Amendments to the Claims

1

2

3

1	1. (currently amended) A method for shaping a spectrum of an impulse radio
2	signal, comprising:
3	generating a set of ultrawide bandwidth basis pulses at a plurality of
4	frequencies and a plurality of random delays;
5	optimizing, jointly, weights and delays as a solution to a quadratic
6	optimization problem to approximately minimize a deviation of the spectrum
7	from a spectral mask an ultrawide bandwidth spectral mask, in which the
8	spectral mask is designed for indoor channels and limits power as a function
9	of frequency in the spectral mask;
10	orthogonalizing and normalizing the set of ultrawide bandwidth basis
11	pulses; and
12	applying a branch and bound procedure to the set of orthogonalized
13	and normalized <u>ultrawide bandwidth</u> basis pulses to optimize the delays.
14	weighting the set of <u>ultrawide bandwidth</u> basis pulses by the weights;
15	delaying the set of basis pulses by the random delays; and
16	combining linearly the weighted and delayed basis pulses to conform
17	the spectrum to the <u>ultrawide bandwidth</u> spectral mask, and wherein the
18	weights and delays are fixed over time for the spectral mask, and wherein
19	the ultrawide bandwidth basis pulses are selected from a set of basis pulses
20	by a combinatorial optimization using training spectral masks.

2. (currently amended) A method of claim 1 further comprising:

bandwidth basis pulses before the combining.

shifting frequencies of the weighted and randomly delayed ultrawide

- 3. (canceled)
- 1 4. (original) The method of claim 1 wherein the weights and delays vary
- 2 over time to adaptively shape the spectrum.
- 5. (currently amended) The method of claim 1 wherein the <u>ultrawide</u>
- 2 bandwidth basis pulses are Gaussian in form.
- 1 6. (original) The method of claim 1 wherein the weighting and delaying are
- 2 performed by a set of filters and a set of delay lines, and the combining is
- 3 performed by an adder.
- 1 7. (original) The method of claim 1 further comprising:
- 2 evaluating a cost function to determine the weights and delays.
- 1 8. (original) The method of claim 7 wherein the cost function, f, includes
- 2 first and second functions f_1 and f_2 , and

$$f(\underline{p}(t), S) = \alpha f_1(\underline{p}(t)) + \beta \sum_{M(\Omega) \in S} f_2(\underline{p}(t), M(\Omega)),$$

- 4 where α and β are predetermined constants, $S = M(\Omega)$ denote the spectral
- 5 mask, and p(t) denotes the set of basis pulses, and the first function f_t models
- 6 a cost of generating the basis pulses, and the second function f_2 models an
- 7 approximation error.

- 1 9. (original) The method of claim 1 wherein the delays are fixed, and further
- 2 comprising:
- 3 solving a quadratic optimization problem to approximately minimize a
- 4 deviation from the spectral mask.
- 1 10. (original) The method of claim 9 further comprising:
- 2 refining the weights and delays by a non-linear optimization.
- 1 11. (original) The method of claim 10 wherein the non-linear optimization is
- 2 performed by a back-propagation neural network.
- 1 12. (original) The method of claim 10 wherein the non-linear optimization is
- 2 performed by a multiple-layer neural network
- 1 13. (original) The method of claim 10 wherein the non-linear optimization is
- 2 performed by a simulated annealing process.
 - 14. (canceled)
- 1 15. (previously presented) The method of claim 1 further comprising:
- 2 selecting the set of basis pulses from a candidate set of basic pulses by
- 3 greedy addition to optimize the delays.
- 1 16. (previously presented) The method of claim 1 further comprising:
- 2 selecting the set of basis pulses from a candidate set of basic pulses by
- 3 greedy removal to optimize the delays.

1 17. (original) The method of claim 1 further comprising: 2 orthogonalizing and normalizing the set of basis pulses; and 3 applying a branch and bound procedure to the set of orthogonalized 4 and normalized basis pulses to optimize the delays. 1 18. (original) The method of claim 1 wherein bounds of the branch and 2 bound procedure are determined by Cauchy's interlacing theorem of 3 eigenvalues for symmetry matrices. 1 19. (original) The method of claim 1 wherein the branch and bound 2 procedure further comprises: 3 constructing an enumeration tree with an increasing number of zeros 4 in vectors representing the delays. 20. (canceled) 21. (currently amended) A system for shaping a spectrum of an impulse 1 2 radio signal, comprising: 3 means for generating a set of ultrawide bandwidth basis pulses at a 4 plurality of frequencies and a plurality of random delays 5 means for optimizing, jointly, weights and delays as a solution to a quadratic optimization problem to approximately minimize a deviation of 6 7 the spectrum from a spectral mask an ultrawide bandwidth spectral mask, in 8 which the spectral mask is designed for indoor channels and limits power a

function of frequency in the spectral mask;

9

a set of delay lines configured to delay the set of basis pulses by the
random delays; and
an adder configured to combine linearly the weighted and delayed
basis pulses to conform the spectrum to a spectral mask the ultrawide
bandwidth spectral mask, and wherein the ultrawide bandwidth basis pulses
are selected from a set of basis pulses by a combinatorial optimization using
training spectral masks.

- 1 22. (original) The system of claim 21 further comprising:
- 2 a set of oscillators configured to shift frequencies of the weighted and
- 3 delayed basis pulses before the combining.