UNIVERSIDAD NACIONAL DE COLOMBIA

Dirección Nacional de Programas de Pregrado

FICHA DE ASIGNATURAS DE PREGRADO

4100889					
1. IDENTIFICACIÓN DE LA ASIGNATURA					
MANIZALES					
FACULTAD DE INGENIERÍA Y ARQUITECTURA					
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN MANIZALES					
PREGRADO					
SEÑALES Y SISTEMAS					

2. DURACIÓN					
A LA SEMANA					
HAP =	4	HAI =	8	THS = (HAP + HAI) =	12
AL SEMESTRE					
Nro de semanas =	16	THP = (THSxSemanas)	192	Nro_de Créditos (THP/48)	4

CONVENCIONES UTILIZADAS

HAP: Horas de Actividad Presencial a la semana o intensidad horaria

HAI: Horas de Actividad Independiente a la semana **THS**: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

3. VALIDABLE		
ASIGNATURA VALIDABLE =>	ASIGNATURA NO VALIDABLE =>	X

4. PORCENTAJE DE ASISTENCIA					
%	75	Total de Horas presenciales al semestre (HAP x Semanas)	64	Mínimo de horas Semestre	48
Porce	Porcentajes aceptados: 75, 80, 85, 90, 95 y 100%				

5. TIPOLOGÍA Y PLANES DE ESTUDIO ASOCIADOS

5.1. TIPOLOGÍA				
Asignatura de Libre Elección		(C) - Componente Disciplinar	SI	
Escriba SI o NO al frente de la casilla en la columna azul				

5.2. PLANES DE ESTUDIO A LOS QUE SE ASOCIA LA ASIGNATURA						
Plan	4022 Ingeniería eléctrica					
1	REQUISITOS	6				
	Código Nombre Tipo					
	10000007	Ecuaciones diferenciales	Prerrequisito			
	10000006	Cálculo vectorial	Prerrequisito			
	Tipo = Prerrequisito o Correquisito					
Plan	4028 Ingenie	ría electrónica				
2	REQUISITOS					
	Código	Nombre	Tipo			
	1000007	Ecuaciones diferenciales	Prerrequisito			
	10000006	Cálculo vectorial	Prerrequisito			
	Tipo = Prerrequisito o Correquisito					

6. DESCRIPCIÓN DE LA ASIGNATURA

6.1. DESCRIPCIÓN

El curso de señales y sistemas describe las herramientas básicas de tratamiento y modelado de sistemas lineales orientadas a la presentación y manejo de información de naturaleza continua y discreta en el dominio del tiempo y la frecuencia.

Objetivo general: Desarrollar competencias en análisis abstracto y modelado matemático orientadas al estudio de señales y sistemas a partir de herramientas matemáticas y computacionales para el manejo de información de naturaleza continua y discreta.

Objetivos específicos:

- Estimular el espíritu crítico y generar actitudes ético científicas dentro de los cuales se orienta el plan de estudios.
- Formar ingenieros emprendedores a partir de una sólida fundamentación técnico-científico en el análisis de señales y sistemas en el dominio del tiempo y la frecuencia.
- Desarrollar competencias de aprendizaje autónomo en aras de adaptarse a las necesidades del medio, en concordancia con el continuo cambio tecnológico y científico en el área de la ingeniería.
- Leer y comprender una segunda lengua de influencia científica, posibilitando la asimilación de literatura técnica en otro idioma relacionada con su área de conocimientos.
- Facilitar la orientación hacia determinados campos de trabajo e investigación, característicos de Metodología: clases magistrales acompañadas con simulaciones en Python (mediante servicios de cómputo en la nube-Google Colab) orientadas al estudio de señales y sistemas en tiempo y frecuencia (continuo y discreto). Esta metodología será complementada mediante la realización de talleres, trabajos escritos y proyectos, promoviendo siempre la participación de los estudiantes a través de discusiones académicas y consultas para incrementar los contenidos del curso. Evaluación:
- Tres parciales relacionados con los conetenidos del curso (75%). Semanas: 5,10,15
- Talleres teórico-prácticos (simulación sobre Python) (25%). Semanas: 5, 10, 15

6.2. CONCEPTOS PREVIOS NECESARIOS

Se requieren conceptos básicos en: cálculo diferencial, cálculo integral, algebra lineal, circuitos eléctricos y programación.

7. CONTENIDOS BÁSICOS

Lista Contenido Básico			Contenido Detallado		
1.	Conceptos preliminares	1.	Definición de señal y clasificación de señales.		
		2.	Definición sistemas y clasificación de sistemas.		
		3.	Transformación de variable independiente.		
		4.	Funciones exponenciales y senoidales.		
		5	Repaso básico en programación - Python		
		1.	Convolución.		
2.	Sistemas lineales invariantes en el tiempo	2.	Representación de sistemas LTI.		
Z .	oisternas iliteales irivariantes en el tiempo	3.	Propiedades de sistemas LTI.		
		4.	Descripción de sistemas LTI.		
		1.	Ortogonalidad.		
3.	Series de Fourier	2.	Serie de Fourier trigonometrica.		
J.	Series de Fourier		Serie de Fourier compleja.		
		4.	Aplicaciones de la serie de Fourier.		
	Transformada de Fourier	1.	Transformada de Fourier continua.		
4.		2.	Transformada de Fourier discreta.		
٦.		3.	Propiedades de la transformada de Fourier.		
		4.	Aplicaciones: representación de sistemas LTI.		
	Transformada de Laplace	1.	Definicion de transformada de Laplace.		
		2.	Propiedades y soluciones por fracciones		
5.		۷.	parciales		
		3.	Análisis de sistemas LTI y principios básicos		
			de control.		
		1.	Definicion de transformada Z.		
	Transformada Z	_	Propiedades y análisis de sistemas LTI en		
6.		2.	tiempo discreto usando transformada Z.		
		3.	Aplicaciones: filtros digitales		
		<u> </u>	peac.ccor initioo digitatoo		

8. BIBLIOGRAFÍA BÁSICA				
Autor (es)	Título	Editorial-Revista-País	Año	
OPPENHEIM, Alan V	Signals and systems.	Prentice Hall.	1997	
HWEI PSU	Análisis de Fourier.	Iberoamerica.	1987	
PHILLIPS, Charles L	Signals, systems and transforms.	Prentice Hall.	1995	
PROAKIS, Jhon G	Tratamiento digital de señales.	Prentice Hall.	1998	
OPPENHEIM, Alan V	Digital signal processing.	Prentice Hall.	1975	
UNPINGCO, José	Python for signal processing	Springer	2013	

Tutorial Google Colab y Python: https://www.tutorialspoint.com/google_colab/index.htm

Formato adaptado para DIEEyC por LFDC