Épreuve Physique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-35	Nature de la gravitation	36	
01-21	L'expérience d'Eötvös	22	
1	Il existe une classe de référentiels, appelées référentiels Galiléens,	1	
	tels que tout référentiel Galiléen est immobile ou en translation		
	rectiligne uniforme par rapport à un autre référentiel Galiléen. Et		
	dans un référentiel galiléen, un système mécanique isolé (soumis à		
	aucune force) est immobile ou en translation rectiligne uniforme.		
2	Dans un référentiel Galiléen, le principe fondamental de la mé-	1	
	canique (ou dynamique) s'applique à un objet considéré comme		
	ponctuel comme $m_i \vec{a} = \sum \vec{F}_{ext}$ avec m_i la masse inerte de l'ob-		
	jet, \vec{a} l'accélération du centre de masse de l'objet, et $\sum \vec{F}_{ext}$, la		
	résultante des forces extérieures qui s'appliquent sur l'objet.		
3	Faire un schéma. Soit deux objets A et B , la force de gravitation	1	
	exercée par A sur B s'écrit, $\vec{F}_{A\to B} = -G \frac{m_A m_B}{r_{AB}^2} \vec{u}_{AB}$ avec r_{AB} la		
	distance entre A et B , m_A et m_B les masses pesantes de A et B , G		
	la constante de gravitation universelle, et \vec{u}_{AB} le vecteur unitaire		
	dirigé selon (AB) de A vers B .		
4	Faire un schéma. Pour connaitre la durée de la chute de chaque	1	
	objet, on applique le principe fondamental de la mécanique $m_i \vec{a} =$		
	$m\vec{g}$. Il s'agit d'une chute libre d'où la seule force est le poids.		
	On le projette sur la verticale $m_i a_z = -mg$ donc $\frac{d^2 z}{dt^2} = -\frac{m}{m_i}g$.		
	Initialement le lâché s'effectue à une hauteur $z(0) = h$ et sans		
	vitesse initiale, donc $z(t) = h - \frac{m}{m_i} \frac{gt^2}{2}$. La durée de la chute libre		
	τ est donnée par $z(\tau)=0$ soit $\tau=\sqrt{\frac{m_i}{m}\frac{2h}{g}}$. Si $m_i=m$ alors τ ne		
	dépend plus de la masse de l'objet lâché.		

05-16	Mesure du coefficient de torsion du pendule	12	
5	Si une force \vec{F} est exercé sur un solide à la vitesse \vec{v} alors la	1	
	puissance de cette force est $P = \vec{F} \cdot \vec{v}$. Si un couple \vec{M} est exercé	1	
	sur un solide de vecteur vitesse rotation $\vec{\omega}$, alors la puissance de		
	ce couple est $P = \vec{M}.\vec{\omega}$.		
6	Si le couple dérive d'une énergie potentielle alors $\delta W = -dE_p$	1	
	donc $Pdt = -dE_p$ donc $\vec{M}.\vec{\omega}dt = -dE_p$ donc $M_0 \frac{d\theta}{dt}dt = -dE_p$		
	donc $M_0 d\theta = -dE_p$ donc $-M_0 = \frac{dE_p}{d\theta}$ donc $\frac{dE_p}{d\theta} = C(\theta - \theta_0)$		
	avec la condition initiale $E_p(\theta_0) = 0$, on en déduit que $E_p = 0$		
	$\frac{1}{2}C(\theta-\theta_0)^2$.		
7	Un solide en translation à la vitesse \vec{v} a pour énergie cinétique	1	
	$E_c = \frac{1}{2}m_i\vec{v}^2$, avec m_i sa masse inerte. Un solide en rotation a		
	pour énergie cinétique $E_c = \frac{1}{2}J\dot{\theta}^2$, avec J son moment d'inertie.		
8	Ici le solide S est en rotation donc $E_c = \frac{1}{2}J\dot{\theta}^2$	1	
9	L'énergie mécanique est donnée par $E_m = E_c + E_p = \frac{1}{2}J\dot{\theta}^2 +$	1	
	$\frac{1}{2}C(\theta-\theta_0)^2.$		
10	D'après le théorème de l'énergie mécanique $\frac{dE_m}{dt} = \sum P_{nc}$ avec	1	
	P_{nc} la puissance des forces non conservatives.		
11	On utilise le théorème de l'énergie mécanique $\frac{dE_m}{dt} = P_{frot}$ donc	1	
	$J\dot{\theta}\ddot{\theta} + C\dot{\theta}(\theta - \theta_0) = -\alpha\dot{\theta}^2 \text{ donc } J\ddot{\theta} + \alpha\dot{\theta} + C(\theta - \theta_0) = 0.$		
12	On observe des oscillations donc on est dans le régime pseudo-	1	
	périodique. Cela correspond a des racines complexes du polynôme		
	caractéristique associé à l'équation différentielle. Donc un discri-		
	minant négatif donc $\alpha^2 - 4JC < 0$. La forme de la solution est		
	$\theta - \theta_0 = e^{-\frac{\alpha}{2J}t}(A\cos(\omega t) + B\sin(\omega t)) \text{ avec } \omega = \frac{\sqrt{4JC-\alpha^2}}{2J} \text{ d'après}$		
	les racines du pôlynome caractéristique. A et B sont les deux		
13	constantes dont il n'est pas nécessaire de les déterminer. Lorsque $t \to +\infty$ alors $\theta \to \theta_0$. La pseudo période est $T = \frac{2\pi}{\omega} =$	1	
19		1	
	$\frac{4\pi J}{\sqrt{4JC-\alpha^2}}$. La période propre est $T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{J}{C}}$. Donc $T = \frac{2\pi}{2}$		
	$2\pi\sqrt{\frac{J}{G}} = \frac{2\sqrt{J}}{\sqrt{1-2}} = T_0 = \frac{T_0}{\sqrt{1-2}}$		
	$2\pi\sqrt{\frac{J}{C}}\frac{2\sqrt{J}}{\sqrt{4J-\frac{\alpha^2}{C}}} = T_0\frac{1}{\sqrt{1-\frac{\alpha^2}{4JC}}} = \frac{T_0}{\sqrt{1-\epsilon^2}}$		
14	Soit e l'erreur relative, $\left \frac{T-T_0}{T_0} \right = e \text{ donc } \frac{1}{\sqrt{1-\epsilon^2}} - 1 = e \dots \epsilon =$	1	
	$\sqrt{1-\left(\frac{1}{1+e}\right)^2}$ donc $e<0,01$ implique que $\epsilon<0,14$		
15	$T = T_0 = 2\pi \sqrt{\frac{J}{C}} \text{ donc } T^2 = 4\pi^2 \frac{J}{C} \text{ donc } \frac{CT^2}{4\pi^2} = J_0 + 2J_1 + 2mL^2.$	1	
10	Y Y	1	
	Il faut tracer $2mL^2$ en fonction de $\frac{T^2}{4\pi^2}$ et effectuer une régression		
	linéaire pour estimer la pente $C = 3, 0.10^{-7} \text{ N.m}$		

16	$\frac{CT^2}{4\pi^2} = J_0 + 2J_1 + 2mL^2$. L'ordonnée à l'origine du graphe tracé à la question précédente est petite devant l'ordonnées des points	1	
	$2mL^2$, donc on peut simplifier l'équation en $\frac{CT^2}{4\pi^2}=2mL^2$ donc		
	$m = \frac{CT^2}{8\pi^2 L^2}$		
17-21	Résultats et précision de l'expérience	5	
17	Une référentiel en rotation uniforme est un référentiel non-galiléen	1	
	avec deux forces d'inertie la force d'inertie d'entrainement ou force		
	centrifuge et la force d'inertie de Coriolis. La force centrifuge		
	s'écrit $\vec{f}_{ie} = -m_i \vec{\omega}_t \wedge \left(\vec{\omega}_t \wedge \overrightarrow{GO} \right) = m_i \omega_t^2 \overrightarrow{HO}$ avec H le projeté		
	orthogonal de O sur l'axe terrestre. La force d'inertie de Coriolis		
10	$f_{ic} = -2m_i\vec{\omega}_t \wedge \vec{v}_G(O).$	1	
18	Si les masses sont immobiles, la force d'inertie de Coriolis n'in-	1	
	tervient pas. Il reste donc que la force centrifuge. $f_{ie,1} = m_{i1}\omega_t^2\overrightarrow{HS_1} = m_{i1}\omega_t^2(\overrightarrow{HO} + \overrightarrow{OS_1})$ avec $HO = \cos \lambda R_t$ et $OS_1 = L$		
	$\vec{f}_{ie,2} = m_{i2}\omega_t^2(\cos\lambda R_t(\cos(\lambda)\vec{u}_z - \sin(\lambda)\vec{u}_\lambda) + L\vec{u}_\rho)$ de meme		
19	A l'équilibre, la somme des moments des forces est nulle. Le	1	
	couple de rappel selon z est $M_0 = -C(\theta_{\infty,1} - \theta_0)$, le couple		
	de la force centrifuge exercée sur m_{i1} projeté selon \vec{u}_z est		
	$M_z(\vec{f}_{ie,1}) = (\overrightarrow{OS_1} \wedge \vec{f}_{ie,1}) \cdot \vec{u}_z = (-L\vec{u}_\rho \wedge \vec{f}_{ie,1}) \cdot \vec{u}_z = -L(\vec{f}_{ie,1} \cdot \vec{u}_\lambda) = 0$		
	$-Lm_{i1}\omega_t^2\cos\lambda R_t(-\sin(\lambda))$ celui exercé sur m_{i2} est $M_z(\vec{f}_{ie,2})$ =		
	$ (\overrightarrow{OS_2} \wedge \overrightarrow{f_{ie,2}}) . \overrightarrow{u_z} = (L\overrightarrow{u_\rho} \wedge \overrightarrow{f_{ie,2}}) . \overrightarrow{u_z} = -L(\overrightarrow{f_{ie,2}} . \overrightarrow{u_\lambda}) = $		
	$Lm_{i2}\omega_t^2\cos\lambda R_t(-\sin(\lambda))$ d'où à l'équilibre $-C(\theta_{\infty,1}-\theta_0)$ +		
	$Lm_{i1}\omega_t^2\cos\lambda R_t\sin(\lambda) - Lm_{i2}\omega_t^2\cos\lambda R_t\sin(\lambda) = 0$. Dans la deuxième configuration il faut inverser les rôle joué par les masses		
	1 et 2, on obtient alors $-C(\theta_{\infty,2}-\theta_0)+Lm_{i2}\omega_t^2\cos\lambda R_t\sin(\lambda)$		
	$Lm_{i1}\omega_t^2\cos\lambda R_t\sin(\lambda)=0$ en soustrayant une équation à l'autre		
	on obtient la relation faisant l'écart angulaire $-C\Delta\theta + 2L(m_{i1} -$		
	m_{i2}) $\omega_t^2 \cos \lambda R_t \sin(\lambda)$ d'où $\Delta \theta = \frac{L\omega_t^2 R_t \sin(2\lambda)}{C} (m_{i1} - m_{i2})$		
20	m_{i2}) $\omega_t^2 \cos \lambda R_t \sin(\lambda)$ d'où $\Delta \theta = \frac{L\omega_t^2 R_t \sin(2\lambda)}{C} (m_{i1} - m_{i2})$ D'après l'équation précédente $m_{i1} - m_{i2} = \frac{C\Delta \theta}{L\omega_t^2 R_t \sin(2\lambda)}$ et	1	
	d'après la question 16 $m = \frac{CT^2}{8\pi^2L^2}$. Donc $\delta m = \frac{ m_{i1}-m_{i2} }{m} =$		
	$\frac{C \Delta\theta }{L\omega_t^2 R_t \sin(2\lambda)} \frac{8\pi^2 L^2}{CT^2} = \frac{8\pi^2 L \Delta\theta }{T^2 \omega_t^2 R_t \sin(2\lambda)} \text{ en faisant l'application numé-}$		
	rique on trouve $\delta m = 3.10^{-7}$		
21	On peut en déduire que l'écart relatif entre les masses inertielle	1	
	est inférieur à 0,3 millionième.		
22-35	Corriger la gravitation universelle classique?	14	
22-31	Gravitation newtonienne, matière noire	10	
22	Soit S une surface fermée, alors le flux Φ du champ électrostatique	1	
	\vec{E} est donné par $\Phi = \iint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{int}}{\epsilon_0}$, avec Q_{int} la charge inté-		
	rieure à la surface S et ϵ_0 la permittivité du vide. Soit V le volume définit par la surface fermé S , pour une distribution volumique ρ		
	definit par la surface ferme S , pour une distribution voluntique ρ de charge $Q_{int} = \iiint_V \rho dV$		
I	JJJV F.	1 1	

23	La circulation du champ électrostatique \vec{E} sur un contour fermé C est nulle, $\oint_C \vec{E} \cdot d\vec{l} = 0$	1	
24	Le théorème de Gauss correspond à $\operatorname{div}(\vec{E}) = \frac{\rho}{\epsilon_0}$ et la circulation du champ à $\operatorname{rot}(\vec{E}) = \vec{0}$	1	
25	Pour le champ magnétostatique le flux est nul et le rotationnel non nul donc on ne peut pas proposer d'analogie. Par analogie $\vec{\Gamma} = -\overline{\text{grad}}(\Phi(M))$, donc $-\text{div}(\overline{\text{grad}}(\Phi(M))) = -4\pi G \rho$ donc $\Delta \Phi(M) = 4\pi G \rho$	1	
