Lezione 3

Utilità

Funzioni di utilità

- Relazioni di preferenza che soddisfino gli assiomi di complezza, riflessività e transitività e che siano continue possono essere rappresentate da una funzione di utilità continua.
- Continuità significa che piccoli cambiamenti nel paniere causano solo piccoli cambiamenti nel livello di preferenza.

Funzioni di utilità

• Una funzione di utilità U(x) rappresenta una relazione di preferenza se e solo se:

$$x' \succ x$$
" $U(x') > U(x'')$
 $x' \prec x$ " $U(x') < U(x'')$
 $U(x') = U(x'')$

Funzioni di utilità

- L'utilità ha un significato esclusivamente ordinale.
- Es. se U(x) = 6 e U(y) = 2 allora il paniere x è strettamente preferito al paniere y. Ma x non è preferito il triplo di y.

F. di utilità e curve di indifferenza

- indifferenza
 Consideriamo i panieri (4,1), (2,3) e (2,2).
- Supponiamo (2,3) ≻(4,1) ~ (2,2).
- Assegnamo a questi panieri un qualunque numero che preserva l'ordine di preferenza;
 es. U(2,3) = 6 > U(4,1) = U(2,2) = 4.
- Chiamiamo questi numeri livelli di utilità.

F. di utilità e curve di indifferenza

- Una curva di indifferenza contiene panieri ugualmente preferiti.
- Uguali preferenze ⇒ stesso livello di utilità.
- Quindi tutti i panieri che si trovano su una curva di indifferenza danno lo stesso livello di utilità.

F. di utilità e curve di indifferenza

- Quindi i panieri (4,1) e (2,2) sono sulla curva di indiff. con livello di utilità U ≡ 4
- Ma il paniere (2,3) è sulla curva di indiff.
 Con livello di uilità U = 6.
- La rappresentazione grafica è la seguente:

F. di utilità e curve di indifferenza

 Un altro modo di visualizzare la stessa informazione consiste nel disegnare il livello di utilità sull'asse verticale in un diagramma tridimensionale.

F. di utilità e curve di indifferenza

• Possiamo aggiungere a questo grafico 3D le curve di indifferenza.

F. di utilità e curve di indifferenza

 Confrontando più panieri si ha una più ampia collezione di curve di indifferenza e una migliore descrizione delle preferenze del consumatore.

F. di utilità e curve di indifferenza

Funzioni di utilità

- Non c'è un'unica funzione di utilità che rappresenti una data descrizione delle preferenze.
- Supponiamo che U(x₁,x₂) = x₁x₂ rappresenti le preferenze di un consumatore.
- Consideriamo di nuovo i panieri (4,1), (2,3) e (2,2).

Funzioni di utilità

• $U(x_1,x_2) = x_1x_2$, quindi

$$U(2,3) = 6 > U(4,1) = U(2,2) = 4;$$

cioè, $(2,3) \succ (4,1) \sim (2,2)$.

Funzioni di utilità

- $U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- Definiamo V = U².
- Quindi $V(x_1, x_2) = x_1^2 x_2^2$ e V(2,3) = 36 > V(4,1) = V(2,2) = 16perciò, di nuovo $(2,3) \succ (4,1) \sim (2,2)$.
- V preserva lo stesso ordinamento di U e quindi rappresenta le stesse preferenze.

Funzioni di utilità

- $U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- Definiamo W = 2U + 10.
- Quindi $W(x_1,x_2) = 2x_1x_2+10 e$ W(2,3) = 22 > W(4,1) = W(2,2) = 18.E' ancora vero che: $(2,3) > (4,1) \sim (2,2).$
- W preserva lo stesso ordinamento di U e V e quindi rappresenta le stesse preferenze.

Funzioni di utilità

- Se
 - U è una funzione di utilità che rappresenta una relazione di preferenza e
 - f è una funzione sempre crescente,
- allora anche V = f(U) è una funzione di utilità che rappresenta le stesse preferenze

Particolari funzioni di utilità

• Invece di $U(x_1,x_2) = x_1x_2$ si consideri

$$V(x_1, x_2) = x_1 + x_2.$$

Come sono le curve di indifferenza in questo caso di "perfetti sostituti"?

