Test Deckblatt Test Aufgabenstellung

Contents

1	Bezeichnungen	1
2	Hauptteil	1
3	Grundlagen 3.1 Glasfaser	1 1
4	Modellierung des Holms4.1 Annahmen zur Modellierung	2 2 3
5	Zusammenfassung	3
6	Quellenverzeichnis	3
7	Abbildungsverzeichnis	3
8	Anhang	3
$oldsymbol{1}$	Bezeichnungen est Bezeichnungen	
_		

2 Hauptteil

TEst Hauptteil

3 Grundlagen

3.1 Glasfaser

Test

4 Modellierung des Holms

4.1 Annahmen zur Modellierung

Das Koordinatensystem des Flügels entspricht dem Flugzeug-Koordinatensystem, sodass die Balkenlängskoordinate durch y definiert ist. Der Koordinatenursprung ist im Lager A positioniert.

Der Holm inkl. des Holmstummels wird für die Belastung durch eine Prüfkraft F_{pruef} in negative z-Richtung als Biegebalken ausgelegt. Dafür ist er an zwei Stellen gelagert, dem Lager A und Lager B, dabei repräsentieren sie die Verstiftungen (siehe Bauteil "U-Profil"). Um eine Überbestimmung des Systems zu vermeiden, wird das Lager B als Loslager angenommen. Die Querkraftbolzen werden nicht durch ein Lager, sondern durch eine zusätzlich angreifende Kraft F_Q simuliert, da keine Absenkung, sondern nur eine Kraftaufnahme der Wurzelrippen möglich ist.

Als Randbedingungen der Modellierung sind die Halbspannweite s und die Absenkung w gegeben. Zwischen Lager A und B wird die Länge l_1 angenommen, zwischen Lager B und der Wurzelrippe C die Länge l_2 . Die verbleibende Länge bis zur Flügelspitze, an der die Prüfkraft F_{pruef} wirkt, wird l_3 bezeichnet. Die Halbspannweite s wird beginnend in der mitte der Verstiftungen bis zur Flügelspitze gemessen. Das Holmstummelende wird ab dem Lager A mit l_0 als Länge definiert. Diese Länge ist jedoch unerheblich für die Modellierung, sondern wird erst für die Massenbestimmung benötigt.

Anhand der Randbedingungen und der Einspannvorrichtung für den Versuchsaufbau ergeben sich folgende Längen:

$$s = 0,848m\tag{1}$$

$$w = 0,022m \tag{2}$$

$$l_0 = 0,03m (3)$$

$$l_1 = 0,076m (4)$$

$$l_2 = 0,037m (5)$$

$$l_3 = s - \frac{l_1}{2} - l_2 = 0,773m \tag{6}$$

4.2 Analytische Lösung der Modellierung

5 Zusammenfassung

Test Zusammenfassung

6 Quellenverzeichnis

Test Quellenverzeichnis

7 Abbildungsverzeichnis

test Abbildungsverzeichnis

8 Anhang

Test Anhang