Cryptography – Homework 3

冯诗伟 161220039

1

 \mathfrak{a}

No. Construct a new message $m'=m_2||m_1||m_3||\cdots||m_\ell$ by swapping the first two blocks of m and use m' to query the oracle. We can get $t'=\mathcal{O}(m')=\mathsf{Mac_k}(m')=F_k(m_2)\oplus F_k(m_1)\oplus F_k(m_3)\oplus\cdots\oplus F_k(m_\ell)=\mathsf{Mac_k}(m)$. So we successfully forge a valid tag t' such that $\mathsf{Vrfy_k}(m,t')=1$ and $(m,t')\notin\mathcal{Q}$.

b

No. Given m=m1||m2, we can easily find two messages $m1', m2'(m1'\neq m1, m2'\neq m2)$. Then we can construct two new messages m_A and m_B , where $m_A=m1'||m2, m_B=m1||m2'$.

Query the oracle with m_A , we can get $\mathcal{O}(m_A) = F_k(m_1')||F_k(F_k(m_2))$. Query the oracle with m_B , we can get $\mathcal{O}(m_b) = F_k(m_1)||F_k(F_k(m_2'))$. By concatenating the former half of $\mathcal{O}(m_b)$ with the latter half of $\mathcal{O}(m_A)$, we can forge a valid tag $t = F_k(m_1)||F_k(F_k(m_2)) = \mathsf{Mac}_k(m)$, where $\mathsf{Vrfy}_k(m,t) = 1$ and $(m,t) \notin \mathcal{Q}$.

c

No. Given $m = m_1 ||m_2||m_3|| \cdots ||m_\ell|$, we can construct the following three messages:

$$m_A = m_1 ||m_2||m_2||m_4||m_5|| \cdots ||m_{\ell}||$$

$$m_B = m_2 ||m_2||m_2||m_4||m_5|| \cdots ||m_{\ell}||$$

$$m_C = m_2 ||m_2||m_3||m_4||m_5|| \cdots ||m_{\ell}||$$

Then we query the oracle with these three new messages and produce a tag t by XOR the three responses.

$$\begin{split} t &= \mathcal{O}(m_A) \oplus \mathcal{O}(m_b) \oplus \mathcal{O}(m_c) \\ &= F_k(<1>|m_1) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_2) \oplus \oplus_{i=4}^{\ell} F_k(|m_i) \\ &\oplus F_k(<1>|m_2) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_2) \oplus \oplus_{i=4}^{\ell} F_k(|m_i) \\ &\oplus F_k(<1>|m_2) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_3) \oplus \oplus_{i=4}^{\ell} F_k(|m_i) \\ &= F_k(<1>|m_1) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_3) \oplus \oplus_{i=4}^{\ell} F_k(|m_i) \\ &= F_k(<1>|m_1) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_3) \oplus \oplus_{i=4}^{\ell} F_k(|m_i) \\ &= F_k(<1>|m_1) \oplus F_k(<2>|m_2) \oplus F_k(<3>|m_3) \oplus \cdots \oplus F_k(<\ell>|m_\ell) \\ &= \mathsf{Mac}_k(m) \end{split}$$

So we successfully forge a valid tag t where $Vrfy_k(m,t) = 1$ and $(m,t) \notin Q$.

d

No. Given $m=m_1||m_2||m_3||m_4||m_5||\cdots||m_\ell$, we can first construct the following messages:

$$m_A = m_1 ||m_2||m_2||m_4||m_5|| \cdots ||m_\ell||$$

Then we query the oracle with m_A and get the response:

$$\mathcal{O}(m_A) = (r, m_r)$$

$$= (r, F_k(r) \oplus F_k(<1 > | m_1) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_2) \oplus \bigoplus_{i=4}^{\ell} F_k(| m_i))$$

We can parse r as $r = \langle x \rangle | r'$, where the former half is the $\frac{n}{2}$ -bit encoding of the integer x. Construct the second message:

$$m_B = m_2 ||m_2||m_3||m_4||m_5|| \cdots ||r'|| \cdots ||m_\ell||$$

where r' is the x-th block and $\ell = 2^{\frac{n}{2}}$. We can query the oracle with m_A mutiple times until $x \geq 4$. Then we query the oracle with m_B and get the response:

$$\mathcal{O}(m_B) = (p, m_p)$$

$$= (p, F_k(p) \oplus F_k(<1 > | m_2) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_2) \oplus F_k(< x > | r') \oplus \bigoplus_{i=5}^{2^{\frac{n}{2}}} F_k(< i > | m_i))$$

