Auto-correct and Dynamic Programming

Auto-correct

is an application that changes misspelled words into the correct ones.

- Example: Happy birthday deah friend! ==> dear
- How it works:
 - 1.Identify a misspelled word
 - 2. Find strings n edit distance away
 - 3. Filter candidates
 - 4. Calculate word probabilities

Minimum edit distance

- Evaluate the similarity between 2 strings.
- Minimum number of edits needed to transform 1 string into another.
- the algorithm try to minimize the edit cost.

Applications:

- Spelling correction
- document similarity
- machine translation
- DNA sequencing

Part of Speech Tagging and Hidden Markov Models

Part of Speech Tagging

The category of words or the lexical terms in the language.

Tags: Noun, Verb, adjective, preposition, adverb,...

Part of speech tags:

lexical term	tag	example
noun	NN	something, nothing
verb	VB	learn, study
determiner	DT	the, a
w-adverb	WRB	why, where

Why not learn something?

WRB RB VB NN .

Applications:

- Named entities
- Co-reference resolution
- Speech recognition

Markov Chains

A stochastic model describing a sequence of possible events.

The Viterbi Algorithm

A graph algorithm that finds the sequence of hidden states or parts of speech tags that have the highest probability for a sequence.

Given your transition and emission probabilities, we first populates and then use the auxiliary

matrices C and D

matrix C holds the intermediate optimal

probabilities.

matrix D holds the <u>indices</u> of the visited states (tags).

$$c_{i,j} = \max_k c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$d_{i,j} = \underset{k}{\operatorname{argmax}} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$s = \operatorname*{argmax}_{i} c_{i,K} = 1$$

$$C[1,5] = 0.01$$

$$D[1,5] = 1$$

Word Embeddings

Basic Word Representations

- 1. Integers
 - + Simple
 - Ordering: no semantic sense

2. One-hot vectors

- + Simple
- + No implied ordering
- Takes a lot of time and space
- No embedded meaning

3. Word embedding vectors

- + Low dimension
 - e.g. semantic distance: forest ≈ tree
- + Embed meaning
 - e.g. analogies: Paris:France :: Rome:?

Basic word embedding methods

- word2vec (Google, 2013)
 - Continuous bag-of-words (CBOW): Which predict the missing word just giving the surround word.
 - Continuous skip-gram (SGNS): which does the reverse of the <u>CBOW</u> method, <u>SGNS</u>
 learns to predict the word surrounding a given input word.
- Global Vectors (GloVe) (Stanford, 2014)
- FastText (Facebook, 2016): based on the skip-gram model.

Advanced word embedding methods

- BERT (Google, 2018)
- ELMo (Allen Institute for AI, 2018)
- **GPT-2** (OpenAI, 2018)

Note: Tunable pre-trained models.

Continuous Bag-of-Words Model

Architecture

- CBOW model is based on the shallow dense neural network with an input layer, a single hidden layer, and output layer.

Cost Function: Cross-entropy loss (log loss)

Extracting Word Embedding Vectors

After we have trained the neural network, we can extract three alternative word embedding representations.

 i. Consider each column of W_1 as the column vector embedding vector of a word of the vocabulary

ii. Use each row of W_2 as the word embedding row vector for the corresponding word.

$$\mathbf{W_2} = \begin{pmatrix} \mathbf{w^{(1)}} \\ \dots \\ \mathbf{w^{(N)}} \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{pmatrix} \qquad \mathbf{v}$$

iii. Average W_1 and the transpose of W_2 to obtain W_3, a new n by v matrix.

