REAL TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED.

TEAM ID:PNT2022TMID42258

INTRODUCTION:-

1.1 PROJECT OVERVIEW:

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

1.2 PURPOSE:

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Converion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

2. LITERATURE SURVEY:-

2.1 EXISTING PROBLEM:

As far, Differently-abled people face discrimination in everyday life. It is difficult for them to communicate with normal people and vice- versa. so many are trying to solve this and give solution by converting sign language into audio and audio(speech) to sign language using Artificial intelligence -neural network, speech recognition, CNN, NLP but it is very tediuos to develop into REAL-TIME APPLICATION.we have tried to provide solutions for this existing solution.

2.2 REFERENCES:

Arun Prasath G,Annapurani,Panaiyappank-Design of an integrated learning approach to assist real-time deaf application using voice recognition system.

Prashant G. Ahire, Kshitija B. Tileka, Tejaswini A. Jawake, Pramod B. WaraleTwo Way Communicator between Deaf and Dumb People and Normal People.

A.Ibarguren, I.Maurtua, B.Sierra-Layered architecture for real time sign recognition: Hand gesture and movement.

Ashish Sethi, Hemanth S, Kuldeep Kumar, Bhaskara Rao N, Krishnan R-SignPro-An Application Suite for Deaf and Dumb.

Ms. Rashmi D. Kyatanavar, Prof. P. R. Futane-Video Gesture Classification using Fourier Descriptors and General Fuzzy Min Max Neural Network.

Shweta S. Shinde,

Rajesh M. Autee, Vitthal K. Bhosale-Real-time two-way communication approach for hearing impaired and dumb person based on image processing.

EriglenGani, AldaKika-Albanian Sign Language (AlbSL) Number Recognition from Both Hand's Gestures Acquired by Kinect Sensors.

Surbhi Rathi, Ujwalla Gawande-Development of full duplex intelligent communication system for deaf and dumb people.

A. Gayathri, A. Sasi Kumar-Sign Language Recognition for Deaf and Dumb People Using Android Environment.

G. Arun, Prasath, K Annapurani-Real-Time Application for Deaf and Dumb: Bidirectional Communication Using Learning Methods.

2.3 PROBLEM STATEMENT DEFINITION:

Problem	l am	I'm tryingto	but	Because	Which makes
Statement	(Customer)				mefeel
(PS)					
PS-1	DEAF-MUTE PEOPLE	TO SOCIALIZE WITH OTHERS	THEY CANT COMMUNICA TE WITHOUT SIGN LANGUAGE	OF THEIR IMPAIRMENT	UNDERRATED AND INFERIOR TO NON- DISABLED PEOPLE.
PS-2	NON- DISABLED PEOPLE	COMMUNICA TE WITH DEAF- MUTE PEOPLE	BUT IT VERY COMPLEX TO COMMUNICA TE WITH THEM	IT IS DIFFICULT TO LEARNSIGN LANGUAGE	NOT ABLE TO MAKE FRIENDLY CIRCLE WITH THEM

3.IDEATION AND PROPOSED SOLUTION:-

3.1 EMPATHY MAP CANVAS:

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

1

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2 IDEATION AND BRAINSTORMING:

3.3 PROPOSED SOLUTION:

s	PARAMETER	DESCRIPTION
NO		
1.	Problem Statement (Problem to be solved)	How might we design and implement the system to overcome the communication barrier between normal people and speech-hearing impaired people?
2.	Idea/Solution description	The project aims to develop a system that converts sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into

		understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on
3.	Novelty / Uniqueness	1. Enables Two-Way Communication System 2. Accurate Hand Gesture Recognition 3. Retrieval of High-Quality Audio 4. Multilingual system 5. Auto Updation 6. Disabled People get Benefited on a Major Scale 7. Learning Sign Language is not Necessary
4.	Social Impact / Customer Satisfaction	1. Specially Abled People cannot be felt Underrated 2. Easily Accessible by Young and Adults 3. Breaks Inferior Complexity among the Society 4. Portable System 5. Cost Efficient 6. Live Communication 7. Communication Without Delay
5.	Business Model (Revenue	Based on the Popularity of the Application, the number of users gets increased so that Marketing

	Model)	profit can also be Increased
6.	Scalability of the Solution	Based on several users who need the service mostly get benefited from this application. This project can be expandable to reach more people which broadens the effectiveness for the users.

3.4 PROPBLEM SOLUTION FIT:

4.REQUIREMENT ANALYSIS:-

4.1 FUNCTIONAL REQUIREMENTS:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through website
		Registration through Email Id and
		mobile number Registration
		through installing the application
FR-2		Confirmation via Email
	User Confirmation	verification
		Confirmation via mobile OTP
		verification
FR-3	User Login	Login to your account by entering
		your Email Id or mobile number
		and password
FR-4	User Interface	Interaction between the
		application and the user is made
		easy
FR-5	Account management	Easy recovery process by OTP
		verification by Email or SMS in
		case the account password is lost
	Database management	Storing frequently used sign
FR-6		language for easy communication

4.2 NON- FUNCTIONAL REQUIREMENTS:

FR No.	Non-Functional Requirement	Description
NFR- 1	Usability	Easy to use because of the user-friendly nature of the application
NFR- 2	Security	The account cannot be misused due to the user verification process
NFR-	Reliability	Highly reliable due to high accuracy
NFR- 4	Performance	Because of very minimal errors, the performance is very high

NFR-	Availability	The application is available to all and
5		can be accessed by every deaf-mute
		people
NFR-	Scalability	The application can be easily modified
6		based on the user's preferences

5.PROJECT DESIGN:-

5.1 DATA FLOW DIAGRAMS:

5.3 USER STORIES:

User Type	Functional Requirem ent (Epic)	User Story Number	User Story / Task	Acceptan ce criteria	Priority	Release
Normal people and Deaf-mute people	Registrati on	USN-1	As a user, I can register for the application by entering my email, and password, and	I can access my account/d ashboard	High	Sprint-1

			confirming my password		
		USN-2	As a user, I will receive a confirmati on email once I have registered for the application		Sprint-1
	Dashboard		Two options available Choose the option based on who uses the app. If you are normal person click the "normal people" option. If you are deaf-mute people click "deaf-mute" Option	High	Sprint-1
Normal people			Give access to camera to recognize the gestures Give access to	High	Sprint-1

	microphone to give our message through voice		
Deaf-mute people	Give access to display to view the message sent by normal people.	High	Sprint-1

5.2 SOLUTION AND TECHNICAL ARCHITECTURE:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1		User can interact using	HTML

		Web UI and Mobile	
	User Interface	Application	
2	Application Logic-1	Get the image dataset and	Python
		pre-process the images	
		which will be used for	
		building the model	
3	Application Logic-2	Building and testing the	IBM Watson STT
		model	service
4	Application Logic-3	D :11: .1 1: .:	Flask
		Building the application	
5	Database	Data Type, Configurations	MySQL, NoSQL,
		etc	etc.
6	Cloud Database	Database Service on	IBM DB2, IBM
		Cloud	Cloudant etc.
7	File Storage	File storage requirements	IBM Block
			Storage or Other
			Storage Service or
			Local Filesystem
8	Machine Learning	Purpose of Machine	Object
	Model	Learning Model	Recognition
			Model, etc.
9	Infrastructure	Application Deployment	Local, Cloud
	(Server / Cloud)	on Local System / Cloud	Foundry,
		Local Server	Kubernetes, etc.
		Configuration: Cloud Server	
		Configuration:	
		 3	

Table-2: Application Characteristics:

S. No	Component	Description	Technology
1	Security Implementations	use of firewalls	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc
2	Scalable Architecture	It can handle business growth	Web server tuning,Operating system

			tuning
3	Availability	Available to	Open source framework
		everyone	
4	Performance	Without delay	Deep Neural network
		outputs can be	
		viewed	

6.PROJECT PLANNING AND SCHEDULING:-

6.1 SPRINT PLANNING AND ESTIMATION:

TITLE	DESCRIPTION	DATE
Literature Survey	Literature Survey & Literature survey on the 10	18
& Information	SEPTEMBER 2022 Information Gathering	SEPTEMBER
Gathering	selected project & gathering information by	2022
	referring the, technical papers, research	
	publications etc	
Prepare Empathy	Prepare Empathy Map Canvas 10 SEPTEMBER	18
Map	2022 to capture the user Pains & Gains, Prepare	SEPTEMBER
	list of problem statements	2022
Ideation	List the by organizing the 17 SEPTEMBER 2022	23
	brainstorming session and prioritize the top 3	SEPTEMBER
	ideas based on the feasibility & importance.	2022
Proposed Solution	Prepare the proposed solution document,	24
	which includes the novelty, feasibility of idea,	SEPTEMBER
	business model, social impact, scalability	2022
Problem Solution	Prepare problem - solution fit Problem Solution	05 OCTOBER
Fit	Fit do	2022
Solution	Prepare solution architecture Solution	
Architecture	Architecture document	06 OCTOBER
		2022
Customer Journey	Prepare the customer journey maps to	07 OCTOBER
	understand the user interactions & experiences	2022
	with the application (entry to exit).	2022
Functional	Prepare the functional Functional Requirement	10 OCTOBER
Requirement	document.	IO OC I OBEK

		2022
Data Flow	Draw the data flow diagrams and submit for	11 OCTOBER
Diagrams	review.	2022
Technology	Prepare the Technology Architecture	1 NOVEMBER
architecture	technology architecture diagram.	2022
Prepare milestone	Prepare the milestones & Prepare Milestone &	15
and activity list	Activity activity list	NOVEMBER 2022
Project		15
Development -	Sprint 1-Collecting the data and processing the image	NOVEMBER 2022
Delivery of Sprint1, 2,3,4	Sprint 2-Testing the model	
. ,	Sprint 3-Building the application	15 NOVEMBER
	Sprint 4-Training the CNN model on IBM cloud	2022
		15 NOVEMBER 2022
		In Progress

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Collecting the required dataset for the project.	8	High	Kishore
Sprint-1	Required Downloads	USN-2	Downloading all the tools that are required for the project.	3	Low	Shuruthi
Sprint-2	Model Building	USN-3	Building the project model by downloading	2	High	Anandha

			required			
			Python			
			libraries.			
Sprint-1	Image Preprocessi ng	USN-1	Image data generation and training and testing the dataset.	8	Medium	Rebecca
Sprint-2	Training and testing the model	USN-2	Training the created project model and testing it.	5	Medium	Kishore
Sprint- 2	Configurati on	USN-1	Two options available- Choose the option based on who uses the app. If you are a normal person click the "normal people" option.	13	High	Anandha
Sprint - 3	Building the Application	USN-2	Building the final application using flask and HTML.	8	High	Rebecca
Sprint-3	User interface	USN-1	Give access to the microphone to give our message through voice	5	Low	Kishore
Sprint-4		USN-3	Give access to	3		Shuruthi

	Database manageme nt		the display to view the message sent by normal people		Medium	
Sprint - 4	Output	USN-3	Audio gets converted into sign language	8	High	Shuruthi

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	19	6 Days	24 Oct 2022	29 Oct 2022	19	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	13	6 Days	07 Nov 2022	12 Nov 2022	13	12 Nov 2022
Sprint-4	19	6 Days	14 Nov 2022	19 Nov 2022	19	19 Nov 2022

6.3 REPORTS FROM JIRA:

7.CODING AND SOLUTIONING:-7.1 FEATURE 1:

```
pip install keras==2.10.0
Collecting keras==2.10.0
  Using cached keras-2.10.0-py2.py3-none-any.whl (1.7 MB)
Installing collected packages: keras
  Attempting uninstall: keras
    Found existing installation: keras 2.7.0
    Uninstalling keras-2.7.0:
      Successfully uninstalled keras-2.7.0
Successfully installed keras-2.10.0
Note: you may need to restart the kernel to use updated packages.
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2,
zoom_range = 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
import tensorflow as tf
def get_data(arg1, **kwargs):
```

```
tf.keras.preprocessing.image_dataset_from_directory
 labels="inferred",
    label mode="int",
    class names=None,
    color_mode="rgb",
   batch_size=32,
    image size=(256, 256),
    shuffle=True,
    seed=None,
    validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow_links=False,
    crop_to_aspect_ratio=False,
    **kwargs
)
def get_data(path):
 tf.keras.preprocessing.image.load_img(
    path, grayscale=False, color_mode="rgb", target_size=None,
interpolation="nearest"
def get data(image path):
 image = tf.keras.preprocessing.image.load_img(image_path)
  input_arr = tf.keras.preprocessing.image.img_to_array(image)
  input_arr = np.array([input_arr]) # Convert single image to a batch.
 predictions = model.predict(input arr)
def get_data(img):
 tf.keras.preprocessing.image.img_to_array(img, data_format=None,
dtype=None)
from tensorflow.python.keras.utils.np_utils import to_categorical
import numpy as np
from PIL import Image
img_data = np.random.random(size=(100, 100, 3))
img = tf.keras.preprocessing.image.array_to_img(img_data)
array = tf.keras.preprocessing.image.img_to_array(img)
x_train=train_datagen.flow_from_directory
```

```
Found 15750 images belonging to 9 classesx_test =
test_datagen.flow_from_directory(r'C:\Users\pragadeswar\Downloads\conversat
ion engine for deaf and dumb\Dataset\test_set', target_size = (64, 64),
batch_size = 300, class_mode = 'categorical', color_mode = 'grayscale')
Found 2250 images belonging to 9 classes.from keras.models import
Sequential
from keras.layers import Dense
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.layers import Flatten
model = Sequential()
model.add(Convolution2D(32, (3, 3), input_shape = (64, 64, 1), activation
= 'relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Flatten())
model.add(Dense(units = 512, activation = 'relu'))
model.add(Dense(units = 9, activation = 'softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam',
metrics = ['accuracy'])
model.fit_generator(x_train, steps_per_epoch = 24, epochs = 10,
validation_data = x_test, validation_steps = 40
model.save('aslpng1.h5')
from keras.models import load_model
import numpy as np
import cv2
model = load_model('aslpng1.h5')
from skimage.transform import resize
def detect(frame):
  img = resize(frame, (64, 64, 1))
  img = np.expand_dims(img, axis = 0)
  if(np.max(img)>1):
    imq = imq/255.0
  prediction = model.predict(img)
  print (prediction)
  predictions = (model.predict(img) > 0.5).astype("int32")
```

```
print (prediction)
import sys
sys.setrecursionlimit(1500)
frame = cv2.imread
data = detect(frame)
7.2 FEATURE 2:
UPLOAD HTML CODE:
<html lang="en">
<head>
 <title>Conversation Engine</title>
 k
href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
rel="stylesheet">
<style>
.header {
position: relative;
top:0;
margin:0px;
z-index: 1;
left: Opx;
right: Opx;
position: fixed;
background-color: #F36262;
color: white;
box-shadow: 0px 8px 4px grey;
overflow: hidden;
padding-left:20px;
font-family: 'Josefin Sans';
font-size: 2vw;
width: 100%;
height:8%;
text-align: center;
.topnav {
```

```
overflow: hidden:
background-color: #FCAD98;
.topnav-right a {
float: left;
color: black;
text-align: center;
padding: 14px 16px;
text-decoration: none;
font-size: 18px;
.topnav-right a:hover {
background-color: #FCAD98;
color: black:
.topnav-right a.active {
background-color: #FCAD98;
color: white:
.topnav-right {
float: right;
padding-right:100px;
body {
background-color:;
background-repeat: no-repeat;
background-size:cover;
background-image:
url("https://i.pinimg.com/originals/b2/1d/c6/b21dc69346915015bc4e19bd502f
401b.gif");
 background-size: cover;
background-position: Opx Opx;
.button {
background-color: #091425;
border: none:
color: white;
```

```
padding: 15px 32px;
text-align: center;
text-decoration: none:
display: inline-block;
font-size: 12px;
border-radius: 16px;
.button:hover {
box-shadow: 012px16px0rgba(0,0,0,0.24), 017px50px0rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
width: 100%:
padding: 12px 20px;
display: inline-block;
margin-bottom:18px;
border: 1px solid #ccc;
box-sizing: border-box;
button {
background-color: #091425;
color: white;
padding: 14px 20px;
margin-bottom:10px;
border: none;
cursor: pointer;
width: 17%;
border-radius:4px;
font-family:Montserrat;
button:hover {
opacity: 0.8;
.cancelbtn {
width: auto:
padding: 10px 18px;
```

```
background-color: #f44336;
.imgcontainer {
text-align: center;
margin: 24px 012px 0;
img.avatar {
width: 30%;
border-radius: 50%;
.container {
padding: 16px;
span.psw {
float: right;
padding-top: 16px;
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
span.psw {
 display: block;
 float: none;
}
.cancelbtn {
  width: 100%;
}
.home{
margin:80px;
width: 84%;
height: 500px;
padding-top:10px;
padding-left: 30px;
.login{
margin:80px;
```

```
box-sizing: content-box;
width: 84%;
height: 420px;
padding: 30px;
border: 10px solid blue;
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
max-width: 1000px;
position: relative;
margin: auto;
/* Caption text */
.text {
color: #f2f2f2;
font-size: 15px;
padding: 8px 12px;
position: absolute;
bottom: 8px;
width: 100%;
text-align: center;
/* The dots/bullets/indicators */
.dot {
height: 15px;
width: 15px;
margin: 0 2px;
background-color: #bbb;
border-radius: 50%;
```

```
display: inline-block;
transition: background-color 0.6s ease;
.active {
background-color: #FCAD98;
/* Fading animation */
.fade {
-webkit-animation-name: fade;
-webkit-animation-duration: 1.5s;
animation-name: fade;
animation-duration: 1.5s;
@-webkit-keyframes fade {
from {opacity: .4}
to {opacity: 1}
@keyframes fade {
from {opacity: .4}
to {opacity: 1}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
.text {font-size: 11px}
.bar
margin: 0px;
padding:20px;
background-color:white;
opacity:0.6;
color:black;
font-family:'Roboto',sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
```

```
a
{
color:grey;
float:right;
text-decoration:none;
font-style:normal;
padding-right:20px;
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
p
color:black;
font-style:italic;
font-size:30px;
</style>
</head>
<body style="background-</pre>
image:url({{url_for('static',filename='images/bck3.png')}});background-
position: center; background-repeat: no-repeat;
background-size: cover;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Real Time Communication System for
Deaf & Dumb</div>
<div class="topnav-right"style="padding-top:0.5%;">
 <a href="/home">Home</a>
 <a class="active" href="/upload">Open Web Cam</a>
</div>
</div>
</body>
```

BACKEND:

```
# USAGE
# import the necessary packages
from flask import Flask, render_template, request
# Flask-It is our framework which we are going to use to run/serve our
application.
#request-for accessing file which was uploaded by the user on our
application.
import cv2 # opencv library
from tensorflow.python.keras.models import load_model#to load our
trained model
import numpy as np
from gtts import gTTS #to convert text to speech
from skimage.transform import resize
import os
from keras.preprocessing import image
from playsound import playsound
def playaudio(text):
 speech=qTTS(text)
 print(type(speech))
 speech.save("output1.mp3")
 playsound("output1.mp3")
 return
app = Flask(_name_,template_folder="templates") # initializing a flask app
# Loading the model
model=load_model('aslpng1.h5')
print("Loaded model from disk")
vals = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
#app=Flask(_name_,template_folder="templates")
@app.route('/', methods=['GET'])
def index():
 return render_template('home.html')
@app.route('/home', methods=['GET'])
```

```
def home():
 return render_template('home.html')
@app.route('/upload', methods=['GET', 'POST'])
def predict():
   # Get a reference to webcam #0 (the default one)
   print("[INFO] starting video stream...")
   vs = cv2.VideoCapture(0)
   #writer = None
   (W, H) = (None, None)
# loop over frames from the video file stream
   while True:
# read the next frame from the file
    (grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
    if not grabbed:
      break
# if the frame dimensions are empty, grab them
    if W is None or H is None:
      (H, W) = frame.shape[:2]
# clone the output frame, then convert it from BGR to RGB
#ordering and resize the frame to a fixed 64x64
    output = frame.copy()
    #print("apple")
    img = resize(frame,(64,64,1))
    img = np.expand_dims(img,axis=0)
    if(np.max(img)>1):
      img = img/255.0
    result = np.argmax(model.predict(img), axis=-1)
    index=['A', 'B','C','D','E','F','G','H','I']
    result=str(index[result[0]])
    #print(result)
    #result=result.tolist()
    cv2.putText(output, "It indicates: {}".format(result), (10, 120),
cv2.FONT_HERSHEY_PLAIN,
         2, (0,255,255), 1)
    #converts text to speech and plays the audio
```

```
speech = gTTS(text = result, lang = 'en', slow = False)
    #speech=gTTS(text)
    print(type(speech))
    speech.save("text.mp3")
    os.system("start text.mp3")
    cv2.imshow("Output", output)
    key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
    if key == ord("q"):
      break
   # release the file pointers
   print("[INFO] cleaning up...")
   vs.release()
   cv2.destroyAllWindows()
   return render_template("upload.html")
if _name_ == '_main_':
  app.run(host='0.0.0.0', port=8000, debug=False)
HOME HTML:
<html>
<script>
</script>
<style>
.header {
position: relative;
top:0;
margin:0px;
z-index: 1:
left: Opx;
right: Opx;
position: fixed;
background-color: #FCAD98;
color: white;
box-shadow: Opx 8px 2px grey;
overflow: hidden:
padding-left:20px;
```

```
font-family: 'Josefin Sans';
font-size: 2vw;
width: 100%:
height:8%;
text-align: center;
.topnav {
overflow: hidden:
background-color: #FCAD98;
.topnav-right a {
float: left;
color: black;
text-align: center;
padding: 14px 16px;
text-decoration: none;
font-size: 18px;
.topnav-right a:hover {
background-color: #FCAD98;
color: black:
.topnav-right a.active {
background-color: #FCAD98;
color: white;
.topnav-right {
float: right;
padding-right:100px;
body {
background-image: -webkit-linear-gradient(90deg, skyblue 0%, steelblue
100%);
background-image: url("");
 background-size: cover;
background-attachment: fixed;
background-size: 100% 100%;
```

```
background-color:;
background-repeat: no-repeat;
background-size:cover;
background-position: Opx Opx;
.button {
background-color: #091425;
border: none:
color: white:
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 12px;
border-radius: 16px;
.button:hover {
box-shadow: 012px16px0rgba(0,0,0,0.24), 017px50px0rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
width: 100%:
padding: 12px 20px;
display: inline-block;
margin-bottom:18px;
border: 1px solid #ccc;
