94-05-03 D9:30 RCVD
DRINKING WATER SURVEILLANCE PROGRAM
TILBURY
WATER TREATMENT
PLANT
REPORT FOR 1991 AND 1992

® Ontario

TILBURY WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2977

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration (pressure filters), taste and odour control, fluoridation and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.5 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 6,000.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Tilbury water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE.

RAW TREATED YOUNG ST TESTS POSITIVE XPOSITIVE XPOSITIVE TESTS POSITIVE XPOSITIVE 329 1185 2,727 " 505 782 182 288 82 Ξ 336 8 122 408 505 405 54 82 54 8 20 2 678 23 378 207 63 397 408 54 461 119 505 21 2,314 48 168 SITE POLYAROMATIC HYDROCARBONS CHEMISTRY (LABORATORY) SPECIFIC PESTICIDES PESTICIDES AND PCB CHEMISTRY (FIELD) CHLOROAROMATICS BACTERIOLOGICAL CHLOROPHENOLS RAD TONUCL IDES PHENOL ICS VOLATILES METALS SCAN TOTAL

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Tilbury water treatment plant in the spring of 1990. A previous annual report was published in 1990.

PLANT DESCRIPTION

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration (pressure filters), taste and odour control, fluoridation and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.5 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 6,000.

The sample day flows ranged from 4.0 x 1000 $\mathrm{m}^3/\mathrm{day}$ to 7.2 x 1000 $\mathrm{m}^3/\mathrm{day}$.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line. Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). These objectives are applied to free flowing water. When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER;

-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE
GUIDELINE VALUES; AND

-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis

conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

Field pH was below the ODWO Recommended Operational Guideline of 6.5-8.5 pH units in 1 of 32 treated and distributed water samples with a minimum reported value of 6.4 pH units.

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 12 of 31 treated and distributed water samples with a maximum reported value of 24.0°C .

CHEMISTRY (LABORATORY)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 1 of 34 treated and distributed water samples with a maximum reported value of 13.5 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 19 of 34 treated and distributed water samples with a maximum reported value of 722 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in all 34 treated and distributed water samples with 12 samples above 200 mg/L and a maximum reported value of 317.0 mg/L.

Total phosphorus exceeded the European Economic Community Aesthetic Guideline Level of 0.40 mg/L in 6 of 17 treated water samples with a maximum reported value of 1.17 mg/L. Polyphosphate is added in the treatment process for corrosion control in the distribution system. The presence of slightly elevated phosphate levels in the treated water is therefore expected.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOS indicate that a useful quideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 5 of 34 treated and distributed water samples with a maximum reported value of 170.0 ug/L.

ORGANIC

CHLOROAROMATICS

1,2,4,5-Tetrachlorobenzene was found at a positive level in 1 of the 25 treated and distributed water samples analyzed. The maximum observed level was 11.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 38,000 ng/L.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

Hexachlorocyclopentadiene was found at positive levels in 4 of the 15 treated and distributed water samples analyzed. The maximum observed level was 112.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 206,000 ng/L.

Trace levels of atrazine and metolachlor were also detected. The addition of powder activated carbon was effective in reducing the concentrations of pesticides in the treated water.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at positive levels in 3 of the 17 treated and distributed water samples analyzed. The maximum observed level was $3.0~\mathrm{ug/L}$.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 34 treated and distributed water samples analyzed with a maximum level of $107.0~{\rm ug/L}$. This was below the ODWO Maximum Acceptable Concentration of 350 ${\rm ug/L}$.

THMs were detected at positive levels in two raw water samples. Where prechlorination is practiced, the operator must ensure that no chlorine is present in the lowlift chamber or discharge line and that the lowlift pumps are in operation for some time before the raw water sample is taken.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available guidelines.

CONCLUSIONS

The number of pesticides which were detected at the Tilbury water treatment plant indicates that this raw water source is adversely affected by agricultural activity.

The results are similar to those found in the previous year.

No known health related guidelines were exceeded.

The Tilbury water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #: UTM #:

TILBURY WTP 220003350

173808574686875

DISTRICT: REGION:

WINDSOR SOUTHWEST J. DRUMMOND

DISTRICT OFFICER: CHIEF OPERATOR:

GASTON BOUILLON

ADDRESS:

TILBURY WATER TREATMENT PLANT

LOT 12, CONC. FRONT

DOVER TOWNSHIP 519-682-0330

MUNICIPALITY: AUTHORITY: TILBURY MUNICIPAL

PLANT INFORMATION

- (X 1000 M3) - (X 1000 M3/DAY) PLANT VOLUME: DESIGN CAPACITY:

6.519 (X 1000 M3/DAY) RATED CAPACITY:

MUNICIPALITY POPULATION TILBURY EAST TOWNSHIP 800 TILBURY NORTH TOWNSHIP 1,200 TOWN OF TILBURY 4,000

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
COMBINED CHLORINE RESIDUAL	TREATED	DAILY
FREE CHLORINE RESIDUAL	TREATED	CONTINUOUS
TOTAL CHLORINE RESIDUAL	TREATED	CONTINUOUS
РН	RAW TREATED	EVERY 4 HOURS
TEMPERATURE	RAW .	DAILY
TURBIDITY	RAW TREATED	CONTINUOUS

TABLE 3
DRINKING WATER SURVEILLANCE PROCRAM TILBURY UTP SAMPLE DAY CONDITIONS
AND TREATMENT CHEMICAL DOSAGES FOR 1991 AND 1992

TROL E																
CORROSION CONTROL SODIUM POLYPHOSPHATE	1.00	.87			.85	.80	.85	1.06	06.	76.	1.01	1.07	5.04	1.42	1.81	1.80
TASTE AND ODOUR ACTIVATED CARBON POWDER	3.50	00.0	8.00	7.00	3.00	8.00	92.9	07.9	00.9	9.00		3.60	00.9	6.10	3.17	7.00
FLUORIDATION SODIUM FLUORIDE	1.33	1.10	1.10		3.33	•	1.16	1.10	1.40	1.20	26"	1.24	1.10	1.10	1.20	1.40
POST CHLORINATION CHLORINE	4.52	3.09	3.23		4.70	2.59	4.19	3.38	3.20	1.64	3,13	2.81	1.50	07.7	3.19	3.89
COAGULATION AID POLYELECTROLYTE	•.	2.60							.20							
COAGULATION POLYALUMINUM CHLORIDE	18.00	27.80	31.76	14.00	17.60	15.00	16.00	17.50	23.00		3.77	14.28	8.40	8.60	22.90	20.00
PRE CHLORINATION CHLORINE							:					1.69			2.20	
FLOW (1000M3)	6.220	6.050	5.880	5.880	5.790	4.360	6.390	6.650	6.390	090.9	7,260	7.260	6.020	7.000	4.000	7.080
DELAY * TIME(HRS)		4.77	4.00	4.55	2.00	2.00	4.30	4.20	4.20	4.00	3.19	4.30	3.00			
DATE	91 JAN 22	91 MAR 19	91 APR 23	91 MAY 22	91 JUN 18	91 JUL 16	91 AUG 20	91 SEP 17	91 OCT 22	91 NOV 19	92 FEB 18	92 APR 22	92 JUN 16	92 AUG 18	92 OCT 27	DEC

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
 - WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
T>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
! NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
! QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO .	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = 0 (A1)								٠		***							GUIDELINE = 500 (A3)															•		
NT PLANT DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0																	DET'N LIMIT = 0	<=> 1 · · · · · · · · · · · · · · · · · ·	2 <=> 10			54		0 (=> 165		1 <=> 12	\= \	29 17		2 <=> 310		. 12	1 <=> 3 <=>	
TREATMENT PLANT TREATMEN RAW TREATED	BACTERIOLOGICAL ECAL COLIFORM MF (CT/100ML)	JAN	1991 FEB BDL	MAR	APR		NON			SEP	0007 801	1992 FEB 10 <=>	APR	JUN B	1992 AUG 0	OCT B	1992 DEC 12	STANDRD PLATE CNT MF (CT/ML)	1991 JAN			1991 APR .		1991 JUN	1991 JUL 1991 Alic		1991 OCT			1992 APR .			1992 OCT		
	ECA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	TAN	-	-	-	-	-			,	-	-	-	-	-	-	-	_	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

	GUIDELINE = 5/100ML (A1)														GUIDELINE = N/A																
DIST. SYSTEM YOUNG ST STANDING	CUIDEL				•									•	CUIDEL	٠							• •					,	•	•	
DIST. SYSTEM DI YOUNG ST YO FREE FLOW ST	DET'N LIMIT = 0	. •	•										٠	•	DET'N LIMIT = 0					٠								. •		•	
TREATMENT PLANT TREATED	7	8*	•																										٠	•	
TREATMENT PLANT RAW	BACTERIOLOGICAL TOTAL COLIFORM MF (CT/100ML)	42000	0061	4000 A3C	200 <=>	\$ ¢≎ \$2 23 ¢≑ \$2		<=> 09	280	BOL	108	190 A3C	740 · A3C	2400	T COLIFORM BCKGRD MF (CT/100ML)	10000	2800	500	52000 A3C	20000 A3C	30000 A3C	24833 A3C	20000 A3C	11600 A3C	2720	180 <=>	· 6300 A3C	< 00072	5900 A3C	72000	
	TOTAL COLIFORM	1991 JAN	1001 MAR			1991 AUG	1991 SEP	1991 OCT		1992 APR	1992 JUN	1992 AUG		1992 DEC	T COLIFORM BCK	1991 JAN		-	1991 APR		1001 1001	1991 AUG			1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	

SYSTEM ST 4G	GUIDELINE = N/A	2200 2200 2200 2200 2200 2200 2300 2400 24	1.900
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 0	200 200 200 200 200 200 200 200 200 200	
TREATMENT PLANT DI TREATED FF	(FIELD) DEI	230 230 230 230 230 230 230 230 240 240 240 240 240 240 250 260 260 260 260 260 260 260 260 260 26	2.150
TREATMENT PLANT RAW	CHEMISTRY (FII) FLD CHLORINE (COMB) (MG/L)	,480 (1,780 050	
	FLD CHLORINE	1997 FEB 1997 FEB 1997 FEB 1997 FEB 1997 MAR 1997 MAR 1997 MAR 1997 MAR 1992 ANR 1992 ANR 1992 DEC 1997 MAR 1992 DEC 1997 MAR 1997 199	

DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = N/A
PDIST YOUN STAN	o
REAIMENT PLANT TREATMENT PLANT DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT =
PLANT	
TREATMENT	ELD)
PLANT	RY (FII
TREATMENT PLANT TREATMENT PLANT DIST RAW TREATEO FREE FREE	CHEORINE (TOTAL) (MG/L)
	CHLORINE
	9

GUIDELINE = N/A		GUIDELINE: = 6.5-8.5 (A4)
GUID	1,200 1,300 1,300 1,300 1,000 1,100	000 7 7 000 7 000 7
DET'N LIMIT = 0	1,300 1,700 1,700 1,000 1,000 1,000 1,100 1,100 1,000	7.700 7.700 7.400
	2.260 2.380 2.390 3.320 3.320 2.460 1.860 1.980 1.980 1.980 1.980 2.380 2.380 2.380	7 800 6 700 6 700 6 700 6 800 6 800 6 700 7 500 7 500 7 500 7 600 7 7 700 7 7 700 7 7 700 7 7 700 7 7 700 7 7 700 7 7 7 7
CHEMISTRY (FIELD) (TOTAL) (MG/L)		58) 7.600 6.800 6.700 7.400 7.400 7.400 7.500 7.500 7.500 7.500 7.500 7.500 7.200
CHEMISTR FLD CHLORINE (TOTAL) (MG/L	1991 JAN 1991 REB 1991 RAP 1991 RAP 1991 RAP 1992 JUL 1992 JUL 1992 JUL 1992 LAP 1992 LAP 1992 LAP 1992 LAP 1992 LAP 1992 LAP 1993 RAP 1993 LAP 1993 LAP 1994 LAP 199	FLO PH (DPH) SLIESS 1991 JAN 1991 SEP 1991 SEP 1991 SEP 1991 SEP 1992 ARR 1992 ARR 1992 ARR 1992 ARR 1992 ARR

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

-	GUIDELINE = 15 (A3)	GUIDELINE = 1.0 (A1)	:
DIST. SYSTEM YOUNG ST STANDING	פחננ	72, 280 72, 280 73, 500 73, 500 74, 500 75, 50	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = N/A	7,000 7,000 7,000 15,600 15,600 15,600 17,600 17,000 17,800 17,800 17,800 17,800 17,800	
TREATMENT PLANT TREATED	ELD) .	1,000 1,000	
TREATMENT PLANT RAW	CHEMISTRY (FIELD)	1,000 1,000	
	FLD TEMPERATURE	1997 JAN 1999 JAN 199	

	GUIDELINE = 30-500 (A4)	= 100 (F2)	= 0.2 (A1)
DIST, SYSTEM YOUNG ST STANDING	GUIDELINE =	202. 700 165.200 113.300 141.700 107.500 17.200 87.800 87.800 87.800 115.600 115.600 115.600 116.200 116.200 115.200 115.200	94, 000 74, 400 74, 400 71, 200 67, 200 67, 200 73, 600 73, 600 73, 600 74, 600 76, 600 76, 600 77, 600 78, 60
DIST. SYSTEM DISTOUNG ST YOU STA	DET'N LIMIT = 0.2	202.900 117.900 113.700 109.700 109.700 71.000 85.900 87.900 111.600 111.600 118.700 108.100 167.000 167.000 167.000 167.000	97.800 50.800 68.700 68.200 68.200 25.800 25.800 32.800 32.800 32.800 46.000 46.000 46.000 48.500 68.500 68.500 68.500
TREATMENT PLANT TREATED		204, 500 107, 600 107, 600 107	77.200 77
TREATMENT PLANT	CHEMISTRY (LABORATORY)	219,500 220,800 115,500 106,500 106,500 122,500 1122,300 111,8	108 108 109 109 109 109 109 109 109 109
	ALKALINITY (MG/L	1991 JAN 1991 REB 1991 MAR 1991 MAR 1991 JUL 1991 JUL 1991 JUL 1991 CCT 1992 REB 1992 LUR 1992 ADR 1992 ADR 1992 OCT 1992 CCT 1992 CCT	1991 JAN 1991 FEB 1991 HAP 1991 AN 1991 AN 1991 JUN 1991 JUN 1991 JUN 1992 AN 1992 AN 1992 AN 1992 AN 1992 AN 1992 AN 1992 AN 1993 AN 1994 AN

DIST. SYSTËM YOUNG ST STANDING	
REATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST PERFELOW	
TREATMENT PLANT	

GUIDELINE = 250 (A3)	50,300 14,900 14,900 24,500 24,500 38,800 38,800 38,500 42,400 42,400 50,100 50,100 50,100 50,400 50	3,000 3,000 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,500 <1 5,00 <1 5,
DET'N LIMIT = 0.20	50,300 46,880 33,500 33,500 33,500 31,500 31,500 31,500 31,500 31,500 31,500 31,500 31,500 31,500	2.500 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <1 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.000 <2 2.0
ABORATORY)	57. 770 64. 200 74. 200 74. 200 74. 200 74. 200 74. 200 74. 200 74. 200 74. 200 75. 200 76. 100 76. 100 77. 700 77. 70	3.000 1.000
CHEMISTRY (LABORATORY)	55. 560 57. 56	7, 500 10, 500
CHLORIDE (MG/L	1991 JAN 1997 FEB 1997 APR 1997 APR 1997 JUL 1997 JUL 1997 DEF 1997 GEF 1992 AUG 1992 AUG 1992 AUG 1992 AUG 1992 AUG	1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JUL 1991 JUL 1992 JUL 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 IILBURY WIP

	GUIDELINE = 400 (F2)																NE = 5.0 (A3)																
DIST. SYSTEM YOUNG ST STANDING	GUIDELI	. 799	555	707	350	458	271	337	249	413	728	308	328	380	481	457	GUIDELINE	3,100	2.400	2.000	2.400	2.100	2.300	1.900	1.800	1.600	2,000	3.300	1.400	1.300	1.900	3.500	
DIST. SYSTEM DYOUNG ST FREE FLOW S	DET'N LIMIT = 1.0	661	571	607	292	454	270	330	345	413	707	308	342	413	487	077	DET'N LIMIT = 0.10	3.100	2.200	2.000	2.300	2.100	2.400	1.700	700	1.600	2,000	3,300	1.600	1.200	2.000	3.400	
TREATMENT PLANT TREATED	(LABORATORY)	683	529	375	31%	797	27.1	346	045	415	722	351	310	337	777	393	9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.100	2.100	2,000	2.300	1.800	2.000	008.1	009	1,900	2.200	3,200	1.800	1.200	1.800	2.800 1.500	
TREATMENT PLANT	MISTRY)	673	617	SI	200	413	240	336	240	380	718	362	281	315	589	359	N (MG/L)	4.300	3.500	2.600	4.500	5.600	3.200	2.900	2.000	2.800	2.800	3.000	3.600	1.700	2.300	5.000 2.500	
	CONDUCTIVITY (UMHO/CM	1991 JAN		1991 MAR	1001 MAY		1991 JUL	1991 AUG		1991 NOV		1992 APR		1992 AUG	1992 OCT		DISS ORG CARBON (MG/L		1991 FEB						1991 SFP					1992 JUN		1992 OCT 1992 DEC	

DIST, SYSTEM YOUNG ST STANDING
DIST. SYSTEM YOUNG ST FREE FLOW
TREATWENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED FREE FLOW FREE FLOW
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM RAW TREATED YOUNG ST YOUNG ST FREE FLOM STANDING FREE FLOM

		2
1.5 (A1)		= 80-100 (A4.)
SUIDELINE =		GUIDELINE
5	1.180 940 860 860 1.120 1.120 980 980 980 980 1.100 1.000 1.100 1.100 1.100	310.000 247.500 174.500 175.000 185.000 187.000 183.000 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500 184.500
. 0.01		0.5
DET'N LIMIT = 0.01	1.160 .980 .940 .940 .120 .920 .540 .540 .1000 1.000 1.100 1.100	317.000 28.800 174.400 174.400 171.000 175.000 175.000 176.500 176.500 176.500 176.500 176.500 176.500 176.500 176.500 176.000
DET 'N	<u>;</u>	0001
c	1.260 1.260 1.000 1.140 1.140 1.140 1.060 1.060 1.060 1.060 1.140 1.100	316, 000 116, 000 116, 000 116, 000 117, 000 1176, 000 1176, 000 1176, 000 1176, 000 1176, 000 1171, 000 1171, 000 1171, 000
CHEMISTRY (LABORATORY)		E 25 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
TRY (LA	180 1160 1160 1160 1160 1120 1120 1160 116	5500 5500 5000 5000 5000 5000 5000 500
CHEMIS		317.000 297.300 145.300 262.000 175.000 177.000 177.000 177.000 176.30
1/9W3	JAN MAR MAR MAY JUL JUL MAY JUL MAY JUL MAY JUL MAY JUL MAY AUG AUG AUG AUG AUG AUG OCT DEC OCT DE	CMG/L FEB HANN MAY MAY MAY MOUTH HOUSE COTT MOUN MOUN MOUN MOUN MOUN MOUN MOUN MOUN
FLUORIDE (MG/L	1991 AF 1992 A	1901 JAN 1901 JAN 1901 FEB 1901 APR 1901 APR 1901 APR 1901 JUN 1901 CEP 1901 CEP 1901 CEP 1902 FEB 1902 APR 1902 APR 1902 APR 1902 APR 1902 APR 1902 APR 1902 APR 1902 APR

																			•																	
W.	GUIDELINE = N/A		420 NAF				53 NAF	37 NAF	5.	55 NAF	26 NAF	03	01	22	2.326 NAF	22	66	097	GUIDELINE = 10 (F2)	20	00	01	20	.00	20	0,	20	06	96	00	30	ĸ	20	30	28	76
DIST. SYSTEM YOUNG ST STANDING		1 738	7	1.50	2.317	6.5	1.753	4.7	3.8	1.455 #	3.996	1.303	.240	1.1	2.3	2.0	.599	77.		2.850	2.7	1.710	1.9	1.600	2.650	1.3	1.950	7.0	2.900	5.6	3.0	1.4	1.5	2.2	3.428	7.7
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = N/A	1 001	1.672 NAF		4.478 NAF		2.254 NAF		4.622	2.464	4.670 NAF	.030	3.451	2.756		.188	.368	905.	DET'N LIMIT = 0.01	.2.920	2.860	1.740	1.950	1.750	2.650	1.350	1.800	1.930	2.950	2.560	3.070	1.500	1.670	2.374	3.457	2.201
TREATMENT PLANT TREATED	BORATORY)	2 466	1.108 NAF		1.864 NAF		2.154 NAF	2.614 NAF	1,969		3.952 NAF	.561	3.458	2.746	1.579 NAF	2.124	.884	.970	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.000	2.490	1.640	1.550	1.400	2.500	1.460	2.000	1.860	3.200	2.650	2.800	1.930	1.570	2.019	2.900	1.935
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	883	.741 NAF		1.479 NAF		.817 NAF		4.751	3.132 NAF	2.681 NAF	2.374	4.235	3.754	. 125 NAF	.124	.269	5.264	^	3.250	3.390	1.780	1.950	1.450	2.350	1.120	2.200	2.140	3.500	2.580	3.020	2.623	1.600	1.969	3.892	2.550
	IONCAL (DMNSLESS	1001 IAN	1001 FFR					1991 JUL			1991 OCT						_	1992 DEC	POTASSIUM (MG/L	1991 JAN		_	1991 APR	=	1991 JUN		1991 AUG				1992 FEB	1992 APR	1992 JUN	1992 AUG		1992 DEC

DIST. SYSTEM YOUNG ST STANDING	
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST FREE FLOW	
TREATMENT PLANT RAW	

GUIDELINE = N/A		LINE = 30.0 (F2)
GUIDE	975 676 677 677 677 677 677 677 677 677 6	GUIDELINE 18.300 15.000 17.7000 17.700 17.700 17.700 17.700 17.700 17.700 17.700 17.700 17.7
DET'N LIMIT = N/A	A K F C C C C C C C C C C C C C C C C C C	DET-N LIMIT = 0.1 17.700 15.150 16.150 17.800 17.800 17.800 17.800 17.800 17.800 17.800 18.200 9.000 9.0400 17.800 17.800
(LABORATORY) DI	7913 780 NAF 780 NAF 782 R10 783 R10 783 R10 784 R10 785 R10 785 R10 786 R10 7	17, 900 16, 700 16, 700 11, 100 10, 700 11, 700 12, 800 13, 800 13, 800 13, 800 13, 800 13, 800 13, 800 14, 800 15, 800 15, 800 16, 800 17, 800 18, 800 19, 800 19, 800 10, 80
CHEMISTRY (LAB((DMNSLESS)	1.146 1.229 NAF 271 431 552 373 513 1.185 1.185 1.231 2.51 2.51 2.51 2.51), (7.800 17.800 17.800 10.600 10.600 13.900 13.900 11.800 11.800 11.800 12.500 12.500 12.500 10.230 9.220 9.220 9.220 9.220
LANGELIERS INDEX	(1991 JAN (1991 JAN (1991 JAN (1991 JAN (1991 JAN (1991 JAN (1991 JAN (1991 JAN (1992 JAN (1992 JAN (1992 JAN (1992 DEC	MAGNES LUM (16/7, L) 1991 AM (1991 EB (1991 AM (1991 AM (1991 AM (1991 AM (1991 AM (1991 AM (1992 AM (

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = 200 (A4)																		GUIDELINE = 0.05 (F2)																	
DIST. SYSTEM YOUNG ST STANDING	CUIDEL	21,300	18.500	10.800	9.800	10.600	15.200	10.500	17.200	15.800	19.600	17.700	31.000	9.710	11.400	13.070	12,710	11.930	1 1 1 1 1 1 1	BOL	BOL	BOL	BOL	.002 <t< th=""><th>.004 <t< th=""><th>.002 <t< th=""><th></th><th>.002 <t< th=""><th>BDL</th><th>BOL</th><th>.010</th><th>T> 900.</th><th>.002 <t< th=""><th></th><th>.008 <t< th=""><th>108</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.004 <t< th=""><th>.002 <t< th=""><th></th><th>.002 <t< th=""><th>BDL</th><th>BOL</th><th>.010</th><th>T> 900.</th><th>.002 <t< th=""><th></th><th>.008 <t< th=""><th>108</th></t<></th></t<></th></t<></th></t<></th></t<>	.002 <t< th=""><th></th><th>.002 <t< th=""><th>BDL</th><th>BOL</th><th>.010</th><th>T> 900.</th><th>.002 <t< th=""><th></th><th>.008 <t< th=""><th>108</th></t<></th></t<></th></t<></th></t<>		.002 <t< th=""><th>BDL</th><th>BOL</th><th>.010</th><th>T> 900.</th><th>.002 <t< th=""><th></th><th>.008 <t< th=""><th>108</th></t<></th></t<></th></t<>	BDL	BOL	.010	T> 900.	.002 <t< th=""><th></th><th>.008 <t< th=""><th>108</th></t<></th></t<>		.008 <t< th=""><th>108</th></t<>	108
DIST. SYSTEM DYOUNG ST YOUNG ST FREE FLOW S	DET'N LIMIT = 0.20	21.200	19.100	10.300	9.800	11.000	14,800	10,400	16.600	15.400	20.600	17.600	32.300	0.470	12,500	14.200	12.910	11,370	DET'N LIMIT = 0.002	801	BOL	BOL	BOL		.002 <t< td=""><td>BOL</td><td>BOL</td><td>.002 <1</td><td>B0L</td><td>BOL</td><td>T> 900.</td><td>. 000, <⊤</td><td>BDL</td><td>T> 400.</td><td>210.</td><td>B0L</td></t<>	BOL	BOL	.002 <1	B0L	BOL	T> 900.	. 000, <⊤	BDL	T> 400.	210.	B0L
TREATMENT PLANT TREATED:		24.200	17.100	9.000	007.6	007.6	16.600	10,900	18.400	15.300	22.200	18.100	30.700	9.840	11,500	11.040	11.640	10.500		.002 <↑	BOL	BOL	BOL	BDL	BDL	.004 ×T	108	BOL	BOL	BOL	T> 900.	BOL	.002 <⊤	BOL	.002 <t< td=""><td>108</td></t<>	108
TREATMENT PLANT	CHEMISTRY (LABORATORY)	23.000	18.800	006.9	000.6	8.200	14.600	009.6	18.200	15.700	21.200	15.300	29.800	9.010	8.570	8.810	12,930	8.010	(MG/L)	.,174	.208	770	.016	.050	,058	.026	.020	.032	970.	770.	.102	.052	.022	.092	T> 900.	.018
	SODIUM (MG/L	1991 JAN			_	•		-	-			_		1992 APR		_	_	1992 DEC	AMMONIUM TOTAL (MG/L	1991 JAN	_	1991 MAR	1991 APR			1991 JUL			1991 OCT		1992 FEB	1992 APR			1992 OCT	

DIST. SYSTEM YQUNG ST STANDING	GUIDELINE = 1.0 (A1)	.002 <t< th=""><th>.001 <t< th=""><th>108</th><th>BDL</th><th></th><th>.001 <t< th=""><th>108</th><th>BOL</th><th>BOL</th><th>108</th><th>.001 <t< th=""><th>.003 <1</th><th>108</th><th></th><th>.001 <1</th><th>NOT.</th><th>GUIDELINE = 10.0 (A1)</th><th>6.380</th><th>4.340</th><th>3.040</th><th>7.990</th><th>1.730</th><th>3.210</th><th>.225</th><th>.615</th><th>.435</th><th>.905</th><th>1.450</th><th>089.7</th><th>1.200</th><th>.965</th><th>2.330</th><th>3.360</th><th>2.600</th></t<></th></t<></th></t<></th></t<>	.001 <t< th=""><th>108</th><th>BDL</th><th></th><th>.001 <t< th=""><th>108</th><th>BOL</th><th>BOL</th><th>108</th><th>.001 <t< th=""><th>.003 <1</th><th>108</th><th></th><th>.001 <1</th><th>NOT.</th><th>GUIDELINE = 10.0 (A1)</th><th>6.380</th><th>4.340</th><th>3.040</th><th>7.990</th><th>1.730</th><th>3.210</th><th>.225</th><th>.615</th><th>.435</th><th>.905</th><th>1.450</th><th>089.7</th><th>1.200</th><th>.965</th><th>2.330</th><th>3.360</th><th>2.600</th></t<></th></t<></th></t<>	108	BDL		.001 <t< th=""><th>108</th><th>BOL</th><th>BOL</th><th>108</th><th>.001 <t< th=""><th>.003 <1</th><th>108</th><th></th><th>.001 <1</th><th>NOT.</th><th>GUIDELINE = 10.0 (A1)</th><th>6.380</th><th>4.340</th><th>3.040</th><th>7.990</th><th>1.730</th><th>3.210</th><th>.225</th><th>.615</th><th>.435</th><th>.905</th><th>1.450</th><th>089.7</th><th>1.200</th><th>.965</th><th>2.330</th><th>3.360</th><th>2.600</th></t<></th></t<>	108	BOL	BOL	108	.001 <t< th=""><th>.003 <1</th><th>108</th><th></th><th>.001 <1</th><th>NOT.</th><th>GUIDELINE = 10.0 (A1)</th><th>6.380</th><th>4.340</th><th>3.040</th><th>7.990</th><th>1.730</th><th>3.210</th><th>.225</th><th>.615</th><th>.435</th><th>.905</th><th>1.450</th><th>089.7</th><th>1.200</th><th>.965</th><th>2.330</th><th>3.360</th><th>2.600</th></t<>	.003 <1	108		.001 <1	NOT.	GUIDELINE = 10.0 (A1)	6.380	4.340	3.040	7.990	1.730	3.210	.225	.615	.435	.905	1.450	089.7	1.200	.965	2.330	3.360	2.600
DIST. SYSTEM DIST. SY YOUNG ST YOUNG ST FREE FLOW STANDING	DET*N LIMIT = 0.001	.002 <1	.001 <t< td=""><td>108</td><td>801</td><td>BUL</td><td>80L 80L</td><td>BOL</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>.002 <t< td=""><td>BDL</td><td>.001 <t< td=""><td>.002 <t< td=""><td>108</td><td>DET'N LIMIT = 0.005</td><td>9.400</td><td>4.550</td><td>3.100</td><td>4.750</td><td>1.860</td><td>3.120</td><td>.225</td><td>.590</td><td>.425</td><td>.955</td><td>1.450</td><td>7.630</td><td>1.370</td><td>1.020</td><td>2.760</td><td>3.430</td><td>2.440</td></t<></td></t<></td></t<></td></t<>	108	801	BUL	80L 80L	BOL	108	B0L	108	108	.002 <t< td=""><td>BDL</td><td>.001 <t< td=""><td>.002 <t< td=""><td>108</td><td>DET'N LIMIT = 0.005</td><td>9.400</td><td>4.550</td><td>3.100</td><td>4.750</td><td>1.860</td><td>3.120</td><td>.225</td><td>.590</td><td>.425</td><td>.955</td><td>1.450</td><td>7.630</td><td>1.370</td><td>1.020</td><td>2.760</td><td>3.430</td><td>2.440</td></t<></td></t<></td></t<>	BDL	.001 <t< td=""><td>.002 <t< td=""><td>108</td><td>DET'N LIMIT = 0.005</td><td>9.400</td><td>4.550</td><td>3.100</td><td>4.750</td><td>1.860</td><td>3.120</td><td>.225</td><td>.590</td><td>.425</td><td>.955</td><td>1.450</td><td>7.630</td><td>1.370</td><td>1.020</td><td>2.760</td><td>3.430</td><td>2.440</td></t<></td></t<>	.002 <t< td=""><td>108</td><td>DET'N LIMIT = 0.005</td><td>9.400</td><td>4.550</td><td>3.100</td><td>4.750</td><td>1.860</td><td>3.120</td><td>.225</td><td>.590</td><td>.425</td><td>.955</td><td>1.450</td><td>7.630</td><td>1.370</td><td>1.020</td><td>2.760</td><td>3.430</td><td>2.440</td></t<>	108	DET'N LIMIT = 0.005	9.400	4.550	3.100	4.750	1.860	3.120	.225	.590	.425	.955	1.450	7.630	1.370	1.020	2.760	3.430	2.440
TREATMENT PLANT TREATED	30RATORY)	BOL	108 100	BOL	80F	201	80L 80L	108	B0L	108 1	108	108	108	108	801	BOL	BDL		6.230	4.020	2.600	9.900	1.250	3.250	.205	.535	.395	1.120	1.400	7.050	3.370	.755	1.820	2.750	1.810
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	.050	970.	.015	.032	410.	.036	.016	.013	.031	.023	.027	.025	200	.024	600.	.025	(HG/L)	6.320	5.730	1,920	7.500	1.200	2.670	.125	.535	.385	1.160	1,260	7.430	4.120	.560	1.640	.4.870	1.800
	ITRITE (MG/L				1991 APR		1991 JUN 1991 JUL				1991 NOV		1992 APR				_	IITRATE (TOTAL) (MG/L	1991 JAN								1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

DIST. SYSTEM YOUNG ST STANDING	
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM RAW RAW TREATED YOUNG ST FREE FLOW STANDING	
TREATMENT PLANT TREATED	IORATORY)
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW YOUNG ST RAW FREE FLOW	CHEMISTRY (LABORATORY)

	CHIDELING - NA	ı																		SUIDELINE = 6.5-8.5 (A4)																		
SIANUING	ē	3	.400	.330	.250	310	.210	.290	.140	.120	.150	.170	.240	1.950	.140	.140	.210	.390	.250	8	8.170	8.140	8.360	8.200	8.250	8,160	8,030	8.060	8.090	8.110	8.010	8.350	8.150	8.340	8.090	8.110	8.040	
FREE FLOW SIAN	DET - N TMIT = 0 02		007	.320	.240	.300	.220	.240	. 140	.180	. 150	.170	.230	2.050	.130	.140	. 260	.400	.230	DET'N LIMIT = N/A	8.200	8.080	8.330	8.250	8.210	8.210	8.150	8.130	8.100	8.040	8.080	8.390	8.170	8.330	8.110	8,150	8.030	
	(LABORATORY)		.410	.260	.240	.290	.160	.220	110	. 100	.130	.220	.230	1.850	. 580	T> 090.	.130	.320	. 130	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.090	8.190	8.370	8.190	8,110	8.040	2.960	7.950	8.180	8.200	8.110	8.390	8.210	8.310	8.010	8.180	8.060	
	CHEMISTRY (L		.870	-840	.450	1.120	.420	.550	.340	.360	.410	.530	.420	.450	.700	.180	.400	.790	.480		8.290	8.400	SII	8.320	8.240	8.270	8.600	8.460	8.310	8.320	8.160	8.460	8.280	8.320	8.200	8.340	8.330	
	NITROGEN TOT KJEL	5										1991 OCT								PH (DMNSLESS)	1991 JAN															1992 001		

	GUIDELINE = N/A																	GUIDELINE = 0.40 (F2)																
DIST. SYSTEM YOUNG ST STANDING																		= 0.002																
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.0005			. •					79 1					•			٠	DET'N LIMIT =	٠					.•								٠		
TREATMENT PLANT TREATED	SORATORY)	.115	. 138	.081	200.	.003	.088	750.	. 122	230	.212	.208	.136	.280	.245	.260	.275		.310	.405	.041	.011	.008 <1	. 165	200	.220	.405	007	.380	.193	. 930	.655	1,030	1.170
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) REACT (MG/L)	0.65	.058	.026	600*	-003	.005	. 002 <t< td=""><td>. 003</td><td>900</td><td>,000</td><td>.014</td><td>.054</td><td>.002 <t< td=""><td>.001 <t< td=""><td>.045</td><td>.027</td><td>1 (MG/L)</td><td>.104</td><td>680</td><td>•026</td><td>.206</td><td>.042</td><td>.049</td><td>220.</td><td>.033</td><td>090*</td><td>*00*</td><td>.031</td><td></td><td>.008 <↑</td><td>.011</td><td>.103</td><td>*02*</td></t<></td></t<></td></t<>	. 003	900	,000	.014	.054	.002 <t< td=""><td>.001 <t< td=""><td>.045</td><td>.027</td><td>1 (MG/L)</td><td>.104</td><td>680</td><td>•026</td><td>.206</td><td>.042</td><td>.049</td><td>220.</td><td>.033</td><td>090*</td><td>*00*</td><td>.031</td><td></td><td>.008 <↑</td><td>.011</td><td>.103</td><td>*02*</td></t<></td></t<>	.001 <t< td=""><td>.045</td><td>.027</td><td>1 (MG/L)</td><td>.104</td><td>680</td><td>•026</td><td>.206</td><td>.042</td><td>.049</td><td>220.</td><td>.033</td><td>090*</td><td>*00*</td><td>.031</td><td></td><td>.008 <↑</td><td>.011</td><td>.103</td><td>*02*</td></t<>	.045	.027	1 (MG/L)	.104	680	•026	.206	.042	.049	220.	.033	090*	*00*	.031		.008 <↑	.011	.103	*02*
	HOSPHORUS FIL	1001 IAN	1991 FEB		1991 APR		1991 JUN	1991 JUL	1991 AUG	1001 001	1991 NOV		1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	PHOSPHORUS TOTAL (MG/L			1991 MAR			1991 JUN		1991 SEP	1991 OCT		1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	

	(A3)		(A3.)
	GUIDELINE = 500 (A3)		RRO GUIDELINE = 500 (AS)
DIST. SYSTEM YOUNG ST STANDING	00100	4.32,000 CR0 384,000 CR0 385,000 CR0 227,000 CR0 227,000 CR0 227,000 CR0 227,000 CR0 228,000 CR0 228,0	
	N/A		
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = N/A	730,000 262,000 371,000 371,000 372,000 372,000 372,000 572,00	288,000 GRO 317,000 GRO 317,000 GRO 586,000 GRO 586,000 GET 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TREATEO PLANT O		247, 000 CR0 247, 000 CR0 257,	0.00
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) (MG/L)	437.000 CR0 202.000 CR0 202.000 CR0 328.000 CR0 268.000 CR0 268.000 CR0 275.000 CR0 273.000 CR0	255,000 CR0 233,000 CR0 233,000 CR0 252,000 CR0 26,280 26,280 26,280 27,480 21,480 31,490 31,
7.78	RESIDUE FILTRATE		1992 AUG 1992 OCC 1992 OCC SULPHATE (MG/L 1991 AAR 1991 MAY 1991 AAR 1991 AAR 1991 AAR 1991 AAR 1991 AUG 1992 AUG 1992 ABR 1992 AUG 1992 ABR 1992 ABR

