编码、加密、Hash

HenCoder Plus 扔物线

涉及内容

- 编码解码 Encoding & Decoding
- 加密解密 Encryption & Decryption
- 数字签名 Digital Signature
- 压缩与解压缩 Compression & Decompression
- 序列化 Serialization
- 哈希 Hash
- 字符集 Charset

为什么讲这些

- 因为这些东西经常会被用到,但需要真正理解才能正确使用
- 相关词: MD5、SHA1、RSA、DSA、AES、BASE64、encoded URL、Unicode、UTF-8、GBK、ISO-8859-1.....

• 起源: 古代战争

• 起源: 古代战争——古典密码学

密码等

• 起源: 古代战争——古典密码学

• 移位式加密:密码棒

密码棒

密码等

• 起源: 古代战争——古典密码学

• 移位式加密:密码棒

• 起源: 古代战争——古典密码学

• 移位式加密:密码棒

• 加密算法: 缠绕木棒后书写

• 起源: 古代战争——古典密码学

• 移位式加密:密码棒

• 加密算法: 缠绕木棒后书写

• 密钥: 木棒的尺寸规格

- 起源: 古代战争——古典密码学
- 移位式加密:密码棒
 - 加密算法: 缠绕木棒后书写
 - 密钥: 木棒的尺寸规格
- 替换式加密

- 起源: 古代战争——古典密码学
- 移位式加密:密码棒
 - 加密算法: 缠绕木棒后书写
 - 密钥: 木棒的尺寸规格
- 替换式加密
 - 加密算法: 替换文字

- 起源: 古代战争——古典密码学
- 移位式加密:密码棒
 - 加密算法: 缠绕木棒后书写
 - 密钥: 木棒的尺寸规格
- 替换式加密
 - 加密算法: 替换文字
 - 密钥: 码表

• 不止可以用于文字内容,还可以用于各种二进制数据。

现代密码等

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。

原数据

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密
 - 原理: 使用公钥对数据进行加密得到密文; 使用私钥对数据进行解密得到原数据。

非对称加密

当自对称加密

加密和解密

原数据

当E对称加密

当E对称加密

当主对称加密

丰对称加密

当自对称加密

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密
 - 原理: 使用公钥对数据进行加密得到密文; 使用私钥对数据进行解密得到原数据。

现代密码学

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密
 - 原理: 使用公钥对数据进行加密得到密文; 使用私钥对数据进行解密得到原数据。
 - 延伸用途:数字签名。

当自对称加密

公钥能不能解私钥?

丰对称加密

当自对称加密

签名与验证

原数据

当主对称加密

当自对称加密

当主对称加密

丰对称加密

当主对称加密

当自对称加密

现代密码学

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密
 - 原理: 使用公钥对数据进行加密得到密文; 使用私钥对数据进行解密得到原数据。
 - 延伸用途:数字签名。

现代密码学

- 不止可以用于文字内容,还可以用于各种二进制数据。
- 对称加密
 - 原理:使用密钥和加密算法对数据进行转换,得到的无意义数据即为密文;使用密钥和解密算法对密文进行逆向转换,得到原数据。
 - 经典算法: DES, AES
- 非对称加密
 - 原理: 使用公钥对数据进行加密得到密文; 使用私钥对数据进行解密得到原数据。
 - 延伸用途:数字签名。
 - 经典算法: RSA, DSA

- 密钥
- 登录密码

- 密钥(key)
- 登录密码

- 密钥(key)
- 登录密码 (password)

- 密钥(key)
 - 场景:用于加密和解密
- 登录密码 (password)

- 密钥(key)
 - 场景:用于加密和解密
- 登录密码 (password)
 - 场景: 用户进入网站或游戏前的身份验证

- 密钥(key)
 - 场景:用于加密和解密
 - 目的:保证数据被盗时不会被人读懂内容
- 登录密码 (password)
 - 场景: 用户进入网站或游戏前的身份验证

- 密钥(key)
 - 场景:用于加密和解密
 - 目的:保证数据被盗时不会被人读懂内容
- 登录密码 (password)
 - 场景: 用户进入网站或游戏前的身份验证
 - 目的:数据提供方或应用服务方对账户拥有者数据的保护,保证「你是你」的时候才提供权限

