• Background:

Diabetes Mellitus is an increasingly prevalent chronic disease characterized by the body's inability to metabolize glucose. The healthcare industry generates abundant amount of data with respect to patient. So, machine learning can be seen as an effective way to predict diabetes for better awareness and prevention.

Problem Objective:

To predict if an individual is susceptible to the onset of diabetes by taking into consideration of their lifestyle behaviors, genetic and clinical factors by using supervised learning principle of machine learning algorithm.

Methodology:

Using a google survey we collected data related to lifestyle habits, certain clinical factors of Indians and built predictive models of machine learning. Predictive modeling and performance analysis is done for the same using Rapid Miner tool for data analytics.

Software used:

Rapid Miner Data Analytics tool version 9.8

Dataset Source:

Google survey on Lifestyle habits of Indians

• Machine Learning Algorithm:

supervised learning model(Knn, Naïve Bayes etc..)

Attribute description of dataset used

Description	Feature
Age in years	age
Gender Orientation	Gender
Weight in Kilograms	Weight
Height in Centimenters	Height
Any history of having Cholestrol	cholestrol
Having hypertension or not	hypertension
Having thyroid or not	thyroid
Whether having history of vaccination	vaccine for tuberculosis thrush
Blood group type	blood group
No. of hours of sleeping	hours of sleeping
Any lifestyle habit of drinking/smoking	Drinking/smoking habits
Excessive food intake period	When do you take heavy foods
No. of times having food at a restaurant	Frequency of restaurant visits
How often the consumption of deep fried foods	intake of deep fried foods
Intake of healthy foods	intake of millets
Intake of healthy foods	intake of sprouts
History of known illness and medication	Are you at medication for any disease?
No. of times doing exercise	Frequency of exercise
No. of times a person practises yoga	Frequency of yoga
How often a person consumes healthy spices and nuts	intake of nuts and spices
Either a sedantary lifestyle or active lifestyle	nature of job
Plant based or animal based food consumption	vegetarian/non vegetarian
Active or passive transportation	Mode of transport
Whether the concerned individual has diabetes or not	Diabetes (Class Variable)

Sample Of The Dataset Used

Row No.	Gender	age	weight	height	cholestrol	hypertension	thyroid	vaccine for t	Blood group
1	Male	42	78	162	No	Yes	No	I do not know	A1B +ve
2	Male	20	69	172	No	No	No	Yes	O+ve
3	Male	21	72	165	No	No	No	I do not know	O+ve
4	Male	21	68	5.800	No	No	No	No	0+
5	Male	21	55	176	No	No	No	Yes	A+
6	Male	21	70	180	No	No	No	I do not know	B+
7	Male	21	100	177	Yes	No	No	No	A+
8	Male	21	63	168	No	No	No	I do not know	0+
9	Male	21	80	178	No	No	No	Yes	B+
10	Male	21	81	184	No	No	No	I do not know	B -ve
11	Male	21	75	178	No	No	No	I do not know	O +ve
12	Female	20	59	161.544	No	No	Yes	Yes	O+ve
13	Male	21	70	175	No	No	No	I do not know	A+
14	Male	39	81	169	No	Yes	No	Yes	A1B+

Sample Of The Dataset Used

intake of de	intake of mil	intake of spr	Are you at m	Frequency o	Frequency o	intake of nut	nature of job	vegetarian/n	What is your	Diabetes
Yes	No	No	No	monthly	rarely	rarely	involves mor	mixed	bike	No
Yes	Yes	Yes	No	rarely	i dont do yoga	regularly	almost sitting	non-vegetarian	car	No
Yes	No	Yes	No	monthly	twice in a week	regularly	almost sitting	non-vegetarian	bike	No
Yes	rarely	rarely	No	daily	rarely	rarely	physical	non-vegetarian	bus	No
Maybe	rarely	rarely	No	twice in a week	i dont do yoga	rarely	involves mor	non-vegetarian	car	No
Yes	rarely	rarely	No	rarely	rarely	regularly	almost sitting	mixed	bus	No
Yes	Yes	No	No	twice in a week	rarely	regularly	involves mor	non-vegetarian	by walk	No
Yes	rarely	Yes	No	i dont do exer	i dont do yoga	rarely	almost sitting	mixed	bike	No
Yes	Yes	Yes	No	twice in a week	twice in a week	regularly	almost sitting	non-vegetarian	bike	No
Maybe	rarely	rarely	No	daily	rarely	regularly	involves mor	eggitarian	car	No
Yes	Yes	rarely	No	daily	rarely	regularly	involves mor	vegetarian	bus	No
Maybe	Yes	rarely	No	rarely	rarely	rarely	almost sitting	vegetarian	by walk	No
Maybe	rarely	rarely	No	twice in a week	rarely	rarely	physical	non-vegetarian	bike	No
Yes	No	No	No	rarely	i dont do yoga	rarely	involves mor	non-vegetarian	bus	No
100	.,,	10.01	21.9	100	404114		401 20			

Data Preprocessing

Data Preprocessing

Checking for any missing values

Why Supervised learning?

Supervised learning is used because the output is given to the model. In supervised learning, both input and output are known. After processing, the actual output is compared with required outputs ie, the algorithm learns on a labeled dataset, providing an answer key that the algorithm can use to evaluate its accuracy on training data.

• Review 1 Implementation:

Model 2: Naïve Bayes Model:

Naive Bayes also called Bayesian theorem is a simple, effective and commonly used machine learning classifier. The algorithm calculates probabilistic results by counting the frequency and combines the value given in data set. By using Bayesian theorem, it assumes that all attributes are independent and based on variable values of classes. In real world application, the conditional independence assumption rarely holds true and gives well and more sophisticate classifier results.

Naïve bayes on preprocessed data..

Predicted output values with the trained model

Performance Table:

Table View Plot View

accuracy: 91.23% +/- 4.73% (micro average: 91.23%)

	true No	true Yes	class precision
pred. No	251	13	95.08%
pred. Yes	12	9	42.86%
class recall	95.44%	40.91%	

• Review 2 Implementation:

Model 2: KNN:

K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories.K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K-NN algorithm.

KNN Model on preprocessed data...

Predicted output values with the trained model

Performance Table:

