

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2001 (19.04.2001)

PCT

(10) International Publication Number
WO 01/27284 A3

(51) International Patent Classification⁷: C12N 15/52, 15/53, 15/54, 15/61, 15/62, 9/04, 9/10, 9/90, C12P 19/62

(21) International Application Number: PCT/US00/27433

(22) International Filing Date: 5 October 2000 (05.10.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/158,305 8 October 1999 (08.10.1999) US
60/190,024 17 March 2000 (17.03.2000) US

(71) Applicant: KOSAN BIOSCIENCES, INC. [US/US]:
3832 Bay Center Place, Hayward, CA 94545 (US).

(72) Inventors: McDANIEL, Robert; Palo Alto, CA (US). VOLCHEGURKSY, Yanina; Emeryville, CA (US).

(74) Agent: FAVORITO, Carolyn, A.; Morrison & Foerster LLP, Suite 500, 3811 Valley Centre Drive, San Diego, CA 92130-2332 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

(88) Date of publication of the international search report:
28 February 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: RECOMBINANT MEGALOMICIN BIOSYNTHETIC GENES AND USES THEREOF

A

B

WO 01/27284 A3

(57) Abstract: Recombinant nucleic acid, e.g. DNA compounds that encode all or a portion of the megalomicin polyketide synthase and modification enzymes are used to express recombinant polyketide synthase genes in host cells for the production of megalomicin, megalomicin derivatives, and other polyketides that are useful as antibiotics, motilides, and antiparasitics.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 00/27433

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C12N15/52	C12N15/53	C12N15/54	C12N15/61	C12N15/62
	C12N9/04	C12N9/10	C12N9/90	C12P19/62	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal, WPI Data, PAJ, BIOSIS, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 23630 A (ABBOTT LAB) 3 July 1997 (1997-07-03) the whole document claims 1-22 figures 1-3	1-12,14, 18,19
X	WO 99 05283 A (MENDEZ CARMEN ; SALAS JOSE A (ES); RAYNAL MARIE CECILE (FR); FROMEN) 4 February 1999 (1999-02-04) the whole document claims 1-41	1-12,14, 18,19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

13 June 2001

Date of mailing of the international search report

09/07/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

van de Kamp, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/27433

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SUMMERS R G ET AL.: "Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of <i>Saccharopolyspora erythraea</i> that are involved in L-mycarose and D-desosamine production" MICROBIOLOGY, vol. 143, 1 October 1997 (1997-10-01), pages 3251-3262, XP002061260 cited in the application abstract page 3253, right-hand column, line 47 -page 3253, left-hand column, line 19 figures 1-6; table 1	1-12,14, 18,19
X	OLANO C ET AL.: "Analysis of a <i>Streptomyces antibioticus</i> chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring" MOLECULAR AND GENERAL GENETICS, vol. 259, no. 3, 1 August 1998 (1998-08-01), pages 299-308, XP002096258 cited in the application abstract page 300, right-hand column, line 46 -page 301, left-hand column, line 17 figures 1,2	1,5-12, 19
X	XUE Y ET AL.: "A gene cluster for macrolide antibiotic biosynthesis in <i>Streptomyces venezuelae</i> : architecture of metabolic diversity" PROC. NATL. ACAD. SCI. USA, vol. 95, October 1998 (1998-10), pages 12111-12116, XP002166926 .cited in the application abstract page 12113, left-hand column, line 4-24 figures 1,2; tables 1,2	1,5-12, 19
X	OTTEN S L ET AL.: "Cloning and characterization of the <i>Streptomyces peucetius</i> dmnZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine" JOURNAL OF BACTERIOLOGY, vol. 179, no. 13, July 1997 (1997-07), pages 4446-4450, XP002166927 abstract figure 1; table 1	1,5-12, 19

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/27433

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	OTTEN S L ET AL.: "Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis" JOURNAL OF BACTERIOLOGY, vol. 177, no. 22, November 1995 (1995-11), pages 6688-6692, XP002166928 abstract figure 1	1,5-12, 19
X	TORKKELL S ET AL.: "Characterization of Streptomyces nogalater genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis" MOLECULAR AND GENERAL GENETICS, vol. 256, no. 2, September 1997 (1997-09), pages 203-209, XP002166929 cited in the application abstract figure 1	1,5-12, 19
A	SWAN D G ET AL.: "Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence" MOLECULAR AND GENERAL GENETICS, vol. 242, no. 3, 1994, pages 358-362, XP002087278 cited in the application abstract page 358, right-hand column, line 5 -page 361, left-hand column, line 18	1,9
Y	US 3 819 611 A (WEINSTEIN M ET AL) 25 June 1974 (1974-06-25) the whole document	1-12,14, 18-20
Y	MALPARTIDA F ET AL: "Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes" NATURE, vol. 325, 26 February 1987 (1987-02-26), pages 818-821, XP002075972 abstract	1-12,14, 18-20
A	NAKAGAWA A ET AL.: "Structure and stereochemistry of macrolides" MACROLIDE ANTIBIOTICS. OMURA S (ED.). PUBLISHER: ACADEMIC, ORLANDO, FLORIDA, 1984, pages 37-84, XP001006199 page 46, line 25 -page 48, line 4	
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/27433

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	LEONARD KATZ: "Manipulation of modular polyketide synthases" CHEMICAL REVIEWS, vol. 97, no. 7, 1997, pages 2557-2575, XP002103748 the whole document —	1-12, 14, 18, 19
A	LIU H -W ET AL: "Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria" ANNUAL REVIEW OF MICROBIOLOGY, vol. 48, 1994, pages 223-256, XP002061259 page 234, line 24 -page 237, line 9; figures 8,9 —	1, 5-12, 19
A	CARRERAS C W ET AL.: "Engineering of modular polyketide synthases to produce novel polyketides" CURRENT OPINION IN BIOTECHNOLOGY, vol. 9, no. 4, August 1998 (1998-08), pages 403-411, XP000993508 the whole document —	14, 18
A	HUTCHINSON C R: "Combinatorial biosynthesis for new drug discovery" CURRENT OPINION IN MICROBIOLOGY, vol. 1, no. 3, June 1998 (1998-06), pages 319-329, XP000993550 the whole document —	14, 18
A	MCDANIEL R ET AL.: "Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel unnatural natural products" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 96, 1999, pages 1846-1851, XP000910246 cited in the application abstract —	14, 18
P, X	VOLCHEGURSKY Y ET AL.: "Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in <i>Saccharopolyspora erythrea</i> " MOLECULAR MICROBIOLOGY, vol. 37, no. 4, August 2000 (2000-08), pages 752-762, XP002166930 the whole document —	1-6, 8-13, 18-20
P, X	WO 00 00500 A (LEADLAY PETER FRANCIS ;CORTES JESUS (GB); STAUNTON JAMES (GB); BIO) 6 January 2000 (2000-01-06) claim 24 —	14
		-/-

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 00/27433

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 00 63361 A (KOSAN BIOSCIENCES INC) 26 October 2000 (2000-10-26) page 9, line 3-9 page 14, line 26 -page 16, line 2 claim 3 _____	1-13, 18-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/27433

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9723630	A 03-07-1997	US 5998194 A			07-12-1999
		EP 0874548 A			04-11-1998
		JP 2000502899 T			14-03-2000
WO 9905283	A 04-02-1999	FR 2766496 A			29-01-1999
		FR 2786200 A			26-05-2000
		EP 1032679 A			06-09-2000
US 3819611	A 25-06-1974	BE 715638 A			25-11-1968
		CA 931891 A			14-08-1973
		CH 534206 A			28-02-1973
		CS 157635 B			16-09-1974
		DE 1767565 A			14-10-1971
		DK 123422 B			19-06-1972
		ES 354296 A			16-10-1969
		FI 46519 B			02-01-1973
		FR 8066 M			06-07-1970
		GB 1229835 A			28-04-1971
		IE 31918 B			07-02-1973
		IL 30067 A			28-09-1972
		LU 56131 A			11-09-1968
		NL 6807363 A			27-11-1968
		NO 128225 B			15-10-1973
		OA 4027 A			15-09-1979
		SE 349323 B			25-09-1972
WO 0000500	A 06-01-2000	AU 4524599 A			17-01-2000
		AU 4524799 A			17-01-2000
		BR 9911710 A			20-03-2001
		BR 9911712 A			20-03-2001
		EP 1091971 A			18-04-2001
		EP 1090123 A			11-04-2001
		WO 0000618 A			06-01-2000
WO 0063361	A 26-10-2000	AU 4241800 A			02-11-2000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2001 (19.04.2001)

PCT

(10) International Publication Number
WO 01/27284 A2

- (51) International Patent Classification⁷: **C12N 15/52, 15/53, 15/54, 15/61, 15/62, 9/04, 9/10, 9/90, C12P 19/62**
- (21) International Application Number: **PCT/US00/27433**
- (22) International Filing Date: **5 October 2000 (05.10.2000)**
- (25) Filing Language: **English**
- (26) Publication Language: **English**
- (30) Priority Data:
 60/158,305 8 October 1999 (08.10.1999) US
 60/190,024 17 March 2000 (17.03.2000) US
- (71) Applicant: **KOSAN BIOSCIENCES, INC. [US/US]; 3832 Bay Center Place, Hayward, CA 94545 (US).**
- (72) Inventors: **MCDANIEL, Robert; Palo Alto, CA (US). VOLCHEGURKSY, Yanina; Emeryville, CA (US).**
- (74) Agents: **CHEN, Peng et al.; Morrison & Foerster LLP, 12636 High Bluff Drive, Suite 300, San Diego, CA 92130-2071 (US).**
- (81) Designated States (national): **AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.**
- (84) Designated States (regional): **ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).**

Published:

— *Without international search report and to be republished upon receipt of that report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: RECOMBINANT MEGALOMICIN BIOSYNTHETIC GENES AND USES THEREOF

WO 01/27284 A2

(57) Abstract: Recombinant nucleic acid, e.g DNA compounds that encode all or a portion of the megalomicin polyketide synthase and modification enzymes are used to express recombinant polyketide synthase genes in host cells for the production of megalomicin, megalomicin derivatives, and other polyketides that are useful as antibiotics, motilides, and antiparasitics.

Title**Recombinant Megalomicin Biosynthetic Genes And Uses Thereof**Cross-Reference to Priority Application

5 This application claims priority to provisional U.S. patent application Serial No. 60/158,305, filed 8 October 1999, and provisional U.S. patent application Serial No. 60/190,024, filed 17 March 2000 under 35 U.S.C. § 119(e). The content of the above referenced applications is incorporated herein by reference in its entirety.

10

Field of the Invention

The present invention provides recombinant methods and materials for producing polyketides by recombinant DNA technology. The invention relates to
15 the fields of agriculture, animal husbandry, chemistry, medicinal chemistry, medicine, molecular biology, pharmacology, and veterinary technology.

Background of the Invention

Polyketides represent a large family of diverse compounds synthesized
20 from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi and mycelial bacteria, in particular, the actinomycetes. There are a wide variety of polyketide structures, and the class of polyketides encompasses numerous compounds with diverse activities. Erythromycin, FK-506, FK-520, megalomicin,
25 narbomycin, oleandomycin, picromycin, rapamycin, spinocyn, and tylosin are examples of such compounds. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds. See PCT publication Nos. WO 93/13663; WO 95/08548; WO 96/40968; WO 97/02358;
30 and WO 98/27203; United States Patent Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; and 5,712,146; Fu *et al.*, 1994, *Biochemistry* 33: 9321-9326; McDaniel *et al.*, 1993, *Science* 262: 1546-1550; and Rohr, 1995, *Angew.*

Chem. Int. Ed. Engl. 34(8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by polyketide synthase (PKS) enzymes. These enzymes, which are complexes of multiple large proteins, are 5 similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKS enzymes are encoded by PKS genes that usually consist of three or more open reading frames (ORFs). Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis. These two major types of PKS enzymes are commonly referred to as Type I or 10 "modular" and Type II "iterative" PKS enzymes.

Modular PKSs are responsible for producing a large number of 12-, 14-, and 16-membered macrolide antibiotics including erythromycin, megalomicin, methymycin, narbomycin, oleandomycin, picromycin, and tylosin. Each ORF of a modular PKS can comprise one, two, or more "modules" of ketosynthase activity, 15 each module of which consists of at least two (if a loading module) and more typically three (for the simplest extender module) or more enzymatic activities or "domains." These large multifunctional enzymes (>300,000 kDa) catalyze the biosynthesis of polyketide macrolactones through multistep pathways involving decarboxylative condensations between acyl thioesters followed by cycles of 20 varying β-carbon processing activities (see O'Hagan, D. *The polyketide metabolites*; E. Horwood: New York, 1991, incorporated herein by reference).

During the past half decade, the study of modular PKS function and specificity has been greatly facilitated by the plasmid-based *Streptomyces coelicolor* expression system developed with the 6-deoxyerythronolide B (6-dEB) 25 synthase (DEBS) genes (see Kao *et al.*, 1994, *Science*, 265: 509-512, McDaniel *et al.*, 1993, *Science* 262: 1546-1557, and U.S. Patent Nos. 5,672,491 and 5,712,146, each of which is incorporated herein by reference). The advantages to this plasmid-based genetic system for DEBS are that it overcomes the tedious and limited techniques for manipulating the natural DEBS host organism, 30 *Saccharopolyspora erythraea*, allows more facile construction of recombinant PKSs, and reduces the complexity of PKS analysis by providing a "clean" host background. This system also expedited construction of the first combinatorial

modular polyketide library in *Streptomyces* (see PCT publication No. WO 98/49315, incorporated herein by reference).

The ability to control aspects of polyketide biosynthesis, such as monomer selection and degree of β-carbon processing, by genetic manipulation of PKSs has 5 stimulated great interest in the combinatorial engineering of novel antibiotics (see Hutchinson, 1998, *Curr. Opin. Microbiol.* 1: 319-329; Carreras and Santi, 1998, *Curr. Opin. Biotech.* 9: 403-411; and U.S. Patent Nos. 5,712,146 and 5,672,491, each of which is incorporated herein by reference). This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that 10 encode PKS enzymes. The resulting technology allows one to manipulate a known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known 15 PKS gene clusters.

Megalomicin is a macrolide antibiotic produced by *Micromonospora megalomicea*, a member of the Actinomycetales family of soil bacteria that produces many types of biologically active compounds. Megalomicin is a glycoside of erythromycin A, a widely used antibacterial drug with little or no 20 antimarial activity. Megalomicin has antibacterial properties similar to those of erythromycin, and in 1998, it was discovered also to have potent antiparasitic activity and low toxicity. The antiparasitic activity may be related to the effect megalomicin has on protein trafficking in eukaryotes, where it appears to inhibit vesicular transport between the medial and trans-Golgi, resulting in under- 25 sialylation of proteins. Hence, megalomicin offers an exciting opportunity to develop a new class of antiparasitic drugs with a different mechanism of action than the drugs currently in use and, therefore, possibly active against drug-resistant forms of *Plasmodium falciparum*.

The number and diversity of megalomicin derivatives have been limited 30 due to the inability to manipulate the PKS genes, which have not previously been available in recombinant form. Genetic systems that allow rapid engineering of the megalomicin biosynthetic genes would be valuable for creating novel compounds for pharmaceutical, agricultural, and veterinary applications. The production of

such compounds could be more readily accomplished if the heterologous expression of the megalomicin biosynthetic genes in *Streptomyces coelicolor* and *S. lividans* and other host cells were possible. The present invention meets these and other needs.

5

Summary of the Invention

- The present invention provides recombinant methods and materials for expressing PKS enzymes and polyketide modification enzymes derived in whole and in part from the megalomicin biosynthetic genes in recombinant host cells.
- 10 The invention also provides the polyketides produced by such PKS enzymes. The invention provides in recombinant form all of the genes for the proteins that constitute the complete PKS that ultimately results, in *Micromonospora megalomicea*, in the production of megalomicin. Thus, in one embodiment, the invention is directed to recombinant materials comprising nucleic acids with
- 15 nucleotide sequences encoding at least one domain, module, or protein encoded by a megalomicin PKS gene. In one preferred embodiment of the invention, the DNA compounds of the invention comprise a coding sequence for at least one and preferably two or more of the domains of the loading module and extender modules 1 through 6, inclusive, of the megalomicin PKS.
- 20 In one embodiment, the invention provides a recombinant expression vector that comprises a heterologous promoter positioned to drive expression of one or more of the megalomicin biosynthetic genes. In a preferred embodiment, the promoter is derived from another PKS gene. In a related embodiment, the invention provides recombinant host cells comprising one or more expression vectors that produce(s) megalomicin or a megalomicin derivative or precursor. In a preferred embodiment, the host cell is *Streptomyces lividans* or *S. coelicolor*.
- 25 In another embodiment, the invention provides a recombinant expression vector that comprises a promoter positioned to drive expression of a hybrid PKS comprising all or part of the megalomicin PKS and at least a part of a second PKS.
- 30 In a related embodiment, the invention provides recombinant host cells comprising the vector that produces the hybrid PKS and its corresponding polyketide. In a preferred embodiment, the host cell is *Streptomyces lividans* or *S. coelicolor*.

In a related embodiment, the invention provides recombinant materials for the production of libraries of polyketides wherein the polyketide members of the library are synthesized by hybrid PKS enzymes of the invention. The resulting polyketides can be further modified to convert them to other useful compounds, 5 such as antibiotics, motilides, and antiparasitics, typically through hydroxylation and/or glycosylation. Modified macrolides provided by the invention that are useful intermediates in the preparation of antiparasitics are of particular benefit.

In another related embodiment, the invention provides a method to prepare a nucleic acid that encodes a modified PKS, which method comprises using the 10 megalomicin PKS encoding sequence as a scaffold and modifying the portions of the nucleotide sequence that encode enzymatic activities, either by mutagenesis, inactivation, deletion, insertion, or replacement. The thus modified megalomicin PKS encoding nucleotide sequence can then be expressed in a suitable host cell and the cell employed to produce a polyketide different from that produced by the 15 megalomicin PKS. In addition, portions of the megalomicin PKS coding sequence can be inserted into other PKS coding sequences to modify the products thereof.

In another related embodiment, the invention is directed to a multiplicity of cell colonies, constituting a library of colonies, wherein each colony of the library contains an expression vector for the production of a modular PKS derived in 20 whole or in part from the megalomicin PKS. Thus, at least a portion of the modular PKS is identical to that found in the PKS that produces megalomicin and is identifiable as such. The derived portion can be prepared synthetically or directly from DNA derived from organisms that produce megalomicin. In addition, the invention provides methods to screen the resulting polyketide and 25 antibiotic libraries.

The invention also provides novel polyketides, motilides, antibiotics, antiparasitics and other useful compounds derived therefrom. The compounds of the invention can also be used in the manufacture of another compound. In a preferred embodiment, the compounds of the invention are formulated in a 30 mixture or solution for administration to an animal or human.

In a specific embodiment, the invention provides an isolated nucleic acid fragment comprising a nucleotide sequence encoding a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme. The isolated

nucleic acid fragment can be a DNA or a RNA. Preferably, the isolated nucleic acid fragment is a recombinant DNA compound.

- The isolated nucleic acid fragment can comprise a single, multiple or all the open reading frame(s) (ORF) of the megalomicin PKS or a megalomicin modification enzyme. Exemplary ORFs of megalomicin PKS include the ORFs of the *megAI*, *megAII* and *megAIII* genes. The isolated nucleic acid fragment can also encode a single, multiple, or all of the domains of the megalomicin PKS. Exemplary domains of the megalomicin PKS include a TE domain, a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain and an ER domain.
- 10 In a preferred embodiment, the nucleic acid fragment encodes a module of the megalomicin PKS. In another preferred embodiment, the nucleic acid fragment encodes the loading module, a thioesterase domain, and all six extender modules of the megalomicin PKS.

Megalomicin modification enzymes include those enzymes involved in the conversion of 6-dEB into a megalomicin such as the enzymes encoded by the *megF*, *megBV*, *megCIII*, *megK*, *megDI* and *megG* (renamed *megY*) genes. Megalomicin modification enzymes also include those enzymes involved in the biosynthesis of mycarose, megosamine or desosamine, which are used as biosynthetic intermediates in the biosynthesis of various megalomicin species and other related polyketides. The enzymes that are involved in biosynthesis of mycarose, megosamine or desosamine are described in Figures 5 and 10.

In a preferred embodiment, the invention provides an isolated nucleic acid fragment which hybridizes to a nucleic acid having a nucleotide sequence set forth in the SEQ. ID NO:1, under low, medium or high stringency. More preferably, the nucleic acid fragment comprises, consists or consists essentially of a nucleic acid having a nucleotide sequence set forth in the SEQ. ID NO:1.

In another specific embodiment, the invention provides a substantially purified polypeptide, which is encoded by a nucleic acid fragment comprising a nucleotide sequence encoding a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme. The polypeptide can comprise a single domain, multiple domains or a full-length megalomicin PKS or megalomicin modification enzyme. Functional fragments, analogs or derivatives of the megalomicin PKS or megalomicin modification enzyme polypeptides are

also provided. Preferably, such fragments, analogs or derivatives can be recognized by an antibody raised against a megalomicin PKS or megalomicin modification enzyme. Also preferably, such fragments, analogs or derivatives comprise an amino acid sequence that has at least 60% identity, more preferably at least 90% identity, to their wild type counterparts.

5 In still another specific embodiment, the invention provides an antibody, or a fragment or derivative thereof, which immuno-specifically binds to a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme. The antibody can be a monoclonal or polyclonal antibody or an antibody fragment. 10 Preferably, the antibody is a monoclonal antibody.

In yet another specific embodiment, the invention provides a recombinant DNA expression vector comprising the recombinant DNA compound encoding at least a domain of the megalomicin PKS or a megalomicin modification enzyme; wherein said domain is operably linked to a promoter. Preferably, the 15 recombinant DNA expression vector further comprises an origin of replication or a segment of DNA that enables chromosomal integration.

In yet another specific embodiment, the invention provides a recombinant host cell comprising the above-described recombinant DNA expression vector encoding at least a domain of megalomicin PKS or the megalomicin modification 20 enzyme. The recombinant host cells can be any suitable host cells including animal, mammalian, plant, fungal, yeast, and bacterial cells. Preferably, the recombinant host cells are *Streptomyces* cells, such as *Streptomyces lividans* and *S. coelicolor* cells, or *ccharopolyspora* cells, such as *Saccharopolyspora erythraea* cells. Also preferably, the recombinant host cells do not produce megalomicin in 25 their untransformed, non-recombinant state.

When the recombinant host cell contains nucleic acid encoding more than one megalomicin PKS or megalomicin modification enzyme, or domains thereof, such nucleic acid material can be located at a single genetic locus, e.g., on a single plasmid or at a single chromosomal locus, or at different genetic loci, e.g., on 30 separate plasmids and/or chromosomal loci. In one example, the invention provides a recombinant host cell, which comprises at least two separate autonomously replicating recombinant DNA expression vectors, and each of said vectors comprises a recombinant DNA compound encoding a megalomicin PKS

- domain or a megalomicin modification enzyme operably linked to a promoter. In another example, the invention provides a recombinant host cell, which comprises at least one autonomously replicating recombinant DNA expression vector and at least one modified chromosome, each of said vector(s) and each of said modified
- 5 chromosome comprises a recombinant DNA compound encoding a megalomicin PKS domain or a megalomicin modification enzyme operably linked to a promoter. Preferably, the autonomously replicating recombinant DNA expression vector and/or the modified chromosome further comprises distinct selectable markers.
- 10 In a preferred embodiment, the cell comprises three different vectors, one of which is integrated into the chromosome and two of which are autonomously replicating, and each of the vectors comprises a *meg* PKS gene. Optionally, one or more of the *meg* PKS genes contains one or more domain alterations, such as a deletion or substitution of a meg PKS domain with a domain from another PKS.
- 15 In yet another specific embodiment, the invention provides a hybrid PKS, which is produced from a recombinant gene that comprises at least a portion of a megalomicin PKS gene and at least a portion of a second PKS gene for a polyketide other than megalomicin. For example, and without limitation, the second PKS gene can be a narbonolide PKS gene, an oleandolide PKS gene, or a
- 20 rapamycin PKS gene. In one embodiment, the hybrid PKS is composed of a loading module and six extender modules, wherein at least one domain of any one of extender modules 1 through 6, inclusive, is a domain of an extender module of megalomicin PKS. In another preferred embodiment, the hybrid PKS comprises a megalomicin PKS that has a non-functional KS domain in module 1.
- 25 In yet another specific embodiment, the invention provides a method of producing a polyketide, which method comprises growing the recombinant host cell comprising a recombinant DNA expression vector encoding at least a domain of the megalomicin PKS or a megalomicin modification enzyme under conditions whereby the megalomicin PKS domain or the megalomicin modification enzyme comprised by the recombinant expression vector is produced and the polyketide is synthesized by the cell, and recovering the synthesized polyketide. Preferably, the recombinant host cell comprises a recombinant expression vector that encodes at
- 30 least a portion of a *megA1*, *megAII*, or *megAIII* gene.

These and other embodiments of the invention are described in more detail in the following description, the examples, and claims set forth below.

Brief Description of the Figures

5 Figure 1 shows restriction site and function maps of the insert DNA in cosmids pKOS079-138B, pKOS079-93D, pKOS079-93A, and pKOS079-124B of the invention. Various restriction sites (*Xba*I, *Bgl*II, *Nsi*I) are also shown. The location of the megalomicin biosynthetic genes is shown below the solid lines indicating the cosmid inserts. The genes are shown as arrows pointing in the 10 direction of transcription. The approximate size (in kilobase (kb) pairs) of the gene cluster is indicated in 5000 bp (i.e., 5K, 10K, and the like.) increments on a solid bar beneath the arrows indicating the genes.

15 Figure 2 shows a more detailed map of the megalomicin biosynthetic gene cluster. The various open reading frames are shown as arrows pointing in the direction of transcription. A line indicates the size in base pairs (in 1000 bp increments) of the gene cluster. The various domains of the megalomicin PKS are also shown. Other genes of the megalomicin biosynthetic gene cluster not shown in this Figure are located in the insert DNA of cosmids pKOS0138B and pKOS0124B.

20 Figure 3 shows the structures of the megalomicins, azithromycin and erythromycin A.

Figure 4 shows the modules and domains of DEBS and the megalomicin PKS.

25 Figure 5 shows the compounds and reactions in the erythromycin biosynthetic pathway and also for megalomicin biosynthesis. Genes that produce the various enzymes that catalyze each of the steps in the biosynthetic pathway are indicated.

30 Figure 6 shows the biosynthetic pathway for the formation of desosamine, rhodosamine, and mycarose, as well as the genes that produce the various enzymes that catalyze each of the steps in the biosynthetic pathway.

Figure 7 depicts nucleotide and amino acid sequence of *Micromonospora megalomicea* megalomicin biosynthetic genes (GenBank Accession No. AF263245, incorporated herein by reference).

Figure 8 depicts the biosynthesis of the erythromycins and megalomicins and the enzymes that mediate the biosynthesis of each.

Figure 9 depicts the cloned megalomicin biosynthetic gene cluster and certain cosmids of the invention that comprise portions of the cluster.

5 Figure 10 depicts the biosynthesis of megosamine, mycarose, and desosamine.

Detailed Description of the Invention

The present invention provides useful compounds and methods for
10 producing polyketides in recombinant host cells. As used herein, the term recombinant refers to a compound or composition produced by human intervention. The invention provides recombinant DNA compounds encoding all or a portion of the megalomicin biosynthetic genes. The invention provides recombinant expression vectors useful in producing the megalomicin PKS and
15 hybrid PKSs composed of a portion of the megalomicin PKS in recombinant host cells. The invention also provides the polyketides produced by the recombinant PKS and polyketide modification enzymes.

To appreciate the many and diverse benefits and applications of the invention, the description of the invention below is organized as follows. In
20 Section I, common definitions used throughout this application are provided. In Section II, structural and functional characteristics of megalomicin are described. In Section III, the recombinant megalomicin biosynthetic genes and other recombinant nucleic acids provided by the invention are described. In Section IV, polypeptides and proteins encoded by the megalomicin biosynthetic genes and
25 antibodies that specifically bind to such polypeptides and proteins provided by the invention are described. In Section V, methods for heterologous expression of the megalomicin biosynthetic genes provided by the invention are described. In Section VI, the hybrid PKS genes provided by the invention are described. In Section VII, host cells containing multiple megalomicin biosynthetic genes and
30 nucleic acid fragments on separate express vectors provided by the invention are described. In Section VIII, the polyketide compounds provided by the invention and pharmaceutical compositions of those compounds are described. The detailed description is followed by working examples illustrating the invention.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other data bases referred to herein are incorporated by reference in their entirety.

Section I. Definitions

As used herein, domain refers to a portion of a molecule, e.g., proteins or nucleic acids, that is structurally and/or functionally distinct from another portion of the molecule.

As used herein, antibody includes antibody fragments, such as Fab fragments, which are composed of a light chain and the variable region of a heavy chain.

As used herein, biological activity refers to the *in vivo* activities of a compound or physiological responses that result upon *in vivo* administration of a compound, composition or other mixture. Biological activity, thus, encompasses therapeutic effects and pharmaceutical activity of such compounds, compositions and mixtures. Biological activities may be observed in *in vitro* systems designed to test or use such activities.

As used herein, a combination refers to any association between two or among more items.

As used herein, a composition refers to any mixture. It may be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.

As used herein, derivative or analog of a molecule refers to a portion derived from or a modified version of the molecule.

As used herein, operably linked, operatively linked or operationally associated refers to the functional relationship of DNA with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For example, operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes,

binds to and transcribes the DNA. To optimize expression and/or *in vitro* transcription, it may be helpful to remove, add or alter 5' untranslated portions of the clones to eliminate extra, potentially inappropriate alternative translation initiation (*i.e.*, start) codons or other sequences that may interfere with or reduce expression, either at the level of transcription or translation. Alternatively, 5 consensus ribosome binding sites (see, *e.g.*, Kozak, *J. Biol. Chem.*, 266:19867-19870 (1991)) can be inserted immediately 5' of the start codon and may enhance expression. The desirability of (or need for) such modification may be empirically determined.

10 As used herein, pharmaceutically acceptable salts, esters or other derivatives of the conjugates include any salts, esters or derivatives that may be readily prepared by those of skill in this art using known methods for such derivatization and that produce compounds that may be administered to animals or humans without substantial toxic effects and that either are pharmaceutically active or are prodrugs.

15 As used herein, a promoter region or promoter element refers to a segment of DNA or RNA that controls transcription of the DNA or RNA to which it is operatively linked. The promoter region includes specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. 20 This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of RNA polymerase. These sequences may be *cis* acting or may be responsive to *trans* acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

25 As used herein: stringency of hybridization in determining percentage mismatch is as follows: (1) high stringency: 0.1 x SSPE, 0.1% SDS, 65°C; (2) medium stringency: 0.2 x SSPE, 0.1% SDS, 50°C; and (3) low stringency: 1.0 x SSPE, 0.1% SDS, 50°C. Equivalent stringencies may be achieved using alternative buffers, salts and temperatures.

The term substantially identical or homologous or similar varies with the context as understood by those skilled in the relevant art and generally means at least 70%, preferably means at least 80%, more preferably at least 90%, and most preferably at least 95% identity.

5 As used herein, substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.

As used herein, isolated means that a substance is either present in a preparation at a concentration higher than that substance is found in nature or in its 10 naturally occurring state or that the substance is present in a preparation that contains other materials with which the substance is not associated with in nature. As an example of the latter, an isolated meg PKS protein includes a meg PKS protein expressed in a *Streptomyces coelicolor* or *S. lividans* host cell.

As used herein, substantially pure means sufficiently homogeneous to 15 appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and 20 biological activities, of the substance. Methods for purification of the compounds to produce substantially chemically pure compounds are known to those of skill in the art. A substantially chemically pure compound may, however, be a mixture of stereoisomers or isomers. In such instances, further purification might increase the specific activity of the compound.

As used herein, vector or plasmid refers to discrete elements that are used to introduce heterologous DNA into cells for either expression or replication thereof. Selection and use of such vehicles are well known within the skill of the artisan. An expression vector includes vectors capable of expressing DNAs that

5 are operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are

10 well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.

Section II. Megalomicins

15 The megalomicins were discovered in 1969 at Schering Corp. as antibacterial agents produced by *Micromonospora megalomicea* (see Weinstein *et al.*, 1969, *J. Antibiotics* 22: 253-258, and U.S. Patent No. 3,632,750, both of which are incorporated herein by reference). Although the initial structural assignment was in error, a thorough reassessment of NMR data coupled with an

20 X-ray crystal structure of a megalomicin A derivative (see Nakagawa and Omura, "Structure and Stereochemistry of Macrolides" in *Macrolide Antibiotics* (S. Omura, ed.), Academic Press, NY, 1984, incorporated herein by reference) established the structures shown in Figure 3. The megalomicins are 6-*O*-glycosides of erythromycin C with acetyl or propionyl groups esterified at the 3''' or 4''' hydroxyls of the mycarose sugar at the C-3-position. The C-6 sugar has been named "megosamine," although it had been identified 5 to 10 years earlier as L-rhodosamine or *N*-dimethyldaunosamine, deoxyamino sugars commonly present in the anthracycline antitumor drugs. The antibacterial potency, spectrum of activity, and toxicity (LD₅₀ acute, 7-7.5 g/kg s.c. or oral; subacute, >500 mg/kg) of

25 30 the megalomicins is similar to that of erythromycin A.

The megalomicins have two modes of biological activity. As antibacterials, they act like the erythromycins, which inhibit protein synthesis at the translocation step by selective binding to the bacterial 50S ribosomal RNA. They also affect

protein trafficking in eukaryotic cells (see Bonay *et al.*, 1996, *J. Biol. Chem.* 271:3719-3726, incorporated herein by reference). Although the mechanism of action is not entirely clear, it appears to involve inhibition of vesicular transport between the medial and trans Golgi, resulting in under-sialylation of proteins. The 5 megalomicins also strongly inhibit the ATP-dependent acidification of lysosomes *in vivo* (see Bonay *et al.*, 1997, *J. Cell. Sci.* 110:1839-1849, incorporated herein by reference) and cause an anomalous glycosylation of viral proteins, which may be responsible for their antiviral activity against herpes (Tox₅₀, 70-100 µM; see Alarcon *et al.*, 1984, *Antivir. Res.* 4:231-243, and Alarcon *et al.*, 1988, *FEBS Lett.* 231:207-211, both of which are incorporated herein by reference).

Strikingly, the megalomicins are potent antiparasitic agents, showing an IC₅₀ of 1 µg/ml in blocking intracellular replication of *Plasmodium falciparum* infected erythrocytes (see Bonay *et al.*, 1998, *Antimicrob. Agents Chemother.* 42:2668-2673, incorporated herein by reference). The megalomicins are effective 15 against *Trypanosoma cruzi* and *T. brucei* (IC₅₀, 0.2-2 µg/ml) plus *Leishmania donovani* and *L. major* promastigotes (IC₅₀, 3 and 8 µg/ml, respectively). Megalomicin is also active against the intracellular replicative, amastigote form of *T. cruzi*, completely preventing its replication in infected murine LLC/MK2 20 macrophages at a dose of 5 µg/ml. Importantly, the effective drug concentration is 500-fold less than the acute LD₅₀ in mammals, and there is no toxicity to BALB/c mice at doses (50 mg/kg) that are completely curative for *T. brucei* infections. Because the erythromycins do not have such activity, although azithromycin (Figure 3) has been reported to be an effective acute and prophylactic treatment for 25 malaria caused by *P. vivax* and *P. falciparum* (see Taylor *et al.*, 1999, *Clin. Infect. Dis.* 28:74-81, incorporated herein by reference), the antiparasitic action of the megalomicins is unique and probably related to the presence of the deoxyamino sugar megosamine at C-6 (Figure 3). Consequently, the megalomicins could be developed into potent antimalarial drugs with a high therapeutic index and be active against *P. falciparum* and other species that are resistant to currently used 30 classes of antimalarials. They also could lead to potent antiparasitic agents against leishmaniasis, trypanosomiasis, and Chagas' disease. In view of the widespread use of the erythromycins and their good oral availability plus the low mammalian toxicity of macrolides in general, the megalomicins could be used prophylactically

to combat malaria, and as fermentation products, the megalomicins should be relatively inexpensive to produce.

The megalomicins belong to the polyketide class of natural products whose members have diverse structural and pharmacological properties (see Monaghan and Tkacz, 1990, *Annu. Rev. Microbiol.* 44: 271, incorporated herein by reference). The megalomicins are assembled by polyketide synthases through successive condensations of activated coenzyme-A thioester monomers derived from small organic acids such as acetate, propionate, and butyrate. Active sites required for condensation include an acyltransferase (AT), acyl carrier protein (ACP), and beta-ketoacyl synthase (KS). Each condensation cycle results in a β -keto group that undergoes all, some, or none of a series of processing activities. Active sites that perform these reactions include a ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). Thus, the absence of any beta-keto processing domain results in the presence of a ketone, a KR alone gives rise to a hydroxyl, a KR and DH result in an alkene, while a KR, DH, and ER combination leads to complete reduction to an alkane. After assembly of the polyketide chain, the molecule typically undergoes cyclization(s) and post-PKS modification (e.g. glycosylation, oxidation, acylation) to achieve the final active compound.

Macrolides such as erythromycin and megalomicin are synthesized by modular PKSs (see Cane *et al.*, 1998, *Science* 282: 63, incorporated herein by reference). For illustrative purposes, the PKS that produces the erythromycin polyketide (6-deoxyerythronolide B synthase or DEBS; see U.S. Patent No. 5,824,513, incorporated herein by reference) is shown in Figure 4. DEBS is the most characterized and extensively used modular PKS system. DEBS is particularly relevant to the present invention in that it synthesizes the same polyketide, 6-deoxyerythronolide B (6-dEB), synthesized by the megalomicin PKS. In modular PKS enzymes such as DEBS and the megalomicin PKS, the enzymatic steps for each round of condensation and reduction are encoded within a single "module" of the polypeptide (i.e., one distinct module for every condensation cycle). DEBS consists of a loading module and 6 extender modules and a chain terminating thioesterase (TE) domain within three extremely large polypeptides encoded by three open reading frames (ORFs, designated *eryA1*, *eryAII*, and *eryAIII*).

Each of the three polypeptide subunits of DEBS (DEBSI, DEBSII, and DEBSIII) contains 2 extender modules, DEBSI additionally contains the loading module. Collectively, these proteins catalyze the condensation and appropriate reduction of 1 propionyl CoA starter unit and 6 methylmalonyl CoA extender units. Modules 1, 2, 5, and 6 contain KR domains; module 4 contains a complete set, KR/DH/ER, of reductive and dehydratase domains; and module 3 contains no functional reductive domain. Following the condensation and appropriate dehydration and reduction reactions, the enzyme bound intermediate is lactonized by the TE at the end of extender module 6 to form 6-dEB.

More particularly, the loading module of DEBS consists of two domains, an acyl-transferase (AT) domain and an acyl carrier protein (ACP) domain. In other PKS enzymes, the loading module is not composed of an AT and an ACP but instead utilizes an inactivated KS, an AT, and an ACP. This inactivated KS is in most instances called KS^0 , where the superscript letter is the abbreviation for the amino acid, glutamine, that is present instead of the active site cysteine required for activity. The AT domain of the loading module recognizes a particular acyl-CoA (propionyl for DEBS, which can also accept acetyl) and transfers it as a thiol ester to the ACP of the loading module. Concurrently, the AT on each of the extender modules recognizes a particular extender-CoA (methylmalonyl for DEBS) and transfers it to the ACP of that module to form a thioester. Once the PKS is primed with acyl- and malonyl-ACPs, the acyl group of the loading module migrates to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module 1 possesses an acyl-KS and a methylmalonyl ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading unit (elongation or extension). The growing polyketide chain is transferred from the ACP to the KS of the next module, and the process continues.

The polyketide chain, growing by two carbons each module, is sequentially passed as a covalently bound thiol ester from module to module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the

name polyketide arises. Commonly, however, the beta keto group of each two-carbon unit is modified just after it has been added to the growing polyketide chain but before it is transferred to the next module by either a KR, a KR plus a DH, or a KR, a DH, and an ER. As noted above, modules may contain additional 5 enzymatic activities as well.

Once a polyketide chain traverses the final extender module of a PKS, it encounters the releasing domain or thioesterase found at the carboxyl end of most PKSs. Here, the polyketide is cleaved from the enzyme and cyclized. The resulting polyketide can be modified further by tailoring or modification enzymes; 10 these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, the final steps in conversion of 6-dEB to erythromycin A include the actions of a number of modification enzymes, such as: C-6 hydroxylation, attachment of mycarose and desosamine sugars, C-12 hydroxylation (which 15 produces erythromycin C), and conversion of mycarose to cladinose via *O*-methylation, as shown in Figure 5.

With this overview of PKS and post-PKS modification enzymes, one can better appreciate the recombinant megalomicin biosynthetic genes provided by the invention and their function, as described in the following Section.

20

Section III: The Megalomicin Biosynthetic Genes and Nucleic Acid Fragments

The megalomicin PKS was isolated and cloned by the following procedure. Genomic DNA was isolated from a megalomicin producing strain of *Micromonospora megalomicea* subsp. *nigra* (ATCC 27598), partially digested 25 with a restriction enzyme, and cloned into a commercially available cosmid vector to produce a genomic library. This library was then probed with probe generated from the erythromycin biosynthetic genes as well as from cosmids identified as containing sequences homologous to erythromycin biosynthetic genes. This probing identified a set of cosmids, which were analyzed by DNA sequence analysis and restriction enzyme digestion, which revealed that the desired DNA 30 had been isolated and that the entire PKS gene cluster was contained in overlapping segments on four of the cosmids identified. Figure 1 shows the cosmids, and the portions of the megalomicin biosynthetic gene cluster in the

insert DNA of the cosmids. Figure 1 shows that the complete megalomicin biosynthetic gene cluster is contained within the insert DNA of cosmids pKOS079-138B, pKOS079-124B, pKOS079-93D, and pKOS079-93A. Each of these cosmids has been deposited with the American Type Culture Collection in accordance with the terms of the Budapest Treaty (cosmid pKOS079-138B is available under accession no. ATCC ____; cosmid pKOS079-124B is available under accession no. ATCC ____; cosmid pKOS079-93D is available under accession no. ATCC ____; and cosmid pKOS079-93A is available under accession no. ATCC ____). Various additional reagents of the invention can be isolated from these cosmids. DNA sequence analysis was also performed on the various subclones of the invention, as described herein. Further analysis of these cosmids and subclones prepared from the cosmids facilitated the identification of the location of various megalomicin biosynthetic genes, including the ORFs encoding the PKS, modules encoded by those ORFs, and coding sequences for megalomicin modification enzymes. The location of these genes and modules is shown on Figure 2.

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention. The native DNA sequence encoding the megalomicin PKS and other biosynthetic enzymes and other biosynthetic enzymes of *Micromonospora megalomicea* is shown herein merely to illustrate a preferred embodiment of the invention, and the invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences encoded by the DNA sequences shown herein merely illustrate preferred embodiments of the invention. The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following description of the various regions of the megalomicin PKS and the megalomicin modification

enzymes and corresponding coding sequences is provided. To facilitate description of the invention, reference to a PKS, protein, module, or domain herein can also refer to DNA compounds comprising coding sequences therefor and *vice versa*.
Also, unless otherwise indicated, reference to a heterologous PKS refers to a PKS
5 or DNA compounds comprising coding sequences therefor from an organism
other than *Micromonospora megalomicea*. In addition, reference to a PKS or its
coding sequence includes reference to any portion thereof.

Thus, the invention provides DNA molecules in isolated (i.e., not pure, but
existing in a preparation in an abundance and/or concentration not found in nature)
10 and purified (i.e., substantially free of contaminating materials or substantially free
of materials with which the corresponding DNA would be found in nature) form.
The DNA molecules of the invention comprise one or more sequences that encode
one or more domains (or fragments of such domains) of one or more modules in
one or more of the ORFs of the megalomicin PKS and sequences that encode
15 megalomicin modification enzymes from the megalomicin biosynthetic gene
cluster. Examples of PKS domains include the KS, AT, DH, KR, ER, ACP, and
TE domains of at least one of the 6 extender modules and loading module of the
three proteins encoded by the three ORFs of the megalomicin PKS gene cluster.
Examples of megalomicin modification enzymes include those that synthesize the
20 mycarose, desosamine, and megosamine moieties, those that transfer those sugar
moieties to the polyketide 6-dEB, those that hydroxylate the polyketide at C-6 and
C-12, and those that acylate the sugar moieties.

In an especially preferred embodiment, the DNA molecule is a
recombinant DNA expression vector or plasmid, as described in more detail in the
25 following Section. Generally, such vectors can either replicate in the cytoplasm of
the host cell or integrate into the chromosomal DNA of the host cell. In either
case, the vector can be a stable vector (i.e., the vector remains present over many
cell divisions, even if only with selective pressure) or a transient vector (i.e., the
vector is gradually lost by host cells with increasing numbers of cell divisions).

30 The megalomicin PKS gene cluster comprises three ORFs (*megA1*, *megAII*,
and megAIII). Each ORF encodes two extender modules of the PKS; the first ORF
also encodes the loading module. Each extender module is composed of at least a
KS, an AT, and an ACP domain. The locations of the various encoding regions of

these ORFs are shown in Figure 2 and described with reference to the sequence information below. The megalomicin PKS produces the polyketide known as 6-dEB, shown in Figure 4. In megalomicin-producing organisms, 6-dEB is converted to erythromycin C by a set of modification enzymes. Thus, 6-dEB is 5 converted to erythronolide B by the *megF* gene product (a homolog of the *eryF* gene product), then to 3-alpha-mycarosyl-erythronolide B by the *megBV* gene product (a homolog of the *eryBV* gene product), then to erythromycin D by the *megCIII* gene product (a homolog of the *eryCIII* gene product, then to erythromycin C by the *megK* gene product (a homolog of the *eryK* gene product).

10 In addition to these modification enzymes, such megalomicin-producing organisms also contain the modification enzymes necessary for the biosynthesis of the desosamine and mycarose moieties that are similarly utilized in erythromycin biosynthesis, as shown in Figure 5. Megalomicin A contains the complete erythromycin C structure, and its biosynthesis additionally involves the formation

15 of L-megosamine (L-rhodosamine) and its attachment to the C-6 hydroxyl (Figures 3 and 5, inset), followed by acylation of the C-3''' and(or) C-4''' hydroxyls as the terminal steps. L-megosamine is the same as *N*-dimethyl-L-daunosamine; the daunosamine genes have been characterized from *Streptomyces peucetius* (see Colombo and Hutchinson, *J. Indust. Microbiol. Biotechnol.*, in press; Otten *et al.*, 1996, *J Bacteriol* 178:7316-7321, and references cited therein).

20 Some of the rhodosamine genes also have been cloned and partially characterized from another anthracycline producing *Streptomyces* sp. (see Torkkell *et al.*, 1997, *Mol. Gen. Genet.* 256(2):203-209). Because the timing of the glycosylation with TDP-megosamine in relation to the addition of mycarose and desosamine to 25 erythronolide B, plus the C-12 hydroxylation, is unknown, the pathway could involve a different order of glycosylation and C-12 hydroxylation steps than the one shown in Figure 5. Regardless, the megalomicin biosynthetic gene cluster contains the genes to make L-rhodosamine and attach it to the correct macrolide substrate.

30 The biosynthetic pathways to make the glycosides desosamine, mycarose, and megosamine are shown in Figure 6. The present invention provides the genes for each biosynthetic pathway shown in this Figure, and these recombinant genetic

pathways can be used alone or in any combination to confer the pathway to a heterologous host.

The megalomicin PKS locus is similar to the *eryA* locus in size and organization. Most of the deoxysugar biosynthesis genes are homologs of the *eryB* mycarose and *eryC* desosamine biosynthesis and glycosyl attachment genes from *Saccharopolyspora erythraea* (see Summers *et al.*, 1997, *Microbiol.* 143:3251-3262; Haydock *et al.*, 1991, *Mol. Gen. Genet.* 230:120-128; Gaisser *et al.*, 1997, *Mol Gen Genet.* 256:239-251; Gaisser *et al.*, 1998, *Mol Gen Genet.* 257:78-88, incorporated herein by reference) or the *picC* homologs from the picromycin and narbomycin producer (see PCT patent publication No. 99/61599 and Xue *et al.*, 1998, *Proc. Nat. Acad. Sci. USA* 95, 12111-12116, incorporated herein by reference). The TDP-megosamine biosynthesis genes are homologs of the *dnm* genes (see Figure 5) and the pikromycin N-dimethyltransferase gene or its homologs reported in a cluster of L-rhodosamine biosynthesis genes. The putative TDP-megosamine glycosyltransferase gene product (*geneX* in Figure 5) closely resembles the deduced products of the *eryBV*, *eryCIII*, *dnmS*, and pikromycin *desVII* genes, even though it recognizes different substrates than the products of each of these genes.

The following Table 1 shows the location of the genes in the 20 *Micromonospora megalomicea* megalomicin biosynthetic pathway in the DNA sequence set forth in SEQ ID NO:1 (see also Figure 7; note some gene designations maybe different in Figure 7).

Table 1. Megalomicin Biosynthetic Gene Cluster
25 *Micromonospora megalomicea* subsp. nigra (ATCC27598)

<u>Location</u>	<u>Description</u>
1..2451	sequence from cosmid pKOS079-138B
complement(1..144)	<i>megBV</i> (or <i>megT</i>), TDP-4-keto-6-deoxyglucose-
30 2,3-dehydratase	<i>megDV</i> , TDP-4-keto-6-deoxyglucose 3,4-isomerase
928..2061	<i>megDI</i> , TDP-megosaminyl transferase (<i>eryCIII</i>
2072..3382	homolog)
2452..40397	sequence of cosmid pKOS079-93D
35 3462..4634	<i>megG</i> (or <i>megY</i>), mycarosyl acyltransferase
4651..5775	<i>megDII</i> , deoxysugar transaminase (<i>eryCI</i> , <i>DnrJ</i> homolog)

	5822..6595 dimethyltransferase	<i>megDIII</i> , TDP-daunosaminyl-N,N-
5	6592..7197	(<i>eryCVI</i> homolog)
	7220..8206 <i>dnmV</i>	<i>megDIV</i> , TDP-4-keto-6-deoxyglucose 3,5-epimerase (<i>eryBVI</i> , <i>dnmU</i> homolog) <i>megDV</i> , TDP-hexose 4-ketoreductase (<i>eryBIV</i> ,
10	complement(8228..9220) hexose 2,3-reductase	homolog) <i>megBII-1</i> or <i>megDVII</i> , TDP-4-keto-L-6-deoxy-
	complement(9226..10479)	<i>megBV</i> , TDP-mycarosyl transferase
	complement(10483..11424)	<i>megBIV</i> , TDP-hexose 4-ketoreductase
	12181..22821	<i>megAI</i>
	12181..13791	Loading Module (L)
15	12505..13470	AT-L
	13576..13791	ACP-L
	13849..18207	Extender Module 1 (1)
	13849..15126	KS1
	15427..16476	AT1
20	17155..17694	KR1
	17947..18207	ACP1
	18268..22575	Extender Module 2 (2)
	18268..19548	KS2
	19876..20910	AT2
25	21517..22053	KR2
	22318..22575	ACP2
	22867..33555	<i>megAII</i>
	22957..27258	Extender Module 3 (3)
	22957..24237	KS3
30	24544..25581	AT3
	26230..26733	KR3 (inactive)
	26998..27258	ACP3
	27313..33312	Extender Module 4 (4)
	27393..28590	KS4
35	28897..29931	AT4
	29953..30477	DH4
	31396..32244	ER4
	32257..32799	KR4
	33052..33312	ACP4
40	33666..43271	<i>megAIII</i>
	33780..38120	Extender Module 5 (5)
	33780..35027	KS5
	35385..36419	AT5
	37068..37604	KR5
45	37860..38120	ACPs
	38187..42425	Extender Module 6 (6)
	38187..39470	KS6
	39795..40811	AT6
	40398..46641	sequences from cosmid pKOS079-93A

	41406..41936	KR6
	42168..42425	ACP6
	42585..43271	TE
	43268..44344	<i>megCII</i> , TDP-4-keto-6-deoxyglucose 3,4-isomerase
5	44355..45623	<i>megCIII</i> , TDP-desosaminyl transferase
	45620..46591	<i>megBII</i> , TDP-4-keto-6-deoxy-L-glucose 2,3 dehydoratase
	complement(46660..47403)	<i>megH</i> , TEII
	complement(47411..47980)	<i>megF</i> , C-6 hydroxylase

10

In a specific embodiment, the invention provides an isolated nucleic acid fragment comprising a nucleotide sequence encoding a domain of the megalomicin polyketide synthase or a megalomicin modification enzyme. The isolated nucleic acid fragment can be a DNA or a RNA. Preferably, the isolated nucleic acid fragment is a recombinant DNA compound. A nucleotide sequence that is complementary to the nucleotide sequence encoding a domain of megalomicin PKS or a megalomicin modification enzyme is also provided.

The isolated nucleic acid fragment can comprise a single, multiple or all the open reading frame(s) (ORF) of the megalomicin PKS or the megalomicin modification enzyme. Exemplary ORFs of megalomicin PKS include the ORFs of the *megA1*, *megAII* and *megAIII* genes. The isolated nucleic acids of the invention also include nucleic acids that encode one or more domains and one or more modules of the megalomicin PKS. Exemplary domains of the megalomicin PKS include a TE domain, a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain and an ER domain. In a preferred embodiment, the nucleic acid comprises the coding sequence for a loading module, a thioesterase domain, and all six extender modules of the megalomicin PKS.

Megalomicin modification enzymes include those enzymes involved in the conversion of 6-DEB into a megalomicin such as the enzymes encoded by *megF*, *megBV*, *megCIII*, *megK*, *megDI* and *megG* (or *megY*). Megalomicin modification enzymes also include those enzymes involved in the biosynthesis of mycarose, megosamine or desosamine, which are used as biosynthetic intermediates in the biosynthesis of various megalomicin species and other related polyketides. The enzymes that are involved in biosynthesis of mycarose, megosamine or desosamine are described in Figures 5 and 10. The megalomicin PKS and megalomicin modification enzymes are collectively referred to as megalomicin

biosynthetic enzymes; the genes encoding such enzymes are collectively referred to as megalomicin biosynthetic genes; and nucleic acids that comprise a portion of or entire megalomicin biosynthetic genes are collectively referred to as megalomicin biosynthetic nucleic acid(s).

5 In specific embodiments, the megalomicin biosynthetic nucleic acids comprise the sequence of SEQ ID NO:1, or the coding regions thereof, or nucleotide sequences encoding, in whole or in part, a megalomicin biosynthetic enzyme protein. The isolated nucleic acids typically consists of at least 25 (continuous) nucleotides, 50 nucleotides, 100 nucleotides, 150 nucleotides, or 200
10 nucleotides of megalomicin biosynthetic nucleic acid sequence, or a full-length megalomicin biosynthetic coding sequence. In another embodiment, the nucleic acids are smaller than 35, 200, or 500 nucleotides in length. Nucleic acids can be single or double stranded. Nucleic acids that hybridize to or are complementary to the foregoing sequences, in particular the inverse complement to nucleic acids that
15 hybridize to the foregoing sequences (*i.e.*, the inverse complement of a nucleic acid strand has the complementary sequence running in reverse orientation to the strand so that the inverse complement would hybridize without mismatches to the nucleic acid strand) are also provided. In specific aspects, nucleic acids are provided which comprise a sequence complementary to (specifically are the
20 inverse complement of) at least 10, 25, 50, 100, or 200 nucleotides or the entire coding region of a megalomicin biosynthetic gene.

The megalomicin biosynthetic nucleic acids provided herein include those with nucleotide sequences encoding substantially the same amino acid sequences as found in native megalomicin biosynthetic enzyme proteins, and those encoding
25 amino acid sequences with functionally equivalent amino acids, as well as megalomicin biosynthetic enzyme derivatives or analogs as described in Section IV.

Some regions within the megalomicin PKS genes are highly homologous or identical to one another, as can be readily identified by an analysis of the
30 sequence. The coding sequence for the KS and AT domains of module 2 shares significant identity with the coding sequence for the KS and AT domains of module 6. This sequence homology or identity at the nucleic acid, *e.g.*, DNA, level can render the nucleic acid unstable in certain host cells. To improve the stability

of the nucleic acids comprising a portion or the entire megalomicin PKS genes and megalomicin modification enzyme genes, the nucleic acid or DNA sequences can be changed to reduce or abolish the sequence homology or identity. Preferably, the DNA codons of homologous regions within the PKS or the megalomicin 5 modification enzyme coding sequence are changed to reduce or abolish the sequence homology or identity without changing the amino acid sequences encoded by said changed DNA codons (see the examples below). The stability of the nucleic acid or DNA can also be improved by codon changes that reduce or abolish the sequence homology or identity while also changing the amino acid 10 sequence, provided that the amino acid sequence change(s) does not substantially change the desired activity of the encoded megalomicin PKS. Thus, for example, one can simply substitute for the *megAIII* ORF an ORF from *eryAIII*, *oleAIII*, *picAIII*, or *picAIV* genes.

The recombinant DNA compounds of the invention that encode the 15 megalomicin PKS and modification proteins or portions thereof are useful in a variety of applications. While many of these applications relate to the heterologous expression of the megalomicin biosynthetic genes or the construction of hybrid PKS enzymes, many useful applications involve the natural megalomicin producer *Micromonospora megalomicea*. For example, one can use the recombinant DNA 20 compounds of the invention to disrupt the megalomicin biosynthetic genes by homologous recombination in *Micromonospora megalomicea*. The resulting host cell is a preferred host cell for making polyketides modified by oxidation, hydroxylation, glycosylation, and acylation in a manner similar to megalomicin, because the genes that encode the proteins that perform these reactions are of 25 course present in the host cell, and because the host cell does not produce megalomicin that could interfere with production or purification of the polyketide of interest.

One illustrative recombinant host cell provided by the present invention expresses a recombinant megalomicin PKS in which the module 1 KS domain is 30 inactivated by deletion or other mutation. In a preferred embodiment, the inactivation is mediated by a change in the KS domain that renders it incapable of binding substrate (called a KS1° mutation). In a particularly preferred embodiment, this inactivation is rendered by a mutation in the codon for the active

site cysteine that changes the codon to another codon, such as an alanine codon. Such constructs are especially useful when placed in translational reading frame with extender modules 1 and 2 of a megalomicin or the corresponding modules of another PKS. The utility of these constructs is that host cells expressing, or cell
5 free extracts containing, a PKS comprising the protein encoded thereby can be fed or supplied with N-acylcysteamine thioesters of precursor molecules to prepare a polyketide of interest. See U.S. patent application Serial No. 09/492,773, filed 27 Jan. 2000, and PCT patent publication No. 00/44717, both of which are incorporated herein by reference. Such KS1° constructs of the invention are useful
10 in the production of 13-substituted-megalomicin compounds in *Micromonospora megalomicea* host cells. Preferred compounds of the invention include those compounds in which the substituent at the 13-position is propyl, vinyl, propargyl, other lower alkyl, and substituted alkyl.

In a variant of this embodiment, one can employ a megalomicin PKS in
15 which the ACP domain of module 1 has been rendered inactive. In another embodiment, one can delete the loading domain of the megalomicin PKS and provide monoketide substrates for processing by the remainder of the PKS.

The compounds of the invention can also be used to construct recombinant host cells of the invention in which coding sequences for one or more domains or
20 modules of the megalomicin PKS or for another megalomicin biosynthetic gene have been deleted by homologous recombination with the *Micromonospora megalomicea* chromosomal DNA. Those of skill in the art will appreciate that the compounds used in the recombination process are characterized by their homology with the chromosomal DNA and not by encoding a functional protein due to their
25 intended function of deleting or otherwise altering portions of chromosomal DNA. For this and a variety of other applications, the compounds of the present invention include not only those DNA compounds that encode functional proteins but also those DNA compounds that are complementary or identical to any portion of the megalomicin biosynthetic genes.

30 Thus, the invention provides a variety of modified *Micromonospora megalomicea* host cells in which one or more of the megalomicin biosynthetic genes have been mutated or disrupted. Transformation systems for *M. megalomicea* have been described by Hasegawa *et al.*, 1991, *J. Bacteriol.*

173:7004-11; and Takada *et al.*, 1994, *J. Antibiot.* 47:1167-1170, both of which are incorporated herein by reference. These cells are especially useful when it is desired to replace the disrupted function with a gene product expressed by a recombinant DNA expression vector. While such expression vectors of the invention are described in more detail in the following Section, those of skill in the art will appreciate that the vectors have application to *M. megalomicea* as well. Such *M. megalomicea* host cells can be preferred host cells for expressing megalomicin derivatives of the invention. Particularly preferred host cells of this type include those in which the coding sequence for the loading module has been mutated or disrupted, those in which one or more of any of the PKS gene ORFs has been mutated or disrupted, and/or those in which the genes for one or more modification (glycosylation, acylation, hydroxylation) have been mutated or disrupted.

While the present invention provides many useful compounds having application to, and recombinant host cells derived from, *Micromonospora megalomicea*, many important applications of the present invention relate to the heterologous expression of all or a portion of the megalomicin biosynthetic genes in cells other than *M. megalomicea*, as described in Section V.

20 Section IV: The Megalomicin Biosynthetic Enzymes and Antibodies Recognizing such Enzymes

In another specific embodiment, the invention provides a substantially purified polypeptide, which is encoded by a nucleic acid fragment comprising a nucleotide sequence encoding a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme. The polypeptide can comprise a single domain, multiple domains or a full-length megalomicin PKS or megalomicin modification enzyme. Functional fragments, analogs or derivatives of the megalomicin PKS or megalomicin modification enzyme polypeptides are also provided. Preferably, such fragments, analogs or derivatives can be recognized by an antibody raised against a megalomicin PKS or megalomicin modification enzyme. Also preferably, such fragments, analogs or derivatives comprise an amino acid sequence that has at least 60% identity, more preferably at least 90% identity to their wild type counterparts.

An exemplary nucleotide sequence encoding, and the corresponding amino acid sequence of, a megalomicin biosynthetic enzyme is disclosed in SEQ ID NO:1. Homologs (e.g., nucleic acids of the above-listed genes of species other than *Micromonospora megalomicea*) or other related sequences (e.g., paralogs) 5 can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular sequence provided as a probe using methods well known in the art for nucleic acid hybridization and cloning (e.g., as described in Section III) in accordance with the methods of the present invention.

The megalomicin biosynthetic enzyme proteins, or domains thereof, of the 10 present invention can be obtained by methods well known in the art for protein purification and recombinant protein expression in accordance with the methods of the present invention. For recombinant expression of one or more of the proteins, the nucleic acid containing all or a portion of the nucleotide sequence encoding the protein can be inserted into an appropriate expression vector, i.e., a 15 vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence. Transcriptional and translational signals can be supplied by the native promoter for a megalomicin biosynthetic gene and/or flanking regions.

A variety of host-vector systems may be utilized to express the protein 20 coding sequence. These include but are not limited to mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, and the like); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their 25 properties. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.

In a specific embodiment, a vector is used that comprises a promoter operably linked to nucleic acid sequences encoding a megalomicin biosynthetic enzyme, or a domain, fragment, derivative or homolog, thereof, one or more 30 origins of replication, and optionally, one or more selectable markers (e.g., an antibiotic resistance gene).

Expression vectors containing the sequences of interest can be identified by three general approaches: (a) nucleic acid hybridization, (b) presence or

absence of "marker" gene function, and (c) expression of the inserted sequences.

In the first approach, megalomicin biosynthetic nucleic acid sequences can be detected by nucleic acid hybridization to probes comprising sequences homologous and complementary to the inserted sequences. In the second

5 approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" functions (e.g., binding to an anti-megalomicin biosynthetic enzyme antibody, resistance to antibiotics, occlusion body formation in baculovirus, and the like) caused by insertion of the sequences of interest in the vector. For example, if a megalomicin biosynthetic

10 gene, or portion thereof, is inserted within the marker gene sequence of the vector, recombinants containing the megalomicin biosynthetic gene fragment will be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying for the megalomicin biosynthetic gene products expressed by the recombinant vector. Such assays can

15 be based, for example, on the physical or functional properties of the interacting species in *in vitro* assay systems, e.g., megalomicin synthesis activity, immunoreactivity to antibodies specific for the protein.

Once recombinant megalomicin biosynthetic genes or nucleic acids are identified, several methods known in the art can be used to propagate them in

20 accordance with the methods of the present invention. Once a suitable host system and growth conditions have been established, recombinant expression vectors can be propagated and amplified in quantity. As previously described, the expression vectors or derivatives which can be used include, but are not limited to: human or animal viruses such as vaccinia virus or adenovirus; insect viruses such

25 as baculovirus, yeast vectors; bacteriophage vectors such as lambda phage; and plasmid and cosmid vectors.

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies or processes the expressed proteins in the specific fashion desired. Expression from certain promoters can be elevated in the

30 presence of certain inducers; thus expression of the genetically-engineered megalomicin biosynthetic enzymes may be controlled. Furthermore, different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification (e.g. glycosylation, phosphorylation, and

the like) of proteins. Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the foreign protein is achieved. For example, expression in a bacterial system can be used to produce an unglycosylated core protein, while expression in mammalian cells ensures 5 "native" glycosylation of a heterologous protein. Furthermore, different vector/host expression systems may effect processing reactions to different extent.

In particular, megalomicin biosynthetic enzyme derivatives can be made by altering their sequences by substitutions, additions or deletions that provide for functionally equivalent molecules. Due to the degeneracy of nucleotide coding 10 sequences, other DNA sequences which encode substantially the same amino acid sequence as an megalomicin biosynthetic gene can be used in the practice of the present invention. These include but are not limited to nucleotide sequences comprising all or portions of megalomicin biosynthetic genes that are altered by the substitution of different codons that encode the amino acid residue within the 15 sequence, thus producing a silent change. Likewise, the megalomicin biosynthetic enzyme derivatives of the invention include, but are not limited to, those containing, as a primary amino acid sequence, all or part of the amino acid sequence of megalomicin biosynthetic enzymes, including altered sequences in which functionally equivalent amino acid residues are substituted for residues 20 within the sequence resulting in a silent change. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, 25 the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and 30 glutamic acid.

In a specific embodiment of the invention, the nucleic acids encoding proteins and proteins consisting of or comprising a domain or a fragment of megalomicin biosynthetic enzyme consisting of at least 6 (continuous) amino

acids are provided. In other embodiments, the domain or fragment consists of at least 10, 20, 30, 40, or 50 amino acids of a megalomicin biosynthetic enzyme. In specific embodiments, such domains or fragments are not larger than 35, 100 or 200 amino acids. Derivatives or analogs of megalomicin biosynthetic enzyme 5 include but are not limited to molecules comprising regions that are substantially homologous to megalomicin biosynthetic enzyme in various embodiments, at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% identity over an amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art in 10 accordance with the methods of the present invention or whose encoding nucleic acid is capable of hybridizing to a sequence encoding a megalomicin biosynthetic enzyme under stringent, moderately stringent, or nonstringent conditions.

The megalomicin biosynthetic enzyme domains, derivatives and analogs of the invention can be produced by various methods known in the art in accordance 15 with the methods of the present invention. The manipulations which result in their production can occur at the gene or protein level. For example, the cloned megalomicin biosynthetic gene sequence can be modified by any of numerous strategies known in the art (Sambrook et al., 1990, *Molecular Cloning, A Laboratory Manual*, 2d ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, 20 New York) in accordance with the methods of the present invention. The sequences can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated *in vitro*.

Additionally, the megalomicin biosynthetic enzyme-encoding nucleotide 25 sequence can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy pre-existing ones, to facilitate further *in vitro* modification. Any technique for mutagenesis known in the art can be used in accordance with the methods of the present invention, 30 including but not limited to, chemical mutagenesis and *in vitro* site-directed mutagenesis (Hutchinson et al., *J. Biol. Chem.* 253:6551-6558 (1978)), use of TAB® linkers (Pharmacia), and the like.

Once a recombinant cell expressing a megalomicin biosynthetic enzyme protein, or a domain, fragment or derivative thereof, is identified, the individual gene product can be isolated and analyzed. This is achieved by assays based on the physical and/or functional properties of the protein, including, but not limited
5 to, radioactive labeling of the product followed by analysis by gel electrophoresis, immunoassay, cross-linking to marker-labeled product, and the like.

The megalomicin biosynthetic enzyme proteins may be isolated and purified by standard methods known in the art or recombinant host cells expressing the complexes or proteins in accordance with the methods of the
10 invention, including but not restricted to column chromatography (e.g., ion exchange, affinity, gel exclusion, reversed-phase high pressure, fast protein liquid, and the like), differential centrifugation, differential solubility, or by any other standard technique used for the purification of proteins. Functional properties may be evaluated using any suitable assay known in the art in accordance with the
15 methods of the present invention.

Alternatively, once a megalomicin biosynthetic enzyme or its domain or derivative is identified, the amino acid sequence of the protein can be deduced from the nucleotide sequence of the gene which encodes it. As a result, the protein or its domain or derivative can be synthesized by standard chemical
20 methods known in the art in accordance with the methods of the present invention (see Hunkapiller et al, *Nature* 310:105-111 (1984)).

Manipulations of megalomicin biosynthetic enzymes may be made at the protein level. Included within the scope of the invention are megalomicin biosynthetic enzyme domains, derivatives or analogs or fragments, which are
25 differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, and the like. Any of numerous chemical modifications may be carried out by known techniques, including but not limited to specific
30 chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₄, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, and the like.

In specific embodiments, the megalomicin biosynthetic enzymes are modified to include a fluorescent label. In other specific embodiments, the megalomicin biosynthetic enzyme is modified to have a heterofunctional reagent, such heterofunctional reagents can be used to crosslink the members of the complex.

In addition, domains, analogs and derivatives of a megalomicin biosynthetic enzyme can be chemically synthesized. For example, a peptide corresponding to a portion of a megalomicin biosynthetic enzyme, which comprises the desired domain or which mediates the desired activity *in vitro* can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the megalomicin biosynthetic enzyme sequence. Non-classical amino acids include but are not limited to the D-isomers of the common amino acids, alpha-amino isobutyric acid, 4-aminobutyric acid, 2-aminobutyric acid, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β -alanine, fluoro-amino acids, designer amino acids such as β -methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotatory).

