



## Big o Cheatsheet - Data structures and Algorithms with thier 111 complexities

Time-complexity

Algorithms

Big o cheatsheet with complexities chart

### Big o complete Graph



### Legend

Excellent



Fair



Horrible

1/6

https://w

### **Data Structures**

| Data Structure     | Time Compl | Space Complexity |           |           |           |           |           |           |                                         |
|--------------------|------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------------------------|
|                    | Average    |                  |           |           | Worst     | Worst     |           |           |                                         |
|                    | Indexing   | Search           | Insertion | Deletion  | Indexing  | Search    | Insertion | Deletion  |                                         |
| Basic Array        | 0(1)       | O(n)             |           | 8         | 0(1)      | O(n)      |           | E         | O(n)                                    |
| Dynamic Array      | 0(1)       | O(n)             | (n)       | (n)       | 0(1)      | O(n)      | 0(n)      | (n)       | O(n)                                    |
| Singly-Linked List | 0(n)       | O(n)             | 0(1)      | 0(1)      | 0(n)      | O(n)      | 0(1)      | 0(1)      | O(n)                                    |
| Doubly-Linked List | 0(n)       | 0(n)             | 0(1)      | 0(1)      | 0(n)      | 0(n)      | 0(1)      | 0(1)      | (n) |
| Skip List          | 0(log(n))  | 0(log(n))        | 0(log(n)) | 0(log(n)) | 0(n)      | O(n)      | O(n)      | O(n)      | O(n log(n))                             |
| Hash Table         |            | 0(1)             | 0(1)      | 0(1)      |           | (n)0      | O(n)      | (n)       | O(n)                                    |
| Binary Search Tree | 0(log(n))  | 0(log(n))        | O(log(n)) | O(log(n)) | 0(n)      | O(n)      | 0(n)      | 0(n)      | (n)                                     |
| Cartresian Tree    |            | O(log(n))        | O(log(n)) | O(log(n)) |           | 0(n)      | 0(n)      | 0(n)      | (n) (n)                                 |
| B-Tree             | 0(log(n))  | 0(log(n))        | 0(log(n)) | O(log(n)) | 0(log(n)) | 0(log(n)) | 0(log(n)) | O(log(n)) | O(n)                                    |
| Red-Black Tree     | O(log(n))  | O(log(n))        | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n)                                    |
| Splay Tree         | 6          | 0(log(n))        | 0(log(n)) | 0(log(n)) |           | 0(log(n)) | 0(log(n)) | 0(log(n)) | (n)                                     |
| AVL Tree           | O(log(n))  | O(log(n))        | O(log(n)) | O(log(n)) | 0(log(n)) | O(log(n)) | O(log(n)) | 0(log(n)) | 0(n)                                    |

## **Data Structures**

| Data Structure     | Time Compl | Space Complexity |           |           |            |           |              |           |             |
|--------------------|------------|------------------|-----------|-----------|------------|-----------|--------------|-----------|-------------|
|                    | Average    |                  |           |           | Worst      | Worst     |              |           |             |
|                    | Indexing   | Search           | Insertion | Deletion  | Indexing   | Search    | Insertion    | Deletion  |             |
| Basic Array        | 0(1)       | 0(n)             |           |           | 0(1)       | 0(n)      |              | 8         | 0(n)        |
| Dynamic Array      | 0(1)       | O(n)             | 0(n)      | O(n)      | 0(1)       | (n)       | 0(n)         | 0(n)      | 0(n)        |
| Singly-Linked List | 0(n)       | 0(n)             | 0(1)      | 0(1)      | 0(n)       | 0(n)      | 0(1)         | 0(1)      | 0(n)        |
| Doubly-Linked List | (n)        | 0(n)             | 0(1)      | 0(1)      | (n)        | (O(n)     | 0(1)         | 0(1)      | 0(n)        |
| Skip List          | 0(log(n))  | 0(log(n))        | 0(log(n)) | 0(log(n)) | 0(n)       | 0(n)      | O(n)         | 0(n)      | O(n log(n)) |
| Hash Table         |            | 0(1)             | 0(1)      | 0(1)      |            | 0(n)      | 0(n)         | 0(n)      | O(n)        |
| Binary Search Tree | 0(log(n))  | 0(log(n))        | 0(log(n)) | O(log(n)) | 0(n)       | 0(n)      | 0(n)         | 0(n)      | 0(n)        |
| Cartresian Tree    |            | 0(log(n))        | O(log(n)) | O(log(n)) |            | 0(n)      | 0(n)         | 0(n)      | 0(n)        |
| B-Tree             | O(log(n))  | 0(log(n))        | O(log(n)) | O(log(n)) | O(log(n))  | 0(log(n)) | 0(log(n))    | 0(log(n)) | 0(n)        |
| Red-Black Tree     | O(log(n))  | O(log(n))        | O(log(n)) | O(log(n)) | O(log(n))  | O(log(n)) | O(log(n))    | O(log(n)) | 0(n)        |
| Splay Tree         | E          | 0(log(n))        | 0(log(n)) | 0(log(n)) | <b>(E)</b> | 0(log(n)) | $O(\log(n))$ | 0(log(n)) | 0(n)        |
| AVL Tree           | 0(log(n))  | O(log(n))        | O(log(n)) | O(log(n)) | O(log(n))  | O(log(n)) | 0(log(n))    | O(log(n)) | 0(n)        |

# Searching

| Algorithm                                                            | Data Structure                        | Time Complexity        | Space Complexity       |         |
|----------------------------------------------------------------------|---------------------------------------|------------------------|------------------------|---------|
|                                                                      |                                       | Average                | Worst                  | Worst   |
| Depth First Search (DFS)                                             | Graph of  V  vertices and  E  edges   | 8                      | O( E  +  V )           | ((\v\)  |
| Breadth First Search (BFS)                                           | Graph of  V  vertices and  E  edges   |                        | O( E  +  V )           | 0( v()  |
| Binary search                                                        | Sorted array of n elements            | 0(log(n))              | O(log(n))              | 0(1)    |
| Linear (Brute Force)                                                 | Array                                 | O(n)                   | (O(n)                  | 0(1)    |
| Shortest path by Dijkstra,<br>using a Min-heap as priority queue     | Graph with  V  vertices and  E  edges | O(( V  +  E ) log  V ) | O(( V  +  E ) log  V ) | O(IVI)  |
| Shortest path by Dijkstra, using an unsorted array as priority queue | Graph with  V  vertices and  E  edges | 0( V ^2)               | O( V ^2)               | ((V))   |
| Shortest path by Bellman-Ford                                        | Graph with [V] vertices and [E] edges | O( V  E )              | O( V  E )              | (O( V ) |

## Sorting Algorithms chart

### Sorting

| Algorithm      | Data Structure | Time Complexity | <b>y</b>       |               | Worst Case Auxiliary Space Complexity |
|----------------|----------------|-----------------|----------------|---------------|---------------------------------------|
|                |                | Best            | Average        | Worst         | Worst                                 |
| Quicksort      | Array          | O(n log(n))     | O(n log(n))    | O(n^2)        | (O(n))                                |
| Mergesort      | Array          | O(n log(n))     | O(n log(n))    | [0(m log(n))] | 0(n)                                  |
| Heapsort       | Array          | O(n log(n))     | $O(n \log(n))$ | O(n log(n))   | 0(1)                                  |
| Bubble Sort    | Array          | O(n)            | 0(n*2)         | 0(n*2)        | 0(1)                                  |
| insertion Sort | Array          | 0(n)            | 0(n^2)         | O(n^2)        | 0(1)                                  |
| Select Sort    | Array          | O(n^2)          | [O(n^2)]       | O(n^2)        | 0(1)                                  |
| Bucket Sort    | Array          | 0(n+k)          | (O(n+k))       | 0(n^2)        | O(nk)                                 |
| Radix Sort     | Array          | O(nk)           | O(nk)          | O(nk)         | 0(n+k)                                |

### Heaps

| Heaps                  | Time Complexity |           |             |              |           |            |           |  |  |
|------------------------|-----------------|-----------|-------------|--------------|-----------|------------|-----------|--|--|
|                        | Heapify         | Find Max  | Extract Max | Increase Key | Insert    | Delete     | Merge     |  |  |
| Linked List (sorted)   | E               | 0(1)      | 0(1)        | (n)          | 0(n)      | 0(1)       | 0(m+n)    |  |  |
| Linked List (unsorted) |                 | 0(n)      | O(n)        | 0(1)         | [0(1)]    | 0(1)       | 0(1)      |  |  |
| Binary Heap            | 0(n)            | 0(1)      | 0(log(n))   | O(log(n))    | O(log(n)) | O(log(n))  | O(m+n)    |  |  |
| Binomial Heap          |                 | O(log(n)) | 0(log(n))   | O(log(n))    | O(log(n)) | O(log(n))  | O(log(n)) |  |  |
| Fibonacci Heap         | 8               | 0(1)      | O(log(n))*  | [0(1)*]      | 0(1)      | 0(log(n))* | 0(1)      |  |  |

### Graphs

| Node / Edge Management | Storage      | Add Vertex   | Add Edge     | Remove Vertex | Remove Edge  | Query  |
|------------------------|--------------|--------------|--------------|---------------|--------------|--------|
| Adjacency list         | O( V + E )   | 0(1)         | 0(1)         | 0( V  +  E )  | O( E )       | 0( v ) |
| Incidence list         | O( V + E )   | 0(1)         | 0(1)         | O( E )        | O( E )       | O( E ) |
| Adjacency matrix       | 0( V ^2)     | 0( V ^2)     | 0(1)         | 0( V ^2)      | 0(1)         | 0(1)   |
| Incidence matrix       | 0( V  -  E ) | 0( V  -  E ) | 0( V  -  E ) | O( V  -  E )  | O( V  -  E ) | 0( E ) |

Like 20 Tweet

### COMMENTS (17) 2

SORT BY: Relevance ▼



Join Discussion...

Cancel

Post



#### Harish Patel 6 years ago

You must acknowledge the original author which is Eric, http://www.bigocheatsheet.com. Its good to collect likes but its better, moral and humane to credit people. Till now, there isn't much issue of web plagiarism which lets people easily copy things. But I thank you for at least helping people learn something. Your intention is right.

▲ 28 votes • Reply • Permalink



C Woo 4 years ago

It doesn't quite look the same, I do prefer this one over the one on the website.

https://w

7

These tables are general knowledge. What is compiled here is different, though similar. This user's other post was a copy pasta, but I don't he took these from your referenced website.

▲ 2 votes • Reply • Permalink



Ketan Singh 6 years ago

http://bigocheatsheet.com/

▲ 1 vote • Reply • Permalink



Tarun anand 6 years ago

much needed cheats

▲ 1 vote • Reply • Permalink



development 6 years ago

Nice!!

▲ 0 votes • Reply • Permalink



Parakrant Sarkar 6 years ago

awesome

▲ 0 votes • Reply • Permalink



Richard Pressler 6 years ago

This is really convenient, thanks!

▲ 0 votes • Reply • Permalink



Naveen 6 years ago

Excellent

▲ 0 votes • Reply • Permalink



Swapnil Walke 6 years ago

Well Documentation!

▲ 0 votes • Reply • Permalink



Rajasekhara Inturi 6 years ago

well defined

▲ 0 votes • Reply • Permalink



Swaraj Kumar 6 years ago

Good Work

▲ 0 votes • Reply • Permalink



Rahul R. Jadhav 6 years ago

nice..

▲ 0 votes • Reply • Permalink



Utkarshkumar 6 years ago

Good one

▲ 0 votes • Reply • Permalink



vivek gautam 6 years ago

Mast

▲ 0 votes • Reply • Permalink



e7ca67147f2c45e79f883e3c58ef6452 6 years ago

Good one :-D

▲ 0 votes • Reply • Permalink



Gautam Singh 6 years ago

its always good to mention the source

▲ 0 votes • Reply • Permalink



Vignesh lyer 6 years ago

Awesome just awesome!! :)

▲ 0 votes • Reply • Permalink





#### Varun N R

Frontend Engineer at Wall ...

**♀** Bangalore, Karnataka, India

2 notes

#### TRENDING NOTES

Python Diaries Chapter 3 Map | Filter | Forelse | List Comprehension

written by Divyanshu Bansal

Bokeh | Interactive Visualization Library | Use Graph with Django Template written by Prateek Kumar

Bokeh | Interactive Visualization Library | **Graph Plotting** 

written by Prateek Kumar

Python Diaries chapter 2 written by Divyanshu Bansal

Python Diaries chapter 1 written by Divyanshu Bansal

more ...

For

Practice

For Businesses **Developers** 

Knowledge

Company

Hackathons

Assessments

Hackathons

Practice About us

Challenges +1-650-461-4192

FaceCode

Interview Prep Careers

Codemonk Press

contact@hackerearth.com<sup>Jobs</sup>

Learning and Development Engineering Blog

Contact

Support







Privacy Policy

© 2022 HackerEarth All rights reserved | Terms of Service | Privacy Policy