# Supporting Online File for:

 $A\ relative-motion\ method\ for\ parsing\ spatio-temporal\ behaviour\ of\ dyads\\ using\ GPS\ relocation\ data$ 

Ludovica Luisa Vissat, Jason K. Blackburn and Wayne M. Getz

# Contents

| 1        | Dya  | adic behaviour analysis                       | 2          |
|----------|------|-----------------------------------------------|------------|
| <b>2</b> | Ext  | ended analysis                                | 4          |
|          | 2.1  | Extended analysis: behaviours of interest     | 5          |
| 3        | Sim  | ulated data                                   | 5          |
|          | 3.1  | Distance-dependent behaviour                  | 7          |
|          | 3.2  | Time-dependent behaviour                      | 7          |
| 4        | Res  | ults: simulated data                          | 9          |
|          | 4.1  | Individual behaviour analysis                 | 9          |
|          | 4.2  | Dyadic behaviour analysis                     | 10         |
|          | 4.3  | $\chi^2$ goodness-of-fit test                 | 12         |
|          | 4.4  | Results for time-dependent RM-BRW model       | 14         |
| 5        | Res  | ults: empirical data                          | 16         |
|          | 5.1  | Dyadic behaviour analysis: female-male dyad   | 19         |
|          | 5.2  | Seasonality                                   | 19         |
| 6        | Foll | owing behaviour: sign test                    | 24         |
| 7        | Sen  | sitivity analysis: circle segmentation        | <b>2</b> 5 |
|          | 7.1  | Individual behaviour analysis: simulated data | 26         |
|          | 7.2  | Individual behaviour analysis: empirical data | 27         |
| 8        | Sen  | sitivity analysis: distance intervals         | 28         |
| 9        | Sen  | sitivity analysis: heading difference         | 30         |

| 10 Sensitivity analysis: speed classification |      | 31 |
|-----------------------------------------------|------|----|
| 11 All pairs of interest                      |      | 34 |
| 11.1 15-min pairs                             | <br> | 36 |
| 11.2 20-min pairs                             | <br> | 40 |
| 11.3 30-min pairs                             | <br> | 46 |

#### 1. Dyadic behaviour analysis

For the dyadic behaviour classification, the procedure (Algorithm 1) is similar to the individual behaviour classification presented in the main text. The difference lies in the fact that we consider the simultaneous individual behaviour, and therefore we have a unique list to keep track of the dyadic behavioural types. This list, indicated by  $M_D$ , is composed of n 5-dimensional vectors, initially populated with zeros. The procedure is the same as for the individual classification up to the pair distance calculation. If this distance is below our maximum threshold for considering dyadic interactions, then the function  $f_{cd}$  is used to categorise the dyadic behaviour in terms of the angles diffA and diffB and the necessary classification input (i.e. circle segmentation) which we assume implicitly here for the sake of a compact presentation. The update function will then update the list  $M_D$ , according to the dyadic behavioural type and the corresponding distance interval.

```
Algorithm 1: Dyadic behaviour classification
```

The statistical analysis for the dyadic behaviour, presented in Algorithm 2, requires the list of n vectors  $M_{\rm D}$  as input and uses the entries corresponding to the behaviours of interest for the calculation of the

confidence intervals related to each  $I_i$ . In this example, we assume these entries are the first four ones, with the fifth one corresponding to the classification "other". In the algorithm, we use the function MultinomCI as for the R package DescTools, providing a vector v of entries representing the number of occurrences of each behavioural type and the various parameters needed to calculate the confidence interval for each of the four behaviours of interest. The outcome of this calculation is a  $4 \times 2$  matrix, with lower (first column) and upper (second column) bounds of each interval. Note that, since we are using the Goodman method, we require all values in vector v to be at or above 5 to be considered in the statistical analysis. In the table providing the results we indicate with \* the cases for which this assumption is not satisfied. Once the confidence interval is calculated, if its lower bound  $CI_l$  is above 0.25 or if its upper bound  $CI_u$  is below 0.25, the analysis will return that the result for the distance interval and the behaviour under consideration is statistically significant. Otherwise, the result will not be labelled as statistically significant. We indicate the disjunction with |, in the same way as in the R syntax.

# Algorithm 2: Dyadic behaviour statistical analysis

Note that it is possible to consider also different statistical analysis to evaluate statistically significant results in our method. In particular, a  $\chi^2$  goodness-of-fit test can be used to compare the observed distribution of occurrences with an expected probability distribution, assuming random movement behaviour. Using a similar syntax as R and the R package stats, we run the chisq.test providing as input the vector v (counts of occurrences of the four behaviour under examination) and a vector of equal probabilities.

chisq.test(v, p = 
$$c(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$$

The p-value returned by the test will be used to classify if the results are statistically significant and additional

analysis can be done by observing the residuals. We provide an example of this analysis for the dyadic behaviour using the simulated data in Section 4.3.

## 2. Extended analysis

For the extended analysis (Algorithm 3), we extract eight behavioural types, by considering also the absolute heading difference and the relative speed. We set the list  $M_F$  to keep track of the counts. After the calculation of the usual angles, we evaluate also the heading difference diffH, the pair distance  $d_{AB}$ , the individual speed  $s_A$  and  $s_B$  (as ratio between the distance  $\Delta l$  and time interval  $\Delta t$ ) and the proportion of the two individual speeds  $s_p$ . If the pair distance  $d_{AB}$  lies within a chosen distance interval  $I_i$ , then the function  $f_{cf}$  classify the pair behavioural type considering all the necessary inputs (here we consider circle segmentation, heading difference and relative speed classification implicitly) and the function u subsequently updates the vector count.

#### **Algorithm 3:** Extended analysis

```
Input \mathcal{T}_A, \mathcal{T}_B, \mathcal{I}
M_F = list()
for i in \{1, ..., n\} do
M_F[i] = v_0(8)
I_{AB} = T_A \cap_F T_B
for t in I_{AB} do
    headA = f(A(t), A(t+1)), headB = f(B(t), B(t+1))
     dirAB = f(A(t), B(t)), dirBA = f(B(t), A(t))
     diffA = |headA - dirAB|, diffB = |headB - dirBA|
     diffH = |headA - headB|
    d_{AB} = d(A(t), B(t))
    s_A = \frac{d(A(t),A(t+1))}{\Delta t_A},\, s_B = \frac{d(B(t),B(t+1))}{\Delta t_B}
    s_p = \frac{s_A}{s_B}
    if \exists i: d_{AB} \in I_i then
\mid m_F = f_{cf}(\text{diffA,diffB,diffH}, s_p)
       M_F[i] = u(m_F, M_F[i]) 
return M_F
```

Note that the relative speed classification depends on the speed proportion limits  $p_l$  and  $p_u$ ,  $p_l < p_u$ : given two individuals A and B, the speed proportion limits  $p_l$  and  $p_u$  are defined such that if the speed proportion  $s_p$  (of A with respect to B) is above  $p_u$ , then speed of A is considered greater than speed of B. If  $s_p$  lies between  $p_l$  and  $p_u$ , then the speed is considered similar, while if the proportion is below  $p_l$ , then the

speed of B is considered greater than the speed of A. Note that the heading difference classification depends on the threshold value  $\theta$ : in the context of individual absolute headings, we classify a dyad as having a similar heading if the absolute value of the heading difference is below  $\theta$  or above  $360 - \theta$ , while we classify it as having the opposite heading if the difference lies between  $180 - \theta$  and  $180 + \theta$  degrees. We classify all the other cases as other.

#### 2.1. Extended analysis: behaviours of interest

Table 1 combines the information related to the classified dyadic movement modes, relative speed and individual heading analysis. In the last column of the table, we provide a description of behaviours of interest, used in Section 7.4 of the main paper, including the heading difference classification. Note that we do not distinguish among behaviours of type 3 in the table, but only present examples of the case 3(A,B).

Note that we considered speed and heading difference in the analysis to extract meaningful behaviours (e.g. following, side by side). However, given all the possible combinations, some resulting behaviours might not be meaningful. For example, "both individuals approaching, similar speed, similar heading" is not a possible behaviour, since both individual cannot be moving towards each other and have similar absolute headings.

#### 3. Simulated data

In this section, we describe the relative-motion, biased random-walk (RM-BRW) models implemented in Numerus Model Builder (NMB) (Getz et al., 2018) and used to generate simulated data. We provide the description of the movement model for individual A of pair (A,B), since the behaviour of individual B is the same as the one of A, just with a different direction (B approaching/retreating from A instead of A approaching/retreating from B).

Given the initial position  $(x_0, y_0)$  of individual A, the location coordinates are updated as follows:

$$x_{t+1} = x_t + s_t \cos \theta_t$$

$$y_{t+1} = y_t + s_t \sin \theta_t$$

where  $s_t$  is the step length and  $\theta_t$  is the absolute heading. The step length is drawn from the uniform distribution:

$$s_t \sim \text{UNIFORM}(s_{\min}, s_{\max})$$

while the absolute heading is drawn from different distributions, which are described later.

Table 1: Behaviours of interest extracted via the extended analysis.

| Modes | Dyadic behaviour                       | Speed analysis  | Description                                 |
|-------|----------------------------------------|-----------------|---------------------------------------------|
| 1a    | Both individuals approach each other   | Similar         | With opposite individual head-              |
|       |                                        |                 | ing, A and B approaching at a similar speed |
| 1b    | Both individuals approach each other   | A faster than B |                                             |
| 1c    | Both individuals approach each other   | B faster than A |                                             |
| 2a    | Both individuals retreat from each     | Similar         |                                             |
|       | other                                  |                 |                                             |
| 2b    | Both individuals retreat from each     | A faster than B |                                             |
|       | other                                  |                 |                                             |
| 2c    | Both individuals retreat from each     | B faster than A |                                             |
|       | other                                  |                 |                                             |
| 3a    | One individual (A) approaches while    | Similar         | With similar individual heading,            |
|       | the other individual (B) retreats      |                 | A following B                               |
| 3b    | One individual (A) approaches while    | A faster than B | With similar individual heading,            |
|       | the other individual (B) retreats      |                 | A chasing B                                 |
| 3c    | One individual approaches (A) while    | B faster than A | With similar individual heading,            |
|       | the other individual (B) retreats      |                 | B escaping from A                           |
| 4a    | One individual (A) moves orthogonally, | Similar         |                                             |
|       | the other (B) approaches               |                 |                                             |
| 4b    | One individual (A) moves orthogonally, | A faster than B |                                             |
|       | the other (B) approaches               |                 |                                             |
| 4c    | One individual (A) moves orthogonally, | B faster than A |                                             |
|       | the other (B) approaches               |                 |                                             |
| 5a    | One individual (A) moves orthogonally, | Similar         |                                             |
|       | the other (B) retreats                 |                 |                                             |
| 5b    | One individual (A) moves orthogonally, | A faster than B |                                             |
|       | the other (B) retreats                 |                 |                                             |
| 5c    | One individual (A) moves orthogonally, | B faster than A |                                             |
|       | the other (B) retreats                 |                 |                                             |
| 6a    | Both individuals move orthogonally     | Similar         | With similar individual heading,            |
|       |                                        |                 | side by side movement                       |
| 6b    | Both individuals move orthogonally     | A faster than B |                                             |
| 6c    | Both individuals move orthogonally     | B faster than A |                                             |

#### 3.1. Distance-dependent behaviour

In the first model, these distributions are distance-dependent with noise introduced using the coefficient  $\rho \in [0, 1]$  and attracting and repulsing circles of radii  $d_R$  and  $d_A$  (Fig. 1):

$$\theta_{t+1} \sim \begin{cases} \text{UNIFORM}(\theta_{A\to B} - (1-\rho)\frac{\pi}{2}, \theta_{A\to B} + (1-\rho)\frac{\pi}{2}) & \text{if case 1} \\ \text{UNIFORM}(-\theta_{A\to B} - (1-\rho)\frac{\pi}{2}, -\theta_{A\to B} + (1-\rho)\frac{\pi}{2}) & \text{if case 2} \\ \text{UNIFORM}(-\pi, \pi) & \text{otherwise} \end{cases}$$

where  $\theta_{A\to B}$  is the heading direction from A(t) to B(t),  $\rho\in[0,1]$  and:

- case 1:  $d_R < d_{AB} < d_A$  and UNIFORM(0,1)  $< p_{\text{eff}}$
- case 2:  $d_{AB} < d_R$  and UNIFORM(0,1)  $< p_{\text{eff}}$

The first case represents approach: the individuals are at a distance between the repulsion distance  $d_R$  and the attraction distance  $d_A$ , while the second case represents repulsion. These behaviours happen with probability  $p_{\text{eff}}$ , otherwise the movement is random.



Figure 1: Area of repulsion (red), attraction (blue) and indifference (light orange), depending on  $d_R$  and  $d_A$ , around one individual. This figure helps illustrate the distance-dependent behaviour described in the model and then captured by our method.

#### 3.2. Time-dependent behaviour

In the second model, the distributions used to drawn  $\theta_{t+1}$  are a function of time. Given the period  $\omega$  and the functions  $f_1$  and  $f_2$ :

$$f_1(t) = \sin\left(\frac{2\pi t}{\omega}\right)$$
  
 $f_2(t) = \sin\left(\frac{2\pi t}{\frac{\omega}{\omega}}\right)$ 

the value of the absolute heading is drawn as follow:

$$\theta_{t+1} \sim \begin{cases} \text{UNIFORM}(\theta_{A\to B} - (1-\rho)\frac{\pi}{2}, \theta_{A\to B} + (1-\rho)\frac{\pi}{2}) & \text{if case 1} \\ \text{UNIFORM}(-\theta_{A\to B} - (1-\rho)\frac{\pi}{2}, -\theta_{A\to B} + (1-\rho)\frac{\pi}{2}) & \text{if case 2} \\ \text{UNIFORM}(-\pi, \pi) & \text{otherwise} \end{cases}$$

where:

• case 1:  $f_1(t) > 0$  and  $f_2(t) > 0$ 

• case 2:  $f_1(t) > 0$  and  $f_2(t) < 0$ 

The first case represents A approaching B, the second case A retreating from B while the third case is a random walk, without a preferred direction. In Fig. 2 we show the values of functions  $f_1$  and  $f_2$ , used to control the timing of the various movement behaviours. Note that the choice of parameters (Table 2) was arbitrary. Other values can be selected, depending on what aspects of the model are being evaluated or tested. In both models, individuals A and B were at a distance equal to 60 units at time 0.



Figure 2: One period of  $f_1$  (black) and 2 periods of  $f_2$  (red). The values of these functions, in particular their sign, are used in the model to govern the time-dependent approach/retreat/indifferent movement behaviours.

Table 2: Parameters used in the simulations

| Name  | $s_{\min}$ | $s_{ m max}$ | $\omega$ | ρ   | $d_A$ | $d_R$ | $p_{ m eff}$ |
|-------|------------|--------------|----------|-----|-------|-------|--------------|
| Value | 5          | 6            | 1440     | 0.5 | 60    | 30    | 0.5          |

#### 4. Results: simulated data

In the results reported here, we used the Euclidean distance to calculate the dyadic distance in units and we scaled the coordinates to be able to use the function bearing to calculate the various angles.

# 4.1. Individual behaviour analysis

In Fig. 3 we show the results of the individual behaviour analysis for individual B and we provide the analysis results for both individual A and individual B in Tables 3 and 4 respectively.



Figure 3: Barplot for individual B (left). Estimated confidence intervals (CI) for individual B, coloured if statistically significant result (centre) according to the legend (right).

Table 3: Results of the individual analysis for individual A. We report the results grouped by distance intervals, providing the total number of approach and retreat behaviours and only the number of approaches. We then show the bounds of the confidence interval (CI) and check the results that are statistically significant at the 95% level, indicating either approach or retreat.

| Distance interval (units) | # Total | # Approach | Lower CI | Upper CI | Approach | Retreat  |
|---------------------------|---------|------------|----------|----------|----------|----------|
| [0,5)                     | 11      | 4          | 0.1093   | 0.6921   |          |          |
| [5,10)                    | 70      | 23         | 0.2209   | 0.4512   |          | ~        |
| [10,15)                   | 404     | 82         | 0.1648   | 0.2455   |          | <b>/</b> |
| [15,20)                   | 1003    | 229        | 0.2027   | 0.2556   |          | ~        |
| [20,25)                   | 1846    | 760        | 0.3891   | 0.4345   |          | <b>/</b> |
| [25,30)                   | 2445    | 1138       | 0.4455   | 0.4854   |          | <b>/</b> |
| [30,35)                   | 2467    | 1360       | 0.5314   | 0.571    | ~        |          |
| [35,40)                   | 2184    | 1321       | 0.584    | 0.6254   | ~        |          |
| [40,45)                   | 1282    | 987        | 0.7459   | 0.7927   | ~        |          |
| [45,50)                   | 633     | 494        | 0.7461   | 0.8121   | ~        |          |
| [50,55)                   | 139     | 116        | 0.7621   | 0.8921   | ~        |          |
| [55,60)                   | 39      | 33         | 0.6947   | 0.9414   | ~        |          |
| [60,65)                   | 6       | 4          | 0.2228   | 0.9567   |          |          |
| [65,70)                   | 8       | 4          | 0.157    | 0.843    |          |          |
| [70,75)                   | 9       | 3          | 0.0749   | 0.7007   |          |          |
| [75,80)                   | 1       | 1          | 0.025    | 1        |          |          |

Table 4: Results of the individual analysis for individual B. We report the results grouped by distance intervals, providing the total number of approach and retreat behaviours and only the number of approaches. We then show the bounds of the confidence interval (CI) and check the results that are statistically significant at the 95% level, indicating either approach or retreat.

| Distance interval (units) | # Total | # Approach | Lower CI | Upper CI | Approach | Retreat |
|---------------------------|---------|------------|----------|----------|----------|---------|
| [0,5)                     | 8       | 1          | 0.0032   | 0.5265   |          |         |
| [5,10)                    | 74      | 17         | 0.1399   | 0.3421   |          | ~       |
| [10,15)                   | 398     | 82         | 0.1674   | 0.2491   |          | ~       |
| [15,20)                   | 997     | 235        | 0.2097   | 0.2633   |          | ~       |
| [20,25)                   | 1881    | 742        | 0.3723   | 0.417    |          | ~       |
| [25,30)                   | 2463    | 1119       | 0.4345   | 0.4742   |          | ~       |
| [30,35)                   | 2481    | 1388       | 0.5397   | 0.5791   | ~        |         |
| [35,40)                   | 2191    | 1331       | 0.5867   | 0.628    | ~        |         |
| [40,45)                   | 1294    | 998        | 0.7474   | 0.7939   | ~        |         |
| [45,50)                   | 642     | 505        | 0.7529   | 0.8177   | ~        |         |
| [50,55)                   | 146     | 113        | 0.6975   | 0.839    | ~        |         |
| [55,60)                   | 44      | 32         | 0.5721   | 0.8504   | ~        |         |
| [60,65)                   | 5       | 2          | 0.0527   | 0.8534   |          |         |
| [65,70)                   | 5       | 3          | 0.1466   | 0.9473   |          |         |
| [70,75)                   | 5       | 4          | 0.2836   | 0.9949   |          |         |
| [75,80)                   | 1       | 1          | 0.025    | 1        |          |         |

# 4.2. Dyadic behaviour analysis

In Table 5 we present the results of the dyadic behaviour analysis. The entry Total refers to the total counts of the four behaviours of interest, shown separately in the entry Total. We indicate behaviours of type Total and Total and Total refers to the total counts of the four behaviours of interest, shown separately in the entry Total refers to the total counts of the four behaviours of type Total and Total refers to the total counts of the four behaviours of type Total and Total refers to the total counts of the four behaviours of type Total and Total refers to the total counts of the four behaviours of the four behaviours of type Total and Total refers to the total counts of the four behaviours of the four behaviours of type Total and Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of type Total refers to the total counts of the four behaviours of the four beh

Table 5: Dyadic behaviour results

| Pair    | Distance interval (units) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. (above) |
|---------|---------------------------|-------|-------|------|----------|----------|---------------------|
| A and B | [0,5)                     | 7     | 0     | 1    | 0        | 0.5275   | *                   |
| A and B |                           | 7     | 3     | 2    | 0.1049   | 0.8276   | *                   |
| A and B |                           | 7     | 3     | 3    | 0.1049   | 0.8276   | *                   |
| A and B |                           | 7     | 1     | 4    | 0.0149   | 0.6476   | *                   |
| A and B | [5,10)                    | 60    | 5     | 1    | 0.026    | 0.2367   |                     |
| A and B | [0,10)                    | 60    | 30    | 2    | 0.3303   | 0.6697   | ✓Both retreat       |
| A and B |                           | 60    | 16    | 3    | 0.141    | 0.4461   | V Both Tetreat      |
| A and B |                           | 60    | 9     | 4    | 0.0626   | 0.3181   |                     |
| -       | [10.15]                   |       |       |      |          |          |                     |
| A and B | [10,15)                   | 347   | 17    | 1    | 0.0254   | 0.0925   | (D.d                |
| A and B |                           | 347   | 224   | 2    | 0.5713   | 0.7134   | ✓Both retreat       |
| A and B |                           | 347   | 54    | 3    | 0.1089   | 0.2175   |                     |
| A and B |                           | 347   | 52    | 4    | 0.104    | 0.2111   |                     |
| A and B | [15,20)                   | 880   | 53    | 1    | 0.0414   | 0.0868   |                     |
| A and B |                           | 880   | 530   | 2    | 0.5554   | 0.6473   | ✓Both retreat       |
| A and B |                           | 880   | 142   | 3    | 0.1297   | 0.199    |                     |
| A and B |                           | 880   | 155   | 4    | 0.1431   | 0.2148   |                     |
| A and B | [20,25)                   | 1628  | 385   | 1    | 0.2083   | 0.2671   |                     |
| A and B |                           | 1628  | 696   | 2    | 0.3937   | 0.4621   | ✓ Both retreat      |
| A and B |                           | 1628  | 278   | 3    | 0.1463   | 0.1984   |                     |
| A and B |                           | 1628  | 269   | 4    | 0.1411   | 0.1926   |                     |
| A and B | [25,30)                   | 2148  | 612   | 1    | 0.2585   | 0.3129   | ✓Both approach      |
| A and B |                           | 2148  | 801   | 2    | 0.3442   | 0.4025   | ✓Both retreat       |
| A and B |                           | 2148  | 377   | 3    | 0.1538   | 0.1996   |                     |
| A and B |                           | 2148  | 358   | 4    | 0.1454   | 0.1903   |                     |
| A and B | [30,35)                   | 2143  | 861   | 1    | 0.3726   | 0.4317   | ✓Both approach      |
| A and B |                           | 2143  | 608   | 2    | 0.2573   | 0.3117   | ✓Both retreat       |
| A and B |                           | 2143  | 334   | 3    | 0.1352   | 0.179    |                     |
| A and B |                           | 2143  | 340   | 4    | 0.1378   | 0.182    |                     |
| A and B | [35,40)                   | 1924  | 833   | 1    | 0.4017   | 0.4647   | ✓ Both approach     |
| A and B |                           | 1924  | 422   | 2    | 0.1941   | 0.2468   |                     |
| A and B |                           | 1924  | 329   | 3    | 0.1483   | 0.1963   |                     |
| A and B |                           | 1924  | 340   | 4    | 0.1537   | 0.2023   |                     |
| A and B | [40,45)                   | 1125  | 683   | 1    | 0.5658   | 0.6469   | ✓Both approach      |
| A and B | , , ,                     | 1125  | 79    | 2    | 0.0518   | 0.0946   |                     |
| A and B |                           | 1125  | 175   | 3    | 0.1277   | 0.1881   |                     |
| A and B |                           | 1125  | 188   | 4    | 0.1383   | 0.2005   |                     |
| A and B | [45,50)                   | 558   | 337   | 1    | 0.545    | 0.66     | ✓Both approach      |
| A and B | ( - / - / /               | 558   | 20    | 2    | 0.0195   | 0.065    |                     |
| A and B |                           | 558   | 92    | 3    | 0.1256   | 0.2134   |                     |
| A and B |                           | 558   | 109   | 4    | 0.1528   | 0.2463   |                     |
| A and B | [50,55)                   | 132   | 85    | 1    | 0.5224   | 0.7494   | *                   |
| A and B | (*****)                   | 132   | 4     | 2    | 0.0083   | 0.1048   | *                   |
| A and B |                           | 132   | 26    | 3    | 0.1184   | 0.3094   | *                   |
| A and B |                           | 132   | 17    | 4    | 0.0677   | 0.2314   | *                   |
| A and B | [55,60)                   | 35    | 22    | 1    | 0.3973   | 0.8129   | *                   |
| A and B | [00,00)                   | 35    | 1     | 2    | 0.0029   | 0.8129   | *                   |
| A and B |                           | 35    | 8     | 3    | 0.0029   | 0.4642   | *                   |
| A and B |                           | 35    | 4     | 4    | 0.032    | 0.3378   | *                   |
| A and B | [60,65)                   | 5     | 1     | 1    | 0.0316   | 0.3378   | *                   |
| A and B | [00,00)                   |       |       | 2    | 0.021    | 0.7449   | *                   |
| A and B |                           | 5     | 2     | 3    | 0.021    | 0.7449   | *                   |
|         |                           |       |       |      |          |          | *                   |
| A and B | [es mo)                   | 5     | 1     | 4    | 0.021    | 0.7449   | *                   |
| A and B | [65,70)                   | 5     | 1     | 1    | 0.021    |          | *                   |
| A and B |                           | 5     | 0     | 2    | 0 0726   | 0.6098   | *                   |
| A and B |                           | 5     | 2     | 3    | 0.0736   | 0.8484   | *                   |
| A and B | [mo mr.)                  | 5     | 2     | 4    | 0.0736   | 0.8484   |                     |
| A and B | [70,75)                   | 5     | 0     | 1    | 0        | 0.6098   | *                   |
| A and B |                           | 5     | 0     | 2    | 0        | 0.6098   | *                   |
| A and B |                           | 5     | 1     | 3    | 0.021    | 0.7449   | *                   |
| A and B |                           | 5     | 4     | 4    | 0.2551   | 0.979    | *                   |
| A and B | [75,80)                   | 1     | 1     | 1    | 0.1134   | 1        | *                   |
| A and B |                           | 1     | 0     | 2    | 0        | 0.8866   | *                   |
| A and B |                           | 1     | 0     | 3    | 0        | 0.8866   | *                   |
| A and B |                           | 1     | 0     | 4    | 0        | 0.8866   |                     |

# 4.3. $\chi^2$ goodness-of-fit test

As already introduced in the main paper, a  $\chi^2$  goodness-of-fit test could also be used to evaluate if our observed distribution of behavioural types is significantly different from random. To provide an example, we performed the dyadic behaviour analysis in the R platform using the simulated data. Intervals n.1, 13-16 ([0,5), [60,65), [65, 70), [70, 75) and [75,80) respectively) had the following warning (due to low counts as input):

In chisq.test(v, p = c(1/4, 1/4, 1/4, 1/4)): Chi-squared approximation may be incorrect where the vector v represents the 4 entries in the column Count, for each distance interval. For this reason, we do not evaluate the significance (p-value < 0.05) for the intervals n.1, 13-16 but only report the symbol \* in the significance column of Table 6. Note that in the significance column we report statistically significant results by providing the symbol  $\checkmark$  in the first row of the section corresponding to the considered observed distribution of behavioural types.

In Table 6 we also report the residuals. In particular, positive residuals mean that the observed occurrences were higher than the expected value while negative residuals correspond to a lower number of occurrences than the expected value. Evaluating the sign of the residuals and their meaning can be used for both the individual and the dyadic behaviour analysis.

In addition, the absolute values of the residuals can be used to evaluate the contribution of each entry to the  $\chi^2$ -test statistic. We show these cases in the last column, providing the name of behavioural type of major contribution coloured with the corresponding colour, while we insert the symbol \* for intervals n.1, 13-16. Note that the analysis of the absolute value of the residuals can provide information of interest when studying at least 3 possible behaviours, since in the analysis of only two behaviours (e.g. approach/retreat) the residuals will present the same absolute value.

Table 6: Dyadic behaviour  $\chi^2$ -test results

| Pair                                                                                    | Distance interval (units) | Total                                     | Count                                | Type                                      | p-value                   | Sign. diff. | residuals                                                                  | Highest contribution                    |
|-----------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------|-------------|----------------------------------------------------------------------------|-----------------------------------------|
| A and B                                                                                 | [0,5)                     | 7                                         | 0                                    | 1                                         | 0.28                      | *           | -1.3229                                                                    | *                                       |
| A and B                                                                                 |                           | 7                                         | 3                                    | 2                                         |                           |             | 0.9449                                                                     | *                                       |
| A and B                                                                                 |                           | 7                                         | 3                                    | 3                                         |                           |             | 0.9449                                                                     | *                                       |
| A and B                                                                                 |                           | 7                                         | 1                                    | 4                                         |                           |             | -0.5669                                                                    | *                                       |
| A and B                                                                                 | [5,10)                    | 60                                        | 5                                    | 1                                         | $2.3429 \times 10^{-5}$   |             | -2.582                                                                     |                                         |
| A and B                                                                                 |                           | 60                                        | 30                                   | 2                                         |                           |             | 3.873                                                                      | Both retreat                            |
| A and B                                                                                 |                           | 60                                        | 16                                   | 3                                         |                           |             | 0.2582                                                                     |                                         |
| A and B                                                                                 |                           | 60                                        | 9                                    | 4                                         |                           |             | -1.5492                                                                    |                                         |
| A and B                                                                                 | [10,15)                   | 347                                       | 17                                   | 1                                         | 1.2682×10 <sup>-64</sup>  | _           | -7.4888                                                                    |                                         |
| A and B                                                                                 |                           | 347                                       | 224                                  | 2                                         |                           |             | 14.7359                                                                    | Both retreat                            |
| A and B                                                                                 |                           | 347                                       | 54                                   | 3                                         |                           |             | -3.5162                                                                    |                                         |
| A and B                                                                                 |                           | 347                                       | 52                                   | 4                                         |                           |             | -3.731                                                                     |                                         |
| A and B                                                                                 | [15,20)                   | 880                                       | 53                                   | 1                                         | 5.4818×10 <sup>-132</sup> | _           | -11.2591                                                                   |                                         |
| A and B                                                                                 | , , ,                     | 880                                       | 530                                  | 2                                         |                           |             | 20.9002                                                                    | Both retreat                            |
| A and B                                                                                 |                           | 880                                       | 142                                  | 3                                         |                           |             | -5.2588                                                                    |                                         |
| A and B                                                                                 |                           | 880                                       | 155                                  | 4                                         |                           |             | -4.3823                                                                    |                                         |
| A and B                                                                                 | [20,25)                   | 1628                                      | 385                                  | 1                                         | 1.9023×10 <sup>-63</sup>  | _           | -1.0905                                                                    |                                         |
| A and B                                                                                 | ( -7 -7                   | 1628                                      | 696                                  | 2                                         |                           |             | 14.3252                                                                    | Both retreat                            |
| A and B                                                                                 |                           | 1628                                      | 278                                  | 3                                         |                           |             | -6.3943                                                                    |                                         |
| A and B                                                                                 |                           | 1628                                      | 269                                  | 4                                         |                           |             | -6.8404                                                                    |                                         |
| A and B                                                                                 | [25,30)                   | 2148                                      | 612                                  | 1                                         | 2.1606×10 <sup>-53</sup>  |             | 3.2365                                                                     |                                         |
| A and B                                                                                 | (==)==/                   | 2148                                      | 801                                  | 2                                         |                           | <u> </u>    | 11.3924                                                                    | Both retreat                            |
| A and B                                                                                 |                           | 2148                                      | 377                                  | 3                                         |                           |             | -6.9045                                                                    |                                         |
| A and B                                                                                 |                           | 2148                                      | 358                                  | 4                                         |                           |             | -7.7244                                                                    |                                         |
| A and B                                                                                 | [30,35)                   | 2143                                      | 861                                  | 1                                         | 1.4344×10 <sup>-76</sup>  |             | 14.0519                                                                    | Both approach                           |
| A and B                                                                                 | [50,50)                   | 2143                                      | 608                                  | 2                                         | 1.4044 \ 10               | ,           | 3.1215                                                                     | Dotti approach                          |
| A and B                                                                                 |                           | 2143                                      | 334                                  | 3                                         |                           |             | -8.7163                                                                    |                                         |
| A and B                                                                                 |                           | 2143                                      | 340                                  | 4                                         |                           |             | -8.4571                                                                    |                                         |
| A and B                                                                                 | [35,40)                   | 1924                                      | 833                                  | 1                                         | $1.8379 \times 10^{-76}$  |             | 16.0498                                                                    | Both approach                           |
| A and B                                                                                 | [30,40)                   | 1924                                      | 422                                  | 2                                         | 1.03/9×10                 | · •         | -2.6902                                                                    | Both approach                           |
| A and B                                                                                 |                           | 1924                                      | 329                                  | 3                                         |                           |             | -6.9306                                                                    |                                         |
| A and B                                                                                 |                           | 1924                                      | 340                                  | 4                                         |                           |             | -6.429                                                                     |                                         |
| A and B                                                                                 | [40,45)                   | 1125                                      | 683                                  | 1                                         | $5.2945 \times 10^{-171}$ |             | 23.9557                                                                    | Both approach                           |
| A and B                                                                                 | (40,40)                   | 1125                                      | 79                                   | 2                                         | 0.2340 \ 10               | · ·         | -12.0599                                                                   | Dotti approach                          |
| A and B                                                                                 |                           | 1125                                      | 175                                  | 3                                         |                           |             | -6.3355                                                                    |                                         |
| A and B                                                                                 |                           | 1125                                      | 188                                  | 4                                         |                           |             | -5.5604                                                                    |                                         |
| A and B                                                                                 | [45,50)                   | 558                                       | 337                                  | 1                                         | 1.9960×10 <sup>-87</sup>  |             | 16.7217                                                                    | Both approach                           |
| A and B                                                                                 | (10,00)                   | 558                                       | 20                                   | 2                                         | 1.0000×10                 |             | -10.1177                                                                   | Dom upprouch                            |
| A and B                                                                                 |                           | 558                                       | 92                                   | 3                                         |                           |             | -4.0217                                                                    |                                         |
| A and B                                                                                 |                           | 558                                       | 109                                  | 4                                         |                           |             | -2.5823                                                                    |                                         |
| A and B                                                                                 | [50,55)                   | 132                                       | 85                                   | 1                                         | $4.0294 \times 10^{-25}$  |             | 9.052                                                                      | Both approach                           |
| A and B                                                                                 | [50,55)                   | 132                                       | 4                                    | 2                                         | 4.0254 \ 10               | <u> </u>    | -5.0483                                                                    | Both approach                           |
| A and B                                                                                 |                           | 132                                       | 26                                   | 3                                         |                           |             | -1.2185                                                                    |                                         |
| A and B                                                                                 |                           | 132                                       | 17                                   | 4                                         |                           |             | -2.7852                                                                    |                                         |
| A and B                                                                                 | [55,60)                   | 35                                        | 22                                   | 1                                         | 1.6983×10 <sup>-6</sup>   |             | 4.4793                                                                     | Both approach                           |
| A and B                                                                                 | [00,00)                   | 35                                        | 1                                    | 2                                         | 1.0000/10                 |             | -2.62                                                                      | Dom approach                            |
| A and B                                                                                 |                           | 35                                        | 8                                    | 3                                         |                           |             | -0.2535                                                                    |                                         |
| A and B                                                                                 |                           | 35                                        | 4                                    | 4                                         |                           |             | -1.6058                                                                    |                                         |
| A and B                                                                                 | [60,65)                   | 5                                         | 1                                    | 1                                         | 0.90                      | *           | -0.2236                                                                    | *                                       |
| A and B                                                                                 | [00,00)                   | 5                                         | 1                                    | 2                                         | 0.50                      |             | -0.2236                                                                    | *                                       |
| A and B                                                                                 |                           | 5                                         | 2                                    | 3                                         |                           |             | 0.6708                                                                     | *                                       |
| and D                                                                                   |                           |                                           | 1                                    | 4                                         |                           |             | -0.2236                                                                    | *                                       |
| A and D                                                                                 |                           |                                           |                                      |                                           | 1                         |             | -0.2200                                                                    | 1                                       |
| A and B                                                                                 | [65.70)                   | 5                                         |                                      |                                           | 0.53                      | *           | =0 2236                                                                    | *                                       |
| A and B                                                                                 | [65,70)                   | 5                                         | 1                                    | 1                                         | 0.53                      | *           | -0.2236                                                                    | *                                       |
| A and B<br>A and B                                                                      | [65,70)                   | 5<br>5                                    | 1 0                                  | 1 2                                       | 0.53                      | *           | -1.118                                                                     | *                                       |
| A and B A and B A and B                                                                 | [65,70)                   | 5<br>5<br>5                               | 1 0 2                                | 1<br>2<br>3                               | 0.53                      | *           | -1.118<br>0.6708                                                           | *                                       |
| A and B A and B A and B A and B                                                         |                           | 5<br>5<br>5<br>5                          | 1<br>0<br>2<br>2                     | 1<br>2<br>3<br>4                          |                           |             | -1.118<br>0.6708<br>0.6708                                                 | *                                       |
| A and B                                                 | [65,70)<br>[70,75)        | 5<br>5<br>5<br>5<br>5                     | 1<br>0<br>2<br>2<br>0                | 1<br>2<br>3<br>4                          | 0.53                      | *           | -1.118<br>0.6708<br>0.6708<br>-1.118                                       | * * *                                   |
| A and B                                 |                           | 5<br>5<br>5<br>5<br>5                     | 1<br>0<br>2<br>2<br>2<br>0           | 1<br>2<br>3<br>4<br>1                     |                           |             | -1.118<br>0.6708<br>0.6708<br>-1.118<br>-1.118                             | * * * *                                 |
| A and B                         |                           | 5<br>5<br>5<br>5<br>5<br>5<br>5           | 1<br>0<br>2<br>2<br>0<br>0           | 1<br>2<br>3<br>4<br>1<br>2<br>3           |                           |             | -1.118<br>0.6708<br>0.6708<br>-1.118<br>-1.118                             | * * * *                                 |
| A and B                 | [70,75]                   | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | 1<br>0<br>2<br>2<br>0<br>0<br>1<br>4 | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4      | 0.035                     | *           | -1.118<br>0.6708<br>0.6708<br>-1.118<br>-1.118<br>-0.2236<br>2.4597        | * * * * * *                             |
| A and B |                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>1 | 1<br>0<br>2<br>2<br>0<br>0<br>1<br>4 | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>1 |                           |             | -1.118<br>0.6708<br>0.6708<br>-1.118<br>-1.118<br>-0.2236<br>2.4597<br>1.5 | * * * * * * * * * * * * * * * * * * * * |
| A and B                 | [70,75]                   | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | 1<br>0<br>2<br>2<br>0<br>0<br>1<br>4 | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4      | 0.035                     | *           | -1.118<br>0.6708<br>0.6708<br>-1.118<br>-1.118<br>-0.2236<br>2.4597        | * * * * * *                             |

#### 4.4. Results for time-dependent RM-BRW model

In this section we show the results of the individual behaviour classification obtained by subdividing our 10-day simulation data depending on the time of the day (first quarter, second quarter and second half of the day), considering dyadic distance below 4000 units (maximum distance: 3933 units). We start by showing the overall classification in Fig. 4, where we observe a balanced distribution of approach and retreat behaviours. Also in this case, we report the results of the classification only for individual A given the similarities of the behaviours of individual A and individual B.



Figure 4: Results of individual behaviour classification for individual A, for the time-dependent RM-BRW model

In Fig. 5 we show the classification results related to the first quarter of the day (first row), to the second quarter of the day (second row) and to the second half of the day (third row). As expected, we observe that in the first quarter of the day the individuals mostly show approach behaviour (in blue) while in the second quarter of the day they show mostly retreat behaviour (in red). In the second half of the day, when the individuals move independently, we observe a balanced mixture of the different behavioural types, without a prevalent one.

In Fig. 6 we depict the results of the dyadic behaviour classification, divided depending on the time of the day. Also in this case, the classification captures the different dyadic behaviour (both approaching, both retreating) for the first 2 quarters of the day, while the second half presents the various dyadic behavioural types.



Figure 5: Results of individual behaviour classification for individual A, for the time-dependent RM-BRW model, for different times of the day. First row: first quarter of the day, second row: second quarter of the day, third row: second half of the day with legend.



Figure 6: Results of dyadic behaviour classification for individual A and B, for the time-dependent RM-BRW model, for different times of the day. From the top: first quarter of the day, second quarter of the day, second half of the day with legend.

#### 5. Results: empirical data

In Fig. 7 we show the time line of the data collection for each individual and each different data collection frequency. We do not specify the individual names since we focus on showing the data collection time ranges.



Figure 7: Time line of data collection for each individual and for each different frequency.

We now present information from previous work where these data were used, to share more details regarding the data.

- Information from (Tsalyuk et al., 2019) on 20-min data: we collected data from 15 elephants with GPS/GSM platform collars (Africa Wildlife Tracking, Pretoria, South Africa), eight female individuals and seven male individuals. Collaring was performed in the central part of Etosha, around Okaukuejo station. Darting and collaring procedures were performed by veterinarians from the Namibian Ministry of Environment and Tourism in compliance with the University of California Berkeley animal care and use protocol (#R217-0511B). Elephants were collared during two periods, October 2008 and July 2009; data were collected for 2.2 months to 4.6 yr (October 2008–March 2014). Location information was recorded in time intervals alternating between 1 min and 19 min. GPS collar accuracy was 3 m, as was confirmed in the field.
- Information from (Seidel, 2019) on 20-min data: Before analysis, this trajectory was regularised using the adehabitatLT package such that only the first and third fix of each set remained, thereby resulting in relocations every 20 minutes. [...] Regularization was performed using the R function regularize (from R package stmove) and an expected fix rate of 20 minutes eliminating every other fix in order to standardise the interval to 20 minutes for future analysis.
- Information from (Polansky et al., 2015) on 15-min and 30-min data: Global Positioning System (GPS) satellite and Global Systems for Mobile Communications (GSM) collars: (GSM, 15 min sampling intervals, GPS satellite, 30 min sampling intervals), with a spatial resolution to about 3 m<sup>2</sup>. Fitting and removal of collars were conducted by veterinarians from the Namibian Ministry of Environment

Table 7: Information regarding 15-min frequency data (all male individuals)

| Individual | Total points | 15-min | Percentage with different time interval | Period (yyyy-mm-dd)     |
|------------|--------------|--------|-----------------------------------------|-------------------------|
| 1          | 68450        | 68396  | 0.076                                   | 2009-10-03 - 2011-10-19 |
| 2          | 68409        | 68356  | 0.075                                   | 2009-10-03 - 2011-10-19 |
| 3          | 67044        | 65996  | 1.560                                   | 2009-10-03 - 2011-10-19 |
| 4          | 68445        | 68406  | 0.054                                   | 2009-10-03 - 2011-10-19 |
| 5          | 68573        | 68532  | 0.057                                   | 2009-10-04 - 2011-10-19 |
| 6          | 68567        | 68483  | 0.120                                   | 2009-10-04 - 2011-11-01 |
| 7          | 69185        | 69122  | 0.088                                   | 2009-10-04 - 2011-11-02 |
| 8          | 71465        | 71415  | 0.067                                   | 2009-10-04 - 2011-11-02 |
| 9          | 70756        | 70348  | 0.574                                   | 2009-10-05 - 2011-11-17 |
| 10         | 72690        | 72676  | 0.017                                   | 2009-10-05 - 2011-11-01 |

and Tourism and in accordance with their best-practice principles. The collared elephants were located in the eastern area of Etosha National Park.

In addition, we removed relocation data in the area of the Okaukuejo station (we believe caused by the GPS collar retrievement) since these data were not representing actual individual movement and therefore we did not want to include them in the analysis. We provide a table for each frequency of data collection (Tables 7-9) before our data cleaning. These tables provide the total number of collected data points and the period of data collection. In addition, they provide the percentage of data points not at the given frequency (15-, 20- or 30-min). For the 15-min frequency data, the most common frequency different than 15-min was 30-min. For the 20-min data, it was 40-min, while for 30-min data it was 1-hour.

Table 8: Information regarding 20-min frequency data

| Individual | Sex | Total points | 20-min | Percentage with different time interval | Period (yyyy-mm-dd)     |
|------------|-----|--------------|--------|-----------------------------------------|-------------------------|
| 1          | M   | 25639        | 25622  | 0.059                                   | 2008-10-30 - 2010-02-07 |
| 2          | F   | 16987        | 16973  | 0.071                                   | 2008-10-30 - 2009-06-23 |
| 3          | M   | 44285        | 44144  | 0.314                                   | 2008-10-30 - 2010-07-10 |
| 4          | М   | 19964        | 19773  | 0.947                                   | 2008-10-30 - 2010-01-13 |
| 5          | M   | 45153        | 45069  | 0.182                                   | 2008-10-30 - 2010-08-16 |
| 6          | F   | 47140        | 46961  | 0.375                                   | 2008-10-30 - 2010-08-21 |
| 7          | F   | 31729        | 31719  | 0.025                                   | 2008-10-30 - 2010-01-14 |
| 8          | F   | 46842        | 46801  | 0.083                                   | 2008-10-30 - 2010-08-15 |
| 9          | F   | 93762        | 93589  | 0.182                                   | 2009-10-27 - 2013-07-16 |
| 10         | F   | 105245       | 105088 | 0.147                                   | 2009-07-30 - 2013-09-23 |
| 11         | F   | 113627       | 113505 | 0.106                                   | 2009-10-06 - 2014-03-27 |
| 12         | F   | 17514        | 17497  | 0.086                                   | 2009-10-06 - 2010-06-12 |
| 13         | М   | 55326        | 55286  | 0.069                                   | 2009-07-30 - 2012-01-20 |
| 14         | М   | 5629         | 5622   | 0.089                                   | 2009-07-30 - 2009-10-17 |
| 15         | М   | 55134        | 54983  | 0.270                                   | 2009-07-30 - 2012-01-20 |

Table 9: Information regarding 30-min frequency data (all female individuals)

| Individual | Total points | 30-min | Percentage with different time interval | Period (yyyy-mm-dd)     |
|------------|--------------|--------|-----------------------------------------|-------------------------|
| 1          | 5657         | 5173   | 8.520                                   | 2013-06-01 - 2013-10-20 |
| 2          | 28297        | 26246  | 7.241                                   | 2013-06-01 - 2015-04-02 |
| 3          | 28322        | 26040  | 8.050                                   | 2013-06-01 - 2015-04-02 |
| 4          | 29145        | 27665  | 5.071                                   | 2013-06-01 - 2015-04-02 |
| 5          | 28446        | 26704  | 6.117                                   | 2013-06-01 - 2015-04-02 |
| 6          | 28734        | 27041  | 5.885                                   | 2013-06-01 - 2015-04-02 |
| 7          | 28269        | 26245  | 7.153                                   | 2013-06-01 - 2015-04-02 |
| 8          | 34274        | 32676  | 4.657                                   | 2010-07-01 - 2013-01-12 |
| 9          | 23008        | 21265  | 7.567                                   | 2010-12-07 - 2012-10-02 |
| 10         | 32341        | 30586  | 5.420                                   | 2010-12-07 - 2013-03-14 |
| 11         | 33137        | 30859  | 6.868                                   | 2010-07-01 - 2012-12-29 |
| 12         | 31002        | 29228  | 5.716                                   | 2010-07-01 - 2012-09-18 |
| 13         | 37577        | 35722  | 4.931                                   | 2010-07-01 - 2013-02-04 |
| 14         | 31440        | 29091  | 7.465                                   | 2010-07-01 - 2012-10-14 |

# 5.1. Dyadic behaviour analysis: female-male dyad

In Table 10 we present the results of the dyadic behaviour analysis for the pair of interest. As before, we indicate behaviours of type 3(A,B) and 3(B,A) with numbers 3 and 4. Statistically significant results (above 0.25) are marked using the symbol  $\checkmark$ . Letter A represents the female while letter B represents the male.

# 5.2. Seasonality

In Tables 11-13 we present the results of the dyadic analysis of the pair of interest looking at data collected during hot-wet, cold-dry and hot-dry season respectively.

Table 10: Results of the dyadic behaviour analysis for pair of interest

| Pair    | Distance interval (units) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. (above) |
|---------|---------------------------|-------|-------|------|----------|----------|---------------------|
| A and B | [0,50)                    | 485   | 49    | 1    | 0.0689   | 0.1458   |                     |
| A and B |                           | 485   | 26    | 2    | 0.0315   | 0.0899   |                     |
| A and B |                           | 485   | 185   | 3    | 0.3221   | 0.4445   | <b>✓</b>            |
| A and B |                           | 485   | 225   | 4    | 0.4017   | 0.5273   | <b>✓</b>            |
| A and B | [50,100)                  | 522   | 27    | 1    | 0.0306   | 0.086    |                     |
| A and B |                           | 522   | 41    | 2    | 0.0515   | 0.118    |                     |
| A and B |                           | 522   | 207   | 3    | 0.3386   | 0.4575   | <b>✓</b>            |
| A and B |                           | 522   | 247   | 4    | 0.4129   | 0.5342   | <b>✓</b>            |
| A and B | [100,200)                 | 857   | 80    | 1    | 0.0691   | 0.1249   |                     |
| A and B |                           | 857   | 78    | 2    | 0.0671   | 0.1223   |                     |
| A and B |                           | 857   | 328   | 3    | 0.3376   | 0.43     | <b>✓</b>            |
| A and B |                           | 857   | 371   | 4    | 0.3864   | 0.4806   | ~                   |
| A and B | [200,500)                 | 1700  | 230   | 1    | 0.1138   | 0.1602   |                     |
| A and B |                           | 1700  | 208   | 2    | 0.1018   | 0.1463   |                     |
| A and B |                           | 1700  | 527   | 3    | 0.2796   | 0.3422   | <b>✓</b>            |
| A and B |                           | 1700  | 735   | 4    | 0.3991   | 0.4662   | <b>✓</b>            |
| A and B | [500,1000)                | 1369  | 222   | 1    | 0.1362   | 0.1919   |                     |
| A and B |                           | 1369  | 214   | 2    | 0.1308   | 0.1857   |                     |
| A and B |                           | 1369  | 276   | 3    | 0.173    | 0.2336   |                     |
| A and B |                           | 1369  | 657   | 4    | 0.4424   | 0.5177   | ~                   |
| A and B | [1000,2000)               | 1064  | 211   | 1    | 0.1664   | 0.2346   |                     |
| A and B |                           | 1064  | 187   | 2    | 0.1455   | 0.2107   |                     |
| A and B |                           | 1064  | 176   | 3    | 0.136    | 0.1997   |                     |
| A and B |                           | 1064  | 490   | 4    | 0.4183   | 0.5034   | ~                   |
| A and B | [2000,3000)               | 742   | 143   | 1    | 0.1555   | 0.2363   |                     |
| A and B |                           | 742   | 170   | 2    | 0.1889   | 0.2749   |                     |
| A and B |                           | 742   | 153   | 3    | 0.1678   | 0.2507   |                     |
| A and B |                           | 742   | 276   | 4    | 0.3239   | 0.4227   | <b>✓</b>            |
| A and B | [3000,5000)               | 997   | 216   | 1    | 0.1825   | 0.2553   |                     |
| A and B |                           | 997   | 232   | 2    | 0.1975   | 0.2721   |                     |
| A and B |                           | 997   | 280   | 3    | 0.2429   | 0.3222   |                     |
| A and B |                           | 997   | 269   | 4    | 0.2324   | 0.3108   |                     |
| A and B | [5000,10000)              | 2144  | 559   | 1    | 0.2351   | 0.2881   |                     |
| A and B |                           | 2144  | 512   | 2    | 0.214    | 0.2655   |                     |
| A and B |                           | 2144  | 517   | 3    | 0.2163   | 0.2679   |                     |
| A and B |                           | 2144  | 556   | 4    | 0.2338   | 0.2866   |                     |

Table 11: Hot-wet season: results

| Pair    | Distance interval (units) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. (above) |
|---------|---------------------------|-------|-------|------|----------|----------|---------------------|
| A and B | [0,50)                    | 82    | 6     | 1    | 0.025    | 0.1956   |                     |
| A and B |                           | 82    | 7     | 2    | 0.0315   | 0.2114   |                     |
| A and B |                           | 82    | 28    | 3    | 0.2147   | 0.4958   |                     |
| A and B |                           | 82    | 41    | 4    | 0.3525   | 0.6475   | ~                   |
| A and B | [50,100)                  | 89    | 9     | 1    | 0.0418   | 0.2248   |                     |
| A and B |                           | 89    | 8     | 2    | 0.0352   | 0.2107   |                     |
| A and B |                           | 89    | 30    | 3    | 0.2153   | 0.4852   |                     |
| A and B |                           | 89    | 42    | 4    | 0.3323   | 0.616    | <b>✓</b>            |
| A and B | [100,200)                 | 186   | 24    | 1    | 0.075    | 0.2129   |                     |
| A and B |                           | 186   | 25    | 2    | 0.0791   | 0.2192   |                     |
| A and B |                           | 186   | 54    | 3    | 0.2072   | 0.3903   |                     |
| A and B |                           | 186   | 83    | 4    | 0.3486   | 0.5482   | <b>✓</b>            |
| A and B | [200,500)                 | 469   | 67    | 1    | 0.1035   | 0.1939   |                     |
| A and B |                           | 469   | 53    | 2    | 0.0783   | 0.1604   |                     |
| A and B |                           | 469   | 156   | 3    | 0.275    | 0.3957   | <b>✓</b>            |
| A and B |                           | 469   | 193   | 4    | 0.3499   | 0.476    | <b>✓</b>            |
| A and B | [500,1000)                | 632   | 118   | 1    | 0.1473   | 0.2338   |                     |
| A and B |                           | 632   | 102   | 2    | 0.1247   | 0.2064   |                     |
| A and B |                           | 632   | 131   | 3    | 0.1659   | 0.2558   |                     |
| A and B |                           | 632   | 281   | 4    | 0.3904   | 0.5002   | ~                   |
| A and B | [1000,2000)               | 576   | 118   | 1    | 0.1619   | 0.2557   |                     |
| A and B |                           | 576   | 106   | 2    | 0.1432   | 0.2333   |                     |
| A and B |                           | 576   | 85    | 3    | 0.111    | 0.1936   |                     |
| A and B |                           | 576   | 267   | 4    | 0.4063   | 0.5217   | <b>✓</b>            |
| A and B | [2000,3000)               | 377   | 84    | 1    | 0.1689   | 0.288    |                     |
| A and B |                           | 377   | 82    | 2    | 0.1642   | 0.2823   |                     |
| A and B |                           | 377   | 59    | 3    | 0.1112   | 0.2157   |                     |
| A and B |                           | 377   | 152   | 4    | 0.3352   | 0.4751   | <b>✓</b>            |
| A and B | [3000,5000)               | 529   | 117   | 1    | 0.175    | 0.2755   |                     |
| A and B |                           | 529   | 111   | 2    | 0.1647   | 0.2634   |                     |
| A and B |                           | 529   | 136   | 3    | 0.2078   | 0.3135   |                     |
| A and B |                           | 529   | 165   | 4    | 0.2587   | 0.3706   | <u> </u>            |
| A and B | [5000,10000)              | 769   | 186   | 1    | 0.2014   | 0.2875   |                     |
| A and B |                           | 769   | 200   | 2    | 0.2184   | 0.3066   |                     |
| A and B |                           | 769   | 181   | 3    | 0.1954   | 0.2807   |                     |
| A and B |                           | 769   | 202   | 4    | 0.2209   | 0.3093   |                     |

Table 12: Cold-dry season: results

| Pair    | Distance interval (units) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. (above) |
|---------|---------------------------|-------|-------|------|----------|----------|---------------------|
| A and B | [0,50)                    | 6     | 0     | 1    | 0        | 0.5657   | *                   |
| A and B |                           | 6     | 0     | 2    | 0        | 0.5657   | *                   |
| A and B |                           | 6     | 4     | 3    | 0.2055   | 0.9393   | *                   |
| A and B |                           | 6     | 2     | 4    | 0.0607   | 0.7945   | *                   |
| A and B | [50,100)                  | 6     | 0     | 1    | 0        | 0.5657   | *                   |
| A and B |                           | 6     | 0     | 2    | 0        | 0.5657   | *                   |
| A and B |                           | 6     | 3     | 3    | 0.1239   | 0.8761   | *                   |
| A and B |                           | 6     | 3     | 4    | 0.1239   | 0.8761   | *                   |
| A and B | [100,200)                 | 14    | 1     | 1    | 0.0074   | 0.4425   | *                   |
| A and B |                           | 14    | 2     | 2    | 0.0254   | 0.5162   | *                   |
| A and B |                           | 14    | 3     | 3    | 0.0506   | 0.5827   | *                   |
| A and B |                           | 14    | 8     | 4    | 0.2485   | 0.8431   | *                   |
| A and B | [200,500)                 | 36    | 5     | 1    | 0.0437   | 0.3629   | *                   |
| A and B |                           | 36    | 2     | 2    | 0.0098   | 0.2599   | *                   |
| A and B |                           | 36    | 17    | 3    | 0.2663   | 0.6881   | *                   |
| A and B |                           | 36    | 12    | 4    | 0.1618   | 0.5644   | *                   |
| A and B | [500,1000)                | 30    | 8     | 1    | 0.1082   | 0.5216   | *                   |
| A and B |                           | 30    | 8     | 2    | 0.1082   | 0.5216   | *                   |
| A and B |                           | 30    | 4     | 3    | 0.037    | 0.3812   | *                   |
| A and B |                           | 30    | 10    | 4    | 0.1507   | 0.5848   | *                   |
| A and B | [1000,2000)               | 62    | 16    | 1    | 0.1363   | 0.434    |                     |
| A and B |                           | 62    | 17    | 2    | 0.1481   | 0.4508   |                     |
| A and B |                           | 62    | 21    | 3    | 0.1974   | 0.5161   |                     |
| A and B |                           | 62    | 8     | 4    | 0.051    | 0.2902   |                     |
| A and B | [2000,3000)               | 80    | 13    | 1    | 0.0785   | 0.3066   |                     |
| A and B |                           | 80    | 21    | 2    | 0.1507   | 0.4166   |                     |
| A and B |                           | 80    | 32    | 3    | 0.2625   | 0.5553   | ~                   |
| A and B |                           | 80    | 14    | 4    | 0.0869   | 0.3209   |                     |
| A and B | [3000,5000)               | 197   | 38    | 1    | 0.1267   | 0.2826   |                     |
| A and B |                           | 197   | 66    | 2    | 0.2489   | 0.4337   |                     |
| A and B |                           | 197   | 62    | 3    | 0.2308   | 0.4128   |                     |
| A and B |                           | 197   | 31    | 4    | 0.0981   | 0.2428   |                     |
| A and B | [5000,10000)              | 719   | 193   | 1    | 0.2249   | 0.3169   |                     |
| A and B |                           | 719   | 176   | 2    | 0.2029   | 0.2922   |                     |
| A and B |                           | 719   | 196   | 3    | 0.2288   | 0.3213   |                     |
| A and B |                           | 719   | 154   | 4    | 0.1746   | 0.2599   |                     |

Table 13: Hot-dry season: results

| Pair    | Distance interval (units) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. (above) |
|---------|---------------------------|-------|-------|------|----------|----------|---------------------|
| A and B | [0,50)                    | 397   | 43    | 1    | 0.072    | 0.1597   |                     |
| A and B |                           | 397   | 19    | 2    | 0.0257   | 0.0875   |                     |
| A and B |                           | 397   | 153   | 3    | 0.3199   | 0.4553   | <b>✓</b>            |
| A and B |                           | 397   | 182   | 4    | 0.39     | 0.5285   | <b>✓</b>            |
| A and B | [50,100)                  | 427   | 18    | 1    | 0.0222   | 0.0786   |                     |
| A and B |                           | 427   | 33    | 2    | 0.0483   | 0.1215   |                     |
| A and B |                           | 427   | 174   | 3    | 0.3433   | 0.4751   | <b>✓</b>            |
| A and B |                           | 427   | 202   | 4    | 0.4066   | 0.5405   | ~                   |
| A and B | [100,200)                 | 657   | 55    | 1    | 0.0582   | 0.119    |                     |
| A and B |                           | 657   | 51    | 2    | 0.0532   | 0.112    |                     |
| A and B |                           | 657   | 271   | 3    | 0.3601   | 0.4669   | <b>✓</b>            |
| A and B |                           | 657   | 280   | 4    | 0.3734   | 0.4807   | <b>✓</b>            |
| A and B | [200,500)                 | 1195  | 158   | 1    | 0.1072   | 0.162    |                     |
| A and B |                           | 1195  | 153   | 2    | 0.1034   | 0.1575   |                     |
| A and B |                           | 1195  | 354   | 3    | 0.2607   | 0.3344   | ~                   |
| A and B |                           | 1195  | 530   | 4    | 0.4038   | 0.4839   | ~                   |
| A and B | [500,1000)                | 707   | 96    | 1    | 0.1037   | 0.1758   |                     |
| A and B |                           | 707   | 104   | 2    | 0.1137   | 0.1882   |                     |
| A and B |                           | 707   | 141   | 3    | 0.1608   | 0.2446   |                     |
| A and B |                           | 707   | 366   | 4    | 0.4652   | 0.5697   | ~                   |
| A and B | [1000,2000)               | 426   | 77    | 1    | 0.1345   | 0.2385   |                     |
| A and B |                           | 426   | 64    | 2    | 0.1082   | 0.2049   |                     |
| A and B |                           | 426   | 70    | 3    | 0.1203   | 0.2205   |                     |
| A and B |                           | 426   | 215   | 4    | 0.4375   | 0.5717   | ~                   |
| A and B | [2000,3000)               | 285   | 46    | 1    | 0.1097   | 0.2312   |                     |
| A and B |                           | 285   | 67    | 2    | 0.1725   | 0.3118   |                     |
| A and B |                           | 285   | 62    | 3    | 0.1573   | 0.2929   |                     |
| A and B |                           | 285   | 110   | 4    | 0.3094   | 0.4686   | ~                   |
| A and B | [3000,5000)               | 271   | 61    | 1    | 0.1625   | 0.3031   |                     |
| A and B |                           | 271   | 55    | 2    | 0.1434   | 0.2791   |                     |
| A and B |                           | 271   | 82    | 3    | 0.231    | 0.3852   |                     |
| A and B |                           | 271   | 73    | 4    | 0.2013   | 0.3504   |                     |
| A and B | [5000,10000)              | 656   | 180   | 1    | 0.2286   | 0.3255   |                     |
| A and B |                           | 656   | 136   | 2    | 0.1666   | 0.2549   |                     |
| A and B |                           | 656   | 140   | 3    | 0.1722   | 0.2614   |                     |
| A and B |                           | 656   | 200   | 4    | 0.2572   | 0.3572   | ~                   |

#### 6. Following behaviour: sign test

We consider the *following* behaviours of female and male (type b and e of the extended analysis respectively), for each dyadic distance interval below 1 km, creating the two vectors f\_foll and m\_foll. We then perform the sign test using the function SignTest from the R package DescTools to evaluate if the following behaviours of the female were significantly less than the ones of the male. Note that we assume independence among the counts across distance intervals. We run the following R function:

The p-value of the test was 0.03125, indicating a significant difference (p-value < 0.05) among the two behaviour distributions, showing that the female follows the male statistically significantly less than the male follows the female for dyadic distance intervals below 1 km.



Figure 8: Following behaviour distribution for female (pink) and male (blue)

 ${\it Table 14: Following behaviour - distribution of occurrences per gender and per distance interval}$ 

| Interval | [0m-50m) | [50m,100m) | [100m,200m) | [200m,500m) | [500m,1km) |
|----------|----------|------------|-------------|-------------|------------|
| Female   | 104      | 100        | 63          | 49          | 15         |
| Male     | 111      | 112        | 114         | 120         | 47         |

# 7. Sensitivity analysis: circle segmentation

In Fig. 9 we present seven different circle segmentations that we use in our sensitivity analysis. In particular, the width of approach and retreat segments (still of identical width) for the various classifications is as follows:

- (a) 30 degrees
- (b) 45 degrees
- (c) 60 degrees
- (d) 90 degrees
- (e) 108 degrees
- (f) 135 degrees
- (g) 150 degrees



Figure 9: Circle segmentations and approach/retreat/orthogonal behaviour classifications, with legend

## 7.1. Individual behaviour analysis: simulated data

The individual behaviour analysis considers the occurrences of approach and retreat behaviours. We report the results of the analysis only for individual A given the similarities of the behaviours of individual A and individual B. We report the barplots in Fig. 10 and the statistical analysis with the CI in Fig. 11. As reported in the main text, in our sensitivity analysis we observe that the results do not present major variations. The proportion among the two behaviours of interest (approach and retreat) does not vary substantially. However, we observe that the width of CI tends to decrease with the increase of the width of the approach/retreat segments, since we might consider more cases. Because the estimated intervals are smaller, we might observe an increase in the results that are classified as statistically significant. Note that in Fig. 11 the missing CIs correspond to the cases where both approach and retreat counts were equal to 0 (for cases a and b, of small approach/retreat segments).



Figure 10: Barplots for individual A corresponding to the circle segmentation a-g with legend



Figure 11: CI analysis for individual A corresponding to the circle segmentation a-g

#### 7.2. Individual behaviour analysis: empirical data

Also in the individual behaviour analysis of the empirical data the results do not vary substantially among the various cases under study in our sensitivity analysis. In Fig. 12 we show the results of the statistical analysis for the female, which shows mostly retreat behaviours in each scenario, while Fig. 13 reports the results for the analysis of male behaviour, showing mostly approach behaviours for each different setting.



Figure 12: CI analysis (female) corresponding to the circle segmentation a-g



Figure 13: CI analysis (male) corresponding to the circle segmentation a-g

# 8. Sensitivity analysis: distance intervals

In Figs 14-15 we report the results of the individual behaviour analysis using the empirical data (male and female respectively) for different sets  $\mathcal{I}$  of distance intervals and with the same set up as in the main text. In particular, we start with the partition (a) presented in the main text (we provide the intervals in meters) followed by a coarser partition (b). We then evaluate the results using a finer partition (c) and conclude with a partition (d) that present a finer scale for shorter distances and a coarser scale for larger distances.

- $(a): \mathcal{I} = \{[0,50), [50,100), [100,200), [200,500), [500,1000), [1000,2000), [2000,5000), [5000,10000)\}$
- $\bullet \ (b): \mathcal{I} = \{[0,200), [200,500), [500,1000), [1000,5000), [5000,10000)\}$
- $\bullet \ (c): \mathcal{I} = \{[0, 50), [50, 100), [100, 150), [150, 200), [200, 350), [350, 500), [500, 750), [750, 1000), [1000, 2000), \\ [2000, 3000), [3000, 4000), [4000, 5000), [5000, 6000), [6000, 7000), [7000, 8000), [8000, 9000), [9000, 10000)\}$
- $\bullet \ (d): \mathcal{I} = \{[0, 25), [25, 50), [50, 75), [75, 100), [100, 200), [200, 500), [500, 1000), [1000, 10000)\}$

We observe that the distribution of statistically significant results does not change substantially. However, for case (d), we observe that a finer partition reveals that the female approaches statistically significant more often at very short distances, which is an additional insight on the behaviour of the pair of interest. We are able to gain this additional insight since the pair of interest presents many instances at close quarters, and therefore enough information is provided for the statistical analysis to be performed and to extract these

results. Note that the choice of distance intervals will depend also on the research questions and on the species under examination.



Figure 14: CI analysis (male) corresponding to the distance interval set a-d



Figure 15: CI analysis (female) corresponding to the distance interval set a-d

#### 9. Sensitivity analysis: heading difference

In Fig. 16 we report the results of the extended analysis for different values of the parameter  $\theta$  and with the same set up as in the main text. In particular,  $\theta = 5$ , 10, 15, 20, 25 degrees for cases a-e respectively. We observe an increase in the number of cases considered with the increase of the value of  $\theta$ , since we are relaxing the condition on the absolute heading difference and therefore considering more cases. However, we observe that the distribution of various behaviours of interest does not change substantially. In particular, we performed the sign test for the five different cases and obtained the same results for all scenarios (the female follows the male statistically significantly less than the male follows the female for dyadic distance intervals below 1 km). Fig. 17 shows the following behaviour distribution for female and male, for dyadic distance intervals below 1 km.



Figure 16: Extended analysis results for various values of the parameter  $\theta$ , for cases a-e with legend



Figure 17: Following behaviour distribution for female (pink) and male (blue) for cases a-e

#### 10. Sensitivity analysis: speed classification

In Figs. 18-19 we present the results of the extended analysis for different parameters for speed classification and the same set up as the main text. In particular, for cases a-d we considered different values for the interval  $[s_l, s_u]$ :  $[\frac{4}{5}, \frac{5}{4}], [\frac{2}{3}, \frac{3}{2}], [\frac{1}{2}, 2], [\frac{1}{3}, 3]$  respectively. We observe that with a wider interval  $[s_l, s_u]$  we consider more cases of type g and h: these cases only consider the case of *similar* speed, and therefore wider intervals will include more cases. On the other hand, for cases a-f we simply redistribute the classification. We also observe an increase of cases b and e as the interval gets wider, since those two cases consider *similar speed*: wider intervals result in more cases of behaviours classified with *similar speed*. Note that in Fig. 18 we present the proportion for each behaviours a-f, since changing the speed classification simply redistributes the behavioural types. Looking at behaviour g and h in Fig. 19, we observe a similar trend in each scenarios: the *walking side by side* occurrences decrease with the increase of the dyadic distance, while the number of occurrences of the behaviour *approaching at similar speed* increases.

In addition, we perform the sign test also for the various scenarios and obtain the same results for each setting (the female follows the male statistically significantly less than the male follows the female for dyadic distance intervals below 1 km). In Fig. 20 we show the *following* behaviour distribution for male and female, for dyadic distance intervals below 1 km.



Figure 18: Extended analysis results for speed classification analysis, cases a-d, for proportion of behaviours of interest a-f, with legend



Figure 19: Extended analysis results for speed classification analysis, cases a-d, for behaviours of interest g (purple) and h (blue)



Figure 20: Following behaviour distribution for female (pink) and male (blue) for cases a-d

#### 11. All pairs of interest

Also in this case, we indicate behaviours of type 3(A,B) and 3(B,A) with numbers 3 and 4. In Tables 15-20 we show the percentage of dyads for which the results were statistically significant (below and above 0.25), for each distance interval. We also illustrate the results depending on the gender of the individuals in the pair, for the 20-min frequency. The data collected at this frequency were the only one providing both male and female time series.

Table 15: Percentage of dyads (15-min frequency data) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 29             | 12             | 65             | 0              | 0              | 53             | 0              | 53             |
| [0,50)                | 29             | 12             | 65             | 0              | 0              | 47             | 0              | 47             |
| [50,100)              | 35             | 0              | 35             | 0              | 0              | 35             | 0              | 35             |
| [100,200)             | 29             | 0              | 47             | 0              | 0              | 35             | 0              | 29             |
| [200,500)             | 53             | 0              | 47             | 0              | 0              | 53             | 0              | 41             |
| [500,1000)            | 29             | 0              | 12             | 0              | 0              | 35             | 0              | 24             |
| [1000,2000)           | 18             | 0              | 6              | 0              | 0              | 41             | 12             | 24             |
| [2000,3000)           | 18             | 0              | 0              | 6              | 6              | 12             | 0              | 18             |
| [3000,5000)           | 0              | 0              | 6              | 6              | 12             | 12             | 6              | 6              |
| [5000,10000)          | 0              | 12             | 29             | 12             | 6              | 24             | 29             | 12             |

Table 16: Percentage of dyads (20-min frequency data) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 48             | 0              | 65             | 0              | 0              | 48             | 0              | 61             |
| [50,100)              | 39             | 0              | 52             | 0              | 0              | 48             | 0              | 43             |
| [100,200)             | 52             | 0              | 48             | 0              | 0              | 43             | 0              | 48             |
| [200,500)             | 70             | 0              | 65             | 0              | 0              | 61             | 4              | 43             |
| [500,1000)            | 43             | 0              | 30             | 0              | 4              | 39             | 9              | 48             |
| [1000,2000)           | 43             | 0              | 30             | 0              | 9              | 39             | 4              | 17             |
| [2000,3000)           | 13             | 0              | 9              | 0              | 4              | 17             | 9              | 26             |
| [3000,5000)           | 4              | 0              | 9              | 0              | 9              | 4              | 9              | 30             |
| [5000,10000)          | 13             | 4              | 0              | 17             | 4              | 17             | 13             | 9              |

Table 17: Percentage of dyads (30-min frequency data) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 15             | 0              | 15             | 0              | 0              | 8              | 0              | 15             |
| [50,100)              | 23             | 0              | 31             | 0              | 0              | 31             | 0              | 15             |
| [100,200)             | 38             | 0              | 38             | 0              | 0              | 38             | 0              | 38             |
| [200,500)             | 69             | 0              | 46             | 0              | 0              | 62             | 0              | 62             |
| [500,1000)            | 69             | 0              | 54             | 0              | 0              | 77             | 0              | 46             |
| [1000,2000)           | 31             | 0              | 38             | 0              | 8              | 38             | 0              | 46             |
| [2000,3000)           | 0              | 0              | 15             | 0              | 0              | 15             | 8              | 31             |
| [3000,5000)           | 0              | 0              | 0              | 0              | 15             | 0              | 0              | 8              |
| [5000,10000)          | 0              | 23             | 38             | 0              | 0              | 8              | 0              | 15             |

Table 18: Percentage of dyads (20-min frequency data, male-male dyads) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 45             | 0              | 82             | 0              | 0              | 45             | 0              | 73             |
| [50,100)              | 27             | 0              | 55             | 0              | 0              | 45             | 0              | 36             |
| [100,200)             | 45             | 0              | 36             | 0              | 0              | 18             | 0              | 45             |
| [200,500)             | 73             | 0              | 55             | 0              | 0              | 73             | 9              | 18             |
| [500,1000)            | 36             | 0              | 9              | 0              | 0              | 55             | 18             | 36             |
| [1000,2000)           | 27             | 0              | 9              | 0              | 0              | 45             | 9              | 0              |
| [2000,3000)           | 0              | 0              | 0              | 0              | 0              | 9              | 9              | 9              |
| [3000,5000)           | 0              | 0              | 0              | 0              | 9              | 0              | 9              | 18             |
| [5000,10000)          | 9              | 9              | 0              | 9              | 0              | 36             | 18             | 0              |

Table 19: Percentage of dyads (20-min frequency data, male-female dyads) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 80             | 0              | 80             | 0              | 0              | 80             | 0              | 80             |
| [50,100)              | 80             | 0              | 80             | 0              | 0              | 80             | 0              | 80             |
| [100,200)             | 100            | 0              | 100            | 0              | 0              | 100            | 0              | 80             |
| [200,500)             | 80             | 0              | 100            | 0              | 0              | 100            | 0              | 40             |
| [500,1000)            | 80             | 0              | 80             | 0              | 0              | 100            | 20             | 0              |
| [1000,2000)           | 80             | 0              | 80             | 0              | 0              | 100            | 40             | 0              |
| [2000,3000)           | 40             | 0              | 0              | 0              | 0              | 100            | 40             | 0              |
| [3000,5000)           | 20             | 0              | 0              | 0              | 0              | 40             | 20             | 0              |
| [5000,10000)          | 0              | 0              | 0              | 0              | 0              | 40             | 20             | 0              |

Table 20: Percentage of dyads (20-min frequency data, female-female dyads) for which the results were statistically significant (below and above 0.25), for each distance interval.

| Distance interval (m) | Type 1 (below) | Type 1 (above) | Type 2 (below) | Type 2 (above) | Type 3 (below) | Type 3 (above) | Type 4 (below) | Type 4 (above) |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [0,50)                | 29             | 0              | 29             | 0              | 0              | 29             | 0              | 29             |
| [50,100)              | 29             | 0              | 29             | 0              | 0              | 29             | 0              | 29             |
| [100,200)             | 29             | 0              | 29             | 0              | 0              | 43             | 0              | 29             |
| [200,500)             | 57             | 0              | 57             | 0              | 0              | 43             | 0              | 57             |
| [500,1000)            | 29             | 0              | 29             | 0              | 0              | 29             | 0              | 43             |
| [1000,2000)           | 43             | 0              | 29             | 0              | 0              | 43             | 0              | 0              |
| [2000,3000)           | 14             | 0              | 29             | 0              | 0              | 29             | 0              | 14             |
| [3000,5000)           | 0              | 0              | 29             | 0              | 14             | 14             | 0              | 43             |
| [5000,10000)          | 29             | 0              | 0              | 43             | 0              | 0              | 14             | 0              |

# $11.1.\ 15\text{-}min\ pairs$

In this section (Tables 21-29) we provide the results of the pair behaviour statistical analysis for the pairs of interest, for data collected at a 15-min frequency.

