Logic Design Example or What's for Lunch Today?

ENCE260: Computer Architecture Topic 6

- Deciding what to have for lunch each day can be a real challenge.
- Fortunately, we can use the combinational logic design process to help us clarify our thoughts and automate the process...

- Specifications:
 - Choosing lunch is hard work, so on days when I've had a big breakfast I don't even bother...
 - ...I only have lunch when I'm *not full* from breakfast.

- Specifications:
 - Buying lunch each day can get expensive...
 - ...so I try to choose food that is *not too* pricey!

- Specifications:
 - But if I see something that looks really *good*, I'll order it even if it is a little more expensive.

- I won't have lunch if I'm still full from breakfast.
- If I do have lunch,
 I'll eat anything
 that looks good or
 is not expensive.

I. Truth Table

full	good	pricey	lunch
0	0	0	
0	0	I	
0	I	0	
0	1	I	
I	0	0	
I	0	I	
I	I	0	
ı	- 1	ı	

- I won't have lunch
 if I'm still full
 from breakfast.
- If I do have lunch,
 I'll eat anything
 that looks good or
 is not expensive.

I. Truth Table

full	good	pricey	lunch
0	0	0	I
0	0	I	0
0	I	0	I
0	I	I	I
I	0	0	0
I	0	I	0
I	I	0	0
1		I	0

2. Boolean Expression

- 1. Write down the combination of inputs that give an output of 1.
- 2. Combine these terms into a *Sum-of-Products* expression.

full	good	pricey	lunch
0	0	0	
0	0	I	0
0	- 1	0	
0	- 1	- 1	
I	0	0	0
I	0	I	0
I	I	0	0
ı	I	I	0

2. Boolean Expression

1. Write down the combination of inputs that give an output of 1.

$$egin{aligned} igg(\overline{full} \cdot \overline{good} \cdot \overline{pricey} igg) \ igg(\overline{full} \cdot good \cdot \overline{pricey} igg) \ igg(\overline{full} \cdot good \cdot pricey igg) \end{aligned}$$

full	good	pricey	lunch
0	0	0	
0	0	I	0
0	- 1	0	
0	- 1	I	
ı	0	0	0
I	0	I	0
ı	I	0	0
I	I	1	0

2. Boolean Expression

2. Combine these terms into a *Sum-of-Products* expression.

$$lunch = (\overline{full} \cdot \overline{good} \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot pricey)$$

$$(\overline{full} \cdot good \cdot pricey)$$

full	good	pricey	lunch
0	0	0	
0	0	I	0
0	- 1	0	
0	- 1	I	
1	0	0	0
ı	0	I	0
- 1	I	0	0
- 1	I	I	0

3. Simplify

 Use Boolean algebra to reduce the number of terms

$$\frac{lunch =}{(\overline{full} \cdot \overline{good} \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot pricey)}$$

$$lunch = \overline{full}$$
.

8/08/21

3. Simplify

 Use Boolean algebra to reduce the number of terms

$$\begin{array}{l} lunch = \\ (\overline{full} \cdot \overline{good} \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot pricey) \\ lunch = \overline{full} \cdot \end{array}$$

3. Simplify

 Use Boolean algebra to reduce the number of terms

$$\frac{lunch =}{(\overline{full} \cdot \overline{good} \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot pricey)}$$

$$lunch = \overline{full} \cdot (good + \overline{pricey})$$

3. Simplify

 Use Boolean algebra to reduce the number of terms

$$(\overline{full} \cdot \overline{good} \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot \overline{pricey}) + (\overline{full} \cdot good \cdot pricey)$$

$$lunch = \overline{full} \cdot (good + \overline{pricey})$$

4. Verify

• Karnaugh Map:

lunch	$\overline{good} \cdot \overline{pricey}$	$oxed{good} \cdot pricey$	$good \cdot pricey$	$oxed{good \cdot \overline{pricey}}$
\overline{full}				
\overline{full}				

full	good	pricey	lunch
0	0	0	I
0	0	I	0
0	I	0	I
0	I	I	I
I	0	0	0
I	0	I	0
I	I	0	0
I	I	I	0

4. Verify

Karnaugh Map:

lunch	$\overline{good} \cdot \overline{pricey}$	$oxed{good} \cdot pricey$	$good \cdot pricey$	$good \cdot \overline{pricey}$
$\overline{\mathit{full}}$	1	0	1	1
$\overline{-full}$	0	0	0	0

$$lunch = \boxed{full \cdot good} + \boxed{full \cdot pricey}$$

$$lunch = \overline{full} \cdot (good + \overline{pricey})$$

full	good	pricey	lunch
0	0	0	I
0	0	I	0
0	I	0	I
0	I	I	I
I	0	0	0
I	0	I	0
I	I	0	0
I	I	I	0

13

4. Verify

5. Combinational Circuit

1. Place a gate for each Boolean operator:

5. Combinational Circuit

1. Place a gate for each Boolean operator:

5. Combinational Circuit

1. Place a gate for each Boolean operator:

5. Combinational Circuit

2. Connect inputs to outputs through the gates:

$$lunch = \overline{full} \cdot (good + \overline{pricey})$$

Summary

- 1. Define the function using a truth table
- 2. Convert the truth table to a **Boolean expression**
- 3. Simplify the expression
- 4. Verify the expression using a Karnaugh map
- 5. Map Boolean operators to logic gates