

#### UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

## Princípios de Comunicações I

Capítulo 2

Prof.: Jair A. Lima Silva

UFES, 2012/2



## Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Pares de Transformada
  - c. Propriedades
- IV. Densidade Espectral de Energia e de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



• 1822 – "Theorie Analytique de la Chaleur"





• O Matemático e Físico Francês Jean-Baptiste Joseph-Fourier

• Modelagem da Evolução da Temperatura através de

Séries Trigonométricas



- Fourier demonstrou que uma função periódica f(t) qualquer pode ser representada por uma série <u>infinita</u> de somas de <u>funções senoidais e cossenoidais</u>.
- A 1ª parcela da soma possui frequência  $f_0=1/T_0$  (frequência fundamental), para  $T_o$  o periodo de repetição da função.
- As outras parcelas são <u>múltiplos inteiros desta frequência</u> fundamental, ou seja,  $f_n = n/T_0$  (**frequências harmônicas**), com  $n = 1, 2, 3, \infty$ .



• Portanto, f(t) pode ser expandida na **série infinita**:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cdot \cos(2\pi \cdot f_n \cdot t) + b_n \cdot \sin(2\pi \cdot f_n \cdot t) \right], \quad (0 < t < T_0)$$

$$T_0 = \frac{1}{f_0}, \ f_n = n \times f_0, \ 2\pi \cdot f_n = w_n$$

$$a_0 = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot dt \rightarrow \text{valor médio (componente CC)}$$

$$a_n = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot \cos(2\pi \cdot f_n \cdot t) \cdot dt \rightarrow \text{Coeficient es}$$

$$b_n = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot \sin(2\pi \cdot f_n \cdot t) \cdot dt \rightarrow \text{Coeficient es}$$



• Porém, a expansão só é possível <u>se as condições de</u> <u>Dirichlet forem satisfeitas</u>:

1-f(t) tem que ter um número finito de máximo e mínimos em um periodo

2-f(t) tem que ter um número finito de descontinuidades em um periodo

 $3 - a integral \int_{-\pi}^{+\pi} |f(t)| \cdot dt$  deve ser finita

(Johann Peter Gustav Lejeune **Dirichlet**, Matemático Alemão, 1805-1859)





## Ia. Condições de Simetria

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria TPC
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Pares de Transformada
  - c. Propriedades
- IV. Densidade Espectral de Energia e de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



• Exercício Exemplo: Encontre a equação da expansão em série Trigonométrica de Fourier da onda quadrada unipolar (trem de pulsos retangulares) mostrada na Figura abaixo.





• Exercício Exemplo (cont): Aplicado ao Padrão Repetitivo de Bits



$$x(t) = \begin{cases} A \dots |t| < \frac{T_s}{2} \\ 0 \dots \frac{T_s}{2} < |t| < \frac{T_0}{2} \end{cases}$$



Onda Quadrada – Domínio do Tempo

$$x(t) = \begin{cases} A \dots |t| < \frac{T_s}{2} \\ 0 \dots \frac{T_s}{2} < |t| < \frac{T_0}{2} \end{cases}$$

 $x(t) = \begin{cases} A.....|t| < \frac{T_s}{2} & \text{Expandindo a função em uma} \\ 0......\frac{T_s}{2} < |t| < \frac{T_0}{2} & \text{escolhendo-se o eixo de simetria} \end{cases}$ Expandindo a função em uma para função par teremos que:

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cdot \cos(2\pi \cdot f_n \cdot t) \right] \qquad onde \begin{cases} 0 < t < T_0 \\ T_0 = \frac{1}{f_0}, \ f_n = n \cdot f_0 \end{cases}$$

onde 
$$\begin{cases} 0 < t < T_0 \\ T_0 = \frac{1}{f_0}, \ f_n = n \cdot f_0 \end{cases}$$



Onda Quadrada – Domínio do Tempo

$$a_0 = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cdot dt = \frac{2A \cdot T_s}{T_0}$$

$$a_n = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cdot \cos(2\pi f_n t) \cdot dt = \frac{2}{T_0} \cdot \left[ \frac{A \cdot \sin(2\pi f_n t)}{2\pi f_n} \right]_{-T_s/2}^{T_s/2}$$

$$a_n = \frac{2A}{T_0} \cdot \frac{\sin(\pi \cdot f_n \cdot T_s)}{\pi \cdot f_n} = \frac{2A \cdot T_s}{T_0} \cdot \frac{\sin(\pi \cdot f_n \cdot T_s)}{\pi \cdot f_n \cdot T_s}$$

$$a_n = \frac{2A \cdot T_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s)$$



Onda Quadrada – Domínio do Tempo

$$a_0 = \frac{2A \cdot T_s}{T_0}$$

$$a_n = \frac{2A \cdot T_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s)$$

$$x(t) = \frac{AT_s}{T_0} + \sum_{n=1}^{\infty} \frac{AT_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s) \cdot \cos(2\pi \cdot f_n \cdot t)$$

DC

**Coeficientes** 

**Harmonicas** 



Espectro da onda Quadrada no Matlab (usando a função FFT\_pot2)





• Exercício Exemplo: Calcule as 6 primeiras raias da expansão da forma de onda quadrada anterior considerando que  $A=0.5~V,\,T_0=3xT_s=1~ms$ . Escreva a equação da expansão para este caso.





