CS202 - Algorithm Analysis Merge Sort

Aravind Mohan

Allegheny College

February 21, 2023

Strategy:

- **Divide:** if S has at least two elements, remove all the elements from S and put them into two sequences S_1 and S_2 , each containing about half of the elements of S.(i.e,. S_1 contains the first floor (n/2) elements and S_2 contains the remaining floor (n/2) elements.
- Conquer: Sort sequences S₁ and S₂ using Merge Sort.
- Combine: Put back the elements into S by merging the sorted sequences S₁ and S₂ into one sorted sequence.

Characteristics:

- sort out of "place", i.e., does require an additional array
- uses divide and conquer principle
- worst case running time is $O(n \times log(n))$

Merge Procedure (linear)

```
Algorithm - Merge(A, p, m, r)
```

Input: an n-element un-sorted array A of integer values, a lower bound p of the array A, and a pivot r in the array A.

Output: an n-element sorted array A of integer values.

```
n_1 \leftarrow m-p
n_2 \leftarrow r-m
Initialize Array L of size n_1+1
Initialize Array R of size n_2+1
for \mathbf{i}=0 to n_1 do
L[\mathbf{i}] \leftarrow A[\mathbf{p}+\mathbf{i}]
end for
for \mathbf{j}=0 to n_2 do
R[\mathbf{j}] \leftarrow A[\mathbf{m}+\mathbf{j}]
end for
L[n_1+1] \leftarrow \infty
R[n_2+1] \leftarrow \infty
```

CONTINUE ON NEXT PAGE · · ·

Merge Procedure (linear)

```
Initialize i, j \leftarrow 0

for k = p to r do

if L[i] \leq R[j] then

A[k] \leftarrow L[i]

i \leftarrow i+1

else

A[k] \leftarrow R[j]

j \leftarrow j+1

end if

end for
```

MergeSort Procedure (logarithmic)

```
 \label{eq:Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Algorithm-Alg
```


Aravind Mohan

Questions?

Please ask if there are any Questions!

Reading Assignment

Sedgewick 2.2 Merge Sort