Table 21: Left: results for pair (1,2). Right: results for pair (1,3)

| Pair                   | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and 2                | 10.50)                | 77    | 19    | 1    | 0.1372   | 0.403    |             |
| 1 and 2                |                       | 77    | 7     | 2    | 0.0335   | 0.2237   | _           |
| 1 and 2                |                       | 77    | 20    | 3    | 0.1469   | 0.4168   |             |
| 1 and 2                |                       | 77    | 31    | 4    | 0.2624   | 0.5607   | _           |
| 1 and 2                | [50,100)              | 25    | 3     | 1    | 0.0279   | 0.3931   |             |
| 1 and 2                |                       | 25    | 2     | 2    | 0.0141   | 0.3459   |             |
| 1 and 2                |                       | 25    | 9     | 3    | 0.1567   | 0.6299   |             |
| 1 and 2                |                       | 25    | 11    | 4    | 0.2116   | 0.6969   |             |
| 1 and 2                | [100,200)             | 60    | 12    | 1    | 0.0945   | 0.3747   |             |
| 1 and 2                |                       | 60    | 11    | 2    | 0.0835   | 0.3562   |             |
| 1 and 2                |                       | 60    | 21    | 3    | 0.2045   | 0.5301   |             |
| 1 and $2$              |                       | 60    | 16    | 4    | 0.141    | 0.4461   |             |
| 1 and 2                | [200,500)             | 87    | 13    | 1    | 0.072    | 0.2847   |             |
| 1 and 2                |                       | 87    | 13    | 2    | 0.072    | 0.2847   |             |
| 1  and  2              |                       | 87    | 47    | 3    | 0.3938   | 0.68     | ~           |
| 1  and  2              |                       | 87    | 14    | - 4  | 0.0797   | 0.298    |             |
| 1 and 2                | [500,1000)            | 125   | 24    | 1    | 0.1129   | 0.3074   |             |
| 1  and  2              |                       | 125   | 33    | 2    | 0.1701   | 0.3857   |             |
| 1 and $2$              |                       | 125   | 23    | 3    | 0.1068   | 0.2984   |             |
| 1 and $2$              |                       | 125   | 45    | 4    | 0.2515   | 0.485    | ~           |
| 1  and  2              | [1000,2000)           | 251   | 50    | 1    | 0.1383   | 0.2783   |             |
| 1  and  2              |                       | 251   | 74    | 2    | 0.2215   | 0.3805   |             |
| 1 and $2$              |                       | 251   | 55    | 3    | 0.1552   | 0.3      |             |
| 1 and $2$              |                       | 251   | 72    | 4    | 0.2144   | 0.3721   |             |
| 1 and $2$              | [2000,3000)           | 410   | 77    | 1    | 0.1399   | 0.2474   | ~           |
| 1 and $2$              |                       | 410   | 98    | 2    | 0.1854   | 0.3024   |             |
| 1 and $2$              |                       | 410   | 107   | 3    | 0.2052   | 0.3257   |             |
| 1 and $2$              |                       | 410   | 128   | 4    | 0.2522   | 0.3792   | ~           |
| 1 and $2$              | [3000,5000)           | 1095  | 246   | 1    | 0.1914   | 0.2618   |             |
| 1 and $2$              |                       | 1095  | 249   | 2    | 0.194    | 0.2647   |             |
| 1 and 2                |                       | 1095  | 266   | 3    | 0.2086   | 0.2809   |             |
| 1 and $2$              |                       | 1095  | 334   | -4   | 0.2676   | 0.3452   | V           |
| 1 and $2$              | [5000,10000)          | 3838  | 965   | 1    | 0.2324   | 0.2715   |             |
| $1 \mathrm{\ and\ } 2$ |                       | 3838  | 970   | 2    | 0.2336   | 0.2728   |             |
| 1 and $2$              |                       | 3838  | 939   | 3    | 0.2258   | 0.2646   |             |
| 1 and $2$              |                       | 3838  | 964   | 4    | 0.2321   | 0.2712   |             |

| Pair                   | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and $3$              | [0,50)                | 393   | 102   | 1    | 0.2028   | 0.3256   |             |
| 1 and $3$              |                       | 393   | 28    | 2    | 0.0427   | 0.1165   | ~           |
| 1 and $3$              |                       | 393   | 126   | 3    | 0.2588   | 0.3894   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 393   | 137   | -4   | 0.2849   | 0.4182   | ~           |
| 1 and $3$              | [50,100)              | 132   | 19    | 1    | 0.0785   | 0.2492   | ~           |
| 1 and $3$              |                       | 132   | 10    | 2    | 0.0326   | 0.1664   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 132   | 45    | 3    | 0.2374   | 0.4622   |             |
| 1 and $3$              |                       | 132   | 58    | -4   | 0.3254   | 0.5602   | ~           |
| $1 \ \mathrm{and} \ 3$ | [100,200)             | 183   | 34    | 1    | 0.1189   | 0.2784   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 183   | 33    | 2    | 0.1145   | 0.2723   |             |
| 1 and $3$              |                       | 183   | 60    | 3    | 0.2397   | 0.4302   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 183   | 56    | -4   | 0.2204   | 0.4076   |             |
| $1 \ \mathrm{and} \ 3$ | [200,500)             | 343   | 56    | 1    | 0.1151   | 0.2264   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 343   | 60    | 2    | 0.125    | 0.2393   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 343   | 145   | 3    | 0.3507   | 0.4982   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 343   | 82    | -4   | 0.181    | 0.3088   |             |
| 1 and $3$              | [500,1000)            | 576   | 99    | 1    | 0.1324   | 0.2201   | ~           |
| 1 and $3$              |                       | 576   | 127   | 2    | 0.1761   | 0.2723   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 576   | 203   | 3    | 0.2991   | 0.4097   | ~           |
| 1 and $3$              |                       | 576   | 147   | -4   | 0.2079   | 0.309    |             |
| $1 \ \mathrm{and} \ 3$ | [1000,2000)           | 1255  | 256   | 1    | 0.1741   | 0.2376   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 1255  | 273   | 2    | 0.1868   | 0.2518   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 1255  | 365   | 3    | 0.2564   | 0.3279   | ~           |
| $1 \ \mathrm{and} \ 3$ |                       | 1255  | 361   | -4   | 0.2533   | 0.3246   | ~           |
| $1 \ \mathrm{and} \ 3$ | [2000,3000)           | 1579  | 375   | 1    | 0.2089   | 0.2687   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 1579  | 365   | 2    | 0.2029   | 0.2621   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 1579  | 430   | 3    | 0.2422   | 0.3047   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 1579  | 409   | -4   | 0.2294   | 0.291    |             |
| $1 \ \mathrm{and} \ 3$ | [3000,5000)           | 2833  | 719   | 1    | 0.2316   | 0.2773   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 2833  | 701   | 2    | 0.2255   | 0.2708   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 2833  | 769   | 3    | 0.2487   | 0.2954   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 2833  | 644   | -4   | 0.2061   | 0.2501   |             |
| $1 \ \mathrm{and} \ 3$ | [5000,10000)          | 7976  | 1931  | 1    | 0.2289   | 0.2558   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 7976  | 1977  | 2    | 0.2346   | 0.2616   |             |
| $1 \ \mathrm{and} \ 3$ |                       | 7976  | 2106  | 3    | 0.2505   | 0.2781   | ~           |
| 1 and $3$              |                       | 7976  | 1962  | -4   | 0.2328   | 0.2597   |             |

Table 22: Left: results for pair (1,4). Right: results for pair (1,5)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and 4 | [0,50)                | 164   | 58    | 1    | 0.2581   | 0.4625   | V           |
| 1 and 4 |                       | 164   | 11    | 2    | 0.0299   | 0.1436   | ~           |
| 1 and 4 |                       | 164   | 44    | 3    | 0.1838   | 0.3739   |             |
| 1 and 4 |                       | 164   | 51    | 4    | 0.2205   | 0.4187   |             |
| 1 and 4 | [50,100)              | 61    | 11    | 1    | 0.0821   | 0.3512   |             |
| 1 and 4 |                       | 61    | 8     | 2    | 0.0518   | 0.2943   |             |
| 1 and 4 |                       | 61    | 26    | 3    | 0.2677   | 0.6015   | _           |
| 1 and 4 |                       | 61    | 16    | 4    | 0.1386   | 0.44     |             |
| 1 and 4 | [100,200)             | 116   | 17    | 1    | 0.0773   | 0.2605   |             |
| 1 and 4 |                       | 116   | 22    | 2    | 0.1088   | 0.3097   |             |
| 1 and 4 |                       | 116   | 35    | 3    | 0.1982   | 0.4302   |             |
| 1 and 4 |                       | 116   | 42    | 4    | 0.2497   | 0.4918   |             |
| 1 and 4 | [200,500)             | 147   | 31    | 1    | 0.1327   | 0.3183   |             |
| 1 and 4 |                       | 147   | 31    | 2    | 0.1327   | 0.3183   |             |
| 1 and 4 |                       | 147   | 35    | 3    | 0.1547   | 0.3479   |             |
| 1 and 4 |                       | 147   | 50    | - 4  | 0.2415   | 0.455    |             |
| 1 and 4 | [500,1000)            | 136   | 26    | 1    | 0.1148   | 0.3011   |             |
| 1 and 4 |                       | 136   | 26    | 2    | 0.1148   | 0.3011   |             |
| 1 and 4 |                       | 136   | 44    | 3    | 0.2236   | 0.4426   |             |
| 1 and 4 |                       | 136   | 40    | 4    | 0.1985   | 0.4121   |             |
| 1 and 4 | [1000,2000)           | 283   | 79    | 1    | 0.2113   | 0.3589   |             |
| 1 and 4 |                       | 283   | 67    | 2    | 0.1738   | 0.3139   |             |
| 1 and 4 |                       | 283   | 55    | 3    | 0.1372   | 0.2679   |             |
| 1 and 4 |                       | 283   | 82    | 4    | 0.2208   | 0.37     |             |
| 1 and 4 | [2000,3000)           | 572   | 124   | 1    | 0.1726   | 0.2686   |             |
| 1 and 4 |                       | 572   | 149   | 2    | 0.2127   | 0.3148   |             |
| 1 and 4 |                       | 572   | 179   | 3    | 0.2616   | 0.3693   | ~           |
| 1 and 4 |                       | 572   | 120   | - 4  | 0.1663   | 0.2611   |             |
| 1 and 4 | [3000,5000)           | 1585  | 367   | 1    | 0.2033   | 0.2624   |             |
| 1 and 4 |                       | 1585  | 428   | 2    | 0.24     | 0.3023   |             |
| 1 and 4 |                       | 1585  | 470   | 3    | 0.2655   | 0.3295   | ~           |
| 1 and 4 |                       | 1585  | 320   | 4    | 0.1752   | 0.2315   | ~           |
| 1 and 4 | [5000,10000)          | 4880  | 1164  | 1    | 0.2219   | 0.256    |             |
| 1 and 4 |                       | 4880  | 1412  | 2    | 0.2715   | 0.3078   | _           |
| 1 and 4 |                       | 4880  | 1194  | 3    | 0.2279   | 0.2623   |             |
| 1 and 4 |                       | 4880  | 1110  | 4    | 0.2111   | 0.2447   | -/          |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and $5$ | [0,50)                | 1047  | 165   | 1    | 0.1287   | 0.1916   | ~           |
| 1 and 5   |                       | 1047  | 57    | 2    | 0.0379   | 0.0775   | ~           |
| 1 and $5$ |                       | 1047  | 463   | 3    | 0.3999   | 0.4854   | ~           |
| 1 and $5$ |                       | 1047  | 362   | - 4  | 0.3059   | 0.3878   | ~           |
| 1 and 5   | [50,100)              | 410   | 40    | 1    | 0.0638   | 0.1464   | ~           |
| 1 and 5   |                       | 410   | 27    | 2    | 0.0391   | 0.1089   | ~           |
| 1 and 5   |                       | 410   | 211   | 3    | 0.446    | 0.5827   | ~           |
| 1 and 5   |                       | 410   | 132   | -4   | 0.2613   | 0.3893   | ~           |
| 1 and 5   | [100,200)             | 517   | 66    | 1    | 0.0921   | 0.1743   | ~           |
| 1 and 5   |                       | 517   | 37    | 2    | 0.0459   | 0.11     | ~           |
| 1 and 5   |                       | 517   | 265   | 3    | 0.4514   | 0.5734   | ~           |
| 1 and 5   |                       | 517   | 149   | -4   | 0.236    | 0.3467   |             |
| 1 and 5   | [200,500)             | 862   | 137   | 1    | 0.1272   | 0.1968   | ~           |
| 1 and 5   |                       | 862   | 118   | 2    | 0.1074   | 0.1729   | ~           |
| 1 and 5   |                       | 862   | 365   | 3    | 0.3773   | 0.471    | ~           |
| 1 and 5   |                       | 862   | 242   | -4   | 0.2401   | 0.3254   |             |
| 1 and 5   | [500,1000)            | 819   | 137   | 1    | 0.134    | 0.2068   | ~           |
| 1 and 5   |                       | 819   | 148   | 2    | 0.1462   | 0.2213   | ~           |
| 1 and 5   |                       | 819   | 289   | 3    | 0.3078   | 0.4007   | _           |
| 1 and 5   |                       | 819   | 245   | -4   | 0.2565   | 0.3456   | ~           |
| 1 and 5   | [1000,2000)           | 1340  | 292   | 1    | 0.1881   | 0.251    |             |
| 1 and 5   |                       | 1340  | 268   | 2    | 0.1712   | 0.2322   | ~           |
| 1 and 5   |                       | 1340  | 382   | 3    | 0.2519   | 0.3207   | ~           |
| 1 and 5   |                       | 1340  | 398   | -4   | 0.2634   | 0.333    | ~           |
| 1 and 5   | [2000,3000)           | 1282  | 246   | 1    | 0.163    | 0.2245   | ~           |
| 1 and 5   |                       | 1282  | 297   | 2    | 0.2004   | 0.2662   |             |
| 1 and $5$ |                       | 1282  | 363   | 3    | 0.2494   | 0.3196   |             |
| 1 and 5   |                       | 1282  | 376   | -4   | 0.2591   | 0.33     | ~           |
| 1 and 5   | [3000,5000)           | 2394  | 587   | 1    | 0.2215   | 0.2706   |             |
| 1 and $5$ |                       | 2394  | 599   | 2    | 0.2263   | 0.2757   |             |
| 1 and 5   |                       | 2394  | 623   | 3    | 0.236    | 0.2861   |             |
| 1 and $5$ |                       | 2394  | 585   | -4   | 0.2207   | 0.2697   |             |
| 1 and 5   | [5000,10000)          | 5457  | 1396  | 1    | 0.2397   | 0.2727   |             |
| 1 and 5   |                       | 5457  | 1174  | 2    | 0.2      | 0.2311   | ~           |
| 1 and $5$ |                       | 5457  | 1496  | 3    | 0.2576   | 0.2913   | ~           |
| 1 and 5   |                       | 5457  | 1391  | -4   | 0.2388   | 0.2717   |             |

Table 23: Left: results for pair (2,3). Right: results for pair (2,4)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 2 and 3   | [0,50)                | 780   | 113   | 1    | 0.1132   | 0.1836   | _           |
| 2 and 3   |                       | 780   | 57    | 2    | 0.051    | 0.1036   | -/          |
| 2 and $3$ |                       | 780   | 252   | 3    | 0.2782   | 0.3714   | · /         |
| 2 and 3   |                       | 780   | 358   | 4    | 0.4097   | 0.509    | ~           |
| 2 and 3   | [50,100)              | 532   | 61    | 1    | 0.0815   | 0.159    | ~           |
| 2 and 3   |                       | 532   | 41    | 2    | 0.0505   | 0.1159   | -/          |
| 2 and 3   |                       | 532   | 193   | 3    | 0.3069   | 0.4227   | ~           |
| 2 and 3   |                       | 532   | 237   | 4    | 0.3865   | 0.5061   | ~           |
| 2 and 3   | [100,200)             | 544   | 57    | 1    | 0.0735   | 0.1473   | ~           |
| 2 and 3   |                       | 544   | 49    | 2    | 0.0613   | 0.1304   | ~           |
| 2 and 3   |                       | 544   | 212   | 3    | 0.3332   | 0.4493   | ~           |
| 2 and $3$ |                       | 544   | 226   | 4    | 0.358    | 0.4753   | · /         |
| 2 and 3   | [200,500)             | 516   | 95    | 1    | 0.1412   | 0.2364   | ~           |
| 2 and 3   |                       | 516   | 85    | 2    | 0.1241   | 0.2153   | ~           |
| 2 and 3   |                       | 516   | 207   | 3    | 0.3428   | 0.4625   | -/          |
| 2 and 3   |                       | 516   | 129   | 4    | 0.2007   | 0.3068   |             |
| 2 and 3   | [500,1000)            | 384   | 82    | 1    | 0.1611   | 0.2774   |             |
| 2 and $3$ |                       | 384   | 102   | 2    | 0.2077   | 0.3328   |             |
| 2 and 3   |                       | 384   | 106   | 3    | 0.2172   | 0.3438   |             |
| 2 and 3   |                       | 384   | 94    | 4    | 0.1889   | 0.3108   |             |
| 2 and $3$ | [1000,2000)           | 728   | 158   | 1    | 0.1774   | 0.2626   |             |
| 2 and 3   |                       | 728   | 190   | 2    | 0.2182   | 0.3089   |             |
| 2 and 3   |                       | 728   | 199   | 3    | 0.2298   | 0.3218   |             |
| 2 and $3$ |                       | 728   | 181   | 4    | 0.2067   | 0.2959   |             |
| 2 and 3   | [2000,3000)           | 642   | 148   | 1    | 0.1875   | 0.2801   |             |
| 2 and 3   |                       | 642   | 173   | 2    | 0.2235   | 0.321    |             |
| 2 and $3$ |                       | 642   | 162   | 3    | 0.2076   | 0.303    |             |
| 2 and 3   |                       | 642   | 159   | 4    | 0.2033   | 0.2981   |             |
| 2 and 3   | [3000,5000)           | 1450  | 371   | 1    | 0.2252   | 0.2891   |             |
| 2 and $3$ |                       | 1450  | 395   | 2    | 0.241    | 0.3063   |             |
| 2 and 3   |                       | 1450  | 285   | 3    | 0.169    | 0.2273   | ~           |
| 2 and $3$ |                       | 1450  | 399   | 4    | 0.2437   | 0.3091   |             |
| 2 and $3$ | [5000,10000)          | 5017  | 1284  | 1    | 0.2391   | 0.2735   |             |
| 2 and 3   |                       | 5017  | 1257  | 2    | 0.2338   | 0.268    |             |
| 2 and $3$ |                       | 5017  | 1178  | 3    | 0.2185   | 0.2519   |             |
| 2 and $3$ |                       | 5017  | 1298  | 4    | 0.2418   | 0.2764   |             |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff |
|-----------|-----------------------|-------|-------|------|----------|----------|------------|
| 2 and $4$ | [0,50)                | 348   | 32    | 1    | 0.0572   | 0.1447   | ~          |
| 2 and $4$ |                       | 348   | 33    | 2    | 0.0594   | 0.148    | ~          |
| 2 and $4$ |                       | 348   | 112   | 3    | 0.2564   | 0.3951   | ~          |
| 2 and $4$ |                       | 348   | 171   | -4   | 0.4175   | 0.5657   | ~          |
| 2 and $4$ | [50,100)              | 252   | 19    | 1    | 0.0406   | 0.1357   | ~          |
| 2 and $4$ |                       | 252   | 21    | 2    | 0.0463   | 0.1454   | ~          |
| 2 and $4$ |                       | 252   | 66    | 3    | 0.1925   | 0.3457   |            |
| 2 and $4$ |                       | 252   | 146   | -4   | 0.4913   | 0.6626   | ~          |
| 2 and $4$ | [100,200)             | 282   | 40    | 1    | 0.0934   | 0.2096   | ~          |
| 2 and $4$ |                       | 282   | 27    | 2    | 0.0571   | 0.1562   | ~          |
| 2 and $4$ |                       | 282   | 81    | 3    | 0.2185   | 0.3675   |            |
| 2 and $4$ |                       | 282   | 134   | - 4  | 0.3938   | 0.5579   | ~          |
| 2 and $4$ | [200,500)             | 392   | 66    | 1    | 0.1221   | 0.2276   | ~          |
| 2 and $4$ |                       | 392   | 59    | 2    | 0.1069   | 0.2078   | ~          |
| 2 and $4$ |                       | 392   | 95    | 3    | 0.1873   | 0.3075   |            |
| 2 and $4$ |                       | 392   | 172   | -4   | 0.3706   | 0.5094   | ~          |
| 2 and $4$ | [500,1000)            | 288   | 65    | 1    | 0.1646   | 0.3013   |            |
| 2 and $4$ |                       | 288   | 61    | 2    | 0.1526   | 0.2863   |            |
| 2 and $4$ |                       | 288   | 78    | 3    | 0.2044   | 0.3494   |            |
| 2 and $4$ |                       | 288   | 84    | -4   | 0.2231   | 0.3713   |            |
| 2 and $4$ | [1000,2000)           | 363   | 84    | 1    | 0.1756   | 0.2985   |            |
| 2 and $4$ |                       | 363   | 98    | 2    | 0.2102   | 0.3394   |            |
| 2 and $4$ |                       | 363   | 125   | 3    | 0.2786   | 0.4167   | ~          |
| 2 and $4$ |                       | 363   | 56    | -4   | 0.1086   | 0.2145   | ~          |
| 2 and $4$ | [2000,3000)           | 427   | 100   | 1    | 0.182    | 0.2959   |            |
| 2 and $4$ |                       | 427   | 102   | 2    | 0.1862   | 0.3009   |            |
| 2 and $4$ |                       | 427   | 127   | 3    | 0.2397   | 0.3625   |            |
| 2 and $4$ |                       | 427   | 98    | -4   | 0.1778   | 0.291    |            |
| 2 and $4$ | [3000,5000)           | 1125  | 258   | 1    | 0.1962   | 0.2662   |            |
| 2 and $4$ |                       | 1125  | 298   | 2    | 0.2298   | 0.3032   |            |
| 2 and $4$ |                       | 1125  | 256   | 3    | 0.1946   | 0.2643   |            |
| 2 and $4$ |                       | 1125  | 313   | -4   | 0.2425   | 0.317    |            |
| 2 and $4$ | [5000,10000)          | 4291  | 1080  | 1    | 0.2336   | 0.2707   |            |
| 2 and $4$ |                       | 4291  | 1080  | 2    | 0.2336   | 0.2707   |            |
| 2 and $4$ |                       | 4291  | 1013  | 3    | 0.2184   | 0.2547   |            |
| 2 and 4   |                       | 4291  | 1118  | -4   | 0.2423   | 0.2797   |            |

Table 24: Left: results for pair (3,4). Right: results for pair (3,5)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff |
|---------|-----------------------|-------|-------|------|----------|----------|------------|
| 3 and 4 | [0,50)                | 155   | 51    | 1    | 0.234    | 0.4405   |            |
| 3 and 4 |                       | 155   | 6     | 2    | 0.0131   | 0.1086   | -/         |
| 3 and 4 |                       | 155   | 48    | 3    | 0.2171   | 0.4205   |            |
| 3 and 4 |                       | 155   | 50    | 4    | 0.2283   | 0.4339   |            |
| 3 and 4 | [50,100)              | 46    | 5     | 1    | 0.034    | 0.297    |            |
| 3 and 4 |                       | 46    | 6     | 2    | 0.045    | 0.3232   |            |
| 3 and 4 |                       | 46    | 19    | 3    | 0.2376   | 0.6137   |            |
| 3 and 4 |                       | 46    | 16    | - 4  | 0.1871   | 0.5528   |            |
| 3 and 4 | [100,200)             | 85    | 13    | 1    | 0.0737   | 0.2906   |            |
| 3 and 4 |                       | 85    | 7     | 2    | 0.0303   | 0.2047   | ~          |
| 3 and 4 |                       | 85    | 30    | 3    | 0.2261   | 0.5045   |            |
| 3 and 4 |                       | 85    | 35    | 4    | 0.2762   | 0.5622   | _          |
| 3 and 4 | [200,500)             | 128   | 24    | 1    | 0.1101   | 0.3008   |            |
| 3 and 4 |                       | 128   | 24    | 2    | 0.1101   | 0.3008   |            |
| 3 and 4 |                       | 128   | 32    | 3    | 0.1595   | 0.3692   |            |
| 3 and 4 |                       | 128   | 48    | - 4  | 0.2658   | 0.4985   | ~          |
| 3 and 4 | [500,1000)            | 248   | 44    | 1    | 0.1198   | 0.2548   |            |
| 3 and 4 |                       | 248   | 64    | 2    | 0.1886   | 0.3423   |            |
| 3 and 4 |                       | 248   | 49    | 3    | 0.1366   | 0.277    |            |
| 3 and 4 |                       | 248   | 91    | 4    | 0.2867   | 0.4553   | ~          |
| 3 and 4 | [1000,2000)           | 600   | 122   | 1    | 0.1614   | 0.2529   |            |
| 3 and 4 |                       | 600   | 144   | 2    | 0.1948   | 0.2919   |            |
| 3 and 4 |                       | 600   | 149   | 3    | 0.2025   | 0.3007   |            |
| 3 and 4 |                       | 600   | 185   | 4    | 0.2584   | 0.3632   | _          |
| 3 and 4 | [2000,3000)           | 710   | 166   | 1    | 0.1924   | 0.281    |            |
| 3 and 4 |                       | 710   | 196   | 2    | 0.2318   | 0.3252   |            |
| 3 and 4 |                       | 710   | 144   | 3    | 0.164    | 0.2481   | ~          |
| 3 and 4 |                       | 710   | 204   | 4    | 0.2424   | 0.3369   |            |
| 3 and 4 | [3000,5000)           | 1741  | 438   | 1    | 0.2237   | 0.2817   |            |
| 3 and 4 |                       | 1741  | 436   | 2    | 0.2226   | 0.2805   |            |
| 3 and 4 |                       | 1741  | 434   | 3    | 0.2215   | 0.2793   |            |
| 3 and 4 |                       | 1741  | 433   | 4    | 0.2209   | 0.2787   |            |
| 3 and 4 | [5000,10000)          | 6053  | 1589  | 1    | 0.247    | 0.2786   |            |
| 3 and 4 |                       | 6053  | 1515  | 2    | 0.2351   | 0.2662   |            |
| 3 and 4 |                       | 6053  | 1549  | 3    | 0.2405   | 0.2719   |            |
| 3 and 4 |                       | 6053  | 1400  | 4    | 0.2165   | 0.2468   | _          |

| Pair                 | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 3 and $5$            | [0,50)                | 194   | 73    | 1    | 0.2856   | 0.4765   | ~           |
| 3 and $5$            |                       | 194   | 17    | 2    | 0.0457   | 0.1615   | ~           |
| 3 and $5$            |                       | 194   | 41    | 3    | 0.1414   | 0.3036   |             |
| 3 and $5$            |                       | 194   | 63    | -4   | 0.2391   | 0.4239   |             |
| 3 and $5$            | [50,100)              | 47    | 15    | 1    | 0.167    | 0.5228   | *           |
| 3 and $5$            |                       | 47    | 3     | 2    | 0.0147   | 0.2373   | *           |
| 3 and $5$            |                       | 47    | 12    | 3    | 0.1219   | 0.4585   | *           |
| 3 and $5$            |                       | 47    | 17    | - 4  | 0.1989   | 0.5639   | *           |
| 3 and $5$            | [100,200)             | 75    | 19    | 1    | 0.141    | 0.4122   |             |
| 3 and $5$            |                       | 75    | 11    | 2    | 0.0663   | 0.2937   |             |
| 3 and $5$            |                       | 75    | 17    | 3    | 0.1213   | 0.3836   |             |
| 3 and $5$            |                       | 75    | 28    | -4   | 0.2362   | 0.5343   |             |
| 3 and $5$            | [200,500)             | 119   | 14    | 1    | 0.0578   | 0.2246   | ~           |
| 3 and $5$            |                       | 119   | 19    | 2    | 0.0873   | 0.274    |             |
| 3 and $5$            |                       | 119   | 45    | 3    | 0.265    | 0.5063   | ~           |
| 3 and $5$            |                       | 119   | 41    | -4   | 0.2358   | 0.4725   |             |
| 3 and $5$            | [500,1000)            | 258   | 49    | 1    | 0.1312   | 0.2669   |             |
| 3 and $5$            |                       | 258   | 54    | 2    | 0.1476   | 0.2881   |             |
| 3 and $5$            |                       | 258   | 75    | 3    | 0.2188   | 0.375    |             |
| 3 and $5$            |                       | 258   | 80    | -4   | 0.2362   | 0.3952   |             |
| 3 and $5$            | [1000,2000)           | 598   | 116   | 1    | 0.1528   | 0.243    | ~           |
| 3 and $5$            |                       | 598   | 134   | 2    | 0.1801   | 0.2751   |             |
| 3 and $5$            |                       | 598   | 125   | 3    | 0.1664   | 0.2591   |             |
| 3 and $5$            |                       | 598   | 223   | -4   | 0.3196   | 0.4295   | ~           |
| 3 and $5$            | [2000,3000)           | 811   | 169   | 1    | 0.1714   | 0.2509   |             |
| 3 and $5$            |                       | 811   | 213   | 2    | 0.2219   | 0.308    |             |
| 3 and $5$            |                       | 811   | 223   | 3    | 0.2334   | 0.3208   |             |
| 3 and $5$            |                       | 811   | 206   | - 4  | 0.2138   | 0.2989   |             |
| 3 and $5$            | [3000,5000)           | 1921  | 492   | 1    | 0.2293   | 0.2849   |             |
| 3 and $5$            |                       | 1921  | 516   | 2    | 0.2413   | 0.2978   |             |
| 3 and $5$            |                       | 1921  | 412   | 3    | 0.1895   | 0.2418   | ~           |
| 3 and $5$            |                       | 1921  | 501   | 4    | 0.2338   | 0.2897   |             |
| 3 and $5$            | [5000,10000)          | 4552  | 1161  | 1    | 0.2374   | 0.2735   |             |
| 3 and $5$            |                       | 4552  | 1241  | 2    | 0.2546   | 0.2915   | ~           |
| 3 and $5$            |                       | 4552  | 1075  | 3    | 0.219    | 0.2542   |             |
| $3\ \mathrm{and}\ 5$ |                       | 4552  | 1075  | 4    | 0.219    | 0.2542   |             |

Table 25: Left: results for pair (6,7). Right: results for pair (6,8)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|
| 6 and 7 | [0,50)                | 712   | 93    | 1    | 0.0993   | 0.17     | ~           |
| 6 and 7 |                       | 712   | 38    | 2    | 0.0343   | 0.0821   | ~           |
| 6 and 7 |                       | 712   | 301   | 3    | 0.3721   | 0.4751   | -/          |
| 6 and 7 |                       | 712   | 280   | 4    | 0.3435   | 0.4453   | ~           |
| 6 and 7 | [50,100)              | 488   | 59    | 1    | 0.0855   | 0.1682   | ~           |
| 6 and 7 |                       | 488   | 34    | 2    | 0.0438   | 0.1091   | · /         |
| 6 and 7 |                       | 488   | 165   | 3    | 0.2812   | 0.4001   | ~           |
| 6 and 7 |                       | 488   | 230   | 4    | 0.4091   | 0.5344   | ~           |
| 6 and 7 | [100,200)             | 489   | 67    | 1    | 0.0992   | 0.1862   | ~           |
| 6 and 7 |                       | 489   | 67    | 2    | 0.0992   | 0.1862   | _           |
| 6 and 7 |                       | 489   | 154   | 3    | 0.2595   | 0.3762   | ~           |
| 6 and 7 |                       | 489   | 201   | 4    | 0.3507   | 0.4742   | ~           |
| 6 and 7 | [200,500)             | 567   | 102   | 1    | 0.1392   | 0.2292   | _           |
| 6 and 7 |                       | 567   | 81    | 2    | 0.1066   | 0.1888   | ~           |
| 6 and 7 |                       | 567   | 163   | 3    | 0.2375   | 0.3432   |             |
| 6 and 7 |                       | 567   | 221   | 4    | 0.3344   | 0.4482   | _           |
| 6 and 7 | [500,1000)            | 479   | 103   | 1    | 0.1674   | 0.2719   |             |
| 6 and 7 |                       | 479   | 120   | 2    | 0.1995   | 0.3096   |             |
| 6 and 7 |                       | 479   | 161   | 3    | 0.2788   | 0.3987   | _           |
| 6 and 7 |                       | 479   | 95    | 4    | 0.1524   | 0.2539   |             |
| 6 and 7 | [1000,2000)           | 1374  | 314   | 1    | 0.1985   | 0.2617   |             |
| 6 and 7 |                       | 1374  | 312   | 2    | 0.1971   | 0.2602   |             |
| 6 and 7 |                       | 1374  | 391   | 3    | 0.2518   | 0.3197   | ~           |
| 6 and 7 |                       | 1374  | 357   | 4    | 0.2282   | 0.2942   |             |
| 6 and 7 | [2000,3000)           | 1726  | 390   | 1    | 0.1991   | 0.2553   |             |
| 6 and 7 |                       | 1726  | 410   | 2    | 0.2101   | 0.2673   |             |
| 6 and 7 |                       | 1726  | 434   | 3    | 0.2234   | 0.2817   |             |
| 6 and 7 |                       | 1726  | 492   | 4    | 0.2557   | 0.3163   | ~           |
| 6 and 7 | [3000,5000)           | 3092  | 833   | 1    | 0.2477   | 0.2923   |             |
| 6 and 7 |                       | 3092  | 751   | 2    | 0.222    | 0.2651   |             |
| 6 and 7 |                       | 3092  | 746   | 3    | 0.2204   | 0.2634   |             |
| 6 and 7 |                       | 3092  | 762   | 4    | 0.2254   | 0.2687   |             |
| 6 and 7 | [5000,10000)          | 6021  | 1558  | 1    | 0.2433   | 0.2748   |             |
| 6 and 7 |                       | 6021  | 1405  | 2    | 0.2185   | 0.2489   | ~           |
| 6 and 7 |                       | 6021  | 1444  | 3    | 0.2248   | 0.2555   |             |
| 6 and 7 |                       | 6021  | 1614  | 4    | 0.2524   | 0.2843   | ~           |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 6 and 8   | [0,50)                | 32    | 8     | 1    | 0.1011   | 0.4971   |             |
| 6 and $8$ |                       | 32    | 5     | 2    | 0.0493   | 0.3982   |             |
| 6 and 8   |                       | 32    | 14    | 3    | 0.2296   | 0.6699   |             |
| 6 and 8   |                       | 32    | 5     | - 4  | 0.0493   | 0.3982   |             |
| 6 and 8   | [50,100)              | 26    | 9     | 1    | 0.1503   | 0.6132   |             |
| 6 and 8   |                       | 26    | 3     | 2    | 0.0268   | 0.3817   |             |
| 6 and 8   |                       | 26    | 11    | 3    | 0.2027   | 0.679    |             |
| 6 and 8   |                       | 26    | 3     | -4   | 0.0268   | 0.3817   |             |
| 6 and 8   | [100,200)             | 35    | 9     | 1    | 0.1096   | 0.4934   |             |
| 6 and 8   |                       | 35    | 8     | 2    | 0.092    | 0.4642   |             |
| 6 and 8   |                       | 35    | 6     | 3    | 0.0596   | 0.4032   |             |
| 6 and 8   |                       | 35    | 12    | - 4  | 0.1667   | 0.5763   |             |
| 6 and 8   | [200,500)             | 98    | 26    | 1    | 0.1614   | 0.4039   |             |
| 6 and 8   |                       | 98    | 19    | 2    | 0.1067   | 0.3263   |             |
| 6 and 8   |                       | 98    | 27    | 3    | 0.1695   | 0.4146   |             |
| 6 and 8   |                       | 98    | 26    | -4   | 0.1614   | 0.4039   |             |
| 6 and 8   | [500,1000)            | 215   | 46    | 1    | 0.1465   | 0.3014   |             |
| 6 and 8   |                       | 215   | 48    | 2    | 0.1544   | 0.3116   |             |
| 6 and 8   |                       | 215   | 66    | 3    | 0.2271   | 0.4004   |             |
| 6 and 8   |                       | 215   | 55    | -4   | 0.1822   | 0.3465   |             |
| 6 and 8   | [1000,2000)           | 460   | 96    | 1    | 0.1608   | 0.2663   |             |
| 6 and 8   |                       | 460   | 131   | 2    | 0.2299   | 0.3468   |             |
| 6 and 8   |                       | 460   | 138   | 3    | 0.244    | 0.3627   |             |
| 6 and 8   |                       | 460   | 95    | - 4  | 0.1589   | 0.264    |             |
| 6 and 8   | [2000,3000)           | 785   | 185   | 1    | 0.1961   | 0.2805   |             |
| 6 and 8   |                       | 785   | 198   | 2    | 0.2115   | 0.2979   |             |
| 6 and 8   |                       | 785   | 228   | 3    | 0.2474   | 0.3376   |             |
| 6 and 8   |                       | 785   | 174   | - 4  | 0.1831   | 0.2657   |             |
| 6 and 8   | [3000,5000)           | 1804  | 449   | 1    | 0.2216   | 0.2784   |             |
| 6 and 8   |                       | 1804  | 441   | 2    | 0.2173   | 0.2738   |             |
| 6 and 8   |                       | 1804  | 421   | 3    | 0.2067   | 0.2623   |             |
| 6 and 8   |                       | 1804  | 493   | -4   | 0.245    | 0.3035   |             |
| 6 and $8$ | [5000,10000)          | 6333  | 1513  | 1    | 0.2243   | 0.2542   |             |
| 6 and 8   |                       | 6333  | 1592  | 2    | 0.2365   | 0.2669   |             |
| 6 and 8   |                       | 6333  | 1576  | 3    | 0.234    | 0.2643   |             |
| 6 and 8   |                       | 6333  | 1652  | -4   | 0.2457   | 0.2766   |             |

Table 26: Left: results for pair (6,9). Right: results for pair (6,10)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 6 and 9   | [0,50)                | 51    | 12    | 1    | 0.1119   | 0.429    |             |
| 6 and $9$ |                       | 51    | 2     | 2    | 0.0069   | 0.194    |             |
| 6 and $9$ |                       | 51    | 12    | 3    | 0.1119   | 0.429    |             |
| 6 and $9$ |                       | 51    | 25    | 4    | 0.3093   | 0.6737   |             |
| 6 and $9$ | [50,100)              | 17    | 3     | 1    | 0.0414   | 0.5153   | *           |
| 6 and 9   |                       | 17    | 2     | 2    | 0.0208   | 0.4553   | *           |
| 6 and 9   |                       | 17    | - 5   | 3    | 0.0952   | 0.6227   | *           |
| 6 and 9   |                       | 17    | 7     | 4    | 0.162    | 0.7171   | *           |
| 6 and 9   | [100,200)             | 65    | 9     | 1    | 0.0576   | 0.2969   |             |
| 6 and 9   |                       | 65    | 11    | 2    | 0.0769   | 0.3326   |             |
| 6 and $9$ |                       | 65    | 22    | 3    | 0.1998   | 0.5118   |             |
| 6 and 9   |                       | 65    | 23    | 4    | 0.2121   | 0.527    |             |
| 6 and $9$ | [200,500)             | 182   | 27    | 1    | 0.0893   | 0.2364   | ~           |
| 6 and 9   |                       | 182   | 38    | 2    | 0.1374   | 0.3041   |             |
| 6 and 9   |                       | 182   | 55    | 3    | 0.2168   | 0.4039   |             |
| 6 and $9$ |                       | 182   | 62    | 4    | 0.2508   | 0.4436   | ~           |
| 6 and 9   | [500,1000)            | 378   | 67    | 1    | 0.129    | 0.2385   | ~           |
| 6 and 9   |                       | 378   | 95    | 2    | 0.1944   | 0.3183   |             |
| 6 and $9$ |                       | 378   | 116   | 3    | 0.245    | 0.3765   |             |
| 6 and 9   |                       | 378   | 100   | 4    | 0.2064   | 0.3323   |             |
| 6 and 9   | [1000,2000)           | 1024  | 237   | 1    | 0.1967   | 0.2702   |             |
| 6 and $9$ |                       | 1024  | 243   | 2    | 0.2022   | 0.2764   |             |
| 6 and 9   |                       | 1024  | 266   | 3    | 0.2234   | 0.2998   |             |
| 6 and 9   |                       | 1024  | 278   | 4    | 0.2345   | 0.312    |             |
| 6 and 9   | [2000,3000)           | 1256  | 276   | 1    | 0.1889   | 0.2541   |             |
| 6 and 9   |                       | 1256  | 283   | 2    | 0.1941   | 0.2599   |             |
| 6 and 9   |                       | 1256  | 342   | 3    | 0.2387   | 0.3087   |             |
| 6 and 9   |                       | 1256  | 355   | 4    | 0.2486   | 0.3194   |             |
| 6 and $9$ | [3000,5000)           | 2940  | 785   | 1    | 0.2448   | 0.2904   |             |
| 6 and $9$ |                       | 2940  | 730   | 2    | 0.2267   | 0.2712   |             |
| 6 and 9   |                       | 2940  | 745   | 3    | 0.2317   | 0.2765   |             |
| 6 and $9$ |                       | 2940  | 680   | 4    | 0.2103   | 0.2537   |             |
| 6 and 9   | [5000,10000)          | 8171  | 2236  | 1    | 0.2601   | 0.2876   | ~           |
| 6 and $9$ |                       | 8171  | 1884  | 2    | 0.2178   | 0.2439   | ~           |
| 6 and $9$ |                       | 8171  | 1940  | 3    | 0.2245   | 0.2508   |             |
| 6 and 9   |                       | 8171  | 2111  | 4    | 0.2451   | 0.2721   |             |

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 6 and 10 | [0,50)                | 113   | 22    | 1    | 0.1118   | 0.3171   |             |
| 6 and 10 |                       | 113   | 18    | 2    | 0.0857   | 0.277    |             |
| 6 and 10 |                       | 113   | 52    | 3    | 0.336    | 0.5895   | _           |
| 6 and 10 |                       | 113   | 21    | -4   | 0.1052   | 0.3072   |             |
| 6 and 10 | [50,100)              | 91    | 13    | 1    | 0.0687   | 0.2735   |             |
| 6 and 10 |                       | 91    | 12    | 2    | 0.0615   | 0.2605   |             |
| 6 and 10 |                       | 91    | 45    | 3    | 0.3543   | 0.6355   | ~           |
| 6 and 10 |                       | 91    | 21    | -4   | 0.1317   | 0.3724   |             |
| 6 and 10 | [100,200)             | 96    | 18    | 1    | 0.1014   | 0.3207   |             |
| 6 and 10 |                       | 96    | 14    | 2    | 0.0721   | 0.2729   |             |
| 6 and 10 |                       | 96    | 43    | 3    | 0.3153   | 0.5883   | ~           |
| 6 and 10 |                       | 96    | 21    | 4    | 0.1245   | 0.3553   |             |
| 6 and 10 | [200,500)             | 296   | 61    | 1    | 0.1483   | 0.279    |             |
| 6 and 10 |                       | 296   | 46    | 2    | 0.1055   | 0.223    | -           |
| 6 and 10 |                       | 296   | 125   | 3    | 0.3451   | 0.5035   | ~           |
| 6 and 10 |                       | 296   | 64    | -4   | 0.1571   | 0.2899   |             |
| 6 and 10 | [500,1000)            | 451   | 97    | 1    | 0.1661   | 0.2738   |             |
| 6 and 10 |                       | 451   | 95    | 2    | 0.1621   | 0.269    |             |
| 6 and 10 |                       | 451   | 157   | 3    | 0.2885   | 0.4129   | ~           |
| 6 and 10 |                       | 451   | 102   | -4   | 0.176    | 0.2856   |             |
| 6 and 10 | [1000,2000)           | 1126  | 282   | 1    | 0.2162   | 0.2882   |             |
| 6 and 10 |                       | 1126  | 292   | 2    | 0.2246   | 0.2974   |             |
| 6 and 10 |                       | 1126  | 290   | 3    | 0.2229   | 0.2956   |             |
| 6 and 10 |                       | 1126  | 262   | -4   | 0.1994   | 0.2697   |             |
| 6 and 10 | [2000,3000)           | 1415  | 360   | 1    | 0.2235   | 0.2881   |             |
| 6 and 10 |                       | 1415  | 389   | 2    | 0.243    | 0.3093   |             |
| 6 and 10 |                       | 1415  | 335   | 3    | 0.2067   | 0.2697   |             |
| 6 and 10 |                       | 1415  | 331   | -4   | 0.204    | 0.2668   |             |
| 6 and 10 | [3000,5000)           | 3649  | 975   | 1    | 0.2472   | 0.2882   |             |
| 6 and 10 |                       | 3649  | 833   | 2    | 0.2095   | 0.2483   | ~           |
| 6 and 10 |                       | 3649  | 916   | 3    | 0.2315   | 0.2716   |             |
| 6 and 10 |                       | 3649  | 925   | -4   | 0.2339   | 0.2741   |             |
| 6 and 10 | [5000,10000)          | 8987  | 2412  | 1    | 0.2555   | 0.2817   | ~           |
| 6 and 10 |                       | 8987  | 2128  | 2    | 0.2245   | 0.2495   | ~           |
| 6 and 10 |                       | 8987  | 2369  | 3    | 0.2508   | 0.2768   | ~           |
| 6 and 10 |                       | 8987  | 2078  | 4    | 0.219    | 0.2439   |             |

Table 27: Left: results for pair (7,8). Right: results for pair (7,9)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|
| 7 and 8 | [0,50)                | 512   | 64    | 1    | 0.0897   | 0.1716   | ~           |
| 7 and 8 |                       | 512   | 44    | 2    | 0.0572   | 0.1271   | ~           |
| 7 and 8 |                       | 512   | 210   | 3    | 0.3512   | 0.4718   | · /         |
| 7 and 8 |                       | 512   | 194   | 4    | 0.3212   | 0.4402   | ~           |
| 7 and 8 | [50,100)              | 395   | 61    | 1    | 0.1104   | 0.2119   | ~           |
| 7 and 8 |                       | 395   | 39    | 2    | 0.0642   | 0.1488   | -/          |
| 7 and 8 |                       | 395   | 180   | 3    | 0.3872   | 0.5259   | ~           |
| 7 and 8 |                       | 395   | 115   | 4    | 0.2318   | 0.3586   |             |
| 7 and 8 | [100,200)             | 409   | 68    | 1    | 0.1212   | 0.2239   | ~           |
| 7 and 8 |                       | 409   | 53    | 2    | 0.09     | 0.183    | _           |
| 7 and 8 |                       | 409   | 168   | 3    | 0.345    | 0.4798   | ~           |
| 7 and 8 |                       | 409   | 120   | 4    | 0.2348   | 0.3597   |             |
| 7 and 8 | [200,500)             | 643   | 125   | 1    | 0.1546   | 0.2416   | ~           |
| 7 and 8 |                       | 643   | 101   | 2    | 0.1211   | 0.2013   | ~           |
| 7 and 8 |                       | 643   | 222   | 3    | 0.295    | 0.3992   | ~           |
| 7 and 8 |                       | 643   | 195   | 4    | 0.2552   | 0.3561   | ~           |
| 7 and 8 | [500,1000)            | 916   | 187   | 1    | 0.1695   | 0.2438   | ~           |
| 7 and 8 |                       | 916   | 181   | 2    | 0.1634   | 0.2369   | ~           |
| 7 and 8 |                       | 916   | 289   | 3    | 0.2743   | 0.3598   | _           |
| 7 and 8 |                       | 916   | 259   | 4    | 0.2431   | 0.326    |             |
| 7 and 8 | [1000,2000)           | 1752  | 413   | 1    | 0.2086   | 0.2652   |             |
| 7 and 8 |                       | 1752  | 404   | 2    | 0.2037   | 0.2599   |             |
| 7 and 8 |                       | 1752  | 479   | 3    | 0.2447   | 0.3041   |             |
| 7 and 8 |                       | 1752  | 456   | 4    | 0.2321   | 0.2906   |             |
| 7 and 8 | [2000,3000)           | 1767  | 436   | 1    | 0.2192   | 0.2765   |             |
| 7 and 8 |                       | 1767  | 453   | 2    | 0.2284   | 0.2864   |             |
| 7 and 8 |                       | 1767  | 420   | 3    | 0.2106   | 0.2671   |             |
| 7 and 8 |                       | 1767  | 458   | 4    | 0.2312   | 0.2894   |             |
| 7 and 8 | [3000,5000)           | 4009  | 974   | 1    | 0.2245   | 0.2624   |             |
| 7 and 8 |                       | 4009  | 1069  | 2    | 0.2476   | 0.2866   |             |
| 7 and 8 |                       | 4009  | 938   | 3    | 0.2158   | 0.2532   |             |
| 7 and 8 |                       | 4009  | 1028  | 4    | 0.2376   | 0.2762   |             |
| 7 and 8 | [5000,10000)          | 9591  | 2466  | 1    | 0.2448   | 0.2698   |             |
| 7 and 8 |                       | 9591  | 2389  | 2    | 0.237    | 0.2616   |             |
| 7 and 8 |                       | 9591  | 2089  | 3    | 0.2063   | 0.2298   | -           |
| 7 and 8 |                       | 9591  | 2647  | -4   | 0.2634   | 0.2889   | 1           |

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff |
|---------|-----------------------|-------|-------|------|----------|----------|------------|
| 7 and 9 | [0,50)                | 102   | 20    | 1    | 0.1096   | 0.3258   |            |
| 7 and 9 |                       | 102   | 5     | 2    | 0.0152   | 0.147    | ~          |
| 7 and 9 |                       | 102   | 35    | 3    | 0.2272   | 0.4814   |            |
| 7 and 9 |                       | 102   | 42    | -4   | 0.2866   | 0.5495   | ~          |
| 7 and 9 | [50,100)              | 75    | 10    | 1    | 0.0579   | 0.2779   |            |
| 7 and 9 |                       | 75    | 9     | 2    | 0.0498   | 0.2619   |            |
| 7 and 9 |                       | 75    | 19    | 3    | 0.141    | 0.4122   |            |
| 7 and 9 |                       | 75    | 37    | -4   | 0.3404   | 0.6475   | ~          |
| 7 and 9 | [100,200)             | 73    | 9     | 1    | 0.0512   | 0.2682   |            |
| 7 and 9 |                       | 73    | 7     | 2    | 0.0354   | 0.2345   | _          |
| 7 and 9 |                       | 73    | 22    | 3    | 0.1766   | 0.4646   |            |
| 7 and 9 |                       | 73    | 35    | -4   | 0.3261   | 0.6368   | ~          |
| 7 and 9 | [200,500)             | 200   | 27    | 1    | 0.0811   | 0.2164   | _          |
| 7 and 9 |                       | 200   | 27    | 2    | 0.0811   | 0.2164   | ~          |
| 7 and 9 |                       | 200   | 74    | 3    | 0.2811   | 0.4686   | ~          |
| 7 and 9 |                       | 200   | 72    | -4   | 0.272    | 0.4585   | ~          |
| 7 and 9 | [500,1000)            | 373   | 75    | 1    | 0.1495   | 0.2649   |            |
| 7 and 9 |                       | 373   | 92    | 2    | 0.1899   | 0.3138   |            |
| 7 and 9 |                       | 373   | 98    | 3    | 0.2044   | 0.3308   |            |
| 7 and 9 |                       | 373   | 108   | -4   | 0.2287   | 0.359    |            |
| 7 and 9 | [1000,2000)           | 823   | 204   | 1    | 0.2083   | 0.2922   |            |
| 7 and 9 |                       | 823   | 176   | 2    | 0.1767   | 0.2564   |            |
| 7 and 9 |                       | 823   | 221   | 3    | 0.2277   | 0.3137   |            |
| 7 and 9 |                       | 823   | 222   | -4   | 0.2288   | 0.315    |            |
| 7 and 9 | [2000,3000)           | 1198  | 283   | 1    | 0.2037   | 0.2722   |            |
| 7 and 9 |                       | 1198  | 271   | 2    | 0.1943   | 0.2617   |            |
| 7 and 9 |                       | 1198  | 317   | 3    | 0.2306   | 0.3017   |            |
| 7 and 9 |                       | 1198  | 327   | -4   | 0.2385   | 0.3103   |            |
| 7 and 9 | [3000,5000)           | 2800  | 693   | 1    | 0.2254   | 0.271    |            |
| 7 and 9 |                       | 2800  | 702   | 2    | 0.2285   | 0.2743   |            |
| 7 and 9 |                       | 2800  | 748   | 3    | 0.2444   | 0.2911   |            |
| 7 and 9 |                       | 2800  | 657   | -4   | 0.213    | 0.2578   |            |
| 7 and 9 | [5000,10000)          | 7627  | 1896  | 1    | 0.235    | 0.2627   |            |
| 7 and 9 |                       | 7627  | 1824  | 2    | 0.2258   | 0.2531   |            |
| 7 and 9 |                       | 7627  | 1944  | 3    | 0.2412   | 0.2691   |            |
| 7 and 9 |                       | 7627  | 1963  | -4   | 0.2436   | 0.2716   |            |

Table 28: Left: results for pair (7,10). Right: results for pair (8,9)

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff |
|----------|-----------------------|-------|-------|------|----------|----------|------------|
| 7 and 10 | [0,50)                | 30    | 7     | 1    | 0.0884   | 0.4885   |            |
| 7 and 10 |                       | 30    | 3     | 2    | 0.0232   | 0.3421   |            |
| 7 and 10 |                       | 30    | 6     | 3    | 0.0699   | 0.4541   |            |
| 7 and 10 |                       | 30    | 14    | - 4  | 0.2467   | 0.7005   |            |
| 7 and 10 | [50,100)              | 28    | 6     | 1    | 0.0751   | 0.4782   |            |
| 7 and 10 |                       | 28    | 3     | 2    | 0.0249   | 0.3609   |            |
| 7 and 10 |                       | 28    | 9     | 3    | 0.1388   | 0.582    |            |
| 7 and 10 |                       | 28    | 10    | - 4  | 0.1623   | 0.6143   |            |
| 7 and 10 | [100,200)             | 22    | 6     | 1    | 0.0966   | 0.568    |            |
| 7 and 10 |                       | 22    | 3     | 2    | 0.0318   | 0.4316   |            |
| 7 and 10 |                       | 22    | 10    | 3    | 0.2113   | 0.7217   |            |
| 7 and 10 |                       | 22    | 3     | 4    | 0.0318   | 0.4316   |            |
| 7 and 10 | [200,500)             | 106   | 20    | 1    | 0.1053   | 0.3148   |            |
| 7 and 10 |                       | 106   | 21    | 2    | 0.1124   | 0.3253   |            |
| 7 and 10 |                       | 106   | 47    | 3    | 0.317    | 0.5775   | _          |
| 7 and 10 |                       | 106   | 18    | - 4  | 0.0915   | 0.2934   |            |
| 7 and 10 | [500,1000)            | 240   | 50    | 1    | 0.1448   | 0.2902   |            |
| 7 and 10 |                       | 240   | 67    | 2    | 0.2062   | 0.3661   |            |
| 7 and 10 |                       | 240   | 74    | 3    | 0.2321   | 0.3966   |            |
| 7 and 10 |                       | 240   | 49    | 4    | 0.1413   | 0.2857   |            |
| 7 and 10 | [1000,2000)           | 515   | 91    | 1    | 0.1347   | 0.2284   | ~          |
| 7 and 10 |                       | 515   | 127   | 2    | 0.1976   | 0.3032   |            |
| 7 and 10 |                       | 515   | 164   | 3    | 0.2641   | 0.3782   | 4          |
| 7 and 10 |                       | 515   | 133   | 4    | 0.2082   | 0.3155   |            |
| 7 and 10 | [2000,3000)           | 937   | 203   | 1    | 0.1815   | 0.2565   |            |
| 7 and 10 |                       | 937   | 223   | 2    | 0.2014   | 0.279    |            |
| 7 and 10 |                       | 937   | 307   | 3    | 0.2864   | 0.3718   | _          |
| 7 and 10 |                       | 937   | 204   | - 4  | 0.1824   | 0.2577   |            |
| 7 and 10 | [3000,5000)           | 2464  | 579   | 1    | 0.212    | 0.2597   |            |
| 7 and 10 |                       | 2464  | 583   | 2    | 0.2135   | 0.2614   |            |
| 7 and 10 |                       | 2464  | 723   | 3    | 0.2685   | 0.3197   | ~          |
| 7 and 10 |                       | 2464  | 579   | 4    | 0.212    | 0.2597   |            |
| 7 and 10 | [5000,10000)          | 8433  | 2060  | 1    | 0.2314   | 0.2576   |            |
| 7 and 10 |                       | 8433  | 2121  | 2    | 0.2385   | 0.2649   |            |
| 7 and 10 |                       | 8433  | 2205  | 3    | 0.2483   | 0.2751   |            |
| 7 and 10 |                       | 8433  | 2047  | 4    | 0.2299   | 0.256    |            |

| Pair                   | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 9                | [0,50)                | 26    | 7     | 1    | 0.1028   | 0.5424   | *           |
| 8 and $9$              |                       | 26    | 1     | 2    | 0.004    | 0.2863   | *           |
| 8 and $9$              |                       | 26    | 9     | 3    | 0.1503   | 0.6132   | *           |
| 8 and $9$              |                       | 26    | 9     | -4   | 0.1503   | 0.6132   | *           |
| 8 and $9$              | [50,100)              | 22    | 3     | 1    | 0.0318   | 0.4316   | *           |
| 8 and $9$              |                       | 22    | 1     | 2    | 0.0047   | 0.3245   | *           |
| 8 and $9$              |                       | 22    | 7     | 3    | 0.1227   | 0.609    | *           |
| 8 and $9$              |                       | 22    | 11    | - 4  | 0.244    | 0.756    | *           |
| 8 and $9$              | [100,200)             | 26    | - 4   | 1    | 0.0428   | 0.4249   | *           |
| 8 and $9$              |                       | 26    | 1     | 2    | 0.004    | 0.2863   | *           |
| 8 and $9$              |                       | 26    | 12    | 3    | 0.2306   | 0.7102   | *           |
| 8 and $9$              |                       | 26    | 9     | -4   | 0.1503   | 0.6132   | *           |
| 8 and $9$              | [200,500)             | 88    | 15    | 1    | 0.0866   | 0.308    |             |
| 8 and $9$              |                       | 88    | 13    | 2    | 0.0711   | 0.2818   |             |
| 8 and $9$              |                       | 88    | 21    | 3    | 0.1364   | 0.3835   |             |
| 8 and $9$              |                       | 88    | 39    | -4   | 0.3059   | 0.5898   | ~           |
| 8 and $9$              | [500,1000)            | 236   | 40    | 1    | 0.1121   | 0.2481   | ~           |
| 8 and $9$              |                       | 236   | 51    | 2    | 0.151    | 0.2994   |             |
| 8 and $9$              |                       | 236   | 59    | 3    | 0.1801   | 0.3359   |             |
| 8 and $9$              |                       | 236   | 86    | -4   | 0.2825   | 0.455    | ~           |
| 8 and $9$              | [1000,2000)           | 479   | 94    | 1    | 0.1506   | 0.2517   |             |
| 8 and $9$              |                       | 479   | 114   | 2    | 0.1881   | 0.2963   |             |
| 8 and $9$              |                       | 479   | 152   | 3    | 0.2612   | 0.3793   | ~           |
| 8 and $9$              |                       | 479   | 119   | -4   | 0.1976   | 0.3074   |             |
| 8 and $9$              | [2000,3000)           | 595   | 115   | 1    | 0.1521   | 0.2424   | ~           |
| 8 and $9$              |                       | 595   | 184   | 2    | 0.259    | 0.3644   | ~           |
| 8 and $9$              |                       | 595   | 173   | 3    | 0.2417   | 0.3452   |             |
| 8 and $9$              |                       | 595   | 123   | 4    | 0.1643   | 0.2568   |             |
| 8 and $9$              | [3000,5000)           | 1666  | 400   | 1    | 0.2121   | 0.2705   |             |
| 8 and $9$              |                       | 1666  | 488   | 2    | 0.2628   | 0.325    | ~           |
| $8~\mathrm{and}~9$     |                       | 1666  | 405   | 3    | 0.215    | 0.2736   |             |
| $8~\mathrm{and}~9$     |                       | 1666  | 373   | -4   | 0.1967   | 0.2537   |             |
| $8 \ \mathrm{and} \ 9$ | [5000,10000)          | 7888  | 1944  | 1    | 0.2331   | 0.2603   |             |
| $8~\mathrm{and}~9$     |                       | 7888  | 2065  | 2    | 0.2482   | 0.2759   |             |
| $8~\mathrm{and}~9$     |                       | 7888  | 2026  | 3    | 0.2433   | 0.2708   |             |
| $8~\mathrm{and}~9$     |                       | 7888  | 1853  | -4   | 0.2218   | 0.2485   | ~           |

Table 29: Results for pair (9,10)

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 9 and 10 | [0,50]                | 69    | 10    | 1    | 0.0631   | 0.299    |             |
| 9 and 10 |                       | 69    | 9     | 2    | 0.0542   | 0.2818   |             |
| 9 and 10 |                       | 69    | 39    | 3    | 0.4003   | 0.7168   | ~           |
| 9 and 10 |                       | 69    | 11    | -4   | 0.0723   | 0.3159   |             |
| 9 and 10 | [50,100)              | 52    | 12    | 1    | 0.1096   | 0.4222   |             |
| 9 and 10 |                       | 52    | 9     | 2    | 0.0725   | 0.359    |             |
| 9 and 10 |                       | 52    | 20    | 3    | 0.2232   | 0.5762   |             |
| 9 and 10 |                       | 52    | 11    | -4   | 0.0969   | 0.4016   |             |
| 9 and 10 | [100,200]             | 92    | 20    | 1    | 0.122    | 0.357    |             |
| 9 and 10 |                       | 92    | 10    | 2    | 0.047    | 0.2317   | ~           |
| 9 and 10 |                       | 92    | 44    | 3    | 0.3402   | 0.6197   | /           |
| 9 and 10 |                       | 92    | 18    | -4   | 0.106    | 0.333    |             |
| 9 and 10 | [200,500)             | 272   | 59    | 1    | 0.1555   | 0.2941   |             |
| 9 and 10 |                       | 272   | 52    | 2    | 0.1335   | 0.2661   |             |
| 9 and 10 |                       | 272   | 85    | 3    | 0.2401   | 0.3954   |             |
| 9 and 10 |                       | 272   | 76    | -4   | 0.2103   | 0.3608   |             |
| 9 and 10 | [500,1000)            | 676   | 144   | 1    | 0.1724   | 0.2602   |             |
| 9 and 10 |                       | 676   | 156   | 2    | 0.1887   | 0.279    |             |
| 9 and 10 |                       | 676   | 222   | 3    | 0.2801   | 0.3806   | ~           |
| 9 and 10 |                       | 676   | 154   | -4   | 0.186    | 0.2759   |             |
| 9 and 10 | [1000,2000)           | 1694  | 381   | 1    | 0.1979   | 0.2545   |             |
| 9 and 10 |                       | 1694  | 406   | 2    | 0.2119   | 0.2698   |             |
| 9 and 10 |                       | 1694  | 544   | 3    | 0.2903   | 0.3536   | -           |
| 9 and 10 |                       | 1694  | 363   | -4   | 0.1878   | 0.2434   | ~           |
| 9 and 10 | [2000,3000)           | 2233  | 591   | 1    | 0.2394   | 0.2916   |             |
| 9 and 10 |                       | 2233  | 502   | 2    | 0.2011   | 0.2504   |             |
| 9 and 10 |                       | 2233  | 595   | 3    | 0.2412   | 0.2934   |             |
| 9 and 10 |                       | 2233  | 545   | 4    | 0.2196   | 0.2703   |             |
| 9 and 10 | [3000,5000)           | 4775  | 1227  | 1    | 0.2397   | 0.275    |             |
| 9 and 10 |                       | 4775  | 1123  | 2    | 0.2185   | 0.2528   |             |
| 9 and 10 |                       | 4775  | 1253  | 3    | 0.245    | 0.2806   |             |
| 9 and 10 |                       | 4775  | 1172  | -4   | 0.2285   | 0.2633   |             |
| 9 and 10 | [5000,10000)          | 11216 | 2911  | 1    | 0.2481   | 0.2713   |             |
| 9 and 10 |                       | 11216 | 2666  | 2    | 0.2266   | 0.2491   | /           |
| 9 and 10 |                       | 11216 | 2995  | 3    | 0.2555   | 0.2789   | ~           |
| 9 and 10 |                       | 11216 | 2644  | -4   | 0.2247   | 0.2471   | ~           |

## 11.2. 20-min pairs

In this section (Tables 30-41) we provide the results of the pair behaviour statistical analysis for the pairs of interest, for data collected at a 20-min frequency.

Table 30: Left: results for pair (1,3). Right: results for pair (1,4)

| Pair    | Distance interval (m) | Total | Count | Type  | Lower CI | Upper CI | Sign. diff.  | Pair    | Distance interval (m) | Total | Count | Type  | Lower CI | Upper CI | Sign. di |
|---------|-----------------------|-------|-------|-------|----------|----------|--------------|---------|-----------------------|-------|-------|-------|----------|----------|----------|
| 1 and 3 | 10.50)                | 324   | 51    | 1 ype | 0.109    | 0.2219   | Sign. din.   | 1 and 4 | 10.50)                | 171   | 35    | 1 ype | 0.1323   | 0.3029   | Sign. c  |
| and 3   | (0,00)                | 324   | 23    | 2     | 0.0404   | 0.1218   | Ť            | 1 and 4 | [0,00)                | 171   | 12    | 2     | 0.1323   | 0.1456   | -        |
| 1 and 3 |                       | 324   | 136   | 3     | 0.3459   | 0.4974   | Ť            | 1 and 4 |                       | 171   | 58    | 3     | 0.0324   | 0.4454   | Ť        |
| 1 and 3 |                       | 324   | 114   | 4     | 0.282    | 0.4287   | Ť            | 1 and 4 |                       | 171   | 66    | 4     | 0.2891   | 0.4928   | _        |
| 1 and 3 | [50,100)              | 121   | 19    | 1     | 0.0858   | 0.2698   | Ť            | 1 and 4 | [50,100)              | 123   | 21    | 1     | 0.2891   | 0.2844   |          |
| 1 and 3 | [90,100)              | 121   | 8     | 2     | 0.0258   | 0.1591   | -            | 1 and 4 | [30,100)              | 123   | 7     | 2     | 0.0209   | 0.1459   | _        |
| 1 and 3 |                       | 121   | 58    | 3     | 0.3575   | 0.6036   | Ť            | 1 and 4 |                       | 123   | 38    | 3     | 0.2068   | 0.4339   | Ť        |
| 1 and 3 |                       | 121   | 36    | 4     | 0.1965   | 0.4231   | L ·          | 1 and 4 |                       | 123   | 57    | 4     | 0.3437   | 0.5875   | -        |
| 1 and 3 | [100.200]             | 96    | 11    | 1     | 0.0515   | 0.4231   | -            | 1 and 4 | [100.200]             | 113   | 14    | 1     | 0.061    | 0.2355   | Ť        |
| 1 and 3 | [100,200)             | 96    | 8     | 2     | 0.0326   | 0.1968   | Ť            | 1 and 4 | [100,200)             | 113   | 17    | 2     | 0.0794   | 0.2667   | Ť        |
| 1 and 3 |                       | 96    | 44    | 3     | 0.3247   | 0.5982   | <u> </u>     | 1 and 4 |                       | 113   | 30    | 3     | 0.1673   | 0.394    | _        |
| 1 and 3 |                       | 96    | 33    | 4     | 0.3247   | 0.4864   | <del>-</del> | 1 and 4 |                       | 113   | 52    | 4     | 0.336    | 0.5895   | _        |
| 1 and 3 | [200,500)             | 172   | 28    | 1     | 0.0991   | 0.2558   |              | 1 and 4 | [200,500]             | 133   | 19    | 1     | 0.0779   | 0.2475   | Ť        |
| 1 and 3 | (200,000)             | 172   | 25    | 2     | 0.0857   | 0.2358   | -            | 1 and 4 | (200,000)             | 133   | 27    | 2     | 0.1233   | 0.3157   | Ė        |
| 1 and 3 |                       | 172   | 62    | 3     | 0.2663   | 0.4668   | -            | 1 and 4 |                       | 133   | 40    | 3     | 0.2032   | 0.4204   |          |
| 1 and 3 |                       | 172   | 57    | 4     | 0.2403   | 0.4371   | i i          | 1 and 4 |                       | 133   | 47    | 4     | 0.2486   | 0.4744   | _        |
| 1 and 3 | [500.1000)            | 261   | 60    | 1     | 0.1656   | 0.3099   |              | 1 and 4 | [500,1000)            | 228   | 44    | 1     | 0.1306   | 0.2757   |          |
| 1 and 3 | (2003,0000)           | 261   | 46    | 2     | 0.12     | 0.2513   |              | 1 and 4 | [000,1000)            | 228   | 45    | 2     | 0.1343   | 0.2805   |          |
| 1 and 3 |                       | 261   | 65    | 3     | 0.1822   | 0.3304   |              | 1 and 4 |                       | 228   | 50    | 3     | 0.1527   | 0.3045   |          |
| 1 and 3 |                       | 261   | 90    | 4     | 0.2682   | 0.4305   | -            | 1 and 4 |                       | 228   | 89    | 4     | 0.3051   | 0.4829   | -        |
| 1 and 3 | [1000,2000)           | 576   | 122   | 1     | 0.1682   | 0.2631   |              | 1 and 4 | [1000,2000)           | 433   | 111   | 1     | 0.2024   | 0.319    |          |
| 1 and 3 |                       | 576   | 117   | 2     | 0.1604   | 0.2538   |              | 1 and 4 |                       | 433   | 86    | 2     | 0.1506   | 0.2573   |          |
| 1 and 3 |                       | 576   | 167   | 3     | 0.2402   | 0.3453   |              | 1 and 4 |                       | 433   | 124   | 3     | 0.2299   | 0.3505   |          |
| 1 and 3 |                       | 576   | 170   | 4     | 0.245    | 0.3507   |              | 1 and 4 |                       | 433   | 112   | -4    | 0.2045   | 0.3214   |          |
| 1 and 3 | [2000,3000)           | 677   | 176   | 1     | 0.2158   | 0.3096   |              | 1 and 4 | [2000,3000)           | 224   | 49    | 1     | 0.1517   | 0.3047   |          |
| 1 and 3 |                       | 677   | 189   | 2     | 0.2337   | 0.3297   |              | 1 and 4 |                       | 224   | 63    | 2     | 0.2057   | 0.3715   |          |
| 1 and 3 |                       | 677   | 157   | 3     | 0.1898   | 0.2802   |              | 1 and 4 |                       | 224   | 64    | 3     | 0.2097   | 0.3762   |          |
| 1 and 3 |                       | 677   | 155   | 4     | 0.1871   | 0.277    |              | 1 and 4 |                       | 224   | 48    | -4    | 0.148    | 0.2999   |          |
| 1 and 3 | [3000,5000)           | 1657  | 378   | 1     | 0.2006   | 0.2582   |              | 1 and 4 | [3000,5000)           | 773   | 206   | 1     | 0.2245   | 0.3131   |          |
| 1 and 3 |                       | 1657  | 423   | 2     | 0.2265   | 0.2863   |              | 1 and 4 |                       | 773   | 188   | 2     | 0.2028   | 0.2888   |          |
| 1 and 3 |                       | 1657  | 444   | 3     | 0.2387   | 0.2994   |              | 1 and 4 |                       | 773   | 206   | 3     | 0.2245   | 0.3131   |          |
| 1 and 3 |                       | 1657  | 412   | 4     | 0.2202   | 0.2795   |              | 1 and 4 |                       | 773   | 173   | -4    | 0.1848   | 0.2684   |          |
| 1 and 3 | [5000,10000)          | 2650  | 600   | 1     | 0.2045   | 0.2499   | ~            | 1 and 4 | [5000,10000)          | 1255  | 336   | 1     | 0.2343   | 0.304    |          |
| 1 and 3 |                       | 2650  | 717   | 2     | 0.2471   | 0.2953   |              | 1 and 4 |                       | 1255  | 317   | 2     | 0.2199   | 0.2883   |          |
| 1 and 3 |                       | 2650  | 738   | 3     | 0.2548   | 0.3035   | -            | 1 and 4 |                       | 1255  | 322   | 3     | 0.2237   | 0.2925   |          |
| 1 and 3 |                       | 2650  | 595   | 4     | 0.2027   | 0.248    |              | 1 and 4 |                       | 1255  | 280   | 4     | 0.192    | 0.2576   |          |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and $4$ | [0,50)                | 171   | 35    | 1    | 0.1323   | 0.3029   |             |
| 1 and 4   |                       | 171   | 12    | 2    | 0.0324   | 0.1456   | ~           |
| 1 and 4   |                       | 171   | 58    | 3    | 0.247    | 0.4454   |             |
| 1 and 4   |                       | 171   | 66    | -4   | 0.2891   | 0.4928   | ~           |
| 1 and 4   | [50,100)              | 123   | 21    | 1    | 0.0964   | 0.2844   |             |
| 1 and 4   |                       | 123   | 7     | 2    | 0.0209   | 0.1459   | ~           |
| 1 and 4   |                       | 123   | 38    | 3    | 0.2068   | 0.4339   |             |
| 1 and 4   |                       | 123   | 57    | -4   | 0.3437   | 0.5875   | ~           |
| 1 and 4   | [100,200)             | 113   | 14    | 1    | 0.061    | 0.2355   | ~           |
| 1 and 4   |                       | 113   | 17    | 2    | 0.0794   | 0.2667   |             |
| 1 and 4   |                       | 113   | 30    | 3    | 0.1673   | 0.394    |             |
| 1 and 4   |                       | 113   | 52    | -4   | 0.336    | 0.5895   | ~           |
| 1 and 4   | [200,500)             | 133   | 19    | 1    | 0.0779   | 0.2475   | ~           |
| 1 and 4   |                       | 133   | 27    | 2    | 0.1233   | 0.3157   |             |
| 1 and 4   |                       | 133   | 40    | 3    | 0.2032   | 0.4204   |             |
| 1 and 4   |                       | 133   | 47    | -4   | 0.2486   | 0.4744   |             |
| 1 and 4   | [500,1000)            | 228   | 44    | 1    | 0.1306   | 0.2757   |             |
| 1 and 4   |                       | 228   | 45    | 2    | 0.1343   | 0.2805   |             |
| 1 and 4   |                       | 228   | 50    | 3    | 0.1527   | 0.3045   |             |
| 1 and 4   |                       | 228   | 89    | - 4  | 0.3051   | 0.4829   | ~           |
| 1 and 4   | [1000,2000)           | 433   | 111   | 1    | 0.2024   | 0.319    |             |
| 1 and 4   |                       | 433   | 86    | 2    | 0.1506   | 0.2573   |             |
| 1 and 4   |                       | 433   | 124   | 3    | 0.2299   | 0.3505   |             |
| 1 and 4   |                       | 433   | 112   | -4   | 0.2045   | 0.3214   |             |
| 1 and 4   | [2000,3000)           | 224   | 49    | 1    | 0.1517   | 0.3047   |             |
| 1 and 4   |                       | 224   | 63    | 2    | 0.2057   | 0.3715   |             |
| 1 and 4   |                       | 224   | 64    | 3    | 0.2097   | 0.3762   |             |
| 1 and 4   |                       | 224   | 48    | - 4  | 0.148    | 0.2999   |             |
| 1 and 4   | [3000,5000)           | 773   | 206   | 1    | 0.2245   | 0.3131   |             |
| 1 and 4   |                       | 773   | 188   | 2    | 0.2028   | 0.2888   |             |
| 1 and 4   |                       | 773   | 206   | 3    | 0.2245   | 0.3131   |             |
| 1 and 4   |                       | 773   | 173   | 4    | 0.1848   | 0.2684   |             |
| 1 and 4   | [5000,10000)          | 1255  | 336   | 1    | 0.2343   | 0.304    |             |
| 1 and 4   |                       | 1255  | 317   | 2    | 0.2199   | 0.2883   |             |
| 1 and 4   |                       | 1255  | 322   | 3    | 0.2237   | 0.2925   |             |
| 1 and 4   |                       | 1255  | 280   | 4    | 0.192    | 0.2576   |             |