box-sizing: border-box;
button {
background-color: #091425;
color: white:
padding: 14px 20px;
margin-bottom:10px;
border: none;
cursor: pointer;
width: 17%:
border-radius:4px;
```

```
font-family:Montserrat;
button:hover {
opacity: 0.8;
.cancelbtn {
width: auto;
padding: 10px 18px;
background-color: #f44336;
.imgcontainer {
text-align: center;
margin: 24px 012px 0;
img.avatar {
width: 30%;
border-radius: 50%;
.container {
padding: 16px;
span.psw {
float: right;
padding-top: 16px;
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
span.psw {
 display: block;
 float: none;
.cancelbtn {
 width: 100%;
.home{
margin:80px;
```

```
width: 84%;
height: 500px;
padding-top:10px;
padding-left: 30px;
.login{
margin:80px;
box-sizing: content-box;
width: 84%:
height: 420px;
padding: 30px;
border: 10px solid blue;
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
}
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
max-width: 1000px;
position: relative;
margin: auto;
/* Caption text */
.text {
color: #f2f2f2;
font-size: 15px;
padding: 8px 12px;
position: absolute;
bottom: 8px;
width: 100%;
text-align: center;
```

```
/* The dots/bullets/indicators */
.dot {
height: 15px;
width: 15px;
margin: 0 2px;
background-color: #bbb;
border-radius: 50%;
display: inline-block;
transition: background-color 0.6s ease;
.active {
background-color: #FCAD98;
/* Fading animation */
.fade {
-webkit-animation-name: fade;
-webkit-animation-duration: 1.5s;
animation-name: fade:
animation-duration: 1.5s;
@-webkit-keyframes fade {
from {opacity: .4}
to {opacity: 1}
@keyframes fade {
from {opacity: .4}
to {opacity: 1}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
.text {font-size: 11px}
@import
url('https://fonts.googleapis.com/css2?family=Poppins&display=swap');
box-sizing: border-box;
```

```
body {
min-height: 100vh;
margin: 0;
color: #fff;
font-family: 'Poppins', sans-serif;
display: flex;
align-items: center;
justify-content: center;
background-color: #f5f5f5;
.container {
max-width: 1376px;
margin: auto;
padding: 2rem 1.5rem;
.cards {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: center;
.card{
cursor: pointer;
background-color: transparent;
height: 300px;
perspective: 1000px;
margin: 1rem;
align-items: center;
justify-content: center;
.cardh3{
border-bottom: 1px #fff solid;
padding-bottom: 10px;
margin-bottom: 10px;
text-align: center;
font-size: 1.6rem:
word-spacing: 3px;
```

```
.card p{
opacity: 0.75;
font-size: 0.8rem;
line-height: 1.4;
.card img {
width: 360px;
height: 300px;
object-fit: cover;
border-radius: 3px;
.card-inner {
position: relative;
width: 360px;
height: 100%;
transition: transform 0.9s;
transform-style: preserve-3d;
.card:hover.card-inner {
transform: rotateY(180deg);
.card-front,
.card-back {
position: absolute;
width: 360px;
height: 100%;
-webkit-backface-visibility: hidden;
backface-visibility: hidden;
.card-back {
background-color: #222;
color: #fff;
padding: 1.5rem;
transform: rotateY(180deg);
.text-block {
```

```
bottom: 20px;
right: 20px;
background-color: black;
color: white;
padding-left: 20px;
padding-right: 20px;
p
color:black;
font-style:italic;
font-size:30px;
}
</style>
<body style="background-</pre>
image:url({{url_for('static',filename='images/bck3.png')}});background-
position: center; background-repeat: no-repeat;
background-size: cover;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Real Time Communication System for
Deaf & Dumb</div>
<div class="topnav-right"style="padding-top:0.5%;">
 <a class="active" href="/home">Home</a>
 <a href="/upload">Open Web Cam</a>
</div>
</div>
<div class="container">
 In our society, we have people with disabilities. The technology is
developing day by day but no significant developments are undertaken for
the betterment of these people. Communication between deaf-mute and a
normal person has always been a challenging task. It is very difficult for
mute people to convey their message to normal people. Since normal
people are not trained on hand sign language. In emergency times
conveying their message is very difficult. The human hand has remained a
popular choice to convey information in situations where other forms like
```

