GL(n)-orbits on Two Complete Flag Varieties and a Line

Mark Colarusso, University of South Alabama and Sam Evens, University of Notre Dame

October 19, 2025

I: Intro

Let
$$G = GL(n, \mathbb{C})$$

 $\mathcal{B} = \text{flag variety of } G.$

Of course $\mathcal{B}=G/B_+$, where $B_+=\operatorname{std}$ upper Δ Borel subgroup.

Consider: G-diagonal orbits on the triple product $\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1}$.

These orbits have been studied extensively by Magyar, Travkin, and others.

They are related to study of mirabolic \mathcal{D} -modules which play an important role in study of category \mathcal{O} for rational Cherednik algebras.

Goal: Describe closure ordering and geometry of $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$ using a variant of the product of Bruhat orders on $\mathcal{S}_n \times \mathcal{S}_n$.

Approach: Suffices to understand geometry of a certain subset of $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$.

This subset is given by action of "little Borel" on \mathcal{B} .

Orbits of "Little Borel":

Embed $G_{n-1} := GL(n-1) \subset G$ in the upper left corner.

 $B_{n-1}=$ std upper Δ Borel of G_{n-1} embedded in B_+ in upper left corner.

FACT: B_{n-1} acts on \mathcal{B} with finitely many orbits.

Let B^* be the Borel subgroup that stabilizes the flag:

$$\mathcal{E}^* := (\mathcal{E}_1^* \subset \ldots \subset \mathcal{E}_i^* \subset \ldots \subset \mathcal{E}_n^*),$$

$$\mathcal{E}_{i}^{*} = \operatorname{span}\{e_{n}, e_{1}, \dots, e_{i-1}\}.$$

(Here $e_j = j$ -th standard basis vector of \mathbb{C}^n .)

NOTE: $B_{n-1}Z = B_+ \cap B^*$ with Z = centre of G.

Theorem: The B_{n-1} -orbits on \mathcal{B} are precisely the non-empty intersections of B and B^* -orbits on \mathcal{B} .

Bruhat decomposition \Rightarrow For $Q \in B_{n-1} \backslash \mathcal{B}$,

$$Q = (BwB/B) \cap (B^*u^*B^*/B^*).$$

Def'n: For $Q \in B_{n-1} \setminus \mathcal{B}$, the *Shareshian pair* (or $\mathcal{S}h$ -pair) associated to the orbit Q is

$$Sh(Q) = (w, u^*) \in S_n \times S_n \Leftrightarrow$$

$$Q = (BwB/B) \cap (B^*u^*B^*/B^*).$$

Theorem: The closure relations on $B_{n-1} \setminus \mathcal{B}$ can be described by Sh-Bruhat ordering:

$$\overline{Q} = \overline{(BwB/B)} \cap \overline{(B^*u^*B^*/B^*)}.$$

i.e. \overline{Q} is the *intersection* of two Schubert varieties (albeit) with respect to different Borel subgroups.

Further, the "extended" Richardson-Springer monoid action on $B_{n-1} \setminus \mathcal{B}$ can be understood using a version of the classical monoid action of \mathcal{S}_n on itself extended diagonally to the product $\mathcal{S}_n \times \mathcal{S}_n$.

Back to "Big Picture": $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$.

FACT: $B_{n-1} \setminus \mathcal{B}$ embeds in $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$ as

follows:

First Observe:

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\longleftrightarrow B_+\setminus (\mathcal{B}\times\mathbb{P}^{n-1}).$$

 B_+ -orbits on $\mathcal{B} \times \mathbb{P}^{n-1}$ are determined by projection to second factor:

Let
$$\mathcal{O}_i = B_+ \cdot [e_i] \subset \mathbb{P}^{n-1}$$
.

Then

$$B_{+}\setminus (\mathcal{B}\times \mathbb{P}^{n-1})=\coprod_{i=1}^{n}B_{+}\setminus (\mathcal{B}\times \mathcal{O}_{i}).$$

We can reduce things one more time:

Let
$$S_i := \operatorname{Stab}_{B_+}([e_i]) \subset B_+$$

$$B_+ \setminus (\mathcal{B} \times \mathcal{O}_i) \longleftrightarrow S_i \setminus \mathcal{B}.$$

NOTE: For i = n, $S_n = B_{n-1}Z$ with Z = centre of G, i.e.

$$B_+ \setminus (\mathcal{B} \times \mathcal{O}_n) \longleftrightarrow B_{n-1} \setminus \mathcal{B}.$$

To understand $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$ suffices to understand a subset of "Little Borel" orbits in higher rank.

Let
$$G_{n+1} = GL(n+1)$$
:

 $G \subset G_{n+1}$ in top left hand corner.

$$\mathcal{B}_{n+1} = (\text{flag variety of } G_{n+1}) \cong G_{n+1}/B_{+,n+1}$$

and embed $B_+ \subset B_{+,n+1}$ in the top left corner as before:

MAIN THEOREM: There is a Zariski open, B_+ -stable subvariety \mathfrak{X} of \mathcal{B}_{n+1}

such that there exists a 1-1 correspondence

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\longleftrightarrow B_+\setminus \mathfrak{X}$$

which preservers the closure ordering and intertwines Richardson-Springer monoid actions on either set of orbits (with small caveats).

Consequences:

Clearly, $B_+ \setminus \mathfrak{X} \subset B_+ \setminus \mathcal{B}_{n+1}$.

Upshot:

- (1) Closure ordering on $B \setminus \mathfrak{X}$ and therefore on $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$ can be described by $\mathcal{S}h$ -ordering which is a variant on product of Bruhat order on $\mathcal{S}_{n+1} \times \mathcal{S}_{n+1}$.
- (2) Richardson-Springer monoid action on $G \setminus (\mathcal{B} \times \mathcal{B}^{n-1})$ can be understood in terms of classical monoid action of \mathcal{S}_{n+1} on itself extended to product $\mathcal{S}_{n+1} \times \mathcal{S}_{n+1}$ diagonally.

Further, since $B_+ \setminus \mathcal{B}_{n+1} \subset G_{n+1} \setminus (\mathcal{B}_{n+1} \times \mathcal{B}_{n+1} \times \mathcal{B}_{n+1})$.

We also obtain an embedding of sets of orbits

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\hookrightarrow G_{n+1}\setminus (\mathcal{B}_{n+1}\times\mathcal{B}_{n+1}\times\mathbb{P}^n).$$

where the embedding respects the closure ordering.

Comparing with Magyar:

Magyar parameterizes $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1})$ by so-called decorated permutations:

Decorated Permutation: (w, Δ) , where $w \in \mathcal{S}_n$ and $\Delta = \{j_1 < \ldots < j_k\} \subset \{1, \ldots, n\}$ is a descending sequence for w^{-1} .

i.e.
$$\{w^{-1}(j_k) < \ldots < w^{-1}(j_1)\}.$$

Magyar describes closure ordering on $G\setminus (\mathcal{B}\times \mathcal{B}\times \mathbb{P}^{n-1})$ using subtle combinatorial ordering on set of all decorated permutations. No description of monoid action is given.

Example of n = 2: $GL(2) \setminus (\mathcal{B}_2 \times \mathcal{B}_2 \times \mathbb{P}^1)$:

$$(id, \{1\})$$
 $\alpha^2 \quad \alpha^1$
 $(s, \{1\}) \quad (s, \{2\}) \quad (id, \{2\})$
 α^2
 $\alpha^1 \quad | \quad \alpha^2$
 $(s, \{1, 2\})$

$$B_2 \setminus \mathfrak{X} \subset B_2 \setminus \mathcal{B}_3$$
: $s = (1,2), t = (2,3); s^* = (1,3), t^* = (1,2)$

Sketch of Proof of Main Theorem:

The correspondence $G \setminus (\mathcal{B} \times \mathcal{B} \times \mathbb{P}^{n-1}) \longleftrightarrow B_{+} \setminus \mathfrak{X}$ is constructed locally.

