Igor Staręga, 320741, grupa 5, projekt 2, zadanie 9

Wstęp

Obliczanie całek postaci:

$$\int_{a}^{b} f(x)dx$$

przy użyciu 2-punktowej, złożonej kwadratury Gaussa-Legendre'a, z dokładnością δ . Przedział [a,b] dzielimy najpierw na m podprzedziałów, a następnie podział podwajamy, aż do uzyskania wartości bezwzględnej różnicy kolejnych przybliżeń mniejszej od δ . Testy poprawności metody sprawdzają rząd kwadratury prostej, kwadratury złożonej oraz warunek stopu. Natomiast pierwszy test numeryczny miał na celu sprawdzenie, jak różne wartości mnożnika liczby m (w definicji dokładności δ) wpływają na czas wykonywania obliczeń. Drugi test numeryczny sprawdza jak zmniejszy się błąd przybliżenia oraz ostateczna ilość podprzedziałów, jeżeli wykorzystamy 5-punktową złożoną kwadraturę Gaussa-Legendre'a. Wyniki testów poprawnośći wykazały, że kwadratura jest rzędu 4, a warunek stopu działa poprawnie. Natomiast test czwarty pokazał, że ze zbadanych mnożników, wartość 2 daje najkrótszy czas obliczeń. Ostatni test wykazał, iż przy użyciu kwadratury 5-punktowej przybliżenia są takie same lub dokładniejsze, a ostateczna ilość podprzedziałów znacząco zmalała w porównaniu do kwadratury 2-punktowej.

Opis 2-punktowej złożonej kwadratury Gaussa-Legendre'a z dokładnością δ

Rozważmy całkę $\int\limits_a^b f(x)dx$. Możemy przybliżyć jej wartość za pomocą 2-punktowej prostej kwadrutury Gaussa-Legendre'a postaci:

$$S_{2p}(f) = 1 * f(\frac{1}{\sqrt{3}}) + 1 * f(\frac{-1}{\sqrt{3}})$$
 (1)

gdzie $S_{2p}(f)$ oznacza naszą kwadraturę. Powyższy wzór opisuje kwadraturę prostą dla całki postaci $\int_{-1}^{1} f(x)dx$, dlatego żeby przekształcić wzór (1) na kwadraturę prostą na przedziale [a,b] musimy zmienić przedział całkowania zgodnie ze wzorem:

$$S_{ab}(f) = \frac{b-a}{2} (1 * f(\frac{1}{\sqrt{3}}) + 1 * f(\frac{-1}{\sqrt{3}}))$$

Aby nasza kwadratura była złożona (przedział [a,b] dzielimy na m podprzedziałów), musimy powyższy wzór przekształcić do postaci:

$$S'(f) = \frac{h}{2} \sum_{k=0}^{m-1} (1 * f(\frac{h}{2} \frac{1}{\sqrt{3}} + a + kh + \frac{h}{2}) + 1 * f(\frac{h}{2} \frac{-1}{\sqrt{3}} + a + kh + \frac{h}{2}))$$

gdzie $h = \frac{b-a}{m}$.

Dokładność sprawdzamy dzieląc nasz przedział najpierw na m podprzedziałów, a potem na 2*m, aż do uzyskania wartości bezwzględnej różnicy kolejnych przybliżeń mniejszej od δ .

Eksperymenty numeryczne

Orginalinie przy liczeniu dokładności porównywaliśmy przybliżenie obliczone dla m oraz 2m podprzedziałów, jednakże nie mamy pewności, że mnożnik o wartości 2 zapewni nam najszybsze obliczenia. Dlatego napisałem prosty test numeryczny mierzący czas obliczeń dla różnych wartości mnożnika. Wynik jednoznacznie wskazał, iż mnożnik o wartości 2 jest najoptymalniejszy czasowo, jednakże dla mnożnika o wartości 4 błąd przybliżenia jest 2 razy mniejszy. Na podstawie końcowej liczby podprzedziałów można wywnioskować, że jest to następstwo faktu,

że jedynie dla mnożnika o wartości 2 dokładność była mniejsza niż 10^{-40} (pętle w kwadraturach dla mnożników różnych od 2 zatrzymały się ze względu na przekroczenie maksymalnej ilości podprzedziałów)

Tabela 1: wartość parametru mnożnik, czyli ile razy zwiększamy ilość podprzedziałów przy liczeniu dokładności, czas w jakim wykonano obliczenia, końcowa ilość podprzedziałów, błąd przybliżenia Funkcja podcałkowa opisana jest wzorem $9x^8$, początkowa ilość podprzedziałów to 1, maksymalna to 10^7 , a oczekiwana dokładność to 10^{-40}

mnożnik	czas(s)	ilość podprze- działów	błąd przybliżenia	
1.25	2.623	8361340	2.745×10^{-7}	
1.5	1.505	7972438	6.949×10^{-8}	
2.0	0.002236	8192	2.274×10^{-13}	
2.5	0.9545	9219217	4.537×10^{-8}	
3.0	0.5961	6377292	1.309×10^{-7}	
3.5	0.3389	3847123	7.022×10^{-9}	
4.0	0.3595	4194304	1.137×10^{-13}	
4.5	0.2474	3022515	5.553×10^{-9}	
5.0	0.6098	7812500	2.690×10^{-7}	

Drugi test numeryczny miał na celu sprawdzenie, czy i o ile dokładniejsza jest kwadratura 5-punktowa od 2-punktowej. Przybliżyłem wartości 4 wybranych funkcji, a następnie porównałem błąd, końcową ilośc podprzedziałów oraz czas obliczeń. Jako, że kwadratura 5-punktowa jest rzędu 10, a kwadratura 2-punktowa jest rzędu 4, logicznym jest że ta pierwsza będzie dokładniejsza, szybsza i będzie potrzebowała mniejszego podziału przedziału [a,b], żeby uzyskać oczekiwaną dokładność.

Tabela 2: ilość węzłów wykorzystanej kwadratury, funkcja podcałkowa, przedział [a,b] na którym liczona jest całka, dokładność uzyskanego przybliżenia, końcowa ilość podprzedziałów, czas wykonywania obliczeń

ilość węzłów	funkcja podcał- kowa	[a,b]	dokładność	błąd	ilość podprzedziałów	$\mathrm{czas}(\mathrm{s})$
2	x^{-1}	[1, 2]	0	1.110×10^{-16}	262144	1.271×10^{-1}
5	x^{-1}	[1, 2]	0	1.110×10^{-16}	16	1.012×10^{-3}
2	sin(x)	[0, pi]	5.870×10^{-10}	5.175×10^{-10}	8388608	3.622×10^{-1}
5	sin(x)	[0, pi]	0	1.332×10^{-15}	32	1.032×10^{-3}
2	$3^x ln(3)$	[0, 2]	0	3.553×10^{-15}	16384	3.872×10^{-3}
5	$3^x ln(3)$	[0, 2]	0	8.882×10^{-16}	32	1.344×10^{-3}
2	x^{-3}	[1, 3]	0	5.551×10^{-17}	262144	3.531×10^{-2}
5	x^{-3}	[1, 3]	0	5.551×10^{-17}	1024	1.664×10^{-3}