That which is claimed is:

1. A method for modulating process(es) mediated by farnesoid X receptor polypeptides, said method comprising conducting said process(es) in the presence of an effective amount of at least one compound having the structure:

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5

wherein:

A is a C3 up to C8 branched chain alkyl or substituted alkyl group, a C3 up to C7 cycloalkyl or substituted cycloalkyl, an optionally substituted aryl or an optionally substituted heteroaryl,

X is -C(O)- or $-CH_2$ -,

R is methyl or ethyl,

R¹ is H, hydroxy, alkoxy, benzoyloxy, mesityloxy, or -OCH₂C(O)OC₂H₅,

 R^2 is H or R^2 can cooperate with R^3 to form a benzopyran, wherein the pyran ring has the structure:

wherein:

 R^6 is not present if the pyran ring is unsaturated, or, if present, is selected from H, -OR, wherein R is alkyl or acyl, or R^6 can cooperate with R^7 to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety, and

only one of R⁷ and R⁸ is present if the pyran ring is unsaturated, or R⁷ and R⁸ are independently H, carboxyl, cyano, hydroxy, alkoxy, thioalkyl, aryl, or R⁷ and R⁸ taken together comprise a carbonyl oxygen or an oxime nitrogen, or either R⁷ or R⁸ can cooperate with R⁶ to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety, R³ can cooperate with R² to form a benzopyran having the structure set forth above, or

R³ is alkenyl, optionally substituted aryl or heteroaryl, or optionally substituted arylalkenyl or heteroarylalkenyl,

R⁵ is H, hydroxy, alkoxy or aryloxy.

- 2. The method of claim 1 wherein said process mediated by farnesoid X receptor is cholesterol metabolism.
- 3. The method of claim 1 wherein said process mediated by farnesoid X receptor is the regulation of lipid homeostasis.
 - 4. The method of claim 1 wherein R² and R³ cooperate to form a benzopyran.
- 5. The method of claim 4 wherein A is cyclopropyl, X is -C(O)-, R^1 is methoxy, R^6 and R^7 are absent, and R^4 , R^5 and R^8 are hydrogen.
- 6. The method of claim 4 wherein A is cyclopropyl, X is $-CH_2$ -, R^1 is methoxy, R^6 and R^7 are absent, and R^4 , R^5 and R^8 are hydrogen.
- 7. The method of claim 4 wherein A is cyclohexyl, X is -C(O)-, R^1 is methoxy, R^6 and R^7 are absent, and R^4 , R^5 and R^8 are hydrogen.
- 8. The method of claim 4 wherein A is phenyl, X is -C(O)-, R¹ is methoxy, R⁶ and R⁷ are absent, and R⁴, R⁵ and R⁸ are hydrogen.

9. The method of claim 4 wherein A is phenyl, X is -C(O)-, R¹ is methoxy, R⁶ and R⁷ cooperate to form a dichlorocyclopropyl ring, and R⁴, R⁵ and R⁸ are hydrogen.

- 10. The method of claim 4 wherein A is cyclohexyl, X is -C(O)-, R¹ is methoxy, R⁶ and R⁷ cooperate to form a dichlorocyclopropyl ring, and R⁴, R⁵ and R⁸ are hydrogen.
 - 11. The method of claim 1 wherein R³ is alkenyl.
- 12. The method of claim 11 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is -CH=CH-C(O)-O-tBu.
 - 13. The method of claim 1 wherein R³ is optionally substituted aryl or heteroaryl.
- 14. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is phenyl.
- 15. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is p-thiomethyl-phenyl.
- 16. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is m-methoxy-phenyl.
- 17. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is m-acetyl-phenyl.
- 18. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is 5-methyl-2-thiophene-yl.
- 19. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is 5-acetyl-2-thiophene-yl.

20. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is 4-dimethylamino-phenyl.

- 21. The method of claim 13 wherein A is isopropyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is 4-dimethylamino-phenyl.
- 22. The method of claim 13 wherein A is cyclohexyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is 2,3-(O-CH₂-O)-phenyl.
- 23. The method of claim 13 wherein A is isopropyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is 2,3-(O-CH₂-O)-phenyl.
- 24. The method of claim 1 wherein R³ is or optionally substituted arylalkenyl or heteroarylalkenyl.
- 25. The method of claim 24 wherein A is cyclohexyl, X is -C(O)-, R^1 R^2 , R^4 and R^5 are hydrogen, and R^3 is -CH=CH-phenyl.
- 26. The method of claim 24 wherein A is isopropyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is -CH=CH-phenyl.
- 27. The method of claim 24 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is -CH=CH-p-methoxy-phenyl.
- 28. The method of claim 24 wherein A is cyclohexyl, X is -C(O), R^1 R^2 , R^4 and R^5 are hydrogen, and R^3 is -CH=CH-o-fluoro-phenyl.
- 29. The method of claim 24 wherein A is isopropyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is -CH=CH-o-fluoro-phenyl.
- 30. The method of claim 24 wherein A is cyclohexyl, X is -C(O)-, $R^1 R^2$, R^4 and R^5 are hydrogen, and R^3 is -CH=CH-m-fluoro-phenyl.

