- - جد عبارة كلا من : A , B و α.
- : t بدلالة الزمن q(t) بدلالة الزمن q(t) بدلالة الزمن q(t)

- أ- استنتج بيانيا قيمة τ ثابت الزمن ، ثم احسب سعة المكثفة .
 - ب-استنتج قيمة E القوة المحركة الكهربائية للمولد .
- ج- احسب الطاقة الكهربائية المخزنة في t = 200 ms : المكثفة في اللحظة

التمرين العاشر: باك 2013 – تقني رياضي:

مكثفة سعتها C شحنت كليا تحت تو تر ثابت : E = 12V . لمعرفة . $R=1k\Omega$: سعتها C نحقق الدارة الكهربائية حيث

- أ- بتطبيق قانون جمع التوترات جد المعادلة التفاضلية للتوتر الكهربائي $u_{c}(t)$ بين طرفي المكثفة .
- $u_{\mathcal{C}}(t)=Ae^{lpha t}$ ب-حل المعادلة السابقة يعطى من الشكل حيث A و a ثابتان يطلب تعيين عبارتهما .
- . كتب العبارة اللحظية $E_{C}(t)$ للطاقة المخزنة في المكثفة .
- الطاقة المخزنة في المكثفة بدلالة $E_c(t)$ الطاقة المخزنة المكثفة بدلالة
- أ- استنتج قيمة $E_{C}(0)$ الطاقة العظمى المخزنة في المكثفة .
- ب-بين أن المماس للمنحنى في اللحظة t=0ms يقطع محور $t=rac{ au}{2}$ الأزمنة في اللحظة

. C ثابت الزمن ، ثن استنتج سعة المكثفة au

 $t_{1/2}=rac{ au}{2}\ln 2$ هو اثبت ان زمن تناقص الطاقة للنصف هو -4

التمرين الحادي عشر:

بغرض شحن مكثفة فارغة سعتها $\, C \,$ نصلها على التسلسل مع العناصر الكهربائية التالية :

. $q(t) = Ae^{\alpha t} + B$: حل المعادلة السابقة يعطى بالشكل -3

التمرين الثامن: باك 2012 –تقنى رياضي .

: بطريقتين مختلفتين على تلامذته تعين سعة مكثفة C بطريقتين مختلفتين

- الطريقة الاولى: شحن المكثفة بتيار مستمر ثابت.
 - الطريقة الثانية: تفريغ المكثفة في ناقل اومى.

لهذا الغرض نحقق التركيب المقابل:

- البادلة في البداية فارغة . نضع في اللحظة t=0 البادلة في الوضع t=0
 - الذي يعطى تيارا ثابتاG الذي يعطى تيارا ثابتاGنمكنا من ExAO تمكنا من i=0.31mAمشاهدة المنحني البياني لتطور التوتر u_{AB} بين طرفي المكثفة بدلالة الزمن t .
 - أ- أعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار . t والزمن C
 - ب جد قيمة سعة المكثفة .
 - 2- عندما يصبح التوتر بين طرفي المكثفة مساويا الى القيمة نضع البادلة في الوضع $U_0=1.6V$

R=1K يتم تفريغ المكثفة في ناقل اومي مقاومته t=0s نعتبرها من جديد

- أ- جد المعادلة التفاضلية التي يحققها u_{AB} . علما أن . $u_{AB}=U_0e^{-rac{ au}{ au}}$ حلها
- ب- أثناء التفريغ سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من

 $R=1k\Omega$ تتكون دارة كهربائية على التسلسل من: مولد للتوتر Ω قوته المحركة الكهربائية K و مكثفة سعتها C وقاطعة

t=0 نغلق القاطعة K=0

- 1- ارسم الدارة الكهربائية مع توجيها بالنسبة لشدة التيار والتوتر الكهربائيين .
 - 2- جد المعادلة التفاضلية للدارة بدلالة q(t) خلال شحن المكثفة.

أ- أكتب المعادلة التفاضلية التي يحققها التوتر u_c بين طرفي المكثفة.

ب-يكتب حل المعادلة التفاضلية على الشكل

حيث τ ثابت الزمن لثنائي $u_c = E(1 - e^{-\frac{t}{\tau}})$

:القطب *RC*، بين أن

$$\ln(E-u_c) = -\frac{t}{\tau} + \ln(E)$$

ج- يعطى المنحني الممثل في الشكل تغيرات

. t بدلالة الزمن $ln(E ext{-}u_c)$ بدلالة الزمن

- باستغلال المنحنى أوجد قيمة كل من E و au

 $E_{e\,(max)}$ و نرمز بـ $E_{e\,(max)}$ للطاقة المخزنة في المكثفة عند اللحظة au=t و نرمز بـ $E_{e\,(max)}$ للطاقة العظمى التي تخزنها المكثفة.

