Chapitre 5 - Primitives et intégrales

Manel TAYACHI (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Vendredi 12 Octbre 2018

A) Primitives

Définition. Soit $g:[a,b]\to\mathbb{R}$ (continue). Une **primitive** de g est une fonction $G:[a,b]\to\mathbb{R}$ dérivable tq G'=g

Exemple. Soit $g(x) = x^2$, les fonctions $G_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{x^3}{3} \end{cases}$ et $G_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{x^3}{3} + 12 \end{cases}$ sont des primitives de g.

Il n'y a pas unicité de la primitive

Proposition. Si G_1 et G_2 sont deux primitive de g, alors $G_1-G_2=$ cste. De plus, toute les primitives de g sont de la forme G_1+c où c est une constante

Notation. On note $\int_b^a g(x) dx$ l'ensemble des primitves de g.

Exemple.

$$\int x^2 \ dx = \frac{x^3}{3} + Cste(= \{x \mapsto \frac{x^3}{3} + C | C \in \mathbb{R}\})$$

Primitives usuelles

Soit $b \in \mathbb{R}$, $n \in \mathbb{Z} \setminus \{-1\}$, $\alpha \in \mathbb{R} \setminus \{-1\}$

f(x)	$\int f(x) dx$
\overline{b}	bx + Cste
ax	$a\frac{x^2}{2} + Cste$
x^n	$\frac{x^{n+1}}{n+1} + Cste$
$\frac{1}{x}$	$\sin^2 \theta$
$\cos(x)$	$\sin(x) + Cste$
$\sin(x)$	$-\cos(x) + Cste$
e^x	$e^x + Cste$
ln(x)	$x\ln(x) - x + Cste$
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + Cste$

B) Intégrales

1) Formule de somme

• $\int (g_1(x) + g_2(x)) dx = \int g_1(x) dx + \int f_2(x) dx$

Exemple. $\int (2x^2 + 1) dx = \frac{2x^3}{3} + x + Cste$

• $\int \lambda g(x) \ dx = \lambda \int g(x) \ dx$

Remarque. On a pas de formule pour le produit (IPP)ni pour le quotient... On a pas on plus de formule pour la composée $(changement\ de\ variable)$

2) Calcul intégral

 $g:[a,b]\to\mathbb{R}$ (continue) $\int_a^b g(t)dt=$ aire algébrique (avec signe) entre le graphe de g et l'axe des abscisses entre a et b

Schéma de la correspondance entre intégrale et aire algébrique $\int_a^b g(t)dt = A_1 - A_2 + A_3$

Remarque. Lorsqu'il y a des bornes, $\int_a^b g(t)dt \in \mathbb{R}$

Exemple. $\int_0^1 x \ dx$ Schéma de int^1_0 x dx

$$\int_0^1 x \ dx = \frac{1}{2}$$

Schéma de int^1_-1 $x dx \int_{-1}^{1} x dx = A_2 - A_1$

C) Lien primitives et intégrales

Théorème. (Théorème fondamental de l'analyse) Soit $g:[a,b]\to\mathbb{R}$ continue et soir G une primitive de g. Alors $\int_a^b g(t)dt=[G(t)]_{t=a}^{t=b}=G(b)-G(a)$

Exemple. $\int_0^1 x^2 \ dx = \left[\frac{x^3}{3}\right]_{x=0}^{x=1} = \frac{1}{3}$ Schéma correspondant

 $\int_0^{\pi/2} \cos(x) \ dx = [\sin(x)]_{x=0}^{x=\pi/2} = \sin(\pi/2) = 1$ Schéma correspondant

Corollaire Soit $g:[a,b] \to \mathbb{R}$ continue. Alors $\forall c \in [a,b]$,

$$G_c: \begin{array}{c} [a,b] \to \mathbb{R} \\ x \mapsto \int_c^x g(t) \ dt \end{array}$$

est une primitive de g.

D) Méthodes de calcul d'une intégrale

1) Chasles

 $a,b,c\in\mathbb{R}$

$$\int_{a}^{b} g(t) \ dt = \int_{a}^{c} g(t) \ dt + \int_{c}^{b} g(t) \ dt$$

2) Utiliser les symétries

• Si f pair $\forall a > 0$

$$\int_0^a f(x) \ dx = \int_{-a}^0 f(x) \ dx$$

Schéma d'une fonction paire

Donc

$$\int_{-a}^{a} f(x) \ dx = 2 \int_{0}^{a} f(x) \ dx$$

• Si f impaire, $\forall a > 0$

$$\int_0^a f(x)dx = -\int_{-a}^0 f(x) \ dx$$

Schéma d'une fonction impaire

Donc
$$\int_{-a}^{a} f(x) dx = 0$$

Exemple
$$\int_{-\pi/2}^{\pi/2} \sin(x) dx = 0$$

• On peut utiliser d'autres "symétries" comme la périodicité (exemple avec cos et sin)

