Gauss Factorials: Properties and Applications

Karl Dilcher

Dalhousie University, Halifax, Nova Scotia

Joint work with

John B. Cosgrave

Dublin, Ireland

1. Introduction

Recall Wilson's Theorem:

p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}$$
.

(Converse is due to Lagrange).

1. Introduction

Recall Wilson's Theorem:

p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}$$
.

(Converse is due to Lagrange). A proof depends on the fact that any integer a with 1 < a < p - 1 has its inverse $a^{-1} \not\equiv a \pmod{p}$.

$$1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \ldots \cdot (p-1) \equiv \left(\frac{p-1}{2}\right)! (-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \pmod{p},$$

$$1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \ldots \cdot (p-1) \equiv \left(\frac{p-1}{2}\right)! (-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \pmod{p},$$

and thus, with Wilson's Theorem,

$$\left(\frac{p-1}{2}\right)!^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

$$1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \ldots \cdot (p-1) \equiv \left(\frac{p-1}{2}\right)! \left(-1\right)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \pmod{p},$$

and thus, with Wilson's Theorem,

$$\left(\frac{p-1}{2}\right)!^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

This was apparently first observed by Lagrange (1773).

$$1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \ldots \cdot (p-1) \equiv \left(\frac{p-1}{2}\right)! \left(-1\right)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \pmod{p},$$

and thus, with Wilson's Theorem,

$$\left(\frac{p-1}{2}\right)!^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

This was apparently first observed by Lagrange (1773).

For $p \equiv 1 \pmod{4}$ the RHS is -1, so

$$\operatorname{ord}_{p}\left(\left(\frac{p-1}{2}\right)!\right)=4\quad\text{for}\quad p\equiv 1\pmod{4}.$$

$$\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}.$$

$$\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}.$$

What is the sign on the right?

$$\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}.$$

What is the sign on the right?

Theorem 1 (Mordell, 1961)

For a prime $p \equiv 3 \pmod{4}$,

$$\left(\frac{p-1}{2}\right)! \equiv -1 \pmod{p} \quad \Leftrightarrow \quad h(-p) \equiv 1 \pmod{4},$$

where h(-p) is the class number of $\mathbb{Q}(\sqrt{-p})$.

$$\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}.$$

What is the sign on the right?

Theorem 1 (Mordell, 1961)

For a prime $p \equiv 3 \pmod{4}$,

$$\left(\frac{p-1}{2}\right)! \equiv -1 \pmod{p} \quad \Leftrightarrow \quad h(-p) \equiv 1 \pmod{4},$$

where h(-p) is the class number of $\mathbb{Q}(\sqrt{-p})$.

Discovered independently by Chowla.

This completely determines the order \pmod{p} of $\binom{p-1}{2}$!

Now consider the two halves of the product

$$1\cdot 2\cdots \frac{p-1}{2}\frac{p+1}{2}\cdots (p-1)$$

and denote them, respectively, by

$$\Pi_1^{(2)}, \qquad \Pi_2^{(2)}.$$

Now consider the two halves of the product

$$1\cdot 2\cdots \frac{p-1}{2}\frac{p+1}{2}\cdots (p-1)$$

and denote them, respectively, by

$$\Pi_1^{(2)}, \qquad \Pi_2^{(2)}.$$

By Wilson's theorem:

$$\Pi_1^{(2)}\Pi_2^{(2)} \equiv -1 \pmod{p},$$

Now consider the two halves of the product

$$1\cdot 2\cdots \frac{p-1}{2}\frac{p+1}{2}\cdots (p-1)$$

and denote them, respectively, by

$$\Pi_1^{(2)}, \qquad \Pi_2^{(2)}.$$

By Wilson's theorem:

$$\Pi_1^{(2)}\Pi_2^{(2)} \equiv -1 \pmod{p},$$

and by symmetry:

$$\Pi_2^{(2)} \equiv (-1)^{\frac{p-1}{2}} \Pi_1^{(2)} \pmod{p}.$$

$$\Pi_1^{(3)}, \quad \Pi_2^{(3)}, \quad \Pi_3^{(3)}$$

obtained by dividing the entire product (p-1)! into *three* equal parts?

$$\Pi_1^{(3)}, \quad \Pi_2^{(3)}, \quad \Pi_3^{(3)}$$

obtained by dividing the entire product (p-1)! into *three* equal parts?

