Formalismos e ideas matemáticas para Métodos Numéricos

Clase 1.5 - 03/04/2024

Métodos Numéricos - 1er Cuatrimestre 2024 Daniel Grimaldi

Idea Motivadora: La correspondencia de Curry-Howard

La correspondencia de Curry-Howard es la observación de que hay una "biyección" entre "demostraciones" y "algoritmos", y que, por lo tanto, ambos formalismos pueden considerarse "idénticos".

Idea Motivadora: La correspondencia de Curry-Howard

La correspondencia de Curry-Howard es la observación de que hay una "biyección" entre "demostraciones" y "algoritmos", y que, por lo tanto, ambos formalismos pueden considerarse "idénticos".

Por ejemplo (a grandes rasgos), al momento de hacer un ejercicio:

- ¿Están separando en casos? Eso es un condicional.
- ¿Están haciendo inducción? Eso es una recursión.
- ¿Tienen hipótesis? Esas son las variables.
- ¿Tienen una conclusion? Esa es la salida.

Entonces, ¿por qué no usar la manera en que tienen de presentar y trabajar un programa para resolver un ejercicio de matemática?

Entonces, i por qué no usar la manera en que tienen de presentar y trabajar un programa para resolver un ejercicio de matemática?

- ¿Están escribiendo el código? Eso es la demostración formal.
- ¿El código es declarativo y bien comentado? Eso es explicar la demostración en lenguaje natural.
- ¿En el código declaran la salida? Eso es remarcar cuál es la solución.

Entonces, ¿por qué no usar *la manera en que tienen de presentar y trabajar un programa* para resolver un ejercicio de matemática?

- ¿Están escribiendo el código? Eso es la demostración formal.
- ¿El código es declarativo y bien comentado? Eso es explicar la demostración en lenguaje natural.
- ¿En el código declaran la salida? Eso es remarcar cuál es la solución.
- ¿Tienen código auxiliar? Eso es hacer una demostración aparte que luego usarán para resolver el ejercicio.
- ¿Quieren reutilizar código ya conocido? **Cítenlo apropiadamente**.
- ¿El código está bien presentado, el nombre del archivo es correcto, está bien ordenado e identificado? Eso es hacer una **buena presentación**: letra legible, hoja bien troquelada, con su nombre y enumerada.

Entonces, ¿por qué no usar la manera en que tienen de presentar y trabajar un programa para resolver un ejercicio de matemática?

- ¿Están escribiendo el código? Eso es la demostración formal.
- ¿El código es declarativo y bien comentado? Eso es explicar la demostración en lenguaje natural.
- ¿En el código declaran la salida? Eso es remarcar cuál es la solución.
- ¿Tienen código auxiliar? Eso es hacer una demostración aparte que luego usarán para resolver el ejercicio.
- ¿Quieren reutilizar código ya conocido? Cítenlo apropiadamente.
- ¿El código está bien presentado, el nombre del archivo es correcto, está bien ordenado e identificado? Eso es hacer una buena presentación: letra legible, hoja bien troquelada, con su nombre y enumerada.
- ¿Qué preguntas se hacen antes de ponerse a escribir un código? ¿Y durante? ¿Y después? Probablemente todo eso les sirva también.

Demostraciones directas y reutilizando resultados

Ejercicio de Parcial del 2do cuatrimestre de 2022

Sean $A, B \in \mathbb{R}^{n \times n}$ tales que AB = I. Sean b_1, \dots, b_n las columnas de B. Probar que:

- (a) $\{Ab_1, \ldots, Ab_n\}$ es un conjunto linealmente independiente. (5 puntos)
- (b) $\{b_1, \ldots, b_n\}$ es un conjunto linealmente indepentiente. (5 puntos)
- (c) Si $\{v_1, \ldots, v_n\}$ es base de \mathbb{R}^n y $C \in \mathbb{R}^{n \times n}$ cumple $Cv_i = 0 \ \forall i = 1, \ldots, n$, entonces C = 0. (Sugerencia: Probar que $Ce_i = 0$ siendo e_i el *i*-ésimo vector de la base canónica). (10 puntos)
- (d) (BA I)B = 0. Deducir que BA = I. (5 puntos)
- 1. Resolver (a) de forma directa $(p \rightarrow q)$.
- 2. Resolver (b) por absurdo $(p \land q \rightarrow \neg q)$.
- 3. Resolver (c) por contrarrecíproco $(\neg q \rightarrow \neg p)$.
- 4. Resolver (d) de forma directa, pero reutilizando algún resultado anterior.

Demostraciones por inducción

Situación general: Demostrar que P(n) es cierto $\forall n \in \mathbb{N}$. Variantes:

- Puede ser a partir de algún valor $k \in \mathbb{N}$ determinado.
- Puede ser **hasta** algún valor $m \in \mathbb{N}$ determinado.

Demostraciones por inducción

Situación general: Demostrar que P(n) es cierto $\forall n \in \mathbb{N}$. Variantes:

- Puede ser a partir de algún valor $k \in \mathbb{N}$ determinado.
- Puede ser **hasta** algún valor $m \in \mathbb{N}$ determinado.

Esquema general:

Caso base: Probar que P(k) es cierto.

Paso Inductivo: Probar que si P(j) es cierto para $k \le j \le n$, entonces P(n+1) es cierto.

Demostraciones por inducción

Situación general: Demostrar que P(n) es cierto $\forall n \in \mathbb{N}$. Variantes:

- Puede ser a partir de algún valor $k \in \mathbb{N}$ determinado.
- Puede ser **hasta** algún valor $m \in \mathbb{N}$ determinado.

Esquema general:

Caso base: Probar que P(k) es cierto.

Paso Inductivo: Probar que si P(j) es cierto para $k \le j \le n$, entonces P(n+1) es cierto.

Observación:

Puede pasar que que la propiedad P sea una implicación, es decir, P(j): $p(j) \rightarrow q(j)$. Por lo que probar el paso inductivo se trata de:

- 1. suponer que valen todas las instancias de $p(j) \rightarrow q(j)$ para $k \leqslant j \leqslant n$;
- 2. suponer que vale p(n+1);
- 3. probar que vale q(n+1).

Demostraciones por inducción: Ejercicios

4 preguntas para plantear una inducción:

- 1. ¿Qué variable tiene el rol de n? (evita confundirse con k ó m)
- 2. ¿Cuál es el caso por el cuál se empieza?
- 3. ¿Qué necesito para demostrar P(n+1)?
- 4. ¿Cuál es el enunciado formal preciso de la hipótesis inductiva?

Demostraciones por inducción: Ejercicios

4 preguntas para plantear una inducción:

- 1. ¿Qué variable tiene el rol de n? (evita confundirse con k ó m)
- 2. ¿Cuál es el caso por el cuál se empieza?
- 3. ¿Qué necesito para demostrar P(n+1)?
- 4. ¿Cuál es el enunciado formal preciso de la hipótesis inductiva?

Ejercicios: Probar que las siguientes afirmaciones valen para todo n a partir de cierto valor $k \in \mathbb{N}$:

1.
$$(a^n - b^n) = (a - b) \sum_{i=0}^{n-1} a^i b^{n-1-i}$$
.

- 2. $n^2 < 2^n$.
- 3. Si $A, B \in \mathbb{R}^{n \times n}$ triangular superior, entonces AB es triangular superior (ejercicio 25 de la guía 1).

Interpretaciones de una matriz

Mirada algebraica:

- Sist. de ecuaciones lineales
- Sist. de inecuaciones lineales
- Filas/columnas de vectores
- Problemas de Optimización

Mirada analítica:

- Derivadas
- Diagramas de flujo
- Resolución de Ecuaciones Diferenciales

Interpretaciones de una matriz

Mirada algebraica:

- Sist. de ecuaciones lineales
- Sist. de inecuaciones lineales
- Filas/columnas de vectores
- Problemas de Optimización

Mirada algebraica abstracta:

- Elementos con operaciones asociadas a la estructura de filas y columnas capaces de extender a los reales (R)
- Identificación de invariantes
- Representaciones

Mirada analítica:

- Derivadas
- Diagramas de flujo
- Resolución de Ecuaciones Diferenciales

Mirada geométrica:

- Rotaciones, Simetrías y Proyecciones
- Cambios de coordenadas (bases) y Reescalamiento
- Cuádricas
- Grafos

Interpretaciones de una matriz

Mirada algebraica:

- Sist. de ecuaciones lineales
- Sist. de inecuaciones lineales
- Filas/columnas de vectores
- Problemas de Optimización

Mirada algebraica abstracta:

- Elementos con operaciones asociadas a la estructura de filas y columnas capaces de extender a los reales (R)
- Identificación de invariantes
- Representaciones

Mirada analítica:

- Derivadas
- Diagramas de flujo
- Resolución de Ecuaciones Diferenciales

Mirada geométrica:

- Rotaciones, Simetrías y Proyecciones
- Cambios de coordenadas (bases) y Reescalamiento
- Cuádricas
- Grafos

Un sistema de ecuaciones lineales puede representarse como una matriz:

Un sistema de ecuaciones lineales puede representarse como una matriz:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Un sistema de ecuaciones lineales puede representarse como una matriz:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Operaciones entre filas:

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_i$).

Un sistema de ecuaciones lineales puede representarse como una matriz:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Operaciones entre filas:

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_j$).

El sistema resultante de aplicar estas operaciones es *equivalente* al original, estas operaciones no cambian la solución del sistema.

Un sistema de ecuaciones lineales puede representarse como una matriz:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Operaciones entre filas:

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_j$).

El sistema resultante de aplicar estas operaciones es *equivalente* al original, **estas operaciones no cambian la solución del sistema**.

Pregunta: ¿Se pueden hacer estas operaciones pero con columnas?

Filas y Columnas de Vectores

Sea $A \in \mathbb{R}^{n \times m}$, entonces podemos entenderla como:

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_{n-1} \\ v_n \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & \dots & w_{n-1} & w_n \\ \end{pmatrix}$$

Filas y Columnas de Vectores

Sea $A \in \mathbb{R}^{n \times m}$, entonces podemos entenderla como:

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_{n-1} \\ v_n \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & \dots & w_{n-1} & w_n \\ \end{pmatrix}$$

Notamos como $(A)_{ij}$ ó a_{ij} :

- a la *j*—ésima coordenada de *v_i*
- a la *i*−ésima coordenada de *w_i*.

Filas y Columnas de Vectores

Sea $A \in \mathbb{R}^{n \times m}$, entonces podemos entenderla como:

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_{n-1} \\ v_n \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & \dots & w_{n-1} & w_n \\ \end{pmatrix}$$

Notamos como $(A)_{ij}$ ó a_{ij} :

- a la *i*—ésima coordenada de *v_i*
- a la *i*−ésima coordenada de *w_i*.

En el juego de filas y columnas, aparece la operación traspuesta (t):

R—Espacio Vectorial con producto interno

Un " \mathbb{R} -e.v. finito" es equivalente a pensar \mathbb{R}^n para un n entero positivo. Sus elementos se llaman *vectores* y se los piensa como en **columnas**¹.

¹Cuando se escriben por filas es por comodidad tipográfica (♂) (३) (३) (३)

R-Espacio Vectorial con producto interno

Un " \mathbb{R} -e.v. finito" es equivalente a pensar \mathbb{R}^n para un n entero positivo. Sus elementos se llaman *vectores* y se los piensa como en **columnas**¹. Se los puede sumar y multiplicar por un número real (coord a coord). Sean $u, v \in \mathbb{R}^n$, el producto interno (p.i.) es:

$$u \cdot v = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n = \sum_{1 \leqslant i \leqslant n} u_i v_i \in \mathbb{R}$$

Por ejemplo: Si u = (1, 2, -2) y v = (3, 0, 1), entonces $u \cdot v = 1$.

Suma y multiplicación de matrices

Extendemos las operaciones de vectores a matrices $\mathbb{R}^{n \times m}$, donde los vectores se entienden como matrices $\mathbb{R}^{n \times 1}$.

- Sumar y multiplicar por un número real (coord a coord).
- Producto entre matrices: dados $A \in \mathbb{R}^{n \times k}$ y $B \in \mathbb{R}^{k \times m}$, entonces $AB \in \mathbb{R}^{n \times m}$. La condición para una buena definición del producto es que el número de columnas de la primera matriz coincida con el número de filas de la segunda matriz.
 - Si n=m=1 es el p.i. entre vectores: $u \cdot v = u^t v \in \mathbb{R}^{1 \times 1}$
 - En general:

$$A = \begin{pmatrix} v_1^t \\ v_2^t \\ \dots \\ v_{n-1}^t \\ v_n^t \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} w_1 & w_2 & \dots & w_{n-1} & w_n \\ \end{pmatrix}$$

Entonces: $(AB)_{ij} = v_i^t w_i$

- Producto de matrices cuadradas ($\mathbb{R}^{n \times n}$):
 - Permite concatenar productos: A^p
 - Hay noción de elemento neutro (Id_n) y de inversa A^{-1} .
 - Como raíces de "polinomios": $A^p Id_n = 0$.

