

ESPACIOS VECTORIALES

TEMA 1 Álgebra Lineal

Mar Angulo Martínez Curso 2024-2025

Espacios Vectoriales

- 1.1.Espacio vectorial.
- 1.2. Subespacios vectoriales.
- 1.3.Independencia lineal. Sistema generador.
- 1.4.Base. Dimensión de un espacio vectorial
- 1.5. Suma e intersección de subespacios. Suma directa.
- 1.6. Coordenadas de un vector en una base. Cambio de base.
- 1.7. Espacio vectorial producto. Espacio vectorial cociente.

- ☐ Espacio vectorial sobre un cuerpo K
 - ☐ Un **espacio vectorial** es un conjunto E no vacío de elementos, que denominamos **vectores**, que verifica:
 - ☐ 1) (E,+) es un grupo conmutativo:
 - a) $\forall x, y \in E$, $x + y \in E$ (+ es operación interna)
 - b) $\forall x, y, z \in E$, (x + y) + z = x + (y + z) (propiedad asociativa)
 - c) $\forall x \in E, x + 0 = x$ (elemento neutro)
 - d) $\forall x \in E, \exists -x \in E \text{ tal que } x + (-x) = 0 \text{ (elemento opuesto)}$
 - e) $\forall x, y \in E$, x + y = y + x (propiedad conmutativa)
- \square 1) (E, .k) verifica las siguientes propiedades: $\forall x, y \in E \ \forall \gamma, \mu \in K$
 - a) $(\gamma + \mu)x = \gamma x + \mu x$ (distributiva respecto a la suma de escalares)
 - b) $\gamma(x + y) = \gamma x + \gamma y$ (distributiva respecto a la suma de vectores)
 - c) $\gamma(\mu x) = (\gamma \mu)x$

d) 1. x = x

Propiedades de un espacio vectorial

- 1) $\forall x \in E, \quad 0. x = 0$

- 3) Si $\gamma x=0$ $\rightarrow \gamma=0$ ó x=0
- 2) $\forall \gamma \in K$, $\gamma \cdot 0 = 0$ 4) $\forall x \in E \ \forall \forall \gamma \in K$, $(-\gamma)x = \gamma x = \gamma (-x)$ 5) $\gamma u = \mu u$, $u \neq 0 \longrightarrow \gamma = \mu$ 6) $\gamma u = \gamma v$, $\gamma \neq 0 \longrightarrow u = v$

Ejemplos

- \mathbb{R}^n es un espacio vectorial (En particular, \mathbb{R}^2 y \mathbb{R}^3 son espacios vectoriales
- El conjunto P_n (x) de polinomios con coeficientes reales y grado n es un espacio vectorial
- El conjunto $M_{m \times n}(R)$ de las matrices mxn con coeficientes reales es un espacio vectorial
- El conjunto de soluciones de un sistema homogéneo de ecuaciones lineales es un espacio vectorial

- Subespacio vectorial
 - ☐ Un subespacio vectorial de (E,+, .K) es un subconjunto no vacío de E que tiene estructura de espacio vectorial
 - ☐ Teorema
- S es subespacio vectorial de E 1) $S \neq \emptyset$ 2) $\forall x, y \in S, \quad x + y \in S$ 3) $\forall \alpha \in R \ y \ \forall x \in S, \quad \alpha x \in S$

O de forma equivalente:

- S es subespacio vectorial de E 1) $S \neq \emptyset$ 2) $\forall \alpha, \beta \in Ry \ \forall x, y \in S, \quad \alpha x + \beta y \in S$
- **Ejemplo 2** El conjunto de soluciones de la ecuación 2x-y+z=0 es un subespacio vectorial de \mathbb{R}^3

Ejemplos

- \Leftrightarrow El conjunto $S=\{(x,y,z,t)/x+2y-z+3t=0\}$ es un subespacio vectorial de R^4
- \Leftrightarrow El conjunto T= ={(x,y,z)/ x-3y+z=0; 2x-z=0} es subespacio vectorial de \mathbb{R}^3
- \Leftrightarrow El conjunto M= ={(x,y,z)/ x.y=0} no es subespacio vectorial de \mathbb{R}^3
- \bullet El conjunto $S=\{(x,y,z,t)/x+2y-z+3t=1\}$ no es un subespacio vectorial de \mathbb{R}^4
- \Leftrightarrow El conjunto $P_3(x)$ (polinomios en una variable de grado ≤ 3) es subespacio
- \Leftrightarrow El conjunto $M_{2x2}(R)$ (matrices *cuadradas de orden* 2) *es subespacio*

