

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа № 5 Дисциплина: «Моделирование»

Тема: «Исследование математической модели на основе технологии вычислительного эксперимента»

Студент Овчинникова А. П.

Группа ИУ7-65Б

Оценка (баллы)

Преподаватель Градов В.М.

Цель работы

Целью данной работы является получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа. Исследование проводится с помощью программы, созданной в лабораторной работе №4.

Исходные данные

1. Значения параметров для отладки (все размерности согласованы).

Таблица 1: Значения параматров.

k(T) =	$a_1(b_1+c_1T^{m_1})\;{ m BT/cm}\;{ m K}$
	$a_2 + b_2 T^{m_2} - \frac{c_2}{T^2}$ Дж/см 3 К
$a_1 =$	0.0134
$b_1 =$	1
$c_1 =$	$4.35 \cdot 10^{-4}$
$m_1 =$	1
$a_2 =$	2.049
$b_2 =$	$0.563 \cdot 10^{-3}$
$c_2 =$	$0.528\cdot 10^5$
$m_2 =$	1
$\alpha(x) =$	$\frac{c}{x-d}$
$\alpha_0 =$	$0.05~\mathrm{Br/cm^2~K}$
$\alpha_N =$	$0.01 \; {\rm Br/cm^2 \; K}$
l =	10 см
$T_0 =$	300 K
R =	$0.5~\mathrm{cm}$

2. Поток тепла F(t) при x=0:

$$F(t) = \frac{F_{max}}{t_{max}} t e^{-(t/t_{max}-1)}, \tag{1}$$

где F_{max}, t_{max} — амплитуда импульса потока и время её достижения ($\mathrm{Br/cm^2}\ \mathrm{u}\ \mathrm{c}$).

Задание

1. Провести исследование по выбору оптимальных шагов по времени τ и пространству h. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Рассмотреть влияние на получаемые результаты амплитуды импульса F_{max} и времени t_{max} (определяют крутизну фронтов и длительность импульса).

Точность расчета можно оценить разными способами.

- Уменьшая шаги и наблюдая сходимость решений, как это делалось в лаб. работе №1.
- Проверяя, соблюдается ли при выбранных τ, h баланс мощности после выхода на стационарное распределение температуры (в установившемся режиме), реализующееся при F(t) = const, т.е. в этом режиме должно выполняться условие: подводимая мощность равна отводимой. Имеем

$$\pi R^{2}(F_{0} - F_{N}) = 2\pi R \int_{0}^{l} \int_{0}^{\infty} \alpha [T(x, t_{M}) - T_{0}] dx, \qquad (2)$$

окончательно

$$\left| \frac{F_0 - F_N}{\frac{2}{R} \iint_0^l \alpha [T(x, t_M) - T_0] dx} - 1 \right| \le \varepsilon.$$
 (3)

Задать точность ε примерно 10^{-2} . Здесь t_M — время выхода на стационарный режим, т.е. когда температура перестает меняться с заданной точностью (см. лаб. работу \mathbb{N}^2 4).

Замечание. Варьируя параметры задачи, следует иметь ввиду, что решения, в которых температура превышает значения примерно 2000К, физического смысла не имеют и практического интереса не представляют.

2. График зависимости температуры T(0,t) при 3-4 значениях параметров a_2 и/или b_2 теплоемкости.

3. График зависимости температуры T(0,t) (т.е. при x=0 в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν (частота определяется количеством импульсов в 1 секунду).

Показать, что при большом количестве импульсов температурное поле начинает в точности воспроизводиться от импульса к импульсу. Продемонстрировать, как по мере роста частоты импульсов размах колебаний температуры уменьшается (вплоть до нуля), т.е. реализуется квазистационарный режим, при котором в торец поступает постоянный поток $F_c = \nu \int\limits_0^{t_u} F(t) dt$. Здесь t_u — длительность импульса, определяемая как момент времени, когда $\frac{F_{t_u}}{F_{max}} \approx 0.05$. Если взять прямоугольные импульсы длительностью t_u , т.е. $F(t) = const = F_0$, то $F_c = \nu F_0 t_u$.

Справка. Полученное температурное поле должно совпасть с результатом расчета T(x) по программе лаб. работы №3 при $F_0 = F_c$, разумеется при всех одинаковых параметрах модели, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3.

Результаты работы

Задание 1

С помощью (3) проанализируем подводимую и отводимую мощность на разных шагах τ , h. Возьмем $\varepsilon = 10^{-2}$. Так как (2) не зависит от τ , то баланс мощности не зависит от τ . Рассмотрим отдельно h. Возьмем h = 0.4, 0.3, 0.2, 0.1, 0.01, 0.001.

В таблице 2 представлены результаты выполнения неравенства (3) в зависимости от выбранных значений h.

Будем проводить измерения при $F_{max} = 50$.

Пусть $t_{max}=20$. рассмотрим результаты работы программы при различных значениях шага h и $\tau=2$ (рисунок 1). Аналогично на рисунках 2-5 представлены результаты работы программы при $\tau=1, \tau=0.1, \tau=0.05, \tau=0.01$ соответственно. На рисунках 1-5 в первой строке представлены значения h.

Таблица 2: Выполнение неравенства 2.

h	Соблюдается ли баланс мощности
0.4	нет
0.3	да
0.2	да
0.1	да
0.01	да
0.001	да

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
739.308	765.115	776.603	775.589	749.956
974.118	989.336	993.840	989.279	944.940
1004.637	1013.393	1015.193	1009.348	957.336
933.242	939.074	939.946	934.046	882.209
822.824	827.185	827.791	822.482	775.606
707.648	711.090	711.640	707.203	667.658
604.516	607.244	607.766	604.257	572.687
519.887	522.004	522.474	519.821	495.762
454.473	456.064	456.461	454.532	436.919
406.144	407.297	407.613	406.257	393.802
371.687	372.488	372.725	371.800	363.237
347.799	348.326	348.492	347.873	342.113
331.586	331.906	332.010	331.601	327.786
320.750	320.918	320.972	320.703	318.203
313.586	313.645	313.662	313.485	311.857
308.886	308.870	308.859	308.742	307.688
305.821	305.754	305.724	305.645	304.964
303.831	303.730	303.687	303.632	303.194
302.544	302.421	302.369	302.330	302.049
301.715	301.577	301.519	301.491	301.311
301.182	301.034	300.973	300.951	300.836
300.840	300.687	300.623	300.605	300.532
300.622	300.465	300.400	300.385	300.338

Рис. 1: $t_{max} = 20, \tau = 2$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
508.191	531.758	546.067	548.368	542.923
732.329	757.887	769.015	769.300	342.923
887.161	907.234	914.382	913.118	730.971
974.406	989.286	914.362	913.118	893.834 969.312
1009.582	1020.797	1023.749	1020.899	909.312
1009.582	1020.797	1023.749	1020.899	993.664 988.593
980.074	987.177	988.587	985.323	958.342
936.276	942.236	943.318	940.093	913.470
882.916	888.054	888.956	885.870	860.240
824.993	829.510	830.317	827.436	803.262
766.110	770.127	770.884	768.247	745.844
708.782	712.373	713.098	710.724	690.283
654.680	657.888	658.585	656.477	638.086
604.828	607.683	608.349	606.501	590.164
559.770	562.295	562.923	561.321	546.978
519.692	521.909	522.492	521.117	508.663
484.530	486.459	486.993	485.825	475.121
454.046	455.711	456.194	455.210	446.097
427.897	429.321	429.751	428.929	421.239
405.674	406.880	407.258	406.577	400.140
386.944	387.955	388.283	387.723	382.373
371.274	372.112	372.392	371.934	367.516
358.248	358.933	359.169	358.796	355.166
347.479	348.031	348.225	347.922	344.955
338.618	339.053	339.210	338.965	336.548
331.356	331.691	331.814	331.615	329.653
325.424	325.674	325.766	325.606	324.016
320.592	320.769	320.836	320.705	319.420
316.665	316.781	316.825	316.719	315.682
313.481	313.545	313.570	313.483	312.647
310.902	310.924	310.932	310.861	310.188
308.817	308.804	308.798	308.739	308.198
307.133	307.092	307.075	307.025	306.591
305.776	305.711	305.684	305.642	305.293
304.682	304.598	304.563	304.528	304.248

Рис. 2: $t_{max} = 20, \tau = 1.$

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
352.228	364.515	375.570	378.393	378.286
446.082	467.752	481.932	484.841	484.502
546.335	572.172	586.216	588.660	588.042
641.264	667.826	680.408	682.285	681.379
725.968	751.279	762.086	763.441	762.256
798.647	821.814	830.947	831.853	830.408
859.110	879.889	887.569	888.104	886.422
907.963	926.444	932.901	933.130	931.236
946.170	962.577	968.017	967.997	965.917
974.813	989.407	994.005	993.786	991.545
994.976	1008.011	1011.914	1011.535	1009.157
1007.690	1019.394	1022.723	1022.218	1019.727
1013.911	1024.480	1027.337	1026.735	1024.152
1014.510	1024.112	1026.581	1025.907	1023.252
1010.278	1019.053	1021.205	1020.479	1017.772
1001.925	1009.992	1011.886	1011.125	1008.383
990.089	997.548	999.232	998.451	995.690 i
975.342	982.275	983.791	983.001	980.236
958.193	964.671	966.051	965.263	962.506 j
939.097	945.176	946.448	945.670	942.934
918.455	924.184	925.370	924.609	921.905
896.626	902.044	903.162	902.423	899.760
873.922	879.063	880.127	879.414	876.802
850.622	855.511	856.533	855.850	853.294
826.966	831.626	832.615	831.962	829.470
803.165	807.614	808.575	807.956	805.533
779.401	783.654	784.592	784.007	781.657
755.831	759.899	760.817	760.266	757.994
732.587	736.480	737.381	736.864	734.671
709.783	713.508	714.392	713.909	711.799
687.511	691.076	691.944	691.493	689.467
665.849	669.258	670.109	669.691	667.749
644.858	648.117	648.951	648.563	646.706
624.588	627.700	628.516	628.158	626.386
605.075	608.044	608.841	608.510	606.823
586.344	589.174	589.951	589.647	588.043
568.415	571.109	571.864	571.585	570.063

Рис. 3: $t_{max} = 20, \tau = 0.1$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
315.960	321.203	328.021	330.384	330.372
351.488	363.803	374.933	377.769	377.720
396.342	414.159	427.408	430.399	430.298
445.340	467.070	481.269	484.192	484.028
495.692	520.028	534.402	537.129	536.896
545.715	571.587	585.621	588.091	587.787
594.319	620.869	634.250	636.444	636.066
640.782	667.349	679.912	681.831	681.380
684.639	710.739	722.417	724.073	723.551
725.610	750.907	761.696	763.107	762.515
763.547	787.826	797.757	798.941	798.282
798.396	821.538	830.658	831.635	830.911
830.176	852.125	860.493	861.281	860.496
858.948	879.701	887.373	887.991	887.147
884.810	904.391	911.427	911.890	910.991
907.876	926.332	932.787	933.110	932.159
928.277	945.666	951.589	951.787	950.787
946.145	962.532	967.972	968.057	967.012
961.621	977.070	982.071	982.055	980.967
974.839	989.418	994.019	993.912	992.785
985.937	999.708	1003.946	1003.758	1002.595
995.044	1008.068	1011.976	1011.716	1010.520
1002.288	1014.622	1018.230	1017.906	1016.680
1007.791	1019.488	1022.823	1022.443	1021.190
1011.670	1022.779	1025.867	1025.438	1024.161
1014.037	1024.602	1027.467	1026.995	1025.696
1014.998	1025.062	1027.724	1027.214	1025.896
1014.655	1024.255	1026.733	1026.192	1024.857
1013.104	1022.276	1024.588	1024.020	1022.670
1010.435	1019.211	1021.373	1020.783	1019.421
1006.737	1015.146	1017.173	1016.564	1015.192
1002.090	1010.160	1012.064	1011.440	1010.061
996.572	1004.327	1006.121	1005.487	1004.101
990.258	997.720	999.415	998.772	997.383
983.215	990.406	992.012	991.364	989.973

Рис. 4: $t_{max} = 20, \tau = 0.05$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
300.762	301.098	301.911	302.915	302.917
302.841	304.022	306.388	308.039	308.042
306.086	308.638	312.465	314.473	314.476
310.351	314.246	319.630	321.857	321.859
315.504	320.846	327.589	329.971	329.974
321.427	328.251	336.157	338.664	338.666
328.013	336.309	345.208	347.821	347.821
335.170	344.899	354.649	357.352	357.351
342.819	353.924	364.405	367.186	367.184
350.888	363.304	374.419	377.264	377.261
359.719	372.976	384.641	387.540	387.535
368.428	382.887	395.030	397.970	397.963
377.405	392.991	405.551	408.521	408.512
386.610	403.251	416.173	419.163	419.152
396.009	413.636	426.869	429.869	429.856
405.571	424.117	437.616	440.617	440.602
415.269	434.670	448.394	451.388	451.370
425.078	445.274	459.183	462.164	462.143
434.978	455.909	469.969	472.929	472.906
444.947	466.559	480.737	483.670	483.644
454.970	477.208	491.473	494.376	494.347
465.030	487.843	502.166	505.034	505.002
475.112	498.452	512.806	515.635	515.600
485.204	509.022	523.384	526.171	526.133
495.292	519.545	534.368	536.634	536.593
505.367	530.010	544.735	547.017	546.973
515.418	540.409	555.037	557.314	557.267
525.435	550.735	565.730	567.519	567.469
535.410	560.981	575.804	577.627	577.574
545.335	571.140	585.802	587.635	587.578
555.202	581.207	595.709	597.537	597.477
565.005	591.177	605.516	607.331	607.268
574.738	601.046	615.219	617.013	616.947
584.394	610.808	624.811	626.581	626.511

Рис. 5: $t_{max} = 20, \tau = 0.01$.

Таким образом, при $F_{max}=50, t_{max}=20$ оптимальными значениями шагов по времени и пространству являются $h=0.01, \tau=0.01.$

Пусть $t_{max}=60$. Рассмотрим результаты работы программы при различных значениях шага h и $\tau=2$ (рисунок 6). Аналогично на рисунках 6-10 представлены результаты работы программы при $\tau=1, \tau=0.1, \tau=0.05, \tau=0.01$ соответственно. На рисунках 7-10 в первой строке представлены значения h.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
968.818	982.217	986.583	981.597	933.028
1050.433	1060.137	1062.491	1055.876	996.420
912.979	921.150	923.302	917.618	865.750
739.784	746.622	748.755	744.593	705.226
592.413	597.709	599.588	596.805	569.393
484.639	488.391	489.841	488.087	470.174
412.372	414.822	415.825	414.765	403.614
366.616	368.104	368.736	368.113	361.417
338.772	339.608	339.975	339.613	335.694
322.287	322.711	322.902	322.693	320.440
312.716	312.890	312.972	312.850	311.572
307.238	307.265	307.283	307.210	306.492
304.137	304.080	304.061	304.015	303.615
302.398	302.293	302.252	302.222	302.001
301.429	301.298	301.244	301.223	301.101

