

BASIC MATH & STATISTICS (PART II)

พัณณธัญญ์ วิจิตรวงศ์เจริญ

สารบัญ

- > Joint distributions, covariance
- Normal Distribution
- Central limit theorem
- การประมาณค่า

JOINT PROBABILITY DISTRIBUTIONS

ความน่าจะเป็นของตัวแปรสุ่ม ตั้งแต่ 2 ตัวขึ้นไป

g(x,y)

คุณสมบัติ

มีค่ามากกว่าหรือเท่ากับ **0** รวมกัน = **1**

EXPECTED VALUE OF THE RANDOM VARIABLE G(X,Y)

ค่าเฉลี่ยที่เป็นฟังก์ชันของตัวแปรสุ่มร่วมกัน 2 ตัว

$$Z=g(x,y)$$

$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y).f(x,y)$$

$$E(X,Y) = \sum_{y} \sum_{x} xy.f(x.y)$$

EXPECTED VALUE OF THE RANDOM VARIABLE G(X,Y) ค่าเฉลี่ยที่เป็นฟังก์ชันของตัวแปรสุ่มร่วมกัน 2 ตัว

$$E[g(X,Y) \pm h(X,Y)] = E[g(X,Y)] \pm E[h(X,Y)]$$

E(XY) = E(X).E(Y) เมื่อตัวแปรเป็นอิสระต่อกัน

COVARIANCE OF RANDOM VARIABLE X AND Y

ค่าความแปรปรวนร่วมของตัวแปรสุ่ม

$$\sigma_{xy} = E[(X - \mu_x)(Y - \mu_y)]$$
$$= \sum_{x} \sum_{y} (x - \mu_x)(y - \mu_y) f(x, y)$$

$$\sigma_{xy} = E(XY) - \mu_x \mu_y$$

COVARIANCE OF RANDOM VARIABLE X AND Y

ค่าความแปรปรวนร่วมของตัวแปรสุ่ม

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2$$

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

เมื่อตัวแปรเป็นอิสระต่อกัน

$$\sigma_{a_1x_1+a_2x_2+...+a_nx_n}^2 = a_1^2\sigma_{x_1}^2 + a_2^2\sigma_{x_2}^2 + ... + a_n^2\sigma_{x_n}^2$$

ตัวอย่าง

โรงงานแห่งหนึ่ง ทำการตัดกระดาษสี 3 สีคือ สีแดง ขาว และน้ำเงิน กำหนดให้ X,Y,Z เป็นตัวแปรสุ่มที่ เป็นอิสระต่อกัน โดยที่ X,Y และ Z เป็นความกว้างของแถบกระดาษสีแดง ขาว และน้ำเงินตามลำดับ กำหนดให้แถบกระดาษมีความยาวเท่ากัน สำหรับกระดาษทุกสี และให้

$$\mu_X=\mu_Y=4$$
 นิ้ว $\mu_Z=6$ นิ้ว และ $\sigma_X=0.5$ นิ้ว $\sigma_Y=0.3$ นิ้ว $\sigma_Z=0.4$ นิ้ว

W เป็นความกว้างของธงชาติไทย

$$W = 2X + 2Y + Z$$

จงหาความกว้างเฉลี่ยของธงชาติไทย E(W) และความ แปรปรวนของความกว้างนี้ Var (W)

ตัวอย่าง

$$W = 2X + 2Y + Z$$

$$\mu_X=\mu_Y=$$
 4 นิ้ว $\mu_Z=$ 6 นิ้ว และ $\sigma_X=$ 0.5 นิ้ว $\sigma_Y=$ 0.3 นิ้ว $\sigma_Z=$ 0.4 นิ้ว

$$E(W) = 2E(X) + 2E(Y) + E(Z)$$

= $(2*4) + (2*4) + 6 = 22$ ង៉ែរ

Var (W) =
$$2^2 \sigma_X^2 + 2^2 \sigma_Y^2 + \sigma_Z^2$$

= $(4*0.5^2)+(4*0.3^2)+0.4^2 = 1.52$ นั้ว

$$p(X \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(X - \mu)^2}{2\sigma^2}\right)$$

ตัวแปรสุ่ม X มีการแจกแจงเป็นรูประฆัง เรียกว่า ตัวแปรสุ่มปกติ

พารามิเตอร์ : μ , σ^2

Galton Board

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY-NC-ND

Std. normal distribution

$$\mu = 0$$
 $\sigma = 1$

$$\sigma = 1$$

This Photo by Unknown Author is licensed under CC BY-NC-ND

$$Z = \frac{X - \mu}{\sigma}$$

			Sta	ndard N	ormal E	istribu	ion			
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table of Standard Normal Probabilities for Negative Z-scores

Table of Standard Normal Probabilities for Positive Z-scores

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.045
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.068
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.082
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.161
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.186
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.312
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.348
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.385
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.424
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.464

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

This Photo by Unknown Author is licensed under CC BY-SA

$$P (0 < x < 1.75)$$

= $P(x<1.75) - P(x<0)$
= $0.9599 - 0.5$
= 0.4599

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 220}{7.5}$$

$$Z = \frac{215 - 220}{7.5} = -0.67$$

เปิดตาราง

$$P(Z<-0.67)=0.2514$$

ถ้าคะแนนวิชาสถิติมีการแจกแจงปกติ มีค่าเฉลี่ย **74** และส่วนเบี่ยงเบนมาตรฐาน **7.9** จงหา

- ก. คะแนนต่ำสุดที่จะสอบผ่าน ถ้านักศึกษาสอบได้คะแนนต่ำที่สุดรวม 10% ได้เกรด F
- ข. คะแนนสูงสุดสำหรับ เกรด B ถ้านักศึกษาสอบได้คะแนนสูงสุดรวม 5% ได้เกรด A

ตัวอย่าง

$$P(Z < ???) = 0.1$$

เปิดตารางที่ prob = 0.1 ได้ค่า Z ที่ -1.28

แทนค่า Z เพื่อหาค่า X

$$Z = \frac{X - \mu}{\sigma}$$
-1.28 = $\frac{X - 74}{9}$

$$X = 62.48$$

ตัวอย่าง

$$P\left(Z??\right)=1-0.05=0.95</math เปิดตารางที่ prob = 0.95
ได้ค่า Z ที่ 1.645$$

แทนค่า Z เพื่อหาค่า X

$$Z = \frac{X - \mu}{\sigma}$$
1.645 = $\frac{X - 74}{9}$

$$X = 88.805$$

ความสูงของนักเรียนจำนวนหนึ่งมีการแจกแจงปกติ และมีความสูงเฉลี่ย $68.5\,$ นิ้ว ถ้านักเรียนที่มีความสูงอย่างน้อย $71.2\,$ นิ้ว มีอยู่ 12%

ก.จงคำนวณหาส่วนเบี่ยงเบนมาตรฐานของการแจกแจงนี้

ข. จงคำนวณหาความน่าจะเป็นที่นิสิตคนหนึ่งจะมีความสูงไม่เกิน 64 นิ้ว

ตัวอย่าง

ข้อ ก

$$\mu = 74$$
 , $\sigma = 9$

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 220}{7.5}$$

$$Z = \frac{215 - 220}{7.5} = -0.67$$

เปิดตาราง

$$P(Z<-0.67)=0.2514$$

ใช้ทำอะไร?

