

### MULTIMEDIA (TECHNIEKEN)

#### PRACTICUM VIDEO 2

Deadline: donderdag 26 april, 14:00 uur

Johan De Praeter

johan.depraeter@ugent.be



### Een multimediabestand bevat meer dan enkel video.

#### Container

3gp

avi

Mkv

MP4

mpg

Webm

wmv



Ongecomprimeerde video is een enorme berg data.



#### 1 uur film op HD resolutie (1920x1080):

- 3 bytes per pixel
- 1920x1080 pixels per beeld
- 25 beelden per seconde
- 3600 sec.

560 GB!

### Hogere temporele en spatiale resolutie resulteren in nog meer data.



25 fps50 fps60 fps120 fps

Hogere beeldsnelheid voor sport

### 85" 8K LED TV



#### Hoe die data transporteren en opslaan?



9 TB / 20 Gbps

@ 25 fps







### Videocompressie maakt transport en opslag mogelijk.



#### Er is nood aan efficiënte compressie.



#### Inleiding Practicum Video 2



Hoe comprimeren?

Wat is efficient?

Welke standaarden?

#### Inleiding Practicum Video 2



Hoe comprimeren?

Wat is efficient?

Welke standaarden?

# Sterkere compressie zorgt voor verlies van data.

Origineel



Verliesloos



Beste compressie!

Info
verwerpen +
samenvatten

Verlieshebbend



#### Compressie door uitbuiten van redundantie.

Signaleer "kopieer delen vorige beeld"



Signaleer "kopieer omliggende pixelwaarden"

### Compressie door verwerpen van kleurinfo.



## Onderbemonstering van chrominantie zorgt voor compressie.



#### Inleiding Practicum Video 2



Hoe comprimeren?

Stilstaande beelden

Bewegende beelden

Geavanceerde technieken

Wat is efficient?

Welke standaarden?

#### Inleiding Practicum Video 2



Hoe comprimeren?

Stilstaande beelden

Bewegende beelden

Geavanceerde technieken

Wat is efficient?

Welke standaarden?



Omzetten naar 1-dimensionale voorstelling + statistische verliesloze compressie





## In de recente standaarden worden beelden opgedeeld in blokken.



Afmetingen blokken = afhankelijk van standaard

*Hier: blok = 16x16 pixels* 

## Bij intrapredictie wordt een blok voorspeld aan de hand van de omliggende blokken.





Signaleer "kopieer omliggende pixelwaarden"



### Het residu is het voorspelde beeld min het originele beeld.



Origineel



Voorspeld



Residu



## De transformatiestap zet pixel-info om naar frequentiecomponenten.



Voorbeeld: Discrete Cosinus Transformatie (DCT)

#### Een beeld bevat vooral lage frequenties.



stijgende horizontale frequentie

Zorgt voor meer kleine coëfficiënten, → verliesloze compressie!





### Quantisatie verwijdert informatie en vermindert nauwkeurigheid.

#### Quantisatie = minder bits!

| 126 | -49 | 43  | -19 | 9   | -10 | 6   | -1 |
|-----|-----|-----|-----|-----|-----|-----|----|
| -65 | 19  | -14 | -1  | 3   | 2   | 0   | -1 |
| 12  | 5   | -12 | 13  | -14 | 9   | -10 | 0  |
| -13 | 13  | 0   | -3  | 6   | 3   | 1   | 1  |
| 5   | 3   | -12 | 3   | -5  | -7  | 7   | -4 |
| -4  | -6  | 9   | 1   | -3  | 2   | -5  | 0  |
| 4   | -2  | -4  | -4  | 7   | 2   | 0   | 2  |
| -1  | -2  | 1   | 1   | -6  | -2  | 1   | -2 |

| 31  | -11 | 10 | -4 | 2  | -2 | 1  | 0  |
|-----|-----|----|----|----|----|----|----|
| -16 | 4   | -3 | 0  | 0  | 0  | 0  | 0  |
| 3   | 1   | -3 | 3  | -3 | 2  | -2 | 0  |
| -3  | 3   | 0  | 0  | 1  | 0  | 0  | 0  |
| 1   | 0   | -3 | 0  | -1 | -1 | 1  | -1 |
| -1  | -1  | 2  | 0  | 0  | 0  | -1 | 0  |
| 1   | 0   | -1 | -1 | 1  | 0  | 0  | 0  |
| 0   | 0   | 0  | 0  | -1 | 0  | 0  | 0  |

gequantiseerd(Qp = 4)

origineel

 $round(Y_{ij}/Qp) = Z_{ij}$ 

#### Perfecte reconstructie is niet meer mogelijk.

= correct gereconstrueerd

| 126 | -49 | 43  | -19 | 9   | -10 | 6   | -1 | 31  | -11 | 10 | -4 | 2  | -2 | 1  | 0  | 124 | -44 | 40  | -16 | 8   | -8 | 4  | 0  |
|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|-----|----|----|----|
| -65 | 19  | -14 | -1  | 3   | 2   | 0   | -1 | -16 | 4   | -3 | 0  | 0  | 0  | 0  | 0  | -64 | 16  | -12 | 0   | 0   | 0  | 0  | 0  |
| 12  | 5   | -12 | 13  | -14 | 9   | -10 | 0  | 3   | 1   | -3 | 3  | -3 | 2  | -2 | 0  | 12  | 4   | -12 | 12  | -12 | 8  | -8 | 0  |
| -13 | 13  | 0   | -3  | 6   | 3   | 1   | 1  | -3  | 3   | 0  | 0  | 1  | 0  | 0  | 0  | -12 | 12  | 0   | 0   | 4   | 0  | 0  | 0  |
| 5   | 3   | -12 | 3   | -5  | -7  | 7   | -4 | 1   | 0   | -3 | 0  | -1 | -1 | 1  | -1 | 4   | 0   | -12 | 0   | -4  | -4 | 4  | -4 |
| -4  | -6  | 9   | 1   | -3  | 2   | -5  | 0  | -1  | -1  | 2  | 0  | 0  | 0  | -1 | 0  | -4  | -4  | 8   | 0   | 0   | 0  | -4 | 0  |
| 4   | -2  | -4  | -4  | 7   | 2   | 0   | 2  | 1   | 0   | -1 | -1 | 1  | 0  | 0  | 0  | 4   | 0   | -4  | -4  | 4   | 0  | 0  | 0  |
| -1  | -2  | 1   | 1   | -6  | -2  | 1   | -2 | 0   | 0   | 0  | 0  | -1 | 0  | 0  | 0  | 0   | 0   | 0   | 0   | -4  | 0  | 0  | 0  |
|     | -   | •   | •   | •   |     | •   |    | -   |     |    |    |    |    |    |    |     |     |     |     |     |    |    |    |

origineel

gequantiseerd(Qp = 4)

gedequantiseerd(Qp = 4)

Qp**1** = #bits**↓** = nauwkeurigheid**↓** 











### Scanning zorgt voor een 1D-voorstelling waarbij de kleinere coëfficiënten elkaar volgen.

| 31  | -11 | 10 | -4 | 2  | -2 | 1  | 0  |
|-----|-----|----|----|----|----|----|----|
| -16 | 4   | -3 | 0  | 0  | 0  | 0  | 0  |
| 3   | 1   | -3 | 3  | -3 | 2  | -2 | 0  |
| -3  | 3   | 0  | 0  | 1  | 0  | 0  | 0  |
| 1   | 0   | -3 | 0  | -1 | -1 | 1  | -1 |
| -1  | -1  | 2  | 0  | 0  | 0  | -1 | 0  |
| 1   | 0   | -1 | -1 | 1  | 0  | 0  | 0  |
| 0   | 0   | 0  | 0  | -1 | 0  | 0  | 0  |



0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0

#### Entropiecodering comprimeert redundantie.

frequent voorkomende symbolen  $\rightarrow$  korte codewoorden weinig voorkomende symbolen  $\rightarrow$  langere codewoorden

0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0  $\rightarrow$  comprimeerbaar met statistische methoden

## Entropiecodering is vergelijkbaar met zip-compressie.

Size: 15,0 KB (15 452 bytes)

INULNULNULÇ, \$€NULNULNULNULNULNULNULNULSTËBSNULNULf

1ö°STXNULNULNULETX÷ÿÿ1ö°STXNULNULNUL‰÷èôöÿÿH<
OHNULNULè«ôÿÿòSIDC1, \$SOHNULNUL‰ØA÷1‰ØòSIDLE¤\$SOH

EENO1 NULNULòSIY, \$STXNULNULòSIDC1, \$8STXNULNU

"\$SOHNULNULÒSIDLED\$òSIX, \$SOHNULNULÒSIDC1, \$"SO

AÃ<L\$XH4NULNULNULNULNULEOTI€7ùÿÿ¾-<Ûh‰Ø÷1‰Ñ‰ÚÁùFFÁÚ



PSNRStatic.zip

Type of file: Compressed (zipped) Folder (.zip)

Opens with:



Windows Explorer



Location: G:\Academic\MM-MMT\2015-2016\cdots

Size: 6,22 KB (6 376 bytes)

15,0 KB  $\rightarrow$  6,22 KB (41%)

Size: 19,6 KB (20 078 bytes)



out.zip

Type of file: Compressed (zipped) Folder (.zip)

Opens with:



Windows Explorer

Location: G:\Academic\MM-MMT\2015-2016\c

Size: 2,39 KB (2 452 bytes)

19,6 KB  $\rightarrow$  2,39 KB (12%)



#### Inleiding Practicum Video 2



Hoe comprimeren?

Stilstaande beelden

Bewegende beelden

Geavanceerde technieken

Wat is efficient?

Welke standaarden?

## Compressie van bewegende beelden



### In video is er veel temporele redundantie.



Compressie van bewegende beelden = gebruikmaken van vorige beelden

# Huidig beeld min vorig beeld levert nog veel residu op.



residubeeld

## Bewegingsestimatie en –compensatie compenseren voor bewegingen tussen beelden.

Regio die zorgt voor kleinste residu voor het overeenkomstig blok



Te coderen: bewegingsvector en residu

## Bij bewegingsestimatie wordt voor elk blok de beste bewegingsvector gezocht.

Blokgrootte = afhankelijk van compressiestandaard



huidig beeld

### bewegingsestimatie





referentiebeeld

**Veel** bewegingsvectoren om te zoeken

# De beste bewegingsvector minimaliseert de energie van het residu.

#### Zoekvenster waarin gezocht wordt



Voorbeeld berekening energie:  $Mean\ Squared\ Error: MSE = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{i=0}^{N-1} (C_{ij} - R_{ij})^2$ 

# Bewegingsestimatie en –compensatie zorgt voor betere voorspellingen.



residubeeld zonder bewegingscompensatie



residubeeld na bewegingscompensatie

# Overzicht van compressie van bewegende beelden



### Inleiding Practicum Video 2



### Hoe comprimeren?

Stilstaande beelden

Bewegende beelden

Geavanceerde technieken

Wat is efficient?

Welke standaarden?

### Geavanceerde codeertechnieken

Technieken ontwikkeld voor modernere compressiestandaarden:

- B-beelden
- meerdere referentiebeelden
- sub-pixel nauwkeurigheid
- (sub-)blokpartities
- snelle zoekalgoritmen

# B-beelden voorspellen beweging op basis van *twee* (of meer) referentiebeelden.



Residu = Compressie ; MAAR rekentijd 11

## Meerdere referentiebeelden vergroot de kans op het vinden van een beste blok.



Residu = Compressie ; MAAR rekentijd 11

# Sub-pixel nauwkeurigheid helpt een betere match te vinden voor subtiele beweging.



Bewegingsvectoren krijgen zo *half pel* en *quarter pel* nauwkeurigheid

# Zoeken op sub-pixel niveau betekent 'opblazen' van het beeld.



Betere match = Residu↓ = Compressie↑;

MAAR zoekruimte x4 ≈ rekentijd x4

### Blokpartitionering staat betere matches toe.



16

16



Partitioneringsmogelijkheden 1 = rekentijd 11



## Snelle zoekalgoritmen voor bewegingsestimatie reduceren rekentijd ten koste van beste match.

Voorbeeld: logaritmisch zoeken (merk op: zoekalgoritme is niet gestandardiseerd)



Halveer zoekafstand als beste punt het centrum is.

Rekentijd↓; MAAR slechtere match = compressie↓

### Inleiding Practicum Video 2



Hoe comprimeren?

Stilstaande beelden

Bewegende beelden

Geavanceerde technieken

Wat is efficient?

Welke standaarden?

### Inleiding Practicum Video 2



Hoe comprimeren?

Wat is efficient?

Welke standaarden?

# Is het reduceren van bits voldoende voor efficiënte compressie?





## Compressie-efficiëntie is de relatie tussen hoeveelheid data en kwaliteit.



Gemiddelde bitsnelheid:

totaal aantal bits × aantal beelden per seconde

totaal aantal beelden

eenheid: kbit/s, Mbit/s (k=1000, M=1000000)

## PSNR is gebaseerd op het verschil in energie tussen het gecodeerde en originele beeld.



twee videostromen worden beeld per beeld vergeleken

gemiddelde van alle beelden in videostroom

uitgedrukt in **decibel** (dB)

PSNR
gebaseerd op **MSE** (Mean Squared Error)

# Hardere compressie betekent lagere kwaliteit.

#### PSNR – illustratie



origineel



3733 bytes **38,3 dB** 



2030 bytes **33,4 dB** 



787 bytes **26,4 dB** 

# Rate-distortion curves laten toe om codecs en technieken te vergelijken.



Punten volgen vaak ongeveer een derdegraadsvergelijking



## Rate control is een mechanisme dat afwegingen maakt tussen bitsnelheid en kwaliteit.

### CBR (constant bit rate)

- + constante bitsnelheid
- fluctuerende kwaliteit in de tijd

#### VBR (variable bit rate)

- + constante kwaliteit
- fluctuerende ogenblikkelijke bitsnelheid

### Inleiding Practicum Video 2



Hoe comprimeren?

Wat is efficient?

Welke standaarden?

### Enkele standaarden voor videocompressie.





MPEG-1/2 Motion JPEG Motion JPEG2000

H.263



HEVC; BT. 2020; 4K UHD 3840x2160 resolutie 82 Mbit/s - 128 Mbit/s

# Elke 10 jaar verdubbelt de compressie-efficiëntie



Compressie 11; rekentijd 11111

### Codecs zijn encoder- en/of decoderimplementaties van compressiestandaarden.



Beide zijn open-source codecs



### Inleiding Practicum Video 2



Hoe comprimeren?

Wat is efficient?

Welke standaarden?

### En nu is de opdracht aan jullie

#### Meten van codeerefficiëntie

- van verschillende codeertechnieken in x264
- van x264 tegenover x265
- voor verschillende soorten beeldinhoud





Inschatting maken van de financiële kost van video streaming









### Enkele praktische richtlijnen

Details van de opgave staan in het PDF-document op Minerva

Lees aandachtig de uitleg bij de oefeningen + bekijk appendices!

#### In te dienen op Minerva

- een MS Word- of PDF-document met alle antwoorden.
- 3 Python scripts

Gebruik van Python (lokaal of via Athena) om te automatiseren

Gebruik IDE met syntax highlighting!

### Enkele praktische richtlijnen

Het verslag telt maximum 2000 woorden.

Het modelverslag telt 9 pagina's en ongeveer 1200 woorden

Antwoord bondig, zonder afbreuk te doen aan correctheid

Voor veel deelvragen volstaat een antwoord van 1 tot 3 regels tekst (exclusief grafieken en commando's).

Benoem assen van grafieken en zorg voor leesbaarheid, ook in zwart-wit!

### Meestgestelde vragen



Waarden worden niet juist ingelezen in Excel?

Controleer of Excel komma of punten verwacht in decimalen.

Gebruik van Matplotlib voor het maken van grafieken?

OK.



## MULTIMEDIA (TECHNIEKEN)

### PRACTICUM VIDEO 2

Deadline: donderdag 26 april, 14:00 uur

Johan De Praeter

johan.depraeter@ugent.be

