGTCGRTT	GGTGCAGGAA	GCAGAACCTT	ACTATTTGTC	900
TGCCACAGCC	GGCCTGGCAG	GGTTGCCCT	GGGTTCCGCC	TGGCAATCG	CTACGGCGAA	960
GCAGGGTTAC	CGAAAAATAG	GTGTCAAAGT	TGAACAGGCC	GGTCAGCAA	CCTGGGATCA	1020
GGGGCAGTCA	ACGACCACGC	CCGAAAAATT	AACGCTGCTG	CTGGCCGCC	CTGGTCAGGC	1080
CCTTACTTCC	CGGATGGGG	CTCATCCTCC	CCGCCCTGCG	CATCTCTGGC	AGGCCCGCT	1140
CTAGGCCAT	GTCTTCCC	GAGCGTCCGA	ATTATCGATG	AATTGAGCT	CGGTACCCGG	1200
BamHI	GGATCC	CTTA	GAGTCGACT	GCAGGCATGC	AA	1232

FIGURE 1

FIGURE 2A

FIGURE 2B

FIGURE 2C

FIGURE 2D

CONTROL SAP

FIGURE 3

3390 SAP

FIGURE 4 FIGURE 4

FIGURE 5

18:1 vs 16:0, 18:0 & 20:0 in 3390s

FIGURE 6

18:0 vs 20:0 in 3390s

FIGURE 7

FIGURE 8
1/1

13/35

FIGURE 9

14/35

>AluI >AluI >HaeIII
 | | |
 | 500 | | 540
 * * *
 CTTCTGGAGCAGCTCTGGGAAGCTCTTGCATAACGAGTTGGAGGGCCTAGAGTCGTG

 >HinfI >Sau3AI
 | |
 | 560 | | 600
 * * *
 TCCAAACTGCTTACGGCTTGGAGGTGAGGTGGAAAAGAGTCCATATGATCCAGAGCAGA

 >AluI
 |
 >MspI >AluI
 | | |
 | 620 | 640 | 660
 * * *
 TGGTGGTCACTGGATTACAGAGATTACAAAACGAGAAAATCCGGAGCTTAGAAGCTGAAT

 >HinfI
 |
 | 680 | 700 | 720
 * * *
 ATCCAACGTTCTCATGCCATGCCTATGACAAAGACCAGAGTCTTCTTGAGGAGACAT

 >AluI
 |
 | 740 | 760 | 780
 * * *
 GTCTTGCTTCAAAAGATGTCATGCCCTTGATTTGTTAAAAAGAAGCTCTGTTGAGAT

 >HinfI
 |
 | 800 | 820 | 840
 * * *
 TAGAGACACTCGGAATCGAATACTAAGACTTACGAGAGGAATGGTCJTATATCCCAG

 >AluI
 |
 >HinfI >PstI
 | | |
 | 860 | 880 | 900
 * * *
 TAGGTGGTTCTTGCCAAACACGGAACAAAAGAACTCGCCTTGGCGCTGCAGCTAGCA

 >SpeI >BamHI
 | |
 >EcoRI >BstXI >HaeIII >Sau3AI
 | | | |
 | 920 | 940 | 960
 * * * *
 TGGTACATCCCGAACAGAACGCCATTCCAGCACACTGGCGCCGTTACTAGGGATCC

GA

FIGURE 9

FIGURE 10

16/35

Detailed description of the DNA sequence alignment and restriction map:

- Sequence Alignment:** The sequence is aligned with a reference sequence at the top. Differences are indicated by dots (.) and dashes (-). The sequence starts with TGTCTGGCTT CAAAGATGT CATGCCCTT GATTGCTTA AAAAGAACCT CTTCGTTGAGA TTAGGACAC TCGAATCCG AAATCAAAG ACTTACAGA AGGAATGOTC TTATATCCCC.
- Restriction Enzyme Sites:**
 - AluI:** Sites at approximately 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, and 840 bp.
 - BglII:** Site at approximately 850 bp.
 - BpuI:** Site at approximately 870 bp.
 - EcoRI:** Site at approximately 970 bp.
 - HinfI:** Site at approximately 980 bp.
 - HindIII:** Site at approximately 990 bp.
 - KpnI:** Site at approximately 1000 bp.
 - PstI:** Site at approximately 1010 bp.
 - SacI:** Site at approximately 1020 bp.
 - SphI:** Site at approximately 1030 bp.
 - SalI:** Site at approximately 1040 bp.
 - XbaI:** Site at approximately 1050 bp.
- Fragment Sizes:** The map shows fragment sizes in base pairs (bp) for each restriction site. For example, the AluI site at 730 bp yields fragments of 800, 810, 820, 830, and 840 bp. The BglII site at 850 bp yields fragments of 900, 910, 920, 930, and 940 bp. The BpuI site at 870 bp yields fragments of 900, 910, 920, 930, and 940 bp. The EcoRI site at 970 bp yields fragments of 1010, 1020, 1030, 1040, and 1050 bp. The HinfI site at 980 bp yields fragments of 1020, 1030, 1040, 1050, and 1060 bp. The HindIII site at 990 bp yields fragments of 1030, 1040, 1050, 1060, and 1070 bp. The KpnI site at 1000 bp yields fragments of 1040, 1050, 1060, 1070, and 1080 bp. The PstI site at 1010 bp yields fragments of 1050, 1060, 1070, 1080, and 1090 bp. The SacI site at 1020 bp yields fragments of 1060, 1070, 1080, 1090, and 1100 bp. The SphI site at 1030 bp yields fragments of 1070, 1080, 1090, 1100, and 1110 bp. The SalI site at 1040 bp yields fragments of 1080, 1090, 1100, 1110, and 1120 bp. The XbaI site at 1050 bp yields fragments of 1120, 1130, 1140, 1150, and 1160 bp.
- Scale:** A scale bar at the bottom indicates distances from 0 to 1200 bp.

FIGURE 10

60 *
GAGCTCGGAT CCACTAGTAA CGGCCGCAG TGTGCTGGAA TTCCGGCTTCT ATCTTGTA
AAATTGTTGA TCATCTTAGC AAGAGGAACA GTTCCCTTCG TCATGATCTC CAACCTCGAG
120 *
GTATTAGAAG CATGGGAGAA GAGCGACAGC CCGAAGAACCA CCAGGGTCCGG GAGAAACAGC
180 *
CTCGACGACA AGAAACCATG CCAGTAACGC GGTTCAGGT CAAAGAACGC ATCAAAGAAC
240 *
CTCCTAGTAG CATCCAATC AAGCTTCAGC AAAATATCCA TCCCCAAACA GAAGAACTCC
300 *
CTCTGTCTCC GCCTCTCAAT AGGCCAACAG TCTCTCCACA CCTCAGCCGA GAGCTCATCT
360 *
CCTCTCAAGC CGTTGTTGTT ACCACCACCA AGGTACCGCA CTATAGCGTT TGCAACTATC
420 *
GGAGCAGCTG CAAGAGTCCT AGCAACCAG TAACCAGTCG AAGGATGAAC CATCCCCGCC
480 *

FIGURE 11

540 *
GTACCGCCAA TGCCAAACA TCTTTGAGGC AAGGCCGGTA AAGGACTCTCC CATAAGGGATC
600 *
ACACAAACGCT CGTCTTCCTC AATCCGCTTC ACGGTGTATCC CCAAATGTTT CAGGCCTCGGCA
660 *
ACCATCCTCT CTTGGATATC TTCCATCTTC AGACCCGGCC TAGGCCACAAG AGACGTCCTCT
720 *
TCAAGAAAAGA TCCTGTGGAA AGAAAACGGC ATCGCGTACA GGAACCGTAGG GATCTTGCTG
780 *
TTCGGCTCTT TAACCTCAGG GTACCGCTCA AGATGCTTAT CTCTCCAGTC CATGAACACCC
840 *
ATCTTATCCA CATCAAACGG GTGACCATCG ACCTCAGCAA TGATACCAT A GCTACTTGA
900 *
TACCCAGGGT TATAAGGCTT ATCATACTGA ACCAACGATC TTGAAAAACC AGTAGCGCTCG
960 *
AGAACAAACAG AAGCCCTGAAT CTTCACACCCG TCACTGCAGA CAACAGTGGAA GTTAACCTCC

