

Temperature Forecasting Using Machine Learning and LSTM

Predicting Temperature 10 Minutes Ahead

Nitchamon Busayaphongchai 6430125321 Date 6 April 2025

Project Overview

- Objective : Predict temperature 10 minutes ahead
- Data: Minutely temperature readings
- Methods:
 - Linear Regression (LR)
 - Support Vector Regression (SVR)
 - LSTM Neural Network

Data Sending via NETPIE and Google sheet

Traditional Models

- Input Types:
 - Last 5 minutes
 - Last 50 minutes
- Model Used:
 - LR-5, LR-50
 - SVR-5, SVR-50
- Evaluation Metrics: MAE and RMSE

Results - Traditional Models

Performance Table

	MAE	RMSE
LR_5	0.991041	1.646082
LR_50	0.875689	1.434040
SVR_5	0.753011	1.399603
SVR_50	0.618184	1.142305

LSTM Model Architecture

- Input: Last 60 minutes of temperature
- Output: Temperature 10 minutes in future
- Layers:
 - LSTM (64 units)
 - Dropout (20%)
 - LSTM (32 units)
 - Dropout (20%)
 - Dense (1 output)

LSTM Training & Results

- Evaluation
 - MAE = 0.5542, RMSE = 0.6747

Discussion

- Why LSTM performed better
 - Capture time dependencies
 - Learns nonlinear patterns
 - Handles longer input sequences
- Conclusion: LSTM > LR/SVR for this task