TA Session 10: Neural Networks

Keras Framework & Image Restoration

Image Processing Course (67829)

The Hebrew University of Jerusalem

December 27, 2017

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

The Goal of Learning

We wish to learn a mapping $f(\mathbf{x})$ from a domain set \mathcal{X} and a label set \mathcal{Y} .

Two common settings:

- Classification: \mathcal{Y} is discrete, where each $y \in \mathcal{Y}$ represents a "class".
 - \mathcal{X} contains images of animals, and $\mathcal{Y} = \{\text{cat}, \text{dog}, \text{deer}, \ldots\}$. **Goal:** f(x) recognize the animal in the image.
 - \mathcal{X} contains sounds of speech, and \mathcal{Y} words in English. **Goal:** f(x) convert speech to text.
- ullet Regression: ${\cal Y}$ is continuous
 - \mathcal{X} contains images of faces, and $\mathcal{Y} = \mathbb{R}^2$. **Goal:** f(x) returns location of the mouth in the image.
 - \mathcal{X} contains corrupted images, and \mathcal{Y} natural images. **Goal:** f(x) restore a corrupted image to its original version.

Learning Parametric Functions

Training set: a collection of "labeled examples" $S = \{(x_i \in \mathcal{X}, y_i \in \mathcal{Y})_{i=1}^N\}$ (the pair (x_i, y_i) is also called a "sample").

Example: we show people images and ask they write what is in them.

Hypothesis space: a set of parametric functions $\mathcal{H} = \{f_{\theta}(x) | \theta \in \mathbb{R}^{s}\}.$ Examples:

- Linear functions, $f(x) = \sum_{i=1}^{s} x_i \cdot w_i$, parameterized by vector $w \in \mathbb{R}^s$.
- Linear transforms, f(x)=Ax, parameterized by matrix $A \in \mathbb{R}^{d \times s}$.
- Neural networks...

Goal: Find the parameters θ s.t. $f_{\theta} \in \mathcal{H}$ "best fit" the training set S.

Not all parameters are learned!

- **Learned-Parameters:** the attributes of \mathcal{H} we change to fit to S.
- **Hyper-parameters:** the fixed attributes of \mathcal{H} (i.e. not learned!).

What does it mean "best fit"?

Loss function: L(f, S) measure the "error" of f w.r.t. S – the lower the loss the better f fit to S.

Goal: Find f that minimizes the loss: $f^* = \operatorname{argmin}_{f \in \mathcal{H}} L(f, S)$.

Examples:

• "0-1 Loss": the percentage of examples on which f is wrong.

$$L_{0-1}(f, S) = \frac{\text{number of times } f(x_i) \neq y_i}{\text{total number of examples}}$$

• "Mean Square Error": average distance of $f(x_i)$ from y_i :

$$L_{MSE}(f, S) = \frac{1}{|S|} \sum_{i} ||f(x_i) - y_i||^2$$

• "Cross Entropy Loss" 1: Assume f(x) outputs the probabilities of xbelonging to each possible class. Use probability of choosing the correct class on all examples.

Sometimes known as "Softmax Loss"

Minimizing the Loss Function

If L(f,S) is a differentiable function, then we can use **Gradient Descent**:

Key Principle: At each iteration of GD we take a step in the direction of steepest descent. The step size depends on the implementation.

Minimizing the Loss Function (Cont')

Stochastic GD: If |S| is large then every GD iteration is expensive! Instead, we approximate it using a small randomly chosen batch $B \subset S$.

SGD Loop:

- **1** Sample a random batch $B \subset S$.
- ② Compute the gradient of L(f, B) w.r.t. the parameters of f.
- **1** Update parameters of f using the gradient.

Original SGD could be difficult to use for non-experts!

⇒ ADAM is an SGD variant which is easier to use in practice.

Generalization and Overfitting

Assume we have a model that fits the training set.

