NAYLYNN TAÑÓN REYES

619.319.0095 | naylynn.tanon@gmail.com | linkedin.com/in/naylynntanon

EDUCATION

Smith College | Bachelor's | Major — Computer Science GPA 3.56 | 2020 — expected May 2023 San Diego Mesa College | Associate's | Major — Physics GPA 3.87 | Aug 2015 — Dec 2017

TECHNICAL SKILLS

Python | Java | Git | Data Analysis | Data Extraction | Data Mining | Project Management | Technical Documentation

WORK & INTERNSHIP EXPERIENCE

Research Assistant | MIT — Massachusetts Institute of Technology

Dec 2020 — present

- Analyze light-curves of potential exoplanet transits, using Gaussian fittings, and measure their central transit time using various Python packages such as Numpy, Pandas and Matplotlib
- Predict all possible transit periods and future transit times using MCMC then request observing time at telescopes
- Compare findings to predictions, then confirm if planets exist in the system and study them for habitability on the next mission Research Support Associate | NASA Exoplanet Science Institute at Caltech June 2018 Sep 2020
- Extracted data from the scientific literature of exoplanets found using direct imaging and gravitational microlensing techniques
- Vetted and added data to the NASA Exoplanet Archive using SQL scripts
- Created the first and only comprehensive database for planets found using the gravitational microlensing method which is used by the science community for research purposes and future project proposals

Researcher | Harvard & Smithsonian Center for Astrophysics

June 2019 — Aug 2019

- Identified a newly discovered Si X infrared emission line in the Sun's corona and used Gaussian fitting, with IDL, to find the intensity gradient as we observed away from the solar limb
- Showed we had an understanding of the atomic physics of the Si X ion by comparing photoexcited and collisional models which would help better predict solar flares that endanger Earth's magnetic field

Astrophysics Intern | NASA — National Aeronautics & Space Administration

Feb 2019 — May 2019

- Analyzed hundreds of light-curve data files of low mass stars, using Python packages, to identify stellar flare rates
- Selected high radiation stars that needed flare signature models to predict if planet habitability was possible despite radiation

Data Science Intern | NASA — National Aeronautics & Space Administration

Oct 2018 — Jan 2019

Wrote code to identify which NASA documents should be archived at National Archives using machine learning and NLP
Found the smallest training size to achieve a 90% accuracy rate with Python's NumPy, Pandas and Scikit-Learn packages

HONORS & AWARDS

Caltech WAVE Research Fellow Caltech — California Institute of Technology	2018
STEM Community Scholar San Diego Mesa College	2018
Academic Achievement Award San Diego Mesa College	2018
NASA Community College Aerospace Scholar NASA — National Aeronautics & Space Administration	2017
Dean's List San Diego Community College District	2015-17
Phi Theta Kappa Honors Society San Diego Mesa College	2016

EXTRACURRICULARS

Member — Smithies in Computer Science	2020-21
President — Society for Advancement of Chicanos/Hispanics and Native Americans in Science at Mesa College	2017-18
Member — Computer Science Club at Mesa College	2017-18
Software Team Member — San Diego City College Robotics Club	2018

PUBLICATIONS

The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System Gilbert, E.G., et al.	2020
The L 98-59 System: Three Transiting, Terrestrial-Sized Planets Orbiting a Nearby M-dwarf Kostov, V.B., et al.	2019

PRESENTATIONS

Colloquium MIT Constructing a Comprehensive Database of Exoplanets Discovered with Gravitational Microlensing
Research Poster MIT Multiwavelenath Observations of M Dwarfs Flares Simultaneous with TESS