

Content

- □ Background
- ☐ HyperGCL
- ☐ TriCL

- ☐ CASH
- □ Conclusion

Hypergraphs can naturally model group-wise relations as hyperedges

Using graphs can incur information loss

Graph and hypergraph representations of Fig. 1 data. Colored hyperedges correspond to different email messages.

☐ Hypergraph Neural Networks

☐ Hypergraph data labeling is often time, resource, and labor-intensive

Real world (hyper)graphs are 'sparse'

Most objects have only a few relationships

Incidence matrix

Self-Supervised Learning

■ Learn discriminative features from vast quantities of unlabeled instances without relying on human annotations

Contrastive Learning

Push original and augmented data closer, push original and negative data away

- Graph Contrastive Learning
 - Graph data augmentation
 - Dropping, perturbation and masking
 - GNN-based encoder
 - Extract graph-level representation vectors for augmented graphs
 - Projection head
 - Contrastive
 - ☐ Dependent on task, generally node-level contrast
 - ☐ Maximize the consistency between positive pairs compared with negative pairs

GNN-based encoder

Contrast

Challenges

☐ How to augment a hypergraph?

The choice of views is what controls the information the representation captures

□ What to contrast?

■ Node-only contrast cannot reflect higher-order information

How to augment a hypergraph?

Augment Hyperedges

- Hyperedge Perturbation
 - Partially missing higher-order relations do not significantly affect the semantic meaning of hypergraphs

Hyperedge Perturbation

- Generalized Hyperedge Perturbation
 - Randomly kick out vertices from hyperedges

Generalized Hyperedge Perturbation

How to augment a hypergraph?

- ☐ Augment Vertexes
 - Vertex dropping
 - ☐ Vertex missing does not alter semantics

- Attribute masking
 - ☐ Semantic robustness against losing partial attributes

A3: Drop Vertexes

A4: Feature Mask

How to augment a hypergraph?

- ☐ Subgraph
 - Local structure can hint the full semantics
 - Perform random walk to extract

A5: Subgraph

Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative

Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, Zhangyang Wang

University of Illinois Urbana-Champaign, Texas A&M University, University of Texas at Austin

22-NeurlPS

- Motivation
 - Augmentation of hypergraph can be learned during contrastive learning!
 - → Leverage Variational Graph Auto-Encoder!

Overview

 $f(\cdot), h(\cdot)$: shared encoder and projection head respectively

Apply hypergraph encoder and projection head

Variational Hypergraph Auto-Encoder (VHGAE)

- Embed hypergraphs into latent representations
 - $\square z_{\mathcal{V}} \sim q_{\phi}(z_{\mathcal{V}}|\mathcal{G}) = \mathcal{N}(\mu_{\mathcal{V}}, \sigma_{\mathcal{V}}^2); \ \mu_{\mathcal{V}} = HyperGNN_{\mu}^{\mathcal{V}}(\mathcal{G}), \log(\sigma_{\mathcal{V}}) = HyperGNN_{\sigma}^{\mathcal{V}}(\mathcal{G})$
 - $\square \ z_{\mathcal{E}} \sim q_{\phi}(z_{\mathcal{E}}|\mathcal{G}) = \mathcal{N}(\mu_{\mathcal{E}}, \sigma_{\mathcal{E}}^2); \ \mu_{\mathcal{E}} = HyperGNN_{\mu}^{\mathcal{E}}(\mathcal{G}), \log(\sigma_{\mathcal{E}}) = HyperGNN_{\sigma}^{\mathcal{E}}(\mathcal{G})$

Variational Hypergraph Auto-Encoder (VHGAE)

- Apply reparameterization trick
 - $\Box z_{\mathcal{V}} = \mu_{\mathcal{V}} + \sigma_{\mathcal{V}} \odot \delta$
 - $\Box z_{\mathcal{E}} = \mu_{\mathcal{E}} + \sigma_{\mathcal{E}} \odot \delta$
 - \square $\delta \sim \mathcal{N}(0, I)$

Variational Hypergraph Auto-Encoder (VHGAE)

- Reconstruct the higher-order relations of hypergraphs
- lacksquare Recover the relations on the converted bipartite graph $ilde{\mathcal{G}}=\{ ilde{\mathcal{V}}, ilde{\mathcal{E}}\}$

$$p(\mathcal{G}|z_{\mathcal{V}}, z_{\mathcal{E}}) \approx p(\tilde{\mathcal{G}}|z_{\mathcal{V}}, z_{\mathcal{E}}) = \prod_{e=1}^{|\mathcal{E}|} \prod_{v=1}^{|\mathcal{V}|} p(\tilde{\mathcal{E}}_{v,e}|z_v, z_e) = \prod_{e=1}^{|\mathcal{E}|} \prod_{v=1}^{|\mathcal{V}|} \text{Sigmoid}(z_v^T z_e),$$

- Variational Hypergraph Auto-Encoder (VHGAE)
 - Apply the Gumbel-Softmax trick for the hyperedge distribution

$$\begin{split} T(\mathcal{G}) &= \operatorname{Gumbel-Softmax}(p(\mathcal{G} \mid z_{\mathcal{V}}, z_{\mathcal{E}})) \\ &= \operatorname{Sigmoid}((w_{\mathcal{V}\mathcal{E}} + \log(\delta) - \log(1 - \delta))/\tau) \\ \tilde{\mathcal{G}}_{gen} &= T(\mathcal{G}) \circ \mathcal{G}, \end{split}$$

CAU

- ☐ Objective Function
 - Generator loss

$$\Box \mathcal{L}_{gen}(\phi) = -ELBO$$

- Contrastive loss
 - Node-level contrast

$$\Box L_{cl}(\tilde{G}_{1}, \tilde{G}_{2}) = \frac{1}{2|\mathcal{V}|} \sum_{n=1}^{|\mathcal{V}|} (l(u_{n}, s_{n}) + l(s_{n}, u_{n}))$$

$$\square l(u_n, s_n) = -\log \frac{e^{\gamma(u_n, s_n)/\tau}}{e^{\gamma(u_n, s_n)/\tau} + \sum_{m \neq n} e^{\gamma(u_n, s_m)/\tau}} + \sum_{m \neq n} e^{\gamma(u_n, u_m)/\tau}$$

$$\to \min_{\phi} \mathcal{L}_{gen}(\phi) - \beta \cdot L_{cl}(\mathcal{G}, \tilde{\mathcal{G}}_{gen} | \theta, \phi)$$

