Алгебра на ФКН ПИ

Общий конспект всех лекций за 3 модуль

15 февраля 2021 г.

 $\mathbf{y_{TB}}$ Пусть G - группа и $g \in G$.

Тогда $|\langle g \rangle| = ord(g)$, где $|\langle g \rangle|$ - число элементов в циклической группе, порожденной элементом g.

 \square Заметим, что если $g^k = g^s \Rightarrow g^{k-s} = e$ (так как $\exists g^{-1}$) \Rightarrow порядок $g \leq k-s \Rightarrow$ если g имеет бесконечный порядок, то все элементы g^n $(n \in \mathbb{Z})$ различны и $\Rightarrow \langle g \rangle$ содержит бесконечно много элементов. В бесконечном случае доказано.

Если же ord(g)=m, то из минимальности $m\in\mathbb{N}\Rightarrow e=g^0, g=g^1,g^2,\ldots,g^{m-1}$ попарно различны. Покажем, что $\langle g\rangle=\{e,g,g^2,\ldots,g^{m-1}\}$:

$$\forall n \in \mathbb{Z} : n = m \cdot q + r$$
, где $0 \le r \le m \Rightarrow g^n = g^{mq+r} = (g^m)^q \cdot g^r = e^q \cdot g^r = g^r$, где $0 \le r \le m \Rightarrow \langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m = ord(g)$.

Утв Пусть $f: G \to F$ - гомоморфизм. Тогда f - инъективен (т.е. является мономорфизмом) $\Leftrightarrow \ker f = e_G$, где e_G - нейтральный элемент в группе в G, а $\ker f$ в данном случае является тривиальным **ядром** гомоморфизма.

Опр Ядром гомоморфизма $f: G \to F$ называется множество элементов группы G, которые переходят в e_F - нейтральный элемент во второй группе.

$$\ker f = \{g \in G | f(g) = e_F\}$$

 $\fbox{\bf 3am}$ ker f никогда не является пустым множеством, так как по свойству гомоморфизма $f(e_G)=e_F.$

⇒ Необходимость:

Дано: $\forall x_1 \neq x_2 : f(x_1) \neq f(x_2) \Rightarrow f(e_G) = e_F$ (и для $x \in G$ $(x \neq e_G)$ $f(x) \neq f(e_G) = e_F$).

⇐ Достаточность:

Дано: ker $f = e_G$. Допустим, что $\exists x_1 \neq x_2 : f(x_1) = f(x_2)$. Тогда $f(x_1 \cdot x_2^{-1}) = f(x_1) \cdot f(x_2^{-1}) = f(x_1) \cdot (f(x_2))^{-1} = e_F \Rightarrow x_1 \cdot x_2^{-1} = e_G \Leftrightarrow x_1 = x_2$ - противоречие, значит, f инъективно.

Опр Таблица Кэли - это матрица из попарных произведений элментов из группы.

Примеры групп:

1). D_n - группа диэдра - группа симметрий правильного n-угольника.

$$D_n = \{r, s | r^n = 1, s^2 = 1, s^{-1}rs = r^{-1}\}$$

Утв $D_3 \cong S_3 \ (S_3 - группа подстановок).$

2). $A_n \subset S_n$ (A_n - все четные подстановки длины n). $|A_n| = \frac{n!}{2}$

3). Группа кватернионов:

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k | (-1)^2 = 1, i^2 = j^2 = k^2 = -1 = ijk \}$$

1

Пример ядра:

$$f: GL_n(\mathbb{R}) \to R^*$$

 $f(A)=\det A$. Тогда $\ker f=\{A|\det A=1\}=SL_n(\mathbb{R})$ - специальная линейная группа.

 $[\mathbf{y_{TB}}]$ Любая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ (числа, кратные k) для некоторого $k\in\mathbb{N}\cup\{0\}$.

 \square $k\mathbb{Z}$, очевидно, является подгруппой в \mathbb{Z} . Докажем, что других подгрупп не существует. Если подгруппа $H = \{0\}$, то положим k = 0. Иначе: $k = min(H \cap \mathbb{N})$. Тогда $k\mathbb{Z} \subseteq H$. Если $a \in H$ и a = qk + r $(0 \le r \le k) \Rightarrow r = a - kq$, где $a \in H$ и $kq \in H$, а значит, r = 0 и $H = k\mathbb{Z}$

Опр Пусть G - группа и H - ее подгруппа. Путь фиксирован $g \in G$. Тогда левым смежным классом элемента g по подгруппе H называется множество:

$$gH = \{g \cdot h | h \in H\}$$

Аналогично правым смежным классом является такое множество:

$$Hg = \{h \cdot g | h \in H\}$$

 $\boxed{\textbf{Лемма 1}} \ \forall g_1, g_2 \in G \$ либо $g_1H = g_2H,$ либо $g_1H \cap g_2H = \varnothing.$

 \square Если $g_1H \cap g_2H \neq \emptyset$, то $\exists h_1,h_2 \in H: g_1h_1 = g_2h_2 \Rightarrow g_1 = g_2 \cdot h_2 \cdot h_1^{-1} \Rightarrow g_1H = g_2 \cdot h_2 \cdot h_1^{-1}H \subseteq H$. А так как $h_2 \cdot h_1^{-1} \in H$, то $g_1H \subseteq g_2H$. Аналогично существует и обратное включение, а значит $g_1H = g_2H$. \blacksquare

 $\square |gH| \le |H|$. Если $gh_1 = gh_2 \Rightarrow g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2$, то есть совпадений нет.

 $\fbox{\textbf{Onp}}$ Индексом подгруппы H в группе G называется количество левых смежных классов G по подгруппе H.

Обозначение: [G:H]

Теорема (Лагранжа)

 $\overline{\Pi_{\text{УСТЬ}} G}$ - конечная группа, H - ее подгруппа, тогда $|G| = |H| \cdot [G:H]$.

 \square Любой элемент группы лежит в своем левом смежном классе по H, и смежные классы не пересекаются (по лемме 1) и любой из этих смежных классов содержит по |H| элементов (по лемме 2).

Следствие 1 Пусть G - конечная группа и взят элемент $g \in G$. Тогда ord(g) делит |G|.

 \square Возьмем $H=\langle g \rangle$. Мы знаем, что $|\langle g \rangle|=ord(g)$ и $|G|=|\langle g \rangle|\cdot [G:H],$ то есть |G|:ord(g).

 $\overline{$ Следствие 2 | Пусть G - конечная группа, тогда $g^{|G|}=e.$

 \square Применим следствие 1: $|G|=ord(g)\cdot s\Rightarrow g^{|G|}=g^{ord(g)\cdot s}=(g^{ord(g)})^s=e^s=e.$

Следствие 3 ака Малая Теорема Ферма:

 $\overline{\Pi$ усть \overline{a} - ненулевой вычет попростому подулю p, тогда $\overline{a}^{p-1} = \overline{1}$, то есть $a^{p-1} \equiv 1 \pmod p$.

 $\overline{0},\overline{1},\ldots,\overline{p-1}$ - вычеты по модулю p, то есть остатки от деления $m\in\mathbb{Z}$ на p.

 \square На самом деле это следствие 2 $(g^{|G|}=e)$, примененное к группе $\mathbb{Z}_p^*=\{\mathbb{Z}_p\backslash\{0\},\cdot\}$, где Z_p - множество всех вычетов по модулю p. $|Z_p^*|=p-1\Rightarrow \overline{a}^{|Z_p^*|}=e.$

Зам Точно так же можно было рассмотреть и правые смежные классы. Но число левых смежных классов равно числу правых и равно $\frac{|G|}{|H|}$ (по теореме Лагранжа).