Regresión lineal simple

Debes tener la habilidad de modelar ciertos problemas, por ello debes saber como funciona la regresión lineal

Ejemplo

Digamos que te contratan como empleado y te dan una relación de datos entre gastos de publicidad y ganancias en \$US.

$Gasto\ K\$$	Ganancia K \$
1.2	2
2	3
3.2	3.4
2.5	3.1
5	4
6	4.7
4	3.8
8	7

Despues me pide que elabore un modelo para predecir ¿cuanto voy a ganar o cuanto voy a gastar?

```
import numpy as np
import matplotlib.pyplot as plt

#Configurando Latex
# Configuración de Matplotlib para usar LaTeX
plt.rcParams.update({
    "text.usetex": True,
    "font.family": "serif",
    "font.serif": ["Computer Modern Roman"],
    "text.latex.preamble": r"\usepackage{amsmath}"
})
```

```
In []: #Planteando el problema en código
  gasto=np.array([1.2,2,3.2,2.5,5,6,4,8])
  ganancia = np.array([2,3,3.4,3.1,4,4.7,3.8,7])

#Creando graficas
  fig, ax = plt.subplots()
  ax.scatter(gasto,ganancia,color='green',alpha=0.8)
  ax.grid()
  ax.axhline(y=0, color='r',linewidth=.7)
  ax.axvline(x=0, color='r',linewidth=.7)
  plt.title('Gasto vs Ganancia\n',fontsize=23)
  plt.xlabel(r'Gasto $(\$)$',fontsize=18)
  plt.ylabel(r'Ganancia $(\$)$',fontsize=18)
  plt.legend()
  plt.show()
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored wh en legend() is called with no argument.

Gasto vs Ganancia

Por eso es tan importante que aprendas a modelar funciones o sepas como se van a estar comportando los datos.

Una función que nos puede ayudar a ver como se comportan los datos es una linea recta.

En donde obtenemos a b cuando x=0, entonces podemos decir que b=f(0). Recordemos que la ecuación es:

$$y = mx + b$$

Pero hay un problema y es que hay muchas lineas rectas que pueden pasar por los puntos. Entonces ¿cómo podemos saber que linea es la adecuada? ¿Cómo podemos decir si es mejor una a otra?

Tal vez deberiamos medir que tan equivocados estamos, entonces para eso se crean otro tipo de funciones llamadas *funciones de error*. Veamoslo en la siguiente.

Extras:

- Regresión lineal
- Regresión lineal