□ Combinación lineal de vectores

✓ Un vector $\mathbf{x} \in E$ es una combinación lineal de un conjunto S de vectores $\{v_1, v_2, \dots v_n\}$ si existen números reales $\alpha_1, \alpha_2, \dots \alpha_n$ tales que $\mathbf{x} = \alpha_1 \ v_1 + \alpha_2 v_2 + \dots \alpha_n v_n$

- **Epemplo 1** En el espacio vectorial R^3 : (1,-1,3) = 1 (1,0,0)+(-1) (0,1,0)+3 (0,0,1) Por tanto, el vector (1,-1,3) es una combinación lineal de esos 3 vectores
- **Ejemplo 2** el polinomio $x^2 x + 3$ es combinación lineal de $\{1 + x^2, x + 2x^2\}$ porque $3 x + x^2 = 3(1 + x^2) (x + 2x^2)$
- √ 3 y -1 son los coeficientes de dicha combinación lineal
- ✓ En el caso de los polinomios, podríamos escribir: (3,-1,1)=3(1,0,1)-(0,1,2)

Subespacio engendrado por S

- ✓ El subespacio L(S) engendrado por los vectores de S es el conjunto de todas las combinaciones lineales de vectores de S.
- \checkmark Es decir, si S={ v_1 , v_2 ,... v_n } tales que

$$L(S) = \{\alpha_1 \ v_1 + \alpha_2 v_2 + \dots \ \alpha_n v_n\} \text{ con } \alpha_1, \ \alpha_2, \dots \ \alpha_n \in K$$

- ✓ L(S) es el menor de todos los subespacios que contienen a S
- **\Leftharpoonup Ejemplo 3** el subespacio S= { $(\alpha, \beta, 2\alpha+\beta, -\alpha+3\beta)$ } de \mathbb{R}^4
- Admite una expresión implícita dada por las relaciones que existen entre las coordenadas de un vector genérico de S: $\{(x,y,z,t) \in \mathbb{R}^4 / z = 2x + y, t = -x + 3y\}$
- Admite una expresión en forma de subespacio engendrado por : $S = \{ (\alpha, \beta, 2\alpha + \beta, -\alpha + 3\beta) \} = \alpha(1,0,2,-1) + \beta(0,1,1,3)$

☐ Sistema generador

- ✓ Si L(S) es el subespacio engendrado por los vectores de S, entonces todo vector de L(S) puede escribirse como combinación lineal de los vectores de S.
 - Entonces se dice que S es un sistema generador de L(S)
- ✓ S={ v_1 , v_2 ,... v_n } es un sistema generador de un espacio vectorial V si todo vector de V puede expresarse como combinación lineal de los vectores de S, es decir, si $\forall v \in V$, existen α_1 , α_2 ,... $\alpha_n \in K$ tal que $v = \alpha_1 \ v_1 + \alpha_2 v_2 + ... \alpha_n v_n$

Ejemplo 4

- En R^4 , los vectores S={u=(1,2,0,0), v=(0,3,-1,0) y w=(0,0,5,4)} son un sistema generador de L(S)= {(α , 2 α +3 β , - β +5 γ , 4 γ } (Observa que son vectores que dependen de 3 parámetros)
- Sin embargo S no es sist. generador de \mathbb{R}^4 . (un S.G. de \mathbb{R}^4 ha de tener como mínimo 4 vectores)

	Inc	lepend	lencia	lineal	de	vectores
--	-----	--------	--------	--------	----	----------

- \square Los vectores $v_1, v_2, ..., v_n \in E$ son linealmente independientes si
 - $\alpha_1 v_1 + \alpha_2 v_2 + \dots \alpha_n v_n = 0 \longrightarrow \alpha_1 = 0; \quad \alpha_2 = 0, \dots \quad \alpha_n = 0$
- ☐ Es decir, cualquier combinación lineal de dichos vectores igual a 0, implica que todos los coeficientes necesariamente tienen que ser nulos
- ☐ Si, por el contrario, algún coeficiente es no nulo, los **vectores** son **linealmente dependientes** (existe algún vector que es linealmente dependiente del resto, es decir se puede expresar como combinación lineal del resto)
- ☐ Sistema libre de vectores es un conjunto de vectores linealmente independientes
- ☐ Un conjunto de vectores linealmente dependientes se denomina **sistema ligado de vectores**

