CONVOLUTION

1 L'algèbre de convolution $L^1(\mathbb{R}^d)$

Théorème 1.1. Soient $f, g \in L^1(\mathbb{R}^d)$. Pour presque tout $x \in \mathbb{R}^d$, $y \mapsto f(y)g(x-y)$ est intégrable et la fonction

$$(f * g)(x) := \int f(y)g(x - y)dy$$

est elle-même intégrable sur \mathbb{R}^d . De plus

$$||f * g||_1 \le ||f||_1 ||g||_1. \tag{1.1}$$

Comme on l'a déjà vu, le fait que f*g soit définie presque partout et intégrable signifie qu'il existe une fonction Lebesgue intégrable et définie partout qui coïncide presque partout avec l'intégrale définissant f*g.

Démonstration. Par théorème de Tonelli, $g \otimes f : (x,y) \mapsto f(y)g(x)$ est intégrable sur $\mathbb{R}^d \times \mathbb{R}^d$ et $||g \otimes f||_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} = ||f||_{L^1(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)}$. L'application

$$\Phi:(x,y)\mapsto(x-y,y)$$

est un C^1 difféomorphisme de $\mathbb{R}^d \times \mathbb{R}^d$ de Jacobien 1, donc par théorème de changement de variable

$$||g \otimes f||_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} = ||(g \otimes f) \circ \Phi||_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} = \int_{\mathbb{R}^d \times \mathbb{R}^d} |f(y)g(x-y)| dx \times dy.$$

Donc $(x,y) \mapsto f(y)g(x-y)$ est Lebesgue intégrable sur $\mathbb{R}^d \times \mathbb{R}^d$ et la conclusion est une conséquence directe du théorème de Fubini.

Définition 1.2. f * g s'appelle produit de convolution, ou simplement convolution, de f et g.

Par linéarité de l'intégrale, il est clair que $(f,g) \mapsto f * g$ est bilinéaire. On a aussi les propriétés suivantes.

Proposition 1.3. Le produit de convolution est commutatif et associatif.

Démonstration. On considère $f, g, h \in L^1(\mathbb{R}^d)$.

<u>Commutativité</u>. Soit N négligeable tel que $y \mapsto f(y)g(x-y)$ et $y \mapsto g(y)f(x-y)$ soient intégrables pour tout $x \in \mathbb{R}^d \setminus N$. L'application $\varphi_x : y \mapsto x - y$ est un difféomorphisme sur \mathbb{R}^d de Jacobien $(-1)^d$, donc pour tout $x \in \mathbb{R}^d \setminus N$,

$$g*f(x) = \int_{\mathbb{R}^d} g(y)f(x-y)dy = \int_{\mathbb{R}^d} g(\varphi_x(y))f(x-\varphi_x(y))dy = \int_{\mathbb{R}^d} g(x-y)f(y)dy = f*g(x).$$

Associativité. Pour presque tout x,

$$(f*g)*h(x) = \int_{\mathbb{R}^d} (f*g)(y)h(x-y)dy = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(z)g(y-z)dz \right) h(x-y)dy, \tag{1.2}$$

où $\int f(z)g(y-z)dy$ est définie pour presque tout y. De même,

$$f * (g * h)(x) = \int_{\mathbb{D}^d} f(z)(g * h)(x - z)dz = \int_{\mathbb{D}^d} f(z) \left(\int_{\mathbb{D}^d} g(y)h(x - z - y)dy \right) dz.$$
 (1.3)

Formellement, on passe de (1.3) à (1.2) par changement de variable $y \mapsto y-z$ et théorème de Fubini. On peut le justifier de la façon suivante. Par théorème de Tonelli, $(x, y, z) \mapsto (h \otimes g \otimes f)(x, y, z) = h(x)g(y)f(z)$ est intégrable sur \mathbb{R}^{3d} , donc, en considérant le difféomorphisme

$$\Psi(x, y, z) = (x - y - z, y, z)$$

qui vérifie $|\det D\Psi|=1, (h\otimes g\otimes f)\circ \Psi$ est également intégrable. Par théorème de Fubini, cette fonction est intégrable par rapport à (y,z) pour presque tout x et

$$f*(g*h)(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} (h \otimes g \otimes f) \circ \Psi(x,y,z) dy \times dz.$$

Par composition avec le difféomorphisme $\Theta:(y,z)\mapsto (y-z,z)$, de Jacobien 1, on a, pour presque tout x.

$$f * (g * h)(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} (h \otimes g \otimes f) \circ \Psi \circ \Theta(x, y, z) dy \times dz$$
$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} (h \otimes g \otimes f) \circ \Psi \circ \Theta(x, y, z) dz \right) dy$$
$$= (f * g) * h(x),$$

en utilisant le théorème de Fubini pour passer de la première à la deuxième ligne.