□ Training Pipeline

Algorithm 1 Hypergraph Contrastive Learning with Generative Augmentation (A6)

Input: Hypergraph \mathcal{G} ; HyperGNN and generator parameters θ and ϕ ; Multi-task training tradeoff parameters α , β

- 1: Randomly initialize θ and ϕ ;
- 2: while not converge do
 - Obtain view $\tilde{\mathcal{G}}_p$ via fabricated augmentation and view $\tilde{\mathcal{G}}_{gen}$ via generator ϕ ;
- Define HyperGNN loss as: $\mathcal{L}_h = \mathcal{L}_{sup}(\theta) + \alpha \cdot \mathcal{L}_{cl}(\tilde{\mathcal{G}}_p, \tilde{\mathcal{G}}_{gen} \mid \theta, \phi);$
- Define generator loss as: $\mathcal{L}_q = \mathcal{L}_{gen}(\phi) \beta \cdot \mathcal{L}_{cl}(\mathcal{G}, \tilde{\mathcal{G}}_{gen} \mid \theta, \phi);$
- 6: Update HyperGNN θ to minimize \mathcal{L}_h ;
- 7: Update generator ϕ to minimize \mathcal{L}_g ;
- 8: end while

□ Datasets

■ Split the data into training/validation/test samples using (10%/10%/80%) splitting percentages

	Cora	Citeseer	Pubmed	Cora-CA	DBLP-CA	Zoo	20News	Mushroom	NTU2012	ModelNet40	Yelp	House	Walmart
${ \mathcal{V} }$	2708	3312	19717	2708	41302	101	16242	8124	2012	12311	50758	1290	88860
$ \mathcal{E} $	1579	1079	7963	1072	22363	43	100	298	2012	12311	679302	341	69906
# feature	1433	3703	500	1433	1425	16	100	22	100	100	1862	100	100
# class	7	6	3	7	6	7	4	2	67	40	9	2	11
$\max e $	5	26	171	43	202	93	2241	1808	5	5	2838	81	25
$\min e $	2	2	2	2	2	1	29	1	5	5	2	1	2
avg e	3.03	3.2	4.35	4.28	4.45	39.93	654.51	136.31	5	5	6.66	34.72	6.59
med e	3	2	3	3	3	40	537	72	5	5	3	40	5
$\max d_v$	145	88	99	23	18	17	44	5	19	30	7855	44	5733
$\min d_v$	0	0	0	0	1	17	1	5	1	1	1	0	0
avg d_v	1.77	1.04	1.76	1.69	2.41	17	4.03	5	5	5	89.12	9.18	5.18
$med d_v$	1	0	0	2	2	17	3	5	5	4	35	7	2
h_e	0.86	0.83	0.88	0.88	0.93	0.66	0.73	0.96	0.87	0.92	0.57	0.58	0.75
h_v	0.84	0.78	0.79	0.79	0.88	0.35	0.49	0.87	0.81	0.88	0.26	0.52	0.55

Comparison among different hypergraph augmentations

- Generalized hyperedge augmentation works the best among fabricated augmenting operators
- Generative augmentation usually performs the best in all the data sets

Table 3: Results on the test data sets: Mean accuracy (%) \pm standard deviation. Bold values indicate the best result. Underlined values indicate the second best. 10% of all vertices are used for training.

	Cora	Citeseer	Pubmed	Cora-CA	DBLP-CA	Zoo	20Newsgroups	Mushroom
SetGNN	67.93 ± 1.27	63.53 ± 1.32	84.33 ± 0.36	72.21 ± 1.51	89.51 ± 0.18	65.06 ± 12.82	79.37 ± 0.35	99.75 ± 0.11
Self	68.24 ± 1.12	62.49 ± 1.48	84.38 ± 0.38	72.74 ± 1.53	89.51 ± 0.23	57.35 ± 18.32	79.45 ± 0.32	95.83 ± 0.23
Con	68.89 ± 1.80	62.82 ± 1.21	84.56 ± 0.34	73.22 ± 1.65	89.59 ± 0.13	61.05 ± 14.54	79.49 ± 0.45	95.85 ± 0.31
A0	68.59 ± 1.33	62.25 ± 2.15	84.54 ± 0.42	71.85 ± 1.62	89.62 ± 0.24	62.57 ± 13.84	79.07 ± 0.46	99.77 ± 0.17
A1	72.39 ± 1.34	66.28 ± 1.27	85.17 ± 0.37	75.45 ± 1.54	89.83 ± 0.21	65.80 ± 13.31	79.47 ± 0.32	99.80 ± 0.14
A2	72.58 ± 1.09	66.40 ± 1.35	85.16 ± 0.38	75.62 ± 1.42	90.22 ± 0.23	66.35 ± 13.26	79.56 ± 0.42	99.80 ± 0.17
A3	72.33 ± 1.23	65.79 ± 1.18	85.24 ± 0.28	75.34 ± 1.40	89.85 ± 0.16	65.79 ± 14.05	79.47 ± 0.34	99.81 ± 0.10
A4	72.95 ± 1.19	66.22 ± 0.95	84.88 ± 0.38	75.29 ± 1.56	90.10 ± 0.18	62.59 ± 12.77	79.45 ± 0.48	99.80 ± 0.14
A5	67.96 ± 0.99	63.21 ± 1.25	84.48 ± 0.40	72.61 ± 1.86	89.75 ± 0.24	62.47 ± 12.39	79.42 ± 0.52	99.79 ± 0.10
A6	73.12 ± 1.48	66.94 ± 1.00	85.72 ± 0.38	76.21 ± 1.26	90.28 ± 0.19	66.89 ± 12.44	79.78 ± 0.40	99.86 ± 0.10
	NTU2012	ModelNet40	Yelp	House (0.6)	House (1.0)	Walmart (0.6)	Walmart (1.0)	Avg. Rank
SetGNN	73.86 ± 1.62	95.85 ± 0.38	28.78 ± 1.51	68.54 ± 1.89	58.34 ± 2.25	74.97 ± 0.22	59.13 ± 0.20	7.71
Self	73.41 ± 1.65	95.83 ± 0.23	23.49 ± 4.15	67.75 ± 3.29	58.54 ± 2.16	74.76 ± 0.20	58.83 ± 0.21	8.64
Con	73.27 ± 1.53	95.85 ± 0.31	26.14 ± 1.86	68.50 ± 2.52	58.56 ± 2.42	75.17 ± 0.21	59.39 ± 0.20	7.07
A0	73.54 ± 1.93	95.92 ± 0.18	29.43 ± 1.42	67.48 ± 3.21	57.39 ± 2.37	73.14 ± 0.21	56.49 ± 0.60	8.21
A1	74.71 ± 1.81	95.87 ± 0.27	27.18 ± 0.71	68.64 ± 2.99	58.10 ± 3.22	75.42 ± 0.13	60.09 ± 0.25	4.50
A2	74.88 ± 1.66	96.56 ± 0.34	31.39 ± 2.45	69.73 ± 2.60	58.90 ± 1.97	75.50 ± 0.18	60.19 ± 0.20	2.29
A3	74.68 ± 1.74	96.48 ± 0.29	27.57 ± 1.00	67.88 ± 2.90	58.51 ± 2.22	75.29 ± 0.23	60.19 ± 0.20	4.71
A4	74.83 ± 1.75	95.86 ± 0.28	29.64 ± 1.93	69.56 ± 2.89	58.91 ± 2.69	75.43 ± 0.18	59.90 ± 0.24	4.14
A5	74.41 ± 1.86	96.46 ± 0.33	29.24 ± 1.42	68.14 ± 2.97	57.70 ± 2.98	75.26 ± 0.18	59.81 ± 0.22	6.71
A6	75.34 ± 1.91	96.93 ± 0.33	34.64 ± 0.39	70.96 ± 2.27	59.93 ± 1.99	75.62 ± 0.16	60.46 ± 0.20	1.00

