March 9

- Today
 - Chapter 6: Correlation
 - Beginning of Chapter 7: Linear Regression
- Tomorrow
 - Practical: to be posted this afternoon
- For next week
 - Homework: to be posted later today
 - Read Chapter 7
- 1.265708e+00
- replacing outliers with mean +/- 2 standard deviations

Correlation

Aims

- Measuring relationships
 - Covariance
 - Pearson's correlation coefficient
- Nonparametric measures
 - Spearman's rho
 - Kendall's tau
- Interpreting correlations
 - Causality
- Partial correlations

What is a Correlation?

- It is a way of measuring the extent to which two variables are related.
- It does this by considering datapoints that have values along both variables

Positive Relationship

Negative Relationship

Memory Recall Task Very Small Relationship

Sustained Attention Score

Slide 7 Age

Measuring Relationships

- We need to see whether as one variable increases, the other increases, decreases or stays the same.
- This can be done by calculating the covariance.
 - We look at how much each score deviates from the means of the two variables
 - Do the individual scores exhibit similar patterns in how they deviate from each variable?

- Observational Data
 - 5 participants
 - Number of television advertisements watched about a particular candy
 - Number of packets of candy bought

Participant:	1	2	3	4	5	Mean	S
Adverts Watched	5	4	4	6	8	5.4	1.67
Packets Bought	8	9	10	13	15	11.0	2.92

Scatterplot

Review of Variance

 The variance tells us by how much scores deviate from the mean for a single variable.

variance
$$(s^2) = \frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1}$$

 Covariance is similar – we calculate an average of products of deviations

Covariance

- Calculate the deviations between the mean and each score for the first variable (x).
- Calculate the deviations between the mean and each score for the second variable (y).
- In a pairwise fashion, multiply these deviations (to get the "cross-product deviations")
- Sum them
- The covariance is the average of the sum of cross-product deviations:

$$cov(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

Participant:	1	2	3	4	5	Mean	S
Adverts Watched	5	4	4	6	8	5.4	1.67
Packets Bought	8	9	10	13	15	11.0	2.92

$$cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

$$= \frac{(-0.4)(-3) + (-1.4)(-2) + (-1.4)(-1) + (0.6)(2) + (2.6)(4)}{4}$$

$$= \frac{1.2 + 2.8 + 1.4 + 1.2 + 10.4}{4}$$

$$= \frac{17}{4}$$

$$= 4.25$$

Positive and Negative Cross-Product Deviations

Covariance Examples in RStudio

Problems with Covariance

- It depends upon the units of measurement.
 - E.g. the covariance of two variables measured in miles might be 4.25, but if the same scores are converted to kilometres, the covariance is 11.
- One solution: standardize it!
 - Divide by the standard deviations of both variables.
- The standardized version of covariance is known as Pearson's r or Pearson correlation coefficient

Things to Know about the Pearson correlation coefficient

- It varies between -1 and +1
 - -0 = no relationship
 - -1 = perfect negative correlation
 - -1 = perfect positive correlation
- It is an effect size
 - $-\pm .1 = small effect$
 - $-\pm .3 = medium effect$
 - $-\pm .5$ = large effect

The Correlation Coefficient

$$\mathcal{V} = \frac{\text{cov}_{xy}}{s_x s_y}$$

$$= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y}$$

Why can't r be greater than 1 or less than -1?

$$r = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1 * \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} * \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}}}$$

$$r = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1 * \frac{\sqrt{\sum (x_i - \bar{x})^2}}{\sqrt{n - 1}} * \frac{\sqrt{\sum (y_i - \bar{y})^2}}{\sqrt{n - 1}}}$$

$$r = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} * \sqrt{\sum (y_i - \bar{y})^2}}$$

$$\sqrt{\sum (x_i-\bar{x})^2}*\sqrt{\sum (y_i-\bar{y})^2}\geq |\sum (x_i-\bar{x})*(y_i-\bar{y})|$$

Cauchy-Schwarz Inequality

Coefficient of Determination R²

- Just r to the power of 2 (then multiply by 100)!
- measures (in percentage) amount of variance of one variable accounted for by the other
 - symmetrical

Correlations in RStudio

Reporting the Results

- "Exam performance was significantly correlated with exam anxiety, r = -.44, and time spent revising, r = .40; the time spent revising was also correlated with exam anxiety, r = -.71 (all ps < .001)."
- Mention if you used a one-tailed test

Correlation and Causality

- The third-variable problem:
 - there may be other measured or unmeasured variables affecting the results.
- Direction of causality:
 - Correlation coefficients say nothing about which variable causes the other to change.
 - In observational studies, you don't know about temporal order in which events occurred

Bivariate vs. Partial Correlations

- Bivariate
 - Correlation between 2 variables
- Partial
 - Measure the relationship between two variables, controlling for the effect that a third variable has on them both.
 - R^2 of Exam Performance and Exam Anxiety » $-.44^2 \times 100 = 19.4$
 - R^2 of Exam Performance and Revision Time » $.397^2 \times 100 = 15.7$
 - R2 of Revision Time and Exam Anxiety
 - \rightarrow .-.709² x 100 = 50.2

Partial Correlation in RStudio

Assumptions of Pearson's R

- Interval/ratio data
- Significance test assumes normal sampling distribution
 - assume it is if sample data is normal
 - or if sample size is large

Non-parametric Correlation

- Spearman's rho
 - Pearson's correlation on the ranked data
- Kendall's tau
 - Better than Spearman's for small samples / when there are a lot of ties (values with same rank)
- World's Biggest Liar competition
 - 68 contestants
 - Measures
 - Where they were placed in the competition (first, second, third, etc.)
 - Creativity questionnaire (maximum score 60)
 - Alternative hypothesis: more creative people should be better liars (i.e., place higher in competition)

Calculating Spearman's Rho

Same as Pearson's r!

$$r_s = \frac{\text{cov}_{xy}}{s_x s_y}$$

$$= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y}$$

 BUT your data is ordinal (naturally or you generate a rank order)

$$-(3.3, 9.2, -1.4, 5.5) \rightarrow (2, 4, 1, 3)$$

Spearman's Rho

- Checking correlation in R
 - cor(liarData\$Position, liarData\$Creativity, method= "spearman")

[1] -0.3732184

- Checking significance of correlation
 - cor.test(liarData\$Position, liarData\$Creativity, alternative = "less", method = "spearman")
- Note you can calculate R² for rho
 - proportion in the variance of the ranks that the two variables share

Spearman's Rho Output

```
Spearman's rank correlation rho
data: liarData$Position and liarData$Creativity
S = 71948.4, p-value = 0.0008602
alternative hypothesis: true rho is less than 0
sample estimates:
rho
```

-0.3732184

Calculating Kendall's Tau

- tau = (C D) / (C + D)
 - C = # concordant pairs
 - D = # discordant pairs

Best animals

	Нірро	Lion	Koala	Zebra	Panda	TOTAL
Person 1	1	2	3	4	5	
Person 2	2	4	1	5	3	
С	3	1	2	0		6
D	1	2	0	1		4

$$tau = (6-4)/(6+4) = .2$$

Kendall's Tau

 To carry out Kendall's correlation on the World's Biggest Liar data simply follow the same steps as for Pearson and Spearman correlations but use method = "kendall": cor(liarData\$Position, liarData\$Creativity, method = "kendall")
 cor.test(liarData\$Position, liarData\$Creativity, alternative = "less", method = "kendall")

Kendall's Tau

 The output is much the same as for Spearman's correlation.

Kendall's rank correlation tau data: liarData\$Position and liarData\$Creativity z = -3.2252, p-value = 0.0006294 alternative hypothesis: true tau is less than 0 sample estimates:

tau

-0.3002413