Multiple Linear Regression For Prediction

Source: Python plot posted to StackExchange https://stackoverflow.com/questions/26431800/plot-linearmodel-in-3d-with-matplotlib

Explanatory vs. Predictive

Explain/describe population relationships

- Small sample, few variables
- Retrospective
- Find good fitting regression model
- Confidence intervals, hypothesis test, p-value

Predict values of new records

- Large sample, many variables
- Prospective
- Regression with high predictive power
- Predictive power on holdout data

Example – Used Toyota Car Prices

Scenario – Toyota dealers accept used cars in trade-ins, need predictive model to know how much to offer the customer

The Regression Equation

statistics.com

The Regression Equation

The Regression Equation

statistics.com

Used Toyota Car Prices – Predictors

Variable Description Price Offer price in Euros Age in months as of August 2004 Age Accumulated kilometers on odometer Kilometers Fuel Type Fuel type (Petrol, Diesel, CNG) HP Horsepower Metallic Metallic color? (Yes = 1, No = 0) Automatic Automatic (Yes = 1, No = 0) CC Cylinder volume in cubic centimeters Doors Number of doors QuartTax Quarterly road tax in Euros Weight Weight in kilograms

Import Needed Functionality

```
import itertools
import pandas as pd
import statsmodels.formula.api as sm
from sklearn.feature selection import
     SelectKBest, f regression
from utilities import regressionSummary
```



```
# Reduce data frame to the top 1000 rows and select
# columns for regression analysis
car df = pd.read csv(DATA / 'ToyotaCorolla.csv',
    encoding='latin-1')
selected var = [car df.columns[i] for i in (2, 3, 6,
    7, 8, 9, 11, 12, 13, 16, 17)]
car df = car df.iloc[0:1000]
# Partition data
train df = car df.sample(frac=0.6, random state=1)
valid df = car df.drop(train df.index)
```



```
# Reduce data frame to the top 1000 rows and select
# columns for regression analysis
car df = pd.read csv(DATA / 'ToyotaCorolla.csv',
    encoding='latin-1')
selected var = [car df.columns[i] for i in (2, 3, 6,
    7, 8, 9, 11, 12, 13, 16, 17)]
car df = car df.iloc[0:1000]
# Partition data
train df = car df.sample(frac=0.6, random state=1)
valid df = car df.drop(train df.index)
```



```
# Reduce data frame to the top 1000 rows and select
# columns for regression analysis
car df = pd.read csv(DATA / 'ToyotaCorolla.csv',
    encoding='latin-1')
selected var = [car df.columns[i] for i in (2, 3, 6,
    7, 8, 9, 11, 12, 13, 16, 17)]
car df = car df.iloc[0:1000]
# Partition data
train df = car df.sample(frac=0.6, random state=1)
valid df = car df.drop(train df.index)
```



```
# Reduce data frame to the top 1000 rows and select
# columns for regression analysis
car df = pd.read csv(DATA / 'ToyotaCorolla.csv',
    encoding='latin-1')
selected var = [car df.columns[i] for i in (2, 3, 6,
    7, 8, 9, 11, 12, 13, 16, 17)]
car df = car df.iloc[0:1000]
# Partition data
train df = car df.sample(frac=0.6, random state=1)
valid df = car df.drop(train df.index)
```



```
# Reduce data frame to the top 1000 rows and select
# columns for regression analysis
car df = pd.read csv(DATA / 'ToyotaCorolla.csv',
    encoding='latin-1')
selected var = [car df.columns[i] for i in (2, 3, 6,
    7, 8, 9, 11, 12, 13, 16, 17)]
car df = car df.iloc[0:1000]
# Partition data
train df = car df.sample(frac=0.6, random state=1)
valid df = car df.drop(train df.index)
```


Fit the regression

```
# Construct regression formula and use sm.ols to run a
# linear regression of Price
# on the remaining 11 predictors in the training set
independent var = list(selected var)
independent var.remove('Price')
formula = 'Price ~ ' + ' + '.join(independent var)
car lm = sm.ols(formula=formula, data=train df).fit()
car lm.summary()
```


Fit the regression

```
# Construct regression formula and use sm.ols to run a
# linear regression of Price
# on the remaining 11 predictors in the training set
independent var = list(selected var)
independent var.remove('Price')
formula = 'Price ~ ' + ' + '.join(independent var)
car lm = sm.ols(formula=formula, data=train df).fit()
car lm.summary()
```


Review Results

OLS Regression Results						
Dep. Variable:		Price	R-squared:			.867
Model:			Adj. R-squar	ed:		.864
Method:	I.eas		F-statistic:			347.4
Date:			Prob (F-statistic):		7.53e-249	
Time:	,		Log-Likeliho			83.5
No. Observations	:	600	AIC:		1.039	
Df Residuals:		588	BIC:		1.044	le+04
Df Model:		11				
Covariance Type:	1	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-6314.1254	1822.923	-3.464	0.001	-9894.358	-2733.893
Age_08_04	-127.4934	4.896	-26.038	0.000	-137.110	-117.877
KM	-0.0206	0.002	-8.929	0.000	-0.025	-0.016
HP	36.8883	5.115	7.212	0.000	26.843	46.933
Met_Color	82.3558	123.302	0.668	0.504	-159.810	324.521
Automat1c	143.5263	289.166	0.496	0.620	-424.397	711.449
CC	0.0236	0.097	0.243	0.808	-0.167	0.215
Doors	-46.6678	62.884	-0.742	0.458	-170.172	76.836
Quarterly_Tax	12.1313	2.851	4.255	0.000	6.532	17.730
Weight	18.1393	1.822	9.954	0.000	14.560	21.718
Fuel_Type_Diesel	-31.4359	569.873	-0.055	0.956	-1150.670	1087.799
Fuel_Type_Petrol	1461.2586	574.021	2.546	0.011	333.877	2588.640
Omnibus:			Durbin-Watso			.946
Prob(Omnibus):		0.000				.165
Skew:			Prob(JB):	(00).	3.866	
Kurtosis:		10.176	Cond. No.			le+06

Review Results

		OLS Regress	ion Results			
Dep. Variable:	Price R-squared:		0.867			
Model:		OLS	Adj. R-squar	ed:	(.864
Method:		t Squares	F-statistic:		347.4	
Date:	Mon, 18	Jun 2018	Prob (F-statistic):		7.53e-249	
Time:		19:44:28	Log-Likelihood:		-5183.5	
No. Observations:	:	600	AIC:		1.039e+04	
Df Residuals:		588	BIC: 1.044e+04		le+04	
Df Model:		11				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975
Intercept	-6314.1254	1822.923	-3.464	0.001	-9894.358	-2733.89
Age_08_04	-127.4934	4 896	-26.038	0.000	-137.110	-117.87
KM	-0.0206	0.002	-8.929	0.000	-0.025	-0.01
HP	36.8883	5. 15	7.212	0.000	26.843	46.93
Met_Color	82.3558	123.302	0.668	0.504	-159.810	324.52
Automatic	143.5263	289.166	0.496	0.620	-424.397	711.44
CC	0.0236	0.097	0.243	0.808	-0.167	0.21
Doors	-46.6678	62.684	-0.742	0.458	-170.172	76.83
Quarterly_Tax	12.1313	2 851	4.255	0.000	6.532	17.73
Weight	18.1393	1.822	9.954	0.000	14.560	21.71
Fuel_Type_Diesel	-31.4359	569.873	-0.055	0.956	-1150.670	1087.79
Fuel_Type_Petrol	1461.2586	574.021	2.546	0.011	333.877	2588.64
Omnicus:		112.122	Durbin-Watso	======= n:	 1	1.946
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	1308	5.165
Skew:		-0.420	•		3.86	-284
Kurtosis:		10.176	Cond. No.		2.34	le+06

Score the Validation Data

```
# Use predict() to make predictions on a new set
car lm pred = car lm.predict(valid df)
result = pd.DataFrame({'Predicted': car lm pred,
     'Actual': valid df.Price, 'Residual':
     valid df.Price - car lm pred })
```


