

第五章

對偶理論 Duality Theory

作業研究 二版 2009

© 廖慶榮

章節大綱

- 1. 前言
- 2. 對偶問題的定義
- 3. 主要與對偶問題關係
- 4. 對偶的各項性質
- 5. 由單形表中讀對偶解

- 6. 陰影價格
- 7. 對偶問題的經濟解釋
- 8. 對偶單形法
- 9. 人工限制式技巧

5.2 對偶問題的定義

考慮 LP 標準形式如下:

若此問題為主要問題 (primal problem),則其對偶問題 (dual problem)為:

D:極小化
$$y_0 = yb$$
 受限於 $yA \ge c \leftarrow x$ $y \ge 0$

□ 考慮典型範例的模式如下:

P: Max
$$Z = 7x_1 + 8x_2$$

s.t. $x_1 + 2x_2 \le 10 \leftarrow y_1$
 $3x_1 + 2x_2 \le 18 \leftarrow y_2$
 $x_1, x_2 \ge 0$

■其對偶問題為

D: Min
$$y_0 = 10y_1 + 18y_2$$

s.t. $y_1 + 3y_2 \ge 7 \leftarrow x_1$
 $2y_1 + 2y_2 \ge 8 \leftarrow x_2$
 $y_1, y_2 \ge 0$

p.4/36

5.3 主要問題與對偶問題的關係

□ 六個對偶關係 (#1與#4為標準形式的對應關係)

編號		極大化	極小化	
#1	變數	≥ 0	>	限制式
#2		≤ 0	\leq	
#3		不受限	=	
#4	限制式	≤	≥ 0	變數
#5		>	≤ 0	
#6		=	不受限	

P: Min
$$Z = 10x_1 - 5x_2$$

s.t. $4x_1 - 8x_2 \le 32 \leftarrow y_1$
 $7x_1 - 6x_2 = 42 \leftarrow y_2$
 $x_1 + 2x_2 \ge 2 \leftarrow y_3$
 $x_1 \ge 0, x_2 \le 0$

可直接寫出此問題的對偶問題如下:

D: Max
$$y_0 = 32y_1 + 42y_2 + 2y_3$$

s.t. $4y_1 + 7y_2 + y_3 \le 10 \leftarrow x_1$
 $-8y_1 - 6y_2 + 2y_3 \ge -5 \leftarrow x_2$
 $y_1 \le 0, y_2$ 不受限, $y_3 \ge 0$

p.6/36

■ 弱對偶性質 (weak duality property): 若x是一個極大化問題的可行解, y是其對偶問題 (極小化問題)的可行解,則

$$c\overline{x} \leq \overline{y}b$$

■ 強對偶性質 (strong duality property): 假設 x* 與 y* 分別是主要與對偶問題的可行解。則 x* 與 y* 分別是兩問題的最佳解,若且唯若

$$\mathbf{cx}^* = \mathbf{y}^* \mathbf{b}$$

- 對偶基本定理 (fundamental theorem of duality):對於主要與對偶兩問題的解,其關係如下:
 - 1. 兩問題均有最佳解,且其目標函數值相等
 - 2. 若一個問題是無窮解,則另一個問題無可 行解
 - 3. 若一個問題無可行解,則另一個問題無可 行解或無窮解

□ 考慮LP標準形式的擴充形式及其對偶問題:

P: Max
$$Z = cx$$

s.t. $Ax + s = b \leftarrow y$
 $x, s \ge 0$

D: Min
$$y_0 = \mathbf{yb}$$

s.t. $\mathbf{yA} - \mathbf{v} = \mathbf{c} \leftarrow \mathbf{x}$
 $\mathbf{y}, \mathbf{v} \ge \mathbf{0}$

互補基解性質(complementary basic solution property): P 的每一個基解($\overline{\mathbf{x}}$, $\overline{\mathbf{s}}$) 均具有一個對應 D 的互補基解($\overline{\mathbf{y}}$, $\overline{\mathbf{v}}$),其中 $\mathbf{c}\overline{\mathbf{x}} = \overline{\mathbf{y}}\mathbf{b}$ 且 $\overline{y}_i \, \overline{s}_i = 0 \quad \forall i$ $\overline{x}_i \overline{v}_i = 0 \quad \forall j$

互補寬鬆性質 (complementary slackness property): 讓 $(\overline{\mathbf{x}}, \overline{\mathbf{s}})$ 是 P 的可行解, $(\overline{\mathbf{y}}, \overline{\mathbf{v}})$ 是 D 的可行解。此兩個可行解均為最佳解若且唯若

$$\overline{y}_i \, \overline{s}_i = 0 \quad \forall i$$

$$\overline{x}_i \overline{v}_i = 0 \quad \forall j$$

p.10/36

□ 考慮典型範例的P及D:

Max
$$Z = 7x_1 + 8x_2$$

s.t. $x_1 + 2x_2 + s_1 = 10 \leftarrow y_1$
 $3x_1 + 2x_2 + s_2 = 18 \leftarrow y_2$
 $x_1, x_2, s_1, s_2 \ge 0$

Min
$$y_0 = 10y_1 + 18y_2$$

s.t. $y_1 + 3y_2 - v_1 = 7 \leftarrow x_1$
 $2y_1 + 2y_2 - v_2 = 8 \leftarrow x_2$
 $y_1, y_2, v_1, v_2 \ge 0$

問題P與D的互補基解 (範例5.4)

•		主要	問題P			對偶問	月題 D			
•	NBV	BV	可行	Z	解	NBV	BV	可行	y_0	解
	x_1, x_2	$s_1 = 10$ $s_2 = 18$	是	0	次佳	y_1, y_2	$v_1 = -7$ $v_2 = -8$	否	0	超佳
	X_1, S_1	$x_2 = 5$ $s_2 = 8$	足	40	次佳	v_2, y_2	$v_1 = -3$ $y_1 = 4$	否	40	超佳
	X_1, S_2	$x_2 = 9$ $s_1 = -8$	否	72	超佳	v_2, y_1	$v_1 = 5$ $y_2 = 4$	是	72	次佳
	X_2, S_1	$x_1 = 10$ $s_2 = -12$	否	70	超佳	v_1, y_2	$v_2 = 6$ $y_1 = 7$	是	70	次佳
	X_2, S_2	$x_1 = 6$ $s_1 = 4$	是	42	次佳	v_1, y_1	$v_2 = -\frac{10}{3}$ $y_2 = \frac{7}{3}$	否	42	超佳
	s_1, s_2	$x_1 = 4$ $x_2 = 3$	足	52	最佳	v_1, v_2	$y_1 = \frac{5}{2}$ $y_2 = \frac{3}{2}$	足	52	
										p.1

範例5.4

□ 由上表可觀察兩互補基解間的關係:

- 兩互補基解的目標函數值相同(互補基解性質)
- 最佳解發生在兩互補基解均為可行解時(互補寬鬆 性質)
- 除最佳解外,一個可行的基解對應一個不可行的互 補基解
- 除最佳解外,一個次佳的基解對應一個超佳的互補 基解

5.5 由單形表中讀出對偶解

■ 根據單形表的矩陣形式以及對偶問題的定義:

$$Z = \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{b}$$
$$y_0 = \mathbf{y} \mathbf{b}$$

根據強對偶性質,當兩問題均為最佳解時,

$$Z = y_0 \implies \mathbf{c_B} \mathbf{B}^{-1} \mathbf{b} = \mathbf{y} \mathbf{b}$$
$$\Rightarrow \mathbf{y} = \mathbf{c_B} \mathbf{B}^{-1}$$

因此,只要由最佳單形表中找到 $\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}$,即找到了對偶最佳解 \mathbf{y} ,其中 y_i 為 $\mathbf{c}_{\mathbf{R}}\mathbf{B}^{-1}$ 的第i個元素。

由寬鬆變數讀出

■ 假設第i個限制式是 \leq 的形式。此時需加上寬鬆變數 s_i ,其限制式係數為

$$\mathbf{a}_{j} = \mathbf{e}_{i}$$

由單形表的矩陣形式,得知寬鬆變數 S_j 的Z列係數為

$$\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{a}_{j}-c_{j}=\mathbf{y}\mathbf{e}_{i}=y_{i}$$

因此, \leq 限制式之 y_i 的最佳解,等於其所對應之 S_i 在最佳單形表中的Z列係數。

由剩餘變數讀出

■ 假設第i個限制式是≥的形式。此時我們需要 減去剩餘變數v_i,其限制式係數為

$$\mathbf{a}_{i} = -\mathbf{e}_{i}$$

因剩餘變數vi的Z列係數為

$$\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{a}_{j}-c_{j}=-\mathbf{y}\mathbf{e}_{i}=-\mathbf{y}_{i}$$

因此, \geq 限制式之 y_i 的最佳解,等於其所對應之 v_i 在最佳單形表中Z列係數的負值。

由人工變數讀出

 \blacksquare 假設第i個限制式是=或 \ge 的形式。此時我們需要加上人工變數 \overline{x}_i ,其限制式係數為

$$\mathbf{a}_{j} = \mathbf{e}_{i}$$

因人工變數 \bar{x}_i 的Z列係數為

$$\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{a}_{j}-c_{j}=\mathbf{y}\mathbf{e}_{i}-(-M)=y_{i}+M$$

因此,對於 \max 問題, y_i 的最佳解等於其所對應之 \overline{x}_j 在最佳單形表中的Z列係數減M。對於 \min 問題,則為Z列係數m

- **1.** 對於 \leq 限制式,其 y_i 的最佳解等於最佳單形表中 s_i 的Z列係數
- 2. 對於≥限制式,其 y_i 的最佳解等於最佳單形表中 v_j 的-Z列係數
- 3. 對於 \max 問題的=或≥限制式,其 y_i 的最佳解 等於最佳單形表中 \overline{x}_i 的Z 列係數-M
- **4.** 對於 min 問題的=或≥限制式,其 y_i 的最佳解 等於最佳單形表中 \overline{x}_i 的Z 列係數+M

□ 考慮以下LP:

P: Min
$$Z = 10x_1 + 5x_2$$

s.t. $4x_1 + 8x_2 + s_1 = 32 \leftarrow y$
 $7x_1 + 6x_2 + \overline{x}_3 = 42 \leftarrow y$
 $x_1 - 2x_2 - v_1 + \overline{x}_4 = 2 \leftarrow y$
 $x_1, x_2, s_1, v_1, x_3, \cancel{x}_4$

D: Max
$$y_0 = -32y_1 + 42y_2 + 2y_3$$

s.t. $-4y_1 + 7y_2 + y_3 + s_2 = 10 \leftarrow x$
 $-8y_1 + 6y_2 - 2y_3 + s_3 = 5 \leftarrow x$
 $y_1 \ge 0, y_2$ 不 受 限, $y_3 \ge 0$

範例5.6

BV	Z	x_1	x_2	S_1	\overline{x}_3	v_1	\overline{x}_4	RHS
Z	1	0	0	0	$\frac{5}{4}$ – M	$-\frac{5}{4}$	$\frac{5}{4}$ – M	55
S_1	0	0	0	1	$-\frac{4}{5}$	$-\frac{8}{5}$	$\frac{8}{5}$	$\frac{8}{5}$
x_2	0	0	1	0	$\frac{1}{20}$	$\frac{7}{20}$	$-\frac{7}{20}$	$\frac{7}{5}$
x_1	0	1	0	0	$\frac{1}{10}$	$-\frac{3}{10}$	$\frac{3}{10}$	$\frac{24}{5}$

由問題P的最佳單形表可直接讀出問題D的最佳解: $y_1 = 0$

$$y_2 = \left(\frac{5}{4} - M\right) + M = \frac{5}{4}$$

$$y_3 = -\left(-\frac{5}{4}\right) = \frac{5}{4}$$
 $\not \exists y_3 = \left(\frac{5}{4} - M\right) + M = \frac{5}{4}$

