Econometrics May 1, 2023

Topic 13: Non-convex Learning + Lasso

by Sai Zhang

Key points: Combining the best of the two, we can use **Lasso plus Concave** method, with Lasso screening and concave component selecting variables, achieving a coordinated intrinsic two-scale learning.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

We are facing a tradeoff:

- **Convex** methods: have appealing <u>prediction power and oracle inequalities</u>, but challenging to provide tight false sign rate control
- Concave methods: have good <u>variable selection</u> properties, but challenging to establish <u>global</u> properties and risk properties

Here, we take advantage of the linearity of Lasso (convex *and* concave) and try to combine it with concave regularization to get the best of both.

13.1 Model Setup

Again, consider a linear regression model $y = X\beta + \epsilon$, where

- response vector $(n \times 1)$: $\mathbf{y} = (y_1, \dots, y_n)'$
- design matrix $(n \times p)$: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$, with each column rescaled to have L_2 -norm $n^{1/2}$

here, we consider a scenario where

- $\beta_0 = (\beta_{0,1}, \dots, \beta_{0,p})'$ is *sparse* (with many 0 components)
- ultra-**high** dimensions: $\log p = O(n^a)$, for some 0 < a < 1

and consider the penalized least squares

$$\min_{\beta \in \mathbb{R}^p} \left\{ (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_0 \|\boldsymbol{\beta}\|_1 + \|p_{\lambda}(\boldsymbol{\beta})\|_1 \right\}$$
 (13.1)

where

- $\lambda_0 = c \left(\frac{\log p}{n}\right)^{1/2}$ for some c > 0
- $p_{\lambda}(\boldsymbol{\beta}) = p_{\lambda}(|\boldsymbol{\beta}|) = (p_{\lambda}(|\beta_1|), \dots, p_{\lambda}(|\beta_p|))'$, with $|\boldsymbol{\beta}| = (|\beta_1|, \dots, |\beta_p|)'$; the concave penalty $p_{\lambda}(t)$ is defined on $t \in [0, \infty)$, indexed by $\lambda \geq 0$, increasing in **both** t and λ , $p_{\lambda}(0) = 0$

the 2 penalty components

- L_1 -component: minimum amount of regularization for removing noise in prediction
- concave component $||p_{\lambda}(\beta)||_1$: adapt model sparsity for *variable selection*

Under this set up, we can derive the hard-thresholding property as

Proposition 13.1.1: Hard-Thresholding Property

Assume the $p_{\lambda}(t)$, $t \ge 0$, is **increasing and concave** with

- $p_{\lambda}(t) \ge p_{H,\lambda}(t) = \frac{1}{2} \left[\lambda^2 (\lambda t)_+^2 \right]$ on $[0, \lambda]$
- $p'_{\lambda}((1-c_1)\lambda) \le c_1\lambda$ for some $c_1 \in [0,1)$
- $-p_{\lambda}''(t)$ decreasing on $[0, (1-c_1)\lambda]$

then any <u>local minimizer</u> of 13.1 that is also a <u>global minimizer</u> in each coordinate has the **hard-thresholding** feature that each component is either 0 or of magnitude **larger** than $(1 - c_1)\lambda$

Such property is shared by a wide class of concave penalties, including hard-thresholding penalty $p_{H,\lambda}(t)$ with $c_1 = 0$, L_0 —penalty, and SICA (with suitable c_1).

How to <u>understand</u> this proposition? Let $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)'$, then each $\hat{\beta}_j$ is the glocal minimizer of the corresponding univariate penalized least-square problem along the j-th coordinate. These univariate problems share a common form with (generally) different scalars z

$$\hat{\beta}(z) = \arg\min_{\beta \in \mathbb{R}} \left\{ \frac{1}{2} (z - \beta)^2 + \lambda_0 |\beta| + p_{H,\lambda}(|\beta|) \right\}$$

after we rescale all covariates to have L_2 -norm $n^{1/2}$. The solution to these univariate problems are

$$\hat{\beta}(z) = \operatorname{sgn}(z)(|z| - \lambda_0) \cdot \mathbf{1}_{|z| > \lambda + \lambda_0}$$

these solutions have the same feature as the hard-thresholded estimator: each component is either 0 or of magnitude larger than λ . This provides a better distinction between insignificant and significant covariates then soft-thresholding by L_1 penalty.

With the hard-thresholding property of Prop. 13.1.1, we can prove a basic constraint for the global optimum $\hat{\beta}$ on an event with significant probability (Fan and Lv, 2014)

$$\|\delta_2\|_1 \le 7\|\delta_1\|_1 \tag{13.2}$$

where $\delta = \hat{\beta} - \beta_0 = (\hat{\beta}_1', \hat{\beta}_2')' - (\beta_{0,1}', \beta_{0,2}')' = (\delta_1', \delta_2')'$, with $\delta_1 \in \mathbb{R}^s$. Where does this constraint come from? For the penalized least square quesion 13.1

$$\min_{\beta \in \mathbb{R}^p} \left\{ (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_0 \|\boldsymbol{\beta}\|_1 + \|p_{\lambda}(\boldsymbol{\beta})\|_1 \right\}$$

the global minimizer $\hat{\beta}$ leads to

$$(2n)^{-1} \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1} = (2n)^{-1} \|\mathbf{X}\boldsymbol{\beta}_{0} + \boldsymbol{\epsilon} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1}$$

$$= (2n)^{-1} \|\boldsymbol{\epsilon} - \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0})\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1}$$

$$\leq (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{0}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

$$= (2n)^{-1} \|\boldsymbol{\epsilon}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

then, plug in $\delta = \hat{\beta} - \beta_0$, we get

$$(2n)^{-1} \|\boldsymbol{\epsilon} - \mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0} + \boldsymbol{\delta}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1} \leq (2n)^{-1} \|\boldsymbol{\epsilon}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

$$(2n)^{-1} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1}\boldsymbol{\epsilon}'\mathbf{X}\boldsymbol{\delta} + \lambda_{0} \|\boldsymbol{\beta}_{0} + \boldsymbol{\delta}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1} \leq \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

since $\beta_{0,2} = \mathbf{0}$, $\delta_2 = \beta_{0,2} + \delta_2$, we have

$$\|\boldsymbol{\beta}_0 + \boldsymbol{\delta}\|_1 = \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\beta}_{0,2} + \boldsymbol{\delta}_1 + \boldsymbol{\delta}_2\|_1 = \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1 + \boldsymbol{\delta}_2\|_1 \le \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1\|_1 + \|\boldsymbol{\delta}_2\|_1$$

hence

$$(2n)^{-1}\|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1}\boldsymbol{\epsilon}'\mathbf{X}\boldsymbol{\delta} + \lambda_{0}\|\boldsymbol{\delta}_{2}\|_{1} \leq \lambda_{0}\|\boldsymbol{\beta}_{0,1}\|_{1} - \lambda_{0}\|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_{1}\|_{1} + \|\boldsymbol{p}_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|\boldsymbol{p}_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}$$

and by the reverse triangle inequality $\|\boldsymbol{\beta}_{0,1}\|_1 - \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1\|_1 \le \|\boldsymbol{\delta}_1\|_1$, we get

$$(2n)^{-1} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1} \boldsymbol{\epsilon}' \mathbf{X} \boldsymbol{\delta} + \lambda_{0} \|\boldsymbol{\delta}_{2}\|_{1} \leq \lambda_{0} \|\boldsymbol{\delta}_{1}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}$$

If assume the distribution of the model error ϵ as

$$\Pr\left(\left\|n^{-1}\mathbf{X}'\boldsymbol{\epsilon}\right\|_{\infty} > \frac{\lambda_0}{2}\right) = O\left(p^{-c_0}\right)$$

conditional on the event $\mathcal{E} = \{\|n^{-1}\mathbf{X}'\boldsymbol{\epsilon}\|_{\infty} \leq \lambda_0/2\}$, we have

$$-n^{-1}\epsilon'\mathbf{X}\delta + \lambda_0\|\delta_2\|_1 - \lambda_0\|\delta_1\|_1 \ge -\frac{\lambda_0}{2}\|\delta\|_1 + \lambda_0\|\delta_2\|_1 - \lambda_0\|\delta_1\|_1 = \frac{\lambda_0}{2}\|\delta_2\|_1 - \frac{3\lambda_0}{2}\|\delta_1\|_1$$

plug this result back, get

$$\frac{1}{2n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \frac{\lambda_{0}}{2} \|\boldsymbol{\delta}_{2}\|_{1} \leq \frac{3\lambda_{0}}{2} \|\boldsymbol{\delta}_{1}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}$$
(13.3)

Now, if we further impose 2 conditions:

• **Condition 1 (eigenvalue condition)**: for some positive constant κ_0

$$\min_{\|\boldsymbol{\delta}\|_2 = 1, \|\boldsymbol{\delta}\|_0 < 2s} \frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_2 \ge \kappa_0$$
 (A)

$$\kappa = \kappa(s,7) = \min_{\delta \neq 0, \|\delta_2\|_1 \le 7\|\delta_1\|_1} \left\{ \frac{1}{\sqrt{n}} \frac{\|\mathbf{X}\boldsymbol{\delta}\|_2}{\|\delta_1\|_2 \vee \|\tilde{\delta}_2\|_2} \right\} > 0$$
 (B)

where $\tilde{\delta}_2$ is the subvector of δ_2 consisting of the components with the *s* largest absolute values. Here

