

Universidad Tecnológica de la Mixteca

Clave DGP:

Doctorado en Inteligencia Artificial

- 00020

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
THE DE BY ASIGNATURA		
	FILTRADO DE SEÑALES	

Primero	351104PS	
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer y aplicar los principios del diseño de filtros digitales, su aplicación al preprocesamiento de señales en general y a la recuperación de la información.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Señales y sistemas.
- 1.2. Elementos básicos de un sistema de procesamiento de señales.
- Señales en N dimensiones y su representación digital.

Transformada Z y de Fourier

- 2.1. Definiciones y propiedades.
- 2.2. Polos, ceros, causalidad y estabilidad.
- 2.3. Espectro de las señales.
- 2.4. Transformada discreta de Fourier.
- 2.5. Transformada de Fourier Rápida.
- 2.6. Representación en el dominio de la frecuencia.

3. Filtros digitales

- Filtros continuos.
- 3.2. Estructura en cascada y paralelo.
- 3.3. Filtros digitales con respuesta finita (FIR).
- 3.4. Filtros digitales con respuesta infinita (ITR).
- 3.5. Diseño de filtros.
- 3.6. Filtros digitales en dos dimensiones.

4. Estimación espectral de potencia

- 4.1. Estimación a partir de las muestras.
- 4.2. Método de estimación sin parámetros.
- 4.3. Método de estimación con parámetros.

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del profesor; exámenes parciales de conocimientos y prácticos; tareas prácticas; y proyecto final.

Universidad Tecnológica de la Mixteca

Doctorado en Inteligencia Artificial

- 00021

PROGRAMA DE ESTUDIOS

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicará al inicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Digital Signal Processing. Principles, Algorithms, and Applications. John G. Proakis y Dimitris G. Manolakis. 4ª edición. Pearson, 2017.
- Digital Signal Processing A Computer Based Approach. Sanjit K. Mitra.. McGraw Hill, 2010.
- Procesamiento de Señales. Bohumil Psenicka. UNAM Facultad de Ingeniería, 1995.

Consulta:

- Random Signals and Systems. Bernard Picinbono.. Prentice-Hall EngleWood Cliffs, NJ, 1993.
- Analog and Digital Filter Design. Steve Winder. Newnes EDS Series for Design Engineers, 2002.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Ciencias de la Computación, Matemáticas Aplicadas o área afin con conocimientos en Inteligencia Artificial.

Vo.Bo DR. JOSÉ ANÍBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE **POSGRADO**

DE POSGRADO

AUTORIZÓ DIVISION DE ESTUDIDE AGUSTÍN SANTIAGO ALVARADO VICE-RECTORIA VICE-RECTORIA **ACADÉMICA**