

Vorlesung 2 – 30.10.2020 – 10:15 – 12:00 via Zoom

[Vorlesung 1 - 2020.10.27 wurde abgesagt]

- Vorlesung beggint um 10:15 und endet um 12:00.
- Webseiten für die Vorlesung

https://www.iam.uni-bonn.de/abteilung-gubinelli/einf-wahrscheinlichkeitstheorie-ws2021 https://ecampus.uni-bonn.de/goto_ecampus_crs_1907666.html

- Nach jeder Vorlesung werde ich die Notizen online stellen. Auf meiner Webseite.
- Übungsgruppen
 - Montag 8 10 Uhr (online) Gruppe 1
 - Montag 12 14 Uhr (Präsenz) Gruppe 2
 - Montag 14 16 Uhr (online) Gruppe 5
 - Donnerstag 8 10 Uhr (Präsenz) Gruppe 3
 - Donnerstag 12 14 (Präsenz) Gruppe 4
 - Donnerstag 12 14 (online) Gruppe 6
- Die Anmeldung zu den Übungsgruppen findet online auf der e-Campus Seite der Übungen (nicht auf der Vorlesungsseite) statt. Sie sich zunächst für den Kurs
 - "V2F1 **Übungen** zu Einführung in die Wahrscheinlichkeitstheorie" anmelden. Die Registrierung für die Übungsgruppen startet dann heute nach der Vorlesung um 12 Uhr.
- Es besteht die Möglichkeit, dass eine neue Übungsgruppe eröffnet wird (heute oder nächste Woche). Auf eCampus wird eine Umfrage zum möglichen Zeitfenster durchgeführt.
- 1. Übungsblatt, dass bis nächste Woche Freitag der 6.11. um 10 Uhr über eCampus hochgeladen werden muss.
- Bitte tuen Sie sich in Übungsgruppen von bis zu 3 Personen zusammen.
- Zögern Sie nicht, Fragen über das Forum in eCampus zu stellen.
- Die Vorträge werden aufgezeichnet und auf eCampus zur Verfügung gestellt. Die Aufnahmen werden wenige Wochen nach Semesterende gelöscht.

Inhalt der Vorlesung

- 1. Einleitung, WT als Maßtheorie, Zufallsvariablen, Integration. (~3 Wochen)
- 2. Bedingte W-keit, Unabhängigkeit, Produktmaße. (~2 Wochen)
- 3. Kovergenzbegriffe für Maße/Zufalls Variablen. (~2 Wochen)
- 4. Gesetz der großen Zahlen. (~2 Wochen)
- 5. Charakteristische Funktionen. Zentrale Grenzwertsatz. (~2 Wochen)
- 6. Markov-ketten in diskreter Zeit. (~ 3 Wochen)

Literature

- Die Vorlesung wird sich weitgehend an dem Lehrbuch **Stochastik. Einführung** in die Wahrscheinlichkeitstheorie und Statistik von Hans-Otto Georgii (de Gruyter Verlag) orientieren, wobei wir nicht allen Stoff behandeln können.
- Achim Klenke, Wahrscheinlichkeitstheorie, Springer 2006
- William Feller, **An introduction to probability and its applications** Vol. 1., John Wiley, 1978

Skript

- Wir werden dem Skript von Prof. Bovier folgen (WS1920). (link auf webseite der Vorlesung)
- Nach jeder Vorlesung werde ich die Notizen online stellen. Auf meiner Webseite.

1 Einleitung und Masstheorie

1.1 Grundlagen

Was ist Wahrscheinlichkeit?

Wahrscheinlichkeit: ein Mass für die Ungewissheit über das Eintreten eines Ereignisses (Zufallsereignisses), ausgedrückt als Teil der Gewissheit.

Zwei Ansätze:

- a) **subjectiv:** (Logische oder Bayes'sche) Ein Maß für das subjektive Vertrauen in einem bestimmten Fall A (Ereignis). Aufgrund logischer Prinzipien muss diese Maßnahme bestimmte Eigenschaften in Bezug auf logische Operationen an Ereignissen erfüllen. Man kann dieses bestimmt, z.B. durch das Wettverhältnis "Einsatz: Gewinn" = $P(A)/P(\operatorname{nich} A)$, das der Person fair erscheint.
- b) **frequentistisch:** Grenzwert der relativen Häufigkeit des Eintretens von ein Ereignis *A* bei unabhängigen Wiederholungen. Dies ist die Grundlage der Statistik und allgemein aller experimentellen Wissenschaften.

