MODELLING AND SIMULATION FOR FOOD ORDERING SYSTEM FOR A DIGITAL CAFETERIA

SUBMITTED BY:

PARTICIPANT 01:

NAME: **SRISTI MITRA** ROLL: **2K19/CO/389**

PARTICIPANT 02:

NAME: **ZISHNENDU SARKER**

ROLL: **2K19/CO/450**

SUBMITTED TO:

PRATIBHA KAMAL MAAM

DELHI TECHNOLOGICAL UNIVERSITY

INTRODUCTION

Here we start presenting our aim, objective and the whole work done for the project.

TABLE OF CONTENTS

01

INTRODUCTION

Here we will describe about our aim, work and objective of the project

TECHNICAL DOCUMENTATION AND RESULT

Here we show the code of the system, its concept, implementation and its output

APPROACH

Here we are mentioning the methodology of our work

CONCLUSIÓN

Here we stretching an end to our project and also including the references which inspired us to the work

- a digital cafeteria, where the system is under a computer program
- be more feasible
- give most comfort to the customers
- save time of the customer

OBJECTIVE

- This system of food ordering, no customer has to stay in line
- They are available with the overview of the whole menu card with which food's price
- They are being able to be conscious about the time event.
- They are also paying digitally where it is safer for the customer and also for the restaurant.

And if we see the current situation where the pandemic is preventing us from going outside and human interaction is not safe anymore, our digital restaurant or cafeteria system is a safer option for people to dine outside by avoiding crowd.

APPROACH

APPROACH

WELCOME MESSAGE

They may arrive alone or in a group and as soon as they arrive, they will be treated with a welcome message such as "Welcome to the restaurant. Hope you are having a smile on your face".

THE PRESENTATION EVENT

The system will show the menu card where there will be price, quantity available with the foods. The customer will also be able to see the time for preparing food. They will be able to order food as their sweet-will.

APPROACH

ORDERING AND BILLING EVENTS

System will allow the option ordering the preferable meals and also the option for modifying the order. Then according to the order, calculation and payment of bill will occur

TIME EVENT

The system will show the customer the waiting time, and inform him how much time he needs to wait for food and he can be conscious about time

THE GRATITUDE EVENT

After the payment of the order, the system will also show gratitude for receiving the food ordered by them with a message like "Thank you for ordering from us.

Hope you will like your meal. Have a nice day." This will complete the system

TECHNICAL DOCUMENTATION AND RESULT

AND ALSO INCLUDE THE GRAPH CHART AND ALSO THE SURVEY RESULTS

HERE WE WILL PRESENT OUR CODE, RESULTS AND THE EXPLANATION OF THE CODES AND CONCEPTS FOR MAKING THIS PROJECT SUCCESSFUL.

DOCUMENTATION PLAN

Our goal is present a proper working , efficient , beneficial food ordering system for a digital cafeteria

Conducted a quick survey with people to get the opinion about this system

Taking c++ language for to build the code

Identifying the problem and making a structure to solve and implement it

Codeblocks, Turbo C++ as software and some websites as references help us to reach our goal

STRUCTURE AND DESIGN

We took our project name as "FOOD ORDERING SYSTEM FOR A DIGITAL CAFETERIA"

Sort out the problem step by step and also build the solution alongside

We combine all the solutions sequentially and make it easier to understand and also make it feasible.

We try to make this system user friendly

After completing the whole code, it will be easier for the developers to understand the code to

develop further if needed.

We took all necessary information and followed the proper steps for the accuracy of the flowchart.

<u>&</u>

After identifying the problem, firstly we make a draft

Secondly, according to the draft we made a flowchart

Double checked the flowchart for better options

According to the flowchart, we build our code.

DATA FLOW DIAGRAM

FLOWCHART

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

IMPLEMENTATION OF QUEUEING SYSTEM

HERE, WE ARE SHOWING A DRAFT WHERE WE TOOK PEAK HOURS AS 12pm, TAKING 7 CUSTOMERS IN 10 MINUTES AND IMPLEMENTED FOR OUR SYSTEM

CUSTOMER	ARRIVAL TIME OF CUSTOMER	SERVICE TIME BEGINS	DURING SERVICE TIME	SERVICE TIME ENDS	WAITING TIME OF CUSTOMER	IDLE TIME OF THE SYSTEM
01	00	00	02	02	00	00
02	01	02	01	03	01	00
03	04	04	01	05	00	01
04	05	05	01	06	00	00
05	06	06	01	07	00	00
06	09	09	02	11	00	02
07	10	11	02	13	01	00

Table For Bar CHART

EVENTS	CUSTOMER NUMBER	CLOCK TIME	
ARRIVAL	01	00	
ARRIVAL	02	01	
DEPARTURE	01	02	
DEPARATURE	02	03	
ARRIVAL	04	04	
DEPARTURE	03	05	
ARRIVAL	04	05	

EVENTS	CUSTOMER NUMBER
DEPARTURE	04
ARRIVAL	05
DEPARTURE	05
ARRIVAL	06
ARRIVAL	07
DEPARTURE	06
DEPARTURE	07

CLOCK TIME

BAR CHART

A DRAFT IMPLEMENTATION OF SINGLE SERVER QUEUE

	TIME BETWEEN ARRIVAL
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

PROBABILITY	CUMULATIVE PROBABILITY
0.07	0.07
0.07	0.14
0.07	0.21
0.07	0.28
0.07	0.35
0.07	0.42
0.07	0.49
0.07	0.56
0.07	0.63
0.07	0.70

RANDOM DIGITS

0-07

08-14

15-21

22-28

29-35

36-42

43-49

50-56

57-63

64-70

DISTRIBUTION TABLE OF SERVICE TIME:

Order time / service time	PROBABILITY	CUMULATIVE PROBABILITY	RANDOM DIGITS
01	0.30	0.30	0-30
02	0.25	0.55	31-55
03	0.2	0.75	56-75
04	0.1	0.85	76-85
05	0.1	0.95	86-95
06	0.03	0.980	96-98
07	0.02	1.00	98-100

RANDOM VALUES ARE: 15,25,30,40,35,55,44,60

DETERMINING THE TIME BETWEEN ARRIVAL:

CUSTOMER	RANDOM DIGIT	TIME BETWEEN ARRIVAL
01	0	0
02	15	3
03	25	4
04	30	5
05	40	6
06	35	5
07	55	9

RANDOM VALUES ARE: 11,25,35,38,60,98.96.44.65 DETERMINING THE TIME BETWEEN SERVICE:

CUSTOMER	RANDOM DIGIT	TIME BETWEEN SERVICE
01	11	1
02	25	1
03	35	2
04	38	2
05	60	4
06	98	7
07	96	6

SINGLE SERVER QUEUEING SYSTEM

CUSTOME R	INTER ARRIVA L TIME	ARRIVA L TIME	SERVICE TIME	TIME SERVICE START	WAITING TIME OF CUSTOMER	TIME SPEND ENDS	TIME SPEND IN SYSTEM	IDLE TIME
1	0	0	1	0	0	1	1	0
2	3	3	1	3	0	4	1	2
3	4	7	4	7	0	11	4	3
4	5	12	2	12	0	14	2	3
5	6	18	6	18	0	24	6	4
6	5	23	7	24	1	31	7	0
7	9	32	6	32	0	38	6	1
TOTAL=			27		1		27	13

Average Waiting time : 0.14 minute

Probability of idle time of system : 0.34 . That means

34%

CONCLUSION

The visualization of customer and counters utilization combined with statistical data can be used by expert to redefine digital cafeteria. Possible transformations of the schedule are also visible.

This model provides "what if" analysis for further improvement of the schedule generated with heuristic algorithms. The system constructed by us will be server friendly. It is also useful for cafeteria schedule adjustment for unexpected changes of input data and parameters, when heuristics are excessive for regeneration of a new schedule. By the respective project, we are showing a fully digitalized cafeteria which will be efficient and beneficial for both the customer and our system.

THANKING YOU

Does anyone have any questions?

<u>zishnendusarker_2k19co450@</u>dtu.ac.in <u>sristimitra_2k19co389@dtu.ac.in</u>