

SMALL PROJECT CLASSIFICATION OF ECG SIGNALS

Biomedical Engineering - Biomedical Signals Sergi Marsol

INTRODUCTION AND MOTIVATION

An important goal → automatic detection of arrhythmias

Atrial Fibrillation is defined as "Tachyarrhythmia characterized by predominantly uncoordinated atrial activation with consequent deterioration of atrial mechanical function"

One method for AF detection is to analyse the HRV signal, based on the detection of the R peak. Excessive HRV → correlated with atrial fibrillation

GOALS AND METHODS OF THE PROJECT

GOAL 1

Separate CLEAN ECG from NOISY ECG

- Read ECG files using Matlab
- Separate CLEAN from NOISY signals

GOAL 2

Design and program our own R wave detector and extract main features

- Pre-Process ECG signals
- Find QRS peaks
- Extract features from original and RR signals
- Create a table of features

GOAL 3

Provide a classifier for the 4 classes of the clean signal

- Build a classifier function
- Validate the predictions for the 4 classes and evaluate the results of the classifier

GOAL 1: Separation of clean and noisy signals

PERIODOGRAM

CLASSIFIERS

Clean and noisy signals separation using 1 feature → BANDPOWER at **frequency 50 Hz**

1. K-NEAREST NEIGHBORS

Hyperparameter optimization

k = 17

distance:

chebyshev

→ ACCURACY = 0.9556

Class	Precision	Recall
Α	0.957	0.973
В	0.954	0.926

Total F-Score = 0.952

Hyperparameter optimization

MinLeafSize = 78

→ ACCURACY = 0.957

Class	Precision	Recall
Α	0.964	0.970
В	0.951	0.942

Total F-Score = 0.957

2. CLASSIFICATION TREE

GOAL 2: R wave detector and main features extraction

PAN-TOMPKINS ALGORITHM

QRS PEAK DETECTOR

Thr1 = npk1 + 0.25(spk1 - npk1)

spk1 = 0.125peak1 + 0.875spk1

Thr2 = 0.5Thr1

npk1 = 0.125peak1 + 0.875npk1

ECG signal

- ➤ Mean mA
- Standard deviation *sdA*
- Outlier fraction outlierA

Autocorrelation

- Mean autoA1
- Standard deviation autoA2
- Maximum value autoA3

Bandpower

- Bp [0,5-5]Hz *bp1*
- **B**p [5-15]Hz *bp2*
- **B**p [15-30]Hz *bp3*
- **B**p [30-45]Hz *bp4*

- Number of Peaks num_pks
- Peaks detected correctly pks_ok

RR signal

- ▶ Mean *mRR*
- Standard deviation sdRR (HRV)
- Outlier fraction outlierRR

Standard deviation of successive differences sdsd

Cross-correlation

Correlation of the length of consecutive beats *corrlenNN*

xcorr

RR signal

- **>** pNN20
- **>** pNN50

- ► PC1 PC1_pNN
- ► PC2 PC2_pNN
- > PC3 PC3_pNN

Scatter plot of nn-1 vs nn

2,2740e-43

outlierRR

sdA

ANOVA

Analysis of variance

Features	P-value	Features	P-value	Features	P-value
PC1	0	corrlenNN	1,8126e-40	bp3	0,0057
PC3	1,2338e-146	sd1	2,3819e-29	bp2	0,0088
PC2	3,0789e-116	mRR	2,1524e-17	tilt	0,0105
outlierA	3,6195e-97	bp1	1,1365e-11	autoA3	0,0450
sdsd	2,3383e-73	autoA1	1,5348e-07	bp4	0,8737
sdRR	1,1718e-65	autoA2	1,3441e-05		
pks_ok	1,2913e-62	mA	4,2079e-04	Lower p-v	value 🗸
sd2	5,5304e-51	num_pks	4,7556e-04	Higher p-	value 🗶

0,0056

GOAL 3: Build a classifier for all 4 clean ECG recordings 1. PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal components explaining 95% of variance

We will build the classification model using **8 principal components**.

sdRR	0.09394	0.393	0.1623	0.2009	0.2767	0.09959	0.3168	0.1834	
mRR	0.02409	0.3256	0.05352	0.2542	0.1455	0.02749	0.6684	0.5678	- (
outlierA	0.02966	0.1095	0.5152	0.1353	0.4485	0.1623	0.2261	0.06005	- (
outliersRR	0.06347	0.06883	0.4098	0.3146	0.27	0.05362	0.3814	0.5755	
sd1	0.008086	0.4938	0.2611	0.02177	0.379	0.0741	0.07011	0.1027	- (
sd2	0.03317	0.4894	0.2529	0.01976	0.381	0.07543	0.06667	0.1017	- 0
pc1 _p NNw	0.9879	0.1016	0.01251	0.06679	0.07659	0.01792	0.03683	0.01503	- (
pc2 _p NNw	0.001749	0.2913	0.01764	0.8413	0.4087	0.04905	0.1694	0.08997	
pc3 _p NNw	0.0007253	0.01819	0.07301	0.05085	0.1028	0.008598	0.04209	0.09212	- (
pks _o k	0.007294	0.06365	0.01246	0.04512	0.01072	0.0003825	0.0431	0.07207	- (
autoA1	0.007754	0.0131	0.04009	0.04842	0.2368	0.9658	0.06327	0.03076	
bp1	0.0003137	0.0009984	0.001754	0.001086	0.005624	0.03301	0.002005	0.001351	- (
corrlenNN	0.003847	0.1171	0.588	0.1395	0.05594	0.02078	0.1912	0.513	- (
sdsd	0.09225	0.355	0.2278	0.1954	0.3108	0.1089	0.4156	0.04673	
1 2 3 4 5 6 7 8 Principal Component									

2. K-NEAREST-NEIGHBOR (KNN)

distance: cityblock

Hyperparameter optimization

k = 14

→ ACCURACY = 0.7217

Class	Precision	Recall
AF	0.578	0.692
Normal	0.777	0.881
Other	0.591	0.425
Noisy	0.447	0.247

Total F-Score = 0.567

3. TREE CLASSIFIER

Hyperparameter optimization

MinLeafSize = 49

→ ACCURACY = 0.6841

Class	Precision	Recall
AF	0.521	0.575
Normal	0.76	0.85
Other	0.543	0.43
Noisy	0.472	0.2

F-Score = 0.528

CONCLUSIONS

GOAL 1 We have been able to separate clean from noisy ECG using the **BANDPOWER** as the main feature of the classifiers.

GOAL 3

We have performed an analysis in amplitude and frequency of the ECG signals and have extracted **14 features**.

PCA has allowed dimensionality reduction from 14 features to 8 principal components.

We have built the classification models to **separate all clean ECG classes** using only 8 features and kNN is giving the best results.