Logika i struktury formalne

Rafal Wlodarczyk

INA 1 Sem. 2023

1 Rachunek zdań - logika bez kwantyfikatorów

$$(p \land q) \implies (r \lor \neg q)$$

1.1 Konstrukcja języka rachunku zdań

- Mamy ustaloną rodzinę zmiennych zdaniowych. $P = \{p, q, r, s\}$ lub $P = \overline{\{p_1, p_2, p_3, \dots\}}$
- Mamy ustaloną rodzinę spójników logicznych. $\neg, \land, \lor, \implies, \iff$
- Mamy (,) nawiasy
- \bullet Mamy symbole \top, \bot prawda, fałsz
- Konstrukcja języka $\mathcal{L}(\mathcal{P})$
- 1. Zmienne zdaniowe oraz symbole \top, \bot są zdaniami (języka predykatów $\mathcal{L}(\mathcal{P})$)
- 2. Jeśli φ, ψ są zdaniami, to również napisy $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), (\varphi \Longrightarrow \psi), (\varphi \Longleftrightarrow \psi)$ są zdaniami.
- 3. Wyrażenie φ nazywamy zdaniem jeśli w skończonej liczbie kroków może być skonstruowane za pomocą reguł (1) i (2)

Przykład 1.1.1. Niech P = p, q, r. Przykłady zdań w $\mathcal{L}(\mathcal{P})$:

- $p;q;r;\top;\perp$
- $(p \land \top), (p \lor q), (p \Longrightarrow \top)$
- $(r \land (p \lor q)), ((p \lor q) \lor (p \Longrightarrow \top))$

Przykład 1.1.2. Rozważmy następujące działanie: $x=(10\cdot 8)/(7\cdot 3)$. Skąpilowane C zwraca 3.

Definicja 1.1.1. Jeśli φ jest z $\mathcal{L}(\mathcal{P})$, to wtedy φ ma parzystą liczbę nawiasów.

Dowód. Niech X oznacza kolekcje napisów o parzystej liczbie nawiasów.

- 1. zmienne zdaniowe 0 nawiasów, \top , \bot
- 2. załóżmy, że φ, ψ są w X. Wtedy $(\varphi \wedge \psi), ...(\varphi \iff \psi)$ są w X.

1.2 Zadanie

Naucz się alfabetu greckiego.

SYNTAKTYKA - badanie wyrażeń.

SEMANTYKA - badanie wartości.

1.3 Wartości logiczne

 \bullet Wartości logiczne: 0,1 - fałsz, prawda

• Funktory logiczne: \neg , \wedge , \vee , \Longrightarrow , \Longleftrightarrow

• Tablice prawdy:

X	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X \implies Y$
0	0	1	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	1	1	1

Definicja 1.3.1. Waluacją nazywamy dowolne przyporządowanie π , które zmiennym zdamiowym przyporządkowuje wartości 0, 1.

Przykład 1.3.1. Rozważmy następujący przykład waluacji π :

$$P = \{p_0, p_1, p_2, ...\}$$

$$\pi = \{0, 0, 0, ...\}$$

$$p = \{0, 1, 0, 1, ...\}$$

 $val(\pi : waluacja, \varphi : zdanie)$

LOGICAL $0 \lor 1$

Przykład 1.3.2. Dla $\varphi \in \mathcal{L}(\mathcal{P})$:

- $val(\pi, p_i) = \pi(p_i)$
- $val(\pi, \top) = 1$
- $val(\pi, \perp) = 0$
- $val(\pi, (\varphi \wedge \psi)) = val(\pi, \varphi) \wedge val(\pi, \psi)$
- $val(\pi, \neg \varphi) = \neg val(\pi, \varphi)$

Definicja 1.3.2. φ jest tautologią, jeśli dla dowolnej waluacji π mamy $val(\pi, \varphi) = 1$.

$$(\models \varphi)$$
 - Zapis