In cases where natural products are suspected of being mutant or are isolated from new species, the amino acid sequence of the megalomicin biosynthetic enzyme isolated from the natural source, as well as those expressed *in vitro*, or from synthesized expression vectors *in vivo* or *in vitro*, can be determined from analysis of the DNA sequence, or alternatively, by direct sequencing of the isolated protein. Such analysis may be performed by manual sequencing or through use of an automated amino acid sequenator.

The megalomicin biosynthetic enzyme proteins may also be analyzed by hydrophilicity analysis (Hopp and Woods, *Proc. Natl. Acad. Sci. USA* **78**:3824-3828 (1981)). A hydrophilicity profile can be used to identify the hydrophobic and hydrophilic regions of the proteins, and help predict their orientation in designing substrates for experimental manipulation, such as in binding

experiments, antibody synthesis, and the like. Secondary structural analysis can also be done to identify regions of the megalomicin biosynthetic enzyme that assume specific structures (Chou and Fasman, *Biochemistry* 13:222-23 (1974)). Manipulation, translation, secondary structure prediction, hydrophilicity and 5 hydrophobicity profiles, open reading frame prediction and plotting, and determination of sequence homologies, can be accomplished using computer software programs available in the art.

Other methods of structural analysis including but not limited to X-ray crystallography (Engstrom, *Biochem. Exp. Biol.* 11:7-13 (1974)), mass 10 spectroscopy and gas chromatography (Methods in Protein Science, J. Wiley and Sons, New York, 1997), and computer modeling (Fletterick and Zoller, eds., 1986, Computer Graphics and Molecular Modeling, In: *Current Communications in Molecular Biology*, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, New York) can also be employed.

15 The invention also provides an antibody, or a fragment or derivative thereof, which immuno-specifically binds to a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme. In a specific embodiment, an antibody which immuno-specifically binds to a domain of the megalomicin biosynthetic enzyme encoded by a nucleic acid that hybridizes to a 20 nucleic acid having the nucleotide sequence set forth in the SEQ. ID NO:1, or a fragment or derivative of said antibody containing the binding domain thereof is provided. Preferably, the antibody is a monoclonal antibody.

The megalomicin biosynthetic enzyme protein and domains, fragments, homologs and derivatives thereof may be used as immunogens to generate 25 antibodies which immunospecifically bind such immunogens. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.

Various procedures known in the art may be used for the production of 30 polyclonal antibodies to a megalomicin biosynthetic enzyme protein of the invention, its domains, derivatives, fragments or analogs in accordance with the methods of the present invention.

For production of the antibody, various host animals can be immunized by injection with the native megalomicin biosynthetic enzyme protein or a synthetic

version, or a derivative of the foregoing, such as a cross-linked megalomicin biosynthetic enzyme. Such host animals include but are not limited to rabbits, mice, rats, and the like. Various adjuvants can be used to increase the immunological response, depending on the host species, and include but are not 5 limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, and potentially useful human adjuvants such as bacille Calmette-Guerin (BCG) and corynebacterium parvum.

For preparation of monoclonal antibodies directed towards a megalomicin 10 biosynthetic enzyme or domains, derivatives, fragments or analogs thereof, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. Such techniques include but are not restricted to the hybridoma technique originally developed by Kohler and Milstein (*Nature* 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique 15 (Kozbor et al., *Immunology Today* 4:72 (1983)), and the EBV hybridoma technique to produce human monoclonal antibodies (Cole et al., *in Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 (1985)). In an additional embodiment, monoclonal antibodies can be produced in germ-free animals (WO89/12690). Human antibodies may be used and can be obtained by 20 using human hybridomas (Cote et al., *Proc. Natl. Acad. Sci. USA* 80:2026-2030 (1983)) or by transforming human B cells with EBV virus *in vitro* (Cole et al., *in Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 (1985)). Techniques developed for the production of "chimeric antibodies" 25 (Morrison et al., *Proc. Natl. Acad. Sci. USA* 81:6851-6855 (1984); Neuberger et al., *Nature* 312:604-608 (1984); Takeda et al., *Nature* 314:452-454 (1985)) by splicing the genes from a mouse antibody molecule specific for the megalomicin biosynthetic enzyme protein together with genes from a human antibody molecule of appropriate biological activity can be used; such antibodies are within the scope of this invention.

30 Techniques described for the production of single chain antibodies (U.S. patent 4,946,778) can be adapted to produce megalomicin biosynthetic enzyme-specific single chain antibodies. An additional embodiment utilizes the techniques described for the construction of Fab expression libraries (Huse et al., *Science*

246:1275-1281 (1989)) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for megalomicin biosynthetic enzyme, or domains, derivatives, or analogs thereof. Non-human antibodies can be "humanized" by known methods (see, e.g., U.S. Patent No. 5,225,539).

5 Antibody fragments that contain the idiotypes of a megalomicin biosynthetic enzyme can be generated by techniques known in the art in accordance with the methods of the present invention. For example, such fragments include but are not limited to: the F(ab')2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments that
10 can be generated by reducing the disulfide bridges of the F(ab')2 fragment, the Fab fragments that can be generated by treating the antibody molecular with papain and a reducing agent, and Fv fragments.

In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art in accordance with the methods of
15 the present invention, e.g., ELISA (enzyme-linked immunosorbent assay). To select antibodies specific to a particular domain of the megalomicin biosynthetic enzyme, one may assay generated hybridomas for a product that binds to the fragment of a megalomicin biosynthetic enzyme that contains such a domain.

The foregoing antibodies can be used in methods known in the art relating
20 to the localization and/or quantitation of megalomicin biosynthetic enzyme proteins, e.g., for imaging these proteins or measuring levels thereof in samples, in accordance with the methods of the present invention.

Section V: Heterologous Expression of the Megalomicin Biosynthetic Genes

25 In one important embodiment, the invention provides methods for the heterologous expression of one or more of the megalomicin biosynthetic genes and recombinant DNA expression vectors useful in the method. For purposes of the invention, any host cell other than *Micromonospora megalomicea* is a heterologous host cell. Thus, included within the scope of the invention in
30 addition to isolated nucleic acids encoding domains, modules, or proteins of the megalomicin PKS and modification enzymes, are recombinant expression vectors that include such nucleic acids. The term expression vector refers to a nucleic acid that can be introduced into a host cell or cell-free transcription and translation

system. An expression vector can be maintained permanently or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a promoter that drives expression of an RNA, which

5 typically is translated into a polypeptide in the cell or cell extract. For efficient translation of RNA into protein, the expression vector also typically contains a ribosome-binding site sequence positioned upstream of the start codon of the coding sequence of the gene to be expressed. Other elements, such as enhancers, secretion signal sequences, transcription termination sequences, and one or more

10 marker genes by which host cells containing the vector can be identified and/or selected, may also be present in an expression vector. Selectable markers, i.e., genes that confer antibiotic resistance or sensitivity, are preferred and confer a selectable phenotype on transformed cells when the cells are grown in an appropriate selective medium.

15 The various components of an expression vector can vary widely, depending on the intended use of the vector and the host cell(s) in which the vector is intended to replicate or drive expression. Expression vector components suitable for the expression of genes and maintenance of vectors in *E. coli*, yeast, *Streptomyces*, and other commonly used cells are widely known and commercially

20 available. For example, suitable promoters for inclusion in the expression vectors of the invention include those that function in eucaryotic or procaryotic host cells. Promoters can comprise regulatory sequences that allow for regulation of expression relative to the growth of the host cell or that cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus. For *E. coli* and certain other bacterial host cells, promoters derived from genes for

25 biosynthetic enzymes, antibiotic-resistance conferring enzymes, and phage proteins can be used and include, for example, the galactose, lactose (*lac*), maltose, tryptophan (*trp*), beta-lactamase (*bla*), bacteriophage lambda PL, and T5 promoters. In addition, synthetic promoters, such as the *tac* promoter (U.S. Patent

30 No. 4,551,433), can also be used.

Thus, recombinant expression vectors contain at least one expression system, which, in turn, is composed of at least a portion of the megalomicin PKS and/or other megalomicin biosynthetic gene coding sequences operably linked to a

promoter and optionally termination sequences that operate to effect expression of the coding sequence in compatible host cells. The host cells are modified by transformation with the recombinant DNA expression vectors of the invention to contain the expression system sequences either as extrachromosomal elements or 5 integrated into the chromosome. The resulting host cells of the invention are useful in methods to produce PKS and post-PKS modification enzymes as well as polyketides and antibiotics and other useful compounds derived therefrom.

Preferred host cells for purposes of selecting vector components for expression vectors of the present invention include fungal host cells such as yeast 10 and prokaryotic host cells such as *E. coli* and *Streptomyces*, but mammalian host cells can also be used. In hosts such as yeasts, plants, or mammalian cells that ordinarily do not produce polyketides, it may be necessary to provide, also typically by recombinant means, suitable holo-ACP synthases to convert the recombinantly produced PKS to functionality. Provision of such enzymes is 15 described, for example, in PCT publication Nos. WO 97/13845 and 98/27203, each of which is incorporated herein by reference. Particularly preferred host cells for purposes of the present invention are *Streptomyces* and *Saccharopolyspora* host cells, as discussed in greater detail below.

In a preferred embodiment, the expression vectors of the invention are 20 used to construct a heterologous recombinant *Streptomyces* host cell that expresses a recombinant PKS of the invention. *Streptomyces* is a convenient host for expressing polyketides, because polyketides are naturally produced in certain *Streptomyces* species, and *Streptomyces* cells generally produce the precursors needed to form the desired polyketide. Those of skill in the art will recognize that, 25 if a *Streptomyces* host cell produces any portion of a PKS enzyme or produces a polyketide modification enzyme, the recombinant vector need drive expression of only those genes constituting the remainder of the desired PKS enzyme or other polyketide-modifying enzymes. Thus, such a vector may comprise only a single ORF, with the desired remainder of the polypeptides constituting the PKS 30 provided by the genes on the host cell chromosomal DNA.

If a *Streptomyces* or other host cell ordinarily produces polyketides, it may be desirable to modify the host so as to prevent the production of endogenous polyketides prior to its use to express a recombinant PKS of the invention. Such

modified hosts include *S. coelicolor* CH999 and similarly modified *S. lividans* described in U.S. Patent No. 5,672,491, and PCT publication Nos. WO 95/08548 and WO 96/40968, incorporated herein by reference. In such hosts, it may not be necessary to provide enzymatic activities for all of the desired post-translational modifications of the enzymes that make up the recombinantly produced PKS, because the host naturally expresses such enzymes. In particular, these hosts generally contain holo-ACP synthases that provide the phosphopantetheinyl residue needed for functionality of the PKS.

The invention provides a wide variety of expression vectors for use in 10 *Streptomyces*. The replicating expression vectors of the present invention include, for example and without limitation, those that comprise an origin of replication from a low copy number vector, such as SCP2* (see Hopwood *et al.*, *Genetic Manipulation of Streptomyces: A Laboratory manual* (The John Innes Foundation, Norwich, U.K., 1985); Lydiate *et al.*, 1985, *Gene* 35: 223-235; and Kieser and 15 Melton, 1988, *Gene* 65: 83-91, each of which is incorporated herein by reference), SLP1.2 (Thompson *et al.*, 1982, *Gene* 20: 51-62, incorporated herein by reference), and pSG5(ts) (Muth *et al.*, 1989, *Mol. Gen. Genet.* 219: 341-348, and Bierman *et al.*, 1992, *Gene* 116: 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz *et 20 al.*, 1983, *J. Gen. Microbiol.* 129: 2703-2714; Vara *et al.*, 1989, *J. Bacteriol.* 171: 5782-5781; and Servin-Gonzalez, 1993, *Plasmid* 30: 131-140, each of which is incorporated herein by reference). For non-replicating and integrating vectors and generally for any vector, it is useful to include at least an *E. coli* origin of 25 replication, such as from pUC, p1P, p1I, and pBR. For phage based vectors, the phage phiC31 and its derivative KC515 can be employed (see Hopwood *et al.*, *supra*). Also, plasmid pSET152, plasmid pSAM, plasmids pSE101 and pSE211, all of which integrate site-specifically in the chromosomal DNA of *S. lividans*, can be employed for purposes of the present invention.

The *Streptomyces* recombinant expression vectors of the invention 30 typically comprise one or more selectable markers, including antibiotic resistance conferring genes selected from the group consisting of the *ermE* (confers resistance to erythromycin and lincomycin), *tsr* (confers resistance to thiostrepton), *aadA* (confers resistance to spectinomycin and streptomycin), *aacC4*

(confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), *hyg* (confers resistance to hygromycin), and *vph* (confers resistance to viomycin) resistance conferring genes. Alternatively, several polyketides are naturally colored, and this characteristic can provide a built-in marker for

5 identifying cells.

Megalomicins are currently produced only by the relatively genetically intractable host *Micromonospora megalomicinea*. This bacteria has not been commonly used in the fermentation industry for the large-scale production of antibiotics, and methods for high level production of megalomicin and its analogs

10 are needed. In contrast, the streptomycete bacteria have been widely used for almost 50 years and are excellent hosts for production of megalomicin and its analogs. *Streptomyces lividans* and *S. coelicolor* have been developed for the expression of heterologous PKS systems. These organisms can stably maintain cloned heterologous PKS genes, express them at high levels under controlled

15 conditions, and modify the corresponding PKS proteins (e.g., phosphopantothenylation) so that they are capable of production of the polyketide they encode. Furthermore, these hosts contain the necessary pathways to produce the substrates required for polyketide synthesis; e.g. propionyl-CoA and methylmalonyl-CoA. A wide variety of cloning and expression vectors are

20 available for these hosts, as are methods for the introduction and stable maintenance of large segments of foreign DNA. Relative to *Micromonospora* spp., *S. lividans* and *S. coelicolor* grow well on a number of media and have been adapted for high level production of polyketides in fermentors. If production levels are low, a number of rational approaches are available to improve yield (see

25 Hosted and Baltz, 1996, *Trends Biotechnol.* 14(7):245-50, incorporated herein by reference). Empirical methods to increase the titers of these macrolides, long since proven effective for numerous bacterial polyketides, can also be employed.

Preferred *Streptomyces* host cell/vector combinations of the invention include *S. coelicolor* CH999 and *S. lividans* K4-114 host cells, which have been

30 modified so as not to produce the polyketide actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U.S. Patent Nos. 5,830,750 and 6,022,731 and U.S. patent application Serial No. 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference. These vectors are

particularly preferred in that they contain promoters compatible with numerous and diverse *Streptomyces* spp. Particularly useful promoters for *Streptomyces* host cells include those from PKS gene clusters that result in the production of polyketides as secondary metabolites, including promoters from aromatic (Type II) 5 PKS gene clusters. Examples of Type II PKS gene cluster promoters are *act* gene promoters and *tcm* gene promoters; an example of a Type I PKS gene cluster promoter are the promoters of the spiramycin PKS genes and DEBS genes. The present invention also provides the megalomicin biosynthetic gene promoters in recombinant form. These promoters can be used to drive expression of the 10 megalomicin biosynthetic genes or any other coding sequence of interest in host cells in which the promoter functions, particularly *Micromonospora megalomicea* and generally any *Streptomyces* species.

As described above, particularly useful control sequences are those that alone or together with suitable regulatory systems activate expression during 15 transition from growth to stationary phase in the vegetative mycelium. The promoter contained in the aforementioned plasmid pRM5, i.e., the *actI/actIII* promoter pair and the *actII-ORF4* activator gene, is particularly preferred. Other useful *Streptomyces* promoters include without limitation those from the *ermE* gene and the *melC1* gene, which act constitutively, and the *tipA* gene and the *merA* 20 gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to *Streptomyces* and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible *merA* promoter, and the gene of interest is 25 placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter. Activator genes in addition to the *actII-ORF4* gene described above include *dnrI*, *redD*, and *ptpA* genes (see U.S. patent application Serial No. 09/181,833, supra).

To provide a preferred host cell and vector for purposes of the invention, 30 the megalomicin biosynthetic genes are placed on a recombinant expression vector and transferred to the non-macrolide producing hosts *Streptomyces lividans* K4-114 and *S. coelicolor* CH999. Transformation of *S. lividans* K4-114 or *S. coelicolor* CH999 with this expression vector results in a strain which produces

detectable amounts of megalomicin as determined by analysis of extracts by LC/MS. As noted above, the present invention also provides recombinant DNA compounds in which the encoded megalomicin module 1 KS domain is inactivated (the KS1° mutation). The introduction into *Streptomyces lividans* or *S. coelicolor* of a recombinant expression vector of the invention that encodes a megalomicin PKS with a KS1° domain produces a host cell useful for making polyketides by a process known as diketide feeding. The resulting host cells can be fed or supplied with N-acylcysteamine thioesters of precursor molecules to prepare megalomicin derivatives. Such cells of the invention are especially useful in the production of 13-substituted-6-deoxyerythronolide B compounds in recombinant host cells. Preferred compounds of the invention include those compounds in which the substituent at the 13-position is propyl, vinyl, propargyl, other lower alkyl, and substituted alkyl. In a preferred embodiment, the meg PKS is produced from a recombinant construct in which the *megAIII* gene has been altered to abolish the regions of identical coding sequence it otherwise shares with the *megAI* gene, or a hybrid PKS is employed in which the *megAIII* gene product has been replaced by the *oleAIII* gene product. Recombinant *oleAIII* genes are described in, for example, PCT patent publication No. 00/026349 and U.S. patent application Serial No. 09/428,517, filed 28 Oct. 1999, both of which are incorporated herein by reference.

The recombinant host cells of the invention can express all of the megalomicin biosynthetic genes or only a subset of the same. For example, if only the genes for the megalomicin PKS are expressed in a host cell that otherwise does not produce polyketide modifying enzymes that can act on the polyketide produced, then the host cell produces unmodified polyketides, called macrolide aglycones. Such macrolide aglycones can be hydroxylated and glycosylated by adding them to the fermentation of a strain such as, for example, *Streptomyces antibioticus* or *Saccharopolyspora erythraea*, that contains the requisite modification enzymes.

There are a wide variety of diverse organisms that can modify macrolide aglycones to provide compounds with, or that can be readily modified to have, useful activities. For example, as shown in Figure 5, *Saccharopolyspora erythraea* can convert 6-dEB to a variety of useful compounds. The erythronolide 6-dEB is

converted by the *eryF* gene product to erythronolide B, which is, in turn, glycosylated by the *eryBV* gene product to obtain 3-O-mycarosylerthronolide B, which contains L-mycarose at C-3. The *eryCIII* gene product then converts this compound to erythromycin D by glycosylation with D-desosamine at C-5.

- 5 Erythromycin D, therefore, differs from 6-dEB through glycosylation and by the addition of a hydroxyl group at C-6. Erythromycin D can be converted to erythromycin B in a reaction catalyzed by the *eryG* gene product by methylating the L-mycarose residue at C-3. Erythromycin D is converted to erythromycin C by the addition of a hydroxyl group at C-12 in a reaction catalyzed by the *eryK* gene
10 product. Erythromycin A is obtained from erythromycin C by methylation of the mycarose residue in a reaction catalyzed by the *eryG* gene product. The unmodified megalomicin compounds provided by the present invention, such as, for example, the 6-dEB or 6-dEB analogs, produced in *Streptomyces lividans*, can be provided to cultures of *S. erythraea* and converted to the corresponding
15 derivatives of erythromycins A, B, C, and D in accordance with the procedure provided in the examples below. To ensure that only the desired compound is produced, one can use an *S. erythraea eryA* mutant that is unable to produce 6-dEB but can still carry out the desired conversions (Weber *et al.*, 1985, *J. Bacteriol.* 164(1): 425-433). Also, one can employ other mutant strains, such as
20 *eryB*, *eryC*, *eryG*, and/or *eryK* mutants, or mutant strains having mutations in multiple genes, to accumulate a preferred compound. The conversion can also be carried out in large fermentors for commercial production.

Moreover, there are other useful organisms that can be employed to hydroxylate and/or glycosylate the compounds of the invention. As described
25 above, the organisms can be mutants unable to produce the polyketide normally produced in that organism, the fermentation can be carried out on plates or in large fermentors, and the compounds produced can be chemically altered after fermentation. Thus, *Streptomyces venezuelae*, which produces picromycin, contains enzymes that can transfer a desosaminyl group to the C-5 hydroxyl and a
30 hydroxyl group to the C-12 position. In addition, *S. venezuelae* contains a glucosylation activity that glucosylates the 2'-hydroxyl group of the desosamine sugar. This latter modification reduces antibiotic activity, but the glucosyl residue is removed by enzymatic action prior to release of the polyketide from the cell.

Another organism, *S. narbonensis*, contains the same modification enzymes as *S. venezuelae*, except the C-12 hydroxylase. Thus, the present invention provides the compounds produced by hydroxylation and glycosylation of the macrolide aglycones of the invention by action of the enzymes endogenous to *S. narbonensis* and *S. venezuelae*.

Other organisms suitable for making compounds of the invention include *Micromonospora megalomicea* (discussed above), *Streptomyces antibioticus*, *S. fradiae*, and *S. thermotolerans*. *S. antibioticus* produces oleandomycin and contains enzymes that hydroxylate the C-6 and C-12 positions, glycosylate the C-3 hydroxyl with oleandrose and the C-5 hydroxyl with desosamine, and form an epoxide at C-8-C-8a. *S. fradiae* contains enzymes that glycosylate the C-5 hydroxyl with mycaminose and then the 4'-hydroxyl of mycaminose with mycarose, forming a disaccharide. *S. thermotolerans* contains the same activities as *S. fradiae*, as well as acylation activities. Thus, the present invention provides the compounds produced by hydroxylation and glycosylation of the macrolide aglycones of the invention by action of the enzymes endogenous to *S. antibioticus*, *S. fradiae*, and *S. thermotolerans*.

The present invention also provides methods and genetic constructs for producing the glycosylated and/or hydroxylated compounds of the invention directly in the host cell of interest. Thus, the recombinant genes of the invention, which include recombinant *megAII*, *megAIII*, and *megAIV* genes with one or more deletions and/or insertions, including replacements of a *megA* gene fragment with a gene fragment from a heterologous PKS gene (as discussed in the next Section), can be included on expression vectors suitable for expression of the encoded gene products in *Saccharopolyspora erythraea*, *Streptomyces antibioticus*, *S. venezuelae*, *S. narbonensis*, *Micromonospora megalomicea*, *S. fradiae*, and *S. thermotolerans*.

A number of erythromycin high-producing strains of *Saccharopolyspora erythraea* and *Streptomyces fradiae* have been developed, and in a preferred embodiment, the megalomicin PKS and/or other megalomicin biosynthetic genes are introduced into such strains (or erythromycin non-producing mutants thereof) to provide the corresponding modified megalomicin compounds in high yields. Those of skill in the art will appreciate that *S. erythraea* contains the desosamine

and mycarose biosynthetic and transfer genes as well as DEBS, which, as noted above, makes the same macrolide aglycone, 6-dEB, as the megalomicin PKS. *S. erythraea* does not make megosamine or its corresponding transferase gene, and does not contain the acylation gene of *Micromonospora megalomicea*. Finally, the 5 *S. erythraea* *eryG* gene product converts mycarose to cladinose, which does not occur in *M. megalomicea*. Thus, the present invention provides a wide variety of *S. erythraea* recombinant host cells, including, for example, those that contain:

(i) wild-type erythromycin biosynthetic genes with recombinant megosamine biosynthetic and transfer genes, with and without megalomicin acylation genes;

(ii) wild-type erythromycin biosynthetic genes except *eryG*, with recombinant megosamine biosynthetic and transfer genes, with and without megalomicin acylation genes; and

(iii) as in (i) and (ii), except that the *eryA* genes are inactive or deleted and 10 recombinant *megA* genes have been introduced.

The invention provides other *S. erythraea* strains as well, including those in which any one or more of the erythromycin biosynthetic genes have been deleted or otherwise rendered inactive and in which at least one megalomicin biosynthetic gene has been introduced.

20 For example, the present invention enables one to express the megosamine genes in a *Saccharopolyspora erythraea eryG* mutant in which the erythromycin C made by this mutant is converted to megalomicin A. Alternatively, one could use an erythromycin C high -producing strain of *S. erythraea* in biotransformation methods in which the erythromycin C is fed to a *Streptomyces lividans* strain 25 carrying only the megosamine biosynthesis and glycosyltransferase genes. As another alternative, one could use a strain of *S. lividans* that carries suitable erythromycin production genes along with the daunosamine biosynthesis genes plus *geneX* and *geneY* of Figure 5, or all of the megosamine biosynthesis genes, to produce megalomicin A.

30 All or some of the megalomicin gene cluster can be easily cloned under control of a suitable promoter in pCK7 or pSET152 either in one or two plasmids and introduced into the *Saccharopolyspora erythraea eryG* mutant. The *actII*-ORF4/*actIp* system and the phiC31/*int* system in pSET function well in this

organism (see Rowe *et al.*, 1998, *Gene*, 216:215-23, incorporated herein by reference). Alternatively, the megalosamine biosynthesis genes are introduced into *Streptomyces lividans* on the same plasmids and the production of megalomicin A or its precursor mediated by bioconversion, done by feeding erythronolide B, 3-alpha-mycarosylerithronolide B, erythromycin D or erythromycin C to the *S. lividans* strain.

Lack of adequate resistance to megalomicin A in *S. erythraea* or *S. lividans* is not expected, because both organisms have MLS resistance genes (*ermE* and *mgt/lrm*, respectively), which confer resistance to several 14-membered macrolides (see Cundliffe, 1989, *Annu. Rev. Microbiol.* 43:207-33; Jenkins and Cundliffe, 1991, *Gene* 108:55-62; and Cundliffe, 1992, *Gene*, 115:75-84, each of which is incorporated herein by reference). One can also readily determine the level of resistance of the *S. erythraea* *eryG* mutant and the *S. lividans* host cells to megalomicin A, both in plate tests and in liquid medium. One can repeat the bioconversion method using an *eryG* mutant of a high erythromycin A producing *S. erythraea* strain (or an *eryB* or *eryC* mutant, as necessary) to determine the level at which megalomicin A can be produced. Furthermore, if experience shows that high level megalomicin A production requires a higher level of resistance to this macrolide than present in *S. erythraea* or *S. lividans*, the necessary megalomicin self-resistance genes will be cloned from *M. megalomicea* and moved into either one of the heterologous hosts. This will be straightforward work since self-resistance genes are usually found in the cluster of macrolide biosynthesis genes and can be identified by their homology to known macrolide resistance genes and/or by the resistance phenotype they impart to a strain that normally is sensitive.

Alternatively, *geneX* and *geneY* (Figure 5) can be added to cassettes containing the relevant daunosamine (*dnm*) biosynthesis genes (Figure 5) to provide the ability to make TDP-megosamine *in vivo* and attach it to an erythromycin aglycone. The TDP-daunosamine biosynthesis genes can be re-cloned from *Streptomyces peucetius* on two compatible and mutually selectable plasmids. When an *S. lividans* strain containing these two plasmids and the *dnmS* gene for TDP-daunosamine glycosyltransferase is grown in the presence of added epsilon-rhodomycinone, its glycoside with L-daunosamine, called rhodomycin D,

is produced in good yield. Thus, bioconversion of one of the erythromycins to megalomicin A should be observed when *geneX* and *geneY* are present. One can construct all five combination - the two *N*-dimethyltransferase genes and the three glycosyltransferase genes - to discriminate *geneX* and *geneY* from those connected with mycarose and desosamine biosynthesis and attachment in the megalomicin pathway.

Because the timing of megalomicine addition is unknown, one can test erythronolide B, 3-alpha-mycarosylerythronolide B, erythromycin D and erythromycin C as substrates provided to a strain that expresses the megalomicine biosynthetic and transferase genes. There is need to test the C3''' and(or) C4''' acylated metabolites like megalomicin C1, because these metabolites are made from megalomicin A and not the converse, based on the precedents in the biosynthesis of tylisin (see Arisawa *et al.*, 1994, *Appl. Environ. Microbiol.* 60: 2657-2661), carbomycin (see Epp *et al.*, 1989, *Gene* 85:293-301), and midecamycin (see Hara and Hutchinson, 1992, *J. Bacteriol.* 174, 5141-5144). If C-6 glycosylation of erythronolide B or 3-alpha-mycarosylerythronolide B (Figure 5) happens before addition of desosamine to C-5, then the erythromycin genes might not be able to complete formation of megalomicin A from some mono or diglycoside if the erythromycin glycosyltransferases cannot tolerate a C-6 glycoside. Although unexpected, such an outcome could be circumvented in accordance with the methods of the invention by cloning further megalomicin biosynthesis genes into the appropriate *S. erythraea* background or into *S. lividans* – specifically, the necessary deoxysugar biosynthesis and attachment genes – to create a recombinant strain that produces megalomicin A.

The acyltransferase gene that adds acetate or propionate to the C3''' or C4''' positions of mycarose in megalomicin B, C1 and C2 (Figure 3) is contained within the cosmids of the invention and can be identified by scanning the sequence data for the megalomicin gene cluster to locate homologs of *carE* and *mdmB* or their *acyA* homologs from the tylisin producer. The *carE* and *acyA* genes govern C4''' acylation in the carbomycin and tylisin pathway, respectively. The megalomicin homolog has the equivalent function in megalomicin biosynthesis (but is specific for C3''' and C4''' acylation). The gene can be cloned under control of a suitable promoter and introduced into *S. lividans* to produce the

desired acyl derivative of megalomicin A. Alternatively, introduction of the *carE* gene can form megalomicin B. This gene can be cloned from the carbomycin, spiramycin or tylosin producers.

If the amount of megalomicin produced by an *S. erythraea* or *S. lividans* or
5 other recombinant host cell is less than desired, yield can be improved by
optimizing the growth medium and fermentation conditions, by increasing
expression of the gene(s) that appear to be rate limiting, based on the level of
pathway intermediates that are accumulated by the recombinant strain constructed,
and by reconstructing the *ery*, *dnm*, and megalomicin biosynthesis genes on
10 vectors like pSET152 that can be integrated into the genome to provide a stabler
recombinant strain for strain improvement.

In another embodiment, the present invention provides recombinant
vectors encoding one or more of the megalosamine, desosamine, and mycarose
biosynthetic and transfer genes and heterologous host cells comprising those
15 vectors. In this embodiment of the invention, the heterologous host cell is typically
a cell that is unable to produce the sugar and transfer it to a polyketide unless the
vector of the invention is introduced. For example, neither *Streptomyces lividans*
nor *S. coelicolor* is naturally capable of making megalosamine, desosamine, or
mycarose or transferring those moieties to a polyketide. However, the present
20 invention provides recombinant *Streptomyces lividans* and *S. coelicolor* host cells
that are capable of making megalosamine, desosamine, and/or mycarose and
transferring those moieties to a polyketide.

Moreover, additional recombinant gene products can be expressed in the
host cell to improve production of a desired polyketide. As but one non-limiting
25 example, certain of the recombinant PKS proteins of the invention may produce a
polyketide other than or in addition to the predicted polyketide, because the
polyketide is cleaved from the PKS by the thioesterase (TE) domain in module 6
prior to processing by other domains on the PKS, in particular, any KR, DH,
and/or ER domains in module 6. The production of the predicted polyketide can
30 be increased in such instances by deleting the TE domain coding sequences from
the gene and, optionally, expressing the TE domain as a separate protein. See
Gokhale *et al.*, Feb. 1999, "Mechanism and specificity of the terminal thioesterase

domain from the erythromycin polyketide synthase," *Chem. & Biol.* 6: 117-125, incorporated herein by reference.

Thus, in one important aspect, the present invention provides methods, expression vectors, and recombinant host cells that enable the production of 5 megalomicin and hydroxylated and glycosylated derivatives of megalomicin in heterologous host cells. The present invention also provides methods for making a wide variety of polyketides derived in part from the megalomicin PKS or other biosynthetic genes, as described in the following Section.

10 **Section VI: Hybrid PKS Genes**

The present invention provides recombinant DNA compounds encoding each of the domains of each of the modules of the megalomicin PKS as well as the other megalomicin biosynthetic enzymes. The availability of these compounds permits their use in recombinant procedures for production of desired portions of 15 the megalomicin PKS fused to or expressed in conjunction with all or a portion of a heterologous PKS and, optionally, one or more polyketide modification enzymes. These compounds also permit the modification of polyketides with the various megalomicin modification enzymes. The resulting hybrid PKS can then be expressed in a host cell to produce a desired polyketide or modified form thereof.

20 Thus, in accordance with the methods of the invention, a portion of the megalomicin biosynthetic gene coding sequence that encodes a particular activity can be isolated and manipulated, for example, to replace the corresponding region in a different modular PKS gene or modification enzyme gene. In addition, coding sequences for individual proteins, modules, domains, and portions thereof of the 25 megalomicin PKS can be ligated into suitable expression systems and used to produce the portion of the protein encoded. The resulting protein can be isolated and purified or can may be employed *in situ* to effect polyketide synthesis. Depending on the host for the recombinant production of the domain, module, protein, or combination of proteins, suitable control sequences such as promoters, 30 termination sequences, enhancers, and the like are ligated to the nucleotide sequence encoding the desired protein in the construction of the expression vector, as described above.

In one important embodiment, the invention thus provides hybrid PKS enzymes and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the invention, a hybrid PKS is a recombinant PKS that comprises all or part of one or more extender modules, 5 loading module, and/or thioesterase/cyclase domain of a first PKS and all or part of one or more extender modules, loading module, and/or thioesterase/cyclase domain of a second PKS. In one preferred embodiment, the first PKS is most but not all of the megalomicin PKS, and the second PKS is only a portion of a non-megalomicin PKS. An illustrative example of such a hybrid PKS includes a 10 megalomicin PKS in which the megalomicin PKS loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is a megalomicin PKS in which the AT domain of extender module 3 is replaced with an AT domain that binds only malonyl CoA. In another preferred embodiment, the first PKS is most but not all of a non-megalomicin PKS, and the 15 second PKS is only a portion of the megalomicin PKS. An illustrative example of such a hybrid PKS includes a rapamycin PKS in which an AT specific for malonyl CoA is replaced with the AT from the megalomicin PKS specific for methylmalonyl CoA. Other illustrative hybrid PKSs of the invention are described below.

20 Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See PCT patent application No. WO US99/15047, and Lau *et al.*, *infra*, incorporated herein by reference. The state of the art in DNA synthesis 25 allows the artisan to construct *de novo* DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. Thus, the desired derivative coding sequences can be synthesized using standard solid phase synthesis methods such as those described by Jaye *et al.*, 1984, *J. Biol. Chem.* 259: 6331, and instruments for automated synthesis are available commercially from, 30 for example, Applied Biosystems, Inc. For purposes of the invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

With this general background regarding hybrid PKSs of the invention, one can better appreciate the benefit provided by the DNA compounds of the invention

- that encode the individual domains, modules, and proteins that comprise the megalomicin PKS. As described above, the megalomicin PKS is comprised of a loading module, six extender modules composed of a KS, AT, ACP, and zero, one, two, or three KR, DH, and ER domains, and a thioesterase domain. The DNA 5 compounds of the invention that encode these domains individually or in combination are useful in the construction of the hybrid PKS encoding DNA compounds of the invention. For example, a DNA compound of the invention that encodes an extender module or portion of an extender module is useful in the construction of a coding sequence that encodes a protein subcomponent of a PKS.
- 10 The DNA compound of the invention that comprises a coding sequence of a PKS subunit protein is useful in the construction of an expression vector that drives expression of the subunit in a host cell that expresses the other subunits and so produces a functional PKS.

The recombinant DNA compounds of the invention that encode the 15 loading module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS loading module is inserted into a DNA compound that comprises the coding sequence for one or more heterologous PKS extender modules. The resulting 20 construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by that for the coding sequence of the megalomicin PKS loading module provides a novel PKS. Examples include the DEBS, rapamycin, FK-506, FK-520, rifamycin, and avermectin PKS coding sequences. In another embodiment, a DNA compound comprising a sequence that encodes the 25 megalomicin PKS loading module is inserted into a DNA compound that comprises the coding sequence for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, 30 the invention provides, for example, replacing the methylmalonyl CoA (propionyl) specific AT with a malonyl CoA (acetyl), ethylmalonyl CoA (butyryl), or other CoA specific AT. In addition, the AT and/or ACP can be replaced by another AT and/or another ACP or an inactivated KS, such as a KS^Q, an AT, and/or another

ACP. The resulting heterologous loading module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the first extender module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the megalomicin PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the first extender module of the megalomicin PKS is inserted into a DNA compound that comprises coding sequences for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion or all of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting (which includes inactivating) the KR; inserting a DH or a DH and ER; and/or replacing the KR with another KR, a DH and KR, or a DH, KR, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the megalomicin PKS, from a gene for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous first extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.

Those of skill in the art will recognize, however, that deletion of the KR domain of extender module 1 or insertion of a DH domain or DH and KR domains

into extender module 1 will prevent the typical cyclization of the polyketide at the hydroxyl group created by the KR if such hybrid module is employed as a first extender module in a hybrid PKS or is otherwise involved in producing a portion of the polyketide at which cyclization is to occur. Such deletions or insertions can
5 be useful, however, to create linear molecules or to induce cyclization at another site in the molecule.

As noted above, the invention also provides recombinant PKSs and recombinant DNA compounds and vectors that encode such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are
10 typically expressed in translational reading frame with the first two extender modules on a single protein, with the remaining modules and domains of a megalomicin, megalomicin derivative, or hybrid PKS expressed as one or more, typically two, proteins to form the multi-protein functional PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the
15 PKS encoded thereby can be fed or supplied with N-acylcysteamine thioesters of precursor molecules to prepare megalomicin derivative compounds. See U.S. patent application Serial No. 09/492,733, filed 27 Jan. 2000, and PCT publication Nos. WO 00/44717, 99/03986 and 97/02358, each of which is incorporated herein by reference.

20 The recombinant DNA compounds of the invention that encode the second extender module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS second extender module is inserted into a DNA compound that comprises the
25 coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the megalomicin PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the megalomicin PKS is inserted into a
30 DNA compound that comprises the coding sequences for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion or all of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl 5 CoA, or 2-hydroxymalonyl CoA specific AT; deleting (or inactivating) the KR; replacing the KR with a KR, a KR and a DH, or a KR, DH, and ER; and/or inserting a DH or a DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate 10 from a coding sequence for another module of the megalomicin PKS, from a coding sequence for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes megalomicin, a megalomicin derivative, or another 15 polyketide.

The recombinant DNA compounds of the invention that encode the third extender module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS third 20 extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the third extender module of the megalomicin PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. 25 In another embodiment, a DNA compound comprising a sequence that encodes the third extender module of the megalomicin PKS is inserted into a DNA compound that comprises coding sequences for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion or all of the third extender module 30 coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the inactive KR; and/or

- replacing the KR with an active KR, or a KR and DH, or a KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module 5 of the megalomicin PKS, from a gene for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous third extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.
- 10 The recombinant DNA compounds of the invention that encode the fourth extender module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS fourth extender module is inserted into a DNA compound that comprises the coding 15 sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fourth extender module of the megalomicin PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes 20 the fourth extender module of the megalomicin PKS is inserted into a DNA compound that comprises coding sequences for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a 25 hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting or inactivating any one, two, or all three of the ER, DH, and KR; and/or replacing any one, two, or all three of the ER, DH, and KR with either a KR, a DH and KR, or a KR, DH, and ER. In addition, 30 the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the megalomicin PKS (except for the DH and ER domains), from a coding sequence

for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.

5 The recombinant DNA compounds of the invention that encode the fifth extender module of the megalomicin PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fifth extender module of the megalomicin PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes 10 the fifth extender module of the megalomicin PKS is inserted into a DNA compound that comprises the coding sequence for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

15

In another embodiment, a portion or all of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to 20 create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting (or inactivating) the KR; inserting a DH or a DH and ER; and/or replacing the KR with another KR, a DH and KR, or a DH, KR, and ER. In addition, the KS and/or ACP can be replaced 25 with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the megalomicin PKS, from a coding sequence for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous fifth extender module coding 30 sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the sixth extender module of the megalomicin PKS and the corresponding polypeptides

encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the megalomicin PKS sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the megalomicin PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the sixth extender module of the megalomicin PKS is inserted into a DNA compound that comprises the coding sequences for the megalomicin PKS or a recombinant megalomicin PKS that produces a megalomicin derivative.

In another embodiment, a portion or all of the sixth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting or inactivating the KR or replacing the KR with another KR, a KR and DH, or a KR, DH, and an ER; and/or inserting a DH or a DH and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the megalomicin PKS, from a coding sequence for a PKS that produces a polyketide other than megalomicin, or from chemical synthesis. The resulting heterologous sixth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes megalomicin, a megalomicin derivative, or another polyketide.

The sixth extender module of the megalomicin PKS is followed by a thioesterase domain. This domain is important in the cyclization of the polyketide and its cleavage from the PKS. The present invention provides recombinant DNA compounds that encode hybrid PKS enzymes in which the megalomicin PKS is fused to a heterologous thioesterase or a heterologous PKS is fused to the megalomicin PKS thioesterase. Thus, for example, a thioesterase domain coding sequence from another PKS gene can be inserted at the end of the sixth (or other final) extender module coding sequence in recombinant DNA compounds of the

invention or the megalomicin PKS thioesterase can be similarly fused to a heterologous PKS. Recombinant DNA compounds encoding this thioesterase domain are useful in constructing DNA compounds that encode the megalomicin PKS, a PKS that produces a megalomicin derivative, and a PKS that produces a polyketide other than megalomicin or a megalomicin derivative.

5 Thus, the hybrid modules of the invention are incorporated into a PKS to provide a hybrid PKS of the invention. A hybrid PKS of the invention can result not only:

(i) from fusions of heterologous domain (where heterologous means the 10 domains in a module are derived from at least two different naturally occurring modules) coding sequences to produce a hybrid module coding sequence contained in a PKS gene whose product is incorporated into a PKS, but also:

(ii) from fusions of heterologous modules (where heterologous module 15 means two modules are adjacent to one another that are not adjacent to one another in naturally occurring PKS enzymes) coding sequences to produce a hybrid coding sequence contained in a PKS gene whose product is incorporated into a PKS,

(iii) from expression of one or more megalomicin PKS genes with one or 20 more non-megalomicin PKS genes, including both naturally occurring and recombinant non-megalomicin PKS genes, and

(iv) from combinations of the foregoing.

Various hybrid PKSs of the invention illustrating these various alternatives are described herein.

25 An example of a hybrid PKS comprising fused modules results from fusion of the loading module of either the DEBS PKS or the narbonolide PKS (see PCT patent application No. US99/11814, incorporated herein by reference) with extender modules 1 and 2 of the megalomicin PKS to produce a hybrid *megA1* gene. Co-expression of either one of these two hybrid *megA1* genes with the 30 *megAII* and *megAIII* genes in suitable host cells, such as *Streptomyces lividans*, results in expression of a hybrid PKS of the invention that produces 6-deoxyerythronolide B (the polyketide product of the natural *megA* genes) in recombinant host cells. Co-expression of either one of these two hybrid *megA1*

genes with the *eryAII* and *eryAIII* genes similarly results in the production of 6-dEB, while co-expression with the analogous narbonolide PKS genes, *picAII*, *picAIII* and *picAIV*, results in the production of 3-deoxy-3-oxo-6-dEB (3-keto-6-dEB), useful in the production of ketolides, compounds with potent anti-bacterial activity.

Another example of a hybrid PKS comprising a hybrid module is prepared by co-expressing the *megAI* and *megAII* genes with a *megAIII* hybrid gene encoding extender module 5 and the KS and AT of extender module 6 of the megalomicin PKS fused to the ACP of module 6 and the TE of the narbonolide PKS. The resulting hybrid PKS of the invention produces 3-keto-6-dEB. This compound can also be prepared by a recombinant megalomicin derivative PKS of the invention in which the KR domain of module 6 of the megalomicin PKS has been deleted. Moreover, the invention provides hybrid PKSs in which not only the above changes have been made but also the AT domain of module 6 has been replaced with a malonyl-specific AT. These hybrid PKSs produce 2-desmethyl-3-deoxy-3-oxo-6-dEB, a useful intermediate in the preparation of 2-desmethyl ketolides, compounds with potent antibiotic activity.

Another illustrative example of a hybrid PKS includes the hybrid PKS of the invention resulting only from the latter change in the hybrid PKS just described. Thus, co-expression of the *megAI* and *megAII* genes with a hybrid *megAIII* gene in which the AT domain of module 6 has been replaced by a malonyl-specific AT results in the expression of a hybrid PKS that produces 2-desmethyl-6-dEB in recombinant host cells. This compound is a useful intermediate for making 2-desmethyl erythromycins in recombinant host cells of the invention, as well as for making 2-desmethyl semi-synthetic ketolides.

While many of the hybrid PKSs described above are composed primarily of megalomicin PKS proteins, those of skill in the art recognize that the present invention provides many different hybrid PKSs, including those composed of only a small portion of the megalomicin PKS. For example, the present invention provides a hybrid PKS in which a hybrid *eryAI* gene that encodes the megalomicin PKS loading module fused to extender modules 1 and 2 of DEBS is coexpressed with the *eryAII* and *eryAIII* genes. The resulting hybrid PKS produces 6-dEB, the product of the native DEBS. When the construct is expressed in

Saccharopolyspora erythraea host cells (either via chromosomal integration in the chromosome or via a vector that encodes the hybrid PKS), the resulting recombinant host cell of the invention produces erythromycins. Another illustrative example is the hybrid PKS of the invention composed of the *megAII* and *eryAII* and *eryAIII* gene products. This construct is also useful in expressing erythromycins in *Saccharopolyspora erythraea* host cells. In a preferred embodiment, the *S. erythraea* host cells are *eryAII* mutants that do not produce 6-deoxyerythronolide B.

Another example is the hybrid PKS of the invention composed of the 10 products of the *picAII* and *picAIII* genes (the two proteins that comprise the loading module and extender modules 1 - 4, inclusive, of the narbonolide PKS) and the *megAIII* gene. The resulting hybrid PKS produces the macrolide aglycone 3-hydroxy-narbonolide in *Streptomyces lividans* host cells and the corresponding erythromycins in *Saccharopolyspora erythraea* host cells.

15 Each of the foregoing hybrid PKS enzymes of the invention, and the hybrid PKS enzymes of the invention generally, can be expressed in a host cell that also expresses a functional *oleP* gene product. The *oleP* gene encodes an oleandomycin modification enzyme, and expression of the gene together with a hybrid PKS of the invention provides the compounds of the invention in which a C-8 hydroxyl, a 20 C-8a or C-8-C-8a epoxide is present.

Recombinant methods for manipulating modular PKS genes to make hybrid PKS enzymes are described in U.S. Patent Nos. 5,672,491; 5,843,718; 5,830,750; and 5,712,146; and in PCT publication Nos. 98/49315 and 97/02358, each of which is incorporated herein by reference. A number of genetic engineering strategies have been used with DEBS to demonstrate that the 25 structures of polyketides can be manipulated to produce novel natural products, primarily analogs of the erythromycins (see the patent publications referenced *supra* and Hutchinson, 1998, *Curr Opin Microbiol.* 1:319-329, and Baltz, 1998, *Trends Microbiol.* 6:76-83, incorporated herein by reference). Because of the 30 similar activity of the megalomicin PKS and DEBS (both PKS enzymes produce the macrolide aglycone 6-dEB), these methods can be readily applied to the recombinant megalomicin PKS genes of the invention.

These techniques include: (i) deletion or insertion of modules to control chain length, (ii) inactivation of reduction/dehydration domains to bypass beta-carbon processing steps, (iii) substitution of AT domains to alter starter and extender units, (iv) addition of reduction/dehydration domains to introduce 5 catalytic activities, and (v) substitution of ketoreductase KR domains to control hydroxyl stereochemistry. In addition, engineered blocked mutants of DEBS have been used for precursor directed biosynthesis of analogs that incorporate synthetically derived starter units. For example, more than 100 novel polyketides were produced by engineering single and combinatorial changes in multiple 10 modules of DEBS. Hybrid PKS enzymes based on DEBS with up to three catalytic domain substitutions were constructed by cassette mutagenesis, in which various DEBS domains were replaced with domains from the rapamycin PKS (see Schweke *et al.*, 1995, *Proc. Nat. Acad. Sci. USA* 92, 7839-7843, incorporated herein by reference) or one more of the DEBS KR domains was deleted. 15 Functional single domain replacements or deletions were combined to generate DEBS enzymes with double and triple catalytic domain substitutions (see McDaniel *et al.*, 1999, *Proc. Nat. Acad. Sci. USA* 96, 1846-1851, incorporated herein by reference). By providing the analogous megalomicin/rapamycin hybrid PKS enzymes, the present invention provides alternative means to make these 20 polyketides.

Methods for generating libraries of polyketides have been greatly improved by cloning PKS genes as a set of three or more mutually selectable plasmids, each carrying a different wild-type or mutant PKS gene, then introducing all possible combinations of the plasmids with wild-type, mutant, and hybrid PKS coding 25 sequences into the same host (see U.S. patent application Serial No. 60/129,731, filed 16 Apr. 1999, and PCT Pub. No. 98/27203, each of which is incorporated herein by reference). This method can also incorporate the use of a KS1° mutant, which by mutational biosynthesis can produce polyketides made from diketide starter units (see Jacobsen *et al.*, 1997, *Science* 277, 367-369, incorporated herein 30 by reference), as well as the use of a truncated gene that leads to 12-membered macrolides or an elongated gene that leads to 16-membered ketolides. Moreover, by utilizing in addition one or more vectors that encode glycosyl biosynthesis and transfer genes, such as those of the present invention for megasamine,

desosamine, oleandrose, cladinose, and/or mycarose (in any combination), a large collection of glycosylated polyketides can be prepared.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant 5 hybrid PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the invention.

Avermectin

10 U.S. Pat. No. 5,252,474 to Merck.

MacNeil *et al.*, 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemalectin.

15 MacNeil *et al.*, 1992, *Gene 115*: 119-125, Complex Organization of the *Streptomyces avermitilis* genes encoding the avermectin polyketide synthase.

Candididin (FR008)

Hu *et al.*, 1994, *Mol. Microbiol.* 14: 163-172.

Epothilone

20 PCT Pub. No. 00/031247 to Kosan.

Erythromycin

PCT Pub. No. 93/13663 to Abbott.

US Pat. No. 5,824,513 to Abbott.

Donadio *et al.*, 1991, *Science 252*:675-9.

25 Cortes *et al.*, 8 Nov. 1990, *Nature 348*:176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of *Saccharopolyspora erythraea*.

Glycosylation Enzymes

PCT Pub. No. 97/23630 to Abbott.

30 FK-506

Motamedi *et al.*, 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506, *Eur. J. biochem.* 256: 528-534.

Motamedi *et al.*, 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506, *Eur. J. Biochem.* 244: 74-80.

Methyltransferase

5 US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from *Streptomyces* MA6858. 31-O-desmethyl-FK506 methyltransferase.

Motamedi *et al.*, 1996, Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520, *J. Bacteriol.* 178: 5243-5248.

10 **FK-520**

PCT Pub. No. 00/20601 to Kosan.

See also Nielsen *et al.*, 1991, *Biochem.* 30:5789-96 (enzymology of pipecolate incorporation).

Lovastatin

15 U.S. Pat. No. 5,744,350 to Merck.

Narbomycin (and Picromycin)

PCT Pub. No. WO US99/61599 to Kosan.

Nemadectin

MacNeil *et al.*, 1993, *supra*.

20 **Niddamycin**

Kakavas *et al.*, 1997, Identification and characterization of the niddamycin polyketide synthase genes from *Streptomyces caelestis*, *J. Bacteriol.* 179: 7515-7522.

Oleandomycin

25 Swan *et al.*, 1994, Characterization of a *Streptomyces antibioticus* gene encoding a type I polyketide synthase which has an unusual coding sequence, *Mol. Gen. Genet.* 242: 358-362.

PCT Pub. No. 00/026349 to Kosan.

Olano *et al.*, 1998, Analysis of a *Streptomyces antibioticus* chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring, *Mol. Gen. Genet.* 259(3): 299-308.

Platenolide

EP Pub. No. 791,656 to Lilly.

Rapamycin

Schwecke *et al.*, Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, *Proc. Natl. Acad. Sci. USA* 92:7839-7843.

5 Aparicio *et al.*, 1996, Organization of the biosynthetic gene cluster for rapamycin in *Streptomyces hygroscopicus*: analysis of the enzymatic domains in the modular polyketide synthase, *Gene* 169: 9-16.

Rifamycin

August *et al.*, 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the *rif*' biosynthetic gene cluster of *Amycolatopsis mediterranei* S669, *Chemistry & Biology*, 5(2): 69-79.

Soraphen

U.S. Pat. No. 5,716,849 to Novartis.

Schupp *et al.*, 1995, *J. Bacteriology* 177: 3673-3679. A *Sorangium cellulosum* (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

Spiramycin

U.S. Pat. No. 5,098,837 to Lilly.

Activator Gene

U.S. Pat. No. 5,514,544 to Lilly.

Tylosin

EP Pub. No. 791,655 to Lilly.

Kuhstoss *et al.*, 1996, *Gene* 183:231-6., Production of a novel polyketide through the construction of a hybrid polyketide synthase.

U.S. Pat. No. 5,876,991 to Lilly.

Tailoring enzymes

Merson-Davies and Cundliffe, 1994, *Mol. Microbiol.* 13: 349-355.

Analysis of five tylosin biosynthetic genes from the *tylBA* region of the *Streptomyces fradiae* genome.

As the above Table illustrates, there are a wide variety of PKS genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of 5 the original module with a cognate KR, DH, and ER domain-containing segment from another module, instead of merely inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau *et al.*, 1999, "Dissecting the role of acyltransferase domains of modular 10 polyketide synthases in the choice and stereochemical fate of extender units" *Biochemistry* 38(5):1643-1651, incorporated herein by reference. One can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau *et al.*, *supra*. One can also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See 15 Gokhale *et al.*, 16 Apr. 1999, Dissecting and Exploiting Intermodular Communication in Polyketide Synthases", *Science* 284: 482-485, incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of the invention can be and often are hybrids of more than two PKS genes. Even where only two genes are 20 used, there are often two or more modules in the hybrid gene in which all or part of the module is derived from a second (or third) PKS gene. Thus, as one illustrative example, the invention provides a hybrid PKS that contains the naturally occurring loading module and thioesterase domain as well as extender modules one, two, four, and six of the megalomicin PKS and further contains 25 hybrid or heterologous extender modules three and five. Hybrid or heterologous extender modules three and five contain AT domains specific for malonyl CoA and derived from, for example, the rapamycin PKS genes.

The invention also provides libraries of PKS genes, PKS proteins, and ultimately, of polyketides, that are constructed by generating modifications in the 30 megalomicin PKS so that the protein complexes produced have altered activities in one or more respects and thus produce polyketides other than the natural product of the PKS. Novel polyketides may thus be prepared, or polyketides in general prepared more readily, using this method. By providing a large number of

different genes or gene clusters derived from a naturally occurring PKS gene cluster, each of which has been modified in a different way from the native cluster, an effectively combinatorial library of polyketides can be produced as a result of the multiple variations in these activities. As will be further described below, the 5 metes and bounds of this embodiment of the invention can be described on the polyketide, protein, and the encoding nucleotide sequence levels.

As described above, a modular PKS "derived from" the megalomicin or other naturally occurring PKS includes a modular PKS (or its corresponding encoding gene(s)) that retains the scaffolding of the utilized portion of the 10 naturally occurring gene. Not all modules need be included in the constructs; however, the constructs can also comprise more than six modules. On the constant scaffold, at least one enzymatic activity is mutated, deleted, replaced, or inserted so as to alter the activity of the resulting PKS relative to the original (native) PKS. Alteration results when these activities are deleted or are replaced by a different 15 version of the activity, or simply mutated in such a way that a polyketide other than the natural product results from these collective activities. This occurs because there has been a resulting alteration of the starter unit and/or extender unit, stereochemistry, chain length or cyclization, and/or reductive or dehydration cycle outcome at a corresponding position in the product polyketide. Where a 20 deleted activity is replaced, the origin of the replacement activity may come from a corresponding activity in a different naturally occurring PKS or from a different region of the megalomicin PKS. Any or all of the megalomicin PKS genes may be included in the derivative or portions of any of these may be included, but the scaffolding of a functional PKS protein is retained in whatever derivative is 25 constructed. The derivative preferably contains a thioesterase activity from the megalomicin or another PKS.

Thus, a PKS derived from the megalomicin PKS includes a PKS that contains the scaffolding of all or a portion of the megalomicin PKS. The derived PKS also contains at least two extender modules that are functional, preferably 30 three extender modules, and more preferably four or more extender modules, and most preferably six extender modules. The derived PKS also contains mutations, deletions, insertions, or replacements of one or more of the activities of the functional modules of the megalomicin PKS so that the nature of the resulting

polyketide is altered at both the protein and DNA sequence levels. Particular preferred embodiments include those wherein a KS, AT, or ACP domain has been deleted or replaced by a version of the activity from a different PKS or from another location within the same PKS. Also preferred are derivatives where at 5 least one non-condensation cycle enzymatic activity (KR, DH, or ER) has been deleted or added or wherein any of these activities has been mutated so as to change the structure of the polyketide synthesized by the PKS.

Conversely, also included within the definition of a PKS derived from the megalomicin PKS are functional non-megalomicin PKS modules or their 10 encoding genes wherein at least one domain or coding sequence therefor of a megalomicin PKS module has been inserted. Exemplary is the use of the megalomicin AT for extender module 2, which accepts a methylmalonyl CoA extender unit rather than malonyl CoA, to replace a malonyl specific AT in another PKS. Other examples include insertion of portions of non-condensation 15 cycle enzymatic activities or other regions of megalomicin synthase activity into a heterologous PKS at both the DNA and protein levels.

Thus, there are at least five degrees of freedom for constructing a hybrid PKS in terms of the polyketide that will be produced. First, the polyketide chain length is determined by the number of extender modules in the PKS, and the 20 present invention includes hybrid PKSs that contain 6, as well as fewer or more than 6, extender modules. Second, the nature of the carbon skeleton of the PKS is determined by the specificities of the acyl transferases that determine the nature of the extender units at each position, e.g., malonyl, methylmalonyl, ethylmalonyl, or other substituted malonyl. Third, the loading module specificity also has an effect 25 on the resulting carbon skeleton of the polyketide. The loading module may use a different starter unit, such as acetyl, butyryl, and the like. As noted above, another method for varying loading module specificity involves inactivating the KS activity in extender module 1 (KS1) and providing alternative substrates, called diketides, that are chemically synthesized analogs of extender module 1 diketide products, for extender module 2. This approach was illustrated in PCT publication 30 Nos. 97/02358 and 99/03986, incorporated herein by reference, wherein the KS1 activity was inactivated through mutation. Fourth, the oxidation state at various positions of the polyketide will be determined by the dehydratase and reductase

portions of the modules. This will determine the presence and location of ketone and alcohol moieties and C-C double bonds or C-C single bonds in the polyketide.

Finally, the stereochemistry of the resulting polyketide is a function of three aspects of the synthase. The first aspect is related to the AT/KS specificity 5 associated with substituted malonyls as extender units, which affects stereochemistry only when the reductive cycle is missing or when it contains only a ketoreductase, as the dehydratase would abolish chirality. Second, the specificity of the ketoreductase may determine the chirality of any beta-OH. Finally, the enoylreductase specificity for substituted malonyls as extender units may influence 10 the stereochemistry when there is a complete KR/DH/ER available.

Thus, the modular PKS systems generally and the megalomicin PKS system particularly permit a wide range of polyketides to be synthesized. As compared to the aromatic PKS systems, the modular PKS systems accept a wider range of starter units, including aliphatic monomers (acetyl, propionyl, butyryl, 15 isovaleryl, and the like.), aromatics (aminohydroxybenzoyl), alicyclics (cyclohexanoyl), and heterocyclics (thiazolyl). Certain modular PKSs have relaxed specificity for their starter units (Kao *et al.*, 1994, *Science, supra*). Modular PKSs also exhibit considerable variety with regard to the choice of extender units in each condensation cycle. The degree of beta-ketoreduction following a 20 condensation reaction can be altered by genetic manipulation (Donadio *et al.*, 1991, *Science, supra*; Donadio *et al.*, 1993, *Proc. Natl. Acad. Sci. USA* 90: 7119-7123). Likewise, the size of the polyketide product can be varied by designing mutants with the appropriate number of modules (Kao *et al.*, 1994, *J. Am. Chem. Soc.* 116:11612-11613). Lastly, modular PKS enzymes are particularly well 25 known for generating an impressive range of asymmetric centers in their products in a highly controlled manner. The polyketides, antibiotics, and other compounds produced by the methods of the invention are typically single stereoisomeric forms. Although the compounds of the invention can occur as mixtures of stereoisomers, it may be beneficial in some instances to generate individual 30 stereoisomers. Thus, the combinatorial potential within modular PKS pathways based on any naturally occurring modular, such as the megalomicin, PKS scaffold is virtually unlimited.

While hybrid PKSs are most often produced by "mixing and matching" portions of PKS coding sequences, mutations in DNA encoding a PKS can also be used to introduce, alter, or delete an activity in the encoded polypeptide. Mutations can be made to the native sequences using conventional techniques. The substrates for mutation can be an entire cluster of genes or only one or two of them; the substrate for mutation may also be portions of one or more of these genes.

Techniques for mutation include preparing synthetic oligonucleotides including the mutations and inserting the mutated sequence into the gene encoding a PKS subunit using restriction endonuclease digestion. See, e.g., Kunkel, 1985, *Proc. Natl. Acad. Sci. USA* 82: 448; Geisselsoder *et al.*, 1987, *BioTechniques* 5:786.

Alternatively, the mutations can be effected using a mismatched primer (generally 10-20 nucleotides in length) that hybridizes to the native nucleotide sequence, at a temperature below the melting temperature of the mismatched duplex. The primer can be made specific by keeping primer length and base composition within relatively narrow limits and by keeping the mutant base centrally located. See Zoller and Smith, 1983, *Methods Enzymol.* 100:468. Primer extension is effected using DNA polymerase, the product cloned, and clones containing the mutated DNA, derived by segregation of the primer extended strand, selected.

Identification can be accomplished using the mutant primer as a hybridization probe. The technique is also applicable for generating multiple point mutations. See, e.g., Dalbie-McFarland *et al.*, 1982, *Proc. Natl. Acad. Sci. USA* 79: 6409.

PCR mutagenesis can also be used to effect the desired mutations.

Random mutagenesis of selected portions of the nucleotide sequences encoding enzymatic activities can also be accomplished by several different techniques known in the art, e.g., by inserting an oligonucleotide linker randomly into a plasmid, by irradiation with X-rays or ultraviolet light, by incorporating incorrect nucleotides during *in vitro* DNA synthesis, by error-prone PCR mutagenesis, by preparing synthetic mutants, or by damaging plasmid DNA *in vitro* with chemicals, in accordance with the methods of the present invention.

Chemical mutagens include, for example, sodium bisulfite, nitrous acid, nitrosoguanidine, hydroxylamine, agents which damage or remove bases thereby preventing normal base-pairing such as hydrazine or formic acid, analogues of nucleotide precursors such as 5-bromouracil, 2-aminopurine, or acridine

intercalating agents such as proflavine, acriflavine, quinacrine, and the like.

Generally, plasmid DNA or DNA fragments are treated with chemical mutagens, transformed into *E. coli* and propagated as a pool or library of mutant plasmids.

In constructing a hybrid PKS of the invention, regions encoding enzymatic activity, i.e., regions encoding corresponding activities from different PKS synthases or from different locations in the same PKS, can be recovered, for example, using PCR techniques with appropriate primers. By "corresponding" activity encoding regions is meant those regions encoding the same general type of activity. For example, a KR activity encoded at one location of a gene cluster 5 "corresponds" to a KR encoding activity in another location in the gene cluster or in a different gene cluster. Similarly, a complete reductase cycle could be considered corresponding. For example, KR/DH/ER can correspond to a KR alone. 10

If replacement of a particular target region in a host PKS is to be made, 15 this replacement can be conducted *in vitro* using suitable restriction enzymes. The replacement can also be effected *in vivo* using recombinant techniques involving homologous sequences framing the replacement gene in a donor plasmid and a receptor region in a recipient plasmid. Such systems, advantageously involving plasmids of differing temperature sensitivities are described, for example, in PCT 20 publication No. WO 96/40968, incorporated herein by reference. The vectors used to perform the various operations to replace the enzymatic activity in the host PKS genes or to support mutations in these regions of the host PKS genes can be chosen to contain control sequences operably linked to the resulting coding sequences in a manner such that expression of the coding sequences can be 25 effected in an appropriate host.

However, simple cloning vectors may be used as well. If the cloning 30 vectors employed to obtain PKS genes encoding derived PKS lack control sequences for expression operably linked to the encoding nucleotide sequences, the nucleotide sequences are inserted into appropriate expression vectors. This need not be done individually, but a pool of isolated encoding nucleotide sequences can be inserted into expression vectors, the resulting vectors transformed or transfected into host cells, and the resulting cells plated out into individual colonies. The invention provides a variety of recombinant DNA

compounds in which the various coding sequences for the domains and modules of the megalomicin PKS are flanked by non-naturally occurring restriction enzyme recognition sites.

The various PKS nucleotide sequences can be cloned into one or more 5 recombinant vectors as individual cassettes, with separate control elements, or under the control of, e.g., a single promoter. The PKS subunit encoding regions can include flanking restriction sites to allow for the easy deletion and insertion of other PKS subunit encoding sequences so that hybrid PKSs can be generated. The design of such unique restriction sites is known to those of skill in the art and can 10 be accomplished using the techniques described above, such as site-directed mutagenesis and PCR.

The expression vectors containing nucleotide sequences encoding a variety 15 of PKS enzymes for the production of different polyketides are then transformed into the appropriate host cells to construct the library. In one straightforward approach, a mixture of such vectors is transformed into the selected host cells and the resulting cells plated into individual colonies and selected to identify successful transformants. Each individual colony has the ability to produce a particular PKS synthase and ultimately a particular polyketide. Typically, there will be duplications in some, most, or all of the colonies; the subset of the 20 transformed colonies that contains a different PKS in each member colony can be considered the library. Alternatively, the expression vectors can be used individually to transform hosts, which transformed hosts are then assembled into a library. A variety of strategies are available to obtain a multiplicity of colonies 25 each containing a PKS gene cluster derived from the naturally occurring host gene cluster so that each colony in the library produces a different PKS and ultimately a different polyketide. The number of different polyketides that are produced by the library is typically at least four, more typically at least ten, and preferably at least 20, and more preferably at least 50, reflecting similar numbers of different altered PKS gene clusters and PKS gene products. The number of members in the library 30 is arbitrarily chosen; however, the degrees of freedom outlined above with respect to the variation of starter, extender units, stereochemistry, oxidation state, and chain length enables the production of quite large libraries.

Methods for introducing the recombinant vectors of the invention into suitable hosts are known to those of skill in the art and typically include the use of CaCl₂ or agents such as other divalent cations, lipofection, DMSO, protoplast transformation, conjugation, infection, transfection, and electroporation. The 5 polyketide producing colonies can be identified and isolated using known techniques and the produced polyketides further characterized. The polyketides produced by these colonies can be used collectively in a panel to represent a library or may be assessed individually for activity.

The libraries of the invention can thus be considered at four levels: (1) a 10 multiplicity of colonies each with a different PKS encoding sequence; (2) the proteins produced from the coding sequences; (3) the polyketides produced from the proteins assembled into a functional PKS; and (4) antibiotics or compounds with other desired activities derived from the polyketides. Of course, combination libraries can also be constructed wherein members of a library derived, for 15 example, from the megalomicin PKS can be considered as a part of the same library as those derived from, for example, the rapamycin PKS or DEBS.

Colonies in the library are induced to produce the relevant synthases and thus to produce the relevant polyketides to obtain a library of polyketides. The polyketides secreted into the media can be screened for binding to desired targets, 20 such as receptors, signaling proteins, and the like. The supernatants *per se* can be used for screening, or partial or complete purification of the polyketides can first be effected. Typically, such screening methods involve detecting the binding of each member of the library to receptor or other target ligand. Binding can be detected either directly or through a competition assay. Means to screen such 25 libraries for binding are well known in the art and can be applied in accordance with the methods of the present invention. Alternatively, individual polyketide members of the library can be tested against a desired target. In this event, screens wherein the biological response of the target is measured can more readily be included. Antibiotic activity can be verified using typical screening assays such as 30 those set forth in Lehrer *et al.*, 1991, *J. Immunol. Meth.* 137:167-173, incorporated herein by reference, and in the Examples below.

The invention provides methods for the preparation of a large number of polyketides. These polyketides are useful intermediates in formation of

compounds with antibiotic or other activity through hydroxylation, epoxidation, and glycosylation reactions as described above. In general, the polyketide products of the PKS must be further modified, typically by hydroxylation and glycosylation, to exhibit potent antibiotic activity. Hydroxylation results in the novel polyketides 5 of the invention that contain hydroxyl groups at C-6, which can be accomplished using the hydroxylase encoded by the *eryF* gene, and/or C-12, which can be accomplished using the hydroxylase encoded by the *picK* or *eryK* gene. Also, the *oleP* gene is available in recombinant form, which can be used to express the *oleP* gene product in any host cell. A host cell, such as a *Streptomyces* host cell or a 10 *Saccharopolyspora erythraea* host cell, modified to express the *oleP* gene thus can be used to produce polyketides comprising the C-8-C-8a epoxide present in oleandomycin. Thus the invention provides such modified polyketides. The presence of hydroxyl groups at these positions can enhance the antibiotic activity of the resulting compound relative to its unhydroxylated counterpart.

15 Methods for glycosylating polyketides are generally known in the art and can be applied in accordance with the methods of the present invention; the glycosylation may be effected intracellularly by providing the appropriate glycosylation enzymes or may be effected *in vitro* using chemical synthetic means as described herein and in PCT publication No. WO 98/49315, incorporated herein by reference. Preferably, glycosylation with desosamine, mycarose, and/or megalomycin is effected in accordance with the methods of the invention in recombinant host cells provided by the invention. In general, the approaches to effecting glycosylation mirror those described above with respect to hydroxylation. The purified enzymes, isolated from native sources or 20 recombinantly produced may be used *in vitro*. Alternatively and as noted, glycosylation may be effected intracellularly using endogenous or recombinantly produced intracellular glycosylases. In addition, synthetic chemical methods may be employed.

