Lecture 2: Data, Variables and Distributions -

H2 Binary Variables: Maximum Likelihood

H₃ Example: Coin Tossing

Suppose we have a biased coin. At each toss we get:

- Heads with probability μ
- Tails with probabilitu 1μ

We toss the coin 100 times and observe 53 head and 47 tails. What is μ ?

The Frequentist Answer: Pick the value of μ that makes the observations most probable.

H₃ Mathematically Encoding

- Each toss is a **binary random variable** X
- X can take two values: 1(head)/0(tail)
- For known, μ , X follows the **Bernoulli Distribution**:

$$p(x|\mu) = p(X = x|\mu) = \mu^x (1-\mu)^{(1-x)}$$

- $p(x|\mu)$ is the plausibility of a probability μ
- Date $D = \{x_1 = 1, x_2 = 1, x_3 = 0, \ldots\}$
- Assume we knew μ then:

$$p(D|\mu) = \prod_{n=1}^N p(x_n|\mu) = \prod_{n=1}^N \mu^{x_n} (1-\mu)^{(1-x_n)}$$

Frequentist View: find the maximum of this

H₃ Find Maximum

- Differentiate $p(D|\mu)$ is difficult
- But it is easier to find the maximum of $\ln p(D|\mu)$ and if $\mu^* = rg \max_{\mu} f(\mu)$, then $\mu^* = rg \max_{\mu} \ln f(\mu)$

Using
$$f(x) = \prod_{n=1}^N [g(x)], \ln f(x) = \sum_{n=1}^N [\ln g(x)]$$

$$\ln p(D|\mu) = \sum_n [x_n \ln \mu + (1-x_n) \ln (1-\mu)]$$

Using $f(\mu)=x\ln\mu,rac{d}{d\mu}f=rac{x}{\mu}$

$$rac{d}{d\mu} \mathrm{ln}\, p(D|\mu) = \sum_{n=1}^N [rac{x_n}{\mu} - rac{1-x_n}{1-\mu}]$$

Let
$$rac{d}{d\mu} {\ln p(D|\mu)} = 0$$

$$\sum_{N} \left[\frac{x_n}{\mu} - \frac{1 - x_n}{1 - \mu} \right] = 0$$

$$\sum_{N} \frac{x_n}{\mu} = \sum_{N} \frac{1 - x_n}{1 - \mu}$$

$$\frac{1}{\mu} \sum_{N} x_n = \frac{1}{1 - \mu} \sum_{N} [1 - x_n]$$

$$\frac{1}{\mu} \sum_{N} x_n = \frac{N}{1 - \mu} - \frac{1}{1 - \mu} \sum_{N} x_n$$

$$\frac{1}{\mu (1 - \mu)} \sum_{N} x_n = \frac{N}{1 - \mu}$$

Maximiser:

$$\mu_{ML} = rac{\sum_N x_n}{N}$$

H₃ Terminology

- $p(D|\mu)$ is the **joint probability** of D
- $p(D|\mu)$ is also the **likelihood** of μ
- In $p(D|\mu)$ is the **log-likelihood** of μ
- ullet μ_{ML} Is the maximum-likelihood parameter
- As all $x_n \in D$ are drawn independently from the same distribution we say they are independent and identically distributed or i.i.d

H₃ Problems with Maximum-Likelihood

- If we got two heads, $\mu=1$ is yielded, but not sensible
- μ might not be a single answer
- ullet Insufficient data leads to uncertainty about μ
- Taking uncertainty into account leads to better reasoning

 $p(D|\mu)$ is not a probability distribution over μ as the area under the curve isn't 1

H2 Bayesian Variables: A Bayesian Approach

如何通俗理解Beta分布 - 知乎

 $posterior \propto likelihood \times prior$

Start with a prior distribution for μ . Here we use the uniform distribution. (F) 1 μ

Likelihood $p(1h|\mu)$ charts probability of a head given μ .

For each μ (pointwise) multiply $p(\mu)$ with $p(1h|\mu)$, then rescale (normalise) so the integral sums to 1. This is the posterior probability density.

The new prior is $p(\mu|1h)$ (the posterior from the previous toss).

Likelihood $p(1t|\mu)$ charts probability of a tail given μ .