- Producto de matrices cuadradas ($\mathbb{R}^{n \times n}$):
 - Permite concatenar productos: A^p
 - Hay noción de elemento neutro (Id_n) y de inversa A^{-1} .
 - Como raíces de "polinomios": $A^p Id_n = 0$.
- Caracterización de matrices según sus valores o estructura:
 - Diagonales (D) y Tridiagonales
 - Triangular Superior (U) y Triangular Inferior (L)
 - Simétricas

- Producto de matrices cuadradas ($\mathbb{R}^{n \times n}$):
 - Permite concatenar productos: A^p
 - Hay noción de elemento neutro (Id_n) y de inversa A^{-1} .
 - Como raíces de "polinomios": $A^p Id_n = 0$.
- Caracterización de matrices según sus valores o estructura:
 - Diagonales (D) y Tridiagonales
 - Triangular Superior (U) y Triangular Inferior (L)
 - Simétricas
- Determinante de una matriz cuadrada: $det(A) \in \mathbb{R}$.
 - Se "lleva bien" con el producto: det(AB) = det(A)det(B).
 - Como consecuencia, vale que det(AB) = det(BA).

- Producto de matrices cuadradas ($\mathbb{R}^{n \times n}$):
 - Permite concatenar productos: A^p
 - Hay noción de elemento neutro (Id_n) y de inversa A^{-1} .
 - Como raíces de "polinomios": $A^p Id_n = 0$.
- Caracterización de matrices según sus valores o estructura:
 - Diagonales (D) y Tridiagonales
 - Triangular Superior (U) y Triangular Inferior (L)
 - Simétricas
- Determinante de una matriz cuadrada: $det(A) \in \mathbb{R}$.
 - Se "lleva bien" con el producto: det(AB) = det(A)det(B).
 - Como consecuencia, vale que det(AB) = det(BA).
- Traza de una matriz $A \in \mathbb{R}^{n \times m}$: $Tr(A) = \sum_{i=1}^{\min\{n,m\}} (A)_{ii} \in \mathbb{R}$.
 - Se "lleva bien" con la suma: Tr(A + B) = Tr(A) + Tr(B).
 - Si AB y BA son posibles, Tr(AB) = Tr(BA) (¿por inducción?).

Transformaciones Lineales

Una transformación lineal es una función $f: \mathbb{R}^m \to \mathbb{R}^n$ tal que:

- 1. "no cambia el producto escalar": f(kv) = kf(v).
- 2. "separa la suma vectorial": f(v + w) = f(v) + f(w).

Veamos algunos casos:

- Si n = m = 1, sería una lineal sin ordenada al origen: f(x) = ax.
- Si m = 1, entonces $f(x) = (a_1 x, ..., a_n x) = (a_1, ..., a_n) x$.

Transformaciones Lineales

Una transformación lineal es una función $f: \mathbb{R}^m \to \mathbb{R}^n$ tal que:

- 1. "no cambia el producto escalar": f(kv) = kf(v).
- 2. "separa la suma vectorial": f(v + w) = f(v) + f(w).

Veamos algunos casos:

- Si n = m = 1, sería una lineal sin ordenada al origen: f(x) = ax.
- Si m = 1, entonces $f(x) = (a_1 x, ..., a_n x) = (a_1, ..., a_n) x$.
- Si n=1, entonces $f(x_1,\ldots,x_m)=\sum\limits_{1\leqslant i\leqslant m}a_ix_i=(a_1,\ldots,a_n)^tx$.

Transformaciones Lineales

Una transformación lineal es una función $f:\mathbb{R}^m o \mathbb{R}^n$ tal que:

- 1. "no cambia el producto escalar": f(kv) = kf(v).
- 2. "separa la suma vectorial": f(v + w) = f(v) + f(w).

Veamos algunos casos:

- Si n = m = 1, sería una lineal sin ordenada al origen: f(x) = ax.
- Si m = 1, entonces $f(x) = (a_1 x, ..., a_n x) = (a_1, ..., a_n) x$.
- Si n=1, entonces $f(x_1,\ldots,x_m)=\sum_{1\leqslant i\leqslant m}a_ix_i=(a_1,\ldots,a_n)^tx$.
- En general, f(x) = Ax.

La t.l. asociada a una matriz A la solemos notar como f_A . Con esto en mente, ahora toda matriz puede interpretarse como una transformación lineal.

Transformaciones Lineales típicas (n = m)

- *Nilpotentes*: Que existe $k \in \mathbb{N}$ tal que f^k es la transformación trivial (manda todo al 0), o bien $A^k = 0$.
- *Idempotentes*: $f^2 = f$ o que cumple que $A^2 = A$. Se las llaman Proyecciones, porque proyectan el dominio en la imagen.
- Isometrías: preservan la longitud de los vectores (||f(v)|| = ||v||). Sus matrices asociadas Q no sólo son inversibles sino que además $Q^t = Q^{-1}$, y se las llama ortogonales.
- Permutaciones de la base canónica: Son isometrías donde $P_{ij}(e_i) = e_j$, $P_{ij}(e_j) = e_i$ y $P_{ij}(e_k) = e_k$ si $k \neq i, j$.
- Estiramiento o escalado direccional: dada una dirección (generalmente vectores canónicos) la reescala respecto a otra (o la misma) dirección.
- Isomorfismos: Son las t.l. biyectivas. Mandan la base canónica a otra base y sus matrices son inversibles.
- Asociadas a matrices simétricas: Esto significa que $A = A^t$. Reescalan en direcciones perpendiculares respecto a una cierta isometría.

¿Cómo usaremos estas diferentes representaciones?

- El objetivo principal es resolver sistemas de ecuaciones lineales.
- Pero cuentas "costosas" algorítmicamente (complejidad, arrastre de redondeo) requieren que escribamos "mejor" sus matrices asociadas.
- Conocer mejores representaciones de matrices proviene de conocer sus propiedades algebraicas abstractas.
- Las propiedades algebraicas abstractas se suelen entender mejor cuando tenemos referencias geométricas, generalmente en términos de transformaciones lineales.

Uno más de inducción...

Ejercicio de Parcial del 1er cuatrimestre de 2023

Ejercicio 2 (25 puntos). Considere una descomposición LU de $A \in \mathbb{R}^{n \times n}$ donde L tiene unos en la diagonal, y sean $\{a_1^t, \ldots, a_n^t\}$ las filas de A y $\{u_1^t, \ldots, u_n^t\}$ las filas de U. Si $|l_{i,j}| \leqslant 1 \quad \forall 1 \leqslant i,j \leqslant n$:

- a) (10 puntos) Probar que $u_i^t = a_i^t \sum_{i=1}^{i-1} l_{ij} u_i^t \quad \forall 1 \leqslant i \leqslant n.$
- b) (10 puntos) Probar por inducción que $||u_i||_1 \leq 2^{i-1}||A||_{\infty} \quad \forall 1 \leq i \leq n$.
- c) (5 puntos) Probar que $||U||_{\infty} \leq 2^{n-1}||A||_{\infty}$.

Triangulación de matrices y normas matriciales

Clase 02 - 03/04/2024

Métodos Numéricos - 1er Cuatrimestre 2024 Daniel Grimaldi

Triangulación de matrices

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_j$).

Triangulación de matrices

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_j$).
- Sumarle un múltiplo de una fila f_i a una fila f_j . Si j=i, entonces no puede ser una suma trivial:
 - cambio f_i por $f_i + k \cdot f_j$, si j = i entonces $k \neq -1$.

Triangulación de matrices

- Permutación de filas (cambio f_i por f_j)
- Multiplicar por un número real k no nulo (cambio f_i por $k \cdot f_i$).
- Sumarle un múltiplo de una fila a otra (cambio f_i por $f_i + k \cdot f_i$).
- Sumarle un múltiplo de una fila f_i a una fila f_j . Si j = i, entonces no puede ser una suma trivial: cambio f_i por $f_i + k \cdot f_i$, si j = i entonces $k \neq -1$.

