4/2/24. 11:52 PM HOA 9 1

Supplementary Activity:

Using the CSV files provided and what we have learned so far in this module complete the following exercises:

```
In [25]: %matplotlib inline
         import matplotlib.pyplot as plt
         import numpy as np
         import pandas as pd
         fb_stocks = pd.read_csv('/content/fb_stock_prices_2018.csv', index_col='date', pars
         earthquakes = pd.read_csv('/content/earthquakes.csv')
```

1. Plot the rolling 20-day minimum of the Facebook closing price with the pandas plot() method.

```
fb_stocks['close'].rolling('20D').min()
In [26]:
Out[26]: date
         2018-01-02
                      181.42
         2018-01-03 181.42
         2018-01-04 181.42
         2018-01-05
                    181.42
         2018-01-08 181.42
                       . . .
         2018-12-24 124.06
         2018-12-26 124.06
         2018-12-27 124.06
                    124.06
         2018-12-28
         2018-12-31
                      124.06
         Name: close, Length: 251, dtype: float64
In [28]: plt.plot(fb_stocks['close'].rolling('20D').min())
         plt.suptitle('FB Closing Price')
```

Out[28]: Text(0.5, 0.98, 'FB Closing Price')

FB Closing Price

2. Create a histogram and KDE of the change from open to close in the price of Facebook stock.

```
In [32]: #Histogram
fb_histdiff = fb_stocks['open'] - fb_stocks['close']
plt.hist(fb_histdiff)
plt.title('change of fb column and fb close')
```

Out[32]: Text(0.5, 1.0, 'change of fb column and fb close')

change of fb column and fb close


```
In [35]: #KDE
    fb_histdiff.plot(kind='kde')
    plt.title('change of fb column and fb close')

plt.hist([fb_stocks['open'],fb_stocks['close']])
    plt.legend(['open','close'])
    plt.title('change of fb column and fb close')
```

Out[35]: Text(0.5, 1.0, 'change of fb column and fb close')


```
In [36]: fb_stocks.plot(y=['open','close'],kind='kde')
plt.title('change of fb column and fb close')
```

Out[36]: Text(0.5, 1.0, 'change of fb column and fb close')

change of fb column and fb close

3. Using the earthquake data, create box plots for the magnitudes of each magType used in Indonesia.

```
In [31]: eq_indonesia = earthquakes.query("parsed_place == 'Indonesia'")
    eq_indonesia = eq_indonesia[['mag','magType']]
    eq_indonesia = eq_indonesia.pivot(columns = 'magType')

eq_indonesia.plot(kind = 'box')
    plt.xlabel('magType')
    plt.ylabel('magType')
    plt.title('Indonesia eq magnitude per magType')
```

Out[31]: Text(0.5, 1.0, 'Indonesia eq magnitude per magType')

Indonesia eq magnitude per magType

4. Make a line plot of the difference between the weekly maximum high price and the weekly minimum low price for Facebook. This should be a single

line.

```
In [30]: fb_weekly = fb_stocks.resample('W').agg({
   'high':'max',
   'low':'mean'
})

fb_weekly['difference'] = fb_weekly['high'] - fb_weekly['low']

fb_weekly['difference'].plot()
plt.title('difference between high and low value of fb stocks')
```

Out[30]: Text(0.5, 1.0, 'difference between high and low value of fb stocks')

- 5. Using matplotlib and pandas, create two subplots side-by-side showing the effect that after-hours trading has had on Facebook's stock price:
- The first subplot will contain a line plot of the daily difference between * that day's opening price and the prior day's closing price (be sure to review the Time series section of Aggregating Pandas DataFrames for an easy way to do this).
- The second subplot will be a bar plot showing the net effect this had monthly, using resample().
- Bonus #1: Color the bars according to whether they are gains in the stock price (green) or drops in the stock price (red).
- Bonus #2: Modify the x-axis of the bar plot to show the threeletter abbreviation for the month.

```
In [39]: diff_stocks = fb_stocks['open'] - fb_stocks['close']
    diff_stocks
```

```
Out[39]: date
                           2018-01-02 -3.74
                           2018-01-03 -2.79
                                                             0.57
                           2018-01-04
                                                           -1.26
                           2018-01-05
                            2018-01-08
                                                              -1.08
                                                                 . . .
                           2018-12-24
                                                            -0.96
                           2018-12-26
                                                            -8.18
                           2018-12-27 -2.08
                            2018-12-28
                                                                  2.14
                            2018-12-31
                                                                  3.36
                           Length: 251, dtype: float64
In [40]: netEff = diff_stocks.resample('M').sum()
                           netEff
Out[40]: date
                           2018-01-31
                                                           -12.5600
                           2018-02-28
                                                                  8.5900
                            2018-03-31
                                                                  -0.8400
                           2018-04-30
                                                                  7.4147
                                                            -22.4288
                            2018-05-31
                           2018-06-30
                                                            -6.1646
                           2018-07-31 -13.3350
                                                                  2.4492
                           2018-08-31
                           2018-09-30 -2.7450
                           2018-10-31
                                                              15.7650
                           2018-11-30
                                                                  2.6700
                                                                     7.0000
                           2018-12-31
                           Freq: M, dtype: float64
In [41]: fig,ax = plt.subplots(2,1,figsize=(17,17))
                           diff_stocks.plot(ax = ax[0])
                           ax[0].set_title('daily difference of open and close column in fb stock price')
                           ax[0].set_ylabel('difference')
                           ax[0].set_xlabel('dates')
                           color = ['red','green','red','green','red','green','red','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green','green',
                           netEff.plot(kind='bar',ax = ax[1],color = color)
                           ax[1].set_title('net effect ')
                           ax[1].set_xlabel('Months')
                           ax[1].set_ylabel('values')
                           ax[1].set_xticklabels(netEff.index.strftime('%b')) # renaming the x axis with the f
```

```
Out[41]:
             [Text(0, 0, 'Jan'),
              Text(1, 0, 'Feb'),
              Text(2, 0,
                             'Mar'),
              Text(3, 0,
                              'Apr'),
              Text(4, 0, 'May'),
                             'Jun'),
              Text(5, 0,
              Text(6, 0,
                             'Jul'),
              Text(7, 0, 'Aug'),
              Text(8, 0, 'Sep'),
              Text(9, 0, 'Oct'),
              Text(10, 0, 'Nov'),
              Text(11, 0, 'Dec')]
                                                  daily difference of open and close column in fb stock price
            10.0
             7.5
             5.0
             2.5
            -2.5
            -5.0
                                2018-03
                                                2018-05
                                                                 2018-07
                                                                                                   2018-11
               2018-01
                                                                                  2018-09
                                                                     dates
                                                                   net effect
             15
             10
            -10
            -15
            -20
                             E
P
                                      Mar
                                               Apr
                                                        Мау
                                                                 Ы
                                                                                    Aug.
                                                                                             Sep
                                                                                                                Nον
                                                                                                                        Dec
```

Conclusion

In doing this activity, I learned that subplots provides a way to plot multiple plots on a single figure. Given the number of rows and columns, it returns a tuple (fig, ax), giving a single figure fig with an array of axes ax. Furthermore, we can customize our plots in the graph to make it visually appealing to the audience. Moreover, I learned as well that KDE is useful

when dealing with continuous data or when you want to explore if your date follows a normal distribution.