Author: joy. huang

CreateDate: 2007/12/11 Modifyed Date: 2008/01/7

一. lvs-nat HA 结构图原理

冬一

DR1 物理 nic 接口与 ip 分配如下:

Eth0:60.28.161.188 netmask:255.255.255.192 gw60.28.161.129 **连接网通 Eth1**:221.238.249.93 netmask:255.255.255.224 gw221.238.249.65 连接电信

Eth2:192.168.200.3/24 gw:为空

Eth3:192.168.200.13/24 gw:为空,用于心跳检测

DR2物理nic接口与ip分配如下:

Eth0:60.28.161.189 netmask:255.255.255.192 gw60.28.161.129 连接网通 Eth1:221.238.249.94 netmask:255.255.255.224 gw221.238.249.65 连接电信

Eth2:192.168.200.4/24 gw:为空

Eth3:192.168.200.14/24 gw:为空,用于心跳检测

web1 **eth0**:192.168.200.29/24 gw: 192.168.200.10 web2 **eth0**:192.168.200.30/24 gw: 192.168.200.10

二.目的:

1. 实现 Server 集群服务的高可用性,做到 Director 零故障转移,同时对 real server 的 实时监管.配置成 lvs-Nat+heartbeat+ldirectord 架构

三. 测试环境 与 架构要求

- 1. host 环境 Linux 2.6.9-55. ELsmp i686 i686 i386 GNU/Linux 双网卡为:eth0, eth1
- 2. vmwareServer1. 0. 4 上新建四台 guest 各 guest 机器名分别为:

DR1(主 director)4块网卡 etho 连网通 eth1 连电信 eth2 私网 eth3 私网用于心跳 DR2(备豕 director)4块网卡 etho 连网通 eth1 连电信 eth2 私网 eth3 私网用于心跳 web1 单网卡 etho 接私网 web2 单网卡 etho 接私网

四. DR1(主 Director)配置

4.1 配置 DR1 公网 ip 私网 ip 及心跳接口 ip

注: 浮动 IP即: vip 是不写入系统网口配置文件的,它一般由 HA 软件来控制

eth0 配置

[[root@DR1 network-scripts]# cat ifcfg-eth0

BOOTPROTO=none

GATEWAY=60. 28. 161. 129

HWADDR=00:0C:29:FA:32:D5

DEVICE=eth0

MTU=""

NETMASK=255. 255. 255. 192

BROADCAST=""

IPADDR=60. 28. 161. 188

NETWORK=60. 28. 161. 128

ONBOOT=yes

eth1 配置

[root@DR1 network-scripts]# cat ifcfg-eth1

BOOTPROTO=none

GATEWAY=221. 238. 249. 65

HWADDR=00:0C:29:FA:32:DF

DEVICE=eth1

MTU=""

NETMASK=255. 255. 255. 224

BROADCAST=""

IPADDR=221. 238. 249. 93

ONBOOT=yes

eth2 配置

[root@DR1 network-scripts]# cat ifcfg-eth2

Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]

DEVICE=eth2

ONBOOT=yes

BOOTPROTO=static

```
NETMASK=255. 255. 255. 0
eth3 配置
[root@DR1 network-scripts]# cat ifcfg-eth3
# Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]
DEVICE=eth3
ONBOOT=yes
BOOTPROTO=static
IPADDR=192. 168. 200. 13
NETMASK=255. 255. 255. 0
4.2 设置系统转发相关参数
vi /etc/sysctl.conf
net.ipv4.ip forward = 1
再运行命令 sysct1 -p
#turn OFF icmp redirects(1 on , 0 off)
          echo 0 > /proc/sys/net/ipv4/conf/all/send redirects
          echo 0 > /proc/sys/net/ipv4/conf/default/send redirects
          echo 0 > /proc/sys/net/ipv4/conf/eth0/send redirects
将 dr1 dr2 的机器名与 ip 对应起来分别别写入各自的/etc/hosts 文件
127. 0. 0. 1
                    DR1 localhost.localdomain localhost
60, 28, 161, 188
             DR1
221. 238. 249. 93 DR1
             DR2
60. 28. 161. 189
221. 238. 249. 94 DR2
4.3 配置 iptables 做成 nat 形式对包处理
/sbin/modprobe ip tables
/sbin/modprobe iptable_nat
/sbin/modprobe ip conntrack
/sbin/modprobe iptable filter
/sbin/modprobe iptable mangle
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt limit
/sbin/modprobe ipt state
iptables -t nat -F
iptables -t nat -X
iptables -t nat -A POSTROUTING -s 192.168.200.0/255.255.255.0 -o eth0 -j MASQUERADE
iptables -t nat -A POSTROUTING -s 192.168.200.0/255.255.255.0 -o eth1 -j MASQUERADE
mkdir /etc/joyconfig
iptables-save>/etc/joyconfig/myiptables
4.4 所需软件列表用 yum 安装:
1. yum -y install ipvsadm
                            //用于 lvs-nat 架构
2. yum -y install libnet
3. yum -y install heartbeat-* //用于 director HA, 可以得 heartbeat 所需的工具包:
ipvsadm-1.24-6
heartbeat-stonith-2. 1. 2-3. e14. centos
heartbeat-gui-2. 1. 2-3. e14. centos
```

IPADDR=192. 168. 200. 3

```
heartbeat-pils-2. 1. 2-3. e14. centos
heartbeat-ldirectord-2.1.2-3.el4.centos //用于监控realServer的运行状况
heartbeat-2. 1. 2-3. e14. centos
*******************
4.5 配置 heartbeat, 用到/etc/ha. d/目录下的 4 个配置文件
              //认证文件,里面有不同的效验算法让你选,这个文件的权限必须是600
(1) authkeys
(2) ha. cf
             //heartbeat 的主要配置文件,可以对 heartbeat 的多数性能和状态进行
               配置。大部分选项的取值可以采用默
               //此文件是节点调用的资源文件如可 hearbeat 去监管/etc/init.d/
(3) haresources
                或 /etc/ha. d/resource. d 目录下的脚本
(4) ldirectord. cf //监控 Real Server 的运行状况
4.6将相关配置文件复制到/etc/ha.d 目录下
cp /usr/share/doc/heartbeat-2.1.2/ha.cf /etc/ha.d/ha.cf
cp /usr/share/doc/heartbeat-2.1.2/authkeys /etc/ha.d/authkeys
cp /usr/share/doc/heartbeat-2. 1. 2/haresources /etc/ha. d/haresources
cp /usr/share/doc/heartbeat-ldirectord-2.1.2/ldirectord.cf /etc/ha.d/ldirectord.cf
4.7 开始配置 authkeys 文件
chmod 600
           /etc/ha. d/authkeys
vi /etc/ha. d/authkevs 内容如下:
                  //打开 auth 并选择一个用于主从节点的效验算法
auth 1
                   //本例中使用 crc 算法
1 crc
#2 sha1 HI!
#3 md5 Hello!
4.8 配置 ha. cf 文件
[root@DR1 ha.d]# cat ha.cf
debugfile /var/log/ha-debug
#crm yes
logfile /var/log/ha-log
             loca10
logfacility
keepalive 2
deadtime 20
warntime 10
initdead 50
udpport 694
ucast eth3 192.168.200.14
#auto failback on
#watchdog /dev/watchdog
      DR1
node
      DR2
node
#ping_group group1 60.28.161.129 221.238.249.65
ping 60.28.161.129
ping 221, 238, 249, 65
#apiauth ipfail gid=root uid=root
#use_logd_yes/no
#respawn root /usr/lib/heartbeat/ipfail
如果是 os 是 64 位的话下面这样写, 这里都注销采用默认值
#respawn root /usr/lib64/heartbeat/ipfail
               //uuid 的生成的方法之一, 当你用 clone DR1 方法生成 DR2 时可解决 uuid 重复的问题
uuidfrom nodename
```

```
4.9 配置 haresources 文件
```

```
[root@DR1 ha.d]# cat haresources
#DR1 60.28.161.187/26/eth0:0 221.238.249.92/27/eth1:0 ipvsadm ldirectord::ldirectord.cf
DR1 IPaddr2::60.28.161.187/26/eth0:0 IPaddr2::221.238.249.92/27/eth1:0 ldirectord::ldirectord.cf
DR1 IPaddr2::192.168.200.10/24/eth2:0
ldirectord 监管 realserver, 在 haresources 文件中是以 ldirectord::配置文件, 的形式出现,所以::符号后
跟的配置文件名是可以任意的,只要它在/etc/ha.d/目录下存在!
4.10 配置 directord. cf 文件
[root@DR1 ha.d]# cat ldirectord.cf
checktimeout=3
checkinterval=2
autoreload=yes
quiescent=yes
logfile="/var/log/ldirectord.log"
virtual=60.28.161.187:80
       real=192.168.200.29:80 masq 100
       real=192.168.200.30:80 masq 100
       fallback=127.0.0.1:80
       request="index.html"
       receive="TestPage"
       protocol=tcp
       checktype=negotiate
       checkport=80
       scheduler=wrr
virtual=221.238.249.92:80
       real=192.168.200.29:80 masq 100
       real=192.168.200.30:80 masq 100
       fallback=127. 0. 0. 1:80
       request="index.html"
       receive="TestPage"
       protocol=tcp
       checktype = negotiate\\
       checkport=80
       scheduler=wrr
关于 hearbeat 配置完成!
4.11 配置 ipvsadm
[root@DR1 ha.d]# cat /etc/sysconfig/ipvsadm
ipvsadm -A -t 60.28.161.187:80 -s wrr
ipvsadm -a -t 60.28.161.187:80 -r 192.168.200.29:80 -m -w 100
ipvsadm -a -t 60.28.161.187:80 -r 192.168.200.30:80 -m -w 100
ipvsadm -A -t 221.238.249.92:80 -s wrr
ipvsadm -a -t 221.238.249.92:80 -r 192.168.200.29:80 -m -w 100
ipvsadm -a -t 221.238.249.92:80 -r 192.168.200.30:80 -m -w 100
4.12#为了能在系统启动时,相关服务也启动起来,我们将命令写入/etc/rc.local文件
[root@DR1 ha.d]# vi /etc/rc.local
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects
iptables-restore</etc/joyconfig/myiptables
/etc/init.d/heartbeat start
```

