Explorando o Poder das
Redes Neurais: Uma
Jornada Pela Inteligência
Artificial

- Formado em licenciatura em matemática na UEPA (2018)
- Curso de ciência de dados pela Blueedtech (2022-2023)
- Atualmente fazendo pós em ciência de dados e inteligência artificial pela Uninter

Lex Luthor dos dados

ARTIFICIAL INTELLIGENCE

Qualquer técnica que capacite uma máquina a imitar a inteligência humana

MACHINE LEARNING

Métodos estatísticos que possibilitam que as máquinas aprendam a partir dos dados sem programação

DEEP LEARNING

Redes Neurais com múltiplas camadas que assimilam tarefas e reconhecem símbolos a partir dos dados

Índice

O que é?
 D que é?
 História
 → Estrutura
 → Arquitetura
 → Mãos ao código

01 → O que é?

- Sendo uma sub-área da *Inteligência Artificial*, são sistemas computacionais construídos através de técnicas que procuram imitar o cérebro humano com suas conexões de elementos de processamento.
- Uma rede neural artificial pretende simular o sistema nervoso humano, o qual contém uma coleção de neurônios (os elementos de processamento) que se comunicam através de axônios e dendritos

Reconhecimento de Imgens (Visão Computacional)

NLP (ChatGPT)

Reconhecimento por Voz

02 — Breve História

3→ Estrutura de uma Rede Neural

Percepton

• É um modelo simples de rede neural artificial que recebe as entradas, processa-as e produz uma saída. É composto por um conjunto de entradas, pesos sinápticos, uma função de ativação de uma saída.

 $Y = Activation(\Sigma(weight*input) + bias)$

Elemento	Representação $\{x_1, x_2,, x_n\}$	Descrição	
sinais de entrada		São as variáveis do problema estudado. Cada valor de entrada no vetor é um tipo de valor associado a amostra. Ex: x_1 = valor de declividade; x_2 = espessura x_3 = leitura do instrumento.	
pesos sinápticos	$\{w_1,w_2,_{\dots},w_n\}$	São valores associados a cada variável de entrada de forma a ponderar cada uma delas no problema es questão. Os pesos sinápticos iniciam com valore aleatórios entre 0 e 1, e são ajustados no processo de cálculo da rede (doravante melhor explicado).	
combinador linear ∑		Tem a função de agrupar os produtos dos sinais de entrada e pesos sinápticos.	

Elemento	Representação 0	Descrição	
limiar de ativação		Determina um valor que deve ser atingido pelo combinador linear de forma a produzir um resultado pelo neurônio.	
potencial de ativação	u	É a diferença de valores entre o combinador linear e o limiar de ativação e determina o comportamento do neurônio (excitatório ou inibitório).	
função de ativação	g(.)	Normaliza a saída do neurônio para valores que possam ser interpretados.	
sinal de saída	у.	É o resultado final do processo do neurônio. Pode ser o produto final geral da análise, bem como ser utilizado por outros neurônios da rede.	

Multiplicação dos pesos sinápticos com os modelos de entrada (modo simplificado)

Funções de ativação

4 - Arquitetura

As redes neurais podem ser estruturados em camadas conforme a figura ao lado

- Camada de entrada: responsável por receber as informações de entrada
- Camadas ocultas: Camadas onde os neurônios estão localizados
- Camadas de saída: Responsável de produzir a saída final da rede resultante do processamento executado pelas camadas anteriores

Autoenconder Convolucional

LLM (Large Language Models)

Discounted with present

4— Treinamento

Backpropagation

$$\begin{split} \frac{\partial E}{\partial w_{11}^{(2)}} &= \frac{\partial e_{1}^{(3)}}{\partial a_{1}^{(2)}} \, \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \, \frac{\partial z_{1}^{(2)}}{\partial w_{11}^{(2)}} & \qquad \frac{\partial E}{\partial w_{12}^{(2)}} &= \frac{\partial e_{1}^{(3)}}{\partial a_{1}^{(2)}} \, \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \, \frac{\partial z_{1}^{(2)}}{\partial w_{12}^{(2)}} \\ \frac{\partial E}{\partial w_{21}^{(2)}} &= \frac{\partial e_{2}^{(3)}}{\partial a_{2}^{(2)}} \, \frac{\partial a_{2}^{(2)}}{\partial z_{2}^{(2)}} \, \frac{\partial z_{2}^{(2)}}{\partial w_{21}^{(2)}} & \qquad \frac{\partial E}{\partial w_{22}^{(2)}} &= \frac{\partial e_{2}^{(3)}}{\partial a_{2}^{(2)}} \, \frac{\partial a_{1}^{(2)}}{\partial z_{2}^{(2)}} \, \frac{\partial z_{1}^{(2)}}{\partial w_{22}^{(2)}} \end{split}$$

Na realidade, o backpropagation é apenas uma aplicação da regra da cadeia (chain rule). Como as redes neurais são estruturas de modelo de aprendizado de máquina multicamadas complicadas, cada peso "contribui" para o erro geral de uma maneira mais complexa e, portanto, as derivadas reais exigem muito esforço para serem produzidas. No entanto, uma vez que passamos pelo cálculo, o backpropagation das redes neurais é equivalente à descida de gradiente típica para regressão logística / linear.

Vantagens e desvantagens da utilização de redes neurais

Vantagens das redes neurais

(+) Pode ser usada como base para construir outra rede

- (+) Tomada de decisões
- (+) Paralelismo

Reuse Pretrained Network

Early layers that learned low-level features (edges, blobs, colors) 1 million images 1000s classes

Improve network

Exemplo de rede pré-treinadas

Desvantagens das redes neurais

(+) Treinamento demorado do modelo (especialmente se não tiver uma gpu)

- (+) Caixa preta (já que não se tem controle dos pesos sinápticos)
- (+) Grade volume de dados para que a rede neural aprenda
- (+) Preparação de dados criteioso

4 Mãos ao Código

Problema

• Dado um título de noticia, será construído um modelo na qual vai classificar se a mesma é uma noticia verdadeira (no caso, o modelo retornará como 0) ou se aquela noticia é fake news (no caso, o modelo retornará como 1).

Principais Bibliotecas

	Extra tree	MLP	RNN
Acurácia	0.9421985815602837	0.9460992813110352	0.9522458910942078
Precisão	0.9464505035617784	0.945361852645874	0.9503632187843323
Recall	0.9342870999030067	0.9439864158630371	0.951745867729187
F1-score	0.9403294691885296	0.944673633598654	0.9510540407308745

Obrigado

Você tem alguma pergunta?

@gustavoramos82

CRÉDITOS: Este modelo de apresentação foi criado pelo **Slidesgo**, e inclui ícones da **Flaticon**, infográficos e imagens da **Freepik** e conteúdo de **Eliana Delacour**

Repositório do Github

Perfil do Linkedin