Ereignisse sind Aussagen, Fragen die man mit Ja/Nein antworten kann:

- "Das Resultat ist eine gerade Zahl" (Ist ... ?)
- "Der dritte Wurf ist Kopf"
- "Die Masse des Saturn ist x innerhalb von 1/100 dieses Wertes" (Laplace (1812) "Ich wette 11.000 zu 1, dass der Fehler in diesem Ergebnis nicht größer ist als 1/100 seines Wertes.")
- "Der Wert dieser Aktie erreicht vor Montag 100 Euro"
- "Das Teilchen bleibt immer in einer Kugel vom Radius r um 0"

ightharpoonup Ereignisse $\tilde{E}_1, \tilde{E}_2, \dots$ können <u>kombiniert werden</u> (mit Logische Verknüpfung)

- und: $,\tilde{E}_1 \wedge \tilde{E}_2$ ist eingetreten" \Leftrightarrow $,\tilde{E}_1$ ist eingetreten <u>und</u> \tilde{E}_2 ist eingetreten"
- oder: $,\tilde{E}_1 \vee \tilde{E}_2$ ist eingetreten" \Leftrightarrow $,\tilde{E}_1$ ist eingetreten <u>oder</u> \tilde{E}_2 ist eingetreten"
- nicht " $\neg \tilde{E}_1$ ist eingetreten" \Leftrightarrow " \tilde{E}_1 ist <u>nicht</u> eingetreten"

Ereignisse sind eine Boolesche Algebra.

- ▶ Wir haben grundlegende Ereignisse und Situationen:
 - $\tilde{\Omega} \equiv$,,sicheres Ereignis": tritt immer ein
 - $\tilde{\phi} \equiv$ "unmögliches Ereignis": tritt nie ein

• $,\tilde{E}_1 \text{ und } \tilde{E}_2 \text{ unvereinbar sind"} \Leftrightarrow \tilde{E}_1 \wedge \tilde{E}_2 = \tilde{\emptyset}.$

ightharpoonup Zu jeder Ereignis \tilde{E} möchte man eine Zahl

$$P(\tilde{E}) \in [0,1],$$

assozieren: die Wahrscheinlichkeit von \tilde{E} (subjectiv oder frequentistisch).

Minimale Eigenschaften:

- $P(\tilde{\Omega}) = 1, P(\tilde{\emptyset}) = 0$
- Falls $\tilde{E}_1 \wedge \tilde{E}_2 = \tilde{\emptyset}$ dann $P(\tilde{E}_1 \vee \tilde{E}_2) = P(\tilde{E}_1) + P(\tilde{E}_2)$ (endliche Additivität)

Bemerkung. Da $\neg \tilde{E}_1 \wedge \tilde{E}_1 = \tilde{\emptyset}$ und $\neg \tilde{E}_1 \vee \tilde{E}_1 = \tilde{\Omega}$ dann $1 = P(\neg \tilde{E}_1 \vee \tilde{E}_1) = P(\neg \tilde{E}_1) + P(\tilde{E}_1)$ und auch $P(\neg \tilde{E}_1) = 1 - P(\tilde{E}_1)$.

Wir sehen, dass die Wahrscheinlichkeit die Grundstruktur der Maßtheorie teilt.

Kolmogorov (1933) basierte die Wahrscheinlichkeitstheorie auf der <u>Maßtheorie</u> (die von Borel, Lebesgue und anderen entwickelt wurde).

Um das zu tun führte er das Konzept eines Wahrscheinlichkeitsraums ein. (Kolmogorov'sche Axiome)

Wahrscheinlichkeitsraum (W-raum) ist eine Triple $(\Omega, \mathcal{F}, \mathbb{P})$:

• Ω , *Menge der Ergenbisse* (also elementarer Ereignisse). Man assoziert zu jedes Ereignis \tilde{E} eine Untermenge E von Ω . Wir werden von jetz an direkt mit Teilmenge arbeiten un die auch Ereignisse nennen.

$$\tilde{E} \to E \subset \Omega$$
: $E = \{\omega \in \Omega \mid ,, \tilde{E} \text{ eintritt, falls das Ergebnis des Experiment } \omega \text{ ist"} \}$

- $\mathscr{F} \subseteq \mathscr{P}(\Omega)$ das Mengensystem der beobachtbaren Ereignisse (eine σ -Algebra, zu definier). Eine Teilmenge der Potenzmenge auf Ω .
- \mathbb{P} eine Abbildung von \mathscr{F} nach [0,1], die die Wahrscheinlichkeit jedes beobachtbaren Ereignisses geben.

Ereignisse	Teilemenge von Ω
$ ilde{E_k}$	$E_k \subset \Omega$
$ ilde{E}_1 \wedge ilde{E}_2$	$E_1 \cap E_2$
$\tilde{E}_1 \vee \tilde{E}_2$	$E_1 \cup E_2$
$\neg \tilde{E_k}$	$E_k^c \equiv \Omega ackslash E_k$
\tilde{E}_1 und \tilde{E}_2 unvereinbar	$E_1 \cap E_2 = \emptyset$
$\tilde{\Omega}$ (sicheres Ereignis)	Ω
$ ilde{oldsymbol{ec{arphi}}}$	Ø
(Logisch)	(Mengetheoretisch)

Wichtig: Ereignisse gelten als Teilmengen von ein gut gewähltes Menge Ω .

Wie wir die Menge der Ergebnisse Ω wahlen? Gewollt: Falls man das Ergebnis eines Zufallsexperiment kennt, dann kann man für alle Ereignisse bestimme ob die eingetreten sind oder nich.

Beispiel.

- Einmaliges Würfeln. $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Mehrmaliges Würfeln. $\Omega = \{1,...,6\}^n$ (Produktraum). Die *i*-te Koordinate ω_i eines n-Tuples $\omega = (\omega_1,...,\omega_n) \in \Omega$ beschreibt dabei die Augenzahl beim *i*-ten Wurf.
- Vielleicht is aber man gar nicht an der Reihenfolge der Würfe interessiert, sönder nur auch der Häufigkeit der einzelen Augenzahlen. Dann man die Ergebnismenge

$$\Omega = \left\{ k \in \mathbb{Z}_+^6 : \sum_{i=1}^6 k_i = n \right\} \subseteq \mathbb{Z}_+^6$$

wahlen können. \mathbb{Z}_+ ist die Menge der nichtnegative ganzen Zahlen. Und k_a is der Anzahl der Würfe, bei denen der Augenzahl a fällt.

• Unendlich widerholten Munzwürf. $\Omega = \{K, Z\}^{\mathbb{N}}$. Die Ereignis

 $E_n =$,,Bei n Würfen die Munze fällt mindstens k-mal Zahl"

$$= \left\{ \omega = (\omega_1, \omega_2, \dots) \in \Omega : \sum_{i=1}^n \mathbb{1}_{\omega_i = Z} = k \right\}$$

ist ein Teilmenge des Ergebnisraum $\{K,Z\}^n$ (endlich oft widerholter Munzwürf) un auch des Raum $\{K,Z\}^{\mathbb{N}}$.

Notation: $\mathbb{1}_A: \Omega \to \{0,1\} \subseteq \mathbb{R}$ is die Indicatorfunktion eine Menge A, d.h. $\mathbb{1}_A(\omega) = 1$ wenn $\omega \in A$ oder =0 wenn $\omega \notin A$. Aber $\mathbb{1}_{\omega_i = Z}$ bedeuten auch 1 wenn $\omega_i = Z$ oder 0 wenn $\omega_i = K$. So wenn E eine Aussage ist dann $\mathbb{1}_E$ bedeutet 1 wenn E entritt und 0 andersfalls.

• Züfallige Bewegung eines Teilchens in \mathbb{R}^n (n-dim euclidische Raum):

$$\Omega = C(\mathbb{R}_{\geq 0}; \mathbb{R}^n)$$

die Raum der stetigen Pfade $\omega: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ mit Zeitraum $\mathbb{R}_{\geq 0} = \{t \in \mathbb{R}: t \geq 0\}$. Dann die Ereignis

 \tilde{E} = "Das Teilchen bleibt immer in einer Kugel vom Radius r um 0"

als

$$E = \left\{ \omega \in \Omega : \sup_{t \ge 0} |\omega(t)| \le r \right\}$$

darstellen werden können.

Die Wahl von Ω etwas *willkürlich* ist. Aber der Formalisierung (nach Kolmogorov) sollte durch eine bestimte Gründmenge Ω passieren.

Die abstrakte Boolesche Algebra der Ereignisse wird dann zu einer konkreten (Booleschen) Algebra von Mengen.

Definition 1. (σ -Algebra und Messraumen) Sei Ω eine beliebige Menge, \mathcal{F} eine Menge von Teilmengen von Ω mit der Eigenschaften

- a) $\Omega \in \mathcal{F}$, $\emptyset \in \mathcal{F}$;
- b) Falls $A \in \mathcal{F}$, dann $A^c \equiv \Omega \setminus A \in \mathcal{F}$; (komplementstabiliät)
- c) Falls $A_n \in \mathcal{F}$ für $n \in \mathbb{N}$, dann $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$. (σ -vereinigungsstabiliät)

Dann ist \mathcal{F} eine σ -Algebra und das Paar (Ω, \mathcal{F}) heisst ein <u>Messraum</u>.

