1 Frame 78 – Evaluating Improper Integrals

1.1 Improper Integrals

The **improper integral** of a continuous function f(x) over the interval $0 \le x < \infty$ is defined as

$$\int_0^\infty f(x) \ dx = \lim_{R \to \infty} \int_0^R f(x) \ dx$$

If this limit exists, we say that the improper integral **converges** to this limit. The improper integral of f over the infinite interval $-\infty < x < \infty$ is

$$\int_{-\infty}^{\infty} = \lim_{R_1 \to \infty} \int_{-R_1}^{0} f(x) \ dx + \lim_{R_2 \to \infty} \int_{0}^{R_2} f(x) \ dx$$

If both of these limits exist, we say that the integral converges to their sum.

1.2 The Cauchy Principal Value

We say that the Cauchy Principal Value of an indefinite integral is

P.V.
$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) \ dx$$

as long as this limit exists.

If the regular improper integral converges, then

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \ dx = \lim_{R \to \infty} \left[\int_{-R}^{0} f(x) \ dx + \int_{0}^{R} f(x) \ dx \right]$$
$$= \lim_{R \to \infty} \int_{-R}^{0} f(x) \ dx + \lim_{R \to \infty} \int_{0}^{R} f(x) \ dx$$

so the principal value also exists. However, the converse is not true – the existence of the principal value does not imply the existence of the improper integral.

Next, suppose that f(x) is an even function; ie:

$$f(-x) = f(x)$$

and assume that the principal value exists. Then, the evenness of f allows us to write

$$\int_{-R_1}^{0} f(x) \ dx = \frac{1}{2} \int_{-R_1}^{R_1} f(x) \ dx$$
$$\int_{0}^{R_2} f(x) \ dx = \frac{1}{2} \int_{-R_2}^{R_2} f(x) \ dx$$

so we can convert both single-sided limits into double-sided limits, and

$$\int_{-\infty}^{\infty} f(x) \ dx = \text{P.V.} \int_{-\infty}^{\infty} f(x) \ dx$$

Also, extending this formula,

$$\int_0^\infty f(x) \ dx = \frac{1}{2} \text{P.V.} \int_{-\infty}^\infty f(x) \ dx$$

1.3 Using Residues

Now, we apply our knowledge of residues to integrate f(z) = p(z)/q(z) along the real axis when p and q are polynomials. In this discussion, suppose that q has at least one zero above the real axis and no zeroes on the real axis.

From our knowledge of polynomials, we know that q has a finite number of distinct zeroes, which we can label as z_1, z_2, \ldots, z_n . Then, we can integrate the function f(z) along the contour:

- Along the real axis from -R to R;
- Along the upper semicircle with a radius of R from (R, 0 to (-R, 0)), which we call C_R .

This contour allows us to write

$$\int_{-R}^{R} f(x) \ dx + \int_{C_R} f(z) \ dz = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z)$$

or

$$\int_{-R}^{R} f(x) \ dx = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_{k}} f(z) - \int_{C_{R}} f(z) \ dz$$

Using this expression, we can say that if

$$\lim_{R \to \infty} \int_{C_R} f(z) \ dz = 0$$

then the following three equations hold (the latter two if f is even):

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{x=z_k} f(z)$$
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{z=z_k} f(z)$$
$$\int_{0}^{\infty} f(x) dx = \pi i \sum_{z=z_k} f(z)$$

2 Frame 79 – Example

This section will show a sample integral that can be calculated using the method from the previous section.

The goal of this example is to calculate

$$\int_0^\infty \frac{x^2}{x^6 + 1}$$

To do this, we can define

$$f(z) = \frac{z^2}{z^6 + 1}$$

and note that this has isolated singularities at the sixth roots of -1, or

$$c_k = e^{i(1+2k)\pi/6}$$

Three of these roots lie on the upper half-plane, at

$$c_0 = e^{i\pi/6}$$

$$c_1 = e^{i\pi/2} = i$$

$$c_2 = e^{i5\pi/6}$$

We can find the residue at these three points through the formula

$$B_k = \operatorname{Res}_{z=c_k} \frac{z^2}{z^6 + 1} = \frac{z^2}{6z^5} \Big|_{z=c_k} = \frac{1}{6z^3} \Big|_{z=c_k} = \frac{1}{6c_k^3}$$

so we can write

$$2\pi i \sum_{k=1}^{n} B_k = 2\pi i \left(\frac{1}{6i} - \frac{1}{6i} + \frac{1}{6i} \right) = \frac{\pi}{3}$$

