ASEN 6060 ADVANCED ASTRODYNAMICS Week 4 Discussions

Question 1: Under what conditions is a trajectory that is periodic in the rotating frame also periodic in the inertial frame?

Question 1: Under what conditions is a trajectory that is periodic in the rotating frame also periodic in the inertial frame? Group Brainstorming:

- When the period of the P1-P2 orbit is in a resonance with the period of the spacecraft

Question 1: Under what conditions is a trajectory that is periodic in the rotating frame also periodic in the inertial frame?

2:1 resonant orbit family, PO has T = 2pi, propagate for T

Inertial frame

Question 1: Under what conditions is a trajectory that is periodic in the rotating frame also periodic in the inertial frame?

2:1 resonant orbit family, PO has T = 4.507Not in resonance: T/(2pi) = 0.717, propagate for T

Question 1: Under what conditions is a trajectory that is periodic in the rotating frame also periodic in the inertial frame?

2:1 resonant orbit family, T = piT/(2pi) = 0.5, Propagate for 2T

Question 2: Consider states that produce a) prograde and b) retrograde motion relative to P_1 in the rotating frame. What could their direction of motion possibly be (relative to P_1) in the inertial frame? (prograde, retrograde, or either)?

Question 2: Consider states that produce a) prograde and b) retrograde motion relative to P_1 in the rotating frame. What could their direction of motion possibly be (relative to P_1) in the inertial frame? (prograde, retrograde, or either)?

Group Brainstorming:

Retrograde state wrt P1

- Could either have motion prograde or retrograde in the inertial frame

Prograde state wrt P1

- Moving prograde in the inertial frame as well

Question 2: Consider states that produce a) prograde and b) retrograde motion relative to P_1 in the rotating frame. What could their direction of motion possibly be (relative to P_1) in the inertial frame? (prograde, retrograde, or either)?

This orbit is retrograde in the rotating and inertial frames

Rotating frame

Inertial frame

Question 2: Consider states that produce a) prograde and b) retrograde motion relative to P_1 in the rotating frame. What could their direction of motion possibly be (relative to P_1) in the inertial frame? (prograde, retrograde, or either)?

This orbit has prograde & retrograde segments in rotating frame; prograde in inertial frame

2:1 resonant orbit family, PO has T = 2pi

ASEN 6060 – Week 4 Discussions

Question 3: You and your colleague are each numerically generating a trajectory associated with the same initial state $[x_0, y_0, 0, \dot{x}_0, \dot{y}_0, 0]^T$ and integration time. You are each using your own code or using off-the-shelf software. Do you expect to recover the exact same state as your colleague after the integration time? Why/why not?

Question 3: You and your colleague are each numerically generating a trajectory associated with the same initial state $[x_0, y_0, 0, \dot{x}_0, \dot{y}_0, 0]^T$ and integration time. You are each using your own code or using off-the-shelf software. Do you expect to recover the exact same state as your colleague after the integration time? Why/why not?

Group Brainstorming: