

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Grundlagen der Signalverarbeitung

26.11.2021, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung	
29.10.2021	Menschliche Wahrnehmung – visuell, akustisch, haptisch,	
05.11.2021	Informationstheorie, Textcodierung und -komprimierung	
12.11.2021	Bildverbesserung	
19.11.2021	Bildanalyse	
26.11.2021	Grundlagen der Signalverarbeitung	
03.12.2021	Bildkomprimierung	
10.12.2021	Videokomprimierung	
17.12.2022	Audiokomprimierung	
14.01.2022	Videoanalyse	
21.01.2022	Dynamic Time Warping	
28.01.2022	Gestenanalyse	
04.02.2022	Tiefendatengenerierung	
11.02.2022	FAQ mit den Tutoren	
15.02.2022	Klausur (noch nicht bestätigt)	

Audiosignal

Bild- und Videosignale

Zeilenausschnitt aus einem Schwarzweißbild

- Analogtechnik: Zeile enthält kontinuierliches Signal (z.B. PAL-TV)
- Digitaltechnik: Zeilen diskretisiert → Pixel (von "picture element").

Zusammensetzung eines periodischen Signals

- Bsp.: Rechtecksignal
- Annäherung eines Rechtecksignals durch ungerade Vielfache der Grundfrequenz

Zusammensetzung einer Sägezahnfunktion aus Sinusfunktionen

Fourier-Transformation

- Jean Baptiste Joseph Fourier (1768-1830)
- Französischer Physiker und Mathematiker
- Erfinder der Fouriertransformation
- Idee: Beschreibe beliebige Funktion als gewichtete Summe periodischer Grundfunktionen (Basisfunktionen) mit unterschiedlichen Frequenz

Periodische Funktion

Parameter

- A Amplitude: Intensität des Signals
- φ Phase: Verschiebung gegenüber dem Ursprung verschiedene Größen zur Beschreibung der "Frequenz" [Einheit]

zeitlich f(t)

T Periodendauer [s]

ω Kreisfrequenz ω = 2πf

 $r\ddot{a}umlich f(x)$

λ Wellenlänge [m]

Frequenz f = 1/T [1/s=Hz] f Raumfrequenz $f = 1/\lambda [1/m]$

k Wellenzahl k=2π/λ

Fourier - Theorem

- Jede beliebige periodische Funktion lässt sich darstellen als Summe von cos und sin Funktionen unterschiedlicher Frequenzen.
- Ist die Funktion nicht periodisch, aber auf einen bestimmten Definitionsbereich beschränkt, so kann man diesen Bereich einfach kopieren (periodisch fortsetzen) und hat damit wieder eine periodische Funktion.
- Ein Bild kann man als Zeilen und Spalten von nichtperiodischen Funktionen auffassen. Man kann also auch ein Bild fouriertransformieren.

Motivation

- Manche Operationen sind im Ortsraum (d.h. auf den Pixeln des Bildes) schwer
 - Herausfiltern bestimmter Frequenzen
 - Beseitigung störender Details
 - Konvolution, Korrelation
- Ziel: übertrage Bild in einen Raum, in dem diese Operationen leichter sind
 - z.B. Zerlegung des Bildes in Frequenzen
 - Rückweg muss möglich sein!
 - Verschiedene Möglichkeiten, gleiches Prinzip

Motivation (2)

- Bisher: Darstellung des Bildes im Ortsraum durch den Grauwert an einem bestimmten Ort
- Jetzt: Darstellung im Frequenzraum durch cos und sin Funktionen verschiedener Frequenzen
- Ein Bild kann eindeutig und vollständig in beiden Räumen dargestellt werden.

Fouriertransformation: Eigenschaften

- Transformation: verändert eine Funktion nicht, sondern stellt sie nur anders dar
- Transformation ist umkehrbar => Inverse Fouriertransformation
- Analog zum Basiswechsel in der Vektorrechnung: Wahl anderer Basisvektoren => Transformation mittels Basiswechsel
- Basiswechselmatrix vom Rang der Pixelanzahl

Fourierreihe

• Joseph Fourier (1768-1830): **Jede Schwingung** (periodische Funktion f mit Periode T > 0) **kann als die Summe harmonischer Schwingungen** (sinusförmige Funktionen, deren Frequenzen ganzzahlige Vielfache der Grundfrequenz sind) dargestellt werden

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cdot \cos(k \cdot \omega \cdot t) + b_k \cdot \sin(k \cdot \omega \cdot t)]$$

