# Evolutionary K-means clustering (E-means) using Genetic Algorithms 1.0

Generated by Doxygen 1.8.5

Fri Aug 14 2015 03:24:52

## **Contents**

| 1 | evol | utionar  | y-clusteri  | ing                    | 1      |
|---|------|----------|-------------|------------------------|--------|
| 2 | Data | Struct   | ure Index   | t                      | 3      |
|   | 2.1  | Data S   | Structures  |                        | <br>3  |
| 3 | File | Index    |             |                        | 5      |
|   | 3.1  | File Lis | st          |                        | <br>5  |
| 4 | Data | Struct   | ure Docui   | mentation              | 7      |
|   | 4.1  | pcg_st   | ate_setse   | eq_64 Struct Reference | <br>7  |
|   |      | 4.1.1    | Detailed    | Description            | <br>7  |
|   |      | 4.1.2    | Field Do    | ocumentation           | <br>7  |
|   |      |          | 4.1.2.1     | inc                    | <br>7  |
|   |      |          | 4.1.2.2     | state                  | <br>7  |
| 5 | File | Docum    | entation    |                        | 9      |
|   | 5.1  | include  | e/cluster.h | File Reference         | <br>9  |
|   |      | 5.1.1    | Function    | n Documentation        | <br>9  |
|   |      |          | 5.1.1.1     | calc_bounds            | <br>9  |
|   |      |          | 5.1.1.2     | calc_centroids         | <br>9  |
|   |      |          | 5.1.1.3     | lloyd_defined          | <br>10 |
|   |      |          | 5.1.1.4     | lloyd_random           | <br>10 |
|   |      |          | 5.1.1.5     | random_centroids       | <br>11 |
|   | 5.2  | include  | e/fitness.h | File Reference         | <br>11 |
|   |      | 5.2.1    | Function    | n Documentation        | <br>12 |
|   |      |          | 5.2.1.1     | dunn_index             | <br>12 |
|   | 5.3  | include  | e/io.h File | Reference              | <br>12 |
|   |      | 5.3.1    | Function    | n Documentation        | <br>12 |
|   |      |          | 5.3.1.1     | load_data              | <br>12 |
|   |      |          | 5.3.1.2     | save_results           | <br>12 |
|   | 5.4  | include  | e/operators | rs.h File Reference    | <br>13 |
|   |      | 5.4.1    | Function    | n Documentation        | <br>13 |
|   |      |          | 5.4.1.1     | crossover              | <br>13 |

iv CONTENTS

|     |         | 5.4.1.2       | mutate                   | 14 |
|-----|---------|---------------|--------------------------|----|
| 5.5 | include | e/pcg_basi    | ic.h File Reference      | 15 |
|     | 5.5.1   | Macro D       | efinition Documentation  | 15 |
|     |         | 5.5.1.1       | PCG32_INITIALIZER        | 15 |
|     | 5.5.2   | Typedef       | Documentation            | 16 |
|     |         | 5.5.2.1       | pcg32_random_t           | 16 |
|     | 5.5.3   | Function      | Documentation            | 16 |
|     |         | 5.5.3.1       | pcg32_boundedrand        | 16 |
|     |         | 5.5.3.2       | pcg32_boundedrand_r      | 16 |
|     |         | 5.5.3.3       | pcg32_random             | 16 |
|     |         | 5.5.3.4       | pcg32_random_r           | 17 |
|     |         | 5.5.3.5       | pcg32_srandom            | 17 |
|     |         | 5.5.3.6       | pcg32_srandom_r          | 17 |
| 5.6 | include | e/selection   | h.h File Reference       | 17 |
|     | 5.6.1   | Function      | Documentation            | 17 |
|     |         | 5.6.1.1       | gen_probability          | 17 |
|     |         | 5.6.1.2       | select_parent            | 18 |
| 5.7 | include | e/utility.h F | ille Reference           | 18 |
|     | 5.7.1   | Macro D       | efinition Documentation  | 19 |
|     |         | 5.7.1.1       | BLUE                     | 19 |
|     |         | 5.7.1.2       | CYAN                     | 19 |
|     |         | 5.7.1.3       | GREEN                    | 19 |
|     |         | 5.7.1.4       | MAGENTA                  | 19 |
|     |         | 5.7.1.5       | RED                      | 19 |
|     |         | 5.7.1.6       | RESET                    | 19 |
|     |         | 5.7.1.7       | YELLOW                   | 19 |
|     | 5.7.2   | Enumera       | ation Type Documentation | 19 |
|     |         | 5.7.2.1       | debug_code               | 19 |
|     |         | 5.7.2.2       | error_code               | 20 |
|     | 5.7.3   | Variable      | Documentation            | 20 |
|     |         | 5.7.3.1       | DEBUG                    | 20 |
|     |         | 5.7.3.2       | VERBOSE                  | 20 |
| 5.8 | READ    | ME.md File    | e Reference              | 20 |
| 5.9 | src/clu | ster.c File   | Reference                | 20 |
|     | 5.9.1   | Function      | Documentation            | 21 |
|     |         | 5.9.1.1       | calc_bounds              | 21 |
|     |         | 5.9.1.2       | calc_centroids           | 21 |
|     |         | 5.9.1.3       | lloyd_defined            | 21 |
|     |         | 5.9.1.4       | lloyd_random             | 22 |
|     |         | 5.9.1.5       | random_centroids         | 22 |
|     |         | 5.9.1.5       | random_centroids         |    |

