ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA CAMPUS DI CESENA

Corso di Laurea triennale in Inge	gneria e Scienze Informatiche
-----------------------------------	-------------------------------

Image Denoising Technique with Neural Network

Relatore:
Prof. Lazzaro Damiana

Co/Contro Relatore

Dott. Ezio Greggio

Candidato:

Matteo Vanni

Matricola: 0000935584

Contents

1	Art	icolanzio	5
	1.1	Panoramica sul problema	5
	1.2	Utilizzo di modelli di Deep Learning	5
	1.3	Dataset utilizzati	
2	Dec	esrizione delle reti	7
	2.1	Rumore	7
	2.2	Autoencoder	
	2.3	RIDNet	8
3	Ana	alisi ed ottimizzazione	13
	3.1	Prestazioni	13
	3.2	Prima run	13
		3.2.1 Autoencoder	13
		3.2.2 RIDNet	14
	3.3	Quantizzazione dei modelli	14
	3.4	Analisi dei modelli	
		3.4.1 Performance su dataset sconosciuti	14
4	Bib	liografia	17

4 CONTENTS

1 Articolanzio

1.1 Panoramica sul problema

L'image denoising è il processo di rimozione di rumore da un'immagine.

Il rumore, che è causato da svariate fonti, quali foto fatte in condizioni di scarsa illuminazione o problemi che corrompono i file, causa perdita d'informazione sull'immagine.

Cos è il rumore? Un aggiunta casuale di pixel che non appartengono all'immagine originale e ce ne sono di varie tipologie:

Impulse Noise(IN) dove i pixel sono completamente diversi da quelli attorno. Esistono due categorie di IN: Salt and Pepper Noise(SPN) e Random Valued Impulse Noise(RVIN).

Additive White Gaussian Noise (AWGN) cambia ogni pixel dall'originale di una piccola quantità.

1.2 Utilizzo di modelli di Deep Learning

É essenziale rimuovere il rumore e ristabilire l'immagine originale dove riottenere l'immagine originale è importante per prestazioni robuste o ricostruire le informazioni mancanti è molto utile, come immagini astronomiche di oggetti molto lontani.

Le reti neurali convoluzionali lavorano bene con le immagini e ne utilizzeremo N, menzionate in alcuni paper di ricerca e compareremo i risultati di ogni modello.

1.3 Dataset utilizzati

Il primo dataset usato per addrestrare i modelli sarà Oxford-IIIT Pet da Tensorflow, in modo poi da testare i modelli con immagini che non conoscono da altri dataset(colonscopie)

```
dataset = dataset.map(lambda sample: preprocess(sample,
     → img_size))
  # Ottimizza il caricamento
  dataset = dataset.shuffle(1024).batch(batch_size).prefetch(tf

→ .data.AUTOTUNE)

  return dataset
import numpy as np
def incmatrix(genl1,genl2):
   m = len(genl1)
   n = len(gen12)
   M = None #to become the incidence matrix
   VT = np.zeros((n*m,1), int) #dummy variable
   #compute the bitwise xor matrix
   M1 = bitxormatrix(genl1)
   M2 = np.triu(bitxormatrix(genl2),1)
   for i in range(m-1):
       for j in range(i+1, m):
           [r,c] = np.where(M2 == M1[i,j])
           for k in range(len(r)):
               VT[(i)*n + r[k]] = 1;
               VT[(i)*n + c[k]] = 1;
               VT[(j)*n + r[k]] = 1;
               VT[(j)*n + c[k]] = 1;
               if M is None:
                   M = np.copy(VT)
               else:
                   M = np.concatenate((M, VT), 1)
               VT = np.zeros((n*m,1), int)
   return M
```

Kvasir-seg: 1000(MILLEH) immagini di polipi, gli animali di arvard, le colonscopie

2 Decsrizione delle reti

2.1 Rumore

La prima funzione di rumore è u'aggiunta di rumore casuale a ogni pixel dell'immagine.

2.2 Autoencoder

Il primo approccio è stato quello di usare l'autencoder dell'articolo da cui sto copiando paro paro tutto.