Pointwise multiply prior and likelihood then renormalise to get the posterior.

Let's do it another 98 times:

After 53 heads and 47 tails we get a very sensible looking distribution, with a peak (and expectation) both at $\mu \approx 0.53$.

H2 The Beta Distribution

The beta distribution describes continuous random-variables in the range [0,1] and has the form:

$$Beta(\mu|a,b) = rac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{(a-1)} (1-\mu)^{(b-1)}$$

Note that: $\Gamma(n) = (n-1)! orall n \in \mathbb{N}^+$

Ignore the normalisation:

$$Beta(\mu|a,b) \propto \mu^{(a-1)} (1-\mu)^{(b-1)}$$

Mean:

$$E(\mu|a,b) = rac{a}{a+b}$$

Variance:

$$var(\mu|a,b)=rac{ab}{(a+b)^2(a+b+1)}$$

H₃ A Beta Prior

We choose a **Beta prior** $p(\mu)=Beta(\mu|a,b)=\mu^{(a-1)}(1-\mu)^{(b-1)}$ for our coin then observe m heads and l tails

For uncluttered notation, we sometimes wirte $p(\mu)=p(\mu|a,b)$

Using Bayes Theory our *posterior* looks like:

$$\begin{split} p(\mu|D) &\propto p(D|\mu)p(\mu) \\ &\propto \mu^m (1-\mu)^l \mu^{(a-1)} (1-\mu)^{(b-1)} \\ &= \mu^{(m+a-1)} (1-\mu)^{(l+b-1)} \end{split}$$

Once correctly *normalised*:

$$p(\mu|D) = Beta(\mu|m+a, l+b)$$

New observation added to the experience data

When our posterior takes the same form as the prior, then the prior is said to be *conjugate*

H₃ Conjugate Beta Priors

With Beta prior $Beta(\mu|a,b)$ we observe m heads and l tails.

Prior Estimate: $E[\mu|a,b]=rac{a}{a+b}$

Posterior Estimate: $E[\mu|a,b,m,l] = rac{a+m}{a+m+b+l}$

Recall that $\overline{Beta(\mu|a,b)} \propto \mu^{(a-1)}(1-\mu)^{(b-1)}$

- ullet Can interpret a and b as **effective prior observations**
- a=1 and b=1 give a **flat prior** ($p(\mu)$ constant)
- ullet a and b must be greater than 0
- ullet a and b don't necessarily need to be integers

H2 Reak Valued Data

Another form of data we deal with regularly is unbounded reals $(x_n \in \mathbb{R})$. Can often model this with a **Gaussian**:

- the Gaussian has many nice properties (as well will see)
- reasons to expect data to be (approximately) Gaussian
- a Gaussian prior can induce a Caussian posterior (conjugacy)
 - we can test data for its Gaussianity

H2 The Gaussian (Normal) Distribution

$$p(x|\mu,\sigma^2)=N(x|\mu,\sigma^2)=rac{1}{\sqrt{2\pi\sigma^2}}{
m exp}[-rac{1}{2\sigma^2}(x-\mu)^2]$$

for real values random samples $x_n \in \mathbb{R}$

Properties:

- $N(x|\mu,\sigma^2) > 0$ for $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} N(x|\mu,\sigma^2)dx = 1$
- $E[x] = \mu$
- $var[x] = \sigma^2$

H2 Gaussian Likelihood

If we draw N samples $\mathbf{x}=(x_1,\ldots,x_N)^T$ **i.i.d** from our Gaussian, e.g. $x_n\sim N(x|\mu,\sigma^2)$

The likelihood is:

$$egin{aligned} p(\mathbf{x}|\mu,\sigma^2) &= \prod_{n=1}^N N(x_n|\mu,\sigma^2) \ &= \prod_{n=1}^N [rac{1}{\sqrt{2\pi\sigma^2}} \exp[-rac{1}{2\sigma^2} (x_n - \mu)^2] \ &= (rac{1}{\sqrt{2\pi\sigma^2}})^N \exp[-\sum_{n=1}^N rac{1}{2\sigma^2} (x_n - \mu)^2] \ &= (rac{1}{\sqrt{2\pi\sigma^2}})^N \exp[-rac{1}{2\sigma^2} [\sum_n x_n^2 - \sum_n 2\mu x_n + N\mu^2]] \end{aligned}$$

Maximum likelihood parameters are a pair of values $\mu=\mu_{ML}, \sigma^2=\sigma_{ML}^2$ that maximises the likelihood.

