

# Cálculo Diferencial Aplicado

# Grado y Doble Grado en Ingeniería Informática

Examen Final Ordinario 18 de enero 2016

| Nombre |  | Grupo |  |  |
|--------|--|-------|--|--|
|--------|--|-------|--|--|

# Problema 1 (1.0 puntos).

Hallar la solución del siguiente problema de valor inicial y escribir dicha solución de forma explícita:

$$\begin{cases} (1 - \ln x)y' = 1 + \ln x + \frac{y}{x} \\ y(1) = 1 \end{cases}, \quad 0 < x < e.$$

#### Solución:

La ecuación diferencial del problema de valor inicial es exacta, ya que si reordenamos los términos de la ecuación y la dejamos expresada en la forma M(x,y) + N(x,y)y' = 0, se obtiene:

$$(1 + \ln x + \frac{y}{x}) + (\ln x - 1)y' = 0 \implies \frac{\partial M(x, y)}{\partial y} = \frac{\partial N(x, y)}{\partial x} = \frac{1}{x}$$

Dado que la ecuación es exacta, sabemos que su solución viene dada por F(x,y(x))=C, donde C es una constante y F es una función que satisface  $\frac{\partial F}{\partial x} = M(x,y)$ ,  $\frac{\partial F}{\partial y} = N(x,y)$ . Se puede obtener F del siguiente modo:

$$F(x,y) = \int M(x,y)dx = \int (1 + \ln x + \frac{y}{x})dx = x + x \ln x - x + y \ln x + h(y) = x \ln x + y \ln x + h(y)$$

donde h = h(y) es una función a determinar. Por otro lado, dado que,  $\frac{\partial F}{\partial y} = N$ , se obtiene  $\ln x - 1 = \ln x + h'(y) \Rightarrow h'(y) = -1 \Rightarrow h(y) = -y$ , tomando nula la constante de integración. Por tanto, la solución general de la ecuación diferencial es:

$$F(x, y(x)) = x \ln x + y(x) \ln x - y(x) = C$$

Imponiendo el valor inicial y(1) = 1 obtenemos la constante C = -1.

La solución del problema de valor inicial dada en forma explícita es:  $y(x) = \frac{x \ln x + 1}{1 - \ln x}$ , con 0 < x < e

$$y(x) = \frac{x \ln x + 1}{1 - \ln x}$$
, con  $0 < x < e$ 

$$\left\{ \begin{array}{l} (1 - \ln x)y' = 1 + \ln x + \frac{y}{x} \\ y(1) = 1 \end{array} \right., \quad 0 < x < e.$$

$$\frac{\left(-1-\ln(x)-\frac{y}{x}\right)+\left(1-\ln(x)\right)y'=0}{\text{Mix}} \quad \text{EDO 1er orden exacta}$$

$$\frac{d H(x,y)}{dy} = 0 - 0 - \frac{1}{x} = -\frac{1}{x}$$

$$\frac{d N(x)}{dx} = 0 - \frac{1}{x} = -\frac{1}{x}$$

$$\frac{dM(x,y)}{dy} = \frac{dN(x)}{dx}$$
 Exacta

Alser exacta Frizz que comple:

$$\frac{dF(x,y)}{dx} = M(x,y); 0-y\frac{1}{x} + h(x) = -1 - \ln(x) - \frac{1}{x}$$

$$\frac{dF(x,y)}{dy} = N(x); \int \frac{dF(x,y)}{dy} dy = \int A - \ln(x) dy$$

$$F(x,y) = y - y(n(x) + h(x))$$

$$h'(x) = -1 - \ln(x)$$

$$h(x) = \int -1 - \ln (x) dx = -x - \int \ln (x) dx = -x - \ln (x) x + x = -\ln (x) x$$

$$\int \ln(x) dx = \ln(x)x - \int \frac{1}{x} dx = \ln(x)x - x + k$$

$$u = \ln(x) du = \frac{1}{x} dx$$

$$dv = 1 dx \qquad v = x$$

Sol. General: 
$$F(x,y)=k$$
;  $y-y\ln(x)-\ln(x)x=k$  /  $k\in\mathbb{R}$  cte  $y(4)=1$ ;  $1-1\ln(4)-\ln(4)\cdot 1=k$ ;  $1-0-0=k$ ;  $k=1$ 

Sd. PVI: 
$$y-y\ln(x)-\ln(x)x=1$$

# Problema 2 (1.0 puntos).

Dado el sistema de ecuaciones diferenciales  $\overrightarrow{X}'(t) = A\overrightarrow{X}(t)$ , con  $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ , hallar  $\overrightarrow{X}(t)$  y obtener el siguiente límite:  $\lim_{t \to -\infty} \overrightarrow{X}(t)$ 

#### Solución:

La solución general del sistema se obtiene calculando los valores propios y vectores propios asociados de la matriz A. Para obtener los valores propios se resuelve  $|A - \lambda I| = 0 \Longrightarrow \lambda_1 = 3$ ,  $\lambda_2 = 2$ .

Vectores propios asociados son:  $\xi_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\xi_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ . Dado que los autovalores son reales y distintos, su solución general se puede escribir en la forma:

$$\overrightarrow{X}(t) = c_1 \xi_1 e^{\lambda_1 t} + c_2 \xi_2 e^{\lambda_2 t} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t}$$

donde  $c_1, c_2$  son constantes. Dado que  $\lim_{t \to -\infty} e^{3t} = \lim_{t \to -\infty} e^{2t} = 0$  y que  $c_1, c_2, \xi_1, \xi_2$ , no dependen de t, se concluye que

$$\lim_{t \to -\infty} \overrightarrow{X}(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

## Problema 3 (1.0 puntos).

Resolver el siguiente problema de valor inicial (PVI) aplicando el cambio de variable  $x=e^z \iff z=\ln{(x)}$ 

$$\begin{cases} x^2y'' + 2xy' + \frac{5}{2}y = 0, & x > 0 \\ y(1) = -1 \\ y'(1) = 1 \end{cases}$$

## Solución:

La ecuación diferencial del PVI es del tipo Cauchy-Euler, por tanto para hallar su solución conviene hacer el cambio de variable propuesto en el enunciado.

Aplicando la regla de la cadena, se obtiene:  $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = \frac{1}{x} \frac{dy}{dz}$ ;  $\frac{d^2y}{dx^2} = \frac{1}{x^2} \left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right)$  Sustituyendo estos términos en el PVI se obtiene la siguiente ecuación diferencial, que es de coeficientes contantes:

$$\frac{d^2y}{dz^2} + \frac{dy}{dz} + \frac{5}{2}y = 0$$

Su ecuación característica es:  $r^2 + r + 5/2 = 0$ , cuyas soluciones son complejas conjugadas  $r_1 = -1/2 + i3/2$ ;  $r_2 = -1/2 - i3/2$ . Por tanto la solución general en términos de la variable z es:

$$y(z) = e^{-\frac{z}{2}} \left[ a \cos\left(\frac{3}{2}z\right) + b \sin\left(\frac{3}{2}z\right) \right]$$

Deshaciendo el cambio de variable obtenemos la solución general en términos de la variable x:

$$y(x) = x^{-\frac{1}{2}} \left[ a \cos\left(\frac{3}{2}\ln(x)\right) + b \sin\left(\frac{3}{2}\ln(x)\right) \right]$$

## Problema 2 (1.0 puntos) .

Dado el sistema de ecuaciones diferenciales  $\overrightarrow{X}'(t) = A\overrightarrow{X}(t)$ , con  $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ ,

hallar  $\overrightarrow{X}(t)$  y obtener el siguiente límite:  $\lim_{t \to -\infty} \overrightarrow{X}(t)$ 

Solución de la forma  $\vec{w} = \vec{e}^{\dagger} \vec{V}_{\lambda}$  Siendo  $\lambda$  el autordor y  $\vec{V}$  el autorector.

