Balaji

Advanced Problems in Mathematics Chapter 1 to 9

for IIT JEE Main and Advanced

by

Vikas Gupta and Pankaj Joshi

Advanced Problems in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

Pankaj Joshi

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

CONTENTS

CALCULUS	
1. Function	3 – 29
2. Limit	30 – 44
3. Continuity, Differentiability and Differentiation	45 – 74
4. Application of Derivatives	75 – 97
5. Indefinite and Definite Integration	98 – 127
6. Area Under Curves	128 – 134
7. Differential Equations	135 – 144
ALGEBRA	
8. Quadratic Equations	147 – 176
9. Sequence and Series	177 – 197
10. Determinants	198 – 206
11. Complex Numbers	207 – 216
12. Matrices	217 – 224
13. Permutation and Combinations	225 – 233
14. Binomial Theorem	234 – 242
15. Probability	243 – 251
16. Logarithms	252 – 264

CO-ORDINATE GEOMETRY	
17. Straight Lines	267 – 280
18. Circle	281 – 295
19. Parabola	296 – 302
20. Ellipse	303 – 307
21. Hyperbola	308 – 312
TRIGONOMETRY	
22. Compound Angles	315 224
23. Trigonometric Equations	315 – 334
24. Solution of Triangles	335 – 343
25. Inverse Trigonometric Functions	344 – 359
	360 – 370

VECTOR & 3DIMENSIONAL GEOMETRY

26. Vector & 3Dimensional Geometry

373 – 389

Calculus

- 1. Funtion
- 2. Limit
- 3. Continuity, Differentiability and Differentiation
- **4.** Application of Derivatives
- 5. Indefinite and Definite Integration
- 6. Area under Curves
- 7. Differential Equations

Chapter 1 - Function

FUNCTION

(d) $(-\infty, \infty)$

(d) 3

1	Exercise-1 : Single Choice Problems	1
	D (1) (1) (2) 1 (2) 1 (3)	

1. Range of the fun	$ction f(x) = \log_2(2 - \log_2(2 -$	$(\sqrt{2}(16\sin^2 x + 1))$ is:
(a) [0.1]	(b) (1)	(a) [1 1]

2. The value of a and b for which $|e^{|x-b|} - a| = 2$, has four distinct solutions, are :

(a) $a \in (-3, \infty), b = 0$ (b) $a \in (2, \infty), b = 0$ (c) $a \in (3, \infty), b \in \mathbb{R}$ (d) $a \in (2, \infty), b = a$

3. The range of the function:

$$f(x) = \tan^{-1} x + \frac{1}{2} \sin^{-1} x$$

(b) $[-\pi/2, \pi/2] - \{0\}$ (c) $[-\pi/2, \pi/2]$ (d) $(-3\pi/4, 3\pi/4)$ (a) $(-\pi/2, \pi/2)$

4. Find the number of real ordered pair(s) (x, y) for which :

$$16^{x^2+y} + 16^{x+y^2} = 1$$

(a) 0 (b) 1

5. The complete range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|} = x^2 - a$ is satisfied for maximum number

of values of x is :

(a)
$$(-\infty, -1)$$
 (b) $(-\infty, \infty)$ (c) $(-1, 1)$ (d) $(-1, \infty)$

6. For a real number x, let [x] denotes the greatest integer less than or equal to x. Let $f: R \to R$ be defined by $f(x) = 2x + [x] + \sin x \cos x$. Then f is:

(a) One-one but not onto

(b) Onto but not one-one

(c) Both one-one and onto

(d) Neither one-one nor onto

7. The maximum value of $\sec^{-1} \left(\frac{7 - 5(x^2 + 3)}{2(x^2 + 2)} \right)$ is :

(b) $\frac{5\pi}{12}$ (c) $\frac{7\pi}{12}$ (a) $\frac{5\pi}{6}$ (d) $\frac{2\pi}{3}$

(c) $0 \le a < 1$

(d) 0 < a < 1

(a) $0 \le a \le 1$

(b) 0 < a ≤ 1</p>

- **18.** If $f:(-\infty,2]\longrightarrow (-\infty,4]$, where f(x)=x(4-x), then $f^{-1}(x)$ is given by :

 - (a) $2-\sqrt{4-x}$ (b) $2+\sqrt{4-x}$
- (c) $-2 + \sqrt{4-x}$
- (d) $-2 \sqrt{4-x}$
- **19.** If $[5 \sin x] + [\cos x] + 6 = 0$, then range of $f(x) = \sqrt{3} \cos x + \sin x$ corresponding to solution set of the given equation is : (where [-] denotes greatest integer function)
 - (a) [-2,-1)
- (b) $\left(-\frac{3\sqrt{3}+2}{5},-1\right)$ (c) $[-2,-\sqrt{3})$
- $(d) \left(-\frac{3\sqrt{3}+4}{5}, -1 \right)$
- **20.** If $f: R \to R$, $f(x) = ax + \cos x$ is an invertible function, then complete set of values of a is:
 - (a) $(-2,-1] \cup [1,2)$ (b) [-1,1]
- (c) $(-\infty, -1] \cup [1, \infty)$ (d) $(-\infty, -2] \cup [2, \infty)$
- **21.** The range of function $f(x) = [1 + \sin x] + \left[2 + \sin \frac{x}{2}\right] + \left[3 + \sin \frac{x}{3}\right] + \dots + \left[n + \sin \frac{x}{n}\right] \forall x \in [0, \pi],$

 $n \in N$ ([.] denotes greatest integer function) is:

- (a) $\left\{\frac{n^2+n-2}{2}, \frac{n(n+1)}{2}\right\}$
- (b) $\left\{\frac{n(n+1)}{2}\right\}$
- (c) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}, \frac{n^2+n+4}{2}\right\}$ (d) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$
- **22.** If $f: R \to R$, $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$, then the complete set of values of 'a' such that f(x) is onto is:
 - (a) $(-\infty, \infty)$
- (c) (0,∞)
- (d) not possible
- **23.** If f(x) and g(x) are two functions such that f(x) = [x] + [-x] and $g(x) = \{x\} \ \forall \ x \in R$ and h(x) = f(g(x)); then which of the following is incorrect?
 - [[-] denotes greatest integer function and {·} denotes fractional part function)
 - (a) f(x) and h(x) are identical functions
- (b) f(x) = g(x) has no solution
- (c) f(x) + h(x) > 0 has no solution
- (d) f(x) h(x) is a periodic function
- **24.** Number of elements in the range set of $f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right] \forall x \in (0, 90)$; (where [-] denotes
 - greatest integer function):
 - (a) 5
- (b) 6
- (c) 7
- (d) Infinite

25. The graph of function f(x) is shown below:

Then the graph of $g(x) = \frac{1}{f(|x|)}$ is:

26. Which of the following function is homogeneous?

(a)
$$f(x) = x \sin y + y \sin x$$

(b)
$$g(x) = xe^{\frac{y}{x}} + ye^{\frac{x}{y}}$$

(c)
$$h(x) = \frac{xy}{x+y^2}$$

(d)
$$\phi(x) = \frac{x - y \cos x}{y \sin x + y}$$

27. Let $f(x) = \begin{bmatrix} 2x+3 & ; & x \le 1 \\ a^2x+1 & ; & x > 1 \end{bmatrix}$. If the range of f(x) = R (set of real numbers) then number of integral value(s), which a may take:

28. The maximum integral value of x in the domain of $f(x) = \log_{10}(\log_{1/3}(\log_4(x-5)))$ is:

29. Range of the function $f(x) = \log_2 \left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}} \right)$ is:

(b)
$$\left[\frac{1}{2}, 1\right]$$

(d)
$$\left[\frac{1}{4}, 1\right]$$

30. Number of integers statisfying the equation $|x^2 + 5x| + |x - x^2| = |6x|$ is:

31. Which of the following is not an odd function?

(a)
$$\ln \left(\frac{x^4 + x^2 + 1}{(x^2 + x + 1)^2} \right)$$

- (b) sgn(sgn(x))
- (c) $\sin(\tan x)$
- (d) f(x), where $f(x) + f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right) \forall x \in \mathbb{R} \{0\}$ and f(2) = 33

32. Which of the following function is periodic with fundamental period π ?

(a)
$$f(x) = \cos x + \left[\frac{\sin x}{2} \right]$$
; where [·] denotes greatest integer function

(b)
$$g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$$

- (c) $h(x) = \{x\} + |\cos x|$; where $\{\cdot\}$ denotes fractional part function
- (d) $\phi(x) = |\cos x| + \ln(\sin x)$

33. Let
$$f: N \longrightarrow Z$$
 and $f(x) = \begin{bmatrix} \frac{x-1}{2} & \text{; when } x \text{ is odd} \\ -\frac{x}{2} & \text{; when } x \text{ is even} \end{bmatrix}$; then:

(a) f(x) is bijective

- (b) f(x) is injective but not surjective
- (c) f(x) is not injective but surjective
- (d) f(x) is neither injective nor surjective

34. Let
$$g(x)$$
 be the inverse of $f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}}$ then $g(x)$ be:

(a)
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

(a)
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$
 (b) $-\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$ (c) $\log_2\left(\frac{2+x}{2-x}\right)$ (d) $\log_2\left(\frac{2-x}{2+x}\right)$

(c)
$$\log_2\left(\frac{2+x}{2-x}\right)$$

(d)
$$\log_2\left(\frac{2-x}{2+x}\right)$$

35. Which of the following is the graph of the curve $\sqrt{|y|} = x$ is ?

36. Range of $f(x) = \log_{[x]}(9 - x^2)$; where [] denotes G.I.F. is :

- (b) $(-\infty, 2)$
- (c) $(-\infty, \log_2 5]$
- (d) $[\log_2 5, 3]$

- **37.** If $e^x + e^{f(x)} = e$, then for f(x):
 - (a) Domain is $(-\infty, 1)$ (b) Range is $(-\infty, 1]$
- (c) Domain is $(-\infty, 0]$ (d) Range is $(-\infty, 0]$
- 38. If high voltage current is applied on the field given by the graph y + |y| x |x| = 0. On which of the following curve a person can move so that he remains safe?
 - (a) $y = x^2$
- (b) $y = \operatorname{sgn}(-e^2)$
- (c) $y = \log_{1/3} x$
- (d) y = m + |x|; m > 3

39. If $|f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2$, then f(x) is necessarily non-negative for :

(a) $x \in [-2, 2]$

(b) $x \in (-\infty, -2) \cup (2, \infty)$

(c) $x \in [-\sqrt{6}, \sqrt{6}]$

(d) $x \in [-5, -2] \cup [2, 5]$

40. Let $f(x) = \cos(px) + \sin x$ be periodic, then p must be :

(a) Positive real number

(b) Negative real number

(c) Rational

(d) Prime

Set property and the second se	Advanced Probl	ems in Mathematics for JE
41. The domain of $f(x)$ is $(0, 1)$, therefore, the $(0, 1)$	domain of $y = f(e^x) +$	$f(\ln x)$ is:
(a) $\left(\frac{1}{e}, 1\right)$ (b) $(-e, -1)$	(c) $\left(-1, -\frac{1}{e}\right)$	(d) $(-e, -1) \cup (1, e)$
42. Let $A = \{1, 2, 3, 4\}$ and $f: A \to A$ satisfy $f(1)$	f(2) = 2, f(2) = 3, f(3) = 4	4, f(4) = 1.
Suppose $g: A \rightarrow A$ satisfies $g(1) = 3$ and fog		32 01
(a) {(1, 3), (2, 1), (3, 2), (4, 4)}	(b) {(1, 3), (2, 4)), (3, 1), (4, 2)}
(c) {(1, 3), (2, 2), (3, 4), (4, 3)}	(d) {(1, 3), (2, 4)), (3, 2), (4, 1)}
43. The number of solutions of the equation $[y +$		
(where $y = \frac{1}{3} [\sin x + [\sin x + [\sin x]]]$ and [·] =	greatest integer funct	tion)
(a) 0 (b) 1	(c) 2	(d) Infinite
44. The function, $f(x) = \begin{cases} \frac{(x^{2n})}{(x^{2n} \operatorname{sgn} x)^{2n+1}} \begin{pmatrix} \frac{\frac{1}{x}}{e^{\frac{1}{x}} + e^{\frac{1}{x}}} \\ \frac{1}{e^{x} + e^{\frac{1}{x}}} \end{pmatrix}$	$\begin{cases} \frac{1}{x} \\ \frac{1}{x} \end{cases} x \neq 0 n \in N \text{ is :} $ $x = 0$	
(a) Odd function	(b) Even function	
(c) Neither odd nor even function	(d) Constant functi	ion
45. Let $f(1) = 1$, and $f(n) = 2\sum_{r=1}^{n-1} f(r)$. Then $\sum_{r=1}^{m} f(r)$) is equal to :	
(a) $\frac{3^m-1}{2}$ (b) 3^m	(c) 3^{m-1}	(d) $\frac{3^{m-1}-1}{2}$
46. Let $f(x) = \frac{x}{\sqrt{1+x^2}}$, then $\underbrace{fofofoof}_{n \text{ times}}(x)$ is:		
(a) $\frac{x}{\sqrt{1+\left(\sum_{r=1}^{n}r\right)x^2}}$ (b) $\frac{x}{\sqrt{1+\left(\sum_{r=1}^{n}1\right)x^2}}$	(c) $\left(\frac{x}{\sqrt{1+x^2}}\right)^n$	(d) $\frac{nx}{\sqrt{1+nx^2}}$
47. Let $f: R \to R$, $f(x) = 2x + \cos x $, then f is:		
(a) One-one and into	(b) One-one and or	nto
(c) Many-one and into	(d) Many-one and o	
48. Let $f: R \to R$, $f(x) = x^3 + x^2 + 3x + \sin x$, then	f is:	
(a) One-one and into	(b) One-one and on	nto
(c) Many-one and into	(d) Many-one and o	nto
49. $f(x) = \{x\} + \{x+1\} + \{x+2\} + \dots + \{x+99\}$ part function and [-] denotes the greatest integral	, then $[f(\sqrt{2})]$, (whe	re {·} denotes fractional
pro	w transfer I	

part function and [-] denotes the greatest integer function) is equal to :

(c) 41

(d) 14

(b) 4950

(a) 5050

50. If $ \cot x + \csc x = \cot x + \csc x $; $x \in [0, 2\pi]$, then complete set of values of x is: (a) $[0, \pi]$ (b) $\left(0, \frac{\pi}{2}\right]$ (c) $\left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$ (d) $\left(\pi, \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$ 51. The function $f(x) = 0$ has eight distinct real solution and f also satisfy $f(4 + x) = f(4 - x)$. The sum of all the eight solution of $f(x) = 0$ is: (a) 12 (b) 32 (c) 16 (d) 15 52. Let $f(x)$ be a polynomial of degree 5 with leading coefficient unity such that $f(1) = 5$, $f(2) = 4$, $f(3) = 3$, $f(4) = 2$, $f(5) = 1$. Then $f(6)$ is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let $f: A \to B$ be a function such that $f(x) = \sqrt{x-2} + \sqrt{4-x}$, is invertible, then which of the following is not possible? (a) $A = [3, 4]$ (b) $A = [2, 3]$ (c) $A = [2, 2\sqrt{3}]$ (d) $[2, 2\sqrt{2}]$ 54. The number of positive integral values of x satisfying $\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right]$ is:
(a) $[0,\pi]$ (b) $\left(0,\frac{\pi}{2}\right]$ (c) $\left(0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right]$ (d) $\left(\pi,\frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4},2\pi\right]$ 51. The function $f(x) = 0$ has eight distinct real solution and f also satisfy $f(4+x) = f(4-x)$. The sum of all the eight solution of $f(x) = 0$ is: (a) 12 (b) 32 (c) 16 (d) 15 52. Let $f(x)$ be a polynomial of degree 5 with leading coefficient unity such that $f(1) = 5$, $f(2) = 4$, $f(3) = 3$, $f(4) = 2$, $f(5) = 1$. Then $f(6)$ is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let $f: A \to B$ be a function such that $f(x) = \sqrt{x-2} + \sqrt{4-x}$, is invertible, then which of the following is not possible? (a) $A = [3, 4]$ (b) $A = [2, 3]$ (c) $A = [2, 2\sqrt{3}]$ (d) $[2, 2\sqrt{2}]$
 51. The function f(x) = 0 has eight distinct real solution and f also satisfy f (4+x) = f(4-x). The sum of all the eight solution of f(x) = 0 is: (a) 12 (b) 32 (c) 16 (d) 15 52. Let f(x) be a polynomial of degree 5 with leading coefficient unity such that f(1) = 5, f(2) = 4 f(3) = 3, f(4) = 2, f(5) = 1. Then f(6) is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let f: A → B be a function such that f(x) = √x-2 + √4-x, is invertible, then which of the following is not possible? (a) A = [3, 4] (b) A = [2, 3] (c) A = [2, 2√3] (d) [2, 2√2]
sum of all the eight solution of $f(x) = 0$ is: (a) 12 (b) 32 (c) 16 (d) 15 52. Let $f(x)$ be a polynomial of degree 5 with leading coefficient unity such that $f(1) = 5$, $f(2) = 4$, $f(3) = 3$, $f(4) = 2$, $f(5) = 1$. Then $f(6)$ is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let $f: A \to B$ be a function such that $f(x) = \sqrt{x-2} + \sqrt{4-x}$, is invertible, then which of the following is not possible? (a) $A = [3, 4]$ (b) $A = [2, 3]$ (c) $A = [2, 2\sqrt{3}]$ (d) $[2, 2\sqrt{2}]$
 (a) 12 (b) 32 (c) 16 (d) 15 52. Let f(x) be a polynomial of degree 5 with leading coefficient unity such that f(1) = 5, f(2) = 4 f(3) = 3, f(4) = 2, f(5) = 1. Then f(6) is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let f: A → B be a function such that f(x) = √x - 2 + √4 - x, is invertible, then which of the following is not possible? (a) A = [3, 4] (b) A = [2, 3] (c) A = [2, 2√3] (d) [2, 2√2]
 52. Let f(x) be a polynomial of degree 5 with leading coefficient unity such that f(1) = 5, f(2) = 4 f(3) = 3, f(4) = 2, f(5) = 1. Then f(6) is equal to: (a) 0 (b) 24 (c) 120 (d) 720 53. Let f: A → B be a function such that f(x) = √x - 2 + √4 - x, is invertible, then which of the following is not possible? (a) A = [3, 4] (b) A = [2, 3] (c) A = [2, 2√3] (d) [2, 2√2]
 (a) 0 (b) 24 (c) 120 (d) 720 (e) 53. Let f: A → B be a function such that f(x) = √x-2 + √4-x, is invertible, then which of the following is not possible? (a) A = [3, 4] (b) A = [2, 3] (c) A = [2, 2√3] (d) [2, 2√2]
53. Let $f: A \to B$ be a function such that $f(x) = \sqrt{x-2} + \sqrt{4-x}$, is invertible, then which of the following is not possible? (a) $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ (b) $A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ (c) $A = \begin{bmatrix} 2 \\ \sqrt{3} \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ \sqrt{2} \end{bmatrix}$
(a) $A = [3, 4]$ (b) $A = [2, 3]$ (c) $A = [2, 2\sqrt{3}]$ (d) $[2, 2\sqrt{2}]$
(where [·] denotes greatest integer function)
(a) 21 (b) 22 (c) 23 (d) 24
55. The domain of function $f(x) = \log_{\left[x + \frac{1}{2}\right]} (2x^2 + x - 1)$, where [·] denotes the greatest integer
function is:
(a) $\left[\frac{3}{2},\infty\right)$ (b) $(2,\infty)$ (c) $\left(-\frac{1}{2},\infty\right) - \left\{\frac{1}{2}\right\}$ (d) $\left(\frac{1}{2},1\right) \cup (1,\infty)$
56. The solution set of the equation $[x]^2 + [x+1] - 3 = 0$, where [·] represents greatest integer
function is:
(a) $[-1,0) \cup [1,2)$ (b) $[-2,-1) \cup [1,2)$ (c) $[1,2)$ (d) $[-3,-2) \cup [2,3)$
57. Which among the following relations is a function?
(a) $x^2 + y^2 = r^2$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = r^2$ (c) $y^2 = 4ax$ (d) $x^2 = 4ay$
(where a, b, r are constants)
58. A function $f: R \to R$ is defined as $f(x) = 3x^2 + 1$. Then $f^{-1}(x)$ is:
(a) $\frac{\sqrt{x-1}}{3}$ (b) $\frac{1}{3}\sqrt{x}-1$
(c) f^{-1} does not exist (d) $\sqrt{\frac{x-1}{3}}$

(c) One to one and onto

(d) One to one and into

_			_		
69.	If $f(x) = \sin \left\{ \log \left(\frac{\sqrt{4}}{1} \right) \right\}$	$\left. \frac{-x^2}{-x} \right\}$; $x \in R$, then rang	e of	f(x) is given by:	
	(a) [-1, 1]	(b) [0, 1]	(c)	(-1, 1)	(d) None of these
70.					$x^3 + (a+2)x^2 + 3ax + 10$
	is one-one is given by		,	8	NO THE AMERICAN CONTRACTOR OF PERSONNELS AND EXPOSES.
	214 2 22 22 23	(b) [1,4]	(c)	[1,∞)	(d) [-∞, 4]
71.	If the range of the fun	$ction f(x) = tan^{-1}(3x^2 +$	- br -	(c) is $\left[0,\frac{\pi}{2}\right]$. (don	nain is R), then :
		cuon f(x) = tan (ox)	UA I	c, 15[0, 2], (do.	
	(a) $b^2 = 3c$	(b) $b^2 = 4c$			
72.	Let $f(x) = \sin^{-1} x - \cos^{-1} x$	$os^{-1} x$, then the set of val	ues c	of k for which of)	f(x) = k has exactly two
	distinct solutions is:				
	(a) $\left(0,\frac{\pi}{2}\right]$	(b) $\left(0,\frac{\pi}{2}\right)$	(c)	$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right)$	(d) $\left[\pi, \frac{3\pi}{2}\right]$
73.	Let $f: R \to R$ is defined	d by $f(x) = \begin{cases} (x+1) \\ \ln x + (b^2 - a^2) \end{cases}$) ³ 3b +	$ \begin{array}{ccc} ; & x \le 1 \\ 10) & : & x > 1 \end{array} $	(x) is invertible, then the
	set of all values of 'b'	620		entre de current est	
	(a) {1, 2}	(b) b	(c)	{2.5}	(d) None of these
74.	165 St 16 M 165	15 (5) 19			is defined $\forall x \in R$. If
	$g(x) = \frac{e^{f(x)} - e^{ f(x) }}{e^{f(x)} + e^{ f(x) }},$	then range of $g(x)$ is:	, .	-, -, -, -, -, -, -, -, -, -, -, -, -, -	is defined v x e n. II
	(a) [0, 1]		(b)	$\left[0,\frac{e^2+1}{e^2-1}\right]$	5
	(c) $\left[0, \frac{e^2 - 1}{e^2 + 1}\right]$			$\left[\frac{-e^2+1}{e^2+1},0\right]$	
75.	Consider all functions	$f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$	3, 4	which are one-o	one, onto and satisfy the
	following property:				,
	if $f(k)$ is odd then $f(k)$	(k+1) is even, $k=1, 2, 3$.			
	The number of such fu	unctions is :			
	(a) 4	(b) 8	(c)	12	(d) 16
76.	Consider the function	$f: R-\{1\} \to R-\{2\} \text{ giv}$	ven b	$\text{by } f(x) = \frac{2x}{x-1}. \text{ Th}$	nen:
	(a) f is one-one but r	not onto	(b)	f is onto but not	one-one
	(c) f is neither one-o	ne nor onto		f is both one-on	
	APT.		oecus)	The second secon	- VIIIV

77. If range of function function $g(x) = \frac{1}{2}f$			umbers is [-2, 4], then range of
(a) [-2, 4]	(b) [-1, 2]	(c) [-3, 9]	(d) [-2, 2]
78. Let $f: R \to R$ and	$f(x) = \frac{x(x^4 + 1)}{x^2}$	(c) $[-3, 9]$ $\frac{(x+1)+x^4+2}{2+x+1}$, then $f(x)$	r) is :
(a) One-one, into		(b) Many-on	e, onto
(c) One-one, onto		(d) Many on	e, into
79. Let $f(x)$ be defined			
$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R}^n \\ 1 & \text{if } x \in \mathbb{R}^n \end{cases}$	x x - 1 + x - 2 x - 3	$0 \le x < 1$ $1 \le x < 2$ $2 \le x < 3$	
The range of functi	on $g(x) = \sin(7(f))$	(x) is:	
(a) [0, 1]	(b) [-1, 0]	(c) $\left[-\frac{1}{2},\frac{1}{2}\right]$	(d) [-1, 1]
80. If $[x]^2 - 7[x] + 10 < $	0 and $4[y]^2 - 10$	6[y] + 7 < 0, then $[x + y]$	cannot be ([·] denotes greatest
integer function):			
(a) 7	(b) 8	(c) 9	(d) both (b) and (c)
81. Let $f: R \to R$ be a fi		e +e	
(a) $f(x)$ is many or			any one, into function
(c) $f(x)$ is decreasing			jective function
(a) -2		$1 f(1-x) + 2f(x) = 3x \forall x$	20/000 E
	(b) −1	(c) 0	(d) 1
$abc \neq 0$ then one of	the root of the ea	quation $cx^2 + bx + a = 0$ is	$ax^2 + bx + c$, where $a, b, c \in R$,
(a) a	(b) <i>b</i>	(c) c	
		n integer and u is a real m	(d) $a + b + c$ number. The number of ordered
pairs (λ, μ) for which real roots is:	the equation $f(x)$	f(f(x)) = 0 and $f(f(x)) = 0$ has	we the same (non empty) set of
(a) 2	(b) 3	(c) 4	(d) 6
85. Consider all function following property:	on $f:\{1,2,3,4\} \to$	1, 2, 3, 4} which are o	ne-one, onto and satisfy the
if	f(k) is odd then	f(k+1) is even, $k=1, 2, 3$	Ĺ
The number of such	function is :	= =====================================	
(a) 4	(b) 8	(c) 12	(d) 16

86. Which of the following is closest to the graph of $y = \tan(\sin x)$, x > 0?

- **87.** Consider the function $f: R \{1\} \to R \{2\}$ given by $f(x) = \frac{2x}{x-1}$. Then
 - (a) f is one-one but not onto
- (b) f is onto but not one-one
- (c) f is neither one-one nor onto
- (d) f is both one-one and onto
- **88.** If range of function f(x) whose domain is set of all real numbers is [-2, 4], then range of function $g(x) = \frac{1}{2}f(2x+1)$ is equal to :

- (d) [-2, 2]
- (a) [-2,4] (b) [-1,2] (c) [-3,9] **89.** Let $f:R \to R$ and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is :
- (a) One-one, into
- (b) Many one, onto (c) One-one, onto
- (d) Many one, into

90. Let f(x) be defined as

$$f(x) = \begin{cases} |x| & 0 \le x < 1\\ |x-1|+|x-2| & 1 \le x < 2\\ |x-3| & 2 \le x < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is :

- (a) [0,1]
- (b) [-1,0]
- (c) $\left[-\frac{1}{2},\frac{1}{2}\right]$
- (d) [-1,1]
- **91.** The number of integral values of x in the domain of function f defined as $f(x) = \sqrt{\ln|\ln|x||} + \sqrt{7}|x| - |x|^2 - 10$ is:
 - (a) 5
- (b) 6
- (c) 7
- (d) 8

- **92.** The complete set of values of x in the domain of function $f(x) = \sqrt{\log_{x+2(x)} ([x]^2 5[x] + 7)}$ (where [-] denote greatest integer function and {-} denote fraction part function) is :
 - (a) $\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(2,\infty)$
- (b) $(0,1) \cup (1,\infty)$
- (c) $\left(-\frac{2}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$
- (d) $\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$
- **93.** The number of integral ordered pair (x, y) that satisfy the system of equation |x + y 4| = 5 and |x-3|+|y-1|=5 is/are:
 - (a) 2
- (c) 6
- **94.** Let $f: R \to R$, where $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$. Then the complete set of values of 'a' such that f(x) is onto is:
 - (a) $(-\infty, \infty)$
- (b) $(-\infty, 0)$
- (c) (0,∞)
- (d) Empty set
- **95.** If $A = \{1, 2, 3, 4\}$ and $f: A \rightarrow A$, then total number of invertible function 'f' such that $f(2) \neq 2$, $f(4) \neq 4$, f(1) = 1 is equal to :

- (d) 4
- **96.** The domain of definition of $f(x) = \log_{(x^2-x+1)} (2x^2 7x + 9)$ is :
 - (a) R
- (b) $R \{0\}$
- (c) $R \{0, 1\}$
- **97.** If $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6\}$ and $f: A \to B$ is an injective mapping satisfying $f(i) \neq i$, then number of such mappings are:
 - (a) 182
- (b) 181
- (c) 183
- (d) none of these

15

- **98.** Let $f(x) = x^2 2x 3$; $x \ge 1$ and $g(x) = 1 + \sqrt{x + 4}$; $x \ge -4$ then the number of real solutions of equation f(x) = g(x) is/are
 - (a) 0

Function

- (b) 1
- (c) 2
- (d) 4

Answers (c) 10. (a) (b) 2. (c) 3. (c) (b) (d) 7. (d) 8. (c) 9. 4. 5. 6. (a) 19. (d) 20. (c) 11. (b) 12. (c) 13. (c) 14. (b) 15. (a) (a) 17. (d) 18. (a) 16. 30. 21. (d) 22. (d) 23. (b) 24. (b) 25. (c) 26. (b) 27. (c) 28. (c) 29. (b) (c) (d) 32. (b) 33. (a) 34. (c) 35. (b) 36. 37. 38. 39. 40. 31. (c) (a) (d) (a) (c) (b) 42. (b) (a) 44. (b) 45. (c) 46. (b) 47. (b) 50. 41. 43. 48. (b) 49. (c) (c) (b) 52. (c) 53. (c) 54. (d) 55. (a) 56. (b) 57. (d) 58. (c) 59. (a) 60. (b) 62. (c) (b) 65. (d) 66. (a) 61. (b) (c) 63. 64. 67. (d) 68. (a) 69. (a) 70. (b) 74. (d) 75. (c) 76. (d) 71. (c) 72. (a) 73. (a) 77. (b) 78. (d) 79. (d) 80. (c) (c) 85. (c) (b) (b) 82. (b) 83. (a) 84. 86. 87. (d) 88. 81. (b) 89. (d) 90. (d) 96. 92. (d) 93. (d) 94. (d) 95. (c) (c) (b) 97. (b) 98. (b)

Exercise-2: One or More than One Answer is/are Correct

1. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4. \text{ Then : } \\ 10x & 4 \le x \le 5 \end{cases}$

(a)
$$f(-4) = 40$$

(b)
$$\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

2. Let $f(x) = ||x^2 - 4x + 3| - 2|$. Which of the following is/are correct?

(a) f(x) = m has exactly two real solutions of different sign $\forall m > 2$

(b) f(x) = m has exactly two real solutions $\forall m \in (2, \infty) \cup \{0\}$

(c) f(x) = m has no solutions $\forall m < 0$

(d) f(x) = m has four distinct real solution $\forall m \in (0,1)$

3. Let
$$f(x) = \cos^{-1}\left(\frac{1-\tan^2(x/2)}{1+\tan^2(x/2)}\right)$$

Which of the following statement(s) is/are correct about f(x)?

(a) Domain is R

(b) Range is $[0, \pi]$

(c) f(x) is even

(d) f(x) is derivable in $(\pi, 2\pi)$

4. $|\log_e |x|| = |k-1| - 3$ has four distinct roots then k satisfies: (where $|x| < e^2, x \ne 0$)

(a)
$$(-4, -2)$$

(c)
$$(e^{-1}, e)$$

(d)
$$(e^{-2}, e^{-1})$$

5. Which of the following functions are defined for all $x \in R$?

(Where [.] = denotes greatest integer function)

(a) $f(x) = \sin[x] + \cos[x]$

(b)
$$f(x) = \sec^{-1}(1 + \sin^2 x)$$

(c)
$$f(x) = \sqrt{\frac{9}{8} + \cos x + \cos 2x}$$

(d)
$$f(x) = \tan(\ln(1+|x|))$$

6. Let $f(x) = \begin{cases} x^2 & 0 < x < 2 \\ 2x - 3 & 2 \le x < 3, \text{ then the true equations} : \\ x + 2 & x \ge 3 \end{cases}$

(a)
$$f\left(f\left(\frac{3}{2}\right)\right) = f\left(\frac{3}{2}\right)$$

(b)
$$1 + f\left(f\left(f\left(\frac{5}{2}\right)\right)\right) = f\left(\frac{5}{2}\right)$$

(c)
$$f(f(f(2))) = f(1)$$

(d)
$$\underbrace{f(f(f(\dots,f(4))\dots))}_{1004 \text{ times}} = 2012$$

7. Let $f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \longrightarrow [0, 4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$, then:

(a)
$$f^{-1}(1) = \frac{4\pi}{3}$$

(c)
$$f^{-1}(2) = \frac{5\pi}{6}$$

(a) $f^{-1}(1) = \frac{4\pi}{3}$ (b) $f^{-1}(1) = \pi$ (c) $f^{-1}(2) = \frac{5\pi}{6}$ (d) $f^{-1}(2) = \frac{7\pi}{6}$

- **8.** Let f(x) be invertible function and let $f^{-1}(x)$ be its inverse. Let equation $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α and β (with in domain of f(x)), then:
 - (a) f(x) = x also have same two real roots
 - (b) $f^{-1}(x) = x$ also have same two real roots
 - (c) $f(x) = f^{-1}(x)$ also have same two real roots
 - (d) Area of triangle formed by (0, 0), $(\alpha, f(\alpha))$, and $(\beta, f(\beta))$ is 1 unit
- **9.** The function $f(x) = \cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{\sqrt{3 3x^2}}{2} \right)$, then :
 - (a) Range of f(x) is $\left[\frac{\pi}{3}, \frac{10\pi}{3}\right]$
- (b) Range of f(x) is $\left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$
- (c) f(x) is one-one for $x \in \left[-1, \frac{1}{2}\right]$ (d) f(x) is one-one for $x \in \left[\frac{1}{2}, 1\right]$
- **10.** Let $f:R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$, where $\{x\}$ is fractional part function. Then which of the following is/are correct?
 - (a) f is many-one but not even function
- (b) Range of f contains two prime numbers

(c) f is a periodic

- (d) Graph of f does not lie below x-axis
- 11. Which option(s) is/are true?
 - (a) $f: R \to R$, $f(x) = e^{|x|} e^{-x}$ is many-one into function
 - (b) $f: R \to R$, $f(x) = 2x + |\sin x|$ is one-one onto
 - (c) $f: R \to R$, $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is many-one onto
 - (d) $f: R \to R$, $f(x) = \frac{2x^2 x + 5}{7x^2 + 2x + 10}$ is many-one into
- **12.** If $h(x) = \left[\ln \frac{x}{e}\right] + \left[\ln \frac{e}{x}\right]$, where [·] denotes greatest integer function, then which of the

following are true?

- (a) range of h(x) is $\{-1, 0\}$
- (b) If h(x) = 0, then x must be irrational
- (c) If h(x) = -1, then x can be rational as well as irrational
- (d) h(x) is periodic function
- **13.** If $f(x) = \begin{cases} x^3 & ; & x \in Q \\ -x^3 & ; & x \notin Q \end{cases}$, then:
 - (a) f(x) is periodic

(b) f(x) is many-one

(c) f(x) is one-one

(d) range of the function is R

14. Let f(x) be a real valued continuous function such that

$$f(0) = \frac{1}{2}$$
 and $f(x+y) = f(x)f(a-y) + f(y)f(a-x) \ \forall \ x, y \in R$,

then for some real a:

- (a) f(x) is a periodic function
- (b) f(x) is a constant function

(c) $f(x) = \frac{1}{2}$

(d) $f(x) = \frac{\cos x}{2}$

15. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4 \end{cases}$. Then:

(a) f(-4) = 40

(b) $\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

16. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?

- (a) when $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
- (b) when $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
- (c) when $\lambda \in (0, \infty)$ equation has 1 real root
- (d) when $\lambda \in (-e, 0)$ equation has no real root

17. For $x \in \mathbb{R}^+$, if $x, [x], \{x\}$ are in harmonic progression then the value of x can not be equal to: (where [·] denotes greatest integer function, {·} denotes fractional part function)

(a)
$$\frac{1}{\sqrt{2}}\tan\frac{\pi}{8}$$

(b)
$$\frac{1}{\sqrt{2}}\cot\frac{\pi}{8}$$

(c)
$$\frac{1}{\sqrt{2}}\tan\frac{\pi}{12}$$

(a)
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$$
 (b) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$ (c) $\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$ (d) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$

18. The equation ||x-1|+a|=4, $a \in R$, has :

- (a) 3 distinct real roots for unique value of a. (b) 4 distinct real roots for $a \in (-\infty, -4)$
- (c) 2 distinct real roots for |a| < 4
- (d) no real roots for a > 4
- **19.** Let $f_n(x) = (\sin x)^{1/n} + (\cos x)^{1/n}, x \in R$, then :

(a)
$$f_2(x) > 1$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(b) $f_2(x) = 1 \text{ for } x = 2k\pi, k \in I$

(c)
$$f_2(x) > f_3(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(d)
$$f_3(x) \ge f_5(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(Where I denotes set of integers)

20. If the domain of $f(x) = \frac{1}{\pi} \cos^{-1} \left| \log_3 \left(\frac{x^2}{3} \right) \right|$ where, x > 0 is [a, b] and the range of f(x) is [c, d],

then:

- (a) a, b are the roots of the equation $x^4 3x^3 x + 3 = 0$
- (b) a, b are the roots of the equation $x^4 x^3 + x^2 2x + 1 = 0$
- (c) $a^3 + d^3 = 1$
- (d) $a^2 + b^2 + c^2 + d^2 = 11$

21. The number of real values of x satisfying the equation; $\left\lceil \frac{2x+1}{3} \right\rceil + \left\lceil \frac{4x+5}{6} \right\rceil = \frac{3x-1}{2}$ are greater than or equal to {[] denotes greatest integer function):

- (c) 9
- (d) 10

22. Let $f(x) = \sin^6\left(\frac{x}{4}\right) + \cos^6\left(\frac{x}{4}\right)$. If $f^n(x)$ denotes n^{th} derivative of f evaluated at x. Then which of the following hold?

- (a) $f^{2014}(0) = -\frac{3}{8}$ (b) $f^{2015}(0) = \frac{3}{8}$ (c) $f^{2010}\left(\frac{\pi}{2}\right) = 0$ (d) $f^{2011}\left(\frac{\pi}{2}\right) = \frac{3}{8}$

23. Which of the following is(are) incorrect?

- (a) If $f(x) = \sin x$ and $g(x) = \ln x$ then range of g(f(x)) is [-1, 1]
- (b) If $x^2 + ax + 9 > x \forall x \in R \text{ then } -5 < a < 7$
- (c) If $f(x) = (2011 x^{2012})^{\frac{1}{2012}}$ then $f(f(2)) = \frac{1}{2}$
- (d) The function $f: R \to R$ defined as $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not surjective.
- **24.** If [x] denotes the integral part of x for real x, and

- (a) S is a composite number
- (b) Exponent of S in $\lfloor 100 \rfloor$ is 12 (d) $^{2S}C_r$ is max when r = 51
- (c) Number of factors of S is 10

Answers

1.	(a, b, d)	2,	(a, b, c)	3.	(c, d)	4.	(a, b)	5.	(a, b, c)	6.	(a, b, c, d)
7.	(a, d)	8.	(a, b, c)	9.	(b, c)	10.	(a, b, d)	11.	(a, b, d)	12.	(a, c)
13.	(c, d)	14.	(a, b, c)	15.	(a, b, d)	16.	(b, c, d)	17.	(a, c, d)	18.	(a, b, c, d)
19.	(a, b)	20.	(a, d)	21.	(a, b, c)	22.	(a, c, d)	23.	a, b)	24.	(a, b)

*

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f(x) = \log_{\{x\}}[x]$

 $g(x) = \log_{\{x\}} \{x\}$

 $h(x)\log_{[x]}\{x\}$

where [], { } denotes the greatest integer function and fractional part fucntion respectively.

- **1.** For $x \in (1, 5)$ the f(x) is not defined at how many points :
 - (a) 5
- (b) 4
- (c) 3
- (d) 2
- **2.** If $A = \{x : x \in \text{domain of } f(x)\}$ and $B = \{x : x \in \text{domain of } g(x)\}$ then $\forall x \in \{1, 5\}$, A B will be:
 - (a) (2, 3)
- (b) (1, 3)
- (c) (1, 2)
- (d) None of these

- **3.** Domain of h(x) is:
 - (a) [2, ∞)
- (b) [1, ∞)
- (c) $[2, \infty) \{I\}$
- (d) $R^+ \{I\}$

I denotes integers.

Paragraph for Question Nos. 4 to 6

 θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain

of f + g and g equal. The values of θ for which $h(\theta)$ is defined are handsome. Let

$$f(x) = \sqrt{\theta x^2 - 2(\theta^2 - 3)x - 12\theta}, g(x) = \ln(x^2 - 49),$$

$$h(\theta) = \ln \left[\int_{0}^{\theta} 4\cos^{2}t \, dt - \theta^{2} \right]$$
, where θ is in radians.

- **4.** Complete set of values of θ which are well behaved as well as intelligent is :
 - (a) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (b) $\left[\frac{3}{5}, \frac{7}{8}\right]$
- (c) $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- 5. Complete set of values of $\boldsymbol{\theta}$ which are intelligent is :
 - (a) $\left[\frac{6}{7}, \frac{7}{2}\right]$
- (b) $\left(0,\frac{\pi}{3}\right)$
- (c) $\left[\frac{1}{4}, \frac{6}{7}\right]$
- (d) $\left[\frac{1}{2}, \frac{\pi}{2}\right]$
- **6.** Complete set of values of θ which are well behaved, intelligent and handsome is :
 - (a) $\left[0,\frac{\pi}{2}\right]$
- (b) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- (c) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Paragraph for Question Nos. 7 to 8

Let f(x) = 2 - |x - 3|, $1 \le x \le 5$ and for rest of the values f(x) can be obtained by using the relation $f(5x) = \alpha f(x) \ \forall \ x \in R$.

- 7. The maximum value of f(x) in $[5^4, 5^5]$ for $\alpha = 2$ is :
- (b) 32
- (c) 64
- (d) 8

- **8.** The value of f(2007), taking $\alpha = 5$, is :
 - (a) 1118
- (b) 2007
- (c) 1250
- (d) 132

Paragraph for Question Nos. 9 to 10

An even periodic function $f:R \to R$ with period 4 is such that

$$f(x) = \begin{bmatrix} \max.(|x|, x^2) & ; & 0 \le x < 1 \\ x & ; & 1 \le x \le 2 \end{bmatrix}$$

- **9.** The value of $\{f(5.12)\}$ (where $\{\cdot\}$ denotes fractional part function), is :
 - (a) $\{f(3.26)\}$
- (b) $\{f(7.88)\}$
- (c) $\{f(2.12)\}$
- (d) $\{f(5.88)\}$
- **10.** The number of solutions of $f(x) = |3\sin x|$ for $x \in (-6, 6)$ are :
 - (a) 5
- (b) 3
- (c) 7
- (d) 9

Paragraph for Question Nos. 11 to 12

$$Let f(x) = \frac{2|x|-1}{x-3}$$

- 11. Range of f(x):
 - (a) $R \{3\}$
- (b) $\left(-\infty, \frac{1}{3}\right] \cup (2, \infty)$ (c) $\left(-2, \frac{1}{3}\right] \cup (2, \infty)$ (d) R
- **12.** Range of the values of 'k' for which f(x) = k has exactly two distinct solutions :
 - (a) $\left(-2,\frac{1}{3}\right)$
- (b) (-2, 1]
- (c) $\left[0, \frac{2}{3}\right]$

Paragraph for Question Nos. 13 to 14

Let f(x) be a continuous function (define for all x) which $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0$, $f^2(x) - 4f(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 6 \le 0$

- 13. If distinct positive number b_1 , b_2 and b_3 are in G.P. then $f(1) + \ln b_1$, $f(2) + \ln b_2$, $f(3) + \ln b_3$ are in:
 - (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) A.G.P.
- **14.** The equation of tangent that can be drawn from (2, 0) on the curve $y = x^2 f(\sin x)$ is :
 - (a) y = 24(x+2) (b) y = 12(x+2) (c) y = 24(x-2) (d) y = 12(x-2)

Paragraph for Question Nos. 15 to 16

Let $f:[2,\infty)\to[1,\infty)$ defined by $f(x)=2^{x^4-4x^2}$ and $g:\left[\frac{\pi}{2},\pi\right]\to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be two invertible functions, then

- **15.** $f^{-1}(x)$ is equal to
 - (a) $\sqrt{2+\sqrt{4-\log_2 x}}$ (b) $\sqrt{2+\sqrt{4+\log_2 x}}$ (c) $\sqrt{4+\sqrt{2+\log_2 x}}$ (d) $\sqrt{4-\sqrt{2+\log_2 x}}$
- 16. The set 'A' equals to
 - (a) [5, 2]

- (b) [-2, 5] (c) [-5, 2] (d) [-5, -2]

1	1					AP T		A	ns	wer	3		N ME	TALL ST		* **			>
1.	(c)	2.	(d)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(b)	8.	(a)	9.	(b)	10.	(c
11.	(b)	12.	(a)	13.	(a)	14.	(c)	15.	(ъ)	16.	(d)								

Exercise-4: Matching Type Problems

1. If $x, y, z \in R$ satisfies the system of equations $x + [y] + \{z\} = 12.7$, $[x] + \{y\} + z = 4.1$ and $\{x\} + y + [z] = 2$

(where $\{\cdot\}$ and $[\cdot]$ denotes the fractional and integral parts respectively), then match the following:

1	Column-I	\ \\	Column-II
(A)	$\{x\} + \{y\} =$	(P)	7.7
(B)	[z] + [x] =	(Q)	1.1
(C)	$x + \{z\} =$	(R)	1
(D)	$z + [y] - \{x\} =$	(S)	3
		(T)	4

2. Consider $ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c = 0$, has no real roots and $f_1(x) = \frac{\sqrt{\log_{(\pi+e)}(ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c)}}{\sqrt{a}\sqrt{-\operatorname{sgn}(1 + ac + b^2)}}$

 $f_2(x) = -2 + 2\log_{\sqrt{2}}\cos\left(\tan^{-1}\left(\sin\left(\pi(\cos(\pi(x+\frac{7}{2}))\right)\right)\right).$ Then match the following :

1	Column-I		Column-II
(A)	Domain of $f_1(x)$ is	(P)	[-3, -2]
(B)	Range of $f_2(x)$ in the domain of $f_1(x)$ is	(Q)	[-4, -2]
(C)	Range of $f_2(x)$ is	(R)	(−∞,∞)
(D)	Domain of $f_2(x)$ is	(S)	$(-\infty, -4] \cup [-3, \infty)$
		(T)	[0, 1]

3. Given the graph of y = f(x)

4.

	Column-l	1 /2	Column-II
(A)	$f(x) = \sin^2 2x - 2\sin^2 x$	(P)	Range contains no natural number
(B)	$f(x) = \frac{4}{\pi} (\sin^{-1} (\sin \pi x))$	(Q)	Range contains atleast one integer
(C)	$f(x) = \sqrt{\ln(\cos(\sin x))}$	(R)	Many one but not even function
(D)	$f(x) = \tan^{-1}\left(\frac{x^2 + 1}{x^2 + \sqrt{3}}\right)$	(S)	Both many one and even function
		(T)	Periodic but not odd function

5.

1	Column-l		Column-II
(A)	If $ x^2 - x \ge x^2 + x$, then complete set of values of x is	(P)	(0,∞)
(B)	If $ x+y > x-y$, where $x > 0$, then complete set of values of y is	(Q)	(-∞, 0]
	If $\log_2 x \ge \log_2(x^2)$, then complete set of values of x is		[−1,∞)

(D)	$[x] + 2 \ge x $, (where [·] denotes the greatest integer function) then complete set of		(0,1]
	values of x is	(T)	[1,∞). · · · · · · · · · · · · · · · · · · ·

6.

V	Column-l	1	Column-II
(A)	Domain of $f(x) = \ln \tan^{-1}$ { $(x^3 - 6x^2 + 11x - 6) x(e^x - 1)$ } is	(P)	$\left[-1,\frac{5}{4}\right]$
(B)	Range of $f(x) = \sin^2 \frac{x}{4} + \cos \frac{x}{4}$ is	(Q)	[2,∞)
(C)	The domain of function $f(x) = \sqrt{\log_{(x -1)}(x^2 + 4x + 4)}$ is	(R)	(1, 2) ∪ (3, ∞)
(D)		(S)	[0,∞)
	Then range of function $f(g(x))$ is	(T)	$(-\infty,-3)\cup(-2,-1)\cup(2,\infty)$

7. Let $f(x) \begin{bmatrix} 1+x; & 0 \le x \le 2 \\ 3-x; & 2 < x \le 3 \end{bmatrix}$;

g(x) = f(f(x)):

-	Column-I	- A	Column-II
(A)	If domain of $g(x)$ is $[a, b]$ then $b-a$ is	(P)	1
(B)	If range of $g(x)$ is $[c, d]$ then $c + d$ is	(Q)	2
(C)	f(f(f(2))) + f(f(f(3))), is	(R)	3
(D)	m = maximum value of g(x) then 2m - 2 is :	(S)	4

Answers

- 1. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$
- 2. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$
- 3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$
- 4. $A \rightarrow P$, Q, S, T; $B \rightarrow Q$, R; $C \rightarrow P$, Q, S; $D \rightarrow P$, S
- 5. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$
- 6. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 7. $A \rightarrow R$; $B \rightarrow R$; $C \rightarrow R$; $D \rightarrow S$

Exercise-5 : Subjective Type Problems

- 1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further, that f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 7, f(5) = 9, f'(2) = 2, then the sum of all the digits of f(6) is
- **2.** Let $f(x) = x^3 3x + 1$. Find the number of different real solution of the equation f(f(x)) = 0.
- 3. If $f(x+y+1) = (\sqrt{f(x)} + \sqrt{f(y)})^2 \ \forall \ x,y \in R \text{ and } f(0) = 1, \text{ then } f(2) = \dots$
- **4.** If the domain of $f(x) = \sqrt{12 3^x 3^{3-x}} + \sin^{-1}\left(\frac{2x}{3}\right)$ is [a, b], then $a = \dots$
- **5.** The number of elements in the range of the function : $y = \sin^{-1} \left[x^2 + \frac{5}{9} \right] + \cos^{-1} \left[x^2 \frac{4}{9} \right]$ where [·] denotes the greatest integer function is
- **6.** The number of solutions of the equation $f(x-1)+f(x+1)=\sin\alpha$, $0<\alpha<\frac{\pi}{2}$, where $f(x)=\begin{cases} 1-|x| & , & |x|\leq 1\\ 0 & , & |x|>1 \end{cases}$
- 7. The number of integers in the range of function $f(x) = [\sin x] + [\cos x] + [\sin x + \cos x]$ is (where [·] = denotes greatest integer function)
- **8.** If P(x) is a polynomial of degree 4 such that P(-1) = P(1) = 5 and P(-2) = P(0) = P(2) = 2, then find the maximum value of P(x).
- **9.** The number of integral value(s) of k for which the curve $y = \sqrt{-x^2 2x}$ and x + y k = 0 intersect at 2 distinct points is/are
- 10. Let the solution set of the equation:

$$\sqrt{\left[x + \left[\frac{x}{2}\right]\right]} + \left[\sqrt{\left\{x\right\}} + \left[\frac{x}{3}\right]\right] = 3$$

is [a, b). Find the product ab.

(where [·] and {·} denote greatest integer and fractional part function respectively).

11. For all real number x, let $f(x) = \frac{1}{201\sqrt[3]{1-x^{2011}}}$. Find the number of real roots of the equation

$$f(f(\ldots,(f(x))\ldots) = \{-x\}$$

where f is applied 2013 times and $\{\cdot\}$ denotes fractional part function.

- **12.** Find the number of elements contained in the range of the function $f(x) = \left[\frac{x}{6}\right] \left[\frac{-6}{x}\right] \forall x \in (0, 30]$ (where [·] denotes greatest integer function)
- **13.** Let $f(x, y) = x^2 y^2$ and g(x, y) = 2xy.

such that
$$(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$$
 and $f(x,y) \cdot g(x,y) = \frac{\sqrt{3}}{4}$

Find the number of ordered pairs (x, y)?

- **14.** Let $f(x) = \frac{x+5}{\sqrt{x^2+1}} \ \forall \ x \in \mathbb{R}$, then the smallest integral value of k for which $f(x) \le k \ \forall \ x \in \mathbb{R}$ is
- **15.** In the above problem, f(x) is injective in the interval $x \in (-\infty, a]$, and λ is the largest possible value of a, then $[\lambda] =$ (where [x] denote greatest integer $\leq x$)
- **16.** The number of integral values of m for which $f: R \to R$; $f(x) = \frac{x^3}{3} + (m-1)x^2 + (m+5)x + n$ is bijective is:
- 17. The number of roots of equation:

$$\left(\frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x\right) \left(\frac{(x+1)(x+3)e^x}{(x+2)(x+4)} - 1\right) (x^3 - \cos x) = 0$$

- **18.** The number of solutions of the equation $\cos^{-1}\left(\frac{1-x^2-2x}{(x+1)^2}\right) = \pi(1-\{x\})$, for $x \in [0,76]$ is equal to. (where $\{\cdot\}$ denote fraction part function)
- **19.** Let $f(x) = x^2 bx + c$, b is an odd positive integer. Given that f(x) = 0 has two prime numbers as roots and b + c = 35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left| \frac{\lambda}{3} \right| \right]$ is equal to (where [-] denotes greatest integer function)
- **20.** Let f(x) be continuous function such that f(0) = 1 and $f(x) f\left(\frac{x}{7}\right) = \frac{x}{7} \forall x \in R$, then $f(42) = \frac{x}{7} = \frac{x}{$
- **21.** If $f(x) = 4x^3 x^2 2x + 1$ and $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} \\ 3 x \end{cases}$; $0 \le x \le 1$ and if $\lambda = g\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right)$, then $2\lambda = \frac{1}{4} + \frac{$
- **22.** If $x = 10\sum_{r=3}^{100} \frac{1}{(r^2 4)}$, then [x] =

(where [-] denotes greatest integer function)

- **23.** Let $f(x) = \frac{ax + b}{cx + d}$, where a, b, c, d are non zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **24.** Let $A = \{x \mid x^2 4x + 3 < 0, x \in R\}$ $B = \{x \mid 2^{1-x} + p \le 0; x^2 - 2(p+7)x + 5 \le 0\}$

If $A \subseteq B$, then the range of real number $p \in [a, b]$ where a, b are integers. Find the value of (b - a).

- **25.** Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$, where p and q are relatively prime natural numbers, then p + q =
- **26.** If f(x) is an even function, then the number of distinct real numbers x such that $f(x) = f\left(\frac{x+1}{x+2}\right)$ is:
- **27.** The least integral value of $m, m \in R$ for which the range of function $f(x) = \frac{x+m}{x^2+1}$ contains the interval [0,1] is :
- **28.** Let x_1, x_2, x_3 satisfying the equation $x^3 x^2 + \beta x + \gamma = 0$ are in G.P. where x_1, x_2, x_3 are positive numbers. Then the maximum value of $[\beta] + [\gamma] + 4$ is where $[\cdot]$ denotes greatest integer function is:
- **29.** Let $A = \{1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. If 'm' is the number of strictly increasing function f, $f: A \to B$ and n is the number of onto functions $g, g: B \to A$. Then the last digit of n m is.
- **30.** If $\sum_{r=1}^{n} [\log_2 r] = 2010$, where [·] denotes greatest integer function, then the sum of the digits of n is :
- **31.** Let $f(x) = \frac{ax+b}{cx+d}$, where a, b, c, d are non-zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **32.** It is pouring down rain, and the amount of rain hitting point (x, y) is given by $f(x, y) = |x^3 + 2x^2y 5xy^2 6y^3|$. If Mr. 'A' starts at (0, 0); find number of possible value(s) for 'm' such that y = mx is a line along which Mr. 'A' could walk without any rain falling on him.
- **33.** Let P(x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P(x) is divided by $x^2 5x + 6$ equals 2 times the remainder when P(x) is divided by $x^2 5x + 4$. If P(0) = 100, find the sum of the digits of P(5):
- **34.** Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0
- **35.** If range of $f(x) = \frac{(\ln x)(\ln x^2) + \ln x^3 + 3}{\ln^2 x + \ln x^2 + 2}$ can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a, b, c and d are prime numbers (not necessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.
- **36.** Polynomial P(x) contains only terms of odd degree. When P(x) is divided by (x-3), then remainder is 6. If P(x) is divided by (x^2-9) then remainder is g(x). Find the value of g(2).
- **37.** The equation $2x^3 3x^2 + p = 0$ has three real roots. Then find the minimum value of p.
- **38.** Find the number of integers in the domain of $f(x) = \frac{1}{\sqrt{\ln \cos^{-1} x}}$

/	1					Ansv	vers	,				S. ANS	
1.	26	2.	7	3.	9	4.	1	5.	1	6.	4	7.	5
8.	6	9.	1	10.	12	11.	1	12.	6	13.	4	14.	6
15.	0	16.	6	17.	7	18.	76	19.	6	20.	8	21.	5
22.	5	23.	9	24.	3	25.	7	26.	4	27.	1	28.	3
29.	5	30.	8	31.	9	32.	3	33.	2	34.	2	35.	6

000

Chapter 2 - Limit

$$1. \lim_{x \to 0} \frac{\cos(\tan x) - \cos x}{x^4} =$$

(a)
$$\frac{1}{6}$$

$$\sqrt[4]{3}$$
 (c) $-\frac{1}{6}$

(c)
$$-\frac{1}{6}$$

(d)
$$\frac{1}{3}$$

2. The value of $\lim_{x\to 0} \frac{(\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5}{7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x}$ equal to:

(d)
$$\frac{1}{3}$$

3. Let $a = \lim_{x \to 0} \frac{\ln(\cos 2x)}{3x^2}$, $b = \lim_{x \to 0} \frac{\sin^2 2x}{x(1 - e^x)}$, $c = \lim_{x \to 1} \frac{\sqrt{x} - x}{\ln x}$.

Then a, b, c satisfy:

(a)
$$a < b < a$$

(b)
$$b < c < a$$

(c)
$$a < c < b$$

(d)
$$b < a < c$$

(a) a < b < c (b) b < c < a (c) a < c < b (d) b < a < c **4.** If $f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$ and $g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$, $0 < a < \frac{1}{2}$ is:

(a) $\frac{3}{2(1 + a^2)}$ (b) $\frac{3}{2}$ (c) $\frac{-3}{2(1 + a^2)}$ (d) $-\frac{3}{2}$

(a)
$$\frac{3}{2(1+a^2)}$$

(b)
$$\frac{3}{2}$$

(c)
$$\frac{-3}{2(1+a^2)}$$

(d)
$$-\frac{3}{2}$$

5.
$$\lim_{x \to 0} \left(\frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}}$$
 is:

(b)
$$e^{-4}$$

(c)
$$e^{8}$$

6. $\lim_{x \to \infty} \frac{3}{x} \left[\frac{x}{4} \right] = \frac{p}{q}$ (where [-] denotes greatest integer function), then p + q (where p, q are relative prime) is:

- (a) 2
- (b) 7
- (c) 5
- (d) 6

7.
$$f(x) = \lim_{n \to \infty} \frac{x^n + \left(\frac{\pi}{3}\right)^n}{x^{n-1} + \left(\frac{\pi}{3}\right)^{n-1}}$$
, (*n* is an even integer), then which of the following is incorrect?

- (a) If $f: \left[\frac{\pi}{3}, \infty\right] \to \left[\frac{\pi}{3}, \infty\right]$, then function is invertible
- (b) f(x) = f(-x) has infinite number of solutions
- (c) f(x) = |f(x)| has infinite number of solutions
- (d) f(x) is one-one function for all $x \in R$

8.
$$\lim_{x\to 0} \frac{\sin(\pi\cos^2(\tan(\sin x)))}{x^2} =$$

- (c) $\frac{\pi}{2}$
- (d) none of these

9. If
$$f(x) = \begin{cases} \frac{(e^{(x+3)\ln 27})^{\frac{x}{27}} - 9}{3^x - 27} & ; & x < 3 \\ \lambda \frac{1 - \cos(x - 3)}{(x - 3)\tan(x - 3)} & ; & x > 3 \end{cases}$$

If $\lim_{x \to 3} f(x)$ exist, then $\lambda =$ (a) $\frac{9}{2}$ (b) $\frac{2}{9}$

- (c) $\frac{2}{3}$
- (d) none of these

10.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1}$$
 is equal to :

- (a) $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$
- (d) $\frac{1}{2}$

11.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\cos^{-1} \left[\frac{1}{4} (3\sin x - \sin 3x) \right]}$$
, (where [·] denotes greatest integer function) is:

- (c) $\frac{4}{\pi}$
- (d) does not exist

12. Let f be a continuous function on R such that
$$f\left(\frac{1}{4^n}\right) = (\sin e^n) e^{-n^2} + \frac{n^2}{n^2 + 1}$$
, then $f(0) = 1$

- (a) 1
- (b) 0
- (c) -1

13. $\lim_{x \to 1^-} \frac{e^{\{x\}} - \{x\}}{\{x\}}$	$\frac{x}{2} - 1$ equals, where $\{\cdot\}$ is	fractional part function	and I is an integer, to :
(a) $\frac{I}{2}$	(b) $e-2$	(c) I	(d) does not exist
14. $\lim_{x\to\infty} (e^{11x} - 7)$	$(x)^{\frac{1}{3x}}$ is equal to:		
(a) $\frac{11}{3}$	11	(c) $e^{\frac{3}{11}}$	(d) $e^{\frac{11}{3}}$
15. The value of	$\lim_{x\to 0} \left[(1-2x)^n \sum_{r=0}^n {}^nC_r \left(\frac{x+r}{1-r} \right)^r \right]$	$\left[\frac{x^2}{2x}\right]^r$ is:	
(a) e^n		(c) e^{3n}	(d) e^{-3n}
16. For a certain	value of 'c', $\lim_{x\to\infty} [(x^5+7)]$	$(x^4 + 2)^c - x$] is finite and	d non-zero. Then the value of
limit is :			
(a) $\frac{7}{5}$	(b) 1	(c) $\frac{2}{5}$	(d) None of these
17. The number of	f non-negative integral va	lues of <i>n</i> for which $\lim_{x\to 0} \frac{0}{x}$	$\frac{(\cos x - 1)(\cos x - e^x)}{x^n} = 0 \text{ is } :$
(a) 1	(b) 2	(c) 3	(d) 4
18. The value of \int_{x}^{1}	5 1/4 1/6 1		
(a) $e^{-1/3}$	(b) $e^{1/3}$	(c) $e^{-1/6}$	(d) $e^{1/6}$
$19. \text{ If } \lim_{x \to \infty} (\sqrt{x^2} - 1)$	(b) $e^{1/3}$ (x+1-ax-b) = 0, then fo	$r k \ge 2, (k \in N) \lim_{n \to \infty} \sec^2$	$^{n}(k!\pi b) =$
(a) a	(b) -a	(c) 2a	(d) b
20. If f is a positive	e function such that $f(x +$	$f(x) = f(x)(T > 0), \forall x \in$	R, then
$\lim_{n\to\infty} n \left(\frac{f(x+1)}{f(x+1)} \right)$	$f(x) + 2f(x + 2T) + \dots + n$ $f(x) + 4f(x + 4T) + \dots + n^{2}$	$\left \frac{df(x+nT)}{df(x+n^2T)}\right =$	
(a) 2	(b) $\frac{2}{3}$	(c) $\frac{3}{2}$	(d) None of these
21. Let $f(x) = 3x^{10}$	$-7x^8 + 5x^6 - 21x^3 + 3x$	c ² -7	
$265 \left(\lim_{h \to 0} \frac{1}{(f(1-h)^2)} \right)$	$\left(\frac{h^4 + 3h^2}{h) - f(1)\sin 5h}\right) =$		
(a) 1	(b) 2	(c) 3	(d) -3

22.
$$\lim_{x \to 0} \left(\frac{\cos x - \sec x}{x^2(x+1)} \right) =$$

- (a) 0
- (b) $-\frac{1}{2}$
- (c) -1
- (d) -2
- **23.** Let f(x) be a continuous and differentiable function satisfying $f(x+y) = f(x)f(y) \forall x, y \in R$ if f(x) can be expressed as $f(x) = 1 + xP(x) + x^2Q(x)$ where $\lim_{x\to 0} P(x) = a$ and $\lim_{x\to 0} Q(x) = b$, then

f'(x) is equal to:

(a) a f(x)

(b) b f(x)

(c) (a+b) f(x)

(d) (a + 2b) f(x)

24.
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \tan \frac{x}{2}\right)(1 - \sin x)}{\left(1 + \tan \frac{x}{2}\right)(\pi - 2x)^3} =$$

- (a) not exist
- (b) $\frac{1}{8}$
- (c) $\frac{1}{16}$
- (d) $\frac{1}{32}$

25.
$$\lim_{x\to\infty} \left(\frac{x-3}{x+2}\right)^x$$
 is equal to:

- (a) e
- (b) e^{-1}
- (c) e^{-5}
- (d) e

26.
$$\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x} \text{ is :}$$

- (a) 1
- (b) 0
- (c) $\frac{1}{e}$
- (d) $\frac{2}{a}$
- **27.** If $\lim_{x\to c^-} \{\ln x\}$ and $\lim_{x\to c^+} \{\ln x\}$ exists finitely but they are not equal (where $\{\cdot\}$ denotes fractional part function), then:
 - (a) 'c' can take only rational values
 - (b) 'c' can take only irrational values
 - (c) 'c' can take infinite values in which only one is irrational
 - (d) 'c' can take infinite values in which only one is rational
- **28.** $\lim_{x\to 0} \left(1 + \frac{a\sin bx}{\cos x}\right)^{\frac{1}{x}}$, where a, b are non-zero constants is equal to:
 - (a) $e^{a/b}$

(b) ab

(c) e ab

(d) $e^{b/a}$

(d) 0

29. The value of
$$\lim_{x\to 0} \left(\cos x\right)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln(1+3x+\sin^2 x) + xe^x}\right)$$
 is:

(a) $\sqrt{e} + \frac{3}{2}$ (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

30. Let $a = \lim_{x\to 1} \left(\frac{x}{\ln x} - \frac{1}{x \ln x}\right)$; $b = \lim_{x\to 0} \frac{x^3 - 16x}{4x + x^2}$; $c = \lim_{x\to 0} \frac{\ln(1+\sin x)}{x}$ and $d = \lim_{x\to -1} \frac{(x+1)^3}{3[\sin(x+1)-(x+1)]}$, then the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is:

(a) Idempotent
(b) Involutary
(c) Non-singular
(d) Nilpotent

31. The integral value of n so that $\lim_{x\to 0} f(x)$ where $f(x) = \frac{(\sin x - x)\left(2\sin x - \ln\left(\frac{1+x}{1-x}\right)\right)}{x^n}$ is a finite non-zero number, is:

(a) 2 (b) 4 (c) 6 (d) 8

32. Consider the function $f(x) = \begin{cases} \frac{\max\left(x, \frac{1}{x}\right)}{\min\left(x, \frac{1}{x}\right)}, & \text{if } x \neq 0 \\ \frac{1}{x} + \frac{1}{$

$$\lim_{x\to -1^-} [f(x)] =$$

(where {·} denotes fraction part function and [·] denotes greatest integer function)

33.
$$\lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x - \frac{1}{\sqrt{2}}\right)} - \lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{-}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x - \frac{1}{\sqrt{2}}\right)} =$$

(a)
$$\sqrt{2}$$
 (b) $2\sqrt{2}$ (c) $4\sqrt{2}$
34. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sin \frac{\pi}{2k} - \cos \frac{\pi}{2k} - \sin \left(\frac{\pi}{2(k+2)} \right) + \cos \frac{\pi}{2(k+2)} \right) =$

- (a) 0 (b) 1 (c) 2 (d) 3
- **35.** $\lim_{x\to 0^+} [1+[x]]^{2/x}$, where [·] is greatest integer function, is equal to :
 - (a) 0

(b) 1

(c) e^2

(d) Does not exist

36.	If m	and n are positive integers, then	$\lim_{x\to 0} \frac{(\cos x)^{1/m}}{}$	$\frac{-(\cos x)^{1/n}}{x^2} \text{ equals to :}$
	(a)	m-n	(b)	$\frac{1}{n} - \frac{1}{m}$
	(c)	$\frac{m-n}{2mn}$	(d)	None of these

37. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}=1$, is:

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

38. What is the value of a + b, if $\lim_{x \to 0} \frac{\sin(ax) - \ln(e^x \cos x)}{x \sin(bx)} = \frac{1}{2}$?

(b) 2

39. Let
$$\alpha = \lim_{n \to \infty} \frac{(1^3 - 1^2) + (2^3 - 2^2) + \dots + (n^3 - n^2)}{n^4}$$
, then α is equal to:

(c) 3

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) non existent **40.** The value of $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$ is equal to :

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{4}$ (d) $\frac{1}{12}$

41. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$, is:

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

42. Consider the sequence:

(a) 1

$$u_n = \sum_{r=1}^n \frac{r}{2^r}, \quad n \ge 1$$

Then the limit of u_n as $n \to \infty$ is:

(a) 1 (b)
$$e$$
 (c) $\frac{1}{2}$ (d) 2
43. The value of $\lim_{x\to 0} \left((\cos x)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln (1 + 3x + \sin^2 x) + xe^x} \right)$ is:

(a)
$$\sqrt{e} + \frac{3}{2}$$
 (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

44. For $n \in \mathbb{N}$, let	$f_n(x) = \tan \frac{x}{2} (1 + \sec x)$	(1+:	sec 2x) (1 + sec 4x)	$(1 + \sec 2^n x)$, the
$\lim_{x\to 0} \frac{f_n(x)}{2x}$ is equal to):			-m.
(a) 0	(b) 2 ⁿ	(c)	2 ⁿ⁻¹	(d) 2^{n+1}
45. The value of $\lim_{x \to \frac{\pi}{4}} (1 + 1)^{-\frac{\pi}{4}}$	$+[x])^{ln(\tan x)}$ is:			
(where [.] denotes a	greatest integer function).			*
(a) 0	(b) 1	(c)	e	(d) $\frac{1}{e}$
46. If $\lim_{x\to 0} \frac{\{(a-n)nx - \tan x^2\}}{x^2}$	$\frac{\ln x}{\sin nx} = 0$, $n \neq 0$ then	n a is	equal to :	
(a) 0	(b) $1 + \frac{1}{n}$	(c)	n	(d) $n + \frac{1}{n}$
47. The value of $\lim_{n\to\infty} \left(\frac{n!}{n^n!}\right)$	$\int_{0}^{3n^3+4} \frac{3n^3+4}{4n^4-1}, n \in \mathbb{N} \text{ is equal to}$	٠;		ė R
(a) $\left(\frac{1}{e}\right)^{3/4}$	(b) $e^{3/4}$	(c)	e^{-1}	(d) 0
48. The value of $\lim_{x\to\infty} \frac{ax^2}{ax^2}$	$\frac{d}{dx+e}(a, b, c, d, e \in R)$	- {0}) depends on the	sign of :
(a) a only		(b)	d only	
(c) a and d only			a, b and d only	
49. Let $f(x) = \lim_{n \to \infty} \tan^{-1}$	$\left(4n^2\left(1-\cos\frac{x}{n}\right)\right)$ and $g(x)$	$c) = \int_{n}^{\infty}$	$\lim_{n\to\infty}\frac{n^2}{2}\ln\cos\left(\frac{2x}{n}\right)$	then $\lim_{x\to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6}$
equals.	_		_	
(a) $\frac{8}{3}$	3		<u>5</u> 3	(d) $\frac{2}{3}$
50. If $f(x)$ be a cubic poly	momial and $\lim_{x\to 0} \frac{\sin^2 x}{f(x)} =$	$\frac{1}{3}$ th	en $f(1)$ can not be	equal to :
(a) 0	(b) −5	(c)		(d) -2
51. $\lim_{x \to 0} \frac{2e^{\sin x} - e^{-\sin x} - e^{-\sin x}}{x^2 + 2x}$	equals to :			
(a) $\frac{3}{2}$	(b) $e^{3/2}$	(c)	2	(d) e ²

52. If $x_1, x_2, x_3, \dots, x_n$ are the roots of $x^n + ax + b = 0$, then the value of $(x_1 - x_2)(x_1 - x_3)(x_1 - x_4), \dots, (x_1 - x_n)$ is equal to:

(a) $nx_1 + b$

(b) $nx_1^{n-1} + a$

(c) nx_1^{n-1}

(d) nx_1^{n-1}

53. $\lim_{x\to 0} \frac{\sqrt[3]{1+\sin^2 x} - \sqrt[4]{1-2\tan x}}{\sin x + \tan^2 x}$ is equal to :

(a) -1

(b) 1

(c) $\frac{1}{2}$

(d) $-\frac{1}{2}$

54. If $f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix}$, find $\lim_{x \to 0} \frac{f(x)}{x^2}$.

(a) 0

(b) 1

(c) -1

(d) Does not exist

Z/								A	nsv	ver	S ,	/\						1	7
1,	(b)	2.	(d)	3.	(d)	4.	(d)	5.	(b)	6.	(b)	7.	(d)	8.	(a)	9.	(c)	10.	(b)
11.	(a)	12.	(a)	13.	(b)	14.	(d)	15.	(b)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(c)
21.	(c)	22.	(c)	23.	(a)	24.	(d)	25.	(c)	26.	(a)	27.	(d)	28.	(c)	29.	(d)	30.	(d)
31.	(c)	32.	(a)	33.	(c)	34.	(d)	35.	(b)	36.	(c)	37.	(a)	38.	(b)	39.	(b)	40.	(b)
41.	(a)	42.	(d)	43.	(d)	44.	(c)	45.	(b)	46.	(d)	47.	(a)	48.	(c)	49.	(a)	50.	(c)
51.	(a)	52.	(ъ)	53.	(c)	54.	(c)			718 - 42								1	

Exercise-2: One or More than One Answer is/are Correct

- 1. If $\lim_{x\to 0} (p \tan qx^2 3\cos^2 x + 4)^{1/(3x^2)} = e^{5/3}$; $p, q \in R$ then:
 - (a) $p = \sqrt{2}$, $q = \frac{1}{2\sqrt{2}}$ (b) $p = \frac{1}{\sqrt{2}}$, $q = 2\sqrt{2}$ (c) p = 1, q = 2
- (d) p = 2, q = 4

- **2.** $\lim_{x \to \infty} 2(\sqrt{25x^2 + x} 5x)$ is equal to :
 - (a) $\lim_{x\to 0} \frac{2x \log_e (1+x)^2}{5x^2}$
- (b) $\lim_{x\to 0} \frac{e^{-x}-1+x}{x^2}$

(c) $\lim_{x\to 0} \frac{2(1-\cos x^2)}{5x^4}$

- (d) $\lim_{x\to 0} \frac{\sin\frac{x}{5}}{x}$
- **3.** Let $\lim_{x \to \infty} (2^x + a^x + e^x)^{1/x} = L$

which of the following statement(s) is(are) correct?

- (a) if L = a(a > 0), then the range of a is $[e, \infty)$
- (b) if L = 2e(a > 0), then the range of a is $\{2e\}$
- (c) if L = e(a > 0), then the range of a is (0, e]
- (d) if L = 2a(a > 1), then the range of a is $\left(\frac{e}{2}, \infty\right)$
- **4.** Let $\tan \alpha \cdot x + \sin \alpha \cdot y = \alpha$ and $\alpha \csc \alpha \cdot x + \cos \alpha \cdot y = 1$ be two variable straight lines, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when $\alpha \rightarrow 0$, the point P lies on the line:
 - (a) x = 2
- (b) x = -1
- (c) y+1=0
- (d) y = 2
- **5.** Let $f: R \to [-1, 1]$ be defined as $f(x) = \cos(\sin x)$, then which of the following is (are) correct?
 - (a) f is periodic with fundamental period 2π (b) Range of $f = [\cos 1, 1]$
 - (c) $\lim_{x \to \frac{\pi}{2}} \left(f\left(\frac{\pi}{2} x\right) + f\left(\frac{\pi}{2} + x\right) \right) = 2$
- (d) f is neither even nor odd function
- **6.** Let $f(x) = x + \sqrt{x^2 + 2x}$ and $g(x) = \sqrt{x^2 + 2x} x$, then:

 - (a) $\lim_{x \to \infty} g(x) = 1$ (b) $\lim_{x \to \infty} f(x) = 1$
- (c) $\lim_{x\to-\infty} f(x) = -1$ (d) $\lim_{x\to\infty} g(x) = -1$

- 7. Which of the following limits does not exist?
 - (a) $\lim_{x \to \infty} \csc^{-1} \left(\frac{x}{x+7} \right)$

(b) $\lim_{x \to 1} \sec^{-1} (\sin^{-1} x)$

(c) $\lim_{x\to 0^+} x^{\frac{1}{x}}$

(d) $\lim_{x\to 0} \left(\tan \left(\frac{\pi}{8} + x \right) \right)^{\cot x}$

8. If $f(x) = \lim_{n \to \infty} x \left(\frac{3}{2} + [\cos x] \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 3n + 1} \right) \right)$ where [y] denotes largest integer $\leq y$, then identify the correct statement(s).

(a)
$$\lim_{x\to 0} f(x) = 0$$

(b)
$$\lim_{x \to \frac{\pi}{2}} f(x) = \frac{3\pi}{4}$$

(c)
$$f(x) = \frac{3x}{2} \forall x \in \left[0, \frac{\pi}{2}\right]$$

(d)
$$f(x) = 0 \forall x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

9. Let
$$f: R \to R$$
; $f(x) = \begin{cases} (-1)^n & \text{if } x = \frac{1}{2^{2^n}}, n = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$

then identify the correct statement(s).

(a)
$$\lim_{x\to 0} f(x) = 0$$

(b) $\lim_{x\to 0} f(x)$ does not exist

(c)
$$\lim_{x\to 0} f(x) f(2x) = 0$$

(d) $\lim_{x \to 0} f(x) f(2x)$ does not exist

10. If $\lim_{x\to a} f(x) = \lim_{x\to a} [f(x)]$ ([·] denotes the greatest integer function) and f(x) is non-constant continuous function, then:

(a)
$$\lim_{x\to a} f(x)$$
 is an integer

(b) $\lim_{x\to a} f(x)$ is non-integer

(c) f(x) has local maximum at x = a

(d) f(x) has local minimum at x = a

11. Let $f(x) = \frac{\cos^{-1}(1 - \{x\})\sin^{-1}(1 - \{x\})}{\sqrt{2\{x\}}(1 - \{x\})}$ where $\{x\}$ denotes the fractional part of x, then :

(a)
$$\lim_{x\to 0^+} f(x) = \frac{\pi}{4}$$

(b) $\lim_{x \to 0^+} f(x) = \sqrt{2} \lim_{x \to 0^-} f(x)$ (d) $\lim_{x \to 0^-} f(x) = \frac{\pi}{2\sqrt{2}}$

(c)
$$\lim_{x\to 0^-} f(x) = \frac{\pi}{4\sqrt{2}}$$

12. If
$$\lim_{x \to 0} \frac{(\sin(\sin x) - \sin x)}{ax^3 + bx^5 + c} = -\frac{1}{12}$$
, then:

(a)
$$a = 2$$

(b)
$$a = -2$$

(c)
$$c = 0$$

(a)
$$d=2$$
 (b) $d-2$ (c) $c-3$ (d) $b=3$
13. If $f(x) = \lim_{n \to \infty} (n(x^{1/n} - 1))$ for $x > 0$, then which of the following is/are true?

(a)
$$f\left(\frac{1}{x}\right) = 0$$

(b)
$$f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$$

(c)
$$f\left(\frac{1}{x}\right) = -f(x)$$

(d)
$$f(xy) = f(x) + f(y)$$

14. The value of $\lim_{n\to\infty}\cos^2\left(\pi\left(\sqrt[3]{n^3+n^2+2n}\right)\right)$ (where $n\in N$):

- (b) $\frac{1}{2}$ (c) $\frac{1}{4}$

15. If $\alpha, \beta \in \left(-\frac{\pi}{2}, 0\right)$ such that $(\sin \alpha + \sin \beta) + \frac{\sin \alpha}{\sin \beta} = 0$ and $(\sin \alpha + \sin \beta) \frac{\sin \alpha}{\sin \beta} = -1$ and $\lambda = \lim_{n \to \infty} \frac{1 + (2\sin\alpha)^{2n}}{(2\sin\beta)^{2n}} \text{ then :}$

- (a) $a = -\frac{\pi}{6}$ (b) $\lambda = 2$ (c) $\alpha = -\frac{\pi}{3}$ (d) $\lambda = 1$

16. Let $f(x) = \begin{cases} |x-2| + a^2 - 6a + 9 & , & x < 2 \\ 5 - 2x & , & x \ge 2 \end{cases}$

If $\lim_{x\to 2} [f(x)]$ exists, the possible values a can take is/are (where [·] represents the greatest integer function)

- (a) 2
- (b) $\frac{5}{2}$
- (c) 3
- (d) $\frac{7}{2}$

					Ansv	vers					
1.	(b, c)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, c)	5.	(b, c)	6.	(a, c)
7	(a, d)		(a, c, d)	9.	(b, c)	10.	(a, d)	11.	(b, d)	12.	(a, c)
	(c, d)		(c)	15.	(a, b)	16.	(b)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A circular disk of unit radius is filled with a number of smaller circular disks arranged in the form of hexagon. Let A_n denotes a stack of disks arranged in the shape of a hexagon having 'n' disks on a side. The figure shows the configuration A_3 . If 'A' be the area of large disk, S_n be the number of disks in A_n configuration and r_n be the radius of each disk in A_n configuration, then

- 1. $\lim_{n\to\infty}\frac{S_n}{n^2}$:
 - (a) 3
- (b) 4
- (c) 1
- (d) 11

- **2.** $\lim_{n\to\infty} nr_n$:
 - (a) $\frac{1}{3}$
- (b) $\frac{1}{2}$
- (d) $\frac{1}{11}$

Paragraph for Question Nos. 3 to 4

Let
$$f(x) = \begin{bmatrix} x+3 & ; & -2 < x < 0 \\ 4 & ; & x = 0 \\ 2x+5 & ; & 0 < x < 1 \end{bmatrix}$$
, then

- 3. $\lim_{x \to \infty} f([x \tan x])$ is : ([·] denotes greatest integer function)
 - (a) 2
- (b) 4
- (c) 5
- (d) None of these
- **4.** $\lim_{x\to 0^+} f\left(\left\{\frac{x}{\tan x}\right\}\right)$ is : ({·} denotes fractional part of function)
 - (a) 4
- (b) 5
- (c) 7
- (d) None of these

Paragraph for Question Nos. 5 to 6

A certain function f(x) has the property that $f(3x) = \alpha f(x)$ for all positive real values of x and f(x) = 1 - |x - 2| for $1 \le x \le 3$.

- 5. $\lim_{x\to 2} (f(x))^{\operatorname{cosec}\left(\frac{\pi x}{2}\right)}$ is:
 - (a) $\frac{2}{\pi}$ (c) $e^{2/\pi}$

(d) Non-existent

- **6.** If the total area bounded by y = f(x) and x-axis in $[1, \infty)$ converges to a finite quantity, then the range of a is:
 - (a) (-1,1)
- (b) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (c) $\left(-\frac{1}{3}, \frac{1}{3}\right)$ (d) $\left(-\frac{1}{4}, \frac{1}{4}\right)$

Paragraph for Question Nos. 7 to 9

Consider the limit $\lim_{x\to 0} \frac{1}{x^3} \left(\frac{1}{\sqrt{1+x}} - \frac{(1+ax)}{(1+bx)} \right)$ exists, finite and has the value equal to l(where a, b are real constants), then:

- 7. a =
 - (a) 1
- (c) $\frac{1}{2}$
- (d) $\frac{1}{4}$

- **8.** a + b =
 - (a) $\frac{3}{4}$
- (c) 1
- (d) 0

- 9. $\left| \frac{b}{l} \right| =$
 - (a) 38
- (b) 16
- (c) 72
- (d) 24

Paragraph for Question Nos. 10 to 11

For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which

$$\lim_{x \to 0} x^{\alpha} \frac{d^2 y}{dx^2} = L \text{ (not zero)}$$

- 10. The value of α :
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{2}}$
- (c) $\frac{3}{2}$
- (d) 2

- 11. The value of L:
 - (a) $\frac{1}{2}$
- (b) 1
- (c) $\frac{1}{2\sqrt{2}}$
- (d) $\frac{1}{2\sqrt{3}}$

Answers

Exercise-4: Matching Type Problems

1.

1	Column-I	1	Column-II
(A)	$\lim_{n\to\infty}\left(\frac{1+\sqrt[n]{4}}{2}\right)^n=$	(P)	2
(B)	Let $f(x) = \lim_{n \to \infty} \frac{2x}{\pi} \tan^{-1}(nx)$, then $\lim_{x \to 0^+} f(x) =$	(Q)	0
(C)	$\lim_{x \to \frac{\pi^{+}}{2}} \frac{\cos(\tan^{-1}(\tan x))}{x - \frac{\pi}{2}} =$	(R)	1
(D)	If $\lim_{x\to 0^+} (x)^{\frac{1}{\ln \sin x}} = e^L$, then $L+2=$	(S)	3
		(T)	Non-existent

1	Column-I	1	Column-II
(A)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^{+}}{2}} f(3x - 4x^{3}) = a - 3 \lim_{x \to \frac{1^{+}}{2}} f(x)$, then $[a] =$	(P)	2
	If $f(x) = \tan^{-1} g(x)$ where $g(x) = \frac{3x - x^3}{1 - 3x^2}$ and then find	(Q)	3
	$\left[\lim_{h\to 0} \frac{f\left(\frac{1}{2} + 6h\right) - f\left(\frac{1}{2}\right)}{6h}\right] =$		
(C)	If $\cos^{-1}(4x^3 - 3x) = a + b\cos^{-1}x$ for $-1 < x < \frac{-1}{2}$, then $[a + b + 2] =$	(R)	4
(D)	If $f(x) = \cos^{-1}(4x^3 - 3x)$ and $\lim_{x \to \frac{1}{2}} f'(x) = a$ and $\lim_{x \to \frac{1}{2}} f'(x) = b$,	(S)	-2
	then $a + b + 3 =$		
		(T)	Non existent

Answers

- 1. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- 2. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$

Exercise-5: Subjective Type Problems

1. If
$$\lim_{x\to 0} \frac{\ln\cot\left(\frac{\pi}{4} - \beta x\right)}{\tan\alpha x} = 1$$
, then $\frac{\alpha}{\beta} = \dots$

2. If
$$\lim_{x\to 0} \frac{f(x)}{\sin^2 x} = 8$$
, $\lim_{x\to 0} \frac{g(x)}{2\cos x - xe^x + x^3 + x - 2} = \lambda$ and $\lim_{x\to 0} (1 + 2f(x))^{\frac{1}{g(x)}} = \frac{1}{e}$, then $\lambda = \frac{1}{e}$

- **3.** If α , β are two distinct real roots of the equation $ax^3 + x 1 a = 0$, $(a \ne -1, 0)$, none of which is equal to unity, then the value of $\lim_{x\to(1/\alpha)}\frac{(1+a)x^3-x^2-a}{(e^{1-\alpha x}-1)(x-1)}$ is $\frac{al(k\alpha-\beta)}{\alpha}$. Find the value of kl.
- **4.** The value of $\lim_{x \to 0} \frac{(140)^x (35)^x (28)^x (20)^x + 7^x + 5^x + 4^x 1}{x \sin^2 x} = 2 \ln 2 \ln k \ln 7$, then k = 5. If $\lim_{x \to 0} \frac{a \cot x}{x} + \frac{b}{x^2} = \frac{1}{3}$, then b a = 1
- **6.** Find the value of $\lim_{x\to\infty} \left(x+\frac{1}{x}\right)e^{1/x}-x$.
- 7. Find $\lim_{x \to \alpha^+} \left[\frac{\min{(\sin{x}, \{x\})}}{x 1} \right]$ where α is root of equation $\sin{x} + 1 = x$ (here [·] represent greatest integer and {-} represent fractional part function)

					* *	Ansv	ver	s	1 m				
1.	2	2.	8	3.	1	4.	5	5.	2	6.	1	7.	0

Chapter 3 - Continuity, Differentiability and Differentiation

CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

	Exe	rcise-1:	Single Choi	ce Problems			
1.				le real valued in $f''(0)$, $f''(1)$,			f(x+2y) = f(x) + f(2y) + f(2
	(a)			GP	(c)		(d) None of these
2.	The	number o	f points of no	n-differentiabi	lity for f(c) = max	$\left\{ x -1 , \frac{1}{2} \right\}$ is:
	(a)	4	(b)	3	(c)	2	(d) 5
3.	Nur	mber of po	ints of discon	tinuity of $f(x)$	$=\left\{\frac{x}{5}\right\}+\left[$	$\left[\frac{x}{2}\right]$ in $x \in$	[0,100] is/are (where [·] denote
	grea	atest intege	er function as	nd {·} denotes f	ractional p	oart funct	ion)
	(a)	50	(b)	51	(c)	52	(d) 61
4.	If f	(x) has isol	ated point of	discontinuity a			x) is continuous at $x = a$ then:
	(a)	$\lim_{x\to a} f(x)$	does not exis	t	(Ъ)	$\lim_{x\to a} f(x)$)+f(a)=0
	(c)	f(a) = 0			(d)	None of	these
5.	If f	(x) is a thr	ice differenti	able function s	uch that, l	$\lim_{x\to 0}\frac{f(4x)}{x}$	$\frac{-3f(3x) + 3f(2x) - f(x)}{x^3} = 12$
	the	n the value	$e ext{ of } f'''(0) ext{ equ}$	ıals to :			
	(a)	0	(b)	1	(c)	12	(d) None of these $+(\cot\theta)^{\sin\theta-\cot\theta}$
6.	ν =		1	+		1	sin O and O
	,	$1 + (\tan \theta)$	$)^{\sin\theta-\cos\theta}+(\cos\theta)$	$\cot \theta$) $\cos \theta - \cos \theta$	$1 + (\tan \theta)$) 0050-5111 6	$+(\cot\theta)^{\sin\theta-\cot\theta}$
	+-	+ (tan θ) ^{co}	$\frac{1}{s\theta-\cot\theta}$ + (cot	θ) cot θ -sin θ the	$n \frac{dy}{dx}$ at $\theta =$	= π/3 is :	
	(a)				(b)		
		$\sqrt{3}$			(d)	None of	these
7	. Let	$f'(x) = \sin x$	$n(x^2)$ and $y =$	$= f(x^2 + 1) \text{ the}$	$n \frac{dy}{dx}$ at x	= 1 is :	×
	(a)	2 sin 2	(b)	$2\cos 2$	(c)	2 sin 4	(d) cos 2

8. If $f(x) = |\sin x - |\cos x|$, then $f'(\frac{7\pi}{6}) =$

(a)
$$\frac{\sqrt{3}+1}{2}$$

(b)
$$\frac{1-\sqrt{3}}{2}$$

(c)
$$\frac{\sqrt{3}-1}{2}$$

(d)
$$\frac{-1-\sqrt{3}}{2}$$

9. If $2\sin x \cdot \cos y = 1$, then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

(a)
$$-4$$

(a) -4 (b) -2 (c) -6 (d) 0 **10.** f is a differentiable function such that $x = f(t^2)$, $y = f(t^3)$ and $f'(1) \neq 0$ if $\left(\frac{d^2y}{dx^2}\right)_{t=1}$

(a)
$$\frac{3}{4} \left(\frac{f''(1) + f'(1)}{(f'(1))^2} \right)$$

(b)
$$\frac{3}{4} \left(\frac{f'(1) \cdot f''(1) - f''(1)}{(f'(1))^2} \right)$$

(c)
$$\frac{4}{3} \frac{f''(1)}{(f'(1))^2}$$

(d)
$$\frac{4}{3} \left(\frac{f'(1)f''(1) - f''(1)}{(f'(1))^2} \right)$$

11. Let $f(x) = \begin{cases} ax + 1 & \text{if } x < 1 \\ 3 & \text{if } x = 1. \text{ If } f(x) \text{ is continuous at } x = 1 \text{ then } (a - b) \text{ is equal to :} \\ bx^2 + 1 & \text{if } x > 1 \end{cases}$

12. If $y = 1 + \frac{\alpha}{\left(\frac{1}{x} - \alpha\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)}$, then $\frac{dy}{dx}$ is:

(a)
$$y\left(\frac{\alpha}{\alpha-x}+\frac{\beta}{\beta-x}+\frac{\gamma}{\gamma-x}\right)$$

(a)
$$y\left(\frac{\alpha}{\alpha-x} + \frac{\beta}{\beta-x} + \frac{\gamma}{\gamma-x}\right)$$
 (b) $\frac{y}{x}\left(\frac{\alpha}{1/x-\alpha} + \frac{\beta}{1/x-\beta} + \frac{\gamma}{1/x-\gamma}\right)$

(c)
$$y\left(\frac{\alpha}{1/x-\alpha} + \frac{\beta}{1/x-\beta} + \frac{\gamma}{1/x-\gamma}\right)$$

(c)
$$y \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$$
 (d) $\frac{y}{x} \left(\frac{\alpha/x}{1/x - \alpha} + \frac{\beta/x}{1/x - \beta} + \frac{\gamma/x}{1/x - \gamma} \right)$

13. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then f'(0) is equal to :

14. Let $f(x) = \begin{cases} \sin^2 x & \text{, } x \text{ is rational} \\ -\sin^2 x & \text{, } x \text{ is irrational} \end{cases}$, then set of points, where f(x) is continuous, is:

(a)
$$\left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$$

(b) a null set

(c)
$$\{n\pi, n \in I\}$$

(d) set of all rational numbers

15. The number of values	of x in (0, 2π) where the	function $f(x) = \frac{\tan x}{2}$	$\frac{\cot x}{2} - \left \frac{\tan x - \cot x}{2} \right $ is
continuous but non-de (a) 3 16. If $f(x) = x-1 $ and $g(x) = x-1 $ for $x > 2$	erivable: (b) 4 f(f(f(x))), then $g'(x)(b) 1 for 2 < f(x)$	(c) 0 (x) is equal to: (c) -1 for 2 < x < 3	(d) 1 (d) -1 for $x > 3$
17. If $f(x)$ is a continuous continuous $\forall x \in R$, the integer function.)			$\sqrt{26}$) and $g(x) = \left\lfloor \frac{f(x)}{C} \right\rfloor$ is ere [·] denotes the greatest
(a) 3 18. If $y = x + e^x$, then $\left(\frac{d^2}{dy}\right)^2$	(b) 5	(c) 6	(d) 7
(a) $-\frac{1}{9}$ 19. Let $f(x) = x^3 + 4x^2 +$	4/	(c) $\frac{2}{27}$ se then the value of g'	(d) $\frac{1}{9}$ (-4):
(a) -2	(b) 2	(c) $\frac{1}{2}$	(d) None of these
20. If $f(x) = 2 + x - x $	$1 - x+1 $, then $f'\left(-\frac{1}{2}\right)$ (b) -1	$+f'\left(\frac{1}{2}\right)+f'\left(\frac{3}{2}\right)+f'\left(\frac{3}{2}\right)$	$\left(\frac{3}{2}\right)$ is equal to: $\left(\frac{3}{2}\right) = \frac{3}{2}$
21. If $f(x) = \cos(x^2 - 4)$	STATE OF	10000	/ ->
V 2	(b) $\sqrt{\frac{\pi}{2}}$	(c) 0	(d) $\sqrt{\frac{\pi}{4}}$
22. Let $g(x)$ be the invers	e of $f(x)$ such that $f'(x)$	17. 5	$\frac{x(1)}{x(1)}$ is equal to :
(a) $\frac{1}{1+(g(x))^5}$	•	(b) $\frac{g'(x)}{1 + (g(x))^5}$	
(c) $5(g(x))^4 (1 + (g(x))^4)$ 23. Let $f(x) = \begin{cases} \min(x, \\ \max(2x, x) \end{cases}$	$\begin{pmatrix} x^2 \end{pmatrix}$ $\qquad x \ge 0 \\ x - 1 \end{pmatrix}$, then which	(d) $1 + (g(x))^5$ h of the following is no	ot true ?
(a) f(x) is not differ(b) f(x) is not differ	entiable at $x = 0$ entiable at exactly two p	points	

- (c) f(x) is continuous everywhere
- (d) f(x) is strictly increasing $\forall x \in R$
- **24.** If $f(x) = \lim_{n \to \infty} \left(\prod_{i=1}^n \cos \left(\frac{x}{2^i} \right) \right)$ then f'(x) is equal to :
- (a) $\frac{\sin x}{x}$ (b) $\frac{x}{\sin x}$ (c) $\frac{x \cos x \sin x}{x^2}$ (d) $\frac{\sin x x \cos x}{\sin^2 x}$

25. Let $f(x) = \begin{cases} \frac{1 - \tan x}{4x - \pi} & x \neq \frac{\pi}{4}; x \in [0, \frac{\pi}{2}). \\ \lambda & x = \frac{\pi}{4} \end{cases}$

If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$ then λ is equal to:

- (a) 1
- (c) $-\frac{1}{2}$
- (d) -1

- **26.** Let $f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin \frac{1}{x} & x \neq 0, \text{ then } f'(0) = 0 \\ 0 & x = 0 \end{cases}$
 - (a) 1
- (c) 0
- (d) Does not exist
- **27.** Let f be a differentiable function satisfying $f'(x) = 2f(x) + 10 \ \forall \ x \in R$ and f(0) = 0, then the number of real roots of the equation $f(x) + 5 \sec^2 x = 0$ in $(0, 2\pi)$ is:
- (c) 2
- (d) 3
- 28. If $f(x) = \begin{cases} \frac{\sin{\{\cos{x}\}}}{x \frac{\pi}{2}} & x \neq \frac{\pi}{2} \\ 1 & x = \frac{\pi}{2} \end{cases}$, where $\{k\}$ represents the fractional part of k, then:
 - (a) f(x) is continuous at $x = \frac{\pi}{2}$
 - (b) $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exist
 - (c) $\lim_{x \to \frac{\pi}{2}} f(x)$ exists, but f is not continuous at $x = \frac{\pi}{2}$
- **29.** Let f(x) be a polynomial in x. The second derivative of $f(e^x)$ w.r.t. x is:
 - (a) $f''(e^x)e^x + f'(e^x)$

(b) $f''(e^x)e^{2x} + f'(e^x)e^{2x}$

(c) $f''(e^x)e^x + f'(e^x)e^{2x}$

(d) $f''(e^x)e^{2x} + e^x f'(e^x)$

30. If $e^{f(x)}$	= $\log_e x$ and $g(x)$ is the invers	e function of $f(x)$	then $g'(x)$ is equal to :
--------------------------	---------------------------------------	----------------------	----------------------------

- (a) $e^x + x$
- (b) $e^{e^{e^x}}e^{e^x}e^x$

31. If
$$y = f(x)$$
 is differentiable $\forall x \in R$, then

- (a) y = |f(x)| is differentiable $\forall x \in R$
- (b) $y = f^2(x)$ is non-differentiable for at least one x
- (c) y = f(x)|f(x)| is non-differentiable for at least one x
- (d) $y = |f(x)|^3$ is differentiable $\forall x \in R$

32. If
$$f(x) = (x-1)^4(x-2)^3(x-3)^2$$
 then the value of $f'''(1) + f''(2) + f'(3)$ is:

- (c) 2

33. If
$$f(x) = \left(\frac{x}{2}\right) - 1$$
, then on the interval $[0, \pi]$:

- (a) tan(f(x)) and $\frac{1}{f(x)}$ are both continuous
- (b) tan(f(x)) and $\frac{1}{f(x)}$ are both discontinuous
- (c) tan(f(x)) and $f^{-1}(x)$ are both continuous
- (d) $\tan f(x)$ is continuous but $f^{-1}(x)$ is not

34. Let
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x-2}} - 3}{\frac{1}{3^{x-2} + 1}} & x > 2\\ \frac{b \sin{\{-x\}}}{\{-x\}} & x < 2, \text{ where } \{\cdot\} \text{ denotes fraction part function, is continuous at } x = 2,\\ c & x = 2 \end{cases}$$

then b + c =

- (c) 2

(a) 0 (b) 1 (c) 2 (d) 4

35. Let
$$f(x) = \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x}$$
 be a continuous function at $x = 0$. The value of

f(0) equals:

- (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$ (c) $\frac{3}{2}$
- (d) 2

(a) $\frac{1}{x^{2/3}(1+x^{2/3})}$ (b) $\frac{3}{x^{2/3}(1+x^{2/3})}$ (c) $\frac{1}{3x^{2/3}(1+x^{2/3})}$ (d) $\frac{1}{3x^{1/3}(1+x^{2/3})}$

52. Let f and g	g be differentiable functi	ions on R (the set of	of all real numbers) s	such that
g(1)=2=g'	(1) and $f'(0) = 4$. If $h(x) =$	$f(2xg(x) + \cos \pi x - 3$	then $h'(1)$ is equal to	:
(a) 28	(b) 24	(c) 32	(d) 18	90
53. If $f(x) = \frac{(x+1)^2}{(x+1)^2}$	$\frac{(-1)^7 \sqrt{1+x^2}}{(-2-x+1)^6}$, then the val	ue of $f'(0)$ is equal to		
(a) 10	(b) 11	(c) 13	(d) 15	
54. Statement-	1 : The function $f(x) = \lim_{n \to \infty} f(x)$	$\lim_{n\to\infty}\frac{\log_e(1+x)-x^{2n}\sin^2(1+x)}{1+x^{2n}}$	$\frac{1(2x)}{x}$ is discontinuous a	at $x = 1$.
Statement-	2: LH.L=R.H.L $\neq f(1)$.			
7040 A427 DOMES 52	nt-1 is true, Statement-2	(i)	nt-2 is correct explana	ation for
(b) Statemer Statemer	nt-1 is true, Statement-2 is nt-1	true and Statement-2	s not the correct explan	ation for
(c) Statemen	nt-1 is true, Statement-2 is	false	1,460	*
	nt-1 is false, Statement-2 is			
55. If $f(x) = \begin{bmatrix} x \\ 1 - \end{bmatrix}$; if x is rational , the x ; if x is irrational ,	en number of points i	or $x \in R$, where $y = f(x)$	(<i>f</i> (<i>x</i>)) is
discontinuous	is:			a
(a) 0	(b) 1	(c) 2	(d) Infinitely n	nany
56. Number of po	(b) 1 ints where $f(x) = \begin{cases} \max(x) \\ m \end{cases}$	$x^2 - x - 2 , x^2 - 3x $ $\max(\ln(-x), e^x)$	$ \begin{array}{l} x \ge 0 \\ x < 0 \end{array} $	5 5
is non-differen				
(a) 1	(b) 2	(c) 3	(d) None of th	959
		.23	(d) None of th	cse / -\
	$f(x) = -4e^{\frac{1-x}{2}} + 1 + x + \frac{x}{2}$	$\frac{x}{2} + \frac{x}{3}$ and $g(x) = f^{-1}$	$^{1}(x)$, then the value of	$f g' \left(\frac{-7}{6} \right)$
equals to:	. 4 € 30			
(a) $\frac{1}{5}$	(b) $-\frac{1}{5}$	(c) $\frac{6}{7}$	(d) $-\frac{6}{7}$	
58. Find k ; if possil	ble; so that			
	$\int \frac{\ln(2-\cos 2x)}{\ln^2(1+\sin 3x)}; x$	< 0		
77	$\ln^2\left(1+\sin 3x\right)$	52	(%)	
f(x)	=	= 0		
	$= \begin{bmatrix} \ln^2 (1 + \sin 3x) & x \\ k & ; & x \\ \frac{e^{\sin 2x} - 1}{\ln(1 + \tan 9x)} & ; & x \end{bmatrix}$	> 0		
is continuous at	x = 0.			
(a) $\frac{2}{3}$	(b) $\frac{1}{9}$	(c) $\frac{2}{9}$	(d) Not possible	le

68. If
$$f(x) = \begin{cases} \frac{x - e^x + 1 - \{1 - \cos 2x\}}{x^2} & x \neq 0 \\ k & x = 0 \end{cases}$$
 is continuous at $x = 0$ then, which of the

following statement is false?

(a)
$$k = \frac{-5}{2}$$

(a) $k = \frac{-5}{2}$ (b) $\{k\} = \frac{1}{2}$

(c) [k] = -2

(d) $[k] \{k\} = \frac{-3}{2}$

(where [·] denotes greatest integer function and {·} denotes fraction part function.)

69. Let $f(x) = ||x^2 - 10x + 21| - p|$; then the exhaustive set of values of p for which f(x) has exactly 6 points of non-derivability; is:

(a) $(4, \infty)$

(c) [0, 4]

(d) (-4, 4)

(a)
$$(4, \infty)$$
 (b) $(0, 4)$
70. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then $f'(0)$ is equal to:

(d) 1

(a) 4 (b) 3 (c) 2
71. For
$$t \in (0, 1)$$
; let $x = \sqrt{2^{\sin^{-1} t}}$ and $y = \sqrt{2^{\cos^{-1} t}}$,

then $1 + \left(\frac{dy}{dx}\right)^2$ equals:

(a)
$$\frac{x^2}{y^2}$$

(a) $\frac{x^2}{v^2}$ (b) $\frac{y^2}{v^2}$ (c) $\frac{x^2 + y^2}{v^2}$ (d) $\frac{x^2 + y^2}{v^2}$

72. Let f(x) = -1 + |x-2| and g(x) = 1 - |x| then set of all possible value(s) of x for which (fog) (x) is discontinuous is:

(a) {0, 1, 2}

(b) {0, 2}

(c) {0}

(d) an empty set

73. If $f(x) = [x] \tan (\pi x)$ then $f'(K^+)$ is equal to $(k \in I)$ and [x] denotes greatest integer function):

(c) $k\pi(-1)^{k+1}$

(d) $(k-1)\pi(-1)^{k+1}$

74. If
$$f(x) = \begin{cases} \frac{ae^{\sin x} + be^{-\sin x} - c}{x^2}; & x \neq 0 \\ 2; & x = 0 \end{cases}$$
 is continuous at $x = 0$; then:

(a) a = b = c (b) a = 2b = 3c

(c) a = b = 2c

75. If $\tan x \cdot \cot y = \sec \alpha$ where α is constant and $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ equals to :

76. If
$$y = (x-3)(x-2)(x-1) \times (x+1)(x+2)(x+3)$$
, then $\frac{d^2y}{dx^2}$ at $x=1$ is :

(a) -101

(b) 48

(c) 56

(d) 190

g ,	* eo lee e a
77. Let $f(x+y) = f(x)f(y) \ \forall x, y \in R, f(0) \neq 0$. It continuous at:	
(a) all natural numbers only	(b) all integers only
(c) all rational numbers only	(d) all real numbers
The second second second second	
78. If $f(x) = 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x + \frac{1}{2}$	5 and $g(x) = f^{-1}(x)$; then the value of $g'(6)$
equals:	og el
(a) 1 (b) $\frac{1}{2}$	(c) 2 (d) 3
79. If $y = f(x)$ and $z = g(x)$ then $\frac{d^2y}{dz^2}$ equals	⊗ v
(a) $\frac{g'f'' - f'g''}{(g')^2}$ (b) $\frac{g'f'' - f'g''}{(g')^3}$	
80. Let $f(x) = \begin{bmatrix} x+1 & ; & x<0 \\ x-1 & ; & x\geq 0 \end{bmatrix}$ and $g(x) = \begin{bmatrix} x+1 \\ (x-1) \end{bmatrix}$	$\begin{array}{ccc} 1 & ; & x < 0 \\ 0^2 & ; & x \ge 0 \end{array}$ then
the number of points where $g(f(x))$ is not diff	erentiable.
(a) 0 (b) 1	(c) 2 (d) None of these
81. Let $f(x) = [\sin x] + [\cos x], x \in [0, 2\pi],$ where	denotes the greatest integer function, total
number of points where $f(x)$ is non differential	able is equal to :
(a) 2 (b) 3	(c) 4 (d) 5
82. Let $f(x) = \cos x$, $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} \\ (\sin x) - 1 \end{cases}$	$, x \in [0, \pi]$ $, x > \pi$
Then	and an income
(a) $g(x)$ is discontinuous at $x = \pi$	(b) $g(x)$ is continuous for $x \in [0, \infty)$
(c) $g(x)$ is differentiable at $x = \pi$	(d) $g(x)$ is differentiable for $x \in [0, \infty)$
83. If $f(x) = (4+x)^n$, $n \in N$ and $f'(0)$ represents	
** 12	8 T H
of $\sum_{r=0}^{\infty} \frac{f^r(0)}{r!}$ is equal to :	
(a) 2^n (b) 3^n	(c) 5^n (d) 4^n
$\begin{bmatrix} x & x \ge 1 \end{bmatrix}$	*
84. Let $f(x) = \frac{1+ x }{1+ x }$, then domain o	of $f'(x)$ is:
	y y
(a) $(-\infty, \infty)$ (b) $(-\infty, \infty) - \{-1, 0, 1\}$	$\{ (c) (-\infty, \infty) - \{-1, 1\} (d) (-\infty, \infty) - \{0\} $
. •	w x
į,	

- (a) $\frac{1}{5}$

- **86.** The number of points at which the function $f(x) = (x-|x|)^2(1-x+|x|)^2$ is not differentiable in the interval (-3, 4) is:
- (c) Two
- (d) Three

(a) Zero (b) One
87. If
$$f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$$
; then $f'(0)$ is equal to:

- (a) 4

- (d) 1

88. If
$$f(x) = \begin{bmatrix} e^{x-1} & 0 \le x \le 1 \\ x+1-\{x\} & 1 < x < 3 \end{bmatrix}$$
 and $g(x) = x^2 - ax + b$ such that $f(x)g(x)$ is continuous in

[0, 3) then the ordered pair (a, b) is (where $\{\cdot\}$ denotes fractional part function):

- (b) (1, 2)
- (c) (3, 2)
- (d) (2,2)
- **89.** Use the following table and the fact that f(x) is invertible and differentiable everywhere to find $f^{-1}(3)$:

- (c) $\frac{1}{10}$
- (d) $\frac{1}{7}$

90. Let
$$f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Such that f(x) is continuous at x = 0; f'(0) is real and finite; and $\lim_{x \to 0} f'(x)$ does not exist. This holds true for which of the following values of n?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

	(a)		(d)	3.	(a)	4.	(b)	5.	(c)	6.	(a)	7.	(c)	8.	(c)	9.	(a)	10.	(a
1. 11.	76 FL	12.	`-'	13.	88		67 (SS)	5. 15.	STOTAL SECRES				(c)		(b)				
21.	(a)	22.	(c)	23.	(b)	24.	(c)	25.	(c)	26.	(c)	27.	(a)	28.	(ъ)	29.	(d)	30.	(0
31.	(d)	32.	(a)	33.	(c)	34.	(a)	35.	(c)	36.	(c)	37.	(c)	38.	(ъ)	39.	(b)	40.	(d
41.	(c)	42.	(ъ)	43.	(c)	44.	(b)	45.	(a)	46.	(a)	47.	(c)	48.	(a)	49.	(c)	50.	(d
51.	(c)	52.	(c)	53.	(c)	54.	(c)	55.	(a)	56.	(c)	57.	(a)	58.	(c)	59.	(c)	60.	(d
51.	(b)	62.	(ъ)	63.	(a)	64.	(c)	65.	(c)	66.	(c)	67.	(c)	68.	(c)	69.	(b)	70.	(d
71.	(d)	72.	(d)	73.	(ъ)	74.	(d)	75.	(a)	76.	(c)	77.	(d)	78.	(a)	79.	(b)	80.	(c
31.	(d)	82.	(b)	83.	(c)	84.	(c)	85.	(a)	86.	(a)	87.	(d)	88.	(c)	89.	(b)	90.	(c

Exercise-2: One or More than One Answer is/are Correct

- 1. If $f(x) = \tan^{-1} (\operatorname{sgn}(x^2 \lambda x + 1))$ has exactly one point of discontinuity, then the value of $\lambda \operatorname{can}$ be:
 - (a) 1
- (b) -1
- (c) 2
- (d) -2

2.
$$f(x) = \begin{cases} 2(x+1) & ; & x \le -1 \\ \sqrt{1-x^2} & ; & -1 < x < 1, \text{ then } : \\ |||x|-1|-1| & ; & x \ge 1 \end{cases}$$

- (a) f(x) is non-differentiable at exactly three points
- (b) f(x) is continuous in $(-\infty, 1]$
- (c) f(x) is differentiable in $(-\infty, -1)$
- (d) f(x) is finite type of discontinuity at x = 1, but continuous at x = -1

3. Let
$$f(x) = \begin{bmatrix} x(3e^{1/x} + 4) \\ 2 - e^{1/x} \\ 0 \end{bmatrix}$$
; $x \neq 0$ $x \neq \frac{1}{\ln 2}$

which of the following statement(s) is/are correct?

- (a) f(x) is continuous at x = 0
- (b) f(x) is non-derivable at x = 0

(c) $f'(0^+) = -3$

- (d) $f'(0^-)$ does not exist
- **4.** Let $|f(x)| \le \sin^2 x$, $\forall x \in R$, then
 - (a) f(x) is continuous at x = 0
 - (b) f(x) is differentiable at x = 0
 - (c) f(x) is continuous but not differentiable at x = 0
 - (d) f(0) = 0

5. Let
$$f(x) = \begin{bmatrix} \frac{a(1-x\sin x) + b\cos x + 5}{x^2} & ; & x < 0 \\ 3 & ; & x = 0 \\ \left(1 + \left(\frac{cx + dx^3}{x^2}\right)\right)^{\frac{1}{x}} & ; & x > 0 \end{bmatrix}$$

If f is continuous at x = 0 then correct statement(s) is/are:

(a) a+c=-1

(b) b+c=-4

(c) a+b=-5

- (d) c + d = an irrational number
- **6.** If f(x) = ||x| 2| + p| have more than 3 points of non-derivability then the value of p can be:
 - (a) 0

(b) -1

(c) -2

(d) 2

- 7. Identify the options having correct statement:
 - (a) $f(x) = \sqrt[3]{x^2|x|} 1 |x|$ is no where non-differentiable
 - (b) $\lim_{x\to\infty} ((x+5)\tan^{-1}(x+1)) ((x+1)\tan^{-1}(x+1)) = 2\pi$
 - (c) $f(x) = \sin(\ln(x + \sqrt{x^2 + 1}))$ is an odd function
 - (d) $f(x) = \frac{4-x^2}{4x-x^3}$ is discontinuous at exactly one point
- **8.** A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions:

f(0) = 2; f'(0) = -5 and f''(0) = 3.

The function g(x) is defined by $g(x) = e^{ax} + f(x) \ \forall x \in \mathbb{R}$, where 'a' is any constant. If g'(0) + g''(0) = 0 then 'a' can be equal to:

- (a) 1
- (b) -1
- (c) 2
- (d) -2

- **9.** If $f(x) = |x| \sin x$, then f is :
 - (a) differentiable everywhere
- (b) not differentiable at $x = n \pi, n \in I$
- (c) not differentiable at x = 0
- (d) continuous at x = 0
- **10.** Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$, then
 - (a) $\lim_{x\to 0} f(x)$ does not exist
- (b) f(x) is continuous at x = 0
- (c) f(x) is not differentiable at x = 0
- (d) f'(0) = 0
- **11.** Let f be a differentiable function satisfying $f'(x) = f'(-x) \ \forall \ x \in R$. Then
 - (a) If f(1) = f(2), then f(-1) = f(-2)
 - (b) $\frac{1}{2}f(x) + \frac{1}{2}f(y) = f\left(\frac{1}{2}(x+y)\right)$ for all real values of x, y
 - (c) Let f(x) be an even function, then $f(x) = 0 \forall x \in R$
 - (d) $f(x) + f(-x) = 2f(0) \forall x \in R$
- **12.** Let $f: R \to R$ be a function, such that $|f(x)| \le x^{4n}$, $n \in N \ \forall x \in R$ then f(x) is:
 - (a) discontinuous at x = 0
- (b) continuous at x = 0
- (c) non-differentiable at x = 0
- (d) differentiable at x = 0
- 13. Let f(x) = [x] and g(x) = 0 when x is an integer and $g(x) = x^2$ when x is not an integer ([] is the greatest integer function) then:
 - (a) $\lim_{x\to 1} g(x)$ exists, but g(x) is not continuous at x=1
 - (b) $\lim_{x\to 1} f(x)$ does not exist
 - (c) gof is continuous for all x
 - (d) fog is continuous for all x

14. Let the function
$$f$$
 be defined by $f(x) = \begin{cases} p + qx + x^2 & , & x < 2 \\ 2px + 3qx^2 & , & x \ge 2 \end{cases}$. Then:

- (a) f(x) is continuous in R if 3p + 10q = 4
- (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
- (c) If p = -2, q = 1, then f(x) is continuous in R
- (d) f(x) is differentiable in R if 2p + 11q = 4
- **15.** Let f(x) = |2x 9| + |2x| + |2x + 9|. Which of the following are true?
 - (a) f(x) is not differentiable at $x = \frac{9}{2}$
- (b) f(x) is not differentiable at $x = \frac{-9}{2}$
- (c) f(x) is not differentiable at x = 0
- (d) f(x) is differentiable at $x = \frac{-9}{2}$, 0, $\frac{9}{2}$
- **16.** Let $f(x) = \max(x, x^2, x^3)$ in $-2 \le x \le 2$. Then:
 - (a) f(x) is continuous in $-2 \le x \le 2$
- (b) f(x) is not differentiable at x = 1

(c) $f(-1) + f\left(\frac{3}{2}\right) = \frac{35}{8}$

- (d) $f'(-1)f'(\frac{3}{2}) = \frac{-35}{4}$
- 17. If f(x) be a differentiable function satisfying $f(y)f\left(\frac{x}{y}\right) = f(x) \ \forall \ x, y \in R, \ y \neq 0 \ \text{and} \ f(1) \neq 0$,
 - f'(1) = 3, then:
 - (a) sgn(f(x)) is non-differentiable at exactly one point
 - (b) $\lim_{x\to 0} \frac{x^2(\cos x 1)}{f(x)} = 0$
 - (c) f(x) = x has 3 solutions
 - (d) $f(f(x)) f^3(x) = 0$ has infinitely many solutions
- **18.** Let $f(x) = (x^2 3x + 2)(x^2 + 3x + 2)$ and α, β, γ satisfy $\alpha < \beta < \gamma$ are the roots of f'(x) = 0 then which of the following is/are correct ([·] denotes greatest integer function)?
 - (a) $[\alpha] = -2$

(b) $[\beta] = -1$

(c) $[\beta] = 0$

- (d) $[\alpha] = 1$
- **19.** Let the function f be defined by $f(x) = \begin{cases} p + qx + x^2, & x < 2 \\ 2px + 3qx^2, & x \ge 2 \end{cases}$. Then:
 - (a) f(x) is continuous in R if 3p + 10q = 4
 - (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
 - (c) If p = -2, q = 1, then f(x) is continuous in R
 - (d) f(x) is differentiable in R if 2p + 11q = 4

20. If $y = e^{x \sin(x^3)} + (\tan x)^x$ then $\frac{dy}{dx}$ may be equal to:

(a)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(b)
$$e^{x \sin(x^3)} [x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(c)
$$e^{x \sin(x^3)} [x^3 \sin(x^3) + \cos(x^3)] + (\tan x)^x [\ln \tan x + 2 \csc 2x]$$

(d)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x \left[\ln \tan x + \frac{x \sec^2 x}{\tan x} \right]$$

21. Let $f(x) = x + (1-x)x^2 + (1-x)(1-x^2)x^3 + \dots + (1-x)(1-x^2)\dots + (1-x^{n-1})x^n$; $(n \ge 4)$

(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^r)$$

(b)
$$f(x) = 1 - \prod_{r=1}^{n} (1 - x^r)$$

(c)
$$f'(x) = (1 - f(x)) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^r)} \right)$$

(d)
$$f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1-x^r)} \right)$$

(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^{r})$$
 (b) $f(x) = 1 - \prod_{r=1}^{n} (1 - x^{r})$ (c) $f'(x) = (1 - f(x)) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^{r})} \right)$ (d) $f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^{r})} \right)$

22. Let $f(x) = \begin{bmatrix} x^{2} + a \ ; \ 0 \le x < 1 \\ 2x + b \ ; \ 1 \le x \le 2 \end{bmatrix}$ and $g(x) = \begin{bmatrix} 3x + b \ ; \ 0 \le x < 1 \\ x^{3} \ ; \ 1 \le x \le 2 \end{bmatrix}$

If derivative of $f(x)$ was $g(x)$ at $x = 1$ exists and is equal to λ , then which of the following size $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$

If derivative of f(x) w.r.t. g(x) at x = 1 exists and is equal to λ , then which of the following is/are correct?

(a)
$$a + b = -3$$

(b)
$$a-b=1$$

(c)
$$\frac{ab}{\lambda} = 3$$

(d)
$$\frac{-b}{\lambda} = 3$$

correct?

(a)
$$a+b=-3$$
 (b) $a-b=1$ (c) $\frac{ab}{\lambda}=3$ (d) $\frac{-b}{\lambda}=3$

23. If $f(x) = \begin{bmatrix} \frac{\sin(x^2)\pi}{x^2-3x+8} + ax^3 + b ; 0 \le x \le 1 \\ x^2-3x+8 \end{bmatrix}$ is differentiable in [0, 2] then:

([·] denotes greatest integer function)

(a)
$$a = \frac{1}{3}$$

(b)
$$a = \frac{1}{6}$$

(a)
$$a = \frac{1}{3}$$
 (b) $a = \frac{1}{6}$ (c) $b = \frac{\pi}{4} - \frac{13}{6}$ (d) $b = \frac{\pi}{4} - \frac{7}{3}$

(d)
$$b = \frac{\pi}{4} - \frac{7}{3}$$

24. If $f(x) = \begin{cases} 1+x & 0 \le x \le 2 \\ 3-x & 2 < x \le 3 \end{cases}$, then f(f(x)) is not differentiable at:

(a)
$$x = 1$$

(b)
$$x = 2$$

(c)
$$x = \frac{5}{2}$$
 (d) $x = 3$

(d)
$$x = 3$$

25. Let f(x) = (x+1)(x+2)(x+3)....(x+100) and $g(x) = f(x)f''(x) - (f'(x))^2$. Let n be the number of real roots of g(x) = 0, then:

(a)
$$n < 2$$

(b)
$$n > 2$$

(c)
$$n < 100$$

(d)
$$n > 100$$

26. If
$$f(x) = \begin{cases} |x| - 3, & x < 1 \\ |x - 2| + a, & x \ge 1 \end{cases}$$
, $g(x) = \begin{cases} 2 - |x|, & x < 2 \\ sgn(x) - b, & x \ge 2 \end{cases}$

If h(x) = f(x) + g(x) is discontinuous at exactly one point, then which of the following are correct?

(a)
$$a = -3, b = 0$$

(a)
$$a = -3, b = 0$$
 (b) $a = -3, b = -1$ (c) $a = 2, b = 1$ (d) $a = 0, b = 1$

(c)
$$a = 2, b = 1$$

(d)
$$a = 0, b = 1$$

27. Let f(x) be a continuous function in [-1, 1] such that

$$f(x) = \begin{bmatrix} \frac{\ln(ax^2 + bx + c)}{x^2} ; -1 \le x < 0 \\ \\ 1 ; x = 0 \\ \\ \frac{\sin(e^{x^2} - 1)}{x^2} ; 0 < x \le 1 \end{bmatrix}$$

Then which of the following is/are correct?

$$(a) \quad a+b+c=0$$

(b)
$$b = a + c$$

(c)
$$c = 1 + b$$

(d)
$$b^2 + c^2 = 1$$

(a) a+b+c=0 (b) b=a+c (c) c=1+b (d) $b^2+c^2=1$ **28.** f(x) is differentiable function satisfying the relationship $f^2(x)+f^2(y)+2(xy-1)=f^2(x+y)$ $\forall x, y \in R$

Also $f(x) > 0 \ \forall \ x \in R$ and $f(\sqrt{2}) = 2$. Then which of the following statement(s) is/are correct about f(x)?

- (a) $[f(3)] = 3([\cdot]]$ denotes greatest integer function)
- (b) $f(\sqrt{7}) = 3$
- (c) f(x) is even
- (d) f'(0) = 0

29. The function
$$f(x) = \left[\sqrt{1 - \sqrt{1 - x^2}} \right]$$
, (where [·] denotes greatest integer function) :

- (a) has domain [-1, 1]
- (b) is discontinuous at two points in its domain
- (c) is discontinuous at x = 0
- (d) is discontinuous at x = 1
- **30.** A function f(x) satisfies the relation :

$$f(x+y) = f(x) + f(y) + xy(x+y) \forall x, y \in R.$$
 If $f'(0) = -1$, then:

- (a) f(x) is a polynomial function
- (b) f(x) is an exponential function
- (c) f(x) is twice differentiable for all $x \in R$
- (d) f'(3) = 8

31. The points of discontinuities of $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right] \sin\left[\frac{\pi}{6}, \pi\right]$ is/are:

(where [·] denotes greatest integer function)

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{2}$$

32. Let
$$f(x) = \begin{cases} \frac{x^2}{2} & 0 \le x < 1 \\ 2x^2 - 3x + \frac{3}{2} & 1 \le x \le 2 \end{cases}$$
, then in [0, 2]:

- (a) f(x), f'(x) are continuous
- (b) f'(x) is continuous, f''(x) is not continuous
- (c) f''(x) is continuous
- (d) f''(x) is non differentiable

33. If
$$x = \phi(t)$$
, $y = \psi(t)$, then $\frac{d^2y}{dx^2} =$

(a)
$$\frac{\phi'\psi''-\psi'\phi}{(\phi')^2}$$

(b)
$$\frac{\phi'\psi'' - \psi'\phi'}{(\phi')^3}$$

(c)
$$\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$$

(a)
$$\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^2}$$
 (b) $\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^3}$ (c) $\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$ (d) $\frac{\psi''}{(\phi')^2} - \frac{\psi'\phi''}{(\phi')^3}$

34. f(x) = [x] and $g(x) = \begin{cases} 0 & \text{if } x \in I \\ x^2 & \text{if } x \notin I \end{cases}$ where [:] denotes the greatest integer function. Then

- (a) gof is continuous for all x
- (b) gof is not continuous for all x
- (c) fog is continuous everywhere
- (d) fog is not continuous everywhere

35. Let $f: R^+ \to R$ defined as $f(x) = e^x + \ln x$ and $g = f^{-1}$ then correct statement(s) is/are:

(a)
$$g''(e) = \frac{1-e}{(1+e)^3}$$
 (b) $g''(e) = \frac{e-1}{(1+e)^3}$ (c) $g'(e) = e+1$ (d) $g'(e) = \frac{1}{e+1}$

$$g''(e) = \frac{e-1}{(1+e)^3}$$

(c)
$$g'(e) = e + 1$$

(d)
$$g'(e) = \frac{1}{e+1}$$

36. Let
$$f(x) = \begin{cases} \frac{3x - x^2}{2} & ; & x < 2 \\ [x-1] & ; & 2 \le x < 3; \text{ then which of the following hold(s) good?} \\ x^2 - 8x + 17 & ; & x \ge 3 \end{cases}$$

([.] denotes greatest integer function)

(a)
$$\lim_{x\to 2} f(x) = 1$$

(b) f(x) is differentiable at x = 2

(c)
$$f(x)$$
 is continuous at $x = 2$

(d) f(x) is discontinuous at x = 3

	Answers										
1.	(c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, d)	9.	(a, d)	10.	(b, d)	11.	(a, d)	12.	(b, d)
13.	(a, b, c)	14.	(a, b, c)	15.	(a, b, c)	16.	(a, b, c)	17.	(a, b, c, d)	18.	(a, c)
19.	(a, b, c)	20.	(a, d)	21.	(b, c)	22.	(a, b, c, d)	23.	(b, c)	24.	(a, b)
25.	(a, c)	26.	(a, b, c, d)	27.	(c, d)	28.	(a, b, c, d)	29.	(a, b, d)	30.	(a, c, d)
31.	(b, c)	32.	(a, b, d)	33.	(b, d)	34.	(a)	35.	(a, d)	36.	(a, c, d)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = \lim_{n \to \infty} n^2 \tan \left(\ln \left(\sec \frac{x}{n} \right) \right)$ and $g(x) = \min (f(x), \{x\})$

(where {-} denotes fractional part function)

- **1.** Left hand derivative of $\phi(x) = e^{\sqrt{2f(x)}}$ at x = 0 is :
- (c) -1
- (d) Does not exist
- **2.** Number of points in $x \in [-1, 2]$ at which g(x) is discontinuous :
- (b) 1
- (d) 3

Paragraph for Question Nos. 3 to 4

Let f(x) and g(x) be two differentiable functions, defined as:

$$f(x) = x^2 + xg'(1) + g''(2)$$
 and $g(x) = f(1)x^2 + xf'(x) + f''(x)$.

- **3.** The value of f(1) + g(-1) is :
 - (a) 0
- (c) 2
- (d) 3
- **4.** The number of integers in the domain of the function $F(x) = \sqrt{-\frac{f(x)}{g(x)}} + \sqrt{3-x}$ is:
 - (a) 0
- (b) 1
- (c) 2
- (d) Infinite

Paragraph for Question Nos. 5 to 6

Define: $f(x) = |x^2 - 4x + 3| \ln x + 2(x-2)^{1/3}, x > 0$

$$h(x) = \begin{cases} x-1 &, & x \in Q \\ x^2 - x - 2 &, & x \notin Q \end{cases}$$

- 5. f(x) is non-differentiable at points and the sum of corresponding x value(s) is
 - (a) 3, 6
- (b) 2, 3
- (c) 2, 4
- (d) 2, 5

- **6.** h(x) is discontinuous at $x = \dots$
 - (a) $1 + \sqrt{2}$
- (b) $\tan \frac{3\pi}{8}$ (c) $\tan \frac{7\pi}{8}$ (d) $\sqrt{2}-1$

Paragraph for Question Nos. 7 to 8

Consider a function defined in [-2, 2]

$$f(x) = \begin{cases} \{x\} & -2 \le x < -1 \\ |\operatorname{sgn} x| & -1 \le x \le 1 \\ |-x\} & 1 < x \le 2 \end{cases}$$

where {·} denotes the fractional part function.

7.	The total number	of points of discontinuity of $f(x)$ for $x \in [-2, 2]$ is :	

- (a) 0
- (b) 1

- **8.** The number of points for $x \in [-2, 2]$ where f(x) is non-differentiable is :
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

Paragraph for Question Nos. 9 to 10

Consider a function f(x) in $[0, 2\pi]$ defined as:

$$f(x) = \begin{bmatrix} (\sin x) + (\cos x) & ; & 0 \le x \le \pi \\ (\sin x) - (\cos x) & ; & \pi < x \le 2\pi \end{bmatrix}$$

where [-] denotes greatest integer function then

- **9.** Number of points where f(x) is non-derivable :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

- **10.** $\lim_{x \to \infty} f(x)$ equals $x \rightarrow \left(\frac{3\pi}{2}\right)$
 - (a) 0
- (b) 1
- (c) -1
- (d) 2

Paragraph for Question Nos. 11 to 13

Let $f(x) = \begin{cases} x[x] & 0 \le x < 2 \\ (x-1)[x] & 2 \le x \le 3 \end{cases}$ where [x] = greatest integer less than or equal to x, then:

- **11.** The number of values of x for $x \in [0, 3]$ where f(x) is discontinuous is :
- (b) 1
- (d) 3
- **12.** The number of values of x for $x \in [0, 3]$ where f(x) is non-differentiable is :
- (b) 1
- (c) 2
- (d) 3
- **13.** The number of integers in the range of y = f(x) is:
 - (a) 3
- (b) 4
- (d) 6

Paragraph for Question Nos. 14 to 16

Let $f: R \to R$ be a continuous and differentiable function such that $f(x+y) = f(x) \cdot f(y)$ $\forall x, y, f(x) \neq 0 \text{ and } f(0) = 1 \text{ and } f'(0) = 2.$

Let $g(xy) = g(x) \cdot g(y) \forall x, y \text{ and } g'(1) = 2; g(1) \neq 0$

14. Identify the correct option:

(a)
$$f(2) = e^4$$

(b)
$$f(2) = 2e^2$$

(c)
$$f(1) < 4$$

(d)
$$f(3) > 729$$

15. Identify the correct option:

(a)
$$g(2) = 2$$

(b)
$$g(3) = 3$$

(c)
$$g(3) = 9$$

(d)
$$g(3) = 6$$

16. The number of values of x, where f(x) = g(x):

Paragraph for Question Nos. 17 to 18

Let
$$f(x) = \frac{\cos^2 x}{1 + \cos x + \cos^2 x}$$
 and $g(x) = \lambda \tan x + (1 - \lambda) \sin x - x$, where $\lambda \in R$ and $x \in [0, \pi/2)$.

17. g'(x) equals

(a)
$$\frac{(1-\cos x)(f(x)-\lambda)}{\cos x}$$

(b)
$$\frac{(1-\cos x)(\lambda-f(x))}{2}$$

(a)
$$\frac{(1-\cos x)(f(x)-\lambda)}{\cos x}$$
(c)
$$\frac{(1-\cos x)(\lambda-f(x))}{f(x)}$$

(b)
$$\frac{(1-\cos x)(\lambda - f(x))}{\cos x}$$
(d)
$$\frac{(1-\cos x)(\lambda - f(x))}{(f(x))^2}$$

18. The exhaustive set of values of ' λ ' such that $g'(x) \ge 0$ for any $x \in [0, \pi/2)$:

(c)
$$\left[\frac{1}{2},\infty\right]$$
 (d) $\left[\frac{1}{3},\infty\right]$

(d)
$$\left[\frac{1}{3}, \infty\right]$$

Paragraph for Question Nos. 19 to 21

Let
$$f(x) = \lim_{n \to \infty} \frac{x^2 + 2(x+1)^{2n}}{(x+1)^{2n+1} + x^2 + 1}, n \in \mathbb{N}$$
 and

$$g(x) = \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2f(x)}{1+f^2(x)}\right)\right)$$
, then

19. The number of points where g(x) is non-differentiable $\forall x \in R$ is:

20. $\lim_{x\to -3} \frac{(x^2+4x+3)}{\sin(x+3)g(x)}$ is equal to :

(d) Non-existent

21.
$$\lim_{x\to 0^-} \left\{ \frac{f(x)}{\tan^2 x} \right\} + \left| \lim_{x\to -2^-} f(x) \right| + \lim_{x\to -2^+} (5f(x))$$
 is equal to

(where {-} denotes fraction part function)

(d) Non-existent

Paragraph for Question Nos. 22 to 24

Let f and g be two differentiable functions such that :

$$f(x) = g'(1)\sin x + (g''(2) - 1)x$$
$$g(x) = x^2 - f'\left(\frac{\pi}{2}\right)x + f''\left(-\frac{\pi}{2}\right)$$

- **22.** The number of solution(s) of the equation f(x) = g(x) is/are:
 - (a) 1
- (h) 2
- (c) 3
- (d) infinite
- **23.** If $\int \frac{g(\cos x)}{f(x) x} dx = \cos x + \ln(h(x)) + C$ where C is constant and $h\left(\frac{\pi}{2}\right) = 1$ then $\left|h\left(\frac{2\pi}{3}\right)\right|$ is:
 - (a) $3\sqrt{2}$
- (b) 2√3
- (c) √3
- (d) $\frac{1}{\sqrt{3}}$

- **24.** If $\phi(x) = f^{-1}(x)$ then $\phi'\left(\frac{\pi}{2} + 1\right)$ equals to:
 - (a) $\frac{\pi}{2} + 1$
- (b) $\frac{\pi}{2}$
- (c) 1
- (d) 0

Paragraph for Question Nos. 25 to 26

Suppose a function f(x) satisfies the following conditions

$$f(x+y) = \frac{f(x)+f(y)}{1+f(x) f(y)}, \forall x, y \in R \text{ and } f'(0) = 1$$

Also
$$-1 < f(x) < 1, \forall x \in R$$

- **25.** f(x) increases in the complete interval:
 - (a) $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, \infty)$
- (b) (-∞, ∞)

(c) $(-\infty, -1) \cup (-1, 0)$

- (d) $(0, 1) \cup (1, \infty)$
- **26.** The value of the limit $lt (f(x))^x$ is:

x→∞

- (a) 0
- (b) 1
- (c) e
- (d) e^2

Paragraph for Question Nos. 27 to 28

Let f(x) be a polynomial satisfying $\lim_{x\to\infty} \frac{x^4 f(x)}{x^8 + 1} = 3$

$$f(2) = 5, f(3) = 10, f(-1) = 2, f(-6) = 37$$

- (a) -|6
- (b) [6
- (c) $\frac{6}{2}$
- (d) $\frac{-6}{2}$

28. The number of points of discontinuity of
$$g(x) = \frac{1}{x^2 + 1 - f(x)} in \left[\frac{-15}{2}, \frac{5}{2} \right]$$
 equals :

- (a) 4
- (b) 3
- (c) 1
- (d) 0

Paragraph for Question Nos. 29 to 30

Consider $f(x) = x^{\ln x}$ and $g(x) = e^2 x$. Let α and β be two values of x satisfying f(x) = g(x) ($\alpha < \beta$)

- **29.** If $\lim_{x\to\beta} \frac{f(x)-c\beta}{g(x)-\beta^2} = l$ then the value of c-l equals to:
 - (a) $4-e^2$
- (b) $e^2 4$
- (c) 4-e
- (d) e-4

- **30.** If $h(x) = \frac{f(x)}{g(x)}$ then $h'(\alpha)$ equals to :
 - (a) e
- (b) ¬
- (c) 3e
- (d) -3e

Paragraph for Question Nos. 31 to 32

Let
$$f_n(x) + f_n(y) = \frac{x^n + y^n}{x^n y^n} \ \forall \ x, y \in R - \{0\} \text{ where } n \in N \text{ and}$$

$$g(x) = \max_{x} \left\{ f_2(x), f_3(x), \frac{1}{2} \right\} \ \forall \ x \in R - \{0\}$$

- **31.** The minimum value of $\sum_{k=1}^{\infty} f_{2k}(\csc \theta) + \sum_{k=1}^{\infty} f_{2k}(\sec \theta)$, where $\theta \neq \frac{k\pi}{2}$; $k \in I$ is:
 - (a) 1
- (b) 3
- (c) $\sqrt{2}$
- (d) 4
- **32.** The number of values of x for which g(x) is non-differentiable $(x \in R \{0\})$:
 - (a) 3
- (b) 4
- (c) 5
- (d) 1

	(a)	3			, Ç	ד נט		To Name to Land		(0)	, ,	and the later than the later			(u).			E 27	
1	1						\$ js	A	nsv	vers	3	III BAC							5
i.	(c)	2.	(a)	3.	(d)	4.	(c)	5.	(d)	6.	(d)	7.	(ъ)	8.	(d)	9.	(c)	10.	(c)
11.	(c)	12.	(d)	13.	(c)	14.	(a)	15.	(c)	16.	(b)	17.	(c)	18.	(d)	19.	(d)	20.	(b)
21.	(a)	22.	(b)	23.	(ъ)	24.	(c)	25.	(ъ)	26.	(b)	27.	(d)	28.	(b)	29.	(b)	30.	(d)
31.	(b)	32.	(a)								ST .		oc.						

Exercise-4: Matching Type Problems

1.

1	Column-I		Column-II
(A)	If $\int_{0}^{\pi} \frac{\log \sin x}{\cos^2 x} dx = -K$ then the value of $\frac{3k}{\pi}$ is greater than	(P)	0
(B)	If $e^{x+y} + e^{y-x} = 1$ and $y'' - (y')^2 + K = 0$, then K is equal to	(Q)	1
(C)	If $f(x) = x \ln x$ then $2(f^{-1})'(\ln 4)$ is more than	(R)	2
(D)	$\lim_{x \to \infty} (x \ln x)^{\frac{1}{x^2 + 1}} \text{ is less than}$	(S)	4
		(T)	15

2. Let
$$f(x) = \begin{cases} [x] & , & -2 \le x < 0 \\ |x| & , & 0 \le x \le 2 \end{cases}$$

(where [·] denotes the greatest integer function) $g(x) = \sec x, x \in R - (2n+1)\frac{\pi}{2}, n \in I$

Match the following statements in column I with their values in column II in the interval

	Column-I		Column-II
(A)	Abscissa of points where limit of $fog(x)$ exist is/are	(P)	-1
(B)	Abscissa of points in domain of $gof(x)$, where limit of $gof(x)$ does not exist is/are	(Q)	π
(C)	Abscissa of points of discontinuity of fog(x) is/are	(R)	$\frac{5\pi}{6}$
(D)	Abscissa of points of differentiability of $fog(x)$ is/are	(S)	-π
	Salar de la completa de proposition de la colonidad de la colo	(T)	0

3. Let a function $f(x) = [x]\{x\} - |x|$ where [.], {.} are greatest integer and fractional part respectively then match the following List-I with List-II.

	Column-I		Column-II
	f(x) is continuous at x equal to	(P)	3
(B)	$\left \frac{4}{3}\right \int_{2}^{3}f(x)dx$ is equal to	(Q)	1

(C)	If $g(x) = x - 1$ and if $f(x) = g(x)$ where	(R)	4
	$x \in (-3, \infty)$, then number of solutions		
(D)	If $l = \lim_{x \to 4^+} f(x)$, then $-l$ is equal to	(S)	2

4.

1	Column-I		Column-II
(A)	$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x + 1}{2x - 1}} =$	(P)	$\frac{1}{2}$
(B)	$\lim_{x \to 0} \frac{\log_{\sec x/2} \cos x}{\log_{\sec x} \cos \frac{x}{2}} =$	(Q)	2
(C)	Let $f(x) = \max_{x \in \mathbb{R}} (\cos x, x, 2x - 1)$ where $x \ge 0$ then number of points of non-differentiability of $f(x)$ is		5
(D)	If $f(x) = [2 + 3\sin x]$, $0 < x < \pi$ then number of points at which the function is discontinuous, is	(S)	16

5. The function
$$f(x) = ax(x-1) + b$$
 $x < 1$
= $x - 1$ $1 \le x \le 3$
= $px^2 + qx + 2$ $x > 3$

if

- (i) f(x) is continuous for all x
- (ii) f'(1) does not exist
- (iii) f'(x) is continuous at x = 3, then

1	Column-I		Column-II
(A)	a cannot has value	(P)	1/3
B)	b has value	(Q)	0
C)	p has value	(R)	-1
(D)	q has value	(S)	1

Answers

- 1. $A \rightarrow P$, Q, R; $B \rightarrow Q$; $C \rightarrow P$, Q; $D \rightarrow R$, S, T
- 2. $A \rightarrow P$, Q, R, S, T; $B \rightarrow P$, T; $C \rightarrow Q$, S; $D \rightarrow P$, R, T
- 3. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 4. $A \rightarrow P$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow R$
- 5. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

1. Let $f(x) = \begin{cases} ax(x-1)+b & ; & x < 1 \\ x+2 & ; & 1 \le x \le 3 \text{ is continuous } \forall x \in R \text{ except } x = 1 \text{ but } |f(x)| \text{ is } \\ px^2 + qx + 2 & ; & x > 3 \end{cases}$

differentiable everywhere and f'(x) is continuous at x = 3 and |a + p + b + q| = k, then k = 1

2. If
$$y = \sin(8\sin^{-1} x)$$
 then $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = -ky$, where $k = -ky$

3. If
$$y^2 = 4ax$$
, then $\frac{d^2y}{dx^2} = \frac{ka^2}{y^3}$, where $k^2 = \frac{k^2}{y^3}$

4. The number of values of $x, x \in [-2, 3]$ where $f(x) = [x^2] \sin(\pi x)$ is discontinuous is (where [·] denotes greatest integer function)

5. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

6. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

7. Let $f(x) = x^2 + ax + 3$ and g(x) = x + b, where $F(x) = \lim_{n \to \infty} \frac{f(x) + (x^2)^n g(x)}{1 + (x^2)^n}$. If F(x) is continuous at x = 1 and x = -1 then find the value of $(a^2 + b^2)$.

8. Let
$$f(x) = \begin{cases} 2-x & , & -3 \le x \le 0 \\ x-2 & , & 0 < x < 4 \end{cases}$$

Then $f^{-1}(x)$ is discontinuous at x =

9. If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in R$ and f(x) is a differentiable function, then the value of f'(8) is

10. Let f(x) = signum(x) and $g(x) = x(x^2 - 10x + 21)$, then the number of points of discontinuity of f[g(x)] is

11. If
$$\frac{d^2}{dx^2} \left(\frac{\sin^4 x + \sin^2 x + 1}{\sin^2 x + \sin x + 1} \right) = a \sin^2 x + b \sin x + c$$
 then the value of $b + c - a$ is

12. If $f(x) = a\cos(\pi x) + b$, $f'\left(\frac{1}{2}\right) = \pi$ and $\int_{1/2}^{3/2} f(x) dx = \frac{2}{\pi} + 1$, then find the value of $-\frac{12}{\pi} \left(\frac{\sin^{-1} a}{3} + \cos^{-1} b\right)$.

13. Let
$$\alpha(x) = f(x) - f(2x)$$
 and $\beta(x) = f(x) - f(4x)$ and $\alpha'(1) = 5 \alpha'(2) = 7$ then find the value of $\beta'(1) - 10$

14. Let
$$f(x) = -4 \cdot e^{\frac{1-x}{2}} + \frac{x^3}{3} + \frac{x^2}{2} + x + 1$$
 and g be inverse function of f and $h(x) = \frac{a + bx^{3/2}}{x^{5/4}}$, $h'(5) = 0$, then $\frac{a^2}{5b^2g'\left(\frac{-7}{6}\right)} =$

15. If
$$y = e^{2\sin^{-1}x}$$
 then $\left| \frac{(x^2 - 1)y'' + xy'}{y} \right|$ is equal to

16. Let
$$f$$
 be a continuous function on $[0, \infty)$ such that $\lim_{x \to \infty} \left(f(x) + \int_0^x f(t) dt \right)$ exists. Find $\lim_{x \to \infty} f(x)$.

17. Let
$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}$$
 and let $g(x) = f^{-1}(x)$. Find $g'''(0)$.

18. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

19. Let $f: R^+ \longrightarrow R$ be a differentiable function satisfying:

$$f(xy) = \frac{f(x)}{y} + \frac{f(y)}{x} \quad \forall x, y \in \mathbb{R}^+ \text{ also } f(1) = 0; f'(1) = 1$$

find $\lim_{x\to e} \left[\frac{1}{f(x)} \right]$ (where [·] denotes greatest integer function).

- 20. For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which $\lim_{x\to 0} x^{\alpha} \frac{d^2y}{dx^2} = L$ (not zero), then $2\alpha =$
- **21.** Let $f(x) = x \tan^{-1}(x^2) + x^4$. Let $f^k(x)$ denotes k^{th} derivative of f(x) w.r.t. $x, k \in N$. If $f^{2m}(0) \neq 0, m \in N$, then m =

22. If
$$x = \cos \theta$$
 and $y = \sin^3 \theta$, then $\left| \frac{yd^2y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right|$ at $\theta = \frac{\pi}{2}$ is:

- **23.** The value of $x, x \in (2, \infty)$ where $f(x) = \sqrt{x + \sqrt{8x 16}} + \sqrt{x \sqrt{8x 16}}$ is not differentiable is :
- **24.** The number of non differentiability points of function $f(x) = \min\left([x], \{x\}, \left|x \frac{3}{2}\right|\right)$ for $x \in (0, 2)$, where [·] and (·) denote greatest integer function and fractional part function respectively.

1	/			Average a trace		Ansv	vers						
1.	3	2.	64	3.	16	4.	8	5.	3	6.	2	7.	17
8.	2	9.	4	10.	3	11.	7	12.	2	13.	9	14.	5
15.	4	16.	0	17.	1	18.	2	19.	2	20.	3	21.	2
22.	3	23.	4	24.	3								

Chapter 4 - Application of Derivatives

APPLICATION OF DERIVATIVES

(1)	Exercise-1 : Sing	ale Choi	ce Pro	blems					****	
1	The difference of $f(x) = 3\sin^4 x - \cos^4 x$	between			and	l minimum	value	of	the	function
	(a) $\frac{3}{2}$	(b)	$\frac{5}{2}$		(c)	3	(d)	4		
2	the point $(2, 1)$ and $(x-1)^2$	at that	point t	he tangent t	o the		3x - 5, th	en th	e fun	
3	. If the subnormal at	any poin	t on the	curve $y = 3$	1-k	x ^k is of constan	nt length	then	k equ	als to:
	(a) $\frac{1}{2}$	(b)	1		(c)	2	(d)	0		
4	• If $x^5 - 5qx + 4r$ is di									$c \in R$?
	(a) $q=r$	88. 2				$q^5=r^4$		-7		
5	 A spherical iron ball at a rate of 50 cm³/ 	l 10 cm ii min . Wh	radiu en the	s is coated w thickness of	ith a ice is	layer of ice of 5 cm, then th	uniform e rate at	thick whic	ness t h the	hat melts thickness
	of ice decreases, is:							-		
	(a) $\frac{1}{36\pi}$ cm/min	(p)	$\frac{1}{18\pi}$ cm	/min	(c)	$\frac{1}{54\pi}$ cm/min	(d)	$\frac{5}{6\pi}$ C	m/mi	n
6	If $f(x) = \frac{(x-1)(x-1)}{(x-3)(x-1)}$	- 2) - 4) , the	n numl	oer of local o	extre	mas for $g(x)$,	where g((x) =	f(x):
	(a) 3	(b)	4		(c)	5	(d)	Non	e of th	hese
7	OA = 700 m at a un towards B at a unifo closest is:	iform sp	eed of	20 m/s, Si	mult	aneously, a ru	inner sta	irts r	unnin	g from O
	(a) 10 sec				(b)	15 sec			k.	
	(a) 20 sec				(d)	30 sec				

8	Let $f(x) = \begin{cases} a-3x \\ 4x+3 \end{cases}$	$\begin{array}{l} -2 \le x < 0 \\ 0 \le x < 1 \end{array}$; if $f(x)$) has smallest value	at $x = 0$, then range of a , is:
	(a) $(-\infty, 3)$	(b) $(-\infty, 3]$	(c) (3,∞)	(d) [3,∞)
9	(a) $(-\infty, 3)$ • $f(x) = \begin{cases} 3 + x - 3 \\ a^2 - 2 + \frac{\sin x}{(x^2 - 1)^2} \end{cases}$	$\frac{k }{(x-k)}$, $x \le k$ $\frac{(x-k)}{(x-k)}$, $x > k$ has	minimum at $x = k$,	then:
	(a) $a \in R$	(b) $ a < 2$	(c) $ a > 2$	(d) $1 < a < 2$
10	For a certain curve $\frac{d}{d}$	$\frac{^2y}{x^2} = 6x - 4 \text{ and curv}$	e has local minimu	(d) $1 < a < 2$ m value 5 at $x = 1$. Let the global
	maximum and globa $(M-m)$ equals to:	l minimum values,	where $0 \le x \le 2$; a	re M and m. Then the value of
	(a) -2	(b) 2	(c) 12	(d) -12
11	The tangent to $y = a$	$x^2 + bx + \frac{7}{2}$ at (1, 2)	is parallel to the no	ormal at the point (-2, 2) on the
	$curve y = x^2 + 6x + 1$	10. Then the value of	$\frac{a}{2}-b$ is:	Į.
	(a) 2	(b) 0	(c) 3	(d) 1
12.				(d) 1 the curve make equal intercepts
	with the axis, then th	50 E		
	(a) 0	(b) $\frac{10}{3}$	(c) $\frac{20}{3}$	(d) None of these
13.	The curve $y = f(x)$ so	atisfies $\frac{d^2y}{dx^2} = 6x - 4$	and $f(x)$ has a loc	al minimum value 5 when $x = 1$
	Then $f(0)$ is equal to	:	,	N W
	(a) 1	(b) 0	(c) 5	(d) None of these
14.				$y-4=0 \ (\alpha \in R, \alpha \neq 0)$ meets the
	y-axis, then the equate again, is:	ion of tangent to the	curve at the point w	here normal at A meets the curve
				2 = 0 (d) $x + 2y - 4 = 0$
15.	The difference be	tween the greate	est and the le	ast value of the function
	$f(x) = \cos x + \frac{1}{2}\cos 2x$	9		6
	(a) $\frac{11}{5}$	(b) $\frac{13}{6}$	(c) $\frac{9}{4}$	(d) $\frac{7}{3}$
16.	The x co-ordinate of t	he point on the curv	$e y = \sqrt{x}$ which is	closest to the point (2, 1) is:
	(a) $\frac{2+\sqrt{3}}{2}$	(b) $\frac{1+\sqrt{3}}{2}$	(c) $\frac{-1+\sqrt{3}}{2}$	

Has relative maximum at x = -2, then complete set of values b can take is:

(c) b > 1

(d) b < 1

(b) |b| < 1

(a) $|b| \ge 1$

25.	Let for the function	$f(x) = \begin{bmatrix} \cos^{-1} x & ; & -1 \le c \\ mx + c & ; & 0 < x \end{bmatrix}$	x ≤ 0 , c ≤ 1 ,	
	Lagrange's mean val	ue theorem is applicable	in [-1, 1] then ordered	l pair (m,c) is:
	(a) $\left(1,-\frac{\pi}{2}\right)$	(b) $\left(1,\frac{\pi}{2}\right)$	(c) $\left(-1,-\frac{\pi}{2}\right)$	(d) $\left(-1,\frac{\pi}{2}\right)$
26.	Tangents are drawn t lie on :	$xo y = \cos x$ from origin th	en points of contact of t	hese tangents will always
ĕ	(a) $\frac{1}{x^2} = \frac{1}{y^2} + 1$	(b) $\frac{1}{x^2} = \frac{1}{y^2} - 2$	(c) $\frac{1}{y^2} = \frac{1}{x^2} + 1$	(d) $\frac{1}{y^2} = \frac{1}{x^2} - 2$
27.	Least natural numbe	$r a ext{ for which } x + ax^{-2} > 2$	$2 \forall x \in (0, \infty)$ is:	
	(a) 1	(b) 2	(c) 5	(d) None of these
28.	Angle between the ta	angents to the curve $y = x$	$x^2 - 5x + 6$ at points (2)	, 0) and (3, 0) is:
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
29.	Difference between t	he greatest and least valu	ues of the function $f(x)$	$=\int_{0}^{x}(\cos^{2}t+\cos t+2)dt$
	in the interval $[0, 2\pi]$	is $K\pi$, then K is equal to :		0
	(a) 1	(b) 3	(c) 5	(d) None of these
30.	The range of the fund	ction $f(\theta) = \frac{\sin \theta}{\theta} + \frac{\theta}{\tan \theta}$	$\theta \in \left(0, \frac{\pi}{2}\right)$ is equal to :	
	(a) (0,∞)	(b) $\left(\frac{1}{\pi},2\right)$	(c) (2,∞)	(d) $\left(\frac{2}{\pi}, 2\right)$
31.	Number of integers in distinct is :	the range of c so that the	equation $x^3 - 3x + c =$	Ohas all its roots real and
	(a) 2	(b) 3	(c) 4	(d) 5
32 .	Let $f(x) = \int e^x (x-1)$	(x-2) dx. Then $f(x) dec$	reases in the interval:	
	(a) (2,∞)		(b) (-2, -1)	
	(c) (1, 2)		(d) $(-\infty,1)\cup(2,\infty)$	
33.	If the cubic polynomi	$al y = ax^3 + bx^2 + cx + d$	$(a, b, c, d \in R)$ has only	one critical point in its
	entire domain and ac	= 2, then the value of $ b $	is:	£ 00 1000 00
	(a) $\sqrt{2}$	(b) $\sqrt{3}$	(c) √5	(d) √6
34.	On the curve $y = \frac{1}{1+x}$	$\frac{1}{x^2}$, the point at which $\frac{dy}{dt}$	$\left \frac{y}{x}\right $ is greatest in the first	st quadrant is :
	(a) $\left(\frac{1}{2}, \frac{4}{5}\right)$	(b) $\left(1,\frac{1}{2}\right)$	(c) $\left(\frac{1}{\sqrt{2}}, \frac{2}{3}\right)$	(d) $\left(\frac{1}{\sqrt{3}}, \frac{3}{4}\right)$

- **44.** If x + 4y = 14 is a normal to the curve $y^2 = \alpha x^3 \beta$ at (2, 3), then value of $\alpha + \beta$ is:
 - (a) 9
- (b) -5
- (c) 7
- (d) -7
- **45.** The tangent to the curve $y = e^{kx}$ at a point (0, 1) meets the x-axis at (a, 0) where $a \in [-2, -1]$, then $k \in :$
 - (a) $\left[-\frac{1}{2},0\right]$
- (b) $\left[-1, -\frac{1}{2} \right]$
- (c) [0,1]
- (d) $\left[\frac{1}{2},1\right]$
- **46.** Which of the following graph represent the function $f(x) = \int_{0}^{\sqrt{x}} e^{-\frac{u^2}{x}} du$, for x > 0 and f(0) = 0?

- **47.** Let f(x) = (x-a)(x-b)(x-c) be a real valued function where a < b < c $(a, b, c \in R)$ such that $f''(\alpha) = 0$. Then if $\alpha \in (c_1, c_2)$, which one of the following is correct?
 - (a) $a < c_1 < b \text{ and } b < c_2 < c$
- (b) $a < c_1, c_2 < b$

(c) $b < c_1, c_2 < c$

- (d) None of these
- **48.** $f(x) = x^6 x 1, x \in [1, 2]$. Consider the following statements:
 - (1) f is increasing on [1, 2]

(2) f has a root in [1, 2]

(3) f is decreasing on [1, 2]

- (4) f has no root in [1, 2]
- Which of the above are correct?
- (a) 1 and 2
- (b) 1 and 4
- (c) 2 and 3
- (d) 3 and 4
- **49.** Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a, b)?
 - (a) x-a=k(y-b)

(b) (x-a)(y-b) = k

(c) $(x-a)^2 = k(y-b)$

(d) $(x-a)^2 + (y-b)^2 = k$

					/	`	
50.	The	function $f(x) = \sin x$	$n^3 x - m \sin x$ is defined	on op	en interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	and if assumes	only 1
	max	imum value and or t be correct?	nly 1 minimum value or	this i	nterval. Then, whi	ch one of the foll	owing
	(a)	0 < m < 3	(b) $-3 < m < 0$	(c)	m > 3	(d) $m < -3$	
51.	The	greatest of the nui	(b) $-3 < m < 0$ mbers 1, $2^{1/2}$, $3^{1/3}$, $4^{1/4}$. 51/5	, 6 ^{1/6} and 7 ^{1/7} is :		
	(a)	$2^{1/2}$	(b) $3^{1/3}$	(c)	7 ^{1/7}	(d) $6^{1/6}$	
52.	Let l	be the line throu	gh (0, 0) and tangent t	o the	curve $y = x^3 + x +$	16. Then the slo	pe of l
17. ES		ıl to :	9 (-) -) and tangonic t	··			
	(a)	1272	(b) 11	(c)	17	(d) 13	
53.			nt at the point of inflect				to:
	(a)		(b) 3	(c)		(d) 4	
E /			function with $(n + 1)$ de	8.5			of real
34.		bers a , b , $a < b$, su		IIVativ	es at each point of	K. For each pair	or rear
		- 1	$n \left[f(b) + f'(b) + \dots + f'(a) + \dots + f'$	$f^{(n)}(a)$	$\left[\begin{array}{c} b \\ a \end{array}\right] = b - a$		
	Sta	tement-1: There	e is a number $c \in (a, b)$ f	or wh	$ich f^{(n+1)}(c) = f(c)$)	
	bec	ause					
	Sta	tement-2: If h(c) be a derivable function	n sucl	h that $h(p) = h(q)$	then by Rolle's th	eorem
		$)=0;d\in(p,q)$			F		
	(a)	Statement-1 is t statement-1	rue, statement-2 is tru	ie and	d statement-2 is	correct explanati	on for
	(b)	Statement-1 is tr statement-1	ue, statement-2 is true	and s	statement-2 is not	correct explanat	ion for
	(c)	Statement-1 is tr	ue, statement-2 is false				
	(d)	Statement-1 is fa	lse, statement-2 is true				
55.	If g	(x) is twice differ	rentiable real valued fu = $g(x) + x \forall x > 0$ is:	nction	satisfying $g''(x)$	$-3g'(x) > 3 \ \forall \ x$	≥ 0 and
				(b)	strictly decreasing	O.C.	
		strictly increasing	5 e		data insufficient	18	
		non monotonic	The second secon				
56.			ning the points (0, 3) an	id (5, ·	-2) is tangent to t	he curve $y = \frac{x}{x+}$	– ; then 1
		value of c is:	(L) 2	(~)	4	(1) =	
	(a)	2	(b) 3	(c)	4 2-7	(d) 5	
57.	Nur	nber of solutions(s) of $\ln \sin x = -x^2$ if	x ∈	$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is/are:		
	(a)	2	(b) 4	(c)	6	(d) 8	

		12211 221	520		
	(a) [-1, 1]	(b) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	(c) $\left[1-\frac{\pi}{2}, 1\right]$	$+\frac{\pi}{2}$ (d) $\left[\frac{\pi}{2}-1,\frac{\pi}{2}+1\right]$	
59.	For any real	number b , let $f(b)$ denotes the	he maximum of sin	$x + \frac{2}{3 + \sin x} + b \forall \times x \in \mathbb{R}$	•
	Then the m	inimum value of $f(b) \forall b \in R$	is:		
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{1}{4}$	(d) 1	
	2	4	(c) -	(d) 1	
60.	Which of th	e following are correct			
	(a) $x^4 + 2$	$x^2 - 6x + 2 = 0 \text{ has exactly four}$	r real solution		
	(b) $x^5 + 5$	x + 1 = 0 has exactly three real	solutions		
	(c) $x^n + ax$	x + b = 0 where n is an even na	atural number has at	most two real solution a.b.	= R
	(d) $x^3 - 3$	x + c = 0, $c > 0$ has two real so	lution for $x \in (0, 1)$		
			12	2	
61.	For any real	number b , let $f(b)$ denotes the	maximum of $ \sin x $	$\frac{2}{3+\sin x}+b \forall x \in R$. Then	the
		alue of $f(b) \forall b \in R$ is:	4	5 + 3 m x	
	3 4	•	1		
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{1}{4}$	(d) 1	
62.	If p be a po	int on the graph of $y = \frac{x}{1+x^2}$, then coordinates o	f 'p' such that tangent draw	n to
	curve at p h	as the greatest slope in magni			
	(a) (0,0)	(b) $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$	(c) $\left(-\sqrt{3}, -\frac{\sqrt{3}}{3}\right)$	$\left(\frac{3}{4}\right)$ $\left(1,\frac{1}{2}\right)$	
63.	Let $f:[0, 2\pi]$	\rightarrow [-3, 3] be a given function	defined as $f(x) = 3c$	OS The slope of the tanger	st to
	The person of	c-1 c x		2. The stope of the tallger	It to
	the curve y	$= f^{-1}(x)$ at the point where t	he curve crosses the	y-axis is:	
	(a) -1	(b) $-\frac{2}{3}$	(c) $-\frac{1}{6}$	(d) $-\frac{1}{3}$	
64.	Number of	stationary points in [0, π] for the	ne function $f(x) = si$	$\mathbf{n} x + \tan x = 2x \mathbf{i} \mathbf{s}$	
	(a) 0	(b) 1	(c) 2	(4) 3	
65.	If $a, b, c, d \in \mathcal{A}$	R such that $\frac{a+2c}{b+3d} + \frac{4}{3} = 0$, the	on the equation ax^3	$+bx^2 + cx + d = 0 \text{ has}$	
		one root in (-1, 0)		ne root in (0, 1)	
	(c) no root	in (-1, 1)	(d) no root i		
				(sq s)	

58. The equation $\sin^{-1} x = |x - a|$ will have at least one solution then complete set of values of a

- **66.** If $f'(x) = \phi(x)(x-2)^2$. Where $\phi(2) \neq 0$ and $\phi(x)$ is continuous at x = 2, then in the neighbourhood of x = 2
 - (a) f is increasing if $\phi(2) < 0$
- (b) f is decreasing if $\phi(2) > 0$
- (c) f is neither increasing nor decreasing
- (d) f is increasing if $\phi(2) > 0$
- **67.** If $f(x) = x^3 6x^2 + ax + b$ is defined on [1, 3] satisfies Rolle's theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{2}}$ then
 - (a) a = -11, b = 6
- (b) a = -11, b = -6
- (c) $a = 11, b \in R$
- (d) a = 22, b = -6
- 68. For which of the following function(s) Lagrange's mean value theorem is not applicable in

(a)
$$f(x) =\begin{cases} \frac{3}{2} - x & , & x < \frac{3}{2} \\ \left(\frac{3}{2} - x\right)^2 & , & x \ge \frac{3}{2} \end{cases}$$

(b) $f(x) = \begin{cases} \frac{\sin(x-1)}{x-1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$

(c) f(x) = (x-1)|x-1|

- (d) f(x) = |x-1|
- **69.** If the curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ and $y^2 = 16x$ intersect at right angles, then :
 - (a) $a = \pm 1$
- (b) $a = \pm \sqrt{3}$
- (c) $a = \pm \frac{1}{\sqrt{3}}$ (d) $a = \pm \sqrt{2}$
- **70.** If the line $x \cos \alpha + y \sin \alpha = P$ touches the curve $4x^3 = 27ay^2$, then $\frac{P}{a} = 27ay^2$
 - (a) $\cot^2 \alpha \cos \alpha$
- (b) $\cot^2 \alpha \sin \alpha$
- (c) $\tan^2 \alpha \cos \alpha$ (d) $\tan^2 \alpha \sin \alpha$

1	Answers																		7
1.	(d)	2.	(b)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(c)	10.	(b)
11.	(c)	12.	(c)	13.	(c)	14.	(c)	15.	(c)	16.	(a)	17.	(b)	18.	(a)	19.	(b)	20.	(b)
21.	(b)	22.	(d)	23.	(d)	24.	(a)	25.	(d)	26.	(c)	27.	(b)	28.	(d)	29.	(c)	30.	(d)
31.	(b)	32.	(c)	33.	(d)	34.	(d)	35.	(a)	36.	(b)	37.	(c)	38.	(a)	39.	(c)	40.	(a)
41.	(a)	42.	(b)	43.	(b)	44.	(a)	45.	(d)	46.	(b)	47.	(a)	48.	(a)	49.	(d)	50.	(a)
51.	(ъ)	52.	(d)	53.	(b)	54.	(a)	55.	(a)	56.	(c)	57.	(b)	58.	(c)	59,	(b)	60.	(c)
61.	(b)	62.	(a)	63.	(b)	64.	(c)	65.	(b)	66.	(d)	67.	(c)	68.	(a)	69.	(d)	70.	(a)

Exercise-2: One or More than One Answer is/are Correct

- **1.** Common tangent(s) to $y = x^3$ and $x = y^3$ is/are:
 - (a) $x-y = \frac{1}{\sqrt{3}}$
- (b) $x-y = -\frac{1}{\sqrt{3}}$ (c) $x-y = \frac{2}{3\sqrt{3}}$ (d) $x-y = \frac{-2}{3\sqrt{3}}$
- **2.** Let $f:[0,8] \to R$ be differentiable function such that f(0)=0, f(4)=1, f(8)=1, then which of the following hold(s) good?
 - (a) There exist some $c_1 \in (0, 8)$ where $f'(c_1) = \frac{1}{4}$
 - (b) There exist some $c \in (0, 8)$ where $f'(c) = \frac{1}{100}$
 - (c) There exist $c_1, c_2 \in [0, 8]$ where $8f'(c_1)f(c_2) = 1$
 - (d) There exist some $\alpha, \beta \in (0, 2)$ such that $\int_{0}^{3} f(t) dt = 3(\alpha^{2} f(\alpha^{3}) + \beta^{2} f(\beta^{3}))$
- 3. If $f(x) = \begin{cases} \sin^{-1}(\sin x) & x > 0 \\ \frac{\pi}{2} & x = 0 \text{, then} \\ \cos^{-1}(\cos x) & x < 0 \end{cases}$
 - (a) x = 0 is a point of maxima
 - (b) f(x) is continuous $\forall x \in R$
 - (c) global maximum value of $f(x) \forall x \in R$ is π
 - (d) global minimum value of $f(x) \forall x \in R$ is 0
- (d) global minimum. 4. A function $f: R \to R$ is given by $f(x) = \begin{cases} x^4 \left(2 + \sin \frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$, then
 - (a) f has a continuous derivative $\forall x \in R$ (b) f is a bounded function
 - (c) f has an global minimum at x = 0
- (d) f'' is continuous $\forall x \in R$
- **5.** If $|f''(x)| \le 1 \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true?
 - (a) $f\left(-\frac{1}{2}\right) = \frac{1}{6}$ (b) f(2) = -4 (c) f(-2) = 3

- **6.** Let $f:[-3,4] \to R$ such that f''(x) > 0 for all $x \in [-3,4]$, then which of the following are always true?
 - (a) f(x) has a relative minimum on (-3, 4)
 - (b) f(x) has a minimum on [-3, 4]
 - (c) f(x) has a maximum on [-3, 4]
 - (d) if f(3) = f(4), then f(x) has a critical point on [-3, 4]

- **7.** Let f(x) be twice differentiable function such that f''(x) > 0 in [0, 2]. Then:
 - (a) f(0) + f(2) = 2f(c), for at least one $c, c \in (0, 2)$
 - (b) f(0) + f(2) < 2f(1)
 - (c) f(0) + f(2) > 2f(1)
 - (d) $2f(0) + f(2) > 3f(\frac{2}{3})$
- **8.** Let g(x) be a cubic polynomial having local maximum at x = -1 and g'(x) has a local minimum at x = 1. If g(-1) = 10, g(3) = -22, then:
 - (a) perpendicular distance between its two horizontal tangents is 12
 - (b) perpendicular distance between its two horizontal tangents is 32
 - (c) g(x) = 0 has at least one real root lying in interval (-1, 0)
 - (d) g(x) = 0, has 3 distinct real roots
- 9. The function $f(x) = 2x^3 3(\lambda + 2)x^2 + 2\lambda x + 5$ has a maximum and a minimum for :
 - (a) $\lambda \in (-4, \infty)$
- (b) $\lambda \in (-\infty, 0)$
- (c) $\lambda \in (-3, 3)$
- (d) $\lambda \in (1, \infty)$
- **10.** The function $f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) \sqrt{1 x^2}$ is :
 - (a) strictly increasing $\forall x \in (0,1)$
- (b) strictly decreasing $\forall x \in (-1, 0)$
- (c) strictly decreasing for $x \in (-1, 0)$
- (d) strictly decreasing for $x \in (0, 1)$
- 11. Let m and n be positive integers and x, y > 0 and x + y = k, where k is constant. Let $f(x, y) = x^m y^n$, then:
 - (a) f(x, y) is maximum when $x = \frac{mk}{m+n}$
 - (b) f(x, y) is maximum where x = y
 - (c) maximum value of f(x, y) is $\frac{m^n n^m k^{m+n}}{(m+n)^{m+n}}$
 - (d) maximum value of f(x, y) is $\frac{k^{m+n}m^m n^n}{(m+n)^{m+n}}$
- 12. The straight line which is both tangent and normal to the curve $x = 3t^2$, $y = 2t^3$ is:
 - (a) $y + \sqrt{3}(x-1) = 0$

(b) $y - \sqrt{3}(x-1) = 0$

(c) $y + \sqrt{2}(x-2) = 0$

- (d) $y \sqrt{2}(x-2) = 0$
- 13. A curve is such that the ratio of the subnormal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through (1, 0), then possible equation of the curve(s) is:
 - (a) $y = x \ln x$
- (b) $y = \frac{\ln x}{x}$ (c) $y = \frac{2(x-1)}{x^2}$ (d) $y = \frac{1-x^2}{2x}$

- **14.** A parabola of the form $y = ax^2 + bx + c$ (a > 0) intersects the graph of $f(x) = \frac{1}{x^2 4}$. The number of possible distinct intersection(s) of these graph can be:
 - (a) 0
- (b) 2
- (c) 3
- (d) 4
- **15.** Gradient of the line passing through the point (2, 8) and touching the curve $y = x^3$, can be:
 - (a) 3
- (b) 6
- (c) 9
- (d) 12
- **16.** The equation $x + \cos x = a$ has exactly one positive root, then :
 - (a) $a \in (0,1)$
- (b) $a \in (2,3)$
- (c) $a \in (1, \infty)$
- (d) $a \in (-\infty, 1)$
- **17.** Given that f(x) is a non-constant linear function. Then the curves :
 - (a) y = f(x) and $y = f^{-1}(x)$ are orthogonal
 - (b) y = f(x) and $y = f^{-1}(-x)$ are orthogonal
 - (c) y = f(-x) and $y = f^{-1}(x)$ are orthogonal
 - (d) y = f(-x) and $y = f^{-1}(-x)$ are orthogonal
- **18.** Let $f(x) = \int_{0}^{x} e^{t^3} (t^2 1)t^2 (t + 1)^{2011} (t 2)^{2012}$ at (x > 0) then:
 - (a) The number of point of inflections is atleast 1
 - (b) The number of point of inflections is 0
 - (c) The number of point of local maxima is 1
 - (d) The number of point of local minima is 1
- **19.** Let $f(x) = \sin x + ax + b$. Then f(x) = 0 has:
 - (a) only one real root which is positive if a > 1, b < 0
 - (b) only one real root which is negative if a > 1, b > 0
 - (c) only one real root which is negative if a < -1, b < 0
 - (d) only one real root which is positive if a < -1, b < 0
- 20. Which of the following graphs represent function whose derivatives have a maximum in the interval (0, 1)?

- **21.** Consider $f(x) = \sin^5 x + \cos^5 x 1$, $x \in \left[0, \frac{\pi}{2}\right]$, which of the following is/are correct?
 - (a) f is strictly decreasing in $\left[0, \frac{\pi}{4}\right]$
 - (b) f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
 - (c) There exist a number 'c' in $\left(0, \frac{\pi}{2}\right)$ such that f'(c) = 0
 - (d) The equation f(x) = 0 has only two roots in $\left[0, \frac{\pi}{2}\right]$
- **22.** Let $f(x) = \begin{bmatrix} x^{2\alpha+1} \ln x & ; & x > 0 \\ 0 & ; & x = 0 \end{bmatrix}$

If f(x) satisfies rolle's theorem in interval [0, 1], then α can be :

- (a) $-\frac{1}{2}$
- (b) $-\frac{1}{3}$
- (c) $-\frac{1}{4}$
- (d) -1
- **23.** Which of the following is/are true for the function $f(x) = \int_{0}^{x} \frac{\cos t}{t} dt (x > 0)$?
 - (a) f(x) is monotonically increasing in $\left((4n-1)\frac{\pi}{2},(4n+1)\frac{\pi}{2}\right) \forall n \in \mathbb{N}$
 - (b) f(x) has a local minima at $x = (4n-1)\frac{\pi}{2} \ \forall n \in \mathbb{N}$
 - (c) The points of inflection of the curve y = f(x) lie on the curve $x \tan x + 1 = 0$
 - (d) Number of critical points of y = f(x) in $(0, 10\pi)$ are 19
- **24.** Let $F(x) = (f(x))^2 + (f'(x))^2$, F(0) = 6, where f(x) is a thrice differentiable function such that $|f(x)| \le 1 \ \forall \ x \in [-1, 1]$, then choose the correct statement(s)
 - (a) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $|f'(x)| \le 2$
 - (b) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $F(x) \le 5$
 - (c) there is no point of local maxima of F(x) in (-1, 1)
 - (d) for some $c \in (-1, 1)$, $F(c) \ge 6$, F'(c) = 0 and $F''(c) \le 0$

25. Let
$$f(x) = \begin{cases} x^3 + x^2 - 10x; & -1 \le x < 0 \\ \sin x; & 0 \le x < \frac{\pi}{2} \\ 1 + \cos x; & \frac{\pi}{2} \le x \le \pi \end{cases}$$

then f(x) has:

- (a) local maximum at $x = \frac{\pi}{2}$
- (b) local minimum at $x = \frac{\pi}{2}$
- (c) absolute maximum at x = 0
- (d) absolute maximum at x = -1
- **26.** Minimum distance between the curves $y^2 = x 1$ and $x^2 = y 1$ is equal to :

(a)
$$\frac{\sqrt{2}}{4}$$

(a)
$$\frac{\sqrt{2}}{4}$$
 (b) $\frac{3\sqrt{2}}{4}$ (c) $\frac{5\sqrt{2}}{4}$ (d) $\frac{7\sqrt{2}}{4}$

(c)
$$\frac{5\sqrt{2}}{4}$$

(d)
$$\frac{7\sqrt{2}}{4}$$

- 27. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?
 - (a) When $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
 - (b) When $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
 - (c) When $\lambda \in (0, \infty)$ equation has 1 real root
 - (d) When $\lambda \in (-e, 0)$ euqation has no real root
- **28.** If y = mx + 5 is a tangent to the curve $x^3y^3 = ax^3 + by^3$ at P(1, 2), then

(a)
$$a+b=\frac{18}{5}$$

(b)
$$a > b$$

(b)
$$a > b$$
 (c) $a < b$

(d)
$$a+b=\frac{19}{5}$$

29. If
$$(f(x)-1)(x^2+x+1)^2-(f(x)+1)(x^4+x^2+1)=0$$

 $\forall x \in R - \{0\}$ and $f(x) \neq \pm 1$, then which of the following statement(s) is/are correct?

(a)
$$|f(x)| \ge 2 \forall x \in R - \{0\}$$

- (b) f(x) has a local maximum at x = -1
- (c) f(x) has a local minimum at x = 1
- (d) $\int_{-\pi}^{\pi} (\cos x) f(x) dx = 0$

Answers

1.	(c, d)	2.	(a, c, d)	3.	(a, c)	4.	(a, c)	5.	(a, b, c, d)	6.	(b, c, d)
7.	(c, d)	8.	(b, d)	9.	(a, b, c, d)	10.	(a, c)	11.	(a, d)	12.	(c, d)
13.	(a, d)	14.	(b, c, d)	15.	(a, d)	16.	(b, c)	17.	(b, c)	18.	(a, d)
19.	(a, b, c)	20.	(a, b)	21.	(a, b, c, d)	22.	(b, c)	23.	(a, b, c)	24.	(a, b, d)
25.	(a, d)	26.	(b)	27.	(b, c, d)	28.	(a, d)	29.	(a, b, c, d)		C 1925 - 4 19

Exercise-3: Comprehension Type Problems

1 1

Paragraph for Question Nos. 1 to 2

Let y = f(x) such that xy = x + y + 1, $x \in R - \{1\}$ and g(x) = xf(x)

- 1. The minimum value of g(x) is:
 - (a) $3 \sqrt{2}$
- (b) $3 + \sqrt{2}$
- (c) $3-2\sqrt{2}$
- (d) $3 + 2\sqrt{2}$
- 2. There exists two values of x, x_1 and x_2 where $g'(x) = \frac{1}{2}$, then $|x_1| + |x_2| =$
 - (a) 1
- (b) 2
- (c) 4
- (d) 5

Paragraph for Question Nos. 3 to 5

Let
$$f(x) = \begin{bmatrix} 1-x & ; & 0 \le x \le 1 \\ 0 & ; & 1 < x \le 2 \text{ and } g(x) = \int_{0}^{x} f(t) dt. \\ (2-x)^{2} & ; & 2 < x \le 3 \end{bmatrix}$$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the perpendicular from point Q on x-axis meets the curve y = g(x) in point R.

- 3. g(1) =
 - (a) 0
- (b) $\frac{1}{2}$
- (c) 1
- (d) 2
- **4.** Equation of tangent to the curve y = g(x) at P is :
 - (a) 3y = 12x + 1
- (b) 3y = 12x 1
- (c) 12y = 3x 1
- (d) 12y = 3x + 1
- 5. If ' θ ' be the angle between tangents to the curve y = g(x) at point P and R; then $\tan \theta$ equals to:
 - (a) $\frac{5}{6}$
- (b) $\frac{5}{14}$
- (c) $\frac{5}{7}$
- (d) $\frac{5}{12}$

Paragraph for Question Nos. 6 to 8

Let $f(x) < 0 \ \forall \ x \in (-\infty, 0)$ and $f(x) > 0 \ \forall \ x \in (0, \infty)$ also f(0) = 0. Again $f'(x) < 0 \ \forall \ x \in (-\infty, -1)$ and $f'(x) > 0 \ \forall \ x \in (-1, \infty)$ also f'(-1) = 0 given $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = \infty$ and function is twice differentiable.

- **6.** If $f''(x) > 0 \forall x \in (-1, \infty)$ and f'(0) = 1 then number of solutions of equation f(x) = x is:
 - (a) 2
- (b) 3
- (c) 4
- (d) None of these
- 7. If $f''(x) < 0 \ \forall \ x \in (0, \infty)$ and f'(0) = 1 then number of solutions of equation $f(x) = x^2$ is:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

- **8.** The minimum number of points where f''(x) is zero is :
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

Paragraph for Question Nos. 9 to 11

In the given figure graph of:

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.

- **9.** The product of all imaginary roots of p(x) = 0 is:
 - (a) -2
- (b) -1
- (c) -1/2
- (d) none of these
- **10.** If p(x) + k = 0 has 4 distinct real roots $\alpha, \beta, \gamma, \delta$ then $[\alpha] + [\beta] + [\gamma] + [\delta]$, (where $[\cdot]$ denotes greatest integer function) is equal to :
 - (a) -1
- (b) −2
- (c) 0
- (d) 1
- 11. The minimum number of real roots of equation $(p'(x))^2 + p(x)p''(x) = 0$ are :
 - (a) 3
- (b) 4
- (c) 5
- (d) 6

Paragraph for Question Nos. 12 to 14

The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1))$ and $B(x_2, f(x_2))$ always intersects y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1, then:

- **12.** $\int_0^{1/2} f(x) dx$ is equal to :
 - (a) $\frac{1}{6}$
- (b) $\frac{1}{8}$
- (c) $\frac{1}{12}$
- (d) $\frac{1}{24}$
- **13.** The largest interval in which f(x) is monotonically increasing, is:
 - (a) $\left(-\infty,\frac{1}{2}\right]$
- (b) $\left[\frac{-1}{2},\infty\right)$
- (c) $\left[-\infty, \frac{1}{4}\right]$
- (d) $\left[\frac{-1}{4}, \infty\right)$
- **14.** In which of the following intervals, the Rolle's theorem is applicable to the function F(x) = f(x) + x?
 - (a) [-1,0]
- (b) [0,1]
- (c) [-1,1]
- (d) [0, 2]

Paragraph for Question Nos. 15 to 16

Let $f(x) = 1 + \int_{0}^{1} (xe^{y} + ye^{x}) f(y) dy$ where x and y are independent variables.

- **15.** If complete solution set of 'x' for which function h(x) = f(x) + 3x is strictly increasing is $(-\infty, k)$ then $\left[\frac{4}{3}e^{k}\right]$ equals to : (where [·] denotes greatest integer function):
 - (a) 1
- (c) 3
- 16. If acute angle of intersection of the curves $\frac{x}{2} + \frac{y}{3} + \frac{1}{3} = 0$ and y = f(x) be θ then $\tan \theta$ equals to:

 (a) $\frac{8}{25}$ (b) $\frac{16}{25}$ (c) $\frac{14}{25}$ (d) $\frac{4}{5}$

1								A	nsv	ver	s [100,100			5
1.	(d)	2.	(c)	3.	(b)	4.	(c)	5.	(b)	6.	(d)	7.	(ъ)	8,	(a)	9.	(d)	10.	(a)
11.	(b)	12.	(d)	13.	(c)	14.	(b)	15.	(c)	16.	(a)								

Exercise-4: Matching Type Problems

1. Column-I gives pair of curves and column-II gives the angle θ between the curves at their intersection point.

/	Column-l		Column-II
(A)	$y = \sin x, y = \cos x$	(P)	$\frac{\pi}{4}$
(B)	$x^2 = 4y, y = \frac{8}{x^2 + 4}$	(Q)	$\frac{\pi}{2}$
	$\frac{x^2}{18} + \frac{y^2}{8} = 1, x^2 - y^2 = 5$	(R)	tan ⁻¹ 3
(D)	$xy = 1, x^2 - y^2 = 5$	(s)	tan ⁻¹ 5
	THE THE RESERVE OF THE RESERVE OF	(T)	$\tan^{-1}(2\sqrt{2})$

2.

/	Column-l	1	Column-II
(A)	$(\sin^{-1} x)^{\cos^{-1} x} - (\cos^{-1} x)^{\sin^{-1} x} \forall x \in (\cos 1, \sin 1)$	(P)	Always positive
(B)	$(\cos x)^{\sin x} - (\sin x)^{\cos x} \forall x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(Q)	Always negative
(C)	$(\sin x)^{\sin x} - (\cos x)^{\sin x} \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$	(R)	May be positive or negative for some values of <i>x</i>
(D)	$(\ln (\ln x))^{\ln(\ln x)} - (\ln x)^{\ln x} \ \forall \ x \in (e^e, \infty)$	(S)	May result in zero for some of values of x
l		(T)	Indeterminate

3. Let
$$f(x) = \frac{x^3 - 4}{(x - 1)^3} \forall x \neq 1$$
, $g(x) = \frac{x^4 - 2x^2}{4} \forall x \in \mathbb{R}$, $h(x) = \frac{x^3 + 4}{(x + 1)^3} \forall x \neq -1$,

1	Column-I		Column-II
(A)	The number of possible distinct real roots of equation $f(x) = c$ where $c \ge 4$ can be	(P)	0
(B)	The number of possible distinct real roots of equation $g(x) = c$, where $c \ge 0$ can be	(Q)	1
(C)	The number of possible distinct real roots of equation $h(x) = c$, where $c \ge 1$ can be	(R)	2

(D)	The number of possible distinct real roots of equation $g(x) = c$ where $-1 < c < 0$ can be	(S)	3	
		(T)	4	

4.

/	Column-I	/	Column-II
(A)	$y = 1 + \frac{\alpha}{x - \alpha} + \frac{\beta x}{(x - \alpha)(x - \beta)} + \frac{\gamma x^2}{(x - \alpha)(x - \beta)(x - \gamma)}$	(P)	2
(B)	then value of y at $x = 2$ is: If $x^3 + ax + 1 = 0$ and $x^4 + ax + 1 = 0$ have a common roots then the value of $ a $ can be equal to	(Q)	3
(C)	The number of local maximas of the function $x^2 + 4\cos x + 5$ is more than	(R)	4
(D)	If $f(x) = 2 x ^3 + 3x^2 - 12 x + 1$, where $x \in [-1, 2]$ then greatest value of $f(x)$ is more than	(S)	5
		(T)	0

5.

1	Column-l		Column-II
(A)	Maximum value of $f(x) = \log_2\left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}}\right)$	(P)	0
(B)	The value of $\left[4\sum_{n=1}^{\infty}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right]=$	(Q)	1
	([-] represent greatest integer function)		
(C)	Let $f(x) = x \sin \pi x$, $x > 0$ then number of points in (0, 2) where $f'(x)$ vanishes, is	(R)	2
(D)	$\lim_{x \to 0^+} \left[\frac{x}{e^x - 1} \right] =$	(S)	3
	([·] represent greatest integer function)		

6. Consider the function $f(x) = \frac{\ln x}{8} - ax + x^2$ and $a \ge 0$ is a real constant :

	Column-l	1	Column-II
(A)	f(x) gives a local maxima at	(P)	$a=1; x=\frac{1}{4}$
(B)	f(x) gives a local minima at	(Q)	$a > 1; x = \frac{a - \sqrt{a^2 - 1}}{4}$
(C)	f(x) gives a point of inflection for	(R)	0 ≤ a < 1
(D)	$f(x)$ is strictly increasing for all $x \in \mathbb{R}^+$	(S)	$a > 1; x = \frac{a + \sqrt{a^2 - 1}}{4}$

7. The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non-zero local minimum and maximum values at x = -2 and x = 2 respectively. If 'a' is one of the root of $x^2 - x - 6 = 0$, then match the following:

1	Column-l		Column-II
(A)	The value of 'a' is	(P)	0
(B)	The value of 'b' is	(Q)	24
(C)	The value of 'c' is	(R)	Greater than 32
(D)	The value of 'd' is	(S)	–2

8.

	Column-l		Column-II
(A)	The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is		$\frac{1}{\sqrt{2}}$
(B)	The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is		$\sqrt{2}$
(C)	The cone circumscribing the sphere of radius 'r' has the maximum volume if its semi vertical angle is θ , then $33 \sin \theta =$		$\frac{32}{3}$
(D)	The greatest value of x^3y^4 if $2x + 3y = 7$, $x \ge 0$, $y \ge 0$ is	(S)	11

Answers

- 1. $A \rightarrow T$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow Q$
- 2. $A \rightarrow R, S$; $B \rightarrow Q$; $C \rightarrow R, S$; $D \rightarrow Q$
- 3. $A \rightarrow Q, R$; $B \rightarrow R, S$; $C \rightarrow Q, R, S$; $D \rightarrow P, R, T$
- 4. $A \rightarrow P$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow P$, Q, R, T
- 5. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$
- **6.** $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 7. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$
- **8.** $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- 1. A conical vessel is to be prepared out of a circular sheet of metal of unit radius. In order that the vessel has maximum volume, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 . If $\frac{A_2}{A_1} = m + \sqrt{n}$, where $m, n \in \mathbb{N}$, then m + n is equal to.
- **2.** On [1, e], the least and greatest values of $f(x) = x^2 \ln x$ are m and M respectively, then $[\sqrt{M+m}]$ is : (where [] denotes greatest integer function)
- **3.** If $f(x) = \frac{px}{e^x} \frac{x^2}{2} + x$ is a decreasing function for every $x \le 0$. Find the least value of p^2 .
- **4.** Let $f(x) = \begin{cases} xe^{ax}, & x \le 0 \\ x + ax^2 x^3, & x > 0 \end{cases}$. Where a is a positive constant. The interval in which f'(x) is increasing is $\left[\frac{k}{a}, \frac{a}{l}\right]$. Then k + l is equal to
- **5.** Find sum of all possible values of the real parameter 'b' if the difference between the largest and smallest values of the function $f(x) = x^2 2bx + 1$ in the interval [0, 1] is 4.
- **6.** Let '0' be the angle in radians between the curves $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and $x^2 + y^2 = 12$. If $\theta = \tan^{-1}\left(\frac{a}{\sqrt{3}}\right)$; Find the value of a.
- 7. Let set of all possible values of λ such that $f(x) = e^{2x} (\lambda + 1)e^x + 2x$ is monotonically increasing for $\forall x \in R$ is $(-\infty, k]$. Find the value of k.
- **8.** Let a, b, c and d be non-negative real number such that $a^5 + b^5 \le 1$ and $c^5 + d^5 \le 1$. Find the maximum value of $a^2c^3 + b^2d^3$.
- **9.** There is a point (p,q) on the graph of $f(x) = x^2$ and a point (r,s) on the graph of g(x) = -8/x, where p > 0 and r > 0. If the line through (p,q) and (r,s) is also tangent to both the curves at these points respectively, then find the value of (p+r).
- **10.** $f(x) = \max |2\sin y x|$ where $y \in R$ then determine the minimum value of f(x).
- 11. Let $f(x) = \int_0^x ((a-1)(t^2+t+1)^2-(a+1)(t^4+t^2+1)) dt$. Then the total number of integral values of 'a' for which f'(x) = 0 has no real roots is
- **12.** The number of real roots of the equation $x^{2013} + e^{2014x} = 0$ is
- 13. Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of (p + q).

- **14.** The least positive value of the parameter 'a' for which there exists at least one line that is tangent to the graph of the curve $y = x^3 ax$, at one point and normal to the graph at another point is $\frac{p}{q}$; where p and q are relatively prime positive integers. Find product pq.
- **15.** Let $f(x) = x^2 + 2x t^2$ and f(x) = 0 has two roots $\alpha(t)$ and $\beta(t)(\alpha < \beta)$ where t is a real parameter. Let $I(t) = \int_{\alpha}^{\beta} f(x) dx$. If the maximum value of I(t) be λ and $|\lambda| = \frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).
- 16. A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of salt runs into the tank at the rate of 1 lit/min. The homogenised mixture is pumped out of the tank at the rate of 3 lit/min. If T be the time when the amount of salt in the tank is maximum. Find [T] (where [-] denotes greatest integer function)
- 17. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) f(-3), then find the sum of digits of N.
- **18.** It is given that f(x) is defined on R satisfying f(1) = 1 and for $\forall x \in R$, $f(x+5) \ge f(x) + 5$ and $f(x+1) \le f(x) + 1$. If g(x) = f(x) + 1 x, then g(2002) = f(x) + 1 x.
- 19. The number of normals to the curve $3y^3 = 4x$ which passes through the point (0, 1) is
- **20.** Find the number of real root(s) of the equation $ae^x = 1 + x + \frac{x^2}{2}$; where a is positive constant.
- **21.** Let $f(x) = ax + \cos 2x + \sin x + \cos x$ is defined for $\forall x \in R$ and $a \in R$ and is strictly increasing function. If the range of a is $\left[\frac{m}{n}, \infty\right]$, then find the minimum value of (m-n).
- **22.** If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3} + y^{2/3} = 6^{2/3}$ respectively. Find the value of $\sqrt{4p_1^2 + p_2^2}$.

1.	9	2.	2	3.	1	4.	1	5.	1	6.	2	7.	3
8.	1	9.	5	10.	2	11.	3	12.	1	13.	7	14.	1
15.	12	16.	27	17.	3	18.	1	19.	1	20.	1	21.	9

Chapter 5 - Indefinite and Definite Integration

INTEGRATION

Exercise-1: Single Choice Problems

$$\mathbf{1.} \int a^x \left(\ln x + \ln a \cdot \ln \left(\frac{x}{e} \right)^x \right) dx =$$

(a)
$$a^x \ln \left(\frac{e}{x}\right)^{2x} + C$$

(b)
$$a^x \ln\left(\frac{x}{e}\right)^x + C$$

(c)
$$a^x + \ln\left(\frac{x}{e}\right)^x + C$$

(d) None of these

2. The value of:

$$\lim_{n\to\infty}\left(\frac{1}{\sqrt{n}\sqrt{n+1}}+\frac{1}{\sqrt{n}\sqrt{n+2}}+\frac{1}{\sqrt{n}\sqrt{n+3}}+\ldots\ldots+\frac{1}{\sqrt{n}\sqrt{2n}}\right)$$
 is :

(a)
$$\sqrt{2}-1$$

(c)
$$\sqrt{2}+1$$

(c)
$$\sqrt{2} + 1$$

(d)
$$2(\sqrt{2}+1)$$

3. If $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha) + C$, then value of (A, B) is:

(a)
$$(\sin \alpha, \cos \alpha)$$

(a)
$$(\sin \alpha, \cos \alpha)$$
 (b) $(\cos \alpha, \sin \alpha)$

(c)
$$(-\sin\alpha,\cos\alpha)$$

(c)
$$(-\sin \alpha, \cos \alpha)$$
 (d) $(-\cos \alpha, \sin \alpha)$

4. The value of the integral $\int_{-(x+2)^2}^2 \log(x^2+2) dx$ is:

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$
 (b) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 - \frac{1}{12} \log 3$

(c)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$

(c)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$
 (d) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$

5. If
$$I_1 = \int_0^1 \frac{1+x^8}{1+x^4} dx$$
 and $I_2 = \int_0^1 \frac{1+x^9}{1+x^3} dx$, then:

(a)
$$I_1 > 1, I_2 < 1$$
 (b) $I_1 < 1, I_2 > 1$

(b)
$$I_1 < 1, I_2 > 1$$

(c)
$$1 < I_1 < I_2$$
 (d) $I_2 < I_1 < 1$

(d)
$$I_2 < I_1 < 1$$

6 Let $f:(0,1) \to (0,1)$ be a differentiable function such that $f'(x) \neq 0$ for all $x \in (0,1)$ and

$$f\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}. \text{ Suppose for all } x, \lim_{t \to x} \left(\frac{\int_{0}^{t} \sqrt{1 - (f(s))^2} ds - \int_{0}^{x} \sqrt{1 - (f(s))^2} ds}{f(t) - f(x)}\right) = f(x). \text{ Then the value}$$

of $f\left(\frac{1}{A}\right)$ belongs to:

(a)
$$\left\{ \frac{\sqrt{7}}{4}, \frac{\sqrt{15}}{4} \right\}$$
 (b) $\left\{ \frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3} \right\}$ (c) $\left\{ \frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2} \right\}$ (d) $\left\{ \sqrt{7}, \sqrt{15} \right\}$

(b)
$$\left\{ \frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3} \right\}$$

(c)
$$\left\{ \frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2} \right\}$$

(d)
$$\{\sqrt{7}, \sqrt{15}\}$$

7. If $f(\theta) = \frac{4}{3}(1 - \cos^6 \theta - \sin^6 \theta)$, then

$$\lim_{n\to\infty} \frac{1}{n} \left[\sqrt{f\left(\frac{1}{n}\right)} + \sqrt{f\left(\frac{2}{n}\right)} + \sqrt{f\left(\frac{3}{n}\right)} + \dots + \sqrt{f\left(\frac{n}{n}\right)} \right] =$$
(a)
$$\frac{1-\cos 1}{2}$$
(b)
$$1-\cos 2$$
(c)
$$\frac{\sin 2}{2}$$

(a)
$$\frac{1-\cos 1}{2}$$

(c)
$$\frac{\sin 2}{2}$$

$$(\sqrt[4]{\frac{1-\cos 2}{2}}$$

8. The value of $\int_{0}^{1} \frac{(x^6 - x^3)}{(2x^3 + 1)^3} dx$ is equal to :

(a)
$$-\frac{1}{6}$$

(a)
$$-\frac{1}{6}$$
 (b) $-\frac{1}{12}$ (c) $-\frac{1}{18}$ (d) $-\frac{1}{36}$

(c)
$$-\frac{1}{18}$$

(d)
$$-\frac{1}{36}$$

9.
$$2\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{x} dx - \int_{0}^{1} \frac{\tan^{-1} x}{x} dx =$$

(a)
$$\frac{\pi}{8} \ln 2$$

(a)
$$\frac{\pi}{9} \ln 2$$
 (b) $\frac{\pi}{4} \ln 2$

(c)
$$\frac{\pi}{2\sqrt{2}} \ln 2$$
 (d) $\frac{\pi}{2} \ln 2$

(d)
$$\frac{\pi}{2} \ln 2$$

10. Let f(x) be a differentiable function such that $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$, then $\int_0^1 f(x) dx = \int_0^x e^{-t} f(x-t) dt$

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{7}{12}$$

(d)
$$\frac{5}{12}$$

11. If $f'(x) = f(x) + \int_{1}^{1} f(x) dx$ and given f(0) = 1, then $\int f(x) dx$ is equal to:

(a)
$$\frac{2}{3-e}e^x + \left(\frac{3-e}{1-e}\right)x + C$$

(b)
$$\frac{2}{3-e}e^x + \left(\frac{1-e}{3-e}\right)x + C$$

(c)
$$\frac{3}{2-e}e^x + \left(\frac{1+e}{3+e}\right)x + C$$

(d)
$$\frac{2}{2-e}e^x + \left(\frac{1-e}{3+e}\right)x + C$$

(where C is an arbitrary constant.)

12. For any
$$x \in R$$
, and f be a continuous function. Let $I_1 = \int_{\sin^2 x}^{1+\cos^2 x} tf(t(2-t)) dt$, $I_2 = \int_{\sin^2 x}^{1+\cos^2 x} f(t(2-t)) dt$,

then $I_1 =$

- (a) I_2
- (b) $\frac{1}{2}I_2$
- (c) $2I_2$
- (d) $3I_2$

13. If the integral
$$\int \frac{5 \tan x \, dx}{\tan x - 2} = x + a \ln |\sin x - 2 \cos x| + C$$
, then 'a' is equal to:

- (c) -1
- (d) -2

14.
$$\int \frac{(2+\sqrt{x})dx}{(x+1+\sqrt{x})^2}$$
 is equal to :

(a)
$$\frac{x}{x+\sqrt{x}+1}+C$$

(b)
$$\frac{2x}{x + \sqrt{x} + 1} + C$$

(c)
$$\frac{-2x}{x + \sqrt{x} + 1} + C$$

(d)
$$\frac{-x}{x + \sqrt{x} + 1} + C$$

(where C is an arbitrary constant.)

15. Evaluate
$$\int \frac{\sqrt[3]{x + \sqrt{2 - x^2}} \left(\sqrt[6]{1 - x\sqrt{2 - x^2}} \right) dx}{\sqrt[3]{1 - x^2}}; x \in (0, 1):$$

(a)
$$2^{\frac{1}{6}}x + C$$

(b)
$$2^{\frac{1}{12}}x + C$$

(c)
$$2^{\frac{1}{3}}x + C$$

(d) None of these

16.
$$\int \frac{dx}{\sqrt{1-\tan^2 x}} = \frac{1}{\lambda} \sin^{-1} (\lambda \sin x) + C, \text{ then } \lambda =$$

(a)
$$\sqrt{2}$$

(d) √5

(a)
$$\sqrt{2}$$
 (b) $\sqrt{3}$
17. $\int \frac{dx}{\sqrt[3]{x^{5/2}(x+1)^{7/2}}}$ is equal to :

(a)
$$-\left(\frac{x+1}{x}\right)^{1/6} + C$$

(b)
$$6\left(\frac{x+1}{r}\right)^{-1/6} + C$$

(c)
$$\left(\frac{x}{x+1}\right)^{5/6} + C$$

(d)
$$-\left(\frac{x}{x+1}\right)^{5/6} + C$$

18. If
$$I_n = \int (\sin x)^n dx$$
; $n \in \mathbb{N}$, then $5I_4 - 6I_6$ is equal to :

(a)
$$\sin x \cdot (\cos x)^5 + C$$

(b)
$$\sin 2x \cos 2x + C$$

(c)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x - 2\cos 2x] + C$$

(d)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x + 2\cos 2x] + C$$

19.
$$\int \frac{x^2}{(a+bx)^2} dx$$
 equals to :

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln |a + bx| - \frac{a^2}{a + bx} \right) + 0$$

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (b) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$

(c)
$$\frac{1}{b^3} \left(a + bx + 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (d) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + ax| - \frac{a^2}{a + bx} \right) + C$

(d)
$$\frac{1}{b^3} \left(a + bx - 2a \ln |a + ax| - \frac{a^2}{a + bx} \right) + C$$

20.
$$\int \frac{8x^{43} + 13x^{38}}{(x^{13} + x^5 + 1)^4} dx =$$

(a)
$$\frac{x^{39}}{3(x^{13}+x^5+1)^3}+C$$

(b)
$$\frac{x^{39}}{(x^{13} + x^5 + 1)^3} + C$$

(c)
$$\frac{x^{39}}{5(x^{13}+x^5+1)^5}+C$$

(d) None of these

21.
$$\int \left(\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{10\cos^2 x + 5\cos x \cos 3x + \cos x \cos 5x} \right) dx = f(x) + C, \text{ then } f(10) \text{ is equal to } :$$

(d) 2cos10

22.
$$\int (1+x-x^{-1})e^{x+x^{-1}}dx =$$

(a)
$$(x+1)e^{x+x^{-1}}+C$$

(b)
$$(x-1)e^{x+x^{-1}}+C$$

(c)
$$-xe^{x+x^{-1}} + C$$

(d)
$$xe^{x+x^{-1}} + C$$

23. If
$$\int e^x \left(\frac{2\tan x}{1+\tan x} + \csc^2 \left(x + \frac{\pi}{4} \right) \right) dx = e^x \cdot g(x) + K$$
, then $g\left(\frac{5\pi}{4} \right) = \frac{\pi}{4}$

$$(c)$$
 $-$

(d) 2

24.
$$\int e^{x \sin x + \cos x} \left(\frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx =$$

(a)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{\cos x} \right) + C$$

(b)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{x \cos x} \right) + C$$

(c)
$$e^{x \sin x + \cos x} \left(1 - \frac{1}{x \cos x} \right) + C$$

(d)
$$e^{x \sin x + \cos x} \left(1 - \frac{x}{\cos x} \right) + C$$

25. The value of the definite integral
$$\int_{0}^{1} \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} dx$$
 is :

(a)
$$\frac{1}{3}(2^{1/2}-1)$$

(b)
$$\frac{2}{3}(2^{1/2}-1)$$

(c)
$$\frac{2}{3}(2^{3/2}-1)$$

(d)
$$\frac{1}{3}(2^{3/2}-1)$$

26.
$$\int x^{x^2+1} (2\ln x + 1) dx$$

(a)
$$x^{2x} + 0$$

(b)
$$x^2 \ln x + C$$

(c)
$$x^{(x^x)} + C$$

(d)
$$(x^x)^x + C$$

27. If
$$\int \frac{\csc^2 x - 2010}{\cos^{2010} x} dx = -\frac{f(x)}{(g(x))^{2010}} + C$$
; where $f\left(\frac{\pi}{4}\right) = 1$; then the number of solutions of the equation $\frac{f(x)}{g(x)} = \{x\}$ in $[0, 2\pi]$ is/are: (where $\{\cdot\}$ represents fractional part function)

28.
$$\int x^x \left((\ln x)^2 + \ln x + \frac{1}{x} \right) dx$$
 is equal to :

(a)
$$x^{x} \left((\ln x)^{2} - \frac{1}{x} \right) + C$$

(b)
$$x^{x}(\ln x - x) + C$$

(c)
$$x^x \frac{(\ln x)^2}{2} + C$$

(d)
$$x^x \ln x + C$$

29. If
$$I = \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}}$$
 is equal to :

(a)
$$\frac{\sqrt{2x^4-2x^2+1}}{x^2}+C$$

(b)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(c)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(d)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + C$$

30.
$$I = \int \left(\frac{\ln x - 1}{(\ln x)^2 + 1}\right)^2 dx$$
 is equal to :

(a)
$$\frac{x}{x^2+1}+0$$

(b)
$$\frac{\ln x}{(\ln x)^2 + 1} + 0$$

(c)
$$\frac{x}{1+(\ln x)^2}+C$$

(a)
$$\frac{x}{x^2+1} + C$$
 (b) $\frac{\ln x}{(\ln x)^2+1} + C$ (c) $\frac{x}{1+(\ln x)^2} + C$ (d) $e^x \left(\frac{x}{x^2+1}\right) + C$

31.
$$I = \int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}} = k \sqrt[4]{\frac{x-1}{x+2}} + C$$
, then 'k' is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{3}{4}$$

(d)
$$\frac{4}{3}$$

32.
$$\int \frac{1-x^7}{x(1+x^7)} dx = P \log|x| + Q \log|x^7 + 1| + C, \text{ then } :$$

(a)
$$2P - 7Q = 0$$

(b)
$$2P + 7Q = 0$$

(c)
$$7P + 2Q = 0$$
 (d) $7P - 2Q = 1$

(d)
$$7P - 20 = 1$$

33.
$$I = \int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$
 is equal to :

(a)
$$\sin 2x + C$$

(b)
$$\frac{\sin 2x}{2} + 0$$

(a)
$$\sin 2x + C$$
 (b) $\frac{\sin 2x}{2} + C$ (c) $\frac{-\sin 2x}{2} + C$ (d) $-2\sin 2x + C$

(d)
$$-2\sin 2x + C$$

34.
$$I = \int \frac{(\sin 2x)^{1/3} d(\tan^{1/3} x)}{\sin^{2/3} x + \cos^{2/3} x} =$$

(a)
$$\frac{1}{2^{2/3}} \ln (1 + \tan^{1/3} x) + C$$

(b)
$$\ln(1 + \tan^{2/3} x) + C$$

(c)
$$2^{1/3} \ln(1 + \tan^{2/3} x) + C$$

(d)
$$\frac{1}{2^{2/3}} \ln(1 + \tan^{2/3} x) + C$$

35.
$$\int \sqrt{\frac{(2012)^{2x}}{1-(2012)^{2x}}} (2012)^{\sin^{-1}(2012)^x} dx =$$

(a)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(b)
$$(\log_{2012} e)^2 (2012)^{x+\sin^{-1}(2012)^x} + C$$

(c)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(d)
$$\frac{(2012)^{\sin^{-1}(2012)^x}}{(\log_{2012} e)^2} + C$$

(where C denotes arbitrary constant.)

36.
$$\int \frac{(x+2) dx}{(x^2+3x+3)\sqrt{x+1}}$$
 is equal to:

(a)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3(x+1)}} \right) + C$$

(b)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\sqrt{\frac{x}{3(x+1)}} \right) + C$$

(c)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{x}}{3(x+1)} \right) + C$$

(d)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}(x+1)} \right) + C$$

(where C is arbitrary constant.)

37.
$$\int \left(\frac{f(x)g'(x) - f'(x)g(x)}{f(x)g(x)}\right) (\log(g(x)) - \log(f(x))) dx$$
 is equal to:

(a)
$$\log\left(\frac{g(x)}{f(x)}\right) + C$$

(b)
$$\frac{1}{2} \left(\frac{g(x)}{f(x)} \right)^2 + C$$

(c)
$$\frac{1}{2} \left(\log \left(\frac{g(x)}{f(x)} \right) \right)^2 + C$$

(d)
$$\log \left(\left(\frac{g(x)}{f(x)} \right)^2 \right) + C$$

$$38. \int \left(\int e^x \left(\ln x + \frac{2}{x} - \frac{1}{x^2} \right) dx \right) dx =$$

(a)
$$e^x \ln x + C_1 x + C_2$$

(b)
$$e^x \ln x + \frac{1}{x} + C_1 x + C_2$$

(c)
$$\frac{\ln x}{x} + C_1 x + C_2$$

(d) None of these

39.	Max	rimum value of the	fun	$ction f(x) = \pi^2 \int_0^1 t \sin x$	1(<i>x</i> +	πt) dt over all	real num	ber x :	
	(0)	$\sqrt{x^2+1}$	(h)	$\sqrt{\pi^2 + 2}$ continuous on [0]	(c)	$\sqrt{\pi^2+3}$	(d) √	$\pi^{2} + 4$	and
	f(x	$0 \le \frac{2}{x} \forall x \in \left[\frac{1}{2}, 1\right] t$	hen	the smallest 'a' for w	hich	$\int_{0}^{1} f(x) dx \le a \text{he}$	olds for a	ll ' <i>f</i> ' is :	
	(a)	√5	(b)	$\frac{\sqrt{5}}{2} + 2 \ln 2$	(c)	$2 + \ln \left(\frac{\sqrt{5}}{2} \right)$	(d) 2	$+2\ln\left(\frac{\sqrt{5}}{2}\right)$	
41.	Let	$I_n = \int_1^{e^2} (\ln x)^n d(x^2)$), th	en the value of $2I_n$ +	- nI _{n-}	1 equals to:			
	(a)	0	(b)	$2e^2$	(c)	e ²	(d) 1	ж	
42.	Let	a function $f:R \to$	R be	defined as $f(x) = x$ $2\pi^2 - 2$	+ sin	x. The value of	$\int_{0}^{2\pi} f^{-1}(x)$) dx will be :	
	(a)	$2\pi^2$	(b)	$2\pi^2-2$	(c)	$2\pi^2 + 2$	(d) π	2	
43.	The	value of the defin	ite ir	$2\pi^2 - 2$ ategral $\int_{-1}^{1} e^{-x^4} \left(2 + \ln \frac{1}{2}\right)$	(x+	$\sqrt{x^2+1}\bigg)+5x^3$	$-8x^4$	<i>lx</i> is equal to	:
	(a)	4e	(b)	$\frac{4}{e}$	(c)	2e	(d) $\frac{2}{a}$		
44.	0 -10	$\frac{\frac{2[x]}{3x - [x]}}{\frac{2[x]}{3x - [x]}} dx \text{ is equ}$	al to	(where [*] denotes	grea	test integer fun	ction.)		
	(a)	28 3	(Ъ)	$\frac{1}{3}$	(c)	0	(d) N	ione of these	
45.	If f($x) = \frac{x}{1 + (\ln x)(\ln x)}$	c)	$\int_{\infty}^{\infty} \forall x \in [1, \infty) \text{ then } \int_{1}^{2}$	f(x) dx equals is :			
	(a)	$\frac{e^2-1}{2}$	(b)	$\frac{e^2+1}{2}$	(c)	$\frac{e^2-2e}{2}$	(d) N	Ione of these	
46.	<u>∱\(\frac{\frac{1}{2}}{2}\)</u>	$\frac{(2y^2-4y+5)\sin(y-4y+11)}{(2y^2-8y+11)}$	<u>2)</u> d	y is equal to :					

(c) -2

(d) None of these

(b) 2

- **55.** The value of the definite integral $\int_{0}^{10} ((x-5)+(x-5)^2+(x-5)^3) dx$ is :
- (b) $\frac{250}{3}$

- **56.** The value of definite integral $\int_{0}^{\infty} \frac{dx}{(1+x^9)(1+x^2)}$ equals to :
 - (a) $\frac{\pi}{16}$
- (b) $\frac{\pi}{8}$
- (d) $\frac{\pi}{2}$
- **57.** The value of the definite integral $\int_{0}^{\pi/2} \left(\frac{1 + \sin 3x}{1 + 2\sin x} \right) dx$ equals to :
 - (a) $\frac{\pi}{2}$
- (b) 1
- (c) $\frac{1}{2}$
- (d) $\frac{\pi}{4}$

- **58.** The value of $\lim_{x \to \infty} \frac{\int_{0}^{x} (\tan^{-1} x)^{2} dx}{\sqrt{x^{2} + 1}} =$

(b) $\frac{\pi^2}{4}$

- (d) None of these
- **59.** If $\int_{0}^{1} \left(\sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \right) \left(\prod_{r=1}^{2013} (x^2 + r^2) \right) dx = \frac{1}{2} \left[\left(\prod_{r=1}^{2013} (1 + r^2) \right) k^2 \right]$

then k =

- (a) 2013
- (b) 2013!
- (c) 2013²
- (d) 2013²⁰¹³

- **60.** $f(x) = 2x \tan^{-1} x \ln(x + \sqrt{1 + x^2})$
 - (a) strictly increases $\forall x \in R$
 - (b) strictly increases only in (0, ∞)
 - (c) strictly decreases $\forall x \in R$
 - (d) strictly decreases in $(0, \infty)$ and strictly increases in $(-\infty, 0)$
- **61.** The value of the definite integral $\int_{0}^{\pi/2} \frac{dx}{\tan x + \cot x + \csc x + \sec x}$ is:
 - (a) $1 \frac{\pi}{4}$
- (b) $\frac{\pi}{4} + 1$ (c) $\pi + \frac{1}{4}$
- (d) None of these

- **62.** The value of the definite integral $\int_{3}^{7} \frac{\cos x^2}{\cos x^2 + \cos(10 x)^2} dx$ is:
 - (a) 2
- (b) 1
- (c) $\frac{1}{2}$
- (d) None of these

- **63.** The value of the integral $\int_{-1}^{e^2} \left| \frac{\ln x}{x} \right| dx$ is :
 - (a) $\frac{3}{2}$
- (c) 3
- (d) 5

64. The value of $\lim_{x \to \frac{\pi}{4}} \frac{\int_{-2}^{\cos c^2 x} tg(t) dt}{x^2 - \frac{\pi^2}{16}}$ is:

- (a) $\frac{2}{\pi}g(2)$
- (b) $-\frac{4}{\pi}g(2)$ (c) $-\frac{16}{\pi}g(2)$ (d) -4g(2)

- **65.** The value of $\lim_{n\to\infty} \sum_{k=1}^n \frac{n-k}{n^2} \cos \frac{4k}{n}$ equals:
 - (a) $\frac{1}{4}\sin 4 + \frac{1}{16}\cos 4 \frac{1}{16}$
- (b) $\frac{1}{4}\sin 4 \frac{1}{16}\cos 4 + \frac{1}{16}$

(c) $\frac{1}{16}(1-\sin 4)$

- (d) $\frac{1}{16}(1-\cos 4)$
- **66.** For each positive integer n, define a function f_n on [0, 1] as follows:

$$f_n(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin\frac{\pi}{2n} & \text{if } 0 < x \le \frac{1}{n}\\ \sin\frac{2\pi}{2n} & \text{if } \frac{1}{n} < x \le \frac{2}{n}\\ \sin\frac{3\pi}{2n} & \text{if } \frac{2}{n} < x \le \frac{3}{n}\\ \sin\frac{n\pi}{2n} & \text{if } \frac{n-1}{n} < x \le 1 \end{cases}$$

Then the value of $\lim_{n\to\infty} \int_0^\infty f_n(x) dx$ is:

(a) π

(c) $\frac{1}{\pi}$

(d) $\frac{2}{\pi}$

67. Let n be a positive integer, then

$$\int_{0}^{n+1} \min\{|x-1|, |x-2|, |x-3|, \dots, |x-n|\} dx \text{ equals}$$

- (a) $\frac{(n+1)}{4}$ (b) $\frac{(n+2)}{4}$ (c) $\frac{(n+3)}{4}$ (d) $\frac{(n+4)}{4}$

68. For positive integers $k = 1, 2, 3, \dots, n$, let S_k denotes the area of $\triangle AOB_k$ (where 'O' is origin) such that $\angle AOB_k = \frac{k\pi}{2n}$, OA = 1 and $OB_k = k$. The value of the $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} S_k$ is:

- (d) $\frac{1}{2\pi^2}$

69. If $A = \int_{0}^{1} \prod_{r=1}^{2014} (r-x) dx$ and $B = \int_{0}^{1} \prod_{r=0}^{2013} (r+x) dx$, then:

- (d) A = B

(a) A = 2B (b) 2A = B (c) A + B = 0 **70.** If $f(x) = \left[\frac{x}{120} + \frac{x^3}{30} \right]$ defined in [0, 3], then $\int_{0}^{1} (f(x) + 2) dx = 0$

(where [.] denotes greatest integer function)

- (c) 2
- (d) 4

71. If $f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1+t^3}}$, $g(x) = \int_{0}^{\cos x} (1+\sin t)^2 dt$, then the value of $f'(\frac{\pi}{2})$ is equal to :

- (a) 1
- (b) -1
- (d) $\frac{1}{2}$

72. Let $f(x) = \frac{1}{x^2} \int_{0}^{x} (4t^2 - 2f'(t)) dt$, find 9f'(4)

- (a) 16

- (d) 32

73. Evaluate $\lim_{n\to\infty} \left(\frac{1^2}{n^3 + 1^3} + \frac{2^2}{n^3 + 2^3} + \frac{3^2}{n^3 + 3^3} + \dots + \frac{4}{9n} \right)$

- (c) $\frac{\ln 4}{2}$
- (d) $\frac{\ln 6}{3}$

74. The value of $\int_{0}^{2\pi} \cos^{-1} \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) dx$ is :

- (a) π^2
- (b) $\frac{\pi^2}{2}$
- (c) $2\pi^2$
- (d) π^{3}

75. Given a function 'g' continuous everywhere such that $\int g(t) dt = 2$ and g(1) = 5.

If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^2 g(t) dt$, then the value of f'''(1) - f''(1) is:

- (d) 3

76. If $\int_{0}^{\pi} \frac{x^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2} dx = \lambda \int_{0}^{\pi/2} \sin^2 x dx$, then the value of λ is:

- (d) $\frac{\pi}{2}$

77. $\int_{0}^{\sqrt{3}} \left(\frac{1}{2} \frac{d}{dx} \left(\tan^{-1} \frac{2x}{1-x^2} \right) \right) dx \text{ equals to } :$

- (b) $-\frac{\pi}{6}$
- (d) None of these

78. Let $y = \{x\}^{[x]}$ then the value of $\int_{0}^{x} y \, dx$ equals to :

(where {-} and [-] denote fractional part and greatest integer function respectively.)

79. $\int_{-\infty}^{1} \frac{\tan^{-1} x}{x} dx =$

- (a) $\int_{0}^{\pi/4} \frac{\sin x}{x} dx$ (b) $\int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (c) $\frac{1}{2} \int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (d) $\frac{1}{2} \int_{0}^{\pi/4} \frac{x}{\sin x} dx$

80. The value of $\int_{0}^{4/\pi} \left(3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}\right) dx$ is:

(a) $\frac{8\sqrt{2}}{3}$

(b) $\frac{24\sqrt{2}}{3}$

(c) $\frac{32\sqrt{2}}{3}$

(d) None of these

81. The number of values of x satisfying the equation :

$$\int_{-1}^{x} \left(8t^{2} + \frac{28t}{3} + 4\right) dt = \frac{\frac{3}{2}x + 1}{\log_{(x+1)}\sqrt{x+1}}, \text{ is :}$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3

82.
$$\lim_{n\to\infty} \frac{1+2^4+3^4+\ldots\ldots+n^4}{n^5} - \lim_{n\to\infty} \frac{1+2^3+3^3+\ldots\ldots+n^3}{n^5}$$
 is:

- (a) $\frac{1}{30}$
- (b) zero (c) $\frac{1}{4}$

83. The value of $\lim_{x\to 0^+} \frac{\int\limits_{-1}^{\cos x} (\cos^{-1} t) dt}{2x - \sin 2x}$ is equal to:

- (a) 0

- (d) $-\frac{1}{4}$

84. Consider a parabola $y = \frac{x^2}{4}$ and the point F(0, 1).

Let $A_1(x_1, y_1), A_2(x_2, y_2), A_3(x_3, y_3), \dots, A_n(x_n, y_n)$ are 'n' points on the parabola such $x_k > 0$ and $\angle OFA_k = \frac{k\pi}{2n}(k=1,2,3,\ldots,n)$. Then the value of $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nFA_k$, is equal to:

- (a) $\frac{2}{\pi}$

- (d) None of these

85. The minimum value of $f(x) = \int_{1}^{4} e^{|x-t|} dt$ where $x \in [0, 3]$ is:

- (b) $e^4 1$
- (c) $2(e^2-1)$ (d) e^2-1

86. If $\int_{0}^{\infty} \frac{\cos x}{x} dx = \frac{\pi}{2}$, then $\int_{0}^{\infty} \frac{\cos^3 x}{x} dx$ is equals to :

- (c) π
- (d) $\frac{3\pi}{2}$

87. $\int \sqrt{1+\sin x} \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) dx = :$

- (a) $\frac{1+\sin x}{2}+C$ (b) $(1+\sin x)^2+C$ (c) $\frac{1}{\sqrt{1+\sin x}}+C$
- (d) $\sin x + C$

88. If $I_n = \int_0^\pi \frac{\sin(2nx)}{\sin 2x} dx$, then the value of $I_{n+\frac{1}{2}}$ is equal to $(n \in I)$:

- (a) $\frac{n\pi}{2}$
- (b) π
- (d) 0

89. The value of function $f(x) = 1 + x + \int_{0}^{x} (\ln^2 t + 2 \ln t) dt$ where f'(x) vanishes is:

- (a) $\frac{1}{e}$
- (b) 0
- (c) $\frac{2}{a}$
- (d) $1 + \frac{2}{}$

90. Let f be a differentiable function on R and satisfies $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$; then $\int_0^1 f(x) dx$

is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{7}{12}$$
 (d) $\frac{5}{12}$

(d)
$$\frac{5}{12}$$

91. The value of the definite integral $\int_{-(\pi/2)}^{\pi/2} \frac{\cos^2 x}{1+5^x}$ equals to :

(a)
$$\frac{3\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{2}$$

92.
$$\int \left(\frac{x^2 - x + 1}{x^2 + 1}\right) e^{\cot^{-1}(x)} dx = f(x) \cdot e^{\cot^{-1}(x)} + C$$

where C is constant of integration. Then f(x) is equal to:

(a)
$$-x$$

(b)
$$\sqrt{1-x}$$

(d)
$$\sqrt{1+x}$$

(a)
$$-x$$
 (b) $\sqrt{1-x}$ (c) x
93. $\lim_{n\to\infty} \frac{1}{n^3} (\sqrt{n^2+1} + 2\sqrt{n^2+2^2} + \dots + n\sqrt{(n^2+n^2)}) = :$

(a)
$$\frac{3\sqrt{2}-1}{2}$$

(a)
$$\frac{3\sqrt{2}-1}{2}$$
 (b) $\frac{2\sqrt{2}-1}{3}$ (c) $\frac{3\sqrt{3}-1}{3}$ (d) $\frac{4\sqrt{2}-1}{2}$

(c)
$$\frac{3\sqrt{3}-1}{3}$$

(d)
$$\frac{4\sqrt{2}-1}{2}$$

94.
$$\int \frac{(x^3-1)}{(x^4+1)(x+1)} dx$$
, is:

(a)
$$\frac{1}{4}\ln(1+x^4) + \frac{1}{3}\ln(1+x^3) + c$$
 (b) $\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + c$

(b)
$$\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + e^{-\frac{1}{3}\ln(1+x^3)}$$

(c)
$$\frac{1}{4}\ln(1+x^4) - \ln(1+x) + c$$

(d)
$$\frac{1}{4}\ln(1+x^4) + \ln(1+x) + c$$

$$\int_{1}^{\cos x} (\cos^{-1} t) dt$$

95. The value of Limit $\int_{x\to 0^+}^{\cos x} (\cos^{-1} t) dt$ is equal to :

(c)
$$\frac{2}{3}$$

(d)
$$\frac{-1}{4}$$

96. Let
$$f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + (\tan^{-1} x)^n}$$
, then $\int_0^\infty f(x) dx = \int_0^\infty f(x) dx$

- (a) tan(sin 1)
- (b) sin(tan 1)
- (c) 0
- (d) $\sin\left(\frac{\tan 1}{2}\right)$

97. The value of
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\frac{k}{n^2+n+2k}\right) =$$

114		Advanced.	Problems in Methamatics for	JEE
(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) 1	
	$\int_{0}^{y} t-1 dt$			
98. The value of $\lim_{y \to \infty} y = \int_{-\infty}^{\infty} \frac{1}{y} dx$				
(a) 0	(b) 1	(c) 2	(d) does not exist	
99. Given that $\int_{-\infty}^{\infty}$	$\frac{dx}{(1+x^2)^n} = \frac{x}{2(n-1)(1+x^2)^n}$	$\frac{1}{(n-1)^{n-1}} + \frac{(2n-3)}{2(n-1)} \int \frac{1}{(1+1)^{n-1}}$	$\frac{dx}{(x^2)^{n-1}}$. Find the value	e of
$\int_0^1 \frac{dx}{(1+x^2)^4} : (x^2)^4 = (x^2)^4 =$	you may or may not use rec	duction formula give	n)	
(a) $\frac{11}{48} + \frac{5\pi}{64}$	(b) $\frac{11}{48} + \frac{5\pi}{32}$	(c) $\frac{1}{24} + \frac{5\pi}{64}$	(d) $\frac{1}{96} + \frac{5\pi}{32}$	
100. Find the value	of $\int_{0}^{\pi/4} (\sin x)^4 dx$:			
(a) $\frac{3\pi}{16}$	(b) $\frac{3\pi}{32} - \frac{1}{4}$	(c) $\frac{3\pi}{32} - \frac{3}{4}$	(d) $\frac{3\pi}{16} - \frac{7}{8}$	
101. $\int \frac{\cos 9x + \cos 6x}{2\cos 5x - 1}$	$\frac{x}{d} dx = A \sin 4x + B \sin + C, t$	then $A + B$ is equal to	5 100	
(Where C is cor	nstant of integration)			
(a) $\frac{1}{2}$	ff	(c) 2	(d) $\frac{5}{4}$	
$102. \int \frac{dx}{x^{2014} + x} = \frac{1}{p}$	$\ln\left(\frac{x^q}{1+x^r}\right) + C \text{ where } p, q$	$r \in N$ then the value	e of $(p+q+r)$ equals	
(Where C is con	stant of integration)			
(a) 6039	(b) 6048	(c) 6047	(d) 6021	
103. If $\int_{0}^{1} e^{-x^2} dx = a$,	then $\int_{0}^{1} x^{2}e^{-x^{2}} dx$ is equal to)		
	(b) $\frac{1}{2e}(ea+1)$		(d) $\frac{1}{e}(ea+1)$	
104. If $f(x)$ is a continuous	nuous function for all real v	values of x and satisfi	$\operatorname{des} \int_{0}^{n+1} f(x) dx = \frac{n^2}{2} \forall n \in I,$	then
5			n	

 $\int_{-3}^{3} f(|x|) dx \text{ is equal to :}$ (a) $\frac{19}{2}$ (b) $\frac{35}{2}$

(a)
$$\frac{19}{2}$$

(b)
$$\frac{35}{2}$$

(c)
$$\frac{17}{2}$$
 (d) $\frac{37}{2}$

(d)
$$\frac{37}{2}$$

105. If
$$\int \frac{dx}{x^4 (1+x^3)^2} = a \ln \left| \frac{1+x^3}{x^3} \right| + \frac{b}{x^3} + \frac{c}{1+x^3} + d$$
, then

(where d is arbitrary constant)

(a)
$$a = \frac{1}{3}, b = \frac{1}{3}, x = \frac{1}{3}$$

(b)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = \frac{1}{3}$$

(c)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = -\frac{1}{3}$$

(d)
$$a = \frac{2}{3}, b = \frac{1}{3}, c = -\frac{1}{3}$$

106.
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{4n}}$$
 is equal to :

(c)
$$2(\sqrt{2}-1)$$

(d)
$$2\sqrt{2} - 1$$

(a) 2 (b) 4 (c)
$$2(\sqrt{2}-1)$$
 (d) $2\sqrt{2}-1$
107. Let $f(x) = \int_{x}^{2} \frac{dy}{\sqrt{1+y^3}}$. The value of the integral $\int_{0}^{2} xf(x) dx$ is equal to :

(b)
$$\frac{1}{3}$$

(c)
$$\frac{4}{3}$$

(d)
$$\frac{2}{3}$$

108. The value of the definite integral
$$\int_{0}^{\pi/3} \ln(1+\sqrt{3}\tan x) dx$$
 equals

(a)
$$\frac{\pi}{3} \ln 2$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi^2}{6} \ln 2$$
 (d) $\frac{\pi}{2} \ln 2$

(d)
$$\frac{\pi}{2} \ln 2$$

109. If
$$\int_{0}^{100} f(x) dx = a$$
, then $\sum_{r=1}^{100} \int_{0}^{1} (f(r-1+x) dx) =$

110. The value of
$$\int_{0}^{1} \lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{k+2} 2^k}{k!} dx$$
 is :

(a)
$$e^2 - 1$$
 (b) 2

(c)
$$\frac{e^2-1}{2}$$
 (d) $\frac{e^2-1}{4}$

(d)
$$\frac{e^2-1}{4}$$

111. Evaluate :
$$\int x^5 \sqrt{1+x^3} \, dx$$
.

(a)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x)^3)^{3/2} + c$$

(b)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x^3)^{3/2} + c$$

(c)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

(d)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

- **112.** If $f(x) = \int_{-\infty}^{x} \frac{\sin t}{t} dt$, which of the following is true?
 - (a) $f(0) > f(1 \cdot 1)$
 - (b) $f(0) < f(1 \cdot 1) > f(2 \cdot 1)$
 - (c) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) > f(3 \cdot 1)$
 - (d) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) < f(3 \cdot 1) > f(4 \cdot 1)$
- **113.** Evaluate : $\int \frac{x^3 + 3x^2 + x + 9}{(x^2 + 1)(x^2 + 3)} dx.$
 - (a) $\ln |x^2 + 3| + 3 \tan^{-1} x + c$
- (b) $\frac{1}{2} \ln |x^2 + 3| + \tan^{-1} x + c$
- (c) $\frac{1}{2}\ln|x^2+3|+3\tan^{-1}x+c$
- (d) $\ln |x^2 + 3| \tan^{-1} x + c$

- 114. $\int \frac{\sqrt{\sec^5 x}}{\sqrt{\sin^3 x}} dx$ equals to:
 - (a) $(\tan x)^{3/2} \sqrt{\tan x} + C$
- (b) $2\left(\frac{1}{3}(\tan x)^{3/2} \frac{1}{\sqrt{\tan x}}\right) + C$
- (c) $\frac{1}{3}(\tan x)^{3/2} \sqrt{\tan x} + C$
- (d) $\sqrt{\sin x} + \sqrt{\cos x} + C$

- 115. $\lim_{x\to 0} \int_{0}^{x} \frac{e^{\sin(tx)}}{x} dt$ equals to :
- (c) e
- (d) Does not exist

- (a) 1 (b) 2 **116.** If $A = \int_{0}^{\pi} \frac{\sin x}{x^2} dx$, then $\int_{0}^{\pi/2} \frac{\cos 2x}{x} dx$ is equal to :

 - (a) 1-A (b) $\frac{3}{2}-A$
- (c) A-1
- (d) 1 + A

1	Answers																		
1.	(b)	2.	(b)	3.	(b)	4.	(d)	5.	(d)	6.	(a)	7.	(d)	8.	(d)	9.	(b)	10.	(d)
11.	(b)	12.	(a)	13.	(b)	14.	(b)	15.	(a)	16.	(a)	17.	(b)	18.	(c)	19.	(b)	20.	(a)
21.	(a)	22.	(d)	23.	(b)	24.	(b)	25.	(c)	26.	(d)	27.	(a)	28.	(d)	29.	(d)	30.	(c)
31.	(d)	32.	(b)	33.	(c)	34.	(d)	35.	(c)	36.	(a)	37.	(c)	38.	(a)	39.	(d)	40.	(d)
41.	(ъ)	42.	(a)	43.	(b)	44.	(a)	45.	(a)	46.	(a)	47.	(d)	48.	(d)	49.	(d)	50.	(c)
51.	(c)	52.	(b)	53.	(c)	54.	(c)	55.	(b)	56.	(c)	57.	(b)	58.	(b)	59.	(b)	60.	(a)
61.	(a)	62.	(a)	63.	(b)	64.	(c)	65,	(d)	66.	(d)	67.	(a)	68.	(d)	69.	(d)	70.	(b)
71.	(d)	72.	(b)	73.	(a)	74.	(d)	75,	(b)	76.	(a)	77.	(b)	78.	(c)	79.	(c)	80.	(c)
81.	(b)	82,	(d)	83.	(d)	84.	(b)	85.	(c)	86.	(a)	87.	(d)	88.	(d)	89.	(d)	90.	(d)
91.	(d)	92.	(c)	93	(b)	94.	(c)	95.	(d)	96.	(b)	97.	(c)	98.	(a)	99.	(a)	100.	(b)
101	(d)	102	(a)	103	(a)	104	(b)	105.	(c)	106.	(a)	107.	(d)	108.	(a)	109.	(ъ)	110.	(d)
111	(c)	112	(d)	113	(c)	114.	(b)	115.	(a)	116.	(c)								

Exercise-2: One or More than One Answer is/are Correct

1.
$$\int \frac{dx}{(1+\sqrt{x})^8} = -\frac{1}{3(1+\sqrt{x})^{k_1}} + \frac{2}{7(1+\sqrt{x})^{k_2}} + C$$
, then:

- (d) $k_2 = 8$

2. If
$$\int_{-\alpha}^{\alpha} \left(e^x + \cos x \ln \left(x + \sqrt{1 + x^2} \right) \right) dx > \frac{3}{2}$$
, then possible value of α can be:

- (a) 1

- (d) 4

(a) 1 (b) 2 (c) 3 (d) 4
3. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

- (b) $B = a^{3/2}$
- (c) $A = \frac{1}{2}$
- (d) $B = a^{1/2}$

4. Let
$$\int x \sin x \cdot \sec^3 x \, dx = \frac{1}{2} (x \cdot f(x) - g(x)) + k$$
, then :

(a) $f(x) \notin (-1,1)$

(b) $g(x) = \sin x$ has 6 solution for $x \in [-\pi, 2\pi]$

(c) $g'(x) = f(x), \forall x \in R$

- (d) f(x) = g(x) has no solution
- **5.** If $\int (\sin 3\theta + \sin \theta) \cos \theta e^{\sin \theta} d\theta = (A \sin^3 \theta + B \cos^2 \theta + C \sin \theta + D \cos \theta + E) e^{\sin \theta} + F$, then:
- (c) C = -20

(a)
$$A = -4$$
 (b) $B = -12$ (c) $C = -20$ (d) None of these
6. For $a > 0$, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B}\right) + C$, where C is any arbitrary constant, then:

- (a) $A = \frac{2}{3}$
- (b) $B = a^{3/2}$
- (c) $A = \frac{1}{3}$
- (d) $B = a^{1/2}$

7. If
$$f(\theta) = \lim_{n \to \infty} \sum_{r=0}^{n\theta} \frac{2r}{n\sqrt{(3\theta n - 2r)(n\theta + 2r)}}$$
 then:

(a)
$$f(1) = \frac{\pi}{6}$$

(b)
$$f(\theta) = \frac{\theta}{2} \int_{0}^{\theta} \frac{dx}{\sqrt{\theta^2 - \left(x - \frac{\theta}{2}\right)^2}}$$

- (c) $f(\theta)$ is a constant function
- (d) $y = f(\theta)$ is invertible

8. If
$$f(x+y) = f(x)f(y)$$
 for all x, y and $f(0) \neq 0$, and $F(x) = \frac{f(x)}{1 + (f(x))^2}$ then:

(a)
$$\int_{-2010}^{2011} F(x) dx = \int_{0}^{2011} F(x) dx$$

(b)
$$\int_{-2010}^{2011} F(x) dx - \int_{0}^{2010} F(x) dx = \int_{0}^{2011} F(x) dx$$
(d)
$$\int_{-2010}^{2010} (2F(-x) - F(x)) dx = 2 \int_{0}^{2010} F(x) dx$$

(c)
$$\int_{-2010}^{2011} F(x) dx = 0$$

(d)
$$\int_{-2010}^{2010} (2F(-x) - F(x)) dx = 2 \int_{0}^{2010} F(x) dx$$

9. Let
$$J = \int_{-1}^{2} \left(\cot^{-1} \frac{1}{x} + \cot^{-1} x \right) dx$$
, $K = \int_{-2\pi}^{7\pi} \frac{\sin x}{|\sin x|} dx$. Then which of the following alternative(s)

is/are correct?

(a)
$$2J + 3K = 8\pi$$

(b)
$$4J^2 + K^2 = 26\pi^2$$
 (c) $2J - K = 3\pi$ (d) $\frac{J}{K} = \frac{2}{5}$

(c)
$$2J - K = 3\pi$$

$$d) \frac{J}{K} = \frac{2}{5}$$

10. Which of the following function(s) is/are even?

(a)
$$f(x) = \int_{0}^{x} \ln\left(t + \sqrt{1 + t^2}\right) dt$$
 (b) $g(x) = \int_{0}^{x} \frac{(2^t + 1)t}{2^t - 1} dt$

(b)
$$g(x) = \int_{0}^{x} \frac{(2^{t} + 1)t}{2^{t} - 1} dt$$

(c)
$$h(x) = \int_{0}^{x} \left(\sqrt{1+t+t^2} - \sqrt{1-t+t^2} \right) dt$$
 (d) $l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$

(d)
$$l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$$

11. Let
$$l_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}}$$
 and $l_2 = \lim_{h \to 0^+} \int_{-1}^1 \frac{h dx}{h^2 + x^2}$. Then:

- (a) Both l_1 and l_2 are less than 22/7
- (b) One of the two limits is rational and other irrational
- (c) $l_2 > l_1$
- (d) l₂ is greater than 3 times of l₁

12. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(c)
$$A = \frac{1}{3}$$

(c)
$$A = \frac{1}{3}$$
 (d) $B = a^{1/2}$

13. If
$$\int \frac{dx}{1-\sin^4 x} = a \tan x + b \tan^{-1}(c \tan x) + D$$
, then:

(a)
$$a = \frac{1}{2}$$

(b)
$$b = \sqrt{2}$$

(c)
$$c = \sqrt{2}$$

(b)
$$b = \sqrt{2}$$
 (c) $c = \sqrt{2}$ (d) $b = \frac{1}{2\sqrt{2}}$

14. The value of definite integral:

$$\int_{-2014}^{2014} \frac{dx}{1 + \sin^{2015}(x) + \sqrt{1 + \sin^{4030}(x)}}$$
 equals :

- (a) 0
- (c) $(2014)^2$
- (d) 4028

15. Let
$$L = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n \ dx}{1 + n^2 x^2}$$
 where $a \in R$ then L can be:

- (a) π
- (b) $\frac{\pi}{2}$
- (c) 0
- (d) $\frac{\pi}{3}$

16. Let
$$I = \int_{0}^{1} \sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} dx$$
 and $J = \int_{0}^{1} \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$ then correct statement(s) is/are:

(a) $I + J = 2$

(b) $I - J = \pi$

(c) $I = \frac{2+\pi}{2}$

(d) $J = \frac{4-\pi}{2}$

(a)
$$I + J = 2$$

(b)
$$I - J = \pi$$

(c)
$$I = \frac{2+\pi}{2}$$

$$(d) J = \frac{4-\pi}{2}$$

	1			102	Ans	wer	8			===	1
1.	(b, c)	2.	(a, b, c, d)	3.	(a, b)	4.	(a, c, d)	5.	(a, b, c)	6.	(a, b)
7.	(a, b, d)	8,	(b, d)	9.	(a, b)	10.	(a, b, c, d)	11.	(a, b, c, d)	12.	(a, b)
18.	(a, c)	14,	(b)	16,	(a, b, c)	16.	(b, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = \int x^2 \cos^2 x (2x + 6\tan x - 2x \tan^2 x) dx$ and f(x) passes through the point $(\pi, 0)$

- 1. If $f: R-(2n+1)\frac{\pi}{2} \longrightarrow R$ then f(x) be a:
 - (a) even function

(b) odd function

(c) neither even nor odd

- (d) even as well as odd both
- **2.** The number of solution(s) of the equation $f(x) = x^3$ in $[0, 2\pi]$ be:
 - (a) 0
- (b) 3
- (d) None of these

Paragraph for Question Nos. 3 to 4

Let f(x) be a twice differentiable function defined on $(-\infty, \infty)$ such that f(x) = f(2-x) and $f'\left(\frac{1}{2}\right) = f'\left(\frac{1}{4}\right) = 0$. Then

- **3.** The minimum number of values where f''(x) vanishes on [0, 2] is :

- (d) 5

- 4. $\int_{1}^{1} f'(1+x) x^2 e^{x^2} dx$ is equal to :

- (d) 0
- (a) 1 (b) π (c)

 5. $\int_{0}^{1} f(1-t)e^{-\cos \pi t} dt \int_{1}^{2} f(2-t)e^{\cos \pi t} dt$ is equal to:
 - (a) $\int_{0}^{2} f'(t)e^{\cos \pi t}dt$ (b) 1
- (c) 2
- (d) π

Paragraph for Question Nos. 6 to 8

Consider the function f(x) and g(x), both defined from $R \to R$

$$f(x) = \frac{x^3}{2} + 1 - x \int_0^x g(t) dt$$
 and $g(x) = x - \int_0^1 f(t) dt$, then

- **6.** Minimum value of f(x) is:
 - (a) 0
- (b) 1
- (c) $\frac{3}{2}$
- (d) Does not exist

7. The number of points of intersection of f(x) and g(x) is/are:

8. The area bounded by g(x) with co-ordinate axes is (in square units):

(a)
$$\frac{9}{4}$$

(b)
$$\frac{9}{2}$$

(c)
$$\frac{9}{8}$$

Paragraph for Question Nos. 9 to 11

Let f(x) be function defined on [0, 1] such that f(1) = 0 and for any $a \in (0, 1]$, $\int_{0}^{a} f(x) dx - \int_{0}^{a} f(x) dx = 2 f(a) + 3a + b \text{ where } b \text{ is constant.}$

(a)
$$\frac{3}{2e} - 3$$

(b)
$$\frac{3}{2e} - \frac{3}{2}$$
 (c) $\frac{3}{2e} + 3$ (d) $\frac{3}{2e} + \frac{3}{2}$

(c)
$$\frac{3}{2e} + 3$$

(d)
$$\frac{3}{2e} + \frac{3}{2}$$

10. The length of the subtangent of the curve y = f(x) at x = 1/2 is :

(a)
$$\sqrt{e}-1$$

(b)
$$\frac{\sqrt{e}-1}{2}$$
 (c) $\sqrt{e}+1$ (d) $\frac{\sqrt{e}+1}{2}$

(c)
$$\sqrt{e} + 1$$

(d)
$$\frac{\sqrt{e}+1}{2}$$

$$\mathbf{11.} \int\limits_0^1 f(x) \, dx =$$

(a)
$$\frac{1}{e}$$

(b)
$$\frac{1}{2e}$$

(c)
$$\frac{3}{2e}$$

(d)
$$\frac{2}{e}$$

Paragraph for Question Nos. 12 to 13

Let $f_0(x) = \ln x$ and for $n \ge 0$ and x > 0

Let
$$f_{n+1}(x) = \int_{0}^{x} f_n(t)dt$$
 then:

12. $f_3(x)$ equals:

(a)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$

(b)
$$\frac{x^3}{3} \left(lnx - \frac{11}{6} \right)$$

(a)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$
 (b) $\frac{x^3}{3} \left(lnx - \frac{11}{6} \right)$ (c) $\frac{x^3}{13} \left(lnx - \frac{11}{6} \right)$ (d) $\frac{x^3}{13} \left(lnx - \frac{5}{6} \right)$

(d)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$

13. Value of $\lim_{n\to\infty} \frac{(\lfloor n \rfloor) f_n(1)}{\ln(n)}$:

Paragraph for Question Nos. 14 to 15

Let $f: R \to \begin{bmatrix} \frac{3}{4}, \infty \end{bmatrix}$ be a surjective quadratic function with line of symmetry 2x - 1 = 0 and

- **14.** If $g(x) = \frac{f(x) + f(-x)}{2}$ then $\int \frac{dx}{\sqrt{g(e^x) 2}}$ is equal to :
 - (a) $\sec^{-1}(e^{-x}) + C$ (b) $\sec^{-1}(e^{x}) + C$ (c) $\sin^{-1}(e^{-x}) + C$ (d) $\sin^{-1}(e^{x}) + C$

(Where C is constant of integration)

- 15. $\int \frac{e^x}{f(e^x)} dx$
 - (a) $\cot^{-1}\left(\frac{2e^x-1}{\sqrt{3}}\right)+C$

(b) $\frac{2}{\sqrt{3}} \cot^{-1} \left(\frac{2e^x + 1}{\sqrt{3}} \right) + C$

(c) $\tan^{-1} \left(\frac{2e^x + 1}{\sqrt{3}} \right) + C$

(d) $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2e^x - 1}{\sqrt{3}} \right) + C$

Paragraph for Question Nos. 16 to 17

Let $g(x) = x^C e^{Cx}$ and $f(x) = \int_0^x te^{2t} (1 + 3t^2)^{1/2} dt$. If $L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ is non-zero finite number then:

- 16. The value of C is:
 - (a) 7
- (b) $\frac{3}{2}$
- (c) 2
- (d) 3

- 17. The value of L is:
 - (a) $\frac{2}{7}$
- (b) $\frac{1}{2}$
- (c) $\frac{\sqrt{3}}{4}$
- (d) $\frac{\sqrt{3}}{2}$

Answers

	1000	T 255 M.		Mildelin		Waste.		AND THE		400				To the same of			-	P		
1.	(a)	2.	(b)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(a)	8.	(c)	9.	(a)	10.	(a)	1
11.	(c)	12.	(c)	13.	(c)	14.	(b)	15.	(d)	16.	(c)	17.	(d)							1

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	$\lim_{n \to \infty} 4 \left[\frac{\frac{1}{e^{n}}}{n^{2}} + \frac{2}{n^{2}} e^{\frac{2}{n}} + \frac{3}{n^{2}} e^{\frac{3}{n}} + \dots \frac{1}{n} e \right] =$	(P)	0
(B)	$\int_{0}^{1} \ln\left(\frac{1}{x} - 1\right) dx =$	(Q)	1
	$\int_{0}^{10\pi} \left(\lim_{x \to y} \left(\frac{\sin x - \sin y}{x - y} \right) \right) dy =$	(R)	2
(D)	$\int_{0}^{\infty} \frac{\ln\left(x + \frac{1}{x}\right) dx}{(1 + x^{2})} = \frac{\pi}{2} \ln a, \text{ then } a =$	(S)	4
		(T)	5

2. Match the following $\int f(x) dx$ is equal to, if

1	Column-l	11	Column-II
(A)	$f(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 2}}$	(P)	$\frac{x^5}{5(1-x^4)^{5/2}} + C$
(B)	$f(x) = \frac{1}{(x+2)\sqrt{x^2+6x+7}}$	(Q)	$\sin^{-1}\left(\frac{x+1}{(x+2)\sqrt{2}}\right) + C$
(C)	$f(x) = \frac{x^4 + x^8}{(1 - x^4)^{7/2}}$	(R)	$(\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}\sqrt{x}+C$
(D)	$f(x) = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}$	(S)	$-\tan^{-1}\sqrt{1+\frac{2}{x^2}}+C$
		(T)	$\frac{x^6}{6(1-x^4)^{5/2}} + C$

3.

V	Columbia		Column-II
(A)	$\int_{0}^{\pi/2} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx =$	(P)	$\frac{\pi}{6}$
(B)	$\int_{0}^{\frac{41\pi}{4}} \cos x dx =$	(Q)	$20+\frac{1}{\sqrt{2}}$
(C)	$\int_{-1/2}^{1/2} \left([x] + \ln \left(\frac{1+x}{1-x} \right) \right) dx =$	(R)	ln 4 – ln 3
(D)	where [·] greatest integer function $\int_{0}^{\pi/2} \frac{2\sqrt{\cos\theta}}{3(\sqrt{\sin\theta} + \sqrt{\cos\theta})} d\theta =$	(s)	$-\frac{1}{2}$

4.

1	Column4		Column-II
(A)	If quardratic equation $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root then value of $5ab - 2a^2 - 3b^2 =$	(P)	6
(B)	Number of solution of $x^4 - 2x^2 \sin^2 \frac{\pi x}{2} + 1 = 0$	(Q)	1
	is/are		
(C)	Number of points of discontinuity $y = \frac{1}{u^2 + u - 2}$	(R)	2
	where $u = \frac{1}{x-1}$ is/are	# /=	
(D)	$\int \frac{dx}{\sqrt[3]{x^{5/2}(1+x)^{7/2}}} = A\left(\frac{x+1}{x}\right)^{-1/A} + C$	(S)	3
	(Where C is integration constant), then $A =$		

5. :

N			Columnell
(A)	$\int_{0}^{1.5} [x^2] dx$	(P)	-π
(B)	$\int_{0}^{4} \{\sqrt{x}\} dx$	(Q)	4(√2 − 1)
	where {x} denotes the fractional part of x		
(C)	$\int_{0}^{2\pi} [\sin x + \cos x] dx$	(R)	$\frac{7}{3}$
(D)	$\int_{0}^{\pi} \sin x - \cos x dx$	(S)	2-√2

Answers

- 1. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow P$; $D \rightarrow S$
- 2. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$
- 3. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow P$
- 4. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
- **5.** $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$

Exercise-5 : Subjective Type Problems

1.
$$\int \frac{x + (\arccos 3x)^2}{\sqrt{1 - 9x^2}} dx = \frac{1}{k_1} \left(\sqrt{1 - 9x^2} + (\cos^{-1} 3x)^{k_2} \right) + C, \text{ then } k_1^2 + k_2^2 =$$

(where C is an arbitrary constant.)

2. If
$$\int_{0}^{\infty} \frac{x^3}{(a^2 + x^2)^5} dx = \frac{1}{ka^6}$$
, then find the value of $\frac{k}{8}$.

3. Let
$$f(x) = x \cos x$$
; $x \in \left[\frac{3\pi}{2}, 2\pi\right]$ and $g(x)$ be its inverse. If $\int_{0}^{2\pi} g(x) dx = \alpha \pi^{2} + \beta \pi + \gamma$, where α, β and $\gamma \in R$, then find the value of $2(\alpha + \beta + \gamma)$.

4. If
$$\int (x^6 + x^4 + x^2) \sqrt{2x^4 + 3x^2 + 6} \ dx = \frac{(\alpha x^6 + \beta x^4 + \gamma x^2)^{3/2}}{18} + C$$
 where C is constant, then find the value of $(\beta + \gamma - \alpha)$.

5. If the value of the definite integral
$$\int_{-1}^{1} \cot^{-1} \left(\frac{1}{\sqrt{1-x^2}} \right) \cdot \left(\cot^{-1} \frac{x}{\sqrt{1-(x^2)^{|x|}}} \right) dx = \frac{\pi^2(\sqrt{a}-\sqrt{b})}{\sqrt{c}}$$

where $a, b, c, \in N$ in their lowest from, then find the value of (a + b + c).

6. The value of
$$\int \frac{\tan x}{\tan^2 x + \tan x + 1} dx = x - \frac{2}{\sqrt{A}} \tan^{-1} \left(\frac{2 \tan x + 1}{\sqrt{A}} \right) + C$$

Then the value of A is

7. Let
$$\int_{0}^{1} \frac{4x^{3} (1 + (x^{4})^{2010})}{(1 + x^{4})^{2012}} dx = \frac{\lambda}{\mu}$$

where λ and μ are relatively prime positive integers. Find unit digit of μ .

8. Let
$$\int_{1}^{\sqrt{3}} \left(x^{2x^2+1} + \ln(x^{2x^{2x^2+1}}) \right) dx = N$$
. Find the value of $(N-6)$.

9. If
$$\int \frac{dx}{\cos^3 x - \sin^3 x} = A \tan^{-1}(f(x)) + B \ln \left| \frac{\sqrt{2} + f(x)}{\sqrt{2} - f(x)} \right| + C$$
 where $f(x) = \sin x + \cos x$ find the value of $(12A + 9\sqrt{2}B) - 3$.

10. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^a y = \lambda^a$ is constant (where λ is constant.)

11. Let
$$I = \int_{0}^{\pi} x^{6} (\pi - x)^{8} dx$$
, then $\frac{\pi^{15}}{(^{15}C_{9})I} =$

- **12.** If maximum value of $\int_{0}^{1} (f(x))^{3} dx$ under the condition $-1 \le f(x) \le 1$; $\int_{0}^{1} f(x) dx = 0$ is $\int_{0}^{p} f(x) dx = 0$ is $\int_{0}^{p} f(x) dx = 0$ is $\int_{0}^{p} f(x) dx = 0$. (where p and q are relatively prime positive integers.). Find p + q.
- 13. Let a differentiable function f(x) satisfies $f(x) \cdot f'(-x) = f(-x) \cdot f'(x)$ and f(0) = 1. Find the value of $\int_{0}^{2} \frac{dx}{1 + f(x)}$.
- **14.** If $\{x\}$ denotes the fractional part of x, then $I = \int_{0}^{100} \{\sqrt{x}\} dx$, then the value of $\frac{9I}{155}$ is:
- **15.** Let $I_n = \int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} dx$ where $n \in W$. If $I_1^2 + I_2^2 + I_3^2 + \dots + I_{20}^2 = m\pi^2$, then find the

largest prime factor of m.

- **16.** If M be the maximum value of $72 \int_{0}^{y} \sqrt{x^4 + (y y^2)^2} dx$ for $y \in [0, 1]$, then find $\frac{M}{6}$.
- 17. Find the number of points where $f(\theta) = \int_{-1}^{1} \frac{\sin \theta \, dx}{1 2x \cos \theta + x^2}$ is discontinuous where $\theta \in [0, 2\pi]$.
- **18.** Find the value of $\lim_{n\to\infty}\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\dots+\frac{1}{\sqrt{n}}\right)$.
- **19.** The maximum value of $\int_{-\pi/2}^{3\pi/2} \sin x \cdot f(x) dx$, subject to the condition $|f(x)| \le 5$ is M, then $\frac{M}{10}$ is equal to:
- **20.** Given a function g, continuous everywhere such that g(1) = 5 and $\int_{0}^{1} g(t) dt = 2$. If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^{2} g(t) dt$, then find the value of f'''(1) + f''(1).
- **21.** If $f(n) = \frac{1}{\pi} \int_{0}^{\pi/2} \frac{\sin^2(n\theta) d\theta}{\sin^2 \theta}$, $n \in \mathbb{N}$, then evaluate $\frac{f(15) + f(3)}{f(12) f(10)}$.
- 22. Let f(2-x) = f(2+x) and f(4-x) = f(4+x). Function f(x) satisfies $\int_{0}^{2} f(x) dx = 5$. If $\int_{0}^{50} f(x) dx = I$. Find $[\sqrt{I} - 3]$. (where [·] denotes greatest integer function.)

23. Let
$$I_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{2n}}{2n} \right) dx$$
. If $\lim_{n \to \infty} I_n$ can be expressed as rational $\frac{p}{q}$ in its lowest form, then find the value of $\frac{pq(p+q)}{10}$.

24. Let
$$\lim_{n\to\infty} n^{-\frac{1}{2}\left(1+\frac{1}{n}\right)} \cdot (1^1 \cdot 2^2 \cdot 3^3 \cdot \dots \cdot n^n)^{\frac{1}{n^2}} = e^{\frac{-p}{q}}$$

where p and q are relative prime positive integers. Find the value of $\mid p+q\mid$.

25. If
$$\int_a^b |\sin x| dx = 8$$
 and $\int_0^{a+b} |\cos x| dx = 9$ then the value of $\frac{1}{\sqrt{2}x} \left| \int_a^b x \sin x dx \right|$ is:

26. If f(x), g(x), h(x) and $\phi(x)$ are polynomial in x,

$$\left(\int_{1}^{x} f(x) h(x) dx\right) \left(\int_{1}^{x} g(x) \phi(x) dx\right) - \left(\int_{1}^{x} f(x) \phi(x) dx\right) \left(\int_{1}^{x} g(x) h(x) dx\right)$$

is divisible by $(x-1)^{\lambda}$. Find maximum value of λ .

27. If
$$\int_{0}^{2} (3x^2 - 3x + 1)\cos(x^3 - 3x^2 + 4x - 2)dx = a\sin(b)$$
, where a and b are positive integers. Find the value of $(a + b)$.

28. let
$$f(x) = \int_{0}^{x} e^{x-y} f'(y) dy - (x^2 - x + 1) e^x$$

Find the number of roots of the equation f(x) = 0.

29. For a positive integer
$$n$$
, let $I_n = \int_{-\pi}^{\pi} \left(\frac{\pi}{2} - |x|\right) \cos nx \, dx$

Find the value of $[I_1 + I_2 + I_3 + I_4]$ where $[\cdot]$ denotes greatest integer function.

						Ansv	vers						1
1.	90	2.	3	3.	3	4.	7	5.	7	6.	3	7.	1
8.	7	9.	8	10.	1	11.	9	12.	5	13.	2	14.	3
15.	5	16.	4	17.	3	18.	2	19.	2	20.	7	21.	ç
22.	8	23.	3	24.	5	25.	2	26.	4	27.	2	28.	1
29.	4	1051											

Chapter 6 - Area Under Curves

AREA UNDER CURVES

4

è	Exe	ercise-1 : Single	Cho	ice Problems			
1.	[:	area enclosed by $x + 3y$] = $[x - 2]$ where $[\cdot]$ denotes gre	here .	$x \in [3, 4)$ is:			g
	(a)		(b)		(c)	$\frac{1}{4}$	(d) 1
2.	The	area of region en	close	d by the curves $y = 3$	x ² ar	and $y = \sqrt{ x }$ is:	
	(a)	$\frac{1}{3}$	(b)	$\frac{2}{3}$	(c)	$\frac{4}{3}$	(d) $\frac{16}{3}$
3.	Area	a enclosed by the	igure	described by the eq	quati	on $x^4 + 1 = 2x^2 +$	y^2 , is:
	(a)			16	(c)	0	(d) $\frac{4}{3}$
4.	The	area defined by)	/ ≤e	$- x - \frac{1}{2}$ in cartesian	CO-01	rdinate system, is :	
5.		(4 – 2 ln 2)	(b)	(4 - ln 2)	(c)	(2 - ln 2)	(d) (2-2ln 2) stricted to the following
	two	inequalities: $\frac{x^2}{n^2}$	- y ²	≤ 1 and $x^2 + \frac{y^2}{n^2} \leq 1$. Fin	d $\lim_{n\to\infty} A_n$.	stricted to the following
	(a)		(b)		(c)	2	(d) 3
6.	The $x = 3$	ratio in which the 3 is :	area	bounded by curves	s y ²	$= 12x \text{ and } x^2 = 12x$	2y is divided by the lin
		7:15		15 : 49	(c)	1:3	(d) 17:49
/.	y = 1	value of positive $x - ax^2$, $ay = x^2$ as	real tains	parameter 'a' such its maximum value	h tha e is e	at area of region qual to :	bounded by parabola
	(a)		(b)		(c)	1 0	(d) 1

Area	Under Curves			129						
8.				x^r at the point (1, 1). Let S_r						
				c^r ; the x-axis and the line n_r .						
	Then the value of r the	at minimizes the area of	S_r is:							
	(a) $\frac{1}{\sqrt{2}}$	(b) $\sqrt{2}-1$	(c) $\frac{\sqrt{2}-1}{2}$	(d) $\sqrt{2} - \frac{1}{2}$						
9.	The area bounded by	$ x = 1 - y^2$ and $ x + y =$	= 1 is :							
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) 1						
10.	Point A lies on curve	$y = e^{-x^2}$ and has the	coordinate (x, e^{-x^2})) where $x > 0$. Point B has						
	coordinates $(x, 0)$. If 'O' is the origin, then the maximum area of $\triangle AOB$ is:									
	(a) $\frac{1}{\sqrt{8e}}$	(b) $\frac{1}{\sqrt{4e}}$	(c) $\frac{1}{\sqrt{2e}}$	(d) $\frac{1}{\sqrt{e}}$						
11.	The area enclosed bet	ween the curves $y = ax^2$	and $x = ay^2 (a > 0)$	is 1 sq. unit, then the value						
	of a is:									
	(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{1}{2}$	(c) 1	(d) $\frac{1}{3}$						
12.	$Let f(x) = x^3 - 3x^2 +$	3x + 1 and g be the inv	verse of it; then a	area bounded by the curve						
	y = g(x) with x-axis be	etween $x = 1$ to $x = 2$ is (in square units) :							
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{3}{4}$	(d) 1						
13.	Area bounded by x^2y^2	$x^2 + y^4 - x^2 - 5y^2 + 4 = 0$	is equal to :							

14. Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ is an invertible function such that f'(x) > 0 and $f''(x) > 0 \ \forall \ x \in [1, 5]$. If f(1) = 1 and f(5) = 5 and area bounded by y = f(x), x-axis, x = 1 and x = 5 is 8 sq. units. Then

15. A circle centered at origin and having radius π units is divided by the curve $y = \sin x$ in two

(c) $\frac{\pi^3}{2}$

(b) $2\int_{0}^{1} \sqrt{x-x^4} \ dx$

(d) $4 \int_{0}^{1/2} \sqrt{x-x^4} dx$

(d) none of these

(d) 20

(d) $\frac{\pi^3}{2}$

(a) $\frac{4\pi}{3} + \sqrt{2}$ (b) $\frac{4\pi}{3} - \sqrt{2}$ (c) $\frac{4\pi}{3} + 2\sqrt{3}$

the area bounded by $y = f^{-1}(x)$, x-axis, x = 1 and x = 5 is: (b) 16

parts. Then area of the upper part equals to :

16. The area of the loop formed by $y^2 = x(1-x^3)dx$ is:

(a) $\int_{0}^{1} \sqrt{x-x^{4}} dx$

(c) $\int_{-1}^{1} \sqrt{x-x^4} \ dx$

17. If $f(x) = \min \left[x^2, \sin \frac{x}{2}, (x - 2\pi)^2 \right]$, the area bounded by the curve y = f(x), x-axis, x = 0 and $x = 2\pi$ is given by

(**Note**: x_1 is the point of intersection of the curves x^2 and $\sin \frac{x}{2}$; x_2 is the point of intersection of the curves $\sin \frac{x}{2}$ and $(x - 2\pi)^2$)

(a)
$$\int_{0}^{x_{1}} \left(\sin \frac{x}{2} \right) dx + \int_{x_{1}}^{\pi} x^{2} dx + \int_{\pi}^{x_{2}} (x - 2\pi)^{2} dx + \int_{x_{2}}^{2\pi} \left(\sin \frac{x}{2} \right) dx$$

(b)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \left(\sin \frac{x}{2} \right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(0, \frac{\pi}{3} \right)$ and $x_2 \in \left(\frac{5\pi}{3}, 2\pi \right)$

(c)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ and $x_2 \in \left(\frac{3\pi}{2}, 2\pi\right)$

(d)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $x_2 \in (\pi, 2\pi)$

18. The area enclosed between the curves $|x| + |y| \ge 2$ and $y^2 = 4\left(1 - \frac{x^2}{9}\right)$ is:

(a)
$$(6\pi - 4) sq$$
. units (b) $(6\pi - 8) sq$. units (c) $(3\pi - 4) sq$. units (d) $(3\pi - 2) sq$. units

Answers

1.																	(c)	10.	(a)
11.	(d)	12.	(b)	13.	(c)	14.	(b)	15.	(c)	16.	(b)	17.	(b)	18.	(b)	14			

Exercise-2: One or More than One Answer is/are Correct

1. Let f(x) be a polynomial function of degree 3 where a < b < c and f(a) = f(b) = f(c). If the graph of f(x) is as shown, which of the following statements are **INCORRECT**? (Where

(a)
$$\int_{a}^{c} f(x) dx = \int_{b}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

(c)
$$\int_{a}^{b} f(x) dx < \int_{c}^{b} f(x) dx$$

(b)
$$S_n < \frac{1}{2} \ln 2$$

(c)
$$T_n < \frac{1}{2} \ln 2$$

(d)
$$S_n > \frac{1}{2} \ln 2$$

3. If a curve $y = a\sqrt{x} + bx$ passes through point (1, 2) and the area bounded by curve, line x = 4and x-axis is 8, then:

(a)
$$a = 3$$

(b)
$$b = 3$$

(c)
$$a = -1$$

(d)
$$b = -1$$

4. Area enclosed by the curves $y = x^2 + 1$ and a normal drawn to it with gradient -1; is equal to:

(a)
$$\frac{2}{3}$$

(b)
$$\frac{1}{3}$$

(c)
$$\frac{3}{4}$$

(d)
$$\frac{4}{3}$$

Answers

2.

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f: A \to B$ $f(x) = \frac{x+a}{bx^2+cx+2}$, where A represent domain set and B represent range set of

function f(x), $a, b, c \in R$, f(-1) = 0 and y = 1 is an asymptote of y = f(x) and y = g(x) is the inverse of f(x).

- **1.** *g*(0) is equal to :
 - (a) -1
- (b) -3
- (c) $-\frac{5}{2}$
- (d) $-\frac{3}{2}$
- **2.** Area bounded between the curves y = f(x) and y = g(x) is :
 - (a) $2\sqrt{5} + \ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$

(b) $3\sqrt{5} + 2\ln\left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right)$

(c) $3\sqrt{5} + 4\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$

- (d) $3\sqrt{5} + 2\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$
- **3.** Area of region enclosed by asymptotes of curves y = f(x) and y = g(x) is:
 - (a) 4
- (c) 12
- (d) 25

Paragraph for Question Nos. 4 to 6

For j = 0, 1, 2, ... n let S_j be the area of region bounded by the x-axis and the curve $ye^x = \sin x$ for $j\pi \le x \le (j+1)\pi$

- **4.** The value of S_0 is:

- (a) $\frac{1}{2}(1+e^{\pi})$ (b) $\frac{1}{2}(1+e^{-\pi})$ (c) $\frac{1}{2}(1-e^{-\pi})$ (d) $\frac{1}{2}(e^{\pi}-1)$
- **5.** The ratio $\frac{S_{2009}}{S_{2010}}$ equals :
 - (a) $e^{-\pi}$
- (b) e^{π}
- (c) $\frac{1}{2}e^{\pi}$
- (d) $2e^{\pi}$

- **6.** The value of $\sum_{j=0}^{\infty} S_j$ equals to :
 - (a) $\frac{e^{\pi}(1+e^{\pi})}{2(e^{\pi}-1)}$ (b) $\frac{1+e^{\pi}}{2(e^{\pi}-1)}$ (c) $\frac{1+e^{\pi}}{e^{\pi}-1}$
- (d) $\frac{e^{\pi} (1 + e^{\pi})}{(e^{\pi} 1)}$

Answers

2. (d) 3. (b) 4. (b) 1. (a) 5. (b) 6. (b)

Exercise-4 : Matching Type Problems

1.

1	Column-I		Column-II
(A)	Area of region formed by points (x, y) satisfying $[x]^2 = [y]^2$ for $0 \le x \le 4$ is equal to (where [] denotes greatest integer function)	(P)	48
(B)	The area of region formed by points (x, y) satisfying $x + y \le 6$, $x^2 + y^2 \le 6y$ and $y^2 \le 8x$ is $\frac{k\pi - 2}{12}$, then $k =$	(Q)	27
(C)	The area in the first quardant bounded by the curve $y = \sin x$ and the line $\frac{2y-1}{\sqrt{2}-1} = \frac{2}{\pi} (6x - \pi) \text{ is } \left[\frac{\sqrt{3} - \sqrt{2}}{2} - \frac{(\sqrt{2} + 1)\pi}{k} \right], \text{ then } k = 0$	800	7
(D)	If the area bounded by the graph of $y = xe^{-ax}$ $(a > 0)$ and the abscissa axis is $\frac{1}{9}$ then the value of 'a' is equal to		4
		(T)	3

Answers

1. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow T$

Exercise-5: Subjective Type Problems

- **1.** Let f be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)} (y \neq 0, f(y) \neq 0)$ $\forall x, y \in R \text{ and } f'(1) = 2$. If the smaller area enclosed by y = f(x), $x^2 + y^2 = 2$ is A, then find [A], where $[\cdot]$ represents the greatest integer function.
- **2.** Let f(x) be a function which satisfy the equation f(xy) = f(x) + f(y) for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region bounded by the curves y = f(x), $y = |x^3 6x^2 + 11x 6|$ and x = 0, then find value of $\frac{28}{17}A$.
- **3.** If the area bounded by circle $x^2 + y^2 = 4$, the parabola $y = x^2 + x + 1$ and the curve $y = \left[\sin^2\frac{x}{4} + \cos\frac{x}{4}\right]$, (where [] denotes the greates integer function) and x-axis is $\left(\sqrt{3} + \frac{2\pi}{3} \frac{1}{k}\right)$, then the numerical quantity k should be:
- **4.** Let the function $f: [-4, 4] \rightarrow [-1, 1]$ be defined implicitly by the equation $x + 5y y^5 = 0$. If the area of triangle formed by tangent and normal to f(x) at x = 0 and the line y = 5 is A, find $\frac{A}{13}$.
- **5.** Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1, 5]$, where [] denotes the greatest integer function, is:
- **6.** Consider $y = x^2$ and f(x) where f(x), is a differentiable function satisfying $f(x+1) + f(z-1) = f(x+z) \ \forall \ x, z \in R$ and f(0) = 0; f'(0) = 4. If area bounded by curve $y = x^2$ and y = f(x) is Δ , find the value of $\left(\frac{3}{16}\Delta\right)$.
- 7. The least integer which is greater than or equal to the area of region in x y plane satisfying $x^6 x^2 + y^2 \le 0$ is:
- **8.** The set of points (x, y) in the plane statisfying $x^{2/5} + |y| = 1$ form a curve enclosing a region of area $\frac{p}{q}$ square units, where p and q are relatively prime positive integers. Find p q.

					Answ	/er	8				1	
1. 1 8. 1	2.	7	3.	6	4.	5	5.	8	6.	2	7.	2

DIFFERENTIAL EQUATIONS

Exercise-1: Single Choice Problems

1.
$$\frac{dy}{dx}\left(\frac{1+\cos x}{y}\right) = -\sin x$$
 and $f\left(\frac{\pi}{2}\right) = -1$, then $f(0)$ is:

2. The differential equation satisfied by family of curves $y = Ae^x + Be^{3x} + Ce^{5x}$ where A, B, C are arbitrary constants is:

(a) $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} + 15y = 0$ (b) $\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} - 15y = 0$

(c) $\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} + 15y = 0$ (d) $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} - 15y = 0$

3. If y = y(x) and it follows the relation $e^{xy^2} + y \cos(x^2) = 5$ then y'(0) is equal to :

(b) -16

4. $(x^2 + y^2) dy = xy dx$. If $y(x_0) = e$, y(1) = 1, then the value of x_0 is equal to:

(a) $\sqrt{3}e$

(b) $\sqrt{e^2 - \frac{1}{2}}$ (c) $\sqrt{\frac{e^2 - 1}{2}}$ (d) $\sqrt{e^2 + \frac{1}{2}}$

5. The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with :

(a) Variable radii and fixed centre at (0,1)

(b) Variable radii and fixed centre at (0, −1)

(c) Fixed radius 1 and variable centres along x-axis

(d) Fixed radius 1 and variable centres along y-axis

6. Interval contained in the domain of definition of non-zero solutions of the differential equation $(x-3)^2y'+y=0$ is:

(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (c) $\left(\frac{\pi}{8}, \frac{5\pi}{4}\right)$ (d) $(-\pi, \pi)$

7. A function y = f(x) satisfies the differential equation $(x+1) f'(x) - 2(x^2 + x) f(x) = \frac{e^{x^2}}{(x+1)}$;

 $\forall x > -1$. If f(0) = 5, then f(x) is:

(a)
$$\left(\frac{3x+5}{x+1}\right) \cdot e^{x^2}$$

(b)
$$\left(\frac{6x+5}{x+1}\right) \cdot e^{x^2}$$

(c)
$$\left(\frac{6x+5}{(x+1)^2}\right) \cdot e^{x^2}$$

(d)
$$\left(\frac{5-6x}{x+1}\right) \cdot e^{x^2}$$

8. The solution of the differential equation $2x^2y\frac{dy}{dx} = \tan(x^2y^2) - 2xy^2$ given $y(1) = \sqrt{\frac{\pi}{2}}$ is:

(a)
$$\sin(x^2y^2) - 1 = 0$$

(b)
$$\cos\left(\frac{\pi}{2} + x^2 y^2\right) + x = 0$$

(c)
$$\sin(x^2y^2) = e^{x-1}$$

(d)
$$\sin(x^2y^2) = e^{2(x-1)}$$

9. The differential equation whose general solution given by $y = C_1 \cos(x + C_2) - C_3 e^{-x + C_4} + C_5 \sin x$, where C_1, C_2, \dots, C_5 are constants is:

(a)
$$\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} + y = 0$$

(b)
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

(c)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

(d)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

10. If $y = e^{(\alpha+1)x}$ be solution of differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$; then α is :

(c)
$$-1$$

11. The order and degree of the differential equation $\left(\frac{dy}{dx}\right)^{1/3} - 4\frac{d^2y}{dx^2} - 7x = 0$ are α and β , then the value of $(\alpha + \beta)$ is :

(a) 3 (b) 4 (c) 2 (d) 5 **12.** General solution of differential equation of $f(x) \frac{dy}{dx} = f^{2}(x) + f(x)y + f'(x)y$ is:

(c being arbitary constant.)

(a)
$$y = f(x) + ce^x$$

(b)
$$y = -f(x) + ce^x$$

(c)
$$y = -f(x) + ce^x f(x)$$

(d)
$$y = c f(x) + e^x$$

13. The order and degree respectively of the differential equation of all tangent lines to parabola $x^2 = 2y$ is:

14. The general solution of the differential equation $\frac{dy}{dx} + x(x+y) = x(x+y)^3 - 1$ is:

(a)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^4} \right| = x^2 + C$$
 (b) $\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$

(b)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$$

(c)
$$2\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x^2 + C$$
 (d) $\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x + C$

(d)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x+C$$

(where C is arbitrary constant.)

15. The general solution of $\frac{dy}{dx} = 2y \tan x + \tan^2 x$ is:

(a)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(b)
$$y \sec^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(c)
$$y \cos^2 x = \frac{x}{2} - \frac{\cos 2x}{4} + C$$

(d)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{2} + C$$

(where C is an arbitrary constant.)

16. The solution of differential equation $\frac{d^2y}{dx^2} = \frac{dy}{dx}$, y(0) = 3 and y'(0) = 2:

(a) is a periodic function

- (b) approaches to zero as $x \to -\infty$
- (c) has an asymptote parallel to x-axis
- (d) has an asymptote parallel to y-axis

17. The solution of the differential equation $(x^2 + 1)\frac{d^2y}{dx^2} = 2x\left(\frac{dy}{dx}\right)$ under the conditions y(0) = 1

and y'(0) = 3, is:

(a)
$$y = x^2 + 3x + 1$$

(b)
$$y = x^3 + 3x + 1$$

(c)
$$y = x^4 + 3x + 1$$

(d)
$$y = 3\tan^{-1} x + x^2 + 1$$

18. The differential equation of the family of curves $cy^2 = 2x + c$ (where c is an arbitrary constant.)

(a)
$$\frac{xdy}{dx} = 1$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + 1$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + 1$$
 (c) $y^2 = 2xy \frac{dy}{dx} + 1$ (d) $y^2 = \frac{2ydy}{dx} + 1$

19. The solution of the equation $\frac{dy}{dx} + \frac{1}{x} \tan y = \frac{1}{x^2} \tan y \sin y$ is :

(a)
$$2y = \sin y (1 - 2cx^2)$$

(b)
$$2x = \cot y (1 + 2cx^2)$$

(c)
$$2x = \sin y (1 - 2cx^2)$$

(d)
$$2x \sin y = 1 - 2cx^2$$

20. Solution of the differential equation $xdy - ydx - \sqrt{x^2 + y^2}dx = 0$ is :

(a)
$$y - \sqrt{x^2 + y^2} = cx^2$$

(b)
$$y + \sqrt{x^2 + y^2} = cx$$

(c)
$$x - \sqrt{x^2 + y^2} = cx^2$$

(d)
$$y + \sqrt{x^2 + y^2} = cx^2$$

21. Let f(x) be differentiable function on the interval $(0, \infty)$ such that f(1) = 1 and $\lim_{t \to x} \left(\frac{t^3 f(x) - x^3 f(t)}{t^2 - x^2} \right) = \frac{1}{2} \, \forall \, x > 0, \text{ then } f(x) \text{ is :}$

(a)
$$\frac{1}{4x} + \frac{3x^2}{4}$$

(b)
$$\frac{3}{4x} + \frac{x^3}{4}$$

(a)
$$\frac{1}{4x} + \frac{3x^2}{4}$$
 (b) $\frac{3}{4x} + \frac{x^3}{4}$ (c) $\frac{1}{4x} + \frac{3x^3}{4}$ (d) $\frac{1}{4x^3} + \frac{3x}{4}$

(d)
$$\frac{1}{4x^3} + \frac{3x}{4}$$

22. The population p(t) at time 't' of a certain mouse species satisfies the differential equation $\frac{d}{dt}p(t) = 0.5p(t) - 450$. If p(0) = 850, then the time at which the population becomes zero is:

(a)
$$\frac{1}{2} \ln 18$$

(b) ln 18

(c) 2ln18

23. The solution of the differential equation $\sin 2y \frac{dy}{dx} + 2\tan x \cos^2 y = 2\sec x \cos^3 y$ is:

(where C is arbitrary constant)

(a)
$$\cos y \sec x = \tan x + C$$

(b)
$$\sec y \cos x = \tan x + C$$

(c)
$$\sec y \sec x = \tan x + C$$

(d)
$$\tan y \sec x = \sec x + C$$

24. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is:

(where C is arbitrary constant)

(a)
$$4x + y + 1 = 2\tan(2x + y + C)$$

(b)
$$4x + y + 1 = 2\tan(x + 2y + C)$$

(c)
$$4x + y + 1 = 2\tan(2y + C)$$

(d)
$$4x + y + 1 = 2\tan(2x + C)$$

25. If a curve is such that line joining origin to any point P(x, y) on the curve and the line parallel to y-axis through P are equally inclined to tangent to curve at P, then the differential equation of the curve is:

(a)
$$x \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

(b)
$$x \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = x$$

(c)
$$y \left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} = x$$

(d)
$$y \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

26. If y = f(x) satisfy the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$; f(1) = 1; then value of f(3) equals:

27. Let y = f(x) and $\frac{x}{y} \frac{dy}{dx} = \frac{3x^2 - y}{2y - x^2}$; f(1) = 1 then the possible value of $\frac{1}{3} f(3)$ equals :

(a) 9

(c) 3

(d) 2

Differential Equations

1	1							A	ns	wer	s							k 1	1
1.	(a)	2.	(d)	3.	(ъ)	4.	(a)	5.	(c)	6.	(a)	7.	(ъ)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(c)	13.	(a)	14.	(ъ)	15.	(a)	16.	(c)	17.	(ъ)	18.	(c)	19.	(c)	20.	(d)
21.	(c)	22.	(c)	23.	(c)	24.	(d)	25.	(a)	26.	(a)	27.	(c)						

Exercise-2: One or More than One Answer is/are Correct

- (a) f(x) is minimum at x = 1
- (b) f(x) is maximum at x = 1

(c) f(3) = 5

(d) f(2) = 3

2. Solution of differential equation
$$x \cos x \left(\frac{dy}{dx} \right) + y(x \sin x + \cos x) = 1$$
 is:

(a) $xy = \sin x + c \cos x$

- (b) $xy \sec x = \tan x + c$
- (c) $xy + \sin x + c \cos x = 0$
- (d) None of these

(where C is an arbitrary constant.)

- **3.** If a differentiable function satisfies $(x-y)f(x+y)-(x+y)f(x-y)=2(x^2y-y^3) \forall x,y \in \mathbb{R}$ and f(1)=2, then:
 - (a) f(x) must be polynomial function
- (b) f(3) = 12

(c) f(0) = 0

- (d) f(3) = 13
- **4.** A function y = f(x) satisfies the differential equation

$$f(x)\sin 2x - \cos x + (1 + \sin^2 x) \ f'(x) = 0$$

with f(0) = 0. The value of $f\left(\frac{\pi}{6}\right)$ equals to :

- (a) $\frac{2}{5}$
- (b) $\frac{3}{5}$
- (c) $\frac{1}{5}$
- (d) $\frac{4}{5}$

5. Solution of the differential equation $(2 + 2x^2\sqrt{y}) ydx + (x^2\sqrt{y} + 2)x dy = 0$ is/are:

(a) $xy(x^2\sqrt{y} + 5) = c$

(b) $xy(x^2\sqrt{y} + 3) = c$

(c) $xy(y^2\sqrt{x}+3)=c$

(d) $xy(y^2\sqrt{x} + 5) = c$

6. If y(x) satisfies the differential equation $\frac{dy}{dx} = \sin 2x + 3y \cot x$ and $y\left(\frac{\pi}{2}\right) = 2$ then which of the following statement(s) is/are correct?

(a) $y\left(\frac{\pi}{6}\right) = 0$

- (b) $y'\left(\frac{\pi}{3}\right) = \frac{9 3\sqrt{2}}{2}$
- (c) y(x) increases in the interval
- (d) $\int_{-\pi/2}^{\pi/2} y(x) dx = x$

Answers

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A differentiable function y = g(x) satisfies $\int_{0}^{\infty} (x-t+1)g(t) dt = x^4 + x^2$; $\forall x \ge 0$.

1. y = g(x) satisfies the differential equation :

(a)
$$\frac{dy}{dx} - y = 12x^2 + 2$$

(b)
$$\frac{dy}{dx} + 2y = 12x^2 + 2$$

(c)
$$\frac{dy}{dx} + y = 12x^2 + 2$$

(d)
$$\frac{dy}{dx} + y = 12x + 2$$

2. The value of g(0) equals to :

(c)
$$e^2$$

(d) Data insufficient

Paragraph for Question Nos. 3 to 5

Suppose f and g are differentiable functions such that xg(f(x))f'(g(x))g'(x) = f(g(x)) $g'(f(x)) f'(x) \forall x \in R \text{ and } f \text{ is positive, } g \text{ is positive } \forall x \in R. \text{ Also } \int_{R}^{\infty} f(g(t)) dt = \frac{1}{2} (1 - e^{-2x})$ $\forall x \in R, g(f(0)) = 1 \text{ and } h(x) = \frac{g(f(x))}{f(g(x))} \forall x \in R.$

3. The graph of y = h(x) is symmetric with respect to line:

(a)
$$x = -1$$

(b)
$$x = 0$$

(c)
$$x = 1$$

(d) x = 2

- **4.** The value of f(g(0)) + g(f(0)) is equal to :
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

- **5.** The largest possible value of $h(x) \forall x \in R$ is :
 - (a) 1
- (b) $e^{1/3}$
- (c) e
- (d) e^2

Paragraph for Question Nos. 6 to 8

Given a function 'g' which has a derivative g'(x) for every real x and which satisfy g'(0) = 2 and $g(x + y) = e^{y}g(x) + e^{x}g(y)$ for all x and y.

- **6.** The function g(x) is:
 - (a) $x(2+xe^x)$
- (b) $x(e^x + 1)$
- (c) $2xe^x$
- (d) $x + \ln(x+1)$

- 7. The range of function g(x) is :
 - (a) R
- (b) $\left[-\frac{2}{e},\infty\right]$ (c) $\left[-\frac{1}{e},\infty\right]$
- (d) [0, ∞)

8. The value of $\lim_{x \to -\infty} g(x)$ is:

(a) 0

(b) 1

(c) 2

(d) Does not exist

1. (c) 2. (a) 3. (c) 4. (b) 5. (c) 6. (c) 7. (b) 8. (a)

Exercise-4: Matching Type Problems

1.

/	Column-I (Differential equation)	1	Column-II Solution (Integral curves)
(A)	$y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}$	(P)	$y = A_1 x^2 + A_2 x + A_3$
(B)	$(2x - 10y^3)\frac{dy}{dx} + y = 0$	(Q)	$x^2y^2 + 1 = cy$
(C)	$\left(\frac{dy}{dx}\right)\left(\frac{d^3y}{dx^3}\right) - 3\left(\frac{d^2y}{dx^2}\right)^2 = 0$	(R)	(x+1)(1-y)=cy
(D)	$(x^2y^2 - 1)dy + 2xy^3dx = 0$	(S)	$x = A_1 y^2 + A_2 y + A_3$
		(T)	$xy^2 = 2y^5 + c$

2.

/	Column-I	1	Column-II
(A)	Solution of differential equation $[3x^2y + 2xy - e^x(1+x)]dx + (x^3 + x^2)dy = 0 \text{ is :}$	(P)	$y^2(x^2 + 1 + ce^{x^2}) = 1$
(B)	Solution of differential equation $ydx - xdy - 3xy^{2}e^{x^{2}}dx = 0 \text{ is :}$	(Q)	$(x^2 + x^3)y - xe^x = c$
(C)	Solution of differential equation $\frac{dy}{dx} = xy(x^2y^2 - 1) \text{ is :}$	(R)	$\frac{x}{y} - \frac{3}{2}e^{x^2} = c$
(D)	Solution of differential equation $\frac{dy}{dx}(x^2y^3 + xy) = 1 \text{ is :}$	(S)	$\frac{1}{x} = 2 - y^2 + ce^{-y^2/2}$
		(T)	$\frac{2}{x} = 1 - y^2 + ce^{-y/2}$
	(where c is arbitrary constant).		

Answers

- 1. $A \rightarrow R$; $B \rightarrow T$; $C \rightarrow S$; $D \rightarrow Q$
- 2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

- 1. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^ay = \lambda^a$ is constant (where λ is constant.).
- **2.** Let y = f(x) satisfies the differential equation xy(1+y) dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.
- **3.** If $y^2 = 3\cos^2 x + 2\sin^2 x$, then the value of $y^4 + y^3 \frac{d^2y}{dx^2}$ is
- **4.** Let f(x) be a differentiable function in $[-1, \infty)$ and f(0) = 1 such that $\lim_{t \to x+1} \frac{t^2 f(x+1) (x+1)^2 f(t)}{f(t) f(x+1)} = 1.$ Find the value of $\lim_{x \to 1} \frac{\ln(f(x)) \ln 2}{x-1}$.
- **5.** Let $y = (a \sin x + (b+c)\cos x)e^{x+d}$, where a, b, c and d are parameters represent a family of curves, then differential equation for the given family of curves is given by $y'' \alpha y' + \beta y = 0$, then $\alpha + \beta = 0$
- **6.** Let y = f(x) satisfies the differential equation xy(1+y)dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.

Algebra

- 8. Quadratic Equations
- 9. Sequence and Series
- 10. Determinants
- 11. Complex Numbers
- 12. Matrices
- 13. Permutation and Combinations
- 14. Binomial Theorem
- 15. Probability
- 16. Logarithms

Chapter 8 - Quadratic Equations

QUADRATIC EQUATIONS

E	xercise-1 : Single (Choice Problems			
1.	Sum of values of x an	d y satisfying the equ	ation $3^x - 4^y = 7$	7; $3^{x/2} - 2^y = 7$ is:	
	(a) 2	(b) 3	(c) 4	(d) 5	
2.	If $f(x) = \prod_{i=1}^{3} (x - a_i) + \prod_{i=1}^{3} (x - a$	$-\sum_{i=1}^{3} a_i - 3x \text{ where } a_i$	$< a_{i+1}$ for $i = 1, 2, t$	hen $f(x) = 0$ has:	
	(a) only one distinct	real root	(b) exactly tw	o distinct real roots	
	(c) exactly 3 distinct	real roots	(d) 3 equal rea	al roots	0
3.	roots real:	values of 'a' for which	the equation x^4 –	$2ax^2 + x + a^2 - a = 0$ has al	l its
	14	(b) [1, ∞)	(c) [2, ∞)	(d) [0, ∞)	192
4.	roots of the equation	$x^3 - 3x^2 - 4x + 12 =$	Us denoted as f(.	e roots are 3 units less than x), then $f'(x)$ is equal to:	the
	() 0 2 10 F	(b) $3x^2 + 12x + 5$	(c) $3x^2 + 12x$	-5 (d) $3x^2 - 12x - 5$	
5.	The set of values of k	$(k \in R)$ for which the	equation $x^2 - 4 x $	+3- k-1 =0 will have exa	ctly
	four real roots, is:				
	(2) (-2 4)	(b) (-4, 4)	(c) (-4, 2)	(d) (-1, 0)	
6.	The number of integer	ers satisfying the ineq	uality $\frac{x}{x+6} \le \frac{1}{x}$ is	•	
	(a) 7	(b) 8	(c) 9	(d) 3	
7.	The product of uncon	mon real roots of the	two polynomials p	$f(x) = x^4 + 2x^3 - 8x^2 - 6x$	+ 15
	and $q(x) = x^3 + 4x^2$	-x-10 is:			
	Uprage to	(b) 6	(c) 8	(d) 12	
8.	If λ_1 , λ_2 ($\lambda_1 > \lambda_2$) $f(x, y) = x^2 + \lambda xy + \lambda $	are two value $y^2 - 5x - 7y + 6$ can	tes of λ for the bear and th	r which the express oduct of two linear factors, t	hen
	the value of $3\lambda_1 + 2\lambda$	2 is:			
	(a) 5	(b) 10	(c) 15	(d) 20	

9.	Let α, β be the roots of	of the quadratic equation	on $ax^2 + bx + c = 0$, then	n the roots of	the equation
		$(x-2)+c(x-2)^2=0$			
	(a) $\frac{2\alpha+1}{\alpha-1}$, $\frac{2\beta+1}{\beta-1}$		(b) $\frac{2\alpha-1}{\alpha+1}$, $\frac{2\beta-1}{\beta+1}$		181
	(c) $\frac{\alpha+1}{\alpha-2}$, $\frac{\beta+1}{\beta-2}$		(d) $\frac{2\alpha + 3}{\alpha - 1}$, $\frac{2\beta + 3}{\beta - 1}$		
10.	If $a, b \in R$ distinct	numbers satisfying [a	a-1 + b-1 = a + b =	a+1 + b+	1 , then the
	minimum value of $ a $	-b is:			
2.5	(a) 3	(b) 0	(c) 1	(d) 2	
11.	The smallest positive	integer p for which ex	epression $x^2 - 2px + 3p$	+ 4 is negati	ve for atleast
	one real x is:				
	(a) 3	(b) 4	(c) 5	(d) 6	27.5
12.	For $x \in R$, the expres	sion $\frac{x^2+2x+c}{c}$ can t	take all real values if c	= *	
		$x^2 + 4x + 3c$		3. A	
	(a) (1, 2)		(b) [0, 1]		- 1
10	(c) (0, 1)	T NEW C	(d) (-1, 0)		
13.	If 2 lies between th	e roots of the equati	on $t^2 - mt + 2 = 0$, (n	$i \in R$) then	the value of
	$\left[\left(\frac{3 x }{9+x^2}\right)^m\right]$ is:				
	(where [-] denotes gre	atest integer function)			
	(a) 0	(b) 1	(c) 8	(d) 27	
14.	The number of integr	al roots of the equation	$n x^8 - 24x^7 - 18x^5 + 3$	(d) 27	0.
	(a) ()	(b) 2	(c) 4		= 0 is :
15	If the value of $m^4 + \frac{1}{n}$	1 -110 then the wall	uo agl 3 1	(d) 6	
13.	If the value of m +-	n^4 – 119, then the val	$m = \frac{m^3}{m^3} =$		
	(a) 11	(b) 18	(c) 24	(4) 20	
16.	If the equation ax^2 +	$2bx + c = 0 \text{ and } ax^2 +$	$-2cx + b = 0, a \neq 0, b \neq$	(d) 36	.07
	then their other roots	are the roots of the qu	adratic equation:	c, nave a co	ommon root,
	(a) $a^2x(x+1) + 4bc =$	= 0	(b) $a^2x(x+1) + 8bc$	0	
	(c) $a^2x(x+2) + 8bc$	= 0	(d) $a^2 + (1 + 0)$		
17.	If cos a cos Band cos	are the roots of the ea	uation $9x^3 - 9x^2 - x + $ $E \cos(x)$ and positive is	c = 0	
	the radius of the circle	whose centre is (\$\sigma\)	$\frac{\text{dation } 9x^2 - 9x^2 - x + }{2}$	$1 = 0$; α , β ,	/∈[0, π]then
	is:	whose centre is (20, 2	$\Sigma \cos \alpha$ and passing three	ough (2 sin ⁻¹	$(\tan \pi/4), 4$
	(a) 2	(b) 3			1 129
			(c) 4	(d) 5	
18.	For real values of x , the	e value of expression	$\frac{11x^2-12x-6}{x^2}$:		
			$x^{2} + 4x + 2$		

(a) lies between -17 and -3 (b) does not lie between -17 and -3 (c) lies between 3 and 17 (d) does not lie between 3 and 17 19. $\frac{x+3}{x^2-x-2} \ge \frac{1}{x-4}$ holds for all x satisfying: (a) -2 < x < 1 or x > 4(b) -1 < x < 2 or x > 4(c) x < -1 or 2 < x < 4(d) x > -1 or 2 < x < 4**20.** If x = 4 + 3i (where $i = \sqrt{-1}$), then the value of $x^3 - 4x^2 - 7x + 12$ equals: (b) 48 + 36i(c) -256 + 12i**21.** Let $f(x) = \frac{x^2 + x - 1}{x^2 - x + 1}$, then the largest value of $f(x) \forall x \in [-1, 3]$ is: (c) 1 **22.** In above problem, the range of $f(x) \forall x \in [-1, 1]$ is: (a) $\left[-1, \frac{3}{5}\right]$ (b) $\left[-1, \frac{5}{3}\right]$ (c) $\left[-\frac{1}{3}, 1\right]$ (d) [-1, 1] **23.** If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots is: (a) $-2(p^2+q^2)$ (b) $-(p^2+q^2)$ (c) $-\frac{(p^2+q^2)}{2}$ **24.** If a root of the equation $a_1 x^2 + b_1 x + c_1 = 0$ is the reciprocal of a root of the equation $a_2x^2 + b_2x + c_2 = 0$, then: (a) $(a_1a_2 - c_1c_2)^2 = (a_1b_2 - b_1c_2)(a_2b_1 - b_2c_1)$ (b) $(a_1a_2 - b_1b_2)^2 = (a_1b_2 - b_1c_2)(a_2b_1 - b_2c_1)$ (c) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 - b_1c_2)(a_2b_1 + b_2c_1)$ (d) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 + b_1c_2)(a_2b_1 - b_2c_1)$ **25.** If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation with roots $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ is: (b) $x^2 + 5x - 3 = 0$ (a) $3x^2 - 25x + 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ **26.** If the difference between the roots of $x^2 + ax + b = 0$ is same as that of $x^2 + bx + a = 0$, $a \ne b$, then: (a) a+b+4=0 (b) a+b-4=0(c) a-b-4=027. If $\tan \theta_i$; i = 1, 2, 3, 4 are the roots of equation $x^4 - x^3 \sin 2\beta + x^2 \cos 2\beta - x \cos \beta - \sin \beta = 0$. then $tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) =$ (b) cosβ (a) sinβ (c) tan \beta (d) cot B

30	. Minimum possible	number of positive roo	t of the quadratic equat	ion
	$x^2 - (1 + \lambda)x + \lambda - \lambda$	$2=0, \lambda \in R$:		
	(a) 2		(b) 0	
	(c) 1		(d) can not be deter	mined
31.	Let α, β be real root	s of the quadratic equat	ion $x^2 + kx + (k^2 + 2k -$	-4) = 0, then the minimum
	value of $\alpha^2 + \beta^2$ is			
	(a) 12	(b) $\frac{4}{9}$	(c) $\frac{16}{9}$	(d) $\frac{8}{9}$
		9	35	9
32.	Polynomial $P(x) =$	$x^2 - ax + 5$ and $Q(x) =$	$=2x^3+5x-(a-3)$ whe	en divided by $x-2$ have
	same remainders, t	hen 'a' is equal to:		
	(a) 10	(b) -10	(c) 20	(d) -20
33.		ero distinct roots of x^2	+ax+b=0, then the le	ast value of $x^2 + ax + b$ is
	equal to:	0		
	(a) $\frac{2}{3}$	(b) $\frac{9}{4}$	(c) $-\frac{9}{4}$	(d) 1
24	3	roots of the equation	- T	root of the equation
34.	$a^3x^2 + abcx + c^3 =$	Oic:	11 dx + bx + c = 0. A	root of the equation
	(a) $\alpha + \beta$	(b) $\alpha^2 + \beta$	(c) $\alpha^2 - \beta$	
				(d) $\alpha^2 \beta$
35.	roots of the equation	$a x^2 + 2(a + b + c)x + 6k$	tingle (no two of them are $k(ab + bc + ca) = 0$ are re	The equal) and $k \in R$. If the east then
	(a) $k < \frac{2}{3}$	(b) $k > \frac{2}{3}$	(c) k > 1	4
		3		(d) $k < \frac{1}{4}$
36.	Root(s) of the equa	tion $9x^2 - 18 x + 5 = 0$	0 belonging to the don	4 nain of definition of the
	function $f(x) = \log(x)$	x = x = 2) is/are:		or definition
	(a) $\frac{-5}{-}$, $\frac{-1}{-}$	(b) $\frac{5}{3}$, $\frac{1}{3}$	(c) $\frac{-5}{}$	-1
	3'3	3 3	3	(d) $\frac{-1}{3}$
37.	If $\beta + \cos^2 \alpha, \beta + \sin^2 \beta$	α are the roots of x^2	$+2bx+c=0$ and $\gamma+cc$	3 $\cos^4 \alpha$, $\gamma + \sin^4 \alpha$ are the
	roots of $x^2 + 2Bx + C$	' = 0, then:	(N)	
	(a) $b-B=c-C$	(b) $b^2 - B^2 = c - C$	(c) $b^2 - B^2 = 4(c - C)$	(d) $4(b^2 - R^2) = c - C$
				1

28. Let a, b, c, d are positive real numbers such that $\frac{a}{b} \neq \frac{c}{d}$, then the roots of the equation:

29. If α , β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $2 + \alpha$, $2 + \beta$, is

(b) real and equal

(d) nothing can be said

(b) $ax^2 + x(4a - b) + 4a + 2b + c = 0$

(d) $ax^2 + x(b-4a) + 4a - 2b + c = 0$

 $(a^2 + b^2)x^2 + 2x(ac + bd) + (c^2 + d^2) = 0$ are:

(a) $ax^2 + x(4a-b) + 4a-2b+c=0$

(c) $ax^2 + x(b-4a) + 4a + 2b + c = 0$

(a) real and distinct

(c) imaginary

38.	Minimum value of $ x $	-p + x-15 + x-p-	-15 . If $p \le x \le 15$ and (0 < p < 15:
	(a) 30	(b) 15	(c) 10	(d) 0
39.	If the quadratic equat	$ion 4x^2 - 2x - m = 0 an$	$d4p(q-r)x^2-2q(r-r)$	p)x + r(p-q) = 0 have a
	common root such th	at second equation has	s equal roots then the v	alue of m will be :
	(a) 0	(b) 1	(c) 2	(d) 3
40.	The range of k for w	hich the inequality $k \cos$	$\cos^2 x - k \cos x + 1 \ge 0 \forall x$	$\in (-\infty, \infty)$ is:
	(a) $k > -\frac{1}{2}$	(b) $k > 4$	(c) $-\frac{1}{2} \le k \le 4$	$(d) \ \frac{1}{2} \le k \le 5$
41.	If $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$, $\frac{1+\gamma}{1-\gamma}$ a	re roots of the cubic eq	uation $f(x) = 0$ where 0	α , β , γ are the roots of the
	cubic equation $3x^3$ f(x) = 0 is:	-2x + 5 = 0, then the	number of negative re	al roots of the equation
	(a) 0	(b) 1	(c) 2	(d) 3
42.	The sum of all integr	al values of λ for which	$1(\lambda^2 + \lambda - 2)x^2 + (\lambda + 2)$	$)x < 1 \forall x \in R, \text{ is } :$
	(a) -1	(b) −3	(c) 0	(d) -2
13	If a B v Sc P caticfu	$(\alpha+1)^2+(\beta+1)^2+(\gamma+1)^2+(\gamma+1)^2+(\gamma+1)^2+(\beta+1)^2+(\gamma+1)^2+(\beta+1)^2+(\gamma+1)^2+(\beta+1)^2+(\gamma+1)^2+(\beta+1)^2+(\beta+1)^2+(\beta+1)^2+(\beta+1)^2+(\gamma+1)^2+(\beta$	$(\gamma + 1)^2 + (\delta + 1)^2$	
73.	n α, μ, γ, σε κ sausiy	$\alpha + \beta + \gamma$	+δ = 4	
	If biquadratic equation	on $a_0 x^4 + a_1 x^3 + a_2 x^2$	$+a_3x + a_4 = 0$ has the	roots
	TO 100 101		-1). Then the value of a	
	(a) 4	(b) -4	(c) 6	(d) none of these
44.	If the complete set o	f value of x satisfying	$ x-1 + x-2 + x-3 \ge$	6 is $(-\infty, a] \cup [b, \infty)$, then
	a+b=:		22.20	All
	(a) 2	(b) 3	(c) 6	(d) 4
45.	If exactly one root of	the quadratic equation	$1x^2 - (a+1)x + 2a = 0$	lies in the interval (0, 3),
	then the set of value	'a' is given by:	(b) ((1) - (6 -)	
	(a) $(-\infty, 0) \cup (6, \infty)$		(b) $(-\infty, 0] \cup (6, \infty)$ (d) $(0, 6)$	
16	(c) $(-\infty, 0] \cup [6, \infty)$	se root of $r^3 + 3nr^2 +$	3qx + r = 0 are in H.P. i.	
40.			(b) $3p^3 - 2pqr + p^2$	
	(a) $2p^3 - 3pqr + r^2$		61 253 (A) A (A) A (A)	0776
	(c) $2q^3 - 3pqr + r^2$		(d) $r^3 - 3pqr + 2q^3$	8
47.	If x is real and $4y^2 +$	4xy + x + 6 = 0, then the	he complete set of value	es of x for which y is real,
	is:	4 2	200 1 to 20	STALL
40	Proceedings of the control of the co	(b) $x \le 2$ or $x \ge 3$		
48.		quation $\log_{\cos x^2} (3-2)$	$(x) < \log_{\cos x^2} (2x - 1) \text{ is}$:
	(a) (1/2, 1)		(b) $(-\infty, 1)$ (d) $(1, \infty) - \sqrt{2n\pi}, n$	- 17
	(c) (1/2, 3)		(u) $(1, \infty) - \sqrt{2n\pi}$, n	€ IA

49.	If the roots α , β of th	e equation $px^2 + qx + r$	= 0 are real and of opp	posite sign (where p , q , r
	are real coefficient),	then the roots of the eq	uation $\alpha (x-\beta)^2 + \beta (x$	$-\alpha)^2 = 0$ are:
	(a) positive		(b) negative	
	(c) real and of oppos	site sign	(d) imaginary	
50.	Let a, b and c be three	e distinct real roots of th	the cubic $x^3 + 2x^2 - 4x$	-4=0.
	If the equation $x^3 + a$	$px^2 + rx + s = 0$ has roots	$\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$, then the variation	alue of $(q + r + s)$ is equal
	10:		a.	
NAME OF THE PARTY	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	7	(d) $\frac{1}{6}$
51.		equality, $2 - \log_2(x^2 + 1)$	$3x) \ge 0$ is:	
	(a) [-4, 1]			(d) $(-\infty, -4) \cup [1, \infty)$
52.		al 'k' is the quadratic tri	nomial $(k-2) x^2 + 8x +$	-(k+4) is positive for all
	real values of x ?			
	(a) $k = 4$	(b) $k = 5$	(c) $k = 3$	(d) $k = 6$
53.			(m)x - (8 - 3m) = 0 are	opposite in sign, then
	number of integral va	parat en	SIG. IP	
	(a) 0	(b) 1	(c) 2	(d) more than 2
54.	If $\log_{0.6} \left(\log_6 \left(\frac{x^2 + x^2}{x + x^2} \right) \right)$	$\left(\frac{x}{4}\right)$ < 0, then complete s	set of value of 'x' is:	
	(a) $(-4, -3) \cup (8, \infty)$		(b) $(-\infty, -3) \cup (8, \infty)$	
	(c) (8, ∞)		(d) None of these	
55.	Two different real nu	mbers α and β are the r	oots of the quadratic e	quation $ax^2 + c = 0$ with
	$a, c \neq 0$, then $\alpha^3 + \beta^3$	is:		1 with
	(a) a	(b) $-c$	(c) 0	(d) 1
56.	The least integral val	ue of ' k ' for which (k -	$-1)x^2 - (k+1)x + ($	(d) -1 1) is positive for all real
	value of x is:			1) is positive for all real
	(a) 1	(b) 2	(c) 3	(4)
57.	If $(-2, 7)$ is the highes	t point on the graph of	$y = -2x^2 - 4ax + k$, the	(u) 4
	(a) 31	(b) 11	(c) -1	
8.	If $a+b+c=0$,	$a, b, c \in Q$ the	en was	(d) $-1/3$
	$(b+c-a)x^2+(c+a-c)$	-b)x + (a+b-c) = 0 as	en roots of re:	the equation
	(a) rational	(b) :		
9.	If two roots of $x^3 - \omega$	$c^2 + bx - c = 0$ are equa	(c) imaginary l in magnitude but opp (b) $a^2 = bc$	(d) none of these
	(a) a + bc = 0	Contraction of the Contraction o	(b) $a^2 = bc$	osite in sign. Then:
	(c) $ab = c$		(d) $a - b + c = 0$	060 B C.210
			u-v+c=0	

60.	If α and β are the real :	roots of $x^2 + nx + a = 0$	and α^4 β^4 are the roo	ts of $x^2 - rx + s = 0$. Then
	the equation $x^2 - 4ax$	$c + 2a^2 - r = 0$ has always	ys $(\alpha \neq \beta, p \neq 0, p, q, r,$	$s \in R$):
	(a) are positive and ((b) two positive roo	
	(c) two negative root		(d) can't say anythin	
61.	If $x^2 + px + 1$ is a fact			0
	(a) $a^2 + c^2 = -ab$	(b) $a^2 + c^2 = ab$	(c) $a^2 - c^2 = ab$	
62.	In a $\triangle ABC \tan \frac{A}{2}$, tan	$(\frac{B}{2})$, tan $(\frac{C}{2})$ are in H.P., t	hen the value of $\cot \frac{A}{2}$	$\cot \frac{C}{2}$ is:
	(a) 3	(b) 2	(c) 1	(d) $\sqrt{3}$
63.	Let $f(x) = 10 - x - 10 $ respectively, then:	$0 \mid \forall x \in [-9, 9], \text{ if } M \text{ and }$	m be the maximum and	d minimum value of $f(x)$
	(a) $M + m = 0$	(b) $2M + m = -9$	(c) $2M + m = 7$	(d) $M + m = 7$
64.	Solution of the quad	ratic equation $(3 x -3)$	$^2 = x + 7$, which below	ngs to the domain of the
	function $y = \sqrt{(x-4)}$	x is:		
	(a) $\pm \frac{1}{9}$, ± 2	(b) $\frac{1}{9}$, 8	(c) $-2, -\frac{1}{9}$	(d) $-\frac{1}{9}$, 8
65.	Number of real solut	ions of the equation x^2	+3 x +2=0 is:	
	(a) 0	(b) 1	(c) 2	(d) 4
66.	If the roots of equation	on $x^2 - bx + c = 0$ be tw	o consecutive integers,	then $b^2 - 4c =$
	(a) 3	(b) -2	(c) 1	(d) 2
67.	If x is real, then max	imum value of $\frac{3x^2 + 9x^2}{3x^2 + 9x^2}$	$\frac{x+17}{2x+7}$ is:	
	(a) 41	(b) 1	(c) $\frac{17}{7}$	(d) $\frac{1}{4}$
68.	If $\frac{x^2+2x+7}{2x+3}$ < 6, x	$\in R$ then:		*
	21 + 3		li li	
	(a) $x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(-\infty, -\frac{3}{2}\right)$	11,∞)	(b) $x \in (-\infty, -1) \cup (1$	
	(c) $x \in \left(-\frac{3}{2}, -1\right)$		(d) $x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(-\infty, -\frac{3}{2}\right)$	-1, 11)
69.		3r-2		
	If x is real, then rang			gg 950
	(a) $R - \left\{ \frac{2}{5} \right\}$	(b) $R - \left\{ \frac{3}{7} \right\}$	(c) (-∞, ∞)	
70.	(a) $R - \left\{ \frac{2}{5} \right\}$ Let A denotes the set	(b) $R - \left\{ \frac{3}{7} \right\}$ of values of x for which	$\frac{x+2}{x-4} \le 0 \text{ and } B \text{ denote}$	es the set of values of x for
70.	(a) $R - \left\{ \frac{2}{5} \right\}$ Let A denotes the set	(b) $R - \left\{ \frac{3}{7} \right\}$ of values of x for which		es the set of values of x for
70.	(a) $R - \left\{\frac{2}{5}\right\}$ Let A denotes the set which $x^2 - ax - 4 \le 0$	(b) $R - \left\{ \frac{3}{7} \right\}$ of values of x for which 0. If B is the subset of A	$\frac{x+2}{x-4} \le 0$ and B denote then a CAN NOT take	es the set of values of x for e the integral value :

(c) 3

(d) 4

 $(rs)^2 + (st)^2 + (rt)^2 = b^2 - kac$, then k =

(b) 2

(a) 1

100	-	-
10.0	Б	
D. B.	u	

80.		$2x^3 + ax^2 + bx + c = 0$	are three consecutive p	ositive integers, then the
	value of $\frac{a^2}{b+1}$ =			
81.		(b) 2 er. The minimum numb $(c-1) = 0$ is:	(c) 3 er of distinct real roots	(d) 4 possible of the equation
	(a) 0	(b) 2	(c) 3	(d) 4
82.	If r and s are variables	satisfying the equation	$1 \frac{1}{r+s} = \frac{1}{r} + \frac{1}{s}.$ The value	ue of $\left(\frac{r}{s}\right)^3$ is equal to :
	(a) 1		(b) -1	inn
83.	(c) 3 Let $f(x) = x^2 + ax + b$	o. If the maximum an	(d) not possible to det d the minimum value	es of $f(x)$ are 3 and 2
		≤ 2, then the possible o	rdered pair of (a, b) is	
	(a) (-2, 3)	(b) (-3/2, 2)	(c) (-5/2, 3)	(d) (-5/2, 2)
	The roots of the equat			(d) 0 2 4
85.	(a) -2 , 2 , 4 If a , b , c be the sides of	of $\triangle ABC$ and equations	$ax^2 + bx + c = 0$ and 5:	(d) 0, 2, 4 $x^2 + 12x + 13 = 0$ have a
	common root, then ∠	C is:		
	(a) 60°	(b) 90°		(d) 45° 1 = 0, then the value of
86.	If α , β and γ are three $\alpha^4 + \beta^4 + \gamma^4$ is:	e real roots of the equ	uadon x = 0x + 3x =	1 - 0, then the value of
	(a) 250	(b) 650		(d) 950
87.	If one of the roots of	the equation $2x^2 - 6x + 6x$	$k = 0$ is $\frac{\alpha + 5i}{2}$, then the	te value of α and k are :
	(a) $\alpha = 3, k = 8$	(b) $\alpha = \frac{3}{2}, k = 17$	(c) $\alpha = -3$, $k = -17$	(d) $\alpha = 3, k = 17$
88.	Let x_1 and x_2 be the maximum value of x_1^2	$^{2} + x_{2}^{2}$ is:		$^{2} + 3k + 5$) = 0, then the
	(a) 19	(b) 18	(c) $\frac{50}{9}$	(d) non-existent
89.		alues of 'a' for which th	ne inequality $(a-1) x^2$	$-(a+1)x+(a-1) \ge 0$ is
	true for all $x \ge 2$.	National Fold of Physics	(7]	(d) $\left[\frac{7}{3}, \infty\right]$
	(a) $\left(\frac{3}{7}, 1\right]$	(b) (-∞, 1)	(c) $\left(-\infty, \frac{7}{3}\right]$	Lo)
90.	If α , β be the roots of	of $4x^2 - 17x + \lambda = 0$, λ	$\in R$ such that $1 < \alpha < 2$	2 and $2 < \beta < 3$, then the
	number of integral va		(c) 3	(d) 4
	(a) 1	(b) 2	(6) 5	(4)

91	 Assume that p is a r necessary that: 	eal number. In order of	$\int \sqrt[3]{x+3p+1} - \sqrt[3]{x} =$	1 to have real solutions, it is
	150 m	(b) $p \ge -1/4$	(c) $n > 1/3$	(d) $n > -1/3$
92	. If α,β ar	e the roots	of the	quadratic equation
	$x^2 - (3 + 2\sqrt{\log_2 3})$	$2\sqrt{\log_3 2}$. $2\cos_3 2$	10223 0 44 41	quadratic equation ne value of $\alpha^2 + \alpha\beta + \beta^2$ is
	. (3,2 -	$x - 2(3^{-33} - 2$	$(2^{-10.2^{-1}})=0$, then the	le value of $\alpha + \alpha p + p$ is
	equal to :			
punter-	(a) 3	(b) 5	(c) 7	(d) 11
93.	The minimum value	e of $f(x, y) = x^2 - 4x$	$+y^2+6y$ when x	and y are subjected to the
	restrictions $0 \le x \le 1$	and $0 \le y \le 1$, is:		
	(a) -1	(b) -2	(c) -3	(d) -5
94.	The expression ax^2	+2bx+c, where 'a' is no	on-zero real number	, has same sign as that of 'a'
	for every real value o	f x , then roots of quadra	tic equation $ax^2 + (l$	(b-c) x-2b-c-a=0, are:
	(a) real and equal		(b) real and uneq	
	(c) non-real having	positive real part		
95.	Let a, b and c be the r	oots of $r^3 - r + 1 - 0$ th	en the value of 1	1 1)
		000001X X+1=0, u.	$\frac{1}{a+}$	$\frac{1}{1} + \frac{1}{b+1} + \frac{1}{c+1}$ equals to:
	(a) 1	(b) -1	(c) 2	(d) -2
96.	The number o	f integral values	of k for	which the inequality
	$x^2 - 2(4k-1)x + 15$	$k^2 - 2k - 7 \ge 0$ holds for	all $x \in R$ is:	
	(a) 2	(b) 3	(c) 4	(d) infinite
97.	The number of	integral values wh	iich can be tal	ken by the expression,
	$f(x) = \frac{x^3 - 1}{(x - 1)(x^2 - 1)}$	— for $x \in R$, is:		* 11.2-2-2-1
	270 250	2 11 1035		
	(a) 1	(b) 2	(c) 3	(d) infinite $\frac{c-2}{c+4} > -1$ is satisfied $\forall x \in R$,
98.	The complete set of v	alues of m for which the	inequality $x^2 - mx$	c-2
			$\frac{1}{x^2 + mx}$	$\frac{1}{(x+4)} > -1$ is satisfied $\forall x \in \mathbb{R}$,
	is:			
	(a) $m = 0$	(b) $-1 < m < 1$	(c) $-2 < m < 2$	(d) $-4 < m < A$
99.	The complete set of v	alues of a for which the	roots of the equation	(d) $-4 < m < 4$ on $x^2 - 2 a+1 x+1 = 0$ are
	real is given by :			
	(a) $(-\infty, -2] \cup [0, \infty)$		(b) $(-\infty, -1] \cup [0, -1]$	∞)
	(c) $(-\infty, -1] \cup [1, \infty)$		(d) $(-\infty, -2] \cup [1,$	ω)
100.	The quadratic	polynomials	J - C	
	$P(x) = a_1 x^2 + 2b_1 x + a_2$	$c_1, Q(x) = a_2 x^2 + 2b_2 x$	$+c_2 \cdot P(x)$ and $Q(x)$	real coefficients r) both take positive values
	$\forall x \in R. \text{ If } f(x) = a_1 a_2.$	$x^2 + b_1 b_2 x + c_1 c_2$, then		Positive values
	(a) $f(x) < 0 \forall x \in R$			
	(b) $f(x) > 0 \forall x \in R$			

 (d) Nothing can be said about f(x) 101. If the equation x² + 4 + 3 cos(ax + b) = 2x has a solution then a possible equals (a) π/4 (b) π/3 (c) π/2 (d) π 102. Let α, β be the roots of x² - 4x + A = 0 and γ, δ be the roots of x² - 36x + B = an increasing G.P. and A² = B then the value of 't' equals (a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess 3 x (2- x) = 1? (a) 2 (b) 3 (c) 4 (d) 6 104. If cot α equals the integral solution of inequality 4x² - 16x + 15 < 0 and single factors. 	
equals (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) π 102. Let α , β be the roots of $x^2 - 4x + A = 0$ and γ , δ be the roots of $x^2 - 36x + B = 0$ an increasing G.P. and $A^t = B$ then the value of 't' equals (a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess $3^{ x }$ ($ 2- x $) = 1? (a) 2 (b) 3 (c) 4 (d) 6 104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) π 102. Let α , β be the roots of $x^2 - 4x + A = 0$ and γ , δ be the roots of $x^2 - 36x + B = 0$ an increasing G.P. and $A^t = B$ then the value of 't' equals (a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess $3^{ x }$ ($ 2- x $) = 1? (a) 2 (b) 3 (c) 4 (d) 6 104. If cot α equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	· 0. If α, β, γ, δ form
an increasing G.P. and $A^t = B$ then the value of 't' equals (a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess $3^{ x }(2- x)=1$? (a) 2 (b) 3 (c) 4 (d) 6 104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	0. If α, β, γ, δ form
an increasing G.P. and $A^t = B$ then the value of 't' equals (a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess $3^{ x }(2- x)=1$? (a) 2 (b) 3 (c) 4 (d) 6 104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	
(a) 4 (b) 5 (c) 6 (d) 8 103. How many roots does the following equation possess $3^{ x }$ ($ 2- x $) = 1 ? (a) 2 (b) 3 (c) 4 (d) 6 104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	
(a) 2 (b) 3 (c) 4 (d) 6 104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	
104. If $\cot \alpha$ equals the integral solution of inequality $4x^2 - 16x + 15 < 0$ and si	
enterprocession of the contract of the contrac	in β equals to the
slope of the bisector of the first quadrant, then $\sin(\alpha + \beta)\sin(\alpha - \beta)$ is equa	l to :
(a) $-\frac{3}{5}$ (b) $-\frac{4}{5}$ (c) $\frac{2}{\sqrt{2}}$ (d) 3	
105. Consider the functions $f_1(x) = x$ and $f_2(x) = 2 + \log_e x$, $x > 0$, where e is the formula of the functions in terms of the functions in terms in the second of the functions in the second of the functions in terms in the second of the functions of the second of the secon	e base of natural
logarithm. The graphs of the functions intersect : (a) once in $(0, 1)$ and never in $(1, \infty)$ (b) once in $(0, 1)$ and once in	(02)
(-)	
(c) once in $(0, 1)$ and once in (e, e^2) (d) more than twice in $(0, \infty)$ 106. The sum of all the real roots of equation))
106. The sum of all the real roots of equation $x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$ is:	
(a) 1 (b) 2 (c) 3 (d) 4	
107. If α , β ($\alpha < \beta$) are the real roots of the equation $x^2 - (k+4)x + k^2 - 12 = 0$ such	ch that $4 \in (\alpha, \beta)$
; then the number of integral values of k equal to :	c. π. π. τ. ε (α, μ)
(a) 4 (b) 5 (c) 6 (d) 7 108. Let α , β be real roots of the quadratic equation $x^2 + kx + (k^2 + 2k - 4) = 0$, the	en the maximum
value of $(\alpha^2 + \beta^2)$ is equal to :	
(a) 9 (b) 10 (c) 11 (d) 12	
109. Let $f(x) = a^x - x \ln a$, $a > 1$. Then the complete set of real values of x for which	ch f'(x) > 0 is:
(a) $(1, \infty)$ (b) $(-1, \infty)$ (c) $(0, \infty)$ (d) $(0, \infty)$	1)
110. If a, b and c are the roots of the equation $x^3 + 2x^2 + 1 = 0$, find $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$:	
c a b	
(a) 8 (b) -8 (c) 0 (d) 2	
111. Let α, β are the two real roots of equation $x^2 + px + q = 0$, $p, q \in R$, $q \neq 0$.	
equation $g(x) = 0$ has two roots $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$ such that sum of roots is equa	al to product of
roots, then the complete range of q is :	

	(a) $\left[\frac{1}{3},3\right]$	(b) $\left(\frac{1}{3},3\right]$	(c) $\left[\frac{1}{3},3\right]$	(d) $\left(-\infty,\frac{1}{3}\right)\cup(3,\infty)$
112.	If the equation $\ln (x^2)$	$+5x) = \ln(x + a + 3) =$	Ohas exactly one solut	ion for x, then number of
	integers in the range		O Has chaou,	
	(a) 4	(b) 5	(c) 6	(d) 7
119				
113.	Let $f(x) = x^- + \frac{1}{x^2}$	$6x - \frac{6}{x} + 2$, then minim	ium value of $f(x)$ is:	Sarawa 1 1995a
	(a) -2	(b) -8	(c) -9	(d) -12
114.	If $x^2 + bx + b$ is a fact	$x = x^3 + 2x^2 + 2x + 6$	$(c \neq 0)$, then $b - c$ is:	
	(a) 2	(b) −1	(c) 0	(d) -2
115.	If roots of $x^3 + 2x^2 +$	$-1 = 0$ are α , β and γ , the	en the value of $(\alpha\beta)^3$ +	$(\beta\gamma)^3 + (\alpha\gamma)^3$, is:
	(a) -11	(b) 3	(c) 0	(d) -2
116.	How many roots does	s the following equation	n possess $3^{ x }(2- x)$	=1?
	(a) 2	(b) 3		(d) 6
117.	The sum of all the rea	al roots of equation x^4	$-3x^3 - 2x^2 - 3x + 1 = 0$	Dis:
	(a) 1		(c) 3	
118.	If α and β are the			l = 0 then the value of
	$\sum_{r=1}^{\infty} (\alpha^r + \beta^r) \text{ is :}$			
	(a) 2	(b) 3	(c) 6	(d) 0
119.		(s) of x satisfying the equ	uation (2011) ^x + (2012	$(2013)^x + (2014)^x$
9	= 0 is/are :	AND THE RESERVE TH		
	(a) exactly 2	(b) exactly 1	(c) more than one	(d) 0
120.	If α, β ($\alpha < \beta$) are the r	eal roots of the equation	$1x^2 - (k+4)x + k^2 - 1$	$2 = 0$ such that $4 \in (\alpha, \beta)$;
	then the number of in	itegral values of k equa	ls to :	
	(a) 4	(b) 5	(c) 6	(d) 7
121.	Let α, β be real roots of	r the quadratic equation	$1x^2 + kx + (k^2 + 2k - 4)$) = 0, then the maximum
	value of $(\alpha^2 + \beta^2)$ is e	equal to :		
	(a) 9	(b) 10	(c) 11	(d) 12
122.	The exhaustive set of	values of a for which in	nequation $(a-1)x^2-(a-1)$	(a) 12 $(a+1)x+a-1 \ge 0$ is true
	$\nabla Y > 1$			Ma I
	(a) (-∞,1)	(b) $\left[\frac{7}{3},\infty\right)$	(c) $\left[\frac{3}{7},\infty\right]$	(d) None of these
123.	If the equation $x^2 + a$	$x + 12 = 0, x^2 + bx + 15$	$= 0$ and $x^2 + (a+b) =$	+ 36 = 0 have a common
	positive root, then b-	2a is equal to.	. (4 1 0) X	- 30 = 0 nave a common
	(a) -6	(b) 22	(c) 6	(d) 22
				(d) -22

158

Advanced Problems in Mathematics for JEE

124.	The equation $e^{\sin x} - e$	$-\sin x - 4 = 0$ has		
	(a) infinite number of	real roots	(b) no real root	
	(c) exactly one real ro	oot	(d) exactly four real	roots
125.	The difference bet	ween the maximum		alue of the function
	$f(x) = 3\sin^4 x - \cos^6$	x is :		
	(a) $\frac{3}{2}$	(b) $\frac{5}{2}$	(c) 3	(d) 4
126.	If α , β are the roots of	$x^2 - 3x + \lambda = 0 \ (\lambda \in R)$) and $\alpha < 1 < \beta$, then the	he true set of values of λ
	equals:			
	(a) $\lambda \in \left(2, \frac{9}{4}\right]$	(b) $\lambda \in \left(-\infty, \frac{9}{4}\right]$	(c) $\lambda \in (2, \infty)$	(d) $\lambda \in (-\infty, 2)$
127.				ot common such that
				and minimum values of
	a+b+c is:			
	(a) 196	(b) 284	(c) 182	(d) 126
128.				inates at each instant of
			$x_B = 1 - t$ and $y_B = t$.	The minimum distance
	between particles A a	921		-
	(a) $\frac{1}{7}$	(b) $\frac{1}{\sqrt{5}}$	(c) 1	(d) $\sqrt{\frac{2}{3}}$
	5	V 3		13
129.			s two roots α and β suc	ch that $\alpha < -3$ and $\beta > 2$,
	which of the following	g is always true ?	Serie III VIEZ	
	(a) $a(a+ b +c) > 0$		(b) $a(a+ b +c) < 0$	
	(c) $9a - 3b + c > 0$	25	(d) $(9a-3b+c)(4a+$	
130.	The number of negative			$= 2(x^2 + 5x)$ is:
	(a) 4	(b) 3	(c) 2	(d) 1
131.	The number of real va			-5x +4 3x+1 =13 is:
	(a) 1	(b) 4	(c) 2	(d) 3
132.	If $\log_{\cos x} \sin x \ge 2$ and	$1.0 \le x \le 3\pi$ then $\sin x$ li	ies in the interval	
	(a) $\left[\frac{\sqrt{5}-1}{2},1\right]$	(b) $0, \frac{\sqrt{5}-1}{}$	(c) $\left[\frac{1}{2},1\right]$	(d) none of these
	2 ,2	2	[2']	(a) none of diese
133.	Let $f(x) = x^2 + bx + c$,	minimum value of $f(x)$	c) is -5, then absolute v	alue of the difference of
	the roots of $f(x)$ is:			
	(a) 5		(b) $\sqrt{20}$	
	(c) $\sqrt{15}$		(d) Can't be determin	ied
134.	Sum of all the solution	is of the equation $ x-3 $	3 + x+5 =7x, is:	
	(a) $\frac{6}{7}$	(b) $\frac{8}{7}$	(c) $\frac{58}{63}$	(d) $\frac{8}{45}$
	7	7	63	45

		THE RESIDENCE OF THE PARTY OF T		
135.	Let $f(x) = x^2 + \frac{1}{x^2}$	$6x - \frac{6}{x} + 2$, then minim	num value of $f(x)$ is:	
	(a) -2	(b) _8	(c) -9	(d) -12
136.	If $a + b + c = 1$, $a^2 + b$	$^{2} + c^{2} = 9$ and $a^{3} + b^{3}$	$+c^3 = 1$, then the value	e of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ is:
	(a) $\frac{2}{3}$	(b) 5	(c) 6	(d) 1
137.	If roots of $x^3 + 2x^2 +$	-1 = 0 are α, β and γ, the	en the value of $(\alpha\beta)^3$ +	$(\beta\gamma)^3 + (\alpha\gamma)^3$, is:
	(a) -11	(b) 3	(c) 0	(d) -2
Rest Learners				
138.	If $x^2 + bx + b$ is a fact			(I) 0
120	(a) 2	(b) -1	(c) 0	(d) -2
139.	The graph of quadrat	ic polynomical $f(x) = 0$	$ax^2 + bx + c$ is shown be	elow
	180			
	·		x	
	e	α -1	1 β	
	(a) $\frac{c}{a} \beta-\alpha <-2$	(b) $f(x) > 0 \forall x > \beta$	(c) $ac > 0$	(d) $\frac{c}{a} > -1$
140.	If $f(x) = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$, then complete solution	n of $0 < f(x) < 1$, is:	
	(a) $(-\infty, \infty)$	(b) (0,∞)	(c) (-∞, 0)	(d) $(0,1) \cup (2,\infty)$
141.	If α , β , γ are the roots of	of the equation $x^3 + 2x$	$x^2 - x + 1 = 0$, then value	of $\frac{(2-\alpha)(2-\beta)(2-\gamma)}{(2+\alpha)(2+\beta)(2+\gamma)}$
			ASSESSMENT CONTRACTOR	$(2+\alpha)(2+\beta)(2+\gamma)$
	is:	<i>a</i>	national control	-
	(a) 5	(b) -5	(c) 10	(d) $\frac{5}{3}$
142.	If α and β are roots of	the quadratic equation	$1x^2 + 4x + 3 = 0$, then t	he equation whose roots
	are $2\alpha + \beta$ and $\alpha + 2\beta$	1S :		
	(a) $x^2 - 12x + 35 = 0$	(b) $x^2 + 12x - 33 = 0$	(c) $x^2 - 12x - 33 = 0$	(d) $x^2 + 12x + 35 = 0$
143.	If a, b, c are real distin	ct numbers such that a	$a^3 + b^3 + c^3 = 3abc$, the	(d) $x^2 + 12x + 35 = 0$ on the quadratic equation
	$ax^2 + bx + c = 0$ has			
	(a) Real roots(c) Both roots are neg	pative	(b) At least one nega	
144	If the equation $x^2 + a$	$x + 12 = 0$, $x^2 + bx + 19$	$ (d) $ $5 = 0 \text{ and } x^2 + (-1) $	Non real roots + 36 = 0 have a common
144.	positive root then h =	2a is equal to	y = 0 and $x + (a + b)x$	+36 = 0 have a common

(c) 6_.

(d) -22

positive root, then b - 2a is equal to.

(b) 22

(a) -6

37	9	e	s	ž	ä
2	l	Ľ	þ	ø	

145.				onal number, $a \neq 1$. It is
	given that x_1, x_2 and	$x_1 x_2$ are the real roots	of the equation. Then	$x_1 x_2 \left(\frac{a+1}{b+c} \right) =$
	(a) 1	(b) 2	(c) 3	(d) 4
146.	The exhaustive set of	values of a for which in	nequation $(a-1)x^2 - (a-1)x^2$	$(a+1)x+a-1\geq 0$ is true
	$\forall x \geq 2$.			
	(a) (-∞,1)	(b) $\left[\frac{7}{3},\infty\right)$	(c) $\left[\frac{3}{7},\infty\right)$	(d) None of these
147.	The number of real so	olutions of the equation	L ₀	
		$x^2 - 3 x + 2 = 0$		
	(a) 2	(b) 4	(c) 1	(d) 3
148.	The equation $e^{\sin x}$ –	$e^{-\sin x} - 4 = 0$ has		
	(a) infinite number o	f real roots	(b) no real root	
	(c) exactly one real r		(d) exactly four real i	
149.				$\cos^2 2\theta = 0$, $(\theta \in R)$ then
	the minimum value o	$f(\alpha^2 + \beta^2)$ is equal to :		
	(a) -4	(b) 8	(c) 0	(d) 2
150.	If the equation $ \sin x $	$ ^2 + \sin x + b = 0 \text{ has t}$	wo distinct roots in [0,	π]; then the number of
	integers in the range	of b is equals to :		
	(a) 0	(b) 1 ·	(c) 2	(d) 3
151.			s two roots α and β suc	th that $\alpha < -3$ and $\beta > 2$.
	Which of the followin	g is always true ?		
	(a) $a(a+ b +c)>0$		(b) $a(a+ b +c) < 0$	
	(c) $9a - 3b + c > 0$		(d) $(9a-3b+c)(4a+$	-
				nd γ , δ are the roots of
	$x^2 + px - r = 0 $ then (c	$(\alpha - \gamma)(\alpha - \delta)$ is equal to	:	
	(a) q+r	(b) <i>q</i> − <i>r</i>	(c) $-(q+r)$	(d) $-(p+q+r)$
153.	Complete set of solution	on of $\log_{1/3}(2^{x+2}-4^x)$	\geq -2 is:	
	(a) (-∞, 2)	(b) $(-\infty, 2+\sqrt{13})$	(c) (2,∞)	(d) None of these

								Ar	ver		and the second s								
1.	(d)	2.	(c)	3.	(a)	4.	(b)	5.	(a)	6.	(a)	7.	(b)	8.	(c)	9.	(a)	10.	(d)
11.	(c)	12.	(c)	13.	(a)	14.	(a)	15.	(d)	16.	(d)	17.	(b)	18.	(b)	19.	(c)	20.	(a)
21.	(b)	22.	(d)	23.	(c)	24.	(a)	25.	(d)	26.	(a)	27.	(d)	28.	(c)	29.	(d)	30.	(c)
31.	(d)	32.	(d)	33.	(c)	34.	(d)	35.	(a)	36.	(c)	37.	(b)	38.	(b)	39.	(c)	40.	(c)
41.	(ъ)	42.	(b)	43.	(c)	44.	(d)	45.	(b)	46.	(c)	47.	(a)	48.	(a)	49.	(c)	50.	(c)
51.	(b)	52.	(b)	53.	(a)	54.	(a)	55.	(c)	56.	(b)	57.	(c)	58.	(a)	59.	(c)	60.	(a)
61.	(c)	62.	(a)	63.	(a)	64.	(c)	65.	(a)	66.	(c)	67.	(a)	68.	(d)	69.	(b)	70.	(d)
71.	(c)	72.	(c)	73.	(c)	74.	(a)	75.	(c)	76.	(c)	77.	(b)	78.	(a)	79.	(b)	80.	(c)
81.	(b)	82.	(a)	83.	(a)	84.	(a)	85.	(b)	86.	(b)	87.	(d)	88.	(b)	89.	(d)	90.	(b)
91.	(ъ)	92.	(c)	93.	(c)	94.	(b)	95.	(d)	96.	(b)	97.	(b)	98.	(d)	99.	(a)	100.	(b)
101.	(d)	102.	(b)	103.	(c)	104.	(b)	105.	(c)	106.	(d)	107.	(d)	108.	(d)	109.	(c)	110.	(a)
111.	(a)	112.	(b)	113.	(c)	114.	(c)	115.	(b)	116.	(c)	117.	(d)	118.	(d)	119.	(b)	120.	(d)
121.	(d)	122.	(b)	123.	(c)	124.	(b)	125.	(d)	126.	(d)	127.	(c)	128.	(b)	129.	(b)	130.	(b)
131.	(c)	132.	(b)	133.	(b)	134.	(b)	135.	(c)	136.	(d)	137.	(b)	138.	(c)	139.	(a)	140.	(b)
141.	(b)	142.	(d)	143.	(a)	144.	(c)	145.	(a)	146.	(b)	147.	(b)	148.	(b)	149.	(c)	150.	(c)
151.	(b)	152.	(c)	153.	(a)														

Exercise-2: One or More than One Answer Is/are Correct

1. Let S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S contains:

(a)
$$\left(-\infty, -\frac{3}{2}\right)$$

(b)
$$\left(-\frac{3}{2}, -\frac{1}{2}\right)$$

(c)
$$\left(-\frac{1}{2},0\right)$$

(d)
$$\left(\frac{1}{2}, 2\right)$$

2. If $kx^2 - 4x + 3k + 1 > 0$ for at least one x > 0, then if $k \in S$, then S contains:

(d)
$$\left(-\frac{1}{4}, \infty\right)$$

3. The equation $|x^2 - x - 6| = x + 2$ has:

(a) two positive roots

(b) two real roots

(c) three real roots

(d) four real roots

4. If the roots of the equation $x^2 - ax - b = 0$ $(a, b \in R)$ are both lying between -2 and 2, then:

(a)
$$|a| < 2 - \frac{b}{2}$$

(b)
$$|a| > 2 - \frac{b}{2}$$

(c)
$$|a| < 4$$

(d)
$$|a| > \frac{b}{2} - 2$$

5. Consider the equation in real number x and a real parameter λ , $|x-1|-|x-2|+|x-4|=\lambda$ Then for $\lambda \ge 1$, the number of solutions, the equation can have is/are:

(a) 1 (b) 2 (c) 3 (d) 4 **6.** If a and b are two distinct non-zero real numbers such that $a - b = \frac{a}{b} = \frac{1}{b} - \frac{1}{a}$, then:

(a)
$$a > 0$$

(b)
$$a < 0$$

(c)
$$b < 0$$

(d)
$$b > 0$$

7. Let $f(x) = ax^2 + bx + c$, a > 0 and $f(2-x) = f(2+x) \forall x \in R$ and f(x) = 0 has 2 distinct real roots, then which of the following is true?

(a) Atleast one root must be positive

- (b) f(2) < f(0) > f(1)
- (c) Minimum value of f(x) is negative
- (d) Vertex of graph of y = f(x) lies in 3rd quadrat

8. In the above problem, if roots of equation f(x) = 0 are non-real complex, then which of the following is false?

(a) $f(x) = \sin \frac{\pi x}{4}$ must have 2 solutions

- (b) 4a 2b + c < 0
- (c) If $\log_{f(2)} f(3)$ is not defined, then $f(x) \ge 1 \forall x \in R$
- (d) All a, b, c are positive

9. If exactly two integers lie between the roots of equation $x^2 + ax - 1 = 0$. Then integral value(s) of 'a' is/are:

- (a) -1
- (b) -2
- (c) 1
- (d) 2

(d) D > 0

(d) 7

negative value of x, then:

(where D is discriminant)

(where D is discriminant)

solution may be divisible by:

(a) 13a - 5b + 2c > 0

(c) c > 0, D < 0

(b) b > 0

11. The quadratic expression $ax^2 + bx + c > 0 \ \forall \ x \in R$, then:

(a) a > 0

(a) 2

	(a) 2	(b) 3	(c) 5	(d) 7
13.	If the equation $x^2 + px$	x + q = 0, the coefficien	t of x was incorrectly wi	itten as 17 instead of 13.
	Then roots were foun			
	(a) −1	(b) -3	(c) -5	(d) -10
14.	If $x^2 - 3x + 2 > 0$ and	$x^2 - 3x - 4 \le 0$, then:		
		(b) $2 \le x \le 4$		(d) $2 < x \le 4$
15.	If $5^x + (2\sqrt{3})^{2x} - 169$	≤ 0 is true for x lying in	n the interval :	
	(a) $(-\infty, 2)$	(b) (0, 2]	(c) (2, ∞)	(d) (0, 4)
16.	Let $f(x) = x^2 + ax +$	b and $g(x) = x^2 + cx$	+ d be two quadratic	polynomials with real
	coefficients and satisfy	y ac = 2(b+d). Then w	hich of the following is	(are) correct?
	(a) Exactly one of eith	$\operatorname{ner} f(x) = 0 \operatorname{or} g(x) = 0$	must have real roots.	
80	(b) Atleast one of eith	$\operatorname{der} f(x) = 0 \operatorname{or} g(x) = 0$	must have real roots.	
	(c) Both $f(x) = 0$ and	g(x) = 0 must have re-	al roots.	
	(d) Both $f(x) = 0$ and		- ·	
17.	The expression $\frac{1}{\sqrt{x+2}}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	simplifies to:	
	$\sqrt{x+2}$	$\sqrt{x-1}$ $\sqrt{x-2}\sqrt{x-1}$	1 	
	(a) $\frac{2}{2-x}$ if $1 < x < 2$		(b) $\frac{2}{2-x}$ if $1 < x < 2$	
	3-1		7.5	
	(c) $\frac{2\sqrt{x-1}}{(x-2)}$ if $x > 2$	8	(d) $\frac{2\sqrt{x-1}}{x+2}$ if $x > 2$	
	() -)		X + Z	
18.	If all values of x which	satisfies the inequality	$\log_{(1/3)}(x^2 + 2px + p^2)$	2 + 1) ≥ 0 also satisfy the
	inequality $kx^2 + kx - k$	² ≤ 0 for all real value	es of k , then all possible	e values of p lies in the
	interval:			F 112
	((b) [0, 1]	(c) [0, 2]	(d) [-2, 0]
19.	Which of the following	statement(s) is/are co	prrect?	
	(a) The number of qua	dratic equations having	g real roots which rema	in unchanged even after
	squaring their root	S 1S 3.		O a de la seconda de la second

10. If the minimum value of the quadratic expression $y = ax^2 + bx + c$ is negative attained at

12. The possible positive integral value of 'k' for which $5x^2 - 2kx + 1 < 0$ has exactly one integral

(c) c > 0

(b) 13a - b + 2c > 0

(d) a + c > b, D < 0

(a) $|\alpha| = |\beta|$

(a) $x \in (-\infty, 1)$

)uadr	atic Equations 165
	(b) The number of solutions of the equation $\tan 2\theta + \tan 3\theta = 0$, in the interval $[0, \pi]$ is equal to 6.
	(c) For x_1 , x_2 , $x_3 > 0$, the minimum value of $\frac{2x_1}{x_2} + \frac{128x_3^2}{x_2^2} + \frac{x_3^3}{4x_1x_3^2}$ equals 24.
	(d) The locus of the mid-points of chords of the circle $x^2 + y^2 - 2x - 6y - 1 = 0$, which are passing through origin is $x^2 + y^2 - x - 3y = 0$.
20	If (a, 0) is a point on a diameter inside the circle $x^2 + y^2 = 4$. Then $x^2 - 4x - a^2 = 0$ has:
20.	
	(a) Exactly one real root in (-1, 0] (b) Exactly one real root in [2, 5] (c) Distinct roots greater than -1 (d) Distinct roots less than 5
21	Let $x^2 - px + q = 0$ where $x = R$ and $x = 0$ then:
41.	Let $x^2 - px + q = 0$ where $p \in R$, $q \in R$, $pq \ne 0$ have the roots α , β such that $\alpha + 2\beta = 0$, then:
	(a) $2p^2 + q = 0$ (b) $2q^2 + p = 0$ (c) $q < 0$ (d) $q > 0$
22.	If a , b , c are rational numbers $(a > b > c > 0)$ and quadratic equation $(a + b - 2c) x^2 + (b + c - 2a)x + (c + a - 2b) = 0$ has a root in the interval $(-1, 0)$ then which of
	the following statement(s) is/are correct?
	(a) $a+c<2b$
	(b) both roots are rational
	(c) $ax^2 + 2bx + c = 0$ have both roots negative
	(d) $cx^2 + 2bx + a = 0$ have both roots negative
23.	For the quadratic polynomial $f(x) = 4x^2 - 8ax + a$, the statements(s) which hold good is/are:
	(a) There is only one integral 'a' for which $f(x)$ is non-negative $\forall x \in R$
	(b) For $a < 0$, the number zero lies between the zeroes of the polynomial
	(c) $f(x) = 0$ has two distinct solutions in $(0, 1)$ for $a \in \left(\frac{1}{7}, \frac{4}{7}\right)$
	(d) The minimum value of $f(x)$ for minimum value of a for which $f(x)$ is non-negative $\forall x \in R \text{ is } 0$
24.	
	equation $ax^2 + bx + c = 0$ has no real roots. Then the possible value(s) of $\frac{4a + 2b + c}{a + 3b + 9c}$ is/are:
	(a) 2 (b) -1 (c) 3 (d) $\sqrt{2}$
25.	Let $f(x) = x^2 - 4x + c \ \forall \ x \in R$, where c is a real constant, then which of the following is/are true?
	(a) $f(0) > f(1) > f(2)$ (b) $f(2) > f(3) > f(4)$
	(c) $f(1) < f(4) < f(-1)$ (d) $f(0) = f(4) > f(3)$

26. If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then:

(b) $x \in (-\infty, 0)$ (c) $x \in (4, \infty)$

(b) $|\alpha| > 1$

27. If x satisfies |x-1|+|x-2|+|x-3| > 6, then:

(c) $|\beta| < 1$

(d) $|\alpha| = 1$

(d) $(2,\infty)$

-		A STATE OF THE STA	market in the second se	
28.	If both roots of the q	uadratic equation	$ax^2 + x + b - a = 0$ are n	non real and $b > -1$, then which
	of the following is/a	re correct?		
	(a) $a > 0$	(b) $a < b$	(c) $3a > 2 + 4b$	(d) $3a < 2 + 4b$
29.	If a, b are two number	ers such that a^2 +	$b^2 = 7$ and $a^3 + b^3 = 10$), then :
	(a) The greatest value	a = of a + b = 5		st value of $(a+b)$ is 4
	(c) The least value of	of $(a+b)$ is 1		alue of $ a+b $ is 1
30.	The number of non-	negative integral	ordered pair(s) (x, y)	for which $(xy - 7)^2 = x^2 + y^2$
	holds is greater than	or equal to :	J(2) (1) 23	
	(a) 1	(b) 2	(c) 3	(d) 4
21	If o D 10	Maria Constitution	(5) 5	

(a)
$$3x^4 + bx + 1 = 0$$

(b) $3x^4 - bx + 1 = 0$
(c) $3x^4 + bx^3 - 1 = 0$
(d) $3x^4 - bx^3 - 1 = 0$

32. The value of k for which both roots of the equation $4x^2 - 2x + k = 0$ are completely in (-1, 1) may be equal to:

35. If α and β are the roots of the equation $ax^2 + bx + c = 0$; $a, b, c \in \mathbb{R}$; $a \neq 0$ then which is (are) correct:

36. The equation $\cos^2 x - \sin x + \lambda = 0$, $x \in (0, \pi/2)$ has roots then value(s) of λ can be equal to:

(a) 0 (b) -1 (c) 1/2

37. If the equation $\ln(x^2 + 5x) - \ln(x + a + 3) = 0$ has exactly one solution for x, then possible integral value of a is:

38.	The number of non-negative integral ordered pair(s) (x, y) for which $(xy - 7)^2 = x^2 + y^2$
	holds is greater than or equal to :

(a) 1

(b) 2

(c) 3

(d) 4

39. If a < 0, then the value of x satisfying $x^2 - 2a|x - a| - 3a^2 = 0$ is/are

(b) $a(1+\sqrt{2})$

(c) $a(-1-\sqrt{6})$

(d) $a(-1+\sqrt{6})$

40. If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then

(a) $|\alpha| = |\beta|$

(b) $|\alpha| > 1$

(c) $|\beta| < 1$

(d) $|\alpha| = 1$

41. If x satisfies |x-1|+|x-2|+|x-3| > 6, then

(a) $x \in (-\infty, 1)$

(b) $x \in (-\infty, 0)$

(c) $x \in (4, \infty)$

(d) $(2, \infty)$

42. The value of k for which both roots of the equation $4x^2 - 2x + k = 0$ are completely in (-1, 1), may be equal to:

(a) -1

(b) 0

(d) -3

43. Let α , β , γ , δ are roots of $x^4 - 12x^3 + \lambda x^2 - 54x + 14 = 0$

If $\alpha + \beta = \gamma + \delta$, then

(a) $\lambda = 45$

(c) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2$ then $\frac{\alpha\beta}{\gamma\delta} = \frac{7}{2}$ (d) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2 \Rightarrow \frac{\alpha\beta}{\gamma\delta} = \frac{2}{7}$

44. If
$$\left(\frac{a^3}{a-1}, \frac{a^2-3}{a-1}\right)$$
; $\left(\frac{b^3}{b-1}, \frac{b^2-3}{b-1}\right)$; $\left(\frac{c^3}{c-1}, \frac{c^2-3}{c-1}\right)$ lie

on L: lx + my + n = 0; where a, b, c are real numbers different from 1; then

(a) $a+b+c=-\frac{m}{1}$

(b) $abc = \frac{m+n}{1}$

(c) $ab + bc + ca = \frac{n}{1}$

(d) abc - (ab + bc + ca) + 3(a + b + c) = 0

Answers

1.	(a, c, d)	2.	(a, b, d)	3.	(a, c)	4.	(a, c, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, b, d)	9.	(a, c)	10.	(a, b, d)	11.	(a, b, c, d)	12.	(a, c)
13.	(b, d)	14.	(c, d)	15.	(a, b)	16.	(ъ)	17.	(b, c)	18.	(a, b, c)
19.	(a, b, d)	20.	(a, b, c, d)	21.	(a, c)	22.	(a, b,c, d)	23.	(a, b, d)	24.	(a, c, d)
25.	(a, c, d)	26.	(a, b)	27.	(b, c)	28.	(a, b)	29.	(a, b, d)	30.	(a, b, c, d)
31.	(d)	32.	(a, b)	33.	(a, c, d)	34.	(a, b, d)	35.	(a, b, d)	36.	(a, c)
37.	(b, c, d)	38.	(a, b, c, d)	89.	(a, d)	40.	(a, b)	41.	(b, c)	42.	(a, b)
43.	(a, c)	44.	(a, c, d)								

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = ax^2 + bx + c$, $a \ne 0$, such that $f(-1-x) = f(-1+x) \forall x \in R$. Also given that f(x) = 0 has no real roots and 4a + b > 0.

- 1. Let $\alpha = 4a 2b + c$, $\beta = 9a + 3b + c$, $\gamma = 9a 3b + c$, then which of the following is correct?
 - (a) $\beta < \alpha < \gamma$
- (b) $\gamma < \alpha < \beta$
- (c) $\alpha < \gamma < \beta$
- (d) $\alpha < \beta < \gamma$

- **2.** Let p = b 4a, q = 2a + b, then pq is:
 - (a) negative
- (b) positive
- (c) 0
- (d) nothing can be said

Paragraph for Question Nos. 3 to 4

If α , β are the roots of equation $(k+1)x^2 - (20k+14)x + 91k + 40 = 0$; $(\alpha < \beta)k > 0$, then answer the following questions.

- **3.** The smaller root (α) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

- **4.** The larger root (β) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

Paragraph for Question Nos. 5 to 7

Let $f(x) = x^2 + bx + c \ \forall x \in \mathbb{R}$, $(b, c \in \mathbb{R})$ attains its least value at x = -1 and the graph of f(x)cuts y-axis at y = 2.

- **5.** The least value of $f(x) \forall x \in R$ is :
 - (a) -1
- (b) 0
- (c) 1
- (d) 3/2

- **6.** The value of f(-2) + f(0) + f(1) =
 - (a) 3
- (b) 5
- (c) 7
- (d) 9
- 7. If f(x) = a has two distinct real roots, then complete set of values of a is:
 - (a) (1, ∞)
- (b) (-2, -1)
- (c) (0, 1)
- (d) (1, 2)

Paragraph for Question Nos. 8 to 9

Consider the equation $\log_2^2 x - 4\log_2 x - m^2 - 2m - 13 = 0$, $m \in \mathbb{R}$. Let the real roots of the equation be x_1 , x_2 such that $x_1 < x_2$.

- **8.** The set of all values of m for which the equation has real roots is:
 - (a) $(-\infty, 0)$
- (b) (0, ∞)
- (c) [1, ∞)
- (d) $(-\infty, \infty)$

- **9.** The sum of maximum value of x_1 and minimum value of x_2 is:
 - (a) $\frac{513}{8}$
- (b) $\frac{513}{4}$
- (c) $\frac{1025}{8}$
- (d) $\frac{257}{4}$

Paragraph for Question Nos. 10 to 11

The equation $x^4 - 2x^3 - 3x^2 + 4x - 1 = 0$ has four distinct real roots x_1 , x_2 , x_3 , x_4 such that $x_1 < x_2 < x_3 < x_4$ and product of two roots is unity, then:

- **10.** $x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 =$
 - (a) 0
- (b) 1
- (c) √5
- (d) -1

- 11. $x_2^3 + x_4^3 =$
 - (a) $\frac{2+5\sqrt{5}}{8}$
- (b) -4
- (c) $\frac{27\sqrt{5}+5}{4}$
- (d) 18

Paragraph for Question Nos. 12 to 14

Let f(x) be a polynomial of degree 5 with leading coefficient unity, such that f(1) = 5, f(2) = 4, f(3) = 3, f(4) = 2 and f(5) = 1, then:

- **12.** f(6) is equal to :
 - (a) 120
- (b) -120
- (c) 0
- (d) 6

- **13.** Sum of the roots of f(x) is equal to :
 - (a) 15
- (b) -15
- (c) 21
- (d) can't be determine

- **14.** Product of the roots of f(x) is equal to :
 - (a) 120
- (b) -120
- (c) 114
- (d) -114

Paragraph for Question Nos. 15 to 16

Consider the cubic equation in x, $x^3 - x^2 + (x - x^2) \sin \theta + (x - x^2) \cos \theta + (x - 1) \sin \theta \cos \theta = 0$ whose roots are α , β , γ .

- 15. The value of $\left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 =$
 - (a) 1

(b) $\frac{1}{2}$

(c) 2 cos θ

- (d) $\frac{1}{2}(\sin\theta + \cos\theta + \sin\theta\cos\theta)$
- 16. Number of values of θ in [0, 2π] for which at least two roots are equal, is :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

Paragraph for Question Nos. 17 to 18

Let P(x) be a quadratic polynomial with real coefficients such that for all real x the relation 2(1 + P(x)) = P(x-1) + P(x+1) holds.

If P(0) = 8 and P(2) = 32 then:

17.	The sum	of all the	coefficient	of $P(x)$ is:
-/.	THE SUIT	or all the	coefficient	of P(x) is

(a) 20

(b) 19

(c) 17

(d) 15

18. If the range of
$$P(x)$$
 is $[m, \infty)$, then the value of m is:

(a) -12

(b) 15

(c) -17

(d) -5

Paragraph for Question Nos. 19 to 21

Let t be a real number satisfying $2t^3 - 9t^2 + 30 - \lambda = 0$ where $t = x + \frac{1}{x}$ and $\lambda \in R$.

19. If the above cubic has three real and distinct solutions for x then exhaustive set of value of λ be :

(a) $3 < \lambda < 10$

(b) $3 < \lambda < 30$

(c) $\lambda = 10$

(d) None of these

20. If the cubic has exactly two real and distinct solutions for x then exhaustive set of values of λ be :

(a) $\lambda \in (-\infty, 3) \cup (30, \infty)$

(b) $\lambda \in (-\infty, -22) \cup (10, \infty) \cup \{3\}$

(c) $\lambda \in \{3, 30\}$

(d) None of these

21. If the cubic has four real and distinct solutions for x then exhaustive set of values of λ be:

(a) $\lambda \in (3, 10)$

(b) $\lambda \in \{3, 10\}$

(c) $\lambda \in (-\infty, -22) \cup (10, \infty)$

(d) None of these

Paragraph for Question Nos. 22 to 23

Consider a quadratic expression $f(x) = tx^2 - (2t - 1)x + (5t - 1)$

22. If f(x) can take both positive and negative values then t must lie in the interval

(a) $\left(\frac{-1}{4}, \frac{1}{4}\right)$

(b) $\left(-\infty, \frac{-1}{4}\right) \cup \left(\frac{1}{4}, \infty\right)$ (c) $\left(\frac{-1}{4}, \frac{1}{4}\right) - \{0\}$

(d) (-4,4)

23. If f(x) is non-negative $\forall x \ge 0$ then t lies in the interval

(a) $\left[\frac{1}{5}, \frac{1}{4}\right]$

(b) $\left[\frac{1}{4}, \infty\right)$

(c) $\left[\frac{-1}{4}, \frac{1}{4}\right]$

(d) $\left[\frac{1}{5}, \infty\right)$

Answers

1.	(c)	2.	(a)	3.	(a)	4.	(c)	5.	(c)	6.	(d)	7.	(a)	8.	(d)	9.	(d)	10.	(b)
11.	(d)	12.	(a)	13.	(a)	14.	(c)	15.	(b)	16.	(d)	17.	(ъ)	18.	(c)	19.	(c)	20.	(b)
		22.																	

Exercise-4: Matching Type Problems

1.

			and the second of the second o
(A)	The least positive integer x , for which $\frac{2x-1}{2x^3+3x^2+x}$ is positive, is equal to	(P)	4/3
(B)	If the quadratic equation $3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2) = 0$	(Q)	11.
(C)	possess roots of opposite sign then a can be equal to The roots of the equation $\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$ can be equal to	(R)	6
(D)	If the roots of the equation $x^4 - 8x^3 + bx^2 - cx + 16 = 0$ are all real and positive then $2(c-b)$ is equal to	(S)	16
		(T)	10

2. Given the inequality $ax + k^2 > 0$. The complete set of values of 'a' so that

1		1	
(A)	The inequality is valid for all values of x and k is	(P)	R
(B)	There exists a value of x such that the inequality is valid for any value of k is	(Q)	ф
(C)	There exists a value of k such that the inequality is valid for all values of x is	(R)	{0}
(D)	There exists values of x and k for which inequality is valid is	(S)	R-{0}
		(T)	(1)

3.

1			
(A)	The real root(s) of the equation $x^4 - 8x^2 - 9 = 0$ are	(P)	No real roots
(B)	The real root(s) of the equation $x^{2/3} + x^{1/3} - 2 = 0$ are	(Q)	-3,3
(C)	The real root(s) of the equation $\sqrt{3x+1}+1=\sqrt{x}$ are	(R)	-8,1

(D)	The	real	root(s)	of	the	equation	(S)	0,2
	9x -1	$10(3^{x}) +$	9 = 0 are					

4.

(A)	If a, b are the roots of equation $x^2 + ax + b = 0$ $(a, b \in R)$, then the number of ordered pairs (a, b) is equal to		1
(B)	If $P = \csc\frac{\pi}{8} + \csc\frac{2\pi}{8} + \csc\frac{3\pi}{8} + \csc\frac{13\pi}{8} + \csc\frac{14\pi}{8} + \csc\frac{15\pi}{8}$ and $Q = 8\sin\frac{\pi}{18}\sin\frac{5\pi}{18}$ $\sin\frac{7\pi}{18}$, then $P + Q$ is equal to	(Q)	2
(C)	Let $a_1, a_2, a_3 \dots$ be positive terms of a G.P. and $a_4, 1, 2, a_{10}$ are the consecutive terms of another G.P. If $\prod_{i=2}^{12} a_i = 4^{\frac{m}{n}}$ where m and n are coprime, then $(m+n)$ equals	(R)	3
(D)	For $x, y \in R$, if $x^2 - 2xy + 2y^2 - 6y + 9 = 0$, then the value of $5x - 4y$ is equal to	(S)	15

Answers

```
1. A \rightarrow Q; B \rightarrow P; C \rightarrow R; D \rightarrow S

2. A \rightarrow Q; B \rightarrow S; C \rightarrow R; D \rightarrow P

3. A \rightarrow Q; B \rightarrow R; C \rightarrow P; D \rightarrow S

4. A \rightarrow Q; B \rightarrow P; C \rightarrow S; D \rightarrow R
```

Exercise-5: Subjective Type Problems

- 1. Let $f(x) = ax^2 + bx + c$ where a, b, c are integers. If $\sin \frac{\pi}{7} \cdot \sin \frac{3\pi}{7} + \sin \frac{5\pi}{7} \cdot \sin \frac{5\pi}{7} + \sin \frac{5\pi}{7} \cdot \sin \frac{\pi}{7} = f\left(\cos \frac{\pi}{7}\right)$, then find the value of f(2):
- **2.** Let a, b, c, d be distinct integers such that the equation (x-a)(x-b)(x-c)(x-d)-9=0 has an integer root 'r', then the value of a+b+c+d-4r is equal to:
- 3. Consider the equation $(x^2 + x + 1)^2 (m 3)(x^2 + x + 1) + m = 0$, where m is a real parameter. The number of positive integral values of m for which equation has two distinct real roots, is:
- **4.** The number of positive integral values of m, $m \le 16$ for which the equation given in the above questions has 4 distinct real root is:
- **5.** If the equation $(m^2 12)x^4 8x^2 4 = 0$ has no real roots, then the largest value of m is $p\sqrt{q}$ where p, q are coprime natural numbers, then p + q = 0
- **6.** The least positive integral value of 'x' satisfying $(e^x 2) \left(\sin \left(x + \frac{\pi}{4} \right) \right) (x \log_e 2) \left(\sin x \cos x \right) < 0 \text{ is :}$
- 7. The integral values of x for which $x^2 + 17x + 71$ is perfect square of a rational number are a and b, then |a-b|=
- **8.** Let $P(x) = x^6 x^5 x^3 x^2 x$ and α , β , γ , δ are the roots of the equation $x^4 x^3 x^2 1 = 0$, then $P(\alpha) + P(\beta) + P(\gamma) + P(\delta) =$
- **9.** The number of real values of 'a' for which the largest value of the function $f(x) = x^2 + ax + 2$ in the interval [-2, 4] is 6 will be:
- **10.** The number of all values of n, (where n is a whole number) for which the equation $\frac{x-8}{n-10} = \frac{n}{x}$ has no solution.
- 11. The number of negative integral values of m for which the expression $x^2 + 2(m-1)x + m + 5$ is positive $\forall x > 1$ is:
- 12. If the expression $ax^4 + bx^3 x^2 + 2x + 3$ has the remainder 4x + 3 when divided by $x^2 + x 2$, then a + 4b = ...
- 13. Find the smallest value of k for which both the roots of equation $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4.
- **14.** If $x^2 3x + 2$ is a factor of $x^4 px^2 + q = 0$, then p + q = 0
- 15. The sum of all real values of k for which the expression $x^2 + 2xy + ky^2 + 2x + k = 0$ can be resolved into linear factors is:
- **16.** The curve $y = (a+1)x^2 + 2$ meets the curve y = ax + 3, $a \ne -1$ in exactly one point, then $a^2 =$

- 17. Find the number of integral values of 'a' for which the range of function $f(x) = \frac{x^2 ax + 1}{x^2 3x + 2}$ is $(-\infty, \infty)$.
- **18.** When x^{100} is divided by $x^2 3x + 2$, the remainder is $(2^{k+1} 1)x 2(2^k 1)$, then k = 1
- 19. Let P(x) be a polynomial equation of least possible degree, with rational coefficients, having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of P(x) = 0 is:
- **20.** The range of values k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \delta)$.
- **21.** Let P(x) be a polynomial with real coefficient and $P(x) P'(x) = x^2 + 2x + 1$. Find P(1).
- **22.** Find the smallest positive integral value of a for which the greater root, of the equation $x^2 (a^2 + a + 1)x + a(a^2 + 1) = 0$ lies between the roots of the equation $x^2 a^2x 2(a^2 2) = 0$
- **23.** If the equation $x^4 + kx^2 + k = 0$ has exactly two distinct real roots, then the smallest integral value of |k| is:
- **24.** Let a, b, c, d be the roots of $x^4 x^3 x^2 1 = 0$. Also consider $P(x) = x^6 x^5 x^3 x^2 x$, then the value of P(a) + P(b) + P(c) + P(d) is equal to:
- **25.** The number of integral values of a, $a \in [-5, 5]$ for which the equation $x^2 + 2(a-1)x + a + 5 = 0$ has one root smaller than 1 and the other root greater than 3 is:
- **26.** The number of non-negative integral values of n, $n \le 10$ so that a root of the equation $n^2 \sin^2 x 2 \sin x (2n+1) = 0$ lies in interval $\left[0, \frac{\pi}{2}\right]$ is:
- 27. Let $f(x) = ax^2 + bx + c$, where a, b, c are integers and a > 1. If f(x) takes the value p, a prime for two distinct integer values of x, then the number of integer values of x for which f(x) takes the value 2p is:
- **28.** If x and y are real numbers connected by the equation $9x^2 + 2xy + y^2 92x 20y + 244 = 0$, then the sum of maximum value of x and the minimum value of y is:
- **29.** Consider two numbers *a*, *b*, sum of which is 3 and the sum of their cubes is 7. Then sum of all possible distinct values of *a* is :
- 30. If $y^2(y^2-6) + x^2 8x + 24 = 0$ and the minimum value of $x^2 + y^4$ is m and maximum value is M; then find the value of M 2m.
- 31. Consider the equation $x^3 ax^2 + bx c = 0$, where a, b, c are rational number, $a \ne 1$. It is given that x_1, x_2 and x_1x_2 are the real roots of the equation. If (b+c) = 2(a+1), then $x_1x_2\left(\frac{a+1}{b+c}\right) =$
- **32.** Let α satisfy the equation $x^3 + 3x^2 + 4x + 5 = 0$ and β satisfy the equation $x^3 3x^2 + 4x 5 = 0$, $a, \beta \in R$, then $\alpha + \beta =$

- **33.** Let x, y and z are positive reals and $x^2 + xy + y^2 = 2$; $y^2 + yz + z^2 = 1$ and $z^2 + zx + x^2 = 3$. If the value of xy + yz + zx can be expressed as $\sqrt{\frac{p}{q}}$ where p and q are relatively prime positive integer find the value of p q:
- **34.** The number of ordered pairs (a, b), where a, b are integers satisfying the inequality $\min(x^2 + (a-b)x + (1-a-b)) > \max(-x^2 + (a+b)x (1+a+b)) \forall x \in R$, is:
- **35.** The real value of x satisfying $\sqrt[3]{20x + \sqrt[3]{20x + 13}} = 13$ can be expressed as $\frac{a}{b}$ where a and b are relatively prime positive integers. Find the value of b?
- **36.** If the range of the values of a for which the roots of the equation $x^2 2x a^2 + 1 = 0$ lie between the roots of the equation $x^2 2(a+1)x + a(a-1) = 0$ is (p,q), then find the value of $\left(q \frac{1}{p}\right)$.
- **37.** Find the number of positive integers satisfying the inequality $x^2 10x + 16 < 0$.
- **38.** If $\sin \theta$ and $\cos \theta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$ ($ac \ne 0$). Then find the value of $\frac{b^2 a^2}{ac}$.
- **39.** Let the inequality $\sin^2 x + a \cos x + a^2 \ge 1 + \cos x$ is satisfied $\forall x \in R$, for $a \in (-\infty, k_1] \cup [k_2, \infty)$, then $|k_1| + |k_2| =$
- **40.** α and β are roots of the equation $2x^2 35x + 2 = 0$. Find the value of $\sqrt{(2\alpha 35)^3 (2\beta 35)^3}$
- **41.** The sum of all integral values of 'a' for which the equation $2x^2 (1 + 2a)x + 1 + a = 0$ has a integral root.
- **42.** Let f(x) be a polynomial of degree 8 such that $F(r) = \frac{1}{r}$, $r = 1, 2, 3, \dots, 8, 9$, then $\frac{1}{F(10)} = \frac{1}{r}$
- **43.** Let α , β are two real roots of equation $x^2 + px + q = 0$, $p, q \in R$, $q \ne 0$. If the quadratic equation g(x) = 0 has two roots $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$ such that sum of its roots is equal to product of roots, then then number of integral values q can attain is:
- **44.** If $\cos A$, $\cos B$ and $\cos C$ are the roots of cubic $x^3 + ax^2 + bx + c = 0$, where A, B, C are the angles of a triangle then find the value of $a^2 2b 2c$.
- **45.** Find the number of positive integral values of k for which $kx^2 + (k-3)x + 1 < 0$ for at least one positive x.

	Answers												Answers															<i>Y</i> 1	
1.	9	2.	0	3.	1	4.	7	5.	5	6.	3	7.	3	8.	6	9.	0	10.	6										
11.	0	12.	9	13.	2	14.	9	15.	2	16.	4	17.	0	18.	99	19.	56	20.	7										
21.	2	22.	3	23.	1	24.	6	25.	4	26.	8	27.	0	28.	7	29.	3	30.	4										
31.	1	32.	0	33.	5	34.	9	35.	5	36.	5	37.	5	38.	2	39.	3	40.	8										
41.	1	42.	5	43.	3	44.	1	45.	0																				

000

Chapter 9 - Sequence and Series

SEQUENCE AND SERIES

4	Exercise-1	: Single	Choice	Problems
		THE RESERVE OF STREET		

4	Exercise-1 : Single	Choice	Problem	is			:\-\		-
1.	If a, b, c are positive no is:	umbers	and $a+b$	+ c = 1, then	the n	naximum '	value of (1 –	a)(1-b)(1	-c)
	(a) 1	(b) $\frac{2}{3}$		(c)	$\frac{8}{27}$		(d) $\frac{4}{9}$		
2.	If $xyz = (1-x)(1-y)$ x(1-z) + y(1-x) + z(1-z)			$0 \le x, y, z$	≤1,	then th	he minimu	ım value	of
	(a) $\frac{3}{2}$	(b) $\frac{1}{4}$		(c)	$\frac{3}{4}$		(d) $\frac{1}{2}$		
3.	If $\sec(\alpha - 2\beta)$, $\sec \alpha$, $(\beta \neq n\pi; n \in I)$ the value			in arithmet	ical	progressio	n then cos	$s^2 \alpha = \lambda \cos \theta$	² β
	(a) 1	(b) 2		(c)	3		(d) $\frac{1}{2}$		
4.	Let a, b, c, d, e are non G.P. and c, d, e are in I				l num	ibers. If a,	b, c are in A.	.P. ; b, c, d a	re in
	(a) A.P.				G.P.				
	(c) H.P.		é	(d)	Not	hing can b	e said		
5.	If $(m+1)^{th}$, $(n+1)^{th}$,	and (r	+1) th ten	ms of a non	-cons	tant A.P. a	re in G.P. an	ıd m. n. r aı	re in
	H.P., then the ratio of								
	(a) $-\frac{n}{2}$	(b) -1			-2n		(d) +n		
6.	If the equation $x^4 - 4x$	$x^3 + ax^2$	+bx+1	= 0 has four	posit	ive roots, t	hen the valu	e of (a + b)	is:
	(a) -4			(b)	2				
	(c) 6			(d)	can	not be de	termined		

7	If S_1 , S_2	and S_3 are the sums of fi	rst n natural numbers,	their squares and their cubes
	respective	ly, then $\frac{S_1^4 S_2^2 - S_2^2 S_3^2}{S_1^2 + S_3^2} =$		
	(a) 4	(b) 2	(c) 1	(d) 0
8	If $S_n = \frac{1 \cdot 2}{3!}$	$\frac{2}{1} + \frac{2 \cdot 2^2}{4!} + \frac{3 \cdot 2^3}{5!} + \dots $ upt	to n terms then the sum o	of the infinite terms is :
	(a) 1	3	(c) e	(d) $\frac{\pi}{4}$
9	If $\tan\left(\frac{\pi}{12}\right)$	$-x$, $\tan\frac{\pi}{12}$, $\tan\left(\frac{\pi}{12}+x\right)$ in	order are three consecu	tive terms of a G.P. then sum of
		utions in [0, 314] is $k\pi$. The	value of k is :	
	(a) 4950	(b) 5050	(c) 2525	(d) 5010
10	Let $S_k = 1$	$+2+3++k$ and $Q_n =$	$\frac{S_2}{S_2-1} \cdot \frac{S_3}{S_3-1} \cdot \frac{S_4}{S_4-1} \cdots$	$\frac{S_n}{S_n-1}$, where $k, n \in \mathbb{N}$
	$\lim_{n\to\infty}Q_n=$			
	(a) $\frac{1}{3}$	(b) 1	(c) 3	(d) 0
11.	l, m, n are	the p^{th} , q^{th} and r^{th} term of	of a G.P. all positive, then	$\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ equals:
	(a) -1	(b) 2	(c) 1	(d) 0
12.	The number	er of natural numbers < 300	Athat are districtly 1 cr	it not b O :
	THE HUMB	ci oi naturai nambers < 500	that are divisible by 6 b	it not by 9 is :
	(a) 49	(b) 37	(c) 33	(d) 16
	(a) 49	(b) 37 0 and $x + y + z = 1$ then $\frac{1}{(1)}$	(c) 33	(d) 16
13.	(a) 49 If $x, y, z >$ (a) ≥ 8	(b) 37 0 and $x + y + z = 1$ then $\frac{1}{(1)}$ (b) $\leq \frac{1}{8}$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1	(d) 16 ssarily. (d) None of these
13.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root	(b) 37 0 and $x + y + z = 1$ then $\frac{1}{(1)}$ (b) $\leq \frac{1}{8}$ as of the equation $px^2 + qx$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2$	(d) 16 ssarily. (d) None of these
13.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root α^2 , $4\alpha - 4$	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1-x)^2}$ (b) $\leq \frac{1}{8}$ as of the equation $px^2 + qx$ Then the value of $2p + 4qx$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2$	(d) 16 ssarily.
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root $\alpha^2, 4\alpha - 4$ (a) 0	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1-x)^2}$ (b) $\leq \frac{1}{8}$ as of the equation $px^2 + qx$ Then the value of $2p + 4qx$ (b) 10	(c) 33 xyz -x)(1-y)(1-z) is nece (c) 1 x+r=0, where $2p$, q , $2r+7r$ is :	(d) 16 ssarily. (d) None of these r are in G.P., are of the form
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root α^2 , $4\alpha - 4$ (a) 0 Let x_1, x_2	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \le \frac{1}{8}$ As of the equation $px^2 + qx$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the division}$	(c) 33 xyz $-x)(1-y)(1-z)$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2$ $+7r \text{ is :}$ (c) 14 isors of positive integer	(d) 16 ssarily. (d) None of these r are in G.P., are of the form
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root α^2 , $4\alpha - 4$ (a) 0 Let x_1, x_2	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1-x)^2}$ (b) $\leq \frac{1}{8}$ as of the equation $px^2 + qx$ Then the value of $2p + 4qx$ (b) 10	(c) 33 xyz $-x)(1-y)(1-z)$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2$ $+7r \text{ is :}$ (c) 14 isors of positive integer	(d) 16 ssarily. (d) None of these
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root $\alpha^2, 4\alpha - 4$ (a) 0 Let x_1, x_2 $x_1 + x_2 + x_3$	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \leq \frac{1}{8}$ as of the equation $px^2 + qx$. Then the value of $2p + 4qx$. $(b) 10$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the divisor}$ $(c) x_3 + \dots + x_k = 75. \text{ Then } \sum_{i=1}^{n} \frac{1}{(n+i)^2} \frac{1}{(n+i)$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2t+7r \text{ is :}$ (c) 14 isors of positive integer integer in the second	(d) 16 ssarily. (d) None of these r are in G.P., are of the form (d) 18 r n (including 1 and n). If
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root α^2 , $4\alpha - 4$ (a) 0 Let x_1, x_2	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \le \frac{1}{8}$ As of the equation $px^2 + qx$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the division}$	(c) 33 xyz $-x)(1-y)(1-z)$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2$ $+7r \text{ is :}$ (c) 14 isors of positive integer	(d) 16 ssarily. (d) None of these r are in G.P., are of the form (d) 18 r n (including 1 and n). If
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root $\alpha^2, 4\alpha - 4$ (a) 0 Let x_1, x_2 $x_1 + x_2 + x_3$	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \leq \frac{1}{8}$ as of the equation $px^2 + qx$. Then the value of $2p + 4qx$. $(b) 10$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the divisor}$ $(c) x_3 + \dots + x_k = 75. \text{ Then } \sum_{i=1}^{n} \frac{1}{(n+i)^2} \frac{1}{(n+i)$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2t+7r \text{ is :}$ (c) 14 isors of positive integer integer in the second	(d) 16 ssarily. (d) None of these r are in G.P., are of the form
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root $\alpha^2, 4\alpha - 4$ (a) 0 Let x_1, x_2 $x_1 + x_2 + x_3$	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \leq \frac{1}{8}$ as of the equation $px^2 + qx$. Then the value of $2p + 4qx$. $(b) 10$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the divisor}$ $(c) x_3 + \dots + x_k = 75. \text{ Then } \sum_{i=1}^{n} \frac{1}{(n+i)^2} \frac{1}{(n+i)$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2t+7r \text{ is :}$ (c) 14 isors of positive integer integer in the second	(d) 16 ssarily. (d) None of these r are in G.P., are of the form (d) 18 r n (including 1 and n). If
13. 14.	(a) 49 If $x, y, z >$ (a) ≥ 8 If the root $\alpha^2, 4\alpha - 4$ (a) 0 Let x_1, x_2 $x_1 + x_2 + x_3$	(b) 37 $0 \text{ and } x + y + z = 1 \text{ then } \frac{1}{(1)}$ $(b) \leq \frac{1}{8}$ as of the equation $px^2 + qx$. Then the value of $2p + 4qx$. $(b) 10$ $(b) 10$ $(c) x_3, \dots, x_k \text{be the divisor}$ $(c) x_3 + \dots + x_k = 75. \text{ Then } \sum_{i=1}^{n} \frac{1}{(n+i)^2} \frac{1}{(n+i)$	(c) 33 $\frac{xyz}{-x)(1-y)(1-z)}$ is nece (c) 1 $x+r=0, \text{ where } 2p, q, 2t+7r \text{ is :}$ (c) 14 isors of positive integer integer in the second	(d) 16 ssarily. (d) None of these r are in G.P., are of the form (d) 18 r n (including 1 and n). If

16.	If a ₁	, a ₂ , a ₃ ,,a _n ;	are ir	H.P. and	f(k) =	$\sum_{r=1}^{n} a_r -$	a _k then	$\frac{a_1}{f(1)}$,	$\frac{a_2}{f(2)}$,	$\frac{a_3}{f(3)},\ldots$	$\cdot, \frac{a_n}{f(n)}$	are
	in:											
	(a)	A.P	(b)	G.P.		(c)	H.P.		(d)	None of	these	
17.	lfα,	β be roots of the e	quat	ion 375 <i>x</i> ²	² – 25 <i>x</i>	- 2 = 0 a	and $s_n =$	$\alpha^n + \beta^n$, ther	$\lim_{n\to\infty}\left(\sum_{r=1}^n\right)$	S_r $=$	
	(a)	1 12	(b)	$\frac{1}{4}$		(c)	$\frac{1}{3}$		(d)	1		
18.	If ai	i = 1, 2, 3, 4 be fo	ur re	al membe	ers of th	e same	sign, the	n the m	inim	ım value o	of	
	\sum_{a}^{a}	$\frac{\mathbf{l}_i}{\mathbf{l}_j}$, $i, j \in \{1, 2, 3, 4\}$	}, i ≠	jis:								
	(a)	6	(b)	8		(c)	12		(d)	24		
19.	Give	en that $x, y, z = 4xy + 4y^2 + 2z^2$	are is eq	positive ual to :	reals s	uch th	at xyz:	= 32. T	he r	ninimum	value	of
	(a)	64	(b)	256		(c)	96		(d)	216		
20 .		n A.P., five times th			equal to	eight ti	mes the	eighth t	erm.	Then the	sum of	the
	mst	twenty five terms		0.5					. 11	-		
	(a)	25	(p)	$\frac{25}{2}$		(c)	-25		(d)	0		
21.	Let	α, β be two distinct	valu	es of x lyi	ng in [0,	π] for w	hich √5	sin <i>x</i> , 10	sin x	, 10(4sin ²	x+1)	are
	3 co	nsecutive terms o	faG.	P. Then m	inimum	value o	of $ \alpha - \beta $	=				
	(a)	-		$\frac{\pi}{5}$			$\frac{2\pi}{5}$		(d)	$\frac{3\pi}{5}$		
22.	the	n infinite G.P., the s middle term is mu ns of G.P. is:	um o ultipl	f first thre ied by 5,	e terms the resu	is 70. If ulting te	the extr	eme terr n an A.F	ns are then	multiplie the sum	d by 4 a to infin	ind iite
	(a)	120	(b)	40		(c)	160		(d)	80		
23.		value of the sum	$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty}$	$\frac{k}{2^{n+k}}$ is e	qual to	:						
	(a)	5	(p)			(c)			(d)			
24.		p, q , r are positive + $q^4 + r^5 =$	real r	iumbers, s	such tha	t 27 pqr	≥ (p + q	$+r)^3$ and	nd 3 <i>p</i>	+ 4q + 5r	= 12, th	en
	(a)	3	(b)	6		(c)	2		(d)	4		
25.	Fine	3 I the sum of the in	finite	series $\frac{1}{9}$	$+\frac{1}{18}+\frac{1}{3}$	$\frac{1}{30} + \frac{1}{45}$	+ \frac{1}{63} +	****				
				1 4					(d)	2		
	(a)	<u>3</u>	(0)	4		(c)	5		(u)	3		

(d) $2k - \frac{9}{3}$

(d) 14

(d) -4

(d) none of these

180

distinct then $S_c =$

(c) $\left[-1, -\frac{1}{8}\right] \cup \left(\frac{1}{8}, 1\right]$

(a) the number of terms is 17

(c) the number of terms is 13

which area of A_n is less than 1.

30. Let $S_k = \sum_{i=0}^{\infty} \frac{1}{(k+1)^i}$, then $\sum_{k=1}^{n} k S_k$ equal:

32. If $(1.5)^{30} = k$, then the value of $\sum_{n=2}^{29} (1.5)^n$, is:

(b) k+1

(b) 12

(b) 2^4

(b) 10

34. The third term of a G.P. is 2. Then the product of the first five terms, is:

35. The sum of first n terms of an A.P. is $5n^2 + 4n$, its common difference is:

(c) 2k+7

(c) 13

(c) 3

33. n arithmetic means are inserted between 7 and 49 and their sum is found to be 364, then n is:

(b) c^{3}

(a) c^2

(a) (-8, 0)

(a) 2k-3

(a) 9

		, then the value of (^ '		•
	(b)	$a^2 + b$	(c)	$a+b^2$	(d) $\frac{3ab - a^3}{2}$
$S_1, S_2, S_3, \ldots, S_n$	are	the sum of infin	ite s	geometric series	whose first terms are
3, 5,,(2n-1) an					
ar a				5 5 2111.	
$\frac{1}{S_1 S_2 S_3} + \frac{1}{S_2 S_3 S_4} + \frac{1}{S_2 S_3 S_4}$	$\frac{1}{S_3S_4S_4}$	$\frac{1}{S_5}$ + upto infir	ite t	erms =	
a) $\frac{1}{15}$	(b)	$\frac{1}{60}$	(c)	$\frac{1}{12}$	(d) $\frac{1}{3}$
equence $\{t_n\}$ of positi	ve te	rms is a G.P. If t_6 , 2	, 5, t ₁	4 form another G	.P. in that order,
nen the product $t_1t_2t_3$					
a) 10 ⁹	(b)	10^{10}		$10^{17/2}$	(d) $10^{19/2}$
he minimum value of	(A^2)	$+A+1)(B^2+B+1)$	(C^2)	$+C+1)(D^2+D+C)$	where A , B , C , $D > 0$
		A	BCD		— where <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> > 0
1					
a) $\frac{1}{3^4}$	(b)	$\frac{1}{2^4}$	(c)	24	(d) 3^4
$\sum_{1}^{20} r^3 = a, \sum_{1}^{20} r^2 = b t$	then	sum of products of	1, 2,	3, 4 20 taking	two at a time is :
a) $\frac{a-b}{2}$	(b)	$\frac{a^2-b^2}{2}$	(c)	a-b	(d) $a^2 - b^2$
ifference is :			*		
a) $\frac{x-2y}{3n^2}$	(b)	$\frac{2y-x}{3n^2}$	(c)	$\frac{x-2y}{3n}$	(d) $\frac{2y-x}{3n}$
he number of non-neg	gativ	e integers 'n' satisfy	ring r	$n^2 = p + q$ and n^3	$= p^2 + q^2$ where p and q
re integers.					
	(b)	3	(c)	4	(d) Infinite
Concentric circles of ra	ıngul	ar regions are colo	ured	alternately green	and red, so that no two
oloured red and the a djacent regions are of o:				7.2	
djacent regions are of o:		5050π		4950π	(d) 5151π
djacent regions are of o : a) 1000π f $\log_2 4$, $\log_{\sqrt{2}} 8$ and	(b) log ₃	5050π 9^{k-1} are consecut	(c) ive t	4950π terms of a geome	(d) 5151π etric sequence, then the
djacent regions are of o: a) 1000π	(b) log ₃	5050π 9^{k-1} are consecut	(c) ive t	4950π terms of a geome	(d) 5151π etric sequence, then the
	the sum of the first $2r$ difference is: a) $\frac{x-2y}{3n^2}$ the number of non-neare integers. a) 2 concentric circles of resoluted red and the answer in the second i	the sum of the first $2n$ term ifference is: a) $\frac{x-2y}{3n^2}$ (b) the number of non-negative re integers. a) 2 (b) concentric circles of radii 1 coloured red and the angul	the sum of the first $2n$ terms of an A.P. is x and difference is: a) $\frac{x-2y}{3n^2}$ (b) $\frac{2y-x}{3n^2}$ the number of non-negative integers 'n' satisfy re integers. a) 2 (b) 3 concentric circles of radii 1, 2, 3 100 cms coloured red and the angular regions are colorious.	the sum of the first $2n$ terms of an A.P is x and the difference is: (a) $\frac{x-2y}{3n^2}$ (b) $\frac{2y-x}{3n^2}$ (c) the number of non-negative integers 'n' satisfying n are integers. (a) 2 (b) 3 (c) concentric circles of radii 1, 2, 3 100 cms are decoloured red and the angular regions are coloured.	(a) $\frac{a-b}{2}$ (b) $\frac{a^2-b^2}{2}$ (c) $a-b$ the sum of the first $2n$ terms of an A.P is x and the sum of the next n ifference is: (a) $\frac{x-2y}{3n^2}$ (b) $\frac{2y-x}{3n^2}$ (c) $\frac{x-2y}{3n}$ the number of non-negative integers ' n ' satisfying $n^2=p+q$ and n^3 are integers.

45. Let T_r be the r^{th} term of an A.P. whose first term is $-\frac{1}{2}$ and common difference is 1, then

$$\sum_{r=1}^n \sqrt{1+T_rT_{r+1}T_{r+2}T_{r+3}} \, = \,$$

- (b) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4} + \frac{1}{4}$ (d) $\frac{n(n+1)(2n+1)}{12} \frac{5n}{8} + 1$
- (a) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4}$
(c) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4} + \frac{1}{2}$
- **46.** If $\sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)}{3}$, then $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{2008}{T_r} = \frac{n(n+1)(n+2)}{n+2}$

- (d) 8032
- (a) 2008 (b) 3012 (c) 4016 **47.** The sum of the infinite series, $1^2 \frac{2^2}{5} + \frac{3^2}{5^2} \frac{4^2}{5^3} + \frac{5^2}{5^4} \frac{6^2}{5^5} + \dots$ is :
 - (a) $\frac{1}{2}$
- (b) $\frac{25}{24}$ (c) $\frac{25}{54}$ (d) $\frac{125}{252}$
- **48.** The absolute term in $P(x) = \sum_{r=1}^{n} \left(x \frac{1}{r}\right) \left(x \frac{1}{r+1}\right) \left(x \frac{1}{r+2}\right)$ as *n* approaches to infinity is:

- (c) $\frac{1}{4}$ (d) $\frac{-1}{4}$
- **49.** Let a, b, c are positive real numbers such that $p=a^2b+ab^2-a^2c-ac^2$; $q=b^2c+bc^2-a^2b-ab^2$ and $r = ac^2 + a^2c - cb^2 - bc^2$ and the quadratic equation $px^2 + qx + r = 0$ has equal roots; then a, b, c are in:

- **50.** If T_k denotes the k^{th} term of an H.P. from the beginning and $\frac{T_2}{T_6} = 9$, then $\frac{T_{10}}{T_4}$ equals:
 - (a) $\frac{17}{5}$
- (b) $\frac{5}{17}$
- (c) $\frac{7}{19}$
- 51. Number of terms common to the two sequences 17, 21, 25,, 417 and 16, 21, 26,, 466
 - (a) 19

- **52.** The sum of the series $1 + \frac{2}{3} + \frac{1}{3^2} + \frac{2}{3^3} + \frac{1}{3^4} + \frac{2}{3^5} + \frac{1}{3^6} + \frac{2}{3^7} + \dots$ upto infinite terms is equal

to:

- (a) $\frac{15}{8}$

- (b) $\frac{8}{15}$ (c) $\frac{27}{8}$ (d) $\frac{21}{8}$
- **53.** The coefficient of x^8 in the polynomial (x-1)(x-2)(x-3)....(x-10) is:
 - (a) 2640
- (b) 1320
- (c) 1370
- (d) 2740

54.	Let $\alpha = \lim_{n \to \infty} \frac{(1^3 - 1)^n}{n}$	$(-1^2) + (2^3 - 2^2) + \dots$	$+(n^3-n^2)$, then α is equ	aal to :
	(a) $\frac{1}{3}$	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) non-existent
55.	If $16x^4 - 32x^3 +$	$ax^2 + bx + 1 = 0$, a,	$b \in R$ has positive real roo	ts only, then $a - b$ is equal to:
	(a) -32	(1) 00	(c) 49	(d) -49
56.	If ABC is a trian	gle and $\tan \frac{A}{2}$, $\tan \frac{B}{2}$	$\frac{C}{2}$, $\tan \frac{C}{2}$ are in H.P., then the	te minimum value of $\cot \frac{B}{2} =$
	(a) $\sqrt{3}$	(b) 1	(c) $\frac{1}{\sqrt{2}}$	(d) $\frac{1}{\sqrt{3}}$
57.	If α and β are the	roots of the quadrat	ic equation $4x^2 + 2x - 1 = 0$	Othen the value of $\sum_{r=1}^{\infty} (\alpha^r + \beta^r)$
	is:			
	(a) 2	(b) 3	(c) 6	(d) 0
58.	The sum of the s	eries $2^2 + 2(4)^2 + 3$	$(6)^2 + \dots$ upto 10 terms	is equal to :
	(a) 11300	(b) 12100	(c) 12300	(d) 11200
59.	If a and b are po	sitive real numbers	such that $a + b = 6$, then th	e minimum value of $\left(\frac{4}{a} + \frac{1}{b}\right)$ is
	equal to:			
	(a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) 1	(d) $\frac{3}{2}$
60.	The first term	of an infinite	G.P. is the value of	satisfying the equation
	$\log_4(4^x - 15) + 3$	x-2=0 and the cor	mmon ratio is $\cos\left(\frac{2011\pi}{3}\right)$. The sum of G.P. is :
	(a) 1	(b) $\frac{4}{3}$	(c) 4	(d) 2
61.	Let a, b, c be pos		the minimum value of $\frac{a^4}{a^4}$	$\frac{+b^4+c^2}{abc}$ is:
	(a) 4	(b) 2 ^{3/4}	(c) $\sqrt{2}$	(d) $2\sqrt{2}$
62.	If $xy = 1$; then n	ninimum value of x^2	$^{2} + y^{2}$ is:	
	(a) 1	(b) 2	(c) $\sqrt{2}$	(d) 4
63.	Find the value of	$\frac{2}{1^3} + \frac{6}{1^3 + 2^3} + \frac{1}{1^3}$	$\frac{12}{+2^3+3^3} + \frac{20}{1^3+2^3+3^3}$	(d) 4 $\frac{1}{4^3} + \dots$ upto 60 terms :
	(a) 2	(b) $\frac{1}{2}$	(c) 4	(d) $\frac{1}{4}$

64. Evaluate: $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)(n+3)....(n+k)}$

(a)
$$\frac{1}{(k-1)(k-1)!}$$
 (b) $\frac{1}{k \cdot k!}$

(b)
$$\frac{1}{k \cdot k!}$$

(c)
$$\frac{1}{(k-1)k!}$$

(d)
$$\frac{1}{k!}$$

65. Consider two positive numbers a and b. If arithmetic mean of a and b exceeds their geometric mean by 3/2 and geometric mean of a and b exceeds their harmonic mean by 6/5 then the value of $a^2 + b^2$ will be:

(a) 150 (b) 153 (c) 156 (d) 15 **66.** Sum of first 10 terms of the series, $S = \frac{7}{2^2 \cdot 5^2} + \frac{13}{5^2 \cdot 8^2} + \frac{19}{8^2 \cdot 11^2} + \dots$ is:

(a)
$$\frac{255}{1024}$$
 (b) $\frac{88}{1024}$ (c) $\frac{264}{1024}$ (d) $\frac{85}{1024}$

(b)
$$\frac{88}{1024}$$

(c)
$$\frac{264}{1024}$$

(d)
$$\frac{85}{1024}$$

67. $\sum_{r=1}^{10} \frac{r}{1-3r^2+r^4} =$

(a)
$$-\frac{50}{109}$$
 (b) $-\frac{54}{109}$ (c) $-\frac{55}{111}$ (d) $-\frac{55}{109}$

(b)
$$-\frac{54}{109}$$

(c)
$$-\frac{55}{111}$$

(d)
$$-\frac{55}{109}$$

68. Let r^{th} term t_r of a series is given by $t_r = \frac{r}{1+r^2+r^4}$. Then $\lim_{n\to\infty} \sum_{r=1}^n t_r$ is equal to:

(a)
$$\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

69. The sum of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ to infinite terms, is:

(a)
$$\frac{31}{12}$$

(b)
$$\frac{41}{16}$$

(c)
$$\frac{45}{16}$$

(d)
$$\frac{35}{16}$$

70. The third term of a G.P. is 2. Then the product of the first five terms, is:

(d) none of these

71. If $x_1, x_2, x_3, \ldots, x_{2n}$ are in A.P., then $\sum_{r=1}^{2n} (-1)^{r+1} x_r^2$ is equal to:

(a)
$$\frac{n}{(2n-1)}(x_1^2-x_{2n}^2)$$

(b)
$$\frac{2n}{(2n-1)}(x_1^2-x_{2n}^2)$$

(c)
$$\frac{n}{n-1}(x_1^2-x_{2n}^2)$$

(d)
$$\frac{n}{2n+1}(x_1^2-x_{2n}^2)$$

72. Let two numbers have arithmatic mean 9 and geometric mean 4. Then these numbers are roots of the equation:

(a)
$$x^2 + 18x + 16 = 0$$

(b)
$$x^2 - 18x - 16 = 0$$

(c)
$$x^2 + 18x - 16 = 0$$

(d)
$$x^2 - 18x + 16 = 0$$

73. If p and q are positive rea	l numbers such that p	$a^2 + a^2 =$	= 1, then the max	imum value of	(p+q) is	:
---------------------------------	-----------------------	---------------	-------------------	---------------	----------	---

- (a) 2
- (c) $\frac{1}{\sqrt{2}}$
- (d) $\sqrt{2}$

74. A person has to count 4500 currency notes. Let a_n denote the number of notes he counts in the n^{th} minute. If $a_1 = a_2 = \dots = a_{10} = 150$ and $a_{10}, a_{11}, a_{12}, \dots$ are in A.P. with common difference -2, then the time taken by him to count all notes is:

- (a) 34 minutes
- (b) 24 minutes
- (c) 125 minutes
- (d) 35 minutes
- **75.** A non constant arithmatic progression has common difference d and first term is (1 ad). If the sum of the first 20 terms is 20, then the value of a is equal to:

- (d) $\frac{9}{2}$

76. The value of
$$\sum_{n=3}^{\infty} \frac{1}{n^5 - 5n^3 + 4n} =$$

(a)
$$\frac{1}{120}$$
 (b) $\frac{1}{96}$ (c) $\frac{1}{24}$ (d) $\frac{1}{144}$

77. Find the value of $\frac{2}{1^3} + \frac{6}{1^3 + 2^3} + \frac{12}{1^3 + 2^3 + 3^3} + \frac{20}{1^3 + 2^3 + 3^3 + 4^3} + \dots$ up to infinite terms:

- (a) 2
- (b) $\frac{1}{2}$
- (c) 4
- (d) $\frac{1}{4}$

78. The minimum value of the expression
$$2^x + 2^{2x+1} + \frac{5}{2^x}$$
, $x \in R$ is:

- (a) 7
- (b) (7.2)^{1/7}
- (c) 8
- (d) $(3.10)^{1/3}$

79. The value of
$$\sum_{r=1}^{\infty} \frac{(4r+5)5^{-r}}{r(5r+5)}$$
 is:

- (b) $\frac{2}{5}$
- (c) $\frac{1}{25}$

186

Advanced Problems in Mathematics for JEE

4						1/2(I		Α	nsv	ver	s						7.70		
1.	(c)	2.	(c)	3.	(b)	4.	(Ъ)	5.	(a)	6.	(b)	7.	(d)	8.	(a)	9.	(a)	10.	(c)
11.	(d)	12.	(c)	13.	(ъ)	14.	(c)	15.	(b)	16.	(c)	17.	(a)	18.	(c)	19.	(c)	20.	(d)
21.	(b)	22.	(d)	23.	(d)	24.	(a)	25.	(a)	26.	(b)	27.	(d)	28.	(b)	29.	(d)	30.	(d)
31.	(a)	32.	(d)	33.	(c)	34.	(c)	35.	(b)	36.	(d)	37.	(b)	38.	(d)	39.	(d)	40.	
41.	(ъ)	42.	(ъ)	43.	(ъ)	44.	(a)	45.	(c)	46.	(a)	47.	(c)	48.	(d)	49.	(c)	50.	(p)
51.	(ъ)	52.	(a)	53.	(b)	54.	(Ъ)	55.	(b)	56.	(a)	57.	(d)	58.	(b)	59.	(d)	60.	(c)
61.	(d)	62.	(ъ)	63.	(c)	64.	(c)	65.	(d)	66.	(d)	67.	(d)	68.	(a)			70.	(c)
71.	(a)	72.	(d)	73.	(d)	74.	(a)	75.	(ъ)	76.	(b)	77.	(c)	78.	(c)	79.	0.00		,

Exercise-2: One or More than One Answer is/are Correct

- 1. If the first and $(2n-1)^{th}$ terms of an A.P., G.P. and H.P. with positive terms are equal and their n^{th} terms are a, b and c respectively, then which of the following options must be correct:
 - (a) a+c=2b

(b) $a \ge b \ge c$

(c) $\frac{2ac}{a+c} = b$

- (d) $ac = b^2$
- 2. Let a, b, c are distinct real numbers such that expression $ax^2 + bx + c$, $bx^2 + cx + a$ and $cx^2 + ax + b$ are always positive then possible value(s) of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ may be :
 - (a) 1
- (c) 3

- **3.** If a, b, c are in H.P., where a > c > 0, then :
 - (a) $b > \frac{a+c}{2}$

(b) $\frac{1}{a-b} - \frac{1}{b-c} < 0$

(c) $ac > b^2$

- (d) bc(1-a), ac(1-b), ab(1-c) are in A.P.
- **4.** In an A.P., let T_r denote r^{th} term from beginning, $T_p = \frac{1}{q(p+q)}$, $T_q = \frac{1}{p(p+q)}$, then:
 - (a) $T_1 = \text{common difference}$
- (b) $T_{p+q} = \frac{1}{pq}$

(c) $T_{pq} = \frac{1}{p+a}$

- (d) $T_{p+q} = \frac{1}{p^2 a^2}$
- 5. Which of the following statement(s) is(are) correct?
 - (a) Sum of the reciprocal of all the n harmonic means inserted between a and b is equal to ntimes the harmonic mean between two given numbers a and b.
 - (b) Sum of the cubes of first n natural number is equal to square of the sum of the first nnatural numbers.
 - (c) If $a, A_1, A_2, A_3, \ldots, A_{2n}, b$ are in A.P. then $\sum_{i=1}^{2n} A_i = n(a+b)$.
 - (d) If the first term of the geometric progression $g_1, g_2, g_3, \ldots, \infty$ is unity, then the value of the common ratio of the progression such that $(4g_2 + 5g_3)$ is minimum equals $\frac{2}{\epsilon}$.
- **6.** If a, b, c are in 3 distinct numbers in H.P., a, b, c > 0, then :
 - (a) $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P. (b) $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P.

(c) $a^5 + c^5 \ge 2b^5$

(d) $\frac{a-b}{b-c} = \frac{a}{c}$

		$5-40x^4+\alpha x^3+\beta x^2$	+ γx	$+\delta = 0$ are in (G.P. If the	sum of their
recipro	cals is 10, then δc	an be equal to :		_		
(a) 32	5380) -32		$\frac{1}{32}$	(d) $-\frac{1}{32}$	
8. Let a_1 , $f_k(x) =$	a_2, a_3, \dots be a $a_k x^2 + 2a_{k+1} x + a_k$	sequence of non-zero	real	l numbers which	are in A.P.	for $k \in N$. Let
(a) f	(x) = 0 has real ro	ots for each k = N				
		s one root in common	ici.			
		of $f_1(x) = 0$, $f_2(x) = 0$		v) = 0 from	an A.P.	
	one of these	$J_1(x) = u, J_2(x) = 0$, 13 (x) = 0,		
		h a daw in C D and		a are in U D If	n – 2 and e :	= 18 then the
	e value of 'c' can b	b, c, d are in G.P. and e:	τ, α,	e ale m n.e. n c		10, 11.01. 11.0
(a) 9) -6	(c)		(d) -9	
10. The number $(c + 3)$	mber a, b, c in that in that order form	order form a three ter a three term G.P. All p	m A. oossi	P and $a + b + c =$ ble values of (a^2)	60. The num $+ b^2 + c^2$) is	ber(a-2), b, s/are:
(a) 12) 1208		1288	(d) 1298	
	$(x+1)+(x^2+2x)$	$+3)+(x^2+3x+5)+$	•••••	$x^2 + 20x + 39$	9) = 4500, th	nen x is equal
to:				00.5	(1) 00 5	
(a) 10) -10		20.5	(d) -20.5	
12. For $\triangle A$	BC, if 81 + 144a -	$+16b^4 + 9c^4 = 144ab$	c, (w	here notations h	ave their usi	ual meaning),
then:				NO COMP. SOM		
(a) $a >$	• b > c	_	(b)	A < B < C		
(c) Are	ea of $\triangle ABC = \frac{3\sqrt{3}}{8}$	3	(d)	Triangle ABC is	right angle	d
	(-/	st three consecutive				
$\cos x + c$	$\cos y + \cos z = 1$ as	$1 + \sin x + \sin y + \sin x$	8 = -	$\frac{1}{\sqrt{2}}$, then which	of the foll	owing is/are
correct	?					
(a) cot	$y = \sqrt{2}$		(Ь)	$\cos(x-y) = \frac{\sqrt{3}}{3}$	$\frac{3-\sqrt{2}}{2\sqrt{2}}$	
	$2y=\frac{2\sqrt{2}}{3}$			$\sin(x-y) + \sin(x-y)$	$(\lambda - z) = 0$	
14. If the nu	ımbers 16, 20, 16,	d form a A.G.P., then	d car	n be equal to.		
(a) 3		11	(c)		(d) -16	

15. Given
$$\frac{\underbrace{1000....01}_{\substack{nzeroes \\ 1000....01}} < \underbrace{\underbrace{\frac{1000....01}{mzeroes}}_{\substack{mzeroes \\ 1000....01}}, \text{ then which of the following is true}$$

- (a) m+1 < n
- (c) m < n + 1
- (d) m > n + 1
- **16.** If $S_r = \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{\dots \infty}}}}}$, r > 0, then which of the following is/are correct.
 - (a) S_2, S_6, S_{12}, S_{20} are in A.P.
- (b) S_4, S_9, S_{16} are irrational
- (c) $(2S_3 1)^2$, $(2S_4 1)^2$, $(2S_5 1)^2$ are in A.P. (d) S_2 , S_{12} , S_{56} are in G.P.
- 17. Consider the A.P. 50, 48, 46, 44, If S_n denotes the sum to n terms of this A.P., then
 - (a) S_n is maximum for n = 25
- (b) the first negative terms is 26th term
- (c) the first negative term is 27th term
- (d) the maximum value of S_n is 650
- **18.** Let S_n be the sum to n terms of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \frac{9}{1^2 + 2^2 + 3^2 + 4^2}$ +..... then
 - (a) $S_5 = 5$
- (b) $S_{50} = \frac{100}{17}$ (c) $S_{1001} = \frac{1001}{97}$ (d) $S_{\infty} = 6$
- 19. For $\triangle ABC$, if $81 + 144a^4 + 16b^4 + 9c^4 = 144abc$, (where notations have their usual meaning), then
 - (a) a > b > c

- (b) A < B < C
- (c) Area of $\triangle ABC = \frac{3\sqrt{3}}{\Omega}$
- (d) Triangle ABC is right angled

8/	7				Ansv	ver	S				1.7
1.	(b, d)	2.	(b, c)	3.	(b, c, d)	4.	(a, b, c)	5.	(b, c)	6.	(a, b, c, d)
7.	(a, b)	8.	(a, b)	9,	(b, c)	10.	(b, d)	11.	(a, d)	12.	(b, c, d)
13.	(a, b)	14.	(b)	15.	(b, c)	16.	(a, b, c, d)	17.	(a, c, d)	18.	(a, b, d)
19.	(b, c, d)							T.			

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

The first four terms of a sequence are given by $T_1 = 0$, $T_2 = 1$, $T_3 = 1$, $T_4 = 2$. The general term is given by $T_n = A\alpha^{n-1} + B\beta^{n-1}$ where A, B, α , β are independent of n and A is positive.

- **1.** The value of $(\alpha^2 + \beta^2 + \alpha\beta)$ is equal to :
 - (a) 1
- (b) 2
- (c) 5
- (d) 4

- **2.** The value of $5(A^2 + B^2)$ is equal to :
 - (a) 2
- (b) 4
- (c) 6
- (d) 8

Paragraph for Question Nos. 3 to 4

There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15. D and d are their respective common differences such that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the numbers in those sets A and B respectively.

- 3. Sum of the product of the numbers in set A taken two at a time is:
 - (a) 51
- (b) 71
- (c) 74
- (d) 86
- 4. Sum of the product of the numbers in set B taken two at a time is:
 - (a) 52
- (b) 54
- (c) 64
- (d) 74

Paragraph for Question Nos. 5 to 7

Let x, y, z are positive reals and x + y + z = 60 and x > 3.

- **5.** Maximum value of (x-3)(y+1)(z+5) is :
 - (a) (17) (21) (25)
- (b) (20) (21) (23)
- (c) (21) (21) (21)
- (d) (23) (19) (15)

- **6.** Maximum value of (x-3)(2y+1)(3z+5) is :
 - (a) $\frac{(355)^3}{3^3 \cdot 6^2}$
- (b) $\frac{(355)^3}{3^3 \cdot 6^3}$
- (c) $\frac{(355)^3}{3^2 \cdot 6^3}$
- (d) None of these

- 7. Maximum value of xyz is:
 - (a) 8×10^3
- (b) 27×10^3
- (c) 64×10^3
- (d) 125×10^3

Paragraph for Question Nos. 8 to 10

Two consecutive numbers from n natural numbers 1, 2, 3,, n are removed. Arithmetic mean of the remaining numbers is $\frac{105}{4}$.

8. The value of n is:

- (a) 48
- (b) 50
- (c) 52
- (d) 49

9. The G.M. of the removed numbers is:

- (a) $\sqrt{30}$
- (b) $\sqrt{42}$
- (c) $\sqrt{56}$
- (d) $\sqrt{72}$

10. Let removed numbers are x_1 , x_2 then $x_1 + x_2 + n =$

- (a) 61
- (b) 63
- (c) 65
- (d) 69

Paragraph for Question Nos. 11 to 13

The sequence $\{a_n\}$ is defined by formula $a_0 = 4$ and $a_{n+1} = a_n^2 - 2a_n + 2$ for $n \ge 0$. Let the sequence $\{b_n\}$ is defined by formula $b_0 = \frac{1}{2}$ and $b_n = \frac{2a_0a_1a_2...a_{n-1}}{a_n} \ \forall \ n \ge 1$.

- **11.** The value of a_{10} is equal to :
 - (a) $1 + 2^{1024}$
- (b) 4¹⁰²⁴
- (c) $1+3^{1024}$
- (d) 6¹⁰²⁴

- **12.** The value of *n* for which $b_n = \frac{3280}{3281}$ is :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5
- 13. The sequence $\{b_n\}$ satisfies the recurrence formula :
 - (a) $b_{n+1} = \frac{2b_n}{1 b_n^2}$

(b) $b_{n+1} = \frac{2b_n}{1+b_n^2}$

 $(c) \frac{b_n}{1+2b_n^2}$

 $(d) \frac{b_n}{1-2b_n^2}$

Paragraph for Question Nos. 14 to 15

Let $f(n) = \sum_{r=2}^{n} \frac{r}{r C_2^{r+1} C_2}$, $a = \lim_{n \to \infty} f(n)$ and $x^2 - \left(2a - \frac{1}{2}\right)x + t = 0$ has two positive roots α and β .

- **14.** If value of f(7) + f(8) is $\frac{p}{q}$ where p and q are relatively prime, then (p-q) is :
 - (a) 53
- (b) 55
- (c) 57
- (d) 59

- **15.** Minimum value of $\frac{4}{\alpha} + \frac{1}{\beta}$ is:
 - (a) 2
- (b) 6
- (c) 3
- (d) 4

192

Paragraph for Question Nos. 16 to 17

Given the sequence of number $a_1, a_2, a_3, \dots, a_{1005}$ which satisfy $\frac{a_1}{a_1 + 1} = \frac{a_2}{a_2 + 3} = \frac{a_3}{a_3 + 5} = \dots = \frac{a_{1005}}{a_{1005} + 2009}$

Also $a_1 + a_2 + a_3 + \dots + a_{1005} = 2010$

- **16.** Nature of the sequence is :
 - (a) A.P.
- (b) G.P.
- (c) A.G.P.
- (d) H.P.

- 17. 21^{st} term of the sequence is equal to :
 - (a) $\frac{86}{1005}$
- (b) $\frac{83}{1005}$
- (c) $\frac{82}{1005}$
- (d) $\frac{79}{1005}$

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If three unequal numbers a , b , c are in A.P. and $b-a$, $c-b$, a are in G.P., then $\frac{a^3+b^3+c^3}{3abc}$ is equal to	(P)	1
(B)	Let x be the arithmetic mean and y, z be two geometric means between any two positive numbers, then $\frac{y^3 + z^3}{2xyz}$ is equal to	(Q)	4
(C)	If a , b , c be three positive number which form three successive terms of a G.P. and $c > 4b - 3a$, then the common ratio of the G.P. can be equal to	(R)	2
(D)	Number of integral values of x satisfying inequality, $-7x^2 + 8x - 9 > 0$ is	(S)	0

2.

1	Column-I		Column-II
(A)	The sequence a , b , 10, c , d are in A.P., then $a+b+c+d=$	(P)	6
(B)	Six G.M.'s are inserted between 2 and 5, if their product can be expressed as $(10)^n$. Then $n =$	(Q)	2
(C)	Let a_1 , a_2 , a_3 ,, a_{10} are in A.P. and h_1 , h_2 , h_3 ,, h_{10} are in H.P. such that $a_1 = h_1 = 1$ and $a_{10} = h_{10} = 6$, then $a_4h_7 =$	(R)	3
(D)	If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2}\right)$ are in A.P., then $x = \frac{1}{2}$	(S)	20
		(T)	40

3.

	Column-I		Column-II
	The number of real values of x such that three numbers 2^x , 2^{x^2} and 2^{x^3} form a non-constant arithmetic progression in that order, is	(P)	0
(B)	Let $S = (a_2 - a_3) \left(\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} \right)$	(Q)	1
	where $a_1, a_2, a_3, \ldots, a_n$ are <i>n</i> consecutive terms of an A.P. and $a_i > 0 \ \forall i \in \{1, 2, \ldots, n\}$. If $a_1 = 225$, $a_n = 400$, then the value of $S+7$ is equal to		

(C)	Let S_n denote the sum of first n terms of an non constant A.P. and $S_{2n} = 3S_n$, then $\frac{S_{3n}}{2S_n}$ is equal to	(R)	2
(D)	If t_1, t_2, t_3, t_4 and t_5 are first 5 terms of an A.P., then $\frac{4(t_1 - t_2 - t_4) + 6t_3 + t_5}{3t_1}$ is equal to	(8)	3
		(T)	4

4. Column-I contains S and **Column-II** gives last digit of S.

	Column-l		Column-II
(A)	$S = \sum_{n=1}^{11} (2n-1)^2$	(P)	0
	$S = \sum_{n=1}^{10} (2n-1)^3$	(Q)	1
(C)	$S = \sum_{n=1}^{18} (2n-1)^2 (-1)^n$	(R)	3
(D)	$S = \sum_{n=1}^{15} (2n-1)^3 (-1)^{n-1}$	(S)	5
		(T)	8

5.

1	Column-l		Column-II
(A)	If $x, y \in R^+$ satisfy $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of $\frac{x^2 + y^2}{2080} = 6$	(P)	6
(B)	In $\triangle ABC$ A, B, C are in A.P. and sides a, b and c are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$	(Q)	3
(C)	If a, b, c are three positive real numbers then the minimum value of $\frac{b+c}{a} + \frac{a+c}{b} + \frac{a+b}{c}$ is	(R)	0
(D)	In $\triangle ABC$, $(a+b+c)(b+c-a)=\lambda bc$ where $\lambda \in I$, then greatest value of λ is	(S)	2

6. Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ such that P(n) f(n+2) = P(n) f(n) + q(n). Where P(n), Q(n) are polynomials of least possible degree and P(n) has leading coefficient unity. Then match the following Column-I with Column-II.

	Column-I		Column-II
(A)	$\sum_{n=1}^{m} \frac{p(n)-2}{n}$	(P)	$\frac{m(m+1)}{2}$
(B)	$\sum_{n=1}^{m} \frac{q(n)-3}{2}$	(Q)	5m (m + 7) 2
(C)	$\sum_{n=1}^{m} \frac{p(n) + q^{2}(n) - 11}{n}$	(R)	$\frac{3m(m+7)}{2}$
(D)	$\sum_{n=1}^{m} \frac{q^{2}(n) - p(n) - 7}{n}$	(s)	$\frac{m(m+7)}{2}$

Answers

- 1. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$
- 2. $A \rightarrow R, B \rightarrow R, C \rightarrow P, D \rightarrow R$
- 3. $A \rightarrow P, B \rightarrow R, C \rightarrow S, D \rightarrow Q$
- 4. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 5. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- 6. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- 1. Let a, b, c, d are four distinct consecutive numbers in A.P. The complete set of values of x for which $2(a-b)+x(b-c)^2+(c-a)^3=2(a-d)+(b-d)^2+(c-d)^3$ is true is $(-\infty, \alpha] \cup [\beta, \infty)$, then $|\alpha|$ is equal to:
- **2.** The sum of all digits of n for which $\sum_{r=1}^{n} r 2^{r} = 2 + 2^{n+10}$ is:
- 3. If $\lim_{n\to\infty} \sum_{r=1}^n \frac{r+2}{2^{r+1}r(r+1)} = \frac{1}{k}$, then k = 1
- **4.** The value of $\sum_{r=1}^{\infty} \frac{8r}{4r^4+1}$ is equal to :
- **5.** Three distinct non-zero real numbers form an A.P. and the squares of these numbers taken in same order form a G.P. If possible common ratio of G.P. are $3 \pm \sqrt{n}$, $n \in \mathbb{N}$ then n =
- **6.** If $\sqrt{\frac{(1111.....1)}{2n \text{ times}}} \frac{(222.....2)}{n \text{ times}} = \underbrace{PPP.....P}_{n \text{ times}}$ then P =
- 7. In an increasing sequence of four positive integers, the first 3 terms are in A.P., the last 3 terms are in G.P. and the fourth term exceed the first term by 30, then the common difference of A.P. lying in interval [1, 9] is:
- **8.** The limit of $\frac{1}{n^4} \sum_{k=1}^n k(k+2)(k+4)$ as $n \to \infty$ is equal to $\frac{1}{\lambda}$, then $\lambda =$
- 9. What is the last digit of $1+2+3+\ldots+n$ if the last digit of $1^3+2^3+\ldots+n^3$ is 1?
- **10.** Three distinct positive numbers a, b, c are in G.P., while $\log_c a$, $\log_b c$, $\log_a b$ are in A.P. with non-zero common difference d, then 2d =
- 11. The numbers $\frac{1}{3}$, $\frac{1}{3}\log_x y$, $\frac{1}{3}\log_y z$, $\frac{1}{7}\log_z x$ are in H.P. If $y = x^r$ and $z = x^s$, then $4(r+s) = x^r$
- 12. If $\sum_{k=1}^{\infty} \frac{k^2}{3^k} = \frac{p}{q}$; where p and q are relatively prime positive integers. Find the value of (p+q).
- **13.** The sum of the terms of an infinitely decreasing Geometric Progression (GP) is equal to the greatest value of the function $f(x) = x^3 + 3x 9$ when $x \in [-4, 3]$ and the difference between the first and second term is f'(0). The common ratio $r = \frac{p}{q}$ where p and q are relatively prime positive integers. Find (p+q).
- **14.** A cricketer has to score 4500 runs. Let a_n denotes the number of runs he scores in the n^{th} match. If $a_1 = a_2 = \dots a_{10} = 150$ and a_{10} , a_{11} , a_{12} are in A.P. with common difference (-2). If N be the total number of matches played by him to score 4500 runs. Find the sum of the digits of N.

- 15. If $x = 10\sum_{n=3}^{100} \frac{1}{n^2 4}$, then $[x] = (\text{where } [\cdot] \text{ denotes greatest integer function})$
- **16.** Let $f(n) = \frac{4n + \sqrt{4n^2 1}}{\sqrt{2n + 1} + \sqrt{2n 1}}$, $n \in \mathbb{N}$ then the remainder when $f(1) + f(2) + f(3) + \dots + f(60)$ is divided by 9 is.
- 17. Find the sum of series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's:
- **18.** Let $a_1, a_2, a_3, \ldots, a_n$ be real numbers in arithmatic progression such that $a_1 = 15$ and a_2 is an integer. Given $\sum_{r=1}^{10} (a_r)^2 = 1185$. If $S_n = \sum_{r=1}^n a_r$ and maximum value of n is N for which $S_n \ge S_{(n-1)}$, then find N-10.
- **19.** Let the roots of the equation $24x^3 14x^2 + kx + 3 = 0$ form a geometric sequence of real numbers. If absolute value of k lies between the roots of the equation $x^2 + \alpha^2 x 112 = 0$, then the largest integral value of α is:
- **20.** How many ordered pair(s) satisfy $\log \left(x^3 + \frac{1}{3}y^3 + \frac{1}{9}\right) = \log x + \log y$
- **21.** Let a and b be positive integers. The value of xyz is 55 and $\frac{343}{55}$ when a, x, y, z, b are in arithmetic and harmonic progression respectively. Find the value of (a + b)

						Answ	vers					-	
1.	8	2.	9	3.	2	4.	2	5.	8	6.	3	7.	9
8.	4	9.	1	10.	3	11.	6	12.	5	13.	5	14.	7
15.	5	16.	8	17.	3	18.	6	19.	2	20.	1	21.	8

Balaji

Advanced Problems in Mathematics Chapter 10 to 26

for IIT JEE Main and Advanced

by

Vikas Gupta and Pankaj Joshi

Advanced Problems in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

Pankaj Joshi

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

CONTENTS

CALCULUS		
1. Function	3 – 29	
2. Limit	30 – 44	
3. Continuity, Differentiability and Differentiation	45 – 74	
4. Application of Derivatives	75 – 97	
5. Indefinite and Definite Integration	98 – 127	
6. Area Under Curves	128 – 134	
7. Differential Equations	135 – 144	
ALGEBRA		
8. Quadratic Equations	147 – 176	
9. Sequence and Series	177 – 197	
10. Determinants	198 – 206	
11. Complex Numbers	207 – 216	
12. Matrices	217 – 224	
13. Permutation and Combinations	225 – 233	
14. Binomial Theorem	234 – 242	
15. Probability	243 – 251	
16. Logarithms	252 – 264	

CO-OPDINATE CEOMETRY	
CO-ORDINATE GEOMETRY	
17. Straight Lines	267 – 280
18. Circle	281 – 295
19. Parabola	
20. Ellipse	296 – 302
* = 2:	303 – 307
21. Hyperbola	308 – 312
TRIGONOMETRY	All of the second second
22. Compound Angles	24=
23. Trigonometric Equations	315 – 334
24. Solution of Triangles	335 – 343
25. Inverse Trigonometric Functions	344 – 359

VECTOR & 3DIMENSIONAL GEOMETRY

26. Vector & 3Dimensional Geometry

373 – 389

Chapter 10 - Determinants

0

(a) 1

(c) $\frac{3}{8}$

2. Let the following system of equations

$$kx + y + z = 1$$
$$x + ky + z = k$$
$$x + y + kz = k^{2}$$

has no solution. Find |k|.

(b) 1

(c) 2

(d) 3

 $\begin{vmatrix} 1+a^3\\1+b^3\end{vmatrix}$ 3. If $\begin{vmatrix} a & a^2 \\ b & b^2 \end{vmatrix}$ = 0 and vectors (1, a, a^2)(1, b, b^2) and (1, c, c^2) are non-coplanar, then the

product abc equals:

(a) 2

(b) -1

(c) 1

(d) 0

4. If the system of linear equations

$$x + 2ay + az = 0$$
$$x + 3by + bz = 0$$
$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c:

(a) are in A.P.

(b) are in G.P.

(c) are in H.P.

(d) satisfy a + 2b + 3c = 0

5. If the number of quadratic polynomials $ax^2 + 2bx + c$ which satisfy the following conditions:

(i) a, b, c are distinct

Determinants				199
(iii) $x + 1$ divides ax	$2, \dots, 2001, 2002$ 2 + 2bx + c en find the value of λ			
(a) 2002	(b) 2001		(d) 2004	
6. If the system of ea		(c) 2003		
solution then 'a' can	not be equal to :	= 8, x + 2y + 2	= 3, 2x + uy + 3x - 1	
(a) 2	(b) 3	(c) 4	(d) 5	
7. If one of the roots of		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 13 \\ = 0 \text{ is } x = 2, \text{ then so} \end{vmatrix}$	ım of all other
five roots is:				
(a) -2	(b) 0	(c) 2√5	(d) $\sqrt{15}$	
8. The system of equal	ions			
	kx + (k+1)y + (k	-1)z=0		
	(k+1)x + ky + (k+1)x + ky + (k+1)x + ky + k	+2)z=0	**	
148	(k-1)x + (k+2)y	+kz=0		
has a nontrivial solu	ition for :			
(a) Exactly three r	eal values of k .		ctly two real values of	
(c) Exactly one rea	ol value of k .		nite number of values	of k.
9. If $a_1, a_2, a_3, \ldots, a_n$	a_n are in G.P. and $a_i > 0$	0 for each i , ther	the determinant	
$\Delta = \begin{vmatrix} \log a_n & \log \\ \log a_{n+6} & \log \\ \log a_{n+12} & \log a \end{vmatrix}$	$egin{array}{ll} a_{n+2} & \log a_{n+4} \ a_{n+8} & \log a_{n+10} \ a_{n+14} & \log a_{n+16} \ \end{array}$ is equ	al to:		
(a) 0	(b) $\log\left(\sum_{i=1}^{n^2+n}a_i\right)$	(c) 1	(d) 2	
10. If $D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$	and $D_2 = \begin{vmatrix} a_1 + 2a_2 + b_1 + 2b_2 + c_1 + 2c_2 + b_1 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	then $\frac{D_2}{D_1}$ is equal to :	
(-) 10	(b) -10	(c) 20	(d) -20	
(a) 10 11. If $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$	and $\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ac & b \\ 1 & ab & c \end{vmatrix}$	hen:		
(a) $\Lambda_1 = \Delta_2$	(b) $\Delta_1 = 2\Delta_2$	(c) Δ_1 +	$\Delta_2 = 0 \qquad (d) \ \Delta_1 +$	$2\Delta_2=0$
$\begin{vmatrix} a^2 & b^2 & c^2 \end{vmatrix}$ (a) $\Delta_1 = \Delta_2$ 12. The value of the de	terminant $\begin{vmatrix} 1 & 0 & -1 \\ a & 1 & 1 \\ b & a & 1 + a \end{vmatrix}$	$\begin{vmatrix} 1 \\ -a \\ 1-b \end{vmatrix}$ depends on	n:	
	# 1 - L	(c) neit	peraporb (d) both	a and h

(b) only b

(a) only a

(c) neither a nor b (d) both a and b

13. Sum of solutions of the equation $\begin{vmatrix} 1 & 2 & x \\ 2 & 3 & x^2 \\ 3 & 5 & 2 \end{vmatrix} = 10 \text{ is } :$

(a) 1

(b) -1

(c) 2

(d) 4

14. If $D = \begin{vmatrix} x+d & x+e & x+f \\ x+d+1 & x+e+1 & x+f+1 \end{vmatrix}$ then D does not depend on: x+b x+c

(a) a

(d) x

15. The value of the determinant

(a) $xyz(x+y+z)^2$

(b) $(x+y-z)(x+y+z)^2$

(c) $(x+y+z)^3$

(d) $(x+y+z)^2$

16. A rectangle ABCD is inscribed in a circle. Let PQ be the diameter of the circle parallel to the side AB. If $\angle BPC = 30^\circ$, then the ratio of the area of rectangle to the area of circle is:

17. Let ab = 1, $\Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix}$ then the minimum value of Δ is:

(a) 3

18. The determinant a+b+c+d 2(a+b)(c+d) 2(a+b)(c+d)ab + cdab(c+d)+cd(a+b) = 0 for 2abcdab + cdab(c+d)+cd(a+b)

(a) a+b+c+d=0

(b) ab + cd = 0

(c) ab(c+d)+cd(a+b)=0

(d) any a, b, c, d

19. Let det $A = \begin{vmatrix} l & m & n \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$ and

if $(l-m)^2 + (p-q)^2 = 9$, $(m-n)^2 + (q-r)^2 = 16$, $(n-l)^2 + (r-p)^2 = 25$, then the value of (det. A)2 equals:

(a) 36

(b) 100

(c) 144

(d) 169

20. The number of distinct real values of K such that the system of equations x + 2y + z = 1, x + 3y + 4z = K, $x + 5y + 10z = K^2$ has infinitely many solutions is:

(a) 0

(b) 4

(d) 3

Dete	rmin	ants					NO.					201
21.	If C	(x+1) $(x+2)$ $(x+3)$	$(x+1)^2$ $(x+2)^2$ $(x+3)^2$	(x+1) (x+2) (x+3)) ³) ³ is expr	essed as a	a poly	y_{nomial} in x_{n}	then	the tern	ı indepo	endent of
	x is	:										
	(a)			(b)			(c)	12		(d) 16		
22.	If A	, <i>B</i> , <i>C</i> a	re the ang	les of t	riangle A	BC, then	the n	ninimum valı	ue of	-2 $\cos C$ $\cos B$	cos C -1 $cos A$	$\begin{vmatrix} \cos B \\ \cos A \\ -1 \end{vmatrix}$ is
	equ	al to :										
	(a)	0		(b)	-1		(c)	1		(d) -2		
23.	If th	ie syste	m of linea	r equa	tions							
			x	+ 2ay -	+az=0							
			x	+ 3by -	+bz=0							
			x	+ 4cy +	+cz=0							
	has	a non-	zero soluti	on the	n a, b, c are	e in						
	(a)	A.P.		(b)	G.P.		(c)	H.P.		(d) No	ne of th	iese
24.	If a,	b and	are the ro	oots of	the equat	ion x ³ + 2	2x ² +	$-1 = 0$, find $\begin{vmatrix} a \\ b \\ c \end{vmatrix}$	b c a	$\begin{bmatrix} x \\ a \\ b \end{bmatrix}$.		
	(a)	8		(b)	-8		(c)	0		(d) 2		
25.	The	system	of homog	geneou	s equation	$1 \lambda x + (\lambda +$	-1) y	$+(\lambda-1)z=0$	0,			
								= 0 has non-		al soluti	on for :	
			y three rea					exactly two				
			y three rea				(d)	infinitely m	any	real valı	ie of λ	

	7	6	$x^2 - 13$	
26. If one of the roots of the equation	$x^{2}-13$	$x^2 - 13$	2 7	= 0 is $x = 2$, then sum of all other
-				,

five roots is:

(a) -2

(b) 0

(c) 2√5

(d) $\sqrt{15}$

4	1							Α	nsv	ver	s [2
1.	(a)	2.	(c)	3.	(b)	4.	(c)	5.	(a)	6.	(c)	7.	(a)	8.	(c)	9.	(a)	10.	(b)
11.	(c)	12.	(c)	13.	(b)	14.	(d)	15.	(c)	16.	(a)	17.	(c)	18.	(d)	19.	(c)	20.	(c)
21.	(c)	22.	(ъ)	23.	(c)	24.	(a)	25.	(c)	26.	(a)								

Exercise-2: One or More than One Answer is/are Correct

1. Let
$$f(a, b) = \begin{vmatrix} a & a^2 & 0 \\ 1 & (2a+b) & (a+b)^2 \\ 0 & 1 & (2a+3b) \end{vmatrix}$$
, then

- (a) (2a+b) is a factor of f(a, b)
- (b) (a+2b) is a factor of f(a, b)
- (c) (a+b) is a factor of f(a, b)
- (d) a is a factor of f(a, b)

2. If
$$\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} = 0 \text{ then } \theta \text{ may be } :$$

- (c) $\frac{7\pi}{6}$
- (d) $\frac{11\pi}{6}$

3. Let
$$\Delta = \begin{vmatrix} a & a+d & a+3d \\ a+d & a+2d & a \\ a+2d & a & a+d \end{vmatrix}$$
 then:

(a) \triangle depends on a

- (b) \triangle depends on d
- (c) Δ is independent of a, d
- (d) $\Delta = 0$
- **4.** The value(s) of λ for which the system of equations

$$(1-\lambda)x + 3y - 4z = 0$$
$$x - (3+\lambda)y + 5z = 0$$
$$3x + y - \lambda z = 0$$

possesses non-trivial solutions.

- (a) -1
- (c) 1
- (d) 2

5. Let
$$D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta \text{ then } :$$

- (a) $\alpha + \beta = 0$
- (b) $\beta + \gamma = 0$
- (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$

6. Let
$$D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta \text{ then } :$$

- (a) $\alpha + \beta = 0$
- (b) $\beta + \gamma = 0$
- (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$

7. If the system of equations

$$ax + y + 2z = 0$$
$$x + 2y + z = b$$
$$2x + y + az = 0$$

has no solution then (a + b) can be equals to:

- (a) -1
- (b) 2
- (c) 3
- (d) 4

8. If the system of equations

$$ax + y + 2z = 0$$

$$x + 2y + z = b$$

$$2x + y + az = 0$$

has no solution then (a + b) can be equal to

- (a) -1
- (b) 2
- (c) 3
- (d) 4

				Ansv	vers		10 = 1			77
1. (b, c, d)	2.	(b, d)	3.	(a, b)	4.	(a, b)	5.	(a, b, d)	6.	(a, b, d)
7. (b, c, d)	8.	(b)								

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider the system of equations

$$2x + \lambda y + 6z = 8$$
$$x + 2y + \mu z = 5$$

x + y + 3z = 4

The system of equations has:

1. No solution if:

(a)
$$\lambda = 2, \mu = 3$$

(b)
$$\lambda \neq 2, \mu = 3$$

(c)
$$\lambda \neq 2, \mu \neq 3$$

(d)
$$\lambda = 2, \mu \in R$$

2. Exactly one solution if:

(a)
$$\lambda \neq 2, \mu \neq 3$$

(b)
$$\lambda = 2, \mu = 3$$

(c)
$$\lambda \neq 2, \mu = 3$$

(d)
$$\lambda = 2, \mu \in R$$

3. Infinitely many solutions if:

(a)
$$\lambda \neq 2, \mu \neq 3$$

(b)
$$\lambda = 2, \mu \neq 3$$

(c)
$$3. \neq 2, \mu = 3$$

(d)
$$\lambda = 2, \mu \in R$$

Exercise-4: Subjective Type Problems

- 1. If 3^n is a factor of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ {}^nC_1 & {}^{n+3}C_1 & {}^{n+6}C_1 \\ {}^nC_2 & {}^{n+3}C_2 & {}^{n+6}C_2 \end{vmatrix}$ then the maximum value of n is
- **2.** Find the value of λ for which $\begin{vmatrix} 2a_1 + b_1 & 2a_2 + b_2 & 2a_3 + b_3 \\ 2b_1 + c_1 & 2b_2 + c_2 & 2b_3 + c_3 \\ 2c_1 + a_1 & 2c_2 + a_2 & 2c_3 + a_3 \end{vmatrix} = \lambda \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
- 3. Find the co-efficient of x in the expansion of the determinant $\begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix}$
- 4. If $x, y, z \in R$ and $\begin{vmatrix} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{vmatrix} = 2$ then find the value of $\begin{vmatrix} y^5 z^6 (z^3 y^3) & x^4 z^6 (x^3 z^3) & x^4 y^5 (y^3 x^3) \\ y^2 z^3 (y^6 z^6) & xz^3 (z^6 x^6) & xy^2 (x^6 y^6) \\ y^2 z^3 (z^3 y^3) & xz^3 (x^3 z^3) & xy^2 (y^3 x^3) \end{vmatrix}.$
- 5. If the system of equations:

$$2x + 3y - z = 0$$
$$3x + 2y + kz = 0$$
$$4x + y + z = 0$$

have a set of non-zero integral solutions then, find the smallest positive value of z.

- **6.** Find $a \in R$ for which the system of equations 2ax 2y + 3z = 0; x + ay + 2z = 0 and 2x + az = 0 also have a non-trivial solution.
- 7. If three non-zero distinct real numbers form an arithmatic progression and the squares of these numbers taken in the same order constitute a geometric progression. Find the sum of all possible common ratios of the geometric progression.

8. Let
$$\Delta_1 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} 6a_1 & 2a_2 & 2a_3 \\ 3b_1 & b_2 & b_3 \\ 12c_1 & 4c_2 & 4c_3 \end{vmatrix}$ and $\Delta_3 = \begin{vmatrix} 3a_1 + b_1 & 3a_2 + b_2 & 3a_3 + b_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{vmatrix}$

then $\Delta_3 - \Delta_2 = k\Delta_1$, find k.

9. The minimum value of determinant $\Delta = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 2 \end{vmatrix} \forall \theta \in R \text{ is :}$

10. For a unique value of μ & λ , the system of equations given by

$$x + y + z = 6$$
$$x + 2y + 3z = 14$$
$$2x + 5y + \lambda z = \mu$$

has infinitely many solutions, then $\frac{\mu - \lambda}{4}$ is equal to

- 11. Let $\lim_{n\to\infty} n \sin(2\pi e \lfloor \frac{n}{n} \rfloor) = k\pi$, where $n \in \mathbb{N}$. Find k:
- 12. If the system of linear equations

$$(\cos\theta)x + (\sin\theta)y + \cos\theta = 0$$

$$(\sin\theta)x + (\cos\theta)y + \sin\theta = 0$$

$$(\cos\theta)x + (\sin\theta)y - \cos\theta = 0$$

is consistent, then the number of possible values of $\theta,\theta\in[0,2\pi]$ is :

			No. of the			Ansv	vers					1	1
1.	3	2.	9	3.	0	4.	4	5.	5	6.	2	2	
8.	3	9.	3	10.	7	11.	2	12.	2		125		(

Chapter 11 - Complex Numbers

(a) 0

COMPLEX NUMBERS

(d) None of these

(a)
$$\ge -\frac{3}{2}$$
 (b) $\le -$ (c) $\ge \frac{3}{2}$ (d) ≤ 2

2. The number of points of intersection of the curves represented by

(b) 1

$$\arg(z-2-7i) = \cot^{-1}(2)$$
 and $\arg\left(\frac{z-5i}{z+2-i}\right) = \pm \frac{\pi}{2}$

(c) 2

3. All three roots of $az^3 + bz^2 + cz + d = 0$, have negative real part, $(a, b, c \in R)$ then:

(a) All a, b, c, d have the same sign

(b) a, b, c have same sign

(c) a, b, d have same sign

(d) b, c, d have same sign

(c) a, b, d have same sign (d) b, c, d have same sign 4. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex number. Further, assume that the origin z_2 and z_3 form an equilateral triangle, then:

assume that the origin,
$$z_1$$
 and z_2 form an equilateral triangle, then:
(a) $a^2 = b$ (b) $a^2 = 2b$ (c) $a^2 = 3b$ (d) $a^2 = 4b$

5. If z and ω are two non-zero complex numbers such that $|z\omega| = 1$, and $\arg(z) - \arg(\omega) = \frac{\pi}{2}$, then

 $\overline{z}\omega$ is equal to:
(a) 1 (b) -1 (c) i (d) -i

6. If ω be an imaginary n^{th} root of unity, then $\sum_{r=1}^{n} (ar+b) \omega^{r-1}$ is equal to :

(a) $\frac{n(n+1)a}{2\omega}$ (b) $\frac{nb}{1-n}$ (c) $\frac{na}{\omega-1}$ (d) None of these

7.	If α , β are complex nu	mbers then the maximu	um value of $\frac{\alpha \overline{\beta} + \overline{\alpha} \beta}{ \alpha\beta }$ is	
	(a) 1	(b) 2	(c) greater than 2	(d) less than 1
8.	Let z_1 , z_2 , z_3 and z_1	be the roots of the	equation $z^4 + z^3 + 2$	= 0, then the value of
	$\prod_{r=1}^{4} (2z_r + 1) \text{ is equal t}$,	
	(a) 28	(b) 29	(c) 30	(d) 31
9. I	If $\arg\left(\frac{z-6-3i}{z-3-6i}\right) = \frac{\pi}{4}$		(6)	
((a) minimum value o	of a is 6√2 - 3	(b) Maximum value	of $ z $ is $6\sqrt{2} + 3$
	(c) minimum value o	N A N agent	(d) Maximum value	of $ z $ is $15\sqrt{2} + 6$
		(5) 5	(u) Maximum varue	01 0 1010
	$f z_1 \neq -z_2 \text{ and } z_1 + z_2 $	-1 -2		
	(a) at least one of z_1		(b) both z_1 , z_2 are up	nimodular
	(c) $z_1 \cdot z_2$ is unimodu		(d) $z_1 - z_2$ is unimod	ular
		+3i, then the maximum	n value of $ iz + z_1 $ is:	
((a) $5 + \sqrt{13}$	(b) $5 + \sqrt{2}$	(c) 7	(d) 8
12. I	fz_1, z_2, z_3 are vertice	s of a triangle such that	$ z_1 - z_2 = z_1 - z_3 $ then	$\arg\left(\frac{2z_1-z_2-z_3}{z_3-z_2}\right) \text{ is :}$
(a) $\pm \frac{\pi}{3}$	(b) 0	(c) $\pm \frac{\pi}{2}$	(d) $\pm \frac{\pi}{6}$
13. It	is given that comple	x numbers z_1 and z_2 sa	tisfy $ z_1 = 2$ and $ z_2 = 3$	3. If the included angle of
tl	neir corresponding ve	ctors is 60°, then $\frac{z_1 + z_2}{z_1 - z_2}$	$\frac{2}{2}$ can be expressed as	$\frac{\sqrt{n}}{7}$, where 'n' is a natural
n	umber then $n =$			
(a	a) 126	(b) 119	(c) 133	(d) 19
14. If	all the roots of $z^3 + c$	$az^2 + bz + c = 0$ are of ι	init modulus, then:	
(8	a) $ a \le 3$	(b) $ b \le 3$	(c) $ c =1$	(d) All of the above
		ber satisfying $\frac{1}{2} \le z \le \epsilon$	4, then sum of greatest	and least values of $\left z + \frac{1}{z}\right $
is		65	17	
(a	a) $\frac{65}{4}$	(b) $\frac{65}{16}$	(c) $\frac{17}{4}$	(d) 17
	$ z-2i \le \sqrt{2}$, then the	maximum value of 3	- 55	
(a	a) $\sqrt{2}$	(b) 2√2	(c) $2+\sqrt{2}$	(d) $3 + 2\sqrt{2}$
				01202

17. Let $x - \frac{1}{x} = (\sqrt{2})i$ where $i = \sqrt{-1}$. Then the value of x^{2187}	1
$x = (\sqrt{2})t$ where $t = \sqrt{-1}$. Then the value of $x = \sqrt{-1}$.	$-\frac{1}{x^{2187}}$ is:

(a) $i\sqrt{2}$

(b) $-i\sqrt{2}$

(c) -2

18. If $z = re^{i\theta}$ $(r > 0 \& 0 \le \theta < 2\pi)$ is a root of the equation $z^8 - z^7 + z^6 - z^5 + z^4 - z^3 + z^2 - z + 1 = 0$ then number of values of ' θ ' is :

(c) 8

19. Let P and Q be two points on the circle |w| = r represented by w_1 and w_2 respectively, then the complex number representing the point of intersection of the tangents at P and Q is :

 $\frac{w_1 w_2}{2(w_1 + w_2)}$ (b) $\frac{2w_1 \overline{w}_2}{w_1 + w_2}$

(c) $\frac{2w_1w_2}{w_1+w_2}$

20. If z_1 , z_2 , z_3 are complex number, such that $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$, then maximum value of $|z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2$ is:

(c) 87

(d) None of these

21. If $Z = \frac{7+i}{3+4i}$, then find Z^{14} :

(a) 2^7

(b) $(-2)^7$

(c) $(2^7)i$

(d) $(-2^7)i$

22. If |Z-4|+|Z+4|=10, then the difference between the maximum and the minimum values of |Z| is:

(a) 2

(b) 3

(c) $\sqrt{41} - 5$

(d) 0

				a week		Jan State	<u> </u>	, a.	113	ver	9 1				M.			Desain	77
1.	(a)	2.	(a)	3.	(c)	4.	(c)	5.	(d)	6.	(c)	7.	(b)	8.	(d)	9.	(b)	10.	(c
11.	(c)	12.	(c)	13.	(c)	14.	(d)	15.	(c)	16.	(b)	17.	(a)	18.	(c)				
21.	(c)	22.	(a)															91	

1

Exercise-2: One or More than One Answer is/are Correct

1. Let Z_1 and Z_2 are two non-zero complex number such that $|Z_1 + Z_2| = |Z_1| = |Z_2|$, then $\frac{Z_1}{Z_2}$ may

be:

(a) $1+\omega$

(b) $1 + \omega^2$

(c) ω

(d) ω^2

2. Let z_1 , z_2 and z_3 be three distinct complex numbers, satisfying $|z_1| = |z_2| = |z_3| = 1$. Which of the following is/are true:

(a) If
$$\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
 then $\arg\left(\frac{z - z_1}{z - z_2}\right) > \frac{\pi}{4}$ where $|z| > 1$

(b) $|z_1z_2 + z_2z_3 + z_3z_1| = |z_1 + z_2 + z_3|$

(c)
$$\lim \left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 \cdot z_2 \cdot z_3} \right) = 0$$

(d) If
$$|z_1 - z_2| = \sqrt{2} |z_1 - z_3| = \sqrt{2} |z_2 - z_3|$$
, then $\text{Re}\left(\frac{z_3 - z_1}{z_3 - z_2}\right) = 0$

3. The triangle formed by the complex numbers z, iz, i^2z is:

(a) equilateral

(b) isosceles

(c) right angled

(d) isosceles but not right angled

4. If $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$ lies on |z| = 4 (taken in order), where $z_1 + z_2 + z_3 + z_4 = 0$ then:

(a) Max. area of quadrilateral ABCD = 32

(b) Max. area of quadrilateral ABCD = 16

(c) The triangle $\triangle ABC$ is right angled

(d) The quadrilateral ABCD is rectangle

5. Let z_1, z_2 and z_3 be three distinct complex numbers satisfying $|z_1| = |z_2| = |z_3| = 1$. Which of the following is/are true?

(a) If
$$\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
 then $\arg\left(\frac{z-z_1}{z-z_2}\right) > \frac{\pi}{4}$ where $|z| > 1$

(b) $|z_1z_2+z_2z_3+z_3z_1|=|z_1+z_2+z_3|$

(c)
$$\operatorname{Im}\left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 \cdot z_2 \cdot z_3}\right) = 0$$

(d) If
$$|z_1 - z_2| = \sqrt{2} |z_1 - z_3| = \sqrt{2} |z_2 - z_3|$$
, then $\text{Re}\left(\frac{z_3 - z_1}{z_3 - z_2}\right) = 0$

6. If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers w	where a , b , c , $d \in R$ and $ z_1 = z_2 = 1$
and Im $(z_1\bar{z}_2) = 0$. If $w_1 = a + ic$ and $w_2 = b + id$, then:	

(a) Im $(w_1 \overline{w}_2) = 0$

(b) Im $(\overline{w}_1 w_2) = 0$

(c) $\operatorname{Im}\left(\frac{w_1}{w_2}\right) = 0$

(d) $\operatorname{Re}\left(\frac{w_1}{\overline{w}_2}\right) = 0$

7. The solutions of the equation $z^4 + 4iz^3 - 6z^2 - 4iz - i = 0$ represent vertices of a convex polygon in the complex plane. The area of the polygon is:

(-) 01/2

(b) $2^{3/2}$

(c) $2^{5/2}$

(d) $2^{5/4}$

8. Least positive argument of the 4th root of the complex number $2-i\sqrt{12}$ is :

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{12}$

(c) $\frac{5\pi}{12}$

(d) $\frac{7\pi}{12}$

9. Let ω be the imaginary cube root of unity and $(a+b\omega+c\omega^2)^{2015}=(a+b\omega^2+c\omega)$ where a, b, c are unequal real numbers. Then the value of $a^2+b^2+c^2-ab-bc-ca$ equals :

(a) 0

(b) 1

(c) 2

(d) 3

10. Let n be a positive integer and a complex number with unit modulus is a solution of the equation $z^n + z + 1 = 0$ then the value of n can be:

(a) 62

(b) 155

(c) 221

(d) 196

Answers											
1.	(c, d)	2.	(b, c, d)	3.	(b, c)	4.	(a, c, d)	5.	(b, c, d)	6.	(a, b, c
7.	(d)	8.	(c)	9.	(b)	10.	(a, b, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let f(z) is of the form $\alpha z + \beta$, where α , β are constants and α , β , z are complex numbers such that $|\alpha| \neq |\beta|$. f(z) satisfies following properties :

- (i) If imaginary part of z is non zero, then $f(z) + \overline{f(z)} = f(\overline{z}) + \overline{f(\overline{z})}$
- (ii) If real part of z is zero, then $f(z) + \overline{f(z)} = 0$
- (iii) If z is real, then $\overline{f(z)} f(z) > (z+1)^2 \ \forall \ z \in \mathbb{R}$.
- 1. $\frac{4x^2}{(f(1)-f(-1))^2} + \frac{y^2}{(f(0))^2} = 1$, $x, y \in R$, in (x, y) plane will represent :
 - (a) hyperbola
- (b) circle
- (c) ellipse
- (d) pair of line
- 2. Consider ellipse $S: \frac{x^2}{(\text{Re}(\alpha))^2} + \frac{y^2}{(\text{Im}(\beta))^2} = 1$, $x, y \in R$ in (x, y) plane, then point (1, 1) will lie:
 - (a) outside the ellipse S

(b) inside the ellipse S

(c) on the ellipse S

(d) none of these

Paragraph for Question Nos. 3 to 5

Let z_1 and z_2 be complex numbers, such what $z_1^2 - 4z_2 = 16 + 20i$. Also suppose that roots α and β of $t^2 + z_1t + z_2 + m = 0$ for some complex number m satisfy $|\alpha - \beta| = 2\sqrt{7}$, then:

- 3. The complex number 'm' lies on:
 - (a) a square with side 7 and centre (4, 5)
- (b) a circle with radius 7 and centre (4, 5)
- (c) a circle with radius 7 and centre (-4, 5)
- (d) a square with side 7 and centre (-4, 5)
- **4.** The greatest value of |m| is :
 - (a) $5\sqrt{21}$
- (b) $5 + \sqrt{23}$
- (c) $7 + \sqrt{43}$
- (d) $7 + \sqrt{41}$

- **5.** The least value of |m| is:
 - (a) $7 \sqrt{41}$
- (b) $7 \sqrt{43}$
- (c) $5 \sqrt{23}$
- (d) $5 + \sqrt{21}$

Paragraph for Question Nos. 6 to 7

Let $z_1 = 3$ and $z_2 = 7$ represent two points A and B respectively on complex plane. Let the curve C_1 be the locus of point P(z) satisfying $|z - z_1|^2 + |z - z_2|^2 = 10$ and the curve C_2 be the locus of point P(z) satisfying $|z - z_1|^2 + |z - z_2|^2 = 16$.

- **6.** Least distance between curves C_1 and C_2 is:
 - (a) 4
- (b) 3
- (c) 2
- (d) 1

7. The locus of point from which tangents drawn to C_1 and C_2 are perpendicular, is:

(a)
$$|z-5|=4$$

(b)
$$|z-3|=2$$

(c)
$$|z-5|=3$$

(d)
$$|z-5| = \sqrt{5}$$

Paragraph for Question Nos. 8 to 9

In the Argand plane Z_1 , Z_2 and Z_3 are respectively the vertices of an isosceles triangle ABC with AC = BC and $\angle CAB = \theta$. If $I(Z_4)$ is the incentre of triangle, then:

8. The value of $\left(\frac{AB}{IA}\right)^2 \left(\frac{AC}{AB}\right)$ is equal to :

(a)
$$\left| \frac{(Z_2 - Z_1)(Z_1 - Z_3)}{(Z_4 - Z_1)} \right|$$
 (b) $\left| \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)} \right|$ (c) $\left| \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)} \right|$ (d) $\left| \frac{(Z_2 + Z_1)(Z_3 + Z_1)}{(Z_4 + Z_1)} \right|$

(b)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)}$$

(c)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}$$

(d)
$$\frac{(Z_2 + Z_1)(Z_3 + Z_1)}{(Z_4 + Z_1)}$$

9. The value of $(Z_4 - Z_1)^2 (1 + \cos \theta) \sec \theta$ is :

(a)
$$(Z_2 - Z_1)(Z_3 - Z_1)$$

(b)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{Z_4 - Z_1}$$

(c)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}$$

(d)
$$(Z_2 - Z_1) (Z_3 - Z_1)^2$$

Exercise-4: Matching Type Problems

1. In a $\triangle ABC$, the side lengths BC, CA and AB are consecutive positive integers in increasing order.

/	Column-I		Column-II
(A)	If z_1 , z_2 and z_3 be the affixes of vertices A , B and C respectively in argand plane, such that $\left \arg \left(\frac{z_1 - z_3}{z_2 - z_3} \right) \right = \left 2 \arg \left(\frac{z_3 - z_1}{z_2 - z_1} \right) \right $		2
(B)	then biggest side of the triangle is Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be the position vectors of vertices \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} respectively. If $(\overrightarrow{c}-\overrightarrow{a})\cdot(\overrightarrow{b}-\overrightarrow{c})=0$ then the value of		3
(C)	$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \end{vmatrix} $ equals to Let the equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ represent the lines AB and AC respectively and $\begin{vmatrix} a_1b_2 - a_2b_1 \\ a_1a_2 + b_1b_2 \end{vmatrix} = \frac{4}{3}$	(R)	4
(D)	then the value of $s-c$ (where s is the semiperimeter) $a=BC$, $b=CA$, $c=AB$ If the altitudes of $\triangle ABC$ are in harmonic progression then the		6
SP-1	side length 'b' can be	(T)	12

2. Let ABCDEF is a regular hexagon $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$, $E(z_5)$, $F(z_6)$ in argand plane where A, B, C, D, E and F are taken in anticlockwise manner. If $z_1 = -2$, $z_3 = 1 - \sqrt{3}i$.

	Column-I		Column-II
(A)	If $z_2 = a + ib$, then $2a^2 + b^2$ is equal to	(P)	8
(B)	The square of the inradius of hexagon is	(Q)	7
(C)	The area of region formed by point $P(z)$ lying inside the incircle of hexagon and satisfying $\frac{\pi}{3} \le \arg(z) \le \frac{5\pi}{6}$ is $\frac{m}{n}\pi$, where m, n are relatively prime natural numbers, then $m+n$ is equal to	(R)	5
(D)	The value of $z_4^2 - z_1^2 - z_2^2 - z_3^2 - z_5^2 - z_6^2$ is equal to	(S)	3
		(T)	2

3.

	Column-l		Column-II	
(A)	Let ω be a non real cube root of unity then the number of distinct elements in the set $\{(1 + \omega + \omega^2 + + \omega^n)^m;$ $n, m \in N\}$ is:	(P)	3	
(B)	Let ω and ω^2 be non real cube root of unity. The least possible degree of a polynomial with real co-efficients having roots 2ω , $(2+3\omega)$, $(2+3\omega)^2$, $(2-\omega-\omega^2)$	- AITE	4	
(C)	is Let $\alpha = 6 + 4i$ and $\beta = 2 + 4i$ are two complex numbers on Argand plane. A complex number z satisfying amp $\left(\frac{z-\alpha}{z-\beta}\right) = \frac{\pi}{6}$ moves on a major segment of a circle whose radius is		5	
(D)	Let z_1 , z_2 , z_3 are complex numbers denoting the vertices of an equilateral triangle <i>ABC</i> having circumradius equals to unity. If <i>P</i> denotes any arbitrary point on its circumcircle then the value of $\frac{1}{2}((PA)^2 + (PB)^2 + (PC)^2)$ equals to		7	

Answers

^{1.} $A \rightarrow S$; $B \rightarrow T$; $C \rightarrow S$; $D \rightarrow Q$, R, S, T

^{2.} $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow P$

^{3.} $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$

Exercise-5: Subjective Type Problems

- **1.** Let complex number 'z' satisfy the inequality $2 \le |z| \le 4$. A point *P* is selected in this region at random. The probability that argument of *P* lies in the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ is $\frac{1}{K}$, then $K = \frac{\pi}{4}$
- **2.** Let z be a complex number satisfying $|z-3| \le |z-1|$, $|z-3| \le |z-5|$, $|z-i| \le |z+i|$ and $|z-i| \le |z-5i|$. Then the area of region in which z lies is A square units, where A =
- **3.** Complex number z_1 and z_2 satisfy $z + \overline{z} = 2|z-1|$ and $\arg(z_1 z_2) = \frac{\pi}{4}$. Then the value of $\operatorname{lm}(z_1 + z_2)$ is:
- **4.** If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 36$, then $|z_1 + z_2 + z_3|$ is equal to :
- **5.** If $|z_1|$ and $|z_2|$ are the distances of points on the curve $5z\overline{z} 2i(z^2 \overline{z}^2) 9 = 0$ which are at maximum and minimum distance from the origin, then the value of $|z_1| + |z_2|$ is equal to:
- **6.** Let $\frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \frac{1}{a_3 + \omega} + \dots + \frac{1}{a_n + \omega} = i$

where $a_1, a_2, a_3, \ldots a_n \in R$ and ω is imaginary cube root of unity, then evaluate $\sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1}.$

- **7.** If $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$ and $|2z_1 + 3z_2 + 4z_3| = 9$, then value of $|8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3}$ is:
- **8.** The sum of maximum and minimum modulus of a complex number z satisfying $|z-25i| \le 15$, $i=\sqrt{-1}$ is S, then $\frac{S}{10}$ is :

	/					Ansv	ver	S					1
1. 8.	4 5	26	6	3.	2	4.	6	5.	4	6,	0	7.	6

000

Exercise-1: Single Choice Problems

(a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

2. Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is:

(b)
$$A^2 = I$$
, where I is a unit matrix

(c)
$$A^{-1}$$
 does not exist

(d)
$$A = (-1)I$$
, where I is a unit matrix

3. Let
$$A = [a_{ij}]_{3\times 3}$$
 be such that $a_{ij} = \begin{bmatrix} 3; & \text{when } \hat{i} = \hat{j} \\ 0; & \hat{i} \neq \hat{j} \end{bmatrix}$, then $\left\{ \frac{\det(\text{adj } (\text{adj } A))}{5} \right\}$ equals:

(where {·} denotes fractional part function)

(a)
$$\frac{2}{5}$$

(b)
$$\frac{1}{5}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{3}$$

(a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$ **4.** If $A^{-1} = \begin{bmatrix} \sin^2 \alpha & 0 & 0 \\ 0 & \sin^2 \beta & 0 \\ 0 & 0 & \sin^2 \gamma \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} \cos^2 \alpha & 0 & 0 \\ 0 & \cos^2 \beta & 0 \\ 0 & 0 & \cos^2 \gamma \end{bmatrix}$ where α , β , γ are any real numbers and $C = (A^{-5} + B^{-5}) + 5A^{-1}B^{-1}(A^{-3} + B^{-3}) + 10A^{-2}B^{-2}(A^{-1} + B^{-1})$ then find |C|.

5. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
; then $A^{-1} = \begin{bmatrix} 4 & 4 & 4 \\ 3 & 4 & 4 \\ 0 & 1 & 1 \end{bmatrix}$

$$(d)$$
 A^4

7. Let matrix $A = \begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$; if $xyz = 2\lambda$ and $8x + 4y + 3z = \lambda + 28$, then (adj A) A equals:

(a)
$$\begin{bmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

(c)
$$\begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda^2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} \lambda + 2 & 0 & 0 \\ 0 & \lambda + 2 & 0 \\ 0 & 0 & \lambda + 2 \end{bmatrix}$$

8. If the trace of matrix $A = \begin{pmatrix} x-2 & e^x & -\sin x \\ \cos x^2 & x^2 - x + 3 & \ln|x| \\ 0 & \tan^{-1} x & x - 7 \end{pmatrix}$ is zero, then x is equal to :

(b)
$$-3 \text{ or } -2$$

9. If $A = [a_{ij}]_{2\times 2}$ where $a_{ij} = \begin{cases} i+j, & i \neq j \\ i^2 - 2j, & i = j \end{cases}$ then A^{-1} is equal to :

(a)
$$\frac{1}{9} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$

(b)
$$\frac{1}{9}\begin{bmatrix} 0 & -3 \\ 3 & -1 \end{bmatrix}$$

(a)
$$\frac{1}{9}\begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$
 (b) $\frac{1}{9}\begin{bmatrix} 0 & -3 \\ 3 & -1 \end{bmatrix}$ (c) $\frac{1}{9}\begin{bmatrix} 0 & -3 \\ -3 & -1 \end{bmatrix}$ (d) $\frac{1}{3}\begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$

(d)
$$\frac{1}{3} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$

10. If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then:

(a)
$$a = b = 1$$

(b)
$$a = \cos 2\theta$$
, $b = \sin 2\theta$

(c)
$$a = \sin 2\theta$$
, $b = \cos 2\theta$

(d)
$$a = 1, b = \sin 2\theta$$

11. A square matrix P satisfies $P^2 = I - P$, where I is identity matrix. If $P^n = 5I - 8P$, then n is:

12. Let matrix $A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ where $x, y, z \in \mathbb{N}$. If det. (adj. (adj. A)) = $2^8 \cdot 3^4$ then the number

of such matrices A is:

[Note: adj. A denotes adjoint of square matrix A.]

13. If A is a 2×2 non singular matrix, then adj (adj A) is equal to:

(a)
$$A^2$$

(c)
$$A^{-1}$$

14. $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ and $MA = A^{2m}$, $m \in \mathbb{N}$, $a, b \in \mathbb{R}$, for some matrix M, then which one of the following is correct

(a)
$$M = \begin{bmatrix} a^{2m} & b^{2m} \\ b^{2m} & -a^{2m} \end{bmatrix}$$

(b)
$$M = (a^2 + b^2)^m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(c)
$$M = (a^m + b^m) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(d)
$$M = (a^2 + b^2)^{m-1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

15.	Let A	be a	squa	are m	atrix	satis	fying	A^2	- 5A	+ 5 <i>I</i> =	= 0. T	he inv	erse	of A	+ 21	is eq	ual t	0:	
	(a)	A-2i	Ţ		(t) A	+ 3 <i>I</i>			(c)	A -	31		(d) n	on-e			
16.	Let A	$=\begin{bmatrix} 3\\7 \end{bmatrix}$	-5 -1	an an	d B	$=\begin{bmatrix}12\\7\end{bmatrix}$	-5 -3	be tv	wo g	iven n	natri	ces, th	en (/	4B) ⁻¹	is:				
		_	-			_					L	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$		(6	d) [0 1 1 0			
17.	If ma	trix A	$A = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$	the	the	value	e of	adj. 2	A eq	uals	to:							
	(a)) 3				(c)					1) 6				
	If for is:	the n	natri	x A =	cos sin	θ 2: θ c	sin θ os θ	, A ⁻¹	=A	T the	en nu	ımber	of po	ssible	e val	ue(s)	of θ	in [0,	2π]
	(a)	2			n	o) 3				(c)	1			(1) 4	i.			
			10 SEN		0.3	60			-	1000		M^T .							
19.									tor) a	and A	$=\frac{1}{M}$	$\frac{M^T}{^TM}$ tl	ie ma	atrix A	A IS:				
				transı	ose	matri	x of	M)											
		idem (1	30			o) ni						olutary		(0	d) n	one o	of th	ese	
20.	If <i>A</i> :	=(0	1),	$P = \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right)$	-sin	θ co	$s\theta$,	Q = I	P ^T AI	, find	PQ^2	014 _P T	:						
	(a)	$\begin{pmatrix} 1 & 2 \\ 0 & \end{pmatrix}$	2 ²⁰¹⁴							(b)	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	4028) 1)						
	(c)	(P^T)	2013	A ²⁰¹⁴	P^{201}	3				(d)	$P^T A$	A ²⁰¹⁴ F	,						
21.	If M	be a	squai	re ma	trix (of ord	er 3	such	that	<i>M</i> =	2, th	en ad	$i\int \frac{M}{2}$	equ	ıals	to:			
	(a)	$\frac{1}{2}$			(b) $\frac{1}{4}$				(c)	$\frac{1}{8}$			(d) -	<u>1</u>			
												nen the							
	(whe	re A	der	otes	dete	rmina	nt o	f mat	rix A	A^T	deno	tes tra	nspo	se of	mat	rix A	A^{-1}	den	otes
	inver	se of	mati	rix A.	adj A	A den	otes	adjoii	nt of	matri	x A)					41			
	(a)	5			(b) 1				(c)	25			(d) -	1 25			
2	1							A	nsv	ver	s				100				1
1.	(c)	2.	(b)	3.	(b)	4.	(b)	5.	(c)	6.	(b)	7.	(b)	8.	(c)	9.	(a)	10.	(b)
11.			(c)	13.	(b)	14.	(d)	15.	(b)	16.	(b)	17.	(a)	18.	(b)	19.	(a)		(b)
21.		22.																	
	(-/				DOIN .										30.51			X	

- **1.** If A and B are two orthogonal matrices of order n and det(A) + det(B) = 0, then which of the following must be correct?
 - (a) $\det(A + B) = \det(A) + \det(B)$
- (b) $\det(A + B) = 0$
- (c) A and B both are singular matrices
- (d) A + B = 0
- **2.** Let M be a 3×3 matrix satisfying $M^3 = 0$. Then which of the following statement(s) are true:

(a)
$$\left| \frac{1}{2}M^2 + M + I \right| \neq 0$$

(b)
$$\left| \frac{1}{2}M^2 - M + I \right| = 0$$

(c)
$$\left| \frac{1}{2}M^2 + M + I \right| = 0$$

(d)
$$\left| \frac{1}{2} M^2 - M + I \right| \neq 0$$

- 3. Let $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then:
 - (a) $A_{\alpha+\beta} = A_{\alpha}A_{\beta}$

(b) $A_{\alpha}^{-1} = A_{-\alpha}$ (d) $A_{\alpha}^{2} = -I$

(c) $A_{\alpha}^{-1} = -A_{\alpha}$

- **4.** $A^3 2A^2 A + 2I = 0$ if A =
 - (a) I
- (b) 2I
- (c) $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
- 5. Let A be a 3×3 symmetric invertible matrix with real positive elements. Then the number of zero elements in A^{-1} are less than or equal to:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

Exercise-3: Matching Type Problems

1. Consider a square matrix *A* of order 2 which has its elements as 0, 1, 2 and 4. Let *N* denotes the number of such matrices.

/	Column-I		Column-II
(A)	Possible non-negative value of det(A) is	(P)	2
(B)	Sum of values of determinants corresponding to N matrices is	(Q)	4
(C)	If absolute value of $(\det(A))$ is least, then possible value of $ \operatorname{adj}(\operatorname{adj}(A)) $	(R)	-2
(D)	If $det(A)$ is least, then possible value of $det(4A^{-1})$ is	(S)	0
		(T)	8

2.

1	Column-I		Column-II
(A)	If A is an idempotent matrix and I is an identify matrix of the same order, then the value of n , such that $(A + I)^n = I + 127A$ is	(P)	9
(B)	If $(I - A)^{-1} = I + A + A^2 + \dots A^7$, then $A^n = 0$ where n is	(Q)	10
(C)	If A is matrix such that $a_{ij} = (i + j)(i - j)$, then A is singular if order of matrix is	(R)	7
(D)	If a non-singular matrix A is symmetric, such that A^{-1} is also symmetric, then order of A can be	(S)	8

3.

1	Column-I		Column-II
(A)	Number of ordered pairs (x, y) of real numbers satisfying $\sin x + \cos y = 0$, $\sin^2 x + \cos^2 y = \frac{1}{2}$,	(P)	0
(B)	$0 < x < \pi$ and $0 < y < \pi$, is equal to Given \mathbf{a} , \mathbf{b} and \mathbf{c} are three vectors such that \mathbf{b} and \mathbf{c} are unit like vectors and $ \mathbf{a} = 4$. If $\mathbf{a} + \lambda \mathbf{c} = 2\mathbf{b}$ then the sum of all possible values of λ is equal to	(Q)	2

(C)	If $P = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, $10Q = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & t \\ 1 & -2 & 3 \end{bmatrix}$ and	(R)	4
(D)	$Q = P^{-1}$, then the value of t is equal to If $y = \tan u$ where $u = v - \frac{1}{v}$ and $v = \ln x$, then the	(S)	5
	value of $\frac{dy}{dx}$ at $x = e$ is equal to λ then $[\lambda]$ is equal to (where $[\cdot]$ denotes greatest integer function)		

4.

	Column-i		Column-II
(A)	If P and Q are variable points on $C_1: x^2 + y^2 = 4$ and $C_2: x^2 + y^2 - 8x - 6y + 24 = 0$ respectively then the maximum value of PQ, is equal to	(P)	1
(B)	Let P , Q , R be invertible matrices of second order such that $A = PQ^{-1}$, $B = QR^{-1}$, $C = RP^{-1}$, then the value of det. ($ABC + BCA + CAB$) is equal to	(Q)	2
	The perpendicular distance of the point whose position vector is $(1, 3, 5)$ from the line $\mathbf{r} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ is equal to	(R)	9
	Let $f(x)$ be a continuous function in [-1,1] such that $f(x) = \begin{cases} \frac{\ln(px^2 + qx + r)}{x^2} & ; & -1 \le x < 0 \\ 1 & ; & x = 0 \\ \frac{\sin(e^{x^2} - 1)}{x^2} & ; & 0 < x \le 1 \end{cases}$	(S)	8
	then the value of $(p+q+r)$, is equal to		

5.

1	Column-l		Column-II	
(A)	$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \right) \text{ has the}$	(P)	1	
	value equal to		A Carlo Carl	

(B)	Let $A = [a_{ij}]$ be a 3×3 matrix where $a_{ij} = \begin{bmatrix} 2\cos t & \text{if } i = j \\ 1 & \text{if } i-j = 1 \\ 0 & \text{otherwise} \end{bmatrix}$	(Q)	2	
	$dy = \begin{bmatrix} 1 & \text{if } 1 - f = 1 \\ 0 & \text{otherwise} \end{bmatrix}$ then maximum value of det(A) is			
(C)	Let $f(x) = x^3 + px^2 + qx + 6$; where $p, q \in R$ and $f'(x) < 0$ in largest possible interval $\left(-\frac{5}{3}, -1\right)$ then value of $q - p$ is	(R)	3	
(D)	If $4^x - 2^{x+2} + 5 + b-1 -3 = \sin y $; $x, y, b \in R$ then the sum of the possible values of b is λ	(S)	4	

Answers

```
1. A \rightarrow P, Q, T; B \rightarrow S; C \rightarrow P, R; D \rightarrow R
```

2. $A \rightarrow R; B \rightarrow P, Q, S; C \rightarrow P, R; D \rightarrow P, Q, R, S$

3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

4. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$

5. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$

Exercise-4: Subjective Type Problems

- **1.** A and B are two square matrices. Such that $A^2B = BA$ and if $(AB)^{10} = A^k \cdot B^{10}$. Find the value of k 1020.
- **2.** Let A_n and B_n be square matrices of order 3, which are defined as:

$$A_n = [a_{ij}]$$
 and $B_n = [b_{ij}]$ where $a_{ij} = \frac{2i+j}{3^{2n}}$ and $b_{ij} = \frac{3i-j}{2^{2n}}$ for all i and j , $1 \le i$, $j \le 3$.

If
$$l = \lim_{n \to \infty} \text{Tr.} (3A_1 + 3^2A_2 + 3^3A_3 + \dots + 3^nA_n)$$
 and

$$m = \lim_{n \to \infty} \text{Tr. } (2B_1 + 2^2B_2 + 2^3B_3 + \dots + 2^nB_n)$$
, then find the value of $\frac{(l+m)}{3}$

[Note: Tr. (P) denotes the trace of matrix P.]

- **3.** Let A be a 2×3 matrix whereas B be a 3×2 matrix. If det. (AB) = 4, then the value of det. (BA), is:
- **4.** Find the maximum value of the determinant of an arbitrary 3×3 matrix A, each of whose entries $a_{ij} \in \{-1, 1\}$.
- 5. The set of natural numbers is divided into array of rows and columns in the form of matrices as

$$A_1 = [1], A_2 = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, A_3 = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}$$
 and so on. Let the trace of A_{10} be λ . Find unit digit of

λ?

			*			Ansv	vers			
1.	3	2.	7	3.	0	4.	4	5.	5	

000

Chapter 13 - Permutation and Combination

PERMUTATION AND COMBINATIONS

♥ E	xercise-	1 : Single Cho	ice Problems	0 201		1:5			
1. T	he numbe	r of 3-digit num	bers containing	g the dig	it 7 exact	dy once :			
	a) 225		220		200			180	
2. L	$et A = \{x_1 \\ : A \to B $, x_2 , x_3 , x_4 , x_5 hat are onto and	x_6, x_7, x_8 , there are exa	$B = \{y_1, $ ctly three	y ₂ , y ₃ , . e elemen	y_4 }. The to	tal	number of funthat $f(x) = y_1$ i	ction s :
	a) 11088		10920		13608	(d)	None of these	
		er of arrangement consecutive terr			S" such t	hat vowels	are	at the places v	vhich
(;	a) 36	(b)	72	(c)	24	(d)	108	
4. C	Consider al he numbe	l the 5 digit num r of numbers, wl	bers where eac nich contain al	h of the c l the four	ligits is cl digits is	nosen from t :	he	set {1, 2, 3, 4}.	Then
(a	a) 240	(b)	244	(c)	586	(781	
	Iow many lphabetica	ways are there al order?	to arrange the	e letters	of the w	ord "GARDI	EN'	with the vowe	els in
C:	a) 120	(b)		(c)				240	
6. If	fα ≠ βbut	$\alpha^2 = 5\alpha - 3$ and	$\beta^2 = 5\beta - 3 \text{the}$	en the equ	uation ha	ving α/βar	ndf	$3/\alpha$ as its roots	is:
		19x + 3 = 0		(b)	$3x^2 + 19$	9x - 3 = 0			
		19x - 3 = 0		(d)	x^2-5x	+3 = 0			
_ `	donti	s to answer 10 on the first five qu	out of 13 quest sestions. The n	ions in a umber o	n examir f choices	ation such available to	tha h	at he must choo im is :	se at
	140	(Ъ)	196	(c)	280	((d)	346	
R. L	et set A =	{1, 2, 3,, 22} s of all possible s	. Set <i>B</i> is a sub ubsets <i>B</i> .				ele	ements, find the	e sum
	a) 252 ²¹			(b)	230 ²¹ C	10			
-	c) 253 ²¹			(d)	253 ²¹ C	10			

9	. The	e value of $\left[\frac{2009! + 2008! + 2008!}{2008! + 2008!} \right]$	200	6! 7!]=				
	([·])	denotes greatest in	tege	r function.)		o o		
100	(a)	2009	(b)	2008	(c)	2007	(d)	
10	. If	$p_1, p_2, p_3, \ldots, p_r$	n+1	are distinct prime	e nı	imbers. Then the	nu	mber of factors of
	$p_1^n p_1^n$	$D_0 D_0 \dots D_{m-1}$ is:						
10	(a)	m(n+1)	(b)	$(n+1)2^m$	(c)	$n \cdot 2^m$	(d)	2 ^{nm}
11	pla	asket ball team co	nsist e in s	s of 12 pairs of tw	in b	rothers. On the fir	st da re ne	ay of training, all 24 ighbours. Number of
		(12)! 2 ¹¹		$(11)! 2^{12}$	(c)	$(12)! 2^{12}$	(d)	$(11)! 2^{11}$
12	dig suc the	it is even and all fo h that left most dig n <i>k</i> equals :	mber ur d it is	of four digit numberigits are different a even, second digit	ers si nd 'n is od	ich that the left mo denotes the num d and all four digit	s are	git is odd, the second of four digit numbers e different. If $m = nk$,
	(a)	$\frac{4}{5}$	(b)	$\frac{3}{4}$	(c)	5 4	(d)	3
13	. The	number of three o	ligit	numbers of the for	m xy	z such that $x < y$ a	nd z	$\leq y$ is:
	(a)	156	(b)	204	(c)	240	(d)	276
14		nd <i>B</i> are two sets a , then the number					920	more subsets than B
	(a)	12	(b)	14	(c)	15	(d)	16
15.	All ord	possible 120 permı inary five-letter wo	ıtatio	ons of WDSMC are The last letter of the	arra e 86 ^t	nged in dictionary ^h word in the list,	orde is :	er, as if each were an
	(a)	W	(b)	D	(c)	M	(d)	С
16.	The bloc	number of permutek of 4 letters or the	ation	n of all the letters A appear together in	AAAA a bl	BBBC in which the ock of 3 letters is:	e A's	appear together in a
	(a)	44	(b)	50	(c)	60	(d)	89
17.	Nun	nber of zero's at the	e end	ds of $\prod_{n=5}^{30} (n)^{n+1}$ is:				
		111		147		137	(d)	None of these
18.	The	number of positive	inte	egral pairs (x, y) sa	atisfy	ing the equation x	2_	$v^2 = 3370 \text{ is}$
	(a)		(b)		(c)		(d)	
19.	The	number of ways of and 'n' are of second	f sele	ecting 'n' things ou	the	'3n' things of whic	h 'n	'are of one kind and
				$(n-1) 2^{n-1}$		$(n+1)2^{n-1}$	(d)	$(n+2)2^{n-1}$

20.	If x,	y, z are three nat ered triplet (x , y ,	ural r	umber	s in A.	P. sucl	n tha	t x +	y + 2	= 30, th	en th	e possibl	e number of
	(a)	18		19			(c)	20			(d)	21	
21.	A di	ce is rolled 4 times			rs ann	earine	(C)	liete	d Th	e numbe			hrows such
	that	the largest numb	er ap	pearing	in the	e list i	s arc	4. i	s : :	C Humbe			
	(a)	175		625			(c)				(d)	1121	
22.	Let	m denotes the n			avs in	whic				5 girls c			ed in a line
	ane	rnately and n den	otes t	he num	ber of	ways	s in v	vhic	n 5 bo	ovs and 5	girls	an be a	rranged in a
2	CITIC	e so that no two	ooys a	are toge	ther. i	f m =	kn tl	nen	the va	alue of k	is:	15	939
2411	(a)	2	(b)	5 .			(c)	6		E:	(d)		* * * * * *
23.	Nur	nber of ways in v ween any two stud	vhich lents	4 stud	ents c	an sit	in 7	ch:	air in	a row, if	ther	e is no	empty chair
16	(a)	24	(b)	28			(c)	72	×	60	(d)	96	
24.	Nur	nber of zero's at t	ha am	4c T	0	7+1 •							
				n:	1(n)	1S :	N.						
		111		147			(c)					None	
25.	eng	number of words lish language) wi	of fo	ur lette etition	rs con permi	sistin tted i	g of e s :	equa	l nun	nber of vo	owels	and cor	nsonants (of
	72: (2	51030		50030			(c)					66150	
26.	Ten give	different letters on letters. Then the	of an ne nu	alphab mber of	et are word	giver s whi	i. Wo	rds ive a	with itleas	five lette t one lette	rs are er rep	formed eated is	l with these
	(a)	30240	(b)	69760)		(c)	697	780		(d)	99784	
27.	Nun	nber of four digit	numl	ers in v	vhich	at lea	st on	e di	git oc	curs more	e tha	n once, i	s:
	0.70	4464	250 8	4644			(c)					6444	
28.	In a	game of minesw t one vertex with	eeper	, a num quare.	ber or A squa	n a sq ire wi	uare th a r	den	otes t	he numb	er of	mines t	hat share at
E	squa	ares are undeter	mine	d. In h	ow n	nany	ways	ca	n the	mines	be p	laced ir	the given
	con	figuration on blan	k squ	ares:						1			are given
					2		,		_				
					2		1		2				
				richi-w				0.6100		J			
		120		105			(c)					100	
29.	Let to	he product of all t is :	he di	visors o	f 1440	be P	. If <i>P</i>	is di	visibl	e by 24 ^x ,	then	the max	timum value
	(a)		(b)	30			(c)	32			(d)	36	
	(4)		.c=#5							6	e#20 2		

30.		V be the number of the digits of N		digit numbers whic	ch co	ntain not more tha	an 2	different digits. The
	(a)	(40)	(b)	10	(c)	20	(d)	21
31.			20 000		0.000			MUTATION such that
 -	any	two consecutive le	tters	in the arrangemen	it are	neither both vow	els n	or both identical is :
	(a)	$63 \times \lfloor 6 \times \lfloor 5 \rfloor$	(b)	$8 \times 6 \times 5$	(c)	57 × [5 × [5	(d)	$7 \times \boxed{7} \times \boxed{5}$
32.		itsman can score 0 ch he can score exa					of di	fferent sequences in
	(a)	4	(b)	72	(c)	56	(d)	71
33.		itsman can score 0 ing a total of 20 ru						e number of ways of
	(a)	5	(b)	7	(c)	14	(d)	16
34.	The	number of non-ne	gativ	e integral solution	s of t	the equation $x + y$	+ z =	5 is:
	(a)	20	(b)	19	(c)	21	(d)	25
35.		number of soluti ral numbers is :	ons	of the equation x_1	+ x			where $x_i's$ are odd
	(a)	¹⁰⁵ C ₄	(b)	⁵² C ₅	(c)	⁵² C ₄	(d)	⁵⁰ C₄
36.		ordinary dice is re erent throws, such			0.20.20			ted. The number of 4, is:
	(a)	175	(b)	625	(c)	1121	(d)	1040
37.		nber of four letter v uded, are :	vord	s can be formed usi	ng th	e letters of word V	BRA	NT if letter V is must
		840	520.00	480		120	200000000000000000000000000000000000000	240
38.		number of rectangular polyg					the	twelve vertices of a
	(a)		(b)		(c)		D. 103	15
39.	Nur	nber of five digit in	itege	rs, with sum of the	dig	ts equal to 43 are	:	
	(a)	5	(b)	10	(c)	15	(d)	35
Z				Answ	er	s [

3. (d) 4. (a) **5.** (c) **6.** (a) (d) (a) 7. (b) 8. (d) (b) **10.** (b) 12. (c) 13. (d) 14. (c) **15.** (b) **16.** (a) (b) 17. (c) 18. (a) 19. (d) 20. (b) (d) 23. (d) 24. (c) **25.** (d) **26.** (b) **27.** (a) (d) 28. 29. (c) (b) 30. (a) **33.** (d) (c) 35. (c) **36.** (c) 37. (b) **38.** (d) 39. (c)

- (a) Number of ways in which 50 identical books can be distributed in 100 students, if each student can get atmost one book.
- (b) Number of ways in which 100 different white balls and 50 identical red balls can be arranged in a circle, if no two red balls are together.
- (c) Number of dissimilar terms in $(x_1 + x_2 + x_3 + ... + x_{50})^{51}$.
- (d) $\frac{2 \cdot 6 \cdot 10 \cdot 14 \dots 198}{50!}$
- **3.** Number of ways in which the letters of the word "NATION" can be filled in the given figure such that no row remains empty and each box contains not more than one letter, are:

(a) 11 6

(b) 12 6

(c) 13 6

(d) 14|6

4. Let a, b, c, d be non zero distinct digits. The number of 4 digit numbers abcd such that ab + cd is even is divisible by:

(a) 3

(b) 4

(c) 7

(d) 11

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Consider all the six digit numbers that can be formed using the digits 1, 2, 3, 4, 5 and 6, each digit being used exactly once. Each of such six digit numbers have the property that for each digit, not more than two digits smaller than that digit appear to the right of that digit.

- 1. A six digit number which does not satisfy the property mentioned above, is :
 - (a) 315426
- (b) 135462
- (c) 234651
- (d) None of these
- 2. Number of such six digit numbers having the desired property is:
 - (a) 120
- (b) 144
- (c) 162
- (d) 210

1.			An	swers		
1. (d)	2.	(c)				

Exercise-4: Matching Type Problems

1. All letters of the word BREAKAGE are to be jumbled. The number of ways of arranging them so that :

	Column-I		Column-II
(A)	The two A's are not together	(P)	720
(B)	The two E's are together but not two A's	(Q)	1800
(C)	Neither two A's nor two E's are together	(R)	5760
(D)	No two vowels are together	(S)	6000
		(T)	7560

2. Consider the letters of the word MATHEMATICS. Set of repeating letters = { M, A, T}, set of non repeating letters = { H, E, I, C, S }:

	Column-l		Column-II
(A)	The number of words taking all letters of the given word such that atleast one repeating letter is at odd position is	(P)	28·(7!)
(B)	The number of words formed taking all letters of the given word in which no two vowels are together is	(Q)	$\frac{(11)!}{(2!)^3}$
(C)	The number of words formed taking all letters of the given word such that in each word both M's are together and both T's are together but both A's are not together is		210(7!)
(D)	The number of words formed taking all letters of the given word such that relative order of vowels and consonants does not change is	(S)	840 (7!)
	Type to a country of the second of the secon	(T)	$\frac{4!7!}{(2!)^3}$

Answers

1. $A \rightarrow T$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow P$

2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow T$

Exercise-5: Subjective Type Problems

- 1. The number of ways in which eight digit number can be formed using the digits from 1 to 9 without repetition if first four places of the numbers are in increasing order and last four places are in decreasing order is N, then find the value of $\frac{N}{70}$.
- **2.** Number of ways in which the letters of the word DECISIONS be arranged so that letter N be somewhere to the right of the letter "D" is $\frac{9}{\lambda}$. Find λ .
- **4.** There are 10 stations enroute. A train has to be stopped at 3 of them. Let N be the ways in which the train can be stopped if at least two of the stopping stations are consecutive. Find the value of \sqrt{N} .
- **5.** There are 10 girls and 8 boys in a class room including Mr. Ravi, Ms. Rani and Ms. Radha. A list of speakers consisting of 8 girls and 6 boys has to be prepared. Mr. Ravi refuses to speak if Ms. Rani is a speaker. Ms. Rani refuses to speak if Ms. Radha is a speaker. The number of ways the list can be prepared is a 3 digit number $n_1 n_2 n_3$, then $|n_3 + n_2 n_1| =$
- **6.** Nine people sit around a round table. The number of ways of selecting four of them such that they are not from adjacent seats, is
- 7. Let the number of arrangements of all the digits of the numbers 12345 such that atleast 3 digits will not come in it's original position is *N*. Then the unit digit of *N* is
- 8. The number of triangles with each side having integral length and the longest side is of 11 units is equal to k^2 , then the value of 'k' is equal to
- 9. 8 clay targets are arranged as shown. If N be the number of different ways they can be shot (one at a time) if no target can be shot until the target(s) below it have been shot. Find the ten's digit of N.

- **10.** There are n persons sitting around a circular table. They start singing a 2 minute song in pairs such that no two persons sitting together will sing together. This process is continued for 28 minutes. Find n.
- **11.** The number of ways to choose 7 distinct natural numbers from the first 100 natural numbers such that any two chosen numbers differ at least by 7 can be expressed as ${}^{n}C_{7}$. Find the number of divisors of n.
- 12. Four couples (husband and wife) decide to form a committee of four members. The number of different committees that can be formed in which no couple finds a place is λ , then the sum of digits of λ is :

- **13.** The number of ways in which 2n objects of one type, 2n of another type and 2n of a third type can be divided between 2 persons so that each may have 3n objects is $\alpha n^2 + \beta n + \gamma$. Find the value of $(\alpha + \beta + \gamma)$.
- **14.** Let N be the number of integral solution of the equation x + y + z + w = 15 where $x \ge 0$, y > 5, $z \ge 2$ and $w \ge 1$. Find the unit digit of N.

		2. 8	3.	8	4.	8	5.	5	6.	9	7	0
--	--	------	----	---	----	---	----	---	----	---	---	---

000

Chapter 14 - Binomial Theorem

BIONMIAL THEOREM

Exercise-1: Single Choice Problems

1. Let $N = 2^{1224} - 1$, $\alpha = 2^{153} + 2^{77} + 1$	1 and $\beta = 2^{408} - 2^{204} + 1$. Then which of the following
statement is correct?	*
(a) α divides N but β does not	(b) β divides N but α does not

(c) α and β both divide N (d) neither α nor β divides N2. If $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then $a_r - {}^n C_1 \cdot a_{r-1} + {}^n C_2 a_{r-2} - {}^n C_3 a_{r-3} + \dots + (-1)^r {}^n C_r a_0$ is

equal to: (r is not multiple of 3)

(a) 0 (b) ${}^{n}C_{r}$ (c) a_{r} (d) 1

3 The coefficient of the middle term in the binomial expansion in powers of $a_{r} = 0.01$

3. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if α equals:

(a) $-\frac{3}{3}$ (b) $\frac{3}{5}$ (c) $\frac{-3}{10}$

 $\frac{-3}{10}$ (d) $\frac{1}{3}$

4. If $(1+x)^{2010} = C_0 + C_1 x + C_2 x^2 + \dots + C_{2010} x^{2010}$ then the sum of series $C_2 + C_5 + C_8 + \dots + C_{2009}$ equals to:

(a) $\frac{1}{2}(2^{2010}-1)$

(b) $\frac{1}{3}(2^{2010}-1)$

(c) $\frac{1}{2}(2^{2009}-1)$

(d) $\frac{1}{3}(2^{2009}-1)$

5. Let $\alpha_n = (2 + \sqrt{3})^n$. Find $\lim_{n \to \infty} (\alpha_n - [\alpha_n])$ ([·] denotes greatest integer function)

(a) 1

(b) $\frac{1}{2}$

(c) $\frac{1}{3}$

(d) $\frac{2}{3}$

6. The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is not divisible by :

(a) 3

(b) 7

(c) 11

(d) 19

Binomial Theorem

7.	The	value o	of the expression	log 2	$\left(1+\frac{1}{2}\sum_{k=1}^{11}{}^{12}C_k\right)$:
	(a)	11	(b)	12	(c) 1
8.	The	constar	nt term in the ex	pansi	ion of $\left(x+\frac{1}{3}\right)^{12}$ is

8. The constant term in the expansion of
$$\left(x + \frac{1}{x^3}\right)^{-1}$$
 is:

(a) 26 (b) 169 (c) 260 (d) 220

9. If $\frac{3}{4!} + \frac{4}{5!} + \frac{5}{6!} + \dots + 50$ term $= \frac{1}{3!} - \frac{1}{(k+3)!}$, then sum of coefficients in the expansion

 $(1+2x_1+3x_2+\ldots+100x_{100})^k$ is:

(where $x_1, x_2, x_3, \ldots, x_{100}$ are independent variables)

10. Statement-1: The remainder when (128)⁽¹²⁸⁾¹²⁸ is divided by 7 is 3.

because

Statement-2: (128)¹²⁸ when divided by 3 leaves the remainder 1.

- (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- (c) Statement-1 is true, statement-2 is false.
- (d) Statement-1 is false, statement-2 is true.

11. If
$$n > 3$$
, then $xyz^nC_0 - (x-1)(y-1)(z-1)^nC_1 + (x-2)(y-2)(z-2)^nC_2 - (x-3)(y-3)(z-3)^nC_3 + \dots + (-1)^n(x-n)(y-n)(z-n)^nC_n$ equals:

(b)
$$x + y + z$$

(c)
$$xy + yz + zx$$

12. If
$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 are the n ; n th roots of unity, $\alpha_r = e^{\frac{i2(r-1)\pi}{n}}$, $r = 1, 2, \ldots n$ then ${}^nC_1\alpha_1 + {}^nC_2\alpha_2 + \ldots + {}^nC_n\alpha_n$ is equal to:

(a)
$$\left(1+\frac{\alpha_2}{\alpha_1}\right)^n-1$$
 (b) $\frac{\alpha_1}{2}$

(a)
$$\left(1 + \frac{\alpha_2}{\alpha_1}\right)^n - 1$$
 (b) $\frac{\alpha_1}{2} [(1 + \alpha_1)^n - 1]$ (c) $\frac{\alpha_1 + \alpha_{n-1} - 1}{2}$ (d) $(\alpha_1 + \alpha_{n-1})^n - 1$

(d)
$$(\alpha_1 + \alpha_{n-1})^n - 1$$

13. The remainder when $2^{30} \cdot 3^{20}$ is divided by 7 is :

- (d) 6

(d) 14

(a) 1 (b) 2 (c) 14.
$$^{26}C_0 + ^{26}C_1 + ^{26}C_2 + \dots + ^{26}C_{13}$$
 is equal to:

(a)
$$2^{25} - \frac{1}{2} \cdot {}^{26}C_{13}$$
 (b) $2^{25} + \frac{1}{2} \cdot {}^{26}C_{13}$ (c) 2^{13}

(b)
$$2^{25} + \frac{1}{2} \cdot {}^{26}C_{13}$$

(d)
$$2^{26} + \frac{1}{2} \cdot {}^{26}C_{13}$$

		_							_										
15.	If a,	is t	he c	oeffic	ient	of x	r in	the e	xpar	rsion	of (1	. + x +	$x^2)'$	ⁿ (n ∈	N).	Then	the	valu	e of
	$(a_1 -$	- 4a ₄	+70	a ₇ + 1	.0a ₁₀	+) is	s equa	al to	•									
	(a)	3 ⁿ⁻¹				(b) 2	n			(c)	$\frac{1}{3}$.	2 ⁿ		((d)	$n \cdot 3^n$	-1		
16.	Let	$\binom{n}{k}$ re	pres	ents	the c	ombir	natio	n of'ı	n'thi	ngs ta	ken'	k'at a	time	, then	the	value	of th	e sun	n
										$\begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$									
	(a)	(99) 97))			(b) (100) 98)			(c)	(99 98	8)		((d)	(100) (97)			
17.	The	last o	ligit	of 9!	+ 399	966 is	:												
	(a)					(b) 3			ē	(c)	7			(d)	9			
18.	Let a	be t	he 7	th ter	m fro	m the	e beg	innin	g and	y be	the 7	th terr	n fro	m the	end	in the	exp	ansic	on of
	$3^{1/3}$	3 + -	1/3	n. If	y = 1	2 <i>x</i> th	en th	ie val	ue of	n is :									
	(a)	9	. (%)			(ъ) 8	3			(c)	10			(d) :	11			
19.	The	expre	essio	n (¹⁰	$(C_0)^2$	-(¹⁰	$(C_1)^2$	+ (10	C_2	2	+ (¹⁰ C ₈)	² – ($^{10}C_{9}$	2 +	$(^{10}C_{1}$	n) ²	equa	ls:
	(a)									(c)				(
20.		atio	of th	e co-	effici	ents t	o x ¹⁵	to th	ie ter	m ind	epen	dent o	f x ir	the e	xpaı	nsion	of(:	r ² +	$\left(\frac{2}{x}\right)^{15}$
21.	is: (a) In the	e exp	ansi	on of	(1+	(b) 1 x) ² (1	+ y)	?) ³ (1+	· z) ⁴	(c) (1 + w) 7:) ⁵ ,t	: 64 he sur	n of 1	the co	(d) effic	7 : 1 cient c	6 of the	e tern	ns of
	(a)				(ъ) 7	1			(c)	81			(d)	91			
22.	If $\sum_{n=0}^{n}$	$\left(\frac{r^3}{r^3}\right)$	+ 2r ²	$rac{2}{(1)^2} + 3rac{3}{(1)^2}$	+ 2	$^{n}C_{r}$	= 2	4 + 2 ³	3 + 2 3	$\frac{^{2}-2}{}$				•				9	
	then	` the v	alue	of n	is:												¥.		
	(a) 2					b) 2 ⁵	2			(c)	2 ³			(d)	2 ⁴	-		
1	1							A	nsı	ver	s I	and the second					· ·		
t rei	(40)(5)	170					a		(-)			Marrian					X	Ale Law	and the same
1.	(c)	2.	(a)	3.		4.	675 TE:		(a)		(c)	7.	(a)	8.	(d)	9.	(d)	10.	(d)
11.	(d)	12.	(a)	13.	(b)	14.	(b)	15.	(d)	16.	(d)	17.	(d)	18.	(a)	19.	(c)	20.	(b)
21.	(d)	22.	(a)											15/6	ತಾನ		`-'		

Binomial Theorem **Exercise-2:** One or More than One Answer is/are Correct **1.** The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is divisible by : (a) 3 (b) 4 (c) 7 (d) 19 **2.** If $(1+x+x^2+x^3)^{100} = a_0 + a_1x + a_2x^2 + \dots + a_{300}x^{300}$ then which of the following statement(s) is/are correct? (a) $a_1 = 100$ (b) $a_0 + a_1 + a_2 + \dots + a_{300}$ is divisible by 1024 (c) coefficients equidistant from beginning and end are equal (d) $a_0 + a_2 + a_4 + \dots + a_{300} = a_1 + a_3 + a_5 + \dots + a_{299}$ **3.** $\sum_{r=0}^{4} (-1)^r {}^{16}C_r$ is divisible by : (a) 5 (d) 13 **4.** The expansion of $\left(\sqrt{x} + \frac{1}{2\sqrt[4]{x}}\right)^n$ is arranged in decreasing powders of x. If coefficient of first three terms form an A.P. then in expansion, the integral powers of x are : 5. Let $(1+x^2)^2(1+x)^n = \sum_{k=0}^{n+4} a_k x^k$. If a_1 , a_2 , a_3 are in AP, then n is (given that ${}^nC_r = 0$, if n < r): (d) 2 **6.** $\sum_{i=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} {n \choose i} {n \choose j} {n \choose k}, \ {n \choose r} = {}^{n}C_{r}:$ (a) is less than 500 if n = 3(b) is greater than 600 if n = 3

- 7. If ${}^{100}C_6 + 4$. ${}^{100}C_7 + 6$. ${}^{100}C_8 + 4$. ${}^{100}C_9 + {}^{100}C_{10}$ has the value equal to ${}^{x}C_{y}$; then the possible value(s) of x + y can be: (b) 114 (c) 196 (a) 112
- 8. If the co-efficient of x^{2r} is greater than half of the co-efficient of x^{2r+1} in the expansion of $(1+x)^{15}$; then the possible value of 'r' equal to:
- (a) 5 (b) 6 (c) 7 (d) **9.** Let $f(x) = 1 + x^{111} + x^{222} + x^{333} + x^{999}$ then f(x) is divisible by
 - (a) x+1

(c) is less than 5000 if n = 4

(d) is greater than 4000 if n = 4

(d) $1 + x^{222} + x^{444} + x^{666} + x^{888}$ (c) x-1

Exercise-3: Matching Type Problems

1.

	Column-I	1	Column-II
(A)	If $^{n-1}C_r = (k^2 - 3)^n C_{r+1}$ and $k \in \mathbb{R}^+$, then least value of $5[k]$ is (where [·] represents greatest integer function)	(P)	10
(B)	$\sum_{i=0}^{m} {}^{20}C_i {}^{40}C_{m-i}, \text{ where } {}^{n}C_r = 0 \text{ if } r > n, \text{ is maximum when } \frac{m}{5} \text{ is}$	(Q)	5
(C)	Number of non-negative integral solutions of inequation $x + y + z \le 4$ is	(R)	35 .
(D)	Let $A = \{1, 2, 3, 4, 5\}$, $f: A \rightarrow A$, The number of onto functions such that $f(x) = x$ for at least 3 distinct $x \in A$, is not a multiple of	(S)	6
		(T)	12

2.

1	Column-i		Column-II
(A)	Number of real solution of $(x^2 + 6x + 7)^2 + 6(x^2 + 6x + 7) + 7 = x$ is/are	(P)	15
(B)	If $P = \sum_{r=0}^{n} {}^{n}C_{r}$; $q = \sum_{r=0}^{m} {}^{m}C_{r}$ (15) ^r $(m, n \in N)$ and if	(Q)	5
(C)	P = q and m , n are least then $m + n =Remainder when 1 + 3 + 5 + \dots + 2011! is divided by 56 is$	(R)	3
(D)	Inequality $\left 1 - \frac{ x }{1 + x }\right \ge \frac{1}{2}$ holds for x , then number of integral values of ' x ' is/are	(S)	0

3. Match the following

Column-I		Column-II
(A) If the sum of first 84 terms of the series $\frac{4+\sqrt{3}}{1+\sqrt{3}} + \frac{8+\sqrt{15}}{\sqrt{3}+\sqrt{5}} + \frac{12+\sqrt{35}}{\sqrt{5}+\sqrt{7}} + \dots \text{ is 549k, then } k \text{ is equal to}$	(P)	3

(B)	If $x, y \in R$, $x^2 + y^2 - 6x + 8y + 24 = 0$, the greatest value of $\frac{16}{5}\cos^2\left(\sqrt{x^2 + y^2}\right) - \frac{24}{5}\sin\left(\sqrt{x^2 + y^2}\right)$ is	(Q)	2
(C)	If $(\sqrt{3}+1)^6 + (\sqrt{3}-1)^6 = 416$, if $xyz = [(\sqrt{3}+1)^6]$, $x,y,z \in N$, (where [·] denotes the greatest integer function), then the number of ordered triplets (x,y,z) is		5
(D)	If $(1+x)(1+x^2)(1+x^4)(1+x^{128}) = \sum_{r=0}^{n} x^r$, then $\frac{n}{85}$ is equal to	(S)	9

Answers

```
1. A \rightarrow Q; B \rightarrow S; C \rightarrow R; D \rightarrow P, Q, R, S, T
```

^{2.} $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

^{3.} $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

Exercise-4: Subjective Type Problems

- **1.** The sum of the series $3 \cdot {}^{2007}C_0 8 \cdot {}^{2007}C_1 + 13 \cdot {}^{2007}C_2 18 \cdot {}^{2007}C_3 + \dots$ upto 2008 terms is K, then K is :
- **2.** In the polynomial function $f(x) = (x-1)(x^2-2)(x^3-3)....(x^{11}-11)$ the coefficient of x^{60} is:
- 3. If $\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r$ and $a_k = 1 \ \forall \ K \ge 2n$ and $\sum_{r=0}^{3n} d_r (x-8)^r = \sum_{r=0}^{3n} B_r (x-9)^r$ and $\sum_{r=0}^{3n} d_r (x-12)^r = \sum_{r=0}^{3n} D_r (x-13)^r$ and $d_K = 1 \ \forall \ K \ge 2n$. The find the value of $\frac{A_{2n} + D_{2n}}{B_{2n}}$.
- **4.** If $3^{101} 2^{100}$ is divided by 11, the remainder is
- **5.** Find the hundred's digit in the co-efficient of x^{17} in the expansion of $(1 + x^5 + x^7)^{20}$.
- **6.** Let $x = (3\sqrt{6} + 7)^{89}$. If $\{x\}$ denotes the fractional part of 'x' then find the remainder when $x\{x\} + (x\{x\})^2 + (x\{x\})^3$ is divided by 31.
- 7. Let $n \in N$; $S_n = \sum_{r=0}^{3n} (3^n C_r)$ and $T_n = \sum_{r=0}^n (3^n C_{3r})$. Find $|S_n 3T_n|$.
- **8.** Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\frac{1}{5}\log_7(3^{|x-2|-9})}\right)^7 \text{ equal 567}:$
- **9.** Let q be a positive integer with $q \le 50$. If the sum ${}^{98}C_{30} + 2 {}^{97}C_{30} + 3 {}^{96}C_{30} + \dots + 68 {}^{31}C_{30} + 69 {}^{30}C_{30} = {}^{100}C_q$ Find the sum of the digits of q.
- **10.** The remainder when $\left(\sum_{k=1}^{5} {}^{20}C_{2k-1}\right)^6$ is divided by 11, is:
- **11.** Let $a = 3^{\frac{1}{223}} + 1$ and for all $n \ge 3$, let $f(n) = {}^{n}C_{0}$. $a^{n-1} {}^{n}C_{1}$. $a^{n-2} + {}^{n}C_{2}$. $a^{n-3} \dots + (-1)^{n-1} {}^{n}C_{n-1} \cdot a^{0}$. If the value of $f(2007) + f(2008) = 3^{7} k$ where $k \in N$ then find k
- **12.** In the polynomial $(x-1)(x^2-2)(x^3-3)...(x^{11}-11)$, the coefficient of x^{60} is:
- 13. Let the sum of all divisiors of the form $2^p \cdot 3^q$ (with p, q positive integers) of the number $19^{88} 1$ be λ . Find the unit digit of λ .

- **14.** Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{g^{|x-2|}}} + 7^{\left(\frac{1}{5}\right)\log_7(3^{|x-2|-9})}\right)^7 \text{ equals 567.}$
- **15.** Let $1 + \sum_{r=1}^{10} (3^r \cdot {}^{10}C_r + r \cdot {}^{10}C_r) = 2^{10} (\alpha \cdot 4^5 + \beta)$ where $\alpha, \beta \in N$ and $f(x) = x^2 2x k^2 + 1$. If α, β lies between the roots of f(x) = 0. Then find the smallest positive integral value of k.
- **16.** Let $S_n = {}^n C_0 {}^n C_1 + {}^n C_1 {}^n C_2 + \dots + {}^n C_{n-1} {}^n C_n$ if $\frac{S_{n+1}}{S_n} = \frac{15}{4}$; find the sum of all possible values of $n \ (n \in N)$

						Ansv	/ers						
1.	0	2.	1	3.	2	4.	2	5.	4	6.	0	7	2
8.	4	9.	5	10.	3	11.	9	12.	(1)	13.	(4)	14	21116
15.	5	16.	6				Ì				(1)	14.	(4)

Chapter 15 - Probability

PROBABILITY

	i i				
*	Exercise-1	: Single Choice	Problems		
1.	The boy come	es from a family o	f two children; Wha	t is the probability t	that the other child is his
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c)		(d) $\frac{1}{4}$
2	. If A be any e	vent in sample sp	ace then the maxim	Im value of $3\sqrt{P(A)}$	$\overline{)} + 4\sqrt{P(\overline{A})}$ is:
	(a) 4		(b)	2	
	(c) 5			Can not be determ	
3	Let A and B b	e two events, such	that $P(\overline{A \cup B}) = \frac{1}{6}$,	$P(A \cap B) = \frac{1}{4} \text{ and } P(A \cap B) = \frac{1}{4} \text{ and } $	$(\overline{A}) = \frac{1}{4}$, where \overline{A} stands
	for complem	ent of event A. Th	nen events A and B a		
		likely and mutual	1 D. S.	equally likely but	
	(c) indepen	dent but not equa			e and independent
4	. Let <i>n</i> ordinar	y fair dice are for	led once. The proba	omity that at least o	ne of the dice shows an
	odd number	is $\left(\frac{31}{32}\right)$ than 'n' is	equal to:		
	(a) 3	(b) 4	(c)		(d) 6
5	. Three a's, thi	ee b's and three c	's are placed random	ly in a 3×3 matrix.	The probability that no
	row or colum	ın contain two ide	entical letters can be	expressed as $\frac{p}{q}$, wh	here p and q are coprime
	then $(p+q)$	equals to :	(a)	141	(d) 131
	(a) 151	(b) 16	ol (C)	v that S is partition	ed into 3 disjoint subsets
6	with n memb	ers in each subset	such that the three l :	argest members of S	are in different subsets.
	Then $\lim_{n\to\infty} P_n$ (a) $2/7$	= (b) 1/	7 (c)	1/9	(d) 2/9

244						jų.	Adv	anced Proble	ms in	Mathe	matics for JEE
7.	Th	ree differ bability t	ent numbe	ers are sele	ected at rando wo numbers o	om fro equal	om th	the set $A = \{1,$ where third number	2, 3, per is	$\frac{p}{q}$, who	, 10 }. Then $_{ m the}$ ere p and q $_{ m are}$
	rela	atively pr	ime positi	ve integer	s then the va	lue o	f (p +	q) is:			
	(a)	39		(b) 40		(c)	41			42	
8.	(ch	ange) cha	annel after	r every one	e minute. The	e prot	oabili	ty that he is b	acki	J III3 OI	sires to switch riginal channel
	for	the first	time after ien (m + n	4 minute	s can be expi	ressec	1 as -	$\frac{\pi}{n}$; where m	and n	are re	elatively prime
		27	1011 (III + III	(b) 31		(c)	22		(d)	33	
9.	Let	ters of tl		TITANIC a	are arranged starts either v	to f	orm		1985 1000		What is the
	(a)			(b) $\frac{4}{7}$		(c)	•		(d)	$\frac{5}{7}$	
10.	A m	apping is	s selected	at randon	n from all ma	pping	gs f:	$A \rightarrow A$			
	whe	ere set A	= {1, 2, 3	$, \ldots, n$							
	If th	ie probat	ility that	mapping i	s injective is	$\frac{3}{32}$, the	hen t	he value of <i>n</i>	is:		
	(a)	3		(b) 4		(c)	8		(d)	16	
11.	A 4 pro	digit nun duct of it	nber is rar s digit is d	idomly pic livisible by	ked from all 3 is :	the 4	digit	numbers, the	en the	e proba	ability that the
	(a)	$\frac{107}{125}$			K	(ъ)	$\frac{109}{125}$			i gei	
	(c)	$\frac{111}{125}$				(d)	Non	e of these			

12. To obtain a gold coin; 6 men, all of different weight, are trying to build a human pyramid as shown in the figure. Human pyramid is called "stable" if some one not in the bottom row is "supported by" each of the two closest people beneath him and no body can be supported by anybody of lower weight. Formation of 'stable' pyramid is the only condition to get a gold coin. What is the probability that they will get gold coin?

(c)
$$\frac{4}{45}$$

13. From a pack of 52 playing cards; half of the cards are randomly removed without looking at them. From the remaining cards, 3 cards are drawn randomly. The probability that all are king.

(a)	1
(4)	(25)(17)(13)

(b) $\frac{1}{(25)(15)(13)}$

(c)
$$\frac{1}{(52)(17)(13)}$$

(d) $\frac{1}{(13)(51)(17)}$

14. A bag contains 10 white and 3 black balls. Balls are drawn one by one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw is:

(a)
$$\frac{15}{286}$$

(b) $\frac{105}{286}$

(c) $\frac{35}{286}$

(d) $\frac{7}{286}$

15. Let S be the set of all function from the set $\{1, 2, ..., 10\}$ to itself. One function is selected from S, the probability that the selected function is one-one onto is:

(a)
$$\frac{9!}{10^9}$$

(b) $\frac{1}{10}$

(c) $\frac{100}{10!}$

(d) $\frac{9!}{10^{10}}$

16. Two friends visit a restaurant randomly during 5 pm to 6 pm. Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is :

(a)
$$\frac{1}{4}$$

(b) $\frac{1}{16}$

(c) $\frac{7}{16}$

(d) $\frac{9}{16}$

17. Three numbers are randomly selected from the set {10,11,12,.....,100}. Probability that they form a Geometric progression with integral common ratio greater than 1 is:

(a)
$$\frac{15}{91}$$
C₃

(b) $\frac{16}{^{91}C_3}$

(c) $\frac{17}{91}$ C₃

(d) $\frac{18}{91}$ C₃

						1000	A	nsv	ver	S							\ \ \ 	5
1. (a)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(d)	7.	(c)	8.	(b)	9.	(d)	10.	(b)
11. (a)	12.	(a)	13.	(a)	14.	(a)	15.	(a)	16.	(c)	17.	(d)						

Exercise-2: One or More than One Answer is/are Correct

- 1. A consignment of 15 record players contain 4 defectives. The record players are selected at random, one by one and examined. The one examined is not put back. Then:
 - (a) Probability of getting exactly 3 defectives in the examination of 8 record players is $\frac{{}^{4}C_{3}{}^{11}C_{5}}{{}^{15}C_{2}}.$
 - (b) Probability that 9^{th} one examined is the last defective is $\frac{8}{197}$.
 - (c) Probability that 9^{th} examined record player is defective, given that there are 3 defectives in first 8 players examined is $\frac{1}{7}$.
 - (d) Probability that 9^{th} one examined is the last defective is $\frac{8}{195}$.
- **2.** If A_1 , A_2 , A_3 ,....., A_{1006} be independent events such that $P(A_i) = \frac{1}{2i}$ ($i = 1, 2, 3, \ldots, 1006$) and probability that none of the events occurs be $\frac{\alpha!}{2^{\alpha}(\beta!)^2}$,

then:

- (a) β is of form 4k + 2, $k \in I$
- (b) $\alpha = 2\beta$
- (c) B is a composite number
- (d) α is of form $4k, k \in I$
- **3.** A bag contains four tickets marked with 112, 121, 211, 222 one ticket is drawn at random from the bag. let E_i (i = 1,2,3) denote the event that i^{th} digit on the ticket is 2. Then:
 - (a) E_1 and E_2 are independent
- (b) E_2 and E_3 are independent
- (c) E_3 and E_1 are independent
- (d) E_1 , E_2 , E_3 are independent
- **4.** For two events A and B let, $P(A) = \frac{3}{5}$, $P(B) = \frac{2}{3}$, then which of the following is/are correct?
 - (a) $P(A \cap \overline{B}) \leq \frac{1}{3}$

(b) $P(A \cup B) \ge \frac{2}{3}$

(c) $\frac{4}{15} \le P(A \cap B) \le \frac{3}{5}$

(d) $\frac{1}{10} \le P(\overline{A}/B) \le \frac{3}{5}$

Answers

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

There are four boxes B_1 , B_2 , B_3 and B_4 . Box B_i has i cards and on each card a number is printed, the numbers are from 1 to i. A box is selected randomly, the probability of selecting box B_i is $\frac{i}{10}$ and then a card is drawn.

Let E_i represent the event that a card with number 'i' is drawn. Then :

- **1.** $P(E_1)$ is equal to:
 - (a) $\frac{1}{5}$
- (b) $\frac{1}{10}$
- (c) $\frac{2}{5}$
- (d) $\frac{1}{4}$

- **2.** $P(B_3|E_2)$ is equal to:
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{4}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$

Paragraph for Question Nos. 3 to 5

Mr. A randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and arranges them in descending order to form a three digit number. Mr. B randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and also arranges them in descending order to form a 3 digit number.

- 3. The probability that Mr. A's 3 digit number is always greater than Mr. B's 3 digit number is :
 - (a) $\frac{1}{9}$
- (b) $\frac{1}{3}$
- (c) $\frac{2}{3}$
- (d) $\frac{1}{4}$
- 4. The probability that A and B has the same 3 digit number is:
 - (a) $\frac{7}{9}$
- (b) $\frac{4}{9}$
- (c) $\frac{1}{84}$
- (d) $\frac{1}{72}$
- 5. The probability that Mr. A's number is larger than Mr. B's number, is:
 - (a) $\frac{37}{56}$
- (b) $\frac{39}{56}$
- (c) $\frac{31}{56}$
- (d) none of these

Paragraph for Question Nos. 6 to 7

In an experiment a coin is tossed 10 times.

- 6. Probability that no two heads are consecutive is:
 - (a) $\frac{143}{2^{10}}$
- (b) $\frac{9}{2^6}$
- (c) $\frac{2^7-1}{2^{10}}$
- (d) $\frac{2^6-1}{2^6}$

7. The probability of the event that "exactly four heads occur and oc	ccur alternately"	is:
---	-------------------	-----

(a)
$$1-\frac{4}{2^{10}}$$

(b)
$$1 - \frac{7}{2^{10}}$$

(c)
$$\frac{4}{2^{10}}$$

(d)
$$\frac{5}{2^{10}}$$

Paragraph for Question Nos. 8 to 10

The rule of an "obstacle course" specifies that at the n^{th} obstacle a person has to toss a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^n , the person is said to have crossed the obstacle.

8. The maximum obstacles a person can cross	obstacles a person can	cross
---	------------------------	-------

(a)
$$\frac{143}{216}$$

(b)
$$\frac{100}{243}$$

(c)
$$\frac{216}{243}$$

(d)
$$\frac{100}{216}$$

(a)
$$\frac{36}{243}$$

(b)
$$\frac{116}{216}$$

(c)
$$\frac{35}{243}$$

(d)
$$\frac{143}{243}$$

Paragraph for Question Nos. 11 to 12

In an objective paper, there are two sections of 10 questions each. For 'section 1', each question has 5 options and only one option is correct and 'section 2' has 4 options with multiple answers and marks for a question in this section is awarded only if he ticks all correct answers. Marks for each question in 'section 1' is 1 and in 'section 2' is 3. (There is no negative marking).

11. If a candidate attempts only two questions by gussing, one from 'section 1' and one from 'section 2', the probability that he scores in both questions is :

(a)
$$\frac{74}{75}$$

(b)
$$\frac{1}{25}$$

(c)
$$\frac{1}{15}$$

(d)
$$\frac{1}{75}$$

12. If a candidate in total attempts 4 questions all by gussing, then the probability of scoring 10 marks is:

(a)
$$\frac{1}{15} \left(\frac{1}{15} \right)^2$$

(b)
$$\frac{4}{5} \left(\frac{1}{15} \right)^3$$

(b)
$$\frac{4}{5} \left(\frac{1}{15}\right)^3$$
 (c) $\frac{1}{5} \left(\frac{14}{15}\right)^3$

(d) None of these

Answers

Exercise-4: Matching Type Problems

	Column-I	1	Column-II
(A)	Number of elements in P is equal to the number of elements in Q is	(P)	$\frac{{}^{2n}C_n}{4^n}$
(B)	The number of elements in P is more than that in Q is	(Q)	$\frac{(2^{2n}-{}^{2n}C_n)}{2^{2n+1}}$
(C)	$P \cap Q = \phi$ is	(R)	$\frac{{}^{2n}C_{n+1}}{4^n}$
(D)	Q is a subset of P is	(S)	$\left(\frac{3}{4}\right)^n$
		(T)	$\frac{{}^{2n}C_n}{4^{n-1}}$

Answers

Exercise-5: Subjective Type Problems

- 1. Mr. A writes an article. The article originally is error free. Each day Mr. B introduces one new error into the article. At the end of the day, Mr. A checks the article and has $\frac{2}{3}$ chance of catching each individual error still in the article. After 3 days, the probability that the article is error free can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Let $\lambda = q p$, then find the sum of the digits of λ .
- **2.** India and Australia play a series of 7 one-day matches. Each team has equal probability of winning a match. No match ends in a draw. If the probability that India wins at least three consecutive matches can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the unit digit of p.
- **3.** Two hunters A and B set out to hunt ducks. Each of them hits as often as he misses when shooting at ducks. Hunter A shoots at 50 ducks and hunter B shoots at 51 ducks. The probability that B bags more ducks than A can be expressed as $\frac{p}{q}$ in its lowest form. Find the value of (p+q).
- **4.** If $a, b, c \in \mathbb{N}$, the probability that $a^2 + b^2 + c^2$ is divisible by 7 is $\frac{m}{n}$ where m, n are relatively prime natural numbers, then m + n is equal to :
- **5.** A fair coin is tossed 10 times. If the probability that heads never occur on consecutive tosses be $\frac{m}{n}$ (where m, n are coprime and m, $n \in N$), then the value of (n-7m) equals to :
- **6.** A bag contains 2 red, 3 green and 4 black balls. 3 balls are drawn randomly and exactly 2 of them are found to be red. If *p* denotes the chance that one of the three balls drawn is green; find the value of 7 *p*.
- 7. There are 3 different pairs (i.e., 6 units say a, a, b, b, c, c) of shoes in a lot. Now three person come and pick the shoes randomly (each gets 2 units). Let p be the probability that no one is able to wear shoes (i.e., no one gets a correct pair), then the value of $\frac{13p}{4-p}$, is:
- **8.** A fair coin is tossed 12 times. If the probability that two heads do not occur consecutively is p, then the value of $\frac{[\sqrt{4096p} 1]}{2}$ is, where [] denotes greatest integer function:
- **9.** *X* and *Y* are two weak students in mathematics and their chances of solving a problem correctly are 1/8 and 1/12 respectively. They are given a question and they obtain the same answer. If the probability of common mistake is $\frac{1}{1001}$, then probability that the answer was correct is a/b (a and b are coprimes). Then |a-b| =

- **10.** Seven digit numbers are formed using digits 1, 2, 3, 4, 5, 6, 7, 8, 9 without repetition. The probability of selecting a number such that product of any 5 consecutive digits is divisible by either 5 or 7 is *P*. Then 12*P* is equal to
- 11. Assume that for every person the probability that he has exactly one child, excactly 2 children and exactly 3 children are $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ respectively. The probability that a person will have 4 grand children can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of 5p-q.
- **12.** Mr. B has two fair 6-sided dice, one whose faces are numbered 1 to 6 and the second whose faces are numbered 3 to 8. Twice, he randomly picks one of dice (each dice equally likely) and rolls it. Given the sum of the resulting two rolls is 9. The probability he rolled same dice twice is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find (m+n).

4	1					Ansv	vers			A THE STATE OF THE			1
1.	7	2.	7	3.	3	4.	8	5.	1,	6.	3	7.	2
8.	9	9.	1	10.	7	11.	7	12.	7				

LOGARITHMS

Exercise-1: Single Choice Problems

- **4.** Least positive integral value of 'a' for which $\log_{\left(x+\frac{1}{x}\right)}(a^2-3a+3)>0$; (x>0):
- (a) 1 (b) 2 (c) 3 (d) 4 5. Let $P = \frac{5}{\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}}$ and $(120)^P = 32$, then the value of x be:
- (a) 1 (b) 2 (c) 3 (d) 4 **6.** If x, y, z be positive real numbers such that $\log_{2x}(z) = 3$, $\log_{5y}(z) = 6$ and $\log_{xy}(z) = \frac{2}{3}$ then
 - the value of z is :
 (a) $\frac{1}{5}$ (b) $\frac{1}{10}$ (c) $\frac{3}{5}$ (d) $\frac{4}{9}$
- 7. Sum of values of x and y satisfying $\log_x (\log_3 (\log_x y)) = 0$ and $\log_y 27 = 1$ is:
- (a) 27 (b) 30 (c) 33 (d) 36
- **8.** $\log_{0.01} 1000 + \log_{0.1} 0.0001$ is equal to: (a) -2 (b) 3 (c) -5/2 (d) 5/2

		200	
Lo	~	71.	100
LU	24		m

9. If $\log_{12} 27 = a$, then lo	og ₆ 16 =		
(a) $2\left(\frac{3-a}{3+a}\right)$	(b) $3\left(\frac{3-a}{3+a}\right)$	(0,4)	(d) None of these
10. If $\log_2(\log_2(\log_3 x))$	$= \log_2(\log_3(\log_2 y)) =$	0 then the value of $(x - x)$	+ y) is :
(a) 17	(b) 9	(c) 21	(d) 19
11. Suppose that a and			$\log_{27} a + \log_9 b = \frac{7}{2}$ and
	Then the value of $a \cdot b$ is	S:	
(a) 81	(b) 243	(c) 27	(d) 729
12. If $2^a = 5$, $5^b = 8$, $8^c =$	11 and $11^d = 14$, then t	he value of 2^{abcd} is :	
(a) 1	(b) 2	(c) 7	(d) 14
13. Which of the following	g conditions necessarily		mber x is rational?
	(II) x^3 and x^5 are ra		
THE CONTROL OF THE STREET CONTROL OF THE STREET		(c) II and III only	(d) III only
14. The value of $\frac{\log_8 17}{\log_9 23}$	$-\frac{\log_{2\sqrt{2}} 17}{\log_3 23}$ is equal to:		CER SI INC.
(a) -1	(b) 0	$(c) \frac{\log_2 17}{\log_3 23}$	(d) $\frac{4(\log_2 17)}{3(\log_3 23)}$
15. The true solution set of	of inequality $\log_{(2x-3)}(3)$	3x-4) > 0 is equal to :	
(a) $\left(\frac{4}{3}, \frac{5}{3}\right) \cup (2, \infty)$			(d) $\left(\frac{2}{3}, \frac{4}{3}\right) \cup (2, \infty)$
characteristic $-q$ then	natural numbers logari log ₁₀ P – log ₁₀ Q has th	thm of whose reciproca e value equal to :	lls to the base 10 have the
(a) $p - q + 1$	(b) $p-q$	(c) $p+q-1$	(d) $p - q - 1$
(a) $p-q+1$ 17. If $2^{2010} = a_n 10^n + a_n$	$a_1 10^{n-1} + \dots + a_2 1$	$0^2 + a_1 \cdot 10 + a_0$, when	re $a_i \in \{0, 1, 2, \dots, 9\}$
for all $i = 0, 1, 2, 3,$			E
(a) .603	(b) 604	(c) 605	(d) 606
18. The number of zeros $N = (0.15)^{20}$ are :	after decimal before t	he start of any signific	cant digit in the number
(a) 15	(b) 16	(c) 17	(d) 18
19. $\log_2[\log_4(\log_{10} 16^4 +$	log ₁₀ 25 ⁸)] simplifies t	:0:	
(a) an irrational		(b) an odd prime	at
(c) a composite		(d) unity	
20. The sum of all the solu	tions to the equation 2	THE DEAL CONTRACTOR	2:
(a) 30	(b) 350	(c) 75	(d) 200

	\$1			
21.	$x^{\log_x a \cdot \log_a y \cdot \log_y z}$ is eq	ual to :	×	
	(a) x	(b) y	(c) z	(d) x^z
22.	Number of solution(s)	of the equation $x^{x\sqrt{x}} =$	$=(x\sqrt{x})^x$ is/are:	
	(a) 0	(b) 1	(c) 2	(d) 3
23.	The difference of roots	s of the equation (\log_{27}	$(x^3)^2 = \log_{27} x^6$ is:	
	(a) $\frac{2}{3}$	(b) 1	(c) 9	(d) 8
24.	If $\log_{10} x + \log_{10} y = 3$	2, $x - y = 15$ then:		
	(a) (x, y) lies on the	line y = 4x + 3	(b) (x, y) lies on y^2	=4x
	(c) (x, y) lies on $x =$	4y	(d) (x, y) lies on $4x$	= y
			H	
25.	Product of all values of	of x satisfying the equation	ion	
		$\sqrt{2^x \sqrt[3]{4^x (0.125)^{1/x}}} =$	$=4(\sqrt[3]{2})$ is:	
	(a) $\frac{14}{5}$	(b) 3	(c) $-\frac{1}{5}$	(d) $-\frac{3}{5}$
	5	(6) 3	5	5
26.	Sum of all values of x			
	25	$(2x-x^2+1) + 9^{(2x-x^2+1)} =$	34(15 ^(2x-x²)) is :	
	(a) 1	(b) 2	(c) 3	(d) 4
27.	If $a^x = b^y = c^z = d^w$,	then $\log_a(bcd) =$		
	(a) $z\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{w}\right)$	(b) $y\left(\frac{1}{x} + \frac{1}{z} + \frac{1}{w}\right)$	(c) $x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$	(d) $\frac{xyz}{w}$
28.	If $x = \frac{1}{(\sqrt{5} + 1)(\sqrt[4]{5} + 1)}$	4 Th	nen the value of $(1 + x)^2$	48 is .
	$(\sqrt{5}+1)(\sqrt[4]{5}+1)$	(1)(5+1)(16/5+1)		13 .
	(a) 5	(b) 25	(c) 125	(d) 625
29.	If $\log_x \log_{18}(\sqrt{2} + \sqrt{8})$	$=\frac{1}{2}$, then the value of	32x =	
		o .		04.440 900
	(a) 2	(b) 4	(c) 6	(d) 8
30.	Let $n \in N$, $f(n) = \begin{cases} \log n \end{cases}$	otherwise	$\frac{e^r}{n}$, then the value of $\sum_{n=1}^{\infty}$	$\sum_{n=1}^{\infty} f(n) \text{ is } :$
		(b) 2011×1006		(d) 2 ²⁰¹¹
31.	If the equation $\log_5(1+(\log_5(1+\log_5(1+\log_5(1+\log_5(1+(\log_5(1+\log_5(1+(\log_5(1+(\log_5(1+(\log_5(1+(\log_5($	$\frac{g_{12}(\log_8(\log_4 x))}{\log_4(\log_y(\log_2 x)))} =$	0 has a solution for	'x' when $c < y < b$, $y \neq a$,
	where 'b' is as large a	s possible and 'c' is as	small as possible, ther	the value of $(a + b + c)$ is
	equals to :			raide of (u + v + c) is
	(a) 18	(b) 19	(c) 20	(d) 21

32	If lo	$\log_{0.3}(x-1) < \log_0$.09 (x	-1), then x lies in	the	interval:		
	(a)	(2, ∞)	(b)	(1, 2)	(c)	(-2, -1)) $\left(1,\frac{3}{2}\right)$
33.	The	absolute integral	value	of the solution of	the	equation $\sqrt{7^{2x^2-5x}}$	-6 =	$(\sqrt{2})^{3\log_2 49}$
	(a)	2	(b)	1	(c)	. 4	(a)	3
34.	Let	$1 \le x \le 256$ and M	be th	e maximum value	of (le	$\log_2 x)^4 + 16(\log_2$	$x)^2$ l	$\log_2\left(\frac{16}{x}\right)$. The sum of
		digits of M is:						
	(a)	9	(b)	11	(c)	13	(d)	15
								(16)
35.	Let	$1 \le x \le 256$ and M	be th	e maximum value	of (le	$\log_2 x)^4 + 16(\log_2$	x) ² l	$\log_2\left(\frac{16}{x}\right)$. The sum of
	the	digits of M is :						
	(a)	9	(b)	11	(c)	13	(d)	15
36.	Nur	nber of real solution	on(s)	of the equation 91	og ₃ ($(\log nx) = \ln x - (\ln x)$	i^2x)	+ 1 is:
	(a)		(b)		(c)		(d)	
37.							log ₁₆	$x + \log_{16} \lambda = 0$ with
		coefficients will h	ave e	xactly one solution	is:			
	(a)		(Ъ)		(c)		(d)	4
38.						ithm to the base 1		4.52.5
20	(a)		(b)		(c)	100	(d)	1000
39.		$= \log_5(1000) \text{ and }$ $x > y$			(c)	x = y	(4)	none of the
						x – y	(u)	none of these
40.	7 log	$g\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right)$		(/		NAV 754		
	(a)		(b)			log 2	(d)	log 3
41.		tan 1°+ log ₁₀ tan					12/201	
	(a)		(b)		(c)	27	(d)	81
		$\log_7 \sqrt{7\sqrt{(7\sqrt{7})}}$ is						
		3 log ₂ 7					(d)	$1-3\log_2 7$
43.	If (4)	$1^{\log_9 3} + (9)^{\log_2 4} =$	(10) ¹	$^{\log_x 83}$, then x is eq	ual t	0:		
	(a)	2	(b)	3	(c)	10	(d)	30
44.	x	$ \begin{array}{c} 2 \\ 0\left(\frac{y}{z}\right) \cdot y & \log_{10}\left(\frac{z}{x}\right) \cdot z \end{array} $	$\log_{10}\left(\frac{x}{y}\right)$	$\frac{f}{f}$ is equal to :				
	(a)	0	(b)			-1	(d)	2

45.	The	solution set of the	equa	tion: $\log_x 2\log_{2x}$	2 = 1	og _{4x} 2 is :		
		$\{2^{-\sqrt{2}}, 2^{\sqrt{2}}\}$				$\{1/4, 2^2\}$	(d)	none of these
46.	The	least value of the	expre	ession $2\log_{10} x - \log_{10} x$	g _x 0.	01 is $(x > 1)$		
	(a)		(b)		(c)	(a)	(d)	8
47.	If $\sqrt{1}$	$\overline{\log_2 x} - 0.5 = \log_2$	\sqrt{x} , 1	then x equals to :				
	(a)	odd integer			(b)	prime number		
		composite numbe		#U (#		irrational	w 1000	
48.	If x_1	and x_2 are the roo	ots o	f the equation e^2x^1	n x =	x^3 with $x_1 > x_2$, t	hen	2 2
	(a)	$x_1 = 2x_2$	(b)	$x_1 = x_2^2$	(c)	$2x_1 = x_2^2$	(d)	$x_1^2 = x_2^2$
49.	Let I	M denote antilog 32	20.6	and N denote the v	alue	of $49^{(1-\log_7 2)} + 5^-$	log ₅ 4	. Then M.N is :
		100			(c)		(d)	
50.	If lo	$g_2(\log_2(\log_3 x)) =$	= log	$_3(\log_3(\log_2 y)) =$	0 , th	en $x - y$ is equal to	:	
	(a)	0	(b)	1	(c)	8	(d)	9
E1	log	$\frac{1}{2}$ 10 + $\log_4 625$ -	log	- -		20		
31.	log	10+1084 023-	10g	1 3 -		26		
	(a)	log _{1/2} 2	(P)	log ₂ 5	(c)	$\log_2 2$	(d)	$\log_2 25$
52.				, then $\log_3 2$ is equ		A CONTRACTOR OF THE PARTY OF TH	3 (5)	02
	(a)	1_	(b)	$\frac{1}{2h+1}$	(c)	2ab + 1	(d)	$\frac{1}{2ab-1}$
		2a + 1		20 1 1				200-1
53.	If x	$= \log_a bc; y = \log_a$	ac a	and $z = \log_c ab$ the			g is e	equal to unity?
		x+y+z	1			x yz		
	(c)	$\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1-y}$	+ 2	ह्य	(d)	(1+x)+(1+y)+	(1+	z)
	log	a log _a y log _y z is equ	al to	· ·				
	(0)		(b)	ν	(c)	z	(d)	а
	(a)	har of value(s) of	'r's	atisfying the equat	ion 2	$c^{\log_{\sqrt{x}}(x-3)} = 9 \text{ is/a}$	re	
55.			(b)		(c)		(d)	6
E6	(a)	. ₀₁ 1000 + log ₀₁ 0.					(4)	
			(b)		(c)	$-\frac{5}{2}$	(4)	5
		-2				2	(d)	2
				$\log_a \frac{81}{80} = 8, \text{ then } a$				
	(a)	21/8	(b)	$(10)^{1/8}$	(c)	$(30)^{1/8}$	(d)	1

	er serve	· · · · · · · · · · · · · · · · · · ·							nte	HOSEF E	231
58.	log	8 (128) – log ₉ cot	$\left(\frac{\pi}{3}\right) =$								
			(b)	12		(c)	$\frac{13}{12}$	(d)	$\frac{11}{12}$		
59.		value of $\left(\frac{1}{\sqrt{27}}\right)^{2-}$	2log	equ	als to :						
۲۵.			(b)	4/		90	$\frac{4\sqrt{2}}{27}$		$\frac{2\sqrt{2}}{27}$		
ου.		sum of all the roo	ts of	the equ	ation log ₂	(x-1)	$1) + \log_2(x + 2) -$	log ₂ (3x - 1) =	10g ₂ 4	
	(a)	12	(b)	2		(c)	10	(d)	11		
61.	(log	log ₄ 8-	2))(l + log	og ₄ log ₈ 4	$\frac{2}{2}(256)^2$	<u>.</u>	in the				
		$-\frac{6}{13}$		$-\frac{1}{2}$			$-\frac{8}{13}$	(d)	$-\frac{12}{13}$		UE:
62.	Let	$\lambda = \log_5 \log_5(3).$	f 3 ^{k+}	⁵ ^ = 40	5, then the	valu	e of k is:				
	(a)	3	(b)	5		(c)	4	(d)			
63.	A ci	ircle has a radius l	og ₁₀	(a²) and	d a circumi	eren	ce of $\log_{10}(b^4)$.	Then t	he value	of $\log_a i$	b is
		al to:	1917575								
	1750		a.	1		(-)	22	(4)	_		
		$\frac{1}{4\pi}$	(b)	π		(c)	8 8 5 ali	(d)	π		
64.	If 2	$x = 3^y = 6^{-z}$, the	value	of $\frac{1}{x}$ +	$\frac{1}{v} + \frac{1}{z}$ is eq	ual to):				
	(a)	0	(b)	1	e la	(c)	2	(d)	3		
65	The	value of $\log_{(\sqrt{2}-1)}$	(5√2	-7) is							
00.	(a)	0	(b)	1		(c)	2	(d)	3		
66.	The	value of $\log_{ab} \left(\frac{\sqrt[3]{a}}{\sqrt{b}} \right)$			= 4 is equa		6.7	X			
	(a)			$\frac{13}{6}$		(c)	15 6	(d)	$\frac{17}{6}$		
67.	Iden	tify the correct op	tion								
	(a)	$\log_2 3 < \log_{1/4} 5$					$\log_5 7 < \log_8 3$				
	(c)	$\log_{\sqrt[3]{2}}\sqrt{3}>\log_{\sqrt[3]{2}}$	√5			(d)	$2^{\frac{1}{4}} > \left(\frac{3}{2}\right)^{1/3}$				

68. Sum of all values of x satisfying the system of equations $5(\log_y x + \log_x y) = 26$, xy = 64 is:

(b) 34

(a) 42

(c) 32

(d) 2

6	9. The	e product of all	values of x satisfying	he equations $\log_3 a$	$-\log_x a = \log_{x/3} a \text{ is :}$	
		3	(b) $\frac{3}{2}$	(c) 18	(d) 27	
7	0. The	e value of $x + y$	+ z satisfying the syst	em of equations		
			$\log_2 x + \log_4 y + \log$			
			$\log_3 y + \log_9 z + \log$			
			The last of the same of the sa	T2		
	(a)	$\frac{175}{12}$	(b) $\frac{349}{24}$	(c) $\frac{353}{24}$	(d) $\frac{112}{3}$	
7	1. $\left(\frac{1}{49}\right)$	$\left(\frac{1}{9}\right)^{1+\log_7 2} + 5$	$ \begin{array}{c} \log_4 z + \log_{16} x + \log \\ \text{(b)} \frac{349}{24} \\ \frac{g_17}{5} = \\ \end{array} $, ,_,		
	(a)	$7\frac{1}{196}$	(b) $7\frac{3}{196}$	(c) $7\frac{5}{196}$	(d) $7\frac{1}{98}$	
7	2. The	e number of	real values of x sat	isfying the equation	$\log_2(3-x) - \log_2\left(\frac{\sin\left(\frac{\sin(x)}{(5-x)}\right)}{(5-x)}\right)$	$\left(\frac{3\pi}{4}\right)$
	$=\frac{1}{2}$	$+\log_2(x+7)$ i	s:			1
	(a)	0	(b) 1	(c) 2	(d) 3	
7	3. If l	$\log_k x \log_5 k = 1$	$\log_x 5, k \neq 1, k > 0$, the	n sum of all values o	f x is:	
		5	0.4	(c) $\frac{26}{5}$		
7	4. The	product of all	values of x satisfying	the equation $ x-1 ^{lo}$	$g_3 x^2 - 2\log_x 9 = (x-1)^7$, is:	
		162	(b) $\frac{162}{\sqrt{3}}$	01	(d) 81	
7	5. The	number of val	ues of x satisfying the	equation $\log_{2}(9^{x-1})$	$+7) = 2 + \log_2(3^{x-1} + 1)i$	
-			(b) 2	(c) 3		s:
-	(a)		ct order for a given nu		(d) 0	
/						
	(a)	log 2 α < log 3	a < log a < log a	(b) $\log_{10} \alpha <$	$\log_3 \alpha < \log_e \alpha < \log_2 \alpha$	
	(c)	$\log_{10} \alpha < \log_{\theta}$, a < 10g ₂ a < 10g ₃ a	(d) $\log_3 \alpha < 1$	$\log_e \alpha < \log_2 \alpha < \log_{10} \alpha$	
7			l M be the maximum v	value of $(\log_2 x)^4 + 1$	$6(\log_2 x)^2 \log_2 \left(\frac{16}{x}\right)$. The	e sum o
	the	digits of M is:				
			41 11	See the someone		
	(a)		(b) 11	(c) 13	(d) 15	
			(b) 11	(c) 13	(d) 15	

78. If $T_r = \frac{1}{\log_{\chi} 4}$ (where $r \in N$), then the value of $\sum_{r=1}^{4} T_r$ is:

(d) 10

(a) 3 (b) 4 (c) 5 **79.** In which of the following intervals does $\frac{1}{\log_{1/2}(1/3)} + \frac{1}{\log_{1/5}(1/3)}$ lies

- (b) (2,3)
- (c) (3, 4)
- (d) (4,5)

80. If $\sin \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$ and $\sin 3\theta = \frac{k}{2} \left(a^3 + \frac{1}{a^3} \right)$, then k + 6 is equal to:

- (a) 3
- (b) 4
- (c) 5
- (d) -4

81. Complete set of real values of x for which $\log_{(2x-3)}(x^2-5x-6)$ is defined is:

- (a) $\left(\frac{3}{2},\infty\right)$
- (b) (6,∞)
- (c) $\left(\frac{3}{2},6\right)$ (d) $\left(\frac{3}{2},2\right)\cup(2,\infty)$

1				ME THE				Α	nsv	ver	s	ú.	ein						5
1.	(c)	2.	(b)	3.	(c)	4.	(c)	5.	(b)	6.	(b)	7.	(ъ)	8.	(d)	9.	(c)	10.	(a
11.	(b)	12.	(d)	13.	(c)	14.	(b)	15.	(b)	16.	(a)	17.	(c)	18.	(b)	19.	(d)	20.	(d
21.	(c)	22.	(c)	23.	(d)	24.	(c)	25.	(d)	26.	(d)	27.	(c)	28.	(c)	29.	(b)	30.	(c
31.	(b)	32.	(a)	33.	(c)	34.	(c)	35.	(c)	36.	(b)	37.	(a)	38.	(c)	39.	(a)	40.	(c
41.	(a)	42.	(c)	43.	(c)	44.	(Ъ)	45.	(a)	46.	(b)	47.	(ъ)	48.	(b)	49.	(a)	50.	(b
51.	(c)	52.	(d)	53.	(c)	54.	(c)	55.	(b)	56.	(d)	57.	(a)	58.	(a)	59.	(d)	60.	(d
61.	(d)	62.	(c)	63.	(d)	64.	(a)	65.	(d)	66.	(d)	67.	(d)	68.	(b)	69.	(d)	70.	(c
71.	(a)	72.	(b)	73.	(c)	74.	(a)	75.	(b)	76.	(b)	77.	(c)	78.	(c)	79.	(b)	80.	(c
R1.	(b)		1							interes of									

260

Exercise-2: One or More than One Answer is/are Correct

1. The values of 'x' satisfies the equation $\frac{1-2(\log x^2)^2}{\log x - 2(\log x)^2} = 1 \text{ (is/are)}:$

(where log is logarithm to the base 10)

- (a) $\frac{1}{\sqrt{10}}$
- (b) $\frac{1}{\sqrt{20}}$
- (c) ³√10
- (d) $\sqrt{10}$

2. If $\log_a x = b$ for permissible values of a and x then identify the statement(s) which can be correct?

- (a) If a and b are two irrational numbers then x can be rational.
- (b) If a rational and b irrational then x can be rational.
- (c) If a irrational and b rational then x can be rational.
- (d) If a rational and b rational then x can be rational.

3. Consider the quadratic equation, $(\log_{10} 8) x^2 - (\log_{10} 5) x = 2(\log_2 10)^{-1} - x$. Which of the following quantities are irrational?

(a) Sum of the roots

- (b) Product of the roots
- (c) Sum of the coefficients
- (d) Discriminant

4. Let $A = \text{Minimum}(x^2 - 2x + 7), x \in R \text{ and } B = \text{Minimum}(x^2 - 2x + 7), x \in [2, \infty), \text{ then } :$

- (a) $\log_{(B-A)}(A+B)$ is not defined
- (b) A + B = 13

(c) $\log_{(2B-A)} A < 1$

(d) $\log_{(2A-B)} A > 1$

-

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $\log_3 N = \alpha_1 + \beta_1$ $\log_5 N = \alpha_2 + \beta_2$ $\log_7 N = \alpha_3 + \beta_3$

where α_1 , α_2 and α_3 are integers and β_1 , β_2 , $\beta_3 \in [0, 1)$.

- **1.** Number of integral values of *N* if $\alpha_1 = 4$ and $\alpha_2 = 2$:
 - (a) 46
- (b) 45
- (c) 4
- (d) 47
- **2.** Largest integral value of N if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$.
 - (a) 342
- (b) 343
- (c) 243
- (d) 242
- **3.** Difference of largest and smallest integral values of N if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$.
 - (a) 97
- (b) 100
- (c) 98
- (d) 99

Paragraph for Question Nos. 4 to 5

If $\log_{10}|x^3 + y^3| - \log_{10}|x^2 - xy + y^2| + \log_{10}|x^3 - y^3| - \log_{10}|x^2 + xy + y^2| = \log_{10} 221$. Where x, y are integers, then

- **4.** If x = 111, then y can be:
 - (a) ± 111
- (b) ±2
- (c) ±110
- (d) ±109

- **5.** If y = 2, then value of x can be :
 - (a) ± 111
- (b) ±15
- (c) ± 2
- (d) ± 110

Paragraph for Question Nos. 6 to 7

Given a right triangle ABC right angled at C and whose legs are given $1+4\log_{p^2}(2p)$, $1+2^{\log_2(\log_2 p)}$ and hypotenuse is given to be $1+\log_2(4p)$. The area of $\triangle ABC$ and circle circumscribing it are Δ_1 and Δ_2 respectively, then

- **6.** $\Delta_1 + \frac{4\Delta_2}{\pi}$ is equal to :
 - (a) 31
- (b) 28
- (c) $3 + \frac{1}{\sqrt{2}}$
- (d) 199

- 7. The value of $\sin\left(\frac{\pi(25p^2\Delta_1+2)}{6}\right) =$
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{2}}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) 1

Answers

1. (c) 2. (a) 3. (d) 4. (c) 5. (b) 6. (a) 7. (c)

Exercise-4: Matching Type Problems

1.

	Column-I	1	Column-II
(A)	If $a = 3(\sqrt{8 + 2\sqrt{7}} - \sqrt{8 - 2\sqrt{7}})$, $b = \sqrt{(42)(30) + 36}$, then the value of $\log_a b$ is equal to	(P)	-1
(B)	If $a = (\sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}})$, $b = \sqrt{11 + 6\sqrt{2}} - \sqrt{11 - 6\sqrt{2}}$ then the value of $\log_a b$ is equal to	(Q)	1
(C)	If $a = \sqrt{3 + 2\sqrt{2}}$, $b = \sqrt{3 - 2\sqrt{2}}$, then the value of $\log_a b$ is equal to	(R)	2
(D)	If $a = \sqrt{7 + \sqrt{7^2 - 1}}$, $b = \sqrt{7 - \sqrt{7^2 - 1}}$, then the value of $\log_a b$ is equal to	(S)	$\frac{3}{2}$
		(T)	None of these

Answers

Exercise-5 : Subjective Type Problems

- **1.** The number $N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36}$ is a natural number. Then sum of digits of N is:
- **2.** The minimum value of 'c' such that $\log_b(a^{\log_2 b}) = \log_a(b^{\log_2 b})$ and $\log_a(c (b a)^2) = 3$, where $a, b \in N$ is:
- 3. How many positive integers b have the property that $\log_b 729$ is a positive integer?
- **4.** The number of negative integral values of x satisfying the inequality $\log_{\left(x+\frac{5}{2}\right)} \left(\frac{x-5}{2x-3}\right)^2 < 0$ is:
- 5. $\frac{6}{5}a^{(\log_a x)(\log_{10} a)(\log_a 5)} 3^{\log_{10}\left(\frac{x}{10}\right)} = 9^{\log_{100} x + \log_4 2}$ (where a > 0, $a \ne 1$), then

 $\log_3 x = \alpha + \beta$, α is integer, $\beta \in [0, 1)$, then $\alpha =$

- **6.** If $\log_5\left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2}$, then $\frac{a^4 + b^4}{a^2b^2} =$
- 7. Let a, b, c, d are positive integers such that $\log_a b = \frac{3}{2}$ and $\log_c d = \frac{5}{4}$. If (a-c) = 9. Find the value of (b-d).
- 8. The number of real values of x satisfying the equation

$$\log_{10} \sqrt{1+x} + 3\log_{10} \sqrt{1-x} = 2 + \log_{10} \sqrt{1-x^2}$$
 is:

9. The ordered pair (x, y) satisfying the equation

$$x^2 = 1 + 6\log_4 y$$
 and $y^2 = 2^x y + 2^{2x+1}$

are (x_1, y_1) and (x_2, y_2) , then find the value of $\log_2 |x_1x_2y_1y_2|$.

- **10.** If $\log_7 \log_7 \sqrt{7\sqrt{7\sqrt{7}}} = 1 a \log_7 2$ and $\log_{15} \log_{15} \sqrt{15\sqrt{15\sqrt{15}}} = 1 b \log_{15} 2$, then a + b = 1
- **11.** The number of ordered pair(s) of (x, y) satisfying the equations $\log_{(1+x)}(1-2y+y^2) + \log_{(1-y)}(1+2x+x^2) = 4$ and $\log_{(1+x)}(1+2y) + \log_{(1-y)}(1+2x) = 2$
- **12.** If $\log_b n = 2$ and $\log_n(2b) = 2$, then nb = 2
- **13.** If $\log_y x + \log_x y = 2$, and $x^2 + y = 12$, then the value of xy is :
- **14.** If x, y satisfy the equation, $y^x = x^y$ and x = 2y, then $x^2 + y^2 = 2y$
- **15.** Find the number of real values of x satisfying the equation.

$$\log_2(4^{x+1} + 4) \cdot \log_2(4^x + 1) = \log_{1/\sqrt{2}} \sqrt{\frac{1}{8}}$$

16. If $x_1, x_2(x_1 > x_2)$ are the two solutions of the equation

$$3^{\log_2 x} - 12(x^{\log_{16} 9}) = \log_3 \left(\frac{1}{3}\right)^{3^3}$$
, then the value of $x_1 - 2x_2$ is:

- 17. Find the number of real values of x satisfying the equation $9^{2\log_9 x} + 4x + 3 = 0$.
- **18.** If $\log_{16}(\log_{\sqrt[4]{3}}(\log_{\sqrt[4]{5}}(x))) = \frac{1}{2}$; find x.

19. The value
$$\left[\frac{1}{6} \left(\frac{2\log_{10}(1728)}{1 + \frac{1}{2}\log_{10}(0.36) + \frac{1}{3}\log_{10}8}\right)^{1/2}\right]^{-1}$$
 is:

v II			X. S.			Answ	vers					1	1
1.	9	2,	8	3.	4	4.	0	5.	4	6	477		
8.	0	9.	7	10.	7	11.	1	12.	2	19	47	7.	9
15.	1	16.	8	17.	0	18.	5	19.	2	13.	9	14.	2

Co-ordinate Geometry

- 17. Straight Lines
- 18. Circle
- 19. Parabola
- 20. Ellipse
- 21. Hyperbola

Chapter 17 - Straight Lines

STRAIGHT LINES

Exercise-1: Single Choice Problems

- 1. The ratio in which the line segment joining (2, -3) and (5, 6) is divided by the x-axis is:
 - (a) 3:1

(b) 1:2

(c) $\sqrt{3}:2$

(d) $\sqrt{2}:3$

- **2.** If *L* is the line whose equation is ax + by = c. Let *M* be the reflection of *L* through the *y*-axis, and let *N* be the reflection of *L* through the *x*-axis. Which of the following must be true about *M* and *N* for all choices of *a*, *b* and *c*?
 - (a) The x-intercepts of M and N are equal
 - (b) The y-intercepts of M and N are equal
 - (c) The slopes of M and N are equal
 - (d) The slopes of M and N are reciprocal
- 3. The complete set of real values of 'a' such that the point $P(a, \sin a)$ lies inside the triangle formed by the lines x 2y + 2 = 0; x + y = 0 and $x y \pi = 0$, is:

(a)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

(b) $\left(\frac{\pi}{2}, \pi\right) \cup \left(\frac{2\pi}{2}, 2\pi\right)$

(c) (0, π)

(d) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

4. Let m be a positive integer and let the lines 13x + 11y = 700 and y = mx - 1 intersect in a point whose coordinates are integer. Then m equals to :

(a) 4

(b)

(c) 6

(d) 7

5. If
$$P = \left(\frac{1}{x_p}, p\right); Q = \left(\frac{1}{x_q}, q\right); R = \left(\frac{1}{x_r}, r\right)$$

where $x_k \neq 0$, denotes the k^{th} terms of a H.P. for $k \in N$, then:

268	WIT I		A Walleton	E E E E E E E E		Advanced Proble	ms in Mathematics for JEE
	(a)	$ar. (\Delta PQR) = \frac{p^2q^2}{2}$	$\frac{r^2}{\sqrt{p}}$	$(q)^2 + (q-r)^2$	+ (r	$-p)^2$	
	(b)	ΔPQR is a right an	ngled tria	ngle			
		the points P, Q, R					
	(d)	None of these					
6.	If th	e sum of the slope	es of the	lines given by	x^2 -	$2cxy - 7y^2 = 0 i$	s four times their product,
	ther	c has the value:				- E	
	(a)	1	(b) -1		(c)	2	(d) -2
7.	up t	the line $y = -5x + $ ther than closer to it	18. At the	e point (a, b), t	he m	ite plane. A mous louse starts gettii	e is at (4,-2) and is running ng farther from the cheese
	(a)				(b)		
	(c)		122		(d)		
8.	the	vertex of right and two other vertices	gle of a r , at point	ight angled tria s (2, –3) and (angle 4, 1)	lies on the straig then the area of	ht line $2x + y - 10 = 0$ and triangle in sq. units is:
	(a)	$\sqrt{10}$	(b) 3		(c)	33 5	(d) 11
9.	Give nun	en the family of lir aber of lines situat	nes, a(2x ed at a d	x + y + 4 + b(x) istance of $\sqrt{10}$	– 2y from	-3) = 0. Among the point $M(2,-3)$	the lines of the family, the 3)) is:
	(a)	0			(b)	1	
	(c)				(d)		
10.	Poir 3 <i>x</i> -	nt (0, β) lies on - 4y + 12 = 0. Ther	or insid β can be	de the triang	le fo	ormed by the l	ines $y = 0, x + y = 8$ and
	(a)		(b) 4		(c)		(d) 12
11.	If th	e lines $x + y + 1 =$	0; 4x + 3	y + 4 = 0 and y	r + α	$y + \beta = 0$, where α	$\alpha^2 + \beta^2 = 2$, are concurrent
	ther						
	(a)	$\alpha = 1, \beta = -1$			(b)	$\alpha = 1, \beta = \pm 1$	
		$\alpha = -1, \beta = \pm 1$			(d)	$\alpha = \pm 1, \beta = 1$	
12.	A st	raight line through ts P and Q respect	h the ori ively. The	gin 'O' meets t en the point 'O	he p	arallel lines $4x + 1$	2y = 9 and $2x + y = -6$ at PO in the ratio:
	(a)	1:2	(b) 4:	3	(c)	2:1	(d) 3 · 4
13.	If th	e points (2a, a), (centroid of the tria	a, 2a) and	l (a, a) enclose y be :	a tr	angle of area 72	units, then co-ordinates of
		(4, 4)	(b) (-4		(c)	(12, 12)	(d) (16, 16)
14.	Let ;	g(x) = ax + b, when	re a < 0 a	nd g is defined	d fro	m [1, 3] onto [0, 2	then the value of
		-121 1 1 1	SECTION SECTION	-12	100	100	men the value of

(c) g(3)

(d) g(1) + g(3)

 $\cot(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|))$ is equal to :

(b) g(2)

(a) g(1)

-	-	-
n	и.	73
		72

(d) x - y = 0

(d) (2, 8)

locus of P is: (a) ax + by = 0

7x + y - 8 = 0 is: (a) (8, 2)

18. All the chords of the curve $2x^2 + 3y^2 - $	-5x = 0 which subtend a right angle at the origin are
concurrent at :	
(a) (0, 1) (b) (1, 0)	(c) (-1, 1) (d) (1, -1)
19. From a point $P \equiv (3, 4)$ perpendiculars	SPQ and PR are drawn to line $3x + 4y - 7 = 0$ and a
variable line $y - 1 = m(x - 7)$ respectively	
(a) 10 (b) 12	(c) 6 (d) 9
	nombus are given by $y = x$ and $y = 7x$. The diagonals of
percent comments	point (1, 2). Then the area of the rhombus is:
(a) $\frac{10}{3}$ (b) $\frac{20}{3}$	(c) $\frac{40}{3}$ (d) $\frac{50}{3}$
21. The point P(3, 3) is reflected across the li	line $y = -x$. Then it is translated horizontally 3 units to
	ally, it is reflected across the line $y = x$. What are the
coordinates of the point after these trans	nsformations ?
(a) (0, -6)	(b) (0, 0)
(c) (-6, 6)	(d) (-6, 0)
22. The equations $y = t^{3} + 9$ and $y = \frac{3t^{3}}{2} + \frac{3}{2} + \frac{3}{$	+ 6 represents a straight line where t is a parameter.
	. e
Then y-intercept of the line is:	
(a) $-\frac{3}{4}$ (b) 9	(c) 6 (d) 1
	ent sides of a rhombus formed in first quadrant is
$7x^2 - 8xy + y^2 = 0$; then slope of its long	nger diagonal is :
(a) $-\frac{1}{2}$ (b) -2	(c) 2 (d) $\frac{1}{2}$
24. The number of integral points inside the coordinate axes which are equidistant from	he triangle made by the line $3x + 4y - 12 = 0$ with the from at least two sides is/are:
(an integral point is a point both of who	
(a) 1 (b) 2	(c) 3 (d) 4
	225 St. 120

15. If the distances of any point P from the points A(a+b, a-b) and B(a-b, a+b) are equal, then

16. If the equation $4y^3 - 8a^2yx^2 - 3ay^2x + 8x^3 = 0$ represent three straight lines, two of them are

17. The orthocentre of the triangle formed by the lines x-7y+6=0, 2x-5y-6=0 and

(c) (1, 1)

(c) bx + ay = 0

(b) ax - by = 0

perpendicular then sum of all possible values of \boldsymbol{a} is equal to :

(b) (0, 0)

25.	The	area of triangle for 0 is :	med	by the straight line	s wh	ose equations are y	= 43	x + 2, $2y = x + 3$ and
				$\sqrt{2}$		1	- Williams	15
	(a)	$\frac{25}{7\sqrt{2}}$	(b)	$\frac{\sqrt{2}}{28}$	(c)	28	(d)	7
26.	In a	triangle ABC, if A	is (1,	2) and the equatio	ns o	f the medians throu	igh E	3 and C are x + y = 5
	and	x = 4 respectively	then	B must be:				
27		(1, 4)		(7, – 2)				(-2, 7)
27.	(a)	equation of image $x^2 - y^2 - 2x + 1 =$	of p					
		$4x^2 - 4x - y^2 + 1$			15 8	$x^2 - y^2 - 4x + 4 =$		
28.		9	1881		10 10	$x^2 - y^2 + 2x + 1 =$		
	valu	e of m for which P	R + F	RQ is minimum, is:	s (1,	4), (4, 5) and (<i>m</i> ,	m) r	espectively, then the
	(a)		(b)			$\frac{17}{9}$	(d)	$\frac{7}{2}$
29.	The	vertices of triangle	: ABC	C are $A(-1, -7)$, $B($	5, 1)	and C(1, 4). The ed	uati	on of the bisector of
	uie	aligle ABC of VABC	? is :	-11				
		y + 2x - 11 = 0				x-7y+2=0		
20		y - 2x + 9 = 0				y + 7x - 36 = 0		
30.		ne of the lines giver						
31	(a)		(b)		(c)		(d)	1
01.	of ar	n angle with the ho	rizon	ate y = nix andy = atal (measured cour	nx, i	lockwise from the r	$\operatorname{se} L_1$	make twice as large ve x -axis) as does L_2
	and	that L_1 has 4 times	the s	lope of L_2 . If L_1 is no	ot ho	orizontal, then the v	alue	of the product (mn)
	equa	als:						or the product (mit)
	(a)	$\sqrt{2}$			(b)	$-\frac{\sqrt{2}}{2}$		
		2	. in	C.S. THE		4		
	(c)		20.24		(d)			
34.	Clie	11A (0, 0) and b (x, 0) $con the line x = 1c$	y)v	that the slope of RC	, U.	Let the slope of the	e line	AB equals m_1 . Point
	trian	gle <i>ABC</i> can be exp	ress	ed as (m. = m.) f(r) tl	hen the large $0 < n$	12 <	m_1 . If the area of the
	(a)	1	21000	ca as (₁ ₂)) (.	رم, در (۱۵)	1/2	sible	value of $f(x)$ is:
	(c)					1/8		
			, b, c				у	$\frac{1}{c} = 0$ always passes
	throu	ugh a fixed point, c	o-or	dinate of fixed poi	nt is	a :	\overline{b}^+	- = 0 always passes c
								(1)
	/	.	3 36 ·		(0)	(1, – 2)	(d)	$\left(1,\frac{1}{2}\right)$

(a) 5x + 7y - 2 = 0

(c) 7x - 5y + 2 = 0

Strai	ght li	ines			271
34.	If $\frac{x}{a}$ then	$\frac{a^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of strain $ab : h^2$ is :	ght li	nes and slope of one line	is twice the other,
	(a)	9:8 (b) 8:9	(c)	1:2 (d) 2	2:1
35.	Sta The	tement-1: A variable line drawn throug locus of mid-point of AB is a circle.	h a fix	ked point cuts the coordina	ate axes at A and B.
	bec	ause			
	Sta	tement-2: Through 3 non-collinear poi	nts in	a plane, only one circle o	an be drawn.
	(a)	Statement-1 is true, statement-2 is t statement-1.	rue a	nd statement-2 is correc	t explanation for
	(b)	Statement-1 is true, statement-2 is true statement-1.	and s	tatement-2 is not the corre	ect explanation for
	(c)	Statement-1 is true, statement-2 is false	2.		
	(d)	Statement-1 is false, statement-2 is true	2.		
36.	A li	ne passing through origin and is perpe	ndicu	lar to two parallel lines	2x + y + 6 = 0 and
	4x +	+2y - 9 = 0, then the ratio in which the o	origin	divides this line segment	is:
	0.81 30	1:2	(b)	1:1	
		5:4	1000000	3:4	
37.	and	vertex of a triangle is (1, 1) and the mid (3, 2), then the centroid of the triangle	is:		
	(a)	$\left(-1,\frac{7}{3}\right) \qquad \qquad \text{(b) } \left(-\frac{1}{3},\frac{7}{3}\right)$	(c)	$\left(1,\frac{7}{3}\right)$ (d)	$\left(\frac{1}{3}, \frac{7}{3}\right)$
38.	The	diagonals of parallelogram PQRS are alo	ng the	e lines x + 3y = 4 and 6x - 3	2y = 7. Then $PQRS$
		st be :			
		rectangle		square	
		rhombus		neither rhombus nor rec	
39.	The 4 <i>x</i> -	two points on the line $x + y = 4$ that $a_1 + 3y = 10$ are (a_1, b_1) and (a_2, b_2) , then $a_1 + 3y = 10$	$a_1 + b_1$	$_1 + a_2 + b_2 =$	
	(a)	5 (b) 6	(c)	37. 2	1 9
40.	The	orthocentre of the triangle formed by the	lines	x + y = 1, $2x + 3y = 6$ and	4x - y + 4 = 0 lies
	in:	CASE 1 CASE	a.		
		first quadrant		second quadrant	
9000		third quadrant		fourth quadrant	(=1)2f D2 **
41.	The	equation of the line passing through the	inters	section of the lines $3x + 4y$	y = -5, 4x + 6y = 6
	and	perpendicular to $7x - 5y + 3 = 0$ is:	982 15.		1

(b) 5x-7y+2=0

(d) 5x + 7y + 2 = 0

- **42.** The points (2, 1), (8, 5) and (x, 7) lie on a straight line. Then the value of x is :
 - (a) 10
- (b) 11
- (c) 12
- (d) $\frac{35}{3}$
- **43.** In a parallelogram *PQRS* (taken in order), *P* is the point (-1, -1), *Q* is (8, 0) and *R* is (7, 5). Then *S* is the point :
 - (a) (-1, 4)
- (b) (-2, 2)
- (c) $\left(-2,\frac{7}{2}\right)$
- (d) (-2, 4)
- **44.** The area of triangle whose vertices are (a, a), (a + 1, a + 1), (a + 2, a) is:
 - (a) a^3
- (b) 2a
- (c) 1
- (d) 2

- **45.** The equation $x^2 + y^2 2xy 1 = 0$ represents :
 - (a) two parallel straight lines
- (b) two perpendicular straight lines

(c) a point

- (d) a circle
- **46.** Let A = (-2, 0) and B = (2, 0), then the number of integral values of $a, a \in [-10, 10]$ for which line segment AB subtends an acute angle at point C = (a, a + 1) is:
 - (a) 15
- (b) 17
- (c) 19
- (d) 21
- **47.** The angle between sides of a rhombus whose $\sqrt{2}$ times sides is mean of its two diagonal, is equal to:
 - (a) 300°
- (b) 45°
- (c) 60°
- (d) 90°
- 48. A rod of AB of length 3 rests on a wall as follows:

P is a point on AB such that AP: PB = 1: 2. If the rod slides along the wall, then the locus of P lies on

(a) 2x + y + xy = 2

(b) $4x^2 + xy + xy + y^2 = 4$

(c) $4x^2 + y^2 = 4$

- (d) $x^2 + y^2 x 2y = 0$
- **49.** If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$, represents pair of straight lines and slope of one line is twice the other. Then $ab: h^2$ is:
 - (a) 8:9
- (b) 1:2
- (c) 2:1
- (d) 9:8

Ora	ght n	ines .	A TO SEE SECTION OF SECULO			
50.	Loca t ∈ l		tion of point (a, 0) w.r.t	the	line $yt = x + at^2$ i	s given by (t is parameter,
			(b) $y - a = 0$	(c)	y + a = 0	(d) $y + a = 0$
51.	A li	ght ray emerging f		place	d at P(1, 3) is re	flected at a point Q in the
	(a)	$\frac{5}{2}$	(b) 3	(c)	$\frac{7}{2}$	(d) 1
52.	If th equa	the axes are rotated to ation $x^2 - y^2 = a^2$	through 60° in the antic :	lockv	vise sense, find th	e transformed form of the
	(a)	$X^2 + Y^2 - 3\sqrt{3} XY$	$Y=2a^2$	(b)	$X^2 + Y^2 = a^2$	
	(c)	$Y^2 - X^2 - 2\sqrt{3} XY$	$Y = 2a^2$	(d)	$X^2 - Y^2 + 2\sqrt{3} X$	$Y = 2a^2$
53.	The	straight line $3x + y$	y-4=0, x+3y-4=	0 and	x + y = 0 form a	triangle which is:
		equilateral	, ,		right-angled	
		acute-angled and	isosceles		obtuse-angled ar	nd isosceles
54.						tion is $y = mx + b$ cannot
		tain the point:	*		_	
	(a)	(0, 2008)		(b)	(2008, 0)	
	(c)	(0, -2008)		(d)	(20, – 100)	
55.			ole straight lines, passi e area is 12 sq. units, is		arough (2, 3) and	forming a triangle with
	(a)	one		(b)	two	
		three			four	
56.		$(x_2, x_3 \text{ and } y_1, y_2)$ (x_3, y_3)	, y_3 are both in G.P. with			io then the points (x_1, y_1) ,
	(a)	lie on a straight li	ine		lie on a circle	
	(c)	are vertices of a tr	riangle	2 0	None of these	
57.				s are	$(a\cos t, a\sin t), (l$	$b \sin t$, $-b \cos t$) and $(1, 0)$;
	whe	ere t is a parameter	is:	a \	(0. 1)2 (0.)	2 , 2
	(a)	$(3x-1)^2+(3y)^2$	$=a^2-b^2$		$(3x-1)^2 + (3y)^2$	
		$(3x+1)^2+(3y)^2$			$(3x+1)^2+(3y)^2$	
58.		equation of the str whose sum is -1 i		ugh ((4, 3) and making	intercepts on co-ordinate
		$\frac{x}{2} + \frac{y}{3} = -1 \text{ and } \frac{x}{-3}$. we	(b)	$\frac{x}{2} - \frac{y}{3} = -1 \text{ and } $	$\frac{x}{-2} + \frac{y}{1} = -1$
	(c)	$\frac{x}{2} + \frac{y}{3} = 1 \text{ and } \frac{x}{2} + \frac{y}{3} = 1$	$\frac{y}{1} = 1$	(d)	$\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{y}{2}$	$\frac{x}{2} + \frac{y}{1} = 1$

59. Let A = (3, 2) and B = (5, 1). ABP is an equilateral triangle is constructed one the side of AB remote from the origin then the orthocentre of triangle ABP is:

(a)
$$\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$$

(b)
$$\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$$

(c)
$$\left(4-\frac{1}{6}\sqrt{3},\frac{3}{2}-\frac{1}{3}\sqrt{3}\right)$$

(d)
$$\left(4 + \frac{1}{6}\sqrt{3}, \frac{3}{2} + \frac{1}{3}\sqrt{3}\right)$$

60. Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y = 16 in square units is:

(d) 130

61. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0 and x + y = 0 form a triangle which is :

(a) equilateral

(b) right-angled

(c) acute-angled and isosceles

(d) obtuse-angled and isosceles

62. The orthocentre of the triangle with vertices (5,0), (0,0), $\left(\frac{5}{2},\frac{5\sqrt{3}}{2}\right)$ is:

(b)
$$\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$
 (c) $\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$ (d) $\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$

(c)
$$\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$$

(d)
$$\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$$

63. All chords of a curve $3x^2 - y^2 - 2x + 4y = 0$ which subtends a right angle at the origin passes through a fixed point, which is:

64. Let P(-1,0), Q(0,0), $R(3,3\sqrt{3})$ be three points then the equation of the bisector of the angle

(a)
$$\frac{\sqrt{3}}{2}x + y = 0$$
 (b) $x + \sqrt{3}y = 0$ (c) $\sqrt{3}x + y = 0$

(b)
$$x + \sqrt{3}y = 0$$

$$(c) \quad \sqrt{3}x + y = 0$$

(d)
$$x + \frac{\sqrt{3}}{2}y = 0$$

Answers

		STATE OF THE PARTY	1	3.		7.				DESCRIPTION OF	(c)	1000000	(ъ)	8.	(b)	9.	(b)	10.	(a)
11.	(d)	12.	(d)	13.	(d)	14.	(c)	15.	(d)	16.	(b)	17.	(c)	18.	(b)	19.	(d)	20.	(a)
21.	(a)	22.	(a)	23.	(c)	24.	(a)	25.	(c)	26.	(b)	IF5500VVVVVV		28.			E 2	PS/MIN/MIN/	1
31.	(c)	32.	(d)	33.	(c)	34.	(a)	35.	(d)	36.	(d)			38.					
										46.		47.	(d)	40	(0)	40	(1)		(0)
51.	(a)	52.	(c)	53.	(d)	54.	(p)	55.	(c)	56.	(a)	57.	(b)	58.	(d)	59.	(4)	60.	(c)
61.	(d)	62.	(b)	63.	(b)	64.	(c)										(4)		

1

Exercise-2: One or More than One Answer is/are Correct

- A line makes intercepts on co-ordinate axes whose sum is 9 and their product is 20; then its
 equation is/are:
 - (a) 4x + 5y 20 = 0

(b) 5x + 4y - 20 = 0

(c) 4x - 5y - 20 = 0

- (d) 4x + 5y + 20 = 0
- 2. The equation(s) of the medians of the triangle formed by the points (4, 8), (3, 2) and (5, -6) is/are:

(a) x = 4

(b) x = 5y - 3

(c) 2x + 3y - 12 = 0

- (d) 22x + 3y 92 = 0
- 3. The value(s) of t for which the lines 2x + 3y = 5, $t^2x + ty 6 = 0$ and 3x 2y 1 = 0 are concurrent, can be:

(a) t = 2

(b) t = -3

(c) t = -2

- (d) t = 3
- **4.** If one of the lines given by the equation $ax^2 + 6xy + by^2 = 0$ bisects the angle between the co-ordinate axes, then value of (a + b) can be:

(a) -6

(b) 3

(c) 6

- (d) 12
- **5.** Suppose ABCD is a quadrilateral such that the coordinates of A, B and C are (1, 3), (-2, 6) and (5, -8) respectively. For what choices of coordinates of D will make ABCD a trapezium?

(a) (3, -6)

(b) (6, -9)

(c) (0, 5)

- (d) (3, -1)
- **6.** One diagonal of a square is the portion of the line $\sqrt{3}x + y = 2\sqrt{3}$ intercepted by the axes. Then an extremity of the other diagonal is :

(a) $(1+\sqrt{3},\sqrt{3}-1)$

(b) $(1+\sqrt{3},\sqrt{3}+1)$

(c) $(1-\sqrt{3}, \sqrt{3}-1)$

- (d) $(1-\sqrt{3}, \sqrt{3}+1)$
- 7. Two sides of a rhombus ABCD are parallel to lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at point (1, 2) and the vertex A is on the y-axis is, then the possible coordinates of A are:

(a) $\left(0, \frac{5}{2}\right)$

(b) (0, 0)

(c) (0, 5)

- (d) (0, 3)
- 8. The equation of the sides of the triangle having (3, -1) as a vertex and x 4y + 10 = 0 and 6x + 10y 59 = 0 as angle bisector and as median respectively drawn from different vertices, are:

(a) 6x + 7y - 13 = 0

(b) 2x + 9y - 65 = 0

(c) 18x + 13y - 41 = 0

- (d) 6x-7y-25=0
- 9. A(1,3) and C(5, 1) are two opposite vertices of a rectangle ABCD. If the slope of BD is 2, then the coordinates of B can be:

(a) (4, 4)

(b) (5, 4)

(c) (2, 0)

(d) (1,0)

- 10. All the points lying inside the triangle formed by the points (1, 3), (5, 6), and (-1, 2) satisfy:
 - (a) $3x + 2y \ge 0$

(b) $2x + y + 1 \ge 0$

(c) $-2x + 11 \ge 0$

- (d) $2x + 3y 12 \ge 0$
- 11. The slope of a median, drawn from the vertex A of the triangle ABC is -2. The co-ordinates of vertices B and C are respectively (-1, 3) and (3, 5). If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.
 - (a) 6
- (b) 4
- (c) $2\sqrt{2}$
- (d) $3\sqrt{2}$
- **12.** The points A(0, 0), $B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if:
 - (a) $\sin\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$

(b) $\cos\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$

(c) $\cos\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$

(d) $\sin\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$

	Answers
--	---------

1.	(a, b)	2.	(a, c, d)	3.	(a, b)	4.	(a, c)	5.	(b, d)	6.	(b, c)
7.	(a, b)	8.	(b, c, d)	9.	(a, c)	10.	(a, b, c, d)	11.	(a, c)	12.	(a, b, c)

Exercise-3: Comprehension Type Problems

1.5

Paragraph for Question Nos. 1 to 2

The equations of the sides AB and CA of a \triangle ABC are x + 2y = 0 and x - y = 3 respectively. Given a fixed point P(2, 3).

- 1. Let the equation of BC is x + py = q. Then the value of (p + q) if P be the centroid of the $\triangle ABC$ is:
 - (a) 14
- (b) -14
- (c) 22
- (d) -22
- **2.** If *P* be the orthocentre of $\triangle ABC$ then equation of side *BC* is :
 - (a) y + 5 = 0
- (b) y 5 = 0
- (c) 5y + 1 = 0
- (d) 5y 1 = 0

Paragraph for Question Nos. 3 to 4

Consider a triangle ABC with vertex A(2, -4). The internal bisectors of the angles B and C are x + y = 2 and x - 3y = 6 respectively. Let the two bisectors meet at I.

- **3.** If (a, b) is incentre of the triangle ABC then (a + b) has the value equal to:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **4.** If (x_1, y_1) and (x_2, y_2) are the co-ordinates of the point B and C respectively, then the value of $(x_1x_2 + y_1y_2)$ is equal to :
 - (a) 4
- (b) 5
- (c) 6
- (d) 8

4		une-me				4		Ans	swers		and well		
1.	(d)	2.	(a)	3.	(b)	4.	(d)			(0)		JAN VOI	

Exercise-4: Matching Type Problems

1.

1	Column-I		Column-II
(A)	If a, b, c are in A.P., then lines $ax + by + c = 0$ are concurrent at:	(P)	(-4, -7)
(B)	A point on the line $x + y = 4$ which lies at a unit distance from the line $4x + 3y = 10$ is:	(Q)	(-7, 11)
(C)	Orthocentre of triangle made by lines $x + y = 1$, $x - y + 3 = 0$, $2x + y = 7$ is	(R)	(1, -2)
(D)	Two vertice of a triangle are (5, -1) and (-2, 3). If orthocentre is the origin then coordinates of the third vertex are	(S)	(-1, 2)
		(T)	(0, 0)

2.

1	Column-I		Column-II
(A)	If $\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} {}^k C_{r-1} \right) = 30$, then n is equal to	(P)	1
(B)	The number of integral values of g for which atmost one member of the family of lines given by $(1+2\lambda)x+(1-\lambda)y+2+4\lambda=0$ (λ is real parameter) is tangent to the circle $x^2+y^2+4gx+18x+17y+4g^2=0$ can be	900	4
(C)	Number of solutions of the equation $\sin 9x + \sin 5x + 2\sin^2 x = 1$ in interval $(0, \pi)$ is	(R)	7
(D)	If the roots of the equation $x^2 + ax + b = 0$ $(a, b \in R)$ are $\tan 65^\circ$ and $\tan 70^\circ$, then $(a + b)$ equals.	(S)	10

3.

/	Column-I		Column-II
(A)	Exact value of $\cos 40^{\circ}(1 - 2\sin 10^{\circ}) =$	(P)	1
			4

PW 51	. 1	. 1	Add Sales
Cour	righ	7 /	mes
A116	11210		

279

(B)	Value of λ for which lines are concurrent $x + y + 1 = 0$, $3x + 2\lambda y + 4 = 0$, $x + y - 3\lambda = 0$ can be	(Q)	$\frac{1}{2}$
(C)	Points $(k, 2-2k)$, $(-k+1, 2k)$ and $(-4-k, 6-2k)$ are collinear then sum of all possible real values of 'k' is	(R)	$\frac{3}{2}$
(D)	Value of $\sum_{k=3}^{\infty} \sin^k \left(\frac{\pi}{6}\right) =$	(S)	$-\frac{1}{2}$

Answers

1. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow P$

2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

Exercise-5: Subjective Type Problems

- 1. If the area of the quadrilateral ABCD whose vertices are A(1, 1), B(7, -3), C(12, 2) and D(7, 21) is Δ . Find the sum of the digits of Δ .
- 2. The equation of a line through the mid-point of the sides AB and AD of rhombus ABCD, whose one diagonal is 3x - 4y + 5 = 0 and one vertex is A(3, 1) is ax + by + c = 0. Find the absolute value of (a + b + c) where a, b, c are integers expressed in lowest form.
- 3. If the point (α, α^4) lies on or inside the triangle formed by lines $x^2y + xy^2 2xy = 0$, then the largest value of α is.
- **4.** The minimum value of $[(x_1 x_2)^2 + (12 \sqrt{1 x_1^2} \sqrt{4x_2})^2]^{1/2}$ for all permissible values of x_1 and x_2 is equal to $a\sqrt{b}-c$ where $a, b, c \in N$, then find the value of a+b-c.
- 5. The number of lines that can be drawn passing through point (2, 3) so that its perpendicular distance from (-1, 6) is equal to 6 is:
- **6.** The graph of $x^4 = x^2y^2$ is a union of *n* different lines, then the value of *n* is.
- 7. The orthocentre of triangle formed by lines x + y 1 = 0, 2x + y 1 = 0 and y = 0 is (h, k), then $\frac{1}{k^2} =$
- 8. Find the integral value of a for which the point (-2, a) lies in the interior of the triangle formed by the lines y = x, y = -x and 2x + 3y = 6.
- 9. Let A = (-1, 0), B = (3, 0) and PQ be any line passing through (4, 1). The range of the slope of PQ for which there are two points on PQ at which AB subtends a right angle is (λ_1, λ_2) , then $5(\lambda_1 + \lambda_2)$ is equal to.
- 10. Given that the three points where the curve $y = bx^2 2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of 2b.

	,			Videos		Ansv	vers		33 (1) (1) 3 (4) (1) 4		N.		1
1.	6	2.	1	3.	1	4.	8 ,	5.	0	6.	3	7.	
8.	3	9.	6	10.	5			18 MA 36			_		

CIRCLE

Exercise-1: Single Choice Problems

1. The locus of mid-points of the chords of the circle $x^2 - 2x + y^2 - 2y + 1 = 0$ which are of unit length is:

(a)
$$(x-1)^2 + (y-1)^2 = \frac{3}{4}$$

(b)
$$(x-1)^2 + (y-1)^2 = 2$$

(c)
$$(x-1)^2 + (y-1)^2 = \frac{1}{4}$$

(d)
$$(x-1)^2 + (y-1)^2 = \frac{2}{3}$$

2. The length of a common internal tangent to two circles is 5 and a common external tangent is 15, then the product of the radii of the two circles is:

3. A circle with center (2, 2) touches the coordinate axes and a straight line *AB* where *A* and *B* lie on positive direction of coordinate axes such that the circle lies between origin and the line *AB*. If *O* be the origin then the locus of circumcenter of Δ*OAB* will be:

(a)
$$xy = x + y + \sqrt{x^2 + y^2}$$

(b)
$$xy = x + y - \sqrt{x^2 + y^2}$$

(c)
$$xy + x + y = \sqrt{x^2 + y^2}$$

(d)
$$xy + x + y + \sqrt{x^2 + y^2} = 0$$

4. Length of chord of contact of point (4, 4) with respect to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ is:

(a)
$$\frac{3}{\sqrt{2}}$$

5. Let P, Q, R, S be the feet of the perpendiculars drawn from a point (1, 1) upon the lines x + 4y = 12; x - 4y + 4 = 0 and their angle bisectors respectively; then equation of the circle which passes through Q, R, S is:

(a)
$$x^2 + y^2 - 5x + 3y - 6 = 0$$

(b)
$$x^2 + y^2 - 5x - 3y + 6 = 0$$

(c)
$$x^2 + y^2 - 5x - 3y - 6 = 0$$

(d) None of these

(a) 8

(a) $3\sqrt{5}$

(c) 2√5

circle and PA & PB are the tangents.) is:

on x - 2y = 4. The radius of the circle is:

(b) $\sqrt{110}$

	locu	is of centroid of th	ie ∆Ai	BC is a circle whos	se rac	lius is :		
	(a)	$\frac{2\sqrt{2}}{3}$		$\sqrt{\frac{4}{3}}$			(d) $\sqrt{\frac{2}{9}}$	
9.	Tan	gents drawn to cir	cle (x	$(-1)^2 + (y-1)^2 =$	5 at	point P meets the li	ne 2x + y +	6 = 0 at Q on
		x-axis. Length PQ						
	8 (3)	$\sqrt{12}$	200000	$\sqrt{10}$	(c)		(d) $\sqrt{15}$	
10.	AB((12,	D is square in which 17), then co-ording	ch A li nate c	es on positive <i>y-ax</i> of <i>C</i> is :	cis an	d B lies on the positi	ve x-axis. If	D is the point
		(17, 12)					(d) (15, 3)	
11.	Sta	tement-1: The	lines	y = mx + 1 - m for	or al	l values of m is	a normal t	o the circle
	x2 -	$+y^2-2x-2y=0$						
		tement-2: The li						
		statement-1.				nd statement-2 is		
	(b)	Statement-1 is trustatement-1.	ie, sta	tement-2 is true a	nd st	atement-2 is not th	e correct exp	planation for
	(c)	Statement-1 is tr	ıe, sta	tement-2 is false.				
	(d)	Statement-1 is fa	lse, st	atement-2 is true.				
12.	A(1,	0) and B(0, 1) are	two i	fixed points on the	e circ	$le x^2 + y^2 = 1.C is$	a variable	point on this
(circl	e. As C moves, the	locus	of the orthocenti	e of	the triangle ABC is	:	point on this
9	(a)	$x^2 + y^2 - 2x - 2y$	+1=	: 0	(b)	$x^2 + y^2 - x - y =$	0	
- 10		$x^2 + y^2 = 4$			(d)	$x^2 + y^2 + 2x - 2y$	_1 _0	
13. I	Equa is :	ition of a circle pas	sing t	hrough (1, 2) and) and for which line		a diameter;
		$x^2 + y^2 + 2x + 2y$			(b)	$x^2 + y^2 - 2x - 2y$	-1 = 0	
((c)	$x^2 + y^2 - 2x - 2y$	+1=	0	(d)	None of these		

6. From a point 'P' on the line 2x + y + 4 = 0; which is nearest to the circle $x^2 + y^2 - 12y + 35 = 0$, tangents are drawn to given circle. The area of quadrilateral PACB (where 'C' is the center of

7. The line 2x - y + 1 = 0 is tangent to the circle at the point (2, 5) and the centre of the circles lies

8. If $A(\cos \alpha, \sin \alpha)$, $B(\sin \alpha, -\cos \alpha)$, C(1, 2) are the vertices of a triangle, then as α varies the

(c) $\sqrt{19}$

(b) 5√3

(d) $5\sqrt{2}$

14.	The	area of an equilate	eral triang	gle inscribed i	n a ci	rcle of radius 4 cm	, is :	
		12 cm ²			(b)	$9\sqrt{3}$ cm ²		
	(c)	$8\sqrt{3}$ cm ²			(d)	$12\sqrt{3}$ cm ²		
15.	Let	all the points on t	he curve	$x^2 + y^2 - 10x$	= 0	are reflected abou	t the line $y = x + 3$. T	he
	locu	is of the reflected p	oints is ir	the form x^2	+ y ²	+gx+fy+c=0.7	The value of $(g + f + c)$) is
		al to:						
	(a)	28	(b) -28	e.	(c)	38	(d) -38	
16.	The	shortest distance f	rom the l	ine $3x + 4y =$	25 to	the circle $x^2 + y^2$	= 6x - 8y is equal to:	r č
		7/5	(b) 9/5			11/5		
17.	In the	he xy -plane, the lest circle $(x-6)^2 + (y$	$-8)^2 = 2$	ie shortest pat 25 is:	h fro	m (0, 0) to (12, 16) that does not go ins	ide
	(a)	10√3			(b)	10√5		
	(c)	$10\sqrt{3} + \frac{5\pi}{3}$		¥	(d)	$10 + 5\pi$		
18.	insi		t outside	the first circle)	, tan		. Another circle is dra cle and two of the side	
	(a)	$1/\sqrt{3}$			(b)	2/3		
		1/2			(d)			
19.	The	equation of the tar	ngent to t	he circle $x^2 +$	y ² –	4x = 0 which is per	rpendicular to the nor	mal
	drav	wn through the ori						
		x = 1				x+y=2		
20.			ne paralle	el to the line 3	x + 4	y = 0 and touching	g the circle $x^2 + y^2 =$	9 in
		first quadrant is:			(L)	2		
		3x + 4y = 15				3x + 4y = 45 $3x + 4y = 12$		
	(c)	3x + 4y = 9	been	oireles x2			$+y^2-6x+2y+1=$	^
21.				CITCIES X	т у	-10x+9=0, x	+y -0x + 2y + 1 =	U,
		$+y^2-9x-4y+2$			(L)	1:2	2 05	
	(a)	lie on the straight	t line x –	2y = 5		lie on circle x^2 +		
		do not lie on stra					$y^2 + x + y - 17 = 0$	
22.	The	equation of the di	ameter o	f the circle x^2	+ y	$^2 + 2x - 4y = 4 $ tha	t is parallel to $3x + 5y$	<i>t</i> = 4
	is:				7270			
	(a)	3x + 5y = -7				3x + 5y = 7		
	(c)	3x + 5y = 9			(d)	3x + 5y = 1	2	
							2	

23. There are two circles passing through points A(-1, 2) and B(2, 3) having radius $\sqrt{5}$. Then the length of intercept on x-axis of the circle intersecting x-axis is:

(a) 2

(b) 3

(d) 5

24. A square OABC is formed by line pairs xy = 0 and xy + 1 = x + y where 'O'is the origin. A circle with centre C_1 inside the square is drawn to touch the line pair xy = 0 and another circle with centre C_2 and radius twice that of C_1 , is drawn to touch the circle C_1 and the other line pair. The radius of the circle with centre C_1 is:

(a) $\frac{\sqrt{2}}{\sqrt{3}(\sqrt{2}+1)}$

(b) $\frac{2\sqrt{2}}{3(\sqrt{2}+1)}$

(c) $\frac{\sqrt{2}}{3(\sqrt{2}+1)}$

(d) $\frac{\sqrt{2}+1}{3\sqrt{2}}$

25. The equation of the circle circumscribing the triangle formed by the points (3, 4), (1, 4) and

(a) $8x^2 + 8y^2 - 16x - 13y = 0$

(b) $x^2 + y^2 - 4x - 8y + 19 = 0$

(c) $x^2 + y^2 - 4x - 6y + 11 = 0$

(d) $x^2 + y^2 - 6x - 6y + 17 = 0$

26. The equation of the tangent to circle $x^2 + y^2 + 2gx + 2fy = 0$ at the origin is:

(a) fx + gy = 0

(b) gx + fy = 0(c) x = 0

27. The line y = x is tangent at (0, 0) to a circle of radius 1. The centre of the circle is:

(a) either $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{1}{2}, -\frac{1}{2}\right)$

(b) either $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

(c) either $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (d) either (1, 0) or (-1, 0)

28. The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$:

(a) cut orthogonally

(b) touch each other internally

(c) intersect in two points

(d) touch each other externally

29. In a right triangle ABC, right angled at A, on the leg AC as diameter, a semicircle is described. The chord joining A with the point of intersection D of the hypotenuse and the semicircle, then the length AC equals to:

 $\frac{AB \cdot AD}{\sqrt{AB^2 + AD^2}}$

(b) $\frac{AB \cdot AD}{AB + AD}$

(c) $\sqrt{AB \cdot AD}$

(d) $\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}$

30. Radical centre of the circles drawn on the sides as a diameter of triangle formed by the lines 3x-4y+6=0, x-y+2=0 and 4x+3y-17=0 is:

(a) (3, 2)

(b) (3, -2)

(c) (2, -3)

(d) (2, 3)

31. Statement-1: A circle can be inscribed in a quadrilateral whose sides are 3x - 4y = 0, 3x - 4y = 5, 3x + 4y = 0 and 3x + 4y = 7.

Statement-2: A circle can be inscribed in a parallelogram if and only if it is a rhombus.

- (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- (c) Statement-1 is true, statement-2 is false.
- (d) Statement-1 is false, statement-2 is true.
- 32. If x = 3 is the chord of contact of the circle $x^2 + y^2 = 81$, then the equation of the corresponding pair of tangents, is:
 - (a) $x^2 8y^2 + 54x + 729 = 0$
- (b) $x^2 8y^2 54x + 729 = 0$
- (c) $x^2 8y^2 54x 729 = 0$
- (d) $x^2 8y^2 = 729$
- 33. The shortest distance from the line 3x + 4y = 25 to the circle $x^2 + y^2 = 6x 8y$ is equal to :
 - (a) $\frac{7}{3}$
- (b) $\frac{9}{5}$
- (c) $\frac{11}{5}$
- (d) $\frac{7}{5}$
- **34.** The circle with equation $x^2 + y^2 = 1$ intersects the line y = 7x + 5 at two distinct points A and B. Let C be the point at which the positive x-axis intersects the circle. The angle ACB is:
 - (a) $\tan^{-1} \frac{4}{3}$
- (b) $\cot^{-1}(-1)$
- (c) $tan^{-1} 1$
- (d) $\cot^{-1} \frac{4}{3}$
- **35.** The abscissae of two points A and B are the roots of the equation $x^2 + 2ax b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px q^2 = 0$. The radius of the circle with AB as diameter is:
 - (a) $\sqrt{a^2 + b^2 + p^2 + q^2}$

(b) $\sqrt{a^2 + p^2}$

(c) $\sqrt{b^2 + q^2}$

- (d) $\sqrt{a^2+b^2+p^2+1}$
- **36.** Let C be the circle of radius unity centred at the origin. If two positive numbers x_1 and x_2 are such that the line passing through $(x_1,-1)$ and $(x_2,1)$ is tangent to C then:
 - (a) $x_1 x_2 = 1$

(b) $x_1 x_2 = -1$

(c) $x_1 + x_2 = 1$

- (d) $4x_1x_2 = 1$
- 37. A circle bisects the circumference of the circle $x^2 + y^2 + 2y 3 = 0$ and touches the line x = y at the point (1, 1). Its radius is:
 - (a) $\frac{3}{\sqrt{2}}$
- (b) $\frac{9}{\sqrt{2}}$
- (c) $4\sqrt{2}$
- (d) $3\sqrt{2}$
- **38.** The distance between the chords of contact of tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is:

286							Advanced	Problen	ıs in .	Mather	natics fo	or JEE
	(a)	$\sqrt{g^2+f^2}$				(b)	$\frac{\sqrt{g^2+f^2}}{2}$	<u>-c</u>				
	(c)	$\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$				(d)	$\frac{\sqrt{g^2 + f^2}}{2\sqrt{g^2 + f^2}}$	$\frac{+c}{f^2}$				
39.	If x^2	the tangents $+y^2-3x+2y$	<i>AP</i> and −7 = 0 and	AQ nd C is the	are o	drawn f	rom the	point area of	A(3, quac	– 1) Irilatei	to the	circle Q is :
	(a)	9	(b)	4		(c)	2		(d)	non-e	existent	
40.	Nur the	mber of integra circle x^2+y^2	l value(s) = 4 is :	of k for	which			drawn f	rom 1	he poi	int (k, k	+ 2) to
	(a)	0	(b)	1		(c)	2		(d)	3		
41.	If th	e length of the	normal fo	or each pe	oint or	A . T.		the radi	us ve	ctor, tl	hen the	curve:
		is a circle pas		3,77			•					
		is a circle hav		(F) (F)		radius >	0					
			7									

- (a) is a circle passing through origin
- (b) is a circle having centre at origin and radiu

- (c) is a circle having centre on x-axis and touching y-axis
- (d) is a circle having centre on y-axis and touching x-axis
- 42. A circle of radius unity is centred at origin. Two particles start moving at the same time from the point (1, 0) and move around the circle in opposite direction. One of the particle moves counter clockwise with constant speed v and the other moves clockwise with constant speed 3v. After leaving (1, 0), the two particles meet first at a point P, and continue until they meet next at point Q. The coordinates of the point Q are:
 - (a) (1,0) (b) (0, 1) (c) (0, -1) (d) (-1,0)
- 43. A variable circle is drawn to touch the x-axis at the origin. The locus of the pole of the straight line lx + my + n = 0 w.r.t the variable circle has the equation:
 - (a) $x(my-n)-ly^2=0$

(b) $x(my+n)-ly^2=0$

(c) $x(my-n) + ly^2 = 0$

(d) none of these

44. The minimum length of the chord of the circle $x^2 + y^2 + 2x + 2y - 7 = 0$ which is passing through (1,0) is:

(a) 2

- (b) 4
- (c) $2\sqrt{2}$
- (d) √5

45. Three concentric circles of which the biggest is $x^2 + y^2 = 1$, have their radii in A.P. If the line y = x + 1 cuts all the circles in real and distinct points. The interval in which the common difference of the A.P. will lie is:

- (a) $\left(0,\frac{1}{4}\right)$
- (b) $\left(0, \frac{1}{2\sqrt{2}}\right)$ (c) $\left(0, \frac{2-\sqrt{2}}{4}\right)$ (d) none

46. The locus of the point of intersection of the tangent to the circle $x^2 + y^2 = a^2$, which include an angle of 45° is the curve $(x^2 + y^2)^2 = \lambda a^2(x^2 + y^2 - a^2)$. The value of λ is:

47. A circle touches the line y = x at point (4, 4) on it. The length of the chord on the line x + y = 0 is $6\sqrt{2}$. Then one of the possible equation of the circle is:

(a)
$$x^2 + y^2 + x - y + 30 = 0$$

(b)
$$x^2 + y^2 + 2x - 18y + 32 = 0$$

(c)
$$x^2 + y^2 + 2x + 18y + 32 = 0$$

(d)
$$x^2 + y^2 - 2x - 22y + 32 = 0$$

48. Point on the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ which is nearest to the line y = 2x + 11 is:

(a)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 + \frac{3}{\sqrt{5}}\right)$$

(b)
$$\left(1+\frac{6}{\sqrt{5}}, -2-\frac{3}{\sqrt{5}}\right)$$

(c)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 - \frac{3}{\sqrt{5}}\right)$$

(d) None of these

49. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y - 2 = 0. Then the equation of the circle is:

(a)
$$x^2 + y^2 - 4y + 2 = 0$$

(b)
$$x^2 + y^2 - 4y + 1 = 0$$

(c)
$$x^2 + y^2 - 2x - 1 = 0$$

(d)
$$x^2 + y^2 - 2x + 1 = 0$$

50. If $\left(a, \frac{1}{a}\right)$, $\left(b, \frac{1}{b}\right)$, $\left(c, \frac{1}{c}\right)$ and $\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, *abcd* is equal to:

1	Answers															1			
1.	(a)	2.	(b)	3.	(a)	4.	(b)	5.	(b)	6.	(c)	7.	(a)	8.	(d)	9.	(a)	10.	(b)
11.	(a)	12.	(a)	13.	(c)	14.	(d)	15.	(c)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(c)	24.	(c)	25.	(c)	26.	(b)	27.	(c)	28.	(d)	29.	(d)	30.	(d)
31,	(d)	32.	(b)	33.	(d)	34.	(c)	35.	(a)	36.	(a)	37.	(ъ)	38.	(c)	39.	(d)	40.	(b)
41.	(b)	42.	(d)	43.	(a)	44.	(b)	45.	(c)	46.	(c)	47.	(b)	48.	(a)	49.	(c)	50.	(c)

Exercise-2: One or More than One Answer is/are Correct

1. Number of circle touching both the axes and the line $x + y = 4$ is greater than or equal to	1. 1	Number of circle	touching both	the axes and	the line v +	v – 4 is great	er than or	equal t	o :
---	------	------------------	---------------	--------------	--------------	----------------	------------	---------	-----

(a) 1

(b) 2

(c) 3

(d) 4

2. Which of the following is/are true?

The circles $x^2 + y^2 - 6x - 6y + 9 = 0$ and $x^2 + y^2 + 6x + 6y + 9 = 0$ are such that :

- (a) They do not intersect
- (b) They touch each other
- (c) Their exterior common tangents are parallel
- (d) Their interior common tangents are perpendicular
- 3. Let ' α ' be a variable parameter, then the length of the chord of the curve :

$$(x-\sin^{-1}\alpha)(x-\cos^{-1}\alpha)+(y-\sin^{-1}\alpha)(y+\cos^{-1}\alpha)=0$$

along the line $x = \frac{\pi}{4}$ can not be equal to:

(a) $\frac{\pi}{3}$

(b) $\frac{\pi}{6}$

(c) $\frac{\pi}{4}$

(d) $\frac{\pi}{2}$

4. If the point (1, 4) lies inside the circle $x^2 + y^2 - 6x - 10y + p = 0$ and the circle does not touch or intersect the coordinate axes, then which of the following must be correct:

(a) p < 29

(b) p > 25

(c) p > 27

(d) p < 27

5. The equation of a circle $S_1 = 0$ is $x^2 + y^2 = 4$, locus of the intersection of orthogonal tangents to the circle is the curve C_1 and the locus of the intersection of perpendicular tangents to the curve C_1 is the curve C_2 , then:

- (a) C_2 is a circle
- (b) C_1 , C_2 are circles having different centres
- (c) C₁, C₂ are circles having same centres
- (d) area enclosed between C_1 and C_2 is 8π

6. If two distinct chords drawn from the point (p, q) on the circle $x^2 + y^2 = px + qy$ (where $pq \neq 0$) are bisected by the x-axis, then:

(a) $p^2 = q^2$

(b) $p^2 > q^2$

(c) $p^2 < 8q^2$

(d) $p^2 > 8a^2$

7. If $a = \max\{(x+2)^2 + (y-3)^2\}$ and $b = \min\{(x+2)^2 + (y-3)^2\}$ where x, y satisfying $x^2 + y^2 + 8x - 10y - 40 = 0$, then:

(a) a+b=18

(b) a+b=178

(c) $a - b = 4\sqrt{2}$

(d) $a-b=72\sqrt{2}$

8. The locus of points of intersection of the tangents to $x^2 + y^2 = a^2$ at the extremeties of a chord of circle $x^2 + y^2 = a^2$ which touches the circle $x^2 + y^2 - 2ax = 0$ is/are:

(a)
$$y^2 = a(a-2x)$$

(b)
$$x^2 = a(a-2y)$$

(c)
$$x^2 + y^2 = (x-a)^2$$

(d)
$$x^2 + y^2 = (y - a)^2$$

- 9. A circle passes through the points (-1,1), (0,6) and (5,5). The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are
 - (a) (1, -5)
- (b) (5,1)
- (c) (-5, -1)
- (d) (-1,5)
- 10. A square is inscribed in the circle $x^2 + y^2 2x + 4y 93 = 0$ with the sides parallel to the co-ordinate axes. The co-ordinate of the vertices are:
 - (a) (8,5)
- (b) (8,9)
- (c) (-6, 5)
- (d) (-6, -9)

			1	Ansv	vers					
1. (a, b, c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b)	5.	(a, c, d)	6.	(b, d)
7. (b, d)	8.	(a, c)	9.	(b, d)	10.	(a, c)				

290

Paragraph for Question Nos. 1 to 3

Let each of the circles.

$$S_1 \equiv x^2 + y^2 + 4y - 1 = 0,$$

$$S_2 \equiv x^2 + y^2 + 6x + y + 8 = 0,$$

$$S_3 \equiv x^2 + y^2 - 4x - 4y - 37 = 0$$

touches the other two. Let P_1 , P_2 , P_3 be the points of contact of S_1 and S_2 , S_2 and S_3 , S_3 and S_1 respectively and C_1 , C_2 , C_3 be the centres of S_1 , S_2 , S_3 respectively.

1. The co-ordinates of P_1 are:

(a)
$$(2,-1)$$

(d)
$$(-2, -1)$$

2. The ratio $\frac{\text{area } (\Delta P_1 P_2 P_3)}{\text{area } (\Delta C_1 C_2 C_3)}$ is equal to :

(a) 3:2

3. P_2 and P_3 are image of each other with respect to line:

(a)
$$y = x + 1$$

(b)
$$y = -x$$

(c)
$$y = x$$

(d)
$$y = -x + 2$$

Paragraph for Question Nos. 4 to 6

Let A(3, 7) and B(6, 5) are two points. $C: x^2 + y^2 - 4x - 6y - 3 = 0$ is a circle.

4. The chords in which the circle C cuts the members of the family S of circle passing through A and B are concurrent at:

(a) (2, 3)

(b)
$$\left(2, \frac{23}{3}\right)$$
 (c) $\left(3, \frac{23}{2}\right)$

(c)
$$\left(3, \frac{23}{2}\right)$$

5. Equation of the member of the family of circles S that bisects the circumference of C is:

(a) $x^2 + y^2 - 5x - 1 = 0$

(b)
$$x^2 + y^2 - 5x + 6y - 1 = 0$$

(c)
$$x^2 + y^2 - 5x - 6y - 1 = 0$$

(d)
$$x^2 + y^2 + 5x - 6y - 1 = 0$$

6. If O is the origin and P is the center of C, then absolute value of difference of the squares of the lengths of the tangents from A and B to the circle C is equal to:

(a) $(AB)^2$

(c)
$$|(AP)^2 - (BP)^2|$$
 (d) $(AP)^2 + (BP)^2$

(d)
$$(AP)^2 + (BP)^2$$

Paragraph for Question Nos. 7 to 8

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.

7. Let $S = \{(x, y): (y - x) \le 0, x + y \ge 0, x^2 + y^2 \le 2\}$, then the diameter of S is:

(a) 2

(c)
$$\sqrt{2}$$

(d)
$$2\sqrt{2}$$

- **8.** Let $S = \{(x, y) : (\sqrt{5} 1)x \sqrt{10 + 2\sqrt{5}} \ y \ge 0, (\sqrt{5} 1) \ x + \sqrt{10 + 12\sqrt{5}} \ y \ge 0, \ x^2 + y^2 \le 9\}$ then the diameter of S is :
 - (a) $\frac{3}{2}(\sqrt{5}-1)$
- (b) $3(\sqrt{5}-1)$
- (c) 3√2
- (d) 3

Paragraph for Question Nos. 9 to 10

Let L_1 , L_2 and L_3 be the lengths of tangents drawn from a point P to the circles $x^2 + y^2 = 4$, $x^2 + y^2 - 4x = 0$ and $x^2 + y^2 - 4y = 0$ respectively. If $L_1^4 = L_2^2 L_3^2 + 16$ then the locus of P are the curves, C_1 (a straight line) and C_2 (a circle).

- 9. Circum centre of the triangle formed by C_1 and two other lines which are at angle of 45° with C_1 and tangent to C_2 is :
 - (a) (1,1)
- (b) (0,0)
- (c) (-1,-1)
- (d) (2,2)
- 10. If S_1 , S_2 and S_3 are three circles congruent to C_2 and touch both C_1 and C_2 ; then the area of triangle formed by joining centres of the circles S_1 , S_2 and S_3 is (in square units)
 - (a) 2
- (b) 4
- (c) 8
- (d) 16

Exercise-4: Matching Type Problems

1.

1	Column-I		Column-II
(A)	The triangle <i>PQR</i> is inscribed in the circle $x^2 + y^2 = 169$. If <i>Q</i> (5, 12) and <i>R</i> (-12, 5) then $\angle QPR$ is	(P)	π/6
(B)	The angle between the lines joining the origin to the points of intersection of the line $4x + 3y = 24$ with circle $(x-3)^2 + (y-4)^2 = 25$	(Q)	π/4
(C)	Two parallel tangents drawn to given circle are cut by a third tangent. The angle subtended by the portion of third tangent between the given tangents at the centre is	(R)	π/3
(D)	A chord is drawn joining the point of contact of tangents drawn from a point P to the circle. If the chord subtends an angle $\pi/2$ at the centre then the angle included between the tangents at P is	(S)	π/2
		(T)	π

2.

1	Column-I		Column-II
(A)	A ray of light coming from the point $(1, 2)$ is reflected at a point A on the x -axis then passes through the point $(5, 3)$. The coordinates of the point A are:	(P)	$\left(\frac{13}{5},0\right)$
(B)	The equation of three sides of triangle ABC are $x + y = 3$, $x - y = 5$ and $3x + y = 4$. Considering the sides as diameter, three circles S_1 , S_2 , S_3 are drawn whose radical centre is at:	(Q)	(4, -1)
(C)	If the straight line $x - 2y + 1 = 0$ intersects the circle $x^2 + y^2 = 25$ at the points P and Q , then the coordinate of the point of intersection of tangents drawn at P and Q to the circle is	(R)	(-25, 50)
(D)	The equation of three sides of a triangle are $4x + 3y + 9 = 0$, $2x + 3 = 0$ and $3y - 4 = 0$. The circum centre of the triangle is:	(S)	$\left(\frac{-19}{8},\frac{1}{6}\right)$
		(T)	(-1, 2)

Gircle

293

Answers

- 1. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow S$; $D \rightarrow S$
- 2. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$

-

Exercise-5: Subjective Type Problems

- 1. Tangents are drawn to circle $x^2 + y^2 = 1$ at its intersection points (distinct) with the circle $x^2 + y^2 + (\lambda 3)x + (2\lambda + 2)y + 2 = 0$. The locus of intersection of tangents is a straight line, then the slope of that straight line is.
- 2. The radical centre of the three circles is at the origin. The equations of the two of the circles are $x^2 + y^2 = 1$ and $x^2 + y^2 + 4x + 4y 1 = 0$. If the third circle passes through the points (1, 1) and (-2, 1); and its radius can be expressed in the form of $\frac{p}{q}$, where p and q are relatively prime positive integers. Find the value of (p + q).
- 3. Let $S = \{(x, y) \mid x, y \in R, x^2 + y^2 10x + 16 = 0\}$. The largest value of $\frac{y}{x}$ can be put in the form $\frac{m}{n}$ where m, n are relatively prime natural numbers, then $m^2 + n^2 = \frac{m}{n}$
- **4.** In the above problem, the complete range of the expression $x^2 + y^2 26x + 12y + 210$ is [a, b], then b 2a =
- **5.** If the line y = 2 x is tangent to the circle S at the point P(1, 1) and circle S is orthogonal to the circle $x^2 + y^2 + 2x + 2y 2 = 0$, then find the length of tangent drawn from the point (2, 2) to circle S.
- **6.** Two circles having radii r_1 and r_2 passing through vertex A of a triangle ABC. One of the circle touches the side BC at B and other circle touches the side BC at C. If a = 5 and $A = 30^\circ$, find $\sqrt{r_1 r_2}$.
- 7. A circle S of radius 'a' is the director circle of another circle S_1 . S_1 is the director circle of S_2 and so on. If the sum of radius of S, S_1 , S_2 , S_3 circles is '2' and $a = (k \sqrt{k})$, then the value of k is
- **8.** If r_1 and r_2 be the maximum and minimum radius of the circle which pass through the point (4, 3) and touch the circle $x^2 + y^2 = 49$, then $\frac{r_1}{r_2}$ is
- **9.** Let C be the circle $x^2 + y^2 4x 4y 1 = 0$. The number of points common to C and the sides of the rectangle determined by the lines x = 2, x = 5, y = -1 and y = 5 is P then find P.
- 10. Two congruent circles with centres at (2, 3) and (5, 6) intersects at right angle; find the radius of the circle.
- **11.** The sum of abscissa and ordinate of a point on the circle $x^2 + y^2 4x + 2y 20 = 0$ which is nearest to $\left(2, \frac{3}{2}\right)$ is :
- 12. AB is any chord of the circle $x^2 + y^2 6x 8y 11 = 0$ which subtends an angle $\frac{\pi}{2}$ at (1, 2). If locus of midpoint of AB is a circle $x^2 + y^2 2ax 2by c = 0$; then find the value of (a + b + c).