3) Changement de variable

 $f:[a,b]\to\mathbb{R}$ continue

Rappel des fonctions bijectives. $f: x \to y$ bijective si $\forall y \in Y, \exists ! x \in X \text{ tq } f(x) = y$ $f: [c,d] \to [a,b]$ dérivable et bijective (En pratique on vérifie que u([c,d]) = [a,b] et que u est strictement monotone)

$$\int_{c}^{d} f(u(t)) \ u'(t) \ dt = \int_{u(c)}^{u(d)} f(x) \ dx$$

$$"u' = \frac{du}{dt} \Rightarrow u' \ dt = du"$$

Exemple. $\int_0^{\frac{1}{4}} x e^{x^2} dx$

$$u: \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \to \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}$$

bijectif et C^1

u'(x) = 2x "du = 2xdx" Donc

$$I + \frac{1}{to} \int_0^{\frac{1}{2}} e^{x^2} 2x \ dx = \frac{1}{2} \int_0^{u(\frac{1}{2})_{u(0)}e^u} du = \frac{1}{2} \int_0^{1_o ver 4} e^u \ du = \frac{1}{2} [e^u]_0^{\frac{1}{4}} = \frac{1}{2} (e^{\frac{1}{4}} - 1)$$

Exemple. Soit $\int_0^{1/4} \frac{\ln(1-\sqrt{x})}{\sqrt{x}} dx$, choisissons $u: \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix} \to \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ $x \mapsto 1 - \sqrt{x}$

Schéma de u

u est strictement décroissante, $u([0,\frac{1}{4}])=[\frac{1}{2},1]$ et $u'(x)=\frac{-1}{2\sqrt{x}}$

Donc

$$J = -2 \int_0^{\frac{1}{4}} \ln(1 - \sqrt{x}) \left(\frac{-dx}{2\sqrt{x}}\right)$$

$$= -2 \int_{u(0)}^{u(1)} \ln(u) \ du = -2 \int_1^{\frac{1}{2}} \ln(u) \ du = 2 \int_{1/2}^1 \ln u \ du$$

$$= 2\left[u \ln(u) - u\right]_{1/2}^1 = 2\left(-1 - \left(\frac{1}{2}\ln(\frac{1}{2}) - \frac{1}{2}\right)\right) = \boxed{\ln(2) - 1}$$

4) Intégration par parties (IPP)

Rappel.

$$(uv)' = u'v + uv' \int (uv)' = \int u'v + \int uv'$$

Donc

$$[u(x)v(x)]_a^b = \int_a^b u'(x)v(x) \ dx + \int_a^b u(x)v'(x) \ dx$$

Donc
$$\int_a^b u'(x)v(x) \ dx = \left[u(x)v(x)\right]_a^b - \int_a^b u(x)v'(x) \ dx$$

Exemple.

$$\int_0^1 x e^x \ dx = [xe^x]_0^1 - \int_0^1 u(x)v'(x) \ dx$$

Prenons $u(x) = e^x$, $u'(x) = e^x$, v(x) = x et v'(x) = 1

Donc
$$I = e - \int_a^1 e^x dx = e - [e^x]_0^1 = e - (e - 1) = \boxed{1}$$

Exemple.

$$J = \int_0^{\pi/2} (x^2 + 1)\cos(x) \ dx$$

Prenons $u(x) = \sin(x), u'(x) = \cos(x), v(x) = x^2 + 1 \text{ et } v'(x) = 2x$

Donc
$$J = \left[(x^2 + 1)\sin(x) \right]_0^{\pi/2} - \int_0^{\pi/2} 2x\sin(x) \ dx = \frac{\pi^2}{1} + 1 - 2\int_0^{\pi/2} x\sin(x) \ dx = \boxed{1}$$

Prenons $u(x) = -\cos(x)$, $u'(x) = \sin(x)$, v(x) = x et v'(x) = 1

Donc
$$\int_0^{\frac{\pi}{2}} x \sin(x) \ dx = \left[-x \cos(x) \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) \ dx = \left[\sin(x) \right]_0^{\frac{\pi}{2}} = 1$$

Donc
$$J = \frac{\pi^2}{4} - 1$$

5) Décomposition en éléments simples

- But. intégrer des fonctions de la forme $\frac{P(x)}{Q(x)}$ avec P et Q deux polynôes (on appelle ça des fonctions rationnelle en x)
- Étape 1.
 - si le degré P < le degré de Q, alors on ne fait rien
 - si le degré $P \ge$ le degré de Q, on va se ramener à une fraction rationnelle $\frac{P}{2}$ avec la décomposition P < le degré de Q Pour cela, on fait la division euclidienne de P par Q. C'est-à-dire P = LQ + R avec L et R deux polynômes tq degré R < degré Q Ansi $\frac{P}{Q} = L + \frac{R}{Q}$ En pratique, comment trouve-t-on L et R ? $Exemple\ P=X^5+X^4-X^2+1$ $Q=X^2-1$

Exemple
$$P = X^5 + X^4 - X^2 + 1$$

$$Q = X^2 - 1$$

Division euclidienne de P par Q

Donc
$$P(x) = (X^3 + X^3 + X)(X^2 - 1) + R(X)$$

$$L(X) \qquad Q(X) \qquad X+1$$