Assignment 9

A. Write a Matlab script Assignment9A_Groupxx.m¹ that finds a minimum and a maximum of the function

$$f(x,y) = x \cdot y$$

under the constraint

$$x^2 + y^4 = 1.$$

Create a plot with contour lines of f(x, y) and the constraint curve. Show the minimum and the maximum in the plot.

- B. Write a Matlab script Assignment9B_Groupxx.m¹ that
 - 1. loads the data vector x from the file Data_Assignment09.mat
 - 2. creates a function handle for the so-called log-likelihood function

$$\ell(m,s) = \sum_{i=1}^{n} \log \frac{1}{\pi s [1 + (x_i - m)^2 / s^2]}$$

- 3. finds the values \hat{m} and \hat{s} that maximize $\ell(m,s)$
- 4. plots the contour lines of $\ell(m,s)$ in the rectangle $3 \leq m \leq 5$ and $1 \leq s \leq 3$ for the following function values: $\ell(\hat{m},\hat{s}) 1, \ell(\hat{m},\hat{s}) 4, \ell(\hat{m},\hat{s}) 9, \ell(\hat{m},\hat{s}) 16$
- 5. computes the inverse Hesse matrix of $-\ell(m,s)$ at (\hat{m},\hat{s}) .
- ► Pack both scripts in a zip file with the name Assignment09_Groupxx.zip.

¹xx is your group number