Numerické cvičenie č. 3 – Pohyb po kružnici

- 1. Aká je obvodová rýchlosť bodu na obvode kolesa s polomerom 50 mm, ak vykoná 120 otáčok za minútu ? [0,63 m.s⁻¹]
- 2. Hrot minútovej ručičky vežových hodín sa pohybuje obvodovou rýchlosťou 1,5 mm.s⁻¹. Aká dlhá je ručička ? [0.86 m]
- 3. Koleso traktora má priemer 1,2 m. Určte uhlovú rýchlosť kolesa, ak sa traktor pohybuje rýchlosťou 2,4 m/s. [4 rad.s⁻¹]
- 4. Aký je polomer kolesa, ak pri jeho otáčavom pohybe má bod na obvode kolesa 3-krát väčšiu rýchlosť ako bod, ktorý je o 10 cm bližšie k osi otáčania ? [15 cm]
- 5. Guľa s polomerom 5 cm sa valí rovnomerným priamočiarym pohybom po vodorovnej podložke a dráhu 10 m prejde za 5 sekúnd. Aká je pritom uhlová rýchlosť jej otáčavého pohybu? [40 rad.s⁻¹]
- 6. Vypočítajte normálové zrýchlenie Mesiaca, ak považujeme dráhu mesiaca okolo Zeme za kruhovú s polomerom 385 000 km a perióda obehu Mesiaca okolo Zeme je 27,3 dňa. [2,7.10⁻³ m.s⁻²]
- 7. Objekt sa pohybuje s konštantnou rýchlosťou po kruhovej dráhe s polomerom 6,4 m pričom jeho dostredivé zrýchlenie je 2,5 m.s⁻². Aká je obvodová rýchlosť uvedeného objektu? [4 m.s⁻¹]
- 8. Hmotný bod koná pohyb po kružnici s polomerom R = 20 cm s konštantným uhlovým zrýchlením $\varepsilon = 2 \text{ rad.s}^{-2}$. Vypočítajte hodnotu tangenciálneho, normálového a celkového zrýchlenia na konci 4. sekundy od začiatku pohybu, keď v čase t = 0 s bol hmotný bod v pokoji. [$a_t = 40 \text{ cm.s}^{-2}$, $a_n = 1280 \text{ cm.s}^{-2}$, $a_n = 1280 \text{ cm.s}^{-2}$]
- 9. Teleso sa začína otáčať okolo pevnej osi s konštantným uhlovým zrýchlením $\varepsilon = 0.04 \text{ rad.s}^{-2}$. V akom čase od začiatku otáčania bude celkové zrýchlenie ľubovoľného bodu telesa zvierať uhol $\alpha = 76^{\circ}$ s rýchlosťou toho istého bodu ?
- 10. Pri prejazde zákrutou tvaru kružnice s polomerom 150 m vlak za 15 sekúnd rovnomerne spomalil z rýchlosti 90 km.h⁻¹ na rýchlosť 50 km.h⁻¹. Určte veľkosť celkového zrýchlenia vlaku v okamihu, keď dosiahol rýchlosť 50 km.h⁻¹. [1,484 m.s⁻²]
- 11. Rotor elektromotora rotujúci s frekvenciou 4000 ot.min⁻¹ sa počas 8 s celkom zastaví. Koľko otáčok pritom vykoná, ak jeho pohyb je pri zastavovaní rovnomerne spomalený? [266,67]
- 12. Koleso sa otáča s frekvenciou f = 25 Hz. Brzdením je možné dosiahnuť, že jeho otáčanie bude rovnomerne spomalené a koleso sa zastaví po čase $t_0 = 30$ s od začiatku brzdenia. Vypočítajte uhlové zrýchlenie kolesa a počet otáčok, ktoré koleso vykoná od začiatku brzdenia až do zastavenia. [$\varepsilon = -5,24$ rad.s⁻², N = 375]
- 13. Koleso sa začína z pokojového stavu roztáčať rovnomerne zrýchlene tak, že za prvých 5 sekúnd vykoná 12,5 otáčok. Aká je hodnota jeho uhlovej rýchlosti na konci piatej sekundy? [31,4 rad.s⁻¹]
- 14. Kotúč s polomerom R = 10 cm sa roztáča z pokoja tak, že jeho uhlové zrýchlenie s časom rovnomerne vzrastá z hodnoty $\varepsilon_1 = 3$ s⁻² v čase $t_0 = 0$ s na hodnotu $\varepsilon_2 = 8$ s⁻² v čase $t_1 = 10$ s. Koľko otáčok urobí kotúč za čas t = 20 s svojho pohybu ? [201,596]
- 15. Je dvanásť hodín. Koľko bude hodín, keď sa budú veľká a malá ručička znovu prekrývať?

 [13 hod 5 min 27,27 s]
- 16. Za aký čas po prekročení poludnia budú veľká a malá ručička hodín po prvý krát zvierať pravý uhol? [16 min 21,818 s]

17. Koleso s polomerom R = 40 cm sa otáča tak, že bod na jeho obvode má počas pohybu stále rovnako veľké tangenciálne a normálové zrýchlenie ($a_t = a_n$). Za aký čas dosiahne rýchlosť tohto bodu hodnotu v = 15 cm.s⁻¹, keď na začiatku mala jeho rýchlosť veľkosť $v_0 = 5$ cm.s⁻¹?

 $\left[t = \left(\frac{1}{v_0} - \frac{1}{v}\right)R = 5{,}33 \text{ s}\right]$