Recommender Systems

Implementing Collaborative Filtering

Mining of Massive Datasets
Leskovec, Rajaraman, and Ullman
Stanford University

Collaborative Filtering: Complexity

- Expensive step is finding k most similar users (or items): O(|U|)
 - |U| = size of utility matrix
- Too expensive to do at runtime
 - Could pre-compute
 - Naïve pre-computation takes time O(n · | U |)
 - Where n = number of users (items)
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction (coming soon!)

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

- Cannot recommend an unrated item
- New items, Esoteric items

- Popularity bias:

Tends to recommend popular items

Hybrid Methods

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem
- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
 - Example: global baseline + collaborative filtering

Global Baseline Estimate

- Estimate Joe's rating for the movie The Sixth Sense
 - Problem: Joe has not rated any movie "similar" to The Sixth Sense

- Global Baseline approach
 - Mean movie rating: 3.7 stars
 - The Sixth Sense is 0.5 stars above avg.
 - Joe rates 0.2 stars below avg.
 - Baseline estimate: 3.7 + 0.5 0.2 = 4 stars

Combining Global Baseline with CF

- Global Baseline estimate
 - Joe will give The Sixth Sense 4 stars
- Local neighborhood (CF/NN)
 - Joe didn't like related movie Signs
 - Rated it 1 star below his average rating
- Final estimate
 - Joe will rate The Sixth Sense 4 -1 = 3.5 stars

CF: Common Practice

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{vi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean movie rating

•
$$b_x$$
 = rating deviation of user x
= $(avg. rating of user x) - \mu$

 b_i = rating deviation of movie i