Meeting 35 – 4/25/22

1. Spur Gears

In-Class Agenda

- 2. Nomenclature
- 3. Other Gears
- 4. Gear Trains

Upcoming Assignments

	,		1 0 0	
31	4/11		P3 Help	P3 Due
32	4/13		Springs	P4 Assigned
	4/15		NO CLASS	
33	4/18		Static Spring Example	
34	4/20	Dynamic Spring Example		
35	4/22		Gears	A7 - Dynamic Spring
36	4/25		Gear Loads	
37	4/27		Power Screw	
38	4/29		Power Screw Example	
39	5/2		Fasteners	A8 - Power Screws and Gears
40	5/4		Fasteners Example	
41	5/6		P4 Help	
42	5/9		P4 Help	
				P4 Due

Riddle

What is as light as a feather, but even the world's strongest man couldn't hold it for more than a few minutes?

ME466 Elements of Machine Design

Lecture 35
Introduction to Gears

TENNESSEE

KNOXVILLE

What purpose gears have?

- Exchange velocity for torque
- Translate rotational power

FIGURE 12-2

An External Gearset

What is an involute?

- What do involutes have to do with gears?
- Why?

$$L = \theta r$$

FIGURE 12-8

Pressure angle: ϕ

Diametral pitch: $p_d = \frac{N}{d}$ (US)

module: $m = \frac{25.4}{p_d} = \frac{d}{N}$ (SI)

addendum: a dedendum: b

Radius: r

Outside diameter: $d_o = d + 2a$

Pitch circle: *d*

Base Circle: $d_b = d \cos(\phi)$

Root Circle: $d_r = d - 2b$

Circular tooth thickness: t

Space Width: S (MY notation)

Backlash: S-t

FIGURE 12-4

Contact Geometry and Pressure Angle of Involute Gear Teeth

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

FIGURE 12-5

Length of Action, Arc of Action, and Angles of Approach and Recess During the Meshing of a Gear and Pinion

Effect of Pressure Angle

FIGURE 12-9

AGMA Full-Depth Tooth Profiles for Three Pressure Angles

Copyright © 2011 Pearson Education, Ir

Effect of diametral pitch

FIGURE 12-10

Table 12-1 AGMA Full-Depth Gear Tooth Specifications

Parameter	Coarse Pitch (p_d < 20)	Fine Pitch ($p_d \ge 20$)
Pressure angle φ	20° or 25°	20°
Addendum a	1.000 / pd	1.000 / pd
Dedendum b	1.250 / Pd	1.250 / pd
Working depth	2.000 / Pd	2.000 / pd
Whole depth	2.250 / pd	$2.200 / p_d + 0.002 in$
Circular tooth thickness	1.571 / Pd	1.571 / p _d
Fillet radius—basic rack	0.300 / Pd	not standardized
minimum basic clearance	0.250 / Pd	$0.200 / p_d + 0.002 in$
minimum width of top land	0.250 / Pd	not standardized
Clearance (shaved or ground teeth)	0.350 / Pd	$0.350 / p_d + 0.002 in$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Table 12-2Standard Diametral Pitches

Coarse $(p_d < 20)$	Fine $(p_d \ge 20)$
1	20
1.25	24
1.5	32
1.75	48
2	64
2.5	72
3	80
4	96
5	120
6	
8	
10	
12	
14	
16	
18	

Table 12-3Standard Metric Modules

Metric Module (mm)	Equivalent p_d (in ⁻¹)
0.3	84.67
0.4	63.50
0.5	50.80
0.8	31.75
1	25.40
1.25	20.32
1.5	16.93
2	12.70
3	8.47
4	6.35
5	5.08
6	4.23
8	3.18
10	2.54
12	2.12
16	1.59
20	1.27
25	1.02

Undercutting (interference)

Table 12-4

Minimum Number of Pinion Teeth to Avoid Interference Between a Full-Depth Pinion and a Full-Depth Rack

Pressure Angle (deg)	Minimum Number of Teeth	
14.5	32	
20	18	
25	12	

eeth Below the Base Circle

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Minimum Number of Pinion Teeth to Avoid Interference Between a 20° Full-Depth Pinion and Full-Depth Gears of Various Sizes

Minimum Pinion Teeth	Maximum Gear Teeth
17	1 309
16	101
15	45
14	26
13	16

Other gears:

- Helical
 - Parallel
 - Crossed
- Bevel
 - Straight
 - Spiral
- Worm

Parallel Helical Gears

- Quieter operation
- Less vibration
- Smoother gear contact
- Relatively Stronger

Parallel Axes
Opposite-handed mesh

Crossed Helical Gears

- Point Contact (instead of line)
- Not as strong as Parallel gears
- Useful for "turning" power transmission

Crossed Axes
Same-handed mesh

Helical Gears

FIGURE 13-2

Basic Helical Rack Showing Normal and Transverse Planes and Resolution of Forces

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Straight Bevel Gears

Analogous to Spur Gears

Spiral Bevel Gears

Analogous to Helical Gears

Bevel Gears

$$L = \frac{d_p}{2\sin\alpha_p} = \frac{d_g}{2\sin\alpha_g}$$

For a 90^o bevel set:

$$m_G = \frac{\omega_p}{\omega_g} = \frac{N_g}{N_p} = \frac{d_g}{d_p} = \tan \alpha_g = \cot \alpha_p$$

Worm Gearsets

- Worms often only have one tooth
- Analogous to Power Screws
- Worm typically requires hardened steel

$$p_x = \frac{L}{N_w} = p_c = \frac{\pi d_g}{N_g}$$

 $p_x = axial\ pitch, L = Lead, N_w = \#\ of\ starts$

worm

 $p_c = circular\ pitch, d_g = pitch\ diameter, N_g = \#\ of\ teeth\ on\ the\ gear$

Recommended Speed Ratios

- Spur Gears: 10:1
- Helical Gears: 10:1
- Bevel Gears (speed reduction): 10:1
- Bevel Gears (speed increase): 5:1
- Worm Gears: up to 360:1
 - Common ratios range from 1:1 to 100:1