Symbolic Model Checking: The IC3 Algorithm

Shoham Ben-David

IC3/PDR

- Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011
 - A paraphrase on the BMC paper
- "Incremental Construction of Inductive Clauses for Indubitable Correctness": IC3
 - Known also as Property Directed Reachability
- A very symbolic model checking algorithm
 - Uses SAT solving as a subroutine

From last week:

- A model **M** is described by
 - A set V of Boolean variables; the state space consists of $2^{|V|}$ states
 - The set **I** of initial states
 - The (total) transition relation **T**
 - Introducing a copy V of V, the transition relation T can be represented as a Boolean expression over V and V.
- The property **P** is a Boolean expression
- The reachable state space R is the set of all states that can be reached from I by taking any number of transitions through T.

Symbolic Representation

- We view **P** as a set of states
 - All the states that satisfy **P**.
- Suppose that **P** holds in the model $(M \models P)$.
 - It means that $\mathbf{R} \subseteq \mathbf{P}$.
- If we had a Boolean expression representing \mathbf{R} , we could simply check $\mathbf{R} \Rightarrow \mathbf{P}$
 - by checking satisfiability of $\mathbf{R} \wedge \mathbf{P}$

States Satisfying P

Reachable States

Some Observations

- R has a special property: $R\Lambda T \Rightarrow R'$
 - ullet If we take a transition from any state in ${\bf R}$, we shall reach a state in ${\bf R}$
 - **R** is a 'fix point' for the transition relation
- For a set of states S, with $I \subseteq S$, if S is a fix point, it must include R.
 - If $I \subseteq S$ and $S \wedge T \Rightarrow S'$ then $R \subseteq S$
 - S is an over-approximation of R
- If we find such a set S, and show in addition that $S \subseteq P$, we are done!

An Over Approximation

Searching for an over approximation of R gives us flexibility. May be easier to find.

The IC3 Algorithm: Main Idea

- Let I be the set of initial states, P the invariant formula
- Build a series of sets

$$I, F_1, F_2, ..., F_k$$

- Such that
 - For all j, F_j is an over-approximation of the set of states reachable from I in j steps or less.
 - Each F_j satisfies P
- If there exists a j such that $F_j = F_{j+1}$ then a fix point is found, P holds in the model.

Main Idea, More Specificaly

$$I, F_1, F_2, ..., F_k$$

- $\forall i, F_i \Rightarrow F_{i+1}$
- $\forall i, F_i \Rightarrow P$
- $\forall i, F_i \land T \Rightarrow F_{i+1}$

Algorithm

- Check $I \Rightarrow P$?
- Check $I \wedge T \Rightarrow P'$?
- Set: $F_1 := P$
- For every clause c ∈ clauses(I), if c ∉ clauses(F₁), check:
 - I \wedge T \Rightarrow c'?
 - If it does, set $F_1 := F_1 \wedge c$

A step forward

- Suppose that I, F_1 , F_2 , ..., F_k exist, with the conditions mentioned above.
- Check:

Is it the case that $F_k \wedge T \Rightarrow P'$?

- If it is, then
 - set $F_{k+1} := P$
 - for every clause $c \in F_k$, check
 - $F_k \wedge T \Rightarrow c'$?
 - If it is, set $F_{k+1} := F_{k+1} \wedge c$
 - If $F_k = F_{k+1}$: done
 - Improvement: compare clauses (syntactic check)

Example 1

- P = (-1, -2, -3)
- I = (1)(2)(-3)
- T=(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,1,2)
- Step 1: $I \Rightarrow P$?
 - I \wedge ¬P = (1)(2)(-3) (1)(2)(3) -- unsatisfiable $\sqrt{}$
- Step 2: $I \wedge T \Rightarrow P$?
 - $I \wedge T \wedge \neg P' =$

$$(1)(2)(-3)(-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1',1)(-3,1',2)(1')(2')(3')$$

-- unsatisfiable $\sqrt{}$

Example 1 – Cont.

