Computational Thinking Logic

Barnaby Martin

Department of Computing Science

Lecture 2

Fundamentals of Propositional Logic

The rudiments of propositional logic

- Propositional logic
 - the most fundamental logic, lying at the heart of many other logics
 - formalises day-to-day, common-sense reasoning.
- Key to propositional logic are propositions
 - declarative sentences that can be either true or false (but not both).
- Propositions are represented by propositional variables (Boolean variables, atoms)
 - usually letters such as x, Y, a, ... or subscripted letters such as x_2 , Y_0 , a_1 , ...
 - which can take a truth value T (true) or F (false).
- Syntax

- new propositions called formulae or Boolean formulae or propositional formulae or compound propositions are formed from propositional variables and formulae by repeated use of the logical operators

- conjunction (and)
- disjunction (or)
- negation (not)
- ⇒ implies
- ⇔ if and only if (iff).

Some formulae

Construction

- the operators \land , \lor , \Rightarrow , and \Leftrightarrow take two propositional formulae φ and ψ and yield a new one
- $\phi \wedge \psi$ $\phi \vee \psi$ $\phi \Rightarrow \psi$ $\phi \Leftrightarrow \psi$
- the operator ¬ takes one propositional formula φ and yields a new one
 - · ¬(**0**.

Use of parentheses

- $-(\phi \wedge \psi) \vee \chi$ means first build $\phi \wedge \psi$ and then build $(\phi \wedge \psi) \vee \chi$
- $-\phi \wedge (\psi \vee \chi)$ means first build $(\psi \vee \chi)$ and then build $\phi \wedge (\psi \vee \chi)$.
- Some typical well-formed formulae (where a, b, c and d are propositional variables)
 - $-\neg((\neg b \land a) \Rightarrow (c \lor \neg d))$
 - $-((a \land \neg a) \lor ((b \lor c) \lor d)) \Leftrightarrow d$
 - $-(((a \Rightarrow b) \Rightarrow c) \Rightarrow d).$

Semantics of propositional logic

Rule: those who are abcent will get their makes deducted.

- Semantics: all propositional variables take the value T (true) or F (false)
 - the value of a formula under some truth assignment is ascertained by using the truth tables for the above logical connectives.
- The truth tables for our logical connectives are as follows

/-	p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \Rightarrow q$	$p \Leftrightarrow q$	
	Т	Т	Т	Т	F	Т	Т	
X	Т	F	F	Т	F	F	F	definitions
\int_{γ}	F	Т	F	Т	Т	Т	F	definitions
	F	F	F	F	Т	Т	Т	•

- In order to build the truth table of a formula
 - we decompose the formula into sub-formulae, e.g.,

p	q	$((p \land \neg q) \lor p) \land \neg (p \lor \neg q)$
Т	Т	TF FT TT F FTTFT
Т	F	TTTFTT F FTTTF
F	Т	FF FT FF F TF FFT
F	F	FFTFFF FFFTTF

Semantics of propositional logic

- Semantics: all propositional variables take the value T (true) or F (false)
 - the value of a formula under some truth assignment is ascertained by using the truth tables for the above logical connectives.
- The truth tables for our logical connectives are as follows

	$p \Leftrightarrow q$	$p \Rightarrow q$	$\neg p$	$p \vee q$	$p \wedge q$	q	p
	Т	Т	F	Т	Т	Т	Т
definitions	F	F	F	Т	F	F	Т
definitions	F	Т	Т	Т	F	Т	F
	Т	Т	Т	F	F	F	F

In order to build the truth table of a formula

- we decompose the formula into sub-formulae, e.g.,

p	q	$((p \land \neg q) \lor p) \land \neg (p \lor \neg q)$
Т	Т	TF FT TT FFTTFT
Т	F	TTTF <mark>T</mark> T FF TTTF
F	Т	FF FT <mark>F</mark> F FT F FFT
F	F	FETERFEETTE

f: Ep, 937

the parse tree can be viewed as a "circuit" and the truth values as the "inputs"

this is what the formula evaluates to

Some basic notation

- If we have a propositional formula $\varphi(x_1, x_2, ..., x_n)$ then
 - we call an assignment f of either T or F to each $x_1, x_2, ..., x_n$, i.e., a function $f: \{x_1, x_2, ..., x_n\} \rightarrow \{T, F\}$

a truth assignment (interpretation, valuation) for φ

- We say that φ evaluates to T (resp. F) under f
 - if the row of the truth table for φ corresponding to f evaluates to T (resp. F).
- If f evaluates φ to T then
 - f satisfies φ or is a satisfying truth assignment of φ or a model of φ .
- If φ evaluates to T for every f then φ is a tautology.
- If φ evaluates to φ for every φ then φ is a contradiction.
- A literal is either a propositional variable, say x, or the negation of a propositional variable, say $\neg x$.

Logical equivalence

Steps in a mathematical proof are often just the replacement of one statement by another (equivalent) statement (which says the same thing), e.g.

"If I don't explain this clearly then the students won't understand."

is the same thing "Either I explain this clearly or the students won't understand".

To see this, denote the sub-statement "I don't explain this clearly" as X and we benting equi. denote the sub-statement "the students won't understand" as Y.

The former statement is thus $X \Rightarrow Y$ and the latter

X	Y	$ X \Rightarrow Y$	$\neg X \lor Y$	F. Xhey has
Т	Т	TTT	FTTT	_ find an
Т	F	TFF	FT F F	- B: that can
F	Т	F T T	TFTT	7
F	F	FTF	TFTF	A A S

We say that two propositional formulae are (logically) equivalent if they have identical truth tables

- if φ and ψ are equivalent then we write $\varphi \equiv \psi$

A spot of practice

- The exclusive-OR, written X⊕ Y, is *true* iff exactly one of X and Y is *true*.
- Prove that $X \oplus Y$ is logically equivalent to both $(X \land \neg Y) \lor (\neg X \land Y)$ and $\neg (X \Leftrightarrow Y)$.