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

DIST, SYSTEM YOUNG ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST, SYSTEM RAW TREATED YOUNG ST FREE FLOW

GUIDELINE = 1.0 (A1)	
GUIDELINE	190 380 380 380 380 370 170 <1 170 <1 390 390 390 270 240 <1 240 <1 270 280 280 280 280 280 280 280 280 280 28
DET'N LIMIT = 0.05	, 420 1,950 1,950 1,950 1,950 1,450 1,450 1,470 1,510
(LABORATORY)	.430 .570 .570 .570 .570 .570 .570 .570 .57
CHEMISTRY (LABOR	27.000 RRV 14.600 11.000 11.000 11.000 11.000 13.000 13.000 14.000 15.000 16.000 16.000 16.000 17.000 16.000 17.0000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.0000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.0000 17.000 17
URBIDITY (FTU	1991 JAN 1991 REB 1991 RAP 1991 AAP 1991 JUL 1991 JUL 1991 AU 1991 OCT 1992 AU 1992 AU 1992 AU 1992 AU 1992 AU 1992 DEC

TÄBLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	= N/A				GUIDELINE = 100 (A4)
E.	GUIDELINE = N/A	444		801 801 801 801 900 41	
DIST. SYSTEM YOUNG STANDING	0.05	2222		108 108 108 108 108	70 75, 20 75, 20
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.	108 108 108	108 108 108 108	801 801 801 801 7080.	86.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 75.000 67.000 67.000 67.000 87.000 88.000 89.000
TREATED TREATED		108 108 108	108 108 108 108 108 108 108	108	76.000 95.000 110.000 110.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000
TREATMENT PLANT RAW	METALS	108	.430 <1 .430 <1 .80L .80L .80L .80L	108 108 108 108	260.000 200.000 200.000 200.000 200.000 130.000 110.000 150.000 150.000 200.000 200.000 200.000 200.000 200.000 200.000
	SILVER (UG/L	1991 JAN 1991 FEB 1991 MAR	1991 MAY 1991 JUN 1991 JUL 1991 SEP 1991 OCT	1992 FEB 1992 APR 1992 JUN 1992 OCT 1992 DEC	ALUM NUM (UG/L 1991 JAN 1991 PRE 1991 PAR 1991 AAV 1991 JUL 1991 JUL 1991 AUC 1991 ACC 1991 ACC 1991 ACC 1991 ACC 1991 ACC 1991 ACC 1991 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC 1992 ACC

	INE = 25 (A1)																	INE = 1000 (A2)																		
DIST. SYSTEM YOUNG ST STANDING	GUIDELINE =	BOL	108	.330 <1	108	. 140 <t< th=""><th>.500 <t< th=""><th>.370 <t< th=""><th>.450 <t< th=""><th>. 110 <t< th=""><th></th><th>.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.500 <t< th=""><th>.370 <t< th=""><th>.450 <t< th=""><th>. 110 <t< th=""><th></th><th>.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.370 <t< th=""><th>.450 <t< th=""><th>. 110 <t< th=""><th></th><th>.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.450 <t< th=""><th>. 110 <t< th=""><th></th><th>.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	. 110 <t< th=""><th></th><th>.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>		.500 <t< th=""><th></th><th>. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<></th></t<>		. 420 <t< th=""><th>T> 094.</th><th>.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<></th></t<>	T> 094.	.530 <t< th=""><th>.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<></th></t<>	.180 <t< th=""><th>GUIDELINE</th><th>27,000</th><th>24.000</th><th>17,000</th><th>22.000</th><th>18.000</th><th>28.000</th><th>18.000</th><th>22,000</th><th>23,000</th><th>38.000</th><th>23.000</th><th>33.000</th><th>15.000</th><th>14.000</th><th>22.000</th><th>26.000</th><th>21.000</th><th></th></t<>	GUIDELINE	27,000	24.000	17,000	22.000	18.000	28.000	18.000	22,000	23,000	38.000	23.000	33.000	15.000	14.000	22.000	26.000	21.000	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.10	.130 <t< td=""><td></td><td>T> 009.</td><td>. 130 <t< td=""><td>.250 <1</td><td>T> 054.</td><td></td><td>T> 046</td><td>B0L</td><td>. 220 <t< td=""><td>.300 <t< td=""><td>B0L</td><td>.270 <t< td=""><td>.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 009.	. 130 <t< td=""><td>.250 <1</td><td>T> 054.</td><td></td><td>T> 046</td><td>B0L</td><td>. 220 <t< td=""><td>.300 <t< td=""><td>B0L</td><td>.270 <t< td=""><td>.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <1	T> 054.		T> 046	B0L	. 220 <t< td=""><td>.300 <t< td=""><td>B0L</td><td>.270 <t< td=""><td>.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>B0L</td><td>.270 <t< td=""><td>.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	B0L	.270 <t< td=""><td>.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<></td></t<>	.590 <t< td=""><td>.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<></td></t<>	.710 <t< td=""><td>.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<></td></t<>	.190 <t< td=""><td>DET'N LIMIT = 0.05</td><td>27.000</td><td>25.000</td><td>17.000</td><td>22,000</td><td>20,000</td><td>28.000</td><td>18.000</td><td>21.000</td><td>23.000</td><td>40.000</td><td>22,000</td><td>31.000</td><td>15.000</td><td>15,000</td><td>23.000</td><td>25.000</td><td>000.TS</td><td></td></t<>	DET'N LIMIT = 0.05	27.000	25.000	17.000	22,000	20,000	28.000	18.000	21.000	23.000	40.000	22,000	31.000	15.000	15,000	23.000	25.000	000.TS	
TREATMENT PLANT TREATED		108	BDL .	.220 <t< td=""><td>BDL</td><td>. 240 <t< td=""><td>.290 <t< td=""><td>BOL</td><td>.320 <t< td=""><td></td><td></td><td>.450 <t< td=""><td></td><td>T> 011.</td><td></td><td></td><td>.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	. 240 <t< td=""><td>.290 <t< td=""><td>BOL</td><td>.320 <t< td=""><td></td><td></td><td>.450 <t< td=""><td></td><td>T> 011.</td><td></td><td></td><td>.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.290 <t< td=""><td>BOL</td><td>.320 <t< td=""><td></td><td></td><td>.450 <t< td=""><td></td><td>T> 011.</td><td></td><td></td><td>.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<></td></t<></td></t<></td></t<>	BOL	.320 <t< td=""><td></td><td></td><td>.450 <t< td=""><td></td><td>T> 011.</td><td></td><td></td><td>.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<></td></t<></td></t<>			.450 <t< td=""><td></td><td>T> 011.</td><td></td><td></td><td>.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<></td></t<>		T> 011.			.130 <t< td=""><td></td><td>28.000</td><td>22.000</td><td>16.000</td><td>22.000</td><td>17.000</td><td>28.000</td><td>16,000</td><td>23.000</td><td>23.000</td><td>30.000</td><td>23.000</td><td>30.000</td><td>19.000</td><td>14.000</td><td>20.000</td><td>23.000</td><td>20.000</td><td></td></t<>		28.000	22.000	16.000	22.000	17.000	28.000	16,000	23.000	23.000	30.000	23.000	30.000	19.000	14.000	20.000	23.000	20.000	
TREATMENT PLANT RAW	METALS .	.340 <t< td=""><td></td><td></td><td>1,300</td><td>.530 <1</td><td></td><td>1,000 <1</td><td>1,100</td><td></td><td></td><td></td><td></td><td>.370 <t< td=""><td></td><td>1.100</td><td>T> 070.</td><td>^</td><td>34.000</td><td>32.000</td><td>18.000</td><td>36.000</td><td>20,000</td><td>28.000</td><td>13.000</td><td>24.000</td><td>24.000</td><td>32.000</td><td>23.000</td><td>34.000</td><td>23.000</td><td>13.000</td><td>18.000</td><td>35.000</td><td>70,000</td><td></td></t<></td></t<>			1,300	.530 <1		1,000 <1	1,100					.370 <t< td=""><td></td><td>1.100</td><td>T> 070.</td><td>^</td><td>34.000</td><td>32.000</td><td>18.000</td><td>36.000</td><td>20,000</td><td>28.000</td><td>13.000</td><td>24.000</td><td>24.000</td><td>32.000</td><td>23.000</td><td>34.000</td><td>23.000</td><td>13.000</td><td>18.000</td><td>35.000</td><td>70,000</td><td></td></t<>		1.100	T> 070.	^	34.000	32.000	18.000	36.000	20,000	28.000	13.000	24.000	24.000	32.000	23.000	34.000	23.000	13.000	18.000	35.000	70,000	
	ARSENIC (UG/L								1991 AUG									BARIUM (UG/L																1992 OCT		

	GUIDELINE = 5000 (A1)	c1 c1	
DIST. SYSTEM YOUNG ST STANDING		7. 2000 7.	80. 80. 140. 140. 100. 100. 100. 100. 100. 10
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 2.00	25,000 28,000 38,000 38,000 37,000	108 108 108 108 108 108 108 108 108 108
TREATMENT PLANT TREATED		2, 7, 000 2, 7, 000 2, 1, 000	
TREATMENT PLANT RAW .	METALS)	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 2000 2000 2000 2000 2000 2000 200
	BORON (UG/L	1991 AAN 1991 AAR 1991 AAR 1991 AAA 1991 AAA 1991 SEP 1991 SEP 1991 SEP 1992 AR 1992 AR 1992 OCT 1991 AAN 1992 DE 1991 AAN 1991 REBRILLIUM (UG/L)	1991 AUG 1991 AUG 1991 OCT 1991 OCT 1992 APR 1992 AUG 1992 AUG 1992 OCT 1992 OCT

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

STANDING	CHIDELINE = 5 0 (A1)	GOIDELINE - 3.0 (AI)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	T> 090.	BDL	BDL	BOL	80F	BOL	BDL	BDL	BDL	BDL	GUIDELINE = N/A	.080 cT	.180 <⊺	.060 <t< th=""><th>.080 ×T</th><th>.120 <1</th><th>.050 <1</th><th>.390 <⊺</th><th>.120 <1</th><th>.150 <1</th><th>.080 ·T</th><th>.110 <⊺</th><th>.170 <1</th><th>.180 <t< th=""><th>.320 <t< th=""><th>.230 <1</th><th>1.600</th><th>.090 <t< th=""></t<></th></t<></th></t<></th></t<>	.080 ×T	.120 <1	.050 <1	.390 <⊺	.120 <1	.150 <1	.080 ·T	.110 <⊺	.170 <1	.180 <t< th=""><th>.320 <t< th=""><th>.230 <1</th><th>1.600</th><th>.090 <t< th=""></t<></th></t<></th></t<>	.320 <t< th=""><th>.230 <1</th><th>1.600</th><th>.090 <t< th=""></t<></th></t<>	.230 <1	1.600	.090 <t< th=""></t<>
FREE FLOW STANDING		00.0 = 11M11 = 0.03	B0L	BOL	BDL	BOL	108	108										BOL		DET'N LIMIT = 0.02	.120 <t< td=""><td>.130 <t< td=""><td>T> 071.</td><td>.140 <t< td=""><td>.220 <t< td=""><td>1> 001.</td><td></td><td></td><td></td><td>.100 <t< td=""><td>.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.130 <t< td=""><td>T> 071.</td><td>.140 <t< td=""><td>.220 <t< td=""><td>1> 001.</td><td></td><td></td><td></td><td>.100 <t< td=""><td>.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 071.	.140 <t< td=""><td>.220 <t< td=""><td>1> 001.</td><td></td><td></td><td></td><td>.100 <t< td=""><td>.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.220 <t< td=""><td>1> 001.</td><td></td><td></td><td></td><td>.100 <t< td=""><td>.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<></td></t<></td></t<>	1> 001.				.100 <t< td=""><td>.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td></td><td>.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<></td></t<>		.180 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 080.</td></t<></td></t<>		.260 <t< td=""><td></td><td>T> 080.</td></t<>		T> 080.
		3	108	BDL	80F	108	108	T> 090.	BOL	T> 070.	. BDL	BDL	108	108	108	B0L	BOL	BOL	BDL	· · · · · · · · · · · · · · · · · · ·	T> 060.	160 <⊤	.150 <t< td=""><td>T> 090.</td><td>T> 091.</td><td>.130 <t< td=""><td>.420 <⊤</td><td>.160 <⊺</td><td>.170 <⊤</td><td>.080 ×T</td><td>T> 090°</td><td>.240 <t< td=""><td>.230 <t< td=""><td>.210 <t< td=""><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 090.	T> 091.	.130 <t< td=""><td>.420 <⊤</td><td>.160 <⊺</td><td>.170 <⊤</td><td>.080 ×T</td><td>T> 090°</td><td>.240 <t< td=""><td>.230 <t< td=""><td>.210 <t< td=""><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.420 <⊤	.160 <⊺	.170 <⊤	.080 ×T	T> 090°	.240 <t< td=""><td>.230 <t< td=""><td>.210 <t< td=""><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<></td></t<></td></t<>	.230 <t< td=""><td>.210 <t< td=""><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<>	.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td></t<></td></t<>	.580 <t< td=""><td>T> 090.</td></t<>	T> 090.
	METALS		BOL	T> 090.	108	108	108	. 108	801	-T> 090.	B0L	B0L	108	1> 090.	108	T> 090.	BDL	B01	108	°	.210 <t< td=""><td>T> 095.</td><td></td><td>1> 078.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.290 <t< td=""><td>1.300</td><td>.320 <t< td=""></t<></td></t<></td></t<>	T> 095.		1> 078.											.290 <t< td=""><td>1.300</td><td>.320 <t< td=""></t<></td></t<>	1.300	.320 <t< td=""></t<>
	None and a second	CAUMIUM CUG/L	1991 JAN				1991 MAY			1991 AUG				1992 FEB			1992 AUG	1992 OCT	1992 DEC	COBALT (UG/L	1991 JAN		_	1991 APR		1991 JUN	1991 JUL		1991 SEP	1991 OCT	1991 NOV	1992 FEB		1992 JUN	1992 AUG	1992 OCT	1992 DEC

																							ō.							•						
LEM .	GUIDELINE = 50.0 (A1)	30 <t< th=""><th>- 100</th><th>00 <t< th=""><th>_</th><th>00 <t =<="" th=""><th>00 <t< th=""><th>00 <t< th=""><th></th><th>00 <1</th><th></th><th>30 <1</th><th></th><th>10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t></th></t<></th></t<>	- 100	00 <t< th=""><th>_</th><th>00 <t =<="" th=""><th>00 <t< th=""><th>00 <t< th=""><th></th><th>00 <1</th><th></th><th>30 <1</th><th></th><th>10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t></th></t<>	_	00 <t =<="" th=""><th>00 <t< th=""><th>00 <t< th=""><th></th><th>00 <1</th><th></th><th>30 <1</th><th></th><th>10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t>	00 <t< th=""><th>00 <t< th=""><th></th><th>00 <1</th><th></th><th>30 <1</th><th></th><th>10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	00 <t< th=""><th></th><th>00 <1</th><th></th><th>30 <1</th><th></th><th>10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>		00 <1		30 <1		10 <t< th=""><th>7</th><th>00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	7	00 <t< th=""><th>30 <↑</th><th>00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<></th></t<>	30 <↑	00 <t< th=""><th>GUIDELINE = 1000 (A3)</th><th>00</th><th></th><th>.00</th><th>00</th><th>90</th><th>00</th><th>J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<></th></t<>	GUIDELINE = 1000 (A3)	00		.00	00	90	00	J0 <t< th=""><th>90</th><th>00</th><th>00</th><th>00 <⊤</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0</th><th>00 <t< th=""></t<></th></t<>	90	00	00	00 <⊤	00	00	00	00	0	00 <t< th=""></t<>
DIST. SYSTEM YOUNG ST STANDING		3.20	2.00	1.900	BOL	1.200	2.60	2.200	1.400	1.00	2.100	.580	108	.530	BOL	2.500	.980	3.900		8.900	13.00	14.00	13.00	13.00	12.00	3.70	10.00	19.00	11.00	3.10	9.20	8.50	13.00	12.00	19.000	2.70
DIST. SYSTEM DI YOUNG ST YO FREE FLOW ST	DET'N LIMIT = 0.50	4.100 <t< td=""><td>301</td><td>1,900 <1</td><td>2,100 <t< td=""><td>.830 <t< td=""><td>2.100 <t< td=""><td>BOL</td><td></td><td>.710 <t.< td=""><td></td><td>.930 <1</td><td>BOL</td><td>1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t.<></td></t<></td></t<></td></t<></td></t<>	301	1,900 <1	2,100 <t< td=""><td>.830 <t< td=""><td>2.100 <t< td=""><td>BOL</td><td></td><td>.710 <t.< td=""><td></td><td>.930 <1</td><td>BOL</td><td>1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t.<></td></t<></td></t<></td></t<>	.830 <t< td=""><td>2.100 <t< td=""><td>BOL</td><td></td><td>.710 <t.< td=""><td></td><td>.930 <1</td><td>BOL</td><td>1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t.<></td></t<></td></t<>	2.100 <t< td=""><td>BOL</td><td></td><td>.710 <t.< td=""><td></td><td>.930 <1</td><td>BOL</td><td>1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t.<></td></t<>	BOL		.710 <t.< td=""><td></td><td>.930 <1</td><td>BOL</td><td>1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t.<>		.930 <1	BOL	1.100 <t< td=""><td>801</td><td>1.900 <1</td><td>.550 <1</td><td>4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	801	1.900 <1	.550 <1	4,400 <t< td=""><td>DET'N LIMIT = 0,50</td><td>2.900 <1</td><td>2.600 <1</td><td>2.300 <1</td><td>3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	DET'N LIMIT = 0,50	2.900 <1	2.600 <1	2.300 <1	3.100 <t< td=""><td>3.300 <1</td><td>2.700 <1</td><td>3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.300 <1	2.700 <1	3.500 <t< td=""><td></td><td></td><td></td><td>2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>				2,000 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2.900 <1	1.800 <t< td=""><td>3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<></td></t<>	3.400 <t< td=""><td></td><td>. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<></td></t<>		. 2,600 <t< td=""><td>1.600 <t< td=""></t<></td></t<>	1.600 <t< td=""></t<>
TREATED TREATED	1 1 2 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1> 007.7		2,000 <t< td=""><td>2.700 <t< td=""><td>1,200 <t< td=""><td>2.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.200 <t< td=""><td>BOL</td><td></td><td>2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.700 <t< td=""><td>1,200 <t< td=""><td>2.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.200 <t< td=""><td>BOL</td><td></td><td>2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,200 <t< td=""><td>2.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.200 <t< td=""><td>BOL</td><td></td><td>2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.200 <t< td=""><td>BOL</td><td></td><td>2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>						1.200 <t< td=""><td>BOL</td><td></td><td>2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL		2.400 <t< td=""><td></td><td>3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		3.200 <t< td=""><td>)</td><td>1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>)	1,500 <t< td=""><td>T> 010.</td><td>T> 008.</td><td>1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 010.	T> 008.	1.000 <t< td=""><td>.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.570 <t< td=""><td>.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<></td></t<>	.840 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>1.100 <1</td><td></td><td>.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<></td></t<>		T> 070.			1.100 <1		.540 <t< td=""><td>B0L</td><td></td><td></td><td>.620 <t< td=""></t<></td></t<>	B0L			.620 <t< td=""></t<>
TREATMENT PLANT RAW .	METALS	4.800 <t< td=""><td>2,900 <1</td><td>2,100 <t< td=""><td>4.400 <t< td=""><td>T> 098.</td><td>3.000 <t< td=""><td></td><td></td><td>3.600 <t< td=""><td>3,000 <7</td><td>T> 098.</td><td>BOL</td><td>1,900 <7</td><td>B0L</td><td>2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2,900 <1	2,100 <t< td=""><td>4.400 <t< td=""><td>T> 098.</td><td>3.000 <t< td=""><td></td><td></td><td>3.600 <t< td=""><td>3,000 <7</td><td>T> 098.</td><td>BOL</td><td>1,900 <7</td><td>B0L</td><td>2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	4.400 <t< td=""><td>T> 098.</td><td>3.000 <t< td=""><td></td><td></td><td>3.600 <t< td=""><td>3,000 <7</td><td>T> 098.</td><td>BOL</td><td>1,900 <7</td><td>B0L</td><td>2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 098.	3.000 <t< td=""><td></td><td></td><td>3.600 <t< td=""><td>3,000 <7</td><td>T> 098.</td><td>BOL</td><td>1,900 <7</td><td>B0L</td><td>2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>			3.600 <t< td=""><td>3,000 <7</td><td>T> 098.</td><td>BOL</td><td>1,900 <7</td><td>B0L</td><td>2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3,000 <7	T> 098.	BOL	1,900 <7	B0L	2.600 <t< td=""><td>2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<></td></t<>	2.100 <t< td=""><td>3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<></td></t<>	3,500 <t< td=""><td></td><td>2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<></td></t<>		2.200 <t< td=""><td>14.000</td><td>24.000</td><td>5,700</td><td>13.000</td><td>14.000</td><td>9.400</td><td>9.700</td><td>17.000</td><td>12,000</td><td>16.000</td><td>15.000</td><td>1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<></td></t<>	14.000	24.000	5,700	13.000	14.000	9.400	9.700	17.000	12,000	16.000	15.000	1,900 <t< td=""><td>11.000</td><td>8.400</td><td>19.000</td><td>1,700 <1</td></t<>	11.000	8.400	19.000	1,700 <1
	CHROMIUM (UG/L	1991 JAN	1991 FEB	-		1991 MAY		1991 JUL	-		1991 OCT		1992 FEB	1992 APR			1992 OCT	1992 DEC	COPPER (UG/L	1991 JAN	_	-	1991 APR	_		1991 JUL	1991 AUG					1992 APR	1992 JUN		_	1992 DEC

