

Lecture 07 – Spatial filtering II

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Derivatives of 1D discrete functions
- The Laplacian
- Laplacian variations
- The Gradient
- Roberts cross-gradient operators
- Prewitt and Sobel operators

DERIVATIVES OF 1D DISCRETE FUNCTIONS

Derivatives of 1D discrete functions

First order derivative of a 1D function f(x):

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second order derivative of a 1D function f(x):

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 6 6 5 6 6 7 5 6 6 6 Signal

First order derivative

Second order derivative

Derivadas de funções discretas 1D

First order derivative of a 1D function f(x):

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second order derivative of a 1D function f(x):

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Signal
First order derivative
Second order derivative

Derivatives of 1D discrete functions

First order derivative of a 1D function f(x):

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second order derivative of a 1D function f(x):

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Signal
First order derivative
Second order derivative

Derivatives of 1D discrete functions

First order derivative of a 1D function f(x):

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second order derivative of a 1D function f(x):

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Signal
First order derivative
Second order derivative

THE LAPLACIAN

The Laplacian

• The Laplacian of a two-dimensional function f(x, y) is:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• If we separate the Laplacian into the x and y directions, we have:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Thus, the discrete Laplacian of two variables is:

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

	-1	0	1
-1	0	1	0
0	1	-4	1
1	0	1	0

Laplacian variations

	-1	U	1
-1	0	1	0
0	1	-4	1

			_
-1	0	-1	0
0	-1	4	-1
1	0	-1	0

	-1	0	1
-1	1	1	1
0	1	-8	1
1	1	1	1

	-1	0	1
-1	-1	-1	-1
0	-1	8	-1
1	-1	-1	-1

The Laplacian – how to apply

THE GRADIENT

The Gradient

• The gradient of a two-dimensional function f(x, y) is:

$$\nabla f \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix},$$

 $\frac{\partial f}{\partial x} = f(x, y) - f(x+1, y), \quad \frac{\partial f}{\partial y} = f(x, y) - f(x, y+1)$ $1 \quad \boxed{1} \quad \boxed{0}$

• The magnitude (size) of the gradient vector (∇f) , M(x, y) is:

$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

Or it can be approximated by absolute values:

$$M(x,y) \approx |g_x| + |g_y|$$

	0	1
0	1	-1
1	0	0

The Gradient – Roberts cross-gradient operators

Roberts diagonal operators consider diagonal differences:

$$\frac{\partial f}{\partial x} = f(x, y) - f(x + 1, y + 1),$$

$$\frac{\partial f}{\partial x} = f(x,y) - f(x+1,y+1), \qquad \frac{\partial f}{\partial y} = f(x+1,y) - f(x,y+1)$$

The Gradient – Prewitt and Sobel operators

Prewitt:

Sobel:

$$g_x$$
 -1 0 1
-1 -1 -2 -1
0 0 0 0
1 1 2 1

The Gradient – how to apply

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

THE END