Domination on modular product graphs

Domen Humar in Maja Komic

November 2023

1 Definicije

Definicija 1 Podmnožica vozlišč grafa G (označimo jo z S) je dominanta podmnožica grafa G, če zanjo velja, da je vsako vozlišče grafa G, ali znotraj podmnožice S, ali je sosednjo nekemu vozlišču znotraj S.

Definicija 2 *Dominacijsko število* grafa G, označeno z $\gamma(G)$, je velikost/moč/kardinalno število najmanjše dominantne podmnožice grafa G.

Definicija 3 Modularni produkt grafov G in H je graf $G \diamond H$ z množico vozlišč $V(G \diamond H) = V(G) \times V(H)$, ki je unija kartezičnega produkta, direktnega produkta in direktnega produkta komplementov G in H

$$G \diamond H = G \square H \cup G \times H \cup \overline{G} \times \overline{H}$$

- . Natančneje, točki (q,h) in (q',h') iz grafa $G \diamond H$ sta sosednji, če velja:
 - 1. če je g = g' in $hh' \in E(H)$; ali
 - 2. če je h = h' in $gg' \in E(G)$; ali
 - 3. če je $gg' \in E(G)$ in $hh' \in E(H)$; ali
 - 4. če za $q \neq q'$ in $h \neq h'$ velja $uu' \notin E(G)$ in $hh' \notin E(H)$.

Povezave iz prve in druge točke so iz kartezičnega produkta, povezave iz tretje točke so iz direktnega produkta in povezave iz četrte točke so iz direktnega produkta komplementov.

2 Problem

Naj bosta G in H grafa. Na različnih primerih grafov želimo preveriti spodnjo neenakost in poiskati čim več takih grafov G in H za katera velja enakost.

$$\gamma(G \diamond H) \le \gamma(G) + \gamma(H) - 1 \tag{1}$$

3 Načrt dela

Najprej bova implementirala sledeči funciji:

- funkcijo, ki sprejme grafa G in H in vrne modularni produkt $G \diamond H$
- funkcijo, ki sprejme graf K in vrne dominantno število (Za manjše grafe bova napisala nek manjši program v Python-u, za večje grafe pa bova uporabila neko metahevristkiko).

Z tema dvema funkcijama bova preverila veljavnost neenakosti (1), tako da ju bova aplicirala na vedno večjh grafih. Pri reševanju problema bova uporabljala Sage paket za Python.