到此主 lvs-nat + heartbeat+ldirectord 配置完成

五 DR2(备用 director)配置:

注: DR2 除了 ip 和将 ha. cf 文件中的 ucast eth3 192.168.200.14 改成 ucast eth3 192.168.200.1 3 之外其它的配置要与 DR1 一样。

注: 在对外提供多个 vip 的 slb-HA 环境中, 建意在 ha. cf 文件中用指命 ucast 不用 bcast

5. DR2 公网ip 私网ip 及心跳接口ip

eth0 配置

[[root@DR2 network-scripts]# cat ifcfg-eth0

BOOTPROTO=none

GATEWAY=60. 28. 161. 129

DEVICE=eth0

MTU=""

NETMASK=255. 255. 255. 192

BROADCAST=""

IPADDR=60. 28. 161. 189

NETWORK=60. 28. 161. 128

ONBOOT=ves

eth1 配置

[root@DR2 network-scripts]# cat ifcfg-eth1

BOOTPROTO=none

DEVICE=eth1

MTU=""

BROADCAST=""

IPADDR=221. 238. 249. 94

NETMASK=255, 255, 255, 224

GATEWAY=221. 238. 249. 65

ONBOOT=yes

eth2 配置

[root@DR2 network-scripts]# cat ifcfg-eth2

Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]

DEVICE=eth2

ONBOOT = yes

BOOTPROTO=static

IPADDR=192. 168. 200. 4

NETMASK=255. 255. 255. 0

eth3 配置

[root@DR2 network-scripts]# cat ifcfg-eth3

Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]

DEVICE=eth3

ONBOOT=yes

BOOTPROTO=static

IPADDR=192. 168. 200. 14

NETMASK=255. 255. 255. 0

六. 两个 Real Server Web1, Web2 的配置

web1 和 web2 都采用 rpm 包安装版为 httpd-2. 0. 52 在两台 webserver 上都运行 yum -y install httpd 命令来安装 apache

6.1 配置 web1 ip 和禁止 ip 转发

配置 eth0

[root@web1 network-scripts]# cat ifcfg-eth0

Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192. 168. 200. 29

NETMASK=255. 255. 255. 0

GATEWAY=192. 168. 200. 10

echo "0" > /proc/sys/net/ipv4/ip_forward //禁止ip转发在Real Server1即 Web1中添加监控页: echo "TestPage1111111" >> /var/www/html/index.html

6.2配置 web2 ip 和禁止转发, web2 的设定与 web1 配置方法相同!

配置 eth0

[root@web2 network-scripts]# cat ifcfg-eth0

Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192. 168. 200. 30

NETMASK=255. 255. 255. 0

GATEWAY=192. 168. 200. 10

echo "0" > /proc/sys/net/ipv4/ip_forward //禁止 ip 转发

在 Real Server2即 Web2 中添加监控页:

echo "TestPage22222" >> /var/www/html/index.html

七.测试步骤:

- 1. 首先测试 lvs 能正常工作,关闭 heartbeat ldirectord 及其它与 lvs 不相关的服务.
- 2. heartbeat 的 HA 功能:
- 〈2. 1〉在主 DR1 和 DR2 开启在正常工作的情况下,将 DR1 机器关闭或将 heartbeat 服务关闭,关闭用 如下命令/etc/init. d/heartbeat stop或 service heartbeat stop 〈2. 2〉去 DR2 上用 ifconfig 看一下应该看到 eth0:0 eth1:0 eth2:0 三个浮动接口自动启用了,而 DR1 上的 eth0:0 eth1:0 eth2:0 三个浮动接口被自动关闭了,说明 DR2 成功将 DR1 的工作接管过来了
- 3. 再将 DR1 开启 heartbeat 服务,这时 DR1 上的而 DR1 上的 eth0:0 eth1:0 eth2:0 三个浮动接口自动起来了,而 DR2 上 eth0:0 eth1:0 eth2:0 三个浮动接口也自动关闭了,说明 DR1 故障恢复之后成功将之前 DR2 接管的工作又重新接任下来了。
- 4. 以上测试通过,从而达到了 HA 真正的效果
- 八. 测试 ldirectord 监管 RealServer 效果的步骤:
- 1. 在 DR1 DR2 web1 web2 都正常运作的环境中, 先将 web1 或 web2 的 http 服务 务关闭, 然到调度 lvs 的 director 机器上观察 lvs 的调度情况,可用命令:

watch -n 1 ipvsadm -lnc 动态查看

当然也可以在 client 端去访问 vip, 看此时访问的结果, 可用以下方法:

http://60.28.161.187 http://221.238.249.92