WHAT IS CLAIMED IS:

- 1. A method of delivering an agent to cells, the method comprising
- 2 administering the agent to the cells in a composition comprising a delivery enhancing
- 3 compound of Formula I:

8

9

10

$$X_1 - C - N - (CH_2)_m - N - (CH_2)_n - N - R$$
 $C = 0$
 X_2

wherein:

m and n are the same or different and each is an integer from 2-8; R is a cationic group or

 X_1 is a cholic acid group or deoxycholic acid group; and X_2 and X_3 are each independently selected from the group consisting of a cholic acid group, a deoxycholic acid group, and a saccharide group;

wherein at least one of X_2 and X_3 is a saccharide group when R is

- 1 2. The method of claim 1, wherein the amount of the agent delivered to the
- 2 cells in the presence of the delivery enhancing agent is increased relative to the amount of
- 3 the agent delivered to the cells when the agent is administered in the absence of the delivery
- 4 enhancing compound.
- 1 3. The method of claim 1, wherein the agent is a therapeutic agent.
- 4. The method of claim 1, wherein the concentration of the delivery
- 2 enhancing compound is about 0.002 to about 2 mg/ml.

1	5	5.	The method of claim 4, wherein the concentration of the delivery
2	enhancing comp	pour	nd is about 0.02 to about 2 mg/ml.
1 2		5. pour	The method of claim 5, wherein the concentration of the delivery and is about 0.2 to 2 mg/ml.
1	7	7.	The method of claim 1, wherein the cells are provided as a tissue.
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	3.	The method of claim 1, wherein the tissue is an organ.
	administration.) .	The method of claim 1, wherein the administration is by intravesical
1	1	0.	The method of claim 1, wherein the agent is a protein.
	1	1.	The method of claim 1, wherein the agent is a gene.
1	1	2.	The method of claim 11, wherein the gene is administered in a vector.
1	1	3.	The method of claim 12, wherein the vector is a viral vector.
1	. 1	4.	The method of claim 13, wherein the viral vector is selected from the
2	group consisting	gof	an adenoviral vector, a retroviral vector, and an adeno-associated viral
3	vector.		• •
1	1	5.	The method of claim 13, wherein the viral vector is administered as a
2	suspension conta	ainii	ng from about 1x10 ⁸ particles/ml to about 5x10 ¹¹ particles/ml of the viral
3	vector.		-
1	1	6.	The method of claim 15, wherein suspension contains from about $1x10^9$
2	particles/ml to al	bout	t 1x10 ¹¹ particles/ml of the viral vector.
l	1	7.	The method of claim 11, wherein the gene is a therapeutic gene.

1	18.	The method of claim 17, wherein the therapeutic gene is a tumor			
2	suppressor gene.				
1	19.	The method of claim 18, wherein the tumor suppressor gene is p53.			
1	20.	The method of claim 18, wherein the tumor suppressor gene is a			
2	retinoblasto ma gen	e.			
	21.	The method of claim 20, wherein the retinoblastoma tumor suppressor			
2	gene encodes full le	ength RB protein.			
	22.	The method of claim 20, wherein the retinoblastoma tumor suppressor			
2	gene encodes p56 ^{RB} .				
	23.	The method of claim 17, wherein the cells are cancer cells.			
	24.	The method of claim 23, wherein the cancer cells are bladder cancer			
2	cells.	•			
1	25.	The method of claim 23, wherein the cancer cells are provided as a			
2	tissue.				
1	26.	The method of claim 1, wherein the delivery-enhancing compound is			
2	administered prior	to administration of the agent.			
1	27.	The method of claim 1, wherein the delivery enhancing compound is			
2	administered with t	the agent.			
1	28.	A composition for delivering an agent to cells, the composition			
2	comprising the age	nt and a delivery enhancing compound of Formula I:			
	<u> </u>				

$$X_1$$
— C — N — $(CH_2)_m$ — N — $(CH_2)_n$ — N — R
 C = O
 X_2

3 wherein:

4

5

9

Find

M

2

m and n are the same or different and each is an integer from 2-8; R is a cationic group or

 X_1 is a cholic acid group or deoxycholic acid group; and X_2 and X_3 are each independently selected from the group consisting of a cholic acid group, a deoxycholic acid group, and a saccharide group;

wherein at least one of X2 and X3 is a saccharide group when R is

- 29. The composition according to claim 28, wherein the saccharide group comprises one or more pentose or hexose residues.
- 30. The composition according to claim 29, wherein the saccharide group is selected from the group consisting of pentose monosaccharide groups, hexose
- 3 monosaccharide groups, pentose-pentose disaccharide groups, hexose-hexose disaccharide
- 4 groups, pentose-hexose disaccharide groups, and hexose-pentose disaccharide groups.
- The composition according to claim 28, wherein the saccharide group is a trisaccharide.
- 1 32. The composition according to claim 28, wherein the concentration of the delivery enhancing compound is about 0.002 to about 2 mg/ml.

