

Marmara University, 2021

Probability and Statistics

Subject 10

Inference from Small Samples

Mujdat Soyturk, Ph.I. Associate Professor

Contents

- Student's t Distribution
- Small-Sample Inferences Concerning a Population Mean
- Small-Sample Inferences for the Difference Between Two Population Means: Independent Random Samples
- Small-Sample Inferences for the Difference Between Two Population Means: A Paired-Difference Test
- · Inferences Concerning a Population Variance
- Comparing Two Population Variances

Most parts of the slides are derived from the textbook: "Mendenhall, Beaver, Beaver, Introduction to Probability and Statistics, 14th Ed.,

10 - 2

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Introduction

- When the sample size is small, the estimation and testing procedures of Chapter 8 are not appropriate.
- There are equivalent small sample test and estimation procedures for
 - μ, the mean of a normal population
 - μ_I – μ_2 the difference between two population means
 - σ^2 , the variance of a normal population
 - The ratio of two population variances.

10 - 3

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

The Sampling Distribution of the Sample Mean

When we take a sample from a normal population, the sample mean \overline{x} has a normal distribution for any sample size n, and z has a standard normal distribution

 $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

 But if σ is unknown, and we must use s to estimate it, the resulting statistic is not normal.

$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 is not normal!

10 - 4

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Student's t Distribution

 Fortunately, this statistic does have a sampling distribution that is well known to statisticians, called the Student's t distribution, with n-1 degrees of freedom.

• We can use this distribution to create estimation testing procedures for the population mean μ .

10 - 5

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Properties of Student's t

Mound-shaped and symmetric about 0.

• More variable than z, with "heavier tails"

- Shape depends on the sample size n or the degrees of freedom, n-1.
- As n increases the shapes of the t and z distributions become almost identical.

MY APPLET

10 - 6 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Testing the Difference between Two Means

The test statistic used in Chapter 9

$$z \approx \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

does not have either a z or a t distribution, and cannot be used for small-sample

We need to make one more assumption, that the population variances, although unknown, <u>are equal</u>. (Both populations have exactly the same shape.)

10 - 19

Testing the Difference between Two Means

Instead of estimating each population variance separately, we estimate the common variance with

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

And the resulting test statistic,

$$t = \frac{\bar{x}_1 - \bar{x}_2 - D_0}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

has a t distribution with n_1+n_2-2 degrees of freedom.

10 - 20

Estimating the Difference between Two Means

You can also create a 100(1- α)% confidence interval for μ_1 - μ_2 .

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

with
$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

assumptions:

- Original populations normal
- Samples random and
- independent **Equal population** variances.

Test of Hypothesis for the Difference Between Two Population Means: Independent Random Samples

1. Null hypothesis: $H_0: (\mu_1-\mu_2)=D_0$, where D_0 is some specified difference that you wish to test. For many tests, you will hypothesize that there is no difference between μ_1 and μ_2 ; that is, $D_0=0$. 2. Alternative hypothesis:

One-Tailed Test

Two-Tailed Test $H_a: (\mu_1 - \mu_2) > D_0$ [or $H_a: (\mu_1 - \mu_2) < D_0$] $H_a:(\mu_1-\mu_2)\neq D_0$

3. Test statistic: $t = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where}$

 $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{2}$

Rejection region: Reject H₀ when

One-Tailed Test

 $t > t_{\alpha}$ [or $t < -t_{\alpha}$ when the alternative hypothesis is $H_{a}: (\mu_{1} - \mu_{2}) < D_{0}$]

 $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$

or when p-value $\leq \alpha$

Two-Tailed Test

Example

Two training procedures are compared by measuring the time that it takes trainees to assemble a device. A different group of trainees are taught using each method. Is there a difference in the two methods? Use α = 0.01.

Time to Assemble	Method 1	Method 2
Sample size	10	12
Sample mean	35	31
Sample Std Dev	4.9	4.5

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_a: \mu_1 - \mu_2 \neq 0$$
Test statistic:
$$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Example

Solve this problem by approximating the p-value using Table 4.

Time to Assemble	Method 1	Method 2
Sample size	10	12
Sample mean	35	31
Sample Std Dev	4.9	4.5

Calculate:

 $s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$ $9(4.9^2) + 11(4.5^2) = 21.942$

Test statistic:

Inferences Concerning a Population Variance

- Sometimes the primary parameter of interest is not the population mean μ but rather the population variance σ^2 . We choose a random sample of size n from a normal
- Previously we have used $s^2 = \frac{\sum (x_i \bar{x})^2}{n-1}$ as an unbiased setteral.

as an unbiased estimator of the population variance.

- But, how close or far from the target parameter σ^2 is our estimator s2 likely to be?
- Use repeated random sampling.

Inferences Concerning a Population Variance

- The distribution begins at $s^2 = 0$.
- The mean is equal to the σ^2
- Its shape is nonsymmetric.
- Its shapes changes depending on sample size n and σ^2 .
- We can standardize the sampling distributions.
- The sample variance s^2 can be used in its standardized

which has a Chi-Square distribution with n - 1 degrees of freedom.

Inference Concerning Two Population Variances

10 - 44

- We can make inferences about the ratio of two population variances in the form a ratio. We choose two independent random samples of size n₁ and n₂ from normal distributions.
- If the two population variances are equal, the statistic

$$F = \frac{s_1^2}{s_2^2}$$

has an F distribution with df_1 = n_1 - 1 and df_2 = n_2 - 1 degrees of freedom.

10 - 43

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Inference Concerning Two Population Variances Table 6 gives only upper critical values of the F statistic for a given pair of df_1 and df_2 . For example, the value of F that cuts off .05 in the upper tail of the distribution with df_1 = 5 and df_2 = 8 is F = 3.69.

Inference Concerning Two Population Variances To test $H_0: \sigma_1^2 = \sigma_2^2 \text{ versus}$ $H_a: \text{one or two tailed}$ we use the test statistic $F = \frac{s_1^2}{s_2^2} \text{ where } s_1^2 \text{ is the larger of the two sample variances.}$ with a rejection region based on an F distribution with $df_1 = n_1 - 1$ and $df_2 = n_2 - 1$.

Key Concepts

I. Experimental Designs for Small Samples

- 1. Single random sample: The sampled population must be normal.
- 2. Two independent random samples: Both sampled populations must be normal.
 - a. Populations have a common variance σ^2 .
 - b. Populations have different variances
- 3. Paired-difference or matched-pairs design: The samples are not independent.

Key Concepts

II. Statistical Tests of Significance

- Based on the t, F, and χ^2 distributions
- Use the same procedure as in Chapter 9
- Rejection region critical values and significance levels: based on the t, F, and χ^2 distributions with appropriate degrees of freedom
- Tests of population parameters: a single mean, the difference between two means, a single variance, and the ratio of two variances

III. Small Sample Test Statistics

To test one of the population parameters when the sample sizes are small, use the following test statistics:

Key Concepts Test Statistic Degrees of Freedom $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\bar{x}_1 - \bar{x}_2}$ μ₂ (equal variances) $n_1 + n_2 - 2$ $\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ μ_2 (unequal variances) $t \approx \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\bar{x}_2 - \bar{x}_2}$ Satterthwaite's approximation μ₂ (paired samples) n-1

 $n_1 - 1$ and $n_2 - 1$