编译原理实验报告

语法分析程序

141210026

宋奎熹

软件学院

1. 实验目的

编写、调试一个语法分析程序,并对程序段进行语法分析,从而更好理解语法分析原理。此次生成 LL(1) 分析表。

2. 内容描述

此程序用 Java 编写。程序读取一个文本文件,根据所定义的CFG文法(见5),对其中内容进行语法分析。并得出相应的产生式列表。

3. 思路方法

- 1) 根据要识别的文法,写出 CFG。
- 2) 构造其对应的预测分析表。
- 3) 根据预测分析表,编写代码。
- 4) 代码实现:用 Lab1 的词法分析工具生成 Token 序列,并将其输入文本文件中,然后读取此文本文件,基于 CFG 的预测分析表,得出产生式列表。

4. 假设

假设输入的文件内容是正常的 Java 程序,即包含合法的保留字和运算符。if语句后都有唯一的 else 语句。id 代表变量, num 代表数字。

5. CFG 定义

本次定义的语言可识别如下形式的语句:

- 1) while(CONDITION){STATEMENT};
- 2) if(CONDITION){STATEMENT}else{STATEMENT}
- 3) CONDITION && (CONDITION && CONDITION) (只有&&运算符)
- 4) id = num

最终 CFG 定义如下:

- 0. $S \rightarrow id=E;$
- 1. $S \rightarrow if(C)\{S\}else\{S\}$
- 2. $S \rightarrow while(C)\{S\}$
- 3. $E \rightarrow TE'$
- 4. E' \rightarrow +TE'
- 5. E' \rightarrow E
- 6. T \rightarrow FT'
- 7. T' \rightarrow *FT'
- 8. T' \rightarrow ϵ
- 9. $F \rightarrow (E)$
- $10.F \rightarrow num$

```
11.F \rightarrow id

12.C \rightarrow DC'

13.C' \rightarrow &&DC'

14.C' \rightarrow E

15.D \rightarrow (C)

16.D \rightarrow id==num
```

6. 预测分析表

	id	if	else	()	{	}	while	+	*	num	&&	==	;	=	\$
s	0	1						2								
E	3			3							3					
E'					5				4					5		5
T	6			6							6					
T'					8				8	7				8		8
F	11			9							10					
С	12			12												
C'					14								13			14
D	16			15												

7. 关键数据结构

```
private ArrayList<Token> tokenArrayList = new ArrayList<>();
private static Stack<Token> tokenStack = new Stack<>();
private static Queue<Token> tokenQueue = new LinkedList<>();
private static String[] generations = {
             "S->id=E;",
             "S->if(C){S}else{S}",
             "S->while(C){S}",
             "E->TE'",
             "E'->+TE'",
             "E'->\epsilon",
             "T->FT'",
             "T'->*FT'",
             "Τ'->ε",
             "F->(E)",
             "F->num",
             "F->id",
             "C->DC'",
             "C'->&&DC'",
             "C'->ε",
```

```
"D->(C)",
          "D->id==num"
   };
private static int[][] ppt = new int[][]{
          \{0, 1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1\},\
          \{3,-1,-1,3,-1,-1,-1,-1,-1,3,-1,-1,-1,-1,-1\},
          \{6,-1,-1,6,-1,-1,-1,-1,-1,6,-1,-1,-1,-1,-1,-1\},
          \{-1,-1,-1,-1, 8,-1,-1,-1, 8, 7,-1,-1,-1, 8,-1, 8\},\
          \{11,-1,-1, 9,-1,-1,-1,-1,-1,10,-1,-1,-1,-1,-1\}
          \{-1,-1,-1,-1,14,-1,-1,-1,-1,-1,13,-1,-1,-1,14\}
          };
private ArrayList<String> output = new ArrayList<>();
8. 样例输出
输入样例:
while(x==0&&y==1){
    if(y==3&&(y==3&&y+2==14)){
         x=x+2*y;
    }else{
         y=y+2*(4+x);
    }
}
输出样例:
Beginning of output.
Tokens:
_____
Token : <8, while>
Token : <4,(>
Token : \langle 1, x \rangle
Token : <13,==>
Token : <11,0>
Token : <12, &&>
Token : \langle 1, y \rangle
Token : <13,==>
Token : <11,1>
```

Token : <5,)>

Token : $<6, \{>$

Token : <2, if>

Token : <4,(>

Token : <1,y>

Token : <13,==>

Token : <11,3>

Token : <12,&&>

Token : <4,(>

Token : <1,y>

Token : <13,==>

Token : <11,3>

Token : <12, & &>

Token : <1,y>

Token : $\langle 9, + \rangle$

Token : <11,2>

Token : <13,==>

Token : <11,14>

Token : <5,)>

Token : $\langle 5, \rangle$

Token: $<6, \{>$

Token : $\langle 1, x \rangle$

Token : <15,=>

Token : $\langle 1, x \rangle$

Token : <9,+>

Token : <11,2>

Token : $\langle -1, - \rangle$

Token : <1,y>

Token : <14,;>

Token : $\langle 7, \rangle \rangle$

Token : <3,else>

Token : $<6, \{>$

Token : <1,y>

Token : <15,=>

Token : $\langle 1, y \rangle$

Token : <9,+>

Token : <11,2>

Token : $\langle -1, - \rangle$

Token : <4,(>

Token : <11,4>

```
Token : \langle 9, + \rangle
Token : \langle 1, x \rangle
Token : \langle 5, \rangle
Token : <14,;>
Token : \langle 7, \rangle \rangle
Token : <7,}>
Token: <16,$R>
Generators:
_____
Generator : S->while(C){S}
Generator : C->DC'
Generator : D->id==num
Generator : C'->&&DC'
Generator : D->id==num
Generator : C'->€
Generator : S->if(C){S}else{S}
Generator : C->DC'
Generator : D->id==num
Generator : C'->&&DC'
Generator : D->(C)
Generator : C->DC'
Generator : D->id==num
Generator : C'->&&DC'
Generator : D->id==num
End of output.
```

9. 问题及解决

在编程过程中出现过中途无法继续解析的情况,后来发现是将"="与"=="的命名混淆了,以后要多加细心。通过此次编程,对"CFG 生成 LL(1) 分析表"的整个过程有了更深刻的了解,收获颇丰。