- 密钥(key)
 - 场景:用于加密和解密
 - 目的:保证数据被盗时不会被人读懂内容
 - 焦点:数据
- 登录密码 (password)
 - 场景: 用户进入网站或游戏前的身份验证
 - 目的:数据提供方或应用服务方对账户拥有者数据的保护,保证「你是你」的时候才提供权限

- 密钥(key)
 - 场景:用于加密和解密
 - 目的:保证数据被盗时不会被人读懂内容
 - 焦点:数据
- 登录密码 (password)
 - 场景: 用户进入网站或游戏前的身份验证
 - 目的:数据提供方或应用服务方对账户拥有者数据的保护,保证「你是你」的时候才提供权限
 - 焦点:身份

• 将二进制数据转换成由 64 个字符组成的字符串的编码算法

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?
- 用途:

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?
- 用途:
 - 让原数据具有字符串所具有的特性,如可以放在 URL 中传输、可以保存到文本文件、可以通过普通的聊天软件进行文本传输。

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?
- 用途:
 - 让原数据具有字符串所具有的特性,如可以放在 URL 中传输、可以保存到文本文件、可以通过普通的聊天软件进行文本传输。
 - 把原本人眼可以读懂的字符串变成读不懂的字符串,降低偷窥风险

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?
- 用途:
 - 让原数据具有字符串所具有的特性,如可以放在 URL 中传输、可以保存到文本文件、可以通过普通的聊天 软件进行文本传输。
 - 把原本人眼可以读懂的字符串变成读不懂的字符串,降低偷窥风险
- 「Base64 加密传输图片,可以更安全和高效」,真的吗?

- 将二进制数据转换成由 64 个字符组成的字符串的编码算法
- 什么是二进制数据?
- 用途:
 - 让原数据具有字符串所具有的特性,如可以放在 URL 中传输、可以保存到文本文件、可以通过普通的聊天软件进行文本传输。
 - 把原本人眼可以读懂的字符串变成读不懂的字符串,降低偷窥风险
- 「Base64 加密传输图片,可以更安全和高效」,真的吗?
- 变种: Base58

• 将 URL 中的保留字符使用百分号 "%" 进行编码

- 将 URL 中的保留字符使用百分号 "%" 进行编码
- 目的:消除歧义,避免解析错误

- 将 URL 中的保留字符使用百分号 "%" 进行编码
- 目的:消除歧义,避免解析错误
- http://hencoder.com/user/?name=隐匿&伟大

- 将 URL 中的保留字符使用百分号 "%" 进行编码
- 目的:消除歧义,避免解析错误
- http://hencoder.com/user/?name=隐匿&伟大 ->
- http://hencoder.com/user/?name=隐匿%26伟大

压缩与解压缩

压缩与解压缩

• 压缩: 把数据换一种方式来存储, 以减小存储空间

- 压缩: 把数据换一种方式来存储, 以减小存储空间
- 解压缩: 把压缩后的数据还原成原先的形式, 以便使用

- 压缩: 把数据换一种方式来存储, 以减小存储空间
- 解压缩: 把压缩后的数据还原成原先的形式, 以便使用
- 常见压缩算法: DEFLATE、JPEG、MP3

- 压缩: 把数据换一种方式来存储, 以减小存储空间
- 解压缩: 把压缩后的数据还原成原先的形式, 以便使用
- 常见压缩算法: DEFLATE、JPEG、MP3
- 压缩属于编码吗?

- 压缩: 把数据换一种方式来存储, 以减小存储空间
- 解压缩: 把压缩后的数据还原成原先的形式, 以便使用
- 常见压缩算法: DEFLATE、JPEG、MP3
- 压缩属于编码吗?
 - 编码到底是什么意思?

- 压缩: 把数据换一种方式来存储, 以减小存储空间
- 解压缩: 把压缩后的数据还原成原先的形式, 以便使用
- 常见压缩算法: DEFLATE、JPEG、MP3
- 压缩属于编码吗?
 - 编码到底是什么意思?
 - 那么,压缩属于编码吗?

• 什么是图片、音频、视频的编解码?