Table 4: Results on the test data sets: Mean accuracy (%) \pm standard deviation. Bold values indicate the best result. 1% of all vertexes are used for training.

	Cora	Citeseer	Pubmed	Cora-CA	DBLP-CA	20Newsgroups	Mushroom
SetGNN	46.48 ± 3.62	47.01 ± 4.31	76.13 ± 1.19	52.29 ± 4.18	85.52 ± 0.54	73.83 ± 1.40	97.73 ± 1.18
Self	45.79 ± 5.34	44.22 ± 4.43	76.71 ± 0.90	51.64 ± 5.37	84.42 ± 0.37	73.91 ± 0.90	92.25 ± 0.89
Con	49.20 ± 4.38	48.56 ± 4.88	77.51 ± 1.08	52.37 ± 4.41	86.47 ± 0.35	74.39 ± 1.23	92.43 ± 0.87
A0	48.50 ± 4.77	46.43 ± 4.24	78.83 ± 1.79	49.87 ± 5.08	87.34 ± 0.73	74.43 ± 1.11	97.32 ± 1.33
A1	56.42 ± 5.02	55.63 ± 3.96	80.13 ± 1.44	60.86 ± 5.91	87.53 ± 0.30	74.68 ± 1.31	97.95 ± 1.15
A2	56.81 ± 4.49	56.10 ± 2.86	80.22 ± 1.24	60.96 ± 6.31	88.10 ± 0.35	74.72 ± 1.16	98.05 ± 1.18
A3	55.94 ± 3.67	55.82 ± 3.40	80.13 ± 1.02	60.51 ± 4.55	87.47 ± 0.36	74.63 ± 1.00	98.04 ± 0.98
A4	58.55 ± 5.14	57.16 ± 4.62	80.11 ± 1.02	60.91 ± 5.15	88.91 ± 0.29	74.67 ± 1.39	97.72 ± 1.12
A5	46.23 ± 3.44	45.07 ± 4.89	75.95 ± 1.32	53.26 ± 4.86	87.12 ± 0.43	74.81 ± 1.04	97.72 ± 1.25
A6	57.45 ± 5.00	56.23 ± 3.27	81.10 ± 0.80	61.76 ± 4.94	88.55 ± 0.41	75.52 ± 0.93	98.28 ± 1.03
	ModelNet40	Yelp	House (0.6)	House (1.0)	Walmart (0.6)	Walmart (1.0)	Avg. Rank (↓)
SetGNN	88.34 ± 2.69	27.64 ± 1.10	53.69 ± 2.20	51.85 ± 1.64	65.48 ± 0.45	51.15 ± 0.52	7.62
Self	86.85 ± 3.03	20.77 ± 5.15	53.42 ± 2.25	51.14 ± 1.75	65.23 ± 0.43	51.00 ± 0.41	9.69
Con	87.00 ± 2.99	24.23 ± 0.43	53.58 ± 3.04	51.96 ± 1.87	65.47 ± 0.44	51.13 ± 0.46	7.31
A0	88.75 ± 2.78	27.43 ± 0.60	53.60 ± 2.73	51.70 ± 2.13	65.41 ± 0.47	51.10 ± 0.49	7.46
A1	89.34 ± 2.66	26.18 ± 0.51	54.12 ± 3.29	52.23 ± 2.46	65.96 ± 0.36	51.22 ± 0.35	4.08
	89.37 ± 2.69	27.67 ± 0.91	54.42 ± 2.83	52.31 ± 1.44	66.01 ± 0.41	51.32 ± 0.30	2.69
A2							-
A2 A3	89.31 ± 2.62	26.98 ± 0.66	53.71 ± 2.71	52.11 ± 2.24	65.88 ± 0.50	51.35 ± 0.53	4.38
			53.71 ± 2.71 53.64 ± 2.61	52.11 ± 2.24 51.77 ± 2.20	65.88 ± 0.50 65.55 ± 0.51	51.35 ± 0.53 51.04 ± 0.47	4.38 4.54
A3	89.31 ± 2.62	26.98 ± 0.66			00100 = 0100		

- □ Training dynamics of keep ratio
 - Highly related to the dataset homophily
 - \Box The homophily of ModelNet40 : (0.92/0.88)
 - \Box The homophily of Yelp: (0.57/0.26)

I'm Me, We're Us, and I'm Us: Tri-directional Contrastive Learning on Hypergraphs

Dongjin Lee and Kijung Shin

School of Electrical Engineering, Kim Jaechul Graduate School of Al, KAIST, South Korea

23-AAAI

☐ Motivation

Node-only Contrast

- Cannot capture higher-order relations
- Lead to limited expressiveness

Tri-directional Contrast

- Node + Group + Membership contrast
- Preserve higher-order structural information
- Produce richer, more generalizable embeddings

Encoder

 $f_{\theta}(\cdot)$

 \mathbf{Q}_2

 $g_{\psi}(\cdot)$

 \mathcal{I}_2

 $\mathcal{H}_2 = (\mathbf{X}_2, \mathbf{H}_2)$

□ Node-level contrast

Discriminate the representations of the same node in the two augmented views

from other node representations

$$\ell_n(\boldsymbol{z}_{1,i}, \boldsymbol{z}_{2,i}) = -\log rac{e^{s(\boldsymbol{z}_{1,i}, \boldsymbol{z}_{2,i})/\tau_n}}{\sum_{k=1}^{|V|} e^{s(\boldsymbol{z}_{1,i}, \boldsymbol{z}_{2,k})/\tau_n}},$$

$$\mathcal{L}_n = \frac{1}{2|V|} \sum_{i=1}^{|V|} \{ \ell_n(\boldsymbol{z}_{1,i}, \boldsymbol{z}_{2,i}) + \ell_n(\boldsymbol{z}_{2,i}, \boldsymbol{z}_{1,i}) \}.$$

☐ Group-level contrast

■ Distinguish the representations of the same hyperedge in the two augmented

views from other hyperedge representations

$$\ell_g(\mathbf{y}_{1,j}, \mathbf{y}_{2,j}) = -\log \frac{e^{s(\mathbf{y}_{1,j}, \mathbf{y}_{2,j})/\tau_g}}{\sum_{k=1}^{|E|} e^{s(\mathbf{y}_{1,j}, \mathbf{y}_{2,k})/\tau_g}},$$

$$\mathcal{L}_g = \frac{1}{2|E|} \sum_{j=1}^{|E|} \{ \ell_g(\mathbf{y}_{1,j}, \mathbf{y}_{2,j}) + \ell_g(\mathbf{y}_{2,j}, \mathbf{y}_{1,j}) \}.$$

Membership-level contrast

Learn to represent if relationships actually exist and to move away if they don't

exist

$$\ell_m(\boldsymbol{z}_i, \boldsymbol{y}_j) = -\log \frac{e^{\mathcal{D}(\boldsymbol{z}_i, \boldsymbol{y}_j)/\tau_m}}{e^{\mathcal{D}(\boldsymbol{z}_i, \boldsymbol{y}_j)/\tau_m} + \sum_{k: i \notin k} e^{\mathcal{D}(\boldsymbol{z}_i, \boldsymbol{y}_k)/\tau_m}}$$
when \boldsymbol{z}_i is the anchor
$$-\log \frac{e^{\mathcal{D}(\boldsymbol{z}_i, \boldsymbol{y}_j)/\tau_m}}{e^{\mathcal{D}(\boldsymbol{z}_i, \boldsymbol{y}_j)/\tau_m} + \sum_{k: k \notin j} e^{\mathcal{D}(\boldsymbol{z}_k, \boldsymbol{y}_j)/\tau_m}},$$
when \boldsymbol{y}_j is the anchor

$$\mathcal{L}_m = \frac{1}{2K} \sum_{i=1}^{|V|} \sum_{j=1}^{|E|} \mathbb{1}_{[h_{ij}=1]} \{ \ell_m(\boldsymbol{z}_{1,i}, \boldsymbol{y}_{2,j}) + \ell_m(\boldsymbol{z}_{2,i}, \boldsymbol{y}_{1,j}) \}.$$

Datasets

Table 6: Statistics of datasets used in our experiments.

	Cora-C	Citeseer	Pubmed	Cora-A	DBLP	Zoo	20News	Mushroom	NTU2012	ModelNet40
# Nodes	1,434	1,458	3,840	2,388	41,302	101	16,242	8,124	2,012	12,311
# Hyperedges	1,579	1,079	7,963	1,072	22,363	43	100	298	2,012	12,311
# Memberships	4,786	3,453	34,629	4,585	99,561	1,717	65,451	40,620	10,060	61,555
Avg. hyperedge size	3.03	3.20	4.35	4.28	4.45	39.93	654.51	136.31	5	5
Avg. node degree	3.34	2.37	9.02	1.92	2.41	17.00	4.03	5.00	5	5
Max. hyperedge size	5	26	171	43	202	93	2241	1808	5	5
Max. node degree	145	88	99	23	18	17	44	5	19	30
# Features	1,433	3,703	500	1,433	1,425	16	100	22	100	100
# Classes	7	6	3	7	6	7	4	2	67	40

□ Performance on Node Classification

■ Graph contrastive learning methods show significantly lower accuracy compared to TriCL

Table 1: Node classification accuracy and standard deviations. Graph methods, marked as ★, are applied after converting hypergraphs to graphs via clique expansion. For each dataset, the best and the second-best performances are highlighted in **boldface** and <u>underlined</u>, respectively. A.R. denotes average rank, OOT denotes cases where results are not obtained within 24 hours, and OOM indicates out of memory on a 24GB GPU. In most cases, TriCL outperforms all others, including the supervised ones.