and, as long as R > 1,

$$\int_{-R}^{R} f(x) \ dx = \frac{\pi}{3} - \int_{C_R} f(z) \ dz$$

Next, when |z| = R, we can write

$$\frac{|z^2|}{|z^6+1|} < \frac{R^2}{R^6-1}$$

so

$$\left| \int_{C_R} f(z) \ dz \right| \le \frac{R^2}{R^6 - 1} \pi R = \frac{R^3}{R^6 - 1}$$

and, as $R \to \infty$, this approaches 0. Thus,

P.V.
$$\int_{-\infty}^{\infty} f(z) \ dz = \frac{\pi}{3}$$

so

$$\int_0^\infty \frac{x^2}{x^6 + 1} = \frac{\pi}{6}$$

3 Frame 80 – Improper Integrals from Fourier Analysis

In this section, we will look at integrals of the form

$$\int_{-\infty}^{\infty} f(x) \sin ax \ dx$$

and

$$\int_{-\infty}^{\infty} f(x) \cos ax \ dx$$

where f(x) = p(x)/q(x) is a rational function with no poles on the real axis, but at least one above it.

Note that we can't apply the process from the previous section directly, since

$$|\sin az|^2 = \sin^2 ax + \sinh^2 ay$$

is unbounded as $y \to \infty$.

3.1 Example

Consider the integral

$$\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx = \frac{2\pi}{e^3}$$

We can begin by defining the function

$$f(z) = \frac{1}{(z^2 + 1)^2}$$

and using the regular semicircular contour from -R to +R. Since f(z) only has a single pole in the upper half-plane (at z=i), as long as R>1, we can write

$$\int_{-R}^{R} \frac{e^{i3x}}{(x^2+1)^2} dx = 2\pi i \operatorname{Res}_{z=i}[f(z)e^{i3z}] - \int_{C_R} f(z)e^{i3z} dz$$

Now, this pole at z = i is a second-order pole, so

$$\begin{split} B &= \frac{d}{dz} \frac{e^{i3z}}{(z+i)^2} \Big|_{z=i} \\ &= \frac{3ie^{3iz}(z+i)^2 - 2e^{3iz}(z+i)}{(z+i)^4} \Big|_{z=i} \\ &= \frac{e^{3iz}[3iz-5]}{(z+i)^3} \Big|_{z=i} \\ &= \frac{-8e^{-3}}{(2i)^3} \\ &= \frac{1}{ie^3} \end{split}$$

Next, the integral on the semicircle satisfies

$$\left| \int_{C_R} f(z) e^{i3z} \right| \le \pi R \cdot \frac{|e^{-3y}|}{(R^2 - 1)^2}$$

$$\le \pi R \cdot \frac{1}{(R^2 - 1)^2}$$

and this vanishes as ${\cal R}$ tends to infinity. Thus, equating real parts of the integral formula,

$$\lim_{R \to \infty} \int_{-R}^R \frac{\cos 3x}{(x^2+1)^2} = 2\pi i \frac{1}{ie^3} = \frac{2\pi}{e^3}$$

4 Frame 81 – Jordan's Lemma

4.1 Jordan's Lemma

The following lemma is helpful for evaluating the integrals from the previous section.

Theorem: Suppose that:

- A function f is analytic at all points above the real axis outside some circle $|z| = R_0$
- C_R is a semicircle $z = Re^{i\theta}$ $(0 \le \theta \le \pi)$ where $R > R_0$
- On C_R , there is a constant M_R such that

$$|f(z)| \leq M_R$$

and

$$\lim_{R \to \infty} M_R = 0$$

Then, for any positive a,

$$\lim_{R \to \infty} \int_{C_R} f(z)e^{iaz}dz = 0$$

To prove this, we can write

$$\int_{C_R} f(z)e^{iaz}dz = \int_0^{\pi} f(Re^{i\theta}) \exp(iaRe^{i\theta})Rie^{i\theta}d\theta$$

Then, we know that

$$|f(Re^{i\theta})| \le M_R$$

and

$$|\exp(iaRe^{i\theta})| \le e^{-aR\sin\theta}$$

Next, Jordan's inequality tells us that

$$\int_0^\pi e^{-R\sin\theta} d\theta < \frac{\pi}{R}$$

so we can write the contour integral as

$$\left| \int_{C_R} f(z)e^{iaz}dz \right| \le M_R R \int_0^{\pi} e^{-aR\sin\theta}d\theta$$

$$< M_R R \frac{\pi}{aR}$$

$$= \frac{M_R \pi}{a}$$

and this tends to zero as $R \to \infty$.

