CONVEX OPTIMISATION ASSIGNMENT 1

TADIPATRI UDAY KIRAN REDDY EE19BTECH11038

March 25, 2022

Question 1

The set C can also be represented as,

$$C = \{ \overline{x} : \mathbf{Y}^T \overline{x} \ge \overline{0} \}$$

Where **Y** is a matrix with columns as elements of set S.

A: It is not a Subspace.

Choose $\overline{x_1}, \overline{x_2}$ from set C, if this set is subspace then $\forall \alpha_1, \alpha_2 \in \mathbb{R}; \alpha_1 \overline{x_1} + \alpha_2 \overline{x_2}$ must also be in set C. Since α_1 and α_2 can also take negative value which can the inequality, this relation cannot be valid. Thus it is not a Subspace

B: It is not a Affine set.

The same explanation holds, since the only difference between affine and subspace is that in case of affine $\alpha_1 + \alpha_2 = 1$, but they can take any real values thus can be negative as well. Thus in this case also the inequality need not satisfy.

C: It is a convex set.

Choose $\overline{x_1}, \overline{x_2}$ from set C,

$$\mathbf{Y}^{T}(\theta \overline{x_1}) \ge \overline{0}; \mathbf{Y}^{T}((1-\theta)\overline{x_2}) \ge \overline{0}$$

$$\Longrightarrow \mathbf{Y}^{T}(\theta \overline{x_1} + (1-\theta)\overline{x_2}) \ge \overline{0}$$

This means that for any $\theta \in [0,1]$ the above inequality satisfies which means that the set is convex.

D: It is a cone.

By definition of cone if any set is a cone then any positively scaled vector must also belong to that set.

$$\mathbf{Y}^T \overline{x} \geq \overline{0}$$
 $\implies \mathbf{Y}^T (\theta \overline{x}) \geq \overline{0}; \text{Given } \theta \geq 0$

Observe that above conditions satisfied despite the nature of matrix \mathbf{Y} . Thus we can say that **none of** the above queries depend on structure of S.

Question 2

Given $f_1(\overline{x}) = ||\overline{y} - \mathbf{A}\overline{x}||_2$ and $f_2(\overline{(x)}) = ||\overline{y} - \mathbf{A}\overline{x}||_2^2$, Useful properties

- Norm function is convex.
- Affine transformation of domain of the function does'nt change the convexity of function.

In case of $f_1(\overline{x})$, the domain is affine transformation of \overline{x} and the norm is operated on it, from above properties the function is convex.

$$f_1(\overline{x}) = ||\Phi(\overline{x})||_2$$

 $\Phi : \overline{x} \to \overline{y} - \mathbf{A}\overline{x}$

In case of $f_2(\overline{x})$,

$$f_2(\overline{x}) = \overline{x}^T \mathbf{A}^T \mathbf{A} \overline{x} - 2 \overline{y}^T \mathbf{A} \overline{x} + \overline{y}^T \overline{y}$$

The above function is quadratic. The function is convex iff $\mathbf{A}^T \mathbf{A}$ is positive semi definite.

$$\mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^T$$

$$\implies \mathbf{A}^T \mathbf{A} = (\mathbf{V} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{V} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{V}^T$$

 $\Sigma^T \Sigma$ has positive diagonal entries as above multiplication will yield individual diagonal entries of Σ to square each other. Since eigen values of $\mathbf{A}^T \mathbf{A}$ are positive thus it is positive definite. Hence $f_2(\overline{x})$ is a convex function.

Question 3

(a)

Convex hull of $S = {\overline{x_1} = (0,0), \overline{x_2} = (1,1), \overline{x_3} = (1,0)}$ is just linear combination of all the vectors such that their coefficients are positive and they sum up to 1. Since these are 3 non collinear points, which means that convex hull is just the triangle.

Figure 1: conv(S)

(b)

Take a point inside convex hull,

This point can be written as $\overline{v} = \sum_{i=1}^{3} \theta_i \overline{x_i}$ such that $\sum_{i=1}^{3} \theta_i = 1$. Given f is convex function which means that,

$$f(\overline{v}) = f(\sum_{i=1}^{3} \theta_{i} \overline{x_{i}})$$

$$\implies f(\overline{v}) \leq \sum_{i=1}^{3} \theta_{i} f(\overline{x_{i}}) f(\overline{v}) \leq \sum_{i=1}^{3} \theta_{i} \max\{f(\overline{x_{i}})\} = \max\{f(\overline{x_{i}})\} \sum_{i=1}^{3} \theta_{i}$$

$$\implies f(\overline{v}) \leq \max\{f(\overline{x_{i}})\}$$

Clearly from above inequalities we see that value of any point in convex hull of polyhedra is always less than equal to the value of maximum value at vertices given f is convex, which means maxima occurs at vertices.

Question 4

Question 5

Question 6