Mathematical Methods: Power Series

Autumn term 2017

Instructors: Mahdi Cheraghchi, Marc Deisenroth

Assessed Exercise: Questions 2, 3b, 4c are assessed and are due by 9am on Monday 30 October.

1. Find the Maclaurin expansion of sin(x). Hence or otherwise write down a power series expansion for cos(x).

Solutions: For the function $f(x) = \sin(x)$, we differentiate repeatedly to find a general form for the derivative at x = 0.

$$f(x) = \sin(x) \qquad f(0) = 0$$

$$f'(x) = \cos(x) \qquad f'(0) = 1$$

$$f''(x) = -\sin(x) \qquad f''(0) = 0$$

$$f^{(3)}(x) = -\cos(x) \qquad f^{(3)}(0) = -1$$

$$f^{(4)}(x) = f(x) \qquad f^{(4)}(0) = f(0) = 0$$

Now we have a repeating derivative pattern with a period of 4.

We note that $f^{(2n+1)}(0)$ gives non-zero derivatives at x=0 for $n\geq 0$ and in fact:

$$f^{(2n+1)}(0) = \begin{cases} 1 & : n \text{ even} \\ -1 & : n \text{ odd} \end{cases} = (-1)^n \qquad \text{for } n \ge 0$$
$$f^{(2n)}(0) = 0 \qquad \text{for } n \ge 0$$

Applying Maclaurin's theorem, we get:

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Since we know that $f'(x) = \cos(x)$, we can differentiate the $\sin(x)$ expansion to get the

cos(x) series expansion directly.

$$f'(x) = \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

You may wish to assure yourself that the radius of convergence for both series is infinite.

2. Find the radius of convergence of the following power series:

$$f(x) = \sum_{n=1}^{\infty} e^{-n} x^n$$

Solutions: Using the ratio test on $f(x) = \sum_{n=1}^{\infty} a_n$:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^{-(n+1)} x^{n+1}}{e^{-n} x^n} \right|$$
$$= \lim_{n \to \infty} \left| e^{-1} x \right|$$
$$= \left| e^{-1} x \right|$$

which converges if |x/e| < 1 or |x| < e. Thus radius of convergence is e.

3. For the following functions, find both the power series expansion around x = 0 and the radius of convergence for the power series.

(a)
$$f(x) = e^x$$

(b)
$$f(x) = \frac{1}{(1-x)^2}$$

(c) Exam standard. $f(x) = \ln(2+x)$

Solutions:

(a) For $f(x) = e^x$, $f'(x) = f(x) = e^x$ and thus the *n*th derivative $f^{(n)}(x) = e^x$. Applying Maclaurin's theorem:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

We apply the absolute convergent form of the ratio test to the terms of the series

$$a_n = \frac{1}{n!}x^n$$
.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)!} x^{n+1}}{\frac{1}{n!} x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{(n+1)} x \right|$$

$$= \lim_{n \to \infty} \frac{|x|}{(n+1)}$$

$$= 0$$

Since this is less than one independent of the value of x, we know that it will converge for all $x \in \mathbb{R}$. So the radius of convergence for the power series of e^x is ∞ .

(b) For $f(x) = \frac{1}{(1-x)^2}$, we can show after repeated differentiation that:

$$f^{(n)}(x) = \frac{(n+1)!}{(1-x)^{n+2}}$$
 and so $f^{(n)}(0) = (n+1)!$

Applying Maclaurin's theorem:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= \sum_{n=0}^{\infty} (n+1)x^n$$

We apply the absolute convergent form of the ratio test to the terms of the series $a_n = (n+1)x^n$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{nx^n} \right|$$
$$= \lim_{n \to \infty} \left| \left(1 + \frac{1}{n} \right) x \right|$$
$$= |x|$$

Applying the ratio test we get that |x| < 1 ensures convergence. So the radius of convergence for the power series is 1.

(c) For $f(x) = \ln(2+x)$, we have to be a little careful as the first term in the Maclauren series (of the form f(0) is not of the same form as the others. After differentiating, we get that:

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(2+x)^n}$$
 for $n \ge 1$

Applying Maclaurin's theorem:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= \ln 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n2^n}$$

giving us a series term of $a_n = (-1)^{n-1} \frac{x^n}{n2^n}$ for $n \ge 1$ and $a_0 = \ln 2$. In the limit, using the ratio test, we will not be concerned about early terms that do not match a pattern as long as later terms do.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n \frac{x^{n+1}}{(n+1)2^{n+1}}}{(-1)^{n-1} \frac{x^n}{n2^n}} \right|$$

$$= \lim_{n \to \infty} |x| \frac{1}{2(1 + \frac{1}{n})}$$

$$= \frac{|x|}{2}$$

Giving us |x|/2 < 1 or |x| < 2 and a radius of convergence of 2 for the power series.

- 4. **Exam standard.** For the following functions, find both the Taylor series expansion around the specified point and the radius of convergence for the power series.
 - (a) $f(x) = e^{2x+b}$ around x = a
 - (b) $f(x) = x^4$ around x = 1
 - (c) $f(x) = (3x 2)^{-2}$ around x = 1

Solutions: Taylor series expansion of f(x) around x = a is:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

(a) Differentiating f(x) gives:

$$f'(x) = 2e^{2x+b}$$

 $f^{(n)}(x) = 2^n e^{2x+b}$ for $n \ge 0$

Giving a Taylor expansion around x = a of:

$$f(x) = \sum_{n=0}^{\infty} \frac{e^{2a+b}}{n!} 2^n (x-a)^n$$

Applying the D'Alembert ratio test we get:

$$\lim_{n \to \infty} \left| \frac{\frac{e^{2a+b}}{(n+1)!} 2^{n+1} (x-a)^{n+1}}{\frac{e^{2a+b}}{n!} 2^n (x-a)^n} \right| = \lim_{n \to \infty} \left| \frac{2}{n+1} (x-a) \right|$$

$$= 0 < 1 \qquad \text{for all } (x-a)$$

i.e. series has an infinite radius of convergence.

(b) Differentiating f(x) gives:

$$f^{(1)}(x) = 4x^3$$
 $f^{(2)}(x) = 12x^2$ $f^{(3)}(x) = 24x$ $f^{(4)}(x) = 24$

and thus a Taylor expansion around x = 1 of:

$$f(x) = 1 + 4(x - 1) + \frac{12}{2!}(x - 1)^2 + \frac{24}{3!}(x - 1)^3 + \frac{24}{4!}(x - 1)^4$$
$$= 1 + 4(x - 1) + 6(x - 1)^2 + 4(x - 1)^3 + (x - 1)^4$$

As f(x) is a finite series this means that it converges for all x and thus the radius of convergence is infinite.

(c) Differentiating f(x) gives:

$$f^{(1)}(x) = -2.3.(3x - 2)^{-3}$$

$$f^{(2)}(x) = -2. -3.3^{2}.(3x - 2)^{-4}$$

$$f^{(n)}(x) = (-1)^{n}3^{n}(n+1)!(3x-2)^{-(n+2)}$$

Thus $f^{(n)}(1) = (-1)^n 3^n (n+1)!$, giving a Taylor expansion around x=1 of:

$$f(x) = \sum_{n=0}^{\infty} (-1)^n 3^n (n+1)(x-1)^n$$

Applying the D'Alembert ratio test we get:

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1} 3^{n+1} (n+2) (x-1)^{n+1}}{(-1)^n 3^n (n+1) (x-1)^n} \right| = \lim_{n \to \infty} \left| \left(\frac{n+2}{n+1} \right) 3 (x-1) \right|$$

$$= \lim_{n \to \infty} \left(\frac{n+2}{n+1} \right) 3 |x-1|$$

$$= 3|x-1| < 1 \qquad \text{for convergence}$$

Thus $|x-1| < \frac{1}{3}$ i.e. the radius of convergence is 1/3.

5. Calculate the first three non-zero terms of the Maclaurin series for the function $f(x) = \tan x$.

Solutions: The first six derivatives (starting at 0th) of $\tan x$ are:

$$\tan x \\ \sec^2 x \\ 2\sec^2 x \tan x \\ 6\sec^4 x - 4\sec^2 x \\ (24\sec^4 x - 8\sec^2 x) \tan x \\ (\dots)' \tan x + (24\sec^4 x - 8\sec^2 x)\sec^2 x$$

which evaluate at x = 0 to: 0, 1, 0, 2, 0, 16

Maclaurin's series therefore starts:

$$\tan x = x + 2x^3/3! + 16x^5/5! + \dots = x + x^3/3 + 2x^5/15 + \dots$$

6. **Exam standard.** The differential equation:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \omega^2 y = 0$$

describes vibrations of various kinds, where y usually represents a distance and x is time. To solve it, suppose that a power series solution is postulated:

$$y = \sum_{i=0}^{\infty} a_i x^i$$

(a) By substituting into the given differential equation and comparing coefficients of x^i for $i \geq 0$, show that if the power series solution is valid, then

$$a_{i+2} = -\frac{\omega^2 a_i}{(i+1)(i+2)}$$

(b) Deduce that, for $n \in \mathbb{N}$,

$$a_{2n} = (-1)^n a_0 \frac{\omega^{2n}}{(2n)!}$$

$$a_{2n+1} = (-1)^n a_1 \frac{\omega^{2n}}{(2n+1)!}$$

(c) Hence show that, if y=1 and $\frac{\mathrm{d}y}{\mathrm{d}x}=1$ at x=0, the solution of the differential equation is $y=\omega^{-1}\sin\omega x+\cos\omega x$.

Solutions:

(a) i. Let $y = \sum_{i=0}^{\infty} a_i x^i$. Substituting in the differential equation, we get:

$$\sum_{i=2}^{\infty} a_i i(i-1)x^{i-2} + \sum_{i=0}^{\infty} a_i \omega^2 x^i = 0$$

Changing the summation variable in the left hand sum to i + 2,

$$\sum_{i=0}^{\infty} [a_{i+2}(i+2)(i+1) + a_i \omega^2] x^i = 0$$

Comparing coefficients the result follows.

ii. The recurrence 'goes up in 2s' and even and odd terms depend respectively on a_0 and a_1 . Thus,

$$a_{2n} = -\frac{\omega^2 a_{2n-2}}{2n(2n-1)} = \dots = (-1)^n a_0 \frac{\omega^{2n}}{(2n)!}$$

 a_{2n+1} follows similarly.

iii. Substituting into the power series, the solution is

$$y = a_0 \sum_{i=0}^{\infty} (-1)^i \frac{\omega^{2i} x^{2i}}{(2i)!} + a_1 \sum_{i=0}^{\infty} (-1)^i \frac{\omega^{2i} x^{2i+1}}{(2i+1)!}$$

$$= a_0 \sum_{i=0}^{\infty} (-1)^i \frac{(\omega x)^{2i}}{(2i)!} + a_1/\omega \sum_{i=0}^{\infty} (-1)^i \frac{(\omega x)^{2i+1}}{(2i+1)!}$$

$$= a_0 \cos \omega x + (a_1/\omega) \sin \omega x$$

Since y = 1 at x = 0, $a_0 = 1$. Since $Dy = -a_0\omega \sin \omega x + a_1 \cos \omega x = a_1$ at x = 0, the result follows.

7. Exam standard.

- (a) Calculate the first five terms of the Maclaurin series for the function $f(x) = e^x \cos x$ at x = 0.
- (b) The mean value theorem states that a Maclaurin series for a function f(x) that is truncated just before the x^n term, for any integer n > 0, differs from f(x) by an error term

$$f^{(n)}(\theta x) \times \frac{x^n}{n!}$$

where $\theta \in [0, 1]$. It can also be shown that the absolute value of the n^{th} derivative of $e^x \cos x$ is less than 2^n for all integers n > 2. Calculate the number of terms required in your Maclaurin series to ensure that an estimate of $f(\frac{1}{2})$ has error less than 10^{-4} .

Solutions:

(a) The first four derivatives (starting at 0th) of f(x) are: $f = e^x \cos x$, $f' = f - e^x \sin x$, f'' = 2f' - 2f, f(n+2) = 2(f(n+1) - f(n)) which evaluate at x = 0 to: $1, 1, 0, -2, -4, \ldots$ In fact $f(n+2) = i(1+i)^n - i(1-i)^n$ for $n \ge 0$ with a little effort. Maclaurin's series therefore starts as (which could be deduced by assuming the expansions for the exponential and cosine functions; allow this):

$$f(x) = 1 + x - x^3/3 - x^4/6 + \dots$$

(In fact the next term is $-x^5/30$)

- (b) Error just before term in x^n is less than $2^n(1/2)^n/n!$ and so we require 0.0001 < 1/n! i.e. n! > 10000. Hence the least n is 8.
- 8. **Exam standard.** In this question, $f(x) = \frac{\sin x}{x}$. L'Hôpital's rule can be used so that if u(0) = v(0) = 0 then $\lim_{x\to 0} \frac{u(x)}{v(x)} = \lim_{x\to 0} \frac{u'(x)}{v'(x)}$.

- (a) Compute the first three terms (up to x^2) of the power series of f(x) about x = 0 using L'Hôpital's rule or otherwise.
- (b) By considering roots of f(x) show that the polynomial for f(x) could alternatively be written as:

$$f(x) = \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$

Recall that if a is the root of a polynomial then $(1-\frac{x}{a})$ divides that polynomial.

(c) By comparing x^2 terms from parts (a) and (b), show that:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Solutions:

(a) L'Hôpital's rule gives us the confidence to know that the function exists at x = 0 and that in fact f(0) = 1. The fact that we know the power series expansion of $\sin x$ means we can divide by x to get the power series of f(x).

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$f(x) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}$$

The direct power series derivation is a lot more time consuming as the number of derivative terms explodes. The first three derivatives are:

$$f(x) = \frac{\sin x}{x}$$

$$f'(x) = \frac{x \cos x - \sin x}{x^2}$$

$$f''(x) = \frac{2 \sin x - 3x \cos x}{x}$$

Using L'Hôpital's rule:

$$f(0) = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

$$f'(0) = \lim_{x \to 0} \frac{x \sin x}{x} = 0$$

$$f''(0) = \lim_{x \to 0} \frac{-\cos x + 3x \sin x}{1} = -1$$

and thus by Maclaurin $f(x) = 1 - \frac{1}{3!}x^2 + \cdots$.

(b) Roots of f(x) are $\pm n\pi$ for $n \in \mathbb{N}(n \neq 0)$. Hence $(1 \pm \frac{x}{n\pi})$ divides f(x). So we could write f(x) as the product of its divisors:

$$f(x) = \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right)\cdots$$

Noting that $(1 - m^2) = (1 - m)(1 + m)$, we can further simplify this expression to get:

$$f(x) = \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \dots \tag{*}$$

(c) We can observe that the reason why we have put f(x) into the form of equation (*) is that it is easy to extract the x^2 term – the sum of "the x^2 terms from one of the factors in (*) multiplied by the 1 of all the other factors". Hence the coefficient of x^2 from (*) is:

$$-\frac{1}{\pi^2} - \frac{1}{4\pi^2} - \frac{1}{9\pi^2} - \frac{1}{16\pi^2} \cdots = -\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Since we know from part (a) that the x^2 coefficient of this same series must be $-\frac{1}{3!}$, we get that:

$$-\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{1}{3!}$$

Hence:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$