

Table of Content What will We Learn Today?

- 1. Unsupervised Learning
- 2. K-Means
- 3. K-Medoids

Unsupervised Learning

Supervised vs Unsupervised

- Supervised = Learn to predict the outcome.
 - We know the target label, so we make the model that try to predict the label.
- Unsupervised = Finding pattern/ characteristic from data.
 - · We do not know our target label, so we make model that try to group the data.

Application of Unsupervised Learning

- Customer segmentation.
 - Understanding different customer groups around which to build marketing or other business strategies.
- Anomaly detection.
- Recommender systems, which involve grouping together users with similar viewing patterns in order to recommend similar content.

K-Means

K-Means

- K-means clustering algorithm tries to group similar items in the form of clusters.
- The number of groups is represented by K.

- 1. Choose k objects as initial cluster centers
- 2. Assign each object to the cluster with the nearest center
- 3. Update cluster centers as the mean point of the cluster
- 4. Go back to Step 2, stop when there is no change

- Pick K random points as cluster centers (means)
 - Shown here for K=2

- Iterative Step 1
- Assign data points to closest cluster center

- Iterative Step 2
 - Update cluster center
 - Change the cluster center to the average of the assigned points

Repeat until convergence

Evaluating clustering performance

1. Inertia

- Sum of squared distance from each point (xi) to its cluster (Ck).
- If the inertia is small, it means that the points are close each other.

$$\sum_{i=1}^n (x_i - C_k)^2$$

2. Silhoutte score

- a : mean distance to all other other points in its cluster.
- b : mean distance to all other points in the next nearest cluster.
- The score range between -1 to 1. It is better when the score is near to 1.

$$SC = \frac{b-a}{\max(a,b)}$$

How to choose the K?

1. Elbow method

Inertia / Distortion 2 4 6 8 10 K

2. Silhoutte score

High score is better

Discussion on the K-means

Advantages of K-means

- It is very simple to implement.
- It is scalable to a huge data set and also faster to large datasets.
- It adapts the new examples very frequently.
- Generalization of clusters for different shapes and sizes.

Disadvantages of K-means

- It is sensitive to the outliers.
- Choosing the k values manually is a tough job.
- As the number of dimensions increases its scalability decreases.

https://www.analyticsvidhya.com/blog/2020/10/a-simple-explanation-of-k-means-clustering/

A Problem of K-Means

- Sensitive to outliers
- Outlier: objects with extremely large (or small) values

K-Medoids

K-Medoids

- K-medoids: Find k representative objects, called medoids.
 - While K-Means tries to minimize the within cluster sum-of-squares,
 - K-Medoids tries to minimize the sum of distances between each point and the medoid of its cluster.

How K-Medoids (PAM) works?

- Partitioning Around Medoids (PAM)
- 1. Initialize: select k random points out of the n data points as the medoids.
- 2. Repeat:
 - Assign each point to the cluster with the closest medoid m.
 - Randomly select a non-representative object oi
 - Compute the total cost of swapping S, the medoid m with oi
 - If S < 0:
 - Swap m with oi to form new set of medoids.
- Stop when convergence criteria is meet.

- Pick K random medoids
- Shown here for K=2

Assign data points to closest cluster center

Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} |p - O_i| = (|O_1 - O_2| + |O_3 - O_2| + |O_4 - O_2|) + (|O_5 - O_8| + |O_6 - O_8| + |O_7 - O_8| + |O_9 - O_8| + |O_{10} - O_8|)$$

The absolute error criterion [for the set of Medoids (O_2,O_8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

- Choose a random object 0₇
- Swap 0₈ and 0₇
- Compute the absolute error criterion [for the set of Medoids $(0_2,0_7)$

$$E = (3+4+4)+(2+2+1+3+3) = 22$$

→Compute the cost function

Absolute error $[0_2, 0_7]$ - Absolute error [for $0_2, 0_8$]

S> 0 => It is a bad idea to replace 0_8 by 0_7

Discussion on the K-medoids

Advantages:

- It is simple to understand and easy to implement.
- K-Medoid Algorithm is fast and converges in a fixed number of steps.
- PAM is less sensitive to outliers than other partitioning algorithms.

Disadvantages:

- It may obtain different results for different runs on the same dataset because the first k
 medoids are chosen randomly.
- PAM algorithm for K-medoid clustering works well for dataset but cannot scale well for large data set due to high computational overhead.

Lets Practice!

Thank YOU

