Revisión: Efficient Virtual Memory for Big Memory Servers, ISCA 2013

Antonio Solana Suárez

October 2023

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- 3 Direct Segment
- 4 Implementacion
- 5 Evaluación
- 6 Análisis del paper

Introducción

- La memoria es una parte crítica en el rendimiento de los sistemas de cómputo.
- Las aplicaciones cada vez usan más memoria.¹
- Una de las ventajas de la virtualización es que permite a los procesos usar más memoria que la física disponible. Swapping
- Escasez de memoria(Antes) vs Abundancia(Ahora)

La virtualización de la memoria está presente en estos sistemas pero esto no es gratis. **Traducción de direcciones**

Introducción II

- El TLB es una caché para acelerar el proceso de traducción de páginas virtuales a páginas físicas.
- Trabaja en paralelo con acceso a memoria, solo overhead en fallos del TLB
- ¿Es este el único coste que tiene el TLB?

Introducción III

- El TLB es una caché para acelerar el proceso de traducción de páginas virtuales a páginas físicas.
- Trabaja en paralelo con acceso a memoria, solo overhead en fallos del TLB
- ¿Es este el único coste que tiene el TLB?

Los accesos al TLB consumen $\approx 6\%^2$ de la energía de la CPU.

¹Sodani, A. 2011. Race to Exascale: Opportunities and Challenges. MICRO 2011 Keynote address.

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- 3 Direct Segment
- 4 Implementacion
- 5 Evaluación
- 6 Análisis del paper

Equipo de testeo

Table 1. Test machine configuration

	Description		
Processor	Dual-socket Intel Xeon E5-2430 (Sandy Bridge), 6 cores/socket, 2 threads/core, 2.2 GHz		
L1 DTLB	4KB pages: 64-entry, 4-way associative; 2MB pages: 32-entry 4-way associative; 1GB pages: 4-entry fully associative		
L1 ITLB	4KB pages: 128-entry, 4-way associative; 2MB pages: 8-entry, fully associative		
L2 TLB (D/I)	4 KB pages: 512-entry, 4-way associative		
Memory	96 GB DDR3 1066MHz		
os	Linux (kernel version 2.6.32)		

Test I Benchmarks ejecutados

- Graph500: Generación, compresión(Kernel 1) y búsqueda en anchura(Kernel 2).
 toy(17GB)-mini(140GB)-...-large(140TB)-huge(1.1PB).
- Memcached: Bases de datos clave valor en memoria(?)
- MySQL TPC-C Transacciones de almacén de ventas: Compras, ventas, gestión del stockage.
- GUPS(GigaUpdatesPerSecond): Número de actualizaciones aleatorias por segundo en una matriz gigante.
- NAS Parallel benchmark: BP(Block tridiagonal solver), CG(Conjugate gradient)

Test II Resultados

Test III Resultados

Table 3. Page-grain protection statistics

	Percentage of allocated memory with read-write permission
graph500	99.96%
memcached	99.38%
MySQL	99.94%
NPB/BT	99.97%
NPB/CG	99.97%
GUPS	99.98%

Test IV Resultados

Table 4. TLB miss cost.

	Percei	ntage of e	execution cycle	es servicing	
	TLB misses				
	Base Pages		Large Pages	Huge Pages	
	(4KB)		(2MB)	(1GB)	
	D-TLB	I-TLB	D-TLB	D-TLB	
graph500	51.1	0	9.9	1.5	
memcached	10.3	0.1	6.4	4.1	
MySQL	6.0	2.5	4.9	4.3	
NPB:BT	5.1	0.0	1.2	0.06	
NPB:CG	30.2	0.0	1.4	7.1	
GUPS	83.1	0.0	53.2	18.3	

Investigaciones Conclusiones

Las Memory-workloads:

- El uso de memoria es predecible
- No necesitan las ventajas de la virtualización
- Los fallos del TLB, provocan una pérdida considerable de ciclos de la CPU.

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- 3 Direct Segment
- 4 Implementacion
- Evaluación
- 6 Análisis del paper

Solución propuesta: Direct Segment

- Consiste en realizar una zona contigua en el espacio de direccionamiento del proceso. Primary Region
- Esta zona se mapea directamente a memoria a través del uso de 3 registros el **base**, el **limite** y el **offset**.
- Estas zonas no poseen features como fine-grain protection o swapping.