Q: Is it really good? Not necessarily, it could overfit the data!

- ⇒ We must evaluate the model on unseen data!
 - **Before training:** split data into training, validation and test sets.
 - **During training:** choose hyper-parameters using the validation set.
 - **After training:** evaluate final model on test set (generalization error).

Learning Summary

- We wish to fit a parametric function $f_{\theta}(x)$ to a training set S.
- We measure the fitness with a loss function $L(f_{\theta}, S)$:
 - For classification we typically use "Cross-Entropy Loss".
 - For regression we typically use "Mean Square Error".
- We find the best f_{θ} by minimizing the loss.
- For minimization we use SGD or one of its variants.
- Beware of overfit! Always evaluate your model on unseen data.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Neural Network Definition

In Broad Terms: A directed acyclic graph of differentiable operations

- Each node is called a "layer", defined by its type and parameters.
- All the parameters together are called "the weights of the network".
- The "depth of a network" is the longest path from input to output.
- When learning we fix the structure, and only learn the weights.
- A network is called "**feed-forward**" If every node has at most one input and one output connection:

Intermediate Results as "Tensors"

Basic Definitions:

- ullet "Tensors" are a fancy term for multi-dimensional arrays $A[d_1,\ldots,d_n]$
- For n as above, we say A is an n-D tensor.
- For each i, the index d_i ranges in $\{1, \ldots, M_i\}$.
- The shape of a tensor is the tuple (M_1, \ldots, M_n) .
- We can denote a tensor following the above as $A \in \mathbb{R}^{M_1 \times ... \times M_n}$.

In the context of Neural Networks for images:

- Images are 3D tensors of the shape (channels, height, width)². For RGB channels=3. For grayscale channels=1.
- The input/output of each layer are expressed as tensors.
- The shape and dimension of the output depends on the type of layer.

¹Not strictly related to the mathematical object also called a "tensor".

²This is a common convention. Some use (width, height, channels) instead.

Common Layers: Dense / Fully-Connected

• Operation: f(x) = Ax + b.

- **Input:** assume $x \in \mathbb{R}^N$. General shapes are first flatten to 1D tensors.
- Output: $y \in \mathbb{R}^M$.
- **Hyper-Parameters:** dimension of the output, denoted by M.
- Learned Parameters: matrix $A \in \mathbb{R}^{M \times N}$ (known as "weights"), and vector $b \in \mathbb{R}^M$ (known as "bias").

Common Layers: Convolution

• **Operation:** Convolve the input with a set of kernels.

- Input: a 3D tensor of shape (in_channels, height, width).
- output: a 3D tensor of shape (out_channels, height, width).
- Hyper-Parameters: (i) spatial shape of kernels $B \times B$, and (ii) number of kernels M (known as "number of output channels").
- Learned Parameters: for $1 \le j \le M$, the kernel $w_j \in \mathbb{R}^{C \times B \times B}$, where C is the number of input channels.

Common Layers: Pooling

• **Pooling:** Sub-sample each input channel:

- Average Pooling: Replace every window with its average value.
- Max Pooling: Replace every window with its maximum value.
- Input: 3D tensor of shape (channels, height, width).
- Output: 3D tensor of shape (channels, $\frac{\text{height}}{\text{window's height}}$, $\frac{\text{width}}{\text{window's width}}$).
- **Hyper-Parameters:** size of pooling window (typically 2×2).
- Learned Parameters: None.

Common Layers: Activation

- **Operation:** Apply point-wise function $\sigma : \mathbb{R} \to \mathbb{R}$, called "activation function", on every entry of the input tensor. Common types:
 - **ReLU:** $\sigma(z) = \max(z, 0)$.
 - Hyperbolic Tangent: $\sigma(z) = \tanh(z)$.
 - Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$.
- Input: any n-D tensor.
- Output: same shape as input.
- Hyper-Parameters: typically none (exception: Leaky ReLU).
- Learned Parameters: typically none (exception: PReLU).

