

IN THE CLAIMS:

Claims 1-32 were cancelled and claims 33-40 added in the previous Amendment
(Amendment A). All pending claims and their present status are produced below.

1 1. (Canceled)

2 2. (Canceled)

3 3. (Canceled)

4 4. (Canceled)

5 5. (Canceled)

6 6. (Canceled)

7 7. (Canceled)

8 8. (Canceled)

9 9. (Canceled)

10 10. (Canceled)

11 11. (Canceled)

12 12. (Canceled)

13 13. (Canceled)

14 14. (Canceled)

15 15. (Canceled)

16 16. (Canceled)

17 17. (Canceled)

18 18. (Canceled)

19 19. (Canceled)

20 20. (Canceled)

21 21. (Canceled)

22 22. (Canceled)

23 23. (Canceled)

24 24. (Canceled)

25 25. (Canceled)

26 26. (Canceled)

27 27. (Canceled)

28 28. (Canceled)

29 29. (Canceled)

30 30. (Canceled)

31 31. (Canceled)

32 32. (Canceled)

1 33. (Previously Presented) A method of predicting the performance of an application in a
2 multi-hop network, the multi-hop network comprising a client and a server, the
3 method comprising:

4 determining, for each thread of the application, a set of application factors
5 corresponding to a set of functions performed by the application, the
6 application factors being independent of the network and of a network flow
7 control protocol, the application factors comprising average packet size and
8 average node send time;

9 determining a set of network delay times corresponding to a series of network delay
10 sources along the multi-hop network path, the network delay sources
11 comprising a queuing delay, a bandwidth delay, a bottleneck delay, and one of
12 a transmission delay, a constant delay, and a node delay;

13 determining a set of network flow factors corresponding to the network flow control
14 protocol, the network flow factors comprising a number of turns added per
15 direction, the direction relative to the client and the server;
16 determining a duration of each thread of the application based on the application
17 factors, the network delay times and the network flow factors; and
18 determining a total response time based on the durations of the threads.

1 34. (Previously Presented) The method of claim 33, wherein said determining a set of
2 network flow factors comprises generating a histogram of node send time, and determining
3 the number of turns added per direction based on the histogram.

1 35. (Previously Presented) An apparatus for predicting the performance of an application
2 in a multi-hop network, the multi-hop network comprising a client and a server, the
3 apparatus comprising:

4 means for determining, for each thread of the application, a set of application factors
5 corresponding to a set of functions performed by the application, the
6 application factors being independent of the network and of a network flow
7 control protocol, the application factors comprising average packet size and
8 average node send time;

9 means for determining a set of network delay times corresponding to a series of
10 network delay sources along the multi-hop network path, the network delay
11 sources comprising a queuing delay, a bandwidth delay, a bottleneck delay,
12 and one of a transmission delay, a constant delay, and a node delay;

13 means for determining a set of network flow factors corresponding to the network
14 flow control protocol, the network flow factors comprising a number of turns
15 added per direction, the direction relative to the client and the server;
16 means for determining a duration of each thread of the application based on the
17 application factors, the network delay times and the network flow factors; and
18 means for determining a total response time based on the durations of the threads.

1 36. (Previously Presented) The apparatus of claim 35, wherein said means for
2 determining a set of network flow factors comprises means for generating a histogram
3 of node send time, and means for determining the number of turns added per direction
4 based on the histogram.

1 37. (Previously Presented) A computer readable medium comprising computer readable
2 instructions which, when executed by a processing system, cause the processing
3 system to perform a method of predicting the performance of an application in a
4 multi-hop network, the multi-hop network comprising a client and a server, the
5 method comprising:
6 determining, for each thread of the application, a set of application factors
7 corresponding to a set of functions performed by the application, the
8 application factors being independent of the network and of a network flow
9 control protocol, the application factors comprising average packet size and
10 average node send time;

11 determining a set of network delay times corresponding to a series of network delay
12 sources along the multi-hop network path, the network delay sources
13 comprising a queuing delay, a bandwidth delay, a bottleneck delay, and one of
14 a transmission delay, a constant delay, and a node delay;
15 determining a set of network flow factors corresponding to the network flow control
16 protocol, the network flow factors comprising a number of turns added per
17 direction, the direction relative to the client and the server;
18 determining a duration of each thread of the application based on the application
19 factors, the network delay times and the network flow factors; and
20 determining a total response time based on the durations of the threads.

1 38. (Previously Presented) The medium of claim 37, further comprising computer
2 readable instructions which, when executed by the processing system, cause the processing
3 system to generate a histogram of node send time and to determine the number of turns added
4 per direction based on the histogram.

1 39. (Previously Presented) An apparatus for predicting the performance of an application
2 in a multi-hop network, the multi-hop network comprising a client and a server, the
3 apparatus comprising:
4 application factor logic for determining, for each thread of the application, a set of
5 application factors corresponding to a set of functions performed by the
6 application, the application factors being independent of the network and of a
7 network flow control protocol, the application factors comprising average
8 packet size and average node send time;

9 delay time logic for determining a set of network delay times corresponding to a
10 series of network delay sources along the multi-hop network path, the network
11 delay sources comprising a queuing delay, a bandwidth delay, a bottleneck
12 delay, and one of a transmission delay, a constant delay, and a node delay;
13 flow factor logic for determining a set of network flow factors corresponding to the
14 network flow control protocol, the network flow factors comprising a number
15 of turns added per direction, the direction relative to the client and the server;
16 first duration logic for determining a duration of each thread of the application based
17 on the application factors, the network delay times and the network flow
18 factors; and
19 second duration logic for determining a total response time based on the durations of
20 the threads.

1 40. (Previously Presented) The apparatus of claim 39, wherein said flow factor logic for
2 determining a set of network flow factors comprises logic for generating a histogram
3 of node send time, and logic for determining the number of turns added per direction
4 based on the histogram.