- อธิบายปรากฏการณ์ในชีวิตประจำวัน **e.g.**การแตกของเมล็ดป้อบคอร์น , ส่วนสูงของประชากร , ผลสอบ, พฤติกรรมการจอดรถ
- ใช้ในสถิติเชิงอนุมาน

The central limit theorem is a theorem in probability theory that establishes that the mean of a large number of independent and identically distributed random variables, when suitably rescaled, tends to a **normal distribution** 1 2 . This holds true regardless of the shape of the original population distribution, provided the sample size is sufficiently large (usually n > 30) 3 4 5 . The central limit theorem also implies that the average of the sample means and standard deviations will equal the population mean and standard deviation 3 4

Pierre-Simon Laplace

Normal Distribution

Any Distribution

 $\overline{X} = \mu$ $S = \sigma$

This Photo by Unknown Author is licensed under CC BY-SA-NC

ค่าคลาดเคลื่อนมาตรฐาน Standard Error

S.E.
$$=\frac{S}{\sqrt{n}}$$

n ยิ่งเยอะ ค่าคลาดเคลื่อนยิ่งน้อย

เมื่อสุ่มตัวอย่าง n > 30

การแจกแจงความน่าจะเป็นของค่าเฉลี่ยจะเข้าใกล้การแจกแจงปกติ

ถ้าเลือกกลุ่มตัวอย่าง มาอย่างเหมาะสม

สามารถเป็นตัวแทน ประชากรได้

STATISTICS

การอนุมาน

สถิติเชิงอนุมาน (Statistical inference) คือ การใช้ข้อมูลที่สุ่ม ตัวอย่างมาจากประชากรไปประมาณสิ่งที่ต้องการศึกษามาจากประชากร

การอนุมาน

วัคซีนโควิด ใช้ได้ดีหรือไม่

แคมเปญโฆษณา เพิ่มยอดขายได้จริงหรือไม่ ลูกค้าสองกลุ่ม มีพฤติกรรมเหมือนกันหรือไม่

การอนุมาน

การประมาณค่า

สัญลักษณ์ของค่าพารามิเตอร์และสถิติ

ประชากร	กลุ่มตัวอย่าง	ความหมาย
μ	$ar{\mathcal{X}}$	ค่าเฉลี่ย
σ	S	ส่วนเบี่ยงเบนมาตรฐาน
σ^2	s^2	ความแปรปรวน
р	\hat{p}	สัดส่วน
Ν	n	ขนาดของกลุ่มตัวอย่าง

การประมาณค่า

การประมาณค่าแบบจุด

การประมาณค่าแบบช่วง

- Two tailed interval estimate
- One-tailed interval estimate

การประมาณค่า

ร้านชานม Bearhouse ต้องการทราบอายุลูกค้าที่เข้ามาซื้อชานม จึงทำการสุ่ม ตัวอย่างมา 50 คน (n=50)

หาค่าเฉลี่ยของอายุได้เท่ากับ 24.5 ปี ($ar{x}=24.5$)

ค่าประมาณแบบจุด = 24.5 ปี

ค่าประมาณแบบช่วง = 18.5-30.5 ปี

ค่าประมาณแบบช่วง เรียกอีกชื่อหนึ่งว่า

ช่วงความเชื่อมั่น

(Confidence interval)

ความกว้างของช่วงความเชื่อมั่นที่ประมาณได้ ขึ้นกับ

- ullet การกระจายของค่าที่จะทราบ (\mathbf{s}, σ)
- ขนาดของตัวอย่างที่สุ่มมา
- ระดับความเชื่อมั่น (1-lpha) * 100%

การประมาณค่าแบบช่วงของค่า μ ที่ระดับความเชื่อมั่น 90%

ในการประมาณค่าพารามิเตอร์ซ้ำ ๆกัน 100 ครั้ง จะมี 90 ครั้งที่ช่วงความเชื่อมั่นที่สร้างขึ้น ครอบคลุมค่าพารามิเตอร์ และมี 10 ครั้งที่ไม่ครอบคลุมค่าพารามิเตอร์

ค่าโอกาสที่จะยอมให้ผิดพลาดได้ เรียกว่า

ระดับนัยสำคัญ (Significant level) สัญลักษณ์ α

ระดับความเชื่อมั่น (1-lpha)x100%

- โอกาสที่ค่าพารามิเตอร์ที่ประมาณจะ <u>อยู่</u> ในช่วงที่เราสร้างขึ้น
- อยู่ในรูป % สูงๆ เช่น 90%, 95%, 99%

ระดับนัยสำคัญ (lpha)

- โอกาสที่ค่าพารามิเตอร์ที่ประมาณจะ <u>ไม่อยู่</u> ในช่วงที่เราสร้างขึ้น
- อยู่ในรูปทศนิยม เช่น 0.05 , 0.01, 0.02
- สามารถคำนวณได้จาก ระดับความเชื่อมั่น

ระดับนัยสำคัญ = (100-ระดับความเชื่อมั่น)/100

ระดับความเชื่อมั่น	ระดับนัยสำคัญ ($lpha$)
99%	
95%	
92%	
90%	
88%	

ระดับความเชื่อมั่น 95% หรือระดับ นัยสำคัญ 0.05

พื้นที่อยู่นอกช่วงประมาณค่ารวมกัน เท่ากับ $0.05~(\alpha)$ แบ่งซ้ายขวา ฝั่งละ $0.025~(\alpha/2)$

ค่า $Z_{lpha/2}$ คือ ค่า ${\sf Z}$ ณ จุดที่ทำให้พื้นที่ฝั่งขวามือของโค้งปกติมีค่าเท่ากับ lpha/2

This Photo by Unknown Author is licensed under CC BY-NC

ระดับความเชื่อมั่น	α	$\alpha/2$	$z_{lpha/2}$	z_{lpha}
90%				
92%				
94%				
95%				
96%				
98%				
99%				

การประมาณช่วงความเชื่อมั่น

การประมาณค่า

- \succ ค่าเฉลี่ยประชากรหนึ่งกลุ่ม (μ)
- \succ ผลต่างของค่าเฉลี่ยประชากรสองกลุ่ม ($\mu_1-\mu_2$)
- > สัดส่วน (p)
- \succ ผลต่างของสัดส่วน (p_1-p_2)
- \succ ค่าความแปรปรวน (σ^2)
- \succ อัตราส่วนของค่าความแปรปรวน (σ_1^2/σ_2^2)

การประมาณช่วงความเชื่อมั่น

ความกว้างของช่วงที่ประมาณได้ ขึ้นอยู่กับ

- 🕨 การกระจายของค่าที่ต้องการทราบ
- 🕨 ขนาดตัวอย่าง
- > ระดับความเชื่อมั่น

This Photo by Unknown Author is licensed under CC BY-SA-NC

ช่วงความเชื่อมั่นของค่าเฉลี่ย (μ)

เมื่อทราบความแปรปรวนของประชากร

$$\mu = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

เมื่อไม่ทราบความแปรปรวนของประชากร

$$\mu = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\mu = \bar{x} \pm t_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

ช่วงความเชื่อมั่นของค่าเฉลี่ย (μ)

ตัวอย่าง:

สุ่มตัวอย่างเครื่องดื่มชนิดหนึ่งจำนวน 36 ราย พบว่า มีค่าเฉลี่ยและส่วนเบี่ยงเบน มาตรฐานของจำนวนน้ำตาล เป็น 22 g และ 4 g ตามลำดับ จงหาขอบเขตที่ เชื่อมั่นได้ 90% ของปริมาณน้ำตาลที่แท้จริงที่มีอยู่ในเครื่องดื่มชนิดนี้

ช่วงความเชื่อมันของค่าเฉลี่ย (μ)

n=36

$$\bar{x} = 22 \text{ g , s} = 4 \text{ g}$$

 $\alpha = 0.10 , \frac{\alpha}{2} = 0.05$
 $z_{\alpha/2} = 1.645$

$$\mu = \bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$= 22 \pm (1.645) \frac{4}{\sqrt{36}}$$

$$= 22 \pm 1.0967$$

 $22-1.0967 \le \mu \le 22 + 1.0967$ $20.9033 \le \mu \le 23.0967$

ช่วงความเชื่อมั่นของผลต่างของค่าเฉลี่ย $(\mu_1-\mu_2)$

เมื่อทราบความแปรปรวนของประชากรของทั้งสองกลุ่ม σ_1^2 , σ_2^2

$$\mu_1 - \mu_2 = (\bar{x}_1 - \bar{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

