1 Solve
$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y} + \mathbf{f}||_2^2 + \mathbf{a}^T \mathbf{w} + b \text{ to } \arg\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y} + \mathbf{f}||_2^2 + g$$

$$\begin{split} &\frac{\partial}{\partial w}||\mathbf{X}\mathbf{w} - \mathbf{y} + \mathbf{f}||_2^2 + \mathbf{a}^T \mathbf{w} + b\\ &\rightarrow \mathbf{a}^T = -2\mathbf{X}^T (\mathbf{X}\mathbf{w} - \mathbf{y})\\ &\rightarrow ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 - 2\mathbf{X}^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + b\\ &\rightarrow ||\mathbf{X}\mathbf{w} - \mathbf{y} - \mathbf{X}^T||^2\\ &\rightarrow \frac{\partial}{\partial w}||\mathbf{X}\mathbf{w} - \mathbf{y} - \mathbf{X}^T||^2 = 0\\ &\rightarrow 2\mathbf{X}^T (\mathbf{X}\mathbf{w} - \mathbf{X}^T) = 0\\ &\rightarrow \mathbf{X}\mathbf{w} - \mathbf{y}\mathbf{X}^T = 0\\ &\rightarrow \mathbf{X}\mathbf{w} = \mathbf{y} + \mathbf{X}^T\\ &\rightarrow \mathbf{w} = \mathbf{X}^{-1} (\mathbf{y} + \mathbf{X}^T) \end{split}$$

2 Cross Validation

Please consult the my_cross_val.py code submitted.

3 Ridge Regression

For both Ridge and Lasso Regression, the most optimal λ value was 0.01.

		Ridge Regression on Test Data, MSE by Fold										
	1	2	3	4	5	6	7	8	9	10	Mean	SD
Ï	0.4705	0.4338	0.4539	0.4746	0.5926	0.4915	0.4784	0.5087	0.5087	0.4923	0.4865	0.0405

	Lasso Regression on Test Data, MSE by Fold											
1	2	3	4	5	6	7	8	9	10	Mean	SD	
0.4579	0.5012	0.5389	0.4036	0.4667	0.4788	0.6109	0.5724	0.4305	0.4422	0.4903	0.0624	

Please consult the code's output for more detailed result.

4 Fischer's LDA

According to the projection, the most optimal value seems to be between [-0.01, 0]. Through cross validation, the most optimal λ value for this specific LDA model appeared to be -0.003.

	Linear Discriminant Analysis on Test Data, Error Rate by Fold											
\prod	1	2	3	4	5	6	7	8	9	10	Mean	SD
Ì	0.0	0.0	0.025	0.0	0.0	0.0	0.0	0.025	0.025	0.0	0.0075	0.0115

Please consult the code's output for more detailed result.