Hash Functions

Hash Functions

- A hash function H provides a way to deterministically map a long input string to a shorter output string sometimes called a digest.
- The primary requirement is that it should be infeasible to find a collision in H: namely, two inputs that produce the same digest.
- A collision is a pair of distinct elements x and x⁰ for which H(x) = H(x⁰);

Collision Resistance

 A function H is collision resistant if it is infeasible for any probabilistic polynomial-time algorithm to find a collision in H

DEFINITION 6.1 A hash function (with output length $\ell(n)$) is a pair of probabilistic polynomial-time algorithms (Gen, H) satisfying the following:

- Gen is a probabilistic algorithm that takes as input a security parameter 1ⁿ and outputs a key s. We assume that n is implicit in s.
- H is a deterministic algorithm that takes as input a key s and a string
 x ∈ {0,1}* and outputs a string H^s(x) ∈ {0,1}^{ℓ(n)} (where n is the value
 of the security parameter implicit in s).

If H^s is defined only for inputs x of length $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length $\ell'(n)$. In this case, we also call H a compression function.

Collision-finding experiment

The collision-finding experiment Hash-coll_{A,H}(n):

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s, and outputs x, x'. (If \mathcal{H} is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0, 1\}^{\ell'(n)}$.)
- The output of the experiment is defined to be 1 if and only if x ≠ x' and H^s(x) = H^s(x'). In such a case we say that A has found a collision.

The definition of collision resistance states that no efficient adversary can find a collision in the above experiment except with negligible probability.

Collision resistant

DEFINITION 6.2 A hash function $\mathcal{H} = (\text{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that

$$\Pr\left[\mathsf{Hash\text{-}coll}_{\mathcal{A},\mathcal{H}}(n)=1\right] \leq \mathsf{negl}(n).$$

For simplicity, we sometimes refer to H or H^s as a "collision-resistant hash

Unkeyed hash functions

- Cryptographic hash functions used in practice are generally unkeyed and have a fixed output length
- The hash function is just a fixed, deterministic function $H: \{0,1\} * \rightarrow \{0,1\}$ `.

Requirements for Hash Functions

- can be applied to any size message M
- produces a fixed-length output h
- is easy to compute h=H(M) for any message M
- given h is infeasible to find x s.t. H(x) =h
 - one-way property
- given x is infeasible to find y s.t. H(y) = H(x)
 - weak collision resistance
- is infeasible to find any x, y s.t. H(y) = H(x)
 - strong collision resistance

Notions of security

- Second-preimage resistance: Informally, a hash function is said to be second-preimage resistant if given s and a uniform x it is infeasible for a PPT adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$.
- Preimage resistance: Informally, a hash function is preimage resistant if given s and $y = H^s(x)$ for a uniform x, it is infeasible for a PPT adversary to find a value x' (whether equal to x or not) with $H^s(x') = y$.

"Birthday" attacks

- Compute $H(x_1)$, ..., $H(x_k)$
 - What is the probability of a collision?

- Related to the so-called birthday paradox
 - How many people are needed to have a 50% chance that some two people share a birthday?

Message Authentication Using Hash Functions

- Hash-and-MAC
 - Collision-resistant hash functions can be used for message authentication codes
- We can authenticate an arbitrary-length message m by using the MAC to authenticate the hash of m

Hash-and-MAC

CONSTRUCTION 6.5

Let $\Pi = (\mathsf{Mac}, \mathsf{Vrfy})$ be a MAC for messages of length $\ell(n)$, and let $\mathcal{H} = (\mathsf{Gen}_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Vrfy}')$ for arbitrary-length messages as follows:

- Gen': on input 1ⁿ, choose uniform k ∈ {0,1}ⁿ and run Gen_H(1ⁿ) to obtain s; output the key (k, s).
- Mac': on input a key (k, s) and a message m ∈ {0,1}*, output t ← Mac_k(H^s(m)).
- Vrfy': on input a key (k, s), a message m ∈ {0, 1}*, and a tag t, output 1 if and only if Vrfy_k(H^s(m), t) = 1.

The hash-and-MAC paradigm.

Hash Functions & Message Authentication

Hash Functions & Digital Signatures

Summary

Discussed about

- Hash function
- Requirements of hash function
- MAC and Message encryption