In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import warnings
import statsmodels.api as sm
from sklearn.linear model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score,accuracy_score,classification_report,precision_recall_
from sklearn import metrics
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.model_selection import GridSearchCV
from category_encoders import TargetEncoder
from sklearn.linear_model import LogisticRegression
```

In [2]:

```
df = pd.read_csv('logistic_regression.csv')
```

EDA

In [3]:

df.head()

Out[3]:

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_
0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	
1	8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years	N
2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	
3	7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6 years	
4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	N
5 rc	ows × 27 co	lumns							
4									

In [6]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 396030 entries, 0 to 396029
Data columns (total 27 columns):
     Column
 #
                           Non-Null Count
                                            Dtype
---
     -----
                           -----
                                            ____
0
     loan amnt
                           396030 non-null
                                           float64
 1
                           396030 non-null
                                            object
     term
 2
     int rate
                           396030 non-null
                                           float64
 3
                                           float64
     installment
                           396030 non-null
 4
                           396030 non-null object
     grade
 5
     sub grade
                           396030 non-null
                                            object
 6
                           373103 non-null object
     emp_title
 7
     emp_length
                           377729 non-null
                                            object
 8
     home ownership
                           396030 non-null
                                            object
 9
     annual_inc
                           396030 non-null
                                            float64
 10
    verification_status
                                           object
                           396030 non-null
 11
     issue d
                           396030 non-null
                                            object
 12
     loan status
                           396030 non-null
                                            object
 13
                           396030 non-null
                                            object
     purpose
 14
    title
                           394275 non-null
                                            object
 15
    dti
                           396030 non-null
                                            float64
     earliest_cr_line
                           396030 non-null
                                            object
 17
                           396030 non-null
                                            float64
     open acc
 18
     pub rec
                           396030 non-null
                                            float64
 19
     revol bal
                           396030 non-null
                                            float64
 20
     revol util
                           395754 non-null
                                            float64
 21
    total acc
                           396030 non-null
                                            float64
 22
    initial_list_status
                           396030 non-null
                                            object
 23
                           396030 non-null
     application type
                                            obiect
 24
     mort acc
                           358235 non-null
                                            float64
 25
     pub rec bankruptcies
                           395495 non-null
                                           float64
     address
                           396030 non-null object
dtypes: float64(12), object(15)
memory usage: 81.6+ MB
```

In [7]:

df.describe(include='all').T

Out[7]:

	count	unique	top	freq	mean	std
loan_amnt	396030.0	NaN	NaN	NaN	14113.888089	8357.441341
term	396030	2	36 months	302005	NaN	NaN
int_rate	396030.0	NaN	NaN	NaN	13.6394	4.472157
installment	396030.0	NaN	NaN	NaN	431.849698	250.72779
grade	396030	7	В	116018	NaN	NaN
sub_grade	396030	35	В3	26655	NaN	NaN
emp_title	373103	173105	Teacher	4389	NaN	NaN
emp_length	377729	11	10+ years	126041	NaN	NaN
home_ownership	396030	6	MORTGAGE	198348	NaN	NaN
annual_inc	396030.0	NaN	NaN	NaN	74203.175798	61637.621158
verification_status	396030	3	Verified	139563	NaN	NaN
issue_d	396030	115	Oct-2014	14846	NaN	NaN
loan_status	396030	2	Fully Paid	318357	NaN	NaN
purpose	396030	14	debt_consolidation	234507	NaN	NaN
title	394275	48817	Debt consolidation	152472	NaN	NaN
dti	396030.0	NaN	NaN	NaN	17.379514	18.019092
earliest_cr_line	396030	684	Oct-2000	3017	NaN	NaN
open_acc	396030.0	NaN	NaN	NaN	11.311153	5.137649
pub_rec	396030.0	NaN	NaN	NaN	0.178191	0.530671
revol_bal	396030.0	NaN	NaN	NaN	15844.539853	20591.836109
revol_util	395754.0	NaN	NaN	NaN	53.791749	24.452193
total_acc	396030.0	NaN	NaN	NaN	25.414744	11.886991
initial_list_status	396030	2	f	238066	NaN	NaN
application_type	396030	3	INDIVIDUAL	395319	NaN	NaN
mort_acc	358235.0	NaN	NaN	NaN	1.813991	2.14793
pub_rec_bankruptcies	395495.0	NaN	NaN	NaN	0.121648	0.356174
address	396030	393700	USCGC Smith\r\nFPO AE 70466	8	NaN	NaN
1						>

In [59]:

#differentiation category and numerical columns

```
In [8]:
cat_col =[]
con_col =[]
for i in df.columns:
    if df[i].nunique() < 40:</pre>
        cat_col.append(i)
    else:
        con_col.append(i)
In [9]:
con_col
Out[9]:
['loan_amnt',
 'int_rate',
 'installment',
 'emp_title',
 'annual_inc',
 'issue_d',
 'title',
 'dti',
 'earliest_cr_line',
 'open_acc',
 'revol_bal'
 'revol_util',
 'total_acc',
 'address']
In [10]:
cat_col
Out[10]:
['term',
 'grade',
 'sub_grade',
 'emp_length',
 'home_ownership',
 'verification_status',
 'loan_status',
 'purpose',
 'pub_rec',
 'initial_list_status',
 'application_type',
 'mort_acc',
 'pub_rec_bankruptcies']
In [60]:
```

localhost:8890/notebooks/Desktop/Chanu/Projects/LoanTap/LoanTap.ipynb

#finding the missing value columns

```
In [11]:
```

```
missing_cols = pd.DataFrame(df.isna().sum(),columns=['miss'] )
missing_cols=missing_cols.loc[missing_cols.miss > 0].index
missing_cols
```

Out[11]:

In [61]:

```
#Feature engineeriing
```

In [12]:

```
df["pub_rec_bankruptcies"]=df["pub_rec_bankruptcies"].apply(lambda x: 1 if x >=1.0 else 0)
df["pub_rec"]=df["pub_rec"].apply(lambda x: 1 if x >=1.0 else 0)
df["mort_acc"]=df["mort_acc"].apply(lambda x: 1 if x >=1.0 else 0)
df['pincode'] = df['address'].str[-5:]
```

In [13]:

```
df.drop(['address'],inplace=True,axis=1)
```

In [14]:

df.nunique()

Out[14]:

loan_amnt	1397
term	2
int_rate	566
installment	55706
grade	7
sub_grade	35
emp_title	173105
emp_length	11
home_ownership	6
annual_inc	27197
verification_status	3
issue_d	115
loan_status	2
purpose	14
title	48817
dti	4262
earliest_cr_line	684
open_acc	61
pub_rec	2
revol_bal	55622
revol_util	1226
total_acc	118
<pre>initial_list_status</pre>	2
application_type	3 2
mort_acc	2
<pre>pub_rec_bankruptcies</pre>	2
pincode	10
dtype: int64	

In [15]:

cols = df.columns

In [16]:

df.isna().sum()

Out[16]:

loan_amnt	0
term	0
int_rate	0
installment	0
grade	0
sub_grade	0
emp_title	22927
emp_length	18301
home_ownership	0
annual_inc	0
verification_status	0
issue_d	0
loan_status	0
purpose	0
title	1755
dti	0
earliest_cr_line	0
open_acc	0
pub_rec	0
revol_bal	0
revol_util	276
total_acc	0
initial_list_status	0
application_type	0
mort_acc	0
<pre>pub_rec_bankruptcies</pre>	0
pincode	0
dtype: int64	

In [62]:

#checking the quantiles to validate the thereshold of quantile

In [17]:

```
df.quantile([0.05,0.1,0.2,0.90,0.95,0.97,0.99,1])
```

Out[17]:

	loan_amnt	int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	rev
0.05	3250.0	6.89	109.5100	28000.0	4.68	5.0	0.0	1685.00	
0.10	5000.0	7.89	158.8600	34000.0	6.90	6.0	0.0	3091.00	
0.20	6625.0	9.67	218.8100	42000.0	10.01	7.0	0.0	5099.80	
0.90	26000.0	19.52	785.4800	120000.0	28.50	18.0	1.0	31470.00	
0.95	30975.0	21.97	925.6000	150000.0	31.58	21.0	1.0	41066.55	
0.97	35000.0	23.28	1028.8013	175000.0	33.34	23.0	1.0	50070.26	
0.99	35000.0	25.28	1202.3730	250000.0	36.43	27.0	1.0	86039.62	
1.00	40000.0	30.99	1533.8100	8706582.0	9999.00	90.0	1.0	1743266.00	
4									•

From above quantiles we can see that there is no much outliers in the lower bound and the data is good till 0.97 quantile
We are good to remove the data from 0.97

