Reinforcement Learning Specialization - Lecture Note

Course 1 - Fundamentals of Reinforcement Learning

Module 2

New terms:

short/long-term reward

policies

planning methods

dynamic programming

reward

time steps

Video: Sequential Decision Making with Evaluative Feedback

Action-Value function

Action-Values

· The value is the expected reward

$$q_*(a) \doteq \mathbb{E}[R_t | A_t = a] \quad \forall a \in \{1, \dots, k\}$$
$$= \sum_r p(r|a) r$$

· The goal is to maximize the expected reward

$$\underset{a}{\operatorname{argmax}} \ q_*(a)$$

chọn a để tối đa hóa phần thưởng kỳ vọng

Calculating $q_*(a)$

Calculating $q_*(a)$

How is the bandit problem similar or different to the supervised learning problem?

Vietnamese

Giống: cả 2 đều có mục tiêu đạt được kết quả tối ưu được đo lường bởi 1 hàm số (supervised: loss function, bandit problem: q*/reward function), supervised được train trên 1 tập data hữu hạn và cố định, bandit problem thì có số lượng action là 1 tập hữu hạn các action (K).

Khác: supervised learning tối đa hóa hàm mất mát trên 1 tập data cố định, ko thay đổi, label là cố định; bandit problem thì có label là giá trị kỳ vọng

trên 1 phân phối xác suất.

English

Similarities

1. Optimization Objective

- Both aim to optimize a measurable function:
 - Supervised Learning: Minimizes a loss function (e.g., crossentropy, MSE).
 - Bandit Problems: Maximizes a reward function (e.g., Q*-value, expected reward).

2. Finite Action Space

- o Supervised learning uses a fixed, finite dataset.
- Bandit problems assume a finite set of **K actions** (e.g., choosing between K ad variants).

Key Differences

Aspect	Supervised Learning	Bandit Problems
Data Dynamics	Static dataset with fixed labels	Dynamic, stochastic rewards from a distribution
Feedback Type	Full feedback (labels for all inputs)	Partial feedback (reward only for chosen action)
Exploration Strategy	No exploration needed (deterministic training)	Requires exploration - exploitation trade-off (e.g., ε- greedy, UCB)
Objective	Generalize to unseen data	Maximize cumulative reward over interactions