

- Primeri paralelnih algoritama, I deo
 - Paralelni algoritmi za množenje matrica

Algoritmi za množenje matrica

- Ovde su data tri paralelna algoritma:
- Direktan algoritam sa tri ugnježdene petlje
- Paralelni algoritam po principu podeli-i-zavladaj
- Paralelizovan Strasenov algoritam

Direktan algoritam

- Zasnovan na paralelizaciji petlji u standardnom serijskom algoritmu sa tri ugnježdene for petlje
 - Rezultat je procedura P-Square-Matrix-Multipy:

```
P-Square-Matrix-Multiply(A, B)
```

1.n = A.rows

2.neka je C nova matrica dimenzije $n \times n$

3.parallel for i = 1 to n

4. **parallel for** j = 1 **to** n

5. $c_{ii} = 0$

6. **for** k = 1 **to** n

 $7. c_{ij} = c_{ij} + a_{ik} b_{kj}$

8.return C

Analiza direktnog algoritma

- Rad:
 - Serijalizacija: kod sa tri ugnježdene **for** petlje sa po n iteracija, pa je $T_1(n) = \Theta(n^3)$.
- Raspon:
 - $T_{\infty}(n) = \Theta(n)$, jer je raspon za **parallel for** petlje $\Theta(\log n)$, a za običnu je $\Theta(n)$; dakle, ukupno: $\Theta(n)$
- \bullet Paralelizam: $\Theta(n^3)/\Theta(n) = \Theta(n^2)$
- Domaći:
 - Paralelizujte unutrašnji **for** da bi se dobio paralelizam $\Theta(n^3/\lg n)$
 - Prosta zamena sa parallel for dovodi do trke do podataka!

Algoritam po principu podeli-i-zavladaj (1/2)

- Polazni problem se podeli na manje probleme
 - Matrice, A, B i C, dimenzije n x n, se podele na četiri podmatrice, dimenzije n/2 x n/2 :

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

Onda se proizvod matrica može napisati kao:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{bmatrix} + \begin{bmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

Algoritam po principu podeli-i-zavladaj (2/2)

```
P-Matrix-Multiply- Recursive (C, A, B)

I.n = A.rows
```

2.if
$$n == 1$$

3.
$$c_{11} = a_{11}b_{11}$$

4.else neka je T nova matrica dimenzije $n \times n$

- 5. podeli matrice A, B, C i T u podmatrice dimenzije $n/2 \times n/2$
- 6. **spawn** P-Matrix-Multiply- Recursive(C_{11} , A_{11} , B_{11})
- 7. **spawn** P-Matrix-Multiply- Recursive(C_{12} , A_{11} , B_{12})
- 8. **spawn** P-Matrix-Multiply- Recursive(C_{21} , A_{21} , B_{11})
- 9. **spawn** P-Matrix-Multiply- Recursive(C_{22} , A_{21} , B_{12})
- 10. **spawn** P-Matrix-Multiply- Recursive(T_{11} , A_{12} , B_{21})
- 11. **spawn** P-Matrix-Multiply- Recursive(T_{12} , A_{12} , B_{22})
- 12. **spawn** P-Matrix-Multiply- Recursive(T_{21} , A_{22} , B_{21})
- 13. P-Matrix-Multiply- Recursive(T_{22} , A_{22} , B_{22})
- 14. **sync**
- 15. **parallel for** i = 1 to n
- 16. **parallel for** j = 1 **to** n
- $17. c_{ij} = c_{ij} + t_{ij}$

- Osnovni slučaj:linija 3
- Rekurzivni slučaj:linije 4-17
- Rekurzivni pozivi u linijama 6-13 obavljaju 8 množenja podmatrica
- Polu proizvodi u matricama Ci Tse saberu pomoću dve ugnježdene parallel for petlje u linijama 15-17

Analiza procedure P-Matrix-Multiply-Recursive (1/2)

♦ Rad:

Podela matrica u ⊕(1) vremenu, osam rekurzivnih množenja podmatrica, i sabiraju se matrice C i T u dve ugnježdene petlje u ⊕(n²) vremenu:

$$T_1(n) = 8 T_1(n/2) + \Theta(n^2)$$

■ Rešenje: po prvom slučaju master teoreme: $T_1(n) = \Theta(n^3)$

Analiza procedure P-Matrix-Multiply-Recursive (2/2)

Raspon:

Raspon podele matrica je ⊕(1), raspon dve ugnježdene parallel for petlje u linijama 15-17 je ⊕(lg n), raspon 8 paralelnih rekurzivnih poziva = max od njih = raspon bilo kog od tih poziva. Ukupno:

$$T_{\infty}(n) = T_{\infty}(n/2) + \Theta(\lg n)$$

- ♦ Rešenje: $T_{\infty}(n) = \Theta(\lg^2 n)$, metodom zamene
 - Master metoda se ne može primeniti. Zašto?
- Paralelizam: $T_1(n)/T_{\infty}(n) = \Theta(n^3/\lg^2 n)$
 - To je veoma visok paralelizam

Strasenov metod za množenje matrica (1/3)

- Ključ je da se rekurzivno stablo učini manje razgranatim
 - Umesto 8 množenja matrica *n*/2 x *n*/2, on obavlja 7
- Cena za uklanjanje jednog matričnog množenja
 - Nekoliko matričnih sabiranja
 - Ali, konstantan broj matričnih sabiranja

Strasenov metod za množenje matrica (2/3)

Stasenov metod je zasnovan na sledećim transformacijama:

$$S_1 = B_{12} - B_{22}, S_2 = A_{11} + A_{12}, S_3 = A_{21} + A_{22}, S_4 = B_{21} - B_{11}$$

 $S_5 = A_{11} + A_{22}, S_6 = B_{11} + B_{22}, S_7 = A_{12} - A_{22}, S_8 = B_{21} + B_{22}$
 $S_9 = A_{11} - A_{21}, S_{10} = B_{11} + B_{12}$

$$P_1 = A_{11} S_1, P_2 = S_2 B_{22}, P_3 = S_3 B_{11}, P_4 = A_{22} S_4$$

 $P_5 = S_5 S_6, P_6 = S_7 S_8, P_7 = S_9 S_{10}$

$$C_{11} = P_5 + P_4 - P_2 + P_6, \quad C_{12} = P_1 + P_2$$

 $C_{21} = P_3 + P_4, \quad C_{22} = P_5 + P_1 - P_3 - P_7$

Strasenov metod za množenje matrica (3/3)

- Metod se sastoji od sledeća četiri koraka:
 - Podeliti matrice A, B i C na podmatrice dimenzije n/2 x n/2. Ovaj korak uzima $\Theta(1)$ vreme.
 - Napraviti 10 matrica S_1 , S_2 ,..., S_{10} . Ovaj korak uzima $\Theta(n^2)$ vremena.
 - Rekurzivno izračunati sedam matričnih proizvoda P_1 , P_2 ,..., P_7 .
 - Izračunati željenje podmatrice C_{11} , C_{12} , C_{21} , C_{22} matrice C. Ovaj korak uzima $\Theta(n^2)$ vremena.

Analiza Strasenovog metoda

- ◆ Cilj: odrediti vreme izvršenja 7(n)
 - Za n=1 svodi se na prosto skalarno množenje: ⊕(1)
 - Za n > 1, koraci 1, 2 i 4 nose $\Theta(n^2)$ vremena, a korak 3 zahteva sedam množenja matrica dim. $n/2 \times n/2$
 - Rekurencija za vreme izvršenja *T(n)*:

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ 7T\left(\frac{n}{2}\right) + \Theta(n^2), & n > 1 \end{cases}$$

- Primenom master metode dobija se rešenje ove jednačine: $T(n) = \Theta(n^{\lg 7})$
- Asimptotski brže od direktnog moženja matrica

Paralelizovan Strasenov metod

- Sastoji se od sledeća četiri koraka:
 - Podeliti matrice A, B i C na podmatrice dimenzije n/2 x n/2. Ovaj korak uzima rad $\Theta(1)$ i isti raspon.
 - Korišćenjem dve ugnježdene **parallel for** petlje napraviti 10 matrica S_1 , S_2 ,..., S_{10} . Rad je $\Theta(n^2)$ i raspon je $\Theta(\lg n)$.
 - Rekurzivno izračunati sedam matričnih proizvoda P_1 , P_2 ,..., P_7 .
 - Korišćenjem dve ugnježdene **parallel for** petlje izračunati željenje podmatrice C_{11} , C_{12} , C_{21} , C_{22} . Rad je $\Theta(n^2)$ i raspon je $\Theta(\lg n)$.

Analiza paralelizovanog Strasenovog metoda

- Rad:
 - Serijalizacija = originalni algoritam $\Rightarrow T_1(n) = \Theta(n^{\lg 7})$
- Raspon:
 - Sedam rekurzivnih poziva izvršava u paraleli
 - Dobija se identična rekurencija kao za P-Matrix-Multipy-Recursive $\Rightarrow T_{\infty}(n) = \Theta(\lg^2 n)$
- Paralelizam: $T_1(n)/T_{\infty}(n) = \Theta(n^{\lg 7}/\lg^2 n)$
 - Malo niži od paralelizma P-Matrix-Multiply-Recursive