

Práctico Nº4 : Mecánica del Continuo: Esfuerzo

1. Una lista aburrida, pero necesaria

- a) Defina esfuerzo
- **b**) Defina estado de esfuerzo
- c) Enumere propiedades importantes del tensor de esfuerzos
- d) Consigne el significado de las componentes del tensor de esfuerzos
- e) Defina esfuerzos principales y planos en los que ocurren.
- f) Defina máximo esfuerzo de corte y planos de acción.

2. Para hacer entre todes - Clase TP4

Muestra gratis 1

El estado de esfuerzos en un punto de un sólido está dado por:

$$[T] = \begin{pmatrix} 6 & 5 & -2 \\ 5 & 3 & 4 \\ -2 & 4 & 9 \end{pmatrix} MPa$$

- a) ¿cuál es el esfuerzo en el plano cuya normal es e_1 ?
- **b**) Discrimine, en el vector de esfuerzo del punto anterior, entre esfuerzo normal y tangencial.
- c) ¿Es posible calcular el *máximo esfuerzo normal* y el plano en el que actúa, definido por el vector normal n? De ser así, hágalo.
- **d)** Calcule los esfuerzos para -n, es decir, la otra cara de la moneda

Muestra Gratis 2

Con el estado de esfuerzos del ejercicio anterior, calcule:

- a) El máximo esfuerzo tangencial y el plano en el que actúa.
- **b)** El esfuerzo normal en el plano del máximo esfuerzo de corte

3. Ejercicios para usted

Ejercicio N^o **1.** El siguiente tensor representa el estado de esfuezo de un punto en un sólido:

$$[T] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 0 \end{pmatrix} MPa$$

En cada uno de los planos normales a los vectores unitarios e_1 , e_2 , e_3 , (a) ¿cuál es el esfuerzo normal? y (b) ¿cuál es el esfuerzo tangencial total?

Ejercicio N^o **2.** Considere el siguiente estado de esfuerzos en un sólido:

$$[T] = \begin{pmatrix} \alpha x_2 & \beta & 0 \\ \beta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

donde $\alpha[MPa\ m^{-1}]$ $\beta[MPa] \in \mathbb{R}$ y son positivos. (a) Determine y bosqueje la distribución del vector de esfuerzos que actúa sobre la zona delimitada por (0,1,1); (0,-1,1); (0,1,-1); (0,-1,-1), y es normal a $\mathbf{e_1}$. (b) Determine la fuerza total y el momento respecto del origen, que actúan sobre el cuadrado del punto anterior.

Ejercicio N $^{\circ}$ 3. Suponga que t_{n_1} y t_{n_2} son vectores esfuerzo actuando en planos n_1 y n_2 , ambos en el mismo punto del continuo con un estado de esfuerzos determinado por T.

- a) Probar que la componente de t_{n_1} en n_2 y la componente de t_{n_2} a lo largo de n_1 son iguales si y solo si T es simétrico.
- b) ¿Cuáles son las condiciones físicas necesarias para que T sea simétrico?
- c) Resolver el ejercicio 4.29 de la bibliografía Lai 4º Edición.

Ejercicio N o **4.** Escribir los vectores esfuerzo en *cada una* de las superficies de la Fig. (1) en términos de los valores dados en el gráfico y la base ortonormal $\{e_1, e_2\}$.

Figura 1: Las unidades utilizadas son $kN/m^2 = 10^3 Pa$

Ejercicio N o **5.** Las componentes de diferentes tensores esfuerzo, respecto de una base $\mathbf{e_i}$, en un punto del continuo (en MPa) son:

$$[T_1] = \begin{pmatrix} 12 & 9 & 0 \\ 9 & -12 & 0 \\ 0 & 0 & 6 \end{pmatrix} \quad [T_2] = \begin{pmatrix} 9 & 0 & 12 \\ 0 & -25 & 0 \\ 12 & 0 & 16 \end{pmatrix} \quad [T_3] = \begin{pmatrix} 1 & -3 & \sqrt{2} \\ -3 & 1 & \sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 4 \end{pmatrix}$$

