Problem Set 2

Group Number:	
Members:	

Problem 1

If R_n is the Riemann sum for $f(x) = 4 + \frac{x^2}{8}$, $0 \le x \le 4$ with n subintervals and taking sample points to be the right end points, then $R_n =$

Problem 2

$$\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n} \cos\left(1+\frac{i}{n}\right)^2 =$$

- (A) $\int_1^2 \cos(1+x^2) dx$.
- (B) $\int_{1}^{2} \cos(x^2) dx$.
- (C) $\int_{1}^{2} \cos^{2}(x) dx$.
- (D) $\int_0^1 \cos(x^2) dx.$
- (E) $\int_0^1 \cos(1+x^2) dx$.

Problem 3

In the figure shown, regions A and B are bounded by the graph of a function f and the x-axis. If the area of region A is $\frac{1}{6}$ and the area of the region B is $\frac{3}{8}$, then

$$\int_0^4 f(x) dx + \int_0^4 |f(x)| dx =$$