Frage. Sei \mathcal{F} eine σ -Algebra von Ω . Welche der folgenden Aussage sind wahr?

- a) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$
- b) $A, B \in \mathcal{F} \Rightarrow A \setminus B := A \cap B^c \in \mathcal{F}$
- c) Falls $A_n \in \mathcal{F}$ für $n \in \mathbb{N}$, dann $\cap_{n \in \mathbb{N}} A_n \in \mathcal{F}$.
- d) Falls $A_r \in \mathcal{F}$ für $r \in [0,1] \subseteq \mathbb{R}$, dann $\bigcup_{r \in [0,1]} A_r \in \mathcal{F}$.

Antwort: a) wahr, b) wahr, c) wahr, d) falsch weil [0, 1] ist unbazälbar.

Bemerkung.

- $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$ weil wir nehmen $A_1 = A, A_2 = B$, und $A_n = \emptyset$ für $n \ge 3$ auf c) können. Dann auch endlichen Vereinigungen Elementen von \mathcal{F} liegen in \mathcal{F} .
- Für eine $(\sigma$ -)Algebra \mathscr{F} , $A, B \in \mathscr{F} \Rightarrow A \cap B \in \mathscr{F}$ weil $A \cap B = (A^c \cup B^c)^c$ (de Morgansche Gesatz)
- c) mit <u>nur</u> eine endliche Zahr von $A_n \Rightarrow$ Algebra
- Eigenschaft c) ist wichtig, da damit Aussagen über Grenzwerten möglich sein werden

Beispiel. Wir werfen wiederholt eine Münze, bis wir Kopf erhalten. Wir können nehmen $\Omega = \{K, Z\}^{\mathbb{N}}$. Nehmen wir das \mathscr{F} eine σ -Algebra ist und das die Ereignis

$$A_k = \{ \omega \in \Omega : \omega_k = K \}$$

für $k \ge 1$ alles in $\mathscr F$ sind. Dann die Ereignis E = "Schließlich erhalten Kopf" liegt auch in $\mathscr F$ weil

$$E = \{ \omega \in \Omega : \exists k \ge 1 : \omega_k = K \} = \bigcup_{k > 1} A_k.$$

Bemerkung.

- Drei Ebenen: Ergebnis: $\omega \in A \subseteq \Omega$. Ereignis: $A \in \mathcal{F} \subseteq \mathcal{P}(\Omega)$. Ereignis-Systeme: $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\Omega))$.
- $\mathcal{P}(\Omega)$ ist eine σ -Algebra.

Wichtige Eigenschaften. Sei \mathscr{F} eine σ -Algebra

- Durchschnitt von σ -Algebras ist immer noch eine σ -Algebra (zeigen Sie).
- Vereinungen von σ -Algebras ist <u>nicht in Allgemeinen</u> eine σ -Algebra (Gegenbeispiel?)
- Sei $f: \Omega \to \Omega'$ eine beliebige Abbildung und \mathscr{F} eine σ -Algebra von Ω' , dann

$$f^{-1}(\mathcal{F}) = \{f^{-1}(A) \subseteq \Omega : A \in \mathcal{F}\} \subseteq \mathcal{P}(\Omega)$$

ist immer eine σ -Algebra. (Vorbild auf σ -Algebras sind auch σ -Algebras)

• Wenn $g: \Omega \to \Omega'$ dann ist

$$g(\mathcal{F}) = \{g(A) \subseteq \Omega' : A \in \mathcal{F}\} \subseteq \mathcal{P}(\Omega')$$

nicht in Allgemeinen eine σ -Algebra (z.B. wenn g nicht surjectiv ist).

Definition 2. Für eine Menge \mathscr{E} von Teilmengen von Ω definiert man $\sigma(\mathscr{E})$, <u>die von \mathscr{E} </u> erzeugte σ -Algebra, als die **kleinste** σ -algebra die \mathscr{E} enthält, d.h.

$$\sigma(\mathcal{E}) = \bigcap \{ \mathcal{F} \subseteq \mathcal{P}(\Omega) : \mathcal{F} \text{ ist eine } \sigma\text{-Algebra und } \mathcal{E} \subset \mathcal{F} \}$$

 \mathscr{E} ist ein Erzeuger von $\sigma(\mathscr{E})$.