- mit Grundfrequenz $\omega = 2 \cdot \pi/T$, Amplituden a_k und b_k
- Aufspaltung einer beliebigen periodischen Funktion (Frequenzgemisch) in Frequenzbestandteile
 - → Fourier-Analyse → Fourier-Transformation
- Zusammensetzung eines periodischen Funktion aus sinusförmigen Funktionen → Fourier-Synthese → inverse Fourier-Transformation

Signalverarbeitung

- Problem der analogen Übertragung: Störung beeinflusst das Signal
- Störung "verzieht" das eigentlich gespeicherte Signal

Signalverarbeitung

- Problem der analogen Übertragung: Störung beeinflusst das Signal
- Störung "verzieht" das eigentlich gespeicherte Signal
- Vorteil digital: Störung beeinflusst das Signal nur in extremen Fällen

Signalklassen

analog

digital

zeitdiskret

Signalverarbeitung

- Umwandlung von Analog zu Digital
 - Abtastung (sample)
 - Zwischenspeicherung zur Wandlung (hold)
 - Wandlung/Quantisierung in (typischerweise) Ganzzahl

Signalwert

Digitalisierungsfehler

- Fehlerklassen:
 - Zu grobe Quantisierung: Schlechtere Darstellung von Abstufungen
 - Zu grobe Abtastung → Zusammenhang schwerer zu verstehen; führt zu gravierenden Fehlern!

Abtastrate: Einführendes Beispiel

 Warum drehen sich in Kinofilmen die Räder von Wagenrädern oft scheinbar rückwärts?

Wagenrad (über die Zeit):

• Aufnahmen (über die Zeit):

Exkurs: Theorie der digitalen Signalverarbeitung

Systemtheorie

 Allgemeingültige Beschreibung von Manipulationen an Signalen

System

- Ausgangssignale werden aus Eingangssignalen erzeugt

- Hier werden nur lineare, zeitinvariante Systeme (LTI-Systeme) betrachtet
- Hinweis: LTI: Linear Time Invariant

Zeitinvarianz, Linearität

- Zeitinvarianz
 - Das Verhalten des Systems hängt <u>nicht</u> von der Vorgeschichte ab
 - Aus $x_1(t) \rightarrow y_1(t)$ folgt $x_1(t-T) \rightarrow y_1(t-T)$

Linearität

- Das Verhalten des Systems lässt sich linear verknüpfen
- Superpositionsprinzip
 - Aus $x_1(t) \rightarrow y_1(t)$ und $x_2(t) \rightarrow y_2(t)$ folgt $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$

Systembeschreibung

Beschreibung im Zeitbereich

- Beschreibung des Verhaltens von Systemen durch Betrachtung deren Antwort auf einen Impuls (Impulsantwort)
- Ein gewichteter Dirac-Impuls $\delta(t)$ entspricht einer Abtastung des Signals zu einem zeitdiskreten Zeitpunkt

Beschreibung im Frequenzbereich

- Das Verhalten von Systemen wird in Abhängigkeit von der Frequenz beschrieben
 - Frequenzspektrum
 - Laplace- und Fourier-Transformation

Impulsantwort für zeitdiskrete Signale

- Ein Dirac-Impuls ist ein
 - einzelner Impuls
 - zum Zeitpunkt t = 0
 - für den gilt:

$$\sum_{t=-\infty}^{\infty} \delta(t) = 1$$

$$\Rightarrow \begin{cases} 1 & \text{für } t = 0 \\ 0 & \text{sonst} \end{cases}$$

• Impulsantwort a(t) als Reaktion auf den Dirac-Impuls $\delta(t)$

Impulsantwort für zeitdiskrete Signale

• Jede Eingangsfunktion x(t) lässt sich durch eine Summe zeitlich verschobener und gewichteter Dirac-Impulse annähern

Impulsantwort für zeitdiskrete Systeme

 Die Systemantwort y(t) kann wegen der Linearität der betrachteten Systeme als Summe der gewichteten und verschobenen Impulsantworten berechnet werden:

$$y(t) = \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot a(t - i \cdot T)$$

 Die Durchführung dieser Berechnung nennt man Faltung (Konvolution)

$$y(t) = x(t) * a(t)$$

- Das Verhalten eines Systems kann aus der Faltung der Eingangsfunktion x(t) mit der Impulsantwort a(t) berechnet werden
- Der Faltungskern beschreibt den Teil von a(t), für den gilt: $a(t) \neq 0$.

Exkurs: Beispiel einer klassischen "diskreten" Faltung

- Faltung: $(x * a)(t) = \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot a(t i \cdot T)$
- Impulsantwort: $a(t) = \delta(t) \delta(t-1)$
- Gewichtung von Eingangswerten

$$y(t) = \dots + x(-1) \cdot a(t+1) + x(0) \cdot a(t) + x(1) \cdot a(t-1) + \dots$$

(für T=1)

$$y(-1) = 0 - 0 = 0$$
 (für alle $y(t)$ mit $t < 0$ gilt $y(t) = 0$)

$$y(0) = 1 - 0 = 1$$
, $y(1) = 1 - 1 = 0$, $y(2) = 1 - 0 = 0$, $y(3) = 0 - 1 = -1$

$$y(4) = 0 - 0 = 0$$
 (für alle $y(t)$ mit $t > 3$ gilt $y(t) = 0$)

Impulsantwort für zeitkontinuierliche Signale

- Das Verhalten eines zeitkontinuierlichen Systems kann aus dem Verhalten eines zeitdiskreten Systems abgeleitet werden
 - Grenzwert für $T \rightarrow 0$
 - Die Summationen wird durch die Integration ersetzt

• Dirac-Impuls

$$\int_{-\infty}^{\infty} \delta(t) = 1$$

Eingangsfunktion

$$x(t) = \int_{-\infty}^{\infty} x(T) \cdot \delta(t - T) dT$$

Systemantwort

$$y(t) = \int_{-\infty}^{\infty} x(T) \cdot a(t - T) dT$$

Komplexe Zahlen – Grafische **Anschauung**

Komplexe Zahlen und Polarkoordinaten

$$z = x + j \cdot y$$
$$j^2 = -1$$

$$z = r \cdot (\cos(\varphi) + j \cdot \sin(\varphi))$$

Darstellung periodischer Funktionen mit komplexen Zeigern

Grafische Interpretation komplexer periodischer Funktionen

• $\cos(\varphi) + j \cdot \sin(\varphi)$

Quelle: Klaus Tönnies: Grundlagen der Bildverarbeitung, 2005

Komplexe Fourierreihe

 Joseph Fourier (1768-1830): Jede periodische Funktion f mit Periode T > 0 kann als die Summe harmonischer Schwingungen (sinusförmige Funktionen, deren Frequenzen ganzzahlige Vielfache der Grundfrequenz sind) dargestellt werden:

$$s(x) = \sum_{i = -\infty}^{\infty} c_i \cdot e^{-j\omega it} \qquad \text{mit} \qquad c_i = \frac{T}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega it} \cdot f(x) dx$$

• mit Grundfrequenz $\omega = 2p/T$, komplexe Amplitude c_i

Beschreibung im Frequenzbereich

- Das Verhalten eines linearen zeitinvarianten Systems kann auch im Frequenzbereich beschrieben werden
 - Das Systemverhalten wird hierbei nicht in Abhängigkeit der Zeit, sondern in Abhängigkeit der Frequenz beschrieben
 - → Spektralanalyse
- Übergang in den Frequenzbereich durch
 - Erregung des Systems mit einem Signal komplexer Frequenz s

$$x(t) = e^{s \cdot t}$$
 mit $s = \sigma + j\omega$ ω : Frequenz $x(t) = e^{(\sigma + j\omega) \cdot t}$ σ : Dämpfung $= e^{\sigma \cdot t} \cdot e^{j\omega \cdot t}$ $= e^{\sigma \cdot t} \cdot (\cos(\omega \cdot t) + j \cdot \sin(\omega \cdot t))$

Fourier-Transformation

- Beschränkung der Betrachtung auf stabile Systeme
 - Keine Dämpfung: $\sigma = 0$
 - Erregung mit beschränkten Eingangssignalen (Definitionsbereich)
 - Impulsantwort mit beschränkten Ausgangssignalen (Wertebereich)

• Erregung mit
$$x(t) = e^{j\omega t}$$
 mit $\sigma = 0$

• Systemantwort
$$y(t) = e^{j\omega t} \int_{-\infty}^{\infty} e^{-j\omega T} \cdot a(T) dT$$

Fourier-Transformierte $A^F(\omega)$ von a(t)

• Die Fourier-Transformation ist eine Integraltransformation die eine Funktion vom Zeitbereich t in den Frequenzbereich ω transformiert

Fourier-Transformation

Allgemeine Gleichung der Fourier-Transformation

$$X(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} \cdot x(t)dt \tag{1}$$

- Die Rücktransformation in den Zeitbereich
 - → inverse Fourier-Transformation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} \cdot X(\omega) d\omega$$
 (2)