CONTENTS

| 5.10 src/em   | neans.c File Reference       | 3 |
|---------------|------------------------------|---|
| 5.10.1        | Function Documentation       | 4 |
|               | 5.10.1.1 emeans              | 4 |
|               | 5.10.1.2 main                | 5 |
| 5.10.2        | Variable Documentation       | 5 |
|               | 5.10.2.1 c_rate              | 5 |
|               | 5.10.2.2 centroids_file      | 5 |
|               | 5.10.2.3 cfg                 | 5 |
|               | 5.10.2.4 cluster_file        | 5 |
|               | 5.10.2.5 data_cols           | 5 |
|               | 5.10.2.6 data_file           | 6 |
|               | 5.10.2.7 data_rows           | 6 |
|               | 5.10.2.8 DEBUG               | 6 |
|               | 5.10.2.9 fitness_file        | 6 |
|               | 5.10.2.10 m_rate             | 6 |
|               | 5.10.2.11 max_iter           | 6 |
|               | 5.10.2.12 n_clusters         | 6 |
|               | 5.10.2.13 opts               | 6 |
|               | 5.10.2.14 size               | 6 |
|               | 5.10.2.15 trials             | 6 |
|               | 5.10.2.16 VERBOSE            | 7 |
| 5.11 src/fitn | ness.c File Reference        | 7 |
| 5.11.1        | Function Documentation       | 7 |
|               | 5.11.1.1 dunn_index          | 7 |
| 5.12 src/io.d | c File Reference             | 7 |
| 5.12.1        | Function Documentation       | 8 |
|               | 5.12.1.1 load_data           | 8 |
|               | 5.12.1.2 save_results        | 8 |
| 5.13 src/op   | erators.c File Reference     | 9 |
| 5.13.1        | Function Documentation       | 9 |
|               | 5.13.1.1 crossover           | 9 |
|               | 5.13.1.2 mutate              | 0 |
| 5.14 src/pc   | g_basic.c File Reference     | 1 |
| 5.14.1        | Function Documentation       | 1 |
|               | 5.14.1.1 pcg32_boundedrand   | 1 |
|               | 5.14.1.2 pcg32_boundedrand_r | 1 |
|               | 5.14.1.3 pcg32_random        | 2 |
|               | 5.14.1.4 pcg32_random_r      | 2 |
|               | 5.14.1.5 pcg32_srandom       | 2 |
|               | 5.14.1.6 pcg32_srandom_r     | 2 |

| •          | CONTENTS |
|------------|----------|
| <i>i</i> i | CONTENTS |
| VI         | CONTENTS |
|            |          |

| 5.15  | src/sele | ection.c Fil | e Reference |          | <br> | <br> | <br> | <br> | <br> |  | <br> |  | <br> | 33 |
|-------|----------|--------------|-------------|----------|------|------|------|------|------|--|------|--|------|----|
|       | 5.15.1   | Function     | Documentat  | ion .    | <br> | <br> | <br> | <br> | <br> |  | <br> |  | <br> | 33 |
|       |          | 5.15.1.1     | gen_probal  | oility . | <br> | <br> | <br> | <br> | <br> |  | <br> |  |      | 33 |
|       |          | 5.15.1.2     | select_pare | ent      | <br> | <br> | <br> | <br> | <br> |  | <br> |  | <br> | 33 |
|       |          |              |             |          |      |      |      |      |      |  |      |  |      |    |
| Index |          |              |             |          |      |      |      |      |      |  |      |  |      | 35 |

## **Chapter 1**

## evolutionary-clustering

An enhanced highly parallel K-means clustering algorithm using evolutionary strategies to perform metaheuristic optimization.

| 2 | evolutionary-clustering |
|---|-------------------------|
|   |                         |

## Chapter 2

## **Data Structure Index**

| 2.1  | Data Structures                                  |  |
|------|--------------------------------------------------|--|
| Here | are the data structures with brief descriptions: |  |
| ne   | a state action 64                                |  |

**Data Structure Index** 

## **Chapter 3**

## File Index

### 3.1 File List

Here is a list of all files with brief descriptions:

| clude/cluster.h   | . 9  |
|-------------------|------|
| clude/fitness.h   | . 11 |
| clude/io.h        | . 12 |
| clude/operators.h | . 13 |
| clude/pcg_basic.h | . 15 |
| clude/selection.h |      |
| clude/utility.h   |      |
| c/cluster.c       | . 20 |
| c/emeans.c        |      |
| c/fitness.c       | . 27 |
| c/io.c            |      |
| c/operators.c     |      |
| c/pcg_basic.c     | . 31 |
| c/selection.c     | . 33 |

6 File Index

## **Chapter 4**

## **Data Structure Documentation**

### 4.1 pcg\_state\_setseq\_64 Struct Reference

```
#include <pcg_basic.h>
```

#### **Data Fields**

- uint64\_t state
- uint64\_t inc

#### 4.1.1 Detailed Description

Definition at line 40 of file pcg\_basic.h.

#### 4.1.2 Field Documentation

4.1.2.1 uint64\_t inc

Definition at line 42 of file pcg\_basic.h.

4.1.2.2 uint64\_t state

Definition at line 41 of file pcg\_basic.h.

The documentation for this struct was generated from the following file:

• include/pcg\_basic.h



### **Chapter 5**

### **File Documentation**

#### 5.1 include/cluster.h File Reference

```
#include <gsl/gsl_matrix.h>
#include "pcg_basic.h"
```

#### **Functions**

- int lloyd\_random (int trials, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters, pcg32\_random\_t \*rng)
- int lloyd\_defined (int trials, gsl\_matrix \*centroids, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters)
- int calc\_centroids (gsl\_matrix \*centroids, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters)
- int calc\_bounds (gsl\_matrix \*data, gsl\_matrix \*bounds)
- int random\_centroids (gsl\_matrix \*centroids, gsl\_matrix \*bounds, pcg32\_random\_t \*rng)

#### 5.1.1 Function Documentation

```
5.1.1.1 int calc_bounds ( gsl_matrix * data, gsl_matrix * bounds )
```

Calculates the minimum and maximum bounds based on the data.

#### **Parameters**

| data   | Point to matrix containing the data                |
|--------|----------------------------------------------------|
| bounds | The min/max bounds for each dimensions of the data |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 334 of file cluster.c.

5.1.1.2 int calc\_centroids (  $gsl_matrix * centroids$ ,  $gsl_matrix * data$ , int  $n_clusters$ ,  $gsl_matrix ** clusters$  )

Calculate the new centroids using the clustering assignment.

#### **Parameters**

|                                   | centroids | Pointer to matrix containing centroids to be updated |  |  |
|-----------------------------------|-----------|------------------------------------------------------|--|--|
|                                   | data      | Point to matrix containing the data                  |  |  |
| n_clusters The number of clusters |           |                                                      |  |  |
|                                   | cluster   | Pointer to vector containing cluster assignment      |  |  |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 307 of file cluster.c.

5.1.1.3 int lloyd\_defined ( int trials,  $gsl_matrix * centroids$ ,  $gsl_matrix * data$ , int  $n_clusters$ ,  $gsl_matrix ** clusters$ )

Performs Lloyd's algorithm using the defined centroids.

#### **Parameters**

| trials                                               | Number of trials to perform                              |  |  |  |
|------------------------------------------------------|----------------------------------------------------------|--|--|--|
| centroids Pointer to matrix containing the centroids |                                                          |  |  |  |
| data                                                 | Pointer to matrix containing the data                    |  |  |  |
| n_clusters The number of clusters                    |                                                          |  |  |  |
| clusters                                             | Pointer to array of matrices containing data in clusters |  |  |  |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 191 of file cluster.c.

Here is the call graph for this function:



5.1.1.4 int lloyd\_random ( int trials,  $gsl_matrix * data$ , int  $n_clusters$ ,  $gsl_matrix ** clusters$ ,  $pcg32_random_t * rng$  )

Performs Lloyd's algorithm using random initial centroids.

#### **Parameters**

| trials     | Number of trials to perform                              |
|------------|----------------------------------------------------------|
| data       | Pointer to matrix containing the data                    |
| n_clusters | The number of clusters                                   |
| clusters   | Pointer to array of matrices containing data in clusters |

| rng | Pointer to the random number generator |
|-----|----------------------------------------|

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 33 of file cluster.c.

Here is the call graph for this function:



5.1.1.5 int random\_centroids ( gsl\_matrix \* centroids, gsl\_matrix \* bounds, pcg32\_random\_t \* rng )

Generates random centroids within the bounds for each dimension.

### **Parameters**

| centroids | Pointer to matrix containing centroids to be updated |
|-----------|------------------------------------------------------|
| bounds    | The min/max bounds for each dimensions of the data   |
| rng       | Pointer to the random number generator               |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 362 of file cluster.c.

Here is the call graph for this function:



#### 5.2 include/fitness.h File Reference

#include <gsl/gsl\_matrix.h>

#### **Functions**

double dunn index (gsl matrix \*centroids, int n clusters, gsl matrix \*\*clusters)

#### 5.2.1 Function Documentation

5.2.1.1 double dunn\_index ( gsl\_matrix \* centroids, int n\_clusters, gsl\_matrix \*\* clusters )

Calculates the Dunn Index, a metric for evaluating the clustering results.

#### **Parameters**

| centroids  | Pointer to matrix containing the centroids               |
|------------|----------------------------------------------------------|
| n_clusters | The number of clusters                                   |
| clusters   | Pointer to array of matrices containing data in clusters |

#### Returns

The Dunn Index

Definition at line 32 of file fitness.c.

#### 5.3 include/io.h File Reference

```
#include <gsl/gsl_matrix.h>
```

#### **Functions**

- int load\_data (char \*input, gsl\_matrix \*data)
- int save\_results (char \*output, char \*output2, char \*output3, int size, double fitness[size], gsl\_matrix \*\*\*population, int n\_clusters, gsl\_matrix \*\*\*clusters)

#### 5.3.1 Function Documentation

5.3.1.1 int load\_data ( char \* input, gsl\_matrix \* data )

Loads the data from as CSV file into a matrix,

#### **Parameters**

| input | Path to the data file                     |
|-------|-------------------------------------------|
| data  | Pointer to the GSL matrix to be populated |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 123 of file io.c.

5.3.1.2 int save\_results ( char \* output, char \* output2, char \* output3, int size, double fitness[size], gsl\_matrix \*\* population, int n\_clusters, gsl\_matrix \*\*\* clusters )

Save the chromosome and fitness value if they are better than previous.

#### **Parameters**

| output     | Path to save the optimal fitness value                |
|------------|-------------------------------------------------------|
| output2    | Path to save the optimal fitness centroids            |
| output3    | Path to save the optimal cluster results              |
| size       | Size of the populations                               |
| fitness    | Pointer to array of fitness values for the population |
| population | Population of all chromosomes                         |
| n_clusters | The number of clusters                                |
| clusters   | The clusters for each chromosome in the population    |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 28 of file io.c.

### 5.4 include/operators.h File Reference

```
#include <gsl/gsl_matrix.h>
#include "pcg_basic.h"
```

#### **Functions**

- void crossover (gsl\_matrix \*parent1, gsl\_matrix \*parent2, pcg32\_random\_t \*rng)
- void mutate (gsl\_matrix \*chromosome, gsl\_matrix \*bounds, pcg32\_random\_t \*rng)

#### 5.4.1 Function Documentation

5.4.1.1 void crossover (  $gsl_matrix * parent1$ ,  $gsl_matrix * parent2$ ,  $pcg32_random_t * rng$  )

Performs chromosome crossover by randomly selecting a crossover point and randomly either swapping the top or the bottom half.

#### **Parameters**

| len     | The length of the chromosome           |
|---------|----------------------------------------|
| parent1 | The first parent chromosome            |
| parent2 | The second parent chromosome           |
| rng     | Pointer to the random number generator |

Definition at line 34 of file operators.c.

