

Simulating MeasurementSet for imaging pipeline validation

Hackathon Eclat Recap

Square Kilometre Array (SKA)

Output image

Near Real-time requirement

dataAcquisitionTime ≈ pipelineProcessingTime

Data = N_ANT x N_CHANNEL x N_POL x BANDWIDTH x OBS_TIME x N_BYTE

 $(10min)=130000 \times 4000 \times 2 \times 10^6 \times 600 \times 4 = 2 \text{ Po}$ $(12h)=130000 \times 4000 \times 2 \times 10^6 \times 43200 \times 4 = 179 \text{ Po}$

LOFAR (LOw Frequency ARray) comparison:

 $(10min)=4992 \times 256 \times 2 \times 195000 \times 600 \times 2 = 300 \text{ To}$ $(12h)=4992 \times 256 \times 2 \times 195000 \times 43200 \times 2 = 21 \text{ Po}$

NenuFAR (New Extension in Nançay Upgrading LOFAR) comparison:

(10min)=1936 × 768 × 2 × 195000 × 600 × 2 = 348 To (12h)= 1936 × 768 × 2 × 195000 × 43200 × 2 = 25 Po Latency(pipeline)

Final goal

Generating **MeasurementSet**:

- To benchmark pipeline implementations (latency, memory requirement, energy, output quality ...)
 - To control the "true sky"
 - To simulate SKA data size (without requiring instrument)

This project

Generic radio-interferometric imaging pipeline

antenna

Δ : $v \rightarrow dirty$

Ψ: clean dirty

Existing imaging pipelines

	Dataflow implem	Deployment
SDP Evolutionary Pipeline (SEP) (insa gitlab <u>here</u>)		out of date
Generic Imaging Pipeline - DFT + Hogbom clean - FFT + Hogbom clean - G2G + Hogbom clean (I m working here)		Under discussion for SKA
DDFacet (Cyril github <u>here</u>)	× (python)	LOFAR
RASCILL (SKAO github here)	× (python)	??

Pipelines operation

The process

For the Hackathon, **RASCIL** degridder is used in order to avoid circular validation Radio Astronomy Simulation, Calibration and Imaging Library (RASCIL)

	Advantages		Limitations
✓✓	integrate ska sdp library facilitate existing radio-telescope simulation	×	python sequential (super long for big files)

Visualize .fits

Install ds9: sudo apt install saods9

Run:ds9 *.fits -lock frame wcs -zoom to fit

To reveal the contrasts:

- Color > Matplotlib > turbo (recommended by Sunrise)
- Color > Matplotlib > viridis / inferno (most popular in astro-papers)

ANTENNA DATA_DESCRIPTION FEED FLAG_CMD HISTORY POINTING POLARIZATION PROCESSOR SOURCE SPECTRAL_WINDOW table.dat 1000 1001 1001 table.f0 1010 1010 table.f0_TSM0 1000 table.f1 table.f1_TSM0 1000 table.f2 table.f2_TSM0

Validating .ms

casacore based script

Contain MS validation (casacore)

- Project available on github:
 https://github.com/Ophelie-Renaud/vis-generator
- Official repos: https://framagit.org/eclat
- Project in progress since we completed 1/2 hackathon
 Configurable MS