Linear Regression - multivariete linear regression

In regression problems, we are taking input variables and trying to fit the output onto a continuous expected result function.

Variables

- x_i^i = value of feature j in the i^{th} training example
- $x^i=$ the column vector of all the feature inputs of the i^{th} training example
- m = number of training examples
- $n = |x^i|$; the number of features

Hypothesis function

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \dots + \Theta_n x_n$$

- equation of a straight line

Cost function

$$J(\Theta_0, \Theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h\theta(x(i)) - y(i))^2$$

- measuring accuracy of hypothesis
- also called "Square error function"

Gradient Descent

repeat until convergence: {

$$\Theta_j := \Theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) * x_j^i$$

for j := 0..n

- }
- estimate the parameters in hypothesis function $% \left(1\right) =\left(1\right) \left(1$
- start with a guess for our hypothesis and then repeatedly apply these gradient descent equations, the hypothesis will become more and more accurate
- $\Theta_j =$ a constant that will be changing simultaneously with all other Θ_j
- $x^{(i)}y^{(i)} =$ values of the given training set

Example Data & Notes

input x	output y
1	2
2	3
3	4

- must be linear relationship between independent and dependent variables
- can be used with supervised learning
- always seperates data with a straight line