25 The antibiotic modular polyketides may contain any of a number of different sugars, although D-desosamine, or a close analog thereof, is most common. Erythromycin, picromycin, megalomicin, narbomycin, and methymycin contain desosamine. Erythromycin also contains L-cladinose (3-O-methyl mycarose). Tylosin contains mycaminose (4-hydroxy desosamine), mycarose and

6-deoxy-D-allose, 2-acetyl-1-bromodesosamine has been used as a donor to glycosylate polyketides by Masamune *et al.*, 1975, *J. Am. Chem. Soc.* 97: 3512-3513. Other, apparently more stable donors include glycosyl fluorides, thioglycosides, and trichloroacetimidates; see Woodward *et al.*, 1981, *J. Am. Chem. Soc.* 103: 3215; Martin *et al.*, 1997, *J. Am. Chem. Soc.* 119: 3193; Toshima *et al.*, 1995, *J. Am. Chem. Soc.* 117: 3717; Matsumoto *et al.*, 1988, *Tetrahedron Lett.* 29: 3575. Glycosylation can also be effected using the polyketide aglycones as starting materials and using *Saccharopolyspora erythraea* or *Streptomyces venezuelae* or other host cell to make the conversion, preferably using mutants unable to synthesize macrolides, as discussed in the preceding Section.

Thus, a wide variety of polyketides can be produced by the hybrid PKS enzymes of the invention. These polyketides are useful as antibiotics and as intermediates in the synthesis of other useful compounds, as described in the following section.

15

Section VII: Host Cells Containing Multiple Expression Vectors

A recombinant host cell of the invention may contain nucleic acid encoding a megalomicin PKS domain, module, or protein, or megalomicin modification enzyme at a single genetic locus, *e.g.*, on a single plasmid or at a single chromosomal locus, or at different genetic loci, *e.g.*, on separate plasmids and/or chromosomal loci. By "multiple" is meant two or more; by "vector" is meant a nucleic acid molecule which can be used to transform host systems and which contains an independent expression system containing a coding sequence under control of a promoter and optionally a selectable marker and any other suitable sequences regulating expression. Typical such vectors are plasmids, but other vectors such as phagemids, cosmids, viral vectors and the like can be used according to the nature of the host. Of course, one or more of the separate vectors may integrate into the chromosome of the host (selection may not be required for maintenance of integrated vectors).

30 In one embodiment, the invention provides a recombinant host cell, which comprises at least two separate autonomously replicating recombinant DNA expression vectors, each of said vectors comprises a recombinant DNA compound encoding a megalomicin PKS domain or a megalomicin modification enzyme

operably linked to a promoter. In another embodiment, the invention provides a recombinant host cell, which comprises at least one autonomously replicating recombinant DNA expression vector and at least one modified chromosome, each of said vector(s) and each of said modified chromosome comprises a recombinant 5 DNA compound encoding a megalomicin PKS domain or a megalomicin modification enzyme operably linked to a promoter. Preferably, the autonomously replicating recombinant DNA expression vector and/or the modified chromosome further comprises distinct selectable markers.

The above multiple-vector (chromosome) expression systems can also be 10 used for expressing heterogeneous polyketide biosynthetic enzymes, e.g., for expressing *Micromonospora megalomicea* megalomicin PKS protein, module, or domain or a megalomicin modification enzyme with a PKS protein, module, or domain, or modification enzyme from other origins in the same host cells. By placing various activities on different expression vectors, a high degree of 15 variation can be achieved in an efficient manner. A variety of hosts can be used; any suitable host cell that can maintain multiple vectors can readily be used. Preferred hosts include *Streptomyces*, yeast, *E. coli*, other actinomycetes, and plant cells, and mammalian or insect cells or other suitable recombinant hosts can also be used. Preferred among yeast strains are *Saccharomyces cerevisiae* and *Pichia* 20 *pastoris*. Preferred actinomycetes include various strains of *Streptomyces*.

If one chooses to use a host cell that does not naturally produce a polyketide, then one may need to ensure that the recombinant host is modified to also contain a holo ACP synthase activity that effects pantetheinylation of the acyl carrier protein. See PCT Pub. No. WO 97/13845, incorporated herein by 25 reference. One of the multiple vectors may be used for this purpose. This activation step is necessary for activation of the ACP. The expression system for the holo ACP synthase may be supplied on a vector separate from that carrying a PKS coding sequence or may be supplied on the same vector or may be integrated into the chromosome of the host, or may be supplied as an expression system for a 30 fusion protein with all or a portion of a polyketide synthase (see U.S. Patent No. 6,033,883, incorporated herein by reference).

It should be noted that in some recombinant hosts, it may also be necessary to activate the polyketides produced through postsynthesis modifications when

polyketides having such modifications are desired. If this is the case for a particular host, the host will be modified, for example by transformation, to contain those enzymes necessary for effecting these modifications. Among such enzymes, for example, are glycosylation enzymes. The use of multiple vectors can 5 facilitate the introduction of expression systems for such enzymes.

In a preferred embodiment, the multiple vector system is used to assemble rapidly and efficiently a combinatorial library of polyketides and the PKS/modification enzymes that produce them. In an illustrative embodiment, the multiple vector system comprises four different vectors, one comprising the *megAI* 10 gene, one the *megAII* gene, one the *megAIII* gene, and one the modification enzyme(s) gene(s). Each of these vectors can be modified to make a set of vectors. For example, one set could contain all possible AT substitutions in the loading and first and second extender modules of the *megAI* gene product. Another set could contain expression systems for a variety of different modification enzymes. With 15 these four vectors sets and by combining each member of each set with each member of the other three sets, a very large library of cells, vector sets, and polyketides can be rapidly and efficiently assembled.

The combinatorial potential of a modular PKS such as the megalomicin PKS (ignoring the additional potential of different modification enzyme systems) 20 is minimally given by: $AT_L \times (AT_E \times 4)^M$ where AT_L is the number of loading acyl transferases, AT_E is the number of extender acyl transferases, and M is the number of modules in the gene cluster. The number 4 is present in the formula because this represents the number of ways a keto group can be modified by either 1) no reaction; 2) KR activity alone; 3) KR+DH activity; or 4) KR+DH+ER 25 activity. It has been shown that expression of only the first two modules of the erythromycin PKS resulted in the production of a predicted truncated triketide product (See Kao et al., *J. Am. Chem. Soc.*, 116:11612-11613 ((1994)). A novel 12-membered macrolide similar to methymycin aglycone was produced by expression of modules 1-5 of this PKS in *S. coelicolor* (See Kao et al., *J. Am. 30 Chem. Soc.*, 117:9105-9106 (1995)). This work shows that PKS modules are functionally independent so that lactone ring size can be controlled by the number of modules present.

In addition to controlling the number of modules, the modules can be genetically modified, for example, by the deletion of a ketoreductase domain as described by Donadio et al., *Science*, 252:675-679 (1991); and Donadio et al., *Gene*, 115:97-103 (1992). In addition, the mutation of an enoyl reductase domain 5 was reported by Donadio, et al., *Proc. Natl. Acad. Sci.*, 90:7119-7123 (1993). These modifications also resulted in modified PKS and thus modified polyketides.

As stated above, in the present invention, the coding sequences for catalytic activities derived from the megalomicin PKS systems found in nature can be used in their native forms or modified by standard mutagenesis techniques to 10 delete or diminish activity or to introduce an activity into a module in which it was not originally present. For example, a KR activity can be introduced into a module normally lacking that function.

In one embodiment of the invention herein, a single host cell is modified to contain a multiplicity of vectors, each vector contributing a portion of the 15 synthesis of a megalomicin PKS and modification enzyme (if any) system. Each of the multiple vectors for production of the megalomicin PKS system typically encodes at least two modules, and at least one of the vectors integrates into the chromosome of the host. Integration can be effected using suitable phage or integrating vectors or by homologous recombination. If homologous 20 recombination is used, the integration event may also be designed to delete endogenous PKS genes residing in the chromosome, as described in the PCT application WO 95/08548. In these embodiments, too, a selectable marker such as hygromycin or thiostrepton resistance can be included in the vector that effects 25 integration.

As mentioned above, additional enzymes that effect post-translational 30 modifications to the enzyme systems in the megalomicin PKS may be introduced into the host through suitable recombinant expression systems. In addition, enzymes that activate the polyketides themselves, for example, through glycosylation may be added. It may also be desirable to modify the cell to produce more of a particular substrate utilized in polyketide biosynthesis. For example, it is generally believed that malonyl CoA levels in yeast are higher than methylmalonyl CoA; if yeast is chosen as a host, it may be desirable to increase

methylmalonyl CoA levels by the addition of one or more biosynthetic enzymes therefor.

The multiple-vector expression system can also be used to make polyketides produced by the addition of synthetic starter units to a PKS that 5 contains an inactivated ketosynthase (KS) in the first module. As noted above, this modification permits the system to incorporate a suitable diketide thioester such as 3-hydroxy-2-methyl pantonoic acid-N-acetyl cysteamine thioester, or similar thioesters of diketide analogs, as described by Jacobsen et al., *Science*, 277:367-369 (1997). The construction of PKS modules containing inactivated 10 ketosynthase regions can be conducted by methods known in the art, such as the method described in U.S. Patent No. 6,080,555 and PCT publication Nos. WO 99/03986 and 97/02358, each of which is incorporated herein by reference, in accordance with the methods of the present invention.

The multiple-vector expression system can be used to produce polyketides 15 in hosts that normally do not produce them, such as *E. coli* and yeast. It also provides more efficient means to provide a variety of polyketide products by supplying the elements of the introduced PKS, whether in an *E. coli* or yeast host or in other more traditionally used hosts, such as *Streptomyces*. The invention also includes libraries of polyketides prepared using the methods of the invention.

20

Section VIII: Compounds

The methods and recombinant DNA compounds of the invention are useful in the production of polyketides. In one important aspect, the invention provides methods for making antibiotic compounds related in structure to erythromycin, a 25 potent antibiotic compound. The invention also provides novel ketolide compounds, polyketide compounds with potent antibiotic activity of significant interest due to activity against antibiotic resistant strains of bacteria. See Griesgraber et al., 1996, *J. Antibiot.* 49: 465-477, incorporated herein by reference. Most if not all of the ketolides prepared to date are synthesized using 30 erythromycin A, a derivative of 6-dEB, as an intermediate. In one embodiment, the present invention provides the 3-keto derivatives of the megalomicins for use as antibiotics. In particular, the 3-keto derivative of megalomicin A is a preferred ketolide of the invention. These compounds can be made chemically, substantially

in accordance with the procedures for making ketolides described in the prior art, or in recombinant host cells of the invention in which the megosamine and desosamine biosynthetic and transferase genes are present but which do not make or transfer the mycarose moiety and/or the PKS has been modified to delete the
5 KR domain of extender module 6. The invention also provides methods for making intermediates useful in preparing traditional, 6-dEB- and erythromycin-derived ketolide compounds. See Griesgraber *et al.*, *supra*; Agouridas *et al.*, 1998, *J. Med. Chem.* 41: 4080-4100, U.S. Patent Nos. 5,770,579; 5,760,233; 5,750,510; 5,747,467; 5,747,466; 5,656,607; 5,635,485; 5,614,614; 5,556,118; 5,543,400;
10 5,527,780; 5,444,051; 5,439,890; 5,439,889; and PCT publication Nos. WO 98/09978 and 98/28316, each of which is incorporated herein by reference.

As noted above, the hybrid PKS genes of the invention can be expressed in a host cell that contains the desosamine, megosamine, and/or mycarose biosynthetic genes and corresponding transferase genes as well as the required
15 hydroxylase gene(s), which may, for example and without limitation, be either *picK*, *megK*, or *eryK* (for the C-12 position) and/or *megF* or *eryF* (for the C-6 position). The resulting compounds have antibiotic activity but can be further modified, as described in the patent publications referenced above, to yield a desired compound with improved or otherwise desired properties. Alternatively,
20 the aglycone compounds can be produced in the recombinant host cell, and the desired glycosylation and hydroxylation steps carried out *in vitro* or *in vivo*, in the latter case by supplying the converting cell with the aglycone, as described above.

The compounds of the invention are thus optionally glycosylated forms of the polyketide set forth in formula (1) below which are hydroxylated at either the
25 C-6 or the C-12 or both. The compounds of formula (1) can be prepared using the loading and the six extender modules of a modular PKS, modified or prepared in hybrid form as herein described. These polyketides have the formula:

including the glycosylated and isolated stereoisomeric forms thereof;

wherein R* is a straight chain, branched or cyclic, saturated or unsaturated substituted or unsubstituted hydrocarbyl of 1-15C;

5 each of R¹-R⁶ is independently H or alkyl (1-4C) wherein any alkyl at R¹ may optionally be substituted;

each of X¹-X⁵ is independently two H, H and OH, or =O; or

each of X¹-X⁵ is independently H and the compound of formula (2)

contains a double-bond in the ring adjacent to the position of said X at 2-3, 4-5, 6-

10 7, 8-9 and/or 10-11;

with the proviso that:

at least two of R¹-R⁶ are alkyl (1-4C).

Preferred compounds comprising formula 2 are those wherein at least three of R¹-R⁵ are alkyl (1-4C), preferably methyl or ethyl; more preferably wherein at 15 least four of R¹-R⁵ are alkyl (1-4C), preferably methyl or ethyl. Also preferred are those wherein X² is two H, =O, or H and OH, and/or X³ is H, and/or X¹ is OH and/or X⁴ is OH and/or X⁵ is OH. Also preferred are compounds with variable R* when R¹-R⁵ is methyl, X² is =O, and X¹, X⁴ and X⁵ are OH. The glycosylated forms (i.e., mycarose or cladinose at C-3, desosamine at C-5, and/or megosamine 20 at C-6) of the foregoing are also preferred.

As described above, there are a wide variety of diverse organisms that can modify compounds such as those described herein to provide compounds with or that can be readily modified to have useful activities. For example,

Saccharopolyspora erythraea can convert 6-dEB to a variety of useful

compounds. The compounds provided by the present invention can be provided to cultures of *Saccharopolyspora erythraea* and converted to the corresponding derivatives of erythromycins A, B, C, and D in accordance with the procedure provided in the Examples, below. To ensure that only the desired compound is produced, one can use an *S. erythraea eryA* mutant that is unable to produce 6-dEB but can still carry out the desired conversions (Weber *et al.*, 1985, *J. Bacteriol.* 164(1): 425-433). Also, one can employ other mutant strains, such as *eryB*, *eryC*, *eryG*, and/or *eryK* mutants, or mutant strains having mutations in multiple genes, to accumulate a preferred compound. The conversion can also be carried out in large fermentors for commercial production. Each of the erythromycins A, B, C, and D has antibiotic activity, although erythromycin A has the highest antibiotic activity. Moreover, each of these compounds can form, under treatment with mild acid, a C-6 to C-9 hemiketal with motilide activity. For formation of hemiketals with motilide activity, erythromycins B, C, and D, are preferred, as the presence of a C-12 hydroxyl allows the formation of an inactive compound that has a hemiketal formed between C-9 and C-12.

Thus, the present invention provides the compounds produced by hydroxylation and glycosylation of the compounds of the invention by action of the enzymes endogenous to *Saccharopolyspora erythraea* and mutant strains of *S. erythraea*. Such compounds are useful as antibiotics or as motilides directly or after chemical modification. For use as antibiotics, the compounds of the invention can be used directly without further chemical modification. Erythromycins A, B, C, and D all have antibiotic activity, and the corresponding compounds of the invention that result from the compounds being modified by *Saccharopolyspora erythraea* also have antibiotic activity. These compounds can be chemically modified, however, to provide other compounds of the invention with potent antibiotic activity. For example, alkylation of erythromycin at the C-6 hydroxyl can be used to produce potent antibiotics (clarithromycin is C-6-O-methyl), and other useful modifications are described in, for example, Griesgraber *et al.*, 1996, *J. Antibiot.* 49: 465-477, Agouridas *et al.*, 1998, *J. Med. Chem.* 41: 4080-4100, U.S. Patent Nos. 5,770,579; 5,760,233; 5,750,510; 5,747,467; 5,747,466; 5,656,607; 5,635,485; 5,614,614; 5,556,118; 5,543,400; 5,527,780;

5,444,051; 5,439,890; and 5,439,889; and PCT publication Nos. WO 98/09978 and 98/28316, each of which is incorporated herein by reference.

- For use as motilides, the compounds of the invention can be used directly without further chemical modification. Erythromycin and certain erythromycin
- 5 analogs are potent agonists of the motilin receptor that can be used clinically as prokinetic agents to induce phase III of migrating motor complexes, to increase esophageal peristalsis and LES pressure in patients with GERD, to accelerate gastric emptying in patients with gastric paresis, and to stimulate gall bladder contractions in patients after gallstone removal and in diabetics with autonomic
- 10 neuropathy. See Peeters, 1999, Motilide Web Site, <http://www.med.kuleuven.ac.be/med/gih/motilid.htm>, and Omura *et al.*, 1987, Macrolides with gastrointestinal motor stimulating activity, *J. Med. Chem.* 30: 1941-3). The corresponding compounds of the invention that result from the compounds of the invention being modified by *Saccharopolyspora erythraea* also have motilide
- 15 activity, particularly after conversion, which can also occur *in vivo*, to the C-6 to C-9 hemiketal by treatment with mild acid. Compounds lacking the C-12 hydroxyl are especially preferred for use as motilin agonists. These compounds can also be further chemically modified, however, to provide other compounds of the invention with potent motilide activity.
- 20 Moreover, and also as noted above, there are other useful organisms that can be employed to hydroxylate and/or glycosylate the compounds of the invention. As described above, the organisms can be mutants unable to produce the polyketide normally produced in that organism, the fermentation can be carried out on plates or in large fermentors, and the compounds produced can be
- 25 chemically altered after fermentation. In addition to *Saccharopolyspora erythraea*, *Streptomyces venezuelae*, *S. narbonensis*, *S. antibioticus*, *Micromonospora megalomicea*, *S. fradiae*, and *S. thermotolerans* can also be used. In addition to antibiotic activity, compounds of the invention produced by treatment with *M. megalomicea* enzymes can have antiparasitic activity as well. Thus, the present
- 30 invention provides the compounds produced by hydroxylation and glycosylation by action of the enzymes endogenous to *S. erythraea*, *S. venezuelae*, *S. narbonensis*, *S. antibioticus*, *M. megalomicea*, *S. fradiae*, and *S. thermotolerans*.

The present invention also provides methods and genetic constructs for producing the glycosylated and/or hydroxylated compounds of the invention directly in the host cell of interest. Thus, the recombinant genes of the invention, which include recombinant *megA1*, *megAII*, and *megAIII* genes with one or more 5 deletions and/or insertions, including replacements of a *megA* gene fragment with a gene fragment from a heterologous PKS gene, can be included on expression vectors suitable for expression of the encoded gene products in *Saccharopolyspora erythraea*, *Micromonospora megalomicea*, *S. venezuelae*, *S. narbonensis*, *S. antibioticus*, *S. fradiae*, and *S. thermotolerans*.

10 The compounds of the invention can be produced by growing and fermenting the host cells of the invention under conditions known in the art for the production of other polyketides. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. The compounds can be readily formulated to provide the 15 pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation will contain one or more of the compounds of the invention as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or 20 parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use.

The carriers which can be used include water, glucose, lactose, gum acacia, 25 gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used. For example, the compounds of the invention may be utilized with hydroxypropyl 30 methylcellulose essentially as described in U.S. Patent No. 4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo *et al.*, 1987, *Transplantation Proceedings XIX*, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases caused by infection, a compound of the invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from about 0.1 mg to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the invention may be administered on an intermittent basis, i.e., at semi-weekly, weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 gm of active agent compounded with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention may be formulated within the range of, for example, 0.00001% to 60% by weight, preferably from 0.001% to 10% by weight, and most preferably from about 0.005% to 0.8% by weight.

It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors. These factors include the

activity of the specific compound employed; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

5 A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the invention and shall not be construed as being a limitation on the scope of the invention or claims.

Example 1

10 Cloning and Characterization of the Megalomicin Biosynthetic Gene Cluster from
Micromonospora meglomicea

Experimental Procedures

Bacterial Strains, Media, and Growth Conditions

Routine DNA manipulations were performed in *Escherichia coli* XL1 Blue
15 or *E. coli* XL1 Blue MR (Stratagene) using standard culture conditions (Sambrook
et al., 1989). *M. megalomicea* subs. *nigra* NRRL3275 was obtained from the
ATCC collection and cultured according to recommended protocols. For isolation
of genomic DNA, *M. megalomicea* was grown in TSB (Hopwood *et al.*, 1985) at
30 °C. *S. lividans* K4-114 (Ziermann and Betlach, 1999), which carries a deletion
20 of the actinorhodin biosynthetic gene cluster, was used as the host for expression
of the *megA1-AIII* genes. *S. lividans* strains were maintained on R5 agar at 30°C
and grown in liquid YEME for preparation of protoplasts (Hopwood *et al.*, 1985).
S. erythraea NRRL2338 was used for expression of the megalomicin genes. *S.*
25 *erythraea* strains were maintained on R5 agar at 34°C and grown in liquid TSB for
preparation of protoplasts.

Manipulation of DNA and Organisms

Manipulation and transformation of DNA in *E. coli* was performed by
standard procedures (Sambrook *et al.*, 1989) or by suppliers protocols. Protoplasts
30 of *S. lividans* and *S. erythraea* were generated for transformation by plasmid DNA
using the standard procedure. *S. lividans* transformants were selected on R5 using
2 ml of a 0.5 mg/ml thiostrepton overlay. *S. erythraea* transformants were selected
on R5 using 1.5 ml of a 0.6 mg/ml apramycin overlay.

Isolation of the meg gene cluster

A cosmid library was prepared in SuperCos (Stratagene) from *M. megalomicea* total DNA partially digested with *Sau3A* I, and introduced into *E. coli* using a Gigapack III XL (Stratagene) *in-vitro* packaging kit. 32 P-labelled DNA probes encompassing the KS2 domain from *ery* DEBS, or a mixture of segments encompassing modules 1 and 2 from *ery* DEBS were used separately to screen the cosmid library by colony hybridization. Several colonies which hybridized with the probes were further analyzed by sequencing the ends of their cosmid inserts using T3 and T7 primers. BLAST (Altschul *et al.*, 1990) analysis of the sequences revealed several colonies with DNA sequences highly homologous to genes from the *ery* cluster. Together with restriction analysis, this led to the isolation of two overlapping cosmids, pKOS079-93A and pKOS079-93D which covered ~45 kb of the *meg* cluster. A 400 bp PCR fragment was generated from the left end of pKOS079-93D and used to reprobe the cosmid library. Likewise, a 200 bp PCR fragment generated from the right end of pKOS079-93A was used to reprobe the cosmid library. Analysis of hybridizing colonies as described above resulted in identification of two additional cosmids, pKOS079-138B and pKOS79-124B which overlap the previous two cosmids. BLAST analysis of the far left and right end sequences of these cosmids indicated no homology to any known genes related to polyketide biosynthesis and therefore indicates that the set of four cosmids spans the entire megalomicin biosynthetic gene cluster.

DNA sequencing and analysis

PCR-based double stranded DNA sequencing was performed on a Beckman CEQ 2000 capillary sequencer using reagents and protocols provided by the manufacturer. A shotgun library of the entire cosmid pKOS079-93D insert was made as follows: DNA was first digested with *Dra* I to eliminate the vector fragment, then partially digested with *Sau3A* I. After agarose electrophoresis, bands between 1-3 kb were excised from the gel and ligated with *BamH* I digested pUC19. Another shotgun library was generated from a 12 kb *Xho* I/*EcoR* I fragment subcloned from cosmid pKOS079-93A to extend the sequence to the *megF* gene. A 4 kb *Bgl* II/*Xho* I fragment from cosmid pKOS079-138B was

sequenced by primer walking to extend the sequencing to the *megT* gene. Sequence was assembled using Sequencher (Gene Codes Corp.) software package and analyzed with MacVector (Oxford Molecular Group) and the NCBI BLAST server (www.ncbi.nlm.nih.gov/BLAST/).

5

Plasmids

Plasmid pKOS108-6 is a modified version of pKAO127'kan' (Ziermann and Betlach, 1999; Ziermann and Betlach, 2000) in which the *eryAI-III* genes between the *Pac I* and *EcoR I* sites have been replaced with the *megAI-III* genes.

- 10 This was done by first substituting a synthetic nucleotide DNA duplex (5'-TAAGAATTCCGGAGATCTGGCCTCAGCTCTAGAC (SEQ ID NO: 21), complementary oligo 5'-AATTGTCTAGAGCTGAGGCCAGATCTCCGAATTCTTAAT (SEQ ID NO: 22)) between the *Pac I* and *EcoR I* sites of the pKAO127'kan' vector fragment.
- 15 The 22 kb *EcoR I/Bgl II* fragment from cosmid pKOS079-93D containing the *megAI-II* genes was inserted into *EcoR I* and *Bgl II* sites of the resulting plasmid to generate pKOS024-84. A 12 kb *Bgl II/BbvC I* fragment containing the *megAIII* and part of the *megCII* gene was subcloned from pKOS079-93A and excised as a *Bgl II/Xba I* fragment and ligated into the corresponding sites of pKOS024-84 to yield the final expression plasmid pKOS108-06.

The megalosamine integrating vector, pKOS97-42, was constructed as follows: A subclone was generated containing the 4 kb *Xho I/Sca I* fragment from pKOS79-138B together with the 1.7 kb *Sca I/Pst I* fragment from pKOS79-93D in Litmus 28 (Stratagene). The entire 5.7 kb fragment was then excised as a *Spe I/Pst I* fragment and combined with the 6.3 kb *Pst I/EcoR I* fragment from KOS79-93D and *EcoR I/Xba I* digested pSET152 (Bierman *et al.*, 1992) to construct plasmid pKOS97-42.

Production and analysis of secondary metabolites

- 30 Fermentation for production of polyketide, LC/MS analysis, and quantification of 6-dEB for *S. lividans* K4-114/pKOS108-6 and *S. lividans* K4-114/pKAO127'kan' were essentially as previously described (Xue *et al.*, 1999). *S. erythraea* NRRL2338 and *S. erythraea*/pKOS97-42 were grown for 6 days in F1

media (Brünker *et al.*, 1998). Samples of broth were clarified in a microcentrifuge (5 min, 13,000 rpm). For LC/MS preparation, isopropanol was added to the supernatant (1:2 ratio) and centrifuged again. Erythromycins and megalomicins were detected by electrospray mass spectrometry and quantity was determined by 5 evaporative light scattering detection (ELSD). The LC retention time and mass spectra of erythromycin and megalomicins were identical to known standards.

Nucleotide sequence of the meg gene cluster

A series of 4 overlapping inserts containing the *meg* cluster (Figure 9) were 10 isolated from a cosmid library prepared from total genomic DNA of *M. megalomicea* and covers > 100 kb of the genome. A contiguous 48 kb segment which encodes the megalomicin PKS and several deoxysugar biosynthetic genes was sequenced and analyzed. The segment contains 17 complete ORFs as well as an incomplete ORF at each end, organized as shown in Figure 9.

15 *PKS genes.* The ORFs *megA1*, *megAII* and *megAIII* encode the polyketide synthase responsible for synthesis of 6-dEB. The enzyme complex, *meg* DEBS, is highly similar to *ery* DEBS, with each of the three predicted polypeptides sharing an average of 83% overall similarity with their *ery* PKS counterpart. Both PKSs are composed of 6 modules (2 modules per polypeptide) and each module is 20 organized in the identical manner (Figure 9). A dendrogram analysis (Schwecke *et al.*, 1995) employing 70 acyltransferase (AT) domains revealed that the 6 *meg* extender AT domains cluster with AT domains that incorporate methylmalonyl CoA (not shown). The loading module of *meg* DEBS also lacks a KS^Q domain which is utilized by most macrolide PKSs for decarboxylation of the starter unit to 25 initiate polyketide synthesis (Bisang *et al.*, 1999; Kuhstoss *et al.*, 1996; Kakavas *et al.*, 1997; Xue *et al.*, 1998), implying that priming begins with a propionate unit. In addition, a conserved Gly to Pro substitution in the NADPH-binding region of the ketoreductase (KR) domain of module 3 is observed in *meg* DEBS, which has been proposed to account for its inactivity in *ery* DEBS (Donadio *et al.*, 1991).

30 *Deoxysugar genes.* BLAST (Altschul *et al.*, 1990) analysis of the genes flanking the PKS indicated that 12 complete ORFs and 1 partial ORF appear to encode functions required for synthesis of one of the three megalomicin deoxysugars. Assignment of each ORF to a specific deoxysugar pathway was

made based on comparison to the *ery* genes and other related genes involved in deoxysugar biosynthesis (Table 2).

Table 2. Deduced functions of genes identified in the megalomicin gene cluster.

Gene	Closest Match (polypeptide) ^a	% Sim ^a	Proposed Pathway	Proposed Function	Reference
<i>megT</i>	EryBVI		Mycarose/ Megosamine	2,3-Dehydratase	(Summers <i>et al.</i> , 1997; Gaisser <i>et al.</i> , 1997)
<i>megDVI</i>	EryCII	63	Megosamine	3,4-Isomerase	(Summers <i>et al.</i> , 1997)
<i>megDI</i>	EryCIII	79	Megosamine	Glycosyltransferase	(Summers <i>et al.</i> , 1997)
<i>megY</i>	AcyA (<i>S.</i> <i>thermotolerans</i>)	52		Mycarose O-acyl- transferase	(Arisawa <i>et al.</i> , 1994)
<i>megDII</i>	EryCI	58	Megosamine	Aminotransferase	(Dhillon <i>et al.</i> , 1989; Summers <i>et al.</i> , 1997)
<i>megDIII</i>	DesVI (<i>S.</i> <i>venezuelae</i>)	61	Megosamine	Dimethyltransferase	(Xue <i>et al.</i> , 1998)
<i>megDIV</i>	DmnU (<i>S.</i> <i>peuceti</i> us)	65	Megosamine	3,5-Epimerase	(Olano <i>et al.</i> , 1999)
<i>megDV</i>	Dehydrogenase (<i>A. orientalis</i>)	61	Megosamine	4-Ketoreductase	(Summers <i>et al.</i> , 1997; van Wageningen <i>et al.</i> , 1998)
<i>megDVI</i>	EryBII	73	Megosamine	2,3-Reductase	(Summers <i>et al.</i> , 1997)
<i>megBV</i>	EryBV	86	Mycarose	Glycosyltransferase	(Summers <i>et al.</i> , 1997; Gaisser <i>et al.</i> , 1997)
<i>megBIV</i>	EryBIV	80	Mycarose	4-Ketoreductase	(Summers <i>et al.</i> , 1997; Gaisser <i>et al.</i> , 1997)
<i>megAI</i>	EryAI	81	6-dEB	Polyketide Synthase	(Donadio and Katz, 1992)
<i>megAII</i>	EryAII	85	6-dEB	Polyketide Synthase	(Donadio and Katz, 1992)
<i>megAIII</i>	EryAIII	83	6-dEB	Polyketide Synthase	(Donadio and Katz, 1992)
<i>megCII</i>	EryCII	82	Desosamine	3,4-Isomerase	(Summers <i>et al.</i> , 1997)
<i>meg CIII</i>	EryCIII	89	Desosamine	Glycosyltransferase	(Summers <i>et al.</i> , 1997)
<i>megBII</i>	EryBII	87	Mycarose	2,3-Reductase	(Summers <i>et al.</i> , 1997)
<i>megH</i>	EryH	84		Thioesterase	(Haydock <i>et al.</i> , 1991)
<i>megF</i>	EryF			C-6 Hydroxylase	(Weber <i>et al.</i> , 1991)

5 a. Determined by BLASTX analysis using default parameters.

Three ORFs, *megBV*, *megCIII* and *megDI*, encode glycosyltransferases, apparently one for attachment of each deoxysugar to the macrolide. MegBV was most similar to EryBV, the erythromycin mycarosyltransferase, and hence was assigned to the mycarose pathway in the *meg* cluster. The closest match for both of 5 the remaining glycosyltransferases was EryCIII, the desosaminyltransferase in erythromycin biosynthesis. Given the higher degree of similarity between EryCIII and MegCIII (Table 2), MegCIII was designated the desosaminyltransferase, leaving MegDI as the proposed megosaminyltransferase. In similar fashion, assignments were made accordingly for; MegCII and MegDVI, two putative 3,4- 10 isomerasers similar to EryCII; MegBII and MegDVII, 2,3-reductases homologous to EryBII; MegBIV and MegDV, putative 4-ketoreductases similar to EryBIV (Table 2). The remaining ORFs involved in deoxysugar biosynthesis, *megT*, *megDII*, *megDIII* and *megDIV*, each encode a putative 2,3-dehydratase, aminotransferase, dimethyltransferase and 3,5-epimerase, respectively (Table 2). 15 Since both the megalosamine and desosamine pathways require an aminotransferase and a dimethyltransferase, and since mycarose and megalosamine each require a 2,3-dehydratase and a 3,5-epimerase, assignments of these four genes to a specific pathway could not be made on the basis of sequence comparison alone. However, the latter three are implicated in megalosamine biosynthesis by experiments 20 described below.

Other genes. Two additional complete ORFs, designated *megY* and *megH* and an incomplete ORF, designated *megF*, were also identified in the cluster. MegH and MegF share high degrees of similarity with EryH and EryF. EryH and homologs in other macrolide gene clusters are thioesterase-like proteins with 25 unknown function in polyketide gene clusters (Haydock *et al.*, 1991; Xue *et al.*, 1998; Butler *et al.*, 1999; Tang *et al.*, 1999). EryF encodes the erythronolide B C-6 hydroxylase (Figure 8) (Weber *et al.*, 1991; Andersen and Hutchinson, 1992). MegY does not have an *ery* counterpart but appears to belong to a (small) family 30 of O-acyltransferases that transfer short acyl chains to macrolides. Two classes exist: AcyA and MdmB transfer acetyl or propionyl groups to the C-3 hydroxyls on 16-membered macrolide rings (Arisawa *et al.*, 1994; Hara and Hutchinson, 1992); CarE and Mpt transfer isovalerate or propionate to the mycarosyl moiety of carbomycin and midecamycin, respectively (Epp *et al.*, 1989; Arisawa *et al.*, 1993;

Gu *et al.*, 1996). The structures of various megalomicins suggest that MegY belongs to the latter class and is the acyltransferase which converts megalomicin A to megalomicins B, C1, or C2 (verified experimentally below).

5 *Heterologous expression of the meg PKS genes.*

The wild type and genetically modified versions of the *ery* DEBS have been used extensively in heterologous *Streptomyces* hosts for enzyme studies and the production of novel polyketide compounds. Given the similarities between the *ery* and *meg* DEBSs, production characteristics were compared in a commonly used *Streptomyces* host strain. The three *megA* ORFs were cloned into the expression plasmid pKAO127'kan' (Ziermann and Betlach, 1999) in place of the *eryA* ORFs. Both plasmids, pKAO127'kan' encoding *ery* DEBS and pKOS108-06 encoding *meg* DEBS, were introduced in *Streptomyces lividans* K4-114 and the production of 6-dEB was determined in shake-flask fermentations. The production profiles were similar in both cases and the maximum titer of 6-dEB was between 30-40 mg/L. In addition, both PKSs produced small amounts (~5%) of 8,8a-deoxyoleandolide, which results from the priming of the PKS with acetate instead of propionate (Kao *et al.*, 1994b). This observation indicates that the loading AT domains of the PKSs display similar relaxed specificities towards starter units.

20

Conversion of erythromycin to megalomicin in S. erythraea.

An examination of the *meg* cluster revealed that the putative megalosamine biosynthetic genes are clustered directly upstream of the PKS genes. If the hypothesis that these genes are sufficient for biosynthesis and attachment of megalosamine to an erythromycin intermediate is correct, then functional expression of these genes in a strain which produces erythromycin, such as *S. erythraea*, should result in production of megalomicin. A 12 kb DNA fragment carrying all the genes between the leftmost *Xba*I site and the *Eco*RI site (Figure 9) was integrated in the chromosome of *S. erythraea* using the site-specific integrating vector pSET152 (Bierman *et al.*, 1992). It was surmised that the left and right ends of this fragment would contain necessary promoter regions for transcription of the convergent set of genes in *M. megalomicea* and that they would likely operate in *S. erythraea*.

Fermentation broth from *S. erythraea*/KOS97-42, which contains the integrated *meg* genes, was analyzed by LC/MS and compared to LC/MS profiles of the parent *S. erythraea* strain without the *meg* genes, as well as to megalomicin standards purified from *M. megalomicea*. The new strain was found to produce a mixture of erythromycin A and various megalomicins (~4:1 ratio), thereby showing that the predicted megalomicin biosynthetic and glycosyltransferase genes are contained within the cloned *meg* fragment. The two most abundant congeners identified were megalomicins B and C1. Megalomicin A and C2 were also detected in smaller amounts. The presence of the megalomicins B, C1 and C2 also provides direct evidence for the function of the *O*-acyl transferase, MegY, which is present in the integrated *meg* fragment.

Discussion

The homologies observed among modular PKSs enabled the use of *ery* PKS genes to clone the *meg* biosynthetic gene cluster from *M. megalomicea*. The close similarities between the megalomicin and erythromycin biosynthetic pathways is also reflected in the overall organization of their genes and in the high degree of homology of the corresponding individual gene-encoded polypeptides. Production of 6-dEB from *meg* DEBS in *S. lividans* and conversion of erythromycin to megalomicin using the *megD* genes in *S. erythraea* provides direct evidence that the identified gene cluster is responsible for synthesis of megalomicin.

As seen in Figure 9, the ~ 40 kb segments of the two clusters beginning with *ery/megBV* on the left through the *ery/megF* genes retain a nearly identical organizational arrangement. The notable differences in this region are *eryG* and IS1136 which are absent from the segment of the *meg* cluster analyzed. The *eryG* gene encodes an S-adenosylmethionine (SAM)-dependent mycarosyl methyltransferase that converts erythromycin C to erythromycin A (Figure 8) (Weber *et al.*, 1990; Haydock *et al.*, 1991). The mycarose moiety is modified by esterification (MegY) in megalomicin biosynthesis (Figure 8) and, therefore, the absence of an *eryG* homolog would be expected in the *meg* cluster. The IS1136 element located between *eryA1* and *eryAII* (Donadio and Staver, 1993) is not

known to play a role in erythromycin biosynthesis and its origin in the *ery* cluster has not been determined.

Upstream of the common *meg/eryBIV* and *BV* genes, the gene clusters diverge. The ~ 6 kb segment between *eryBV* and *eryK*, the left border of the *ery* gene cluster (Pereda *et al.*, 1997), contains the remaining genes required for mycarose (*eryBVI* and *BVII*) and desosamine biosynthesis (*eryCIV*, *CV*, and *CVI*) and the C-12 hydroxylase (*eryK*) (Stassi *et al.*, 1993). In contrast, the region upstream of *megBV* encodes a set of genes (*megDI-DVII* and *megY*) which can account for all the activities unique to megalomicin biosynthesis (Figure 9). Since introduction of this *meg* DNA segment into *S. erythraea* results in production of megalomicins, it is clear that these genes encode the functions for TDP-megosamine biosynthesis and transfer to its putative substrate erythromycin C, and to acylate megalomicin A (Figure 8). The remaining region upstream of *megDVI* should therefore encode genes only for mycarose and desosamine biosynthesis.

Olano *et al.* (Olano *et al.*, 1999) have recently described a pathway for biosynthesis of TDP-L-daunosamine, a deoxysugar component of the antitumor compounds daunorubicin and doxorubicin produced by *Streptomyces peucetius*. Their pathway proposes four steps from the intermediate TDP-4-keto-6-deoxyglucose controlled by the gene cluster *dnmJQTVZ*, although the functions for *dnmQ* and *dnmZ* could not be identified and the precise order of reactions in the pathway could not be determined. The genes *dnmT*, *dnmU*, *dnmJ* and *dnmV* each have proposed counterparts in the *meg* cluster, *megT*, *megDIV*, *megDII*, and *megDV*, respectively (see Figure 10)

It is possible to describe a pathway to convert TDP-2,6-dideoxy-3,4-diketo-D-hexose (or its enol tautomer), the last intermediate common to the mycarose and megosamine pathways, to TDP-megosamine through the sequence of 5-epimerization, 4-ketoreduction, 3-amination, and 3-N-dimethylation employing the genes *megDIV*, *megDV*, *megDII*, and *megDIII*. This employs the same functions proposed for biosynthesis of TDP-daunosamine by Olano *et al.*, but in a different sequential order. However, it does not account for the *megDVI* and *megDVII* genes since their activities are not required for this route. A parallel pathway which employs these genes is also shown in Figure 10. In this alternate route, 2,3-reduction and 3,4-tautomerization are performed by the *megDVII* and

megDVI gene products, respectively. A unified single pathway that employs both 4-ketoreduction (*megDV*) and 2,3-reduction (*megDVII*) could not be determined. Because the entire gene set from *megDVI* through *megDVII* was introduced in *S. erythraea* to produce TDP-megosamine, it is not possible to determine which, if 5 either, of the two alternative pathways is operative, but this can be addressed through systematic gene disruption and complementation.

The 48 kb segment sequenced also contains genes required for synthesis of TDP-L-mycarose and TDP-D-desosamine (Fig 10). For the latter, *megCII*, which encodes a putative 3,4-isomerase, the first step in the committed TDP-desosamine 10 pathway, appears to be translationally coupled to *megAIII*, almost exactly as its erythromycin counterpart, *eryCII*, was found translationally coupled to *eryAIII* (Summers *et al.*, 1997). The high degree of similarity between MegCII and EryCII suggests that the pathway to desosamine in the megalomicin- and erythromycin-producing organisms are most likely the same. Similarly, the finding that *megBII* 15 and *megBIV*, encoding a 2,3-reductase and 4-ketoreductase, contain close homologs in the mycarose pathway for erythromycin also suggests that TDP-L-mycarose synthesis in the two host organisms is the same.

Of interest are the two genes that encode putative 2,3-reductases, *megBII* and *megDVII*. Because MegBII most closely resembles EryBII, a known mycarose 20 biosynthetic enzyme (Weber *et al.*, 1990), and because *megBII* resides in the same location of the *meg* cluster as its counterpart in the *ery* cluster, *megBII* is assigned to the mycarose pathway and *megDVII* to the megosamine pathway. Furthermore, the lower degree of similarity between MegDVII and either EryBII or MegBII 25 (Table 2) provides a basis for assigning the opposite L and D isomeric substrates to each of the enzymes (Figure 10). Finally, *megT*, which encodes a putative 2,3-dehydratase, is also related to a gene in the *ery* mycarose pathway, *eryBVI*. In *S. erythraea*, the proposed intermediate generated by EryBVI represents the first 30 committed step in the biosynthesis of mycarose (Figure 10). However, the proposed pathways in Figure 10 suggest this may be an intermediate common to both mycarose and megosamine biosynthesis in *M. megalomicea*. Therefore, *megT* is named following the designation of the equivalent gene in the daunosamine pathway, *dnmT* (Olano *et al.*, 1999)

The preferred host-vector system for expression of *meg* DEBS described here has been used previously for the heterologous expression of modular PKS genes from the erythromycin (Kao *et al.*, 1994a; Ziermann and Betlach, 1999), picromycin (Tang *et al.*, 1999) and oleandomycin pathways, as well as for the 5 generation of novel polyketide backbones where domains have been removed, added or exchanged in various combinations (McDaniel *et al.*, 1999). Recently, hybrid polyketides have been generated through the co-expression of subunits from different PKS systems (Tang *et al.*, 2000).

Expression of the *megDVI-megDVII* segment in *S. erythraea* and the 10 corresponding production of megalomicins in this host establishes the likely order of sugar attachment in megalomicin synthesis. Furthermore, it provides a means to produce megalomicin in a more genetically friendly host organism, leading to the creation of megalomicin analogs by manipulating the PKS. Over 60 6-dEB analogs have been produced by combinatorial biosynthesis using the *ery* PKS 15 (McDaniel *et al.*, 1999; Xue *et al.*, 1999). The titers of megalomicin could also be significantly increased above the 5 mg/L obtained from *M. megalomiciae* by introducing the genes into an industrially optimized strain of *S. erythraea*, many of which can produce as much as 10 g/L of erythromycin.

20 References

- Kao, C.M., Katz, L. and Khosla, C. (1994a) Engineered biosynthesis of a complete macrolactone in a heterologous host. *Science* **265**: 509-512.
- Kao, C.M., Luo, G., Katz, L., Cane, D.E. and Khosla, C. (1994b) Engineered 25 biosynthesis of a triketide lactone from an incomplete modular polyketide synthase. *J. Am. Chem. Soc.* **116**: 11612-11613.
- McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., Betlach, M. *et al.* (1999) Multiple genetic modifications of the erythromycin gene cluster to produce a library of novel "unnatural" natural products. *Proc. 30 Natl. Acad. Sci. USA* **96**: 1846-1851.
- Olano, C., Lomovskaya, N., Fonstein, L., Roll, J.T. and Hutchinson, C.R. (1999) A two-plasmid system for the glycosylation of polyketide antibiotics:

- bioconversion of e-rhodomycinone to rhodomycin D. *Chem. & Biol.* 6: 845-855.
- Tang, L., Fu, H., Betlach, M.C. and McDaniel, R. (1999) Elucidating the mechanism of chain termination switching in the picromycin/methymycin polyketide synthase. *Chem. & Biol.* 6: 553-558.
- 5 Tang, L., Fu, H. and McDaniel, R. (2000) Formation of functional heterologous complexes using subunits from the picromycin, erythromycin, and oleandomycin polyketide synthases. *Chem. & Biol.* 7: 77-84.
- Weber, J.M., Leung, J.O., Maine, G.T., Potenz, R.H., Paulus, T.J. and DeWitt, J.P.
- 10 (1990) Organization of a cluster of erythromycin genes in *Saccharopolyspora erythraea*. *J. Bacteriol.* 172: 2372-2383.
- Weber, J.M., Leung, J.O., Swanson, S.J., Idler, K.B. and McAlpine, J.B. (1991) An erythromycin derivative produced by targeted gene disruption in *Saccharopolyspora erythraea*. *Science* 252: 114-117.
- 15 Xue, Q., Ashley, G., Hutchinson, C.R. and Santi, D.V. (1999) A multi-plasmid approach to preparing large libraries of polyketides. *Proc. Natl. Acad. Sci. USA* 96: 11740-11745.
- Xue, Y., Zhao, L., Liu, H.-w. and Sherman, D.H. (1998) A gene cluster for the macrolide antibiotic biosynthesis in *Streptomyces venezuelae*: Architecture
- 20 of metabolic diversity. *Proc. Natl. Acad. Sci. USA* 95: 12111-12116.
- Ziermann, R. and Betlach, M. (2000) A two-vector system for the production of recombinant polyketides in *Streptomyces*. *J. Ind. Microbiol. Biotech.* 24: 46-50.
- Ziermann, R. and Betlach, M.C. (1999) Recombinant polyketide synthesis in
- 25 *Streptomyces*: Engineering of improved host strains. *Biotechniques* 26: 106-110.

Example 2

Stabilizing meg PKS Expression Plasmid by Codon Engineering

30 *Materials and methods*

All bacterial strains were cultured and transformed as described in

Example 1.

Fermentation of Streptomyces and diketide feeding

Primary *Streptomyces* transformants were picked and placed in 6 mL of TSB liquid medium with 50 µg/L of thiostrepton and grown at 30°C. When the 5 culture showed some growth (3-4 days), it was transferred into a 250 mL flask containing 50 mL of R6 medium (pH 7.0) with 25 µg/L of thiostrepton and 1 g/L of diketide ((2s,3R)2-methyl-3-hydroxyhexanoate N-propionyl cysteamine thioester) and placed in a 30°C incubator for 7 days.

10 *Changing codons and making plasmids*

There are several identical sequences in the coding sequences for module 2 and module 6 of the megalomicin PKS gene cluster. Expression plasmids containing the full length megalomicin PKS appeared to be somewhat unstable and subject to deletion in *recA*⁺ strains like ET124567 and *Streptomyces* by intra-plasmid homologous recombination. To prevent significant homologous recombination and so stabilize expression plasmids, the codons of two regions of the module 6 coding sequence that are identical to regions in the module 2 coding sequence were changed without changing the sequence of protein encoded. The two regions changed in module 6 were from the 26739th base to 27,267th base and 15 from position 27,697th base to 27,987th base, which were identical to the region from position 6810th base to 7338th base and regions from position 7778th base to 20 8068th base, respectively. The start codon of the loading domain of the meg PKS was set to be the 1st base. These sequences are shown below

25 > 6810-7338 Sequence in Module 2
 TTGCAGCGGTGTCGGTGGCGGTGCAGGGAGGGGCGTCGGGTGTTGGGTGTGGTGGTGGGT
 TCGCGGTGAATCAGGATGGGCGAGTAATGGGTGTCGGCGCCGTCGGGGGTGGCGCAG
 CAGCGGGTGATTGGCGGGCGTGGGGTGTGCGGGGTGTGTCGGGTGGGGATGTGGGTGTG
 GTGGAGGCATGGGACGGGGACGCCGTTGGGGATCCGGTGGAGTTGGGGCGTTGTTG
 30 GGGACGTATGGGTGGGTGGGGTGGGGTGGGGTCCGGTGGGGTGGGGTTCGGTGAAGGCG
 AATGTGGGTCAATGTCAGCGGGGGGGGGGGTGTGGGGTGTGATCAAGGTGGTGTGGGG
 TTGGGTGGGGGGTGGGTGGGGTCCGATGGTGTGTCGGGGTGGGGTGTGCGGGGTTGGTGGAT
 TGGTCGTGGGTGGGTGGGTGGGGATGGGGTGGGGGGTGGCCGGTGGGTGTGGAT
 GGGGTGCGTCGGGGTGGGGTGTGCGGGCTTGGGGTGTGCGGGACGAAT (SEQ ID NO: 23)
 35 > 26736-27267 Sequence in Module 6
 CTGCAGCGGTGTCGGTGGCGGTGCAGGGAGGGGCGTCGGGTGTTGGGTGTGGTGGTGGGT
 TCGCGGTGAATCAGGATGGGCGAGTAATGGGTGTCGGCGCCGTCGGGGGTGGCGCAG
 CAGCGGGTGATTGGCGGGCGTGGGGTGTGCGGGGTGTGTCGGGTGGGGATGTGGGTGTG
 GTGGAGGCATGGGACGGGGACGCCGTTGGGGATCCGGTGGAGTTGGGGGGCGTTGTTG
 40 GGGACGTATGGGTGGGTGGGGTGGGGTGGGTGGGTGGGGTGTGCGGGTGGGTGGGGTGTGCAAGGCG
 AATGTGGGTCAATGTCAGCGGGCGGGGGTGTGGTGGGTGTGATCAAGGTGGTGTGGGG

TTGGGTCGGGGGTTGGTGGGTCCGATGGTGTGTCGGGGTGGGTTGTCGGGGTTGGAT
 TGGTCGTGGGTGGGTGGTGGCGGATGGGTGCGGGGGTGGCCGGTGGGTGGAT
 GGGGTGCCTCGGGGTGGGTGTCGGCCTTGGGTGTCGGGGACGAAT (SEQ ID NO: 24)

5 > 26736-27267 Sequence with Codon Changes
 CTGCAGCGCCTCTCGTCGCCCGAGTCCTCGCGTCGTCGCC
 TCGGCCGTCACCAAGACGGCGCTCAAACGGCTCGCCGCCCTCCGGCGTCGCCAG
 CAGCGCGTCATAACGCCGCGCTGGGAGCTACGGCGCCGGAGTATCGGGCGCGACGTCGGAGTC
 GTCGAGGCCACGGCACCCGCTCGGGGATCCCGTCGAGCTGGGCGCCCTCCTG
 GGCACGTACGGCGTCGGCCGCGCGCTCGTCGGGTATCAAGGTGTCCTCGGC
 10 AACGTGGCCACGTCAGGCCGCGCCGGCGTCGTCGGGTATGGTCGCCCCCTCGAC
 CTCGGCCGCGGGCTGGTCGGCCGATGGTCGCCCCCTCAGCGGCCCTCGAC
 TGGTCGTCGGCGGGCTGGTCGTCGGACGGGGTCCCGGCTGGCGGTGGCGTCGAC
 GGCCTCCGCCGGCGCTCGGCCTCGCGTCAGCGGGACGAAT (SEQ ID NO: 25)

15 > 6978-7337 Sequence in Module 2
 GGTGGAGTGTGATGCGGTGGTGTGTCGTTGGGTGGGTTTCGGTGTGTTGGGTTGGGA
 GGGTCGGTCGGGTGCGCGCTGCTGGATGGGTGGATGCGGTGGATGCGGTGGTGTGTTCGT
 GGTGATGGTGTGTCGTTGGCGCGGGTGTGGCGGTGGTGGGGTTGTCGCTGGCGGTGGT
 GGGTCATTGCAAGGGGAGATCGCGCCGGCGGTGGTGGCGGGGGTGTGTCGGTGGGTGA
 20 26) TGGTGCGCGGGTGGTGGCGTTGCGGGCGCGGGCGTTGCGGGCGTTGGCGGG (SEQ ID NO:
 > 27697-27987 Sequence in Module 6
 GGTGGAGTGTGATGCGGTGGTGTGTCGGTGGTGGGTTTCGGTGTGTTGGGTTGGGA
 GGGTCGGTCGGGTGCGCCGTCGTTGGATGGGTGGATGCGGTGGTGTGTTCGT
 25 GGTGATGGTGTGTCGTTGGCGCGGGTGTGGCGGTGGTGGTGGGGTTGTCGCTGGCGGTGGT
 GGGTCATTGCAAGGGGAGATCGCGCCGGCGGTGGTGGCGGGGGTGTGTCGGTGGGTGA
 TGGTGCGCGGGTGGTGGCGTTGCGGGCGCGGGCGTTGCGGGCGTTGGCGGG (SEQ ID NO:
 27)
 > 27697-27987 Sequence with Codon Changes
 30 CGTGGAGTGCATGCGTCGTCGAGCGTCGTCGGCTTCAGCGTGTGGCGTCTGGGA
 GGGCCGAGCGGCCCGAGCTGGACCGCGTCGACGTGGTCCAGCCGGTCTGTTGTC
 GGTGATGGTCAGCTGGCCGCGCTGTGGCGCTGGTGGCGGTGGTCCCAGCCGGTGGT
 CGGCCACAGCCAGGGCAGATCGCCGCCGCGGTGGTGGCCGGCGTCTGAGCGTCGGCGA
 CGGCCCGCGTCGTCGGCCCTGCGCGCCCGCCCTGCGCGCCCTGGCGGG (SEQ ID NO:
 35 28)

Three pieces of DNA from the two regions above were synthesized and verified by Retrogen, and the synthesized DNAs were cloned into pCR-Blunt II -TOPO, as shown in the Table 3 below.

40

Table 3. Plasmids containing synthesized DNA

Plasmids	Cloning sites and positions in meg PKS
pKOS97-1613	PstI-BamHI, 26,739 th -26,947 th base
PKOS97-1622	BamHI-BsmI, 26,947 th -27,267 th base
PKOS97-1628	SfaNI-FseI, 27,697 th - 27,987 th base

Assembly of the expression plasmid

First, ligation of the PstI-BamHI fragment of pKOS97-1613, the BamHI-BsmI fragment of pKOS97-1622 and BsmI-PstI linearized pKOS97-90 produced

pKOS97-151. Then, the insertion of the SfaNI-FseI fragment of pKOS97-1628 into pKOS97-151 gave rise to pKSO97-152. Then, the PstI-BpI fragment of pKOS97-125 was used to replace the PstI-BpI fragment of pKOS97-90a and produced pKOS97-160.

5 The final expression plasmid (in pRM5) pKOS97-162 was the result of BglII-NheI fragment of pKOS97-160 inserted into BglII-NheI sites of pKOS108-04.

10 Another expression plasmid pKOS97-152a was made by a four-fragment ligation. The four fragments were a BpI-XbaI fragment (containing a cos site) of pKOS97-92a, a BglII-PstI fragment of pKOS97-81, a PstI-BpI fragment of pKOS97-152, and a BglII-XbaI fragment of pKOS108-04 (as the vector).

Tests of the constructed plasmids showed that the plasmids containing the modified coding sequences were more stable than plasmids containing unmodified coding sequence.

15

Example 3

Construction of Ole-Meg Hybrid PKS

Construction of pRM1-based pKOS098-48 for the expression of OlePKS modules 1-4.

20 The 240-bp fragment containing the 3'-end portion of *oleAII* gene (at nt 11210-11452; the first base of the start codon of *oleAII* is nt 1) was PCR amplified with primers N98-38-1 (5'GAACAACTCCTGTCTGCGGCCGCG-3') (SEQ ID NO: 29) and N98-38-3 (5'-

CGGAATTCTCTAGAGTCACGTCTCCAACCGCTTGTGAGG-3') (SEQ ID

25 NO: 30). The fragment contains a naturally occurring NotI site at its 5'-end and the engineered XbaI (bold) and EcoRI sites (underline) at its 3'-end following the *oleAII* stop codon. pKOS38-189 was digested with EcoRI and NotI to give five fragments of 8 kb, 5 kb, 4 kb, 2.5 kb and 2 kb. The 8-kb EcoRI-NotI fragment containing *oleAII* gene nt 2961 to nt 11210 and the 240-bp NotI, EcoRI treated

30 PCR fragment were ligated into litmus 28 at the EcoRI site via a three-fragment ligation to give pKOS98-46. The 8.2-kb EcoRI fragment from pKOS98-46 was cloned into pKOS38-174, a pRM1 derived plasmid containing *oleAII* and nt 1 to nt 2960 of *oleAII* to give pKOS98-48.

Construction of pSET152-based pKOS98-60 for the expression of megPKS modules 5-6.

The 360-bp fragment containing nt 1 to nt 366 of *megAIII* was PCR
5 amplified with primers N98-40-3 (5'-

TCTAGACTTAATTAAGGGAGGACACATATGAGCGA-GAGCAGC-
GGCATGACCG-3') (SEQ ID NO: 31) and N98-40-2 (5'- AACGCCTCCCAG-
GAGATCTCCAGCA-3') (SEQ ID NO: 32). A *PacI* site and a *NdeI* site as well
as the ribosome binding site were introduced at the 5'-end of the *megAII* start
10 codon. The 360-bp *PacI*-*BglII* fragment was inserted into pKOS108-06 replacing
the 22-kb *PacI*-*BglII* fragment to yield pKOS98-55. The 10-kb *PacI*-*XbaI*
fragment containing *megAIII* gene and the annealed oligos N98-23-1 (5'-
AATTCATAGCCTAGGT-3') (SEQ ID NO: 33) and N98-23-2 (5'-
CTAGACCTAGGCTATG-3') (SEQ ID NO: 34) were ligated to *PacI* and *EcoRI*
15 treated pSET152 derivative pKOS98-14 via a three-fragment ligation to give
pKOS98-60.

Example 4

Conversion of Erythronolides to Erythromycins

20 A sample of a polyketide (~50 to 100 mg) is dissolved in 0.6 mL of
ethanol and diluted to 3 mL with sterile water. This solution is used to overlay a
three day old culture of *Saccharopolyspora erythraea* WHM34 (an *eryA* mutant)
grown on a 100 mm R2YE agar plate at 30°C. After drying, the plate is incubated
at 30°C for four days. The agar is chopped and then extracted three times with 100
25 mL portions of 1% triethylamine in ethyl acetate. The extracts are combined and
evaporated. The crude product is purified by preparative HPLC (C-18 reversed
phase, water-acetonitrile gradient containing 1% acetic acid). Fractions are
analyzed by mass spectrometry, and those containing pure compound are pooled,
neutralized with triethylamine, and evaporated to a syrup. The syrup is dissolved
30 in water and extracted three times with equal volumes of ethyl acetate. The
organic extracts are combined, washed once with saturated aqueous NaHCO₃,
dried over Na₂SO₄, filtered, and evaporated to yield ~0.15 mg of product. The
product is a glycosylated and hydroxylated compound corresponding to

erythromycin A, B, C, and D but differing therefrom as the compound provided differed from 6-dEB.

Example 5

5 Measurement of Antibacterial Activity

Antibacterial activity is determined using either disk diffusion assays with *Bacillus cereus* as the test organism or by measurement of minimum inhibitory concentrations (MIC) in liquid culture against sensitive and resistant strains of *Staphylococcus pneumoniae*.

10

Example 6

Evaluation of Antiparasitic Activity

15 Compounds can initially screened *in vitro* using cultures of *P. falciparum* FCR-3 and K1 strains, then *in vivo* using mice infected with *P. berghei*. Mammalian cell toxicity can be determined in FM3A or KB cells. Compounds can also be screened for activity against *P. berhei*. Compounds are also tested in animal studies and clinical trials to test the antiparasitic activity broadly (antimalarial, trypanosomiasis and Leishmaniasis).

20 The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments and that the foregoing description and examples are for purposes of illustration and not limitation of the following claims.

25

Claims

1. An isolated nucleic acid comprising a nucleotide sequence encoding a domain of megalomicin polyketide synthase (PKS) or a megalomicin modification enzyme.
5
2. The isolated nucleic acid of claim 1, which encodes a PKS open reading frame (ORF) selected from the group consisting of megA I, megA II and megA III.
- 10 3. The isolated nucleic acid of claim 1, wherein the PKS domain is selected from the group consisting of a TE domain, a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain, and an ER domain.
- 15 4. The isolated nucleic acid of claim 1, wherein the nucleic acid comprises the coding sequence for a loading module, a thioesterase domain, and all six extender modules of megalomicin PKS.
- 20 5. The isolated nucleic acid of claim 1, which encodes a megalomicin modification enzyme that is involved in the conversion of 6-dEB into a megalomicin.
- 25 6. The isolated nucleic acid of claim 5, which encodes a megalomicin modification enzyme that is involved in the biosynthesis of mycarose, megosamine or desosamine.
- 30 7. The isolated nucleic acid of claim 1, wherein the nucleic acid codons of homologous regions within the PKS or the megalomicin modification enzyme coding sequence have been changed to reduce or abolish the homology without changing the amino acid sequences encoded by said changed nucleic acid codons.

8. The isolated nucleic acid of claim 1, which isolated nucleic acid fragment hybridizes to a nucleic acid having a nucleotide sequence set forth in the SEQ. ID NO:1.

5 9. A polypeptide, which is encoded by the isolated nucleic acid fragment of claim 1.

10. A recombinant DNA expression vector, comprising the isolated nucleic acid of claim 1 operably linked to a promoter.

10 11. A recombinant host cell, comprising the recombinant DNA expression vector of claim 10.

12. The recombinant host cell of claim 11, which is a *Streptomyces* or
15 *Saccharopolyspora* host cell.

13. A recombinant host cell of claim 11, which comprises:
a) at least two separate autonomously replicating recombinant DNA expression vectors, each of said vectors comprises a recombinant DNA compound
20 encoding a megalomicin PKS domain or a megalomicin modification enzyme operably linked to a promoter; or
b) at least one autonomously replicating recombinant DNA expression vector and at least one modified chromosome, each of said vector(s) and each of said modified chromosome comprises a recombinant DNA compound encoding a megalomicin PKS domain or a megalomicin modification enzyme operably linked
25 to a promoter.

14. A hybrid PKS that comprises a polypeptide of claim 9 and is composed of at least a portion of a megalomicin PKS and at least a portion of a
30 second PKS for a polyketide other than megalomicin.

15. The hybrid PKS of claim 14, wherein the second PKS is selected from the group consisting of a narbonolide PKS, an oleandolide PKS, and a DEBS PKS.

5 16. The hybrid PKS of claim 15 that is composed of the megAI and megAll gene products and the oleAIII gene product.

17. The hybrid PKS of claim 16, wherein the KS domain of module 1 of the megAI gene product has been inactivated by mutation.

10 18. A method of producing a polyketide, which method comprises growing the recombinant host cell of claim 11 under conditions whereby the megalomicin PKS domain encoded by the recombinant expression vector is produced and the polyketide is synthesized by the cell, and recovering the
15 synthesized polyketide.

19. A recombinant host cell that comprises a recombinant expression vector that encodes a megalomicin modification enzyme.

20 20. The recombinant host cell of claim 19 that produces megosamine and can attach megosamine to a polyketide, wherein said host cell, in its naturally occurring non-recombinant state cannot produce megosamine.

Cosmid Inserts

Figure 1

Figure 2

Megalomicin Biosynthetic Genes

Erythromycin A

Structures of the Megalomicins and Azithromycin

Figure 3

Biosynthesis of 6-Deoxyerythronolide B (6-dEB), the Aglycone of Erythromycin, by a Modular PKS

Figure 4

Erythromycin Biosynthetic Pathway and Megalomicin Biosynthesis

Figure 5

Glycoside Biosynthetic Genes

Figure 6

LOCUS 1 47981 bp DNA 01-MAY-2000
DEFINITION Megalomicin biosynthetic gene cluster, polyketide synthase, desosamine, megosamine, and mycarose biosynthesis genes.
ACCESSION 1
VERSION
KEYWORDS
SOURCE Micromonospora megalomicea.
ORGANISM Micromonospora megalomicea
Unclassified.
REFERENCE 1 (bases 1 to 47981)
AUTHORS Volchegursky, Y., Hu, Z., Katz, L. and McDaniel, R.
TITLE Biosynthesis of the Anti-Parasitic Agent Megalomicin: Transformation of Erythromycin to Megalomicin in *Saccharopolyspora erythraea*
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 47981)
AUTHORS McDaniel, R. and Volchegursky, Y.
TITLE Direct Submission
JOURNAL Submitted (01-MAY-2000) Kosan Biosciences, Inc., 3828 Bay Center Place, Hayward, CA 94545, USA
FEATURES Location/Qualifiers.
source 1..47981
/organism="Micromonospora megalomicea"
/stain="NRRL3275"
/sub_species="nigra"
complement(<1..144)
/gene="megT"
CDS complement(<1..144)
/gene="megT"
/codon_start=1
/transl_table=11
/product="TDP-4-keto-6-deoxyglucose-2,3-dehydratase"
/translation="MGDRVNGHATPESTQSAIRFLTRHGGPPTATDDVHDWLHRAAE
IRLE" (SEQ ID NO: 2)
128..2061
/gene="megDVI"
CDS 928..2061
/gene="megDVI"
/codon_start=1
/transl_table=11
/product="TDP-4-keto-6-deoxyhexose 3,4-isomerase"
/translation="MAVGDRRRLGRELQMARGLYWFGANGDLYSMLSGRDDDWTW
YERLRAAGRGPYASRAGTWWVGDHRTAAEVILADPGFTHGPPDAARWMQVAHCPAASWA
GPFREFYARTEDAASVTVDADWLQQRCAVLTELGSRFDLVNDFAREVPVIALGTAPA
LKGVDPDRILRSWTSATRVCLDAQSPQQLAVTEQALTALDEIDAVTGRDAAVLVGVV
AELAANTVGNALVAVTELPELAARLADDPETATRVVTEVSRTPGVHLERRTAASDRR
VGGVDVPTGGEVTVVAAAANRDPEVFTDPDRFDVDRGGDAEILSSRPGSPRTLDALV
ATLATAALRRAAPVLPRLSRSGPVIRRSPVARGLSRCPVEL" (SEQ ID NO: 3)
gene 2072..3382
/gene="megDI"
CDS 2072..3382
/gene="megDI"
/codon_start=1
/transl_table=11
/product="TDP-megosamine glycosyltransferase"
/translation="MRVVFSSMAVNSHLFGLVPLASAFAQAGHEVRVVASPALTDDVT
GAGLTAVPGDDVELVEWHAHAGQDIVEYMRTLDWVDQSHTTMSWDDLLGMQTTFTPT
FFALMSPDSLIDGMVECRSWRPDWIVWEPLTFAAPIAARVTGTPHARMLWGPDVATR
ARQSFLRLLAHQEVHREDPLAEWFDTLRRFGDDPHLSFDEELVLGQWTVDPIPEPL
RIDTGVRTVGMRYVPYNGPSVPAWLLREPERRVCLTLGGSSREHGIQVSIGEMLD
AIADIDAEFVATFDDQQLVGVGSVPANVRTAGFVPMNVLLPTCAATVHGGTGSLTA
AIHGPQIILSDADTEVHAKQLQDLGAGLSLPVGAGMTAEHLRGAIERVLDPAYRLGA
ERMRDGMRTDPSPAQVVGICQDLAADRAARGRQPRRTAEPHLPR" (SEQ ID NO: 4)
gene 3462..4634

```

/gene="megY"
CDS 3462..4634
/gene="megY"
/codon_start=1
/transl_table=11
/product="mycarose O-acyltransferase"
/translation="MVTSTNLDTTARPALNSLTGMRFVAFLVFFTHVLSRLIPNSYV
YADGLDAFWQTGRGVGSFFFILSGFVLTWSARASDSVWSFWRRRVCKLFPNHLVTAF
AAVLFLVTGQAVSGEALIPNLLLIHAWFPALEISFGINPVWSLACEAFFYLCPLF
LFWISGIRPERLWAWAAVFAAIWAVPVVADLLLPSPPPLIPGLEYSAIQDWFLYTFP
ATRSLEFILGIILARILITGRWINVGLPAVLLFPVFFVASLFLPGVYAISSSSMILP
LVLLIASGATADLQQKRTFMNRNRMVWLGDVSFALYMHFLVIVYGADLLGFSQTEDA
PLGLALFMIIPFLAVSLVLSWLLYRFVELPVMRNWARPASARRKPATEPEQTPSRR"
gene 4651..5775 (SEQ ID NO: 5)
/CDS 4651..5775
/gene="megDII"
/codon_start=1
/transl_table=11
/product="TDP-3-keto-6-deoxyhexose 3-aminotransaminase"
/translation="MTTYVWSYLLEYERERADILDAVQKVFAASGLILGQSVENFETE
YARYHGHIAHCVGVDNGTNAVKLALESVGVRGRDDEVTVSNTAAPTVLAIDEIGARPVF
VDVRDEDYLMDDTLVEAAVTPRTKAIVPVHLYGQCVDMTALRELADRRGLKLVEDCAQ
AHGARRDGRLAGTMSAAAFSFYPTKVLGAYGDGGAVENTNDDETARALRRLRYGMEE
VYYVTRTPGHSRNLDEVQAELRRKLTRLDAYVAGRRVAQRYVVDGLADLQDSHGLEL
PVVTDGNEHVVFVYVVRHPRRDEIIKRLRDGYDISLNISYPWPVHMTGFAHLGVASG
SLPVTERLAGEIFSLPMYPSLPHDLQDRVIEAVREVITGL" (SEQ ID NO: 6)

gene 5822..6595
/CDS 5822..6595
/gene="megDIII"
/codon_start=1
/transl_table=11
/product="daunosaminyl-N,N-dimethyltransferase"
/translation="MPNSHSTSSTDVAPYERADIYHDFYHGRGKGYRAEADALVEVA
RKHTPQAATLLDVACGTGSHLVELADSREVVGVDLSAAMLATAARNDPGRELHQGDM
RDFSLLDRRFDVUTCMFSTGYLVDDEAELDRAVANLAGHLAPGCTLVVEPWFPETFRP
GWVGADLVTSGDRRISSRMSHTVPAGLPDRTASRTMIHYTVGSPEAGIEHFTEVHVML
FARAAYEQAFQRAGLSCSYVGHDLFSPGLFVGAAEPGR" (SEQ ID NO: 7)

gene 6592..7197
/CDS 6592..7197
/gene="megDIV"
/codon_start=1
/transl_table=11
/product="TDP-4-keto-6-deoxyhexose 3,5-epimerase"
/translation="MRVEELGIEGVFTFTPQTFADERGVFGTAYQEDVFAALGRPLF
PVAQVSTTRSRRGVVRGVFTTMPGSMAKYVYCARGRAMDFAVDIRPGSPTFGRAEPV
ELSAESMVGLYLPVGMGHLFVSLEDDTTLVYLMAGYVPDKERAVHPLDPELALPIA
DLDLVMSERDRVAPTLREARDQGILPDYAACRAAAHRVVRT" (SEQ ID NO: 8)

gene 7220..8206
/CDS 7220..8206
/gene="megDV"
/codon_start=1
/transl_table=11
/product="TDP-4-keto-6-deoxyhexose 4-ketoreductase"
/translation="MVVLGASGFLGSATHALADLPVRVRLVARREVVVPSGAVADYE
THRVDLTEPGALAEVVADARAVFPAAQIRGTSWRISSEDDVVAERTNVGLVRDLIAV
LSRSPHAPVVVPGSNTQVGRVTAGRVIDGSEQDHPEGVYDRQKHTGEQLLKEATAAG
AIRATSLRLPPVFGVPAAGTAGDRGVVSTMIRRALTGQPLTMWDGTVRELLYVTDA
ARAFVTALDHADALAGRHFLLGTGRSWPLGEVFQAVSRSVARHTGEDPVVSVPPP
HMDPSDLRSVEVDPARFTAUTGWRATVTMAEAVDRTVAALAPRRAAAPSEPS"
complement(8228..9220) (SEQ ID NO: 9)

```

```

CDS      /gene="megDVII"
          complement(8228..9220)
          /gene="megDVII"
          /codon_start=1
          /transl_table=11
          /product="TDP-4-keto-6-deoxyhexose 2,3-reductase"
          /translation="MGTTGAGSARVRVGRSALHTSRLWLGTVNFSGRVTDALRMD
HALERGVNCIDTADIYGRWLKYKHTTEELVGRWFAQGGGRREETVLATKVGSEMSERVN
DGGLSARHIVAACENSLLRGVDHIDIYQTHHIDRAAPWDEVWQAAEHLVGSCKVGYV
GSNLAGWHIAAAQESAARRNLLGMISHQCLYNLAVRHPELDVLPAAQAYGVGFAWS
PLHGGLLSGVLEKLAAGTAVKSAQGRAQVLLPAVRPLVEAYEDYCRRIGADPAEVGLA
WVLSRPGILGAVIGPRTPEQLDSALRAAELTLGEEELRELEAIFPAPAVDGPVP"
complement(9226..10479)                                (SEQ ID NO: 10)

gene      /gene="megBV"
CDS       complement(9226..10479)
          /gene="megBV"
          /codon_start=1
          /transl_table=11
          /product="TDP-mycarose glycosyltransferase"
          /translation="MRVLLTSFAHRTHFQGLVPLAWALTAGHDVRVASQPELTDVVV
GAGLTSVPLGSDHRLFDISPEAAQVHRYTTDLDFAARRGPRLRSWEFLHGIEEATSRF
VFPVVNNDSFVDELVEFAMDWPRPDVLWEPFTAGAVAAKACGAAHARLLWGSDLTGY
FRSRSDQDLRGQRPADDRPDPGLGWLTEVAGRFGLDYSEDLAVGQWSVDQLPESFRLET
GLESVHTRTLPHYNGSSVPQWLRTSDGVRVCFTGGYSALGITSNPQEFLRTLATLAR
FDGEIVVTRSGLDPASVPDNVRLVDFVPMNILLPGCAAVIHHGGAGSWATALHHGVPO
ISVAHEWDVCVRGQRTAELGAGVFLRPDEVADTLWQALATVVEDRSHAENAEKLRQE
ALAAPTAAEVVVPVLEALAHQHRADR" (SEQ ID NO: 11)

gene      complement(10483..11424)
CDS       /gene="megBIV"
          complement(10483..11424)
          /gene="megBIV"
          /codon_start=1
          /transl_table=11
          /product="TDP-4-keto-6-deoxyhexose 4-ketoreductase"
          /translation="MTRHVTLGGVSGFVGSAALLREFTTHPLRLRAVARTGSRDQPPGS
AGIEHLRVDLLEPGRVAQVVADTDVVVHLVAYAAGGSTWRSAAVTPEAERVNAGIMRD
LVAALRARPGPAPVLLFASTTQAANPAAPSRYAQHKIEAERILRQATEDGVUDGVILR
LPAIYGHSGPSGQTGRGVVTAMIRRALAGEPITMWHEGSVRNLLHVEDVATAFTAAL
HNHEALVGDVWTPSADEARPLGEIFETVAASVARQTGNPAPVVSVPPENAEANDFR
SDDFDSTEERTLTGWHPRVPLAEGIDRTVAALISTKE" (SEQ ID NO: 12)

gene      12181..22821
CDS       /gene="megAI"
          12181..22821
          /gene="megAI"
          /note="polyketide synthase"
          /codon_start=1
          /transl_table=11
          /product="megalomicin 6-deoxyerythronolide B synthase 1"
          /translation="MVDVPDLLGTRTPHPGPLFWPLCGNEPELRARARQLHAYE
GISEDDVVAVGAALARETRAQDGPHRAVVVASSVTELTAALAAALAQGRPHPSVVRGVA
RPTAPVVVFVLPQGAQWPGMATRLLAESPVFAAMRACERAFDEVTDWSLTEVLDSP
HLRRVEVVQPALFAVQTSLAALWRSFGVRPDAVLGHSIGELAAAECGAVDVEAAARA
AALWSREMPLVGRGDMAAVALSPAELAARVERWDDVVPAVGNGPRSVLITGAPEPI
ARRVAELAAQGVRAQVVNVMSAHSQAQDVAEGMRSALTWFAPGDSDVPPYYAGLTGG
RLDTRELGADHWPRSFRPLPVRFDEATRAVLELQPGTFIESSPHVPLAASLQQTLDEVG
SPAAIVPTLQRDQGGLRFLLAQAYTGGTVWDWTAAYPGVTPGHLPSAVAVETDEG
PSTEFDWAAAPDHVLRARRLEIVGAETAALAGREVNDARATFRELGLDSVLAVQLRRLA
TATGRDLHIAMLYDHPTPHALTEALLRGPQEEPGRGEETAHPTEAEPEDEPVAVVAMAC
RLPGGVTSPEEFWELLAEGRDAVGGLPTDRGWLDLSLFHPPDPTRSGTAHQRAGGFITG
ATSFDAAFFGLSPREALAVEPQQRITLELSWEVLERAGIPPTSLRTSRTGVFVGLIPQ
EYGPRLAEGEGVEGYLMTTSVASGRVAYTLGLEGPASIISVDTACSSLVAVHILAC
QSLRRGESTMALAGGTVTVMPTPGMLVDFSRMNSLAPDGRSKAFSAAADGFGMAEGAGM
LLERLSDARRHGPVLAVIRGTAVNDSGASNGLSAPNGRAQVRVIQALAESGLTPH
TVVVVETHGTGTRLGDPIEARALSDAYGGDREHPLRIGSVKSIGHTQAAAGVAGLIK

```

LVLAMQAGVLPTLHADEPSPEIDWSSGAISLLQEPAAWPAGERPRRAGVSSFGISGT
 NAHAIIEEAPPTGDDTRPDRMGPVVPWLSASTGEALRARAARLAGHLREHPDQDLD
 VAYSLATGRAALAYRSGFVPADASTALRILDELAAGGSGDAVTGTARAPQRVVVFPG
 QGWQWAGMAVDLLDGDPVFASVLRRECADALEYDFEIVPFLPAEAQRRTPDHTLSTD
 RVDVVQPVLFAVMVSLAARWRAYGVEPAAVIGHSQGEIAAACVAGALSDDAARAVAL
 RSRVIATMPNGAMASIAASVDEVARIDGRVIAAVNGPRAVVVSGDRDDLDRLVAS
 CTVEGVRAKRLPVODYASHSSHVEAVRDALHAELEFRPLPGFVFPYSTVTGRWVEPAE
 LDAGYWFRNLHRHVRFADAVRSLADQGYTTFLEVSAPVLTIAEEIGEDRGGLVAV
 HSLRRGAGGPVDFGSALARAFVAGVADWESAYQGAGARRVPLPTYPFQRERFWLEPN
 PARRVADSDVSSLRYRIEWHTDPGEPEGRDGTWLLETALGTRATVTACDVTDRE
 GARVEDLVVEPRTGRVLDVRRDAVGVPAGVLCLFAVAEPAEHSPALAVTSLSDTLDL
 TQAVAGSGRECPWVVTENAVAVGPFERLRDPAHGALWALGRVVALENPAVWGGLVDV
 PSGSVAELSRHLGTTLSGAGEDQVALRPDGTYARRWCAGAGGTGRWQPRGTVLVTGG
 TGGVGRHVARWLARQGTPCLVLASRGPDADGEELTELADLGTRATVTACDVTDRE
 QIRALLATVDEHPLSAVFHVAATLDDGTETLTDRIERANRAKVLGARNLHELTLD
 ADLDAFVLFSSSTAAGFAPGLGGYVPGNAYLDGLAQQRSEGLPATSVAWGTWAGSGM
 AEGPVADRFRRGVMEMHPDQAVEGLRVALQVGEVAPIVVDIRWDRLFLAYTAQRPTR
 LFDTLDEARRAAPGPDAAGPVAALAGLPVGEREKAVLDLVRTHAAVLGHASAEQVPP
 DRAFAELGVDSLSALELRNLTATGVLATTTFDHPDVRTLAGHLAAELGGGSGRE
 RPPGEAPTVAPTDEPIAVGMACRLPGVDSPEQLWEILVSGRTDTASAAPGDRSWDPA
 ELMVSDTTGTRTAFGNFMPGAGEFDAAFFGISPREALAMDPPQRHAETTWEALENAG
 IRPESLRGTDTGVFVGMSHQGYATGRPKPEDEVGDYLLTGNTASVASGRIAYVLGLEG
 PAITVDTACSSLVALHVAAGSLRGDCGLAVAGGSVSMAGPEVFRFSRQGALAPDG
 RCKPFSDEADGFLGEGSAFVVLQRLSVAIREGRRVLGVVVGSAVNQDGASNGLAAAPS
 GVAQQQRVIRRAWGRAGVSGGDGVVVAHGTGTRLDGPVELGALLGTYGVGRGGVGPVV
 VGSVKANGVHVQAAGGVGVKVLGLGRGLVPMVCRGGLSGLWDSSGLVVADGV
 RGWPVGVGDVRRGGVSAFGVSGTNAAVVAEAPGSVVGAEPRVEGSSRGLVGVVGGVV
 PVVLSAKTETALHAQARRLADHLETHPDVPMTDVVWTLTQARQRFDRRAVLLAADRTQ
 AVERLRGLLAGGEPGTGVSGVASGGVVVFVPGQGGQWGMARGLLSVPVFFVESVVEC
 DAVVSSVVGFSVLGVLEGRSGAPSLSRVDVVQVLFVVMVSLARLWRWCGVVPAAVVG
 HSQGEIAAAVAGVLSVGDGARVVALRARALRALAGHGMASVRRGRDDVQKLLDGP
 WTGKLEIAAVNGPDAVVSGDPRAVTELVEHCDIGIGVARTIPVDYASHSAQVESLRE
 ELLSVLAGIEGRPATVPFYSTLTGGFVDTLEDADYWYRNLRHPVRFHAAVEALAARD
 LTTFVEVSPHPVLSMAVGETLADVESAVTVGTLERDTDVERFLTSLAEAHVHGVPVD
 WAAVLGSGTLDLPTYPFQGRRFWLHPDRGPRDDVADWFHDRVDTATADGSARLDGR
 WLVVVPEGYTDDGVVVEVRAALAAGGAEPVTTVEEVTDRCGDSDAVVSMGLADDGA
 AETLALLRRRLDAQASTTPLWVVTGAVAPAGPVORPEQATVWGLALIVASLERGHRWTG
 LLDLPQTDPDQLRPRLVEALAGAEQDQAVRADAVHARRIVPTVTAGPYTAPGGTIL
 VTGGTAGLGAVTARWLAERGAELQVSRRGPGTAGVDEVVRDLTGLGVRVSVHSCDV
 GDRESVGALVQELTAAGDVVRGVVHAAGLPQQVPLTDMDPDLADVVAVKVVDGAVHLA
 DLCPEAELFLFSSGAGVWGSARQGAYAAGNAFLDAFARHRRDRGLPATSVAVGLWAA
 GGMTGDQEAVSFLRERGVRPMSPVRALEALERVLTAGETAVVADVDWAFAESYTS
 RPRPLLHRLVTPAAAVGERDEPREQTLRDLAALPRAERSAELVRLVRRDAAAVLGSD
 AKAVPATTPFKDGFDSLAAVRFRNRLAAHTGLRLPATLVEFHNPAAAADLLHDRLG
 EAGEPTPVRSGAGLAALEQALPDASDTERVELVERLERMLAGLRPEAGAGADPTAG
 DDLGEAGVDELLDALERELDAR" (SEQ ID NO: 13)

misc_feature	12505..13470
	/gene="megAI"
	/function="AT-L"
misc_feature	13576..13791
	/gene="megAI"
	/function="ACP-L"
misc_feature	13849..15126
	/gene="megAI"
	/function="KS1"
misc_feature	15427..16476
	/gene="megAI"
	/function="AT1"
misc_feature	17155..17694
	/gene="megAI"
	/function="KR1"
misc_feature	17947..18207
	/gene="megAI"
	/function="ACP1"

misc_feature 18268..19548
 /gene="megAI"
 /functions="KS2"
 misc_feature 19876..20910
 /gene="megAI"
 /functions="AT2"
 misc_feature 21517..22053
 /gene="megAI"
 /functions="KR2"
 misc_feature 22318..22575
 /gene="megAI"
 /functions="ACP2"
 gene 22867..33555
 /gene="megAII"
 CDS 22867..33555
 /gene="megAII"
 /note="polyketide synthase"
 /codon_start=1
 /transl_table=11
 /product="megalomicin 6-deoxyerythronolide B synthase 2"
 /translation="MTDNDKVAEYLRRATLDRRAARKRLRELQSDPIAVVGMACRLPG
 GVHLPQHLWDLRQGHETVSTFPTGRGWDLAGLFHPDPDHGTYSVDRGGFLDDVAGF
 DAEFGISPREATAMDQPQRLLLETSWELVESAGIDPHSLRGTPGVFLGVARLGYGE
 NGTEAGDAEGYSVTGVAPAVASGRISYALGLEGPSISVDTACSSLVALHLAVESIRL
 GESSLAUVGGAAMATPGVFVDFSRQRALADGRSKAFGAAADGFGFSEGVSLLER
 LSEAESNGHEVLAVIRGSALNQDGASNGLAAPNGTAQRKVIRQALRNCGLTPADVDAV
 EAHGTGTTLGDPIEANALLTDYGRDRDPDHPLWLSVKSNIIGHTQAAAGVTGLLKML
 ALRHEELPATLHVDEPTPHDVWSSGAVRLATRGRPWRRGDRPRRAGVSAGFISGTMNH
 VIVEEAPERTTERTVGGDVGVPVPLVVSARSAAALRAQAAQVAELVEGSDVGLAEVGRS
 LAVTRARHEHRAAVVASTRAEAVRGLREVAVEPRGEDTWTGVAETSGRTVVFLFPQG
 GSQWVGMGAELLDsapafADTIRACDEAMAPLQDWWSVSDVLRQEPEGLDRVDVVQP
 VLFAMVMSLARLWQSYYGTPAAVVGHSQGEIAAHVAGALSADAARIUVGRSRLLRS
 LSGGGGMSAVALGEAEVRRRLRSWEDRISVAANVGPRSVVVAGEPEALREWGREREAE
 GVRVREIDVDYASHSPQIDRVRDELLTGTGEIEPRSAEITFYSTVDVRAVDGTDLADG
 YWYRNLRRETIVRFADAMTRLADSGYDAFVEVSPHNGVSVAVAEAVEEAGVEDAVVGT
 SRGDGGPGFAFLRSAATAAHAGVWDVWTPALPGAATIPLPTYFQORKPYWLRSSAPAPA
 SHDLAYRVSWTPTIPPGDGVLGDWLVHPPGSTGWVDGLAAAATAGGRRVVAHPVDS
 VTSRTGLAEALARRDGTFRGVLSWATDERHVEAGAVALLTLAQALGDAGIDAPLWCL
 TQEAVRTPVGDGLARPAQAALHGFAQVARLELARRFGVLDLPATVDAAGTRLVAAVL
 AGGGEDVVAVRGDRLYGRLVRATLPPGGGFTPHGTVLVTGAAGPVGGRILARWLAER
 GATRLVLPAGMPEELLTAIRAGATAVVCEPEAEALRTAIGGELPTALVHAETLTNF
 AGVADADPEDIAATVAAKTALPTVIAEVLDGHRLEREVYCSSVAGVWGGVMAAYAAG
 SAYLDALVERHRRARGHASASVAWTPWALPGAVDDGRLRERGLRSLDVADALGTWERLL
 RAGAVSVAVADWDWSVPTEGFAAIRPTPLFDELLDRRGDPGAPVDRPGEPAGEWGR
 IAALSPQEORETLLTLVGETVAEVLGHTGTEINTRRAFSELGLDSLGSMALRQLAA
 RTGLRMPASLVDHPTVTLARYLRRVVGSDPTPVRVFGPTDEAEPVAVVGIGCR
 PGGIATPEDLWRVVSSEGTSITGGFTDRGWDLRLYHPDPDHGTYSVDRGGFLDGAP
 DFDPGFFGITPREALAMPQQLTLEIAWEAVERAGIDPETLLGSDTGVFGMNGQSY
 LQLLTGEGDRLNGYQGLGNSASVLSGRVAYTFGWEGLPALTVDTACSSLVIAIHLAMQS
 LRRGECSLALAGGTVVMADPYTFVDFSAQRGLAADGRCKAFSAQADGFALAEGVAAV
 LEPLSKARRNGHQVLAVLRGSAVNQDGASNGLAAPNGPSQSERVIRQALTASGLRPADV
 DMVEAHGTTELGDPIEAGALIAAYGRDRDRPLWLGSVKTNIIGHTQAAAGAAGVIAK
 LAMRHGVFLRSLHADELSPHIDWDAGKVEVLREARQWPGERPRRAGVSSFGVSGTNA
 HVIVEEAPAEPEPVPVAAPGGPLPFLHGRSVQTVRQSQARTLAEHLRTTGHRLADT
 ARTLATGRARFDVRAAVLGTDRGVCAALDALAQDRPSPDVAPAVFAARTPVLVFP
 QGSQWVGMARDLSDSSEVFAESMRCAEALSPTWDLDDVVRGVGDPDPYDRVDLQ
 PVLFAVMVSLARLWQSYYGTPGAVVGHSGEIAAAHVAGALSADAARVVALRSRVL
 ELDDQGGMVSGTSRAELDSVLLRWDRGVAVAAVNGPGTLVVAAGPTAELDEFLAVA
 REMRPERRIAVRYASHSPEVARVEQRLAELGTVAVGGTVPLYSTATGDLDDTTAMDA
 GYWYRNLRQPVLFEHAVRSLLERGFETFIEVSPHPVLLMAVEETAEDAERPVTGVPTL
 RRDHDPSEFLRNLLGAHVHGVDVDLRPAVAGRLVLDLPTYPFDRQRLWPKPCHRRA
 SSLGVRDSTHPLLHAADVPGHGGAVFTGRLSPDEQQWLQTQHVVGGRNLVPGSVLV
 ALTAGADGVVPVLEELVLQQLVLTAAAGALLRLSVADEGRRPVEIHAEDVSDPA
 EARWSAYATGTLAVGVAGGGRDGTQWPPPAGTALTLTDHYDTLAELEYGYGPQAFQALR

AAWQHGDVVVAEVSLDAVEEGYAFDPVILDAVAOTFGLTSRAPGKLPFAWRGVTLHAT
 GATAVRVVATPAGPDAVALRVTDPTGQLVATVDALVVRDAGADRDQPRGRDGDLHLRE
 WVRLATPDPPTAAVHVADGLDDLLRAGGPAPQAVVRYRPDGDPTAEARHGVLWA
 ATLVRWLDDDRWPATTVVATSAGVEVSPGDDVPRPGAAAWGVLRCAQAESPDRFV
 LVDGDPETPPAVPDNPQLAVRDGAJVFPRLTPLAGPVAADRAYRLVPGNGGSIEAV
 AFAPVDPADRLAPEEVRAVRAVATGVNFRDVLLALGMYPPEPAEMTEASGVVTEVGSG
 VRRFTPGQAVTGLFQGAFGPVAVADHRLLTVPDGWRAVDAAAVPIAFTTAHYALHDL
 AGLQAGQSVLVHAAAGGVGMAAVALARAGAEVFTAESPALKPTLRALGLDDDHIASS
 RESGFGERFAARTGGRGVDVVLNSLTGDLDESARLLADGGVFVEMGKTDLRPAEQFR
 GRYVPFDLAEAGPDRLGEILEEVVGLAAGALDRLPVSWEAAPPALTHMSRGRHV
 GKLVLTQPAPVHPDGTVLVTGGTGTGLRGLVARHLVTGHGVPHLLVASRRGPAAPGAAE
 LRADVEGLGATIEIVACDTADREALAALDSIPADRPLTGVVHTAGVLADGLVTSIDG
 TATDQVLRAKVDAAWHLHDLTRDADLSFFVLFSSAASVLAGPGQGVYAAANGVNLALA
 GQRRALGLPAKALGWGLWAQASEMTSGLDRIARTGVAALPTERALALFDAALRSGGE
 VLFPLSVDRSALRRAEYVPEVLRGAVRSTPRAANRAETPGRGLLDRLVGAPETDQVA
 LAELVRSHAAAVAGYDSADQLPERKAFKDGFDSLAAVELRNRLGVTTGVRLPSTLVE
 DHPTPLAVAEHLRSELFADSAPDVGVGARLDDLERALDALPDAQGHADVGRALLEALLR
 RWQSRRPPETEPVTISDDASDELFMSMLDRRLGGGDV" (SEQ ID NO: 14)
misc_feature
 22957..24237
 /gene="megAII"
 /function="KS3"
misc_feature
 24544..25581
 /gene="megAII"
 /function="AT3"
misc_feature
 26230..26733
 /gene="megAII"
 /function="KR3 (inactive)"
misc_feature
 26998..27258
 /gene="megAII"
 /function="ACP3"
misc_feature
 27393..28590
 /gene="megAII"
 /function="KS4"
misc_feature
 28897..29931
 /gene="megAII"
 /function="AT4"
misc_feature
 29953..30477
 /gene="megAII"
 /function="DH4"
misc_feature
 31396..32244
 /gene="megAII"
 /function="ER4"
misc_feature
 32257..32799
 /gene="megAII"
 /function="KR4"
misc_feature
 33052..33312
 /gene="megAII"
 /function="ACP4"
gene
 33666..43271
 /gene="megAIII"
CDS
 33666..43271
 /gene="megAIII"
 /note="polyketide synthase"
 /codon_start=1
 /transl_table=11
 /product="megalomicin 6-deoxyerythronolide B synthase 3"
 /translation="MSESSGMTEDRLRRLKRTVAELDSVTGRLDEVEYRAREPIAVV
 GMACRFPGGVDSPEAFWEFIRDGGDAIAEAPTDRGWPPAPRPRLGGLLAEPGAFDAAF
 FGISPREALATDPQQLMLEISWEALERAGFDPSLRLGSAGGVFTGVGADVGYPRPDE
 APEEVLYGVIGTASSVASGRVAYTLGLEGPVAVTVDTACSSGLTAVHLAMESLRRDEC
 TLVLAGGVTVMSSPGAFTEFRSQGGLAEDGRCKPFSRAADGFLAEGAGVVLVQLRLSV
 ARAEGRPVLAVLRGSAINQDGASNGLTAPSGPAQRRVIRQALERARLRPVDVDYVEAH
 GTGTRLGDPIEAHALLDTYGADREPGRPLWVGSVKNIGHTQAAAGVAGVMKTVLALR
 HREIPATLHFDEPSPHWDWRGAVSVVSETRPWPVGERPRAVGSSFGISGTNAHVIV

EEAPSPQAADLDPTPGPATGATPGTDAAPTAEPGAEAVALVFSARDERALRAQAARLA
 DRLTDDPAPSRLDTAFTLVTRRATWEHRAVVGGGEVLAGLRAVAGGRPVDAVGSR
 ARAGRRLVVFPGQGAQWQGMARDLLRQSPTFAESIDACERALAPHVDWSLREVLDE
 QSLDPDVVQPVLFAMVSLARLWQSYGVTGAVVGHSGEIAAAHVAGALSLADAAR
 VVALRSRVRLRGHHGGMASFGLHPDQAERIARFAGALTAVASVNGPRSVLAGENGP
 LDELIAECEAEGVTARRIPVDYASHSPQVESLREELLAALAGVRPVSAIGIPLYSTLTG
 QVIETATMDADYWFANLREPVRFQDATRQLAEAGFDAEVSPHPVLTGVVEATLEAV
 LPPDADPCVTGTLRERGGLAQFHATAEAYTRGVEWDWRATVGEGRPVVDLPVPFQR
 QNFWLWVPLGRVPDTGDEWRYQLAWDLGRSSLAGRVLWVTGAAPPAWTDVVRDG
 LEQRGATVVLCTAQSRARIGAALDAVDGTALSTVSSLALAEGGAVDDPSLDTLALVQ
 ALGAAGIDVPLWLVTRDAAAATVGDDVDPQAQMVGGLGRVVGVESPARWGGLVLDREA
 DADSARS LA ILADPRGEEQFAIRPDGVTVARLVPAPARAAGTRWTPRGTVLVTGGTG
 GIGAHLARLAGAGAEHLVLLNRRGAEAAGAADLRDELVALGTGVTITACDVADRDRL
 AAVLDAARAQGRVVTAVFHAAGISRSTAQELTESEFTETIDAKVRTANLAELCPEL
 DALVLFSSNAAVWGSPGLASYAAGNAFLDAFARRGRSGLPVTSIAWGLWAGQNMAGT
 EGGDYLRSQGLRAMDPQRAIEELRTLDAAGDPWVSVVLDLDRERFVELFTAARRRPLFD
 ELGGVRAGAEETGQESDLARRLASMPAERHEHVARLVRVAEVAVLGHGTPTVIERDV
 AFRDLGFDSMTAVDLRNRLAAVTGVRVATTIVFDHTVDRLLAHYLERLVEPEATT
 AAAVWPQAPGEADEPIAVGMACRLAGGVRTPDQLWDFIVADGDAVTEMPSDRSWDLF
 ALFDPDPERHGTSYSRHGAFLDGAADFDDAFFFISPREALAMDPOQRQVLETTWELFE
 NAGIDPHSLRGTDGVFLGAAYQGYQNAQVPKESEGYLLTGGSSAVASGRIAYVGL
 EGPAITVDTACSSLVALHVAAGSLRGDCGLAVAGGVSVMAGPEVFTESRQGALAP
 DGRCKPFSQADGFGFAEGVAVVLLQRLSVAIREGRVRLGVVVGSAVNQDGASNGLAA
 PSGVAQQRIRRAWGRAGVSGGDGVVVAHGTGTRLGDPVLELGALLGTYGVGRGGVGP
 VVGSVKANVGHVQAAAGVGVVIKVLGLGRGLVGPVCRGGLSGLVDWSSGGLVVAD
 GVRGWPVGVGDGVRRGGVSAGVSGTNAHVVVAEAPGSVVAERPVEGSSRGGLGVVAGG
 VVPVVLASKETALTELARRLHDAVDDTVALPAVAATLATGRAHLPYRAALLARDHDE
 LRDRRLRAFTTGSAAPGVSGVASGGGVVFVFPQCGGWVGMARGLLSVPVFEVVE
 DAVVSSVVGFSVGLVLEGGRSGAPSLSRVDVQVQPLFVVMVSRLWWRWCGVVPAAVVG
 HSQGEIAAAVAGVLSVGDGARVVALRALRALAGHGMVSLAVSAERARELIAPWS
 DRISVAAVNSPTSVVSGDPQALAAVAHCATEGERAKTLPDYASHSAHVEQIRDTI
 LTDLADVTARRPDVALYSTLHGARGAGTDMDARYWDNRSPVRFDEAVEAAVADGYR
 VFVEMSPHPVLTAAVQEIDDETVAIGSLHRTGERHLVAELARAHVHGVPDVRAILP
 ATHPVPLPNYPFEATRYWLAPTAADQVADHRYRVDWRPLATTPAELSGSYLVFGDAPE
 TLGHSVEKAGGLLVPVAAPDRESLAVALDEAAGRLAGVLSFAADTATHLARHRLGEA
 DVEAPLWVLTSGGVALDDHDPICDQAMVWGIWRVGMLETPHRGGLVDVTVEPTAED
 GVVFAALLAADDHEDQVALRDGIRHGRRLVRAPLTTRNARWTPAGTALVTGGTGALGG
 HVARYLARSGVTDLVLSSRSGPDAPGAAELAAELADLGAEPRVEACDVTDGPRILRALV
 QELREQDRPVIVVHTAGVPDSRPLDRIDELESVSAAKVTGARLLDELCPDADTFVLF
 SSGAGVWSANLGYAAANAYLDALAHRRRQAGRAATSVAWGAWAGDGMATGDLGLT
 RRGLRAMAPDRALRACTRWTTHTCVSVADVWDWRFAVGFTAARPRPLIDELVTSAP
 VAAPTAAPVPMATADQLQFTRSHVAAILGHQDPDAVGLDQPFTELGFDSTAVGL
 RNQLQQATGRTLPAALVFQHPTVRRRLADHLAQQLDVGVTAPVEATGSVLRDGYRRAQQT
 GDVRSYLDLLANLSEFRERFTDAASLGGQLELVLDLADGSGPVTVICCAGTAALSGPHE
 FARLASAIRGTVPVRALAQPGYEAGEPVPMASMEAVLGVQADAVLAAQGDTPFVLVGH
 AGALMAYALATELADRGRHPPRGVVLLDVYPPGHQEAVHAWLGETTAALFDHETVRMDD
 TRLTALGAYDRLTGRWRPRDTGLPTLVVAASEPMGEWPDDGWQSTWPFGHDRVTVPGD
 HFSMVQEHAADAIARHIDAWLSGERA" (SEQ ID NO: 15)

misc_feature

33780..35027

/gene="megAIII"

/function="KS5"

misc_feature

35385..36419

/gene="megAIII"

/function="AT5"

misc_feature

37068..37604

/gene="megAIII"

/function="KRS"

misc_feature

37860..38120

/gene="megAIII"

/function="ACP5"

misc_feature

38187..39470

/gene="megAIII"

/function="KS6"

misc_feature

39795..40811

```

        /gene="megAIII"
        /function="AT6"
misc_feature 41406..41936
        /gene="megAIII"
        /function="KR6"
misc_feature 42168..42425
        /gene="megAIII"
        /function="ACP6"
misc_feature 42585..43271
        /gene="megAIII"
        /function="TE"
gene          43268..44344
        /gene="megCII"
CDS           43268..44344
        /gene="megCII"
        /codon_start=1
        /transl_table=11
        /product="TDP-4-keto-6-deoxyglucose 3,4-isomerase"
        /translation="MNTTDRAVLGRRRLQMRGLYWGYSNGDPYPMILLCGHDDDPHRW
YRGLGGSGVRRSRTEWVTDHATAVRVLDDPTFTRATGRTPEWMAAGAPASTWAQP
FRDVHAASWDALPDPQEVEDRLTGLLPAPGTRLDLVRDLAWPMASRGVGADDPDVLR
AAWDARVGLDAQLTPQPLAVTEAAIAAVPGDPHRRALFTAVEMTATAFVDAVLAVTAT
AGAAQRLLADDPDVAAVLVAEVLRLHPTAHERRTAGTETVGEHTVAAGDEVVVVVA
ANRDAGVFADPDRLDPDRADADRALSAQRGHGPGRLEELVVVLTAAALRSVAKALPGLT
AGGPVVRRRRSPVLRATAHCVEL" (SEQ ID NO: 16)

gene 3b      44355..45623
        /gene="megCIII"
CDS          44355..45623
        /gene="megCIII"
        /codon_start=1
        /transl_table=11
        /product="TDP-desosamine glycosyltransferase"
        /translation="MRVVFSSMASKSHLFGLVPLAWAFRAAGHEVRVVASPALTDDIT
AAGLTAVPVGTDVLDVDFMTHAGYDIIDYVRSLDFSERDPATSTWDHLLGMQTVLPT
FYALMSPDSLVEGMISFCRSWRPDWSSGPQTFAASIAATVTGVVAHARLLWGPDITVRA
RQKFLGLLPGQPAAHREDPLAEWLTSVERFGGRVPQDVEELVVGQWTIDPAPVGMRL
DTGLRTVGMRYVDYNGPSVVPDWLHDEPTRRRVCLTLGISSRENSIGQVSVDLLGAL
GDVDAEIIATVDEQQLEGVAHV PANIRTVGFPMALLPTCAATVHHGGPGSWHTAAI
HGVPQVILPDGWDTGVRAQRTEDQGAGIALPVPPELTSQQLREAVRRVLDDPAFTAGAA
RMRADMLAEPSPAEVVDVCAGLVGERTAVG" (SEQ ID NO: 17)

gene          45620..46591
        /gene="megBII"
CDS           45620..46591
        /gene="megBII"
        /codon_start=1
        /transl_table=11
        /product="TDP-4-keto-6-deoxyglucose 2,3 dehydratase"
        /translation="MSTDATHVRLGRCALLTSRLWLGTAALAGQDDADAVRLLDHARS
RGVNCLDTADDDSASTSQAQVAAEESVGRWLAGDTGREETVLSVTGVVPPGGQVGGGGL
SARQIIASCEGSLLRGVDHVVLHLPRVDRVEPDEVWQAVDALVAAGKVCYVGSSG
FFPGWHIVAAQEHAVRRHRLGLVSHQCRYDLTSRHPELEVLPAAQAYGLGVFARPTRLG
GLLGGDGPGAAAARASGQPTALRSAVEAYEVFCRDLGEKPAEVALAWVLSRPGVAGAV
VGARTPGRLDSALRACGVAGLATELTALDGIFPGVAAAGAAPEAWLR" (SEQ ID NO: 18)

gene          complement(46660..47403)
        /gene="megH"
CDS           complement(46660..47403)
        /gene="megH"
        /note="putative thioesterase"
        /codon_start=1
        /transl_table=11
        /product="TEII"
        /translation="MNTWLRRFGSADGHRARLYCFPHAGAAADSYLDDRALARALAPEVDV
WAVQYPGRQDRRDERALGTAGEIADEVAAVLRDLVGEVPFALFGHSMGALVAYETARR
LEARPGVPLRLFVSGQTAJRVHERRTDLPDEDGLVEQMRLGVSEAAALADQGLLDM"

```

LPVLRADHRVRLRSYAWQAGPPLRAGITTLCGDTDPLTTVEDAQRWLWPSVVPGRTRTF
PGGFYLAHVGEVAESVAPDLLRWTPTG" (SEQ ID NO: 19)

```
gene complement(47411..>47981)
/gene="megF"
CDS complement(47411..>47980)
/gene="megF"
/codon_start=1
/transl_table=11
/product="C-6 hydroxylase"
/translation="IRVQDDDAQLRSRDELTSIALVLLLAGFEASVSLIGIGTYLLLTHPDQLALVRKDALLPGAVEEEILRYQAPPETTTRFATAEVEIGGVTIPAYSTVLIANGAANRDPGQFPDPDRFDVTRDSRGHLTPGHGIHYCMGRPLAKLEGEVALGALFDRFPKLSLGFPSDEVVWRRSLLRGIDHLPVRPNG" (SEQ ID NO: 20)
```

BASE COUNT 5962 a 16875 c 18045 g 7099 t
ORIGIN

1 ctcggacccga tgctcgccgg cgccgtggc caaccagtgc tggacgtcg cgggtggcg 61 gggagggtccg ccgtcccgag tcagaaacg tattgccat tgtgtggatt ccggagtcgc 121 atgaccgttg acccgatccc ccatacgcct ctccccgtat gtcgtggcg gtccgtgcgg 181 taccggcccg actgacattc gtcgatcaag accccgcca gtgttagggct ccgccccgcga 241 cgggagaagg tccgtcgaac aacttccggg tgaccggcgcg ccggcgctcg tgaaaacgggc 301 gtccggagcac ccgatcatcg ctgtcggtga acttccatac tgtcggcgcc cacaatcttc 361 tgaccggtgt gttccgtggt atgacgcgtt cccggcccg ctggaaactgt gctgggact 421 gaccggtgtc ggcgtgtt cggccgttcc cgaatgcggg attcgtcgat cgcgcagggt 481 ggacgggtg gctgacccggg atgatctgca atcatggcgc tcaatgacga tctctttag 541 catggtccgc gccgagggtc cgacaggccc gaaacgccc gcacccggcc tggtaactcg 601 cgtgcacatc accgtgcaag ccgcgtatgac accgcacacca cgcgcactgact 661 ggaagggtgg cgcgatcagg gaaatggccg tgcactaga cagacgcca acagctgtcc 721 gggctgcggg aaacagcatc gatctgcgtc agccgttcat tgccccggcg gcacccgcct 781 ggaatccgt gccaccggc gtcgcagtg acgatgcggg accccgggtt cgagacagca 841 ggtagtaggc gatgcaggcg tttcgctctcg cggccggacgc gtcgcactag gtggaatccg 901 tcacagtctt caatccggg gctgtctatg gcaagttggcg atcgaaggcg gctgggcccgg 961 gagttgcaga tggcccgggg tctctactgg gggttcggtg ccaacggcga tctgtactcg 1021 atgtctctgt cgggacggga cgacgacccc tggacctggg acgaacgggtt gccccggcc 1081 ggacggggac cgtacggccag tcggggccga acgtgggtgg tcggtgacca cccggggccgc 1141 gccgagggtc tcggcgatcc gggcttcacc cacggggccgc cgcacgtgc cgggttgatg 1201 caggtggccc actgccccggc ggccttcctgg gccggccccct tccggaggtt ctacgcccgc 1261 accgaggacg cggcgtcggt gacagtggac gcccactggc tccagcagcg gtgcgcagg 1321 ctggtgaccg agctggggtc ggcgttcgat ctcgtgaacg acttcgcggc ggaggtcccg 1381 gtgctggcgc tcggtaccgc gcccgcactc aaggggcgtgg accccgaccg tctccgggtc 1441 tggacctcg cgaccgggt atgcctggac gcccagggtca gcccgcaca gtcgcgggt 1501 accgaacagg cgctgaccgc ctcgcacgag atcgcacgcgg tcacccggcg tcgggacgc 1561 gccgtgtcggt tgggggtggg ggcggagctg gggggccaaaca cgggtggcaa cgccgtccgt 1621 gccgtcaccc agttcccgaa actggcggca cgacttgcgg acgaccggaa gaccgcgacc 1681 cgtgtgggtg cggaggtgtc gggggacgact cccggcggtt acctggaaacg cccgaccggcc 1741 gctgcggacc gccgggtgtgg cggggtcgac tggggcggact gttggaggtt gacagtgggt 1801 gtcggccggg cgaacgtgtc tccccgggtt tcacccgatc cgcacgggtt cgacgtggac 1861 cgtggccggc acggcgagat cctgtcggtt cggggccgggtt cggccggcacc cggccgggtt 1921 gcccgggtt ccacccggc cacggcggcg ctgcggggccg cggccgggtt gttggccgg 1981 ctgtcccggt cggggccgggtt gatcagacga ctgcgggtcac cctgcggccg tgggtctcagc 2041 cgttgcccggt tcgagctgtt gaggaagaac gatgcgcgtc gtgtttcat cgatggctgt 2101 caacagccat ctgttcgggc tggtcccgat cgcaagcgcc ttccaggccgg cccggacacga 2161 ggtacgggtc gtcgcctcg cggccctgac cgacgacgtc accgggtccgg gtctgaccgc 2221 cgtgcccgtc ggtgacgacg tggaaacttgt ggagtggcac gcccacgggg gccaggacat 2281 cgtcgagttac atgcggaccc tcgactgggt cgaccagagc cacaccacca tgcgttggga 2341 cggacccctgt ggcgtcgaga ccacccgttccac cccgcacccgc ttgcgcctga tgagcccgaa 2401 ctgcgttcatc gacggggatgg tcgagttcg tgggtccgtt cgtcccgact ggatcgctgt 2461 ggagccgtc accttcggcg cccccgatgcg gggccgggtt accggaaaccc cgcacggcccg 2521 gatgtgtgg ggtccggacg tcgcacccgg gggccggcgat agcttcgtgc gactgtggc 2581 cccacccggat gttggacacc gggaggatcc gttggccggag tgggttgcact ggacgtcg 2641 ggcgttcggc gacgacccgc acctgagctt cgacgaggaa ctgggtcggtt ggcagttggac 2701 cgtggacccccc atccccggac tcgtcggtat cgacaccggc gtcggacccgg tgggtatcg 2761 gtaacgtcccc tacaacggcc cctcggtggt gcccggctgg ctgttgcggg aaccggaaac 2821 tcggcggggtc tgccgtaccc tcggcggttc cagccggggaa cacggcatcg ggcagggtctc 2881 catcgccgag atgttgaccc ccatcgccga catcgacggc gagttcggtt ccacccgtcg

6781 ttcacgacga tgcccggtctc catggcgaag tacgtctact gcccgggggg tagggcgatg
 6841 gacttcgcgg tcgacatccg gcccgggtcc ccgacattcg gccggggcga gcccggcgag
 6901 ctctccgcgg agtcgatggt cgggctgtac ctccccgtgg gcatgggcca cctgttcgtc
 6961 tccctggagg acgacaccac cctcgtctac ctgatgtccg ccggttacgt ccccgacaag
 7021 gaacggggcg tgcacccccc ggatccggag ctggcggtgc cgatcccgcc cgacctcgac
 7081 ctcgtcatgt cggagcgggg cccgggtcgca cccacccctcc gggaggcccc ggaccagggg
 7141 atccgtcccg actacggccg ctggccggcc gccgcgcacc ggggtggcg gacgtgaccc
 7201 cggccggggcg tgcggggggg tgggtgggtc cggcgcgctcg ggttctctgg gttcgccgg
 7261 caccacggcc ctggcgacc tcccggtgcg ggtcgccgctc gtcgcccggc gggaggtcg
 7321 cgtccccctcc ggtcgctcg cggactacga gacgcacccgg gtggacctca cccaaacccgg
 7381 agcgtcgcg gaggtggtcg cggacgcccgg ggcgggtcttc cccgtcgccg cccagatcg
 7441 gggtaacgtca gggtgtgggaa tcagcgagga cgacgtggtc gccgaacgga cgaacgtcg
 7501 cctggtcccg gacctgatcg cccgtctcgcc cccgtcgccg caegccccgg tgggtgtctt
 7561 cccgggcagc aacacgcagg tcggcagggt caccggccggc cgggtcatcg acggcagcga
 7621 gcaggaccac cccgaggggcg tctacgacag gcaaaaaacac acggggaaac agctgtctaa
 7681 ggaggccact gggggccgggg cgatccgggc gaccagtctg cggctgcccc cgggtttcg
 7741 ggtggccggcc gccggcacccg cccacgaccg ggggggtggt tccaccatga tccgtccgg
 7801 cctgaccggc aaaccggctga cgatgtggca cgaacggcacc gtcggcggtg aactgtgt
 7861 cgtgaccggc gggggccggg cccgtctcgac cccgtctggac cccgtcgccg cccgtccgg
 7921 acgcacttc ctgttggggg cggggcggtc ctggccgtcg ggcgagggtct tccaggccgg
 7981 ctcgcgcage gtcggccggc acacccggca ggacccgggtg cccgtgggtct cggtgccgg
 8041 tccggcgcac atggacccgt cggacctcg cagcgtggag gtcgaccccg cccggttcac
 8101 ggctgtcacc gggtgtggg ccacggtcac gatggcggag ggggtcgacc ggacgggtgg
 8161 ggcttggcc cccggccggg cccggcccccc gtcggagcccccc tcctgacccgg ggtcacc
 8221 gttcgctcta cggcacccggc cccgtcgacgg cccgtggccgg gaagatcgat tcgagtt
 8281 gggttccctc ctggcccgcc gtcagtcgg cggccggtaa cggccgatcg agctgtcg
 8341 gtgtcgccggg gccatgaca gggcccgagg tccggggggcg ggacaggacc caggccagac
 8401 cggatcgcc gggggccggc acctgggcgc gtcggccgtc cccgtcgccg tcgacggagg
 8461 ggctacggc gggggaggagc acctgggcgc gtcggccgtc cccgtcgccg ggggttccgg
 8521 ctgccaactt ctccagtae cccgtcgac gcccggccgtg cccgtgggtcc cccgtgggt
 8581 cggccacccccc gtacgctgg gggggccggc ggacgtccag cccgtgggtgg cggacggcc
 8641 ggttgcacag gcaactgtgg gagatcatgc cccgtcgccg ggggtcgcc gggctct
 8701 gggccggccg gatgtggccag cccggccagggt tgaggaggcc gacgtaccccg accttcc
 8761 tgccgaccag atgttggccg gctggccaca cccgtctccca cgggtggccg cgggtcgat
 8821 ggtgcgtctg gtatgtgtcg atgtggtcg ccccgaggccg gggggggag ttctcg
 8881 cggcgacgt gtgtcgccggc gagagcccg cccgtgggtc cccgtgggtcc atctcg
 8941 ccacccctgg cggccaggac gtcggccgtc gtcggccctcc gggggggcc aaccac
 9001 cgacgaggat ctcgggtgg cccctttaga gcccggccagcc gtatgtgtcg ggggtgt
 9061 tgcagggtac gccccggctcg aggccgtgtt cccatcggcc cccgtcgcc tcgtcg
 9121 cccgtccact gaagttcaeg gtggccggcc agatgtggct ggtgtcaac gggatcg
 9181 cgacgcgtac cggggccggc cccggccccgg tggttccac gtcggtcacc tgccgg
 9241 gtgtcggtgg gggccggccg cccgtcgccg gtcggccgtc gggggggcc gggccgg
 9301 cgcctccctgc cccgtcgccg cccgtcgccg ggggtggaa cccgtcgccg cccgtcg
 9361 gagagccctgc cccgtcgccg cccgtcgccg ggggtggaa cccgtcgccg cccgtcg
 9421 cccgtcgccg gtcggccgtc cccgtcgccg ggggtggaa cccgtcgccg cccgtcg
 9481 cggatcgccg tgggtcgccg cccgtcgccg ggggtggaa cccgtcgccg gggatcg
 9541 ggcacacggc ggcacacggc tgggtcgccg aacggatcg accaggccg cccgtcg
 9601 cccgtcgccg ggcacacggc tgggtcgccg aacggatcg accaggccg cccgtcg
 9661 ggtggccagg gtcggccggc actccgtgg gtcggccgtc atggccacgc cccgtatcc
 9721 cccgtcgccg ggcacacggc tgggtcgccg aacggatcg accaggccg cccgtcg
 9781 ggacccgttg tagggcaag tccgggtgtc cccgtcgccg aacggatcg accaggccg
 9841 gctctcgccg agtcgggtcg cccgtcgccg tccggccgtc aacggatcg accaggccg
 9901 gcccggccgg cccgtcgccg gtcggccgtc aacggatcg accaggccg cccgtcg
 9961 gggacgtcgcc gggccggccg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10021 ccacacggc cccgtcgccg gtcggccgtc aacggatcg accaggccg cccgtcg
 10081 gaagggtcgcc cccgtcgccg gtcggccgtc aacggatcg accaggccg cccgtcg
 10141 gacgaaaggc tgggtcgccg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10201 gtgcaggaaac tccacggcc gtcggccgtc aacggatcg accaggccg cccgtcg
 10261 gtacgggtcgcc acctggccgg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10321 gaggtcgccg cccgtcgccg gtcggccgtc aacggatcg accaggccg cccgtcg
 10381 cccgtcgccg tgggtcgccg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10441 gtcggccgtc tgggtcgccg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10501 gagggccggc acgggtcgccg cccgtcgccg gtcggccgtc aacggatcg accaggccg
 10561 cccgtcgccg aactcggtgg agtcgaagtc gtcggccgtc aacggatcg accaggccg

10621 ctccgggtgga gggacgctga cgacgggcac cgacgggttg ccggtctgac gtgccacgct
 10681 ggcggcgacg gtctcgaaaga ttcgcggag ggtcggggcc tggccgcgc tcggcgcca
 10741 gacgtcgccg accagcgct cgtggttgtg cagtgcggcg gtgaacgcgg tggccacgct
 10801 ctcgacgtgc aggagggttgc ggcgcacgct gcctcgatc acatcgatc tcggctcacc
 10861 ggcgagggtc cgccggatca tggcggtgac gacacccccc ccggtctgac ccgacggggcc
 10921 gctgtggccg tagatcgccg gcaggcccg gatcaccccg tcgacgaccc cgtccctcggt
 10981 ggcctgacgc aggatccgcg cggccctcgat cttgtgtcg gcttacccgc tggggggggcc
 11041 ggggttcggc gcctgggtgg tgctggcgaa caggagcacc ggccggggcc cgggtcttgc
 11101 ccgcacgcgc ggcacggat cgcgcgtat gcggcggttgc acgcgttgg cctcgccac
 11161 cgtggggccg tcgcgcagg tcgacccccc ggcggcgtag ggcggacat gcaacgcac
 11221 gtcgtgtcg ggcacgaccc ggcgcaccccg gccgggttcg agcagggtcg atcgaaagggt
 11281 ctcgatcccc ggcgtgcctg gtggctggc gcgagaccccg gtgcgcgcga cggccgcag
 11341 tcggagaggg tttgtgtgtaa attcgcaag aaggggcgctt ccgacgaatc cagaaacgccc
 11401 gagaagtgtg acatgttcttgc tcatctacta atgcattccg atagccaccc ggcacatggaa
 11461 tccatttgtt ccccccaggg tgggtgtcggt tgacaaaatcc ggcctcagggt cggcctcaag
 11521 cctcttcga gccgggtgctg aggcttcccg cgtacccctcg gtggcctcg ttcggggccgg
 11581 tgcggggaa aggccggatc gaggagttcg gtggcggtcg gggcgcgta ctccggact
 11641 gatccgggtc gacgccccca cgcgtacag ggcgtcgatc cgtccggcc cttccggccgg
 11701 ttttccggca ttgtcgccaga ttccctcccg cgtgggtggac tattttgttcccccgggtgt
 11761 ggcgcaccc tcgggtggct cgtgggggt gtcggagacc ggtcgatcg cgcggccgg
 11821 ccgtgcccac cagggtcggtt cgtcgccga ggtgggtcac cgtcggttgc acccggtccg
 11881 cccggggcca cccggccgatc gtggccaccc tcgcctccgc gggtaatgc ttctcgatc
 11941 tgatcgacac ttccggcgac getatcaccg gacattcccc cggcaccacc ggtcgatgcc
 12001 tcgcgtttc caaacaggga aaacagcgc tcacagcggt tccaggccgc gggcaatcc
 12061 agcgaagagt ctgcgtgggg tcaagggtaa ttctgtcaca gatgttttg ttaaatgtac
 12121 ttcttcagc caccctcgac gttcatacaa ttggccggc tctctacca gggggaggtga
 12181 gtgggtgacg tgcccgatct actcgccacc cgcactccgc accccaggcc gtcctccatc
 12241 ccgtggccccc ttgtcgccca caacgaaccg gagctgggg cccggcccg tcaattgcac
 12301 gcatatctcg aaggcatttc cgaggatgac tgggtggccg tccggccgc cctcgccgc
 12361 gagacacgcg cgcaggacgg gccgcacccgc gccgtcgctg tggccctccgc ggtcaccggag
 12421 ctgaccggcc cgctcgccgc cctcgcccg gggcccccac accccctcggt ggtacgcgg
 12481 gtcggccgac ccacggcacc ggtgggttgc ttcctggcccg gtcaggccgc ccagtggccc
 12541 ggcattggcga cccgactgct cgcgcgatcg cccgttccg cgcggccgat gggccctgc
 12601 gagcggggct tcgacgaggtt caccgactgg tgggtgaccg aggtccttgc ctcaccccgag
 12661 cacctcgccg gcgtcgaggtt ggtccagccc ggcgttcccg cgggtcgac gtcactggcc
 12721 gcccctgtggc ggtcggttc ggtcgaccc gacggcgatc tggacacag catcggttag
 12781 ctggccggccg ccggagggtcg cggccggccg gacgtcgagg cccggccgc gggccccc
 12841 ctgtggagcc gcgagatgtt cccactgtt gggccgggtg acatggggc ggtggcgctc
 12901 tccccggccg agctggcacc cgggtcgatc cgtggggacg acgacgtcg tccggccgg
 12961 gtcaacggtc cccggcggtt gtcgttccacc ggcgttcccg agcccatcg acggccgg
 13021 gccgaatgg cggcacaggg cgtacgcgc cagggtcgta acgtgtcgat ggcggccgac
 13081 tcggcgccagg tcgacgcccgt cgcgcggggc atgcgtcggt cgtgacccctg gttccccc
 13141 ggcgactccg acgtgcctca ttcacggccgc ctacccggcg ggcggcttgc caccggggaa
 13201 ctcggcgccg accactggcc ggcgcgttcc cgcgttcccg ttcacccggcg ttcacccgg
 13261 cgtcggttcc tggaaactgca gcccggcacc ttcacccgtat cgcggccgat cccgggtctg
 13321 gccgcctccc tcgacgacgg ctcgcgcgatcg tgggggtccc cggccggccat egtcggacc
 13381 ctgcacacgcg accaggccgg ttcgcggccg ttcacccgtat cgcggccgat cccgggtctg
 13441 ggtggcgatc cagtcgactg gaccggccgc tccccgggg tggggggccg cccatcgcc
 13501 tcggccgtcg ccgtcgagac cgcgcgggg cccctcgatcg agttcgactg ggcggccccc
 13561 gaccacgtac tgcgcgcgcg gtcgtcgatcg atcgtcgccg cgcggccgat cccgggtctg
 13621 gggcgccggg tcgacgcccgc ggcacccctc cggaaactgg gcctcgactc ggtccctcg
 13681 gtgcacgtgc gacccggcc cgcgcggcc accggccggg atctgcacat cgcacccgtc
 13741 tacgaccacc cgcaccccgca cgccttcacc gaggcgatcg ttcacccggcc gcaaggagg
 13801 ccggggccggg gtgaggagac ggcacaccccg acggggccg aaccgcacg acccgctcgcc
 13861 gtggcgatc tggcggtccg gtcggccggc ggcgttccatc caccggagg gttctgggg
 13921 ctgtggccg aggggggggg cgcgcgtccgg ggcgttccca cgcacccggg atggggaccc
 13981 gactcgatgtt tccacccggc cccgcggccg tccggcgatcg cgcacccggc cgcgttggc
 14041 ttccctccacc ggcgcacccctc cttcgatcgatc gtcgttcccg ggtgtcgcc acggggagg
 14101 ctggccgtcg agccgcacgc cggatcgatcg tggagatcg cgtggggagg gtcggacgc
 14161 gcccggatcc ccccgacgtc gttcgccggacc tcccgccacc ggggtttcg cgggtcgatc
 14221 ccccaaggat cccggccccc gtcggccggag ggggggtggagg ggcgtcgatcg ttcacccgtat
 14281 accggggacca ccacccgtatc cgcctcccgatc cggatcgatcg acaccctcg cctgggggg
 14341 ccggcgatca ggcgtcgacac cgcctcgatcg ttcacccgtatc cgcgttgcgc cccggcc
 14401 cagtcgatcg ggcgcggccg gtcgacgtatc ggcgttgcgc ggtgtatcgcc

14461 acaccgggca tgctcggttga cttcagtcgg atgaactccc tcgcccccca cggacggtcc
 14521 aaggcggttct cgccgcgcgc cggatggccac ggcacgggta aaggcgcaagg gatgcgtctcg
 14581 ctggaaacggc tctcgacgc cccgcgcac ggccacccgg tgctcgccgt gatcaggggc
 14641 acccgctgtca actccgacgg cgcgagcaac ggactctccg ccccgaaacgg ccggggccag
 14701 gtccgggtga tccgacaggc cctcgccag tccgggtga cggccacac cgtcgacgtc
 14761 gtggagaccc acggcacccgg caccggccte ggtgatccga tcgaggcactg ggccgtctcc
 14821 gacgcgtacg ggggtgacgg tgagcacccg ctgcggatcg gtcggatcaa gtccaaacatc
 14881 gggcacaccc agggcgcgc cgggtgcgc ggttgcata aactgggtt ggcgtatgcg
 14941 gccgggtgtcc tggccgcac cctgcaccc gacgagccgt caccggagat cgactggtcc
 15001 tccggcgcga tcaagctgtc ccaggagccg getgcctggc cccggggcga gcggccccgc
 15061 cggggccggg tggctcggtt cggcatcage ggcaccaacg cacacgcgt catcgaggag
 15121 ggcggccgcg cgggtgacga caccgcaccc gacccggatgg gcccgggtgt gcccctgggt
 15181 ctctcgccga gcacccggcga ggcgttgccg gcccggggcgg cggggctgtgc cggggcaccta
 15241 cggagacacc cggaccaggc cctggacac gtcgcctact cgctggccac cggtcgggcc
 15301 gcgctggcgt accgttagtgg gttcgtggcc gccgacgcgt ccacggcgtc gcggatcctc
 15361 gacgaactcg cggccgggtgg atccggggac ggggtgacccg gcacccggccg cgecccccgcag
 15421 cgcgtctgt tggctttccc cggccggaga tggcagtggg cggggatggc agtcgacctg
 15481 ctcgacggcg accgggtttt cgcctcggt ctgcgggatg ggcggacgc gttggaaaccc
 15541 tacctggact tggatcgat cccgttctg cggggggagg cgcggcgcg gaccccccgc
 15601 cacacgtctt caacccgaccc cgtcgacgtg gtccagccgg tgctgttgcg ggtatggtg
 15661 tccctggcgg cccgggtggc ggcgtacccgg gtggaaacccgg cggccgtcat cggacactcc
 15721 cagggggaga ttggccggcgt gtgtgtggcc gggggctct cgttggacga cggggccccgg
 15781 gcggtggccc tgcgcagccg ggtcatcgcc accatgcccgg gcaacggcgc gatggctcg
 15841 atcgccgcct cgtcgacga ggtggcgcc cggatcgacg ggcgggtcga gatcgccgc
 15901 gtcacacggc cggccgcggc ggtggcttcc ggcgacccgtg acgacactgaa cccgcctggc
 15961 gcttcctgtca cgtcgaggg ggtggggcc aaggcgctgc cgggtggacta cggcgacac
 16021 ttcgtcgacg tggggcggtt cgttgcacccg cttccacccgg aactcgccga gttccggccg
 16081 ctgggggtt tggcggtt ctaactcgaca gtcacccggc gttgggtcga gcccggcga
 16141 ctgcacccggc ggtactgggtt tgcacacccgt cggccacaggc tccgggttgcg cgcacggc
 16201 cgctccctcg cggaccaggc gtacacgacg ttcctggagg tcaacgcggca cccgggtgctc
 16261 accacggcga tcgaggagat cggtgaggac cgtggccgtg acctcgctc tgccactcg
 16321 ctgcacgtg gggccggcgg tcccgctcgc cgtggccccc cgcctcggt
 16381 gccggctcg cagtggactg ggagtcggcg taccagggtg cggggccgcg tcgggtggcc
 16441 ctgcacacgt acccggttcca cgcgtgagcgc ttctgggtt aaccgaatcc gggccggcagg
 16501 gtcgcccact cggacacgtt ctcgtccctg cggtaacccga tcgaatggca cccgaccgt
 16561 cgggggtgacg cgggacccggc cgcacggacc tggctgtctgg cgcgttaccc cggtcgggcc
 16621 gacgaccggg tggagggcgcc gggcggcggc ctggagttccg cggggccgcg ggtcgaggac
 16681 ctgggtgtgg agccccggc gggccgggtc gacccgggtc ggcgggtcga cccgggtgggt
 16741 cccggggcg ggtgtctgt cctgttcgt gtcggggcgc cggccggccga acactccccgg
 16801 ctggccgtga cgtcggtgtc ggacacgttcc gacccgggttccg aggccgggtgc cgggtccggc
 16861 cggggatgtc cgtatctgggt ggttacccgg aacccggcgtc cgttggggcc ttcaacccgg
 16921 ctccggcggacc cggcccccacgg cgcgtctgg gcccctggc ggttgcgtc cctggagaac
 16981 cccggcggtt gggggggcgtt ggtcgacgtg cgttgcgggtt cggtcgccc gtcgtcgct
 17041 cacccctggcga cggccctgtc cggccggccg gaggaccagg tccggccctccg accccggacgg
 17101 acgtacccccc gccgggtggc cggggccggc gggggccggc cggggccgggtg gcaacccccgg
 17161 ggcacgggtc tggccacccgg cggccacccgg ggggtggcgc ggcacgtcgc cccgggtggc
 17221 gccggccagg gcaacccctgtc cctgggtgtc gcccacccggc gggggacccgg cggccacccgg
 17281 gtcgaggagc tactcaccga acctcgccac cttggccacccggcc acctcgaccc caccggctgc
 17341 gacgtcaccg accgggagca gtcgtcgcc ctcctcgca cgttggacga cggaccccccgg
 17401 ctgtcgccgg tggccacgt cggccgtacg ctgcacgtcga gacccgtcga gaccctcacc
 17461 ggtgacccga tcaacccggc caacccggc aagggtctcg gtggccggaa ctcgcacccgg
 17521 ctgacccggg acggccacct cgcacgggtt cttccctccac cggcccggtt
 17581 ggccggccgg ggctcgccgg cttacgtcccg ggcaacccggt acctcgaccc ttcggccccc
 17641 cagcgacgcg gcgaggggact cccggccacc tcgggtggcgt ggggtacccg ggcggggc
 17701 gggatggccg agggtccggc cggccacccgg tccggccggc acgggggtcat ggagatgcac
 17761 cccggacccgg cggccggaggc tccgggggtt gcaactgggtc agggtggagg agccccggatc
 17821 gtcgtcgacca tcagggtggc cccgggttcc ctcgcgtaca cggccggccgc ccccaacccgg
 17881 ctcttcgacca cccgtcgacga gggccgtcg gcccggccgc gttcccgacgc cggggccgggg
 17941 gtggccggcgt tgccgggtt cggccggccgc gggccgtcg gggccggccgc gggccgggg
 18001 cggacgcacg cggctggccgt ctcggccac gcctcgccgg agcagggttcc cggacccggta
 18061 gcttcggccg aactcgccgt cgcactcgat tcggccctgg aactcgccaa cggccgtgacc
 18121 actcgacccg gggccgggtt cggccacccgg acgggtttccg accacccggc cgtacccgg
 18181 ctggccggac accctggccgc cgaactggc ggcggatccg ggcggggagcg gcccgggggg
 18241 gaggccccga cgggtggccccc gaccgacccgg cgcacccggc tcgtcgccat ggcctcgccgg

18301 ccggccgggg ggttggatcc ttccatcgatcc ttttcgttgc
18361 accgcctcgg cggcaccggg ggacccggc
18421 acgacgggca cccgtaccgc
18481 gcgttcttcg ggtatctgcc
18541 ctggagacca cctgggaggc
18601 acggacacccg gtgtctcgt
18661 cccgaggacg aggtcgacgg
18721 cggatcgcgt acgtgttgg
18781 tcgtcgttt tgccgttgca
18841 gcggtggcg gttgggtgtc
18901 caggccgcgt tggtccgg
18961 ggtctgggg agggttggc
19021 gggcgtcggy tggtgggtgt
19081 ggggtggcg cgccgtcggy
19141 gccccgtgtc cgggtgggg
19201 ggggatccgg tggagttgg
19261 gtcgggtgtc tggtgggttc
19321 gtgggtgggt tgatcaaggt
19381 tgcgggggtg ggtgtcggy
19441 ggggtgcggg ggtggccgg
19501 ggggtgtcg ggacaaatgc
19561 gcggaacggc cggtgagg
19621 cccgtgtgc tgccgtccaa
19681 gaccacctgg agacgcaccc
19741 gcgcgccaac gttcgacag
19801 gaacggctgc gggccctc
19861 tcgggtgggt gtgtgggtt
19921 cgggggttgt tgccgttcc
19981 tcgtcgggtg tggggtttc
20041 ttggatcggt tggatgtgt
20101 ttgtggcggt ggtgtgggt
20161 cggcgccggg tggtggcggy
20221 cggggcgccgg cgttgcgg
20281 cgcgacgacg tacagaagct
20341 cgggtcaacg gccccgacgc
20401 gtcgagcaact gtacgggat
20461 cactccgcac aggtcgagtc
20521 gcccggccgg cgacgggtcc
20581 gaactggacg cgcactact
20641 gtcgagggcgc tggcagcgc
20701 ctgtcgatgg cggtcgggg
20761 ctggAACCGCG acaccgacga
20821 cacggcgtac cctgtggact
20881 acatataccct tccaggggac
20941 gtcggcgact gttccaccc
21001 ctcgacgggtc gtcgggttgt
21061 gaggtcgggg cggccctc
21121 gtcacccgacc gggtcgtga
21181 ggtcgcccg agaccctggc
21241 ctgtgggtgg tcaccgtgg
21301 gcgacgggtg ggggggttgc
21361 ctgtcgatc tgcccgacac
21421 gccgtgccc aggaccaggt
21481 cccacccccc tcacccggac
21541 gggggcaccc cgggtctgg
21601 cacccctcgccc tggtcagcc
21661 gacctgaccc ggttcgggt
21721 tcggtcggcg ccctgtgtca
21781 cacgtcgccc gtctggccca
21841 gacgtgttgtt ccgtgaaggt
21901 gaactgttcc tgctgttcc
21961 taacggcccg gaaacgcctt
22021 cccgccccctt cgggtggcg
22081 qcgggtgtcg tccctgggtga

22141 gcgcttggaaac gggtcctcac cgccggggag accgcggtgg tctgtcgccga cgtcgactgg
 22201 gcggtttcg ccgagtcgt aacctccgac cgccccggc cgctgttcca cggctcgac
 22261 acacctgccc cgccggtcgg cgagcgcgac gagccgcgtg agcagaccc cccggaccgg
 22321 ctggccggcc tggccggggc cgagcggtcg gcggagctgg tacggcttgg cccggccggac
 22381 gcccggccg tgctcgccag cgacgcgaag gcccgttcccg ccaccacgac gttaaggac
 22441 ctgggttcg actcgcttgc cgccggcccg ttctgttaacc ggctggccgc ccacacccgg
 22501 ctgcgttcg cggccaccc ggttcttcgac caccgcgt cccgacccgt cccgcaccc
 22561 ctccacgacc gactcgccgaa ggccggccgt ccgacccccc tccggcttgg cccggccggaa
 22621 ctggccggcc tggagcaggg cctggccgac gcctccgaca cggagcgggt cgagctggc
 22681 gagcgcctgg aacggatgtc cgccgggttc cgccccggagg cggagccgg ggccgacgac
 22741 cccgaccccg gtgacgaccc gggggaggcc ggctgtcgac aactcttca cgcgttcgaa
 22801 cgggaactcg acggcagggtg aacccgaact gaccgcagcc gcagccgaag cagagaccga
 22861 ggacctgtga ctgacaacga caaggtggcg gagtacctcc gtcgtcgac gtcgaccc
 22921 cggccggcc gcaagcgcct gcgcgagctg caatccgacc cgtatcgccgt cgtcgccatg
 22981 gcctggccgc taccgggggg ggtgcaccc cccgacgcacc tttggggaccc cctgcggccag
 23041 gggcacgaga cgggttccac ttccccccac gggcgccggc gggacccggc cgggttcc
 23101 caccggcc accggccaccc cggcaccaggc tacgtcgacc ggggtgggtt cctcgacgac
 23161 gtggccgggtt tecacggcga gttttccggg atctccccgc gcgaggccac ggcacatggac
 23221 cccgcaacaggc ggtgtctgtt ggagaccagt tggagactgg tggagagcgc cggcatcgat
 23281 cccgactccc tgctggccac cccgacccggc gtcttcctcg gctgtggccg gtcggctac
 23341 ggcgagaacg gcaacggaaac cggtgacgac gagggttatt cggtgacccgg ggtggcaccc
 23401 gctgtcgctt cccggccggat ctccatacgcc ctccggctgg agggtccgtc gatcagcg
 23461 gacaccggcgt getcgctcgac gttggggcg ctgcacccgg cggtegagtc gtcggctg
 23521 ggcgagtcga gtctcgctgt cgtcggccgg gcggccgtca tggcgacacc aggggtgttc
 23581 gtcgacttca gcccggccggc ggcttggcc gctgacggca ggtcgaaggc cttcgccgg
 23641 gccgcccacg ggttccgggtt ctccggggggg gtcctccctcg tccctgtcgac accggcttcc
 23701 gagggccaaa gcaacggccca cgagggttgg gtcgttccatcc gtggctccgc cctcaaccag
 23761 gacggggcca gaaacggtct cggcggccgg aacggggaccg cccagcgcac ggtgtatccgg
 23821 caggcgctac gaaactcgcc cttgaccccg gccgacgtgg acggcggttgc ggcgcaccc
 23881 accggccacca cgttcggccgaa cccgatcgac gccaacggcc tgcgtggacac ctacggccgt
 23941 gaccgggatc cgaccaccc gtcgtggctg gggctggta agtcgaacat cggccacacg
 24001 caggccggcc cggccgttac cgggtgttcc aagatgggtc tggactcgac ccacgaggaa
 24061 ctgcccggcca ccctgcacgt cgacgagccc accccgcacg tggactgtc ctcggagccg
 24121 gtacgcttgc cgacccgggg cggccgtgg cggcggttgc accggccggag gcccggccgg
 24181 gtgtcgccgt tcggcatcag cgggaccaac gcccacgtga tgcgtcgagga ggcacccgg
 24241 cggaccaccc agcgcaccgt cggccggccac gtccggccgg tccctgtcgat ggtgtccgg
 24301 cgggtccggcc cggccgttacg gggccggccgg gcccgggtcg cggagcttgg ggggggttcc
 24361 gacgtccggcc tggccggggat cggccggccgg ctggccgtga cccggccgtc acacgagcac
 24421 cggccggccgg tggtggccgt gacccggggc gaggccgtcg gggggctcg cggagctcg
 24481 gccgtcgacac cggccggccgaa ggacaccgtc accgggggtcg cggagacgtc cggccgcacc
 24541 gtcgtttcc tttcccccggg acagggttcc cagtggttgc ggtatggccg gtagactgtcg
 24601 gactcgccac cggcggttgc cgcacacgtc cgcgcctcg acggaggcgat ggcacccgtt
 24661 caggactgtt cggctcccgat cgtgttcccg caggagccgg gggcaccggg actggaccgg
 24721 gtcgacgtgg tgcaacccgtt gtcgttcccg tgcgttcccg tgcgtggccg gttgtggcag
 24781 tgcgtacgggg tcaaaaaaccccg tgcgttgggtt gggactcgac agggggagat cggccggcc
 24841 caccgtggccggt gtcgttcccgat ccccgccgac gggcgaggcc tgggtgggtgg cccgacccgg
 24901 ttgtcgccgt cgtgtcccg gggccggccg atgagccggc tgcgttcccg tgaggccgg
 24961 gtacggccgc gactcgccgtc gtggggggat cggatctccg tggccgcgt caacggaccc
 25021 cgggtccgtgg tggccggggg ggaacccggg ggcgtccggg agtggggacg ggagccgg
 25081 gccggggccg taccgggtccg cggatcgac gtccactacg ccccgactc gccgcaccc
 25141 gacagggtcc gtcgtccgtt cctgacggcc acggggggaga tccggccgttcc gtcggccgg
 25201 atcacccttc atccgtccgtt cgcacccgtt gtcgttcccg gacccgttcc gacccgttcc
 25261 tactggtacc gcaacccgtcc gggacccgtc cgggttcccg acggatgtac cccggccgg
 25321 gactcgccatc acgacggccgtt cgtcgacccgtt agcccgatcc cgggttgggtt gtcggccgg
 25381 gccggggccg tccggggccg aggtgtccgac gacccgtcg tgcgtccggac cctgtccgg
 25441 ggcgcggccg gacccggggc gttccgtcccg tccggccggac ccccccactg cggccgttgc
 25501 gacgtccgtact ggacccggcc ccccgccggat gtcgtcccg tccggccgttcc gacccgttcc
 25561 ttcccaacggat agccgttccgt gtcgtccgtcg tccgttcccg ccccgccgttcc ccccgatcc
 25621 gcttcccgat tggccgttcccg gccgttcccg cccggccgggg acggcgatcc cggacccgg
 25681 tggcttgggtt tgcaccccg gggcggccggc ggttgggttgc acgggttggc ggcggccgttcc
 25741 accggccggcc gttccggggat cgtcgcccgat cccgttggact cccgttcccg cccggacccgg
 25801 ctggccgggg cgttcggcccg gccggacccggc acgttccggg ggggttggc gttccggcc
 25861 accggacggaaac ggcacgtccgaa ggcgggttgc gtcgttcccg tgcgttcccg ggggttggc
 25921 ggtgacggccg gatcgacccgtt accactgtgg tgcgttcccg ggggttggc cccgttcccg

25981 gtcgacggtg acctggcccg accggcgcag gccgcctgc acggttcgc ccaggtegcc
 26041 cggctggcgc tgcccgcg ctccgtgg gtgtcgacc tgcccccac cgtcgacgc
 26101 gccgggacgc gtcgttgcg ggcggcttc gccggcggcg gcgaggacgt cgtcggcgc
 26161 cgtggcggacc gtcgttacgg cgttcgttgc gtcaaggcgca ccctgcgc gcccggcgg
 26221 gggttcaccc cgcacggcact cgttcgttgc accggcggcg cggteccgt ggggggttcgg
 26281 ctggcccggt ggctcgccga aeggggttgc acccgactcg tcttgcgcg cgcacacccg
 26341 ggcgaggagt tgcgttgcg gatccggcc gcccgttgc acccgactcg cggccgttgcgt tggtcgaaaccg
 26401 gagggcggagg cactgcgtac ggcgttgcg gggagttgc cgtacacgc
 26461 gagacgttga cgaacttcgc cgggttgcgac gacggcggacc cggaggactt cgccggcacc
 26521 gtcgcccgcg agacccgcgtt ggcgttgcg cttggggagg tgctcgccga ccacccgc
 26581 gaacgggagg tctactgttc gtcgttgcg ggggttgcgtt gttgggttgcg catggccgc
 26641 tacggccgcg gcaagcgccta ctcgttgcg cttgggttgc accgttgcgc cccggggc
 26701 gccagcgcct cgttgcgc gacccgttgc gccctgcgc ggcgttgcgac gacgggttgc
 26761 ctggccgcgc gggcgttgc cggcgttgcgtt gtcgttgcgac ccctcggttgc gttggaaacgt
 26821 ctgttgcgc cccgttgcgtt gtcgttgcg gtcgttgcgac tgcactgttgc ggttccaca
 26881 gaggggttgc cggccatcccg gcccgttgcgtt ctttcgttgc accgttgcgc cccggggc
 26941 gacccggacg cgcgttgcgtt cggccgttgc gggagggccgg cggccgttgcgt tggtcgac
 27001 atcgccgcgc tgcgttgcgtt ggaacacggg gagaacgttgc tgacccgttgc cggccgttgc
 27061 gtcgttgcgtt gtcgttgcgtt cggacccgc accgatgttca acacccgttgc ggccttgc
 27121 gaactcgcc tgcactgttgcgtt ggggttgcgtt gccctgttgc accgttgcgc
 27181 ggcgttgcgtt tgcgttgcgtt gaccacccgc cggtaacccgc gtcgttgcgtt
 27241 tacgttgcgtt gactgttgcgtt cggggacttgc gaccggaccc cggtaacccgc gtcgttgcgtt
 27301 accgacggagg cccaacccgtt cggcgttgcgtt ggcgttgcgtt gccgttccc cggccgc
 27361 gccaccccg aggacccgtt cgggggttgcgtt tccggggca cttccatcac caccggattc
 27421 cccacccgc ggggttgcgtt cttccgttgcgtt ctctaccacc cggacccgc cccacccgc
 27481 accagactacg tcgacagggggg gggatttccgc gacggggccgc cggacttgc cccacccgc
 27541 ttccggatca ccccccgcgtt cggcgttgcgtt atggacccgc accgaggggttgc caccctggag
 27601 atcgccgcgtt cggccgttgcgtt acggggccgc accgacccgc accgacccgc
 27661 accggcgttgcgtt tgcgttgcgtt gacggccgttgcgtt tccacccgttgc aactgttgcgtt
 27721 gacccgttgcgtt acggccgttgcgtt ggggttgcgtt aactgttgcgtt
 27781 gcctacacccgtt tgcgttgcgtt gggggccgcgtt ctgacccgttgcgtt acaccgttgc
 27841 ctggccgcgtt tccacccgttgcgtt catgttgcgtt cttccgttgcgtt gttgggttgcgtt
 27901 gccggccgggg tgcgttgcgtt ggcgttgcgtt tacacccgttgcgtt tggacttgcgtt cgcacccgc
 27961 ggggttgcgtt cgcgttgcgtt gtcgttgcgtt ttccgttgcgtt agggccgttgcgtt gttccgttgcgtt
 28021 gccgaggggcg tgcgttgcgtt cgttccgttgcgtt ccgttgcgtt accggccggcg aaacggccac
 28081 cagggttgcgtt cggcgttgcgtt cggcgttgcgtt gtcgttgcgtt acggggccgttgcgtt
 28141 gccggccgggg accggccgttgcgtt gcaaggacccgcgtt gtcgttgcgtt agggccgttgcgtt
 28201 ctggccgcgtt cgcgttgcgtt catgttgcgtt ggcgttgcgtt cggccacccgcgtt
 28261 cgcgttgcgtt cggccgttgcgtt catgttgcgtt tacccgttgcgtt accggccgttgcgtt
 28321 ctggccgttgcgtt tgaagacccgcgtt catgttgcgtt accccggccgttgcgtt
 28381 atcaaggccgtt tccgttgcgtt gccgttgcgtt gtcgttgcgtt gtcgttgcgtt
 28441 ttgtcccccgcgtt acatgttgcgtt ggcgttgcgtt aaggttgcgtt
 28501 tggcccccgcgtt gtcgttgcgtt cgcgttgcgtt ggggttgcgtt
 28561 aacggccacgcgtt tcatgttgcgtt ggaggccacccgcgtt gccgttgcgtt
 28621 gccccggccgtt gggccgttgcgtt cttccgttgcgtt caccgttgcgtt
 28681 caggccgttgcgtt ccgttgcgtt acacccgttgcgtt accccggccgttgcgtt
 28741 gccccgttgcgtt tggccgttgcgtt tggccgttgcgtt
 28801 gacccggccgtt gtcgttgcgtt cgcgttgcgtt
 28861 gtcgttgcgtt cggccgttgcgtt cggccgttgcgtt
 28921 tgcgttgcgtt tggccgttgcgtt cggccgttgcgtt
 28981 atggccggccgtt gccgttgcgtt
 29041 cgttccgttgcgtt gccgttgcgtt
 29101 gccgttgcgtt gtcgttgcgtt gccgttgcgtt
 29161 gtgggttgcgtt cgcgttgcgtt
 29221 gacccggccgtt ggggttgcgtt
 29281 ggcgttgcgtt cggccgttgcgtt
 29341 gggccggccgtt cggccgttgcgtt
 29401 gccgttgcgtt cggccgttgcgtt
 29461 gccgttgcgtt acgttgcgtt
 29521 gacccggccgtt cggccgttgcgtt
 29581 gacccggccgtt cggccgttgcgtt
 29641 gtcgttgcgtt gacccggccgtt
 29701 gtcgttgcgtt gtcgttgcgtt
 29761 cccgttgcgtt gccgttgcgtt

29821 aacctcctgg gggcgcacgt gcacggggtc gacgtcgacc tgcgtccggc ggtcgcccc
 29881 ggccgcctgg tcgacctgccc cacctacccc ttgcacaggc agcggtctg gcccaagccg
 29941 caccgcaggc cgcacaccc gtcgctgggg gtccgtgact cgacccaccc gtcgtgcac
 30001 gccgcagtcg acgtacccgg tcacggcgga ggggtgttca cccggcggtc ctcccccgac
 30061 gagcagcgt ggctgaccca gcacgtgtg. ggtggcgga acctgggtcc cggeagtgtc
 30121 ctggtcgacc tcgegcteac cggcggtggc gacgtcgccg tgccgggtgt ggaggaactc
 30181 gtcctgcaggc agccgctgg tttgaccgc gccgggtcgat tgctgcgcct gtcggtcggc
 30241 gccgcgcacg aggacggcg gccggccggc gagatccacg ccgcccggaga cgttcggac
 30301 ccggccgagg cccgggtggc ggcgtacccg accgggaccc tgcggcgtgg cgtggccggc
 30361 ggccggccggg acggcacaca gtggccccc cccggcgccca ccgcctgcac gttgaccgac
 30421 cactacgaca ccctcgccga actggctac gagtacggc cggcggttca ggcgtgcgc
 30481 gccgcgtggc agcacggcg cgtggctac gggaggtgt ccctcgacgc cgtcgaggag
 30541 gggtaegegt tcgacccgg tctgctcgac gccgtcgccc agaccttcgg cctgaccagt
 30601 cgcgcggccgg ggaagctccc ctgcgttgcggcggggtca ccctgcacgc caccggggcc
 30661 actgcggta ggggtggtgc gaccccccgg gacccggacg cgggtggccct ggggttcacc
 30721 gacccgaccc gtcagctcg cggccacggc gacccgggttgc tgctcaggga cccggggcg
 30781 gateggacc agccgcggc cgcgcacggc gacctgcacc gctggagtg gtaegegt
 30841 gccaccccgg accggacccc ggccggcggt gtcacgtgg cggccgacgg gtcgacgcac
 30901 ctgcgtcgcc cccgggtggc ggcacccacag gccgtcgatc tccgcgtaccg tccgcacggc
 30961 gacgaccccg cggccgaggc cggtcacggg gtgcgttgcgg cggccacgt cgtgcgcgcgt
 31021 tggctcgacg acgacccgg tggccgcacc accctggtgg tggccacgtc cgcaggggtc
 31081 gaggtctccc cccgggacga cgtgcgcgc cccggggccg cccgggtgtg ggggggtgt
 31141 cgctgcgccc aggccggatc cccggacgc ttcgtgtcg tgcacggcga cccggagacg
 31201 ccccccggg tgccggacaa tccgcacgtc ggggtccgtg acgggtcggt gttcgtgcca
 31261 cggctgacgc cgctcgccgg tcccgtccgg gccgtcgccg accggggcgt a cggctgggt
 31321 cccggcaacg ggggtccat cgaggcagt ggcgtcgccccc cccggccgt a cggctgggt
 31381 cccctggcgc cggaggaggt acgcgtcgcc gtcggcgttca cccgggtgtg cccggccgt
 31441 gtcctgtcg cgtcgccgtat gtacccggaa cccggccgaga tggccacccg ggcgtccgg
 31501 gtggtcaccc aggtcggtgc ggggttccgg cgggttccacc cccggccaggc ggtgacgggc
 31561 ctgttcagg gggcttcgg gccgggtggc gtcggcgtacc accgggttctt caccgggt
 31621 cccgacgggt ggggggggtt ggacggccga gccgttacca tgcgttca caccggccac
 31681 tacgcgtgc acgacccggc cgggttgcag gccggcgttccgttccgttccgt
 31741 gccggcggtt tggggatggc tgccgtcgcc ttggcccgcc gggccggggc ggaggttgc
 31801 gccacggcca gcccggccaa acacccggcgt ctgcgggcgc tggccctcgac gacgaccac
 31861 atcgctcgat cccggggagag cgggttgcgt gagcggttgc cccggccgttccgttccgt
 31921 ggcgtcgacg tggctctgaa ctgcgttacc ggcgttgcacc ggcgttgcacc
 31981 ctgcggacg ggggggttctt cgtcgatgt ggcacggaccg acctgcggcc ggcggagacg
 32041 ttccggggcc ggtacgttcc gttcgttacc gccggggccgt gtcggccgttccgttccgt
 32101 atcctggagg aggtcgatcg ttcgttgcgg gccgggttccgg tccggccgttccgttccgt
 32161 gtgtggaggat tttcggtggc cccggggcgcc ttcacccaca tgcgttccgttccgttccgt
 32221 ggcacgtcg ttcgttacc gccggccccc gtcacccccc gtcacccccc gtcacccccc
 32281 ggcgggaccc gacccctggc gccgggttccgg gccggccacc tgggtacccgg gacccgggt
 32341 cccacccctt tgggtggcccg cccggccgttccgg cccggccggc cccggccgttccgt
 32401 gccgcgtcg aaggccctgg cgcgcacccat gagatcgatc cccggccacc gtcacccccc
 32461 gaggcgatcg cggcgatcgatc cgcactcgatc cccggccacc gtcacccccc
 32521 cacacccggc ggggttccgttccgg cgcacgggttccgg gtcacccccc tgcacccccc
 32581 caggctcgatc gggccaaaggc cgcacgggttccgg tggccgttccgg acgcacccatc
 32641 gacccgtatc ttcgttccgg ttcgttccgg gccgggttccgg ttcgttccgg tccggccgt
 32701 ggcgttacg cggccggccaa cgggttccgg aaccccccgg tccggccgttccgg
 32761 ggacttccgg cggaggccgt cgggtggggc tttgtggggc gggccggccgttccgttccgt
 32821 ggcctcgatc acggatcgatc cccggccacc gtcacccccc tggccgttccgttccgt
 32881 gcccgttccgg acggatcgatc gtcacccccc gtcacccccc tggccgttccgttccgt
 32941 aggtcgccgc tggccggccggc cggatcgatc cccgggggttccgg tggccggccgc
 33001 acggccacccgg cccggccacc ggcgttccgg cccggccggcc gtcacccccc
 33061 ggtgcacccgg agaccgtatc ggtggccgttccgg tggccgttccgg tggccgttccgt
 33121 gccgttccgg gtcacccatc ggcgttccgg tggccgttccgg tggccgttccgg
 33181 ggggttccgtatc cccggccgttccgg ggggttccgg tggccgttccgg tggccgttccgg
 33241 cggctcgatc gacccgttccgg ttcgttccgg cccggccgttccgg tggccgttccgg
 33301 cgggtcgatc tttgtggggc ttcgttccgg gacgttccgg tggccgttccgg tggccgttccgg
 33361 ctggaaacggg cggatcgatc cccggccacc ggcgttccgg tggccgttccgg tggccgttccgg
 33421 ctggaggccgc tggccgttccgg ggggttccgg tggccgttccgg tggccgttccgg
 33481 atcgttccgtatc acggatcgatc cccggccacc gtcacccccc
 33541 ggaggggaccc tttgtggggc ggggttccgg tggccgttccgg tggccgttccgg
 33601 acaggatcgatc cccggccacc gtcacccccc tggccgttccgg tggccgttccgg

33661 atccgatgag cgagagcgc ggcatttacccg aggaccgcctt cccggcgatata ctcaaggcgaa
 33721 ccgtcgccga actcgactcg gtgacaggta ggctcgacga ggtcgagttac cggggcccgcg
 33781 aaccgatcgcc cgtcgccggc atggcctcgcc ggttccccgg ggggttgac tcgcggagg
 33841 cgttcgtggaa gtcatccgc gacgggtggta acgcgatcgcc cgaggcgcccc acggaccgtg
 33901 gctggccgc ggcaccgcga ccccgccctcg gtggtctctt cgcggagccg ggcgggttcg
 33961 acggccctt ctccggatc tcaaaaaaaggcg aggctcgcc gacggacccc cagcagcgcc
 34021 tgatgttggaa gatcttctgg gaggcggtgg agcgtcgaaa tttcgaccgg tcgagccttc
 34081 gcggcagcgc cggtggcgta ttccacgggtg tcgggtcggt ggactacgga cccaggccgg
 34141 acgaggcacc cgaggagggtg ctccggatcag tcggcatcg caccgcctcc agcgatcgct
 34201 ccggacgggtt ggcgtacacc ctgggggtgg agggtccagc cgtcaccgtc gacaccgcct
 34261 gctcccccgg getcaccgcg gtgcacctgg cgatggagtc gctgcgcgc gacgagtgc
 34321 ccctgttctt cggcggtggg gtcaccgtga tgagcagccc ggggtgcgttc accgagttcc
 34381 gcagccaggcg cgggttggcc gaggacggcc gctgcaaacc gttctcccgcc gccggccgacg
 34441 gcttcgggtt cggcgaggggg gccgggggtcc tgggtctcca acggctgtcc gtcgcccggg
 34501 cggaggcccg gccgggtgtc gccgtacttc gtggctcgcc gateaaccag gacggtgcca
 34561 gcaacgggtt caccgcgcg agcggccccc cccaggcgcc ggtgtatcagg caggcggttgg
 34621 agcggggcgcg tgcgttcccg tgcgacgtgg actacgttga ggcccacggc accggcaccc
 34681 ggctggcgatc tccgatcgag ggcgcacgcgctc tgctcgacac gtacgggtgcc gaccgggaaac
 34741 cggccggccc getctgggtc ggatcggtga agtccaaat cggtcacacc caggcgccgg
 34801 cgggggtggc cgggggtatg aagaccgttc tgccgtcg gcatcgggag atccggcgaa
 34861 cgttgcactt cgacgagccc tgcggcacaat tcgactggaa cccgggttgcg gtgtcggtgg
 34921 tgccgagac cccggccctgg cccgtggggg agcggcccg gccggccgggg gtgtctcgat
 34981 tcggcatcg cgccaccaac ggcacgtca tcgtcgagga ggcgcggcggc ccgcaggccgg
 35041 cggacccgtcg cccgacccccc ggcggggcaa cccggagcgac ccccggaacg gatggccgccc
 35101 ccaccggcg gccgggttgcg gaggcggtcg cactgggttt ctccgcgc gacgagccgg
 35161 ccctgcgcgc ccaggcgccg cggctcgccg accgttcac cgcacgaccg gcccctcgat
 35221 tgcgacac ccccttcacc ctggtcaccc cccgtccac ctggagcat cggcggtcg
 35281 tgcgtggcg gggcgaggag tgcgtcccg gcttccggg cgtcgccggg ggacgttcccg
 35341 tcgacggcgc cgtcagcgcc cggggcgccg cccggcccg ggtgtgtcg gtctcccg
 35401 ggcaggccgc acagtggcag ggcacggccg gggacctgtc ggcgcgtcg ccgacccctcg
 35461 cggagccat cgacgcctcg gacggggcgc tgcggccgaa cgtggactgg tgcgtcgccg
 35521 aggtgtcgaa cggcgaggcg tgcgttggacc cccgtcgtcg ggtgcagccg gtgtgttccg
 35581 cgggtatggt gtcgttggcg cgggttgcg agtgcgtacgg ggtgactccg ggtgcgggtgg
 35641 tgggtactt ccaacggggag atcggcccg cgcacgttgc tgggtcggtt tcgttggccg
 35701 acggccccag ggtgggtggcg ttgcgcagcc ggggtctcg ggcgtctcgat ggtcacggcg
 35761 ggtatggcgatc ttcggggatc caccggacc agggccggaa ggcgtatcgcc cggttcgccc
 35821 gtgcgtcgatc ttcggccctcg gtcaacgggtt cccgttccgtt ggtgtcgcc ggggagaacg
 35881 gcccgttggaa cggatgtatc gccgaggtcg aggccgagggg cgtgaccggc cgtcgatcc
 35941 cccgtcgacta ccccttcacac tcccccgcagg tggatgtcgat ggcgttggccg ctgtcgcccg
 36001 cactggccgg ggtccgtccg gtgtcgccg ggtatccccctt gtactcgacc ctgaccggcc
 36061 aggtgtcgaa aacggcgacg atggacggccg actactgttt cgcacccctc cgggagccgg
 36121 tgcgttccaa ggacggccacc aggcacgtcg cccggaggccg gttcgcaccc ttgcgtcgagg
 36181 tcagccccca cccgggtttt acagtcgtcg tgcaggccac cctcgaggca gtgtcgcccc
 36241 cccgacggcgatc tccgtgtgtc acaggacacc tgcggccgca acgcggccgtt ctcgcgcagt
 36301 tccacaccgcg gtcgtcccgatc ggcgtacacc cgggggttggaa ggtcgactgg cgtaccgcag
 36361 tgggtggagg acggccggc gacgttcccg ttcaccgtt ccaacgcacg aacttctggc
 36421 tcccggtccc cttggggccgg gtcggccatc cccggcgacga gtggcgatc cagctcgctt
 36481 ggcaccccgatc cggatcgccg cgggtccctcc tggccggacg ggtctgtcg gtgacccggag
 36541 cggcgttcccg cccggccctgg acggacgtgg tccgcgcacgg cctggaaacag cggggggcgaa
 36601 cccgtcgatc ttcggcccgatc cggatcgccg cccggatcgat cggcccaactc gacggcgatcg
 36661 acggcaccgcg cctgtccact gttggatcgat tgcgtcgatc cggccggaggc ggtgtcgatcg
 36721 acgaccccgatc tccggacacc tccgtcgatcc tccaggcgatc cggcgcaccc gggatcgacg
 36781 tcccccgtt gtcgttggacc agggacggccg cccggatcgat cgtcgagac gacgtcgatc
 36841 cggcccgatc catggatcgat gggatcgatcc gggatcgatcc cggccggatcgatc cggccggatcg
 36901 ggggtggctt ggtggacccgtc cggcgaggccg acggccgttcc gggccggatcgatcc cttggccggcc
 36961 tactggccga cccggcgccgg gaggacggatc tgcgtatcgat cccggacccgc gtcaccgtcg
 37021 cccgttctcgat cccggccatcg gccggccggg cgggttcccg gttggacccgc cggggggaccc
 37081 tcctggatcacc cggccggatcg ggcggatcgat cgcgcaccc gggccgttcc gtcggccggatcg
 37141 cggcccgatc gacgttcccgatc ttcggatcgatcc ggcggggagg gggccggatcgatcc cttggccggcc
 37201 acctgtcgatc cggatcgatcc tccgtcgatcc cggatcgatcc cttggccggatcgatcc tgcgtcgatcg
 37261 cccgtcgatc cccggatcgatcc gccgtccatcg acggccgttcc gggccggatcgatcc cttggccggatcg
 37321 cggcgatcgatcc cccggatcgatcc gggatcgatcc ggttccaccc ggtacaggag ctgaccggaga
 37381 ggcgttcccgatc cccggatcgatcc gacgttcccgatc ttcggccggatcgatcc ggcgttcccgatc
 37441 gtcggccatcgatcc ggcgttcccgatc gtcgttcccgatc cccggatcgatcc ggcgttcccgatc

37501 ggctggcctc ctacgcggcg ggcaacgcct tcctcgacgc cttcgcccgt cgtggtcggc
 37561 gcagtggct gccggtcacc tcgatcgct ggggtctgtg ggccggggcag aacatggcg
 37621 gtaccgaggg cggcactac ctgcgcagcc agggcctgcg cgccatggac ccgcagcggg
 37681 cgatcgagga gctcgccacc accctggacg cgggggaccc gtgggtgtcg gtggtgacc
 37741 tggaccggg gcggttcgtc gaactgttca cccgcggccg cggccggcc ctcttcgacg
 37801 aactcggtgg ggtccggc gggggcagg agaceggta ggaateggat ctgcggccgc
 37861 ggctggcgtc gatcgccggag gccgaacgtc acgacatgt cggccggctg gtccgagccg
 37921 aggtggcage ggtgtggc cacggcacgc cgacgggtat cgagcgtgac gtcgccttcc
 37981 gtgacctggg attcgactcc atgaccggc tcgacctgcg gaaccggctc gcccgggtga
 38041 cccgggtccg ggtggccacg accatcgct tcgaccaccc gacagtggac cgcctcaccg
 38101 cgcactacct ggaacgactc gtcggtgagc cggaggcgac gacccggct gcccgggtcg
 38161 tccccgaggg accccggggag gccgacgagc cgatcgcat cgtcggtat gcccggcc
 38221 tcgcccgtgg agtgcgtacc cccgaccagt tgtggactt catcgtcgac gacggcgacg
 38281 cggtcaccga gatgccgtcg gaccgtctc gggacctcga cgcgtcttc gaccggacc
 38341 ccgagcggca cggcaccagg tactccggc acggcgcgtt cctggacggg gcccggact
 38401 tcgacgcggc gtttcgtggg atctcgccgc gtgaggcggtt ggccatggat ccgcacgcage
 38461 ggcagggtct ggagacgacg tggagatgt tcgagaacgc cggcatcgac ccgcactccc
 38521 tgcgcgtac ggcacccggc gtcttcctcg ggcgtcgat ccagggttac gcccagaacg
 38581 cggagggtcc gaaggagatc gagggttac ttgcetaccgg tggttctcg gcccggcc
 38641 cccgtcgat cgcgtacgtg ttgggggtgg agggggccggc gatcaactgt gacacggcg
 38701 gttcgctgtc gctgtggcg ttgcacgtgg cggccgggtc gctgcgatcg ggtactgtg
 38761 ggctcgccgt ggccgggtggg gtgtcggtga tggccgggtc ggagggttgc accgagttt
 38821 ccaggcagggg cgcgtggcc cccgacggtc ggtgcaagcc cttctccgac caggccgacg
 38881 ggttcggtatt cgcgcggg gtcgctgtgg tgctctcgca gcggttgcg gtgggggtgc
 38941 gggaggggccc tcgggtgttg ggtgtgtgg tgggttcggc ggtgaatca gatggggcga
 39001 gtaatgggtt ggccggcccg tcgggggtgg cgcacgacg ggtgattcgg cggccgtggg
 39061 gtcgtcgccg tggatcggtt gggatgtgg gtgtgtgtga ggcgcatggg acggggacgc
 39121 gggtggggaa tccgggtggag ttgggggtgt tgatggggat gatgggggtg gtcgggggtg
 39181 ggggtgggtcc ggtgtgtgt ggttcggtga aggcaatgt ggtcatgtt caggccgggg
 39241 cgggtgtgtt ggggtgtatc aagggtgtt tggttgggg tgggggttgc tggttccga
 39301 tggatgtcg ggggtgttgc tcgggggtgg tgattgtgtc gtcgggtggg ttgggtgtgg
 39361 cggatggggat ggggggttgc cggatgggtt gggatgggtt ggcgcgggtt ggggtgtcg
 39421 cgtttggggat gtcggggacg aatgctcatg tggtgtgtgc ggaggccgcg gggtcgggtgg
 39481 tggggccgga acggccgggt gagggtgtcg cgcgggggtt ggtgggggtg gtcgggtgt
 39541 tggatgtcg ggtgtgtcg gcaaagaccc aaaccgcctt gaccgagctc gcccgcacgac
 39601 tgcacgacgc cgtcgacgac accgtcgcce tccccgggtt ggcgcacacc ctcgcacacc
 39661 gacgcgcaca cctccctac cggggccccc tgctggcccg cgaccacgac gaaactgcgcg
 39721 acaggctgcg ggcgttcacc actgggttcgg cggctcccg gttgtgtgcg ggggtggcg
 39781 cgggtgtgtt tggatgtgtt gtttttcctg gtcagggtgg tcagtgggtt gggatggcgc
 39841 ggggggtgtt gtcgggtccg gtgtttgtgg agtgcgtgtt ggatgtgtat gcccgggtgt
 39901 cgtcggtgtt ggggttttcg gtgttgggg tggttggagg tgggtcggtt ggcgcgttgt
 39961 tggatcggtt ggtatgtgtg caggcggtt tggtcggtt gatgggtgcg ttggccgg
 40021 tggatgtgtt ggtgtgggtt gtgcctgcgg cgggtgtggg tcattcgac ggggagatcg
 40081 cggccgggtt ggtggccgggg gtgttgcgg tggtgtatgg tgccgggggtg gtggcggtgc
 40141 gggccggggc gttcgccggc ttggccggcc acggccgcatt ggtctccctc ggggtctccg
 40201 cccgacgcgc cccggagctg atcgccacctt ggtccgaccg gatctcggtg gcccgggtca
 40261 actccccgac ctccgtgggt gtctcggtt acccacaggc cctcgccgc ctcgtcgccc
 40321 actgcgcgcg gaccgggttag cggggccaaga cgtcgctgtt ggactacgccc tccactccg
 40381 cccacgtcga acagatccgc gacacgtacc tcaccgaccc ggcgcacgc acggccgcgc
 40441 gacccgacgt cgcctctac tccacgtgc acggccgcgg gggccgcgc acggacatgg
 40501 aegcccgata ctgtacgcac aacctcgctt caccgggtcg cttcgacgag gccgtcgagg
 40561 cccgcgtcgc cgcacggctac cgggtcttcg tgcgatgtg cccacaccgg gtcctcaccg
 40621 cccgggtgcg ggagatcgac gacgagacgg tggccatcg ctcgtcgac cgggacaccc
 40681 gcgagcgca cttcggtcgcc gaactcgccg gggccacgt gacggcgta ccagtggact
 40741 ggcggggat cttcccgcc accccacccgg tttccctgcg gaaactacccg ttccgggg
 40801 cccgggtactg gtcggccccc acggccggcc accaggtcg cgcaccacccg taccgcgtcg
 40861 actggggcc cttcgccacc accccggccg agtgcgtccgg cagctaccc gtcctcgcc
 40921 acgccccggc gaccctcgcc cacagctcg agaaggccgg cgggtccctc gtcccggtgg
 40981 cccgtcccgat cccggagtc ctcggtcgcc cccctggacga ggcggccggc gactcgccg
 41041 gtgtgctctc ctccgtccgc gacaccggca cccaccttgcg cccgcaccga ctccctcgcc
 41101 aggccgacgt cgagggccca ctctggctgg tcaccagcg gggcgatcgca ctgcacgacc
 41161 acgaccccgat cgactcgac gaggcaatgg tggatgggtat cggacgggtg atgggtctgg
 41221 agaccccgca cccgtggggc ggcctgggtt acgtgaccgt cgaacccacc gccgaggacg
 41281 gggatgttcc cccgccttc ctggccggc acgaccacga ggaccaggtg ggcgtcgcc

41341 acggcatccg ccacggccga cggctcgccc gcgcggcgt gaccacccga aacgccaggt
 41401 ggacaccggc gggcacggcg ctgcgtacgg gcggtacggg tgccctcgcc ggccacgtcg
 41461 cgccgtaccc ggcggccgtcc ggggtgacccg atctcgccct gctcagcagg agcggccccg
 41521 acgcacccgg tgccgcccga ctggccggcc aactggccga cctcggggccc gagccgagag
 41581 tcgaggcgtg cgacgtcacc gacggggccac gcctgcgegc cctggtgcag gagtacggg
 41641 aacaggaccc gcccgtccgg atcgctcgcc acacccgagg ggtggcccgac tccccgtcccc
 41701 tcgaccggat cgacgaactg gagtcggta ggcggcgaa ggtgaccggg ggcggcgctgc
 41761 tcgacgacgt ctgcggccggac ggcggacacct tcgctcggtt ctccctcgggg gggggagtgt
 41821 ggggttagcgc gaacctgggc gcgtacgggg cagccaaacgc ctacctggac gcccctggccc
 41881 accggccggc ccaggcgggc cggggccgca cctcggtcgc ctggggggcg tggggccggcg
 41941 acggcatggc caccggcgac ctgcacgggc tgacccggcg cggctcgcc gggatggcac
 42001 cggaccggc gtcgcgcgcc tgacccaggc gttggaccac ccacgcacacc tgtgtgtcg
 42061 tagccgacgt cgactgggac cgcttcgccc tgggttacac cggccggccgg cccagacccc
 42121 tgatcgacga actcgtcacc tccgcggccgg tggccggcccc caccgtcgcc gggggccgg
 42181 tccccggat gaccggccgac cagctactcc agttcacgcg ctcgcacgtg gccgcgatcc
 42241 tcggtcacca ggacccggac gcggtcggtt tggaccagcc cttcaccggag ctgggcttcg
 42301 actcgctcac cgcggctggc ctgcgcaccc agtccacgca ggcacccggg cggacgctgc
 42361 cccggccccc ggtgttccag caccggccacgg tacgcacact cggcggaccac ctcgcgcage
 42421 agctcgacgt cggcaccggc cgggtcgagg cggacggcag ctgtcgccgg gacggctacc
 42481 ggcggggccgg gcaacccggc gacgtccggt cgtacctggc cttgctggcg aacctgtcg
 42541 attcggggaa gcggttccac gacggggcga gcctggggcg agacgtggaa ctcgtcgacc
 42601 tggccgacgg atccggggccg gtcactgtga tctgttgcgc gggactgac ggcgtctccg
 42661 ggccgcacga gttcgcccga ctgcgtccgg cgctgcggcg caccgtccgg gtgcgcgccc
 42721 tcgcgcaccc cgggtacgg gcggtgtaa cgggtccggc gtcgatggag gcagtgtcg
 42781 gggtgccaggc ggacgcggc ctcgcggcacc agggcgcac cccgttctgt ctggtccggac
 42841 actcggccgg ggcctctatg gctacggcc tggcgaccga gctggccgac cggggccacc
 42901 cggccacgtgg ctgcgtcgc ctcgcacgtgt acccaccggg tcaccaggag ggggtcgac
 42961 cctggctcgg cgacgtcgacc ggcggccctgt tcgaccacga gaccgtacgg atggacgaca
 43021 cccggctcac ggcctgggg gctgtacgaca ggctgacccg cagggtggcg cccggggaca
 43081 cgggtctggc cacgtgttgc ttggccggca gcgacccgat gggggagtgg cggacgacg
 43141 gttggcgtc cacgtggccg ttggggcacc acagggttcac ggtggccgg gaccattct
 43201 cgatggtca ggacgcacggc gacgcgtacg cggccacat cggccctgg ttgagcgggg
 43261 agagggcatg aacacgaccg atcgcccgat gctggggccga cggactccaga tgatccgggg
 43321 actgtactgg gtttacggca gcaacggaga cccgttcccg atgctgttgt gccggcacga
 43381 cgacgaccccg caccgtgtt accgggggct gggggatcc ggggtccggc gcagccgtac
 43441 cgagacgtgg gtgggtgaccg accacggccac cggccgtccgg gtcgtcgacg accccaccc
 43501 caccggggcc accggccggc cggccggatg gatcgccggc gggggccccc cggccctcgac
 43561 ctggggcgac cgggtccgtg acgtgcaccc cgggtccctgg gacgcccggac tgcccgaccc
 43621 gcaggagggtg gaggacccggc tgacgggtct ctcgtctggc cccggggacc gcctggaccc
 43681 ggtcccgac ctcgcctggc cgatggcgtc ggggggggtc ggcggccgac accccgacgt
 43741 gtcgcgcgc ggtgtggacg cccgggtcg ctcgcaccc cggccggccgg cggccggcc
 43801 ggcgggtgacc gaggacccggc tgccggccgt gcccggggac gtcgtggcg tgaccggccac
 43861 caccggccgtc gagatgacag ccacccgtt ctcgcaccc gggccggcc tcgtcgccga
 43921 ggcggggccg gcccacggc tcgcccacca cccggacgtc gggccggcc accggccggca
 43981 ggtgetcgcc ctgcacccggc cggccaccc gtaacggccgt gtcgtggcg cccggccgg
 44041 ggtggccgag cacacggcgtc cggccggccg cgggtcgcc gtcgtggcg cccggccgg
 44101 cctgtacgcg ggggttcccg cccgttcccg cccgttccgc gggaccggg cccacgcgg
 44161 cccggccctg tccgcggccgc ggggttcccg cggccgggtt gggggatgg tgggtgtcc
 44221 gaccaccggc gcaactgcgc gctgtccaa ggcgtccggc ggtctcaccc cccggggcc
 44281 ggtcgccagg cgacgtcggtt caccgggtcc gggggccacc gcccactgac cggtcgaaact
 44341 ctgagggtgcc tgcgtatgcgc gtcgttttct ctcgtatgcgc cggcaagage caccgttccg
 44401 gtcgtgttcc ctcgcgttcc gcttcggccg cggccggccca cggaggatcg gtcgtcgcc
 44461 caccggctct caccggacac atcaacgggg cggactgac ggcggccatcg gtcggcacc
 44521 acgtcgaccc tgcgtactcc atgacccacg cgggtaccc ctcgtatgcgc catcatcgac
 44581 gcttggactt cagcgacccgg gacccggcca cccgttcccg gggggatgg tggaccgg
 44641 agacccgttcc caccggccac ttctacggcc tgcgtatgcgc gggggatgg gggggatgg
 44701 tgatctccctt ctgtcggtcg tggcgacccg actgggtcgcc tggaccggc accttcgccc
 44761 ctgcgtatgcg ggcgtacccgg accgggttcc cccgttcccg actcctgtgg ggacccgaca
 44821 tcacggatcg gggccggccg aagttcccg ggtgtcgcc gggggatgg cccggccgg
 44881 gggaggaccc ctcgcggccg tggctccat ggtgttgc gggggatgg gggggatgg
 44941 cgcaggacgt cgaggagctg gtgggtccggc agtggacat gggggatgg cccggccgg
 45001 tgcgcctcga caccgggttcc gggacccggc gcatgcgcata cggggatgg cccggccgg
 45061 cgggtggcc ggtactggctg cacgacggccg cggccggccg acgggttgc ctcaccctgg
 45121 gcatctccag cccgggagaac agcatcgccg aggtctccgt cggccggccg tgggttgc

45181 tcgggtgacgt cgacgccc gag atcatcgca cagtggacga gcagcagctc gaaggcgctg
 45241 cccacgtccc ggccaacatc cgtacggctcg ggttgcgtccc gatgcacgca ctgctgcga
 45301 cctgcgcggc gacgggtcac cacggcggtc cggcagctg gcacaccggc gccatccacg
 45361 gcgtggcga ggtgatctcg cccgacggct gggacaccgg ggtccggcgcc cagcgacccg
 45421 aggaccaggg ggccggcata gcccggcgg tgcccgagct gaccccgac cagctcccg
 45481 aggccgtcg ggggttcctg gacgatcccc eettccaccgc cggtgccggc cggatcgcccc
 45541 cccacatgt cggcgagccg tcccccccg aggtcgctcg cgtctgtcg gggctggctcg
 45601 gggaaacggac cggcgatcgta tgagcaccga cggcaccaccat gtccggctcg gccgggtcg
 45661 cctgcgtacc agccggctct ggctgggtac ggcagccctc cggccggcagg acgacgcca
 45721 cggcgtacgc ctgcgtcgacc acggccgttc cggggggcgtc aactgcctcg acaccggcga
 45781 cgacgactct ggtcgacca gtgcccagggt cggcggaggag tgggtcgccc ggtgggttggc
 45841 cggggacacc ggtcgccggg aggagaccgt cctgtcggtg acgggtgggtg tcccacccggg
 45901 cggggcagggtc ggcggggggcg gctctccgc cggcagatc atgcctctcg gtgagggtctc
 45961 cctgcggcgt ctccgtgtcg accacgtcg cgtcccttcac tggccccggg tggaccgggt
 46021 ggagccgtgg gacgagggtt ggcaggcggt ggacggccctc gtggccgcgg gaaaggctcg
 46081 ttacgtcggtt tcgtcggtt tccccggatg gcacatcgtc cccggcccaagg agcacggcgt
 46141 cccgcgtcac cgcctcgcc tggtgtccca ccagtgtcg tgcacatcg cgtcgccca
 46201 tccccaaactg gaggtcctgc cggccgcga ggcgtacggg tccgggttctc tgcggcggcc
 46261 gacccgcctc ggcgggtctgc tggcgccga cggccggggc gccgcagccg cacggcggtc
 46321 gggacagccg acggcactgc gtcggcggt ggaggcgatc gaggtgttctc gcaagagacct
 46381 cggcgagcac cccgcccagg tgcactggc .gtgggtgctg tccccggccg gtgtggcggg
 46441 ggccgtcgcc ggtgcgcgga cggccggacg gtcgactcc ggcgtcccg cctgcggcg
 46501 cggccctcgcc ggcacggaaac tcaccggccct ggacgggatc tccccgggg tgcggcagcc
 46561 agggccggcc cgggaggcggt ggcgtacgggt agagccgcg cctgacctcg gggaaacccgt
 46621 gtcgggtcgcc cgggacggcc gccgcgttcc cccggccgggt cagccgggttgg gggtgagccg
 46681 cagcagggtcc ggcgcaccccg actcgccac ccccccgcacg tggtcggcga ggtagaagtg
 46741 cccggccggg aagggtccggg tacggccggg gactaccggatc cggccggcc acggttggc
 46801 tccctccacc gtcgtcaacg gtcgggttcc acggcagagg gtgggtatcg cggccggcag
 46861 cggcgccccg gctgtccagg cgtaggagcg cggcaccggg tggtcggccc gcaagacccgg
 46921 cagcgcacatg tccaacagcc cctgtcgcc caatgcggcc tgcgtgaccc cggccctcg
 46981 catctgtcg acgagtccgt cctcggtcg caggtcggtg cggcgtcgatc ggacccgggg
 47041 ggccgtctgc cccgagacga acaaccgcag cggcgcacc cccggacgag cctccaggcg
 47101 acggccggtc tcgttaggcga ccaggccgcg catgtgtga cggAACAGGG cgaacggaaac
 47161 ctcgcgcacg aggtcgccga gcacggccgc gacccgtcg gcatctccc cggccgtcg
 47221 gagagccccgc tcgtcgtcg ggttgcgtccg gccgggtac tgcacccggcc acacgtcgac
 47281 ctccggggcc agtgcggggc cggggccggg gactaccggatc cggccggcc cccggccgg
 47341 gaagcgtac agccggggcc ggtgtccgtc gggggacccg aaccggccga accagggttt
 47401 catcggtgtc tcatccgttc ggtcgacccg cgggtggc gatgcgcgc acggaggagcg
 47461 accgcggcca gacaacctcg tcggaggggg agcccgacg cagttccggg aaggcggtcg
 47521 acaggggcccc caggccgacc tccctccca gttggcccg cggccggcccc atgcagtatg
 47581 ggatgccgtg cccgaagggtt aggttccctt ggtgtccctt ggtgacgtcg aaccgggtcg
 47641 ggtcggggaa ctgtccggg tcgggttgg cggccgggtt ggcgtatcagg acgggtgtgt
 47701 acggccggat cgtcaccggcc cggatctcca cctcggtcg ggcgaaccgg gtgggtggct
 47761 cccggggggc ctggtagcgcc aggtatctctt ccacccgtcc gggcagcgt gccgggtctt
 47821 tccggaccag cggcgatctgg tcgggggtgg tcagcagcag gtgggtgcgg atcccgatga
 47881 ggctcaccga cgcctcgaaat cccggccagca gcggcaccag cggcgatggag gtgagttcg
 47941 cggcgatcgccg cccggccggcg tcgtcgatccctt ggacccggat c

(SEQ ID NO: 1)

FIGURE 8

FIGURE 9

FIGURE 10

SEQUENCE LISTING

<110> Kosan Biosciences, Inc.

<120> Recombinant Megalomicin Biosynthetic
Genes and Uses Thereof

<130> 300622004740

<140> To be assigned
<141> Herewith

<150> US 60/158,305
<151> 1999-10-08

<150> US 60/190,024
<151> 2000-03-17

<160> 34

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 47981
<212> DNA
<213> Micromonospora megalomicea

<220>
<221> CDS
<222> (1)...(144)
<223> megBVI(megT), TDP-4-keto-6-deoxyglucose-2,3-dehydratase;
SEQ ID NO: 2= translated amino acid sequence

<221> CDS
<222> (928)...(2061)
<223> megDVI, TDP-4-keto-6-deoxyglucose 3,4-isomerase,
TDP-4-keto-6-deoxyhexose 3,4-isomerase;
SEQ ID NO: 3= translated amino acid sequence

<221> CDS
<222> (2072)...(3382)
<223> megDI, rhodosaminyl transferase (eryCIII homolog),
TDP-megosamine glycosyltransferase;
SEQ ID NO: 4= translated amino acid sequence

<221> CDS
<222> (3462)...(4634)
<223> megG(megY), mycarosyl acyltransferase, mycarose O-acyltransferase;
SEQ ID NO: 5= translated amino acid sequence

<221> CDS
<222> (4651)...(5775)
<223> megDII, deoxysugar transaminase (eryCI, DnrJ homolog),
TDP-3-keto-6-deoxyhexose 3-aminotransaminase;
SEQ ID NO: 6= translated amino acid sequence

<221> CDS
<222> (5822)...(6595)
<223> megDIII, daunosaminy-N,N-dimethyltransferase (eryCVI homolog);
SEQ ID NO: 7= translated amino acid sequence

<221> CDS
<222> (6592)...(7197)
<223> megDIV, TDP-4-keto-6-deoxyglucose 3,5-epimerase (eryBVI, dnmU homolog), TDP-4-keto-6-deoxyhexose 3,5-epimerase;
SEQ ID NO: 8= translated amino acid sequence

<221> CDS
<222> (7220)...(8206)
<223> megDV, TDP-hexose 4-ketoreductase (eryBIV, dnmV homolog), TDP-4-keto-6-deoxyhexose 4-ketoreductase;
SEQ ID NO: 9= translated amino acid sequence

<221> CDS
<222> (8228)...(9220)
<223> megBII-1(megDVII), TDP-4-keto-L-6-deoxy-hexose 2,3-reductase;
SEQ ID NO: 10= translated amino acid sequence

<221> CDS
<222> (9226)...(10479)
<223> megBV, mycarosyl transferase, mycarose glycosyltransferase;
SEQ ID NO: 11= translated amino acid sequence

<221> CDS
<222> (10483)...(11424)
<223> megBIV, TDP-hexose 4-keotreductase,
TDP-4-keto-6-deoxyhexose 4-ketoreductase;
SEQ ID NO: 12= translated amino acid sequence

<221> CDS
<222> (12181)...(22821)
<223> megAI; SEQ ID NO: 13= translated amino acid sequence

<221> misc_feature
<222> (12505)...(13470)
<223> megAI, AT-L

<221> misc_feature
<222> (13576)...(13791)
<223> megAI, ACP-L

<221> misc_feature
<222> (13849)...(15126)
<223> megAI, KS1

<221> misc_feature
<222> (15427)...(16476)
<223> megAI, AT1

<221> misc_feature
<222> (17155)...(17694)
<223> megAI, KR1

<221> misc_feature
<222> (17947)...(18207)
<223> megAI, ACPI

<221> misc_feature
<222> (18268)...(19548)
<223> megAI, KS2

<221> misc_feature

<222> (19876)...(20910)
<223> megAI, AT2

<221> misc_feature
<222> (21517)...(22053)
<223> megAI, KR2

<221> misc_feature
<222> (22318)...(22575)
<223> megAI, ACP2

<221> CDS
<222> (22867)...(33555)
<223> megAII; SEQ ID NO: 14= translated amino acid sequence

<221> misc_feature
<222> (22957)...(24237)
<223> megAII, KS3

<221> misc_feature
<222> (24544)...(25581)
<223> megAII, AT3

<221> misc_feature
<222> (26230)...(26733)
<223> megAII, KR3 (inactive)

<221> misc_feature
<222> (26998)...(27258)
<223> megAII, ACP3

<221> misc_feature
<222> (27393)...(28590)
<223> megAII, KS4

<221> misc_feature
<222> (28897)...(29931)
<223> megAII, AT4

<221> misc_feature
<222> (29953)...(30477)
<223> megAII, DH4

<221> misc_feature
<222> (31396)...(32244)
<223> megAII, ER4

<221> misc_feature
<222> (32257)...(32799)
<223> megAII, KR4

<221> misc_feature
<222> (33052)...(33312)
<223> megAII, ACP4

<221> CDS
<222> (33666)...(43271)
<223> megAIII; SEQ ID NO: 15= translated amino acid sequence

<221> misc_feature
<222> (33780)...(35027)

<223> megAIII, KS5

<221> misc_feature
<222> (35385)...(36419)
<223> megAIII, AT5

<221> misc_feature
<222> (37068)...(37604)
<223> megAIII, KR5

<221> misc_feature
<222> (37860)...(38120)
<223> megAIII, ACP5

<221> misc_feature
<222> (38187)...(39470)
<223> megAIII, KS6

<221> misc_feature
<222> (39795)...(40811)
<223> megAIII, AT6

<221> misc_feature
<222> (41406)...(41936)
<223> megAIII, KR6

<221> misc_feature
<222> (42168)...(42425)
<223> megAIII, ACP6

<221> misc_feature
<222> (42585)...(43271)
<223> megAIII, TE

<221> CDS
<222> (43268)...(44344)
<223> megCII, TDP-4-keto-6-deoxyglucose 3,4-isomerase;
SEQ ID NO: 16= translated amino acid sequence

<221> CDS
<222> (44355)...(45623)
<223> megCIII, desosaminyl transferase, desosamine glycosyltransferase;
SEQ ID NO: 17= translated amino acid sequence

<221> CDS
<222> (45620)...(46591)
<223> megBII-2(megBII), TDP-4-keto-6-deoxy-L-glucose 2,3 dehydratase,
TDP-4-keto-6-deoxyglucose 2,3 dehydratase;
SEQ ID NO: 18= translated amino acid sequence

<221> CDS
<222> (46660)...(47403)
<223> megH, TEIII; SEQ ID NO: 19= translated amino acid sequence

<221> CDS
<222> (47411)...(47980)
<223> megF, C-6 hydroxylase; SEQ ID NO: 20= translated amino acid sequence

<400> 1
ctcgagcgta tgctcggcggt cgccgtgggc caaccagtcg tggacgtcgt cggggcggt 60
gggagggtccg ccgtgccgag tcaggaaacg tattgccat tgtgtggatt ccggagtcgc 120

atgaccgttg acccgatccc ccatacgctt ctcgggtgat gtcgtggcgc gtccgtgcgg 180
 taccggccgg actgacattt gtcgatcaag acccgccca gtgttagggct cccggccgcga 240
 cgggagaagg tccgtcgaaac aactttccggg tgaccggtcg cccggcgtcgg tgaaacgggc 300
 gtcggagcac ccgatcattt ctgtcggtga acttcttaac tgtcggcgcg cacatcttc 360
 tgaccggtgtt gttccgtgtt atgacgtt cccggccgt ctggaaactgt gctgtggact 420
 gaccgggtgc ggcgtgtttt cgccgttcc cgaactgcgg attcgtcgat cgccgagggtg 480
 ggagcgggtg gtcgaccggg atgatctgca atcatggcgc tcaatgacga tctttgttag 540
 catggtcgcg gcccggggc cgacaggccc gaaacgcccq gcatccagcc tggacgacga 600
 cgtcgacatc accgtgcaag ccgcgtatc accgacacca cgccatgtg gtggccact 660
 ggaagggtgg cgcgtatcgg gaaatggcg tgcactaga cagacccaa acagctgtcc 720
 gggcgtcgaa aacacgatc gatctcgatc accgttcat tgccccggcg gcaccgcctt 780
 ggaatccgtt gccaccggc gtcccgactg acgatcgccg accccgggtt cgagacagca 840
 ggttagtaggc gatgcaggcg ttctgtctcg cggccgacgc gtcgactag gtggaatccg 900
 tcacagtctt caatccggg gcttctatg gcaagtggcg atcgaaggcg gctggggccgg 960
 gagttgcaga tggccggggg tctctactgg gggttccgtg ccaacggcg tctgtactcg 1020
 atgctctgtt ccggacgggg gacgacccc tgacactggg acgaaacgggtt gggggccgc 1080
 ggacggggac cgtacggccag tggggccggg acgtgggtgg tgggtgacca cggaccgc 1140
 gccgagggtgc tcggcgatcc gggttcacc caccggccgc cccgacgtgc cccggggatg 1200
 cagggtggcc actggccggc ggcttctgg gccggccctt tccgggagtt ctacggccgc 1260
 accgaggacg cggcgctcggt gacagtggac gccgactggc tccagcagcg gtgcggcagg 1320
 ctggtgaccg agctggggc ggcgttcgtatcgtgaaacg acttcggccg ggaggtcccg 1380
 gtgtcgccgc tccgttacccg gcccggactc aagggtggg accccggccg tctccgggtcc 1440
 tggacctcgcc gacccgggtt atgcctggac gcccagggtca gcccggcaaca gtcgcccgg 1500
 accgaacagg cgctgaccgc cctcgacgat atcgaacggg tccacggccg tgggacgccc 1560
 gcggtctgg tgggggtggt ggccggactg gcccggcaaca cgggtggcaa cccggctctg 1620
 gccgttaccg agtctccca actggccgca cgaacttgcgg acgaccggaa gaccgcgacc 1680
 cgtgtggta cggagggtgtc gcgacgtact cccggcgatc accttggaaacg cccgaccgc 1740
 gctgtcgacc gcccgggtgg cgggggtcgac gttccggaccg gtggcgagggt gacagtggc 1800
 gtcggccggg cgaaccgtgtt tcccgagggtc ttccacggatc cccggccgtt cgacgtggac 1860
 cgtggccggc acgcccggat cctgtcgatc cggccgggtt cggccggcac cggaccgtac 1920
 gcccgggtgg ccaccctggc cacggccgcg ctggggcccg cccggccgtt gttccccgg 1980
 ctgtccctgtt ccggggccgtt gatcagacga cgtcggtcact cccgtggccg tgggtctcagc 2040
 cgttccccgg tggagctgtt gaggagaac gatgcggcgtc gtgtttcat cgatggctgt 2100
 caacagccat ctgttccggc tggtcccgatc cggcaaggcgc ttccaggccg ccggacacga 2160
 ggtacgggtc gtcgctcgatcc cggccctgac cggacgtgc accgggtccg gtctgaccgc 2220
 cgtggccgtc ggtgacgacg tggaaacttgcg ggagtggcac gcccacgcgg gccaggacat 2280
 cgtcgagttac atgcggaccgc tggactgggt cggacggagc cacaccacca tgtctggga 2340
 cggaccctcg ggcacatcgac ccacccatc cccggaccctt ttccggctga tgagccccga 2400
 ctcgctcatac gacgggtatgg tggaggatcg cccgttccgtt cgtcccgact ggatcgatcg 2460
 ggagccgtcg accttcgcg ccccgatcgatcc gggccgggtt accggaaaccc cgcacgcggc 2520
 gatgtgtgg ggtccggacg tggccaccggc gggccggcag agttccctgc gactgtggc 2580
 ccaccaggag gtggagcacc gggagatcc gctggccgag tgggtcgact ggacgtcg 2640
 gcgcttcggc gacgaccgc acctgagttt cggacggaa ctgggtcgatgg ggcagtggac 2700
 cgtgacccccc atccccggacg cgtcgccgtt cggacccggc gtcggacccgg tgggcatcg 2760
 gtacgtcccc tacaacggcc cctcggtgtt gcccggctgg ctgttccggg aaccggaaacg 2820
 tcggccggc tggctgaccc tggccggatc cggccggaa caccggatcg ggcaggatc 2880
 catcgccgag atgttggacg ccacccggc catcgacgcg gatgtcgatgg ccacccatcg 2940
 cgaccaggacg ttggccggc tggccggatcg tccggccaaac gtcggatccg cccgggttgc 3000
 gcccgtggatcc gtcctgtcg ccacccatcg gggccaccgtg caccacggcc gcaaccggc 3060
 ttggctgacc gcccggatcc acggcgatcc gcaatcgatc ctcgtcgacg cccgacaccga 3120
 ggtgcacggc aaggatcgatcc aggacccatcg cggccggatcg tggatcccg tggccggat 3180
 gaccggccgag caccgtcgatgg gggccatcg ggggttccg gacgaccggc cgtaccgc 3240
 cgggtcgccgat cggatcgatgg acggatcgatcc gaccggatcc cggccggccg aggtggatcg 3300
 catctgtcgat gacccatcg cccggccatcc gggccaccgtg gggccaccgtg gcaaccggc 3360
 cggaccggc ctcgtcgat gacttccacc accaccggaa cccggatcgatgg cccgtcccg 3420
 aatccacacg ccgatccatcg ttctgacaccg agggggccccc ggtggatcc tccaccaact 3480
 tggacacgac agcaccggccg gcaactgact cgttgcggccg gatgcggatcc gtcggccctt 3540
 tcctggatcc ttccacgatcc gtcgtcgatcc ggttcatcc gaaatcgatc gttacggcc 3600
 acggccctgg gggccatcc gggccatcc gggccaccgtg gggccaccgtg ggtgtcgatcc ttcttattc 3660
 tcagcggttt cgtgtcgatcc tggatcccg gggccaccgtg gggccaccgtg ggtgtcgatcc ttcttattc 3720
 gcaacgggtt ctgcacccatcg ttccacgatcc acctggatcc cccgtcccg gggccatcc 3780

tgttcctggc	caccggggcag	gcggtgagcg	gtgaggcgct	gatcccgaac	ctccctgctga	3840
tccacgcctg	gttccccggcc	ctggagatct	ccttcggcat	caacccggtg	agctggtcgt	3900
tggcctgcga	ggcgttcttc	tacctgtgt	tcccgcgttt	cctgttctgg	atctccggta	3960
tccggccgg	gcggctgtgg	gcctggggcg	ccgtgggttt	cgccgcgatc	tggggcgtac	4020
cgggtggtcgc	cgacccctct	ctgcccagtt	ccccggccgt	gatcccgggg	cttgagact	4080
ccgccccatcca	ggactgggttc	ctctacaccc	tccctgcgac	gcggagccgt	gagttcatcc	4140
tccggatcat	cctggcccgc	atccctatca	ccgggtgggt	gatcaacgtc	ggggctgtcc	4200
ccggcgtgt	gttggcccc	gtcttcttcg	tccctgcgt	cttccctggc	ggtgtctacg	4260
ccatctctc	gtcgatgat	atccctcccc	tgttctgtat	catcgccagc	ggcgcgacgg	4320
ccgacccatcca	gcagaagcgc	acccatcatgc	gtaaaccgggt	gatgggtgtgg	ctcggcgacg	4380
tctccctcgc	gtctcacatg	gtccacttcc	tgtgtatcg	ctacggggcg	gacctgtctgg	4440
ggttcagcca	gaccgaggac	gccccgtgg	gtctcgact	cttcatgatc	attccgttcc	4500
tccgggtctc	cctgggtctg	tctgtgtgtc	tgtacaggtt	cgtcgagcta	cccgatcatgc	4560
gtaaactggc	ccggccggcc	tccggccggc	gcaaaccgc	cacggaaacc	gaacagaccc	4620
cttcccgccg	gtaaagaagg	cggtgcac	gtgaccaccc	acgtctgtc	ctatctgttg	4680
gagtagcaga	gggaacgcgc	cgacatctc	gtgcgggtgc	agaaggcttt	cgccagtggc	4740
agccatgtcc	tccgttcag	tgtggaaac	tccgtggaccc	agtacgccc	ctaccacggg	4800
atccgcact	gctgtggcg	cgacaaacgc	accacacgt	tggaaactcgc	gtctggatcg	4860
gttaggtgtc	gacgcgcac	cgagggtc	acgggtctcc	acaccgcgc	ccccacagtc	4920
ctggccatcg	acagatccgg	cgcccccggc	gttctctgtgg	acgtccgcga	cgaggactac	4980
ctcatggaca	ccgacccctgt	ggaggccggc	gtcaccaccgc	gtaccaaggc	catcgcccc	5040
gtgcacccgt	acggggatgg	cggtggacat	acagccctgc	gggaaactggc	cgaccggcg	5100
ggcctcaagg	tcgtggagg	ctgcggcc	gcccacgg	ccggcggg	cggtcggtg	5160
gccgggacga	tgagcgacgc	ggccgccttc	tcgttctacc	cgacgaagg	cctcgccgc	5220
tacggcgcac	gccccggcgt	cgtcaccaac	gaccgacgaga	cagccgcgc	cctgcgcacgg	5280
ctcgccgtact	acggggatgg	ggaggtctac	tacgtcacc	ggaccccccgg	tcacaacacgc	5340
cgcctcgacg	aggtgcaggc	cgagatcc	cgcgcaaac	tgacccggct	cgacgcgtac	5400
gtcgccgtc	ggcgccgggt	cgcccagcg	tacgtgcac	ggctcgcc	cctccaaagac	5460
tccacccggc	tccaaactccc	agtggtcacc	gacggcaac	aacacgttt	ctacgtgtac	5520
gtcgccgtcc	accccgccgc	cgacgagatc	atcaacgc	tccggacgg	gtacgacatc	5580
tccctgaaca	tccatctacc	ctggccgg	cacaccat	ccggcttc	ccacccctgg	5640
gtcgccgtcg	ggtcgtcg	ggtcacc	cgctggcc	gcaagat	ctcccttccc	5700
atgtacccct	ccctccctca	cgacccgtc	gacagggt	tccggcgt	gcggggagg	5760
atcacccggc	tgtgacgac	ccgcgtgtc	tcagcga	cccaactctgg	aaggggccgt	5820
catggccaa	agccactcga	ccacgtcg	caccgac	gccccgtac	agcggggcgg	5880
catctaccac	gacttctacc	acggccgt	caagggata	cg	cgacgcgc	5940
cgtggagg	gcccccaag	acacccaca	ggcggcgc	ctgtggac	tggctctgc	6000
gaccggatcc	cacccgtcg	agctggcga	cagttccgg	gagggtgtgg	gggtcgac	6060
gtcgccgtcc	atgctcgcc	ccggccccc	caacgacccc	gggcgggaa	tgcaccagg	6120
cgacatcgcc	gacttctccc	tcgaccc	gttcgac	gtcac	tgttcag	6180
cacccgttac	ctcgctcgac	aggccaa	ggaccgt	gtggcgaa	tggccgg	6240
cctcgccct	ggccgcaccc	tcgtcg	gcccgtgtgg	tcccgag	cgtcccg	6300
cggctgggt	ggggccgac	tggteacc	cgtgtac	aggatctcc	ggatgtcg	6360
cacccgtcc	gggggtctc	ccgaccc	ccctccccc	atgacccat	actacacgg	6420
gggggtcc	gaggccggg	tcgac	caccggat	cacgtat	ccctgttc	6480
ccgcgcgc	tccggcagg	ccttc	ggcgggct	agctgtct	acgtcg	6540
cgacccgttc	tccggggcc	tttcgtcg	ggtcggcc	gagccggg	gggtgagg	6600
gaggagctgg	gatcgagg	gttcttacc	tttccccc	agacgttc	cgacgac	6660
gggggttcc	gacggcg	ccaggagg	gttctcg	ccgcgtc	ccgccccgt	6720
ttcccggtgg	ccagggtc	caccacc	tcccgccgg	gtgtgg	gggggtgc	6780
ttcacgcac	tccgggctc	catggc	atcg	ccgttac	ggccagg	6840
gacttcgc	tcgacatcc	gcccgttcc	ccgac	ccggggc	ggccgtc	6900
ctctccgc	atgcgtgt	cggtgtac	cttcc	gatgggg	ccctgtc	6960
tccctggagg	acgacacc	cctcg	ctgtgtcc	ccgttac	ccccaca	7020
gaacggccgg	tccacccct	gatccgg	ctggcg	cgatcc	ccgac	7080
ctcgcatgt	ccgacgggg	ccgggtc	ccaccc	gggaggcc	ggaccagg	7140
atccgtcc	actacgc	ctggggcc	gccgc	gggtgg	gacgtgac	7200
cggccggcc	tccggggcc	tgggtgt	cgccgc	ggtttctt	gttccgg	7260
caccacgc	ctggccgacc	tcccg	ggtgcgg	gtcgcc	gggagg	7320
cgtccatcc	gttccgtcg	ccgactac	gacgcac	gtggac	ccgaac	7380
agcgctcg	gagggtgtcg	cgac	ggccgttcc	ccgttcc	cccagat	7440

gggtacgtca	gggtggcgga	tcagcgagga	cgacgtggc	gccgaacgga	cgaacgtcg	7500
cctggccgg	gacctgatcg	ccgtccgtc	ccgctcgccg	cacgccccgg	tgggtggtctt	7560
cccgggcaggc	aacacgcagg	tcggcagggt	caccgcccggc	cgggtcatcg	acggcagcga	7620
gcaggaccac	cccgaggcg	tctacgacag	gcagaaacac	accgggaaac	agctgctcaa	7680
ggagggccact	gcccgggggg	cgatccggc	gaccagtctg	cggtctcccc	cggtgttcgg	7740
ggtgcccgcc	ggccgcacccg	ccgacgacccg	gggggtggc	tccaccatga	tccgtcgggc	7800
cctgaccggc	caaccgctga	cgatgtggca	cgacggcacc	gtccggcggt	aactgctgt	7860
cgtgaccgcac	ggcccccggg	ccttcgtcac	cgcctggac	cacgcccga	cgctcgccgg	7920
acgcaacttc	ctgttgggg	cggggcggtc	ctggccgctg	ggcgagggtct	tccaggcggt	7980
ctcgccgacg	gtcgccccggc	acaccggcga	ggacccgggt	cggtgtgtct	cggtgcccgc	8040
tccggcgac	atggaccgcgt	cggacccgtcg	cagcgtggag	gtcgaccccc	cccggttac	8100
ggctgtcacc	gggtggcggg	ccacggtcac	gatggcggag	ggcggtcgacc	ggacgggtggc	8160
ggcggtggcc	ccccgggggg	cccgccccc	gtccgagccc	tccgtaccgg	ggtcacccgg	8220
tttcgttcta	cggcacccggc	cgtegacgg	ccgtgtccgg	gaagatcgct	tgcgttccc	8280
ggagtttetc	ctcgccccagc	gtcagctcg	cgccccgtaa	cgccgagtc	agctgctcg	8340
gtgtgcgggg	ggcgatgaca	gicgcccagga	tcccgggggc	ggacaggacc	caggccagac	8400
cgaccccgcc	cggggtcccg	ccgaggcg	ggcagtagtc	ctcgtacg	tgcacgagg	8460
ggcgatcgcc	ggggaggaggc	acctggcgc	gtccctgc	cgacttgc	gggttccgg	8520
ctgccaactt	ctccagtagc	ccgctgagca	gccccccgt	cagggggac	caggcgaaca	8580
cgccccccccc	gtacgcctgg	gcccgggca	ggacgtccag	ctcgggtgg	cgacggcca	8640
ggttgtacag	gcaactgggt	gagatcatgc	cgagcagg	gcccgtgt	gcgtctct	8700
ggcgccggc	gatgtgc	cccgccagg	tggaggagcc	gacgtaccc	acttcccac	8760
tgccgaccag	atgttggcg	gcctgcaca	cctcg	cggtgcg	cggtcgatgt	8820
ggtgctctg	gtagatgtcg	atgtggcga	ccccgaggcg	ggggaggagg	ttctcg	8880
cggcgacgat	gtgtcg	gagagccgc	cgtegttgc	ccgttgc	atctcg	8940
ccaccccttgtt	cgccaggac	gtctcc	gtc	gac	ccctggcg	9000
cgacgagttc	ctcggtgtgg	ccctt	tga	gtcg	gcccgtcg	9060
tgcagttgac	cccccgctcg	agg	cc	tcgt	ccactgtgg	9120
cccg	ta	gat	tc	gt	ccactgtcc	9180
cgacggtac	ccggccggac	ccgg	cc	gtcg	tgtcg	9240
gtgtcggtgg	gcgagcgcct	ccag	cc	gtcg	ccggatct	9300
cgcc	tc	cg	cc	gtcg	ccactgtgg	9360
gaga	ct	cg	cc	gtcg	ccactgtcc	9420
ca	ct	cg	cc	gtcg	ccggatct	9480
cggt	ac	cg	cc	gtcg	ccggatct	9540
ggc	cc	cg	cc	gtcg	ccggatct	9600
acc	cc	cg	cc	gtcg	ccggatct	9660
cc	cc	cg	cc	gtcg	ccggatct	9720
cc	cc	cg	cc	gtcg	ccggatct	9780
gg	cc	cg	cc	gtcg	ccggatct	9840
acc	cc	cg	cc	gtcg	ccggatct	9900
cc	cc	cg	cc	gtcg	ccggatct	9960
gg	cc	cg	cc	gtcg	ccggatct	10020
cc	cc	cg	cc	gtcg	ccggatct	10080
ga	cc	cg	cc	gtcg	ccggatct	10140
gg	cc	cg	cc	gtcg	ccggatct	10200
gg	cc	cg	cc	gtcg	ccggatct	10260
gt	cc	cg	cc	gtcg	ccggatct	10320
gg	cc	cg	cc	gtcg	ccggatct	10380
cc	cc	cg	cc	gtcg	ccggatct	10440
gg	cc	cg	cc	gtcg	ccggatct	10500
gg	cc	cg	cc	gtcg	ccggatct	10560
cc	cc	cg	cc	gtcg	ccggatct	10620
gg	cc	cg	cc	gtcg	ccggatct	10680
gg	cc	cg	cc	gtcg	ccggatct	10740
gg	cc	cg	cc	gtcg	ccggatct	10800
cc	cc	cg	cc	gtcg	ccggatct	10860
gg	cc	cg	cc	gtcg	ccggatct	10920
gg	cc	cg	cc	gtcg	ccggatct	10980
gg	cc	cg	cc	gtcg	ccggatct	11040
gg	cc	cg	cc	gtcg	ccggatct	11100