5.6 陰影價格

- □ 陰影價格 (shadow price)
 - 每增加1單位資源可增加的利潤。
- □典型範例
 - 若M1的資源由目前的10小時增加至11小時,則 最佳解改變如下:
 - \triangleright 原最佳解: $x_1 = 4, x_2 = 3, Z = 52$
 - \rightarrow 新最佳解: $x_1 = 3.5, x_2 = 3.75, Z = 54.5$
 - ➤ Z的增量: ΔZ = 2.5
 - 因此,M1的陰影價格為2.5(即\$2,500)

陰影價格的圖示 (典型範例)

p.22/36

5.7 對偶問題的經濟解釋

□ 以資源分配問題(典型範例)為例:

P: Max
$$Z = 7x_1 + 8x_2$$

s.t. $x_1 + 2x_2 \le 10 \leftarrow y_1$
 $3x_1 + 2x_2 \le 18 \leftarrow y_2$
 $x_1, x_2 \ge 0$

D: Min
$$y_0 = 10y_1 + 18y_2$$

s.t. $y_1 + 3y_2 \ge 7 \leftarrow x$
 $2y_1 + 2y_2 \ge 8 \leftarrow x$
 $y_1, y_2 \ge 0$

5.7 對偶問題的經濟解釋

- □ 主要問題的意義:在M1與M2兩項資源的限制下, 該公司(以A表示)應分別生產多少數量的新產品 P1與P2,才能獲得最大總利潤?
- □ 現在分析對偶問題的意義。假設有家公司(以B表示)要購買A公司用來生產P1與P2的資源,那麼應以多少價格購買?

5.7 對偶問題的經濟解釋

- 定義 y₁ 與 y₂ 為 M1 與 M2 兩資源的單位購買價格
- B公司希望價格越低越好,故其目標為:

Min
$$y_0 = 10y_1 + 18y_2$$

- 因A公司以1小時M1和3小時M2,可生產1 單位P1,而獲得7的利潤,故 $y_1+3y_2 \ge 7$;否則 A不賣
- 同理可得: $2y_1 + 2y_2 \ge 8$
- 單位購買價格必為非負值,即 $y_1, y_2 \ge 0$

5.8 對偶單形法

- □ 最佳單形表必須滿足以下三個條件:
 - 主要可行性 (primal feasibility)
 - 對偶可行性 (dual feasibility)
 - 互補寬鬆性(complementary slackness)
- □ 主要單形法
 - 始終保持條件1與3,最後達到條件2
- □ 對偶單形法
 - 始終保持條件2與3,最後達到條件1

對偶單形法步驟(對max問題)

□起始步驟

■ 尋找一個對偶可行基解(對偶BFS),使得所有Z列 係數均為非負值,但RHS不受正負號限制

□ 最佳性測試

■ 若所有的RHS均為非負值,則停止,否則繼續

□ 迭代步驟

■ 決定離開變數:選擇具最負RHS的BV

■ 決定進入變數:選擇具最小比率的NBV

■ 產生新單形表:利用高斯消去法 返回最佳性測試

主要單形法和對偶單形法的差異

□ 對max問題

差異項目	主要單形法	對偶單形法
1. Z列係數	不受正負限制*	必須均為非負值
2. RHS	必須均為非負值	不受正負限制*
3. 判斷最佳解	Z列係數均非負	RHS均為非負值
4. 選擇進入變數	最負的Z列係數	最負的 RHS
5. 最小比率測試	$\min\left\{\frac{RHS}{$ 正係數 $\right\}$	$\min \left\{ \left \frac{Z \text{列係數}}{\text{負係數}} \right \right\}$

* 最佳解除外

對偶單形法適合時機

- □當可很容易地得到起始對偶BFS時
 - 對偶單形法可輕易地將≧限制式轉換為=限制式, 而以寬鬆變數處理
 - 若max問題的目標函數係數均為負值(或min問題的目標函數係數均為正值),可很容易地得到起始對偶BFS,而採對偶單形法
- □在敏感度分析中主要可行性違反時
 - ■此時可以很方便地以對偶單形法繼續求解

Min
$$Z = 10y_1 + 18y_2$$

s.t. $y_1 + 3y_2 \ge 7$
 $2y_1 + 2y_2 \ge 8$
 $y_1, y_2 \ge 0$

經轉換後可得:

Min
$$-Z = -10y_1 - 18y_2$$

s.t. $-y_1 - 3y_2 + y_3 = -7$
 $-2y_1 - 2y_2 + y_4 = -8$
 $y_1, y_2, y_3, y_4 \ge 0$

範例5.8

作業研究 二版 Ch.5 對偶理

論

BV	Z	y_1	\mathcal{Y}_2	y_3	\mathcal{Y}_4	RHS	r
Z	-1	10	18	0	0	0	
y_3	0	-1	-3	1	0	– 7	
y_4	0	-2	-2	0	1	-8	
Z	-1	0	8	0	5	-40	
y_3	0	0	<u>-2</u>	1	$-\frac{1}{2}$	-3	
y_1	0	1	1	0	$-\frac{1}{2}$	4	
Z	-1	0	0	4	3	-52	
\mathcal{Y}_2	0	0	1	$-\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{2}$	
\mathcal{Y}_1	0	1	0	$\frac{1}{2}$	$-\frac{3}{4}$	$\frac{5}{2}$	

5.9 人工限制式技巧

- □ 若目標函數係數有正值(對max問題),則須利用人工限制式技巧(artificial constraint technique)求得起始對偶BFS
- □ 步驟(對max問題):
 - 加上人工限制式如下:

$$\sum_{x_i \in \text{NBV}} x_j \le M$$

- 對人工限制式加上寬鬆變數 x_{n+1}
- 選擇具最負Z列係數的變數進入,並選擇 X_{n+1} 離開 經過以上步驟,單形表的Z列係數均將大於等於零,而 得到起始對偶BFS

5.9 人工限制式技巧

- □繼續以對偶單形法求解,會得到以下結果:
 - 人工問題之對偶問題的解是無窮解
 - 找到人工問題的最佳解,且 $x_{n+1} > 0$
 - 找到人工問題的最佳解,且 $x_{n+1} = 0$
- □根據對偶基本定理
 - 情況1表示主要問題無可行解
 - 情況2表示已找到主要問題的最佳解
 - 情況3表示主要問題是無窮解

Max
$$Z = 7x_1 - 10x_2$$

s.t. $6x_1 + 7x_2 \ge 42$
 $-2x_1 + x_2 \ge 2$
 $x_1, x_2 \ge 0$

- □ 先將所有≧限制式的左右兩邊均乘以-1以轉換為≦的形式, 並加上寬鬆變數
- □ 再加上人工限制式及其寬鬆變數:

$$x_1 + x_2 + x_5 = M$$

範例5.9 (表1-2)

BV	Z	\mathcal{X}_1	X_2	X_3	\mathcal{X}_4	X_5	RHS
Z	1	- 7	10	0	0	0	0
\mathcal{X}_{5}	0	1	1	0	0	1	M
\mathcal{X}_3	0	-6	- 7	1	0	0	-42
\mathcal{X}_4	0	2	-1	0	1	0	-2
Z	1	0	17	0	0	7	7 <i>M</i>
\mathcal{X}_1	0	1	1	0	0	1	M
\mathcal{X}_3	0	0	-1	1	0	6	-42 + 6M
\mathcal{X}_4	0	0	-3	0	1	-2	-2-2M

範例5.9 (表3-4)

Z	1	0	$\frac{13}{2}$	0	$\frac{7}{2}$	0	- 7
x_1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	-1
x_3	0	0	-10	1	3	0	-48
X_5	0	0	$\frac{3}{2}$	0	$-\frac{1}{2}$	1	1+M
Z	1	0	0	$\frac{13}{20}$	109 20	0	$-\frac{191}{5}$
x_1	0	1	0	$-\frac{1}{20}$	$\frac{7}{20}$	0	$\frac{7}{5}$
\mathcal{X}_2	0	0	1	$-\frac{1}{10}$	$-\frac{3}{10}$	0	$\frac{24}{5}$
X_5	0	0	0	$\frac{3}{20}$	$-\frac{1}{20}$	1	$-\frac{31}{5}+M$

p.36/36