Linear Equations with Constant Coefficients

Waseem A. Malik

Course: ENPM 667 (Control of Robotic Systems)

Reference:

K. Riley, M. Hobson, S. Bence "Mathematical Methods for Physics and Engineering", 2006

Higher-order Ordinary Differential Equations (1)

- It is an empirical fact that when put into mathematical form many natural processes appear as higher-order linear ODEs especially second-order.
- It should be noted that a linear ODE of general order *n* has the form:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

- If f(x) = 0 then the equation is called homogeneous otherwise it is called inhomogeneous.
- The general solution to this equation will contain *n* arbitrary constants which maybe determined if *n* boundary conditions are also provided.
- In order to solve any equation of the form given above we must first find the solution of the equation obtained by setting f(x) = 0. This is called the complementary equation and is given by:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

Higher-order Ordinary Differential Equations (2)

- To determine the general solution of the complementary equation we must find *n* linearly independent functions that satisfy it.
- The general solution of the complementary equation is given by a linear superposition of these n functions. If the n solutions are $y_1(x), y_2(x), \cdots, y_n(x)$ then the general solution is given by the linear superposition

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x)$$

where c_1, c_2, \dots, c_n are arbitrary constants that may be determined if n boundary conditions are provided.

- The linear combination $y_c(x)$ is called the complementary function of the linear ODE of general order n.
- If the original equation has f(x) = 0 then the complementary function $y_c(x)$ is already the general solution.

Higher-order Ordinary Differential Equations (3)

• If the equation has $f(x) \neq 0$ then $y_c(x)$ is only part of the solution. The general solution is then given by:

$$y(x) = y_c(x) + y_p(x)$$

where $y_p(x)$ is the particular integral which is any function, linearly independent of $y_c(x)$, that satisfies the ODE of order n directly.

- It should be noted that any such function $y_p(x)$ is equally valid in forming the general solution to the ODE.
- It is important to note that this method for finding the general solution to an ODE by superposing particular solutions assumes that the ODE is linear. For non-linear equations this method cannot be used.

Linear Equations with Constant Coefficients (1)

• If the a_1, \dots, a_n in the linear ODE of general order n are constants rather than functions of x then we have

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

- Equations like this find wide application in practical problems. The method of their solution falls into two parts i-e (i) finding the complementary function $y_c(x)$, (ii) and finding $y_p(x)$.
- If f(x) = 0 then we do not have to find $y_p(x)$ and the complementary function itself is the general solution.
- We know that $y_c(x)$ is given by:

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x)$$

where the individual solutions are linearly independent. But how do we determine linear independence.

Linear Equations with Constant Coefficients (2)

• For n functions to be linearly indepedent over an interval, there must not exist any set of constants c_1, c_2, \dots, c_n such that

$$c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x) = 0$$

over that interval except the trivial solution $c_i = 0, i = 1, ..., n$

• An alternative way to determine linear independence is given by the Wronskian. The n functions $y_1(x), y_2(x), \dots, y_n(x)$ are linearly independent over an interval if

$$W(y_1, y_2, ..., y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & & \vdots \\ \vdots & & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & \cdots & y_n^{n-1} \end{vmatrix} \neq 0$$

over that interval. $W(y_1, \ldots, y_n)$ is called the Wronskian for the set of functions.

Linear Equations with Constant Coefficients (3)

• The standard method to finding $y_c(x)$ is to try a solution of the form $y = Ae^{\lambda x}$. Substituting this into the equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0$$

After dividing the resulting equation by $Ae^{\lambda x}$ we are left with a polynomial equation in λ of order n.

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0$$

which is called the auxiliary equation.

- The auxiliary equation has n roots $\lambda_1, \dots, \lambda_n$. In some of these cases the roots maybe repeated or complex. There are three main cases.
- (i) All roots real and distinct: In this case the n solutions are $e^{\lambda_1 x}, \ldots, e^{\lambda_n x}$. By using the Wronskian it can be shown that if the roots are distinct then these solutions are linearly independent.

Linear Equations with Constant Coefficients (4)

(i) All roots real and distinct: We can therefore linearly superpose the solutions $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$ to form the complementary function

$$y_c(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \dots + c_n e^{\lambda_n x}$$

(ii) Some roots complex: For the special case that all the coefficients a_1, \ldots, a_n are real if one of the roots of the auxiliary equation is complex say $\alpha + i\beta$ then its complex conjugate $\alpha - i\beta$ is also a root. In this case:

$$c_1 e^{(\alpha+i\beta)x} + c_2 e^{(\alpha-i\beta)x} = e^{\alpha x} (d_1 \cos(\beta x) + d_2 \sin(\beta x))$$
$$= A e^{\alpha x} \begin{Bmatrix} \sin \\ \cos \end{Bmatrix} (\beta x + \phi)$$

where A and ϕ are arbitrary constants.

