CA 1, 2

Group 6

CA1:

1.Define

$$X = [x_1 | \dots | x_N], \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

So, we can write

$$f(w) = \frac{1}{N} \sum_{i=1}^{N} ||w^{T}x_{i} - y_{i}||_{2}^{2} + \lambda ||w||_{2}^{2}$$

$$= \frac{1}{N} ||X^{T}w - y||_{2}^{2} + \lambda ||w||_{2}^{2}$$

$$= \frac{1}{N} (X^{T}w - y)^{T} (X^{T}w - y) + \lambda w^{T}w$$

Hence,

$$\nabla f(w) = \left(\frac{1}{N}XX^T - \lambda I\right)w - \frac{1}{N}Xy$$

Therefore, the optimal solution w^* is obtained

$$\nabla f(w^*) = 0 \Longrightarrow w^* = \boxed{(XX^T - \lambda I)^{-1}Xy}$$

4. We can use algorithms like Gradient Decent.

CA2:

3. For all the cases, the following variables were the same:

$$\lambda = 0.1$$
, $\alpha = 0.1$, #iterations = 1000,

	GD	SGD	SVRG	SAG
Time (ms)	43865	19.2	2002	59
$f(w^*)$	0.356730	0.356732	0.356698	0.578958