

Data-driven Design and Analyses of Structures and Materials (3dasm)

Lecture 6

Miguel A. Bessa | M.A.Bessa@tudelft.nl | Associate Professor

### **OPTION 1**. Run this notebook **locally in your computer**:

- 1. Confirm that you have the 3dasm conda environment (see Lecture 1).
- 2. Go to the 3dasm\_course folder in your computer and pull the last updates of the **repository**:

git pull

3. Open command window and load jupyter notebook (it will open in your internet browser):

conda activate 3dasm jupyter notebook

4. Open notebook of this Lecture.

## **OPTION 2**. Use **Google's Colab** (no installation required, but times out if idle):

- 1. go to <a href="https://colab.research.google.com">https://colab.research.google.com</a>
- 2. login
- 3. File > Open notebook
- 4. click on Github (no need to login or authorize anything)
- 5. paste the git link: <a href="https://github.com/bessagroup/3dasm\_course">https://github.com/bessagroup/3dasm\_course</a>
- 6. click search and then click on the notebook for this Lecture.

# Outline for today

- Continuation of previous lecture: Bayesian inference for one hidden rv
  - Prior
  - Likelihood
  - Marginal likelihood
  - Posterior
  - Gaussian pdf's product

**Reading material**: This notebook + Chapter 3

Recap of Lecture 5: car stopping distance with known x and  $p(z_2)$ 

We focused on the car stopping distance problem with two rv's under the following conditions:

- We kept x = 75 m/s.
- The "true" distribution of one of the rv's was known:  $p(z_2) = \mathcal{N}(\mu_{z_2} = 0.1, \sigma_{z_2}^2 = 0.01^2)$
- But the distribution of the other rv  $(z \equiv z_1)$  is not known: p(z) = ?

Under these conditions, recall the "true" model by observing the following plot, including some data observations.

```
In [4]:
             # vvvvvvvvv this is just a trick so that we can run this cell multiple times vvvvvvvvv
fig car new, ax car new = plt.subplots(1,2); plt.close() # create figure and close it
if fig car new.get axes():
    del ax car new; del fig car new # delete figure and axes if they exist
    fig car new, ax car new = plt.subplots(1,2) # create them again
         ^{-} end of the trick ^{-}
N samples = 3 # CHANGE THIS NUMBER AND RE-RUN THE CELL
x = 75; empirical y = samples y with 2rvs(N samples, x); # Empirical measurements of N samples at x=75
empirical mu y = np.mean(empirical y); empirical sigma y = np.std(empirical y); # empirical mean and std
car fig 2rvs(ax car new[0]) # a function I created to include the background plot of the governing model
for i in range(\overline{2}): # create two plots (one is zooming in on the error bar)
   ax_car_new[i].errorbar(x , empirical_mu_y,yerr=1.96*empirical_sigma_y, fmt='m*', markersize=15);
    ax_car_new[i].scatter(x*np.ones_like(empirical_y),empirical_y, s=40,
                          facecolors='none', edgecolors='k', linewidths=2.0)
print("Empirical mean[y] is",empirical mu y, "(real mean[y]=675)")
print("Empirical std[y] is",empirical_sigma_y,"(real std[y]=67.6)")
fig car new.set size inches(25, 5) # scale figure to be wider (since there are 2 subplots)
```

Empirical mean[y] is 670.976332441569 (real mean[y]=675)
Empirical std[y] is 44.54268217122325 (real std[y]=67.6)



### Recap of Lecture 5: Summary of our model

#### 1. The observation distribution:

$$p(y|z) = \mathcal{N}\left(y|\mu_{y|z} = wz + b, \sigma_{y|z}^2
ight) = rac{1}{C_{y|z}} \mathrm{exp}\left[-rac{1}{2\sigma_{y|z}^2}(y-\mu_{y|z})^2
ight].$$

where  $C_{y|z} = \sqrt{2\pi\sigma_{y|z}^2}$  is the **normalization constant** of the Gaussian pdf, and where  $\mu_{y|z} = wz + b$ , with w, b and  $\sigma_{y|z}^2$  being constants.

1. and the **prior distribution**:  $p(z) = \frac{1}{C_z}$ 

where  $C_z = z_{max} - z_{min}$  is the **normalization constant** of the Uniform pdf, i.e. the value that guarantees that p(z) integrates to one.

## Recap of Lecture 5: Data

• Since we usually don't know the true process, we can only observe/collect data  $y = \mathcal{D}_y$ :

```
In [5]:
    print("Example of N=%1i data points for y at x=%1.1f m/s with :" % (N_samples,x), empirical_y)
```

Example of N=3 data points for y at x=75.0 m/s with : [641.47373038 733.92797742 637.52728953]

Recap of Lecture 5: Posterior from Bayes' rule applied to data

Use Bayes' rule applied to data to determine the posterior:

$$p(z|y=\mathcal{D}_y) = rac{p(y=\mathcal{D}_y|z) p(z)}{p(y=\mathcal{D}_y)}$$

That requires calculating the likelihood (here, it results from a product of Gaussian densities):

$$p(y=\mathcal{D}_y|z) = rac{1}{\left|w
ight|^N} \cdot C \cdot rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}iggl[ -rac{1}{2\sigma^2} (z-\mu)^2 iggr]$$

where 
$$\mu=rac{w^2\sigma^2}{\sigma_{y|z}^2}\sum_{i=1}^N \mu_i$$
  $\sigma^2=rac{\sigma_{y|z}^2}{w^2N}$  , and  $C=rac{1}{2\pi^{(N-1)/2}}\sqrt{rac{\sigma^2}{\left(rac{\sigma_{y|z}^2}{w^2}
ight)^N}}$ 

After calculating the likelihood, we determined the marginal likelihood:

$$p(y=\mathcal{D}_y)=rac{C}{\left|w
ight|^NC_z}$$

From which we got the posterior:

$$p(z|y = \mathcal{D}_y) = \frac{p(y = \mathcal{D}_y|z)p(z)}{p(y = \mathcal{D}_y)}$$

$$= \frac{1}{p(y = \mathcal{D}_y)} \cdot \frac{1}{|w|^N} C \cdot \mathcal{N}(z|\mu, \sigma^2) \cdot \frac{1}{C_z}$$

$$= \mathcal{N}(z|\mu, \sigma^2)$$
(1)
(2)

which is a **normalized** Gaussian pdf in z with mean and variance as shown in the previous cell.

Determining the Posterior Predictive Distribution (PPD) from the posterior

However, as we mentioned, Bayes' rule is just a way to calculate the posterior:

$$p(z|y=\mathcal{D}_y) = rac{p(y=\mathcal{D}_y|z)p(z)}{p(y=\mathcal{D}_y)}$$

What we really want is the Posterior Predictive Distribution (PPD). This comes after calculating the posterior given some data  $\mathcal{D}_y$ :

$$rac{p(y|y=\mathcal{D}_y)}{p(y|z)}=\int p(y|z)p(z|y=\mathcal{D}_y)dz$$

which is often written in simpler notation:  $p(y|\mathcal{D}_y) = \int p(y|z)p(z|\mathcal{D}_y)dz$ 

$$p(y|\mathcal{D}_y) = \int \underbrace{p(y|z)}_{egin{subarray}{c} ext{posterior} \ ext{observation} \ ext{distribution} \ ext{distribution} \ ext{distribution} \ ext{distribution} \ ext{distribution}$$

Considering the terms we found before, we get:

$$p(y|\mathcal{D}_{y}) = \int \underbrace{\frac{1}{|w|} \frac{1}{\sqrt{2\pi \left(\frac{\sigma_{y|z}}{w}\right)^{2}}} \exp\left\{-\frac{1}{2\left(\frac{\sigma_{y|z}}{w}\right)^{2}} \left[z - \left(\frac{y - b}{w}\right)\right]^{2}\right\}}_{\substack{\text{observation} \\ \text{distribution}}} \tag{4}$$

$$rac{p(y|\mathcal{D}_y)}{p(y|\mathcal{D}_y)} = rac{1}{|w|} \int rac{1}{\sqrt{2\pi \left(rac{\sigma_{y|z}}{w}
ight)^2}} \mathrm{exp} \Biggl\{ -rac{1}{2\left(rac{\sigma_{y|z}}{w}
ight)^2} \Bigl[z-\left(rac{y-b}{w}
ight)\Bigr]^2 \Biggr\} \mathcal{N}(z|\mu,\sigma^2) dz$$

$$p(y|\mathcal{D}_y) = rac{1}{|w|} \int \mathcal{N}\left(z\left|rac{y-b}{w}, \left(rac{\sigma_{y|z}}{w}
ight)^2
ight) \mathcal{N}(z|\mu, \sigma^2) dz$$

This is (again!) the product of two Gaussians!

In Lecture 5 (and the Homework!) you saw (and demonstrated!) that the product of two or more univariate (and multivariate!) Gaussians is...

• Another Gaussian! Although it needs to be scaled by a constant...

So, we conclude that the PPD is an integral of a Gaussian:

$$oldsymbol{p}(y|\mathcal{D}_y) = rac{1}{|w|} \int C^* \mathcal{N}\left(z|\mu^*, \left(\sigma^*
ight)^2
ight) dz$$

$$\text{where } \mu^* = (\sigma^*)^2 \left( \frac{\mu}{\sigma^2} + \frac{(y-b)/w}{\left(\frac{\sigma_{y|z}}{w}\right)^2} \right) = (\sigma^*)^2 \left( \frac{\mu}{\sigma^2} + \frac{(y-b)\cdot w}{\sigma_{y|z}^2} \right)$$

$$(\sigma^*)^2 = \frac{1}{\frac{1}{\sigma^2} + \frac{1}{\left(\frac{\sigma_{y|z}}{w}\right)^2}} = \frac{1}{\frac{1}{\sigma^2} + \frac{w^2}{\sigma_{y|z}^2}}$$

$$C^* = \frac{1}{\sqrt{2\pi \left(\sigma^2 + \frac{\sigma_{y|z}}{w^2}\right)}} \exp \left[ -\frac{\left(\mu - \frac{y-b}{w}\right)^2}{2\left(\sigma^2 + \frac{\sigma_{y|z}}{w^2}\right)} \right]$$

This integral is simple to solve!

$$egin{align} egin{aligned} p(y|\mathcal{D}_y) &= rac{1}{|w|} \int C^* \mathcal{N}\left(z|\mu^*, \left(\sigma^*
ight)^2
ight) dz \ &= rac{C^*}{|w|} \int \mathcal{N}\left(z|\mu^*, \left(\sigma^*
ight)^2
ight) dz \end{aligned}$$

(5)

(6)

What's the result of integrating the blue term?

$$p(y|\mathcal{D}_y) = rac{C^*}{|w|}$$

## Exercise 1

Rewrite the PPD to show that it becomes:

$$oldsymbol{p(y|\mathcal{D}_y)} = \mathcal{N}\left(y|b+\mu w, w^2\sigma^2 + \sigma_{y|z}^2
ight)$$

a normalized univariate Gaussian!

A long way to show that the PPD is a simple Gaussian...

$$oldsymbol{p(y|\mathcal{D}_y)} = \mathcal{N}\left(y|b+\mu w, w^2\sigma^2 + \sigma_{y|z}^2
ight)$$

where we recall that each constant is:

$$egin{aligned} b &= 0.1 x^2 = 562.5 \ w &= x = 75 \ \sigma_{y|z}^2 &= (x^2 \sigma_{z_2})^2 = (75^2 \cdot 0.01)^2 = 56.25^2 \ \sigma^2 &= rac{\sigma_{y|z}^2}{w^2 N} = rac{(x^2 \cdot \sigma_{z_2})^2}{x^2 N} = rac{x^2 \cdot \sigma_{z_2}^2}{N} \ \mu &= rac{w^2 \sigma^2}{\sigma_{y|z}^2} \sum_{i=1}^N \mu_i = \dots = rac{\sum_{i=1}^N y_i}{w N} - rac{b}{w} \end{aligned}$$

A long way to show that the PPD is a simple Gaussian...

$$p(y|\mathcal{D}_y) = \mathcal{N}\left(y|b + \mu w, w^2 \sigma^2 + \sigma_{y|z}^2\right) \tag{12}$$

$$= \mathcal{N}\left(y \left| \left(\sum_{i=1}^{N} \frac{y_i}{N}\right), \sigma_{y|z}^2 \left(\frac{1}{N} + 1\right)\right.\right) \tag{13}$$

where  $y_i$  are each of the N data points of the observed data  $\mathcal{D}_y$ , and  $\sigma_{y|z}^2 = (x^2 \sigma_{z_2})^2 = (75^2 \cdot 0.01)^2 = 56.25^2$  is the variance arising from the contribution of  $z_2$  on y.

• Very Important Questions (VIQs): What does this result tell us? Did you expect this predicted distribution for y?

```
In [6]:
             fig car PPD, ax car PPD = plt.subplots(1,2); plt.close() # create figure and close it
if fig car new.get axes():
   del ax car PPD; del fig car PPD; fig car PPD, ax car PPD = plt.subplots(1,2) # delete fig & axes & create them
N samples = 30000 # CHANGE THIS NUMBER AND RE-RUN THE CELL
x = 75; empirical y = samples y with 2rvs(N samples, x); # Empirical measurements of N samples at x=75
empirical_mu_y = np.mean(empirical_y); empirical_sigma_y = np.std(empirical_y); # empirical mean and std
# Calculate PPD mean and standard deviation:
PPD mu y = np.mean(empirical y); sigma z2 = 0.01; PPD sigma y = np.sqrt( (x**2*sigma z2)**2*(1/N samples + 1)
car fig 2rvs(ax car PPD[0]) # a function I created to include the background plot of the governing model
for i in range(2): # create two plots (one is zooming in on the error bar)
   ax_car_PPD[i].errorbar(x , empirical_mu_y,yerr=1.96*empirical_sigma_y, fmt='m*', markersize=15, elinewidth=6);
   ax_car_PPD[i].errorbar(x , PPD_mu_y,yerr=1.96*PPD_sigma_y, color='#F39C12', fmt='*', markersize=5, elinewidth=3);
   ax_car_PPD[i].scatter(x*np.ones_like(empirical_y),empirical_y, s=100,facecolors='none', edgecolors='k', linewidths=2.0)
print("PPD & empirical mean[y] are the same:",empirical_mu_y, "(real mean[y]=675)")
print("PPD std[y] is",PPD sigma y, "& empirical std[y] is",empirical sigma y, "(real std[y]=67.6)")
fig car PPD.set size inches(25, 5) # scale figure to be wider (since there are 2 subplots)
```

PPD & empirical mean[y] are the same: 674.4563440837065 (real mean[y]=675)
PPD std[y] is 56.25093749218763 & empirical std[y] is 67.32200248011816 (real std[y]=67.6)



### Reflection on what we are observing

- 1. Generally speaking, our PPD is quite reasonable!
  - For few data points it is more reasonable than just calculating the standard deviation directly from the data.
- 1. However, as the number of data points increases it starts getting "overconfident" (see PPD as  $N \to \infty$  or play with the figure above by increasing N).
  - This results from our choice of prior... Our belief was incorrect.
    - The hidden rv z is actually a Gaussian distribution, instead of a noninformative Uniform distribution

### Please keep this in your head:

- (Bayesian) ML is not magic. Every modeling choice you make affects the predictions you get.
- Of course, there are ways of getting "closer" to the truth! We'll take some steps in that direction in the remainder of the course.

### **HOMEWORK**

Consider the same problem, but now starting from a different model:

1. Same **observation distribution** as before:

$$p(y|z) = \mathcal{N}\left(y|\mu_{y|z} = wz + b, \sigma_{y|z}^2
ight) = rac{1}{C_{y|z}} \mathrm{exp}\left[-rac{1}{2\sigma_{y|z}^2}(y-\mu_{y|z})^2
ight]$$

1. but now assuming a different \*\*prior distribution\*\*:  $p(z) = \mathcal{N}\left(z|\overset{<}{\mu}_z = 3,\overset{<}{\sigma_z}^2 = 2^2\right)$ 

In my notation, the superscript  $\dot{(\cdot)}$  indicates a parameter of the prior distribution.

#### Notes about the prior distribution

- We would have to be very lucky if our "belief" coincided with the "true" distribution of z.
  - Usually, we have beliefs but they are not really true (not talking about religion 😂).
    - Our hope is that our beliefs are at least reasonable!
- When defining a prior we are making a decision about two things:
  - 1. The distribution.
    - For example, in this exercise we are assuming that the prior is Gaussian (before we assumed a noninformative Uniform prior). In this case we hit the jackpot! But remember that we are cheating here... That's why we know the actual distribution of z is a Gaussian!
  - 2. The parameters of the distribution.
    - For example, in this exercise we are assuming values that are not the true ones! This is normal! As I said, usually we don't know the truth about the "hidden" variable. Most times we don't even know how many hidden variables we have...

See you next class

Have fun!