Particolari funzioni di utilità

• Invece di $U(x_1,x_2) = x_1x_2$ o $V(x_1,x_2) = x_1 + x_2$, si consideri

$$W(x_1,x_2) = min\{x_1,x_2\}.$$

Come sono le curve di indifferenza in questo caso di "perfetti complementi"?

Particolari funzioni di utilità

• Una funzione di utilità del tipo

$$U(x_1,x_2) = f(x_1) + x_2$$

è lineare solo in x₂ ed è detta quasilineare.

• Es.
$$U(x_1,x_2) = 2x_1^{1/2} + x_2$$
.

Particolari funzioni di utilità

• Qualsiasi funzione di utilità del tipo

$$U(x_1,x_2) = x_1^a x_2^b$$

con a > 0 e b > 0 è detta funzione di utilità Cobb-Douglas.

• Es.
$$U(x_1,x_2) = x_1^{-1/2} x_2^{-1/2}$$
 (a = b = 1/2)
 $V(x_1,x_2) = x_1 x_2^{-3}$ (a = 1, b = 3)

Utilità marginale

 L'utilità marginale di un bene è il saggio di variazione dell'utilità associato ad una variazione molto piccola della quantità consumata di quel bene:

$$MU_i = \frac{\partial U}{\partial x_i}$$

Utilità marginale

• Es. se $U(x_1,x_2) = x_1^{1/2} x_2^2$ si ottiene

$$MU_{1} = \frac{\partial U}{\partial x_{1}} = \frac{1}{2} x_{1}^{-1/2} x_{2}^{2}$$

$$MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2}x_2$$

Utilità marginale e saggio marginale di sostituzione

 L'equazione generale di una curva di indifferenza è

 $U(x_1,x_2) = k$, con k costante. Dal differenziale totale si ottiene:

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

Utilità marginale e saggio marginale di sostituzione

$$\frac{\partial U}{\partial x_1}dx_1 + \frac{\partial U}{\partial x_2}dx_2 = 0$$

Si può riscrivere come

$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

Utilità marginale e saggio marginale di sostituzione

e
$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

diventa

$$\frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}.$$

Che è il MRS

Utilità marginale e saggio marginale di sostituzione

• Supponiamo che $U(x_1,x_2) = x_1x_2$.

$$\frac{\partial U}{\partial x_1} = (1)(x_2) = x_2$$

$$\frac{\partial U}{\partial x_2} = (x_1)(1) = x_1$$

Si ha
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2} = -\frac{x_2}{x_1}$$
.

Utilità marginale e saggio marginale di sostituzione

MRS per funzioni di utilità quasi lineari

 Una funzione di utilità quasi lineare è del tipo U(x₁,x₂) = f(x₁) + x₂.

$$\frac{\partial U}{\partial x_1} = f'(x_1) \qquad \frac{\partial U}{\partial x_2} = 1$$

$$\Rightarrow MRS = \frac{dx_2}{dx_1} = -\frac{\partial U/\partial x_1}{\partial U/\partial x_2} = -f'(x_1).$$

MRS per funzioni di utilità quasi lineari

 MRS = - f'(x₁) non dipende da x₂ quindi la pendenza delle curve di indifferenza per una funzione di utilità quasi-lineare è costante lungo ogni curva sulla quale x₁ è invariato. Infatti queste curve di indifferenza appaiono come traslazioni verticali l'una dell'altra.

Trasformazioni monotoniche e MRS

- Applicando una trasformazione monotonica ad una funzione di utilità che rappresenta una relazione di preferenza si crea un'altra funzione di utilità che rappresenta la stessa relazione di preferenza.
- Cosa accade al MRS quando si applica una trasformazione monotonica?

Trasformazioni monotoniche e MRS

- Per $U(x_1,x_2) = x_1x_2$ il MRS = x_2/x_1 .
- Sia V = U²; \rightarrow V(x₁,x₂) = x₁²x₂². Qual è il MRS per V?

$$MRS = -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{2x_1x_2^2}{2x_1^2x_2} = -\frac{x_2}{x_1}$$

che è lo stesso MRS di U.

Trasformazioni monotoniche e MRS

• Più in generale, se V = f(U) dove f è una funzione strettamente crescente

$$\begin{split} MRS &= -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{f'(U) \times \partial U / \partial x_1}{f'(U) \times \partial U / \partial x_2} \\ &= -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}. \end{split}$$

Quindi il MRS non cambia in seguito ad una trasfomazione monotonica positiva.