Exponential Family Distributions

CS698X: Topics in Probabilistic Modeling and Inference
Piyush Rai

Exp. Family (Pitman, Darmois, Koopman, 1930s)

Defines a class of distributions. An Exponential Family distribution is of the form

$$p(\boldsymbol{x}|\theta) = \frac{1}{Z(\theta)}h(\boldsymbol{x})\exp[\theta^{\top}\phi(\boldsymbol{x})] = h(\boldsymbol{x})\exp[\theta^{\top}\phi(\boldsymbol{x}) - A(\theta)]$$

- ullet $x \in \mathcal{X}^m$ is the r.v. being modeled (\mathcal{X} denotes some space, e.g., \mathbb{R} or $\{0,1\}$)
- ullet $\theta \in \mathbb{R}^d$: Natural parameters or canonical parameters defining the distribution
- - Why "sufficient": $p(x|\theta)$ as a function of θ depends on x only via $\phi(x)$
- $\blacksquare A(\theta) = \log Z(\theta)$: Log-partition function (also called <u>cumulant function</u>)
- h(x): A constant (doesn't depend on θ)

Expressing a Distribution in Exp. Family Form

- Recall the form of exp-fam distribution $p(x|\theta) = h(x)\exp[\theta^{\mathsf{T}}\phi(x) A(\theta)]$
- To write any exp-fam dist p() in the above form, write it as $\exp(\log p())$

$$\exp\left(\log \operatorname{Binomial}(x|N,\mu)\right) = \exp\left(\log \binom{N}{x} \mu^{x} (1-\mu)^{N-x}\right)$$

$$= \exp\left(\log \binom{N}{x} + x \log \mu + (N-x) \log(1-\mu)\right)$$

$$= \binom{N}{x} \exp\left(x \log \frac{\mu}{1-\mu} - N \log(1-\mu)\right)$$

Now compare the resulting expression with the exponential family form

$$p(x|\theta) = h(x)\exp[\theta^{\mathsf{T}}\phi(x) - A(\theta)]$$

.. to identify the natural parameters, sufficient statistics, log-partition function, etc.

(Univariate) Gaussian as Exponential Family

Let's try to write a univariate Gaussian in the exponential family form

$$p(\mathbf{x}|\theta) = h(\mathbf{x}) \exp[\theta^{\top} \phi(\mathbf{x}) - A(\theta)]$$

■ Recall the PDF of a univar Gaussian (already has exp, so less work needed:))

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2 - \frac{\mu^2}{2\sigma^2} - \log\sigma\right]$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left[\left[\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}\right]^\top \begin{bmatrix} x \\ x^2 \end{bmatrix} - \left(\frac{\mu^2}{2\sigma^2} + \log\sigma\right)\right]$$

$$\theta = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \qquad \phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \qquad \text{, and } \begin{bmatrix} \mu \\ \sigma^2 \end{bmatrix} = \begin{bmatrix} -\frac{\theta_1}{2\theta_2} \\ -\frac{1}{2\theta_2} \end{bmatrix}$$

$$h(x) = \frac{1}{\sqrt{2\pi}}$$
 $A(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma = \frac{-\theta_1^2}{4\theta_2} - \frac{1}{2}\log(-2\theta_2) - \frac{1}{2}\log(2\pi)$

Other Examples

- Many other distribution belong to the exponential family
 - Bernoulli
 - Beta
 - Gamma
 - Multinoulli/Multinomial
 - Dirichlet
 - Multivariate Gaussian
 - .. and many more (https://en.wikipedia.org/wiki/Exponential_family)
- Note: Not all distributions belong to the exponential family, e.g.,
 - Uniform distribution $(x \sim Unif(a, b))$
 - Student-t distribution
 - Mixture distributions (e.g., mixture of Gaussians)

Log-Partition Function

- The log-partition function is $A(\theta) = \log Z(\theta) = \log \int h(x) \exp[\theta^{\top} \phi(x)] dx$
- $\blacksquare A(\theta)$ is also called the cumulant function
- lacktriangle Derivatives of $A(\theta)$ can be used to generate the cumulants of the sufficient statistics
- Exercise: Assume θ to be a scalar (thus $\phi(x)$ is also scalar). Show that the first and the second derivatives of $A(\theta)$ are

$$\frac{dA}{d\theta} = \mathbb{E}_{p(\mathbf{x}|\theta)}[\phi(\mathbf{x})]$$

$$\frac{d^2A}{d\theta^2} = \mathbb{E}_{p(\mathbf{x}|\theta)}[\phi^2(\mathbf{x})] - \left[\mathbb{E}_{p(\mathbf{x}|\theta)}[\phi(\mathbf{x})]\right]^2 = \text{var}[\phi(\mathbf{x})]$$

- Above result also holds when θ and $\phi(x)$ are vector-valued (the "var" will be "covar")
- Important: $A(\theta)$ is a convex function of θ . Why?

MLE for Exponential Family Distributions

- Assume data $\mathcal{D} = \{x_1, \dots, x_N\}$ drawn i.i.d. from an exp. family distribution

$$p(x|\theta) = h(x)\exp[\theta^{\mathsf{T}}\phi(x) - A(\theta)]$$

■ To do MLE, we need the overall likelihood -- a product of the individual likelihoods

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(\mathbf{x}_i|\theta) = \left[\prod_{i=1}^{N} h(\mathbf{x}_i)\right] \exp\left[\theta^{\top} \sum_{i=1}^{N} \phi(\mathbf{x}_i) - NA(\theta)\right] = \left[\prod_{i=1}^{N} h(\mathbf{x}_i)\right] \exp\left[\theta^{\top} \phi(\mathcal{D}) - NA(\theta)\right]$$

- To estimate θ (as we'll see shortly), we only need $\phi(\mathcal{D}) = \sum_{i=1}^{N} \phi(\mathbf{x}_i)$ and N
- Size of $\phi(\mathcal{D}) = \sum_{i=1}^{N} \phi(x_i)$ does not grow with N (same as the size of each $\phi(x_i)$)
- Only exponential family distributions have finite-sized sufficient statistics
 - No need to store all the data; can simply update the sufficient statistics as data comes
 - Useful in probabilistic inference with large-scale data sets and "online" parameter estimation

MLE and Moment Matching

- The likelihood is of the form $p(\mathcal{D}|\theta) = \left[\prod_{i=1}^{N} h(\mathbf{x}_i)\right] \exp\left[\theta^{\top} \phi(\mathcal{D}) NA(\theta)\right]$
- The log-likelihood is (ignoring constant w.r.t. θ): $\log p(\mathcal{D}|\theta) = \theta^{\top} \phi(\mathcal{D}) NA(\theta)$
- This is concave in θ (since $-A(\theta)$ is concave)
 - lacktriangle Maximization (MLE solution) will yield a global maxima of $oldsymbol{ heta}$
- MLE for exp-fam distributions can also be seen as doing moment-matching

$$\nabla_{\theta} \left[\theta^{\top} \phi(\mathcal{D}) - NA(\theta) \right] = \phi(\mathcal{D}) - N\nabla_{\theta} [A(\theta)] = \phi(\mathcal{D}) - N\mathbb{E}_{p(\mathbf{x}|\theta)} [\phi(\mathbf{x})]$$
$$= \sum_{i=1}^{N} \phi(\mathbf{x}_{i}) - N\mathbb{E}_{p(\mathbf{x}|\theta)} [\phi(\mathbf{x})]$$

■ Therefore, at the "optimal" (i.e., MLE) $\hat{\theta}$, we must have

Empirical moment (computed using data)

Can thus solve for the MLE θ also by matching the expected and empirical moments

$$\mathbb{E}_{p(\mathbf{x}|\theta)}[\phi(\mathbf{x})] = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i)$$

