专业: 电气工程及其自动化

姓名: ___潘谷雨

学号: 3220102382

日期: 12月25日

地点: __ 东 3-406

洋折ジョナ、学 _{实验报告}

课程名称: <u>电路与电子技术实验 I</u> 指导老师: <u>姚缨英</u> 成绩: _____

实验名称: 运算电路

一、实验任务

1. 设计电路实现同相比例运算。同相放大 3 倍。

2.设计并实现反相加法器 vo=-(2vs1+10vs2)。

3.设计并实现一个反相积分电路。

二、实验内容

1. 设计电路实现同相比例运算。同相放大 3 倍。

 $R' = R1//Rf = 6.67\Omega$,用标称 $5.7k\Omega$ 电阻代替。 分别输入不同电压信号,得到输出信号如下:

同相比例运算

VS			VO	
有效 值	波形	有效值	峰峰 值	波形
1	直流	2.95	/	直流
-0.5	直流	-1.56	/	直流
0	接地	36 mV	/	直流,有毛刺

0.5 正弦 1.526 4.33

4.5 正弦 1kHz 11.653 28.5

分析:满足同相放大3倍的要求,和理论值相符。

2. 设计并实现反相加法器 vo=-(2vs1+10vs2)。

因为反相加法器满足 $v_0 = -\left(\frac{R_f}{R_1}v_{S1} + \frac{R_f}{R_2}v_{S2}\right)$,所以取 Rf = 100k Ω , R1 = 50k Ω ,

R2 = $10k \Omega$, R' = $7.8k \Omega$ (5. $1k \Omega + 2.7k \Omega$)。 分别输入不同电压信号,得到输出信号如下:

反相加法运算

vs1			vs2	VO		
有效值	波形	有效值	波形	有效值	峰峰值	波形
1	直流	-0.5	直流	2.86	/	直流
0.5	直流	-1.5	直流	13.6	/	直流
1	直流	0.5	直流	-7. 1	/	直流
0.6	正弦 1kHz	0.2	正弦 3kHz 同相	2.374	7.7	见下
1.2	正弦 1kHz	0	接地	2.4642	6.99	见下

当 vs1 输入有效值为 0.6V、频率为 1kHz 的正弦波, vs2 输入有效值为 0.2V、 频率为 3kHz 的正弦波时,输出波形如下:

根据 vo=-(2vs1+10vs2), 算得输入信号经过运算电路输出的理论有效值如下:

vs1		vs2		VO			
有效 值	波形	有效 值	波形	有效值	有效 理论值	波形	
1	直流	-0.5	直流	2.86	3	直流	
0.5	直流	-1.5	直流	13.6	14	直流	
1	直流	0.5	直流	-7. 1	-7	直流	
1.2	正弦 1kHz	0	接地	-2.4642	-2.4	正弦 1kHz	

上述四组实验实际值均与理论值相符,波形符合预期。

当 vs1 输入有效值为 0.6V、频率为 1kHz 的正弦波, vs2 输入有效值为 0.2V、频率为 3kHz 的正弦波时, 仿真波形如下:

仿真测得峰峰值为 7.370V,实际测得峰峰值为 7.7V,相对误差 E = 4.48%,波形相同,符合设计要求。

3.设计并实现一个反相积分电路。

取 R1 = $10k\Omega$, R2 = $100k\Omega$, R' = $10k\Omega$, C = 0.01μ F。 输入电压 vs 输入通道 CH2,输出电压 vo 输入通道 CH1,得到实验结果如下:

输出峰峰值与波形均符合理论,符合设计要求。

拓展: 微分运算仿真。

R = 10k Ω, R' = 10k Ω, C = 100pF.

vo 输入 A 通道, vi 输入 B 通道。输入 1Vp、f = 1kHz 的正弦波,得到波形如下:

幅值 vo = 6.313mV, vi = 987.707mV。输出信号滞后输入信号 90°。

输入5Vp、f = 1kHz的方波,得到波形如下:

输出冲激波形。