TABELA 1 Transformadas Laplace e Transformadas - Z				
x(t)	x(s)	$\mathbf{x}(\mathbf{z})$		
1	$\frac{1}{s}$	$\frac{z}{z-1}$	(01)	
t	$\frac{1}{s^2}$	$\frac{T_0 z}{\left(z-1\right)^2}$	(02)	
t ²	$\frac{2}{s^3}$	$\frac{T_0^2 z(z+1)}{(z-1)^3}$	(03)	
<i>t</i> ³	$\frac{6}{s^4}$	$\frac{T_0^3 z(z^2 + 4z + 1)}{(z-1)^4}$	(04)	
e ^{-at}	$\frac{1}{(s+a)}$	$\frac{z}{z - e^{-aT_0}}$	(05)	
t e ^{-at}	$\frac{1}{\left(s+a\right)^2}$	$\frac{T_0 z e^{-aT_0}}{(z - e^{-aT_0})^2}$	(06)	
$t^2 e^{-at}$	$\frac{2}{\left(s+a\right)^3}$	$\frac{T_0^2 z e^{-aT_0} (z + e^{-aT_0})}{(z - e^{-aT_0})^3}$	(07)	
$1-e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1 - e^{-aT_0})z}{(z - 1)(z - e^{-aT_0})}$	(08)	
$a t - 1 + e^{-at}$	$\frac{a^2}{s^2(s+a)}$	$\frac{(aT_0 - 1 + e^{-aT_0})z^2 + (1 - aT_0e^{-aT_0} - e^{-aT_o})z}{(z - 1)^2(z - e^{-aT_o})}$	(09)	
$e^{-at}-e^{-bt}$	$\frac{(b-a)}{(s+a)(s+b)}$	$\frac{z(e^{-aT_o} - e^{-bT_0})}{(z - e^{-aT_0})(z - e^{-bT_0})}$	(10)	
$1 - (1 + at)e^{-at}$	$\frac{a^2}{s(s+a)^2}$	$\frac{z}{z-1} - \frac{z}{(z-e^{-aT_o})} - \frac{aT_o e^{-aT_o} z}{(z-e^{-aT_o})^2}$	(11)	
$\sin(\omega_1 t)$	$\frac{\boldsymbol{\omega}_1}{s^2 + \boldsymbol{\omega}_1^2}$	$\frac{z\sin(\omega_1 T_0)}{z^2 - 2z\cos(\omega_1 T_0) + 1}$	(12)	
$\cos(\omega_1 t)$	$\frac{s}{(s^2+\omega_1^2)}$	$\frac{z(z-\cos(\omega_1 T_0))}{z^2 - 2z\cos(\omega_1 T_0) + 1}$	(13)	
$e^{-at}\sin(\omega_1 t)$	$\frac{\omega_1}{(s+a)^2 + \omega_1^2}$	$\frac{ze^{-aT_0}\sin(\omega_1T_0)}{z^2 - 2ze^{-aT_0}\cos(\omega_1T_0) + e^{-2aT_0}}$	(14)	
$e^{-at}\cos(\omega_1 t)$	$\frac{(s+a)}{(s+a)^2 + \omega_1^2}$	$\frac{z^2 - ze^{-aT_o}\cos(\omega_1 T_0)}{z^2 - 2ze^{-aT_0}\cos(\omega_1 T_0) + e^{-2aT_o}}$	(15)	

TABELA 2 - Transformadas Z com Holder de Ordem Zero - ZOH

G(s)	$G(z) = L \{ G(s) \}$	$HG(z) = \frac{z-1}{z} L \left\{ \frac{G(s)}{s} \right\}$
$\frac{1}{s}$	$\frac{z}{z-1}$	$\frac{T_0}{z-1}$
$\frac{1}{s^2}$	$\frac{T_0 z}{(z-1)^2}$	$\frac{T_0^2(z+1)}{2(z-1)^2}$
$\frac{1}{s^3}$	$\frac{T_0^2 z(z+1)}{(z-1)^3}$	$\frac{T_0^3(z^2+4z+1)}{6(z-1)^3}$
$\frac{1}{s^4}$	$\frac{T_0^3(z^2+4z+1)}{6(z-1)^4}$	$\frac{T_0^4 \left(z^3 + 11z^2 + 11z + 1\right)}{24(z-1)^4}$
$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT_0}}$	$\frac{\left(1-e^{-aT_0}\right)}{a\left(z-e^{-aT_0}\right)}$
$\frac{1}{(s+a)^2}$	$\frac{T_0 z e^{-aT_0}}{\left(z - e^{-aT_0}\right)^2}$	$\frac{\left(1 - e^{-aT_0} \left(1 + aT_0\right)\right)z + e^{-aT_0} \left(e^{-aT_0} - 1 + aT_0\right)}{a^2 \left(z - e^{-aT_0}\right)^2}$
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{(b-a)} \frac{\left(e^{-aT_0} - e^{-bT_0}\right)z}{\left(z - e^{-aT_0}\right)\left(z - e^{-bT_0}\right)}$	$\frac{1}{ab(a-b)} \frac{(Az+B)}{(z-e^{-aT_0})(z-e^{-bT_0})}$
		$A = a - b - ae^{-bT_0} + be^{-aT_0}$ $B = (a - b)e^{-(a+b)T_0} - ae^{-aT_0} + be^{-bT_0}$