- 什么是图片、音频、视频的编解码?
- 图片的编码:把图像数据写成 JPG、PNG 等文件的编码格式。

- 什么是图片、音频、视频的编解码?
- 图片的编码:把图像数据写成 JPG、PNG 等文件的编码格式。
- 图片的解码:把 JPG、PNG 等文件中的数据解析成标准的图像数据。

- 什么是图片、音频、视频的编解码?
- 图片的编码:把图像数据写成 JPG、PNG 等文件的编码格式。
- 图片的解码:把 JPG、PNG 等文件中的数据解析成标准的图像数据。
- 音频、视频的编解码

• 序列化:把数据对象(一般是内存中的,例如 JVM 中的对象)转换成字节序列的过程

• 序列化:把数据对象(一般是内存中的,例如 JVM 中的对象)转换成字节序列的过程

• 反序列化: 把字节序列重新转换成内存中的对象

- 序列化:把数据对象(一般是内存中的,例如 JVM 中的对象)转换成字节序列的过程
- 反序列化: 把字节序列重新转换成内存中的对象
- 目的: 让内存中的对象可以被存储和传输

- 序列化:把数据对象(一般是内存中的,例如 JVM 中的对象)转换成字节序列的过程
- 反序列化: 把字节序列重新转换成内存中的对象
- 目的: 让内存中的对象可以被存储和传输
- 序列化是编码吗?

• 定义: 把任意数据转换成指定大小范围(通常很小)的数据

• 定义: 把任意数据转换成指定大小范围(通常很小)的数据

• 作用:摘要、数字指纹

• 定义: 把任意数据转换成指定大小范围(通常很小)的数据

• 作用:摘要、数字指纹

• 经典算法: MD5、SHA1、SHA256 等

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途
 - 数据完整性验证

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途
 - 数据完整性验证
 - 快速查找: hashCode() 和 HashMap

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途
 - 数据完整性验证
 - 快速查找: hashCode() 和 HashMap
 - 隐私保护

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途
 - 数据完整性验证
 - 快速查找: hashCode() 和 HashMap
 - 隐私保护
- Hash 是编码吗?

- 定义: 把任意数据转换成指定大小范围(通常很小)的数据
- 作用:摘要、数字指纹
- 经典算法: MD5、SHA1、SHA256 等
- 实际用途
 - 数据完整性验证
 - 快速查找: hashCode() 和 HashMap
 - 隐私保护
- Hash 是编码吗?
- · Hash 是加密吗?据说 MD5是「不可逆加密」?

当主对称加密

签名与验证

当自对称加密

签名与验证 (完整) 签名后的数据 hash 原数据 原数据 摘要 比对一致性 附加在末尾 (即验证签名) 签名后 待验证的 的摘要 原摘要 加密算法 hash 用公钥解密 公钥 用私钥加密 叫做验证 私钥 叫做签名 签名后 加密算法 摘要 的摘要

子符集

• 含义:一个由整数向**现实世界中的文字符号**的 Map

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:
 - ASCII: 128 个字符, 1字节

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:
 - ASCII: 128 个字符, 1字节
 - ISO-8859-1: 对 ASCII 进行扩充,1 字节

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:
 - ASCII: 128 个字符, 1字节
 - ISO-8859-1: 对 ASCII 进行扩充,1 字节
 - Unicode: 13 万个字符, 多字节

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:
 - ASCII: 128 个字符, 1字节
 - ISO-8859-1: 对 ASCII 进行扩充,1 字节
 - Unicode: 13 万个字符, 多字节
 - UTF-8: Unicode 的编码分支
 - UTF-16: Unicode 的编码分支

- 含义:一个由整数向**现实世界中的文字符号**的 Map
- 分支:
 - ASCII: 128 个字符, 1字节
 - ISO-8859-1: 对 ASCII 进行扩充,1 字节
 - Unicode: 13 万个字符, 多字节
 - UTF-8: Unicode 的编码分支
 - UTF-16: Unicode 的编码分支
 - GBK / GB2312 / GB18030:中国自研标准,多字节,字符集+编码

下期内容

• 登录和授权、HTTPS、TCP/IP 协议族

• 问题和建议: 丢物线

• 网站: hencoder.com

• 微信公众号: HenCoder

