

- PRESENTS -

AERO 101

PREPARED BY:

MICHAEL O'DONNELL

Overview

- Basics of Aeronautics
- •SAE Aero Design West
- Aero Society of Automotive Engineers
- Communication & Collaboration
- •The Design Process
- Manufacturing
- Team Building Exercise
- Holistic Engineering
- Looking Forward

Basics of Aeronautics

What is Aeronautics?

- •AEROSPACE ENGINEERING: The overall field of engineering concerned with the development of aircraft and spacecraft.
- •AERONAUTICS: The science or art involved with the study, design, and manufacturing of air flight capable machines, and the techniques of operating aircraft and rockets within the atmosphere
 - AERODYNAMICS: The motion of air and the way that it interacts with objects in motion
- •ASTRONAUTICS: The theory and practice of navigation beyond Earth's atmosphere

Anatomy of an Airplane

Flight Condition	Effect	
Lift > Weight	Aircraft Rises	
Lift < Weight	Aircraft Falls	
Drag > Thrust	Aircraft Slows	
Drag < Thrust	Aircraft Accelerates	

Flight Mechanisms

Control Surface and Linkage

SAE Aero Design West

2018 | LOS ANGELES, CA

- Apollo 11 Field
- •April 6-8th
- •75 teams from around the world
- Competition is sponsored by: Lockheed Martin
 - They actively send recruiters to these competitions
- •3 Different Classes:
 - Micro
 - Regular
 - Advanced

Regular Class

- •To design an aircraft that can generate revenue by carrying as much payload
- •Payload will consist of passengers, represented by tennis balls, and luggage, represented by weights
- Accurately predicting the lifting capacity and overall sizing of the aircraft
- Design Restrictions:
 - Must be propelled by a single electric motor with a non-metallic propeller
 - No fiber-reinforced plastics (carbon fiber)
 - Must use a 6-cell battery pack in conjunction with a mandatory power limiter
- •Scoring:
 - Technical Inspection/Drawings
 - Technical Presentation
 - Flight Score

Why?

•Awards:

- Elliott & Dorothy Green Overall Regular Class Award \$1000
- Regular Class Written Design Report
- Regular Class Oral Presentation

•Experience:

- Technical
- Critical Thinking
- Interpersonal
- Teamwork
- •Résumé Builder
- Expand your professional and personal networks

Aero Society of Automotive Engineers

UNIVERSITY OF PITTSBURGH

About Us

- Founded 2014
- Board of Directors:
 - President: Michael O'Donnell (mho9@pitt.edu)
 - Business Director: Rina Zhang (riz5@pitt.edu)
 - **Technical Director:** Zach Reger (zmr2@pitt.edu)
 - Secretary: Aaron Wannemacher (ajw95@pitt.edu)
 - Chief Electronics Engineer: Shamus O'Haire (jjo40@pitt.edu)
 - Chief Fuselage Engineer: Noah Perryman (<u>nep36@pitt.edu</u>)
 - Chief Tail Engineer: Mark Jordan (<u>maj108@pitt.edu</u>)
 - Chief Wing Engineer: Ryan Edelson (<u>rde13@pitt.edu</u>)
- Academic Advisor: Dr. William "Buddy" Clark

First build #23

Sub-Teams

- **Electronics:** the heart and brains of the aircraft
 - Schematics
 - Thrust Testing
 - Wind Tunnel Testing
- Fuselage: the structural backbone of the aircraft
 - Houses payloads & electrical components
 - Landing gear
 - Joins everything together
- Tail: providing direction for the aircraft
 - Stability
 - Steering (Yaw)
- •Wing: the heavy-lifter of the aircraft
 - Aerodynamics
 - Roll

Communication & Collaboration

Contact us at pittaero@gmail.com

Join our Slack at <u>pittaero.slack.com</u>

- Main source of communication within the Organization
- App available for iOS & Android
- Integrated meeting notifications
- MUST use your Pitt Email to register

- •Like our official Facebook Page at: www.facebook.com/PittAeroSAE/
- •Join our Team's Facebook Group at: www.facebook.com/groups/pittaeroteam

•Fill out the following form to obtain access to the team's Google Drive and to get swipe access to the Pitt Aero lab here: https://goo.gl/3ES3K5

The Design Process

THE PITT AERO WAY

Problem Definition

- Identify the problem
- •Example: The UAV needs a way to securely hold 10 tennis balls to count as passengers
- First Meeting
 - Identify all design problems
 - Designate team members for each problem

Functional Requirements

- Fundamental design constraints
- •Ask "What does the design need in order to function?"
- Passenger Bay example
 - Securely hold 10 tennis balls through flight
 - Hold passengers on a single geometric plane
 - Passengers must be 0.25" from each other
 - Passengers must be easily visible for counting
 - Passengers must be easily accessible for loading

Development Plan

- Chief Engineers control the design plans
 - Timelines
 - Team members for each project
 - Running design document
 - Design reasoning
 - Sketches
 - Models
 - Drawings
 - Calculations

Design Synthesis

- •Create multiple designs that abide by all functional requirements
 - Solid models
 - Detailed sketches
- Teams
 - Upperclassman MechE
 - Solidworks drafter
 - Design idealists

Ordering & Manufacturing

- Create Bill of Materials
 - Part numbers
 - Product description
 - Vendor
 - Price
 - Quantity
 - Website link
- Order parts
 - Send BOMs to

Technical Director, Chief Engineers

Begin Manufacturing

Bill of Materials							
Part	Size	Vendor	Material	Part Number	Qty.	Price\$	
Gear 1	6 mm bore x 12 teeth	Stock Drive Products	Acetal (no insert)	A 1M 2MYZ10012A	1	\$4.23	
Gear 2	8 mm bore x 48 teeth	Stock Drive Products	Acetal (no insert)	A 1M 2MYZ10048	1	\$6.49	
Gear 3	12 mm bore x 140 teeth	Stock Drive Products	Acetal (no insert)	A 1M 2MYZ10140	1	\$14.08	
Shaft 1	6 mm OD x 100 mm	Stock Drive Products	303 Stanless Steel	A 7X 1M060100	1	\$5.74	
Shaft 2	8 mm OD x 100 mm	Stock Drive Products	303 Stanless Steel	A 7X 1M080100	1	\$5.28	
Shaft 3	12 mm OD x 150 mm	Stock Drive Products	303 Stanless Steel	A 7X 1M120150	1	\$12.98	
Bearing 1	6 mm ID	McMaster-Carr	Nylon with Plastic Housing	6687K32	1	\$3.67	
Bearing 2	8 mm ID	McMaster-Carr	Nylon with Plastic Housing	6687K33	1	\$4.42	
Bearing 3	12 mm ID	McMaster-Carr	Nylon with Plastic Housing	6687K35	1	\$6.44	
3М Ероху	Scotch Weld 37 ml	Grainger	2-Part Metal to Plastic included	2RUC8	1	\$31.45	
Wood	Scrap		Pine	N/A	N/A	\$0.00	
Disco Ball	200 mm OD		Plastic/mirrored	N/A	1	\$0.00	
					Total	\$94.78	

Modeling Tips

- Make a hand sketch first
- •Don't make 1 huge running part
- Constrain everything
- Specify materials
 - Center of Mass calculations
- Follow naming scheme
 - Description_TEAM_initials
 - Passenger Bay_FUSE_RAB.assy
 - Tennis balls_FUSE_NEP.stp
 - Seats_FUSE_MLO.stp
 - Passenger bay base FUSE JTB.stp

Design Analysis & Optimization

- Choose a single design
 - Functionality
 - Machinability
- Optimize the design
 - Make smaller
 - Cheaper
 - Aesthetics
- Calculations
 - Hand calcs
 - ANSYS simulation

Finalization & Documentation

- •Finalize Model
 - Tolerances
 - Materials
 - Bolts/screws
 - Review calculations
- Make 2D Drawings
 - Dimensions
 - Prep for presentation
- Complete design document

Resources

- President, Technical Director, Chief Engineers, Team members
- •Aircraft Design: A Systems Engineering Approach
 - by Mohammad H. Sadraey
- Prior Technical Report
- •Pitt Aero Team Handbook

THE PITT AERO WAY

Conventional Machining

WHERE A SHARP, HARD TOOL IS USED TO CUT AWAY MATERIAL

Machining Operations: Drill Press & Lathe

Drilling: create round holes and drill bit had two or more cutting surfaces. Tool moves parallel to its axis.