Table 31: Left: results for pair (1,5). Right: results for pair (1,14)

| Pair                   | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and 5                | [0,50)                | 155   | 23    | 1    | 0.0856   | 0.245    |             |
| 1 and 5                |                       | 155   | 17    | 2    | 0.0574   | 0.1994   | ~           |
| 1 and 5                |                       | 155   | 43    | 3    | 0.1894   | 0.3868   |             |
| 1 and 5                |                       | 155   | 72    | - 4  | 0.3569   | 0.5755   | _           |
| 1 and 5                | [50,100)              | 105   | 24    | 1    | 0.1353   | 0.3595   |             |
| 1 and 5                |                       | 105   | 10    | 2    | 0.0411   | 0.2055   | ~           |
| 1 and 5                |                       | 105   | 37    | 3    | 0.2365   | 0.4888   |             |
| 1 and 5                |                       | 105   | 34    | - 4  | 0.2123   | 0.4598   |             |
| 1 and 5                | [100,200)             | 107   | 18    | 1    | 0.0906   | 0.291    |             |
| 1 and 5                |                       | 107   | 15    | 2    | 0.0708   | 0.2585   |             |
| 1 and 5                |                       | 107   | 30    | 3    | 0.1772   | 0.4135   |             |
| 1 and 5                |                       | 107   | 44    | 4    | 0.2887   | 0.5458   | ~           |
| 1 and 5                | [200,500)             | 170   | 22    | 1    | 0.0735   | 0.2179   | ~           |
| 1 and 5                |                       | 170   | 28    | 2    | 0.1003   | 0.2586   |             |
| 1 and 5                |                       | 170   | 55    | 3    | 0.2329   | 0.4297   |             |
| 1 and 5                |                       | 170   | 65    | 4    | 0.2855   | 0.4895   | ~           |
| 1 and 5                | [500,1000)            | 211   | 41    | 1    | 0.1297   | 0.2808   |             |
| 1 and 5                |                       | 211   | 46    | 2    | 0.1494   | 0.3068   |             |
| 1 and 5                |                       | 211   | 37    | 3    | 0.1142   | 0.2597   |             |
| 1 and 5                |                       | 211   | 87    | 4    | 0.3224   | 0.5085   | ~           |
| 1 and $5$              | [1000,2000)           | 424   | 90    | 1    | 0.1622   | 0.2727   |             |
| 1 and 5                |                       | 424   | 106   | 2    | 0.1961   | 0.313    |             |
| 1 and 5                |                       | 424   | 122   | 3    | 0.2306   | 0.3526   |             |
| 1 and 5                |                       | 424   | 106   | 4    | 0.1961   | 0.313    |             |
| 1 and 5                | [2000,3000)           | 375   | 98    | 1    | 0.2032   | 0.3292   |             |
| 1 and 5                |                       | 375   | 88    | 2    | 0.1793   | 0.3009   |             |
| $1 \mathrm{\ and\ } 5$ |                       | 375   | 86    | 3    | 0.1745   | 0.2952   |             |
| 1 and 5                |                       | 375   | 103   | - 4  | 0.2153   | 0.3432   |             |
| 1 and 5                | [3000,5000)           | 924   | 259   | 1    | 0.241    | 0.3233   |             |
| 1 and 5                |                       | 924   | 210   | 2    | 0.1911   | 0.268    |             |
| 1 and 5                |                       | 924   | 247   | 3    | 0.2287   | 0.3098   |             |
| 1 and 5                |                       | 924   | 208   | - 4  | 0.1891   | 0.2657   |             |
| 1 and 5                | [5000,10000)          | 1544  | 427   | 1    | 0.2459   | 0.3094   |             |
| 1 and 5                |                       | 1544  | 371   | 2    | 0.2112   | 0.2719   |             |
| 1 and 5                |                       | 1544  | 402   | 3    | 0.2304   | 0.2927   |             |
| 1 and $5$              |                       | 1544  | 344   | 4    | 0.1946   | 0.2538   |             |

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and 14 | [0,50)                | 176   | 38    | 1    | 0.1423   | 0.3137   |             |
| 1 and 14 |                       | 176   | 12    | 2    | 0.0314   | 0.1417   | ~           |
| 1 and 14 |                       | 176   | 59    | 3    | 0.2446   | 0.4398   |             |
| 1 and 14 |                       | 176   | 67    | -4   | 0.2855   | 0.486    | ~           |
| 1 and 14 | [50,100)              | 131   | 10    | 1    | 0.0328   | 0.1676   | ~           |
| 1 and 14 |                       | 131   | 5     | 2    | 0.0118   | 0.1165   | ~           |
| 1 and 14 |                       | 131   | 66    | 3    | 0.385    | 0.6222   | ~           |
| 1 and 14 |                       | 131   | 50    | -4   | 0.2729   | 0.5038   | ~           |
| 1 and 14 | [100,200)             | 101   | 10    | 1    | 0.0427   | 0.2129   | ~           |
| 1 and 14 |                       | 101   | 6     | 2    | 0.0202   | 0.1619   | ~           |
| 1 and 14 |                       | 101   | 36    | 3    | 0.238    | 0.4955   |             |
| 1 and 14 |                       | 101   | 49    | -4   | 0.3523   | 0.6202   | ~           |
| 1 and 14 | [200,500)             | 170   | 23    | 1    | 0.0778   | 0.2248   | ~           |
| 1 and 14 |                       | 170   | 24    | 2    | 0.0823   | 0.2316   | ~           |
| 1 and 14 |                       | 170   | 67    | 3    | 0.2962   | 0.5013   | ~           |
| 1 and 14 |                       | 170   | 56    | -4   | 0.2381   | 0.4357   |             |
| 1 and 14 | [500,1000)            | 124   | 16    | 1    | 0.0665   | 0.2356   | ~           |
| 1 and 14 |                       | 124   | 22    | 2    | 0.1016   | 0.2915   |             |
| 1 and 14 |                       | 124   | 54    | 3    | 0.3185   | 0.5601   | ~           |
| 1 and 14 |                       | 124   | 32    | -4   | 0.1649   | 0.3799   |             |
| 1 and 14 | [1000,2000)           | 278   | 51    | 1    | 0.1275   | 0.2567   |             |
| 1 and 14 |                       | 278   | 66    | 2    | 0.1739   | 0.3153   |             |
| 1 and 14 |                       | 278   | 108   | 3    | 0.3109   | 0.4722   | ~           |
| 1 and 14 |                       | 278   | 53    | - 4  | 0.1336   | 0.2646   |             |
| 1 and 14 | [2000,3000)           | 272   | 65    | 1    | 0.1746   | 0.3179   |             |
| 1 and 14 |                       | 272   | 63    | 2    | 0.1682   | 0.31     |             |
| 1 and 14 |                       | 272   | 84    | 3    | 0.2368   | 0.3916   |             |
| 1 and 14 |                       | 272   | 60    | -4   | 0.1587   | 0.2981   |             |
| 1 and 14 | [3000,5000)           | 366   | 88    | 1    | 0.1838   | 0.3079   |             |
| 1 and 14 |                       | 366   | 87    | 2    | 0.1814   | 0.305    |             |
| 1 and 14 |                       | 366   | 97    | 3    | 0.2059   | 0.3339   |             |
| 1 and 14 |                       | 366   | 94    | -4   | 0.1985   | 0.3253   |             |
| 1 and 14 | [5000,10000)          | 900   | 191   | 1    | 0.1767   | 0.2527   |             |
| 1 and 14 |                       | 900   | 234   | 2    | 0.2213   | 0.3028   |             |
| 1 and 14 |                       | 900   | 264   | 3    | 0.2528   | 0.3374   | ~           |
| 1 and 14 |                       | 900   | 211   | -4   | 0.1974   | 0.2761   |             |

Table 32: Left: results for pair (3,15). Right: results for pair (4,5)

| Pair       | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. | J | Pair      | Ŀ |
|------------|-----------------------|-------|-------|------|----------|----------|-------------|---|-----------|---|
| 3 and $15$ | [0,50)                | 61    | 9     | 1    | 0.0615   | 0.3136   |             | ] | 4 and 5   | Γ |
| 3 and $15$ |                       | 61    | 5     | 2    | 0.0255   | 0.2334   | ~           |   | 4 and $5$ | Γ |
| 3 and $15$ |                       | 61    | 21    | 3    | 0.2009   | 0.523    |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 61    | 26    | 4    | 0.2677   | 0.6015   | ~           | 1 | 4 and 5   | Γ |
| 3 and $15$ | [50,100)              | 37    | 3     | 1    | 0.0187   | 0.2895   |             | ] | 4 and $5$ | Γ |
| 3 and $15$ |                       | 37    | 5     | 2    | 0.0425   | 0.3551   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 37    | 14    | 3    | 0.196    | 0.6032   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 37    | 15    | 4    | 0.2162   | 0.6276   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ | [100,200)             | 49    | 6     | 1    | 0.0422   | 0.3066   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 49    | 1     | 2    | 0.0021   | 0.1706   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 49    | 23    | 3    | 0.2885   | 0.6587   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 49    | 19    | 4    | 0.2218   | 0.5846   |             | 1 | 4 and 5   | Γ |
| 3 and 15   | [200,500)             | 132   | 25    | 1    | 0.1125   | 0.301    |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 132   | 23    | 2    | 0.1009   | 0.284    |             | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 132   | 46    | 3    | 0.244    | 0.4699   |             | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 132   | 38    | 4    | 0.192    | 0.4074   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ | [500,1000)            | 240   | 37    | 1    | 0.1      | 0.2301   | ~           | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 240   | 49    | 2    | 0.1413   | 0.2857   |             | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 240   | 72    | 3    | 0.2247   | 0.3879   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 240   | 82    | 4    | 0.2623   | 0.431    | ~           | 1 | 4 and 5   | Γ |
| 3 and 15   | [1000,2000)           | 539   | 123   | 1    | 0.1818   | 0.2824   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 539   | 105   | 2    | 0.1516   | 0.2467   | ~           | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 539   | 166   | 3    | 0.2555   | 0.366    | ~           | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 539   | 145   | 4    | 0.2192   | 0.3254   |             | 1 | 4 and 5   | Γ |
| 3 and 15   | [2000,3000)           | 542   | 145   | 1    | 0.218    | 0.3237   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 542   | 152   | 2    | 0.2299   | 0.3372   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 542   | 143   | 3    | 0.2145   | 0.3198   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 542   | 102   | 4    | 0.1458   | 0.2394   | ~           | 1 | 4 and 5   | Γ |
| 3 and $15$ | [3000,5000)           | 1356  | 332   | 1    | 0.2137   | 0.2789   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 1356  | 349   | 2    | 0.2256   | 0.2919   |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 1356  | 361   | 3    | 0.2341   | 0.301    |             | 1 | 4 and $5$ | Γ |
| 3 and $15$ |                       | 1356  | 314   | 4    | 0.2011   | 0.2651   |             | ] | 4 and 5   | Γ |
| 3 and $15$ | [5000,10000)          | 3446  | 862   | 1    | 0.2301   | 0.2713   |             | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 3446  | 834   | 2    | 0.2222   | 0.263    |             | 1 | 4 and 5   | Γ |
| 3 and $15$ |                       | 3446  | 959   | 3    | 0.2575   | 0.3001   | ~           | 1 | 4 and 5   | Γ |
| 3 and 15   |                       | 3446  | 791   | - 4  | 0.2101   | 0.2502   |             | 1 | 4 and 5   | Г |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 4 and 5   | [0,50)                | 2398  | 258   | 1    | 0.0912   | 0.1266   | ~           |
| 4 and 5   |                       | 2398  | 163   | 2    | 0.055    | 0.0838   | ~           |
| 4 and $5$ |                       | 2398  | 659   | 3    | 0.2501   | 0.301    | ~           |
| 4 and 5   |                       | 2398  | 1318  | -4   | 0.5211   | 0.5778   | ~           |
| 4 and $5$ | [50,100)              | 1414  | 141   | 1    | 0.0796   | 0.1242   | ~           |
| 4 and $5$ |                       | 1414  | 98    | 2    | 0.0527   | 0.0907   | ~           |
| 4 and $5$ |                       | 1414  | 456   | 3    | 0.2888   | 0.3581   | ~           |
| 4 and $5$ |                       | 1414  | 719   | -4   | 0.4714   | 0.5455   | ~           |
| 4 and $5$ | [100,200)             | 1000  | 120   | 1    | 0.0942   | 0.1517   | ~           |
| 4 and $5$ |                       | 1000  | 105   | 2    | 0.0809   | 0.1352   | >           |
| 4 and $5$ |                       | 1000  | 282   | 3    | 0.244    | 0.3233   |             |
| 4 and $5$ |                       | 1000  | 493   | -4   | 0.449    | 0.5371   | ~           |
| 4 and $5$ | [200,500)             | 634   | 114   | 1    | 0.1412   | 0.2263   | ~           |
| 4 and $5$ |                       | 634   | 69    | 2    | 0.0789   | 0.1483   | ~           |
| 4 and $5$ |                       | 634   | 200   | 3    | 0.2664   | 0.369    | ~           |
| 4 and 5   |                       | 634   | 251   | -4   | 0.3432   | 0.4511   | ~           |
| 4 and $5$ | [500,1000)            | 294   | 60    | 1    | 0.1464   | 0.277    |             |
| 4 and $5$ |                       | 294   | 47    | 2    | 0.109    | 0.2283   | ~           |
| 4 and 5   |                       | 294   | 99    | 3    | 0.2648   | 0.4171   | ~           |
| 4 and $5$ |                       | 294   | 88    | -4   | 0.2306   | 0.3784   |             |
| 4 and $5$ | [1000,2000)           | 495   | 139   | 1    | 0.2281   | 0.3403   |             |
| 4 and $5$ |                       | 495   | 111   | 2    | 0.1764   | 0.2807   |             |
| 4 and $5$ |                       | 495   | 115   | 3    | 0.1837   | 0.2893   |             |
| 4 and $5$ |                       | 495   | 130   | -4   | 0.2113   | 0.3213   |             |
| 4 and 5   | [2000,3000)           | 313   | 93    | 1    | 0.2306   | 0.3736   |             |
| 4 and $5$ |                       | 313   | 74    | 2    | 0.1762   | 0.3095   |             |
| 4 and 5   |                       | 313   | 60    | 3    | 0.1373   | 0.2611   |             |
| 4 and 5   |                       | 313   | 86    | -4   | 0.2104   | 0.3501   |             |
| 4 and $5$ | [3000,5000)           | 665   | 167   | 1    | 0.2072   | 0.3008   |             |
| 4 and 5   |                       | 665   | 184   | 2    | 0.231    | 0.3276   |             |
| 4 and 5   |                       | 665   | 134   | 3    | 0.1616   | 0.2483   | ~           |
| 4 and $5$ |                       | 665   | 180   | 4    | 0.2254   | 0.3213   |             |
| 4 and 5   | [5000,10000)          | 1503  | 381   | 1    | 0.2235   | 0.2861   |             |
| 4 and 5   |                       | 1503  | 348   | 2    | 0.2026   | 0.2633   |             |
| 4 and $5$ |                       | 1503  | 371   | 3    | 0.2171   | 0.2792   |             |
| 4 and 5   |                       | 1503  | 403   | 4    | 0.2374   | 0.3012   |             |

Table 33: Left: results for pair (5,8). Right: results for pair (5,13)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 5 and 8   | [0,50)                | 36    | -4    | 1    | 0.0307   | 0.3302   | *           |
| 5 and 8   |                       | 36    | 0     | 2    | 0        | 0.1784   |             |
| 5 and 8   |                       | 36    | 13    | 3    | 0.1815   | 0.5902   |             |
| 5 and 8   |                       | 36    | 19    | 4    | 0.3119   | 0.7337   |             |
| 5 and 8   | [50,100)              | 35    | 3     | 1    | 0.0198   | 0.3028   |             |
| 5 and $8$ |                       | 35    | 2     | 2    | 0.01     | 0.2659   |             |
| 5 and 8   |                       | 35    | 23    | 3    | 0.4237   | 0.8333   |             |
| 5 and 8   |                       | 35    | 7     | 4    | 0.0753   | 0.4342   |             |
| 5 and $8$ | [100,200)             | 75    | 6     | 1    | 0.0274   | 0.2119   | ~           |
| 5 and 8   |                       | 75    | - 5   | 2    | 0.0207   | 0.1944   | _           |
| 5 and 8   |                       | 75    | 50    | 3    | 0.5053   | 0.7966   | ~           |
| 5 and $8$ |                       | 75    | 14    | 4    | 0.0929   | 0.3395   |             |
| 5 and 8   | [200,500)             | 106   | 19    | 1    | 0.0984   | 0.3042   |             |
| 5 and 8   |                       | 106   | 13    | 2    | 0.0588   | 0.2383   | ~           |
| 5 and $8$ |                       | 106   | 55    | 3    | 0.3866   | 0.6485   | ~           |
| 5 and 8   |                       | 106   | 19    | 4    | 0.0984   | 0.3042   |             |
| 5 and 8   | [500,1000)            | 124   | 25    | 1    | 0.12     | 0.3186   |             |
| 5 and $8$ |                       | 124   | 22    | 2    | 0.1016   | 0.2915   |             |
| 5 and 8   |                       | 124   | 56    | 3    | 0.3333   | 0.5757   | _           |
| 5 and 8   |                       | 124   | 21    | 4    | 0.0956   | 0.2824   |             |
| 5 and $8$ | [1000,2000)           | 258   | 61    | 1    | 0.1709   | 0.3174   |             |
| 5 and 8   |                       | 258   | 54    | 2    | 0.1476   | 0.2881   |             |
| 5 and 8   |                       | 258   | 85    | 3    | 0.2537   | 0.4152   | ~           |
| 5 and $8$ |                       | 258   | 58    | 4    | 0.1609   | 0.3049   |             |
| 5 and 8   | [2000,3000)           | 265   | 61    | 1    | 0.1663   | 0.3096   |             |
| 5 and $8$ |                       | 265   | 56    | 2    | 0.15     | 0.2892   |             |
| 5 and $8$ |                       | 265   | 106   | 3    | 0.3199   | 0.4858   | ~           |
| 5 and 8   |                       | 265   | 42    | 4    | 0.1057   | 0.2309   | ~           |
| 5 and $8$ | [3000,5000)           | 599   | 156   | 1    | 0.2136   | 0.3134   |             |
| 5 and 8   |                       | 599   | 171   | 2    | 0.2369   | 0.3396   |             |
| 5 and 8   |                       | 599   | 156   | 3    | 0.2136   | 0.3134   |             |
| 5 and $8$ |                       | 599   | 116   | 4    | 0.1526   | 0.2426   | ~           |
| 5 and $8$ | [5000,10000)          | 2344  | 565   | 1    | 0.2172   | 0.2666   |             |
| 5 and 8   |                       | 2344  | 630   | 2    | 0.244    | 0.2951   |             |
| 5 and 8   |                       | 2344  | 540   | 3    | 0.207    | 0.2556   |             |
| 5 and $8$ |                       | 2344  | 609   | 4    | 0.2353   | 0.2859   |             |

| Pair       | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 5 and 13   | [0,50)                | 48    | 5     | 1    | 0.0326   | 0.2866   | *           |
| 5 and 13   |                       | 48    | 3     | 2    | 0.0144   | 0.2331   |             |
| 5 and 13   |                       | 48    | 28    | 3    | 0.3868   | 0.7565   | *           |
| 5 and 13   |                       | 48    | 12    | -4   | 0.1192   | 0.4508   | *           |
| 5 and 13   | [50,100)              | 53    | 10    | 1    | 0.0828   | 0.3745   |             |
| 5 and $13$ |                       | 53    | 8     | 2    | 0.0599   | 0.3317   |             |
| 5 and 13   |                       | 53    | 23    | 3    | 0.2646   | 0.6203   | ~           |
| 5 and 13   |                       | 53    | 12    | -4   | 0.1075   | 0.4157   |             |
| 5 and $13$ | [100,200)             | 41    | 11    | 1    | 0.1243   | 0.4865   |             |
| 5 and 13   |                       | 41    | 6     | 2    | 0.0506   | 0.3553   |             |
| 5 and 13   |                       | 41    | 19    | 3    | 0.2697   | 0.6689   | ~           |
| 5 and $13$ |                       | 41    | - 5   | -4   | 0.0382   | 0.3267   |             |
| 5 and $13$ | [200,500)             | 103   | 13    | 1    | 0.0605   | 0.2446   | >           |
| 5 and 13   |                       | 103   | 21    | 2    | 0.1158   | 0.3338   |             |
| 5 and $13$ |                       | 103   | 48    | 3    | 0.3359   | 0.6009   | ~           |
| 5 and 13   |                       | 103   | 21    | - 4  | 0.1158   | 0.3338   |             |
| 5 and 13   | [500,1000)            | 124   | 31    | 1    | 0.1584   | 0.3713   |             |
| 5 and $13$ |                       | 124   | 26    | 2    | 0.1263   | 0.3275   |             |
| 5 and 13   |                       | 124   | 52    | 3    | 0.3039   | 0.5444   | ~           |
| 5 and 13   |                       | 124   | 15    | -4   | 0.0609   | 0.226    | ~           |
| 5 and $13$ | [1000,2000)           | 221   | 55    | 1    | 0.1771   | 0.3378   |             |
| 5 and $13$ |                       | 221   | 47    | 2    | 0.1462   | 0.2987   |             |
| 5 and 13   |                       | 221   | 65    | 3    | 0.2167   | 0.3856   |             |
| 5 and 13   |                       | 221   | 54    | -4   | 0.1732   | 0.333    |             |
| 5 and 13   | [2000,3000)           | 209   | 53    | 1    | 0.1794   | 0.3455   |             |
| 5 and 13   |                       | 209   | 56    | 2    | 0.1918   | 0.3608   |             |
| 5 and $13$ |                       | 209   | 41    | 3    | 0.1309   | 0.2833   |             |
| 5 and 13   |                       | 209   | 59    | -4   | 0.2043   | 0.376    |             |
| 5 and 13   | [3000,5000)           | 466   | 139   | 1    | 0.2428   | 0.3605   |             |
| 5 and 13   |                       | 466   | 101   | 2    | 0.1683   | 0.2745   |             |
| 5 and 13   |                       | 466   | 112   | 3    | 0.1896   | 0.2997   |             |
| 5 and 13   |                       | 466   | 114   | -4   | 0.1935   | 0.3042   |             |
| 5 and $13$ | [5000,10000)          | 1442  | 343   | 1    | 0.208    | 0.2706   |             |
| 5 and 13   |                       | 1442  | 408   | 2    | 0.251    | 0.3172   | ~           |
| 5 and 13   |                       | 1442  | 363   | 3    | 0.2212   | 0.285    |             |
| 5 and 13   |                       | 1442  | 328   | -4   | 0.1981   | 0.2597   |             |

Table 34: Left: results for pair (5,14). Right: results for pair (5,15)

| Pair       | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 5 and 14   | [0,50)                | 87    | 17    | 1    | 0.1039   | 0.3371   |             |
| 5 and 14   |                       | 87    | 8     | 2    | 0.0361   | 0.2151   | -/          |
| 5 and 14   |                       | 87    | 42    | 3    | 0.3407   | 0.6276   | ~           |
| 5 and 14   |                       | 87    | 20    | - 4  | 0.1293   | 0.375    |             |
| 5 and 14   | [50,100)              | 36    | 7     | 1    | 0.0731   | 0.4247   |             |
| 5 and 14   |                       | 36    | 3     | 2    | 0.0193   | 0.296    |             |
| 5 and 14   |                       | 36    | 17    | 3    | 0.2663   | 0.6881   |             |
| 5 and 14   |                       | 36    | 9     | - 4  | 0.1064   | 0.4828   |             |
| 5 and 14   | [100,200)             | 49    | 4     | 1    | 0.0225   | 0.2559   | *           |
| 5 and 14   |                       | 49    | 2     | 2    | 0.0072   | 0.2008   |             |
| 5 and 14   |                       | 49    | 34    | 3    | 0.4942   | 0.8402   |             |
| 5 and 14   |                       | 49    | 9     | 4    | 0.0771   | 0.3772   |             |
| 5 and 14   | [200,500)             | 90    | 18    | 1    | 0.1084   | 0.3395   |             |
| 5 and 14   |                       | 90    | 13    | 2    | 0.0695   | 0.2762   |             |
| 5 and 14   |                       | 90    | 43    | 3    | 0.3384   | 0.6208   | ~           |
| 5 and 14   |                       | 90    | 16    | - 4  | 0.0924   | 0.3146   |             |
| 5 and 14   | [500,1000)            | 99    | 19    | 1    | 0.1056   | 0.3233   |             |
| 5 and 14   |                       | 99    | 21    | 2    | 0.1206   | 0.3457   |             |
| 5 and 14   |                       | 99    | 49    | 3    | 0.3601   | 0.6306   | ~           |
| 5 and 14   |                       | 99    | 10    | 4    | 0.0436   | 0.2168   | ~           |
| 5 and 14   | [1000,2000)           | 278   | 58    | 1    | 0.1489   | 0.2843   |             |
| 5 and 14   |                       | 278   | 59    | 2    | 0.152    | 0.2882   |             |
| 5 and 14   |                       | 278   | 110   | 3    | 0.3176   | 0.4794   | ~           |
| 5 and 14   |                       | 278   | 51    | 4    | 0.1275   | 0.2567   |             |
| 5 and 14   | [2000,3000)           | 308   | 56    | 1    | 0.1285   | 0.2509   |             |
| 5 and 14   |                       | 308   | 68    | 2    | 0.1621   | 0.2933   |             |
| 5 and $14$ |                       | 308   | 80    | 3    | 0.1965   | 0.3349   |             |
| 5 and 14   |                       | 308   | 104   | 4    | 0.2672   | 0.4162   | ~           |
| 5 and $14$ | [3000,5000)           | 571   | 131   | 1    | 0.1841   | 0.2821   |             |
| 5 and 14   |                       | 571   | 152   | 2    | 0.2179   | 0.3208   |             |
| 5 and 14   |                       | 571   | 115   | 3    | 0.1587   | 0.2522   |             |
| 5 and 14   |                       | 571   | 173   | 4    | 0.2522   | 0.3591   | ~           |
| 5 and 14   | [5000,10000)          | 1231  | 334   | 1    | 0.2374   | 0.3081   |             |
| 5 and 14   |                       | 1231  | 311   | 2    | 0.2197   | 0.2887   |             |
| 5 and 14   |                       | 1231  | 288   | 3    | 0.202    | 0.2693   |             |
| 5 and 14   |                       | 1231  | 298   | 4    | 0.2096   | 0.2778   |             |

| Pair                | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 5 and $15$          | [0,50)                | 95    | 10    | 1    | 0.0455   | 0.225    | ~           |
| 5 and $15$          |                       | 95    | 8     | 2    | 0.033    | 0.1986   | ~           |
| 5 and $15$          |                       | 95    | 63    | 3    | 0.5199   | 0.7816   | ~           |
| 5 and $15$          |                       | 95    | 14    | -4   | 0.0728   | 0.2755   |             |
| $5~\mathrm{and}~15$ | [50,100)              | 63    | 4     | 1    | 0.0174   | 0.2059   | *           |
| 5 and $15$          |                       | 63    | 11    | 2    | 0.0794   | 0.3416   |             |
| 5 and $15$          |                       | 63    | 40    | 3    | 0.4594   | 0.7807   | *           |
| $5~\mathrm{and}~15$ |                       | 63    | 8     | -4   | 0.0501   | 0.2862   | *           |
| $5~\mathrm{and}~15$ | [100,200)             | 94    | - 4   | 1    | 0.0116   | 0.1437   | *           |
| 5 and $15$          |                       | 94    | 11    | 2    | 0.0526   | 0.2402   | *           |
| $5~\mathrm{and}~15$ |                       | 94    | 64    | 3    | 0.5371   | 0.7969   | *           |
| $5~\mathrm{and}~15$ |                       | 94    | 15    | - 4  | 0.0809   | 0.2905   | *           |
| 5 and $15$          | [200,500)             | 124   | 11    | 1    | 0.0397   | 0.1865   | ~           |
| $5~\mathrm{and}~15$ |                       | 124   | 13    | 2    | 0.0501   | 0.2064   | _           |
| $5~\mathrm{and}~15$ |                       | 124   | 87    | 3    | 0.5776   | 0.8017   | _           |
| 5 and $15$          |                       | 124   | 13    | -4   | 0.0501   | 0.2064   | ~           |
| $5~\mathrm{and}~15$ | [500,1000)            | 150   | 23    | 1    | 0.0885   | 0.2525   |             |
| $5~\mathrm{and}~15$ |                       | 150   | 30    | 2    | 0.1246   | 0.3051   |             |
| 5 and $15$          |                       | 150   | 70    | 3    | 0.3573   | 0.5793   | ~           |
| $5~\mathrm{and}~15$ |                       | 150   | 27    | - 4  | 0.1089   | 0.2828   |             |
| $5~\mathrm{and}~15$ | [1000,2000)           | 178   | 27    | 1    | 0.0913   | 0.2413   | _           |
| 5 and $15$          |                       | 178   | 53    | 2    | 0.2121   | 0.4004   |             |
| $5~\mathrm{and}~15$ |                       | 178   | 70    | 3    | 0.2975   | 0.498    | ~           |
| $5~\mathrm{and}~15$ |                       | 178   | 28    | -4   | 0.0957   | 0.2478   | _           |
| 5 and $15$          | [2000,3000)           | 187   | 38    | 1    | 0.1336   | 0.2966   |             |
| $5~\mathrm{and}~15$ |                       | 187   | 44    | 2    | 0.1603   | 0.3315   |             |
| $5~\mathrm{and}~15$ |                       | 187   | 51    | 3    | 0.1922   | 0.3715   |             |
| 5 and $15$          |                       | 187   | 54    | - 4  | 0.2061   | 0.3884   |             |
| $5~\mathrm{and}~15$ | [3000,5000)           | 386   | 97    | 1    | 0.1949   | 0.3175   |             |
| $5~\mathrm{and}~15$ |                       | 386   | 80    | 2    | 0.1557   | 0.2705   |             |
| 5 and $15$          |                       | 386   | 116   | 3    | 0.2398   | 0.3692   |             |
| $5~\mathrm{and}~15$ |                       | 386   | 93    | -4   | 0.1856   | 0.3065   |             |
| $5~\mathrm{and}~15$ | [5000,10000)          | 1507  | 358   | 1    | 0.2083   | 0.2695   |             |
| 5 and $15$          |                       | 1507  | 358   | 2    | 0.2083   | 0.2695   |             |
| $5~\mathrm{and}~15$ |                       | 1507  | 370   | 3    | 0.2159   | 0.2778   |             |
| $5~\mathrm{and}~15$ |                       | 1507  | 421   | -4   | 0.2483   | 0.3127   |             |

Table 35: Left: results for pair (6,8). Right: results for pair (6,13)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|
| 6 and 8 | [0,50)                | 316   | 52    | 1    | 0.1145   | 0.2308   | V           |
| 6 and 8 |                       | 316   | 35    | 2    | 0.0705   | 0.1698   | ~           |
| 6 and 8 |                       | 316   | 111   | 3    | 0.2806   | 0.4291   | ~           |
| 6 and 8 |                       | 316   | 118   | 4    | 0.3013   | 0.4517   | ~           |
| 6 and 8 | [50,100)              | 330   | 26    | 1    | 0.0464   | 0.1307   | ~           |
| 6 and 8 |                       | 330   | 27    | 2    | 0.0487   | 0.1343   | 4           |
| 6 and 8 |                       | 330   | 131   | 3    | 0.3249   | 0.4738   | ~           |
| 6 and 8 |                       | 330   | 146   | 4    | 0.3682   | 0.5193   | ~           |
| 6 and 8 | [100,200)             | 821   | 79    | 1    | 0.0711   | 0.1289   | ~           |
| 6 and 8 |                       | 821   | 101   | 2    | 0.0945   | 0.1587   | _           |
| 6 and 8 |                       | 821   | 291   | 3    | 0.3093   | 0.4023   | ~           |
| 6 and 8 |                       | 821   | 350   | 4    | 0.379    | 0.475    | ~           |
| 6 and 8 | [200,500)             | 2326  | 291   | 1    | 0.1072   | 0.1455   | ~           |
| 6 and 8 |                       | 2326  | 317   | 2    | 0.1176   | 0.1574   | ~           |
| 6 and 8 |                       | 2326  | 769   | 3    | 0.3039   | 0.3584   | ~           |
| 6 and 8 |                       | 2326  | 949   | 4    | 0.3799   | 0.4367   | ~           |
| 6 and 8 | [500,1000)            | 2508  | 417   | 1    | 0.1465   | 0.1881   | ~           |
| 6 and 8 |                       | 2508  | 381   | 2    | 0.133    | 0.173    | ~           |
| 6 and 8 |                       | 2508  | 831   | 3    | 0.3056   | 0.3581   | _           |
| 6 and 8 |                       | 2508  | 879   | 4    | 0.3243   | 0.3775   | ~           |
| 6 and 8 | [1000,2000)           | 2200  | 433   | 1    | 0.1742   | 0.2216   | ~           |
| 6 and 8 |                       | 2200  | 439   | 2    | 0.1768   | 0.2244   | ~           |
| 6 and 8 |                       | 2200  | 722   | 3    | 0.3008   | 0.3567   | ~           |
| 6 and 8 |                       | 2200  | 606   | 4    | 0.2497   | 0.3028   |             |
| 6 and 8 | [2000,3000)           | 1288  | 271   | 1    | 0.1804   | 0.2439   | ~           |
| 6 and 8 |                       | 1288  | 275   | 2    | 0.1834   | 0.2471   | ~           |
| 6 and 8 |                       | 1288  | 379   | 3    | 0.2601   | 0.3309   | ~           |
| 6 and 8 |                       | 1288  | 363   | 4    | 0.2482   | 0.3181   |             |
| 6 and 8 | [3000,5000)           | 1663  | 399   | 1    | 0.2119   | 0.2704   |             |
| 6 and 8 |                       | 1663  | 378   | 2    | 0.1999   | 0.2573   |             |
| 6 and 8 |                       | 1663  | 467   | 3    | 0.2511   | 0.3126   | ~           |
| 6 and 8 |                       | 1663  | 419   | 4    | 0.2234   | 0.2828   |             |
| 6 and 8 | [5000,10000)          | 2706  | 687   | 1    | 0.2312   | 0.278    |             |
| 6 and 8 |                       | 2706  | 634   | 2    | 0.2123   | 0.2578   |             |
| 6 and 8 |                       | 2706  | 705   | 3    | 0.2377   | 0.2848   |             |
| 6 and 8 |                       | 2706  | 680   | 4    | 0.2287   | 0.2753   |             |

