Lecture 12 Maximum Flow Continued

- Edmonds-Karp algorithm
- Maximum bipartite matching

Edmonds-Karp Algorithm

- The augmenting path is a shortest path from s to t in the residual network, where each edge has unit weight.
- Time complexity: O(VE²)

Critical Lemma

Lemma 26.8

If the Edmonds-Karp is run on a flow network G=(V, E) with source s and sink t, then for all vertices $v \in V - \{s,t\}$, the shortest-path distance $\delta_f(s,v)$ in the residual network G_f increases monotonically with each flow augmentation.

Proof

- f: the flow before the first augmentation that decreases some $\delta_f(s,v)$.
- f': the flow after the augmentation.
- Let $v \in V \{s,t\}$ be the vertex with the minimum $\delta_{f'}(s,v)$ whose distance was decreased by the augmentation, so that $\delta_{f'}(s,v) < \delta_{f}(s,v)$.
- $p=s \sim \to u \to v$ be a shortest path from s to v in G_f , so that $(u,v) \in E_f$ and $\delta_f(s,u) = \delta_f(s,v)-1$.
- We have $\delta_{f'}(s,u) \ge \delta_{f}(s,u)$
- Now we prove that $(u,v) \notin E_f$ since otherwise,
- Since $(u,v) \notin E_f$ and $(u,v) \in E_f$, the augmentation must have increased the flow from v to u. As only flows on the shortest path can be increased, then (v,u) is on the shortest path in G_f , thus we have
- $\delta_f(s,v) = \delta_f(s,u)-1 \le \delta_{f'}(s,u)-1 = \delta_{f'}(s,v)-2$, contradicts $\delta_{f'}(s,v) < \delta_f(s,v)$.
- Such vertex v can not exist.

Analyze its time complexity

• Theorem 26.9

The total number of flow augmentations performed by the Edmonds-Karp algorithm is O(VE).

- critical edge: an edge (u,v) on an augmenting path p with $c_f(p) = c_f(u,v)$
- There must be at least one critical edge on an augmenting path. After augment the flow, the critical edge disappears from the residual network.
- To prove the theorem, we will show that each edge can become critical at most |V|/2-1 times.

Proof of the Theorem

- $(u,v) \in E$, when (u,v) is critical on an augmenting path for the first time, we have, $\delta_t(s,v) = \delta_t(s,u) + 1$.
- Then (u,v) disappears from the residual network. It can not reappear until the flow from u to v is decreased, which occurs only if (v,u) appears on an augmenting path. If f is the flow in G when this event occurs, then we have $\delta_f(s,u) = \delta_f(s,v)+1$.
- Since $\delta_f(s,v) \le \delta_f(s,v)$, then $\delta_f(s,u) = \delta_f(s,v) + 1 \ge \delta_f(s,v) + 1 = \delta_f(s,u) + 2$.
- Consequently, from the time (u,v) becomes critical to the time it next becomes critical, the distance of u increases by at least 2. the distance of u is at most |V|-2. Thus, (u,v) can become critical at most (|V|-2)/2= |V|/2-1 times.
- There are at most O(E) edges and each augmenting path has at least one critical edge.

Maximum Matching in Bipartite Graphs

- Bipartite graph G=(V,E): If $V=L \cup R$, and $L \cap R = \emptyset$, and E=E(L,R), that is, each edge with one end in L and the other in R.
- Matching: M⊆E, such that no elements in M share common end points.
- Maximum matching M: for any other matching M', there is $|M| \ge |M'|$

Matching and Maximum Matching

Maximum matching in bipartite graph

• Problem:

- Input: a bipartite undirected graph $G=(L \cup R, E)$
- Output: a maximum matching M of G.

How?

- Solution: By using maximum flow algorithm.
- Directed graph G'=(V',E'):
 - $V'=\{s,t\} \cup V$
 - $E'=\{(s,u)|u\in L\}\cup\{(v,t)|v\in R\}\cup\{(u,v)|u\in L,v\in R,(u,v)\in E\}$
- Network: G', with source s and sink t, and capacity function f:
 - c(s,u)=1
 - c(v,t)=1
 - c(u,v)=1

Max. matching VS Max. flow

• Lemma 26.10

Let $G=(V=L\cup R, E)$ be a bipartite graph and G'=(V',E') be its corresponding flow network.

If M is a matching in G, then there is an integer-valued flow f in G' with value |f| = |M|.

Conversely, if f is an integer-valued flow in G, then there is a matching M in G with cardinality |M| = |f|.

Proof of the Lemma

- (→) Define f: if $(u,v) \in M$, then f(s,u)=f(u,v)=f(v,t)=1 and f(u,s)=f(v,u)=f(t,v)=-1, otherwise f(u,v)=0. f is a flow.
- Each edge $(u,v) \in M$ corresponds to 1 unit of flow in G' that traverses the path $s \rightarrow u \rightarrow v \rightarrow t$, and the paths are disjoint, except for s and t.

Then $|f| = f(L \cup \{s\}, R \cup \{t\}) = |M|$

Proof of the Lemma

- (\leftarrow) Define M={(u,v):u \in L,v \in R, and f(u,v)>0}. M is a matching.
- Each vertex u has at most one entering edge (s,u), c(s,u)=1. If one unit positive flow does enter, then one unit positive flow must leave. Since f is integer-valued, the one unit flow can enter and leave on at most one edge. Thus if f(s,u)=1, there is exactly one vertex v such that f(u,v)=1, and at most one edge leaving u carries positive flow.
- For every matched vertex $u \in L$, f(s,u)=1, and for every edge $(u,v)\in E-M$, f(u,v)=0.
- |M| = f(L,R) = f(L,V') f(L,L) f(L,s) f(L,t) = f(s,L) = f(s,V') = |f(s,V')| = |f(

Why integer-valued flow

• Theorem 26.11

If the capacity function c takes on integral values, then the maximum flow produced by Ford-Fulkerson method has the property that |f| is integer-valued. Moreover all f(u,v) is an integer.

Correctness and Time Complexity

- Corollary 26.12: |M| = |f|. From Lemma 26.10.
- Time complexity: O(VE) why?