We require $p \equiv 1 \pmod{3}$; in fact, $p \equiv 1 \pmod{6}$.

$$\Pi_1^{(3)}, \quad \Pi_2^{(3)}, \quad \Pi_3^{(3)}$$

obtained by dividing the entire product (p-1)! into *three* equal parts?

We require $p \equiv 1 \pmod{3}$; in fact, $p \equiv 1 \pmod{6}$.

Then

$$\Pi_1^{(3)} = 1 \cdot 2 \cdots \frac{p-1}{3}, \quad \Pi_2^{(3)} = \frac{p+2}{3} \cdots \frac{2p-2}{3}, \quad \Pi_3^{(3)} = \frac{2p+1}{3} \cdots (p-1).$$

$$\Pi_1^{(3)}, \quad \Pi_2^{(3)}, \quad \Pi_3^{(3)}$$

obtained by dividing the entire product (p-1)! into *three* equal parts?

We require $p \equiv 1 \pmod{3}$; in fact, $p \equiv 1 \pmod{6}$.

Then

$$\Pi_1^{(3)} = 1 \cdot 2 \cdots \frac{p-1}{3}, \quad \Pi_2^{(3)} = \frac{p+2}{3} \cdots \frac{2p-2}{3}, \quad \Pi_3^{(3)} = \frac{2p+1}{3} \cdots (p-1).$$

Once again there is an obvious symmetry:

$$\Pi_3^{(3)} \equiv \Pi_1^{(3)} \pmod{p},$$

(without a power of -1 since $\frac{p-1}{3}$ is always even.)

$$\Pi_1^{(3)}, \quad \Pi_2^{(3)}, \quad \Pi_3^{(3)}$$

obtained by dividing the entire product (p-1)! into *three* equal parts?

We require $p \equiv 1 \pmod{3}$; in fact, $p \equiv 1 \pmod{6}$.

Then

$$\Pi_1^{(3)} = 1 \cdot 2 \cdots \frac{p-1}{3}, \quad \Pi_2^{(3)} = \frac{p+2}{3} \cdots \frac{2p-2}{3}, \quad \Pi_3^{(3)} = \frac{2p+1}{3} \cdots (p-1).$$

Once again there is an obvious symmetry:

$$\Pi_3^{(3)} \equiv \Pi_1^{(3)} \pmod{p},$$

(without a power of -1 since $\frac{p-1}{3}$ is always even.)

No obvious relation between $\Pi_1^{(3)}$ and the "middle third" $\Pi_2^{(3)}.$

For any $M \ge 2$ and for a prime $p \equiv 1 \pmod{M}$, divide (p-1)! into the products

For any $M \ge 2$ and for a prime $p \equiv 1 \pmod{M}$, divide (p-1)! into the products

$$\Pi_j^{(M)} = \prod_{i=1}^{\frac{p-1}{M}} \left((j-1) \frac{p-1}{M} + i \right), \qquad (j=1,2,\ldots,M).$$

For any $M \ge 2$ and for a prime $p \equiv 1 \pmod{M}$, divide (p-1)! into the products

$$\Pi_j^{(M)} = \prod_{i=1}^{\frac{p-1}{M}} \left((j-1)^{\frac{p-1}{M}} + i \right), \qquad (j=1,2,\ldots,M).$$

Once again, clear that

$$\Pi_{M-j}^{(M)} \equiv \pm \Pi_j^{(M)} \pmod{p}, \qquad j = 1, 2, \dots, \lfloor \frac{M-1}{2} \rfloor.$$

For any $M \ge 2$ and for a prime $p \equiv 1 \pmod{M}$, divide (p-1)! into the products

$$\Pi_j^{(M)} = \prod_{i=1}^{\frac{p-1}{M}} \left((j-1)^{\frac{p-1}{M}} + i \right), \qquad (j=1,2,\ldots,M).$$

Once again, clear that

$$\Pi_{M-j}^{(M)} \equiv \pm \Pi_j^{(M)} \pmod{p}, \qquad j = 1, 2, \dots, \lfloor \frac{M-1}{2} \rfloor.$$

Example:

р	$\Pi_1^{(3)}$	$\Pi_2^{(3)}$	$\Pi_3^{(3)}$	р	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
7	2	-2	2	5	1	2	-2	-1
13	-2	3	-2	13	6	3	-3	-6
19	-2	-5	-2	17	7	-3	-3	7
31	2	-8	2	29	-6	-2	2	6
37	7	3	7	37	-16	5	-5	16
43	-3	19	-3	41	13	7	7	13
61	-14	14	-14	53	26	7	-7	-26
67	-20	-33	-20	61	19	7	-7	-19
73	33	-12	33	73	18	-35	-35	18
79	-37	3	-37	89	22	42	42	22
97	21	-11	21	97	20	-28	-28	20

р	$\Pi_1^{(3)}$	$\Pi_2^{(3)}$	$\Pi_3^{(3)}$	р	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
7	2	-2	2	5	1	2	-2	-1
13	-2	3	-2	13	6	3	-3	-6
19	-2	-5	-2	17	7	-3	-3	7
31	2	-8	2	29	-6	-2	2	6
37	7	3	7	37	-16	5	-5	16
43	-3	19	-3	41	13	7	7	13
61	-14	14	-14	53	26	7	-7	-26
67	-20	-33	-20	61	19	7	-7	-19
73	33	-12	33	73	18	-35	-35	18
79	-37	3	-37	89	22	42	42	22
97	21	-11	21	97	20	-28	-28	20

We observe:

• The obvious symmetries.

р	$\Pi_1^{(3)}$	$\Pi_2^{(3)}$	$\Pi_3^{(3)}$	р	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
7	2	-2	2	5	1	2	-2	-1
13	-2	3	-2	13	6	3	-3	-6
19	-2	-5	-2	17	7	-3	-3	7
31	2	-8	2	29	-6	-2	2	6
37	7	3	7	37	-16	5	-5	16
43	-3	19	-3	41	13	7	7	13
61	-14	14	-14	53	26	7	-7	-26
67	-20	-33	-20	61	19	7	-7	-19
73	33	-12	33	73	18	-35	-35	18
79	-37	3	-37	89	22	42	42	22
97	21	-11	21	97	20	-28	-28	20

We observe:

- The obvious symmetries.
- $\Pi_1^{(3)} \equiv -\Pi_2^{(3)} \pmod{p}$ for p = 7 and p = 61.

It turns out:

 $\Pi_1^{(3)} \equiv -\Pi_2^{(3)} \pmod{p}$ also for p=331, p=547, p=1951, and further relatively rare primes (explained later).

It turns out:

$$\Pi_1^{(3)} \equiv -\Pi_2^{(3)} \pmod{p}$$
 also for $p=331, p=547, p=1951,$ and further relatively rare primes (explained later).

In contrast: No primes p for which

$$\Pi_1^{(3)} \equiv \Pi_2^{(3)} \pmod{p}, \qquad p \equiv 1 \pmod{6}, \text{ or}$$

$$\Pi_1^{(4)} \equiv \pm \Pi_2^{(4)} \pmod{p}, \qquad p \equiv 1 \pmod{4}.$$

It turns out:

$$\Pi_1^{(3)} \equiv -\Pi_2^{(3)} \pmod{p}$$
 also for $p=331, p=547, p=1951,$ and further relatively rare primes (explained later).

In contrast: No primes p for which

$$\Pi_1^{(3)} \equiv \Pi_2^{(3)} \pmod{p}, \qquad p \equiv 1 \pmod{6}, \text{ or}$$

$$\Pi_1^{(4)} \equiv \pm \Pi_2^{(4)} \pmod{p}, \qquad p \equiv 1 \pmod{4}.$$

This will be explained later.

2. Composite Moduli

Define the Gauss factorial by

$$N_n! = \prod_{\substack{1 \le j \le N \\ \gcd(j,n)=1}} j.$$

2. Composite Moduli

Define the Gauss factorial by

$$N_n! = \prod_{\substack{1 \le j \le N \\ \gcd(j,n)=1}} j.$$

Analogue of Wilson's theorem for composite moduli:

Theorem 2 (Gauss)

For any integer $n \ge 2$ we have

$$(n-1)_n! \equiv \begin{cases} -1 \pmod{n} & \textit{for} \quad n=2,4,p^{\alpha}, \textit{ or } 2p^{\alpha}, \\ 1 \pmod{n} & \textit{otherwise}, \end{cases}$$

where p is an odd prime and α is a positive integer.

2. Composite Moduli

Define the Gauss factorial by

$$N_n! = \prod_{\substack{1 \le j \le N \\ \gcd(j,n)=1}} j.$$

Analogue of Wilson's theorem for composite moduli:

Theorem 2 (Gauss)

For any integer $n \ge 2$ we have

$$(n-1)_n! \equiv \begin{cases} -1 \pmod{n} & \textit{for} \quad n=2,4,p^{\alpha}, \textit{ or } 2p^{\alpha}, \\ 1 \pmod{n} & \textit{otherwise}, \end{cases}$$

where p is an odd prime and α is a positive integer.

The first case indicates exactly those n that have primitive roots.

E.g., the multiplicative orders of $(\frac{n-1}{2})_n!$ modulo n were completely determined; only orders 1, 2, 4 occur. (JBC & KD, 2008).

E.g., the multiplicative orders of $(\frac{n-1}{2})_n!$ modulo n were completely determined; only orders 1, 2, 4 occur. (JBC & KD, 2008).

Next, divide the product $(n-1)_n!$ into $M \ge 2$ partial products:

E.g., the multiplicative orders of $(\frac{n-1}{2})_n!$ modulo n were completely determined; only orders 1, 2, 4 occur. (JBC & KD, 2008).

Next, divide the product $(n-1)_n!$ into $M \ge 2$ partial products: For $n \equiv 1 \pmod{M}$, set

$$\Pi_j^{(M)} := \prod_{i \in I_j^{(M)}} i, \qquad (j = 1, 2, \dots, M),$$

where, for j = 1, 2, ..., M,

$$I_i^{(M)} := \left\{ i \mid (j-1) \frac{n-1}{M} + 1 \le i \le j \frac{n-1}{M}, \ \gcd(i,n) = 1 \right\}.$$

E.g., the multiplicative orders of $(\frac{n-1}{2})_n!$ modulo n were completely determined; only orders 1, 2, 4 occur. (JBC & KD, 2008).

Next, divide the product $(n-1)_n!$ into $M \ge 2$ partial products: For $n \equiv 1 \pmod{M}$, set

$$\Pi_j^{(M)} := \prod_{i \in I_j^{(M)}} i, \qquad (j = 1, 2, \dots, M),$$

where, for j = 1, 2, ..., M,

$$I_j^{(M)} := \left\{ i \mid (j-1)\frac{n-1}{M} + 1 \le i \le j\frac{n-1}{M}, \ \gcd(i,n) = 1 \right\}.$$

• Dependence on *n* is implied in the notation;

E.g., the multiplicative orders of $(\frac{n-1}{2})_n!$ modulo n were completely determined; only orders 1, 2, 4 occur. (JBC & KD, 2008).

Next, divide the product $(n-1)_n!$ into $M \ge 2$ partial products: For $n \equiv 1 \pmod{M}$, set

$$\Pi_j^{(M)} := \prod_{i \in I_j^{(M)}} i, \qquad (j = 1, 2, \dots, M),$$

where, for j = 1, 2, ..., M,

$$I_i^{(M)} := \left\{ i \mid (j-1) \frac{n-1}{M} + 1 \le i \le j \frac{n-1}{M}, \ \gcd(i,n) = 1 \right\}.$$

- Dependence on *n* is implied in the notation;
- When n = p: reduces to previous case.

Example:

n	$\Pi_1^{(3)}$	$\Pi_{2}^{(3)}$	$\Pi_3^{(3)}$	n	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
70	29	1	29	61	19	7	-7	-19
73	33	-12	33	65	8	8	8	8
76	-29	-15	-29	69	31	-26	-26	31
79	-37	3	-37	73	18	-35	-35	18
82	-33	-25	-33	77	16	31	31	16
85	-28	9	-28	81	2	40	-40	2
88	5	-7	5	85	13	13	13	13
91	29	29	29	89	22	42	42	22
94	-23	43	-23	93	34	-10	-10	34
97	21	-11	21	97	20	-28	-28	20

Example:

n	$\Pi_1^{(3)}$	$\Pi_2^{(3)}$	$\Pi_3^{(3)}$	n	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
70	29	1	29	61	19	7	-7	-19
73	33	-12	33	65	8	8	8	8
76	-29	-15	-29	69	31	-26	-26	31
79	-37	3	-37	73	18	-35	-35	18
82	-33	-25	-33	77	16	31	31	16
85	-28	9	-28	81	2	40	-40	2
88	5	-7	5	85	13	13	13	13
91	29	29	29	89	22	42	42	22
94	-23	43	-23	93	34	-10	-10	34
97	21	-11	21	97	20	-28	-28	20

We see: In contrast to prime case, it *can* happen that all partial products are congruent to each other.

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

• When n = p is a prime, then $\phi_{M,j}(n) = \frac{p-1}{M}$ for all j.

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

- When n = p is a prime, then $\phi_{M,j}(n) = \frac{p-1}{M}$ for all j.
- When M = 1, then $\phi_{1,1}(n) = \phi(n)$.

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

- When n = p is a prime, then $\phi_{M,j}(n) = \frac{p-1}{M}$ for all j.
- When M = 1, then $\phi_{1,1}(n) = \phi(n)$.
- When M = 2, then $\phi_{2,1}(n) = \phi_{2,2}(n) = \frac{1}{2}\phi(n)$.

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

- When n = p is a prime, then $\phi_{M,j}(n) = \frac{p-1}{M}$ for all j.
- When M = 1, then $\phi_{1,1}(n) = \phi(n)$.
- When M = 2, then $\phi_{2,1}(n) = \phi_{2,2}(n) = \frac{1}{2}\phi(n)$.

In general, the situation is less straightforward.

We pause to consider the *number* of elements in our subintervals:

$$\phi_{M,j}(n) := \#I_j^{(M)}.$$

(Called totatives by J. J. Sylvester and later D. H. Lehmer).

- When n = p is a prime, then $\phi_{M,j}(n) = \frac{p-1}{M}$ for all j.
- When M = 1, then $\phi_{1,1}(n) = \phi(n)$.
- When M = 2, then $\phi_{2,1}(n) = \phi_{2,2}(n) = \frac{1}{2}\phi(n)$.

In general, the situation is less straightforward.

E.g., for
$$n = 4$$
:

$$\phi_{3,1}(n) = \phi_{3,3}(n) = 1$$
, but $\phi_{3,2}(n) = 0$.

Theorem 3 (Lehmer, 1955)

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least one prime factor $p \equiv 1 \pmod{M}$, then

$$\phi_{M,j}(n) = \frac{1}{M}\phi(n), \qquad (j = 1, 2, \dots, M).$$

Theorem 3 (Lehmer, 1955)

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least one prime factor $p \equiv 1 \pmod{M}$, then

$$\phi_{M,j}(n) = \frac{1}{M}\phi(n), \qquad (j = 1, 2, ..., M).$$

Note: Condition is sufficient, but not necessary.

Theorem 3 (Lehmer, 1955)

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least one prime factor $p \equiv 1 \pmod{M}$, then

$$\phi_{M,j}(n) = \frac{1}{M}\phi(n), \qquad (j = 1, 2, ..., M).$$

Note: Condition is sufficient, but not necessary.

E.g., M = 8 and $n = 105 = 3 \cdot 5 \cdot 7$. None of the prime factors are $\equiv 1 \pmod{8}$, but $\phi_{M,j}(n) = \frac{1}{8}\phi(105) = 6$ for j = 1, ..., 8.

4. When Are the Partial Products Congruent?

Return to our table:

n	$\Pi_1^{(3)}$	$\Pi_{2}^{(3)}$	$\Pi_3^{(3)}$	n	$\Pi_1^{(4)}$	$\Pi_{2}^{(4)}$	$\Pi_3^{(4)}$	$\Pi_4^{(4)}$
70	29	1	29	61	19	7	−7	-19
73	33	-12	33	65	8	8	8	8
76	-29	-15	-29	69	31	-26	-26	31
79	-37	3	-37	73	18	-35	-35	18
82	-33	-25	-33	77	16	31	31	16
85	-28	9	-28	81	2	40	-40	2
88	5	-7	5	85	13	13	13	13
91	29	29	29	89	22	42	42	22
94	-23	43	-23	93	34	-10	-10	34
97	21	-11	21	97	20	-28	-28	20

Note:

$$91 = 7 \cdot 13$$
, $65 = 5 \cdot 13$, $85 = 5 \cdot 17$.

Theorem 4

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$.

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then

$$\Pi_i^{(M)} \equiv \left(\frac{n-1}{M}\right)_n! \pmod{n}, \qquad j = 1, 2, \dots, M.$$

Theorem 4

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$.

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then

$$\Pi_j^{(M)} \equiv \left(\frac{n-1}{M}\right)_n! \pmod{n}, \qquad j = 1, 2, \dots, M.$$

Result is best possible:

E.g., M = 3 and $n = 70 = 2 \cdot 5 \cdot 7$.

- Only one factor $\equiv 1 \pmod{3}$,
- $\Pi_1^{(3)} \equiv 29 \pmod{70}, \Pi_2^{(3)} \equiv 1 \pmod{70}.$

Theorem 4

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$.

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then

$$\Pi_j^{(M)} \equiv \left(\frac{n-1}{M}\right)_n! \pmod{n}, \qquad j = 1, 2, \dots, M.$$

Result is best possible:

E.g., M = 3 and $n = 70 = 2 \cdot 5 \cdot 7$.

- Only one factor $\equiv 1 \pmod{3}$,
- $\Pi_1^{(3)} \equiv 29 \pmod{70}, \Pi_2^{(3)} \equiv 1 \pmod{70}.$

On the other hand, condition is sufficient but not necessary. E.g., M = 3 and $n = 2^2 \cdot 61$; statement still holds.

Proof is based on an observation:

$$\Pi_j^{(M)} = \frac{(j\frac{n-1}{M})_n!}{((j-1)\frac{n-1}{M})_n!}, \qquad j = 1, 2, \dots, M,$$

Proof is based on an observation:

$$\Pi_j^{(M)} = \frac{\left(j\frac{n-1}{M}\right)_n!}{\left((j-1)\frac{n-1}{M}\right)_n!}, \qquad j=1,2,\ldots,M,$$

and a lemma:

Lemma 5

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$, $n = p^{\alpha}q^{\beta}w$ for distinct prime $p, q \equiv 1 \pmod{M}$, $\alpha, \beta \ge 1$, and $\gcd(pq, w) = 1$. Then for $j = 1, 2, \dots, M$,

$$(j\frac{n-1}{M})_n! \equiv \frac{\varepsilon^{j\frac{p-1}{M}}}{p^{jA}} \pmod{q^\beta w}, \qquad A = \frac{p^{\alpha-1}}{M}\phi(q^\beta w),$$

where $\varepsilon = -1$ if w = 1, and $\varepsilon = 1$ if w > 1.

Proof is based on an observation:

$$\Pi_j^{(M)} = \frac{(j\frac{n-1}{M})_n!}{((j-1)\frac{n-1}{M})_n!}, \qquad j = 1, 2, \dots, M,$$

and a lemma:

Lemma 5

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$, $n = p^{\alpha}q^{\beta}w$ for distinct prime $p, q \equiv 1 \pmod{M}$, $\alpha, \beta \ge 1$, and $\gcd(pq, w) = 1$. Then for $j = 1, 2, \dots, M$,

$$(j\frac{n-1}{M})_n! \equiv \frac{\varepsilon^{j\frac{p-1}{M}}}{p^{jA}} \pmod{q^{\beta}w}, \qquad A = \frac{p^{\alpha-1}}{M}\phi(q^{\beta}w),$$

where $\varepsilon = -1$ if w = 1, and $\varepsilon = 1$ if w > 1.

To prove the Theorem, use this and the Chinese Remainder Theorem; dependence on *j* disappears.

Break the range of the product in $(j\frac{n-1}{M})_n!$ into

- a number of products of approximately equal length,
- a shorter "tail."

Break the range of the product in $(j\frac{n-1}{M})_n!$ into

- a number of products of approximately equal length,
- a shorter "tail."

Then evaluate the products of the first type using the Gauss-Wilson theorem (mod $q^{\beta}w$).

Break the range of the product in $(j\frac{n-1}{M})_n!$ into

- a number of products of approximately equal length,
- a shorter "tail."

Then evaluate the products of the first type using the Gauss-Wilson theorem (mod $q^{\beta}w$).

Carefully count which elements to include/exclude.

5. Some Consequences

1. We saw:

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then the $\Pi_j^{(M)}$ are congruent to each other.

5. Some Consequences

1. We saw:

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then the $\Pi_j^{(M)}$ are congruent to each other.

Since their product is $(n-1)_n!$, we have by Gauss-Wilson,

$$\left(\frac{n-1}{M}\right)_n!^M \equiv 1 \pmod{n}.$$

5. Some Consequences

1. We saw:

If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then the $\Pi_j^{(M)}$ are congruent to each other.

Since their product is $(n-1)_n!$, we have by Gauss-Wilson,

$$\left(\frac{n-1}{M}\right)_n!^M \equiv 1 \pmod{n}.$$

This implies:

Corollary 6

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least two distinct prime factors $\equiv 1 \pmod{M}$, then the multiplicative order of $(\frac{n-1}{M})_n!$ modulo n is a divisor of M. 2. In the case of at least *three* distinct prime factors $\equiv 1 \pmod{M}$ we can say more:

2. In the case of at least *three* distinct prime factors $\equiv 1 \pmod{M}$ we can say more:

Theorem 7

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least three distinct prime factors $\equiv 1 \pmod{M}$, then

$$\Pi_j^{(M)} \equiv 1 \pmod{n}, \qquad j = 1, 2, \dots, M.$$

2. In the case of at least *three* distinct prime factors $\equiv 1 \pmod{M}$ we can say more:

Theorem 7

Let $M \ge 2$ and $n \equiv 1 \pmod{M}$. If n has at least three distinct prime factors $\equiv 1 \pmod{M}$, then

$$\Pi_i^{(M)} \equiv 1 \pmod{n}, \qquad j = 1, 2, \dots, M.$$

Method of proof is similar to that of the previous lemma.

Summary:

# of prime factors	
$\equiv 1 \pmod{M}$	All $\Pi_1^{(M)}, \ldots, \Pi_M^{(M)}$:
1	have the same number of factors
2	are congruent to each other (mod M)
3	are congruent to 1 (mod M)

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

$$Q_4(p) := \frac{\Pi_2^{(4)}}{\Pi_1^{(4)}}$$

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

$$Q_4(p) := \frac{\Pi_2^{(4)}}{\Pi_1^{(4)}} = \frac{\Pi_1^{(4)}\Pi_2^{(4)}}{\left(\Pi_1^{(4)}\right)^2}$$

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

$$Q_4(p) := \frac{\Pi_2^{(4)}}{\Pi_1^{(4)}} = \frac{\Pi_1^{(4)}\Pi_2^{(4)}}{\left(\Pi_1^{(4)}\right)^2} = \frac{\frac{p-1}{2}!}{\left(\frac{p-1}{4}!\right)^2}$$

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

$$Q_4(p) := \frac{\Pi_2^{(4)}}{\Pi_1^{(4)}} = \frac{\Pi_1^{(4)}\Pi_2^{(4)}}{\left(\Pi_1^{(4)}\right)^2} = \frac{\frac{p-1}{2}!}{\left(\frac{p-1}{4}!\right)^2} = \binom{\frac{p-1}{2}}{\frac{p-1}{4}}.$$

Return to the question of how $\Pi_1^{(4)}$ and $\Pi_2^{(4)}$ are related, for prime moduli $p \equiv 1 \pmod{4}$.

Consider their quotient:

$$Q_4(p) := \frac{\Pi_2^{(4)}}{\Pi_1^{(4)}} = \frac{\Pi_1^{(4)}\Pi_2^{(4)}}{\left(\Pi_1^{(4)}\right)^2} = \frac{\frac{p-1}{2}!}{\left(\frac{p-1}{4}!\right)^2} = \binom{\frac{p-1}{2}}{\frac{p-1}{4}}.$$

There exists a celebrated congruence for this binomial coefficient:

$$p \equiv 1 \pmod{4}, \qquad p = a^2 + b^2, \qquad a \equiv 1 \pmod{4}.$$

$$p \equiv 1 \pmod{4}$$
, $p = a^2 + b^2$, $a \equiv 1 \pmod{4}$.

Theorem 8 (Gauss, 1828)

Let p and a be as above. Then

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2a \pmod{p}.$$

$$p \equiv 1 \pmod{4}, \qquad p = a^2 + b^2, \qquad a \equiv 1 \pmod{4}.$$

Theorem 8 (Gauss, 1828)

Let p and a be as above. Then

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2a \pmod{p}.$$

As an easy application we get

$$\Pi_2^{(4)} \not\equiv \pm \Pi_1^{(4)} \pmod{p}$$
 for all $p \equiv 1 \pmod{4}$.

$$p \equiv 1 \pmod{4}, \qquad p = a^2 + b^2, \qquad a \equiv 1 \pmod{4}.$$

Theorem 8 (Gauss, 1828)

Let p and a be as above. Then

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2a \pmod{p}.$$

As an easy application we get

$$\Pi_2^{(4)} \not\equiv \pm \Pi_1^{(4)} \pmod{p}$$
 for all $p \equiv 1 \pmod{4}$.

A similar theorem, due to Jacobi (1837), implies that

$$\Pi_2^{(3)} \not\equiv \Pi_1^{(3)} \pmod{p}$$
 for all $p \equiv 1 \pmod{6}$.

A number of further consequences can be derived from these classical theorems.

A number of further consequences can be derived from these classical theorems. Two samples:

Corollary 9

For a prime $p \equiv 1 \pmod{6}$ we have

$$\Pi_2^{(3)} \equiv -\Pi_1^{(3)} \pmod{p} \quad \Leftrightarrow \quad p = 27x^2 + 27x + 7, x \in \mathbb{Z}.$$

A number of further consequences can be derived from these classical theorems. Two samples:

Corollary 9

For a prime $p \equiv 1 \pmod{6}$ we have

$$\Pi_2^{(3)} \equiv -\Pi_1^{(3)} \pmod{p} \quad \Leftrightarrow \quad p = 27x^2 + 27x + 7, x \in \mathbb{Z}.$$

The first such primes are 7, 61 (seen earlier), 331, 547, 1951.

Let $p \equiv 1 \pmod{4}$. Then

(a)
$$\frac{p-1}{4}! \equiv 1 \pmod{p}$$
 only if $p = 5$.

Let $p \equiv 1 \pmod{4}$. Then

- (a) $\frac{p-1}{4}! \equiv 1 \pmod{p}$ only if p = 5.
- (b) $\left(\frac{p-1}{4}!\right)^k \not\equiv -1 \pmod{p}$ for k = 1, 2, 4.

Let $p \equiv 1 \pmod{4}$. Then

- (a) $\frac{p-1}{4}! \equiv 1 \pmod{p}$ only if p = 5.
- (b) $\left(\frac{p-1}{4}!\right)^{k} \not\equiv -1 \pmod{p}$ for k = 1, 2, 4.
- (c) $\left(\frac{p-1}{4}!\right)^8 \equiv -1 \pmod{p}$ holds for p = 17,241,3361,46817,652081,...

Let $p \equiv 1 \pmod{4}$. Then

(a)
$$\frac{p-1}{4}! \equiv 1 \pmod{p}$$
 only if $p = 5$.

(b)
$$\left(\frac{p-1}{4}!\right)^k \not\equiv -1 \pmod{p}$$
 for $k = 1, 2, 4$.

(c)
$$\left(\frac{p-1}{4}!\right)^8 \equiv -1 \pmod{p}$$
 holds for $p = 17,241,3361,46817,652081,...$

Part (c) is related to the solution of a certain Pell equation.

7. Extensions of Gauss' Theorem

Recall:

Theorem 11 (Gauss, 1828)

If p and a are such that $p = a^2 + b^2$, $a \equiv 1 \pmod{4}$, then

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2a \pmod{p}.$$

7. Extensions of Gauss' Theorem

Recall:

Theorem 11 (Gauss, 1828)

If p and a are such that $p = a^2 + b^2$, $a \equiv 1 \pmod{4}$, then

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2a \pmod{p}.$$

Theorem 12 (Chowla, Dwork, Evans, 1986)

With p and a as above,

$$\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \left(1 + \frac{1}{2}pq_p(2)\right)\left(2a - \frac{p}{2a}\right) \pmod{p^2},$$

where $q_p(2) := (2^{p-1} - 1)/p$ is the Fermat quotient to base 2.

The concept of Gauss factorial was essential in the proof of the following further extension:

Theorem 13

With p and a as above,

$$\begin{split} \binom{\frac{p-1}{2}}{\frac{p-1}{4}} & \equiv \left(2a - \frac{p}{2a} - \frac{p^2}{8a^3}\right) \\ & \times \left(1 + \frac{1}{2}pq_p(2) + \frac{1}{8}p^2\left(2E_{p-3} - q_p(2)^2\right)\right) \pmod{p^3}, \end{split}$$

where E_n is the nth Euler number.

The concept of Gauss factorial was essential in the proof of the following further extension:

Theorem 13

With p and a as above,

where E_n is the nth Euler number.

Similar extensions were also obtained for Jacobi's theorem, concerning the binomial coefficient

$$\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \qquad (p \equiv 1 \pmod{6}).$$

Thank you

