

Vadhiraj K P P

Department of Electrical & Electronics Engineering

LECTURES 12 &13 - Mesh Analysis in the networks with Current Sources; Numerical Examples

Vadhiraj K P P

Department of Electrical & Electronics Engineering

PES

Mesh Analysis in the networks with current sources

- We cannot write a KVL in the mesh containing current sources.
- Voltage across an ideal current source is unknown.

 Hence, there is a slight change in the procedure when applying Mesh Analysis in such cases.

Mesh Analysis in the networks with current sources - Procedure

Step 1: Identify the number of meshes in the network.

Step 2: Assign one mesh current in each mesh preferably in the same direction.

Step 3: Write KVL in the meshes without current sources. Write Current Equation in the Meshes with current sources.

Step 4: Solve simultaneous equations to obtain Mesh currents.

Numerical Example 1

Question:

Obtain current through 4Ω resistor using Mesh Analysis.

Numerical Example 1

Solution:

Number of Meshes = 4

KVL (Mesh 1):
$$-8I_1-4(I_1-I_2)+100 = 0$$

i.e., $12I_1-4I_2-0I_3-0I_4 = 100$ ---- (1)

KVL (Mesh 2):
$$-4I_1+9I_2-3I_3-0I_4=0$$
 ---- (2)

Numerical Example 1

Solution (Continued..):

KVL (Mesh 3):
$$0I_1-3I_2+18I_3-10I_4=0$$
 ---- (3)

Current Equation (Mesh 4):
$$I_4 = -8$$
 ---- (4)

Solving (1), (2), (3) & (4),
$$I_1 = 9.26A$$
; $I_2 = 2.79A$; $I_3 = -3.97A$

Current through
$$4\Omega$$
 resistor = $(I_1 \sim I_2) = (I_1 - I_2) = 6.47$ A

Numerical Example 2

Question:

Obtain voltage across 3Ω resistor using Mesh Analysis.

Numerical Example 2

Solution:

- Whenever a current source is common to two meshes, it creates a supermesh.
- In Such networks, either supermesh technique is applied (or) network is rearranged to confine that common current source to any one mesh.

Numerical Example 2

Solution (Continued):

Current Equation (Mesh 1): $I_1 = 4$ ---- (1)

KVL (Mesh 2): $-I_1+6I_2-5I_3-=6$ ---- (2)

Current Equation (Mesh 3): $I_3 = 5$ ---- (3)

Solving (1), (2) & (3), $I_2 = 5.83A$

Current through 3Ω resistor = $(I_2 \sim I_3) = (I_2 - I_3) = 0.83A$

Voltage across 3Ω resistor = 2.49V

Numerical Example 2

Determine the current through 5Ω resistor in the network shown.

Numerical Example 2

 Determine the currents through various branches for the bridge circuit shown using mesh analysis.

Numerical Example 2

Find the current through branch BC using mesh analysis.

Numerical Example 2

 Determine the current through 5Ω resistor using mesh analysis.

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu