Examen d'Algèbre Linéaire du mardi 26 mars 2019

4 exercices indépendants (Durée : 2 heures)

Exercice I-

Soit E un R-espace vectoriel, p un projecteur tel que $p \neq 0$ et $p \neq id$. Soit $\alpha \in \mathbb{R}$ et $g = p + \alpha id$.

- **1.** Exprimer $g \circ g$ en fonction de g et id.
- **2.** Pour quelles valeurs de α a-t-on g bijective? Exprimer alors g^{-1} .

Exercice II-

On note u l'endomorphisme de matrice $A=\begin{pmatrix}2&0&0\\0&1&1\\0&0&1\end{pmatrix}$ dans la base canonique de E, \mathbb{C} -espace vectoriel.

- 1. Calculer le rang de $A I_3$ et en déduire que A n'est pas diagonalisable.
- 2. Déterminer $\ker(u-2\mathrm{id})$ et $\ker(u-\mathrm{id})^2$ et montrer qu'ils sont supplémentaires.
- **3.** On note v l'endomorphisme canoniquement associé à $X \in \mathcal{M}_3(\mathbb{C})$ telle que $X^n = A$, avec $n \geq 2$. Montrer que u et v commutent et en déduire que $\ker(u-2\mathrm{id})$ et $\ker(u-\mathrm{id})^2$ sont stables par u.

[On rappelle que, lorsque deux endomorphismes commutent, les espaces propres de l'un sont stables par l'autre.]

- **4.** Montrer que X est de la forme $\begin{pmatrix} \alpha & 0 \\ 0 & Y \end{pmatrix}$ avec $Y \in \mathcal{M}_2(\mathbb{C})$.
- **5.** Soit $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Montrer que YJ = JY et en déduire que $Y \in \text{vect}(I_2, J)$.
- **6.** Résoudre $X^n = A$.

Exercice III-

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{S}_n(\mathbb{R})$ telle que $\operatorname{rg}(A - I_n) = n - 1$. On suppose que les $a_{i,j}$ sont > 0 et que, pour $i \in \{1, \dots, n\}, \ a_{i,1} + \dots + a_{i,n} = 1$.

- **1.** Montrer que $\ker(A I_n) = \operatorname{vect}(u)$, où $u = {}^t(1, \dots, 1)$.
- **2.** Montrer que, pour tout $X \in \mathbb{R}^n$, $||AX||_{\infty} \le ||X||_{\infty}$ où $||t(y_1, \dots, y_n)||_{\infty} = \max_{1 \le k \le n} |y_k|$.
- **3.** Soit $\lambda \in \operatorname{Sp}(A)$. Montrer que $|\lambda| \leq 1$.
- **4.** On pose $B=A+I_n$. On note $(b_{i,j})$ les coefficients de B. a) Montrer que, pour tout $i\in\{1,\cdots,n\},\ b_{i,i}>\sum\limits_{1\leq j\leq n, j\neq i}b_{i,j}.$

- b) En déduire que B est inversible.
- **5.** Montrer que la suite $(A^p)_{p\geq 1}$ converge vers une matrice R semblable à $\mathrm{Diag}(1,0,\cdots,0)$.

6. Montrer que
$$R = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$
.

Exercice IV-

On considère la matrice
$$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix}$$
 et le vecteur $b = \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$.

- 1. Déterminer, si elles sont possibles, les factorisation LU et de Cholesky de A.
- **2.** Déterminer \overline{x} , l'unique solution de Ax = b.
- **3.** a) Écrire la matrice de Jacobi J et la matrice de Gauss-Seidel G associées à Ax = b.
- b) Déterminer les valeurs propres de J et de G et montrer que les méthodes de Jacobi et de Gauss-Seidel sont convergentes. Quelle est la méthode qui converge le plus vite ?
- c) Donner les 3 premières itérations des méthodes de Jacobi et de Gauss-Seidel en partant de $x^{(0)} = {}^t(0,0,0)$.