#### • Exercício Exemplo (cont):

$$a_0 = \frac{2AT_s}{T} = \frac{1}{3} = 0.333$$

$$a_n = \frac{sen(n\pi/3)}{n\pi}$$

$$a_1 = \frac{sen(\pi/3)}{\pi} = 0.275$$

$$a_3 = \frac{sen(\pi)}{3\pi} = 0$$

$$a_5 = \frac{sen(5\pi/3)}{5\pi} = -0.055$$
  $a_6 = \frac{sen(2\pi)}{6\pi} = 0$ 

$$a_1 = \frac{sen(\pi/3)}{\pi} = 0,275$$
  $a_2 = \frac{sen(2\pi/3)}{2\pi} = 0,137$ 

$$a_3 = \frac{sen(\pi)}{3\pi} = 0$$
  $a_4 = \frac{sen(4\pi/3)}{4\pi} = -0,068$ 

$$a_6 = \frac{sen(2\pi)}{6\pi} = 0$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( \frac{sen(n\pi/3)}{n\pi} \right) \cos(n\omega t)$$

 $f(t) \approx 0.166 + 0.275\cos(\omega t) + 0.137\cos(2\omega t) - 0.068\cos(4\omega t) - 0.055\cos(5\omega t)$ 







No Padrão Repetitivo para T/TS=3





#### LAbiel

## I. Série Trigonométrica de Fourier



- $\checkmark$  Todos os coeficientes, com índice  ${\bf n}$  múltiplo inteiro de três, são nulos.
- ✓ A primeira frequência harmônica nula do espectro corresponde à frequência  $f_3$ =3kHz, e também à taxa de bits Rs = 1/Ts = 3kbit/s.
- $\checkmark$  Os coeficientes seguem uma envoltória definida por  $y = \frac{\sin x}{x}$ .
- ✓O coeficiente a<sub>0</sub>/2 corresponde à componente DC (*Direct Current*)



• Exercício: Encontre a expansão em série Trigonométrica de Fourier da onda triangular de amplitude A mostrada na Figura.





• Exercício (cont): A partir das equações de x(t),...



$$x(t) = \begin{cases} -2A - \frac{4A}{T_0}t & ; -\frac{T_0}{2} \le t \le -\frac{T_0}{4} \\ \frac{4A}{T_0}t & ; -\frac{T_0}{4} \le t \le \frac{T_0}{4} \\ +2A - \frac{4A}{T_0}t & ; +\frac{T_0}{4} \le t \le +\frac{T_0}{2} \end{cases}$$

15 Integrais ???



• Exercício (cont): Considerando condições de Simetria,...

Expandindo a função em uma série trigonométrica de Fourier escolhendo-se o eixo de simetria de forma a termos uma função **ímpar** e **semi-simétrica**:

$$x(t) = \frac{4A}{T_0}t$$

- Integral de 0 a  $T_0/4$
- Somente Coeficientes impares
- Somente termos em seno
- Valor médio nulo



• Exercício (cont): Considerando condições de Simetria,...

$$x(t) = \frac{4A}{T_0}t$$

**Onda Triangular** 

$$b_{2k-1} = \frac{8}{T_0} \int_0^{T_0/4} \frac{4A}{T_0} t \cdot \sin[2\pi(2k-1)f_0 t] \cdot dt$$

$$b_{2k-1} = \frac{32A}{T_0^2} \int_0^{T_0/4} t \cdot \sin[2\pi(2k-1)f_0t] \cdot dt$$

Da propriedade: 
$$\int u \cdot dv = v \cdot u - \int v \cdot du$$

$$u = t \Rightarrow du = dt$$

$$dv = \sin[2\pi(2k-1)f_0t] \Rightarrow v = -\frac{\cos[2\pi(2k-1)f_0t]}{2\pi(2k-1)f_0}$$



#### **Onda Triangular**

$$b_{2k-1} = \frac{32A}{T_0^2} \left\{ -t \cdot \frac{\cos[2\pi(2k-1)f_0t]}{2\pi(2k-1)f_0} \right|_0^{T_0/4} + \int_0^{T_0/4} \cdot \frac{\cos[2\pi(2k-1)f_0t]}{2\pi(2k-1)f_0} dt \right\}$$

$$b_{2k-1} = \frac{32A}{T_0^2} \left\{ -T_0 \cdot \frac{\cos\left[2\pi(2k-1)\frac{T_0}{4T_0}\right]}{8\pi(2k-1)\frac{1}{T_0}} + \frac{1}{\left[2\pi(2k-1)f_0\right]} \int_0^{T_0/4} \cos\left[2\pi(2k-1)f_0t\right] dt \right\}$$

$$b_{2k-1} = \left\{ -\frac{T_0^2 \cdot \cos\left[(2k-1)\frac{0}{2}\right]}{8\pi(2k-1)} + \frac{1}{\left[2\pi(2k-1)f_0\right]^2} \int_0^{T_0/4} \left[2\pi(2k-1)f_0t\right] \cdot \cos\left[2\pi(2k-1)f_0t\right] dt \right\}$$



#### **Onda Triangular**

$$b_{2k-1} = \left\{ -\frac{T_0^2 \cdot \cos\left[(2k-1)\frac{\pi}{2}\right]}{8\pi(2k-1)} + \frac{1}{\left[2\pi(2k-1)f_0\right]^2} \int_0^{T_0/4} \left[2\pi(2k-1)f_0t\right] \cdot \cos\left[2\pi(2k-1)f_0t\right] dt \right\}$$

$$b_{2k-1} = \frac{32A}{T_0^2} \cdot \frac{\sin[2\pi(2k-1)f_0t]}{[2\pi(2k-1)f_0]^2} \bigg|_0^{T_0/4} = \frac{32A}{T_0^2} \cdot \frac{\sin\left[2\pi(2k-1)\frac{T_0}{4T_0}\right]}{4\pi^2(2k-1)^2\frac{1}{T_0^2}}$$

$$b_{2k-1} = \frac{8A \cdot \sin\left[ (2k-1)\frac{\pi}{2} \right]}{\pi^2 (2k-1)^2}$$



