

MA1201 Lineær algebra og geometri

Høst 2017

Norges teknisk–naturvitenskapelige universitet Institutt for matematiske fag

Øving 8

Husk at utfordringene er ikke obligatoriske.

Oppgaver man skal gjøre merkes med superskript s, bør gjøre b, og kan gjøre k.

- $\boxed{1}$ Gjør oppgave $7^s, 12^s$ og 18^b på **side 158-163.**
- $\fbox{2}$ Gjør oppgave $15^s, 19^s, 22^b$ og 26^b på **side 175-180.**
- 3 La A være matrisen

$$A = \begin{pmatrix} 3 & -1 & -1 & -1 \\ 1 & 2 & 3 & -2 \\ -2 & 3 & 4 & -1 \end{pmatrix}.$$

- \mathbf{a}^s) Finn den reduserte trappeformen til A.
- \mathbf{b}^{s}) Bestem rangen til A. Finn en basis for radrommet og en basis for kolonneromet til A.
- 4 La $\{b_1, b_2, \dots, b_t\}$ være en mengde med ikke-null vektorer i \mathbb{R}^n .
 - \mathbf{a}^s) La A være en $t \times n$ -matrise med $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_{t-1}$ og \mathbf{b}_t som rad nummer 1, $2, \ldots, t-1$ og t, henholdsvis. Begrunn hvorfor nullrommet til A er alle vektorene i \mathbb{R}^n som står ortogonalt på alle radene i A, dvs. $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_t\}$.
 - \mathbf{b}^s) La nå $\{\mathbb{b}_1, \mathbb{b}_2, \dots, \mathbb{b}_t\}$ være en ortonormal mengde av vektorer i \mathbb{R}^n for t < n. Vi kaller en mengde av vektorer **ortonormal** hvis alle vektorene i mengden er parvis ortogonale og hver av de har norm/lengde lik 1.
 - (i) Vis at $\{b_1, b_2, \dots, b_t\}$ er lineært uavhengig.
 - (ii) La A være som i (a). Bestem rangen og nulliteten til A.
 - (iii) Vis at $\{b_1, b_2, \dots, b_t\}$ kan utvides til en ortonormal basis for \mathbb{R}^n .
- [5] La A være en $m \times n$ -matrise og B en $n \times m$ -matrise slik at $AB = I_m$. Avgjør om de følgende påstandene er sanne. Hvis de er sanne, gi et bevis. Hvis ikke, gi et moteksempel.
 - \mathbf{a}^s) Hvis C er en $n \times m$ -matrise slik at $CA = I_n$ så er C = B.
 - \mathbf{b}^{s}) Hvis C er en $n \times m$ -matrise slik at $AC = I_{m}$ så er C = B.

6 Utfordring:

- a) La V være et vektorrom med dim V=n. La $W\subseteq V$ være et underrom med dim W=n. Vis at W=V.
- b) La A være en $m\times n\text{-matrise}.$ Vis at alle ${\tt x}$ i \mathbb{R}^n kan skrives entydig som

$$\textbf{x} = \textbf{x}_{\mathrm{null}} + \textbf{x}_{\mathrm{rad}},$$

$$\mathrm{der}\ \mathbbm{x}_{\mathrm{null}} \in N(A)\ \mathrm{og}\ \mathbbm{x}_{\mathrm{rad}} \in R(A).$$