.
$$\frac{E_e}{E_{e(max)}}$$

التمرين الثالث عشر:

الشكل المقابل يمثل دارة كهربائية مكونة من العناصر التالية: مولد ذو توتر ثابت E ، مكثفة سعتها C .

 ${
m K}$ ناقلان أوميان مقاومتهما ${
m R}_1 = 1 K \Omega$ ، القاطعة

1- عند اللحظة t=0 نغلق القاطعة K

- q(t) بدلالة الشحنة للتوترات $u_{R_2} \cdot u_{R_1}$ بدلالة الشحنة –
- 2- بتطبيق قانون جمع التوترات بين أنه المعادلة التفاضلية لتطور شحنة

$$\frac{dq(t)}{dt} + a.q(t) + b = 0$$
 المكثفة من الشكل

- $E,C,\ R_1,R_2$ اعط عبارة كل من a و b بدلالة -
 - 3- يعطى حل المعادلة التفاضلية السابقة من الشكل:

$$q_{(t)} = \alpha \left(1 - e^{-\beta t} \right)$$

- lpha, eta استنتج عبارة كل من -
- الشكل يمثل تغيرات $\frac{dq(t)}{dt}$ بالاعتماد عليه أوجد-

كل من:

أ- ثابت الزمن

ب- سعة المكثفة C

- $\uparrow \frac{dq}{dt}(10^{-4}A)$

- مولد ذو توتر كهربائي ثابت E=5V ومقاومته الداخلية مهملة .
 - R=120 ناقل أومى مقاومته R=120
 - ارسم مخطط الدارة التي تسمح بشحن وتفريغ المكثفة .
- لمتابعة التطور الكهربائي $u_c(t)$ بين طرفي المكثفة بدلالة الزمن ، نوصل مقياس فولط متر رقمي بين طرفي المكثفة وفي اللحظة t=0 نضع البادلة في وضع يسمح بشحنها، بالتصوير المتعاقب تم تصوير شاشة جهاز الفولط متر الرقمي لمدة معينة وبمشاهدة شريط الفيديو ببطء سجلنا النتائج التالية :

											_	
t(ms)												
$u_{C}(V)$	0	1,0	2,0	3,3	3,8	4,1	4,5	4,8	4,9	5,0	5,0	5,0

 $u_{\mathcal{C}}(t) = f(t)$ أرسم البيان

.C واستنتج قيمة ثابت الزمن au لثنائي القطب RC واستنتج قيمة السعة للمكثفة

- $\frac{dq(t)}{dt} + \frac{1}{RC} \cdot q(t) = \frac{E}{R}$: أ- بين أن المعادلة التفاضلية المعبرة عن q(t) تعطى بالعبارة: ب- يعطى حل المعادلة التفاضلية بالعبارة $q(t)=Ae^{lpha t}+B$ ، حيث : $a(t)=Ae^{lpha t}+B$ علما أن في q(0) = 0 تكون t = 0 اللحظة
 - المكثفة مشحونة نضع البادلة في وضع يسمح بتفريغها في لحظة نعتبرها كمبدأ للأزمنة .
 - اكتب المعادلة التفاضلية للتوتر بين طرفي الناقل الاومي .
 - . اثبت أن $u_R = -Ee^{rac{-\epsilon}{ au}}$ حل لهذه المعادلة -
 - · ارسم كيفيا منحنى تطور التوتر بين طرفي الناقل الاومي في حالة التفريغ .
 - ما هو الزمن الذي من أجله تصبح الطاقة المخزنة في المكثفة $E = \frac{E_0}{2}$

التمرين الثاني عشر:

يستعمل المكثف في تصنيع كثير من الأجهزة الإلكترونية من بينها مستقبل الموجات الكهرومغناطيسية.

ننجز الدارة الكهربائية الممثلة في الشكل و المكونة من :

- E مولد كهربائي (G) قوته المحركة الكهربائية المحركة
 - . $\mathrm{R}{=}100~\Omega$ ناقل أومي (D)مقاومته
 - (C): مكثفة سعتها C
 - ا قاطعة للتيار .

المكثفة غير مشحونة، نغلق القاطعة عند لحظة نختارها مبدأ للأزمنة t=0