position: absolute;

speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

</div>

</body>

<html>

OUTPUT:

8. TESTING:-

	Severity 1	Severity 2	Severity 3	Severity 4		total
By Design	10	4	2	3	2	0
Duplicate	1	0	3	0		1
External	2	3	0	1		5
Fixed	11	2	4	20	3	7
Not Reproduced	0	0	1	0		1
Skipped	0	0	1	1	:	2
		_	2	1		3
Won't Fix	0	5	_	-		
Totals	24	14	13	26		7
Totals 3. Test Cas	24 e Analysis	14		26	7	
Totals 3. Test Cas	24 e Analysis	14	13	26	7	
Totals 3. Test Cas This report	24 e Analysis	14	13 s that have passe	26 ed, failed, and u	7 ntested	7
3. Test Cas This report:	24 e Analysis shows the num	14	13 s that have passo Total Cases	26 ed, failed, and u Not Tested	ntested Fail	7
3. Test Cas This report: Section Print Engine	24 e Analysis shows the num	14	s that have passo Total Cases 7	26 ed, failed, and un Not Tested 0	ntested Fail 0	Pass

9.RESULTS:-

9.1 PERFORMANCE METRICS:

10.ADVANTAGES AND DISADVANTAGES:-

PROS:

We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output. Can access the app all time whenever we need to communicate. portable anywhere and also less maintenance cost.

CONS:

Complex to make a live communication because some delay occurs to make a two way communication. Works only in ONLINE mode.so network facility is needed all time. Tedious to setup sign language information. Requires battery power.

11.CONCLUSION:-

The project aims to develop an AI model that converts sign language into speech that can be understandable by people and vice-versa to specially abled people. This model brings changes among our society and build communication between specially challenged people and normal people and breaks the discrimination shown towards specially abled people and they will not feel underrated in our society.

12.FUTURE SCOPE:-

Real-time communication has been impacting global industries to procure 100 times productivity and revenue. Information exchange is quicker and more efficient, and the emergence of push notifications can even accelerate the entire communication process.

Messaging platform can simplify your operations by connecting your internal and external departments and consolidating all data and conversation history into channels. Consequently, this gives you and your team uninhibited access to information and discussions necessary to make well-informed choices. Hence people can be highly benefited through this process

13.APPENDIX:-

GitHub LINK: https://github.com/IBM-EPBL/IBM-Project-858-1658326949

DEMO LINK: https://youtu.be/YQLemdYH4YU