A Dataset Perspective on Offline Reinforcement Learning

Kajetan Schweighofer*, Andreas Radler*, Marius-Constantin Dinu*, Markus Hofmarcher, Vihang Patil, Angela Bitto-Nemling, Hamid Eghbal-zadeh, Sepp Hochreiter

Offline Reinforcement Learning

- Reinforcement Learning (RL)
 - Active interaction with environment
 - Corrective feedback
 - Interaction is potentially dangerous & slow

Offline Reinforcement Learning

- Reinforcement Learning (RL)
 - Active interaction with environment
 - Corrective feedback
 - Interaction is potentially dangerous & slow
- Offline RL
 - No interaction with environment
 - Leverage safely collected transitions
 - No corrective feedback
 - Distribution shifts & iterative error amplification

Effects of different Datasets

Effects of different Datasets

How do dataset characteristics influence algorithms in Offline RL?

Characterizing RL Datasets

- How to quantify different behavior?
 - Inspection through UI
 - Visualizations
 - Measures
- Characterize attributes of the behavioral policy
 - Exploitation
 - Exploration

Exploitation Measure

• Theoretical: Expected Return

$$g_{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^t R_{t+1}
ight]$$

• Empirical: Average Return

$$ar{g}(\mathcal{D}) = rac{1}{B} \sum_{b=0}^{B} \sum_{t=0}^{T_b} \gamma^t r_{b,t}$$

• Normalized: Trajectories Quality (TQ)

$$TQ(\mathcal{D}) := rac{ar{g}(\mathcal{D}) - ar{g}(\mathcal{D}_{\min})}{ar{g}(\mathcal{D}_{ ext{expert}}) - ar{g}(\mathcal{D}_{\min})}$$

Exploration Measure

• Theoretical: Transition-Entropy

$$egin{aligned} H(p_{\pi}(s,a,r,s')) \ &= -\sum_{s,a,r,s'} p_{\pi}(s,a,r,s') \logig(p_{\pi}(s,a,r,s')ig) \ &= \sum_{s,a}
ho_{\pi}(s,a) \; H(p(r,s'\mid s,a)) + H(
ho_{\pi}(s,a)) \end{aligned}$$

Deterministic MDPs: Occupancy-Entropy

$$H(
ho_\pi(s,a)) = -\sum_{s,a}
ho_\pi(s,a) \log \left(
ho_\pi(s,a)
ight)$$

Exploration Measure

• **Empirical:** Estimator for occupancy-entropy $\hat{H}(\mathcal{D})$

Upper bound: Unique state-action pairs

$$\hat{H}(\mathcal{D}) \leq \log(u_{s,a}(\mathcal{D}))$$

$$e^{\hat{H}(\mathcal{D})} \leq u_{s,a}(\mathcal{D})$$

• Normalized: State-Action Coverage (SACo)

$$\mathit{SACo}(\mathcal{D}) := rac{u_{s,a}(\mathcal{D})}{u_{s,a}(\mathcal{D}_{\mathrm{ref}})}$$

Dataset Generation

- Random
- Mixed
- Replay
- Noisy
- Expert

Environments

- Classic Control
 - CartPole
 - MountainCar
- MiniGrid
 - LavaGap
 - DynamicObstacles
- MinAtar
 - Breakout
 - SpaceInvaders

Algorithms

- Baselines
 - Behavior Cloning (BC)
 - Behavior Value Estimation (BVE)
 - Monte Carlo Estimation (MCE)
- Unconstrained off-policy algorithms
 - Deep Q-Network (DQN)
 - Quantile Regression DQN (QRDQN)
 - Random Ensemble Mixture (REM)
- Dataset-constrained off-policy algorithms
 - Batch-Constrained Q-learning (BCQ)
 - Conservative Q-learning (CQL)
 - Critic Regularized Regression (CRR)

Results

Baseline Algorithms

Best performance

• BC: high TQ

• BVE: moderate SACo

• MCE: moderate SACo

Results

 Unconstrained off-policy Algorithms

- Best performance
 - High SACo
- Very similar results

Results

 Dataset-constrained off-policy Algorithms

- Best performance on
 - High TQ
 - High SACo
 - Moderate TQ & SACo

Future Work

- Extend initial results on continuous state-action spaces
 - Continuous action-spaces require different set of algorithms
- Effects on model-based algorithms
- Different definitions of exploration
- Monitor replay buffer in off-policy algorithms

Summary

- Dataset composition matters a lot in Offline RL
- Comparing algorithms using average performance over multiple datasets might not be sufficient
- Capturing RL dataset characteristics through TQ and SACo

- Paper: https://arxiv.org/abs/2111.04714
- Code: https://github.com/ml-jku/OfflineRL
- Contact us: schweighofer@ml.jku.at