	Method	Cora-C	Citeseer	Pubmed	Cora-A	DBLP	Zoo	20News	Mushroom	NTU2012	ModelNet40	A.R.↓
	MLP	60.32 ± 1.5	62.06 ± 2.3	76.27 ± 1.1	64.05 ± 1.4	81.18 ± 0.2	75.62 ± 9.5	79.19 ± 0.5	99.58 ± 0.3	65.17 ± 2.3	93.75 ± 0.6	12.5
	GCN*	77.11 ± 1.8	66.07 ± 2.4	82.63 ± 0.6	73.66 ± 1.3	87.58 ± 0.2	36.79 ± 9.6	OOM	92.47 ± 0.9	71.17 ± 2.4	91.67 ± 0.2	11.7
20	GAT*	77.75 ± 2.1	67.62 ± 2.5	81.96 ± 0.7	74.52 ± 1.3	88.59 ± 0.1	36.48 ± 10.0	OOM	OOM	70.94 ± 2.6	91.43 ± 0.3	11
sed	HGNN	77.50 ± 1.8	66.16 ± 2.3	83.52 ± 0.7	74.38 ± 1.2	88.32 ± 0.3	78.58 ± 11.1	80.15 ± 0.3	98.59 ± 0.5	72.03 ± 2.4	92.23 ± 0.2	8.1
.2	HyperConv	76.19 ± 2.1	64.12 ± 2.6	83.42 ± 0.6	73.52 ± 1.0	88.83 ± 0.2	62.53 ± 14.5	79.83 ± 0.4	97.56 ± 0.6	72.62 ± 2.6	91.84 ± 0.1	9.8
Super	HNHN	76.21 ± 1.7	67.28 ± 2.2	80.97 ± 0.9	74.88 ± 1.6	86.71 ± 1.2	78.89 ± 10.2	79.51 ± 0.4	99.78 ± 0.1	71.45 ± 3.2	92.96 ± 0.2	8.9
Su	HyperGCN	64.11 ± 7.4	59.92 ± 9.6	78.40 ± 9.2	60.65 ± 9.2	76.59 ± 7.6	40.86 ± 2.1	77.31 ± 6.0	48.26 ± 0.3	46.05 ± 3.9	69.23 ± 2.8	15.1
	HyperSAGE	64.98 ± 5.3	52.43 ± 9.4	79.49 ± 8.7	64.59 ± 4.3	79.63 ± 8.6	40.86 ± 2.1	OOT	OOT	OOT	OOT	14.7
	UniGCN	77.91 ± 1.9	66.40 ± 1.9	84.08 ± 0.7	77.30 ± 1.4	90.31 ± 0.2	72.10 ± 12.1	80.24 ± 0.4	98.84 ± 0.5	73.27 ± 2.7	94.62 ± 0.2	5.9
	AllSet	76.21 ± 1.7	67.83 ± 1.8	82.85 ± 0.9	76.94 ± 1.3	90.07 ± 0.3	72.72 ± 11.8	79.90 ± 0.4	99.78 ± 0.1	75.09 ± 2.5	96.85 ± 0.2	6.2
	Node2vec*	70.99 ± 1.4	53.85 ± 1.9	78.75 ± 0.9	58.50 ± 2.1	72.09 ± 0.3	17.02 ± 4.1	63.35 ± 1.7	88.16 ± 0.8	67.72 ± 2.1	84.94 ± 0.4	15.6
P	DGI*	78.17 ± 1.4	68.81 ± 1.8	80.83 ± 0.6	76.94 ± 1.1	88.00 ± 0.2	36.54 ± 9.7	OOM	OOM	72.01 ± 2.5	92.18 ± 0.2	9.3
vised	GRACE*	79.11 ± 1.7	68.65 ± 1.7	80.08 ± 0.7	76.59 ± 1.0	OOM	37.07 ± 9.3	OOM	OOM	70.51 ± 2.4	90.68 ± 0.3	10.4
03	S ² -HHGR	78.08 ± 1.7	68.21 ± 1.8	82.13 ± 0.6	78.15 ± 1.1	88.69 ± 0.2	80.06 ± 11.1	79.75 ± 0.3	97.15 ± 0.5	73.95 ± 2.4	93.26 ± 0.2	6.8
Unsup	Random-Init	63.62 ± 3.1	60.44 ± 2.5	67.49 ± 2.2	66.27 ± 2.2	76.57 ± 0.6	78.43 ± 11.0	77.14 ± 0.6	97.40 ± 0.6	74.39 ± 2.6	96.29 ± 0.3	11.9
5	TriCL-N	80.23 ± 1.2	70.28 ± 1.5	83.44 ± 0.6	81.94 ± 1.1	90.88 ± 0.1	79.94 ± 11.1	80.18 ± 0.2	99.76 ± 0.2	75.20 ± 2.6	97.01 ± 0.2	3.4
	TriCL-NG	81.45 ± 1.2	71.38 ± 1.2	83.68 ± 0.7	82.00 ± 1.0	90.94 ± 0.1	80.19 ± 11.1	80.18 ± 0.2	99.81 ± 0.1	75.25 ± 2.5	97.02 ± 0.1	2
	TriCL	81.57 ± 1.1	$\overline{72.02\pm1.2}$	84.26 ± 0.6	82.15 ± 0.9	91.12 ± 0.1	80.25 ± 11.2	80.14 ± 0.2	99.83 ± 0.1	75.23 ± 2.4	97.08 ± 0.1	1.5

□ Performance on Node Classification

■ Considering the different types of contrast together can help improve performance

Table 2: Comparison of node classification accuracy according to whether or not to use each type of contrast (i.e., \mathcal{L}_n , \mathcal{L}_g , and \mathcal{L}_m). Using all types of contrasts (i.e., node-, group-, and membership-level contrast) achieves the best performance in most cases as they are complementarily reinforcing each other.

\mathcal{L}_n	\mathcal{L}_g	\mathcal{L}_m	Cora-C	Citeseer	Pubmed	Cora-A	DBLP	Zoo	20News	Mushroom	NTU2012	ModelNet40	A.R.↓
1	2.53	878	80.23 ± 1.2	70.28 ± 1.5*	83.44 ± 0.6	81.94 ± 1.1	90.88 ± 0.1	79.94 ± 11.1	80.18 ± 0.2	99.76 ± 0.2	75.20 ± 2.6	97.01 ± 0.2	3.8
=	1	-	79.69 ± 1.6	$71.02 \pm 1.3*$	80.20 ± 1.3	78.98 ± 1.4	88.60 ± 0.2	79.31 ± 10.7	79.35 ± 0.4	99.13 ± 0.3	74.41 ± 2.6	96.66 ± 0.2	5.7
9	5 - 5	1	76.76 ± 1.8	63.98 ± 2.0	79.86 ± 0.9	76.77 ± 1.1	63.95 ± 7.2	79.80 ± 11.0	79.27 ± 0.3	94.87 ± 0.7	73.11 ± 2.8	96.57 ± 0.2	6.9
1	1	243	81.45 ± 1.2	71.38 ± 1.4	83.68 ± 0.7	82.00 ± 1.0	90.94 ± 0.1	80.19 ± 11.1	80.18 ± 0.2	99.81 ± 0.1	75.25 ± 2.5	97.02 ± 0.1	2.3
1	320	1	80.49 ± 1.3	70.46 ± 1.5	83.98 ± 0.7	81.62 ± 1.0	90.75 ± 0.1	80.19 ± 11.1	80.15 ± 0.2	99.74 ± 0.2	75.12 ± 2.5	97.03 ± 0.1	3.6
-	1	1	80.80 ± 1.1	71.73 ± 1.4	82.81 ± 0.7	80.24 ± 1.0	90.17 ± 0.1	80.20 ± 11.1	79.29 ± 0.2	99.82 ± 0.1	73.76 ± 2.5	96.74 ± 0.1	4.1
1	1	1	$\textbf{81.57} \pm \textbf{1.1}$	72.02 ± 1.4	$\textbf{84.26} \pm \textbf{0.6}$	$\textbf{82.15} \pm \textbf{0.9}$	$\textbf{91.12} \pm \textbf{0.1}$	80.25 ± 11.2	80.14 ± 0.2	99.83 ± 0.1	75.23 ± 2.4	$\textbf{97.08} \pm \textbf{0.1}$	1.4

☐ Hypergraph augmentation

■ Using the structural and attribute augmentations together always yields better performance than using just one

Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning

Yunyong Ko, Hanghang Tong, Sang-Wook Kim

Chung-Ang University (CAU), University of Illinois at Urbana-Champaign (UIUC), Hanyang University

25-TKDE

How to augment a hypergraph? What to contrast? CASH Context-aware hyperedge prediction Form node representations using original hypergraph 0 Δ □ Overview Generate representation for hyperedge candidate and predict Candidate Sampler (0000)(0000 Ypos Hypergraph Predictor Encoder Lpred Context-aware $f(X, H) \rightarrow (P, Q)$ Ynea Node Aggregator $\mathcal{H} = (X, H)$ -Shared parameters 8 œ Node-level Hypergraph Z(1,V) Projection Encoder \mathcal{L}_n $\mathcal{H} = (X, H)$ $f(\mathbf{X}_1, \mathbf{H}_1) \rightarrow (\mathbf{P}_1, \mathbf{Q}_1)$ Q1 $Z_{(2,V)}$ $g_V(\mathbf{P}_k) \to \mathbf{Z}_{(k,V)}$ $\mathcal{H}_1 = (\mathbf{X}_1, \mathbf{H}_1)$ Node £ self Masked node Node feature -Group-level $Z_{(1,E)}$ Masked node feature Hypergraph Pz Projection Encoder \mathcal{T}_2

Fig. 2. The overview of CASH: (1) Context-aware hyperedge prediction (upper) and (2) Self-supervised contrative hypergraph learning (lower).

Hyperedge-aware augmentation

Form node and hyperedge representations

 $f(\mathbf{X}_2, \mathbf{H}_2) \rightarrow (\mathbf{P}_2, \mathbf{Q}_2)$

Self-supervised contrastive hypergraph learning

Q₂

 $\mathbf{Z}_{(2,E)}$

 $g_E(\mathbf{Q}_k) \to \mathbf{Z}_{(\mathbf{k},E)}$

 $\mathcal{H}_2 = (\mathbf{X}_2, \mathbf{H}_2)$

Hypergraph encoding

Produce the node and hyperedge embeddings via a 2-stage aggregation strategy

$$Q^{(k)} = \sigma \left(D_E^{-1} H^T P^{(k-1)} W_E^{(k)} + b_E^{(k)} \right)$$
$$P^{(k)} = \sigma \left(D_V^{-1} H Q^{(k)} W_V^{(k)} + b_V^{(k)} \right)$$

Node Feature

Hyperedge Feature

Node Feature

Context-Aware Hyperedge Prediction

- Hyperedge candidate scoring
 - ☐ Calculate the relative degrees of influences of nodes by using the attention mechanism

$$\alpha_{i,j} = \frac{exp(p_{v_i'} \mathbf{W}_{agg}^{"} \cdot x^\top)}{\sum_{v_j' \in e'} exp(p_{v_j'} \mathbf{W}_{agg}^{"} \cdot x^\top)}$$

☐ Context-Aware Hyperedge Prediction

- Hyperedge candidate scoring
 - ☐ Update each node embedding based on the relative degrees of influences

$$p_{v_j'}^* = \sum_{v_i' \in e'} \alpha_{i,j} \cdot p_{v_i'} \mathbf{W}_{agg}'$$

□ Context-Aware Hyperedge Prediction

- Hyperedge candidate scoring
 - ☐ Aggregate the influence-reflected embeddings of the nodes via *element-wise max pooling*

□ Context-Aware Hyperedge Prediction

- Model training
 - Use heuristic negative sampling methods
 - Sized NS (SNS): sampling k random nodes (easy)
 - Motif NS (MNS): sampling a k-connected component in a clique-expanded hypergraph (difficult)
 - Clique NS (CNS) : selecting a hyperedge e and replacing one of its incident nodes $u \in e$ with a node $v \notin e$ (most difficult)
 - Prediction loss

$$\mathcal{L}_{pred} = -\frac{1}{|E'|} \sum_{e' \in E'} \underbrace{y_{e'} \cdot \log \hat{y}_{e'}}_{\text{positives}} + \underbrace{(1 - y_{e'}) \cdot \log (1 - \hat{y}_{e'})}_{\text{negatives}}$$

Self-Supervised Contrastive Hypergraph Learning

- Hypergraph augmentation
 - $\ \square$ Mask random $p_m\%$ members of each hyperedge *individually*
 - $\ \square$ Mask random $p_f\%$ dimensions of node features

(a) Random masking

(b) Hyperedge-aware masking

- □ Self-Supervised Contrastive Hypergraph Learning
 - Contrastive loss

$$\mathcal{L}_{con} = -\underbrace{\log sim(\mathbf{Z}_{(1,V)},\mathbf{Z}_{(2,V)})}_{ ext{node-level contrast}} - \underbrace{\log sim(\mathbf{Z}_{(1,E)},\mathbf{Z}_{(2,E)})}_{ ext{group-level contrast}},$$