Here is the call graph for this function:



5.4.1.2 void mutate (  $gsl_matrix * chromosome$ ,  $gsl_matrix * bounds$ ,  $pcg32_random_t * rng$  )

Performs mutation, selects a random row and column in the chromosome and mutates it to a random value within the min/max bounds.

#### **Parameters**

| chromosome | The chromosome                                     |
|------------|----------------------------------------------------|
| bounds     | The min/max bounds for each dimensions of the data |
| rng        | Pointer to the random number generator             |

Definition at line 106 of file operators.c.

Here is the call graph for this function:



### 5.5 include/pcg\_basic.h File Reference

#include <inttypes.h>

#### **Data Structures**

• struct pcg\_state\_setseq\_64

#### **Macros**

• #define PCG32\_INITIALIZER { 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL }

#### **Typedefs**

typedef struct pcg\_state\_setseq\_64 pcg32\_random\_t

#### **Functions**

- void pcg32\_srandom (uint64\_t initstate, uint64\_t initseq)
- void pcg32\_srandom\_r (pcg32\_random\_t \*rng, uint64\_t initstate, uint64\_t initseq)
- uint32\_t pcg32\_random (void)
- uint32\_t pcg32\_random\_r (pcg32\_random\_t \*rng)
- uint32\_t pcg32\_boundedrand (uint32\_t bound)
- uint32\_t pcg32\_boundedrand\_r (pcg32\_random\_t \*rng, uint32\_t bound)

#### 5.5.1 Macro Definition Documentation

5.5.1.1 #define PCG32\_INITIALIZER { 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL }

Definition at line 49 of file pcg\_basic.h.

#### 5.5.2 Typedef Documentation

5.5.2.1 typedef struct pcg\_state\_setseq\_64 pcg32\_random\_t

Definition at line 45 of file pcg\_basic.h.

#### 5.5.3 Function Documentation

5.5.3.1 uint32\_t pcg32\_boundedrand ( uint32\_t bound )

Definition at line 112 of file pcg\_basic.c.

Here is the call graph for this function:



5.5.3.2 uint32\_t pcg32\_boundedrand\_r ( pcg32\_random\_t \* rng, uint32\_t bound )

Definition at line 79 of file pcg\_basic.c.

Here is the call graph for this function:



5.5.3.3 uint32\_t pcg32\_random (void)

Definition at line 69 of file pcg\_basic.c.

Here is the call graph for this function:



5.5.3.4 uint32\_t pcg32\_random\_r ( pcg32\_random\_t \* rng )

Definition at line 60 of file pcg\_basic.c.

5.5.3.5 void pcg32\_srandom ( uint64\_t initstate, uint64\_t initseq )

Definition at line 51 of file pcg basic.c.

Here is the call graph for this function:



5.5.3.6 void pcg32\_srandom\_r ( pcg32\_random\_t \* rng, uint64\_t initstate, uint64\_t initseq )

Definition at line 42 of file pcg\_basic.c.

Here is the call graph for this function:



#### 5.6 include/selection.h File Reference

#include "pcg\_basic.h"

#### **Functions**

- void gen\_probability (int size, double fitness[size], double probability[size])
- int select\_parent (int size, double probability[size], pcg32\_random\_t \*rng)

#### 5.6.1 Function Documentation

5.6.1.1 void gen\_probability (int size, double fitness[size], double probability[size])

Perform the roulette wheel probability selection, an array is populated with the index of the chromosome to select with a frequency based on the fitness value.

#### **Parameters**

|   | size        | The size of the population                              |
|---|-------------|---------------------------------------------------------|
| ĺ | fitness     | Pointer to an array of fitness values for population    |
| Ì | probability | Pointer to the probability array, populated by function |

Definition at line 29 of file selection.c.

5.6.1.2 int select\_parent (int size, double probability[size], pcg32 random t \* rng)

Selects a parent from the population at random with a probability of being selected based on the proabilities provided.

#### **Parameters**

| size        | The size of the population                                    |
|-------------|---------------------------------------------------------------|
| probability | Probabilities of each chromosome in population being selected |
| rng         | Pointer to the random number generator                        |

#### Returns

The index of the parent in the population to select

Definition at line 67 of file selection.c.

Here is the call graph for this function:



### 5.7 include/utility.h File Reference

#### Macros

- #define RED "\x1b[31m"
- #define GREEN "\x1b[32m"
- #define YELLOW "\x1b[33m"
- #define BLUE "\x1b[34m"
- #define MAGENTA "\x1b[35m"
- #define CYAN "\x1b[36m"
- #define RESET "\x1b[0m"

#### **Enumerations**

enum debug\_code {
 DEBUG\_CONFIG = 1, DEBUG\_DATA = 2, DEBUG\_CLUSTER = 3, DEBUG\_BOUNDS = 4,
 DEBUG\_CENTROIDS = 5, DEBUG\_DUNN = 6, DEBUG\_CROSSOVER = 7, DEBUG\_MUTATE = 8,
 DEBUG\_PROBABILITY = 9 }

Enumeration of the DEBUG codes.

enum error\_code { SUCCESS = 0, ERROR = 1 }
 Error codes.

#### **Variables**

- int DEBUG
- int VERBOSE

#### 5.7.1 Macro Definition Documentation

5.7.1.1 #define BLUE "\x1b[34m"

Definition at line 27 of file utility.h.

5.7.1.2 #define CYAN "\x1b[36m"

Definition at line 29 of file utility.h.

5.7.1.3 #define GREEN "\x1b[32m"

Definition at line 25 of file utility.h.

5.7.1.4 #define MAGENTA "\x1b[35m"

Definition at line 28 of file utility.h.

5.7.1.5 #define RED "\x1b[31m"

Definition at line 24 of file utility.h.

5.7.1.6 #define RESET "\x1b[0m"

Definition at line 30 of file utility.h.

5.7.1.7 #define YELLOW "\x1b[33m"

Definition at line 26 of file utility.h.

#### 5.7.2 Enumeration Type Documentation

5.7.2.1 enum debug\_code

Enumeration of the DEBUG codes.

#### Enumerator

**DEBUG\_CONFIG** Print all the values parsed from the config file

**DEBUG\_DATA** Print the contents of the data file

**DEBUG\_CLUSTER** Debug the clutering process using lloyd's

**DEBUG\_BOUNDS** Debug the min/max bounds for each dimension

```
    DEBUG_CENTROIDS Debug the randomly generated initial centroids
    DEBUG_DUNN Debug the Dunn Index calculations
    DEBUG_CROSSOVER Debug the crossover operator
    DEBUG_MUTATE Debug the mutation operator
    DEBUG_PROBABILITY Debug output for the probability generation
```

Definition at line 39 of file utility.h.

```
5.7.2.2 enum error_code
```

Error codes.

Enumerator

**SUCCESS** Successful execution **ERROR** Generic error code

Definition at line 56 of file utility.h.

#### 5.7.3 Variable Documentation

5.7.3.1 int DEBUG

Definition at line 40 of file emeans.c.

5.7.3.2 int VERBOSE

Definition at line 40 of file emeans.c.

#### 5.8 README.md File Reference

#### 5.9 src/cluster.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <stdint.h>
#include <stdint.h>
#include <string.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_statistics.h>
#include "utility.h"
#include "pcg_basic.h"
#include "cluster.h"
```

#### **Functions**

- int lloyd\_random (int trials, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters, pcg32\_random\_t \*rng)
- int lloyd\_defined (int trials, gsl\_matrix \*centroids, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters)

- int calc\_centroids (gsl\_matrix \*centroids, gsl\_matrix \*data, int n\_clusters, gsl\_matrix \*\*clusters)
- int calc\_bounds (gsl\_matrix \*data, gsl\_matrix \*bounds)
- int random\_centroids (gsl\_matrix \*centroids, gsl\_matrix \*bounds, pcg32\_random\_t \*rng)

#### 5.9.1 Function Documentation

5.9.1.1 int calc\_bounds ( gsl\_matrix \* data, gsl\_matrix \* bounds )

Calculates the minimum and maximum bounds based on the data.

#### **Parameters**

| data   | Point to matrix containing the data                |
|--------|----------------------------------------------------|
| bounds | The min/max bounds for each dimensions of the data |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 334 of file cluster.c.

5.9.1.2 int calc\_centroids ( gsl\_matrix \* centroids, gsl\_matrix \* data, int n\_clusters, gsl\_matrix \*\* clusters )

Calculate the new centroids using the clustering assignment.

#### **Parameters**

| centroids  | Pointer to matrix containing centroids to be updated |
|------------|------------------------------------------------------|
| data       | Point to matrix containing the data                  |
| n_clusters | The number of clusters                               |
| cluster    | Pointer to vector containing cluster assignment      |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 307 of file cluster.c.

5.9.1.3 int lloyd\_defined ( int trials, gsl\_matrix \* centroids, gsl\_matrix \* data, int n\_clusters, gsl\_matrix \*\* clusters )

Performs Lloyd's algorithm using the defined centroids.

#### **Parameters**

| trials                            | Number of trials to perform                              |
|-----------------------------------|----------------------------------------------------------|
| centroids                         | Pointer to matrix containing the centroids               |
| data                              | Pointer to matrix containing the data                    |
| n_clusters The number of clusters |                                                          |
| clusters                          | Pointer to array of matrices containing data in clusters |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 191 of file cluster.c.

Here is the call graph for this function:



5.9.1.4 int lloyd\_random ( int trials, gsl\_matrix \* data, int n\_clusters, gsl\_matrix \*\* clusters, pcg32\_random\_t \* rng )

Performs Lloyd's algorithm using random initial centroids.

#### **Parameters**

| trials                                     | Number of trials to perform                              |  |
|--------------------------------------------|----------------------------------------------------------|--|
| data Pointer to matrix containing the data |                                                          |  |
| n_clusters                                 | n_clusters The number of clusters                        |  |
| clusters                                   | Pointer to array of matrices containing data in clusters |  |
| rng                                        | Pointer to the random number generator                   |  |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 33 of file cluster.c.

Here is the call graph for this function:



5.9.1.5 int random\_centroids ( gsl\_matrix \* centroids, gsl\_matrix \* bounds, pcg32\_random\_t \* rng )

Generates random centroids within the bounds for each dimension.

#### **Parameters**

| centroids | Pointer to matrix containing centroids to be updated |  |
|-----------|------------------------------------------------------|--|
| bounds    | The min/max bounds for each dimensions of the data   |  |

rng Pointer to the random number generator

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 362 of file cluster.c.

Here is the call graph for this function:



#### 5.10 src/emeans.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <time.h>
#include <confuse.h>
#include <gsl/gsl_matrix.h>
#include "utility.h"
#include "pcg_basic.h"
#include "io.h"
#include "cluster.h"
#include "fitness.h"
#include "operators.h"
#include "selection.h"
```

#### **Functions**

- int emeans (void)
- int main (int argc, char \*argv[])

#### **Variables**

- int DEBUG
- int VERBOSE
- int64\_t n\_clusters = 3
- int64\_t trials = 1
- int64\_t size = 100
- double m\_rate = 0.01

```
• double c_rate = 0.70
```

- int64\_t max\_iter = 10000
- int64\_t data\_rows = 0
- int64 t data cols = 0
- char \* data file = NULL
- char \* centroids\_file = NULL
- char \* fitness\_file = NULL
- char \* cluster\_file = NULL
- cfg\_opt\_t opts []
- cfg\_t \* cfg

#### 5.10.1 Function Documentation

#### 5.10.1.1 int emeans ( void )

The E-means algorithm, uses a genetic algorithm to optimize the parameters for the K-means implementation of clustering based Lloyds clustering algorithm.

