

Recurrent Vision Transformers for Object Detection with Event Cameras

IT □□ □□□□□ 2021111183 □□□ IT □□ □□□□□ 2021114818 □□□

CONTENTS

01 Before Reviewing..

02 Main Review

03 Relevance to the subject

01. Before Reviewing...

LSTM (Long short-term

memory)

RNN [] [] [] , gate 和 [] [] [] [] [] [] Vanishing Gradient Problem [] [] [] .

LSTM (Long short-term

memory)

Transformer

"Attention is All you Need"

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

N: sequence length

D : representation dimension

K: kernel size

Figure 1: The Transformer - model architecture.

Transformer

Attention: can be described as mapping a query and a set of key-value pairs to an output

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where } \text{head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

02. Main Review

What is **Event Camera**?

- 1. Low latency
- 2. High dynamic range
- 3. Strong robustness against motion blur

Event Cameras vs **Traditional Camera**(a-frame-based-camera)

	Event Camera	Traditional Camara
absolute intensity information	1	1
Change in intensity	1	1
Reducing Latency	↑ (submillisecond latency)	1

ue to latency, traditional camera may come at the cost of missing essential scene details in dynamic scene

Event Camera ∏∏∏ □□, □□□ □□□□□ binary event 가 □□ GNN(Graph Neural Network) □□□) □□ heavy □ backbone □□ & ConvLSTM □□ expensive □ cell □ □□ -> sparce neural network | vision backbone | design |

- □ □□□□ inference time □ performance □ □□□ □□□□ □□□ □□□□ □□□
- 1. Local and global self-attention
- 2. Preceding a simple convolution before attention
- 3. Conv-LSTM => plain LSTM

- 1. event-based pipelines □ □□□ design □□
- 2. Simple, composable [] state design

2. Related Work

Vision Transformation for Spatio-Temporal Data

In event-based vision

- classification
- image reconstructure
- monocular depth estimation
 - => Object detection has yet to be investigated

Overall Structure

RVT block structure

- 1. Convolution (overlapping)
- 2. Block Self Attention
- 3. MLP(Multi Layer Perceptron)
- 4. Grid Self Attention
- 5. MLP
- 6. LSTM

* Normalization and activation layers are omitted for conciseness

Preprocessing step

Input data

$$E(p, \tau, x, y) = \sum_{e_k \in \mathcal{E}} \delta(p - p_k) \delta(x - x_k, y - y_k) \delta(\tau - \tau_k),$$

$$\tau_k = \left| \frac{t_k - t_a}{t_b - t_a} \cdot T \right|$$
(2T, H, W)

2D convolution | | | | | | | | | | | |

x : width

y : height

p : polarity (□□□)

T: discretization steps of time

Spatial Feature Extraction

Convolution with overlapping kernels

Multi-axis attention self-attention

Local feature interaction

$$(\frac{H}{P}X\frac{W}{P},PXP,C)$$
P X P : window size

4. Grid Self Attention

Global feature interaction

$$(GXG, \frac{H}{G}X\frac{W}{G}, C)$$

Temporal Feature Extraction

Aggregation with LSTM

More detail

- | attention | MLP | | | | | | | | | , Layer Norm | | | | | | | .
- □ □□□□ Residual connection □□□.

Hierarchical Multi-Stage Design

2, 3, 4 □□ state □ hidden layer □ detection □ □□□

				Channels			
Stage	Size	Kernel	Stride	RVT-T	RVT-S	RVT-B	
S1	1/4	7	4	32	48	64	
S2	1/8	3	2	64	96	128	
S 3	1/16	3	2	128	192	256	
S4	1/32	3	2	256	384	512	

1.RVT-B ([] [] []]: [] [] [] .

2.RVT-S (| | | | | |): RVT-B | | | | | | | .

3.RVT-T (___ __): RVT-B __ __ __ __ .

4.1 Setup – Implementation Details

┻•凵凵 凵凵凵 =	
	LayerScale 🛮 🔠 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂

```
2. | | | | :
```

- 1. ___ ADAM ____ __ 40 _ __ iteration __ __ __ __ ___.

3. | | | | | :

- 4.1 Setup Implementation Details
 - **4.** □□□ □: random horizontal flipping, zooming in and zooming out □□□ □□□□.

 - 6. [][][][] [] [] :
 YOLOX [][][][][] , IOU loss, class loss and regression loss 가

4.1 Setup - Dataset

Gen1 Automotive Detection

1 MPx □□□□

4.2 Ablation Studies - Model Components

	Gen1		1 Mpx			
Block-type	mAP	AP_{50}	mAP	AP_{50}	Params (M)	
multi-axis	47.6	70.1	46.0	72.3	18.5	
Swin	46.7	68.7	44.4	71.7	18.5	
ConvNeXt	45.5	65.8	42.3	70.6	18.7	

Table 2. **Spatial Aggregation**. Multi-axis attention leads to the best results on both the Gen1 and 1 Mpx dataset.

