Московский Авиационный институт

(Национальный исследовательский университет)

Курсовой проект

по курсам

"Архитектура компьютера", "Программные и аппаратные средства информатики"

1 семестр

Задание 3

Студент: Белоносов К.А.

Группа: М8О-103Б-21

Руководитель: Севастьянов В. С.

Оценка:

Дата:

Подпись:

Содержание

Введение	. 3
Программное обеспечение	. 3
•	
	Введение Вариант Программное обеспечение Описание работы, алгоритм Описание переменных Проверка программы Вывод Исходный код

Введение

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на n равных частей (n + 1 точка, включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon^* k$, где ε — машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую Число сходимость. итераций ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы.

Вариант

Вариант №3

3	$x - \frac{5}{2}x^2 + \ldots + \frac{(-1)^{n+1} \cdot 2^n - 1}{n}x^n$	-0.2	0.3	$\ln(1+x-2x^2)$
---	---	------	-----	-----------------

Программное обеспечение

Операционная система семейства: linux, наименование: ubuntu, версия 20.04.3 LTS

Интерпретатор команд: bash версия 5.0.17(1)

Система программирования VS Code, редактор текстов emacs версия 27.1

Описание работы, алгоритм

Программа в цикле вычисляет значение функции с помощью ряда Тейлора в точках заданного отрезка. Вычисление происходит до тех пор, пока число итераций меньше 100 или значение очередного слагаемого станет меньше машинного эпсилона, умноженного на константу. Также вычисляется значение функции "обычным" методом.

По ходу вычислений печатается таблица. В первом столбце – текущий х, во второй – значение функции по ряду Тейлора, в третьей – значение самой функции, а в четвертой – число пройденных итераций ряда Тейлора.

Описание переменных

Переменная	Тип	Назначение
Epsillon	double	Машинный эпсилон
Taylor		Текущее значение ф-ии по Тейлору
a		Левая граница отрезка
b		Правая граница отрезка
X		Текущий аргумент ф-ии
function		Значение ф-ии
Buffer		Промежуточное хранение вычислений
n	int	Число разбиений отрезка
Counter		Счетчик

Проверка программы

Входные данные — число n. В тестах n=10. Также число k- в тестах 10 и 1 Выходные данные:

Машин Число		эпсилон для типа doub	le в систем	ме VS Code = 2.220446e-16			
10 Число							
10		значений ряда Тейлора :	и станлартн	ной функции для f(x) = (((-1)	^(n + 1)	* 2^n - 1)	*x^n)/n
	X	Тейлор	Т	f(x)		итераций	,,
<u>'</u>	.20	-0.32850407442261625	45693626	-0.3285040744226166986585724		35	
<u>'</u>	. 15	-0.21691300452529474		-0.2169130045252951888290482		27	
<u>'</u>	. 10	-0.12783337150988477	······	-0.1278333715098848855085123		21	
<u>.</u>	. 05	-0.05657034959618328	······	-0.0565703495961833308092183		15	
<u>.</u>	.00	0.00000000298023221		0.0000000029802322787375598		3 1	
<u> </u>	. 05	0.04401688883905046		0.0440168888390506454766360		15	
·	. 10	0.07696104444749735		0.0769610444474974619843977		21	
<u> </u>	. 15	0.09984533766675858		0.0998453376667587100268264		27	
· 	. 13	0.11332868690355582		0.1133286869035561167384785		35 I	
·		0.11778303565638278		0.117783035656383261446933		45	
·	. 25	'					
0	.30	0.11332868317826609	20222200	0.1133286831782656101097473	·	60	
			<u>_</u>				
Число		эпсилон для типа doub	_ le в систем	ие VS Code = 2.220446e-16			
	on:	эпсилон для типа doub	le в систем	ие VS Code = 2.220446e-16			
Число 10 Число 1	on: ok:			ие VS Code = 2.220446e-16 ной функции для f(x) = (((-1)	^(n + 1)	* 2^n - 1)*	*x^n)/n
Число 10 Число 1 Табло	on: ok:					* 2^n - 1) [*] итераций	*x^n)/n
Число 10 Число 1 Табло	on: ok: ица:	значений ряда Тейлора і	и стандартн	ной функции для f(x) = (((-1)	число		*x^n)/n
Число 10 Число 1 Табло -0	on: ok: ица: x	значений ряда Тейлора і Тейлор	и стандартн 36585724	ной функции для f(x) = (((-1) f(x)	число	итераций	*x^n)/n
Число 10 Число 1 Табло -0	on: ok: ица: x	значений ряда Тейлора і Тейлор -0.328504074422616698	и стандартн 36585724 55623214	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724	число	итераций	*x^n)/n
Число 10 Число 1 Табло -0 -0	on: ok: ица: x .20	значений ряда Тейлора і Тейлор -0.328504074422616698 -0.21691300452529510	и стандартн 86585724 55623214 55085123	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724 -0.2169130045252951888290482	число 	итераций 37 29	*x^n)/n
Число 10 Число 1 Табло -0 -0	o n: o k: ица : x .20 .15	значений ряда Тейлора і Тейлор -0.328504074422616698 -0.216913004525295109 -0.12783337150988488	и стандартн 36585724 55623214 55085123	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123	число 	итераций 37 29	*x^n)/n
Число 10 Число 1 Табло -0 -0 -0	o n: o k: ица : x .20 .15 .10	значений ряда Тейлора і Тейлор -0.328504074422616698 -0.216913004525295108 -0.127833371509884888 -0.05657034959618335	и стандартн 36585724 55623214 55085123 16258999	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123 -0.0565703495961833308092181	число 	итераций 37 29 22	*x^n)/n
Число 10 Число 1 Табло -0 -0 -0 0	o n: o k: ица : x .20 .15 .10	значений ряда Тейлора и Тейлор -0.328504074422616698 -0.216913004525295108 -0.127833371509884888 -0.05657034959618335	и стандартн 36585724 55623214 55085123 16258999 93406284	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123 -0.0565703495961833308092181 0.00000000029802322787375598	число 	итераций 37 29 22 16 3	*x^n)/n
Число 10 Число 1 Табли -0 -0 -0 0	о n: o k: uuца : xx .20 .15 .10	значений ряда Тейлора и Тейлор -0.328504074422616698 -0.216913004525295109 -0.127833371509884889 -0.056570349596183359 0.0000000002980232219	и стандартн 36585724 55623214 55085123 16258999 3406284 44543335	ной функции для f(x) = (((-1) f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123 -0.0565703495961833308092181 0.00000000029802322787375598 0.0440168888390506454766360	число	итераций 37 29 22 16 3	*x^n)/n
Число 10 Число 1 Табло -0 -0 -0 0 0	о n: o k: xx .20 .15 .10 .05 .00	значений ряда Тейлора и Тейлор -0.328504074422616698 -0.216913004525295109 -0.127833371509884889 -0.056570349596183359 0.0000000002980232219 0.044016888839050534	и стандартн 36585724 55623214 55085123 16258999 3406284 44543335 31066099	f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123 -0.0565703495961833308092181 0.00000000029802322787375598 0.0440168888390506454766360 0.0769610444474974619843977	число	итераций 37 29 22 16 3 16	*x^n)/n
Число 10 Число 1 Табли -0 -0 0 0	о n: o k: uuца: x .20 .15 .10 .05 .00 .15	значений ряда Тейлора и Тейлор -0.328504074422616698 -0.216913004525295108 -0.127833371509884888 -0.056570349596183353 0.0000000002980232219 0.044016888839050534 0.076961044447497448	и стандартн 36585724 55623214 55085123 6258999 3406284 44543335 31066099 94157654	f(x) -0.3285040744226166986585724 -0.2169130045252951888290482 -0.1278333715098848855085123 -0.0565703495961833308092181 0.00000000029802322787375598 0.0440168888390506454766360 0.0769610444474974619843977 0.0998453376667587100268264	число	итераций 37 29 22 16 3 16 22	*x^n)/n

Вывод

В ходе работы я написал и протестировал программу на языке Си, которая оценивает точность вычисления функции с помощью ряда Тейлора. Основываясь на результатах, можно сделать вывод, что ряд Тейлора дает точные результаты, но существуют более быстрые способы представления трансцендентных функций.

Исходный код

```
#include <stdio.h>
#include <math.h>
int main(void) {
    double Epsillon = 1.0;
    double Taylor;
    int n;
    int k = 1000;
    double a = -0.2f;
    double b = 0.3f;
    double x;
    int Counter;
    while (1.0 + (Epsillon / 2.0) > 1.0) {
    Epsillon \neq 2.0;
    printf("Машинное эпсилон для типа double в системе VS Code = %e\n",
Epsillon);
    printf("Число n:\n");
    scanf("%d", &n);
    printf("Число k:\n");
    scanf("%d", &k);
    printf("Таблица значений ряда Тейлора и стандартной функции для f(x) =
(((-1)^{n} + 1) * 2^{n} - 1) * x^{n}/n n");
printf("
                       \overline{n}");
    printf("| x
                                 Тейлор
                                                                    f(x)
| число итераций |\n");
printf("
                       \n");
    x = -0.2f;
    for (int i = 0; i <= n; i++) {
        double function;
        function = log(1 + x - 2 * pow(x, 2));
        Taylor = 0;
        Counter = 1;
        double Buffer = 1;
        while (fabs(Buffer) > Epsillon * k && Counter < 100) {</pre>
            Buffer = ((pow(-1, Counter + 1) * pow(2, Counter) - 1) *
pow(x, Counter)) / Counter;
            Taylor += Buffer;
```

```
Counter += 1;
        }
        if (x < 0) {
           if (Taylor < 0) {
               if (Counter \geq= 10) {
                   printf("| %.2f | %.25f | %.25f | %d |\n",
x, Taylor, function, Counter);
                } else {
                  printf("| %.2f | %.25f | %.25f | %d
                                                                  |\n",
x, Taylor, function, Counter);
               }
            } else {
               if (Counter \geq 10) {
                   if (function > 0) {
                       printf("| %.2f | %.25f | %.25f |
                                                               용d
|\n", x, Taylor, function, Counter);
                   } else {
                       printf("| %.2f | %.25f | %.25f |
                                                              용d
|\n", x, Taylor, function, Counter);
                   }
                } else {
                   if (function > 0) {
                       printf("| %.2f | %.25f | %.25f |
                                                               용d
|\n", x, Taylor, function, Counter);
                    } else {
                       printf("| %.2f | %.25f | %.25f | %d
|\n", x, Taylor, function, Counter);
           }
        } else {
            if (Taylor < 0) {</pre>
               if (Counter \geq= 10) {
                   if (function > 0) {
                          printf("| %.2f | %.25f | %.25f |
|\n", x, Taylor, function, Counter);
                       } else {
                           printf("| %.2f | %.25f | %.25f |
|\n", x, Taylor, function, Counter);
                } else {
                   if (function > 0) {
                           printf("| %.2f | %.25f | %.25f |
                                                                  %d
|\n", x, Taylor, function, Counter);
                       } else {
                           printf("| %.2f | %.25f | %.25f |
                                                                    %d
|\n", x, Taylor, function, Counter);
                       }
               }
            } else {
               if (Counter \geq= 10) {
                   if (function > 0) {
                           printf("| %.2f | %.25f | %.25f |
                                                                    용d
|\n", x, Taylor, function, Counter);
                       } else {
                           printf("| %.2f | %.25f | %.25f | %d
|\n", x, Taylor, function, Counter);
                       }
                } else {
                   if (function > 0) {
```