TD - 9 : Géométrie

Entraînements

Géométrie du plan

Exercice 1. Déterminer l'intersection de $\mathcal{D}: 2x + 5y - 10 = 0$ et de la droite \mathcal{D}' passant par A(-1,2) et dirigée par $\vec{u}(3,2)$.

Correction 1. Déterminer l'intersection de $\mathcal{D}: 2x+5y-10=0$ et de la droite \mathcal{D}' passant par A(-1,2) et dirigée par $\vec{u}(3,2)$.

 \mathcal{D}' a pour équation paramétrique : $\begin{cases} x = -1 + 3\lambda \\ y = 2 + 2\lambda \end{cases}$

Soit M(x, y) un point du plan. On résout :

$$(M \in \mathcal{D} \cap \mathcal{D}') \iff \exists \lambda \in \mathbb{R} \text{ tel que} : \begin{cases} x = -1 + 3\lambda \\ y = 2 + 2\lambda \\ 2x + 5y - 10 = 0 \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R} \text{ tel que} : \begin{cases} x = -1 + 3\lambda \\ y = 2 + 2\lambda \\ -2 + 6\lambda + 10 + 10\lambda - 10 = 0 \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R} \text{ tel que} : \begin{cases} x = -1 + 3\lambda \\ y = 2 + 2\lambda \\ \lambda = 1 + 3\lambda \end{cases}$$

$$\iff \begin{cases} x = -5/8 \\ y = 9/4 \end{cases} \iff M\left(-\frac{5}{8}; \frac{9}{4}\right)$$

Conclusion:

Les droites \mathcal{D} et \mathcal{D}' se coupent en un unique point $M_0\left(-\frac{5}{8};\frac{9}{4}\right)$.

Exercice 2. Déterminer une équation cartésienne de la droite D passant par A = (2,1) et B = (1,-2). Donner un vecteur directeur de D et une équation paramétrique de D.

Correction 2. Un vecteur directeur de D est le vecteur \overrightarrow{AB} de coordonnées

$$\left(\begin{array}{c} -1\\ -3 \end{array}\right) = 0$$

Une équation paramétrique de D est donc donnée par le système :

$$\begin{cases} x = 1 - \lambda \\ y = -2 - 3\lambda \end{cases}$$

Exercice 3. Déterminer une équation cartésienne de la droite D passant par A=(2,1) et dirigée par le vecteur $\vec{u}=(1,-1)$.

Déterminer le projeté orthogonal de B = (1,1) sur D.

Correction 3. A venir

Exercice 4. Soit D la droite d'équation x + y - 1 = 0. Déterminer une équation paramétrique de D. Donner une équation cartésienne de la droite D' parallèle à D et passant par le point de coordonnées A = (1, 1). Déterminer une équation cartésienne de la droite orthogonale à D et passant par A

Correction 4. A venir

Exercice 5. Le plan est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Les points A et B ont pour coordonnées respectives (2,4) et (-1,3). Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (2,-1) et (3,-2). Donner des équations de

- La droite (AB).
- La droite \mathcal{D} qui passe par A et de vecteur directeur \vec{u} .
- La droite \mathcal{D}' qui passe par B et qui est orthogonale à \vec{v} .

Correction 5. A venir

Exercice 6.

- 1. Déterminer l'équation du cercle C_1 de diamètre [AB] où A(3,1) et B(7,-1).
- 2. La partie C_2 du plan définie par l'équation cartésienne $x^2 + y^2 8x + y + 10 = 0$ est-elle un cercle? Si oui, donner son centre et son rayon.
- 3. Déterminer l'intersection de C_1 et C_2 .

Correction 6.

1. Déterminer l'équation du cercle C_1 de diamètre [AB] où A(3,1) et B(7,-1).

Le cercle \mathcal{C}_1 de diamètre [AB] aura pour centre le milieu du segment [AB], i.e. le point $\Omega(5,0)$, et pour rayon $R=\frac{AB}{2}=\frac{\sqrt{4^2+(-2)^2}}{2}=\sqrt{5}.$ Il aura donc pour équation : (point de repère : $\Omega M^2=5$)

$$(x-5)^2 + y^2 = 5$$

2. La partie C_2 du plan définie par l'équation cartésienne $x^2 + y^2 - 8x + y + 10 = 0$ est-elle un cercle? Si oui, donner son centre et son rayon.

Soit M(x,y) un point du plan. On résout :

$$(M \in \mathcal{C}_2) \iff x^2 + y^2 - 8x + y + 10 = 0 \iff (x^2 - 8x + 16) - 16 + \left(y^2 + y + \frac{1}{4}\right) - \frac{1}{4} + 10 = 0$$

Donc, en posant $\Omega\left(4,-\frac{1}{2}\right)$, on a :

$$(M \in \mathcal{C}_2) \iff (x-4)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{25}{4} \iff \Omega M^2 = \frac{25}{4} \iff \Omega M = \frac{5}{2}$$

Donc C_2 est le cercle de centre $\Omega\left(4,-\frac{1}{2}\right)$ et de rayon $\frac{5}{2}$.

3. Déterminer l'intersection de C_1 et C_2 .

Commencez par tracer C_1 et C_2 dans le plan pour voir de quoi il s'agit.

Soit M(x,y) un point du plan. On résout :

$$(M \in \mathcal{C}_1 \cap \mathcal{C}_2) \iff \begin{cases} (x-5)^2 + y^2 = 5 \\ x^2 + y^2 - 8x + y + 10 = 0 \end{cases} \iff \begin{cases} x^2 + y^2 - 10x + 20 = 0 \\ x^2 + y^2 - 8x + y + 10 = 0 \end{cases}$$

$$\iff \begin{cases} x^2 + y^2 - 10x + 20 = 0 \\ 2x + y - 10 = 0 \end{cases} \iff \begin{cases} x^2 + (-2x + 10)^2 - 10x + 20 = 0 \\ y = -2x + 10 \end{cases} \iff \begin{cases} 5x^2 - 50x + 120 = 0 \\ y = -2x + 10 \end{cases}$$

$$\iff \begin{cases} x^2 - 10x + 24 = 0 \\ y = -2x + 10 \end{cases} \iff \begin{cases} x = \frac{10 - \sqrt{4}}{2} \text{ ou } x = \frac{10 + \sqrt{4}}{2} \\ y = -2x + 10 \end{cases} \iff \begin{cases} x = 6 \\ y = -2 \end{cases}$$

Donc C_1 et C_2 ont deux points d'intersection : $M_1(4,2)$ et $M_2(6,-2)$.

Exercice 7. Soit A et B de coordonnées : A = (1,2) et B = (2,3). Soit C le cercle de centre $\Omega = (2,0)$ et de rayon 1. Pour tout point M du cercle on considère le triangle ABM. Quel est le point du cercle qui minimise l'aire de ce triangle?

Correction 7. A venir.

Exercice 8. 1. Déterminer l'équation du plan P qui passe par les points A, B, C de coordonnées respectives : A = (1, 1, 1), B = (2, 2, 3) et C = (-1, 0, -2).

- 2. Donner deux vecteurs non colinéaires et paralléles à P
- 3. Soit D de coordonnées (1,2,3). Est ce que D appartient à P?
- 4. Donner H le projeté orthogonal de D sur H.

Correction 8. On considère les plans $\mathcal{P}: x-y+z=1$ et $\mathcal{P}': x+2y+3z=6$.

Justifier que $\mathcal{P} \cap \mathcal{P}'$ est une droite, que l'on appellera \mathcal{D} . Déterminer un vecteur directeur de \mathcal{D} . Le plan \mathcal{P} admet $\vec{n}(1,-1,1)$ comme vecteur normal. Le plan \mathcal{P}' admet $\vec{n}'(1,2,3)$ comme vecteur normal. \vec{n} et \vec{n}' ne sont pas colinéaires, donc \mathcal{P} et \mathcal{P}' ne sont pas parallèles. Donc leur intersection est une droite \mathcal{D} . Pour trouver un vecteur directeur, on cherche une équation paramétrique de \mathcal{D} (sachant qu'on en a une équation cartésienne).

Soit M(x, y, z) un point de l'espace. On résout :

$$(M \in \mathcal{D}) \iff \begin{cases} x - y + z = 1 \\ x + 2y + 3z = 6 \end{cases} \iff \begin{cases} x - y + z = 1 \\ 3y + 2z = 5 \end{cases} \iff \begin{cases} x = \frac{8}{3} - \frac{5}{3}z \\ y = \frac{5}{3} - \frac{2}{3}z \\ z = z \end{cases}$$

On obtient donc une équation paramétrique de \mathcal{D} : $\begin{cases} x = \frac{8}{3} - \frac{5}{3}\lambda \\ y = \frac{5}{3} - \frac{2}{3}\lambda \\ z = 0 + \lambda \end{cases} \iff \begin{cases} x - \frac{8}{3} = -\frac{5}{3}\lambda \\ y - \frac{5}{3} = -\frac{2}{3}\lambda \\ z - 0 = \lambda \end{cases} \iff \overrightarrow{AM} = \lambda \overrightarrow{u},$

en posant $A\left(\frac{8}{3}, \frac{5}{3}, 0\right)$ et $\vec{u}\left(-\frac{5}{3}, -\frac{2}{3}, 1\right)$.

Donc

$$\mathcal{D}$$
 passe par le point $A\left(\frac{8}{3}, \frac{5}{3}, 0\right)$ et est dirigée par le vecteur $\vec{u}\left(-\frac{5}{3}, -\frac{2}{3}, 1\right)$.

Exercice 9. On considère les plans $\mathcal{P}: x - y + z = 1$ et $\mathcal{P}': x + 2y + 3z = 6$. Justifier que $\mathcal{P} \cap \mathcal{P}'$ est une droite, que l'on appellera \mathcal{D} . Déterminer un vecteur directeur de \mathcal{D} .

Correction 9. A venir

Exercice 10. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient les points A(1,0,0), B(0,1,0) et C(0,0,2). Montrer que ces trois points détermine un plan. Donner un vecteur normal au plan puis donner une équation cartésienne du plan.

Correction 10. A venir

Exercice 11. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient $A(5, 2, 1), \vec{u} = \vec{i} - 3\vec{j} + \vec{k}$ et $\vec{v} = \vec{i} + \vec{j}$.

- 1. Donner une équation du plan passant par A et de vecteurs directeurs les vecteurs \vec{u} et \vec{v} .
- 2. Donner une équation du plan normal à \vec{u} et passant par A.

Correction 11. A venir

Exercice 12. Déterminer un vecteur directeur de la droite \mathcal{D} contenant le point A=(2,1,3) parallèle au plan d'équation x+y+z=2 et rencontrant la droite \mathcal{D}' d'équations cartésiennes x=1 et y=z.

Correction 12. Déterminer la droite \mathcal{D} contenant le point A=(2,1,3) parallèle au plan d'équation x+y+z=2 et rencontrant la droite \mathcal{D}' d'équations cartésiennes x=1 et y=z.

Rassemblons les informations que l'on a :

• \mathcal{D} passe par le point A=(2,1,3); il ne manque qu'un vecteur directeur de \mathcal{D} pour avoir déterminé cette droite. Appelons $\vec{u}(a,b,c)$ un vecteur directeur de \mathcal{D} ($\vec{u}\neq\vec{0}$; on va le déterminer à un facteur près). On aura pour équation paramétrique de \mathcal{D} :

$$\begin{cases} x = 2 + a\lambda \\ y = 1 + b\lambda \\ z = 3 + c\lambda \end{cases} ; \quad \lambda \in \mathbb{R}$$

• \mathcal{D} est parallèle au plan d'équation x + y + z = 2; donc le vecteur $\vec{n}(1, 1, 1)$, qui est normal à ce plan, sera normal à \mathcal{D} .

Donc $\vec{n} \cdot \vec{u} = 0$. Donc a + b + c = 0, donc

$$a = -b - c$$

. D'où l'équation paramétrique de \mathcal{D} :

$$\begin{cases} x = 2 + (-b - c)\lambda \\ y = 1 + b\lambda \\ z = 3 + c\lambda \end{cases} ; \quad \lambda \in \mathbb{R}$$

• \mathcal{D} rencontre la droite \mathcal{D}' d'équations cartésiennes x=1 et y=z. Donc le système suivant, d'inconnue λ , admet au moins une solution.

$$(S): \begin{cases} 2 + (-b - c)\lambda = 1\\ 1 + b\lambda = 3 + c\lambda \end{cases} \iff \begin{cases} (b + c)\lambda = 1\\ (b - c)\lambda = 2 \end{cases}$$

On doit donc avoir

$$b + c \neq 0$$

(sinon la première équation n'a pas de solution), et on obtient :

$$(S) \iff \begin{cases} \lambda = \frac{1}{b+c} \\ \frac{b-c}{b+c} = 2 \end{cases} \iff \begin{cases} \lambda = \frac{1}{b+c} \\ b-c = 2b+2c \end{cases} \iff \begin{cases} \lambda = \frac{1}{b+c} \\ b = -3c \end{cases}$$

Rassemblons les informations sur les coordonnées du vecteur $\mathbf{u}(a,b,c)$:

$$\begin{cases} a = -b - c \\ b + c \neq 0 \\ b = -3c \end{cases} \iff \begin{cases} a = 2c \\ b = -3c \\ c \neq 0 \end{cases}$$

On a un paramètre libre : c'est normal, une infinité de vecteurs conviennent ; on peut par exemple poser c = 1, et l'on obtient a = 2 et b = -3.

Donc

$$\vec{u}(2, -3, 1)$$

.

$$\mathcal{D}$$
 est la droite passant par $A=(2,1,3)$ et dirigée par $\vec{u}(2,-3,1)$

. Elle a pour équation paramétrique :

$$\begin{cases} x = 2 + 2\lambda \\ y = 1 - 3\lambda \quad ; \quad \lambda \in \mathbb{R} \\ z = 3 + \lambda \end{cases}$$

Produit scalaire

Exercice 13. Soient \vec{u} et \vec{v} deux vecteurs du plan.

- 1. Démontrer que \vec{u} et \vec{v} sont orthogonaux si et seulement si $\|\vec{u} + \vec{v}\| = \|\vec{u} \vec{v}\|$.
- 2. Déduire de la question précédente, une condition nécessaire et suffisante pour qu'un parallélogramme ABCD soit rectangle.

Correction 13. Soient \vec{u} et \vec{v} deux vecteurs du plan.

1. Démontrer que \vec{u} et \vec{v} sont orthogonaux si et seulement si $\|\vec{u} + \vec{v}\| = \|\vec{u} - \vec{v}\|$. On calcule :

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$$

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

Donc:

$$\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 = 4\vec{u} \cdot \vec{v}$$

Comme $\|\vec{u} + \vec{v}\| \in \mathbb{R}_+$, $\|\vec{u} - \vec{v}\| \in \mathbb{R}_+$ et $x \mapsto x^2$ est strictement croissante sur \mathbb{R}_+ , on résout :

$$(\|\vec{u} + \vec{v}\| = \|\vec{u} - \vec{v}\|) \iff (\|\vec{u} + \vec{v}\|^2 = \|\vec{u} - \vec{v}\|^2) \iff (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 = 0) \iff (4\vec{u} \cdot \vec{v} = 0)$$
$$\iff (\vec{u} \cdot \vec{v} = 0) \iff (\vec{u} \text{ et } \vec{v} \text{ sont orthogonaux})$$

Conclusion:

$$\vec{u}$$
 et \vec{v} sont orthogonaux si et seulement si $||\vec{u} + \vec{v}|| = ||\vec{u} - \vec{v}||$.

2. Déduire de la question précédente, une condition nécessaire et suffisante pour qu'un parallélogramme ABCD soit rectangle.

Faites un dessin pour voir de quoi vous parlez! Soit *ABCD* un parallélogramme. On résout :

$$(ABCD \text{ est un rectangle}) \iff \left(\overrightarrow{AB} \text{ et } \overrightarrow{AD} \text{ sont orthogonaux}\right) \iff \left(\left\|\overrightarrow{AB} + \overrightarrow{AD}\right\| = \left\|\overrightarrow{AB} - \overrightarrow{AD}\right\|\right)$$
$$\iff \left(\left\|\overrightarrow{AB} + \overrightarrow{BC}\right\| = \left\|\overrightarrow{AB} + \overrightarrow{DA}\right\|\right) \iff \left(\left\|\overrightarrow{AC}\right\| = \left\|\overrightarrow{DB}\right\|\right) \iff (AC = DB)$$

Conclusion:

ABCD est un rectangle, si et seulement si ses diagonales sont de même longueur.

Exercice 14. Soit ABC un triangle non plat du plan.

- 1. Démontrer que, pour tout point M du plan, on a $\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MB}.\overrightarrow{CA}+\overrightarrow{MC}.\overrightarrow{AB}=0$.
- 2. Soit H le point d'intersection des hauteurs issues de B et C. Montrer que $\overrightarrow{HA}.\overrightarrow{BC}=0$ et en déduire que H appartient à la hauteur issue de A.

Correction 14. Soit ABC un triangle non plat du plan.

1. **Démontrer que, pour tout point** M **du plan, on a** $\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = \mathbf{0}$. Soit M un point du plan. On calcule :

$$\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = \overrightarrow{MA}.\overrightarrow{BC} + \left(\overrightarrow{MA} + \overrightarrow{AB}\right).\overrightarrow{CA} + \left(\overrightarrow{MA} + \overrightarrow{AC}\right).\overrightarrow{AB}$$

$$= \overrightarrow{MA}.\left(\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB}\right) + \overrightarrow{AB}.\overrightarrow{CA} + \overrightarrow{AC}.\overrightarrow{AB}$$

$$= \overrightarrow{MA}.\left(\overrightarrow{BB}\right) + \left(\overrightarrow{CA} + \overrightarrow{AC}\right).\overrightarrow{AB}$$

$$= 0 + 0$$

$$= 0$$

2. Soit H le point d'intersection des hauteurs issues de B et C.

Montrer que $\overrightarrow{HA}.\overrightarrow{BC} = \mathbf{0}$ et en déduire que H appartient à la hauteur issue de A. Soit H le point d'intersection des hauteurs issues de B et C.

 \bullet H appartient à la hauteur issue de B donc les droites (HB) et (CA) sont perpendiculaires, donc :

$$\overrightarrow{HB}.\overrightarrow{CA} = 0$$

 \bullet H appartient à la hauteur issue de C donc les droites (HC) et (AB) sont perpendiculaires, donc :

$$\overrightarrow{HC}.\overrightarrow{AB} = 0$$

On en déduit, en appliquant $\mathbf{1}: \overrightarrow{HA}.\overrightarrow{BC}+\overrightarrow{HB}.\overrightarrow{CA}+\overrightarrow{HC}.\overrightarrow{AB}=0$, donc $\overrightarrow{HA}.\overrightarrow{BC}+0+0=0$, donc $\overrightarrow{HA}.\overrightarrow{BC}=0$, donc les droites (HA) et (BC) sont perpendiculaires, donc H appartient à la hauteur issue de A.

Exercice 15. Formule d'Al Kachi.

On considère un triangle ABC. On note \hat{A} , \hat{B} et \hat{C} les mesures respectives des angles non orientés \widehat{BAC} , \widehat{ABC} et \widehat{ACB} et l'on pose a=BC, b=AC et c=AB.

- 1. Démontrer que $a^2 = b^2 + c^2 2bc\cos(\hat{A})$ et énoncer deux autres formules similaires. Qu'obtient-on si $\hat{A} = \frac{\pi}{2}$?
- 2. Si $a=4,\,b=3$ et c=2, calculer une valeur approchée (à 10^{-2} degré près) de $\hat{A},\,\hat{B}$ et $\hat{C}.$
- 3. Si $\hat{A} = \frac{\pi}{6}$, a = 3 et c = 2, calculer b.

Correction 15. Formule d'Al Kachi.

On considère un triangle ABC. On note \hat{A} , \hat{B} et \hat{C} les mesures respectives des angles non orientés \widehat{BAC} , \widehat{ABC} et \widehat{ACB} et l'on pose a=BC, b=AC et c=AB.

1. Démontrer que $a^2 = b^2 + c^2 - 2bc\cos(\hat{A})$ et énoncer deux autres formules similaires. Qu'obtient-on si $\hat{A} = \frac{\pi}{2}$?

On calcule:

$$a^2 = BC^2 = \left\|\overrightarrow{BC}\right\|^2 = \left\|\overrightarrow{BA} + \overrightarrow{AC}\right\|^2 = \left\|\overrightarrow{BA}\right\|^2 + \left\|\overrightarrow{AC}\right\|^2 + 2\overrightarrow{BA}.\overrightarrow{AC} = c^2 + b^2 - 2\overrightarrow{AB}.\overrightarrow{AC} = c^2 + b^2 - 2bc\cos(\hat{A})$$

De même : $b^2 = c^2 + a^2 - 2ac\cos(\hat{B})$ et $c^2 = a^2 + b^2 - 2ab\cos(\hat{C})$.

Si $\hat{A} = \frac{\pi}{2}$, donc si le triangle ABC est rectangle en A, on obtient $\cos(\hat{A}) = 0$, donc :

 $a^2 = b^2 + c^2$: c'est le théorème de Pythagore.

2. Si $a=4,\ b=3$ et c=2, calculer une valeur approchée (à 10^{-2} degré près) de $\hat{A},\ \hat{B}$ et $\hat{C}.$

$$\cos(\hat{A}) = \frac{-a^2 + b^2 + c^2}{2bc} = -\frac{1}{4}, \text{ et } \hat{A} \in [0; \pi] \text{ (angle non orienté), donc } \hat{A} = \arccos\left(-\frac{1}{4}\right) \approx 104, 48^{\circ}.$$

$$\cos(\hat{B}) = \frac{-b^2 + a^2 + c^2}{2ac} = \frac{11}{16}, \text{ et } \hat{B} \in [0; \pi] \text{ (angle non orienté), donc } \hat{B} = \arccos\left(\frac{11}{16}\right) \approx 46,57^{\circ}.$$

$$\cos(\hat{C}) = \frac{-c^2 + a^2 + b^2}{2ab} = \frac{21}{24}$$
, et $\hat{C} \in [0; \pi]$ (angle non orienté), donc $\hat{C} = \arccos\left(\frac{21}{24}\right) \approx 28.96^{\circ}$.

Remarque : on peut vérifier que $\hat{A} + \hat{B} + \hat{C} \approx 180^{\circ}$ (à 0,01° près).

3. Si $\hat{A} = \frac{\pi}{6}$, a = 3 et c = 2, calculer b.

$$a^2 = c^2 + b^2 - 2bc\cos(\hat{A})$$
, donc $b^2 - 2bc\cos(\hat{A}) + c^2 - a^2 = 0$, donc $b^2 - 2\sqrt{3}b - 5 = 0$.

Le discriminant de cette équation vaut $\Delta=32=\left(4\sqrt{2}\right)^2,$ donc :

$$b = \frac{2\sqrt{3} + 4\sqrt{2}}{2} = \sqrt{3} + 2\sqrt{2}$$
 ou $b = \frac{2\sqrt{3} - 4\sqrt{2}}{2} = \sqrt{3} - 2\sqrt{2}$.

Or $b \ge 0$ (c'est une longueur), donc

$$b = \sqrt{3} - 2\sqrt{2}$$

Géométrie et nombres complexes

Exercice 16. Déterminer géométriquement les complexes z vérifiant les relations suivantes. Vérifier votre résultat par un calcul.

1.
$$|z-1-i| = |z+1+i|$$

2.
$$(|z-i|-1)(|z+1|-2)=0$$

$$3. \ \frac{z-1}{z-i} \in \mathbb{R}_+^*$$

Correction 16. Déterminer géométriquement les complexes z vérifiant les relations suivantes. Vérifier votre résultat par un calcul.

1. $|\mathbf{z} - \mathbf{1} - \mathbf{i}| = |\mathbf{z} + \mathbf{1} + \mathbf{i}|$:

Soit A, B et M les points d'affixes 1+i, -1-i et z. On a :

$$|z-1-i| = |z+1+i| \Leftrightarrow AM = BM$$

donc l'ensemble des points cherchés est

la médiatrice du segment
$$[AB]$$
.

On retrouve ce résultat par le calcul. Soit $(x,y) \in \mathbb{R}^2$ tels que z = x + iy. On a alors :

$$|z - 1 - i| = |z + 1 + i| \Leftrightarrow |x + iy - 1 - i| = |x + iy + 1 + i|$$

$$\Leftrightarrow \sqrt{(x - 1)^2 + (y - 1)^2} = \sqrt{(x + 1)^2 + (y + 1)^2}$$

$$\Leftrightarrow (x - 1)^2 + (y - 1)^2 = (x + 1)^2 + (y + 1)^2$$
 car les termes sont positifs
$$\Leftrightarrow x^2 - 2x + 1 + y^2 - 2y + 1 = x^2 + 2x + 1 + y^2 + 2y + 1$$

$$\Leftrightarrow y = -x$$

Ainsi l'ensemble solution est

la droite d'équation y = -x

.

2. $(|\mathbf{z} - \mathbf{i}| - \mathbf{1})(|\mathbf{z} + \mathbf{1}| - \mathbf{2}) = \mathbf{0}$:

Soit A, B et M les points d'affixes i, -1 et z. On a :

$$(|z-i|-1)(|z+1|-2) = 0 \Leftrightarrow |z-i|-1 = 0 \text{ ou } |z+1|-2 = 0$$

 $\Leftrightarrow AM = 1 \text{ ou } BM = 2$

donc l'ensemble des points cherchés est

la réunion des cercles
$$C(A, 1)$$
 et $C(B, 2)$.

On retrouve ce résultat par le calcul. Soit $(x,y) \in \mathbb{R}^2$ tels que z = x + iy. On a alors :

$$|z - i| - 1 = 0$$
 ou $|z + 1| - 2 = 0$ \Leftrightarrow $|x + iy - i| = 1$ ou $|x + iy + 1| = 2$ \Leftrightarrow $\sqrt{x^2 + (y - 1)^2} = 1$ ou $\sqrt{(x + 1)^2 + y^2} = 2$ \Leftrightarrow $x^2 + (y - 1)^2 = 1$ ou $(x + 1)^2 + y^2 = 4$ car les terms sont positifs

Ainsi l'ensemble solution est bien la réunion des deux cercles trouvés précédemment.

3. $\frac{\mathbf{z} - \mathbf{1}}{\mathbf{z} - \mathbf{i}} \in \mathbb{R}_+^*$: Soit A, B et M les points d'affixes i, 1 et z. On a :

$$\frac{z-1}{z-i} \in \mathbb{R}_{+}^{\star} \Leftrightarrow \exists \lambda \in \mathbb{R}_{+}^{\star}, \frac{z-1}{z-i} = \lambda$$

$$\frac{z-1}{z-i} \in \mathbb{R}_{+}^{\star} \Leftrightarrow \exists \lambda \in \mathbb{R}_{+}^{\star}, \frac{z-1}{z-i} = \lambda$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}_{+}^{\star}, z-1 = \lambda(z-i) ,$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}_{+}^{\star}, \overrightarrow{AM} = \lambda \overrightarrow{BM}$$

donc l'ensemble des points cherchés est l'ensemble des points de la droite (AB) pour lesquels les vecteurs \overrightarrow{AM} et \overrightarrow{BM} sont colinéaires de même sens (car $\lambda > 0$). On obtient

la réunion de deux demi-droites.

On retrouve ce résultat par le calcul. Soit $(x,y) \in \mathbb{R}^2$ tels que z = x + iy. Soit $\lambda \in \mathbb{R}_+^*$ tel que

$$z - 1 = \lambda(z - i) \Leftrightarrow x + iy - 1 = \lambda(x + iy - i)$$

$$\Leftrightarrow \begin{cases} x - 1 &= \lambda x \\ y &= \lambda(y - 1) \end{cases}$$

par identification des parties réelles et imaginaires

$$\Leftrightarrow \begin{cases} \lambda = \frac{x-1}{x} & \text{car } x = 0 \text{ n'est pas solution} \\ y = \frac{x-1}{x}(y-1) \end{cases}$$

La dernière équation donne : $xy=(x-1)(y-1)\Leftrightarrow xy=xy-x-y+1\Leftrightarrow y=-x+1$. De plus, on a : $\lambda>0\Leftrightarrow \frac{x-1}{x}>0\Leftrightarrow x\in]-\infty,0[\ \cup\]1,+\infty[$. Ainsi l'ensemble solution est bien la réunion des deux demi-droites trouvées précédemment.