ccgcagcgcg	gacgacgagggt	cgcgcatgt	gcccgcggtt	acgcgttcgg	cctcgcccac	11160
ctggcgcccg	ctgcgcccagg	tcgaccgc	ggcggcgtag	gcgaccagat	gcacgacgac	11220
gtcggtgtcg	gcgacgacct	gcccgcacccg	gcccgggttcg	agcaggctga	ctcgaagggt	11280
ctcgatcccc	gcgctgcctg	gtggctggtc	gcccggaccccg	gtgcgcgcga	cgccccgcag	11340
tccggagaggg	tgtgtgttaa	attcgcgaag	aaggggcgctt	ccgacgaatc	cagaaacgc	11400
gagaagtgt	acatgtcttg	tcatctacta	atgcattccg	atagccaccg	gcccgtggaa	11460
tccatTTgtt	ccccccaggg	ttggtgtcggg	tgacaaaatcc	ggcctcagg	cgccctcaag	11520
cctcttcga	gcccgggtctg	aggctcccg	cttacccctcg	gtggctcgcg	ttcggggcggg	11580
tgtcgggaa	agggcggtac	gaggagttcg	gtagggcgtc	gcccgcgt	ctccgggact	11640
gatccgggtc	gacgccccga	cgcgtacag	ggcgtcgate	cgtggccccc	gtaccggccgg	11700
ttttcggcga	ttggtcgcaga	ttcctcccg	cgtgggtggac	tcattgttc	tccgggggtgt	11760
ggccgcacccg	tcgggtggct	cgtcggggg	gtcgagacc	gggtcgatcg	ccgtccccgg	11820
ccgtgcgcac	cagggtcggt	ccgtgcgcga	gttgggtcac	cgtcggtgg	accgggtccg	11880
ccggcgccca	ccgccccgatc	gtgcccaccc	tcgcctccgc	ggtaaatgc	ttcgtcgatc	11940
tgcgcacac	ttccggcgac	gctatcaccg	gagcattccc	ccgcacacc	ggtcgatgcc	12000
tcgcgtttc	caaacaggga	aaacacgac	tacagcggt	tccaggcgcc	ggcaatcc	12060
agcgaagagt	tcgcgtgggg	tcaagggtaa	ttctgtcaca	gatgttttg	ttaatgtac	12120
tttcttcagc	caccctcgac	tttcatacaa	tttgcggcga	tctctacc	ggggaggtga	12180
gtgggtgacg	tgcccgatet	actcggcacc	cgcactccgc	accaggggcc	gtctccattc	12240
ccgtggccccc	tgtgcggta	aaacgaacc	gagctgcggg	ccgcgcggc	tcaattgcac	12300
gcataatctcg	aaggcatttc	cgaggatgac	gttgggtggcg	tcggcgccgc	cctcgccgc	12360
gagacacgca	cgcaggacgg	gcccgcaccgc	gcccgcgtcg	tggcctcc	ggtcaccgag	12420
ctgaccgcgg	cgctcgccgc	cctcgcccg	ggccgcggc	accctcggt	gtacgcgg	12480
gtcgcccgac	ccacggcacc	ggtgggtt	gtcctgc	gtcaggcgcc	ccagtggccc	12540
ggcatggcga	cccgactgtc	cgccgagtc	cccgcttc	ccgcggcgat	gcgggcctgc	12600
gagcgggcct	tcgacgagg	caccgactgg	tcgttgacc	aggccttgg	tcacaccgag	12660
cacctgcgccc	cgctcgagg	ggtccagccc	gcccgcgtcg	cggtcgac	ctcaactggcc	12720
gccctgtggc	gtcgttccg	ggtgcgaccc	gacgcgcgtac	tcggacac	catcggtgag	12780
ctggccgcgg	ccgaggtctg	cggcgcgc	gacgtcgagg	ccgcgcgc	ggccgcgc	12840
ctgtggagcc	gcgagatgtt	cccactgg	ggccgggg	acatggcgc	gttggcgctc	12900
tccccggccg	agctggcagc	ccgggtcgag	cggtggacg	acgacgtcg	gcccgggg	12960
gtcaacggtc	cccggtcggt	gtgtctacc	ggcgtccccc	agccatcgc	acggcggtc	13020
gccgagctgg	ccgcacaggg	cgtacgc	cagggtcgta	acgtgtcgat	ggccggcgac	13080
tcggcgccgg	tcgacgcccgt	cgccgagg	atgcgtcg	cgctgaccc	gttcgcccc	13140
ggcgactccg	acgtgcctca	ctacggcgc	cttaccggc	ggcgctgga	caccggaa	13200
ctcgccgcgg	accactggcc	gcccgcgtt	cgctcccg	tgcgcttc	cgaggcgacc	13260
cgtcggtcc	tggactgca	gcccgcac	ttcatcg	cgagcccg	cccggtcg	13320
gccccctccc	tgcagcagac	cctcgac	gtcggttcc	ccgcgcgt	ctgcccgc	13380
ctgcaacgcg	accaggcg	tctcgccgg	ttctgtcg	ccgtggc	ggcgtacacc	13440
gtgcagctgc	gacccgcct	cgccacggc	accggggcgg	atctgcac	cccatgtc	13500
tacgaccacc	cgaccccgca	cgccctcacc	gaggcgctc	tgcgcc	gcaaggagg	13800
ccggggcgcc	gtgaggagac	ggcacaccc	acggaggcc	aaccgcac	accgtcgcc	13860
gtggcgcca	ttggcgccg	gtcgccgg	ggcgtcac	cacggagga	gttctgggag	13920
ctgtggcccg	agggcgccgg	cgccgtcg	gggctgccc	ccgacccgg	atgggac	13980
gactcgctgt	tccacccgg	cccgaccc	tcggcac	cgcaccc	cgtgtggc	14040
ttcctcacc	gcgcacac	cttcgac	gccttc	ggctgtcg	acggagg	14100
ctggccgtcg	agccgcag	gcccgcac	ttggagtc	cgtgggg	gtcggaa	14160
gcccggatcc	ccccgcgtc	gttgccgacc	tcggcac	gggtgtcg	cggtctgatc	14220
ccccaggagt	acggcccccc	gtggccgag	gggggtgagg	ggtcgagg	ctacctgat	14280
accgggacca	ccaccac	ccgcctcc	cggtcg	acaccctcg	cctggagg	14340
ccggcgatca	gggtcgac	ccgcctcg	tcgtcg	ccgcgt	cctggcg	14400
cagtgcgtc	ggcgccggc	gtcgac	gcccgc	gtggcg	ggtgat	14460
acacccggca	tgctcggt	ttcagtc	atgaaatcc	tcgc	ccgacgg	14520
aaggcggtct	ccggccgc	cgacgggt	ggcatggc	aaggcg	gatgtcc	14580
ctggAACGGC	tctcgac	ccgcgcac	ggccaccc	tgctcg	gatcagg	14640
accgcgttca	actccgac	cgcgac	ggactctcc	ccccga	ccggccc	14700
gtccgggtga	tccgac	cctcgcc	tgccg	ccgcac	cgtcgac	14760

gtggagaccc acggcaccgg caccgcctc ggtgatccga tcgaggcacg ggcgcctccc	14820
gacgcgtacg gcgggtaccg tgagcacccg ctgcggatcg gtcggtaa gtccaaacatc	14880
gggcacacccc aggccgcccc cggtgtcgcc ggtctgtatca aactgggtt ggcgtatgcag	14940
gccgggtgtcc tgccccgac cctgcacgccc gacgagccgt caccggagat cgactggtcc	15000
tcggggcgca tcaagcctgtc ccaggagccc gtcgcctggc cgcggccgca gccccccgc	15060
cggggccgggg tgtcctcggtt cggtcatcgc ggcaccaacg cacacgcgt catcgaggag	15120
gcgcgcgcga cccgtgacga caccgcaccc gacccgtatgg gcccgggtt gccctgggtg	15180
ctctcggcga gcacccggcga ggcgttgcgc gcccgggggg cgccgctggc cgggcaccta	15240
cgcgagcacc cccgaccaggaa cctggacgac gtcgcctact cgctggccac cggtcgggccc	15300
gcgcgtggcgt accgtatgg gttcgtggcc ggcacgcgt ccacggcgct gcgatccctc	15360
gacgaactcg cccgcgggtgg atccggggac gccgtgaccc gcacccgcgg cgcggccgcag	15420
cgcgtcgct tcgttctccc cggccaggaa tggcagtggg cggggatggc agtgcacctg	15480
ctcgacggcg accccgtctt cgcctcggtt ctgcggggatg ggcgcacgc gttgaaaccg	15540
tacctggact tcgagatgtt cccgttctg cggggccgagg cgcacgcgg gaccccccgcac	15600
cacacgtctt ccacccggcc cggtcgacgt gtcgcggcc gggtgttgc ggtatggtg	15660
tccctggcg cccgggtggc ggcgtacggg gtggaaaccgg cgccgttcat cggacactcc	15720
cagggggaga ttgcgcgcgc gtgtgtggc ggggcgtctt cgctggacga cgcggcccg	15780
gcgggtggccc tgcgcagccg ggtcatcgcc accatgccc gcaacggcgc gatggcctcg	15840
atcgccgcctt cctgcgcacgaa ggtggggcc cggatcgacg ggcgggtcg gatcgccgccc	15900
gtcaacggtc cgcgcgcgggtt ggtggctcc ggcgaccgtg acgacctgga cgcctgggtc	15960
gcctctgcac cctgcgcaggaa ggtgcggggcc aagcggctgc cggtggacta cgcgtcgac	16020
tcctcgcacg tgcaggccgtt cctgcgcgctt ctcacacgcg aactcgccga gttccggccg	16080
ctgcccggct tcgtgcgtt ctactcgaca gtcacccggcc gtcgggtcg gcccggccaa	16140
ctcgacgcgg ggtactgggtt tcgcaacctg cgcacccaggaa tccgggtcg cgcggccgtc	16200
cgctccctcg cccgaccaggaa gtacacgcg ttctggagg tcagcgccta cccgggtgtc	16260
accacggcga tgcaggagat cggtgaggac cgtggcggtt acctcggtcg tgcactcg	16320
ctgcgcacgtg gggccggcg tcccgtcgac ttccggctccg cgctggcccg cgccttcgtg	16380
gcggcggtcg cagtgactg ggagtccggc taccagggtt cccggggccg tgggtggccg	16440
ctgccccacgtt accccgttcca gctgtgcgcgctt ttctgggtt aaccgaatcc ggcggccagg	16500
gtcgccgactt cccgacgcgtt ctcgtccctg cggtaaccgca tcgaatggca cccgaccgt	16560
ccgggtgagc cggggacggctt cggacggcacc tggctgtgg cgcgttaccc cggccggcc	16620
gacgaccgggg tgcaggccggc gccggcaggcg ctggagtccg cccggggccg ggtcgaggac	16680
ctgggtgtgg agccccggac gggccgggtc gacctgggtc ggcggctcg cgcgggtgggt	16740
ccgggtggcg gctgtgtctt cctgttgcgtt gtcgcggagc cggggccgca acactccccg	16800
ctggcggtga ctgcgttgcgtt ggacacgcgtt gacctgaccc gggcggtgc cgggtcgccc	16860
cgggagtgctc ctagtctgggtt ggtcaccgcg aacccgcgtc cctgtcgcc cttcgaacgg	16920
ctccgcgacc cggccacccggc cgcgtctcg gcccctcggtc ggggtcgctc cctggagaac	16980
cccgccgtctt gggggccgtt ggtcgcacgtt cctgtcgccgaa gctgtcgctgt	17040
cacccggatcc cggccgttgc cggccggccg gaggaccagg tcgcctccg accccacggg	17100
acgtacgcggc gccgggtggc cagggccggc gccggccggc cggggccgtt gcaaaaaacgg	17160
ggcacgggtgc tcgtcaccgg cggcacccgc ggggtcggtc ggcacgtcg cccgtggctg	17220
gccccccaggc gaccccccgtt cctgggtgtt gccagccggc gggggccgga cgcggacccgg	17280
gtcgaggagc tactcaccga actcgccgcac tggggcaccc gggccacccgtt caccgcctgc	17340
gacgtcaccgc accggggagca gtcggcgccctt ctccctcgca cctgtcgacg cgcaccccg	17400
ctgtcgccgg tggccacgtt cccggcgacg ctcgcacgcg gacccgttcc gacccctacc	17460
ggtgaccgcga tcgaacccggc caacccggcg aagggtgtcg tggccgcac gctgcacgc	17520
ctgaccgggg aecggccacctt ctagcggttcc tctccctccac cccggcggtt	17580
ggcgcgcggg gctcgccgg ctagtccccgg gcaacgcgtt acctcgacgg ttcggccca	17640
cagcgacgcga cggaggggactt cccggccacc tgggtgggtt ggggtactt ggcggccagc	17700
gggatggccg agggtccggt cggccggccgg ttcggccggc acggggtcat ggagatgcac	17760
cccgaccagg cctgtcgagggtt tccgggttgc gcaactgggtc aggggtggat agcccccgt	17820
gtcgacaca tcaagggtggg cccgttccctt ctcgtcgatca cccgcgcacg ccccaacccgg	17880
cttcgtcgatca cccgtcgacgtt gggccgtcg gcccgcggcc gtcggcgcacg cggggccgggg	17940
gtggcgccgc tggccgggtt gcccgtcggtt gacacgcgaga aggccgttcc cgcacctggta	18000
cggacgcacgcg cggctcgccgtt ctcggccac gcccggccg agcagggtcc cgtcgacagg	18060
gccttcgcgcg aactcgccgtt ctagtccgtt tcggccctgg aactgcgcac cccgtgtacc	18120
actgcgaccgc gggtccgggtt ggcacgcgacg acgggtttcc accacccggc cgtacggacc	18180
ctggccggac acctggccgc cgaactgggc ggcggatcg ggcggggagcg gccccggggc	18240
gaggccccga cgggtggccccc gaccgcacgcg cccgtcgcca tcgtcggtt ggcctggccg	18300
ctgccccggg gatgtggacttcc accggacgcgacg ctgtggggatg tgcgtctc cggggccggac	18360
acccgcctcg cggcaccggcgg gacccggacgc tggtatccgg cggagtttat ggtctccgac	18420

acgacgggca cccgtaccgc	cttcggcaac ttcatgccc	gggcgggcga gttcgacgc	18480
gcgttctcg gatatctcgcc	gcgtgaggcg tggcgatgg	atccgcagca gcccacgc	18540
ctggagacca cctgggaggc	gctggagaac gccgttatcc	ggcccagtc gttgcgcgt	18600
acggacaccg gtgtcttcgt	gggcattgtcc catcagggtt	acgccacccg ccccccgaag	18660
cccggaggacg aggtcgacgg	ctacctgtt acaggcaaca	ccgcgagcgt cgctccgg	18720
cgatcgct acgtgttggg	gttggagggg cccgcgtatca	ctgtggacac ggcgtgttc	18780
tcgtcgcttggcgttgc	cgtggcgccg gttctgttgc	gttctggga ctgtgttctg	18840
gcggtgccgg gtgggggtgc	ggtgatggcc ggtccggagg	tgttcaggga gtttcccccgg	18900
caggcgctt tggctccgg	cggcagggtc aagcccttct	cgacgcaggc cgacggcttc	18960
gttctggggg aggggtcgcc	cttcgtctgttgcagcggt	tgtcggttgc ggtcgccggag	19020
gggggtcgcc tggtgggtgt	gttgggtggg tcggcggtga	atcaggatgg ggcgagtaat	19080
gggtggccgg cggccgtcg	ggtggcgccg cagcggttgc	tccggcgccg gtgggggtcg	19140
gcgggtgtgt cgggtgggg	tgtgggtgtg gtggaggcgc	atgggacggg gacgcgggtt	19200
ggggatccgg tggagttggg	ggcgttggt gggacgtatg	gggtgggtcg ggggtgggtg	19260
gttccgggtgg tggtgggttc	gttgaaggcg aatgtgggtc	atgtgcaggc ggccgggggt	19320
gtgggtgggt tgatcaagg	gttgggtggg ttgggtcg	gttgggttggg tccatgtgt	19380
tgtcggtgttggtgcgg	gttgggtggat tggcgtcg	gtgggttggg gttggcgat	19440
gggtgtcgcc ggtggccgg	gggtgtgtat ggggtgcgtc	gggggtgggt gtcggcggtt	19500
gggggtgtcg ggacgaatgc	tcatgtggt gttggcgagg	cgccgggggtc ggtgggtggg	19560
gcggaaacggc cggtgtgggg	gtcgtcgccg gggtgggtgg	gggtgggttgg tgggtgtgt	19620
ccgggtgtgc tgcggcgtt	gttggcgttgc gaccgaaacc	ccctgcacg tcgactcgcc	19680
gaccacccgttgg agacgcaccc	cgacgtcccc atgaccgacg	tgggtgtgac gtcgacgcag	19740
gcccggcaac gtcgtacag	gcgcgcggc cttctcgcc	ccgaccggac ccaggccgt	19800
gaacggctgc gcggcctcg	cgggggcgaa cccgggaccg	gttgggtgtc ggggtggcg	19860
tcgggtgtgt gtgtgggtt	tgttttctt ggtcagggtt	gtcagtgggt gggatggcg	19920
cgggggttgc tgcgggttcc	gggtttgtg gactcggttgc	tggagtgtga tgcgggtgt	19980
tcgtcggtgg tgggttttc	gggtttggg gtgtggagg	gtcgggtcg tgcggccgt	20040
ttggatcggttggatgtgtt	gcagccgtg ttgtcg	tgatgggtc gttggcgccg	20100
ttgtggcggt ggtgtgggt	tgtgcgtcg gccgtgggttgc	gtcattcgca gggggagatc	20160
gcggcgccgg tgggtggcg	gggtttgtcg gtgggtatg	gtgcgcgggt gttggcggtt	20220
cgggcgcggg cttgcgggc	gttggccgc acaggcgca	tggcctcggt acggcaggg	20280
cgcgacgacg tacagaagct	cctcgacagc gcccccttgc	cgggaaact ggagatcgcc	20340
gcggtaacacg gccccgacgc	gggtgggttc tccggcgacc	cccgagccgt gaccgagctg	20400
gtcgagact gtgacggat	cgggtccgg gcccggacg	tcccgctcg taccgcctcc	20460
cactccgcac aggtcgagtc	gttcggggag gagctgtct	ccgtcctcgcc cgggatcgag	20520
ggcccccgg cgacgggtcc	gttctactcc accctcacc	gtgggttgcgt cgacggcacc	20580
gaactggacg cgcactactg	gtaccgcaac ctgcgcacc	cggtgcgtt ccacccgc	20640
gtcgaggcgc tggcagcgc	tgcgttgc accgtcg	aggtcagccc gcaccccg	20700
ctgtcgatgg cgggtcgcc	gacgtggaggt ccgcgtc	tgtgggcacc tgcgttgc	20760
ctggAACCGCG acaccgacg	cgatcgacgc ttctcac	ccctcgccg ggcgcacgtc	20820
cacggcgatc cctgtggact	ggcggcggtc ctgcgtcc	gaaccctgtt cgacctgccc	20880
acctatccct tccaggacg	gggttctgg ctgcaccc	accgtgtcc gctgtacgt	20940
gtcggcgact gttccaccc	gttcgtacttcc acggcgacgg	ccaccgacgg gtcggcccg	21000
ctcgacggc gtcgttgcgt	gttcgttcc gagggttaca	cgacgcacgg ctgggtcg	21060
gagggtcgcc cccggctcg	cgccgggtgt gccgagccgg	tgtgtacac ggtcgaggag	21120
gtcaccgcacc gggcgggtgt	cagcgacgc gtgggtgc	tgcgtcggtt gcccacgc	21180
ggtgcggccg agacccctgg	gttcgtcgca cgatcgac	cacaggcgcc caccaccca	21240
ctgtgggtgg tcaaccgtgg	ggccgtcgcc cccggccgtc	cggtgcacgc ccccgaaac	21300
gcgcacggcgt ggggttggc	ccttgcgc tccctggaa	cgggacaccc gttggaccgg	21360
ctgtggatc tcccgacac	accggacccg cagctac	ccggctgtt cgaggcg	21420
gccgggtccg aggaccagg	cgccgtccgc gccgacgc	tacaccccg tcggatcg	21480
cccaaaaaa tcaaccggac	cgggccgtac accggcc	ccctcgacc cctcg	21540
ggggccaccc cccggcttgg	tgcgttgc acccgatggc	cgggacaccc ggggtccgg	21600
caccccgcc tggtcagcc	gcccgtccg ggcaccc	cggtcgacca ggtgg	21660
gacctgaccg ggtcgccgt	acgggtgtcg tgcact	cgacgcgtt cgaccgc	21720
tcggcgccg ccctgggtca	ggagttaca gcagccgt	acgtggtccg ggggtgg	21780
cacgtcgccg gtctgc	gcaggtgca ctgacc	tggaccggc cgacctcg	21840
gacgtgggtt cgcgtgaagg	cgacggcgac gtgcac	ccgacctgtt cccggagg	21900
gaactgttcc tgcgttctc	ctccggggcc ggggtgtt	cgactgtccg tcagggtgc	21960
tacccgcgc gaaacgcctt	cctggacgc ttcgc	accggcgaa ccgggtct	22020
cccccaccc cgggtggcgt	ggggctctgg gggccgggg	ggatgacagg ggaccagg	22080

gcgggtcgat	tccctgcgtga	gcggggcgta	cggccgatgt	cggtgccgag	ggcactggaa	22140
gcgcgttggaa	gggtcctcac	cgcccgggag	accgcggtg	tcgtcccgaa	cgtcgactgg	22200
gcggccctcg	ccgagtcgt	caccccccgc	cgccccccggc	cgctgcctca	ccggctcgtc	22260
acacctcg	cgccggctcg	cgagcgcgac	gagccgcgt	agcagacccct	ccgggaccgg	22320
ctggggggcc	tgcggggg	cgagcggtcg	gcccggactgg	tacgccttgt	ccggggggac	22380
gcgcagcc	tgctcgccag	cgacgcgaag	gccgtaccccg	ccaccacgcc	gttcaaggac	22440
ctcggttgc	actcgctgc	cgccgtccgg	ttccgttaacc	ggctggccgc	ccacaccgg	22500
ctgcgtctgc	cgccacccct	ggtcttcgag	cacccgaacg	ccgcagccgt	cgccgacctc	22560
ctccacgacc	gactcggcga	ggccggcgg	ccgacccccc	tccggtcggt	gggcggccgg	22620
ctggccgc	tggagcaggc	cctgcccgc	gcctccgaca	cgagcggggt	cgagctggtc	22680
gagcgcctgg	aacggatgt	cgccgggctc	cgcggccgg	ccggaggccgg	ggccgacgccc	22740
ccgacccggc	gtgacgacct	gggggaggcc	ggcgtcgac	aactccctga	cgcgctcgaa	22800
cgggaaactcg	acgcggatgt	aacccgaact	gaccgcagcc	gcagccgaag	cagagaccga	22860
ggacctgtga	ctgacaacga	caagggtggcg	gagtacccctc	gtcgtcgac	gctcgacctg	22920
cgggccgc	gcaagcgct	cgccgagctg	caatccgcac	cgatcgccgt	cgtcggcatg	22980
gcctgcggcc	taccggggcg	gttgcaccc	ccgcaccc	tgtgggacct	cctgcggccag	23040
gggacacgaga	cggttccac	tttcccccacc	ggggcgccgt	gggaccttgc	cgggcttcc	23100
cacccggacc	ccgaccaccc	ccgcaccc	tacgtcgacc	gggggtgggtt	cctcgacgac	23160
gtgggggct	tcgacgcca	gttcttcggg	atctcccccgc	gcaaggccac	ggccatggac	23220
ccgcaacagc	ggctgtgtt	ggagaccagt	tggagactgg	tggagagcgc	cgccatcgat	23280
ccgactccc	tcgtggcac	cccgaccggc	gtcttcctcg	gcgtggcg	gctcgctac	23340
ggcgagaacg	gcaccgaagc	cggtgacgac	gagggttatt	cggtgacccgg	gggtggcacc	23400
gctgtcgct	ccgggggat	ctcctacgc	ctcgccgtt	agggtcgctc	gatcagcg	23460
gacaccgcgt	gtctcgctc	gttggggcg	ctgcacccgt	cggtcgagtc	gctcgccgt	23520
ggcgagtcg	gtctcgctgt	cgtcggggg	ggggcggtca	tggcgacacc	agggggtgtc	23580
gtcgacttca	gccgcacgc	ggcgttggcc	gtgacggca	gttcgaaaggc	cttcggggcc	23640
gccgcacgc	gttccggctt	ctccgggggg	gttccctcg	tcctgtcg	acggctctcc	23700
gaggccgaaa	gcaacggcca	cgagggttt	gttgcaccc	gtggctccgc	cctcaaccag	23760
gacggggccca	gcaacggct	cgccgcgc	aacgggaccg	cccagcgc	gttgcaccc	23820
caggcgctac	gaaactcg	cctgaccc	ccgcacgt	acgcgttgc	ggcgcacggc	23880
accggcacca	cgctcgccg	cccgatcg	gccaacgccc	tgctggacac	ctacggccgt	23940
gaccgggatc	cggaccaccc	gttgcaccc	gggtcggt	agtcgacat	cgccacac	24000
caggcgccgg	cggcgctac	cgggctgc	aagatggtgc	tggactcg	ccacgaggaa	24060
ctggccgcca	ccctgcacgt	cgacgacccc	accccgac	tggactggc	ctcgaggacg	24120
gtacgcctgg	cgaccgggg	ccggccgt	cgccgggggt	accggccg	gcggggccgg	24180
gtgtcgccgt	tcggcatc	cgggacca	gcccacgt	tcgtcgag	ggcaccgg	24240
cggaccaccc	agcgcaccc	cgccgcgc	gtccggcc	tcccgctcg	gtgtccgc	24300
cggtcgccgg	cggcgctac	ggcccaggc	gcccaggc	ccgagcttgc	ggagggctcc	24360
gacgtcgccg	tggcgaggt	cgggccgg	ctggccgt	cccggccg	acacgac	24420
cggccggccgg	tgggggtgc	gaccggggcc	gaggcggt	gggggtcg	cgaggcg	24480
gccccgttgc	gacccggcc	ggacaccgt	accgggggt	ccgagacgt	cgggcc	24540
gtcgcttcc	tctcccccgg	acagggttcc	cagtgggtc	ggatgggc	ggagctgt	24600
gactcgccac	cggttccgc	cgacacgt	cgccgttgc	acggggcgat	ggcaccgtt	24660
caggacttgt	cggttccgc	cgtgtccgg	caggagcc	gggcacccgg	actggacc	24720
gtcgacgtgg	tgcagccgt	gtgttcgc	gtatgggt	cggtggcc	gttggcag	24780
tcgtacgggg	tcacccccc	tcgggtgt	ggcactcg	agggggat	cgccggcc	24840
cacgtggccg	gtgtcgctc	cctcgccg	ggggcaggac	tgggtgttgg	ccgcacccgg	24900
ttgtcgccgt	cggtgtccgg	gggcggccgg	atgagcgcc	tcgcgtcg	tgaggcc	24960
gtacccgc	gactcggtc	gtgggaggac	cgatctcg	tggcccccgt	caacggac	25020
cggtcgggttgg	tggggccgg	gaaacggg	gctgtcg	agtgggacg	ggagcggg	25080
gccgaggccg	tacgggtcc	cgagatcg	gtcgactac	cctcgact	gcccacat	25140
gacagggtcc	gtgacgaa	cctgacgg	acgggggaga	tcgagcccc	gtcgccgg	25200
atcaccttct	atcgacgtt	cgacgtcc	gtgtcgac	gcaccgac	ggacgcgggg	25260
tactggtacc	gcaacctcg	ggagacgg	cggttcgc	acgcgt	ccgttggcc	25320
gactcgccat	acgacgcgtt	cgtcgagg	acccgcate	cggtgttgc	gtcgccgg	25380
gccgaggccg	tcgaggaggc	agggtcg	gacgcgg	tcgtcgac	cctgtccgg	25440
ggcgacggcg	gaccgggggg	gttccgtcg	tcggccg	ccgcccact	cgccgg	25500
gacgtcgact	ggacgcggc	cctccgg	gtcgac	tccgttgcc	gacgtaccc	25560
ttccaacgg	agccgtact	gtcgccgt	tctgtcccg	ccccggctc	ccacgatctc	25620
gcctaccgg	tgtctggac	gcccgttacc	ccgccccgggg	acggcgact	cgacggcg	25680
tggctgggtgg	tgcacccccc	gggcacg	ggatgggtcg	acgggttggc	ggccggcgatc	25740

accggccggcg	gtggccgggt	cgtccccac	ccggtgact	ccgtgaccc	ccggaccggc	25800
ctggccgagg	cgctcgccc	gccccggc	acgttccggg	gggtgctgc	gtgggtggcg	25860
accgacgaac	ggcacgtcg	ggccggtgc	gtccccctgc	tgaccctggc	gcagggcggt	25920
ggtgacgccc	gaatcgacgc	accactgtgg	tgccctgaccc	aggaggcggt	ccgtacccccc	25980
gtcgacggtg	acctggcccc	accggcgac	gccgcccc	acggttcgc	ccaggtcgcc	26040
cggtggagc	tggcccgcc	ttcgggtggg	gtgctcgacc	tgccccccac	cgtcgacgccc	26100
gccgggacgc	gtctggtcgc	ggcggtctc	gccggccggc	gcgaggacgt	cgtcgccgtc	26160
cgtggcgacc	gtctctacgg	ccgtcgctg	gtcagggcga	ccctgccc	gccccggggg	26220
gggttacacc	ccgacacggc	cgtctggtc	accggcgccg	ccggtcccggt	ggggggtcgg	26280
ctggcccggt	ggctcgccg	acggggtgc	acccgactcg	ttctgccccg	cgcacaccccg	26340
ggcgaggagt	tgctgaccgc	gatccggggc	gccccggc	ccggcggtgt	gtgcgaacccg	26400
gaggcgagg	cactcgctac	ggcgatcg	ggggagttgc	cgaccggcgt	cgtacacgccc	26460
gagacgttga	cgaaacctcg	cggcgccgc	gacggccacc	ccgaggactt	cgcggccacc	26520
gtcgccggc	agaccggcg	gccgacggc	ctggcgagg	tgctcgccg	ccacccgc	26580
gaacgggagg	tctactgtc	gtcggtggc	gggggtctgg	gtggggtccg	catggccgcg	26640
taccccgccg	gcagcgcc	cctcgaccc	ctgggtcgac	acgctcgcc	ccgggggcac	26700
gccagcgcc	cggtgtggct	gacccgtgg	gccctgccc	gcgagggtcg	cgacggtcgg	26760
ctgcgcgac	cgggcctgcg	cagctcgac	gtggccgacg	ccctcgggac	tggggaacgt	26820
ctgtcccg	cggtgcgg	gtcggtggc	gtcgccgacg	tcgacttgc	gttcttcaca	26880
gagggttcg	cggccatcc	gccgaccccg	ctcttcgac	aactcctcga	ccggcgccgg	26940
gaccccgacg	gcgcgcccgt	cgacccggc	ggggagccg	cgggcgagt	gggtcgacga	27000
atcgccggc	tgtccccgca	ggaacagcg	gagacgttgc	tgaccctcg	cgcgagacg	27060
gtcgccggagg	tgctgggaca	cgagacccgc	acccgatca	acacccgtcg	ggcccttcagc	27120
gaactcgcc	tccactcgct	gggctcgat	gccctcg	agcgccctgc	ggcccgta	27180
ggccctcg	tgccggcc	gtgggtctc	gaccacccg	cgtcaccc	gtcgccgcgg	27240
tacctcg	gactggtcgt	cgggactcc	gacccgaccc	cgttacgggt	gttcggccccc	27300
accgacgagg	ccgaacccgt	cgccgtggc	ggcatacg	gccgggtccc	cgccggcatac	27360
gccaccccg	aggacctctg	cggggtgg	tccgagg	cctccatcac	cacccgattc	27420
cccacccgacc	ggggctggg	cctccgg	cttaccacc	ccgacccg	ccaccccg	27480
accagctacg	tccacaggg	gggattc	gacggggccc	cgacttcg	ccccgggttc	27540
ttcgggatca	ccccccg	ggcgctgg	atggacccgc	agcagcg	cacccctggag	27600
atcgctgg	aggcggtgg	acggggggc	atcgacccgg	agaccctct	cgacagcgac	27660
accggcgtct	tcgtcg	gaacggcc	tcctac	aactgctgac	cggggagggt	27720
gacccgctca	acggctacca	ggggtgg	aactcg	gcgtgctc	cgccgtgtc	27780
gcctacac	tcgggtgg	ggggccgg	ctgacgg	acaccgc	ctcgctctc	27840
ctggcg	tccac	catcg	ctcg	gtgagtgtc	gttggcg	27900
gccggccgg	tgacgg	ggccgaccc	tacac	tggacttc	cgcacagcg	27960
gggctcg	ccgacgg	gtcaagg	ttctcg	aggccgac	gttcggcc	28020
gccgagg	tcg	cgtt	ccgtt	aggcg	aaacggcc	28080
cagg	gtcg	cggt	gtcg	acggggcc	caacggc	28140
gccccc	acgg	cgcc	gtca	acccagg	ccgc	28200
ctcg	cgc	catgg	gtcg	aggcc	cgc	28260
ccgat	cgg	cgg	catcg	ccgg	actcg	28320
ctgg	ctgg	tga	catcg	ccgg	cgctct	28380
atca	aggcg	tc	ccg	ccgg	ccgg	28440
ttgt	cccc	acatcg	gggg	aa	ccgg	28500
tgg	cccc	gtg	gggg	gtt	ccgg	28560
aac	cccc	ccg	gggg	cc	ccgg	28620
gccc	ccg	ggg	gggg	cc	ccgg	28680
cagg	ccg	cc	gggg	cc	ccgg	28740
gccc	cc	cc	gggg	cc	ccgg	28800
gac	cc	cc	gggg	cc	ccgg	28860
gtgt	cc	cc	gggg	cc	ccgg	28920
gtcg	cc	cc	gggg	cc	ccgg	28980
tgc	cc	cc	gggg	cc	ccgg	29040
cgt	cc	cc	gggg	cc	ccgg	29100
gcgg	cc	cc	gggg	cc	ccgg	29160
gtgg	cc	cc	gggg	cc	ccgg	29220
gac	cc	cc	gggg	cc	ccgg	29280
ggcat	cc	cc	gggg	cc	ccgg	29340
ggcg	cc	cc	gggg	cc	ccgg	29400

gccgaactgg acgagttcct cgcgtggcc gaggcccgcg agatgaggcc gcgtcgatc	29460
gcgtgcgt acgcgtcgca ctccccggag gtggcccggt tcgaacagcg gctcgccgccc	29520
gaactcgca cgcgtcacccgc cgtcggccgc acggtcccgc tctactccac cgccaccggg	29580
gacctctcg acaccacagg catggacgcc gggtactgggt accgcaacct gcgccaaccgg	29640
gtgtgttcg agcacgcgtt ccgcgcgtt ctggagcggg gattcgagac gttcatcgag	29700
gtcagccgc accctgtgt gctgtggcg gtgcaggaga ccgcccggaa cgccgagcgc	29760
ccgttacccg gcgtgcgcac gctgcggccg gaccacgacg ggccgtccgg gttctccgc	29820
aacctctgg gggcgcacgt gcacgggggtc gacgtcgacc tgccgtccggc ggtcgccac	29880
ggccgcctgg tcgacactgcc cacctacccc ttgcacaggg acgcggctctg gcccaagccg	29940
caccgcaggcc cgacacccgc gtgcgtgggg gtcgtgtact cgaccaccc gctgtgcac	30000
gcccgcgtcg acgtacccgg tcacggccgaa ggggtgttca ccggggccgt ctcccccgcac	30060
gagcagcagt ggctgaccca gcacgtgggt ggtggccggaa acctgggtgc cggcagtgtc	30120
ctgtcgacc tcgcgtcacccgc ccggggggcc gacgtcgccg tgccgtgtc ggaggaactc	30180
gtctcgacg acggcgtgtt gttgacccgcg gccgggtgtcgt tgcgtgtct gtcggteggc	30240
gcccgcacgc aggacggggcg ccggccggcgtc gagatccacg ccggccggaa cgtctccgcac	30300
ccggccggagg cccgggtgtt ggcgtacccgc acggggaccc tgcgggtcg gttggccggc	30360
ggccgcgggg acggcacaca gttggccccc ccggccgcaca ccgcgcgtac gttgaccgac	30420
cactacgaca ccctcgccca actgggtac gagaatgggc cggcgttca ggcgtgcgc	30480
gcccgtggc agcacggcga cgtgggtcac gcgagggtgt ccctcgacgc cgtcgaggag	30540
gggtacgcgt tcgacccgggt gctgtcgac gccgtcgccc agaccttcgg cctgaccagt	30600
cgcgcccccg ggaagctccc ttccgtctgg cggggcgta ccctcgacgc caccggggcc	30660
actcggtac ggggtgtggc gaccccgcc ggacccggacg cgggtggccct ggggtcacc	30720
gaccgcaccg gtcaactgtt ccgcacgggt gacggccctgg tcgtcaaggaa cgccggggcg	30780
gatcgccgacc agccgcgggg ccgcacggc gacctgcacc gcctggagt ggtacggctg	30840
gccaccccg acccgacccc ggccgggggt gtgcacgttg cggccgacgg gtcgacgcac	30900
ctgtcgccg ccgggtggcc ggcaccacag gccgtcgcc tccgttacccg tcccgacggc	30960
gacgacccga ccggccggggcc cggtcacccgg gtgtctggg cggccacgt cgtcgccgt	31020
tggctcgacg acgacccgggt gcccggccacc accctgggtt gggccacgtc cgcagggggtc	31080
gaggtctccc ccggggacga cgtggccgc cccggggccg cggccgtgt ggggggtgt	31140
cgctcgccccc aggcggagtc cccggacccg ttcgtgtccg tcgacggcga cccggagacg	31200
ccccggcgcc tgccggacaa tccgcagtc gccgtccgtt acgggtcggt gttcggtccca	31260
cggtgtacgc cgctcgccgg tcccggtccg gccgtcgccg accggggcgta ccggctgggt	31320
cccgcaacgc gccgtcccat cgaggcgttgc gcttgcggcc cgttcccgaa cgccgaccgg	31380
ccctggcgcg cggaggaggt acgcgtcgcc gttccgcgcaca ccggcgtaa ttccgtgtac	31440
gtctgtcgcc cgctcgccat gtacccggaa ccggccgaga tgggcaccga gggtccgggt	31500
gtgtgtacccg aggtcggttccgg ggggtgtcccg cggttccacc ccggccaggc ggtgacgggc	31560
ctgttccagg gggccttccgg gccgggtggcc gtcggccgacc accgggtctt caccgggtt	31620
cccgacgggt ggcgggggggt ggacccgcga gccgttaccca tcgcgttac caccggccac	31680
tacgcgtgc acgacccgttccgg cgggttgcag gccggggcgtt ccgtgtgtt ccacggccgc	31740
gcccgggggg tggggatggc tgccgtcgcc ttggcccgcc ggccggggcc ggagggtttc	31800
gccacggcca gcccggccaa acaccggcgt ctggccggcc tggccgttca cgacgaccac	31860
atcgctctgtt cccggggagag cgggttccggt gagggttccg cccgcgttac cgggggggg	31920
gggtgtacgc tgggtcttggaa ctgcgttacc ggcgacccgtc tcgacggatc cgccgggtgt	31980
ctcgccgacg gccgggttccggt cggtcgatgt ggcaagaccg acctcgccgc ggccggagcag	32040
ttccggggcc ggtacgttccggt ttccgttccggt gccggggccg gtcccgatcg gtcggccgag	32100
atccgtggagg aggtcggtccg tctgtggcc gccgggttccgg tgcaccgtt gccgggtgtc	32160
gtgtggagt tgcggccgc cccggccgcgtt ctcacccaca tgagccggg ccgacacgtt	32220
ggcaagctcg ttcttacccca gccccccccccgtt gtcacccccc acggaaacggt gtcgttacc	32280
ggccggaccc gcaaccctggg gccgggtggc gcccggccacc ttggtgcaccgg gacggcgta	32340
ccccacccccc ttggtggccag ccggccgggtt cccggccggcc cggccggccgc cgagctcgcc	32400
ggccacgtcg aaggccctgg cgcgaccatc gagatcgccg cctgcgtac ccggccaccgg	32460
gaggcgctcg cggcgctgtt cgcactcgatc cccggccggacc gtccgtgtac cgggggtgggt	32520
cacaccggcg gggtcttggc cgacgggttccg tgcacccatca tcgacggac ccgcaccggat	32580
caggctctgc gggccaaagggt cgacggccgt tggcaccttc acgacccgtac ccggggacccg	32640
gacctgatct tcttcgttccg gtttcgttccg gccgggttccgg tgctggccgg tcccgccgt	32700
ggcggttacg cggcgccaa cggggccctgg aacggccctgg ccggccaaacg gcggggccctc	32760
ggactgcccgg cgaaggcgct cgggtggggc ctgtggccgc acggccacgc gatgaccaggc	32820
ggctcggttgc accggatcgcc cccgttccggg gtcggccgcgc tgccgaccga gcggggcgctg	32880
gcctgttccg acgcggcttccg gccgtacccgg gtcggccgcgc tgccgaccga gtcgtgtcc	32940
aggtcggccgc tgcggccggc cgagtacgttcccg gccgggggttccgg tgcgtgtcc	33000-
acggccacggg ccggccaaacag ggccgagacc ccggggccggg gctgtgtccgac ccgttccgtc	33060

ggtcaccccg agaccgatca ggtggccgcg ctggccgagc tggccgctc gcacgcggcg	33120
gcccgcggc gctacgactc ggccgaccag ctgcccgaac gcaaggcggtt caaggacctc	33180
gggttcgact cgctggccgc ggtggagctg cgcacccggc tcggcgctac caccggcgta	33240
cggctgcccc gcaacgttgtt gttcgaccac cgcacccggc tggcggtggc cgaacacctg	33300
cggctcgagt tgttcgccga ctccgcggc gacgtcgggg tcggtgccgc cctcgacgac	33360
ctggaaacggg cgctcgacgc cctgcccgc ggcagggac acgcccacgt cggggccgc	33420
ctggaggcgc tgctgcggc gtggcagac cgcacgaccc cggagaccga gccagtgacg	33480
atcagtgacg acgcccagtga cgacgactg ttctcgatgc tcgacaggcg tctcgccggg	33540
ggagggggacg tctaggtgac aggtcgattc cgcggccggg cagtgaccg taccggccctg	33600
acaggtccac cgggttcgcg tcgcctccca caccgcacgg ccggggatc cacggaaggg	33660
atccgatgag cgagagcgc ggcatgaccg agaccgcct ccggcgctat ctcaagcgca	33720
ccgctcgccga actcgactcg gtgacaggtc ggctcgacga ggtcgagatc cggcccgccg	33780
aaccgatcgc cgtcgtcgcc atggcctgcc gttccccggg gggtgtggac tcgcccggagg	33840
cgttctggga gttcatccgc gacgggtggg acgcgtacgc cgaggcgccc acggaccgtg	33900
gctggccgccc ggcacccgcg cccgcctcg gtggctctct cgccggagccg ggcgcgttgc	33960
acgcccgcctt ctteggcata tcaccccgcc aggcgtcgac gacggacccc cagcagcgcc	34020
ttagtctggga gatctcttgg gaggcggtgg acgcgtcgccc ttctcgaccc tcgacgctgc	34080
gccccggcgc cgggtggcgtt ttacccgggt tcgggtggg ggactacgga cccaggccgg	34140
acgaggcacc cgaggagggtt ctgggtaccc tcggcatcgg caccgcgtcc aegtcgcct	34200
ccggacgggtt ggcgtacacc ctgggggttgg agggtcgcg cgtcaccgtc gacaccgcct	34260
gtctctccgg gtcacccgcg gtgcacctgg cgatggactc gtcgcggcgc gacgactgca	34320
ccctggctt cggcggtggg gtcacccgtga tgacgaccc gggtgccgtt accgagttcc	34380
gcagccaggg cgggttggcc gaggacggcc gtcgaaacc gttctccgc gcccggacg	34440
gtttcgggtt cggcgagggg gccgggggtcc tgggtctcca acggctgtcc gtcggccggg	34500
ccgaggggccg gccgggtctg gccgtactgc ttggctcgcc gatcaaccag gacggtgcca	34560
gcaacgggct caccgcgcgc agcgcccccc cccagcgccg ggtgatcagg caggcggtgg	34620
agcggggcgc gtcgctccc gtcgacgtgg actacgtga ggcccacggc accggcaccc	34680
ggctggcgca tccgatcgag ggcacgcgc tgcgtcgacac gtacgggtcc gaccgggaac	34740
ccggccgccc gtcctgggtc ggatccgtga agtccaacat cggtcacacc caggcgccgg	34800
ccgggggtggc cgggggtgatg aagaccgtgc ttggctcgcc gcatcgggag atccggcga	34860
cgttgcactt cgacgagccc tcgcccgcacg tcgactggg acgggggtgcg gtgtcggtgg	34920
tgtccgagac cggccctgg ccgggtgggg agcgcggcgc cggggggggg gtgtctctgt	34980
tcggcatcgag cgccaccaac ggcacgtca tcgctcgagga ggcgcggagc cccggaggccg	35040
ccgacactcgaa cccgacccccc ggeccggcaa cccgagcgac ccccgaaacg gatccggccc	35100
ccaccggcga gccgggtgcg gaggcggtcg cactgggttt ctccgcgcg gacgagcgcc	35160
ccctgcgcgc ccaggcgccc cggctcgccg accgtctcac cgacgacccg gccccctcg	35220
tgcgcgacac cgccttcacc ctggtcaccc gccgtgccac ctgggagcat cggcggtcg	35280
tcgtcgccgg gggcgaggag gtcctcgccg gctccggcgc cgtcgcggg ggacgtcccg	35340
tcgacggcgc gtcagcgccc cgggcgcgcg ccggccgcg ggtgggtctg gtctccccc	35400
ggcaggggcgc acagtggcag ggcatggccc ggacactgtc cgccgactcg ccgacettcg	35460
cggagtccat cgacgcctgc gagcgggcgc tcgccccgca cgtggactgg tcgtcgccgc	35520
agggtctcgaa cggcgagcag tcgttggacc ccgtcgacgt ggtcagccg gtgtgttgc	35580
cgggtatggt gtcgttggc cgggttggc agtcgtacgg ggtgactccg ggtggcggtgg	35640
tgggtcactc gcaaggggggat atcgcgcgcg cgcacgtggc tgggtcgctt tcgttggcc	35700
acggccgcag ggtgttggcg ttgcgcagcc ggggtcgcc cctgtctcggt ggtcacggcg	35760
ggatggcgtc ttccgggttc caccggacc agggccgcga gggatcgccg cgttccggg	35820
gtgcgtgac ttgcgtctcg gtcacccggc cccgttccgtt ggtgtggcc ggggagaacg	35880
ccccgttggc cgagctgtac ggcgactgcg aggccgaggc cgtgaccgc cgtcgatcc	35940
ccgtcgacta cgcctcacac tcccccgagg tggatcgact gctgtcgccg ctgtcgccg	36000
cactggccgg ggtccgtccg gtgtcgccg ggtatcccccgt gtaactcgacc ctgaccggc	36060
aggctatcgaa aacggcgacg atggacgtccg actactggtt cgcacaacc cgggagccgg	36120
tgcgttcca ggacgcccacc aggcacgtcg ccgaggccgg gttcgacgccc ttctcgagg	36180
tcagcccgca cccgggtttt acagtcgttg tcgaggccac cctcgaggca gtgtcgcccc	36240
ccgacgcggaa tccgtgtgtc acaggacccc tgcgcgcgcg acggccgggt ctgcgcgact	36300
tccacaccgc gtcgcgcgag gtcgtacaccc ggggggtggc ggtcgactgg cgtaaccgc	36360
tgggtgaggg acggcccggtc gacgtccgg tctacccgtt ccaacgacag aacttctggc	36420
tcccggtccc cctggccggg gtcccccaca ccggcgacga gtggcggttac cagtcgcct	36480
ggcaccccggt cgacctcggtt cggctctccc tgccggacg ggtcttgggt gtgaccggag	36540
cggcagtacc cccggcctgg acggacgtgg tccgcgcacgg cctggaaacag cgcggccgca	36600
ccgtcggtt gtgcacccgcg cagtcgcgcg cccggatcg ggcgcactc gacggccgtcg	36660
acggcaccgc cctgtccact gtggtctctc tgctcgccgt cgcggaggc ggtgtcg	36720

acgacccccag	cctggacacc	ctcgcggtgg	tccaggcgct	cggcgcagcc	gggatcgacg	36780
tccccctgtg	gctggtacc	agggacgccc	ccgcgtgac	cgtggagac	gacgtcgatc	36840
cggcccaggc	catggtcggt	gggctcgcc	gggtggtggg	cgtggagtcc	cccgccccgt	36900
ggggtggcct	ggtggacctg	cgcgaggccc	acgcccactc	ggcccgtcg	ctggccgcca	36960
tactggccga	cccgcgcggc	gaggagcagt	tgcgatccg	gcccgcggc	gtcaccgtcg	37020
cccgctcggt	cccgccaccc	gcccgcggg	cggttacccg	gtggacccg	cgcgggaccg	37080
tcctggtcac	cggccgcacc	ggcggtatcg	gcgcgcaccc	ggcccgtgg	ctcgccgggt	37140
cgggcgcggc	gcacctggt	ctgctcaaca	gcccgggagc	ggaggccggc	ggtggccggc	37200
acctgcgtga	cgaactggc	gcgctcgga	cgggagtcac	catcacggc	tgcgacgtcg	37260
ccgaccgcga	ccgggtggcg	gccgtccctg	acgcccaccc	ggcgcaggga	cgggtggta	37320
cggcggttt	ccacgcgcgc	gggatctccc	ggtccacagc	ggtacaggag	ctgaccgaga	37380
gcgagttcac	cgagatcacc	gacgcgaagg	tgcggggatc	ggcgaacctg	gccaactct	37440
gtcccagct	ggacgcgcctc	gtgcttttct	cctcgaacgc	ggcggtgtgg	ggcagccccg	37500
ggctggccctc	ctacgcggcg	ggcaacgcct	tcctcgacgc	tttcgcctgt	cgtggtcggc	37560
gcagtgggt	gcccgtacc	tcgatcgct	gggtctgtgt	ggccgggcag	aacatggccg	37620
gtaccgaggg	cggcgactac	ctgcgcagcc	aggggctcgcc	cgcctatggc	ccgcagcggg	37680
cgatcgagga	gctcgccgacc	accctggacg	ccggggaccgc	gtgggtgtcg	gtggtgacc	37740
tggaccggg	gccccgtcg	gaactgttca	ccggccggcc	ccggcgcccc	cttcgtacgc	37800
aactcggtgg	ggtccgcgccc	ggggccgagg	agaccggatc	ggaatcgat	ctcgccggcc	37860
ggctggcgctc	gatgcccgg	ggccaaacgtc	acgagatcgat	cgcggcgctg	gtccgagccg	37920
agttggcagc	ggtgctgggc	cacggcacgc	cgacgggtat	cgagcgatc	gtgccttcc	37980
gtgacctggg	attcgactcc	atgaccgcgc	tcgacctcg	gaaaccggctc	cgccgggtga	38040
ccggggtccg	ggtggccacg	accatcgct	tcgaccaccc	gacagtggac	cgccctcaccg	38100
cgcactaccc	ggaacgactc	gtcggtgagc	cgaggcgac	gacccggct	cgccgggtcg	38160
tcccgcaggc	accgggggag	gcccgcgcgc	cgatcgcgat	cgtcggtat	gcctgcccgc	38220
tcggccgtgg	agtgcgtacc	cccgaccagg	tgtggactt	catcgccgc	gacggcgacg	38280
cggtcaccga	gatgcccgtc	gaccggctct	gggacctcg	cgcgctgttc	gaccggacc	38340
ccgagcggca	cgccacccgc	tactcccgcc	acggcgccgt	cctggacggg	cgccggccact	38400
tcgacgcggc	gttcttcggg	atctcgccgc	gtgaggcggt	ggcgatggat	ccgcagcagc	38460
ggcaggctct	ggagacgacg	tggagctgt	tcgagaacgc	cggcatcgac	ccgcactcc	38520
tgcgcgttac	ggacaccgg	gtcttcctcg	gctgctcgta	ccagggtac	ggccagaacg	38580
cgcagggtcc	gaaggagagt	gagggttacc	tgctcaccgg	tggttctcg	cggttcgcct	38640
ccggteggat	cgcgtacgt	ttgggggtgg	agggggccggc	gatcactgt	gacacggcg	38700
gttcgtcg	gtttgtggcg	ttgcacgtgg	ccggccgggtc	gctgcgatcg	ggtgactgt	38760
ggctcgccgt	ggcgggtgg	gtgtcggtga	tggccggtcc	ggaggtgttc	accgagttct	38820
ccaggcagggg	cgcgctggcc	cccgacggc	ggtgcgaaagcc	cttctccgac	caggccgacg	38880
ggttcggtt	cgcccgaggc	gtcgctgtgg	tgctccctgca	gcccgtgtcg	gtggcggtgc	38940
gggaggggcg	tcgggtgttg	ggtgtgtggg	tgggttcggc	ggtgaatcag	gatggggcga	39000
gtaatgggtt	ggcggcgccg	tcgggggtgg	cgcagcagcg	ggtgatcg	cgccgcgtgg	39060
gtcggtcg	tgtgtcggtt	ggggatgtgg	gtgtgggtgg	ggcgcattgg	acggggacgc	39120
ggttggggat	tccgggtggag	ttggggggct	tgttggggac	gtatgggtg	ggtcgggggt	39180
gggtgggtcc	ggtgtgtgtt	ggttcggtga	aggcgaatgt	gggtcatgt	caggccgggg	39240
cgggtgtgtt	gggtgtgtatc	aagggtgtgt	tgggggtgg	tgggggttg	gtgggtccga	39300
tgggtgtcg	gggtgggttg	tcgggggtgg	tggattggtc	gtcggtggg	ttgggtgtgg	39360
cggatggggat	gggggggtgg	ccgggtgggt	tggatggggat	cggtcgccgg	gggggtgtcg	39420
cgtttgggtt	gtcgggggacg	aatgtcatg	tgggtgtggc	ggaggccggc	gggtcggtgg	39480
tggggccgg	acggccgggt	gagggtcg	cgccgggggt	ggtgggggtg	gtcggtgtgg	39540
tggtgcgggt	ggtgctgtcg	gcaaaagaccg	aaaccgcct	gaccgagctc	gcccgcacgc	39600
tgcacgcgc	cgtcgacgac	accgtcgccc	tcccgccgg	ggccgcacc	ctcgccaccg	39660
gacgcgcggc	cctgcctac	cgggccgccc	tgctggcccg	cgaccacgc	gaactgcgcg	39720
acaggctcg	ggcggttacc	actgggtcg	cggtccccc	tgtgggtcg	gggggtggcg	39780
cgggtgtgg	tgtgggttt	gttttcctg	gtcagggtgg	tcagtgggt	gggatggcgc	39840
gggggtgtt	gtcggttccg	gtgtttgtgg	agtcggtgtt	ggagtgtat	cggtgggtgt	39900
cgtcggtgtt	gggggtttcg	gtgtgggggg	tgttggaggg	tcgggtccgt	gcccgcgtcg	39960
tggatcggtt	ggatgtgttg	cagccgtgt	tgttcgtgtt	gatgggtcg	ttggcgccgt	40020
tgtggcggt	gtgtgggggtt	gtgcgtcg	cggtgggtgg	tcattcgac	ggggagatcg	40080
cggcgccgg	ggtggcgccgg	gtgtgtcg	tgggtgtatgg	tgccgggtg	gtggcggtgc	40140
gggcgcgggc	gttgcggggc	ttggccggcc	acggccggat	ggtctccctc	gcccgtctcc	40200
ccgaacgcgc	ccggggagctg	atcgaccct	gttccgaccgc	gatctcggt	cgccgggtca	40260
actccccgac	ctcggtgttg	gtctcggttg	acccacaggc	cctcgccccc	ctcgccggcc	40320
actcgccgcg	gaccgggtgag	cgggccaaga	cgctgcctgt	ggactacgc	tcccactccg	40380

ccccacgtcga acagatccgc gacacgatcc tcaccgacct ggccgacgtc acggcgcc	40440
gaccggacgt cgccctctac tccacgtgc acggcgccc gggcgccggc acgacatgg	40500
acgcccggta ctggtacgac aacctcgct caccgggtcg cttcgacgag gccgtcgagg	40560
ccgcccgtcgc cgacggctac cgggtcttcg tcgagatgag cccacacccg gtctcaccc	40620
ccggcgtgca ggagatcgac gacgagacgg tgccatcgg ctgcgtgcac cggacacccg	40680
gcgagcggca cttggtcggc gaactcgccc gggccacgt gcacggcgta ccagtggact	40740
ggcggggcat cttccccggc acccaccggg ttccctgco gaactacccg ttcgaggcga	40800
cccggtactg gtcgccccg acggcgccg accaggtcgc cgaccacccg taccgcgtcg	40860
actggcgcc cttggccacc accccgggg agctgtccgg cagctacccg gtctcggcg	40920
acgccccgga gaccctcgcc cacagcgctg agaaggccgg cgggctccctc gtcccgggtgg	40980
ccgctcccgaa cggggagtcc ctgcgggtcg ccctggacga ggccggccggc cgactcgccg	41040
gtgtgtctc cttcgccggc gacaccgca cccacctggc cccgcacccg ctctcgccg	41100
aggccgacgt cgaggccccca ctctgctgg tcaccagcg gggcggtcgca ctgcacgacc	41160
acgacccgat cgactcgac cagggaatgg ttgggggat cggacgggtg atgggtctgg	41220
agaccccgca cgggtggggc ggccctgttg acgtgaccgt cgaacccacc gcccggggac	41280
gggtgttctt cggccggccct ctggccggc accggacacga ggaccagggt ggcgtcgccg	41340
acggatccg ccacggccgaa cggctgtcc gcccggccgt gaccacccga aacccagggt	41400
ggacacccggc gggcacggcc ctgcgtacgg ggggtacggg tggccctggc ggccacgtcg	41460
cgcgttaccc ggggggttcc ggggtacccg atctcgctt gtcagcagg agccggccccc	41520
acgcacccgg tggccggaaa ctggccggc aactggccga ctcggggggc gagccgagag	41580
tcgaggcggtc cgacgttacc accggggccac gcttgcgcgc cttgggtcgag gactacggg	41640
aacaggaccg gccgggtccgg atcgctgtcc acaccgcagg ggtggccggac tccgtcccc	41700
tcgaccggat cgacgaactg gagtcggta gcgcgcgaa ggtgaccggg ggcggctgc	41760
tcgacggact ctgcccggac gcccacaccc tgcgtctgtt ctccctcggg gggggagtgt	41820
gggttagcgc gAACCTGGGc gctgtacggg cagccaacgc ctacctggac gcccggccc	41880
accggccggc ccaggccggc cggggccgca ctcgggtcgc ctggggggcg tggccggcg	41940
acggcatggc caccggcgac ctgcacgggc tgaccggcg cggctcgcc gcatggcac	42000
cgaccgggc gtcgcgcgc tgacccaggc gttggaccac ccacgacacc tttgtgtcg	42060
tagccgacgt cgactgggac cgttcggcc tgggttccac cggccggccgg cccagacccc	42120
tgatcgacga actcgatcc accggccggg tgccggccccc caccgctcg gggggccccc	42180
tccggcgat gaccggccgac cagctactcc agttcacgcg ctgcacgtg gcccgcattcc	42240
tcggtcacca gggggccggc gctgtccggg tgaccaggc cttcaccggag ctgggttccg	42300
actcgctcac cggccgtggc ctgcgcacacc agtccagca gcccacccgg cggacgcgtc	42360
ccggcccccgt ggtttccag caccggccgg taacgcagact cggccaccac ctgcgcgac	42420
agctcgacgt cggccacccggc cgggtcgagg cggccggcag cgtcctcg gacggctacc	42480
ggcggggccgg gcaacccggc gacgtccggg cgtacctggc cttgtcgcc aacctgtcg	42540
agttccggga ggggttccacc gacggccgca gcttgggggg acagctggaa ctgtcgacc	42600
tggccgacgg atccggccccc gtcactgtga tctgttgcgc gggactcg ggcgtctccg	42660
ggccgcacga ttgcgtccgg cgtcgccggg caccgtggc gtcgcggccc	42720
tcgcgcaccc cgggtacgg ggggtgaac cgggtccggc gtcgtggag gcaatgtctcg	42780
gggtgcaggc gacggccggc ctgcggccac agggcgacac gcccgtcg gtcgtccggac	42840
actcgccggg gggccctgtat gctgtacccg tggccggcc gtcggccac cggggccacc	42900
cggccacgtgg ctgcgtgtcc ctgcacgtgt accccacccgg tcaccaggag ggggtcgac	42960
cctggctgg cggatgtacc gcccctgt tcgaccacga gaccgtacgg atggacgaca	43020
cccggctcac gggccctggg gctgtacgaca ggtgtccggg cagggtggcgt cggaggggaca	43080
ccggctcgcc acgtgtggt gtcggccca gcgagccgat gggggagggt cggacgac	43140
gttggcagtc acgtggccg ttcggccacg acagggtcac ggtggccggg gaccacttc	43200
cgtatgtca gggggccggc gacgcgtacg cggccacat cggccctgg ttgagccggg	43260
agagggcatg aacacgaccg atcgcccgat gcttggccga cgtactccaga tgatccgggg	43320
actgtactgg gtttacggca gcaacggaga cccgtacccg atgtgttgc gcccgcacga	43380
cgacgaccccg caccgttgtt accggggccg gggccggatcc ggggtccggc gcaacccgtac	43440
cgagacgtgg gtgggtaccc accacggccac cggccgtccgg gtcgtcgacg accccaccc	43500
caccggggcc accggccggc cggccggatg gatggggcc gggggccccc cggccctcgac	43560
ctggccgcag cggccgttgt acgtgcacgc cggccgtccgg gacggccac tggccgaccc	43620
gcaggagggt gaggaccggc tgacgggtct cttgcgtccgg cggggggacc gcttggaccc	43680
ggtccggcgc acgtgggtcc gcatgggtcc ggggggggtc ggcggggacg accccacgt	43740
gctgcgcgc gctgtggggacg cccgggtcg cttcgacgc cagtcaccc cggacccccc	43800
ggcgggtgacc gaggccggca tggccgggtt gcccggggac cggccacccgg gggcgctgtt	43860
caccggccgc gagatgacag ccaccgtt cgtcgacgcg gtgtggccgg tgaccggccac	43920
ggcggggccg gcccacgtcc tcggccacga ccccgacgtc gcccggccgc tcgtcgccga	43980
ggtgcgtcgcc ctgcacccgaa cggccacccgtt accggccggca cggagacgggt	44040

ggtgtggcgag cacacggtcg cggcgggcga cgaggtcg tcgtgggtcg ccggccgcaa	44100
ccgtgacgcg ggggtttcg cggaccggga ccgcctcgac ccggaccggg ccgacgcccga	44160
ccggggccctg tccgcccagc ggggtcaccc cggccgggtt gaggagctgg tgggtggct	44220
gaccaccgaa gcaactgcgc ggcgtcccaa ggcgtgccc ggtctcaccc cgggtggccc	44280
ggtcgtcagg cgacgtcggtt caccggtcct gcgagccacc gcccactgcc cggtcgaact	44340
ctgagggtgcc tgcgatgcgc gtcgtttct cttccatggc cagcaagagc cacctgttcg	44400
gtctcggttcc cttcgcttg gccttcccg gggccgggcca cgaggtacgg gtcgtcgct	44460
caccggctt caccgacgc atcacggcg cggactgtac ggcgttaccg gtcggcaccg	44520
acgtcgacct tgcgtactt atgaccacg cgggttacga catcatcgac tacgtccgca	44580
gcctggactt cagcgagcg gaccggcca cttccaccc ggaccaccc ctcggcatgc	44640
agaccgtctt caccggacc ttctacccc ttagtggaccc ggactcgctg gtcgaggggca	44700
ttagtccctt ctgtcggtc tggcgaccccg actggtcgtc tggaccgcag accttcgccc	44760
cgtcgatcgcc ggcgtacgggtt accggcggtt cccacggccc actctgtgg ggaccggaca	44820
tcacggtacg ggccggcga aagtcttcg ggctgtcgcc cggacagccc gccggccacc	44880
gggaggaccc ctcggccgag tggctcaccc ggtctgtgg gagggttccgc ggcgggggtgc	44940
cgcaggacgt cgaggagctg gtggcgccg agtggacgat cggacccccc cccgtcgggga	45000
tgcgcctcgaa caccggctgtt aggacgggtt gatgcgtcta cgtcgtactt aacggccccgt	45060
cggtgtgtcc ggactggctt caccgacgac cggaccggcc acgggttctgc ctcaccctgg	45120
gcatctcccg cccggagaac agcatcgcc aggtcttcgt cgacgaccc ttgggtgcgc	45180
tcgggtacgt cgacgcccgg atcatcgca cgtggacgat gcacgaccc tcgtgtccgc	45240
cccacgttcc ggcacacatc cgtacggtc ggttcgtccc gatgcacca ctgtgtccga	45300
cctgcggggc gacggtgac caccggcgcc cggcagctg cgcacccccc gccatccacg	45360
gcgtgcccga ggtgttcctt cccgacggctt gggacaccgg ggccgcgc cagcggaccg	45420
aggaccaggg ggccggcattt gccctgggg tgcccgagct gaccccgatc cagtcggcg	45480
aggcgggtcg gccgggttccgtt gacgatcccg ctttcaccggc cgggtcgccg cggatgcggg	45540
ccgacatgtt cggcgagccg tcccccccg aggtcgtcga cgtctgtcg ggggtggcg	45600
gggaacggac cggcgccgg tgagcaccga cggccacccac gtccggctcg gccgggtgcgc	45660
cctgtgacc agccggctt ggtgggtac ggcagccctc gccggccagg acgacgcccga	45720
cgcaatcgcc ctgtcgacc acggccgtt cccggggcgta aactgcctcg acaccgcccga	45780
cgacgactt cgcgtcgacca gtggccaggt cggcggaggag tgggtcgcc ggtgggttgc	45840
cggggacacc ggtcgccggg aggagaccgt cctgtcggtg acgggtgggt tcccacccgg	45900
cgggcagggtc ggccggggggcgc gctctccgc cggcagatc atgccttctt gtgggggttc	45960
cctggggcggt ctgggtgtcg accacgtcgat cgtcttccat ctggcccccgg tggaccgggt	46020
ggagccgtgg gacgagggtt ggcaggccgtt ggacggccctc gtggccggcc gaaagggtctg	46080
ttacgtcggtt tcgtcggttcc tccccggatg gcacatcgcc gccgcccagg agcaacggcg	46140
ccggcgatcac cgcctcgccg tgggttccca caagtgtcgat tgcacccatc cgtcgccca	46200
tccccaaactg gagggtctcg cccggcgccg ggcgtacggg ctcgggttct tcgcaggccc	46260
gaccggccctc ggccgtctcg tggcgccgaa cggccggggc gccgcagccg cacggcgcc	46320
gggacagccg acggcactgc gtcggcggtt ggaggcgatc gagggttctt gcagagaccc	46380
cgccgagcac cccggccgagg tcgcacttgcg gtgggtgtcg tccggcccg gtgtggcg	46440
ggccgtcgcc ggtcgccgaa cggccggacg gtcgactcc ggcgtcccg cctggccggt	46500
cgccctcgcc ggcacggaaatc tcaaccggcc ggcggggatc tccccgggg tcgcggcage	46560
agggggggcc cccggaggcggtt ggtacgggtt agagccggcc cttggatcg gggaaacccgt	46620
gtcggtcggtt cgggacggcc gccgcgttcc cggcccccggt caggcggtgg ggttggacccg	46680
cacgagggtcc ggcgcaccacg actcgccac cttcccccggatc tggtcggcg ggtagaagtgc	46740
cccgcccccggg aagggtccggg tacggccggg gactaccggatc tgcggcagcc agegttggc	46800
gttcctccacc gtgtcaacg ggtcggttc acggcaggagg tgggtatgc cggcccgccag	46860
cggccggcccg gcctgcccagg cgtaggacgc cggcccccgg tggtcggccc gcacgaccgg	46920
cacgcacatcg tccaacagcc cttgggtcgcc caatcgccgc tgcgtcgatcc cggccctcg	46980
catetgtcg acgatgtccgt cttcggtcggtt caggcggtt cggccgtcgat ggaccgggggg	47040
ggccgtcgcc cccggagacga acaaccggcc cggcggccacc cccggacagag cctccaggcg	47100
acggggcggtc tcgttagggcgat ccaggccggcc catgtgtga cggaaacagg cgaacggaaac	47160
ctcgccgacg aggtcgccga gcacggccgc gacccgtcgatc ggcgtatcc cggccgttgc	47220
gagagcccgcc tcgtcacgtc ggtcttcccg gccgggttac tgcaccggcc acacgtcgac	47280
ctccggggcc agtgcggggg cggagggtcgat tgcgtggatc gggccgttgc cccgttgcgg	47340
gaagcgtac agccggggcc ggtgtccgtt ggccggacccgg aaccggccca accagggttt	47400
catcggtgtc tcatccgttc ggtcgccaccg gcaagggttgc gatgcgtcgcc agcaggagcg	47460
accggcccca gacaacctcg tcggaggggaa agcccagcgat cgtttccggg aaggcggtcgaa	47520
acaggggcccc caggggcgacc tctccctcca gttggcccg cggccggccc atgcgtatgt	47580
ggatgccgtt cccgaagggtt aggtgtccctt ggtgtccctt ggtgacgtcg aaccgggtcg	47640
gtcggtggaa ctgtcccggtt cggccgggtt cggcccccgtt ggcgtatcagg acgggtcgat	47700

acgccggat cgtcacccttccca cctcgccggt ggcgaaccgg gtggtgtct	47760
ccggtagggc ctggtagcgc aggatctctt ccaccgtcc gggcagcagt gccgggtct	47820
tccggaccag cgcgagctgg tcgggggtggg tcagcagcag taggtggcc atccccatga	47880
ggctcaccga cgcctcgaat cccgcccagca gcagcaccag cgcatggag gtgagttcgt	47940
cgcggcttag cgggtcgcccg tcgtcgtctt gagcccgat	47981

