Devoir surveillé n° 8 - Remarques

Barème.

- Calculs : chaque question sur 2 points, total sur 30 points, ramené sur 5 points.
- Problèmes : chaque question sur 4 points et 4 points pour la présentation.

Statistiques descriptives.

	Calculs	v1	v2	Note finale v1	Note finale v2
Note maximale	3,7	96	71	$\approx 15,7$	$\approx 17,7$
Note minimale	0	40	11	$\approx 5,7$	$\approx 3,6$
Moyenne	$\approx 1,9$	$\approx 66, 5$	≈ 44	$\approx 9,8$	≈ 11
Écart-type	≈ 0.9	$\approx 14,6$	$\approx 15,2$	pprox 2, 3	$\approx 3,6$

Remarques générales.

- \bullet J'ai encore relevé des «la primitive de f». Quelle HORREUR! Cela fait très mauvais effet, sur une copie ou à l'oral.
- Vous devez écrire des phrases en français. Par exemple, «la fonction f est $\mathscr{C}^0([1,1],\mathbb{C})$ » n'est pas du plus bel effet. Pourquoi ne pas écrire «la fonction f est continue»?
- Écrire $f(t) \in \mathcal{C}^0([1,1],\mathbb{C})$ entraine la perte d'un point! Vous confondez f(t) et f!!!
- Vos calculs ne doivent pas être rédigés en zig-zag. S'ils ne tiennent pas sur une ligne, rédigez-les uniquement en colonne. En cas de doute, préférez la présentation en colonne, elle est plus lisible.
- Quand vous sommez deux DL (ou plus), alignez-les.
- Les théorèmes ont (quasiment toujours) des hypothèses à citer. Il y a beaucoup de points dessus. C'est d'autant plus vrai en analyse.

Espace vectoriel supplémentaire (V1)

Pour montrer qu'une application f est linéaire, il n'est pas besoin de prouver que f(0) = 0, vous confondez avec la caractérisation des sev d'un ev. Cette égalité découle des propriétés de linéarités de f. Dans l'ensemble ce problème était plutôt réussi, c'est bien.

Une étude de fonction (V1)

- 1) Pas de croissances comparées ici, la limite s'obtient directement par quotient.
- 2) Ne confondez pas tangente et asymptote. Tangente (du latin *tangere*) : qui touche. Asymptote (du grec >as'umptwtos / tò s'umptwma) : qui ne touche pas.
- **6)** Le signe large ne donne rien. Il est inquiétant de voir certains étudiants mettre uniquement un + dans la ligne de f'.
- 7) Les ennuis commençaient là. Certains semblent incapables de dériver un quotient. Je vous rappelle que pour dériver $\frac{f}{g^2}$ le plus efficace est souvent de dériver le produit fg^{-2} en $f'g^{-2} 2fg'g^{-3}$.

- 8) On vous demandait d'établir l'unicité de ce α . Le théorème des valeurs intermédiaires n'est pas utile. Ce type de question (de niveau terminale) doit absolument être maîtrisé.
- 11) Question le plus souvent massacrée, même quand les questions précédentes étaient réussies. Je vous rappelle les éléments essentiels : faites un gros dessin (au moins une demi-page), anticipez sur l'échelle pertinente, placez d'abord les tangentes et asymptotes remarquables, justifiez les positions relatives de la courbe par rapport à ces objets puis tracez la courbe d'un trait harmonieux. Les positions relatives doivent apparaître clairement. Vous ne travaillez pas au dessus d'un marteau-piqueur : vos traits doivent être lisses.
- 15) Le plus important était de bien insister sur les règles de manipulation du degré (ou, mieux, du coefficient dominant), notamment sur la somme.
- 17) On attend la réponse la plus pertinente, donc le sens strict.

Étude d'un endomorphisme (V2).

Il ne fallait surtout pas confondre T et T(f), ni écrire T(f(x)), qui n'a aucun sens.

Ce problème était révélateur de la difficulté de certains à gérer et introduire correctement leurs variables.

Les écritures $T(f) = \int_0^x \frac{f(t)}{1+t} dt$, T(f) est une primitive de $\frac{f(t)}{1+t}$ ne sont pas correctes. Ici, T(f) sont des fonctions (différentes!).

- **1** Écrire $T(f_1): E \to \mathbb{R}$ montre bien une incompréhension de la nature de T. x est une fonction?
- 1)d) Il convenait de donner le développement en ordonnant les termes (par ordre croissant de précision).
- 2)a) C'est la décomposition réelle qui était utile par la suite.
- **6b)** Certains ont encore du mal à écrire proprement des dérivées, cela mène à des erreurs. Erreur classique (où g est une primitive de $t\mapsto \frac{f(t)}{t+1}$): $[T(f)(x)]'=(g(x)-g(0))'=g'(x)-g'(0)=\frac{f(x)}{x+1}-f(0)$.

Ici, (g(0))' est une dérivée de constante, donc est nulle! Énième rappel : on n'écrit pas [T(f)(x)]' mais $\frac{\mathrm{d}}{\mathrm{d}x}T(f)(x)$ ou, mieux, T(f)'(x). Soyez vigilants.

Il ne faut pas confondre T(f)' et T(f').

J'ai lu plusieurs fois : «L'intégrale de f est dérivable». Une intégrale est un nombre! Vous devez mémoriser précisément l'énoncé du théorème fondamental de l'analyse.

La notation T' n'a pas de sens. Si c'est votre cas : mettez-vous y **VITE**.

- **7a)** Quand on borne f, on majore |f|. Il est maladroit de minorer et de majorer f.
- **7b)** J'ai lu «Soit x>0, $\ln(x)\leqslant t\leqslant x$ dont par encadrement $t\xrightarrow[x\to+\infty]{}+\infty$ » (ou des variations de cela). Cela n'a aucun sens, et le travail du premier semestre sur la gestion des variables devrait vous conduire à bannir cela.
- **7c)** Il convenait d'appliquer l'inégalité triangulaire (au moins sur \int , éventuellement sur +, dans le bon ordre).

Attention à la gestion des inégalités, écrire $|T(f)(x)| \le \left| M \int_0^{\ln x} \frac{\mathrm{d}t}{1+t} + \alpha(x) \int_{\ln x}^x \frac{\mathrm{d}t}{1+t} \right|$ est une erreur grave, qui montre que vous n'avez pas bien compris comment manipuler les inégalités.

Endomorphismes pseudo-inversibles (V2).

- **1b)** De $g \circ f = g' \circ f$ vous ne pouviez pas passer directement à g = g' : f n'est pas supposée inversible (surjective suffirait! prouvez le?), $\mathcal{L}(E)$ n'est pas intègre.
- 4) Inutile de manipuler des éléments ici, vous pouviez directement faire le calcul sur af et $a^{-1}g$.
- 5) Il convenait d'observer que si f et g commutent, alors toutes leurs puissances commutent aussi (vu en cours).
- 7a) Il ne fallait pas oublier de montrer l'unicité de y.