Aufgaben zu Riemannschen Flächen

6. Blatt - Übung am Montag, 28.11.2016

Aufgabe 20:

i) Sei $\pi:\widetilde{X}\to X$ die universelle Überlagerung einer zusammenhängenden Riemannschen Fläche und $f:Z\to X$ eine weitere normale(!) Überlagerung. Wie könnte man eine "Einschränkung"

$$\rho: \operatorname{Deck}(\widetilde{X}|X) \to \operatorname{Deck}(Z|X)$$

definieren? Was ist deren Kern?

ii) Nutze die vorhergehende Teilaufgabe, um den folgenden Satz zu zeigen:

Satz: Ist X eine zusammenhängende Riemannsche Fläche, dann gibt es zu jedem surjektiven Gruppenhomomorphismus $\pi_1(X,x_0) \to G$ eine (bis auf Isomorphie eindeutige) normale Überlagerung $f:Z\to X$ durch eine zusammenhängende Riemannsche Fläche Z, so dass $\operatorname{Deck}(Z|X)\cong G$.

Aufgabe 21: Sei $Y:=\mathbb{C}\smallsetminus\{0,1\}$ und $X:=\mathbb{C}\smallsetminus\{0,\pm i,\pm i\sqrt{2}\}$ und

$$f: X \to Y$$
, $z \mapsto (z^2 + 1)^2$.

Zeige, dass f eine unverzweigte, 4-blättrige Überlagerung ist, die aber nicht normal ist, und dass

$$\mathsf{Deck}(X|Y) = \{\mathsf{id}, (z \mapsto -z)\}\$$

gilt.

Aufgabe 22: Seien $\Lambda, \Gamma \subset \mathbb{C}$ vollständige Gitter und sei $f: \mathbb{C}/\Lambda \to \mathbb{C}/\Gamma$ eine nicht-konstante holomorphe Abbildung mit $f(0 \mod \Lambda) = 0 \mod \Gamma$. Zeige, dass es ein $\alpha \in \mathbb{C}^{\times}$ gibt, so dass $\alpha\Lambda \subset \Gamma$ und dass das Diagramm

$$\mathbb{C} \xrightarrow{z \mapsto \alpha z} \mathbb{C}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}/\Lambda \xrightarrow{f} \mathbb{C}/\Gamma$$

kommutiert. Zeige ferner, dass f eine unverzweigte Überlagerung ist und

$$\mathsf{Deck}(f) \cong \Gamma/\alpha\Lambda$$

gilt.