PR: ABOULFADIL YASSINE

Les fonctions logarithmiques

2 BAC PC/SVT

I- La fonction logarithme népérien :

1- Définition:

La primitive de la fonction $x \to \frac{1}{x}$ sur $]0, +\infty[$ qui s'annule en 1, est appelée la fonction logarithme népérien, cette fonction est notée ln.

2- Propriétés:

Pour tous réels a et b strictement positifs, on a :

$\ln(ab) = \ln(a) + \ln(b)$	$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$	$\ln\left(\frac{1}{a}\right) = -\ln(a)$
ln(e) = 1	ln(1) = 0	$ln(e^n) = n ; (n \in R)$
$\ln(a^n) = n \ln(a) ; (n \in R)$	$\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln(a)$	

Equations et inéquations :

Pour tous réels x et y strictement positifs, on a :

- $ln(x) = ln(y) \Leftrightarrow x = y$
- $ln(x) > ln(y) \Leftrightarrow x > y$
- $ln(x) < 0 \Leftrightarrow 0 < x < 1$
- $ln(x) > 0 \Leftrightarrow x > 1$

3-Le Domaine de définition :

La fonction f est définie comme suit :	Son domaine de définition est :
$f(x) = \ln(x)$	$D_f =]0, +\infty[$
$f(x) = \ln(u(x))$	$D_f = \{ x \in R x \in D_u Et \ u(x) > 0 \}$

4- Les limites:

Limites principales

$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\lim_{x \to 0^+} \ln x = -\infty$$

$$\lim_{x \to 0^+} \frac{\ln x}{x^n} = 0$$

$$\lim_{x \to 0^+} x^n \ln x = 0$$

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

$$\lim_{x \to 0} \frac{\ln(x + 1)}{x} = 1$$

Déductions

$$\lim_{x \to x_0} u(x) = +\infty \Rightarrow \lim_{x \to x_0} \ln[u(x)] = +\infty$$

$$\lim_{x \to x_0} u(x) = 0^+ \Rightarrow \lim_{x \to x_0} \ln[u(x)] = -\infty$$

$$\lim_{x \to x_0} u(x) = +\infty \Rightarrow \lim_{x \to x_0} \frac{\ln[u(x)]}{[u(x)]^n} = 0$$

$$\lim_{x \to x_0} u(x) = 0^+ \Rightarrow \lim_{x \to x_0} [u(x)]^n \ln[u(x)] = 0$$

$$\lim_{x \to x_0} u(x) = 1 \Rightarrow \lim_{x \to x_0} \frac{\ln[u(x)]}{u(x) - 1} = 1$$

$$\lim_{x \to x_0} u(x) = 0 \Rightarrow \lim_{x \to x_0} \frac{\ln[u(x)]}{u(x)} = 1$$

Ces limites sont toujours valables lorsqu'on les traite soit a droite ou a gauche de x $_0$ ou bien au voisinage de $+\infty$ ou $-\infty$

5- La continuité:

La fonction $x \to lnx$ est continue sur l'intervalle]0; $+\infty$ [.

Si u est strictement positive et continue sur un intervalle I alors la fonction $x \to \ln(u(x))$ est continue sur l'intervalle I.

6- La dérivabilité:

La fonction $x \to lnx$ est dérivable sur l'intervalle $]0, +\infty[$ et on a :

$$\forall x \in]0; +\infty[; \ln'(x) = \frac{1}{x}$$

Si u(x) est strictement positive et dérivable sur un intervalle I alors la fonction $x \to \ln(u(x))$ est dérivable sur l'intervalle I et on a :

$$\forall x \in I ; \ln'(u(x)) = \frac{u'(x)}{u(x)}$$

7- La représentation graphique / signe de ln :

La représentation graphique :

signe de ln:

	X	0	1	+∞
	ln(x)	П	- \ \ \ \	+
I	- La foncti	or	n logarithme de base a avec a ∈ \mathbb{R}_+^* – { 1}:	

1- Définition:

La fonction logarithme de base a est la fonction notée : \log_a

tel que :
$$\forall x \in]0; +\infty[$$
; $\log_a x = \frac{\ln x}{\ln a}$

2- Propriétés :

Pour tous réels x et y strictement positifs, on a :

$\log_a(1) = 0$	$\log_a(a) = 1$	$\log_a(xy) = \log_a(x) + \log_a(y)$
$\log_a(x^n) = n \times \log_a(x)$	$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$	$\log_a\left(\frac{1}{x}\right) = -\log_a(x)$

<i>a</i> ≻1	$0 \prec a \prec 1$
$\log_a x \succ \log_a y \Leftrightarrow x \succ y$	$\log_a x \succ \log_a y \Leftrightarrow x \prec y$
$\lim_{x \to +\infty} \log_a x = +\infty$	$\lim_{x \to +\infty} \log_a x = -\infty$
$\lim_{x\to 0^+} \log_a x = -\infty$	$\lim_{x \to 0^+} \log_a x = +\infty$

$$\forall x \in]0; +\infty[; (\log_a x)' = \frac{1}{x \ln a}$$