

Rev. 1.0 32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

REVISION HISTORY

Revision
Rev. 1.0Description
Initial IssueIssue Date
Sep.06.2012

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

FEATURES

 Fast access time: 55ns
 Low power consumption: Operating current: 45mA (TYP.)

Standby current : 10µA (TYP.) SL-version

■ Single 2.7V ~ 3.6V power supply

■ All inputs and outputs TTL compatible

■ Fully static operation

■ Tri-state output

■ Data byte control:

(i) BYTE# fixed to V_{CC}
LB# controlled DQ0 ~ DQ7
UB# controlled DQ8 ~ DQ15

(ii) BYTE# fixed to V_{SS}

DQ15 used as address pin, while LB#, UB# and DQ8~DQ14 pins not used

■ Data retention voltage : 1.2V (MIN.)

■ Green package available

■ Package: 48-pin 12mm x 20mm TSOP-I

GENERAL DESCRIPTION

The AS6C3216 is a 33,554,432-bit low power CMOS static random access memory organized as 2,097,152 words by 16 bits or 4,194,304 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS6C3216 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The AS6C3216 operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range	Speed	Power Dissipation		
Family	Temperature	vcc Kange	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)	
AS6C3216(I)	-40 ~ 85°C	2.7 ~ 3.6V	55ns	10μA(SL)	45mA	

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

Rev. 1.0

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 – A20	Address Inputs(word mode)
A-1 – A20	Address Inputs(byte mode)
DQ0 – DQ15	Data Inputs/Outputs
CE#, CE2	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
BYTE#	Byte Enable
Vcc	Power Supply
Vss	Ground

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

PIN CONFIGURATION

A15	AS6C3216	48 A16 47 BYTE# 46 Vss 45 DQ15/A-1 44 DQ7 43 DQ14 42 DQ6 41 DQ13 40 DQ5 39 DQ12 38 DQ4 37 Vcc 36 DQ11 35 DQ3 34 DQ2 32 DQ9 31 DQ1 30 DQ8 29 DQ0 28 OE# 27 Vss 26 CE# 25 A0
-----	----------	--

TSOP-I

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	VT1	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	VT2	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 85(I grade)	°C
Storage Temperature	Тѕтс	-65 to 150	$^{\circ}\!\mathbb{C}$
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

Rev. 1.0

TRUTH TABLE

MODE	CE#	CE2	BYTE#	OE#	WE#	LB#	UB#	I/O	OPERATIO	N	SUPPLY
MODE	OL#	OLZ	DIIL#	OL#	OL# WL#		05#	DQ0-DQ7	DQ8-DQ14	DQ15	CURRENT
	Н	Х	Х	Х	Χ	Χ	Х	High – Z	High – Z	High – Z	
Standby	Χ	L	Χ	X	Χ	Χ	X	High – Z	High – Z	High – Z	IsB,IsB1
	Χ	Χ	Н	Х	Χ	Н	Н	High – Z	High – Z	High – Z	
Output	L	Н	Н	Н	Н	L	Х	High – Z	High – Z	High – Z	
Output Disable	L	Н	Н	Н	Н	Χ	L	High – Z	High – Z	High – Z	Icc,Icc1
Disable	L	Н	L	Н	Н	Χ	Х	High – Z	High – Z	High – Z	
	L	Н	Н	L	Н	L	Н	D _{OUT}	High – Z	High – Z	
Read	L	Н	Н	L	Н	Н	L	High – Z	\bar{D}_OUT	D _{OUT}	Icc,Icc1
	L	Н	Н	L	Н	L	L	D_OUT	D_OUT	D _{OUT}	
	L	Н	Н	Χ	L	L	Н	D _{IN}	High – Z	High – Z	
Write	L	Н	Н	Х	L	Н	L	High – Z	D_IN	D_IN	Icc,Icc1
	L	Н	Н	Χ	L	L	L	D_IN	D_IN	D _{IN}	
Byte# Read	L	Н	L	L	Н	X	Х	Dout	High – Z	A-1	lcc,lcc1
Byte # Write	L	Н	L	Х	L	Х	Х	Din	High – Z	A-1	lcc,lcc1

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. ^{^4}	MAX.	UNIT
Supply Voltage	Vcc			2.7	3.0	3.6	V
Input High Voltage	V _{IH} ^{*1}			2.2	-	Vcc+0.3	V
Input Low Voltage	VIL ²			- 0.2	-	0.6	V
Input Leakage Current	ILI	Vcc ≧ Vin ≧ Vss		- 1	-	1	μA
Output Leakage Current	ILO	Vcc ≧ Vouт ≧ Vss Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Iон = -1mA		2.2	2.7	-	V
Output Low Voltage	Vol	IoL = 2mA		-	-	0.4	V
Average Operating	Icc	Cycle time = Min. $CE\# = V_{IL}$ and $CE2 = V_{IH}$ $I_{I/O} = 0mA$ Other pins at V_{IL} or V_{IH}	- 55	-	45	80	mA
Power supply Current	lcc1	Cycle time = 1μ s CE# \leq 0.2V and CE2 \geq Vcc-0.2V I _{VO} = 0mA Other pins at 0.2V or Vcc-0.2V		-	10	20	mA
Standby Power	lsв	CE# = VIH or CE2 = VIL Other pins at VIL or VIH		-	0.3	2	mA
Supply Current	I _{SB1}	CE# \ge V _{CC} -0.2V or CE2 \le 0.2V Other pins at 0.2V or V _{CC} -0.2V	-SLI	-	10	120	μA