| Search 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pair       | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------|-------|------|----------|----------|-------------|
| Seminary   | 6 and 13   | [0,50)                | 364   | 38    | 1    | 0.0676   | 0.1578   | ~           |
| 6 and 13         364         167         4         0.874         0.0120         20           6 and 13         [50,100)         290         10         2         0.0122         0.0131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 and 13   |                       | 364   | 15    | 2    | 0.0205   | 0.0812   | ~           |
| Seminary   | 6 and 13   |                       | 364   | 144   | 3    | 0.3269   | 0.4687   | ~           |
| 6 and 13         290         19         2         0.0082         0.1515         Y           6 and 13         290         10         13         3.0085         0.0151         Y           6 and 13         100,2000         357         77         1         0.0081         0.122         Y           6 and 13         100,2000         357         77         1         0.0081         0.1222         Y           6 and 13         557         180         3         0.0795         0.0307         Y           6 and 13         557         180         3         0.0795         0.0307         Y           6 and 13         1900,500         1077         161         1         0.0124         0.0086         0.0271         Y           6 and 13         1900,500         1077         161         1         0.0124         0.0307         Y           6 and 13         1900,500         1077         161         1         0.0124         0.0217         Y           6 and 13         1907         280         3         0.0235         0.0090         Y           6 and 13         1907         280         4         0.0188         0.0190         Y </td <td>6 and 13</td> <td></td> <td>364</td> <td>167</td> <td>- 4</td> <td>0.3874</td> <td>0.5319</td> <td>~</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 and 13   |                       | 364   | 167   | - 4  | 0.3874   | 0.5319   | ~           |
| Semi 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 and 13   | [50,100)              | 299   | 33    | 1    | 0.0693   | 0.1713   | ~           |
| Sand 13         290         146         4         0.0888         0.0848         Y           Sand 13         [100.209]         557         10         1         0.0975         0.1511         Y           6 and 13         557         40         2         0.0705         0.0577         Y           6 and 13         557         100         13         0.2705         0.0577         Y           6 and 13         1000         107         161         1         0.1244         0.0869         0.077         Y           6 and 13         1007         161         11         0.1244         0.0869         0.0877         Y           6 and 13         1007         28         3         0.2155         0.080         0.1418         Y           6 and 13         1007         28         3         0.2155         0.080         0.000         Y           6 and 13         1007         28         3         0.2155         0.080         Y           6 and 13         1007,1800         724         112         1         0.188         0.090         Y           6 and 13         724         182         23         0.000         0.0290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 and 13   |                       | 299   | 19    | 2    | 0.0342   | 0.1151   | ~           |
| Seed 13   100,200   557   71   1   0.081   0.1729   \( \sim \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 and 13   |                       | 299   | 101   | 3    | 0.2663   | 0.4175   | ~           |
| 6 and 13         557         62         2         0.0798         6.1541         Y           6 and 13         557         100         3         0.0795         0.0807         Y           6 and 13         100         557         244         4         0.0866         0.0971         Y           6 and 13         1075         261         11         0.1244         0.1211         Y           6 and 13         1075         268         3         0.2155         0.0809         1.1145         Y           6 and 13         1075         268         3         0.2155         0.0809         1.000         Y           6 and 13         1075         272         4         6.0479         0.0327         Y           6 and 13         1000         724         112         1         0.1089         0.090         Y           6 and 13         1000,000         724         112         2         0.001         0.090         Y           6 and 13         1000,000         724         112         2         0.016         0.090         Y           6 and 13         1000,000         692         122         1         0.1188         0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 and 13   |                       | 299   | 146   | -4   | 0.4088   | 0.5684   | ~           |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   | [100,200)             | 557   | 71    | 1    | 0.0931   | 0.1722   | ~           |
| 6 and 13         507         344         4         0.3066         0.072         ×           6 and 13         [200,500)         107         31         1         0.028         0.208         1         ×           6 and 13         1070         107         28         2         0.088         0.118         ×           6 and 13         1070         28         2         0.088         0.118         ×           6 and 13         [000,1000)         724         112         1         0.128         0.0295         ×           6 and 13         724         112         12         0.108         0.1890         ×           6 and 13         724         182         2         0.0891         0.0890         ×           6 and 13         724         182         3         0.091         0.0890         ×           6 and 13         [100,2000)         629         122         1         0.188         0.017         ×           6 and 13         [100,2000)         629         122         1         0.188         0.017         ×           6 and 13         [100,2000)         629         122         1         0.186         0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 and 13   |                       | 557   | 62    | 2    | 0.0793   | 0.1541   | ~           |
| 6 and 13         [200,500)         1070         161         1         0.1214         0.2212         ×           6 and 13         1070         208         3         0.2135         0.2800         ×           6 and 13         1070         208         3         0.2135         0.2800         ×           6 and 13         1001,1000         724         102         2         0.1868         0.1800         ×           6 and 13         1001,1000         724         102         2         0.1868         0.1900         ×           6 and 13         724         102         2         0.1868         0.1050         ×           6 and 13         724         102         2         0.1868         0.1900         ×           6 and 13         1000,2000         622         124         0.021         0.050         ×           6 and 13         1000,2000         622         114         2         0.122         0.028         0.028         ×           6 and 13         1000,2000         462         114         2         0.142         0.027         0.028         0.027         ×           6 and 13         1000,0000         416         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 and 13   |                       | 557   | 180   | 3    | 0.2705   | 0.3807   | ~           |
| 6 and 13         1070         121         2         0.088         0.1418         ×           6 and 13         1070         208         3         0.2155         0.2809         ×           6 and 13         1070         209         1         0.4175         0.5277         ×           6 and 13         724         112         1         0.1388         0.1899         ×           6 and 13         724         102         2         0.006         0.1899         ×           6 and 13         724         182         23         0.006         0.1899         ×           6 and 13         1900,2000         629         122         1         0.1388         0.0177         ×           6 and 13         1900,2000         629         122         1         0.1388         0.0177         ×           6 and 13         1900,2000         629         122         1         0.1388         0.0177         ×           6 and 13         690         119         33         0.0269         0.0127         ×           6 and 13         690         129         12         4         0.0279         0.0277         ×           6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 and 13   |                       | 557   | 244   | - 4  | 0.3806   | 0.4973   | ~           |
| 6 and 13         1070         288         3         0.2135         0.2080           6 and 13         1000,1000         724         12         1         0.4127         0.5277         ✓           6 and 13         1000,1000         724         102         2         0.1086         0.1090         ✓           6 and 13         724         102         2         0.1086         0.1090         ✓           6 and 13         724         102         2         0.1086         0.1090         ✓           6 and 13         724         282         4         0.021         0.050         ✓           6 and 13         602         114         2         0.1628         0.028         ✓           6 and 13         629         144         2         0.1629         0.028         ✓           6 and 13         1000,2000         629         214         4         0.32         0.4272         ✓           6 and 13         1000,2000         146         90         1         0.164         0.2777         ✓           6 and 13         1000,2000         146         90         3         0.164         0.2777         ✓           6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 and 13   | [200,500)             | 1079  | 161   | 1    | 0.1214   | 0.1821   | ~           |
| 6 and 13         1070         529         4         0.4479         0.3272         ×           6 and 13         [500,1060)         724         112         1         0.128         0.1086         ×         ×           6 and 13         724         102         2         0.1066         0.1060         ×         ×           6 and 13         724         102         2         0.1066         0.1060         ×           6 and 13         [100,03000)         629         122         1         0.1388         0.2172         ×           6 and 13         [00,03000)         629         122         1         0.1388         0.2172         ×           6 and 13         [00,03000]         629         129         13         0.205         0.021         ×           6 and 13         [00,03000]         629         129         1         0.1054         0.0277         ×           6 and 13         [00,03000]         416         90         1         0.1054         0.0277         ×           6 and 13         [100,03000]         416         90         3         0.1054         0.0277         ×           6 and 13         [100,05000]         539 </td <td>6 and 13</td> <td></td> <td>1079</td> <td>121</td> <td>2</td> <td>0.088</td> <td>0.1418</td> <td>~</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 and 13   |                       | 1079  | 121   | 2    | 0.088    | 0.1418   | ~           |
| 6 and 13   [500,1000)   724   112   11   0.1288   0.1559   \( \sqrt{2} \)   6 and 13   724   102   2   0.1086   0.1559   \( \sqrt{2} \)   6 and 13   724   102   2   0.1086   0.2080   \( \sqrt{2} \)   6 and 13   724   102   2   0.1086   0.2080   \( \sqrt{2} \)   6 and 13   724   28   8   0.8021   0.055   \( \sqrt{2} \)   7 and 13   724   28   8   0.8021   0.055   \( \sqrt{2} \)   6 and 13   725   725   725   725   735   0.228   \( \sqrt{2} \)   7 and 13   727   728   738   74   0.1023   0.228   \( \sqrt{2} \)   7 and 13   728   729   739   73   0.007   0.0041   \( \sqrt{2} \)   7 and 13   728   738   74   0.1058   0.2022   \( \sqrt{2} \)   7 and 13   746   746   746   747   0.1058   0.2022   \( \sqrt{2} \)   8 and 13   746   746   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747   747 | 6 and 13   |                       | 1079  | 268   | 3    | 0.2135   | 0.2869   |             |
| 6 and 13         724         102         2         0.1086         0.1080         -           6 and 13         724         182         3         0.0291         0.2989         -           6 and 13         120         23         12         0.081         0.005         -           6 and 13         629         122         11         0.1088         0.2177         -           6 and 13         629         119         23         0.0276         0.0041         -           6 and 13         629         119         23         0.0276         0.0041         -           6 and 13         629         129         14         4         0.1054         0.0777         -           6 and 13         1000,0000         416         90         1         0.1064         0.0777         -           6 and 13         1000,0000         416         90         3         0.064         0.0777         -           6 and 13         130         132         4         100         0.022         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 and 13   |                       | 1079  | 529   | - 4  | 0.4479   | 0.5327   | ~           |
| 6 and 13         724         182         3         0.0891         0.0895           6 and 13         [1000,2000)         629         122         1         0.0138         0.217         ×           6 and 13         [1000,2000)         629         114         2         0.1033         0.228         ×           6 and 13         629         114         9         0.007         0.0041         ×           6 and 13         692         234         4         0.22         0.0272         ×           6 and 13         [2000,3000)         446         84         2         0.1285         0.2022         ×           6 and 13         446         190         1         0.1085         0.2022         ×           6 and 13         446         12         4         0.028         0.0222         ×           6 and 13         1000,5000)         30         128         1         0.1092         0.0222         ×           6 and 13         1000,5000)         30         128         1         0.1092         0.0222         ×           6 and 13         1000,5000)         30         188         3         0.1066         0.2027         × <t< td=""><td>6 and 13</td><td>[500,1000)</td><td>724</td><td>112</td><td>1</td><td>0.1208</td><td>0.1959</td><td>~</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 and 13   | [500,1000)            | 724   | 112   | 1    | 0.1208   | 0.1959   | ~           |
| Seed 13   724   238   44   0.021   0.055   \( \simes \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 and 13   |                       | 724   | 102   | 2    | 0.1086   | 0.1809   | ~           |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   |                       | 724   | 182   | 3    | 0.2091   | 0.2989   |             |
| 6 and 13         629         114         2         0.1623         0.292         >           6 and 13         629         199         3         0.028         0.021         >           6 and 13         629         234         4         0.02         0.427         >           6 and 13         140         90         1         0.064         0.077            6 and 13         466         81         2         0.106         0.022            6 and 13         466         90         3         0.106         0.0777            6 and 13         180,5000         359         128         1         0.1062         0.0222           6 and 13         190,5000         359         128         1         0.106         0.0272           6 and 13         130         106         10         14         0.029         0.0292           6 and 13         150         10         16         0.279         0.0292         0.0292           6 and 13         150         10         16         0.279         0.0292         0.0292           6 and 13         100         10         16         0.0299         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 and 13   |                       | 724   | 328   | - 4  | 0.4021   | 0.505    | ~           |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   | [1000,2000)           | 629   | 122   | 1    | 0.1538   | 0.2417   | ~           |
| 6 and 13         629         214         4         0.22         0.0727         ✓           6 and 13         140         90         84         2         0.1556         0.2927         ✓           6 and 13         440         84         2         0.1556         0.2927         ✓           6 and 13         440         90         3         0.164         0.2777         ✓           6 and 13         150         152         4         0.3024         0.0333         ✓           6 and 13         150         23         128         1         0.1902         0.2922         ✓           6 and 13         530         168         3         0.1566         0.2772         ✓           6 and 13         530         169         4         0.2979         0.2922         ✓           6 and 13         530         169         4         0.2979         0.2922         ✓           6 and 13         530         169         4         0.2979         0.2922         ✓           6 and 13         530         169         4         0.298         0.2729         ✓           6 and 13         1500         160         4 <td< td=""><td>6 and 13</td><td></td><td>629</td><td>114</td><td>2</td><td>0.1423</td><td>0.228</td><td>&gt;</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 and 13   |                       | 629   | 114   | 2    | 0.1423   | 0.228    | >           |
| 6 and 13         D900,3000         446         90         1         0.1664         0.7777           6 and 13         46         81         2         0.1555         0.3022           6 and 13         466         90         3         0.1654         0.2777           6 and 13         120         16         1122         1         0.3024         0.4321           6 and 13         230         123         1         1.0102         0.2922           6 and 13         530         123         1         0.1002         0.2921           6 and 13         530         180         3         0.1066         0.2977           6 and 13         530         180         3         0.1066         0.2972           6 and 13         530         179         1         0.3088         0.2792           6 and 13         530         129         180         4         0.2799         0.2088           6 and 13         530         137         295         1         0.3088         0.2799           6 and 13         530         180         2         0.2288         0.2088         0.2799           6 and 13         530         180         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 and 13   |                       | 629   | 159   | 3    | 0.2076   | 0.3041   |             |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   |                       | 629   | 234   | - 4  | 0.32     | 0.4272   | ~           |
| 6 and 13         466         90         3         0.1654         0.7777           6 and 13         466         112         4         0.0024         0.0333         y           6 and 13         1200,05000         539         128         1         0.1002         0.2952           6 and 13         530         123         2         0.1181         0.0241           6 and 13         530         180         3         0.1066         0.2972           6 and 13         530         180         4         0.2799         0.0288         ×           6 and 13         1000,10000         1179         279         1         0.308         0.2799           6 and 13         1170         238         2         0.2288         0.208         ×           6 and 13         1170         238         2         0.2288         0.209         ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 and 13   | [2000,3000)           | 416   | 90    | 1    | 0.1654   | 0.2777   |             |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   |                       | 416   | 84    | 2    | 0.1526   | 0.2622   |             |
| 6 and 13         1000,5000)         539         128         1         0.1892         0.0292           6 and 13         539         123         2         0.1885         0.2921           6 and 13         539         108         3         0.1366         0.2277           6 and 13         539         189         4         0.2795         0.0285         ×           6 and 13         1000,10000         1179         279         1         0.388         0.279           6 and 13         1179         315         2         0.2228         0.006           6 and 13         1179         238         3         0.173         0.2565         ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 and 13   |                       | 416   | 90    | 3    | 0.1654   | 0.2777   |             |
| 6 and 13 539 123 2 0.1818 0.2824<br>6 and 13 539 108 3 0.156 0.2577<br>6 and 13 59 108 4 0.797 0.0282<br>6 and 13 59 10 4 0.797 0.0282<br>6 and 13 [500,1000) 177 279 1 0.0388 0.2729<br>6 and 13 177 288 3 0.1712 0.0566<br>6 and 13 177 288 3 0.1712 0.0566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 and 13   |                       | 416   | 152   | - 4  | 0.3024   | 0.4333   | >           |
| 6 and 13         598         188         3         0.1566         0.2272           6 and 13         599         189         4         0.2299         0.3298         ×           6 and 13         1800         1179         279         1         0.3088         0.2279           6 and 13         1179         315         2         0.2288         0.0069           6 and 13         1179         238         3         0.1727         0.2066         ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and 13   | [3000,5000)           | 539   | 128   | 1    | 0.1902   | 0.2922   |             |
| 6 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 and $13$ |                       | 539   | 123   | 2    | 0.1818   | 0.2824   |             |
| 6 and 13 [5000,10000] 1179 279 1 0.2038 0.2729 6 and 13 1179 315 2 0.2238 0.3046 6 and 13 1179 238 3 0.1712 0.2265 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 and 13   |                       | 539   | 108   | 3    | 0.1566   | 0.2527   |             |
| 6 and 13 1179 315 2 0.2328 0.3046 6 and 13 1179 238 3 0.1712 0.2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 and 13   |                       | 539   | 180   | -4   | 0.2799   | 0.3928   | ~           |
| 6 and 13 1179 238 3 0.1712 0.2365 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 and 13   | [5000,10000)          | 1179  | 279   | 1    | 0.2038   | 0.2729   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 and 13   |                       | 1179  | 315   | 2    | 0.2328   | 0.3046   |             |
| 6 and 13 1179 347 4 0.2587 0.3327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 and 13   |                       | 1179  | 238   | 3    | 0.1712   | 0.2365   | ~           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 and 13   |                       | 1179  | 347   | 4    | 0.2587   | 0.3327   | ~           |

Table 36: Left: results for pair (8,9). Right: results for pair (8,10)

| Pair                   | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 9                | [0,50)                | 3     | 0     | 1    | 0        | 0.7226   |             |
| 8 and 9                |                       | 3     | 1     | 2    | 0.0353   | 0.8722   |             |
| 8 and 9                |                       | 3     | 2     | 3    | 0.1278   | 0.9647   |             |
| 8 and $9$              |                       | 3     | 0     | 4    | 0        | 0.7226   |             |
| 8 and $9$              | [50,100)              | 5     | 1     | 1    | 0.021    | 0.7449   |             |
| 8 and 9                |                       | 5     | 1     | 2    | 0.021    | 0.7449   |             |
| 8 and 9                |                       | 5     | 1     | 3    | 0.021    | 0.7449   |             |
| 8 and 9                |                       | 5     | 2     | - 4  | 0.0736   | 0.8484   |             |
| 8 and 9                | [100,200)             | 21    | 0     | 1    | 0        | 0.2712   |             |
| 8 and 9                |                       | 21    | 6     | 2    | 0.1015   | 0.5862   |             |
| 8  and  9              |                       | 21    | 5     | 3    | 0.0762   | 0.542    |             |
| 8  and  9              |                       | 21    | 10    | 4    | 0.2225   | 0.7428   | *           |
| 8 and 9                | [200,500)             | 161   | 22    | 1    | 0.0777   | 0.2293   | ~           |
| 8 and $9$              |                       | 161   | 32    | 2    | 0.1257   | 0.2997   |             |
| 8 and 9                |                       | 161   | 52    | 3    | 0.2302   | 0.4321   |             |
| 8 and 9                |                       | 161   | 55    | 4    | 0.2466   | 0.4512   |             |
| 8 and $9$              | [500,1000)            | 222   | 47    | 1    | 0.1455   | 0.2975   |             |
| 8 and $9$              |                       | 222   | 46    | 2    | 0.1418   | 0.2926   |             |
| 8 and 9                |                       | 222   | 56    | 3    | 0.1801   | 0.3412   |             |
| 8 and $9$              |                       | 222   | 73    | 4    | 0.2478   | 0.4215   |             |
| 8 and $9$              | [1000,2000)           | 278   | 59    | 1    | 0.152    | 0.2882   |             |
| 8 and 9                |                       | 278   | 73    | 2    | 0.196    | 0.3421   |             |
| 8 and $9$              |                       | 278   | 74    | 3    | 0.1992   | 0.3459   |             |
| 8 and $9$              |                       | 278   | 72    | 4    | 0.1928   | 0.3383   |             |
| 8 and 9                | [2000,3000)           | 187   | 35    | 1    | 0.1206   | 0.2788   |             |
| 8 and $9$              |                       | 187   | 44    | 2    | 0.1603   | 0.3315   |             |
| 8 and $9$              |                       | 187   | 49    | 3    | 0.183    | 0.3602   |             |
| 8 and $9$              |                       | 187   | 59    | 4    | 0.2295   | 0.4163   |             |
| $8 \ \mathrm{and} \ 9$ | [3000,5000)           | 288   | 76    | 1    | 0.1982   | 0.342    |             |
| 8 and $9$              |                       | 288   | 44    | 2    | 0.1028   | 0.2211   | ~           |
| 8 and $9$              |                       | 288   | 59    | 3    | 0.1466   | 0.2787   |             |
| 8 and $9$              |                       | 288   | 109   | 4    | 0.3028   | 0.4606   | -           |
| 8 and 9                | [5000,10000)          | 299   | 83    | 1    | 0.2116   | 0.3549   |             |
| 8 and $9$              |                       | 299   | 87    | 2    | 0.2236   | 0.369    |             |
| 8 and $9$              |                       | 299   | 60    | 3    | 0.1439   | 0.2727   |             |
| 8 and 9                |                       | 299   | 69    | 4    | 0.17     | 0.3052   |             |

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 10 | [0,50)                | 14    | 1     | 1    | 0.0074   | 0.4425   | *           |
| 8 and 10 |                       | 14    | 2     | 2    | 0.0254   | 0.5162   |             |
| 8 and 10 |                       | 14    | 1     | 3    | 0.0074   | 0.4425   | *           |
| 8 and 10 |                       | 14    | 10    | -4   | 0.3565   | 0.9186   | *           |
| 8 and 10 | [50,100)              | 10    | 1     | 1    | 0.0104   | 0.5405   |             |
| 8 and 10 |                       | 10    | 0     | 2    | 0        | 0.4387   | *           |
| 8 and 10 |                       | 10    | 5     | 3    | 0.1688   | 0.8312   | *           |
| 8 and 10 |                       | 10    | 4     | -4   | 0.1164   | 0.7713   |             |
| 8 and 10 | [100,200)             | 40    | 6     | 1    | 0.0519   | 0.3625   |             |
| 8 and 10 |                       | 40    | 7     | 2    | 0.0656   | 0.3907   |             |
| 8 and 10 |                       | 40    | 11    | 3    | 0.1276   | 0.496    |             |
| 8 and 10 |                       | 40    | 16    | 4    | 0.2176   | 0.6151   |             |
| 8 and 10 | [200,500)             | 188   | 35    | 1    | 0.1199   | 0.2775   |             |
| 8 and 10 |                       | 188   | 30    | 2    | 0.0988   | 0.2476   | ~           |
| 8 and 10 |                       | 188   | 73    | 3    | 0.2953   | 0.4902   | ~           |
| 8 and 10 |                       | 188   | 50    | -4   | 0.1865   | 0.3641   |             |
| 8 and 10 | [500,1000)            | 254   | 49    | 1    | 0.1333   | 0.2709   |             |
| 8 and 10 |                       | 254   | 49    | 2    | 0.1333   | 0.2709   |             |
| 8 and 10 |                       | 254   | 74    | 3    | 0.2188   | 0.3763   |             |
| 8 and 10 |                       | 254   | 82    | -4   | 0.2472   | 0.4091   |             |
| 8 and 10 | [1000,2000)           | 295   | 57    | 1    | 0.1372   | 0.2651   |             |
| 8 and 10 |                       | 295   | 57    | 2    | 0.1372   | 0.2651   |             |
| 8 and 10 |                       | 295   | 96    | 3    | 0.2545   | 0.4053   | ~           |
| 8 and 10 |                       | 295   | 85    | -4   | 0.2206   | 0.3666   |             |
| 8 and 10 | [2000,3000)           | 233   | 55    | 1    | 0.1676   | 0.3216   |             |
| 8 and 10 |                       | 233   | 48    | 2    | 0.1421   | 0.289    |             |
| 8 and 10 |                       | 233   | 64    | 3    | 0.2013   | 0.3627   |             |
| 8 and 10 |                       | 233   | 66    | -4   | 0.2088   | 0.3718   |             |
| 8 and 10 | [3000,5000)           | 327   | 85    | 1    | 0.1983   | 0.3328   |             |
| 8 and 10 |                       | 327   | 77    | 2    | 0.1765   | 0.3068   |             |
| 8 and 10 |                       | 327   | 57    | 3    | 0.1235   | 0.2404   | ~           |
| 8 and 10 |                       | 327   | 108   | -4   | 0.2623   | 0.4062   | ~           |
| 8 and 10 | [5000,10000)          | 469   | 118   | 1    | 0.2      | 0.3114   |             |
| 8 and 10 |                       | 469   | 149   | 2    | 0.261    | 0.3804   | ~           |
| 8 and 10 |                       | 469   | 111   | 3    | 0.1864   | 0.2956   |             |
| 8 and 10 |                       | 469   | 91    | 4    | 0.1482   | 0.2499   | ~           |

Table 37: Left: results for pair (8,13). Right: results for pair (9,10)

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 13 | [0,50)                | 235   | 26    | 1    | 0.0655   | 0.1808   | ~           |
| 8 and 13 |                       | 235   | 9     | 2    | 0.0157   | 0.0907   | ~           |
| 8 and 13 |                       | 235   | 95    | 3    | 0.3192   | 0.4954   | -/          |
| 8 and 13 |                       | 235   | 105   | 4    | 0.3593   | 0.5377   | ~           |
| 8 and 13 | [50,100]              | 200   | 23    | 1    | 0.0659   | 0.193    | ~           |
| 8 and 13 |                       | 200   | 7     | 2    | 0.0128   | 0.0922   | /           |
| 8 and 13 |                       | 200   | 77    | 3    | 0.2949   | 0.4838   | ~           |
| 8 and 13 |                       | 200   | 93    | 4    | 0.3696   | 0.563    | ~           |
| 8 and 13 | [100,200)             | 317   | 28    | 1    | 0.0531   | 0.1433   | /           |
| 8 and 13 |                       | 317   | 26    | 2    | 0.0483   | 0.1358   | _           |
| 8 and 13 |                       | 317   | 105   | 3    | 0.2622   | 0.4084   | ~           |
| 8 and 13 |                       | 317   | 158   | 4    | 0.4209   | 0.576    | /           |
| 8 and 13 | [200,500)             | 673   | 88    | 1    | 0.0986   | 0.1714   | /           |
| 8 and 13 |                       | 673   | 71    | 2    | 0.0768   | 0.1432   | -           |
| 8 and 13 |                       | 673   | 220   | 3    | 0.2786   | 0.3792   | /           |
| 8 and 13 |                       | 673   | 294   | 4    | 0.3844   | 0.4907   | /           |
| 8 and 13 | [500,1000)            | 689   | 106   | 1    | 0.1193   | 0.1961   | -           |
| 8 and 13 |                       | 689   | 111   | 2    | 0.1258   | 0.204    | /           |
| 8 and 13 |                       | 689   | 186   | 3    | 0.2255   | 0.3196   |             |
| 8 and 13 |                       | 689   | 286   | 4    | 0.3639   | 0.4682   | ~           |
| 8 and 13 | [1000,2000)           | 514   | 95    | 1    | 0.1418   | 0.2373   | /           |
| 8 and 13 |                       | 514   | 96    | 2    | 0.1435   | 0.2394   | /           |
| 8 and 13 |                       | 514   | 104   | 3    | 0.1574   | 0.2562   |             |
| 8 and 13 |                       | 514   | 219   | 4    | 0.3667   | 0.4877   | /           |
| 8 and 13 | [2000,3000)           | 327   | 81    | 1    | 0.1874   | 0.3198   |             |
| 8 and 13 |                       | 327   | 72    | 2    | 0.1631   | 0.2904   |             |
| 8 and 13 |                       | 327   | 53    | 3    | 0.1131   | 0.2268   | 1           |
| 8 and 13 |                       | 327   | 121   | 4    | 0.2992   | 0.4469   | /           |
| 8 and 13 | [3000,5000)           | 409   | 91    | 1    | 0.1705   | 0.2849   |             |
| 8 and 13 |                       | 409   | 96    | 2    | 0.1814   | 0.2979   |             |
| 8 and 13 |                       | 409   | 84    | 3    | 0.1553   | 0.2665   |             |
| 8 and 13 |                       | 409   | 138   | 4    | 0.2756   | 0.4053   | /           |
| 8 and 13 | [5000,10000)          | 827   | 184   | 1    | 0.1848   | 0.2654   |             |
| 8 and 13 |                       | 827   | 191   | 2    | 0.1926   | 0.2743   |             |
| 8 and 13 |                       | 827   | 204   | 3    | 0.2073   | 0.2908   |             |
| 8 and 13 |                       | 827   | 248   | 4    | 0.2574   | 0.3461   | /           |

| Pair                    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign, diff |
|-------------------------|-----------------------|-------|-------|------|----------|----------|------------|
| 9 and 10                | 10,501                | 4671  | 261   | 1    | 0.0472   | 0.066    | /          |
| 9 and 10                | 1.77                  | 4671  | 187   | 2    | 0.0328   | 0.0489   | -          |
| 9 and 10                |                       | 4671  | 2077  | 3    | 0.4244   | 0.4651   | /          |
| 9 and 10                |                       | 4671  | 2146  | 4    | 0.4391   | 0.4799   | /          |
| 9 and 10                | [50,100]              | 5707  | 264   | 1    | 0.0391   | 0.0547   | -          |
| 9 and 10                |                       | 5707  | 282   | 2    | 0.042    | 0.0581   | -          |
| 9 and 10                |                       | 5707  | 2741  | 3    | 0.4618   | 0.4988   | -          |
| 9 and 10                |                       | 5707  | 2420  | -4   | 0.4059   | 0.4424   | ~          |
| 9 and 10                | [100,200)             | 9126  | 609   | 1    | 0.0598   | 0.0744   | -          |
| 9  and  10              |                       | 9126  | 674   | 2    | 0.0666   | 0.0819   | _          |
| 9 and 10                |                       | 9126  | 4394  | 3    | 0.4669   | 0.4961   | ~          |
| 9 and 10                |                       | 9126  | 3449  | -4   | 0.3639   | 0.3922   | -          |
| 9  and  10              | [200,500)             | 14708 | 1744  | 1    | 0.1113   | 0.1262   | _          |
| 9 and 10                |                       | 14708 | 1771  | 2    | 0.1131   | 0.1281   | ~          |
| 9  and  10              |                       | 14708 | 6407  | 3    | 0.4242   | 0.4471   | -          |
| 9  and  10              |                       | 14708 | 4786  | -4   | 0.3147   | 0.3363   | ~          |
| 9 and 10                | [500,1000)            | 8737  | 1490  | 1    | 0.1596   | 0.1821   | ~          |
| 9  and  10              |                       | 8737  | 1407  | 2    | 0.1504   | 0.1723   | -          |
| 9  and  10              |                       | 8737  | 3270  | 3    | 0.3599   | 0.3888   | ~          |
| 9 and 10                |                       | 8737  | 2570  | -4   | 0.2807   | 0.308    | ~          |
| 9  and  10              | [1000,2000)           | 4234  | 835   | 1    | 0.1807   | 0.2149   | -          |
| 9  and  10              |                       | 4234  | 872   | 2    | 0.1891   | 0.2239   | ~          |
| 9  and  10              |                       | 4234  | 1396  | 3    | 0.3098   | 0.3502   | ~          |
| 9  and  10              |                       | 4234  | 1131  | -4   | 0.2486   | 0.2865   |            |
| 9  and  10              | [2000,3000)           | 1342  | 294   | 1    | 0.1892   | 0.2522   |            |
| 9  and  10              |                       | 1342  | 284   | 2    | 0.1822   | 0.2444   | ~          |
| $9 \mathrm{\ and\ } 10$ |                       | 1342  | 398   | 3    | 0.263    | 0.3325   | /          |
| $9~\mathrm{and}~10$     |                       | 1342  | 366   | - 4  | 0.2401   | 0.308    |            |
| $9~\mathrm{and}~10$     | [3000,5000)           | 1602  | 380   | 1    | 0.2088   | 0.2681   |            |
| $9~\mathrm{and}~10$     |                       | 1602  | 351   | 2    | 0.1916   | 0.2493   | /          |
| $9~\mathrm{and}~10$     |                       | 1602  | 415   | 3    | 0.2297   | 0.2908   |            |
| $9~\mathrm{and}~10$     |                       | 1602  | 456   | -4   | 0.2542   | 0.3171   | ~          |
| $9~\mathrm{and}~10$     | [5000,10000)          | 2258  | 612   | 1    | 0.2457   | 0.2979   |            |
| $9~\mathrm{and}~10$     |                       | 2258  | 564   | 2    | 0.2252   | 0.2761   |            |
| $9~\mathrm{and}~10$     |                       | 2258  | 540   | 3    | 0.215    | 0.2651   |            |
| 9 and 10                |                       | 2258  | 542   | -4   | 0.2158   | 0.266    |            |

Table 38: Left: results for pair (9,11). Right: results for pair (9,13)

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff |
|----------|-----------------------|-------|-------|------|----------|----------|------------|
| 9 and 11 | [0,50)                | 10    | 0     | 1    | 0        | 0.4387   |            |
| 9 and 11 |                       | 10    | 2     | 2    | 0.0358   | 0.6274   |            |
| 9 and 11 |                       | 10    | 5     | 3    | 0.1688   | 0.8312   |            |
| 9 and 11 |                       | 10    | 3     | 4    | 0.0718   | 0.7037   |            |
| 9 and 11 | [50,100)              | 12    | 0     | 1    | 0        | 0.3944   |            |
| 9 and 11 |                       | 12    | 3     | 2    | 0.0593   | 0.6379   |            |
| 9 and 11 |                       | 12    | -4    | 3    | 0.0958   | 0.7023   |            |
| 9 and 11 |                       | 12    | 5     | - 4  | 0.1382   | 0.7609   |            |
| 9 and 11 | [100,200)             | 41    | 3     | 1    | 0.0169   | 0.2661   |            |
| 9 and 11 |                       | 41    | 5     | 2    | 0.0382   | 0.3267   |            |
| 9 and 11 |                       | 41    | 19    | 3    | 0.2697   | 0.6689   |            |
| 9 and 11 |                       | 41    | 14    | 4    | 0.1754   | 0.5583   |            |
| 9 and 11 | [200,500)             | 158   | 27    | 1    | 0.1032   | 0.2696   |            |
| 9 and 11 |                       | 158   | 34    | 2    | 0.1384   | 0.3188   |            |
| 9 and 11 |                       | 158   | 54    | 3    | 0.246    | 0.4525   |            |
| 9 and 11 |                       | 158   | 43    | - 4  | 0.1857   | 0.3801   |            |
| 9 and 11 | [500,1000)            | 218   | 46    | 1    | 0.1444   | 0.2976   |            |
| 9 and 11 |                       | 218   | 47    | 2    | 0.1483   | 0.3026   |            |
| 9 and 11 |                       | 218   | 59    | 3    | 0.1955   | 0.3616   |            |
| 9 and 11 |                       | 218   | 66    | 4    | 0.2238   | 0.3953   |            |
| 9 and 11 | [1000,2000)           | 422   | 84    | 1    | 0.1504   | 0.2586   |            |
| 9 and 11 |                       | 422   | 107   | 2    | 0.1992   | 0.3169   |            |
| 9 and 11 |                       | 422   | 122   | 3    | 0.2317   | 0.3542   |            |
| 9 and 11 |                       | 422   | 109   | 4    | 0.2035   | 0.3219   |            |
| 9 and 11 | [2000,3000)           | 366   | 90    | 1    | 0.1887   | 0.3137   |            |
| 9 and 11 |                       | 366   | 93    | 2    | 0.1961   | 0.3224   |            |
| 9 and 11 |                       | 366   | 71    | 3    | 0.1429   | 0.2579   |            |
| 9 and 11 |                       | 366   | 112   | 4    | 0.2433   | 0.3768   |            |
| 9 and 11 | [3000,5000)           | 780   | 187   | 1    | 0.1997   | 0.2849   |            |
| 9 and 11 |                       | 780   | 207   | 2    | 0.2237   | 0.3117   |            |
| 9 and 11 |                       | 780   | 185   | 3    | 0.1973   | 0.2822   |            |
| 9 and 11 |                       | 780   | 201   | 4    | 0.2165   | 0.3037   |            |
| 9 and 11 | [5000,10000)          | 2520  | 561   | 1    | 0.2003   | 0.2466   | ~          |
| 9 and 11 |                       | 2520  | 710   | 2    | 0.2574   | 0.3074   | ~          |
| 9 and 11 |                       | 2520  | 581   | 3    | 0.208    | 0.2548   |            |
| 9 and 11 |                       | 2520  | 668   | 4    | 0.2413   | 0.2904   |            |

| Pair        | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 9 and 13    | [0,50)                | 485   | 49    | 1    | 0.0689   | 0.1458   | ~           |
| 9 and $13$  |                       | 485   | 26    | 2    | 0.0315   | 0.0899   | _           |
| 9 and $13$  |                       | 485   | 185   | 3    | 0.3221   | 0.4445   | _           |
| 9 and 13    |                       | 485   | 225   | -4   | 0.4017   | 0.5273   | ~           |
| 9 and $13$  | [50,100)              | 522   | 27    | 1    | 0.0306   | 0.086    | -           |
| 9 and $13$  |                       | 522   | 41    | 2    | 0.0515   | 0.118    | _           |
| 9 and $13$  |                       | 522   | 207   | 3    | 0.3386   | 0.4575   | ~           |
| 9 and $13$  |                       | 522   | 247   | -4   | 0.4129   | 0.5342   | _           |
| 9 and $13$  | [100,200)             | 857   | 80    | 1    | 0.0691   | 0.1249   | _           |
| 9 and $13$  |                       | 857   | 78    | 2    | 0.0671   | 0.1223   | ~           |
| 9 and $13$  |                       | 857   | 328   | 3    | 0.3376   | 0.43     | -           |
| 9 and $13$  |                       | 857   | 371   | - 4  | 0.3864   | 0.4806   | _           |
| 9 and $13$  | [200,500)             | 1700  | 230   | 1    | 0.1138   | 0.1602   | ~           |
| 9 and $13$  |                       | 1700  | 208   | 2    | 0.1018   | 0.1463   | ~           |
| 9 and $13$  |                       | 1700  | 527   | 3    | 0.2796   | 0.3422   | _           |
| 9 and $13$  |                       | 1700  | 735   | - 4  | 0.3991   | 0.4662   | ~           |
| 9 and $13$  | [500,1000)            | 1369  | 222   | 1    | 0.1362   | 0.1919   | ~           |
| 9 and $13$  |                       | 1369  | 214   | 2    | 0.1308   | 0.1857   | _           |
| 9 and $13$  |                       | 1369  | 276   | 3    | 0.173    | 0.2336   | ~           |
| 9 and $13$  |                       | 1369  | 657   | -4   | 0.4424   | 0.5177   | ~           |
| 9 and $13$  | [1000,2000)           | 1064  | 211   | 1    | 0.1664   | 0.2346   | _           |
| 9 and $13$  |                       | 1064  | 187   | 2    | 0.1455   | 0.2107   | ~           |
| 9 and $13$  |                       | 1064  | 176   | 3    | 0.136    | 0.1997   | ~           |
| 9 and $13$  |                       | 1064  | 490   | - 4  | 0.4183   | 0.5034   | _           |
| 9 and $13$  | [2000,3000)           | 742   | 143   | 1    | 0.1555   | 0.2363   | ~           |
| 9 and $13$  |                       | 742   | 170   | 2    | 0.1889   | 0.2749   |             |
| 9 and $13$  |                       | 742   | 153   | 3    | 0.1678   | 0.2507   |             |
| 9 and $13$  |                       | 742   | 276   | -4   | 0.3239   | 0.4227   | ~           |
| 9 and $13$  | [3000,5000)           | 997   | 216   | 1    | 0.1825   | 0.2553   |             |
| 9 and 13 $$ |                       | 997   | 232   | 2    | 0.1975   | 0.2721   |             |
| 9 and $13$  |                       | 997   | 280   | 3    | 0.2429   | 0.3222   |             |
| 9 and $13$  |                       | 997   | 269   | -4   | 0.2324   | 0.3108   |             |
| 9 and $13$  | [5000,10000)          | 2144  | 559   | 1    | 0.2351   | 0.2881   |             |
| 9 and $13$  |                       | 2144  | 512   | 2    | 0.214    | 0.2655   |             |
| 9 and $13$  |                       | 2144  | 517   | 3    | 0.2163   | 0.2679   |             |
| 9 and $13$  |                       | 2144  | 556   | -4   | 0.2338   | 0.2866   |             |