Définition 1.4. On appelle approximation de l'identité ou unité approchée toute suite $(\rho_n)_{n\in\mathbb{N}}$ de fonctions de $L^1(\mathbb{R}^d)$ vérifiant :

1. Moyenne tendant vers 1:

$$\int \rho_n \to 1 \qquad n \to \infty,$$

 \Box .

2. Borne uniforme dans L^1 : il existe C > 0 telle que

$$||\rho_n||_1 \le C$$
 pour tout n ,

3. Concentration en 0 : pour tout $\delta > 0$,

$$\int_{|x|>\delta} |\rho_n| \to 0, \qquad n \to \infty.$$

Dans beaucoup d'exemples, la condition 1 est en fait une égalité : $\int \rho_n = 1$. Dans ce cas, si en plus $\rho_n \ge 0$, la condition 2 devient alors $||\rho_n||_1 = 1$.

Exemple. Si $\rho \in L^1(\mathbb{R}^d)$ vérifie $\int \rho = 1$, alors

$$\rho_n(x) := n^d \rho(nx)$$

est une approximation de l'identité.

La terminologie est justifiée par le théorème suivant.

Théorème 1.5. Soient $f \in L^1(\mathbb{R}^d)$ et $(\rho_n)_{n \in \mathbb{N}}$ une approximation de l'identité. Alors

$$||f * \rho_n - f||_1 \to 0, \qquad n \to \infty.$$

Isolons le calcul suivant qui est un raisonnement fondamental pour l'approximation par convolution. Soit $\varphi \in C_c(\mathbb{R}^d)$.

$$\int \varphi(x-y)\rho_n(y)dy - \varphi(x) = \int (\varphi(x-y) - \varphi(x)) \rho_n(y)dy - (1 - \int \rho_n)\varphi(x)
= \int_{|y| < \delta} (\varphi(x-y) - \varphi(x)) \rho_n(y)dy
+ \int_{|y| < \delta} (\varphi(x-y) - \varphi(x)) \rho_n(y)dy - (1 - \int \rho_n)\varphi(x).$$

Noter que dans le cas (fréquent) où $\int \rho_n = 1$, le dernier terme est nul. Dans tous les cas, ceci nous montre que

$$|\varphi * \rho_n(x) - \varphi(x)| \le \sup_{|y| < \delta} |\varphi(x - y) - \varphi(x)| \int |\rho_n| + \left(|1 - \int \rho_n| + \int_{|y| > \delta} |\rho_n| dy \right) ||\varphi||_{\infty}.$$

En utilisant la continuité uniforme de φ sur \mathbb{R}^d , nous obtenons le point (1.4) du lemme suivant.

Lemme 1.6. Si $\varphi \in C_c(\mathbb{R}^d)$ et $(\rho_n)_{n \in \mathbb{N}}$ est une approximation de l'identité, alors

$$||\varphi * \rho_n - \varphi||_{\infty} \to 0, \qquad n \to \infty.$$
 (1.4)

Si en plus, pour un r > 0, $\rho_n(y) = 0$ pour presque tout $y \notin \bar{B}(0,r)$ et tout $n \in \mathbb{N}$, alors

$$\operatorname{supp}(\varphi) \subset \overline{B}(0,R) \qquad \Rightarrow \qquad \operatorname{supp}(\varphi * \rho_n) \subset \overline{B}(0,R+r). \tag{1.5}$$

Démonstration. Il reste à prouver le point (1.5). En effet, si $x \notin \overline{B}(0, R+r)$, on a

$$\varphi * \rho_n(x) = \int \rho_n(y)\varphi(x-y)dy = \int_{\bar{B}(0,r)} \rho_n(y)\varphi(x-y)dy = 0$$

 $\operatorname{car}\,\varphi(x-y)=0 \text{ pour tout } y\in \bar{B}(0,r), \text{ puisque } |x-y|\geq |x|-|y|>R+r-r=R. \qquad \qquad \square$