Eigenschaften der Fourier-Transformation

- Vereinfachte Rechenoperationen
- Aus einer Faltung im Zeitbereich wird eine Multiplikation im Frequenzbereich
 - → Einfache Berechnung der Systemantwort im Frequenzbereich

$$y(t) = x(t) * a(t)$$

$$Y(\omega) = X(\omega) \cdot A^F(\omega)$$

Regeln der Fourier-Transformation

	Zeitbereich	Frequenzbereich
Linearkombination	$a \cdot x_1(t) + b \cdot x_2(t)$	$a \cdot X_1(\omega) + b \cdot X_2(\omega)$
Faltung	$x_1(t) * x_2(t)$	$X_1(t) \cdot X_2(t)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$1/j\omega \cdot X(\omega) + \pi \cdot X(0) \cdot \delta(\omega)$
Differentiation	$\frac{d}{dt}x(t)$	$j\omega \cdot X(\omega)$
Dämpfung	$x(t)e^{\alpha t}$	$X(\omega-\omega_0)$

Welche Bedingungen müssen eingehalten werden, damit sich aus einem abgetasteten Signal das ursprüngliche Signal wieder rekonstruieren lässt?

Abtasttheorem (Herleitung)

- Ursprungssignal mit (1): $x(t) \stackrel{\mathsf{FT}}{\longrightarrow} X(\omega) = \int\limits_{-\infty}^{\infty} e^{-j\omega t} \cdot x(t) dt$
- Abgetastetes Signal $x_A(t) = \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot \delta(t i \cdot T)$
- Nach Fourier-Trans. $X_A(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} \cdot \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot \delta(t-i \cdot T) \, dt$

$$= \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot \int_{-\infty}^{\infty} e^{-j\omega t} \cdot \delta(t - i \cdot T) dt$$

$$=\sum_{i=-\infty}^{\infty}x(i\cdot T)\cdot e^{-j\omega iT} \qquad (3)$$

Abtasttheorem (Herleitung)

$$X_A(\omega) = \sum_{i=-\infty}^{\infty} x(i \cdot T) \cdot e^{-j\omega iT}$$
 (3)

• Betrachte allgemeine Fourier-Reihe einer Funktion f(x):

$$s(x) = \sum_{i = -\infty}^{\infty} c_i \cdot e^{-j\omega it} \qquad \text{mit} \qquad c_i = \frac{T}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega it} \cdot f(x) dx$$

• Die entwickelte Fourier-Reihe (3) und s(x) unterscheiden sich nur in c_i und $x(i \cdot T)$. Daraus folgt:

$$c_i = x(i \cdot T)$$

$$= \frac{T}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega it} \cdot \frac{1}{T} \cdot x(t) dt$$
 Eingesetzt in $s(x)$ und Anwendung der Substitutionsregel mit $t = i \cdot T$

$$\Rightarrow X_A(\omega) = \sum_{i=-\infty}^{\infty} e^{-j\omega it} \frac{T}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega it} \cdot \frac{1}{T} \cdot x(t) dt \tag{4}$$

Abtasttheorem (Herleitung)

• Ein Vergleich der beiden Formeln (1) und (4) ergibt

$$X(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} \cdot x(t)dt$$

$$X_A(\omega) = \sum_{i=-\infty}^{\infty} e^{-j\omega it} \frac{T}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega it} \cdot \frac{1}{T} \cdot x(t)dt$$

- Die Integrale der Formeln gleichen sich bis auf Amplitudenfaktor 1/T
- Der Summand in der Summenformel der Funktion $X_A(\omega)$ entspricht bis auf einen Amplitudenfaktor 1/T der Fourier-Reihenentwicklung von $X(\omega)$
- $X_A(\omega)$ ist die **periodische Fortsetzung** von $X(\omega)$ mit der Periode 1/T

Abtasttheorem

- Die ursprüngliche Funktion x(t) lässt sich aus dem abgetasteten Spektrum (Fourier-Transformation) $X_A(\omega)$ genau dann rekonstruieren, wenn sich die Vielfachen mit dem Grundspektrum $X(\omega)$ nicht überlappen
 - wird 1/T kleiner, verschieben sich die (positiven) Spektren $X_A(\omega)$ nach links
 - wird f_{max} größer, werden Spektren $X(\omega)$ und $X_A(\omega)$ "breiter"
 - in beiden Fällen würden sich die Spektren überlappen und eine Rekonstruktion des ursprünglichen Signals unmöglich machen
- Dies wird genau dann verhindert, wenn die Abtastrate 1/T größer ist als die doppelte Grenzfrequenz f_{max} $\frac{1}{T} > 2 \cdot f_{max}$