Pr	opiedades de los sistemas libres y ligados de vectores Un vector v≠ 0 conforma un sistema libre de vectores: S={v} es libre
	Si un sistema S de vectores es libre, cualquier subconjunto S' \subset S también es un sistema libre de vectores
	Si un sistema S de vectores es ligado, cualquier conjunto que lo contenga, S´´⊃S también es un sistema ligado de vectores
	Si un sistema de vectores contiene al vector 0, es un sistema ligado
	Un sistema $\{v_1,v_2,\dots v_n\}$ es ligado \iff \exists algún v_i que es combinación lineal de los vectores restantes
	Un sistema $\{v_1,v_2,v_n\}$ es libre si ninguno de los vectores del mismo puede expresarse como combinación lineal de los vectores restantes

Ejemplo 5

Analizar si son ó no linealmente independientes los vectores: (1,0,0), (1,1,0) y (1,1,-3)

■ 1ª forma: Aplicamos la definición

Si partimos de una combinación lineal de esos vectores igualada a 0

$$\alpha(1,0,0) + \beta(1,1,0) + \gamma(1,1,-3) = 0$$

los vectores serán linealmente independientes — $\alpha = \beta = \gamma = 0$

$$\alpha + \beta + \gamma = 0$$
$$\beta + \gamma = 0$$
$$-3\gamma = 0$$

Por tant, todos los coeficientes son nulos → vectores l. independientes

■ 2ª forma: Estudiamos el rango de la matriz cuyas filas son esos vectores

rangA = rang
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & -3 \end{pmatrix}$$
 = 3 (completo)

■ 3ª forma: Estudiamos el determinante de la matriz cuyas filas (o columnas) son esos vectores

Recuerda: vectores linealmente independientes \longleftrightarrow rangA completo \longleftrightarrow $|A| \neq 0$

Teorema fundamental de la independencia lineal

Si $S=\{v_1, v_2, ..., v_n\}$ es un sistema generador de un espacio vectorial V formado por un número finito n de vectores y

 $T = \{w_1, \, w, \dots \, w_p\} \ \text{es un sistema de vectores linealmente independientes,}$ formado por p vectores de V,

entonces, $p \le n$

Si un espacio vectorial está generado por un número finito de vectores se dice que es un **espacio vectorial de dimensión finita**

Ejemplo 6

Extender un conjunto de vectores linealmente independientes para que también sean S.G.

- (1,0,2), (1,0,-1) son linealmente independientes (no son proporcionales)
- No son sistema generador de R^3 porque no todo vector de R^3 se puede expresar como combinación lineal de ellos: p. ej.: $(0,1,0) = \alpha (1,0,2) + \beta (1,0,-1) \cdots$ sistema incompatible
- Basta añadir un 3º vector que sea linealmente independiente con ellos; p. ej: (0,1,0)

Ejemplo 7

- Los vectores (2,0,0), (0,3,0), (4,1,0) forman un sistema generador del plano OXY de R^3 porque si planteamos (x,y,z) = $\alpha(2,0,0)+\beta(0,3,0)+\gamma(4,1,0)$ obtenemos un sist. compatible
- Los vectores (2,0,0), (0,3,0), (4,1,0) **no** son linealmente independientes (se puede comprobar que |A|=0)
- Basta eliminar el último para obtener un sistema linealmente independiente Los restantes vectores (2,0,0), (0,3,0) siguen generando el mismo subespacio S y son independientes. Son por tanto base de dicho plano.

■ Base de un espacio vectorial

Si V es un espacio de dimensión finita, $B=\{e_1, e_2, ..., e_n\}$ es una **base de V** si verifica una cualquiera de las dos condiciones equivalentes:

- 1) los vectores de B son linealmente independientes y sistema generador
- 2) Todo vector de V se puede expresar de forma única como combinación lineal de los vectores de B

□ Bases canónicas

- ***** En el espacio vectorial \mathbb{R}^n : (1,0,....0), (0,1,....0),....(0,0,....1,0) y (0,0,....0,1) constituyen la base canónica
- ***** En el espacio vectorial M_{2x2} las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ constituyen la base canónica del espacio de matrices cuadradas 2x2
- \Rightarrow B={1, x, x^2 , x^3 , ... x^n } es la base canónica del espacio vectorial de polinomios de grado menor o igual que n.

