Тестовое задание "Begemotic MVP"

Менеджер продукта begemotic (BEstplace GEo Machine fOr Tlptop Calculations) хочет запустить сервис расчета геофакторов по HTTP API. Он просит тебя для начала реализовать MVP сервиса: расчет некоторых видов геоагрегаций на одном датасете — сэмпле многоквартирных домов Москвы (см. apartments.csv). Описание полей "apartments.csv" см. ниже.

Поле	Описание поля
id	уникальный идентификатор дома
geopos	координаты дома в формате <u>geojson</u> (порядок координат: долгота, широта)
apartments	количество квартир в доме
price	средняя стоимость квартир в доме за 1 кв. м
year	год постройки дома

Требования к MVP

- 1. Сервис должен быть реализован с помощью библиотек <u>h3-ру</u> (версии 3.х и 4.х сильно отличаются, в этом документе приведены функции из версии 3.х) и <u>fastapi</u>.
- 2. Для расчетов агрегаций следует использовать h3 точность (resolution) = 11. Длина стороны h3 гексов такой точности в Москве примерно равна 30м.
- 3. Сервис должен обладать следующими АРІ методами:
 - а. Посчитать агрегацию в радиусе k гексов от точки (см. <u>h3.geo_to_h3</u> и <u>h3.k_ring</u>). На вход метод должен принимать следующие параметры:

Параметр	Описание
geometry	координаты точки в формате <u>geojson</u>
field	поле датасета
aggr	тип агрегации (допустимые варианты: sum — сумма, avg — среднее значение, min — минимальное значение, max — максимальное значение)
r	размер радиуса в гексах

Пример данных POST запроса к методу (расчет суммы квартир в радиусе 4 гексов от заданной точки):

```
"geometry": {
    "type": "Point",
    "coordinates": [37.517259, 55.542444]
},
    "field": "apartments",
    "aggr": "sum",
    "r": 4
}
```

Для данного примера результат расчёта будет равен 1501:

b. Посчитать агрегацию в заданном полигоне, полигон должен аппроксимироваться с помощью гексов (см. <u>h3.polyfill</u>). На вход метод должен принимать следующие параметры:

Параметр	Описание
geometry	координаты точки в формате <u>geojson</u>
field	поле датасета
aggr	тип агрегации (допустимые варианты: sum — сумма, avg — среднее значение, min — минимальное значение, max — максимальное значение)

Пример данных POST запроса к методу (расчет средней стоимости квадратного метра в заданном полигоне):

```
"geometry": {
    "type": "Polygon",
    "coordinates": [[
        [37.520123, 55.54413],
        [37.515671, 55.54399],
        [37.514662, 55.541793],
        [37.521218, 55.542612],
        [37.520123, 55.54413]
    ]]
    },
    "field": "price",
    "aggr": "avg"
}
```

Для данного примера результат расчёта будет равен примерно 238302.86:

- 4. В случае некорректно вызванного метода API сервис должен возвращать понятное описание ошибки.
- 5. Сервис должен развертываться внутри docker образа.

Результат

После выполнения задания нужно отправить архив со следующим содержанием:

- 1. Исходный код проекта, написанный на python3.
- 2. Файл docker-compose.yml, с помощью которого можно собрать и развернуть контейнер сервиса.
- 3. Файл readme с описанием процесса развертывания и (по желанию) комментариями.