CHAPTER - 17

VECTORS

Important Results

- 1. Triangle law of vectors. If $\overline{OA} = \overline{a}$, $\overline{AB} = \overline{b}$ then $\overline{OA} + \overline{AB} = \overline{OB}$ ie., $\overline{OB} = \overline{a} + \overline{b}$
- 2. If O is a fixed point and P any point then $\overline{OP} = \overline{r}$ represents the position vector of P.
- 3. \overline{AB} = Position vector of B Position vector of A
- 4. a and ma are collinear where m is a scalar
- 5. If \overline{a} , \overline{b} , \overline{c} are coplanar then any one of them can be expressed as a linear combination of the other two. ie. $\overline{a} = x\overline{b} + y\overline{c}$
- 6. If \overline{a} , \overline{b} , \overline{c} are non coplanar then any $\overline{r} = x\overline{a} + y\overline{b} + z\overline{c}$
- 7. If \overline{a} , \overline{b} , \overline{c} are non coplanar and $x\overline{a} + y\overline{b} + z\overline{c} = \overline{0}$ then x = y = z = 0
- 8. To prove A, B, C are collinear, find \overline{AB} , \overline{BC} and show that one of them is a scalar multiple of the other
- 9. To prove A, B, C, D are coplanar, find \overline{AB} , \overline{AC} , \overline{AD} and show that these are coplanar.
- 10. Section formula: If \bar{a} and \bar{b} are the position vectors of A and B then position vector of a point dividing AB in the ratio l: m is given by $\bar{r} = \frac{l\bar{b} + m\bar{a}}{l+m}$
- 11. P.V. of the midpoint of AB = $\frac{\overline{a} + \overline{b}}{2}$
- 12. P.V. of the centroid of triangle ABC is $\frac{\overline{a}+\overline{b}+\overline{c}}{3}$ where \overline{a} , \overline{b} , \overline{c} are the position vectors of A, B, C respectively.
- 13. Dot product or Scalar product $\overline{a}.\overline{b} = |\overline{a}| |\overline{b}| \cos \theta$ where θ is the angle between \overline{a} and \overline{b}
- 14. $\cos \theta = \frac{\overline{a}.\overline{b}}{|\overline{a}| |\overline{b}|}$
- 15. Scalar projection of \overline{b} in the direction of $\overline{a} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}|}$, scalar projection of \overline{a} in the direction of $\overline{b} = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|}$

$$\frac{\text{Projection of } \overline{b} \text{ on } \overline{a}}{\text{Projection of } \overline{a} \text{ on } \overline{b}} = \frac{|\overline{b}|}{|\overline{a}|}$$

16. Vector projection of \overline{b} in the direction of $\overline{a} = \left(\frac{\overline{a}.\overline{b}}{|\overline{a}|}\right) \frac{\overline{a}}{|\overline{a}|}$

Component of \overline{r} in the direction of $\overline{a} = \frac{\overline{r} \cdot \overline{a}}{|\overline{a}|^2} \overline{a}$ and perpendicular to $\overline{a} = \overline{r} - \frac{\overline{r} \cdot \overline{a}}{|\overline{a}|^2} \overline{a}$

- 17. $\overline{a}.\overline{b} = \overline{b}.\overline{a}$
- 18. If \overline{a} and \overline{b} are non zero vectors and \overline{a} . $\overline{b} = 0$ then \overline{a} and \overline{b} are perpendicular, if \overline{a} . $\overline{b} < 0$ then θ is obtuse, if \overline{a} . $\overline{b} > 0$, θ is acute
- 19. $(\overline{a})^2 = \overline{a} \cdot \overline{a} = a^2$

$$20. \quad \left(\overline{a} + \overline{b}\right)^2 = a^2 + b^2 + 2\overline{a}.\overline{b}; \qquad \left(\overline{a} - \overline{b}\right)^2 = a^2 + b^2 - 2\overline{a}.\overline{b}; \qquad \left(\overline{a} + \overline{b}\right).\left(\overline{a} - \overline{b}\right) = \left|\overline{a}\right|^2 - \left|\overline{b}\right|^2 = a^2 - b^2$$

- 21. $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$
- 22. If \bar{i} , \bar{j} , \bar{k} are unit vectors along the co-ordinate axes then \bar{i} . $\bar{i} = \bar{j}$. $\bar{j} = \bar{k}$. $\bar{k} = 1$, \bar{i} . $\bar{j} = \bar{j}$. $\bar{i} = \bar{j}$. $\bar{k} = \bar{k}$. $\bar{j} = \bar{k}$. $\bar{i} = \bar{i}$. $\bar{k} = 0$
- 23. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$
- 24. If P is (x, y, z) then the position vector of $P = x\overline{i} + y\overline{j} + z\overline{k}$
- 25. If $\bar{a} = a_1 \bar{i} + a_2 \bar{j} + a_3 \bar{k}$, $\bar{b} = b_1 \bar{i} + b_2 \bar{j} + b_3 \bar{k}$ then $\bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
- 26. In the above, $\cos\theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{\sum a_1^2} \times \sqrt{\sum b_1^2}}$
- 27. If $\bar{a}_{and} \bar{b}_{b}$ are perpendicular then $a_1b_1 + a_2b_2 + a_3b_3 = 0$
- 28. Cross product or vector product $\overline{a} \times \overline{b} = |\overline{a}| |\overline{b}| \sin \theta \overline{n}$ where \overline{n} is a unit vector perpendicular to the plane containing \overline{a} and \overline{b} such that $\overline{a}, \overline{b}, \overline{n}$ form a right handed triad.
- 29. Area of the parallelogram whose adjacent sides are \bar{a} and \bar{b} is $|\bar{a} \times \bar{b}|$
- 30. Area of $\triangle ABC = \frac{1}{2} |\overline{AB} \times \overline{AC}|$
- 31. If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ then $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
- 32. A unit vector perpendicular to the plane of \bar{a} and \bar{b} is $\pm \left(\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}\right)$

33.
$$\overline{a} \times \overline{b} \neq \overline{b} \times \overline{a}$$
 and $\overline{b} \times \overline{a} = -\overline{a} \times \overline{b}$

34.
$$\overline{a} \times \overline{a} = \overline{0}$$

35. If
$$\bar{a}$$
 and \bar{b} are collinear then $\bar{a} \times \bar{b} = \bar{0}$

36.
$$\overline{a} \times (\overline{b} + \overline{c}) = \overline{a} \times \overline{b} + \overline{a} \times \overline{c}$$

37.
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$
 and $\vec{i} \times \vec{j} = \vec{k}$, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$ and $\vec{j} \times \vec{i} = -\vec{k}$ $\vec{k} \times \vec{j} = -\vec{i}$, $\vec{i} \times \vec{k} = -\vec{j}$

38.
$$\sin \theta = \frac{\left| \overline{a} \times \overline{b} \right|}{\left| \overline{a} \right| \left| \overline{b} \right|}$$

39. If $\overline{a}, \overline{b}, \overline{c}$ are the vertices of a $\triangle ABC$ then $\triangle = \frac{1}{2} |\overline{b} \times \overline{c} + \overline{c} \times \overline{a} + \overline{a} \times \overline{b}|$. If the points $\overline{a}, \overline{b}, \overline{c}$ are collinear then $|\overline{b} \times \overline{c} + \overline{c} \times \overline{a} + \overline{a} \times \overline{b}| = 0$

40.
$$(\overline{a} \times \overline{b})^2 + (\overline{a}.\overline{b})^2 = |a|^2 |b|^2$$

- 41. Area of the parallelogram whose diagonals are $\overline{d_1}$ and $\overline{d_2}$ is $\frac{1}{2}|\overline{d_1} \times \overline{d_2}|$
- 42. Area of the quadrilateral whose diagonals are $\overline{d_1}$ and $\overline{d_2}$ is $\frac{1}{2} |\overline{d_1} \times \overline{d_2}|$
- 43. $(\overline{a} \times \overline{b}).\overline{c}$ or $\overline{a}.(\overline{b} \times \overline{c})$ is called the scalar tripple product of $\overline{a}, \overline{b}, \overline{c}$ and is denoted by $(\overline{a}, \overline{b}, \overline{c})$ or $(\overline{a} \ \overline{b} \ \overline{c})$ If $\overline{a}.\overline{b} = \overline{b}.\overline{c} = \overline{c}.\overline{a} = 0$ then $|(\overline{a}, \overline{b}, \overline{c})| = |\overline{a}| |\overline{b}| |\overline{c}|$

44.
$$(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 where $\overline{a} = a_1 \overline{i} + a_2 \overline{j} + a_3 \overline{k}$, $\overline{b} = b_1 \overline{i} + b_2 \overline{j} + b_3 \overline{k}$, $\overline{c} = c_1 \overline{i} + c_2 \overline{j} + c_3 \overline{k}$

45. In a scalar tripple product the dot and the cross can be interchanged ie., $\bar{a} \times \bar{b}, \bar{c} = \bar{a}, \bar{b} \times \bar{c}$

46.
$$(\overline{a}, \overline{b}, \overline{c}) = (\overline{b}, \overline{c}, \overline{a}) = (\overline{c}, \overline{a}, \overline{b})$$

47.
$$(\overline{a}, \overline{b}, \overline{c}) = -(\overline{a}, \overline{c}, \overline{b}) = -(\overline{b}, \overline{a}, \overline{c})$$

48.
$$(\overline{a}, \overline{a}, \overline{b}) = (\overline{a}, \overline{b}, \overline{b}) = (\overline{a}, \overline{c}, \overline{c}) = 0$$

49. $(\bar{a}, \bar{b}, \bar{c})$ = Volume of the parallelopiped whose coterminus edges are $\bar{a}, \bar{b}, \bar{c}$

50. If
$$\overline{A} = l_1 \overline{a} + l_2 \overline{b} + l_3 \overline{c}$$
, $\overline{B} = m_1 \overline{a} + m_2 \overline{b} + m_3 \overline{c}$, $\overline{C} = n_1 \overline{a} + n_2 \overline{b} + n_3 \overline{c}$ then

$$(\overline{\mathbf{A}}, \overline{\mathbf{B}}, \overline{\mathbf{C}}) = \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix} (\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}})$$

51. If
$$\bar{a}, \bar{b}, \bar{c}$$
 are non zero, non parallel vectors then $\bar{a}, \bar{b}, \bar{c}$ are coplanar if $(\bar{a}, \bar{b}, \bar{c}) = 0$

52. If
$$\overline{a}, \overline{b}, \overline{c}$$
 are coplanar then $\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}$, also are coplanar, again $\overline{a} + \overline{b}, \overline{b} + \overline{c}, \overline{c} + \overline{a}; \overline{a} - \overline{b}, \overline{b} - \overline{c}, \overline{c} - \overline{a}$ also are coplanar vectors

53.
$$\vec{i} \times \vec{j} \cdot \vec{k} + \vec{j} \times \vec{k} \cdot \vec{i} + \vec{k} \times \vec{i} \cdot \vec{j} = 3$$

54.
$$\left[\overline{a} - \overline{b}, \overline{b} - \overline{c}, \overline{c} - \overline{a}\right] = 0$$

55.
$$\left[\overline{a} + \overline{b}, \overline{b} + \overline{c}, \overline{c} + \overline{a}\right] = 2\left[\overline{a}, \overline{b}, \overline{c}\right]$$

56.
$$\left[\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a} \right] = \left(\overline{a}, \overline{b}, \overline{c} \right)^2 = \begin{vmatrix} \overline{a}.\overline{a} & \overline{a}.\overline{b} & \overline{a}.\overline{c} \\ \overline{b}.\overline{a} & \overline{b}.\overline{b} & \overline{b}.\overline{c} \\ \overline{c}.\overline{a} & \overline{c}.\overline{b} & \overline{c}.\overline{c} \end{vmatrix}$$

57. Vector tripple product
$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a}.\overline{c})\overline{b} - (\overline{a}.\overline{b})\overline{c}$$

$$\bar{a}$$
 = Outer vector, \bar{c} = remote vector, \bar{b} = adjacent vector

$$\overline{a} \times (\overline{b} \times \overline{c}) = \text{(outer . remote)}$$
 adjacent - (outer . adjacent) remote

Note: $\overline{a} \times (\overline{b} \times \overline{c})$ is coplanar with \overline{b} and \overline{c} , A unit vector. Unit vector perpendicular to \overline{a} and coplanar

with
$$\overline{b}$$
 and \overline{c} is given by $\overline{n} = \frac{\overline{a} \times (\overline{b} \times \overline{c})}{|\overline{a} \times (\overline{b} \times \overline{c})|}$

Again
$$(\overline{a} \times \overline{b}) \times \overline{c} = (\overline{a}.\overline{c})\overline{b} - (\overline{b}.\overline{c})\overline{a}$$
. In general $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$

If
$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$$
 then $(\overline{c} \times \overline{a}) \times \overline{b} = \overline{0}$ and \overline{a} is parallel to \overline{c}

58.
$$i \times (\overline{a} \times i) + j \times (\overline{a} \times j) + \overline{k} \times (\overline{a} \times \overline{k}) = 2\overline{a}$$

59.
$$\overline{i} \times (\overline{j} \times \overline{k}) = \overline{0}$$

60.
$$\overline{a} \times (\overline{b} \times \overline{c}) + \overline{b} \times (\overline{c} \times \overline{a}) + \overline{c} \times (\overline{a} \times \overline{b}) = \overline{0}$$

61.
$$\overline{a} \times (\overline{b} \times \overline{c}), \overline{b} \times (\overline{c} \times \overline{a}), \overline{c} \times (\overline{a} \times \overline{b})$$
 are coplanar

62. A unit vector perpendicular to
$$\overline{a}$$
 and coplanar with \overline{a} and \overline{b} is given by $\overline{n} = \frac{\overline{a} \times (\overline{a} \times b)}{|\overline{a} \times (\overline{a} \times \overline{b})|}$

63.
$$(\overline{a} \times \overline{b}) \bullet (\overline{c} \times \overline{d}) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{a} \cdot \overline{d} \\ \overline{b} \cdot \overline{c} & \overline{b} \cdot \overline{d} \end{vmatrix}$$

64.
$$(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = (\overline{a}, \overline{c}, \overline{d}) \overline{b} - (\overline{b}, \overline{c}, \overline{d}) \overline{a}$$
 and $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = (\overline{a}, \overline{b}, \overline{d}) \overline{c} - (\overline{a}, \overline{b}, \overline{c}) \overline{d}$

$$\Rightarrow \overline{d} = \frac{\left(\overline{d}, \overline{b}, \overline{c}\right) \overline{a} + \left(\overline{d}, \overline{c}, \overline{a}\right) \overline{b} + \left(\overline{d}, \overline{a}, \overline{b}\right) \overline{c}}{\left(\overline{a}, \overline{b}, \overline{c}\right)}$$

65. If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{a}', \bar{b}', \bar{c}'$ are reciprocal system of vectors where $(\bar{a}, \bar{b}, \bar{c})^1$ 0 then

$$\overline{a}' = \frac{\overline{b} \times \overline{c}}{(\overline{a}, \overline{b}, \overline{c})}, \overline{b}' = \frac{\overline{c} \times \overline{a}}{(\overline{a}, \overline{b}, \overline{c})}, \overline{c}' = \frac{\overline{a} \times \overline{b}}{(\overline{a}, \overline{b}, \overline{c})}$$

66 Any vector
$$\overline{\mathbf{r}} = (\overline{\mathbf{r}}.\overline{\mathbf{a}})\overline{\mathbf{a}}' + (\overline{\mathbf{r}}.\overline{\mathbf{b}})\overline{\mathbf{b}}' + (\overline{\mathbf{r}}.\overline{\mathbf{c}})\overline{\mathbf{c}}'$$
 or $\overline{\mathbf{r}} = (\overline{\mathbf{r}}.\overline{\mathbf{a}}')\overline{\mathbf{a}} + (\overline{\mathbf{r}}.\overline{\mathbf{b}}')\overline{\mathbf{b}} + (\overline{\mathbf{r}}.\overline{\mathbf{c}}')\overline{\mathbf{c}}$

$$\begin{aligned} \mathbf{67.} \quad & \overrightarrow{a} \cdot \overrightarrow{a'} + \overrightarrow{b} \cdot \overrightarrow{b'} + \overrightarrow{c} \cdot \overrightarrow{c'} = 3; \\ & \overrightarrow{a'} \times \overrightarrow{b'} + \overrightarrow{b'} \times \overrightarrow{c'} + \overrightarrow{c'} \times \overrightarrow{a'} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{(\overline{a}, \overline{b}, \overline{c})}; \\ & \overrightarrow{a} \times \overrightarrow{a'} + \overrightarrow{b} \times \overrightarrow{b'} + \overrightarrow{c} \times \overrightarrow{c'} = \overline{0}; \\ & \overrightarrow{a} \times \overrightarrow{b'} + \overrightarrow{b} \times \overrightarrow{c'} + \overrightarrow{c'} \times \overrightarrow{a'} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{(\overline{a}, \overline{b}, \overline{c})}; \\ & (\overrightarrow{a}, \overline{b}, \overrightarrow{c}) (\overrightarrow{a'}, \overrightarrow{b'}, \overrightarrow{c'}) = 1, (\overline{a} + \overline{b} + \overline{c}). (\overline{a'} + \overline{b'} + \overline{c'}) = 3 \end{aligned}$$

- 68. If \overline{F} is the force causing displacement \overline{S} then work done = \overline{F} . \overline{S}
- 69. Moment of the force \overline{F} about a point P is $\overline{PQ} \times \overline{F}$ where Q is a point on the line of action of \overline{F} .
- 70. Moment of a couple = $(\overline{r_1} \overline{r_2}) \times \overline{F}$ where $\overline{r_1}$ and $\overline{r_2}$ are the position vectors of the points of application of F and $-\overline{F}$ respectively.
- 71. $|\overline{a} + \overline{b}| = |\overline{a} \overline{b}| \Leftrightarrow \overline{a}$ is perpendicular to \overline{b} ; $|\overline{a} + \overline{b}| = |\overline{a}| + |\overline{b}| \Leftrightarrow \overline{a}$ is parallel to \overline{b} $|\overline{a} + \overline{b}|^2 = |\overline{a}|^2 + |\overline{b}|^2 \Leftrightarrow \overline{a} \text{ is perpendicular to } \overline{b}, |\overline{a} + \overline{b}| = |\overline{a}| |\overline{b}| \Rightarrow \text{ angle between } \overline{a} \text{ and } \overline{b} \text{ is } \pi$
- 72. If \bar{u} is any vector then $(\bar{u}.\bar{i})\bar{i}+(\bar{u}.\bar{j})\bar{j}+(\bar{u}.\bar{k})\bar{k}=\bar{u}$
- 73. In triangle ABC, if D, E, F are the midpoints of the sides BC, CA, AB respectively then $\overline{AD} + \overline{BE} + \overline{CF} = \overline{0}$ and $\overline{AB} + \overline{AC} = 2\overline{AD}$
- 74. If A, B, C, D are the vertices of a tetrahedron ABCD, then its volume = $\frac{1}{6} \left[\overline{AB}, \overline{AC}, \overline{AD} \right]$
- 75. If $\overline{a}, \overline{b}, \overline{c}$ form the sides BC, CA, AB of a triangle ABC then $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$ and if $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$ then $\overline{a} + \overline{b} + \overline{c} = 0$
- 76. Position vector of the incentre of triangle ABC is $\frac{BC\overline{a} + CA\overline{b} + AB\overline{c}}{BC + CA + AB}$ where $\overline{a}, \overline{b}, \overline{c}$ are the position vectors of A,B,C.
- 77. If $\overline{a}, \overline{b}, \overline{c}$ form a right handed system then $\overline{c} = \overline{a} \times \overline{b}$. If they form a left handed system then $\overline{c} = -\overline{a} \times \overline{b}$
- 78. If \overline{a} , \overline{b} , \overline{c} are mutually perpendicular then $|\overline{a} + \overline{b} + \overline{c}| = \sqrt{a^2 + b^2 + c^2}$
- 79. If \overline{a} perpendicular to $\overline{b}+\overline{c},\overline{b}$, perpendicular to $\overline{c}+\overline{a},\overline{c}$ perpendicular $\overline{a}+\overline{b}$ then $|\overline{a}+\overline{b}+\overline{c}|=\sqrt{a^2+b^2+c^2}$

80.
$$\left(\overline{a}.\overline{i}\right)^2 + \left(\overline{a}.\overline{j}\right)^2 + \left(\overline{a}.\overline{k}\right)^2 = a^2$$

81.
$$(\overline{a} \times \overline{i})^2 + (\overline{a} \times \overline{j})^2 + (\overline{a} \times \overline{k})^2 = 2a^2$$

PART I - (JEEMAIN LEVEL)

PART 1

SECTION - I - Straight objective

- If vectors $\overline{AB} = -3\hat{i} + 4\hat{k}$ and $\overline{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of triangle ABC, 1. then the length of the median through A is
 - (1) $\sqrt{14}$
- (2) √18
- (3) $\sqrt{29}$
- (4)5
- If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors 2. and $|\vec{c}| = \sqrt{3}$ then the values of $\alpha \& \beta$ are
 - (1) $\alpha = 1, \beta = -1$
- (2) $\alpha = 1, \beta = \pm 1$
- (3) $\alpha = -1, \beta = \pm 1$ (4) $\alpha = \pm 1, \beta = 1$
- If $\hat{i} 3\hat{j} + 5\hat{k}$ bisects the angle between \hat{a} and $-\hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then 3.
 - (1) $\hat{a} = \frac{1}{105} (41\hat{i} + 88\hat{j} 40\hat{k})$
- (2) $\hat{a} = \frac{1}{105} (41\hat{i} + 88\hat{j} + 40\hat{k})$
- (3) $\hat{a} = \frac{1}{105} (-41\hat{i} + 88\hat{j} 40\hat{k})$
- (4) $\hat{a} = \frac{1}{105} (41\hat{i} 88\hat{j} 40\hat{k})$
- If \vec{a} , \vec{b} and \vec{c} are vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 7$, $|\vec{b}| = 5$ and $|\vec{c}| = 3$, 4. then the angle between \vec{b} and \vec{c} is
 - $(1) 60^{0}$
- $(2) 30^{0}$
- $(3) 45^0$
- $(4) 90^0$
- If \hat{a} , \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle θ , 5. then the maximum value of θ is
 - (1) $\frac{\pi}{3}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{2\pi}{2}$
- $(4) \frac{5\pi}{6}$
- If $\vec{r} = x_1(\vec{a} \times \vec{b}) + x_2(\vec{b} \times \vec{a}) + x_3(\vec{c} \times \vec{d})$ and $4[\vec{a} \ \vec{b} \ \vec{c}] = 1$, then $x_1 + x_2 + x_3$ is equal to 6.
 - $(1) \frac{1}{2} \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$

(2) $\frac{1}{4}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$

(3) $2\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$

(4) $4\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$

7.	Let O be the origin of the coordinate system in the Cartesian plane, \overline{OP} and \overline{OR} be vectors
	Let 6 be the origin of the coordinate system in the Cartesian plane, 67 and 68 be vectors
	making angle 450 and 1350 respectively with the positive directions of the x-axis (i.e., in the
	counter clock wise). Rectangle OPQR is completed and M is the midpoint of PQ. If the line \overline{OM}
	meets the diagonal PR at T, and $ \overline{OP} = 3$, $ \overline{OR} = 4$, then \overline{OT} is

 $(1) \frac{1}{2}(\hat{i}+\hat{j}) \qquad (2) \frac{2}{3}(\hat{i}+5\hat{j}) \qquad (3) \frac{\sqrt{2}}{3}(\hat{i}-5\hat{j}) \qquad (4) \frac{\sqrt{2}}{3}(\hat{i}+5\hat{j})$

8. Let \vec{a} , \vec{b} , \vec{c} be vectors of equal magnitude such that the angle between \vec{a} and \vec{b} is α , \vec{b} and \vec{c} is β and \vec{c} and \vec{a} is γ . Then the minimum value of $\cos \alpha + \cos \beta + \cos \gamma$ is

 $(1)^{\frac{1}{2}}$

 $(2) -\frac{1}{2}$

(3) $\frac{3}{2}$

 $(4) -\frac{3}{2}$

Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. If 9. $\vec{a} = n(\vec{b} \times \vec{c})$, then value of n is

 $(1) \pm 1$

 $(2) \pm 2$

 $(3) + \sqrt{3}$

(4)0

 $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$ if \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|$, $|\vec{a} - \vec{c}| = 2\sqrt{2}$ and the angle 10. between $\vec{a} \times \vec{b}$ and \vec{c} is 30° , then $|(\vec{a} \times \vec{b}) \times \vec{c}| =$

(1) 2/3

(2) 3/2

(3)2

(4) 3

11. If D, E, F are midpoints of the sides BC, CA, AB respectively of a triangle ABC and O is any point then $\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BE} + \frac{1}{3}\overrightarrow{CF} =$

A) \overline{AC}

B) $2\overline{AC}$

C) $\frac{1}{2}\overline{AC}$

D) $\vec{0}$

Let $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ be two vectors. If a vector perpendicular to both the 12. vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ has the magnitude 12 then one such vector is

(1) $4(2\hat{i} + 2\hat{i} - \hat{k})$

(2) $4(-2\hat{i}-2\hat{j}+\hat{k})$ (3) $4(2\hat{i}-2\hat{j}-\hat{k})$

(4) $4(2\hat{i}+2\hat{i}+\hat{k})$

Let $\vec{a} = 2\hat{i} + \lambda_1 \hat{j} + 3\hat{k}$, $\vec{b} = 4\hat{i} + (3 - \lambda_2)\hat{j} + 6\hat{k}$ and $\vec{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ be three vectors such 13. that $\vec{b} = 2\vec{a}$ and \vec{a} is perpendicular to \vec{c} . Then a possible value of $(\lambda_1, \lambda_2, \lambda_3)$ is:

 $(1)\left(\frac{1}{2},4,-2\right) \qquad (2)\left(-\frac{1}{2},4,0\right) \qquad (3)\left(1,3,1\right)$

(4)(1,5,1)

- Let $\vec{a} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + \sqrt{2}\hat{k}$ and $\vec{c} = 5\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ be three vectors such that the projection 14. of \vec{b} on \vec{a} is $|\vec{a}|$. If $\vec{a} + \vec{b}$ is perpendicular to \vec{c} , then $|\vec{b}|$ is equal to
 - (1) $\sqrt{22}$
- (2)4

- $(3) \sqrt{32}$
- (4)6
- Let $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$ be two vectors. If \vec{c} is a vector such that $\vec{b} \times \vec{c} = \vec{b} \times \vec{a}$ and 15. $\vec{c} \cdot \vec{a} = 0$, then $\vec{c} \cdot \vec{b}$ is equal to
 - (1) $\frac{1}{2}$
- (2) 1
- $(3) -\frac{1}{2}$
- $(4) \frac{3}{2}$
- The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane 16. containing the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, is:
 - (1) $\frac{\sqrt{3}}{2}$
- (2) $\sqrt{\frac{3}{3}}$
- (3) $\sqrt{6}$
- Let $\vec{a} = 3\hat{i} + 2\hat{j} + x\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$ for some real x. Then $|\vec{a} \times \vec{b}| = r$ is possible if: 17.
 - (1) $3\sqrt{\frac{3}{2}} < r < 5\sqrt{\frac{3}{2}}$ (2) $0 < r \le \sqrt{\frac{3}{2}}$ (3) $\sqrt{\frac{3}{2}} < r \le 3\sqrt{\frac{3}{2}}$ (4) $r \ge 5\sqrt{\frac{3}{2}}$

- Let $\sqrt{3}\hat{i} + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and $\beta\hat{i} + (1 \beta)\hat{j}$ respectively be the position vectors of the points A, B 18. and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $\frac{3}{\sqrt{2}}$, then the sum of all possible values of β is:
 - (1)2

(3) 3

(4)4

Assertion & Reasoning

- (a) If both Statement-I and Statement-II are true and the reason is the correct explanation of the statement-I.
- (b) If both Statement-I and Statement-II are true but reason is not the correct explanation of the statement-I.
- (c) If Statement-I is true but Statement-II is false.
- (d) If Statement-I is false but Statement-II is true.

19. **Statement-I:** If \vec{u} and \vec{v} are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them, then $\vec{x} = \frac{\vec{u} + \vec{v}}{2\sin\frac{\alpha}{2}}$.

Statement-II: If ABC is an isosceles triangles with AB = AC = 1, then vectors representing bisector of angle A is given by $\overline{AB} = \frac{\overline{AB} + \overline{AC}}{2}$.

- 20. \vec{a} and \vec{c} are unit vectors and $|\vec{b}| = 4$. The angle between \vec{a} and \vec{c} is $\cos^{-1}\left(\frac{1}{4}\right)$. If $\vec{b} 2\vec{c} = \lambda \vec{a}$ then value of λ is
 - A) 3,-4
- B) $\frac{1}{4}, \frac{3}{4}$
- C) -3,4
- D) $\frac{-1}{4}, \frac{3}{4}$

SECTION - II

Numerical type Questions

- 21. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^2 + |\vec{b}-\vec{c}|^2 + |\vec{c}-\vec{a}|^2 = 9$, then $|2\vec{a}+5\vec{b}+5\vec{c}|$ is ______
- 22. \vec{a} , \vec{b} , \vec{c} are 3 unit vectors such that each is inclined at an angle θ with the other. A unit vector \vec{d} is equally inclined with these vectors at an angle α , then $4\cos\theta 3\cos2\alpha$ is ______
- 23. Let $\overline{V}_1 = \hat{i} + \hat{j} 2\hat{k}$, $\overline{V}_2 = \hat{i} 2\hat{j} + \hat{k}$, $\overline{V}_3 = -2\hat{i} + 2\hat{j} + \hat{k}$ are three vectors. Let \overline{V} be a vector such that it can be expressed as a linear combination of \overline{V}_1 and \overline{V}_2 also $\overline{V} \cdot \overline{V}_3 = 0$ and the projection of vector \overline{V} on $\hat{i} \hat{j} + \hat{k}$ is $6\sqrt{3}$. If $\overline{V} = t(\hat{i} + 3\hat{j} 4\hat{k})$ then the absolute value of 't' is ______
- 24. If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} 2\vec{b})]$ is _____
- 25. Let \vec{a} , \vec{b} , \vec{c} be coplanar unit vectors such that $\vec{b} \cdot \vec{c} = \cos \alpha$, $\vec{c} \cdot \vec{a} = \cos \beta$, $\vec{a} \cdot \vec{b} = \cos \gamma$ then the value of $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma 2\cos \alpha \cos \beta \cos \gamma$ is _____

PART - II (JEE ADVANCED)

SECTION - III (Only one option correct type)

26.	Let \hat{a} and \hat{b}	be mutually p	erpendicular unit v	ectors. If \vec{r} is an	y arbitrary vector then
-----	-----------------------------	---------------	---------------------	----------------------------	-------------------------

A)
$$\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})$$

A)
$$\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})$$
B) $\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} - (\vec{r} \cdot \hat{b}) \hat{b} - (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})$

C)
$$\vec{r} = (\vec{r} \cdot \hat{a})\hat{a} - (\vec{r} \cdot \hat{b})\hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$$
 D) $\vec{r} = (\vec{r} \cdot \vec{a})\vec{a} + (\vec{r} \cdot \vec{b})\vec{b}$

D)
$$\vec{r} = (\vec{r}.\vec{a})\vec{a} + (\vec{r}.\vec{b})\vec{b}$$

27. If
$$\vec{a}$$
 satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$ then \vec{a} is equal to

A)
$$\lambda \hat{i} + (2\lambda - 1)\vec{j} + \lambda \hat{k}, \lambda \in \mathbb{R}$$

B)
$$\lambda \hat{i} + (1-2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in \mathbb{R}$$

C)
$$\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in \mathbb{R}$$

D)
$$\lambda \hat{i} - (1 + 2\lambda) \hat{j} + \lambda \hat{k}, \lambda \in \mathbb{R}$$

28. If
$$\vec{a}, \vec{b}, \vec{c}$$
 are unit vectors such that $\vec{a}.\vec{b} = 0 = \vec{a}.\vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$ is

A)
$$\frac{1}{2}$$

D)
$$\frac{1}{3}$$

29. If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2 respectively, and $(1-3\vec{a}.\vec{b})^2 + |2\vec{a}+\vec{b}+3(\vec{a}\times\vec{b})|^2 = 47$ then the angle between \vec{a} and \vec{b} is

A)
$$\frac{\pi}{3}$$

B)
$$\pi - \cos^{-1}\left(\frac{1}{4}\right)$$
 C) $\frac{2\pi}{3}$

C)
$$\frac{2\pi}{3}$$

D)
$$\cos^{-1}\left(\frac{1}{4}\right)$$

If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k})$ 30.

=
$$(2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$$
 then a possible value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is

A)0

D) 8

 \vec{a} and \vec{b} are two mutually perpendicular unit vectors and \vec{c} is a unit vector inclined at an angle 31. θ to both \vec{a} and \vec{b} if $\vec{c} = x\vec{a} + x\vec{b} + y(\vec{a} \times \vec{b})$, where $x, y \in R$, exhaustive range of θ is

A)
$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
 B) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ C) $\left[\pi, \frac{\pi}{2}\right]$ D) $\left[0, \frac{\pi}{2}\right]$

B)
$$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$

C)
$$\left[\pi, \frac{\pi}{2}\right]$$

D)
$$\left[0, \frac{\pi}{2}\right]$$

 \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector \vec{a} the value of $(((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c})) \cdot (\vec{b} - \vec{c})$ 32. is always equal to

A)
$$|\vec{a}|$$

B)
$$\frac{1}{2}|\vec{a}|$$

C)
$$\frac{1}{3}|\vec{a}|$$

33. If $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{c} = \hat{i} + \hat{j} + 2\hat{k}$ and $(1+\alpha)\hat{i} + \beta(1+\alpha)\hat{j} + \gamma(1+\alpha)(1+\beta)\hat{k}$ $=\vec{a}\times(\vec{b}\times\vec{c})$ then α,β and γ are

A)
$$-2, -4, -\frac{2}{3}$$
 B) $2, -4, \frac{2}{3}$ C) $-2, 4, \frac{2}{3}$ D) $2, 4, -\frac{2}{3}$

B)
$$2,-4,\frac{2}{3}$$

C)
$$-2,4,\frac{2}{3}$$

$$(2,4,-\frac{2}{3})$$

SECTION - IV (More than one correct answer)

If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and λ is a real number, then the vectors $\vec{a} + 2\vec{b} + 3\vec{c}$, $\lambda \vec{b} + \mu \vec{c}$ and $(2\lambda - 1)\vec{c}$ are coplanar for

A) all values of
$$\mu$$
 B) $\lambda = \frac{1}{2}$

B)
$$\lambda = \frac{1}{2}$$

C)
$$\lambda = 0$$

D) no value of λ

The vector $\hat{i}+x\hat{j}+3\hat{k}$ is rotated through an angle θ and doubled in magnitude and becomes $4\hat{i}+(4x-2)\hat{j}+2\hat{k}$. The values of x are

Let x, y and z be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{2}$. If \bar{a} is a non-zero vector perpendicular to \bar{x} and $\bar{y} \times \bar{z}$ and \bar{b} is a non zero vector perpendicular to \bar{y} and $\frac{1}{z} \times \frac{1}{x}$, then

A)
$$\overline{b} = (\overline{b}.\overline{z})(\overline{z} - \overline{x})$$

B)
$$\overline{a} = (\overline{a}.\overline{y})(\overline{y} - \overline{z})$$

A)
$$\overline{b} = (\overline{b}.\overline{z})(\overline{z} - \overline{x})$$
 B) $\overline{a} = (\overline{a}.\overline{y})(\overline{y} - \overline{z})$ C) $\overline{a}.\overline{b} = -(\overline{a}.\overline{y})(\overline{b}.\overline{z})$ D) $\overline{a} = (\overline{a}.\overline{y})(\overline{z} - \overline{y})$

D)
$$\overline{a} = (\overline{a}.\overline{y})(\overline{z} - \overline{y})$$

SECTION - V (Numerical Type)

37. Let $|\overline{p}| = \frac{2}{3}\sqrt{2}$, $|\overline{q}| = 1$ and the angle between \overline{p} and \overline{q} be $\frac{\pi}{4}$. If a parallelogram is formed with adjacent sides $\vec{a} = \vec{p} - 3\vec{q}$ and $\vec{b} = 5\vec{p} + 2\vec{q}$, then the length of the shorter diagonal is

38. If $\vec{a} = x\hat{i} + (x-1)\hat{j} + \hat{k}$ and $\vec{b} = (x+1)\hat{i} + \hat{j} + a\hat{k}$ always make an acute angle for all $x \in R$, then the least integral value of a is

39. Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} is a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$, then the value of $[\vec{c}.\vec{b}]$, where [.] represents the greatest integer function, is

SECTION VI - (Matrix match type)

40.

	Column I		ColumnII
A)	If $ \vec{a} = \vec{b} = \vec{c} $, angle between each pair of vectors is $\frac{\pi}{3}$ and $ \vec{a} + \vec{b} + \vec{c} = \sqrt{6}$, then $2 \vec{a} $ is equal to	p	3
B)	If \vec{a} is a perpendicular to $\vec{b} + \vec{c}$, \vec{b} is perpendicular to $\vec{c} + \vec{a}$, \vec{c} is perpendicular to $\vec{a} + \vec{b}$, $ \vec{a} = 2$, $ \vec{b} = 3$ and $ \vec{c} = 6$. Then $ \vec{a} + \vec{b} + \vec{c} $ is equal to	q	2
C)	$\vec{a}=2\hat{i}+3\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2\hat{j}-4\hat{k}, \vec{c}=\hat{i}+\hat{j}+\hat{k} \text{ and } d=3\hat{i}+2\hat{j}+\hat{k}$ then $\frac{1}{7}(\vec{a}\times\vec{b}).(\vec{c}\times\vec{d})$ is equal to	r	4
D)	If $ \vec{a} = \vec{b} = \vec{c} = 2$ and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 2$, then $[\vec{a} \vec{b} \vec{c}] \cos 45^{\circ}$ is equal to	s	5

- A) A-Q,B-S,C-P,D-R
- C) A-Q,B-S,C-P,D-Q

- B) A-R,B-S,C-P,D-R
- D) A-Q, R,B-S,C-P,D-R