Estimating Phrase Translation Probs

The most important feature: phrase-to-phrase translation:

$$h_{\mathsf{Phr}}(f_1^J, e_1^I, s_1^K) = \log \prod_{k=1}^K p(\tilde{f}_k | \tilde{e}_k) \tag{5}$$

The conditional probability of phrase \tilde{f}_k given phrase \tilde{e}_k is estimated from relative frequencies:

$$p(\tilde{f}_k|\tilde{e}_k) = \frac{\mathsf{count}(\tilde{f},\tilde{e})}{\mathsf{count}(\tilde{e})} \tag{6}$$
 • $\mathsf{count}(\tilde{f},\tilde{e})$ is the number of co-occurrences of a phrase pair (\tilde{f},\tilde{e}) that are consistent with

- the word alignment
- count(\tilde{e}) is the number of occurrences of the target phrase \tilde{e} in the training corpus. $h_{\rm Phr}$ usually used twice, in both directions: $p(\tilde{f}_k|\tilde{e}_k)$ and $p(\tilde{e}_k|\tilde{f}_k)$