Démonstration du Théorème 1.5. Soit r > 0 (par exemple r = 1). Posons $\tilde{\rho}_n = \rho_n \times \chi_{\bar{B}(0,r)}$. Par le point 3 de la Définition, 1.4, on a

$$||\rho_n - \tilde{\rho}_n||_1 \to 0, \qquad n \to \infty.$$

En particulier, $(\tilde{\rho}_n)_{n\in\mathbb{N}}$ est aussi une approximation de l'identité. De plus

$$||f * \rho_n - f||_1 \leq ||f * \tilde{\rho}_n - f||_1 + ||f * (\tilde{\rho}_n - \rho_n)||_1$$

$$\leq ||f * \tilde{\rho}_n - f||_1 + ||f||_1 ||\rho_n - \tilde{\rho}_n||_1$$

où le dernier terme tend vers 0. Par ailleurs, à $\epsilon > 0$ fixé, on peut trouver $\varphi \in C_c(\mathbb{R}^d)$ telle que $||f - \varphi||_1 \le \epsilon$ et alors

$$||f * \tilde{\rho}_n - f||_1 \leq ||f - \varphi||_1 + ||\varphi - \varphi * \tilde{\rho}_n||_1 + ||(f - \varphi) * \tilde{\rho}_n||_1 \leq (1 + ||\tilde{\rho}_n||_1) \epsilon + ||\varphi - \varphi * \tilde{\rho}_n||_1.$$

Par le Lemme 1.6, on a $\varphi * \tilde{\rho}_n(x) \to \varphi(x)$ pour tout x et

$$|\varphi * \tilde{\rho_n}(x)| \le C\chi_{\overline{B}(0,R+r)}(x), \qquad x \in \mathbb{R}^d, \ n \in \mathbb{N},$$

(on peut prendre $C = ||\varphi||_{\infty} + \sup_n ||\varphi - \varphi * \tilde{\rho}_n||_{\infty}$) donc, par théorème de convergence dominée,

$$||\varphi - \varphi * \tilde{\rho}_n||_1 \to 0, \quad n \to \infty.$$

En posant $C' = 1 + \sup_n ||\tilde{\rho}_n||_1$, nous avons donc prouvé que, pour tout $\epsilon > 0$, il existe n_0 tel que

$$||f - f * \rho_n||_1 \le (C' + 1)\epsilon, \qquad n \ge n_0,$$

ce qui donne le résultat.

Remarque complémentaire. En fait, l'élément neutre pour la convolution est la mesure de Dirac à l'origine δ_0 . Pour donner un sens à cette affirmation, il faut savoir définir la convolution avec une distribution (ou au moins une mesure). De toute façon, δ_0 n'est pas dans L^1 (voir les exercices de F-EDP en M1) et il n'y a pas de neutre pour la convolution qui soit dans L^1 .

2 Convolution avec une fonction régulière

Dans la Section 1, on a vu comment convoluer deux fonctions f et g intégrables sur \mathbb{R}^d . La définition utilise un argument abstrait d'intégration, via le théorème de Fubini, qui ne permet de définir f * g(x) que pour presque tout x. Nous allons voir ici que si f ou g possède une certaine régularité, ie continue voire C^k , et est bornée, alors la fonction f * g est définie ponctuellement (pas seulement presque partout) et a la même régularité.

Définition 2.1. Pour $k \in \mathbb{N}$, on note $C_b^k(\mathbb{R}^d)$ l'espace vectoriel des fonctions C^k qui sont bornées sur \mathbb{R}^d ainsi que toutes leurs dérivées partielles (d'ordre $\leq k$). On note $C_b^{\infty}(\mathbb{R}^d) = \bigcap_{k \in \mathbb{N}} C_b^k(\mathbb{R}^d)$.

Exemple. Les fonctions C^k à support compact, ie nulles à l'extérieur d'un compact, sont dans $C_b^k(\mathbb{R}^d)$. Elles en forment un sous-espace vectoriel qu'on note traditionnellement $C_0^k(\mathbb{R}^d)$ ou $C_c^k(\mathbb{R}^d)$. En particulier, $C_c(\mathbb{R}^d) = C_c^0(\mathbb{R}^d) = C_0^0(\mathbb{R}^d)$.

Notations. Un élément $\alpha=(\alpha_1,\ldots,\alpha_d)\in\mathbb{N}^d$ s'appelle un multi-indice. La longueur de α est l'entier

$$|\alpha| := \alpha_1 + \dots + \alpha_d$$
.