- Condition (A) is a mild sparse eigenvalue condition
- Condition **(B)** combines the restricted eigenvalue assumptions in Bickel et al. (2009)¹. The intuition is, for OLS estimation, **X'X** should be **positive definite**, that is

$$\min_{\mathbf{0}\neq\boldsymbol{\delta}\in\mathbb{R}^p}\left\{\frac{1}{\sqrt{n}}\frac{\|\mathbf{X}\boldsymbol{\delta}\|_2}{\|\boldsymbol{\delta}\|_2}\right\}>0$$

however, when p > n, this condition **never** holds, hence we replace $\|\delta\|_2$ with the L_2 -norm of $\|\delta_1\|_2$, a subvector of δ

$$\kappa = \kappa(s,7) \min_{\delta \neq 0, \|\delta_2\|_1 \le 7\|\delta_1\|_1} \left\{ \frac{1}{\sqrt{n}} \frac{\|X\delta\|_2}{\|\delta\|_2} \right\} > 0$$

and for L_q loss with $q \in (1,2]$, we further bound $\|\tilde{\delta}_2\|_2$, which leads to condition (B).

¹Introduced by Candes and Tao (2007) for studying the oracle inequalities for the Lasso estimator and Dantzig selector.

• Condition 2 (hard-thresholding condition): The penalty $p_{\lambda}(t)$ satisfies the conditions of Prop. 13.1.1 with

$$p_{\lambda}' \{ (1 - c_1)\lambda \} \le \lambda_0/4$$

$$\min_{j=1,\dots,s} |\beta_{0,j}| > \max \{ (1 - c_1)\lambda, 2\kappa_0^{-1} p_{\lambda}^{1/2}(\infty) \}$$

Now, look back at the condition 13.3, we can upper-bound $\|p_{\lambda}(\boldsymbol{\beta}_0)\|_1 - \|p_{\lambda}(\boldsymbol{\beta}_0 + \boldsymbol{\delta})\|_1$ by $\frac{1}{4n} \|\mathbf{X}\boldsymbol{\delta}\|_2^2 + \frac{1}{4}\lambda_0 \|\boldsymbol{\delta}\|_1$. Consider 2 cases:

- Case 1: $\|\hat{\boldsymbol{\beta}}\|_0 \ge s$. By the hard-thresholding condition, we have $|\beta_{0,j}| > (1-c_1)\lambda$ and $p'_{\lambda}\{(1-c_1)\lambda\} \le \lambda_0/4$. Hence, for $j = 1, \dots, s$,
 - if $\hat{\beta}_j \neq 0$, we must have $|\hat{\beta}_j| > (1 c_1)\lambda$. And by the <u>mean-value theorem</u>, we have

$$|p_{\lambda}(|\beta_{0,i}|) - p_{\lambda}(|\hat{\beta}_{i}|)| = p'_{\lambda}(b)(|\hat{\beta}_{i}| - |\beta_{0,i}|) \le p'_{\lambda}(b)|\delta_{0,i}|$$

where b is between $|\beta_{0,j}|$ and $|\hat{\beta}_j|$, hence, $b > |\beta_{0,j}| > (1 - c_1)\lambda$, by the concavity of p_{λ} , we have $p'(b) < p'((1 - c_1)\lambda) \le \lambda_0/4$, which leads to $|p_{\lambda}(|\beta_{0,j}|) - p_{\lambda}(|\hat{\beta}_j|)| \le \frac{1}{4}\lambda_0|\delta_j|$.

- if $\hat{\beta}_i = 0$, since $\|\hat{\beta}_0\| \ge s$, there must exist some j' > s s.t. $\hat{\beta}_{j'} \ne 0$, similarly