X	Y	$X \oplus Y$	$(X \land \neg Y) \lor (\neg X \land Y)$	$\neg(X\Leftrightarrow Y)$
Т	Т	TFT	TFFT F FTFT	FTTT
Т	F	TTF	TTTF T FTFF	TTFF
F	T	FTT	FFFT <mark>T</mark> TFTT	TFFT
F	F	FFF	FFTF F TFFF	F F T F

De Morgan's Laws

There are two extremely useful logical equivalences known as De Morgan's Laws.

De Morgan's Laws are

$$\neg (X \land Y) \equiv \neg X \lor \neg Y$$
$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

		$Y) \equiv \neg X \lor \neg Y$ $Y) \equiv \neg X \land \neg Y$		=A+B >(7+ 1-1)-1-1)
hese	•	lae are indeed			1(1/4)
X	Y	$\neg (X \land Y)$	$\neg X \lor \neg Y$	$\neg (X \lor Y)$	$X \wedge Y$
Т	Т	FTTT	FT F FT	FTTT	FT F FT
Т	F	TTFF	FT T TF	FTTF	FT F TF

1A+B=A-B

De Morgan's Laws can be applied not just to variables but to formulae φ and ψ .

F T TEFT TETT FETT TEFFT
F F TEFF TETTE

De Morgan's Laws are often used to simplify formulae with regard to negations.

Applying De Morgan's Laws

- In fact, not only can De Morgan's Laws be applied to formulae
 - they can be applied to *sub-formulae* within a formula.
- Consider the propositional formula $\neg(p \lor \neg(q \land \neg p)) \land \neg(p \Rightarrow q)$
 - take the sub-formula $\neg (q \land \neg p)$. $\rightarrow q \circ p = q + p \circ q + p$
- By De Morgan's Laws

$$\neg(q \land \neg p) \equiv \neg q \lor \neg \neg p \equiv \neg q \lor p.$$

• So

$$\neg (p \lor \neg (q \land \neg p)) \land \neg (p \Rightarrow q) \equiv \neg (p \lor (\neg q \lor p)) \land \neg (p \Rightarrow q)$$

$$? \qquad \leftarrow \text{row of truth table}$$

$$identical$$

- Indeed, we can always replace any sub-formula of some propositional formula
 - with an equivalent formula without affecting the truth (table) of the original.

A spot of practice

- Consider $\neg (p \lor \neg (q \land \neg p)) \land \neg (p \Rightarrow q)$.
- Can we manipulate it so as to simplify it?

$$\neg(p \lor \neg(q \land \neg p)) \land \neg(p \Rightarrow q)$$

$$\equiv \neg(p \lor (\neg q \lor \neg \neg p)) \land \neg(p \Rightarrow q)$$

$$\equiv \neg(p \lor (\neg q \lor p)) \land \neg(p \Rightarrow q)$$

$$\equiv (\neg p \land \neg(\neg q \lor p)) \land \neg(p \Rightarrow q)$$

$$\equiv (\neg p \land (\neg \neg q \land \neg p)) \land \neg(p \Rightarrow q)$$

$$\equiv (\neg p \land (q \land \neg p)) \land \neg(p \Rightarrow q)$$

$$\equiv (\neg p \land (q \land \neg p)) \land \neg(\neg p \lor q)$$

$$\equiv (\neg p \land (q \land \neg p)) \land (\neg \neg p \land \neg q)$$

$$\equiv (\neg p \land (q \land \neg p)) \land (p \land \neg q)$$

$$\equiv (\neg p \land q \land \neg p \land p \land p \land \neg q)$$

$$\equiv \neg p \land q \land \neg p \land p \land q \land \neg q$$

$$\equiv \neg p \land F \land q \land \neg q$$

$$\equiv F$$

apply De Morgan's Laws remove double-negation apply De Morgan's Laws apply De Morgan's Laws remove double-negation \Rightarrow using \vee , \neg apply De Morgan's Laws remove double-negation associativity of \wedge associativity of \wedge commutativity of \wedge $X \wedge \neg X \equiv F$ $F \wedge \phi \equiv F$

Generalised De Morgan's Laws

- We can actually generalise De Morgan's Laws so that
 - negations can be "pushed inside" conjunctions/disjunctions of more than two literals (or formulae).
- To do this

we apply De Morgan's Laws to sub-formulae of a formula.

• Consider $\neg(X \lor Y \lor Z)$

- onsider $\neg(X \lor Y \lor Z)$ $\neg(X \land Y \land Z)$ and denote $Y \lor Z$ by ϕ .
- Applying De Morgan's Laws to $\neg(X \lor \varphi)$ yields an equivalent formula $\neg X \land \neg \varphi$
 - i.e., the formula $\neg X \land \neg (Y \lor Z)$.
- Applying De Morgan's Laws again yields the equivalent formula $\neg X \land \neg Y \land \neg Z$.
- Similar arguments yield the generalised De Morgan's Laws

$$\neg (X_1 \lor X_2 \lor \dots \lor X_n) \equiv \neg X_1 \land \neg X_2 \land \dots \land \neg X_n$$

$$\neg (X_1 \land X_2 \land \dots \land X_n) \equiv \neg X_1 \lor \neg X_2 \lor \dots \lor \neg X_n$$