Рис. 6: $t_{max} = 60, \tau = 2$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
712.144	728.201	735.109	734.593	720.712
968.747	982.076	986.538	984.053	959.408
1057.811	1068.915	1072.029	1068.674	1039.255
1051.223	1060.996	1063.533	1059.987	1029.615
994.107	1003.034	1005.386	1002.024	972.940
913.577	921.841	924.166	921.175	894.606
825.788	833.406	835.726	833.176	809.703
740.093	747.011	749.282	747.176	726.966
661.556	667.711	669.865	668.167	651.132
592.527	597.880	599.857	598.512	584.412
533.672	538.224	539.980	538.931	527.445
484.658	488.445	489.959	489.150	479.922
444.598	447.687	448.957	448.339	441.016
412.359	414.830	415.871	415.401	409.651
386.741	388.682	389.517	389.161	384.687
366.599	368.097	368.753	368.484	365.030
350.902	352.037	352.542	352.339	349.688
338.758	339.601	339.981	339.827	337.804
329.421	330.030	330.310	330.193	328.656
322.278	322.705	322.904	322.814	321.652
316.838	317.123	317.259	317.190	316.313
312.711	312.886	312.973	312.919	312.259
309.589	309.681	309.730	309.687	309.192
307.235	307.263	307.283	307.248	306.878
305.464	305.444	305.442	305.414	305.137
304.136	304.079	304.061	304.037	303.830
303.141	303.057	303.026	303.005	302.851
302.397	302.292	302.252	302.234	302.120

Рис. 7: $t_{max} = 60, \tau = 1$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
318.891	323.382	327.389	328.373	328.332
356.774	365.344	371.049	372.287	372.148
401.605	412.846	419.539	420.898	420.626
448.846	461.947	469.212	470.585	470.162
496.388	510.769	518.298	519.617	519.033
543.050	558.260	565.840	567.067	566.317
588.119	603.813	611.309	612.421	611.506
631.165	647.086	654.414	655.401	654.324
671.937	687.904	695.015	695.874	694.639
710.310	726.198	733.064	733.796	732.409
746.239	761.962	768.572	769.179	767.648
779.735	795.238	801.587	802.075	800.406
810.844	826.092	832.183	832.558	830.758
839.635	854.606	860.445	860.714	858.792
866.192	880.875	886.472	886.640	884.602
890.605	904.997	910.361	910.435	908.290
912.969	927.073	932.215	932.201	929.956
933.383	947.201	952.133	952.038	949.699
951.941	965.481	970.215	970.045	967.620
968.739	982.008	986.556	986.317	983.812
983.867	996.876	1001.250	1000.947	998.367
997.415	1010.174	1014.384	1014.023	1011.376
1009.468	1021.987	1026.044	1025.631	1022.921
1020.108	1032.398	1036.313	1035.851	1033.084
1029.413	1041.484	1045.267	1044.761	1041.943
1037.457	1049.320	1052.981	1052.435	1049.571
1044.312	1055.977	1059.524	1058.943	1056.037
1050.045	1061.522	1064.965	1064.352	1061.409
1054.722	1066.020	1069.366	1068.725	1065.750
1058.403	1069.531	1072.788	1072.123	1069.119
1061.146	1072.114	1075.289	1074.602	1071.573
1063.008	1073.822	1076.923	1076.218	1073.168
1064.040	1074.710	1077.742	1077.021	1073.953
1064.293	1074.825	1077.794	1077.060	1073.979

Рис. 8: $t_{max} = 60, \tau = 0.1$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
301.584	302.186	303.270	303.882	303.881
305.550	307.361	309.737	310.539	310.535
311.371	314.550	317.887	318.791	318.781
318.626	323.129	327.166	328.155	328.136
326.987	332.697	337.272	338.337	338.308
336.204	342.991	348.004	349.138	349.097
346.086	353.828	359.216	360.410	360.357
356.486	365.081	370.796	372.042	371.975
367.291	376.651	382.657	383.947	383.865
378.413	388.465	394.730	396.055	395.956
389.780	400.461	406.956	408.308	408.193
401.336	412.591	419.288	420.661	420.528
413.032	424.814	431.688	433.074	432.922
424.831	437.094	444.120	445.514	445.344
436.697	449.402	456.558	457.954	457.764
448.603	461.711	468.976	470.370	470.161
460.524	473.999	481.355	482.742	482.513
472.438	486.247	493.675	495.052	494.803
484.327	498.437	505.922	507.286	507.016
496.173	510.556	518.082	519.430	519.139
507.962	522.589	530.144	531.473	531.162
519.680	534.525	542.098	543.406	543.074
531.317	546.355	553.934	555.221	554.868
542.862	558.070	565.647	566.909	566.536
554.306	569.662	577.228	578.466	578.071
565.641	581.126	588.674	589.885	589.469
576.860	592.455	599.978	601.162	600.726
587.957	603.645	611.137	612.293	611.836
598.927	614.691	622.148	623.275	622.798
609.764	625.591	633.007	634.106	633.608
620.465	636.341	643.713	644.782	644.264
631.026	646.939	654.263	655.303	654.764
641.444	657.383	664.657	665.666	665.107

Рис. 9: $t_{max} = 60, \tau = 0.05$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000 i
300.265	300.372	300.642	300.978	300.979
300.976	301.365	302.162	302.719	302.720
302.093	302.951	304.255	304.936	304.937
303.577	304.905	306.762	307.518	307.518
305.392	307.239	309.589	310.399	310.399
307.507	309.896	312.679	313.532	313.532
309.891	312.832	315.991	316.881	316.881
312.519	316.007	319.495	320.420	320.420
315.366	319.389	323.166	324.126	324.124
318.410	322.952	326.986	327.978	327.976
321.785	326.673	330.937	331.961	331.959
325.155	330.533	335.007	336.061	336.058
328.671	334.516	339.182	340.266	340.261
332.318	338.608	343.452	344.564	344.559
336.084	342.798	347.807	348.946	348.940
339.957	347.074	352.239	353.403	353.397
343.927	351.428	356.740	357.929	357.921
347.985	355.852	361.303	362.515	362.506
352.123	360.339	365.923	367.156	367.146
356.332	364.882	370.592	371.845	371.834
360.607	369.476	375.307	376.579	376.567
364.941	374.116	380.062	381.351	381.338
369.329	378.797	384.852	386.158	386.143
373.765	383.515	389.675	390.995	390.979
378.245	388.265	394.743	395.859	395.842
382.764	393.045	399.588	400.747	400.728
387.319	397.851	404.464	405.654	405.635
391.906	402.680	409.587	410.579	410.558
396.522	407.529	414.475	415.519	415.497
401.163	412.395	419.389	420.471	420.447
405.827	417.276	424.320	425.432	425.407
410.511	422.170	429.264	430.401	430.374
415.213	427.073	434.218	435.375	435.347
419.930	431.985	439.177	440.352	440.323
424.659	436.903	444.141	445.332	445.300

Рис. 10: $t_{max} = 60, \tau = 0.01$.

Таким образом, при $t_{max}=60, F_{max}=50,$ оптимальными значениями шагов являются $h=0.01, \tau=0.01.$

Пусть $t_{max}=100$. рассмотрим результаты работы программы при различных значениях шага h и $\tau=2$ (рисунок 11). Аналогично на рисунках 11-15 представлены результаты работы программы при $\tau=1, \tau=0.1, \tau=0.05, \tau=0.01$ соответственно. На рисунках 11-15 в первой строке представ-

лены значения h.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
822.423	835.647	840.623	837.008	798.432
1039.366	1050.765	1053.970	1047.789	990.882
1064.371	1074.555	1077.099	1070.387	1009.922
1001.329	1010.776	1013.214	1006.922	949.857
902.993	911.789	914.288	908.822	858.295
796.919	804.951	807.474	802.952	760.080
697.107	704.220	706.655	703.042	667.821
609.903	615.988	618.218	615.409	587.228
537.303	542.332	544.278	542.138	520.089
478.924	482.950	484.574	482.971	466.048
433.207	436.338	437.641	436.456	423.679
398.145	400.515	401.527	400.659	391.145
371.698	373.448	374.211	373.580	366.576
352.016	353.275	353.834	353.377	348.271
337.527	338.408	338.805	338.475	334.781
326.954	327.550	327.823	327.585	324.929
319.295	319.678	319.858	319.686	317.787
313.780	314.008	314.118	313.993	312.641
309.829	309.944	310.004	309.912	308.954
307.011	307.045	307.068	307.000	306.323
305.009	304.985	304.981	304.930	304.453
303.591	303.526	303.503	303.464	303.129
302.590	302.495	302.459	302.429	302.193

Рис. 11: $t_{max} = 100, \tau = 2$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000 j
584.925	597.525	603.405	603.306	593.376
821.915	835.060	840.091	838.464	818.901
964.550	976.833	980.878	978.223	952.605
1039.533	1050.955	1054.313	1051.069	1022.067
1068.003	1078.754	1081.697	1078.175	1047.616
1064.744	1074.992	1077.717	1074.130	1043.266
1040.169	1050.027	1052.660	1049.151	1018.843
1001.730	1011.254	1013.871	1010.535	981.369
954.817	964.023	966.659	963.553	935.919
903.340	912.213	914.875	912.032	886.175
850.124	858.632	861.307	858.740	834.798
797.184	805.286	807.950	805.660	783.691
745.925	753.580	756.204	754.180	734.183
697.293	704.464	707.016	705.242	687.171
651.881	658.541	660.992	659.449	643.226
610.023	616.154	618.479	617.145	602.669
571.857	577.453	579.632	578.485	565.640
537.376	542.441	544.460	543.478	532.139
506.471	511.020	512.870	512.032	502.072
478.965	483.018	484.698	483.985	475.275
454.634	458.220	459.730	459.125	451.540
433.229	436.379	437.725	437.213	430.632
414.490	417.239	418.429	417.995	412.306
398.156	400.540	401.583	401.217	396.314
383.974	386.028	386.937	386.627	382.414
371.703	373.462	374.248	373.987	370.376
361.120	362.617	363.292	363.071	359.984
352.018	353.284	353.859	353.672	351.039
344.210	345.273	345.760	345.602	343.360
337.527	338.413	338.822	338.688	336.782
331.819	332.552	332.893	332.778	331.161
326.954	327.553	327.834	327.737	326.367
322.813	323.297	323.527	323.444	322.285
319.294	319.680	319.866	319.794	318.815
316.309	316.611	316.758	316.696	315.869
313.779	314.009	314.123	314.070	313.373

