$n^{\circ}1$ | Suite numérique

N Notation

N désigne l'ensemble des nombres entiers positifs appelés **entiers naturels**.

D Définition : suite numérique

Une **suite numérique**, notée (u_n) ou u, est une fonction définie sur \mathbb{N} . L'image de l'entier n, notée u_n (sans les parenthèses), est appelée **terme de la suite** u d'indice n. Ainsi :

$$egin{bmatrix} (u_n): \mathbb{N} & \longrightarrow & \mathbb{R} \ n & \mapsto & u_n \end{bmatrix}$$

D Définition : suite explicite

Une **suite explicite** est un suite dont les termes sont de la forme : $u_n = f(n)$ ou f est une fonction définie sur un intervalle I de \mathbb{R} .

- Soit $oldsymbol{u}$ une suite numérique définie par : $oldsymbol{u_n=n^2}$
- (a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
- **(b)** Calculer les termes u_0 , u_1 , ... et u_8 .
- (c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 8.
- (d) Quel est l'indice de u tel que $u_n = 12167$?
- (e) Quels sont les indices de u tels que $u_n \leqslant 99$?
- (f) Quel est l'indice de u tel que $u_n=10$?
- Soit u une suite numérique définie par : $u_n = \sqrt{n}$
- (a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
- (b) Calculer les termes u_0 , u_1 , u_4 , u_9 , u_{16} , u_{25}
- (c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels correspondants à la question précédente.
- (d) Quel est l'indice de u tel que $u_n=12167$?
- (e) Quels sont les indices de u tels que $u_n \leqslant 99$?
- (f) Quel est l'indice de u tel que $u_n=10$?

- Soit $m{u}$ une suite numérique définie par : $m{u_n} = rac{1}{n}$
 - (a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
 - **(b)** Calculer les termes u_1 , ... et u_5 .
 - (c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 5.
- (d) Quel est l'indice de u tel que $u_n = 10^{-34}$?
- (e) Quels sont les indices de u tels que $u_n \geqslant 1$?
- Soit **u** une suite numérique correspondant aux nombres impairs.
- (a) Donner la fonction f telle que $u_n = f(n)$.
- (b) Calculer les 10 premiers termes de la suite u.
- (c) Dans un repère, placer les 10 points correspondants aux indices de la question précédente.
- (d) Ces points sont-ils alignés ? Justifier.

n°2 Relation de récurrence

D Définition

Une suite numérique u est définie par une **relation de récurrence** quand son premier terme est connu et le terme u_{n+1} peut être calculé en fonction du terme u_n .

- Soit $m{u}$ une suite numérique définie par : $m{u_0} = m{1}$ et $m{u_{n+1}} = m{3u_n} m{2}$
- (a) Calculer les termes u_0 , u_1 , \ldots et u_8 .
- (b) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 8.
- Soit u une suite numérique définie par : $u_0=2$ et $u_{n+1}=rac{1}{2}\,u_n+3$
- (a) Déterminer la fonction f telle que $u_{n+1} = f(u_n)$
- (b) Tracer la courbe représentative de f.
- (c) Dans ce même repère, tracer la droite d'équation y = x (c'est la première bissectrice des axes)
- (d) Placer dans ce repère, les termes u_1 , u_2 , u_3

n°3 | Suite arithmétique : relation de récurrence

D Définition

Une suite u est **arithmétique** si il existe un réel r tel que pour tout $n \in \mathbb{N}$ on a :

$$u_{n+1}=u_n+r$$
 ou $u_{n+1}-u_n=r$

Le réel $m{r}$ est la raison de la suite arithmétique $m{u}$.

Les suites (u_n) suivantes sont-elles arithmétiques ? Si oui donner leur raison.

- $egin{array}{c} 1 \end{array} igg| u$ est une suite numérique définie par : $u_0=1$ et $u_{n+1}=u_n+2$.
- $oxed{2}$ u est une suite numérique définie par : $u_1=2$ et $u_{n+1}=u_n-4$.
- $oxed{3}$ u est une suite numérique définie par : $u_0=0$ et $u_{n+1}=u_n^2+1$.
- $egin{array}{c|c} oldsymbol{u} & est une suite numérique définie par : <math>oldsymbol{u_n} = -5n+1$ pour $n \in \mathbb{N}$.
- $oxed{5}$ u est une suite numérique définie par : $u_n=4n^2+3$ pour $n\in\mathbb{N}$.
- $oxed{6}$ u est une suite numérique définie par : $u_0=0$ et $u_{n+1}=u_n+2n$.

Suite arithmétique : forme explicite

P Propriétés

Si la suite u est arithmétique de raison r alors pour un entier k et pour tout $n \in \mathbb{N}$ on a :

$$u_n=u_k+(n-k)r$$
 et pour $k=0$; $u_n=u_0+nr$

Déterminer la forme explicite des suites suivantes :

- $oxed{1}$ (u_n) est une suite arithmétique de premier terme $u_0=1$ et de raison -2.
- $oxed{2}$ $oldsymbol{u}$ est une suite arithmétique telle que $oldsymbol{u_2}=8$ et de raison $oldsymbol{5}$.
- (u_n) est une suite arithmétique de raison -1 et telle que $u_5=10$.
- $oxed{4}$ u est une suite arithmétique telle que $u_2=3$ et $u_3=8$.
- (u_n) est une suite arithmétique telle que $u_5=38$ et $u_8=21$.

$n^{\circ}5$ Somme des n premiers entiers

Démontrer que la somme S des n premiers entiers est égale à :

$$S=\sum_{k=0}^n k=rac{n(n+1)}{2}$$

$n^{\circ}6$ Suite géométrique : relation de récurrence

D Définition

Une suite u est $g\acute{e}om\acute{e}trique$ si il existe un réel $q \neq 0$ tel que pour tout $n \in \mathbb{N}$ on a :

$$egin{aligned} u_{n+1} = q imes u_n = q u_n$$
 ou $rac{u_{n+1}}{u_n} = q$

Le réel q est la **raison** de la suite géométrique u.

Les suites (u_n) suivantes sont-elles géométriques ? Si oui donner leur raison.

- $\left[egin{array}{c} 1 \end{array}
 ight]u$ est une suite numérique définie par : $u_0=1$ et $u_{n+1}=2u_n$.
- $oxed{2}$ u est une suite numérique définie par : $u_1=2$ et $u_{n+1}=-u_n$.
- $oxed{3}$ u est une suite numérique définie par : $u_0=0$ et $u_{n+1}=u_n^2+2u_n$.
- $oxed{4}$ u est une suite numérique définie par : $u_n=10^n$ pour $n\in\mathbb{N}$.
- $oxed{5}$ u est une suite numérique définie par : $u_n=(-1)^n$ pour $n\in\mathbb{N}$.
- $oxed{6}$ u est une suite numérique définie par : $u_n=4n^2$ pour $n\in\mathbb{N}$.
- $\overline{m{y}}$ u est une suite numérique définie par : $u_n=rac{2^{n+1}}{3^{2n}}$ pour $n\in\mathbb{N}$
- $oxed{8}$ u est une suite numérique définie par : $u_1=1$ et $u_{n+1}=u_n imes 2n$.

n°7 Suite géométrique : forme explicite

P Propriétés

Si la suite u est géométrique de raison q alors pour un entier k et pour tout $n \in \mathbb{N}$ on a :

$$oxed{u_n = u_k imes q^{n-k}}$$
 et pour $k=0$; $u_n = u_0 imes q^n$

Déterminer la forme explicite des suites suivantes :

- $oxed{1}$ (u_n) une suite géométrique de premier terme $u_0=1$ et de raison -2 .
- $oxed{2}$ $oldsymbol{u}$ est une suite géométrique telle que $oldsymbol{u_2}=8$ et de raison $oldsymbol{3}$.
- $oxed{4}$ u est une suite géométrique telle que $u_2=28$ et $u_3=63$.
- (u_n) est une suite géométrique telle que $u_5=-243$ et $u_8=6521$.

n°8 Somme des premières puissance de q

Démontrer que la somme S des n premières puissance de q, réel non nul et différent de 1, est égale à :

$$S = \sum_{k=0}^n q^k = 1 + q + q^2 + \dots + q^n = rac{1 - q^{n+1}}{1 - q}$$

$n^{\circ}9$ Est-ce arithmétique ?

Déterminer si les suites (u_n) , définies pour $n \in \mathbb{N}$ sont arithmétiques. Si oui, donner le premier terme et la raison.

$$1 \ 4n+7$$

$$2 n^2+1$$

$$\frac{3}{2}+5$$

$$4$$
 8^n

$$\frac{n+1}{n}$$

$$\frac{6}{2}$$
 $\frac{2n+5}{2}$

$$egin{array}{c} 7 & rac{n^2+3n+2}{n+2} \end{array}$$

$n^{\circ}10$ | Est-ce géométrique ?

Déterminer si les suites (u_n) , définies pour $n \in \mathbb{N}$ sont géométriques. Si oui, donner le premier terme et la raison.

$$1 -4 \times 3^n$$

$$\frac{3}{2^{n+2}}$$

$$\boxed{4} 8^{n+2}$$

$$5 (-2)^n$$

$$6 \quad 4n$$

$$\boxed{7} \quad \frac{2}{n} - 3^n$$

$$\boxed{8} \ 4^{n-1}$$

n°11 Représentation graphique

Dans un repère, représenter graphiquement les cinq premiers termes des suites définies explicitement par :

$$1 5-2n$$

$$\frac{n-1}{n+1}$$

$$\boxed{3} \ \frac{1}{2} n^2 - 1$$