Proposición

Todo espacio vectorial distinto de {0} de dimensión finita tiene al menos una base

☐ Teorema

En un espacio vectorial de dimensión finita todas las bases son finitas y tienen el mismo número de elementos

☐ Teorema (de ampliación de la base)

Sea S es un subespacio vectorial de E. Si B_S es una base de S, entonces existen vectores $v_1, ... v_r \in E - B_S$ de forma que $B_S \cup \{v_1, ... v_r\}$ es una base para E

lacksquare El subespacio generado por los vectores v_1 , ... v_r se denomina subespacio suplementario de S

☐ Teorema

En un espacio vectorial de dimensión finita todas las bases son finitas y tienen el mismo número de elementos.

Dimensión de un espacio vectorial

Es el número de elementos de una base de un espacio vectorial de tipo finito

Recuerda

- dimV es el máximo número de vectores de V que son linealmente independientes
- dimV es el mínimo número de vectores de V que forman un sistema generador
- ➤ Si dimV =n, todo conjunto de n vectores linealmente independientes de V forman una base

■ Notas sobre la dimensión de un espacio vectorial

- \succ La dimensión de un subespacio en el espacio \mathbb{R}^n coincide con el número de parámetros libres en su forma paramétrica.
- Significado geométrico R^3 es un espacio de dimensión 3, un plano tiene dimensión 2, un espacio de dimensión 1 es una recta y el punto tiene dimensión 0
- Si S y T son subespacios y S está contenido en T, dim S ≤ dim T. dim S = dim T, entonces ambos espacios han de coincidir.

□ Rango de un sistema de vectores

- ☐ El rango de un sistema de vectores S es la dimensión del subespacio engendrado por S Es decir, es el máximo número de vectores linealmente independientes de S
- ☐ Por tanto, en un espacio vectorial de dimensión n, un sistema de vectores es sistema generador ← su rango es n.

- ☐ Coordenadas de un vector en una base
- Si E es un espacio vectorial de dimensión finita $y B = \{e_1, e_2, ... e_n\}$ es una base de V, entonces si $x = \alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n$,

los coeficientes de la combinación lineal se denominan coordenadas del vector x

en la base B

- > Un vector tiene tantas coordenadas como la dimensión del espacio
- Las coordenadas de un vector en una base son únicas

Ejemplo 8

Coordenadas del polinomio p(x) = $15x^2-3x+6$ en la base B= $\{5x^2, x+1,-3\}$

Escribimos el vector (6,-3,15) = α (0,0,5)+ β (1,1,0) + γ (-3,0,0) Entonces: $\beta - 3\gamma = 6$ $\beta = -3$ $5\alpha = 15$ $\alpha = 3$; $\beta = -3$; $\gamma = 3$ Las coordenadas del vector (6,-3,15) en la base B serían (3,-3,3)

☐ Cambio de base

Si V es un espacio vectorial de dimensión n;

 $B = \{e_1, e_2, ... e_n\}$ es una base de V, en la que las coordenadas de un vector

 $x \in V son(x_1, x_2, ... x_n)$

 $B' = \{e'_1, e'_2, ... e'_n\}$ es otra base de V, en la que las coordenadas del mismo vector

 $x \in V \ son \ (x'_{1}, x'_{2}, ... x'_{n})$

Si conocemos la expresión de los vectores de B´ en función de los vectores de B:

$$e'_{j} = \sum_{i=1}^{n} q_{ij} e_{i}$$
 j=1...n

Entonces las coordenadas $(x, x_2, ... x_n)$ se podrán expresar en función de las $(x'_1, x'_2, ... x'_n)$

$$x_i = \sum_{j=1}^{n} q_{ij} x'_{j}$$
 i=1...n

Matricialmente: X=QX'

Q: Matriz del cambio de coordenadas

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} q_{11} & q_{12} & \dots & q_{1n} \\ q_{21} & q_{22} & q_{2n} & \dots \\ q_{n1} & q_{n2} & q_{nn} \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix}$$

- **En resumen:** En un espacio vectorial V, dadas dos bases B y B', se llama **matriz de cambio de base** (o de cambio de coordenadas) de B a B' a la matriz que contiene en sus columnas las coordenadas de los vectores de la base B expresados en función de la base B'. $M_{BB'} = (vectores \ de \ B)_{B'}$
 - □ Aplicación
 - Q es la matriz del cambio de base (o de cambio de coordenadas): permite calcular las coordenadas en la base B conocidas las coordenadas en la base B'
 - Q^{-1} es la matriz del cambio de coordenadas inverso: permite calcular las coordenadas en la base B' conocidas las coordenadas en la base B