$$\begin{aligned} |p_{\lambda}(|\beta_{0,j}|) - p_{\lambda}(|\hat{\beta}_{j'}|)| &\leq |p_{\lambda}\left(|\beta_{0,j}|\right) - p_{\lambda}\left((1 - c_{1})\lambda\right)| + |p_{\lambda}\left(|\hat{\beta}_{j'}|\right) - p_{\lambda}\left((1 - c_{1})\lambda\right)| \\ &= p'_{\lambda}(b_{1})\left(|\beta_{0,j}| - (1 - c_{1})\lambda\right) + p'_{\lambda}(b_{2})\left(|\hat{\beta}_{j'}| - (1 - c_{1})\lambda\right) \\ &\leq p'_{\lambda}(b_{1})\left(|\beta_{0,j}| - \underbrace{|\hat{\beta}_{j}|}_{=0}\right) + p'_{\lambda}(b_{2})\left(|\hat{\beta}_{j'}| - \underbrace{|\beta_{0,j'}|}_{=0}\right) \\ &= p'_{\lambda}(b_{1})|\delta_{j}| + p'_{\lambda}(b_{2})|\delta_{j'}| \leq \frac{\lambda_{0}}{4}\left(|\delta_{j}| + |\delta_{j'}|\right) \end{aligned}$$

together, we have

$$||p_{\lambda}(\boldsymbol{\beta}_{0})||_{1} - ||p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})||_{1} \leq \frac{1}{4}\lambda_{0}||\boldsymbol{\delta}||_{1} \leq \frac{1}{4n}||\mathbf{X}\boldsymbol{\delta}||_{2}^{2} + \frac{1}{4}\lambda_{0}||\boldsymbol{\delta}||_{1}$$

• Case 2: $\|\hat{\boldsymbol{\beta}}\|_0 = s - k$ for some $k \ge 1$. Then we must have $\|\boldsymbol{\delta}\|_0 \le \|\hat{\boldsymbol{\beta}}\|_0 + \|\boldsymbol{\beta}_0\|_0 \le s - k + s < 2s$, and $\|\boldsymbol{\delta}\|_2 \ge \sqrt{k} \min_{j=1,\dots,s} |\beta_{0,j}|$. Also, there are at least k null estimates $(\hat{\beta}_j = 0)$, thus

$$\underbrace{\frac{1}{4n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} \geq \frac{\kappa_{0}^{2}}{4} \|\boldsymbol{\delta}\|_{2}^{2}}_{\text{Condition 1(A)}} \geq \underbrace{\frac{\kappa_{0}^{2}}{4} \left(\sqrt{k} \min_{j=1,\cdots,s} |\beta_{0,j}|\right)^{2} \geq k p_{\lambda}(\infty)}_{\text{Condition 2}} \geq k p_{\lambda}(|\beta_{0,j}|)$$

similar to Case 1, we have the desired upper bound

$$||p_{\lambda}(\boldsymbol{\beta}_{0})||_{1} - ||p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})||_{1} \leq kp_{\lambda}(\infty) + \frac{1}{4}\lambda_{0}||\boldsymbol{\delta}||_{1} \leq \frac{1}{4n}||\mathbf{X}\boldsymbol{\delta}||_{2}^{2} + \frac{1}{4}\lambda_{0}||\boldsymbol{\delta}||_{1}$$

Combining Case 1 and 2, we have $\|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1} \le \frac{1}{4n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \frac{1}{4}\lambda_{0}\|\boldsymbol{\delta}\|_{1}$, plug this back in 13.3, get

$$\frac{1}{n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\delta}_{2}\|_{1} \leq 3\lambda_{0} \|\boldsymbol{\delta}_{1}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}
\leq 3\lambda_{0} \|\boldsymbol{\delta}_{1}\|_{1} + \frac{1}{2n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \frac{1}{2}\lambda_{0} \underbrace{\|\boldsymbol{\delta}\|_{1}}_{=\|\boldsymbol{\delta}_{1}\|_{1} + \|\boldsymbol{\delta}_{2}\|_{1}}
\leq 7\lambda_{0} \|\boldsymbol{\delta}_{1}\|_{1}$$

which leads to the constraint in 13.2 and $\frac{1}{n} \|\mathbf{X}\boldsymbol{\delta}\|_2^2 \le 7\lambda_0 \|\boldsymbol{\delta}_1\|_1$.

13.2 Asymptotic Properties of Global Optimum

Now, look back at Condition 1(B)

$$\kappa = \kappa(s,7) = \min_{\delta \neq 0, \|\delta_2\|_1 \le 7\|\delta_1\|_1} \left\{ \frac{1}{\sqrt{n}} \frac{\|\mathbf{X}\delta\|_2}{\|\delta_1\|_2 \vee \|\tilde{\delta}_2\|_2} \right\} > 0$$

we have

$$\frac{1}{4}\kappa^{2}(s,7)\|\boldsymbol{\delta}_{1}\|_{2}^{2} \leq \frac{1}{4}\kappa^{2}(s,7)\left(\|\boldsymbol{\delta}_{1}\|_{2}^{2} \vee \|\tilde{\boldsymbol{\delta}}_{2}\|_{2}^{2}\right) \leq \frac{1}{4n}\|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} \leq \underbrace{\frac{7}{4}\lambda_{0}\|\boldsymbol{\delta}_{1}\|_{1} \leq \frac{7}{4}\lambda_{0}\sqrt{s}\|\boldsymbol{\delta}_{1}\|_{2}}_{\text{Cauchy-Schwartz inequality}}$$