- P = (-1, -2, -3)
- I = (1)(2)(-3)
- T=(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,1,2)
- Step 3:
 - Set $F_1 := P$
 - For every clause $c \in I$, check: $I \land T \Rightarrow c$?

$$I \land T \land \neg c' = (1)(2)(-3)(-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1',1)(-3,1',2)(-1')$$

-- satisfiable for all $c \in I$. Nothing can be added to F_1

Example 1 – Cont.

- P = (-1, -2, -3)
- I = (1)(2)(-3)
- T=(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,1,2)

- Step 4: : $F_1 \wedge T \Rightarrow P'$?
 - $F_1 \wedge T \wedge \neg P' =$

$$(-1,-2,-3)$$
 $(-1,3)$ $(1,-3)$ $(2,-2)$ $(-1,-2,-1)$ $(-3,1,1)$ $(-3,2,1)$ (1) (2) (3)

- -- unsatisfiable $\sqrt{}$
- Since $F_1 = P$ we are done!

Example 1

A step forward - Cont.

- Suppose that I, F_1 , F_2 , ..., F_k exist, with the above conditions.
- Check:

Is it the case that $F_k \wedge T \Rightarrow P'$?

- If **not** then
 - The SAT solver produces a counterexample, which includes a state $\mathbf{s} \in \mathbf{F}_{\mathbf{k}}$ that is one step away from violating \mathbf{P}
 - Consider the clause **¬s** (why clause?)
 - Find the maximal **j** such that $F_i \wedge \neg s \wedge T \Rightarrow \neg s'$
 - (If none exist then P does not hold in M!)
 - Update: $F_i := F_i \land \neg s$ for 0 < i < j + 1

IC3: Cont.

• Check:

Is it the case that $F_k \wedge T \Rightarrow P'$?

- If **not** then
 - Find a problematic state s and propagate ¬s as far as possible
 - If $\neg s$ was added to F_k , try again:
 - $F_k \wedge T \Rightarrow P'$?
 - Otherwise
 - find a state t that is a predecessor of s
 - recur on t

Example 2

Example 2.

- P = (1,2,3)
- I = (1)(2)(-3)
- T=(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,1,2)
- Step 4: : $F_1 \wedge T \Rightarrow P'$?
 - $F_1 \wedge T \wedge \neg P' =$

$$(1,2,3)(-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1,1')(-3,2,1')(-1')(-2')(-3')$$

- -- Satisfiable: -1,2,-3,-1',-2',-3' is a satisfying assignment
- $\neg P$ can be reached from s=(-1)(2)(-3)
- Check: I $\land \neg s \Rightarrow \neg s$? (1,-2,3)(1),(2),(3)(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,2,1)(-1),(2),(-3)
- Unsatisfiable!
- Set : $F_1 := F_1 \land \neg s = (1,2,3) (1,-2,3)$

Example 2: Cont.

- Recheck: $F_1 \wedge T \Rightarrow P'$?
 - $F_1 \wedge T \wedge \neg P' =$ (1,2,3) (1,-2,3)(-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1,1')(-3,2,1') (-1')(-2')(-3')
 - -- Unsatisfiable
 - Set $F_2 := P$
 - Check: $F_1 \land \neg s \Rightarrow \neg s$? (1,-2,3)(1,2,3)(-1,3)(1,-3)(2,-2)(-1,-2,-1)(-3,1,1)(-3,2,1)(-1),(2),(-3)
 - Unsatisfiable
 - Set : $F_2 := F_2 \land \neg_S$
 - But $F_1 = F_2$!
 - A fix point is found. P holds in the model.

IC3 summary

- A combination of induction, over-approximation and SAT solving
- Instead of a "Black Box" use of SAT: make SAT solving an integral part of the procedure
 - Many small SAT problems to solve (10,000 and more)
- As of today:
 - State-of-the-art symbolic model checking algorithm
 - Many (improved) implementations exist