Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 3

Виконав студент	111-13 Баран Софія Володимирівна
	(шифр, прізвище, ім'я, по батькові)
Перевірив	(прізвище, ім'я, по батькові)

Лабораторна робота №3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 3

3 точністю ε =0.00001 обчислити

$$s = 1 - \frac{x^2 + 1}{3} + \frac{x^4 + 1}{5} - \dots + (-1)^n \cdot \frac{x^{2n} + 1}{2^n + 1} + \dots$$
, $\exists e \ 0 < x < 1$.

1. Постановка задачі:

Обчислити значення суми за допомогою заданої точності $\varepsilon = 0.00001$. Обчислення суми ряду з певною точністю ε означає, що сума ряду обчислюється до тих пір, поки модуль різниці між поточним і попереднім членом послідовності більше за ε . У вигляді формули це твердження можна записати так: $|((-1)^n)^*(((x^2n)+1))((2^n)+1))| \le \varepsilon$. У даному випадку умовою задана рекурсивна формула, прирівняємо її до змінної term, вийде нерівність: $|\text{term}| \le \varepsilon$, яка в циклі буде еквівалентною першій нерівності і буде головною умовою заданого ітераційного циклу. Далі потрібно перевірити чи входить х в заданий проміжок $0 < x < \varepsilon$, розкривши при цьому модуль за допомогою функції abs. Вийде так: abs(term) $< \varepsilon$. Якщо ні, потрібно ввести коректне значення x. Результатом розв'язку ε значення ряду суми при заданому x (0 < x < 1).

2. Побудова математичної моделі:

Складемо таблицю імен змінних

Змінна	Тип	Ім'я	Призначення
Задане число є	Дійсний	3	Початкові дані
Задане число х	Дійсний	X	Початкові дані
Лічильник п	Цілий	n	Проміжні дані
Змінна term	Дійсний	term	Проміжні дані
Сума s	Дійсний	S	Результат

Якщо х ϵ (0;1), то виконується ітераційний цикл:

- 1. обчислення term при заданому т
- 2. до початкової s = 0 додати term при заданому n та прирівняти до s
- 3. збільшемо перемінну п на одиницю

Повторюємо цикл до тих пір поки abs(term) не стане $>= \varepsilon$, де abs – функція, яка математично обраховує та відкриває модуль.

Якщо х не ϵ (0;1), то запросити введення коректного х ще раз

3. Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію введення змінних s, x, є.

Крок 3. Деталізуємо дію належності х з використанням альтернативної форми вибору.

Крок 4. Деталізуємо дію знаходження суми ряду sза допомогою ітераційного циклу.

4. Псевдокод алгоритму:

```
Крок 1
```

початок

введення х вводимо змінні s, n, є знаходимо прилежність x до умови знаходимо суму ряду s виведення s

кінець

Крок 2

початок

введення х s = 0, n = 0, $\epsilon = 0,00001$ знаходимо прилежність х до умови знаходимо суму ряду s виведення s

кінець

```
початок
 введення х
  s = 0, n = 0, \epsilon = 0.00001
  якщо (x>0) та (x<1)
   T0
    знаходимо суму ряду ѕ
   інакше
    виведення «некоректне х»
   все якщо
 виведення s
кінець
 Крок 4
початок
 введення х
  s =0, n=0, \varepsilon = 0,00001
  якщо (x>0) та (x<1)
    T0
       повторити
        term=(pow((-1), n))*(((pow(x, 2n))+1)/((pow(2, n))+1))
        s=s+term
        n=n+1
       поки abs(term)>=ε
       все повторити
    інакше
виведення «некоректне х»
  все якщо
виведення s
кінець
```

5. Блок-схеми алгоритму:

6. Випробування алгоритму:

Перевіримо правильність алгоритму на довільних значеннях

Розглянемо результат алгоритму при х=0.5

Блок	Дія
	початок
1	введення х=0,5
2	введення s=0, n=0, ϵ =0.00001
3	0,5>0 та 0,5<1 (х входить в проміжок)
4	term=1
	s=1
	n=1
	abs(term) порівняти з є: 1>=0.00001
5	term=-0.41666667
	s=0.58333333
	n=2
	abs(term) порівняти з є: 0.41666667>=0.00001
	виведення: 0.58333333
	кінець

Розглянемо результат алгоритму при х=2

Блок	Дія
	початок
1	введення x=2
2	введення s=0, n=0, ϵ =0,00001
3	2>0 та 2<1 (х не входить в проміжок)
	виведення: «некоректне n»
	кінець

7. Висновки

Дослідила подання операторів повторення дій та набула практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи отримала алгоритм для знаходження суми ряду в при заданній х за допомогою ітераційного циклу та з врахуванням умови. Побудувала мат. модель, псевдокод, блок схему. Протестувала алгоритм.