Conv. kernel type	mAP	AP_{50}	AP_{75}	Params (M)
overlapping non-overlapping		70.1 68.6		

Table 3. **Downsampling Strategy**. The usage of overlapping kernels leads to higher performance at the expense of a slight increase in the number of parameters.

4.2 Ablation Studies - Model Components

LSTM kernel size	mAP	AP_{50}	AP_{75}	Params (M)
1×1	47.6	70.1	52.6	18.5
3×3	46.5	69.0	51.4	40.8
3×3 depth-sep	46.3	67.2	51.2	18.6

Table 4. **LSTM kernel size**. Conv-LSTM variants do not outperform the feature specific (1×1) LSTM.

S1	S2	S 3	S 4	mAP	AP_{50}	AP_{75}
				32.0	54.8	31.4
			1	39.8	63.5	41.6
		√	√	44.2	68.4	47.5
	√	√	√	46.9	70.0	50.8
\checkmark	\checkmark	\checkmark	\checkmark	47.6	70.1	52.6

Table 5. **LSTM placement**. LSTM cells contribute to the overall performance even in the early stages.

4.2 Ablation Studies - Data Augmentations

h-flip	zoom-in	zoom-out	mAP	AP_{50}	AP ₇₅
			38.1 41.6 45.8 44.1	59.5	41.1
\checkmark			41.6	63.5	45.5
	\checkmark		45.8	67.8	49.8
		\checkmark	44.1	65.7	48.4
\checkmark	\checkmark	\checkmark	47.6	70.1	52.6

Table 7. **Data Augmentation**. Data augmentation consistently improves the results.

4.3 Benchmark Comparisons

			Gen1		1 Mpx		
Method	Backbone	Detection Head	mAP	Time (ms)	mAP	Time (ms)	Params (M)
NVS-S [27]	GNN	YOLOv1 [40]	8.6	-	-	-	0.9
Asynet [34]	Sparse CNN	YOLOv1	14.5	-	-	-	11.4
AEGNN [43]	GNN	YOLOv1	16.3	-	-	-	20.0
Spiking DenseNet [10]	SNN	SSD [30]	18.9	-	-	-	8.2
Inception + SSD [19]	CNN	SSD	30.1	19.4	34.0	45.2	> 60*
RRC-Events [7]	CNN	YOLOv3 [41]	30.7	21.5	34.3	46.4	> 100*
MatrixLSTM [6]	RNN + CNN	YOLOv3	31.0	-	-	-	61.5
YOLOv3 Events [20]	CNN	YOLOv3	31.2	22.3	34.6	49.4	> 60*
RED [38]	CNN + RNN	SSD	40.0	16.7	43.0	39.3	24.1
ASTMNet [26]	(T)CNN + RNN	SSD	46.7	35.6	48.3	72.3	> 100*
RVT-B (ours)	Transformer + RNN	YOLOX [15]	47.2	10.2 (3.7)	<u>47.4</u>	11.9 (6.1)	18.5
RVT-S (ours)	Transformer + RNN	YOLOX	46.5	9.5 (3.0)	44.1	10.1 (5.0)	9.9
RVT-T (ours)	Transformer + RNN	YOLOX	44.1	9.4 (2.3)	41.5	9.5 (3.5)	4.4

4.3 Benchmark Comparisons

•

• Gen1 [[[[[[[] 47.2 mAP, 1 MPx [[[[[[] 47.4 mAP [[[[[] [[[] [[] [[]

•ASTMNet:

•**RED** □□:

- RED □□□ □□ □□ □□ Gen1 □□□□□□ **mAP** 가 **7.2** □□,
- 1 MPx [[[]] 4.4 [[]]

•Tiny **□□**:

• Gen1 [[[[[[]]]]] RED [[[[[]]]] 4.1 [[[]] mAP [[[[]]]] [[[]]] 5 [[[]] [[]]

Figure 4. **Predictions on the 1 Mpx dataset**. All examples are thematically picked to illustrate the behaviour of the model in different scenarios. (d) shows a scenario in which the model can still partially detect objects in absence of events due the temporal memory.

6. Conclusion

```
Backbone □□□□□
 Convolution prior
 local- and sparse global attention
 recurrent feature aggregation
                                                 low -latency Ⅲ
가 [].
```


03. Relevance to the subject

Relevance to the subject

Optimizer: Adam
Batch Strategy: BPTT, Truncated BPTT
Precision: MAP
Model LSTM, Transformer, CNN

https://m.hanbit.co.kr/channel/category/category_view.html?cms_code=CMS6074576268

https://wikidocs.net/31379

https://en.wikipedia.org/wiki/Event_camera

https://ko.wikipedia.org/wiki/%EB%AA%A8%EC%85%98_%EB%B8%94%EB%9F%AC