In [18]:

```
numerical_cols = ['int_rate', 'installment', 'annual_inc', 'dti', 'open_acc', 'pub_rec', 'r
```

In [63]:

univairiate analysis

In [19]:

```
for i in numerical_cols:
    sns.boxplot(x=df[i],y=df['loan_status'])
    plt.show()
```


ź

4

annual_inc

6

8

le6

In [64]:

#removing outliers in the features

In [20]:

```
df = df[df['annual_inc'] < df['annual_inc'].quantile(0.97)]
df = df[df['int_rate'] < df['int_rate'].quantile(0.97)]
df = df[df['loan_amnt'] < df['loan_amnt'].quantile(0.97)]
df = df[df['installment'] < df['installment'].quantile(0.97)]
df = df[df['annual_inc'] < df['annual_inc'].quantile(0.97)]
df = df[df['open_acc'] < df['open_acc'].quantile(0.97)]
df = df[df['total_acc'] < df['total_acc'].quantile(0.97)]
df = df[df['revol_util'] < df['revol_util'].quantile(0.97)]
df = df[df['dti'] < df['dti'].quantile(0.97)]
df = df[df['pub_rec'] < df['pub_rec'].quantile(0.99)]
df = df[df['revol_bal'] < df['revol_bal'].quantile(0.95)]</pre>
```

In [21]:

```
for i in numerical_cols:
    sns.boxplot(x=df[i],y=df['loan_status'])
    plt.show()
```


In [65]:

#Outliers are treated for the features

In [22]:

Out[22]:

<AxesSubplot:ylabel='loan_amnt'>

In [66]:

```
# Feature Engineering
```

In [23]:

```
df['emp_length'].unique()
```

Out[23]:

In [24]:

```
# replacing the null values with -1 and greater than 10years with 11 and lessthan 1 year wi
df['emp_length'].replace({'< 1 year':'0 years','10+ years':'11 years',np.nan:'-1 years'},in</pre>
```

In [25]:

```
df['emp_length']=df['emp_length'].str[:-5]
df['emp_length']=df['emp_length'].astype('int64')
```

In [26]:

```
df['emp_title'] = df['emp_title'].replace({np.nan:'Unknown'})
```

In [27]:

```
df['title'].replace({np.nan:df['title'].mode()[0]},inplace=True)
```

```
In [28]:
df['revol_util'].replace({np.nan:df['revol_util'].median()},inplace=True)
In [29]:
df['grade'].replace({'A':7,'B':6,'C':5,'D':4,'E':3,'F':2,'G':1},inplace=True)
In [30]:
df['verification_status'].replace({'Verified':1,'Source Verified':1,'Not Verified':0},inpla
In [31]:
df['issue month'] = df['issue d'].str[:3]
df['issue_year'] = df['issue_d'].str[-4:]
df.drop(['issue_d'],inplace=True,axis = 1)
In [32]:
df['earliest_cr_line_month'] = df['earliest_cr_line'].str[:3]
df['earliest_cr_line_year'] = df['earliest_cr_line'].str[-4:]
df.drop(['earliest_cr_line'],inplace=True,axis = 1)
In [33]:
target = df['loan_status']
target = pd.DataFrame(target,columns=['loan_status'])
target['loan_status'].replace({'Fully Paid':1,'Charged Off':0},inplace=True)
```

In [34]:

```
df.isna().sum()
```

Out[34]:

loan_amnt	0
term	0
int_rate	0
installment	0
grade	0
sub_grade	0
emp_title	0
emp_length	0
home_ownership	0
annual_inc	0
verification_status	0
loan_status	0
purpose	0
title	0
dti	0
open_acc	0
pub_rec	0
revol_bal	0
revol_util	0
total_acc	0
<pre>initial_list_status</pre>	0
application_type	0
mort_acc	0
<pre>pub_rec_bankruptcies</pre>	0
pincode	0
issue_month	0
issue_year	0
earliest_cr_line_month	0
earliest_cr_line_year	0
dtype: int64	

In [67]:

Imputed the features and there are no missing values

In [35]:

```
df.head()
```

Out[35]:

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_
1	8000.0	36 months	11.99	265.68	6	B5	Credit analyst	4	N
2	15600.0	36 months	10.49	506.97	6	В3	Statistician	0	
3	7200.0	36 months	6.49	220.65	7	A2	Client Advocate	6	
6	18000.0	36 months	5.32	542.07	7	A1	Software Development Engineer	2	٨
7	13000.0	36 months	11.14	426.47	6	B2	Office Depot	11	

5 rows × 29 columns

In [36]:

df['home_ownership'].value_counts()

Out[36]:

MORTGAGE 109345
RENT 106567
OWN 22535
OTHER 91
NONE 21
ANY 2

Name: home_ownership, dtype: int64

The value count for Other, None, Any is very low compared to others, lets combine them.

In [37]:

df['home_ownership'] = df['home_ownership'].replace({'NONE':'OTHER','ANY':'OTHER'})

In [38]:

df['home_ownership'].value_counts()

Out[38]:

 MORTGAGE
 109345

 RENT
 106567

 OWN
 22535

 OTHER
 114

Name: home_ownership, dtype: int64

In [39]:

```
## To reduce data inconsistency
df['title'] = df['title'].str.lower()
df['purpose'] = df['purpose'].str.lower()
df['emp_title'] = df['emp_title'].str.lower()
```

In [40]:

```
plt.xticks(rotation =45)
plt.plot(df['emp_title'].value_counts()[:10])
```

Out[40]:

[<matplotlib.lines.Line2D at 0x2a387c85780>]

Teacher and manager are the most common professions,

In [41]:

```
sns.countplot(df['loan_status'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:43: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[41]:

<AxesSubplot:xlabel='loan_status', ylabel='count'>

In [42]:

```
x = df['loan_status'][df['loan_status']=='Fully Paid'].value_counts()
y = df['loan_status'][df['loan_status']=='Charged Off'].value_counts()
print('Percentage of fully paid customers is ' + str(np.round(list(x)[0]/(list(y)[0]+list(x)[0]))
```

Percentage of fully paid customers is 81.84%

In [57]:

```
x = df['grade'][(df['grade']==7) & (df['loan_status'] == 'Fully Paid')].value_counts()
y = df['grade'][(df['grade']==7) & (df['loan_status'] == 'Charged Off')].value_counts()
print('Percentage of fully paid customers is ' + str(np.round(list(x)[0]/(list(y)[0]+list(x)
```

Percentage of fully paid customers is 93.71%

In [68]:

BiVariate Analysis

In [43]:

```
for i in cat_col:
    sns.countplot(x=df[i],hue = df['loan_status'])
    plt.xticks(rotation =45)
    plt.show()
```


Most of the customers opt for 36 months term

Percentage of customers who Fully paid the loan is greater in 36months term than compared to 60 months

Customers with Grade E mostly dont pay the loan completely

Customers with Grade B and A pays off the loan

Customers with emp_length having 10+ years takes more amount of loan

Home_ownership with Mortgage takes more number of loans and paysoff

Most of the customers takes loans as Individual compared to joint and direct_pay

In [44]:

con_col

Out[44]:

```
['loan_amnt',
   'int_rate',
   'installment',
   'emp_title',
   'annual_inc',
   'issue_d',
   'title',
   'dti',
   'earliest_cr_line',
   'open_acc',
   'revol_bal',
   'revol_util',
   'total_acc',
   'address']
```

In [45]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
```

Int64Index: 238561 entries, 1 to 396029
Data columns (total 29 columns):

```
Column
                            Non-Null Count
                                              Dtype
     -----
0
    loan_amnt
                            238561 non-null
                                             float64
1
    term
                            238561 non-null object
2
    int_rate
                            238561 non-null
                                             float64
3
    installment
                            238561 non-null
                                             float64
4
    grade
                            238561 non-null
                                             int64
5
    sub_grade
                            238561 non-null object
6
    emp_title
                            238561 non-null
                                             object
7
    emp_length
                            238561 non-null
                                             int64
8
    home_ownership
                            238561 non-null
                                             object
9
    annual_inc
                            238561 non-null float64
10
    verification status
                            238561 non-null int64
                            238561 non-null object
    loan_status
12
    purpose
                            238561 non-null
                                             object
13
    title
                                             object
                            238561 non-null
14 dti
                            238561 non-null
                                             float64
15
    open_acc
                            238561 non-null float64
                            238561 non-null int64
16
    pub_rec
    revol bal
                            238561 non-null float64
                            238561 non-null float64
18
    revol_util
    total_acc
                            238561 non-null
                                             float64
20
    initial_list_status
                            238561 non-null
                                             object
21
    application_type
                            238561 non-null
                                             object
22
    mort acc
                            238561 non-null
                                             int64
    pub_rec_bankruptcies
                            238561 non-null int64
24 pincode
                            238561 non-null object
25
    issue_month
                            238561 non-null
                                             object
    issue_year
                            238561 non-null
                                             object
    earliest_cr_line_month 238561 non-null
                                             object
28 earliest cr line year
                            238561 non-null
dtypes: float64(9), int64(6), object(14)
memory usage: 62.7+ MB
```

In [46]:

```
df[['int_rate', 'installment', 'annual_inc', 'dti', 'open_acc', 'pub_rec', 'revol_bal', 're
```

In [47]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 238561 entries, 1 to 396029

Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	loan_amnt	238561 non-null	float64
1	term	238561 non-null	object
2	int_rate	238561 non-null	float64
3	installment	238561 non-null	float64
4	grade	238561 non-null	int64
5	sub_grade	238561 non-null	object
6	emp_title	238561 non-null	object
7	emp_length	238561 non-null	int64
8	home_ownership	238561 non-null	object
9	annual_inc	238561 non-null	float64
10	verification_status	238561 non-null	int64
11	loan_status	238561 non-null	object
12	purpose	238561 non-null	object
13	title	238561 non-null	object
14	dti	238561 non-null	float64
15	open_acc	238561 non-null	float64
16	pub_rec	238561 non-null	float64
17	revol_bal	238561 non-null	float64
18	revol_util	238561 non-null	float64
19	total_acc	238561 non-null	float64
20	initial_list_status	238561 non-null	object
21	application_type	238561 non-null	object
22	mort_acc	238561 non-null	float64
23	<pre>pub_rec_bankruptcies</pre>	238561 non-null	int64
24	pincode	238561 non-null	object
25	issue_month	238561 non-null	object
26	issue_year	238561 non-null	object
27	earliest_cr_line_month		object
28	earliest_cr_line_year		object
	es: float64(11), int64(4), object(14)	
memoi	ry usage: 62.7+ MB		

In [48]:

```
df['verification_status'].unique()
```

Out[48]:

array([0, 1], dtype=int64)

```
In [49]:
```

```
df[['int_rate',
    'installment',
    'annual_inc',
    'dti',
    'open_acc',
    'pub_rec',
    'revol_bal',
    'revol_util',
    'total_acc',
    'mort_acc']].head()
```

Out[49]:

	int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	revol_util	total_acc
1	11.99	265.68	65000.0	22.05	17.0	0.0	20131.0	53.3	27.0
2	10.49	506.97	43057.0	12.79	13.0	0.0	11987.0	92.2	26.0
3	6.49	220.65	54000.0	2.60	6.0	0.0	5472.0	21.5	13.0
6	5.32	542.07	125000.0	1.36	8.0	0.0	4178.0	4.9	25.0
7	11.14	426.47	46000.0	26.87	11.0	0.0	13425.0	64.5	15.0
4									

In [101]:

df.head()

Out[101]:

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_
1	8000.0	36 months	11.99	265.68	6	B5	credit analyst	4	N
2	15600.0	36 months	10.49	506.97	6	В3	statistician	0	
3	7200.0	36 months	6.49	220.65	7	A2	client advocate	6	
6	18000.0	36 months	5.32	542.07	7	A1	software development engineer	2	N
7	13000.0	36 months	11.14	426.47	6	B2	office depot	11	

5 rows × 29 columns

In [102]:

```
df['purpose'].unique()
```

Out[102]:

In [103]:

df.nunique()

Out[103]:

loan_amnt	1270
term	2
int_rate	476
installment	40809
grade	7
sub_grade	35
emp_title	106288
emp_length	12
home_ownership	4
annual_inc	17504
verification_status	2
loan_status	2
purpose	14
title	31070
dti	3317
open_acc	21
pub_rec	1
revol_bal	32808
revol_util	1002
total_acc	45
initial_list_status	2
application_type	3
mort_acc	2
<pre>pub_rec_bankruptcies</pre>	1
pincode	10
issue_month	12
issue_year	10
earliest_cr_line_month	12
earliest_cr_line_year	63
dtype: int64	

In [69]:

One hot Encoding

In [104]:

one_hot_cols=['term','verification_status','pub_rec','initial_list_status','application_typ

In [105]:

```
cont = pd.get_dummies(df['term'],prefix='term',drop_first=True)
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['verification_status'],prefix='verification_status',drop_first=Tru
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['pub_rec'],prefix='pub_rec',drop_first=True)
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['initial_list_status'],prefix='initial_list_status',drop_first=Tru
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['application_type'],prefix='application_type',drop_first=True)
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['mort_acc'],prefix='mort_acc',drop_first=True)
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
cont = pd.get_dummies(df['pub_rec_bankruptcies'],prefix='pub_rec_bankruptcies',drop_first=T
#Adding the results to the master dataframe
df = pd.concat([df,cont],axis=1)
```

In [106]:

```
df.drop(one_hot_cols,inplace=True,axis = 1)
```

In [107]:

df.head()

Out[107]:

	loan_amnt	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownersh
1	8000.0	11.99	265.68	6	B5	credit analyst	4	MORTGAG
2	15600.0	10.49	506.97	6	В3	statistician	0	REN
3	7200.0	6.49	220.65	7	A2	client advocate	6	REN
6	18000.0	5.32	542.07	7	A1	software development engineer	2	MORTGAG
7	13000.0	11.14	426.47	6	B2	office depot	11	REN
5 rc	ows × 28 co	lumns						

```
In [108]:
df['loan_status'].replace({'Fully Paid':0,'Charged Off':1},inplace=True)
In [109]:
df['loan_status']
Out[109]:
1
          0
2
          0
3
          0
6
          0
          0
396023
          0
396025
          0
396027
          0
396028
          a
396029
Name: loan_status, Length: 238561, dtype: int64
In [70]:
# Target Encoding
In [110]:
te = TargetEncoder(return_df=False)
C:\ProgramData\Anaconda3\lib\site-packages\category_encoders\target_encoder.
py:124: FutureWarning: Default parameter min_samples_leaf will change in ver
sion 2.6.See https://github.com/scikit-learn-contrib/category_encoders/issue
s/327 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)
  category=FutureWarning)
```

```
C:\ProgramData\Anaconda3\lib\site-packages\category_encoders\target_encoder.
py:129: FutureWarning: Default parameter smoothing will change in version 2.
6.See https://github.com/scikit-learn-contrib/category_encoders/issues/327
 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)
  category=FutureWarning)
```

In [111]:

df.nunique()

Out[111]:

loan_amnt	1270
int_rate	476
installment	40809
grade	7
sub_grade	35
emp_title	106288
emp_length	12
home_ownership	4
annual_inc	17504
loan_status	2
purpose	14
title	31070
dti	3317
open_acc	21
revol_bal	32808
revol_util	1002
total_acc	45
pincode	10
issue_month	12
issue_year	10
earliest_cr_line_month	12
earliest_cr_line_year	63
term_ 60 months	2
verification_status_1	2
<pre>initial_list_status_w</pre>	2
application_type_INDIVIDUAL	2
application_type_JOINT	2
mort_acc_1.0	2
dtype: int64	
- ·	

```
In [112]:
```

<class 'pandas.core.frame.DataFrame'>

```
te_cols = ['grade','sub_grade','title','emp_title','pincode','emp_length','home_ownership',
for col in te_cols:
    df[col]= df[col].astype('category')
df.info()
```

Int64Index: 238561 entries, 1 to 396029 Data columns (total 28 columns): # Column Non-Null Count Dtype 238561 non-null float64 0 loan amnt 1 int rate 238561 non-null float64 2 installment 238561 non-null float64 3 grade 238561 non-null category 4 sub_grade 238561 non-null category 5 emp_title 238561 non-null category 6 emp_length 238561 non-null category 7 238561 non-null home_ownership category 8 annual_inc 238561 non-null float64 9 238561 non-null loan_status int64 10 purpose 238561 non-null category 11 title 238561 non-null category 12 dti 238561 non-null float64 open acc 238561 non-null float64 238561 non-null float64 revol_bal revol util 238561 non-null float64 16 total_acc 238561 non-null float64 pincode 238561 non-null 17 category 18 issue month 238561 non-null category 19 issue_year 238561 non-null category 20 earliest_cr_line_month 238561 non-null category 21 earliest_cr_line_year 238561 non-null category term_ 60 months 238561 non-null uint8 verification_status_1 238561 non-null uint8 23 24 initial list status w 238561 non-null uint8 25 application_type_INDIVIDUAL 238561 non-null uint8 application type JOINT 238561 non-null uint8 238561 non-null 27 mort acc 1.0 uint8 dtypes: category(12), float64(9), int64(1), uint8(6) memory usage: 39.2 MB

In [113]:

```
for col in te_cols:
    te=TargetEncoder()
    te.fit(X=df[col],y=df['loan_status'])
    values = te.transform(df[col],override_return_df=True)
    df = pd.concat([df,values],axis=1)
```

In [114]:

```
df = df.T[~df.T.index.duplicated(keep='last')].T
```

In [115]:

```
df.head()
```

Out[115]:

	loan_amnt	int_rate	installment	annual_inc	loan_status	dti	open_acc	revol_bal	revol_
1	8000.0	11.99	265.68	65000.0	0	22.05	17.0	20131.0	5
2	15600.0	10.49	506.97	43057.0	0	12.79	13.0	11987.0	9
3	7200.0	6.49	220.65	54000.0	0	2.6	6.0	5472.0	2
6	18000.0	5.32	542.07	125000.0	0	1.36	8.0	4178.0	
7	13000.0	11.14	426.47	46000.0	0	26.87	11.0	13425.0	6

5 rows × 28 columns

In [116]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 238561 entries, 1 to 396029

Data columns (total 28 columns):

Data	columns (cocal 20 columns).					
#	Column	Non-Null Count	Dtype			
0	loan_amnt	238561 non-null	object			
1	int_rate	238561 non-null	object			
2	installment	238561 non-null	object			
3	annual_inc	238561 non-null	object			
4	loan_status	238561 non-null	object			
5	dti	238561 non-null	object			
6	open_acc	238561 non-null	object			
7	revol_bal	238561 non-null	object			
8	revol_util	238561 non-null	object			
9	total_acc	238561 non-null	object			
10	term_ 60 months	238561 non-null	object			
11	verification_status_1	238561 non-null	object			
12	<pre>initial_list_status_w</pre>	238561 non-null	object			
13	<pre>application_type_INDIVIDUAL</pre>	238561 non-null	object			
14	application_type_JOINT	238561 non-null	object			
15	mort_acc_1.0	238561 non-null	object			
16	grade	238561 non-null	object			
17	sub_grade	238561 non-null	object			
18	title	238561 non-null	object			
19	emp_title	238561 non-null	object			
20	pincode	238561 non-null	object			
21	emp_length	238561 non-null	object			
22	home_ownership	238561 non-null	object			
23	purpose	238561 non-null	object			
24	issue_month	238561 non-null	object			
25	issue_year	238561 non-null	object			
26	earliest_cr_line_month	238561 non-null	object			
27	earliest_cr_line_year	238561 non-null	object			
dtynes: object(28)						

dtypes: object(28) memory usage: 60.8+ MB

```
In [117]:
```

```
target = df['loan_status']
target = pd.DataFrame(target,columns=['loan_status'])
target['loan_status'].replace({'Fully Paid':1,'Charged Off':0},inplace=True)
```

In [118]:

```
# df.drop(['loan_status'],inplace = True,axis =1)
```

In [119]:

```
#Normalisation
for col in df.columns:
    df[col] = minmax_scale(df[col])
df.head()
```

Out[119]:

	loan_amnt	int_rate	installment	annual_inc	loan_status	dti	open_acc	revol_bal	re
1	0.221239	0.371795	0.290129	0.451865	0.0	0.664557	0.80	0.585084	0
2	0.445428	0.288183	0.570790	0.289320	0.0	0.385473	0.60	0.348388	0
3	0.197640	0.065217	0.237752	0.370381	0.0	0.078360	0.25	0.159037	0
6	0.516224	0.000000	0.611618	0.896323	0.0	0.040989	0.35	0.121429	0
7	0.368732	0.324415	0.477155	0.311120	0.0	0.809825	0.50	0.390182	0

5 rows × 28 columns

→

In [120]:

```
df.columns
```

Out[120]:

In [71]:

```
#Heatmap
```

In [121]:

```
plt.figure(figsize=(30,10))
sns.heatmap(df.corr(),annot=True)
```

Out[121]:

<AxesSubplot:>

Correlation for the columns loan_amnt,subgrade,open_acnt,mort_acc,revol_bal is high, hence removing the columns.

In [122]:

```
df.columns
```

Out[122]:

In [123]:

```
df.drop(['loan_amnt','sub_grade','open_acc','mort_acc_1.0','revol_bal'],axis=1, inplace = T
```

Model Building

```
In [124]:
```

```
X = df.drop(['loan_status'],axis=1)
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.32155336e-01 6.78446643e-02]
 [8.45370448e-01 1.54629552e-01]
 [9.99554381e-01 4.45618759e-04]
 [9.98900046e-01 1.09995421e-03]
 [8.92975114e-01 1.07024886e-01]
 [8.41091096e-01 1.58908904e-01]]
*****Score is :0.9290895841770686*****
              precision
                           recall f1-score
                                               support
         0.0
                   0.90
                             0.99
                                        0.94
                                                 58474
         1.0
                   0.90
                             0.53
                                        0.67
                                                 13095
                                        0.90
                                                 71569
    accuracy
   macro avg
                   0.90
                             0.76
                                        0.81
                                                 71569
weighted avg
                   0.90
                             0.90
                                        0.89
                                                 71569
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:818: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
In [125]:
df.shape
Out[125]:
```

(238561, 23)

In [126]:

In [127]:

```
#Logistic regression model
logm2 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm2.fit().summary()
```

Out[127]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166969
Model Family:	Binomial	Df Model:	22
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37369.
Date:	Mon, 28 Nov 2022	Deviance:	74739.
Time:	22:29:32	Pearson chi2:	8.93e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3925

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-12.6853	1.206	-10.518	0.000	-15.049	-10.322
int_rate	1.4341	0.128	11.235	0.000	1.184	1.684
installment	0.3605	0.049	7.305	0.000	0.264	0.457
annual_inc	-0.7617	0.064	-11.821	0.000	-0.888	-0.635
dti	0.5570	0.046	12.132	0.000	0.467	0.647
revol_util	0.4152	0.042	9.902	0.000	0.333	0.497
total_acc	-0.0561	0.053	-1.068	0.286	-0.159	0.047
term_ 60 months	0.5589	0.024	23.180	0.000	0.512	0.606
verification_status_1	0.0954	0.021	4.449	0.000	0.053	0.137
initial_list_status_w	-0.1496	0.020	-7.424	0.000	-0.189	-0.110
application_type_INDIVIDUAL	-0.4616	1.171	-0.394	0.693	-2.756	1.833
application_type_JOINT	-0.6873	1.214	-0.566	0.571	-3.067	1.693
grade	0.3686	0.099	3.730	0.000	0.175	0.562
title	6.3522	0.193	32.941	0.000	5.974	6.730
emp_title	6.8459	0.098	70.095	0.000	6.654	7.037
pincode	38.3579	1.448	26.494	0.000	35.520	41.196
emp_length	0.2301	0.041	5.646	0.000	0.150	0.310
home_ownership	0.2299	0.021	10.895	0.000	0.189	0.271
purpose	-0.2243	0.077	-2.914	0.004	-0.375	-0.073
issue_month	0.1423	0.032	4.384	0.000	0.079	0.206
issue_year	0.4460	0.030	15.106	0.000	0.388	0.504
earliest_cr_line_month	0.0601	0.032	1.874	0.061	-0.003	0.123
earliest_cr_line_year	0.7592	0.378	2.006	0.045	0.018	1.501

In [128]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[128]:

	feature	VIF
9	application_type_INDIVIDUAL	157.18
21	earliest_cr_line_year	95.82
0	int_rate	42.76
11	grade	23.96
12	title	14.96
17	purpose	13.15
2	annual_inc	9.17
5	total_acc	8.19
3	dti	7.60
4	revol_util	7.38
1	installment	6.01
18	issue_month	5.34
13	emp_title	4.89
19	issue_year	4.68
20	earliest_cr_line_month	3.55
7	verification_status_1	2.98
16	home_ownership	2.48
8	initial_list_status_w	1.77
6	term_ 60 months	1.70
14	pincode	1.63
15	emp_length	1.32
10	application_type_JOINT	1.11

In [129]:

```
X_train.columns
```

Out[129]:

In [130]:

```
## P-value and VIF for application type INDIVIDUAL is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL'],axis=1)
y = df['loan status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.31572429e-01 6.84275706e-02]
 [8.43141499e-01 1.56858501e-01]
 [9.99569204e-01 4.30796355e-04]
 [9.98949691e-01 1.05030924e-03]
 [8.93197713e-01 1.06802287e-01]
 [8.39207930e-01 1.60792070e-01]]
*****Score is :0.9290930306199405*****
              precision
                           recall f1-score
                                               support
                                       0.94
         0.0
                   0.90
                             0.99
                                                 58474
         1.0
                   0.90
                             0.53
                                       0.67
                                                 13095
                                       0.90
                                                 71569
    accuracy
                                       0.80
   macro avg
                   0.90
                             0.76
                                                 71569
weighted avg
                   0.90
                             0.90
                                       0.89
                                                 71569
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.p
y:818: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear model.html#logistic-re
gression)
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
```

In [131]:

```
#Logistic regression model
logm3 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm3.fit().summary()
```

Out[131]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166970
Model Family:	Binomial	Df Model:	21
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37369.
Date:	Mon, 28 Nov 2022	Deviance:	74739.
Time:	22:29:42	Pearson chi2:	8.93e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3925

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-13.1470	0.290	-45.366	0.000	-13.715	-12.579
int_rate	1.4340	0.128	11.234	0.000	1.184	1.684
installment	0.3604	0.049	7.303	0.000	0.264	0.457
annual_inc	-0.7614	0.064	-11.818	0.000	-0.888	-0.635
dti	0.5573	0.046	12.139	0.000	0.467	0.647
revol_util	0.4151	0.042	9.900	0.000	0.333	0.497
total_acc	-0.0561	0.053	-1.068	0.286	-0.159	0.047
term_ 60 months	0.5588	0.024	23.178	0.000	0.512	0.606
verification_status_1	0.0954	0.021	4.449	0.000	0.053	0.137
initial_list_status_w	-0.1496	0.020	-7.424	0.000	-0.189	-0.110
application_type_JOINT	-0.2258	0.324	-0.697	0.486	-0.861	0.409
grade	0.3689	0.099	3.733	0.000	0.175	0.563
title	6.3523	0.193	32.942	0.000	5.974	6.730
emp_title	6.8458	0.098	70.094	0.000	6.654	7.037
pincode	38.3576	1.448	26.494	0.000	35.520	41.195
emp_length	0.2301	0.041	5.646	0.000	0.150	0.310
home_ownership	0.2299	0.021	10.895	0.000	0.189	0.271
purpose	-0.2244	0.077	-2.916	0.004	-0.375	-0.074
issue_month	0.1424	0.032	4.385	0.000	0.079	0.206
issue_year	0.4459	0.030	15.102	0.000	0.388	0.504
earliest_cr_line_month	0.0601	0.032	1.875	0.061	-0.003	0.123
earliest_cr_line_year	0.7592	0.378	2.006	0.045	0.018	1.501

In [132]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[132]:

	feature	VIF
0	int_rate	41.93
20	earliest_cr_line_year	32.19
10	grade	23.26
11	title	14.55
16	purpose	12.60
2	annual_inc	8.69
3	dti	7.55
5	total_acc	7.31
4	revol_util	7.15
1	installment	6.00
17	issue_month	5.21
12	emp_title	4.80
18	issue_year	4.68
19	earliest_cr_line_month	3.52
7	verification_status_1	2.98
15	home_ownership	2.47
8	initial_list_status_w	1.77
6	term_ 60 months	1.69
13	pincode	1.63
14	emp_length	1.31
9	application_type_JOINT	1.00

In [133]:

```
## P-value and VIF for earliest cr line year is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year'],axis=1)
y = df['loan status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y pred prob=logsk.predict proba(X test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:818: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear model.html#logistic-re
gression)
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
[0. 0. 0. ... 0. 0. 0.] [[9.31389072e-01 6.86109279e-02]
 [8.41884440e-01 1.58115560e-01]
 [9.99572733e-01 4.27267242e-04]
 [9.98964834e-01 1.03516631e-03]
 [8.93529615e-01 1.06470385e-01]
 [8.37612545e-01 1.62387455e-01]]
*****Score is :0.9290824457698166*****
              precision
                           recall f1-score
                                               support
         0.0
                   0.90
                             0.99
                                       0.94
                                                 58474
         1.0
                   0.90
                             0.53
                                       0.67
                                                 13095
                                       0.90
                                                 71569
    accuracy
                   0.90
                             0.76
                                       0.81
                                                 71569
   macro avg
                             0.90
                                       0.89
                                                 71569
weighted avg
                   0.90
```

In [134]:

```
#Logistic regression model
logm4 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm4.fit().summary()
```

Out[134]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166971
Model Family:	Binomial	Df Model:	20
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37371.
Date:	Mon, 28 Nov 2022	Deviance:	74743.
Time:	22:29:52	Pearson chi2:	8.93e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3925

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-12.9638	0.275	-47.146	0.000	-13.503	-12.425
int_rate	1.4395	0.128	11.281	0.000	1.189	1.690
installment	0.3564	0.049	7.230	0.000	0.260	0.453
annual_inc	-0.7675	0.064	-11.925	0.000	-0.894	-0.641
dti	0.5598	0.046	12.200	0.000	0.470	0.650
revol_util	0.4066	0.042	9.750	0.000	0.325	0.488
total_acc	-0.0853	0.051	-1.686	0.092	-0.184	0.014
term_ 60 months	0.5553	0.024	23.095	0.000	0.508	0.602
verification_status_1	0.0955	0.021	4.452	0.000	0.053	0.137
initial_list_status_w	-0.1477	0.020	-7.337	0.000	-0.187	-0.108
application_type_JOINT	-0.2201	0.324	-0.679	0.497	-0.855	0.415
grade	0.3743	0.099	3.789	0.000	0.181	0.568
title	6.3559	0.193	32.961	0.000	5.978	6.734
emp_title	6.8480	0.098	70.114	0.000	6.657	7.039
pincode	38.3578	1.448	26.493	0.000	35.520	41.196
emp_length	0.2255	0.041	5.542	0.000	0.146	0.305
home_ownership	0.2336	0.021	11.115	0.000	0.192	0.275
purpose	-0.2294	0.077	-2.982	0.003	-0.380	-0.079
issue_month	0.1419	0.032	4.371	0.000	0.078	0.206
issue_year	0.4513	0.029	15.346	0.000	0.394	0.509
earliest_cr_line_month	0.0619	0.032	1.933	0.053	-0.001	0.125

In [135]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[135]:

	feature	VIF
0	int_rate	39.48
10	grade	22.39
11	title	13.47
16	purpose	11.85
2	annual_inc	8.15
3	dti	7.35
5	total_acc	7.31
4	revol_util	7.09
1	installment	6.00
17	issue_month	4.95
12	emp_title	4.61
18	issue_year	4.60
19	earliest_cr_line_month	3.39
7	verification_status_1	2.97
15	home_ownership	2.30
8	initial_list_status_w	1.77
6	term_ 60 months	1.68
13	pincode	1.62
14	emp_length	1.30
9	application_type_JOINT	1.00

In [136]:

```
## P-value and VIF for earliest cr line month is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','earliest_
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.31575462e-01 6.84245378e-02]
 [8.46215477e-01 1.53784523e-01]
 [9.99583939e-01 4.16061182e-04]
 [9.98930911e-01 1.06908902e-03]
 [8.91838648e-01 1.08161352e-01]
 [8.39306554e-01 1.60693446e-01]]
*****Score is :0.9290707769683534*****
              precision
                           recall f1-score
                                               support
         0.0
                   0.90
                             0.99
                                        0.94
                                                 58474
                   0.90
                             0.53
                                        0.67
                                                 13095
         1.0
    accuracy
                                        0.90
                                                 71569
                   0.90
                             0.76
                                        0.81
                                                 71569
   macro avg
weighted avg
                   0.90
                             0.90
                                        0.89
                                                 71569
```

In [137]:

```
#Logistic regression model
logm5 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm5.fit().summary()
```

Out[137]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166972
Model Family:	Binomial	Df Model:	19
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37373.
Date:	Mon, 28 Nov 2022	Deviance:	74747.
Time:	22:30:00	Pearson chi2:	8.93e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3925

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-12.9357	0.275	-47.103	0.000	-13.474	-12.397
int_rate	1.4381	0.128	11.270	0.000	1.188	1.688
installment	0.3569	0.049	7.240	0.000	0.260	0.453
annual_inc	-0.7668	0.064	-11.915	0.000	-0.893	-0.641
dti	0.5604	0.046	12.213	0.000	0.470	0.650
revol_util	0.4059	0.042	9.732	0.000	0.324	0.488
total_acc	-0.0872	0.051	-1.724	0.085	-0.186	0.012
term_ 60 months	0.5551	0.024	23.088	0.000	0.508	0.602
verification_status_1	0.0957	0.021	4.466	0.000	0.054	0.138
initial_list_status_w	-0.1472	0.020	-7.312	0.000	-0.187	-0.108
application_type_JOINT	-0.2177	0.324	-0.672	0.502	-0.853	0.418
grade	0.3754	0.099	3.801	0.000	0.182	0.569
title	6.3576	0.193	32.971	0.000	5.980	6.736
emp_title	6.8479	0.098	70.110	0.000	6.656	7.039
pincode	38.3601	1.448	26.489	0.000	35.522	41.198
emp_length	0.2261	0.041	5.559	0.000	0.146	0.306
home_ownership	0.2332	0.021	11.097	0.000	0.192	0.274
purpose	-0.2292	0.077	-2.980	0.003	-0.380	-0.078
issue_month	0.1417	0.032	4.365	0.000	0.078	0.205
issue_year	0.4524	0.029	15.384	0.000	0.395	0.510

In [138]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[138]:

feature	VIF
int_rate	39.34
grade	22.32
title	13.37
purpose	11.79
annual_inc	8.10
dti	7.33
total_acc	7.30
revol_util	7.08
installment	6.00
issue_month	4.94
emp_title	4.59
issue_year	4.59
verification_status_1	2.97
home_ownership	2.30
initial_list_status_w	1.76
term_60 months	1.68
pincode	1.62
emp_length	1.30
application_type_JOINT	1.00
	int_rate grade title purpose annual_inc dti total_acc revol_util installment issue_month emp_title issue_year verification_status_1 home_ownership initial_list_status_w term_60 months pincode emp_length

In [139]:

```
## P-value and VIF for title is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','earliest_
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.13513892e-01 8.64861083e-02]
 [7.93064372e-01 2.06935628e-01]
 [9.99627307e-01 3.72693493e-04]
 [9.98925582e-01 1.07441793e-03]
 [8.92259668e-01 1.07740332e-01]
 [8.75694580e-01 1.24305420e-01]]
*****Score is :0.9252781944787096*****
              precision
                           recall f1-score
                                               support
                                        0.94
         0.0
                   0.90
                              0.99
                                                 58474
         1.0
                   0.90
                              0.52
                                        0.66
                                                 13095
                                        0.90
    accuracy
                                                 71569
                   0.90
                              0.75
                                        0.80
                                                 71569
   macro avg
                   0.90
                                        0.89
weighted avg
                              0.90
                                                 71569
```

In [140]:

```
#Logistic regression model
logm6 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm6.fit().summary()
```

Out[140]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166973
Model Family:	Binomial	Df Model:	18
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37985.
Date:	Mon, 28 Nov 2022	Deviance:	75969.
Time:	22:30:08	Pearson chi2:	9.00e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3880

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-12.0456	0.271	-44.434	0.000	-12.577	-11.514
int_rate	1.4247	0.126	11.289	0.000	1.177	1.672
installment	0.3356	0.049	6.857	0.000	0.240	0.432
annual_inc	-0.7578	0.064	-11.854	0.000	-0.883	-0.632
dti	0.5608	0.046	12.302	0.000	0.471	0.650
revol_util	0.3572	0.041	8.634	0.000	0.276	0.438
total_acc	-0.0914	0.050	-1.823	0.068	-0.190	0.007
term_ 60 months	0.5453	0.024	22.856	0.000	0.499	0.592
verification_status_1	0.0991	0.021	4.659	0.000	0.057	0.141
initial_list_status_w	-0.1173	0.020	-5.850	0.000	-0.157	-0.078
application_type_JOINT	-0.1054	0.325	-0.325	0.746	-0.742	0.531
grade	0.4256	0.098	4.356	0.000	0.234	0.617
emp_title	6.8828	0.097	70.961	0.000	6.693	7.073
pincode	38.3091	1.439	26.629	0.000	35.489	41.129
emp_length	0.2340	0.040	5.793	0.000	0.155	0.313
home_ownership	0.2337	0.021	11.212	0.000	0.193	0.275
purpose	0.4979	0.073	6.791	0.000	0.354	0.642
issue_month	0.1448	0.032	4.504	0.000	0.082	0.208
issue_year	0.5787	0.029	19.717	0.000	0.521	0.636

In [141]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[141]:

	feature	VIF
0	int_rate	39.07
10	grade	22.25
15	purpose	9.89
2	annual_inc	7.95
3	dti	7.29
5	total_acc	7.28
4	revol_util	7.07
1	installment	6.00
16	issue_month	4.87
11	emp_title	4.52
17	issue_year	4.37
7	verification_status_1	2.97
14	home_ownership	2.28
8	initial_list_status_w	1.75
6	term_ 60 months	1.68
12	pincode	1.62
13	emp_length	1.30
9	application_type_JOINT	1.00

In [142]:

```
## P-value and VIF for total_acc is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','earliest_
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.14750597e-01 8.52494030e-02]
 [7.96022222e-01 2.03977778e-01]
 [9.99628399e-01 3.71600557e-04]
 [9.98909953e-01 1.09004652e-03]
 [8.94148018e-01 1.05851982e-01]
```

```
[8.75346781e-01 1.24653219e-01]]
*****Score is :0.9252783250752565*****
                            recall f1-score
              precision
                                                support
         0.0
                    0.90
                              0.99
                                         0.94
                                                  58474
         1.0
                    0.90
                              0.52
                                         0.66
                                                  13095
                                         0.90
                                                  71569
    accuracy
                    0.90
                              0.75
                                         0.80
                                                  71569
   macro avg
                    0.90
                              0.90
                                         0.89
                                                  71569
weighted avg
```

In [143]:

```
#Logistic regression model
logm7 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm7.fit().summary()
```

Out[143]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166974
Model Family:	Binomial	Df Model:	17
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37986.
Date:	Mon, 28 Nov 2022	Deviance:	75972.
Time:	22:30:15	Pearson chi2:	9.00e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3880

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-12.0691	0.271	-44.562	0.000	-12.600	-11.538
int_rate	1.4225	0.126	11.272	0.000	1.175	1.670
installment	0.3298	0.049	6.754	0.000	0.234	0.426
annual_inc	-0.7899	0.061	-12.845	0.000	-0.910	-0.669
dti	0.5334	0.043	12.391	0.000	0.449	0.618
revol_util	0.3685	0.041	9.003	0.000	0.288	0.449
term_ 60 months	0.5422	0.024	22.786	0.000	0.496	0.589
verification_status_1	0.1001	0.021	4.708	0.000	0.058	0.142
initial_list_status_w	-0.1170	0.020	-5.836	0.000	-0.156	-0.078
application_type_JOINT	-0.1022	0.325	-0.315	0.753	-0.739	0.534
grade	0.4325	0.098	4.430	0.000	0.241	0.624
emp_title	6.8858	0.097	70.994	0.000	6.696	7.076
pincode	38.3106	1.439	26.625	0.000	35.490	41.131
emp_length	0.2323	0.040	5.756	0.000	0.153	0.311
home_ownership	0.2398	0.021	11.659	0.000	0.200	0.280
purpose	0.4969	0.073	6.774	0.000	0.353	0.641
issue_month	0.1448	0.032	4.504	0.000	0.082	0.208
issue_year	0.5780	0.029	19.694	0.000	0.520	0.636

In [144]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[144]:

	feature	VIF
0	int_rate	38.85
9	grade	22.04
14	purpose	9.75
4	revol_util	6.98
2	annual_inc	6.79
3	dti	6.18
1	installment	5.98
15	issue_month	4.85
10	emp_title	4.51
16	issue_year	4.36
6	verification_status_1	2.97
13	home_ownership	2.24
7	initial_list_status_w	1.75
5	term_60 months	1.68
11	pincode	1.62
12	emp_length	1.30
8	application_type_JOINT	1.00

In [145]:

```
## P-value and VIF for application_type_JOINT is high, removing the column

X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','earliest_y = df['loan_status']

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)

logsk = LogisticRegression()
logsk.fit(X_train, y_train)

y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)

#Probabilities
print(y_pred,y_pred_prob)

#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'*****')

print(classification_report(y_test,y_pred))

[0. 0. 0. ... 0. 0. 0. ] [[9.14777117e-01 8.52228830e-02]
[7.96186551e-01 2.03893449e-01]
```

```
[9.99628000e-01 3.72000272e-04]
 [9.98909168e-01 1.09083163e-03]
 [8.94200763e-01 1.05799237e-01]
 [8.75258940e-01 1.24741060e-01]]
*****Score is :0.9252791177962961*****
              precision
                            recall f1-score
                                                support
                                        0.94
         0.0
                   0.90
                              0.99
                                                  58474
                   0.90
                              0.52
                                                  13095
         1.0
                                        0.66
                                        0.90
                                                  71569
    accuracy
                              0.75
                                        0.80
                                                  71569
   macro avg
                   0.90
weighted avg
                   0.90
                              0.90
                                        0.89
                                                  71569
```

In [146]:

```
#Logistic regression model
logm8 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm8.fit().summary()
```

Out[146]:

Generalized Linear Model Regression Results

Dep. Variable:	loan_status	No. Observations:	166992
Model:	GLM	Df Residuals:	166975
Model Family:	Binomial	Df Model:	16
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37986.
Date:	Mon, 28 Nov 2022	Deviance:	75973.
Time:	22:30:22	Pearson chi2:	9.00e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3880

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-12.0692	0.271	-44.563	0.000	-12.600	-11.538
int_rate	1.4231	0.126	11.277	0.000	1.176	1.670
installment	0.3296	0.049	6.750	0.000	0.234	0.425
annual_inc	-0.7897	0.061	-12.843	0.000	-0.910	-0.669
dti	0.5332	0.043	12.388	0.000	0.449	0.618
revol_util	0.3685	0.041	9.004	0.000	0.288	0.449
term_ 60 months	0.5421	0.024	22.784	0.000	0.495	0.589
verification_status_1	0.1001	0.021	4.708	0.000	0.058	0.142
initial_list_status_w	-0.1172	0.020	-5.850	0.000	-0.156	-0.078
grade	0.4320	0.098	4.425	0.000	0.241	0.623
emp_title	6.8857	0.097	70.994	0.000	6.696	7.076
pincode	38.3100	1.439	26.625	0.000	35.490	41.130
emp_length	0.2322	0.040	5.754	0.000	0.153	0.311
home_ownership	0.2399	0.021	11.665	0.000	0.200	0.280
purpose	0.4967	0.073	6.773	0.000	0.353	0.640
issue_month	0.1448	0.032	4.504	0.000	0.082	0.208
issue_year	0.5785	0.029	19.737	0.000	0.521	0.636

In [147]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[147]:

	feature	VIF
0	int_rate	38.84
8	grade	22.04
13	purpose	9.75
4	revol_util	6.98
2	annual_inc	6.79
3	dti	6.18
1	installment	5.98
14	issue_month	4.85
9	emp_title	4.51
15	issue_year	4.35
6	verification_status_1	2.97
12	home_ownership	2.24
7	initial_list_status_w	1.75
5	term_ 60 months	1.68
10	pincode	1.62
11	emp_length	1.30

In [148]:

```
## VIF for grade is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','grade','e
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.14873301e-01 8.51266994e-02]
 [7.91634859e-01 2.08365141e-01]
 [9.99620142e-01 3.79857565e-04]
 [9.98895473e-01 1.10452701e-03]
 [8.94770140e-01 1.05229860e-01]
 [8.68399493e-01 1.31600507e-01]]
*****Score is :0.9251613823973591*****
              precision
                           recall f1-score
                                               support
                                        0.94
                                                 58474
         0.0
                   0.90
                             0.99
                   0.90
                             0.52
                                        0.66
                                                 13095
         1.0
    accuracy
                                        0.90
                                                 71569
   macro avg
                   0.90
                             0.75
                                        0.80
                                                 71569
                   0.90
                             0.90
                                        0.89
                                                 71569
weighted avg
```

In [149]:

```
#Logistic regression model
logm9 = sm.GLM(y_train,(sm.add_constant(X_train)),family=sm.families.Binomial())
logm9.fit().summary()
```

Out[149]:

Generalized Linear Model Regression Results

Dep. Variable:	. Variable: loan_status No. Observ		166992
Model:	GLM	Df Residuals:	166976
Model Family:	Binomial	Df Model:	15
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-37996.
Date:	Mon, 28 Nov 2022	Deviance:	75992.
Time:	22:30:28	Pearson chi2:	9.00e+04
No. Iterations:	12	Pseudo R-squ. (CS):	0.3879

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-12.1560	0.270	-45.020	0.000	-12.685	-11.627
int_rate	1.9378	0.049	39.378	0.000	1.841	2.034
installment	0.3214	0.049	6.585	0.000	0.226	0.417
annual_inc	-0.7909	0.061	-12.862	0.000	-0.911	-0.670
dti	0.5288	0.043	12.290	0.000	0.444	0.613
revol_util	0.3586	0.041	8.773	0.000	0.279	0.439
term_ 60 months	0.5565	0.024	23.612	0.000	0.510	0.603
verification_status_1	0.1008	0.021	4.738	0.000	0.059	0.142
initial_list_status_w	-0.1134	0.020	-5.667	0.000	-0.153	-0.074
emp_title	6.8913	0.097	71.046	0.000	6.701	7.081
pincode	38.3027	1.438	26.636	0.000	35.484	41.121
emp_length	0.2329	0.040	5.773	0.000	0.154	0.312
home_ownership	0.2420	0.021	11.774	0.000	0.202	0.282
purpose	0.5070	0.073	6.910	0.000	0.363	0.651
issue_month	0.1439	0.032	4.478	0.000	0.081	0.207
issue_year	0.6144	0.028	21.727	0.000	0.559	0.670

In [150]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[150]:

	feature	VIF
12	purpose	9.62
4	revol_util	6.85
0	int_rate	6.73
2	annual_inc	6.67
3	dti	6.10
1	installment	5.95
13	issue_month	4.82
8	emp_title	4.50
14	issue_year	4.22
6	verification_status_1	2.97
11	home_ownership	2.24
7	initial_list_status_w	1.75
5	term_ 60 months	1.63
9	pincode	1.62
10	emp_length	1.30

In [151]:

```
## VIF for grade is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','emp_lengt
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.18635003e-01 8.13649968e-02]
 [8.21304854e-01 1.78695146e-01]
 [9.99621103e-01 3.78896834e-04]
 [9.98879590e-01 1.12041038e-03]
 [8.92634659e-01 1.07365341e-01]
 [8.67197915e-01 1.32802085e-01]]
*****Score is :0.9251169142731486*****
              precision
                           recall f1-score
                                               support
         0.0
                   0.90
                             0.99
                                        0.94
                                                 58474
         1.0
                   0.91
                             0.52
                                        0.66
                                                 13095
                                        0.90
                                                 71569
    accuracy
                             0.75
                                        0.80
                                                 71569
                   0.90
   macro avg
weighted avg
                   0.90
                             0.90
                                        0.89
                                                 71569
```

In [152]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[152]:

	feature	VIF
11	purpose	9.60
4	revol_util	6.85
0	int_rate	6.73
2	annual_inc	6.63
3	dti	6.10
1	installment	5.95
12	issue_month	4.82
8	emp_title	4.42
13	issue_year	4.22
6	verification_status_1	2.90
10	home_ownership	2.24
7	initial_list_status_w	1.75
5	term_ 60 months	1.63
9	pincode	1.62

In [153]:

```
## VIF for grade is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','emp_title
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.25482412e-01 7.45175881e-02]
 [8.58210822e-01 1.41789178e-01]
 [9.98613013e-01 1.38698728e-03]
 . . .
 [9.99396176e-01 6.03824117e-04]
 [9.21794278e-01 7.82057217e-02]
 [8.45114527e-01 1.54885473e-01]]
*****Score is :0.9055412558866556*****
                           recall f1-score
              precision
                                               support
                              0.99
                                        0.94
                                                 58474
         0.0
                   0.89
         1.0
                   0.95
                              0.46
                                        0.62
                                                 13095
                                        0.90
                                                 71569
    accuracy
   macro avg
                   0.92
                              0.72
                                        0.78
                                                 71569
                   0.90
                              0.90
                                        0.88
                                                 71569
weighted avg
```

In [154]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[154]:

	feature	VIF
10	purpose	9.35
4	revol_util	6.84
0	int_rate	6.68
2	annual_inc	6.63
3	dti	6.03
1	installment	5.95
11	issue_month	4.78
12	issue_year	4.15
6	verification_status_1	2.90
9	home_ownership	2.23
7	initial_list_status_w	1.74
5	term_ 60 months	1.62
8	pincode	1.57

In [155]:

```
## VIF for purpose is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','purpose',
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[9.27755222e-01 7.22447777e-02]
 [8.62912095e-01 1.37087905e-01]
 [9.98659638e-01 1.34036194e-03]
 [9.99352514e-01 6.47485594e-04]
 [9.24423709e-01 7.55762910e-02]
 [8.35926606e-01 1.64073394e-01]]
*****Score is :0.9052690548099736*****
              precision
                           recall f1-score
                                               support
                             0.99
                                        0.94
         0.0
                   0.89
                                                 58474
         1.0
                   0.95
                             0.46
                                        0.62
                                                 13095
                                        0.90
                                                 71569
    accuracy
                                                 71569
                             0.73
                                        0.78
                   0.92
   macro avg
                   0.90
weighted avg
                             0.90
                                        0.88
                                                 71569
```