13. If circles $x^2 + y^2 = c$ with radius $\sqrt{3}$ and $x^2 + y^2 + ax + by + c = 0$ with radius $\sqrt{6}$ intersect at two points A and B. If length of $AB = \sqrt{l}$. Find l.

4	_					Ansv	vers		الأد				
1.	2	2.	5	3.	25	4.	66	5.	2	6.	5	7.	2
6.	6	9.	3	10.	3	11.	6	12.	8	13.	8		

Chapter 19 - Parabola

PARABOLA

50				
Y	Exe	ercise-1 : Single (Choice Problems	
1.	Let	PQ be the latus rec	ctum of the parabola $y^2 =$	= 4x with vertex A. Minimum length of the
			angent drawn in portion of	
	(a)	2	(b)	4
	(c)	$2\sqrt{3}$	(d)	2√2

2. A normal is drawn to the parabola $y^2 = 9x$ at the point P(4, 6). A circle is described on SP as diameter; where S is the focus. The length of the intercept made by the circle on the normal at point P is:

(a) $\frac{17}{4}$	(b) $\frac{15}{4}$	(c) 4	(d) 5	
			ts diagonal pass through the	point
(1, 0) and each	has length $\frac{25}{4}$. If the are	ea of the trapezium b	be P, then 4P is equal to :	

- 4. The length of normal chord of parabola $y^2 = 4x$, which subtends an angle of 90° at the vertex is
- (b) $7\sqrt{2}$ (a) $6\sqrt{3}$ (c) $8\sqrt{2}$ (d) $9\sqrt{2}$ **5.** If b and c are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$. Then the length of semi-latus rectum is:
 - (b) $\frac{2bc}{b+c}$ (d) √bc

6. The length of the shortest path that begins at the point (-1, 1), touches the x-axis and then ends at a point on the parabola $(x-y)^2 = 2(x+y-4)$, is:

(a) $3\sqrt{2}$ (b) 5 (c) $4\sqrt{10}$ (d) 13

7.		ne normals at three us, then $ SP \cdot SQ $			arabo	ola $y^2 = 4ax$ meet	in a	point O' and S be its
		z^3	, Sr W	£8.	(b)	$a^2(SO')$		
	(c)	$a(SO')^2$			(d)	None of these		
8.	Let	P and Q are points	on th	e parabola $y^2 = 4a$	ıx wi	th vertex O, such th	at O	P is perpendicular to
	UŲ	and have lengths r	and	r ₂ respectively, the	en th	le value of $\frac{1}{r_1^{2/3} + r_2^{2/3}}$	2/3	15 :
		$16a^2$		•		4a		None of these
9.	Len	gth of the shortest	chor	d of the parabola v	, ² =	4x + 8, which below	ngs t	o the family of lines
		$(\lambda)y + (\lambda - 1)x + 2($						
	(a)	200	(b)	15	(c)	8	(d)	2
10.		ocus of mid-point o	f any	normal chord of the	25 55			
		-		$y^2 = 4x \text{ is } x - a =$	$=\frac{b}{v^2}$	$+\frac{y^2}{c}$;		
		L N -bo-	. (y	•		
	(a)	ere $a, b, c \in N$, then	(b)		(c)	10	(1)	None of these
11								1) is a point such that
11.		(SQ) = 16, then the					130 120	
	(a)	extension in the same	(Ъ)		(c)	5	(d)	None of these
12.	Abs	scissa of two points	Pano	l Q on parabola y 2	= 8x	are roots of equati	on x	$^{2} - 17x + 11 = 0$. Let
	Tan	gents at P and Q m	eet a	t point T, then dist	ance	of T from the focu	s of	parabola is :
	(a)	7	(b)	6	(c)	5	(d)	
13.	If A	x + By = 1 is a non	nal to	the curve $ay = x^2$	² , the	en:		
		$4A^2(1-aB)=aB$			(b)	$4A^2(2+aB)=aB$		
	(c)	$4A^2(1+aB)+aB$	³ = 0	V 8	(d)	$2A^2(2-aB)=aB$	3	
14.	The	e equation of a cur gent between the p	ve wi	nich passes through	h the	e point (3, 1), such	tha poin	t the segment of any at of intersection with
		xis, is:	(L)	$x^2 = 9y$	(c)	$y = y^2 + 2$	(d)	$2x = 3v^2 + 3$
William (Min)	(a)							
15.	The	e parabola $y = 4 - x$	has	vertex P. It interse	ovin	g its vertey along t	uic p ne lir	parabola is translated ne $y = x + 4$, so that it
	inte	m its initial position ersects x-axis at B a	nd C	, then abscissa of C	will	be:		
	(a)	3	(b)	4	(c)	6	(d)	8

16. A focal chord for parabola $y^2 = 8(x + 2)$ is inclined at an angle of 60° with positive x-axis and intersects the parabola at P and Q. Let perpendicular bisector of the chord PQ intersects the x-axis at R; then the distance of R from focus is:

(a)
$$\frac{8}{3}$$

(b)
$$\frac{16\sqrt{3}}{3}$$

(c)
$$\frac{16}{3}$$

(d) 8√3

17. The Director circle of the parabola $(y-2)^2 = 16(x+7)$ touches the circle $(x-1)^2 + (y+1)^2 = r^2$, then r is equal to:

(b) 11

(d) None of these

18. The chord of contact of a point $A(x_A, y_A)$ of $y^2 = 4x$ passes through (3, 1) and point A lies on $x^2 + y^2 = 5^2$. Then:

(a)
$$5x_A^2 + 24x_A + 11 = 0$$

(b)
$$13x_A^2 + 8x_A - 21 = 0$$

(c)
$$5x_A^2 + 24x_A + 61 = 0$$

(d)
$$13x_A^2 + 21x_A - 31 = 0$$

40%	1							A	ns	wer	s								1
1.	(d)	2.	(b)	3,		ALESSY ELLER	(a)		55.50	300 (ASS)	(a)	Carlotte Mark	(c)		(a)	9.	(c)	10.	(b)
11.	(b)	12.	(a)	13.	(d)	14.	(a)	15.	(d)	16.	(c)	17.	(c)	18.	(a)		2 2		

- **1.** PQ is a double ordinate of the parabola $y^2 = 4ax$. If the normal at P intersect the line passing through Q and parallel to x-axis at G; then locus of G is a parabola with:
 - (a) vertex at (4a, 0)

- (b) focus at (5a, 0)
- (c) directrix as the line x 3a = 0
- (d) length of latus rectum equal to 4a

		I A	nswers		
1. (a, b, c, d)	la state	Name of the last			

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider the following lines:

$$L_1: x-y-1=0$$

 $L_2: x+y-5=0$
 $L_3: y-4=0$

Let L_1 is axis to a parabola, L_2 is tangent at the vertex to this parabola and L_3 is another tangent to this parabola at some point P.

Let 'C' be the circle circumscribing the triangle formed by tangent and normal at point P and axis of parabola. The tangent and normals at the extremities of latus rectum of this parabola forms a quadrilateral ABCD.

1. The equation of the circle 'C' is:

(a)
$$x^2 + y^2 - 2x - 31 = 0$$

(b)
$$x^2 + y^2 - 2y - 31 = 0$$

(c)
$$x^2 + y^2 - 2x - 2y - 31 = 0$$

(d)
$$x^2 + y^2 + 2x + 2y = 31$$

2. The given parabola is equal to which of the following parabola?

(a)
$$y^2 = 16\sqrt{2}x$$

(b)
$$x^2 = -4\sqrt{2}y$$

(c)
$$y^2 = -\sqrt{2}x$$

(d)
$$y^2 = 8\sqrt{2}x$$

3. The area of the quadrilateral ABCD is:

Exercise-4: Matching Type Problems

1.

1	Column-I	1	Column-II
(A)	The equation of tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ which cuts off equal intercepts on axes is $x - y = a$ where $ a $ equal to	(P)	$\sqrt{2}$
(B)	The normal $y = mx - 2am - am^2$ to the parabola $y^2 = 4ax$ subtends a right angle at the vertex if $ m $ equal to	(Q)	√3
(C)	The equation of the common tangent to parabola $y^2 = 4x$ and $x^2 = 4y$ is $x + y + \frac{k}{\sqrt{3}} = 0$, then k is equal to	(R)	√8
(D)	An equation of common tangent to parabola $y^2 = 8x$ and the hyperbola $3x^2 - y^2 = 3$ is $4x - 2y + \frac{k}{\sqrt{2}} = 0$, then k is equal to	(S)	√41
	then K is equal to	(T)	2

2.

	Column-l		Column-II
(A)	Area of ΔPQR is equal to	(P)	2
(B)	Radius of circumcircle of ΔPQR is equal to	(Q)	$\frac{5}{2}$
(C)	Distance of the vertex from the centroid of ΔPQR is equal to	(R)	$\frac{3}{2}$
(D)	Distance of the centroid from the circumcentre of ΔPQR is equal to	(S)	$\frac{2}{3}$
		(T)	$\frac{11}{6}$

Answers

1.
$$A \rightarrow S$$
; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

2.
$$A \rightarrow P$$
; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow T$

Exercise-5 : Subjective Type Problems

- 1. Points A and B lie on the parabola $y = 2x^2 + 4x 2$, such that origin is the mid-point of the line segment AB. If 'l' be the length of the line segment AB, then find the unit digit of l^2 .
- 2. For the parabola $y = -x^2$, let a < 0 and b > 0; $P(a, -a^2)$ and $Q(b, -b^2)$. Let M be the mid-point of PQ and R be the point of intersection of the vertical line through M, with the parabola. If the ratio of the area of the region bounded by the parabola and the line segment PQ to the area of the triangle PQR be $\frac{\lambda}{\mu}$; where λ and μ are relatively prime positive integers, then find the value of $(\lambda + \mu)$:
- **3.** The chord AC of the parabola $y^2 = 4ax$ subtends an angle of 90° at points B and D on the parabola. If points A, B, C and D are represented by $(at_i^2, 2at_i)$, i = 1, 2, 3, 4 respectively, then find the value of $\left|\frac{t_2 + t_4}{t_1 + t_3}\right|$.

000

Exercise-1: Single Choice Problems

1. If CF be the perpendicular from the centre C of the ellipse $\frac{x^2}{12} + \frac{y^2}{8} = 1$, on the tangent at any point P and G is the point where the normal at P meets the major axis, then the value of $(CF \cdot PG)$ equals to:

1-1	
(2)	_

(b) 6

(c) 8

(d) None of these

2. The minimum length of intercept on any tangent to the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ cut by the circle $x^2 + y^2 = 25$ is:

(a) 8

(b) 9

(c) 2

(d) 11

3. The point on the ellipse $x^2 + 2y^2 = 6$, whose distance from the line x + y = 7 is minimum is:

(b) (2, 1)

(c) (1, 0)

(d) None of these

4. If lines 2x + 3y = 10 and 2x - 3y = 10 are tangents at the extremities of a latus rectum of an ellipse; whose centre is origin, then the length of the latus rectum is:

(a) $\frac{110}{27}$

5. The area bounded by the circle $x^2 + y^2 = a^2$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the area of another ellipse having semi-axes:

(a) a+b and b

(b) a-b and a

(c) a and b

(d) None of these

6. If F_1 and F_2 are the feet of the perpendiculars from foci S_1 and S_2 of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ on the tangent at any point P of the ellipse, then : (a) $S_1F_1 + S_2F_2 \ge 2$ (b) $S_1F_1 + S_2F_2 \ge 3$ (c) $S_1F_1 + S_2F_2 \ge 6$ (d) $S_1F_1 + S_2F_2 \ge 8$

7. Consider the ellipse $\frac{x^2}{f(k^2+2k+5)} + \frac{y^2}{f(k+11)} = 1$, where f(x) is a positive decreasing

function, then the value of k for which major axis coincides with x -axis is :

(d) None of these

(a) $k \in (-7, -5)$ (b) $k \in (-5, -3)$ (c) $k \in (-3, 2)$ (d) None of these

8. If area of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ inscribed in a square of side length $5\sqrt{2}$ is A, then $\frac{A}{\pi}$ equals to:

(d) 11

9. Any chord of the conic $x^2 + y^2 + xy = 1$ passing through origin is bisected at a point (p, q), then (p+q+12) equals to:

(a) 13

(c) 11

(d) 12

10. Tangents are drawn from the point (4, 2) to the curve $x^2 + 9y^2 = 9$, the tangent of angle between the tangents:

(b) $\frac{\sqrt{43}}{10}$

(c) $\frac{\sqrt{43}}{5}$

1	1							A	nsv	vers					, (
1.	(c)	2.	(a)	3.	(b)	4.	(c)	5.	(b)	6. (d)	7. (c)	8,	(a)	9.	(d)	10.	(c)

Exercise-2: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It slides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.

1. The locus of the centre of ellipse is:

(a)
$$x^2 + y^2 = 3$$

(b)
$$x^2 + y^2 = 5$$

(c)
$$(x-2)^2 + (y-1)^2 = 5$$

(d)
$$(x-2)^2 + (y-1)^2 = 3$$

2. The locus of the foci of the ellipse is:

(a)
$$x^2 + y^2 + \frac{1}{x^2} + \frac{1}{y^2} = 16$$

(b)
$$x^2 + y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

(c)
$$x^2 + y^2 - \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

(d)
$$x^2 - y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

Paragraph for Question Nos. 3 to 5

A coplanar beam of light emerging from a point source have the equation $\lambda x - y + 2(1 + \lambda) = 0$, $\forall \lambda \in R$; the rays of the beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation $\mu x - y + 2(1 - \mu) = 0$, $\forall \mu \in R$. Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2 + y^2 - 4y - 5 = 0$

3. The eccentricity of the ellipse is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{\sqrt{3}}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{2}$$

4. The area of the largest triangle that an incident ray and corresponding reflected ray can enclose with the major axis of the ellipse is equal to :

(a) $4\sqrt{5}$

(b) √5

(c) 3√5

(d) $2\sqrt{5}$

5. The least value of total distance travelled by an incident ray and the corresponding reflected ray is equal to:

(a) 6

(b) 3

(c) √5

(d) $2\sqrt{5}$

Exercise-3: Matching Type Problems

1.

	Column-I		Column-II
(A)	If the tangent to the ellipse $x^2 + 4y^2 = 16$ at the point $P(4\cos\phi, 2\sin\phi)$ is a normal to the circle $x^2 + y^2 - 8x - 4y = 0$ then $\frac{\phi}{2}$ may be	(P)	0
(B)	The eccentric angle(s) of a point on the ellipse $x^2 + 3y^2 = 6$ at a distance 2 units from the centre of the ellipse is/are	(Q)	$\cos^{-1}\left(-\frac{2}{3}\right)$
(C)	The eccentric angle of point of intersection of the ellipse $x^2 + 4y^2 = 4$ and the parabola $x^2 + 1 = y$ is	(R)	$\frac{\pi}{4}$
(D)	If the normal at the point $P(\sqrt{14}\cos\theta, \sqrt{5}\sin\theta)$ to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersect it again at the point $Q(\sqrt{14}\cos 2\theta, \sqrt{5}\sin 2\theta)$, then θ is	(S)	<u>5π</u> 4
		(T)	$\frac{\pi}{2}$

Answers

Exercise-4: Subjective Type Problems

- **1.** For the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let *O* be the centre and *S* and *S'* be the foci. For any point *P* on the ellipse the value of *PS*. $PS'd^2$ (where *d* is the distance of *O* from the tangent at *P*) is equal to
- 2. Number of perpendicular tangents that can be drawn on the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ from point (6, 7) is

4				Answe	ers		5
1.	4	2.	0				

000

HYPERBOLA

Exercise-1: Single Choice Problems

1. The normal to curve xy = 4 at the point (1, 4) meets the curve again at:

(b)
$$\left(-8, -\frac{1}{2}\right)$$

(c)
$$\left(-16, -\frac{1}{4}\right)$$

2. Let PQ: 2x + y + 6 = 0 is a chord of the curve $x^2 - 4y^2 = 4$. Coordinates of the point $R(\alpha, \beta)$ that satisfy $\alpha^2 + \beta^2 - 1 \le 0$; such that area of triangle PQR is minimum; are given by:

(a)
$$\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

(b)
$$\left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$

(c)
$$\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

(d)
$$\left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$

3. If y = mx + c be a tangent to hyperbola $\frac{x^2}{\lambda^2} - \frac{y^2}{(\lambda^3 + \lambda^2 + \lambda)^2} = 1$, then least value of 16 m^2 equals to:

(d) 9

4. Let the double ordinate PP' of the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$ is produced both sides to meet asymptotes of hyperbola in Q and Q'. The product (PQ)(PQ') is equal to:

(d) 5

5. If eccentricity of conjugate hyperbola of the given hyperbola :

$$|\sqrt{(x-1)^2 + (y-2)^2} - \sqrt{(x-5)^2 + (y-5)^2}| = 3$$

is e', then value of 8e' is:

(d) 10

- **6.** A normal to the hyperbola $\frac{x^2}{4} \frac{y^2}{1} = 1$ has equal intercepts on positive x and positive y-axes. If this normal touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $3(a^2 + b^2)$ is equal to:
 - (a) 5
- (b) 25
- (c) 16
- (d) None of these
- 7. Locus of a point, whose chord of contact with respect to the circle $x^2 + y^2 = 4$ is a tangent to the hyperbola xy = 1 is a/an:
 - (a) ellipse

(b) circle

(c) hyperbola

- (d) parabola
- **8.** Let the chord $x \cos \alpha + y \sin \alpha = p$ of the hyperbola $\frac{x^2}{16} \frac{y^2}{18} = 1$ subtends a right angle at the centre. Let diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is d, then $\frac{d}{4}$ is equal to:
 - (a) 4
- (b) 5
- (c) 6
- (d) 7
- **9.** If the tangent and normal at a point on rectangular hyperbola cut-off intercept a_1 , a_2 on x-axis and b_1 , b_2 on the y-axis, then $a_1a_2 + b_1b_2$ is equal to :
 - (a) 2
- (b) $\frac{1}{2}$
- (c) 0
- (d) -1

Exercise-2: One or More than One Answer is/are Correct

1. A common tangent to the hyperbola $9x^2 - 16y^2 = 144$ and the circle $x^2 + y^2 = 9$ is/are:

(a)
$$y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$$

(b)
$$y = 3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$$

(c)
$$y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$$

(d)
$$y = -3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$$

2. Tangents are drawn to the hyperbola $x^2 - y^2 = 3$ which are parallel to the line 2x + y + 8 = 0. Then their points of contact is/are:

(c)
$$(-2, -1)$$

3. If the line ax + by + c = 0 is normal to the curve xy = 1, then:

(a)
$$a > 0, b > 0$$

(b)
$$a > 0, b < 0$$

(c)
$$b < 0, a < 0$$

(d)
$$a < 0, b > 0$$

4. A circle cuts rectangular hyperbola xy = 1 in the points (x_r, y_r) , r = 1, 2, 3, 4 then:

(a)
$$y_1y_2y_3y_4 = 1$$

(b)
$$x_1x_2x_3x_4 = 1$$

(c)
$$x_1x_2x_3x_4 = y_1y_2y_3y_4 = -1$$

(d)
$$y_1y_2y_3y_4 = 0$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then:

1. The equation of 'C' is:

(a)
$$x^2 = 4y$$

(b)
$$x^2 = 16y$$

(d) $y^2 = 8x$

(c)
$$x^2 = 12y$$

(d)
$$y^2 = 8x$$

2. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is:

(a)
$$x^2 = 4y$$

(b)
$$x^2 = 2y$$

(c)
$$x^2 + 2y = 0$$

(d)
$$x^2 + 4y = 0$$

3. Area of the equilateral triangle, inscribed in the curve C, and having one vertex same as the vertex of C is:

(a)
$$768\sqrt{3}$$

(c) 760√3

(d) None of these

- 1. Let y = mx + c be a common tangent to $\frac{x^2}{16} \frac{y^2}{9} = 1$ and $\frac{x^2}{4} + \frac{y^2}{3} = 1$, then find the value of $m^2 + c^2$.
- 2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is:
- **3.** Tangent at P to rectangular hyperbola xy = 2 meets coordinate axes at A and B, then area of triangle OAB (where O is origin) is:

1.						Answe	ers		Play Control	
1.	8	2.	4	3.	4			4.		

Trigonometry

- 22. Compound Angles
- 23. Trigonometric Equations
- 24. Solution of Triangles
- 25. Inverse Trigonometric Functions

Chapter 22 - Compound Angles

COMPOUND ANGLES

Exercise-1: Single Choice Problems

(a)
$$\frac{1}{\sqrt{2}}$$

(b)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

(b)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$
 (c) $\frac{\sqrt{6}+\sqrt{2}}{4}$ (d) $\frac{\sqrt{3}+1}{2}$

(d)
$$\frac{\sqrt{3}+1}{2}$$

2. If a $\sin x + b \cos(c + x) + b \cos(c - x) = \alpha$, $\alpha > a$, then the minimum value of $|\cos c|$ is:

(a) $\sqrt{\frac{\alpha^2 - a^2}{b^2}}$ (b) $\sqrt{\frac{\alpha^2 - a^2}{2b^2}}$ (c) $\sqrt{\frac{\alpha^2 - a^2}{3b^2}}$ (d) $\sqrt{\frac{\alpha^2 - a^2}{4b^2}}$

(a)
$$\sqrt{\frac{\alpha^2-a^2}{b^2}}$$

(b)
$$\sqrt{\frac{\alpha^2 - a^2}{2b^2}}$$

(c)
$$\sqrt{\frac{\alpha^2 - a^2}{3b^2}}$$

(d)
$$\sqrt{\frac{\alpha^2 - a^2}{4b^2}}$$

3. If all values of $x \in (a, b)$ satisfy the inequality $\tan x \tan 3x < -1, x \in \left(0, \frac{\pi}{2}\right)$, then the maximum value (b-a) is:

(a)
$$\frac{\pi}{12}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{4}$$

4. $\sum_{n=0}^{8} \tan(rA) \tan((r+1)A)$ where $A = 36^{\circ}$ is:

(a)
$$-10 - \tan A$$

(b)
$$-10 + \tan A$$

(c)
$$-10$$

5. Let $f(x) = 2\csc 2x + \sec x + \csc x$, then minimum value of f(x) for $x \in \left[0, \frac{\pi}{2}\right]$ is:

(a)
$$\frac{1}{\sqrt{2}-1}$$

(b)
$$\frac{2}{\sqrt{2}-1}$$

(c)
$$\frac{1}{\sqrt{2}+1}$$

(d)
$$\frac{2}{\sqrt{2}+1}$$

6. The exact value of cosec 10° + cosec 50° - cosec 70° is:

7. If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the maximum and minimum values of u^2 is given by:

(a)
$$2(a^2+b^2)$$

(b)
$$2\sqrt{a^2+b^2}$$

(c)
$$(a+b)^2$$

(d)
$$(a-b)^2$$

8. If
$$u_n = \sin(n\theta) \sec^n \theta$$
, $v_n = \cos(n\theta) \sec^n \theta$, $n \in \mathbb{N}$, $n \neq 1$, then $\frac{v_n - v_{n-1}}{u_{n-1}} + \frac{1}{n} \frac{u_n}{v_n} = \frac{1}{n} \frac{u_n}{v_n}$

(a)
$$-\cot\theta + \frac{1}{n}\tan(n\theta)$$

(b)
$$\cot \theta + \frac{1}{n} \tan(n\theta)$$

(c)
$$\tan \theta + \frac{1}{n} \tan(n\theta)$$

(d)
$$-\tan\theta + \frac{\tan(n\theta)}{n}$$

9. If
$$a\cos^2 3\alpha + b\cos^4 \alpha = 16\cos^6 \alpha + 9\cos^2 \alpha$$
 is an identity, then

(a)
$$a = 1, b = 24$$

(b)
$$a = 3, b = 24$$

(c)
$$a = 4, b = 2$$

(d)
$$a = 7, b = 18$$

10. Maximum value of
$$\cos x (\sin x + \cos x)$$
 is equal to:

(a)
$$\sqrt{2}$$

(c)
$$\frac{\sqrt{2}+1}{2}$$

(d)
$$\sqrt{2} + 1$$

11. If
$$\frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2}$$
 and $\frac{\cos A}{\cos B} = \frac{\sqrt{5}}{2}$, $0 < A, B < \frac{\pi}{2}$ then $\tan A + \tan B$ is equal to:

(a)
$$\sqrt{\frac{3}{5}}$$

(b)
$$\sqrt{\frac{5}{3}}$$

(c)
$$\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}$$

(c)
$$\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}$$
 (d) $\frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}}$

12. Let $0 \le \alpha, \beta, \gamma, \delta \le \pi$ where β and γ are not complementary such that

$$2\cos\alpha + 6\cos\beta + 7\cos\gamma + 9\cos\delta = 0$$

$$2\sin\alpha - 6\sin\beta + 7\sin\gamma - 9\sin\delta = 0$$

If $\frac{\cos(\alpha + \delta)}{\cos(\beta + \gamma)} = \frac{m}{n}$ where m and n are relatively prime positive numbers, then the value of

(m+n) is equal to:

(a) 11 (b) 10 (c) 9

13. If
$$-\pi < \theta < -\frac{\pi}{2}$$
, then $\left| \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} \right|$ is equal to :

(c)
$$2\sec\frac{\theta}{2}$$

(d)
$$-\sec\frac{\theta}{2}$$

14. If
$$A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$$
 and $B = \sum_{r=1}^{3} \cos \frac{2^{r}\pi}{7}$, then:

(a)
$$A + B = 0$$

(b)
$$2A + B = 0$$

(c)
$$A + 2B = 0$$

(d)
$$A = B$$

15. In a $\triangle PQR$ (as shown in figure) if

x:y:z=2:3:6, then the value of $\angle QPR$ is:

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{2}$$

Comp	ound Angles				317
16. I	If $A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$ and A	$B = \sum_{r=1}^{3} \cos \frac{2^{r} \pi}{7}$, then:			,
((a) $A + B = 0$	(b) $2A + B = 0$	(c)	A+2B=0	(d) $A - B = 0$
17. I	Let $f(x) = \sin x + 2\cos x$	$s^2 x$; $\frac{\pi}{6} \le x \le \frac{2\pi}{3}$, then ma	axim	um value of $f(x)$ i	s:
((a) 1	(b) $\frac{3}{2}$	(c)	2	(d) $\frac{5}{2}$
18. I	In $\triangle ABC$, $\angle C = \frac{2\pi}{3}$ the	en the value of $\cos^2 A + \cos^2 A$	cos² I	$B - \cos A \cdot \cos B$ is ϵ	equal to :
((a) $\frac{3}{4}$	(b) $\frac{3}{2}$	(c)	$\frac{1}{2}$	(d) $\frac{1}{4}$
19. 7	The number of solution	ons of the equation 4sin ²	x+1	$\tan^2 x + \cot^2 x + \cot^2 x$	$\csc^2 x = 6 \text{ in } [0, 2\pi]$:
	(a) 1	(b) 2	(c)	(- 	(d) 4
20. I	If $\sin A$, $\cos A$ and \tan	A are in G.P., then cos ³ A	+ co	os ² A is equal to :	
	(a) 1	(b) 2	(c)		(d) none
21. I	Range of function $f(x)$	$x(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right)$			
((a) $[-\sqrt{2}, \sqrt{2}]$	7521		$[-\sqrt{2}(\sqrt{3}+1),\sqrt{3}]$	
((c) $\left[-\frac{\sqrt{3}+1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right]$		(d)	$\left[-\frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}-1}{\sqrt{2}}\right]$	6
22. 7	The value of				
t	$\tan(\log_2 6) \cdot \tan(\log_2$	3) tan 1 is always equal	то : Тът	tan(log ₂ 6) – tan	(log 2 3) – tan 1
- 2	(a) $tan(log_2 6) + tan$	$(\log_{-} 3) + \tan 1$	(d)	$tan(log_2 6) + tar$	$(\log_2 3) - \tan 1$
99.1	(c) tan(log ₂ b) - tan	BC = 3, $AC = 4$ and AB	= 5. 7	The value of sin A	$+\sin 2B + \sin 3C$ is equal
	in a triangle ADO, o.e.				
	(a) $\frac{24}{25}$	(b) $\frac{14}{25}$		25	(d) none
24 1	If $A + B + C = 180^\circ$, th	$en \frac{\cos A \cos C + \cos (A + \cos A)}{\cos A \cos C}$	B) co	$\frac{s(B+C)}{s(B+C)}$ simplifie	s to:
24. 1	I A + B + C = 100, a.	A STATE OF THE PARTY OF THE PAR			(d) cot C
((a) $-\cot C$	(b) 0 $\sin \alpha - \sin \gamma$		tan C	(u) coto
25. I	If $\alpha + \gamma = 2\beta$ then the	expression $\frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha}$	impl	ines to :	
	(a) tanβ	(b) -tanβ		cotβ	(d) -cotβ

26	The product $\left(\cos\frac{x}{2}\right)$.	$\left(\cos\frac{x}{4}\right)\cdot\left(\cos\frac{x}{8}\right)\left(\cos\frac{x}{8}\right)$	$\left(\frac{x}{256}\right)$ is equal to:	
	(a) $\frac{\sin x}{128 \sin \frac{x}{256}}$	$\frac{\sin x}{256\sin\frac{x}{256}}$	(c) $\frac{\sin x}{128 \sin \frac{x}{128}}$	$\frac{\sin x}{512\sin\frac{x}{512}}$
27.	The value of the expre	ession		
	$\sin 7\alpha + 6\sin 5\alpha + 1$	$17 \sin 3\alpha + 12 \sin \alpha$	π.	
	$\sin 6\alpha + 5\sin 4$	$17 \sin 3\alpha + 12 \sin \alpha$, where $4\alpha + 12 \sin 2\alpha$	$e \alpha = -1s equal to :$	
	(a) $\frac{\sqrt{5}-1}{4}$	(b) $\frac{\sqrt{5}+1}{4}$	(c) $\frac{\sqrt{5}+1}{2}$	(d) $\frac{\sqrt{5}-1}{2}$
28.	In a triangle ABC if \(\sum_{\text{if}} \)	$\tan^2 A = \sum \tan A \tan B,$	then largest angle of th	ne triangle in radian will
	be:			
	(a) $\frac{2\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{2}$	(d) $\frac{3\pi}{4}$
20	y	3 	2	4
27.		owing values is not the so	olution of the equation	
	$\log_{ \sin x }(\cos x) + \log_{x}$			0
	(a) $\frac{7\pi}{4}$	(b) $\frac{11\pi}{4}$	(c) $\frac{3\pi}{4}$	(d) $\frac{3\pi}{8}$
30.	Range of $f(x) = \sin^6 x$	$r + \cos^6 r$ is:	7	.0
	The 18 ft 1		ר ח	
	L J	(b) $\left[\frac{1}{4}, \frac{3}{4}\right]$	LT J	(d) [1, 2]
31.	If $y = \frac{2\sin\alpha}{}$, then $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is	equal to :	
	$1 + \cos \alpha + \sin \alpha$	$1 + \sin \alpha$		¥ 1 . "
	(a) $\frac{1}{y}$	(b) y	(c) 1-y	(d) 1+y
32.	$If \frac{\tan^3 A}{1 + \tan^2 A} + \frac{\cot^3 A}{1 + \cot^3 A}$	$\frac{A}{2A} = p \sec A \csc A + q$	$\sin A \cos A$, then:	
	(a) $p = 2, q = 1$	(b) $p = 1, q = 2$	(c) $p = 1, q = -2$	(d) n = 2 a = 1
ences o			$\int 1-\sin\theta$ $\int 1+\sin\theta$	$\frac{(a)}{\ln A}$ $p-2, q=-1$
33.		quadrant. Then the value	The commerce of the contract o	$\frac{110}{\sin \theta}$ is equal to :
	(a) 2sec θ	(b) -2 sec θ	(c) 2 cosec θ	(d) 2
34.	If $y = (\sin \theta + \csc \theta)^2$	$^2 + (\cos \theta + \sec \theta)^2$, then i	minimum value of y is	
	(a) 7	1/4/- 31/- 1-4	(c) 9	(d) none of these
35.	If $\log_3 \sin x - \log_3 \cos$ (wherever defined)	$sx - \log_3(1 - \tan x) - \log_3(1 - \tan x)$	$g_3(1 + \tan x) = -1$, th	en $\tan 2x$ is equal to
	(a) -2	(b) $\frac{3}{2}$	(c) $\frac{2}{3}$	(d) 6
			Owni	

36.	If Si	$n\theta + cosec\theta = 2$, th	ien t	he value of $\sin^{\circ}\theta$ +	cose	$c^{\circ}\theta$ is equal to :	
	(a)		(b)		(c)		(d) more than 28
37.	If ta	$\ln^3\theta + \cot^3\theta = 52$, the	n the value of tan ² () + cc	ot 2 θ is equal to :	
	(a)	14			(b)	15	
	(c)				(d)		
38.	The	maximum value o	f log	$_{20}(3\sin x - 4\cos x +$	15)	is equal to :	
	(a)	1	(b)	2	(c)	3	(d) 4
39.	If x	$^{2} + y^{2} = 9$ and $4a^{2}$	+ 91	$b^2 = 16$, then maxim	um v	value of $4a^2x^2 + 9a$	$b^2y^2 - 12abxy$ is:
	(a)		(b)	100	(c)	121	(d) 144
40.	If A	$= \sqrt{\sin 2 - \sin \sqrt{3}},$	B = 1	$\sqrt{\cos 2 - \cos \sqrt{3}}$, then	whic	h of the following	statement is true?
				numbers and $A > B$			
	(b)	A and B both are	real	numbers and $A < B$			
	(c)	Exactly one of A	and I	B is not real number			
		Both A and B are					
41.		number of real va					
	(2	$2^x + 2^{-x} - 2\cos x$	(3 ^{x+1}	$\pi + 3^{-x-\pi} + 2\cos x$	$5^{\pi-x}$	$+5^{x-\pi}-2\cos x)$	= 0 is :
	(a)		(p)		(c)	3	(d) infinite
		equation $e^{\sin x} - e$			VI.25-10-1	N 522	
		infinite number o		l roots	1000000	no real roots	
		exactly one real re				exactly four real	
		2		ression $\sqrt{4\sin^4\alpha} + \sin^4\alpha$	in ² 2	$2\alpha + 4\cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$	is equal to :
		$2 + 4 \sin \alpha$			(c)	2	(d) $2-4\sin\alpha$
44.	cos	$\frac{\pi}{12} - \sin\frac{\pi}{12} \left(\tan\frac{\pi}{12} \right) \left(\tan\frac{\pi}{12} \right) \left(\tan\frac{\pi}{12} \right) \left(\tan\frac{\pi}{12} \right) \left(-\frac{\pi}{12} \right) \left(-\pi$	$\frac{\pi}{2} + 0$	$\cot \frac{\pi}{12} =$			
	(a)	$\frac{1}{\sqrt{2}}$	(b)	4√2	(c)	$\sqrt{2}$	(d) 2√2
45.	tan(100°) + tan(125°)	+ tai	n(100°) tan(125°) =			
8	(a)	0	(b)	$\frac{1}{2}$	(c)	-1	(d) 1
46.	lf sir	$1x + \sin^2 x = 1, \text{ the}$	n co	$s^8 x + 2\cos^6 x + \cos$	⁴ x =	=	
H	(a)	2	(b)	1	(c)	3	(d) $\frac{1}{2}$
47.	The	maximum value of	log	$_{5}(3x + 4y)$, if $x^{2} + y$	' ² =	25 is :	
9	(a)	1	(b)	2	(c)	3	(d) 4
19	(a)	1	(Ъ)	2	(c)	3	(d) 4

		The state of the s	2000		GENTINGE .	Principle of the Contract of t	A STATE OF THE PARTY	220070	A.K.SHTIPPIN				
48.	The	number	of ·	values (of θ	between	-π	and	$\frac{3\pi}{2}$	that	satisfies	the	equation
	5 co	s 20 + 2 cos	$2\frac{\theta}{2} + 1$	l = 0 is :									
	(a)	3	2	(b) 4			(c)	5			(d) 6		
49.	Give	en that sin	$\beta = \frac{4}{5}$	$0 < \beta < \pi$	and	$\tan \beta > 0$, th	nen (((3 sin(α+β) – 4 c	os(α + β))	cosec	α is equal
*2	to:		J										
	(a)	2		(b) 3	π)	(1	(c)	4. - Г	_ π]		(d) 5		
50.	The	maximum	value	of $\sin x$	$+\frac{n}{6}$	$+\cos\left(x+\frac{2}{3}\right)$	for	' <i>x</i> ∈	$0,\frac{n}{2}$	is atta	ined at x	=	
	(a)	$\frac{\pi}{12}$		(b) $\frac{\pi}{6}$			(c)	$\frac{\pi}{3}$			(d) $\frac{\pi}{2}$		
51.	The	values of '	a' for	which th	e equ	ation sin x ((sin x	+ cos	x) = (a has a	real solu	tion a	re
	(a)	$1 - \sqrt{2} \le a$! ≤1+	$\sqrt{2}$			100		50 00	a ≤ 2 +			
	(c)	$0 \le a \le 2$	+ √3				(d)	$\frac{1-\gamma}{2}$	<u>/2</u> ≤	$a \leq \frac{1+}{}$	$\frac{\sqrt{2}}{2}$		
52.	The	value of co	os12° (cos 24° co	os 36°	cos 48° cos 6	60° cc	s72°	cos 84	l° is :			
	(a)	$\frac{1}{64}$		(b) $\frac{1}{1}$	1 28		(c)	$\frac{1}{256}$			(d) $\frac{1}{51}$	2	
53.	The	ratio of th	e max			minimum				+ cos	$\theta + 1$ is:		
		32:7		(b) 3				4:		1	(d) 2		
54.	If al	l values of	<i>x</i> ∈ (a	, b) satisf	y the	inequality	tan x	tan 3	x < -:	l, <i>x</i> ∈	$\left(0,\frac{\pi}{2}\right)$, the	n the	maximum
	valu	ie (b – a) is		77			•	TT.					
	(a)	$\frac{\pi}{12}$		(b) $\frac{\pi}{3}$			(c)	$\frac{\pi}{6}$			(d) $\frac{\pi}{4}$		
55.		regular po gon is :	lygon	of 'n' si	ides h	as circum	radiu	ıs = R	and	inradi	us = r; tl	nen ea	ich side of
	(a)	(R+r) tan	$\left(\frac{\pi}{2n}\right)$				(b)	2(R	+ r)	$\tan\left(\frac{\pi}{2}\right)$	$\left(\frac{1}{n}\right)$		
		$(R+r)\sin$, ,						+ r)	$\cot\left(\frac{\pi}{2i}\right)$	$\left(\frac{1}{2}\right)$		
56.		value of co	s12°+		1000	56°+ cos 13	2° is:	:					
	(a)	_		(b) –	4		(c)	1			(d) $\frac{1}{2}$		
57.	sir cos($\frac{1}{(3\theta)} + \frac{\sin(3\theta)}{\cos(3\theta)}$	3θ) + -	sin(9θ) cos(27θ)	$+\frac{\sin}{\cos}$	$\frac{(27\theta)}{s(81\theta)} =$					-		

•	7	A

	(a)	$\frac{\sin(81\theta)}{2\cos(80\theta)\cos\theta}$, ir	(b)	$\frac{\sin(80\theta)}{2\cos(81\theta)\cos\theta}$	
	(c)	$\frac{\sin(81\theta)}{\cos(80\theta)\cos\theta}$	é	(d)	$\frac{\sin(80\theta)}{\cos(81\theta)\cos\theta}$	
58	. The	value of $\left(\sin\frac{\pi}{9}\right)\left(4\right)$	$+\sec\frac{\pi}{9}$ is:			
	(a)	$\frac{1}{2}$	(b) √2	(c)	1	(d) $\sqrt{3}$
59	If $\frac{d}{d}$	$\frac{y}{x} = \sin\left(\frac{x\pi}{2}\right)\cos(x\pi)$), then y is strictly incr	easin	g in :	
	(a)	(3, 4)	(b) $\left(\frac{5}{2}, \frac{7}{2}\right)$	(c)	(2, 3)	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
60.	Sma	allest positive value	of θ satisfying the equa	ation	8 sin θ cos 2θ sin 3θ	$\cos 4\theta = \cos 6\theta$; is:
			(b) $\frac{\pi}{22}$			(d) None of these
61.	If a	n angle A of a triang	gle ABC is given by 3 ta	ın A +	$1 = 0$, then $\sin A$ a	nd cos A are the roots of
		equation				
	(a)	$10x^2 - 2\sqrt{10}x + 3 = 0$	= 0		$10x^2 - 2\sqrt{10}x - 3$	
	(c)	$10x^2 + 2\sqrt{10}x + 3$	= 0	(d)	$10x^2 + 2\sqrt{10}x - 3$	B = 0
60	TE 0	is an aguta angla ar	and $\tan \theta = \frac{1}{\sqrt{7}}$, then the	valu	$= \text{of} \frac{\text{cosec}^2 \theta - \text{sec}^2}{1}$	$\frac{\theta}{\theta}$ is:
62.	II 0	is an acute angle al	$\sqrt{7}$, then the	valu	$cosec^2 \theta + sec$	² θ
	(a)	3/4	(b) 1/2	(c)	2	(d) 5/4
63.			n 7 $\cos \theta + 6 \sin \theta$ equal	s		
		1 or 2	(b) 2 or 3	(c)	2 or 4	(d) 2 or 6
			a for annual bedf			
64.	If si	$n\theta + cosec\theta = 2$, th	en the value of $\sin^8 \theta$	+ cose	$c^8\theta$ is equal to :	
	(0)	1	(b) 2 ⁴	(c)	2 ⁸	(d) more than 28
65	(a)	$n^3 A \cdot \cot^3 A = 52$	then the value of tan ²	$\theta + c$	ot 2 θ is equal to :	
05.			(b) 15	(c)	16	(d) 17
	(a)	14	rilateral such that 12 ta			$+3 = 0$ then $\tan C + \tan D$
66.			materur baen ann			
		ual to:	. 11	(c)	$-\frac{11}{12}$	(d) $-\frac{21}{12}$
	(a)	$\frac{21}{12}$	(b) $\frac{11}{12}$	(0)	12	12
67.	If $\frac{\pi}{2}$	$<\theta<\frac{3\pi}{2}$ then $\sqrt{\tan\theta}$	$\frac{2}{\theta} - \sin^2 \theta$ is equal to	•		
			(b) -tanθsinθ	(c)	$\tan \theta - \sin \theta$	(d) $\sin \theta - \tan \theta$

68.	The	value of $\sin 10^\circ + \sin 10^\circ + \cos 10^\circ +$	in 20	o equals	93		
	(a)	$2 + \sqrt{3}$	(b)	$\sqrt{2}-1$	(c)	$2 - \sqrt{3}$	(d) $\sqrt{2} + 1$
69.	The	expression $\cos^6 \theta$	+ sin	$^6 \theta + 3\sin^2\theta\cos^2\theta$	simp	lifies to :	
	(a)	0	(b)		(c)		(d) 3
70.	sin sin	$\frac{x + \cos x}{x - \cos x} - \frac{\sec^2 x + \cot^2 x}{\tan^2 x}$	$\frac{2}{1} = $	where $x \in \left(0, \frac{\pi}{2}\right)$			
				$\frac{2}{1+\tan x}$	(c)	$\frac{2}{1+\cot x}$	(d) $\frac{2}{1-\tan x}$
71.	If co	ot α + cot (270°+α) ot α – cot (270°+α)	-20	cos (135°+α) cos (315	5°-α)	$=\lambda\cos2\alpha$, where	$\alpha \in \left(0, \frac{\pi}{2}\right)$, then λ
	(a)	0	(b)	1	(c)	2	(d) 4
72.	The	expression $\frac{\sin \alpha + \cos \alpha}{\cos \alpha}$	cos o	$\frac{\alpha}{\alpha}\tan\left(\frac{\pi}{4}+\alpha\right)+1, \alpha \in$	$\equiv \left(-\frac{\pi}{2}\right)$	$\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ simplifies to	•
				$\sec^2\left(\frac{\pi}{4}-\alpha\right)$		$\tan^2\left(\frac{\pi}{4}-\alpha\right)$	(d) $\cot^2\left(\frac{\pi}{4} - \alpha\right)$
73.	The	value of expressio	n <u>tar</u>	$\frac{1\alpha + \sin \alpha}{2\cos^2 \frac{\alpha}{2}} \text{ for } \alpha = \frac{\pi}{4}$	is:		
	(a)	4	(b)	3	(c)	2	(d) 1
74.	cos	2α – cos 3α – cos 4o	t + co	os 5α simplifies to :			
	(a)	$-4\sin\frac{\alpha}{2}\sin\alpha\cos^2\theta$	$\frac{7\alpha}{2}$		(b)	$4\sin\frac{\alpha}{2}\sin\alpha\cos^{\frac{\pi}{2}}$	<u>′α</u> 2
		$-4\sin\frac{\alpha}{2}\sin\frac{7\alpha}{2}\cos\frac{\alpha}{2}$				$-4\sin\alpha\cos\frac{\alpha}{2}\sin\alpha$	$\frac{7\alpha}{2}$
75.	If ta	$n\gamma = \sec \alpha \sec \beta + t$	an α	tanβ, then the least	valu	e of $\cos 2\gamma$ is :	
	(a)	-1	(b)	$\frac{1}{2}$	(c)	$-\frac{1}{2}$	(d) 0
76.	If co	$\sec x = \frac{2}{\sqrt{3}}, \cot x =$	$=\frac{1}{\sqrt{3}}$	$\frac{1}{3}$, $x \in [0, 2\pi]$, then of	x so:	$+\cos 2x + \cos 3x$	$+\dots + \cos 100x =$
	(a)	$\frac{1}{2}$	(b)	$-\frac{1}{2}$	(c)	$-\frac{\sqrt{3}}{2}$	(d) $\frac{\sqrt{3}}{2}$
77.	The	value of $\sum_{r=0}^{10} \cos^3 \left(\frac{r^2}{r^2}\right)$	$\left(\frac{\mathrm{tr}}{3}\right)$ is	s equal to :			
	(-X	7	(b)	9	(0)	3	1

78	. The value of the expr	ession $\frac{1-4\sin 10^{\circ}\sin 70^{\circ}}{2\sin 10^{\circ}}$	is:	123 	
	(a) 1	(b) 2	(c)	$\sqrt{3}$	(d) $\frac{\sqrt{3}}{2}$
79	If $x, y \in R$ and satisfy	$(x+5)^2 + (y-12)^2 = 14$	² , th	en the minimum v	value of $x^2 + y^2$ is:
	(a) 2	(b) 1		$\sqrt{3}$	(d) $\sqrt{2}$
80	. If θ_1 , θ_2 and θ_3 are	the three values of 0	∈[0,2	2π] for which tan	$\theta = \lambda$ then the value of
	$\tan\frac{\theta_1}{3}\tan\frac{\theta_2}{3} + \tan\frac{\theta_3}{3}$	$\frac{2}{3}\tan\frac{\theta_3}{3}+\tan\frac{\theta_3}{3}\tan\frac{\theta_1}{3}$	is eq	ıal to (λ is a consta	ant)
	(a) -3	(b) -2	(c)	2	(d) 3
81		and if $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{\pi}{4}}$			
	(a) $\frac{2\sin\alpha}{\sqrt{\cos 2\alpha}}$	(b) $\frac{2\cos\alpha}{\sqrt{\cos 2\alpha}}$	(c)	$\frac{2\sin\alpha}{\sqrt{\sin2\alpha}}$	(d) $\frac{2\cos\alpha}{\sqrt{\sin 2\alpha}}$
82	. Minimum value of 3 s	$\sin \theta + 4\cos \theta$ in the interv	al 0	$\left[\frac{\pi}{2}\right]$ is:	
	(a) -5	(b) 3	(c)	4	(d) $\frac{7}{\sqrt{2}}$
83	If $f(n) = \prod_{r=1}^{n} \cos r, n \in$	N, then			
	(a) $ f(n) > f(n+1) $	(b) $f(5) > 0$	(c)	f(4) > 0	(d) $ f(n) < f(n+1) $
84.	If $\tan A + \sin A = p$ and	ad $\tan A - \sin A = q$, then	the v	alue of $\frac{(p^2-q^2)^2}{pq}$	is:
	(a) 16	(b) 22	(c)	18	(d) 42
85.	Let $t_1 = (\sin \alpha)^{\cos \alpha}, t_2$	$a_2 = (\sin \alpha)^{\sin \alpha}, t_3 = (\cos \alpha)$	a) ^{cos}	α , $t_4 = (\cos \alpha)^{\sin \alpha}$, where $\alpha \in \left(0, \frac{\pi}{4}\right)$, then
	which of the following	g is correct	220120		240 E E
	(a) $t_3 > t_1 > t_2$	(b) $t_4 > t_2 > t_1$	(c)	$t_4 > t_1 > t_2$	(d) $t_1 > t_3 > t_2$
86.	If $\cos A = \frac{3}{4}$, then the	value of expression 32 sin			- COV
	(a) 11	(b) -11		12	(d) 4
87.	If $\cos(\alpha + \beta) + \sin(\alpha - \beta)$	$\beta) = 0 \text{ and } \tan \beta = \frac{1}{2009};$			
	(a) 2	(b) 1	(c)		(d) 4
88.	If $2^x = 3^y = 6^{-z}$, the v	value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal	al to	:	
	(a) 0	(b) 1	(c)	2	(d) 3

(d) 1

(d) 8

(c) $\pm 2\sin\frac{\theta}{4}$ (d) $2\cos\frac{\theta}{4}$

(a) 0

324	261		No.		-	Advancea Problem.	, m. maniem - g - e - z						
89.	Let α	α , β be such that π of α + sin β = $-\frac{21}{6\pi}$ and	<α-β	$< 3\pi$ $\alpha + \cos \beta = -\frac{27}{67}$ the	en th	he value of $\cos\left(\frac{\alpha}{2}\right)$	$\left(\frac{-\beta}{\delta}\right)$ is:						
						6 65							
90.		$= \sqrt{a^2 \cos^2 \theta + b^2}$ minimum values of			os ² (then the differe	nce between maximum						
	(a)	$2(a^2+b^2)$	(b) (d	$(a+b)^2$	(c)	$2\sqrt{a^2+b^2}$	(d) $(a-b)^2$						
91.	If <i>P</i> =	= (tan(3 ⁿ⁺¹ θ) – tan	ιθ) and	$1Q = \sum_{r=0}^{n} \frac{\sin(3^{r} \theta)}{\cos(3^{r+1} \theta)}$	–, th	en	e g						
	(a)	P=2Q	(b) P	= 3Q			(d) $3P = Q$						
92.	If 27	$0^{\circ} < \theta < 360^{\circ}$, then	$_{ m 1}$ find $_{ m 1}$	$\sqrt{2+\sqrt{2(1+\cos\theta)}}$									
	(a)	$-2\sin\left(\frac{\theta}{4}\right)$	(b) 2	$\sin\left(\frac{\theta}{4}\right)$	(c)	$\pm 2 \sin \frac{\theta}{4}$	(d) $2\cos\frac{\theta}{4}$						
93.	If y =	$= (\sin x + \cos x) + (\cos x)$	(sin 4x	$+\cos 4x)^2$, then:									
		$y > 0 \forall x \in R$				$y \geq 0 \forall x \in R$							
	(c)	$y < 2 + \sqrt{2} \ \forall \ x \in I$	3		(d)	(d) $y = 2 + \sqrt{2}$ for some $x \in R$							

94. If $\cos x + \cos y + \cos z = \sin x + \sin y + \sin z = 0$ then $\cos(x - y) = \cos(x - y)$

95. The exact value of cosec 10° + cosec 50° - cosec 70° is: (b) 5

96. If $270^{\circ} < \theta < 360^{\circ}$, then find $\sqrt{2 + \sqrt{2(1 + \cos \theta)}}$:

(a) $-2\sin\left(\frac{\theta}{4}\right)$ (b) $2\sin\left(\frac{\theta}{4}\right)$

1	1						i i	A	nsv	ver	s [1					. 3	>
1.	(c)	2.	(d)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(a)	10.	(c)
11.	(c)	12.	(ъ)	13.	(b)	14.	(d)	15.	(ъ)	16.	(d)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(b)	24.	(d)	25.	(c)	26.	(b)	27.	(c)	28.	(b)	29.	(d)	30.	(a)
31.	(b)	32.	(c)	33.	(b)	34.	(c)	35.	(c)	36.	(a)	37.	(a)	38.	(a)	39.	(d)	40.	(d)
41.	(b)	42.	(b)	43.	(c)	44.	(d)	45.	(d)	46.	(b)	47.	(b)	48.	(c)	49.	(d)	50.	(a)
51.	(d)	52.	(b)	53.	(a)	54.	(a)	55.	(b)	56.	(b)	57.	(ъ)	58.	(d)	59.	(ъ)	60.	(a)
61.	(d)	62.	(a)	63.	(d)	64.	(a)	65.	(a)	66.	(b)	67.	(ъ)	68.	(c)	69.	(ъ)	70.	(b)
71.	(c)	72.	(a)	73.	(d)	74.	(a)	75.	(d)	76.	(ъ)	77.	(d)	78.	(a)	79.	(b)	80.	(a)
81.	(b)	82.	(ъ)	83.	(a)	84.	(a)	85.	(b)	86.	(a)	87.	(b)	88.	(a)	89.	(a)	90.	(d)
91.	(a)	92.	(b)	93.	(c)	94.	(b)	95.	(c)	96.	(b)								

Exercise-2: One or More than One Answer is/are Correct

1	. cot	12° · cot 24° · cot 28°	° cot 32° cot 48° cot 88°	=,	ři	
		tan 45°		(b)		
	(c)	2 tan 15° tan 45°	tan 75°	(d)	tan 15° tan 45° t	an 75°
2	. If t	he equation cot ⁴ .	$x - 2\csc^2 x + a^2 = 0 \text{ h}$	as at	least one solutio	n then possible integral
	valı	ues of a can be:		i s		
		-1	(b) 0	(c)	1	(d) 2
3	. Wh	ich of the followin	g is/are true ?			
	(a)	$\tan 1 > \tan^{-1} 1$	(b) $\sin 1 > \cos 1$	(c)	tan 1 < sin 1	(d) $\cos(\cos 1) > \frac{1}{\sqrt{2}}$
4	. Wh	ich of the followin	g is/are +ve?			
	(a)	log sin1 tan 1		(b)	$\log_{\cos 1} (1 + \tan 3)$	
	(c)	$\log_{\log_{10} 5} (\cos \theta + \sin \theta)$	secθ)	(d)	$\log_{tan15^{\circ}}(2\sin 18$	°)
5	. If si	$n\alpha + \cos\alpha = \frac{\sqrt{3} + 2}{2}$	$\frac{1}{\alpha}$, $0 < \alpha < 2\pi$, then poss	sible v	alues tan $\frac{\alpha}{2}$ can ta	ke is/are :
	(a)	$2-\sqrt{3}$	(b) $\frac{1}{\sqrt{3}}$	(c)	1	(d) √3
6.	If 3	$\sin\beta = \sin\left(2\alpha + \beta\right)$, then :			
	(a)	$(\cot \alpha + \cot(\alpha + \beta))$	$))(\cot\beta-3\cot(2\alpha+\beta))$	= 6		
	(b)	$\sin\beta = \cos(\alpha + \beta)$	sinα			
		$\tan(\alpha + \beta) = 2\tan^{2}$				
		$2\sin\beta=\sin(\alpha+\beta$				
7.	If si	$n(x+20^\circ)=2\sin x$	$x \cos 40^{\circ}$ where $x \in (0, 9)$	0°), tl	nen which of the f	ollowing hold good?
		4	(b) $\cot \frac{x}{2} = 2 + \sqrt{3}$			(d) $\csc 4x = 2$
8.	If 2($(\cos(x-y)+\cos(y)$	$(z-z)+\cos(z-x))=-3,$, then	:	
		$\cos x \cos y \cos z =$				
		$\cos x + \cos y + \cos y$				
		$\sin x + \sin y + \sin$			9	
			$\cos 3z = 12\cos x \cos y \cos y$			
9.	If O	$< x < \frac{\pi}{2}$ and $\sin^n x$	$+\cos^n x \ge 1$, then 'n' m			
	(a)	[1, 2)	(b) [3, 4]	(c)	(-∞, 2]	(d) [-1,1]
10.	If x	$= \sin(\alpha - \beta) \cdot \sin(\gamma)$	$-\delta$), $y = \sin(\beta - \gamma) \cdot \sin(\beta - \gamma)$	$(\alpha - \delta)$	$z = \sin(\gamma - \alpha) \cdot \sin(\gamma - \alpha)$	n(R-8) then .
	(a)	x+y+z=0		(b)	$x^3 + y^3 + z^3 = 3$	3xvz
	(c)	x+y-z=0		(d)	$x^3 + y^3 - z^3 = 3$	Bxyz

11.	If X	$= x \cos \theta - y \sin \theta$	Y = x	$\sin \theta + y \cos \theta$ and X	2 + 4	$4XY + Y^2 = Ax^2 +$	By 2 , $0 \le \theta \le \pi/2$, then:
		ere A and B are co					
	(a)	$\theta = \frac{\pi}{6}$	(b)	$\theta = \frac{\pi}{4}$	(c)	<i>A</i> = 3	(d) $B = -1$
12.	20	: = 2 tan 10° + tan 7	70°;	$2b = \tan 20^{\circ} + \tan 50^{\circ}$ $2d = \tan 20^{\circ} + \tan 70^{\circ}$			
	Ther	n which of the foll	owin	g is/are correct?			56 1927
	77	a+d=b+c		a+b=c		a > b < c > d	
13.		ch of the followin mal ?	g rea	d numbers when sin			minating nor repeating
	(a)	sin75°⋅cos75°	(b)	$\log_2 28$	(c)	$\log_3 5 \cdot \log_5 6$	(d) $8^{-(\log_{27} 3)}$
14.		$= \sin x \cos^3 x$ and		× .			2 -5
	(a)	$\alpha - \beta > 0$; for all α	c in ($0,\frac{\pi}{4}$	(b)	$\alpha - \beta < 0$; for all	$x \operatorname{in}\left(0,\frac{\pi}{4}\right)$
	(c)	$\alpha + \beta > 0$; for all :	x in ($0,\frac{\pi}{2}$	(d)	$\alpha + \beta < 0$; for all	$x \operatorname{in}\left(0,\frac{\pi}{2}\right)$
15.	If $\frac{\pi}{2}$	$<\theta<\pi$, then poss	ible a	answers of $\sqrt{2+\sqrt{2+2}}$	2co	s 40 is/are:	4
	(a)	$2\cos\theta$	(b)	$2\sin\theta$	(c)	$-2\sin\theta$	(d) $-2\cos\theta$
16.	If co	$a + \cot^2 \alpha + \cot^2 \alpha$	tα=	1 then which of the	follo	owing is/are corre	et:
	(a)	$\cos 2\alpha \tan \alpha = 1$			(b)	$\cos 2\alpha \cdot \tan \alpha = -1$	L
	(c)	$\cos 2\alpha - \tan 2\alpha =$	-1	N		$\cos 2\alpha - \tan 2\alpha =$	1
17.	All v	values of $x \in \left(0, \frac{\pi}{2}\right)$	suc	h that $\frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x}$	$\frac{1}{c} = c$	4√2 are :	
	(a)	$\frac{\pi}{15}$	(b)	$\frac{\pi}{12}$	(c)	$\frac{11\pi}{36}$	(d) $\frac{3\pi}{10}$
18.	If α	$> \frac{1}{\sin^6 x + \cos^6 x}$	∀ <i>x</i> ∈	$\in R$, then α can be:			
	(a)	3	(b)	4	(c)	5	(d) 6
19.		$\in \left(0, \frac{\pi}{2}\right)$ and $\sin x =$		5			
	Let A	$k = \log_{10} \sin x + \log_{10} x + \log_{$	g ₁₀ c	$\cos x + 2\log_{10} \cot x +$	log ₁	$_{0}$ tan x then the v	alue of k satisfies
	(a)	k = 0	(b)	k + 1 = 0	(c)	k-1=0	(d) $k^2 - 1 = 0$
20.	If A,	B,C are angles of	f a tr	iangle ABC and tan	A tai	nC = 3; $tan B tan C$	C = 6 then which is(are)
		$A = \frac{\pi}{4}$	(b)	$\tan A \tan B = 2$	(c)	$\frac{\tan A}{\tan C} = 3$	(d) $\tan B = 2 \tan A$

21. The value of $\frac{\sin x - \cos x}{\sin^3 x}$ is equal to :

(a)
$$\csc^2 x (1 - \cot x)$$

(b)
$$1 - \cot x + \cot^2 x - \cot^3 x$$

(c)
$$\csc^2 x - \cot x - \cot^3 x$$

(d)
$$\frac{1-\cot x}{\sin^2 x}$$

22. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{2\pi}{3} \right) + \sin^2 \left(x + \frac{4\pi}{3} \right)$ then:

(a)
$$f\left(\frac{\pi}{15}\right) = \frac{3}{2}$$
 (b) $f\left(\frac{15}{\pi}\right) = \frac{2}{3}$ (c) $f\left(\frac{\pi}{10}\right) = \frac{3}{2}$ (d) $f\left(\frac{10}{\pi}\right) = \frac{2}{3}$

(b)
$$f\left(\frac{15}{\pi}\right) = \frac{2}{3}$$

(c)
$$f\left(\frac{\pi}{10}\right) = \frac{3}{2}$$

(d)
$$f\left(\frac{10}{\pi}\right) = \frac{2}{3}$$

23. The range of $y = \frac{\sin 4x - \sin 2x}{\sin 4x + \sin 2x}$ satisfies

(a)
$$y \in \left(-\infty, \frac{1}{3}\right)$$
 (b) $y \in \left(\frac{1}{3}, 1\right)$

(b)
$$y \in \left(\frac{1}{3}, 1\right)$$

(c)
$$y \in (1,3)$$
 (d) $y \in (3,\infty)$

(d)
$$y \in (3, \infty)$$

24. If $\sqrt{2}\cos A = \cos B + \cos^3 B$ and $\sqrt{2}\sin A = \sin B - \sin^3 B$, then the possible value of $\sin(A - B)$ is/are

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{3}$$

(c)
$$-\frac{1}{2}$$

(d)
$$-\frac{1}{3}$$

25. If $\alpha > \frac{1}{\sin^6 x + \cos^6 x} \forall x \in R$, then α can be

26. If $\cot^3 \alpha + \cot^2 \alpha + \cot \alpha = 1$ then which of the following is/are correct

(a)
$$\cos 2\alpha \tan \alpha = 1$$

(b)
$$\cos 2\alpha \cdot \tan \alpha = -1$$

(c)
$$\cos 2\alpha - \tan 2\alpha = -1$$

(d)
$$\cos 2\alpha - \tan 2\alpha = 1$$

1.	(a, d)	2.	(a, b, c)	3.	(a, b, d)	4.	(b, d)	5.	(a, b)	6.	(a, b, c, d)
7.	(a, b)	8.	(b, d)	9.	(a, c, d)	10.	(a, b)	11.	(b, c, d)	12.	(a, b, d)
3.	(b, c)	14.	(a, c)	15.	(b, d)	16.	(b, d)	17.	(b, c)	18.	(b, d)
9.	(b, d)	20.	(a, b, d)	21.	(a, b, c, d)	22.	(a, c)	23.	(a, d)	24.	(b, d)
5.	(c, d)	26.	(b, d)								

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $l = \sin \theta$, $m = \cos \theta$ and $n = \tan \theta$.

- 1. If $\theta = 5$ radian, then:
 - (a) l > m
- (b) l < m
- (c) l=m
- (d) none of these

- **2.** If $\theta = -1042^{\circ}$, then :
 - (a) n > 1
- (b) n < 1
- (c) n = 1
- (d) nothing can be said

- **3.** If $\theta = 7$ radian, then:
 - (a) l+m>0
- (b) l+m<0
- (c) l + m = 0
- (d) nothing can be said

Paragraph for Question Nos. 4 to 6

Let a, b, c are respectively the sines and p, q, r are respectively the cosines of $\alpha, \alpha + \frac{2\pi}{3}$ and $\alpha + \frac{4\pi}{3}$, then:

- **4.** The value of (a + b + c) is:
 - (a) 0
- (b) $\frac{3}{4}$
- (c) 1
- (d) none of these

- **5.** The value of (ab + bc + ca) is:
 - (a) 0
- (b) $-\frac{3}{4}$
- (c) $-\frac{1}{2}$
- (d) -1

- **6.** The value of (qc rb) is :
 - (a) 0
- (b) $-\frac{\sqrt{3}}{2}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) depends on α

Paragraph for Question Nos. 7 to 8

Consider a right angle triangle ABC right angle at B such that $AC = \sqrt{8 + 4\sqrt{3}}$ and AB = 1. A line through vertex A meet BC at D such that AB = BD. An arc DE of radius AD is drawn from vertex A to meet AC at E and another arc DF of radius CD is drawn from vertex C to meet AC at F. On the basis of above information, answer the following questions.

- 7. $\sqrt{\tan A + \cot C}$ is equal to :
 - (a) $\sqrt{3}$
- (b) 1
- (c) $2+\sqrt{3}$
- (d) $\sqrt{3} + 1$

8. $\log_{AE} \left(\frac{AC}{CD} \right)$ is equal to :

- (a) $\sqrt{2}$
- (b) 1
- (c) 0
- (d) -1

Paragraph for Question Nos. 9 to 10

Consider a triangle ABC such that $\cot A + \cot B + \cot C = \cot \theta$. Now answer the following:

9. The possible value of θ is :

- (a) 60°
- (c) 35°
- (d) 45°

10. $\sin(A-\theta)\sin(B-\theta)\sin(C-\theta) =$:

- (a) $tan^3 \theta$
- (b) $\cot^3 \theta$
- (c) $\sin^3 \theta$
- (d) $\cos^3 \theta$

Paragraph for Question Nos. 11 to 12

Consider the function $f(x) = \frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}}$ then

11. If $x \in (\pi, 2\pi)$ then f(x) is:

- (a) $\cot\left(\frac{\pi}{2} + \frac{x}{2}\right)$ (b) $\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$ (c) $\cot\left(\frac{\pi}{4} \frac{x}{2}\right)$ (d) $\tan\left(\frac{\pi}{4} \frac{x}{2}\right)$

12. If the value of $f\left(\frac{\pi}{3}\right) = a + b\sqrt{c}$ where $a, b, c \in N$ then the value of a + b + c is:

- (a) 4
- (b) 5
- (c) 6
- (d) 7

4					Maria.			A	nsw	ers	S								5
1.	(b)	2.	(b)	3.	(a)	4.	(a)	5.	(b)	6.	(c)	7.	(d)	8.	(b)	9.	(b)	10.	(c)
11.	(d)	12.	(c)										3				(0)	10.	(0)

Exercise-4: Matching Type Problems

1.

	Column-I		Column-li
(A)	If $(1 + \tan 5^\circ)(1 + \tan 10^\circ)(1 + \tan 45^\circ) = 2^{k+1}$ then 'k' equals	(P)	0
	Sum of positive integral values of 'a' for which $a^2 - 6\sin x - 5a \le 0 \ \forall \ x \in R$ is	(Q)	2
(C)	The minimum value of $\frac{\left(a + \frac{1}{a}\right)^4 - \left(a^4 + \frac{1}{a^4}\right) - 2}{\left(a + \frac{1}{a}\right)^2 + a^2 + \frac{1}{a^2}}$ is	(R)	5
(D)	Number of real roots of the equation $\sum_{k=1}^{3} (x-k)^2 = 0$ is	(S)	4
		(T)	5

2.

1	Column-I		Column-II
(A)	Maximum value of $y = \frac{1 - \tan^2(\pi/4 - x)}{1 + \tan^2(\pi/4 - x)}$	(P)	1
(B)	Minimum value of $\log_3\left(\frac{5\sin x - 12\cos x + 26}{13}\right)$	(Q)	0
(C)	Minimum value of $y = -2\sin^2 x + \cos x + 3$	(R)	$\frac{7}{8}$
(D)	Maximum value of $y = 4\sin^2\theta + 4\sin\theta\cos\theta + \cos^2\theta$	(S)	5
		(T)	6

3.

1	Column-l		Column-II
(A)	The value of $\frac{\cos 68^{\circ}}{\sin 56^{\circ} \sin 34^{\circ} \tan 22^{\circ}}$ equals to	(P)	16
(B)	The value of $(\cos 65^\circ + \sqrt{3} \sin 5^\circ + \cos 5^\circ)^2 = \lambda \cos^2 25^\circ$; then value of λ be	(Q)	3

(C)	If $\cos A = \frac{3}{4}$; then the value of $\frac{32}{11} \sin \frac{A}{2} \sin \frac{5A}{2}$ is equal to	(R)	4
(D)	The state of the s	(S)	2
	equals to	(T)	1

4.

1	Column-I		Column-II
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12\tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8\sin^2 x = \alpha$ has solution, then α can be	(R)	9
(D)	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

5. Match the function given in Column-I to the number of integers in its range given in Column-II.

/	Column-I		Column-II
(A)	$f(x) = 2\cos^2 x + \sin x - 8$	(P)	5
(B)	$f(x) = \sin^2 x + 3\cos^2 x + 5$	(Q)	4
(C)	$f(x) = 4\sin x \cos x - \sin^2 x + 3\cos^2 x$	(R)	3
(D)	$f(x) = \cos(\sin x) + \sin(\sin x)$	(S)	2

Answers

- 1. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$
- 2. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- 3. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow T$; $D \rightarrow R$
- 4. $A \rightarrow R, T; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow Q$
- 5. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

Exercise-5 : Subjective Type Problems

- 2. The value of expression $(1 \cot 23^\circ)(1 \cot 22^\circ)$ is equal to:
- 3. If $\tan A$ and $\tan B$ are the roots of the quadratic equation, $4x^2 7x + 1 = 0$ then evaluate $4\sin^2(A+B) 7\sin(A+B) \cdot \cos(A+B) + \cos^2(A+B)$.
- **4.** $A_1 A_2 A_3 \dots A_{18}$ is a regular 18 sided polygon. B is an external point such that $A_1 A_2 B$ is an equilateral triangle. If $A_{18} A_1$ and $A_1 B$ are adjacent sides of a regular n sided polygon, then n = 1
- 5. If $10\sin^4 \alpha + 15\cos^4 \alpha = 6$ and the value of $9\csc^4 \alpha + \beta\sec^4 \alpha$ is S, then find the value of $\frac{S}{25}$.
- **6.** The value of $\left(1 + \tan\frac{3\pi}{8}\tan\frac{\pi}{8}\right) + \left(1 + \tan\frac{5\pi}{8}\tan\frac{3\pi}{8}\right) + \left(1 + \tan\frac{7\pi}{8}\tan\frac{5\pi}{8}\right) + \left(1 + \tan\frac{9\pi}{8}\tan\frac{7\pi}{8}\right)$
- 7. If $\alpha = \frac{\pi}{7}$ then find the value of $\left(\frac{1}{\cos \alpha} + \frac{2\cos \alpha}{\cos 2\alpha}\right)$.
- **8.** Given that for $a, b, c, d \in R$, if $a \sec(200^\circ) c \tan(200^\circ) = d$ and $b \sec(200^\circ) + d \tan(200^\circ) = c$, then find the value of $\left(\frac{a^2 + b^2 + c^2 + d^2}{bd ac}\right) \sin 20^\circ$.
- **9.** The expression $2\cos\frac{\pi}{17} \cdot \cos\frac{9\pi}{17} + \cos\frac{7\pi}{17} + \cos\frac{9\pi}{17}$ simplifies to an integer *P*. Find the value of *P*.
- 10. If the expression $\frac{\sin \theta \sin 2\theta + \sin 3\theta \sin 6\theta + \sin 4\theta \sin 13\theta}{\sin \theta \cos 2\theta + \sin 3\theta \cos 6\theta + \sin 4\theta \cos 13\theta} = \tan k\theta, \text{ where } k \in \mathbb{N}. \text{ Find the value of } k.$
- **11.** Let $a = \sin 10^{\circ}$, $b = \sin 50^{\circ}$, $c = \sin 70^{\circ}$, then $8abc \left(\frac{a+b}{c}\right) \left(\frac{1}{a} + \frac{1}{b} \frac{1}{c}\right)$ is equal to
- 12. If $\sin^3 \theta + \sin^3 \left(\theta + \frac{2\pi}{3}\right) + \sin^3 \left(\theta + \frac{4\pi}{3}\right) = a \sin b\theta$. Find the value of $\left|\frac{b}{a}\right|$.
- 13. If $\sum_{r=1}^{n} \left(\frac{\tan 2^{r-1}}{\cos 2^r} \right) = \tan p^n \tan q$, then find the value of (p+q).
- **14.** If $x = \sec \theta \tan \theta$ and $y = \csc \theta + \cot \theta$, then $y x xy = \cos \theta$
- **15.** If $\cos 18^{\circ} \sin 18^{\circ} = \sqrt{n} \sin 27^{\circ}$, then n =
- **16.** The value of $3(\sin 1 \cos 1)^4 + 6(\sin 1 + \cos 1)^2 + 4(\sin^6 1 + \cos^6 1)$ is equal to
- 17. If $x = \alpha$ satisfy the equation $3^{\sin 2x + 2\cos^2 x} + 3^{1-\sin 2x + 2\sin^2 x} = 28$, then $(\sin 2\alpha \cos 2\alpha)^2 + 8\sin 4\alpha$ is equal to:
- **18.** The least value of the expression $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \forall \theta \in R$ is
- 19. If $\tan 20^\circ + \tan 40^\circ + \tan 80^\circ \tan 60^\circ = \lambda \sin 40^\circ$, then λ is equal to

- **20.** If K° lies between 360° and 540° and K° satisfies the equation $1 + \cos 10x \cos 6x = 2\cos^2 8x + \sin^2 8x$, then $\frac{K}{10} =$
- **21.** If $\cos 20^\circ + 2\sin^2 55^\circ = 1 + \sqrt{2}\sin K^\circ$, $K \in (0, 90)$, then K = 1
- 22. The exact value of cosec 10°+ cosec 50°-cosec 70° is:
- **23.** Let α be the smallest integral value of x, x > 0 such that $\tan 19x = \frac{\cos 96^\circ + \sin 96^\circ}{\cos 96^\circ \sin 96^\circ}$. The last digit of α is :
- **24.** Find the value of the expression $\frac{\sin 20^{\circ} (4\cos 20^{\circ} + 1)}{\cos 20^{\circ} \cos 30^{\circ}}$
- **25.** If the value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7} = -\frac{l}{2}$. Find the value of l.
- **26.** If $\cos A = \frac{3}{4}$ and $k \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = \frac{11}{8}$. Find k.
- **27.** Find the least value of the expression $3\sin^2 x + 4\cos^2 x$.
- **28.** If $\tan \alpha$ and $\tan \beta$ are the roots of equation $x^2 12x 3 = 0$, then the value of $\sin^2(\alpha + \beta) + 2\sin(\alpha + \beta)\cos(\alpha + \beta) + 5\cos^2(\alpha + \beta)$ is:
- **29.** The value of $\frac{\cos 24^{\circ}}{2 \tan 33^{\circ} \sin^2 57^{\circ}} + \frac{\sin 162^{\circ}}{\sin 18^{\circ} \cos 18^{\circ} \tan 9^{\circ}} + \cos 162^{\circ}$ is equal to :
- **30.** Find the value of $\tan \theta (1 + \sec 2\theta)(1 + \sec 4\theta)(1 + \sec 8\theta)$, when $\theta = \frac{\pi}{32}$.
- **31.** If λ be the minimum value of $y = (\sin x + \cos x)^2 + (\cos x + \sec x)^2 + (\tan x + \cot x)^2$ where $x \in R$. Find $\lambda 6$.

1					I	Ansv	vers						
1.	6	2.	2	3.	1	4.	9	5.	3	6.	0	7.	4
8.	2	9.	0	10.	9	11.	6	12.	4	13.	3	14.	1
15.	2	16.	13	17.	1	18.	9	19.	8	20.	45	21.	65
22.	6	23.	9	24.	2	25.	3	26.	4	27.	3	28.	2
29.	2	30.	1	31.	7	5							

000

Chapter 23 - Trigonometric Equations

TRIGONOMETRIC EQUATIONS

Exercise-1: Single Choice Problems

(b)
$$\frac{-2}{3}$$

(d)
$$\frac{-3}{2}$$

2. The general solution of the equation $\tan^2(x+y) + \cot^2(x+y) = 1 - 2x - x^2$ lie on the line is:

(a)
$$x = -1$$

(b)
$$x = -2$$

(c)
$$y = -1$$

(d)
$$y = -2$$

3. General solution of the equation $\sin x + \cos x = \min_{a \in R} \{1, a^2 - 4a + 6\} \text{ is } :$

(a)
$$\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$$

(b)
$$2n\pi + (-1)^n \frac{\pi}{4}$$

(c)
$$n\pi + (-1)^{n+1} \frac{\pi}{4}$$

(d)
$$n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$$

(where $n \in I$, I represent set of integers)

4. The number of solutions of the equation

The number of solutions of the equation
$$\left(2\sin\left(\frac{\sin x}{2}\right)\right) \left(\cos\left(\frac{\sin x}{2}\right)\right) \left(\sin\left(2\tan\frac{x}{2}\cos^2\frac{x}{2}\right) - 3\right) + 2 = 0 \text{ in } [0, 2\pi] \text{ is } :$$

(d) 4

5. Number of solution of tan(2x) = tan(6x) in $(0, 3\pi)$ is :

- (b) 5
- (d) None of these

6. The number of values of x in the interval $[0, 5\pi]$ satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$

(a) 0

(b) 2

(c) 6

(d) 8

,	tim	e number of differe e satisfying the cor	nt va Iditio	lues of θ satisfying the $0 < \theta < 360^{\circ}$ is	he eq	uation cos θ + cos	$2\theta = -1$, and at the same
	(a)		(b)		(c)	3	(d) 4
8	. The	e total number of so			ax (si	$\ln x, \cos x) = \frac{1}{2} \text{ for } x$	$x \in (-2\pi, 5\pi)$ is equal to:
	(a)	3	(b)	6	(c)		(d) 8
15	2 cc	of $\frac{2}{3}$ cot $\frac{1}{3}$	satis	sfying the equation $ec x + 8 = 0$ is : (whe		- 5	
							π
				$n\pi + \frac{\pi}{6}$		•	(d) $2n\pi + \frac{\pi}{6}$
10	. The	general solution of	of the	equation $\sin^2 x + \cos^2 x$	os ² 3	x = 1 is equal to:	
	(a)	77 m		$x=n\pi+\frac{\pi}{4}$			(d) $x = n\pi + \frac{\pi}{2}$
	(wł	here $n \in I$)					
11	· Valı con	tes of x between 0 nmon difference is	and	2π which satisfy the	e equ	nation $\sin x \sqrt{8 \cos^2 x}$	$\frac{1}{x}$ = 1 are in A.P. whose
	(a)	$\frac{\pi}{2}$	(b)	$\frac{\pi}{}$	(c)	π	(d) $\frac{2\pi}{3}$
		7		3		4	3
12	. Nur	nber of solutions o	$f\sum_{r=1}^{\infty}$	$\cos rx = 5$ in the inte	rval [$[0, 4\pi]$ is:	
	(a)		(b)	Alteria	(c)		(d) 7
13.				$x + \tan^2 x + \csc^2 x$			
	(a)	$n\pi \pm \frac{\pi}{4}$	(b)	$2n\pi\pm\frac{\pi}{4}$	(c)	$n\pi + \frac{\pi}{3}$	(d) $n\pi - \frac{\pi}{6}$
		ere $n \in I$					-
14.	Sma	llest positive x sat	isfyin	ig the equation \cos^3	3 <i>x</i> +	$\cos^3 5x = 8\cos^3 x$	$4x \cdot \cos^3 x$ is:
0.000/14-20	(a)	15°	(b)	18°	(c)	22.5°	(d) 30°
15.	The	general solution o	t the	equation $\sin^{100} x$ –	cos	x = 1 is (where	$n \in I$):
		_		$n\pi + \frac{\pi}{2}$		2	(d) nπ
16.	Nun	ber of solution(s)	of eq	quation $\sin \theta = \sec^2 \theta$	40 ir	1[0, π] is/are:	
	(a)	0	(b)	1	(c)	2	(d) 3
17.	The	number of solution	ıs of	the equation 4sin ²	x + t	$an^2x + cot^2x + c$	(d) 3 $\operatorname{osec}^2 x = 6 \operatorname{in} [0, 2\pi]$
	(a)	1	(b)	2	(c)	3	2.1.
18.	The	number of solution	s of t	he equation sin ⁴ θ –	2sir	$1^2 \theta - 1 = 0$ which	(d) 4 lie between 0 and 2πis:
	(a)	0	(b)	2	(c)	4	(d) 8
							value = VIII

19. The smallest positive value of p for which the equation $\cos(p \sin x) = \sin(p \cos x)$ has solution in

(a)
$$\frac{\pi}{\sqrt{2}}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{2\sqrt{2}}$$

(d)
$$\frac{3\pi}{2\sqrt{2}}$$

20. The total number of ordered pairs (x, y) satisfying |x| + |y| = 2 and $\sin\left(\frac{\pi x^2}{3}\right) = 1$ is:

21. The complete set of values of $x, x \in \left(-\frac{\pi}{2}, \pi\right)$ satisfying the inequality $\cos 2x > |\sin x|$ is :

(a)
$$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$

(b)
$$\left(-\frac{\pi}{2}, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$

(c)
$$\left(-\frac{\pi}{2}, -\frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$

(d)
$$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$

22. The total number of solution of the equation $\sin^4 x + \cos^4 x = \sin x \cos x$ in $[0, 2\pi]$ is:

23. Number of solution of the equation $\sin \frac{5x}{2} - \sin \frac{x}{2} = 2$ in the interval [0, 2π], is:

- (d) Infinite

(a) 1 (b) 2 (c) 0 24. In the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The equation $\log_{\sin\theta}\cos 2\theta = 2$ has

- (a) No solution
- (b) One solution
- (c) Two solution
- (d) Infinite solution

25. If α and β are 2 distinct roots of equation $a\cos\theta + b\sin\theta = C$ then $\cos(\alpha + \beta) = C$

(a)
$$\frac{2ab}{a^2 + b^2}$$
 (b) $\frac{2ab}{a^2 - b^2}$ (c) $\frac{a^2 + b^2}{a^2 - b^2}$ (d) $\frac{a^2 - b^2}{a^2 + b^2}$

																			-
1.	(c)	2.	(a)	3.	(d)	4.	(a)	5.	(b)	6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(0
11.	(a)	12.	(c)	13.	(a)	14.	(ъ)	15.	()	16.	(b)	17.	(d)	18.	(a)	19.	(c)	20.	(t
	(d)	22.	(a						(d)		28		31 2				(0)		

Exercise-2: One or More than One Answer is/are Correct

1. If $2\cos\theta + 2\sqrt{2} = 3\sec\theta$ where $\theta \in (0, 2\pi)$ then which of the following can be correct?

(a)
$$\cos \theta = \frac{1}{\sqrt{2}}$$

(b) $\tan \theta = 1$

(c) $\sin \theta = -\frac{1}{\sqrt{2}}$

(d) $\cot \theta = -1$

2. In a triangle ABC if tan C < 0 then:

(a) $\tan A \tan B < 1$

(b) $\tan A \tan B > 1$

(c) $\tan A + \tan B + \tan C < 0$

(d) $\tan A + \tan B + \tan C > 0$

3. The inequality $4\sin 3x + 5 \ge 4\cos 2x + 5\sin x$ is true for $x \in$

(a)
$$\left[-\pi, \frac{3\pi}{2}\right]$$

(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(c) $\left[\frac{5\pi}{8}, \frac{13\pi}{8}\right]$ (d) $\left[\frac{23\pi}{14}, \frac{41\pi}{14}\right]$

4. The least difference between the roots of the equation $4\cos x(2-3\sin^2 x) + \cos 2x + 1 = 0$ $\forall x \in R \text{ is } :$

(a) equal to $\frac{\pi}{2}$

(b) $> \frac{\pi}{10}$

(c) $<\frac{\pi}{2}$

(d) $<\frac{\pi}{2}$

5. The equation $\cos x \cos 6x = -1$:

(a) has 50 solutions in $[0, 100\pi]$

(b) has 3 solutions in $[0, 3\pi]$

(c) has even number of solutions in $(3\pi, 13\pi)$

(d) has one solution in $\left|\frac{\pi}{2}, \pi\right|$

6. Identify the correct options :

(a) $\frac{\sin 3\alpha}{\cos 2\alpha} > 0$ for $\alpha \in \left(\frac{3\pi}{8}, \frac{23\pi}{48}\right)$

(b) $\frac{\sin 3\alpha}{\cos 2\alpha} < 0$ for $\alpha \in \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$

(c) $\frac{\sin 2\alpha}{\cos \alpha} < 0$ for $\alpha \in \left(-\frac{\pi}{2}, 0\right)$

(d) $\frac{\sin 2\alpha}{\cos \alpha} > 0$ for $\alpha \in \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$

7. The equation $\sin^4 x + \cos^4 x + \sin 2x + k = 0$ must have real solutions if:

(a) k = 0

(b) $|k| \le \frac{1}{2}$

(c) $-\frac{3}{2} \le k \le \frac{1}{2}$

(d) $-\frac{1}{2} \le k \le \frac{3}{2}$

8. Let $f(\theta) = \left(\cos\theta - \cos\frac{\pi}{8}\right) \left(\cos\theta - \cos\frac{3\pi}{8}\right) \left(\cos\theta - \cos\frac{5\pi}{8}\right) \left(\cos\theta - \cos\frac{7\pi}{8}\right)$ then:

(a) maximum value of $f(\theta) \forall \theta \in R$ is $\frac{1}{4}$

(b) maximum value of $f(\theta) \forall \theta \in R$ is $\frac{1}{9}$

(c) $f(0) = \frac{1}{6}$

(d) Number of principle solutions of $f(\theta) = 0$ is 8

9. If $\frac{\sin^2 2x + 4\sin^4 x - 4\sin^2 x \cdot \cos^2 x}{4 - \sin^2 2x - 4\sin^2 x} = \frac{1}{9}$ and $0 < x < \pi$. Then the value of x is:

- (a) $\frac{\pi}{3}$
- (b) $\frac{\pi}{6}$
- (c) $\frac{2\pi}{3}$
- (d) $\frac{5\pi}{6}$

10. The possible value(s) of ' θ ' satisfying the equation

 $\sin^2 \theta \tan \theta + \cos^2 \theta \cot \theta - \sin 2\theta = 1 + \tan \theta + \cot \theta$

where $\theta \in [0, \pi]$ is/are:

- (a) $\frac{\pi}{4}$
- (b) π
- (c) $\frac{7\pi}{12}$
- (d) None of these

11. If $\sin \theta + \sqrt{3} \cos \theta = 6x - x^2 - 11$, $0 \le \theta \le 4\pi$, $x \in R$ holds for

(a) no values of x and θ

- (b) one value of x and two values of θ
- (c) two values of x and two values of θ
- (d) two pairs of values of (x, θ)

1					Ans	wer	s				17
1.	(a, b, c, d)	2.	(a, c)	3.	(a, b, c, d)	4.	(b, c, d)	5.	(a, c, d)	6.	(a, b, c, d)
7.	(a, b, c)	8.	(b, c, d)	9.	(b, d)	10.	(c)	11.	(b, d)		

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider f, g and h be three real valued function defined on R. Let $f(x) = \sin 3x + \cos x$, $g(x) = \cos 3x + \sin x$ and $h(x) = f^{2}(x) + g^{2}(x)$

- **1.** The length of a longest interval in which the function y = h(x) is increasing, is:
 - (a) $\frac{\pi}{8}$

- **2.** General solution of the equation h(x) = 4, is:
- (a) $(4n+1)\frac{\pi}{8}$ (b) $(8n+1)\frac{\pi}{8}$ (c) $(2n+1)\frac{\pi}{4}$ (d) $(7n+1)\frac{\pi}{4}$

[where $n \in I$]

- **3.** Number of point(s) where the graphs of the two function, y = f(x) and y = g(x) intersects in $[0, \pi]$, is:
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

1.1			An	swers		
1. (b)	2. (a)	3. (c)				

Exercise-4: Matching Type Problems

1.

1	Column-I		Column-II
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12 \tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8 \sin^2 x = \alpha$ has solution, then α can be	(R)	9
	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

2.

	Column-I		Column-II
(A)	If $x, y \in [0, 2\pi]$, then total number of ordered pair (x, y) satisfying $\sin x \cos y = 1$ is	(P)	4
(B)	If $f(x) = \sin x - \cos x - kx + b$ decreases for all real values of x , then $2\sqrt{2}k$ may be	(Q)	0
(C)	The number of solution of the equation $\sin^{-1}(x^2-1) + \cos^{-1}(2x^2-5) = \frac{\pi}{2}$ is	(R)	2
(D)	The number of ordered pair (x, y) satisfying the equation $\sin x + \sin y = \sin(x + y)$ and $ x + y = 1$ is	(S)	3
		(T)	6

3.

1	Column-l		Column-II
(A)	Minimum value of $y = 4\sec^2 x + \cos^2 x$ for permissible real values of x is equal to	(P)	2
(B)	If m, n are positive integers and $m + n\sqrt{2} = \sqrt{41 + 24\sqrt{2}}$ then $(m+n)$ is equal to:	(Q)	7

(C)	Number of solutions of the equation:	(R)	4
	$\log_{\left(\frac{9x-x^2-14}{7}\right)}(\sin 3x - \sin x) = \log_{\left(\frac{9x-x^2-14}{7}\right)}\cos 2x$ is equal to:		
(D)	Consider an arithmetic sequence of positive integers. If the sum of the first ten terms is equal to the 58th term, then the least possible value of the first term is equal to:	(S)	5
		(T)	3

Answers

1. $A \rightarrow R, T; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow Q$

2. $A \rightarrow S$; $B \rightarrow P, T$; $C \rightarrow R$; $D \rightarrow T$

3. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- 1. Find the number of solutins of the equations $(\sin x 1)^3 + (\cos x 1)^3 + (\sin x)^3 = (2\sin x + \cos x 2)^3$ in $[0, 2\pi]$.
- 2. If $x + \sin y = 2014$ and $x + 2014\cos y = 2013$, $0 \le y \le \frac{\pi}{2}$, then find the value of [x + y] 2005 (where [·] denotes greatest integer function)
- **3.** The complete set of values of x satisfying $\frac{2\sin 6x}{\sin x 1} < 0$ and $\sec^2 x 2\sqrt{2} \tan x \le 0$ in $\left(0, \frac{\pi}{2}\right)$ is $[a, b) \cup (c, d]$, then find the value of $\left(\frac{cd}{ab}\right)$.
- **4.** The range of value's of k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \lambda)$.
- **5.** The number of points in interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where the graphs of the curves $y = \cos x$ and $y = \sin 3x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ intersects is
- **6.** The number of solutions of the system of equations :

$$2\sin^2 x + \sin^2 2x = 2$$
$$\sin 2x + \cos 2x = \tan x$$

in [0, 4π] satisfying $2\cos^2 x + \sin x \le 2$ is:

- 7. If the sum of all the solutions of the equation $3\cot^2\theta + 10\cot\theta + 3 = 0$ in $[0, 2\pi]$ is $k\pi$ where $k \in I$, then find the value of k.
- **8.** If the sum of all values of θ , $0 \le \theta \le 2\pi$ satisfying the equation $(8\cos 4\theta 3)(\cot \theta + \tan \theta 2)(\cot \theta + \tan \theta + 2) = 12$ is $k\pi$, then k is equal to:
- 9. Find the number of solutions of the equation $2\sin^2 x + \sin^2 2x = 2$; $\sin 2x + \cos 2x = \tan x$ in $[0, 4\pi]$ satisfying the condition $2\cos^2 x + \sin x \le 2$.

	1					Ansv	vers	8	Sec.				1
1.	5	2.	9	3.	6	4.	7	5.	3	6.	8	7.	5
8.	8	9.	8										

SOLUTION OF TRIANGLES

•	Exerc	se-1 : Single Cho	ice Problems			D. T. C.
1.	In a $\Delta \lambda$	$ABC \text{ if } 9(a^2 + b^2) =$	$17c^2$ then the value	of th	e expression cot A	$\frac{1+\cot B}{\cot C}$ is:
	(a) $\frac{13}{4}$		900	(c)	<u> </u>	(d) $\frac{9}{4}$
2.	Let H l	be the orthocenter of ΔCHB is :	of triangle ABC, then	n ang	gle subtended by	side BC at the centre of
			$\frac{B+C}{2}+\frac{\pi}{2}$			4 7
3.	Circum value o	radius of a $\triangle ABC$ is $f \frac{1}{64} (AH^2 + BC^2)$	3 units; let O be the $(BH^2 + AC^2)(CH^2 +$	eircui AB ²)	m centre and <i>H</i> be equals :	the orthocentre then the
	(a) 3 ⁴		9 ³		27 ⁶	(d) 81 ⁴
4.	The an angle A	gles A, B and C of a is:	triangle ABC are in	arit	hmetic progressio	on. If $2b^2 = 3c^2$ then the
	(a) 15		60°	(c)	75°	(d) 90°
5.	In a tria	ingle ABC, if $\tan \frac{A}{2}$	$\tan\frac{C}{2} = \frac{1}{3}$ and $ac = 4$, the	n the least value	of b is:
	(notatio	n have their usual	meaning)			
223	(a) 1	(b)		(c)		(d) 6
6.	In a tria	ngle ABC the expre	ession a cos B cos C +	b cos	$C\cos A + c\cos A$	cos B equals to :
	(a) $\frac{rs}{R}$	(b)	r sR	(c)	$\frac{R}{rs}$	(d) $\frac{Rs}{}$
7.	The set	of real numbers a s	uch that $a^2 + 2a$, $2a$	+ 3,	$a^2 + 3a + 8$ are th	r e sides of a triangle, is :
	(a) (0,		(5, 8)	(c)	$\left(-\frac{11}{3},\infty\right)$	(d) (5,∞)

8.	In a	$\triangle ABC$, $\angle B = \frac{\pi}{3}$ and	$d \angle C = \frac{\pi}{4} \operatorname{let} D \operatorname{divide} BC$	'inte	rnally in the ratio	1:3, then	$\frac{\sin(\angle BAD)}{\sin(\angle CAD)}$ is
		al to:					
	(a)	$\frac{1}{\sqrt{6}}$	(b) $\frac{1}{3}$	(c)	$\frac{1}{\sqrt{3}}$	(d) $\frac{\sqrt{2}}{3}$	
9.	Let	AD, BE, CF be the le	engths of internal bisecto	rs of	angles A, B, C resp	ectively of	triangle ABC.
			ean of AD sec $\frac{A}{2}$, BE sec $\frac{B}{2}$, CF	$\sec \frac{C}{2}$ is equal to:		
	(a)	Harmonic mean o	of sides of $\triangle ABC$	(b)	Geometric mean	of sides of	ΔABC
	(c)	Arithmetic mean o	of sides of $\triangle ABC$	(d)	Sum of reciproca	ls of the sid	les of $\triangle ABC$
10.	In t	riangle ABC , if $2b =$	$= a + c$ and $A - C = 90^\circ$, t	hen	sin B equals :		
	[No	te : All symbols u	sed have usual meaning	in tr	iangle ABC.]	_	
	(a)	$\frac{\sqrt{7}}{5}$	(b) $\frac{\sqrt{5}}{8}$	(c)	$\frac{\sqrt{7}}{4}$	(d) $\frac{\sqrt{5}}{3}$	
11.	In a	triangle ABC, if 20	$a\cos\left(\frac{B-C}{2}\right) = b + c$, then	sec	A is equal to :		
	(All	symbols used have	e usual meaning in a tria	ngle	.)		
		$\frac{2}{\sqrt{3}}$	(b) $\sqrt{2}$	(c)		(d) 3	
12.	Tria	ngle ABC has BC =	= 1 and $AC = 2$, then max	cimu	m possible value o	of $\angle A$ is:	
		-			$\frac{\pi}{2}$	(d) $\frac{\pi}{2}$	
		$\frac{\pi}{6}$	4		3	2	A's if a DEE
13.	ΔI_1 is p	I_2I_3 is an excentral edal triangle of ΔA	l triangle of an equilatera $\frac{Ar(\Delta I_1I_2I_3)}{Ar(\Delta DEF)}$	l tria	ingle & ABC such ti	$nat I_1 I_2 = 4$	tunit, if <i>DEF</i>
			(b) 4	(c)	2	(d) 1	
	(a)	16	with $\angle BAC = \frac{2\pi}{3}$ and AB	- vc	uch that (AR)(AC) = 1 If rs	varies then the
14.	Let.	ABC be a triangle v	with $\angle BAC = \frac{1}{3}$ and AB	- 1 3	den that (AD)(AC	, – 1.11	aries then the
	long	est possible length	of the internal angle bis	secto	r AD equals :		
	(a)	4		(b)	$\frac{1}{2}$		
	(4)	3					
	(c)	$\frac{2}{2}$		(d)	$\frac{\sqrt{2}}{3}$		
-		3 	gle r , R and r 1 form (whe	re sy	mbols used have	usual mear	ning)
15.		an A.P.	(b) a G.P.	(c)	an H.P.	(d) none	of these
16.	(a) In Δ	ABC if $\frac{\sin A}{\sin C} = \frac{\sin A}{\sin C}$	$\frac{(A-B)}{(B-C)}$, then a^2, b^2, c^2	ire ii	1:		
			(b) G.P.	(c)	H.P.	(d) none	of these

(a) $R' = \frac{R}{2}$

ABC, then:

346

(a) 65

(b) R' = 2R

(b) ∠A is acute

22. The acute angle of a rhombus whose side is geometric mean between its diagonals, is:

(a) 15°

(b) 20°

(b) $\frac{1}{2Rr}$

the value of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ is equal to:

(a) $\frac{61}{144}$ (b) $\frac{61}{72}$

20. In a $\triangle ABC$, if $a^2 \sin B = b^2 + c^2$, then:

(a) $\angle A$ is obtuse

23. In a $\triangle ABC$ right angled at A, a line is drawn through A to meet BC at D dividing BC in 2:1. If $tan(\angle ADC) = 3 then \angle BAD is :$

(b) 45°

24. A circle is cirumscribed in an equilateral triangle of side 'l'. The area of any square inscribed in the circle is:

(b) $\frac{2}{3}l^2$

25. If the sides of a triangle are in the ratio 2: $\sqrt{6}$: ($\sqrt{3}$ + 1), then the largest angle of the triangle will be:

(a) 60°

(b) 72°

(c) 75°

(d) 90°

26. In a triangle ABC if a, b, c are in A.P. and $C - A = 120^{\circ}$, then $\frac{s}{a} = \frac{1}{2}$

(where notations have their usual meaning)

(a) $\sqrt{15}$

(b) 2√15

(c) 3√15

27. In a triangle ABC, a = 5, b = 4 and $\cos(A - B) = \frac{31}{32}$, then the third side is equal to :

(where symbols used have usual meanings)

(a) √6

(b) 6√6

(c) 6

(d) (216)1/4

	If comingrimator of a	twinnels is 15 about		$C)+(c+a)\cos(C+A)+$
28	$(a+b)\cos(A+B)$ is ϵ	equal to :	value of $(b+c)\cos(b+c)$	$C) + (c+a)\cos(C+A) +$
	A SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRES	have usual meanings)		
	(a) -60	and a double incomings)	(b) -15	
	(c) -30		(d) can not be dete	rmined
29	AC140 - 100-100	an isosceles triangle with		at the angle bisector of its
	angle B meets the si	de AC at a point D and	that $BC = BD + AD$. M	easure of the angle A in
	degrees, is:	\ <u>-</u>		
	(a) 80	(b) 100	(c) 110	(d) 130
30	In triangle ABC if A:	$B:C = 1:2:4$, then $(a^2 - 1)$	$(b^2)(b^2-c^2)(c^2-a^2)$	$=\lambda a^2b^2c^2$, where $\lambda =$
		ve their usual meaning)		
	(a) 1	(b) 2	(c) 4	(d) 9
31	. In a triangle ABC wi	th altitude AD, $\angle BAC = 4$	45° , $DB = 3$ and $CD = 2$. The area of the triangle
	ABC is:			
	(a) 6	(b) 15	(c) 15/4	(d) 12
32.	. A triangle has base	10 cm long and the base	angles of 50° and 70	. If the perimeter of the
	triangle is $x + y \cos z$	° where $z \in (0, 90)$ then the		
	(a) 60	(b) 55	(c) 50	(d) 40
33.		enter of triangle ABC, the	en angle subtended by	side BC at the centre of
	incircle of $\triangle CHB$ is:	$B+C$ π	$B-C$ π	$B+C$ π
	(a) $\frac{A}{2} + \frac{\pi}{2}$	(b) $\frac{B+C}{2} + \frac{\pi}{2}$	(c) ${2} + {2}$	(d) ${2} + {4}$
24	Triangle ARC is right	angled at A. The point	s P and Q are on the l	nypotenuse BC such that
J7.	BP = PO = OC. If $AP = PO$	= 3 and $AQ = 4$ then the R	ength BC is equal to:	19706
	(2) $\sqrt{27}$	(b) √36	(c) √45	(d) √54
35.	In a $\triangle ABC$ if $b = a($	$\overline{3}$ – 1) and $\angle C$ = 30° then	the measure of the an	gle A is :
	(a) 15°	(b) 45°	(c) 75°	(d) 105°
36.	Thereach the centroid	of an equilateral triangle,	, a line parallel to the b	ase is drawn. On this line,
	an arbitrary point Pi	s taken inside the triangl	ie. Let n denote the pe	rpendicular distance of P
	from the base of the t	riangle. Let h_1 and h_2 be	the perpendicular dis	tance of P from the other
	two sides of the trian	gle. Then :	S 2	
	(a) $h = \frac{h_1 + h_2}{2}$		(b) $h = \sqrt{h_1 h_2}$	
	-		$(h_1 + h_2)\sqrt{3}$	296
	(c) $h = \frac{2h_1h_2}{h_1 + h_2}$		(d) $h = \frac{(h_1 + h_2)\sqrt{3}}{4}$	-
	##L 10 1017 2	Carrier de ABC avair a	rithmetic progression	AR = 6 and RC = 7 Then
37.		or a triangle ABC are in a	iriumiene progression.	AB = 6 and $BC = 7$. Then
	AC is:	(b) √39	(c) √42	(d) √43
	(a) $\sqrt{41}$	(b) V09	No. of the same	CARROL MICHAEL

38.	In Z	$\triangle ABC$, If $A - B = 12$	20° an	dR = 8r, then the v	alue	of $\frac{1+\cos C}{1-\cos C}$ equals	:		
	(All	symbols used hav	e the	ir usual meaning in	a tria	angle) 21	(d)		be angle C is $\frac{2\pi}{2}$.
39.	The	lengths of the side	es CB a	and CA of a triangle	ABC	are given by a and	CD is		3
	тпе	line CD disects the	e angi	e C and meets AB a	(D. 1	ah	. IS	al	5 0
	(a)	$\frac{1}{a+b}$	(b)	$\frac{a^2+b^2}{a+b}$	(c)	$\frac{ab}{2(a+b)}$	(a)	a +	b
40.				BC + CA = 20 and A					
	equ	als:			90				
.020	(a)		(b)		(c)		(d)		side is drawn to
41.	A tr	iangle has sides 6,	7, 8. '	The line through its P and Q . The length	ncen	tre parallel to the	snort	est	side is drawn to
						ACCUPATION AND ADDRESS OF THE PARTY OF THE P		33	
	(a)	5	(D)	15 4	(c)	7	(u) -	9	
42.		perimeter of a ΔA later than :	BC is	48 cm and one side is	20 c	m. Then remainin	g sid	es c	of ΔABC must be
	(a)	8 cm	(b)	9 cm	(c)	12 cm	(d)	4 c	em
43.	In a	n equilateral ∆AB(C, (wl	nere symbols used h	ave ı	usual meanings), t	hen r	-, R	and r_1 form:
	(a)	an A.P.				a G.P.			
	(c)	an H.P.		\(\)	(d)	neither an A.P., G	.P. no	or F	I.P.
44.	The	expression $\frac{(a+b)}{a}$	+ c)(l	b+c-a)(c+a-b	a + b	$\frac{(-c)}{c}$ is equal to :			
	(a)	$\cos^2 A$	(b)	sin ² A	(c)	$\cos A \cos B \cos C$	(d)	sin	$A \sin B \sin C$
		ere symbols used		usual meanings)					
	the e	equation :		s $\triangle ABC$ with $\angle A =$					
	(a)	$x^2-x-8=0$	(b)	$8x^2 - 8x + 1 = 0$	(c)	$x^2-x-4=0$	(d)	4x	$^{2}-4x+1=0$
16.	A is	the orthocentre o	$f \Delta AB$	C and D is reflection	ı poi	nt of A w.r.t. perpe	endic	ula	r bisector of BC,
	then	orthocenter of ΔL)BC 19) :					
	(a)		(b)		(c)		(d)		
7.	If a, i	b, c are sides of a	scale	ne triangle, then th	e val	ue of determinant	a b c	b c a	a is always:
	(a)	≥ 0	(b)	> 0	(c)	≤-1	(d)	< () _
8. 1	n a	triangle ABC if A	:B:	> 0 C = 1 : 2 : 4, then (a	1 ² –	b^2) (b^2-c^2) (c^2-c^2)	$-a^2$) = '	$\lambda a^2 b^2 c^2$ where
7	λ=:						88.		in a b c , innere

1	2)	
١,	41	-

(c) 3

(d)
$$\frac{1}{3}$$

49. The minimum value of $\frac{r_1 r_2 r_3}{r^3}$ in a triangle is (symbols have their usual meaning)

50. In a triangle ABC, BC = 3, AC = 4 and AB = 5. The value of $\sin A + \sin 2B + \sin 3C$ equals

(a)
$$\frac{24}{25}$$

(d) None

51. In any triangle ABC, the value of $\frac{r_1 + r_2}{1 + \cos C}$ is equal to (where notation have their usual meaning):

(b) 2r

(c) R

(d) $\frac{2R^2}{r}$

52. In a triangle ABC, medians AD and BE are drawn. If AD = 4; $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$ then the area of the triangle ABC is:

(a)
$$\frac{8}{3\sqrt{3}}$$

(b) $\frac{16}{3\sqrt{3}}$

(c) $\frac{32}{3\sqrt{3}}$ (d) $\frac{64}{3\sqrt{3}}$

53. The sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$ then the greatest angle of the triangle is:

(a)
$$\frac{\pi}{3}$$

(b) $\frac{\pi}{2}$

(c) $\frac{2\pi}{3}$

54. Let *ABC* be a right triangle with $\angle BAC = \frac{\pi}{2}$, then $\left(\frac{r^2}{2R^2} + \frac{r}{R}\right)$ is equal to :

(where symbols used have usual meaning in a triangle)

- (a) sin B sin C
- (b) tan B tan C
- (c) secB secC
- (d) $\cot B \cot C$

55. Find the radius of the circle escribed to the triangle ABC (Shown in the figure below) on the side BC if $\angle NAB = 30^\circ$; $\angle BAC = 30^\circ$; AB = AC = 5.