Spiegazione del numero di layer usati e del tipo di mse loss fun, dam e learning rate di 1e-3

```
def build_autoencoder(input_shape):
       Costruisce un autoencoder convoluzionale per immagini a
         \hookrightarrow colori.
       Parametri:
26
         input_shape: forma dell'immagine in input (es. (32,32,3))
27
2.8
         autoencoder: modello compilato
29
       input_img = Input(shape=input_shape)
31
33
       x = Conv2D(64, (3,3), activation='relu', padding='same')(
34
          → input_img)
       x = MaxPooling2D((2,2), padding='same')(x)
35
```

```
x = Conv2D(64, (3,3), activation = 'relu', padding = 'same')(x)
36
       encoded = MaxPooling2D((2,2), padding='same')(x)
37
38
       # Decoder
39
       x = Conv2D(64, (3,3), activation = | relu|, padding = | same|)(
40
          → encoded)
       x = UpSampling2D((2,2))(x)
       x = Conv2D(64, (3,3), activation = 'relu', padding = 'same')(x)
       x = UpSampling2D((2,2))(x)
43
       decoded = Conv2D(3, (3,3), activation='sigmoid', padding='
44
          \hookrightarrow same')(x)
45
       autoencoder = Model(input_img, decoded)
46
       autoencoder.compile(optimizer='adam', loss='
          → binary_crossentropy', metrics=['accuracy'])
48
       return autoencoder
49
50
  autoencoder = build_autoencoder(input_shape=(img_size[0],
     \hookrightarrow img_size[1], 3))
  autoencoder.summary()
```

2.3 RIDNet

stessa cosa dell'autencoder (vedere se aggiungere tutto il codice gigante del setup)

```
# MeanShift: sottrae (o aggiunge) la media RGB
  @register_keras_serializable( MeanShift )
54
  class MeanShift(Layer):
      def __init__(self, rgb_mean, sign=-1, **kwargs):
          rgb_mean: tupla con la media dei canali R, G, B.
          sign: -1 per sottrarre la media, 1 per aggiungerla.
60
          super(MeanShift, self).__init__(**kwargs)
61
          self.rgb_mean = tf.constant(rgb_mean, dtype=tf.float32)
62
          self.sign = sign
      def call(self, x):
                  atteso in formato (batch, altezza, larghezza, 3)
66
          # Sfruttiamo Lambda per eseguire l'operazione per ogni
67
             → elemento
          # Nota: non stiamo scalando per std in questo esempio
68
          return x + self.sign * self.rgb_mean
70
  # BasicBlock: Conv2D seguita da attivazione ReLU
  @register_keras_serializable( BasicBlock )
  class BasicBlock(Layer):
73
      def __init__(self, out_channels, kernel_size=3, stride=1,
74
         → use_bias=False, **kwargs):
```

