주제/단락	내용
사용 목적 분 류	전용 컴퓨터는 특수한 목적으로 고정 프로그램과 일정한 데이터만 처리하도록 구성되며, 범용 컴퓨터는 다양한 업무에 활용 가능한 일반 목적용 컴퓨터이다.
규모·성능·가 격 분류	임베디드 컴퓨터, 개인용 컴퓨터, 서버급 컴퓨터(워크스테이션, 슈퍼미니 컴퓨터), 메인프레임 컴퓨터, 슈퍼 컴퓨터(파이프라인, 병렬, 클러스터)로 분류된다.
임베디드 컴 퓨터 정의	기계나 전자 장치 내부에 포함되어 동작을 제어하는 컴퓨터로, 가전제품이나 주변기기에 사용되며 초소형부터 32bit급까지 다양하다.
마이크로컨 트롤러	CPU, 기억장치, I/O 포트를 하나의 칩에 집적한 소형 시스템으로, 전용 목적에 맞게 최소 비용으로 필요한 성능을 제공한다.
임베디드 설 계 특징	응용 맞춤형 하드웨어와 소프트웨어가 결합되며, 초소형 제품은 전력소모와 크기 최소화를 목표로 한다.
loT와 임베디 드	임베디드는 IoT와 지능형 로봇의 핵심 요소로 사용되며, 다양성과 보급이 확대될 전망이다.
마이크로프 로세서	CPU만 포함된 범용 연산 장치로 고성능, 다목적, OS 실행 가능하다.
마이크로컨 트롤러 정의	CPU, 메모리, 입출력 장치를 하나로 통합한 저전력, 실시간 제어용 칩이다.
SoC	CPU, GPU, 메모리, 통신 모듈 등 다양한 기능을 하나의 칩에 집적한 고성능·저전력 시스템 이다.
마이크로칩 비교	마이크로프로세서는 PC·서버에, 마이크로컨트롤러는 IoT·가전에, SoC는 스마트폰·AI 기기에 활용된다.
개인용 컴퓨 터	개인 소유의 저가 소형 범용 컴퓨터로 데스크탑, 노트북, 태블릿 등이 있다.
PC 발전	CPU 성능 향상으로 메인프레임 성능을 능가하며, 8~64비트로 발전, 멀티코어 구조 도입, GPU를 계산보조장치로 활용, 기억장치 용량과 다양성이 증가했다.
워크스테이 션	과학자·공학자 등 전문직을 위한 고성능 컴퓨터로 64비트 CPU와 고속 그래픽 장치 포함, 주 로 CAD, 시뮬레이션에 사용되며 UNIX·LINUX OS를 사용한다.
슈퍼미니컴 퓨터	다중프로세서 구조로 CPU 20~30개를 사용하며, UNIX·LINUX를 지원한다.
메인프레임 컴퓨터	초대형 중앙집중식 컴퓨터로 초당 수십억 명령어 처리, 대규모 데이터베이스 관리에 활용 되며 정부, 은행 등에서 사용된다.
서버급 발전	대형 컴퓨터 중심에서 벗어나 네트워크 연결된 중형 서버들이 분산 처리하며, 다양한 시스템 사양 선택으로 가성비가 향상된다.
슈퍼컴퓨터 정의	처리 속도와 기억 용량이 월등히 뛰어난 시스템으로, CRAY-1의 100MFLOPS에서 최신 PFLOPS급으로 발전하였다.

주제/단락	내용
슈퍼컴퓨터 응용	VLSI 설계, 항공우주, 천문학, 구조공학, 유전 탐사, 핵공학, 인공지능, 영상처리 등 대규모 과학 계산에 사용된다.
슈퍼컴퓨터 분류	파이프라인 슈퍼컴퓨터, 대규모 병렬컴퓨터, 클러스터 컴퓨터로 나뉜다.
파이프라인	CPU 내 다수의 고도로 파이프라이닝된 연산장치로 고속 벡터 계산 수행, 초고속 CPU 여러
슈퍼컴퓨터	개로 구성된다.
대규모 병렬 컴퓨터	수만~수십만 프로세서가 병렬 처리하며, 통신 시간 최소화가 성능 핵심이다.
클러스터 컴	고속 네트워크로 연결된 PC·워크스테이션 집합체로 단일 시스템처럼 동작하며, 고성능·고
퓨터 정의	신뢰 환경을 저렴하게 제공한다.
클러스터 컴	장애 발생 시 다른 노드가 대체하며, 웹서버·슈퍼컴퓨터 설계에 널리 쓰이며, 2018년 기준
퓨터 특징	슈퍼컴퓨터의 80% 이상이 채택했다.
클러스터 구 성도	클러스터는 노드와 미들웨어로 자원을 단일 시스템 이미지로 통합하여 운영된다.
폰 노이만 구	프로그램과 데이터를 메모리에 저장하고 순차적으로 인출·해독·실행·저장하는 방식으로 현
조	대 컴퓨터 설계의 기반이 된다.
프로그램 처	프로그램 카운터로 명령어 인출, 제어장치가 해독, 메모리에서 데이터 인출 후 연산·저장 과
리 과정	정을 거친다.
폰 노이만 병 목 현상	CPU와 메모리 간 데이터 전송의 순차 처리로 시스템 버스 병목이 발생하여 속도가 저하된다.
비 폰 노이만	병목을 줄이기 위해 병렬 컴퓨팅, 양자·광자·신경망 컴퓨터 등 새로운 아키텍처가 개발되고
구조	있다.
폰 노이만과	폰 노이만은 명령어·데이터가 같은 메모리를 공유해 병목이 발생하고, 하버드는 분리 메모
하버드 비교	리로 동시에 접근 가능해 성능은 높지만 비용과 복잡성이 크다.
현대 CPU 구	효율성을 위해 명령어 캐시와 데이터 캐시를 분리하는 등 폰 노이만과 하버드 구조를 혼합
조	해 사용한다.