<210> 2

<211> 48

<212> PRT

<213> Micromonospora megalomicea

<400> 2

Met Gly Asp Arg Val Asn Gly His Ala Thr Pro Glu Ser Thr Gln Ser	
1 5 10 15	
Ala Ile Arg Phe Leu Thr Arg His Gly Gly Pro Pro Thr Ala Thr Asp	
20 25 30	
Asp Val His Asp Trp Leu Ala His Arg Ala Ala Glu His Arg Leu Glu	
35 40 45	

<210> 3

<211> 377

<212> PRT

<213> Micromonospora megalomicea

<400> 3

Met Ala Val Gly Asp Arg Arg Arg Leu Gly Arg Glu Leu Gln Met Ala	
1 5 10 15	
Arg Gly Leu Tyr Trp Gly Phe Gly Ala Asn Gly Asp Leu Tyr Ser Met	
20 25 30	
Leu Leu Ser Gly Arg Asp Asp Asp Pro Trp Thr Trp Tyr Glu Arg Leu	
35 40 45	
Arg Ala Ala Gly Arg Gly Pro Tyr Ala Ser Arg Ala Gly Thr Trp Val	
50 55 60	
Val Gly Asp His Arg Thr Ala Ala Glu Val Leu Ala Asp Pro Gly Phe	
65 70 75 80	
Thr His Gly Pro Pro Asp Ala Ala Arg Trp Met Gln Val Ala His Cys	
85 90 95	
Pro Ala Ala Ser Trp Ala Gly Pro Phe Arg Glu Phe Tyr Ala Arg Thr	
100 105 110	
Glu Asp Ala Ala Ser Val Thr Val Asp Ala Asp Trp Leu Gln Gln Arg	
115 120 125	
Cys Ala Arg Leu Val Thr Glu Leu Gly Ser Arg Phe Asp Leu Val Asn	
130 135 140	
Asp Phe Ala Arg Glu Val Pro Val Leu Ala Leu Gly Thr Ala Pro Ala	
145 150 155 160	
Leu Lys Gly Val Asp Pro Asp Arg Leu Arg Ser Trp Thr Ser Ala Thr	
165 170 175	
Arg Val Cys Leu Asp Ala Gln Val Ser Pro Gln Gln Leu Ala Val Thr	
180 185 190	
Glu Gln Ala Leu Thr Ala Leu Asp Glu Ile Asp Ala Val Thr Gly Gly	
195 200 205	
Arg Asp Ala Ala Val Leu Val Gly Val Val Ala Glu Leu Ala Ala Asn	
210 215 220	
Thr Val Gly Asn Ala Val Leu Ala Val Thr Glu Leu Pro Glu Leu Ala	
225 230 235 240	
Ala Arg Leu Ala Asp Asp Pro Glu Thr Ala Thr Arg Val Val Thr Glu	
245 250 255	
Val Ser Arg Thr Ser Pro Gly Val His Leu Glu Arg Arg Thr Ala Ala	
260 265 270	
Ser Asp Arg Arg Val Gly Gly Val Asp Val Pro Thr Gly Gly Glu Val	
275 280 285	

Thr Val Val Val Ala Ala Ala Asn Arg Asp Pro Glu Val Phe Thr Asp
 290 295 300
 Pro Asp Arg Phe Asp Val Asp Arg Gly Gly Asp Ala Glu Ile Leu Ser
 305 310 315 320
 Ser Arg Pro Gly Ser Pro Arg Thr Asp Leu Asp Ala Leu Val Ala Thr
 325 330 335
 Leu Ala Thr Ala Ala Leu Arg Ala Ala Pro Val Leu Pro Arg Leu
 340 345 350
 Ser Arg Ser Gly Pro Val Ile Arg Arg Arg Arg Ser Pro Val Ala Arg
 355 360 365
 Gly Leu Ser Arg Cys Pro Val Glu Leu
 370 375

<210> 4

<211> 436

<212> PRT

<213> Micromonospora megalomicea

<400> 4

Met Arg Val Val Phe Ser Ser Met Ala Val Asn Ser His Leu Phe Gly
 1 5 10 15
 Leu Val Pro Leu Ala Ser Ala Phe Gln Ala Ala Gly His Glu Val Arg
 20 25 30
 Val Val Ala Ser Pro Ala Leu Thr Asp Asp Val Thr Gly Ala Gly Leu
 35 40 45
 Thr Ala Val Pro Val Gly Asp Asp Val Glu Leu Val Glu Trp His Ala
 50 55 60
 His Ala Gly Gln Asp Ile Val Glu Tyr Met Arg Thr Leu Asp Trp Val
 65 70 75 80
 Asp Gln Ser His Thr Thr Met Ser Trp Asp Asp Leu Leu Gly Met Gln
 85 90 95
 Thr Thr Phe Thr Pro Thr Phe Phe Ala Leu Met Ser Pro Asp Ser Leu
 100 105 110
 Ile Asp Gly Met Val Glu Phe Cys Arg Ser Trp Arg Pro Asp Trp Ile
 115 120 125
 Val Trp Glu Pro Leu Thr Phe Ala Ala Pro Ile Ala Ala Arg Val Thr
 130 135 140
 Gly Thr Pro His Ala Arg Met Leu Trp Gly Pro Asp Val Ala Thr Arg
 145 150 155 160
 Ala Arg Gln Ser Phe Leu Arg Leu Leu Ala His Gln Glu Val Glu His
 165 170 175
 Arg Glu Asp Pro Leu Ala Glu Trp Phe Asp Trp Thr Leu Arg Arg Phe
 180 185 190
 Gly Asp Asp Pro His Leu Ser Phe Asp Glu Glu Leu Val Leu Gly Gln
 195 200 205
 Trp Thr Val Asp Pro Ile Pro Glu Pro Leu Arg Ile Asp Thr Gly Val
 210 215 220
 Arg Thr Val Gly Met Arg Tyr Val Pro Tyr Asn Gly Pro Ser Val Val
 225 230 235 240
 Pro Ala Trp Leu Leu Arg Glu Pro Glu Arg Arg Arg Val Cys Leu Thr
 245 250 255
 Leu Gly Gly Ser Ser Arg Glu His Gly Ile Gly Gln Val Ser Ile Gly
 260 265 270
 Glu Met Leu Asp Ala Ile Ala Asp Ile Asp Ala Glu Phe Val Ala Thr
 275 280 285
 Phe Asp Asp Gln Gln Leu Val Gly Val Gly Ser Val Pro Ala Asn Val
 290 295 300
 Arg Thr Ala Gly Phe Val Pro Met Asn Val Leu Leu Pro Thr Cys Ala
 305 310 315 320
 Ala Thr Val His His Gly Gly Thr Gly Ser Trp Leu Thr Ala Ala Ile
 325 330 335

His Gly Val Pro Gln Ile Ile Leu Ser Asp Ala Asp Thr Glu Val His
 340 345 350
 Ala Lys Gln Leu Gln Asp Leu Gly Ala Gly Leu Ser Leu Pro Val Ala
 355 360 365
 Gly Met Thr Ala Glu His Leu Arg Gly Ala Ile Glu Arg Val Leu Asp
 370 375 380
 Glu Pro Ala Tyr Arg Leu Gly Ala Glu Arg Met Arg Asp Gly Met Arg
 385 390 395 400
 Thr Asp Pro Ser Pro Ala Gln Val Val Gly Ile Cys Gln Asp Leu Ala
 405 410 415
 Ala Asp Arg Ala Ala Arg Gly Arg Gln Pro Arg Arg Thr Ala Glu Pro
 420 425 430
 His Leu Pro Arg
 435

<210> 5
 <211> 390
 <212> PRT
 <213> Micromonospora megalomicea

<400> 5
 Met Val Thr Ser Thr Asn Leu Asp Thr Thr Ala Arg Pro Ala Leu Asn
 1 5 10 15
 Ser Leu Thr Gly Met Arg Phe Val Ala Ala Phe Leu Val Phe Phe Thr
 20 25 30
 His Val Leu Ser Arg Leu Ile Pro Asn Ser Tyr Val Tyr Ala Asp Gly
 35 40 45
 Leu Asp Ala Phe Trp Gln Thr Thr Gly Arg Val Gly Val Ser Phe Phe
 50 55 60
 Phe Ile Leu Ser Gly Phe Val Leu Thr Trp Ser Ala Arg Ala Ser Asp
 65 70 75 80
 Ser Val Trp Ser Phe Trp Arg Arg Arg Val Cys Lys Leu Phe Pro Asn
 85 90 95
 His Leu Val Thr Ala Phe Ala Ala Val Val Leu Phe Leu Val Thr Gly
 100 105 110
 Gln Ala Val Ser Gly Glu Ala Leu Ile Pro Asn Leu Leu Leu Ile His
 115 120 125
 Ala Trp Phe Pro Ala Leu Glu Ile Ser Phe Gly Ile Asn Pro Val Ser
 130 135 140
 Trp Ser Leu Ala Cys Glu Ala Phe Phe Tyr Leu Cys Phe Pro Leu Phe
 145 150 155 160
 Leu Phe Trp Ile Ser Gly Ile Arg Pro Glu Arg Leu Trp Ala Trp Ala
 165 170 175
 Ala Val Val Phe Ala Ala Ile Trp Ala Val Pro Val Val Ala Asp Leu
 180 185 190
 Leu Leu Pro Ser Ser Pro Pro Leu Ile Pro Gly Leu Glu Tyr Ser Ala
 195 200 205
 Ile Gln Asp Trp Phe Leu Tyr Thr Phe Pro Ala Thr Arg Ser Leu Glu
 210 215 220
 Phe Ile Leu Gly Ile Ile Leu Ala Arg Ile Leu Ile Thr Gly Arg Trp
 225 230 235 240
 Ile Asn Val Gly Leu Leu Pro Ala Val Leu Leu Phe Pro Val Phe Phe
 245 250 255
 Val Ala Ser Leu Phe Leu Pro Gly Val Tyr Ala Ile Ser Ser Ser Met
 260 265 270
 Met Ile Leu Pro Leu Val Leu Ile Ile Ala Ser Gly Ala Thr Ala Asp
 275 280 285
 Leu Gln Gln Lys Arg Thr Phe Met Arg Asn Arg Val Met Val Trp Leu
 290 295 300
 Gly Asp Val Ser Phe Ala Leu Tyr Met Val His Phe Leu Val Ile Val
 305 310 315 320

Tyr Gly Ala Asp Leu Leu Gly Phe Ser Gln Thr Glu Asp Ala Pro Leu
 325 330 335
 Gly Leu Ala Leu Phe Met Ile Ile Pro Phe Leu Ala Val Ser Leu Val
 340 345 350
 Leu Ser Trp Leu Leu Tyr Arg Phe Val Glu Leu Pro Val Met Arg Asn
 355 360 365
 Trp Ala Arg Pro Ala Ser Ala Arg Arg Lys Pro Ala Thr Glu Pro Glu
 370 375 380
 Gln Thr Pro Ser Arg Arg
 385 390

<210> 6
<211> 374

<212> PRT

<213> Micromonospora megalomicea

<400> 6
 Met Thr Thr Tyr Val Trp Ser Tyr Leu Leu Glu Tyr Glu Arg Glu Arg
 1 5 10 15
 Ala Asp Ile Leu Asp Ala Val Gln Lys Val Phe Ala Ser Gly Ser Leu
 20 25 30
 Ile Leu Gly Gln Ser Val Glu Asn Phe Glu Thr Glu Tyr Ala Arg Tyr
 35 40 45
 His Gly Ile Ala His Cys Val Gly Val Asp Asn Gly Thr Asn Ala Val
 50 55 60
 Lys Leu Ala Leu Glu Ser Val Gly Val Gly Arg Asp Asp Glu Val Val
 65 70 75 80
 Thr Val Ser Asn Thr Ala Ala Pro Thr Val Leu Ala Ile Asp Glu Ile
 85 90 95
 Gly Ala Arg Pro Val Phe Val Asp Val Arg Asp Glu Asp Tyr Leu Met
 100 105 110
 Asp Thr Asp Leu Val Glu Ala Ala Val Thr Pro Arg Thr Lys Ala Ile
 115 120 125
 Val Pro Val His Leu Tyr Gly Gln Cys Val Asp Met Thr Ala Leu Arg
 130 135 140
 Glu Leu Ala Asp Arg Arg Gly Leu Lys Leu Val Glu Asp Cys Ala Gln
 145 150 155 160
 Ala His Gly Ala Arg Arg Asp Gly Arg Leu Ala Gly Thr Met Ser Asp
 165 170 175
 Ala Ala Ala Phe Ser Phe Tyr Pro Thr Lys Val Leu Gly Ala Tyr Gly
 180 185 190
 Asp Gly Gly Ala Val Val Thr Asn Asp Asp Glu Thr Ala Arg Ala Leu
 195 200 205
 Arg Arg Leu Arg Tyr Tyr Gly Met Glu Glu Val Tyr Tyr Val Thr Arg
 210 215 220
 Thr Pro Gly His Asn Ser Arg Leu Asp Glu Val Gln Ala Glu Ile Leu
 225 230 235 240
 Arg Arg Lys Leu Thr Arg Leu Asp Ala Tyr Val Ala Gly Arg Arg Ala
 245 250 255
 Val Ala Gln Arg Tyr Val Asp Gly Leu Ala Asp Leu Gln Asp Ser His
 260 265 270
 Gly Leu Glu Leu Pro Val Val Thr Asp Gly Asn Glu His Val Phe Tyr
 275 280 285
 Val Tyr Val Val Arg His Pro Arg Arg Asp Glu Ile Ile Lys Arg Leu
 290 295 300
 Arg Asp Gly Tyr Asp Ile Ser Leu Asn Ile Ser Tyr Pro Trp Pro Val
 305 310 315 320
 His Thr Met Thr Gly Phe Ala His Leu Gly Val Ala Ser Gly Ser Leu
 325 330 335
 Pro Val Thr Glu Arg Leu Ala Gly Glu Ile Phe Ser Leu Pro Met Tyr
 340 345 350

Pro Ser Leu Pro His Asp Leu Gln Asp Arg Val Ile Glu Ala Val Arg
 355 360 365 .
 Glu Val Ile Thr Gly Leu
 370

<210> 7
<211> 257
<212> PRT
<213> Micromonospora megalomicea

<400> 7
 Met Pro Asn Ser His Ser Thr Thr Ser Ser Thr Asp Val Ala Pro Tyr
 1 5 10 15
 Glu Arg Ala Asp Ile Tyr His Asp Phe Tyr His Gly Arg Gly Lys Gly
 20 25 30
 Tyr Arg Ala Glu Ala Asp Ala Leu Val Glu Val Ala Arg Lys His Thr
 35 40 45
 Pro Gln Ala Ala Thr Leu Leu Asp Val Ala Cys Gly Thr Gly Ser His
 50 55 60
 Leu Val Glu Leu Ala Asp Ser Phe Arg Glu Val Val Gly Val Asp Leu
 65 70 75 80
 Ser Ala Ala Met Leu Ala Thr Ala Ala Arg Asn Asp Pro Gly Arg Glu
 85 90 95
 Leu His Gln Gly Asp Met Arg Asp Phe Ser Leu Asp Arg Arg Phe Asp
 100 105 110
 Val Val Thr Cys Met Phe Ser Ser Thr Gly Tyr Leu Val Asp Glu Ala
 115 120 125
 Glu Leu Asp Arg Ala Val Ala Asn Leu Ala Gly His Leu Ala Pro Gly
 130 135 140
 Gly Thr Leu Val Val Glu Pro Trp Trp Phe Pro Glu Thr Phe Arg Pro
 145 150 155 160
 Gly Trp Val Gly Ala Asp Leu Val Thr Ser Gly Asp Arg Arg Ile Ser
 165 170 175
 Arg Met Ser His Thr Val Pro Ala Gly Leu Pro Asp Arg Thr Ala Ser
 180 185 190
 Arg Met Thr Ile His Tyr Thr Val Gly Ser Pro Glu Ala Gly Ile Glu
 195 200 205
 His Phe Thr Glu Val His Val Met Thr Leu Phe Ala Arg Ala Ala Tyr
 210 215 220
 Glu Gln Ala Phe Gln Arg Ala Gly Leu Ser Cys Ser Tyr Val Gly His
 225 230 235 240
 Asp Leu Phe Ser Pro Gly Leu Phe Val Gly Val Ala Ala Glu Pro Gly
 245 250 255

<210> 8
<211> 201
<212> PRT
<213> Micromonospora megalomiciae

```

<400> 8
Met Arg Val Glu Glu Leu Gly Ile Glu Gly Val Phe Thr Phe Thr Pro
      1           5           10          15
Gln Thr Phe Ala Asp Glu Arg Gly Val Phe Gly Thr Ala Tyr Gln Glu
      20          25          30
Asp Val Phe Val Ala Ala Leu Gly Arg Pro Leu Phe Pro Val Ala Gln
      35          40          45
Val Ser Thr Thr Arg Ser Arg Arg Gly Val Val Arg Gly Val His Phe
      50 .         55          60
Thr Thr Met Pro Gly Ser Met Ala Lys Tyr Val Tyr Cys Ala Arg Gly

```

65	70	75	80
Arg Ala Met Asp Phe Ala Val Asp Ile Arg Pro Gly Ser Pro Thr Phe			
85	90	95	
Gly Arg Ala Glu Pro Val Glu Leu Ser Ala Glu Ser Met Val Gly Leu			
100	105	110	
Tyr Leu Pro Val Gly Met Gly His Leu Phe Val Ser Leu Glu Asp Asp			
115	120	125	
Thr Thr Leu Val Tyr Leu Met Ser Ala Gly Tyr Val Pro Asp Lys Glu			
130	135	140	
Arg Ala Val His Pro Leu Asp Pro Glu Leu Ala Leu Pro Ile Pro Ala			
145	150	155	160
Asp Leu Asp Leu Val Met Ser Glu Arg Asp Arg Val Ala Pro Thr Leu			
165	170	175	
Arg Glu Ala Arg Asp Gln Gly Ile Leu Pro Asp Tyr Ala Ala Cys Arg			
180	185	190	
Ala Ala Ala His Arg Val Val Arg Thr			
195	200		

<210> 9

<211> 328

<212> PRT

<213> Micromonospora megalomicea

<400> 9			
Met Val Val Leu Gly Ala Ser Gly Phe Leu Gly Ser Ala Val Thr His			
1	5	10	15
Ala Leu Ala Asp Leu Pro Val Arg Val Arg Leu Val Ala Arg Arg Glu			
20	25	30	
Val Val Val Pro Ser Gly Ala Val Ala Asp Tyr Glu Thr His Arg Val			
35	40	45	
Asp Leu Thr Glu Pro Gly Ala Leu Ala Glu Val Val Ala Asp Ala Arg			
50	55	60	
Ala Val Phe Pro Phe Ala Ala Gln Ile Arg Gly Thr Ser Gly Trp Arg			
65	70	75	80
Ile Ser Glu Asp Asp Val Val Ala Glu Arg Thr Asn Val Gly Leu Val			
85	90	95	
Arg Asp Leu Ile Ala Val Leu Ser Arg Ser Pro His Ala Pro Val Val			
100	105	110	
Val Phe Pro Gly Ser Asn Thr Gln Val Gly Arg Val Thr Ala Gly Arg			
115	120	125	
Val Ile Asp Gly Ser Glu Gln Asp His Pro Glu Gly Val Tyr Asp Arg			
130	135	140	
Gln Lys His Thr Gly Glu Gln Leu Leu Lys Glu Ala Thr Ala Ala Gly			
145	150	155	160
Ala Ile Arg Ala Thr Ser Leu Arg Leu Pro Pro Val Phe Gly Val Pro			
165	170	175	
Ala Ala Gly Thr Ala Asp Asp Arg Gly Val Val Ser Thr Met Ile Arg			
180	185	190	
Arg Ala Leu Thr Gly Gln Pro Leu Thr Met Trp His Asp Gly Thr Val			
195	200	205	
Arg Arg Glu Leu Leu Tyr Val Thr Asp Ala Ala Arg Ala Phe Val Thr			
210	215	220	
Ala Leu Asp His Ala Asp Ala Leu Ala Gly Arg His Phe Leu Leu Gly			
225	230	235	240
Thr Gly Arg Ser Trp Pro Leu Gly Glu Val Phe Gln Ala Val Ser Arg			
245	250	255	
Ser Val Ala Arg His Thr Gly Glu Asp Pro Val Pro Val Ser Val			
260	265	270	
Pro Pro Pro Ala His Met Asp Pro Ser Asp Leu Arg Ser Val Glu Val			
-275	280	285	
Asp Pro Ala Arg Phe Thr Ala Val Thr Gly Trp Arg Ala Thr Val Thr			

290	295	300
Met Ala Glu Ala Val Asp Arg Thr Val Ala Ala Leu Ala Pro Arg Arg		
305	310	315
Ala Ala Ala Pro Ser Glu Pro Ser		
	325	

<210> 10
<211> 330
<212> PRT
<213> Micromonospora megalomicea

<400> 10		
Met Gly Thr Thr Gly Ala Gly Ser Ala Arg Val Arg Val Gly Arg Ser		
1	5	10
Ala Leu His Thr Ser Arg Leu Trp Leu Gly Thr Val Asn Phe Ser Gly		
20	25	30
Arg Val Thr Asp Asp Asp Ala Leu Arg Leu Met Asp His Ala Leu Glu		
35	40	45
Arg Gly Val Asn Cys Ile Asp Thr Ala Asp Ile Tyr Gly Trp Arg Leu		
50	55	60
Tyr Lys Gly His Thr Glu Glu Leu Val Gly Arg Trp Phe Ala Gln Gly		
65	70	75
Gly Gly Arg Arg Glu Glu Thr Val Leu Ala Thr Lys Val Gly Ser Glu		
85	90	95
Met Ser Glu Arg Val Asn Asp Gly Gly Leu Ser Ala Arg His Ile Val		
100	105	110
Ala Ala Cys Glu Asn Ser Leu Arg Arg Leu Gly Val Asp His Ile Asp		
115	120	125
Ile Tyr Gln Thr His His Ile Asp Arg Ala Ala Pro Trp Asp Glu Val		
130	135	140
Trp Gln Ala Ala Glu His Leu Val Gly Ser Gly Lys Val Gly Tyr Val		
145	150	155
Gly Ser Ser Asn Leu Ala Gly Trp His Ile Ala Ala Ala Gln Glu Ser		
165	170	175
Ala Ala Arg Arg Asn Leu Leu Gly Met Ile Ser His Gln Cys Leu Tyr		
180	185	190
Asn Leu Ala Val Arg His Pro Glu Leu Asp Val Leu Pro Ala Ala Gln		
195	200	205
Ala Tyr Gly Val Gly Val Phe Ala Trp Ser Pro Leu His Gly Gly Leu		
210	215	220
Leu Ser Gly Val Leu Glu Lys Leu Ala Ala Gly Thr Ala Val Lys Ser		
225	230	235
Ala Gln Gly Arg Ala Gln Val Leu Leu Pro Ala Val Arg Pro Leu Val		
245	250	255
Glu Ala Tyr Glu Asp Tyr Cys Arg Arg Leu Gly Ala Asp Pro Ala Glu		
260	265	270
Val Gly Leu Ala Trp Val Leu Ser Arg Pro Gly Ile Leu Gly Ala Val		
275	280	285
Ile Gly Pro Arg Thr Pro Glu Gln Leu Asp Ser Ala Leu Arg Ala Ala		
290	295	300
Glu Leu Thr Leu Gly Glu Glu Leu Arg Glu Leu Glu Ala Ile Phe		
305	310	315
Pro Ala Pro Ala Val Asp Gly Pro Val Pro		
	325	330

<210> 11
<211> 417
<212> PRT
<213> Micromonospora megalomicea

<400> 11

Met Arg Val Leu Leu Thr Ser Phe Ala His Arg Thr His Phe Gln Gly
 1 5 10 15
 Leu Val Pro Leu Ala Trp Ala Leu His Thr Ala Gly His Asp Val Arg
 20 25 30
 Val Ala Ser Gln Pro Glu Leu Thr Asp Val Val Val Gly Ala Gly Leu
 35 40 45
 Thr Ser Val Pro Leu Gly Ser Asp His Arg Leu Phe Asp Ile Ser Pro
 50 55 60
 Glu Ala Ala Ala Gln Val His Arg Tyr Thr Asp Leu Asp Phe Ala
 65 70 75 80
 Arg Arg Gly Pro Glu Leu Arg Ser Trp Glu Phe Leu His Gly Ile Glu
 85 90 95
 Glu Ala Thr Ser Arg Phe Val Phe Pro Val Val Asn Asn Asp Ser Phe
 100 105 110
 Val Asp Glu Leu Val Glu Phe Ala Met Asp Trp Arg Pro Asp Leu Val
 115 120 125
 Leu Trp Glu Pro Phe Thr Phe Ala Gly Ala Val Ala Ala Lys Ala Cys
 130 135 140
 Gly Ala Ala His Ala Arg Leu Leu Trp Gly Ser Asp Leu Thr Gly Tyr
 145 150 155 160
 Phe Arg Ser Arg Ser Gln Asp Leu Arg Gly Gln Arg Pro Ala Asp Asp
 165 170 175
 Arg Pro Asp Pro Leu Gly Gly Trp Leu Thr Glu Val Ala Gly Arg Phe
 180 185 190
 Gly Leu Asp Tyr Ser Glu Asp Leu Ala Val Gly Gln Trp Ser Val Asp
 195 200 205
 Gln Leu Pro Glu Ser Phe Arg Leu Glu Thr Gly Leu Glu Ser Val His
 210 215 220
 Thr Arg Thr Leu Pro Tyr Asn Gly Ser Ser Val Val Pro Gln Trp Leu
 225 230 235 240
 Arg Thr Ser Asp Gly Val Arg Arg Val Cys Phe Thr Gly Gly Tyr Ser
 245 250 255
 Ala Leu Gly Ile Thr Ser Asn Pro Gln Glu Phe Leu Arg Thr Leu Ala
 260 265 270
 Thr Leu Ala Arg Phe Asp Gly Glu Ile Val Val Thr Arg Ser Gly Leu
 275 280 285
 Asp Pro Ala Ser Val Pro Asp Asn Val Arg Leu Val Asp Phe Val Pro
 290 295 300
 Met Asn Ile Leu Leu Pro Gly Cys Ala Ala Val Ile His His Gly Gly
 305 310 315 320
 Ala Gly Ser Trp Ala Thr Ala Leu His His Gly Val Pro Gln Ile Ser
 325 330 335
 Val Ala His Glu Trp Asp Cys Val Leu Arg Gly Gln Arg Thr Ala Glu
 340 345 350
 Leu Gly Ala Gly Val Phe Leu Arg Pro Asp Glu Val Asp Ala Asp Thr
 355 360 365
 Leu Trp Gln Ala Leu Ala Thr Val Val Glu Asp Arg Ser His Ala Glu
 370 375 380
 Asn Ala Glu Lys Leu Arg Gln Glu Ala Leu Ala Ala Pro Thr Pro Ala
 385 390 395 400
 Glu Val Val Pro Val Leu Glu Ala Leu Ala His Gln His Arg Ala Asp
 405 410 415
Arg

<210> 12
 <211> 313
 <212> PRT
 <213> Micromonospora megalomicea

<400> 12

Met Thr Arg His Val Thr Leu Leu Gly Val Ser Gly Phe Val Gly Ser
 1 5 10 15
 Ala Leu Leu Arg Glu Phe Thr Thr His Pro Leu Arg Leu Arg Ala Val
 20 25 30
 Ala Arg Thr Gly Ser Arg Asp Gln Pro Pro Gly Ser Ala Gly Ile Glu
 35 40 45
 His Leu Arg Val Asp Leu Leu Glu Pro Gly Arg Val Ala Gln Val Val
 50 55 60
 Ala Asp Thr Asp Val Val His Leu Val Ala Tyr Ala Ala Gly Gly
 65 70 75 80
 Ser Thr Trp Arg Ser Ala Ala Thr Val Pro Glu Ala Glu Arg Val Asn
 85 90 95
 Ala Gly Ile Met Arg Asp Leu Val Ala Ala Leu Arg Ala Arg Pro Gly
 100 105 110
 Pro Ala Pro Val Leu Leu Phe Ala Ser Thr Thr Gln Ala Ala Asn Pro
 115 120 125
 Ala Ala Pro Ser Arg Tyr Ala Gln His Lys Ile Glu Ala Glu Arg Ile
 130 135 140
 Leu Arg Gln Ala Thr Glu Asp Gly Val Val Asp Gly Val Ile Leu Arg
 145 150 155 160
 Leu Pro Ala Ile Tyr Gly His Ser Gly Pro Ser Gly Gln Thr Gly Arg
 165 170 175
 Gly Val Val Thr Ala Met Ile Arg Arg Ala Leu Ala Gly Glu Pro Ile
 180 185 190
 Thr Met Trp His Glu Gly Ser Val Arg Arg Asn Leu Leu His Val Glu
 195 200 205
 Asp Val Ala Thr Ala Phe Thr Ala Ala Leu His Asn His Glu Ala Leu
 210 215 220
 Val Gly Asp Val Trp Thr Pro Ser Ala Asp Glu Ala Arg Pro Leu Gly
 225 230 235 240
 Glu Ile Phe Glu Thr Val Ala Ala Ser Val Ala Arg Gln Thr Gly Asn
 245 250 255
 Pro Ala Val Pro Val Val Ser Val Pro Pro Pro Glu Asn Ala Glu Ala
 260 265 270
 Asn Asp Phe Arg Ser Asp Asp Phe Asp Ser Thr Glu Phe Arg Thr Leu
 275 280 285
 Thr Gly Trp His Pro Arg Val Pro Leu Ala Glu Gly Ile Asp Arg Thr
 290 295 300
 Val Ala Ala Leu Ile Ser Thr Lys Glu
 305 310

<210> 13

<211> 3546

<212> PRT

<213> Micromonospora megalomicea

<400> 13

Met Val Asp Val Pro Asp Leu Leu Gly Thr Arg Thr Pro His Pro Gly
 1 5 10 15
 Pro Leu Pro Phe Pro Trp Pro Leu Cys Gly His Asn Glu Pro Glu Leu
 20 25 30
 Arg Ala Arg Ala Arg Gln Leu His Ala Tyr Leu Glu Gly Ile Ser Glu
 35 40 45
 Asp Asp Val Val Ala Val Gly Ala Ala Leu Ala Arg Glu Thr Arg Ala
 50 55 60
 Gln Asp Gly Pro His Arg Ala Val Val Ala Ser Ser Val Thr Glu
 65 70 75 80
 Leu Thr Ala Ala Leu Ala Ala Leu Ala Gln Gly Arg Pro His Pro Ser
 85 90 95
 Val Val Arg Gly Val Ala Arg Pro Thr Ala Pro Val Val Phe Val Leu
 100 105 110

Pro Gly Gln Gly Ala Gln Trp Pro Gly Met Ala Thr Arg Leu Leu Ala
 115 120 125
 Glu Ser Pro Val Phe Ala Ala Ala Met Arg Ala Cys Glu Arg Ala Phe
 130 135 140
 Asp Glu Val Thr Asp Trp Ser Leu Thr Glu Val Leu Asp Ser Pro Glu
 145 150 155 160
 His Leu Arg Arg Val Glu Val Val Gln Pro Ala Leu Phe Ala Val Gln
 165 170 175
 Thr Ser Leu Ala Ala Leu Trp Arg Ser Phe Gly Val Arg Pro Asp Ala
 180 185 190
 Val Leu Gly His Ser Ile Gly Glu Leu Ala Ala Ala Glu Val Cys Gly
 195 200 205
 Ala Val Asp Val Glu Ala Ala Ala Arg Ala Ala Leu Trp Ser Arg
 210 215 220
 Glu Met Val Pro Leu Val Gly Arg Gly Asp Met Ala Ala Val Ala Leu
 225 230 235 240
 Ser Pro Ala Glu Leu Ala Ala Arg Val Glu Arg Trp Asp Asp Asp Val
 245 250 255
 Val Pro Ala Gly Val Asn Gly Pro Arg Ser Val Leu Leu Thr Gly Ala
 260 265 270
 Pro Glu Pro Ile Ala Arg Arg Val Ala Glu Leu Ala Ala Gln Gly Val
 275 280 285
 Arg Ala Gln Val Val Asn Val Ser Met Ala Ala His Ser Ala Gln Val
 290 295 300
 Asp Ala Val Ala Glu Gly Met Arg Ser Ala Leu Thr Trp Phe Ala Pro
 305 310 315 320
 Gly Asp Ser Asp Val Pro Tyr Tyr Ala Gly Leu Thr Gly Gly Arg Leu
 325 330 335
 Asp Thr Arg Glu Leu Gly Ala Asp His Trp Pro Arg Ser Phe Arg Leu
 340 345 350
 Pro Val Arg Phe Asp Glu Ala Thr Arg Ala Val Leu Glu Leu Gln Pro
 355 360 365
 Gly Thr Phe Ile Glu Ser Ser Pro His Pro Val Leu Ala Ala Ser Leu
 370 375 380
 Gln Gln Thr Leu Asp Glu Val Gly Ser Pro Ala Ala Ile Val Pro Thr
 385 390 395 400
 Leu Gln Arg Asp Gln Gly Gly Leu Arg Arg Phe Leu Leu Ala Val Ala
 405 410 415
 Gln Ala Tyr Thr Gly Gly Val Thr Val Asp Trp Thr Ala Ala Tyr Pro
 420 425 430
 Gly Val Thr Pro Gly His Leu Pro Ser Ala Val Ala Val Glu Thr Asp
 435 440 445
 Glu Gly Pro Ser Thr Glu Phe Asp Trp Ala Ala Pro Asp His Val Leu
 450 455 460
 Arg Ala Arg Leu Leu Glu Ile Val Gly Ala Glu Thr Ala Ala Leu Ala
 465 470 475 480
 Gly Arg Glu Val Asp Ala Arg Ala Thr Phe Arg Glu Leu Gly Leu Asp
 485 490 495
 Ser Val Leu Ala Val Gln Leu Arg Thr Arg Leu Ala Thr Ala Thr Gly
 500 505 510
 Arg Asp Leu His Ile Ala Met Leu Tyr Asp His Pro Thr Pro His Ala
 515 520 525
 Leu Thr Glu Ala Leu Leu Arg Gly Pro Gln Glu Glu Pro Gly Arg Gly
 530 535 540
 Glu Glu Thr Ala His Pro Thr Glu Ala Glu Pro Asp Glu Pro Val Ala
 545 550 555 560
 Val Val Ala Met Ala Cys Arg Leu Pro Gly Gly Val Thr Ser Pro Glu
 565 570 575
 Glu Phe Trp Glu Leu Leu Ala Glu Gly Arg Asp Ala Val Gly Gly Leu
 580 585 590
 Pro Thr Asp Arg Gly Trp Asp Leu Asp Ser Leu Phe His Pro Asp Pro

595	600	605
Thr Arg Ser Gly Thr Ala His Gln Arg Ala Gly	Gly Phe Leu Thr Gly	
610	615	620
Ala Thr Ser Phe Asp Ala Ala Phe Phe Gly	Leu Ser Pro Arg Glu Ala	
625	630	635
640		
Leu Ala Val Glu Pro Gln Gln Arg Ile Thr	Leu Glu Leu Ser Trp Glu	
645	650	655
Val Leu Glu Arg Ala Gly Ile Pro Pro Thr	Ser Leu Arg Thr Ser Arg	
660	665	670
Thr Gly Val Phe Val Gly Leu Ile Pro Gln	Glu Tyr Gly Pro Arg Leu	
675	680	685
Ala Glu Gly Glu Gly Val Glu Gly Tyr	Leu Met Thr Gly Thr Thr	
690	695	700
Thr Ser Val Ala Ser Gly Arg Val Ala Tyr	Thr Leu Gly Leu Glu Gly	
705	710	715
720		
Pro Ala Ile Ser Val Asp Thr Ala Cys	Ser Ser Ser Leu Val Ala Val	
725	730	735
His Leu Ala Cys Gln Ser Leu Arg Arg	Gly Glu Ser Thr Met Ala Leu	
740	745	750
Ala Gly Gly Val Thr Val Met Pro Thr Pro	Gly Met Leu Val Asp Phe	
755	760	765
Ser Arg Met Asn Ser Leu Ala Pro Asp Gly	Arg Ser Lys Ala Phe Ser	
770	775	780
Ala Ala Ala Asp Gly Phe Gly Met Ala Glu	Gly Ala Gly Met Leu Leu	
785	790	795
800		
Leu Glu Arg Leu Ser Asp Ala Arg Arg	His Gly His Pro Val Leu Ala	
805	810	815
Val Ile Arg Gly Thr Ala Val Asn Ser Asp	Gly Ala Ser Asn Gly Leu	
820	825	830
Ser Ala Pro Asn Gly Arg Ala Gln Val Arg	Val Ile Arg Gln Ala Leu	
835	840	845
Ala Glu Ser Gly Leu Thr Pro His Thr Val Asp	Val Val Glu Thr His	
850	855	860
Gly Thr Gly Thr Arg Leu Gly Asp Pro Ile	Glu Ala Arg Ala Leu Ser	
865	870	875
880		
Asp Ala Tyr Gly Gly Asp Arg Glu His	Pro Leu Arg Ile Gly Ser Val	
885	890	895
Lys Ser Asn Ile Gly His Thr Gln Ala Ala	Gly Val Ala Gly Leu	
900	905	910
Ile Lys Leu Val Leu Ala Met Gln Ala Gly	Val Leu Pro Arg Thr Leu	
915	920	925
His Ala Asp Glu Pro Ser Pro Glu Ile Asp	Trp Ser Ser Gly Ala Ile	
930	935	940
Ser Leu Leu Gln Glu Pro Ala Ala Trp	Pro Ala Gly Glu Arg Pro Arg	
945	950	955
960		
Arg Ala Gly Val Ser Ser Phe Gly Ile Ser	Gly Thr Asn Ala His Ala	
965	970	975
Ile Ile Glu Glu Ala Pro Pro Thr Gly Asp	Asp Thr Arg Pro Asp Arg	
980	985	990
Met Gly Pro Val Val Pro Trp Val Leu Ser	Ala Ser Thr Gly Glu Ala	
995	1000	1005
Leu Arg Ala Arg Ala Ala Arg	Leu Ala Gly His Leu Arg Glu His Pro	
1010	1015	1020
Asp Gln Asp Leu Asp Asp Val Ala Tyr	Ser Leu Ala Thr Gly Arg Ala	
1025	1030	1035
1040		
Ala Leu Ala Tyr Arg Ser Gly Phe Val	Pro Ala Asp Ala Ser Thr Ala	
1045	1050	1055
Leu Arg Ile Leu Asp Glu Leu Ala Ala	Gly Gly Ser Gly Asp Ala Val	
1060	1065	1070
Thr Gly Thr Ala Arg Ala Pro Gln Arg Val	Val Phe Val Phe Pro Gly	
1075	1080	1085

Gln Gly Trp Gln Trp Ala Gly Met Ala Val Asp Leu Leu Asp Gly Asp
 1090 1095 1100
 Pro Val Phe Ala Ser Val Leu Arg Glu Cys Ala Asp Ala Leu Glu Pro
 1105 1110 1115 1120
 Tyr Leu Asp Phe Glu Ile Val Pro Phe Leu Arg Ala Glu Ala Gln Arg
 1125 1130 1135
 Arg Thr Pro Asp His Thr Leu Ser Thr Asp Arg Val Asp Val Val Gln
 1140 1145 1150
 Pro Val Leu Phe Ala Val Met Val Ser Leu Ala Ala Arg Trp Arg Ala
 1155 1160 1165
 Tyr Gly Val Glu Pro Ala Ala Val Ile Gly His Ser Gln Gly Glu Ile
 1170 1175 1180
 Ala Ala Ala Cys Val Ala Gly Ala Leu Ser Leu Asp Asp Ala Ala Arg
 1185 1190 1195 1200
 Ala Val Ala Leu Arg Ser Arg Val Ile Ala Thr Met Pro Gly Asn Gly
 1205 1210 1215
 Ala Met Ala Ser Ile Ala Ala Ser Val Asp Glu Val Ala Ala Arg Ile
 1220 1225 1230
 Asp Gly Arg Val Glu Ile Ala Ala Val Asn Gly Pro Arg Ala Val Val
 1235 1240 1245
 Val Ser Gly Asp Arg Asp Asp Leu Asp Arg Leu Val Ala Ser Cys Thr
 1250 1255 1260
 Val Glu Gly Val Arg Ala Lys Arg Leu Pro Val Asp Tyr Ala Ser His
 1265 1270 1275 1280
 Ser Ser His Val Glu Ala Val Arg Asp Ala Leu His Ala Glu Leu Gly
 1285 1290 1295
 Glu Phe Arg Pro Leu Pro Gly Phe Val Pro Phe Tyr Ser Thr Val Thr
 1300 1305 1310
 Gly Arg Trp Val Glu Pro Ala Glu Leu Asp Ala Gly Tyr Trp Phe Arg
 1315 1320 1325
 Asn Leu Arg His Arg Val Arg Phe Ala Asp Ala Val Arg Ser Leu Ala
 1330 1335 1340
 Asp Gln Gly Tyr Thr Phe Leu Glu Val Ser Ala His Pro Val Leu
 1345 1350 1355 1360
 Thr Thr Ala Ile Glu Glu Ile Gly Glu Asp Arg Gly Gly Asp Leu Val
 1365 1370 1375
 Ala Val His Ser Leu Arg Arg Gly Ala Gly Gly Pro Val Asp Phe Gly
 1380 1385 1390
 Ser Ala Leu Ala Arg Ala Phe Val Ala Gly Val Ala Val Asp Trp Glu
 1395 1400 1405
 Ser Ala Tyr Gln Gly Ala Gly Ala Arg Arg Val Pro Leu Pro Thr Tyr
 1410 1415 1420
 Pro Phe Gln Arg Glu Arg Phe Trp Leu Glu Pro Asn Pro Ala Arg Arg
 1425 1430 1435 1440
 Val Ala Asp Ser Asp Asp Val Ser Ser Leu Arg Tyr Arg Ile Glu Trp
 1445 1450 1455
 His Pro Thr Asp Pro Gly Glu Pro Gly Arg Leu Asp Gly Thr Trp Leu
 1460 1465 1470
 Leu Ala Thr Tyr Pro Gly Arg Ala Asp Asp Arg Val Glu Ala Ala Arg
 1475 1480 1485
 Gln Ala Leu Glu Ser Ala Gly Ala Arg Val Glu Asp Leu Val Val Glu
 1490 1495 1500
 Pro Arg Thr Gly Arg Val Asp Leu Val Arg Arg Leu Asp Ala Val Gly
 1505 1510 1515 1520
 Pro Val Ala Gly Val Leu Cys Leu Phe Ala Val Ala Glu Pro Ala Ala
 1525 1530 1535
 Glu His Ser Pro Leu Ala Val Thr Ser Leu Ser Asp Thr Leu Asp Leu
 1540 1545 1550
 Thr Gln Ala Val Ala Gly Ser Gly Arg Glu Cys Pro Ile Trp Val Val
 1555 1560 1565
 Thr Glu Asn Ala Val Ala Val Gly Pro Phe Glu Arg Leu Arg Asp Pro

1570	1575	1580
Ala His Gly Ala Leu Trp Ala Leu Gly Arg Val Val Ala Leu Glu Asn		
1585	1590	1595
Pro Ala Val Trp Gly Gly Leu Val Asp Val Pro Ser Gly Ser Val Ala		
1605		1610
Glu Leu Ser Arg His Leu Gly Thr Thr Leu Ser Gly Ala Gly Glu Asp		1615
1620	1625	1630
Gln Val Ala Leu Arg Pro Asp Gly Thr Tyr Ala Arg Arg Trp Cys Arg		
1635	1640	1645
Ala Gly Ala Gly Gly Thr Gly Arg Trp Gln Pro Arg Gly Thr Val Leu		
1650	1655	1660
Val Thr Gly Gly Thr Gly Val Gly Arg His Val Ala Arg Trp Leu		
1665	1670	1675
Ala Arg Gln Gly Thr Pro Cys Leu Val Leu Ala Ser Arg Arg Gly Pro		1680
1685		1690
Asp Ala Asp Gly Val Glu Leu Leu Thr Glu Leu Ala Asp Leu Gly		1695
1700	1705	1710
Thr Arg Ala Thr Val Thr Ala Cys Asp Val Thr Asp Arg Glu Gln Leu		
1715	1720	1725
Arg Ala Leu Leu Ala Thr Val Asp Asp Glu His Pro Leu Ser Ala Val		
1730	1735	1740
Phe His Val Ala Ala Thr Leu Asp Asp Gly Thr Val Glu Thr Leu Thr		
1745	1750	1755
Gly Asp Arg Ile Glu Arg Ala Asn Arg Ala Lys Val Leu Gly Ala Arg		1760
1765		1775
Asn Leu His Glu Leu Thr Arg Asp Ala Asp Leu Asp Ala Phe Val Leu		
1780	1785	1790
Phe Ser Ser Ser Thr Ala Ala Phe Gly Ala Pro Gly Leu Gly Gly Tyr		
1795	1800	1805
Val Pro Gly Asn Ala Tyr Leu Asp Gly Leu Ala Gln Gln Arg Arg Ser		
1810	1815	1820
Glu Gly Leu Pro Ala Thr Ser Val Ala Trp Gly Thr Trp Ala Gly Ser		
1825	1830	1835
Gly Met Ala Glu Gly Pro Val Ala Asp Arg Phe Arg Arg His Gly Val		
1845		1850
Met Glu Met His Pro Asp Gln Ala Val Glu Gly Leu Arg Val Ala Leu		1855
1860	1865	1870
Val Gln Gly Glu Val Ala Pro Ile Val Val Asp Ile Arg Trp Asp Arg		
1875	1880	1885
Phe Leu Leu Ala Tyr Thr Ala Gln Arg Pro Thr Arg Leu Phe Asp Thr		
1890	1895	1900
Leu Asp Glu Ala Arg Arg Ala Ala Pro Gly Pro Asp Ala Gly Pro Gly		
1905	1910	1915
Val Ala Ala Leu Ala Gly Leu Pro Val Gly Glu Arg Glu Lys Ala Val		1920
1925		1935
Leu Asp Leu Val Arg Thr His Ala Ala Ala Val Leu Gly His Ala Ser		
1940	1945	1950
Ala Glu Gln Val Pro Val Asp Arg Ala Phe Ala Glu Leu Gly Val Asp		
1955	1960	1965
Ser Leu Ser Ala Leu Glu Leu Arg Asn Arg Leu Thr Thr Ala Thr Gly		
1970	1975	1980
Val Arg Leu Ala Thr Thr Val Phe Asp His Pro Asp Val Arg Thr		
1985	1990	1995
Leu Ala Gly His Leu Ala Ala Glu Leu Gly Gly Ser Gly Arg Glu		2000
2005		2015
Arg Pro Gly Gly Glu Ala Pro Thr Val Ala Pro Thr Asp Glu Pro Ile		
2020	2025	2030
Ala Ile Val Gly Met Ala Cys Arg Leu Pro Gly Gly Val Asp Ser Pro		
2035	2040	2045
Glu Gln-Leu Trp Glu Leu Ile Val Ser Gly Arg Asp Thr Ala Ser Ala		
2050	2055	2060

Ala Pro Gly Asp Arg Ser Trp Asp Pro Ala Glu Leu Met Val Ser Asp
 2065 2070 2075 2080
 Thr Thr Gly Thr Arg Thr Ala Phe Gly Asn Phe Met Pro Gly Ala Gly
 2085 2090 2095
 Glu Phe Asp Ala Ala Phe Phe Gly Ile Ser Pro Arg Glu Ala Leu Ala
 2100 2105 2110
 Met Asp Pro Gln Gln Arg His Ala Leu Glu Thr Thr Trp Glu Ala Leu
 2115 2120 2125
 Glu Asn Ala Gly Ile Arg Pro Glu Ser Leu Arg Gly Thr Asp Thr Gly
 2130 2135 2140
 Val Phe Val Gly Met Ser His Gln Gly Tyr Ala Thr Gly Arg Pro Lys
 2145 2150 2155 2160
 Pro Glu Asp Glu Val Asp Gly Tyr Leu Leu Thr Gly Asn Thr Ala Ser
 2165 2170 2175
 Val Ala Ser Gly Arg Ile Ala Tyr Val Leu Gly Leu Glu Gly Pro Ala
 2180 2185 2190
 Ile Thr Val Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Leu His Val
 2195 2200 2205
 Ala Ala Gly Ser Leu Arg Ser Gly Asp Cys Gly Leu Ala Val Ala Gly
 2210 2215 2220
 Gly Val Ser Val Met Ala Gly Pro Glu Val Phe Arg Glu Phe Ser Arg
 2225 2230 2235 2240
 Gln Gly Ala Leu Ala Pro Asp Gly Arg Cys Lys Pro Phe Ser Asp Glu
 2245 2250 2255
 Ala Asp Gly Phe Gly Leu Gly Glu Gly Ser Ala Phe Val Val Leu Gln
 2260 2265 2270
 Arg Leu Ser Val Ala Val Arg Glu Gly Arg Arg Val Leu Gly Val Val
 2275 2280 2285
 Val Gly Ser Ala Val Asn Gln Asp Gly Ala Ser Asn Gly Leu Ala Ala
 2290 2295 2300
 Pro Ser Gly Val Ala Gln Gln Arg Val Ile Arg Arg Ala Trp Gly Arg
 2305 2310 2315 2320
 Ala Gly Val Ser Gly Gly Asp Val Gly Val Val Glu Ala His Gly Thr
 2325 2330 2335
 Gly Thr Arg Leu Gly Asp Pro Val Glu Leu Gly Ala Leu Leu Gly Thr
 2340 2345 2350
 Tyr Gly Val Gly Arg Gly Gly Val Gly Pro Val Val Val Gly Ser Val
 2355 2360 2365
 Lys Ala Asn Val Gly His Val Gln Ala Ala Ala Gly Val Val Gly Val
 2370 2375 2380
 Ile Lys Val Val Leu Gly Leu Gly Arg Gly Leu Val Gly Pro Met Val
 2385 2390 2395 2400
 Cys Arg Gly Gly Leu Ser Gly Leu Val Asp Trp Ser Ser Gly Gly Leu
 2405 2410 2415
 Val Val Ala Asp Gly Val Arg Gly Trp Pro Val Gly Val Asp Gly Val
 2420 2425 2430
 Arg Arg Gly Gly Val Ser Ala Phe Gly Val Ser Gly Thr Asn Ala His
 2435 2440 2445
 Val Val Val Ala Glu Ala Pro Gly Ser Val Val Gly Ala Glu Arg Pro
 2450 2455 2460
 Val Glu Gly Ser Ser Arg Gly Leu Val Gly Val Val Gly Gly Val Val
 2465 2470 2475 2480
 Pro Val Val Leu Ser Ala Lys Thr Glu Thr Ala Leu His Ala Gln Ala
 2485 2490 2495
 Arg Arg Leu Ala Asp His Leu Glu Thr His Pro Asp Val Pro Met Thr
 2500 2505 2510
 Asp Val Val Trp Thr Leu Thr Gln Ala Arg Gln Arg Phe Asp Arg Arg
 2515 2520 2525
 Ala Val Leu Leu Ala Ala Asp Arg Thr Gln Ala Val Glu Arg Leu Arg
 2530 2535 2540
 Gly Leu Ala Gly Gly Glu Pro Gly Thr Gly Val Val Ser Gly Val Ala

2545	2550	2555	2560
Ser Gly Gly Gly Val Val Phe Val Phe Pro Gly Gln Gly Gly Gln Trp			
2565		2570	2575
Val Gly Met Ala Arg Gly Leu Leu Ser Val Pro Val Phe Val Glu Ser			
2580	2585	2590	
Val Val Glu Cys Asp Ala Val Val Ser Ser Val Val Gly Phe Ser Val			
2595	2600	2605	
Leu Gly Val Leu Glu Gly Arg Ser Gly Ala Pro Ser Leu Asp Arg Val			
2610	2615	2620	
Asp Val Val Gln Pro Val Leu Phe Val Val Met Val Ser Leu Ala Arg			
2625	2630	2635	2640
Leu Trp Arg Trp Cys Gly Val Val Pro Ala Ala Val Val Gly His Ser			
2645	2650	2655	
Gln Gly Glu Ile Ala Ala Ala Val Val Ala Gly Val Leu Ser Val Gly			
2660	2665	2670	
Asp Gly Ala Arg Val Val Ala Leu Arg Ala Arg Ala Leu Arg Ala Leu			
2675	2680	2685	
Ala Gly His Gly Gly Met Ala Ser Val Arg Arg Gly Arg Asp Asp Val			
2690	2695	2700	
Gln Lys Leu Leu Asp Ser Gly Pro Trp Thr Gly Lys Leu Glu Ile Ala			
2705	2710	2715	2720
Ala Val Asn Gly Pro Asp Ala Val Val Val Ser Gly Asp Pro Arg Ala			
2725	2730	2735	
Val Thr Glu Leu Val Glu His Cys Asp Gly Ile Gly Val Arg Ala Arg			
2740	2745	2750	
Thr Ile Pro Val Asp Tyr Ala Ser His Ser Ala Gln Val Glu Ser Leu			
2755	2760	2765	
Arg Glu Glu Leu Leu Ser Val Leu Ala Gly Ile Glu Gly Arg Pro Ala			
2770	2775	2780	
Thr Val Pro Phe Tyr Ser Thr Leu Thr Gly Gly Phe Val Asp Gly Thr			
2785	2790	2795	2800
Glu Leu Asp Ala Asp Tyr Trp Tyr Arg Asn Leu Arg His Pro Val Arg			
2805	2810	2815	
Phe His Ala Ala Val Glu Ala Leu Ala Ala Arg Asp Leu Thr Thr Phe			
2820	2825	2830	
Val Glu Val Ser Pro His Pro Val Leu Ser Met Ala Val Gly Glu Thr			
2835	2840	2845	
Leu Ala Asp Val Glu Ser Ala Val Thr Val Gly Thr Leu Glu Arg Asp			
2850	2855	2860	
Thr Asp Asp Val Glu Arg Phe Leu Thr Ser Leu Ala Glu Ala His Val			
2865	2870	2875	2880
His Gly Val Pro Val Asp Trp Ala Ala Val Leu Gly Ser Gly Thr Leu			
2885	2890	2895	
Val Asp Leu Pro Thr Tyr Pro Phe Gln Gly Arg Arg Phe Trp Leu His			
2900	2905	2910	
Pro Asp Arg Gly Pro Arg Asp Asp Val Ala Asp Trp Phe His Arg Val			
2915	2920	2925	
Asp Trp Thr Ala Thr Ala Thr Asp Gly Ser Ala Arg Leu Asp Gly Arg			
2930	2935	2940	
Trp Leu Val Val Val Pro Glu Gly Tyr Thr Asp Asp Gly Trp Val Val			
2945	2950	2955	2960
Glu Val Arg Ala Ala Leu Ala Ala Gly Gly Ala Glu Pro Val Val Thr			
2965	2970	2975	
Thr Val Glu Glu Val Thr Asp Arg Val Gly Asp Ser Asp Ala Val Val			
2980	2985	2990	
Ser Met Leu Gly Leu Ala Asp Asp Gly Ala Ala Glu Thr Leu Ala Leu			
2995	3000	3005	
Leu Arg Arg Leu Asp Ala Gln Ala Ser Thr Thr Pro Leu Trp Val Val			
3010	3015	3020	
Thr Val Gly Ala Val Ala Pro Ala Gly Pro Val Gln Arg Pro Glu Gln			
3025	3030	3035	3040

Ala Thr Val Trp Gly Leu Ala Leu Val Ala Ser Leu Glu Arg Gly His
 3045 3050 3055
 Arg Trp Thr Gly Leu Leu Asp Leu Pro Gln Thr Pro Asp Pro Gln Leu
 3060 3065 3070
 Arg Pro Arg Leu Val Glu Ala Leu Ala Gly Ala Glu Asp Gln Val Ala
 3075 3080 3085
 Val Arg Ala Asp Ala Val His Ala Arg Arg Ile Val Pro Thr Pro Val
 3090 3095 3100
 Thr Gly Ala Gly Pro Tyr Thr Ala Pro Gly Gly Thr Ile Leu Val Thr
 3105 3110 3115 3120
 Gly Gly Thr Ala Gly Leu Gly Ala Val Thr Ala Arg Trp Leu Ala Glu
 3125 3130 3135
 Arg Gly Ala Glu His Leu Ala Leu Val Ser Arg Arg Gly Pro Gly Thr
 3140 3145 3150
 Ala Gly Val Asp Glu Val Val Arg Asp Leu Thr Gly Leu Gly Val Arg
 3155 3160 3165
 Val Ser Val His Ser Cys Asp Val Gly Asp Arg Glu Ser Val Gly Ala
 3170 3175 3180
 Leu Val Gln Glu Leu Thr Ala Ala Gly Asp Val Val Arg Gly Val Val
 3185 3190 3195 3200
 His Ala Ala Gly Leu Pro Gln Gln Val Pro Leu Thr Asp Met Asp Pro
 3205 3210 3215
 Ala Asp Leu Ala Asp Val Val Ala Val Lys Val Asp Gly Ala Val His
 3220 3225 3230
 Leu Ala Asp Leu Cys Pro Glu Ala Glu Leu Phe Leu Leu Phe Ser Ser
 3235 3240 3245
 Gly Ala Gly Val Trp Gly Ser Ala Arg Gln Gly Ala Tyr Ala Ala Gly
 3250 3255 3260
 Asn Ala Phe Leu Asp Ala Phe Ala Arg His Arg Arg Asp Arg Gly Leu
 3265 3270 3275 3280
 Pro Ala Thr Ser Val Ala Trp Gly Leu Trp Ala Ala Gly Gly Met Thr
 3285 3290 3295
 Gly Asp Gln Glu Ala Val Ser Phe Leu Arg Glu Arg Gly Val Arg Pro
 3300 3305 3310
 Met Ser Val Pro Arg Ala Leu Glu Ala Leu Glu Arg Val Leu Thr Ala
 3315 3320 3325
 Gly Glu Thr Ala Val Val Ala Asp Val Asp Trp Ala Ala Phe Ala
 3330 3335 3340
 Glu Ser Tyr Thr Ser Ala Arg Pro Arg Pro Leu Leu His Arg Leu Val
 3345 3350 3355 3360
 Thr Pro Ala Ala Ala Val Gly Glu Arg Asp Glu Pro Arg Glu Gln Thr
 3365 3370 3375
 Leu Arg Asp Arg Leu Ala Ala Leu Pro Arg Ala Glu Arg Ser Ala Glu
 3380 3385 3390
 Leu Val Arg Leu Val Arg Arg Asp Ala Ala Ala Val Leu Gly Ser Asp
 3395 3400 3405
 Ala Lys Ala Val Pro Ala Thr Thr Pro Phe Lys Asp Leu Gly Phe Asp
 3410 3415 3420
 Ser Leu Ala Ala Val Arg Phe Arg Asn Arg Leu Ala Ala His Thr Gly
 3425 3430 3435 3440
 Leu Arg Leu Pro Ala Thr Leu Val Phe Glu His Pro Asn Ala Ala Ala
 3445 3450 3455
 Val Ala Asp Leu Leu His Asp Arg Leu Gly Glu Ala Gly Glu Pro Thr
 3460 3465 3470
 Pro Val Arg Ser Val Gly Ala Gly Leu Ala Ala Leu Glu Gln Ala Leu
 3475 3480 3485
 Pro Asp Ala Ser Asp Thr Glu Arg Val Glu Leu Val Glu Arg Leu Glu
 3490 3495 3500
 Arg Met Leu Ala Gly Leu Arg Pro Glu Ala Gly Ala Gly Ala Asp Ala
 3505 3510 3515 3520
 Pro Thr Ala Gly Asp Asp Leu Gly Glu Ala Gly Val Asp Glu Leu Leu

3525	3530	3535
Asp Ala Leu Glu Arg Glu Leu Asp Ala Arg		
3540	3545	
<210> 14		
<211> 3562		
<212> PRT		
<213> Micromonospora megalomicea		
<400> 14		
Met Thr Asp Asn Asp Lys Val Ala Glu Tyr Leu Arg Arg Ala Thr Leu		
1	5	10
		15
Asp Leu Arg Ala Ala Arg Lys Arg Leu Arg Glu Leu Gln Ser Asp Pro		
20	25	30
Ile Ala Val Val Gly Met Ala Cys Arg Leu Pro Gly Gly Val His Leu		
35	40	45
Pro Gln His Leu Trp Asp Leu Leu Arg Gln Gly His Glu Thr Val Ser		
50	55	60
Thr Phe Pro Thr Gly Arg Gly Trp Asp Leu Ala Gly Leu Phe His Pro		
65	70	75
		80
Asp Pro Asp His Pro Gly Thr Ser Tyr Val Asp Arg Gly Phe Leu		
85	90	95
Asp Asp Val Ala Gly Phe Asp Ala Glu Phe Phe Gly Ile Ser Pro Arg		
100	105	110
Glu Ala Thr Ala Met Asp Pro Gln Gln Arg Leu Leu Leu Glu Thr Ser		
115	120	125
Trp Glu Leu Val Glu Ser Ala Gly Ile Asp Pro His Ser Leu Arg Gly		
130	135	140
Thr Pro Thr Gly Val Phe Leu Gly Val Ala Arg Leu Gly Tyr Gly Glu		
145	150	155
		160
Asn Gly Thr Glu Ala Gly Asp Ala Glu Gly Tyr Ser Val Thr Gly Val		
165	170	175
Ala Pro Ala Val Ala Ser Gly Arg Ile Ser Tyr Ala Leu Gly Leu Glu		
180	185	190
Gly Pro Ser Ile Ser Val Asp Thr Ala Cys Ser Ser Leu Val Ala		
195	200	205
Leu His Leu Ala Val Glu Ser Leu Arg Leu Gly Glu Ser Ser Leu Ala		
210	215	220
Val Val Gly Gly Ala Ala Val Met Ala Thr Pro Gly Val Phe Val Asp		
225	230	235
		240
Phe Ser Arg Gln Arg Ala Leu Ala Ala Asp Gly Arg Ser Lys Ala Phe		
245	250	255
Gly Ala Ala Ala Asp Gly Phe Gly Ser Glu Gly Val Ser Leu Val		
260	265	270
Leu Leu Glu Arg Leu Ser Glu Ala Glu Ser Asn Gly His Glu Val Leu		
275	280	285
Ala Val Ile Arg Gly Ser Ala Leu Asn Gln Asp Gly Ala Ser Asn Gly		
290	295	300
Leu Ala Ala Pro Asn Gly Thr Ala Gln Arg Lys Val Ile Arg Gln Ala		
305	310	315
		320
Leu Arg Asn Cys Gly Leu Thr Pro Ala Asp Val Asp Ala Val Glu Ala		
325	330	335
His Gly Thr Gly Thr Leu Gly Asp Pro Ile Glu Ala Asn Ala Leu		
340	345	350
Leu Asp Thr Tyr Gly Arg Asp Arg Asp Pro Asp His Pro Leu Trp Leu		
355	360	365
Gly Ser Val Lys Ser Asn Ile Gly His Thr Gln Ala Ala Ala Gly Val		
370	375	380
Thr Gly Leu Leu Lys Met Val Leu Ala Leu Arg His Glu Glu Leu Pro		
385	390	395
		400
Ala Thr Leu His Val Asp Glu Pro Thr Pro His Val Asp Trp Ser Ser		

405	410	415
Gly Ala Val Arg Leu Ala Thr Arg Gly Arg Pro Trp Arg Arg Gly Asp		
420	425	430
Arg Pro Arg Arg Ala Gly Val Ser Ala Phe Gly Ile Ser Gly Thr Asn		
435	440	445
Ala His Val Ile Val Glu Glu Ala Pro Glu Arg Thr Thr Glu Arg Thr		
450	455	460
Val Gly Gly Asp Val Gly Pro Val Pro Leu Val Val Ser Ala Arg Ser		
465	470	475
Ala Ala Ala Leu Arg Ala Gln Ala Ala Gln Val Ala Glu Leu Val Glu		
485	490	495
Gly Ser Asp Val Gly Leu Ala Glu Val Gly Arg Ser Leu Ala Val Thr		
500	505	510
Arg Ala Arg His Glu His Arg Ala Ala Val Val Ala Ser Thr Arg Ala		
515	520	525
Glu Ala Val Arg Gly Leu Arg Glu Val Ala Ala Val Glu Pro Arg Gly		
530	535	540
Glu Asp Thr Val Thr Gly Val Ala Glu Thr Ser Gly Arg Thr Val Val		
545	550	555
Phe Leu Phe Pro Gly Gln Gly Ser Gln Trp Val Gly Met Gly Ala Glu		
565	570	575
Leu Leu Asp Ser Ala Pro Ala Phe Ala Asp Thr Ile Arg Ala Cys Asp		
580	585	590
Glu Ala Met Ala Pro Leu Gln Asp Trp Ser Val Ser Asp Val Leu Arg		
595	600	605
Gln Glu Pro Gly Ala Pro Gly Leu Asp Arg Val Asp Val Val Gln Pro		
610	615	620
Val Leu Phe Ala Val Met Val Ser Leu Ala Arg Leu Trp Gln Ser Tyr		
625	630	635
Gly Val Thr Pro Ala Ala Val Val Gly His Ser Gln Gly Glu Ile Ala		
645	650	655
Ala Ala His Val Ala Gly Ala Leu Ser Leu Ala Asp Ala Ala Arg Leu		
660	665	670
Val Val Gly Arg Ser Arg Leu Leu Arg Ser Leu Ser Gly Gly Gly		
675	680	685
Met Ser Ala Val Ala Leu Gly Glu Ala Glu Val Arg Arg Arg Leu Arg		
690	695	700
Ser Trp Glu Asp Arg Ile Ser Val Ala Ala Val Asn Gly Pro Arg Ser		
705	710	715
Val Val Val Ala Gly Glu Pro Glu Ala Leu Arg Glu Trp Gly Arg Glu		
725	730	735
Arg Glu Ala Glu Gly Val Arg Val Arg Glu Ile Asp Val Asp Tyr Ala		
740	745	750
Ser His Ser Pro Gln Ile Asp Arg Val Arg Asp Glu Leu Leu Thr Val		
755	760	765
Thr Gly Glu Ile Glu Pro Arg Ser Ala Glu Ile Thr Phe Tyr Ser Thr		
770	775	780
Val Asp Val Arg Ala Val Asp Gly Thr Asp Leu Asp Ala Gly Tyr Trp		
785	790	795
Tyr Arg Asn Leu Arg Glu Thr Val Arg Phe Ala Asp Ala Met Thr Arg		
805	810	815
Leu Ala Asp Ser Gly Tyr Asp Ala Phe Val Glu Val Ser Pro His Pro		
820	825	830
Val Val Val Ser Ala Val Ala Glu Ala Val Glu Glu Ala Gly Val Glu		
835	840	845
Asp Ala Val Val Val Gly Thr Leu Ser Arg Gly Asp Gly Gly Pro Gly		
850	855	860
Ala Phe Leu Arg Ser Ala Ala Thr Ala His Cys Ala Gly Val Asp Val		
865	870	875
Asp Trp Thr Pro Ala Leu Pro Gly Ala Ala Thr Ile Pro Leu Pro Thr		
885	890	895

