Theory of Computation

Finite state automata

Lecture 2b - Manuel Mazzara

Pac-Man Ghost

States

- An FSA has a <u>finite</u> set of <u>states</u>
 - A system has a limited number of configurations
- Examples
 - {On, Off},
 - $-\{1,2,3,4,...,k\}$
 - {TV channels}
 - **–** ...
- States can be graphically represented as follows:

Input

- An FSA is defined over an <u>alphabet</u>
- The symbols of the alphabet represent the <u>input</u> of the system
- Examples
 - {switch_on, switch_off}
 - {incoming==0, 0<incoming<=10, incoming>10}

Transitions among states

- When an input is received, the system changes its state
- The passage between states is performed through <u>transitions</u>
- A transition is graphically represented by arrows:

Simple examples

FSA

- FSAs are the <u>simplest</u> model of computation
- Many useful devices can be modeled using FSAs

... but they have some limitations

Applications of FSA

- Vending Machines
- Traffic Lights
- Video Games
- Text Parsing
- CPU Controllers
- Protocol Analysis
- Natural Language Processing
- Speech Recognition

Pac-Man Ghost again

Now, formally

- Always three stages:
 - Intuition/idea/informal
 - Examples/instances
 - Formal definition
 - Human vs. machine understanding

Formally

- An FSA is a triple $\langle \mathbf{Q}, \mathbf{A}, \delta \rangle$, where
 - Q is a finite set of <u>states</u>

Delta (lowercase)

- A is the input <u>alphabet</u>
- $-\delta$ is a <u>transition function</u> (that can be partial), given by δ: Q × A → Q
- Remark

if the function is **partial**, then not all the transitions from all the possible states for all the possible elements of the alphabet are defined (for example pressing sugar+ in a vending machine during coffee release)

Partial vs Total Transition Function

An FSA with a total transition function is called **complete**

Recognizing languages

- In order to be able to use FSAs for <u>recognizing</u>
 <u>languages</u>, it is important to identify:
 - the <u>initial conditions</u> of the system
 - the <u>final admissible states</u>
- Example:
 - The light should be off at the beginning and at the end

Elements

- The elements of the model are
 - States
 - Transitions
 - Input
 - and also
 - Initial state(s)
 - Final state(s)

Graphical representation

Initial state

Final state

Formally

- An FSA is a <u>tuple</u> <Q, A, δ , q_0 , F>, where
 - Q is a finite <u>set of states</u>
 - A is the input alphabet
 - $-\delta$ is a (partial) <u>transition function</u>, given by δ : **Q** × **A** → **Q**
 - $-q_0 \in Q$ is called **initial state**
 - F⊆Q is the set of <u>final states</u>

Move sequence

 A <u>move sequence</u> starts from an initial state and is *accepting* if it reaches one of the final states

Formally

- Move sequence:
 - $-\delta^*: Q \times A^* \rightarrow Q$
- δ^* is **inductively** defined from δ
 - $-\delta^*(q,\epsilon) = q$
 - $-\delta^*(q,y,i) = \delta(\delta^*(q,y),i)$
- Initial state: $q_0 \in Q$
- Final (or accepting) states: F ⊆ Q
- $\forall x (x \in L \leftrightarrow \delta^* (q_0, x) \in F)$

A practical example

Recognizing Pascal <u>identifiers</u>

Finite state transducers

Automata as language translators

A finite state transducer is an **FSA that works on two tapes**.
→ it is a kind of ``translating machine''.

The idea

Tau (lowercase)

- $y = \tau(x)$
 - x: input string
 - y: output
 - $-\tau$: function from L₁ to L₂
- Examples:
 - $-\tau_1$ the occurrences of "1" are doubled (1 --> 11)
 - $-\tau_2$ 'a' is swapped with 'b' (a <---> b):
- but also
 - Compression of files
 - <u>Compiling</u> from high level languages into object languages
 - <u>Translation</u> from English to Russian

Informally

Transitions with output

• Example: τ halves the number of "0"s and doubles the number of "1"s

Formally

- A finite state transducer (FST) is a tuple
 - T = \langle Q, I, δ, q₀, F, O, η \rangle
 - -<Q, I, δ , q_0 , F>: just like acceptors
 - O: output alphabet
 - $-\eta:Q\times I \rightarrow O^*$

Eta (lowercase)

- Remark: the condition for acceptance remains the same as in acceptors
 - The translation is performed only on accepted strings

Translating a string

- As we did for δ , we define η^* inductively
 - $-\eta^*(q,\varepsilon) = \varepsilon$
 - $-\eta^*(q,y,i) = \eta^*(q,y).\eta(\delta^*(q,y),i)$
- Remark η^* : Q × I* \rightarrow O*

$$\forall x (\tau(x) = \eta^*(q_0, x) \text{ iff } \delta^*(q_0, x) \in F)$$

The translation is performed only on accepted strings

FSA

Operations on FSA

Closure in math

- A set is <u>closed</u> w.r.t. an <u>operation</u> if the operation is applied to elements of the set and the result is <u>still an</u> <u>element of the set</u>
- From math we know:
 - Natural numbers are closed w.r.t. sum (but not subtraction)
 - Integers are closed w.r.t. sum, subtraction, multiplication (but not division)
 - Rationals: are they closed by division? Consider zero!
 - Reals...

— ...

Rationals

- A rational number is a number that can be represented as a fraction m/n, where m and n are integers and n≠0
- Rational numbers are closed under addition, subtraction, multiplication, as well as division by a nonzero rational.

$$\frac{a}{b} \times \frac{c}{d} = \boxed{\frac{ac}{bd}}, \quad \frac{a}{b} + \frac{c}{d} = \boxed{\frac{ad+bc}{bd}} \text{ and } \frac{a}{b} \div \frac{c}{d} = \boxed{\frac{ad}{bc}}$$
integers are closed under addition and multiplication

Closure for languages

- $\mathcal{L} = \{L_i\}$: **family** of languages
- \mathcal{L} is closed w.r.t. operation OP if and only if, for every L_1 , $L_2 \in \mathcal{L}$, L_1 OP $L_2 \in \mathcal{L}$.
- \mathcal{R} : regular languages (recognized by FSAs)
- R is closed w.r.t. set-theoretic operations, concatenation, "*", ...

Intersection

The "parallel run" of A and B can be simulated by "coupling them"

$$\langle A,B \rangle (q_0 p_0) b (q_1 p_1) a (q_2 p_2) a (q_9 p_9)$$

Example

Formally

Given

$$-A^{1} = \langle Q^{1}, I, \delta^{1}, q_{0}^{1}, F^{1} \rangle$$

$$-A^{2} = \langle Q^{2}, I, \delta^{2}, q_{0}^{2}, F^{2} \rangle$$

$$\langle A^{1}, A^{2} \rangle = \langle Q^{1} \times Q^{2}, I, \delta, \langle q_{0}^{1}, q_{0}^{2} \rangle, F^{1} \times F^{2} \rangle$$

$$-\delta(\langle q^{1}, q^{2} \rangle, i) = \langle \delta^{1}(q^{1}, i), \delta^{2}(q^{2}, i) \rangle$$

- One can show (by simple induction) that $L(\langle A^1,A^2\rangle) = L(A^1) \cap L(A^2)$
- Can we do the same for union?

Union

- The union is built analogously
- Given

$$-A^{1} = \langle Q^{1}, I, \delta^{1}, q_{0}^{1}, F^{1} \rangle$$

$$-A^{2} = \langle Q^{2}, I, \delta^{2}, q_{0}^{2}, F^{2} \rangle$$

$$\langle A1, A2 \rangle = \langle Q^{1}xQ^{2}, I, \delta, \langle q_{0}^{1}, q_{0}^{2} \rangle, F^{1}xQ^{2} \cup Q^{1}xF^{2} \rangle$$

$$-\delta(\langle q^{1}, q^{2} \rangle, i) = \langle \delta^{1}(q^{1}, i), \delta^{2}(q^{2}, i) \rangle$$

Complement (1)

Basic idea F^c = Q-F

Since the transition function may be partial this is not enough!

Complement (2)

 Before swapping final and non final states it is necessary to <u>complete the FSA</u>

Union again

 Another possibility is to use complement and De Morgan's laws:

$$A \cup B = \neg(\neg A \cap \neg B)$$

Philosophy of complement

- If I scan the entire input string, then it suffices to "swap yes and no" (F with Q-F)
- If I cannot reach the end of the string, then swapping F with Q-F does not work
- In the case of FSAs there is an easy workaround (completing the FSA)
- In general we cannot consider the negative answer to a question as equivalent to the positive answer to the opposite question!

PUMPING LEMMA

Cycles

There is a cycle: q1 ----aabab---> q1

If one goes trough the cycle once, then one can also go through it 2,3, ..., n times

More formally

- If $x \in L$ and $|x| \ge |Q|$, then there exists a $q \in Q$ and a $w \in I^+$ such that:
 - -x = ywz
 - $-\delta^*$ (q,w) = q
- Therefore the following also holds:
 - $-yw^nz$ ∈ L, $\forall n \ge 0$

This is the Pumping Lemma (one can "pump" w)

Consequences of pumping lemma

• L =
$$\emptyset$$
? $\exists x \in L \leftrightarrow \exists y \in L, |y| < |Q|$:

Just "remove all cycles" from the FSA accepting x

•
$$|L| = \infty$$
? Check by a similar argument whether $\exists x \in L, |Q| \le |x| < 2|Q|$

- Note that in general knowing how to answer the question "x ∈ L?" for a generic x, does not entail knowing how to answer the other questions
 - It works for FSAs, but...

Impact in practice

- Are we interested in a programming language consisting of... 0 correct programs?
- Are we interested in a programming language in which one can only write a finite number of programs?

• ...

A negative consequence of pumping lemma

- Is the language $L = \{a^nb^n \mid n > 0\}$ recognized by some FSA?
- Let us suppose it is. Then:
- Consider $x = a^m b^m$, m > |Q| and let us apply P.L.
- Possible cases:
 - $x = ywz, w = a^{k}, k > 0 ====> a^{m-k}a^{r-k}b^{m} \in L, \forall r : NO$
 - $x = ywz, w = b^k, k > 0 ====> same$
 - -x = ywz, $w = a^k b^s$, k, $s > 0 ====> a^{m-k}a^{rk}b^{rs}b^{m-s} \in L$ $\forall r : NO$

Intuitively

- In order to "count" an arbitrary n we need an infinite memory!
- Rigorously speaking, every computer is an FSA, but... it is the wrong abstraction: intractable number of states!
 (same thing as studying every single molecule in the flight of an airplane)
- Importance of an abstract notion of infinity
- From the toy example {aⁿbⁿ} to more concrete cases:
 - Checking well-balancing of brackets (typically used in programming languages) cannot be done with finite memory
- We therefore need more powerful models (PDA)