Autovalores: 1A- XI)=0

$$\begin{vmatrix} 1-\lambda & 2 \\ -1 & 4-\lambda \end{vmatrix} = 0 = \lambda^2 - 5\lambda + 6; \quad \lambda = \frac{5 \pm \sqrt{25 - 4 \cdot 1.6}}{2} = \frac{\lambda_1 = 3}{\lambda_2 = 2} \quad \text{distintas.}$$

Autorectores: (A- >I) V=0

Para 
$$\lambda = 3$$
:  $\begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; -x+y=0; x=y.$ 

$$\vec{V} = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} A \\ A \end{pmatrix}$$
  $\vec{\omega}_A = e^{3t} \begin{pmatrix} A \\ A \end{pmatrix}$ 

Para 
$$\lambda = 2 \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; -x + 2y = 0; x = 2y$$

$$\vec{V} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ y \end{pmatrix} = y \begin{pmatrix} z \\ z \end{pmatrix} \vec{w}_z = e^{2t} \begin{pmatrix} z \\ z \end{pmatrix}$$

Sol. General: 
$$\vec{X}(t) = C_1 e^{3t} \binom{1}{1} + C_2 e^{2t} \binom{2}{1}$$

$$\lim_{t\to\infty} \vec{X}(t) = O\left(\frac{1}{4}\right) + O\left(\frac{2}{4}\right) = \begin{pmatrix} 0\\0 \end{pmatrix}$$

Aplicando ahora las condiciones iniciales del PVI se obtienen los valores de las constantes: a = -1; b = 1/3 Por tanto, la solución del PVI es:

$$y(x) = x^{-1/2} \left[ \frac{1}{3} \sin(3/2\ln(x)) - \cos(3/2\ln(x)) \right]$$

## Problema 4 (1.0 puntos).

Resolver el siguiente problema de valor inicial utilizando la transformada de Laplace:

$$y'' + y' - 2y = e^{-t}, \quad y(0) = 1, \quad y'(0) = -1.$$

#### Solución:

Sea  $\mathcal{L}{y} = F(s)$  la transformada de Laplace (TL) de la incógnita. Aplicando la TL a la ecuación, se tiene:

$$(s^2 + s - 2)F(s) - s = \frac{1}{s+1}$$

por tanto,

$$F(s) = \frac{s^2 + s + 1}{(s+1)(s^2 + s - 2)} = \frac{A}{s+1} + \frac{B}{s-1} + \frac{C}{s+2},$$

donde se ha tenido en cuenta que  $s^2 + s - 2 = (s - 1)(s + 2)$ . Calculando los coeficientes, se obtiene A = -1/2, B = 1/2, y C = 1. Por tanto:

$$F(s) = \frac{1}{2} \left( -\frac{1}{s+1} + \frac{1}{s-1} \right) + \frac{1}{s+2}.$$

Finalmente, tomando la transformada inversa  $\mathcal{L}^{-1}$ , obtenemos la solución de problema

$$y(t) = \mathcal{L}^{-1}(F(s)) = \frac{1}{2} \left[ -\mathcal{L}^{-1} \left( \frac{1}{s+1} \right) + \mathcal{L}^{-1} \left( \frac{1}{s-1} \right) \right] + \mathcal{L}^{-1} \left( \frac{1}{s+2} \right) = \frac{1}{2} (e^t - e^{-t}) + e^{-2t}$$

#### Problema 5 (1.0 puntos).

Consideremos el siguiente modelo de ecuación de ondas:

Ecuación en Derivadas Parciales :  $\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\partial^2 u}{\partial t^2}(x,t)$ ; t > 0,  $0 < x < \pi$ 

Condiciones de Contorno : u(0,t) = 0,  $u(\pi,t) = 0$ ; t > 0

Condiciones Iniciales : (i)  $u(x,0) = 5\sin(2x) - 2\sin(5x)$ , (ii)  $\frac{\partial u}{\partial t}(x,0) = 0$ ,  $0 \le x \le \pi$ .

