Seminar 2. Cross-Validation. Pandas.

Valentin Malykh

MIPT

16/02/2016 Moscow

Table of content

- Main concept of ML
 - Task of machine learning
 - Definitions

- 2 Cross-Validation
 - Overfitting
 - Cross-Validation

Task of machine learning

$$X$$
 — set of objects Y — set of labels $y: X \rightarrow Y$ — target function

$$\begin{aligned} \{x_1,\dots,x_\ell\} \subset X &- \text{ training sample} \\ y_i &= y(x_i) - \text{known answers} \end{aligned}$$

The goal is to find:

 $a:X \to Y$ — algorithm or decision function approximating y on Y

Types of tasks

Classification

- $Y = \{-1, +1\}$ two classes (binary)
- $Y = \{1, ..., M\}$ multi-label classification (case A)
- $Y = \{0, 1\}^M$ multi-label classification (case B)

Regression

• Y = R or $Y = R^m$ — continuous space of Y

Ranking task

• Y — finite ordered space

Models and algorithms

Predictive model — parametric family of functions:

$$A = \{ g(X, \theta | \theta \in \Theta) \},\$$

where $g: X \times \Theta \to Y$ — some defined function, Θ — set of allowable values of θ .

Learning algorithm is mapping $\mu: \{X \times Y\}^{\ell} \to A$, where $X = \{x_i, y_i\}_{i=1}^{\ell}$ and $a \in A$.

Loss function

 $\mathcal{L}(a,x)$ — error value of algorithm $a \in A$ on object $x \in X$.

For classification:

$$\mathcal{L}(a,x) = [a(x) \neq y(x)]$$
 — indicator

For regression:

$$\mathcal{L}(a,x) = |a(x) - y(x)|$$

$$\mathcal{L}(a,x) = (a(x) - y(x))^2$$

Empirical risk:

$$Q(a, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}(a, x_i).$$

Overfitting

- Why?
 - Redundant complexity of Θ
 - Finite size of training sample
- How to detect?
 - Split data on training and test sets
- How to minimize?
 - restrictions on θ
 - minimize theoretical estimation
 - minimize (carefully!!!) cross-validation estimations

Overfitting example

$$y(x) = \frac{1}{1 + 25x^2}$$
; $a(x)$ — полином степени $n = 38$

CV procedure

- Splitting $X=\{x_i,y_i\}_{i=1}^l=X_n^m\cup X_n^k$ on 2 parts in N different ways (k+m=l)
- For each $n \in \{1,\dots,N\}$ train $a_n = \mu(X_n^m)$. Then calculate quality measure $Q_n = Q(a_n,X_n^k)$
- $CV(\mu, X^l) = \frac{1}{N} \sum_{n=1}^{N} Q(a_n, X_n^k)$

Types of CV

- Complete CV CV for all C^k_ℓ partitions for some k.
- Random partition CV CV for some number of random partitions from C^k_ℓ .
- Leave-one-out CV (LOO) Complete CV for $k = 1 \Rightarrow N = l$.

Types of CV

- Hold-out CV CV for one random partitions for some $k,\ N=1.$ Not the same with control on test set!!!
- q-fold CV For $k_1,\ldots,k_q,\ k_1+\cdots+k_q=l$:

$$X^l = X_1^{k_1} \cup \dots \cup X_q^{k_q}.$$

Then
$$CV(\mu,X^l)=\frac{1}{q}\sum_{n=1}^q Q(\mu(X^l\setminus X_n^{k_n}),X_n^k)$$

• $r \times q$ -fold CV r iterations of q-fold CV.