#### Returns

Status code, 0 for SUCCESS, 1 for ERROR

Definition at line 81 of file emeans.c.

Here is the call graph for this function:



5.10.1.2 int main ( int *argc*, char \* *argv*[] )

Definition at line 241 of file emeans.c.

Here is the call graph for this function:



#### 5.10.2 Variable Documentation

5.10.2.1 double c\_rate = 0.70

Definition at line 47 of file emeans.c.

5.10.2.2 char \* centroids\_file = NULL

Definition at line 52 of file emeans.c.

5.10.2.3 cfg\_t\* cfg

Definition at line 72 of file emeans.c.

5.10.2.4 char \* cluster\_file = NULL

Definition at line 54 of file emeans.c.

5.10.2.5 int64\_t data\_cols = 0

Definition at line 50 of file emeans.c.

```
5.10.2.6 char* data_file = NULL
```

Definition at line 51 of file emeans.c.

```
5.10.2.7 int64_t data_rows = 0
```

Definition at line 49 of file emeans.c.

5.10.2.8 int DEBUG

Definition at line 40 of file emeans.c.

```
5.10.2.9 char * fitness_file = NULL
```

Definition at line 53 of file emeans.c.

5.10.2.10 double m\_rate = 0.01

Definition at line 46 of file emeans.c.

```
5.10.2.11 int64_t max_iter = 10000
```

Definition at line 48 of file emeans.c.

5.10.2.12 int64\_t n\_clusters = 3

Definition at line 43 of file emeans.c.

5.10.2.13 cfg\_opt\_t opts[]

#### Initial value:

```
= {
    CFG_SIMPLE_INT("n_clusters", &n_clusters),
    CFG_SIMPLE_INT("trials", &trials),
    CFG_SIMPLE_INT("size", &size),
    CFG_SIMPLE_FLOAT("m_rate", &m_rate),
    CFG_SIMPLE_FLOAT("c_rate", &c_rate),
    CFG_SIMPLE_INT("max_iter", &max_iter),
    CFG_SIMPLE_INT("data_rows", &data_rows),
    CFG_SIMPLE_INT("data_cols", &data_cols),
    CFG_SIMPLE_STR("data_file", &data_file),
    CFG_SIMPLE_STR("centroids_file", &centroids_file),
    CFG_SIMPLE_STR("fitness_file", &fitness_file),
    CFG_SIMPLE_STR("cluster_file", &cluster_file),
}
```

Definition at line 57 of file emeans.c.

```
5.10.2.14 int64_t size = 100
```

Definition at line 45 of file emeans.c.

```
5.10.2.15 int64_t trials = 1
```

Definition at line 44 of file emeans.c.

5.10.2.16 int VERBOSE

Definition at line 40 of file emeans.c.

#### 5.11 src/fitness.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <stdint.h>
#include <stdint.h>
#include <string.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_statistics.h>
#include "utility.h"
#include "fitness.h"
```

#### **Functions**

• double dunn\_index (gsl\_matrix \*centroids, int n\_clusters, gsl\_matrix \*\*clusters)

#### 5.11.1 Function Documentation

```
5.11.1.1 double dunn_index ( gsl_matrix * centroids, int n_clusters, gsl_matrix ** clusters )
```

Calculates the Dunn Index, a metric for evaluating the clustering results.

#### **Parameters**

| centroids Pointer to matrix containing the centroids |                                                          |
|------------------------------------------------------|----------------------------------------------------------|
| n_clusters The number of clusters                    |                                                          |
| clusters                                             | Pointer to array of matrices containing data in clusters |

#### Returns

The Dunn Index

Definition at line 32 of file fitness.c.

#### 5.12 src/io.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <float.h>
#include "utility.h"
#include "io.h"
```

#### **Functions**

- int save\_results (char \*output, char \*output2, char \*output3, int size, double fitness[size], gsl\_matrix \*\*population, int n\_clusters, gsl\_matrix \*\*\*clusters)
- int load\_data (char \*input, gsl\_matrix \*data)

#### 5.12.1 Function Documentation

5.12.1.1 int load\_data ( char \* input, gsl\_matrix \* data )

Loads the data from as CSV file into a matrix,

#### **Parameters**

| input | Path to the data file                     |
|-------|-------------------------------------------|
| data  | Pointer to the GSL matrix to be populated |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 123 of file io.c.

5.12.1.2 int save\_results ( char \* output, char \* output2, char \* output3, int size, double fitness[size], gsl\_matrix \*\* population, int n\_clusters, gsl\_matrix \*\*\* clusters )

Save the chromosome and fitness value if they are better than previous.

#### **Parameters**

| output     | Path to save the optimal fitness value                |
|------------|-------------------------------------------------------|
| output2    | Path to save the optimal fitness centroids            |
| output3    | Path to save the optimal cluster results              |
| size       | Size of the populations                               |
| fitness    | Pointer to array of fitness values for the population |
| population | Population of all chromosomes                         |
| n_clusters | The number of clusters                                |
| clusters   | The clusters for each chromosome in the population    |

#### Returns

The status code, 0 for SUCCESS, 1 for ERROR

Definition at line 28 of file io.c.

