- 1. Let $x(t) = (1 t^2)^4$ for |t| < 1 and x(t) = 0 otherwise.
 - Use the symbolic toolkit in Matlab or Python's sympy module to find the Fourier transform X(f) of x(t). Plot x(t) and its Fourier transform X(f) on separate charts.
 - Denote by $X_F(f)$ the periodization of X(f) with period F. Find a value F > 0 such that $|X(f) X_F(f)| < 0.001$ for all $|f| \le F/2$.
 - Use the numerical procedure outlined in the class notes to get a discrete approximation of X(f) with error less than 0.001 for $|f| \le F/2$. Set the number of samples N so that $\Delta f = 1/32$.
 - What value are you using for T in your calculations T? Show x(t), its periodization $x_T(t)$ of period T, and the sample values $x_T(j \Delta t)$ on a single graph.
 - On another graph show the exact Fourier transform X(f), the periodized Fourier transform $X_F(f)$, and the approximations $X_F(n \Delta f)$ of X(f) calculated using the discrete Fourier transform.
- 2. Let $x(t) = \frac{e^{-|t|}}{1+|t|}$.
 - Plot an approximation of its Fourier transform using F = 4 and N = 64
 - Repeat the above with F = 8 and N = 256.
- 3. The series $\sum_{n=1}^{\infty} \frac{1}{n} \cos(nt)$ is the Fourier series of some periodic function h(t).
 - What are the period T and fundamental frequency f_o of h(t)?
 - Let N=40. Plot the partial sum $s_N(t)$ of this series for $0 \le t \le T$.
 - Plot the Cesaro sum $\sigma_N(t)$ of this series.
 - What would the graph of h(t) look like? Validate your guess by calculating the cosine and sine coefficients of the "guessed" function and showing they match those in the series.
- 4. Consider the function x(t) defined as $x(t) = e^t$ when -1 < t < 1 and x(t) = 0 otherwise. Define $x_T(t) = \sum_{-\infty}^{+\infty} x(t-3n)$.
 - Plot $x_T(t)$ for $-6 \le t \le 6$.
 - Use the discrete Fourier transform to calculate the Fourier coefficients $\hat{x}_T(n)$ with $-32 \le n \le +32$.
 - With the Fourier coefficients just calculated find, and plot, the partial and Cesaro sums of the Fourier series of $x_T(t)$ for $-6 \le t \le 6$.