Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 4

- 1. Пусть $z = \frac{\sqrt{3}}{2} + \frac{i}{2}$. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{2 + 2\sqrt{3}i}$ имеет аргумент $\frac{17\pi}{30}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(1-2i) + y(10-i) = -57 + 130i \\ x(4+3i) + y(-8+2i) = 25 - 109i \end{cases}$$

- 3. Найти корни многочлена $x^6 4x^5 + 3x^4 + 10x^3 6x^2 56x 48$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -1 + i, x_2 = 2 2i, x_3 = -1$.
- 4. Даны 3 комплексных числа: 7+23i, 7, 22. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 4i$, $z_2 = -4$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3-i| < 2\\ |arg(z+1+4i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, 0, -3), b = (-1, -10, -1), c = (2, 8, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(5,13,13) и плоскость P:-12x+18y+50z+660=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-6,7,7), $M_1(-3,-24,-9)$, $M_2(22,1,-9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -5x + 19y + 27z + 316 = 0 \\ 13x + 6y + 16z + 145 = 0 \end{cases} \qquad L_2: \begin{cases} -18x + 13y + 11z + 4469 = 0 \\ -16x + 16y + 16z + 4928 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.