เมื่อไม่ทราบความแปรปรวนของประชากร

N > 30

$$\mu_1 - \mu_2 = (\bar{x}_1 - \bar{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

ช่วงความเชื่อมั่นของผลต่างของค่าเฉลี่ย $(\mu_1-\mu_2)$

ตัวอย่าง:

สุ่มตัวอย่างความพึงพอใจของลูกค้าต่อผลิตภัณฑ์ A และ B โดยกลุ่มลูกค้า 50 คนทั้งสอง ผลิตภัณฑ์ ผลการทดสอบคือ

ผลิตภัณฑ์ A ได้คะแนนเฉลี่ย 76 คะแนน ส่วนเบี่ยงเบนมาตรฐาน 6

ผลิตภัณฑ์ B ได้คะแนนเฉลี่ย 82 คะแนน ส่วนเบี่ยงเบนมาตรฐาน 8

จงหาช่วงความเชื่อมั่น 96% สำหรับผลต่างคะแนนความพึงพอใจของทั้งสองผลิตภัณฑ์

ช่วงความเชื่อมั่นของผลต่างของค่าเฉลี่ย $(\mu_1-\mu_2)$

$$n_1 = 50$$
, $n_2 = 50$
 $\bar{x}_1 = 82$, $\bar{x}_2 = 76$
 $s_1 = 8$, $s_2 = 6$
 $\alpha = 0.04$, $\frac{\alpha}{2} = 0.02$
 $z_{\alpha/2} = 2.05$

$$\mu_1 - \mu_2 = (\bar{x}_1 - \bar{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$= (82 - 76) \pm (2.05) \sqrt{\frac{8^2}{50} + \frac{6^2}{50}}$$

$$= 6 \pm 2.8991$$

$$6 - 2.8991 \le \mu_1 - \mu_2 \le 6 + 2.8991$$

 $3.1009 \le \mu_1 - \mu_2 \le 8.8991$

ช่วงความเชื่อมั่นของสัดส่วน (P)

ค่าสัดส่วน คำนวณจาก ความถี่ของสิ่งที่เราสนใจ หารด้วยความถี่ทั้งหมด

ช่วงความเชื่อมันของสัดส่วน (P)

$$p = \hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

- \hat{p} คือสัดส่วนของสิ่งที่เราสนใจ
- \widehat{q} คือสัดส่วนของสิ่งที่เราไม่สนใจ (1 \widehat{p})

ช่วงความเชื่อมั่นของสัดส่วน (P)

ตัวอย่าง

สุ่มผู้ขับรถแถวถนนฉลองกรุงจำนวน 200 คน พบว่า 175 คน ใช้หูฟังในการโทรศัพท์ จงประมาณค่าสัดส่วนผู้ขับรถแถวถนนฉลองกรุงที่จะไม่ใช้หูฟังในการโทรศัพท์ ที่ระดับ ความเชื่อมั่น 98%

ช่วงความเชื่อมันของสัดส่วน (P)

$$\hat{p} = 25/200 = 0.125$$
 $\hat{q} = 1 - \hat{p} = 1 - 0.125 = 0.875$
 $\alpha = 0.02, \frac{\alpha}{2} = 0.01$
 $z_{\alpha/2} = 2.33$

$$p = \hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$= 0.125 \pm (2.33) \sqrt{\frac{0.125 \times 0.975}{200}}$$

$$= 0.125 \pm 0.0545$$

$$0.125 - 0.0545 \le \hat{p} \le 0.125 + 0.0545$$

 $0.0705 \le \hat{p} \le 0.1795$
 $7.05\% \le \hat{p} \le 17.95\%$

WRAP UP

- > Joint distributions, covariance
- Normal Distribution
- Central limit theorem
- > การประมาณค่า