Ejercicio 31

Ricardo Ruiz

October 8, 2017

Enunciado

Sea $A = \left\{1 + \frac{1}{n} : n \in \mathbb{N}\right\}.$

Prueba que $\inf A = 1$

Por la observación 1.13.2, si $\alpha = infA = 1$, entonces

$$\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in A : \quad x_{\varepsilon} < \alpha + \varepsilon$$

Por tanto, $x_{\varepsilon} < 1 + \varepsilon$, y como $x_{\varepsilon} \in A$ entonces $x_{\varepsilon} = 1 + \frac{1}{n_{\varepsilon}}$ Así, se tiene que:

$$1 + \frac{1}{n_{\varepsilon}} < 1 + \varepsilon; \quad \frac{1}{n_{\varepsilon}} < \varepsilon$$

Despejando n_{ε} :

$$\frac{1}{\varepsilon} < n_{\varepsilon}$$

Y esto es cierto $\forall \varepsilon \in \mathbb{R}_0^+ \quad \forall n_\varepsilon \in \mathbb{N}$, ya que según la propiedad arquimediana, dado cualquier número real, se verifica que hay números naturales mayores que él.

¿Tiene A mínimo? ¿Y máximo?