- ☐ Propiedades de las matrices de cambio de base
 - ☐ Una matriz de cambio de base es cuadrada (si dimV=n, será nxn)
 - Una matriz de cambio de base es siempre regular ($|Q| \neq 0$) y la matriz de cambio de B a B'es inversa
 - ☐ En particular:

P: vectores de B en columnas

$$Q = P^{-1}$$

Ejemplo 9

$$B = \{(2,3), (1,-1)\}\ y\ B' = \{(1,0), (0,1)\}$$

√ matriz de paso de B a B´

Escribimos los vectores de B como combinación lineal de los vectores de B'

$$(2,3) = 2(1,0)+3(0,1)$$
 $(1,-1)=1(1,0)+(-1)(0,1)$

Entonces
$$P = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$$

✓ matriz de cambio de base de B' a B

expresamos los vectores de la base canónica B' en función de la base B

$$(1,0) = \alpha(2,3) + \beta(1,-1)$$
 $(\frac{1}{5}, \frac{3}{5})$ Entonces $Q = \begin{pmatrix} 1/5 & 1/5 \\ 3/5 & -2/5 \end{pmatrix}$ $(0,1) = \gamma(2,3) + \delta(1,-1)$ $(\frac{1}{5}, \frac{-2}{5})$

✓ coordenadas en base B del vector v=(1,2) (en la base canónica B') Utilizamos la matriz

Q de cambio de base de B' a B:
$$\begin{pmatrix} 1/5 & 1/5 \\ 3/5 & -2/5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3/5 \\ -1/5 \end{pmatrix}$$

Ejemplo 10

V es un espacio vectorial de dimensión 3 y B' = $\{v_1, v_2, v_3\}$ es una base de V.

Sea B =
$$\{v_1 = 3v_1^{'} - v_2^{'} + v_3^{'}, v_2 = -5v_1^{'} + 4v_2^{'} + v_3^{'}, v_3 = 2v_1^{'} + 2v_2^{'} - 4v_3^{'}\}$$
 otra base de V

¿Cuáles son las coordenadas del vector (2, -1, 1) _B en la base B'?

matriz de paso de B a B':
$$M_{BB'} = M_{B'}(v_1 | v_2 | v_3) = \begin{pmatrix} 3 & -5 & 2 \\ -1 & 4 & 2 \\ 1 & 1 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -5 & 2 \\ -1 & 4 & 2 \\ 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ -4 \\ -3 \end{pmatrix} \qquad (2, -1, 1)_{B} = (13, -4, -3)_{B'}$$

matriz de paso de B' a B:
$$M_{B'B} = M_B(v'_1|v'_2|v'_3) = \begin{pmatrix} 3 & -5 & 2 \\ -1 & 4 & 2 \\ 1 & 1 & -4 \end{pmatrix}^{-1}$$

$$\begin{bmatrix} 3 & -5 & 2 \\ -1 & 4 & 2 \\ 1 & 1 & -4 \end{bmatrix}^{-1} \begin{pmatrix} 13 \\ -4 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

En general, si tenemos 3 bases A,B,C de un espacio vectorial V. entonces $M_{AB} = M_{CB} M_{AC}$

Sea $u \in V$,

¿Qué hace M_{AB} ?

Transforma las coordenadas de u en la base A en las coordenadas de u en la base B $\mathop{\rm cQu\acute{e}}$ hace $M_{CB}M_{AC}$?

- 1º) Transforma las coordenadas de u en la base A en las coordenadas de u en la base C
- 2º) Transforma las coordenadas de u en la base C en las coordenadas de u en la base B

Ejemplo 11

Dadas las bases
$$B_1 = \{(2, -1, 0), (-1, -1, 1), (2, 2, -1)\}$$

$$y B_2 = \{(1, 0, 0), (-2, 1, 0), (1, -2, 1)\}$$

- a) Calcular la matriz de cambio de base de B_1 a B_2
- b) Si $x=(-1,4,3)_{B_2}$ hallar las coordenadas de x en B_1

 \triangleright Vamos a utilizar como base auxiliar la base canónica de R^3 :

$$B_C = \{(1,0,0), (0,1,0), (0,0,1)\}$$

Entonces
$$M_{B_1B_2} = M_{B_cB_2}M_{B_1B_c} = M_{B_2B_c}^{-1}M_{B_1B_c}$$

$$= \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & -1 & 2 \\ -1 & -1 & 2 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