26		1	
27	$\vec{v}_c = r\dot{\theta}\vec{u}_{\theta}$ pour une orbite circulaire. Et en projetant le PFD sur \vec{u}_r on a $-mr\dot{\theta}^2 = -m\frac{d\Phi}{dr}$ donc $\vec{v}_c = \sqrt{r\frac{d\Phi}{dr}}\vec{u}_{\theta}$ car $\Phi(r)$ est croissante.	1	
28	si $\Phi(r) = -\frac{GM_b}{r}$ alors $\frac{d\Phi}{dr} = \frac{GM_b}{r^2}$ donc $\vec{v}_c = \sqrt{\frac{GM_b}{r}}\vec{u}_\theta$. Ce modèle est dit keplerien car il est analogue au système solaire même constante des aires, même loi de Kepler, même vitesse circulaire,	1	
29	En dehors du bulbe la vitesse circulaire est à peu près constante , ce qui est en contradiction avec le modèle keplerien qui prévoit une décroissance en $\propto \frac{1}{\sqrt{r}}$ de la vitesse circulaire.	1	
30	L'équation de Poisson donne $\Delta\Phi = 4\pi G\rho$ donc $\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\Phi}{dr}\right) = 4\pi G\frac{C_0}{r_0^2+r^2}$ donc $\frac{d}{dr}\left(rv_c^2\right) = 4\pi GC_0\frac{r^2}{r_0^2+r^2}$ donc $rv_c^2 - 0 = 4\pi GC_0\left(r - r_0\arctan\left(\frac{r}{r_0}\right)\right)$ donc $v_c = \sqrt{4\pi GC_0\left(1 - \frac{r_0}{r}\arctan\left(\frac{r}{r_0}\right)\right)}$. Quand $r \gg r_0$ on retrouve bien $v_c \simeq \sqrt{4\pi GC_0}$ une constante. Donc $C_0 = \frac{v_c^2}{4\pi G} = 5, 8.10^{19}$ kg.m ⁻¹ = 9.10 ⁵ M _{\odot} .pc ⁻¹ . La constante r_0 représente l'échelle à partir de laquelle l'effet de la matière noire est importante.	1	

31	La masse de matière noire est donc $M_n = \iiint \rho dV =$	1	
	$4\pi C_0 \int_0^{R_d} \frac{1}{r_0^2 + r^2} r^2 dr = 4\pi C_0 \left(R_d - r_0 \arctan\left(\frac{R_d}{r_0}\right) \right) \simeq 4\pi C_0 R_d.$		
	L'application numérique donne $M_n=3,3.10^{11}\mathrm{M}_\odot$. La matière vi-		
	sible représente donc environ 3% de la matière totale de l'univers.		
	Les 97% restant sont de la matière noire qui modifie la rotation		
	des galaxies.		
32-35	Gravitation modifiée	4	
32	$[\mu(u)] = 1 \text{ donc } [\sqrt{u}] = 1 \text{ donc } [u] = 1 \text{ donc } [a_0]^2 = [\text{grad}\Phi_m]^2$	1	
	donc $[a_0] = [\Gamma] = [\frac{F}{m}] = L.T^{-2}$. Pour retrouver mes équations		
	précédente il faut que $K=1$.		
33	$\operatorname{div}\left(\mu(u)\overrightarrow{\operatorname{grad}}\Phi_{m}\right) = 4\pi G\rho = \operatorname{div}\left(\overrightarrow{\operatorname{grad}}\Phi\right) \operatorname{donc}$	1	
	$\operatorname{div}\left(\mu(u)\overrightarrow{\operatorname{grad}}\Phi_m - \overrightarrow{\operatorname{grad}}\Phi\right) = 0$. Et d'après le formulaire		
	$\operatorname{div}\left(\overrightarrow{\operatorname{rot}}\overrightarrow{h}\right)=0$ donc il existe un vecteur \overrightarrow{h} qui vérifie la propriété		
	énoncé.		
34	si $u \ll 1$ alors $\sqrt{u} \overrightarrow{\text{grad}} \Phi_m = \overrightarrow{\text{grad}} \Phi$ donc $\frac{1}{a_0} \left(\frac{d\Phi_m}{dr} \right)^2 = \frac{d\Phi}{dr} = \frac{GM_b}{r^2}$	1	
	et $v_c = \sqrt{r \frac{d\Phi_m}{dr}} = \sqrt{r \frac{\sqrt{a_0 G M_b}}{r}} = (a_0 G M_b)^{1/4}$		
35	D'après l'équation ci-dessus $a_0 = \frac{v_c^4}{GM_b} = 1,7.10^{-9} \text{ m.s}^{-2}$. L'accé-	1	
	lération subie par le Soleil est $a = \frac{v_c^2}{r} = 1, 8.10^{-10} \text{ m.s}^{-2}$. On est		
	bien dans le régime $u \ll 1$		