Рис. 12: $t_{max} = 100, \tau = 1.$

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
311.570	314.304	316.742	317.329	317.303
335.390	340.717	344.236	344.989	344.900
364.320	371.428	375.676	376.548	376.371
395.501	403.978	408.783	409.724	409.444
427.598	437.182	442.395	443.365	442.973
459.870	470.350	475.848	476.815	476.305
491.855	503.051	508.735	509.677	509.047
523.250	535.007	540.802	541.704	540.952
553.850	566.041	571.891	572.742	571.869
583.522	596.042	601.903	602.696	601.704
612.177	624.942	630.782	631.513	630.405
639.764	652.706	658.502	659.167	657.946
666.256	679.321	685.054	685.653	684.322
691.643	704.787	710.445	710.977	709.540
715.930	729.117	734.690	735.155	733.617
739.129	752.332	757.812	758.212	756.576
761.259	774.454	779.838	780.174	778.444
782.345	795.514	800.798	801.071	799.252
802.413	815.541	820.724	820.936	819.031
821.492	834.567	839.649	839.802	837.815
839.611	852.625	857.605	857.701	855.637
856.803	869.747	874.626	874.668	872.529
873.097	885.965	890.745	890.734	888.525
888.523	901.312	905.994	905.933	903.657
903.113	915.818	920.405	920.296	917.956
916.894	929.514	934.008	933.854	931.454
929.897	942.430	946.834	946.636	944.178
942.150	954.594	958.910	958.671	956.159
953.679	966.034	970.266	969.987	967.424
964.511	976.778	980.928	980.611	978.000
974.671	986.850	990.921	990.569	987.912
984.184	996.276	1000.272	999.886	997.186
993.075	1005.080	1009.003	1008.586	1005.845
1001.365	1013.285	1017.139	1016.692	1013.913
1009.078	1020.914	1024.701	1024.225	1021.411

Рис. 13: $t_{max} = 100, \tau = 0.1.$

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000 j
303.378	304.462	305.894	306.376	306.373
311.409	314.151	316.607	317.197	317.185
322.374	326.556	329.625	330.303	330.278
335.214	340.558	344.083	344.841	344.798
349.278	355.577	359.489	360.315	360.252
364.154	371.271	375.523	376.404	376.317
379.573	387.410	391.959	392.883	392.771
395.348	403.830	408.637	409.592	409.454
411.344	420.407	425.434	426.411	426.245
427.459	437.046	442.260	443.248	443.054
443.614	453.672	459.041	460.035	459.811
459.745	470.226	475.723	476.716	476.462
475.803	486.661	492.262	493.247	492.963
491.744	502.938	508.622	509.595	509.280
507.536	519.028	524.775	525.733	525.388
523.151	534.906	540.700	541.639	541.263
538.566	550.551	556.379	557.296	556.890
553.763	565.950	571.798	572.692	572.256
568.726	581.089	586.948	587.817	587.350
583.444	595.960	601.819	602.661	602.165
597.907	610.554	616.407	617.222	616.696
612.108	624.868	630.708	631.493	630.938
626.041	638.897	644.717	645.473	644.889
639.703	652.640	658.435	659.161	658.549
653.090	666.095	671.861	672.556	671.916
666.202	679.261	684.995	685.659	684.992
679.037	692.141	697.838	698.471	697.777
691.595	704.734	710.392	710.995	710.274
703.879	717.043	722.660	723.232	722.485
715.888	729.070	734.643	735.185	734.413
727.624	740.818	746.346	746.857	746.060
739.091	752.289	757.771	758.252	757.430
750.291	763.488	768.922	769.372	768.527
761.226	774.417	779.802	780.223	779.355
771.900	785.080	790.416	790.808	789.916
782.316	795.480	800.767	801.130	800.216

Рис. 14: $t_{max} = 100, \tau = 0.05$.

0.3	0.2	0.1	0.01
300.000	300.000	300.000	300.000
300.165	300.226	300.386	300.588
300.598	300.826	301.302	301.636
301.276	301.785	302.567	302.975
302.178	302.969	304.086	304.540
303.283	304.388	305.806	306.291
304.573	306.009	307.691	308.202
306.032	307.806	309.720	310.252
307.645	309.756	311.872	312.425
309.398	311.841	314.136	314.709
311.278	314.044	316.499	317.090
313.369	316.353	318.951	319.562
315.464	318.756	321.485	322.114
317.657	321.244	324.093	324.739
319.939	323.808	326.768	327.433
322.302	326.440	329.506	330.187
324.740	329.135	332.300	332.999
327.247	331.887	335.147	335.862
329.816	334.691	338.041	338.773
332.442	337.542	340.980	341.727
335.122	340.437	343.960	344.722
337.850	343.373	346.977	347.754
340.623	346.345	350.028	350.820
343.437	349.351	353.112	353.917
346.289	352.389	356.225	357.044
349.176	355.456	359.506	360.197
352.095	358.549	362.650	363.374
355.044	361.667	365.825	366.573
358.021	364.808	369.169	369.793
361.023	367.970	372.369	373.032
364.048	371.150	375.594	376.288
367.095	374.349	378.841	379.559
370.162	377.564	382.104	382.844
373.247	380.793	385.383	386.142
376.349	384.036	388.675	389.452
379.467	387.292	391.978	392.771
382.598	390.558	395.448	396.100
385.743	393.997	398.750	399.437

Рис. 15: $t_{max} = 100, \tau = 0.01$.

Таким образом, при $t_{max}=100, F_{max}=50,$ оптимальными значениями шагов являются $h=0.01, \tau=0.1.$

Пусть $t_{max}=140$. Рассмотрим результаты работы программы при различных значениях шага h и $\tau=$ (рисунок 16). Аналогично на рисунках 17-20 представлены результаты работы программы при $\tau=1, \tau=0.1, \tau=0.05, \tau=0.01$ соответственно. На рисунках 16-20 в первой строке представлены значения h.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
721.336	733.383	738.250	735.477	703.752
961.950	973.687	977.373	971.992	920.840
1056.921	1067.846	1070.772	1064.283	1005.188
1068.491	1078.823	1081.428	1074.689	1013.938
1032.692	1042.593	1045.132	1038.630	979.796
971.429	980.940	983.527	977.529	922.640
898.420	907.494	910.147	904.786	854.917
822.282	830.827	833.511	828.830	784.443
748.312	756.230	758.881	754.869	716.024
679.600	686.804	689.354	685.968	652.462
617.749	624.186	626.573	623.751	595.218
563.382	569.030	571.209	568.882	544.858
516.479	521.352	523.294	521.393	501.371
476.630	480.768	482.462	480.920	464.386
443.201	446.663	448.114	446.870	433.327
415.459	418.315	419.535	418.537	407.526
392.644	394.970	395.980	395.183	386.286
374.028	375.899	376.722	376.087	368.940
358.939	360.425	361.087	360.583	354.869
346.781	347.945	348.469	348.069	343.521
337.031	337.930	338.340	338.023	334.416
329.248	329.930	330.245	329.994	327.142
323.057	323.564	323.801	323.602	321.354
318.150	318.516	318.690	318.531	316.764
314.271	314.525	314.647	314.521	313.135
311.213	311.377	311.459	311.359	310.274
308.808	308.901	308.951	308.870	308.022
306.921	306.957	306.982	306.916	306.255
305.442	305.435	305.439	305.386	304.870

Рис. 16: $t_{max} = 140, \tau = 2$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000 i
517.405	527.533	532.444	532.474	524.726
720.832	732.815	737.723	736.586	720.489
865.006	877.078	881.432	879.354	857.294
961.872	973.613	977.427	974.687	948.627
1022.975	1034.313	1037.705	1034.531	1005.907
1057.051	1068.020	1071.113	1067.677	1037.542
1070.644	1081.301	1084.199	1080.633	1049.769
1068.736	1079.132	1081.916	1078.318	1047.316
1055.176	1065.350	1068.080	1064.525	1033.832
1032.982	1042.955	1045.673	1042.216	1012.170
1004.534	1014.314	1017.045	1013.726	984.582
971.720	981.303	984.060	980.908	952.854
936.040	945.413	948.199	945.231	918.403
898.685	907.828	910.639	907.866	882.355
860.595	869.484	872.309	869.736	845.603
822.508	831.118	833.943	831.570	808.843
784.997	793.301	796.110	793.933	772.621
748.497	756.472	759.248	757.259	737.353
713.335	720.958	723.684	721.876	703.348
679.745	686.999	689.657	688.020	670.834
647.887	654.758	657.333	655.855	639.965
617.860	624.339	626.818	625.488	610.841
589.715	595.797	598.169	596.976	583.512
563.464	569.147	571.404	570.336	557.993
539.086	544.375	546.509	545.555	534.269
516.539	521.441	523.448	522.596	512.303
495.759	500.284	502.162	501.404	492.037
476.673	480.834	482.582	481.908	473.402
459.194	463.006	464.626	464.027	456.319
443.232	446.712	448.206	447.675	440.704
428.692	431.859	433.231	432.760	426.467
415.480	418.351	419.606	419.188	413.518
403.500	406.095	407.239	406.868	401.766

Рис. 17: $t_{max} = 140, \tau = 1.$

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
308.355	310.311	312.058	312.474	312.456
325.748	329.601	332.134	332.669	332.604
347.143	352.323	355.411	356.042	355.911
370.454	376.689	380.240	380.940	380.731
394.694	401.830	405.761	406.506	406.210
419.317	427.234	431.471	432.240	431.851
443.985	452.578	457.054	457.830	457.346
468.473	477.645	482.307	483.076	482.496
492.625	502.291	507.095	507.847	507.170
516.333	526.420	531.327	532.055	531.281
539.520	549.964	554.946	555.643	554.774
562.136	572.882	577.913	578.576	577.612
584.146	595.146	600.208	600.833	599.777
605.528	616.744	621.818	622.404	621.257
626.271	637.667	642.742	643.286	642.052
646.371	657.917	662.981	663.482	662.163
665.827	677.499	682.543	683.001	681.599
684.646	696.420	701.437	701.851	700.369
702.834	714.693	719.676	720.046	718.487
720.401	732.328	737.272	737.599	735.965
737.360	749.340	754.242	754.526	752.819
753.722	765.743	770.599	770.841	769.065
769.501	781.552	786.359	786.560	784.717
784.711	796.782	801.539	801.699	799.791
799.366	811.448	816.154	816.274	814.303
813.480	825.567	830.219	830.300	828.270
827.067	839.152	843.751	843.794	841.706
840.142	852.219	856.763	856.769	854.626
852.717	864.782	869.272	869.242	867.046
864.807	876.855	881.292	881.227	878.979
876.426	888.453	892.836	892.737	890.440
887.585	899.589	903.918	903.786	901.442
898.299	910.277	914.553	914.389	911.999
908.579	920.528	924.752	924.557	922.124
918.437	930.356	934.528	934.304	931.829

Рис. 18: $t_{max} = 140, \tau = 0.1$.

