Методы машинного обучения. Рубежный контроль №1

Выполнил: Плешаков Владислав ИУ5-25М

Вариант 8

Задача для группы: Для произвольной колонки данных построить парные диаграммы (pairplot)

Задача 8: Для набора данных проведите устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения модой.

Задача 28: Для набора данных для одного (произвольного) числового признака проведите обнаружение и замену (найденными верхними и нижними границами) выбросов на основе межквартильного размаха.

```
In [27]: # Πο∂κπονεμιε δυδπυσπεκ
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as stats
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
%matplotlib inline
import matplotlib.pyplot as plt
sns.set(style="ticks")
```

В качестве набора данных будет использован набор, содержащий информацию о пригодности воды для питья

```
In [2]: # Загрузка набора данных
data = pd.read_csv("water_potability.csv")
data.describe()
```

]:		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidi
	count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	3276.000000	3276.000000	3114.000000	3276.00000
	mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	14.284970	66.396293	3.96678
	std	1.594320	32.879761	8768.570828	1.583085	41.416840	80.824064	3.308162	16.175008	0.78038
	min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	2.200000	0.738000	1.45000
	25%	6.093092	176.850538	15666.690297	6.127421	307.699498	365.734414	12.065801	55.844536	3.43971
	50%	7.036752	196.967627	20927.833607	7.130299	333.073546	421.884968	14.218338	66.622485	3.95502
	75%	8.062066	216.667456	27332.762127	8.114887	359.950170	481.792304	16.557652	77.337473	4.50032
	max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620	28.300000	124.000000	6.73900
	4									>

In [3]: data.shape
Out[3]: (3276, 10)

Out[2]

Построение парных диаграмм

```
In [4]: # Построение парных диаграмм (для первых трех колонок)
sns.pairplot(data=data.iloc[:,0:3])
```

Out[4]: <seaborn.axisgrid.PairGrid at 0x1f61a8ef9d0>

Из этого графика видно, что особой корреляции между первыми тремя колонками нет

Устранение пропусков

Для начала посмотрим, в каких колонках у нас есть пропуски

```
In [5]: # Κοπομκα c προπγεκαμα
hcols_with_na = [c for c in data.columns if data[c].isnull().sum() > 0]
hcols_with_na

Out[5]: ['ph', 'Sulfate', 'Trihalomethanes']

In [6]: # Κοπαμεσωβο προπγεκοβ
[(c, data[c].isnull().sum()) for c in hcols_with_na]

Out[6]: [('ph', 491), ('Sulfate', 781), ('Trihalomethanes', 162)]
```

Будем заполнять пропуски в колонке Trihalomethanes (Тригалометаны), т.к. их там меньше всего, и соответственно, мы не так сильно повлияем на зависимости между данными

```
In [7]: temp_data = data[['Trihalomethanes']].values
    size = temp_data.shape[0]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)

imputer = SimpleImputer(strategy="most_frequent")
    all_data = imputer.fit_transform(temp_data)

missed_data = temp_data[mask_missing_values_only]
    filled_data = all_data[mask_missing_values_only]
```

In [8]: filled_data

```
Out[8]: array([0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738,\; 0.738,\; 0.738,\; 0.738,\; 0.738,\; 0.738,\; 0.738,\; 0.738,\; 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738,
               0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738, 0.738])
In [9]: sns.kdeplot(data=pd.DataFrame({'Исходные данные':temp_data.reshape((size,)),
                                      'Мода':all_data.reshape((size,))}))
```

Out[9]: <Axes: ylabel='Density'>

Обработка выбросов

```
In [28]: def diagnostic_plots(df, variable, title):
             fig, ax = plt.subplots(figsize=(10,7))
             # гистограмма
             plt.subplot(2, 2, 1)
             df[variable].hist(bins=30)
             ## Q-Q plot
             plt.subplot(2, 2, 2)
             stats.probplot(df[variable], dist="norm", plot=plt)
             # ящик с усами
             plt.subplot(2, 2, 3)
             sns.violinplot(x=df[variable])
             # ящик с усами
             plt.subplot(2, 2, 4)
             sns.boxplot(x=df[variable])
             fig.suptitle(title)
             plt.show()
```

```
In [29]: diagnostic_plots(data, 'Organic_carbon', 'RM - original')
```


Обработаем выбросы в колонке Organic carbon

$Organic_carbon,\ processed$

In []: