TEMA D'ESAME

Domanda A

Si dimostri per via algebrica il teorema di idempotenza per l'operatore OR.

Domanda B

Siano $\mathbf{X} = [\mathbf{x}_3 \ \mathbf{x}_2 \ \mathbf{x}_1 \ \mathbf{x}_0]$ ed $\mathbf{Y} = [\mathbf{y}_3 \ \mathbf{y}_2 \ \mathbf{y}_1 \ \mathbf{y}_0]$ due parole di 4 bit in codifica binaria naturale. Utilizzando solamente full adder e half adder, si progetti la rete ottima per il calcolo dell'espressione $5\mathbf{X} - 2\mathbf{Y}$.

Domanda C

Data la macchina a stati non completamente specificata descritta dalla tabella a fianco, svolgere i seguenti punti:

- 1. Analizzare la raggiungibilità degli stati sapendo che A è lo stato di reset.
- 2. Individuare la macchina minima composta dall'insieme di tutte le classi di massima compatibilità
- Individuare una soluzione minima alternativa composta da classi di compatibilità non massime, giustificando le scelte operate.

	0	1
A	E/0	-1
В	E/-	A/0
С	A/-	-/1
D	-/0	C/0
E	В/О	D/1

Domanda D

Si progetti una macchina a stati finiti che riconosce la sequenza 1010, considerando anche sequenze parzialmente sovrapposte. Dopo aver disegnato il diagramma di transizione di stato, se ne verifichi l'ottimalità e proceda alla sintesi con flip-flop SR.