Bases de Dados

Mapeamento entre Esquemas Abstrações - Generalização

Profa. Elaine Parros Machado de Sousa

GENERALIZAÇÃO/ ESPECIALIZAÇÃO

Alterando os 7 Passos ...

- Mapear todos os <u>CEs Fortes</u> que não fazem parte de ocorrências de generalização
- Mapear todos os <u>CEs Fracas</u> que não fazem parte de ocorrências de generalização

- 3. Mapear todos os <u>CR</u> de <u>cardinalidade 1:1</u> do DER
- 4. Mapear todos os <u>CR</u> de <u>cardinalidade 1:N</u> do DER
- 5. Mapear todos os <u>CR</u> de <u>cardinalidade M:N</u> do DER
- 6. Mapear todos os <u>CR</u> de <u>Grau >2</u> do DER

DER

7. Mapear todos os <u>Atributos Multivalorados</u> de CEs e CRs do

Mapeamento da Generalização

Passo 2A

- Analisar uma a uma todas as ocorrências da abstração de generalização e escolher a melhor opção de mapeamento
- Cada ocorrência da abstração é mapeada de maneira independente (mesmo dentro de uma mesma hierarquia)

Mapeamento da Generalização

- Três alternativas principais:
 - Mapear o CEG e os CEEs em relações diferentes
 - Mapear o CEG e todos os CEEs em uma única relação
 - 3. Mapear cada CEE (e apenas eles) em sua própria relação, junto com seus respectivos atributos genéricos

Mapeamento da Generalização

- Cada alternativa pode ser mapeada de mais de uma maneira
 - Procedimento Padrão de Mapeamento

Mapear o CEG e os CEEs em relações diferentes

Alternativa 1 **Procedimento Padrão 1**

Procedimento Padrão 1

Alternativa 1 **Procedimento Padrão 1** (cont.)

```
CEG = \{ \underline{Ch}, AtC, AG \}
CEE_1 = \{ \underline{Ch}, AE_1 \}
...
CEE_i = \{ \underline{Ch}, AE_i \}
```

- a ocorrência da generalização deve ser mutuamente exclusiva (disjunção). Por que?
- Garante Especialização Total?
- Desvantagens?

Alternativa 1 **Procedimento Padrão 2**

Procedimento Padrão 2

Alternativa 1 **Procedimento Padrão 2** (cont.)

```
CEG = \{ \underline{Ch}, AG \}
CEE_1 = \{ \underline{Ch}, AE_1 \}
...
CEE_i = \{ \underline{Ch}, AE_i \}
```

- Semelhante ao procedimento 1: usado quando a Generalização é definida com sobreposição
- Garante Especialização Total?
- Desvantagens? _

Alternativa 1 **Procedimento Padrão 3**

Extensão do procedimento
 2 - permite consultar qual é
 o subtipo de uma entidade

- Alternativa1 é interessante quando:
 - há poucos CE Específicos, cada um com diversos atributos específicos
 - consultas tipicamente se concentram em um ou poucos CEEs de cada vez
 - CEEs participam de relacionamentos com outros CEs
- Aplicável a Especialização Total ou Parcial
 - mas não garante Especialização Total...

Mapear o CEG e todos os CEEs em uma única relação

Alternativa 2 **Procedimento Padrão 4**

CEG = { \underline{Ch} , AtC, AG, $\underline{AE_{1,...}}$ $\underline{AE_{i}}$ }

Procedimento Padrão 4

Alternativa 2 **Procedimento Padrão 4** (cont.)

CEG = { \underline{Ch} , AtC, AG, $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

- generalização deve ser mutuamente exclusiva
 - em cada tupla apenas os atributos correspondentes ao(s) subtipo(s) da entidade podem possuir valor
 - e os atributos correspondentes aos demais subtipos devem ser sempre mantidos nulos
- Garante Especialização Total?
- Desvantagem?

Alternativa 2 **Procedimento Padrão 5**

CEG = {
$$\underline{Ch}$$
, \underline{AtC} , \underline{AG} , $\underline{AE}_{1, ...}$ \underline{AE}_{i} }

- Generalização definida com sobreposição
- Se uma entidade pertence a um CEE, então na tupla pelo menos 1 atributo correspondente ao CEE deve possuir valor (não nulo)
- Garante Especialização Total?
- Desvantagem?

Procedimento Padrão 5

Alternativa 2 **Procedimento Padrão 6**

 $CEG = \{ Ch, AG, AE_1, ..., AE_i, BCEE_1, ..., BCEE_i \}$

- Indica a quais CEEs um entidade pertence usando valores booleanos
- Desvantagem?

- Alternativa 2 é interessante quando:
 - existem poucos atributos específicos nos CEEs
 - só o CEG participa de relacionamentos
- Aplicável a Especialização Total ou Parcial
 - mas não garante Especialização Total...

Mapear cada CEE (apenas) em sua própria relação, junto com seus respectivos atributos genéricos

Alternativa 3 **Procedimento Padrão 7**

Desvantagens?

Procedimento Padrão 7

Alternativa 3 **Procedimento Padrão 8**

Garante exclusão mútua?

Procedimento Padrão 8

Alternativa 3 **Procedimento Padrão 9**

CEE₁ = { <u>Ch</u>, AG, AE₁ } ...

 $CEE_i = \{ \underline{Ch}, AG, AE_i \}$

C={ <u>Ch</u>, <u>AtC</u>}

Procedimento Padrão 9

- Alternativa 3 é interessante quando:
 - é frequente o acesso a cada entidade em sua totalidade, incluindo seus dados genéricos e específicos
 - qual a vantagem desta alternativa se comparada à alternativa 1?
 - aplicável apenas para Especialização Total
 Por que?
 - só os CEEs participam de relacionamentos

Os 9 Procedimentos Padrão

```
1 CEG = \{\underline{Ch}, AtC, AG\} CEE_i = \{\underline{Ch}, AE_i\}

2 CEG = \{\underline{Ch}, AG\} CEE_i = \{\underline{Ch}, AE_i\}

3 CEG = \{\underline{Ch}, AG\} CEE_i = \{\underline{Ch}, AE_i\} C = \{\underline{Ch}, AtC\}
```

```
4 CEG = {Ch, AG, AtC, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>}
5 CEG = {Ch, AG, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>}
6 CEG = {Ch, AG, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>, BCEE<sub>1</sub>, BCEE<sub>2</sub>, ...BCEE<sub>i</sub>}}
```

```
CEE_{i} = \{\underline{Ch}, AG, AE_{i}\}
CEE_{i} = \{\underline{Ch}, AG, AE_{i}\} \quad C = \{\underline{Ch}, AtC\}
CEE_{i} = \{\underline{Ch}, AG, AE_{i}\} \quad C = \{\underline{Ch}, AtC\}
```

Casos Especiais

 Atributos específicos que podem identificar univocamente o CEE podem ser colocados como chaves secundárias

