

Grelha de respostas certas

Versão A

Grupo 1	Grupo 2			Grupo 3	Grupo 4					Grupo 5							
	a)i	a)ii	b)		a)	b)	c)	d)	e)	a)	b)	c)	d)i	d)ii	d)iii	e)	
С	F	V	A	В	V	F	V	V	В	F	F	С	V	F	V	D	
	77 ~ D																

Versão B

	Grupo 1	G	rupo	2	Grupo 3		G	rupo	4		Grupo 5							
Γ		a)i	a)ii	b)		a)	b)	c)	d)	e)	a)	b)	c)	d)i	d)ii	d)iii	e)	
	В	V	F	С	С	F	V	F	V	D	F	F	В	V	V	F	С	

Resolução das perguntas de desenvolvimento

6. (a)
$$\overline{x} = \frac{1368}{40} = 34.2 \text{ e } s^2 = \frac{1}{39} \left(\sum_{i=1}^{40} x_i^2 - 40 * \overline{x}^2 \right) = 62.523$$

(b) Queremos testar se $\mu > 30$, logo as hipóteses a testar são $H_0: \mu \leq 30 \quad vs \quad H_1: \mu > 30$

Estatística de teste:
$$Z = \sqrt{n} \frac{\overline{X} - 30}{S} \stackrel{a}{\underset{sob}{\sim}} N(0, 1)$$

Para
$$\alpha = 0.04$$
, $R_{0.04} =]z_{\alpha}, +\infty[=]1.75, +\infty[$

$$Z_{obs} = \sqrt{40} \frac{34.2 - 30}{\sqrt{62.523}} = 3.359$$

Como $Z_{obs} \in R_{0.04}$, devemos rejeitar H_0 ao nível de significância de 4%.

7. Usando o método pivotal,

Variável pivot:
$$Z = \sqrt{12n} \frac{\theta^* - \theta}{\theta} \stackrel{a}{\sim} N(0, 1)$$

$$\begin{split} &P(-a \leq Z \leq a) = 1 - \alpha = 0.99 \Rightarrow a = z_{\alpha/2} = z_{0.005} = 2.57 \text{ ou } 2.58 \\ &-z_{\alpha/2} \leq \sqrt{12n} \frac{\theta^* - \theta}{\theta} \leq z_{\alpha/2} \Leftrightarrow \frac{-z_{\alpha/2}}{\sqrt{12n}} \leq \frac{\theta^*}{\theta} - 1 \leq \frac{z_{\alpha/2}}{\sqrt{12n}} \Leftrightarrow 1 - \frac{z_{\alpha/2}}{\sqrt{12n}} \leq \frac{\theta^*}{\theta} \leq 1 + \frac{z_{\alpha/2}}{\sqrt{12n}} \Leftrightarrow \frac{\theta^*}{1 + \frac{z_{\alpha/2}}{\sqrt{12n}}} \leq \theta \leq \frac{\theta^*}{1 - \frac{z_{\alpha/2}}{\sqrt{12n}}} \end{split}$$

$$IC_{99\%}(\theta) \equiv \left[\frac{\theta^*}{1 + \frac{2.57}{\sqrt{12n}}}, \frac{\theta^*}{1 - \frac{2.57}{\sqrt{12n}}} \right].$$