Detalhes e pinagem NodeMCU 1.0 ESP-12E

Por Fernando Koyanagi

NodeMCU Devkit 1.0

O termo NodeMCU geralmente se refere ao firmware, enquanto a placa é denominada devkit.

O NodeMCU Devkit 1.0 é consituído de um ESP-12E em uma placa que facilita o seu uso.

NodeMCU Devkit 1.0

ESP-12E

ESP-12E é uma placa criada pela AI-THINKER sendo constituído por sua vez por um ESP8266EX (dentro da capa de metal)

ESP8266EX

Feito pela Espressif, este microchip possui WiFi integrado e baixo consumo de energia. Processador RISC Tensilica L 106 32bit com clock máximo de 160 MHz

NodeMCU 1.0 ESP-12E Pinout

ESP-12E Pinout

Mas qual o número que coloco quando estou programando?

Utilize o número que está na frente do GPIO ou as constantes A0, D0, D1, D2, D3, D4, D5, D6, D7 e D8

Boot

ESP-12E DEVELOPMENT BOARD **PINOUT**

Observe o comportamento de cada pino quando o NodeMCU é

CONTROL

N/C

TPWM

NOTES:

A Typ. pin current 6mA (Max. 12mA)

M Pos: 400.0ms

MEDIDA

Constantes que já estão predefinidas

Constante	Valor
D0	16
D1	5
D2	4
D3	0
D4	2
D5	14
D6	12
D7	13
D8	15
A0	17

Exemplo Blink


```
//O led está no GPIO14
#define LED 14
//ou usar a constante D5 que já está definida
//#define LED D5
void setup()
  pinMode(LED, OUTPUT);
void loop()
     digitalWrite(LED, HIGH);
  delay(1000);
  digitalWrite(LED, LOW);
  delay(1000);
```


INPUT / OUTPUT

Ao realizar testes de INPUT e OUTPUT nos pinos, obtivemos os seguintes resultados:

digitalWrite NÃO funcionou com os GPIOs 6, 7, 8, 11 e o ADC (A0)

digitalRead NÃO funcionou com os GPIOs 1, 3, 6, 7, 8, 11 e o ADC (A0)

analogWrite NÃO funcionou com os GPIOs 6, 7, 8, 11 e o ADC (A0) (Os GPIOs 4, 12, 14, 15 possuem PWM por hardware os demais por software)

analogRead funcionou apenas com o ADC (A0)

6, 7, 8, 11 não funcionam para os quatro comandos acima

Em www.fernandok.com

Download arquivos PDF e INO do código fonte

