Decision Tree Classification

ID3 Algorithm

```
Name: Debatreya Das
Roll No.: 12212070
```

CS A4 Lab 10

df

Importing Necessary Libraries

```
import pandas as pd
import numpy as np
```

Loading the Dataset

```
df = pd.read_csv('./id3.csv')
```

	Outlook	Temperature	Humidity	Wind	Answer
0	sunny	hot	high	weak	no
1	sunny	hot	high	strong	no
2	overcast	hot	high	weak	yes
3	rain	mild	high	weak	yes
4	rain	cool	normal	weak	yes
5	rain	cool	normal	strong	no
6	overcast	cool	normal	strong	yes
7	sunny	mild	high	weak	no
8	sunny	cool	normal	weak	yes
9	rain	mild	normal	weak	yes
10	sunny	mild	normal	strong	yes
11	overcast	mild	high	strong	yes
12	overcast	hot	normal	weak	yes
13	rain	mild	high	strong	no

HELPER FUNCTIONS

1. Entropy(S)

Considering the last column as the target. Calculate the Entropy of the Example Set S

def Entropy(data):

```
# Count positive and negative examples in the target column
target = data.iloc[:, -1] # Assuming target is the last column
values, counts = np.unique(target, return_counts=True)
probabilities = counts / counts.sum()
```

```
# Calculate entropy
    entropy = -np.sum(probabilities * np.log2(probabilities))
    return entropy
2. Gain(S, A)
Calcualte the Information gain when feature A is selected in dataset S
def Gain(data, feature):
    # Calculate the entropy of the whole dataset
    total entropy = Entropy(data)
    # Get the values and the counts of the split for the given feature
    values, counts = np.unique(data[feature], return_counts=True)
    # Calculate weighted entropy after the split
    weighted entropy = 0
    for i, value in enumerate(values):
        subset = data[data[feature] == value]
        subset entropy = Entropy(subset)
        weighted_entropy += (counts[i] / counts.sum()) * subset_entropy
    # Information gain is the reduction in entropy
    info_gain = total_entropy - weighted_entropy
    return info gain
3. Count Positive and Negative Examples
def count positive negative(data):
    target = data.iloc[:, -1] # Assuming target is the last column
    positive_count = (target == "Yes").sum()
    negative count = (target == "No").sum()
    return positive count, negative count
```

DecisionTreeID3 CLASS

The decision tree recursively selects the attribute with the highest information gain at each step and continues to split the dataset until a stopping condition is met (e.g., all examples are classified or no attributes are left).

```
class DecisionTreeID3:
    def __init__(self):
        self.tree = {}

    def fit(self, data, original_data=None, features=None,
    parent_node_class=None):
        if features is None:
            features = data.columns[:-1] # All features except the target
column

if original_data is None:
```

```
original data = data
        # If all examples have the same label, return this label (leaf node)
        if len(np.unique(data.iloc[:, -1])) <= 1:</pre>
            return np.unique(data.iloc[:, -1])[0]
        # If no more features to split, return the majority class of the
parent node
        elif len(features) == 0:
            return parent node class
        # Otherwise, grow the tree
        else:
            # Count positive and negative examples
            positive_count, negative_count = count_positive_negative(data)
            # Select the majority class as the default class
            parent_node_class = "Yes" if positive_count >= negative_count
else "No"
            # Calculate the information gain for each feature
            gains = {feature: Gain(data, feature) for feature in features}
            # Select the feature with the highest information gain
            best feature = max(gains, key=gains.get)
            # Build the tree
            tree = {best_feature: {}}
            # Remove the feature from the list of available features
            remaining features = [feat for feat in features if feat !=
best feature]
            # Split the data based on the best feature
            for value in np.unique(data[best feature]):
                subset = data[data[best feature] == value]
                # Recursively build the subtree
                subtree = self.fit(subset, original data, remaining features,
parent_node_class)
                # Assign the subtree to the current tree node
                tree[best feature][value] = subtree
            self.tree = tree
            return tree
    def predict(self, query):
```

```
tree = self.tree
        while isinstance(tree, dict):
            feature = list(tree.keys())[0]
            value = query[feature]
            tree = tree[feature].get(value, "Unknown") # Default to
"Unknown" if the value is not found
        return tree
import json
def print tree(tree):
    # Use json.dumps to format the dictionary with indentation
    formatted_tree = json.dumps(tree, indent=4)
    # Print the formatted tree with single quotes instead of double quotes
    formatted tree = formatted tree.replace('"', "'")
    print(formatted tree)
Instantiate and train the ID3 decision tree
tree = DecisionTreeID3()
decision_tree = tree.fit(df)
# Example usage of print_tree
print("Decision Tree:")
print tree(decision tree)
Decision Tree:
    'Outlook': {
        'overcast': 'yes',
        'rain': {
            'Wind': {
                'strong': 'no',
                'weak': 'yes'
            }
        },
        'sunny': {
            'Humidity': {
                'high': 'no',
                'normal': 'yes'
            }
        }
    }
}
Make Prediction on a given SAMPLE
# Example query to predict the outcome
query = {
    'Outlook': 'sunny',
    'Temperature': 'cool',
```

```
'Humidity': 'high',
   'Wind': 'strong'
}

# Make prediction
prediction = tree.predict(query)
print(f"Prediction for {query}: {prediction}")

Prediction for {'Outlook': 'sunny', 'Temperature': 'cool', 'Humidity': 'high', 'Wind': 'strong'}: no
```