Similarly, We can parse p as $p = \langle y \rangle | p'$, where the former half is the $\frac{n}{2}$ -bit encoding of the integer y. Construct the third message:

$$m_C = m_2 ||m_2||m_3||m_4||m_5|| \cdots ||p'|| \cdots ||m_\ell||$$

where p' is the y-th block and $\ell=2^{\frac{n}{2}}$. We can query the oracle with m_B mutiple times until $y\geq 4$. Then we query the oracle with m_C and get the response:

$$\mathcal{O}(m_C) = (q, m_q)$$

$$= (q, F_k(q) \oplus F_k(<1 > | m_2) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_3) \oplus F_k(< y > | p') \oplus \bigoplus_{i=5}^{2^{\frac{n}{2}}} F_k(< i > | m_i))$$

Notice that $F_k(\langle x \rangle | r') = F_k(r)$, $F_k(\langle y \rangle | p') = F_k(p)$, we can produce the tag t = (q, M) and

$$M = m_r \oplus m_p \oplus m_q$$

$$= F_k(r) \oplus F_k(<1 > | m_1) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_2) \oplus \bigoplus_{i=4}^{\ell} F_k(< i > | m_i)$$

$$\oplus F_k(p) \oplus F_k(<1 > | m_2) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_2) \oplus F_k(< x > | r') \oplus \bigoplus_{i=5}^{2^{\frac{n}{2}}} F_k(< i > | m_i)$$

$$\oplus F_k(q) \oplus F_k(<1 > | m_2) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_3) \oplus F_k(< y > | p') \oplus \bigoplus_{i=5}^{2^{\frac{n}{2}}} F_k(< i > | m_i)$$

$$= F_k(q) \oplus F_k(<1 > | m_1) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_3) \oplus \bigoplus_{i=4}^{\ell} F_k(< i > | m_i)$$

$$\oplus F_k(r) \oplus F_k(< x > | r') \oplus F_k(p) \oplus F_k(< y > | p')$$

$$= F_k(q) \oplus F_k(<1 > | m_1) \oplus F_k(<2 > | m_2) \oplus F_k(<3 > | m_3) \oplus \bigoplus_{i=4}^{\ell} F_k(< i > | m_i)$$

The discussion above is based on the condition that x and y are greater than 3.

$$\Pr[x \ge 4 \land y \ge 4] = \Pr[x \ge 4] \Pr[y \ge 4]$$
$$= (1 - 2^{\frac{n}{2} - 2})^2$$

So we can construct an adversary A conducting the steps mentioned above so that

$$Pr[\mathsf{Mac} - \mathsf{sforge}_{A \Pi}] = 1 = (1 - 2^{\frac{n}{2} - 2})^2$$

which is non-negligible.

With a non-negligible probability we successfully forge a valid tag t=(q,M) where $\operatorname{Vrfy_k}(m,t)=1$ and $(m,t)\notin \mathcal{Q}$, so this MAC is not strongly secure.

2

α

This is not collision-resistant.

I am going to show that a compression function can be constructed such that even if the compression function is collision-resistant the resulting hash function may not be collision-resistant.

Suppose that $f: \{0,1\}^{2n} \to \{0,1\}^{\frac{n}{2}}$ is a collision-resistant function. Based on f, we can construct another function $h: \{0,1\}^{2n} \to \{0,1\}^n$ as follows:

$$h(x) = \begin{cases} 0^n, & x = 0^n || x^*, \text{ where } x^* \text{ is a specific constant string in } \{0,1\}^n \\ 1^{\frac{n}{2}} || f(x), & \text{otherwise} \end{cases}$$

We can show that h is also collision-resistant. If there exists x_a and $x_b(x_a \neq x_b)$ such that $h(x_a) = h(x_b)$, there must be $1^{\frac{n}{2}}||f(x_a) = 1^{\frac{n}{2}}||f(x_b)$ because x_a and x_b cannot be $0^n||x^*$ at the same time. So we have $f(x_a) = f(x_b)$, contradicting the fact that f is collision-resistant.