Look at First 10 Rows - Validation

Output

Actual	Predic [*]	ted Residual
1 137	50 16206.	480671 -2456.480671
7 186	00 16704.	259643 1895.740357
10 209	50 21003.	848119 -53.848119
15 220	00 20883.	866334 1116.133666
20 159	50 15039.	157810 910.842190
21 169	50 17078.	992106 -128.992106
22 159	50 15799.	618511 150.381489
24 162	50 16302.	187336 - 52.187336
25 159	50 16757.	750599 -807.750599
26 174	95 16377.	003081 1117.996919

Mean Error (ME)

Output

Act	tual	Predicted	Residual	
1	13750	16206.480671	-2456.480671	
7	18600	16704.259643	1895.740357	
10	20950	21003.848119	-53.848119	Average
15	22000	20883.866334	1116.133666	of the
20	15950	15039.157810	910.842190	residuals
21	16950	17078.992106	-128.992106	
22	15950	15799.618511	150.381489	
24	16250	16302.187336	-52.187336	
25	15950	16757.750599	-807.750599	
26	17495	16377.003081	1117.996919	

Mean Error

Output

Actual	Predicted	Residual	
1 13750	16206.480671	-2456.480671	Average
7 18600	16704.259643	1895.740357	\$280
10 20950	21003.848119	-53.848119	
15 22000	20883.866334	1116.133666	
20 15950	15039.157810	910.842190	
21 16950	17078.992106	-128.992106	
22 15950	15799.618511	150.381489	
24 16250	16302.187336	-52.187336	
25 15950	16757.750599	-807.750599	
26 17495	16377.003081	1117.996919	

Root Mean Squared Error (RMSE)

Output

Actual	Predicted	Residual	
1 13750	16206.480671	-2456.480671	Square th
7 18600	16704.259643	1895.740357	residuals.
10 20950	21003.848119	-53.848119	average
15 22000	20883.866334	1116.133666	them, tak
20 15950	15039.157810	910.842190	square ro
21 16950	17078.992106	-128.992106	·
22 15950	15799.618511	150.381489	
24 16250	16302.187336	-52.187336	
25 15950	16757.750599	-807.750599	
26 17495	16377.003081	1117.996919	

the ke oot

Mean Absolute Error (MAE)

Output

Actual	Predic	cted Residual
1 137	50 16206.	480671 -2456.480671
7 186	00 16704.	259643 1895.740357
10 209	50 21003.	848119 -53.848119
15 220	00 20883.	866334 1116.133666
20 159	50 15039.	157810 910.842190
21 169	50 17078.	992106 -128.992106
22 159	50 15799.	618511 150.381489
24 162	50 16302 .	187336 -52.187336
25 159	50 16757.	750599 -807.750599
26 174	95 16377.	003081 1117.996919

Take absolute values of residuals, find average

Mean Absolute Percentage Error (MAPE)

Output

Actual		Predicted	Residual
1	13750	16206.480671	-2456.480671
7	18600	16704.259643	1895.740357
10	20950	21003.848119	-53.848119
15	22000	20883.866334	1116.133666
20	15950	15039.157810	910.842190
21	16950	17078.992106	-128.992106
22	15950	15799.618511	150.381489
24	16250	16302.187336	-52.187336
25	15950	16757.750599	-807.750599
26	17495	16377.003081	1117.996919

Take residual as % of actual, find absolute value, find average

Review Error Metrics - Validation

Regression statistics

Mean Error (ME) : 49.1865

Root Mean Squared Error (RMSE): 1349.2010

Mean Absolute Error (MAE): 1021.6062

Mean Percentage Error (MPE) : 0.0381

Mean Absolute Percentage Error (MAPE) : 9.0735

Used Toyota Car Prices – Predictors

Variable	Description
Price	Offer price in Euros
Age	Age in months as of August 2004
Kilometers	Accumulated kilometers on odometer
Fuel Type	Fuel type (Petrol, Diesel, CNG)
HP	Horsepower
Metallic	Metallic color? (Yes = 1 , No = 0)
Automatic	Automatic (Yes = 1 , No = 0)
CC	Cylinder volume in cubic centimeters
Doors	Number of doors
QuartTax	Quarterly road tax in Euros
Weight	Weight in kilograms

