# Deep learning for time series

Rodrigo Gonzalez, PhD

# Hello!

# I am Rodrigo Gonzalez, PhD

You can find me at rodrigo.gonzalez@ingenieria.uncuyo.edu.ar



# Summary

- 1. Examples of machine learning tasks that involve time-series data
- 2. Understanding recurrent neural networks (RNNs)
- 3. Applying RNNs to a temperature-forecasting example
- 4. Advanced RNN usage





# Time series

A time series can be any data obtained via measurements at regular intervals, like the daily price of a stock, the hourly electricity consumption of a city, or the weekly sales of a store.





# Time series properties

- 1. **Period**: time steps at which the series is observed;
- 2. **Frequency**: Frequency at which the series is observed;
- 3. **Trend**: long-term change in the mean of the data;
- 4. **Stationarity**: When time series properties remain constant over time;
- 5. **Regularity**: Whether the series is captured at regular intervals;
- 6. **Seasonality**: regular and predictable changes;
- 7. **Autocorrelation**: Correlation with past observations;



# Time series tasks

- 1. By far, the most common time-series-related task is **forecasting**.
- 2. But there's actually a wide range of other things you can do with time series:
  - a. **Classification**. Assign one or more categorical labels to a time series. For instance, given the time series of the activity of a visitor on a website,
  - b. **Event detection**. Identify the occurrence of a specific expected event within a continuous data stream. Hotword detection: "OK, Google" or "Hey, Alexa."
  - c. **Anomaly detection**. Detect anything unusual happening within a continuous datastream.



# Forecasting challenge

- Predicting the temperature 24 hours in the future.
- Dataset recorded for 8 years at the weather station at the Max Planck Institute for Biogeochemistry in **Jena**, Germany 14 different quantities (such as temperature, pressure, humidity, and wind direction) were recorded **every 10 minutes** over several years.

1.

# Jena Dataset

| df.describe() |               |               |               |               |               |               |               |               |               |                 |               |               |               |               |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|---------------|---------------|
|               | p (mbar)      | T (degC)      | Tpot (K)      | Tdew (degC)   | rh (%)        | VPmax (mbar)  | VPact (mbar)  | VPdef (mbar)  | sh (g/kg)     | H2OC (mmol/mol) | rho (g/m**3)  | wv (m/s)      | max. wv (m/s) | wd (deg)      |
| count         | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000   | 420451.000000 | 420451.000000 | 420451.000000 | 420451.000000 |
| mean          | 989.212508    | 9.448567      | 283.491182    | 4.954011      | 76.007045     | 13.575089     | 9.532524      | 4.042483      | 6.021630      | 9.638982        | 1216.069883   | 2.130309      | 3.532381      | 174.726164    |
| std           | 8.359454      | 8.423685      | 8.504820      | 6.730411      | 16.477126     | 7.739481      | 4.183895      | 4.897270      | 2.655973      | 4.235130        | 39.977065     | 1.541830      | 2.340482      | 86.675965     |
| min           | 913.600000    | -23.010000    | 250.600000    | -25.010000    | 12.950000     | 0.950000      | 0.790000      | 0.000000      | 0.500000      | 0.800000        | 1059.450000   | 0.000000      | 0.000000      | 0.000000      |
| 25%           | 984.200000    | 3.360000      | 277.430000    | 0.240000      | 65.210000     | 7.780000      | 6.210000      | 0.870000      | 3.920000      | 6.290000        | 1187.490000   | 0.990000      | 1.760000      | 124.800000    |
| 50%           | 989.570000    | 9.410000      | 283.460000    | 5.210000      | 79.300000     | 11.820000     | 8.860000      | 2.190000      | 5.590000      | 8.960000        | 1213.800000   | 1.760000      | 2.960000      | 198.100000    |
| 75%           | 994.720000    | 15.470000     | 289.530000    | 10.070000     | 89.400000     | 17.600000     | 12.350000     | 5.300000      | 7.800000      | 12.480000       | 1242.770000   | 2.860000      | 4.740000      | 234.100000    |
| max           | 1015.350000   | 37.280000     | 311.340000    | 23.110000     | 100.000000    | 63.770000     | 28.320000     | 46.010000     | 18.130000     | 28.820000       | 1393.540000   | 14.630000     | 23.500000     | 360.000000    |



# Temperature



# Temperature, detail



Figure 10.2 Temperature over the first 10 days of the dataset (°C)

# 3. Recurrent Neural Networks

A simple RNN

- 1. Common neural networks has no memory.
- 2. No state kept between inputs.
- As you're reading the present sentence, you're processing it word by word while keeping memories of what came before.
- 4. A RNN keeps a **state**, internal loop.



