١	Course	10EIO122T	331	INDUSTRIAL ALITOMATION SYSTEMS	Course		Open Floative	L	Т	Р	С
	Code	100101331		INDUSTRIAL AUTOMATION SYSTEMS	Category	Open Elective	3	0	0	3	

Pre-requisite Courses	Nil		requisite ourses	Nil		Progressive Courses	Nil
Course Offering	g Department	Electronics and Instrumentation	tion Enginee	ering	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):		The purpose of learning this course is to:					
CLR-1:	•	the basic components of PLC	1				
CLR-2:	Identii	fy the use of timers and counters in process automation	1				
CLR-3:	Under	stand the DCS architecture		9			
CLR-4:	CLR-4: Gain knowledge on operator and engineering interface in DCS						
CLR-5:	CLR-5: Impart the knowledge on various elements in SCADA						
) દા			
Course Outcome (CO):	s	At the end of this course, learners will be able to:		Blooms level (1-6)			
CO-1:	Summarize the I/O modules in PLC for process control						
CO-2:	O-2: Apply timers and counters in process automation						
CO-3:	0-3: Use the knowledge of DCS in LCU selection						
CO-4:							
CO-5:	Illustra	ate the remote terminal unit and master terminal unit in SCADA.		3			

	Program Outcomes (PO)													
1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
Engineering	Problem Analysis	Design &		Modern Tool Usage	Society & Culture	Environment &	Ethics	Individual & Team	Communication	Project Mgt. &	Life Long Learning	Automatic control for continuous& discrete	Utilize PLC & DCS for control of systems	Effective management skills
3	١	-	-	•	•	•	•	•	-	•	•	1	3	-
3	2	•	•	•	•	•	٠	•	-	•	•	ı	3	-
2	•	-	-	•	•	•	-		-	-	•	3	2	-
2	1			-	•		-	-	-	-	-	-	1	-
2		-	-	-	-	-	-	-	-	-	-	2	-	-

Duration (hour)		9	9	9	9	9
	SLO-1	Programmable logic controllers	PLC Programming Languages	Evolution of DCS	Operator Interfaces Requirements	SCADA basics introduction
S-1	SLO-2	PLC vs Computer	Ladder Diagram	Hybrid System Architecture	Process Monitoring	Elements of SCADA
S-2	SLO-1	Parts of a PLC	Functional block	Central Computer system Architecture	Process Control	Functionality of SCADA
	SLO-2	Architecture	Sequential Function Chart	DCS Architecture	Process Diagnostics	Process example
	SLO-1	PLC size and Application.	Instruction List	Comparison of Architecture	Process Record Keeping	Key features
S-3	SLO-2	Fixed and Modular I/O	Structured Text	Local Control Unit Architecture	Low Level Operator Interface	Real time systems
	SLO-1	Discrete Input Modules	Wiring Diagram	Architectural Parameters	High Level Operator Interface	Analog signals measurement
S-4	SLO-2	Discrete Output Modules	Ladder logic Program	Comparison Of LCU Architecture	Hardware Elements In The Operator Interface	Control techniques
0.5	SLO-1	Analog Input Modules	On-Delay Timer Instruction	LCU Language Requirements	Operator Input And Output Devices	Remote terminal unit
S-5	SLO-2	Analog Output Modules	Off-Delay Timer Instruction	Function Blocks	Operator Display Hierarchy	Analog and Discrete control
•	SLO-1	Special I/O Modules	Retentive Timer	Function Block Libraries	Plant-Level Display	Monitoring signals
S-6	SLO-2	High Speed Counter Module	Cascading Timer	Problem-Oriented Language	Area- Level Display	Master terminal unit
0.7	SLO-1	Power Supplies	Up-Counter	LCU Process Interfacing Issues	Group- Level Display	RTU/MTU communication
S-7	SLO-2	Isolators	Down-Counter	Security Requirements	Loop- Level Display	System components
S-8 SLO-1		Input/output Devices: Switches	Cascading Counters	Security Design Approach	Engineering Interface Requirements	

	SLO-2	sensors	Combining Counter and Timer Functions	On-Line Diagnostics	Requirement For Operator Interface Configuration	Communication Protocols	
	SLO-1	Relays	Math Operation	Redundant Controller Design	Low Level Engineering Interface,	Operator interface	
S-9	SLO-2 Solenoid valve		Program	One-On-One, One-On-Many Redundancy	High Level Engineering Interfaces	-	

Learning	
Resource	,

- 1. Frank D. Petruzella, Programmable Logic Controller, Tata McGraw Hill Fifth Edition, 2017
- 2. Bolton. W, Programmable Logic Controllers,6th Edition, Elsevier Newnes, Sixth Edition 2016.
- 3. Krishna Kant, Computer Based Industrial Control, Second edition, Prentice Hall of India, New Delhi, 2015
- 4. Bowten, R HART Application Guide, HART Communication foundation, 2015.
- Berge, J, Field Busses for process control: Engineering, operation, maintenance, ISA press,2015

Learning Ass	Learning Assessment										
	Bloom's		Continuous Learning Assessment (50% weightage)								
	Level of	CLA -	1 (10%)	CLA -	2 (15%)	CLA – 3 (15%)		CLA - 4 (10%)#			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	-	20 %	-	20 %	-	20 %	-	20 %	-
Level 2	Understand	60 %	-	20 %	-	20 %	-	20 %	-	20 %	-
Level 3	Apply	-	-	60 %	-	40 %	-	30 %	-	40 %	-
Level 4	Analyze	-	-		-	20%	-	30 %	-	20 %	-
Level 5	Evaluate	-	-	-	-	-	-	-	-	-	-
Level 6	Create	-	-	-	-	-	-	-	-	-	-
	Total	10	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, <u>karthikeyan.d@controlsoftengg.in</u>	1. Dr. J. Prakash, MIT, Chennai, <u>prakaiit@rediffmail.com</u>	1. Mr.J. Sam Jeba Kumar, SRMIST							
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. G.Joselin Retna Kumar, SRMIST							