

MusQraTT MQTT-SN Broker for the Edge

Aisha Mohammed Evan Stella Mentored by: Prof. Gabe Parmer Gregor Peach

The Future: "Internet of Things" and Smart Cities

- Our infrastructure is becoming increasingly interconnected and sensitive to communication delay, or latency
- Time-sensitive devices
 need a way to
 communicate
 near-instantaneously
 with each other
 AxiomTech

MQTT-SN

- Lightweight version of MQTT: a
 Publish-Subscribe network protocol
- Designed for device communication for Internet of Things & cyber-physical systems
 - Smart Homes
 - Industrial Systems
 - Sensor networks

MQTT Broker

- Facilitates communication between clients
- Multiple clients have a connection to the broker
- Clients publish & subscribe to topics managed by the broker
- The Broker distributes data to the subscribers

— The Current Gap

- The most popular MQTT Brokers available have two problems
 - High transmission latency
 - Heavyweight runtime environment
- This makes them unsuitable for:
 - Autonomous vehicles
 - Spacecraft
 - Critical/latency sensitive infrastructure

How does it work?

- The client and server (broker) send encoded packets over UDP
- By subscribing to a topic, the client receives published data as it becomes available
- When data is no longer needed, clients can unsubscribe
- Maintains a list of all clients, and their subscription to topics

MusQraTT

CompositeOS

MQTT-SN Broker written in Rust

- Rust provides enhanced memory management and low-level concurrency
- Lightweight runtimes makes it optimal for Edge, real-time devices

— MQTT-SN Broker on CompositeOS

- Operating system developed by GW
- Created to operate on the Edge
- Prioritizes low latency & reliability

— MusQraTT's Impact

An MQTT-SN Broker for real-time and embedded devices at the Edge

Enables edge computing to provide increased scalability & performance

Utilizes Rust & Composite to create a broker suitable for real-time and latency sensitive applications

Results

How fast is MusQraTT?

MusQraTT is FAST

Transmission Latency vs Number of Publisher/Subscribers

Consequences of Latency

Simple Collision Avoidance System

City Intersection

Subscribers: Autonomous Vehicles

Publisher: Collision Detection System

Consequences of Latency

су

Using **Mosquitto** as the Broker

Consequences of Latency

Using **MusQraTT** as the Broker

— The Future: "Internet of Things" and Smart Cities

This research is critical to enabling the low-latency systems that will have a high-impact on our future

Thank you!

Special Thanks to Dr. Gabriel Parmer, Gregor Peach, and the course instructors!