Easier to find maximisers using log likelihood:

$$egin{aligned} & \ln p(\mathbf{x}|\mu,\sigma^2) = N \ln(rac{1}{\sqrt{2\pi\sigma^2}}) + \ln(\exp[-rac{1}{2\sigma^2}[\sum_n x_n^2 - \sum_n 2\mu x_n + N\mu^2]) \ & = -rac{N}{2} \ln(2\pi\sigma^2) - rac{1}{2\sigma^2}[\sum_n x_n^2 - \sum_n 2\mu x_n + N\mu^2] \ & = -rac{N}{2} \ln\sigma^2 - rac{N}{2} \ln(2\pi) - rac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 \end{aligned}$$

Differentiate $\ln p(\mathbf{x}|\mu,\sigma^2)$ and set to zero:

$$\begin{aligned} let \, \frac{d}{d\mu} \ln p(\mathbf{x}|\mu, \sigma^2) &= 0 \\ -\frac{1}{2\sigma^2} \sum_{n=1}^N [-2x_n + 2\mu] &= 0 \\ \sum_{n=1}^N \mu &= \sum_{n=1}^N x_n \\ \mu &= \frac{1}{N} \sum_{n=1}^N x_n \\ \frac{d}{d\sigma^2} \ln p(\mathbf{x}|\mu, \sigma^2) &= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=1}^N (x - M - \mu)^2 \\ let \frac{d}{d\sigma^2} \ln p(\mathbf{x}|\mu, \sigma^2) &= 0 \\ \frac{N}{2\sigma^2} &= \frac{1}{2\sigma^4} \sum_{n=1}^N (x_n - \mu)^2 \\ \sigma^2 &= \frac{1}{N} \sum_{n=1}^N (x_n - \mu)^2 \end{aligned}$$

 $rac{d}{d\mu} {
m ln}\, p({f x}|\mu,\sigma^2) = -rac{1}{2\sigma^2} \sum_{n=1}^N [-2x_n+2\mu]$

Thus

$$egin{aligned} \mu_{ML} &= rac{1}{N} \sum_{n=1}^{N} x_n \ \sigma_{ML}^2 &= rac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2 \end{aligned}$$

H2 Maximum Likelihood Curve Fitting

Why assume Gaussian? Gaussian Distribution is a convinient default assumption, it makes the maths easy

Like saying: $t = y(x; \mathbf{w}) + \epsilon$

where: $\epsilon \sim \mathcal{N}(.|0,\beta^{-1}).$

Using the curve fitting example from *Lecture 1*:

- ullet N inputs $\mathbf{x}=(x_1,\ldots,x_N)^T$
- N targets $\mathbf{t} = (t_1, \dots, t_N)^T$

Assume given x_i , then t_i **Gaussian** with mean $y(x_i; \mathbf{w})$ (a polynomial with weights \mathbf{w}), i.e.

$$p(t_i|x_i,\mathbf{w},eta) = N(t_i|y(x_i;\mathbf{w}),eta^{-1})$$

Note that : f(x; a, b, c) means x is the independent variable while a, b, c are the parameters

Where

$$y(x_i;\mathbf{w}) = \sum_{j=0}^M w_j x_i^j$$

In which M is the order of the hypothesis function.

eta is the **precision** (inverse variance), $eta^{-1}=\sigma^2$

Using $\{x, t\}$ to find the maximum likelihood parameters for w and β . The likelihood:

$$p(\mathbf{t}|\mathbf{x},\mathbf{w}) = \prod_{n=1}^N N(t_n|y(x_n;\mathbf{w}),eta^{-1})$$

Note that: for this Gaussian distribution, the mean is $y(x_n; \mathbf{w})$ and the variance β^{-1} , and random variable being t_n

$$\int \ln p(\mathbf{t}|\mathbf{x},\mathbf{w}) = -rac{eta}{2} \sum_{n=1}^N [y(x_n;\mathbf{w}) - t_n]^2 + rac{N}{2} \ln eta - rac{N}{2} \mathrm{ln}(2\pi)$$

which, for \mathbf{w} , is the same as minimising:

$$E(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N [y(x_n, \mathbf{w}) - t_n]^2$$

H3 Insights

- maximising likelihood (minimising error) gives \mathbf{w}_{ML} (independent of β)
- can then find β_{ML}
- now have predictive distribution for new samples t given x: $p(t|x,\mathbf{w}_{ML},\beta_{ML})=N(t|y(x;\mathbf{w}_{ML}),\beta_{ML}) \text{ , this measures uncertainty over } t$
- doesn't measure uncertainty in \mathbf{w} or β

H2 Gaussian: A More Bayesian View

H₃ Moving Towards a More Bayesian View

Assume samples $\mathbf{x} = (x_1, \dots, x_n)^T$ from $N(x_i | \mu, \sigma^2)$

- Assume we know the variance σ^2
- Define prior on $\mu, p(\mu)$
- But what shold the *prior* look like?

Likelihood:

$$egin{align} p(\mathbf{x}|\mu) &= \prod_{n=1}^N N(x_n|\mu,\sigma^2) \ &= rac{1}{\sqrt{2\pi\sigma^2}^N} \mathrm{exp}[-rac{1}{2\sigma^2} \sum_{n=1}^N (x_n-\mu)^2] \ \end{aligned}$$

Since the prior and the posterior should be conjugate

Using Bayes Rule, the posterior:

$$p(\mu|\mathbf{x}) \propto p(\mathbf{x}|\mu)p(\mu)$$

and the *likelihood* has form:

$$p(\mathbf{x}|\mu) \propto \exp[-rac{1}{2\sigma^2}\sum_{n=1}^N(x_n-\mu)^2]$$

This is an exponential that is (-ve) quadratic in μ since the index is $-rac{1}{2\sigma^2}[\sum_n x_n^2 - \sum_n 2\mu x_n + N\mu^2]$

So $p(\mu)$ should also have similar form:

$$egin{aligned} p(\mu) \propto \exp[-rac{(\mu-m_0)^2}{2s_0^2}] \ \propto N(\mu|m_0,s_0^2) \end{aligned}$$

From conjugacy, we know the *posterior* will also be Gaussian, so

$$p(\mu|\mathbf{x}) = N(\mu|m_N, s_N^2)$$

By working through the maths:

$$m_N = rac{\sigma^2}{N s_0^2 + \sigma^2} m_0 + rac{N s_0^2}{N s_0^2 + \sigma^2} \mu_{ML} \ rac{1}{s_N^2} = rac{1}{s_0^2} + rac{N}{\sigma^2}$$

where μ_{ML} is the **maximum likelihood mean** from before:

$$\mu_{ML} = rac{1}{N} \sum_{n=1}^N x_n$$

H₃ Insight

- ullet m_N is compromise between m_0 and μ_{ML}
- $\bullet~$ For large N , $\,m_N \approx \mu_{ML}$ (refer to $\it Lecture~1$)
- ullet Precisions, e.g. $rac{1}{\sigma^2}$, more natural than variance
- ullet For large N , variance of estimate vanishes, i.e. $s_N^2pprox 0$
- ullet As $s_0^2 o\infty$, then $s_N^2 orac{\sigma^2}{N}$

H2 Machine Learning Application

ullet So we are uncertain about μ

- Means we're uncertain about $p(x|\mu)$ a new x
- Posterior samples in green
- True $p(x|\mu)$ shown in black
- Remember: we know σ^2

- After observing 2 samples, we know more about μ
- Captured by $p(\mu|\mathbf{x})$

- Meaning we are a little more sure about $p(x|\mu)$
- $p(x|\mu_{\rm ML})$ shown in red

- Adding 3 more samples narrows our uncertainty about μ
- $p(\mu|\mathbf{x})$ more peaked around μ_{ML}

- ullet This makes us more certain about $p(x|\mu)$
- \bullet But there is still uncertainty not captured by $\mu_{\rm ML}$

- More certain now about $p(x|\mu)$ (and accurate)
- $\mu_{\rm ML}$ is closer to the true mean too

