Contrôle 4: Algèbre Linéaire

Cours de mathématiques spéciales (CMS)

12 juin 2018 Semestre de printemps ID: -999

(écrire lisiblement s.v.p)	
Nom:	
Prénom :	

Question	Pts max.	Pts
1	6	
2	4	
3	4	
4	6	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 6 points)

Points obtenus: (laisser vide)

 \mathbb{R}^2 est muni de la base orthonormée $B(\vec{e}_1, \vec{e}_2)$.

- (a) Soient les deux endomorphismes suivant
 - h est une homothétie de centre O et rapport 3,
 - a est une affinité d'axe la droite x + 2y = 0, de direction parallèle à la droite x 3y = 0 et de rapport -2/3.

Déterminer la matrice de $f = h \circ a$ relativement à une base propre, notée \mathcal{B}' , puis par rapport à la base orthonormée B.

(b) On considère l' endomorphisme g de \mathbb{R}^2 dont la matrice par rapport à la base B est

$$M_g = \left(\begin{array}{cc} 2 & -6 \\ -1 & 3 \end{array}\right)$$

Déterminer avec précision la nature géométrique de g.

- (c) Soit l'endomorphisme l = g + f. Calculer la matrice de l relativement à \mathcal{B}' , base propre de f.
- (d) Soit le point K tel que $\overrightarrow{OK} = 2b\vec{e_1} b\vec{e_2}, b \in \mathbb{R}$.

On considère les points K_i tels que

$$\overrightarrow{OK}_1 \ = \ l\left(\overrightarrow{OK}\right), \ \overrightarrow{OK}_2 \ = \ l\left(\overrightarrow{OK}_1\right), \, \ \overrightarrow{OK}_{n+1} \ = \ l\left(\overrightarrow{OK}_n\right), \ n \in \mathbb{N} \, .$$

Relativement à la base \mathcal{B}' , déterminer les composantes de $\overrightarrow{OK}_{n+1}$, $n \in \mathbb{N}$, et montrer que les points K_i sont alignés.

Solution:

(a)
$$M'_f = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
.

$$M_f = \begin{pmatrix} 0 & -6 \\ -1 & 1 \end{pmatrix}$$

(b) $f = h \circ p$ où h est une homothétie de centre O et rapport 5, et p est une projection sur la droite (O, \vec{u}) , de direction \vec{v} .

$$\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

(c)
$$M'_l = \begin{pmatrix} 8 & 0 \\ 0 & -2 \end{pmatrix}$$

(d)
$$\overrightarrow{OK}_{n+1} = 8^{n+1} b \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathcal{B}'}$$

Question 2 (à 4 points)

Points obtenus: (laisser vide) \dots

Soit f l'endomorphisme \mathbb{R}^3 défini par sa matrice M relativement à la base canonique.

$$M = \begin{pmatrix} 0 & p & 0 \\ 0 & -1 & 0 \\ 1 & 1 & p+1 \end{pmatrix}$$
, où p est un paramètre réel.

12 juin 2018 ID: -999

(a) Déterminer toutes les valeurs du paramètre $\,p\,$ telles que $\,f\,$ admette une valeur propre double.

Dans le cas où la valeur propre est négative, déterminer si f est diagonalisable ou non. (Justifier rigoureusement votre réponse)

(b) On pose p = 0. Déterminer avec précision la nature géométrique de f.

Solution:

- (a) Premier cas : $\lambda = 0$ est une valeur propre double alors p = -1.
 - Deuxième cas : $\lambda_1 = -1$ est une valeur propre double alors p = -2. Dans ce cas f n'est pas diagonalisable.
- (b) Base propre $(\vec{u}, \vec{v}, \vec{w})$:

$$\vec{u} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} \text{ et } \vec{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

f est composée d'une symétrie s d'axe le plan $\alpha(O, \vec{u}, \vec{w})$ et de direction parallèle à \vec{v} et d'une projection p de direction parallèle à \vec{u} sur le plan $\beta(O, \vec{v}, \vec{w})$.

Question 3 (à 4 points)

Points obtenus: (laisser vide)

L'espace est muni de la base canonique orthonormée $B = (\vec{e_1}, \vec{e_2}, \vec{e_3})$.

- (a) On considère les applications linéaires suivantes :
 - p est la projection orthogonale sur le plan α passant par le point O et dirigé par les vecteurs

$$\vec{a} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$,

• a est l'affinité orthogonale d'axe la droite (O, \vec{b}) et de rapport k = -2.

Soit $f = p \circ a$.

Déterminer une base propre notée \mathcal{B}' de f ainsi que la matrice de f par rapport à cette base.

(b) Soit g un nouvel endomorphisme défini par sa matrice M relativement à la base canonique B

$$M = \begin{pmatrix} -2 & -1 & 4 \\ -1 & 1 & -1 \\ 4 & -1 & -2 \end{pmatrix}$$

Calculer l'image par g des vecteurs de la base \mathcal{B}' trouvée sous (a).

En déduire directement les valeurs et sous-espaces propres de g ainsi que la relation entre les applications f et g.

Solution:

(a)
$$\vec{n} = \vec{a} \times \vec{b} = (-1) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 et $\vec{v} = \vec{b} \times \vec{n} = 3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

Matrice de f relativement à la base $\mathcal{B}'(\vec{b}, \vec{v}, \vec{n})$, base propre de f:

$$M_f' = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

(b) Les endomorphismes f et g ont la même base propre et on constate que 3 q = f.

Question 4 (à 6 points)

Points obtenus: (laisser vide)

On considère l'équation matricielle AX = C où

$$A = \begin{pmatrix} a^2 - 3 & -2 & -1 & 3 \\ -1 & 3 & 5 & -2 \\ -2 & 4 & 2 & -6 \end{pmatrix} \quad a \in \mathbb{R}, \quad X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

(a) Discuter en fonction du paramètre réel a le rang de la matrice A. Pour quelle(s) valeur(s) de a l'équation possède des solutions quel que soit $C \in \mathbb{M}$ $(3 \times 1, \mathbb{R})$.

(b) On pose
$$a=2$$
 et $C=\begin{pmatrix} -2m+3\\0\\m^2-m \end{pmatrix}$ $m\in\mathbb{R}$.

Discuter l'existence et le nombre de paramètres des solutions de l'équation AX = C en fonction de $m \in \mathbb{R}$.

(c) Résoudre le système dans le cas où a=2 et C=0.

Solution:

- (a) \bullet rg A = 3 ssi $a \neq \pm 2$,
 - $\operatorname{rg} A = 2 \operatorname{ssi} a \in \{-2, 2\}$

L'équation possède des solutions quel que soit $C \in \mathbb{M} (3 \times 1, \mathbb{R})$ ssi rg A = 3, donc ssi $a \neq \pm 2$

(b) Si $m \in \{2, 3\}$ le système possède des solutions qui dépendent de 2 paramètres. Si $m \notin \{2, 3\}$ le système ne possède pas de solution.

(c)
$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} -7\alpha - 5\beta \\ -4\alpha - \beta \\ \alpha \\ \beta \end{pmatrix}, \alpha, \beta \in \mathbb{R}.$$