ClickHouseのアーキテクチャと活用事例

アジェンダ

OlickHouseとは

02 アーキテクチャ

103 活用事例

|||| ClickHouse

01. ClickHouse とは

ClickHouse とは?

オープンソース	列指向	分散	OLAPデータベース
2009年から開発開始	集計に最適	レプリケーション	分析ユースケース
2016年にオープンソース化	カラムごとのファイル管理	シャーディング	集計処理
36,000+ GitHubスター	ソートとインデックス	マルチマスター	データの可視化
1,300+ コントリビューター	バックグラウンドマージ	クロスリージョン	ほぼイミュータブルなデータ
500+ リリース	 	 	

ClickHouse の歴史

ClickHouse オープンソース

- 36k以上のGitHubスター
- 6.4k以上のフォーク
- 1.3k以上のコントリビュータ
- 100k以上のコミット
- 114k のアクティブなコミュニティメンバー

ClickHouse Cloud

- 柔軟で機能が豊富、かつ使いやすい
- 毎日数十億のクエリを処理

IIII ClickHouse

セルフマネージド

- ✔ オープンソース
- 柔軟なアーキテクチャ
- 効率的で堅牢
- ✔ サポート契約が利用可能

セルフマネージドにおけるアーキテクチャのサンプル

· ClickHouse

Cloud

- / 使いやすい
- ✓ 機能が豊富
- ✔ 高速
- ✓ スケーラブル
- ✓ 信頼性が高い
- PAYG

マネージド型サービス

クラウドファースト機能とツールを提供

自動的にパフォーマンスと効率を最適化

シームレスなスケーリング

高い信頼性を保証

利用量と容量に応じた料金設定

|||| ClickHouse

02. アーキテクチャ

ANSI-SQL の DDL やクエリは、 ClickHouse で動作しますか?

ANSI-SQL の DDL やクエリは、 ClickHouse で動作しますか?

はい! ただし...

より高速な分析を実現するためのポイント

- ほぼ ANSI SQL と同様の構文
 - SQLシンタックスはほぼ一緒
 - 追加でデータ型や特殊関数をサポート
- 列指向ストレージの活用
 - 必要なカラムだけを SELECT して I/O を最小化
 - 大量データを扱う分析クエリで真価を発揮
- 従来のRDBMS(OLTP) とは設計思想が異なる
 - 既存のクエリにおいても、列指向の恩恵で分析クエリは高速
 - さらに高速化するにはテーブル設計やクエリの最適化が重要
 - トランザクションについては、部分的にサポート(完全にサポートしていない)

行指向と列指向の違い

一般的な**行指向**のテーブル

id	date	user	product	price
1	2025-01-01	やまだ	リンゴ	200
2	2025-01-01	さとう	バナナ	80
3	2025-01-02	すずき	オレンジ	120
4	2025-01-02	たかはし	メロン	450

一般的な**行指向**のテーブル

id	date	user	product	price
1	2025-01-01	やまだ	リンゴ	200
2	2025-01-01	さとう	バナナ	80
3	2025-01-02	すずき	オレンジ	120
4	2025-01-02	たかはし	メロン	450

一般的な RDBMS クエリ

SELECT price FROM sales WHERE user=すずき

列指向の テーブルの場合

date	
2025-01-01	
2025-01-01	
2025-01-02	
2025-01-02	

user
やまだ
さとう
すずき
たかはし

product
リンゴ
バナナ
オレンジ
メロン

price	
200	
80	
120	
450	

列指向の テーブルの場合

date	
2025-01-01	
2025-01-01	
2025-01-02	
2025-01-02	

user	
やまだ	
さとう	
すずき	
たかはし	

product
リンゴ
バナナ
オレンジ
メロン

一般的な 分析クエリ

SELECT avg(price) FROM sale

テーブルへの書き込みフロー

ディスク sales テーブル part

書き込み

|||||・ 1 Sort Keyで並べ替える (date, user)

| ID date user product price | 2 2025-01-01 さとう バナナ 80 | 1 2025-01-01 やまだ リンゴ 200 | 3 2025-01-02 すずき オレンジ 120 | 4 2025-01-02 たかはし メロン 450 |

② 列単位に分割する

ID	date	user	product	price
2	2025-01-01	さとう	バナナ	80
1	2025-01-01	やまだ	リンゴ	200
3	2025-01-02	すずき	オレンジ	120
4	2025-01-02	たかはし	メロン	450

