

Universidad Nacional Autónoma De México Facultad de ingeniería

División de Ingeniería Mecánica e Industrial

Robótica

Proyecto: OPEN-UNAM

Chávez López Ana Rosa

Díaz Alcalá Leslie Zahori

Laureano Uribe Diego

Muñoz Ng Gustavo

Pazarán García Jared

Rosas Torres Brian Ulises

Semestre: 2024-1

El robot en el que se va a trabajar en este proyecto está basado en el robot de OpenMANIPULATOR-X [1], a diferencia de este, modificaremos el diseño en las longitudes de los eslabones para implementar el motor AX-18A con su controlador DYNAMIXEL shield.

Utilizamos de referencia el CAD del OpenManipulator localizado en la página de Onshape [2], de aquí comenzamos a hacer la modificación de los eslabones para poder utilizar el motor propuesto, las especificaciones del motor son las siguientes:

Item	Specifications
Baud Rate	7,843 [bps] ~ 1 [Mbps]
Weight	AX-18F (54.5 [g]), AX-18A (55.9 [g])
Dimensions (W x H x D)	32 X 50 X 40 [mm] 1.26 X 1.97 X 1.57 [inch]
Resolution	0.29 [°]
Motor	Coreless
Gear Ratio	254 : 1
Stall Torque	1.8 [N.m] (at 12 [V], 2.2 [A])
No Load Speed	97 [rev/min] (at 12 [V])
Running Degree	0 ~ 300 [°] Endless Turn
Operating Temperature	-5 ~ +70 [°C]
Input Voltage	9.0 ~ 12.0 [V] (Recommended : 11.1 [V])
Command Signal	Digital Packet
Physical Connection	TTL Level Multi Drop Bus Half Duplex Asynchronous Serial Communication (8bit, 1stop, No Parity)
ID	254 ID (0~253)
Feedback	Position, Temperature, Load, Input Voltage, etc
Gear Material	Engineering Plastic(1, 2, 3), Precious Metal(4)
Case Material	Engineering Plastic(Front, Middle, Back)

Este motor cuenta con un área EEPROM y un área RAM. Tabla de control del área EEPROM:

DIRECCIÓN	Tamaño (bytes)	Nombre de datos	Descripción	Acceso	Valor inicial
0	2	Número de modelo	Número de modelo	R	18
2	1	Versión de firmware	Versión de firmware	R	-
3	1	IDENTIFICACIÓN	ID DINAMIXEL	RW	1
4	1	Velocidad de baudios	Velocidad de comunicación	RW	1
5	1	Tiempo de retraso de regreso	Tiempo de retardo de respuesta	RW	250
6	2	Límite de ángulo CW	Límite de ángulo en el sentido de las agujas del reloj	RW	0
8	2	Límite de ángulo CCW	Límite de ángulo en sentido contrario a las agujas del reloj	RW	1023
11	1	Límite de temperatura	Límite máximo de temperatura interna	RW	75
12	1	Limite de voltaje minimo	Límite mínimo de voltaje de entrada	RW	60
13	1	Límite de voltaje máximo	Límite máximo de voltaje de entrada	RW	140
14	2	Par máximo	Par máximo	RW	983
dieciséis	1	Estado Nivel de retorno	Seleccione tipos de devolución de estado	RW	2
17	1	LED de alarma	LED de alarma	RW	36
18	1	Cerrar	Información de error de apagado	RW	36

Área (EEPROM, RAM)

La Mesa de Control se divide en 2 Áreas. Los datos en el área RAM se restablecen a los valores iniciales cuando se restablece la alimentación (volátil). Por otro lado, los datos en el área EEPROM se mantienen incluso cuando el dispositivo está apagado (no volátil).

Tamaño

El tamaño de los datos varía de 1 a 2 bytes dependiendo de su uso. Verifique el tamaño de los datos cuando los actualice con un paquete de instrucciones. Los datos de más de 2 bytes se guardarán según Little Endian .

Acceso

La Mesa de Control tiene dos propiedades de acceso diferentes. La propiedad 'RW' significa permiso de acceso de lectura y escritura, mientras que 'R' significa permiso de acceso de solo lectura. Los datos con la propiedad de solo lectura no se pueden cambiar mediante la instrucción WRITE. La propiedad de solo lectura ('R') se usa generalmente para fines de medición y monitoreo, y la propiedad de lectura y escritura ('RW') se usa para controlar el dispositivo.

Valor inicial

Cada dato en la Tabla de control se restaura a los valores iniciales cuando se enciende el dispositivo. Los valores predeterminados en el área EEPROM son valores iniciales del dispositivo (configuraciones predeterminadas de fábrica). Si un usuario modifica algún valor en el área EEPROM, los valores modificados se restaurarán como valores iniciales cuando se encienda el dispositivo. Los valores iniciales en el área de RAM se restauran cuando se enciende el dispositivo.

Tabla de control del área RAM:

DIRECCIÓN	Tamaño (bytes)	Nombre de datos	Descripción	Acceso	Valor inicial
24	1	Habilitación de par	Encendido/Apagado del par del motor	RW	0
25	1	CONDUJO	LED de estado encendido/apagado	RW	0
26	1	Margen de cumplimiento CW	Margen de cumplimiento CW	RW	1
27	1	Margen de cumplimiento de CCW	Margen de cumplimiento de CCW	RW	1
28	1	Pendiente de cumplimiento CW	Pendiente de cumplimiento CW	RW	32
29	1	Pendiente de cumplimiento de CCW	Pendiente de cumplimiento de CCW	RW	32
30	2	Posición de meta	Posición de objetivo	RW	-
32	2	Velocidad de movimiento	Velocidad de movimiento	RW	-
34	2	Límite de par	Límite de par	RW	Par máximo
36	2	Posición actual	Posición actual	R	-
38	2	Velocidad actual	Velocidad actual	R	-
40	2	Carga actual	Carga actual	R	-
42	1	Voltaje actual	Voltaje actual	R	-
43	1	Temperatura actual	Temperatura actual	R	-
44	1	Registrado	Si la instrucción está registrada	R	0
46	1	Moviente	Estado de movimiento	R	0
47	1	Cerrar	Bloqueo de EEPROM	RW	0
48	2	Puñetazo	Umbral actual mínimo	RW	32

La velocidad en baudios determina la velocidad de comunicación en serie entre un controlador y DYNAMIXEL.

Valor	Velocidad de baudios	Margen de error
1 (predeterminado)	1M	0.000%
3	500.000	0.000%
4	400.000	0.000%
7	250.000	0.000%
9	200.000	0.000%
dieciséis	115200	-2,124%
34	57600	0,794%
103	19200	-0,160%
207	9600	-0,160%

Ensamble del motor:

El controlador del motor es el DYNAMIXEL shield. Trabaja a un voltaje de 5-24V con una tensión máxima de 10A conectado en terminal y 1A conectado en Arduino. La disposición de esta placa es la siguiente:

Comunicación TTL con el motor:

TTL Communication Circuit

Circuito TTL

NOTA: El circuito anterior está diseñado para MCU tolerante a 5 V o 5 V. De lo contrario, utilice un cambiador de nivel para igualar el voltaje de la MCU.

[4]

El desarrollo de la dinámica del robot, así como el CAD de este, se encuentran en otros documentos dentro del repositorio de GitHub.

Referencias

```
[ «Robotis e-manual,» 2017. [En línea]. Available:
1 https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/.
] [ «onshape,» 2017. [En línea]. Available:
2 https://cad.onshape.com/documents/9442f03bd8ccac084fda9dd3/w/039e8dbd53e0782
] 540ea5b0d/e/6f08aa8ac3d3e5b3054f7782.
[ Dynamixel, «Robotis,» [En línea]. Available:
3 https://emanual.robotis.com/docs/en/dxl/ax/ax-18a/.
] [ Dynamixel, «Robotis,» [En línea]. Available:
4 https://emanual.robotis.com/docs/en/parts/interface/dynamixel_shield/.
]
```

Software Utilizados:

Inventor Matlab

Dynamixel WIZARD