Tyr Pro Phe Gln Arg Lys Pro Tyr Trp Leu Arg Ser Ser Ala Pro Ala
 900 905 910
 Pro Ala Ser His Asp Leu Ala Tyr Arg Val Ser Trp Thr Pro Ile Thr
 915 920 925
 Pro Pro Gly Asp Gly Val Leu Asp Gly Asp Trp Leu Val Val His Pro
 930 935 940
 Gly Gly Ser Thr Gly Trp Val Asp Gly Leu Ala Ala Ala Ile Thr Ala
 945 950 955 960
 Gly Gly Gly Arg Val Val Ala His Pro Val Asp Ser Val Thr Ser Arg
 965 970 975
 Thr Gly Leu Ala Glu Ala Leu Ala Arg Arg Asp Gly Thr Phe Arg Gly
 980 985 990
 Val Leu Ser Trp Val Ala Thr Asp Glu Arg His Val Glu Ala Gly Ala
 995 1000 1005
 Val Ala Leu Leu Thr Leu Ala Gln Ala Leu Gly Asp Ala Gly Ile Asp
 1010 1015 1020
 Ala Pro Leu Trp Cys Leu Thr Gln Glu Ala Val Arg Thr Pro Val Asp
 1025 1030 1035 1040
 Gly Asp Leu Ala Arg Pro Ala Gln Ala Ala Leu His Gly Phe Ala Gln
 1045 1050 1055
 Val Ala Arg Leu Glu Leu Ala Arg Arg Phe Gly Gly Val Leu Asp Leu
 1060 1065 1070
 Pro Ala Thr Val Asp Ala Ala Gly Thr Arg Leu Val Ala Ala Val Leu
 1075 1080 1085
 Ala Gly Gly Glu Asp Val Val Ala Val Arg Gly Asp Arg Leu Tyr
 1090 1095 1100
 Gly Arg Arg Leu Val Arg Ala Thr Leu Pro Pro Gly Gly Phe
 1105 1110 1115 1120
 Thr Pro His Gly Thr Val Leu Val Thr Gly Ala Ala Gly Pro Val Gly
 1125 1130 1135
 Gly Arg Leu Ala Arg Trp Leu Ala Glu Arg Gly Ala Thr Arg Leu Val
 1140 1145 1150
 Leu Pro Gly Ala His Pro Gly Glu Glu Leu Leu Thr Ala Ile Arg Ala
 1155 1160 1165
 Ala Gly Ala Thr Ala Val Val Cys Glu Pro Glu Ala Glu Ala Leu Arg
 1170 1175 1180
 Thr Ala Ile Gly Gly Glu Leu Pro Thr Ala Leu Val His Ala Glu Thr
 1185 1190 1195 1200
 Leu Thr Asn Phe Ala Gly Val Ala Asp Ala Asp Pro Glu Asp Phe Ala
 1205 1210 1215
 Ala Thr Val Ala Ala Lys Thr Ala Leu Pro Thr Val Leu Ala Glu Val
 1220 1225 1230
 Leu Gly Asp His Arg Leu Glu Arg Glu Val Tyr Cys Ser Ser Val Ala
 1235 1240 1245
 Gly Val Trp Gly Gly Val Gly Met Ala Ala Tyr Ala Ala Gly Ser Ala
 1250 1255 1260
 Tyr Leu Asp Ala Leu Val Glu His Arg Arg Ala Arg Gly His Ala Ser
 1265 1270 1275 1280
 Ala Ser Val Ala Trp Thr Pro Trp Ala Leu Pro Gly Ala Val Asp Asp
 1285 1290 1295
 Gly Arg Leu Arg Glu Arg Gly Leu Arg Ser Leu Asp Val Ala Asp Ala
 1300 1305 1310
 Leu Gly Thr Trp Glu Arg Leu Leu Arg Ala Gly Ala Val Ser Val Ala
 1315 1320 1325
 Val Ala Asp Val Asp Trp Ser Val Phe Thr Glu Gly Phe Ala Ala Ile
 1330 1335 1340
 Arg Pro Thr Pro Leu Phe Asp Glu Leu Leu Asp Arg Arg Gly Asp Pro
 1345 1350 1355 1360
 Asp Gly Ala Pro Val Asp Arg Pro Gly Glu Pro Ala Gly Glu Trp Gly
 1365 1370 1375
 Arg Arg Ile Ala Ala Leu Ser Pro Gln Glu Gln Arg Glu Thr Leu Leu

1380	1385	1390
Thr Leu Val Gly Glu Thr Val Ala Glu Val Leu Gly His	1395	Glu Thr Gly
1400	1405	
Thr Glu Ile Asn Thr Arg Arg Ala Phe Ser Glu Leu Gly	1410	Leu Asp Ser
1415	1420	
Leu Gly Ser Met Ala Leu Arg Gln Arg Leu Ala Ala Arg	1425	Thr Gly Leu
1430	1435	1440
Arg Met Pro Ala Ser Leu Val Phe Asp His Pro Thr Val	1445	Thr Ala Leu
1450	1455	
Ala Arg Tyr Leu Arg Arg Leu Val Val Gly Asp Ser Asp	1460	Pro Thr Pro
1465	1470	
Val Arg Val Phe Gly Pro Thr Asp Glu Ala Glu Pro Val	1475	Ala Val Val
1480	1485	
Gly Ile Gly Cys Arg Phe Pro Gly Gly Ile Ala Thr Pro	1490	Glu Asp Leu
1495	1500	
Trp Arg Val Val Ser Glu Gly Thr Ser Ile Thr Thr Gly	1505	Phe Pro Thr
1510	1515	1520
Asp Arg Gly Trp Asp Leu Arg Arg Leu Tyr His Pro Asp	1525	Pro Asp His
1530	1535	
Pro Gly Thr Ser Tyr Val Asp Arg Gly Gly Phe Leu Asp	1540	Gly Ala Pro
1545	1550	
Asp Phe Asp Pro Gly Phe Gly Ile Thr Pro Arg Glu Ala	1555	Leu Ala
1560	1565	
Met Asp Pro Gln Gln Arg Leu Thr Leu Glu Ile Ala Trp	1570	Glu Ala Val
1575	1580	
Glu Arg Ala Gly Ile Asp Pro Glu Thr Leu Leu Gly Ser	1585	Asp Thr Gly
1590	1595	1600
Val Phe Val Gly Met Asn Gly Gln Ser Tyr Leu Gln Leu	1605	Thr Gly
1610	1615	
Glu Gly Asp Arg Leu Asn Gly Tyr Gln Gly Leu Gly Asn	1620	Ser Ala Ser
1625	1630	
Val Leu Ser Gly Arg Val Ala Tyr Thr Phe Gly Trp Glu	1635	Gly Pro Ala
1640	1645	
Leu Thr Val Asp Thr Ala Cys Ser Ser Ser Leu Val Ala	1650	Ile His Leu
1655	1660	
Ala Met Gln Ser Leu Arg Arg Gly Glu Cys Ser Leu Ala	1665	Leu Ala Gly
1670	1675	1680
Gly Val Thr Val Met Ala Asp Pro Tyr Thr Phe Val Asp	1685	Phe Ser Ala
1690	1695	
Gln Arg Gly Leu Ala Ala Asp Gly Arg Cys Lys Ala Phe	1700	Ser Ala Gln
1705	1710	
Ala Asp Gly Phe Ala Leu Ala Glu Gly Val Ala Ala Leu	1715	Val Leu Glu
1720	1725	
Pro Leu Ser Lys Ala Arg Arg Asn Gly His Gln Val Leu	1730	Ala Val Leu
1735	1740	
Arg Gly Ser Ala Val Asn Gln Asp Gly Ala Ser Asn Gly	1745	Leu Ala Ala
1750	1755	1760
Pro Asn Gly Pro Ser Gln Glu Arg Val Ile Arg Gln Ala	1765	Leu Thr Ala
1770	1775	
Ser Gly Leu Arg Pro Ala Asp Val Asp Met Val Glu Ala	1780	His Gly Thr
1785	1790	
Gly Thr Glu Leu Gly Asp Pro Ile Glu Ala Gly Ala Leu	1795	Ile Ala Ala
1800	1805	
Tyr Gly Arg Asp Arg Asp Pro Leu Trp Leu Gly Ser Val	1810	Lys Thr
1815	1820	
Asn Ile Gly His Thr Gln Ala Ala Gly Ala Ala Gly Val	1825	Ile Lys
1830	1835	1840
Ala Val Leu Ala Met Arg His Gly Val Leu Pro Arg Ser	1845	Leu His Ala
1850	1855	
Asp Glu Leu Ser Pro His Ile Asp Trp Ala Asp Gly Lys	1860	Val Glu Val
1865	1870	

Leu Arg Glu Ala Arg Gln Trp Pro Pro Gly Glu Arg Pro Arg Arg Ala
 1875 1880 1885
 Gly Val Ser Ser Phe Gly Val Ser Gly Thr Asn Ala His Val Ile Val
 1890 1895 1900
 Glu Glu Ala Pro Ala Glu Pro Asp Pro Glu Pro Val Pro Ala Ala Pro
 1905 1910 1915 1920
 Gly Gly Pro Leu Pro Phe Val Leu His Gly Arg Ser Val Gln Thr Val
 1925 1930 1935
 Arg Ser Gln Ala Arg Thr Leu Ala Glu His Leu Arg Thr Thr Gly His
 1940 1945 1950
 Arg Asp Leu Ala Asp Thr Ala Arg Thr Leu Ala Thr Gly Arg Ala Arg
 1955 1960 1965
 Phe Asp Val Arg Ala Ala Val Leu Gly Thr Asp Arg Glu Gly Val Cys
 1970 1975 1980
 Ala Ala Leu Asp Ala Leu Ala Gln Asp Arg Pro Ser Pro Asp Val Val
 1985 1990 1995 2000
 Ala Pro Ala Val Phe Ala Ala Arg Thr Pro Val Leu Val Phe Pro Gly
 2005 2010 2015
 Gln Gly Ser Gln Trp Val Gly Met Ala Arg Asp Leu Leu Asp Ser Ser
 2020 2025 2030
 Glu Val Phe Ala Glu Ser Met Gly Arg Cys Ala Glu Ala Leu Ser Pro
 2035 2040 2045
 Tyr Thr Asp Trp Asp Leu Leu Asp Val Val Arg Gly Val Gly Asp Pro
 2050 2055 2060
 Asp Pro Tyr Asp Arg Val Asp Val Leu Gln Pro Val Leu Phe Ala Val
 2065 2070 2075 2080
 Met Val Ser Leu Ala Arg Leu Trp Gln Ser Tyr Gly Val Thr Pro Gly
 2085 2090 2095
 Ala Val Val Gly His Ser Gln Gly Glu Ile Ala Ala Ala His Val Ala
 2100 2105 2110
 Gly Ala Leu Ser Leu Ala Asp Ala Ala Arg Val Val Ala Leu Arg Ser
 2115 2120 2125
 Arg Val Leu Arg Glu Leu Asp Asp Gln Gly Gly Met Val Ser Val Gly
 2130 2135 2140
 Thr Ser Arg Ala Glu Leu Asp Ser Val Leu Arg Arg Trp Asp Gly Arg
 2145 2150 2155 2160
 Val Ala Val Ala Ala Val Asn Gly Pro Gly Thr Leu Val Val Ala Gly
 2165 2170 2175
 Pro Thr Ala Glu Leu Asp Glu Phe Leu Ala Val Ala Glu Ala Arg Glu
 2180 2185 2190
 Met Arg Pro Arg Arg Ile Ala Val Arg Tyr Ala Ser His Ser Pro Glu
 2195 2200 2205
 Val Ala Arg Val Glu Gln Arg Leu Ala Ala Glu Leu Gly Thr Val Thr
 2210 2215 2220
 Ala Val Gly Gly Thr Val Pro Leu Tyr Ser Thr Ala Thr Gly Asp Leu
 2225 2230 2235 2240
 Leu Asp Thr Thr Ala Met Asp Ala Gly Tyr Trp Tyr Arg Asn Leu Arg
 2245 2250 2255
 Gln Pro Val Leu Phe Glu His Ala Val Arg Ser Leu Leu Glu Arg Gly
 2260 2265 2270
 Phe Glu Thr Phe Ile Glu Val Ser Pro His Pro Val Leu Leu Met Ala
 2275 2280 2285
 Val Glu Glu Thr Ala Glu Asp Ala Glu Arg Pro Val Thr Gly Val Pro
 2290 2295 2300
 Thr Leu Arg Arg Asp His Asp Gly Pro Ser Glu Phe Leu Arg Asn Leu
 2305 2310 2315 2320
 Leu Gly Ala His Val His Gly Val Asp Val Asp Leu Arg Pro Ala Val
 2325 2330 2335
 Ala His Gly Arg Leu Val Asp Leu Pro Thr Tyr Pro Phe Asp Arg Gln
 2340 2345 2350
 Arg Leu Trp Pro Lys Pro His Arg Arg Ala Asp Thr Ser Ser Leu Gly

2355	2360	2365
Val Arg Asp Ser Thr His Pro Leu Leu His Ala Ala Val Asp Val Pro		
2370	2375	2380
Gly His Gly Gly Ala Val Phe Thr Gly Arg Leu Ser Pro Asp Glu Gln		
2385	2390	2395
Gln Trp Leu Thr Gln His Val Val Gly Gly Arg Asn Leu Val Pro Gly		
2405	2410	2415
Ser Val Leu Val Asp Leu Ala Leu Thr Ala Gly Ala Asp Val Gly Val		
2420	2425	2430
Pro Val Leu Glu Glu Leu Val Leu Gln Gln Pro Leu Val Leu Thr Ala		
2435	2440	2445
Ala Gly Ala Leu Leu Arg Leu Ser Val Gly Ala Ala Asp Glu Asp Gly		
2450	2455	2460
Arg Arg Pro Val Glu Ile His Ala Ala Glu Asp Val Ser Asp Pro Ala		
2465	2470	2475
Glu Ala Arg Trp Ser Ala Tyr Ala Thr Gly Thr Leu Ala Val Gly Val		
2485	2490	2495
Ala Gly Gly Arg Asp Gly Thr Gln Trp Pro Pro Pro Gly Ala Thr		
2500	2505	2510
Ala Leu Thr Leu Thr Asp His Tyr Asp Thr Leu Ala Glu Leu Gly Tyr		
2515	2520	2525
Glu Tyr Gly Pro Ala Phe Gln Ala Leu Arg Ala Ala Trp Gln His Gly		
2530	2535	2540
Asp Val Val Tyr Ala Glu Val Ser Leu Asp Ala Val Glu Glu Gly Tyr		
2545	2550	2555
Ala Phe Asp Pro Val Leu Leu Asp Ala Val Ala Gln Thr Phe Gly Leu		
2565	2570	2575
Thr Ser Arg Ala Pro Gly Lys Leu Pro Phe Ala Trp Arg Gly Val Thr		
2580	2585	2590
Leu His Ala Thr Gly Ala Thr Ala Val Arg Val Val Ala Thr Pro Ala		
2595	2600	2605
Gly Pro Asp Ala Val Ala Leu Arg Val Thr Asp Pro Thr Gly Gln Leu		
2610	2615	2620
Val Ala Thr Val Asp Ala Leu Val Val Arg Asp Ala Gly Ala Asp Arg		
2625	2630	2635
Asp Gln Pro Arg Gly Arg Asp Gly Asp Leu His Arg Leu Glu Trp Val		
2645	2650	2655
Arg Leu Ala Thr Pro Asp Pro Thr Pro Ala Ala Val Val His Val Ala		
2660	2665	2670
Ala Asp Gly Leu Asp Asp Leu Leu Arg Ala Gly Gly Pro Ala Pro Gln		
2675	2680	2685
Ala Val Val Val Arg Tyr Arg Pro Asp Gly Asp Asp Pro Thr Ala Glu		
2690	2695	2700
Ala Arg His Gly Val Leu Trp Ala Ala Thr Leu Val Arg Arg Trp Leu		
2705	2710	2715
Asp Asp Asp Arg Trp Pro Ala Thr Thr Leu Val Val Ala Thr Ser Ala		
2725	2730	2735
Gly Val Glu Val Ser Pro Gly Asp Asp Val Pro Arg Pro Gly Ala Ala		
2740	2745	2750
Ala Val Trp Gly Val Leu Arg Cys Ala Gln Ala Glu Ser Pro Asp Arg		
2755	2760	2765
Phe Val Leu Val Asp Gly Asp Pro Glu Thr Pro Pro Ala Val Pro Asp		
2770	2775	2780
Asn Pro Gln Leu Ala Val Arg Asp Gly Ala Val Phe Val Pro Arg Leu		
2785	2790	2795
Thr Pro Leu Ala Gly Pro Val Pro Ala Val Ala Asp Arg Ala Tyr Arg		
2805	2810	2815
Leu Val Pro Gly Asn Gly Gly Ser Ile Glu Ala Val Ala Phe Ala Pro		
2820	2825	2830
Val Pro Asp Ala Asp Arg Pro Leu Ala Pro Glu Glu Val Arg Val Ala		
2835	2840	2845

Val Arg Ala Thr Gly Val Asn Phe Arg Asp Val Leu Leu Ala Leu Gly
 2850 2855 2860
 Met Tyr Pro Glu Pro Ala Glu Met Gly Thr Glu Ala Ser Gly Val Val
 2865 2870 2875 2880
 Thr Glu Val Gly Ser Gly Val Arg Arg Phe Thr Pro Gly Gln Ala Val
 2885 2890 2895
 Thr Gly Leu Phe Gln Gly Ala Phe Gly Pro Val Ala Val Ala Asp His
 2900 2905 2910
 Arg Leu Leu Thr Pro Val Pro Asp Gly Trp Arg Ala Val Asp Ala Ala
 2915 2920 2925
 Ala Val Pro Ile Ala Phe Thr Thr Ala His Tyr Ala Leu His Asp Leu
 2930 2935 2940
 Ala Gly Leu Gln Ala Gly Gln Ser Val Leu Val His Ala Ala Ala Gly
 2945 2950 2955 2960
 Gly Val Gly Met Ala Ala Val Ala Leu Ala Arg Arg Ala Gly Ala Glu
 2965 2970 2975
 Val Phe Ala Thr Ala Ser Pro Ala Lys His Pro Thr Leu Arg Ala Leu
 2980 2985 2990
 Gly Leu Asp Asp Asp His Ile Ala Ser Ser Arg Glu Ser Gly Phe Gly
 2995 3000 3005
 Glu Arg Phe Ala Ala Arg Thr Gly Gly Arg Gly Val Asp Val Val Leu
 3010 3015 3020
 Asn Ser Leu Thr Gly Asp Leu Leu Asp Glu Ser Ala Arg Leu Leu Ala
 3025 3030 3035 3040
 Asp Gly Gly Val Phe Val Glu Met Gly Lys Thr Asp Leu Arg Pro Ala
 3045 3050 3055
 Glu Gln Phe Arg Gly Arg Tyr Val Pro Phe Asp Leu Ala Glu Ala Gly
 3060 3065 3070
 Pro Asp Arg Leu Gly Glu Ile Leu Glu Glu Val Val Gly Leu Leu Ala
 3075 3080 3085
 Ala Gly Ala Leu Asp Arg Leu Pro Val Ser Val Trp Glu Leu Ser Ala
 3090 3095 3100
 Ala Pro Ala Ala Leu Thr His Met Ser Arg Gly Arg His Val Gly Lys
 3105 3110 3115 3120
 Leu Val Leu Thr Gln Pro Ala Pro Val His Pro Asp Gly Thr Val Leu
 3125 3130 3135
 Val Thr Gly Gly Thr Gly Thr Leu Gly Arg Leu Val Ala Arg His Leu
 3140 3145 3150
 Val Thr Gly His Gly Val Pro His Leu Leu Val Ala Ser Arg Arg Gly
 3155 3160 3165
 Pro Ala Ala Pro Gly Ala Ala Glu Leu Arg Ala Asp Val Glu Gly Leu
 3170 3175 3180
 Gly Ala Thr Ile Glu Ile Val Ala Cys Asp Thr Ala Asp Arg Glu Ala
 3185 3190 3195 3200
 Leu Ala Ala Leu Leu Asp Ser Ile Pro Ala Asp Arg Pro Leu Thr Gly
 3205 3210 3215
 Val Val His Thr Ala Gly Val Leu Ala Asp Gly Leu Val Thr Ser Ile
 3220 3225 3230
 Asp Gly Thr Ala Thr Asp Gln Val Leu Arg Ala Lys Val Asp Ala Ala
 3235 3240 3245
 Trp His Leu His Asp Leu Thr Arg Asp Ala Asp Leu Ser Phe Phe Val
 3250 3255 3260
 Leu Phe Ser Ser Ala Ala Ser Val Leu Ala Gly Pro Gly Gln Gly Val
 3265 3270 3275 3280
 Tyr Ala Ala Ala Asn Gly Val Leu Asn Ala Leu Ala Gly Gln Arg Arg
 3285 3290 3295
 Ala Leu Gly Leu Pro Ala Lys Ala Leu Gly Trp Gly Leu Trp Ala Gln
 3300 3305 3310
 Ala Ser Glu Met Thr Ser Gly Leu Gly Asp Arg Ile Ala Arg Thr Gly
 3315 3320 3325
 Val Ala Ala Leu Pro Thr Glu Arg Ala Leu Ala Leu Phe Asp Ala Ala

3330	3335	3340
Leu Arg Ser Gly Gly Glu Val Leu Phe Pro Leu Ser Val Asp Arg Ser		
3345	3350	3355
Ala Leu Arg Arg Ala Glu Tyr Val Pro Glu Val Leu Arg Gly Ala Val		3360
3365	3370	3375
Arg Ser Thr Pro Arg Ala Ala Asn Arg Ala Glu Thr Pro Gly Arg Gly		
3380	3385	3390
Leu Leu Asp Arg Leu Val Gly Ala Pro Glu Thr Asp Gln Val Ala Ala		
3395	3400	3405
Leu Ala Glu Leu Val Arg Ser His Ala Ala Ala Val Ala Gly Tyr Asp		
3410	3415	3420
Ser Ala Asp Gln Leu Pro Glu Arg Lys Ala Phe Lys Asp Leu Gly Phe		
3425	3430	3435
Asp Ser Leu Ala Ala Val Glu Leu Arg Asn Arg Leu Gly Val Thr Thr		3440
3445	3450	3455
Gly Val Arg Leu Pro Ser Thr Leu Val Phe Asp His Pro Thr Pro Leu		
3460	3465	3470
Ala Val Ala Glu His Leu Arg Ser Glu Leu Phe Ala Asp Ser Ala Pro		
3475	3480	3485
Asp Val Gly Val Gly Ala Arg Leu Asp Asp Leu Glu Arg Ala Leu Asp		
3490	3495	3500
Ala Leu Pro Asp Ala Gln Gly His Ala Asp Val Gly Ala Arg Leu Glu		
3505	3510	3515
Ala Leu Leu Arg Arg Trp Gln Ser Arg Arg Pro Pro Glu Thr Glu Pro		
3525	3530	3535
Val Thr Ile Ser Asp Asp Ala Ser Asp Asp Glu Leu Phe Ser Met Leu		
3540	3545	3550
Asp Arg Arg Leu Gly Gly Gly Asp Val		
3555	3560	

<210> 15

<211> 3201

<212> PRT

<213> Micromonospora megalomicea

<400> 15

Met Ser Glu Ser Ser Gly Met Thr Glu Asp Arg Leu Arg Arg Tyr Leu		
1	5	10
Lys Arg Thr Val Ala Glu Leu Asp Ser Val Thr Gly Arg Leu Asp Glu		
20	25	30
Val Glu Tyr Arg Ala Arg Glu Pro Ile Ala Val Val Gly Met Ala Cys		
35	40	45
Arg Phe Pro Gly Gly Val Asp Ser Pro Glu Ala Phe Trp Glu Phe Ile		
50	55	60
Arg Asp Gly Gly Asp Ala Ile Ala Glu Ala Pro Thr Asp Arg Gly Trp		
65	70	75
80		
Pro Pro Ala Pro Arg Pro Arg Leu Gly Gly Leu Leu Ala Glu Pro Gly		
85	90	95
Ala Phe Asp Ala Ala Phe Phe Gly Ile Ser Pro Arg Glu Ala Leu Ala		
100	105	110
Thr Asp Pro Gln Gln Arg Leu Met Leu Glu Ile Ser Trp Glu Ala Leu		
115	120	125
Glu Arg Ala Gly Phe Asp Pro Ser Ser Leu Arg Gly Ser Ala Gly Gly		
130	135	140
Val Phe Thr Gly Val Gly Ala Val Asp Tyr Gly Pro Arg Pro Asp Glu		
145	150	155
160		
Ala Pro Glu Glu Val Leu Gly Tyr Val Gly Ile Gly Thr Ala Ser Ser		
165	170	175
Val Ala Ser Gly Arg Val Ala Tyr Thr Leu Gly Leu Glu Gly Pro Ala		
180	185	190
Val Thr Val Asp Thr Ala Cys Ser Ser Gly Leu Thr Ala Val His Leu		

195	200	205	
Ala Met Glu Ser Leu Arg Arg Asp Glu Cys Thr	Leu Val Leu Ala Gly		
210	215	220	
Gly Val Thr Val Met Ser Ser Pro Gly Ala Phe	Thr Glu Phe Arg Ser		
225	230	235	
Gln Gly Gly Leu Ala Glu Asp Gly Arg Cys Lys	Pro Phe Ser Arg Ala	240	
245	250	255	
Ala Asp Gly Phe Gly Leu Ala Glu Gly Ala Gly	Val Leu Val Leu Gln		
260	265	270	
Arg Leu Ser Val Ala Arg Ala Glu Gly Arg Pro	Val Leu Ala Val Leu		
275	280	285	
Arg Gly Ser Ala Ile Asn Gln Asp Gly Ala Ser	Asn Gly Leu Thr Ala		
290	295	300	
Pro Ser Gly Pro Ala Gln Arg Arg Val Ile Arg	Gln Ala Leu Glu Arg	320	
305	310	315	
Ala Arg Leu Arg Pro Val Asp Val Asp Tyr Val	Glu Ala His Gly Thr		
325	330	335	
Gly Thr Arg Leu Gly Asp Pro Ile Glu Ala His	Ala Leu Leu Asp Thr		
340	345	350	
Tyr Gly Ala Asp Arg Glu Pro Gly Arg Pro Leu	Trp Val Gly Ser Val		
355	360	365	
Lys Ser Asn Ile Gly His Thr Gln Ala Ala Ala	Gly Val Ala Gly Val		
370	375	380	
Met Lys Thr Val Leu Ala Leu Arg His Arg Glu	Ile Pro Ala Thr Leu		
385	390	395	400
His Phe Asp Glu Pro Ser Pro His Val Asp Trp	Asp Arg Gly Ala Val		
405	410	415	
Ser Val Val Ser Glu Thr Arg Pro Trp Pro Val	Gly Glu Arg Pro Arg		
420	425	430	
Arg Ala Gly Val Ser Ser Phe Gly Ile Ser Gly	Thr Asn Ala His Val		
435	440	445	
Ile Val Glu Glu Ala Pro Ser Pro Gln Ala Ala	Asp Leu Asp Pro Thr		
450	455	460	
Pro Gly Pro Ala Thr Gly Ala Thr Pro Gly Thr	Asp Ala Ala Pro Thr		
465	470	475	480
Ala Glu Pro Gly Ala Glu Ala Val Ala Leu Val	Phe Ser Ala Arg Asp		
485	490	495	
Glu Arg Ala Leu Arg Ala Gln Ala Ala Arg Leu	Ala Asp Arg Leu Thr		
500	505	510	
Asp Asp Pro Ala Pro Ser Leu Arg Asp Thr Ala	Phe Thr Leu Val Thr		
515	520	525	
Arg Arg Ala Thr Trp Glu His Arg Ala Val Val	Gly Gly Glu		
530	535	540	
Glu Val Leu Ala Gly Leu Arg Ala Val Ala Gly	Gly Arg Pro Val Asp		
545	550	555	560
Gly Ala Val Ser Gly Arg Ala Arg Ala Gly Arg	Arg Val Val Leu Val		
565	570	575	
Phe Pro Gly Gln Gly Ala Gln Trp Gln Gly Met	Ala Arg Asp Leu Leu		
580	585	590	
Arg Gln Ser Pro Thr Phe Ala Glu Ser Ile Asp	Ala Cys Glu Arg Ala		
595	600	605	
Leu Ala Pro His Val Asp Trp Ser Leu Arg Glu	Val Leu Asp Gly Glu		
610	615	620	
Gln Ser Leu Asp Pro Val Asp Val Val Gln Pro	Val Leu Phe Ala Val		
625	630	635	640
Met Val Ser Leu Ala Arg Leu Trp Gln Ser Tyr	Gly Val Thr Pro Gly		
645	650	655	
Ala Val Val Gly His Ser Gln Gly Glu Ile Ala	Ala His Val Ala		
660	665	670	
Gly Ala Leu Ser Leu Ala Asp Ala Ala Arg Val	Val Ala Leu Arg Ser		
675	680	685	

Arg Val Leu Arg Arg Leu Gly Gly His Gly Gly Met Ala Ser Phe Gly
 690 695 700
 Leu His Pro Asp Gln Ala Ala Glu Arg Ile Ala Arg Phe Ala Gly Ala
 705 710 715 720
 Leu Thr Val Ala Ser Val Asn Gly Pro Arg Ser Val Val Leu Ala Gly
 725 730 735
 Glu Asn Gly Pro Leu Asp Glu Leu Ile Ala Glu Cys Glu Ala Glu Gly
 740 745 750
 Val Thr Ala Arg Arg Ile Pro Val Asp Tyr Ala Ser His Ser Pro Gln
 755 760 765
 Val Glu Ser Leu Arg Glu Glu Leu Leu Ala Ala Leu Ala Gly Val Arg
 770 775 780
 Pro Val Ser Ala Gly Ile Pro Leu Tyr Ser Thr Leu Thr Gly Gln Val
 785 790 795 800
 Ile Glu Thr Ala Thr Met Asp Ala Asp Tyr Trp Phe Ala Asn Leu Arg
 805 810 815
 Glu Pro Val Arg Phe Gln Asp Ala Thr Arg Gln Leu Ala Glu Ala Gly
 820 825 830
 Phe Asp Ala Phe Val Glu Val Ser Pro His Pro Val Leu Thr Val Gly
 835 840 845
 Val Glu Ala Thr Leu Glu Ala Val Leu Pro Pro Asp Ala Asp Pro Cys
 850 855 860
 Val Thr Gly Thr Leu Arg Arg Glu Arg Gly Gly Leu Ala Gln Phe His
 865 870 875 880
 Thr Ala Leu Ala Glu Ala Tyr Thr Arg Gly Val Glu Val Asp Trp Arg
 885 890 895
 Thr Ala Val Gly Glu Gly Arg Pro Val Asp Leu Pro Val Tyr Pro Phe
 900 905 910
 Gln Arg Gln Asn Phe Trp Leu Pro Val Pro Leu Gly Arg Val Pro Asp
 915 920 925
 Thr Gly Asp Glu Trp Arg Tyr Gln Leu Ala Trp His Pro Val Asp Leu
 930 935 940
 Gly Arg Ser Ser Leu Ala Gly Arg Val Leu Val Val Thr Gly Ala Ala
 945 950 955 960
 Val Pro Pro Ala Trp Thr Asp Val Val Arg Asp Gly Leu Glu Gln Arg
 965 970 975
 Gly Ala Thr Val Val Leu Cys Thr Ala Gln Ser Arg Ala Arg Ile Gly
 980 985 990
 Ala Ala Leu Asp Ala Val Asp Gly Thr Ala Leu Ser Thr Val Val Ser
 995 1000 1005
 Leu Leu Ala Leu Ala Glu Gly Ala Val Asp Asp Pro Ser Leu Asp
 1010 1015 1020
 Thr Leu Ala Leu Val Gln Ala Leu Gly Ala Ala Gly Ile Asp Val Pro
 1025 1030 1035 1040
 Leu Trp Leu Val Thr Arg Asp Ala Ala Ala Val Thr Val Gly Asp Asp
 1045 1050 1055
 Val Asp Pro Ala Gln Ala Met Val Gly Gly Leu Gly Arg Val Val Gly
 1060 1065 1070
 Val Glu Ser Pro Ala Arg Trp Gly Gly Leu Val Asp Leu Arg Glu Ala
 1075 1080 1085
 Asp Ala Asp Ser Ala Arg Ser Leu Ala Ala Ile Leu Ala Asp Pro Arg
 1090 1095 1100
 Gly Glu Glu Gln Phe Ala Ile Arg Pro Asp Gly Val Thr Val Ala Arg
 1105 1110 1115 1120
 Leu Val Pro Ala Pro Ala Arg Ala Ala Gly Thr Arg Trp Thr Pro Arg
 1125 1130 1135
 Gly Thr Val Leu Val Thr Gly Gly Thr Gly Gly Ile Gly Ala His Leu
 1140 1145 1150
 Ala Arg Trp Leu Ala Gly Ala Gly Ala Glu His Leu Val Leu Leu Asn
 1155 1160 1165
 Arg Arg Gly Ala Glu Ala Ala Gly Ala Ala Asp Leu Arg Asp Glu Leu

1170	1175	1180
Val Ala Leu Gly Thr Gly Val Thr Ile Thr Ala Cys Asp Val Ala Asp		
1185	1190	1195
Arg Asp Arg Leu Ala Ala Val Leu Asp Ala Ala Arg Ala Gln Gly Arg		1200
1205	1210	1215
Val Val Thr Ala Val Phe His Ala Ala Gly Ile Ser Arg Ser Thr Ala		
1220	1225	1230
Val Gln Glu Leu Thr Glu Ser Glu Phe Thr Glu Ile Thr Asp Ala Lys		
1235	1240	1245
Val Arg Gly Thr Ala Asn Leu Ala Glu Leu Cys Pro Glu Leu Asp Ala		
1250	1255	1260
Leu Val Leu Phe Ser Ser Asn Ala Ala Val Trp Gly Ser Pro Gly Leu		
1265	1270	1275
Ala Ser Tyr Ala Ala Gly Asn Ala Phe Leu Asp Ala Phe Ala Arg Arg		1280
1285	1290	1295
Gly Arg Arg Ser Gly Leu Pro Val Thr Ser Ile Ala Trp Gly Leu Trp		
1300	1305	1310
Ala Gly Gln Asn Met Ala Gly Thr Glu Gly Asp Tyr Leu Arg Ser		
1315	1320	1325
Gln Gly Leu Arg Ala Met Asp Pro Gln Arg Ala Ile Glu Glu Leu Arg		
1330	1335	1340
Thr Thr Leu Asp Ala Gly Asp Pro Trp Val Ser Val Val Asp Leu Asp		
1345	1350	1355
Arg Glu Arg Phe Val Glu Leu Phe Thr Ala Ala Arg Arg Arg Pro Leu		1360
1365	1370	1375
Phe Asp Glu Leu Gly Gly Val Arg Ala Gly Ala Glu Glu Thr Gly Gln		
1380	1385	1390
Glu Ser Asp Leu Ala Arg Arg Leu Ala Ser Met Pro Glu Ala Glu Arg		
1395	1400	1405
His Glu His Val Ala Arg Leu Val Arg Ala Glu Val Ala Ala Val Leu		
1410	1415	1420
Gly His Gly Thr Pro Thr Val Ile Glu Arg Asp Val Ala Phe Arg Asp		
1425	1430	1435
Leu Gly Phe Asp Ser Met Thr Ala Val Asp Leu Arg Asn Arg Leu Ala		1440
1445	1450	1455
Ala Val Thr Gly Val Arg Val Ala Thr Thr Ile Val Phe Asp His Pro		
1460	1465	1470
Thr Val Asp Arg Leu Thr Ala His Tyr Leu Glu Arg Leu Val Gly Glu		
1475	1480	1485
Pro Glu Ala Thr Thr Pro Ala Ala Ala Val Val Pro Gln Ala Pro Gly		
1490	1495	1500
Glu Ala Asp Glu Pro Ile Ala Ile Val Gly Met Ala Cys Arg Leu Ala		
1505	1510	1515
Gly Gly Val Arg Thr Pro Asp Gln Leu Trp Asp Phe Ile Val Ala Asp		1520
1525	1530	1535
Gly Asp Ala Val Thr Glu Met Pro Ser Asp Arg Ser Trp Asp Leu Asp		
1540	1545	1550
Ala Leu Phe Asp Pro Asp Pro Glu Arg His Gly Thr Ser Tyr Ser Arg		
1555	1560	1565
His Gly Ala Phe Leu Asp Gly Ala Ala Asp Phe Asp Ala Ala Phe Phe		
1570	1575	1580
Gly Ile Ser Pro Arg Glu Ala Leu Ala Met Asp Pro Gln Gln Arg Gln		
1585	1590	1595
Val Leu Glu Thr Thr Trp Glu Leu Phe Glu Asn Ala Gly Ile Asp Pro		1600
1605	1610	1615
His Ser Leu Arg Gly Thr Asp Thr Gly Val Phe Leu Gly Ala Ala Tyr		
1620	1625	1630
Gln Gly Tyr Gly Gln Asn Ala Gln Val Pro Lys Glu Ser Glu Gly Tyr		
1635	1640	1645
Leu Leu Thr Gly Gly Ser Ser Ala Val Ala Ser Gly Arg Ile Ala Tyr		
1650	1655	1660

Val Leu Gly Leu Glu Gly Pro Ala Ile Thr Val Asp Thr Ala Cys Ser
 1665 1670 1675 1680
 Ser Ser Leu Val Ala Leu His Val Ala Ala Gly Ser Leu Arg Ser Gly
 1685 1690 1695
 Asp Cys Gly Leu Ala Val Ala Gly Gly Val Ser Val Met Ala Gly Pro
 1700 1705 1710
 Glu Val Phe Thr Glu Phe Ser Arg Gln Gly Ala Leu Ala Pro Asp Gly
 1715 1720 1725
 Arg Cys Lys Pro Phe Ser Asp Gln Ala Asp Gly Phe Gly Phe Ala Glu
 1730 1735 1740
 Gly Val Ala Val Val Leu Leu Gln Arg Leu Ser Val Ala Val Arg Glu
 1745 1750 1755 1760
 Gly Arg Arg Val Leu Gly Val Val Gly Ser Ala Val Asn Gln Asp
 1765 1770 1775
 Gly Ala Ser Asn Gly Leu Ala Ala Pro Ser Gly Val Ala Gln Gln Arg
 1780 1785 1790
 Val Ile Arg Arg Ala Trp Gly Arg Ala Gly Val Ser Gly Gly Asp Val
 1795 1800 1805
 Gly Val Val Glu Ala His Gly Thr Gly Thr Arg Leu Gly Asp Pro Val
 1810 1815 1820
 Glu Leu Gly Ala Leu Leu Gly Thr Tyr Gly Val Gly Arg Gly Gly Val
 1825 1830 1835 1840
 Gly Pro Val Val Val Gly Ser Val Lys Ala Asn Val Gly His Val Gln
 1845 1850 1855
 Ala Ala Ala Gly Val Val Gly Val Ile Lys Val Val Leu Gly Leu Gly
 1860 1865 1870
 Arg Gly Leu Val Gly Pro Met Val Cys Arg Gly Gly Leu Ser Gly Leu
 1875 1880 1885
 Val Asp Trp Ser Ser Gly Gly Leu Val Val Ala Asp Gly Val Arg Gly
 1890 1895 1900
 Trp Pro Val Gly Val Asp Gly Val Arg Arg Gly Gly Val Ser Ala Phe
 1905 1910 1915 1920
 Gly Val Ser Gly Thr Asn Ala His Val Val Ala Glu Ala Pro Gly
 1925 1930 1935
 Ser Val Val Gly Ala Glu Arg Pro Val Glu Gly Ser Ser Arg Gly Leu
 1940 1945 1950
 Val Gly Val Ala Gly Gly Val Val Pro Val Val Leu Ser Ala Lys Thr
 1955 1960 1965
 Glu Thr Ala Leu Thr Glu Leu Ala Arg Arg Leu His Asp Ala Val Asp
 1970 1975 1980
 Asp Thr Val Ala Leu Pro Ala Val Ala Ala Thr Leu Ala Thr Gly Arg
 1985 1990 1995 2000
 Ala His Leu Pro Tyr Arg Ala Ala Leu Leu Ala Arg Asp His Asp Glu
 2005 2010 2015
 Leu Arg Asp Arg Leu Arg Ala Phe Thr Thr Gly Ser Ala Ala Pro Gly
 2020 2025 2030
 Val Val Ser Gly Val Ala Ser Gly Gly Val Val Phe Val Phe Pro
 2035 2040 2045
 Gly Gln Gly Gly Gln Trp Val Gly Met Ala Arg Gly Leu Leu Ser Val
 2050 2055 2060
 Pro Val Phe Val Glu Ser Val Val Glu Cys Asp Ala Val Val Ser Ser
 2065 2070 2075 2080
 Val Val Gly Phe Ser Val Leu Gly Val Leu Glu Gly Arg Ser Gly Ala
 2085 2090 2095
 Pro Ser Leu Asp Arg Val Asp Val Val Gln Pro Val Leu Phe Val Val
 2100 2105 2110
 Met Val Ser Leu Ala Arg Leu Trp Arg Trp Cys Gly Val Val Pro Ala
 2115 2120 2125
 Ala Val Val Gly His Ser Gln Gly Glu Ile Ala Ala Ala Val Val Ala
 2130 2135 2140
 Gly Val Leu Ser Val Gly Asp Gly Ala Arg Val Val Ala Leu Arg Ala

2145	2150	2155	2160
Arg Ala Leu Arg Ala Leu Ala Gly His	Gly Gly Met Val Ser	Leu Ala	
2165	2170	2175	
Val Ser Ala Glu Arg Ala Arg Glu	Leu Ile Ala Pro Trp Ser Asp	Arg	
2180	2185	2190	
Ile Ser Val Ala Ala Val Asn Ser	Pro Thr Ser Val Val Val	Ser Gly	
2195	2200	2205	
Asp Pro Gln Ala Leu Ala Ala	Leu Val Ala His Cys Ala Glu Thr	Gly	
2210	2215	2220	
Glu Arg Ala Lys Thr Leu Pro Val Asp	Tyr Ala Ser His Ser Ala His		
2225	2230	2235	2240
Val Glu Gln Ile Arg Asp Thr Ile Leu	Thr Asp Leu Ala Asp Val Thr		
2245	2250	2255	
Ala Arg Arg Pro Asp Val Ala Leu	Tyr Ser Thr Leu His Gly Ala Arg		
2260	2265	2270	
Gly Ala Gly Thr Asp Met Asp Ala Arg	Tyr Trp Tyr Asp Asn Leu Arg		
2275	2280	2285	
Ser Pro Val Arg Phe Asp Glu Ala Val	Glu Ala Ala Val Ala Asp Gly		
2290	2295	2300	
Tyr Arg Val Phe Val Glu Met Ser Pro	His Pro Val Leu Thr Ala Ala		
2305	2310	2315	2320
Val Gln Glu Ile Asp Asp Glu Thr Val	Ala Ile Gly Ser Leu His Arg		
2325	2330	2335	
Asp Thr Gly Glu Arg His Leu Val Ala	Glu Leu Ala Arg Ala His Val		
2340	2345	2350	
His Gly Val Pro Val Asp Trp Arg Ala	Ile Leu Pro Ala Thr His Pro		
2355	2360	2365	
Val Pro Leu Pro Asn Tyr Pro Phe	Glu Ala Thr Arg Tyr Trp Leu Ala		
2370	2375	2380	
Pro Thr Ala Ala Asp Gln Val Ala Asp	His Arg Tyr Arg Val Asp Trp		
2385	2390	2395	2400
Arg Pro Leu Ala Thr Thr Pro Ala Glu	Leu Ser Gly Ser Tyr Leu Val		
2405	2410	2415	
Phe Gly Asp Ala Pro Glu Thr Leu	Gly His Ser Val Glu Lys Ala Gly		
2420	2425	2430	
Gly Leu Leu Val Pro Val Ala Ala	Pro Asp Arg Glu Ser Leu Ala Val		
2435	2440	2445	
Ala Leu Asp Glu Ala Ala Gly Arg	Leu Ala Gly Val Leu Ser Phe Ala		
2450	2455	2460	
Ala Asp Thr Ala Thr His Leu Ala Arg	His Arg Leu Leu Gly Glu Ala		
2465	2470	2475	2480
Asp Val Glu Ala Pro Leu Trp Leu Val	Thr Ser Gly Gly Val Ala Leu		
2485	2490	2495	
Asp Asp His Asp Pro Ile Asp Cys Asp	Gln Ala Met Val Trp Gly Ile		
2500	2505	2510	
Gly Arg Val Met Gly Leu Glu Thr Pro	His Arg Trp Gly Gly Leu Val		
2515	2520	2525	
Asp Val Thr Val Glu Pro Thr Ala Glu	Asp Gly Val Val Phe Ala Ala		
2530	2535	2540	
Leu Leu Ala Ala Asp Asp His Glu	Asp Gln Val Ala Leu Arg Asp Gly		
2545	2550	2555	2560
Ile Arg His Gly Arg Arg Leu Val Arg	Ala Pro Leu Thr Thr Arg Asn		
2565	2570	2575	
Ala Arg Trp Thr Pro Ala Gly Thr	Ala Leu Val Thr Gly Gly Thr		
2580	2585	2590	
Ala Leu Gly Gly His Val Ala Arg	Tyr Leu Ala Arg Ser Gly Val Thr		
2595	2600	2605	
Asp Leu Val Leu Leu Ser Arg Ser	Gly Pro Asp Ala Pro Gly Ala Ala		
2610	2615	2620	
Glu Leu Ala Ala Glu Leu Ala Asp	Leu Gly Ala Glu Pro Arg Val Glu		
2625	2630	2635	2640

Ala Cys Asp Val Thr Asp Gly Pro Arg Leu Arg Ala Leu Val Gln Glu
 2645 2650 2655
 Leu Arg Glu Gln Asp Arg Pro Val Arg Ile Val Val His Thr Ala Gly
 2660 2665 2670
 Val Pro Asp Ser Arg Pro Leu Asp Arg Ile Asp Glu Leu Glu Ser Val
 2675 2680 2685
 Ser Ala Ala Lys Val Thr Gly Ala Arg Leu Leu Asp Glu Leu Cys Pro
 2690 2695 2700
 Asp Ala Asp Thr Phe Val Leu Phe Ser Ser Gly Ala Gly Val Trp Gly
 2705 2710 2715 2720
 Ser Ala Asn Leu Gly Ala Tyr Ala Ala Asn Ala Tyr Leu Asp Ala
 2725 2730 2735
 Leu Ala His Arg Arg Gln Ala Gly Arg Ala Ala Thr Ser Val Ala
 2740 2745 2750
 Trp Gly Ala Trp Ala Gly Asp Gly Met Ala Thr Gly Asp Leu Asp Gly
 2755 2760 2765
 Leu Thr Arg Arg Gly Leu Arg Ala Met Ala Pro Asp Arg Ala Leu Arg
 2770 2775 2780
 Ala Cys Thr Arg Arg Trp Thr His Asp Thr Cys Val Ser Val Ala
 2785 2790 2795 2800
 Asp Val Asp Trp Asp Arg Phe Ala Val Gly Phe Thr Ala Ala Arg Pro
 2805 2810 2815
 Arg Pro Leu Ile Asp Glu Leu Val Thr Ser Ala Pro Val Ala Ala Pro
 2820 2825 2830
 Thr Ala Ala Ala Ala Pro Val Pro Ala Met Thr Ala Asp Gln Leu Leu
 2835 2840 2845
 Gln Phe Thr Arg Ser His Val Ala Ala Ile Leu Gly His Gln Asp Pro
 2850 2855 2860
 Asp Ala Val Gly Leu Asp Gln Pro Phe Thr Glu Leu Gly Phe Asp Ser
 2865 2870 2875 2880
 Leu Thr Ala Val Gly Leu Arg Asn Gln Leu Gln Gln Ala Thr Gly Arg
 2885 2890 2895
 Thr Leu Pro Ala Ala Leu Val Phe Gln His Pro Thr Val Arg Arg Leu
 2900 2905 2910
 Ala Asp His Leu Ala Gln Gln Leu Asp Val Gly Thr Ala Pro Val Glu
 2915 2920 2925
 Ala Thr Gly Ser Val Leu Arg Asp Gly Tyr Arg Arg Ala Gly Gln Thr
 2930 2935 2940
 Gly Asp Val Arg Ser Tyr Leu Asp Leu Ala Asn Leu Ser Glu Phe
 2945 2950 2955 2960
 Arg Glu Arg Phe Thr Asp Ala Ala Ser Leu Gly Gly Gln Leu Glu Leu
 2965 2970 2975
 Val Asp Leu Ala Asp Gly Ser Gly Pro Val Thr Val Ile Cys Cys Ala
 2980 2985 2990
 Gly Thr Ala Ala Leu Ser Gly Pro His Glu Phe Ala Arg Leu Ala Ser
 2995 3000 3005
 Ala Leu Arg Gly Thr Val Pro Val Arg Ala Leu Ala Gln Pro Gly Tyr
 3010 3015 3020
 Glu Ala Gly Glu Pro Val Pro Ala Ser Met Glu Ala Val Leu Gly Val
 3025 3030 3035 3040
 Gln Ala Asp Ala Val Leu Ala Ala Gln Gly Asp Thr Pro Phe Val Leu
 3045 3050 3055
 Val Gly His Ser Ala Gly Ala Leu Met Ala Tyr Ala Leu Ala Thr Glu
 3060 3065 3070
 Leu Ala Asp Arg Gly His Pro Pro Arg Gly Val Val Leu Leu Asp Val
 3075 3080 3085
 Tyr Pro Pro Gly His Gln Glu Ala Val His Ala Trp Leu Gly Glu Leu
 3090 3095 3100
 Thr Ala Ala Leu Phe Asp His Glu Thr Val Arg Met Asp Asp Thr Arg
 3105 3110 3115 3120
 Leu Thr Ala Leu Gly Ala Tyr Asp Arg Leu Thr Gly Arg Trp Arg Pro

3125	3130	3135
Arg Asp Thr Gly Leu Pro Thr Leu Val Val Ala Ala Ser Glu Pro Met		
3140	3145	3150
Gly Glu Trp Pro Asp Asp Gly Trp Gln Ser Thr Trp Pro Phe Gly His		
3155	3160	3165
Asp Arg Val Thr Val Pro Gly Asp His Phe Ser Met Val Gln Glu His		
3170	3175	3180
Ala Asp Ala Ile Ala Arg His Ile Asp Ala Trp Leu Ser Gly Glu Arg		
3185	3190	3195
Ala		3200

<210> 16

<211> 358

<212> PRT

<213> Micromonospora megalomicea

<400> 16

Met Asn Thr Thr Asp Arg Ala Val Leu Gly Arg Arg Leu Gln Met Ile		
1	5	10
Arg Gly Leu Tyr Trp Gly Tyr Gly Ser Asn Gly Asp Pro Tyr Pro Met		
20	25	30
Leu Leu Cys Gly His Asp Asp Asp Pro His Arg Trp Tyr Arg Gly Leu		
35	40	45
Gly Gly Ser Gly Val Arg Arg Ser Arg Thr Glu Thr Trp Val Val Thr		
50	55	60
Asp His Ala Thr Ala Val Arg Val Leu Asp Asp Pro Thr Phe Thr Arg		
65	70	75
Ala Thr Gly Arg Thr Pro Glu Trp Met Arg Ala Ala Gly Ala Pro Ala		
85	90	95
Ser Thr Trp Ala Gln Pro Phe Arg Asp Val His Ala Ala Ser Trp Asp		
100	105	110
Ala Glu Leu Pro Asp Pro Gln Glu Val Glu Asp Arg Leu Thr Gly Leu		
115	120	125
Leu Pro Ala Pro Gly Thr Arg Leu Asp Leu Val Arg Asp Leu Ala Trp		
130	135	140
Pro Met Ala Ser Arg Gly Val Gly Ala Asp Asp Pro Asp Val Leu Arg		
145	150	155
Ala Ala Trp Asp Ala Arg Val Gly Leu Asp Ala Gln Leu Thr Pro Gln		
165	170	175
Pro Leu Ala Val Thr Glu Ala Ala Ile Ala Ala Val Pro Gly Asp Pro		
180	185	190
His Arg Arg Ala Leu Phe Thr Ala Val Glu Met Thr Ala Thr Ala Phe		
195	200	205
Val Asp Ala Val Leu Ala Val Thr Ala Thr Ala Gly Ala Ala Gln Arg		
210	215	220
Leu Ala Asp Asp Pro Asp Val Ala Ala Arg Leu Val Ala Glu Val Leu		
225	230	235
Arg Leu His Pro Thr Ala His Leu Glu Arg Arg Thr Ala Gly Thr Glu		
245	250	255
Thr Val Val Gly Glu His Thr Val Ala Ala Gly Asp Glu Val Val Val		
260	265	270
Val Val Ala Ala Ala Asn Arg Asp Ala Gly Val Phe Ala Asp Pro Asp		
275	280	285
Arg Leu Asp Pro Asp Arg Ala Asp Ala Asp Arg Ala Leu Ser Ala Gln		
290	295	300
Arg Gly His Pro Gly Arg Leu Glu Leu Val Val Val Leu Thr Thr		
305	310	315
Ala Ala Leu Arg Ser Val Ala Lys Ala Leu Pro Gly Leu Thr Ala Gly		
325	330	335
Gly Pro Val Val Arg Arg Arg Ser Pro Val Leu Arg Ala Thr Ala		

340
His Cys Pro Val Glu Leu
355

345

350

<210> 17
<211> 422
<212> PRT
<213> Micromonospora megalomicea

<400> 17
Met Arg Val Val Phe Ser Ser Met Ala Ser Lys Ser His Leu Phe Gly
1 5 10 15
Leu Val Pro Leu Ala Trp Ala Phe Arg Ala Ala Gly His Glu Val Arg
20 25 30
Val Val Ala Ser Pro Ala Leu Thr Asp Asp Ile Thr Ala Ala Gly Leu
35 40 45
Thr Ala Val Pro Val Gly Thr Asp Val Asp Leu Val Asp Phe Met Thr
50 55 60
His Ala Gly Tyr Asp Ile Ile Asp Tyr Val Arg Ser Leu Asp Phe Ser
65 70 75 80
Glu Arg Asp Pro Ala Thr Ser Thr Trp Asp His Leu Leu Gly Met Gln
85 90 95
Thr Val Leu Thr Pro Thr Phe Tyr Ala Leu Met Ser Pro Asp Ser Leu
100 105 110
Val Glu Gly Met Ile Ser Phe Cys Arg Ser Trp Arg Pro Asp Trp Ser
115 120 125
Ser Gly Pro Gln Thr Phe Ala Ala Ser Ile Ala Ala Thr Val Thr Gly
130 135 140
Val Ala His Ala Arg Leu Leu Trp Gly Pro Asp Ile Thr Val Arg Ala
145 150 155 160
Arg Gln Lys Phe Leu Gly Leu Leu Pro Gly Gln Pro Ala Ala His Arg
165 170 175
Glu Asp Pro Leu Ala Glu Trp Leu Thr Trp Ser Val Glu Arg Phe Gly
180 185 190
Gly Arg Val Pro Gln Asp Val Glu Glu Leu Val Val Gly Gln Trp Thr
195 200 205
Ile Asp Pro Ala Pro Val Gly Met Arg Leu Asp Thr Gly Leu Arg Thr
210 215 220
Val Gly Met Arg Tyr Val Asp Tyr Asn Gly Pro Ser Val Val Pro Asp
225 230 235 240
Trp Leu His Asp Glu Pro Thr Arg Arg Arg Val Cys Leu Thr Leu Gly
245 250 255
Ile Ser Ser Arg Glu Asn Ser Ile Gly Gln Val Ser Val Asp Asp Leu
260 265 270
Leu Gly Ala Leu Gly Asp Val Asp Ala Glu Ile Ile Ala Thr Val Asp
275 280 285
Glu Gln Gln Leu Glu Gly Val Ala His Val Pro Ala Asn Ile Arg Thr
290 295 300
Val Gly Phe Val Pro Met His Ala Leu Leu Pro Thr Cys Ala Ala Thr
305 310 315 320
Val His His Gly Gly Pro Gly Ser Trp His Thr Ala Ala Ile His Gly
325 330 335
Val Pro Gln Val Ile Leu Pro Asp Gly Trp Asp Thr Gly Val Arg Ala
340 345 350
Gln Arg Thr Glu Asp Gln Gly Ala Gly Ile Ala Leu Pro Val Pro Glu
355 360 365
Leu Thr Ser Asp Gln Leu Arg Glu Ala Val Arg Arg Val Leu Asp Asp
370 375 380
Pro Ala Phe Thr Ala Gly Ala Ala Arg Met Arg Ala Asp Met Leu Ala
385 390 395 400
Glu Pro Ser Pro Ala Glu Val Val Asp Val Cys Ala Gly Leu Val Gly

405	410	415
Glu Arg Thr Ala Val Gly		
420		
<210> 18		
<211> 323		
<212> PRT		
<213> Micromonospora megalomicea		
<400> 18		
Met Ser Thr Asp Ala Thr His Val Arg Leu Gly Arg Cys Ala Leu Leu		
1 5 10 15		
Thr Ser Arg Leu Trp Leu Gly Thr Ala Ala Leu Ala Gly Gln Asp Asp		
20 25 30		
Ala Asp Ala Val Arg Leu Leu Asp His Ala Arg Ser Arg Gly Val Asn		
35 40 45		
Cys Leu Asp Thr Ala Asp Asp Ser Ala Ser Thr Ser Ala Gln Val		
50 55 60		
Ala Glu Glu Ser Val Gly Arg Trp Leu Ala Gly Asp Thr Gly Arg Arg		
65 70 75 80		
Glu Glu Thr Val Leu Ser Val Thr Val Gly Val Pro Pro Gly Gly Gln		
85 90 95		
Val Gly Gly Gly Leu Ser Ala Arg Gln Ile Ile Ala Ser Cys Glu		
100 105 110		
Gly Ser Leu Arg Arg Leu Gly Val Asp His Val Asp Val Leu His Leu		
115 120 125		
Pro Arg Val Asp Arg Val Glu Pro Trp Asp Glu Val Trp Gln Ala Val		
130 135 140		
Asp Ala Leu Val Ala Ala Gly Lys Val Cys Tyr Val Gly Ser Ser Gly		
145 150 155 160		
Phe Pro Gly Trp His Ile Val Ala Ala Gln Glu His Ala Val Arg Arg		
165 170 175		
His Arg Leu Gly Leu Val Ser His Gln Cys Arg Tyr Asp Leu Thr Ser		
180 185 190		
Arg His Pro Glu Leu Glu Val Leu Pro Ala Ala Gln Ala Tyr Gly Leu		
195 200 205		
Gly Val Phe Ala Arg Pro Thr Arg Leu Gly Gly Leu Leu Gly Gly Asp		
210 215 220		
Gly Pro Gly Ala Ala Ala Arg Ala Ser Gly Gln Pro Thr Ala Leu		
225 230 235 240		
Arg Ser Ala Val Glu Ala Tyr Glu Val Phe Cys Arg Asp Leu Gly Glu		
245 250 255		
His Pro Ala Glu Val Ala Leu Ala Trp Val Leu Ser Arg Pro Gly Val		
260 265 270		
Ala Gly Ala Val Val Gly Ala Arg Thr Pro Gly Arg Leu Asp Ser Ala		
275 280 285		
Leu Arg Ala Cys Gly Val Ala Leu Gly Ala Thr Glu Leu Thr Ala Leu		
290 295 300		
Asp Gly Ile Phe Pro Gly Val Ala Ala Ala Gly Ala Ala Pro Glu Ala		
305 310 315 320		
Trp Leu Arg		

<210> 19
<211> 247
<212> PRT
<213> Micromonospora megalomicea

<400> 19
Met Asn Thr Trp Leu Arg Arg Phe Gly Ser Ala Asp Gly His Arg Ala
1 5 10 15

Arg Leu Tyr Cys Phe Pro His Ala Gly Ala Ala Ala Asp Ser Tyr Leu
 20 25 30
 Asp Leu Ala Arg Ala Leu Ala Pro Glu Val Asp Val Trp Ala Val Gln
 35 40 45
 Tyr Pro Gly Arg Gln Asp Arg Arg Asp Glu Arg Ala Leu Gly Thr Ala
 50 55 60
 Gly Glu Ile Ala Asp Glu Val Ala Ala Val Leu Arg Asp Leu Val Gly
 65 70 75 80
 Glu Val Pro Phe Ala Leu Phe Gly His Ser Met Gly Ala Leu Val Ala
 85 90 95
 Tyr Glu Thr Ala Arg Arg Leu Glu Ala Arg Pro Gly Val Arg Pro Leu
 100 105 110
 Arg Leu Phe Val Ser Gly Gln Thr Ala Pro Arg Val His Glu Arg Arg
 115 120 125
 Thr Asp Leu Pro Asp Glu Asp Gly Leu Val Glu Gln Met Arg Arg Leu
 130 135 140
 Gly Val Ser Glu Ala Ala Leu Ala Asp Gln Gly Leu Leu Asp Met Ser
 145 150 155 160
 Leu Pro Val Leu Arg Ala Asp His Arg Val Leu Arg Ser Tyr Ala Trp
 165 170 175
 Gln Ala Gly Pro Pro Leu Arg Ala Gly Ile Thr Thr Leu Cys Gly Asp
 180 185 190
 Thr Asp Pro Leu Thr Thr Val Glu Asp Ala Gln Arg Trp Leu Pro Tyr
 195 200 205
 Ser Val Val Pro Gly Arg Thr Arg Thr Phe Pro Gly Gly His Phe Tyr
 210 215 220
 Leu Ala Asp His Val Gly Glu Val Ala Glu Ser Val Ala Pro Asp Leu
 225 230 235 240
 Leu Arg Leu Thr Pro Thr Gly
 245

<210> 20

<211> 189

<212> PRT

<213> Micromonospora megalomicea

<400> 20

Ile Arg Val Gln Asp Asp Ala Asp Arg Leu Ser Arg Asp Glu Leu
 1 5 10 15
 Thr Ser Ile Ala Leu Val Leu Leu Ala Gly Phe Glu Ala Ser Val
 20 25 30
 Ser Leu Ile Gly Ile Gly Thr Tyr Leu Leu Leu Thr His Pro Asp Gln
 35 40 45
 Leu Ala Leu Val Arg Lys Asp Pro Ala Leu Leu Pro Gly Ala Val Glu
 50 55 60
 Glu Ile Leu Arg Tyr Gln Ala Pro Pro Glu Thr Thr Arg Phe Ala
 65 70 75 80
 Thr Ala Glu Val Glu Ile Gly Gly Val Thr Ile Pro Ala Tyr Ser Thr
 85 90 95
 Val Leu Ile Ala Asn Gly Ala Ala Asn Arg Asp Pro Gly Gln Phe Pro
 100 105 110
 Asp Pro Asp Arg Phe Asp Val Thr Arg Asp Ser Arg Gly His Leu Thr
 115 120 125
 Phe Gly His Gly Ile His Tyr Cys Met Gly Arg Pro Leu Ala Lys Leu
 130 135 140
 Glu Gly Glu Val Ala Leu Gly Ala Leu Phe Asp Arg Phe Pro Lys Leu
 145 150 155 160
 Ser Leu Gly Phe Pro Ser Asp Glu Val Val Trp Arg Arg Ser Leu Leu
 165 170 175
 Leu Arg Gly Ile Asp His Leu Pro Val Arg Pro Asn Gly
 180 185

<210> 21
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic nucleotide DNA duplex

<400> 21
 taagaattcg gagatctggc ctcagctcta gac 33

<210> 22
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Complementary oligo

<400> 22
 aattgtctag agctgaggcc agatctccga attcttaat 39

<210> 23
 <211> 528
 <212> DNA
 <213> Micromonospora megalomicea

<400> 23
 ttgcacgggt tgcgggtggc ggtgcgggag gggcgtcggg tttgggtgt ggtgggtgg 60
 tcggcggta atcaggatgg ggcgagtaat gggttggcgg cgccgtcggg ggtggcgcag 120
 cagcgggtga ttcggcgggc gtggggtcgt gccccgtgt cgggtgggaa tgggtgggtg 180
 gtggaggcgc atgggacggg gacgcgggtt ggggatccgg tggagttggg ggcgttgg 240
 gggacgtatg ggggtgggtcg ggggtgggtt ggtccgggtt tgggtgggttc ggtgaaggcg 300
 aatgtgggtc atgtgcaggg ggcggcgggt gtgggtgggt tgatcaagg 360
 ttgggtcggg gttgggtggg tccgatggt tgcgggggtt gttgtcggg gttgggtggat 420
 tggtcgtcgg gtgggtggat ggtggcggat ggggtgcggg ggtggccggt ggggtgtggat 480
 ggggtgcgtc ggggtgggtt gtcggcgtt ggggtgtcgg ggacgaat 528

<210> 24
 <211> 528
 <212> DNA
 <213> Micromonospora megalomicea

<400> 24
 ctgcacgggt tgcgggtggc ggtgcgggag gggcgtcggg tttgggtgt ggtgggtgg 60
 tcggcggta atcaggatgg ggcgagtaat gggttggcgg cgccgtcggg ggtggcgcag 120
 cagcgggtga ttcggcgggc gtggggtcgt gccccgtgt cgggtgggaa tgggtgggtg 180
 gtggaggcgc atgggacggg gacgcgggtt ggggatccgg tggagttggg ggcgttgg 240
 gggacgtatg ggggtgggtcg ggggtgggtt ggtccgggtt tgggtgggttc ggtgaaggcg 300
 aatgtgggtc atgtgcaggg ggcggcgggt gtgggtgggt tgatcaagg 360
 ttgggtcggg gttgggtggg tccgatggt tgcgggggtt gttgtcggg gttgggtggat 420
 tggtcgtcgg gtgggtggat ggtggcggat ggggtgcggg ggtggccggt ggggtgtggat 480
 ggggtgcgtc ggggtgggtt gtcggcgtt ggggtgtcgg ggacgaat 528

<210> 25
 <211> 528
 <212> DNA
 <213> Micromonospora megalomicea

<220>

<221> misc_feature

<222> (1)...(528)

<223> Sequence with codon changes as described in the specification at page 99, line 22 thru 101, line 23

<400> 25

ctgcagcgcc	tctccgtcgc	cgtccgcgag	ggccgcgcgag	tcctcgccgt	cgtcgctggc	60
tcggccgtca	accaagacgg	cgcgtcaaac	ggcctcgccg	cgcctccgg	cgtcgcccag	120
cagcgcgtca	tacgcccgc	gtggggacgc	gccggagtat	cgggcggcga	cgtcgaggtc	180
gtcgaggccc	acggcaccgg	cacccgcctc	ggggatcccc	tcgagctggg	cgcctcctg	240
ggcacgtacg	gcgtcgccgc	cggcggcg	ggcccggtcg	tcgtcgccag	cgtcaaggcc	300
aacgtcgcc	acgtccaggc	cgcggccggc	gtcgctgggg	tcatcaaggt	cgtcctcgcc	360
ctcgccgcg	ggctggtcgg	cccgatggtc	tgcccgccgc	gcctcagcg	cctcgctcgac	420
tggtcgctcc	gcggcctgg	cgtcgccgac	ggggtccgcg	gctggccgt	cggcgctcgac	480
ggcgccgc	ggggcggcgt	ctcgccgttc	ggcgtcagcg	ggacgaat		528

<210> 26

<211> 291

<212> DNA

<213> Micromonospora megalomicea

<400> 26

ggtggagtgt	gatgcggtgg	tgtcgctcggt	ggtggggttt	tcgggtgtgg	gggtgttgga	60
gggtcggtcg	ggtgcgcgcgt	cgttggatcg	ggtggatgtg	gtgcagccgg	tgttgttcgt	120
ggtgatggtg	tcgttggcgc	ggttgtggcg	gtggtgtggg	tttgtgcctg	cggcgggtgg	180
gggtcattcg	cagggggaga	tcgcggccgc	ggtgggtggcg	ggggtgtgtgt	cggtgggtga	240
tggtgcgcgg	gtgggtggcgt	tgcggccgcg	ggcgttgcgg	gcgttggccg	g	291

<210> 27

<211> 291

<212> DNA

<213> Micromonospora megalomicea

<400> 27

ggtggagtgt	gatgcggtgg	tgtcgctcggt	ggtggggttt	tcgggtgtgg	gggtgttgga	60
gggtcggtcg	ggtgcgcgcgt	cgttggatcg	ggtggatgtg	gtgcagccgg	tgttgttcgt	120
ggtgatggtg	tcgttggcgc	ggttgtggcg	gtggtgtggg	tttgtgcctg	cggcgggtgg	180
gggtcattcg	cagggggaga	tcgcggccgc	ggtgggtggcg	ggggtgtgtgt	cggtgggtga	240
tggtgcgcgg	gtgggtggcgt	tgcggccgcg	ggcgttgcgg	gcgttggccg	g	291

<210> 28

<211> 291

<212> DNA

<213> Micromonospora megalomicea

<220>

<221> misc_feature

<222> (1)...(291)

<223> Sequence with codon changes as described in the specification at page 99, line 22 thru page 101, line 23

<400> 28

cgtggagtgc	gatgcggtcg	tgtcgagcgt	cgtcggttc	agcgtgtgg	gcgtcctgga	60
ggccgcgcagc	ggcgccccga	gcctggaccg	cgtcgacgt	gtccagccgg	tcctgttcgt	120
ggtcatggtc	agcctggccc	gcctgtggcg	ctggtgccgc	gtggtcccg	cgcgcgtgg	180
cggccacagc	cagggcgaga	tcgcggccgc	ggtcgtggcc	ggcgtcctga	gcgtcggcga	240
cggcgccccgc	gtcggtggccc	tgcgcgcccc	cgcctgcgc	gcctggccg	g	291

<210> 29

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 29

gaacaactcc tgtctgcggc cgcg

24

<210> 30

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer.

<400> 30

cggaaattctc tagagtcacg tctccaaccg cttgtcgagg

40

<210> 31

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer.

<400> 31

tctagactta attaaggagg acacatatga gcgagagcag cggcatgacc g

51

<210> 32

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 32

aacgcctccc aggagatctc cagca

25

<210> 33

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo

<400> 33

aattcatagc ctaggt

16

<210> 34

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo

<400> 34