31. The method of claim 24 wherein A is isopropyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is -CH=CH-m-fluoro-phenyl.

- 32. The method of claim 24 wherein A is cyclohexyl, X is -C(O)-, R^1 R^2 , R^4 and R^5 are hydrogen, and R^3 is -CH=CH-p-fluoro-phenyl.
- 33. The method of claim 24 wherein A is isopropyl, X is -C(O)-, R¹ R², R⁴ and R⁵ are hydrogen, and R³ is -CH=CH-p-fluoro-phenyl.
- 36. A method for the treatment of hypercholestemia, said method comprising administering to a subject in need thereof an effective amount of at least one compound having the structure:

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 $X - OF$

wherein:

A is a C3 up to C8 branched chain alkyl or substituted alkyl group, a C3 up to C7 cycloalkyl or substituted cycloalkyl, an optionally substituted aryl or an optionally substituted heteroaryl,

X is -C(O)- or $-CH_2$ -,

R is methyl or ethyl,

R¹ is H, hydroxy, alkoxy, benzoyloxy, mesityloxy, or -OCH₂C(O)OC₂H₅,

 R^2 is H or R^2 can cooperate with R^3 to form a benzopyran, wherein the pyran ring has the structure:

$$Me$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

wherein:

 R^6 is not present if the pyran ring is unsaturated, or, if present, is selected from H, -OR, wherein R is alkyl or acyl, or R^6 can cooperate with R^7 to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety, and

only one of R^7 and R^8 is present if the pyran ring is unsaturated, or R^7 and R^8 are independently H, carboxyl, cyano, hydroxy, alkoxy, thioalkyl, aryl, or R^7 and R^8 taken together comprise a carbonyl oxygen or an oxime nitrogen, or either R^7 or R^8 can cooperate with R^6 to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety,

 R^3 can cooperate with R^2 to form a benzopyran having the structure set forth above, or R^3 is alkenyl, optionally substituted aryl or heteroaryl, or optionally substituted arylalkenyl or heteroarylalkenyl,

R⁴ is H or hydroxy, and

 ${
m R}^5$ is H, hydroxy, alkoxy or aryloxy.

37. A method for the treatment of cholestasis, said method comprising administering to a subject in need thereof an effective amount of at least one compound having the structure:

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5

wherein:

A is a C3 up to C8 branched chain alkyl or substituted alkyl group, a C3 up to C7 cycloalkyl or substituted cycloalkyl, an optionally substituted aryl or an optionally substituted heteroaryl,

X is -C(O)- or $-CH_2$ -,

R is methyl or ethyl,

R¹ is H, hydroxy, alkoxy, benzoyloxy, mesityloxy, or -OCH₂C(O)OC₂H₅,

 R^2 is H or R^2 can cooperate with R^3 to form a benzopyran, wherein the pyran ring has the structure:

$$\begin{array}{c}
Me \\
Me
\end{array}$$

$$\begin{array}{c}
R^6 \\
H
\end{array}$$

$$\begin{array}{c}
R^7
\end{array}$$

wherein:

R⁶ is not present if the pyran ring is unsaturated, or, if present, is selected from H, -OR, wherein R is alkyl or acyl, or R⁶ can cooperate with R⁷ to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety, and

only one of R^7 and R^8 is present if the pyran ring is unsaturated, or R^7 and R^8 are independently H, carboxyl, cyano, hydroxy, alkoxy, thioalkyl, aryl, or R^7 and R^8 taken together comprise a carbonyl oxygen or an oxime nitrogen, or either R^7 or R^8 can cooperate with R^6 to form a cyclic acetal, a cyclic ketal, or a cyclopropyl moiety,

 R^3 can cooperate with R^2 to form a benzopyran having the structure set forth above, or R^3 is alkenyl, optionally substituted aryl or heteroaryl, or optionally substituted arylalkenyl or heteroarylalkenyl,

R⁴ is H or hydroxy, and

R⁵ is H, hydroxy, alkoxy or aryloxy.