#### **Onda Triangular**

Sabendo que:

$$\sin\left[\frac{\pi}{2}(2k-1)\right] = \sin\left(\pi k - \frac{\pi}{2}\right) = \sin(\pi k) \cdot \cos\left(\frac{\pi}{2}\right) - \cos(\pi k) \cdot \sin\left(\frac{\pi}{2}\right) = (-1)^{k+1}$$

$$b_{2k-1} = \frac{8A \cdot \sin\left[\left(2k-1\right)\frac{\pi}{2}\right]}{\pi^2 \left(2k-1\right)^2} = \frac{8A \cdot \left(-1\right)^{k+1}}{\pi^2 \left(2k-1\right)^2}$$

$$x(t) = \sum_{k=1}^{\infty} \frac{8A(-1)^{k+1}}{\pi^2 (2k-1)^2} \sin[2\pi (2k-1)f_0 t]$$



Onda Triangular — Domínio do Tempo





Onda Triangular – Domínio da Frequência





## Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Propriedades
- IV. Densidade Espectral de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos

# LACTEI IIa. Série Harmônica de Fourier

- A série Harmônica representa uma maneira mais compacta da expansão em série de Fourier.
- É preferencial na análise de sinais em transmissão de dados, já que caracteriza melhor as influências do canal sobre o sinal f(t) utilizado.
- · Assim, a partir da série trigonométrica e fazendo:

$$A_0 = \frac{a_0}{2}$$
,  $A_n = \sqrt{a_n^2 + b_n^2}$ , e  $\theta_n = \arctan\left(\frac{b_n}{a_n}\right)$ 

## LMbTel

#### IIa. Série Harmônica de Fourier

• A <u>série Harmônica de Fourier</u> é descrita por:

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cdot \cos(2\pi \cdot f_n \cdot t + \theta_n)$$

- Cada harmônica tem frequência  $nf_0$ , (n inteiro), amplitude  $A_n$  (não negativa) e fase  $\theta_n$  (em relação à origem arbitrada em t=0,  $-\pi \le \theta_n \le +\pi$ ),
- $A_0$  a componente CC (fase 0 se positivo e  $\pi$  se negativo)
- A representação da série Harmônica de Fourier no domínio da frequência denomina-se **Espectro** 
  - $A_n$  Espectro de Amplitude
  - $\theta_n$  Espectro de Fase
- Espectro de sinais Periódicos é um Espectro Discreto



• Da equação de Euler:

$$e^{jwt} = \cos(wt) + j\sin(wt)$$

$$\cos(wt) = \frac{e^{jwt} + e^{-jwt}}{2} \quad e \quad \sin(wt) = \frac{e^{jwt} - e^{-jwt}}{2j}$$

• Substituindo estas equações na expressão Canônica da expansão em série de Fourier,...



• e lembrando que  $nw = 2\pi f_n$ , para  $n = 1, 2, 3, ... \infty$ 

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ \frac{a_n}{2} \cdot \left( e^{jnwt} + e^{-jnwt} \right) + \frac{b_n}{2j} \cdot \left( e^{jnwt} - e^{-jnwt} \right) \right]$$

• Com 1/j = -j, têm-se que

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ \frac{1}{2} (a_n - jb_n) e^{jnwt} + \frac{1}{2} (a_n + jb_n) e^{-jnwt} \right]$$



• Definindo-se:

$$C_0 = \frac{a_0}{2}, \quad C_n = \frac{1}{2}(a_n - jb_n), \quad e \quad C_{-n} = \frac{1}{2}(a_n + jb_n)$$

• Considerando-se que  $C_n$  e  $C_{-n}$  são os coeficientes das componentes de **frequências positivas** e **negativas** respectivamente, obtém-se que,

$$x(t) = C_0 + \sum_{n=1}^{\infty} \left( C_n e^{jnwt} + C_{-n} e^{-jnwt} \right)$$

• com as exponenciais representado respectivamente, as harmônicas de frequências positivas e negativas.



• A troca de sinais dos limites do segundo somatório, provoca mudança de sinal no argumento do somatório, tal que:

$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n e^{jnwt} + \sum_{n=-1}^{-\infty} C_n e^{jnwt}$$

• Se incluirmos o valor DC e se estendermos os limites da soma de  $-\infty$  a  $+\infty$ ,...



• Se incluirmos o valor DC e se estendermos os limites da soma de -  $\infty$  a + $\infty$ ,...

$$x(t) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{jnwt}$$

## $x(t) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{jnwt}$ Série Exponencial Complexa de Fourier

$$C_0 = \frac{1}{T_0} \int_{-T_0/2}^{-+T_0/2} x(t) dt$$
,  $C_n = \frac{1}{T_0} \int_{-T_0/2}^{+T_0/2} x(t) e^{-jnwt} dt$ ,

$$C_n = A_n + jB_n$$
,  $\left| C_n \right| = \sqrt{A_n^2 + B_n^2}$  e  $\theta_n = tg^{-1} \left( \frac{B_n}{A_n} \right)$ 



• Considerações,...

$$x(t) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{jnwt}$$

Série Exponencial
Complexa de Fourier
ou
Série de Fourier de Tempo
Contínuo
ou
Série de Fourier

✓ O espectro gerado terá componentes nas frequências positivas e frequências negativas (Espectro Simétrico)

✓ O eixo de simetria será a frequência zero (DC)



# IIb. Série Exponencial de Fourier

Considerações,...

$$x(t) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{jnwt}, \qquad x(t) \xrightarrow{SF} C_n$$

✓ O Teorema de Parseval se aplica, ou seja, a potência média é a mesma em ambos os domínios:

$$C_0 = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{\infty} |C_n|^2$$



# IIb. Série Exponencial de Fourier

Representação Trignométrica ou real (um fasor)

Representação Complexa (dois fasores)



(a) Domínio tempo de e(t)

(b) Fasor único (expansão trigonométrica)

(c) Doisfasores na expansão complexa

#### No Exemplo Série Trigonométrica f(t) de Fourier A=0,5v $T=3T_s$ Função f(t) com T=3T<sub>s</sub> (b) Coeficientes da SF trigonométrica $C_n$ $C_0 = 0.166$ 0,137 0.068 0,068 -0,034 (c) Coeficientes da SF complexa Série Exponencial Complexa de Fourier $|\mathbf{c}_0| = 0.166$ 0.068

(d) Coeficientes da SF complexa em valor absoluto



# Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier

#### III. Transformada de Fourier

- a. Definição
- b. Pares de Transformada
- c. Propriedades
- IV. Densidade Espectral de Energia e de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



- A série de Fourier se aplica a <u>sinais Periódicos</u> que são **sinais de potencia**.
- A necessidade de analisarmos tanto sinais de potência quanto sinais de energia requer a adoção de uma <u>ferramenta</u> <u>mais poderosa</u>.