- a) Encontrar el vector de esfuerzo en un plano cuyo vector normal es $n\,=\,2e_1-2e_2+e_3$
- b) La magnitud del vector de esfuerzo y el ángulo entre el vector de esfuerzo y la normal al plano.
- c) La magnitud de la componente tangencial (o de cizalla) del vector de esfuerzo.
- d) Encontrar el máximo esfuerzo de cizalla y el plano en el que actúa, realizando un gráfico que indique la información anterior.

Ejercicio N^o **6.** El estado de esfuerzo tridimensional en el punto (1,1,-2) de un cuerpo respecto de las coordenadas (x_1,x_2,x_3) es:

$$[T] = \begin{pmatrix} 2 & 3.5 & 2.5 \\ 3.5 & 0.0 & -1.5 \\ 2.5 & -1.5 & 1.0 \end{pmatrix} MPa$$

a) Determine el la componente normal y tangencial del vector esfuerzo en el punto (1,1,-2) sobre la superficie esférica cuya ecuación es $x_1^2 + (x_2 - 2)^2 + x_3^2 = 6$.

Ejercicio Nº 7. Para el estado de esfuerzo del ejercicio anterior:,

- a) determinar el vector esfuerzo en un plano (que contiene al punto (1,1,-2)) y está definido por los puntos (0,0,0), (2,-1,3) y (-2,0,-1).
- b) determinar la componente normal y la magnitud y dirección de la componente tangencial de dicho vector esfuerzo.

Ejercicio N^o **8.** Dado el siguiente tensor de esfuerzo en un punto (x_1, x_2, x_3) de un continuo:

$$[T] = \begin{pmatrix} 0 & 0 & Ax_2 \\ 0 & 0 & -Bx_3 \\ Ax_2 & -Bx_3 & 0 \end{pmatrix}$$

donde A y B son constantes. Determinar:

- a) la fuerza de volumen (body forces) necesaria para que el tensor de esfuerzos corresponda con un estado de equilibrio.
- b) Las tres direcciones y valores principales en el punto $x = Be_2 + Ae_3$
- c) El esfuerzo de cizalla máximo y el plano donde actúa en el punto $x=Be_2+Ae_3$.
- d) Realizar un gráfico indicando los resultados de los puntos a,
b y c. $\,$

Ejercicio N^o **9.** Considerar el tensor de esfuerzos:

$$[T] = \begin{pmatrix} 0 & 100x_1 & -100x_2 \\ 100x_1 & 0 & 0 \\ -100x_2 & 0 & 0 \end{pmatrix} MPa \ m^{-1}$$

(a) Calcular las direcciones principales y los autovalores. (b) Encontrar el esfuerzo en un plano que pasa por el punto 1/2, $\sqrt{3}/2$, 3 y es tangente a la superficie cilíndrica circular $x_1^2 + x_2^2 = 1$ en ese punto.

Ejercicio N^o **10.** Considere un cilindro cuyas paredes están delimitadas por los radios $r_1 = 0.5m$ y $r_2 = 0.52m$, como se muestra en la Fig.(2). Considerando que la presión exterior ($\forall r > r_2$) es la presión atmosférica $p_o = 101325Pa$ y que la presión interior ($\forall r < r_1$) es $p_i = 10p_o$:

- a) Calcular el estado de esfuerzo de la pared del cilindro.
- b) Calcular el estado de esfuerzo de la pared del cilindro, utilizando la aproximación de pared delgada.
- c) Comparar mediante una gráfica $T_{\theta\theta}$ vs. r los dos modelos calculados.
- d) Supongamos que la presión interior y la exterior son intercambiadas. Calcular según el modelo del punto $\bf a$ y comparar los resultados de $T_{\theta\theta}$ mediante una gráfica.

Figura 2: El cilindro del ejercicio 10.