

Lietuvos mokinių informatikos olimpiada

Šalies etapas (1) • 2022 m. sausio 28 d. • X-XII kl.

turnyras-vyr

Turnyras

n žaidėjų (kur n yra dvejeto laipsnis) žais atkrentamajame turnyre. Kiekvienas žaidėjas gavo po skirtingą numerį $1 \le i \le n$.

Atkrentamojo turnyro tvarkaraštis sudaromas tokiu būdu. Po vieną traukiami žaidėjų numeriai, i-asis ištrauktas numeris žymimas a_i . Pirmame etape a_1 -asis turės žaisti su a_2 -uoju, a_3 -iasis su a_4 -uoju ir t.t., kol liks $\frac{n}{2}$ laimėtojų, kurie antrame etape paeiliui ketina žaisti 1-asis laimėtojas su 2-uoju, 3-iasis su 4-uoju ir t.t., kol liks $\frac{n}{4}$ laimėtojų ir t.t., kol liks vienas turnyro nugalėtojas.

Paaiškėjo, kad kai kuriems žaidėjams netinka kai kurie turnyro laikai, ir jie pasiūlė jiems tinkamas žaidimo sekas, t.y. seką $A = (a_1, ..., a_n)$ pakeisti seka B_j . Bet likę žaidėjai nori, kad turnyro seka liktų *identiška* pradinei, t. y. kad kiekviena žaidėjų pora turėtų galimybę (jei abu laimės iki tol) sužaisti tame pačiame etape.

Užduotis. Parašykite programą, kuri pagal duotą seką A nustatytų, ar turnyrai A ir B_j yra identiški.

Pradiniai duomenys. Pirmoje eilutėje pateikti du skaičiai n ir k – žaidėjų ir siūlomų sekų skaičiai.

Antroje pateikta seka A, kurios *i*-asis skaičius yra a_i $(1 \le i \le n)$.

Tolimesnėse k eilučių aprašytos sekos B_j ($1 \le j \le k$): j + 2-ojoje eilutėje pateikta seka B_j , kurios i-uoju skaičiumi $b_{j,i}$ norima pakeisti skaičių a_i ($1 \le i \le n$).

Rezultatai. Išveskite k eilučių, kuriose būtų po vieną žodį – TAIP arba NE, nusakantį, ar turnyro seka B_j yra identiška sekai A.

Pavyzdžiai.

Pradiniai duomenys	Rezultatai	Paaiškinimas
4 2	TAIP	Seka (2, 1, 4, 3) yra identiška sekai (3, 4, 2,
2 1 4 3	NE	1), nes pirmam etape 1-as žaidėjas žais prieš
3 4 2 1		2-ą, 3-as prieš 4-tą, o antram etape susitiks
2 4 1 3		tų etapų laimėtojai.
		(2, 1, 4, 3) nėra identiška $(2, 4, 1, 3)$, nes žai-
		dėjai pirmame etape turi skirtingus varžovus.

Pradiniai duomenys	Rezultatai	Paaiškinimas
8 1	NE	Nors pirmame etape visos žaidėjų poros su-
1 2 3 4 5 6 7 8		tampa, antrame etape galimos varžovų poros
1 2 5 6 3 4 7 8		yra skirtingos (pvz. 1-as žaidėjas turės gali-
		mybę žaisti su 3-iu antrame etape tik pirmoje
		sekoje).

Lietuvos mokinių informatikos olimpiada

Šalies etapas (1) ● 2022 m. sausio 28 d. ● X–XII kl.

turnyras-vyr

Ribojimai. $4 \le n \le 2^{16}$, n yra dvejeto laipsnis, $1 \le k \le 20$, $1 \le a_i, b_{j,i} \le n$, $a_u \ne a_v$ ir $b_{j,u} \ne b_{j,v}$ kai $u \ne v$.

Dalinės užduotys.

- Už testus, kuriuose n=4 galima surinkti 12 taškų.
- Už testus, kuriuose $n \leq 512$ galima surinkti 47 taškus.
- Už testus, kuriuose n>512 ir kiekviena seka yra arba identiškos pirmai, arba skiriasi jau pirmame etape, galima surinkti 24 taškus.