1 RAM Model

1.1 Memory

Infinite sequence of cells, contains w bits. Every cell has an address starting at 1

1.2 CPU

32 registers of width w bits.

1.2.1 Operations

Set value to register (constant or from other register). Take two integers from other registers and store the result of; $a+b,\,a-b,\,a\cdot b,\,a/b$. Take two registers and compare them; $a< b,\,a=b,\,a>b$. Read and write from memory.

1.3 Definitions

An algorithm is a set of atomic operations. It's cost is is the number of atomic operations. A word is a sequence of w bits

2 Worst-case

Worst-case cost of an algorithm is the longest possible running time of input size n

3 Dictionary search

let n be register 1, and v be register 2 register $left \to 1,\, right \to 1$ while $left \le right$

register $mid \rightarrow (left + right)/2$

if the memory cell at address mid = v then

return yes

else if memory cell at address mid > v then

right = mid - 1

else

left = mid + 1

return no

Worst-case time: $f_2(n) = 2 + 6 \log_2 n$

4 Big-O

We say that f(n) grows asymptotically no faster than g(n) if there is a constant $c_1 > 0$ such that $f(n) \le c_1 \cdot g(n)$ and holds for all n at least a constant c_2 . This is denoted by f(n) = O(g(n)).

4.1 Example

 $\begin{array}{rcl}
1000 \log_2 n &=& O(n), n &\neq \\
O(10000 \log_2 n) && & & \\
\end{array}$

 $\log_{b_1} n = O(\log_{b_2} n)$ for any constants $b_1 > 1$ and $b_2 > 1$. Therefore $f(n) = 2 + 6\log_2 n$ can be represented; $f(n) = O(\log n)$

5 Big- Ω

If g(n) = O(f(n)), then $f(n) = \Omega(g(n))$ to indicate that f(n) grows asymptotically no slower than g(n). We say that f(n) grows asymptotically no slower than g(n) if $c_1 > 0$ such $f(n) \geq c_1 \cdot g(n)$ for $n > c_2$; denoted by $f(n) = \Omega(g(n))$

6 Big- Θ

If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$ to indicate that f(n) grows asymptotically as fast as g(n)

7 Sort

7.1 Merge Sort

Divide the array into two parts, sort the individual arrays then combine the arrays together. $f(n) = O(n \log n)$. This is the fastest sorting time possible (apart from $O(n \log \log n)$

7.2 Counting Sort

A set S of n integers and every integer is in the range [1, U]. (all integers are distinct)

Step 1: Let A be the array storing S. Create array B of length U. Set B to zero.

Step 2: For $i \in [1, n]$; Set x to A[i], Set B[x] = 1

Step 3: Clear A, For $x \in [1, U]$; If B[x] = 0 continue, otherwise append x to A

7.2.1 Analysis

Step 1 and 3 take O(U) time, while Step 2 O(n) time. Therefore running time is O(n + U) = O(U).

8 Random

RANDOM(x, y) returns an integer between x and y chosen uniformly at random

9 Data

9.1 Data Structure

Data Structure describes how data is stored in memory.

9.2 LinkedList

Every node stores pointers to its succeeding and preceding nodes (if they exist). The first node is called the head and last called the tail. The space required for a linkedlist is O(n) memory cells. Starting at the head node, the time to enumerate over all the integers is O(n). Time for assertion and deletion is equal to O(1)

9.3 Stack

The stack has two operations; Push (Inserts a new element into the stack), Pop (Removes the most recently inserted element from the stack and returns it. Since a stack is just a linkedlist, push and pop use O(1) time.

9.4 Queue

The queue has two operations; Enqueue (Inserts a new element into the queue), De-queue (Removes the least recently used element from the queue and returns it). Since a queue is just a linkedlist, push and pop use O(1) time.

10 Dynamic Arrays

10.1 Naive Algorithm

insert(e): Increase n by 1, initial an array A' of length n, copy all n-1 of A to A', Set A'[n]=e, Destroy A.

This takes $O(n^2)$ time to do n insertions.

10.2 A Better Algorithm

insert(e): Append e to A and increase n by 1. If A is full; Create A' of length 2n, Copy A to A', Destroy A and replace with A'

This takes O(n) time to do n insertions.

11 Hashing

The main idea of hashing is to divide the dataset S into a number m of disjoint subsets such that only one subset needs to be searched to answer any query.

Pre-processing 11.1

Create an array of linkedlist(L) from 1 to m and an array H of length m. Store the heads of L in H, for all $x \in S$; calculate hash value (h(x)), insert x into $L_{h(x)}$. We will always choose m = O(n), so O(n+m) = O(n)

11.2 Querying

Query with value v, calculate the hash value h(v), Look for v in $L_h(v)$. Query time: $O(|L_{h(v)}|)$

Hash Function 11.3

Pick a prime $p; p \ge m, p \ge$ any integer k. Choose α and β uniformly random from $1, \ldots, p-1$. Therefore: $h(k) = 1 + (((\alpha k + \beta) \mod p) \mod m) \mid O(n)$, Query time: O(1) in expectation

11.3.1 Any Possible Integer

The possible integers is finite under the RAM Model. Max: $2^w - 1$. Therefore p exists between $[2^w, w^{w+1}]$.

11.4 Timing

O(n), Preprocessing time: Space: