$$\hat{y} = 11.9524 + 0.0029 \cdot \hat{x}$$
, where $\hat{y} = \ln(\text{price})$ and $\hat{x} = \text{sqft_living}^{0.78}$

Explanation of the Model

Intercept and slope

The model has the sample intercept of 11.9524 and the slope of 0.0029. To interpret the slope, we have to transform \hat{x} and \hat{y} towards original $sqft_living$ and price. Let $x = sqft_living$ and y = price for the derivation. We have $\hat{x} = x^{0.78}$ and $\hat{y} = \ln(y) \implies y = e^{\hat{y}}$. Suppose the original $sqft_living$ is x_1 and it moved up to x_2 , then we have the following:

$$y_1 = e^{\hat{y}_1} = e^{11.9524 + 0.0029 \cdot x_1^{0.78}} = e^{11.9524} \cdot e^{0.0029 \cdot x_1^{0.78}}$$
$$y_2 = e^{\hat{y}_2} = e^{11.9524 + 0.0029 \cdot x_2^{0.78}} = e^{11.9524} \cdot e^{0.0029 \cdot x_2^{0.78}}$$

To understand the change in *price* in percents we will use the following formula:

$$100 \times \left[\frac{y_2 - y_1}{y_1} \right] = 100 \times \left[\frac{y_2}{y_1} - 1 \right] = 100 \times \left[\frac{e^{\underbrace{11.9524}} \cdot e^{0.0029 \cdot x_2^{0.78}}}{e^{\underbrace{11.9524}} \cdot e^{0.0029 \cdot x_1^{0.78}}} - 1 \right]$$
$$= 100 \times \left[e^{0.0029 \left(x_2^{0.78} - x_1^{0.78} \right)} - 1 \right]$$

For example, if the $sqft_living$ is 1000ft and we increase it to 1100, we will get the change in price of

$$100 \times \left[e^{0.0029(1100^{0.78} - 1000^{0.78})} - 1 \right] \approx 5.02\%.$$

In this particular example 10% change in sqft_living starting from $x_1 = 1000 ft$ forces 5.02% change in price.

 R^2

The model has $R^2 \approx 0.45$. This means that our model explains about 45% of the variation by using $sqft_living$ as independent variable.

ANOVA

Is our model with one explanatory variable better than the model with zero explanatory variables? Our model has $F - statistic = 1.737 \times 10^4$ and Prob > F is 0.000.

The Null Hypothesis: The slope=0

The Alternative Hypothesis: The slope $\neq 0$

Our p-value for this model is $p = 0.000 < 0.05 = \alpha$. Thus, we have enough evidence to reject the Null Hypothesis at 5% level of significance and we conclude that the Test tells us, that our slope is not 0. Since our p-value is 0, there is a 0% probability that the improvements that we are seeing with our one independent variable model are due to random chance alone.