Colle MP 11: Espaces préhilbertiens

December 22, 2019

Colle 1

Célia (15): bonne connaissance du cours et des méthodes Kévin (16): Très bien.

Exercice 1. Thm spectral

Exercice 2. Soit u un endomorphisme symétrique d'un espace euclidien E vérifiant, pour tout $x \in E$, u(x), x = 0. Mq u = 0.

Exercice 3. Soit $u: E \longmapsto E$ tel que, pour tous $x, y \in E$, on a u(x), y = x, u(y). Démontrer que u est linéaire.

Colle 2

Nolwenn (13): oubli du thm spectral. Lilian (13): assez bien

Exercice 1. Caract endo symétrique par sa matrice

Exercice 2. Soit $A \in M_n(\mathbb{R})$ symétrique. On suppose qu'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. Mq A = 0.

Exercice 3. Soient u,v deux endomorphismes symétrique d'un espace euclidien qui commutent. Soit λ une valeur propre de u. On pose $F = ker(u\lambda id)$. Démontrer que F et F^{\perp} sont stables par v.

Puis démontrer qu'il existe une base orthonormale de E diagonalisant simultanément u et v.

Exercice 4. (39) Soit f endo d'un espace euclidien tq (f(x)|x) = 0, $\forall x$. Mq $Kerf = Imf^{\perp}$.

Colle 3

Charlotte (11): grosses erreurs dans le polynôme caractéristique. Erreurs de calculs.

Bastien (14): Bien.

Exercice 1. Pythagore

Exercice 2. Soit E un espace vectoriel euclidien. Pour $f \in L(E)$, on note $\rho(f) = \max\{|\lambda|; \lambda \text{ valeur propre de f }\}.$

On pose également $||f|| = \sup\{||f(x)||; ||x|| \le 1\}$. Démontrer que si f est symétrique, alors $||f|| = \rho(f)$.

Exercice 3. Soit E = C([1,1],R) muni du produit scalaire $\int_{-1}^{1} fg$. Quel est l'orthogonal des fonctions pulles f([1,1],R) muni du produit scalaire $\int_{-1}^{1} fg$.

Quel est l'orthogonal des fonctions nulles sur [-1,0]? Sont-ils supplémentaires?