Table 39: Left: results for pair (10,11). Right: results for pair (10,12)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 10 and 11 | [0,50)                | 14    | 1     | 1    | 0.0074   | 0.4425   | *           |
| 10 and 11 |                       | 14    | 0     | 2    | 0        | 0.3582   | *           |
| 10 and 11 |                       | 14    | 6     | 3    | 0.1569   | 0.7515   | *           |
| 10 and 11 |                       | 14    | 7     | 4    | 0.2007   | 0.7993   | *           |
| 10 and 11 | [50,100)              | 25    | 1     | 1    | 0.0041   | 0.295    | *           |
| 10 and 11 |                       | 25    | 3     | 2    | 0.0279   | 0.3931   | *           |
| 10 and 11 |                       | 25    | 14    | 3    | 0.3031   | 0.7884   | *           |
| 10 and 11 |                       | 25    | 7     | 4    | 0.1071   | 0.5577   | *           |
| 10 and 11 | [100,200)             | 60    | 8     | 1    | 0.0527   | 0.2985   |             |
| 10 and 11 |                       | 60    | 10    | 2    | 0.0729   | 0.3373   |             |
| 10 and 11 |                       | 60    | 30    | 3    | 0.3303   | 0.6697   | ~           |
| 10 and 11 |                       | 60    | 12    | 4    | 0.0945   | 0.3747   |             |
| 10 and 11 | [200,500)             | 152   | 27    | 1    | 0.1074   | 0.2794   |             |
| 10 and 11 |                       | 152   | 31    | 2    | 0.1282   | 0.3087   |             |
| 10 and 11 |                       | 152   | 41    | 3    | 0.1822   | 0.3798   |             |
| 10 and 11 |                       | 152   | 53    | 4    | 0.2504   | 0.4617   | ~           |
| 10 and 11 | [500,1000)            | 206   | 38    | 1    | 0.121    | 0.271    |             |
| 10 and 11 |                       | 206   | 50    | 2    | 0.1696   | 0.3346   |             |
| 10 and 11 |                       | 206   | 42    | 3    | 0.1369   | 0.2925   |             |
| 10 and 11 |                       | 206   | 76    | 4    | 0.2814   | 0.4661   | ~           |
| 10 and 11 | [1000,2000)           | 384   | 80    | 1    | 0.1565   | 0.2718   |             |
| 10 and 11 |                       | 384   | 111   | 2    | 0.2291   | 0.3574   |             |
| 10 and 11 |                       | 384   | 83    | 3    | 0.1634   | 0.2802   |             |
| 10 and 11 |                       | 384   | 110   | 4    | 0.2267   | 0.3547   |             |
| 10 and 11 | [2000,3000)           | 453   | 93    | 1    | 0.1575   | 0.2631   |             |
| 10 and 11 |                       | 453   | 107   | 2    | 0.1852   | 0.2962   |             |
| 10 and 11 |                       | 453   | 96    | 3    | 0.1634   | 0.2702   |             |
| 10 and 11 |                       | 453   | 157   | 4    | 0.2872   | 0.4112   | ~           |
| 10 and 11 | [3000,5000)           | 936   | 210   | 1    | 0.1886   | 0.2647   |             |
| 10 and 11 |                       | 936   | 249   | 2    | 0.2277   | 0.3082   |             |
| 10 and 11 |                       | 936   | 234   | 3    | 0.2126   | 0.2915   |             |
| 10 and 11 |                       | 936   | 243   | 4    | 0.2217   | 0.3015   |             |
| 10 and 11 | [5000,10000)          | 2545  | 549   | 1    | 0.1938   | 0.2394   | ~           |
| 10 and 11 |                       | 2545  | 742   | 2    | 0.267    | 0.3173   | ~           |
| 10 and 11 |                       | 2545  | 587   | 3    | 0.2082   | 0.2548   |             |
| 10 and 11 |                       | 2545  | 667   | -4   | 0.2385   | 0.2872   |             |

| Pair                 | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 10 and $12$          | [0,50)                | 9     | 0     | 1    | 0        | 0.4648   | *           |
| 10 and $12$          |                       | 9     | 2     | 2    | 0.0399   | 0.6628   | *           |
| 10 and 12            |                       | 9     | 3     | 3    | 0.0802   | 0.7414   | *           |
| 10 and 12            |                       | 9     | - 4   | -4   | 0.1305   | 0.81     | *           |
| 10 and $12$          | [50,100)              | 21    | 2     | 1    | 0.0168   | 0.3932   | *           |
| 10 and 12            |                       | 21    | 2     | 2    | 0.0168   | 0.3932   | *           |
| 10 and 12            |                       | 21    | 10    | 3    | 0.2225   | 0.7428   | *           |
| 10 and $12$          |                       | 21    | 7     | -4   | 0.1289   | 0.6282   | *           |
| 10 and 12            | [100,200)             | 46    | 1     | 1    | 0.0022   | 0.1801   | *           |
| 10 and $12$          |                       | 46    | 5     | 2    | 0.034    | 0.297    | *           |
| 10 and $12$          |                       | 46    | 24    | 3    | 0.3282   | 0.709    | *           |
| 10 and $12$          |                       | 46    | 16    | -4   | 0.1871   | 0.5528   | *           |
| 10 and 12            | [200,500)             | 133   | 17    | 1    | 0.0672   | 0.2298   | ~           |
| 10 and $12$          |                       | 133   | 19    | 2    | 0.0779   | 0.2475   | ~           |
| 10 and $12$          |                       | 133   | 47    | 3    | 0.2486   | 0.4744   |             |
| 10 and $12$          |                       | 133   | 50    | -4   | 0.2685   | 0.4971   | ~           |
| 10 and $12$          | [500,1000)            | 124   | 19    | 1    | 0.0837   | 0.2639   |             |
| 10 and $12$          |                       | 124   | 35    | 2    | 0.1848   | 0.4055   |             |
| 10 and $12$          |                       | 124   | 36    | 3    | 0.1915   | 0.414    |             |
| 10 and $12$          |                       | 124   | 34    | - 4  | 0.1781   | 0.397    |             |
| 10 and $12$          | [1000,2000)           | 210   | 29    | 1    | 0.0845   | 0.2177   | ~           |
| 10 and $12$          |                       | 210   | 59    | 2    | 0.2033   | 0.3743   |             |
| 10 and $12$          |                       | 210   | 68    | 3    | 0.2413   | 0.419    |             |
| 10 and $12$          |                       | 210   | 54    | -4   | 0.1826   | 0.3491   |             |
| 10 and $12$          | [2000,3000)           | 188   | 35    | 1    | 0.1199   | 0.2775   |             |
| 10 and $12$          |                       | 188   | 48    | 2    | 0.1774   | 0.3527   |             |
| 10 and $12$          |                       | 188   | 61    | 3    | 0.2377   | 0.4253   |             |
| 10 and $12$          |                       | 188   | 44    | - 4  | 0.1594   | 0.3299   |             |
| 10 and $12$          | [3000,5000)           | 351   | 67    | 1    | 0.1392   | 0.256    |             |
| $10~\mathrm{and}~12$ |                       | 351   | 85    | 2    | 0.1843   | 0.3113   |             |
| 10 and $12$          |                       | 351   | 98    | 3    | 0.2176   | 0.3504   |             |
| $10~\mathrm{and}~12$ |                       | 351   | 101   | -4   | 0.2254   | 0.3593   |             |
| $10~\mathrm{and}~12$ | [5000,10000)          | 416   | 106   | 1    | 0.2      | 0.3187   |             |
| 10 and $12$          |                       | 416   | 118   | 2    | 0.2263   | 0.349    |             |
| $10~\mathrm{and}~12$ |                       | 416   | 106   | 3    | 0.2      | 0.3187   |             |
| $10~\mathrm{and}~12$ |                       | 416   | 86    | -4   | 0.1569   | 0.2674   |             |

Table 40: Left: results for pair (10,13). Right: results for pair (13,15)

| Pair        | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 10 and 13   | [0,50)                | 613   | 48    | 1    | 0.053    | 0.1142   | ~           |
| 10 and $13$ |                       | 613   | 31    | 2    | 0.031    | 0.0815   | -           |
| 10 and 13   |                       | 613   | 278   | 3    | 0.3982   | 0.51     | ~           |
| 10 and 13   |                       | 613   | 256   | - 4  | 0.3633   | 0.474    | ~           |
| 10 and 13   | [50,100)              | 550   | 28    | 1    | 0.0304   | 0.084    | ~           |
| 10 and $13$ |                       | 550   | 32    | 2    | 0.036    | 0.0928   | ~           |
| 10 and $13$ |                       | 550   | 245   | 3    | 0.3874   | 0.5051   | ~           |
| 10 and 13   |                       | 550   | 245   | - 4  | 0.3874   | 0.5051   | ~           |
| 10 and $13$ | [100,200)             | 952   | 78    | 1    | 0.0604   | 0.1103   | ~           |
| 10 and $13$ |                       | 952   | 81    | 2    | 0.0631   | 0.1139   | ~           |
| 10 and $13$ |                       | 952   | 368   | 3    | 0.3435   | 0.4314   | -           |
| 10 and $13$ |                       | 952   | 425   | 4    | 0.402    | 0.4917   | ~           |
| 10 and $13$ | [200,500)             | 1827  | 218   | 1    | 0.0997   | 0.1422   | ~           |
| 10 and 13   |                       | 1827  | 231   | 2    | 0.1063   | 0.1498   | ~           |
| 10 and 13   |                       | 1827  | 497   | 3    | 0.2439   | 0.3021   |             |
| 10 and $13$ |                       | 1827  | 881   | 4    | 0.4497   | 0.5149   | ~           |
| 10 and $13$ | [500,1000)            | 1645  | 239   | 1    | 0.1227   | 0.1713   | -           |
| 10 and 13   |                       | 1645  | 259   | 2    | 0.134    | 0.1842   | ~           |
| 10 and $13$ |                       | 1645  | 399   | 3    | 0.2143   | 0.2733   |             |
| 10 and $13$ |                       | 1645  | 748   | 4    | 0.4207   | 0.4892   | ~           |
| 10 and 13   | [1000,2000)           | 1417  | 278   | 1    | 0.1684   | 0.2273   | ~           |
| 10 and $13$ |                       | 1417  | 269   | 2    | 0.1624   | 0.2206   | ~           |
| 10 and $13$ |                       | 1417  | 269   | 3    | 0.1624   | 0.2206   | -           |
| 10 and 13   |                       | 1417  | 601   | 4    | 0.3879   | 0.4612   | ~           |
| 10 and $13$ | [2000,3000)           | 980   | 174   | 1    | 0.146    | 0.2142   | ~           |
| 10 and $13$ |                       | 980   | 213   | 2    | 0.1828   | 0.2563   |             |
| 10 and 13   |                       | 980   | 231   | 3    | 0.2      | 0.2756   |             |
| 10 and $13$ |                       | 980   | 362   | 4    | 0.3275   | 0.4134   | ~           |
| 10 and $13$ | [3000,5000)           | 1358  | 285   | 1    | 0.1807   | 0.2424   | ~           |
| 10 and 13   |                       | 1358  | 335   | 2    | 0.2155   | 0.2808   |             |
| 10 and $13$ |                       | 1358  | 380   | 3    | 0.2471   | 0.3151   |             |
| 10 and $13$ |                       | 1358  | 358   | 4    | 0.2316   | 0.2983   |             |
| 10 and $13$ | [5000,10000)          | 2605  | 680   | 1    | 0.2377   | 0.2858   |             |
| 10 and $13$ |                       | 2605  | 619   | 2    | 0.2151   | 0.2617   |             |
| 10 and $13$ |                       | 2605  | 662   | 3    | 0.231    | 0.2787   |             |
| 10 and 13   |                       | 2605  | 644   | 4    | 0.2244   | 0.2716   |             |

| Pair                     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|--------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 13 and $15$              | [0,50)                | 289   | 32    | 1    | 0.069    | 0.1729   | ~           |
| 13 and $15$              |                       | 289   | 24    | 2    | 0.0479   | 0.1401   | ~           |
| 13 and 15                |                       | 289   | 101   | 3    | 0.276    | 0.4309   | _           |
| 13 and 15                |                       | 289   | 132   | -4   | 0.3771   | 0.5387   | ~           |
| 13 and $15$              | [50,100)              | 202   | 19    | 1    | 0.0508   | 0.1675   | ~           |
| 13 and $15$              |                       | 202   | 14    | 2    | 0.0338   | 0.1369   | ~           |
| 13 and $15$              |                       | 202   | 81    | 3    | 0.31     | 0.4993   | ~           |
| 13 and $15$              |                       | 202   | 88    | -4   | 0.3423   | 0.5338   | ~           |
| 13 and $15$              | [100,200)             | 228   | 25    | 1    | 0.0643   | 0.1809   | ~           |
| 13 and $15$              |                       | 228   | 29    | 2    | 0.0776   | 0.2014   | <b>\</b>    |
| 13 and $15$              |                       | 228   | 75    | 3    | 0.2489   | 0.4203   |             |
| 13 and $15$              |                       | 228   | 99    | -4   | 0.3461   | 0.5266   | ~           |
| 13 and $15$              | [200,500)             | 364   | 63    | 1    | 0.1247   | 0.2352   | <b>\</b>    |
| 13 and $15$              |                       | 364   | 65    | 2    | 0.1294   | 0.2413   | ~           |
| 13 and $15$              |                       | 364   | 151   | 3    | 0.3452   | 0.4881   | ~           |
| 13 and $15$              |                       | 364   | 85    | - 4  | 0.1775   | 0.3007   |             |
| 13 and $15$              | [500,1000)            | 453   | 80    | 1    | 0.1321   | 0.232    | ~           |
| 13 and $15$              |                       | 453   | 103   | 2    | 0.1772   | 0.2868   |             |
| 13 and $15$              |                       | 453   | 142   | 3    | 0.2561   | 0.3771   | ~           |
| 13 and $15$              |                       | 453   | 128   | - 4  | 0.2275   | 0.345    |             |
| 13 and $15$              | [1000,2000)           | 785   | 146   | 1    | 0.1503   | 0.2278   | ~           |
| 13 and $15$              |                       | 785   | 198   | 2    | 0.2115   | 0.2979   |             |
| 13 and $15$              |                       | 785   | 234   | 3    | 0.2546   | 0.3455   | ~           |
| 13 and $15$              |                       | 785   | 207   | -4   | 0.2222   | 0.3098   |             |
| 13 and $15$              | [2000,3000)           | 746   | 182   | 1    | 0.2028   | 0.2904   |             |
| 13 and $15$              |                       | 746   | 188   | 2    | 0.2103   | 0.2989   |             |
| 13 and $15$              |                       | 746   | 207   | 3    | 0.2341   | 0.3254   |             |
| 13 and $15$              |                       | 746   | 169   | -4   | 0.1867   | 0.2721   |             |
| $13~\mathrm{and}~15$     | [3000,5000)           | 1469  | 381   | 1    | 0.2287   | 0.2925   |             |
| $13~\mathrm{and}~15$     |                       | 1469  | 392   | 2    | 0.2359   | 0.3003   |             |
| $13 \ \mathrm{and} \ 15$ |                       | 1469  | 392   | 3    | 0.2359   | 0.3003   |             |
| $13~\mathrm{and}~15$     |                       | 1469  | 304   | -4   | 0.179    | 0.238    | ~           |
| 13 and $15$              | [5000,10000)          | 2843  | 792   | 1    | 0.2557   | 0.3027   | ~           |
| $13 \ \mathrm{and} \ 15$ |                       | 2843  | 711   | 2    | 0.2281   | 0.2735   |             |
| $13~\mathrm{and}~15$     |                       | 2843  | 832   | 3    | 0.2694   | 0.317    | ~           |
| $13~\mathrm{and}~15$     |                       | 2843  | 508   | -4   | 0.1595   | 0.1996   |             |

Table 41: Results for pair (14,15)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 14 and 15 | [0,50)                | 92    | 17    | 1    | 0.0981   | 0.3208   |             |
| 14 and 15 |                       | 92    | 13    | 2    | 0.068    | 0.2708   |             |
| 14 and 15 |                       | 92    | 26    | 3    | 0.1725   | 0.4268   |             |
| 14 and 15 |                       | 92    | 36    | 4    | 0.263    | 0.5366   | ~           |
| 14 and 15 | [50,100)              | 51    | 8     | 1    | 0.0623   | 0.3426   | *           |
| 14 and 15 |                       | 51    | 3     | 2    | 0.0136   | 0.2213   | *           |
| 14 and 15 |                       | 51    | 17    | 3    | 0.1822   | 0.5287   | *           |
| 14 and 15 |                       | 51    | 23    | 4    | 0.276    | 0.639    | *           |
| 14 and 15 | [100,200)             | 55    | -4    | 1    | 0.02     | 0.2318   | *           |
| 14 and 15 |                       | 55    | 6     | 2    | 0.0375   | 0.278    | *           |
| 14 and 15 |                       | 55    | 22    | 3    | 0.2392   | 0.5857   | *           |
| 14 and 15 |                       | 55    | 23    | -4   | 0.2541   | 0.6026   | *           |
| 14 and 15 | [200,500)             | 106   | 12    | 1    | 0.0526   | 0.2269   | ~           |
| 14 and 15 |                       | 106   | 12    | 2    | 0.0526   | 0.2269   | ~           |
| 14 and 15 |                       | 106   | 50    | 3    | 0.3428   | 0.6045   | ~           |
| 14 and 15 |                       | 106   | 32    | 4    | 0.1944   | 0.4365   |             |
| 14 and 15 | [500,1000)            | 109   | 14    | 1    | 0.0633   | 0.2433   | ~           |
| 14 and 15 |                       | 109   | 27    | 2    | 0.1517   | 0.3775   |             |
| 14 and 15 |                       | 109   | 36    | 3    | 0.2195   | 0.4638   |             |
| 14 and 15 |                       | 109   | 32    | - 4  | 0.1888   | 0.426    |             |
| 14 and 15 | [1000,2000)           | 185   | 28    | 1    | 0.092    | 0.239    | ~           |
| 14 and 15 |                       | 185   | 49    | 2    | 0.1851   | 0.3637   |             |
| 14 and 15 |                       | 185   | 60    | 3    | 0.2369   | 0.426    |             |
| 14 and 15 |                       | 185   | 48    | -4   | 0.1804   | 0.358    |             |
| 14 and 15 | [2000,3000)           | 215   | 43    | 1    | 0.1349   | 0.2862   |             |
| 14 and 15 |                       | 215   | 53    | 2    | 0.1742   | 0.3366   |             |
| 14 and 15 |                       | 215   | 78    | 3    | 0.2774   | 0.4578   | ~           |
| 14 and 15 |                       | 215   | 41    | 4    | 0.1272   | 0.2759   |             |
| 14 and 15 | [3000,5000)           | 269   | 52    | 1    | 0.1351   | 0.2689   |             |
| 14 and 15 |                       | 269   | 70    | 2    | 0.193    | 0.341    |             |
| 14 and 15 |                       | 269   | 52    | 3    | 0.1351   | 0.2689   |             |
| 14 and 15 |                       | 269   | 95    | - 4  | 0.2769   | 0.4377   | ~           |
| 14 and 15 | [5000,10000)          | 1333  | 310   | 1    | 0.2018   | 0.2664   |             |
| 14 and 15 |                       | 1333  | 299   | 2    | 0.194    | 0.2578   |             |
| 14 and 15 |                       | 1333  | 365   | 3    | 0.2411   | 0.3092   |             |
| 14 and 15 |                       | 1333  | 359   | -4   | 0.2368   | 0.3046   |             |

## 11.3. 30-min pairs

In this section (Tables 42-48) we provide the results of the pair behaviour statistical analysis for the pairs of interest, for data collected at a 30-min frequency.

Table 42: Left: results for pair (1,4). Right: results for pair (1,6)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. | F   | Pair  | Distance interval (m) | Total | 1 |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|-----|-------|-----------------------|-------|---|
| 1 and 4 | [0,50)                | 3     | 0     | 1    | 0        | 0.7226   |             | 1 s | and 6 | [0,50)                | 176   | Ī |
| 1 and 4 |                       | 3     | 1     | 2    | 0.0353   | 0.8722   | *           | 1 s | and 6 |                       | 176   | T |
| 1 and 4 |                       | 3     | 1     | 3    | 0.0353   | 0.8722   | *           | 1 s | and 6 |                       | 176   | Ī |
| 1 and 4 |                       | 3     | 1     | 4    | 0.0353   | 0.8722   | *           | 1 s | and 6 |                       | 176   | Ī |
| 1 and 4 | [50,100)              | 10    | 2     | 1    | 0.0358   | 0.6274   | *           | 1 s | and 6 | [50,100)              | 357   | T |
| 1 and 4 |                       | 10    | 2     | 2    | 0.0358   | 0.6274   | *           | 1 s | and 6 |                       | 357   | Ī |
| 1 and 4 |                       | 10    | 3     | 3    | 0.0718   | 0.7037   | *           | 1 s | and 6 |                       | 357   | Ī |
| 1 and 4 |                       | 10    | 3     | 4    | 0.0718   | 0.7037   | *           | 1 s | and 6 |                       | 357   | I |
| 1 and 4 | [100,200)             | 22    | 6     | 1    | 0.0966   | 0.568    | *           | 1 s | and 6 | [100,200)             | 873   | Ī |
| 1 and 4 |                       | 22    | 2     | 2    | 0.016    | 0.3802   | *           | 1 s | and 6 |                       | 873   | Ī |
| 1 and 4 |                       | 22    | 9     | 3    | 0.1801   | 0.6858   | *           | 1 s | and 6 |                       | 873   | I |
| 1 and 4 |                       | 22    | 5     | 4    | 0.0726   | 0.5249   | *           | 1 s | and 6 |                       | 873   | Ī |
| 1 and 4 | [200,500)             | 132   | 16    | 1    | 0.0624   | 0.2224   | ~           | 1 s | and 6 | [200,500)             | 1066  | Ī |
| 1 and 4 |                       | 132   | 23    | 2    | 0.1009   | 0.284    |             | 1 s | and 6 |                       | 1066  | I |
| 1 and 4 |                       | 132   | 51    | 3    | 0.2774   | 0.508    | ~           | 1 s | and 6 |                       | 1066  | Ι |
| 1 and 4 |                       | 132   | 42    | 4    | 0.2178   | 0.4389   |             | 1 s | and 6 |                       | 1066  | Ī |
| 1 and 4 | [500,1000)            | 166   | 22    | 1    | 0.0753   | 0.2228   | ~           | 1 s | and 6 | [500,1000)            | 252   | I |
| 1 and 4 |                       | 166   | 42    | 2    | 0.1713   | 0.357    |             | 1 s | and 6 |                       | 252   | Ī |
| 1 and 4 |                       | 166   | 53    | 3    | 0.2282   | 0.4266   |             | 1 s | and 6 |                       | 252   | Ī |
| 1 and 4 |                       | 166   | 49    | 4    | 0.2072   | 0.4015   |             | 1 s | and 6 |                       | 252   | Ī |
| 1 and 4 | [1000,2000)           | 189   | 47    | 1    | 0.1719   | 0.3454   |             | 1 s | and 6 | [1000,2000)           | 86    | Ī |
| 1 and 4 |                       | 189   | 49    | 2    | 0.181    | 0.3567   |             | 1 s | and 6 |                       | 86    | Ī |
| 1 and 4 |                       | 189   | 54    | 3    | 0.2038   | 0.3846   |             | 1 s | and 6 |                       | 86    | I |
| 1 and 4 |                       | 189   | 39    | 4    | 0.1365   | 0.2995   |             | 1 s | and 6 |                       | 86    | Ī |
| 1 and 4 | [2000,3000)           | 169   | 48    | 1    | 0.1983   | 0.3889   |             | 1 s | and 6 | [2000,3000)           | 20    | Ī |
| 1 and 4 |                       | 169   | 42    | 2    | 0.1681   | 0.3512   |             | 1 s | and 6 |                       | 20    | I |
| 1 and 4 |                       | 169   | 52    | 3    | 0.2188   | 0.4136   |             | 1 s | and 6 |                       | 20    | Ī |
| 1 and 4 |                       | 169   | 27    | 4    | 0.0963   | 0.2533   |             | 1 s | and 6 |                       | 20    | Ī |
| 1 and 4 | [3000,5000)           | 377   | 106   | 1    | 0.2214   | 0.3498   |             | 1 s | and 6 | [3000,5000)           | 39    | I |
| 1 and 4 |                       | 377   | 91    | 2    | 0.1854   | 0.3078   |             | 1 s | and 6 |                       | 39    | Ī |
| 1 and 4 |                       | 377   | 88    | 3    | 0.1783   | 0.2994   |             | 1 s | and 6 |                       | 39    | I |
| 1 and 4 |                       | 377   | 92    | 4    | 0.1878   | 0.3107   |             | 1 s | and 6 |                       | 39    | ſ |
| 1 and 4 | [5000,10000)          | 933   | 227   | 1    | 0.2063   | 0.2846   |             | 1 s | and 6 | [5000,10000)          | 39    | I |
| 1 and 4 |                       | 933   | 198   | 2    | 0.1773   | 0.252    |             | 1 s | and 6 |                       | 39    | 1 |
| 1 and 4 |                       | 933   | 263   | 3    | 0.2427   | 0.3247   |             | 1 s | and 6 |                       | 39    | ſ |
| 1 and 4 |                       | 933   | 245   | 4    | 0.2244   | 0.3047   |             | 1 s | and 6 |                       | 39    | Ī |

| Pair                   | Distance interval (m) | Iotai | Count | Type | Lower CI | Upper C1 | Sign. diff. |
|------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 1 and 6                | [0,50)                | 176   | 17    | 1    | 0.0505   | 0.177    | ~           |
| 1 and $6$              |                       | 176   | 10    | 2    | 0.0243   | 0.127    | ~           |
| 1 and $6$              |                       | 176   | 78    | 3    | 0.3431   | 0.5481   | ~           |
| 1 and $6$              |                       | 176   | 71    | -4   | 0.3063   | 0.5088   | ~           |
| 1 and $6$              | [50,100)              | 357   | 33    | 1    | 0.0579   | 0.1444   | ~           |
| 1 and 6                |                       | 357   | 20    | 2    | 0.0306   | 0.1005   | _           |
| 1 and 6                |                       | 357   | 181   | 3    | 0.4337   | 0.58     | ~           |
| 1 and $6$              |                       | 357   | 123   | -4   | 0.2782   | 0.4175   | ~           |
| 1 and $6$              | [100,200)             | 873   | 70    | 1    | 0.0581   | 0.1098   | ~           |
| 1 and $6$              |                       | 873   | 42    | 2    | 0.0316   | 0.0727   | ~           |
| 1 and $6$              |                       | 873   | 451   | 3    | 0.4694   | 0.5635   | ~           |
| 1 and $6$              |                       | 873   | 310   | - 4  | 0.3113   | 0.4015   | ~           |
| 1 and $6$              | [200,500)             | 1066  | 112   | 1    | 0.0816   | 0.1343   | ~           |
| 1 and $6$              |                       | 1066  | 68    | 2    | 0.0459   | 0.0881   | ~           |
| 1 and $6$              |                       | 1066  | 517   | 3    | 0.4425   | 0.5277   | ~           |
| 1 and $6$              |                       | 1066  | 369   | -4   | 0.3067   | 0.3879   | ~           |
| 1 and $6$              | [500,1000)            | 252   | 36    | 1    | 0.092    | 0.2152   | ~           |
| 1 and $6$              |                       | 252   | 21    | 2    | 0.0463   | 0.1454   | ~           |
| 1 and $6$              |                       | 252   | 113   | 3    | 0.3637   | 0.5362   | ~           |
| 1 and $6$              |                       | 252   | 82    | -4   | 0.2492   | 0.4121   |             |
| 1 and $6$              | [1000,2000)           | 86    | 22    | 1    | 0.1486   | 0.4037   |             |
| 1 and $6$              |                       | 86    | 10    | 2    | 0.0504   | 0.2461   | ~           |
| 1 and $6$              |                       | 86    | 29    | 3    | 0.2137   | 0.4879   |             |
| 1 and $6$              |                       | 86    | 25    | -4   | 0.1759   | 0.4403   |             |
| 1 and $6$              | [2000,3000)           | 20    | 7     | 1    | 0.1358   | 0.6485   | *           |
| 1 and $6$              |                       | 20    | 2     | 2    | 0.0177   | 0.4071   | *           |
| 1 and $6$              |                       | 20    | 5     | 3    | 0.0802   | 0.5603   | *           |
| 1 and $6$              |                       | 20    | 6     | -4   | 0.1069   | 0.6055   | *           |
| 1 and $6$              | [3000,5000)           | 39    | 6     | 1    | 0.0533   | 0.37     |             |
| $1 \ \mathrm{and} \ 6$ |                       | 39    | 6     | 2    | 0.0533   | 0.37     |             |
| $1 \ \mathrm{and} \ 6$ |                       | 39    | 7     | 3    | 0.0673   | 0.3987   |             |
| $1 \ \mathrm{and} \ 6$ |                       | 39    | 20    | 4    | 0.3065   | 0.7149   | ~           |
| 1 and $6$              | [5000,10000)          | 39    | 13    | 1    | 0.1666   | 0.5558   | *           |
| $1 \ \mathrm{and} \ 6$ |                       | 39    | 12    | 2    | 0.1485   | 0.5311   | *           |
| 1 and $6$              |                       | 39    | 12    | 3    | 0.1485   | 0.5311   | *           |
| 1 and $6$              |                       | 39    | 2     | -4   | 0.009    | 0.2434   | *           |

Table 43: Left: results for pair (2,3). Right: results for pair (2,6)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 2 and 3   | [0,50)                | 12    | 1     | 1    | 0.0086   | 0.4867   | *           |
| 2 and 3   |                       | 12    | 2     | 2    | 0.0297   | 0.5666   | *           |
| 2 and 3   |                       | 12    | - 5   | 3    | 0.1382   | 0.7609   | *           |
| 2 and 3   |                       | 12    | 4     | 4    | 0.0958   | 0.7023   | *           |
| 2 and 3   | [50,100)              | 14    | 2     | 1    | 0.0254   | 0.5162   | *           |
| 2 and 3   |                       | 14    | 1     | 2    | 0.0074   | 0.4425   | *           |
| 2 and 3   |                       | 14    | 8     | 3    | 0.2485   | 0.8431   | *           |
| 2 and 3   |                       | 14    | 3     | 4    | 0.0506   | 0.5827   | *           |
| 2 and 3   | [100,200)             | 42    | - 5   | 1    | 0.0373   | 0.3203   |             |
| 2 and 3   |                       | 42    | 6     | 2    | 0.0494   | 0.3484   |             |
| 2 and 3   |                       | 42    | 17    | 3    | 0.2247   | 0.6147   |             |
| 2 and 3   |                       | 42    | 14    | 4    | 0.1709   | 0.548    |             |
| 2 and 3   | [200,500)             | 135   | 23    | 1    | 0.0986   | 0.2782   |             |
| 2 and $3$ |                       | 135   | 22    | 2    | 0.0931   | 0.2697   |             |
| 2 and 3   |                       | 135   | 42    | 3    | 0.2127   | 0.4302   |             |
| 2 and 3   |                       | 135   | 48    | 4    | 0.2512   | 0.4757   | ~           |
| 2 and 3   | [500,1000)            | 266   | 53    | 1    | 0.1398   | 0.2759   |             |
| 2 and 3   |                       | 266   | 34    | 2    | 0.081    | 0.1958   | ~           |
| 2 and 3   |                       | 266   | 57    | 3    | 0.1526   | 0.2922   |             |
| 2 and $3$ |                       | 266   | 122   | 4    | 0.3756   | 0.544    | ~           |
| 2 and $3$ | [1000,2000)           | 498   | 114   | 1    | 0.1807   | 0.2855   |             |
| 2 and $3$ |                       | 498   | 85    | 2    | 0.1287   | 0.2228   | ~           |
| 2 and $3$ |                       | 498   | 94    | 3    | 0.1447   | 0.2424   | ~           |
| 2 and $3$ |                       | 498   | 205   | 4    | 0.3518   | 0.4742   | 4           |
| 2 and 3   | [2000,3000)           | 455   | 121   | 1    | 0.2123   | 0.3274   |             |
| 2 and $3$ |                       | 455   | 109   | 2    | 0.1883   | 0.2996   |             |
| 2 and $3$ |                       | 455   | 101   | 3    | 0.1725   | 0.2809   |             |
| 2 and $3$ |                       | 455   | 124   | 4    | 0.2184   | 0.3344   |             |
| 2 and $3$ | [3000,5000)           | 1055  | 302   | 1    | 0.249    | 0.3266   |             |
| 2 and $3$ |                       | 1055  | 250   | 2    | 0.2024   | 0.2754   |             |
| 2 and 3   |                       | 1055  | 244   | 3    | 0.197    | 0.2695   |             |
| 2 and 3   |                       | 1055  | 259   | 4    | 0.2104   | 0.2843   |             |
| 2 and 3   | [5000,10000)          | 2202  | 567   | 1    | 0.2323   | 0.2844   |             |
| 2 and 3   |                       | 2202  | 470   | 2    | 0.1901   | 0.2388   | ~           |
| 2 and $3$ |                       | 2202  | 522   | 3    | 0.2127   | 0.2633   |             |
| 2 and $3$ |                       | 2202  | 643   | - 4  | 0.2657   | 0.3198   | ~           |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 2 and 6   | [0,50)                | 6     | 0     | 1    | 0        | 0.5657   | *           |
| 2 and 6   |                       | 6     | 2     | 2    | 0.0607   | 0.7945   | *           |
| 2 and 6   |                       | 6     | 1     | 3    | 0.0174   | 0.693    |             |
| 2 and 6   |                       | 6     | 3     | -4   | 0.1239   | 0.8761   | *           |
| 2 and $6$ | [50,100)              | 20    | 3     | 1    | 0.035    | 0.4616   |             |
| 2 and 6   |                       | 20    | 2     | 2    | 0.0177   | 0.4071   |             |
| 2 and 6   |                       | 20    | 6     | 3    | 0.1069   | 0.6055   | *           |
| 2 and $6$ |                       | 20    | 9     | -4   | 0.2      | 0.7281   |             |
| 2 and 6   | [100,200)             | 40    | 5     | 1    | 0.0392   | 0.3334   |             |
| 2 and 6   |                       | 40    | 4     | 2    | 0.0276   | 0.3032   | *           |
| 2 and $6$ |                       | 40    | 12    | 3    | 0.1446   | 0.5208   |             |
| 2 and 6   |                       | 40    | 19    | -4   | 0.2772   | 0.681    |             |
| 2 and $6$ | [200,500)             | 98    | 19    | 1    | 0.1067   | 0.3263   |             |
| 2 and 6   |                       | 98    | 21    | 2    | 0.1219   | 0.3489   |             |
| 2 and 6   |                       | 98    | 20    | 3    | 0.1143   | 0.3376   |             |
| 2 and $6$ |                       | 98    | 38    | - 4  | 0.2634   | 0.5287   | ~           |
| 2 and $6$ | [500,1000)            | 149   | 32    | 1    | 0.1362   | 0.3217   |             |
| 2 and $6$ |                       | 149   | 29    | 2    | 0.1202   | 0.2995   |             |
| 2 and 6   |                       | 149   | 33    | 3    | 0.1416   | 0.3291   |             |
| 2 and 6   |                       | 149   | 55    | -4   | 0.2677   | 0.4836   | ~           |
| 2 and $6$ | [1000,2000)           | 324   | 71    | 1    | 0.1619   | 0.2896   |             |
| 2 and 6   |                       | 324   | 86    | 2    | 0.203    | 0.3389   |             |
| 2 and 6   |                       | 324   | 65    | 3    | 0.1458   | 0.2695   |             |
| 2 and $6$ |                       | 324   | 102   | - 4  | 0.2478   | 0.3906   |             |
| 2 and 6   | [2000,3000)           | 410   | 103   | 1    | 0.1964   | 0.3154   |             |
| 2 and 6   |                       | 410   | 100   | 2    | 0.1898   | 0.3076   |             |
| 2 and $6$ |                       | 410   | 99    | 3    | 0.1876   | 0.305    |             |
| 2 and 6   |                       | 410   | 108   | -4   | 0.2074   | 0.3282   |             |
| 2 and 6   | [3000,5000)           | 1003  | 273   | 1    | 0.2348   | 0.3131   |             |
| 2 and $6$ |                       | 1003  | 234   | 2    | 0.1981   | 0.2726   |             |
| 2 and 6   |                       | 1003  | 210   | 3    | 0.1758   | 0.2475   | ~           |
| 2 and $6$ |                       | 1003  | 286   | -4   | 0.2471   | 0.3265   |             |
| 2 and $6$ | [5000,10000)          | 2266  | 527   | 1    | 0.2087   | 0.2583   |             |
| 2 and 6   |                       | 2266  | 540   | 2    | 0.2142   | 0.2642   |             |
| 2 and $6$ |                       | 2266  | 580   | 3    | 0.2312   | 0.2824   |             |
| 2 and 6   |                       | 2266  | 619   | -4   | 0.2478   | 0.3001   |             |

