Class 13: RNA-Seq analysis mini-project

Tahmid Ahmed

```
Section 1. Differential Expression Analysis
```

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeighted

Loading required package: Biobase

```
Welcome to Bioconductor
```

```
Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Load our data files
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
               hoxa1 kd
SRR493370
SRR493371
               hoxa1_kd
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData, na.rm = TRUE, ) > 0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357

ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
```

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371 colData names(2): condition sizeFactor

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcano Plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01 ) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(mycols)")</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
                                                                  "MAP"
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
                    "ONTOLOGY"
[21] "PMID"
                                   "REFSEQ"
                                                                  "UCSCKG"
                    "PROSITE"
                                                  "SYMBOL"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
```

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez	name	
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td><character></character></td><td></td></c<></character>	haracter>	<character></character>	
ENSG00000279457	6.86555e-01	NA	NA	NA	
ENSG00000187634	5.15718e-03	148398	148398	148398	
ENSG00000188976	1.76549e-35	26155	26155	26155	
ENSG00000187961	1.13413e-07	339451	339451	339451	
ENSG00000187583	9.19031e-01	84069	84069	84069	
ENSG00000187642	4.03379e-01	84808	84808	84808	
ENSG00000188290	1.30538e-24	57801	57801	57801	
ENSG00000187608	2.37452e-02	9636	9636	9636	
ENSG00000188157	4.21963e-16	375790	375790	375790	
ENSG00000237330	NA	401934	401934	401934	

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to

formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                       "10720" "10941" "151531" "1548"
                                                            "1549"
                                                                     "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                   "1890"
                                                            "221223" "2990"
[17] "3251"
              "3614"
                       "3615"
                                "3704"
                                         "51733"
                                                  "54490"
                                                            "54575"
                                                                     "54576"
[25] "54577"
              "54578"
                       "54579"
                                "54600"
                                         "54657"
                                                   "54658"
                                                            "54659"
                                                                     "54963"
[33] "574537" "64816"
                       "7083"
                                "7084"
                                         "7172"
                                                   "7363"
                                                            "7364"
                                                                     "7365"
              "7367"
[41] "7366"
                       "7371"
                                "7372"
                                         "7378"
                                                   "7498"
                                                            "79799"
                                                                     "83549"
[49] "8824"
                       "9"
                                "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201" "10606"
                                          "10622"
                                                    "10623"
                                                             "107"
                                                                      "10714"
                                 "10621"
  [9] "108"
               "10846"
                        "109"
                                 "111"
                                          "11128"
                                                    "11164"
                                                             "112"
                                                                      "113"
 [17] "114"
               "115"
                        "122481" "122622" "124583" "132"
                                                             "158"
                                                                      "159"
 [25] "1633"
               "171568" "1716"
                                 "196883" "203"
                                                    "204"
                                                             "205"
                                                                      "221823"
 [33] "2272"
               "22978" "23649" "246721" "25885"
                                                                      "270"
                                                   "2618"
                                                             "26289"
```

```
[49] "2986"
               "2987"
                        "29922"
                                  "3000"
                                           "30833"
                                                    "30834"
                                                              "318"
                                                                       "3251"
 [57] "353"
                                           "377841" "471"
                                                              "4830"
               "3614"
                        "3615"
                                  "3704"
                                                                       "4831"
 [65] "4832"
               "4833"
                        "4860"
                                  "4881"
                                           "4882"
                                                    "4907"
                                                              "50484"
                                                                       "50940"
 [73] "51082"
               "51251"
                        "51292"
                                 "5136"
                                           "5137"
                                                    "5138"
                                                             "5139"
                                                                       "5140"
                                                    "5146"
 [81] "5141"
               "5142"
                        "5143"
                                  "5144"
                                           "5145"
                                                             "5147"
                                                                       "5148"
 [89] "5149"
               "5150"
                        "5151"
                                  "5152"
                                           "5153"
                                                    "5158"
                                                             "5167"
                                                                       "5169"
 [97] "51728"
               "5198"
                        "5236"
                                  "5313"
                                           "5315"
                                                    "53343"
                                                             "54107"
                                                                       "5422"
[105] "5424"
               "5425"
                        "5426"
                                  "5427"
                                           "5430"
                                                    "5431"
                                                             "5432"
                                                                       "5433"
[113] "5434"
                                  "5437"
                                                    "5439"
                                                             "5440"
               "5435"
                        "5436"
                                           "5438"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                                    "55703"
                                                             "55811"
                                                                       "55821"
                                           "5558"
[129] "5631"
               "5634"
                        "56655"
                                  "56953"
                                           "56985"
                                                    "57804"
                                                             "58497"
                                                                       "6240"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                    "7498"
                                                              "8382"
                                                                       "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                       "9060"
[153] "9061"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                              "956"
                                                                       "957"
               "93034"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                   51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                          p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
```

"2982"

"2977"

"2983"

"2984"

[41] "271"

"27115"

"272"

"2766"

```
hsa03013 RNA transport
                                     1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                     3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                     3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                           q.val set.size
hsa04110 Cell cycle
                                     0.001448312
                                                     121 8.995727e-06
hsa03030 DNA replication
                                     0.007586381
                                                      36 9.424076e-05
                                     0.073840037 144 1.375901e-03
hsa03013 RNA transport
hsa03440 Homologous recombination 0.121861535
                                                      28 3.066756e-03
                                                     102 3.784520e-03
hsa04114 Oocyte meiosis
                                     0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                      53 8.961413e-03
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class 13
Info: Writing image file hsa04110.pathview.png
  # A different PDF based output of the same data
  pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class 13
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
## Focus on top 5 downregulated pathways here
  keggrespathways.less <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids.less = substr(keggrespathways.less, start=1, stop=8)
  keggresids.less
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids.less, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class_13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class_13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class_13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class_13
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/tahmid/Desktop/BIMM 143 Fall 2022/Class_13

Info: Writing image file hsa04114.pathview.png


```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

	h.geomean	Stat.mean	p.var
GO:0007156 homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GO:0002009 morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729 tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610 behavior	2.195494e-04	3.530241	2.195494e-04

```
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
                                          5.953254e-04 3.253665 5.953254e-04
GO:0035295 tube development
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                         424 1.432451e-04
                                          0.1951953
GO:0007610 behavior
                                          0.2243795
                                                         427 2.195494e-04
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3711390
                                                         391 5.953254e-04
$less
                                           p.geomean stat.mean
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                                           142 2.028624e-11
                                       1.658603e-08
GO:0000236 mitotic prometaphase
                                       1.178402e-07
                                                           84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GO:0007610 behavior
                                           3.530241 3.530241
GO:0060562 epithelial tube morphogenesis
                                          3.261376 3.261376
GO:0035295 tube development
                                           3.253665 3.253665
Section 4. Reactome Analysis
  sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
  print(paste("Total number of significant genes:", length(sig_genes)))
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Signaling by Rho GTPases, Miro GTPases and RHOBTB3 has the most significant "Entities p-value" of 1.39E-5. No the pathways listed do not match my previous KEGG results. The differences could be caused by our KEGG using Log2 and LogAdj changes whereas reactome could have different methods.

sessionInfo()

```
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
Matrix products: default
        /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4
              stats
                        graphics grDevices utils
                                                       datasets methods
[8] base
other attached packages:
 [1] gageData_2.36.0
                                  gage_2.48.0
 [3] pathview_1.38.0
                                  org.Hs.eg.db_3.16.0
 [5] AnnotationDbi_1.60.0
                                 DESeq2_1.38.0
 [7] SummarizedExperiment_1.28.0 Biobase_2.58.0
 [9] MatrixGenerics_1.10.0
                                 matrixStats_0.62.0
[11] GenomicRanges_1.50.1
                                  GenomeInfoDb_1.34.2
[13] IRanges_2.32.0
                                  S4Vectors_0.36.0
[15] BiocGenerics_0.44.0
loaded via a namespace (and not attached):
 [1] httr_1.4.4
                            bit64_4.0.5
                                                    jsonlite_1.8.3
 [4] splines_4.2.2
                            blob_1.2.3
                                                    GenomeInfoDbData_1.2.9
 [7] yaml_2.3.6
                            pillar_1.8.1
                                                    RSQLite_2.2.18
```

[10] [13]	-
[16]	htmltools_0.5.3
[19]	-
[22]	GO.db_3.16.0
[25]	BiocParallel_1.32.0
[28]	KEGGREST_1.38.0
[31]	cachem_1.0.6
[34]	magrittr_2.0.3
[37]	memoise_2.0.1
[40]	graph_1.76.0
[43]	stringr_1.4.1
[46]	DelayedArray_0.24.0
[49]	rlang_1.0.6
[52]	bitops_1.0-7
[55]	codetools_0.2-18
[58]	knitr_1.40
[61]	bit_4.0.4
[64]	stringi_1.7.8
[67]	vctrs_0.5.0
[70]	tidyselect_1.2.0

glue_1.6.2
XVector_0.38.0
Matrix_1.5-1
genefilter_1.80.0
xtable_1.8-4
tibble_3.1.8
generics_0.1.3
cli_3.4.1
crayon_1.5.2
evaluate_0.18
tools_4.2.2
munsell_0.5.0
Biostrings_2.66.0
grid_4.2.2
rmarkdown_2.17
DBI_1.1.3
dplyr_1.0.10
utf8_1.2.2
parallel_4.2.2
geneplotter_1.76.0
xfun_0.34

digest_0.6.30
colorspace_2.0-3
XML_3.99-0.12
zlibbioc_1.44.0
scales_1.2.1
annotate_1.76.0
ggplot2_3.4.0
survival_3.4-0
KEGGgraph_1.58.0
fansi_1.0.3
lifecycle_1.0.3
locfit_1.5-9.6
compiler_4.2.2
RCurl_1.98-1.9
gtable_0.3.1
R6_2.5.1
fastmap_1.1.0
Rgraphviz_2.42.0
Rcpp_1.0.9
png_0.1-7