hence

$$\|\delta_1\|_2 \le \frac{7\lambda_0\sqrt{s}}{\kappa^2(s,7)} \qquad \|\delta_1\|_1 \le \sqrt{s}\|\delta_1\|_1 \le \frac{7\lambda_0s}{\kappa^2(s,7)} \qquad \|\delta_2'\|_2 \le \frac{\sqrt{7\lambda_0\sqrt{s}}\|\delta_1\|_2}{\kappa(s,7)}$$
(13.4)

Notice that the k-th largest absolute component of δ_2 is bounded from above by $\|\delta_2\|_1/k$, then for δ_{2s} , the subvector of δ_2 consisting of components **excluding** those with the s largest magnitudes, we have

$$\|\boldsymbol{\delta}_{2_s}\|_2^2 \leq \sum_{k=s+1}^{p-s} \frac{1}{k^2} \|\boldsymbol{\delta}_2\|_1^2 \leq s^{-1} \|\boldsymbol{\delta}_2\|_1^2 \Rightarrow \|\boldsymbol{\delta}_{2_s}\|_2 \leq \frac{1}{\sqrt{s}} \|\boldsymbol{\delta}_2\|_1^{\frac{13.2}{2}} \frac{7}{\sqrt{s}} \|\boldsymbol{\delta}_1\|_1^{\frac{C-S}{2}} 7 \|\boldsymbol{\delta}_1\|_2$$

since δ_{2_s} and δ_2' are a partition of δ , we have

$$\|\delta_2\|_2 \le \|\delta_{2_s}\|_2 + \|\delta_2'\|_2 \le 7\|\delta_1\|_2 + \frac{\sqrt{7\lambda_0\sqrt{s}\|\delta_1\|_2}}{\kappa(s,7)} \le \frac{56\lambda_0\sqrt{s}}{\kappa^2(s,7)}$$
(13.5)

Together, for the estimation loss $\delta = \hat{\beta} - \beta_0$, we have

- L_2 -covar-loss-correlation: $\frac{1}{n} \|\mathbf{X}\boldsymbol{\delta}\|_2^2 \le 7\lambda_0 \|\boldsymbol{\delta}_1\|_1 \le \frac{(7\lambda_0)^2 s}{\kappa^2(s,7)} \Rightarrow \frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_2 \le \frac{7\lambda_0 \sqrt{s}}{\kappa(s,7)}$
- L_2 -loss: $\|\delta\|_2 \le \|\delta_1\|_2 + \|\delta_2\|_2 \le \frac{63\lambda_0\sqrt{s}}{\kappa^2(s,7)}$
- $\bullet \quad \underline{L_q\text{-loss}} \colon \|\boldsymbol{\delta}\|_q \leq \left(s^{(2-q)/2}\|\boldsymbol{\delta}_1\|_2^q\right)^{1/q} = s^{(2-q)/2q}\|\boldsymbol{\delta}_1\|_2 \leq s^{(2-q)/2q}\frac{7\lambda_0\sqrt{s}}{\kappa^2(s,7)} = \frac{7\lambda_0s^{1/q}}{\kappa^2(s,7)}$

←by Holder's inequality

Define the number of falsely discovered signs as²

$$FS\left(\hat{\boldsymbol{\beta}}\right) = \left|\left\{j = 1, \cdots, p : \operatorname{sgn}\left(\hat{\beta}_{j}\right) \neq \operatorname{sgn}\left(\beta_{0,j}\right)\right\}\right|$$

we know from Prop.13.1.1 that $|\hat{\beta}_j| > (1 - c_1)\lambda$ and from Condition 2 that $|\beta_{0,j}| > (1 - c_1)\lambda$, then if $\operatorname{sgn}(\hat{\beta}_j) \neq \operatorname{sgn}(\beta_{0,j})$, we must have $|\delta_j| = |\hat{\beta}_j - \beta_{0,j}| \geq (1 - c_1)\lambda$. Therefore, it follows that

$$\|\boldsymbol{\delta}\|_2 \ge \left(\operatorname{FS}\left(\hat{\boldsymbol{\beta}}\right)\right)^{1/2} (1 - c_1)\lambda$$

²Stronger than the total number of false positives and false negatives.

hence

$$FS\left(\hat{\boldsymbol{\beta}}\right) \le \frac{\|\boldsymbol{\delta}\|_2^2}{(1-c_1)^2 \lambda^2} \le \left(\frac{63}{1-c_1}\right)^2 \left(\frac{\lambda_0}{\lambda}\right)^2 \frac{s}{\kappa^4(s,7)}$$

The results above are all conditional on the event $\mathcal{E} = \{\|n^{-1}X'\boldsymbol{\epsilon}\|_{\infty} \le \lambda_0/2\}$, hence hold simultaneously with proability $1 - O(p^{-c_0})$.

