Universität Duisburg-Essen Lehrstuhl für Ökonometrie Prof. Dr. Christoph Hanck M.Sc. Karolina Gliszczynska

Methoden der Ökonometrie - Übung 6

Aufgabe 1:

Sei

$$\boldsymbol{y} = \boldsymbol{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{u},$$

erinnern Sie sich an die Aussage des Frisch-Waugh-Lovell Theorems: $\hat{\beta}_2$ kann durch Regression von \boldsymbol{y} auf \boldsymbol{X}_1 und \boldsymbol{X}_2 sowie durch Regression $\boldsymbol{M}_1\boldsymbol{y}$ auf $\boldsymbol{M}_1\boldsymbol{X}_2$ gleichermaßen berechnet werden.

- a) Sie können noch mehr zeigen: Die Residuen von der Regression M_1y auf M_1X_2 sind gleich der Residuen \hat{u} der Regression $y = X_1\beta_1 + X_2\beta_2 + u$. Hinweis: Falls \hat{u} die Residuen der Regression von y auf X_1 und X_2 sind, dann $y = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 + \hat{u}$. Multiplizieren Sie beide Seiten der Gleichung von links mit M_1 .
- b) Zeigen Sie, dass sich $\hat{\beta}_2$ berechnen lässt, indem man \boldsymbol{y} auf $\boldsymbol{M}_1\boldsymbol{X}_2$ regressiert. Zeigen Sie weiterhin, dass die Residuen dieser Regression nicht mit $\hat{\boldsymbol{u}}$ übereinstimmen. Zeigen Sie auch, dass das SSR von \boldsymbol{y} auf $\boldsymbol{M}_1\boldsymbol{X}_2$ nicht das selbe ist wie das SSR von $\boldsymbol{M}_1\boldsymbol{y}$ auf $\boldsymbol{M}_1\boldsymbol{X}_2$.

Aufgabe 2:

Betrachten Sie das lineare Regressionsmodell

$$y = X\beta + u$$
.

wobei einer der Regressoren eine Konstante ist. Zeigen Sie, dass sich die Summe der OLS-Residuen zu Null ergibt, d.h. $\sum_{t=1}^{n} \hat{u}_t = 0$.

Aufgabe 3:

a) Zeigen Sie,

$$R_u^2 = rac{oldsymbol{y}^T oldsymbol{P} oldsymbol{y}}{oldsymbol{y}^T oldsymbol{y}}.$$

b) Betrachten Sie für $X(n \times k)$ das lineare Regressionsmodell

$$y = X\beta + u$$

wobei rank (X) = k. Zeigen Sie, falls die Anzahl an Regressoren gleich der Anzahl an Beobachtungen ist, also n = k ist, dann ist das Bestimmtheitsmaß $R^2 = 1$. (Es ist egal, ob Sie das unzentrierte oder zentrierte Bestimmtheitsmaß für den Beweis wählen.)