Corrigé du devoir maison 3.

Exercice

 $\mathbf{1}^{\circ}$) a) f est une fonction polynomiale, elle est donc dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $f(x) = 1 + \sum_{k=1}^{n} x^k$ donc, et pour tout $x \in \mathbb{R}$, $f'(x) = \sum_{k=1}^{n} kx^{k-1}$.

b) On sait que, pour $x \neq 1$, $f(x) = \frac{1 - x^{n+1}}{1 - x}$.

Par quotient, on retrouve la dérivabilité de f sur $\mathbb{R}\setminus\{1\}$, et pour tout x dans cet ensemble,

$$f'(x) = \frac{-(n+1)x^n(1-x) - (1-x^{n+1})(-1)}{(1-x)^2} = \frac{-(n+1)x^n + (n+1)x^{n+1} + 1 - x^{n+1}}{(1-x)^2}$$

Donc,
$$f'(x) = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2}$$

c) On a $A_n = \sum_{k=1}^n k 2^k = 2 \sum_{k=1}^n k 2^{k-1} = 2f'(2)$ d'après la question a).

Donc, en utilisant la question b):

$$A_n = 2 \frac{n2^{n+1} - (n+1)2^n + 1}{(1-2)^2}$$

$$= 2 (n2^{n+1} - (n+1)2^n + 1)$$

$$= 2n2^{n+1} - (n+1)2^{n+1} + 2$$

$$A_n = (n-1)2^{n+1} + 2$$

2°) **a**)
$$S_n = \sum_{i=0}^{n-1} \left(\sum_{j=i+1}^n 2^j \right) = \sum_{j=1}^n \left(\sum_{i=0}^{j-1} 2^j \right)$$

b) Utilisons la première expression :

$$S_n = \sum_{i=0}^{n-1} \left(\sum_{j=0}^n 2^j - \sum_{j=0}^i 2^j \right)$$

$$= \sum_{i=0}^{n-1} \left(\frac{1 - 2^{n+1}}{1 - 2} - \frac{1 - 2^{i+1}}{1 - 2} \right) \quad \text{car } 2 \neq 1$$

$$= \sum_{i=0}^{n-1} \left(2^{n+1} - 2^{i+1} \right)$$

$$= \sum_{i=0}^{n-1} 2^{n+1} - \sum_{i=0}^{n-1} 2^{i+1}$$

$$= n2^{n+1} - 2 \sum_{i=0}^{n-1} 2^i$$

$$= n2^{n+1} - 2 \frac{1 - 2^n}{1 - 2}$$

$$= n2^{n+1} - 2^{n+1} + 2$$

$$= (n-1)2^{n+1} + 2$$

Utilisons la deuxième expression : $S_n = \sum_{j=1}^n \left(\sum_{i=0}^{j-1} 2^j\right)$.

Comme 2^j est une constante vis-à-vis de i, $S_n = \sum_{j=1}^n j 2^j = A_n$.

D'où
$$S_n = A_n = (n-1)2^{n+1} + 2$$
.