Construct two messages x, x':

$$x = x^* | |x_2, x' = x_2, x_2 \in \{0, 1\}^n$$

Remember that the IV of Construction 3.5 is 0^n . We have:

$$H^{s}(x) = H^{s}(x^{*}||x_{2}) = H^{s}(h^{s}(0^{n}||x^{*})||x_{2}) = h^{s}(0^{n}||x_{2})$$
$$H^{s}(x') = h^{s}(0^{n}||x_{2})$$

So far we have found a collision for H, proving that the resulting hash function is not collision-resistant.

b

This is collision-resistant. We show that for any s, a collision in modified H^s yields a collision in h^s , thereby proving that the modified version is collision-resistant.

Let x and x' be two different strings of length L and L' respectively, such that $H^s(x) = H^s(x')$. Let x_1, \dots, x_B be the B blocks of the padded x, and let x'_1, \dots, x'_B be the B' blocks of the padded x'. Recall that $x_{B+1} = L$ and $x'_{B+1} = L'$. There are two cases to consider:

- 1. Case1: $L \neq L'$. In this case, the last step of the computation of $H^s(x)$ is $z_{B+1} = z_B || L$, and the last step of the computation of $H^s(x')$ is $z'_{B'+1} = z'_{B'} || L'$. Since $H^s(x) = H^s(x')$ it follows that $z_B || L = z'_{B'} || L'$. However, $L \neq L'$ and so $z_B || L$ and $z'_{B'} || L'$ are two different strings that collide under h^s .
- 2. Case2: L=L'. This means that B=B'. Let z_0, \dots, z_{B+1} be the values defined during the computation of $H^s(x)$, let $I_i \stackrel{def}{=} z_{i-1} || x_i$ denote the *i*-th input to h^s , $1 \le i \le B+1$, and set $I_{B+2} \stackrel{def}{=} z_{B+1} = z_B || L$. Define

 I'_1, \dots, I'_{B+2} analogously with respect to x'. Let N be the largest index for which $I_N \neq I'_N$. Since |x| = |x'| but $x \neq x'$, there is an i with $x_i \neq x'_i$ and so such that an N certainly exists. Because

$$I_{B+2} = z_{B+1} = H^s(x) = H^s(x') = z'_{B+1} = I'_{B+2}$$

we have $N \leq B+1$. By maximality of N, we have $I_{N+1}=I'_{N+1}$ and in particular $z_N=z'_N$. This means that $I_N,\,I'_N$ are a collision in h^s .

In conclusion, the modified Merkle-Damgård Tranform is collision-resistant.

 \mathbf{c}

This is collision-resistant. We show that for any s, a collision in modified H^s yields a collision in h^s , thereby proving that the modified version is collision-resistant.

Let x and x' be two different strings of length L and L' respectively, such that $H^s(x) = H^s(x')$. Let x_1, \dots, x_B be the B blocks of the padded x, and let x'_1, \dots, x'_B be the B' blocks of the padded x'. Recall that $x_{B+1} = L$ and $x'_{B+1} = L'$. There are two cases to consider:

- 1. Case1: $L \neq L'$. In this case, the last step of the computation of $H^s(x)$ is $z_{B+1} = z_B || L$, and the last step of the computation of $H^s(x')$ is $z'_{B'+1} = z'_{B'} || L'$. Since $H^s(x) = H^s(x')$ it follows that $z_B || L = z'_{B'} || L'$. However, $L \neq L'$ and so $z_B || L$ and $z'_{B'} || L'$ are two different strings that collide under h^s .
- 2. Case2: L=L'. This means that B=B'. Let z_0,\cdots,z_{B+1} be the values defined during the computation of $H^s(x)$, let $I_i\stackrel{def}{=} z_{i-1}||x_i|$ denote the i-th input to $h^s, 2\leq i\leq B+1$, and set $I_1=z_1=x_1$, $I_{B+2}\stackrel{def}{=} z_{B+1}=z_B||L$. Define I_1',\cdots,I_{B+2}' analogously with respect to x'. Let N be the largest index for which $I_N\neq I_N'$. Since |x|=|x'| but $x\neq x'$, there is an i with $x_i\neq x_i'$ and so such that an N certainly exists. Because

$$I_{B+2} = z_{B+1} = H^s(x) = H^s(x') = z'_{B+1} = I'_{B+2}$$

we have $N \leq B+1$. By maximality of N, we have $I_{N+1}=I'_{N+1}$ and in particular $z_N=z'_N$. This means that I_N , I'_N are a collision in h^s .

In conclusion, the modified Merkle-Damgård Tranform is collision-resistant.

d

This is not collision-resistant.

I am going to show that a compression function can be constructed such that even if the compression function is collision-resistant the resulting hash function may not be collision-resistant.

Suppose that $f:\{0,1\}^{2n} \to \{0,1\}^{\frac{n}{2}}$ is a collision-resistant function. Based on f, we can construct another function $h:\{0,1\}^{2n} \to \{0,1\}^n$ as follows:

$$h(x) = \begin{cases} < L_0 >, & x = < L_0 + n > || \ x^*, \text{ where } x^* \text{ is a specific constant string in } \{0, 1\}^n \\ < \ell \oplus 1^{\frac{n}{2}} > || f(x), & \text{otherwise, where } \ell \in \{0, 1\}^{\frac{n}{2}} \text{ is the former half of } < L_0 > \end{cases}$$

Let me explain it in detail. L_0 is a specific constant interger and is a integer mutiple of the n. $< i > \in \{0,1\}^n$ denotes the n-bit encoding of i. In the second case, $< \ell \oplus 1^{\frac{n}{2}} >$ is used to prevent from colliding with the first case.

We can show that h is also collision-resistant. If there exists x_a and $x_b(x_a \neq x_b)$ such that $h(x_a) = h(x_b)$, there must be $<\ell \oplus 1^{\frac{n}{2}} > ||f(x_a)|| < \ell \oplus 1^{\frac{n}{2}} > ||f(x_b)||$ because x_a and x_b cannot be $< L_0 + n > ||x^*||$ at the same time. So we have $f(x_a) = f(x_b)$, contradicting the fact that f is collision-resistant.

Construct two messages x, x', where $|x| = L_0 + n = Bn + n$, $|x'| = L_0 = Bn$:

$$x = x^* ||x_1||x_2|| \cdots ||x_B||$$

$$x' = x_1||x_2|| \cdots ||x_B||$$

Remember that the IV here is the length of the input. We have:

$$H^{s}(x) = H^{s}(x^{*}||x_{1}||x_{2}||\cdots||x_{B}) = H^{s}\left(h^{s}(\langle L_{0}+n \rangle ||x^{*}\rangle ||x_{1}||x_{2}||\cdots||x_{B}\right) = H^{s}\left(h^{s}(\langle L_{0} \rangle ||x_{1}\rangle ||x_{2}||\cdots||x_{B}\right)$$
$$H^{s}(x') = H^{s}(x_{1}||x_{2}||\cdots||x_{B}) = H^{s}\left(h^{s}(\langle L_{0} \rangle ||x_{1}\rangle ||x_{2}||\cdots||x_{B}\right)$$

So far we have found a collision for H, proving that the resulting hash function is not collision-resistant.

Additional 3.26

Define $\Pi = (Gen, H)$, $\Pi_1 = (Gen_1, H_1)$, $\Pi_2 = (Gen_2, H_2)$. Suppose Π is not collision-resistant. Then there exists an PPT adversary \mathcal{A} that \mathcal{A} can found a collision in H with a non-negligible probability $\epsilon(n)$:

$$\Pr[\mathsf{Hash} - \mathsf{coll}_{\mathcal{A},\Pi} = 1] = \epsilon(n)$$

Now we can construct A_1 with A:

 \mathcal{A}_1 is given s_1, s_2 .

- 1. Run $\mathcal{A}(s_1, s_2)$ and obtain x, x'.
- 2. Output x, x'.

 A_1 runs in polynomial time since A does. Whenever A found a collision in H, A_1 found a collision in H_1 . Also, A_2 can find a collision in H_2 . So we have

$$\Pr[\mathsf{Hash} - \mathsf{coll}_{\mathcal{A}_1,\Pi_1} = 1] > \Pr[\mathsf{Hash} - \mathsf{coll}_{\mathcal{A},\Pi} = 1] = \epsilon(n)$$

$$\Pr[\mathsf{Hash} - \mathsf{coll}_{\mathcal{A}_2,\Pi_2} = 1] > \Pr[\mathsf{Hash} - \mathsf{coll}_{\mathcal{A},\Pi} = 1] = \epsilon(n)$$

So we have that both \mathcal{A}_1 and \mathcal{A}_2 are not collision-resistant.

In conclusion, if at least one of H_1 and H_2 are collision-resistant, H is collision-resistant.