浙江大学城市学院实验报告

课程名称	计算机综合实践(一)		
实验项目名称	Day03		
学生姓名	专业班级	学号	
实验成绩	指导老师(签名)	日期	

一、实验目的

- 1、电机工作原理
- 2、小车行走原理

二、基础实验原理(9,10)

1) 直流电机工作原理

有三种不同类型的电机:

- DC motor 直流电机
- Servo motor 伺服电机(舵机)
- Stepper motor 步进电机

直流电机(DC—Direct Current motor)是最常见的电机类型。直流电动机通常只有两个引线,一个正极和一个负极。如果将这两根引线直接连接到电池,电机将旋转。如果切换引线,电机将以相反的方向旋转。

注意: 不要直接从 Arduino 板引脚驱动电机。这可能会损坏电路板。使用驱动电路或 IC。

图 Arduino 主控板电路图

图 电机驱动芯片 TB6612FNG

分类	 功能 	原理图编号	Arduino
	左电机前	AIN2	8
	左电机后	AIN1	7
小车运动类	右电机前	BIN2	2
小千色柳天	右电机后	BIN1	4
	左电机PWM	PWMA	6
	右电机PWM	PWMB	5

图 电机连接 Arduino 管脚图

4 路直流减速电机的控制我们采用的是 TB6612FNG 驱动芯片来驱动电机。通过控制驱动芯片的 AIN1,AIN2,BIN1,BIN2 的电平高低来控制电机的正转,反转,停止,通过控制 PWMA,PWMB 在 0-255之间控制小车的速度。一路 PWM 控制小车一侧电机的速度。

2) 小车行走原理

表 小车行走控制策略

控制策略	左电机	右电机		
前进	前进	前进		

后退	后退	后退
停止	停止	停止
左转	停止	前进
右转	前进	停止
原地左转圈	后退	前进
原地右转圈	前进	后退

表 小车行走控制逻辑表

功能	管	声明变量(变量名可	前进	后退	停止	左转	右转	原地左	原地右
	脚	自己改)						转圈	转圈
左电机	8	Left_motor_go	HIGH	LOW	LOW	LOW	HIGH	LOW	HIGH
前									
左电机	7	Left_motor_back	LOW	HIGH	LOW	LOW	LOW	HIGH	LOW
后									
右电机	2	Right_motor_go	HIGH	LOW	LOW	HIGH	LOW	HIGH	LOW
前									
右电机	4	Right_motor_back	LOW	HIGH	LOW	LOW	LOW	LOW	HIGH
后									
左电机	6	Left_motor_pwm	0-255	0-25	0	0	0-25	0-255	0-255
PWM	\			5			5		
右电机	5	Right_motor_pwm	0-255	0-25	0	0-25	0	0-255	0-255
PWM				5		5			

三、实验内容

本次实验注意事项:

1) 直流电机驱动需要较大电流, USB 数据线提供的电源 无法驱动电机。

正确的操作流程:

用数据线上传程序后,拔掉数据线,打开电池电源开关,用电池电源驱动小车。

2)由于 Arduino 上电会自动运行上一次程序,如果上一次程序就是小车运行程序,那么电机的大电流会拉低电压,导致数据线无法再上传新程序。

解决办法: 在每一个需要运转的程序开始之前,加入按键控制,按下按键,电机开始运转。

- 9) 电机控制实验
 - A) 让电机旋转
 - B) 控制电机速度
 - C) 控制直流电机的旋转方向
- 10) 小车行进、后退、停止、左转、右转、原地左转圈、原地右转圈实验

四、实验步骤

- 1) 自行完成以上实验内容
- 2) 贴代码
- 3) 运行效果拍照 或者 录像

五、每日收获

记录今日学习感想。