Linear Equations with Constant Coefficients (5)

(iii) Some roots repeated: If for example λ_1 occurs k times as a root of the auxiliary equation then we do not have n linearly independent solutions. We must find another k-1 solutions that are linearly independent of those already found and also of each other. By direct substitution into the complementary equation we find that

$$xe^{\lambda_1x}, x^2e^{\lambda_1x}, \dots, x^{k-1}e^{\lambda_1x}$$

are also solutions and by using the Wronskian can be shown to satisfy our linear independence requirements. Therefore, we get:

$$y_c(x) = (c_1 + c_2 x + \dots + c_k x^{k-1}) e^{\lambda_1 x} + c_{k+1} e^{\lambda_{k+1} x} + c_{k+2} e^{\lambda_{k+2} x} + \dots + c_n e^{\lambda_n x}$$

If more than one root is repeated the above argument is easily extended. Suppose that λ_1 is a k times repeated root and that λ_2 is I times repeated.

Linear Equations with Constant Coefficients (6)

(iii) Some roots repeated: The complementary function is then given by

$$y_c(x) = (c_1 + c_2x + \dots + c_kx^{k-1})e^{\lambda_1x} + (c_{k+1} + c_{k+2}x + \dots + c_{k+l}x^{l-1})e^{\lambda_2x} + c_{k+l+1}e^{\lambda_{k+l+1}} + \dots + c_ne^{\lambda_nx}$$

- There is no generally applicable method for finding the particular integral $y_p(x)$ but for linear equations with constant coefficients $y_p(x)$ can often be found by inspection or by assuming a parameterised form similar to f(x). The latter method is called the **Method of Undetermined Coefficients**
- If f(x) contains only polynomial, exponential, sine or cosine terms then we consider a trial function for $y_p(x)$ of similar form which contains some undetermined parameters. This step is followed by substituting this trial function into the ODE to determine the parameters and hence deduce $y_p(x)$. We present some standard trial functions.

Linear Equations with Constant Coefficients (7)

- (i) If $f(x) = ae^{rx}$ then try $y_p(x) = be^{rx}$
- (ii) If $f(x) = a_1 \sin(rx) + a_2 \cos(rx)$ (a_1 or a_2 may be zero) then try $y_p(x) = b_1 \sin(rx) + b_2 \cos(rx)$
- (iii) If $f(x)=a_0+a_1x+\cdots+a_Nx^N$ (some a_m maybe zero) then try $y_p(x)=b_0+b_1x+\cdots+b_Nx^N$
- (iv) If f(x) is the sum or product of any of the above then try $y_p(x)$ as the sum or product of the corresponding individual trial functions.

Linear Equations with Constant Coefficients (8)

- It should be noted that this method fails if any term in the assumed trial function is also contained within the complimentary function $y_c(x)$. In such a case the trial function should be multiplied by the smallest integer power of x such that it will then contain no term that already appears in the complimentary function.
- Three further methods that are useful in finding the particular integral $y_p(x)$ are based on Green's functions, the variations of parameters, and a change in the dependent variable using knowledge of the complimentary function. These are discussed in the next Module.
- It should be noted that the general solution is contructed by adding the complementary function and any particular integral.

$$y(x) = y_c(x) + y_p(x)$$

Linear Equations with Constant Coefficients (9)

• **Example:** Solve the equation

$$\frac{d^2y}{dx^2} + 4y = x^2 \sin(2x)$$

Now setting the RHS equal to zero we can express the following auxiliary equation:

$$\lambda^2 + 4 = 0 \quad \Rightarrow \quad \lambda^2 = \pm 2i$$

Therefore, the complementary function $y_c(x)$ is given by:

$$y_c(x) = d_1 \cos(2x) + d_2 \sin(2x)$$

We now compute the particular solution $y_p(x)$. Considering the list of trial functions discussed in previous slides we find that a first guess at a suitable trial function should be

$$(ax^2 + bx + c)\sin(2x) + (dx^2 + ex + f)\cos(2x)$$

Linear Equations with Constant Coefficients (10)

However, we observe that the trial function contains terms in $\sin(2x)$ and $\cos(2x)$ both of which already appear in the complementary function $y_c(x)$. We therefore multiply the trial function by the smallest integer power of x such that none of the resulting term appears in $y_c(x)$. Consider the trial function

$$(ax^3 + bx^2 + cx)\sin(2x) + (dx^3 + ex^2 + fx)\cos(2x)$$

Substituting this into the ODE we get:

$$[-12dx^{2} + (6a - 8e)x + (2b - 4f)]\sin(2x) + [12ax^{2} + (6d + 8b)x + (2e + 4c)]\cos(2x) = x^{2}\sin(2x)$$

Solving we get:

$$y_p(x) = -\frac{x^3}{12}\cos(2x) + \frac{x^2}{16}\sin(2x) + \frac{x}{32}\cos(2x)$$

Linear Equations with Constant Coefficients (11)

• The general solution is given by:

$$y(x) = y_c(x) + y_p(x)$$

$$= d_1 \cos(2x) + d_2 \sin(2x) - \frac{x^3}{12} \cos(2x) + \frac{x^2}{16} \sin(2x) + \frac{x}{32} \cos(2x)$$