Рекомендательная система

Дипломный проект

Постановка задачи

- Задача рекомендаций товаров пользователям
- Выводить для конкретного пользователя 3 рекомендуемых товара
- Бизнес метрика: повысить продажи (оборот)
- Техническая метрика: Precision@3, MAP@3

Описание данных

На входе имеется 4 csv-файла, из которых собраны 3 датафрейма:

events.csv

events.info()

- category_tree.csv
- item_properties_part1.csv, item_properties_part2.csv

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2756101 entries, 0 to 2756100
Data columns (total 5 columns):
     Column
                    Dtype
    timestamp
                    int64
     visitorid
                    int64
                    object
     event
     itemid
                    int64
     transactionid float64
dtypes: float64(1), int64(3), object(1)
memory usage: 105.1+ MB
```

1 properties.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 20275902 entries, 0 to 9275902
Data columns (total 4 columns):

Jucu	co camino (c	ocac i cocamini			
#	Column	Dtype			
0	timestamp	int64			
1	itemid	int64			
2	property	object			
3	value	object			
dtypes: int64(2), object(2)					
memory usage: 773.5+ MB					

В результате преобразований для работы с коллаборативной фильтрацией подготовлен следующий датафрейм

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1363315 entries, 0 to 1929269
Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype	
0	visitorid	1363315 non-null	int64	
1	itemid	1363315 non-null	int64	
2	transaction	1363315 non-null	int64	
dtynes: int64(3)				

memory usage: 41.6 MB

	visitorid	itemid	transaction
0	257597	355908	0
1	992329	248676	0
3	483717	253185	0
4	951259	367447	0
5	972639	22556	0

Модель SVD

- Для построения модели используем алгоритм Коллаборативной фильтрации, основная идея которого состоит в том, что похожим пользователям нравятся похожие товары.
- Для расчета потребовалась библиотека **surprise**, выбрана модель **SVD** с гиперпараметрами: n_factors=5, n_epochs=200, biased=True, lr_all=0.002, reg_all=0.05, init_mean=0, init_std_dev=0.01, verbose=False).
- Суть SVD в том, что в разрезе коллаборативной фильтрации данные (таблица) обычно является разреженной (много 0, мало 1), а значит что при произведении матричных операций произведения можно пренебрегать отдельными членами, в связи с чем матричные операции выполняются быстрее при должном доверии к результатам.

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

Предсказание

$$\sum_{r_{ui} \in R_{unin}} \left(r_{ui} - \hat{r}_{ui}
ight)^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2
ight)$$

Функция ошибок (которую нужно минимизировать)

$$egin{aligned} b_u \leftarrow b_u &+ \gamma (e_{ui} - \lambda b_u) \ b_i \leftarrow b_i &+ \gamma (e_{ui} - \lambda b_i) \ p_u \leftarrow p_u + \gamma (e_{ui} \cdot q_i - \lambda p_u) \ q_i \leftarrow q_i &+ \gamma (e_{ui} \cdot p_u - \lambda q_i) \end{aligned}$$

Минимизируем стохастическим градиентным спуском (правила)

Значение метрики

В результате подбора гиперпараметров с помощью GridSearchCV с сеткой {'n_factors': [5, 10, 20], 'n_epochs': [50, 100, 200], 'lr_all': [0.002, 0.005, 0.01], 'reg_all': [0.02, 0.05, 0.1]} были выбраны оптимальные.

Значение метрики Precision@3 = 0.8694 (train), 0.8447 (test)