CH103: Introductory Chemistry

Coordination chemistry: Valence bond, crystal field and molecular orbital theories.

Spatial orientation of d-orbitals

consequence of this difference: the d orbitals in the presence of ligands are split into groups of different energies, the <u>type of splitting and the magnitude of the energy differences</u> depending on the arrangement and nature of the ligands.

Valence bond theory

- Hybridization of atomic orbitals
- 'hybridization' means 'mixing'
- Hybrid orbitals may be formed by mixing the characters of atomic orbitals that are close in energy
- The **labels** given to hybrid orbitals reflect the contributing atomic orbitals: *sp*, *sp*², *sp*³, *etc*.
- The <u>character of a hybrid orbital</u> depends on the atomic orbitals involved and their percentage contributions.

sp hybridization: BeCl₂

sp hybridization

- if we begin with n atomic orbitals, we must end up with n orbitals after hybridization.
- Be-Cl bonds are of equal length
- BeCl₂ linear molecule

sp² hybridization

sp² hybridization: **BF**₃

Trigonal planar species

sp³ hybridization

sp³ hybridization: Methane

sp³d hybridization

sp³d² hybrid orbitals in SF₆

Chromium (III): Octahedral

Fe³⁺ ion: Octahedral

Low spin: paramagnetic

High spin: paramagnetic

Ni²⁺ ion: Octahedral vs Tetrahedral

 Nickel(II) (d⁸) forms paramagnetic tetrahedral and octahedral complexes.

Ni²⁺ ion: Square Planar

• Nickel(II) (d⁸) forms **diamagnetic** square planar complexes.

$$3d \qquad dsp^2 \qquad 4p$$

Valence bond theory

Coordination number	Arrangement of donor atoms	Orbitals hybridized	Hybrid orbital description	Example
2	Linear	s, p_z	sp	[Ag(NH ₃) ₂] ⁺
3	Trigonal planar	s, p_x, p_y	sp^2	[HgI ₃]
4	Tetrahedral	s, p_x, p_y, p_z	sp^3	$[FeBr_4]^{2-}$
4	Square planar	$s, p_x, p_y, d_{x^2-y^2}$	sp^2d	$[Ni(CN)_4]^{2-}$
5	Trigonal bipyramidal	$s, p_x, p_y, p_z, d_{z^2}$	sp^3d	[CuCl ₅] ³⁻
5	Square-based pyramidal	$s, p_x, p_y, p_z, d_{x^2-y^2}$	sp^3d	$[Ni(CN)_5]^{3-}$
6	Octahedral	$s, p_x, p_y, p_z, d_{z^2}, d_{x^2-y^2}$	sp^3d^2	$[Co(NH_3)_6]^{3+}$
6	Trigonal prismatic	$s, d_{xy}, d_{yz}, d_{xz}, d_{z^2}, d_{x^2-y^2}$ or	sd ⁵ or	$[ZrMe_6]^{2-}$
	_	$s, p_x, p_y, p_z, d_{xz}, d_{yz}$	sp^3d^2	**************************************
7	Pentagonal bipyramidal	$s, p_x, p_y, p_z, d_{xy}, d_{x^2-y^2}, d_{z^2}$	sp^3d^3	$[V(CN)_7]^{4-}$
7	Monocapped trigonal prismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{z^2}$	sp^3d^3	[NbF ₇] ²⁻
8	Cubic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, f_{xyz}$	sp^3d^3f	$[PaF_{8}]^{3-}$
8	Dodecahedral	$s, p_x, p_y, p_z, d_{z^2}, d_{xy}, d_{xz}, d_{yz}$	sp^3d^3f sp^3d^4	$[Mo(CN)_8]^{4-}$
8	Square antiprismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, d_{x^2-y^2}$	sp^3d^4	$[TaF_8]^{3-}$
9	Tricapped trigonal prismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, d_{z^2}, d_{x^2-y^2}$	sp^3d^5	$[ReH_9]^{2-}$

Bent's rule

- Hybrid orbitals may or may not be equivalent.
- Depends on the substituents.
 - BeCl₂ and BeClBr
 - The more electronegative substituent will prefer hybrid orbitals having less s-character.
 - Shape PCl₃F₂

Limitations

- It can say nothing about electronic spectroscopic properties.
- Chemical reactivity can't be predicted
 - kinetic inertness that is a characteristic of the low-spin d 6 configuration.
- Furthermore, the model implies a distinction between high- and low-spin complexes that is actually misleading.
- Finally, it cannot tell us why certain ligands are associated with the formation of high- (or low-)spin complexes.

