ESAME DI FISICA MATEMATICA 2

Corso di laurea in Matematica Alma Mater – Università di Bologna

Il tempo a disposizione è pari a 180 minuti. Risposte non giustificate non verranno conteggiate. L'uso di calcolatrici grafiche, tablet, smartphones o altre apparecchiature in grado di comunicare con l'esterno non è consentito. È possibile utilizzare una calcolatrice scientifica standard.

Esercizio A

 $Moto\ unidimensionale$

Si consideri un punto materiale di massa unitaria in moto sulla retta reale e soggetto al potenziale

$$V(x) = (x-1)^2(x^2-3), \qquad x \in \mathbb{R}.$$

- A1 Si esegua uno studio qualitativo del moto, identificando le configurazioni di equilibrio stabile ed instabile al variare dell'energia meccanica, e le separatrici nel piano delle fasi. [9 pt]
- A2 Si determini il rapporto tra le frequenze delle piccole oscillazioni attorno ai due punti di equilibrio stabile. [3 pt]
- A3 Indicata con x(t) la posizione del punto materiale per $t \geq 0$, e assumendo x(0) = -1, si determinino due valori di $\dot{x}(0)$ tali per cui il moto risultante dalle condizioni iniziali $(x(0), \dot{x}(0))$ non sia periodico. È possibile individuare due valori siffatti se x(0) = 2? [3 pt]

Esercizio B

 $Formalismo\ lagrangiano$

Un punto materiale P di massa m=1 è vincolato a muoversi su una guida circolare liscia di raggio r=1 che giace in un piano verticale. Esso è collegato, tramite una molla ideale di costante elastica k>0, ad un carrello di massa μ che scorre liberamente e senza attrito su un asse orizzontale, complanare alla guida e passante per il suo centro, come in figura.

Detta g accelerazione di gravità, si assuma di lavorare in opportune unità tali che g=1. Denotando con q l'ascissa di Q, si risponda alle seguenti domande.

- B1 Si scriva la lagrangiana del sistema. [4 pt]
- **B2** Si derivino corrispondenti equazioni di Eulero-Lagrange. Quanto vale il momento coniugato a θ ? Si mostri che, per $\mu = 0$, è possibile rimuovere la dipendenza da q nell'equazione dinamica per θ . [4 pt]
- **B3** Si assuma che il carrello abbia massa trascurabile, ovvero $\mu = 0$. Si determinino le configurazioni di equilibrio del sistema. [7 pt]

Promemoria. Si ricordi che, per $a \in [-1,1]$, $\cos(\arcsin a) = \sqrt{1-a^2}$.

QUESITO [3 pt] — Due pendoli matematici di lunghezza ℓ_1 ed ℓ_2 sono tenuti in posizione leggermente deviata dalla loro configurazione di equilibrio, in modo da essere in contatto tra loro, come in figura. I due pendoli vengono lasciati andare nello stesso istante di tempo. Che condizione devono soddisfare le loro lunghezze perché, una volta avviato il moto, essi tornino a toccarsi?

SCHEMA DI RISOLUZIONE

Esercizio A.

A1 Il potenziale fornito è $\mathcal{C}^{\infty}(\mathbb{R})$ e ha $\lim_{x\to\pm+\infty}V(x)=+\infty$. Inoltre

$$V'(x) = 2(x-1)\left((x^2-3) + (x-1)x\right) = 2(x-1)(2x^2+x-3) = 4(x-1)(2x-3)(x+1).$$

I punti stazionari si trovano quindi in $x_1 = -1$, $x_2 = 3/2$, $x_3 = 1$. Dallo studio del segno della derivata prima, abbiamo che V(x) è strettamente decrescente in $(-\infty, -1)$, strettamente crescente in (-1, 1), strettamente decrescente in (1, 3/2) e strettamente crescente in $(\frac{3}{2}, +\infty)$, per cui x_1 e x_3 sono punti di minimo locale, e x_2 di massimo locale, con

$$V(x_1) = -8,$$
 $V(x_2) = 0,$ $V(x_3) = -\frac{3}{16}.$

Di conseguenza possiamo distinguere i seguenti regimi a seconda del valore dell'energia meccanica E:

 $E < V(x_1)$: Moto non ammesso.

 $E = V(x_1)$: Configurazione di equilibrio stabile in $x = x_1$.

 $E \in (V(x_1), V(x_3))$: Traiettorie limitate su un intervallo (x_-, x_+) di x_1 con $x_- < x_1 < x_+ < x_2$.

 $E = V(x_3)$: Traiettorie limitate su un intorno (x_-, x_+) di x_1 con $x_- < x_1 < x_+ < x_2$ e configurazione di equilibrio stabile in x_3 .

 $E \in (V(x_1), V(x_2))$: Traiettorie limitate su un intervallo (x_-, x_+) di x_1 con $x_+ < x_2$, e su un intorno (x'_-, x'_+) di x_3 , con $x_- < x_1 < x_+ < x_2 < x'_- < x_3 < x'_+$.

 $E = V(x_2)$: Separatrice.

 $E > V(x_2)$: Traiettorie limitate su un intervallo (x_-, x_+) con $x_- < x_1 < x_2 < x_3 < x_+$.

A2 Il moto del punto materiale è descritto dall'equazione $\ddot{x}=-V'(x)$, che intorno ad un punto di equilibrio stabile x_0 con $V''(x_0)>0$ può essere trattata in approssimazione di piccole oscillazioni come $\ddot{\xi}+V''(x_0)\xi=0$ con $\xi:=x-x_0$, equazione di un oscillatore armonico con periodo $T=\frac{2\pi}{\sqrt{V''(x_0)}}$. Nel nostro caso

$$V''(x) = 4(2x-3)(x+1) + 8(x-1)(x+1) + 4(x-1)(2x-3).$$

Essendo x_1 e x_3 di equilibrio stabile per il teorema di Dirichlet–Lagrange, detti T_1 e T_3 i corrispondenti periodi, abbiamo

$$\frac{T_1}{T_3} = \sqrt{\frac{V''(x_3)}{V''(x_1)}} = \sqrt{\frac{5}{20}} = \frac{1}{2}.$$

A3 Nel sistema dato ogni moto è periodico eccezion fatta per lo stato di quiete sui punti di equilibrio, ovvero $(x, \dot{x}) = (x_i, 0)$ con i = 1, 2, 3, e il moto sulla separatrice, che tende asintoticamente alla configurazione di equilibrio instabile. Nello spazio delle fasi questo corrisponde a due traiettorie per $E = V(x_2) = 0$, ovvero

$$\dot{x} = \pm \sqrt{-2(x-1)^2(x^2-3)}, \qquad x \in (-\sqrt{3}, \sqrt{3}),$$

Essendo $x(0) = -1 \in (-\sqrt{3}, \sqrt{3})$, basta calcolare le velocità corrispondenti per selezionare la traiettoria sulla separatrice, ovvero $\dot{x}(0) = \pm \sqrt{-2(-1-1)^2(1^2-3)} =$

 ± 4 . Viceversa, x(0)=2 è fuori dall'intervallo (e non corrisponde ad una configurazione di equilibrio), per cui ogni moto con questa condizione iniziale sarà periodico.

Esercizio B.

B1 Ignorando la terza coordinata (dato che il moto si svolge sul piano) possiamo utilizzare come variabili lagrangiane θ e q come nel testo e parametrizzare la posizione del punto materiale P come $\mathbf{x}_P = (\cos \theta, \sin \theta)^{\mathsf{T}}$ e quella del punto materiale Q come $\mathbf{x}_Q = (q, 0)^{\mathsf{T}}$. L'energia cinetica del sistema è

$$T = \frac{1}{2} \|\dot{\mathbf{x}}_P\|^2 + \frac{1}{2} \mu \|\dot{\mathbf{x}}_Q\|^2 = \frac{1}{2} \dot{\theta}^2 + \frac{1}{2} \mu \dot{q}^2.$$

L'energia potenziale contiene un contributo gravitazionale e uno elastico. Osservando che la distanza quadra tra $P \in Q \ energy d^2(P,Q) = q^2 + 1 - 2q\cos\theta$ per la legge del coseno, e ricordando che g = 1, abbiamo

$$V = \sin \theta + \frac{k}{2} \left(q^2 + 1 - 2q \cos \theta \right)$$

per cui la lagrangiana del sistema è (a meno di costanti additive irrilevanti)

$$\mathcal{L} = \frac{1}{2}\dot{\theta}^2 + \frac{1}{2}\mu\dot{q}^2 - \sin\theta - \frac{k}{2}\left(q^2 - 2q\cos\theta\right).$$

B2 Le equazioni del moto si ottengono ponendo

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = \mu \ddot{q} + k(q - \cos \theta), \quad 0 = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} - \frac{\partial \mathcal{L}}{\partial \theta} = \ddot{\theta} + \cos \theta + qk \sin \theta.$$

Il momento coniugato a θ vale $\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = \dot{\theta}$. Per $\mu = 0$, la variabile q può essere rimossa dalla seconda equazione utilizzando la prima, e scrivendo

$$\ddot{\theta} = \cos\theta(k\sin\theta + 1).$$

B3 Per individuare le posizioni di equilibrio, utilizziamo il teorema di Dirichlet–Lagrange, ponendo

$$\frac{\partial V}{\partial a} = 0, \qquad \frac{\partial V}{\partial \theta} = 0.$$

Le due equazioni comportano rispettivamente

$$q = \cos \theta, \qquad \cos \theta + qk \sin \theta = 0 \Longrightarrow \cos \theta (1 + k \sin \theta) = 0.$$

Si hanno quindi sempre le due soluzioni (a meno di periodicità 2π)

$$\theta_1 = \frac{\pi}{2} + 2n\pi, \quad \theta_2 = \frac{3\pi}{2} + 2m\pi, \qquad n, m \in \mathbb{Z},$$

sono sempre configurazioni di equilibrio. Esse sono entrambe associate a q=0. Se $1/k \in (0,1)$, inoltre, abbiamo una seconda coppia di soluzioni (a meno di periodicità)

$$\theta_3 = -\arcsin\frac{1}{k} + 2n\pi, \quad \theta_4 = \arcsin\frac{1}{k} + \pi + 2m\pi, \qquad n, m \in \mathbb{Z}$$

(per k=1 esse coincidono con le precedenti). Quando queste soluzioni esistono, esse sono associate a $q_3=\cos \arcsin \frac{1}{k}=\sqrt{1-1/k^2}$ e $q_4=\cos \left(\arcsin \frac{1}{k}+\pi\right)=-\sqrt{1-1/k^2}$, rispettivamente.