- 1、 主观题
- 1.

2.

(8分)交换二次积分的次序

$$\int_0^1 dy \int_0^{y^2} f(x,y) dx + \int_1^2 dy \int_0^1 f(x,y) dx + \int_2^3 dy \int_{y-2}^1 f(x,y) dx.$$

- (6分) 求曲面 $z = x^2 + y^2$ 被平面 z = 2 所截部分的面积.
- 4. **(10 分)** 设 Γ 为柱面 $x^2 + y^2 = 2y$ 与平面 y = z 的交线,从 z 轴正向看为顺时针,计算

$$I = \oint_{\Gamma} y^2 dx + xy dy + xz dz.$$

5. **(15 分)** 已知曲线积分

$$\int_{L} \left(-2f(x) + e^{x} + 10\cos x \right) \sin y dx + \left(f'(x) - 3f(x) \right) \cos y dy$$

与积分路径无关, f(x) 有连续的二阶导函数, 求 f(x).

- 6. (8分) 计算第二型曲面积分 $\iint_S xyzdxdy$, 其中S是球面 $x^2+y^2+z^2=1$ 在第八卦限的部分,取球面外侧.
- 7. **(8分)** 求方程 $\frac{dy}{dx} = \frac{6y}{x} xy^2$ 的通解.
 - (8分) 求微分方程 $y \cdot y'' (y')^2 = 0$ 满足初始条件 y(0) = y'(0) = 1 的特解.
- 9. **(8分)** 求幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的收敛半径、收敛区间与收敛域.

8.

(10分)讨论下列级数的敛散性:

1)
$$\sum_{n=2}^{\infty} \frac{n^2}{(\ln n)^{\ln n}}$$
. 2) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{0.9}(\ln \ln n)^9}$.

11.

(8分) 证明函数项级数
$$\sum_{n=1}^{\infty} x^2 e^{-x^2 n^{1.5}}$$
 在 $(-\infty < x < \infty)$ 上一致收敛.

12.

(5分) 证明级数
$$\sum_{k=1}^{\infty} \frac{\cos n\varphi}{n}$$
 不是绝对收敛.