Предел последовательности

Математический анализ — это раздел математики, который изучает поведение числовых функций на основании предельного перехода. А именно, оказывается интересно изучать, как ведёт себя функция в окрестности некоторой точки. Так мы приходим к понятию предела функции в точке.

Оказывается, что для изучения предельных свойств функций прежде всего необходимо построить теорию пределов числовых последовательностей.

Определение. Пусть x_1, x_2, x_3, \ldots — последовательность действительных чисел (пишут $\{x_n\}_{n=1}^{\infty}$). Действительное число a называется npedenom последовательности $\{x_n\}$, если верно следующее. Какую бы малую окрестность числа a мы не брали, с какого-то момента в этой окрестности оказываются ВСЕ члены последовательности $\{x_n\}$. Формально,

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n > N : |x_n - a| < \varepsilon.$$

В таком случае пишут $a=\lim_{n\to\infty}x_n$ или $x_n\xrightarrow[n\to\infty]{}a.$ Говорят, что предел равен $+\infty$, если

$$\forall B > 0 \,\exists N \in \mathbb{N} \,\forall n > N : x_n > B.$$

Аналогично определяется предел $-\infty$.

Пример 1.

Теорема 1 (Арифметические операции под знаком предела). Пусть $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty} - \partial se$ последовательности, причём $x_n \to a$, $y_n \to b$. Тогда

- $x_n \pm y_n \rightarrow a \pm b$;
- $x_n y_n \to ab$;
- $Ec_{\Lambda}u \ y \neq 0$, $mo \ \frac{x_n}{y_n} \rightarrow \frac{a}{b}$.

Thegen racinoso:

• Eem Megen rucani en 8-beck, a

whesen granentarens koner. To

lim = ∞ .

• Ecru lim ruca = const, a

lim 34. Secreprerusen, π lim = 0

• Eam lim ruca = ∞ , π lim 3n = ∞ , π rymner 20n. pace ynsperus.

3 aporta 26. Flaire speges Com P(n), yee P(n), Q(n)
now Q(n), yee P(n), Q(n)
uncoronience P(h)= akh + ak-1 2 + -- + a, h + ao Q(n) = ben + be-, n e-+ + - + b, n + bo. $\lim_{n\to\infty}\frac{p(n)}{Q(n)}=\lim_{n\to\infty}\frac{p(n)}{Q(n)}=$ $\lim_{n\to\infty} \frac{Q(n)}{h^{\ell}} = g_{\ell} / \frac{1}{h^{\ell}} = \lim_{n\to\infty} \frac{P(n)}{h^{\ell}}$ · Eam l > k, 70 dk · Eam l > k, 70 D · Eam l < k, 70 ±∞

Определение. Пусть $\{x_n\}$, $\{y_n\}$ — две последовательности.

- Если $\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} 0$, то говорят, что последовательность x_n есть *о-малое относи- тельно* последовательности y_n , и пишут $x_n = o(y_n)$.
- Если $\frac{x_n}{y_n}$ ограничено сверху, то говорят, что последовательность x_n есть О-большое относительно последовательности y_n , и пишут $x_n = O(y_n)$
- Если $x_n = o(1)$, то x_n называют бесконечно малой последовательностью.

Tpump:
$$h = \overline{\delta}(2^n), n \rightarrow \infty$$

 $\frac{1}{n} = \overline{\delta}(1), n \rightarrow \infty$.
 $n = Q(2^n)$.
 $n^2 = Q(\sqrt{n^2})$.
 $2.\sqrt{n^2 + n^3} = Q(\sqrt{n^2})$.

• Посл-ги х, пуп называются жвив алентионии, если $\lim_{n\to\infty}\frac{x_n}{y_n}=1$. $\left(\max_{y\in X_n}x_n,y_n\right)$ B vacornocon, ean $x_n \sim y_n$, $\tau \circ x_n = Q(y_n)$, $y_n = Q(x_n)$. $\frac{y_76}{77} = \frac{77}{1000} = \frac{7}{1000} = \frac$ Tipuneh $\frac{n^2+2n}{3n^2-4} = \lim_{n \to \infty} \frac{n^2}{3n^2} = \frac{1}{3}$. $\frac{n^2+2n}{3n^2-4} = \lim_{n \to \infty} \frac{n^2}{3n^2} = \frac{1}{3}$. $2n = \overline{0} \left(\frac{n^2}{h^2} \right)$ $2n = \overline{0} \left(\frac{n^2}{h^2} \right)$ $n^2 + 2n = 1 + \overline{0}$

Определение. Предел последовательности $\left(1+\frac{1}{n}\right)^n$ называется числом Эйлера и обозначается как $e=2.718281828459045\dots$

Число Эйлера иррационально.

Bapara Hain l'm (1-1). (1+ 1- 1- 1) M $\lim_{h\to\infty}\left(\left(1-\frac{1}{h}\right)^{h}\cdot\left(1+\frac{1}{h}\right)^{h}\right)=\left(\lim_{h\to\infty}\left(1-\frac{1}{h}\right)^{h}\right)e$ $\lim_{n\to\infty} \left(1 - \frac{1}{n^2}\right)^n = \lim_{n\to\infty} \left(\frac{n^2 - 1}{n^2}\right)^n =$ $\int (1-\frac{1}{h})(1+\frac{1}{h}) = 1-\frac{1}{h^2}$ $\frac{1}{\lim_{n \to \infty} \left(\frac{h^2}{h^2-1}\right)^n} = \frac{1}{\lim_{n \to \infty} \left(\frac{h^2}{h^2-1}\right)^n}$ lim $\binom{n^2-1}{n^2-1}$ = lim $\lim_{n \to \infty} \left(\frac{n^2}{n^2 - 1} \right) = \lim_{t \to \infty} \left(\frac{t}{t} \right) = \lim_{t \to \infty$

