









#### Papa, Familia y Clima

Proyecto Regional

#### MICROBIOLOGIA DEL SUELO

FIJADORES DE NITRÓGENO Y **BIOSOLUBILIZADORES DE FOSFATOS** 

Serie de Seminarios virtuales "BPA-CI en sistemas agroalimentarios andinos basados en papa"



### CONTENIDO

#### **TIPOS DE BIOFERTILIZADORES:**

#### 1) FIJADORES DE NITRÓGENO

- Mecanismos de biosolubilización de fosfatos
- Parámetros bioquímicos de selección y evaluación fijadores de nitrógeno
- Beneficios de los FBN

#### 2) BIOSOLUBILIZADORES DE FOSFATOS

- Mecanismos de biosolubilización de fosfatos
- Parámetros bioquímicos de selección y evaluación biosolubilizador de fosfatos
- Beneficios de los biosolubilizaodres de fosfatos



### **SALUD DEL SUELO**



SOLUBILIZACIÓN DE FOSFATOS FIJACIÓN DE NITRÓGENO PRODUCCIÓN DE SIDERÓFOROS





# TIPOS DE BIOFERTILIZADORES



# FIJADORES DE NITRÓGENO

#### FIJACIÓN SIMBIOTICA

#### FIJACIÓN NO SIMBIOTICA

Bradyrhizobium japonicum



Leguminosas – Cultivo de soya

Azospirillum brasilense



Paenibacillus spp.



Variedad de cultivos



## MECANISMOS DE FIJACIÓN DE NITRÓGENO







Nitrogenase



# PARAMETROS BIOQUÍMICOS DE SELECCIÓN Y EVALUACIÓN - FIJADORES DE NITRÓGENO



### PRUEBA CUALITATIVA - FIJACIÓN DE NITRÓGENO

Medio NFb **Azospirillum brasilense** 



Medio NFb

Paenibacillus spp.





### PRUEBA CUALITATIVA DE DETECCIÓN DE LA FITOHORMONA (AIA) – REACTIVO DE SALKOWSKI

Azospirillum brasilense



22 mg/L

Paenibacillus spp.



44 mg/L



#### BENEFICIOS DE LOS FBN

- Aporta Nitrógeno atmosférico de manera directa al cultivo
- Alta capacidad de incrementar la concentración de Fitohormonas AIA
- Incrementa la disponibilidad de P (P solubilizacion)
- Permite reducir las tasas de aplicación N
- Favorece la asimilación de nutrientes en suelo

#### Azospirillum brasilense







### **BIOSOLUBILIZADORES DE FOSFATOS**



# MICROORGANISMOS USADOS COMO BIOSOLUBILIZADORES DE FOSFATOS

- > Fertilizantes biológicos en base a microorganismos solubilizadores de P
  - Penicillium bilaii
  - Bacillus pumilus

Penicillium bilaii



Bacillus pumilus





# MECANISMOS DE BIOSOLUBILIZACIÓN DE FOSFATOS



#### BIOSOLUBILIZADORES DE FOSFATOS



# PARAMETROS BIOQUÍMICOS DE SELECCIÓN Y EVALUACIÓN – BIOSOLUBILIZADORES DE FOSFATOS



# ACTIVIDAD BIOSOLUBILIZADORA DEL FOSFATO (ROCA FOSFÓRICA) – in vitro

#### PRIMER DIA DE EVALUACIÓN – 24 HORAS



A ANVERSO

**ROCA FOSFORICA** 

HALO DE FORMACION HIDROLITI
SOLUBILIZADORA P

A: BIOSOLUBILIZADOR DE P (HONGO+ BACTERIA) (BIOTOP SRL)

**B: BIOSOLUBILIZADOR COMERCIAL (BACTERIA)** 

# PRUEBA CUALITATIVA DE DETECCIÓN DE LA FITOHORMONA (AIA) – REACTIVO DE SALKOWSKI

#### Bacillus pumilus



22 mg/L

#### Penicillium bilaii



11 mg/L



#### BENEFICIOS DE LOS SOLUBILIZADORES DE P

- Incrementa la disponibilidad de fosfatos
- Producción de Ácidos Orgánicos
- Degrada enlaces minerales
- Alta capacidad de incrementar la concentración de Fitohormonas AIA
- Disminuye las necesidades de fertilización fosfórica
- Compite contra patógenos











Entidades solicitantes

#### Papa, Familia y Clima

Proyecto Regional