(a)
$$\frac{(10\sqrt{2} + 5\sqrt{3} - 5)(2 - \sqrt{3})}{2\sqrt{2}}$$

(b)
$$\frac{(10\sqrt{2}+5\sqrt{3}+5)}{2\sqrt{2}}(2-\sqrt{3})$$

(c)
$$\frac{(10\sqrt{2}+5\sqrt{3}-5)}{2\sqrt{2}}(2+\sqrt{3})$$

(d)
$$\frac{(10\sqrt{2}+5\sqrt{2}+1)}{2\sqrt{3}}(\sqrt{3}-1)$$

56. In a $\triangle ABC$, with usual notations, if b > c then distance between foot of median and foot of altitude both drawn from vertex A on BC is:

(a)
$$\frac{a^2 - b^2}{2c}$$

(b)
$$\frac{b^2 - c^2}{2a}$$

(c)
$$\frac{b^2+c^2-a^2}{2a}$$

(d)
$$\frac{b^2+c^2-a^2}{2c}$$

57. In a triangle ABC the expression $a \cos B \cos C + b \cos C \cos A + c \cos A \cos B$ equals to :

(a)
$$\frac{rs}{R}$$

(b)
$$\frac{r}{sR}$$

(c)
$$\frac{R}{rs}$$

(d)
$$\frac{Rs}{r}$$

58. In an acute triangle *ABC*, altitudes from the vertices *A*, *B* and *C* meet the opposite sides at the points *D*, *E* and *F* respectively. If the radius of the circumcircle of $\triangle AFE$, $\triangle BFD$, $\triangle CED$, $\triangle ABC$ be respectively R_1 , R_2 , R_3 and *R*. Then the maximum value of $R_1 + R_2 + R_3$ is:

(a)
$$\frac{3R}{8}$$

(b)
$$\frac{2R}{3}$$

(c)
$$\frac{4R}{3}$$

(d)
$$\frac{3R}{2}$$

59. A circle of area 20 sq. units is centered at the point O. Suppose \triangle ABC is inscribed in that circle and has area 8 sq. units. The central angles α , β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to :

(a)
$$\frac{4\pi}{5}$$

(b)
$$\frac{3\pi}{4}$$

(c)
$$\frac{2\pi}{5}$$

(d)
$$\frac{\pi}{4}$$

1	1					ent et		Α	nsv	vers	3			7/00/27	*****				
1.	(d)	2.	(ъ)	3.	(b)	4.	(c)	5.	(b)	6.	(a)	7.	(d)	8.	(a)	9.	(a)	10.	(c
11.	(c)	12.	(a)	13.	(a)	14.	(Ъ)	15.	(a)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(a
21.	(c)	22.	(c)	23.	(b)	24.	(ъ)	25.	(c)	26.	(c)	27.	(c)	28.	(c)	29.	(b)	30.	(a
31.	(b)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(d)	40.	(a
41.	(c)	42.	(d)	43.	(a)	44.	(b)	45.	(b)	46.	(a)	47.	(d)	48.	(a)			50.	(b
51.	(a)	52.	(c)	53.	(c)	54.	(a)	55.	(a)	56.	(b)	57.	(a)				3 ST	100	

Exercise-2: One or More than One Answer is/are Correct

- 1. If r_1, r_2, r_3 are radii of the escribed circles of a triangle ABC and r is the radius of its incircle, then the root(s) of the equation $x^2 - r(r_1r_2 + r_2r_3 + r_3r_1)x + (r_1r_2r_3 - 1) = 0$ is/are:
- (b) $r_2 + r_3$
- (c) 1
- (d) $r_1 r_2 r_3 1$
- **2.** In $\triangle ABC$, $\angle A = 60^{\circ}$, $\angle B = 90^{\circ}$, $\angle C = 30^{\circ}$. Let *H* be its orthocentre, then : (where symbols used have usual meanings)
 - (a) AH = c
- (b) CH = a
- (c) AH = a
- (d) BH = 0
- 3. In an equilateral triangle, if inradius is a rational number then which of the following is/are correct?
 - (a) circumradius is always rational
- (b) exradii are always rational
- (c) area is always ir-rational
- (d) perimeter is always rational
- **4.** Let A, B, C be angles of a triangle ABC and let $D = \frac{5\pi + A}{32}$, $E = \frac{5\pi + B}{32}$, $F = \frac{5\pi + C}{32}$, then:

where
$$D, E, F \neq \frac{n\pi}{2}, n \in I, I$$
 denote set of integers

- (a) $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$
- (b) $\cot D + \cot E + \cot F = \cot D \cot E \cot F$
- (c) $\tan D \tan E + \tan E \tan F + \tan F \tan D = 1$ (d) $\tan D + \tan E + \tan F = \tan D \tan E \tan F$
- **5.** In a triangle ABC, if a = 4, b = 8 and $\angle C = 60^{\circ}$, then:

(where symbols used have usual meanings)

- (a) c = 6
- (b) $c = 4\sqrt{3}$
- (c) $\angle A = 30^{\circ}$
- (d) $\angle B = 90^{\circ}$
- **6.** In a $\triangle ABC$ if $\frac{r}{r_1} = \frac{r_2}{r_3}$, then which of the following is/are true?

(where symbols used have usual meanings)

(a) $a^2 + b^2 + c^2 = 8R^2$

(b) $\sin^2 A + \sin^2 B + \sin^2 C = 2$

(c) $a^2 + b^2 = c^2$

- (d) $\Delta = s(s+c)$
- 7. ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the triangle, then:
 - (a) $\angle BOC = A$

(b) $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$

(c) $\angle BHC = \pi - A$

- (d) $\angle BHC = \pi \frac{A}{2}$
- 8. In a triangle ABC, $\tan A$ and $\tan B$ satisfy the inequality $\sqrt{3}x^2 4x + \sqrt{3} < 0$, then which of the following must be correct?

(where symbols used have usual meanings)

(a) $a^2 + b^2 - ab < c^2$

(b) $a^2 + b^2 > c^2$

(c) $a^2 + b^2 + ab > c^2$

(d) $a^2 + b^2 < c^2$

9. If in a $\triangle ABC$; $\angle C = \frac{\pi}{8}$; $a = \sqrt{2}$; $b = \sqrt{2 + \sqrt{2}}$ then the measure of $\angle A$ can be:

(b) 135°

(c) 30°

(d) 150°

10. In triangle ABC, a = 3, b = 4, c = 2. Point D and E trisect the side BC. If $\angle DAE = \theta$, then $\cot^2 \theta$ is divisible by:

(a) 2

(d) 7

11. In a $\triangle ABC$ if $3\sin A + 4\cos B = 6$; $4\sin B + 3\cos A = 1$ then possible value(s) of C be:

(a)

12. If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct?

(a) 2b = a + c

(b) 2a = b + c

(c) $\cot \frac{A}{2} \cot \frac{C}{2} = 3$ (d) $\cot \frac{B}{2} \cot \frac{C}{2} = 3$

13. In a triangle the length of two larger sides are 10 and 9 respectively. It the angles are in A.P., the length of third side can be:

(a) $5 - \sqrt{6}$

(b) $5 + \sqrt{6}$

(c) $6 - \sqrt{5}$

(d) $6 + \sqrt{5}$

14. If area of $\triangle ABC$, \triangle and angle C are given and if the side c opposite to given angle is minimum,

(a) $a = \sqrt{\frac{2\Delta}{\sin C}}$

(b) $b = \sqrt{\frac{2\Delta}{\sin C}}$

(c) $a = \frac{4\Delta}{\sin C}$

(d) $b = \frac{4\Delta}{\sin^2 C}$

15. In a triangle ABC, if $\tan A = 2\sin 2C$ and $3\cos A = 2\sin B\sin C$ then possible values of C is/are

(a) $\frac{\pi}{8}$

(b) $\frac{\pi}{6}$

(c) $\frac{\pi}{4}$

(d) $\frac{\pi}{3}$

4	1				Ans	wers	3	10			
1.	(c, d)	2.	(a, b, d)	3.	(a, b, c)	4.	(b, c)	5.	(b, c, d)	6.	(a, b, c
7.	(b, c)	8.	(a, c)	9.	(a)	10.	(b, c)	11.	(b)	12.	(b, d)
13.	(a, b)	14.	(a, b)	15.	(c, d)			29			

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $\angle A = 23^{\circ}$, $\angle B = 75^{\circ}$ and $\angle C = 82^{\circ}$ be the angles of $\triangle ABC$.

The incircle of $\triangle ABC$ touches the sides BC, CA, AB at points D, E, F respectively. Let r', r' respectively be the inradius, exadius opposite to vertex D of $\triangle DEF$ and r be the inradius of $\triangle ABC$, then

1.
$$\frac{r'}{r} =$$

(a)
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1$$

(b)
$$1 - \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$

(c)
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} - 1$$

(d)
$$1 - \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

2.
$$\frac{r_1'}{r} =$$

(a)
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1$$

(b)
$$1 - \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$

(c)
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} - 1$$

(d)
$$1 - \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

Paragraph for Question Nos. 3 to 4

Internal angle bisectors of $\triangle ABC$ meets its circum circle at D, E and F where symbols have usual meaning.

3. Area of $\triangle DEF$ is:

(a)
$$2R^2 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)$$

(b)
$$2R^2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$$

(c)
$$2R^2 \sin^2\left(\frac{A}{2}\right) \sin^2\left(\frac{B}{2}\right) \sin^2\left(\frac{C}{2}\right)$$

(d)
$$2R^2 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$$

4. The ratio of area of triangle ABC and triangle DEF is:

(c)
$$\geq 1/2$$

(d)
$$\leq 1/2$$

Paragraph for Question Nos. 5 to 6

Let triangle ABC is right triangle right angled at C such that A < B and r = 8, R = 41.

5. Area of \triangle ABC is:

- (a) 720
- (b) 1440
- (c) 360
- (d) 480

- **6.** $\tan \frac{A}{2} =$
 - (a) $\frac{1}{10}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{6}$
- (d) $\frac{1}{9}$

[where notations have their usual meaning]

Paragraph for Question Nos. 7 to 8

Let the incircle of $\triangle ABC$ touches the sides BC, CA, AB at A_1 , B_1 , C_1 respectively. The incircle of $\Delta A_1 B_1 C_1$ touches its sides of $B_1 C_1$, $C_1 A_1$ and $A_1 B_1$ at A_2 , B_2 , C_2 respectively and so on.

- 7. $\lim_{n\to\infty} \angle A_n =$
 - (a) 0
- (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$
- 8. In $\triangle A_4 B_4 C_4$, the value of $\angle A_4$ is: (a) $\frac{3\pi + A}{6}$ (b) $\frac{3\pi A}{8}$ (c) $\frac{5\pi A}{16}$ (d) $\frac{5\pi + A}{16}$

Paragraph for Question Nos. 9 to 10

Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x$, $\frac{AE}{AC} = y$, $\frac{DF}{DE} = z$. Let area of $\Delta BDF = \Delta_1$, area of $\Delta CEF = \Delta_2$ and area of $\triangle ABC = \triangle$.

- **9.** $\frac{\Delta_1}{\Lambda}$ is equal to :
 - (a) xyz
- (b) (1-x)y(1-z) (c) (1-x)yz (d) x(1-y)z

- **10.** $\frac{\Delta_2}{\Delta}$ is equal to :
 - (a) (1-x)y(1-z) (b) (1-x)(1-y)z (c) x(1-y)(1-z) (d) (1-x)yz

Paragraph for Question Nos. 11 to 13

a,b,c are the length of sides BC, CA, AB respectively of \triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2.$

Also the quadratic equation $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots.

11. a, b, c are in :

- (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) None

12. Measure of angle C is:

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

13. The value of $(\sin A + \sin B + \sin C)$ is equal to:

(c) $\frac{8}{3}$

(d) 2

Paragraph for Question Nos. 14 to 16

Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}$; $l_b = \frac{m_b}{M_b}$; $l_c = \frac{m_c}{M_c}$ where

 m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a , M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

14. l_a equals :

- $\frac{\sin A}{\sin \left(B + \frac{A}{2}\right)} \qquad \text{(b)} \quad \frac{\sin B \sin C}{\sin^2 \left(\frac{B + C}{2}\right)} \qquad \text{(c)} \quad \frac{\sin B \sin C}{\sin^2 \left(B + \frac{A}{2}\right)} \qquad \text{(d)} \quad \frac{\sin B + \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$

15. The maximum value of the product $(l_a l_b l_c) \times \cos^2\left(\frac{B-C}{2}\right) \times \cos^2\left(\frac{C-A}{2}\right) \times \cos^2\left(\frac{A-B}{2}\right)$ is equal

to:

- (a) $\frac{1}{8}$
- (b) $\frac{1}{64}$ (c) $\frac{27}{64}$ (d) $\frac{27}{32}$

16. The minimum value of the expression $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C}$ is :

- (a) 2
- (b) 3
- (c) 4
- (d) none of these

Answers 6. (d) 7. (d) 8. (d) (d) (b) 5. (a) 9. (c) 10. (b) 3. 4. (c) 2. (a) 15. (c) 16. (b) 13. (b) 14. (c) 12. (d) (a)

Exercise-4: Matching Type Problems

1. Consider a right angled triangle ABC right angled at C with integer sides. List-I gives inradius. List-II gives the number of triangles.

	Column-l		Column-II
(A)	3	(P)	6
(B)	4	(Q)	7
(C)	6	(R)	8
(D)	9	(S)	10
		(T)	12

2.

7	Column-I	Column-II
(A)	Find the sum of the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{12}+\ldots,\infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's	7
(B)	The length of the sides of $\triangle ABC$ are a , b and c and A is the angle opposite to side a . If $b^2 + c^2 = a^2 + 54$ and $bc = \frac{a^3}{\cos A}$ then the value of $\left(\frac{b^2 + c^2}{9}\right)$, is	10
(C)	The equations of perpendicular bisectors of two sides AB and AC of a triangle ABC are $x + y + 1 = 0$ and $x - y + 1 = 0$ respectively. If circumradius of $\triangle ABC$ is 2 units and the locus of vertex A is $x^2 + y^2 + gx + c = 0$, then $(g^2 + c^2)$, is equal to	13
(D)	Number of solutions of the equation $\cos \theta \sin \theta + 6(\cos \theta - \sin \theta) + 6 = 0$ in [0, 30], is equal to	3

3. In $\triangle ABC$, if $r_1 = 21$, $r_2 = 24$, $r_3 = 28$, then

1	Column-l		Column-II
(A)	<i>a</i> =	(P)	8
(B)	b =	(Q)	12
(C)	s =	(R)	26

357

(D)	r=	(S)	28
		(T)	42

(Where notations have their usual meaning)

4.

1	Column-I		Column-II
(A)	$\frac{r_1(r_2+r_3)}{\sqrt{r_2r_3+r_3r_1+r_1r_2}}$	(P)	$\sin \frac{A}{2}$
(B)	$\frac{r_1}{\sqrt{(r_1+r_2)(r_1+r_3)}}$	(Q)	4R
(C)	$r_1 + r_2 + r_3 - r$	(R)	0
(D)	$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} - \frac{1}{r}$	(s)	2R sin A

Answers

1. $A \rightarrow P$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$

2. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow Q$

3. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow T$; $D \rightarrow P$

4. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

358

Exercise-5 : Subjective Type Problems

- **1.** If the median AD of $\triangle ABC$ makes an angle $\angle ADC = \frac{\pi}{4}$. Find the value of $|\cot B \cot C|$.
- **2.** In a $\triangle ABC$, $\alpha = \sqrt{3}$, b = 3 and $\angle C = \frac{\pi}{3}$. Let internal angle bisector of angle C intersects side AB at D and altitude from B meets the angle bisector CD at E. If O_1 and O_2 are incentres of $\triangle BEC$ and $\triangle BED$. Find the distance between the vertex B and orthocentre of $\triangle O_1EO_2$.
- 3. In a $\triangle ABC$; inscribed circle with centre I touches sides AB, AC and BC at D, E, F respectively. Let area of quadrilateral ADIE is 5 units and area of quadrilateral BFID is 10 units. Find the value of $\frac{\cos\left(\frac{C}{2}\right)}{(A-B)}$.
- **4.** If Δ be area of incircle of a triangle *ABC* and Δ_1 , Δ_2 , Δ_3 be the area of excircles then find the least value of $\frac{\Delta_1 \Delta_2 \Delta_3}{729 \, \Delta^3}$.
- **5.** In $\triangle ABC$, b = c, $\angle A = 106^{\circ}$, M is an interior point such that $\angle MBA = 7^{\circ}$, $\angle MAB = 23^{\circ}$ and $\angle MCA = \theta^{\circ}$, then $\frac{\theta}{2}$ is equal to

(where notations have their usual meaning)

- **6.** In an acute angled triangle *ABC*, $\angle A = 20^\circ$, let *DEF* be the feet of altitudes through *A*, *B*, *C* respectively and *H* is the orthocentre of $\triangle ABC$. Find $\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF}$.
- 7. Let $\triangle ABC$ be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to intersect the circumcircle of $\triangle ABC$ at A_1, B_1 and C_1 respectively. Then $\frac{AA_1 \cos \frac{A}{2} + BB_1 \cos \frac{B}{2} + CC_1 \cos \frac{C}{2}}{\sin A + \sin B + \sin C} =$
- 8. If the quadratic equation $ax^2 + bx + c = 0$ has equal roots where a, b, c denotes the lengths of the sides opposite to vertex A, B and C of the $\triangle ABC$ respectively. Find the number of integers in the range of $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$.
- 9. If in the triangle ABC, $\tan \frac{A}{2}$, $\tan \frac{B}{2}$ and $\tan \frac{C}{2}$ are in harmonic progression then the least value of $\cot^2 \frac{B}{2}$ is equal to:
- 10. In $\triangle ABC$, if circumradius 'R' and inradius 'r' are connected by relation $R^2 4Rr + 8r^2 12r + 9 = 0$, then the greatest integer which is less than the semiperimeter of $\triangle ABC$ is:

11. Sides AB and AC in an equilateral triangle ABC with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle ABC and between the two rays such that $\angle ABP + \angle BCP = 180^{\circ}$. If the maximum length of CP is M, then $M^2/2$ is equal to:

- **12.** Let a, b, c be sides of a triangle ABC and Δ denotes its area. If a = 2; $\Delta = \sqrt{3}$ and $a\cos C + \sqrt{3} a\sin C b c = 0$; then find the value of (b + c). (symbols used have usual meaning in ΔABC).
- 13. If circumradius of $\triangle ABC$ is 3 units and its area is 6 units and $\triangle DEF$ is formed by joining foot of perpendiculars drawn from A, B, C on sides BC, CA, AB respectively. Find the perimeter of $\triangle DEF$.

000

Chapter 25 - Inverse Trigonometric Functions

INVERSE TRIGONOMETRIC **FUNTIONS**

Exercise-1: Single Choice Problems

- (a) 1

(a) 1 (b) 2 (c) 3 (d) 4 2. The solution set of $(\cot^{-1} x)(\tan^{-1} x) + \left(2 - \frac{\pi}{2}\right)\cot^{-1} x - 3\tan^{-1} x - 3\left(2 - \frac{\pi}{2}\right) > 0$, is :

(a) $x \in (\tan 2, \tan 3)$

- (b) $x \in (\cot 3, \cot 2)$
- (c) $x \in (-\infty, \tan 2) \cup (\tan 3, \infty)$
- (d) $x \in (-\infty, \cot 3) \cup (\cot 2, \infty)$
- **3.** The value of $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ is :
 - (a) 14
- (b) 15
- (d) 17

4. Sum the series:

$$tan^{-1}\!\left(\frac{4}{1+3\cdot 4}\right) \!+ tan^{-1}\!\left(\frac{6}{1+8\cdot 9}\right) \!+ tan^{-1}\!\left(\frac{8}{1+15\cdot 16}\right) \!+ \ldots \ldots \infty \text{ is : }$$

- (a) $\cot^{-1}(2)$
- (b) $\tan^{-1}(2)$ (c) $\frac{\pi}{2}$

- 5. $\cot^{-1}(\sqrt{\cos\alpha}) \tan^{-1}(\sqrt{\cos\alpha}) = x$, then $\sin x = -1$
 - (a) $\tan^2\left(\frac{\alpha}{2}\right)$
- (b) $\cot^2\left(\frac{\alpha}{2}\right)$ (c) $\tan \alpha$ (d) $\cot\left(\frac{\alpha}{2}\right)$

6. The sum of the infinite series $\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \cot^{-1}\left(\frac{67}{4}\right) + \dots \infty$ is:

- (a) $\frac{\pi}{4} \cot^{-1}(3)$ (b) $\frac{\pi}{4} \tan^{-1}(3)$ (c) $\frac{\pi}{4} + \cot^{-1}(3)$ (d) $\frac{\pi}{4} + \tan^{-1}(3)$

7. The number of solutions of equation $\cos^{-1}(1-x) + m\cos^{-1}x = \frac{n\pi}{2}$ is : (where m > 0; $n \le 0$)

- (a) 0
- (b) 1
- (c) 2
- (d) none of these

8.	Number of solution(s)	of the equation $2 \tan^{-1}$	2x -	1) = $\cos^{-1}(x)$ is:	
	(a) 1	(b) 2	(c)		(d) infinitely many
9.	$\sin^{-1}\left(\frac{x^2}{4} + \frac{y^2}{9}\right) + \cos$	$^{-1}\left(\frac{x}{2\sqrt{2}} + \frac{y}{3\sqrt{2}} - 2\right) \text{ equa}$	ls to	:	
	(a) $\frac{\pi}{2}$	(b) π	(c)	$\frac{\pi}{\sqrt{2}}$	(d) $\frac{3\pi}{2}$
10.		set of the inequality (co			
	L V-/	(b) $\left[-1,\frac{1}{\sqrt{2}}\right]$			- 1000
11.		f the equation $x^2 + 7x + b$			(0,3) and k is a constant.
	Then the value of tan	$^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \frac{1}{\alpha}$	+ tan	$1^{-1}\frac{1}{\beta}$ is:	
	(a) π	(b) $\frac{\pi}{2}$	(c)		(d) $-\frac{\pi}{2}$
12.	Let $f(x) = a + 2b \cos^{-1}$	1 x, $b > 0$. If domain and	rang	ge of $f(x)$ are the	same set, then $(b-a)$ is
	equal to :			2	
	(a) $1 - \frac{1}{\pi}$		(b)	π	
	(c) $\frac{2}{\pi} + 1$			$1+\frac{1}{\pi}$	
13.	If $(\tan^{-1} x)^2 + (\cot^{-1} x)^2$	$(x)^2 = \frac{5\pi^2}{8}$, then x equals	to:		_
	(a) -1	(b) 1	(c)		(d) √3
14.	The total number of	ordered pairs (x, y) sati	isfyir	$ y = \cos x$ and	$y = \sin^{-1}(\sin x)$, where
	2.9				
	$x \in [-2\pi, 3\pi]$ is equal to			(*)	
	(a) 2	(b) 4	(c)	5	(d) 6
15.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(t))]$	(b) 4	(c)	5	
15.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\cos^{-1}(\sin^{-1}(\cos)(a))))))))])]])]])]$	(b) 4 an ⁻¹ x)))] = 1, where [·] d	(c) lenot	5 es greatest integer	(d) 6 function, then complete
15.	 (a) 2 If [sin⁻¹ (cos⁻¹ (sin⁻¹ (t set of values of x is : (a) [tan(sin(cos 1)), tage (tan(sin(cos 1))) 	(b) 4 an ⁻¹ x)))] = 1, where [·] d an(cos(sin 1))]	(c) lenot (b)	5 es greatest integer [tan(sin(cos1)), t	(d) 6 function, then complete can(sin(cos(sin 1)))]
	(a) 2 If [sin ⁻¹ (cos ⁻¹ (sin ⁻¹ (t set of values of <i>x</i> is : (a) [tan(sin(cos1)), tan(cos(sin1)), tan(co	(b) 4 $an^{-1} x$)))] = 1, where [-] do an(cos(sin 1))] an(sin(cos(sin 1)))]	(c) lenot (b) (d)	5 les greatest integer [tan(sin(cos 1)), t [tan(sin(cos 1)), 1]	(d) 6 function, then complete an(sin(cos(sin 1)))]
16.	 (a) 2 If [sin⁻¹ (cos⁻¹ (sin⁻¹ (toset of values of x is: (a) [tan(sin(cos1)), taged) (c) [tan(cos(sin1)), taged) The number of ordered 	(b) 4 an ⁻¹ x)))] = 1, where [·] d an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s) (x, y) of real nu	(c) lenot (b) (d)	5 les greatest integer [tan(sin(cos 1)), t [tan(sin(cos 1)), 1]	(d) 6 function, then complete an(sin(cos(sin 1)))]
16.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}()))))))))])]]])]$	(b) 4 $an^{-1}(x)$)] = 1, where [.] do an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s) (x, y) of real number) = 0, is:	(c) lenot (b) (d) imbe	5 [tan(sin(cos1)), t [tan(sin(cos1)), 1 rs satisfying the e	(d) 6 r function, then complete ran(sin(cos(sin 1)))] l] quation
16.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos)(\cos^{-1}(\cos)(\cos^{-1}(\cos)))))))])])])])))))$	(b) 4 an ⁻¹ x)))] = 1, where [.] d an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s) (x, y) of real nu y) = 0, is: (b) 1	(c) lenot (b) (d)	5 [tan(sin(cos1)), t [tan(sin(cos1)), 1 rs satisfying the e	(d) 6 function, then complete an(sin(cos(sin 1)))]
16. 17.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos)(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos)(\cos^{-1}(\cos)()))))))])])]$	(b) 4 an ⁻¹ x)))] = 1, where [.] d an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s) (x, y) of real nu y) = 0, is: (b) 1	(c) lenot (b) (d) umbe (c)	5 [tan(sin(cos1)), t [tan(sin(cos1)), 1 rs satisfying the e	(d) 6 r function, then complete ran(sin(cos(sin 1)))] l] quation
16. 17.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos)(\cos^{-1}(\cos)(\cos^{-1}(\cos)))))))])])])])))))$	(b) 4 $an^{-1}(x)$)] = 1, where [-] of an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s)(x, y) of real not x) = 0, is: (b) 1 $tan^{-1}(2 + tan^{-1}(3))$ is:	(c) lenot (b) (d) umbe (c)	tes greatest integer [tan(sin(cos1)), t [tan(sin(cos1)), t rs satisfying the e	(d) 6 function, then complete can(sin(cos(sin 1)))] [] quation (d) 3
16. 17.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos)(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos)(\cos^{-1}(\cos)()))))))])])]$	(b) 4 $an^{-1}(x)$)] = 1, where [-] of an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s)(x, y) of real not x) = 0, is: (b) 1 $tan^{-1}(2 + tan^{-1}(3))$ is:	(c) lenot (b) (d) umbe (c)	tes greatest integer [tan(sin(cos1)), t [tan(sin(cos1)), t rs satisfying the e	(d) 6 function, then complete can(sin(cos(sin 1)))] [] quation (d) 3
16. 17.	(a) 2 If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos^{-1}(\sin^{-1}(\cos)(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos^{-1}(\cos)(\cos^{-1}(\cos)()))))))])])]$	(b) 4 $an^{-1}(x)$)] = 1, where [-] of an(cos(sin 1))] an(sin(cos(sin 1)))] d pair(s)(x, y) of real not x) = 0, is: (b) 1 $tan^{-1}(2 + tan^{-1}(3))$ is:	(c) lenot (b) (d) umbe (c)	tes greatest integer [tan(sin(cos1)), t [tan(sin(cos1)), t rs satisfying the e	(d) 6 function, then complete can(sin(cos(sin 1)))] [] quation (d) 3

18.	The complete set of va	alues of x for which 2 tan	⁻¹ x	$+\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is	independent of x is :
	(-) (- 0	(b) $[0, \infty)$ ordered pair(s) $(x, 0)$	(0)	$(-\infty - 1)$	(d) [1,∞)
	$16(x^2 + y^2) - 48\pi x +$ (a) 0	$16\pi y + 31\pi^2 = 0$, is:	(c)	2	(d) 3
20.	function is	$f(x) = \sin^{-1}(\cos x)$			tes the greatest integer
	(a) $D = [1, 2), R = \{0\}$ (c) $D = [-1, 1), R = \{0\}$		(b)	$D = [0, 1), R = \{-1, 1\}, R = $	$\left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$
21.		$3 > \frac{\pi}{2} + \{\sin^{-1} x\}, \text{ then } x$			
22.	Let $f(x) = x^{11} + x^9$	(b) [sin 1, 1] $-x^7 + x^3 + 1$ and α , then the value of λ is:	(c) f(sin	$(\sin 1, 1)$ $^{-1}(\sin 8)) = \alpha, ($	(d) None of these α is constant). If
	(a) 2	(b) 3	(c)		(d) 1
23.		alues of x satisfying the e			
24	(a) 0 Range of $f(x) = \sin^{-1}$	(b) 1 $x + x^2 + 4x + 1$ is:	(c)	2	(d) 3
	(a) $\left[-\frac{\pi}{2}-2,\frac{\pi}{2}+6\right]$	(b) $\left[0,\frac{\pi}{2}+6\right]$		_ /	
25.	The solution set	of the inequality ((cose	$(c^{-1}x)^2 - 2\operatorname{cosec}^{-1}$	$x \ge \frac{\pi}{6} (\csc^{-1} x - 2) \text{is}$
	$(-\infty,a]\cup[b,\infty)$, then (120	
06	(a) 0	(b) 1 f the equation $2\sin^{-1}(x - \frac{1}{2})$	(c) : (2 +	$2 = \cos^{-1}(x + 3)$ is .	(d) -3
20.	(a) 0	(b) 1		2	(d) None of these
27.		$+ \tan^{-1}\left(\frac{1}{13}\right) + \dots \infty =$			(a) None of these
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c)	$\frac{\pi}{3}$	(d) $\frac{\pi}{6}$
28.	If $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} =$	$\frac{1}{2}\cos^{-1}x$ then x is equal	al to	:	
	(a) $\frac{1}{2}$	(b) $\frac{2}{5}$	(c)	<u>3</u> 5	(d) none of these

29.	The set of value of x ,	satisfying the equation	tan ² (sin ⁻¹	(x) > 1	is :
-----	---------------------------	-------------------------	-------------------------------------	---------	------

(b)
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

(c)
$$[-1, 1] - \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

(d)
$$(-1, 1) - \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$$

30. The sum of the series
$$\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) + \cot^{-1}\left(\frac{129}{8}\right) + \dots \infty$$
 is equal to :

(a)
$$\cot^{-1}(2)$$

(b)
$$\cot^{-1}(3)$$

(c)
$$\cot^{-1}(-1)$$
 (d) $\cot^{-1}(1)$

(d)
$$\cot^{-1}(1)$$

31. If
$$\int \frac{\ln(\cot x)}{\sin x \cos x} dx = -\frac{1}{k} \ln^2(\cot x) + C$$

(where C is a constant); then the value of k is:

(d)
$$\frac{1}{2}$$

32. The number of solutions of
$$\sin^{-1} x + \sin^{-1} (1 + x) = \cos^{-1} x$$
 is/are:

33. The value of
$$x$$
 satisfying the equation

$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$
 is:

(a)
$$\cos \frac{\pi}{5}$$

(b)
$$\cos \frac{\pi}{4}$$

(c)
$$\cos \frac{\pi}{8}$$

(d)
$$\cos \frac{\pi}{12}$$

$$\sin^{-1} \sqrt{\frac{1+x}{2}} - \sqrt{2-x} = \cot^{-1} (\tan \sqrt{2-x}) - \sin^{-1} \sqrt{\frac{1-x}{2}} \text{ is :}$$

(a)
$$\left[2 - \frac{\pi^2}{4}, 1\right]$$
 (b) $\left[1 - \frac{\pi^2}{4}, 1\right]$ (c) $\left[2 - \frac{\pi^2}{4}, 0\right]$

(b)
$$\left[1-\frac{\pi^2}{4},1\right]$$

(c)
$$\left[2-\frac{\pi^2}{4},0\right]$$

35. Let
$$f(x) = \tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$$
 then which of the following is correct:

- (a) f(x) has only one integer in its range
- (b) Range of f(x) is $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \{0\}$
- (c) Range of f(x) is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \{0\}$
- (d) Range of f(x) is $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \{0\}$

36. If
$$\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \frac{1}{2} \cos^{-1} x$$
 then x is equal to :

- (a) $\frac{1}{2}$
- (b) $\frac{2}{5}$
- (c) $\frac{3}{5}$
- (d) None of these

3/.	The	set of values of x ,	satisfying the equation t	$an^{2}(sin^{-1}x) > 1$ is:	
	(a)	(-1,1)	A. N. P.	(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	
	(c)	$[-1,1] - \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\bar{\underline{a}}$	(d) $(-1,1) - \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$	$\left[\frac{1}{2}\right]$
38.	The	sum of the series	$\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) +$	180	
	(a)	cot ⁻¹ (2)	(b) $\cot^{-1}(3)$	(c) $\cot^{-1}(-1)$	(d) cot ⁻¹ (1)
39.	The	number of real va	lues of x satisfying tan ⁻¹	$1\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right)$	$=\frac{3\pi}{4}$ is:
	(a)	0	(b) 1	(c) 2	(d) infinitely many
40.	Nur	nber of integral va	lues of a such that the ed	nuation $\cos^{-1} x + \cot^{-1}$	$x = \lambda$ possesses solution
	is:		and of would that the or		-
	(a)	2	(b) 8	(c) 5	(d) 10
	(-)	_		Of Contract of Con	
41	Tf th	e equation $r^3 + h$	$x^2 + cx + 1 = 0 (b < c)$ has	s only one real root α.	
41.		e equation x + o	$n^{-1}(\csc\alpha) + \tan^{-1}(2s)$	in a sec ² a) is:	
	The	n the value of 2 tai		122	
	(a)	$-\frac{\pi}{2}$	(b) -π	(c) $\frac{\pi}{2}$	(d) π
		-f the function	$f(x) = \cot^{-1}\{-x\} + \sin^{-1}(x)$	$^{-1}\{x\} + \cos^{-1}\{x\}$, whe	re {·} denotes fractional
42.			()(x) = cor (x)		AND THE RESERVE OF THE PROPERTY OF THE PROPERT
		function	Γ3π)	[3π]	(3π]
	(a)	$\left(\frac{3\pi}{4},\pi\right)$	(b) $\left[\frac{3\pi}{4},\pi\right]$	(c) $\left \frac{3\pi}{4}, \pi \right $	(d) $\left(\frac{\pi}{4},\pi\right)$
		(4)	L T /	$n^{-1}(tan[a]) + sec^{-1}(sec^{-1})$	octal) where [v] denotes
43.	If 3	$\leq a < 4$ then the va	lue of sin (sin(a)) + ta	ui (tantuj) + sec (se	ec[a]), where [x] denotes
	grea	test integer functi	on less than or equal to	x, is equal to .	(4) 0 0-
	(a)	3	(b) $2\pi - 9$	(c) $2\pi - 3$	(d) $9-2\pi$
44.	The	number of real sol	utions of $y + y^2 = \sin x$	and $y + y^{\circ} = \cos^{-1} \cos^{-1} \cot^{-1} \cot^{-1$	s x is/are
			A) 1	(c) 3	(d) Infinite
	D	$-2.06 f(x) = \sin^{-1}[$	$[x-1] + 2\cos^{-1}[x-2]$	denotes greatest inte	ger function)
45.	Rail	ge 01) (x) = 522	(π -)	(α) $[\pi \ \pi]$	(3π) 3π
	(a)	$\left\{-\frac{\pi}{2},0\right\}$	(b) $\left\{\frac{\pi}{2}, 2\pi\right\}$	$\left\{\frac{7}{4},\frac{7}{2}\right\}$	$(a) \left\{ \frac{1}{2}, 2\pi \right\}$

2/	1					Tine.		Ai	nsı	ver:	s J								8
1.	(a)	2.	(b)	3.	(ъ)	4.	(a)	5.	(a)	6.	(c)	7.	(a)	8.	(a)	9.	(d)	10.	(b)
11.	(c)	12.	(d)	13.	(a)	14.	(c)	15.	(b)	16.	(b)	17.	(b)	18.	(a)	19.	(d)	20.	(a)
21.	(b)	22.	(a)	23.	(b)	24.	(a)	25.	(b)	26.	(b)	27.	(a)	28.	(c)	29.	(d)	30.	(a)
31.	(b)	32.	(ъ)	33.	(c)	34.	(a)	35.	(b)	36.	(c)	37.	(d)	38.	(a)	39.	(a)	40.	(c)
41.	(b)	42.	(d)	43.	(a)	44.	(d)	45.	(d)									ii.	

- 1. $f(x) = \sin^{-1}(\sin x), g(x) = \cos^{-1}(\cos x)$, then:
 - (a) f(x) = g(x) if $x \in \left[0, \frac{\pi}{4}\right]$
- (b) $f(x) < g(x) \text{ if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$

- (c) $f(x) < g(x) \text{ if } \left(\pi, \frac{5\pi}{4}\right)$
- (d) f(x) > g(x) if $x \in \left(\pi, \frac{5\pi}{4}\right)$
- **2.** The solution(s) of the equation $\cos^{-1} x = \tan^{-1} x$ satisfy
 - (a) $x^2 = \frac{\sqrt{5}-1}{2}$

(b) $x^2 = \frac{\sqrt{5+1}}{2}$

- (c) $\sin(\cos^{-1} x) = \frac{\sqrt{5} 1}{2}$ (d) $\tan(\cos^{-1} x) = \frac{\sqrt{5} 1}{2}$
- **3.** If the numerical value of $\tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right)$ is $\left(\frac{a}{b}\right)$, where a, b are two positive integers
 - and their H.C.F. is 1

(a) a+b=23

- (b) a-b=11
- (c) 3b = a + 1
- **4.** A solution of the equation $\cot^{-1} 2 = \cot^{-1} x + \cot^{-1} (10 x)$ where 1 < x < 9 is :
 - (a) 7

- **5.** Consider the equation $\sin^{-1}\left(x^2-6x+\frac{17}{2}\right)+\cos^{-1}k=\frac{\pi}{2}$, then:
 - (a) the largest value of k for which equation has 2 distinct solution is 1
 - (b) the equation must have real root if $k \in \left(-\frac{1}{2}, 1\right)$
 - (c) the equation must have real root if $k \in \left[-1, \frac{1}{2}\right]$
 - (d) the equation has unique solution if $k = -\frac{1}{2}$
- **6.** The value of x satisfying the equation

$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\cos^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$

can not be equal to:

- (a) $\cos \frac{\pi}{5}$
- (b) $\cos \frac{\pi}{4}$
- (c) $\cos \frac{\pi}{8}$
- (d) $\cos \frac{\pi}{12}$

(a, b, d)

Answers (a, b, c) (a, c) (a, b) 2. (a, b, c) (a, b, d)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $\cos^{-1}(4x^3 - 3x) = a + b \cos^{-1} x$

- 1. If $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, then $\sin^{-1}\left(\sin\frac{a}{b}\right)$ is:

- (a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $-\frac{\pi}{6}$ (d) $\frac{\pi}{6}$ If $x \in \left(\frac{1}{2}, 1\right]$, then $\lim_{y \to a} b \cos y$ is: 2. If $x \in \left(\frac{1}{2}, 1\right]$, then $\lim_{y \to a} b \cos y$ is:
 - (a) $-\frac{1}{3}$ (b) -3
- (c) $\frac{1}{3}$
- (d) 3

Answers 2. (d)

Exercise-4 : Matching Type Problems

1.

1	Column-I	1	Column-II
(A)	$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} =$	(P)	$\frac{\pi}{6}$
(B)	$\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} =$	(Q)	$\frac{\pi}{2}$
(C)	If $A = \tan^{-1} \frac{x\sqrt{3}}{2\lambda - x}$, $B = \tan^{-1} \left(\frac{2x - \lambda}{\lambda\sqrt{3}}\right)$	(R)	$\frac{\pi}{4}$
(D)	then $A - B$ can be equal to $\tan^{-1} \frac{1}{7} + 2 \tan^{-1} \frac{1}{3} =$	(S)	π
		(T)	$\frac{\pi}{3}$

2.

1	Column-l		Column-II
(P)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^+}{2}} f(3x - 4x^3)$	(P)	3
	$= l - 3 \left(\lim_{x \to \frac{1}{2}} f(x) \right) $ then $[l] =$		
	([·] denotes greatest integer function)		
Q)	If $x > 1$, then the value of $\sin\left(\frac{1}{2}\tan^{-1}\frac{2x}{1-x^2}-\tan^{-1}x\right)$	(Q)	-1
	is		
(R)	Number of values of x satisfying $\sin^{-1} x - \cos^{-1} x = \sin^{-1} (3x - 2)$	(R)	2
(S)	The value of $\sin\left(\tan^{-1} 3 + \tan^{-1} \frac{1}{3}\right)$	(S)	1

3.

	Column-l		Column-II
(A)	If the first term of an arithmetic progression is 1, its second term is n , and the sum of the first n terms is $33n$	(P)	3
(B)	If the equation $\cos^{-1} x + \cot^{-1} x = k$ possess solution, then the largest integral value of k is	(Q)	4
(C)	The number of solution of equation $\cos \theta = 1 + \sin \theta $ in interval [0, 3π], is	(R)	5
(D)	If the quadratic equation $x^2 - x - a = 0$ has integral roots where $a \in N$ and $4 \le a \le 40$, then the number of possible values of a is		9

4

1	Column-I		Column-II
(A)	The value of $tan^{-1}([\pi]) + tan^{-1}([-\pi] + 1) =$ ([-] denotes greatest integer function)	(P)	2
(B)	The number of solutions of the equation $\tan x + \sec x = 2\cos x$ in the interval [0, 2π] is	(Q)	3
(C)	The number of roots of the equation $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0, 2\pi]$ is	(R)	0
(D)	The number of solutions of the equation $x^3 + x^2 + 4x + 2\sin x = 0$ in the interval $[0, 2\pi]$ is	(S)	1

Answers

1. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$ 2. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$ 3. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$ 4. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$

- 1. The complete set of values of x satisfying the inequality $\sin^{-1}(\sin 5) > x^2 4x$ is $(2 \sqrt{\lambda 2\pi}, 2 + \sqrt{\lambda 2\pi})$, then $\lambda =$
- **2.** In a $\triangle ABC$; if $(II_1)^2 + (I_2I_3)^2 = \lambda R^2$, where I denotes incentre; I_1, I_2 and I_3 denote centres of the circles escribed to the sides BC, CA and AB respectively and R be the radius of the circum circle of $\triangle ABC$. Find λ .
- 3. If $2\tan^{-1}\frac{1}{5}-\sin^{-1}\frac{3}{5}=-\cos^{-1}\frac{63}{\lambda}$, then $\lambda=$
- **4.** If $2\tan^{-1}\frac{1}{5}-\sin^{-1}\frac{3}{5}=-\cos^{-1}\frac{9\lambda}{65}$, then $\lambda=$
- 5. If $\sum_{n=0}^{\infty} 2 \cot^{-1} \left(\frac{n^2 + n + 4}{2} \right) = k\pi$, then find the value of k.
- **6.** Find number of solutions of the equation $\sin^{-1}(|\log_6^2(\cos x) 1|) + \cos^{-1}(|3\log_6^2(\cos x) 7|) = \frac{\pi}{2}$, if $x \in [0, 4\pi]$.

					Ansv	vers		SAP .			1
1. 9	2.	16	3.	65	4.	7	5.	1	6.	4	

000

Chapter 26 - Vector & 3Dimensional Geometry

Vector & 3Dimensional Geometry

26. Vector and 3Dimensional Geometry

VECTOR & 3DIMENSIONAL **GEOMETRY**

Exercise-1: Single Choice Problems

1. The minimum value of $x^2 + y^2 + z^2$ if ax + by + cz = p, is:

(a)
$$\left(\frac{p}{a+b+c}\right)^2$$

(a)
$$\left(\frac{p}{a+b+c}\right)^2$$
 (b) $\frac{p^2}{a^2+b^2+c^2}$ (c) $\frac{a^2+b^2+c^2}{p^2}$

(c)
$$\frac{a^2+b^2+c^2}{n^2}$$

(d) 0

2. If the angle between the vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{3}$ and the area of the triangle with adjacent sides equal to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is 3, then $\overrightarrow{\mathbf{a}}$ $\overrightarrow{\mathbf{b}}$ is equal to:

 $(b) 2\sqrt{3}$

(c) $4\sqrt{3}$

3. A straight line cuts the sides AB, AC and AD of a parallelogram ABCD at points B_1 , C_1 and D_1 respectively. If $\overrightarrow{AB}_1 = \lambda_1 \overrightarrow{AB}$, $\overrightarrow{AD}_1 = \lambda_2 \overrightarrow{AD}$ and $\overrightarrow{AC}_1 = \frac{\lambda_3}{2} \overrightarrow{AC}$, where λ_1 , λ_2 and λ_3 are positive real numbers, then:

(a) λ_1, λ_3 and λ_2 are in AP

(b) λ_1, λ_3 and λ_2 are in GP

(c) λ_1 , λ_3 and λ_2 are in HP

(d) $\lambda_1 + \lambda_2 + \lambda_3 = 0$

4. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is 30° then $|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}|$ is equal to :

(a) $\frac{2}{3}$

 $\frac{3}{2}$

(d) 3

5. If acute angle between the line $\vec{r} = \hat{i} + 2\hat{j} + \lambda(4\hat{i} - 3\hat{k})$ and xy-plane is θ_1 and acute angle between the planes x + 2y = 0 and 2x + y = 0 is θ_2 , then $(\cos^2 \theta_1 + \sin^2 \theta_2)$ equals to :

(a) 1

(b) $\frac{1}{4}$ (c) $\frac{2}{3}$

(a) $\sqrt{288}$

(b) $\sqrt{72}$

			Auvanceu i robiem	D. D. S.
6	If a, b, c, x, y, z are rea $\frac{a+b+c}{x+y+z}$ is equal to:	al and $a^2 + b^2 + c^2 = 25$	$x^2 + y^2 + z^2 = 36$ and	d ax + by + cz = 30, then
	(a) 1	(b) $\frac{6}{5}$	6 $\frac{5}{6}$	(d) $\frac{3}{4}$
7	If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non-zero	o non-collinear vectors	such that $ \mathbf{a} = 2$ a : b	= 1 and angle between $\vec{\mathbf{a}}$
	and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{3}$. If $\overrightarrow{\mathbf{r}}$ is any	y vector such that $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}} =$	= 2, $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}} = 8$, $(\overrightarrow{\mathbf{r}} + 2\overrightarrow{\mathbf{a}} -$	$10 \overrightarrow{\mathbf{b}}) \cdot (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) = 4\sqrt{3}$ and
	satisfy to $\mathbf{r} + 2\mathbf{a} - 10\mathbf{b}$	$\overrightarrow{\mathbf{a}} = \lambda (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$, then λ is eq	ual to :	
		(b) 2	(c) $\frac{1}{4}$	(d) None of these
8	Let $\overrightarrow{\mathbf{a}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$;	$\vec{\mathbf{b}} = 2(\hat{\mathbf{i}} + \hat{\mathbf{k}}) \text{ and } \vec{\mathbf{c}} = 4\hat{\mathbf{i}} + \hat{\mathbf{k}}$	+ $2\hat{\mathbf{j}}$ + $3\hat{\mathbf{k}}$. Sum of the value	alues of 'α' for which the
	equation $x \mathbf{a} + y \mathbf{b} + z$	$\vec{\mathbf{c}} = \alpha \left(x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \right)$ has	non-trivial solution is :	
	(a) -1	(b) 4	(c) 7	(4) 0
				(d) \overrightarrow{o} $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$ $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$ $\overrightarrow{b} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$ $\overrightarrow{c} \cdot \overrightarrow{b} \cdot \overrightarrow{c} \cdot \overrightarrow{c}$ is equal to :
	(a) 2	(b) 4	(c) 16	(d) 64
10.	If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two ve	ctors such that $ \overrightarrow{\mathbf{a}} = 1$, $ \overrightarrow{\mathbf{b}} $	$ \mathbf{a} = 4, \mathbf{a} \cdot \mathbf{b} = 2. \text{ If } \mathbf{c} = 0$	(d) 64 $2\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} - 3\overrightarrow{\mathbf{b}}$, then angle
	between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is:			-, ob, men angle
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	
11.	If \vec{a} , \vec{b} , \vec{c} are unit vector	ors, then the value of $ \stackrel{\rightarrow}{\mathbf{a}}$	$2\overrightarrow{\mathbf{b}} ^2 + \overrightarrow{\mathbf{b}} - 2\overrightarrow{\mathbf{c}} ^2 + \overrightarrow{\mathbf{c}} - 2\overrightarrow{\mathbf{c}} ^2$	$2\overrightarrow{\mathbf{a}} ^2$ does not exceed to:
	(a) 9	(b) 12	(c) 18	
12.	The adjacent side vect			(d) 21 $\overrightarrow{\mathbf{b}}$ respectively, where O is
	the origin If $161 \text{ ax } \text{b}$	$= 3(\mathbf{a} + \mathbf{b})^2$ and 0	e the acute and	b respectively, where <i>O</i> is een the diagonals <i>OC</i> and
	AB then the value of t	an($\theta/2$) is:	e the acute angle betw	een the diagonals OC and
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\frac{1}{3}$
13.	The vector $\overrightarrow{AB} = 3\hat{i} +$ the median through A	$4\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{AC}} = 5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{j}}$ is:	$\hat{\mathbf{k}}$ are the sides of a tri	angle ABC. The length of

(c) √33

(d) $\sqrt{18}$

14	If $\overrightarrow{\mathbf{a}} = 2\hat{\mathbf{i}} + \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$; $\overrightarrow{\mathbf{b}}$	$=3\hat{\mathbf{i}}+3\hat{\mathbf{j}}+5\hat{\mathbf{k}}; \overset{\rightarrow}{\mathbf{c}}=\lambda\hat{\mathbf{i}}+2\hat{\mathbf{i}}$	2 ĵ + 2 k̂ are linearly dep	pendent vectors, then the
	number of possible va	lues of λ is :		
	(a) 0	(b) 1	(c) 2	(d) More than 2
15.	. The scalar triple produ	$act[\vec{a}+\vec{b}-\vec{c}\vec{b}+\vec{c}-\vec{a}$		
	(a) 0	(b) $\begin{bmatrix} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \end{bmatrix}$	270.007	
16.	If $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are unit vec	ctors then the vector def	ined as $\vec{\mathbf{V}} = (\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \times ($	$\hat{\mathbf{a}} + \hat{\mathbf{b}}$) is collinear to the
	vector :			
	(a) $\hat{\mathbf{a}} + \hat{\mathbf{b}}$	(b) $\hat{\mathbf{b}} - \hat{\mathbf{a}}$	(c) $2\hat{\mathbf{a}} - \hat{\mathbf{b}}$	(d) $\hat{\mathbf{a}} + 2\hat{\mathbf{b}}$
17.		ed by the lateral face AD 2,1); $B = (3,1,5)$; $C = (4$		e ABC of the tetrahedron is:
		(b) $\frac{5}{\sqrt{29}}$		
18		V=2	V 22	r unit vectors, then the
	$\begin{vmatrix} x_1 & x_2 & x_3 \end{vmatrix}$,, 1 , 7 = 1, 2, 5 be tinee 1	nutuany perpendicula	ant vectors, then the
	value of $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$	is equal to :		
	(a) 0	(b) ±1	(c) ±2	(d) ±4
19.	Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three no	on-coplanar vectors and	$\stackrel{ ightarrow}{f r}$ be any arbitrary vec	tor, then the expression
	$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{r} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c})$	\overrightarrow{c})×(\overrightarrow{r} × \overrightarrow{a})+(\overrightarrow{c} × \overrightarrow{a})×(→ → r × b) is always equal :	to:
		Charleson, Gordenau	14 000 T	
	(-) (-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	$\rightarrow \rightarrow $	(a) $4[a + a] =$	(4) 0
	(a) $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$	$\overrightarrow{c}) \times \overrightarrow{(r \times a)} + \overrightarrow{(c \times a)} \times ($ (b) $2[\mathbf{a} \mathbf{b} \mathbf{c}] \mathbf{r}$	(c) $4[\mathbf{a}\mathbf{b}\mathbf{c}]\mathbf{r}$	(d) $\vec{0}$
				(d) $\overrightarrow{0}$ m <i>ABCD</i> . Let $\overrightarrow{\mathbf{BE}} = 4\overrightarrow{\mathbf{EC}}$
20.	E and F are the interior	points on the sides BC a	nd CD of a parallelogra	m <i>ABCD</i> . Let $\overrightarrow{\mathbf{BE}} = 4\overrightarrow{\mathbf{EC}}$
20.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \ \overrightarrow{\mathbf{FD}}$. If the leads	points on the sides BC a	and <i>CD</i> of a parallelogrand <i>AC</i> in <i>G</i> , then $\overrightarrow{AG} = \lambda$	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}$, where λ is equal to:
20.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \ \overrightarrow{\mathbf{FD}}$. If the leads	points on the sides BC a	and <i>CD</i> of a parallelogrand <i>AC</i> in <i>G</i> , then $\overrightarrow{AG} = \lambda$	m <i>ABCD</i> . Let $\overrightarrow{\mathbf{BE}} = 4\overrightarrow{\mathbf{EC}}$
20.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the learning $\frac{1}{3}$	points on the sides BC a	and <i>CD</i> of a parallelogra AC in G , then $\overrightarrow{AG} = \lambda$ (c) $\frac{7}{13}$	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$
20. 21.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the lagrant $\mathbf{\hat{a}}$ is $\mathbf{\hat{b}}$ are unit vectors a	points on the sides <i>BC</i> a fine <i>EF</i> meets the diagona (b) $\frac{21}{25}$	and <i>CD</i> of a parallelogral <i>AC</i> in <i>G</i> , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{c} + \overrightarrow{b}$, then the maxim	m ABCD. Let $\overrightarrow{BE} = 4 \overrightarrow{EC}$ \overrightarrow{AC} , where λ is equal to: (d) $\frac{21}{5}$
20. 21. 22.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line is $(\mathbf{a}) \cdot \frac{1}{3}$. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at $(\mathbf{a}) \cdot 1$. Consider matrices A	points on the sides BC at the diagonal (b) $\frac{21}{25}$ and $\overrightarrow{\mathbf{c}}$ is such that $\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}} \times (b)$ $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum (c) 2 $\begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}; C = \begin{bmatrix} 14 \\ 12 \\ 2 \end{bmatrix}; D = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$ $\text{num value of } [\overrightarrow{\mathbf{abc}}] \text{ is :}$ $(d) \frac{3}{2}$ $(d) $
20. 21. 22.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4$ $\overrightarrow{\mathbf{FD}}$. If the leads $\frac{1}{3}$ If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at (a) 1 Consider matrices A solutions of equation A respectively in three differences in the contract of the contra	points on the sides BC a ine EF meets the diagona (b) $\frac{21}{25}$ and $\overrightarrow{\mathbf{c}}$ is such that $\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$ (b) $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$ $X = C \text{ and } BX = D \text{ repressimensional space. If } P'Q$	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum (c) 2 and CD of a parallelogral CD of	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$ $\text{num value of } [\overrightarrow{\mathbf{ab}} \ \overrightarrow{\mathbf{c}}] \text{ is :}$ $(d) \frac{3}{2}$
20. 21.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line is $(\mathbf{a}) \cdot \frac{1}{3}$. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at $(\mathbf{a}) \cdot 1$. Consider matrices A solutions of equation A respectively in three differences $(\mathbf{a}) \cdot (\mathbf{c}) \cdot (\mathbf{c}) = (\mathbf{c})$. The interior is $(\mathbf{c}) \cdot (\mathbf{c}) \cdot ($	points on the sides BC at time EF meets the diagonal (b) $\frac{21}{25}$ and $\overrightarrow{\mathbf{c}}$ is such that $\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}} \times (b)$ $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$ $X = C$ and $BX = D$ represes	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum (c) 2 and CD of a parallelogral CD of	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}$, where λ is equal to: (d) $\frac{21}{5}$ num value of $[\overrightarrow{\mathbf{abc}}]$ is: (d) $\frac{3}{2}$ (d) $\frac{3}{2}$ (\mathbf{abc}) such that (\mathbf{abc}) and (\mathbf{abc}) an
20. 21.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line is $(\mathbf{a}) \cdot \frac{1}{3}$. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at $(\mathbf{a}) \cdot 1$. Consider matrices A solutions of equation A respectively in three differences in $(x + y + z) = 9$, then	points on the sides BC at the diagonal (b) $\frac{21}{25}$ and \mathbf{c} is such that $\mathbf{c} = \mathbf{a} \times \mathbf{c}$ (b) $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$ $X = C \text{ and } BX = D \text{ repressimensional space. If } P'Q$ the point which does not	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum CC CC CC CC CC CC CC CC	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$ $\text{num value of } [\overrightarrow{\mathbf{abc}}] \text{ is :}$ $(d) \frac{3}{2}$ $(d) $
20. 21.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line is $(\mathbf{a}) \cdot \frac{1}{3}$. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at $(\mathbf{a}) \cdot 1$. Consider matrices A solutions of equation A respectively in three differences in $(x + y + z) = 9$, then	points on the sides BC at the diagonal (b) $\frac{21}{25}$ and \mathbf{c} is such that $\mathbf{c} = \mathbf{a} \times \mathbf{c}$ (b) $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$ $X = C \text{ and } BX = D \text{ repressimensional space. If } P'Q$ the point which does not	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum CC CC CC CC CC CC CC CC	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$ $\text{num value of } [\overrightarrow{\mathbf{abc}}] \text{ is :}$ $(d) \frac{3}{2}$ $(d) $
20. 21.	E and F are the interior and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line is $(\mathbf{a}) \cdot \frac{1}{3}$. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors at $(\mathbf{a}) \cdot 1$. Consider matrices A solutions of equation A respectively in three differences in $(x + y + z) = 9$, then	points on the sides BC at the diagonal (b) $\frac{21}{25}$ and \mathbf{c} is such that $\mathbf{c} = \mathbf{a} \times \mathbf{c}$ (b) $\frac{1}{2}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 2 & 2 \end{bmatrix}$ $X = C \text{ and } BX = D \text{ repressimensional space. If } P'Q$ the point which does not	and CD of a parallelogral AC in G , then $\overrightarrow{AG} = \lambda$. (c) $\frac{7}{13}$ $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum $\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}}$, then the maximum CC CC CC CC CC CC CC CC	m ABCD. Let $\overrightarrow{\mathbf{BE}} = 4 \overrightarrow{\mathbf{EC}}$ $\overrightarrow{\mathbf{AC}}, \text{ where } \lambda \text{ is equal to :}$ $(d) \frac{21}{5}$ $\text{num value of } [\overrightarrow{\mathbf{abc}}] \text{ is :}$ $(d) \frac{3}{2}$ $(d) $

(b) Inclined at an angle of $\frac{\pi}{6}$

(d) Parallel

376

(a) 1

(a) 1

the origin is :

PQ is equal to:

(a) $\frac{5\sqrt{41}}{59}$

(a) 10

(a) 1

(a) $\frac{10}{9}$

then $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ are:

(c) Perpendicular

(a) Inclined at an angle of $\frac{\pi}{2}$

coterminous edges is:

 $A(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$, $B(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ and $C(3\hat{\mathbf{i}} - \hat{\mathbf{k}})$ is:

(b) 2

(b) $\frac{\sqrt{41}}{59}$

(b) 15

(b) 2

(b) $\frac{10}{3\sqrt{3}}$

30. If $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$, where \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} \neq 0$, $\overrightarrow{b} \cdot \overrightarrow{c} \neq 0$,

(b) $\frac{1}{2}\sqrt{\frac{70}{3}}$

31.		ector of variable point in ca			
	the co-ordinate axes	s at four distinct points, the	n the	area of the quadri	lateral formed by joining
	(a) $4\sqrt{7}$	(b) 6√7	(c)	7√7	(d) 8√7
32.	If $ \overrightarrow{\mathbf{a}} = 2$, $ \overrightarrow{\mathbf{b}} = 5$ an	(b) $6\sqrt{7}$ d $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = 0$, then $\overrightarrow{\mathbf{a}} \times (\overrightarrow{\mathbf{a}} ($	× (a ×	$(\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{b}))))$ is	equal to:
	(a) $64\mathbf{a}$	(b) $64\vec{\mathbf{b}}$	(c)	$-64\overset{\rightarrow}{\mathbf{a}}$	(d) $-64\mathbf{\dot{b}}$
33.	If O (origin) is a poi	int inside the triangle PQR	such t	that $\overrightarrow{\mathbf{OP}} + k_1 \overset{\rightarrow}{\mathbf{OQ}} +$	$k_2 \overrightarrow{\mathbf{OR}} = 0$, where k_1 , k_2
	are constants such	that $\frac{\text{Area }(\Delta PQR)}{\text{Area }(\Delta OQR)} = 4$, then	n the	value of $k_1 + k_2$ is	:
	(a) 2	(b) 3	(c)	4	(d) 5
34.		agonals of adjacent faces of re θ, φand Ψ respectively th			
	(a) -2	(b) $-\sqrt{3}$	(c)	-1	(d) 0
35.	1	$ \begin{vmatrix} \mathbf{\dot{b}} & \mathbf{\dot{c}} \\ \mathbf{\dot{D}} & \mathbf{\dot{c}} & \mathbf{\dot{p}} \\ \mathbf{\dot{b}} \cdot \mathbf{\dot{p}} & \mathbf{\dot{c}} \cdot \mathbf{\dot{p}} \\ \mathbf{\dot{b}} \cdot \mathbf{\dot{q}} & \mathbf{\dot{c}} \cdot \mathbf{\dot{q}} \end{vmatrix} $ is equal to:			
	(a) $(\mathbf{p} \times \mathbf{q}) [\mathbf{a} \times \mathbf{b}]$	$\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$	(b)	$2(\overrightarrow{\mathbf{p}}\times\overrightarrow{\mathbf{q}})\overrightarrow{[\mathbf{a}\times\overrightarrow{\mathbf{b}}]}$	$\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \xrightarrow{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}$
	(c) $4(\mathbf{p} \times \mathbf{q}) \stackrel{\rightarrow}{[\mathbf{a} \times \mathbf{l}]}$	$b \times c \times a$	(d)	$(\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{q}}) \sqrt{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}$	$\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \xrightarrow{\overrightarrow{\mathbf{c}} \times \mathbf{a}}$
36.	If $\overrightarrow{\mathbf{r}} = a (\overrightarrow{\mathbf{m}} \times \overrightarrow{\mathbf{n}}) + b$	$c(\overrightarrow{\mathbf{n}} \times \overrightarrow{1}) + c(\overrightarrow{1} \times \overrightarrow{\mathbf{m}})$ and	→ → [1 m	$\overrightarrow{\mathbf{n}}$] = 4, find $\frac{a+1}{\overrightarrow{\mathbf{r}} \cdot (1-1)}$	$\begin{array}{c} -b+c \\ \rightarrow \rightarrow \end{array} \div \\ +\mathbf{m}+\mathbf{n})$
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c)	1	(d) 2
37.	The volume of tetral	hedron, for which three co-	termi	inus edges are $\overrightarrow{\mathbf{a}}$, 1	$\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$, is k units. Then,
	the volume of a para	allelepiped formed by $\mathbf{a} - \mathbf{b}$, b -	$+2\vec{\mathbf{c}}$ and $3\vec{\mathbf{a}} - \vec{\mathbf{c}}$ i	s:
	(a) 6k	(b) 7k	(c)	30k	(d) 42k
38.	The equation of a pl	lane passing through the li	ne of	intersection of the	e planes :
		and $3x + y - z = 5$ and pass			is:
	(a) $5x + 3z = 0$	•	53.554	5x - 3z = 0 $5x - 4y + 3z = 0$	
	(c) $5x + 4y + 3z =$	U	(u)	JX -4y + 3% = 0	

39. Find the locus of a point whose distance from x -axis is twice the distance from the point (1, -1, 2):

(a)
$$y^2 + 2x - 2y - 4z + 6 = 0$$

(b)
$$x^2 + 2x - 2y - 4z + 6 = 0$$

(c)
$$x^2 - 2x + 2y - 4z + 6 = 0$$

(d)
$$z^2 - 2x + 2y - 4z + 6 = 0$$

1						o, F		A	nsv	vers	3	JE.					C.		>
1.	(b)	2.	(b)	3.	(c)	4.	(b)	5.	(a)	6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(d)
11.	(d)	12.	(d)	13.	(c)	14.	(c)	15.	(d)	16.	(b)	17.	(ъ)	18.	(b)	19.	(b)	20.	(b)
21.	(b)	22.	(a)	23.	(ъ)	24.	(a)	25.	(d)	26.	(d)	27.		1910 DOM:		The state of		307	
31.	(d)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(c)		,

Exercise-2: One or More than One Answer is/are Correct

1. If equation of three lines are:

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
; $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ and $\frac{x-1}{1} = \frac{2-y}{1} = \frac{z-3}{0}$, then

which of the following statement(s) is/are correct?

- (a) Triangle formed by the line is equilateral
- (b) Triangle formed by the lines is isosceles
- (c) Equation of the plane containing the lines is x + y = z
- (d) Area of the triangle formed by the lines is $\frac{3\sqrt{3}}{3}$
- 2. If $\vec{a} = \hat{i} + 6\hat{j} + 3\hat{k}$; $\vec{b} = 3\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = (\alpha + 1)\hat{i} + (\beta 1)\hat{j} + \hat{k}$ are linearly dependent vectors and $|\overrightarrow{\mathbf{c}}| = \sqrt{6}$; then the possible value(s) of $(\alpha + \beta)$ can be:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

3. Consider the lines:

$$L_1: \frac{x-2}{1} = \frac{y-1}{7} = \frac{z+2}{-5}$$

$$L_2: x-4=y+3=-z$$

Then which of the following is/are correct?

- (a) Point of intersection of L_1 and L_2 is (1, -6, 3)
- (b) Equation of plane containing L_1 and L_2 is x + 2y + 3z + 2 = 0
- (c) Acute angle between L_1 and L_2 is $\cot^{-1}\left(\frac{13}{15}\right)$
- (d) Equation of plane containing L_1 and L_2 is x + 2y + 2z + 3 = 0
- **4.** Let $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ be three unit vectors such that $\hat{\mathbf{a}} = \hat{\mathbf{b}} + (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$, then the possible value(s) of $|\hat{\mathbf{a}} + \hat{\mathbf{b}} + \hat{\mathbf{c}}|^2$ can be:
 - (a) 1
- (b) 4
- (d) 9
- 5. The value(s) of μ for which the straight lines $\vec{r} = 3\hat{i} 2\hat{j} 4\hat{k} + \lambda_1(\hat{i} \hat{j} + \mu\hat{k})$ and $\vec{r} = 5\hat{i} - 2\hat{j} + \hat{k} + \lambda_2(\hat{i} + \mu\hat{j} + 2\hat{k})$ are coplanar is/are:

- (a) $\frac{5+\sqrt{33}}{4}$ (b) $\frac{-5+\sqrt{33}}{4}$ (c) $\frac{5-\sqrt{33}}{4}$ (d) $\frac{-5-\sqrt{33}}{4}$
- 6. If $\hat{\mathbf{i}} \times [(\overrightarrow{\mathbf{a}} \hat{\mathbf{j}}) \times \hat{\mathbf{i}}] + \hat{\mathbf{j}} \times [(\overrightarrow{\mathbf{a}} \hat{\mathbf{k}}) \times \hat{\mathbf{j}}] + \hat{\mathbf{k}} \times [(\overrightarrow{\mathbf{a}} \hat{\mathbf{i}}) \times \hat{\mathbf{k}}] = 0$ and $\overrightarrow{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then:

 - (a) x + y = 1 (b) $y + z = \frac{1}{2}$ (c) x + z = 1
- (d) None of these

- 7. The value of expression $[\overrightarrow{a} \times \overrightarrow{b} \xrightarrow{c} \times \overrightarrow{d} \xrightarrow{e} \times \overrightarrow{f}]$ is equal to:
 - (a) $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{d}][\overrightarrow{c}\overrightarrow{e}\overrightarrow{f}] [\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}][\overrightarrow{d}\overrightarrow{e}\overrightarrow{f}]$
- (b) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{e}][\overrightarrow{f} \overrightarrow{c} \overrightarrow{d}] [\overrightarrow{a} \overrightarrow{b} \overrightarrow{f}][\overrightarrow{e} \overrightarrow{c} \overrightarrow{d}]$
- (c) $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{d} & \overrightarrow{a} \end{bmatrix} \begin{bmatrix} \overrightarrow{b} & \overrightarrow{e} & \overrightarrow{f} \end{bmatrix} \begin{bmatrix} \overrightarrow{c} & \overrightarrow{d} & \overrightarrow{b} \end{bmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{e} & \overrightarrow{f} \end{bmatrix}$
- (d) [b c d][a e f] [b c f][a e d]
- **8.** If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are the position vectors of the points A, B, C and D respectively in three dimensional space and satisfy the relation $3\overrightarrow{\mathbf{a}} 2\overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}} 2\overrightarrow{\mathbf{d}} = 0$, then:
 - (a) A, B, C and D are coplanar
 - (b) The line joining the points B and D divides the line joining the point A and C in the ratio of 2:1
 - (c) The line joining the points A and C divides the line joining the points B and D in the ratio of 1:1
 - (d) The four vectors $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$, $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are linearly dependent.
- 9. If OABC is a tetrahedron with equal edges and $\hat{\mathbf{p}}$, $\hat{\mathbf{q}}$, $\hat{\mathbf{r}}$ are unit vectors along bisectors of

$$\overrightarrow{OA}$$
, \overrightarrow{OB} : \overrightarrow{OB} , \overrightarrow{OC} : \overrightarrow{OC} , \overrightarrow{OA} respectively and $\hat{\mathbf{a}} = \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$, $\hat{\mathbf{b}} = \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$, $\hat{\mathbf{c}} = \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|}$, then:

(a) $\frac{\left[\hat{\mathbf{a}}\,\hat{\mathbf{b}}\,\hat{\mathbf{c}}\right]}{\left[\hat{\mathbf{p}}\,\hat{\mathbf{q}}\,\hat{\mathbf{r}}\right]} = \frac{3\sqrt{3}}{2}$

- (b) $\frac{[\hat{\mathbf{a}} + \hat{\mathbf{b}} \ \hat{\mathbf{b}} + \hat{\mathbf{c}} \ \hat{\mathbf{c}} + \hat{\mathbf{a}}]}{[\hat{\mathbf{p}} + \hat{\mathbf{q}} \ \hat{\mathbf{q}} + \hat{\mathbf{r}} \ \hat{\mathbf{r}} + \hat{\mathbf{p}}]} = \frac{3\sqrt{3}}{4}$
- (c) $\frac{[\hat{\mathbf{a}} + \hat{\mathbf{b}} \ \hat{\mathbf{b}} + \hat{\mathbf{c}} \ \hat{\mathbf{c}} + \hat{\mathbf{a}}]}{[\hat{\mathbf{p}} \ \hat{\mathbf{q}} \ \hat{\mathbf{r}}]} = \frac{3\sqrt{3}}{2}$
- (d) $\frac{[\hat{\mathbf{a}}\,\hat{\mathbf{b}}\,\hat{\mathbf{c}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}}\,\hat{\mathbf{q}}+\hat{\mathbf{r}}\,\hat{\mathbf{r}}+\hat{\mathbf{p}}]} = \frac{3\sqrt{3}}{4}$
- **10.** Let $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ are unit vectors and $|\vec{\mathbf{b}}| = 4$. If the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ is $\cos^{-1}\left(\frac{1}{4}\right)$; and

 $\overrightarrow{\mathbf{b}} - 2\hat{\mathbf{c}} = \lambda \hat{\mathbf{a}}$, then the value of λ can be:

(a) 2

(b) -3

(c) 3

- (d) -4
- **11.** Consider the line L_1 : x = y = z and the line L_2 : 2x + y + z 1 = 0 = 3x + y + 2z 2, then:
 - (a) The shortest distance between the two lines is $\frac{1}{\sqrt{2}}$
 - (b) The shortest distance between the two lines is $\sqrt{2}$
 - (c) Plane containing the line L_2 and parallel to line L_1 is z x + 1 = 0
 - (d) Perpendicular distance of origin from plane containing line L_2 and parallel to line L_1 is $\frac{1}{\sqrt{2}}$

(a) π^2

(b) $\frac{5\pi^2}{4}$

(c) $\frac{35\pi^2}{4}$

(d) $\frac{37\pi^2}{4}$

13. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = h \vec{a} + k \vec{b} = r \vec{c} + s \vec{d}$, where \vec{a} , \vec{b} are non-collinear and \vec{c} , \vec{d} are also non-collinear then:

(a) $h = [\overrightarrow{\mathbf{b}} \overset{\rightarrow}{\mathbf{c}} \overset{\rightarrow}{\mathbf{d}}]$

(b) $k = [\overrightarrow{\mathbf{a}} \ \overrightarrow{\mathbf{c}} \ \overrightarrow{\mathbf{d}}]$

(c) $r = [\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{d}}]$

(d) $s = -\begin{bmatrix} \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} \end{bmatrix}$

14. Let a be a real number and $\overset{\rightarrow}{\alpha} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}, \overset{\rightarrow}{\beta} = 2\hat{\mathbf{i}} + a\hat{\mathbf{j}} + 10\hat{\mathbf{k}}, \overset{\rightarrow}{\gamma} = 12\hat{\mathbf{i}} + 20\hat{\mathbf{j}} + a\hat{\mathbf{k}}$ be three vectors, then $\overset{\rightarrow}{\alpha}$, $\overset{\rightarrow}{\beta}$ and $\overset{\rightarrow}{\gamma}$ are linearly independent for :

(a) a > 0

(b) a < 0

(c) a = 0

(d) No value of a

15. The volume of a right triangular prism $ABCA_1B_1C_1$ is equal to 3. If the position vectors of the vertices of the base ABC are A(1, 0, 1); B(2, 0, 0) and C(0, 1, 0), then the position vectors of the vertex A_1 can be:

(a) (2, 2, 2)

(b) (0, 2, 0)

(c) (0, -2, 2)

(d) (0, -2, 0)

16. If $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$, and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is:

- (a) Parallel to $(y-z)\hat{\mathbf{i}} + (z-x)\hat{\mathbf{j}} + (x-y)\hat{\mathbf{k}}$
- (b) Orthogonal to $\hat{i} + \hat{j} + \hat{k}$
- (c) Orthogonal to $(y+z)\hat{i}+(z+x)\hat{j}+(x+y)\hat{k}$,
- (d) Orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

17. If a line has a vector equation, $\vec{r} = 2\hat{i} + 6\hat{j} + \lambda (\hat{i} - 3\hat{j})$ then which of the following statements holds good?

- (a) the line is parallel to $2\hat{i} + 6\hat{j}$
- (b) the line passes through the point $3\hat{i} + 3\hat{j}$
- (c) the line passes through the point $\hat{i} + 9\hat{j}$
- (d) the line is parallel to xy plane

- **18.** Let M, N, P and Q be the mid points of the edges AB, CD, AC and BD respectively of the tetrahedron ABCD. Further, MN is perpendicular to both AB and CD and PQ is perpendicular to both AC and BD. Then which of the following is/are correct:
 - (a) AB = CD

(b) BC = DA

(c) AC = BD

- (d) AN = BN
- **19.** The solution vectors \vec{r} of the equation $\vec{r} \times \hat{i} = \hat{j} + \hat{k}$ and $\vec{r} \times \hat{j} = \hat{k} + \hat{i}$ represent two straight lines which are:
 - (a) Intersecting
- (b) Non coplanar
- (c) Coplanar
- (d) Non intersecting
- 20. Which of the following statement(s) is/are incorrect?
 - (a) The lines $\frac{x-4}{-3} = \frac{y+6}{-1} = \frac{z+6}{-1}$ and $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z-3}{2}$ are orthogonal
 - (b) The planes 3x 2y 4z = 3 and the plane x y z = 3 are orthogonal
 - (c) The function $f(x) = ln(e^{-2} + e^{x})$ is monotonic increasing $\forall x \in R$
 - (d) If g is the inverse of the function, $f(x) = \ln(e^{-2} + e^{x})$ then $g(x) = \ln(e^{x} e^{-2})$
- **21.** The lines with vector equations are; $\vec{\mathbf{r_1}} = -3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \lambda(-4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and $\vec{\mathbf{r_2}} = -2\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + \mu(-4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ are such that :
 - (a) they are coplanar
 - (b) they do not intersect
 - (c) they are skew
 - (d) the angle between them is $tan^{-1}(3/7)$

1		13 112			Ans	wer	s				
1.	(b, c, d)	2.	(a, c)	3.	(a, b, c)	4.	(a, d)	5.	(a, c)	6.	(a, c)
7.	(a, b, c)	8.	(a, c, d)	9.	(a, d)	10.	(c, d)	11.	(a, d)	12.	(b, d)
13.	(b, c, d)	14.	(a, b, c)	15.	(a, d)	16.	(a, b, c, d)	17.	(b, c, d)	18.	(a, b, c, d
19.	(b, d)	20.	(a, b)	21.	(b, c, d)					38	G 340 000 000

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

The vertices of $\triangle ABC$ are A(2, 0, 0), B(0, 1, 0), C(0, 0, 2). Its orthocentre is H and circumcentre is S. P is a point equidistant from A, B, C and the origin O.

	Tho	~ ~~~			- C	77		
1.	1116	z-coo	ruina	re o	ЭТ.	н	15	

- (a) 1
- (b) 1/2
- (c) 1/6
- (d) 1/3

- **2.** The *y*-coordinate of *S* is :
 - (a) 5/6
- (c) 1/6
- (d) 1/2

- 3. PA is equal to:
 - (a) 1
- (b) $\sqrt{2}$
- (c) $\sqrt{\frac{3}{2}}$

Paragraph for Question Nos. 4 to 6

Consider a plane $\pi: \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}} = d$ (where $\overrightarrow{\mathbf{n}}$ is not a unit vector). There are two points $A(\overrightarrow{\mathbf{a}})$ and $B(\mathbf{b})$ lying on the same side of the plane.

4. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ

(a)
$$\frac{\left| (\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{n}} \right|}{|\overrightarrow{\mathbf{n}}|}$$

- (a) $\frac{|\overrightarrow{(\mathbf{b}-\mathbf{a})} \cdot \overrightarrow{\mathbf{n}}|}{|\mathbf{n}|}$ (b) $|\overrightarrow{(\mathbf{b}-\mathbf{a})} \cdot \overrightarrow{\mathbf{n}}|$ (c) $\frac{|\overrightarrow{(\mathbf{b}-\mathbf{a})} \times \overrightarrow{\mathbf{n}}|}{|\mathbf{n}|}$ (d) $|\overrightarrow{(\mathbf{b}-\mathbf{a})} \times \overrightarrow{\mathbf{n}}|$

5. Reflection of $A(\mathbf{a})$ in the plane π has the position vector :

(a)
$$\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} (d - \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$$

(b)
$$\overrightarrow{\mathbf{a}} - \frac{1}{(\overrightarrow{\mathbf{n}})^2} (d - \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$$

(c)
$$\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} (d + \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$$

(d)
$$\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} \overrightarrow{\mathbf{n}}$$

6. If a plane π_1 is drawn from the point $A(\mathbf{a})$ and another plane π_2 is drawn from point $B(\mathbf{b})$ parallel to π , then the distance between the planes π_1 and π_2 is :

(a)
$$\frac{|\overrightarrow{(\mathbf{a}-\mathbf{b})}\cdot\overrightarrow{\mathbf{n}}|}{|\overrightarrow{\mathbf{n}}|}$$
 (b) $|\overrightarrow{(\mathbf{a}-\mathbf{b})}\cdot\overrightarrow{\mathbf{n}}|$ (c) $|\overrightarrow{(\mathbf{a}-\mathbf{b})}\times\overrightarrow{\mathbf{n}}|$ (d) $\frac{|\overrightarrow{(\mathbf{a}-\mathbf{b})}\times\overrightarrow{\mathbf{n}}|}{|\overrightarrow{\mathbf{n}}|}$

(b)
$$|(\overset{\rightarrow}{\mathbf{a}} - \overset{\rightarrow}{\mathbf{b}}) \cdot \overset{\rightarrow}{\mathbf{n}}|$$

(c)
$$|(\overrightarrow{a}-\overrightarrow{b})\times \overrightarrow{n}|$$

(d)
$$\frac{|(\vec{a}-\vec{b})\times\vec{n}|}{|\vec{n}|}$$

384

Paragraph for Question Nos. 7 to 9

Consider a plane $\Pi: \overrightarrow{\mathbf{r}} \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$, a line $L_1: \overrightarrow{\mathbf{r}} = (3\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - \hat{\mathbf{k}})$ and a point A(3, -4, 1). L_2 is a line passing through A intersecting L_1 and parallel to plane Π .

7. Equation of L_2 is:

(a)
$$\overrightarrow{\mathbf{r}} = (1 + \lambda)\hat{\mathbf{i}} + (2 - 3\lambda)\hat{\mathbf{j}} + (1 - \lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

(b)
$$\overrightarrow{\mathbf{r}} = (3 + \lambda)\hat{\mathbf{i}} - (4 - 2\lambda)\hat{\mathbf{j}} + (1 + 3\lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

(c)
$$\overrightarrow{\mathbf{r}} = (3+\lambda)\hat{\mathbf{i}} - (4+3\lambda)\hat{\mathbf{j}} + (1-\lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

- (d) None of the above
- **8.** Plane containing L_1 and L_2 is:
 - (a) parallel to yz-plane

(b) parallel to x-axis

(c) parallel to y-axis

- (d) passing through origin
- **9.** Line L_1 intersects plane Π at Q and xy-plane at R the volume of tetrahedron OAQR is : (where 'O' is origin)
 - (a) 0
- (b) $\frac{14}{3}$
- (c) $\frac{3}{7}$
- (d) $\frac{7}{3}$

Paragraph for Question Nos. 10 to 11

Consider three planes:

$$2x + py + 6z = 8$$
; $x + 2y + qz = 5$ and $x + y + 3z = 4$

- 10. Three planes intersect at a point if:
 - (a) $p = 2, q \neq 3$
- (b) $p \neq 2, q \neq 3$
- (c) $p \neq 2, q = 3$
- (d) p = 2, q = 3
- 11. Three planes do not have any common point of intersection if:
 - (a) $p = 2, q \neq 3$
- (b) $p \neq 2, q \neq 3$
- (c) $p \neq 2, q = 3$
- (d) p = 2, q = 3

Paragraph for Question Nos. 12 to 14

The points A, B and C with position vectors $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ respectively lie on a circle centered at origin O. Let G and E be the centroid of $\triangle ABC$ and $\triangle ACD$ respectively where D is mid point of AB.

- 12. If OE and CD are mutually perpendicular, then which of the following will be necessarily true?
 - (a) $|\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}|$

(b) $|\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}|$

(c) $|\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}}|$

(d) $|\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}|$

13.			d <i>CD</i> are		ly perpe	endicul	ar, the			nter of ΔA			e on :		
			e bisect		gh A		(b) median through C(d) angle bisector through B								
14.	If[AB A	C AB ×	AC]=	$\lambda [\overrightarrow{AE}]$	AG A	E × A	→ G], the	en th	ne value o	fλ is				
	(a)	-18		(l) 18			(c)	-3	24		(d) 3	24	hr Bathalla Kuma	DOMESTIC OF
					Paragr	aph fo	or Qu	estio	n N	os. 15 to	0 16				
				A (1, 1	1); B(1	, 2, 3);	583		ctor	s if its ang	gular p	oints	as		
	ar	nd cen	tre of te	etrahedr	$\operatorname{von}\left(\frac{3}{2},\right)$	$\frac{3}{4}$, 2.						r di son	573 F.	- All	
15.	Sho	rtest o	distance	betwee	n the sl	cew line	es AB	and Cl	D:						
	(a)	$\frac{1}{2}$		(l	$\frac{1}{3}$			(c)	$\frac{1}{4}$			(d) $\frac{1}{5}$			
		be the		the per	pendicu	lar fron	n poin	t D on	the j	plane face	ABC t	hen t	he posit	ion ve	ctor
	(a)	(-1,	1, 2)	(l) (1, -	1, 2)	cudecoscele	(c)	(1,	1, -2)	State of the state of	(d) (-	-1, -1, 2	2)	rioursis.
	In 30	a tria	angle A RB and	OB, R a	nd Q ar	e the p	oints	on th	e si	os. 17 to de <i>OB</i> an t the poin	d AB	respe here	ctively O is oriș	such t gin).	hat
17.	If th	e poir	nt <i>P</i> divi	des OQ	in the r	atio of	μ:1, tł						==		
	(a)	$\frac{2}{19}$		(b	$\frac{2}{17}$			(c)	$\frac{2}{15}$			(d) $\frac{1}{9}$	9		
					rilatera	l PQBR	and a	rea of	ΔΟΡ	^{2}A is $\frac{\alpha}{\beta}$ the	en (β –	α) is	(where	α and β	3 are
	0.500		umbers					(c)	7			(d) 0	i.i		
((a)	1		(D) 9			(0)	,			(u) 0			
															Ē
	1	V 1	a, a			A	nsw	ers	1					1	1
	(d)	2.		3. (d)	4. (d		3	6. 16.	(a) (b)	7. (c) 17. (d)	8. 18.	(b)	9. (d)	10.	(b)
11.	(c)	12.	(a) 13	(b)			(5)		,						

Exercise-4: Matching Type Problems

1.

/	Column-I	1	Column-II
(A)	Lines $\frac{x-1}{-2} = \frac{y+2}{3} = \frac{z}{-1}$ and	(P)	Intersecting
(B)	$\overrightarrow{\mathbf{r}} = (3\hat{i} - \hat{j} + \hat{k}) + t(\hat{i} + \hat{j} + \hat{k}) \text{ are}$ $\text{Lines } \frac{x+5}{1} = \frac{y-3}{7} = \frac{z+3}{3} \text{ and}$	(Q)	Perpendicular
(C)	x-y+2z-4=0=2x+y-3z+5 are Lines $(x=t-3, y=-2t+1, z=-3t-2)$ and	(R)	Parallel
(D)	$\mathbf{r} = (t+1)\hat{i} + (2t+3)\hat{j} + (-t-9)\hat{k} \text{ are}$ Lines $\mathbf{r} = (\hat{i} + 3\hat{j} - \hat{k}) + t (2\hat{i} - \hat{j} - \hat{k}) \text{ and}$	(S)	Skew
	$\overrightarrow{\mathbf{r}} = (-\hat{i} - 2\hat{j} + 5\hat{k}) + s\left(\hat{i} - 2\hat{j} + \frac{3}{4}\hat{k}\right) \text{ are}$	(T)	Coincident

2.

1	Column-I		Column-II
(A)	If $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three mutually perpendicular vectors where $ \overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{b}} = 2$, $ \overrightarrow{\mathbf{c}} = 1$, then $ \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = 2$, $ \overrightarrow{\mathbf{c}} = 1$, then	(P)	-12
(B)	If \vec{a} and \vec{b} are two unit vectors inclined at $\frac{\pi}{3}$, then $16[\vec{a} \ \vec{b} + (\vec{a} \times \vec{b}) \ \vec{b}]$ is	(Q)	0
(C)	If \vec{b} and \vec{c} are orthogonal unit vectors and $\vec{b} \times \vec{c} = \vec{a}$ then $[\vec{a} + \vec{b} + \vec{c} \ \vec{a} + \vec{b} \ \vec{b} + \vec{c}]$ is	(R)	16
(D)	If $[\mathbf{x} \ \mathbf{y} \ \mathbf{a}] = [\mathbf{x} \ \mathbf{y} \ \mathbf{b}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$, each vector being a non-zero vector, then $[\mathbf{x} \ \mathbf{y} \ \mathbf{c}]$ is	(S)	1
		(T)	4

3.

	Column-l		Column-II
(A)	The number of real roots of equation $2^x + 3^x + 4^x - 9^x = 0$ is λ , then $\lambda^2 + 7$ is divisible by	(P)	2
(B)	Let ABC be a triangle whose centroid is G , orthocenter is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that not three of O , A , B , C and D are collinear satisfying the relation $\overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{CH} + 3\overrightarrow{HG} = \lambda \overrightarrow{HD}$, then $\lambda + 4$ is divisible by		3
(C)	If A (adj A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then $5 A - 2$ is divisible by	(R)	4
(D)	\overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three unit vector such that $\overrightarrow{a} + \overrightarrow{b} = \sqrt{2} \overrightarrow{c}$, then $ 6\overrightarrow{a} - 8\overrightarrow{b} $ is divisible by	(S)	6
		(T)	10

Answers

^{1.} $A \rightarrow Q$, S; $B \rightarrow R$; $C \rightarrow P$, Q; $D \rightarrow P$

^{2.} $A \rightarrow R; B \rightarrow P; C \rightarrow S; D \rightarrow Q$

^{3.} $A \rightarrow P$, R; $B \rightarrow P$, Q, S; $C \rightarrow P$, Q, R, S; $D \rightarrow P$, T

388

Exercise-5: Subjective Type Problems

1. A straight line L intersects perpendicularly both the lines :

$$\frac{x+2}{2} = \frac{y+6}{3} = \frac{z-34}{-10}$$
 and $\frac{x+6}{4} = \frac{y-7}{-3} = \frac{z-7}{-2}$,

then the square of perpendicular distance of origin from L is

- 2. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ are non-coplanar unit vectors such that $[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}] = [\hat{\mathbf{b}} \times \hat{\mathbf{c}} \quad \hat{\mathbf{c}} \times \hat{\mathbf{a}} \quad \hat{\mathbf{a}} \times \hat{\mathbf{b}}]$, then find the projection of $\hat{\mathbf{b}} + \hat{\mathbf{c}}$ on $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$.
- **3.** Let OA, OB, OC be coterminous edges of a cuboid. If l, m, n be the shortest distances between the sides OA, OB, OC and their respective skew body diagonals to them, respectively, then find

$$\frac{\left(\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2}\right)}{\left(\frac{1}{OA^2} + \frac{1}{OB^2} + \frac{1}{OC^2}\right)}$$

- **4.** Let *OABC* be a tetrahedron whose edges are of unit length. If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and d $\overrightarrow{OC} = \alpha (\overrightarrow{a} + \overrightarrow{b}) + \beta (\overrightarrow{a} \times \overrightarrow{b})$, then $(\alpha \beta)^2 = \frac{p}{q}$ where p and q are relatively prime to each other. Find the value of $\left[\frac{q}{2p}\right]$ where [-] denotes greatest integer function.
- **5.** Let $\overrightarrow{\mathbf{v}}_0$ be a fixed vector and $\overrightarrow{\mathbf{v}}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then for $n \ge 0$ a sequence is defined $\overrightarrow{\mathbf{v}}_{n+1} = \overrightarrow{\mathbf{v}}_n + \left(\frac{1}{2}\right)^{n+1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{n+1} \overrightarrow{\mathbf{v}}_0$ then $\lim_{n \to \infty} \overrightarrow{\mathbf{v}}_n = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. Find $\frac{\alpha}{\beta}$.
- **6.** If A is the matrix $\begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$, then $A \frac{1}{3}A^2 + \frac{1}{9}A^3 + \cdots + \left(-\frac{1}{3}\right)^n A^{n+1} + \cdots = \frac{3}{13}\begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$. Find $\left| \frac{a}{b} \right|$.
- 7. A sequence of 2×2 matrices $\{M_n\}$ is defined as follows $M_n = \begin{bmatrix} \frac{1}{(2n+1)!} & \frac{1}{(2n+2)!} \\ \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} & \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \end{bmatrix}$ then $\lim_{n \to \infty} \det (M_n) = \lambda e^{-1}$. Find λ .
- 8. Let $|\overrightarrow{\mathbf{a}}| = 1$, $|\overrightarrow{\mathbf{b}}| = 1$ and $|\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}| = \sqrt{3}$. If $\overrightarrow{\mathbf{c}}$ be a vector such that $\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}} + 2\overrightarrow{\mathbf{b}} 3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ and $p = |(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}|$, then find $[p^2]$. (where [] represents greatest integer function).

- 9. Let $\overrightarrow{\mathbf{r}} = (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \sin x + (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cos y + 2(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$, where $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$, $\overrightarrow{\mathbf{c}}$ are non-zero and non-coplanar vectors. If $\overrightarrow{\mathbf{r}}$ is orthogonal to $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}$, then find the minimum value of $\frac{4}{\pi^2}(x^2 + y^2)$.
- **10.** The plane denoted by $\Pi_1: 4x + 7y + 4z + 81 = 0$ is rotated through a right angle about its line of intersection with the plane $\Pi_2: 5x + 3y + 10z = 25$. If the plane in its new position be denoted by Π , and the distance of this plane from the origin is $\sqrt{53} k$ where $k \in N$, then find k.
- **11.** ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. ABC lies in the xy-plane $|\overrightarrow{AB}| = 2$. Under these conditions, the number of possible tetrahedrons is:
- **12.** A, B, C, D are four points in the space and satisfy $|\overrightarrow{AB}| = 3$, $|\overrightarrow{BC}| = 7$, $|\overrightarrow{CD}| = 11$ and $|\overrightarrow{DA}| = 9$. Then find the value of $\overrightarrow{AC} \cdot \overrightarrow{BD}$.
- **13.** Let *OABC* be a regular tetrahedron of edge length unity. Its volume be V and $6V = \sqrt{p/q}$ where p and q are relatively prime. The find the value of (p+q):
- **14.** If \vec{a} and \vec{b} are non zero, non collinear vectors and $\vec{a_1} = \lambda \vec{a} + 3 \vec{b}$; $\vec{b_1} = 2 \vec{a} + \lambda \vec{b}$; $\vec{c_1} = \vec{a} + \vec{b}$. Find the sum of all possible real values of λ so that points A_1 , B_1 , C_1 whose position vectors are $\vec{a_1}$, $\vec{b_1}$, $\vec{c_1}$ respectively are collinear is equal to .
- **15.** Let P and Q are two points on curve $y = \log_{\frac{1}{2}} \left(x \frac{1}{2} \right) + \log_{\frac{1}{2}} \sqrt{4x^2 4x + 1}$ and P is also on $x^2 + y^2 = 10$. Q lies inside the given circle such that its abscissa is integer. Find the smallest possible value of $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ where 'O' being origin.
- 16. In above problem find the largest possible value of | PQ |.
- **17.** If a, b, c, l, m, $n \in R \{0\}$ such that al + bm + cn = 0, bl + cm + an = 0, cl + am + bn = 0. If a, b, c are distinct and $f(x) = ax^3 + bx^2 + cx + 2$. Find f(1):
- **18.** Let $\overrightarrow{\mu}$ and \overrightarrow{v} are unit vectors and $\overrightarrow{\omega}$ is vector such that $\overrightarrow{\mu} \times \overrightarrow{v} + \overrightarrow{\mu} = \overrightarrow{\omega}$ and $\overrightarrow{\omega} \times \overrightarrow{\mu} = \overrightarrow{v}$. The find the value of $[\overrightarrow{\mu} \quad \overrightarrow{v} \quad \overrightarrow{\omega}]$.

7/	1				W.	Ansv	vers	3 NA					
1.	5	2.	1	3.	2	4.	5	5.	2	6.	3	7.	1
8.	5	9,	5	10.	4	11.	8	12.	0	13.	0	14.	2
15.	4	16.	2	17.	2	18.	1						