

Bloque IV: El nivel de red

Tema 9: ICMP

Índice

- Bloque IV: El nivel de red
 - Tema 9: ICMP
 - Introducción
 - Ping
 - Traceroute
 - Fragmentación IP

Lecturas recomendadas:

- Capítulo 4, sección 4.4.3, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- Capítulo 8 de "TCP/IP Illustrated, Volume 1: The Protocols",
 W. Richard Stevens, Addison Wesley.

Introducción

- Internet Control Message Protocol
- IP no tiene mecanismos para obtener información de diagnóstico → Para eso está ICMP.
- ICMP comunica mensajes de error y otras condiciones que requieren atención. Dos tipos de mensajes: error y consulta.
- Los mensajes ICMP se transmiten dentro de datagramas IP (RFC 792)
- Mensajes ICMP más empleados:
 - Petición y respuesta de eco → ping
 - Destino inalcanzable
 - Puerto inalcanzable: utilizado por UDP, cuando el destino no dispone de un proceso en el puerto de destino.
 - Máquina o red inalcanzable: Lo envía un router cuando no puede entregar o reenviar un datagrama IP.
 - Redirect
 - Fragmentación requerida
 - Tiempo excedido

Ping

- Packet InterNet Groper: herramienta de diagnóstico que comprueba si un nodo de la red es alcanzable.
- Cliente: Envía ICMP echo request
- Servidor: Responde con ICMP echo reply
- Formato mensajes ICMP echo request y reply:
 - Identificador: en UNIX es el identificador del proceso.
 - Número de secuencia: inicialmente 0, y se incrementa con cada echo request.
- Opción de registro de ruta o timestamp.
- Existen variedad de implementaciones (presentación de resultados, opciones del programa...).

(0	8	_16	<u>31</u>
	Tipo (0 ó 8)	Código	Checksum	
	Identificador		Número de secuencia	
	Datos (tama		nño variable)	

Traceroute

- Problemas del ping con registro de ruta:
 - Falta de espacio en la cabecera IP
 - Registro de ruta: máximo 9 routers
 - Timestamp: máximo 4 routers (o 9 timestamps sin direcciones IP)
 - No todos los routers soportan la opción de registro de ruta
 - No hay control sobre los relojes de los routers
- Solución: traceroute
 - Herramienta de diagnóstico que permite ver la ruta que sigue un datagrama hacia un destino.
- Se basa en: datagramas UDP, el campo TTL de la cabecera IP y los mensajes de error ICMP Puerto inalcanzable y Tiempo excedido
 - Sólo requiere que el protocolo UDP esté operativo en el destinatario.
 - Cuando un router al decrementar el campo TTL obtiene 0 → Genera un mensaje de error ICMP Tiempo excedido
 - Cuando UDP recibe un datagrama para un puerto vacío → Genera un mensaje de error ICMP Puerto inalcanzable

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1 IP destino: 173.197.15.4

TTL = 1

ICMP Tiempo excedido

IP origen: **154.63.1.1** IP destino: 154.63.4.1

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 2

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 1

TTL = 64

ICMP Tiempo excedido

IP origen: **172.25.1.2**

IP destino: 154.63.4.1

Traceroute: Funcionamiento

Cab. Cab. IP **Datos**

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 3

Cab. IP **Datos** IP origen: 154.63.4.1

IP destino: 173.197.15.4

Cab.

TTL = 2

Cab. Cab. IP **Datos**

Puerto destino: 33348

IP origen: 154.63.4.1

IP destino: 173.197.15.4

ICMP Puerto inalcanzable

Cab. IP

IP origen: **173.197.15.4**

IP destino: 154.63.4.1

TTL = 64

Fragmentación IP

- El nivel de enlace de la red impone un límite superior al tamaño de la trama que se puede transmitir: MTU – Maximum Transmission Unit (tamaño máximo del campo de datos de enlace).
 - Ethernet: 1500 bytes
 - Token Ring: 4440 bytes
- Cuando el nivel de red (IP) recibe un datagrama, identifica la interfaz de red a utilizar y la interroga sobre su MTU:
 - Compara la respuesta con la longitud del datagrama.
 - Se hace fragmentación si la longitud del datagrama es mayor que el MTU.
- El reensamblaje de datagramas IP fragmentados se produce cuando los fragmentos alcanzan el destino final:
 - Lo hace IP en el destino.
 - La fragmentación es transparente al nivel de transporte.
- En la cabecera IP se almacena la información relacionada con la fragmentación IP.

Fragmentación IP

Cabecera IP – Campos para fragmentación

Fragmentación IP

- Identificación: valor único para cada datagrama IP transmitido

 → Todos los fragmentos de un datagrama contienen el mismo
 valor.
- Flags:
 - El primer bit está reservado.
 - Bit **DF** (Don't Fragment): a 1 si se prohíbe fragmentar el datagrama
 IP.
 - Bit MF (More Fragments): a 1 si hay más fragmentos a continuación → Se pone a 0 en el último fragmento.
- Offset de fragmento: desplazamiento en múltiplos de 8 bytes del fragmento desde el origen del datagrama original.
- Longitud total: se cambia la longitud total del datagrama por longitud total del fragmento.
- El tamaño de cada fragmento debe ser múltiplo de 8 bytes, excepto el último fragmento → Por el campo offset de fragmento.

Fragmentación IP: Error ICMP

- Error ICMP Unreachable Error (Fragmentation Required)
 - Mensaje de error utilizado por un router cuando tiene que fragmentar un datagrama IP pero tiene el flag DF activado.
 - Incluye el MTU de la red que provocó el error y una copia de la cabecera del mensaje descartado.

0		8	16 31
	Tipo (3)	Código (4)	Checksum
	Sin usar	(ceros)	MTU de la red del siguiente salto
•		Cabecera IP (co Primeros 8 bytes	•

Fragmentación IP: Path MTU Discovery

- Este mensaje de error es utilizado en un mecanismo denominado Path MTU discovery que permite averiguar el MTU mínimo durante una comunicación y reducir la fragmentación IP.
 - Sólo se implementa en el host origen.
 - Path MTU: MTU mínimo en cualquier red en el camino entre dos hosts.
- Funcionamiento del Path MTU discovery:
 - Se habilita el bit DF (Don't Fragment) en los datagramas enviados.
 - Si algún router en el camino necesita fragmentar → Generará el mensaje ICMP Fragmentación requerida
 - Si se recibe un mensaje ICMP Fragmentación requerida con el nuevo MTU:
 - Si eran datos TCP → TCP debe reducir el tamaño del segmento (en base al nuevo MTU) y retransmitir.
 - Sino (p.e. UDP) → IP fragmenta los datagrama en base al nuevo MTU.
 - Como las rutas cambian dinámicamente → Se puede probar un MTU mayor pasado un cierto intervalo (RFC 1191 recomienda 10 minutos).

 Desde el host X se envían al host Y 2000 bytes de datos NFS (utilizando el protocolo UDP).

 Desde el host X se envían al host Y 3013 bytes de datos UDP (sin incluir la cabecera UDP).

- Red B
 - ¿Se reagrupan los fragmentos antes de volver a fragmentarlos?
 - Sí
 - No
 - ¿Cuál es el tamaño de fragmento en la red B?
 - 516 bytes
 - 512 bytes
 - ¿Por qué?

Red B

Fra	gmento 1	

Fragmento 1.1	Fragmento 1.2	Fragmento
Identificación:	Identificación:	Identificació
DF:	DF:	DF:
MF:	MF:	MF:
Offset:	Offset:	Offset:
Long. total:	Long. total:	Long. total:

1.3

Red B

Fragmento 2

Fragmento 2.2
Identificación:
DF:
MF:
Offset:
Long. total:

Fragmento 2.3	
Identificación:	
DF:	
MF:	
Offset:	
Long. total:	

Red B

Fragmento 3

Fragmento 3
Identificación: ____
DF: ___
MF: ___
Offset: ___
Long. total: ____

- Red C
 - ¿Qué fragmentos circulan por la red C: los mismos que por la red A o por la red B?

 Desde A se envían a B 3013 bytes de datos TCP (sin incluir la cabecera TCP).

Red A

Red B

Se	gmento 1	

Fragmento 1.1 Identificación:	Fragmento 1.2 Identificación:	Fragmento 1.3 Identificación:
DF:	DF:	DF:
MF:	MF:	MF:
Offset:	Offset:	Offset:
Long. total:	Long. total:	Long. total:

Red B

Se	gmento 2	

Fragmento 1.1 Identificación:	Fragmento 1.2 Identificación:	Fragmento 1.3 Identificación:
DF:	DF:	DF:
MF:	MF:	MF:
Offset:	Offset:	Offset:
Long. total:	Long. total:	Long. total:

Red B

Segmento 3

Identificación:	
DF:	
MF:	
Offset:	
Long. Total: _	

- Red C
 - ¿Qué fragmentos circulan por la red C: los mismos que por la red A o por la red B?

Resumen

- Principales comandos de red:
 - ip address: ver configuración de red.
 - netstat: ver puertos ocupados y más cosas.
 - nslookup y dig: enviar peticiones DNS.
 - route: ver y modificar la tabla de enrutamiento.
 - ping
 - traceroute
 - Versión gráfica: https://traceroute-online.com/
 - Desde múltiples orígenes: https://tools.keycdn.com/traceroute