CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 9 SETTEMBRE 2022

Svolgere i seguenti esercizi,

\longrightarrow	giustificando pienamente tutte le risposte.	
-------------------	---	-------------

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Individuare un connettivo proposizionale da sostituire al simbolo '?' in $(p \lor (p \land q))$? $(p \lor q)$ in modo che questa forma proposizionale diventi una tautologia.

Esercizio 2. Sia $A=\{n\in\mathbb{N}\mid n\leq 9\}$ e siano π e δ le relazioni binarie in A definite da: per ogni $x,y\in A,$

$$x \pi y \iff (x = y \lor xy \text{ è pari})$$
 e $x \delta y \iff (x = y \lor xy \text{ è dispari}).$

Per ciascuna di π e δ :

- (i) decidere se è o non è una relazione di equivalenza:
- (ii) se lo è, descrivere il corrispondente insieme quoziente Q, elencando in modo esplicito le classi appartenenti a Q ed i loro elementi. Calcolare |Q|;
- (iii) esprimere (non calcolare!) il numero delle applicazioni iniettive da A a Q e quello delle applicazioni iniettive da Q ad A.

Esercizio 3. Siano (R, \leq) e (P, α) due insiemi ordinati. Quando si dice che (R, \leq) e (P, α) sono isomorfi?

- (i) Enunciare il principio di dualità per i reticoli.
- (ii) Trovare un'applicazione biettiva $f: \mathbb{N}^* \to \mathbb{N}^*$ che, da $(\mathbb{N}^*, |)$ a (\mathbb{N}^*, \leq) , sia crescente ma non un isomorfismo.
- (iii) Trovare due reticoli non isomorfi in modo che esista un'applicazione biettiva e decrescente tra i due
- (iv) Trovare, se esiste, un isomorfismo da (A, \subseteq) a (B, |), dove $A = \{X \subseteq \{1, 2, 3\} \mid 1 \in X\}$ e B è l'insieme dei numeri naturali divisori di 14.

Esercizio 4. In $S = \mathbb{Z}_{62}$ si considerino le operazioni *, definita da $(\forall a, b \in S)(a * b = \overline{10}ab)$, e +, l'usuale operazione di addizione in \mathbb{Z}_{62} . Sia poi $T = \{[2a]_{62} \mid a \in \mathbb{Z}\}$.

- (i) Stabilire se (S, +, *) è un anello. Nel caso lo sia, rispondere anche alle domande che seguono.
- (ii) (S, +, *) è commutativo? È unitario? (Nel caso, determinarne l'unità.) È integro? È un campo?
- (iii) T costituisce un sottoanello di (S, +, *)? Se lo è, come anello, (T, *, +) è unitario? (Nel caso, determinarne l'unità.) È integro? È un campo?

Esercizio 5. L'applicazione dall'anello $\mathbb{Z}[x]$ dei polinomi su \mathbb{Z} a $\mathcal{P}(\mathbb{Z})$ che ad ogni $f \in \mathbb{Z}[x]$ associa l'insieme delle radici di f in \mathbb{Z} è iniettiva? È suriettiva?

- (i) Spiegare (senza calcolare in modo diretto il prodotto) perché, nell'anello di polinomi $\mathbb{Z}_3[x]$, il polinomio $p = x^3 x$ coincide con $\prod_{c \in \mathbb{Z}_3} (x c)$.
- (ii) Sapendo che ogni elemento di \mathbb{Z}_3 è radice di $f := x^6 x^5 x^2 + x \in \mathbb{Z}_3[x]$, scrivere f come prodotto di polinomi irriducibili monici.