Principle of Duality

- Controllability and Observability share an intricate relationship. The principle of duality was conceived by Kalman to connect the analogies between controllability & observability
- Consider a system S₁ and its dual system S₂:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 $x: n \text{ vector}$ $\mathbf{A}: n \times n \text{ matrix}$ $\dot{\mathbf{z}} = \mathbf{A} * \mathbf{z} + \mathbf{C} * \mathbf{v}$ $z: n \text{ vector}$ $\mathbf{A}*: n \times n \text{ matrix}$ $\mathbf{y} = \mathbf{C}\mathbf{x}$ $u: r\text{-vector}$ $\mathbf{B}: n \times r \text{ matrix}$ $\mathbf{y}: m\text{-vector}$ $\mathbf{C}: m \times n \text{ matrix}$ $\mathbf{w} = \mathbf{B} * \mathbf{z}$ $\mathbf{w}: r\text{-vector}$ $\mathbf{C}*: n \times m \text{ matrix}$

■ The principle of duality states S_1 is completely state controllable (or observable) if and only if system S_2 is completely observable (state-controllable).

$$\mathbf{C}_{O} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}_{n \times nr} \qquad \mathbf{C}_{O} = \begin{bmatrix} \mathbf{C}^{*} & \mathbf{A}^{*}\mathbf{C}^{*} & \cdots & (\mathbf{A}^{*})^{n-1}\mathbf{C}^{*} \end{bmatrix}_{n \times nr}$$

$$\mathbf{O}_{B} = \begin{bmatrix} \mathbf{C}^{*} & \mathbf{A}^{*}\mathbf{C}^{*} & \cdots & (\mathbf{A}^{*})^{n-1}\mathbf{C}^{*} \end{bmatrix}_{n \times nr} \qquad \mathbf{O}_{B} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}_{n \times nr}$$

- For a partially observable system, if the unobservable modes are stable and the observable modes are unstable, the system is said to be detectable.
 - Concept of detectability is dual to the concept of stabilizability

Illustrative Example

• Consider the following system: G(

$$G(s) = \frac{1}{s^2 + 2s + 1}$$

• It can be expressed in CCF (S_1) ,

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

or also in OCF (S_2) ,

$$\dot{\mathbf{z}} = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{z}$$

- If we defined: $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$, you will note that: $\dot{\mathbf{z}} = \mathbf{A} * \mathbf{z} + \mathbf{C} * u$ $y = \mathbf{C}\mathbf{x}$
- In other words, S_1 is completely state controllable (or observable) if and only if system S_2 is completely observable (state-controllable).

$$\mathbf{C}_{O} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} \end{bmatrix}$$

$$\mathbf{C}_{O} = \begin{bmatrix} \mathbf{C}^{*} & \mathbf{A}^{*}\mathbf{C}^{*} \end{bmatrix}$$

$$\mathbf{O}_{B} = \begin{bmatrix} \mathbf{C}^{*} & \mathbf{A}^{*}\mathbf{C}^{*} \end{bmatrix}$$

$$\mathbf{O}_{B} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} \end{bmatrix}$$