Technische Universität München	Robot Control Laboratory
Chair of Automatic Control Engineering	1. Assignment
DrIng. Marion Leibold	
Chair of Information-Oriented Control	
DrIng. Stefan Sosnowski	

Excercise 1: Transformation

- a) Write the following transformations in matrix notation and compare your results with the output of the defined Matlab routines from the *Robotics Toolbox* (in brackets).
 - 1) Translation of 0.5 m in X direction T_1 (transl())
 - 2) Rotation of 90° around the Y axis T_2 (roty())
 - 3) Rotation of -90° around the Z axis T_3 (rotz())
- b) The coordinate frames S_a and S_b have the following relation:

$$^{a}\boldsymbol{T}_{b}=\boldsymbol{T}_{1}\cdot\boldsymbol{T}_{2}\cdot\boldsymbol{T}_{3}$$

Compute the matrix ${}^a\boldsymbol{T}_b$. Compare it ${}^a\boldsymbol{T}_b$ with ${}^a\boldsymbol{T}_{b1} = \boldsymbol{T}_3 \cdot \boldsymbol{T}_2 \cdot \boldsymbol{T}_1$. Discuss the commutativity of the multiplication of transformation matrices.

c) Given is the point ${}_b \boldsymbol{p}$ with respect to the coordinate frame S_b . Implement the function **cal_ap** to determine ${}_a \boldsymbol{p}$ with respect to coordinate frame S_a .

(4)
$$_{a}\boldsymbol{p}=\mathsf{cal_ap}(_{b}\boldsymbol{p})$$
 MAT

Input: $_{b}\boldsymbol{p}$ 3×1 Vector

Output: $_{a}\boldsymbol{p}$ 3×1 Vector

Allowed routines: $\mathsf{rotx}()$, $\mathsf{roty}()$, $\mathsf{rotz}()$, $\mathsf{transl}()$

Next the same transformation matrix will be computed using different concepts.

- d) Compute the RPY angles $\Omega_1 = [\alpha, \beta, \gamma]$ from the transformation matrix ${}^a\boldsymbol{T}_b$ from b) with the routine $\mathbf{tr2rpy}()$. Please add the option 'zyx' to the routine $\mathbf{tr2rpy}()$ to get the same definition as in the lecture.
- e) Implement the routine cal_aTb2 that computes the homogeneous transformation matrix ${}^aT_{b2}$ using the RPY angles and a translational vector as inputs. Use the equation on pages 2-7 of the material.

$$(4) \quad {}^{a}\boldsymbol{T}_{b2} = \mathsf{cal_aTb2}(\alpha,\beta,\gamma,\boldsymbol{p}_{Sb}) \qquad \mathsf{MAT}$$
 Input:
$$\alpha,\beta,\gamma \; \mathsf{Scalar} \; \mathsf{angle} \; \mathsf{in} \; \mathsf{radians}$$

$$\boldsymbol{p}_{Sb} \; 3\times 1 \; \mathsf{Vector}$$
 Output:
$${}^{a}\boldsymbol{T}_{b2} \; 4\times 4 \; \mathsf{homogeneous} \; \mathsf{transformation} \; \mathsf{matrix}$$
 Allowed routines:
$$\mathsf{rotx}(), \; \mathsf{roty}(), \; \mathsf{rotz}(), \; \mathsf{transl}()$$

Test: Compute the transformation matrix ${}^a\boldsymbol{T}_{b2}$ using the RPY angles Ω_1 from d) and the translational vector from a1) with your function. Additionally compute ${}^a\boldsymbol{T}_{b3}$ using the routine $\mathbf{rpy2tr}()$. Compare ${}^a\boldsymbol{T}_{b2}$, ${}^a\boldsymbol{T}_{b3}$ with ${}^a\boldsymbol{T}_b$.

