Continuous Random Variables

Continuous Random Variables

Let *X* be a continuous random variable:

• The **probability density function (pdf)** *f* is defined as

$$P(a < X \le b) = \int_{a}^{b} f(x)dx, \quad a \le b$$

• The **cumulative distribution function (cdf)** *F* is defined as

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

• At every point x at which f(x) is continuous,

$$F'(x) = f(x)$$

- Beta
 - $f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha 1} (1 x)^{\beta 1}$, $x \in [0, 1]$ conjugate prior for binomial distribution parameter p

 - In R: (d|p|q|r)beta

- Chi-square χ^2
 - f(x;df), $x \in [0,\infty)$
 - Chi-square test for goodness of fit
 - In R: (d|p|q|r)chisq

• t

$$- f(x; df), \quad x \in (-\infty, \infty)$$

- t-test for difference in means
- In R: (d|p|q|r)t

• F

-
$$f(x; df1, df2)$$
, $x \in [0, \infty)$

- F-test for equality of means in ANOVA
- In R: (d|p|q|r)f

Continuous distributions in R

Suppose $X \sim \chi_2^2$.

 $P(1 \le X \le 3)$:

pchisq(3, 2) - pchisq(1, 2)

[1] 0.3834005

f(3):

dchisq(3, 2)

Sample 10 numbers from *X*:

rchisq(10, 2)

[1] 0.3102827 3.7648032 3.6090250 1.6723553

[5] 2.4450873 2.3167105 1.9800399 0.6147466

[9] 0.1892382 0.3144031

Expected Values With Continuous RVs

Let *X* be a continuous random variable:

• The expected value (*mean*) of *X* is

$$E[X] = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

• The expected value of g(X) is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

• The variance of *X* is

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$

• The moment generating function of is

$$M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Joint and Conditional Distributions

Let *X* and *Y* be continuous random variables with marginal pdfs f_X and f_Y and **joint probability density function** $f_{X,Y}$:

• Joint probabilities are double integrals of the joint pdf:

$$P((X,Y) \in A) = \int \int_{A} f_{X,Y}(x,y) dx dy$$

• The **conditional probability density function** $f_{Y|X=x}(y|x)$ of Y given that X=x is:

$$f_{Y|X=x}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

• *X* and *Y* are **independent** if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

The Normal Distribution

The random variable X has a Normal distribution with parameters μ and σ^2 (written $X \sim N(\mu, \sigma^2)$) if its pdf is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- $E[X] = \mu$, $Var(X) = \sigma^2$
- Let $Z = \frac{X-\mu}{\sigma}$. Then $Z \sim N(0,1)$.
- The 68 / 95 / 99.7 rule:
 - $P(-1 < Z < 1) \approx 0.68$
 - $P(-2 < Z < 2) \approx 0.95$
 - $P(-3 < Z < 3) \approx 0.997$

Bivariate normal

If *X*, *Y* are bivariate normal, then:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}} \exp\left(-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{X})^{2}}{\sigma_{X}^{2}} + \frac{(y-\mu_{Y})^{2}}{\sigma_{Y}^{2}} - \frac{2\rho(x-\mu_{X})(y-\mu_{Y})}{\sigma_{X}\sigma_{Y}} \right] \right)$$

where μ_X , μ_Y are the means of X and Y, σ_Y^2 , σ_X^2 are the variances, and ρ is the correlation between X and Y.

Sums of Independent Normal RVs

Let $X_1, X_2, ..., X_n$ be iid Normal random variables with $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, 2, ..., n. Let $a_1, a_2, ..., a_n$ be arbitrary constants. Then

$$\sum a_i X_i \sim N\left(\sum a_i \mu_i, \sum a_i^2 \sigma_i^2\right)$$

Special case: let $X_1, X_2, ..., X_n \sim iid \ N(\mu, \sigma^2)$. Then sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n)$$

Central Limit Theorem

Let $X_1, X_2, ..., X_n$ be an IID sample from a distribution with mean μ and variance σ^2 . This is not necessarily a Normal distribution. Assume that $\mu < \infty$ and $\sigma^2 < \infty$.

• As $n \to \infty$, the (sampling) distribution of \bar{X} converges to the Normal distribution with mean μ and variance σ^2/n , regardless of the distribution from which the sample was drawn.

- If we have a "large enough" sample size, we can use a Normal distribution to approximate the sampling distribution of \bar{X} , regardless of the form of the population distribution.
 - This facilitates mean-based statistical inference.
 - Common rule of thumb for "large enough" is 30, although the required sample size varies depending on the situation.