Moment Matching: An Example

• Given data $\mathcal{D} = \{x_1, \dots, x_N\}$ drawn i.i.d. from a univar Gaussian $p(x) = \mathcal{N}(x|\mu, \sigma^2)$

$$\mathbb{E}[\phi(x)] = \frac{1}{N} \sum_{i=1}^{N} \phi(x_i)$$
 Moment matching

■ Since the "true", i.e., expected moments: $\mathbb{E}[\phi(x)] = \mathbb{E}\begin{bmatrix} x \\ x^2 \end{bmatrix}$

$$\mathbb{E}\begin{bmatrix} x \\ x^2 \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{i=1}^{N} x_i \\ \frac{1}{N} \sum_{i=1}^{N} x_i^2 \end{bmatrix}$$

■ For a univariate Gaussian, note that

Two equations, two unknowns
$$(\mu$$
 and $\sigma^2)$ $\mathbb{E}[x]=\mu$ $\mathbb{E}[x]= \mathrm{var}[x]+\mathbb{E}[x]^2=\sigma^2+\mu^2$

Same solution that we get by doing MI F

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

$$\sigma^{2} = \mathbb{E}[x^{2}] - \mu^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \mu^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

.5698X: TPIM

Bayesian Inference for Expon. Family Distributions 100

■ Already saw that the total likelihood given N i.i.d. observations $\mathcal{D} = \{x_1, \dots, x_N\}$

$$p(\mathcal{D}|\theta) \propto \exp\left[\theta^{\top}\phi(\mathcal{D}) - NA(\theta)\right]$$
 where $\phi(\mathcal{D}) = \sum_{i=1}^{N}\phi(x_i)$

■ Let's choose the following prior (note: looks similar in terms of θ within exp)

$$\left| p(heta|
u_0, oldsymbol{ au}_0) = h(heta) \exp\left[heta^ op_0 A(heta) - oldsymbol{\mu}_0 A(heta) - A_c(
u_0, oldsymbol{ au}_0)
ight]
ight|$$

■ Ignoring the prior's log-partition function $A_c(\nu_0, \tau_0) = \log \int_{\theta} h(\theta) \exp \left[\theta^{\top} \tau_0 - \nu_0 A(\theta)\right] d\theta$

$$p(heta|
u_0, oldsymbol{ au}_0) \propto h(heta) \exp\left[heta^ op oldsymbol{ au}_0 - oldsymbol{
u}_0 A(heta)
ight]$$

- Comparing the prior's form with the likelihood, note that
 - ν_0 is like the <u>number of "pseudo-observations"</u> coming from the prior
 - τ_0 is the total sufficient statistics of the pseudo-observations (τ_0/ν_0) per pseudo-obs

Happens when the

prior is conjugate to the likelihood

The Posterior

■ The likelihood and prior were

$$p(\mathcal{D}|\theta) \propto \exp\left[\theta^{\top}\phi(\mathcal{D}) - NA(\theta)\right] \quad \text{where} \quad \phi(\mathcal{D}) = \sum_{i=1}^{N}\phi(x_i)$$
 Assume its log partition function denoted as $A_c(\nu_0, \tau_0)$ and $P(\theta|\nu_0, \tau_0) \propto h(\theta) \exp\left[\theta^{\top}\tau_0 - \nu_0 A(\theta)\right]$ Posterior is also from the same family as the prior family as the prior

Its log partition function will be $A_c(\nu_0 + N, \tau_0 + \phi(\mathcal{D}))$

$$p(\theta|\mathcal{D}) \propto h(\theta) \exp\left[\theta^{\top}(\tau_0 + \phi(\mathcal{D})) - (\nu_0 + N)A(\theta)\right]$$

- Every exp family likelihood has a conjugate prior having the form above
- Posterior's hyperparams τ'_0, ν'_0 obtained by adding "stuff" to prior's hyperparams