Turning: cutting tool has one edge and reduces diameter of a spinning work piece. Tool moves perpendicular to the work piece axis and feed is parallel to axis

Machining Operations: Milling

Milling: rotating tools have multiple cutting edges is moved along surface of the work piece to give a flat surface. <u>If tool spins on axis parallel to work surface it is called peripheral milling</u>. <u>If the tool rotates on axis perpendicular to the work surface it is called face milling</u>.

Additive Manufacturing

WHERE MATERIAL IS ADDED LAYER BY LAYER

Additive Manufacturing

- MakerBot Replicators
 - 9.9 L x 7.8 W x 5.9 H
- •ABS vs. PLA Filaments
 - ABS- Stronger, works only with MakerBot Replicator 2X
 - PLA- Better for sharp edges, works with all MakerBots
- Tolerances/Restrictions
 - 0.02" tolerance for tight fits
 - 0.04" tolerance for loose fits
 - 45° angle maximum for any sort of slopes

Automated Manufacturing

WHERE THE MACHINE DOES EVERYTHING FOR YOU

Automated Manufacturing

- CNC Machining (Computer Numerical Controlled)
 - Uses multiple traditional machining techniques
 - Combines CAD & CAM software to machine parts
- Laser Cutting- Should be utilized as often as possible
 - Up to 3/8" thick balsa
 - Up to 1/2" MDF
 - Up to 1/8" Sheet Steel
 - No Aluminum (reflectivity)
 - No plastics (melting)

Designing for Manufacturability

NO MATTER HOW GREAT YOUR DESIGN IS, IF YOU CAN'T MAKE IT YOU'VE ACCOMPLISHED NOTHING GREATER THAN DRAWING A PRETTY PICTURE

Jigging and Ease of Assembly

- •Jigging: supports the aircraft components so that we can piece it together
- •To increase the ease of assembly:
 - 1. Reduce the amount of handwork involved with laying everything up
 - 2. Utilize as much automated manufacturing as possible because machines are better than humans
 - 3. 3D print anything that would be impossible to build out of balsa or metal
 - 4. Increase the amount of mechanical joints
 - 5. Decrease the need for epoxy joining

Manufacturing Capabilities

Pitt Aero Lab

- Jig-Saw
- Drill Set
- Cutting Tools
- Shaving Tools
- Wire cutters
- Soldering Kit
- Digital Multi-Meter
- Clamps
- Sandpaper
- Adhesives
- Calipers
- Miter-Saw
- And More

- •What we do in the lab
 - Plane Assembly
 - Testing
 - Storage
 - Prep for Machining

Swanson Center for Product Innovation

- Machine shop in the Ground floor of Benedum Hall (past the elevators)
- Main contact: Andy Holmes (jholmes@pitt.edu)
- Must take a 66 multiple-choice safety test in order to utilize any of the machines in there (PDF in Drive)
- Capabilities:
 - CNC
 - Lathe
 - Mill
 - Laser cutter
 - various 3D printers
 - Vertical band saw
 - Horizontal band saw
 - Drill press
 - Sheet bender
 - Hand tools
- Andy & his staff will help you learn on any of these machines if given enough notice
- DO NOT go to the SCPI to ask for help without letting your Chief Engineer know

Team Building Exercise

REVIEW OF AERODYNAMICS & THE DESIGN PROCESS

Holistic Engineering Design Engineering does not happen in a forward motion •All four of these areas must be balanced throughout Manufacturing **Analysis** Testing

Looking Forward

- Join Sub-team Channels on Slack
 - Make sure you notification settings are switched to "All" instead of the default "only when mentioned"
- •Be on lookout for When2Meet posts in Slack
 - Both for sub-team meetings and Chemical Hygiene Certificate for Pitt Aero Lab swipe access
- Read SAE Aero Design 2017 Rules (Regular Class only)
 http://students.sae.org/cds/aerodesign/rules/
- Explore resources available to you in our Google Drive (Download Solidworks)
- Special Projects for this year:
 - Wind Tunnel
 - Current Limiter & PID card
- •Don't be afraid to ask questions!