FIGURE 11

1020 *
TCGTGAACCA CGTCAGTGAC TTTAGCCTGA TGGAAATCTAA CACCGTTGGT GATGCACTTC
1080 *
TGAAGGCATCT TGGAATTGAG CTGTTAACGG TTCAACTCTCC CGTAAGGCCG GGACAGGGTCC
1140 *
TTTTCGGAGC CGTCGGTGTGAT GTAGACGACG GCGCCGGACC AGGTGGTGTGTC GAGGGCAGTCT
1200 *
AGCAAGTCCA TGGCTTCGAA CTCGTCAACC CAAACTCCGT AGTTGTTAGG CCAAATGAGT
1260 *
TTCGGGGAAAG GATCGATGGA GCAGACAGAG AGTCCAGCTT CGGAGACTTG CTGAGCCACG
1320 *
GCTAAACCAAG CGGGGCCGCC GCCAACGATA GCTAGATCAA CAACTTTGTT CAGGGAAAGTG
1380 *
TCGTTAACG GAAGGGCCAA GTCGAGATTC TCCATTCTTGG TTTCAGGAAC AAAGATCCAAA
1440 *
AGAGCACTAC TAGCACTAGT GATACTACTA CCCGATTCTGGA TTGCTCTTTT CTTCAAAACCA

FIGURE 11

1500 *
AGCTTAACCC TTGAAAGGATT TGGACTTTAAT CTCTCGAACCATGAAACTG CATGAAACTG AGGGATGAAA
1560 *
AACTCGAGCT TGTGGGTGT TTTCAACAGA GTATCCATCG ATTCTGCAG ATATCCATCA
CACTGGCGGC CGCTCGAGCA TGCATCTAGA

FIGURE 11

Sample ID #	Segregation ratio	Lutein	Carotenoid concentration ($\mu\text{g/gFW}$)		
			Lycopene	α -Carotene	β -Carotene
SP30021 control 1		24.4	ND	1.9	26.3
SP30021 control 2		34.0	ND	4.9	38.9
T2 3390-SP30021-1	3:1	33.5	6.1	229.0	354.3
T2 3390-SP30021-2	15:1	50.4	6.2	372.4	1150.4
T2 3390-SP30021-3	no fit	45.8	3.9	352.9	983.5
T2 3390-SP30021-4	3:1	31.0	4.9	306.1	805.3
T2 3390-SP30021-5	3:1	36.8	10.5	370.6	659.4
T2 3390-SP30021-6	15:1	46.9	9.1	445.1	797.0
T2 3390-SP30021-7	15:1	51.2	7.4	494.9	941.4
T2 3390-SP30021-8	no fit	41.9	11.3	468.4	904.3
T2 3390-SP30021-9	>63:1	68.4	11.9	394.2	949.2
T2 3390-SP30021-10	null	51.6	ND	12.6	22.8
T2 3390-SP30021-11	3:1	52.2	9.5	409.8	714.5
T2 3390-SP30021-12*	3:1	48.0	10.2	400.0	738.8
T2 3390-SP30021-13	3:1	66.1	3.9	98.1	216.0
T2 3390-SP30021-14	3:1	49.1	8.9	320.0	611.6
T2 3390-SP30021-15	null	27.0	ND	ND	1.2
T2 3390-SP30021-16	3:1	55.6	6.4	283.1	527.4
T2 3390-SP30021-17	3:1	53.0	9.1	324.9	614.3
T2 3390-SP30021-18	>63:1	49.6	8.1	449.0	759.3
T2 3390-SP30021-19	3:1	62.2	7.6	346.1	613.2
T2 3390-SP30021-20	3:1	52.1	6.3	285.0	544.9
T2 3390-SP30021-21	3:1	56.2	4.1	187.9	334.2
T2 3390-SP30021-22	null	43.1	ND	ND	48.0
T2 3390-SP30021-23	3:1	71.0	10.9	358.6	693.9
T2 3390-SP30021-24	no fit	53.9	7.3	272.1	520.4
T2 3390-SP30021-25	3:1	31.9	12.2	309.1	580.9
T2 3390-SP30021-26*	3:1	34.3	9.3	311.2	584.4
T2 3390-SP30021-27	3:1	52.6	9.8	299.8	686.3

FIGURE 12

T2 3390-SP30021-28	no fit	68.4	10.0	446.3	907.7	1432.4
T2 3390-SP30021-29	>63:1	85.1	8.5	459.4	822.9	1375.9
T2 3390-SP30021-30	3:1	63.7	5.8	356.9	598.4	1024.8
T2 3390-SP30021-31	3:1	76.0	7.3	302.5	527.1	912.9
T2 3390-SP30021-32	null	51.8	2.3	31.4	55.0	140.5
T2 3390-SP30021-33	3:1	36.3	8.9	283.1	546.9	875.2
T2 3390-SP30021-34	>63:1	86.9	12.1	502.3	808.3	1409.6
T2 3390-SP30021-35	3:1	39.3	8.1	224.5	461.0	732.9
T2 3390-SP30021-36	15:1	55.5	11.0	538.5	829.9	1434.9
T2 3390-SP30021-37*	3:1	50.3	10.0	291.1	625.9	977.3*
T2 3390-SP30021-38	3:1	70.5	8.1	309.0	576.1	963.7
T2 3390-SP30021-39	null	37.3	ND	ND	3.6	40.9
T2 3390-SP30021-40	3:1	37.5	1.8	251.1	505.2	796.0
T2 3390-SP30021-41	3:1	47.5	8.4	414.1	719.3	1189.3*
T2 3390-SP30021-42	3:1	42.6	5.1	230.3	352.9	630.9
T2 3390-SP30021-43	no fit	83.3	5.6	128.4	219.8	437.9
T2 3390-SP30021-46	3:1	21.6	1.4	211.2	368.3	602.5
T2 3390-SP30021-47	3:1	79.1	3.7	312.5	570.5	965.8
T2 3390-SP30021-48	3:1	45.3	3.0	225.2	401.5	675.0
T2 3390-SP30021-49	15:1	28.3	1.6	346.0	677.2	1053.1
T4 3390-SP001-1-6-13	Homo	52.4	1.5	439.5	669.3	1162.7

FIGURE 12

Sample ID #	Segregation status	Carotenoid concentration ($\mu\text{g/gFW}$)				
		Lutein	Lycopene	α -Carotene	β -Carotene	Total
T3 3390-SP001-4-12	Homo	43.9	17.2	282.1	636.8	980.0
T3 3390-SP001-5-7	Het	50.7	6.3	190.6	386.8	634.4
T3 3390-SP001-5-12	Homo	45.5	19.5	255.9	633.4	954.3
T3 3390-SP001-11-6	Homo	46.5	12.8	372.2	538.4	969.9
T3 3390-SP001-11-9	Homo	54.0	10.2	406.0	556.0	1026.2
T3 3390-SP001-14-2	Homo	59.7	12.5	342.4	764.0	1178.6
T3 3390-SP001-14-6	Homo	66.3	12.9	431.0	673.9	1184.1
T3 3390-SP001-15-9	Homo	30.8	14.3	271.8	559.8	876.7
T3 3390-SP001-15-12	Homo	39.6	13.1	241.7	649.1	943.5
T3 3390-SP001-16-3	Homo	49.9	17.1	230.2	519.7	816.9
T3 3390-SP001-16-6	Homo	35.5	21.1	263.8	547.7	868.1
T3 3390-SP001-35-2	Het	37.6	7.2	125.4	313.9	484.1
T3 3390-SP001-35-10	Homo	43.7	16.6	234.7	503.9	798.9
T3 3390-SP001-35-12	Homo	50.2	21.3	361.7	695.7	1128.9
T3 3390-SP001-8-3	Het	41.4	9.9	178.2	434.4	663.9
T3 3390-SP001-8-9	Homo	39.1	18.2	309.3	505.0	871.6
T3 3390-SP001-8-11	Homo	35.9	19.6	260.7	580.4	896.6
T3 3390-SP001-18-8	Het	29.2	12.2	112.1	247.6	441.1
T3 3390-SP001-16-10	Het	38.0	14.6	248.2	486.3	787.1
T4 3390-SP001-1-6-1	Homo	27.8	20.5	248.7	379.1	676.1
T4 3390-SP001-1-6-8	Homo	38.5	16.8	304.1	383.9	743.3
VAR SP001-4-5		54.2	ND	ND	5.8	60.0
VAR SP001-4-6		51.2	ND	ND	7.0	58.2
VAR SP001-4-10		30.2	ND	ND	ND	30.2