Altogether, we have the following theorem:

Theorem 13.2.1: Properties of the Global Minimizer $\hat{oldsymbol{eta}}$

Assume that Condition 1 and 2 and the model error bound $\Pr\left(\left\|n^{-1}\mathbf{X}'\boldsymbol{\epsilon}\right\|_{\infty} > \frac{\lambda_0}{2}\right) = O\left(p^{-c_0}\right)$, and $p_{\lambda}(t)$ is continuously differentiable. Then the global minimizer $\hat{\boldsymbol{\beta}}$ of 13.1 has the hard-thresholding property stated in Prop.13.1.1, and, with probability $1 - O(p^{-c_0})$, statisfies simultaneously that

$$\frac{1}{\sqrt{n}} \left\| \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 \right) \right\|_2 = O(\kappa^{-1} \lambda_0 s^{1/2})$$
 (13.6)

$$\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\|_q = O(\kappa^{-2}\lambda_0 s^{1/q}), \qquad q \in [1, 2]$$
 (13.7)

$$FS\left(\hat{\beta}\right) = O\left(\kappa^{-4} \left(\frac{\lambda_0}{\lambda}\right)^2 s\right) \tag{13.8}$$

If in addition $\lambda \geq \frac{56\lambda_0\sqrt{s}}{(1-c_1)\kappa^2}$, then with probability $1 - O(p^{-c_0})$, we also have that

$$\operatorname{sgn}\left(\hat{\boldsymbol{\beta}}\right) = \operatorname{sgn}\left(\boldsymbol{\beta}_{0}\right) \qquad \left\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}\right\|_{\infty} = O\left(\lambda_{0} \left\|\left(\frac{1}{n}\mathbf{X}_{1}'\mathbf{X}_{1}\right)^{-1}\right\|_{\infty}\right)$$

where X_1 is the $n \times s$ submatrix of X corresponding to s nonzero regression coefficients $\beta_{0,j}$.

The proof of the second part follows as such: by assuming $\lambda \geq \frac{56\lambda_0\sqrt{s}}{(1-c_1)\kappa^2}$, from Condition 2, we have $\min_{j=1,\cdots,s} |\beta_{0,j}| > \frac{56\lambda_0\sqrt{s}}{\kappa^2(s,7)}$, combined with 13.4, we know that

$$\operatorname{sgn}(\hat{\beta}_i) = \operatorname{sgn}(\beta_{0,i}), \forall i = 1, \dots, s$$

by a simple contradiction argument. In view of 13.5 and the hard-thresholding feature of $\hat{\boldsymbol{\beta}} = (\hat{\boldsymbol{\beta}}'_{0,1}, \hat{\boldsymbol{\beta}}'_{0,2})'$, with $\hat{\boldsymbol{\beta}}_{0,1} = (\hat{\beta}_1, \cdots, \hat{\beta}_s)'$, a similar contradiction argument leads to $\hat{\boldsymbol{\beta}}_{0,2} = \mathbf{0}$. Together, we have the sign consistency: $\operatorname{sgn}(\hat{\boldsymbol{\beta}}) = \operatorname{sgn}(\boldsymbol{\beta}_0)$. Under this result, applying Theorem 1 of Lv and Fan (2009), the estimation $\hat{\boldsymbol{\beta}}_{0,1}$ solves the following equation for $\boldsymbol{\gamma} \in \mathbb{R}^s$

$$\gamma = \tilde{\boldsymbol{\beta}}_{0,1} - \left(n^{-1}\mathbf{X}_1'\mathbf{X}_1\right)^{-1}\mathbf{b}$$

where

- X_1 is the $n \times s$ submatrix of X corresponding to the s non-zero regression coefficients $\beta_{0,j}$
- $\mathbf{b} = \{\lambda_0 \mathbf{1}_s + p_{\lambda}'(|\gamma|)\} \circ \operatorname{sgn}(\tilde{\boldsymbol{\beta}}_{0,1}) n^{-1} \mathbf{X}_1' \boldsymbol{\epsilon}$, with componentwise derivative and product.

