Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A}\}$
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
6	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
8	$a_1^T := \chi_1 y^T + a_1^T$
7	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \chi_1 y^T + \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$ A_2
2	$\left\{ \qquad \left(\frac{A_T}{A_B}\right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B}\right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	\{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right.$
1b	\

Step	Algorithm: $A := xy^T \widehat{A}$	
1a	$\{A = \widehat{A}\}$	
4	where	
2		>
3	while do	
2,3		>
5a	where	
6		>
8		
7		>
5b		
2		>
	endwhile	
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right.$	>
1b	$\left\{ A = xy^T + \widehat{A} \right\}$	

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \wedge \right.$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right.$
	endwhile
2,3	$ \left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg () \right\} $
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A} $
4	where
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \wedge m(x_B) < m(x) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A}\}$
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	
	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{A_T}{A_B}\right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B}\right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A}\}$
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
6	
8	
7	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$ A_2
2	$\left\{ \qquad \left(\frac{A_T}{A_B}\right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B}\right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A} $
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
6	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
8	
7	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A} $
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
6	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
8	
7	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \chi_1 y^T + \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right. $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T \widehat{A}$
1a	$\{A = \widehat{A}\}$
4	$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
2	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
6	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
8	$a_1^T := \chi_1 y^T + a_1^T$
7	$ \left\{ \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix} = \begin{pmatrix} \widehat{A}_0 \\ \chi_1 y^T + \widehat{a}_1^T \\ x_2 y^T + \widehat{A}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{A_T}{A_B} \right) = \left(\frac{\widehat{A}_T}{x_B y^T + \widehat{A}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\left\{ A = xy^T + \widehat{A} \right\}$

Algorithm: $A := xy^T \widehat{A}$
$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$ where x_B has 0 rows, A_B has 0 rows
while $m(x_B) < m(x)$ do
$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where χ_1 has 1 row, a_1 has 1 row
$a_1^T := \chi_1 y^T + a_1^T$
$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$ A_2
endwhile

Algorithm: $A := xy^T \widehat{A}$

$$x \to \left(\frac{x_T}{x_B}\right), A \to \left(\frac{A_T}{A_B}\right)$$

where x_B has 0 rows, A_B has 0 rows

while $m(x_B) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_2}\right)$$

where χ_1 has 1 row, a_1 has 1 row

$$a_1^T := \chi_1 y^T + a_1^T$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$$

endwhile