Chapitre 34

Espaces préhilbertiens réels

$\bf 34$	Espaces préhilbertiens réels	1
	34.4 Produit scalaire canonique sur \mathbb{R}^n	2
	34.5 Exemple	2
	34.14Identités remarquables	2
	34.15Proposition 34.15 bis	3
	34.16Inégalité de Cauchy-Schwarz, inégalité triangulaire	3

34.4 Produit scalaire canonique sur \mathbb{R}^n

Théorème 34.4

L'application

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}; (X, Y) \mapsto {}^{\mathrm{t}}XY = \sum_{k=1}^n x_k y_k$$

est un produit scalaire sur \mathbb{R}^n , appelé produit scalaire canonique.

Pour $X, Y \in \mathbb{R}^n$:

$$-tXY \in \mathbb{R} \text{ donc } ^tYX = ^t(^tXY) = ^tXY$$

— bilinéarité : RAF

-
$${}^t XX = \sum_{k=1}^n x_k^2 \ge 0$$
 et $\sum_{k=1}^n x_k^2 = 0 \Leftrightarrow \forall k \in [1, n], x_k = 0 \Leftrightarrow x = 0$

34.5 Exemple

Exemple

Montrer que

$$(X,Y) \mapsto {}^t X \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y$$

est un exemple de produit scalaire sur \mathbb{R}^2 distinct du produit scalaire usuel.

— bilinéarité : RAF

— Pour
$$X, Y \in \mathbb{R}^2$$
, ${}^tX \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y \in \mathbb{R}$, donc:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y = {}^{t}\begin{pmatrix} {}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y \end{pmatrix}$$
$$= {}^{t}Y^{t}\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$
$$= {}^{t}Y\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$

On a:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2x+y\\ x+2y \end{pmatrix}$$
$$= 2x^{2} + 2xy + 2y^{2}$$
$$= \underbrace{2(x^{2} + xy + y^{2})}_{\geq 0 \text{ car } x^{2} + xy + y^{2} \geq |xy|}$$

En particulier, si ${}^tX\begin{pmatrix}2&1\\1&2\end{pmatrix}X=0$ alors |xy|=0, puis x=y=0. La forme est définie positive.

34.14 Identités remarquables

Propostion 34.14

Pour tout $(x, y) \in E^2$, on a:

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

 et

$$\langle x + y, x - y \rangle = ||x||^2 - ||y||^2$$

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \text{ (bilinéarité)}$$

$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2 \text{ (symétrie)}$$

Idem pour la seconde identité.

34.15 Proposition 34.15 bis

Soit $\|.\|$ une norme euclidienne. Soit $x \in E, \lambda \in \mathbb{R}$.

$$- \|\lambda x\| = |\lambda| \|x\|$$

$$- ||xx|| = |\lambda|||x||$$
$$- ||x|| = 0 \Leftrightarrow x = 0$$

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle$$
$$= \lambda^2 \|x\|^2$$

34.16 Inégalité de Cauchy-Schwarz, inégalité triangulaire

Soit E un espace préhilbertien réel et x et y dans E.

— Inégalité de Cauchy-Schwarz :

$$|\langle x, y \rangle| \le ||x|| \times ||y||$$

avec égalité si et seulement si x et y sont colinéaires.

Inégalité triangulaire :

$$||||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y||$$

l'inégalité de droite est une égalité si et seulement si x et y sont positivement colinéaires.

— Inégalité triangulaire, version distance :

$$|d(x,y) - d(y,z)| \le d(y,z) \le d(x,y) + d(y,z)$$

Si x=0, l'inégalité est vérifiée pour tout $y \in E$.

On suppose $x \neq 0$. On considère, pour $y \in E$ fixé :

$$\varphi : \mathbb{R} \to \mathbb{R}; t \mapsto ||tx + y||^2$$
$$= \langle tx + y, tx + y \rangle$$
$$= t^2 ||x||^2 + 2t \langle x, y \rangle + ||y||^2$$

f est une fonction polynomiale de degré 2 ($||x| \neq 0$) positive donc de discriminant $\Delta \leq 0$.

Or $\Delta = 4\langle x, y \rangle^2 - 4||x||^2||y||^2$. D'où le résultat.

Si $\Delta = 0$, alors f s'annule une unique fois en t_0 . On a alors $||t_0x + y||^2 = 0$.

Donc $t_0x + y = 0$.

Donc (x, y) est liée.

Réciproquement, si (x,y) est liée, alors $y=t_0x$ $(x\neq 0)$ et on a encore $f(t_0)=0$.

Pour $(x,y) \in E^2$:

$$||x + y|| \le ||x|| + ||y|| \Leftrightarrow ||x + y||^2 \le (||x|| + ||y||)^2$$

$$\Leftrightarrow ||x||^2 + 2\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$

$$\Leftrightarrow \langle x, y \rangle \le ||x|| ||y||$$

La dernière assertion est vraie d'après l'inégalité de Cauchy-Schwarz, la première l'est tout autant. RAS pour l'inégalité généralisée.

Si ||x+y|| = ||x|| + ||y||, le cas d'égalité de Cauchy-Schwarz affirme que (par ex) :

$$y = \alpha x, \alpha \in \mathbb{R}$$

Mais alors (en supposant $x \neq 0$) :

$$||1 + \alpha|| ||x|| = ||x + y|| = (1 + |\alpha|) ||x||$$

 $\begin{array}{l} \text{Donc } |1+\alpha|=1+|\alpha|. \\ \text{N\'ecessairement, } \alpha \geq 0 \end{array}$