Homework ada5

TMI M1 37-176839 Koichiro Tamura

homework1

以下の設定を元に、最小二乗分類に

$$\hat{\theta} = \min_{\theta} \frac{1}{2} \sum_{i=1} n(f_{\theta}(x_i) - y_i)^2$$

によって得られる識別境界の向きは、フィッシャー判別分析と同じ $N(m_1-m_2)$ であることを示せ。

proof:

損失関数Lは

$$L = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} + w_{0} - t_{n})$$

とすることができる。

損失関数 Lew_0 で偏微分すると,

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x_n} - w_0 - t_n) = 0$$

よって,

$$w_0 = -\mathbf{w}^{\mathrm{T}}\mathbf{m}$$
$$\mathbf{m} = \frac{1}{N}(N_1\mathbf{m_1} + N_2\mathbf{m_2})$$

損失関数Lをwで偏微分すると,

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - w_{0} - t_{n}) \mathbf{x}_{n} = 0$$

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - w_{0} - t_{n}) \mathbf{x}_{n} = \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{w}^{\mathsf{T}} \mathbf{m} - t_{n}) \mathbf{x}_{n}$$

$$= (\sum_{n \in C_{1}} \mathbf{x}_{m} \mathbf{x}_{m}^{\mathsf{T}} - N_{1} \mathbf{m}_{1} \mathbf{m}^{\mathsf{T}}) \mathbf{w} - N_{1} \mathbf{m}_{1} \frac{N}{N_{1}} + (\sum_{n \in C_{2}} \mathbf{x}_{m} \mathbf{x}_{m}^{\mathsf{T}} - N_{2} \mathbf{m}_{2} \mathbf{m}^{\mathsf{T}}) \mathbf{w} + N_{2} \mathbf{m}_{2} \frac{N}{N_{2}}$$

$$= (S_{w} + N_{1} \mathbf{m}_{1} \mathbf{m}_{1}^{\mathsf{T}} + N_{2} \mathbf{m}_{2} \mathbf{m}_{2}^{\mathsf{T}} - (N_{1} \mathbf{m}_{1} + N_{2} \mathbf{m}_{2}) \frac{1}{N} (N_{1} \mathbf{m}_{1} + N_{2} \mathbf{m}_{2})) \mathbf{w} - N(\mathbf{m}_{1} - \mathbf{m}_{2})$$

$$= (S_{w} + \frac{N_{2} N_{1}}{N} S_{B}) \mathbf{w} - N(\mathbf{m}_{1} - \mathbf{m}_{2}) = 0$$

 S_B **w**が常に($\mathbf{m_1} - \mathbf{m_2}$)と同じ方向になるので、

$$w \propto S_w^{-1}(\mathbf{m_1} - \mathbf{m_2})$$

[Q.E.D]

homework2

訓練標本:0~9まで各500文字ずつ計5000文字 テスト標本: 各200文字ずつ計2000文字 ガウスカーネルに対する最小二乗回帰により、パターン認識を行え

参考url: https://openbook4.me/sections/1454 (https://openbook4.me/sections/1454)

answer

In [1]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
import math
from sklearn.utils import oneHotEncoder
```

In [2]:

```
def draw_digit(data):
    size = 16
    plt.figure(figsize=(2.5, 3))

X, Y = np.meshgrid(range(size),range(size))
Z = data.reshape(size,size) # convert from vector to 28x28 matrix
Z = Z[::-1,:] # flip vertical
    plt.xlim(0,16)
    plt.ylim(0,16)
    plt.pcolor(X, Y, Z)
    plt.gray()
    plt.tick_params(labelbottom="off")
    plt.tick_params(labelleft="off")

plt.show()
```

In [3]:

```
class GaussKernelModel(object):
  """ガウスカーネルモデル"""
  def __init__(self, h=0.3, _lambda=0.1):
    # hvperparameter
    self.h = h
    self._lambda = _lambda
    self.weight = {}
    self.train_x = None
    self.K = None
  @staticmethod
  def sign(y, _class):
       if y == _class:
         return 1
       else:
         return-1
  def get_kernel(self, train_x):
    self.train_x = np.array(train_x)
    K = np.zeros(train_x.shape[0]*train_x.shape[0]).reshape([train_x.shape[0], train_x.shape[0]])
    for i in range(train_x.shape[0]):
       for i in range(train_x.shape[0]):
         K[i, j] = self.kernel(train_x[i], train_x[i])
    self.K = K
  def get_weight(self,train_y, _class):
    """cal weight of model"""
    train_y = list(map(lambda y: self.sign(y, _class), train_y))
    train_y = np.array(train_y)
    # trian_y = train_y.reshape([len(train_y), 1])
    # update weight
    self.weight[_class] = np.linalg.inv(self.K.T.dot(self.K) +
self. lambda*np.eve(self.K.shape[0])).dot(self.K.T).dot(train v)
  def kernel(self. x. c):
     """kernel function"""
    return math.exp(-1*np.power(x-c, 2).sum()) / (2*self.h**2)
  def predict(self, test_x):
    predict funcation
    :return :predictions
    predictions = []
    for i in range(test_x.shape[0]):
       _predicts = []
       for _class in range(10):
         predict = 0
         for j in range(len(self.train_x)):
            predict += self.weight[_class][i]*self.kernel(test_x[i], self.train_x[i])
         _predicts.append(predict)
         # print(_class, predict)
       # print(np.argmax(_predicts))
       predictions.append(np.argmax(_predicts))
    return np.array(predictions)
```

In [4]:

```
# train
train_list = []
for i in range(10):
  train_list.append(pd.read_csv("digit/digit_train%i.csv"% i, header = None))
train target = []
for i in range(10):
  for i in range (500):
       train_target.append(i)
train = pd.concat(train_list)
train_x, train_y = shuffle(train, train_target)
train_x = np.array(train_x.reset_index().drop("index", axis = 1))
# test
test_list = []
for i in range(10):
  test_list.append(pd.read_csv("digit/digit_test%i.csv"% i, header = None))
test = pd.concat(test_list)
test_target = []
for i in range(10):
  for j in range(200):
       test_target.append(i)
test_x, test_y = shuffle(test, test_target)
test_x = np.array(test_x.reset_index().drop("index", axis = 1))
```

In [5]:

```
draw_digit(test_x[0])
#test_data.ix[1,:].shape
```


In [7]:

```
# 学習

model = GaussKernelModel()

model.get_kernel(train_x[:2000])

for _class in range(10):

model.get_weight(train_y[:2000], _class)
```

In [9]:

```
prediction = model.predict(test_x[:400])
```

In [16]:

```
df_predict = pd.DataFrame(prediction)
pred_and_target = pd.concat([pd.DataFrame(df_predict), pd.DataFrame(test_y)], axis = 1)
pred_and_target.columns = ["pred", "target"]
pred_and_target = pd.DataFrame(pred_and_target.groupby(["pred",
    "target"]).size()).reset_index()
pred_and_target = pred_and_target.rename(columns={0: 'count'})
pred_and_target.pivot(index="pred", columns="target").fillna(0)
```

Out[16]:

	count									
target	0	1	2	3	4	5	6	7	8	9
pred										
0.0	40.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
1.0	0.0	33.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.0	0.0	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.0	0.0	0.0	0.0	34.0	0.0	2.0	0.0	0.0	1.0	0.0
4.0	0.0	0.0	0.0	0.0	35.0	0.0	0.0	1.0	0.0	1.0
5.0	0.0	0.0	0.0	0.0	0.0	43.0	0.0	0.0	1.0	0.0
6.0	0.0	0.0	0.0	0.0	1.0	1.0	35.0	0.0	0.0	0.0
7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.0	0.0	0.0
8.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	36.0	0.0
9.0	0.0	0.0	0.0	1.0	4.0	0.0	0.0	2.0	1.0	40.0

**計算時間の関係から訓練及びテストサンプルを減らした

In []: