Taivaanmekaniikka Lineaarinen pienimmän neliösumman sovitus

Anni Järvenpää

25. lokakuuta 2015

Kuva 1: Pistejoukko, johon sovitettu suora mustalla ja pisteiden vertikaaliset etäisyydet suorasta sinisellä.

1 Lineaarinen pienimmän neliösumman menetelmä

?? Lineaarisen pienimmän neliösumman menetelmän tavoitteena on sovittaa n muotoa (x_i, y_i) olevasta pisteestä koostuvaan havaintoaineistoon suora, joka edustaa pisteitä mahdollisimman hyvin. Tyypillisesti sovituksen hyvyyttä mitataan pisteiden vertikaalisena etäisyytenä |e| sovitetusta suorasta (merkitty sinisellä kuvassa 1). Pienimmän neliösumman menetelmässä näiden vertikaalisten poikkeamien neliöiden summa pyritään minimoimaan, siis etsimään funktion $f(x) = \beta_1 + \beta_2 x + \beta_3 x^2 + ... + \beta_{m+1} x^m$ kertoimet $\beta_1...\beta_{m+1}$ siten, että virhe S on mahdollisimman pieni, kun S on määritelty yhtälön 1 mukaisesti. [3]

$$S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
 (1)

Virheen minimiarvot löytyvät derivaatan nollakohdista: [1]

$$\frac{\partial R^2}{\partial \beta_1} = -2 \sum_{i=1}^n [y - (\beta_1 + \beta_2 x + \dots + \beta_{m+1} x^m)] = 0$$

$$\frac{\partial R^2}{\partial \beta_2} = -2 \sum_{i=1}^n [y - (\beta_1 + \beta_2 x + \dots + \beta_{m+1} x^m)] = 0$$

$$\vdots$$

$$\frac{\partial R^2}{\partial \beta_{m+1}} = -2 \sum_{i=1}^n [y - (\beta_1 + \beta_2 x + \dots + \beta_{m+1} x^m)] = 0$$

Näistä saadaan edelleen

$$\beta_1 n + \beta_2 \sum_{i=1}^n x_i + \dots + \beta_{m+1} \sum_{i=1}^n x_i^m = \sum_{i=1}^n y_i$$

$$\beta_1 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 + \dots + \beta_{m+1} \sum_{i=1}^n x_i^{m+1} = \sum_{i=1}^n x_i y_i$$

$$\beta_1 \sum_{i=1}^n x_i^m + \beta_1 \sum_{i=1}^n x_i^{m+1} + \dots + \beta_{m+1} \sum_{i=1}^n x_i^{2m} = \sum_{i=1}^n x_i^m y_i$$

eli matriisimuodossa

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \dots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{m} \\ \beta_{m+1} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{1} \\ \sum_{i=1}^{n} y_{2} \\ \vdots \\ \sum_{i=1}^{n} y_{m} \end{bmatrix}.$$

$$(2)$$

Voidaan myös huomata, että yhtälöön 2 voidaan päästä hyödyntämällä Vandermonden matriisia [2]

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^n \end{bmatrix}$$
(3)

ja kirjoittamalla tämän avulla

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ 1 & x_3 & x_3^2 & \dots & x_3^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_m^2 & \dots & x_m^n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{m+1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$
(4)

Nyt voidaan kertoa edellinen yhtälö puolittain vasemmalta Vandermonden matriisin transpoosilla X^T , jolloin yhtälö saadaan seuraavaan muotoon:

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_m \\ x_1^2 & x_2^2 & x_3^3 & \dots & x_m^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & x_3^n & \dots & x_m^n \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ 1 & x_3 & x_3^2 & \dots & x_3^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_m^2 & \dots & x_m^n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{m+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1^2 & x_2^2 & \dots & x_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & \dots & x_m^n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

Suoritetaan yhtälön matriisien kertolaskut, jolloin saadaan

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \dots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{m+1} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{1} \\ \sum_{i=1}^{n} y_{2} \\ \vdots \\ \sum_{i=1}^{n} y_{m} \end{bmatrix}.$$
 (5)

Nyt voidaan huomata yhtälöiden 5 ja 2 olevan identtiset. Koska Vandermonden matriisi on kääntyvä¹, on kaikille yhtälöstä 4 yhtälöön 5 pääsemiseksi tehdyille operaatioille käänteisoperaatio. Täten yhtälöt 4 ja 2 ovat yhtäpitävät, eli pienimmän neliösumman antavat kertoimet β_i voidaan ratkaista yhtälöstä 4.

Otetaan kerroinvektorin ratkaisemisen helpottamiseksi käyttöön seuraavat merkinnät:

$$m{Y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} \quad ext{ja} \quad m{eta} = egin{bmatrix} eta_1 \ eta_2 \ dots \ eta_m \end{bmatrix},$$

 $^{^1{\}rm Mik\ddot{a}}$ voidaan helposti osoittaa, ks. esim https://proofwiki.org/wiki/Inverse_of_Vandermonde's_Matrix

jolloin yhtälö 2 voidaan kirjoittaa lyhyesti

$$Y = X\beta \tag{6}$$

ja tästä ratkaista $\boldsymbol{\beta}$ seuraavasti:

$$Y = X\beta \qquad ||X^{T} \cdot X^{T}Y = X^{T}X\beta \qquad ||(X^{T}X\beta)^{-1}|$$
$$\beta = (X^{T}X)^{-1}X^{T}Y \qquad (7)$$

Samankaltaisella päättelyketjulla voidaan ratkaista yleinen lauseke myös tilanteelle, jossa kaikkien pisteiden mittaustarkkuus ei ole sama, jolloin pisteille halutaan käyttää erilaisia painokertoimia sovitusta tehtäessä. Tähän voidaan käyttää varianssimatriisia \boldsymbol{V} , jonka avulla voidaan määritellä painokerroinmatriisi $\boldsymbol{W} = \boldsymbol{V}^{-1}\sigma^2$. Tässä σ on tutkittavan aineiston varianssi ja \boldsymbol{V} määritelty seuraavasti: [3]

$$oldsymbol{V} = egin{bmatrix} \sigma_1^2 & \sigma_{1,2} & ... & \sigma_{1,n} \ \sigma_{2,1} & \sigma_2^2 & ... & \sigma_{2,n} \ dots & dots & \ddots & dots \ \sigma_{n,1} & \sigma_{n,2} & ... & \sigma_n^2 \end{bmatrix}$$

Näitä merkintöjä käyttäen kerroinvektori β voidaan ratkaista yhtälöstä 8 [3].

$$\boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{Y} \tag{8}$$

2 Pienimmän neliösumman ratkaisu kaksiulotteiselle havaintoaineistolle

Kun pienimmän neliösumman sovitusta sovelletaan asteroidin radanmääritykseen, on käytössä kaksiulotteinen havaintoaineisto, joka koostuu asteroidin paikoista (x_i, y_i) ajanhetkillä t_i . Asteroidin paikkavektori $\boldsymbol{r}(t)$ mielivaltaisella ajanhetkellä t voidaan ratkaista asteroidin rataelementtien avulla. Rataelementeiksi voidaan valita asteroidin paikka $\boldsymbol{R}_0 = (X_0, Y_0)$ ja nopeus $\boldsymbol{V}_0 = (\dot{X}_0, \dot{Y}_0)$ ajanhetkellä t = 0, jolloin asteroidin paikka saadaan seuraavasti:

$$\boldsymbol{r}(t) = \boldsymbol{R}_0 + \boldsymbol{V}_0 t. \tag{9}$$

Havaintoaineiston ollessa kaksiulotteinen, täytyy Y-vektorin tallentaa sekä x- että y-

koordinaatit, jolloin

$$oldsymbol{Y} = egin{bmatrix} x_1 \\ y_2 \\ x_2 \\ y_2 \\ \vdots \\ x_n \\ y_n \end{bmatrix}.$$

Koska tahdotaan ratkaista aiemmin määritellyt rataelementit, on myös ratkaistava kerroinvektori erilainen:

$$oldsymbol{eta} = egin{bmatrix} X_0 \ Y_0 \ \dot{X}_0 \ \dot{Y}_0 \end{bmatrix}.$$

Myös havainnot sisältävän matriisin X täytyy mukautua kaksiulotteiseen havaintoaineistoon, jotta kertolasku Y-vektorin kanssa on mahdollinen ja fysikaalisesti mielekäs. Tähän sopii alla esitetty matriisi, jolla $(X^TX)^{-1}X^T$ tuottaa kooltaan $4 \times 2n$ matriisin, joka voidaan edelleen kertoa edellä määritellyllä vektorilla Y, jolloin saadaan kooltaan matriisia β vastaava matriisi. Ajanhetki t_i on pisteen (x_i, y_i) havaintoaika.

$$m{X} = egin{bmatrix} 1 & 0 & t_1 & 0 \ 0 & 1 & 0 & t_1 \ dots & dots & dots & dots \ 1 & 0 & t_n & 0 \ 0 & 1 & 0 & t_n \end{bmatrix}$$

Näillä uudelleenmääritellyillä on mahdollista käyttää suoraan aiemmin ratkaistuja yhtälöitä 7 (kaikkien havaintojen painokerroin sama) tai 8 (painokertoimet). Mikäli käytetään painokertoimia, on myös painokerroinmatriisin koko luonnollisesti $2n \times 2n$. Ratkaisuna saatavasta vektorista β saadaan suoraan rataelementit R_0 ja V_0 .

3 Ennusteen virhearvio lineaarisessa mallissa

Yhtälön 8 mukaisesti ratkaistujen parametrien $\boldsymbol{\beta}$ virhe voidaan laskea kun tiedetään, että lineaarikombinaatiossa $\boldsymbol{P}^T\boldsymbol{Y}$, missä \boldsymbol{P} on vakiovektori, saadaan varianssimatriisi seuraavasti [4]:

$$\operatorname{var}(\boldsymbol{P}^T\boldsymbol{Y}) = \boldsymbol{P}^T \operatorname{var}(\boldsymbol{Y}) \boldsymbol{P}.$$

Tällöin saadaan

$$var(\boldsymbol{\beta}) = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} var(\boldsymbol{\beta}) \boldsymbol{W} (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1}.$$
(10)

Hyödyntämällä aiemmin määriteltyä $\boldsymbol{W} = \boldsymbol{V}^{-1}\sigma^2$ ja tietoa var $(\boldsymbol{\beta}) = \boldsymbol{V}$ eli var $(\beta) = \sigma^2 \boldsymbol{W}^{-1}$ saadaan yhtälö 10 muotoon

$$var(\boldsymbol{\beta}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1}$$
(11)

Kun parametrien β_i varianssit σ_i tunnetaan, saadaan niistä helposti keskihajonnat s (yhtälö 12) tai keskiarvon keskivirheet $s_{\bar{x}}$ (yhtälö 13) [5].

$$\sigma = s^2 \tag{12}$$

$$s_{\bar{x}} = \frac{s}{\sqrt{n}} \tag{13}$$

Kun yksittäisten parametrien virheet tiedetään, voidaan niiden perusteella laskettavan funktion f virhe määrittää käyttäen virheen kasautumislakia [6]

$$\delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial \beta_i} \delta \beta_i\right)^2},\tag{14}$$

missä virheenä käytetään tyypillisesti keskiarvon keskivirhettä.

Virheen kasautumislakia käyttäen saadaan luvun 2 yhtälössä 9 esitetylle asteroidin paikalle ajan funktiona virhe seuraavasti:

$$\delta r(t) = \sqrt{\left(\frac{\partial r}{\partial X_0} \delta X_0\right)^2 + \left(\frac{\partial r}{\partial Y_0} \delta Y_0\right)^2 + \left(\frac{\partial r}{\partial \dot{X}_0} \delta \dot{X}_0\right)^2 + \left(\frac{\partial r}{\partial \dot{Y}_0} \delta \dot{Y}_0\right)^2}$$

$$= \sqrt{\delta X_0^2 + \delta Y_0^2 + \left(\delta \dot{X}_0 t\right)^2 + \left(\delta \dot{Y}_0 t\right)^2}$$
(15)

ja vastaavasti koska $v(t) = \frac{dr}{dt} = (\dot{X}_0, \dot{Y}_0)$, saadaan

$$\delta v(t) = \sqrt{\left(\frac{\partial v}{\partial \dot{X}_0} \delta \dot{X}_0\right)^2 + \left(\frac{\partial v}{\partial \dot{Y}_0} \delta \dot{Y}_0\right)^2}$$

$$= \sqrt{\delta \dot{X}_0^2 + \delta \dot{Y}_0^2}$$
(16)

4 Python-implementaatio

Toteutin lisäksi Pythonilla ohjelman, joka sovittaa aiemmin esitettyä menetelmää käyttäen n. asteen polynomin annettuihin datapisteisiin. Liitteessä A esitelty ohjelma ottaa komentoriviargumentteina sovitettavan käyrän asteen sekä tiedostot, joista se lukee sovituksessa käytettävät matriisit \boldsymbol{X} , \boldsymbol{Y} ja \boldsymbol{W} . Matriisiksi \boldsymbol{X} voi antaa joko yksisarakkeisen vektorin, jolloin sen oletetaan olevan yhtälön 3 toinen sarake, tai kokonaisen matriisin, jolloin sitä käytetään sellaisenaan. Tämä mahdollistaa ohjelman käytön myös kaksiulotteiselle havaintoaineistolle. Matriisia \boldsymbol{Y} käytetään aina sellaisenaan.

Ohjelman testaamiseksi generoin funktiolla $y=1.5x^3-5x^2+3x+1.5$ sata datapistettä väliltä [-1,4], yhden setin keskihajonnalla 3 ja toisen keskihajonnalla 0.5. Sen jälkeen sovitin kumpaankin datasettiin kolmannen asteen käyrän käyttäen painokerroinmatriisina yksikkömatriisia, sillä kaikkien pisteiden "mittaustarkkuus" on sama. Pisteet ja niihin sovitetut käyrät ovat nähtävillä kuvissa 2 ja 3. Keskihajonnalla 3 saatiin kerroinmatriisi

$$\boldsymbol{\beta_3} = \begin{bmatrix} 0.78875931 \\ 3.45233752 \\ -5.28074743 \\ 1.5722111 \end{bmatrix}$$

ja keskihajonnalla 0,5

$$\boldsymbol{\beta_{0.5}} = \begin{bmatrix} 1,48549344 \\ 3,13099507 \\ -5,10374017 \\ 1,51945966 \end{bmatrix}.$$

Näistä jälkimmäinen on selvästi lähempänä dataa generoitaessa käytettyä matriisia

$$oldsymbol{eta_{ ext{tod}}} = egin{bmatrix} 0.5 \ 3 \ -5 \ 1.5 \end{bmatrix}.$$

Kuva 2: Keskihajonnalla 3 generoidut pisteet ja niihin sovitettu käyrä

Kuva 3: Keskihajonnalla 0.5generoidut pisteet ja niihin sovitettu käyrä

Viitteet

- [1] Least squares fitting-polynomial. http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html. Luettu: 15.10.2015.
- [2] Vandermonde matrix. http://mathworld.wolfram.com/VandermondeMatrix.html. Luettu: 16.10.2015.
- [3] Peter J. Bickel. *Mathematical statistics: basic ideas and selected topics*. Holden-Day, Oakland, CA, 1977.
- [4] B. R. Martin. Statistics for Physicists. Physicists Academic Press Inc., 1971.
- [5] Raimo Seppänen. MAOL-taulukot: matematiikka, fysiikka, kemia. Otava, Helsingissä, 2005. Lisäpainokset: 2.-3:. p. 2006. 4.-5. p. 2007. 2.-9. p. 2011.
- [6] John R. Taylor. An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Sausalito, CA, 1997. Sisältää hakemiston.

A Käytetty ohjelma

A.1 pns.py

```
1 | # -*- coding: utf-8 -*-
   import numpy as np
3 | import matplotlib.pyplot as plt
4 | import sys
5 from utils import *
7 | if len(sys.argv) !=5 :
       print "Anna komentoriviargumentteina sovitettavan käyrän
          aste sekä tiedostot, joissa käytettävät matriisit X, Y
          ja W ovat"
9
       sys.exit(1)
10
11 \mid aste = int(sys.argv[1])
   xHavainto = lueMatriisi(sys.argv[2])
13 | Y = lueMatriisi(sys.argv[3])
   W = lueMatriisi(sys.argv[4])
14
15
16 | if len(np.transpose(xHavainto)) == 1 : # jos annetussa
      X-matriisissa on vain yksi sarake, oletetaan n. asteen käyrä
      y=f(x) ja luodaan X-matriisi sen mukaan
17
       X = np.ones((len(xHavainto), aste+1))
18
       for i in range(0,len(xHavainto)):
19
           for j in range(1, aste+1):
20
                X[i][j] = xHavainto[i]**j
21 else : # muuten käytetään annettua sellaisenaan
22
       X = xHavainto
23
24 | if len(X) != len(Y) or len(Y) != len(W):
25
       print "Annettujen matriisien dimensiot eivät täsmää"
26
       sys.exit(1)
27
28 | beta = np.dot( np.dot( np.dot( np.linalg.inv( np.dot( np.dot(
      np.transpose(X), W), X)), np.transpose(X)), W), Y)
29 | print "kerroinmatriisi beta:"
30 print beta
31
32 \mid xmin = np.amin(X[:,1])
33 | xmax = np.amax(X[:,1])
34 \mid ymin = np.amin(Y)
35 \mid ymax = np.amax(Y)
36 \mid padY = 1
37 \mid padX = .4
39 | plt.scatter(xHavainto, Y)
40 | plottaaFunktio(xmin-padX, xmax+padX, beta)
41 axes = plt.gca()
```

```
42 | axes.set_xlim([np.amin(X[:,1])-padX, np.amax(X[:,1])+padX])
43 | axes.set_ylim([np.amin(Y)-padY, np.amax(Y)+padY])
44 | plt.show()
```

A.2 utils.py

```
1 | import matplotlib.pyplot as plt
2 | import numpy as np
4 def lueMatriisi(tiedosto):
       f = open ( tiedosto , 'r')
5
       matriisi = [ map(float,line.split(',')) for line in f ]
6
7
       return    np.array(matriisi)
8
9 def plottaaFunktio(xmin, xmax, kertoimet):
10
       pisteet = 100
       x = np.arange(xmin, xmax, (xmax-xmin)/pisteet)
11
12
       y = np.zeros(pisteet)
13
14
       for i in range(0, pisteet):
           for k in range(0, len(kertoimet)):
15
               y[i] += x[i]**k*kertoimet[k]
16
       plt.plot(x, y)
17
```