Лабораторная работа № 6

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ

Цель: используя пакет **Octave**, вычислить производную функции одной переменной в заданной точке с помощью полинома Лагранжа. Вычислить определенный интеграл с заданной точностью по формуле Симпсона, используя переменный шаг.

Задача № 1. Вычислить значение первой и второй производных функции f(x) в середине заданного отрезка [a,b] с помощью полинома Лагранжа с точностью не менее $\varepsilon = 10^{-4}$. Построить графики погрешностей.

Задача № 2. Вычислить значение определенного интеграла с точностью $\varepsilon = 10^{-5}$ по формуле Симпсона с переменным шагом. Оценить погрешность по правилу Рунге.

Порядок выполнения работы

Задача № 1

- 1. Задать исходную функцию f(x) согласно номеру варианта. Выбрать степень полинома Лагранжа n=2.
 - 2. Построить L(x) полином Лагранжа n степени.
- 3. Аналитически вычислить производную $\frac{df(x)}{dx}$ исходной функции и $\frac{dL(x)}{dx}$ производную полинома Лагранжа.
 - 4. Вычистиь погрешность в точке $x = \frac{a+b}{2}$ по формуле

$$R = \left| \frac{df(x)}{dx} - \frac{dL(x)}{dx} \right|$$

- 5. Если $R > \varepsilon$, увеличить n на 1 и перейти к шагу 2, иначе перейти к шагу 6.
- 6. Построить график погрешности R(x) на отрезке [a, b]

$$R(x) = \left| \frac{df(x)}{dx} - \frac{dL(x)}{dx} \right|.$$

- 7. Вычислить вторую производную $\frac{d^2f(x)}{dx^2}$ исходной функции и вторую производную $\frac{d^2L(x)}{dx^2}$ полинома Лагранжа степени m.
 - 8. Вычистиь погрешность в точке $x = \frac{a+b}{2}$ по формуле

$$R2 = \left| \frac{d^2 f(x)}{dx^2} - \frac{d^2 L(x)}{dx^2} \right|$$

- 9. Если $R2 > \varepsilon$, увеличить m на 1, построить полином степени m и перейти к шагу 7, иначе перейти к шагу 10.
 - 10. Построить график погрешности R2(x) на отрезке [a, b]

$$R2(x) = \left| \frac{d^2 f(x)}{dx^2} - \frac{d^2 L(x)}{dx^2} \right|.$$

Задача № 2

- 1. Задать исходную подинтегральную функцию f(x) согласно номеру варианта. Положить i=0 и $b_0=b$, $a_0=a$, $h_i=b_i-a_i$.
 - 2. Вычислить интеграл $I(h_i)$ по формуле Симпсона, с шагом h_i .

$$I(h_i) = \frac{h_i}{6} (f(a_i) + 4f(\frac{a_i + b_i}{2}) + f(b_i))$$

- 3. Положить $h_{i+1} = h_i/2$.
- 4. Вычислить интеграл $I(h_{i+1})$ по формуле Симпсона, с шагом h_{i+1} .

$$I(h_{i+1}) = \frac{h_{i+1}}{6} (f(a_i) + 4(f(a_i + 0.5h_{i+1}) + f(a_i + 1.5h_{i+1})) + 2f(a_i + h_{i+1}) + f(b_i))$$

1. Вычислить погрешность по правилу Рунге

$$R = \frac{|I(h_i) - I(h_{i+1})|}{15}$$

2. Сравнить погрешность R_i с заданной точностью $\varepsilon=10^{-5}$ и если $R_i>\frac{\varepsilon h_i}{b_0-a_0}$, то разбить отрезок $[a_i,b_i]$ точкой $b_{i+1}=\frac{a_i+b_i}{2}$ на два равных отрезка $[a_i,b_{i+1}]$ и $[b_{i+1},b_i]$, положить i=i+1 и $h_i=b_i-a_i$ и перейти к шагу 2. Если $R_i<\frac{\varepsilon h_i}{b_0-a_0}$, то $a_i=b_{i+1}$ положить i=i+1 и $h_i=b_i-a_i$ и перейти к шагу 2.

Повторять шаги 2-6 до тех пор пока на всех отрезках не будет выполнено условие

$$R_i < \frac{\varepsilon h_i}{b_0 - a_0} (1)$$

Интеграл по отрезку [a, b] будет равен сумме

$$I = \sum_{i} I(h_{i+1})$$

интегралов по всем отрезкам $[a_i, b_i]$, на которых выполняется условие (1)

Варианты заданий

No	Функция	интервал	No	Функция	интервал
1	$\sin(x)$	[1;2]	16	$tg(x) - 1/x^2$	[2;3]
2	ln(x)	[2;3]	17	$x^3 - 6$	[-2;-1]
3	cos(x)	[5;6]	18	1/(3x+5)	[-2;-1]
4	tg(x)	[-1;0]	19	$x^3/(\sin(x) +$	[0.1;1.1]
				1.3)	
5	$x - 1/x^2$	[2;3]	20	$\sin(x) +$	[0;1]
				cos(x)	
6	$\sin(x) - 0.56$	[2;3]	21	lg(x)	[0.1;1.1]
7	$0.4 + \lg(x)$	[5;6]	22	$(x^2-2)/$	[0.1;1.1]
				$(\ln(x) + 5)$	
8	cos(x)	[0;1]	23	$5\sin(x)$	[0;1]
9	tg(x)	[0.5;1.5]	24	$\lg(x)/5x$	[0.5;1.5]
10	$\sin(x)$	[2;3]	25	5/(3x+5)	[0;1]
11	ln(x) - 0.34	[2;3]	26	$\lg(x) + 1.4$	[0.5;1.5]
12	cos(x)	[-1;0]	27	$\sin(x)$ –	[0;1]
				cos(x)	
13	tg(x) - 1/x	[-1;0.1]	28	-0.5/(3x +	[0;1]
				0.2)	
14	x^3	[2;3]	29	$5/\ln(x)$	[1.1;2.1]
15	$\cos(x) + 1.2$	[0;1]	30	$5 + \ln(x)$	[1.1;2.1]

Таблица 2

№	Интеграл	No	Интеграл
1	$\int_0^1 \cos(x+x^3) dx$	16	$\int_{0}^{1} \sin(x^{3}) dx$
2	$\int_0^1 e^{\sin(x)} dx$	17	$\int_{\pi/4}^{\pi/2} \ln \sin(x) dx$
3	$\int_0^1 e^{\cos(x)} dx$	18	$\int_{0}^{1} \cos(x^{3}) dx$
4	$\int_0^1 1/\sqrt{1+x^2} dx$	19	$\int_{1}^{2} \ln(x)/(x+1)dx$
5	$\int_0^1 \cos(x) e^{-x^2} dx$	20	$\int_{0}^{1} \sin(x+x^3) dx$
6	$\int_1^2 e^{-x-1/x} dx$	21	$\int_{0}^{1} \cosh(x^{2}) dx$

7	$\int_{\pi/2}^{\pi} \sqrt{x} e^{-x^2} dx$	22	$\int_{0}^{1} \sin(x^4 + 2x^3 + x^2) dx$
8	$\int_0^1 e^x/(1+e^{2x})dx$	23	$\int_{0}^{1} \arctan(x) dx$
9	$\int_0^{1.5} (2x)^3 \cos(x) dx$	24	$\int_{0.7}^{1.7} \sin(x) e^{x^2} dx$
10	$\int_{-1.5}^{0} e^{-2\sin(x)} dx$ $\int_{0}^{1.6} (x + 2x^{4}) \cdot$	25	$\int_{-1.6}^{0} (\cos(x) - x) e^{x^2} dx$
11	$\int_0^{1.6} (x + 2x^4) \cdot \sin(x^2) dx$	26	$\int_{0.7}^{1.7} \sin(x)e^{x^2} dx$ $\int_{-1.6}^{0} (\cos(x) - x)e^{x^2} dx$ $\int_{-2}^{0} \sqrt[3]{2x} (\cos(x^2) - 2) dx$
12	$\sin(x^2)dx$ $\int_{-3}^{0} (x^2 - 2x^3)\cos(x^2)dx$	27	$\int_{0.5}^{1.5} x^2 \left(\sin(\sqrt[3]{x}) - 3 \right) dx$
13	$\int_{1}^{4} \ln(2x + \sin(x^{2})) dx$	28	$\int_0^2 4\ln(\cos(x^3) + x^2) dx$
14	$\int_1^{2.6} \sin(1/x^2) dx$	29	$\int_{1}^{2.6} \sin(0.5x\sqrt{x}) dx$
15	$\int_{1}^{2.6} 3\sin(0.06x^3) dx$	30	$\int_{1}^{2.6} \sin(0.5x\sqrt{x}) dx$ $\int_{1}^{2.6} \cos(1/x^{2}) dx$