(Attention : cette notation, usuelle, n'est pas compatible avec celle de la norme euclidienne sur \mathbb{R}^d , ie $|x| = (x_1^2 + \dots + x_d^2)^{1/2}$). Noter que $|\alpha + \beta| = |\alpha| + |\beta|$. Pour $f \in C^k(\mathbb{R}^d)$ et α tel que $|\alpha| \le k$, on note

$$\partial^{\alpha} f := \frac{\partial^{\alpha_1 + \dots + \alpha_d} f}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}},$$

et on rappelle que, si $|\alpha + \beta| \le k$,

$$\partial^{\alpha}\partial^{\beta}f = \partial^{\alpha+\beta}f,$$

ie $\partial^\alpha(\partial^\beta f)=\partial^{\alpha+\beta}f,$ ce qui est une conséquence du lemme de Schwarz.

Théorème 2.2. Soient $f \in L^1(\mathbb{R}^d)$ et $g \in C_b^k(\mathbb{R}^d)$. Pour tout $x \in \mathbb{R}^d$, la fonction

$$f * g(x) = \int f(y)g(x - y)dy,$$

est bien définie. De plus $f * g \in C_b^k(\mathbb{R}^d)$ et pour tout multi-indice α de longueur $\leq k$, on a

$$\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g).$$

Notons que grace au changement de variable $y\mapsto x-y$, on voit que f(x-y)g(y) est intégrable pour tout x et que

$$f * g(x) = \int f(x - y)g(y)dy.$$

Démonstration. Pour $k=0, x\mapsto f(y)g(x-y)$ est continue pour presque tout y et

$$|f(y)g(x-y)| \le ||g||_{\infty}|f(y)|$$

qui est intégrable, donc $x \mapsto f * g(x)$ est continue sur \mathbb{R}^d . Pour k = 1, on observe que $x \mapsto f(y)g(x-y)$ est C^1 pour presque tout y et, pour tout $j = 1, \ldots, d$,

$$\left| \frac{\partial}{\partial x_j} f(y) g(x-y) \right| \le |f(y)| ||\partial_j g||_{\infty}.$$

Par théorème de dérivation sous le signe \int , $x \mapsto f * g(x)$ est C^1 et $\partial_j (f * g) = f * \partial_j g$. Pour $k \ge 2$, on procède de façon analogue par récurrence.

Remarque. A posteriori, ceci montre que la fonction $\varphi * \rho_n$ du Lemme 1.6 est une fonction continue.

Corollaire 2.3. Soit K un compact de \mathbb{R}^d et Ω un voisinage quelconque de K. Alors il existe $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ telle que

$$\varphi \equiv 0 \quad sur \ \mathbb{R}^d \setminus \Omega \qquad et \qquad \varphi \equiv 1 \quad sur \ K.$$

Démonstration. Il faut commencer par remarquer que, si on pose

$$K_{\epsilon} = \{ x \in \mathbb{R}^d \mid \operatorname{dist}(x, K) \le \epsilon \}, \tag{2.1}$$

on a $K_{\epsilon} \subset \Omega$ pour $\epsilon > 0$ petit (couvrir K par des boules de rayon $\leq \epsilon$ contenues dans Ω). Notons aussi que, pour tout $\epsilon > 0$, on peut trouver $\rho_{\epsilon} \in C_0^{\infty}(\mathbb{R}^d)$ telle que

$$\int \rho_{\epsilon} = 1$$
 et $\operatorname{supp}(\rho_{\epsilon}) \subset \overline{B}(0, \epsilon)$.

Pour cela, il suffit de savoir qu'il existe $\psi \in C_0^{\infty}(\mathbb{R}^d)$ non identiquement nulle; on peut alors la supposer ≥ 0 et d'intégrale 1 quitte à la remplacer par $|\psi|^2/\int |\psi|^2$. Pour avoir en plus la propriété de support, on considère $R^d\psi(Rx)$ avec R assez grand car $\psi(Rx) = 0$ si $|x| \geq M/R$ en supposant $\sup (\psi) \subset \overline{B}(0, M)$. On constate alors que

$$\varphi(x) := \chi_{K_{\epsilon}} * \rho_{\epsilon}(x) = \int_{K_{\epsilon}} \rho_{\epsilon}(x - y) dy,$$

vérifie supp $(\varphi) \subset K_{2\epsilon}$ et $\varphi \equiv 1$ sur K. En effet si $x \notin K_{2\epsilon}$ et $y \in K_{\epsilon}$, alors $|x - y| \ge \epsilon$ donc $\rho_{\epsilon}(x - y) = 0$ et $\varphi(x) = 0$. Si $x \in K$ et $x - y \in \overline{B}(0, \epsilon)$, on a $y \in K_{\epsilon}$ de sorte que

$$1 = \int_{\mathbb{R}^d} \rho_{\epsilon}(x - y) dy = \int_{K_{\epsilon}} \rho_{\epsilon}(x - y) dy = \varphi(x)$$

ce qui termine la démonstration puisque $K_{2\epsilon} \subset \Omega$ si ϵ est assez petit.

Proposition 2.4. Soit $\varphi \in C_c(\mathbb{R}^d)$ supportée dans un compact K. Soit Ω un voisinage quelconque de K. Alors il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de $C_0^\infty(\mathbb{R}^d)$ telle que

$$\varphi_n \equiv 0 \quad sur \ \mathbb{R}^d \setminus \Omega \qquad et \qquad ||\varphi - \varphi_n||_{\infty} \to 0, \qquad n \to \infty,$$

 $où ||\cdot||_{\infty}$ est la norme uniforme sur \mathbb{R}^d .

 $D\acute{e}monstration$. La preuve est très proche du Lemme 1.6. On choisit $\rho \in C_0^{\infty}(\mathbb{R}^d)$ telle que $\int \rho = 1$ et $\operatorname{supp}(\rho) \subset \overline{B}(0,1)$. Alors $\rho_n(x) = n^d \rho(nx)$ est une approximation de l'identié telle que $\operatorname{supp}(\rho_n) \subset \overline{B}(0,1/n)$. On pose

$$\varphi_n = \varphi * \rho_n.$$

En particulier, en reprenant la notation (2.1), on voit que

$$\operatorname{supp}(\varphi * \rho_n) \subset K_{1/n}, \qquad n \ge 1,$$

car $\varphi * \rho_n(x) = \int_K \varphi(y) \rho_n(x-y) dy = 0$ si $x \notin K_{1/n}$ puisqu'alors $x-y \notin \overline{B}(0,1/n)$ pour tout $y \in K$. Pour $\epsilon > 0$ assez petit on a $K_\epsilon \subset \Omega$, donc $K_{1/n} \subset \Omega$ pour tout n assez grand et comme $||\varphi_n - \varphi||_{\infty} \to 0$, on a le résultat.

Proposition 2.5. Soient $p \in [1, \infty[$ et $u \in L^p(\mathbb{R}^d)$. Il existe une suite $(\varphi_n)_{n \in \mathbb{N}}$ de $C_0^{\infty}(\mathbb{R}^d)$ telle que

$$||u - \varphi_n||_p \to 0, \quad n \to \infty.$$

De plus, si u est nulle à l'extérieur d'un compact K, et si Ω est un voisinage quelconque de K, on peut supposer toutes les φ_n à support dans Ω .

Démonstration. C'est une combinaison de la densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$ et de la densité de $C_0^{\infty}(\mathbb{R}^d)$ dans $C_c(\mathbb{R}^d)$. Soit χ_R la fonction caractéristique de B(0,R). Par théorème de convergence dominée, on a $||u - \chi_R u||_p \to 0$. Donc on peut trouver $R_n \to \infty$ telle que $||u - \chi_{R_n} u||_p \le 1/n$. Puis, par densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$, on peut trouver $\psi_n \in C_c(\mathbb{R}^d)$ telle que

$$||\chi_{R_n} u - \psi_n||_p \le 1/n.$$

On peut en plus supposer ψ_n supportée dans un voisinage arbitraire de $\overline{B}(0,R_n)$, par exemple $B(0,R_n+1)$. Puis, par la Proposition 2.4, il existe $\phi_j \in C_0^{\infty}(\mathbb{R}^d)$ telle que $||\psi_n - \phi_j||_{\infty} \to 0$ quand $j \to \infty$. On peut en plus supposer les ϕ_j supportées dans $B(0, R_n + 2)$. Cela implique en particulier que, pour tout $j \geq 0$,

$$|\psi_n(x) - \phi_j(x)|^p \le ||\psi_n - \phi_j||_{\infty} \chi_{B(0,R_{n+2})}(x)$$

ce qui montre que

$$||\psi_n - \phi_j||_p \to \infty, \quad j \to \infty.$$

Ainsi, pour j_n assez grand, $||\psi_n - \phi_{j_n}||_p \le 1/n$ et on obtient le résultat en posant $\varphi_n = \phi_{j_n}$. Si en plus u est nulle à l'extérieur d'un compact K, on choisit d'abord $\psi_n \in C_c(\mathbb{R}^d)$ supportée dans un voisinage arbitrairement proche de K telle que $||\psi_n - u||_p \le 1/n$ puis, par un raisonnement analogue à ce qui précède, φ_n dans $C_0^\infty(\mathbb{R}^d)$ supportée dans un voisinage arbitraire de supp (ψ_n) telle que $||\varphi_n - \psi_n||_p \le 1/n$.

On peut améliorer la proposition précédente.

Proposition 2.6. Soient $1 \le p \le q$ deux réels et $u \in L^p(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$. Alors, il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de $C_0^{\infty}(\mathbb{R}^d)$ telle que,

$$||u - \varphi_n||_p \to 0$$
 et $||u - \varphi_n||_q \to 0$,

quand $n \to \infty$.

Démonstration. Notons χ_R la fonction caractéristique de B(0,R). Par théorème de convergence dominée, on a

$$||\chi_R u - u||_p \to 0$$
 $||\chi_R u - u||_q \to 0$

quand $R \to \infty$. En particulier, pour chaque n > 0, on peut trouver R_n assez grand tel que

$$||\chi_{R_n} u - u||_p \le \frac{1}{2n}$$
 et $||\chi_{R_n} u - u||_q \le \frac{1}{2n}$. (2.2)

D'après la Proposition 2.5, il existe une suite $(\psi_j)_{j\in\mathbb{N}}$ de fonctions C_0^{∞} , supportées dans $B(0,R_n+1)$, qui approchent $\chi_R u$ dans L^q , ie

$$||\psi_i - \chi_{R_n} u||_q \to 0, \quad j \to \infty.$$

Comme ψ_i et $\chi_{R_n}u$ sont nulles à l'extérieur de $B(0,R_n+1)$, on a aussi (par inégalité de Hölder),

$$||\psi_j - \chi_{R_n} u||_p \le \lambda (B(0, R_n + 1))^{\frac{1}{p} - \frac{1}{q}} ||\psi_j - \chi_{R_n} u||_q \to 0, \quad j \to \infty.$$

Ainsi, pour chaque n, on peut trouver j_n tel que

$$||\psi_{j_n} - \chi_{R_n} u||_p \le \frac{1}{2n}$$
 et $||\psi_{j_n} \chi_{R_n} u||_q \le \frac{1}{2n}$. (2.3)

En prenant, $\varphi_n = \psi_{j_n}$, (2.2) et (2.3) donnent le résultat.

3 Convolution et espaces $L^p(\mathbb{R}^d)$

Commençons par le cas le plus simple. Si $f \in L^{\infty}(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$, pour tout $x \in \mathbb{R}^d$ on a

$$\int |f(y)g(x-y)|dy \le ||f||_{\infty} \int |g(x-y)|dy = ||f||_{\infty}||g||_{1},$$

via le changement de variable y' = x - y pour l'égalité finale. Ceci prouve que

- 1. la fonction $y \mapsto f(y)g(x-y)$ est intégrable pour tout x,
- 2. la fonction $x \mapsto \int f(y)g(x-y)dy$ est bornée.

En admettant temporairement la mesurabilité de $x \mapsto \int f(y)g(x-y)dy$ (voir la fin de la preuve du Théorème 3.1), tout ceci montre que si on définit

$$f * g(x) = \int f(y)g(x-y)dy, \tag{3.1}$$

on a $f * g \in L^{\infty}$ et

$$||f * g||_{\infty} \le ||f||_{\infty} ||g||_{1}.$$

Insistons sur le fait que (3.1) est une définition car, pour l'instant, on a uniquement défini la convolution entre deux fonctions L^1 ou entre une fonction L^1 et une fonction continue bornée. Mais naturellement, si $f \in L^1 \cap L^\infty$, il n'y a pas d'ambiguïté car les deux définitions coïncident : si on note (temporairement) $*_{L^1-L^1}$ la convolution de la Définition 1.2 et $*_{L^\infty-L^1}$ celle de (3.1), on a $f *_{L^1-L^1} g = f *_{L^\infty-L^1} g$ presque partout.

On peut ainsi convoluer une fonction L^1 et une fonction L^1 ou L^∞ . Plus généralement, on peut convoluer L^1 et L^p :

Théorème 3.1. Soient $p \in [1, \infty]$, $f \in L^p(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$. Alors, pour presque tout x, $y \mapsto f(y)g(x-y)$ est intégrable et la fonction

$$(f * g)(x) = \int f(y)g(x - y)dy,$$

est dans $L^p(\mathbb{R}^d)$. De plus

$$||f * q||_{p} < ||f||_{p}||q||_{1}. \tag{3.2}$$

Démonstration. On a vu les cas $p=1,\infty$. On peut donc supposer 1 . Notons <math>q l'exposant conjugué, $\frac{1}{p} + \frac{1}{q} = 1$. L'idée est d'utiliser l'inégalité de Hölder astucieusement. À x fixé, on écrit

$$\int |f(y)||g(x-y)|dy = \int \left(|f(y)||g(x-y)|^{\frac{1}{p}}\right)|g(x-y)|^{\frac{1}{q}}dy,$$

où les intégrales, éventuellement infinies, ont un sens comme intégrales de fonctions positives mesurables. L'inégalité de Hölder nous donne

$$\int |f(y)||g(x-y)|dy \leq \left(\int |f(y)|^p |g(x-y)|dy\right)^{\frac{1}{p}} \left(\int |g(x-y)|dy\right)^{\frac{1}{p}}$$

$$\leq \left(\int |f(y)|^p |g(x-y)|dy\right)^{\frac{1}{p}} ||g||_1^{1/q},$$

puisque le dernier facteur à droite se calcule par changement de variable y' = x - y. Pour ne pas mélanger les discours, admettons un instant que la fonction $x \mapsto \int |f(y)||g(x-y)|dy$ (qui est à valeurs dans $[0, +\infty]$) soit mesurable. Alors

$$\int \left(\int |f(y)||g(x-y)|dy\right)^p dx \leq ||g||_1^{\frac{p}{q}} \int \left(\int |f(y)|^p |g(x-y)|dy\right) dx$$

qui nous donne,

$$\int \left(\int |f(y)||g(x-y)|dy \right)^{p} dx \leq ||g||_{1}^{\frac{p}{q}} |||f|^{p} * |g|||_{1}
\leq ||g||_{1}^{\frac{p}{q}+1} |||f|^{p}||_{1} = ||g||_{1}^{p} ||f||_{p}^{p},$$
(3.3)

ce qui, modulo la question de la mesurabilité (en x) de $\int f(y)g(x-y)dy$ et $\int |f(y)||g(x-y)|dy$, donne le résultat comme dans le Théorème 1.1.

Vérifions ces mesurabilités (la preuve ci-dessous fonctionne aussi pour $p=\infty$). On considère d'abord $\int |f(y)g(x-y)|dy$. Soit χ_n la fonction caractéristique de B(0,n). Pour chaque $n, \chi_n f \in L^1(\mathbb{R}^d)$, donc d'après le Théorème 1.1, il existe une fonction $h_n: \mathbb{R}^d \to \mathbb{R}^+$ mesurable et un ensemble négligeable N_n tel que $h_n(x) = \int |(\chi_n f)(y)g(x-y)|dy$ pour tout $x \in \mathbb{R}^d \setminus N_n$. Posons $N = \bigcup_n N_n$ qui est encore mesurable et négligeable. Le théorème de convergence monotone montre que, pour tout $x \in \mathbb{R}^d \setminus N$, $\int |(\chi_n f)(y)g(x-y)|dy \to \int |f(y)g(x-y)|dy$. Autrement dit, $\int |f(y)g(x-y)|dy$ coïncide sur $\mathbb{R}^d \setminus N$ avec la limite simple des fonctions mesurables $\chi_{\mathbb{R}^d \setminus N} h_n$ donc est mesurable (et à valeurs dans $[0, +\infty]$). Puis, l'inégalité (3.3) implique que $\int |f(y)g(x-y)|dy$ est finie pour presque tout x. Pour ces x, le théorème de convergence dominée montre que $\int f(y)g(x-y)dy = \lim_{n\to\infty} \int (\chi_n f)(y)g(x-y)dy$ ce qui montre par le même raisonnement que ci-dessus que $x\mapsto \int f(y)g(x-y)dy$ est définie pour presque tout x et coïncide presque partout avec une fonction mesurable.

Proposition 3.2. Soient $p \in [1, +\infty[$ et $(\rho_n)_{n \in \mathbb{N}}$ une approximation de l'identité. Alors, pour toute $f \in L^p(\mathbb{R}^d)$,

$$||f*\rho_n - f||_p \to 0, \qquad n \to \infty.$$

Prendre bien garde qu'on interdit $p = +\infty$ dans cette proposition.