3 列ごとに圧縮する

ID date user product price

インサートごとにパーツが作成される

時間の経過とともに、パーツがバックグラウンドでマージ

これが MergeTree と呼ばれる理由です

マージされた part は引き続きマージされます

マージ後、未使用の部分は最終的に削除される

PRIMARY KEY による 高速なデータ READ

	行数	date	user	product	price
	0	2025-01-01	あべ	リンゴ	100
グラニュールO	1	2025-01-01	あべ	バナナ	80
(8,192レコード)	2	2025-01-01	さとう	オレンジ	120
(0).020 - 17	8,191	: 2025-01-02	: すずき	: オレンジ	: 120
		2025-01-02	すずき	メロン	450
グラニュール 1	8,192	2023 01 02	992		+30
(8,192レコード)	16,383	2025-01-04	たぐち	ŧŧ	250
		:	:	•	:
グラニュール10	81,920	2025-01-09	いしい	ブドウ	1500
(8,192レコード)	90,111	2025-01-10	まつもと	スイカ	2000

	行数	date	user	product	price
	0	2025-01-01	あべ	リンゴ	100
グラニュール 0 (8,192レコード)	1	2025-01-01	あべ	バナナ	80
	2	2025-01-01	さとう	オレンジ	120
	i		:	:	
	8,191	2025-01-02	すずき	オレンジ	120
		0005 04 00	L 19-L		450
グラニュール 1	8,192	2025-01-02	すずき	メロン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	450
(8,192レコード)	16,383	2025-01-04	: たぐち	# - E	250
		:	:	:	:
グラニュール 10	81,920	2025-01-09	いしい	ブドウ	1500
(8,192レコード)	90,111	2025-01-10	まつもと	スイカ	2000

	行数	date	user	product	price		
	0	2025-01-01	あべ	リンゴ	100	Primary lı	ndex
<i>F</i> =	1	2025-01-01	あべ	バナナ	80		
グラニュール 0 (8,192レコード)	2	2025-01-01	さとう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	オレンジ	120	date	user
	8,191	2025-01-02	: すずき	オレンジ	120	2025-01-01	あべ
4° =	8,192	2025-01-02	すずき	メロン	450	2025-01-02	すずき
グラニュール 1 (8,192レコード)	16,383	: 2025-01-04	: たぐち	: E E	250	2025-01-04	たぐち
	10,000	:	:		'		
グラニュール 10 (8,192レコード)	81,920	2025-01-09	いしい	ブドウ	1500	2025-01-09	いしい
	90,111	2025-01-10	まつもと	スイカ	2000		

各グラニュールはスレッドによって処理

- Primry Keyを利用して、処理対象となるグラニュールを見つけ出し、 各スレッドで処理
 - 各グラニュールは並行処理されます
 - 処理が速いスレッドが、遅れているスレッドのタスクを引き受けて処理する仕組みがあり、その結果、全体の負荷を均等にして処理を高速化される
- 並行処理が ClickHouse の高速性を支える理由の1つとなっています

|||| ClickHouse

03. 活用事例

ユースケース

リアルタイム分析

大規模データのリアルタイム分析・集計が可能なイ ンタラクティブなアプリケーションとダッシュボードを 実現。社内の複雑な分析処理も、分や時間単位で はなく、ミリ秒単位での実行を実現。

vimeo	CLOUDFLARE
Microsoft	ly₽
Contentsquare	N highlight.io

ログ、イベント、トレース

ログ、イベント、トレースの確実な監視 を実現。異常検知や不正検知、ネット ワーク・インフラの問題など、様々な課 題を検出可能。

ビジネスインテリジェンス

データを自在に分析し、分析レポートや社内アプリ ケーションの構築に活用。ユーザー行動分析、広告 ・メディア効果測定、市場動向分析など、幅広い用 途に対応。

ROKT	Deutsche Bank
C , QuickCheck	<u>пяпо</u> сокр.
△TrillaBit	Hifi

機械学習と生成 AI

高速かつ効率的なベクトル検索を実現。様々なプ ロバイダーの生成 AIモデルをすぐに利用可能。ペ タバイト規模のモデルトレーニングも、超高速な集 計処理で実現。

denic	🍃 DeepL				
*ADMIXER	Фреср				
ensemble					

Lyftでは、毎日で数千万行のデータを ClickHouseに取り込み、数百万回のク エリを実行しています。その処理量は増 加傾向にあります。

月単位では、25TB以上のデータ読み書きを実現しています。

リアルタイム分析用データストア

ClickHouseを活用することで、何兆件 規模のインターネットリクエストログ を 効率的かつ確実に分析し、悪意のある トラフィックの検出と、顧客への詳細な 分析データの提供を実現しています。

CLOUDFLARE®

オブザーバビリティプラットフォームの バックエンド

ありがとう ございます Thank you

Keep in touch!

clickhouse.com/slack

#clickhouseDB @clickhouseinc

clickhouse