✓ Esta ferramenta é a Transformada de Fourier



# IV. Transformada de Fourier a. Definição

• Da série de Fourier de um sinal Periódico de frequência fundamental  $\Delta_f = f_0 = \frac{1}{T_0}$ 

$$x(t) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{jnwt}, \quad C_n = \frac{1}{T_0} \int_{-T_0/2}^{+T_0/2} x(t) e^{-jnwt} dt$$

• Substituindo  $C_n \text{ em } x(t) \text{ teremos:}$ 

$$x(t) = \sum_{n=-\infty}^{\infty} \left[ \frac{1}{T_0} \int_{-T_0/2}^{+T_0/2} x(\tau) e^{-jnw\tau} d\tau \right] \cdot e^{jnwt}$$

## LMbTel

# III. Transformada de Fourier a. Definição

• Sabendo que  $w = 2\pi f_0 = 2\pi \Delta_f$ 

$$x(t) = \sum_{n=-\infty}^{\infty} \left[ \Delta_f \int_{-T_0/2}^{+T_0/2} x(\tau) e^{-j2\pi n \Delta_f \tau} d\tau \right] \cdot e^{j2\pi n \Delta_f t}$$

- Se aproximarmos  $T_o$  para infinito, o sinal periódico transforma-se em um **sinal aperiódico**.
- $\Delta_f$  transforma-se no diferencial  $d_f$  e  $n\Delta_f$  uma variável contínua em f.



#### IVa. Definição

• Logo,

$$x(t) = \lim_{T_0 \to \infty} \left\{ \sum_{n = -\infty}^{\infty} \left[ \Delta_f \int_{-T_0/2}^{+T_0/2} x(\tau) e^{-j2\pi n \Delta_f \tau} d\tau \right] \cdot e^{j2\pi n \Delta_f t} \right\}$$

$$x(t) = \int_{-\infty}^{+\infty} \left[ \int_{-\infty}^{+\infty} x(\tau) e^{-j2\pi f t} d\tau \right] e^{j2\pi f t} df$$

$$F\{x(t)\}$$



# IV. Transformada de Fourier IIIa. Definição

• Relação Biunívoca

$$X(f) = \mathcal{F}[x(t)] = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi ft} dt$$

$$x(t) = \mathcal{F}^{-1} [X(f)] = \int_{-\infty}^{+\infty} X(f) \cdot e^{j2\pi ft} df$$

Transformada de Fourier

Transformada Inversa de Fourier

# LAbiel

#### III. Transformada de Fourier

- Considerações,...
  - ✓ O sinal original está no domínio do tempo (argumento tempo)
  - ✓ A representação da transformada de Fourier está no domínio da frequência (argumento frequência)
  - $\checkmark$  A transformada de Fourier é chamada de **equação de análise** de x(t) já que extrai as componentes de X(f) em cada valor de f
  - $\checkmark$  A transformada inversa é chamada de **equação de síntese** já que recombinas as componentes de X(f) para obter x(t).
  - $\checkmark$  Se a unidade de x(t) for Volts, a de X(t) é Volts/Hz



#### Exercícios

1. Encontre a expressão da transformada de Fourier das funções:

$$x_1(t) = rect\left(\frac{t}{T_0}\right) \qquad \text{e} \qquad x_2(t) = u(t) \cdot e^{-at} = \begin{cases} e^{-at}, t \ge 0\\ 0, t < 0 \end{cases}$$

2. Faça gráficos ilustrativos das formas de onda no tempo e da característica de amplitude.





# III. Transformada de Fourier IIIa. Definição Gráfica – Matlab (TPC)





• A Transformada de Fourier é uma função complexa da frequência:

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot \cos(2\pi f t) dt - j \int_{-\infty}^{+\infty} x(t) \cdot \sin(2\pi f t) dt = A(f) \cdot e^{j\theta(f)}$$

- O módulo representa o espectro de amplitude do sinal
- A fase representa o espectro de fase do sinal
- Tais Espectros são Contínuos para sinais não-Periódicos.



• Da equação abaixo conclui-se que:

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot \cos(2\pi f t) dt - j \int_{-\infty}^{+\infty} x(t) \cdot \sin(2\pi f t) dt = A(f) \cdot e^{j\theta(f)}$$

- O complexo conjugado de X(f) é  $X^*(f) = X(-f)$
- O módulo A(f) é uma função **par** da frequência e a fase  $\theta(f)$  é uma função **impar** da frequência



- Conclui-se também que:
- Para x(t) uma função **par**, a transformada é uma função real

$$X(f) = 2\int_{0}^{+\infty} x(t) \cdot \cos(2\pi f t) dt$$

- Neste caso, o espectro de fase pode ser:
  - 0 rad se X(f) for real positivo
  - $\pi$  rad se X(f) for real negativo e f > 0
  - -  $\pi$  rad se X(f) for real negativo e f < 0



- Conclui-se também que:
- Para x(t) uma função **ímpar**, a transformada é uma função imaginária da frequência.

$$X(f) = -2j \int_{0}^{+\infty} x(t) \cdot \sin(2\pi f t) dt$$

- Neste caso, o espectro de fase só pode ser:
  - $\pi/2$  rad se X(f) for imaginário positivo e f > 0
  - -  $\pi/2$  rad se X(f) for imaginário negativo e f > 0
  - -  $\pi/2$  rad se X(f) for imaginário positivo e f < 0
  - $\pi/2$  rad se X(f) for imaginário negativo e f < 0



- Exemplo: Considere um pulso retangular com tensão A = 6V e largura  $T_s = 10\mu s$ . Considere esta função básica das comunicações digitais com sendo uma função par do tempo.
  - a) Desenhe a forma de onda no tempo
  - b) Determine a transformada de Fourier do sinal
  - c) Esboce os espectros de amplitude e fase do resultado obtido em b).