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns. 2. $V_{IL}(min) = V_{SS} 3.0V$ for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.
- 4. Typical values are included for reference only and are not guaranteed or tested.

Typical values are measured at Vcc = Vcc(TYP.) and $T_A = 25^{\circ}C$

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

CAPACITANCE (TA = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

PARAMETER	SYM.	AS6C3	UNIT	
		MIN.	MAX.	
Read Cycle Time	trc	55	-	ns
Address Access Time	taa	-	55	ns
Chip Enable Access Time	tace	-	55	ns
Output Enable Access Time	toe	-	30	ns
Chip Enable to Output in Low-Z	tcLz*	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	ns
Chip Disable to Output in High-Z	tcHz*	-	20	ns
Output Disable to Output in High-Z	tonz*	-	20	ns
Output Hold from Address Change	tон	10	-	ns
LB#, UB# Access Time	t _{BA}	-	55	ns
LB#, UB# to High-Z Output	t _{BHZ} *	-	25	ns
LB#, UB# to Low-Z Output	tBLZ*	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS6C3	UNIT	
		MIN.	MAX.	
Write Cycle Time	twc	55	-	ns
Address Valid to End of Write	taw	50	-	ns
Chip Enable to End of Write	tcw	50	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	45	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	25	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	5	-	ns
Write to Output in High-Z	twHz*	-	20	ns
LB#, UB# Valid to End of Write	t _{BW}	45	-	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)

Notes:

- 1.WE#is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise tAA is the limiting parameter.
- 4.tcLz, tвLz, toLz, tcHz, tвнz and tонz are specified with CL = 5pF. Transition is measured ±500mV from steady state.
- 5.At any given temperature and voltage condition, tcHz is less than tcLz, tBHz is less than tBLz, toHz is less than toLz.

Rev. 1.0 32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes

- 1.WE#,CE#, LB#, UB# must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tpw to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#, LB#, UB# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with CL = 5pF. Transition is measured ±500mV from steady state.

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

Rev. 1.0

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	Vdr	CE#≧V _{CC} - 0.2V or CE2≦0.2V		1.2	-	3.6	V
		Vcc = 1.2V	-SL	-	8	80	μA
Data Retention Current		CE# ≧V _{CC} -0.2V or CE2≦0.2V	-SLI	-	8	120	μA
		other pins at 0.2V or Vcc-0.2V			J	120	μ΄
Chip Disable to Data	tcdr	See Data Retention		0			ns
Retention Time	ICDR	Waveforms (below)		U	_	-	115
Recovery Time	t _R			t _{RC*}	-	-	ns

trc* = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

Low Vcc Data Retention Waveform (3) (LB#, UB# controlled)

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

PACKAGE OUTLINE DIMENSION

48-pin 12mm x 20mm TSOP-I Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

	man mana p				
	SYMBOLS	MIN.	NOM.	MAX	
	A	ı	_	1.20	
	A1	0.05	-	0.15	
	A 2	0.95	1.00	1.05	
	Ф	0.17	0.22	0.27	
	C	0.10	-	0.21	
Δ		19.80	20.00	20.20	
Λ	□1	18.30	18.40	18.50	
Δ	E	11.90	12.00	12.10	
	₽	0	С		
	١	0.50	0.60	0.70	
Α	L1	ı	0.80	ı	
Λ	Y	-	_	0.10	
Δ	θ	Ö	_	5	

NOTES:

- 1 JEDEC OUTLINE : MO-142 DO
- Z.PROFILE TOLERANCE ZONES FOR 01 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15 mm PER SIDE AND ON 01 IS 0.25 mm PER SIDE.
- 3.D MENSION ID DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE ID DIMENSION AT NAXIMUN MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

Rev. 1.0

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

ORDERING INFORMATION

Alliance	Organization	VCC Range	Package	Operating Temp	Speed ns
AS6C3216-55TIN	2050 x 16	2.7V - 3.6V	48pin TSOP I	Industrial ~ -40°C - 85°C	55

Rev. 1.0

AS6C3216

32M Bits (2Mx16 / 4Mx8 Switchable) LOW POWER CMOS SRAM

THIS PAGE IS LEFT BLANK INTENTIONALLY.