In [156]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[156]:

	feature	VIF
4	revol_util	6.82
0	int_rate	6.29
2	annual_inc	6.05
1	installment	5.93
3	dti	5.73
10	issue_month	4.62
11	issue_year	4.10
6	verification_status_1	2.88
9	home_ownership	2.16
7	initial_list_status_w	1.74
5	term_ 60 months	1.61
8	pincode	1.57

In [157]:

```
## VIF for annual_inc is high, removing the column
X = df.drop(['loan_status','application_type_INDIVIDUAL','earliest_cr_line_year','purpose',
y = df['loan_status']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)
logsk = LogisticRegression()
logsk.fit(X_train, y_train)
y_pred = logsk.predict(X_test)
y_pred_prob=logsk.predict_proba(X_test)
#Probabilities
print(y_pred,y_pred_prob)
#score
print('*****Score is :'+ str(roc_auc_score(y_test, y_pred_prob[:,1]))+'******')
print(classification_report(y_test,y_pred))
[0. 0. 0. ... 0. 0. 0.] [[0.90966888 0.09033112]
 [0.87245463 0.12754537]
 [0.99869482 0.00130518]
 [0.99889543 0.00110457]
 [0.89346359 0.10653641]
 [0.86144961 0.13855039]]
*****Score is :0.9033841888040546*****
              precision
                           recall f1-score
                                               support
                                        0.94
                                                 58474
         0.0
                   0.89
                              1.00
                                                 13095
         1.0
                   0.96
                              0.45
                                        0.61
                                        0.90
                                                 71569
    accuracy
                                        0.78
                                                 71569
                              0.72
                   0.92
   macro avg
weighted avg
                   0.90
                              0.90
                                        0.88
                                                 71569
```

In [158]:

```
xtrain_vif1 = X_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[158]:

	feature	VIF
3	revol_util	6.47
0	int_rate	6.27
2	dti	5.72
1	installment	4.62
9	issue_month	4.39
10	issue_year	4.01
5	verification_status_1	2.87
8	home_ownership	2.16
6	initial_list_status_w	1.73
4	term_ 60 months	1.60
7	pincode	1.57

In [159]:

```
logsk.coef_
```

Out[159]:

```
array([[ 2.19782436, -0.09273059, 0.74539676, 0.21405641, 0.42921008, 0.15282871, -0.0827971 , 24.64755252, 0.2997662 , 0.12556166, 0.77894413]])
```

In [160]:

```
In [161]:
```

```
for idx, col_name in enumerate(X_train[col].columns):
    print("The coefficient for {} is {}".format(col_name, np.round(logsk.coef_[0][idx],2)))

The coefficient for int_rate is 2.2
The coefficient for installment is -0.09
The coefficient for dti is 0.75
The coefficient for revol_util is 0.21
The coefficient for term_ 60 months is 0.43
The coefficient for verification_status_1 is 0.15
The coefficient for initial_list_status_w is -0.08
The coefficient for pincode is 24.65
The coefficient for home_ownership is 0.3
The coefficient for issue_month is 0.13
The coefficient for issue_year is 0.78
```

```
We can infer that pincode is very important column
```

Classification Report (Confusion Matrix, ROCAUC Score)

```
In [162]:
```

```
metrics.confusion_matrix(y_test, y_pred)
Out[162]:
```

```
array([[58211, 263], [7201, 5894]], dtype=int64)
```

In [163]:

```
print(classification_report(y_pred,y_test))
roc_auc_score(y_test, y_pred_prob[:,1])
```

	precision	recall	f1-score	support
0.0	1.00	0.89	0.94	65412
1.0	0.45	0.96	0.61	6157
accuracy			0.90	71569
macro avg	0.72	0.92	0.78	71569
weighted avg	0.95	0.90	0.91	71569

Out[163]:

0.9033841888040546

In [164]:

```
fpr,tpr,threshold=roc_curve(y_test,y_pred_prob[:,1])
# roc curve for tpr = fpr
random_probs = [0 for i in range(len(y_test))]
p_fpr, p_tpr, _ = roc_curve(y_test, random_probs, pos_label=1)
plt.plot(fpr,tpr)
plt.plot(p_fpr, p_tpr, linestyle=':', color='red')
plt.title('ROC curve')
# x label
plt.xlabel('False Positive Rate')
# y label
plt.ylabel('True Positive rate')
```

Out[164]:

Text(0, 0.5, 'True Positive rate')

The ROC curve is above the AVG line, we can interpret that the model can classify the between the defaulters

In [165]:

```
precision, recall, thresholds = precision_recall_curve(y_test, y_pred_prob[:,1])
plt.plot(precision,recall)
plt.xlabel('Recall')
plt.ylabel('Precision')
```

Out[165]:

Text(0, 0.5, 'Precision')

As the area under the above curve is relatively high, which represents high recall

Tradeoff Questions:

1. How can we make sure that our model can detect real defaulters and there are less false positives?

This is important as we can lose out on an opportunity to finance more individuals and earn interest on it.

From the dataset we can see that the percentage of defaulters is nearly 20%, for which we can perform SMOTE oversampling techniques to get it fixed.

2. Since NPA (non-performing asset) is a real problem in this industry, it's important we play safe and shouldn't disburse loans to anyone.

Loantap should not discurse the loans to every customer, instead we can use the metrics where there will be a sweetspot for precision and recall, by changing the threshold to the point.

Questionnaire

- 1) What percentage of customers have fully paid their Loan Amount? ---81.84%
- 2) Comment about the correlation between Loan Amount and Installment features. ----The correlation between them is 0.94 as it is evident that Loan amount is dependent on the Installment amount it depends on the loan amount.
- 3) The majority of people have home ownership as _____. ----Mortgage
- 4) People with grades 'A' are more likely to fully pay their loan. (T/F) ----True, it is 93%
- 5) Name the top 2 afforded job titles. ----Teacher and Manager
- 6) Thinking from a bank's perspective, which metric should our primary focus be on..ROC,AUC,Precision,Recall,F1 Score ---The F1 Score anyways makes the best choice as it is the harmonic mean of Recall and Precision, and among recall and precision the recall should be high inorder to reduce the false negative and end up loosing opportunity.
- 7) How does the gap in precision and recall affect the bank?
- If the Recall value is low ie. False Negative is high, which leads Bank is loosing opportunity cost.
- If Precision value is low ie. Flase Positive is high, which leads in increase of defaulters
- 8) Which were the features that heavily affected the outcome?
- ----1) What percentage of customers have fully paid their Loan Amount? ---81.84%
- 2) Comment about the correlation between Loan Amount and Installment features. ----The correlation between them is 0.94 as it is evident that Loan amount is dependent on the Installment amount it depends on the loan amount.
- 3) The majority of people have home ownership as _____. ----Mortgage
- 4) People with grades 'A' are more likely to fully pay their loan. (T/F) ----True, it is 93%
- 5) Name the top 2 afforded job titles. ----Teacher and Manager
- 6) Thinking from a bank's perspective, which metric should our primary focus be
- on..ROC,AUC,Precision,Recall,F1 Score ---The F1 Score anyways makes the best choice as it is the harmonic mean of Recall and Precision, and among recall and precision the recall
- should be high inorder to reduce the false negative and end up loosing opportunity.
- 7) How does the gap in precision and recall affect the bank?
- If the Recall value is low ie. False Negative is high, which leads Bank is loosing opportunity cost.
- If Precision value is low ie. Flase Positive is high, which leads in increase of defaulters
- 8) Which were the features that heavily affected the outcome?
- ----'int_rate', 'dti', 'pincode', 'issue_year' are the features which are highly affected the outcome.
- 9) Will the results be affected by geographical location? (Yes/No) ---Yes, Pincode have the greater coefficient which increases the feature importance.

Insights

- --The percentage of customers who have fully paid their loan amount is 81.84%
- --There is a high correlation between Loan Amount and the Installment
- --The majority of people have home ownership as Mortgage
- --Grade A people are more likely to pay back the loan when compared to the other grade people
- --Teacher and Manager are the top 2 afforded job titiles who takes the loan
- --'int_rate', 'dti', 'pincode', 'issue_year' are the most significant features
- --Higher the insterest rate, there is high changes of defaulters as it also has negative coefficients.
- --Pincode has higher feature importance compared to other features, loans can be given based on the pincodes too.

Recommendations

In []:

- --As LoanTap has high percentage of defaulters than other banks, there **is** high risk of NPAs hence LoanTap should **try** to lower the amount of defaulters to 5%
- --LoanTap should provide slightly higher interest rate which can help them **in** offsetting th of defaulters **and** maintain the profitability.
- --Using the model, LoanTap can easily reduce the number of defaulters in their portfolio.
- --As pincode place a very important role, Pincode based market segmentation should be included **in** stategic level
- --As higher loan terms has higher changes of defaulters, LoanTap should focus more on Loan **for** shorter duration ie. 36 months