Léo Baty

SNCF Direction Innovation & Recherche, département MEV, groupe MOD

Ecole Nationale des Ponts et Chaussées. MPRO

Sous la direction de Hugo Belhomme

Contexte industriel: Transilien

- Service de transport en commun le plus utilisé en Île-de-France.
- Hybride entre le métro et le train : fréquence élevée proche de Paris, fréquence faible loin de Paris.
- Contexte temps réel

Introduction

•000000

Plan de transport : solution du problème de planification

Graphe $G = (\mathcal{E}, \mathcal{A}, w)$ orienté pondéré.

Noeuds (évènements)

Soit un évènement $e \in \mathcal{E}$.

- **Type d'évènement** : terminus origine, terminus destination, arrivée, départ, ou passage.
- Point remarquable : lieu.
- Train associé.
- Horaire théorique : heure prévue.

Types d'arc

- Arc de parcours
- Arc de retournement
- Arc d'espacement

Exemple de plan de transport

Le problème de replanification ferroviaire

Objectifs à minimiser :

- **Objectif voyageur**: temps d'attente + temps de voyage.
- **Durée de la perturbation** : temps qu'il faut au réseau pour absorber les retards actuels.
- Nombre d'actions de régulation.
- **Retard des engins** : somme des retards de chaque engin.

Introduction

0000000

Exemple

Exemple : ajout d'arrêt

Exemple : ajout d'arrêt

Exemple: suppression de train

Exemple: limitation

L'outil actuel

- Gestionnaires du plan de Transport et de l'Information voyageur (GTI)
- Outil d'aide à la décision en cours de développement, deux algorithmes d'optimisation :
 - **Q** Recherche exhaustive : parcours des 2^N solutions ⇒ trop long en temps réel
 - **4 Heuristique add** (3 branches) : algorithme glouton ⇒ utilisé en pratique

- Introduction
- Pipeline de résolution
- 3 Apprentissage
- A Résultats numériques
- Conclusion

Introduction

Objectif: mise en place d'approches d'apprentissage automatique dans le but d'enrichir les algorithmes d'optimisation de l'outil. Utilisation des jeux de données d'historiques.

- ullet $f_{ heta}$: réseau de neurones, $heta \in \mathbb{R}^d$ paramètres à apprendre
- ullet : heuristique guidée par les scores

Réseaux de neurones sur des graphes

Problèmes potentiels des réseaux de neurones classiques (matrice d'adjacence) avec des graphes :

- Information sparse
- Entrées de grande dimension
- Nombre de noeuds variables
- Non-invariance par permutation des sommets :

Parcours de tous les scénarios composés uniquement d'actions ayant un scores élevé.

⇒ moins de scénarios parcourus, temps d'éxécution plus rapide.

- Introduction
- 2 Pipeline de résolution
- Apprentissage
- 4 Résultats numériques
- 5 Conclusion

Résultats numériques

Génération d'instances

Introduction

Données d'historiques

- Plans de transport depuis mai 2018.
- Pour chaque jour et train : parcours théorique, et heures de passages observées.

Construction d'un jeu d'instances

- Ligne L
- Uniquement des fenêtres de 2018 2019.
- 10 fenêtres par jour de durée 1h.

Création d'un jeu de données d'apprentissage

Labélisation des graphes

- On résout chaque instance en offline avec la recherche exhaustive \Rightarrow front de Pareto exact.
- Pour chaque action admissible a, on définit un label c_a :

$$c_a=\mathbb{1}_{\{a \text{ appartient à au moins une solution du front de Pareto}\}}$$

Dataset résultant

- Training/validation/test: 900/100/500 graphes.
- En moyenne, 1000 noeuds et 1500 arcs.
- En moyenne, 140 actions admissibles, et 7 actions admissibles positives (i.e. telles que $c_a = 1$).

- Implémentation en Python avec PyTorch Geometric.
- Exécution sur un serveur distant : 6-12h sur 10 cpu pour chaque modèle.
- Loss : variante de la binary-cross-entropy

	Modèle	Loss	Précision négative	Précision positive	
N	/leilleur modèle	2.47	0.85	0.82	

- 2 Pipeline de résolution
- Apprentissage
- 4 Résultats numériques
- Conclusion

Résultats numériques

0000

Temps d'exécution

Nombre de solutions non-dominées

Bilan

Objectif	Objectif voyageur	Retard des engins	Durée de la perturbation	
Recherche exhaustive	3917.8	6774.9	1205.7	
Add 3 branches	4025.4	6829	1269.1	
Exhaustive GNN	3991.2	6791.7	1264.9	

Conclusion

Introduction

Contributions

- Génération d'instances labélisées à partir des données d'historique.
- Utilisation des instances pour entraîner un modèle de Graph Neural Network.
- Heuristique utilisant le modèle GNN.

Perspectives

- Apprentissage structuré et Fenchel-Young loss.
- Amélioration de A: métaheuristiques multi-objectifs.
- Utilisation d'autres jeux de données.
- Apprentissage par renforcement avec GNN.

Features d'entrée

Labels

Features d'entrée

$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

Features d'entrée

Arcs
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

Features d'entrée

Module GNN: notations

Soit $G = (\mathcal{E}, \mathcal{A}, w)$ en entrée du module GNN.

- K le nombre de couches du GNN
- d : nombre de features par sommet
- $\mathbf{X} \in \mathbb{R}^{|\mathcal{E}| \times d}$: **features** sur chacun des sommets (x_e ses lignes).
- $\mathbf{h}_e^{(k)}$: vecteur de sortie de la couche $k \in [K]$, appelé **hidden** embedding
- z_e : vecteur en sortie du module GNN, appelé node embedding.

Module GNN: les maths

Pour chaque noeud, initialisation :

$$\mathbf{h}_e^{(0)} = \mathbf{x}_e, \, \forall e \in \mathcal{E}$$

② Itération $k \le K - 1$: mise à jour de l'hidden embedding :

$$\left| \mathbf{h}_e^{(k)} = \mathbf{ReLU} \left(\mathbf{\Theta}_1 \mathbf{h}_e^{(k-1)} + \mathbf{\Theta}_2 \sum_{f \in \mathcal{N}(e)} w_{f,e} \mathbf{h}_f^{(k-1)} \right), \, \forall e \in \mathcal{E} \right|$$

 Θ_1 et Θ_2 deux matrices de poids de taille $d \times d$, et $\mathbf{ReLU}(x) = \max(x, 0), \ \forall x \in \mathbb{R}.$

Sortie de la dernière couche :

$$\mathbf{z}_e = \mathbf{h}_e^{(K)} = \mathbf{\Theta}_1 \mathbf{h}_e^{(K-1)} + \mathbf{\Theta}_2 \sum_{f \in \mathcal{N}(e)} w_{f,e} \mathbf{h}_f^{(K-1)}, \forall e \in \mathcal{E}$$

Concaténation du graph embedding

Le node embedding z_e pour chaque contient une information locale sur son voisinage.

Graph embedding z_G

$$z_G = \frac{1}{card(\mathcal{E})} \sum_{e \in \mathcal{E}} z_e$$

Entrée du module de loss :

$$[z_e, z_G], \forall e \in \mathcal{E}$$

Loss: notations

- s_e : sortie (vecteur de taille 3) de la dernière couche linéaire pour le noeud e.
- s_a : **sortie** (scalaire) associée à ;l'action a (récupéré sur s_e avec e associé à a).
- y_a : **score** de l'action a.
- On dit qu'une action admissible est **positive** si elle appartient à au moins une action du front, i.e. $y_a > 0$. On note n^+ le nombre d'actions admissibles positives.
- Sinon, on dit qu'elle est **négative** $(y_a = 0)$. On note n^- le nombre d'actions admissibles positives.

Module de loss : fonction de loss

$$\forall x \in \mathbb{R}, \ \sigma(x) = \frac{1}{1 + \exp(-x)} \in [0, 1]$$

Loss de classification

$$\frac{1}{n} \sum_{a \text{ adm}} -(\mathbb{1}_{y_a > 0} \log \sigma(s_a) + (1 - \mathbb{1}_{y_a > 0}) \log \sigma(1 - s_a))$$

Loss de classification séparée

$$p_1\left(\frac{1}{n^-}\sum_{\substack{a \text{ adm.} \\ \text{t.q. } y_a=0}} -\log\sigma(1-s_a)\right) + p_2\left(\frac{1}{n^+}\sum_{\substack{a \text{ adm.} \\ \text{t.q. } y_a>0}} -\log\sigma(s_a)\right)$$

Métriques de performances : précisions

Précision positive (resp. négative)

Proportion d'actions admissibles positives (resp. négatives) qui sont bien classifiées par le GNN.

Exemple (actions admissibles en rouge) :

Précision positive : 0.5

0.63

Métriques de performances : rang du dernier positif

Rang d'une action a

Classement de a si l'on ordonne les actions par prédictions $\sigma(s_a)$ décroissantes. Noté r_a .

Rang du dernier positif

Rang le plus élevé parmi les actions admissibles positives :

$$\max_{a \text{ adm}} r_a$$

Exemple (actions admissibles positives en vert):

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0.94 & 0.82 & 0.64 & 0.59 & 0.42 & 0.23 & 0.11 & 0.05 & 0.01 \end{bmatrix}$$

Rang du dernier positif : 7

Métriques de performances : distance linéaire moyenne

Distance linéaire moyenne

DistanceMoyenneLinéaire(G) =
$$\frac{1}{n^+} \sum_{\substack{a \text{ admissible}}} \max(n^+ - r_a, 0)$$

Exemple (actions amissibles positives en vert) :

$$\begin{bmatrix} 1 & 2 & 3 & 4 & | & 5 & 6 & 7 & 8 & 9 \\ 0.94 & 0.82 & 0.64 & 0.59 & | & 0.42 & 0.23 & 0.11 & 0.05 & 0.01 \end{bmatrix}$$

Distance linéaire moyenne : $\frac{0+0+1+3}{4}=1$

Objectifs : durée de la perturbation

Objectifs: objectif voyageur

Objectifs: Retard des engins