Aplicando separación de variables y la condición (ii), la solución formal del modelo puede escribirse como:

$$u(x,t) = \sum_{n=1}^{\infty} A_n \cos(nt) \sin(nx)$$
; con  $A_n \in \mathbb{R}$ .

Hallar el valor de  $u(\pi/4, \pi/4)$ 

**Nota:** En caso necesario, podría ser útil el siguiente resultado:

 $y'' + y' - 2y = e^{-t}$ , y(0) = 1, y'(0) = -1.

Por la propiedad de linealidad:

$$5^2 F(s) - Sy(0) - y'(0) + SF(s) - y(0) - 2F(s) = \frac{1}{S+1}$$

F(s) 
$$(5^2+5-2)-5+4=\frac{1}{5+4}$$
;

$$F(s) = \frac{S^2 + S + 1}{(s+1)(s^2 + s - 2)} = \frac{A}{s-1} + \frac{B}{s+2} + \frac{C}{s+1}$$

$$S = \frac{-1 \pm \sqrt{\lambda - 4 \cdot \lambda \cdot (-2)}}{2 \cdot 1} = \frac{-1 \pm 3}{2} = \frac{1}{2}$$

$$y(x) = \frac{1}{2}e^{t} + e^{-2t} - \frac{1}{2}e^{t}$$

$$\bullet \ \, \mathrm{Dados} \,\, L > 0 \,\, \mathrm{y} \,\, m \,, n \in \mathbb{N} \,, \, \mathrm{se \,\, tiene \,\, que:} \,\, \int_0^L \sin \left( \frac{m \pi}{L} x \right) \sin \left( \frac{n \pi}{L} x \right) \mathrm{d}x = \begin{cases} 0 \,; \,\, m \neq n \\ L/2 \,; \,\, m = n \end{cases}$$

### Solución:

Tomando t = 0 en la solución formal se obtiene:

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin(nx)$$
; con  $A_n \in \mathbb{R}$ .

Por otro lado, teniendo en cuenta que la condición inicial (i)  $u(x,0) = 5\sin(2x) - 2\sin(5x)$  viene dada por una combinación lineal de funciones de la forma  $\sin(nx)$ , con  $n = 1, 2, 3, \dots$ , podemos obtener los coeficientes  $A_n$  de la serie por simple identificación de los sumandos, esto es,

$$\sum_{n=1}^{\infty} A_n \sin(nx) = 5\sin(2x) - 2\sin(5x),$$

implica que:

$$A_1 = 0, A_2 = 5, A_3 = 0, A_4 = 0, A_5 = -2, A_n = 0 \quad \forall n > 5.$$

Otra alternativa para calcular los coeficientes  $A_n$  consiste en fijar  $m \in \mathbb{N}$  y utilizar la nota del enunciado en la siguiente igualdad:

$$5 \int_0^{\pi} \sin(2x) \sin(mx) dx - 2 \int_0^{\pi} \sin(5x) \sin(mx) dx = \sum_{n=1}^{\infty} A_n \int_0^{\pi} \sin(nx) \sin(mx) dx$$

Recopilando los valores de los coeficientes se obtiene la solución del problema de ondas, esto es,

$$u(x,t) = 5\cos(2t)\sin(2x) - 2\cos(5t)\sin(5x)$$

por lo que

$$u(\pi/4, \pi/4) = 5\cos(\pi/2)\sin(\pi/2) - 2\cos(5\pi/4)\sin(5\pi/4) = -1$$

## Problema 6 (1.0 puntos).

Dado el siguiente problema de valor inicial (PVI)

$$\begin{cases} y' + y = 2t^2 \\ y(0) = 5. \end{cases}$$

- (i) Comprobar que  $y(t) = e^{-t} + 2t^2 4t + 4$  es la solución exacta del PVI.
- (ii) Usar el siguiente método de Runge-Kutta

$$Y_{n+1} = Y_n + \frac{1}{2} (K_1 + K_2), \quad \text{con} \quad K_1 = h f(t_n, Y_n), \quad K_2 = h f(t_{n+1}, Y_n + K_1),$$

y con  $n=0,1,2,\ldots$ , para aproximar el valor y(0.2) con paso  $h=h_1=0.1$ .