#### IIIb. Pares de Transformada - TPC

| Rectangular Pulse | $\operatorname{rect}\left(\frac{t}{T}\right)$ | $T[\operatorname{sinc}(fT)]$                                                                                                             |
|-------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Triangular Pulse  | $\operatorname{tri}\left(\frac{t}{T}\right)$  | $T\left[\operatorname{sinc}(fT)\right]^2$                                                                                                |
| Unit Step         | u(t)                                          | $\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$                                                                                               |
| Signum            | $\operatorname{sgn}(t)$                       | $\frac{1}{j\pi f}$                                                                                                                       |
| Constant          | 1                                             | $\delta(f)$                                                                                                                              |
| Impulse at $t_o$  | $\delta(t-t_o)$                               | $e^{-j2\pi ft_o}$                                                                                                                        |
| Sinc              | sinc(2Wt)                                     | $\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$                                                                               |
| Phasor            | $e^{j\omega_o t + \varphi}$                   | $e^{j\varphi} \delta (f - f_o)$                                                                                                          |
| Sinusoid          | , 0 ,                                         | $\frac{1}{2} e^{\jmath \varphi} \mathcal{S} \left( f - f_o \right) + \frac{1}{2} e^{-\jmath \varphi} \mathcal{S} \left( f + f_o \right)$ |
| Gaussian          | $e^{-\pi(t/t_o)^2}$                           | $t_o e^{-\pi (f t_o)^2}$                                                                                                                 |



### IVc. Propriedades

| Property             |                                                                                                              |  |
|----------------------|--------------------------------------------------------------------------------------------------------------|--|
| Conjugation          | $x^*(t) \rightleftharpoons X^*(-f)$                                                                          |  |
| Linearity            | $\alpha x(t) + \beta y(t) \Longrightarrow \alpha X(f) + \beta Y(f)$                                          |  |
| Time-shifting        | $x(t-t_o) \rightleftharpoons e^{-j2\pi f t_o} X(f)$                                                          |  |
| Frequency-shifting   | $e^{j2\pi f_o t}x(t) \rightleftharpoons X(f-f_o)$                                                            |  |
| Time reversal        | $x(-t) \Longrightarrow X(-f)$                                                                                |  |
| Time-differentiation | $\frac{d}{dt}\{x(t)\} \Longrightarrow (j2\pi f)X(f)$                                                         |  |
| Time-integration     | $\int_{-\infty}^{t} x(\tau) d\tau \xrightarrow{*} \frac{1}{j2\pi f} X(f) \qquad \qquad \text{*If } X(0) = 0$ |  |
| Time/freq-scaling    | $x(at) \Longrightarrow \frac{1}{ a } X\left(\frac{f}{a}\right)$                                              |  |
| Multiplication       | $x(t)y(t) \Longrightarrow X(f) * Y(f)$                                                                       |  |
| Convolution          | $x(t)^*y(t) \Longrightarrow X(f)Y(f)$                                                                        |  |

# LMbTel III. Transformada de Fourier

### IIIc. Propriedades - Linearidade

Se 
$$z(t) = \alpha \cdot x(t) + \beta \cdot y(t)$$

$$\Rightarrow Z(f) = \mathcal{F}[z(t)] = \int_{-\infty}^{+\infty} z(t) \cdot e^{-j2\pi ft} dt$$

$$= \alpha \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi ft} dt + \beta \int_{-\infty}^{+\infty} y(t) \cdot e^{-j2\pi ft} dt$$

$$\Rightarrow Z(f) = \alpha \cdot X(f) + \beta \cdot Y(f)$$

$$\alpha \cdot x(t) + \beta \cdot y(t) \longleftrightarrow \alpha \cdot X(f) + \beta \cdot Y(f)$$



## IIIc. Propriedades – Escalonamento no tempo

Se 
$$z(t) = x(at)$$

$$\Rightarrow Z(f) = \int_{-\infty}^{+\infty} z(t) \cdot e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} x(at) \cdot e^{-j2\pi ft} dt$$

Fazendo  $\lambda = at$ 

$$\Rightarrow Z(f) = \frac{1}{a} \int_{-\infty}^{+\infty} x(\lambda) \cdot e^{-j2\pi f(\lambda/a)} d\lambda$$

$$\Rightarrow Z(f) = \frac{1}{a} X(\frac{f}{a})$$
 Compressão na Frequencia



### IVc. Propriedades – Diferenciação no tempo

$$\frac{d}{dt} \{x(t)\} = \frac{d}{dt} \left\{ \int_{-\infty}^{+\infty} X(f) \cdot e^{+j2\pi f t} df \right\}$$

$$\frac{d}{dt} \{x(t)\} = \int_{-\infty}^{+\infty} j2\pi f \cdot X(f) \cdot e^{+j2\pi f t} df$$

$$\frac{d}{dt} \{x(t)\} = \mathcal{F}^{-1} \{j2\pi f \cdot x(t)\}$$

# LACOTEL III. Transformada de Fourier

### IIIc. Propriedades – Deslocamento no tempo

Se 
$$z(t) = x(t - t_0)$$

$$\Rightarrow Z(f) = \int_{-\infty}^{+\infty} z(t) \cdot e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} x(t - t_0) \cdot e^{-j2\pi ft} dt$$

Fazendo  $\tau = t - t_0$ 

$$\Rightarrow Z(f) = \int_{-\infty}^{+\infty} x(\tau) \cdot e^{-j2\pi f(\tau + t_0)} d\tau$$

$$\Rightarrow Z(f) = e^{-j2\pi f \cdot t_0} \int_{-\infty}^{+\infty} x(\tau) \cdot e^{-j2\pi f \tau} d\tau$$

$$\Rightarrow Z(f) = e^{-j2\pi f \cdot t_0} X(f)$$

Desvio na fase de  $-2\pi f t_0$ 

## LACOTEL III. Transformada de Fourier

#### IIIc. Propriedades – Deslocamento na Frequência

Se 
$$z(t) = x(t) \cdot e^{j2\pi f_0 t}$$
  

$$\Rightarrow Z(f) = \int_{-\infty}^{+\infty} z(t) \cdot e^{-j2\pi f_0 t} dt = \int_{-\infty}^{+\infty} x(t) \cdot e^{j2\pi f_0 t} \cdot e^{-j2\pi f_0 t} dt$$

$$Z(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi (f - f_0) t} dt$$

$$Z(f) = X(f - f_0)$$

Teorema da Modulação



# Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Propriedades
- IV. Densidade Espectral de Energia e de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



# IVa. Densidade Espectral de Energia

- Considere o sinal *x*(*t*) como sendo um sinal de ENERGIA
- Ou seja, sua energia normalizada  $E_n$  é **finita** e positiva

$$E_n = \int_{-\infty}^{+\infty} x^2(t) dt$$

• Considere ainda que este sinal pode ser obtido da transformada inversa de Fourier conforme:

$$x(t) = \mathcal{F}^{-1}\left\{X(f)\right\} = \int_{-\infty}^{+\infty} X(f) \cdot e^{+j2\pi ft} df$$

# LAbiel

# IVa. Densidade Espectral de Energia

• A energia normalizada total desse sinal é dado por:

$$E_n = \int_{-\infty}^{+\infty} x^2(t)dt = \int_{-\infty}^{+\infty} x(t) \cdot x(t)dt$$

$$E_n = \int_{-\infty}^{+\infty} x(t) \cdot \left[ \int_{-\infty}^{+\infty} X(f) \cdot e^{+j2\pi f t} df \right] dt$$

Invertendoa ordemda integracao:

$$E_n = \int_{-\infty}^{+\infty} X(f) \cdot \left[ \int_{-\infty}^{+\infty} x(t) \cdot e^{+j2\pi f t} dt \right] df$$

# Lacial IVa. Densidade Espectral de Energia

• Portanto,

$$E_{n} = \int_{-\infty}^{+\infty} X(f) \cdot X^{*}(f) df$$

$$E_{n} = \int_{-\infty}^{+\infty} |X(f)|^{2} df$$

Que integrada na frequencia resulta na Energia Normalizada TOTAL do sinal

# LMbTel

# IVa. Densidade Espectral de Energia

 Ou seja, a Energia Normalizada Total do sinal pode ser obtida por integração no tempo OU na Frequência:

$$E_n = \int_{-\infty}^{+\infty} x^2(t)dt = \int_{-\infty}^{+\infty} |X(f)|^2 df = \int_{-\infty}^{+\infty} E_x(f) \cdot df$$

Teorema da Energia de Rayleigh



#### IVa. Densidade Espectral de Energia

#### Observações Importantes:

- Apenas o Espectro de Amplitude  $|X(f)| = M_{\chi}(f)$  do sinal interessa na determinação de  $E_n$
- Para uma função x(t) real, o modulo  $M_x(f)$  é Par e portanto  $E_{x}(f) = M_{x}^{2}(f)$  é Par e

$$E_n = \int_{-\infty}^{+\infty} E_x(f) \cdot df = 2 \int_{0}^{+\infty} E_x(f) \cdot df$$

• Em um intervalo de frequência  $(f_1, f_2)$ , a energia normalizada A.

$$E_n(f_1, f_2) = \int_{-f_1}^{+f_2} E_x(f) \cdot df$$



- Considere o sinal x(t) como sendo de **Potência**
- Ou seja, sua energia normalizada total é infinita e potencia media normalizada **finita** e positiva.

$$P_{mn} = \overline{x^2(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x^2(t) dt$$

• Considere ainda uma função  $x_T(t)$  que coincide com x(t) em um intervalo de tempo T e nula fora dele:

$$x_T(t) = \begin{cases} x(t) & \text{para } |t| \le T/2 \\ 0 & \text{para } |t| > T/2 \end{cases}$$



• Com  $X_T(f)$  a T.F. de  $x_T(t)$ , a sua energia total normalizada é:

$$E_{T} = \int_{-\infty}^{+\infty} x_{T}^{2}(t)dt = \int_{-T/2}^{+T/2} x_{T}^{2}(t)dt = \int_{-\infty}^{+\infty} |X_{T}(f)|^{2}df$$

• A potencia média normalizada de x(t) é:

$$P_{mn} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x^{2}(t) dt = \int_{-T/2}^{+T/2} \lim_{T \to \infty} \frac{|X_{T}(f)|^{2}}{T} df$$



• À medida que T aumenta, a energia aumenta e portanto,  $|X_T(f)|^2$  aumenta com T. No limite  $(T \to \infty)$ ,  $\frac{|X_T(f)|^2}{T}$  converge para um <u>valor finito</u> pois a potência do sinal é <u>finita</u>.

$$P_X(f) = \lim_{T \to \infty} \frac{|X_T(f)|^2}{T}$$

Densidade Espectral de Potência Normalizada Bilateral



- $P_X(f)$  integrada na frequência resulta na **potência média normalizada** do sinal.
- Se  $P_X(f)$  é uma função par,

$$P_{mn} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x^{2}(t) dt = 2 \int_{0}^{+\infty} P_{X}(f) df$$

$$\Rightarrow P(f) = 2P_{X}(f) \text{ para } f \ge 0$$

Densidade Espectral de Potencia Normalizada Unilateral



# Definição de Largura de Banda

• Exercício Exemplo: Determine a energia normalizada total do sinal  $x(t) = V sinc(t/t_0)$ .

$$E_n = \int_{-\infty}^{+\infty} V^2 Sinc^2(t/t_0) dt \implies \text{Integração numerica}$$

complicada

• Mas do Teorema de Energia de Rayleigh e sabendo que:

$$X(f) = \begin{cases} Vt_0 & \text{para } |f| \le t_0/2 \\ 0 & \text{para } |f| > t_0/2 \end{cases}$$



$$E_n = 2 \int_0^{+\infty} |X(f)|^2 df = 2V^2 t_0^2 \cdot \frac{1}{2t_0} = V^2 t_0$$

• Comparando as integrais no tempo e na frequência:

$$\int_{-\infty}^{+\infty} V^2 Sinc^2(t/t_0) dt = V^2 t_0 \Rightarrow \int_{-\infty}^{+\infty} Sinc^2(t/t_0) dt = t_0$$

fazendo 
$$t/t_0 = x$$
 e  $dt = t_0 dx \Rightarrow \int_{-\infty}^{+\infty} Sinc^2(x) dx = 1$ 



• Idealmente, defina-se a largura de banda  $B_w$  (ou largura de faixa) como sendo a faixa de frequências em que a densidade espectral de potência é não nula.



Então, qual a largura de banda deste sinal?



• A largura de banda deve então ser a faixa de frequências onde se concentra a maior parte da potência do sinal.



Largura de banda de Meia Potência?



• A largura de banda de meia potência compreende a faixa na qual a PSD decai até 3 dB do seu valor de pico



Indicação simplista da dispersão do espectro.



• A largura de banda deve então ser a faixa de frequências onde se concentra a maior parte da potência do sinal.



 $oldsymbol{B}_{w_N}$ 

Largura de banda entre zeros (Null-to-Null)?



• Representa a largura de banda do lóbulo principal da PSD.



Assume que o lóbulo principal contém maior parte da potência.



• A largura de banda deve então ser a **faixa de frequências onde se concentra a maior parte da potência do sinal**.



 $oldsymbol{B}_{w_{90\%}}$ 

Largura de banda de conteúdo fracional de potencia?



• Definida pela faixa de frequências que contém  $1-\epsilon$  da potência total. ( $\epsilon=0,1,0,001$  são valores típicos.)



 $oldsymbol{B}_{w_{90\%}}$ 

Dependendente do tipo de sinal (potência ou energia).



• A largura de banda deve então ser a **faixa de frequências onde se concentra a maior parte da** potência do sinal.



 $oldsymbol{B}_{w_{PSD}}$ 

Largura de banda limitada pela PSD?



• Faixa de frequências na qual a PSD permanece abaixo de um certo nível em dB, em relação ao seu valor máximo.



 $oldsymbol{B}_{w_{PSD}}$ 



- Todas as definições são apropriadas e a escolha de um em detrimento dos outros depende da aplicação.
- Geralmente defina-se matematicamente a largura de banda conforme:

$$B_{w} = \alpha \frac{1}{T} = \alpha \cdot R \quad [Hz]$$

para  $\alpha$  uma constante real dependente da PSD e da definicao adotada

$$R = \frac{1}{T}$$
 a taxa de sinalização [bauds / s]

T a duração do sinal



# Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Propriedades
- IV. Densidade Espectral de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



• Também chamada de **Função Delta de Dirac**, o **Impulso Unitário** é definida pelas relações:

$$\delta(x) = 0$$
, para  $x \neq 0$ 

e

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$





• O Trem de Pulsos (Tp) mostrado na figura abaixo é dado pela relação:  $Tp(t) = \sum_{i=0}^{\infty} \delta(t-n)$ 

#### Trem de Pulsos





#### Transformada de Fourier da Função Delta de Dirac

 $x(t) = A \cdot \delta(t)$ , para A uma constante real

$$F[A \cdot \delta(t)] = \int_{-\infty}^{+\infty} A \, \delta(t) \cdot e^{-j2\pi ft} \, dt = A \cdot e^0 = A$$



$$F\{Tp(t)\} = F\left\{\sum_{n=-\infty}^{\infty} \delta(t-n)\right\} = \sum_{n=-\infty}^{\infty} \delta(f-n)$$



#### a. Aplicações da Função Impulso

#### **Sinal CC**

$$x(t) = A$$
 para  $t \subset (-\infty, +\infty)$ 

Da propriedade da Dualidade :  $F[A \cdot \delta(t)] = A \rightarrow F[A] = A\delta(f)$ 





#### a. Aplicações da Função Impulso

## Exponencial Complexa de Frequência $f_{m{\theta}}$

$$x(t) = A \cdot e^{j2\pi f_0 t}$$
 para  $t \subset (-\infty, +\infty)$ 

Da propriedade do Deslocamento em Frequência:

$$F\left[A \cdot e^{j2\pi f_0 t}\right] = A\delta(f - f_0)$$

Espectro não simétrico, discreto, com componente espectral somente em  $f = +f_0$  e nulo para  $f \neq f_0$ 



#### a. Aplicações da Função Impulso

#### Sinal Senoidal de Frequência $f_{ heta}$

$$x(t) = A \cdot \cos(2\pi f_0 t + \phi), \quad \text{para} \quad t \subset (-\infty, +\infty)$$

Do Teorema de Euler + Propriedade da Linearidad e:

$$TF[A \cdot \cos(2\pi f_0 t + \phi)] = TF\left[\frac{A}{2} \cdot e^{+j\phi} e^{+j2\pi f_0 t} + \frac{A}{2} \cdot e^{-j\phi} e^{-j2\pi f_0 t}\right]$$

$$TF[A \cdot \cos(2\pi f_0 t + \phi)] = \frac{A}{2} \cdot e^{+j\phi} \delta(f - f_0) + \frac{A}{2} \cdot e^{-j\phi} \delta(f + f_0)$$