- f) Compute the Euler angles $\Omega_2 = [\phi, \theta, \psi]$ from the transformation matrix ${}^a\boldsymbol{T}_b$ from b) using the routine $\mathbf{tr2eul}()$.
- g) Implement the function cal_aTb4 that computes thenhomogeneous transformation matrix ${}^aT_{b4}$ using Euler angles and a translational vector. For that task use the defitinion of Euler angles from the *Robotics Toolbox*:

$${}^{a}\mathbf{R}_{b}(\phi,\theta,\psi) = \mathbf{R}(z,\phi) \cdot \mathbf{R}(y,\theta) \cdot \mathbf{R}(z,\psi)$$

Achtung:

This defineition differs from the definition on pages 2-8 in the lecture material Robotics Toolbox.

(4) ${}^a oldsymbol{T}_{b4} = \mathsf{cal_aTb4}(\phi, \theta, \psi, oldsymbol{p}_{Sb})$ MAT

Input: ϕ, θ, ψ scalar angles in radians

 p_{Sb} 3×1 Vector

Output: ${}^aT_{b4}$ 4×4 homogeneous transformation matrix

Allowed routines: rotx(), roty(), rotz(), transl()

Test: Compute the homogeneous transformation matrix ${}^a\boldsymbol{T}_{b5}$ using the Euler angles Ω_1 from d) and the translational vector from a1) with your function. Additional compute the transformation matrix ${}^a\boldsymbol{T}_{b5}$ using the routine eul2tr(). Compare ${}^a\boldsymbol{T}_{b4}$, ${}^a\boldsymbol{T}_{b5}$ with ${}^a\boldsymbol{T}_b$.

Excercise 2: Denavit Hartenberg Convention and Forward Solution

Given is a planar robot with N=3 segments, shown in figure (as in figure V.9 in the lecture material). The robot consists of three rotational joints θ_1 , θ_2 and θ_3 . The length of the segments is defined as $L_1=4$ m, $L_2=3$ m and $L_3=2$ m.

- a) Define the missing coordinate frames and the generalized rotation angles for the robot according to the Denavit Hartenberg Convention and write down the kinematic parameters in a table.
- b) Compute manually 0T_E using homogeneous transformation matrices and extract the psoition of the end effector r_x, r_y and its orientation ϕ . The orientation ϕ is defined as the angle between the x_E and the x_0 axis.

Hints:

$$\overline{\sin(\alpha + \beta)} = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

Verification: Use the *Symbolic Math Toolbox for Matlab*, to derive the forward kinematics of the robot ${}^{0}\mathbf{T}_{E}(\theta_{1},\theta_{2},\theta_{3})$ symbolically. You need to define symbols for the joint angles using syms. Compare your results.

c) Implement the function **vwl** to compute the forward kinematics for the robot. Additionally the tansformation matrix should be in the output.

(10)
$$[{}^{0}\boldsymbol{T}_{E}, r_{x}, r_{y}, \phi] = \text{vwl}(\theta_{1}, \theta_{2}, \theta_{3})$$

Input: $\theta_1, \theta_2, \theta_3$ scalar angles in radians

Output: ${}^{0}T_{E}$ homogeneous transformation matrix

 r_x, r_y Position in x and y direction of the end effector

 ϕ Orientation of the end effector

Allowed routines: rotx(), roty(), rotz(), transl()

Test: Test your results from excercises a)-c) using the routines link(), robot() and fkine() from *Robotics Toolbox for Matlab*. Test the transformation ${}^{0}\mathbf{T}_{E}$ with the following joint angles:

1)
$$\Theta = (\theta_1, \theta_2, \theta_3)^T = (0^\circ, 0^\circ, 0^\circ)^T$$
.

2)
$$\Theta = (\theta_1, \theta_2, \theta_3)^T = (10^\circ, 20^\circ, 30^\circ)^T$$
.

Implement the function cal_ss. It should compute the boundaries of the work space of the platform and output 2D points that can be plotted.

(4)
$$P = cal_ss()$$

Input:

Output:

Erlaubte Funktionen:

Test: Draw the workspace of the robot in the x-y plane. Furthermore you can animate the robot using drivebot(). Additionally you should vary the joint angles.