From the concavity and monotonicity of $p_{\lambda}(t)$ and Condition 2, we have

$$0 \leq p_{\lambda}'(t) \leq p_{\lambda}' \left\{ (1-c_1)\lambda \right\} \leq \lambda_0/4$$

this gives that each component of $\hat{\boldsymbol{\beta}}_{0,1}$ has magnitude larger than $(1-c_1)\lambda$. Since $\|n^{-1}\mathbf{X}_1'\boldsymbol{\epsilon}\|_{\infty} \leq \|n^{-1}\mathbf{X}_1'\boldsymbol{\epsilon}\|_{\infty} \leq \frac{\lambda_0}{2}$ on the event \mathcal{E} , hence we have

$$\operatorname{sgn}(\mathbf{b}) = \operatorname{sgn}(\tilde{\boldsymbol{\beta}}_{0,1}), \qquad \qquad \frac{\lambda_0}{2} \le \|\mathbf{b}\|_{\infty} \le \frac{7\lambda_0}{4}$$

which completes the proof for Theorem 13.2.1.

How to understand Theorem 13.2.1?

- False sign rate FS $(\hat{\beta}) = O\left(\kappa^{-4}\left(\frac{\lambda_0}{\lambda}\right)^2 s\right)$ is asymptotically vanishing when $\lambda_0/\lambda \to 0$, outperforming Lasso, whose false sign rate is generally bounded by $O(\lambda_{\max})$ with λ_{\max} being the largest eigenvalue of Gram matrix $n^{-1}X'X$; also outperforming concave method, whose false sign rate is generally of order O(1). When **signal strength is stronger** and λ **is chosen suitably**, sign consistency is stronger as well.
- Convergence rates of $\frac{1}{\sqrt{n}} \| \mathbf{X} \left(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_0 \right) \|_2$ and $\| \hat{\boldsymbol{\beta}} \boldsymbol{\beta}_0 \|_q$ are the same as those in Bickel et al. (2009) for the L_1 -component, and are consistent with the concave component of Zhang and Zhang (2012). The bounds $O(\kappa^{-1}\lambda_0 s^{1/2})$, $O(\kappa^{-2}\lambda_0 s^{1/q})$ depend only on the universal regularization parameter $\lambda_0 = c\sqrt{\frac{\log p}{n}}$ for L_1 -component, and are independent of λ for concave component.
- The L_{∞} -bound $\|\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_0\|_{\infty} = O\left(\lambda_0 \left\| \left(\frac{1}{n} \mathbf{X}_1' \mathbf{X}_1\right)^{-1} \right\|_{\infty}\right)$ involves $\left\| \left(\frac{1}{n} \mathbf{X}_1' \mathbf{X}_1\right)^{-1} \right\|_{\infty}$, which is bounded from above by $\sqrt{s} \left\| \left(\frac{1}{n} \mathbf{X}_1' \mathbf{X}_1\right)^{-1} \right\|_2 \le \sqrt{s} \kappa_0^{-2}$ and can be **dimension-free** in certain scenarios.
- **Oracle property**: Under all conditions of Theorem 13.2.1 hold, and let $\tilde{\boldsymbol{\beta}}$ be the refitted least-squares estimator given by covariates in supp $(\hat{\boldsymbol{\beta}})$, with $\hat{\boldsymbol{\beta}}$ being the estimator in Theorem 13.2.1. The with probability $1 O(p^{-c_0})$, $\tilde{\boldsymbol{\beta}}$ equals the oracle estimator, and has the oracle property if the oracle estimaor is asymptotic normal.

Theorem 13.2.2: Further Properties of the Global Minimizer $\hat{\beta}$

Under the same regularity conditions, with $\epsilon_1, \dots, \epsilon_n$ independent and identically distributed as ϵ_0 , the global minimizer $\hat{\beta}$ in Theorem 13.2.1 satisfies that $\forall \tau > 0$

$$\mathbb{E}\left\{\frac{1}{n}\left\|\mathbf{X}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|_{2}^{2}\right\} = O\left(\kappa^{-2}\lambda_{0}^{2}s + m_{2,\tau} + \gamma\lambda_{0}p^{-c_{0}}\right)$$

$$\mathbb{E}\left\{\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|_{q}^{q}\right\} = O\left[\kappa^{-2q}\lambda_{0}^{q}s + (2-q)\lambda_{0}^{-1}m_{2,\tau} + (q-1)\lambda_{0}^{-2}m_{4,\tau} + \left((2-q)\gamma + (q-1)\gamma^{2}\right)p^{-c_{0}}\right]$$

$$(13.10)$$

$$\mathbb{E}\left\{\mathbb{E}\left\{\left(\hat{\boldsymbol{\beta}}\right)\right\} - O\left[\kappa^{-4}\left(\lambda_{0}\right)^{s}\right] + \lambda^{-2}m_{s-1} + \left(\gamma\lambda_{0} + s\right)\kappa^{-c_{0}}\right\}$$

$$(13.11)$$

$$\mathbb{E}\left\{\mathrm{FS}\left(\hat{\boldsymbol{\beta}}\right)\right\} = O\left[\kappa^{-4}\left(\frac{\lambda_0}{\lambda}\right)^s s + \lambda^{-2}m_{2,\tau} + \left(\frac{\gamma\lambda_0}{\lambda^2} + s\right)p^{-c_0}\right]$$
(13.11)

where $m_{q,\tau} = \mathbb{E}\left(|\epsilon_0|^q \mathbf{1}_{\{|\epsilon_0| > \tau\}}\right)$ denotes the tail moment and $\gamma = \|\boldsymbol{\beta}_0\|_1 + s\lambda_0^{-1}p_{\lambda}(\infty) + \tau^2\lambda_0^{-1}$. If in addition $\lambda \geq 56(1-c_1)^{-1}\kappa^{-2}\lambda_0\sqrt{s}$, then we have

$$\mathbb{E}\left\{\mathrm{FS}\left(\hat{\boldsymbol{\beta}}\right)\right\} = O\left\{\lambda^{-2}m_{2,\tau} + \left(\gamma\frac{\lambda_0}{\lambda^2} + s\right)p^{-c_0}\right\}$$

$$\mathbb{E}\left\{\left\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\right\|_{\infty}\right\} = O\left\{\lambda_0\left\|\left(n^{-1}\mathbf{X}_1'\mathbf{X}_1\right)^{-1}\right\|_{\infty} + \lambda_0^{-1}m_{2,\tau} + \gamma p^{-c_0}\right\}$$

Again, λ_0 enteres all bounds for the oracle risk inequalities, λ only enters the risk bound for the

variable selection loss. This reflects the different roles played by the L_1 penalty and concave penalty in prediction and variable selection.

How to understand Theorem 13.2.2?

- The 3 bounds can have leading orders given in the **first terms** since they are independent of the τ and p^{-c_0} , and the remainders in each bound can be made sufficiently small since τ and c_0 can be chosen arbitrarily large:
 - − for bounded error $\epsilon_i \in [-b, b]$, take $\tau = b$ makes the tail moments $m_{q,\tau}$ vanish
 - for Gaussian error $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $m_{q,\tau} = O\left[\tau^{q-1} \exp(-\frac{\tau^2}{2\sigma^2})\right]$ for positive integer q
- the new oracle risk inequalities complement the common results: the inclusion of L_1 -component $\lambda_0 t$ stabilizes prediction and variable selection, and leads to oracle risk bounds.
- It's unclear whether the concave method alone can enjoy similar risk bounds.

13.3 Computable Solutionss

The global minimizer established so far has nice properties, but due to the non-convexity, there might be computational difficulties in finding such global minimizer. Here, with the coordinate optimization algorithm, one can obtain a path of sparse computable solutions that are global minimizers in each coordinate, as shown in the following Theorem.

Theorem 13.3.1: Asymptotic Properties of the Computable Solutions

Let $\hat{\beta}$ be a computable local minimizer of 13.1 that is global minimizer in **each coordinate** produced by any algorithm satisfying

- $\bullet \|\hat{\boldsymbol{\beta}}\|_0 \le c_2 s$
- $\|\frac{1}{n}\mathbf{X}'(\mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}})\|_{\infty} = O(\lambda_0), \lambda \geq c_3\lambda_0$
- $\min_{\|\boldsymbol{\delta}\|_2=1, \|\boldsymbol{\delta}\|_0 \leq c_4 s} \frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_2 \geq \kappa_0$ for some positive constant c_2, c_3, κ_0

References

- Peter J Bickel, Ya'acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig selector. *The Annals of Statistics*, pages 1705–1732, 2009.
- Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is much larger than n. *The Annals of Statistics*, 35(6):2313–2351, 2007.
- Yingying Fan and Jinchi Lv. Asymptotic properties for combined 11 and concave regularization. *Biometrika*, 101(1):57–70, 2014.
- Jinchi Lv and Yingying Fan. A unified approach to model selection and sparse recovery using regularized least squares. *Journal of the American Statistical Association*, 2009.
- Cun-Hui Zhang and T Zhang. A general theory of concave regularization for high-dimensional sparse estimation problems. *Statistical Science*, page 576, 2012.