Recall:

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\longleftrightarrow B_+\setminus (\mathcal{B}\times\mathbb{P}^{n-1}).$$

For
$$\mathcal{O}_i = B_+ \cdot [e_i] \subset \mathbb{P}^{n-1}$$
,

$$B_+ \setminus (\mathcal{B} \times \mathbb{P}^{n-1}) \longleftrightarrow \coprod_{i=1}^n B_+ \setminus (\mathcal{B} \times \mathcal{O}_i).$$

Let
$$S_i = \operatorname{Stab}_{B_+}[e_i]$$
, then

$$B_+ \setminus (\mathcal{B} \times \mathcal{O}_i) \longleftrightarrow S_i \setminus \mathcal{B}_n.$$

STEP 1:

For each i = 1, ..., n, develop a theory of i-Shpairs for S_i -orbits on \mathcal{B} .

FACT 1: \exists a Borel subgroup $B^i \subset G$ such that the $S_i - orbits$ on \mathcal{B} are precisely the non-empty intersections of B and B^i -orbits on \mathcal{B} .

 \Rightarrow For $Q \in S_i \backslash \mathcal{B}$, we can define:

$$Sh_i(Q) := (w, u^i) \in S_n \times S_n \Leftrightarrow$$

$$Q = (BwB/B) \cap (B^i u^i B^i/B^i).$$

 \Rightarrow Can describe closure ordering, monoid actions, etc using product of Bruhat orders on Sh_i -pairs just as for B_{n-1} -orbits.

STEP 2:

G = GL(n) acts on flag variety \mathcal{B}_{n+1} of G_{n+1} with finitely many orbits.

(Up to centre G is a symmetric subgroup of G_{n+1} .)

These orbits are classified by Yamamoto, Matsuki-Oshima, etc.

FACT 2: For every $i=1,\ldots,n$, \exists a G-orbit $\mathcal{Q}(i)$ on \mathcal{B}_{n+1} and a 1-1 correspondence, preserving the closure ordering, intertwining monoid actions, etc:

$$S_i \backslash \mathcal{B}_n \longleftrightarrow B_+ \backslash \mathcal{Q}(i) \subset B_+ \backslash \mathcal{B}_{n+1},$$

STEP 3: Piece together correspondences in STEP 2 to prove main result:

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\longleftrightarrow B_+\setminus \mathfrak{X},$$

The Zariski open subvariety $\mathfrak{X} := \coprod_{i=1}^n \mathcal{Q}(i)$ is the disjoint union of G-orbits on \mathcal{B}_{n+1} from STEP 2.

The "local" correspondence in STEP 2:

$$S_i \backslash \mathcal{B}_n \longleftrightarrow B_+ \backslash \mathcal{Q}(i) \subset B_+ \backslash \mathcal{B}_{n+1}$$

then glues together to give the "global" one on the level of sets of orbits.

HOWEVER: Proving the "global" correspondence preserves closure relations is subtle,

Strategy:

DESCRIBE:

$$G\setminus (\mathcal{B}\times\mathcal{B}\times\mathbb{P}^{n-1})\longleftrightarrow B\setminus \mathfrak{X}\hookrightarrow G_{n+1}\setminus (\mathcal{B}_{n+1}\times\mathcal{B}_{n+1}\times\mathbb{P}^n).$$

in terms of decorated permutations and then show Magyar's ordering on decorated permutations is preserved.

PROBLEM: The "local" correspondence is not easy to describe using decorated permutations.

SOLUTION: HOWEVER we can

DESCRIBE $S_i \setminus \mathcal{B}_n \longleftrightarrow B \setminus \mathcal{Q}(i) \subset B \setminus \mathcal{B}_{n+1}$ in terms of $\mathcal{S}h$ -data.

Translating the correspondence in terms of $\mathcal{S}h$ -data into decorated perms is relatively straightforward.

Future Goals:

- (1) Generalize Sh picture to describe B_+ -orbits on the product $\mathcal{B} \times X_w$, where X_w is a Schubert cell in a Grassmannian which is a toric variety.
- (2) Applications to Representation Theory and Other Combinatorics:

The theory of B_{n-1} -orbits on Gr(k,n) has a particularly nice combinatorial description both in terms of Sh-pairs and other combinatorial data (i.e. painted Young diagrams).

The geometric and combinatorial data line up nicely with the structure of cyclic $U(\mathfrak{b}_{n-1})$ -submodules of $\bigwedge^k \mathbb{C}^n$.

(3) What about the case where G = SO(n)??