Posterior Predictive Distribution

- Assume some training data $\mathcal{D} = \{x_1, \dots, x_N\}$ from some exp-fam distribution
- lacktriangle Assume some test data $\mathcal{D}' = \{\tilde{x}_1, \dots, \tilde{x}_{N'}\}$ from the same distribution

■ The posterior pred. distr. of \mathcal{D}'

$$p(\mathcal{D}'|\mathcal{D}) = \int p(\mathcal{D}'|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \left[\prod_{i=1}^{N'} h(\tilde{\mathbf{x}}_i)\right] \exp\left[\theta^{\top}\phi(\mathcal{D}') - N'A(\theta)\right]h(\theta) \exp\left[\theta^{\top}(\tau_0 + \phi(\mathcal{D})) - (\nu_0 + N)A(\theta) - A_c(\nu_0 + N, \tau_0 + \phi(\mathcal{D}))\right]d\theta$$

This gets further simplified into

$$p(\mathcal{D}'|\mathcal{D}) = \left[\prod_{i=1}^{N'} h(\tilde{\mathbf{x}}_i)\right] \frac{\int h(\theta) \exp\left[\theta^{\top}(\tau_0 + \phi(\mathcal{D}) + \phi(\mathcal{D}')) - (\nu_0 + N + N')A(\theta)\right] d\theta}{\exp\left[A_c(\nu_0 + N, \tau_0 + \phi(\mathcal{D}))\right]}$$
$$= \left[\prod_{i=1}^{N'} h(\tilde{\mathbf{x}}_i)\right] \frac{Z_c(\nu_0 + N + N', \tau_0 + \phi(\mathcal{D}) + \phi(\mathcal{D}'))}{\exp\left[A_c(\nu_0 + N, \tau_0 + \phi(\mathcal{D}))\right]}$$

Posterior Predictive Distribution

■ Since $A_c = \log Z_c$ or $Z_c = \exp(A_c)$, we can write the PPD as

$$p(\mathcal{D}'|\mathcal{D}) = \left[\prod_{i=1}^{N'} h(\tilde{\mathbf{x}}_i)\right] \frac{Z_c(\nu_0 + N + N', \boldsymbol{\tau}_0 + \phi(\mathcal{D}) + \phi(\mathcal{D}'))}{Z_c(\nu_0 + N, \boldsymbol{\tau}_0 + \phi(\mathcal{D}))}$$

$$= \left[\prod_{i=1}^{N'} h(\tilde{\mathbf{x}}_i)\right] \exp\left[A_c(\nu_0 + N + N', \boldsymbol{\tau}_0 + \phi(\mathcal{D}) + \phi(\mathcal{D}')) - A_c(\nu_0 + N, \boldsymbol{\tau}_0 + \phi(\mathcal{D}))\right]$$

- Therefore the posterior predictive is proportional to
 - Ratio of two partition functions of two "posterior distributions" (one with N + N' examples and the other with N examples)
 - Exponential of the difference of the corresponding log-partition functions
- lacktriangle Note that the form of Z_c (and A_c) will simply depend on the chosen conjugate prior
- Very useful result. Also holds for N=0
 - In this case $p(\mathcal{D}') = \int p(\mathcal{D}'|\theta)p(\theta)d\theta$ is simply the marginal likelihood of test data \mathcal{D}'

Summary

- Exp. family distributions are very useful for modeling diverse types of data/parameters
- Conjugate priors to exp. family distributions make parameter updates very simple
- Other quantities such as posterior predictive can be computed in closed form
- Useful in designing generative classification models. Choosing class-conditional from exponential family with conjugate priors helps in parameter estimation
- Useful in designing generative models for unsupervised learning
- Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
 - Linear regression (with Gaussian likelihood) and logistic regression are GLMs
- Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs sampling, and especially variational inference)

Coming Up Next

- Bayesian Models for Linear Regression and Logistic Regression
- Priors for sparsity on weights