Figure 10.6 A recurrent network: a network with a loop

- 1. This RNN takes as input a sequence of vectors which we'll encode as a rank 2 tensor of size (timesteps, input\_features).
- 2. It loops over time steps, and at each time step, it considers its **current state** at *t* and the input a *t* (of shape (input\_features)), and combines them to obtain the **output** at *t*.
- 3. We'll then set the state for the next step to be this previous output.
- 4. For the first time step, the previous output isn't defined; hence, there is no current state. It's initialized as an all-zero vector called the initial state of the network.

### Listing 10.13 Pseudocode RNN

- 1. You can even flesh out the function f:
- The transformation of the input and state into an output will be parameterized by two
  matrices, W and U, and a bias vector.
- It's similar to the transformation operated by a densely connected layer in a feed-forward network.

# Listing 10.14 More-detailed pseudocode for the RNN

```
state_t = 0
for input_t in input_sequence:
   output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
   state_t = output_t
```

1. In summary, an RNN is a for-loop that reuses quantities computed during the previous iteration of the loop, nothing more.



Figure 10.7 A simple RNN, unrolled over time

# A simple RNN in Keras

1. In summary, an RNN is a for-loop that reuses quantities computed during the previous iteration of the loop, nothing more.

# Listing 10.17 An RNN layer that returns only its last output step

# Recurrent Neural Networks

LSTM architecture

- 1. In practice, you'll rarely work with SimpleRNN() layer.
- 2. It has a major issue: although it should theoretically be able to retain at time *t* information about inputs seen many time steps before, such long-term dependencies prove impossible to learn in practice. This is due to the **vanishing-gradient problem**,
- 3. As you keep adding layers to a network, the network eventually becomes untrainable.



- 1. The underlying **long short-term memory** (LSTM) algorithm was developed by Hochreiter and Schmidhuber in 1997.
- 2. It adds a way to **carry** information across many time steps.
- It saves information for later, thus preventing older signals from gradually vanishing during processing.
- 4. This should remind you of **residual connections**, it's pretty much the same idea.

5.



Figure 10.8 The starting point of an LSTM layer: a SimpleRNN

Let's add to this picture an additional data flow that carries information across time-steps.

Conceptually, the carry dataflow is a way to modulate the next output and the next state



Figure 10.9 Going from a SimpleRNN to an LSTM: adding a carry track

How the carry dataflow is computed.

### Listing 10.20 Pseudocode details of the LSTM architecture (1/2)

```
output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(c_t, Vo) + bo)
i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)
```

We obtain the new carry state (the next c\_t) by combining i\_t, f\_t, and k\_t.

## Listing 10.21 Pseudocode details of the LSTM architecture (2/2)

$$c_{t+1} = i_t * k_t + c_t * f_t$$

# LSTM anatomy

- 1. The carry will be combined with the input connection and the recurrent connection (via a dense transformation (weight matrix and bias).
- 2. It will affect the state being sent to the next time step



Figure 10.10 Anatomy of an LSTM

# LSTM anatomy

Just keep in mind what the LSTM cell is meant to do: allow past information to be re-injected at a later time, thus fighting the vanishing-gradient problem.



Figure 10.10 Anatomy of an LSTM

Advanced use of recurrent neural networks

# **Recurrent Dropout**

If you look at the training and validation curves (figure 10.5), it's evident that the model is quickly overfitting.



Figure 10.5 Training and validation MAE on the Jena temperature-forecasting task with an LSTM-based model (note that we omit epoch 1 on this graph, because the high training MAE (7.75) at epoch 1 would distort the scale)

# Recurrent Dropout

- Dropout randomly zeros out input units of a layer to break happenstance correlations
  in the training data that the layer is exposed to.
- 2. But how to correctly apply dropout in recurrent networks **isn't** a **trivial** question.
- 3. The same dropout mask (the same pattern of dropped units) should be applied at every time step, instead of using a dropout mask that varies randomly from time step to time step.
- 4. Every recurrent layer in Keras has two dropout-related arguments:
  - a. **dropout**, a float specifying the dropout rate for input units of the layer,
  - b. **recurrent\_dropout**, specifying the dropout rate of the recurrent units.



# And the winner is...

1. Common sense baseline approach: test MAE of 2.62 degrees Celsius.

2. Densely connected model: test MAE of 2.71 degrees Celsius.

3. A simple LSTM-based model: test MAE of 2.52 degrees Celsius.

4. A dropout-regularized LSTM: test MAE of 2.45 degrees Celsius.



# Notebook



# Google Colab notebook

A temperature-forecasting example

https://colab.research.google.com/drive/1gAHC\_c3X\_RJcKDEF5ItRstgJ2ryxmmd6?usp=sharing







# Deep Learning with Python, 2nd Ed. by Francois Chollet



O Chapter 10

# Thanks!

Any questions?