Démonstration. Elle est complètement analogue à celle du Théorème 1.5, en utilisant (3.2) à la place de (1.1). On rappelle donc juste les grandes lignes. Par densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$, on peut trouver, pour tout $\epsilon > 0$, $\varphi \in C_c(\mathbb{R}^d)$ telle que $||\varphi - f||_p < \epsilon$. En utilisant (3.2), cela nous donne

$$||f * \rho_n - f||_p = ||(f - \varphi) * \rho_n + (\varphi * \rho_n - \varphi) - (f - \varphi)||_p$$

$$\leq ||(f - \varphi) * \rho_n||_p + ||\varphi * \rho_n - \varphi||_p + ||f - \varphi||_p$$

$$\leq C\epsilon + ||\varphi * \rho_n - \varphi||_p, \quad n \geq 0,$$

où $C=1+\sup_n||\rho_n||_1$. Il suffit donc de montrer que $||\varphi*\rho_n-\varphi||_p\to 0$. Si on pose $\tilde{\rho}_n=\chi\rho_n$, où χ est la fonction caractéristique de B(0,1), on a $||\rho_n-\tilde{\rho}_n||_1\to 0$, donc $||\varphi*\tilde{\rho}_n-\varphi*\rho_n||_p\to 0$ d'après (3.2). Il suffit donc de montrer que $||\varphi*\tilde{\rho}_n-\varphi||_p\to 0$. C'est une conséquence de la convergence uniforme de $\varphi*\tilde{\rho}_n$ vers φ et du fait que les fonctions $\varphi*\tilde{\rho}_n$ sont supportées dans un compact indépendant de n. Cette propriété de support montre, via l'inégalité de Hölder, que convergence uniforme \Rightarrow convergence dans $L^p(\mathbb{R}^d)$. D'où le résultat.

A Exercices

Exercice 1. Montrer qu'il existe une fonction $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ non identiquement nulle.

Exercice 2. Soient $\Omega \subset \mathbb{R}^d$ un ouvert et $p \in [1, +\infty[$. Montrer que $C_0^{\infty}(\Omega)$ est dense dans $L^p(\Omega)$.

Exercice 3. Soit $\Omega \subset \mathbb{R}^d$ un ouvert. Soient $p \in]1, +\infty[$ et q son exposant conjugué. Montrer que pour toute $f \in L^p(\Omega)$,

$$||f||_p = \sup_{\substack{||\varphi||_q = 1, \\ \varphi \in C_\infty^\infty(\Omega)}} |\int_{\Omega} f\varphi|.$$

Remarque. Cette borne supérieure n'est pas un plus grand élément en général.

Exercice 4 (Formes linéaires continues sur $L^p(\mathbb{R}^d)$). Soit Φ une forme linéaire continue sur $L^p(\mathbb{R}^d)$, avec $1 . Soit <math>q \in]1, \infty[$ l'exposant conjugué de p. Montrer qu'il existe une unique $g \in L^q(\mathbb{R}^d)$ telle que,

$$\Phi(f) = \int_{\mathbb{R}^d} fg \ dx,$$

pour toute $f \in L^p(\mathbb{R}^d)$.

Exercice 5. Soit $g \in L^1(\mathbb{R}^d)$. On note par *g l'endomorphisme de $L^1(\mathbb{R}^d)$ défini par $f \mapsto f * g$. Vérifier qu'il est continu et que

$$|| * g ||_{1 \to 1} = ||g||_1,$$

 $où ||\cdot||_{1\to 1}$ désigne la norme d'opérateurs sur $L^1(\mathbb{R}^d)$.

Exercice 6. Pour tout t > 0, on note

$$G_t(x) = \frac{1}{(4\pi t)^{1/2}} \exp(-\frac{x^2}{4t}), \quad x \in \mathbb{R}.$$

Soit $f \in L^p(\mathbb{R})$ avec $p \in [1, \infty[$. Montrer que

$$u(t) = G_t * f,$$

est solution de l'équation de la chaleur avec donnée initiale f, ie que

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \quad sur \]0, +\infty[_t \times \mathbb{R}_x,$$

et

$$\lim_{t\to 0} u(t) = f, \qquad dans \ L^p(\mathbb{R}).$$

Exercice 7. Montrer qu'on peut définir f * g pour toutes $f, g \in L^2(\mathbb{R}^d)$ et que le résultat est une fonction continue de limite nulle à l'infini.