FIGURE 13

Sample ID #	Segregation ratio	Lutein	Carotenoid concentration ($\mu\text{g/gFW}$)				
			Lycopene	α -Carotene	β -Carotene	Phytoene	Total
SP30021 control	Homo	21	ND	ND	2	ND	23
9002-SP30021-1*	3:1	20	2	394	618	210	1244
9002-SP30021-2	3:1	17	2	285	537	128	969
9002-SP30021-3	>64:1	19	7	489	689	381	1585
9002-SP30021-4	3:1	58	5	105	266	94	528
9002-SP30021-5	15:1	24	3	416	649	265	1357
9002-SP30021-6	3:1	13	2	324	546	176	1061
9002-SP30021-7	3:1	13	4	344	465	212	1038
9002-SP30021-8	15:1	12	3	449	690	224	1378
9002-SP30021-9	>64:1	24	5	499	724	313	1565
9002-SP30021-10	15:1	52	25	387	505	245	1214
9002-SP30021-11	3:1	29	2	301	480	187	999
9002-SP30021-12	>64:1	43	10	575	779	436	1843
9002-SP30021-13	3:1	19	3	357	509	279	1167
9002-SP30021-14	null	33	ND	ND	3	ND	36
9002-SP30021-15*	3:1	29	7	472	599	354	1461
9002-SP30021-16	64:1	40	3	315	436	203	997
9002-SP30021-17	15:1	25	7	322	467	144	967
9002-SP30021-18	>64:1	8	4	447	647	313	1419
9002-SP30021-19	15:1	38	17	537	570	327	1489
9002-SP30021-20*	3:1	32	8	363	629	173	1205
9002-SP30021-21	>64:1	1	6	468	736	348	1559
9002-SP30021-22	15:1	68	29	308	423	173	1001
9002-SP30021-23	15:1	51	20	449	553	423	1496
9002-SP30021-24	3:1	47	20	339	515	311	1232
9002-SP30021-25	null	27	ND	ND	2	ND	29
9002-SP30021-26*	3:1	4	3	346	605	150	1108
9002-SP30021-27	>64:1	25	5	416	698	376	1520
9002-SP30021-28	15:1	75	9	464	527	333	1408
9002-SP30021-29	null	32	ND	16	34	ND	82
9002-SP30021-30	3:1	25	9	316	525	182	1057
9002-SP30021-31	null	28	ND	ND	2	ND	30
9002-SP30021-32	3:1	29	5	198	283	132	647
9002-SP30021-33	15:1	50	40	408	557	324	1379
9002-SP30021-34	15:1	43	5	216	289	132	685
9002-SP30021-35	3:1	29	8	303	511	281	1132
9002-SP30021-36	3:1	26	9	324	402	157	918
9002-SP30021-37	3:1	34	11	263	418	143	869
9002-SP30021-39	15:1	54	13	219	420	118	824
9002-SP30021-40	15:1	30	7	382	716	235	1370
9002-SP30021-41	3:1	52	15	440	506	396	1409
9002-SP30021-42	3:1	49	20	317	516	170	1072
9002-SP30021-44	>64:1	34	7	368	647	310	1366
9002-SP30021-45	>64:1	45	9	429	636	402	1521
9002-SP30021-46	3:1	100	14	456	699	347	1617
9002-SP30021-48	3:1	37	5	191	354	231	818
9002-SP30021-50	64:1	51	22	522	756	303	1654

FIGURE 14

		10	20	30	40				
ATG	GCT	TCT	ATA	TCC	TCT	GCT	GTC	AGC	CGT
TAC	CGA	AGA	TAC	TAT	AGG	AGA	CAC	TGT	TCG
M	A	S	M	I	S	S	A	V	GCA
							T	T	TG
							V	V	CG
							A	A	TC
							P	P	AG
							F	F	AC
							G	G	CG
							L	L	GA
							R	R	GT
							>		
50	50	60	70	80	90				
GCC	TCT	AGG	GGG	CAA	TCC	GCC	GCA	TTC	GGC
CGG	AGA	TCC	CCC	GTT	AGG	CGG	CGT	GGT	GAC
A	S	R	G	Q	S	A	A	A	CC
									G
									G
									L>
100	100	110	120	130					
AAA	TCC	ATG	ACT	GGA	TTC	CCA	GTC	AAC	ACT
TTT	AGG	TAC	TGA	CCT	AAG	GGT	CAC	TTC	GAC
K	S	M	T	G	F	P	V	K	ATT
								V	TAA
								N	CTG
								T	TAA
								D	TG
								I>	TA
140	150	160	170	180					
ACT	TCC	ATT	ACA	AGC	AAT	GGT	GGA	GAA	GTC
TGA	AGG	TAA	TGT	TCG	TTA	CCA	CCT	CAT	ATG
T	S	I	T	S	N	G	R	V	ACC
								K	AA
								C	AC
								M	CC
								T	CG
								N>	GA
190	190	200	210	220					
TTC	TTC	ATC	GTT	GTC	GCT	ACC	GTC	GAG	TTC
AAG	AAC	TAG	CAA	CAG	CGA	TGG	CAA	AAC	ACT
F	L	I	V	V	A	T	V	L	GCT
								V	ACT
								M	ATG
								E	TAC
								L	TAC
								T	AA
230	240	250	260	270					
TAC	TCC	GTC	CAC	AGA	TGG	ATC	ATG	CAC	GCT
ATG	AGG	CAG	GTG	TCT	ACC	TAC	TAC	GTG	CCA
Y	S	V	H	R	W	I	M	H	GGT
								G	TTG
								P	GGT
								L	GGT
								G	GGT
								W	GGT
								G	GGT
								W	GGT
								G	GGT
								W	GGT