Crystal field theory (CFT)

- This is an electrostatic model and simply uses the ligand electrons to create an electric field around the metal centre.
- Ligands are considered as point charges and there are no metal-ligand covalent interaction.
- Predicts that the d orbitals in a metal complex are not degenerate.
- Pattern of splitting of the d orbitals depends on the crystal field, this being determined by the arrangement and type of ligands

Crystal field theory (CFT)

Octahedral crystal field

Splitting of the d orbitals in an octahedral crystal field

Electronic spectrum of $[Ti(H_2O)_6]^{3+}$.

$$t_{2g}$$

$$\lambda_{\rm max} = 20\,300\,{\rm cm}^{-1}$$

$$\Delta_{\rm oct} = 243 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Spectrochemical Series Weak and Strong field

$$\Delta_{\rm oct}({\rm weak\ field}) < \Delta_{\rm oct}({\rm strong\ field})$$

$$I^- < Br^- < [NCS]^- < Cl^- < F^- < [OH]^- < [ox]^{2^-}$$

$$\approx H_2O < [NCS]^- < NH_3 < en < bpy < phen < [CN]^- \approx CO$$
 weak field ligands
$$\xrightarrow{\text{increasing } \Delta_{oct}}$$
 strong field ligands

$$\begin{aligned} Mn(II) < Ni(II) < Co(II) < Fe(III) < Cr(III) < Co(III) < Ru(III) \\ < Mo(III) < Rh(III) < Pd(II) < Ir(III) < Pt(IV) \\ \hline & & increasing field strength \end{aligned}$$

Magnitude of CF Splitting (Δ or 10Dq)

- Color of the Complex depends on magnitude of 10Dq
- Weak field Ligand: Low electrostatic interaction: small CF splitting.
- High field Ligand: High electrostatic interaction: large CF splitting.

Spectrochemical series: Increasing Δ

Pairing Energy and Δ_{oct} .

For high-spin:
$$\Delta_{\rm oct} < P$$

For low-spin: $\Delta_{\rm oct} > P$

For low-spin:
$$\Delta_{\text{oct}} > P$$

High Spin and Low Spin

d^n	High-spin = weak field		Low-spin = strong field	
	Electronic configuration	CFSE	Electronic configuration	CFSE
d^{1} d^{2} d^{3} d^{4} d^{5} d^{6} d^{7} d^{8} d^{9} d^{10}	$t_{2g}^{1}e_{g}^{0}$ $t_{2g}^{2}e_{g}^{0}$ $t_{2g}^{3}e_{g}^{0}$ $t_{2g}^{3}e_{g}^{0}$ $t_{2g}^{3}e_{g}^{1}$ $t_{2g}^{3}e_{g}^{2}$ $t_{2g}^{4}e_{g}^{2}$ $t_{2g}^{5}e_{g}^{2}$ $t_{2g}^{6}e_{g}^{2}$ $t_{2g}^{6}e_{g}^{3}$ $t_{2g}^{6}e_{g}^{4}$	$-0.4\Delta_{\rm oct} \\ -0.8\Delta_{\rm oct} \\ -1.2\Delta_{\rm oct} \\ -0.6\Delta_{\rm oct} \\ 0 \\ -0.4\Delta_{\rm oct} \\ -0.8\Delta_{\rm oct} \\ -1.2\Delta_{\rm oct} \\ -0.6\Delta_{\rm oct} \\ 0$	$t_{2g}^{4}e_{g}^{0}$ $t_{2g}^{5}e_{g}^{0}$ $t_{2g}^{6}e_{g}^{0}$ $t_{2g}^{6}e_{g}^{0}$	$-1.6\Delta_{\text{oct}} + P$ $-2.0\Delta_{\text{oct}} + 2P$ $-2.4\Delta_{\text{oct}} + 2P$ $-1.8\Delta_{\text{oct}} + P$

High Spin and Low Spin

Octahedral vs Tetradedral

Crystal Field Splittings

Crystal field theory: uses and limitations

- Crystal field theory can bring together structures, magnetic properties and electronic properties
- Trends in CFSEs provide some understanding of thermodynamic and kinetic aspects of dblock metal complexes
- crystal field theory provides no explanation as to why particular ligands are placed in the spectrochemical series.

- Considers covalent interactions between the metal centre and ligands. <u>Electrons</u> are not assigned to individual <u>bonds</u> between <u>atoms</u>, but are treated as moving under the influence of the nuclei
- In molecular orbital (MO) theory, we begin by placing the nuclei of a given molecule in their equilibrium positions and then calculate the molecular orbitals (i.e. regions of space spread over the entire molecule) that a single electron might occupy.
- Each MO arises from interactions between orbitals of atomic centres in the molecule, and such interactions are:
- allowed if the symmetries of the atomic orbitals are compatible with one another;
- efficient if the region of overlap between the two atomic orbitals is significant;
- efficient if the atomic orbitals are relatively close in energy.

Bonding and Antibonding molecular orbital

$$\psi_b = \psi_A + \psi_B$$

$$\psi_a = \psi_A - \psi_B$$

H₂⁺ molecule

$$\psi = \psi_{b(1)} = \psi_{A(1)} + \psi_{B(1)}$$

$$\begin{split} \psi &= \psi_{b(1)} \psi_{b(2)} = [\psi_{A(1)} + \psi_{B(1)}] [\psi_{A(2)} + \psi_{B(2)}] \\ \psi &= \psi_{A(1)} \psi_{A(2)} + \psi_{B(1)} \psi_{B(2)} + \psi_{A(1)} \psi_{B(2)} + \psi_{A(2)} \psi_{B(1)} \end{split}$$

Electronic distribution

$$\psi_{B}^{2} = \psi_{A}^{2} + 2\psi_{A}\psi_{B} + \psi_{B}^{2}$$

$$\psi_{A}^{2} = \psi_{A}^{2} - 2\psi_{A}\psi_{B} + \psi_{B}^{2}$$

$$\int N_b^2 \psi_b^2 d\tau = N_b^2 \left[\int \psi_A^2 d\tau + \int \psi_B^2 d\tau + 2 \int \psi_A \psi_B d\tau \right] = 1$$
 (5.33)

where N_h is the normalizing constant. If we let S be the overlap integral, $\int \psi_A \psi_B d\tau$, we have

$$\int \psi_h^2 d\tau = \left[\int \psi_A^2 d\tau + \int \psi_B^2 d\tau + 2S \right] \tag{5.34}$$

Now since the atomic wave functions ψ_A and ψ_B were previously normalized, $\int \psi_A^2 d\tau$ and $\int \psi_B^2 d\tau$ each equal one. Hence

$$N_h^2 = \frac{1}{2 + 2S} \tag{5.35}$$

$$N_b = \sqrt{\frac{1}{2 + 2S}} \tag{5.36}$$

and

$$N_a = \sqrt{\frac{1}{2 - 2S}} \tag{5.37}$$

$$\psi_b = \sqrt{\frac{1}{2}}(\psi_A + \psi_B)$$

$$\psi_a = \sqrt{\frac{1}{2}}(\psi_A - \psi_B)$$

H₂⁺ molecule bonding and antibonding orbital

- The σ label means that rotation of the orbital about the internuclear axis generates no phase change, and
- the * label means that there is a nodal plane between the nuclei, and this plane is orthogonal to the internuclear axis.

- The π label means that rotation of the orbital about the internuclear axis generates a phase change, and
- The * label means that there must be a nodal plane between the nuclei.

Bond order = $\frac{1}{2}$ [(Number of bonding electrons) - (Number of antibonding electrons)]

- The number of MOs that can be formed must equal the number of atomic orbitals of the constituent atoms.
- Construct the orbital interaction diagram first and then put in the electrons according to the aufbau principle.

Molecular Orbital (MO) Theory Homonuclear diatomic molecules

Molecular Orbital (MO) Theory Homonuclear diatomic molecules

Relative energies of the 2s and 2p atomic orbitals

Molecular Orbital (MO) Theory

homonuclear diatomic molecules involving first-row p-block elements

MO theory: heteronuclear diatomic molecules

MO theory: heteronuclear diatomic molecules

MO theory: heteronuclear diatomic molecules

$MO diagram : O_h [ML_6]^{n+}$

 For a first row metal, the valence shell atomic orbitals are 3d, 4s and 4p

$MO diagram : O_h [ML_6]^{n+}$

 For a first row metal, the valence shell atomic orbitals are 3d, 4s and 4p

$MO diagram : O_h [ML_6]^{n+}$

 For a first row metal, the valence shell atomic orbitals are 3d, 4s and 4p

MO diagram: O_h [ML₆]ⁿ⁺ no metal-ligand π bonding

With π donor/acceptor ligands:

With π donor ligands: Halide ions

With π acceptor ligands CO, NO

MO diagram: $T_d [ML_4]^{n+}$

Square Plannar MO diagram: [ML₅]ⁿ⁺

 b_{1g} (d_{x2-y2}), b_{2g} (d_{xy}), a_{1g} (d_{z2}), and e_g (d_{xz} and d_{yz})

- Δ_{oct} decreases in going from a σ -complex to one containing π -donor ligands;
- Δ_{oct} values are relatively large for complexes containing π acceptor ligands, and such complexes are likely to be low-spin;
- for a complex with π -acceptor ligands, increased π -acceptance stabilizes the t_{2q} level, increasing $\Delta_{\rm oct}$.