Table 44: Left: results for pair (2,7). Right: results for pair (3,7)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 2 and $7$ | [0,50)                | 427   | 62    | 1    | 0.1039   | 0.1992   | ~           |
| 2 and $7$ |                       | 427   | 33    | 2    | 0.0483   | 0.1215   | ~           |
| 2 and $7$ |                       | 427   | 131   | 3    | 0.2483   | 0.3722   |             |
| 2 and $7$ |                       | 427   | 201   | 4    | 0.4043   | 0.5382   | ~           |
| 2 and $7$ | [50,100)              | 533   | 41    | 1    | 0.0504   | 0.1156   | ~           |
| 2 and $7$ |                       | 533   | 34    | 2    | 0.04     | 0.1001   | ~           |
| 2 and $7$ |                       | 533   | 203   | 3    | 0.3242   | 0.441    | ~           |
| 2 and $7$ |                       | 533   | 255   | 4    | 0.4187   | 0.5388   | -/          |
| 2 and $7$ | [100,200)             | 1032  | 68    | 1    | 0.0474   | 0.0909   | ~           |
| 2 and $7$ |                       | 1032  | 66    | 2    | 0.0458   | 0.0887   | ~           |
| 2 and $7$ |                       | 1032  | 401   | 3    | 0.3471   | 0.4317   | -/          |
| 2 and $7$ |                       | 1032  | 497   | 4    | 0.4384   | 0.525    | ~           |
| 2 and $7$ | [200,500)             | 2200  | 222   | 1    | 0.0843   | 0.1203   | ~           |
| 2 and $7$ |                       | 2200  | 219   | 2    | 0.0831   | 0.1188   | -/          |
| 2 and 7   |                       | 2200  | 847   | 3    | 0.3565   | 0.4144   | ~           |
| 2 and $7$ |                       | 2200  | 912   | 4    | 0.3855   | 0.4442   | ~           |
| 2 and $7$ | [500,1000)            | 1615  | 259   | 1    | 0.1365   | 0.1875   | -/          |
| 2 and 7   |                       | 1615  | 247   | 2    | 0.1296   | 0.1796   | ~           |
| 2 and $7$ |                       | 1615  | 533   | 3    | 0.2982   | 0.3635   | ~           |
| 2 and $7$ |                       | 1615  | 576   | 4    | 0.3241   | 0.3906   | -/          |
| 2 and $7$ | [1000,2000)           | 1377  | 291   | 1    | 0.1822   | 0.2437   | ~           |
| 2 and $7$ |                       | 1377  | 258   | 2    | 0.1598   | 0.2185   | ~           |
| 2 and $7$ |                       | 1377  | 435   | 3    | 0.282    | 0.3519   | -/          |
| 2 and $7$ |                       | 1377  | 393   | 4    | 0.2527   | 0.3206   | ~           |
| 2 and $7$ | [2000,3000)           | 823   | 220   | 1    | 0.2265   | 0.3125   |             |
| 2 and $7$ |                       | 823   | 195   | 2    | 0.1981   | 0.2807   |             |
| 2 and $7$ |                       | 823   | 212   | 3    | 0.2174   | 0.3023   |             |
| 2 and $7$ |                       | 823   | 196   | 4    | 0.1992   | 0.282    |             |
| 2 and $7$ | [3000,5000)           | 1462  | 407   | 1    | 0.2469   | 0.3123   |             |
| 2 and $7$ |                       | 1462  | 330   | 2    | 0.1967   | 0.2577   |             |
| 2 and $7$ |                       | 1462  | 378   | 3    | 0.2279   | 0.2918   |             |
| 2 and $7$ |                       | 1462  | 347   | 4    | 0.2077   | 0.2698   |             |
| 2 and $7$ | [5000,10000)          | 2279  | 626   | 1    | 0.2493   | 0.3016   |             |
| 2 and $7$ |                       | 2279  | 459   | 2    | 0.179    | 0.2259   | ~           |
| 2 and $7$ |                       | 2279  | 613   | 3    | 0.2438   | 0.2957   |             |
| 2 and 7   |                       | 2279  | 581   | 4    | 0.2303   | 0.2813   |             |

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 3 and $7$ | [0,50)                | 6     | 0     | 1    | 0        | 0.5657   | *           |
| 3 and $7$ |                       | 6     | 1     | 2    | 0.0174   | 0.693    | *           |
| 3 and $7$ |                       | 6     | 2     | 3    | 0.0607   | 0.7945   | *           |
| 3 and $7$ |                       | 6     | 3     | -4   | 0.1239   | 0.8761   | *           |
| 3 and $7$ | [50,100)              | 8     | 0     | 1    | 0        | 0.4941   | *           |
| 3 and $7$ |                       | 8     | 1     | 2    | 0.013    | 0.6076   | *           |
| 3 and $7$ |                       | 8     | 2     | 3    | 0.045    | 0.702    | *           |
| 3 and $7$ |                       | 8     | 5     | -4   | 0.2174   | 0.9091   | *           |
| 3 and $7$ | [100,200)             | 28    | 1     | 1    | 0.0037   | 0.2704   | *           |
| 3 and $7$ |                       | 28    | 7     | 2    | 0.0951   | 0.514    | *           |
| 3 and $7$ |                       | 28    | 11    | 3    | 0.1869   | 0.6456   | *           |
| 3 and $7$ |                       | 28    | 9     | -4   | 0.1388   | 0.582    | *           |
| 3 and $7$ | [200,500)             | 104   | 22    | 1    | 0.1219   | 0.3415   |             |
| 3 and $7$ |                       | 104   | 21    | 2    | 0.1146   | 0.3309   |             |
| 3 and $7$ |                       | 104   | 37    | 3    | 0.2389   | 0.4928   |             |
| 3 and $7$ |                       | 104   | 24    | -4   | 0.1366   | 0.3625   |             |
| 3 and $7$ | [500,1000)            | 240   | 43    | 1    | 0.1204   | 0.2581   |             |
| 3 and $7$ |                       | 240   | 47    | 2    | 0.1343   | 0.2765   |             |
| 3 and $7$ |                       | 240   | 107   | 3    | 0.3593   | 0.5358   | ~           |
| 3 and $7$ |                       | 240   | 43    | -4   | 0.1204   | 0.2581   |             |
| 3 and $7$ | [1000,2000)           | 535   | 116   | 1    | 0.1713   | 0.2705   |             |
| 3 and $7$ |                       | 535   | 107   | 2    | 0.1561   | 0.2525   |             |
| 3 and $7$ |                       | 535   | 183   | 3    | 0.2874   | 0.4013   | ~           |
| 3 and $7$ |                       | 535   | 129   | -4   | 0.1934   | 0.2963   |             |
| 3 and $7$ | [2000,3000)           | 541   | 121   | 1    | 0.1777   | 0.2775   |             |
| 3 and $7$ |                       | 541   | 137   | 2    | 0.2047   | 0.3088   |             |
| 3 and $7$ |                       | 541   | 176   | 3    | 0.2719   | 0.3838   | ~           |
| 3 and $7$ |                       | 541   | 107   | - 4  | 0.1544   | 0.2498   | ~           |
| 3 and $7$ | [3000,5000)           | 968   | 244   | 1    | 0.2151   | 0.293    |             |
| 3 and $7$ |                       | 968   | 222   | 2    | 0.1938   | 0.2692   |             |
| 3 and $7$ |                       | 968   | 236   | 3    | 0.2074   | 0.2843   |             |
| 3 and $7$ |                       | 968   | 266   | -4   | 0.2366   | 0.3166   |             |
| 3 and $7$ | [5000,10000)          | 1931  | 487   | 1    | 0.2256   | 0.2808   |             |
| 3 and $7$ |                       | 1931  | 404   | 2    | 0.1845   | 0.2362   | ~           |
| 3 and $7$ |                       | 1931  | 560   | 3    | 0.262    | 0.3197   | ~           |
| 3 and $7$ |                       | 1931  | 480   | -4   | 0.2221   | 0.277    |             |

Table 45: Left: results for pair (4,6). Right: results for pair (8,12)

| Pair    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|---------|-----------------------|-------|-------|------|----------|----------|-------------|
| 4 and 6 | [0,50)                | 27    | 3     | 1    | 0.0258   | 0.371    |             |
| 4 and 6 |                       | 27    | 5     | 2    | 0.0587   | 0.453    | *           |
| 4 and 6 |                       | 27    | 10    | 3    | 0.1688   | 0.6301   | *           |
| 4 and 6 |                       | 27    | 9     | 4    | 0.1443   | 0.5972   | *           |
| 4 and 6 | [50,100)              | 74    | 12    | 1    | 0.076    | 0.3128   |             |
| 4 and 6 |                       | 74    | 7     | 2    | 0.0349   | 0.2317   |             |
| 4 and 6 |                       | 74    | 32    | 3    | 0.2856   | 0.5921   | ~           |
| 4 and 6 |                       | 74    | 23    | 4    | 0.1847   | 0.4731   |             |
| 4 and 6 | [100,200)             | 228   | 25    | 1    | 0.0643   | 0.1809   |             |
| 4 and 6 |                       | 228   | 28    | 2    | 0.0743   | 0.1963   | _           |
| 4 and 6 |                       | 228   | 85    | 3    | 0.2889   | 0.4651   | ~           |
| 4 and 6 |                       | 228   | 90    | 4    | 0.3092   | 0.4873   | ~           |
| 4 and 6 | [200,500)             | 762   | 94    | 1    | 0.0938   | 0.1605   | ~           |
| 4 and 6 |                       | 762   | 101   | 2    | 0.1019   | 0.1706   | ~           |
| 4 and 6 |                       | 762   | 266   | 3    | 0.3026   | 0.3987   | ~           |
| 4 and 6 |                       | 762   | 301   | 4    | 0.3468   | 0.4453   | _           |
| 4 and 6 | [500,1000)            | 933   | 166   | 1    | 0.1456   | 0.2156   | ~           |
| 4 and 6 |                       | 933   | 162   | 2    | 0.1417   | 0.211    | ~           |
| 4 and 6 |                       | 933   | 324   | 3    | 0.3051   | 0.3919   | _           |
| 4 and 6 |                       | 933   | 281   | 4    | 0.261    | 0.3447   | ~           |
| 4 and 6 | [1000,2000)           | 1057  | 235   | 1    | 0.1887   | 0.26     |             |
| 4 and 6 |                       | 1057  | 236   | 2    | 0.1896   | 0.261    |             |
| 4 and 6 |                       | 1057  | 294   | 3    | 0.2414   | 0.3182   |             |
| 4 and 6 |                       | 1057  | 292   | 4    | 0.2396   | 0.3162   |             |
| 4 and 6 | [2000,3000)           | 946   | 242   | 1    | 0.2183   | 0.2974   |             |
| 4 and 6 |                       | 946   | 206   | 2    | 0.1826   | 0.2575   |             |
| 4 and 6 |                       | 946   | 258   | 3    | 0.2342   | 0.3149   |             |
| 4 and 6 |                       | 946   | 240   | 4    | 0.2163   | 0.2952   |             |
| 4 and 6 | [3000,5000)           | 1656  | 458   | 1    | 0.2469   | 0.3083   |             |
| 4 and 6 |                       | 1656  | 378   | 2    | 0.2007   | 0.2583   |             |
| 4 and 6 |                       | 1656  | 389   | 3    | 0.2071   | 0.2652   |             |
| 4 and 6 |                       | 1656  | 431   | 4    | 0.2313   | 0.2915   |             |
| 4 and 6 | [5000,10000)          | 3478  | 943   | 1    | 0.2506   | 0.2927   | ~           |
| 4 and 6 |                       | 3478  | 781   | 2    | 0.2054   | 0.2449   | ~           |
| 4 and 6 |                       | 3478  | 925   | 3    | 0.2456   | 0.2874   |             |
| 4 and 6 |                       | 3478  | 829   | 4    | 0.2188   | 0.2591   |             |

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 12 | [0,50)                | 6     | 2     | 1    | 0.0607   | 0.7945   |             |
| 8 and 12 |                       | 6     | 0     | 2    | 0        | 0.5657   |             |
| 8 and 12 |                       | 6     | 1     | 3    | 0.0174   | 0.693    |             |
| 8 and 12 |                       | 6     | 3     | -4   | 0.1239   | 0.8761   |             |
| 8 and 12 | [50,100)              | 11    | 1     | 1    | 0.0094   | 0.5122   |             |
| 8 and 12 |                       | 11    | 0     | 2    | 0        | 0.4154   |             |
| 8 and 12 |                       | 11    | 5     | 3    | 0.152    | 0.7949   |             |
| 8 and 12 |                       | 11    | 5     | -4   | 0.152    | 0.7949   |             |
| 8 and 12 | [100,200)             | 39    | 6     | 1    | 0.0533   | 0.37     |             |
| 8 and 12 |                       | 39    | 6     | 2    | 0.0533   | 0.37     |             |
| 8 and 12 |                       | 39    | 13    | 3    | 0.1666   | 0.5558   |             |
| 8 and 12 |                       | 39    | 14    | -4   | 0.1851   | 0.5799   |             |
| 8 and 12 | [200,500)             | 142   | 18    | 1    | 0.0678   | 0.2247   | ~           |
| 8 and 12 |                       | 142   | 15    | 2    | 0.0531   | 0.1994   | ~           |
| 8 and 12 |                       | 142   | 52    | 3    | 0.2629   | 0.4834   | ~           |
| 8 and 12 |                       | 142   | 57    | -4   | 0.2945   | 0.5186   | ~           |
| 8 and 12 | [500,1000)            | 254   | 35    | 1    | 0.0881   | 0.2091   | ~           |
| 8 and 12 |                       | 254   | 53    | 2    | 0.1466   | 0.2881   |             |
| 8 and 12 |                       | 254   | 100   | 3    | 0.3124   | 0.4813   | ~           |
| 8 and 12 |                       | 254   | 66    | -4   | 0.1909   | 0.3431   |             |
| 8 and 12 | [1000,2000)           | 455   | 100   | 1    | 0.1705   | 0.2785   |             |
| 8 and 12 |                       | 455   | 95    | 2    | 0.1607   | 0.2668   |             |
| 8 and 12 |                       | 455   | 148   | 3    | 0.2673   | 0.3892   | ~           |
| 8 and 12 |                       | 455   | 112   | -4   | 0.1943   | 0.3066   |             |
| 8 and 12 | [2000,3000)           | 430   | 91    | 1    | 0.162    | 0.2716   |             |
| 8 and 12 |                       | 430   | 103   | 2    | 0.187    | 0.3014   |             |
| 8 and 12 |                       | 430   | 100   | 3    | 0.1807   | 0.294    |             |
| 8 and 12 |                       | 430   | 136   | -4   | 0.2573   | 0.3818   | ~           |
| 8 and 12 | [3000,5000)           | 873   | 220   | 1    | 0.2133   | 0.2952   |             |
| 8 and 12 |                       | 873   | 220   | 2    | 0.2133   | 0.2952   |             |
| 8 and 12 |                       | 873   | 207   | 3    | 0.1993   | 0.2796   |             |
| 8 and 12 |                       | 873   | 226   | -4   | 0.2197   | 0.3023   |             |
| 8 and 12 | [5000,10000)          | 2630  | 652   | 1    | 0.2251   | 0.2722   |             |
| 8 and 12 |                       | 2630  | 701   | 2    | 0.2432   | 0.2913   |             |
| 8 and 12 |                       | 2630  | 647   | 3    | 0.2233   | 0.2702   |             |
| 8 and 12 |                       | 2630  | 630   | 4    | 0.2171   | 0.2636   |             |

Table 46: Left: results for pair (8,13). Right: results for pair (8,14)

| Pair     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and 13 | [0,50)                | 3     | 0     | 1    | 0        | 0.7226   |             |
| 8 and 13 |                       | 3     | 1     | 2    | 0.0353   | 0.8722   |             |
| 8 and 13 |                       | 3     | 1     | 3    | 0.0353   | 0.8722   |             |
| 8 and 13 |                       | 3     | 1     | - 4  | 0.0353   | 0.8722   |             |
| 8 and 13 | [50,100)              | 11    | 1     | 1    | 0.0094   | 0.5122   |             |
| 8 and 13 |                       | 11    | 4     | 2    | 0.1051   | 0.7354   | *           |
| 8 and 13 |                       | 11    | 6     | 3    | 0.2051   | 0.848    |             |
| 8 and 13 |                       | 11    | 0     | - 4  | 0        | 0.4154   |             |
| 8 and 13 | [100,200)             | 31    | 4     | 1    | 0.0358   | 0.3717   |             |
| 8 and 13 |                       | 31    | -4    | 2    | 0.0358   | 0.3717   |             |
| 8 and 13 |                       | 31    | 10    | 3    | 0.1455   | 0.5711   |             |
| 8 and 13 |                       | 31    | 13    | 4    | 0.2136   | 0.6576   |             |
| 8 and 13 | [200,500)             | 111   | 16    | 1    | 0.0745   | 0.2606   |             |
| 8 and 13 |                       | 111   | 22    | 2    | 0.1139   | 0.3222   |             |
| 8 and 13 |                       | 111   | 36    | 3    | 0.2153   | 0.4565   |             |
| 8 and 13 |                       | 111   | 37    | 4    | 0.2229   | 0.4657   |             |
| 8 and 13 | [500,1000)            | 169   | 23    | 1    | 0.0783   | 0.226    | ~           |
| 8 and 13 |                       | 169   | 37    | 2    | 0.1435   | 0.3192   |             |
| 8 and 13 |                       | 169   | 65    | 3    | 0.2873   | 0.4921   | ~           |
| 8 and 13 |                       | 169   | 44    | 4    | 0.1781   | 0.3638   |             |
| 8 and 13 | [1000,2000)           | 428   | 85    | 1    | 0.1503   | 0.2577   |             |
| 8 and 13 |                       | 428   | 85    | 2    | 0.1503   | 0.2577   |             |
| 8 and 13 |                       | 428   | 138   | 3    | 0.2629   | 0.3883   | ~           |
| 8 and 13 |                       | 428   | 120   | 4    | 0.224    | 0.3446   |             |
| 8 and 13 | [2000,3000)           | 369   | 76    | 1    | 0.1535   | 0.2706   |             |
| 8 and 13 |                       | 369   | 105   | 2    | 0.2239   | 0.3542   |             |
| 8 and 13 |                       | 369   | 95    | 3    | 0.1993   | 0.3256   |             |
| 8 and 13 |                       | 369   | 93    | 4    | 0.1944   | 0.3199   |             |
| 8 and 13 | [3000,5000)           | 885   | 212   | 1    | 0.2018   | 0.2818   |             |
| 8 and 13 |                       | 885   | 210   | 2    | 0.1997   | 0.2795   |             |
| 8 and 13 |                       | 885   | 228   | 3    | 0.2188   | 0.3007   |             |
| 8 and 13 |                       | 885   | 235   | - 4  | 0.2262   | 0.309    |             |
| 8 and 13 | [5000,10000)          | 2543  | 645   | 1    | 0.2303   | 0.2785   |             |
| 8 and 13 |                       | 2543  | 654   | 2    | 0.2337   | 0.2821   |             |
| 8 and 13 |                       | 2543  | 587   | 3    | 0.2083   | 0.255    |             |
| 8 and 13 |                       | 2543  | 657   | 4    | 0.2349   | 0.2833   |             |

| Pair                    | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 8 and $14$              | [0,50)                | 50    | 9     | 1    | 0.0755   | 0.371    | *           |
| $8 \ \mathrm{and} \ 14$ |                       | 50    | 1     | 2    | 0.0021   | 0.1677   |             |
| $8~{\rm and}~14$        |                       | 50    | 22    | 3    | 0.2654   | 0.6308   | *           |
| $8~{\rm and}~14$        |                       | 50    | 18    | -4   | 0.2014   | 0.5564   | *           |
| $8 \ \mathrm{and} \ 14$ | [50,100)              | 92    | 6     | 1    | 0.0222   | 0.1763   | -           |
| $8~{\rm and}~14$        |                       | 92    | 9     | 2    | 0.0404   | 0.2182   | _           |
| $8 \ \mathrm{and} \ 14$ |                       | 92    | 45    | 3    | 0.3501   | 0.6299   | ~           |
| $8 \ \mathrm{and} \ 14$ |                       | 92    | 32    | - 4  | 0.2259   | 0.4935   |             |
| $8 \ \mathrm{and} \ 14$ | [100,200)             | 208   | 18    | 1    | 0.046    | 0.1571   | _           |
| $8~{\rm and}~14$        |                       | 208   | 20    | 2    | 0.0528   | 0.1687   | ~           |
| $8 \ \mathrm{and} \ 14$ |                       | 208   | 100   | 3    | 0.3864   | 0.5765   | ~           |
| $8~{\rm and}~14$        |                       | 208   | 70    | -4   | 0.2523   | 0.4326   | _           |
| $8~{\rm and}~14$        | [200,500)             | 638   | 50    | 1    | 0.0535   | 0.1135   | ~           |
| $8~{\rm and}~14$        |                       | 638   | 68    | 2    | 0.0771   | 0.1456   | ~           |
| $8 \ \mathrm{and} \ 14$ |                       | 638   | 310   | 3    | 0.4311   | 0.541    | ~           |
| $8~{\rm and}~14$        |                       | 638   | 210   | -4   | 0.2795   | 0.383    | ~           |
| $8~{\rm and}~14$        | [500,1000)            | 762   | 108   | 1    | 0.11     | 0.1807   | ~           |
| $8 \ \mathrm{and} \ 14$ |                       | 762   | 118   | 2    | 0.1217   | 0.195    | ~           |
| $8~{\rm and}~14$        |                       | 762   | 297   | 3    | 0.3417   | 0.44     | ~           |
| $8~{\rm and}~14$        |                       | 762   | 239   | -4   | 0.2688   | 0.3623   | ~           |
| $8 \ \mathrm{and} \ 14$ | [1000,2000)           | 981   | 191   | 1    | 0.1618   | 0.2324   | ~           |
| $8~{\rm and}~14$        |                       | 981   | 189   | 2    | 0.1599   | 0.2302   | ~           |
| $8~{\rm and}~14$        |                       | 981   | 307   | 3    | 0.2732   | 0.3557   | ~           |
| 8 and $14$              |                       | 981   | 294   | -4   | 0.2605   | 0.342    | ~           |
| $8~{\rm and}~14$        | [2000,3000)           | 744   | 171   | 1    | 0.1897   | 0.2756   |             |
| $8 \ \mathrm{and} \ 14$ |                       | 744   | 142   | 2    | 0.1539   | 0.2343   | ~           |
| 8 and $14$              |                       | 744   | 199   | 3    | 0.2247   | 0.3151   |             |
| $8~{\rm and}~14$        |                       | 744   | 232   | -4   | 0.2665   | 0.3611   | ~           |
| $8~{\rm and}~14$        | [3000,5000)           | 1394  | 361   | 1    | 0.2276   | 0.293    |             |
| $8 \ \mathrm{and} \ 14$ |                       | 1394  | 326   | 2    | 0.2037   | 0.267    |             |
| $8~{\rm and}~14$        |                       | 1394  | 364   | 3    | 0.2296   | 0.2953   |             |
| $8 \ \mathrm{and} \ 14$ |                       | 1394  | 343   | -4   | 0.2153   | 0.2797   |             |
| 8 and $14$              | [5000,10000)          | 3395  | 908   | 1    | 0.2468   | 0.2892   |             |
| 8 and $14$              |                       | 3395  | 767   | 2    | 0.2065   | 0.2466   | ~           |
| $8 \ \mathrm{and} \ 14$ |                       | 3395  | 798   | 3    | 0.2153   | 0.256    |             |
| $8~{\rm and}~14$        |                       | 3395  | 922   | -4   | 0.2508   | 0.2934   |             |

Table 47: Left: results for pair (11,14). Right: results for pair (12,13)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 11 and 14 | [0,50)                | 9     | 1     | 1    | 0.0115   | 0.5721   | *           |
| 11 and 14 |                       | 9     | 2     | 2    | 0.0399   | 0.6628   | *           |
| 11 and 14 |                       | 9     | - 4   | 3    | 0.1305   | 0.81     | *           |
| 11 and 14 |                       | 9     | 2     | 4    | 0.0399   | 0.6628   | *           |
| 11 and 14 | [50,100)              | 6     | 2     | 1    | 0.0607   | 0.7945   | *           |
| 11 and 14 |                       | 6     | 0     | 2    | 0        | 0.5657   | *           |
| 11 and 14 |                       | 6     | 2     | 3    | 0.0607   | 0.7945   | *           |
| 11 and 14 |                       | 6     | 2     | 4    | 0.0607   | 0.7945   | *           |
| 11 and 14 | [100,200)             | 6     | 2     | 1    | 0.0607   | 0.7945   | *           |
| 11 and 14 |                       | 6     | 0     | 2    | 0        | 0.5657   | *           |
| 11 and 14 |                       | 6     | 2     | 3    | 0.0607   | 0.7945   | *           |
| 11 and 14 |                       | 6     | 2     | 4    | 0.0607   | 0.7945   | *           |
| 11 and 14 | [200,500)             | 91    | 9     | 1    | 0.0409   | 0.2204   | ~           |
| 11 and 14 |                       | 91    | 17    | 2    | 0.0992   | 0.324    |             |
| 11 and 14 |                       | 91    | 33    | 3    | 0.2379   | 0.5091   |             |
| 11 and 14 |                       | 91    | 32    | 4    | 0.2286   | 0.4982   |             |
| 11 and 14 | [500,1000)            | 191   | 26    | 1    | 0.081    | 0.2199   | ~           |
| 11 and 14 |                       | 191   | 39    | 2    | 0.1351   | 0.2966   |             |
| 11 and 14 |                       | 191   | 74    | 3    | 0.2952   | 0.4885   | ~           |
| 11 and 14 |                       | 191   | 52    | 4    | 0.1925   | 0.3699   |             |
| 11 and 14 | [1000,2000)           | 510   | 93    | 1    | 0.1395   | 0.2348   | 4           |
| 11 and 14 |                       | 510   | 105   | 2    | 0.1605   | 0.2602   |             |
| 11 and 14 |                       | 510   | 147   | 3    | 0.2357   | 0.3472   |             |
| 11 and 14 |                       | 510   | 165   | 4    | 0.2687   | 0.3837   | 4           |
| 11 and 14 | [2000,3000)           | 556   | 115   | 1    | 0.163    | 0.2588   |             |
| 11 and 14 |                       | 556   | 141   | 2    | 0.2057   | 0.3083   |             |
| 11 and 14 |                       | 556   | 128   | 3    | 0.1843   | 0.2837   |             |
| 11 and 14 |                       | 556   | 172   | 4    | 0.2575   | 0.3665   | ~           |
| 11 and 14 | [3000,5000)           | 1016  | 275   | 1    | 0.2336   | 0.3113   |             |
| 11 and 14 |                       | 1016  | 279   | 2    | 0.2373   | 0.3154   |             |
| 11 and 14 |                       | 1016  | 222   | 3    | 0.1845   | 0.2568   |             |
| 11 and 14 |                       | 1016  | 240   | 4    | 0.2011   | 0.2754   |             |
| 11 and 14 | [5000,10000)          | 2285  | 693   | 1    | 0.2771   | 0.3308   | 1           |
| 11 and 14 |                       | 2285  | 525   | 2    | 0.2061   | 0.2553   |             |
| 11 and 14 |                       | 2285  | 540   | 3    | 0.2124   | 0.262    |             |
| 11 and 14 |                       | 2285  | 527   | 4    | 0.2069   | 0.2562   |             |

| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pair                     | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------|-------|------|----------|----------|-------------|
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $12 \ \mathrm{and} \ 13$ | [0,50)                | 9     | 0     | 1    | 0        | 0.4648   | *           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 9     | 4     | 2    | 0.1305   | 0.81     | *           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $12 \ \mathrm{and} \ 13$ |                       | 9     | 1     | 3    | 0.0115   | 0.5721   | *           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 9     | 4     | - 4  | 0.1305   | 0.81     | *           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              | [50,100)              | 45    | 9     | 1    | 0.0842   | 0.4045   | *           |
| 12 md 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 and $13$              |                       | 45    | 2     | 2    | 0.0078   | 0.2159   |             |
| 12 md 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 and $13$              |                       | 45    | 17    | 3    | 0.2085   | 0.5832   | *           |
| 12 mart 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 and $13$              |                       | 45    | 17    | - 4  | 0.2085   | 0.5832   | *           |
| 12 md 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 and $13$              | [100,200)             | 126   | 15    | 1    | 0.0599   | 0.2227   | ~           |
| 12 mart 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 126   | 12    | 2    | 0.0441   | 0.1936   | _           |
| 12 mai 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 126   | 50    | 3    | 0.2845   | 0.5212   | ~           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 126   | 49    | -4   | 0.2774   | 0.5134   | ~           |
| 12 mail 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              | [200,500)             | 437   | 52    | 1    | 0.0823   | 0.1691   | _           |
| 12 mat 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 437   | 46    | 2    | 0.0709   | 0.1535   | ~           |
| 12 and 13         [500,1000)         669         106         1         0.123         0.2088         ✓           12 and 13         669         907         72         2         0.111         1777         ✓           12 and 13         669         227         4         0.2963         0.3024         0.4104         ✓           12 and 13         1000,2000)         895         170         1         0.106         0.2922         ✓           12 and 13         895         172         2         0.1581         0.2166         ✓           12 and 13         895         172         2         0.1581         0.2166         ✓           12 and 13         895         266         4         0.2844         0.076         ✓           12 and 13         700         226         4         0.2844         0.076         ✓           12 and 13         701         132         2         0.1565         0.2329         ✓           12 and 13         701         127         1         0.0176         ✓         0.2727         ✓           12 and 13         701         127         1         0.1766         0.2329         ✓         ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 and $13$              |                       | 437   | 138   | 3    | 0.2573   | 0.3807   | ~           |
| 12 mai 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 437   | 201   | -4   | 0.3946   | 0.5267   | _           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              | [500,1000)            | 669   | 106   | 1    | 0.123    | 0.2018   | ~           |
| 12 and 13   660   277   4   0.2003   0.0202   \( \sqrt{12} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 and $13$              |                       | 669   | 97    | 2    | 0.111    | 0.1871   | ~           |
| 12 and 13         [1100,2000)         885         170         1         0.156         0.2292         ✓           12 and 13         885         877         2         0.1584         0.2292         ✓           12 and 13         885         527         3         0.209         0.3311         ✓           12 and 13         [2000,3000)         701         147         1         0.17         0.2285           12 and 13         701         132         2         0.105         0.2292         ✓           12 and 13         701         122         2         0.105         0.2292         ✓           12 and 13         701         132         2         0.1065         0.2292         ✓           12 and 13         1800         305         1         0.2102         0.307         ✓           12 and 13         1800         305         1         0.2102         0.307         ✓           12 and 13         1800         305         1         0.2102         0.307         ✓           12 and 13         1400         377         3         0.2261         0.2267            12 and 13         1400         307         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 and $13$              |                       | 669   | 239   | 3    | 0.3074   | 0.4104   | _           |
| 12 mat 13   890   172   2   0.1581   0.216   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 and $13$              |                       | 669   | 227   | -4   | 0.2903   | 0.3921   | ~           |
| 12 md   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 and $13$              | [1000,2000)           | 895   | 170   | 1    | 0.156    | 0.2292   | ~           |
| 12 md 13   885   286   4   0.2894   0.176   \( \sqrt{2} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 and $13$              |                       | 895   | 172   | 2    | 0.1581   | 0.2316   | ~           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 895   | 257   | 3    | 0.2469   | 0.3311   |             |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 895   | 296   | -4   | 0.2884   | 0.376    | ~           |
| 12 md 13   791   225   3   0.279   0.377   \times   12 md 13   791   225   3   0.279   0.377   \times   12 md 13   791   26   77   4   0.2972   0.3876   \times   12 md 13   1000.5000)   1400   255   1   0.2119   0.2742   \times   12 md 13   0.200   1400   255   1   0.2119   0.2742   \times   12 md 13   0.200   1400   257   3   0.2201   0.2005   \times   12 md 13   0.200   1400   257   4   0.2201   0.2005   \times   12 md 13   0.200   341   808   2   0.2231   0.2005   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   12 md 13   0.200   341   808   2   0.2231   0.2544   \times   0.200   341   808   2   0.2231   0.2544   \times   0.200   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   341   800   34 | 12 and $13$              | [2000,3000)           | 701   | 147   | 1    | 0.17     | 0.2558   |             |
| 12 and 13   791   197   4   0.2022   0.3070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 and $13$              |                       | 701   | 132   | 2    | 0.1505   | 0.2329   | ~           |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 701   | 225   | 3    | 0.2739   | 0.372    | ~           |
| 12 and 13         1409         340         2         0.3022         0.2056           12 and 13         1409         377         3         0.2961         0.2997           12 and 13         1409         377         3         0.2961         0.2997           12 and 13         1409         379         4         0.2991         0.3088           12 and 13         1800         3441         948         1         0.2977         2           12 and 13         2404         886         2         0.2231         0.2973         2           12 and 13         3441         834         3         0.2225         0.2634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 and $13$              |                       | 701   | 197   | - 4  | 0.2362   | 0.3307   |             |
| 12 mat 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              | [3000,5000)           | 1469  | 355   | 1    | 0.2119   | 0.2742   |             |
| 12 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 and $13$              |                       | 1469  | 340   | 2    | 0.2022   | 0.2636   |             |
| 12 and 13     [5000,10000)     3441     948     1     0.2547     0.2973     ✓       12 and 13     3441     836     2     0.2231     0.264       12 and 13     3441     834     3     0.2225     0.2634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 and $13$              |                       | 1469  | 377   | 3    | 0.2261   | 0.2897   |             |
| 12 and 13 3441 836 2 0.2231 0.264 12 and 13 3441 834 3 0.2225 0.2634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 and $13$              |                       | 1469  | 397   | -4   | 0.2391   | 0.3038   |             |
| 12 and 13 3441 834 3 0.2225 0.2634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 and 13                | [5000,10000)          | 3441  | 948   | 1    | 0.2547   | 0.2973   | ~           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 and $13$              |                       | 3441  | 836   | 2    | 0.2231   | 0.264    |             |
| 12 and 13 3441 823 4 0.2195 0.2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 and $13$              |                       | 3441  | 834   | 3    | 0.2225   | 0.2634   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 and $13$              |                       | 3441  | 823   | -4   | 0.2195   | 0.2601   |             |

Table 48: Results for pair (13,14)

| Pair      | Distance interval (m) | Total | Count | Type | Lower CI | Upper CI | Sign. diff. |
|-----------|-----------------------|-------|-------|------|----------|----------|-------------|
| 13 and 14 | [0,50)                | - 4   | 0     | 1    | 0        | 0.6614   | *           |
| 13 and 14 |                       | - 4   | 1     | 2    | 0.0263   | 0.8044   |             |
| 13 and 14 |                       | -4    | 2     | 3    | 0.0934   | 0.9066   | *           |
| 13 and 14 |                       | -4    | 1     | -4   | 0.0263   | 0.8044   | *           |
| 13 and 14 | [50,100)              | 9     | 1     | 1    | 0.0115   | 0.5721   |             |
| 13 and 14 |                       | 9     | 1     | 2    | 0.0115   | 0.5721   | *           |
| 13 and 14 |                       | 9     | 3     | 3    | 0.0802   | 0.7414   | *           |
| 13 and 14 |                       | 9     | 4     | 4    | 0.1305   | 0.81     |             |
| 13 and 14 | [100,200)             | 28    | 3     | 1    | 0.0249   | 0.3609   | *           |
| 13 and 14 |                       | 28    | 3     | 2    | 0.0249   | 0.3609   | *           |
| 13 and 14 |                       | 28    | 11    | 3    | 0.1869   | 0.6456   |             |
| 13 and 14 |                       | 28    | 11    | -4   | 0.1869   | 0.6456   | *           |
| 13 and 14 | [200,500)             | 86    | 9     | 1    | 0.0433   | 0.2319   | ~           |
| 13 and 14 |                       | 86    | 12    | 2    | 0.0651   | 0.274    |             |
| 13 and 14 |                       | 86    | 37    | 3    | 0.293    | 0.5791   | _           |
| 13 and 14 |                       | 86    | 28    | -4   | 0.2041   | 0.4761   |             |
| 13 and 14 | [500,1000)            | 151   | 28    | 1    | 0.1133   | 0.2885   |             |
| 13 and 14 |                       | 151   | 21    | 2    | 0.078    | 0.2356   | _           |
| 13 and 14 |                       | 151   | 54    | 3    | 0.2581   | 0.4712   | ~           |
| 13 and 14 |                       | 151   | 48    | 4    | 0.2232   | 0.4305   |             |
| 13 and 14 | [1000,2000)           | 314   | 68    | 1    | 0.1589   | 0.288    |             |
| 13 and 14 |                       | 314   | 67    | 2    | 0.1561   | 0.2846   |             |
| 13 and 14 |                       | 314   | 78    | 3    | 0.1869   | 0.3221   |             |
| 13 and 14 |                       | 314   | 101   | 4    | 0.2531   | 0.3989   | ~           |
| 13 and 14 | [2000,3000)           | 354   | 77    | 1    | 0.1627   | 0.2846   |             |
| 13 and 14 |                       | 354   | 88    | 2    | 0.1903   | 0.3178   |             |
| 13 and 14 |                       | 354   | 77    | 3    | 0.1627   | 0.2846   |             |
| 13 and 14 |                       | 354   | 112   | -4   | 0.2519   | 0.3888   | ~           |
| 13 and 14 | [3000,5000)           | 758   | 174   | 1    | 0.1897   | 0.2749   |             |
| 13 and 14 |                       | 758   | 213   | 2    | 0.2378   | 0.3287   |             |
| 13 and 14 |                       | 758   | 156   | 3    | 0.1679   | 0.2498   | ~           |
| 13 and 14 |                       | 758   | 215   | 4    | 0.2403   | 0.3314   |             |
| 13 and 14 | [5000,10000)          | 2141  | 569   | 1    | 0.24     | 0.2933   |             |
| 13 and 14 |                       | 2141  | 554   | 2    | 0.2332   | 0.2861   |             |
| 13 and 14 |                       | 2141  | 503   | 3    | 0.2103   | 0.2615   |             |
| 13 and 14 |                       | 2141  | 515   | 4    | 0.2157   | 0.2673   |             |

## References

- Getz, W.M., Salter, R., Muellerklein, O., Yoon, H.S., Tallam, K., (2018). Modeling epidemics: A primer and Numerus Model Builder implementation. *Epidemics* 25, 9–19. https://doi.org/10.1016/j.epidem. 2018.06.001.
- Polansky, L., Kilian, W., Wittemyer, G., (2015). Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state—space models. *Proceedings of the Royal Society B: Biological Sciences 282*, 20143042. https://doi.org/10.1098/rspb.2014.3042.
- Seidel, D.P., (2019). Extensible Tools for Movement Ecology with Applications for the Study and Conservation of Namibian Ungulates. Ph.D. thesis. University of California, Berkeley.
- Tsalyuk, M., Kilian, W., Reineking, B., Getz, W.M., (2019). Temporal variation in resource selection of African elephants follows long-term variability in resource availability. *Ecological Monographs* 89, e01348. https://doi.org/10.1002/ecm.1348.