Common Layers: Merge

Combines multiple input tensors $X^{(1)}, \ldots, X^{(k)}$ into a single output Y.

• Addition:

- Operation: $Y[d_1, \ldots, d_n] = \sum_{i=1}^k X^{(i)}[d_1, \ldots, d_n]$ (pointwise addition)
- Input: all input tensor must have the same shape!
- Output: same shape as input tensor.
- Hyper-Parameters: none. Learned Parameters: none.

Concat:

- Operation: Stack all tensors along a chosen axis (default to channels).
- Input: same shape except the dimension of chosen axis.
- Output: same as input, except the combined length of chosen axis.
- Hyper-Parameters: chosen axis. Learned Parameters: none.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Residual Block

Principle: represent functions as a difference from the identity (f(x)=x).

- F(x) is a sequence of regular layers.
- We merge F(x) with the input and return H(x) = F(x) + x.

Note: a residual block could contain any number of layers and any type.

ResNet Model

ResNet is compose of a sequence of residual blocks, in addition to standard layers:

Advantages:

- Allows training very deep networks.
- Deeper networks typically require overall less parameters.
- Faster convergence time.
- Improve generalization better results on test set.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- Meras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Keras Framework for Neural Networks

Python packages for neural networks:

- Tensorflow is a general low-level machine learning library by Google.
- Keras is a neural network framework built on top of Tensorflow.

Keras has two methods for model definitions:

- **Sequential API:** Very simple for feed-forward networks (just stack layers). Limited for other cases (no ResNets!).
- Model API: More versatile but requires more work ← what we use!

See complete documentation in https://keras.io.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- Meras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Model API and Symbolic Tensors

Principles:

- Layers are connected by "symbolic" tensors placeholder variables.
- Models are defined by input and output tensors.

Basic example:

```
from keras.layers import Input, Dense
from keras.models import Model
 this returns a symbolic tensor
a = Input(shape=(784,))
 a layer instance is callable on symbolic tensors
x = Dense(64)(a)
x = Dense(64)(x)
predictions = Dense(10)(x)
```

Create a model from input and output tensors. model = Model(input=a, output=predictions)

Common Layers in Keras

• The **Input** layer in Keras defines a symbolic tensor of a given shape:

```
from keras.layers import Input
a = Input(shape = (3, 32, 32))
```

• Convolution2D: for input tensors of shape (channels, height, width). **Arguments:** output channels, window's height, window's width. border mode='same' adds zero padding to preserve input shape.

```
from keras.layers import Convolution2D
b = Convolution2D(16, 3, 3, border mode='same')(a)
```

• **Activation**: a single input specifying activation type

```
from keras.layers import Activation
c = Activation('relu')(b)
```

Common Layers in Keras (cont')

 MaxPooling2D: for input tensors of shape (channels, height, width). **Arguments:** pooling window's height, pooling window's width.

```
from keras.layers import MaxPooling2D
d = MaxPooling2D(pool size=(2, 2))(c)
```

AveragePooling2D: (similar to above)

```
from keras.layers import AveragePooling2D
d = AveragePooling2D(pool size=(2, 2))(c)
```

• **Dense**: a single input specifying output dimension

```
from keras.layers import Dense
e = Dense(32)(d)
```

Feed-forward ConvNet Example


```
from keras.models import Model
from keras.layers import Input, Convolution2D #etc
a = Input(shape=(3, 32, 32))
b = Convolution2D(20, 5, 5, border_mode='same')(a)
b = Activation('relu')(b)
b = AveragePooling2D(pool_size=(2,2))(b)
b = Convolution2D(50, 5, 5, border_mode='same')(b)
b = Activation('relu')(b)
b = Activation('relu')(b)
b = MaxPooling2D(pool_size=(2,2))(b)
b = Dense(10)(b)
model = Model(input=a, output=b)
```

Skip Connections via merge()

The merge() function takes a list of tensors, a merging method, and returns the output tensor of a Merge layer.


```
from keras.layers import Input, Convolution2D
from keras.layers import merge
a = Input(shape=(3, 32, 32))
b = Convolution2D(3, 5, 5, border_mode='same')(a)
b = merge([a, b], mode='sum')
model = Model(input=a, output=b)
```

Important: Do not use Merge() (with capital M).

