PRÁCTICA Nro. 1

Carrera Computación

A. DATOS INFORMATIVOS			
Asignatura: Análisis Numérico	Ciclo / Semestre: Quinto	Paralelo:	
Docente: Andrés Roberto Navas Castellanos	Período Académico: Sep 24 – Feb 25		
Integrantes: Leonardo Peralta	I		

B. INFORMACIÓN GENERAL

Unidad:

Introducción a los métodos numéricos. Errores Raíces de ecuaciones

Tema

Instalación Matlab / Octave, configuración de ambientes

Fecha: Loja,9 de Noviembre 2024 Nro. horas: 2 horas

Objetivos:

Interpolación con método de Lagrange

Corresponde al resultado de aprendizaje:

R1. Aplica los métodos numéricos en la solución de problemas de: Ecuaciones Lineales. Diferenciación Numérica. Integración Numérica. Ecuaciones Diferenciales Ordinarias y Parciales, bajo los principios de solidaridad, transparencia, responsabilidad y honestidad.

Recursos y/o materiales:

- Computador.
- Matlab / Octave.
- GeoGebra.
- Excel / OpenOffice.
- Material bibliográfico o recurso indicado en el EVA.

C. DESARROLLO

Instrucciones:

- 1. Descargar el archivo definido en el EVA para la presente práctica.
- 2. Implementar el método indicado.
- 3. Validar con el caso de prueba estudiado en clase o definido en el archivo del EVA.
- 4. Organizar un archivo principal para modificar el caso de prueba.
- 5. No utilizar variables simbólicas (syms)

Resolución:

Grado ———	Interpolación_en_X	Polinomio
1	1.2885	"-0.0536x + 1.7870"
2	1.3333	"0.0011x^2 - 0.0592x + 1.7870"
3	1.3338	"-0.0000x^3 + 0.0014x^2 - 0.0601x + 1.7870"
4	1.3338	"0.0000x^4 - 0.0000x^3 + 0.0014x^2 - 0.0603x + 1.7870"
5	1.3339	"-0.0000 x^5 + 0.0000 x^4 - 0.0000 x^3 + 0.0015 x^2 - 0.0603 x + 1.7870

Todo lo relacionado con la parte de instrucciones, se debe ubicar fragmentos de código y demostraciones en caso de que sea necesaria (captura de pantalla de la ejecución).

Conclusiones:

El método de Lagrange nos ayuda a encontrar un polinomio que pasa justo por un conjunto de puntos volviéndose ideal para la comprensión de los fundamentos de la interpolación.

D. RÚBRICA DE EVALUACIÓN

Nota: En caso de no cumplir con alguno de los parámetros establecidos se calificará la nota igual a 0

Si se encuentra copia con algún compañero o prácticas realizadas de otros años, o bajados del internet, se aplicará el reglamento de deshonestidad estudiantil y se calificará sobre 0.

No se aceptará trabajos atrasados, se calificará sobre 0.

Todo acerca de deshonestidad académica que no diga este documento.

Informe de trabajo:	
 Contenido: pertinente y concreto. Estructura y organización: Elementos vinculados y estructurados coherentemente. Originalidad y creatividad: trabajo inédito, presentación de nuevas ideas. 	
Resolución de Ejercicios: • Ejecución de programa que entregue el valor exacto (debe cumplir los requerimientos al 100%)	8 ptos
Conclusiones: Redacción Originalidad y creatividad: conclusiones inéditas en base a su experiencia y objetivos planteados.	1 ptos
Total	10 ptos

E. FIRMAS DE RESPONSABILIDAD DE LO ACTUADO	
Estudiante(s):	Firma
Leonardo Augusto Peralta Sarango	