### 5.13 src/operators.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <stdint.h>
#include <stdint.h>
#include <stdbool.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_statistics.h>
#include "utility.h"
#include "fitness.h"
#include "operators.h"
```

#### **Functions**

- void crossover (gsl\_matrix \*parent1, gsl\_matrix \*parent2, pcg32\_random\_t \*rng)
- void mutate (gsl\_matrix \*chromosome, gsl\_matrix \*bounds, pcg32\_random\_t \*rng)

#### 5.13.1 Function Documentation

```
5.13.1.1 void crossover ( gsl_matrix * parent1, gsl_matrix * parent2, pcg32_random_t * rng )
```

Performs chromosome crossover by randomly selecting a crossover point and randomly either swapping the top or the bottom half.

#### **Parameters**

| len     | The length of the chromosome           |
|---------|----------------------------------------|
| parent1 | The first parent chromosome            |
| parent2 | The second parent chromosome           |
| rng     | Pointer to the random number generator |

Definition at line 34 of file operators.c.

Here is the call graph for this function:



5.13.1.2 void mutate (  $gsl_matrix * chromosome$ ,  $gsl_matrix * bounds$ ,  $pcg32_random_t * rng$  )

Performs mutation, selects a random row and column in the chromosome and mutates it to a random value within the min/max bounds.

#### **Parameters**

| chromosome | chromosome The chromosome                                 |  |
|------------|-----------------------------------------------------------|--|
| bounds     | bounds The min/max bounds for each dimensions of the data |  |
| rng        | Pointer to the random number generator                    |  |

Definition at line 106 of file operators.c.

Here is the call graph for this function:



### 5.14 src/pcg\_basic.c File Reference

#include "pcg\_basic.h"

#### **Functions**

- void pcg32\_srandom\_r (pcg32\_random\_t \*rng, uint64\_t initstate, uint64\_t initseq)
- void pcg32\_srandom (uint64\_t seed, uint64\_t seq)
- uint32\_t pcg32\_random\_r (pcg32\_random\_t \*rng)
- uint32\_t pcg32\_random ()
- uint32\_t pcg32\_boundedrand\_r (pcg32\_random\_t \*rng, uint32\_t bound)
- uint32\_t pcg32\_boundedrand (uint32\_t bound)

#### 5.14.1 Function Documentation

5.14.1.1 uint32\_t pcg32\_boundedrand ( uint32\_t bound )

Definition at line 112 of file pcg\_basic.c.

Here is the call graph for this function:



5.14.1.2 uint32\_t pcg32\_boundedrand\_r ( pcg32\_random\_t \* rng, uint32\_t bound )

Definition at line 79 of file pcg\_basic.c.

Here is the call graph for this function:



5.14.1.3 uint32\_t pcg32\_random ( void )

Definition at line 69 of file pcg\_basic.c.

Here is the call graph for this function:



5.14.1.4 uint32\_t pcg32\_random\_r ( pcg32\_random\_t \* rng )

Definition at line 60 of file pcg\_basic.c.

5.14.1.5 void pcg32\_srandom ( uint64\_t seed, uint64\_t seq )

Definition at line 51 of file pcg\_basic.c.

Here is the call graph for this function:



5.14.1.6 void pcg32\_srandom\_r ( pcg32\_random\_t \* rng, uint64\_t initstate, uint64\_t initseq )

Definition at line 42 of file pcg\_basic.c.

Here is the call graph for this function:



#### 5.15 src/selection.c File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
#include "pcg_basic.h"
#include "utility.h"
#include "selection.h"
```

#### **Functions**

- void gen\_probability (int size, double fitness[size], double probability[size])
- int select\_parent (int size, double probability[size], pcg32\_random\_t \*rng)

#### 5.15.1 Function Documentation

5.15.1.1 void gen\_probability ( int size, double fitness[size], double probability[size] )

Perform the roulette wheel probability selection, an array is populated with the index of the chromosome to select with a frequency based on the fitness value.

#### **Parameters**

| size                                                                | size The size of the population                              |  |
|---------------------------------------------------------------------|--------------------------------------------------------------|--|
| fitness                                                             | fitness Pointer to an array of fitness values for population |  |
| probability Pointer to the probability array, populated by function |                                                              |  |

Definition at line 29 of file selection.c.

5.15.1.2 int select\_parent ( int size, double probability[size], pcg32\_random\_t \* rng )

Selects a parent from the population at random with a probability of being selected based on the proabilities provided.

#### **Parameters**

| size                                                                      | size The size of the population        |  |
|---------------------------------------------------------------------------|----------------------------------------|--|
| probability Probabilities of each chromosome in population being selected |                                        |  |
| rng                                                                       | Pointer to the random number generator |  |

#### Returns

The index of the parent in the population to select

Definition at line 67 of file selection.c.

Here is the call graph for this function:



## Index

| DILIE                | utility b 20       |
|----------------------|--------------------|
| BLUE                 | utility.h, 20      |
| utility.h, 19        | DEBUG_PROBABILITY  |
| o rato               | utility.h, 20      |
| c_rate               | DEBUG              |
| emeans.c, 25<br>CYAN | emeans.c, 26       |
|                      | utility.h, 20      |
| utility.h, 19        | data_cols          |
| calc_bounds          | emeans.c, 25       |
| cluster.c, 21        | data_file          |
| cluster.h, 9         | emeans.c, 25       |
| calc_centroids       | data_rows          |
| cluster.c, 21        | emeans.c, 26       |
| cluster.h, 9         | debug_code         |
| centroids_file       | utility.h, 19      |
| emeans.c, 25         | dunn_index         |
| cfg                  | fitness.c, 27      |
| emeans.c, 25         | fitness.h, 12      |
| cluster.c            |                    |
| calc_bounds, 21      | ERROR              |
| calc_centroids, 21   | utility.h, 20      |
| lloyd_defined, 21    | emeans             |
| lloyd_random, 22     | emeans.c, 24       |
| random_centroids, 22 | emeans.c           |
| cluster.h            | c rate, 25         |
| calc_bounds, 9       | centroids_file, 25 |
| calc_centroids, 9    | cfg, 25            |
| lloyd_defined, 10    | cluster_file, 25   |
| lloyd_random, 10     | DEBUG, 26          |
| random_centroids, 11 | data_cols, 25      |
| cluster_file         | data_file, 25      |
| emeans.c, 25         | data_rivs, 26      |
| crossover            | emeans, 24         |
|                      |                    |
| operators.c, 29      | fitness_file, 26   |
| operators.h, 13      | m_rate, 26         |
| DEBUG BOUNDS         | main, 24           |
| <del>_</del>         | max_iter, 26       |
| utility.h, 19        | n_clusters, 26     |
| DEBUG_CENTROIDS      | opts, 26           |
| utility.h, 19        | size, 26           |
| DEBUG_CLUSTER        | trials, 26         |
| utility.h, 19        | VERBOSE, 26        |
| DEBUG_CONFIG         | error_code         |
| utility.h, 19        | utility.h, 20      |
| DEBUG_CROSSOVER      |                    |
| utility.h, 20        | fitness.c          |
| DEBUG_DATA           | dunn_index, 27     |
| utility.h, 19        | fitness.h          |
| DEBUG_DUNN           | dunn_index, 12     |
| utility.h, 20        | fitness_file       |
| DEBUG_MUTATE         | emeans.c, 26       |
|                      |                    |

36 INDEX

| GREEN                                | pcg_basic.h, 16         |
|--------------------------------------|-------------------------|
| utility.h, 19                        | pcg32_boundedrand_r     |
| gen_probability                      | pcg_basic.c, 31         |
| selection.c, 33                      | pcg_basic.h, 16         |
| selection.h, 17                      | pcg32_random            |
|                                      | pcg_basic.c, 32         |
| inc                                  | pcg_basic.h, 16         |
| pcg_state_setseq_64, 7               | pcg32_random_r          |
| include/cluster.h, 9                 | pcg_basic.c, 32         |
| include/fitness.h, 11                | pcg_basic.h, 16         |
| include/io.h, 12                     | pcg32_random_t          |
| include/operators.h, 13              | pcg_basic.h, 16         |
| include/pcg_basic.h, 15              | pcg32_srandom           |
| include/selection.h, 17              | pcg_basic.c, 32         |
| include/utility.h, 18                | pcg_basic.h, 17         |
| io.c                                 | pcg32_srandom_r         |
| load_data, 28                        | pcg_basic.c, 32         |
| save_results, 28                     | pcg_basic.h, 17         |
| io.h                                 | pcg_basic.c             |
| load_data, 12                        | pcg32_boundedrand, 31   |
| save_results, 12                     | pcg32_boundedrand_r, 31 |
| llaved elektroned                    | pcg32_random, 32        |
| lloyd_defined                        | pcg32_random_r, 32      |
| cluster.c, 21                        | pcg32_srandom, 32       |
| cluster.h, 10                        | pcg32_srandom_r, 32     |
| lloyd_random                         | pcg_basic.h             |
| cluster.c, 22                        | PCG32_INITIALIZER, 15   |
| cluster.h, 10                        | pcg32_boundedrand, 16   |
| load_data                            | pcg32_boundedrand_r, 16 |
| io.c, 28                             | pcg32_random, 16        |
| io.h, 12                             | pcg32_random_r, 16      |
| m rate                               | pcg32_random_t, 16      |
| emeans.c, 26                         | pcg32_srandom, 17       |
| MAGENTA                              | pcg32_srandom_r, 17     |
| utility.h, 19                        | pcg_state_setseq_64, 7  |
| main                                 | inc, 7                  |
| emeans.c, 24                         | state, 7                |
| max iter                             |                         |
| emeans.c, 26                         | README.md, 20           |
| mutate                               | RED                     |
| operators.c, 29                      | utility.h, 19           |
| operators.h, 13                      | RESET                   |
| ,                                    | utility.h, 19           |
| n_clusters                           | random_centroids        |
| emeans.c, 26                         | cluster.c, 22           |
|                                      | cluster.h, 11           |
| operators.c                          | SUCCESS                 |
| crossover, 29                        | utility.h, 20           |
| mutate, 29                           | save results            |
| operators.h                          | io.c, 28                |
| crossover, 13                        | io.h, 12                |
| mutate, 13                           | select_parent           |
| opts                                 | selection.c, 33         |
| emeans.c, 26                         | selection.t, 33         |
| PCG32 INITIALIZER                    | selection.c             |
| pcg_basic.h, 15                      | gen_probability, 33     |
| pcg_basic.n, 13<br>pcg32_boundedrand | select_parent, 33       |
| pcg_basic.c, 31                      | selection.h             |
| p3g_040:0:0, 0 1                     | 00.000.071.11           |

```
gen_probability, 17
    select_parent, 18
size
    emeans.c, 26
src/cluster.c, 20
src/emeans.c, 23
src/fitness.c, 27
src/io.c, 27
src/operators.c, 29
src/pcg_basic.c, 31
src/selection.c, 33
state
    pcg_state_setseq_64, 7
trials
    emeans.c, 26
utility.h
    DEBUG_BOUNDS, 19
    DEBUG_CENTROIDS, 19
    DEBUG_CLUSTER, 19
    DEBUG CONFIG, 19
    DEBUG_CROSSOVER, 20
    DEBUG_DATA, 19
    DEBUG_DUNN, 20
    DEBUG_MUTATE, 20
    DEBUG_PROBABILITY, 20
    ERROR, 20
    SUCCESS, 20
utility.h
    BLUE, 19
    CYAN, 19
    DEBUG, 20
    debug_code, 19
    error code, 20
    GREEN, 19
    MAGENTA, 19
    RED, 19
    RESET, 19
    VERBOSE, 20
    YELLOW, 19
VERBOSE
    emeans.c, 26
    utility.h, 20
YELLOW
    utility.h, 19
```