FIGURE 15

TGG	CAC	AAG	TCC	CAC	CAC	GAG	CAC	CAC	GCT	TTG	GAG	AAG
ACC	GTG	TTC	AGG	GTG	GTG	CTC	CTC	GTG	CGA	AAC	CTC	TTC
W	H	K	S	H	H	E	E	H	D	H	L	K>
320			330			340			350			360
AAC	GAC	TTG	TAC	GGT	TTG	GCT	TTC	GCT	ATC	GCT	ACC	GTC
TTG	CTG	AAC	ATG	CCA	AAC	CAA	AAG	CGA	CAA	TAG	CGA	TGG
N	D	L	Y	G	L	V	F	A	V	I	A	V
370			380			390			400			
TTC	ACC	GTT	GGT	TGG	ATC	TGG	GCT	CCA	GTT	TTG	TGG	ATC
AAG	TGG	CAA	CCA	ACC	TAG	ACC	CGA	GGT	CAA	ACC	ACC	GCT
F	T	V	G	W	I	W	A	P	V	L	W	CGA
												A>
410			420			430			440			450
TTC	GGT	ATG	ACT	GTC	TAC	GGT	TTG	ATC	TAC	TTC	TTG	CAC
AAC	CCA	TAC	TGA	CAG	ATG	CCA	AAC	TAG	ATG	AAG	CAA	GAT
L	G	M	T	V	Y	G	L	I	Y	F	V	CTA
												D>
460			470			480			490			
GGT	TTG	GTC	CAC	CAA	AGA	TGG	CCA	TTC	AGA	TAC	ATC	CCA
CCA	AAC	CAG	GTG	GTG	TCT	ACC	GGT	AAG	TCT	ATG	TAG	AGA
G	L	V	H	Q	R	W	P	F	R	Y	I	AAG
												A>
500			510			520			530			540
GGT	TAC	GCT	AGA	AGA	TTG	TAC	CAA	GCT	CAC	AGA	TTG	CAC
CCA	ATG	CGA	TCT	TCT	AAC	ATG	GTT	CGA	GTC	TCT	AAC	GTG
G	Y	A	R	R	L	Y	Q	A	H	R	L	CGA
												A>

FIGURE 15

		550	GTC GAG GGT AGA GAC CAC TGT GTT TCT TTC GGT ATC TAC GCT	560	CAG CTC CCA TCT CTG GTG ACA CAA AGA AAG CCA AAG TAG ATG CGA	570	V E G R D H C V S F G F I Y A>	580
		590	CCA CCA GTT GAT AAG TTG AAG CAA GAC TTG AAG ATG TCC GGT GTC	600	GGT GGT CAA CTA TTC AAC TTC GTT CTG AAC TTC TAC AGG CCA CAG	610	P P V D K L K Q D L K M S G V>	620
		640	TTG AGA GCT GAG GCT CAA GAG AGA ACC TAG	650	AAC TCT CGA CTC CGA GTT CTC TCT TGG	L R A E A Q E R T>		630

FIGURE 15

			10	20	30	40								
ATG	GCT	TCT	ATG	ATA	TCC	TCT	GCT	GTG	ACA	ACA	GTC	AGC	CGT	
TAC	CGA	AGA	TAC	TAT	AGG	AGA	AGG	CAC	TGT	TGT	CAG	TCG	GCA	
M	A	S	M	I	S	S	A	V	T	T	V	S	R>	
			50	60	70	80	90							
GCC	TCT	AGG	GGG	CAA	TCC	GCC	GCA	GTG	GCT	CCA	TTC	GGC	GGC	CTC
CGG	AGA	TCC	CCC	GTT	AGG	CGG	CGT	CAC	CGA	GGT	AAG	CCG	GAG	
A	S	R	G	Q	S	A	A	V	A	P	F	G	G	L>
			100	110	120	130								
AAA	TCC	ATG	ACT	GGA	TTC	CCA	GTG	AAG	GTC	AAC	ACT	GAC	ATT	
TTT	AGG	TAC	TGA	CCT	AAG	GGT	CAC	TTC	TTC	CAG	TGT	TGA	CTG	TAA
K	S	M	T	G	F	P	V	K	K	V	N	T	D	I>
			140	150	160	170	180							
ACT	TCC	ATT	ACA	AGC	AAT	GGT	GGA	AGA	GTA	AAG	TGC	ATG	TCC	GCT
TGA	AGG	TAA	TGT	TCC	TTA	CCA	CCT	TCT	CAT	TTC	ACG	TAC	AGG	CGA
T	S	I	T	S	N	G	G	R	V	K	C	M	S	A>
			190	200	210	220								
CAC	GCT	TTC	CCA	AAG	GCT	GAC	TTG	ACT	GCT	ACC	TCC	TTC	ATC	GTC
GTG	CGA	AAC	GGT	TTC	CGA	CTG	AAC	TGA	CGA	TGG	AGG	AAC	TAG	CAG
H	A	L	P	K	A	D	L	T	A	T	S	L	I	V>
			230	240	250	260	270							
TCC	GGT	GGT	ATC	ATC	GCT	GCT	TGG	TTG	GCT	TGG	CAC	GTT	CAC	GCT
AGG	CCA	CCA	TAG	TAG	CGA	CGA	ACC	AAC	CGA	AAC	GTG	CAA	GTG	CGA
S	G	G	I	I	A	A	W	L	A	L	H	V	H	A>
			280	290	300	310								
TTG	TGG	TTC	TTG	GAC	GCT	GCT	CAC	CCA	ATC	TTG	GCT	ATC	GCT	
AAC	ACC	AAG	AAC	CTG	CGA	CGA	CGA	GTG	GGT	TAG	AAC	CGA	TAG	CGA
L	W	F	L	D	A	A	H	P	I	L	A	I	A>	

FIGURE 16

320	330	340	350	360
AAC TTC TTG GGT TTG AAC TGG TCT GTC GGT TTG ATC ATC				
TTG AAG AAC CCA AAC TTG ACC AAC AGA CAG CCA AAC AAG TAG TAG				
N F L G L N W L S V G L F I I>				
370	380	390	400	
GCT CAC GAC GCT ATG CAC GGT TCC GTT GTC CCA GGT AGA CCA AGA				
CGA GTG CTG CGA TAC GTG CCA AGG CAA CAG GGT CCA TCT GGT TCT				
A H D A M H G S V V P G R P R>				
410	420	430	440	450
GCT AAC GCT GCT ATG GGT CAA TTG GTT TTG TGG TAC GCT GGT				
CGA TTG CGA CGA TAC CCA GTT AAC CAA ACC AAC ATG CGA CCA				
A N A A M G Q L V L W L Y A G>				
460	470	480	490	
TTC TCT TGG AGA AAG ATG ATC GTT AAG CAC ATG GCT CAC CAC AGA				
AAG AGA ACC TCT TTG TAG CAA TTC GTG TAC CGA GTG GTG TCT				
F S W R K M I V K H M A H H R>				
500	510	520	530	540
CAC GCT GGT ACT GAT GAC GAC CCA GAT TTC GAC CAC GGT CCA				
GTG CGA CCA TGA CTA CTG CTG GGT CTA AAG CTG CTG CCA CCA GGT				
H A G T D D P D F D H G G P>				
550	560	570	580	
GTT AGA TGG TAC GCT AGA TTC ATC GGT ACT TAC TTC GGT TGG AGA				
CAA TCT ACC ATG CGA TCT AAG TAG CCA TGA ATG AAG CCA ACC TCT				
V R W Y A R F I G T Y F G W R>				
590	600	610	620	630
GAG GGT TTG TTG CCA GTC ATC GTT ACC GTT TAC GCT TTG ATC				
CTC CCA AAC AAC AAC GGT CAG TAG CAA TGG CAA ATG CGA AAC TAG				
E G L L P V I V T V Y A L I>				

FIGURE 16

FIGURE 16

FIGURE 17A

32/35

FIGURE 17B

FIGURE 17C

Figure 18

1 AATTGCCCCCT TCCTCCTCGA GCGGGATCCA TGGCCATCAT ACTCGTACGA
51 GCAGCGTCGC CGGGGCTCTC CGCCGCCGAC AGCATCAGCC ACCAGGGGAC
101 TCTCCAGTGC TCCACCCCTGC TCAAGACGAA GAGGCCGGCG GCGCGCCGGT
151 GGATGCCCTG CTCGCTCCTT GGCCTCCACC CGTGGGAGGC TGGCCGTCCC
201 TCCCCCGCCG TCTACTCCAG CCTCGCCGTC AACCCGGCGG GAGAGGCCGT
251 CGTCTCGTCC GAGCAGAAGG TCTACGACGT CGTGCTCAAG CAGGCCGCAT
301 TGCTCAAACG CCAGCTGCAC ACAGCCGGTCC TCGACGCCAG GCCCCAGGAC
351 ATGGACATGC CACGCAACGG GCTCAAGGAA GCCTACGACC GCTGCGGCGA
401 GATCTGTGAG GAGTATGCCA AGACGTTTA CCTCGGAACAT ATGTTGATGAA
451 CAGAGGAGCG GCGCCGCCGCA ATATGGGCCA TCTATGTGTG GTGAGGAGG
501 ACAGATGAGC TTGTAGATGG GCCAAACGCC AACTACATTA CACCAACAGC
551 TTGGACCGG TGGGAGAAGA GACTTGAGGA TCTGTTACG GGACGTCCCTT
601 ACGACATGCT TGATGCCGCT CTCTCTGATA CCATCTCAAG GTTCCCCATA
651 GACATTCAAGC CATTCAAGGAA CATGATTGAA GGGATGAGGA GTGATCTTAG
701 GAAGACAAGG TATAACAAC TCGACGAGCT CTACATGTAC TGCTACTATG
751 TTGCTGGAAC TGTGGGTTA ATGAGCGTAC CTGTGATGGG CATCGCAACC
801 GAGTCTAAAG CAACAACTGA AAGCGTATAC AGTGTGCCT TGGCTCTGGG
851 AATTGCGAAC CAACTCACGA ACATACTCCG GGATGTTGGA GAGGATGCTA
901 GAAGAGGAAG GATATTTTA CCACAAGATG AGCTTGACCA GGCAGGGCTC
951 TCTGATGAGG ACATCTCAA AGGGGTCGTC ACGAACCGGT GGAGAAACTT
1001 CATGAAGAGG CAGATCAAGA GGGCCAGGAT GTTTTTGAG GAGGCAGAGA
1051 GAGGGGTTAAA TGAGCTCTCA CAGGCTAGCA GATGGCCAGT ATGGGCTTCC
1101 CTGTTGTTGT ACAGGCAGAT CCTGGATGAG ATCGAAGCCA ACGACTACAA
1151 CAACTTCACG AAGAGGGCGT ATGTTGGTAA AGGGAAAGAAG TTGCTAGCAC
1201 TTCCTGTGGC ATATGGAAAA TCGCTACTGC TCCCATGTTT ATTGAGAAAT
1251 GGCCAGACCT AGCCACCAGA GAAGCTGCAG GATCCTCCTC GAGACTGAAG
1301 GGCG

MAIILVRAASPGGLSAADSIHQGTILQCSTLLKTKRPAARRWMPCSLLGLHPWEAGRPSAVYSSLAVNPAGEAVVSSEQK
VYDVVLKQAALLKRQLRTPVLDARPQDMMPRNGLKEAYDRCGEICEEYAKTFYLTGMLTEERRRAIWAIYVWCRRRTDE
LVDGPNANYITPTALDRWEKRLEDLFTGRPYDMLDAALSDTISRFPIDIQPFRDMIEGMRSDLRKYNNFDELYMYCY
VAGTVGLMSVPVMGIATESKATTESVYSAALALGIANQLTNILRDVGEDARRGRIYLQPQDELAQAGLSDEDIFKGVV
WRNFMKROIKRARMFFEEAERGVNELSQASRWPVWASLLLYRQILDEIEANDNNFTKRAYVGKGKLLALPVAYGKSLL
LPCSLRNGQT*PPEKLQDPYRD*RA

Figure 19