 $\text{Otra forma: calcular directamente las coordenadas de los vectores de B_1 en la base B_2 } \\ (2,-1,0) = \alpha(1,0,0) + \beta(-2,1,0) + \gamma(1,-2,1) \xrightarrow{\longrightarrow} (2,-1,0)_{B_C} = (0,-1,0)_{B_2} \\ (-1,-1,1) = \alpha(1,0,0) + \beta(-2,1,0) + \gamma(1,-2,1) \xrightarrow{\longrightarrow} (-1,-1,1)_{B_C} = (0,1,1)_{B_2} \\ (2,2,-1) = \alpha(1,0,0) + \beta(-2,1,0) + \gamma(1,-2,1) \xrightarrow{\longrightarrow} (2,2,-1)_{B_C} = (3,0,-1)_{B_2}$

Comprobamos que efectivamente son las columnas de la matriz $oldsymbol{M_{B_1B_2}}$

Suma e intersección de subespacios. Suma directa

- ☐ Intersección de subespacios
- Dados dos subespacios vectoriales S_1 y S_2 , la intersección de subespacios se define como $S_1 \cap S_2 = \{x \in E \mid x \in S_1 \text{ y } x \in S_2\}$
- ☐ La intersección de subespacios vectoriales de E es siempre otro subespacio vectorial
- ☐ Suma de subespacios
- Dados dos subespacios vectoriales S_1 y S_2 , la suma de subespacios se define como $S_1+S_2=\{u=u_1+u_2\ /u_1\in S_1\ y\ u_2\in S_2\}$
- \square La suma de subespacios es siempre otro subespacio; es de hecho el menor subespacio de V que contiene a S_1 y a S_2
- ☐ Fórmula de Grassmann
- \square Si S_1 y S_2 son subespacios de E, dim $(S_1 \cap S_2)$ + dim $(S_1 + S_2)$ = dim S_1 + dim S_2

Suma e intersección de subespacios. Suma directa

Suma directa

- \square La suma de dos subespacios S y T es directa si S \cap $T = \{0\}$
- ✓ Entonces, uniendo dos bases respectivas de S y T obtendremos una base de la suma
- ✓ En caso de suma directa cualquier vector de S+T se puede expresar de forma única como suma de un vector de S y otro de T
- ✓ Si además S ⊕ T =E, S y T se denominan subespacios suplementarios
- \checkmark dim S \oplus T = dimS + dimT

Ejemplo 12

En R^3 , S =<(34,89,-11)>, T=<(45,0,0), (-1,2,0)> son suplementarios porque los 3 vectores forman una base de R^3 : por tanto R^3 =S+T y la intersección es nula (observa que la 3° componente de los vectores de T es nula, no así en los de S)

Espacio vectorial producto. Espacio vectorial cociente

☐ Espacio vectorial producto

Si E y F son espacios vectoriales sobre un mismo cuerpo K, el conjunto ExF, con las operaciones suma y producto por escalar $(u_1,u_2)+(v_1,v_2)=(u_1+u_2\ ,v_1+v_2)\ \forall\ u_1,v_1\in E,\ u_2\ ,+v_2\in F$ $\gamma(u,v)=(\gamma u,\gamma v)\ \ \forall\ \gamma\in K, \forall\ u\in E, \forall\ v\in F$

es un espacio vectorial que se denomina espacio vectorial producto

- \square Si $\{e_1, e_2, ... e_n\}$ es una base de E y $\{f_1, f_2, ... f_m\}$ es una base de E entonces,
 - ☐ La dimensión de ExF es n+m
 - \square { $(e_1,0), (e_2,0),(e_n,0), (0,f_1), (0,f_2),(0,f_m)$ } base de ExF

Espacio vectorial producto. Espacio vectorial cociente

Espacio vectorial cociente

- ☐ Si E y F son espacios vectoriales sobre un mismo cuerpo K, la relación xRy \longrightarrow x-y∈ V es una relación de equivalencia
- El conjunto cociente (conjunto de las clases de equivalencia) : $\frac{E}{V} = \{C(x)/x \in E\}$ con las operaciones C(x)+C(y)=C(x+y)

$$\gamma C(x) = C(\gamma x)$$

Se denomina espacio vectorial cociente de E módulo V

Si dim
$$E = n$$
, dim $V = m$ dim $\frac{E}{V} = n - m$