Prostate embryology, anatomy and physiology

Embryology

5 paired epithelial buds project posteriorly from urethra into USM at 13-16 weeks under the influence of DHT

Top pairs derived from mesoderm – form TZ/periurethral zones

Low secretory activity

Apoptosis

Lower pairs derived from endoderm - PZ

Outer duct - high mitosis, low secretion

Mid duct – less mitosis, high secretion

Inner duct – no mitosis, no secretion, apoptosis

Stromal-epithelial interaction

Prostate development requires presence of surrounding stroma Determined by classic work by Jerry Cunha 1983

Urogenital sinus mesenchyme (USM) induces prostate epithelial differentiation from adult bladder epithelium

Absolute requirement for USM androgen receptor (not present in testicular feminisation)

Further growth of prostatic epithelium regulated by interaction with basement membrane and stromal cells - ? defect in stromal component responsible for inhibition of cell proliferation and development of BPH

T fm = Testicular feminization syndrome (mice with androgen receptor deficiency)

Anatomy

70% glandular (simple columnar or cuboidal epithelium); 30% fibromuscular stroma. Glandular elements:

70% peripheral zone(70% cancers)25% central zone(5-10% cancers)5-10% transitional zonelateral lobes(20% cancers)

1% periurethral zone middle lobe

NB. urethral angle (typically 35') divides periurethral zone from TZ (see below) Central zone - Wolffian structures – under influence of T Remaining prostate – urogenital sinus mesenchyme – under influence of DHT

Pre-prostatic sphincter

Signet ring, deficient posteriorly (remember anterior fibromuscular stroma)

Innervation of sphincter predominantly

adrenergic and chlolinergic, with others (NANC): Cholinergic

epithelial secretion

Adrenergic

98% in stroma, not epithelium

90% α1 (60% α1a)

10% α2

smooth muscle contraction

Neuroendocrine cells

Serotonin, calcitonin, TSH,

somatostatin

regulation of secretion & cell growth

growi

NANC

Substance P, neuropeptide Y, encephalins, VIP Function unknown

Fig. 2. Semi-diagrammatic representation of fibres of preprostatic sphincter passing round the urethra to interdigitate with the muscle fibres on the deep aspect of the striated muscle of the urethra.

Bladder Neck v Preprostatic Sphincter Bladder Neck Preprostatic sphincter Both sexes At bladder neck Supraverumontanal Cholinergic innervation Adrenergic innervation

Genital sphincter

Continence mechanism

Endocrinology and physiology

Prostate function unknown - secretory

Testosterone required for normal function

Permissive role for growth; androgen withdrawal = prostate involution Majority of serum testosterone from testis – unbound T bioavailable form DHT formed within prostate epithelial cells – 40x more active vs. T

DHT diffuses to stroma (most of the androgen receptors; paracrine effect)

Stromal nuclei produce growth factors

Growth factors drive epithelial cells

Stimulatory

bFGF, KGF (FGF-7) and EGF* and IGF (80%) TGFα (20%)

Inhibitory

TGFβ

* EGF believed to be dominant factor regulating prostate epithelial growth

Prostatic secretion

Proteins and non-proteins (see below)

Zinc maintains quaternary structure of sperm chromatin

PSA aids liquefaction of seminal fluid Citrate thought to act as buffer for seminal fluid (~750x conc. vs. other tissues)

Prostatic Secretion	
Proteins	Non proteins
Acid phosphatase	Citrate Spermine
Leucine aminopeptidase	Spermidine
Diamine oxidase	Putrescine
B Glucuronidase	Zinc
Plasminogen activator	Myoinositol
Complement C3 and C4	Cholesterol
Transferrin, transferritin	
Growth factors	
Annexin 1	