Matrices elementales:

- Matrices de Permutación P_{ij}.
- lacktriangle Reescalado Direccional (Shear) M_{ii}^m

Tenemos un sistema de ecuaciones lineales:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow A =
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Tenemos un sistema de ecuaciones lineales:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow A =
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Reescribimos en Ax = b y usamos matrices elementales que van triangulando columna a columna:

$$\left\{
\begin{array}{l}
f_2 \leftarrow f_2 + 0 \cdot f_1 \\
f_3 \leftarrow f_3 + \frac{4}{5} \cdot f_1 \\
f_4 \leftarrow f_4 - \frac{4}{5} \cdot f_1
\end{array}
\right. \Leftrightarrow M_1 = \left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
4/5 & 0 & 1 & 0 \\
-4/5 & 0 & 0 & 1
\end{array}
\right)$$

Tenemos un sistema de ecuaciones lineales:

$$\begin{cases}
5 & 1 & 0 & 2 = 11 \\
0 & 1 & 0 & 2 = 6 \\
-4 & -2 & 0 & -1 = -7 \\
4 & 1 & -1 & -4 = -6
\end{cases}
\Leftrightarrow A =
\begin{pmatrix}
5 & 1 & 0 & 2 & 11 \\
0 & 1 & 0 & 2 & 6 \\
-4 & -2 & 0 & -1 & -7 \\
4 & 1 & -1 & -4 & -6
\end{pmatrix}$$

Reescribimos en Ax = b y usamos matrices elementales que van triangulando columna a columna:

$$\left\{
\begin{array}{l}
f_2 \leftarrow f_2 + 0 \cdot f_1 \\
f_3 \leftarrow f_3 + \frac{4}{5} \cdot f_1 \\
f_4 \leftarrow f_4 - \frac{4}{5} \cdot f_1
\end{array}
\right. \Leftrightarrow M_1 = \left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
4/5 & 0 & 1 & 0 \\
-4/5 & 0 & 0 & 1
\end{array}
\right)$$

En general, $f_i \leftarrow f_i - \frac{a_{ij}}{a_{ji}} \cdot f_j$. Notar que $M_1 = M_{31}^{4/5} M_{41}^{-4/5}$.

Para triangular nos interesan los $M_{ij}^{m_{ij}}$ donde $m_{ij} = -\frac{a_{ij}}{a_{ii}}$ con j > i.

Si todo va bien: $M_k \dots M_1 Ax = M_k \dots M_1 b$. Notamos:

$$\begin{cases} A^{(1)} = A \\ A^{(t)} = M_t A^{(t-1)} & \text{donde } M_t = M_{n(t-1)}^{m_{n(t-1)}} \dots M_{t(t-1)}^{m_{t(t-1)}} \end{cases}$$

Si todo va bien: $M_k \dots M_1 Ax = M_k \dots M_1 b$. Notamos:

$$\begin{cases} A^{(1)} = A \\ A^{(t)} = M_t A^{(t-1)} & \text{donde } M_t = M_{n(t-1)}^{m_{n(t-1)}} \dots M_{t(t-1)}^{m_{t(t-1)}} \end{cases}$$

Eventualmente tenemos una triangular superior: $U = M_k \dots M_1 A = MA$. ¿Y la "L"? Como $M^{-1}U = A$, entonces $L = M^{-1}$.

Si todo va bien: $M_k \dots M_1 Ax = M_k \dots M_1 b$. Notamos:

$$\begin{cases} A^{(1)} = A \\ A^{(t)} = M_t A^{(t-1)} & \text{donde } M_t = M_{n(t-1)}^{m_{n(t-1)}} \dots M_{t(t-1)}^{m_{t(t-1)}} \end{cases}$$

Eventualmente tenemos una triangular superior: $U=M_k\ldots M_1A=MA$. ¿Y la "L"? Como $M^{-1}U=A$, entonces $L=M^{-1}$.

Triangulización con Pivote: PA = LU

Recordar que $m_{ij} = -\frac{a_{ij}}{a_{ii}}$ ¿Y si $a_{jj} = 0$? *Pivoteamos* con permutación:

$$A^{(t)} = M_t P_{tr} A^{(t-1)}$$

Si todo va bien: $M_k \dots M_1 Ax = M_k \dots M_1 b$. Notamos:

$$\begin{cases} A^{(1)} = A \\ A^{(t)} = M_t A^{(t-1)} & \text{donde } M_t = M_{n(t-1)}^{m_{n(t-1)}} \dots M_{t(t-1)}^{m_{t(t-1)}} \end{cases}$$

Eventualmente tenemos una triangular superior: $U = M_k \dots M_1 A = MA$. ¿Y la "L"? Como $M^{-1}U = A$, entonces $L = M^{-1}$.

Triangulización con Pivote: PA = LU

Recordar que $m_{ij} = -\frac{a_{ij}}{a_{jj}}$ ¿Y si $a_{jj} = 0$? *Pivoteamos* con permutación:

$$A^{(t)} = M_t P_{tr} A^{(t-1)}$$

¿No se puede pivotear "antes"? En la teoría, sí.

$$A^{(t)} = M_t P_{tr} A^{(t-1)} = M_t P_{tr} P_{tr} \tilde{M}_{t-1} P_{tr} A^{(t-2)} = M_t \tilde{M}_{t-1} P_{tr} A^{(t-2)} = \dots$$

Como
$$P_{tr}^2 = Id$$
, tenemos $P_{tr}\tilde{M}_{t-1}P_{tr} = P_{tr}P_{tr}M_{t-1}P_{tr}P_{tr} = M_{t-1}$.

"Repaso" Norma vectorial

Normas clásicas en \mathbb{R}^n :

$$||v||_{p} = \sqrt[p]{\sum_{i=1}^{n} |v_{i}|^{p}}$$
$$||v||_{\infty} = \max_{1 \le i \le n} |v_{i}|$$

"Repaso" Norma vectorial

Normas clásicas en \mathbb{R}^n :

$$||v||_{p} = \sqrt[p]{\sum_{i=1}^{n} |v_{i}|^{p}}$$

$$||v||_{\infty} = \max_{1 \le i \le n} |v_{i}|$$

- Las normas funcionan como una noción de distancia dentro del espacio vectorial.
- Si p = 2 es la norma euclídea, que de las clásiscas es la única compatible con el producto interno:

$$||v||_2 = \sqrt{u \cdot v} = \sqrt{u^t v}$$

■ Tradicionalmente trabajaremos con p = 1, p = 2 y $p = \infty$.

"Repaso" Norma vectorial

Normas clásicas en \mathbb{R}^n :

$$||v||_{p} = \sqrt[p]{\sum_{i=1}^{n} |v_{i}|^{p}}$$

$$||v||_{\infty} = \max_{1 \le i \le n} |v_{i}|$$

- Las normas funcionan como una noción de distancia dentro del espacio vectorial.
- Si p = 2 es la norma euclídea, que de las clásiscas es la única compatible con el producto interno:

$$||v||_2 = \sqrt{u \cdot v} = \sqrt{u^t v}$$

■ Tradicionalmente trabajaremos con p = 1, p = 2 y $p = \infty$.

¿Cómo son los conjuntos
$$B_p = \{\|v\|_p = 1\}$$
 en \mathbb{R}^2 ?

Norma Matricial

Dada $\|\cdot\|$ una norma en \mathbb{R}^m y $\||\cdot|\|$ una norma en \mathbb{R}^n , definimos en $\mathbb{R}^{m\times n}$ la norma matricial inducida $\|\|\cdot\|\|$:

$$||||A||| = \max_{v \in \mathbb{R}^n, v \neq 0} \frac{|||Av|||}{||v||}$$

En el caso de que m = n, hay una definición equivalente:

$$||||A||| = \max_{v \in \mathbb{R}^n, ||v|| = 1} ||Av||$$

Condición de una Matriz

$$Cond(A) = \kappa(A) = ||||A^{-1}|||||||A|||$$

Ejercicio de Parcial: 1er cuatrimestre de 2022

1er Parcial 1C2022

Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible.

1. Sea
$$B=\left(\begin{array}{cc} 1 & c^t \\ b & A \end{array}\right)$$
 con $b,c\in\mathbb{R}^n.$

- 1.1 Si c=0, probar que B tiene factorización LU si y sólo si A tiene factorización LU.
- 1.2 Si $c \neq 0$, mostrar que la afirmación del ítem anterior no es verdadera, exhibiendo un contraejemplo para ciertos b,c y A inversible. Justificar.
- 2. Siendo $d=1/(2\|A^{-1}\|)$ y $\|\cdot\|$ una norma matricial inducida, probar que para cualquier matriz $E\in\mathbb{R}^{n\times n}$, si $\|E\|\leq d$ entonces A+E es inversible.