#### a. Aplicações da Função Impulso

#### Sinal Senoidal de Frequência $f_{o}$

$$x(t) = A \cdot \cos(2\pi f_0 t + \phi)$$

$$X(f) = \frac{A}{2}e^{j\phi}\delta(f - f_0) + \frac{A}{2}e^{-j\phi}\delta(f + f_0)$$





Espectro simétrico (**par** para amplitude e **ímpar** para fase), discreto, com componentes espectrais em  $f = +f_0$  e  $f = -f_0$ 



#### a. Aplicações da Função Impulso

#### Teorema da Modulação

$$z(t) = x(t) \cdot \cos(2\pi f_0 t)$$

$$Z(f) = X(f) * F[\cos(2\pi f_0 t)]$$

$$Z(f) = X(f) * \left\{ \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) \right\}$$

$$Z(f) = \frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$$



#### a. Aplicações da Função Impulso

#### Teorema da Modulação - Exemplo

$$z(t) = rect\left(\frac{t}{T}\right) \cdot \cos(2\pi f_0 t)$$

$$Z(f) = \frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$$

#### Da Tabela de Fourier

$$Z(f) = \frac{T}{2}\operatorname{sinc}[(f - f_0)T] + \frac{T}{2}\operatorname{sinc}[(f + f_0)T]$$







#### a. Aplicações da Função Impulso

#### Teorema da Modulação - Exemplo

$$z(t) = rect(t) \cdot \cos(200\pi t)$$



$$Z(f) = \frac{1}{2}\operatorname{sinc}(f-100) + \frac{1}{2}\operatorname{sinc}(f+100)$$





# Índice

- I. Séries Trigonométrica de Fourier
  - a. Condições de Simetria
- II. Séries Harmônica e Exponencial de Fourier
- III. Transformada de Fourier
  - a. Definição
  - b. Propriedades
- IV. Densidade Espectral de Potência
- V. Função Impulso e suas Aplicações
- VI. Transformada de Fourier de Sinais Periódicos



• Sabemos que x(t) periódico com período  $T_0$  pode ser representada pela Série Exponencial de Fourier:

$$x(t) = \sum_{n=-\infty}^{\infty} A_n e^{j2\pi \cdot f_n t}$$
 para  $f_n = n \cdot f_0$  (com  $n$  inteiro)

$$A_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cdot e^{-j2\pi \cdot f_n t}$$
 para  $T_0 = \frac{1}{f_0}$ 



• Aplicando a <u>propriedade da linearidade</u> e sabendo da transformada de Fourier da exponencial complexa:

$$A \cdot e^{j2\pi \cdot f_0 t} \longleftrightarrow A \cdot \delta(f - f_0)$$

$$X(f) = \sum_{n=-\infty}^{\infty} A_n \cdot \mathcal{F}\left(e^{j2\pi \cdot f_n t}\right) = \sum_{n=-\infty}^{\infty} A_n \cdot \mathcal{F}\left(f - nf_0\right)$$

Ou seja, a transformada de Fourier de sinais periódicos resulta em sinais com espectros discretos constituídos de funções delta de Dirac nas frequências  $f=n.f_0$ .



• Considerando a **função geradora** não periódica g(t) de forma a assumir x(t) como uma soma de cópias de g(t) deslocadas para cada um dos instantes  $t=mt_0$  (m inteiro de  $-\infty$  a  $+\infty$ ):

$$g(t) = \begin{cases} x(t) & |t| \le \frac{T_0}{2} \\ 0 & |t| > \frac{T_0}{2} \end{cases} \iff G(f) = \int_{-\infty}^{+\infty} g(t) \cdot e^{-j2\pi ft}$$

$$\Rightarrow x(t) = \sum_{m=-\infty}^{m=+\infty} g(t - mT_0) \quad e \quad \Rightarrow A_n = \frac{1}{T_0} \int_{-\infty}^{+\infty} g(t) \cdot e^{-j2\pi \cdot f_n t} dt = \frac{1}{T_0} G(f_n)$$

$$X(f) = \frac{1}{T_0} \sum_{n=-\infty}^{\infty} G(nf_0) \cdot \delta(f - nf_0)$$



#### Transformada Inversa

$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi ft} = \sum_{n=-\infty}^{\infty} \frac{G(nf_0)}{T_0} \cdot e^{j2\pi \cdot nf_0 t}$$

$$x(t) = E_0 + \sum_{n=1}^{\infty} E_n \cdot \cos(2\pi \cdot nf_0 t + \phi_n)$$

$$E_0 = \frac{G(0)}{T_0}$$
 e  $E_n e^{j\phi_n} = \frac{2G(nf_0)}{T_0}$ 

Permite obter a amplitude (função par) e a fase (função ímpar) das componentes senoidais discretas do sinal periódico a partir da TF da **função geradora**.



• <u>Exemplo de Aplicação</u>: **A Função de Amostragem Ideal** Sequência infinita de funções delta de Dirac

$$\delta_{Ta} = \sum_{m=-\infty}^{\infty} \delta(t - mT_a)$$
 A função geradora é a própria função delta de Dirac

A transformada de Fourier da função geradora é igual a 1 para qualquer frequência de  $-\infty$  a  $+\infty$ .

$$X_a(f) = \frac{1}{T_a} \sum_{n=-\infty}^{\infty} \delta(f - nf_a)$$
 para  $f_a = \frac{1}{T_a}$ 



• Exemplo de Aplicação: A Função de Amostragem Ideal

$$\delta_{Ta} = \sum_{m=-\infty}^{\infty} \delta(t - mT_a)$$

$$X_a(f) = \frac{1}{T_a} \sum_{n=-\infty}^{\infty} \delta(f - nf_a)$$



