

CLAIMS:

- 1 1. A method of effectively extracting a clock signal
2 from a data stream, comprising the steps of:
3 generating a plurality of multiphase clock signals;
4 selecting one of the multiphase signals based on a
5 plurality of synchronization states identifying which of the
6 multiphase clock signals is most closely aligned with the
7 data stream; and
8 sampling the data stream using the selected one of the
9 multiphase signals to produce a retimed data signal.

- 1 2. The method of Claim 1 wherein said generating step
2 generates multiphase clock signals which are subharmonics of
3 the data stream.

- 1 3. The method of Claim 1 wherein said selecting step
2 includes the step of determining whether the multiphase
3 clock signals are either early or late with respect to the
data stream.

- 1 4. The method of Claim 3 wherein said determining step
2 includes the further step of sampling the multiphase clock
3 signals using a plurality of D-type flip-flops.

- 1 5. The method of Claim 1 wherein:
2 each of the multiphase clock signals has at least one
3 rising edge; and
4 said selecting step includes the step of using the
5 synchronization states to define which of the rising edges
6 of the multiphase clock signals is most closely aligned with
7 an edge of the data stream.

1 6. The method of Claim 1 wherein said generating step
2 generates the multiphase clock signals using a multiphase
3 voltage-controlled oscillator.

1 7. The method of Claim 6 further comprising the steps
2 of:
3 creating an error signal using the multiphase clock
4 signals and the data stream;

5 applying the error signal to a charge pump; and
6 correcting the multiphase clock signals using a control
7 voltage output of the charge pump.

8 8. The method of Claim 1 wherein said selecting step
9 includes the step of using the synchronization states to
10 define a plurality of retime state signals.

11 9. The method of Claim 8 wherein said sampling step
12 further comprises the steps of:

13 inverting the multiphase clock signals to produce
14 inverted phase signals;

15 combining respective pairs of the retime state signals
16 and the inverted phase signals using a plurality of
17 respective AND gates;

18 combining the outputs of the AND gates using an OR
19 gate; and

20 latching the output of the OR gate using the data
21 stream to produce the retimed data signal.

1 10. A circuit for effectively extracting a clock signal
2 from a data stream, comprising:

3 means for generating a plurality of multiphase clock
4 signals;

5 means for selecting one of the multiphase signals based
6 on a plurality of synchronization states identifying which
7 of the multiphase clock signals is most closely aligned with
8 the data stream; and

9 means for sampling the data stream using the selected
10 one of the multiphase signals to produce a retimed data
11 signal.

1 11. The circuit of Claim 10 wherein said generating
2 means generates multiphase clock signals which are
3 subharmonics of the data stream.

1 12. The circuit of Claim 10 wherein said selecting
2 means includes means for determining whether the multiphase
3 clock signals are either early or late with respect to the
4 data stream.

1 13. The circuit of Claim 12 wherein said determining
2 means samples the multiphase clock signals using a plurality
3 of D-type flip-flops.

1 14. The circuit of Claim 10 wherein:
2 each of the multiphase clock signals has at least one
3 rising edge; and
4 said selecting means uses the synchronization states to
5 define which of the rising edges of the multiphase clock
6 signals is most closely aligned with an edge of the data
7 stream.

1 15. The circuit of Claim 10 wherein said generating
2 means includes a multiphase voltage-controlled oscillator.

1 16. The circuit of Claim 15 further comprising:
2 means for creating an error signal using the multiphase
3 clock signals and the data stream; and
4 a charge pump receiving the error signal as an input,
5 and providing a control voltage output to said voltage-
6 controlled oscillator.

1 17. The circuit of Claim 10 wherein said selecting
2 means uses the synchronization states to define a plurality
3 of retime state signals.

1 18. The circuit of Claim 17 wherein said sampling
2 means:

3 inverts the multiphase clock signals to produce
4 inverted phase signals;

5 combines respective pairs of the retime state signals
6 and the inverted phase signals using a plurality of
7 respective AND gates;

8 further combines outputs of said AND gates using an OR
9 gate; and

10 latches an output of said OR gate using the data stream
11 to produce the retimed data signal.