Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Можно задать модель канала графом, вершины которого — символы алфавита канала.

Дуга идёт из x в y, если в канале возможна ошибка замещения x на y.

Если в канале для каждой пары символов (x, y) возможны либо оба замещения $x \to y$, $y \to x$, либо ни одно из них, то граф канала можно считать неориентированным.

Пример: если алфавит канала $\{0,1,2\}$, и возможны только замещения $0 \to 1$ и $1 \to 2$, то граф такой:

$$0 \longrightarrow 1 \longrightarrow 2$$

Если возможны замещения $0 \to 1, \ 1 \to 0, \ 1 \to 2$ и $2 \to 1,$ то граф такой:

Пусть G — граф канала.

Если считать каждый символ канала отдельным сообщением, то во избежание ошибок придётся использовать множество символов C_1 , являющееся независимым множеством в G:

При этом в лучшем случае пропускная способность канала получается такой же, как у канала без ошибок, алфавит которого имеет мощность $\alpha(G)$.

Пусть G = (V, E) — граф канала.

Если по каналу мы посылаем пары символов, то следует выбирать для использования такое множество пар \mathcal{C}_2 , чтобы

$$\exists (x', y'), (x'', y'') \in C_2:
((x' = x'' \lor x'x'' \in E) \land (y' = y'' \lor y'y'' \in E))$$

Если мы рассмотрим такое C_2 , имеющее максимально возможную мощность, то данный код позволяет достичь пропускной способности $\sqrt{|C_2|}$.

Замечание. В чём смысл извлечения квадратного корня из $|C_2|$:

Это скорость передачи данных в канале в расчёте на один передаваемый символ.

Если бы у нас был *безошибочный* канал, в алфавите которого ровно $\sqrt{|C_2|}$ символов, то мы могли бы передавать по нему как раз $|C_2|$ сообщений длины 2.

Если G — граф канала, и мы посылаем тройки символов, то следует выбирать такое множество троек C_3 , чтобы в нём не было двух троек, соответствующие компоненты которых совпадают или образуют ребро в G.

Если мы рассмотрим такое C_3 , имеющее максимально возможную мощность, то данный код позволит достичь пропускной способности $\sqrt[3]{|C_3|}$.

И так далее...

Шенноновское произведение

Шенноновское произведение графов G и H — это граф $G \times H$ со множеством вершин

$$V(G \times H) = \{(x, y) \mid x \in V(G), y \in V(H)\}$$

Рёбра в $G \times H$ между парами (x', y') и (x'', y''), для которых $(x' = x'' \lor x'x'' \in E(G)) \land (y' = y'' \lor y'y'' \in E(H))$

Очевидно, $(G_1 \times G_2) \times G_3 \simeq G_1 \times (G_2 \times G_3)$ и $G_1 \times G_2 \simeq G_2 \times G_1$ для любых G_1, G_2, G_3 .

Шенноновское произведение

Пример:

Шенноновская ёмкость

Шенноновская ёмкость графа *G* :

$$cap(G) = \sup_{n \in \mathbb{N}} \sqrt[n]{\alpha(\underline{G} \times \underline{G} \times \cdots \times \underline{G})}$$

Это наибольшая возможная (в пределе) «скорость», с которой можно передавать без ошибок данные по каналу, моделью которого является граф G.

Верхняя оценка шенноновской ёмкости графа

Пусть G — произвольный граф. Будем рассматривать наборы весов ${m w}$ на вершинах графа G, такие, что

- $\forall x \ w(x) \geq 0$
- $\bullet \sum_{x \in V(G)} w(x) = 1$

Для любого множества $A \subseteq G$ обозначим

$$w(A) \coloneqq \sum_{x \in A} w(x)$$

Верхняя оценка шенноновской ёмкости графа

Для произвольного графа G рассмотрим величину

$$\nu(G) \coloneqq \min_{\mathbf{w}} \max_{K-\mathsf{к}\mathsf{Л}\mathsf{U}\mathsf{K}\mathsf{a}} w(K)$$

(ясно, что max достаточно брать только по максимальным по включению кликам)

Теорема Шеннона о верхней оценке ёмкости:

Для любого G справедливо неравенство

$$cap(G) \le (\nu(G))^{-1}$$

Докажем, что $\sqrt[n]{\alpha(G^n)} \leq \left(\nu(G)\right)^{-1}$ для каждого n. Пусть $A \subseteq V(G)$ — независимое множество размера $\alpha(G)$. Рассмотрим набор весов \boldsymbol{w}_0 , в котором

- $w_0(x) \coloneqq 0$, если $x \notin A$,
- $w_0(x)\coloneqq \bigl(\alpha(G)\bigr)^{-1}$, если $x\in A$.

Для таких весов получим

$$\nu(G) \le \max_{K-\text{KJUKA} \atop \text{B } G} w_0(K) = \left(\alpha(G)\right)^{-1}$$

откуда
$$\alpha(G) \leq (\nu(G))^{-1}$$
.

Итак, $\nu(G) \leq \left(\alpha(G)\right)^{-1}$ для любого G.

Лемма. Для любых графов G, H выполнено $\nu(G \times H) = \nu(G) \cdot \nu(H)$

Если докажем лемму, то докажем и теорему:

$$\nu(G^n) = \left(\nu(G)\right)^n \quad \Rightarrow \quad \sqrt[n]{\alpha(G^n)} \le \sqrt[n]{\left(\nu(G^n)\right)^{-1}} = \left(\nu(G)\right)^{-1}$$

Лемма. Для любых графов G, H выполнено $\nu(G \times H) = \nu(G) \cdot \nu(H)$

Доказательство леммы:

Пусть \boldsymbol{w}_{G}^{*} и \boldsymbol{w}_{H}^{*} — наборы весов на вершинах графов G и H, на которых достигаются минимумы в $\nu(G)$ и $\nu(H)$.

Рассмотрим набор весов $\widehat{\boldsymbol{w}}_{G \times H}$ на вершинах графа $G \times H$, такой, что

$$\widehat{w}_{G\times H}(x,y) \coloneqq w_G^*(x) \cdot w_H^*(y)$$

Берём набор весов $\widehat{w}_{G\times H}(x,y)\coloneqq w_G^*(x)\cdot w_H^*(y).$

Любая максимальная по включению клика K в графе $G \times H$ является множеством пар вида

$$\{(x,y)\mid x\in K_G,y\in K_H\}$$

где K_G и K_H — клики в G и H соответственно. Для таких клик K имеем

$$\widehat{w}_{G \times H}(K) = \sum_{(x,y) \in K} w_G^*(x) \cdot w_H^*(y) = \left(\sum_{x \in K_G} w_G^*(x)\right) \left(\sum_{y \in K_H} w_H^*(y)\right) = w_G^*(K_G) \cdot w_H^*(K_H)$$

Имеем

$$\nu(G \times H) = \min_{\substack{W \ K - \text{клика} \\ \text{в } G \times H}} \max_{K \in K, \text{лика}} w(K) \le$$

$$\leq \max_{\substack{K - \text{клика} \\ \text{в } G \times H}} \widehat{w}_{G \times H}(K) = \max_{\substack{K - \text{клика} \\ \text{в } G \times H}} w_{G}^{*}(K_{G}) \cdot w_{H}^{*}(K_{H}) \le$$

$$\leq \max_{\substack{K - \text{клика} \\ \text{в } G}} w_{G}^{*}(K) \cdot \max_{\substack{K - \text{клика} \\ \text{в } G}} w_{H}^{*}(K) = \nu(G) \cdot \nu(H)$$

В итоге, $\nu(G \times H) \leq \nu(G) \cdot \nu(H)$.

Обозначим через \widetilde{w} набор весов на кликах графа (неотрицательны, сумма равна единице).

По теореме о свойствах двойственных задач линейного программирования, для любого графа имеет место равенство

$$\min_{\mathbf{w}} \max_{K} \sum_{x \in K} w(x) = \max_{\widetilde{\mathbf{w}}} \min_{x} \sum_{K \ni x} \widetilde{w}(K)$$

$$\max_{\widetilde{w}} \min_{x} \sum_{K \ni x} \widetilde{w}(K)$$

Пусть $\widetilde{\boldsymbol{w}}_{G}^{*}$ и $\widetilde{\boldsymbol{w}}_{H}^{*}$ — наборы весов, на которых достигается тах для графов G и H.

Построим набор весов $\widetilde{w}_{G \times H}$ на кликах графа $G \times H$:

- Пусть клика K может быть представлена в виде $K_G \times K_H$, где K_G и K_H клики в G и H. Тогда полагаем $\widetilde{w}_{G \times H}(K) \coloneqq \widetilde{w}_G^*(K_G) \cdot \widetilde{w}_H^*(K_H)$.
- Для остальных клик K полагаем $\widetilde{w}_{G \times H}(K) \coloneqq 0$.

Для такого набора весов и для любой фиксированной вершины $(x,y) \in V(G \times H)$ имеем

$$\sum_{K\ni(x,y)} \widetilde{w}_{G\times H}(K) \geq \sum_{K\ni(x,y)} \widetilde{w}_{G\times H}(K) = \sum_{K_G\ni x, \atop K_H\ni y} \widetilde{w}_G^*(K_G) \cdot \widetilde{w}_H^*(K_H) =$$

$$= \left(\sum_{K_G\ni x} \widetilde{w}_G^*(K_G)\right) \left(\sum_{K_H\ni y} \widetilde{w}_H^*(K_H)\right) \geq \nu(G) \cdot \nu(H)$$

Отсюда следует неравенство $\nu(G \times H) \ge \nu(G) \cdot \nu(H)$, а значит верно равенство $\nu(G \times H) = \nu(G) \cdot \nu(H)$.

Пример применения теоремы

Оценим шенноновскую ёмкость цепи на трёх вершинах. Рассмотрим набор весов на вершинах графа P_3 , на котором достигается минимум.

Пусть веса на крайних вершинах цепи равны x и z, а у средней вершины вес равен y. Получаем задачу линейного программирования:

$$\begin{cases} x, y, z \ge 0 \\ x + y + z = 1 \\ x + y \le \nu \\ y + z \le \nu \\ \nu \to \min \end{cases}$$

Решение этой задачи: x=z=1/2 , y=0 и $\nu=1/2$. Отсюда сар $P_3\leq 2$. При этом очевидны соотношения сар $P_3\geq \alpha(P_3)=2$, а значит сар $P_3=2$.