Estudio de estrellas de Plank OJO

Alejandro Hernández A. 201219580

Director: Pedro Bargueño de Retes

29 de octubre de 2015

1. Introducción

El conocimiento actual del funcionamiento de la gravedad se basa en la Teoría de la Relatividad de Einstein, cuya formulación matemática más general se muestra en la ec. 1,

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu} \tag{1}$$

donde $R_{\mu\nu}$ es el tensor de Ricci, R es la curvatura escalar, $T_{\mu\nu}$ es el tensor energía-momento y Λ es la constante gravitacional.

Muchas de las soluciones de dichas ecuaciones presentan indeterminaciones en r=0, tal y como ocurre con la métrica de Schwarzschild mostrada en la ec. 2, y las "singularidades" de la métrica indican fallas en la teoría puesto que no describe apropiadamente el comportamiento del campo gravitacional en las vecindades de dichos puntos.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$
(2)

Una posible forma de solucionar estos problemas es considerar correcciones cuánticas a la teoría gravitacional. La necesidad de una teora cuántica de la gravedad se presenta por dos motivos: el hecho de que todas las fuerzas no gravitacionales son descritas por la mecánica cuántica, y la imposibilidad de acoplar consistentemente un sistema cuántico y uno clásico.OJO

Uno de los modelos más exitosos de gravedad cuántica se denomina *Loop Quantum Gravity LQG* OJO, y al considerar las correcciones de este modelo para la métrica 2, se obtiene una solución regular denominada métrica de Hyward modificada dada por 3 OJO

$$ds^{2} = -G(r)F(r)dt^{2} + \frac{1}{F(r)}dr^{2} + r^{2}d\Omega^{2}$$
(3)

donde

$$F(r) = 1 - \frac{Mr^2}{r^3 + 2ML^2} \tag{4}$$

$$G(r) = 1 - \frac{\beta M\alpha}{\alpha r^3 + \beta M} \tag{5}$$

con α y β parmetros del sistema. Esta métrica representa lo que usualmente es referido en la literatura como *Estrellas de Plank* OJO y satisface las siguientes propiedades:

- $g_{00} = 1 \frac{2M}{r}$ para $r \to \infty$, es decir, la métrica es asintóticamente Schwarzschild.
- \blacksquare Incluye correcciones de LQG al potencial Newtoniano dadas por

$$\Phi(r) = -\frac{M}{r} \left(1 + \beta \frac{l_{planck}^2}{r^2} \right) + o(r^{-4}) \tag{6}$$

- Permite una dilatacin temporal finita entre r = 0 y $r = \infty$.
- $g_{00} = 1 \frac{r^2}{L^2} + o(r^3)$, es decir, es de Sitter para $r \to 0$ OJO.

Las motivaciones físicas para proponer la métrica 3, además de las consecuencias y propiedades de la misma son de gran interés teórico y ejemplifican una forma particular de incluir efectos cuánticos en la teoría de la relatividad general para regularizar una solución de las ecuaciones de campo de Einstein. OJO

2. Objetivo General

Estudiar en detalle las estrellas de Planck y comprender las correcciones cuánticas de LQG que motivan la introducción de la métrica 3.

3. Objetivos Especíicos

- Entender y calcular OJO las correcciones cuánticas de LQG del potencial Newtoniano $\Phi(r)$ mostradas en 6.
- Entender la dilatacin temporal finita entre r = 0 y $r = \infty$.
- Comprender la importancia de la regularización de la métrica de Schwerzschild.
- Entender las consecuencias de la regularizacin mencionada previamente y el mecanismo que impide la formación de la singularidad.

4. Metodologa

Aquí texto.

5. Cronograma

Tareas \ Semanas	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	X	X						X	Χ							
2		X	X		X	X	X			X	X	X		X	X	
3				X				X				X			X	
4	X	X	X	X	X	X	X	X	X	X						
5					Χ				X			X			X	

- Tarea 1: Descripción de la tarea 1
- Tarea 2: Descripción de la tarea 2
- Tarea 3: Descripción de la tarea 3
- **...**

6. Personas Conocedoras del Tema

- Nombre de profesor 1 (Instituto o Universidad de afiliación 1)
- Nombre de profesor 2 (Instituto o Universidad de afiliación 2)
- Nombre de profesor 3 (Instituto o Universidad de afiliación 3)
- **...**

Referencias

- [1] J. Banks. *Discrete-Event System Simulation*. Fourth Edition. Prentice Hall International Series in Industrial and Systems Engineering, pg 86 116 y 219 235, (2005).
- [2] P. Bronner, A. Strunz, C. Silberhorn & J.P. Meyn. European Journal of Physics, 30, 1189-1200, (2009).
- [3] P. Daz & N. Barbosa: Obtencin de nmeros aleatorios. Informe final del curso Laboratorio Intermedio. Universidad de Los Andes, Bogot, Colombia, (2012).
- [4] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard & H. Zbinden. Journal of Modern Optics, 47:4, 595-598, (2000).

Firma del Director

Firma del Codirector