(iii) Sabiendo que  $Y_{20}^{h_2} = 4.09875$  es una aproximación de y(0.2) calculada con paso  $h = h_2 = 0.01$ , estimar el orden del método numérico descrito en el apartado (ii).

#### Problema 6 (1.0 puntos) .

Dado el siguiente problema de valor inicial (PVI)

$$\begin{cases} y' + y = 2t^2 \\ y(0) = 5. \end{cases}$$

- (i) Comprobar que  $y(t) = e^{-t} + 2t^2 4t + 4$  es la solución exacta del PVI.
- (ii) Usar el siguiente método de Runge-Kutta

$$Y_{n+1} = Y_n + \frac{1}{2} \left( \, K_1 \, + \, K_2 \, \right), \quad \text{con} \quad K_1 \, = \, h \, f(t_n, Y_n), \quad K_2 \, = \, h \, f(t_{n+1}, Y_n + K_1) \, ,$$

y con  $n=0,1,2,\ldots$ , para aproximar el valor y(0.2) con paso  $h=h_1=0.1.$ 

y(x) = 212 - 4+ 4+ et

(iii) Sabiendo que  $Y_{20}^{h_2}=4.09875$  es una aproximación de y(0.2) calculada con paso  $h=h_2=0.01$ , estimar el orden del método numérico descrito en el apartado (ii).

i) 
$$\mu(x) = e^{4it} = e^{t}$$
 $ye^{t} = \int ze^{t}t^{2}dt = 2\int e^{t}t^{2}dt = t^{2}e^{t} - \int e^{t}2tdt \quad 2\left(t^{2}e^{t} - 2\int te^{t}dt\right) = u = t^{2}du = 2t$ 
 $dv = e^{t}v = e^{t}$ 
 $\int te^{t}dt = te^{t} - \int e^{t}dt = te^{t} - e^{t} + k$ 
 $u = t$ 
 $dv = e^{t}v = e^{t}$ 
 $dv = e^{t}v = e^{t}$ 

# Solución:

- (i) Resolviendo la ecuación diferencial lineal dada (mediante el factor integrante  $\mu(t) = e^t$ ) junto con la condición inicial y(0) = 5, se obtiene la solución propuesta en el enunciado. Por otro lado, la validez de dicha solución se puede comprobar sustituyendo sus expresiones en la ecuación diferencial y en la condición inicial del PVI.
- (ii) Podemos escribir la ecuación diferencial en la forma  $y' = f(t,y) = 2t^2 y$ . Entonces, aplicando la fórmula del método numérico, con  $h = h_1 = 0.1$ , para n = 0 y n = 1, se obtienen  $Y_1 = 4.52600$  e  $Y_2 = Y_2^{h_1} = 4.10093$ , respectivamente. Concretamente, el valor recuadrado es la aproximación de y(0.2) que nos piden.
- (iii) Usando la solución exacta escrita en (i), calculamos y(0.2) = 4.09873. Por otro lado, se tiene que  $E_{t=0.2}^{h_1} = \left| Y_2^{h_1} y(0.2) \right| = 0.0022$  y que  $E_{t=0.2}^{h_2} = \left| Y_{20}^{h_2} y(0.2) \right| = 0.00002$ . Dado que  $h_2 = h_1/10$ , se tiene que

$$E_{t=0.2}^{h_2} \approx C h_2^p = C \left(\frac{h_1}{10}\right)^p \approx \frac{E_{t=0.2}^{h_1}}{10^p},$$

donde p es el orden del método (C es una constante). De esta expresión se obtiene  $p \approx 2.04$ . Esto nos permite concluir que el orden del método numérico del apartado (ii) es p = 2.