Abtastung einer Szene

- Bildhelligkeit wird nicht für beliebige x,y kontinuierlich gemessen
- Messung nur an bestimmten Stellen, bzw. Integration über bestimmte Bereiche (Pixel)
- Entspricht mathematisch der Multiplikation mit einer Impulsfolge (Summe verschobener Impulsfunktionen)
- Impulsfunktion δ (oder Dirac-Funktion):

$$\delta(x-a) = \begin{cases} 0 & x \neq a \\ \infty & x = a \end{cases} \qquad \int_{-\infty}^{\infty} f(x)\delta(x-a) \ dx = f(a)$$

http://de.wikipedia.org/wiki/Delta-Distribution

Abtasttheorem von Nyquist-Shannon

 Ein digitales Signal mit maximalem
 Frequenzanteil f_{max} muss mit mehr als der
 doppelten Frequenz 2 f_{max} abgetastet werden

Aliasing

$$f_{abtast} < 2f_{signal}$$

$$f_{alias} = \left| f_{abtast} - f_{signal} \right|$$

- Durch Unterabtastung (f_{abtast} < 2 f_{max}) entstehendes falsches Signal
- Frequenz des Aliasing-Signals = Differenz aus Original- und Abtastsignal
- Schwebungstöne beim Stimmen einer Gitarre

Abtast-Theorem I

Aliaseffekt I

- Man kann sich die Wiederholung des Spektrums mit h\u00f6heren Frequenzen anschaulich auch so erkl\u00e4ren
 - Gibt es keine Bandbegrenzung, so lassen sich die Abtastungen auch als Werte von Vielfachen der Grundfrequenz interpretieren

Verhinderung von Aliasing-Effekten

- Begrenzung der maximalen Signalfrequenz
 - Bei Digitalkameras: unscharfe Optik
 - Weichzeichner vor dem Bildsensor
- Supersampling mit höherer
 Samplingfrequenz und dann tiefpassfiltern
- Beispiel: Antialisaing durch Supersampling beim Zeichnen von Linien in einen Framebuffer (siehe 3DCG Teil dieser Vorlesung)

- Überlappen die Frequenzspektren der Kopien, der um jeweils 1/T verschobenen Funktionen, überlagern sich hohe Frequenzen aus der Menge der Vielfachen des Originalspektrums mit dem Originalspektrum
- Durch die Abtastung wird eine Frequenz rekonstruiert, die nicht im Original vorhanden ist (Alias-Frequenz)

Beispiel: Aliasing-Effekt (Moiré-Effekt) durch Wahl einer falschen Abtastrate

Beispiel: Moiré-Effekt (Unterabtastung)

Abtasttheorem

- $X(\omega)$ kann aus $X_A(\omega)$ rekonstruiert werden, wenn sich die periodische Fortsetzungen nicht überlappen
 - Tiefpass mit Grenzfrequenz f_{max}
- Die Überlappung findet nicht statt, wenn $1/T > 2 \cdot f_{max}$
 - f_{max} ist die höchste in x(t) vorkommende Frequenz
 - 1/T ist die Abtastfrequenz oder Abtastrate
- Beispiele
 - CD: $f_{max} = 20 \text{ KHz}, 1/T = 44,1 \text{ KHz}$
 - ISDN: $f_{max} = 3.6 \text{ KHz}, 1/T = 8 \text{ KHz}$
- Typischer Ablauf der digitalen Signalverarbeitung

Zusammenfassung – Fourierreihe

• Joseph Fourier (1768-1830): **Jede Schwingung** (periodische Funktion f mit Periode T > 0) **kann als die Summe harmonischer Schwingungen** (sinusförmige Funktionen, deren Frequenzen ganzzahlige Vielfache der Grundfrequenz sind) dargestellt werden

Zusammenfassung – Abtasttheorem

- Die ursprüngliche Funktion x(t) lässt sich aus dem abgetasteten Spektrum (Fourier-Transformation) $X_A(\omega)$ genau dann rekonstruieren, wenn sich die Vielfachen mit dem Grundspektrum $X(\omega)$ nicht überlappen
 - wird 1/T kleiner, verschieben sich die (positiven) Spektren $X_A(\omega)$ nach links
 - wird f_{max} größer, werden Spektren $X(\omega)$ und $X_A(\omega)$ "breiter"
 - in beiden Fällen würden sich die Spektren überlappen und eine Rekonstruktion des ursprünglichen Signals unmöglich machen
- Dies wird genau dann verhindert, wenn die Abtastrate 1/T größer ist als die doppelte Grenzfrequenz f_{max} $\frac{1}{T} > 2 \cdot f_{max}$