2.3. RIDNET

```
super(BasicBlock, self).__init__(**kwargs)
           self.conv = Conv2D(out_channels, kernel_size, strides=
76

→ stride,

                                padding='same', use_bias=use_bias)
           self.relu = ReLU()
78
       def call(self, x):
           return self.relu(self.conv(x))
82
   # ResidualBlock: due convoluzioni con skip connection(come lavora
83
         cuda con 2 thread -> 2 filtri applicati e poi si uniscono
      @register_keras_serializable( ResidualBlock )
   class ResidualBlock(Layer):
       def __init__(self, out_channels, **kwargs):
           super(ResidualBlock, self).__init__(**kwargs)
87
           self.conv1 = Conv2D(out_channels, 3, strides=1, padding='
88
              \hookrightarrow same ')
           self.relu = ReLU()
89
           self.conv2 = Conv2D(out_channels, 3, strides=1, padding='
              \rightarrow same ^{\prime})
91
       def call(self, x):
92
           residual = self.conv1(x)
93
           residual = self.relu(residual)
94
           residual = self.conv2(residual)
95
           out = Add()([x, residual])
           return ReLU()(out)
   # EResidualBlock: versione estesa con convoluzioni a gruppi
99
   @register_keras_serializable( EResidualBlock )
100
   class EResidualBlock(Layer):
       def __init__(self, out_channels, groups=1, **kwargs):
           super(EResidualBlock, self).__init__(**kwargs)
           self.conv1 = Conv2D(out_channels, 3, strides=1, padding='
104

→ same ', groups=groups)
           self.relu = ReLU()
           self.conv2 = Conv2D(out_channels, 3, strides=1, padding='
106
              → same', groups=groups)
           self.conv3 = Conv2D(out_channels, 1, strides=1, padding='
107
              → valid')
108
       def call(self, x):
109
           residual = self.conv1(x)
           residual = self.relu(residual)
111
           residual = self.conv2(residual)
112
           residual = self.relu(residual)
113
           residual = self.conv3(residual)
114
           out = Add()([x, residual])
           return ReLU()(out)
116
```

```
# Merge_Run_dual: due rami convoluzionali con dilatazioni diverse
118
      → , poi fusione e skip connection
   @register_keras_serializable( MergeRunDual )
119
   class MergeRunDual(Layer):
120
       def __init__(self, out_channels, **kwargs):
           super(MergeRunDual, self).__init__(**kwargs)
           # Primo ramo
123
           self.conv1a = Conv2D(out_channels, 3, strides=1, padding=
124
              \hookrightarrow 'same')
           self.relu1a = ReLU()
           self.conv1b = Conv2D(out_channels, 3, strides=1, padding=
126
              → 'same', dilation_rate=2)
           self.relu1b = ReLU()
127
           # Secondo ramo
128
           self.conv2a = Conv2D(out_channels, 3, strides=1, padding=
              → 'same', dilation_rate=3)
           self.relu2a = ReLU()
130
           self.conv2b = Conv2D(out_channels, 3, strides=1, padding=
              → 'same', dilation_rate=4)
           self.relu2b = ReLU()
           # Gogeta
           self.conv3 = Conv2D(out_channels, 3, strides=1, padding='
134
              \hookrightarrow same')
           self.relu3 = ReLU()
136
       def call(self, x):
           branch1 = self.relu1a(self.conv1a(x))
138
           branch1 = self.relu1b(self.conv1b(branch1))
140
           branch2 = self.relu2a(self.conv2a(x))
141
           branch2 = self.relu2b(self.conv2b(branch2))
142
143
           merged = Concatenate()([branch1, branch2])
           merged = self.relu3(self.conv3(merged))
145
           return Add()([merged, x])
146
147
   # CALayer: Channel Attention Layer
148
   @register_keras_serializable( CALayer )
149
   class CALayer(Layer):
       def __init__(self, channel, reduction=16, **kwargs):
           super(CALayer, self).__init__(**kwargs)
           self.channel = channel
           self.reduction = reduction
154
           self.conv1 = Conv2D(channel // reduction, 1, strides=1,
              → padding='same')
           self.relu = ReLU()
           self.conv2 = Conv2D(channel, 1, strides=1, padding='same'
157
              → , activation='sigmoid') #sigmoid: risultato tra 0 e
              \hookrightarrow
                  1
```

2.3. RIDNET 11

```
158
       def call(self, x):
159
            # Calcolo della media globale per canale
            y = tf.reduce_mean(x, axis=[1, 2], keepdims=True)
161
            y = self.relu(self.conv1(y))
            y = self.conv2(y)
            return Multiply()([x, y])
164
165
     Block: combinazione di MergeRunDual, ResidualBlock,

→ EResidualBlock e CALayer

   @register_keras_serializable( Block )
167
   class Block(Layer):
168
       def __init__(self, out_channels, **kwargs):
            super(Block, self).__init__(**kwargs)
            self.merge_run_dual = MergeRunDual(out_channels)
            self.residual_block = ResidualBlock(out_channels)
            self.e_residual_block = EResidualBlock(out_channels)
173
            self.ca = CALayer(out_channels)
174
175
       def call(self, x):
            r1 = self.merge_run_dual(x)
            r2 = self.residual_block(r1)
178
            r3 = self.e_residual_block(r2)
179
            out = self.ca(r3)
180
            return out
181
182
   # RIDNET: il modello final
   @register_keras_serializable( RIDNET )
   def RIDNET(n_feats=64, rgb_range=1.0):
186
       n_feats: numero di feature channels usate all'interno del
187
          \hookrightarrow modello.<br>
       rgb_range: scala dei valori RGB (ad es. 1.0 se l'input
188
          \hookrightarrow normalizzato [0,1]).
189
       rgb_mean = (0.4488, 0.4371, 0.4040)
190
191
       input_layer = Input(shape=(None, None, 3))
192
193
       # Sottosottrai la media (MeanShift con sign=-1)
194
       sub_mean = MeanShift(rgb_mean, sign=-1)
       x = sub_mean(input_layer)
196
197
       # Testa: BasicBlock (conv + ReLU)
198
       head = Conv2D(n_feats, 3, strides=1, padding='same',
199
          → activation='relu')(x)
200
       # Serie di blocchi
       b1 = Block(n_feats)(head)
202
       b2 = Block(n_feats)(b1)
203
```

```
b3 = Block(n_feats)(b2)
       b4 = Block(n_feats)(b3)
205
206
       # Coda: convoluzione finale per ottenere 3 canali
207
       tail = Conv2D(3, 3, strides=1, padding='same')(b4)
208
209
       # Aggiungi la media (MeanShift con sign=+1)
       add_mean = MeanShift(rgb_mean, sign=1)
       res = add_mean(tail)
212
213
       # Connessione residua a livello di immagine: somma con l'
214
          → input originale
       output = Add()([res, input_layer])
215
216
       model = Model(inputs=input_layer, outputs=output)
217
       return model
218
219
   model = RIDNET(n_feats=32, rgb_range=1.0)
220
   model.compile(optimizer='adam', loss='mse', metrics=['accuracy']
      \hookrightarrow )
   model.summary()
```