Direct segment: Caracteristicas

- Barato en cuanto a hardware
- Mayor escalabilidad
- Coexistencia con la virtualización
- La abstracción de la memoria permanece intacta

Direct Segment vs Páginas mas grandes Ventajas

- Mejor rendimiento en aplicaciones con accesos aleatorios.
- Menos complejo que modificar el TLB. Hardware más sencillos.
- Mayor flexibilidad
- La abstracción de la memoria permanece intacta. Visión vertical de la memoria.
- Menor fragmentación interna.
- En virtualización reduce el TLB walk al solo tener que realizar el walk del Guest.

Direct Segment vs Páginas mas grandes Desventajas

- Es inferior en entornos dinámicos e impredecibles, donde hay muchas procesos que se ejecutan en tiempos cortos
- Puedes llegar a desperdiciar memoria, en software con disperso virtual memory allocation, Thread arena.

Problemas: ¿Fragmentación?

- La fragmentación externa queda eliminada puesto que la primary region se reserva empleando **múltiplos** del tamaño de página.
- La fragmentación interna puede evitarse debido a la predictabilidad del uso de memoria de los programas.

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- Oirect Segment
- 4 Implementacion
- Evaluación
- 6 Análisis del paper

Implementacion en sistema operativo Primary Region

- Reservar un rango de direcciones virtuales, fijo para uso exclusivo del direct segment.
- Reserva de memoria paging vs primary region.
 Dos alternativas:
 - Paging por defecto, flag en llamada mmap para indicar que pertenece a la primary region
 - Direct segment por defecto, regiones anónimas con permisos uniformes van a la primary region.

Implementacion en sistema operativo Hardware

Figure: Esquema funcionamiento del Direct Segment

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- Oirect Segment
- 4 Implementacion
- 5 Evaluación
- 6 Análisis del paper

Evaluacion-Prototipado

- No se ha utilizado un simulador para las pruebas. Muy costoso
- Simulacion con gem5 de big-memory workloads puede tardar meses
- La memoria utilizada en la simulación es de al menos el doble.
- Se implementó un prototipo simple, solo un proceso puede encontrarse usando direct segment. Primary Process
- Para la reserva de memoria se ha elegido paging por defecto

Evaluacion-Prototipado implementacion

- Páginas de 4kb, modifica el manejador de fallo de páginas, para introducir el offset.
- Contadores del hardware(oprofile) y kernel tweaks para estimar el número de fallos del TLB que serían evitados por direct segment.
- Se hace que el TLB actue como si fuese software haciendo que todas las PTE del primary process sea invalido. Modifican el manejador de fallo de páginas, Forcing traps + TLB incoherence
- Se ha estimado lo que tarda el walker en traer la página de memoria al TLB. Subestima direct segment por L2 hit

Evaluacion-Prototipado Forcing traps + TLB incoherence

Figure: Detección de TLB misses en el prototipo de evaluación

Resultados I

Figure: Resultados Páginas vs Direct Segment Pag.4KB

Table 5. Reduction in TLB misses

	Percent of D-TLB misses in the direct secgment
graph500	99.99
memcached	99.99
mySQL	92.40
NBP:BT	99.95
NBP:CG	99.98
GUPS	99.99

Figure: Resultados Páginas vs Direct Segment Pag.4KB

Figure 5. DTLB miss overheads when scaling up GUPS.

Guia

- Introduccion
- 2 Analisis de tareas de servidor intensivas en memoria
- Oirect Segment
- 4 Implementacion
- 5 Evaluación
- 6 Análisis del paper

Puntos fuertes

- Suele realizar una introducción para indicar la estructura de los textos, facilita la lectura.
- Realiza un análisis detallado y estructurado, de las tareas intensas en memoria.
- Las gráficas y las tablas son descriptivas y fáciles de entender.
- Se encuentran recogidas las limitaciones del direct segment

Puntos debiles

- Uno de los enlaces de la tabla 2 el de la NASA, tiene un typo. No está indicado cuando se visitaron los enlaces.
- La relación entre las gráfica y la tabla de los resultados, no esta justificada.
- El benchmark de memcached no está bien definido.
- La implementación prototipada es algo enrevesada.

Aprobado

¿Preguntas?