16 marca 2014

p	q	$p \lor q$	_ <i>p</i>	q	$p \wedge q$	_	p	q	$p\Rightarrow q$	_ <i>p</i>	q	$p \Leftrightarrow q$
0	0	0	0	0	0	_	0	0	1	0	0	1
0	1	1	0	1	0		0	1	1	0	1	0
1	0	1	1	0	0		1	0	0	1	0	0
1	1	1	1	1	1		1	1	1	1	1	1

Zadanie 1:

Które z następujących wyrażeń są zdaniami? Podaj wartości logiczne tych zdań.

a) 2 jest liczbą pierwszą lub nie jest prawdą, że 3 jest liczbą parzystą

$$p \vee \neg q$$

$$w(p) = 1 \; ; \; w(q) = 0$$

$$w(p \lor \neg q) = 1$$

c) liczba 4 jest dodatnia, a liczba 3 jest ujemna

$$p \wedge q$$

$$w(p) = 1$$
 ; $w(q) = 0$

$$w(p \wedge q) = 0$$

e) jeżeli 3 * 2 = 1, to $\cos(2006^{\circ}) > \frac{1}{2}$

$$p \Rightarrow q$$

$$w(p) = 0$$
 ; $w(q) = \text{obojetna}$

$$w(p \Rightarrow q) = 1$$

Zadanie 2:

Niech p,q,r i s będą następującymi zdaniami:

- $p = \text{warto} \dot{s} \dot{c}(X) > 0$,
- $q = \text{warto} \dot{s} \dot{c}(Y) > 0$,
- r = wyniki są wyświetlane na ekranie,
- $s = \text{warto} \dot{s} \dot{c}(X) := \text{warto} \dot{s} \dot{c}(X) + 1$.

Zapisz każde z poniższych zdań za pomocą symboliki logicznej.

- a) jeśli nie jest prawdą, że wartość(X)>0, to wartość $(X)\coloneqq$ wartość(X)+1
- b) wyniki są wyświetlane na ekranie wtedy i tylko wtedy, gdy wartość(X)>0 $r \Longleftrightarrow p$

Zadanie 3:

Określ wartość logiczną zdania:

- a) 1 jest liczbą pierwszą wtedy i tylko wtedy, gdy 1 jest liczbą niewymierną i 1 jest liczbą nieparzystą $p \Leftrightarrow q \land r \; ; \; w(p) = 0 \; , \qquad w(q) = 1 \; , \qquad w(r) = 0$ $w(p \Leftrightarrow q \land r) = 1$
- b) 5 jest liczbą nieparzystą wtedy i tylko wtedy, gdy 2 jest liczbą nieparzystą lub 3 jest liczbą parzystą $p \Leftrightarrow q \lor r \; ; \; w(p) = 1 \; , \; w(q) = 0 \; , \; w(r) = 0$ $w(p \Leftrightarrow q \lor r) = 0$
- c) jeśli 2 jest liczbą parzystą, to 4 jest liczbą nieparzystą lub 5 jest liczbą nieparzystą $p\Rightarrow q\vee r$; w(p)=1 , w(q)=0 , w(r)=1 $w(p\Rightarrow q\vee r)=1$
- d) jeśli 2 nie jest liczbą naturalną, to $\ln(3,24)>5$ lub $\log(3,24)>5$ $p\Rightarrow q\vee r$; w(p)=0 , w(q)=0 , w(r)=0 $w(p\Rightarrow q\vee r)=1$

e) jeśli $\sin 5 > \frac{1}{2}$, to 5 jest liczbą nieparzystą

$$p \Rightarrow q$$
 ; $w(p) = 1$, $w(q) = 1$
 $w(p \Rightarrow q) = 1$

f) jeśli
$$\ln e > \frac{1}{2}$$
, to $\ln 100 > \frac{1}{2}$ i $\ln 1 > \frac{1}{2}$
$$p \Rightarrow q \land r \; ; \; w(p) = 1 \; , \; w(q) = 1 \; , \; w(r) = 0$$

$$w(p \Rightarrow q \land r) = 0$$

Zadanie 4:

Wykaż, że następujące wyrażenia są tautologiami rachunku zdań. Zastosuj dwie metody: "zerojedynkową" i "nie wprost".

a) $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$ – określenie implikacji za pomocą alternatywy

Metoda "zerojedynkowa":

		α		β	
p	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$	$\alpha \Leftrightarrow \beta$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	1	0	1	1

Metoda "nie-wprost":

Sprzeczność

Sprzeczność

b)
$$\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q) - \text{prawo De Morgana}$$

Metoda "zerojedynkowa":

				α	β	
p	q	$\neg p$	$\neg q$	$\neg (p \lor q)$	$(\neg p \land \neg q)$	$\alpha \Leftrightarrow \beta$
0	0	1	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	0	0	0	0	1

Metoda "nie-wprost":

c)
$$((p \Rightarrow q) \land (p \Rightarrow r)) \Leftrightarrow (p \Rightarrow (q \land r))$$

Metoda "zerojedynkowa":

			β	γ	α	Θ		
p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	$q \wedge r$	$p\Rightarrow \alpha$	βΛγ	$\beta \wedge \gamma \Leftrightarrow \Theta$
0	0	0	1	1	0	1	1	1
0	0	1	1	1	0	1	1	1
0	1	0	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	1
1	0	1	0	1	0	0	0	1
1	1	0	1	0	0	0	0	1
1	1	1	1	1	1	1	1	1

Zadanie 7:

Chcemy zbudować tabelę wartości logicznych dla formuły zawierającej n zmiennych. Ile wartościowań należy rozważyć?

Odp.: 2^n

Zadanie 18:

Zbadaj, czy podane rozumowanie jest poprawne. Jeśli tak, to wskaż regułę na której jest ono oparte.

Przyjmijmy, że
$$[f = \Theta(q)] = \mathbf{p} i [f = O(q)] = \mathbf{q}$$

a) Jeśli
$$f=\Theta(g)$$
, to $f=O(g)$. Wiem, że $f=\Theta(g)$. Zatem $f=O(g)$
$$\frac{p\Rightarrow q\;;\;p}{q}$$

Odp.: Prawda

b) Jeśli $f=\Theta(g)$, to f=O(g). Nieprawda, że f=O(g). Zatem nieprawda, że $f=\Theta(g)$ $\frac{p\Rightarrow q \ ; \neg q}{\neg p} \left((p\Rightarrow q) \land \neg q \right) \Rightarrow \neg p$

Odp.: Prawda