Stochastic Calculus, Week 8

Equivalent Martingale Measures

Outline

- 1. Intuition via binomial approximation
- 2. Cameron-Martin-Girsanov Theorem
- 3. Application to derivative pricing:
 equivalent martingale measures/risk neutral measures,
 martingale representation theorem
- 4. Obtaining the Black-Scholes formula once more

Intuition via Binomial Approximation

Let $W_t^n(\omega), t \in [0, T]$ be defined by

$$W_t^n(\omega) = \sqrt{\delta t} \sum_{j=1}^i Y_j(\omega), \quad t = i \, \delta t, \quad \delta t = \frac{T}{n},$$

where $\omega = (\omega_1, \dots, \omega_n)$ represents the combined outcome of n consecutive binary draws, where each draw may be u (up) or d (down); further,

$$Y_i(\omega) = \begin{cases} 1 & \text{if } \omega_i = u, \\ -1 & \text{if } \omega_i = d. \end{cases}$$

Let Ω be the set of all possible ω 's, let \mathcal{F} be the appropriate σ -field, and let \mathbb{P} and \mathbb{Q} be two probability measures on (Ω, \mathcal{F}) , such that the draws are independent under both \mathbb{P} and \mathbb{Q} , and

$$\mathbb{P}(\omega_i = u) = p = \frac{1}{2},$$

$$\mathbb{Q}(\omega_i = u) = q = \frac{1}{2} \left(1 - \gamma \sqrt{\delta t} \right),$$

for some constant γ .

1

As $n \to \infty$, $W_t^n(\omega) \stackrel{d}{\longrightarrow} W_t(\omega)$ (convergence in distribution), where

$$W_t(\omega) = \begin{cases} \text{Standard Brownian motion under } \mathbb{P}, \\ \\ \text{Brownian motion with drift } -\gamma \text{ under } \mathbb{Q}. \end{cases}$$

The measures \mathbb{P} and \mathbb{Q} are *equivalent*, which means that for any even $A \in \mathcal{F}$, we have $\mathbb{P}(A) > 0$ if and only if $\mathbb{Q}(A) > 0$. This requires that γ is such that 0 < q < 1. If q would be either 0 or 1, the two measures would not be equivalent (why?).

Thus, by changing the measure from \mathbb{P} to \mathbb{Q} , we change the drift in W_t from 0 to $-\gamma$.

We can also change the drift by adding γt to $W_t^n(\omega)$. Thus, define

$$\tilde{W}_{t}^{n}(\omega) = W_{t}^{n}(\omega) + \gamma t$$

$$= \sqrt{\delta t} \sum_{j=1}^{i} \tilde{Y}_{j}(\omega), \quad t = i \, \delta t, \quad \delta t = \frac{T}{n},$$

$$\tilde{Y}_{i}(\omega) = \begin{cases} 1 + \gamma \sqrt{\delta t} & \text{if } \omega_{i} = u, \\ -1 + \gamma \sqrt{\delta t} & \text{if } \omega_{i} = d. \end{cases}$$

Then
$$\tilde{W}^n_t(\omega) \stackrel{d}{\longrightarrow} \tilde{W}_t(\omega)$$
, where
$$\tilde{W}_t(\omega) = \begin{cases} & \text{Brownian motion with drift } \gamma \text{ under } \mathbb{P}, \\ \\ & \text{Standard Brownian motion under } \mathbb{Q}. \end{cases}$$

In summary, we can write down the following table with drifts:

	\mathbb{P}	\mathbb{Q}
W_t	0	$-\gamma$
$ \tilde{W}_t $	γ	0

Cameron-Martin-Girsanov Theorem

Suppose that $W_t(\omega)$ is a \mathbb{P} -Brownian motion, let γ_t be adapted to this Brownian motion, and consider the Itô process

$$d\tilde{W}_t = \gamma_t dt + dW_t, \quad \tilde{W}_0 = 0,$$

$$\tilde{W}_t = \int_0^t \gamma_s ds + W_t.$$

Question: does a measure \mathbb{Q} , equivalent to \mathbb{P} exist, such that \tilde{W}_t is a \mathbb{Q} -Brownian motion?

Answer: (C-M-G theorem): Yes: Q is characterized by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\int_0^T \gamma_t dW_t - \frac{1}{2} \int_0^T \gamma_t^2 dt\right).$$

The derivative $d\mathbb{Q}/d\mathbb{P}$ is a so-called *Radon-Nikodym derivative*. In general this is a random variable, such that for any random variable X on (Ω, \mathcal{F}) :

$$\mathbb{E}_{\mathbb{Q}}(X) = \mathbb{E}_{\mathbb{P}}\left(X\frac{d\mathbb{Q}}{d\mathbb{P}}\right).$$

It may be best thought of as the ratio of densities of a the process under $\mathbb Q$ and $\mathbb P$, respectively. This is seen as follows. Suppose that $\gamma_t=\gamma$ (constant), so that

$$W_T \sim \left\{ \begin{array}{ll} N(0,T) & \text{with density } f_{\mathbb{P}}(w) & \text{under } \mathbb{P}, \\ N(-\gamma T,T) & \text{with density } f_{\mathbb{Q}}(w) & \text{under } \mathbb{Q}. \end{array} \right.$$

Then

$$\mathbb{E}_{\mathbb{Q}}(W_T) = \int_{-\infty}^{\infty} w f_{\mathbb{Q}}(w) dw$$

$$= \int_{-\infty}^{\infty} w \frac{f_{\mathbb{Q}}(w)}{f_{\mathbb{P}}(w)} f_{\mathbb{P}}(w) dw$$

$$= \mathbb{E}_{\mathbb{P}} \left(W_T \frac{f_{\mathbb{Q}}(W_T)}{f_{\mathbb{P}}(W_T)} \right).$$

Therefore,

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \frac{f_{\mathbb{Q}}(W_T)}{f_{\mathbb{P}}(W_T)} = \frac{\frac{1}{\sqrt{2\pi T}} \exp\left(-\frac{1}{2T}(W_T + \gamma T)^2\right)}{\frac{1}{\sqrt{2\pi T}} \exp\left(-\frac{1}{2T}W_T^2\right)}$$

$$= \exp\left(-\frac{1}{2T}(W_T + \gamma T)^2 + \frac{1}{2T}W_T^2\right)$$

$$= \exp\left(-\gamma W_T - \frac{1}{2}\gamma^2 T\right).$$

$$= \exp\left(-\int_0^1 \gamma_t dW_t - \frac{1}{2}\int_0^1 \gamma_t^2 dt\right).$$

Note that $\zeta_T = d\mathbb{Q}/d\mathbb{P}$ is a random variable. We can create a martingale ζ_t from that as usual: $\zeta_t = \mathbb{E}_{\mathbb{P}}(\zeta_T | \mathcal{F}_t)$, which is the *Radon-Nikodym process*. This satisfies:

$$\mathbb{E}_{\mathbb{Q}}(X_t|\mathcal{F}_s) = \zeta_s^{-1} \mathbb{E}_{\mathbb{P}} \left(\zeta_t X_t | \mathcal{F}_s \right).$$

The C-M-G theorem allows us to change the drift of an Itô process by changing the probability measure. Let W_t be a \mathbb{P} -Brownian motion, and X_t be an Itô process with drift μ_t and volatility σ_t under \mathbb{P} . Then

$$dX_t = \mu_t dt + \sigma_t dW_t$$

$$= \nu_t dt + (\mu_t - \nu_t) dt + \sigma_t dW_t$$

$$= \nu_t dt + \sigma_t \left[\frac{\mu_t - \nu_t}{\sigma_t} dt + dW_t \right]$$

$$= \nu_t dt + \sigma_t d\tilde{W}_t,$$

where $\tilde{W}_t = \int_0^t \gamma_s ds + W_t$, with $\gamma_t = (\mu_t - \nu_t)/\sigma_t$. Thus \tilde{W}_t is a Brownian motion under the measure \mathbb{Q} defined by the C-M-G theorem, and hence X_t is an Itô process with drift ν_t and volatility σ_t under \mathbb{Q} . Note that we can only change the drift, not the volatility. If X_t would have a different volatility under \mathbb{P} and \mathbb{Q} , then these two measures are no longer equivalent.

Application to derivative pricing

Consider a stock price S_t generated by a geometric Brownian motion under \mathbb{P} :

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

with W_t a \mathbb{P} -Brownian motion.

Remark: the solution is $S_t = S_0 \exp([\mu - \frac{1}{2}\sigma^2]t + \sigma W_t)$. Baxter and Rennie start from $S_t = S_0 \exp(\mu t + \sigma W_t)$, so their μ corresponds to our $\mu - \frac{1}{2}\sigma^2$.

Consider also a cash bond with price $B_t = e^{rt}$, so that

$$dB_t = rB_t dt$$
.

Define the discounted stock price $Z_t = B_t^{-1} S_t = e^{-rt} S_t$, so that, by Itô's lemma,

$$dZ_t = e^{-rt}dS_t + S_t de^{-rt}$$

$$= e^{-rt}[\mu S_t dt + \sigma S_t dW_t] - re^{-rt}S_t dt$$

$$= (\mu - r)Z_t dt + \sigma Z_t dW_t.$$

Finally, let X be some claim, determined at time T. For a European call option, $X = [S_T - K]^+$. We wish to find the no-arbitrage value of this claim at time t < T.

We proceed in the following steps:

1. Find the measure \mathbb{Q} under which Z_t is a martingale:

$$dZ_t = \sigma Z_t \left[\frac{(\mu - r)}{\sigma} dt + dW_t \right]$$
$$= \sigma Z_t d\tilde{W}_t,$$

where $\tilde{W}_t = \int_0^t \gamma_s ds + W_t$, with $\gamma_t = (\mu - r)/\sigma$. This is the *market price of risk*: the excess expected return required as compensation for one additional unit of standard deviation.

Thus Z_t is a martingale under \mathbb{Q} , defined from the C-M-G theorem for this choice of γ_t . Hence we often refer to \mathbb{Q} as the *equivalent martingale measure*.

The martingale property for Z_t under \mathbb{Q} implies:

$$\mathbb{E}_{\mathbb{Q}}(S_t|\mathcal{F}_s) = e^{rt}\mathbb{E}_{\mathbb{Q}}(Z_t|\mathcal{F}_s)$$
$$= e^{rt}Z_s$$
$$= e^{r(t-s)}S_s.$$

Thus, under \mathbb{Q} , the stock price has an average (continuously compounded) growth rate of r, the risk-free rate. Hence under this measure there is no compensation for risk. Therefore \mathbb{Q} is also called the *risk-neutral measure*.

- 2. Define $E_t = \mathbb{E}_{\mathbb{Q}}(B_T^{-1}X|\mathcal{F}_t)$, which is a martingale with respect to \mathcal{F}_t under \mathbb{Q} (just like Z_t).
- 3. The martingale representation states that because both E_t and Z_t are \mathbb{Q} -martingales with respect to \mathcal{F}_t ,

$$dE_t = \phi_t dZ_t$$

for some \mathcal{F}_t -adapted ϕ_t .

Define $\psi_t = E_t - \phi_t Z_t$, and the strategy of holding ϕ_t stocks and ψ_t bonds, so that the value of the portfolio is

$$V_t = \phi_t S_t + \psi_t B_t$$
$$= \phi_t S_t + E_t B_t - \phi_t Z_t B_t$$
$$= B_t E_t.$$

Since $E_T = B_T^{-1}X$, this implies that $V_T = X$, i.e., the strategy is replicating.

What remains to be shown is that it is also self-financing. This follows from $V_t = B_t E_t$, so

$$dV_t = B_t dE_t + E_t dB_t$$

$$= \phi_t B_t dZ_t + (\psi_t + \phi_t Z_t) dB_t$$

$$= \phi_t d(B_t Z_t) + \psi_t dB_t$$

$$= \phi_t dS_t + \psi_t dB_t.$$

Thus the strategy is self-financing and replicates the claim; that means that, by no-arbitrage, V_t must equal the value of the claim at time t.

In other words, the value of the claim is $V_t = B_t E_t = e^{rt} E_t$, so

$$V_t = e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}(X|\mathcal{F}_t)$$

This is the discounted expected payoff, with the expectation taken under the risk-neutral measure. This is a very general expression for the value of a claim, that will also hold for, e.g., interest rate derivatives (which are not driven by a geometric Brownian motion). It is the central result that underlies *risk-neutral valuation*.

Obtaining the Black-Scholes formula once more

For a European call option, $X = [S_T - K]^+$. Defining the time to expiration $\tau = T - t$, this means that its value is

$$V_t = e^{-r\tau} \mathbb{E}_{\mathbb{Q}} \left([S_T - K]^+ | \mathcal{F}_t \right).$$

Because $dS_t = rS_t dt + \sigma S_t d\tilde{W}_t$, we have

$$S_T = S_t \exp\left(\left[r - \frac{1}{2}\sigma^2\right]\tau + \sigma[\tilde{W}_T - \tilde{W}_t]\right)$$

= $S_t \exp\left(\left[r - \frac{1}{2}\sigma^2\right]\tau - \sigma\sqrt{\tau}Y\right)$,

where $Y = -(\tilde{W}_T - \tilde{W}_t)/\sqrt{\tau} \sim N(0,1)$ under \mathbb{Q} . The option expires exactly at the money if

$$S_T = S_t \exp\left(\left[r - \frac{1}{2}\sigma^2\right]\tau - \sigma\sqrt{\tau}Y\right) = K,$$

which can be rewritten as

$$Y = \frac{\ln(S_t/K) + (r - \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}} = d_2.$$

This implies that

$$[S_T - K]^+ = \begin{cases} S_T - K & \text{if } Y \le d_2, \\ 0 & \text{if } Y > d_2. \end{cases}$$

Thus

$$V_{t} = e^{-r\tau} \int_{-\infty}^{d_{2}} [S_{t} \exp\left(\left[r - \frac{1}{2}\sigma^{2}\right]\tau - \sigma\sqrt{\tau}y\right) - K]\phi(y)dy$$

$$= \int_{-\infty}^{d_{2}} \frac{1}{\sqrt{2\pi}} S_{t} \exp\left(-\sigma\sqrt{\tau}y - \frac{1}{2}\sigma^{2}\tau - \frac{1}{2}y^{2}\right) dy$$

$$-e^{-r\tau} K \int_{-\infty}^{d_{2}} \phi(y)dy$$

$$= S_{t} \int_{-\infty}^{d_{2}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[y + \sigma\sqrt{\tau}\right]^{2}\right) dy - e^{-r\tau} K\Phi(d_{2})$$

$$= S_{t} \int_{-\infty}^{d_{1}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}v^{2}\right) dv - e^{-r\tau} K\Phi(d_{2})$$

$$= S_{t}\Phi(d_{1}) - e^{-r\tau} K\Phi(d_{2}),$$

where $v = y + \sigma\sqrt{\tau}$ and $d_1 = d_2 + \sigma\sqrt{\tau}$.

This is the Black-scholes formula. Note that $\Phi(d_2)$ may be interpreted as the risk-neutral probability that the option will expire in the money.

Exercises

- 1. Suppose that $X_t(\omega)$ is an Itô process with volatility $\sigma_t = \sigma X_t$ under \mathbb{P} , whereas it is an Itô process with volatility $\sigma_t = \sigma$ under \mathbb{Q} . Argue that \mathbb{P} and \mathbb{Q} are not equivalent.
- 2. Show that

$$\zeta_t := \mathbb{E}_{\mathbb{P}}(\zeta_T | \mathcal{F}_t) = \exp\left(-\int_0^t \gamma_s dW_s - \frac{1}{2} \int_0^t \gamma_s^2 ds\right).$$

3. Use risk-neutral valuation to obtain the value of a claim

$$X = \begin{cases} 1 & \text{if } S_T \ge K \\ 0 & \text{if } S_T < K \end{cases}.$$

- 4. Use risk-neutral valuation to show that the value K of a forward contract is $e^{r(T-t)}S_t$.
- 5. Obtain, via risk-neutral valuation, the value of a straddle, which is a combination of a call and a put option with the same exercise price and expiration date. Derive also the Greeks for the straddle.