

The Simple Correlation Analysis

 A measure of the linear relationship between variables and its strength

$$y = f(x)$$

- Scatter diagram
 - Observed values (x_i, y_i),

$$i = 1, 2, 3, 4, ..., n$$

The Simple Correlation Analysis

Direction

- Positive
- Negative
- No correlation

Strength

- Strong
- Medium
- Weak

The Simple Correlation Coefficient, r

Karl Pearson about 1900

Correlation Coefficient, r

- -1 < r < 1
 - +1 = perfect positive linear relationship
 - 0 = no linear relationship
 - -1 = perfect negative linear relationship

Strength

- $r = \pm 0.8$ or higher \rightarrow strong correlation
- $r = \pm 0.5 0.8 \rightarrow \text{medium correlation}$
- $r = \pm 0.4$ or lower \rightarrow weak correlation

The Simple Correlation Coefficient, r

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

n = the number of paired observations

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

where

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n}$$

$$SS_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

The Simple Correlation Coefficient, r (example)

Restaurant	student population (1000s), x	quarterly sales (\$1000s), y
1	3	92
2	2	63
3	6	126
4	8	174
5	2	49
6	4	90
7	5	119
8	6	114
9	2	67
10	4	115
11	6	128
12	11	258
13	3	77
14	10	151
15	1	27

Scatterplot of quarterly sales (\$1000s) vs student population (1000s)

The Simple Correlation Coefficient, r (example)

Restaurant	student population (1000s), x	quarterly sales (\$1000s), y	x^2	y^2	ху
1	3	92	9	8464	276
2	2	63	4	3969	126
3	6	126	36	15876	756
4	8	174	64	30276	1392
5	2	49	4	2401	98
6	4	90	16	8100	360
7	5	119	25	14161	595
8	6	114	36	12996	684
9	2	67	4	4489	134
10	4	115	16	13225	460
11	6	128	36	16384	768
12	11	258	121	66564	2838
13	3	77	9	5929	231
14	10	151	100	22801	1510
15	1	27	1	729	27
Sum, Σ	73	1,650	481	226,364	10,255

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

$$= \frac{15(10,255) - (73)(1,650)}{\sqrt{[15(481) - (73)^2][15(226,364) - (1,650)^2]}}$$

$$= \frac{153,825 - 120,450}{\sqrt{[1,886] [672,960]}} = \frac{33,375}{35,625.87} = \boxed{+0.9368}$$

relationship is strong

• r - **sample** correlation coefficient (NOT population)

the value of r is reliable or not?

• ρ - **population** correlation coefficient (NOT sample)

Hypothesis testing:

- 1. State the **hypothesis** $H_0: f = 0$ $H_1: f \neq 0$
- 2. Find the critical values from the table (d and d.f.)
- 3. Compute the test value (t test) formula
- 4. Make the decision with + value
- 5. Summarize the result

Hypotheses are:

Null hypothesis - H_0 : $\rho = 0$

(There is \underline{no} linear relationship between y and x, or the population coefficient is zero.)

Alternative hypothesis - H_1 : $\rho \neq 0$

(There is a linear relationship between y and x, **or** the population correlation coefficient is different from zero.)

- Reject null hypothesis \rightarrow significant difference between the value of r and 0
- Fail to reject → the value of r is NOT significantly different from 0

Critical value

- degree of freedom, d.f. = n 2
- α is the significant level
 - $\alpha = 1$ confidence level (95%)
 - α is 0.05 or 5%

D			evel of sig	gnificant, <mark>α</mark>		
Degrees f Freedom	.20	.10	.05	.025	.01	.005
1	1.376	3.078	6.314	12.706	31.821	63.656
2	1.061	1.886	2.920	4.303	6.965	9.925
3	.978	1.638	2.353	3.182	4.541	5.841
4	.941	1.533	2.132	2.776	3.747	4.604
5	.920	1.476	2.015	2.571	3.365	4.032
6	.906	1.440	1.943	2.447	3.143	3.707
7	.896	1.415	1.895	2.365	2.998	3.499
8	.889	1.397	1.860	2.306	2.896	3.355
9	.883	1.383	1.833	2.262	2.821	3.250
10	.879	1.372	1.812	2.228	2.764	3.169
11	.876	1.363	1.796	2.201	2.718	3.106
12	.873	1.356	1.782	2.179	2.681	3.055
13	.870	1.350	1.771	2.160	2.650	3.012
14	.868	1.345	1.761	2.145	2.624	2.977
15	.866	1.341	1.753	2.131	2.602	2.947
16	.865	1.337	1.746	2.120	2.583	2.921
17	.863	1.333	1.740	2.110	2.567	2.898
18	.862	1.330	1.734	2.101	2.552	2.878
19	.861	1.328	1.729	2.093	2.539	2.861

from the formula

Test statistics,

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Decision rule: We will **reject** H_0 at α , if the value of $t \le -t_{\alpha/2}$ or $t \ge +t_{\alpha/2}$

Restaurant	student population (1000s), x	quarterly sales (\$1000s), y	x^2	y^2	ху
1	3	92	9	8464	276
2	2	63	4	3969	126
3	6	126	36	15876	756
4	8	174	64	30276	1392
5	2	49	4	2401	98
6	4	90	16	8100	360
7	5	119	25	14161	595
8	6	114	36	12996	684
9	2	67	4	4489	134
10	4	115	16	13225	460
11	6	128	36	16384	768
12	11	258	121	66564	2838
13	3	77	9	5929	231
14	10	151	100	22801	1510
15	1	27	1	729	27
Sum, Σ	73	1,650	481	226,364	10,255

r = +0.9368 - strong correlation

with $\alpha = 0.05$ and d.f. = n - 2 = 15 - 2 = 13

Test:

 H_0 : There is no a linear relationship between the quarterly sales(y) and the student population (x)

 H_1 : There is a linear relationship between the quarterly sales(y) and the student population(x)

test statistics,

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.9368\sqrt{15-2}}{\sqrt{1-(0.9368)^2}} = \frac{3.3777}{0.3499} = 9.653$$

		_
Critica	va	ue

$$\alpha = 0.05$$
 and d.f. = $n - 2 = 15 - 2 = 13$

- the critical value is $\pm t_{0.025} = \pm 2.160$
- computed t value, t = 9.653

Reject
$$H_0$$
 when $t \le -t_{\alpha/2}$ or $t \ge +t_{\alpha/2}$

Therefore, H_0 is <u>rejected</u> at $\alpha = 0.05$.

Doowoos			evel of si	gnificant, α		
Degrees of Freedom	.20	.10	.05	.025	.01	.005
1	1.376	3.078	6.314	12.706	31.821	63.656
2	1.061	1.886	2.920	4.303	6.965	9.925
3	.978	1.638	2.353	3.182	4.541	5.841
4	.941	1.533	2.132	2.776	3.747	4.604
5	.920	1.476	2.015	2.571	3.365	4.032
6	.906	1.440	1.943	2.447	3.143	3.707
7	.896	1.415	1.895	2.365	2.998	3.499
8	.889	1.397	1.860	2.306	2.896	3.355
9	.883	1.383	1.833	2.262	2.821	3.250
10	.879	1.372	1.812	2.228	2.764	3.169
11	.876	1.363	1.796	2.201	2.718	3.106
12	.873	1.356	1.782	2.179	2.681	3.055
13	.870	1.350	1.771	2.160	2.650	3.012
14	.868	1.345	1.761	2.145	2.624	2.977
15	.866	1.341	1.753	2.131	2.602	2.947
16	.865	1.337	1.746	2.120	2.583	2.921
17	.863	1.333	1.740	2.110	2.567	2.898
18	.862	1.330	1.734	2.101	2.552	2.878
19	.861	1.328	1.729	2.093	2.539	2.861

-2.400

we can conclude that there is a linear relationship between the student population(x) and the quarterly sales (y).

In-class Assignment: Correlation Coefficient

Find the value of the correlation coefficient, $\bf r$, from the following table and test the significant of ρ

SUBJECT	AGE X	GLUCOSE LEVEL Y
1	43	99
2	21	65
3	25	79
4	42	75
5	57	87
6	59	81