Parcial 3

This version was compiled on March 31, 2020

1) Calculo del volumen usando la ecuación de Smalian

$$V_t = \left[\sum_{i=1}^n (d_i^2 + d_{i+1}^2) * (L_{i+1} - L_i)\right] * \frac{\pi}{8}$$

2) Seleccón de muestras aleatorias para construcción de modelos

3) Modelos de volumen. El mejor modelo escogido es el 4, pues su *RSE* es el menor de todos lo modelos. los lineales no cumplen supuestos, mirar grafica de residuales para mirar tendencia log.

4) Calculo de biomasa

5) Modelos de biomasa áerea

se presentan los modelos

Table 1. Comparación de modelos

Modelo	Fc	valor.p	Shapiro	R.squared	AIC	RSE
V= 7.61e-01+(-1.30e-02*D+ (8.69e-04*D^2)+(-1.09e-01*H)+ (4.19e-03*H^2)	395.9044	***	0.0000	0.9577	-53.01262	0.1623729
V= 2.44e-02+3.72e-05*(D^2*H)	2336.9484	***	0.0000	0.9697	-84.11330	0.1345016
V= 6.40e-04*D^6.15*H^3.28	2444.2628	***	0.8866	0.9855	-74.91925	14.3482000
V= 5.88e-05*(D^2*H)^2.61	4304.9706	***	0.3458	0.9833	-66.51527	0.1320000

Table 2. Validación de modelos volumen

Media3	sd3	Media4	sd4
-1520.335	185.554	-3.03686	14.20831

Table 3. Modelos de Biomasa

Modelo	Fc	valor.p	Shapiro	R.squared	AIC	RSE
BA= -207.20+18.34*D+(-0.3342*H)	39.6762	***	0.0201	0.7829	286.14189	67.20959
BA= 3.75+0.025*(D^2*H)	308.0868	***	0.0032	0.9305	255.65875	37.18581
BA= 0.12*D^15.31*H^0.62	55.6392	***	0.0073	0.8349	28.44571	52.93970
BA= 0.16*D^11.33*H^0.93*WD^2.16	51.5368	***	0.0000	0.8513	29.23174	41.89810
BA= 0.23*(D^2*WD)^3.23	161.7459	***	0.0000	0.8480	25.92556	40.08310
BA= 0.10*(D^2*H)^2.32	111.2088	***	0.0000	0.7932	35.46763	42.46070
BA= 0.18*(D^2*H*WD)^2.31	91.9029	***	0.0000	0.7998	31.26584	38.53990

6) Estimacón de volumen y biomasa en cinco localidades.

7) Comparación entre localidades

$$BA = b_0 + b_1 * D + b_2 * H BA = b_0 + b_1 (D^2 * H) BA = b_0 * D^{b_1} * H^{b_2} BA = b_0 * D^{b_1} * H^{b_2} * W D^{b_3} BA = b_0 * (D^2 * W D)^{b_1} BA = b_0 * (D^2 * H * W D)^{b_1}$$

Table 4. Validación de modelo Biomasa

Media_g	sd_g	Media_e	sd_e
-11.85311	26.66373	-22.19342	54.67461

Table 5. Volumen del inventario

Media	Desviacion
77.58832	103.0507

Table 6. Contenido de Carbono del iventario

media contenido de C	Sd contenido de C
2.175178	2.451563

Fig. 1. Comparación de volumen por Localidad

Fig. 2. Comparación de Biomasa por Localidad