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Compiling a Model for Training

After we build a model, we need to prepare it for training:

- Choose a proper loss function for the task.
- Choose an optimization algorithm.

In Keras you need to call the compile() function:

```
from keras.models import Model
a = Input(shape=(3, 32, 32))
 Setup model...
b = # output tensor
model = Model(input=a, output=b)
model.compile(loss='mean_square_loss',
              optimizer='adam')
```

Fitting Model to a Static Dataset

Assume our training set is $S = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Preparing the dataset:

- Combine all training data into X: $X[i, d_1, ..., d_k] = x_i[d_1, ..., d_k]$.
- Combine all label data into $Y: Y[i, d_1, \ldots, d_k] = y_i[d_1, \ldots, d_k].$

Example: assume each example is a grayscale image of shape (1, 16, 16), and each label a scalar of shape (1,).

 \Rightarrow the shapes of X is (n, 1, 16, 16), and of Y is (n, 1).

Training model: (could take a very long time)

```
model.fit(X, Y, batch_size=100,
          nb_epoch=5, validation_split=0.2)
```

batch size — number of samples in each mini-batch. nb_epoch - number of times to go over entire training set.

validation_split - fraction of (X, Y) to be used as validation set. Keras will test on the validation set after every epoch.

Fitting Model to a Dynamically Generated Dataset

Shortcomings of a static dataset:

- Has to fit in memory.
- Any data preprocessing must be done ahead of time.
- Less convenient for functionally generated datasets

Solution: prepare mini-batches of data on-the-fly.

In Keras this is done with Python's Generators. **Reminder:**

```
# A generator outputting random numbers
def build_generator():
    while True:
        yield np.random.random()
# Create generator
gen = build_generator()
# Call next() to generate a new value
for i in range (5):
    print('%.2f' % next(gen), end=' ')
>> 0.04 0.61 0.18 0.05 0.81
```

Fitting Model to a Dynamically Generated Dataset (cont')

Requirements of generator to serve as a dataset for Keras:

- Yield each time a pair (X, Y).
- X is a numpy array holding a mini-batch of examples.
- Y is a numpy array holding the respective labels of X.

Code example:

```
# Assumes batch size of generators is 100
train_set = # generator for training set
valid_set = # generator for validation set
model.fit_generator(train_set,
    samples_per_epoch=10000, nb_epoch=5,
    validation_data=valid_set, nb_val_samples=1000)
```

```
samples_per_epoch - defines an "epoch" as this many examples.
nb_epoch - number of times to iterate over "epochs" as above.
validation_data - generator for validation set
nb_val_samples - how many samples to generate for each validation test.
```

Example Log of Training

Training Log:

```
Using TensorFlow backend.
Epoch 1/5
10000/10000 [=============] - 179s - loss: 0.2052 - val loss: 0.0924
Epoch 2/5
Epoch 3/5
10000/10000 [============ ] - 171s - loss: 0.0521 - val loss: 0.0348
Epoch 4/5
10000/10000 [============ ] - 173s - loss: 0.0320 - val loss: 0.0220
Epoch 5/5
10000/10000 [============== ] - 165s - loss: 0.0219 - val loss: 0.0107
```

Things to notice:

- Keras shows the averaged training loss over all iterations in the epoch.
- Validation loss is reported after the last iteration in the epoch.
- A good model will quickly converge on the training set.
- A good model will have validation loss close to training loss.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Prediction with a Trained Model

Assuming we have a trained model, just call predict(X).

```
model = # trained model
X = \# \text{ multiple images of shape } (N, 1, 28, 28)
Y = model.predict(X)
x = \# a single image of shape (1, 28, 28)
y = model.predict(x[np.newaxis,...])[0]
```

Notice: predict() expects a "batch" of inputs. If we wish to predict a single input, we treat it as a batch of size 1.

Saving, Loading, and Copying Weights

Saving:

```
model = # trained model
model.save weights(path to filename)
```

Loading:

```
model = # untrained model before compiling it!
model.load weights(path to filename)
```

Copying:

```
source model = # trained model
target_model = # untrained model before compiling it!
target_model.set_weights(source_model.get_weights())
```

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Patch-Based Image Restoration

Notice: We should extract densely overlapping patches, so artifacts will be averaged out when we reassemble the image.

Learning from "Good" Image Patches

- Humans cannot correct corrupted images in the wild.
- Start from "good" images, and simulate a corruption: noise, blur, ... **Important:** we must use randomly sampled corruptions type!
- Build a dataset of small "good" and "bad" pair of patches.
- Train a network to map "bad" patches to "good patches".
- Use network for the patch-based's restoration step.

ConvNet "Trick": If we enlarge the input of a fully convolutional network, its output scale as well. It can be shown that the new output is an approximation of the patch averaging step.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- 3 Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Image Denoising

Simulated corruption: randomly add gaussian noise.

Image Deblurring

[7] P. Andrey and P. Tarroux., "Unsuper Markov random field modeled textured in relaxation", *IEEE Trans. Pattern Anal. M* 1998, pp. 252-262.

[8] Q. Lu and T. Jiang, "Pixon-based Markov random fields", Pattern Recogn. 2029-2039.

[9] A. Sarkar, M. K. Biswas, and K. M. unsupervised MRF model based image seg IEEE Trans. Image Processing, vol. 9, 200
 [10] I. Y. Kim and H. S. Yang, "A systen based image segmentation based on N model", Pattern Recognit. Lett., vol. 15, 15
 [11] R. K. Piña and R. C. Pueter reconstruction: the pixon and optimal images.

[7] P. Andrey and P. Tarroux, "Circupe Mattery random field modeled textured in relination", IEEE Trans. Pattern Anal. It 1998, pp. 252-262.

[8] Q. Lu and T. Jiang, "Pixon-based Markov random fields", Pattern Recogn. 2029-2039.

[9] A. Sarkar, M. K. Biswax, and K. M. unsupervised MRE model based image sep MEE Trans. Image Processing, vol. 9, 216 [100] L. Y. Kim and H. S. Yang, "A system based image segmentation based on 1 model", Pattern Recognit. Lett., vol. 15, 91 [11] R. K. Piña and R. C. Puette reconstruction: the pisson and optimal image.

[2] P. Andrey and P. Tarroux., "Unsuper Markov random field modeled textured in relaxation", IEEE Trans. Pattern Anal. M 1998, pp. 252-262.

[8] Q. Lu and T. Jiang, "Pixon-based Markov random fields", Pattern Recogn. 2029-2039.

[9] A. Surkar, M. K. Biswas, and K. M. unsupervised MRF model based image segleEE Trans. Image Processing, vol. 9, 200 [10] I. Y. Kim and H. S. Yang, "A systen based image segmentation based on K model", Pattern Recognit. Lett., vol. 15, 111 [11] R. K. Pifia and R. C. Puete reconstruction: the pixon and optimal image.

Simulated Corruption: randomly apply motion blur.

- Recap on Neural Networks
 - Learning
 - Neural Networks
 - ResNet Architecture
- 2 Keras Framework
 - Model Definition
 - Training a Model
 - Prediction with a Trained Model
- Ex5: Image Restoration
 - General Workflow
 - Applications to Denoising and Deblurring

Good Luck!