Objective:

- 1- Demonstration of K-Means Alghorithm.
- 2- Building an unsuperivsed K means clustering model to segment customers in different groups.

```
In [2]: # Libraries
   import random
   import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.cluster import KMeans
   from sklearn.datasets import make_blobs
   %matplotlib inline
```

1- Demonstration of K-Means Alghorithm.

Creating dataset

Input

- **n_samples**: The total number of points equally divided among clusters.
 - Value will be: 5000
- **centers**: The number of centers to generate, or the fixed center locations.
 - Value will be: [[4, 4], [-2, -1], [2, -3],[1,1]]
- **cluster_std**: The standard deviation of the clusters.
 - Value will be: 0.9

Output

- X: Array of shape [n_samples, n_features]. (Feature Matrix)
 - The generated samples.
- **y**: Array of shape [n_samples]. (Response Vector)
 - The integer labels for cluster membership of each sample.

```
In [3]: X, y = make_blobs(n_samples=5000, centers=[[4,4], [-2, -1], [2, -3], [1, 1]], cluster_s
    plt.scatter(X[:, 0], X[:, 1], marker='.')
```

Out[3]: <matplotlib.collections.PathCollection at 0x19c0df54e20>

Model Setup with 4 Clusters

The KMeans class has many parameters that can be used, but we will be using these three:

- init: Initialization method of the centroids.
 - Value will be: "k-means++"
 - k-means++: Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence.
- **n_clusters**: The number of clusters to form as well as the number of centroids to generate.
 - Value will be: 4 (since we have 4 centers)
- **n_init**: Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia.
 - Value will be: 12

Initialize KMeans with these parameters, where the output parameter is called **k_means**.

```
In [5]: k_means = KMeans(init = "k-means++", n_clusters = 4, n_init = 12)
k_means.fit(X)

Out[5]: KMeans(n_clusters=4, n_init=12)

In [6]: # Saving LabeLs
k_means_labels = k_means.labels_k
k_means_labels

Out[6]: array([0, 1, 2, ..., 0, 0, 0])

In [7]: # Saving Centers
k_means_cluster_centers = k_means.cluster_centers_k_means_cluster_centers
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

```
[ 2.01523949, -2.99062651], [ 1.00673121, 1.00773874]])
```

Creating the Visual Plot

```
# Initialize the plot with the specified dimensions.
In [16]:
          fig = plt.figure(figsize=(6, 4))
          # Colors uses a color map, which will produce an array of colors based on
          # the number of labels there are. We use set(k_means_labels) to get the
          # unique labels.
          colors = plt.cm.Spectral(np.linspace(0, 1, len(set(k means labels))))
          # Create a plot
          ax = fig.add_subplot(1, 1, 1)
          # For loop that plots the data points and centroids.
          # k will range from 0-3, which will match the possible clusters that each
          # data point is in.
          for k, col in zip(range(len([[4,4], [-2, -1], [2, -3], [1, 1]])), colors):
              # Create a list of all data points, where the data poitns that are
              # in the cluster (ex. cluster 0) are labeled as true, else they are
              # labeled as false.
              my_members = (k_means_labels == k)
              # Define the centroid, or cluster center.
              cluster center = k means cluster centers[k]
              # Plots the datapoints with color col.
              ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.')
              # Plots the centroids with specified color, but with a darker outline
              ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredge
          # Title of the plot
          ax.set title('KMeans')
          # Remove x-axis ticks
          ax.set xticks(())
          # Remove y-axis ticks
          ax.set_yticks(())
          # Show the plot
          plt.show()
```

KMeans

2- Building an unsuperivsed K means clustering model to segment customers.

Data Loading and Pre-processing

cust_df.head()

```
In [1]: !wget -0 Cust_Segmentation.csv https://cf-courses-data.s3.us.cloud-object-storage.appdo
In [67]: import pandas as pd
    cust_df = pd.read_csv("Cust_Segmentation.csv")
```

Out[67]:		Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	Address	DebtIncomeRatio
	0	1	41	2	6	19	0.124	1.073	0.0	NBA001	6.3
	1	2	47	1	26	100	4.582	8.218	0.0	NBA021	12.8
	2	3	33	2	10	57	6.111	5.802	1.0	NBA013	20.9
	3	4	29	2	4	19	0.681	0.516	0.0	NBA009	6.3
	4	5	47	1	31	253	9.308	8.908	0.0	NBA008	7.2

In [68]: # Dropping non-numerical value address
df = cust_df.drop("Address", axis=1)
df.head()

Out[68]:		Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio
	0	1	41	2	6	19	0.124	1.073	0.0	6.3
Loading [Math.	1 Jax]/ja	2 ax/output/Co	<u>47</u> mmonl	1 HTML/fo	26 onts/TeX/fontdata.		4.582	8.218	0.0	12.8

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio
2	3	33	2	10	57	6.111	5.802	1.0	20.9
3	4	29	2	4	19	0.681	0.516	0.0	6.3
4	5	47	1	31	253	9.308	8.908	0.0	7.2

```
In [79]: # Getting the X dataset
X = df.values[:,1:] # Slicing the np array to remove id
X = np.nan_to_num(X)
X
```

Modeling

```
In [80]: clusterNum = 3
    k_means = KMeans(init = "k-means++", n_clusters = clusterNum, n_init = 12)
    k_means.fit(X)
    labels = k_means.labels_
    print(labels)
```

0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 2 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0

Insights

```
In [81]: df["Clus_km"] = labels
    df.head(5)
```

Out[81]:	Customer	Δαρ	Edu	Years	Card	Other	Defaulted	DebtIncomeRatio	Clus km
Loading [MathJax	ː]/jax/output/C	ommo	nHTML/f	onts/TeX/fontdata.js	Debt	Debt	Delautea	Debtilleomeratio	Clu3_KIII

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio	Clus_km
0	1	41	2	6	19	0.124	1.073	0.0	6.3	0
1	2	47	1	26	100	4.582	8.218	0.0	12.8	2
2	3	33	2	10	57	6.111	5.802	1.0	20.9	0
3	4	29	2	4	19	0.681	0.516	0.0	6.3	0
4	5	47	1	31	253	9.308	8.908	0.0	7.2	1

In [82]: # Checking the centroid values by averaging the features in each cluster.
df.groupby('Clus_km').mean()

Out[82]:		Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	Debtlı
	Clus_km									
	0	432.006154	32.967692	1.613846	6.389231	31.204615	1.032711	2.108345	0.284658	
	1	410.166667	45.388889	2.666667	19.555556	227.166667	5.678444	10.907167	0.285714	
	2	403.780220	41.368132	1.961538	15.252747	84.076923	3.114412	5.770352	0.172414	
	4									>

Visualization using age and income features

```
In [83]: area = np.pi * ( X[:, 1])**2
plt.scatter(X[:, 0], X[:, 3], s=area, c=labels.astype(np.float), alpha=0.5)
plt.xlabel('Age', fontsize=18)
plt.ylabel('Income', fontsize=16)

plt.show()
```



```
In [84]: from mpl_toolkits.mplot3d import Axes3D
    fig = plt.figure(1, figsize=(8, 6))
    plt.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
    # plt.ylabel('Age', fontsize=18)
    # plt.xlabel('Income', fontsize=16)
    # plt.zlabel('Education', fontsize=16)
    ax.set_xlabel('Education')
    ax.set_ylabel('Age')
    ax.set_zlabel('Income')

ax.scatter(X[:, 1], X[:, 0], X[:, 3], c= labels.astype(np.float))
```

Out[84]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x19c1278b4f0>

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js