rstem	GUIDELINE = 300 (A3)	17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.000 < 1 17.00	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 6.00	26,000 4 1 13,000 1 13,000 1 13,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TREATED TREATED		2, 000 d 100	
TREATMENT PLANT RAW	METALS	3.20.000 Ray 130.000 Far 130.0	
	IRON (UG/L	1997 FEB 1997 FEB 1997 FEB 1997 FEB 1997 FEB 1997 JUL 1997 JUL 1997 JUL 1997 JUL 1997 FEB 1992 ARE 1992 ARE 1992 ARE 1992 DEC 1993 JUL 1997 JUL 199	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	INE = N/A																		INE = 350 (03)																	
DIST. SYSTEM YOUNG ST STANDING	GUIDELINE =	1.800	1.100	.760	1.200	1.200	2.100	1.400	1.500	1.600	2.100	1.500	1.000	1,100	2.600	3.500	1,200	1,000	GUIDELINE	2.200	1,700 <t< td=""><td>.350 <t< td=""><td>1.400 <t< td=""><td>B01</td><td>1.200 <t< td=""><td></td><td>.350 <⊺</td><td>1,500 <⊤</td><td></td><td>1.300 <t< td=""><td>2.700</td><td>1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.350 <t< td=""><td>1.400 <t< td=""><td>B01</td><td>1.200 <t< td=""><td></td><td>.350 <⊺</td><td>1,500 <⊤</td><td></td><td>1.300 <t< td=""><td>2.700</td><td>1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.400 <t< td=""><td>B01</td><td>1.200 <t< td=""><td></td><td>.350 <⊺</td><td>1,500 <⊤</td><td></td><td>1.300 <t< td=""><td>2.700</td><td>1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B01	1.200 <t< td=""><td></td><td>.350 <⊺</td><td>1,500 <⊤</td><td></td><td>1.300 <t< td=""><td>2.700</td><td>1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>		.350 <⊺	1,500 <⊤		1.300 <t< td=""><td>2.700</td><td>1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<>	2.700	1.400 <t< td=""><td>1,700 <⊺</td><td>1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<></td></t<>	1,700 <⊺	1.600 <t< td=""><td>9.400</td><td>1.700 <t< td=""></t<></td></t<>	9.400	1.700 <t< td=""></t<>
OIST, SYSTEM DYOUNG ST FREE FLOW S	DET'N LIMIT = 0.05	1,800	1,200	.760	1.200	1.100	2.100	1.300	1.500	1.700	2.300	1.600	066.	1.100	2.500	3.600	.930	1.000	DET'N LIMIT = 0.20	1.800 < T	2.700	108	1.100 <t< td=""><td>5.300</td><td>1.300 <t< td=""><td>2.400</td><td>801</td><td>BOL</td><td></td><td>.700 <1</td><td></td><td>1.700 <t< td=""><td>1.900 <1</td><td>1,400 <t< td=""><td>7.500</td><td>2,100</td></t<></td></t<></td></t<></td></t<>	5.300	1.300 <t< td=""><td>2.400</td><td>801</td><td>BOL</td><td></td><td>.700 <1</td><td></td><td>1.700 <t< td=""><td>1.900 <1</td><td>1,400 <t< td=""><td>7.500</td><td>2,100</td></t<></td></t<></td></t<>	2.400	801	BOL		.700 <1		1.700 <t< td=""><td>1.900 <1</td><td>1,400 <t< td=""><td>7.500</td><td>2,100</td></t<></td></t<>	1.900 <1	1,400 <t< td=""><td>7.500</td><td>2,100</td></t<>	7.500	2,100
TREATMENT PLANT TREATED		1.800	1.200	.730	1.300	026.	2.000	1.200	1.900	1.600	2.300	1.600	.860	1,100	2.400	3.600	.880	.890		1,800 <t< td=""><td>1.600 <t< td=""><td>.320 <⊺</td><td>.590 <1</td><td>. 108</td><td>.850 <t< td=""><td>2.100</td><td>1> 099.</td><td>80L</td><td>1,600 <7</td><td>.630 <t< td=""><td></td><td>1.300 <7</td><td>1,100 <⊤</td><td>.990 ≺⊺</td><td>1,800 <⊤</td><td>1,400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1.600 <t< td=""><td>.320 <⊺</td><td>.590 <1</td><td>. 108</td><td>.850 <t< td=""><td>2.100</td><td>1> 099.</td><td>80L</td><td>1,600 <7</td><td>.630 <t< td=""><td></td><td>1.300 <7</td><td>1,100 <⊤</td><td>.990 ≺⊺</td><td>1,800 <⊤</td><td>1,400 <t< td=""></t<></td></t<></td></t<></td></t<>	.320 <⊺	.590 <1	. 108	.850 <t< td=""><td>2.100</td><td>1> 099.</td><td>80L</td><td>1,600 <7</td><td>.630 <t< td=""><td></td><td>1.300 <7</td><td>1,100 <⊤</td><td>.990 ≺⊺</td><td>1,800 <⊤</td><td>1,400 <t< td=""></t<></td></t<></td></t<>	2.100	1> 099.	80L	1,600 <7	.630 <t< td=""><td></td><td>1.300 <7</td><td>1,100 <⊤</td><td>.990 ≺⊺</td><td>1,800 <⊤</td><td>1,400 <t< td=""></t<></td></t<>		1.300 <7	1,100 <⊤	.990 ≺⊺	1,800 <⊤	1,400 <t< td=""></t<>
TREATMENT PLANT	METALS L)	066	.730		.330 <₹	.810	1,500	1.000	1.500	1.800	1.400	1.100	.700	.500 <t< td=""><td>2.400</td><td>3.800</td><td>T> 094.</td><td>.360 <t< td=""><td>^</td><td>1,700 <1</td><td></td><td>. 900 ct</td><td>2.500</td><td>801</td><td>1.400 <t< td=""><td>2.300</td><td>. 970 <⊤</td><td>T> 074.</td><td>2.800</td><td>1.000 <7</td><td>3.700</td><td>2.400</td><td>1.900 <⊤</td><td>1.500 <t< td=""><td>4.400</td><td>2.400</td></t<></td></t<></td></t<></td></t<>	2.400	3.800	T> 094.	.360 <t< td=""><td>^</td><td>1,700 <1</td><td></td><td>. 900 ct</td><td>2.500</td><td>801</td><td>1.400 <t< td=""><td>2.300</td><td>. 970 <⊤</td><td>T> 074.</td><td>2.800</td><td>1.000 <7</td><td>3.700</td><td>2.400</td><td>1.900 <⊤</td><td>1.500 <t< td=""><td>4.400</td><td>2.400</td></t<></td></t<></td></t<>	^	1,700 <1		. 900 ct	2.500	801	1.400 <t< td=""><td>2.300</td><td>. 970 <⊤</td><td>T> 074.</td><td>2.800</td><td>1.000 <7</td><td>3.700</td><td>2.400</td><td>1.900 <⊤</td><td>1.500 <t< td=""><td>4.400</td><td>2.400</td></t<></td></t<>	2.300	. 970 <⊤	T> 074.	2.800	1.000 <7	3.700	2.400	1.900 <⊤	1.500 <t< td=""><td>4.400</td><td>2.400</td></t<>	4.400	2.400
	MOLYBDENUM (UG/L		1991 FEB		1991 APR	-		1991 JUL	1991 AUG	1991 SEP		1991 NOV						1992 DEC	NICKEL (UG/L	1991 JAN		_	_	1991 MAY										1992 AUG		1992 DEC

Ξ.	GUIDELINE = 10 (A1)			0 <1	0 <1		0	0		0	0	0	0	0	0	0	0	0 <1	GUIDELINE = 146 (04)	0 <1	0 <t< th=""><th>0 <1</th><th>0 <1</th><th>0 <1</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0 <t< th=""><th>0 <t< th=""><th>0 <t< th=""><th>0</th><th>0</th><th>0 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	0 <1	0 <1	0 <1	0	0	0	0	0	0	0 <t< th=""><th>0 <t< th=""><th>0 <t< th=""><th>0</th><th>0</th><th>0 <t< th=""></t<></th></t<></th></t<></th></t<>	0 <t< th=""><th>0 <t< th=""><th>0</th><th>0</th><th>0 <t< th=""></t<></th></t<></th></t<>	0 <t< th=""><th>0</th><th>0</th><th>0 <t< th=""></t<></th></t<>	0	0	0 <t< th=""></t<>
DIST. SYSTEM YOUNG ST STANDING	.05	.500	097.	.370	.420)67"	386*	.55	.77.	5.300	199.	.580	.580	2.500	1.700	1,400	.80	700	.05	.480	97.	.47	.470	.43(99.	.62	.79	.57	.55	.52	.210)67"	.33(.52	.54(.420
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.05	.230 <1	.200 <t< td=""><td>T> 091.</td><td></td><td></td><td>.420 <1</td><td></td><td>T> 057.</td><td>.370 <t< td=""><td>.390 <t< td=""><td></td><td>T> 014.</td><td>.580</td><td>.720</td><td>T> 004.</td><td></td><td>.210 <t< td=""><td>DET'N LIMIT = 0.05</td><td>T> 0450 <t< td=""><td>L> 077</td><td>T> 057.</td><td>.520</td><td>T> 074.</td><td>.570</td><td>.530</td><td>069°</td><td>. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 091.			.420 <1		T> 057.	.370 <t< td=""><td>.390 <t< td=""><td></td><td>T> 014.</td><td>.580</td><td>.720</td><td>T> 004.</td><td></td><td>.210 <t< td=""><td>DET'N LIMIT = 0.05</td><td>T> 0450 <t< td=""><td>L> 077</td><td>T> 057.</td><td>.520</td><td>T> 074.</td><td>.570</td><td>.530</td><td>069°</td><td>. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.390 <t< td=""><td></td><td>T> 014.</td><td>.580</td><td>.720</td><td>T> 004.</td><td></td><td>.210 <t< td=""><td>DET'N LIMIT = 0.05</td><td>T> 0450 <t< td=""><td>L> 077</td><td>T> 057.</td><td>.520</td><td>T> 074.</td><td>.570</td><td>.530</td><td>069°</td><td>. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 014.	.580	.720	T> 004.		.210 <t< td=""><td>DET'N LIMIT = 0.05</td><td>T> 0450 <t< td=""><td>L> 077</td><td>T> 057.</td><td>.520</td><td>T> 074.</td><td>.570</td><td>.530</td><td>069°</td><td>. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	DET'N LIMIT = 0.05	T> 0450 <t< td=""><td>L> 077</td><td>T> 057.</td><td>.520</td><td>T> 074.</td><td>.570</td><td>.530</td><td>069°</td><td>. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<>	L> 077	T> 057.	.520	T> 074.	.570	.530	069°	. 480 <t< td=""><td>.590</td><td>T> 054.</td><td>T> 081.</td><td>.520</td><td>.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<></td></t<>	.590	T> 054.	T> 081.	.520	.340 <t< td=""><td>1> 074.</td><td>.540</td><td>.390 <t< td=""></t<></td></t<>	1> 074.	.540	.390 <t< td=""></t<>
TREATMENT PLANT TREATED	1	BDL	T> 091.	108	BOL	B0L	T> 090.	BOL	.340 <t< td=""><td></td><td>1> 070.</td><td>BOL</td><td>T> 070.</td><td>BOL</td><td>108 ·</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>.610</td><td></td><td></td><td></td><td>.500 <t< td=""><td>099.</td><td>079</td><td></td><td></td><td>.360 <t< td=""><td></td><td>.320 <t< td=""><td>.420 <t< td=""><td>.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1> 070.	BOL	T> 070.	BOL	108 ·	BOL	BOL	BDL		.610				.500 <t< td=""><td>099.</td><td>079</td><td></td><td></td><td>.360 <t< td=""><td></td><td>.320 <t< td=""><td>.420 <t< td=""><td>.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	099.	079			.360 <t< td=""><td></td><td>.320 <t< td=""><td>.420 <t< td=""><td>.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<></td></t<></td></t<></td></t<>		.320 <t< td=""><td>.420 <t< td=""><td>.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<></td></t<></td></t<>	.420 <t< td=""><td>.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<></td></t<>	.320 <t< td=""><td>.330 <t< td=""><td></td><td>T> 087</td></t<></td></t<>	.330 <t< td=""><td></td><td>T> 087</td></t<>		T> 087
TREATMENT PLANT RAW	METALS	.420 <t< td=""><td>.920</td><td>1.200</td><td>2.800</td><td>.950</td><td>1,100</td><td>T> 074.</td><td>.590</td><td>.850</td><td>.950</td><td>. 590</td><td>1.500</td><td>.750</td><td>.520</td><td>.540</td><td>.790</td><td>1.700</td><td>(</td><td>.310 <t< td=""><td></td><td>.480 <t< td=""><td></td><td>.370 <t< td=""><td>.590</td><td>.770</td><td>.520</td><td>T> 094.</td><td></td><td></td><td>.380 <t< td=""><td>.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.920	1.200	2.800	.950	1,100	T> 074.	.590	.850	.950	. 590	1.500	.750	.520	.540	.790	1.700	(.310 <t< td=""><td></td><td>.480 <t< td=""><td></td><td>.370 <t< td=""><td>.590</td><td>.770</td><td>.520</td><td>T> 094.</td><td></td><td></td><td>.380 <t< td=""><td>.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.480 <t< td=""><td></td><td>.370 <t< td=""><td>.590</td><td>.770</td><td>.520</td><td>T> 094.</td><td></td><td></td><td>.380 <t< td=""><td>.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.370 <t< td=""><td>.590</td><td>.770</td><td>.520</td><td>T> 094.</td><td></td><td></td><td>.380 <t< td=""><td>.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.590	.770	.520	T> 094.			.380 <t< td=""><td>.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<>	.310 <t< td=""><td></td><td>.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<></td></t<>		.390 <t< td=""><td></td><td>.310 <t< td=""></t<></td></t<>		.310 <t< td=""></t<>
	EAD (UG/L		1991 FEB	1991 MAR	1991 APR					1991 SEP								1992 DEC	ANTIMONY (UG/L	1991 JAN		1991 MAR							1991 OCT			1992 APR			1992 OCT	

DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = 10 (A1)			1,200 <t< th=""><th>2,000 <7</th><th>1.500 <1</th><th>801</th><th>2.000 <t< th=""><th>2.700 <t< th=""><th>1.100 <1</th><th>2,900 <1</th><th>1.200 <t< th=""><th>108</th><th>1,400 <7</th><th>80F</th><th>108</th><th>1.100 <t< th=""><th>2,200 <1</th><th>80L</th><th>GUIDELINE = N/A</th><th>230 000</th><th>200.000</th><th>140 000</th><th>200-000</th><th>190,000</th><th>290,000</th><th>160.000</th><th>250,000</th><th>270,000</th><th>330.000</th><th>790.000</th><th>400.000</th><th>140.000</th><th>150.000</th><th>240.000</th><th>270.000</th><th>230,000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	2,000 <7	1.500 <1	801	2.000 <t< th=""><th>2.700 <t< th=""><th>1.100 <1</th><th>2,900 <1</th><th>1.200 <t< th=""><th>108</th><th>1,400 <7</th><th>80F</th><th>108</th><th>1.100 <t< th=""><th>2,200 <1</th><th>80L</th><th>GUIDELINE = N/A</th><th>230 000</th><th>200.000</th><th>140 000</th><th>200-000</th><th>190,000</th><th>290,000</th><th>160.000</th><th>250,000</th><th>270,000</th><th>330.000</th><th>790.000</th><th>400.000</th><th>140.000</th><th>150.000</th><th>240.000</th><th>270.000</th><th>230,000</th><th></th></t<></th></t<></th></t<></th></t<>	2.700 <t< th=""><th>1.100 <1</th><th>2,900 <1</th><th>1.200 <t< th=""><th>108</th><th>1,400 <7</th><th>80F</th><th>108</th><th>1.100 <t< th=""><th>2,200 <1</th><th>80L</th><th>GUIDELINE = N/A</th><th>230 000</th><th>200.000</th><th>140 000</th><th>200-000</th><th>190,000</th><th>290,000</th><th>160.000</th><th>250,000</th><th>270,000</th><th>330.000</th><th>790.000</th><th>400.000</th><th>140.000</th><th>150.000</th><th>240.000</th><th>270.000</th><th>230,000</th><th></th></t<></th></t<></th></t<>	1.100 <1	2,900 <1	1.200 <t< th=""><th>108</th><th>1,400 <7</th><th>80F</th><th>108</th><th>1.100 <t< th=""><th>2,200 <1</th><th>80L</th><th>GUIDELINE = N/A</th><th>230 000</th><th>200.000</th><th>140 000</th><th>200-000</th><th>190,000</th><th>290,000</th><th>160.000</th><th>250,000</th><th>270,000</th><th>330.000</th><th>790.000</th><th>400.000</th><th>140.000</th><th>150.000</th><th>240.000</th><th>270.000</th><th>230,000</th><th></th></t<></th></t<>	108	1,400 <7	80F	108	1.100 <t< th=""><th>2,200 <1</th><th>80L</th><th>GUIDELINE = N/A</th><th>230 000</th><th>200.000</th><th>140 000</th><th>200-000</th><th>190,000</th><th>290,000</th><th>160.000</th><th>250,000</th><th>270,000</th><th>330.000</th><th>790.000</th><th>400.000</th><th>140.000</th><th>150.000</th><th>240.000</th><th>270.000</th><th>230,000</th><th></th></t<>	2,200 <1	80L	GUIDELINE = N/A	230 000	200.000	140 000	200-000	190,000	290,000	160.000	250,000	270,000	330.000	790.000	400.000	140.000	150.000	240.000	270.000	230,000	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 1.00	***	009.1	1,500 <t< th=""><th>r 2.200 <t< th=""><th></th><th>801</th><th>-</th><th>BDL</th><th>1,100 <1</th><th>1.800</th><th></th><th>1,700 <1</th><th></th><th>BDL</th><th>108</th><th>1,400 <t< th=""><th></th><th></th><th>DET'N LIMIT = 0,10</th><th>000 072</th><th>000.002</th><th>150.000</th><th>210,000</th><th>190,000</th><th>290,000</th><th>170.000</th><th>230,000</th><th>270,000</th><th>350,000</th><th>450,000</th><th>410.000</th><th>140.000</th><th>160.000</th><th>260.000</th><th>280.000</th><th>220.000</th><th></th></t<></th></t<></th></t<>	r 2.200 <t< th=""><th></th><th>801</th><th>-</th><th>BDL</th><th>1,100 <1</th><th>1.800</th><th></th><th>1,700 <1</th><th></th><th>BDL</th><th>108</th><th>1,400 <t< th=""><th></th><th></th><th>DET'N LIMIT = 0,10</th><th>000 072</th><th>000.002</th><th>150.000</th><th>210,000</th><th>190,000</th><th>290,000</th><th>170.000</th><th>230,000</th><th>270,000</th><th>350,000</th><th>450,000</th><th>410.000</th><th>140.000</th><th>160.000</th><th>260.000</th><th>280.000</th><th>220.000</th><th></th></t<></th></t<>		801	-	BDL	1,100 <1	1.800		1,700 <1		BDL	108	1,400 <t< th=""><th></th><th></th><th>DET'N LIMIT = 0,10</th><th>000 072</th><th>000.002</th><th>150.000</th><th>210,000</th><th>190,000</th><th>290,000</th><th>170.000</th><th>230,000</th><th>270,000</th><th>350,000</th><th>450,000</th><th>410.000</th><th>140.000</th><th>160.000</th><th>260.000</th><th>280.000</th><th>220.000</th><th></th></t<>			DET'N LIMIT = 0,10	000 072	000.002	150.000	210,000	190,000	290,000	170.000	230,000	270,000	350,000	450,000	410.000	140.000	160.000	260.000	280.000	220.000	
TREATMENT PLANT TREATED		* 007 *	1 nno" .	BDL	2.200 <t< th=""><th>2.100 <t< th=""><th>900</th><th>1.200 <t< th=""><th>1,700 <1</th><th>BDL</th><th>1.500 <t< th=""><th>1,400 <t< th=""><th>BOL</th><th>1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	2.100 <t< th=""><th>900</th><th>1.200 <t< th=""><th>1,700 <1</th><th>BDL</th><th>1.500 <t< th=""><th>1,400 <t< th=""><th>BOL</th><th>1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	900	1.200 <t< th=""><th>1,700 <1</th><th>BDL</th><th>1.500 <t< th=""><th>1,400 <t< th=""><th>BOL</th><th>1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	1,700 <1	BDL	1.500 <t< th=""><th>1,400 <t< th=""><th>BOL</th><th>1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<></th></t<></th></t<>	1,400 <t< th=""><th>BOL</th><th>1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<></th></t<>	BOL	1.200 <t< th=""><th>BOL</th><th>BDL</th><th>BDL</th><th>1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<></th></t<>	BOL	BDL	BDL	1.900 <t< th=""><th>. BOL</th><th> </th><th>270 000</th><th>250.000</th><th>140.000</th><th>200,000</th><th>160,000</th><th>300.000</th><th>150,000</th><th>260.000</th><th>250.000</th><th>370,000</th><th>450.000</th><th>390.000</th><th>160.000</th><th>130.000</th><th>210.000</th><th>240.000</th><th>190.000</th><th></th></t<>	. BOL	 	270 000	250.000	140.000	200,000	160,000	300.000	150,000	260.000	250.000	370,000	450.000	390.000	160.000	130.000	210.000	240.000	190.000	
TREATMENT PLANT RAW	METALS)	ě	BUL	BOL	80F	1,100 <t< th=""><th>108</th><th>BDL</th><th>108</th><th>BOL</th><th>BDL</th><th>. 108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>1,300 <t< th=""><th>BOL</th><th>^</th><th>. 000 082</th><th>260.000</th><th>130.000</th><th>230,000</th><th>160.000</th><th>280,000</th><th>140.000</th><th>270.000</th><th>280.000</th><th>400.000</th><th>420.000</th><th>420.000</th><th>180.000</th><th>130.000</th><th>200.000</th><th>360.000</th><th>180.000</th><th></th></t<></th></t<>	108	BDL	108	BOL	BDL	. 108	BOL	BOL	BOL	BOL	BOL	1,300 <t< th=""><th>BOL</th><th>^</th><th>. 000 082</th><th>260.000</th><th>130.000</th><th>230,000</th><th>160.000</th><th>280,000</th><th>140.000</th><th>270.000</th><th>280.000</th><th>400.000</th><th>420.000</th><th>420.000</th><th>180.000</th><th>130.000</th><th>200.000</th><th>360.000</th><th>180.000</th><th></th></t<>	BOL	^	. 000 082	260.000	130.000	230,000	160.000	280,000	140.000	270.000	280.000	400.000	420.000	420.000	180.000	130.000	200.000	360.000	180.000	
	SELENIUM (UG/L		ISSI JAN				1991 MAY			1991 AUG	1991 SEP					1992 JUN		1992 OCT		STRONTIUM (UG/L	1001		1991 MAR		1991 MAY		1991 JUL			1991 OCT		1992 FEB				1992 OCT		

DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = N/A	16 000	16 000	000.0	000.00		2.200 <1	5.300	9.000	4.800 <t< th=""><th>2.000</th><th>9.500</th><th>11.000</th><th>3.600 <t< th=""><th>15.000</th><th>20.000</th><th>17.000</th><th>35.000</th><th>12.000</th><th>GUIDELINE = 13 (D4)</th><th>BDL</th><th>GUIDELINE = 100 (A1)</th><th>1,300</th><th>.480 <1</th><th>.100 <t< th=""><th>.340 <1</th><th>.250 <t< th=""><th>.370 <1</th><th></th><th></th><th>. 090 <⊤</th><th></th><th></th><th></th><th></th><th>.160 <t< th=""><th></th><th>.390 <t< th=""><th>.360 <1</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	2.000	9.500	11.000	3.600 <t< th=""><th>15.000</th><th>20.000</th><th>17.000</th><th>35.000</th><th>12.000</th><th>GUIDELINE = 13 (D4)</th><th>BDL</th><th>GUIDELINE = 100 (A1)</th><th>1,300</th><th>.480 <1</th><th>.100 <t< th=""><th>.340 <1</th><th>.250 <t< th=""><th>.370 <1</th><th></th><th></th><th>. 090 <⊤</th><th></th><th></th><th></th><th></th><th>.160 <t< th=""><th></th><th>.390 <t< th=""><th>.360 <1</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	15.000	20.000	17.000	35.000	12.000	GUIDELINE = 13 (D4)	BDL	GUIDELINE = 100 (A1)	1,300	.480 <1	.100 <t< th=""><th>.340 <1</th><th>.250 <t< th=""><th>.370 <1</th><th></th><th></th><th>. 090 <⊤</th><th></th><th></th><th></th><th></th><th>.160 <t< th=""><th></th><th>.390 <t< th=""><th>.360 <1</th><th></th></t<></th></t<></th></t<></th></t<>	.340 <1	.250 <t< th=""><th>.370 <1</th><th></th><th></th><th>. 090 <⊤</th><th></th><th></th><th></th><th></th><th>.160 <t< th=""><th></th><th>.390 <t< th=""><th>.360 <1</th><th></th></t<></th></t<></th></t<>	.370 <1			. 090 <⊤					.160 <t< th=""><th></th><th>.390 <t< th=""><th>.360 <1</th><th></th></t<></th></t<>		.390 <t< th=""><th>.360 <1</th><th></th></t<>	.360 <1	
DIST. SYSTEM DISTYOUNG ST FREE FLOW STAN	DET'N LIMIT = 0.50	17 000	17 000	000.71	16.000	8.600	2.400 <t< td=""><td>2.600</td><td>8.600</td><td>4.600 <t< td=""><td>006.9</td><td>10,000</td><td>11.000</td><td>3.800 <t< td=""><td>15.000</td><td>20.000</td><td>17.000</td><td>35,000</td><td>12.000</td><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>DET'N LIMIT = 0.05</td><td>1.300</td><td>.540</td><td>.100 <t< td=""><td>.370 <1</td><td></td><td>.330 <1</td><td></td><td>.090 <t< td=""><td>BDL</td><td></td><td></td><td>.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.600	8.600	4.600 <t< td=""><td>006.9</td><td>10,000</td><td>11.000</td><td>3.800 <t< td=""><td>15.000</td><td>20.000</td><td>17.000</td><td>35,000</td><td>12.000</td><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>DET'N LIMIT = 0.05</td><td>1.300</td><td>.540</td><td>.100 <t< td=""><td>.370 <1</td><td></td><td>.330 <1</td><td></td><td>.090 <t< td=""><td>BDL</td><td></td><td></td><td>.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	006.9	10,000	11.000	3.800 <t< td=""><td>15.000</td><td>20.000</td><td>17.000</td><td>35,000</td><td>12.000</td><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>DET'N LIMIT = 0.05</td><td>1.300</td><td>.540</td><td>.100 <t< td=""><td>.370 <1</td><td></td><td>.330 <1</td><td></td><td>.090 <t< td=""><td>BDL</td><td></td><td></td><td>.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	15.000	20.000	17.000	35,000	12.000	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05	1.300	.540	.100 <t< td=""><td>.370 <1</td><td></td><td>.330 <1</td><td></td><td>.090 <t< td=""><td>BDL</td><td></td><td></td><td>.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.370 <1		.330 <1		.090 <t< td=""><td>BDL</td><td></td><td></td><td>.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	BDL			.350 <t< td=""><td></td><td>150 <1</td><td>.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<></td></t<>		150 <1	.320 <t< td=""><td>T> 004.</td><td>.330 <t< td=""><td></td></t<></td></t<>	T> 004.	.330 <t< td=""><td></td></t<>	
TREATED TREATED			000	18.000	13.000	9.400	2.000 <t< td=""><td>009.9</td><td>9.300</td><td>7.000</td><td>9.300</td><td>9.100</td><td>12.000</td><td>2.900 <⊺</td><td>18,000</td><td>24.000</td><td>17,000</td><td>33,000</td><td>14.000</td><td></td><td>BOL</td><td></td><td>1.600</td><td>.300 <t< td=""><td></td><td>.430 <t< td=""><td></td><td>.350 <t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td></td><td></td><td>.120 <t< td=""><td></td><td></td><td>. 170 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	009.9	9.300	7.000	9.300	9.100	12.000	2.900 <⊺	18,000	24.000	17,000	33,000	14.000		BOL		1.600	.300 <t< td=""><td></td><td>.430 <t< td=""><td></td><td>.350 <t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td></td><td></td><td>.120 <t< td=""><td></td><td></td><td>. 170 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>		.430 <t< td=""><td></td><td>.350 <t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td></td><td></td><td>.120 <t< td=""><td></td><td></td><td>. 170 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>		.350 <t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td></td><td></td><td>.120 <t< td=""><td></td><td></td><td>. 170 <t< td=""><td></td></t<></td></t<></td></t<>			BDL					.120 <t< td=""><td></td><td></td><td>. 170 <t< td=""><td></td></t<></td></t<>			. 170 <t< td=""><td></td></t<>	
TREATMENT PLANT RAW	METALS		14.000	15.000	7.800	18.000	3.600 <t< td=""><td>5.300</td><td>9,000</td><td>3.700 <t< td=""><td>3.700 <1</td><td>2.400</td><td>4.600 <t< td=""><td>. 2.900 <t< td=""><td>11.000</td><td>5.800</td><td>8.100</td><td>23.000</td><td>3.100 <1</td><td>Ŷ</td><td>108</td><td>^</td><td>2 200</td><td>1.300</td><td>670</td><td>1.800</td><td>.520</td><td>.880</td><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	5.300	9,000	3.700 <t< td=""><td>3.700 <1</td><td>2.400</td><td>4.600 <t< td=""><td>. 2.900 <t< td=""><td>11.000</td><td>5.800</td><td>8.100</td><td>23.000</td><td>3.100 <1</td><td>Ŷ</td><td>108</td><td>^</td><td>2 200</td><td>1.300</td><td>670</td><td>1.800</td><td>.520</td><td>.880</td><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.700 <1	2.400	4.600 <t< td=""><td>. 2.900 <t< td=""><td>11.000</td><td>5.800</td><td>8.100</td><td>23.000</td><td>3.100 <1</td><td>Ŷ</td><td>108</td><td>^</td><td>2 200</td><td>1.300</td><td>670</td><td>1.800</td><td>.520</td><td>.880</td><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	. 2.900 <t< td=""><td>11.000</td><td>5.800</td><td>8.100</td><td>23.000</td><td>3.100 <1</td><td>Ŷ</td><td>108</td><td>^</td><td>2 200</td><td>1.300</td><td>670</td><td>1.800</td><td>.520</td><td>.880</td><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<></td></t<></td></t<>	11.000	5.800	8.100	23.000	3.100 <1	Ŷ	108	^	2 200	1.300	670	1.800	.520	.880	.360 <t< td=""><td>.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<></td></t<>	.420 <t< td=""><td></td><td>.510</td><td>.510</td><td>077.</td><td>089.</td><td></td><td>.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<></td></t<>		.510	.510	077.	089.		.340 <t< td=""><td>1.300</td><td>.880</td><td></td></t<>	1.300	.880	
	ITANIUM (UG/L		NAC 1991			1991 APR	1991 MAY		1991 JUL						1002 APR					THALLIUM (UG/L	68 SAMPLES	JRANIUM (UG/L	1001			1001 APR						1991 OCT						_	- 1	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

