A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

1.1.5. Two pore domain potassium channels

Two-Pore-domain potassium channels	Ref
$I_{K,leak\ channels}^{\prime\prime M,N} = P_{K,K2P}^{M-N} \frac{z_K^2 F^2 V_m^{M-N}}{RT} \frac{[K]_M - [K]_N exp \frac{-z_K F V_m^{M-N}}{RT}}{1 - exp \frac{-z_K F V_m^{M-N}}{RT}} $ (29)	[11]
$V_{K,rev}^{M-N} = \frac{RT}{z_K F} ln\left(\frac{[K]_{M(out)}}{[K]_{N(in)}}\right) $ (30)	

Table 2: The corresponding equations describing the current transported via Two pore domain potassium channels across the cell membrane