Unified loss of CASH

$$\mathcal{L} = \mathcal{L}_{pred} + \beta L_{con}$$

□ Datasets

STATISTICS OF HYPERGRAPH DATASETS

Dataset	V	E	# Features	Туре
Citeseer	1,457	1,078	3,703	Co-citation
Cora	1,434	1,579	1,433	Co-citation
Pubmed	3,840	7,962	500	Co-citation
Cora-A	2,388	1,072	1,433	Authorship
DBLP-A	39,283	16,483	4,543	Authorship
DBLP	15,639	22,964	4,543	Collaboration

☐ Hyperedge prediction accuracy

Consistently outperform all competitors

Dataset	Metric	AUROC					Average Precision (AP)				
	Test set	SNS	MNS	CNS	MIX	Average	SNS	MNS	CNS	MIX	Average
Citeseer	Expansion HyperSAGNN NHP AHP CASH	0.663 0.540 0.991 0.943 0.925	0.781 0.410 0.701 0.881 0.921	0.331 0.473 0.510 0.651 0.720	0.588 0.478 0.817 0.820 0.857 +4.51%	0.591 ± 0.011 0.475 ± 0.019 0.751 ± 0.009 0.824 ± 0.020 0.856 ± 0.011	0.765 0.627 0.990 0.952 0.928	0.817 0.455 0.731 <u>0.870</u> 0.919 5.63%	0.498 0.497 0.520 0.660 0.701 +6.21%	0.630 0.507 0.768 0.795 0.831 +4.53%	$ \begin{vmatrix} 0.681 \pm 0.001 \\ 0.512 \pm 0.015 \\ 0.751 \pm 0.011 \\ 0.819 \pm 0.022 \\ \hline 0.845 \pm 0.009 \end{vmatrix} $ $ +3.17\% $
Cora	Expansion HyperSAGNN NHP AHP CASH	0.470 0.617 0.943 0.964 0.923	0.707 0.527 0.641 <u>0.860</u> 0.867	0.256 0.494 0.472 <u>0.572</u> 0.671	0.476 0.540 0.774 0.799 0.824	$\begin{array}{c} 0.477 \pm 0.009 \\ 0.545 \pm 0.021 \\ 0.703 \pm 0.015 \\ \underline{0.799 \pm 0.019} \\ \hline \textbf{0.822 \pm 0.011} \end{array}$	0.637 0.687 0.949 0.961 0.915	0.764 0.574 0.678 0.837 0.854	0.454 0.508 0.509 <u>0.552</u> 0.644	0.563 0.566 0.744 0.740 0.789	$ \begin{array}{c} 0.607 \pm 0.009 \\ 0.584 \pm 0.019 \\ 0.718 \pm 0.020 \\ 0.772 \pm 0.035 \\ \hline \textbf{0.801} \pm \textbf{0.016} \\ \end{array} $
Pubmed	Expansion HyperSAGNN NHP AHP CASH Improvement (%)	-4.25% 0.520 0.525 <u>0.973</u> 0.917 0.805 -17.26%	+0.81% 0.730 0.686 0.694 <u>0.840</u> 0.871 +3.69%	+17.31% 0.241 0.546 0.524 <u>0.553</u> 0.640 15.73%	+3.13% 0.497 0.580 0.745 0.763 0.772 +1.18%	$+2.88\%$ 0.497 ± 0.015 0.584 ± 0.066 0.733 ± 0.004 0.763 ± 0.009 0.772 ± 0.009 $+1.18\%$	-4.79% 0.675 0.534 0.973 0.918 0.810 -16.75%	+2.03% 0.755 0.680 0.656 <u>0.834</u> 0.880 +5.52%	+16.67% 0.440 0.529 0.513 0.526 0.644 +21.74%	+6.62% 0.565 0.561 0.678 0.717 0.765 +6.69%	+3.76% 0.612 ± 0.010 0.576 ± 0.050 0.707 ± 0.004 0.749 ± 0.007 0.775 ± 0.008 +3.47%
Cora-A	Expansion HyperSAGNN NHP AHP CASH Improvement (%)	0.690 0.386 0.909 <u>0.958</u> 0.971 +1.36%	0.842 0.591 0.672 <u>0.924</u> 0.975 +5.52%	0.434 0.542 0.550 0.782 0.833 +6.52%	0.658 0.505 0.773 <u>0.887</u> 0.931 +4.96%	$\begin{array}{c} 0.656 \pm 0.011 \\ 0.506 \pm 0.019 \\ 0.723 \pm 0.015 \\ \underline{0.888 \pm 0.014} \\ \hline 0.927 \pm 0.011 \\ \end{array}$	0.690 0.532 0.925 0.957 0.969 +1.25%	0.876 0.643 0.720 <u>0.898</u> 0.973 +8.35%	0.577 0.545 0.585 0.796 0.832 +4.52%	0.672 0.563 0.766 <u>0.878</u> 0.926 +5.47%	
DBLP-A	Expansion HyperSAGNN NHP AHP CASH	0.634 0.548 <u>0.966</u> 0.916 0.929	0.826 0.791 0.623 0.926 0.957	0.350 0.563 0.555 <u>0.668</u> 0.747	0.603 0.636 0.721 0.838 0.877	$\begin{array}{c} 0.603 \pm 0.006 \\ 0.634 \pm 0.007 \\ 0.716 \pm 0.005 \\ 0.837 \pm 0.004 \\ \hline 0.877 \pm 0.003 \end{array}$	0.730 0.686 0.965 0.928 0.933	0.852 0.805 0.604 0.928 0.95 5	0.512 0.552 0.534 0.707 0.741	0.641 0.655 0.663 0.836 0.863	0.687 ± 0.004 0.675 ± 0.004 0.693 ± 0.007 0.850 ± 0.003 0.873 ± 0.005
DBLP	Expansion HyperSAGNN NHP AHP CASH	-3.83% 0.645 0.448 0.663 <u>0.946</u> 0.875 -7.50%	+3.35% 0.801 0.574 0.540 <u>0.820</u> 0.836 +1.95%	+11.83% 0.366 0.572 0.503 0.568 0.708 +23.78%	+4.65% 0.607 0.530 0.572 0.778 0.807 +3.73%	$+4.78\%$ 0.607 ± 0.005 0.531 ± 0.018 0.569 ± 0.003 0.778 ± 0.002 0.807 ± 0.015 $+3.73\%$	-3.32% 0.751 0.562 0.608 0.947 0.874 -7.70%	+2.91% 0.856 0.602 0.523 0.815 0.832 -2.80%	+4.81% 0.518 0.586 0.501 0.561 0.696 +18.77%	+3.23% 0.655 0.577 0.542 0.735 0.793 +7.89%	+2.71% 0.698 ± 0.004 0.582 ± 0.016 0.544 ± 0.002 0.764 ± 0.007 0.799 ± 0.011 +4.58%

Figure 1: Hypergraph and its *n*-projected graphs (*n*-pgs). Edge weights, dropped for simplicity, reflect *n*-way interactions. For example, edge weight between the 3-pg nodes {1, 2} and {2, 3} is the number of times {1, 2, 3} interacted as a group.

- □ Ablation study
 - Each of strategies is always beneficial

Dataset	Metric		AUROC					Average Precision (AP)				
	Test set	SNS	MNS	CNS	MIX	Average	SNS	MNS	CNS	MIX	Average	
Citeseer	CASH-No CASH-CL CASH-HCL CASH-ALL	0.878 0.907 0.908 0.925	0.847 0.890 0.897 0.921	0.630 0.679 0.691 0.720	0.786 0.832 0.839 0.857	$\begin{array}{c} 0.786 \pm 0.003 \\ 0.827 \pm 0.019 \\ 0.833 \pm 0.013 \\ \textbf{0.856} \pm \textbf{0.011} \end{array}$	0.890 0.905 0.909 0.928	0.841 0.874 0.880 0.919	0.653 0.675 0.691 0.701	0.775 0.815 0.824 0.831	$ \begin{array}{c} 0.790 \pm 0.007 \\ 0.817 \pm 0.013 \\ 0.826 \pm 0.005 \\ \textbf{0.845} \pm \textbf{0.009} \end{array} $	
	Improvement (%)	+5.35%	+8.74%	+14.29%	+9.03%	+8.91%	+4.27%	+9.27%	+7.35%	+7.23%	+6.96%	
Cora	CASH-No CASH-CL CASH-HCL CASH-ALL	0.852 0.895 0.893 0.923	0.750 0.837 0.835 0.867	0.532 0.600 0.600 0.671	0.711 0.782 0.780 0.824	$ \begin{vmatrix} 0.712 \pm 0.019 \\ 0.779 \pm 0.015 \\ 0.777 \pm 0.017 \\ \textbf{0.822} \pm \textbf{0.011} \end{vmatrix} $	0.856 0.873 0.879 0.915	0.759 0.809 0.816 0.854	0.531 0.566 0.565 0.644	0.684 0.727 0.730 0.789	$ \begin{vmatrix} 0.707 \pm 0.021 \\ 0.744 \pm 0.019 \\ 0.747 \pm 0.018 \\ \textbf{0.801} \pm \textbf{0.016} \end{vmatrix} $	
	Improvement (%)	+8.33%	+15.60%	+26.13%	+15.89%	+15.45%	+6.89%	+12.52%	+21.28%	+15.35%	+13.30%	
Pubmed	CASH-No CASH-CL CASH-HCL CASH-ALL	0.782 0.806 0.814 0.805	0.844 0.845 0.848 0.871	0.558 0.562 0.562 0.640	0.727 0.735 0.739 0.772	$ \begin{vmatrix} 0.728 \pm 0.007 \\ 0.737 \pm 0.010 \\ 0.741 \pm 0.008 \\ \textbf{0.772} \pm \textbf{0.009} \end{vmatrix} $	0.802 0.817 0.823 0.810	0.852 0.847 0.851 0.880	0.555 0.552 0.547 0.644	0.708 0.708 0.708 0.765	$ \begin{vmatrix} 0.730 \pm 0.007 \\ 0.731 \pm 0.007 \\ 0.732 \pm 0.006 \\ \textbf{0.775} \pm \textbf{0.008} \end{vmatrix} $	
	Improvement (%)	+2.94%	+3.20%	+14.70%	+6.19%	+6.04%	+1.00%	+3.29%	+16.04%	+8.05%	+6.16%	
Cora-A	CASH-No CASH-CL CASH-HCL CASH-ALL	0.949 0.943 0.972 0.971	0.894 0.934 0.949 0.975	0.701 0.756 0.833 0.833	0.852 0.883 0.921 0.931	$ \begin{array}{c} 0.849 \pm 0.020 \\ 0.879 \pm 0.030 \\ 0.919 \pm 0.008 \\ \textbf{0.927} \pm \textbf{0.011} \end{array} $	0.951 0.944 0.972 0.969	0.906 0.936 0.919 0.973	0.738 0.772 0.845 0.832	0.857 0.881 0.908 0.926	$ \begin{array}{c c} 0.863 \pm 0.017 \\ 0.884 \pm 0.026 \\ 0.911 \pm 0.007 \\ \textbf{0.925} \pm \textbf{0.011} \end{array} $	
	Improvement (%)	+2.32%	+9.06%	+18.83%	+9.27%	+9.19%	+1.89%	+7.40%	+12.74%	+8.05%	+7.18%	

Hyperparameter sensitivity

- \blacksquare Control parameter β
 - \supset Insensitive to its hyperparameter eta

- lacksquare Augmentation parameter p_m , p_f
 - $\ \square \ p_m$ is more important than p_f

- □ Efficiency
 - Scale up linearly

Conclusion

☐ Hypergraph data labeling is difficult because of its sparsity

- □ Graph Contrastive Learning
 - Maximize the agreement between the two views

- How to augment a hypergraph?
- What to contrast?

Conclusion

HyperGCL

 Augmentation of hypergraph can be learned during contrastive learning using variational hypergraph auto-encoder

□ TriCL

■ Node + Group + Membership contrast

☐ CASH

- Context-Aware Hyperedge Prediction
- Hyperedge-aware masking

rig. 2. The overview of GASH: (1) Context-aware hyperedge prediction (upper) and (2) Self-supervised contrative hypergraph learning (tower)