1	33.	The composition according to claim 32, wherein the concentration of			
2	the delivery enhance	ing compound is about 0.2 to 2 mg/ml.			
1	34.	The composition according to claim 28, wherein the agent modulates a			
2	biological process i	n a cell when the agent is present in the cell.			
1		The composition according to claim 34, wherein the biological process			
2	•	group consisting of cell growth, differentiation, proliferation, a			
3	metabolic or biosynthetic pathway, gene expression, a disease-associated process, and an				
4	immune response.	•			
	36.	The composition according to claim 28, wherein the agent comprises a			
2	polynucleotide.				
1	37.	The composition according to claim 36, wherein the polynucleotide is			
1 2		roup consisting of an antisense nucleic acid, a triplex-forming nucleic			
3		acid that comprises a gene which encodes a polypeptide.			
	acid, and a mucicic of	acid that comprises a gene which encodes a porypeptide.			
1	38.	The composition according to claim 37, wherein the gene is a tumor			
2	suppressor gene.	,			
1	39.	The composition according to claim 37, wherein the tumor suppressor			
2	gene is selected from	m the group consisting of a retinoblastoma gene and a p53 gene.			
		• •			
1	40.	The composition according to claim 28, wherein the composition further			
2	comprises a polyme	eric matrix.			
1	41.	The composition according to claim 28, wherein the composition further			
2	comprises a mucoad	dhesive.			

42. A delivery enhancing compound having a Formula I:

$$X_1$$
— C — N — $(CH_2)_m$ — N — $(CH_2)_n$ — N — R
 C = O
 X_2

wherein:

m and n are the same or different and each is an integer from 2-8; R is a

4 cationic group or

 X_1 is a cholic acid group or deoxycholic acid group; and X_2 and X_3 are each independently selected from the group consisting of a cholic acid group, a deoxycholic acid group, and a saccharide group;

wherein at least one of X2 and X3 is a saccharide group when R is

- 1 43. The compound of claim 42, wherein R is a cationic group selected from 2 the group consisting of NMe₃⁺ and NH₃⁺.
- 1 44. The compound of claim 42, wherein the saccharide group comprises 2 one or more pentose or hexose residues.
- 1 45. The compound of claim 44, wherein the saccharide group is selected
- 2 from the group consisting of pentose monosaccharide groups, hexose monosaccharide
- 3 groups, pentose-pentose disaccharide groups, hexose-hexose disaccharide groups, pentose-
- 4 hexose disaccharide groups, and hexose-pentose disaccharide groups.
- 1 46. The compound of claim 42, wherein the saccharide group comprises between three and about eight monosaccharide residues.

1	47.	The compound of claim 46, wherein the saccharide group is a			
2	trisaccharide.				
1	40	The common of Calcin 40 to the Alexander of CSZ to 13Z to			
I	48.	The compound of claim 42, wherein at least one of X_2 and X_3 is a			
2	saccharide group.				
1	49.	The compound of claim 42, wherein m and n are each independently 2			
2	or 3.				
ai					
1	. 50.	The compound of claim 42, wherein both X ₁ and X ₂ are both cholic acid			
2	groups and X ₃ is a saccharide group.				
1	51.	The compound of claim 42, wherein the saccharide group is a hexose-			
2	hexose disaccharid	e group.			
a i					
1	52.	The compound of claim 42, wherein m and n are each 3, X_1 and X_2 are			
2	both cholic acid gro	oups, and X ₃ is a hexose monosaccharide group.			
1	52	The common 1 of alaim 40 mb main as and a see and 2 V and V and			
1	53.	The compound of claim 42, wherein m and n are each 3, X_1 and X_3 are			
2	both cholic acid gro	oups, and X ₂ is a hexose monosaccharide group.			
1	54.	The compound of claim 42, wherein m and n are each 3, X_1 and X_2 are			
2	both cholic acid gre	oups, and X ₃ is a hexose-hexose disaccharide group.			
_		,			
1	55.	The compound of claim 42, wherein m and n are each 3, X_1 and X_3 are			
2	both cholic acid gro	oups, and X ₂ is a hexose-hexose disaccharide group.			
1	5.0	The commound consuling to alaim 40 wherein the commound has a			
Ţ	56.	The compound according to claim 42, wherein the compound has a			

Formula III:

. 57. The compound according to claim 42, wherein the compound has a Formula IV:

The state of the s

- 1 58. The compound according to claim 42, wherein the compound has a
- 2 Formula V:

59. A delivery enhancing compound of Formula II:

$$X_1$$
— C — N — $(CH_2)_3$ — N — $(CH_2)_3$ — N — X_3
 C = O
 X_2
 II

- wherein X_1 and X_2 are selected from the group consisting of a cholic
- 3 acid group and a deoxycholic acid group and X_3 is a saccharide group.
- 1 60. The compound according to claim 59, wherein both X_1 and X_2 are
- 2 cholic acid groups and X₃ is a glucose group.