4.2 Example

We can use this theorem to help us find the principal value of the integral

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2x + 2} dx$$

If we write

$$f(z) = \frac{z}{z^2 + 2z + 2}$$

then we can find the residue at the point $z_1 = -1 + i$ as

$$B = \frac{z_1 e^{iz_1}}{z_1 - \overline{z_1}}$$

Next, we can use the standard contour integral to write

$$\int_{-R}^{R} \frac{x e^{ix}}{x^2 + 2x + 2} = 2\pi i B - \int_{C_R} f(z) e^{iz} \ dz$$

and, taking the imaginary components of both sides,

$$\int_{-R}^{R} \frac{x \sin x}{x^2 + 2x + 2} dx = \Im(2\pi i B) - \Im \int_{C_R} f(z) e^{iz} dz$$

Then, if |z| = R, we can write

$$|f(z)| \le \frac{R}{(R - \sqrt{2})^2}$$

and this tends to zero as $R \to \infty$, so the integral vanishes, leaving

P.V.
$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2x + 2} dx = \Im(2\pi i B) = \frac{\pi}{e} (\sin 1 + \cos 1)$$

5 Frame 82 – Indented Paths

5.1 Main Theorem

This section will examine the use of indented paths to carry out some more integrals. The following theorem will be useful here:

Theorem: Suppose that f is a function with a simple pole at $z = x_0$ on the real axis with a Laurent series that is valid for $0 < |z - x_0| < R_2$ and with a residue of B_0 . Then, if C_ρ is the clockwise upper semicircle

$$|z - x_0| = \rho \quad (\rho < R_2)$$

then

$$\lim_{\rho \to 0} \int_{C_{\rho}} f(z) \ dz = -B_0 \pi i$$

To prove this, we can write f as

$$f(z) = g(z) + \frac{B_0}{z - x_0}$$

where

$$g(z) = \sum_{n=0}^{\infty} a_n (z - x_0)^n$$

Then, we can write the integral as

$$\int_{C_{\rho}} f(z) = \int_{C_{\rho}} g(z) + B_0 \int_{C_{\rho}} \frac{1}{z - x_0}$$

and look at these two terms separately. First, g(z) is continuous, so it must be bounded on some disk centered at ρ_0 (so that $|g(z)| \leq M$). This allows us to write

$$\left| \int_{C_{\rho}} g(z) \ dz \right| \le ML = M\pi\rho$$

which vanishes as $\rho \to 0$. For the second term, we can write out the contour as the equation

$$z = x_0 + \rho e^{i\theta}$$

so that

$$\int_{C_{\rho}} \frac{dz}{z-x_0} = -\int_0^{\pi} \frac{1}{\rho e^{i\theta}} \rho i e^{i\theta} \ d\theta = -i \int_0^{\pi} d\theta = -i \pi$$

so

$$\int_{C_0} f(z) \ dz = -B_0 \pi i$$

5.2 Example

We can evaluate the integral

$$\int_0^\infty \frac{\sin x}{x} \ dx$$

by using the following contour:

- L_1 , the real axis from ρ to R.
- C_R , a positively-oriented semicircle from R to -R;
- L_2 , the real axis from -R to $-\rho$;
- C_{ρ} , a negatively-oriented semicircle from $-\rho$ to ρ ;

We do this to avoid the singularity at z=0 in e^{iz}/z . Using the Cauchy-Goursat theorem, we can write

$$\int_{C_R} \frac{e^{iz}}{z} \ dz + \int_{L_1} \frac{e^{iz}}{z} \ dz + \int_{C_2} \frac{e^{iz}}{z} \ dz + \int_{L_2} \frac{e^{iz}}{z} \ dz$$

Now, since we can write L_1 as

$$z = re^{i0} \quad (\rho \le r \le R)$$

and $-L_2$ as

$$z = re^{i\pi} = -r \quad (\rho \le r \le R)$$

we can combine the integrals along the line segments into

$$\int_{\rho}^{R} \frac{e^{ir}}{r} dr - \int_{\rho}^{R} \frac{e^{-ir}}{r} dr = 2i \int_{\rho}^{R} \frac{\sin r}{r} dr$$

ie:

$$2i\int_{\rho}^{R}\frac{\sin r}{r}\ dr = -\int_{C_{\rho}}\frac{e^{iz}}{z}\ dz - \int_{C_{R}}\frac{e^{iz}}{z}\ dz$$

Now, according to the theorem above, since this function has a residue of 1 at the origin, we can write

$$\lim_{\rho \to 0} \int_{C_0} \frac{e^{iz}}{z} \, dz = -\pi i$$

and, since |1/z| = 1/R, we know from Jordan's lemma that

$$\lim_{R \to \infty} \int_{C_R} \frac{e^{iz}}{z} \ dz = 0$$

so, applying these limits, we find that

$$\int_0^\infty \frac{\sin r}{r} \ dr = \frac{1}{2i} - (-\pi i) = \frac{\pi}{2}$$