																									٠											
DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = N/A		.300 <1	.110 <1		.410 <t< th=""><th>.560</th><th>.670</th><th>.460 <t< th=""><th>.370 <1</th><th>.090 ×T</th><th>BOL</th><th>.230 <1</th><th>BOL</th><th>.120 <1</th><th>.410 <t< th=""><th>.610</th><th>.390 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th>9.100</th><th>13,000</th><th>12.000</th><th>7.800</th><th>2.900</th><th>11,000</th><th>10.000</th><th>10.000</th><th>150.000</th><th>13.000</th><th>10.000</th><th>11.000</th><th>11.000</th><th>11.000</th><th>14.000</th><th>4.300</th><th>8.900</th></t<></th></t<></th></t<></th></t<>	.560	.670	.460 <t< th=""><th>.370 <1</th><th>.090 ×T</th><th>BOL</th><th>.230 <1</th><th>BOL</th><th>.120 <1</th><th>.410 <t< th=""><th>.610</th><th>.390 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th>9.100</th><th>13,000</th><th>12.000</th><th>7.800</th><th>2.900</th><th>11,000</th><th>10.000</th><th>10.000</th><th>150.000</th><th>13.000</th><th>10.000</th><th>11.000</th><th>11.000</th><th>11.000</th><th>14.000</th><th>4.300</th><th>8.900</th></t<></th></t<></th></t<>	.370 <1	.090 ×T	BOL	.230 <1	BOL	.120 <1	.410 <t< th=""><th>.610</th><th>.390 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th>9.100</th><th>13,000</th><th>12.000</th><th>7.800</th><th>2.900</th><th>11,000</th><th>10.000</th><th>10.000</th><th>150.000</th><th>13.000</th><th>10.000</th><th>11.000</th><th>11.000</th><th>11.000</th><th>14.000</th><th>4.300</th><th>8.900</th></t<></th></t<>	.610	.390 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th>9.100</th><th>13,000</th><th>12.000</th><th>7.800</th><th>2.900</th><th>11,000</th><th>10.000</th><th>10.000</th><th>150.000</th><th>13.000</th><th>10.000</th><th>11.000</th><th>11.000</th><th>11.000</th><th>14.000</th><th>4.300</th><th>8.900</th></t<>	GUIDELINE = 5000 (A3)	9.100	13,000	12.000	7.800	2.900	11,000	10.000	10.000	150.000	13.000	10.000	11.000	11.000	11.000	14.000	4.300	8.900
DIST. SYSTEM YOUNG ST . FREE FLOW	DET'N LIMIT = 0.05	.290 <1		.140 <t< td=""><td></td><td>.430 <t< td=""><td>. 530</td><td>.630</td><td>.530</td><td>.320 <t< td=""><td>. 140 ×T</td><td>BOL</td><td>1>: 070</td><td>BDL</td><td>BOL</td><td>.350 <1</td><td>.450 <1</td><td>.370 <1</td><td>DET'N LIMIT = 0.20</td><td>000.4</td><td>5.400</td><td>4.500</td><td>5.500</td><td>3.000</td><td>3.800</td><td>9.400</td><td>4.300</td><td>2.400</td><td>3.500</td><td>3.700</td><td>4.500</td><td>3.200</td><td>4.600</td><td>2.400</td><td>2.400</td><td>3.800</td></t<></td></t<></td></t<>		.430 <t< td=""><td>. 530</td><td>.630</td><td>.530</td><td>.320 <t< td=""><td>. 140 ×T</td><td>BOL</td><td>1>: 070</td><td>BDL</td><td>BOL</td><td>.350 <1</td><td>.450 <1</td><td>.370 <1</td><td>DET'N LIMIT = 0.20</td><td>000.4</td><td>5.400</td><td>4.500</td><td>5.500</td><td>3.000</td><td>3.800</td><td>9.400</td><td>4.300</td><td>2.400</td><td>3.500</td><td>3.700</td><td>4.500</td><td>3.200</td><td>4.600</td><td>2.400</td><td>2.400</td><td>3.800</td></t<></td></t<>	. 530	.630	.530	.320 <t< td=""><td>. 140 ×T</td><td>BOL</td><td>1>: 070</td><td>BDL</td><td>BOL</td><td>.350 <1</td><td>.450 <1</td><td>.370 <1</td><td>DET'N LIMIT = 0.20</td><td>000.4</td><td>5.400</td><td>4.500</td><td>5.500</td><td>3.000</td><td>3.800</td><td>9.400</td><td>4.300</td><td>2.400</td><td>3.500</td><td>3.700</td><td>4.500</td><td>3.200</td><td>4.600</td><td>2.400</td><td>2.400</td><td>3.800</td></t<>	. 140 ×T	BOL	1>: 070	BDL	BOL	.350 <1	.450 <1	.370 <1	DET'N LIMIT = 0.20	000.4	5.400	4.500	5.500	3.000	3.800	9.400	4.300	2.400	3.500	3.700	4.500	3.200	4.600	2.400	2.400	3.800
TREATMENT PLANT TREATED		.230 <1	.180 <t< td=""><td>. 130 <t< td=""><td>.260 <t< td=""><td>.290 <t< td=""><td>T> 044.</td><td>2062</td><td>.250 <t< td=""><td>.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 130 <t< td=""><td>.260 <t< td=""><td>.290 <t< td=""><td>T> 044.</td><td>2062</td><td>.250 <t< td=""><td>.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.260 <t< td=""><td>.290 <t< td=""><td>T> 044.</td><td>2062</td><td>.250 <t< td=""><td>.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.290 <t< td=""><td>T> 044.</td><td>2062</td><td>.250 <t< td=""><td>.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 044.	2062	.250 <t< td=""><td>.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.110 <t< td=""><td>. 108</td><td>.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<></td></t<>	. 108	.230 <t< td=""><td>BOL</td><td>.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<></td></t<>	BOL	.110 <t< td=""><td></td><td>110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<></td></t<>		110 <t< td=""><td>.280 <1</td><td></td><td>2.500</td><td>2.800</td><td>2.700</td><td></td><td>.330 <1</td><td>2.600</td><td></td><td></td><td></td><td></td><td>1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<></td></t<>	.280 <1		2.500	2.800	2.700		.330 <1	2.600					1.600 <t< td=""><td></td><td></td><td>1.200 <1</td><td></td><td>1> 068.</td><td>2.300</td></t<>			1.200 <1		1> 068.	2.300
TREATMENT PLANT	METALS	.740	.800	. 610	2.300	.610	1.000	1.500	099.	072	1.200		.330 <t< td=""><td>.910</td><td></td><td>.340 <t< td=""><td>1.100</td><td>1.000</td><td>^</td><td>5.700</td><td>9.200</td><td>8.800</td><td>12,000</td><td>4.200</td><td>6.300</td><td>3.900</td><td>3.600</td><td>5.100</td><td>2.000</td><td>5.200</td><td>2.400</td><td>4.500</td><td>2.900</td><td>3.600</td><td>6.200</td><td>5.500</td></t<></td></t<>	.910		.340 <t< td=""><td>1.100</td><td>1.000</td><td>^</td><td>5.700</td><td>9.200</td><td>8.800</td><td>12,000</td><td>4.200</td><td>6.300</td><td>3.900</td><td>3.600</td><td>5.100</td><td>2.000</td><td>5.200</td><td>2.400</td><td>4.500</td><td>2.900</td><td>3.600</td><td>6.200</td><td>5.500</td></t<>	1.100	1.000	^	5.700	9.200	8.800	12,000	4.200	6.300	3.900	3.600	5.100	2.000	5.200	2.400	4.500	2.900	3.600	6.200	5.500
	VANADIUM (UG/L		1991 FEB	_					1991 AUG				1992 FEB				1992 OCT	1992 DEC	ZINC (UG/L	1001 JAN		_	1991 APR		1991 JUN			1991 SEP						1992 AUG		

STEM	GUIDELINE = 450 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10000 (I)		GUIDELINE = 38000 (D4)												•				AND THE PROPERTY OF THE PROPER	GOIDELINE = N/A		GUIDELINE = 10 (C1)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 1,000	, JOB	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	. 108 .	DET'N LIMIT = 1.000	. BDL .	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	B0L	B01	BDL	. B0L	no:	801	AN	34	801	BDL	BDL	901	BOL	BDL	BDL	000		BDL	DET'N LIMIT = 1.000	BDL
TREATMENT PLANT TREATED	CS	. BDL	•	108		. 108	(BDL	_	BDL		BDL	BDL	11.000		Oo i	BDL	A.	A	BOL	BDL	BDL	. BDL	BD.	BOL	108 108			BDL		BDL
TREAIMENT PLANT RAW	CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)	38 SAMPLES BDL	123-TRICHLOROBENZENE (NG/L	38 SAMPLES BDL	1234-TETCLOROBENZENE (NG/L	38 SAMPLES BDL	1235-TETCLOROBENZENE (NG/L	38 SAMPLES BDL	124-TRICHLOROBENZENĖ (NG/L	38 SAMPLES BDL	1245-TETCLOROBENZENE (NG/L	1991 JAN BDL	FEB	MAR	APR	MAY	NO.	1991 JUL 1991		000	NOV	FEB		NOC	1992 AUG BDL	DEC	13C TOTOLOGODENZENE AND VI		38 SAMPLES BDL	HEXACHLOROBENZENE (NG/L)	38 SAMPLES BDL

	5																		(%)							
	1900 (0																N/A		74000 ((N/A	٠	N/A		N/A	
	GUIDELINE = 1900 (D4)																GUIDELINE = N/A		GUIDELINE = 74000 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 1.000	5.000 <7	801	2,000 <t< td=""><td>noi</td><td>. 108 100</td><td>A</td><td>NA!</td><td>801</td><td>. 108</td><td>2,000 <t< td=""><td>4.000 <t< td=""><td></td><td></td><td>3.000 <t< td=""><td>· 108 .</td><td>DET'N LIMIT = 1.000</td><td>. 108</td><td>DET'N LIMIT = 1.000</td><td>108</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>B0L</td></t<></td></t<></td></t<></td></t<>	noi	. 108 100	A	NA!	801	. 108	2,000 <t< td=""><td>4.000 <t< td=""><td></td><td></td><td>3.000 <t< td=""><td>· 108 .</td><td>DET'N LIMIT = 1.000</td><td>. 108</td><td>DET'N LIMIT = 1.000</td><td>108</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>B0L</td></t<></td></t<></td></t<>	4.000 <t< td=""><td></td><td></td><td>3.000 <t< td=""><td>· 108 .</td><td>DET'N LIMIT = 1.000</td><td>. 108</td><td>DET'N LIMIT = 1.000</td><td>108</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>B0L</td></t<></td></t<>			3.000 <t< td=""><td>· 108 .</td><td>DET'N LIMIT = 1.000</td><td>. 108</td><td>DET'N LIMIT = 1.000</td><td>108</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>. BOL</td><td>DET*N LIMIT = 5.000</td><td>B0L</td></t<>	· 108 .	DET'N LIMIT = 1.000	. 108	DET'N LIMIT = 1.000	108	DET*N LIMIT = 5.000	. BOL	DET*N LIMIT = 5.000	. BOL	DET*N LIMIT = 5.000	B0L
- KEAIEU		5.000 <t< td=""><td>9.000 <t< td=""><td>3.000 <t< td=""><td>noi</td><td>80F</td><td>AA.</td><td>Y A</td><td>801</td><td>108</td><td>4.000 <t< td=""><td>30F</td><td>30F</td><td>108</td><td>1,000 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	9.000 <t< td=""><td>3.000 <t< td=""><td>noi</td><td>80F</td><td>AA.</td><td>Y A</td><td>801</td><td>108</td><td>4.000 <t< td=""><td>30F</td><td>30F</td><td>108</td><td>1,000 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<>	3.000 <t< td=""><td>noi</td><td>80F</td><td>AA.</td><td>Y A</td><td>801</td><td>108</td><td>4.000 <t< td=""><td>30F</td><td>30F</td><td>108</td><td>1,000 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<>	noi	80F	AA.	Y A	801	108	4.000 <t< td=""><td>30F</td><td>30F</td><td>108</td><td>1,000 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>BDL</td></t<></td></t<>	30F	30F	108	1,000 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>BDL</td></t<>	B0L		BOL		BDL		108		BDL		BDL
KAW	CHLOROAROMATICS NE (NG/L)	108	200	108	no;	HDI.	AM	- AN	108	108	108	BDL	BOL	BDL	108	108	ENE (NG/L)	108	ZENE (NG/L)	BOL	OLUENE (NG/L)	108	OLUENE (NG/L)	108	OLUENE (NG/L)	B01
	CHLO HEXACHLOROETHANE (NG/L	1991 JAN		_		1991 JUN	1991 JUL		_	_						1992 DEC	OCTACHLOROSTYRENE (NG/L	38 SAMPLES	PENTACHLOROBENZENE (NG/L	38 SAMPLES	236-TRICHLOROTOLUENE (NG/L	38 SAMPLES	245-TRICHLOROTOLUENE (NG/L	38 SAMPLES	26A-TRICHLOROTOLUENE (NG/L	38 SAMPLES

TABLE 4
ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

Σ.	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (04)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)		
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST YOUNG ST YOUNG ST STANDING	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.00		
REATMENT PLANT		B0L		BOL		BOL		BOL		108 108 108		BOL	
TREATMENT PLANT TREATED RAW FREE FLOW	CHLOROPHENOLS (NG/L)	8 SAMPLES BDL	2345-TETCHLOROPHENOL (NG/L)	8 SAMPLES BOL	2356-TETCHLOROPHENOL (NG/L)	8 SAMPLES BOL	245-TRICHLOROPHENOL (NG/L)	8 SAMPLES BOL	246-TRICHLOROPHENOL (NG/L)	1991 MAY BDL 1992 JUN BDL 1992 OCT 70.000 <t< td=""><td>PENTACHLOROPHENOL (NG/L)</td><td>8 SAMPLES BOL</td><td></td></t<>	PENTACHLOROPHENOL (NG/L)	8 SAMPLES BOL	
	234-		2345	w	2356	30	542	w	546		PENJ	ω.	

	(A1)		(9)																(9)																
	200		200																300																
	. Br		I NE																I NE																
	GUIDELINE = 700 (A1)		GUIDELINE = 700 (G)																GUIDELINE = 300 (G)																:
TEM	Ö		Ö																G	.•			ż	٠.	•				٠	٠		٠.			٠ [
DIST, SYSTEM YDUNG ST STANDING																																			
PD19	1.000		1.000			-													1.00																
YSTEM IT OW	# LIW	BOL	MIT =	BDL	BDL	, 000. 108	3	BDL	AM	A	A P	200	BDL	BDL	BDL	BDL	BDL	000.	= II	BDL	BDL	BDL	BDL	3 2	BOL.	4	A	BDL	BDL	BDL	BDL	BDL	BDL	80L	ADL.
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 1.000		DET'N LIMIT =																DET'N LIMIT = 1.00																
LANT				- ▼		<u></u>											<u>_</u>	<u>~</u>		-				_			. ~								
D .		BOL		1.000 <t< td=""><td>. 108</td><td>2.000</td><td>100</td><td>80 E</td><td>- AM</td><td>A.</td><td>A C</td><td>2 2</td><td>8 8</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1,000 <t< td=""><td>1.00</td><td></td><td>2,000 <t< td=""><td>80</td><td>BOL</td><td>90</td><td>9</td><td>BOL</td><td><u> </u></td><td>. ₹</td><td>8</td><td>8</td><td>쿒</td><td>8</td><td>8</td><td>8</td><td>801</td><td>2</td></t<></td></t<></td></t<>	. 108	2.000	100	80 E	- AM	A.	A C	2 2	8 8	BDL	BDL	BDL	1,000 <t< td=""><td>1.00</td><td></td><td>2,000 <t< td=""><td>80</td><td>BOL</td><td>90</td><td>9</td><td>BOL</td><td><u> </u></td><td>. ₹</td><td>8</td><td>8</td><td>쿒</td><td>8</td><td>8</td><td>8</td><td>801</td><td>2</td></t<></td></t<>	1.00		2,000 <t< td=""><td>80</td><td>BOL</td><td>90</td><td>9</td><td>BOL</td><td><u> </u></td><td>. ₹</td><td>8</td><td>8</td><td>쿒</td><td>8</td><td>8</td><td>8</td><td>801</td><td>2</td></t<>	80	BOL	90	9	BOL	<u> </u>	. ₹	8	8	쿒	8	8	8	801	2
TREATMENT PLANT TREATED	PESTICIDES AND PCB		, , , , ,																																
ANT	SANI			r		Ļ	-					,	,					~																	
N P	10106	BOL		000	9	BDL	200	BDL	I AN	A	A C	900	3 2	8	801	BDL	BDL	.000		BDL	9	BDL	BDL	3	80	2	A	8	BOL	80	뎚	80	BOL	80 E	BUL
TREATMENT PLANT RAW	PEST)		^	_		-	•					•	-						^							•					•				
	٦	LES	(NG/L	z	60	o. o	۷ >-	z	پ	9	۵.,	- >	> 00		2	9	-	ပ္	NG/L	Z	80	MAR	×	<u>></u>	₹ :	<u>ء</u> د	SFP OF	OCT	NOV	FEB	2	NOS	AUG	100	DEC
	SNO N	38 SAMPLES	ВНС			91 MAR				1991 AUG		1991	2 2 2 3 3	002 APR	1992 JU				ВНС (AL 199					1991									1992 00	
	ALDRIN (NG/L	38	ALPHA BHC (NG/L	19	1991	9,0	1001	1991	19	6	Ş Ş	2 5	<u> </u>	ě	19	19	10	19	BETA BHC (NG/L	19	19	19	19	19	6.	2 0	9	19	19	19	19	19	19	15	-

	GUIDELINE = 4000 (A1)			GUIDELINE = 7000 (A1)	GUIDELINE = 7000 (A1)	GUIDELINE = 700 (A1) GUIDELINE = 900000 (A1)	GUIDELINE = 74000 (D4)	GUIDELINE = 7400 (04)	GUIDELINE = 1000 (US)
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING ST	DET'N LIMIT = 1.000	1,000 <t BDL BDL BDL BDL 10U</t 	801 1 AM 1 AM 1 1 AM 1 1 AM 1 1 AM 1 1 AM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL BDL BDL BDL BDL DET'N LIMIT = 2.000	BDL DET*N LIMIT = 2.00 BDL	DET'N LIMIT = 2.00 BDL DET'N LIMIT = 5.0	BDL DET'N LIMIT = 2.00 BDL	DET'N LIMIT = 5.000 BDL	DET'N LIMIT = 5.000 BDL
TREATMENT PLANT DIST. SYSTEM TREATED YOUNG ST FREE FLOW) PCB	1,000 <t 80L 80L 80L 190</t 	BDL I AW I AW BDL BDL BDL	80L 80L 80L	B0L B0L	108	B0L -	108	BDL
TREATMENT PLANT	PESTICIDES AND PCB BHC) (NG/L)	2,000 <t !aU BDL BDL BDL !aU</t 	2.000 <t !AW !AW !AW 4.000 <t 1.000 <t 1.000 <t BDL</t </t </t </t 	8DL 8DL 8DL 8DL 8DL	BDL BDL BDL	(NG/L)	NG/L)	(NG/L)	BDL
	PESTICIE LINDANE (GAMMA BHC) (NG/L			1992 JUN 1992 AUG 1992 OCT 1992 DEC ALPHA CHLORDANE (NG/L	38 SAMPLES GAMMA CHLORDANE (NG/L 38 SAMPLES	DIELDRIN (NG/L 38 SAMPLES METHOXYCHLOR (NG/L	38 SAMPLES ENDOSULFAN 1 (NG/L 38 SAMPLES	ENDOSULFAN 1:1 (NG/L 38 SAMPLES	ENDRIN (NG/L 38 SAMPLES

	GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIDELINE = 3000 (A1)		GUIDELINE = N/A·		GUIDELINE = N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 5000 (A1)	,	GUIDELINE = 300000 (D3)		
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING ST STANDING	DET'N LIMIT = 5.00	. BDL	DET'N LIMIT = 1.000	108	DET'N LIMIT = 1.000	. 108	DET*N LIMIT = 5.000	. BDL	DET'N LIMIT = 2.000	BDL	DET*N LIMIT = 5.000	. BDL .	DET*N LIMIT = 20.00	BDL .	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	• 108	DET'N LIMIT = 5.000	BOL	DET*N LIMIT = 500.0	BDL	DET'N LIMIT = 50.0		
TREATMENT PLANT TREATED	PCB	, BDL		BDL		BDL	1	BDL		BDL		BDL		BOL		BDL		108		BOL	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL		BDL	
TREATMENT PLANT	PESTICIDES AND PCB ATE (NG/L)	BDL	DE (NG/L)	BDL	^	BDL	^	108	ال)	108.	^	BDL		108	^	108	^	BDL	^	BDL	^	108	•	BDL	
Ε α	PESTICII ENDOSULFAN SULPHATE (NG/L	38 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	26 SAMPLES	HEPTACHLOR (NG/L	38 SAMPLES	MIREX (NG/L	38 SAMPLES	DXYCHLDRDANE (NG/L	38 SAMPLES	O,P-DDT (NG/L	38 SAMPLES	PCB (NG/L)	38 SAMPLES	P,P-DDD (NG/L	38 SAMPLES	P,P-DDE (NG/L	38 SAMPLES	P,P-DDT (NG/L	38 SAMPLES	TOXAPHENE (NG/L	33 SAMPLES	AMETRINE (NG/L	30 SAMPLES	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = 60000 (A2)						•					 · •						GUIDELINE = N/A		GUIDELINE = 10000 (A2)										•						• .	
YOUNG ST STANDING	0.03																	= 50.0		100.0																	
OIST. SYSIEM YOUNG ST FREE FLOW	DET'N LIMIT = 50.0	٠.				•					•		•		•			DET'N LIMIT =	٠	DET'N LIMIT = 100.0	٠				•	•		•		•		•	•	•			•
TREATED		270.000 <1	B01	220.000 <t< td=""><td>108</td><td></td><td>357,000 <t< td=""><td>AN.</td><td>A .</td><td>BOL</td><td>110 000 VI</td><td>20.000 4</td><td>00000</td><td><u> </u></td><td>BUL 801</td><td>80,000 <</td><td>70.000 <1</td><td></td><td>108</td><td></td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B01</td><td>: AM</td><td>AN.</td><td>BOL</td><td>BOL</td><td>BOL</td><td>108</td><td>108</td><td>80F</td><td>PD :</td><td>BOL</td><td>ROL</td></t<></td></t<>	108		357,000 <t< td=""><td>AN.</td><td>A .</td><td>BOL</td><td>110 000 VI</td><td>20.000 4</td><td>00000</td><td><u> </u></td><td>BUL 801</td><td>80,000 <</td><td>70.000 <1</td><td></td><td>108</td><td></td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B01</td><td>: AM</td><td>AN.</td><td>BOL</td><td>BOL</td><td>BOL</td><td>108</td><td>108</td><td>80F</td><td>PD :</td><td>BOL</td><td>ROL</td></t<>	AN.	A .	BOL	110 000 VI	20.000 4	00000	<u> </u>	BUL 801	80,000 <	70.000 <1		108		BOL	BOL	BOL	BOL	BOL	B01	: AM	AN.	BOL	BOL	BOL	108	108	80F	PD :	BOL	ROL
TREATMENT PLANT	PESTICIDES AND PCB	350,000 <1	BOL	BOL	170,000 <t< td=""><td>B0L</td><td>1302.000</td><td>IAW</td><td>IAU</td><td></td><td></td><td>100,000 <1</td><td>150,000 <1</td><td>100.000 <1</td><td>300,000 <1</td><td>340,000 <t< td=""><td>160,000 <t< td=""><td>^</td><td>BOL</td><td>EX) (NG/L)</td><td>BOL</td><td>BDL</td><td>108</td><td>BOL</td><td>BOL</td><td>374,000 <t< td=""><td>iAW</td><td>iAW</td><td>BDF .</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>108</td><td>80F</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<>	B0L	1302.000	IAW	IAU			100,000 <1	150,000 <1	100.000 <1	300,000 <1	340,000 <t< td=""><td>160,000 <t< td=""><td>^</td><td>BOL</td><td>EX) (NG/L)</td><td>BOL</td><td>BDL</td><td>108</td><td>BOL</td><td>BOL</td><td>374,000 <t< td=""><td>iAW</td><td>iAW</td><td>BDF .</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>108</td><td>80F</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>	160,000 <t< td=""><td>^</td><td>BOL</td><td>EX) (NG/L)</td><td>BOL</td><td>BDL</td><td>108</td><td>BOL</td><td>BOL</td><td>374,000 <t< td=""><td>iAW</td><td>iAW</td><td>BDF .</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>108</td><td>80F</td><td>BOL</td><td>BOL</td></t<></td></t<>	^	BOL	EX) (NG/L)	BOL	BDL	108	BOL	BOL	374,000 <t< td=""><td>iAW</td><td>iAW</td><td>BDF .</td><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>108</td><td>80F</td><td>BOL</td><td>BOL</td></t<>	iAW	iAW	BDF .	BOL	BOL	BOL	B0L	108	80F	BOL	BOL
F &	ATRAZINE (NG/L	1001 IAN			1991 APR											1992 OCT	1992 DEC	ATRATONE (NG/L	30 SAMPLES	CYANAZINE (BLADEX) (NG/L	1001 IAN								1991 SEP		1991 NOV				1992 AUG .	1992 OCT	1992 DEC

SYSTEM ST NG	GUIDELINE = 60000 (A2)																		GUIDELINE = 10000 (A2)		GUIDELINE = 52500 (03)		GUIDELINE = 700000 (D3)		GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)		GUIDELINE = 10000 (A2)		GUIDELINE = 5000 (A2)		
DIST. SYSTEM DIST. YOUNG ST YOUNG ST YOUNG ST YOUNG STANDI	DET'N LIMIT = 200.0	Ī.	- Ide	108	108			i AW	I AN										DET'N LIMIT = 200.0	. ·	0ET'N LIMIT = 50,000	,	DET'N LIMIT = 50.000	٠	DET'N LIMIT = 50.000		DET'N LIMIT = 100.0		DET'N LIMIT = 50.00		DET'N LIMIT = 500.0	,	
T TREATED PLANT	AND PCB	Ca	8 8	8 8	80	BDL		Y.	Y.	80	. BO	BOL	BOL	108	BOL	BDL	. BDL	BDL		BDL		. BDL		BOL		BOL	^	BDL		108 .		BOL	
TREATMENT PLANT	PESTICIDES AND PCB NE (NG/L)	730 000 cT		BDL	BOL	BOL	305.000 <t< td=""><td>I AW</td><td>i AW</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>906</td><td>BOL</td><td>Z00.000 <t< td=""><td>290,000 <t< td=""><td>BOL</td><td>NE (NG/L)</td><td>108</td><td>^</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>108</td><td>COR) (NG/L</td><td>108</td><td>÷</td><td>BOL</td><td>(NG/L)</td><td>BOL</td><td></td></t<></td></t<></td></t<>	I AW	i AW	BDL	BDL	BOL	BDL	906	BOL	Z00.000 <t< td=""><td>290,000 <t< td=""><td>BOL</td><td>NE (NG/L)</td><td>108</td><td>^</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>108</td><td>COR) (NG/L</td><td>108</td><td>÷</td><td>BOL</td><td>(NG/L)</td><td>BOL</td><td></td></t<></td></t<>	290,000 <t< td=""><td>BOL</td><td>NE (NG/L)</td><td>108</td><td>^</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>108</td><td>COR) (NG/L</td><td>108</td><td>÷</td><td>BOL</td><td>(NG/L)</td><td>BOL</td><td></td></t<>	BOL	NE (NG/L)	108	^	BOL	^	B01.	^	108	COR) (NG/L	108	÷	BOL	(NG/L)	BOL	
	DESETHYL ATRAZINE (NG/L		1991 FFB														1992 OCT	1992 DEC	DESETHYL SIMAZINE (NG/L	30 SAMPLES	PROMETONE (NG/L	30 SAMPLES	PROPAZINE (NG/L	30 SAMPLES	PROMETRYNE (NG/L	30 SAMPLES	METRIBUZIN (SENCOR) (NG/L	30 SAMPLES	SIMAZINE (NG/L	30 SAMPLES	ALACHLOR (LASSO) (NG/L	30 SAMPLES	

	GUIDELINE = 50000 (A2)																		GUIDELINE = 206000 (D4)																	
YOUNG ST STANDING																													٠.							
YOUNG ST FREE FLOW	DET'N LIMIT = 500.0																	•	DET'N LIMIT = 5.00		23.000		51,000			IAU	i AW	IAW	14.000		112.000	₽.	201	20	70 i	no i
TREATED	BO4	BDL	BDL	BOL	BOL	BDL	823,000 <t< td=""><td>i AW</td><td>iAW</td><td>108 801</td><td>108</td><td>B0L</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>108</td><td>0</td><td>BOL</td><td>19.000 <t< td=""><td>37,000 <t< td=""><td>29.000</td><td>3</td><td>90.000</td><td>IAW</td><td>IAW</td><td>IAW</td><td>12.000 <1</td><td>BDL</td><td>Ob i</td><td>8</td><td><u>1</u></td><td>. 9</td><td>20-</td><td>Uo.i</td></t<></td></t<></td></t<>	i AW	iAW	108 801	108	B0L	BDL	BOL	BOL	BOL	BDL	108	0	BOL	19.000 <t< td=""><td>37,000 <t< td=""><td>29.000</td><td>3</td><td>90.000</td><td>IAW</td><td>IAW</td><td>IAW</td><td>12.000 <1</td><td>BDL</td><td>Ob i</td><td>8</td><td><u>1</u></td><td>. 9</td><td>20-</td><td>Uo.i</td></t<></td></t<>	37,000 <t< td=""><td>29.000</td><td>3</td><td>90.000</td><td>IAW</td><td>IAW</td><td>IAW</td><td>12.000 <1</td><td>BDL</td><td>Ob i</td><td>8</td><td><u>1</u></td><td>. 9</td><td>20-</td><td>Uo.i</td></t<>	29.000	3	90.000	IAW	IAW	IAW	12.000 <1	BDL	Ob i	8	<u>1</u>	. 9	20-	Uo.i
RAW	PESTICIDES AND PCB G/L)	BOL	BOL	. 801	801	BOL	1755,000 <7	i AW	i AV	B0L	B0L	BDL	108	BOL	BDL	BOL	BOL	B0L	ITADIEN (NG/L	BOL	noi .	B0L	B0L	9	108 1	i AW	. i AW	MY	BDL	. BDL	BOL	<u></u>	<u>1</u>	10	<u>1</u>	no i
	METOLACHLOR (NG/L	1991 JAN	_	-	1991 APR	1991 MAY	1991 JUN									1992 AUG		1992 DEC	HEXACLCYCLOPENTADIEN (NG/L	1991 JAN	_		1991 APR					1991 SEP		1991 NOV	1992 FEB	1992 APR	1992 JUN		1992 OCT	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = N/A																	
YSTEM	GUIDE																	
DIST. SYSTEM YOUNG ST STANDING	0.2																	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT =	:					•	•.					•					
TREATED TREATED		1.600	3.000	BOL	BOL	BDL	T> 009.	BDL	T> 009.	BOL	T> 009.	T> 000.	1> 007.	1.200	BOL	BOL	BOL	1,000 <t< th=""></t<>
TREATMENT PLANT RAW	PHENOLICS	T> 000.	BDL	BOL	T> 008.	T> 004.	T> 009.	BOL	. 200 <t< th=""><th>108</th><th>T> 004.</th><th>T> 009</th><th>T> 008.</th><th>1.400</th><th>1.600</th><th>T> 004.</th><th>T> 004.</th><th>. BDL</th></t<>	108	T> 004.	T> 009	T> 008.	1.400	1.600	T> 004.	T> 004.	. BDL
- 4	PHENOLICS (UG/L						1991 JUN											

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

					_																			
	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 42000 (04)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE := N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	-	GUIDELINE = N/A		GUIDELINE = 10 (A1)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING ST STANDING	DET*N LIMIT = 10.0	BDL	DET'N LIMIT = 1.0	. 108	DET 'N LIMIT = 20.0	801	DET'N LIMIT = 20.0	901	DET'N LIMIT = 20.0	. 108	DET'N LIMIT = 50.0		DET*N LIMIT = 5.0	. 108	DET'N LIMIT = 50.0	BDL	= 10.0	BDL	DET'N LIMIT = 10.0	. 108	DET'N LIMIT = 1.0	BDL	DET 'N LIMIT = 5.0	, BDL
TREATMENT PLANT DIST. SYSTEM TREATED YOUNG ST FREE FLOW	YDROCARBONS	BDL		BDL		108		BDL		BOL		BDL		BDL		BDL		BDL		BDL		108		BDL
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS PHENANTHRENE (NG/L)	17 SAMPLES BOL	ANTHRACENE (NG/L)	17 SAMPLES BDL	FLUORANTHENE (NG/L)	17 SAMPLES BDL	PYRENE (NG/L)	17 SAMPLES BDL	BENZO(A)ANTHRACENE (NG/L)	17 SAMPLES BDL	CHRYSENE (NG/L)	17 SAMPLES BDL	DIMETH. BENZ(A)ANTHR (NG/L)	17 SAMPLES BDL	BENZO(E) PYRENE (NG/L)	17 SAMPLES BDL	BENZO(B) FLUORANTHEN (NG/L)	17 SAMPLES BDL	PERYLENE (NG/L)	17 SAMPLES BDL	BENZO(K) FLUORANTHEN (NG/L)	17 SAMPLES BDL	BENZO(A) PYRENE (NG/L)	17 SAMPLES BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

	:
DIST. SYSTEM YOUNG ST STANDING	
DIST. SYSTEM YOUNG ST FREE FLOW	
TREATMENT PLANT TREATED	
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST FREE FLOW	
	1

GUIDELINE = N/A		GUIDELINE = N/A	1	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 2.0	BDL	DET'N LIMIT = 10.0	BDL
POLYAROMATIC HYDROCARBONS EN (NG/L)	BDL .	(BDL	^	108 ·		BDL		BDL
POLYAROMATIC HYDROCARBONS BENZO(G,H,I) PERYLEN (NG/L) DEI	17 SAMPLES BDL	DIBENZO(A, H) ANTHRAC (NG/L	17 SAMPLES BOL	INDENO(1,2,3-C,D) PY (NG/L	17 SAMPLES BDL	BENZO(B) CHRYSENE (NG/L)	17 SAMPLES BDL	CORONENE (NG/L)	17 SAMPLES BDL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

	GUIDELINE = 5000 (A1)		GUIDELINE = 280000 (A1)		GUIDELINE = 100000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 120000 (A1)		GUIDELINE = 10000 (A1)		GUIDELINE = 20000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 35000 (G)		GUIDELINE = 190000 (A1)		
PLANT DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 500.0	יר אסר .	DET*N LIMIT = 50.0		DET'N LIMIT = 100.0		DET*N LIMIT = 200.0		DET*N LIMIT = 100.0		DET'N LIMIT = 50.0		DET'N LIMIT = 20.00		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		
TREATMENT PLANT TREATMENT PLANT RAW TREATED	SPECIFIC PESTICIDES TOXAPHENE (NG/L)	5 SAMPLES BDL BDL	2,4,5-T (NG/L)	8 SAMPLES BDL - BDL	2,4-D (NG/L)	8 SAMPLES BDL BDL	2,4-DB (NG/L)	8 SAMPLES BDL BDL	2,4 D PROPIONIC ACID (NG/L)	8 SAMPLES BDL BDL	DICAMBA (NG/L)	8 SAMPLES BDL BDL	2,4,5-TP (SILVEX) (NG/L)	8 SAMPLES BDL BDL	DIAZINON (NG/L)	6 SAMPLES BDL BDL	DICHLOROVOS (NG/L)	6 SAMPLES BDL BDL	CHLORPYRIFOS (NG/L)	6 SAMPLES BDL BDL	ETHION (NG/L)	6 SAMPLES BDL BDL	MALATHION (NG/L)	6 SAMPLES BDL BDL	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

TEM .	GUIDELINE = N/A		GUIDELINE = 9000 (D3)		GUIDELINE = N/A		GUIDELINE = 50000 (A1)		GUIDELINE = 2000 (A2)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 90000 (A1)		GUIDELINE = 350000 (G)		GUIDELINE = N/A	•	GUIDELINE = N/A		GUIDELINE = N/A	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING ST STANDING	DET'N LIMIT = 20.0	•	DET'N LIMIT = 50.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0		DET'N LIMIT = 2000.0	•	DET*N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET*N LIMIT = 2000,0.	
TREATMENT PLANT TREATED	1C10ES	BDL		BDL	n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL		108		108		BOL		108		BDL		BDL		BOL		108		108
TREATMENT PLANT RAW	SPECIFIC PESTICIDES (NG/L)	6 SAMPLES BDL	METHYL PARATHION (NG/L) .	6 SAMPLES BDL	METHYLTRITHION (NG/L)	6 SAMPLES BDL	PARATHION (NG/L)	6 SAMPLES BDL	PHORATE (NG/L).	6 SAMPLES BDL	RELDAN (NG/L)	6 SAMPLES BDL	RONNEL (NG/L)	6 SAMPLES BDL	CARBOFURAN (NG/L)	8 SAMPLES BDL	CHLORPROPHAM (CIPC) (NG/L)	8 SAMPLES BDL	DIALLATE (NG/L)	8 SAMPLES BDL	EPTAM (NG/L)	8 SAMPLES BDL	IPC (NG/L)	8 SAMPLES BDL

	GUIDELINE = 140000 (D3)	٠	GUIDELINE = 90000 (A1)		GUIDELINĘ = 245000' (D3)	
DIST. SYSTEM YOUNG ST STANDING			GUIDELINE			
	= 2000.0		= 200.0	BDL .	= 2000.0	
T DIST. SYST YOUNG ST FREE FLOW	DET'N LIMIT = 2000.0	BDL	DET'N' LIMIT = 200.0		DET'N LIMIT = 2000.0	
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST FREE FLOM	ıcıdes	BDL		, BDL		108 108
REATMENT PLANT AW	SPECIFIC PESTICIDES	BDL	^	. BDL	^	BDL
	PROPOXUR (NG/L		CARBARYL (NG/L	8 SAMPLES	BUTYLATE (NG/L	8 SAMPLES

1ABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

YSTEM T	GUIDELINE = 5 (A1)	-	GUIDELINE = 24 (A3)				-													GUIDELINE = 2.4 (A3)		•											:			GUIDELINE = 300 (A3*)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.05	.300 <t< td=""><td>.050 <</td><td>.200 <t< td=""><td>108</td><td>BDL</td><td>NO.</td><td>108</td><td>108</td><td>80F</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>108</td><td>80F</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>· .050 <t< td=""><td>.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>109</td><td>Pol .</td><td>. 050 <t< td=""><td>.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <	.200 <t< td=""><td>108</td><td>BDL</td><td>NO.</td><td>108</td><td>108</td><td>80F</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>108</td><td>80F</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>· .050 <t< td=""><td>.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>109</td><td>Pol .</td><td>. 050 <t< td=""><td>.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108	BDL	NO.	108	108	80F	BDL	BDL	BDL	BOL	108	80F	BOL	DET'N LIMIT = 0.05	BOL	· .050 <t< td=""><td>.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>109</td><td>Pol .</td><td>. 050 <t< td=""><td>.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>109</td><td>Pol .</td><td>. 050 <t< td=""><td>.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	.100 <1	BOL	109	Pol .	. 050 <t< td=""><td>.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<></td></t<>	.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<></td></t<>			.100 <t< td=""><td>100 ct</td><td>90r</td><td>.100 <⊺</td><td>DET'N LIMIT = 0.10</td><td>BDL</td></t<>	100 ct	90r	.100 <⊺	DET'N LIMIT = 0.10	BDL
TREATMENT PLANT TREATED		108		T> 050	BOL	.150 <t< td=""><td>80F</td><td>108</td><td>2 2</td><td>801</td><td>BOL</td><td>BDL</td><td>.100 ·T</td><td>BDL</td><td>108</td><td>80F</td><td>80F</td><td>108</td><td>BUL</td><td></td><td>. 100 cT</td><td>T> 050.</td><td>BOL</td><td></td><td></td><td>1001.</td><td></td><td></td><td>.050 <t< td=""><td>BOL</td><td>. 108</td><td>80F</td><td>. 001.</td><td>. ION</td><td>80F</td><td></td><td>1Ó8</td></t<></td></t<>	80F	108	2 2	801	BOL	BDL	.100 ·T	BDL	108	80F	80F	108	BUL		. 100 cT	T> 050.	BOL			1001.			.050 <t< td=""><td>BOL</td><td>. 108</td><td>80F</td><td>. 001.</td><td>. ION</td><td>80F</td><td></td><td>1Ó8</td></t<>	BOL	. 108	80F	. 001.	. ION	80F		1Ó8
TREATMENT PLANT RAW	VOLATILES.	BOL	·	BOL	T> 021,	.100 <t< td=""><td>BDF</td><td>10 B</td><td>108</td><td>108</td><td>BDL</td><td>. 108</td><td>801</td><td>BDL</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>1> Učl.</td><td>POL</td><td>JG/L,)</td><td>B0L</td><td>BDL</td><td>. 050 <t< td=""><td>801</td><td>801</td><td>108</td><td>BDI</td><td>BOL</td><td>. 108</td><td>. BOL</td><td>BOL</td><td>B01</td><td>1> 050.</td><td>108</td><td>801</td><td>^</td><td>, BOL</td></t<></td></t<>	BDF	10 B	108	108	BDL	. 108	801	BDL	T> 050.	T> 050.	BDL	1> Učl.	POL	JG/L,)	B0L	BDL	. 050 <t< td=""><td>801</td><td>801</td><td>108</td><td>BDI</td><td>BOL</td><td>. 108</td><td>. BOL</td><td>BOL</td><td>B01</td><td>1> 050.</td><td>108</td><td>801</td><td>^</td><td>, BOL</td></t<>	801	801	108	BDI	BOL	. 108	. BOL	BOL	B01	1> 050.	108	801	^	, BOL
	BENZENE (UG/L	51 SAMPLES	TOLUENE (UG/L	-				1991 MAY	1991			1991 OCT					1992 AUG	1992 UCI		ETHYLBENZENE (UG/L	-		1991 MAR	1991 APR		1991 1001	1991 AUG				1992 FEB	1992 APR	1992 JUN 1992 ALIC		1992 DEC	P-XYLENE (UG/L	51 SAMPLES

	(A3*)																		(A3*)																	
	300																		300																	
	GUIDELINE = 300 (A3*)																		GUIDELINE = 300 (A3*)																	
YOUNG ST STANDING	ਰ						. •												ਰ										•				;			
YOUNG ST YC	DET'N LIMIT = 0.10	BDL	BDL	BOL	BDL	BDL	BDL	.100 <t< td=""><td>BDL</td><td>.200 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.100 <7</td><td>BDL</td><td>.100 <t< td=""><td>BDL</td><td>BDL</td><td>801</td><td>BDL</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<></td></t<>	BDL	.200 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.100 <7</td><td>BDL</td><td>.100 <t< td=""><td>BDL</td><td>BDL</td><td>801</td><td>BDL</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td></t<></td></t<>	BDL	BOL	BDL	BDL	BOL	BDL	BDL	108	DET'N LIMIT = 0.05	BDL	BDL	BDL	BDL	BDL	BDL	.100 <7	BDL	.100 <t< td=""><td>BDL</td><td>BDL</td><td>801</td><td>BDL</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td></t<>	BDL	BDL	801	BDL	108	BDL	BDL	BDL
1	DET'N																		DET'N																	
TREATED		BDL	BDL	BDL	BOL	BOL	BOL	BDL	BOL	BOL	BOL	BOL	* * * * * * * * * * * * * * * * * * *	BDL	108 80F	108	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	B0L	BDL	BDL	BDL	BDL						
RAW	VOLATILES)	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BOL	BDL	^	BOL	801	BDL	BDL	BOL	BDL	80F	BOL	80F	108	BDL	BDL	. BDL	108	BDL	BDL	80L						
	M-XYLENE (UG/L		FEB						AUG	SEP	OCT	NO.	EB	APR	NO.	S AUG) DEC	O-XYLENE (UG/L	JAN		_		MAY	NOR	705	AUG	SEP	DCT	NOV	FEB	APR	NOC	AUG	OCT	DEC
	M-XYLEN	1991	1991	1991	1991	1991	1991	1991	1991	1991	1661	1991	1992	1992	1992	1992	1992	1992	O-XYLEN	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1992	1992	1992	1992	1992	1992

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = 100 (D1)			GUIDELINE = 7 (D1) GUIDELINE = 50 (A1)	GUIDELINE = 70 (D1) GUIDELINE = N/A
DIST, SYSTEM YOUNG ST STANDING	05			100	10
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.05	80L .100 <1 .100 <1 .150 <1 .150 <1 .050 <1 .200 <1 .200 <1	. 050	DET'N LIMIT = 0.100 BDL DET'N LIMIT = 0.50 BDL	DET'N LIMIT = 0.10 BOL DET'N LIMIT = 0.100 BOL
TREATMENT PLANT TREATED		108 108 108 108 108 108	108 108 108 108 108 108	108 108	80L
TREATMENT PLANT RAW	VOLATILES)	80L 80C <1 80L 80L 80L 80L 80L	80L 80L 80L 100 <7 .100 <7 .050 <7	HYLENE (UG/L BDL RIDE (UG/L) BOL	HYLENE (UG/L) BDL BDL BDL BDL
	STYRENE (UG/L	1991 JAN 1991 MAR 1991 APR 1991 MAY 1991 JUN 1991 JUL 1991 AUG	1991 SEP 1991 OCT 1991 NOV 1992 FEB 1992 APR 1992 AUN 1992 OCT 1992 OCT	1,1-DICHLOROETHYLENE (UG/L 51 SAMPLES BDL METHYLENE CHLORIDE (UG/L 51 SAMPLES BDL	112-DICHLOROGTHYLENE (UG/L 51 SAMPLES BDL 1,1-DICHLOROGTHANE (UG/L 51 SAMPLES BDL

	GUIDELINE = 350 (A1+)																			GUIDELINE = 200 (D1)		GUIDELINE = 5 (A1)		GUIDELINE = 5 (A1)		GUIDELINE = 5 (D1)		GUIDELINE = 50 (A1)		
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	0ET'N LIMIT = 0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37.800	28.900	. 19.400	39.700	39.200	42.200	35.500	35.200	. 25.600	11.300	16.300	31.700	19.900	10,100	36.500	86.200		DET'N LIMIT = 0.02	. 108	DET'N LIMIT = 0.05	. BOL	DET'N LIMIT = 0.20	. 801	DET'N LIMIT = 0.05	. 108	DET'N LIMIT = 0.10	. 108 .	
TREATMENT PLANT OF TREATED TO THE PLANT OF TREATED TO THE PROOF TH	30		53.100	34.200	36.100	51.900	43.600	56.200	55,500	43.500	33.800	23.500	32,400	31.400	41.500	15.800	31,400	74.200	000.40	90	108		. B0L	30 . 06	108	90	BDL	90	BDL	
TREATMENT PLANT RAW	(UG/L)		•		2.										15.			39.	BUL	111, TRICHLOROETHANE (UG/L)	ES BOL	1,2 DICHLORGETHANE (UG/L)	ES BOL	CARBON TETRACHLORIDE (UG/L	ES BOL	1,2-DICHLOROPROPANE (UG/L)	.ES: 80L	TRICHLOROETHYLENE (UG/L)	ES BOL	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	CHLOROFORM (UG/L						1991 MAY		1991 JUL								1992 AUG	1992. OCT	1992 DEC	111, TRICHLO	51 SAMPLES	1,2 DICHLOR	51 SAMPLES	CARBON TETR	51 SAMPLES	1,2-DICHLOR	51 SAMPLES	TRICHLOROET	51 SAMPLES	

NE N	GUIDELINE = 350 (A1+)																				GUIDELINE = 0.6 (04)		GUIDELINE = 350 (A1+)																		9 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING	DET'N LIMIT = 0.05	11.850 SPS	11 300	7 250	202.	13.700	15.800	21,300	16.300	20.700	15.400	12,000	13.750	13.500	7.600	0 950	10 300	19.300	18.400	10.400	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.10	2.400	3,300	1.800	3.800	4.300	8,200	6.200	10.100	8,000	000.6	7.600	3.900	2.400	7.300	7.200	2.400	3,100	
TREATMENT PLANT TREATED	;	19, 700 SPS	15 450	12 850	20.450	20.150	15.600	25.200	19.350	22.150	17.800	21.600	22.050	16.800	12,100	12 100	15 600	000.	14.000	16,000		BOL	~	3.800	4.300	2.700	2.400	4.100	10.200	9.400	11.200	8.000	13.800	009.6	B0L	1.800	7.200	9.000	. 1.600	4.700	
TREATMENT PLANT RAW	VOLATILES IETHANE (UG/L	B0L	IUB	2 0 0		HDF.	BOL	BOL	BOL	BDL	BDL	. 108	BDL	BDL	7,600	- Ga	2 2	100	0.69.0	108	THANE (UG/L	BDL	ETHANE (UG/L	BOL	BOL	.300 <t< td=""><td>BOL</td><td>. BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>.500 <1</td><td>801</td><td>BOL</td><td>T> 008</td><td>BDL</td><td></td></t<>	BOL	. BDL	BDL	BDL	BDL	BDL	BOL	BOL	BOL	.500 <1	801	BOL	T> 008	BDL	
	VOLATILE DICHLOROBROMOMETHANE (UG/L	1991 JAN						1991 JUN			1991 SEP	1991 OCT		1992 FEB						1992 DEC	112-TRICHLOROETHANE (UG/L	51 SAMPLES	CHLORODIBROMOMETHANE (UG/L	1991 JAN	1991 FEB												1992 JUN			1992 DEC	-

	GUIDELINE = 65 (A5)		GUIDELINE = 350 (A1+)		GUIDELINE = 0.17 (D4)	GUIDELINE = 2 (D1)
DIST, SYSTEM YOUNG ST STANDING	0.05		0.20		0.05	.100
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0	10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8	801 801 801 801 801 801 801 801	200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		DET'N LIMIT = 0.100
TREATMENT PLANT TREATED		100 C		801 200 ct 801 801 801 800 ct 1,000 ct 1,000 ct 801 1,000 ct		108
TREATMENT PLANT RAW	VOLATILES E (UG/L)		80L 80L 80L 80L 80L 80L 80L		(1790) JAVI (1807	
TRE	VOLATILE TETRACHLOROETHYLENE (UG/L	1991 AAN 1991 FEB 1991 AAN 1991 AAN 1991 ULN 1991 ULN 1991 AUG 1991 OCT	1992 FEB 1992 APR 1992 JUN 1992 AUG 1992 DCT 1992 DCC	1991 AAN 1991 EEB 1991 MAR 1991 MAY 1991 ULN 1991 JUL 1991 AUG 1991 OCT 1991 OCT		VINYL CHLORIDE (UG/L

	GUIDELINE = 70 (D1)		GUIDELINE = 1510 (03)		GUIDELINE = 5 (A1)		GUIDELINE = 3750 (D3)		GUIDELINE = 200 (A1)		GUIDELINE = 50 (D1)		GUIDELINE = 350 (A1)															
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N'LIMIT = 0,100	. 108	DET'N LIMIT = 0.10	. 108 .	DET'N LIMIT = 0.10	BOL	DET*N LIMIT = 0.10	. BOL	DET*N LIMIT = 0.05	, BDL .	DET'N LIMIT = 0.05	. B0L .	DET'N LIMIT = 0.50	52.050	43.650	28.500	20.76	72.200	58.000	008 67	33.500	38.250	49.100	29.900	28.150	63.000	107.000	35.700
TREATED TREATED		BDL		108		BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B0L	1	108		BDL		76.600	54.250	51.700	63.300	92.400	81.250	59.600	90,600	64.800	48.200	55.400	35.900	53.000	007.06	000.55
TREATMENT PLANT RAW	VOLATILES 12-DICHLORDETHYLENE (UG/L	: 18 SAMPLES BDL	HLOROBENZENE (UG/L)	51 SAMPLES BDL	,4-DICHLOROBENZENE (UG/L)	51 SAMPLES BOL	,3-DICHLOROBENZENE (UG/L)	51 SAMPLES BDL	,2-DICHLOROBENZENE (UG/L)	51 SAMPLES BOL	THYLENE DIBROMIDE (UG/L)	51 SAMPLES BOL	OTL TRIHALOMETHANES (UG/L)	JAN	FEB BDL	MAR 3.	1991 MAY BDI	NOC	JU.	1991 SEP RD1	DCT	NOV	FEB	APR 20.	NO.	AUG	1992 OCT 48.950	חבר

TEN	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (D1)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.04		DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
TREATMENT PLANT TREATED		108		BDL		BDL		BDL		BDL .110		000°8 .		BDL
TREATMENT PLANT RAW	RADIONUCLIDES /L)	BDL	، ۱	BDL	M)	BDL	JUNT (BQ/L)	BDL	JNT (BQ/L)	BDL 110	^ :	BDL BDL 11.000	١)،	BDL
	COBALT 60 (BQ/L	6 SAMPLES	CESIUM 134 (BQ/L	6 SAMPLES	CESIUM 137 (89/L	6 SAMPLES	GROSS ALPHA COUNT (BQ/L	6 SAMPLES	GROSS BETA COUNT (BQ/L	1991 JUL 1992 FEB 1992 AUG	TRITIUM (BQ/L	1991 JUL 1992 FEB 1992 AUG	1001NE 131 (8Q/L	6 SAMPLES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION		
SCAN/PARAMETER	UNÎT	LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	. 0	0	(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	ŏ	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	Ö	N/A	
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	Ô	5/100ML	(A1)
TOTAL COLITORY PERBANE TIETRATION	CT/ TOOME	•	37 100112	LAIZ
CHEMISTRY (FLD)				
CHEMISIKI (FED)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	Ď	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A	6.5-8.5	(A4)
			15.0	
FIELD TEMPERATURE	. DEG.C	N/A		(A3)
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
•				
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	(A4)
AMMONIUM TOTAL	MG/L	0.002		(F2)
CALCIUM	MG/L	0.20	100.0	
CHLORIDE	MG/L	0.20	250.0	
COLOUR	TCU	0.50		(A3)
CONDUCTIVITY	UMHO/CM	1.00	400.0	
CYANIDE	MG/L	`0.001	0.2	
DISSOLVED ORGANIC CARBON	MG/L	0.10	5.0	(A3)
FLUORIDE	MG/L	0.01	1.5*	(A1)
HARDNESS	MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A	
LANGELIERS INDEX	DMNSLESS	N/A	N/A	
MAGNESIUM	MG/L	0.10	30.0	(F2)
NITRATES (TOTAL)	MG/L	0.005	10.0	(A1)
NITRITE	MG/L	0.001	1.0	(A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A	(////
PH PH	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	(44)
PHOSPHORUS TOTAL	MG/L	0.003	0.4	(F2)
POTASSIUM	MG/L MG/L	0.010	10.0	(F2)
			500.0	(A3)
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	200.0	
SODIUM	MG/L	0.20		(A4)
SULPHATE	MG/L	0.20	500.0	(A4)
TURBIDITY .	FTU	0.05	1.0	(A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS .

1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1.2.3.4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	. 1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	. NG/L	5.0	' N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	. 1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	. 1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS		,		
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2.3.5.6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
SCAN/ PARAMETER		rimii	GOIDELINE	
2,4,5-TR1CHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(04)
ARSENIC BARIUM	UG/L UG/L	0.10 0.05	25 1000	(A1) (A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	
COPPER IRON	UG/L UG/L	0.50 6.00	1000 300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	- 50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL	UG/L	0.20	350	(D3)
SELENIUM SILVER	UG/L	1.00 0.05	· 10	(A1)
STRONTIUM	UG/L UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	,,
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0 2.0	10 N/A	(A1)
BENZO(B) CHRYSENE BENZO(B) FLUORANTHENE	NG/L NG/L	10.0	N/A N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE DIBENZO(A,H) ANTHRACENE	NG/L NG/L	10.0 10.0	N/A N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(04)
INDENO(1,2,3-C;D) PYRENE	NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE PYRENE	NG/L NG/L	10.0 20.0	N/A N/A	
PESTICIDES & PCB	NG/ E	20.0	7/0	
•	. 110.41		5000	4425
ALACHLOR (LASSO) ALDRIN	NG/L NG/L	500.0 1.0	700	(A2) (A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE .	NG/L	50.0	300000	(D3)
ATRATONE .	NG/L	50.0	N/A	
ATRAZINE	NG/L	50.0 200.0	60000 60000	(A2)
DESETHYL ATRAZINE BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L NG/L	1.0	300	(A2)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN 1)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN 11)	NG/L	5.0	74000	(D4)
ENDOSULFAN SÚLPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
ENDRIN	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000 (D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	30000 (A1)
O,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDE	NG/L	1.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB ·	NG/L	20.0	3000 (A2)
PROMETONE	NG/L -	50.0	52500 (03)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
DESETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
	, -		,
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE) .	UG/L	0.2	, N/A
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.0	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000 (A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A
2,4,5-TP (SILVEX)	NG/L	20.0	10000 (A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000 (03)
CARBARYL (SEVIN)	NG/L	200.0	90000 (A1)
CARBOFURAN	NG/L	2000.0	90000 (A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000 (G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A
DIALLATE	NG/L	2000.0	N/A
DIAZINON	NG/L	20.0	20000 (A1)
DICAMBA	NG/L	50.0	120000 (A1)
DICHLOROVOS	NG/L	20.0	N/A
EPTAM	NG/L	2000.0	N/A
ETHION	NG/L	20.0	35000 (G)
1PC	NG/L	2000.0	N/A
MALATHION '	NG/L	20.0	190000 (A1)
METHYL PARATHION	NG/L	50.0	9000 (D3)
METHYLTRITHION	NG/L	20.0	N/A
MEVINPHOS	NG/L	20.0	N/A
PARATHION	NG/L	20.0	50000 (A1)
PHORATE (THIMET)	NG/L	20.0	2000 (A2)
PICHLORAM	NG/L	100.0	190000 (A2)
PROPOXUR (BAYGON)	NG/L	2000:0	140000 (D3)
RELDAN	NG/L	20.0	N/A
RONNEL	NG/L	20.0	N/A
VOLATILES			
1,1-DICHLOROETHANE	UG/L	0.10	N/A
1,1-DICHLOROETHYLENE	UG/L	0.10	7 (D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2-DICHLOROETHANE	UG/L	0.05	5 (A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5 (D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750 (D3)
1,4-DICHLOROBENZENE	UG/L .	0.10	5 (A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200 (D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.6 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.17 (D4)
.,.,-,-		0.03	2.17 (04)

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
BENZENE	UG/L	0.05	5 (A1)	
BROMOFORM	UG/L	0.20	350 (A1+)	
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)	
CHLOROBENZENE	UG/L	0.10	1510 (D3)	
CHLOROD I BROMOMETHANE	UG/L	0.10	350 (A1+)	
CHLOROFORM	UG/L	0.10	350 (A1+)	
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)	
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)	
ETHYLENE DIBROMIDE .	UG/L	0.05	50 (D1)	
ETHYLBENZENE	UG/L	0.05	2.4 (A3)	
M-XYLENE	UG/L	0.10 .	300 (A3*)	
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)	
O-XYLENE	UG/L	0.05	300 (A3*)	
P-XYLENE	UG/L	0.10	· · 300 (A3*)	
STYRENE	UG/L	0.05	100 (D1)	
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)	
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)	
TOLUENE	UG/L	0.05	24 (A3)	
TOTAL TRIHALOMETHANES .	UG/L	0.50	350 (A1)	
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)	
VINYL. CHLORIDE	UG/L	0.10	2 (01)	
RADIONUCLIDES				
TRITIUM	BQ/L	7.0	40000 (A1)	
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)	١.
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50 (A1)	,
IODINE 131	BQ/L	0.70	10 (A1)	,

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MODE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MODE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF

HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS. SUCH AS PESTICIDES: SOLVENT FOR EXTRACTION AND

RECTIFICATION IN RUBBER INDUSTRY: DEGREASING AND CLEANSING

AGENT: GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION

BENIZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27)

VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41) LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39)
CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO2) (Caution: HNO, is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles .

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO3) and potassium dichromate (K2Cr2O7) (Caution: HNO3&K2Cr2O7 are corrosive) Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization

(GC/MS - once per year)
(PBVOL), (PBEXT)

-1 L amber glass bottle; instructions

as per organic
-250 mL glass bottle
-do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNOz)

(Caution: HNO, is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added -avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO3 (Caution: HNO, is corrosive)

. Volatiles (duplicate)

-45 mL glass vial with septum (OPOPUP)

(teflon side must be in contact with sample) -do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do not rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