3 Analisi ed ottimizzazione

3.1 Prestazioni

PSNR è il metodo più comune per misurare la qualità delle immagini.

Il PSNR è definito come il rapporto tra il massimo valore possibile di un segnale e il valore del rumore che disturba la qualità della sua rappresentazione.

Normalmente misurato in una scala logaritmica in decibel(dB).

Data l'immagine originale(g) e l'immagine rumorosa(f), il PSNR è definito come:

$$PSNR = 20log_{10}(\frac{MAX_f}{\sqrt{MSE}})$$

dove MAX_f è il valore massimo del pixel dell'immagine e si calcola come

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} ||f(i,j) - g(i,j)||^2$$

mentre $MSE(Mean\ Square\ Error)$ è l'errore quadratico medio tra l'immagine originale e quella rumorosa.

3.2 Prima run

Il primo allenamento è stato sottoposto a entrambi i modelli con immagini RGB con risoluzione 112x112 pixel, un noise_factor di 0.4 e 50 epoche di training.

Per l'autoenconcoder è stata usata una batch_size di 16 mentre per la RIDNet una di 20.

3.2.1 Autoencoder

Model: "functional"

Layer (type)	Output Shape	Param #
input_layer	(None, 112, 112, 3)	0
conv2d	(None, 112, 112, 64)	1,792
max_pooling2d	(None, 56, 56, 64)	0
conv2d_1	(None, 56, 56, 64)	36,928
max_pooling2d_1	(None, 28, 28, 64)	0
conv2d_2	(None, 28, 28, 64)	36,928
up_sampling2d	(N one, 56, 56, 64)	0
conv2d_3	(None, 56, 56, 64)	36,928
up_sampling2d_1	(None, 112, 112, 64)	0
conv2d_4	(None, 112, 112, 3)	1,731

Total params: 114,307 (446.51 KB) Trainable params: 114,307 (446.51 KB)

Non-trainable params: 0 (0.00 B)

3.2.2 RIDNet

Model: "functional_5"

Model. fulletional_o			
Layer (type)	Output Shape	Param #	Connected to
input_layer_5	(None, None, None, 3)	0	-
mean_shift_10	(None, None, None, 3)	0	$input_layer_5[0][0]$
conv2d_250 (Conv2D)	(None, None, None, 32)	896	$mean_shift_10[0][0]$
block_20 (Block)	(None, None, None, 32)	93,666	conv2d_250[0][0]
block_21 (Block)	(None, None, None, 32)	93,666	block_20[0][0]
block_22 (Block)	(None, None, None, 32)	93,666	block_21[0][0]
block_23 (Block)	(None, None, None, 32)	93,666	block_22[0][0]
conv2d_299 (Conv2D)	(None, None, None, 3)	867	block_23[0][0]
mean_shift_11	(None, None, None, 3)	0	conv2d_299[0][0]
add_413 (Add)	(None, None, None, 3)	0	$mean_shift_11[0][0]$

Total params: 376,427 (1.44 MB) Trainable params: 376,427 (1.44 MB) Non-trainable params: 0 (0.00 B)

3.3 Quantizzazione dei modelli

3.4 Analisi dei modelli

3.4.1 Performance su dataset sconosciuti

Figure 3.1: First training of the autoencoder

Figure 3.2: First psnr of the autoencoder

Figure 3.3: First training of the autoencoder

Figure 3.4: First psnr of the autoencoder

4 Bibliografia

• ¡nome¿