Example	s of (non-split) reductive gps	
	de d	
1. forms		
2 torus	case	
3. other (
Setting	We work over conn red gp over K.	
J	J	
	K the seperable closure of K mainly cave about	IR & p-adic field case.
	$\Gamma_{K} = Gal(\bar{K}/K)$	σ ε Ck
		$\varphi \in H'(W, A)$
	2.7	1
Ref: [ECII] Silve	rman, The Arithmetic of Elliptic Curves	
	,	

2. torus case

Let us try to find all the forms of the split torus
$$G_m^n$$

They're called (non-split) torus.

We know

Aut $(G_m^n) \subseteq End(G_m^n)$

Hom (G_m, G_m)

$$Aut(G_m^n) \subseteq End(C_m^n) \qquad Hom(G_m,G_m) \cong \mathbb{Z}$$

$$II \qquad \qquad (-)^n \iff n$$

$$GL_n(\mathbb{Z}) \subseteq M^{n \times n}(\mathbb{Z})$$

Therefore,
$$H'(\Gamma_{K}, A_{\mathsf{ut}}(G_{\mathsf{m},\overline{K}}^{n})) = H'(\Gamma_{K}, GL_{\mathsf{n}}(Z))$$

$$= Hom_{\mathsf{Gvp}}(\Gamma_{K}, GL_{\mathsf{n}}(Z)) / GL_{\mathsf{n}}(Z) - \mathsf{conj}$$

$$\overset{\mathsf{when}}{=} k:\mathbb{R} \quad \{g \in GL_{\mathsf{n}}(Z) \mid g^{2} = \mathsf{Id} \} / GL_{\mathsf{n}}(Z) - \mathsf{conj} \}$$

The acts on Aut
$$(G_{m,\overline{k}}^n) \subseteq End(G_{m,\overline{k}}^n)$$
 trivially:

see \overline{K} -pts, $n=1$:

 $\overline{K}^{\times} \xrightarrow{d} \overline{K}^{\times}$
 $\overline{K}^{\times} \xrightarrow{\sigma_d} \overline{K}^{\times}$

E.g.
$$n=1$$
, $K=IR$

$$H'(\Gamma_{K}, Aut(G_{m})) \cong \{1, -1\}$$

$$G_{m} G = 7 SO_{27R}$$

$$G(R) = \{g \in G_m(\mathbb{C}) \mid (\varphi(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_{IR} \}$$

$$= \{g \in \mathbb{C}^{\times} \mid (\overline{g})^{-1} = g \}$$

$$= \{g \in \mathbb{C}^{\times} \mid (gl = 1) \}$$

$$= S'$$

$$G(\mathbb{C}) = G_m(\mathbb{C}) = \mathbb{C}^{\times}$$

$$\Rightarrow G = \operatorname{Spec} \left[R[x,y] / (x^2 + y^2 - 1) \right] = \operatorname{SQ}_{2}, R$$