0.3	0.2	0.1	0.01	0.001
300.000	300.000	300.000	300.000	300.000
302.437	303.205	304.227	304.570	304.568
308.239	310.201	311.962	312.380	312.371
316.215	319.227	321.431	321.911	321.893
325.622	329.487	332.025	332.563	332.532
335.991	340.565	343.392	343.984	343.936
347.024	352.211	355.302	355.939	355.875
358.521	364.258	367.589	368.267	368.183
370.344	376.583	380.135	380.846	380.743
382.394	389.098	392.850	393.588	393.463
394.594	401.732	405.664	406.423	406.276
406.887	414.429	418.522	419.298	419.128
419.226	427.144	431.381	432.169	431.976
431.575	439.843	444.207	445.003	444.786
443.904	452.495	456.972	457.772	457.531
456.185	465.078	469.654	470.453	470.188
468.400	477.570	482.233	483.030	482.741
480.529	489.957	494.694	495.487	495.173
492.559	502.224	507.027	507.812	507.474
504.477	514.360	519.220	519.996	519.634
516.273	526.358	531.265	532.031	531.644
527.939	538.209	543.157	543.911	543.500
539.467	549.908	554.889	555.630	555.195
550.851	561.450	566.459	567.185	566.726
562.088	572.831	577.862	578.573	578.090
573.172	584.048	589.097	589.791	589.285
584.102	595.100	600.161	600.839	600.310
594.875	605.984	611.055	611.715	611.163
605.489	616.701	621.776	622.418	621.843
615.942	627.249	632.326	632.949	632.352
626.235	637.628	642.703	643.308	642.689
636.367	647.838	652.910	653.496	652.855

Рис. 19: $t_{max} = 140, \tau = 0.05$.

0.3	0.2	0.1	0.01
300.000	300.000	300.000	300.000 i
300.122	300.163	300.276	300.420 i
300.435	300.594	300.932	301.170
300.924	301.282	301.838	302.129
301.573	302.132	302.928	303.252
302.369	303.152	304.164	304.510
303.299	304.319	305.521	305.884
304.352	305.614	306.983	307.362
305.516	307.022	308.537	308.930
306.784	308.529	310.173	310.580
308.146	310.125	311.884	312.304
309.662	311.800	313.663	314.095
311.184	313.545	315.503	315.948
312.779	315.355	317.400	317.858
314.441	317.223	319.349	319.819
316.165	319.144	321.346	321.829
317.946	321.114	323.387	323.882
319.779	323.127	325.470	325.977
321.661	325.182	327.591	328.110
323.588	327.274	329.747	330.278
325.556	329.402	331.937	332.478
327.562	331.561	334.157	334.710
329.604	333.751	336.405	336.969
331.679	335.968	338.681	339.255
333.785	338.211	340.981	341.566
335.918	340.479	343.408	343.899
338.079	342.769	345.737	346.254
340.263	345.080	348.092	348.628
342.471	347.410	350.576	351.021
344.700	349.759	352.956	353.431
346.948	352.125	355.358	355.857
349.216	354.507	357.778	358.297
351.500	356.904	360.215	360.752
353.800	359.314	362.666	363.219

Рис. 20: $t_{max} = 140, \tau = 0.01$.

Таким образом, при $t_{max}=140, F_{max}=50,$ оптимальными значениями шагов являются $h=0.01, \tau=0.1.$

Таким образом, были получены следующие значения оптимальных ша-

гов (таблица 3).

Таблица 3: Оптимальные шаги.

t_{max}	h	au
20	0.01	0.01
60	0.01	0.01
100	0.01	0.1
140	0.01	0.1

 $au pprox rac{t_{max}}{1000}$.

Рассмотрим влияние на получаемые результаты амплитуды импульса t_{max} и времени F_{max} .

Рассмотрим график функции F(t) при $F_{max}=50, t_{max}=20$ (рисунок 21).

Рис. 21: График функции F(t).

При уменьшении F_{max} график F(t) выглядит так, как на рисунке 22, а при уменьшении t_{max} – так, как на рисунке 23.

Рис. 22: График функции F(t).

Рис. 23: График функции F(t).

На рисунках 24 - 26 представлены результаты работы программы при различных значениях F_{max} и t_{max} .

Рис. 24: $t_{max} = 10$.

Рис. 25: $t_{max} = 50$.

Рис. 26: $t_{max} = 75$.

Таким образом, при увеличении F_{max} увеличивается максимальная температура стержня, а при увеличении t_{max} меняется время, за которое достигается максимальная температура.

Задание 2

График зависимости температуры T(0,t) при различных значениях a_2 представлен на рисунке 27. Измерения проводились с параметрами $F_{max}=100, t_{max}=10, h=0.01, \tau=1.$

Рис. 27: График зависимости температуры T(0,t) при различных значениях a_2 .

Задание 3

Будем проводить измерения при $F_{max} = 50, t_{max} = 20, h = 0.01, \tau = 0.01.$

На рисунках 28 - 30 изображены результаты работы программы при различных значениях $\nu.$

Рис. 28: $\nu = 0.1, t_u = 5$.

Рис. 29: $\nu = 0.2, t_u = 3$.

Рис. 30: $\nu = 1, t_u = 0.9$.

По мере роста частоты импульсов размах колебаний температуры уменьшается.

Рассмотрим результат расчета T(x) по программе лаб. работы 3 при $F_0=F_c$ и при всех одинаковых параметрах модели, в частности, вместо k(T) будем использовать k(x) из лаб. работы 3 (рисунки 31 и 32).

Рис. 31: График из лабораторной работы 3.

Рис. 32: График из лабораторной работы 5.

Вывод

Таким образом, в ходе данной работы были получены навыки проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа.