MASA CD - 139035

A STUDY OF REMOTE SENSING AS APPLIED TO REGIONAL AND SMALL WATERSHEDS

IBM No. 74W-00176

FINAL REPORT

VOLUME 11 - SUPPORTING TECHNICAL DETAILS

HUNTSVILLE

(NASA-CR-139035) A STUDY OF REMOTE
SENSING AS APPLIED TO REGIONAL AND SHALL
WATERSHEDS. VOLUME 2: SUPPORTING
TECHNICAL DETAILS (International Business
Machines Corp.) 442 p H CSCL 08H

Business Unclas CSCL 08H G3/13 46046

N74 - 30833

412

Reproduced by AL TECHNICAL
NATIONATION SERVICE
NATIONATION of commerce
INFORMATION of commerce
US Sportagelid, VA. 22151

TABLE OF CONTENTS

Section			<u>Page</u>
	Preface .		iii
5	WATERSHED	SIMULATION MODELS	5-1
	5.1	Watershed Modeling and Streamflow Forecasting	5-1
	5.2 5.3	Forecasting	5-2
	5.3.1	OPSET Program	5-3 5-5
	5.3.2 5.4	OPSET and Calibration	5-5
}	5.4.1	Analysis of Watersheds	5-9 5-9
	5.4.1.1 5.4.1.1.1	Historical Data	5-9 5-11
	5.4.1.1.2 5.4.1.1.3	Daily Discharge (Streamflow) Data Flood Hydrographs Evaporation Data	5-12 5-12
	5.4.1.1.5	Temperature Data	5-12 5-13 5-13
	5.4.1.2	Snowmelt Data Arrays	5-13 5-14 5-15
	5.4.1.3 5.4.1.4	Integrated Data Base	5-17 5-17
	5.4.2 5.5	Simulation Program Outputs Watershed Simulation in This Study	5-19
6	SENSITIVI	TY ANALYSIS	6-1
	6.1 6.1.1	Methodology	6-1 6-1
	6.1.2	Sensitivity Analysis Tabulations	6-2
	6.1.3	Sensitivity Plots	6-2
	6.2	Summary of Results	6-2
	6.3 6.3.1	Detailed Sensitivity Analysis Results FIMP, Impervious Fraction of Watershed	6-9
	6.3.2	Area	6-9
		Watershed Area	6-26

`TABLE OF CONTENTS (Continued)

Section		4	<u>Page</u>
	6.3.3	VINTMR, Vegetative Interception Maximum	
-	c 2 4	Rate	6-41
	6.3.4	BUZC, Basic Upper Zone Capacity	6-57
	6.3.5	SUZC, Seasonal Upper Zone Capacity Factor	6-67
	6.3.6 6.3.7	LZC, Lower Zone Capacity	6-79
		EILF, Evapotranspiration Loss Factor	6-92
	6.3.8	SIAC, Seasonal Infiltration Adjustment	
	C 2 0	Factor	6-104
	6.3.9	BMIR, Basic Maximum Inflitration Rate	6-113
	6.3.10	Overland Flow Surface Slope	6-125
	6.3.11	OFSL Overland Flow Surface Length	6-135
	6.3.12	OFMN, Overland Flow Roughness Coefficient	6-146
	6.3.13	RGPMB, Recording Gage Precipitation	
		Multiplier	6-154
	6.3.14	Evaporation and Mean Number of Rainy Days	6-161
	6.3.15	Sensitivity of Small Snowshed Model to	
		Climatological Input Perturbations	
		During Storms	6-176
	6.3.16	FIRR, Fraction of Incident Radiation	
		Reflected by Snow	6-181
	6.3.17	BODFSM, Basic Degree Day Factor for Snowmelt .	6-184
	6.3.18	SPBFLW, Snowpack Basic Maximum Fraction	
		in Liquid Water	6-187
	6.3.19	SPTWCC, Snowpack Minimum Total Water Content	
		for Complete Basin Coverage	6-190
	6.3.20	ELDIF, Elevation Difference Between the Base	
		Thermometer and the Mean Basin Elevation	6-192
	6.3.21	FFOR, Fraction of the Watershed Forested	6-195
	6.3.22	Fraction of Snow Intercepted	6-198
	6.3.23	PXCSA, Precipitation Index for Changing	
		Snow Albedo	6-201
7	RELATED	TECHNICAL ARTICLES AND ABSTRACTS	7-1

PREFACE

This volume represents detailed technical material supplementing and supporting Volume I, Summary Report. For the convenience of the reader, some of the material from Volume I has been duplicated here to minimize cross references. Distribution of this volume is very limited in comparison with that of Volume I.

Section 5 describes the application of continuous watershed simulation models in the study, and Section 6 presents detailed results of the sensitivity analysis, the study's principal task. Portions of watershed model simulation run outputs are presented in Appendices A, B, and C. Abstracts of related technical articles appear in Appendix D.

SECTION 5

WATERSHED SIMULATION MODELS

This section is intended to describe how continuous simulation models of watersheds were used in performance of the study. The models' underlying theory and inner workings are discussed only to the extent necessary to explain their application as study tools.

5.1 WATERSHED MODELING AND STREAMFLOW FORECASTING

That aspect of hydrology known as streamflow forecasting undertakes to predict the outflow from a river basin, in terms of flow rate as a function of time, in response to a given precipitation event under given initial conditions. This capability is vital to effective planning for urban/industrial development, flood control, hydroelectric power, navigation, and water resources management.

Figure 5-1 depicts the cross section of a somewhat idealized rural catchment and identifies the principal phenomena at work in the rainfall-runoff relationship. The input (precipitation) is partially intercepted by vegetation and water retention areas. Moisture reaching pervious surfaces divides between overland flow, infiltration, and evaporation. Through subsurface processes, interflow, and groundwater flow contribute ultimately to streamflow, with some losses due to transpiration through plant life. In certain regions, in winter, moisture is stored in the form of snow in portions of the basin, and melts to produce additional moisture movement in spring.

All the phenomena involved in this portion of the hydrologic cycle are widely and well understood qualitatively, and several empirical relationships have been developed from a combination of theory and experiment. The relationships are numerous, many of them are nonlinear, and they are interrelated. Manual solutions for streamflow by manipulation of such a set of equations are inefficient and so time consuming as to be of little value in an operational situation. Individuals and organizations responsible for streamflow forecasting have turned to watershed models as effective tools for their work. Development of such models has been facilitated by the increasing availability of large, high-speed computers.

The study contract required that the model used (1) describe the various hydrologic processes directly involved with or related to runoff and the water balance of a representative watershed, and (2) be of a type that has a capability for providing an assessment of how well remotely sensed measurements from spacecraft or aircraft can be used to study or specify the hydrologic processes occurring within the watershed. The first criterion immediately excludes the entire class of stochastic models, which obscure the cause and effect relationships among the conditions and hydrologic processes in the watershed. The model to be used in the study must therefore be a parametric model, so called because its operation

depends upon quantification of several parameters which represent coefficients and exponents in the equations implemented in the model.

Figure 5-1. Cross Section of Idealized Rural Catchment

5.2 THE STANFORD WATERSHED MODEL (SWM)

The Stanford Watershed Model¹ is probably the best known of the parametric hydrological models and, in all its modifications, is probably the most widely used. Since it was originally published in 1962, several reports have appeared in literature describing modified versions and applications (References 2 through 8, and others). As a proven tool it was attractive to the study team for several projects dealing with applications of remote sensing to hydrology.

The Stanford Watershed Model uses a moisture accounting system to synthesize a continuous hydrograph* from the following:

- Recorded climatological data, precipitation, evaporation, and (for snowmelt situations) temperature,
- Measurable watershed characteristics such as drainage area and friction of the watershed in impervious surfaces, and
- 3. Parameters used in the computation process which are known to vary in magnitude among watersheds but have not been quantitatively tied to specific measurable watershed properties. For example, one parameter indexes the capacity of the soil of the watershed as a whole to retain water.

The third class of inputs requires a trial and error series of calibration runs to quantify a set of model parameters which will synthesize flows with acceptable accuracy.

Figure 5-2 depicts the accounting of moisture entering the watershed until it leaves by streamflow, evapotranspiration, or subsurface outflow. A series of relations, each based on empirical observation or theoretical description of a specific hydrologic process, is used to estimate rates and volumes of moisture movement from one storage category to another, in accordance with current storage states and the calibrated watershed parameters. The model routes channel inflow from the point where it enters a tributary channel to the downstream point for which a hydrograph is required.

5.3 KENTUCKY WATERSHED MODEL (KWM) AND OPSET PROGRAM

The Stanford Watershed Model was originally written in the Burroughs Computer Language (BALGOL) then in use at the Stanford Computer Center. It has subsequently been translated into Fortran IV, and a number of adaptations were introduced in one version to suit the climate and geography of Kentucky as representative of the eastern United States. In a recent (1970) research program a version of the model using an initial set of model parameter values and number of control options was developed for use with a self-calibrating streamlined version of the model. These models are referred to as the Kentucky Watershed Model (KWM) and OPSET (because it estimates the OPtimum SET of model parameters). The availability and utility of these models and reports describing them led to their use by IBM in a previous project.

^{*}A hydrograph is simply a plot of streamflow in volume per unit time or river height as a function of time. See Reference 9, Chapter 9.

Figure 5-2. Moisture Accounting in the Stanford Watershed Model

5.3.1 KENTUCKY WATERSHED MODEL

Figure 5-3 lists the principal inputs (exclusive of control options) used by the Kentucky Watershed Model to simulate streamflow. Climatological data can be obtained from precipitation records or can be hypothetical, the latter being useful in generating rainfall-runoff predictions. The inputs classed as "Overland Flow Parameters" and "Watershed Parameters" are readily obtainable from analysis and interpretation of images (maps and/or photographs). The inputs on the right side of the figure are estimated in the calibration phase by OPSET. Some additional manual calibration is necessary to develop a set of model parameters that best represent the watershed.

5.3.2 OPSET AND CALIBRATION

When a user applies a simulation model to a watershed, there are several parameters whose values he must initially guess and subsequently adjust, between trial runs of the model and comparisons of synthesized with observed flows. This trial and error calibration requires ingenuity, understanding of the sensitivity of simulated flows to specific parameter adjustments. The process is aided greatly by a thorough understanding of the hydrologic process and by the guidance published by Crawford and Linsley1,2. Through careful parameter adjustment, one can cause simulated flows to approximate recorded flows but never to match them exactly. Several combinations of parameter values can produce comparable results from an overall viewpoint, and the final choice may well hinge on whether a particular comparison emphasizes flood peaks, annual runoff volume, or some other hydrograph feature. The final acceptance of a set of parameters may depend heavily on subjective factors.

In developing OPSET, Liou¹¹ provided a tool for calibrating the KWM with a minimum of subjective decisions. The parameter optimization concept is depicted in flow chart form in Figure 5-4. The input data consists of control options and initial conditions as well as the inputs listed in Figure 5-5. A simulation is performed, one year at a time, using a "streamlined" KWM. The synthesized flows are compared with the observed flows. An objective function is used to determine when an optimum set of parameters has been found. If the best match has not been achieved, parameters are again adjusted and the simulation run again. This sequence is repeated until a satisfactory parameter set has been quantified.

Figure 5-5 also lists the 13 outputs of OPSET, in addition to simulated streamflow. (Comparison with Figure 5-3 shows the relationship to KWM.) These parameters are the most difficult to measure directly and ones to which simulated flow values are sensitive. The calibration process should be based on three separate water years for the same basin. Simulation model parameters are then derived by averaging the results of the three calibration runs. A minor modification to OPSET has been implemented to generate a more precise Base Flow Recession Constant (BFRC). As it is presently designed, OPSET estimates parameters which produce accurate simulations of major winter storms (with respect to flood peak magnitude and timing) but misses summer and autumn storm peaks by significant factors.

Figure 5-3. Simulation Model (KWM) Inputs and Outputs

Figure 5-4. Parameter Optimization Concept

Figure 5-5. Calibration Program (OPSET) Inputs and Outputs

Manual adjustments are required to achieve accurate simulation in the latter. An improvement in OPSET efficiency could be achieved by modifying it to calibrate on the basis of several consecutive years rather than one year at a time.

5.4 THE NASA-IBM SYSTEM FOR SIMULATION AND ANALYSIS OF WATERSHEDS

It is common experience in the use of sophisticated simulation models that most time and manpower are not consumed by actually running the models but by (1) acquiring and formatting data and parameters, (2) setting up the program and data decks, and (3) searching through printouts to summarize and evaluate results. When sensitivity analysis was first undertaken in a previous study, involving a separate simulation run for every input or parameter perturbation, it was soon evident that the manpower, time, and data card storage requirements would quickly become exorbitant. This problem was overcome by implementing a system of computer programs and operating techniques, built around the OPSET calibration program and the Kentucky Watershed Model (KWM) to provide a high degree of automation.

The system as used in the study is illustrated in Figure 5-6. The input temporal data may be real or hypothetical. (The Tennessee Valley Authority, for instance, has an effective stochastic precipitation generator program.) The input decks for all subwatersheds are generated first; this is a compilation of the hourly precipitation, daily evaporation, reference daily discharge, daily temperature, snow cover, and selected storms for each season. If a regional watershed model is to be implemented, all the subwatershed decks are integrated into a master watershed input deck that represents the regional watershed. The master watershed deck is then committed to disk storage to permit operation from a remote terminal. Reference data sets (instead of observed historical data) can be established by a simulation run for each subwatershed. This composite reference data set will constitute the baseline for the sensitivity analysis.

5.4.1 WATERSHED MODEL DATA BASE

Simulation of a watershed requires (1) acquisition, formatting and integration of a historical data base, (2) quantification of some of the model parameters from direct observation, measurement and application of empirical relationships, and (3) calibration, the adjustment of the remaining parameters to achieve an acceptable match between simulated (synthesized) and actual streamflow. After calibration, the system may be used to predict streamflow resulting from any given precipitation event.

5.4.1.1 <u>Historical Data</u>

The historical data base for the system is constructed from the following types of data.

- Precipitation records hourly and daily
- Stream stage charts actual strip chart hydrographs

Figure 5-6. NASA-IBM System for Simulation and Analysis of Watersheds

- Rating tables for conversion of stream stage charts from height (feet) to flow rate (cubic feet per second, cfs)
- Daily streamflow (discharge) records
- Temperature records maximum and minimum each day (used with snow routine only)
- Evaporation data three options:
 - Daily evaporation and monthly pan coefficients; or
 - Total annual evaporation, mean annual number of rainy days and estimated potential annual evapotranspiration; or
 - Average daily evaporation values over ten-day periods through the year and monthly pan coefficients.
- Snowmelt data arrays

Data are converted from published documents or charts or magnetic tape, to digital formats suitable for input to the calibration and simulation programs.

5.4.1.1.1 Hourly Precipitation Data

Hourly precipitation data in digital form is the primary input to KWM and OPSET. In a very small watershed having its own hourly precipitation gage one can with reasonable safety assume that the gage reading applies uniformly to the entire watershed. This assumption (which is implicit in both programs) departs from reality more and more with increase in watershed size. It has been necessary to implement a method whereby several precipitation records are used to synthesize a single hourly rainfall history for each watershed or subwatershed.

The number of precipitation stations associated with any given watershed may vary from one station located 20 or 30 miles from the watershed centroid to 5 or 6 stations located within or closely adjacent to the watershed boundaries. Typically, a watershed will have one or two hourly stations, and one or more daily stations. In addition to the varying distances of these stations from the centroid, the reading time for the daily stations might be different. It is also quite likely that data will appear from the several gages in both magnetic tape and tabular formats. The latter must be manually extracted from the tables and converted to punched data card format.

The precipitation gage outputs are assigned weighting factors, using the Thiessen technique^{9,13}, in accordance with their physical locations relative to the basin centroid. A software program developed by IBM automatically performs the interpolation and correlation of the precipitation data. This program accepts all precipitation data, the reading time for each daily station, and the weighting factor developed from the

Thiessen Analysis, and produces an hourly percipitation record for the applicable water years associated with a given watershed. This hourly precipitation data record is then used as one of the climatological inputs required by the models.

5.4.1.1.2 Daily Discharge (Streamflow) Data

Daily discharge data is the average volume in cubic feet of water per second that flows past the stream gage during a 24 hour period. This data exists on magnetic tape and/or written tables for all stream gages in the Tennessee Valley. The data format which exists on magnetic tape must be altered to be compatible with the simulation model. Where the data exists in written tables, it is necessary to manually extract that information, convert to punched card format, and develop a listing compatible with model requirements.

5.4.1.1.3 Flood Hydrographs

For operation of the OPSET program it is necessary to select up to five flood hydrographs for each of the years for which the model is to be calibrated. This requires a manual search of precipitation and discharge records to select storms useful to the calibration. The digitized input data include the number of hydrographs chosen and three parameters related to each hydrograph: day of occurrence of the flood peak, hour of occurrence of the flood peak, and flow rate at the peak. These hydrographs parameters are essential for the OPSET program to determine watershed model routing parameters, so that total flows will represent accurate predictions, with respect to the time of occurrence of hydrograph peaks as well as the total volume of flow for a given period of time. In practice the selected storm hydrograph parameters are not available in daily discharge records. It is necessary to obtain them from the strip charts produced by the stream gage recorders. Rating tables are also digitized and stored for conversion of gage height readings into flow rate.

The procedure employed to obtain this data requires manual analysis of each strip chart and manual recording of the rise and fall of the stream gage on an hourly basis. The time frame should extend from midnight of the day in which the storm occurred until some time at which the stream height returns to or approaches its initial stage. This hourly height recording is then formatted for entry into the computer where a subroutine will fetch the appropriate rating table into memory and convert the data to cubic feet per second. This flood hydrograph data is then in a usable form when required by the simulation model.

5.4.1.1.4 Evaporation Data

Evaporation data appear in Climatological Data publications of the National Weather Service. Unfortunately, the number of pan evaporation stations is to limited to provide complete coverage. The nearest evaporation station may be as much as 100 miles from the watershed. Additionally, the station may be associated with a large lake or reservoir

which has evaporation rates different from those of an interior watershed in a predominately mountainous region. Preparation of the evaporation data is similar to that for daily discharge data in that the rates and pan evaporation coefficients are read from published tables, punched onto cards, and a computer-compatible listing generated for the identified watershed.

The nearest evaporation pan may be too far away for the daily weather-related fluctuations in evaporation totals to be indicative of conditions over the watershed. In that case, or if one simply wishes to avoid having to compile daily evaporation totals, pan evaporation totals may be read as average values over fixed ten-day periods. The model has been programmed to adjust the potential evaporation total during rainy days (rainfall equal to or greater than 0.01 inch) to half what it would be if no rain occurred.

A second alternative is available, useful where a large number of watersheds are to be modeled in an area where a single evaporation pan is used. In this case (as in the regional watershed model), estimates of the potential average annual lake evaporation and the mean annual number of rainy days may be used. A control option causes a special program to calculate measurable rainfall.

5.4.1.1.5 Temperature Data

Minimum and maximum temperature readings are required for each day of the water year, if the snowmelt routine is used. Since air temperatures vary over a watershed, recorded temperatures, preferably from a station within the basin, are adjusted by the main simulation program to mean basin elevation. The temperature data are published by the National Weather Service.

5.4.1.1.6 Snowmelt Data Arrays

If snow and snowmelt are important processes in the watershed modeled, the snowmelt subroutine is used, and the following data arrays are required.

- FIRR The fraction of incoming radiation reflected by a snow surface as a function of age. This array of 15 values is used to adjust snowmelt rates as snow surface albedo changes with age.
- RICY Radiation incidence over the calendar year. The RICY data array is an array of 37 values each representing an adjustment factor to the snowmelt rate for each 10-day period during the calendar year. In the snowmelt model of Anderson and Crawford, which was used in this study, snowmelt is calculated on the basis of a degree day heat input to the snow pack.
- DPSE Dated potential snow evaporation. In the Stanford Snowmelt Model, evapotransipration and evaporation from the snow surface are considered separately. The DPSE data array is the data source for snow evaporation and represents daily snow evaporation for 10-day periods during the water year. In the calcuations, snow evaporation

does not occur if the daily minimum temperature is greater than 32° or if the snowpack total water content is less than the daily potential snow evaporation.

5.4.1.2 Parameters

Proper operation of the simulation model requires selection of some 16 control options and 41 parameters, in addition to the historical data and observed streamflow records (essential for calibration and for comparison of simulation results with observations). The parameters are listed below. The methods of quantification are described elsewhere in the literature 11, 12, 14.

Snowmelt Parameters

BDDFSM - Basic degree day factor for snowmelt

SPBFLW - Snowpack basic maximum fraction in liquid water

SPTWCC - Snowpack minimum total water for complete basin cover

SPM - Snow precipitation multiplier

ELDIF - Elevation difference between base temperature station

and mean basin elevation

XDNFS - Index density of new fallen snow FFOR - Fraction of the watershed forested

FFSI - Fraction of snow intercepted

MRNSM - Maximum rate of negative snowmelt (chilling)

DSMGH - Daily snowmelt from ground heat

PXCSA - Precipitation index for changing snow albedo

Watershed Parameters

RGPMB - Recording gage precipitation multiplier

AREA - Area of the watershed

FIMP - Fraction of watershed covered by impermeable surfaces

FWTR - Fraction of watershed covered by water surfaces

Soil Water Parameters

VINTMR - Vegetation interception maximum rate

BUZC - Basic upper zone storage capacity factor

SUZC - Seasonal upper zone storage capacity factor

LZC - Lower zone storage capacity

ETLF - ET loss factor

SUBWF - Subsurface water flow out of the basin

GWETF - Ground water evapotranspiration factor

SIAC - Seasonal infiltration adjustment factor

BMIR - Basic maximum infiltration rate with basin

BIVF - Basic interflow volume factor

Overland Flow and Interflow Parameters

OFSS - Overland flow surface slope

OFSL - Overland flow surface length

OFMN - Manning's n for overland flow

OFMNIS - Manning's n for impervious surface

IPRC - Interflow recession constant

Channel Routing and Groundwater Parameters

CSRX - Channel storage routing index

FSRX - Flood plain storage routing index

CHCAP - Channel capacity indexed to basin outlet EXOPV - Exponent of flow proportional to velocity

BFNLR - Base flow nonlinear recession adjustment factor

BFRC - Base flow recession constant

Starting Moisture Values as of October 1

GWS - Current groundwater storage

UZS - Current upper zone storage

LZS - Current lower zone storage

BFNX - Current value of base flow recession index

IPS - Current interflow storage

5.4.1.3 Calibration

The calibration process has been summarized previously in Paragraph 5.3.2. The activities normally involved in calibration are shown in Figure 5-7. Data pertaining to the watershed to be calibrated are fed into the OPSET program, which is then run to estimate a set of model parameters. This step gets the task "into the ball park." A simulation is then run using KWM and the IBM analysis/evaluation routines. Simulation accuracy is evaluated with respect to total annual runoff, monthly flow, daily flow, statistical indices, and selected storm hydrograph characteristics. Based on these evaluations, parameters are adjusted, and a new simulation run, followed by another evaluation. This process goes through several iterations until simulated flow matches observed flow with acceptable accuracy in all criteria of interest to the analyst. The choice of parameters to adjust, direction and magnitude of the adjustments depend upon the judgment of the analyst. Sensitivity analyses have produced invaluable quidance to the manual-adjustment activity, reducing the subjectivity and eliminating the require that the analyst be skilled in hydrology.

At present, it is necessary to repeat the same calibration for the same same basin for two additional water years and then average parameter values from the three sets of results before undertaking simulations for other water years. This procedure could be improved by modifying OPSET to operate on up to four water years.

The full calibration procedure was not necessary in this study and consequently was not used. All watersheds modeled in the study had previously been modeled. Calibrated parameter values were available for both small watersheds and all the subwatersheds of the regional watershed. It was necessary to verify that the models would run with reasonable

Figure 5-7. Calibration Methodology

accuracy but not to "fine tune" the parameters. Additionally, the water-sheds modeled were allowed to be hypothetical but had to be realistic. Several debugging and verification runs were necessary to assure that the snowshed and regional watershed models would run in the IBM system.

Totally accurate hypothetical watershed models were created by (1) selecting the water year for which each model ran best; (2) running each model with its "best set" of parameters and input data from its best water year; (3) naming the synthesized hourly and daily streamflow arrays produced by this run the "reference" streamflow; (4) replacing the observed streamflow data in the data base by the reference streamflow; and (5) verifying that the "reference" configuration of the model (using the reference set of parameters, formerly called the "best set") does indeed simulate the reference streamflow exactly.

5.4.1.4 Integrated Data Base

After reference configurations have been established and reference streamflow generated, the entire data base is transferred to an integrated Master Watershed Data Bank on tape. For efficient operation in performing a series of simulation runs, the integrated watershed data base is transferred to disk storage, as indicated in Figure 5-6.

5.4.2 SIMULATION PROGRAM OUTPUTS

There are a variety of outputs available from the simulation program in the NASA-IBM system. The operator and analyst can choose those which best suit his needs from the following.

- A tabulation of hourly synthesized streamflow, with daily values for the following:
 - peak flow and time of peak
 - snowpack depth
 - snow total moisture density
 - snow albedo index
 - total accumulated negative snowmelt
 - snowpack liquid water content
- A table of monthly annual totals, similar to that shown in Figure 5-8.
- A yearly statistical summary, as shown in Figure 5-9.
- A table of mean daily reference streamflow, with monthly and annual totals.

		YEARLY STATISTICAL SUMMAR	Υ		
	MONTH	HLY	DAIL	ILY	
	FEFERENCE	SIMULATED	REFERENCE	SI MULA TEN	
YEAN	9914.90	10085.50	325.06	33v • 65	
MUPTXAM	32757.35	34005.84	5430.90	6017.22	
VARIANCE.	110596272.00	117735280.00	429042.81	601067.06	
STANCARD DEVIATION	10516.48	10850.59	655.01	775.29	
SUM OF (REFERENCE - SIMULATED)	-2047	·31	-2047.	32	
POOT SUM SQUARE	2630).77	3268.	44	
SUM SQUARED	0	39	54.	14	
SUM SQUARED (IBM METHOD)		0.31	48.	38	
CORRELATION COEFFICIENT	0.9	979	0.98	55	

	OC T	NDV	DEC	NAL	FEB	MAR	APR	MAY	JUNE	JULY	AUG	S⊏ P T	ANNUAL
PRECIPITATION	0.100	4.580	3.790		3.570	11-240	9.140	3.670	3.810	7.010	3.090	1.910	58.230 IN
VP/TRAN-NET	0.317	1.106	0.412		1.034		2,583	3.646	3.082	4.368	3.320	1.810	
-POTENTIAL	2.296	1.155	0.412	0.451	1.034	1.584	2.772	4.753	3.836	5.024	4.545	2.891	30.753 IN
URFACE PUNOFF	0.000	0.347	0.123	3.431	0.834	5.921	3.314	1.405	0.549	1.337	0.232	0.015	
NTERFLOW	0.0	0.0	0.010	0.306	0.268	0.917	1.017	0.214	0.000	0-043		0.0	2.774 IN
ASS FLOW '	0.000	0.212	0.652	1.490	1.230	2-133	2.346	1.315	0.564	1.063	0.530	0.131	11.666 IN
TREAM EVAP.	0.000	0.001	0.000	0.000	0.001	0.002	0.003	0.005	0.004	0.005	0.005	0.003	
OTAL PUNCEF(SIM)	0.000	0.558	0.785	5.227	2.331	8.969	6-674	2.929	1.109	2.438	0.758	0.144	
OTAL PUNOFF(PEF)	0.0	0.370	0.791	4.798	2.434	8.640			1.100	2.260	0.861	0.188	31.382 IN
EFFRENCE TOTALS	0.0	1401.6	3000 0	18189.9	0330 0	22757 4	25224	10014		4141			
							25336.6			8604.3	3264.1	711.6	118978.8 CF
IMULATED TOTALS	0.0	2114.8	29/8.0	19815.4	8837.7	34005.8	25302.3	11104.3	4206.3	9244.3	2873.1	544.3	121026.1 (F

MEAN DAILY FLOW CORRELATION COEFFICIENT Figure 5-9. Example of Monthly and Annual Totals

- A table of mean daily simulated streamflow, with monthly and annual totals.
- A table of monthly moisture storages and indices.
- A table of flow duration and error statistics.
- A list of the 20 highest clock hour rainfall events in the water year.
- A list of the 20 highest clock hour overland flow runoff events in the water year.
- A table of daily soil moisture.
- A comparison table of storm events, reference and simulated, with respect to peak flow, time of peak, and runoff, one table per storm event.
- Total daily and monthly statistical summary.
- Print-plots for total year, each month and each storm event.
- Tapes of data for SC-4020 plot outputs for total year, each month and each storm event.

Examples of the outputs are included in Appendices A, B, and C.

5.5 WATERSHED SIMULATION IN THIS STUDY

The system described in the previous paragraphs is directly applicable to the Town Creek and Alamosa Creek watersheds. Application to a regional watershed required additional programming.

In order to analyze a regional watershed and maintain a realistic configuration the watershed must be subdivided into subareas. The Hydrology Office of the National Oceanic and Atmospheric Administration (NOAA) has lately developed and proven several subroutines which will synthesize a complete river system from a number of "small" watersheds. The size of the system that can be simulated is virtually unlimited. During a single pass through the programs, the system size is controlled by the dimensions of the climatological input array, model parameter array and channel inflow (runoff from the land phase) array plus the dimensions of the channel reach parameter and storage array, and the simulated and observed flow array. However, by recycling the program and using downstream outflows from one pass as upstream inflows for the next, a very large river system can be simulated.

A representative stream system is shown in Figure 5-10 to illustrate the flowpoint numbering system used in the programs. In this illustration, flow is being computed at seven points during this pass of the program; there are also two upstream inflows from outside the area. For points where flow is computed, the flowpoint number must be greater than that of the points upstream. Then flow needed as inflows to a local area will have previously been computed, since the program computes flows in sequential order. Since upstream inflows from outside the area have been computed previously, they are assigned numbers at the end of the string and can provide the rule that upstream inflow points must have a flowpoint number less than the downstream flowpoint.

The runoff from the land phase of the hydrologic cycle (channel inflow) is computed independently from the channel system. To unite the two systems, it is necessary to assign to each channel reach the area or area from which it is to receive channel inflow.

Figure 5-10. Flowpoint Numbering for River System Simulation

Examples of simulation run results for the Town Creek, Alamosa Creek and Pearl River watersheds are shown in Appendices A, B, and C, respectively.

5.6 REFERENCES, SECTION 5

- 1. Crawford, Normal H., and Linsley, R. K. <u>Digital Simulation in Hydrology</u>: <u>Stanford Watershed Model IV</u>. <u>Stanford</u>, California: <u>Stanford University</u>, <u>Department of Civil Engineering</u>, <u>Technical Report No. 39</u>, July 1966.
- Hydrocomp International. "HSP Operations Manual," Palo Alto, California, 1969.
- 3. Anderson, E. A., and Crawford, N. H. <u>The Synthesis of Continuous Snowmelt Hydrographs on a Digital Computer</u>. Stanford, California: Stanford University, Department of Civil Engineering, Technical Report No. 36, 1964.
- 4. Hydrocomp International. "Simulation of Continuous Discharge and Stage Hydrographs in the North Branch of the Chicago River," Palo Alto, California, 1970.
- 5. James L. Douglas. <u>Economic Analysis of Alternative Flood Control Measures</u>. Lexington: University of Kentucky, Water Resources Institute, Research Report No. 16, 1968.
- 6. Ligon, James T., Law, Albert G., and Higgins, Donald H.

 Evaluation and Application of a Digital Hydrologic Simulation

 Model. Clemson, South Carolina: Clemson University, Water
 Resources Research Institute, Report No. 12, November 1969.
- 7. Lumb, Alan Mark. <u>Hydrologic Effects of Rainfall Augmentation</u>. Stanford, California: Stanford University, Department of Civil Engineering, Technical Report No. 116, November 1969.
- 8. Hydrologic Research Laboratory, National Oceanic and Atmospheric Administration, National Weather Service, United States Department of Commerce. National Weather Service River Forecast System Forecast Procedures, NOAA TM NWS-HYDRO-14, Washington, D. C., December 1972.
- Linsley, Ray K., Kohler, Max A., and Paulhus, Joseph L. H. Hydrology for Engineers. New York: McGraw-Hill Book Co., 1958.
- 10. James, L. Douglas. An Evaluation of Relationships between
 Streamflow Patterns and Watershed Characteristics through the
 Use of OPSET: A Self-Calibrating Version of the Stanford Watershed
 Model. Lexington: University of Kentucky, Water Resources Institute,
 Research Report No. 36, 1970.

- 11. Liou, Earnest Y. OPSET: Program for Computerized Selection of Watershed Parameter Values for the Stanford Watershed Model.

 Lexington: University of Kentucky, Water Resources Institute, Research Report No. 34, 1970.
- 12. Ross, Glendon A. <u>The Stanford Watershed Model: The Correlation of Parameter Values Selected by a Computerized Procedure with Measurable Physical Characteristics of the Watershed.</u> Lexington: University of Kentucky Water Resources Institute, Research Report No. 35, 1970
- 13. Chow, Ven Te (ed.). <u>Handbook of Applied Hydrology</u>. New York: McGraw-Hill Book Company, 1964.
- 14. Striffler, W. D., <u>User Manual for the Colorado State University</u>
 <u>Version of the Kentucky Watershed Model</u>, Colorado State University,
 September 1973.

SECTION 6

SENSITIVITY ANALYSIS

6.1 METHODOLOGY

The inputs to the Sensitivity Analysis Task are a set of watershed parameters, climatological data, and a "reference" streamflow record from the modeling task. Sensitivity Analysis consists of (1) changing a model parameter or input, (2) running the simulation model and printing out the performance indices which indicate the deviations between the reference record and the simulation output, (3) evaluating the results and then repeating the steps after selecting another input perturbation.

The total number of simulation runs was 442: 166 for Town Creek, 137 for Alamosa Creek, and 139 for Pearl River. In the case of the regional watershed model, a printout was produced for every one of the 12 subwatersheds. The study team analyzed a total of 1971 printouts and an uncounted number of plots. Each one of 46 different inputs and parameters was tested at from two to ten different perturbed values. Not all were tested on all watersheds; the snowmelt parameters, for example, do not apply to the Town Creek and Pearl River models.

6.1.1 PERFORMANCE INDICES

The performance of a watershed simulation model may be judged differently by different potential users, each with a particular application in mind. One may be interested in the effect of a parameter variation on low flow, another on total annual flow, a third on magnitude and timing of hydrograph peaks and total runoff resulting from storm events in a particular season. Varying a particular parameter may have a pronounced effect on some of these indices and not on others. It was therefore deemed advisable in the sensitivity analysis task to provide in the tabular summary outputs indicators of the following:

- Storm runoff and percent variation from reference runoff for a selected storm event in each season, for each headwater SWS of the regional watershed and the two small watersheds.
- Monthly runoff for October, January, April and August and percent variation from reference for each of those months for the regional watershed.
- Variation from reference low flow.
- Variation from reference annual flow.

6.1.2 SENSITIVITY ANALYSIS TABULATIONS

Unit sensitivity is defined as (percent change in performance index) ÷ (percent change in parameter). It was adopted to provide a basis for comparison of the sensitivities of the models to variations in its several different parameters. It departs from corresponding concepts in perturbation theory because many of the percentage perturbations used in the study are large, and the sensitivity curves are non-linear. The concept served well as an initial indicator of the relative influences of the parameters.

Each simulation run was assigned an identification number, and its results were entered into two tables, examples of which are shown in Tables 6-1 and 6-2. In table Type I, one for each of eight watersheds, the effects of all perturbations of a given parameter in one basin model are summarized. In table Type II, the effects of a single parameter perturbation in eight basin models are shown. Tables have been prepared for 26 parameters and are included in this volume under heading 6.3.

6.1.3 SENSITIVITY PLOTS

The numerical results, in terms of unit sensitivities, showed considerable variation from one performance index to another within a given basin as well as from one basin to another for a given performance index; the former are largely seasonal effects. A better assessment of results was achieved by constructing sensitivity plots like those appearing in Figure 6-1. In each of them, the abscissa scale is the percentage variation in the input parameter, and the ordinate scale is the percentage variation in performance indices (runoff). Plots have been prepared in several combinations for 26 parameters and are included in this volume under heading 6.4.

6.2 SUMMARY OF RESULTS

Of all the parameters and inputs tested and analyzed in the study, 26 are listed in Table 6-3, which shows the permissible tolerances found for each parameter, the effect of its variation on runoff, its relation to watershed geomorphology, how it can be determined from remote-sensed data or other data source, and the image resolution corresponding to the permissible tolerance, if applicable.

The parameters and inputs tested but not listed in Table 6-3 were found not to produce a meaningful result when varied or to be of negligible effect. An example of the first is the area of the watershed itself. Changing the area by a given factor simply changed the runoff by the same factor for all basins in all seasons. An example of the second (no effect) is the overland flow roughness coefficient (Manning's "n") for impervious surfaces, designated OFMNIS. The range of values it is normally assigned is from 0.013 to 0.017, and varying it from 0.001 (-93%) to 0.5 (+3233%) in the regional watershed model produced negligible change in simulated runoff. This is logical, because in every watershed modeled, the portion of basin area covered by impervious surfaces is less than 10% (as it would be expected

TABLE 6-1

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.) SMALL WATERSHED 365 SQ. KM.

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

ř					SIGNIFICA	NT STORMS	TOTAL OBSET	9/27/64	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОПТРПТ	11/4/63 FALL	1/23/64 . WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-60.9	-4.2	-4.4	-39.5	+3.95	-7.15
ι			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
S000	0.002	-100	REF. R/O (IN)	0.48	2.41	2,03	0.43	REF = 7.6	F + 0.609 W + 0.042
ļ			PERT. R/O (IN)	0.1B	2.31	1.94	0.26	SIM = 7.9	SP + 0.044
			REF (R/F/R/O)	6.80	1.32	1.41	5.02		SU + 0.395
			Δ% OF R/O	-32.6	-2.1	-2.5			
		50	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S F + 0.652 W + 0.042 SP + 0.050 SU
D010	0.05		REF. R/O (IN)	0.48	2.41	2.03	0.43	REF = 7.6	
			PERT, R/O (IN)	0.31	2.36	1.98		SIM =	
			REF (R/F/R/O)	6.80	1.32	1,41	5.02		
	1		Δ% OF R/O	+63.0	+4.6	+4.9	+41.9	-1.06	+ 7.31
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S -
S012	0.20	+100	REF. R/O (IN)	0.46	2.41	2.03	0.43	REF = 7.6	F + 0.630 W + 0.046
			PERT. R/O (IN)	0.75	2.52	2.13	0.61	SIM = 7.2	SP + 0.049
	,	Ī	REF (R/F/R/O)	6.80	1.32	1.41	5.02		SU + 0.419
<u></u>			Δ% OF R/O	+126.1	+8.7	+9.9			
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
D013	0.30	+200	REF. R/O (IN)	0.46	2.41	2.03	0.43	REF = 7.6	F + 0.631 W + 0.044
	·		PERT. R/O (IN)	1.04	2.62	2.23		SIM =	SP ± 0.050
			REF (R/F/R/O)	6.80	1.32	1.41	5.02		su

Table 6-2. Example of Sensitivity Analysis Tabulation, Table Type !!

SENSITIVITY ANALYSIS OF

FIMP -100% PERTURBATION (0.10 REFERENCE)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	ANT STORMS	-		<u> </u>
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID S000			Δ% OF R/O	-60.9	-4.2	-4.4	-39.5	+3.95	-7.15
3000			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.46	2.41	2.03	D.43	REF = 7.6	F +0.609
			PERT. R/O	0.18	2.31	1.94	0.26	SIM = 7.9	W +0.042 SP +0.044
			REF (R/F/R/O)	6.80	1.32	1.41	5.02	1	SU +0.395
RUN ID 01			Δ% OF R/O	-63.9	-35.7	-19.1	-72.3	0.0	-13.9
ν.			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.077	0.058	1.106	0.124	REF = 3.0	F +0.636
i i		İ	PERT. R/O	0.028	0.037	0.895	0.034	SIM = 3.0	W +0.357 SP +0.191
			REF (R/F/R/O)	38.83		1,61	8.79	İ	SU +0.723
RUN ID	····	<u> </u>	Δ% OF R/O	-64.7	-4.9	-13.0	-70.0	-53.8	-16.0
RW06			Δ% OF	OCT -44.1	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.17	-5.7 1.02	-7.8 0.54	-67.2 0.10	REF = 1340	F +0.647
			PERT. R/O	0.06	0.97	0.47	0.03	SIM = 619	W +0.049 SP +0.130
			REF. MONTH-	0.247	3.785	2.743	0.479		SU +0.700
RUN ID			Δ% OF R/O	-83.3	-8.0	-20.4	-79.2	+3.0	-15.0
RW06			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.24	1.91	3.49 0.93	2.79 0.24	REF = 33	F +0.833
NO. 1			PERT. R/O	0.04	1,60	0.74	0.05	SIM = 34	W +0.080
			REF (R/F/R/O)	9.0	1,10	3.75	11.6	Gim - SA	SP +0.204 SU +0.792
RUN ID			4% OF R/O	-85.7	-4.4	-18.0	-75.9	+4.6	-12.5
RW06			STORM R/F	10/15/67	1/9/68	4/25/68	7/31/68		
SUB- WATERSHED	813	F.	REF. R/O	2.51 0.28	3.11 2.25	0.61	0.29	9/2/68 REF = 22	STORM U/S F +0.857
NO. 3	913	50	PERT. R/O						W +0.044
_				0.04	2.15	0.50	0.07	SIM = 23	SP +0.180 SU +0.759
RUN ID		<u></u>	REF (R/F/R/O)	8.96	1,38	2.79	7.62		
RW06		i .	Δ% OF R/O	-90.0 10/15/67	-2.6 1/9/68	-12.0 4/25/68	-90,5 8/13/68	+25	-9.9
SUB- WATERSHED	1,064	37	STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/S F +0.900
NO. 5	1,004	3,	REF. R/O	0.10	1.94	1,00	0.21	REF = 4	W +0.026
			PERT, R/O	0.01	1.89	0.88	0.02	\$IM = 5	SP +0.120
BUNUD			REF (R/F/R/O)	10.8	1.05	1.82	10.57		SU +0.905
RUN ID RW06			Δ% OF R/O	-82.4 10/15/67	-8.8 1/8/68	-16.4 4/26/68	-72.7 8/14/68	+2.6	-13.8
SUB- WATERSHED			STORM R/F	1.58	2.76	1.42	2.95	9/30/68	STORM U/S
NO.	1,111	40	REF. R/O	0.17	1.70	0.73	0.44	REF = 39	F +0.824 W +0.088
·	***		PERT. R/O	0.03	1.55	0.61	0.12	SIM ≈ 40	SP +0.164
			REF (R/F/R/O)	9.29	1.62	2.63	6.70		SU +0.727
RUN ID RW06			Δ% OF R/O	-61.1	-8.9	-20.6	-75.0	0.0	-17.1
SUB-		İ	STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
NO.	2,551	30	REF. R/O	0.18	0.79	0.63	0.04	REF = 9	F +0.611 W +0.089
11			PERT. R/Q	0,07	0.72	0.50	0.01	SIM = 9	SP +0.206
	j		REF (R/F/R/O)	7.50	1,73	3.03	12.50		SU +0.750

OVERLAND FLOW SURFACE LENGTH STUDY SMALL WATERSHED

FORESTED AREA STUDY SMALL WATERSHED

Figure 6-1. Examples of Sensitivity Plots

Table 6-3. Permissible Tolerances and Resolutions

INPUT OR PARAMETER	PERMISSIBLE TOLERANCES %	EFFECT ON SIMULATED RUNOFF,%	RELATIONSHIP TO WATERSHED GEO- MORPHOLOGY	DERIVATION FROM REMOTE-SENSED DATA OR OTHER SOURCE	REQUIRED IMAGE RESOLUTION,M		
IMPERVIOUS PORTION OF BASIN AREA	±1.4 OF BASIN AREA	±10 {FALL}	ROCK OUTCROP— PINGS, STREETS, HIGHWAYS, URBAN AREAS	IMAGE ANALYSIS; LAND USE CLASSIFICATION	100		
WATER SURFACE PORTION OF BASIN AREA	TION OF OF BASIN AREA (FALL) RIVERS			IMAGE ANALYSIS; LAND USE CLASSIFICATION	120		
VEGETATIVE INTERCEPTION MAXIMUM RATE (VINTMR)	ERCEPTION -60 +5 OF VEGETATIVE COVER, TREES,		OF VEGETATIVE COVER, TREES,	IMAGE DATA CLASSI FICATION AND INTERPRETATION	200		
UPPER ZONE + 502 STORAGE50 + 2		2.5 + 2.5 (SUMMER)	SOIL PERMEABILITY, OVERLAND SLOPES, FOREST COVER	INFERENCE FROM LAND USE CLASSIFICATION	500		
SEASONAL FACTOR UPPER ZONE CAPACITY (SUZC)	+ 70 30	20 +20 (SUMMER)	SOIL PERMEABILITY, VEGETATIVE COVER	INFERENCE FROM LAND USE CLASSIFICATION	100		
LOWER ZONE STORAGE CAPACITY (LZC)	STORAGE -15		SOIL ASSOCIATION, VEGETATIVE TYPES AND COVERAGE DENSITY	INFERENCE FROM LAND USE CLASSIFICATION	100		
EVAPOTRANS PIRATION LOSS FACTOR (ETLF)	+ 15 15	-10 +10 (SUMMER)	VEGETATIVE COVER, TYPE & DENSITY: ESPECIALLY FOREST	IMAGE ANALYSIS; LAND USE CLASSIFICATION	100		
SEASONAL INFIL— TRATION ADJUST— MENT FACTOR (SIAC)	+ 20 22	-1 +1 (SUMMER)	VEGETATIVE COVER, SOIL ASSOCIATION	INFERENCE FROM LAND USE CLASSI— FICATION (DOUBTFUL; CALIBRATION NEEDED	300		
BASIC MAXIMUM INFILTRATION RATE (BMIR)	+ 35 -28	-5 +5 (WINTER)	SOIL PERMEABILITY, VEGETATIVE TYPE AND DENSITY	INFERENCE FROM LAND USE CLASSI- FICATION	150		
MEAN OVERLAND SURFACE SLOPE (OFSS)	+200 -67	+0.5 -0.5 (WINTER)	TOPOGRAPHY	DIRECT MEASURE- MENT IF RELATIVE ELEVATION IS AVAILABLE	100 HORI- ZONTAL, 20 VERTICAL		
MEAN OVERLAND SURFACE LENGTH (OFSL)	+ 40 -35	-0.3 +0.3 (WINTER)	AVERAGE DISTANCE FROM RANDOMLY SELECTED POINTS TO NEAREST STREAMS	DIRECT MEASURE— MENT IF STREAM— LINES ARE DISCERNABLE	500 .		
OVERLAND FLOW ROUGHNESS COEFFICIENT (OFMN)	+ 80 - 50	-0.5 + 0.5 (WINTER)	SURFACE TYPE; FOREST AND VEGE— TATIVE COVER	IMAGE ANALYSIS; LAND USE CLASSIFICATION	500		
PRECIPITATION MULTIPLIER (RGPMB)	+3	+ 10 10 (FALL)	ADJUSTS FOR BIAS IN PRECIPITATION GAGE DATA; NOMINAL VALUE IS 1.0	ADJUST FIELD INSTRUMENT READINGS FOR BETTER SIMULATION	+3% IN PRECIP. MEASURE (BIAS)		

Table 6-3. Permissible Tolerances and Resolutions (Continued)

INPUT OR PARAMETER	PERMISSIBLE TOLERANCES %	EFFECT ON SIMULATED RUNOFF, %	RELATIONSHIP TO WATERSHED GEO- MORPHOLOGY	DERIVATION FROM REMOTE-SENSED DATA OR OTHER	REQUIRED IMAGE RESOLUTION,M	
EVAPORATION DATA (EPAET)	+5 4.5	-10 +10 (SUMMER)	POTENTIAL AVERAGE ANNUAL LAKE EVAPORATION	FIELD INSTRUMENTS AND/OR CALCULA TION FROM CLIMATE DATA	<u>+</u> 4.5%	
MEAN NUMBER OF RAINY DAYS (MNRD)	+11.5 10	-5 + 5	CLIMATOLOGICAL STATISTICS	CLIMATOLOGICÁL STATISTICS	±10%	
(THE REMAINING EN	ITRIES IN THIS CHART	PERTAIN TO THE S	NOWSHED MODEL ONLY.			
PRECIPITATION (PERTURBED ONLY DURING STORMS)	+ 11 -11	+5 -5	ERRORS IN PRECIPITATION INPUT	FIELD INSTRUMENTS	±11% IN PRECIP. MEASURE (RANDOM)	
EVAPORATION (PERTURBED ONLY DURING STORMS)	TURBED20 ++5 TION DATA		FIELD INSTRUMENTS AND/OR CALCULA— TION FROM CLIMATE DATA	±20%		
TEMPERATURE {PERTURBED ONLY DURING STORMS}	URBED -4.0 -20 TEMPERATURE DATA				N/A	
FRACTION OF INCOMING RADIATION REFLECTED BY SNOW (FIRR)	MING →12 +20 AL IATION PE LECTED GE		SNOW SURFACE ALBEDO: INDE- PENDENT OF GEOMOPHOLOGY	CALCULATION IN THE MODEL FROM SNOW SURFACE AGE; RADIOMETRY IN FUTURE	N/A	
BASIC DEGREE DAY FACTOR FOR SNOWMELT (BDDFSM)	+ 3.6 1.6	+ 20 -20	MATHEMATICAL CONSTRUCT; NO RELATION TO WATERSHED GEOMORPHOLOGY	SIMULATION MODEL CALIBRA— TION: NO REMOTE SENSING APPLICATION	N/A	
SNOWPACK BASIC MAXI— MUM FRACTION IN LIQUID WATER (SPBFLW)	+ 16 -13.5	-10 +10	SNOW PHYSICS: NO RELATION TO WATERSHED GEOMORPHOLOGY	SIMULATION MODEL CALIBRA – TION; NO REMOTE SENSING APPLICATION	N/A	
SNOWPACK MINIMUM TOTAL WATER CONTENT (SPTWCC)	+ 0 32.5	-1 +1	SNOW PHYSICS; NO RELATION TO WATERSHED GEOMORPHOLOGY	SIMULATION MODEL CALIBRATION; SOME FUTURE REMOTE SENSING APPLICATION	N/A	
ELEVATION DIFFERENCE BETWEEN BASE THEROMETER AND MEAN BASIN ELEVATION (ELDIF)	+ 20 -12.5	-28 +28	BASIN TOPO— GRAPHY	DIRECT MEASUREMENT IF RELATIVE ELEVA— TIONS ARE AVAIL— ABLE	30 VERTICAL	
FRACTION OF SNOW INTER— CEPTED (FFSI)	+ 25 25	+ 10 -10	TYPE AND DENSITY OF FOREST	IMAGE DATA CLASSI— FICATION AND INTERPRETATION	500	
FRACTION OF SNOW INTER- CEPTED (FFSI)	+ 25 —21	+ 22	TYPE AND DENSITY OF FOREST	IMAGE DATA CLASSI FICATION AND INTERPRETATION	200	
PRECIP. INDEX FOR CHANGING SNOW ALBEDO (PXCSA)	RECIP. INDEX +50 +2.9 SM OR CHANGING -11 -10 RI NOW ALBEDO W.		SNOW PHYSICS; NO RELATION TO WATERSHED GEOMORPHOLOGY	SIMULATION MODEL CALIBRATION; RADIOMETRY IN FUTURE	N/A	

of nearly any basin except small, highly urbanized ones). This small value of impervious area prevented varying OFMNIS from having any effect.

Several remarks on the information contained in Table 6-3 are in order, and they appear in the following paragraphs.

The permissible tolerances shown in the second column were generally estimated from plots such as the one shown in Figure 6-1. Some judgments and compromises were necessary because of nonlinearities in many of the response curves. The same is true to a greater extent with respect to the effect on simulated runoff appearing in the second column. The image resolutions estimated in the sixth column are believed somewhat conservative, more stringent than actually may be required, pending further study. Most of them depend upon the basin size; if one is interested in observing and simulating watersheds of areas not less than 50 square kilometers, the image resolutions can be relaxed considerably. Another consideration which enters into the estimation of required image resolution is the likelihood that parameters of interest (such as the impervious fraction of basin area) may consist of scattered small areas rather than be concentrated into a single larger one, the latter condition requiring less stringent resolutions.

The comments in the fifth column on the derivation of parameters from remote sensing should generally be regarded as optimistic. Although many of the derivations indicated are feasible, considerable maturing of several image analyses and interpretation techniques will be needed to make the applications operational. The applications are presently practical for quasi-permanent features such as land use and vegetation, but optimistic with respect to inferences about soil characteristics and subsurface conditions.

In the early days of the sensitivity analysis, some problems were encountered with respect to the impervious portion of the basin area (FIMP) and water surface portion of basin area (FWTR). In all the basins used in the study these parameters were of such small value that very large percentage variations in them caused very small variations in simulation model outputs. Because they are both excellent parameters for determination from remote-sensed data, special reference simulation runs were made with each of them separately set to .10 (that is 10% of the total basin area). Sensitivity analysis runs were then made based on departures in FIMP and FWTR from these special reference values, in order to get a more meaningful assessment of their effects on simulation model operation.

In the operation of a simulation model, it is necessary to assume that the measured precipitation inputs accurately represent the actual precipitation over the basin, even though the operator is morally certain that this is not the case. In order to test the effects of errors in precipitation input, several runs were made in which the effect of changing precipitation was achieved by assigning values other 1.0 to the recording gage precipitation multiplier (RGPMB). The unit sensitivities resulting from the simulation runs were much greater than unity. It was concluded that varying RGPMB is

equivalent to introducing biases in the precipitation inputs throughout the year, rather than introducing random errors as would normally be expected in the rain gage network. The effect is one of accumulating errors in soil moisture throughout the water year simulated, causing the errors in simulation output to be greater in percentage than the perturbations in RGPMB. It would be interesting, in a refinement of the study, to test the effect of introducing errors in the precipitation inputs in accordance with some probability density function. A very small step in this direction was taken in the sensitivity analysis involving the Alamosa Creek basin, for which precipitation input was perturbed only during storm events, and left at the reference value for the rest of the year. The results of this experiment appeared to be more reasonable.

6.3 DETAILED SENSITIVITY ANALYSIS RESULTS

The tabulated and plotted sensitivity analysis results are presented in the remaining pages of this section for each of 26 parameters. The set of watershed characteristics of principal interest and their reference values are presented in Table 6-4. Each set of tables and curves related to a parameter is preceded by a brief discussion of the definition of the parameter, how it is normally derived, and its effect on simulation model performance.

6.3.1 FIMP, IMPERVIOUS FRACTION OF WATERSHED AREA

FIMP is the fraction of total watershed surface which is impervious and contributes its runoff directly into channel flow. For most rural and mountain watersheds this factor will be near zero unless there are large areas of rock outcrops adjacent to stream channels. Runoff from scattered impervious areas usually flows onto a pervious area as overland flow; such areas should not be included as a portion of FIMP. Precipitation minus interception is multiplied by the impervious area fraction to determine the impervious area contribution to streamflow.

The impervious area is directly obtainable from remote sensing by land-use classification after the watershed boundary has been established.

Sensitivity analysis results (Tables 6-5 through 6-13) indicate that the FIMP parameter is most influential during fall and summer when soil is relatively dry. FIMP is most influential in light rains with dry soil conditions, and least influential during winter season.

The unit sensitivity on the average is 0.74 for fall and summer seasons, and 0.10 for winter and spring seasons. This average is based on six head water basins and the regional watershed.

Plotted \triangle % runoff of fall storms (Figure 6-2) indicate a variation in -14% of FIMP results in -10% of runoff which corresponds to a unit sensitivity of 0.71 for fall season. Figures 6-3 through 6-6 show results for four watersheds.

Table 6-4. Principal Watershed Characteristics

γ	Vatershe	<u>d</u>			S	oil Mois	ture Par	ameter:	<u> </u>		Chan Grou	nel Rou Ind Wat	uting an er Parar	d neters	0	erland	F <u>low</u> Pa	ramete	rs
YO. NAME	AREA	EIMP	FWTB	BMIR	LZC	ETLF	suzc	SIAC	Buzc	BIVE	CXRX	FSRX	BFRC	DE UL D		1		i	
PEARL RIVER MISS. SWS 1	898	.004	.005	10.0	6.0	.20	.40	.60	.60	.60	.96	.96	.96	BENLR	0FSL 4974	.019	.056	.30	.015
SWS 2	449	.076	.002	10.0	6.0	.20	.40	.60	.60	.60	.96	.96	.96	.80	5238	.021	.081	.30	.015
SWS 3	314	.022	.001	10.0	6.0	.20	.40	.60	.60	.80	.94	.94	.96	.80	3415	.028	.070	.30	.015
SWS 4	170	.007	.001	8.0	5.0	.20	.40	.60	.60	.80	.94	.94	.96	.80	4505	.018	.048	.30	.015
SWS 5	411	.033	.002	10.0	6.0	.20	.40	.60	.60	.80	.96	.96	.96	.80	4692	.020	.068	.30	.015
SWS 6	858	.025	.070	10.0	6.0	.20	.40	.60	.60	.80	.96	.96	.96	.80	7754	.012	.076	.30	.015
SWS 7	429	.002	.001	12.0	7.0	: .20	.40	.60	.60	.80	.96	.96	.96	.80	6915	.015	.065	.30	.015
SWS 8	1511	.001	.005	8.0	5.0	.20	.40	.60	.60	.80	.96	.96	.96	.80	6914	.017	.066	.30	.015
SWS 9	650	.031	.003	8.0	5.0	.20	.30	.60	.60	.80	.96	.96	.98	.80	6558	.024	.063	.40	.015
SWS 10	940	.069	.002	10.0	6.0	.20	.30	.60	.60	.80	.96	.96	.96	.85	19/166	.011	.063	.40	.015
SWS 11	985	.069	.002	8.0	6.0	.20	.40	.40	.60	.60	.96	.96	.96	.80	5921	.0212	.073	.30	.015
SWS 12	975	.069	.080	12.0	7.0	.20	.40	.60	.60	.60	.96	.96	.96	.80	6914	017	.066	.416	.015
OWN REEK,ALA.	141	.002	.001	7.0	4.0	.20	.20	.25	.20	.50	.94	.94	.93	.85	1550	.062	.05	.184	.014
LAMOSA REEK, OLO.	107	.01	.006	20.0	6.0	.30	1.5	.42	1.0	2.9	.91	.94	.95	.90	1000	.34	.35	.60	.025

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.)
SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

							TOTAL OBSE	RVED ANNUA	_ n/U = 31,38
		Δ%			SIGNIFICA	ANT STORMS		9/27/64	
RUN ID	PARAM VALUE	PERTUR- BATION	ОПТРОТ	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-60.9	-4.2	-4.4	-39.5	+3.95	7.15
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/
S000	0.002	-100	REF, R/O (IN)	0.46	2,41	2.03	0.43	REF = 7.6	F + 0.609
		į	PERT. R/O (IN)	0.18	2.31	1.94	0.26	SIM = 7,9	W + 0.042 SP + 0.044
			REF (R/F/R/O)	6.80	1.32	1.41	5.02		SU + 0.395
			Δ% OF R/O	-32.6	2.1	-2.5			
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/
D010	D010 0.05	-50	REF. R/O (IN)	0.46	2.41	2.03	0.43	REF = 7.6 SIM =	F + 0.652 W + 0.042 SP + 0.050
			PERT, R/O (IN)	0.31	2.36	1.98			
		ĺ	REF (R/F/R/O)	6.80	1.32	1.41	5.02]	su
			Δ% OF R/O	+63.0	+4.6	+4.9	+41.9	-1.06	+ 7.31
		į	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
S012	0.20	+100	REF. R/O (IN)	0.46	2.41	2.03	0.43	REF = 7.6	F + 0.630 W + 0.046
		j	PERT. R/O (IN)	0.75	2.52	2.13	0.61	SIM = 7.2	SP + 0.049
			REF (R/F/R/O)	6.80	1.32	1.41	5.02		SU + 0.419
			2% OF R/O	+126.1	+8.7	+9.9			
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/
D013	0.30	+200	REF. R/O (IN)	0.46	2,41	2.03	0.43	REF = 7.6	F + 0.631
			PERT. R/O (IN)	1.04	2.62	2,23		REF = 7.6 SIM =	W + 0.044 SP + U.050
			REF (R/F/R/O)	6.80	1.32	1,41	5.02		SU

TABLE 6-5A

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

		<u> </u>			SIGNIFICA	ANT STORMS		9/7/58	
RUN-ID	PARAM VALUE	Δ% PERTUR- BATION	ОШТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			∆% OF R/O	-63.6	-35.7	-19,1	-72.3	0.0	– 13.9
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
01	0.0	100	REF. R/O (IN.)	0.077	0.058	1.106	0.124	REF = 3.0	F +0.636 W +0.357
			PERT, R/O (IN.)	0.028	0.037	0.895	0.034	SIM = 3.0	SP +0.191
			REF (R/F/R/O)	38.83		1.61	8.79	ļ	SU +0.723
			Δ% OF R/O	-31.8	-17.9	-9.5	-36.2	0.0	- 7.0
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
02	0.05	50	REF. R/O (IN.)	0.077	0.058	1,106	0.124	REF = 3.0. SIM = 3.0	F + 0.636 W + 0.358
			PERT. R/O (IN.)	0.052	0.048	1.0	0.079		SP + 0.190
		ļ	REF (R/F/R/O)	38.83		1.61	8.79		SU + 0,724
			Δ% OF R/O	+31.9	+18.3	+9.4	+36.2	+3.3	+ 7.0
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
04	0.15	+50	REF. R/O (IN.)	0.077	0.058	1.106	0.124	REF = 3.0	F + 0,638 W + 0,366
j			PERT. R/O (IN.)	0.101	0.069	1.210	0.169	SIM = 3.1	SP + 0.188
			REF (R/F/R/O)	38.83		1.61	8.79	-	SU + 0.724
			∆% OF R/O	+63.8	+36.7	+18.8	+72.7	+6.7	+ 14.1
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
05	0.20	+100	REF. R/O (IN.)	0.077	0.058	1.106	0.124	REF = 3.0	F + 0.638 W + 0.367
			PERT. R/O (IN.)	0.126	0.079	1.313	0.214	SIM = 3.2	SP + 0.188
			REF (R/F/R/O)	38.83		1.61	8.79		SU + 0.727

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.) REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	T STORMS		9/15/68		
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW	
			∆% OF R/O	64.7	-4.9	-13.0	-70.0	-53.8	– 16	
			∆% OF MONTHLY R/O	OCT -44.1	JAN -5.7	APR 7.8	AUG -67.2		STORM U/	
06	0.0	-100	REF. R/O (IN)	0.17	1.02	0.54	0.10] n== 4340	F +0.647 W +0.049	
	l		PERT, R/O (IN)	0.06	0.97	0.47	0.03	REF = 1340 SIM = 619		
			REF. MONTHLY R/O (IN)	0.247	3.785	2.743	0,479	1	SU +0.700	
			Δ% OF R/O	-35.3	-2.9	-5.6	30.0	-27.3	8.0	
			1% OF MONTHLY R/O	OCT −22.3	JAN 2.8	APR -3.9	AUG -34		STORM U	
07	0.05	-50	REF. R/O (IN)	0.17	1.02	0.54	0.10	DEE	F +0.706	
			PERT. R/O (IN)	0.11	0.99	0.51	0.07	REF = 1340 SIM = 974	SIM = 974	W +0.058 SP +0.112
			REF. MONTHLY R/O (IN)	0.247	3.785	2.743	0.479		SU +0.600	
			∆% OF R/O	64.7	5.9	11.1	80.0	+ 55. 5	+16.0	
			Δ% OF MONTHLY R/O	OCT +44.1	JAN +5.6	APR +7.8	AUG +69.7		STORM U/	
09	0.20	+100	REF. R/O (IN)	0.17	1.02	0.54	0,10	1240	F +0.647 w +0.059	
			PERT. R/O (IN)	0.28	1.08	0.60	0.18	REF = 1340 SIM = 2083	SP +0.111	
			REF. MONTHLY R/O (IN)						SU +0.800	
			∆% OF R/O	+129.4	+10.8	+22.2	+150.0	+112.9	+32.2	
			Δ% OF MONTHLY R/O	OCT +88.7	JAN +11.3	APR +15.6	AUG +140.5		STORM U/	
10	0.30	+200	REF. R/O (IN)	0.17	1.02	0.54	0.10	DEE	F +0.647 W +0.540	
		ľ	PERT. R/O (IN)	0.39	1.13	0.66	0.25	REF = 1340 SIM = 2853	SP +0.111	
			REF. MONTHLY R/O (IN)					ĺ	SU +0.750	

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O \approx 19.63 IN

SUBWATERSHED NO. 1 2,326 SQ. KM

					SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	ANNUAI FLOW
			Δ% OF R/O	83 .3	-8.0	-20.4	79.2	+3.0	- 15.0
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
06	0.0	_100	REF. R/O (IN.)	0.24	1.74	0.93	0.24	REF = 33	F + 0.833 W + 0.080
			PERT. R/O (IN.)	0.04	1.60	0.74	0.05	SIM = 34	Sp+ 0.204
			REF (R/F/R/O)	9.0	1,10	3.75	11.6		SU + 0.792
			Δ% OF R/O	-41.7	-4.0	-9.7	-37.5	0.0	– 7.5
	1]	STORM R/F	2.16	1.91	3.49	2.79		STORM U
0,05	50	REF. R/O (IN.)	0.24	1.74	0.93	0.24	REF = 33	F +0.834 W +0.080	
			PERT. R/O (IN.)	0.14	1.67	0.84	0.15	SIM = 33	SP +0.194
			REF (R/F/R/O)	9.0	1.10	3.75	11,6		SU +0.750
			Δ% OF R/O	+83.3	+7.5	+20.4	+79.2	0.0	+ 15.0
			STORM R/F	2.16	1.91	3.49	2.79		STORMU
09	0.20	+100	REF. R/O (1N.)	0.24	1.74	0.93	0.24	REF = 33	F +0.833
UĐ	0,20	100	PERT. R/O (IN.)	0.44	1.87	1.12	0.43	SIM = 33	Sp +0.204
			REF (R/F/R/O)	9.0	1.10	3.75	11.6		SU +0.792
			Δ% OF R/O	+166.7	+14.9	+40.9	+162.5	+9.1	+ 30.1
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
10	10 0.30	+200	REF. R/O (IN.)	0.24	1.74	0.93	0.24	REF = 33	F +0.834
		-55	PERT. R/O (IN.)	0.64	2.00	1.31	0.63	SIM = 36	W +0.750 SF +0.205
			REF (R/F/R/O)	9.0	1.10	3.75	11.6		SU +0.813

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

	1				SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	A % PERTUR- BATION	OUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	, –85.7	-4.4	-18.0	-75.9	+4.6	<i>-</i> 12.5
	1	İ	STORM R/F	2.51	3.11	1.70	2.21		STORM U
06	0.0	_100	REF. R/O (IN.)	0.28	2.25	0.61	0.29	REF = 22	F +0.857 W +0.044
UB	0.0	-,\	PERT. R/O (IN.)	0.04	2,15	0.50	0.07	SIM = 23	SP +0.180
			REF (R/F/R/O)	8.96	1.38	2.79	7.62	·	SU +0.769
			Δ% OF R/O	-42.9	-2.2	-9.8	-37.9	+4.6	6.2
			STORM R/F	2.51	3.11	1.70	2.21		STORMU
07	0.05 ~50	-50	REF. R/O (IN.)	0.28	2.25	0.61	0.29	REF = 22 SIM = 23	F +0.858 W +0.044 SP +0.196
0,	0.05		PERT. R/O (IN.)	0.16	2.20	0.55	0.18		
			REF (R/F/R/O)	8.96	1.38	2.79	7.62		W∪+0.75
· · · · · · · · · · · · · · · · · · ·			Δ% OF R/O	+82.1	+4.44	+19.7	+75.9	-9.1	+12.5
			STORM R/F	2.51	3.11	1.70	2.21		STORM
09	0.20	+100	REF. R/O (IN.)	0.28	2.25	0.61	0.29	REF = 22	F +0.82 W +0.04
09	0.20		PERT. R/O (IN.)	0.51	2.35	0.73	0.51	SIM = 20	SP +0.19
			REF (R/F/R/O)	8.96	1.38	2,79	7.62	1	SU +0.75
			Δ% OF R/O	167.9	+8.9	+37.7	+155.2	-13.7	+25.0
			STORM R/F	2.51	3.11	1.70	2.21		STORML
10	0.30	+200	REF. R/O (IN.)	0.28	2.25	0.61	0.29	REF = 22	F +0.84
			PERT. R/O (IN.)	0.75	2.45	0.84	0.74	SIM = 19	
			REF (R/F/R/O)	8.96	1.38	2.79	7.62		SU +0.77

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

	1]		SIGNIFICA	INT STORMS		9/29/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	-90.0	-2.6	12.0	-90.5	+25	– 9 ,9
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
06	0.0	-100	REF. R/O (IN.)	0.10	1,94	1.00	0,21	REF = 4	F +0.90
			PERT. R/O (IN.)	0.01	1.89	0.88	0.02	SIM = 5	W +0.0 Sp +0.1
			REF (R/F/R/O)	10.8	1.05	1.82	10.57		SU +0.9
			Δ% OF R/O	-50.0	1.0	~8.0	-42.9	0.0	-5.0
			STORM R/F	1.08	2.04	1.82	2.22		STORM
07 0.05	-50	REF, R/O (IN.)	0.10	1,94	1,00	0.21	REF = 4	F +1. W +0.	
			PERT. R/O (IN.)	0.05	1.92	0.94	0.12	SIM = 4	SP +0.0
			REF (R/F/R/O)	10.8	1.05	1.82	10.57		SU +0.8
			Δ% OF R/O	+80.0	+2.6	+12.0	+90.5	0.0	+ 9.9
			STORM R/F	1,08	2.04	1.82	2.22		STORM
09	0,20	+100	REF. R/O (IN.)	0.10	1.94	1.00	0.21	REF = 4	F +0.8
	•		PERT. R/O (IN.)	0.18	1,99	1,12	0.40	SIM = 4	W +0.0 SP +0.1
			REF (R/F/R/O)	10.8	1.05	1.82	10.57	-	SU +0.9
			Δ% OF R/O	+170.0	+5.2	+24.0	+181.0	-25.0	+ 19.9
			STORM R/F	1.08	2.04	1.82	2.22		STORM
10 0.30	.30 +200 F	REF. R/O (IN.)	0.10	1.94	1,00	0.21	REF = 4	F +0.8 W +0.0	
	}		PERT. R/O (IN.)	0.27	2.04	1.24	0.69	SIM = 3	W +0.0 SP +0.1
			REF (R/F/R/O)	10.8	1.05	1.82	10.57		su +0.9

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

•		T			SIGNIFICA	NT STORMS		9/30/68	1
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10 /15/ 6 7 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	-82.4	-8.8	-16.4	-72.7	+2.6	-13.8
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
06	0.0	-100	REF. R/O (IN.)	0.17	1.70	0.73	0.44	REF = 39 SIM = 40	F +0.82 W +0.08
			PERT. R/O (IN.)	0.03	1.55	0.61	0.12	31111	SP +0.16
			REF (R/F/R/O)	9.29	1.62	2.63	6.70]	SU +0.72
			Δ% OF R/O	-41,2	-4.7	-8.2	-36.4	+2.6	-6.9
			STORM R/F	1.68	2.76	1.92	2.95		STORM
07	0.05	50	REF. R/O (IN.)	0.17	1,70	0.73	0.44	REF = 39 SIM = 40	F +0.824 W +0.094 SP +0.164
			PERT. R/O (IN.)	0.10	1.62	0.67	0.28		
			REF (R/F/R/O)	9.29	1.62	2.63	6.70		SU +0.36
-			Δ% OF R/O	+82.4	+8.2	+17.8	+72.7	+5.1	+13.8
			STORM R/F	1.58	2.76	1.92	2.95		STORM L
09	0.20	+100	REF. R/O (IN.)	0.17	1.70	0.73	0.44	REF = 39	F +0.82 W +0.01
45	0.20	1,11	PERT. R/O (IN.)	0.31	1.84	0.86	0.76	SIM = 41	SP +0.17
			REF (R/F/R/O)	9.29	1.62	2.63	6.70	-	SU +0.72
			Δ% OF R/O	+184.7	+16.5	+35.6	+147.7	0.0	+27.6
			STORM R/F	1.58	2.76	1.92	2.95		STORM L
10 0.30	+200	REF. R/O (IN.)	0.17	1.70	0.73	0.44	REF = 39		
			PERT. R/O (IN.)	0.45	1.98	0.99	1,09	SIM = 39	Sp +0.17
			REF (R/F/R/O)	9,29	1.62	2.63	6.70		SU +0.73

SENSITIVITY ANALYSIS OF FIMP (0.10 REF.) SUBWATERSHED NO. 11 2,651 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

. . .

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	-61.1	-8.9	-20.6	75.0	0.0	-17.1
			STORM R/F	1.35	1.37	1.91	0.50		STORMU
06	0.0	100	REF. R/O (IN.)	0,18	0.79	0.63	0.04	REF =9	F +0.61
			PERT, R/O (IN.)	0.07	0.72	0.50	0.01	SIM = 9	W +0.08 SP +0.20
			REF (R/F/R/O)	7.50	1.73	3.03	12.50		SU +0.75
			Δ% OF R/O	-27.8	3.8	-11.1	-25.0	0.0	-8.5
			STORM R/F	1.35	1.37	1.91	0.50		STORM
07 0.05	-50	REF. R/O (IN.)	0.18	0.79	0.63	0.04	REF = 9	# +0.556 W +0.076	
			PERT. R/O (IN.)	0.13	0.76	0.56	0.03	SIM = g	SP +0.22
			REF (R/F/R/0)	7.50	1.73	3.03	12.50		SU +0.50
			Δ% OF R/O	+66.7	+7.6	+19.0	+75.0	0.0	+ 17.1
			STORM R/F	1.35	1.37	1.91	0.50		STORM
09	0.20	+100	REF. R/O (IN.)	0.18	0.79	0.63	0.04	REF=9	F +0,66 W +0,07
			PERT. R/O (IN.)	0.30	0.85	0.75	0.07	SIM = 9	Sp +0.19
	Ì		REF (R/F/R/O)	7.50	1.73	3.03	12.50		su +0.75
			Δ% OF R/O	+127.8	+16.5	+38.1	+175.0	0.0	+34.3
			STORM R/F	1.35	1.37	1.91	0.50		STORMU
10	0.30	+200	REF. R/O (IN.)	0.18	0.79	0.63	0.04	. REF = 9	F +0.63 w +0.08
			PERT. R/O (IN.)	0.41	0.92	0187	0.11	SIM = 9	9 W +0.08 Sp +0.19
			REF (R/F/R/O)	7.50	1.73	3.03	12.50		SU +0.87

SENSITIVITY ANALYSIS OF FIMP -100% PERTURBATION (0.10 REFERENCE)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			
WATERSHED	AREA' (SQ, KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-60.9	-4.2	-4.4	-39.5	+3,95	-7.15
S000			STORM R/F	11/4/63 3.13	1/23/64 3,19	5/1/64 2.87	8/14/64 2.18	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	D.46	2.41	2.03	0.43	REF = 7.6	F +0.609 W +0.042
			PERT. R/O	0.18	2,31	1.94	0.26	SIM = 7.9	SP +0.044
			REF (R/F/R/O)	6.80	1.32	1.41	5.02		SU +0.395
RUN ID			Δ% OF R/O	-63.9	-35.7	-19.1	-72.3	0.0	-13.9
01		1	STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/5 8 1.09	9/7/58	STORM U/
snow	277	32	REF. R/O	0.077	0.058	1.106	0.124	REF = 3.0	F +0.636 W +0.357
			PERT. R/O	0.028	0.037	0.895	0.034	SIM = 3.0	SP +0.191
			REF (R/F/R/O)	38.83		1.61	8.79		SU +0.723
RUN ID		 	Δ% OF R/O	-84.7	-4.9	-13.0	-70.0	-53.8	-16.0
RW06			Δ% OF	OCT	JAN	APR	AUG -67.2	9/15/68	STORM U/
REGIONAL	22,248	41	MONTHLY R/O	-44.1 0,17	-5.7 1.02	-7.8 0.54	0.10	REF = 1340	F +0.647
REGIONAL	,		PERT, R/O	0.06	0.97	0.47	0.03	SIM = 619	W +0.049 SP +0.130
			REF. MONTH-	0.247	3.785	2.743	0.479		SU +0.700
		7 - 7 - 7 - 7 - 7 - 7 - 7	LY R/O Δ% OF R/O	-83.3	-8.0	-20.4	-79.2	+3.0	-15.0
RUN ID RW06			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U
SUB- WATERSHED	0.000			2.16	1.91	3.49 0.93	2.79 0.24	REF = 33	F +0.833
NO.	2,326	50	REF. R/O	0.24	1.74		0.05	SIM = 34	W +0.080
1			PERT. R/O	0.04	1.60	3.75	11.6	3	SP +0.204 SU +0.792
			REF (R/F/R/O)	9.0	1.10	-18.0	-75.9	+4.6	-12.5
RUN ID RW06			Δ% OF R/O	-85.7 10/15/67	-4.4 1/9/68	4/25/68	7/31/68	9/2/68	STORM U
SUB-			STORM R/F	2,51	3.11	1.70	2.21	9/2/66 REF = 22	F +0.857
WATERSHED NO	813	50	REF. R/O	0.28	2.25	0.61	0.29		w +0.044
3			PERT. R/O	0.04	2.15	0.50	0.07	SIM = 23	SP +0.180 SU +0.759
			REF (R/F/R/O)	8.96	1.38	2.79	7.62		
RUN ID RW06			Δ% OF R/O	-90.0 10/15/67	-2.6 1/9/68	-12.0 4/25/68	-90.5 8/13/68	+25	-9.9
\$UB-			STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/ F +0.900
WATERSHED	1,064	37	REF. R/O	0.10	1.94	1.00	0.21	REF = 4	W +0.026
5			PERT. R/O	0.01	1.89	0.88	0.02	SIM = 5	SP +0.120
		<u> </u>	REF (R/F/R/O)	10.8	1.05	1.82	10.57		SU +0.905
RUN ID RW06		'''	Δ% OF R/O	-82.4	-8.8	-16.4	-72.7	+2.6	-13.8
SUB-		1	STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U
WATERSHED NO.	1,111	40	REF. R/O	0.17	1.70	0.73	0.44	REF = 39	F +0.824 W +0.088
7			PERT. R/O	0.03	1.55	0.61	0.12	SIM = 40	SP +0.164
		<u> </u>	REF (R/F/R/O)	9.29	1.62	2.63	6.70		SU +0.727
RUN ID			Δ% OF R/O	-61.1	-8.9	-20,6	-75.0	0.0	-17.1
RW06 SUB-			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U
WATERSHED NO.	2,661	30	REF. R/O	0.18	0.79	0.63	0.04	REF = 9	F +0.611 W +0.089
NO. 11			PERT. R/O	0.07	0.72	0.50	0.01	SIM = 9	SP +0.206
			REF (R/F/R/O)	7,50	1.73	3.03	12.50	1 .	SU +0.750

SENSITIVITY ANALYSIS OF FIMP +100% PERTURBATION (0.10 REFERENCE)

SMALL, SNOW & REGIONAL WATERSHEDS

	····.				SIGNIFICA	NT STORMS			
WATERSHED	AREA' (SQ. KM)	EPAET (IN)	ООТРОТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID S012			Δ% OF R/O	+63.0	+4.6	+4.9	+41.9	-1.06	+7.31
3012			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.46	2.41	2.03	0.43	REF = 7.6	F +0.630 W +0.046
			PERT. R/O	0.75	2.52	2.13	0.61	SIM = 7.2	SP +0.049
ł			REF (R/F/R/O)	6.80	1.32	1,41	5.02		\$U +0.419
RUN ID 05			Δ% OF R/O	+63.8	+36.7	+18.8	+72,7	+6.7	+14.1
0.5			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.077	0.058	1.106	0.124	REF = 3.0	F +0.638 W +0.367
			PERT. R/O	0.126	0.079	1,313	0.214	SIM = 3.2	SP +0.188
İ			REF (R/F/R/O)	38.83		1.61	8.79		SU +0.727
RUN ID			Δ% OF R/O	+64.7	+5.9	+11,1	· +80.0	+55.5	+16.0
RW09			Δ% OF MONTHLY R/O	ост	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.17	1.02	0.54	0.10	REF = 1340	F +0.647
			PERT. R/O	0.28	1.08	0.60	0.18	SIM = 2083	W +0.059 SP +0.111
			REF. MONTH-	0.247	3.785	2,743	0.479		SU +0.800
RUN ID			Δ% OF R/O	+83.3	+7.5	+20.4	+79.2	0.0	+15.0
RW09			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0,24	1.74	0.93	0.24	REF = 33	F +0.833
NO. 1			PERT. R/O	0.44	1.87	1.12	0.43	SIM = 33	W +0.075 SP +0.204
			REF (R/F/R/O)	9.0	1.10	3.75	11.6		SU +0.792
RUNID			Δ% OF R/O	+82.1	+4.44	+19.7	+75.9	-9.1	+12.5
RW09			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.28	2.25	0,61	0.29	REF = 22	F +0,821
NO. 3			PERT, R/O	0.51	2.35	0.73	0.51	SIM = 20	W +0.044 SP +0.197
			REF (R/F/R/O)	8.96	1.38	2.79	7.62		SU +0.759
RUN ID		·····	Δ% OF R/O	+80.0	+2.6	+12.0	+90.5	0.0	+9,9
RW09 SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.10	1.94	1.82	0.21	REF= 4	F +0.800
5			PERT. R/O	0.18	1.99	1.12	0.40[SIM = 4	W +0.026 SP +0.120
			REF (R/F/R/O)	10,8	1.05	1.82	10.57		SU +0.905
RUN ID	 ,		Δ% OF R/O	+82.4	+8.2	+17.8	+72,7	+5.1	+13.8
RW09			STORM R/F	10/15/67	1/8/68 2.76	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF, R/O	1.58 0.17	1.70	0.73	2.95 0.44	REF = 39	F +0.824
NO. 7			PERT. R/O	0.31	1.84	0.86	0,76	SIM = 41	W +0.082
			REF (R/F/R/O)	9.29	1.62	2.63	6.70	,	SP +0.178 SU +0.727
RUN ID		 	Δ% OF R/O	+66.7	+7.6	+19.0	+75.0	0.0	+17.1
RW09			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.18	0.79	1.91 0.63	0.50	9/14/66 REF≈9	F +0.667
	2,00.				.		I . ***	1161 ~ 5	W .000
NO. 11	2,001		PERT. R/O	0.30	0.85	0.75	0.07	SIM = 9	W +0.076 SP +0.190

Figure 6-2. Impervious Area Study, Fall Storms

Figure 6-3. Impervious Area Study, Small Watershed

Figure 6-4. Impervious Area Study, Regional Watershed

IMPERVIOUS AREA SQ. KM

Figure 6-5. Impervious Area Study, Subwatershed No. 1

Figure 6-6. Impervious Area Study, Subwatershed No. 3

6.3.2 FWTR, WATER SURFACE FRACTION OF WATERSHED AREA

FWTR is the fraction of total watershed covered by water surfaces. This parameter refers to the proportion of water surface on the watershed including lakes, ponds, and the area of stream surface. In the simulator it is used to determine the proportion of the watershed at which evaporation occurs at potential rate. The fraction of watershed covered by water is directly obtainable from remote sensing by land-use classification after watershed boundary has been established.

Sensitivity analysis results (Tables 6-14 through 6-23) indicate that FWTR parameter is most influential during fall and summer and least influential during winter when there is little evaporation.

The unit sensitivity on the average is 0.51 for fall and summer seasons, and 0.03 for winter and spring seasons.

Plotted \triangle % runoff of fall storms (Figure 6-7) indicate that variation in -16% of FWTR results in -10% of runoff which corresponds to a unit sensitivity of 0.63 for fall season. Figures 6-8 and 6-9 show results for the small and regional watersheds.

SENSITIVITY ANALYSIS OF FWTR (0.10 REF.)

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

		Δ%			SIGNIFICA	NT STORMS		9/27/64	
RUN ID	PARAM VALUE	PERTUR- BATION	OUTPUT	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-59.1	-3.4	0.0	-27.8	+119.4	+1,0
		1	STORM R/F	3.13	3,19	2.87	2.16		STORM U/
S000	0.001	-100	REF. R/O (IN)	0.44	2.39	1.94	0.36	REF = 3.6	F +0.591 W +0.034
			PERT. R/O (IN)	0.18	2.31	1.94	0,26	SIM = 7.9	SP +0.0
			REF (R/F/R/O)	7.11	1.33	1.48	6.00		SU +0.278
			Δ% OF R/O	-29.6	-1.7	0.0			T
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/
D014	0.05	-50	REF. R/O (IN)	0.44	2,39	1.94	0.36	REF = 3.6	F +0.592 W +0.034
			PERT, R/O (IN)	0.31	2.35	1.94		SIM =	SP +0.0
			REF (R/F/R/0)	7,11	1.33	1.48	6.00		s∪
			Δ% OF R/O	+63.6	+3.4	+0.5	+38.9	-11.1	+2.9
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
S016	0.20	+100	REF. R/O (IN)	0.44	2.39	1.94	0,36	REF = 3,6	F +0.636 W +0.034
			PERT. R/O (IN)	0.72	2.47	1.95	0.50	SIM = 3.2	SP +0.500
			REF (R/F/R/O)	7.11	1.33	1.48	6.00		SU +0.389
			Δ% OF R/O	+129.6	+7.1	+2.1			
	!		STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
D017	D017 0.30 +20	+200	REF.R/O (IN)	0.44	2.39	1.94	0.36	REF = 3.6	F +0.648
			PERT, R/O (IN)	1.01	2.56	1.98			
į			REF (R/F/R/O)	7.1 1	1.33	1,48	6.00	'	SU

TABLE 6-15

SENSITIVITY ANALYSIS OF FWTR (0.10 REF.)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

		T			SIGNIFICA	NT STORMS		9/7/5B	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-60.1	-4.2	13.5	-63.3	+30.4	+3.7
	1		STORM R/F	2.99	0.0	1.78	1.09		STORM U/
06	0.0	-100	REF. R/O (IN.)	0.075	0.041	1.050	0.113	REF = 2.3	F +0.601 W +0.042
			PERT. R/O (IN.)	0.045	0.039	0.908	0.042	SIM = 3.0	SP +0.135
			REF (R/F/R/O)	39.87		1.70	9.65		SU +0.633
			Δ% OF R/O	-30.1	-3.2	-6.8	-38.9	+8.7	-0.2
			STORM R/F	2.99	0.0	1.78	1.09		STORM U
07	0.05	-50	REF. R/O (IN.)	0.075	0.041	1,050	0.113	REF = 2.3	F +0.602 W +0.064
			PERT. R/O (IN.)	0.053	0.040	0.979	0.069	\$IM = 2.5	SP +0.136
			REF (R/F/R/O)	39.87		1.70	9.65		SU +0.778
			Δ% OF R/O	+30.1	+15.9	+6.7	+39.0	+30.4	+2.2
		İ	STORM R/F	2.99	0.0	1.78	1.09		STORM U
09	0.15	+50	REF. R/O (IN.)	0.075	0.041	1.050	0.113	REF = 2.3	F +0.602 W +0.318
			PERT. R/O (IN.)	0.098	0.048	1,121	0.157	SIM = 3.0	SP +0.134
			REF (R/F/R/O)	39.87		1.70	9.65		SU +0.780
			Δ% OF R/O	+61.3	÷34.2	+13.4	+78.2	-8.7	+5.3
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/
10	0,20	+100	REF. R/O (IN.)	0.075	0.041	1.050	0.113	REF = 2.3	F +0.613 W +0.342
	1	1	PERT. R/O (IN.)	0,121	0.055	1.191	0.202	SIM = 2.1	SP +0.134
			REF (R/F/R/O)	39.87		1.70	9.65		SU +0.782

(THIS PAGE INTENTIONALY LEFT BLANK)

SENSITIVITY ANALYSIS OF

REGIONAL WATERSHED 22,248 SQ. KM

FWTR (0.10 REF.)

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	IT STORMS		RVED ANNUA	L H/O - 15.41
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	9/15/68 LOW FLOW	ANNUAL FLOW
	0,0		4% OF R/O	-53.3	-2.0	+8.9	~25.0	-0,1	-1.0
		•	∆% OF MONTHLY R/O	OCT 15,2	JAN -2,1	APR +2.0	AUG -23.2		STORM U/S
RW11			REF. R/Q (IN)	0.15	1.00	0.45	0.08	1	F +0.533
			PERT. R/O (IN)	0,07	0.98	0.49	0.06	REF = 768 SIM = 767	W +0.020 SP ~-0.089
	ļ .	-100	REF. MONTHLY R/O (IN)	0.191	3.703	2.560	0.340	1	SU+0.250
	0.05		Δ% OF R/O	-26,7	-1.0	+4.4	-25.0	-24.5	-2.4
RW12	1		∆% OF MONTHLY R/O	OCT -14.1	JAN ~1.1	APR -0.9	AUG 25.6		STORM U/S
NW12			REF. R/O (IN)	0.15	1.00	0.45	0.08]	F +0.534
			PERT. R/O (IN)	0.11	0.99	0.47	0.06	REF = 768 SIM = 580	W +0.020 SP0.088
	<u> </u>	50	REF. MONTHLY R/O (IN)	0.191	3.703	2.560	0.340		SU+0.250
	0.20		Δ% OF R/O	+53.3	+3.0	0.0	+50.0	+49.2	+7.4
			Δ% OF MONTHLY R/O	OCT +38,7	JAN +2.1	APR -0.8	AUG +54,1		STORM U/S
RW14]		REF. R/O (IN)	0.15	1.00	0.45	0.08		F +0.533 W [‡] 0.030
			PERT. R/O (IN)	0.23	1.03	0,45	0.12	REF = 768 SIM = 1146	SP 0.0
		+100	REF. MONTHLY R/O (IN)	0.191	3.703	2.560	0.340		SU+0.500
	[[0,30	Δ% OF R/O	+113.3	+5.0	+4.4	+100.0	+98.3	+16.5
			4% OF MONTHLY R/O	OCT +80.7	JAN +4.2	APR +0.8	AUG +109.4		STORM U/S
RW15		1	REF. R/O (IN)	0.15	1,00	0.45	0.08		F +0.566
ļ			PERT. R/O (IN)	0.32	1.05	0,47	0.16	REF = 768 SIM = 1523	W +0.025 SP +0.022
	<u> </u>	+200	REF. MONTHLY R/O (IN)	0.191	3.703	2.560	0.340		SU+0.500

Preceding page blank

SENSITIVITY ANALYSIS OF

FWTR (0.10 REF)

ANNUAL R/F = 59.30 IN
EVAPOTRANSPIRATION NET = 40.29 IN
TOTAL OBSERVED ANNUAL R/O = 19.63 IN

	1	1	T		SIGNIFICA	NT STORMS		T	T
RUN ID	PARAM, VALUE	A% PERTUR BATION	OUTPUT	10/ 1 5/67 FALL	1/8/ 68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	9/25/68 LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-77,8	~5.3	-6.3	-57.1	+118.5	+0,1
			STORM R/F	2.16	1.91	3.49	2.79		STORM U/
RW11	0.0	-100	REF. R/O (IN.)	0.18	1.69	0.80	0.14	REF = 27	F +0.778
			PERT. R/O (IN.)	0.04	1.60	0.75	0.06	SIM = 59	W +0.053 SP +0.063
			REF (R/F/R/O)	12.00	1,13	4.36	19.93	j	SU+0.571
			Δ% OF R/O	-38 .9	-2.4	-3.8	-35.7	+3.7	-2.0
			STORM R/F	2.16	1.91	3,49	2.79		STORM U/S
RW12	0.05	-50	REF. R/O (IN.)	0.18	1.69	0.80	0,14	REF = 27 SIM = 28	F +0.778 W +0.048 SP +0.076
			PERT. R/O (IN.)	0,11	1.65	0.77	0.09		
			REF (R/F/R/O)	12.00	1,13 1	4.36	19,93		SU +0.714
			Δ% OF R/O	+83.3	+5.3	+7.5	+78.6	-11.1	+6.2
	-		STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW14	0.20	+100	REF. R/O (IN.)	0.18	1.69	0.80	0.74	REF = 27	F +0.833 W +0.053
			PERT. R/O (IN.)	0.33	1.78	0.86	0.25	SIM = 24	SP +0.053
			REF (R/F/R/O)	12.00	1.13	4.36	19.93		SU +0.786
			Δ% OF R/O	+172.2	+10.7	+16.3	+157.1	22.2	+14.2
ľ			STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW15	0.30	+200	REF. R/O (IN.)	0.18	1,69	0.80	0.14	REF = 27	F +0.861
		PEF	PERT. R/O (IN.)	0.49	1.87	0.93	0.36	SIM = 21	
]		REF (R/F/R/O)	12.00	1.13	4.36	19.93		

SENSITIVITY ANALYSIS OF FWTR (0.10 REF) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

					SIGNIFICA	NT STORMS		9/2/68	ĺ
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ООТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-67.9	2.7	+2.0	-47.8	+116.7	0.7
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW11	0.0	100	REF. R/O (IN.)	0.28	2.23	0,51	0.23	REF= 12	F +0.679 W +0.027
	0.0		PERT. R/O (IN.)	0.09	2.17	0.52	0.12	SIM = 26	SP0.020
			REF (R/F/R/O)	8.96	1,39	3.33	9.61		SU +0.478
			Δ% OF R/O	-35.7	-1.3	+2.0	-30.4	0.0	-1.8
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW12	0.05	-50	REF. R/O (IN.)	0,28	2,23	0.51	0.23	REF = 12 SIM = 12	F +0.714 W +0.026 SP0.040
			PERT. R/O (IN.)	0.18	2.20	0,51	0.16		
			REF (R/F/R/O)	8.96	1.39	3.33	9.61		WU +0.608
			Δ% OF R/O	+75.0	+2.7	+9.8	+60.9	-16.7	+6.4
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW14	0.20	+100	REF, R/O (IN.)	0.28	2.23	0.51	0.23	REF= 12	F +0.750 W +0.027
			PERT. R/O (IN.)	0.49	2.29	0.56	0.37	01 = M18	SP +0.098
			REF (R/F/R/O)	8.96	1.39	3.33	9.61		SU +0.609
			Δ% OF R/O	+134.4	+5.8	+17.7	+121.7	-25.0	+14.1
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW15	0.30	+200	REF. R/O (IN.)	0.28	2.23	0.51	0.23	REF = 12 SIM = 9	F +0.732 W +0.029
			PERT. R/O (IN.)	0.69	2.36	0.60	0.51		SP +0.088
			REF (R/F/R/O)	8.96	1.39	3.33	9.61		SU +0.608

SENSITIVITY ANALYSIS OF FWTR (0.10 REF)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ООТРОТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
	<u> </u>		Δ% OF R/O	-55.6	0.5	-21	52.6	+166.7	+0.2
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
RW11	0.0	-100	REF. R/O (IN.)	0.09	1.92	0,94	0.19	REF = 3 SIM = 8	F +0.59
	0.0		PERT. R/O (IN.)	0.04	1.91	0,92	0.09	314 - 5	SP +0.02
			REF (R/F/R/O)	12.00	1.06	1,94	11.68		SU +0.52
			Δ% OF R/O	-33.3	-0.5	-1.1	31,6	+33.3	-1.0
RW12	0.05	-50	STORM R/F	1.08	2.04	1.82	2.22		STORMU
AW IZ	0.05		REF. R/O (IN.)	0.09	1,92	0.94	0.19	REF = 3 SIM = 4	F +0.66 W +0.01 SP +0.02 SU +0.63
			PERT. R/O (IN.)	0.06	1.91	0.93	0.12		
			REF (R/F/R/O)	12.00	1.06	1.94	11.68		
			Δ% OF R/O	+66.7	+0.5	+1.1	+63.2	0.0	+4,2
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
RW 14	0.12	+100	REF. R/O (IN.)	0.09	1.92	0.94	0.19	REF≖ 3 SIM = 3	F +0,60 W +6,00
		-	PERT. R/O (IN.)	0.15	1.93	0.95	0.31	21141 = 3	SP +0.01
		İ	REF (R/F/R/O)	12.00	1,06	1.94	11.68		SU +0.63
			Δ% OF R/O	+133.3	+1.6	+6.4	+126.3	0.0	+10.0
			STORM R/F	1.08	2.04	1.82	2.22		STORM U
RW15	0.30	+200	REF. R/O (IN.)	0.09	1.92	0.94	0.19	REF = 3	F +0.66
		l	PERT. R/O (IN.)	0.21	1.95	1.00	0.43	SIM = 3	3 W +0.008 SP +0.032 SU +0.631
			REF (R/F/R/O)	12,00	1.06	1.94	11.68		

SENSITIVITY ANALYSIS OF FWTR (0.10 REF.) SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

						9/30/68			
RUNID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 Fall	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-78.6	6.0	3.2	-56.7	+121.1	0.2
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW11	0.0	-100	REF. R/O (IN.)	0.14	1.68	0.63	0.30	REF = 19 SIM = 42	F +0.786 W +0.060
			PERT. R/O (IN.)	0.03	1.56	0.61	0.13]	SP +0.032
	_		REF (R/F/R/O)	11.29	1.66	3.05	9.83		SU +0.567
			Δ% OF R/O	-42.9	3.0	-1.6	-33.3	+5.3	2.0
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW12	0.05	50	REF, R/O (IN.)	0.14	1.66	0.63	0.30	REF = 19	F +0.858 W +0.060
			PERT. R/O (IN.)	0.08	1.61	0.62	0.20	SIM = 20	W +0.060 SP +0.032
			REF (R/F/R/O)	11.29	1.66	3.05	9.83		\$U +0.666
			Δ% OF R/O	+78.6	+6.6	+6.3	+73.3	-10.5	+6.9
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW14	0.20	·+100	REF. R/O (IN.)	0.14	1.66	0.63	0.30	REF = 19	F +0.786 : W +0.066
			PERT. R/O (IN.)	0.25	1,77	0.87	0.52	SIM = 17	SP +0.063
			REF (R/F/R/O)	11.29	1,66	3.05	9.83		SU +0.733
			Δ% OF R/O	+164.3	+13.3	+19.1	+143.3	21.1	+15.8
			STORM R/F	1.58	2,76	1.92	2.95		STORM U/S
RW 15	0.30	+200	REF. R/O (IN.)	0.14	1.66	0.63	0.30	REF = 19	F +0.821 W +0.066
			PERT. R/O (IN.)	0.37	1.88	0.75	0.73	SIM = 15	SP +0.095
		<u> </u>	REF (R/F/R/O)	11.29	1.66	3.05	9.83		SU +0.716

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 11 2,551 SQ. KM

FWTR (0.10 REF.)

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

-					SIGNIFICA	NT STORMS		9/14/68	ANNUAL FLOW
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	
	 		Δ% OF R/O	- 31.8	4.9	-3.3	-25.0	+125.0	+0.2
	Ì		STORM R/F	1.35	1.37	1.91	0.50		STORM U
RW11	0.0	-100	REF. R/O (IN.)	0.22	0.81	0.61	0.04	REF = 8	F +0.31 W +0.04
	}		PERT. R/O (IN.)	0.15	0.77	0.59	0.03	SIM = 18	SP +0.03
			REF (R/F/R/O)	6.14	1.69	3,13	12.50		SU +0.25
	-		Δ% OF R/O	18.2	2.5	1.6	-25.0	0.0	-1.5
			STORM R/F	1.35	1.37	1.91	0.50		STORMU
RW12	0.05	-50	REF. R/O (IN.)	0.22	0.81	0.61	0.04	REF = 8 SIM = 8	F +0.36 W +0.05 SP +0.03
			PERT. R/O (IN.)	0.18	0.79	0.60	0.03		
		-	REF (R/F/R/O)	6.14	1.69	3.13	12.50		SU +0.05
		 	Δ% OF R/O	+36.4	+4.9	+4.9	+25,0	12.5	+7.0
	1		STORM R/F	1.35	1.37	1.91	0.50	-	STORMU
RW14	0.20	+100	REF. R/O (IN.)	0.22	0.81	0.61	0.04	REF'= 8 SIM = 7	F +0.38 W +0.04
	1		PERT. R/O (IN.)	0.30	0.85	0.64	0.05	2lik = ,	SP +0.04
			REF (R/F/R/O)	9,0	1.8		16.1		SU +0.25
	 		Δ% OF R/O	+77.3	+9.9	+14.8	+75.0	25.0	+16.2
	}		STORM R/F	1,35	1.37	1.91	0.50		STORM U
RW15	0.30	+200	REF. R/O (IN.)	0.22	0.81	0.61	0.04	REF = 8 SIM = 6	F +0.3
			PERT. R/O (IN.)	0.39	0.89	0.70	0.07		SP +0.0
		1	REF (R/F/R/O)	6.14	1.69	3,13	12.50		SU +0.3

SENSITIVITY ANALYSIS OF FWTR -100% PERTURBATION (0.10 REFERENCE)

SMALL, SNOW & REGIONAL WATERSHEDS

		1			SIGNIFICA	NT STORMS			ĺ
WATERSHED	AREA' (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-59.1	-3.4	0.0	-27.8	+119.4	+1.0
S000			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.44	2.39	1.94	0.36	REF = 3.6	F +0.591 W +0.034
			PERT. R/O	0,18	2.31	1.94	0.26	SIM = 7.9	SP +0.0
			REF (R/F/R/O)	7.11	1.33	1.48	6.00		SU +0.278
RUN ID			∆% OF R/O	-60 .1	-4.2	-13.5	-63.3	+30.4	+3.7
06			STORM R/F	10/ 1 8/57 2 .99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.075	0.041	1.050	0,113	REF = 2.3	F +0.601 W +0.042
			PERT. R/O	0.045	0.039	0.908	0.042	SIM ≃ 3.0	SP +0.135
			REF (R/F/R/O)	39.87		1.70	9.65		SU +0.633
RUN ID			Δ% OF R/O	-53.3	-2.0	+8.9	-25.0	-0.1	-1.0
RW11			∆% OF MONTHLY R/O	OCT -15.2	JAN -2,1	APR +2.0	AUG -23.2	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.15	1.00	0.45	0.08	REF ≈ 768	F +0.533
			PERŤ. R/O	0.07	0.98	0.49	0.06	StM = 767	W +0.020 SP -0.089
			REF. MONTH-	0.191	3.703	2.560	0.340		SU +0.250
RUN ID			Δ% OF R/O	-77.8	-5.3	-6.3	-57.1	+118.5	+0.1
RW11			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0.18	1,69	0.80	0.14	REF = 27	F +0.778
NO. 1			PERT. R/O	0.04	1.60	0.75	0.06	SIM = 59	W +0.053 SP +0.063
		İ	REF (R/F/R/O)	12.00	1.13	4.36	19,93		SU +0.571
RUN ID			Δ% OF R/O	-67.9	-2.7	+2,0	-47.8	+116.7	-0.7
RW11			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.28	2.23	0.51	0.23	REF = 12	F +0.679
NO. 3			PERT. R/O	0.09	2.17	0.52	0.12	SIM = 26	W +0.027 ; SP -0.020 ;
			REF (R/F/R/O)	8.96	1,39	3,33	9,61		SU +0.478
RUN ID			Δ% OF R/O	-55.6	-0.5	-2.1	-52.6	+166.7	+0.2
RW11 SUB-			STORM R/F	10/15/67 1.08	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.09	2.04 1.92	1.82 0.94	0.19	REF = 3	F +0.556
5			PERT, R/O	0.04	1.91	0.92	0.09	SIM = 8	W +0.005 SP +0.021
			REF (R/F/R/O)	12.00	1.06	1.94	11.68		SU +0.526
RUN ID		 	Δ% OF R/O	-78.6	-6.0	-3.2	-56,7	+121,1	-0.2
RW11			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	1.58 0.14	2.7 6 1.66	1.42 0.63	2.95 0.30	REF = 19	F +0.786
NO. 7	, , , ,	"	PERT. R/O	0.03	1.56	0.61	0.13	SIM = 42	W +0.060
			REF (R/F/R/O)	11.29	1.66	3.05	9.83	OH# 76	SP +0.032 SU +0.567
RUNID	-	 	Δ% OF R/O	-31.8	-4.9	-3.3	-25.0	+125.0	+0.2
RW11			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68		
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.22	1.37 0.81	1,91 0.61	0.50 0.04	9/14/68 BEE - 0	\$TORM U/S F +0.31B
NO. 11	_,_,,			···				REF = 8	W +0.049
1	:		PERT. R/O	0.15	0.77	0.59	0.03	SIM = 18	SP +0.033 SU +0.250
		L	REF (R/F/R/O)	6.14	1.69	3.13	12.50		30 10,200

FWTR ++100% PERTURBATION (0.10 REFERENCE)

					SIGNIFIC	ANT STORMS			
WATERSHED	AREA' (SQ. KM)	EPAET (IN)	ОЏТРОТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID S016			Δ% OF R/O	+63.6	+3.4	+0.5	+38.9	-11.1	+2.9
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF. R/O	0.44	2.39	1,94	0.36	REF ≈ 3.6	F +0.636 W +0.034
		1	PERT. R/O	0.72	2.47	1.95	0.50	SIM = 3.2	SP +0.500
		ļ	REF (R/F/R/O	7.11	1.33	1.48	6.00		SU +0.389
RUN ID 10			Δ% OF R/O	+61,3	+34.2	+13.4	+78.2	-8.7	+5.3
,,			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/ 58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.075	0.041	1.050	0.113	REF = 2.3	F +0.613
			PERT. R/O	0.121	0.055	1.191	0.202	SIM = 2.1	W +0.342 SP +0.134
,			REF (R/F/R/O)	39.87		1.70	9.65	1	SU +0.782
RUN ID RW14			Δ% OF R/O	+53.3	+3,0	0.0	+50.0	+49.2	+7.4
DW 14			Δ% OF MONTHLY R/O	OCT +38.7	JAN +2.1	APR -0.8	AUG +54.1	9/15/68	STORM U/
REGIONAL	22,248	41	REF. R/O	0.15	1.00	0.45	0.08	REF = 768	F +0.533
			PERT. R/Q	0.23	1.03	0.45	0.12	SIM = 1146	W +0.030 SP 0.0
			REF, MONTH - LY R/O	0.191	3.703	2.560	0.340		SU +0.500
RUN ID RW14			Δ% OF R/O	+83.3	+5.3	+7.5	+78.6	-11.1	+6.2
SUB-			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
WATERSHED NO.	2,326	50	REF. R/O	0.18	1.69	0.80	0.14	REF = 27	F +0.833
1		,	PERT. R/O	0.33	1.78	0.86	0.25	SIM = 24	W +0.053 SP +0.075
		<u>'</u>	REF (R/F/R/O)	12.00	1.13	4.36	19.93		SU +0.786
RUN ID RW14			Δ% OF R/O	+75.0	+2.7	+9.8	+60,9	-16.7	+6.4
SUB-			STORM R/F	10/15/67 2.51	1/9/68 3,11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
WATERSHED NO.	813	50	REF. R/O	0.28	2.23	0.51	0.23	REF = 12	F +0.750
3			PERT. R/O	0.49	2.29	0.56	0.37	SIM = 10	W +0.027 SP +0.098
			REF (R/F/R/O)	8.96	1.39	3.33	9.61		SU +0.609
RUN ID RW14			Δ% OF R/O	+66.7	+0.5	+1.1	+63.2	0.0	+4.2
SUB			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
NATERSHED NO.	1,064	37	REF. R/O	0.09	1.92	0.94	0.19	REF=3	F +0.667
5]		PERT, R/O	0.15	1.93	0.95	0.31	SIM = 3	W +0.005 SP +0.011
			REF (R/F/R/O)	12.00	1.06	1,94	11.68		SU +0.632
RUN ID RW14			Δ% OF R/O	+78.6	+6.6	+6.3	+73.3	-10.5	+6.9
SUB-	ĺ		STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/S
VATERSHED NO.	1,111	40	REF. R/O	0,14	1.66	0.63	0.30	REF = 19	F +0.786
7			PERT. R/O	0.25	1.77	0.67	0.52	SIM = 17	W +0.066 SP +0.063
			REF (R/F/R/O)	11.29	1.66	3.05	9.83		SU +0.733
RUN ID			Δ% OF R/O	+36.4	+4.9	+4.9	+25.0	-12.5	+7.0
RW14 SU8-	ł	Ì	STORM R/F	10/28/67 1.35	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
ATERSHED NO.	2,551	30	REF. R/O	0.22	0.81	0.61	0.50 0.04	REF = 8	F +0.364
11	- 1	Ī	PERT. R/O	0.30	0.85	0.64	0.05	SIM = 7	W +0.049 SP +0.049
[. [ļ	REF (R/F/R/O)	6.14	1.69	3.13	12.50		SU +0.250

Figure 6-7. Water Surface Area Study, Fall Storms

Figure 6-8. Water Surface Area Study, Small Watershed

Figure 6-9. Water Surface Area Study, Regional Watershed

6.3.3 VINTMR, VEGETATIVE INTERCEPTION MAXIMUM RATE

VINTMR is the maximum volume of interception by branches and stems of vegetation. This parameter refers to the maximum volume of precipitation which will be caught and held by a vegetation canopy during a period of rainfall.

The study used the following table of values suggested by Crawford and Linsley.

WATERSHED COVER	VINTMR (INCHES)
Grassland	0.10
Moderate Forest Cover	0.15
Heavy Forest Cover	0.20

VINTMR is indirectly obtainable from remote sensing by land-use classification and the use of table such as that above.

Sensitivity analysis results (Tables 6-24 through 6-33) indicates that VINTMR is not particularly influential. In previous sensitivity analysis studies it has been shown that changing VINTMR has negligible effect during all seasons. Large changes in VINTMR showed their most pronounced effect when applied to subwatershed number 5, which experienced a light strom (total rainfall 1.08 inches) during a 7-day period and a total storm runoff of 0.04 inches. Results of this study has been plotted (Figures 6-10 through 6-14) to show that VINTMR has a unit sensitivity of 0.074 during the fall season when perturbed $\pm 50\%$.

SENSITIVITY ANALYSIS OF SMALL WATERSHED 366 SQ. KM

VINTMR J(0.15)

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL ORSERVED ANNUAL B/O = 31.29

	<u> </u>	T]		·		TOTAL OBSE	RVED ANNUA	L R/O = 31.38
	PARAM	Δ%	Ì		SIGNIFICA	ANT STORMS		9/27/64	
RUN ID	VALUE	PERTUR- BATION	ОПТРИТ	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 `SUMMER	LOW FLOW	ANNUAL FLOW
		ł	Δ% OF R/O	+0.2	-0.9	+0.8	-0.6	+5.1	+0.3
			STORM R/F	3.13	3.19	· 2.87	2.16		STORM U
S018	0.001	-100	REF. R/O (IN)	0.175	2.31	1.94	. 0.255	REF = 7.9	F -0.002
		1	PERT. R/O (IN)	0.180	2.29	1.95	0.253	SIM = 8.3	W +0.009 SP -0.008
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.006
			Δ% OF R/Q	-0.1	+0.7	+1.2	· _0.9	-2.5	-0.04
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
S019	0.30	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.001
			PERT, R/O (IN)	0.174	2.33	1,96	0.250	SIM = 7.7	W +0.007 SP +0.012
	<u> </u>	<u> </u>	REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.009
			Δ% OF R/O	0.2	+1.0	+3.5			
D020			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
0.50	0.50		AEF. R/O (IN)	0.175	2.31	1.94	0.255		F -0.001
			PERT. R/O (IN)	0.174	2.34	2.01		REF = 7.9 SIM =	W +0.004 SP +0.015
6-42		i	REF (R/F/R/O)	17.9	1.38	1.47	8.3	^	SU

SENSITIVITY ANALYSIS OF

SNOW WATERSHED 277 SQ. KM

VINTMR (0.15)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

	<u> </u>]	<u> </u>	[SIGNIFICA	NT STORMS		9/7/58	<u> </u>
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ООТРОТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+6.9	+17.8	-1.8	+9.5	+10.0	+3.6
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
	:		REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.3	F -0.069 W -0.178
RW11	0.0	100	PERT. R/O (IN.)	0.035	0.046	0.900	0.047	21141 = 2'2	SP +0.018
			REF (R/F/R/O)	91		1.94	25		SU0.09
4			Δ% OF R/O	+1.1	+4.4	-0.3	+2.4	+3.3	+0.48
			STORM R/F	2.99	0.0	1.78	1.09		STORM U
RW12	0.075	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.1	F -0.02 W0.08
			PERT. R/O (IN.)	0.034	0,041	0.900	0.047	SIM = 3,1	SP +0.000
			REF (R/F/R/O)	91		1.94	25		SU -0.04
			Δ% OF R/O	-0.6	-2.6	+0.1	-2.2	0.0	-0.39
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
RW13	0.225	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	F0.01 W0.05
			PERT. R/O (IN.)	0.032	0.038	0.917	0.042	211VI = 3.0	SP +0.00
			REF (R/F/R/O)	91		1.94	25		SU _0.04
			∆% OF R/O	-0.7	-4.6	+0.1	-4.5	0.0	0.73
	ļ		STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
RW14	0.30	+100	REF, R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	¥ –0.00 W –0.04
		<u> </u>	PERT. R/O (IN.)	-0.6	−8.7	+0.1	-8.1	31141 - 3.0	SP +0.00
			REF (R/F/R/O)	91		1.94	25		SU -0.04
			∆% OF R/O	-0.6	-8.7	+0.1	-8.1	0.0	D.94
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
RW15 0.45	0.45).45 +200 R	REF. R/O (IN.)	0:033	0.039	0.916	0:043	REF = 3.0 SIM = 3.0	F -0.003 W -0.043
			PERT, R/O (IN.)	0.032	0.036	0.917	0.040	3111 - 3,0	SP +0,005
6-43			REF (R/F/R/O)	91	, pre respon	1.94	25		SU -0.040

TABLE 6-26 VINTMR (0.15) ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

RUN PARAM PERTUR- OUTPUT 10/28/67 1/21/68 5/9/68 8/11/68 LOW ANNUAL FLOW Flow Flo	TEGIONAE I	VATERSHED 2	<u>Г</u>		·······	Significan'	IVED ANNUAL	1		
RW16 0.0 -100			PERTUR-	OUTPUT		1/21/68	5/9/68	l	LOW	ANNUAL FLOW
RW139 0.0				Δ% OF R/O	+9.0	+0.4	+2.9	+25.7	+32.1	+2.79
RW16 0.0 -100 REF.R/O (IN) 0.099 0.980 0.487 0.064 REF 644 W -0.00 Sp -0.00										STORM U/S
PERT. R/O (IN) 0.11 0.981 0.50 0.08 SIM = 851 SP = 0.02 SI = 0	RW16	0.0	-100	REF. R/O (IN)	0.099	0.980	0.487	0.064	DEE - CAA	1
RW138 0.075			İ		0,11	0.981	0.50	0.08		
RW139					0.177	3.634	2.600	0.258		SU -0.257
RW138 0.075 -50 REF. R/O (INI 0.099 0.980 0.487 0.064				Δ% OF R/O	+1.5	+0.2	+0.6	+4.7	+3.42	+0.47
RW138 0.075										STORM U/S
RW139 0.225	RW138	0.075	-50	REF. R/O (INI	0.099	0.980	0.487	0.064	REF = 644	1
RW139 0.225 +50					0.10	0.982	0.490	0.067		ĺ
RW139 0.225 +50					0.177	3.634	2.600	0.258		SU0.094
RW139 0.225 +50 REF. R/O (IN) 0.099 0.980 0.497 0.064 PERT. R/O (IN) 0.097 0.979 0.486 0.061 SIM = 636				∆% OF R/O	-1.4	-0.1	-0.3		-1.24	-0.41
REF. R/O (IN) 0.099 0.980 0.487 0.064 PERT. R/O (IN) 0.097 0.979 0.486 0.061 REF. MONTHLY R/O (IN) 0.177 3.634 2.600 0.258 A% OF R/O —2.6 —0.1 —0.7 —8.5 —2.48 —0.74 A% OF MONTHLY R/O —2.26 —0.03 —0.35 —7.36 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.98 0.48 0.06 SIM = 628 SP —0.06 REF. MONTHLY R/O —5.2 0.0 —1.4 —17.9 —5.12 —1.55 A% OF MONTHLY R/O —5.2 0.0 —1.4 —17.9 —5.12 —1.55 RW18 0.50 +233 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.48 0.05 SIM = 611 SP —0.02 REF. MONTHLY 0.137 0.099 0.980 0.48 0.05 SIM = 611 SP —0.02										STORMU/S
PERT. R/O (IN) 0.097 0.979 0.486 0.061 SIM = 636 SP -0.00 REF. MONTHLY R/O (IN) 0.177 3.634 2.600 0.258 SU -0.00 SU -0.0	RW139	0.225	+50	REF. R/O (IN)	0.099	0.980	0.487	0.064	DEC = 644	
RW17 0.30 +100 +100 -2.6 -0.1 -0.7 -8.5 -2.48 -0.74 -0.03 -7.36 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. MONTHLY R/O REF. MONTHLY R/O -5.2 0.00 -1.4 -17.9 -5.12 -1.55 -2.48 -0.74 STORM U/F -0.02 REF. MONTHLY R/O SU -0.06 SU -0.06 REF. MONTHLY R/O -4.52 -0.06 -2.54 -16.28 REF = 644 STORM U/F -0.02 REF. MONTHLY R/O SU -0.06 SU -0.06 REF. R/O (IN) 0.099 0.980 0.487 0.604 REF = 644 STORM U/F -0.02 AUG -1.628 REF = 644 STORM U/F -0.02 -2.54 -16.28 REF = 644 STORM U/F -0.02 -2.54 REF = 644 STORM U/F -0.02 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 STORM U/F -0.02 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 STORM U/F -0.02 STORM U/F -0.02 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 STORM U/F -0.02 STORM U/F -0.02 STORM U/F -0.02 REF. R/O (IN) REF. R/O (IN) 0.099 0.980 0.487 0.064 SIM = 611 SP -0.00					0.097	0.979	0.486	0.061		SP -0.006
RW17 0.30 +100 +100 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) 0.099 REF. MONTHLY R/O SU -0.08 REF. MONTHLY R/O AW OF R/O COT JAN APR AUG REF. G44 SIM = 628 SP -0.00 SU -0.08 REF. R/O (IN) 0.090 0.258 REF. R/O (IN) AW OF R/O COT MONTHLY R/O REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) REF. R/O (IN) REF. R/O (IN) 0.099 0.980 0.487 0.064 REF. R/O (IN) REF. R/O (IN) REF. MONTHLY 0.173 0.074 0.075 REF. MONTHLY 0.173 0.074 0.075 REF. MONTHLY 0.173 0.075 REF. MONTHLY 0.173 0.074 0.075 REF. MONTHLY 0.173 0.075 REF. MONTHLY 0.075 REF.					0.177	3.634	2.600	0.258		SU -0.086
RW17 0.30 +100 +100 REF. R/O (IN)					-2.6	-0 .1	-0.7	-8.5	-2.48	-0.74
RW17 0.30 +100 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 W -0.00 SP -0.00 SIM = 628 SP -0.00 SU -0.08 REF. MONTHLY R/O (IN) 0.099 0.98 0.48 0.06 SIM = 628 SP -0.00 SU -0.08 RW18 0.50 +233 -234										STORM U/S
RW18 0.50 PERT. R/O (IN) 0.099 0.98 0.48 0.06 SIM = 628 SP - 0.00 SU - 0.08	RW17	0.30	+100	REF.R/O (IN)	0.099	0.980	0.487	0.064	REE = 644	
RW18 0.50 +233 +233					0.099	0.98	0.48	0.06		
RW1B 0.50 +233					0.177	3.634	2.600	0.258		SU0.085
RW1B 0.50 +233 MONTHLY R/O -4.52 -0.06 -2.54 -16.28 REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 W -0.0 SP -0.000 REF. MONTHLY 0.173 2.624 0.650 0.650 SIM = 611 SP -0.000 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 0.650 REF. MONTHLY 0.173 2.624 0.650 REF		ļ							-5.12	-1.55
REF. R/O (IN) 0.099 0.980 0.487 0.064 REF = 644 W -0.0 PERT. R/O (IN) 0.09 0.98 0.48 0.05 SIM = 611 SP -0.000 REF. MONTHLY 0.177 3.034 0.050 0.050 SIM = 611 SP -0.000	DIM19	0.50	1222							STORM U/S
PERT. R/O (IN) 0.09 0.98 0.48 0.05 SIM = 611 SP0.00	10 to 10	0.50).50 +233	REF. R/O (IN)	0.099	0.980	0.487	0.064	1	
					0.09	0.98	0.48	0.05		••
	6-44			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.077

SENSITIVITY ANALYSIS OF

VINTMR (0.15)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

JBWATERSHI		2,326 SQ. KM	1	,	SIGNIFICA	NT STORMS		9/25/68 LOW FLOW	
RUN ID	PARAM VALUE	∆% PERTUR BATION	ОПТРПТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER		ANNUAL FLOW
<u> </u>			Δ% OF R/O	+3.6	-0.3	+1.8	+20.7	+26.5	+1.71
RW16	0.0	_100	STORM R/F	2.16	1 .91	3.49	2.79	REF = 34 SIM = 43	STORM U/ F -0.03 W +0.00 SP -0.01 SU0.20
			REF. R/O (IN.)	0.045	1.609	0.749	0.059		
			PERT. R/O (IN.)	0.05	1.60	0.76	0.07		
			REF (R/F/R/O)	48	1.18	4.65	46.5		
RW138	0.075	-50	Δ% OF R/O	+0.4	+0.2	+0.2	+1.2	0.0	+0.21
			STORM R/F	2.16	1.91	3.49	2.79	REF = 34 SIM = 34	STORM U/ F -0.008 W -0.004 SP -0.00 SU -0.02
			REF. R/O (IN.)	0.045	1.609	0.749	0.059		
			PERT. R/O (IN.)	0.045	1.612	0.751	0.059		
			REF (R/F/R/O)	48	1.18	4.65	46.5		
RW139	0.225	+50	∆% OF R/O	-0.4	0.0	0.0	0.8	-2.94	-0.13
			STORM R/F	2.16	1.91	3.49	2.79	REF =34 SIM = 33	STORM U F0.0 W 0.0 SP 0.0 SU0.0
			REF. R/O (IN.)	0.045	1.609	0.749	а.059		
			PERT. R/O (IN.)	0.044	1,609	0.749	0.058		
			REF (R/F/R/O)	48	1.18	4.65	46.5		
RW17	0.30	+100	Δ% OF R/O	-0.8	+0.2	-0.2	-1.6	-2.94	0.24
			STORM R/F	2.16	1.91	3.49	2.79	REF = 34 SIM = 33	STORM U/ F -0.00 W +0.00 SP -0.00 SU -0.0
			REF. R/O (IN.)	0.045	1.609	0.749	0.059		
			PERT. R/O (IN.)	0.04	1.61	0.74	0.059		
			REF (R/F/R/O)	48	1.18	4.65	46.5		
RW18	0.50	+233	Δ% OF R/O	1.B	+0.3	-0.6	3.5	-5.88	-0.49
			STORM R/F	2.16	1,91	3.49	2.79	REF = 34 SIM = 32	STORM U/S F -0.00 W +0.00 SP0.00
			REF. R/O (IN.)	0.045	1.609	0.747	0.059		
			PERT. R/O (IN.)	0.04	1.61	0.74	0.06		
6-45	1		REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.0

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 3 813 SQ. KM

VINTMR (0.15)

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

-	PARAM VALUE	Δ % PERTUR- BATION	ОИТРИТ	SIGNIFICANT STORMS				9/2/68	H/O = 26.14 IN
RUN ID				10/15/67	1/9/68	4/25/68	7/31/68	LOW FLOW	ANNUAL FLOW
				FALL	WINTER	SPRING	SUMMER		
, RW 16	0.0	-100	Δ% OF R/O	+3.5	0.2	-2.4	+7.3	+4.35	+0.97
			STORM R/F	2.51	3.11	1.70	2.21	REF = 23 SIM = 24	STORM U/S F -0.035 W +0.002 SP +0.024 SU -0.073
			REF. R/O (IN.)	0.095	2.170	0.521	0.117		
			PERT. R/O (IN.)	0.10	2.16	0.53	0.13		
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		
RW 138	0.075	50	Δ% OF R/O	+0.4	+0.2	+0.1	+0.8	0.0	+0.05
			STORM R/F	2.51	3.11	1.70	2.21	REF =23 SIM = 23	STORM U/S F -0.008 W -0.004 SP -0.002 WU -0.016
			REF. R/O (IN.)	0.095	2.170	0.521	0.117		
			PERT. R/O (IN.)	0.095	2,173	0.522	0.118		
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		
RW 139	0.225	+5u	Δ% OF R/O	0.4	0.0	0.0	-0.5	0.0	0.04
			STORM R/F	2.51	3.11	1.70	2.21	REF = 23 SIM = 23	STORM U/S F0.008 W 0.0 SP 0.0 SU0.010
			REF. R/O (IN.)	0.095	2.170	0.521	0.117		
			PERT. R/O (IN.)	0,094	2.169	0.521	0.116		
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		
	0.30	+100	Δ% OF R/O	-0.9	0.0	0.2	-1.0	0.0	-0.04
			STORM R/F	2.51	3.11	1.70	2.21	REF = 23 SIM = 23	STORM U/S F -0.009 W 0.0 SP -0.002 SU -0.010
RW 17			REF. R/O (IN.)	0.095	2.170	0.521	0.117		
			PERT. R/O (IN.)	0.09	2.17	0.52	0.12		
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		
RW 18	0.50	+233	Δ% OF R/O	-2.0	0.5	-0.6	-2.5	0.0	-0.23
			STORM R/F	2.51	3.11	1.70	2.21	REF = 23 SIM = 23	STORM U/S F -0.009 W -0.002 SP0.003 SU0.011
			REF. R/O (IN.)	0.095	2.170	0.521	0.117		
			PERT. R/O (IN.)	0.09	2.16	0.52	0.11		
6-46			REF (R/F/R/O)	26.4	1.43	3.25	18.9		

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 5 1,064 SQ. KM

VINTMR (0.15)

ANNUAL R/F = 48.24 IN
EVAPOTRANSPIRATION NET = 27.87 IN
TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	+18.4	-0.3	+1.6	+14.8	+25.0	+1.02
			STORM R/F	1.08	2.04	1.82	2.22		STORM
RW 16	0,0	-100	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 5	F -0.1 W +0.0
			PERT. R/O (IN.)	0.04	1.90	0.94	0.10	31141 - 0	SP -0.1
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU0.
			Δ% OF R/O	+3.7	+0.2	+0.2	+2.5	+25.0	+0.10
			STORM R/F	1.08	2.04	1.82	2.22		STORM
RW 138	0.076	-50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF≈4	F -0.1
			PERT. R/O (IN.)	0.037	1,912	0.924	880.0	T SIM ≈ 5	SP -0.
	ĺ	1	REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.
			Δ% OF R/O	-3.7	-0.1	-0.2	-2.5	0.0	-0.07
			STORM R/F	1.08	2.04	1.82	2.22		STORM
RW 139	0.225	+50	REF. R/O (IN.)	0,036	1.907	0.921	0.086	REF≃4 SIM≃ 4	F -0.1 W -0.1
	1		PERT. R/O (IN.)	0.035	1.905	0.920	0.084	31141 - 4	SP -0.0
].	E	REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.
			Δ% OF R/O	-7.4	-0.1	-0.3	-4.6	0.0	-0.14
			STORM R/F	1.08	2.04	1.82	2.22		STORM
AW 17	0.30	+100	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF⇒4 SIM = 4	F ~0.
			PERT. R/O (IN.)	0.03	1.91	0.92	0.08	31141 - 4	SP _U.
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU −0.
			Δ% OF R/O	-16.1	0.0	+0.7	-11,0	0.0	-0.35
			STORM R/F	1.08	2.04	1.82	2.22		STORM
RW 18	0.50	+233	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF=4 SIM=4	F0.4 W 0.4
]		PERT. R/O (IN.)	0.03	1.91	0.92	0.08	51W = 4	SP +0.0
6-47			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.1

SENSITIVITY ANALYSIS OF VINTMR (0.16) SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O \simeq 18.29 IN

BWATERSH	l lo ito.	1,111 SQ. KM	! 		SIGNIFICA	NT STORMS	TOTAL OBSER	9/30/68	Ī
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+2.0	-0.4	+2.3	+4.1	+7.5	+1.29
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW 16	0.0	-100	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 43	F -0.0
			PERT. R/O (IN.)	0.03	1.55	0.62	0.13	3	SP -0.0
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.0
			∆% OF R/O	+0.1	-0.2	+0.6	+0.6	+2.5	+0.16
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
DW 420	0.075	-50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 41	F ~0.0
PW 138	0.075	_50	PERT. R/O (IN.)	0.029	1.554	0.613	0.128	31141 2 41	SP0.0
		1	REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU0.6
			Δ% OF R/O	-0.2	+0,1	-0.2	-0.4	0.0	0.13
	ļ		STORM R/F	1.58	2.76	1.92	2.95		STORM U/
RW 139	0,225	+50	REF. R/O (IN.)	0,029	1.557	0.610	0.127	REF = 40	F0.6 W +0.6
1111 100	Ų		PERT. R/O (IN.)	0.029	1.558	0.608	0.126	SIM = 40	SP -0.
		1	REF (R/F/R/O)	54,5	1.77	3.14	23.2		su -0.
 -			∆% OF R/O	-0.4	0.0	-0.4	-0.8	0.0	-0.25
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW 17	0.30	+100	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF≃40	F -0.00 W 0.0
			PERT. R/O (IN.)	0.03	1.56	0.61	0.13	SIM ≃ 40	SP -0.00
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1 1	SU -0.00
· · · · · · · · · · · · · · · · · · ·			Δ% OF R/O	-0.9	0.0	-1.0	-1.6	2.5	0.55
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/
RW 18	0 .50	+233	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 39	F -0.00 W -0.0
			PERT. R/O (IN.)	0.03	1.56	0.60	0.12	2IINI = 2a	SP -0.00
6-48			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU -0.00

SENSITIVITY ANALYSIS OF

SUBWATERSHED NO. 11 2,651 SQ. KM

VINTMR (0.15)

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

	I Z	,,001 şd. Kim	T		SIGNIFICA	NT STORMS	TOTAL OBULL		- H/U = 12.82 II
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	⁷ ОПТРОТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	9/14/68 LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+6.3	-1.0	+3.1	+38.8	+22.2	+2.97
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 16	0,0	-100	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.063 W +0.010
			PERT. R/O (IN.)	0.16	0.76	0.61	0.04	SIM ≈ 11	SP -0.031
		<u> </u>	REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.388
			Δ% OF R/O	+1.7	+0.13	+1.0	+9.0	+11.1	+0.70
	 		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 138	i 0.075	-50	REF, R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.034 W -0.003
			PERT. R/O (IN.)	0.153	0.770	0.593	0.034	SIM = 70	SP -0,010
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.090
			Δ% OF R/O	-1.8	0.0	-1.6	-8.7	0.0	-0.60
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 139	0.225	+50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 9	F -0.018 w 0.0
			PERT. R/O (IN.)	0.148	0.769	0.578	0.029	31W - V	SP -0.016
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.087
			Δ% OF R/O	-3.5	+0.2	-3.1	16.4	-11.1	-1.17
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 17	0.30	+100	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF≃9 SIM = 0	F -0.035 W +0.002
			PERT. R/O (IN.)	0,14	0.77	0.57	0.03	3IM - 0	SP -0.031
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.164
			∆% OF R/O	-7.3	-0.4	-5.9	29.5	-11.1	-2.32
			STORM R/F	1.35	1.37	1.91 ·	0.50		STORM U/S
RW 18	0.50	+233	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF=9 SIM=8	F -0.031 W -0.025
			PERT. R/O (IN.)	0.14	0.77	0.55	0.02	21M = 2	W =0.025 SP =0.002
6-49			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU0.127

SENSITIVITY ANALYSIS OF VINTMR +50% PERTURBATION (0.15)

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ, KM)	EPAET (IN)	ОПТРПТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O			_			
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	l F l W
1			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU
RUN ID			∆% OF R/O	-0.6	-2.6	+0.1	-2.2	0.0	-0.39
13			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
snow	277	32	REF. R/O	0.033	0.039	0,916	0.043	REF = 3.0	F -0.012 W -0.052
Ì			PERT. R/O	0.032	0.038	0.917	0.042	SIM = 3,0	SP +0.002
			REF (R/F/R/O)	91		1.94	25		SU -0.044
RUNID			Δ% OF R/O	-1.4	-0.1	-0.3	-4.3	-1.25	-0,41
RW139			Δ% OF MONTHLY R/O	OCT -1,13	JAN -0.06	APR -0.19	AUG -3.88	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.028
			PERT. R/O	0.097	0.979	0.486	0.061	SIM = 636	W -0.002 SP -0.006
			REF. MONTH-	0.177	3.634	2.600	0.258		SU -0.086
RUN ID			Δ% OF R/O	-0.4	0.0	0,0	-0.8	-2.94	-0.13
RW139			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF≈34	F -0.008
NO. 1		1	PERT. R/O	0.044	1.609	0.749	0,058	SIM = 33	W 0.0 SP 0.0
			REF (R/F/R/O)	48	1,18	4.65	46.5		SU -0.016
RUN ID		1	Δ% OF R/O	-0.4	0.0	0.0	-0.5	0.0	-0.04
RW139			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF, R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.008
NO. 3	4.5		PERT. R/O	0.094	2.169	0.521	0.116	SIM = 23	W 0.0 SP 0.0
i			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.010
RUN ID			Δ% OF R/O	-3.7	-0.1	-0.2	-2.5	0.0	-0.07
RW139			STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68 2,22	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF, R/O	1.08 0.036	2.04 1,907	1.82 0.921	0.086	REF = 4	F -0.074
NO. 5			PERT. R/O	0,035	1.905	0.920	0.084	StM = 4	W -0.002 SP -0.004
			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU -0.050
RUN ID			Δ% OF R/Q	-0.2	+0.1	-0.2	-0.4	0.0	-0.13
RW139			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	0.029	2.76 1.557	0.610	2.95 0.127	REF = 40	F -0.004
NO. 7			PERT. R/O	0.029	1.558	0,608	0,126	SIM = 40	W +0.002 SP -0.004
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU -0.008
RUN ID		 	Δ% OF R/O	-1.8	0.0	-1.6	-8.7	0.0	-0.060
RW139			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	7.37 0.769	1.91 0.588	0.50	REF = 9	F -0.018
	_,'	1 ~~	1127.070	0.150	J.,, U.S	1 3.300	V.V31	} "EF-9	W 0.0
NO. 11			PERT. R/O	0.148	0.769	0.578	0.029	SIM = 9	SP -0.016

SENSITIVITY ANALYSIS OF VINTMR -50% PERTURBATION (0.15)

					SIGNIFICAL	NT STORMS			
YATERSHED	AREA (SQ. KM)	EPAET (IN)	оитрит	FALL	, WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	W
		1	PERT. R/O					SIM =	SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3 .	·	รบ
RUN ID			Δ% OF R/O	+1,1	+4.4	0.03	+2.4	· +3.3	+0.48
12	i,		STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	W -0.022
			PERT. R/O	0.34	0.041	0.913	0.044	SIM = 3.1	SP +0.006
		İ	REF (R/F/R/O)	91		1.94	25		SU0.048
RUN ID			Δ% OF R/O	. +1.5	+0.2	+0.6	+4.7	+3.42	+0.47
RW138	•	<u> </u>	Δ% OF MONTHLY R/O	OCT : +1.13	JAN +0.06	APR +0.23	AUG +4.26	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.030 W -0.004
		}	PERT. R/O	0,10	0.982	0.490	0.067	SIM = 666	SP -0.012
			REF. MONTH-	0.177	3.634	2.600	0.258		SU -0.094
RUN ID		 	Δ% OF R/O	+0.4	+0.2	+0.2	+1.2	.0.0	+0.21
RW138			STORM R/F	10/15/67 2.16	1/8/68 1,91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF, R/O	0.045	1.609	0.749	0.059	REF = 34	F -0.008 W -0.004
NO. 1	_,		PERT. R/O	0.045	1.612	0.751	0.059	SIM = 34	SP -0.004
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.024
RUN ID			Δ% OF R/O	-0.4	0 .0	0.0	-0.5	0.0	-0.04
RW138	1		STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1,70	7/31/68 2.21	9/2/68	STORM U/
SUB- WATERSHED		50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.008
NO, 3	813	30	PERT, R/O	0.094	2.169	0.521	0.116	SIM = 23	W 0.0 SP 0.0
Ū			REF (R/F/R/O)	26.4	1.43	3.26	18.9	7	SU -0.010
RUN ID			Δ% OF R/O	+3.7	+0.2	+0.2	+2.5	+25.0	+0.10
RW138			STORM R/F	10/15/67	1/9/68 2.04	4/25/68 1.82	8/13/68 2,22	9/29/68	ŞTORM U/
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F -0.074
NO. 5	1,554		PERT. R/O	0.037	1,912	0.924	0.088	SIM = 5	W -0.004 SP -0.004
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.050
RUN ID			Δ% OF R/O	+0.1	-0.2	+0.6	+0.6	+2.5	+0.16
RW138	1		STORM R/F	10/15/67	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U
SUB- WATERSHED	, , , , ,	40	REF. R/O	0.029	1.557	0.610	0.127	. REF = 40	F -0.002
NO. 7	1,111	**	PERT. R/O	0.029	1.554	0.613	0.128	SIM = 41	W +0.004 SP -0.012
,			REF (R/F/R/O	+	1.77	3.14	23.2	7	SU -0.012
	 -	+	Δ% OF R/O	+1.7	+0.13	+1.0	+9.0	+11.1	+0.70
RUN ID RW138			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORMU
SUB- WATERSHED	2 554	30	REF. R/O	0.150	0.769	0.588	0.50	REF = 9	F -0.034
NO.	2,551	30	PERT, R/O	0.153	0.770	0.593	0,034	SIM ≈ 10	W -0.000
!			<u> </u>	 		3.24	16.1	→ 1 1	SU -0.090
i	ı	l	REF (R/F/R/O	9.0	1.8	3.24	10.1		

Figure 6-10. Vegetative Interception Study, Fall Storms

Figure 6-11. Vegetative Interception Study, Regional Watershed

Figure 6-12. Vegetative Interception Study, Subwatershed No. 1

Figure 6-13. Vegetative Interception Study, Subwatershed No. 3

Figure 6-14. Vegetative Interception Study, Subwatershed No. 5

6.3.4 BUZC, BASIC UPPER ZONE CAPACITY

BUZC is an index for estimating the storage capacity of the soil surface (upper zone) to store water in depression storage. In the future BUZC can be inferred from land-use classification when a relationship to average slope of watershed, forest cover, and permeability of soil is established. At present, BUZC is quantified by calibration and fine tuning.

Sensitivity analysis results (Tables 6-34 through 6-44) indicates that BUZC parameter is most influential in low flows and during the fall season. The highest unit sensitivity of 0.162 was obtained in a significant fall storm for a -50% perturbation. Plots appear in Figure 6-15.

SENSITIVITY ANALYSIS OF BUZC (0.20) SMALL WAYERSHED 365 SQ. KM

, 57

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

11.0 - 31.3	TED ANTOAL	TOTAL OBSER	NT STORMS	SIGNIFICA		!	1	1	
ANNUA FLOW	9/27/64 LOW FLOW	8/14/64 SUMMER	5/1/64 SPRING	1/23/64 WINTER	11/4/63 FALL	ОИТРИТ	A% PERTUR- BATION	PARAM VALUE	RUN ID
. –	-	_	0.0	0.0	0.0	Δ% OF R/O			
STORM U		2.16	2.87	3.19	3.13	STORM R/F			
F. 0.0	 REF = 7.9	0.255	1.94	2.31	0.175	REF. R/O (IN)	-100	0.001	D022
W 0.0 SP 0.0	SIM = -	_	1.94	2.31	0.18	PERT. R/O (IN)			
SU		.8.3	1.47	1.38	17.9	REF (R/F/R/O)			
+0.00	+1,27	+1.2	0,0	0,0	0.0	Δ% OF R/O			
STORM U		2.16	2.87	3.19	3.13	STORM R/F			
F 0,0 W 0.0	REF = 7.9	0.255	1,94	2.31	0.175	REF. R/O (IN)	- 50	0.10	S023
SP 0.0	SIM = 8.0	0.26	1.94	2.31	0.18	PERT. R/O (IN)			
SU -0.024		8.3	1.47	1.38	17.9	REF (R/F/R/O)			
-0.08	0.0	-1.3	0.0	0.0	+0.6	∆% OF R/O			
STORM U/		2.16	2.87	3.19	3.13	STORM R/F			
F -0.01	REF = 7.9	0.255	1.94	2.31	0.175	REF. R/O (IN)	+ 50	0.30 -	S024
W 0.0 SP 0.0	SIM = 7.9	0.25	1.94	2.31	0.18	PERT, R/O (IN)			
SU 0.02		8.3	1.47	1.38	17.9	REF (R/F/R/O)			
	-	_	0.0	0.0	0.0	Δ% OF R/O			
STORM U/		2.16	2.87	3.19	3.13	STORM R/F			
F 0.0	REF = 7.9	0.255	1.94	2.31	0.175	REF. R/O (IN)	+100	0.40	D025
W 0.0 SP 0.0	SIM =		_	-		PERT. R/O (IN)			Ì
SU -	•	8.3	1.47	3.19	17.9	REF (R/F/R/O)	ſ		-58

SENSITIVITY ANALYSIS OF BUZC (1.0)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O ~ 10.03 IN

		1			SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОПТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+12.9	+9.3	+0.6	+0.1	+13.3	+0.40
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
118	0.0	-100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0.129 W -0.093
			PERT. R/O (IN.)	0.037	0.043	0.922	0.043	SIM = 3,4	SP -0.006
			REF (R/F/R/O)	91		1.94	25		SU -0.001
			Δ% OF R/O	-9.0	-7.2	-0.6	-0,1	-10.0	-0.39
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
119	2.0	+100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0,090 W -0,072
			PERT. R/O (IN.)	0.030	0.037	0.911	0.043	StM = 2.7	SP -0.006
			REF (R/F/R/O)	91		1.94	25		SU -0.001

TABLE 6-36

SENSITIVITY ANALYSIS OF BUZC (0.60)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

REGIONALI	NATERSHED 2	2,240 04. 11	<u> </u>	····	SIGNIFICAN	T STORMS		9/15/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	B/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
·	†		∆% OF R/O	+3.5	+0.4	+1.1	+3.5	+15.37	+0.95
			Δ% OF MONTHLY R/O	OCT +2.26	JAN +0.50	APR +0.19	AUG +4.26		STORM U/S
RW20	0.0	- 100	REF, R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.035 W -0.004
		ļ	PERT. R/O (IN)	0.10	0.98	0.49	0.07	SIM = 743	SP -0.011
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.035
			Δ% OF R/O	+1.7	+0.2	+0.6	+1.7	+7.14	+0.48
			2% OF MONTHLY R/O	OCT +1,13	JAN +0,22	APR +0.12	AUG +1.94		STORM U/S
RW22	0.30	- 50	REF. R/O (IN)	0.099	C.980	0.487	0.064	REF = 644	F -0.034 W -0.004
			PERT. R/O (IN)	0.10	0.98	0.49	0.07	SIM = 690	SP -0.012
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.034
*			∆% OF R/O	-1.5	-0.2	-0.6	-1.5	-6.60	-0.44
			Δ% OF MONTHLY R/O	OCT -1.13	JAN -0,25	APR -0.12	AUG -1.55		STORM U/S
RW21	0.90	+ 50	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.030 W -0.004
			PERT. R/O (IN)	0.10	0.98	0.48	0.06	SIM = 605	SP -0.012
6-59			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.030

SENSITIVITY ANALYSIS OF BUZC (0.60)

ANNUAL R/F = 59.30 IN **EVAPOTRANSPIRATION NET = 40.29 IN** TOTAL OBSERVED ANNUAL R/O = 19.33 IN

2,326 SQ. KM SUBWATERSHED NO. 1 SIGNIFICANT STORMS 9/25/68 <u>A</u>% PERTUR ANNUAL RUN MARAG LOW 4/26/68 8/10/38 CUTPUT 10/15/67 1/8/68 Ωl MOITAE SLOW VALUE FLOW SUMMER FALL WINTER SPRING Δ% OF R/O +7.4 +0.3 +0.B +7.9 +17.65 +0.88 STORM R/F 2.16 1.91 3.49 2.79 STORM U.S. -0.074 0.749 H7720 0.0 -100 REF. 5/0 (IN.) 0.045 1.609 0.059 REF = 34 SIM = 50 W -0.003 PERT. R/O (IN.) 9.05 1.31 C.73 0.03 S? -J.008 g -0.079 REF (R/F/R/O) 1.18 4.35 48 48.5 ∆% OF R/O +0.1 +0.4 +8.32 +0.42 +3.6 +3.8 3.49 STORM R/F 1.91 2.16 2.79 STCITAL U/S c 0.072 RW:22 0.30 REF. R/O (IN.) 0.045 1.609 0.749 0.059 934 - 34 -0.00% \$184 = 3" PERT. R/O (IN.) 0.05 1.61 0.75 0.06 j? 0.008 SU -0.076 REF (R/F/R/O) 48 1 18 1.65 45.5 4% OF H.O -3.5 -U.2 -0.4 -3.5 -8.82 -0.4**3** (1.91 STORM R/F 2.13 3.49 2.79 STORWU/S Ę -0.07¢ 0.059 REF. R/O (IN.) 0.045 1.609 3.749 + 50 **RW21** 0.90 REF =34 -0.004 Ŵ SIM = 31 PERT. R/O (IN. 0.04 1.61 0.75 0.06 SΡ -0.008 SŲ -0.070 REF (R/F/R/O) 43 1.18 4.65 46.5

SENSITIVITY ANALYSIS OF BUZC (0.60)

L ON DEHAMETAWEUR 312 SQ. KW **TABLE 6-38** ANNUAL R/F = 63.88 IN

EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL BYO = 26.14

area de la companya della companya della companya della companya de la companya della companya d		متحادكات والشا محمد كي		·			TOTAL OBSEST	ALD HIGGE	71, D - 20.14
		الاخا			Significa	NT STORMS		9/2/68	ĺ
RUN (D	MARAS	PERTUR-	оитрит	10/15/67	1/9/68	4/25/60	7/31/68	FOM	ANNUAL
	AVITE	SATION		FALL	ILL WINTER	SPRING	SUMMER	FLO!!!	FLOW
			2% OF R,O	+6.1	+0.1	÷1.2	+4.6	+8.70	+0.74
R ¹ W2D	0.7	100	STORM R/F	2.51	3.11	1.70	ž 2.21		STUAM U/S
HWZU	C.0.	· · ·100	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	= -0.061 iv -0.001
:	,	•	PERT. R/O (IN.)	0.10	2.17	C.53	2.12	Stivi -	SP 0 012
		i	REF (A/F/R-O)	26.4	1.43	3.26	18.9		SU - 0,046
·		1	7% OF 3'G	÷2.8	0.0	+0.6	+2.2	+4.35	+0.30
ลพ22	0.30	50	STORM R/F	2.51	3.11	1 70	2.21		STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	AEF =23	F -0.056
1			PERT. B/O (IRL)	0.10	2.17	0.52	0.12	Si <i>M</i> = 24	SP -0.012
			REF (H/F/R/O)	26.4	1.43	3.26	18.9		WL:0.044
			3% OF R/O	-2.7	0.1	-0.6	-2,0	-4.35	0.40
RW21	0.80	+50	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
1			REF. 7/0 (IN.)	0.095	2.170	0.521	0.117	REF - 23	F -0.054
			PERT. R/O (IN.)	0.09	2,17	0.52	0.11	SIM = 22	SP0.012
6-60			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.040

SENSITIVITY ANALYSIS OF BUZC (0.60)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 49.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

		TOTAL OBSE		·			·		
	9/29/68		ANT STORMS	SIGNIFICA		Î		1	
ANNUAL FLOW	LOW FLOW	8/13/68	4/25/68	1/9/68	10/15/67	OUTPUT	Δ% PERTUR- BATION	PARAM VALUE	RUN ID
		SUMMER	SPRING	WINTER	FALL				
+0.74	+25,0	+1.8	+0.8	+0.5	+4.3	Δ% OF R/O			
STORM U/S		2.22	1.82	2.04	1.08	STORM R/F	-100	0.0	RW20
F -0.043 W -0.005	REF = 4	0.086	0.921	1.907	0.036	REF. R/O (IN.)			
SP -0.008	SIM = 5	0.09	0.93	1.92	0.04	PERT. R/O (IN.)			
SU0.018	1	25.8	1,97	1.06	30	REF (R/F/R/O)			
+0.34	+25.0	+0.8	+0.4	+0.2	+1.8	Δ% OF R/O			45
STORM U/S		2.22	1.82	2.04	1.08	STORM R/F	-50	0.30	RW22
F -0.036 W -0.004	REF = 4	0.086	0.921	1.907	0.036	REF. R/O (IN.)			
SP -0.008	SIM = 5	0.09	0,93	1.91	0.04	PERT, 9/0 (IN.)			
SU -0.016		25.8	1.97	1.06	30	REF (R/F/R/O)			
-0.29	0,0	-0.8	-0.4	-0,2	− I.3	Δ% OF R/O			
STORM U/S		2.22	1.82	2.04	1.08	STORM R/F	+50	0.90	RW21
F -0.026	REF = 4	0.086	0.921	1.907	0.036	REF. R/O (IN.)			
SP -0.008	SIM = 4	0.09	0.92	1.90	0.04	PERT, R/O (IN.)	Į.		
SU -0.016		25.8	1.97	1.06	30	REF (R/F/R/O)	ſ		

TABLE 6-40

SENSITIVITY ANALYSIS OF BUZC (0.60) SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL ORSERVED ANNUAL R/O = 39.20

ODITA I ETISI		1,111 SQ. KW					TOTAL OBSE	RVED ANNUA	L R/O = 18.29
			j		SIGNIFICA	ANT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+15.0	+0.3	+1,3	+7.0	+12.50	+0.85
RW20	0.0	-100	STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
			REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F -0.150
			PERT. R/O (IN.)	0.03	1.56	0.62	0.14	SIM = 45	W -0.003 SP -0.013
		<u> </u>	REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU0.070
			∆% OF R/O	+8.1	+0.1	+0,6	+3.4	+10.0	+0.43
RW22	0.30	-50	STORM R/F	1.58	2.76	1.92	2.95	·	STORM U/S
	Ì		REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F -0.162
			PERT. R/O (IN.)	0.03	1.56	0.61	0.13	SIM = 44	w -0.002 sp -0.012
	<u> </u>	.,,	REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.068
			∆% OF R/O	-5,4	0,2	-0.7	-3.2	-5.0	-0.45
Dura			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW21	0.90	+50	REF. R/O (IN.)	0,029	1.557	0.610	0.127	REF = 40	F -0.108
			PERT. R/O (IN.)	0.03	1.55	0.61	0.12	SIM = 38	W -0.004 SP -0.014
6-61			REF (R/F/R/O)	54,5	1.77	3.14	23.2	-	su0.064

SENSITIVITY ANALYSIS OF BUZC (0.60) SUBWATERSHED NO. 11 2,551 ŞQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPR ING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+2.4	+0.6	+2.0	+2.6	+22.2	+0.92
RW20	0.0	-100	STORM R/F	1.35	1.37	1.91	0.50		STORM U/
		ĺ	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 11	F0.02 W0.00
	i		PERT. R/O (IN.)	0.15	0.77	0.60	0.03] SHM = ''	SP -0.02
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.02
	<u> </u>		∆% OF R/O	+1.1	+0.3	+1,0	+1.2	+11.11	+0.46
04400	0,30	_50	STORM R/F	1.35	1.37	1,91	0.50		STORM U
RW22	i 0.30	-50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F0.02 W0.00
			PERT. R/O (IN.)	0.15	0.77	0.59	0.03	SIM = 10	Sp0.02
		1	REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.02
-			Δ% OF R/O	1.0	-0.3	-1.0	-1.1	-11,11	0,46
RW21	0.90	+50	STORM R/F	1.35	1.37	1.91	0.50		STORM U/
DIVZI	0.50	.50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 8	F0.00
			PERT. R/O (IN.)	0.15	0.77	0.58	0.03	2IM = 8	SP0.0
6-62			REF (R/F/R/O)	9.0	1.8	3.24	16.1		\$U −0.03

SENSITIVITY ANALYSIS OF BUZC -100% PERTURBATION (0.20 - 1.0)

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ, KM)	EPAET (IN)	ОИТРИТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID	-		∆% OF R/O	0.0	0.0	0.0	-		-
D022			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0 W 0.0
			PERT. R/O	0.18	2.31	1.94		SIM = _	SP 0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		su
RUN ID			Δ% OF R/O	+12.9	+9.3	+0.6	+0.1	+13.3	+0.40
118			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0.129 W -0.093
			PERT. R/O	0.037	0.043	0,922	0.043	SIM = 3.4	SP -0.006
İ			REF (R/F/R/O)	91		1.94	25		SU -0.001
RUN ID			Δ% OF R/O	+3.5	+0.4	+1.1	+3.5	+15.37	+0.95
RW20			∆% OF MONTHLY R/O	OCT +2.26	JAN +0.50	APR +0.19	AUG +4.26	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.035
		•	PERT, R/O	0,10	0.98	0,49	0.07	SIM = 734	W -0.004 SP -0.011
			REF. MONTH -	0.177	3.634	2.600	0.258		SU -0.035
RUN ID			Δ% OF R/O	+7.4	+0.3	+0.8	+7.9	+17.65	+0.88
RW20			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F ~0.074
NO. 1			PERT. R/O	0.05	1.61	0.76	0.06	SIM = 40	W -0.003 SP -0.008
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.079
RUNID	•		Δ% OF R/O	+6.1	+0.1	+1.2	+4.6	+8.70	+0.70
RW20			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1,70	7/31/68 2.21	9/2/68	STORM U/S
SUB WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.061
NO.	0.0		PERT. R/O	0,10	2,17	0.53	0.12	SIM = 25	W -0.001 SP -0.012
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.046
RUN ID			Δ% OF R/O	+4.3	+0.5	+0.8	+1.8	+25.0	+0.74
RW20			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F -0.043
NO. 5			PERT. R/O	0.04	1.92	0.93	0.09	SIM = 5	W -0.005 SP -0.008
			REF (R/F/R/O)	30	1.06	1.97	25.8	İ	SU -0.018
RUN ID			Δ% OF R/O	+15.0	+0.3	+1.3	+7.0	+12.50	+0.85
RW20			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	1.58 0.029	2.7 6 1.557	1.42 0.610	2.95 0.127	REF = 40	F -0.150
NO. 7	,,,,,,	"	PERT. R/O	0.03	1,56	0.62	0.14	SIM = 45	W -0.003 SP -0.013
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	*****	SU -0.070
RUN ID			Δ% OF R/O	+2.4	+0.6	+2.0	+2.6	+22.2	+0.92
RW20			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	0.769	1.91 0.588	0.50 0.031	REF = 9	F -0.024
NO. 11	_,001] ~	PERT. R/O	0.15	0.77	0.60	0.03	SIM = 11	W -0.006
						-			SP -0.020 SU -0.026
		<u> </u>	REF (R/F/R/O)	9.0	1.8	3.24	16.1	<u> </u>	<u> </u>

SENSITIVITY ANALYSIS OF

BUZC -50% PERTURBATION (0.20 - 1.0)

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	0.0	0.0	0.0	+1.2	+1,27	+0.06
\$023		ļ.	STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0 W 0.0
			PERT, R/O	0.18	2.31	1.94	0.26	SIM = 8.0	SP 0.0
			REF (R/F/R/O)	17,9	1.38	1.47	8.3		SU-0.024
RUN ID			∆% OF R/O						
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25		SU
RUN ID			Δ% OF R/O	+1.7	+0,2	+0.6	+1.7	+7.14	+0.48
RW22			Δ% OF	ОСТ	JAN	APR	AUG +1,94	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	+1.13 0.099	+0.22 0.980	+0.12 0.487	0.064	REF = 644	F -0.034
			PERT, R/O	0.10	0.98	0,49	0.07	SIM = 690	W -0.004 SP -0.012
			REF. MONTH-	0.177	3.634	2.600	0.258	ĺ	SU -0.034
RUN ID		-	LY R/O Δ% OF R/O	+3.6	+0,1	+0.4	+3.8	+8,82	+0.42
RW22			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91 1.609	3.49 0.749	2.79 0.059	REF = 34	F -0.072
NO. 1	,	``	PERT. R/O	0.05	1.61	0,75	0.06	SIM = 37	W -0.002
			REF (R/F/R/O)	48	1.18	4.65	46.5	-	SP -0.008 SU -0.076
RUN ID		 	Δ% OF R/O	+2.8	0.0	+0.6	+2.2	+4.35	+0.30
RW22			STORM R/F	10/15/67	1/9/68	4/25/68	7/31/68	9/2/68	STORM U/S
SUB- WATERSHED	242		REF. R/O	2.51 0.095	3.11 2.170	1.70 0.521	2.21 0.117	REF = 23	F -0.056
NO.	813	50	PERT. R/O					SIM = 24	W 0.0
ď				0.10	2.17	0.52	0.12	3191 - 24	SP -0.012 SU -0.044
RUN ID			REF (R/F/R/O)	26.4	1.43	3.26	18.9		
RW22			Δ% OF R/O	+1.8 10/15/67	+0.2 1/9/68	+0.4 4/25/68	+0.8 8/13/68	+25.0	+0.34
SUB- WATERSHED	4.004		STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/S F -0.036
NO. 5	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	W -0.004
_			PERT, R/O	0.04	1.91	0.93	0.09	SIM ≈ 5	SP -0.008 SU -0.016
	-		REF (R/F/R/O)	30	1.06	1.97	25.8		
RUN ID RW22			∆% OF R/O	+8.1 10/15/67	+0.1 1/8/68	+0.6 4/26/68	+3.4 8/14/68	+10.0	+0.43
SUB-			STORM R/F	1.58	2.76	1.42	2.95	9/30/68	STORM U/S F -0.162
WATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	W -0.002
7			PERT, R/O	0.03	1.56	0.61	0.13	SIM = 44	SP -0.012
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.068
RUNID RW22			∆% OF R/O	+1.1	+0.3	+1.0	+1.2	+11.11	+0.46
SU8-			STORM R/F	10/28/67 1.35	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
WATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F -0.022 W -0.006
11			PERT, R/O	0.15	0.77	0.59	0,03	SIM = 10	SP -0.020
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.024

SENSITIVITY ANALYSIS OF BUZC +50% PERTURBATION (0.20 - 1.0)

	ı				SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ, KM)	EPAET (IN)	О ∪Т Р ∪ Т	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	+0.6	0.0	0.0	-1.3	0.0	-0.08
S024			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF, R/O	0.175	2.31	1.94	0,255	REF = 7.9	F -0.012 W 0.0
			PERT. R/O	0.18	2.31	1.94	0.25	SIM = 7.9	SP 0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	<u> </u>	SU 0.026
RUN ID			∆% OF R/O	,		-			
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25	1	SU
RUN ID			Δ% OF R/O	-1.5	-0.2	-0.5	-1.5	-6.06	-0.44
RW21			Δ% OF	OCT.	JAN -0.25	-∂.12	AUG -1.55	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.030
	 ,	ļ	PERT, R/O	0.10	0.98	0.48	0.06	SIM = 605	W -0.004 SP -0.012
			REF, MONTH-	0.177	3.634	2.600	0.258	1	SU -0.030
BURNIB.			LY R/O Δ% OF R/O	-3.5	-0,2	-0.4	-3.5	-8.82	-0.46
RUN ID RW21	-		STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF, R/O	2.16 0.045	1.91	3.49 0.749	2.79 0.059	REF = 34	F -0.070
NO.	2,320	30	PERT. R/O	0.04	1.61	0.75	0.06	SIM = 31	W -0.004
•			REF (R/F/R/O)	48	1.18	4.65	46.5	1	SP -0.008 SU -0.070
	· · · · · ·		Δ% OF R/O		-0.1	-0.6	-2,0	-4.35	-0.40
RUN ID RW21			STORM R/F	-2.7 10/15/67	1/9/68	4/25/68	7/31/68	9/2/68	STORM U/
SUB-			REF, R/O	2.51 0.095	3.11 2.170	0.521	0.117	REF = 23	F -0.054
WATERSHED NO.	813	50	PERT, R/O	0.09	2,17	0.52	0.11	SIM = 22	W -0.002 SP -0.012
3				26.4	1,43	3.26	18.9	†	SU -0.040
			REF (R/F/R/O)			-0.4	-0.8	0,0 .	-0.29
RUN ID RW21			Δ% OF R/O	-1.3 10/15/67	-0.2 1/9/68	4/25/68	8/13/68	9/29/68	STORM U/
SUB- WATERSHED	,		STORM R/F	1.08	2.04	0.921	2.22 0.086	REF = 4	F -0.026
NO.	1,064	37	REF. R/O	0.036	1.907	· · · · ·	0.90	SIM = 4	W -0.004
3			PERT. R/O	0.04	1,90	0.92	25.8	-	SP -0.008
		<u> </u>	REF (R/F/R/O)		1.06:	1.97	 	-5.0	-0.45
RUN ID RW21			Δ% OF R/O	-5.4 10/15/67	-0.2 1/8/68	-0.7 4/26/68	-3.2 8/14/68		
\$UB-			STORM R/F	1.58	2.76	1,42	2.95	9/30/68	STORM U/ F -0.108
WATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	W -0.004
7			PERT, R/O	0.03	1.55	0.61	0.12	SIM = 38	SP -0.014 SU -0.064
			REF (R/F/R/O)	54.5	1,77	3.14	23.2	4	-
RUN ID RW21]	Δ% OF R/O	-1.0	-0,3 1/8/68	-1.0 5/8/68	-1.1 8/20/68	-11.11	-0.46
SUB-			STORM R/F	10/28/67 1.35	1.37	1.91	0,50	9/14/68	STORM U/
WATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	W -0.006
11			PERT. R/O	0.15	0,77	0.58	0.03	SIMI≃ 8	SP -0.020
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.022

Figure 6-15. Basic Upper Zone Storage Study, Summer Storms

6.3.5 SUZC, SEASONAL UPPER ZONE CAPACITY FACTOR

SUZC is an index for estimating soil surface moisture storage capacity. Its primary purpose is to adjust the BUZC index for seasonal variation to account for increases caused by summer vegetation and cultivation. BUZC and SUZC are used to compute the upper soil zone nominal storage capacity (UZC).

UZC = SUZC (AEX90) + BUZC (
$$e^{-2.7}$$
 $\frac{LZS}{LZC}$)

where AEX90 is an antecedent evaporation index, LZS/LZC is an index of the moisture content of theunderlying soil.

The parameter LUZC can be inferred from land-use classification once a relationship similar to that maintained for BUZC is established. At present, it is quantified by calibration and fine tuning.

SUZC is a very influential parameter in low flows and during the summer season. An an example in subwatershed 1 the unit sensitivity in low flows is 4.52 and in a significant summer storm it is 1.8 for a -50% perturbation of the parameter. Results are shown in Tables 6-45 through 6-55 and Figure 6-16.

SENSITIVITY ANALYSIS OF SUZC (0.20) SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

		Δ%			SIGNIFICA	NT STORMS	101112 0002	T	L R/O = 31.38 II
RUN ID	PARAM VALUE	PERTUR- BATION	ООТРИТ	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 -SUMMER	9/27/64 LOW FLOW	ANNUAL FLOW
			∆% OF R/O	0.0	0.0	0.0]	
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
D027	0.001	-100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0
			PERT. R/O (IN)	0.18	2.31	1.94		SIM =	W 0.0 SP 0.0
			REF (R/F/R/O)	17.9	1.38	1,47	8.3	1	su
			Δ% OF R/O	0.0	0.0	0.0	+3.7	+2.53	+0.37
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
S028	0.10	50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0
		İ	PERT, R/O (IN)	0.18	2,31	1.94	0.26	SIM = 8.1	SP 0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	1	SU -0.074
			∆% OF R/O	0.0	0.0	-1.7	-12.3	-5.06	-1.88
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
\$029	0.30	+50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0
			PERT. R/O (IN)	0.18	2.31	1.90	. 0.22	SIM = 7.5	W 0.0 SP 0.034
			REF (R/F/R/O)	17.9	1.38	1,47	8.3		Su -0.246
			∆% OF R/O	-8.57	0.0	-3.61			
			STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
D 03 0	0.40	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F - 0.086 W 0.0
			PERT. R/O (IN)	0.16	2.31	1.87		SIM =	W 0.0 SP 0.036
	<u> </u>		REF (R/F/R/O)	17.9	3.19	1.47	8.3		SU

SENSITIVITY ANALYSIS OF SUZC (1.5) SNOW WATERSHED 277 SQ. KM

TABLE 6-46

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

	7	τ	T				TOTAL OBSER	IVED ANNUAL	. R/O = 10.03 ()
	1		1		SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
l		ĺ	∆% OF R/O	+34.3	+10.9	+7.7	+42.7	400.0	+ 15.41
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
120	0.0	-100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F - 0.343
		1 ,	PERT. R/O (IN.)	0.044	0.044	0.987	0.062	SIM = 15.0	W 0.109 SP 0.077
			REF (R/F/R/O)	91		1.94	25		SU ~ 0.427
	ļ		2% OF R/O	-15.8	-15.0	-12.9	-7.2	-33.33	- 9.98
		İ	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
121	3.0	+100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F - 0.158
c co			PERT. R/O (IN.)	0.028	0.033	0.798	0.040	SIM ≈ 2.0	W 0.150 SP 0.129
6-68			REF (R/F/R/O)	91		1.94	25		SU - 0.072

SENSITIVITY ANALYSIS OF SUZC (0.40)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	T STORMS		9/15/68	
RUN ID	PAŘAM VALUE	Δ% PERTUR- BATION	ООТРИТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LÓW FLOW	ANNUAL FLOW
			Δ% OF R/O	+9.1	+0.8	+14.9	+79,6	+301.6	+9.91
			Δ% OF MONTHLY R/O	OCT +4.52	JAN +1,18	APR +0.54	AUG +98.45		STORM U/S
RW24	0.0	- 100	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.091 W -0.008
			PERT. R/O (IN)	0.11	0.99	0.56	0.12	SIM = 2586	SP -0.149
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.796
			∆% OF R/O	+5.9	+0.5	+14.7	+31.1	+100.9	+5.67
			Δ% OF MONTHLY R/O	OCT +2.82	JAN +0.74	APR +0.46	AUG +36.82		STORM U/S
RW26	0.20	- 50	REF. R/O (IN)	0.099	0.980	0.487	0,064	REF = 644	F -0.118 W -0.010
	İ		PERT, R/O (IN)	0.10	0.99	0.56	0.08	SIM = 1294	SP -0.294
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0,258		SU -0.622
			∆% OF R/O	-3.8	-0.3	-13.8	-12.2	-35.87	-4.11
			Δ% OF MONTHLY R/O	OCT -1.69	JAN -0,44	APR -2.96	AUG -14,34		STORM U/S
RW25	0.60	+ 50	REF. R/O (IN)	0.099	080.0	0.487	0.064	DEC 644	F -0.076 W -0.006
			PERT. R/O (IN)	0.10	0.98	0.42	0.06	REF = 644 SIM = 413	SP -0.276
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.244
			∆% OF R/O	-8,1	-0.4	-32.1	-21.5	-64.60	-10.40
			Δ% OF MONTHLY R/O	OCT -3.95	JAN -1.29	APR -9.65	AUG - 25.19		STORM U/S
RW27	0.95	+138	REF. R/O (IN)	0.093	0.980	0.487	0.064	REF = 644	F -0.059 W -0.003
5 50			PERT. R/O (IN)	0.09	0,98	0.33	0.05	REF = 644 SIM = 228	SP -0.233
6-69			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU ~0.156

SENSITIVITY ANALYSIS OF SUZC (0.40)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

SUBWATERSHED NO. 1 2,326 SQ. KM SIGNIFICANT STORMS 9/25/68 **∆**% PERTUR ANNUAL LOW FLOW 4/26/68 8/18/68 RUN PARAM OUTPUT 10/15/67 1/8/68 FLOW BATION VALUE ID SUMMER SPRING FALL WINTER +319.0 +891.18 +14.85 Δ% OF R/O +32.3 +1.0 +15.4 STORM U/S 3.49 2.79 1.91 STORM R/F 2.16 -0.323 0.749 0.059 0.045 1.609 REF. R/O (IN.) **REF = 34** 0.0 -100 **RW24** W -0.010 SIM = 337 0.86 0.25 1.63 0.06 PERT. R/O (IN. SP -0.154 SU -0.319 4.65 46.5 48 1.18 REF (R/F/R/O) +6.89 +226.47 Δ% OF R/O +0.6 +14.3 +90.2 +19.9 3.49 2.79 STORM U/S STORM R/F 2.16 1.91 -0.398 REF. R/O (IN.) 0.045 1.609 0.749 0.059 - 50 **RW26** 0.20 **REF = 34** -0.012 W SIM = 111 0.11 0.86 PERT. R/O (IN. 0.05 1.62 SP -0.286 -1.804 REF (R/F/R/O) 48 1.18 4.65 46.5 -5.33 -11.4 -34.9 -0.2 Δ% OF R/O -11.1 2.79 STORM U/S 1.91 3.49 STORM R/F 2.16 -0.222 0.059 1.609 0.749 REF. R/O (IN.) 0.045 + 50 REF =34 0.60 RW25 -0.004 W SIM = 17 0.66 0,04 PERT, R/O (IN 0.04 1.61 SP -0.228 -0.698 Sυ 4.65 46.5 REF (R/F/R/O) 1.18 -67.65 -12.80 -26.5 -55.2 Δ% OF R/O -0.9 -23.5 STORM U/S 3.49 2.79 STORM R/F 2.16 1.91 -0.470 REF. R/O (IN.) 1.609 0.749 0.059 0.045 RW27 0.95 +138 **REF = 34** W -0.018 SIM = 11 0.03 0.55 0.03 1.59 -0.530 PERT. R/O (IN. SP -1.104 SU 46.5 REF (R/F/R/O) 48 4.65 6-70

SENSITIVITY ANALYSIS OF SUZC (0.40) SUBWATERSHED NO. 3 B13 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

·					SIGNIFICA	NT STORMS		9/2/68	1
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ОПТРПТ	10/ 1 5/67 FALL	1/9/68 WINTER	4/25/68 \$PRING	7/31/68 SUMMER	LOW FLOW	ANNUA FLOW
,			Δ% OF R/O	+24.7	+0.4	+27,8	+153.6	+1456.52	+12.8
			STORM R/F	2.51	3.11	1.70	2.21		STORMU
RW24	0.0	- 100	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.2 W -0.0
			PERT. R/O (IN.)	0.12	2.18	0.67	0.30	SIM = 358	SP -0.2
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -1.5
			Δ% OF R/O	+14.4	+0.3	+27.7	+49.7	+86.96	+7.06
			STORM R/F	2.51	3.11	1.70	2.21		STORM
RW26 0.20	- 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F -0.2	
•			PERT. R/O (IN.)	0.11	2,18	0.67	0.18	SIM = 43	SP -0.5
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU -0.9
			Δ% OF R/O	-9.4	0.0	-17.5	-18.0	-34.78	-4.97
		ŀ	STORM R/F	2.51	3.11	1.70	2.21		STORM
RW25	0.60	+ 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.1 W 0.0
			PERT. R/O (IN.I	0.09	2.17	0.43	0.10	SIM = 15	SP -0.3
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.3
			Δ% OF R/O	-19.6	+0.3	-35.7	-28.4	-52.17	-11.0
ĺ			STORM R/F	2.51	3.11	1.70	2.21		STORM
RW27	RW27 0.95 +138	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.1 W +0.0	
			PERT. R/O (IN.)	0.08	2.18	0.34	0.08	SIM = 11	SP -0.2
5-71			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.2

SENSITIVITY ANALYSIS OF SUZC (0.40) SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

	1				SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
-			∆% OF R/O	+8.7	+0.8	+12.1	+21.8	250.0	+5.19
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW24	0.0	-100	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 14	F -0.087 W -0.008
			PERT. R/O (IN.)	0.04	1.92	1.03	0.10	3114 - 14	SP -0.121
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.218
			Δ% OF R/O	+3.9	+0.5	+12.0	+9.4	+100.0	+3.66
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW26	0.20	- 50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 8	F -0.078 W -0.010
			PERT. R/O (IN.)	0.04	1.92	1.03	0 .09i	21141 = 8	SP -0.240
		ĺ	REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.188
			Δ% OF R/O	-2.1	-0.4	-13.3	-5.5	-25.0	-3.33
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW25	0.60	+ 50	REF. R/O (IN.)	0,036	1.907	0.921	0.086	REF = 4 SIM = 3	F -0.042 W ~0.008
		}	PERT. R/O (IN.)	0,04	1.90	0.80	0.08	311(2.3	SP -0.266
			REF (R/F/R/O)	30	1.06	1.97	25.8		su -0.110
			Δ% OF R/O	-3.9	-0.1	-29.7	-10.1	-50.0	-7.85
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW27	0.95	+138	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF≖4 SIM = 2	F -0.028 W 0.0
			PERT. R/O (IN.)	0.03	1.90	0.65	80,0	31111 - 2	SP -0.215
6-72			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.073

SENSITIVITY ANALYSIS OF SUZC (0.40)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

					SIGNIFICA	NT STORMS		9/30/68		
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUA FLOW	
		<u> </u>	Δ% OF R/O	+35.7	+0.7	+13.3	+110.3	+167.5	+9.48	
			STORM R/F	1.58	2.76	1.92	2.95		STORMU	
RW24	0.0	-100	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF≈40 SIM = 107	F -0.35 W -0.00	
		ļ	PERT. R/O (IN.)	0.04	1.57	0.69	0.27	01111 107	SP -0.13	
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -1.10	
		<u> </u>	Δ% OF R/O	+24.4	+0.5	+13.2	+54.1	+77.5	+5.99	
		Ì	STORM R/F	1.58	2.76	1.92	2.95		STORMU	
RW26	0.20	- 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 71	F -0.41 W -0.01	
			PERT, R/O (IN.)	0.04	1.56	0.69	0.20	21M - 71	SP -0.20	
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -1.08	
	<u> </u>		Δ% OF R/O	-15.0	-0.3	-15.0	-28.2	-32.5	-4.68	
		-	STORM R/F	1.58	2.76	1.92	2.95		STORMU	
RW25	0.60	+ 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF≈40 SIM = 27	F -0.34 W -0.00	
			PERT. R/O (IN.)	0.02	1.55	0.52	0.09	21M - 21	SP -0.30	
			REF (R/F/R/O)	54,5	1.77	3.14	23.2		SU -0.5	
			2% OF R/O	-32.9	-0.4	-34.4	-56.9	-62.5	-11.9	
			STORM R/F	1.58	2.76	1.92	2.95		STORMU	
RW27	0.95	+138	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F -0.2: W -0.00	
			PERT, R/O (IN.)	0.02	1.55	0.40	0.05	SIM = 15	SP -0.2	
5-73			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.4	

SENSITIVITY ANALYSIS OF SUZC (0.40)

SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	ANNUAL FLOW	
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW		
			Δ% OF R/O	+3.1	+0.7	+20.5	+53,5	+400.0	+5.79	
		}	STORM R/F	1.35	1.37	1.91	0.50		STORM U/S	
RW24	0.0	-100	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.031	
			PERT. R/O (IN.)	0.15	0.77	0.71	0.05	SIM = 45	W -0.007 SP -0.205	
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.535	
			∆% OF R/O	+1.9	+0.5	+20.4	+23.6	+144.4	+4.03	
			STORM R/F	1.35	1,37	1.91	0.60		STORM U/S	
RW26	0.20	- 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.038	
			PERT. R/O (IN.)	0.15	0.77	0.71	0.04	\$IM ≈ 22	W -0.010 SP -0.408	
			REF (R/F/R/O)	9.0	1.8	3.24	16.1	L.	SU -0.472	
			Δ% OF R/O	-1.3	-0.4	-17.7	-7.2	-22,2	-3.14	
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S	
RW25	0,60	+ 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.026 W -0.008	
		İ	PERT. R/O (IN.)	0.15	0.77	0.48	0.03	SIM = 7	W -0.008 SP -0.354	
			REF (R/F/R/O)	9.0	1,8	3.24	16.1		SU -0.144	
			Δ% OF R/O	-2,7	-0,3	-37.7	-12.5	-33.33	-7.88	
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S	
RW27	0.95	+138	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.020 W -0.002	
			PERT. R/O (IN.)	0.15	0.77	0.37	0.03	SIM = 6	W -0.002 SP -0.273	
5-74		•	REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.091	

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	QUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	0.0	0.0	0.0	-	-	
D027		-	STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF. R/O	0.175	2,31	1.94	0.255	REF = 7.9	F 0.0 ₩ 0.0
			PERT. R/O	0.18	2.31	1.94	_	SIM =	SP 0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU
RUN ID			∆% OF R/O	+34.3	+10.9	+7.7	+42.7	+400.0	+15.41
120			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0.343 W -0.109
			PERT, R/O	0.044	0.044	0.987	0.062	SIM = 15.0	SP -0.077
			REF (R/F/R/O)	91		1.94	25		su -0.427
RUN ID			Δ% OF R/O	+9.1	+0.8	+14.9	+79.6	+301.6	+9.91
RW24			Δ% OF	OCT +4.52	JAN +1,18	APR +0.54	AUG +98.45	9/15/68	STORM U/
REGIONAL	22,248	41	MONTHLY R/O REF. R/O	0.099	0.980	0.487	0.064	REF ≈ 644	F -0.091
]	PERT. R/O	0.11	0.99	0.56	0.12	SIM = 2586	W -0.008 SP -0.149
			REF. MONTH-	0.177	3.634	2.600	0,258		SU ~0.796
RUN ID			Δ% OF R/O	+32.3	+1.0	+15.4	+319.0	+891.18	+14.85
RW24			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68 2.79	9/25/68	STORM U/
SUB WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91 1.609	3.49 0.749	0.059	REF = 34	F -0.323
NO. 1			PERT, R/O	0.06	1,63	0.86	0.25	SIM = 337	W -0.010 SP -0.154
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.319
RUN ID			Δ% OF R/O	+24,7	+G.4	+27.8	+153.6	+1456.52	+12,87
RW24			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/
SUB- NATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.247
NO. 3	0,0	33	PERT. R/O	0.12	2.18	0.67	0.30	SIM = 358	W ~0.004 SP ~0.278
ļ			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -1.536
RUN ID			Δ% OF R/O	+8.7	+0.8	+12,1	+21.8	+250.0	+5.19
RW24			STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF. R/O	1,08 0.036	2.04 1.907	1.82 0.921	2.22 0.086	REF = 4	F -0.087
NO. 5			PERT, R/O	0.04	1,92	1.03	0.10	SIM = 14	W -0.008 SP -0.121
ļ			REF (R/F/R/O)	30	1.06	1.97	25.8		S⊎ -0.218
RUN ID			Δ% OF R/O	+35.7	+0.7	+13,3	+110.3	+167.5	+9.48
RW24			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- NATERSHED	1,111	40	REF. R/O	1.58 0.029	2.76 1.557	1.42 0.610	2.95 0.127	REF = 40	F -0.357
NO. 7	.,		PERT, R/O	0.04	1.57	0.69	0.27	SIM = 107	W -0.007
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SP -0.133 SU -1.103
RUN ID			Δ% OF R/O	+3,1	+0.7	+20.5	+53.5	+400.0	+5.79
RW24			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/6B	STORM U/S
SUB- NATERSHED	2,551	30	REF. R/O	1.35 0.150	1.37 0.769	1.91 0.588	0.50 0.031	8EF = 9	F -0.031
NO. 11	_,~~	_ _	PERT. R/O	0.150	0.77	0,71	0.05	SIM = 45	W -0.007
			12	0.15	u,,,,	4,, 1	0.05	DIM 7 40	SP -0.205 SU -0.535

$\textbf{SENSITIVITY ANALYSIS OF} \qquad \text{suzc} \quad \text{-50\% PERTURBATION} \quad (0.20-1.5)$

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ОИТРИТ	FALL	WINTER	SPA ING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			∆% OF R/O	0.0	0.0	0.0	+3.7	+2,53	+0.37
S028			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0 W 0.0
			PERT. R/O	0.18	2,31	1.94	0.26	SIM = 8.1	SP 0.0
}			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.074
RUN ID			Δ% OF R/O)
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1,78	8/13/58 1.09	9/7/58	STORM U/S
snow	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF ≈ 3.0	F
j			PERT, R/O					SIM =	W SP
			REF (R/F/R/O)	91		1.94	25		su
RUN ID		ente di Abelia de la Compa	Δ% OF R/O	+5.9	+0.5	+14,7	+31.1	+100.9	+5.67
RW26			Δ% OF	ОСТ	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	+2,82 0.099	+0,74 0.980	+0,46 0,487	+36.82 0.064	REF = 644	F -0.118
			PERT, R/O	0.10	0.99	0.56	0.08	SIM = 1294	W -0.010 SP -0,294
			REF. MONTH-	0.177	3.634	2,600	0.258		SU -0.622
RUN ID	-		Δ% OF R/O	+19.9	+0,6	+14.3	+90.2	+226.47	+6.89
RW26			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM: Ur
SUB: WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91	3.49 0.749	2.79 0.059	REF = 34	F -0.398
NO. 1	-,	3.0	PERT, R/O				Î	SIM - 111	W -0.012
			REF (R/F/R/O)	0.05 48	1.62	0.86 4.65	0.11 46.5	5/14,	SP -0.286 SU -1,804
RUN ID	*****		∆% OF R/O	+14.4	+0,3	+27.7	+49.7	+86,93	+7.06
RW26			STORM R/F	10/15/67	1/9/68	4/25/68	7/31/68	9/2/68	STORMUS
SUB- WATERSHED	242		REF. R/O	2.51 0.095	3.11 2.170	1.70 0.521	0.117	9/2/06 REF = 23	F -0.288
NO.	813	50	PERT, R/O	0.11		0,37	 	SIM = 43	₩ -0.006
J					2.18		0.18	3HVI - 43	SP -0.554 SU -0.994
RUN ID			REF (R/F/R/O)	26.4	1.43	3.26	18.9		2 Table 200 (27 + 44)
RW26			Δ% OF R/O	+3.9 10/15/67	+0.5 1/9/68	+12.0 4/25/68	+9.4 8/13/68	+100.0	+3.66
SUB- WATERSHED	1,064		STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/S F -0.078
NO. 5	1,004	37	REF. R/O	0.036	1.907	0.921	0.086	REF=4	W -0.010
			PERT, R/O	0.04	1.92	1.03	0.09	SIM = 8	SP -0.240 SU -0.188
DUBLID			REF (R/F/R/O)	30	1 06	1,97	25.8		
RUNID RW26			∆% OF R/O	+24.4 10/15/67	+0.5 1/8/68	+13.2 4/26/68	+54.1 8/14/68	+77.5	+5.99
SUB- WATERSHED			STORM R/F	1.58	2.76	1.42	2.95	9/30/68	STORM U/S
NO. 7	1,111	40	REF. R/O	0 029	1.557	0.610	0.127	REF = 40	W -0.010
ĺ			PERT R/O	0.04	1.56	0.69	0.20	SIM ≈ 71	SP -0.264
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -1.082
RUN ID RW26			Δ% OF R/O	-1.3	-0.4	-17.7	÷7.2	-22,2	-3.14
SUB-			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
WATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F -0.038 W -0.010
11			PERT. R/O	0.15	0.77	0.48	0.03	SIM = 7	SP -0.408
-			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.472

SENSITIVITY ANALYSIS OF

SUZC +50% PERTURBATION (0.20 - 1.5)

SMALL, SNOW & REGIONAL WATERSHEDS

		EPAET (IN)			SIGNIFICA				
VATERSHED	AREA (SQ, KM)		ОПТРОТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	0.0	0.0	-1.7	-12.3	-5.06	-1.88
S029		, ·	STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F 0.0
		:	PERT. R/O	0.18	2.31	1.90	0.22	SIM = 7.5	SP -0.034
			REF (R/F/R/O)	17.9	1,38	1.47	8.3		SU -0.246
RUN ID			Δ% OF R/O						
		,	STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
snow	277	32	REF. R/O	0.033	. 0.039	0.916	0.043	REF = 3.0	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25		su
RUN ID			Δ% OF R/O	-3.8	-0.3	-13.8	-12.2	-35.87	-4.11
RW25			∆% OF	OCT -1.69	JAN -0.44	APR -2.96	AUG -14.34	9/15/68	STORM U/
REGIONAL	22,248	41	MONTHLY R/O REF, R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.076 W -0.006
·			PERT. R/O	0.10	0.98	0.42	0.06	SIM = 413	W -0.006 SP -0.276
:			REF. MONTH-	0.177	3.634	2,600	0.258	1	SU -0.244
RUN ID	-		LY R/O Δ% OF R/O	-11.1	-0.2	-11.4	-34.9	-50.0	-5.33
RW25		Ì `	STORM R/F	10/15/67	1/8/68	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91	0.749	0.059	REF = 34	F -0,222
NO.	·	.;	PERT. R/O	0,04	1.61	0.66	0.04	SIM = 17	W -0.004 SP -0.228
		İ	REF (R/F/R/O)	48	1.18	4.65	46.5	1	SU -0.698
RUN ID			Δ% OF R/O	-9.4	0.0	-17.5	-18.0	-34.78	-4.97
RW25			. STORM R/F	10/15/67 2.51	1/9/68 3,11	4/25/68 1.70	7/31/68 2,21	9/2/68	STORM U
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.188
NO. 3	013	30	PERT. R/O	0.09	2.17	0.43	0.10	SIM ≃ 15	W 0.0 SP -0.350
	1		REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU -0.360
RUN ID			Δ% OF R/O	-2.1	-0.4	-13.3	-5.5	-25.0	-3.33
RW25			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U
SUB- WATERSHED	1,064	37	REF: R/O	0.036	1.907	0.921	0.086	REF=4	F -0.042
NO. 5			PERT, R/O	0.04	1.90	0.80	0.08	SIM = 3	W -0.008 SP -0.266
	*.		REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU -0.110
RUN ID			Δ% OF R/O	-15.0	-0.3	-15.0	-28.2	-32.5	-4.68
RW25			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U.
SUB WATERSHED NO. 7	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.300
	""		PERT, R/O	0.02	1.55	0.52	0.09	SIM = 27	SP -0.300
			REF (R/F/R/O)		1.77	3.14	23.2	1	SU -0.564
RUN ID	-		Δ% OF R/O	-1.3	-0.4	-17.7	-7.2	-22.2	-3.14
RW25			STORM R/F	10/28/67 1,35	1/8/68 1.37	5/8/68 1,91	8/20/68 0.50	9/14/68	STORMU
SUB- WATERSHED	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF=9	F -0.02
№O. 11			PERT. R/O	0.15	0.77	0.48	0.03	SIM = 7	W -0.000 SP -0.35
	Į	1		 	ļ <u>-</u>	3.24	16.1	1	SU -0.14

100

Figure 6-16. Seasonal Upper Zone Storage Study, Summer Storms

6.3.6 LZC, LOWER ZONE CAPACITY

LZC is the soil moisture storage capacity index which approximately equals the average water holding capacity of the soil. A larger ratio of soil moisture to capacity decreases the rate of infiltration, increases the availability of moisture to plant roots for evapotranspiration, and means more of the incoming moisture will percolate to groundwater. The percentage of either direct or delayed infiltration that enters the groundwater storage (the rest of the water is held in the soil) is a function of the dimensionless storage ratio LZS/LZC, where LZS is the quantity of water in the lower zone storage and LZC is the storage level at which fifty percent of all incoming moisture moves to groundwater storage.

Ross states that decreasing LZC in the model has the same effect as would reducing the ability of the soil to store water. Thus, the total synthesized runoff will increase. The sensitivity analysis that decreas LZC in the model increases the total annual flow, and the flows during fall, winter and spring. But summer flows and low flows are all diminished; this occurs in all watersheds analyzed. The explanation is in the calculations of CMIR which is the current maximum infiltration rate during the period of calculations.

CMIR =
$$\frac{1}{4}$$
 SIAM*BMIR/2**(4.*LZSR)

where LZSR = $\frac{LZS}{LZC}$

As an example, consider subwatershed 7 with -50% perturbation in LZC (7.0 is the reference value).

		August 15	November 5
	LZS	1.0	3.0
	LZC	3.5	3.5
	BMIR	12.0	12.0
	SIAM	1.6	1.02
	LZS/LZC	0.29	0.86
August 15	CMIR = ⅓ x	1.6 x 12.0/2**1.1	4
	= 4.8	/2.2 = 2.18	

November 5 CMIR = $\frac{1}{4}$ x 1.02 x 12.0/2**3.44 = 3.06/10.85 = 0.28

The above calculations explain the change in polarity of the summer flows.

The parameter LZC can be inferred from land-use classification once a relationship of soil associations, slope of watershed, type and density of vegetation and forest cover is related to LZC. At present, it is quantified by calibration and manual adjustment.

Sensitivity analysis results indicate that LZC is a very influential parameter for all seasons. The unit sensitivity is 1.4 for the fall seasons and 0.5 for the winter seasons. Results are shown in Tables 6-56 through 6-65 and Figure 6-17.

SENSITIVITY ANALYSIS OF SMALL WATERSHED 365 SQ. KM

LZC (4.0)

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

RUN ID	PARAM VALUE	Δ% PERTUR- BATION	QUTPUT		SIGNIFICA	9/27/64			
				11/4/63 FALL	1/23/64 WINTER	5/1/64 SPR ING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+1151.4	+24.9	+7.1	-	_	
D 032		-100	STORM R/F	3.13	3.19	2.87	2.16	REF = 7.9 SIM = -	STORM U/S F -11.51 W - 0.24 SP - 0.07 SU -
	0.001		REF. R/O (IN)	0.175	2.31	1.94	0.255		
			PERT. R/O (IN)	2.19	2.89	2.08	-		
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		
		- 50	Δ% OF R/O	+300.2	+13,1	+1.8	-33.4	-16.46	+7.34
	2.0		STORM R/F	3.13	3.19	2.87	2.16	REF = 7.9 SIM = 6.6	STORM U/S F -6.004 W -0.261 SP -0.036
S033			REF. R/O (IN)	0.175	2.31	1.94	0.255		
			PERT. R/O (IN)	0.70	2.62	1,97	0.17		
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.66
	6.0	+ 50	Δ% OF R/O	-53.6	-12.7	-2.9	+32.7	+16.46	-6.82
			STORM R/F	3.13	3.19	2.87	2.16	REF = 7.9 SIM = 9.2	STORM U
S034			REF. R/O (IN)	0.175	2.31	1.94	0.255		F -1.0°
			PERT. R/O (IN)	0.08	2.02	1.88	0.34		W -0.29 SP -0.09
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.6
			Δ% OF R/O	-69.9	-24.7	-5.9	1	_	
D035	в.0	+100	STORM R/F	3.13	3.19	2.87	2.16	REF = 7.9 SIM =	STORM U
			REF. R/O (IN)	0.175	2.31	1.94	0.255		F -0.6 W -0.2
			PERT, R/O (IN)	0.05	1.74	1.92	-		SP -0.0
5-81			REF (R/F/R/OI	17.9	3.19	1.47	8.3		su –

SENSITIVITY ANALYSIS OF LZC (6.0)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN
EVAPOTRANSPIRATION NET = 18.79 IN
TOTAL OBSERVED ANNUAL R/O = 10.03 IN

			ОИТРИТ	SIGNIFICANT STORMS				9/7/58	()
	PARAM VALUE			10/18/37 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
 -			∆% OF R/O	+93.7	+82.9	+43.4	+7.0	-20.0	+33.0
58 3.0			STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 2.4	STORM U/S F -1.874 W -1.358 SP -0.838 SU -0.014
	3.0	- 50	REF. R/O (IN.)	0.033	0.035	0.916	0.043		
			PERT. R/O (IN.)	0.053	0.072	1.316	0,045		
			REF (R/F/R/O)	91		1.94	25		
			∆% OF R/O	+18.2	+27.9	+14.9	+3,5	-6.67	+12.18
			STORM R/F	2.99	0.0	1.78	1.09	REF - 3.C SIM - 2.£	STORMU
59 4.8	4.8	4.8 - 20	REF. R/O (IN.)	0.033	0.039	0.916	. 0.043) F -0.9
			PERT. R/O (IN.)	0.039	0.055	1.053	0,045		s 9.7
	1		REF (R/F/R/O)	91		1.94	25		SU -0.1
		+ 20	2% OF R/O	8.4	-28.1	· 13.0	-6.2	3.33	- 0.85
			STORM R/F	2.99	۵.۵	1.78	1.09	REF = 3.0 SIM = 3.1	STORAL
60	7.2		REF. R/O (IN.)	0.033	0.039	0.916	0.043		F -0.4
	!		PERT. R/O (IN.)	0.030	0.028	0.794	0.041		S:º -0.8
			REF (R/F/R/O)	91		1.94	25		SU -0.2
			∆% OF R/0	-14.7	-55.7	-31,9	-11.7	+3,33	-25.3
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
61	9.0	+ 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.1	F -0.2
			PERT. R/O (1N.)	0.028	0.017	0.324	0.038		SP -0.3
6-82			REF (R/F/R/O)	91		1.94	25		SU -0.2

SENSITIVITY ANALYSIS OF REGIONAL WATERSHED 22,248 SQ: KM

LZC (7.0)

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

		1			SIGNIFICAN	T STORMS		9/15/68	T
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+35.2	+23.0	+2.0	-14.2	-27.17	+18.11
			A% OF MONTHLY R/O	OCT +15.25	JAN +27.02	APR +9.12	AUG -17.05		STORM U/S
			REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.704
31	3.5	- 50	PERT. R/O (IN)	0.134	1.205	0.497	0.055	SIM = 469	W -0.460 SP -0.040
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.284
		}	Δ% OF R/O	+2.9	+4.5	+0.9	-2.6	-7.61	+3,42
		1	5% OF MONTHLY R/O	OCT +1. 13	JAN +5.34	APR +1.88	AUG -3,10		STORM U/S
30	6.3	- 10	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.290
			PERT. R/O (IN)	0.10	1.02	0.49	0.06	SIM = 595	W -0.450 SP -0.090
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.260
- <u> </u>			۵% OF R/O	-2.1	-4.5	-1.1	+2.3	+7.30	-3,34
			∆% OF MONTHLY R/O	OCT -1.13	JAN -5.28	APR -1.96	AUG +2.71		STORM U/S
28	7.7	+ 10	REF. R/O (IN)	0.099	0.980	0.487	0.064		F -0.210 W -0.450
	1		PERT, R/O (IN)	0.099	0.94	0.48	0.07	REF = 644 SIM = 691	SP -0.110
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.230
			Δ% OF R/O	-7.0	-21.7	-6.3	+8.0	+32.14	-15.76
			3% OF MONTHLY R/O	OCT -2.82	JAN -25.4	APR -10.0	AUG +10.47		STORM U/S
29	10.5	+ 50	REF. R/O (IN)	0.099	0.980	0.487	0.064		F -0.140
			PERT. R/O (IN)	0.092	0.767	0.457	0.069	REF = 644 SIM = 851	W -0.434 SP -0.126
6-83			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.160

SENSITIVITY ANALYSIS OF LZC (6.0)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

BWATERSH	IED NO. 1	2,326 SQ. KM	,				TOTAL OBOLI	VED ANNOAL	, , , , , , , , , , , , , , , , , , , ,
					SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	-8/18/68 SUMMER	LOW FLOW	ANNUAL FLOW
	 		Δ% OF R/O	+89.5	+25.1	-1.4	-36.4	-50.0	+15.83
			STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
31	3.0	- 50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -1,790 W -0.502
0.			PERT. R/O (IN.)	0.085	2.013	0,738	0.037	\$IM = 17	SP +0.028
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.728
			Δ% OF R/O	+7.7	+4.8	+0.6	-7.4	-14,71	+3,11
			STORM R/F	2.16	1.91	3.49	2.79		STORM U/
30	5.4	- 10	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.77 W -0.48
			PERT. R/O (IN.)	0.05	1.69	0.75	0.05	SIM = 29	SP -0.06
	-		REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.744
	<u> </u>	†	Δ% OF R/O	-5.9	-4.8	-0.9	+6.9	+14.71	-3.03
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
28	6.6	+ 10	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF=34	F -0.59 W -0.48
			PERT. R/O (IN.)	0.04	1.53	0.74	0,06	SIM = 39	SP -0.09
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.69
	1		Δ% OF R/O	-19.5	-23.1	-5.8	+28.3	+61.76	-14.67
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
29	29 9.0	+ 50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.39 W -0.46
			PERT. R/O (IN.)	0.036	1.237	0.706	0.075	SIM = 55	SP -0.11
6-84			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.56

SENSITIVITY ANALYSIS OF LZC (6.0) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

BWAIERSHI		13 SQ. KM					UTAL OBSER	VED ANNUAL	11/0 25:1-
					SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	A % PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	7/31/68 SUMMER	LOW FLOW	ANNUA FLOW
		<u> </u>	Δ% OF R/O	+90.6	+16.2	+0.3	-19.8	-39.13	+12.96
			STORM R/F	2.51	3.11	1.70	2.21		STORML
RW 31	3.0	- 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -1.8 W -0.3
			PERT. R/O (IN.)	0.181	2.521	0.523	0.094	SIM = 14	SP -0.0
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	<u> </u>	SU +0.3
			Δ% OF R/O	+7.8	+3.1	+0.8	-4.3	-8.7	+2.51
			STORM R/F	2.51	3.11 ·	1.70	2.21		STORM
RW 30	5.4	- 10	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F -0.1 W -0.3
			PERT. R/O (IN.)	0.10	2.24	0.53	0.11	SIM = 21	SP -0.0
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU +0.4
			Δ% OF R/O	-5.8	-3.0	-0.9	+4.1	+8,70	-2.48
			STORM R/F	2.51	3.11	1.7 0 ·	2.21		STORM
RW 28	6.6	+ 10	REF. R/O (IN.)	0.095	2.170	. 0.521	0.117	REF = 23	F -0.9 W -0.3
			PERT. R/O (IN.)	0.09	2,10	0.52	0,12	SIM = 25	SP -0.0
		,	REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.4
			Δ% OF R/O	-18.7	-14.8	-5.6	+17.4	+34.78	-11.9
			STORM R/F	2.51	3,11	1.70	2.21		STORM
RW 29	9.0	+ 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.3 W -0.3
			PERT. R/O (IN.)	0.077	1.848	0.492	0.138	SIM = 31	SP -0,
6-85			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.3

SENSITIVITY ANALYSIS OF SURWATERSHED NO. 5 1,064 SQ. KM

LZC (6.0)

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

BWATERSHE	D NO. 5	,064 SQ. KM						VED ANNUAL	
		Ţ	1 L		SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	8/13/68 SUMMER	LOW . FLOW	ANNUAL FLOW
			Δ% OF R/O	+9.6	+23.6	+2,5	-5.3	-25.0	+15.24
			STORM R/F	1.08	2.04	1.82	2.22		STORM U
RW 31	3,0	- 50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 3	F -0.192 W -0.472
1147 51			PERT. R/O (IN.)	0.039	2.358	0.944	0.082	31M - 3	SP -0.05
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +0.10
	 		Δ% OF R/O	+0.9	+4.5	+0.9	-1.2	0.0	+2.98
			STORM R/F	1.08	2.04	1.82	2.22		STORM U
RW 30	5.4	_ 10	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F -0.09 W -0.45
	1		PERT. R/O (IN.)	0.04	1.99	0.93	0.9	SIM = 4	SP -0.09
			REF (R/F/R/O)	30	1.06	1.97	25.8	ļ	SU +0.02
		 	Δ% OF R/O	-0.7	-4.4	-1.1	+1.2	+25.0	-2.92
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
RW 28	6.6	+ 10	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 5	F -0.07 W -0.44
		1	PERT. R/O (IN.)	0.036	1.82	0,91	0.09] ""- "	SP -0.1
	1		REF (R/F/R/O)	30	1.06	1.97	25.8	<u> </u>	SU +0.1
	 		Δ% OF R/O	-2.3	-20.9	-6.1	+5.6	+75.0	-13.85
			STORM R/F	1.08	2.04	1.82	2.22]	STORM
RW 29	9.0	+ 50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F -0.04
			PERT. R/O (IN.)	0.035	1.508	0.865	0.091] 3""-/	SP -0.1
6-86			REF (R/F/R/O)	30	1.06	1.97	25.B		SU +0.1

SENSITIVITY ANALYSIS OF

SUBWATERSHED NO. 7 1,111 SQ. KM

LZC (7.0)

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

					SIGNIFICA	NT STORMS		9/30/68		
RUN (D	PARAM VALUE	A% PERTUR- BATION	оитрит .	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAI FLOW	
		1	Δ% OF R/O	+185.5	+30.3	+9.2	-39,9	-42.50	+19.58	
		1	STORM R/F	1.58	2.76	1.92	2.95		STORM U	
RW 31	3.5	- 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 23	F -3.710 W -0.600	
	1]	PERT. R/O (IN.)	0.084	2.029	0.666	0.076]	SP -0.18	
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU +0.79	
			Δ% OF R/O	+14.9	+5.6	+2.1	-8.0	-7.50	+3.68	
	1		STORM R/F	1.58	2.76	1.92	2.95		STORM U	
RW 30	6.3	- 10	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 37	F -1,49 W -0,11	
			PERT. R/O (IN.)	0.03	1.64	0.62	0.12	3111 - 37	SP -0.04	
	1		REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU +0.80	
•			Δ% OF R/O	-9.1	-5.6	-2.3	+7.3	+7.50	-3.63	
				STORM R/F	1.58	2.76	1.92	2.95		STORM U.
RW 28	7.7	+ 10	REF. R/O (IN.)	0.029	1,557	0.610	0.127	REF = 40 SIM = 43	F -0.91 W -0.56	
			PERT. R/O (IN.)	0.029	1.47	0.60	0.14	51W = 43	SP -0.23	
			REF (R/F/R/O)	54,5	1.77	3.14	23.2		SU +0.73	
_			Δ% OF R/O	-29.2	-26.2	-11.4	+28.5	+30.0	-17.31	
	1		STORM R/F	1.58	2.76	1.92	2.95		STORM U	
RW 29	10.5	+ 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F -0.58 W -0.52	
			PERT. R/O (IN.)	0.021	1,149	0.540	0.163	SIM = 52	SP -0.22	
6-87			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU +0.57	

SENSITIVITY ANALYSIS OF LZC (6.0) SUBWATERSHED NO. 11 2,651 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	+11.4	+31.7	+6.4	-11.3	-33.33	+21.92
			STORM R/F	1.35	1.37	1.91	0.50		STORMU
RW 31	3.0	-50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.22 W -0.63
	ĺ		PERT. R/O (IN.)	0.167	1.013	0.625	0.028	SIM = 6	SP -0.1
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.2
	<u> </u>		∆% OF R/O	+0.9	+5.9	+1.7	-1.6	-11.11	+4.13
			STORM R/F	1.35	1.37	1.91	0.50		STORM
RW 30	5.4	- 10	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.0 W -0.1
	[PERT. R/O (IN.)	0.15	0.82	0.60	0.03	SIM = 8	SP -0.0
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.0
•			Δ% OF R/O	-0.7	-5.9	-1.8	+1.2	+11.11	-3.99
	ŀ	İ	STORM R/F	1.35	1.37	1.91	0.50		STORM
RW 28	6.6	+ 10	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 10	F -0.0 W -0.1
		İ	PERT. R/O (IN.)	0.15	0,72	0.58	0,03	SIM = IU	SP -0.0
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		\$U +0.0
		 	Δ% OF R/O	-2.2	-28.7	-9.8	+2.9	+33.33	-18.46
			STORM R/F	1.35	1.37	1.91	0.50		STORM
RW 29	9.0	+ 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 12	F ⊶0.0 W −0.5
			PERT. R/O (IN.)	0.147	0.548	0,530	0,032] 5iJ¥i = 12	SP -0.1
6-88			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.0

TABLE 6-64

SENSITIVITY ANALYSIS OF LZC -50% PERTURBATION (4.0 - 7.0)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			Ţ
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ООТРИТ	FALL	WINTER	SPRING	SUMMER	LOW FŁOW	ANNUAL FLOW
RUN ID	•		Δ% OF R/O	+300.2	+13.1	+1.8	-33.4	-16.46	+7.34
S033			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1,94	0.255	REF = 7.9	F -6.004
!			PERT. R/O	0.70	2.62	1,97	0.17	SIM = 6.6	W -0.261 SP -0.036
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	1	SU +0.668
RUN ID			Δ% OF R/O	+93.7	+82.9	+43.4	+7.0	-20.0	+33.0
58			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -1.874
			PERT. R/O	0.063	0.072	1.314	0.046	SIM = 2.4	W -1.658 SP -0.868
			REF (R/F/R/O)	91		1.94	25	1	SU -0.014
RUN ID			Δ% OF R/O	+35.2	+23.0	+2.0	-14.2	-27.17	+18.11
RW31			Δ% OF	ОСТ	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	+15.25 0.099	+27.02 0.980	+9.12 0.487	-17.05 0.064	REF = 644	F -0.204
			PERT, R/O	0.134	1,205	0.497	0.055	SIM = 469	W -0.460
			REF. MONTH -	0.177	3.634	2.600	0.258		SP -0.040 SU -0.284
RUN ID	, .p	,	LY R/O	+89.5	+25,1	-1.4	-36.4	-50.0	+15.83
RW31			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91 1.609	3.49 0.749	2.79 0.059	9/25/68 REF = 34	STORM U/S F -1.790
NO.	2,020	""	PERT. R/O				0.037	SIM = 17	W -0.502
			<u> </u>	0.085	2.013	0.738		31141 - 17	SP +0.028 SU +0.728
RUNID			REF (R/F/R/O)	48	1,18	4.65	46.5	***	
RW31			2% OF R/O	+90.6 10/15/67	+16.2 1/9/68	+0.3 4/25/68	-19.8 7/31/68	-39.13	+12.96
SUB- WATERSHED			STORM R/F	2.51	3.11	1.70	2.21	9/2/68	STORM U/S F -1.812
NO.	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	W -0.324
3			PERT. R/O	0.191	2.521	0.523	0.094	SIM = 14	SP -0.006
	······		REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.396
RUN ID RW31			4% OF R/O	+9.6 10/15/67	+23.6 1/9/68	+2.5	-5.3	-25,0	+15.24
SUB- WATERSHED			STORM R/F	1.08	2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
NO.	1,064	37	REF, R/O	0.036	1.907	0.921	0.086	REF = 4	F0.192 W0.472
5			PERT. R/O	0.039	2.358	0.944	0.082	SIM = 3	SP -0.050
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +0.106
RUN ID RW31			∆% OF R/O	+185.5	+30.3	+9.2	-39.9	-42.50	+19.58
SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U'S
VATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F ~3.710 W ~0.606
7			PERT. R/O	0.084	2.029	0.666	0.076	SIM = 23	SP -0.184
			REF (R/F/R/O)	5 4.5	1,77	3.14	23.2		SU +0.798
RUN ID			Δ% OF R/O	+11.4	+31.7	+6.4	-11.3	-33.33	+21.92
RW31 SUB-			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
VATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF=9	F -0.228
11			PERT. R/O	0.167	1.013	0.625	0.028	SIM = 6	W -0.634 SP -0.128
			REF (R/F/R/O)	9.0	1.8	3.24	16.1	-	SU +0.226

TABLE 6-65

SENSITIVITY ANALYSIS OF LZC +50% PERTURBATION (4.0 - 7.0)

SMALL, SNOW & REGIONAL WATERSHEDS

	AREA SQ. KM}	EPAET (IN)	оитрит					400	ABIBILIAL
S034				FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-63.6	-12.7	-2.9	+32.7	+16,46	-6.82
SMALL			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
·	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F -1,072 W -0.254
			PERT. R/O	80.0	2.02	1.88	0.34	SIM = 9.2	SP -0.058
I			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.654
RUN ID	-		Δ% OF R/O	-14.7	-55.7	-31.9	-11.7	+3.33	-25.3
61			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3,0	F -0.290 W -1.110
			PERT. R/O	0.028	0.017	0.624	0.038	SIM = 3.1	SP -0.640
			REF (R/F/R/O)	91		1.94	25		\$U -0.230
RUN ID			Δ% OF R/O	-7,0	-21.7	-6.3	+8.0	+32.14	-15.76
RW29			Δ% OF	OCT	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	-2.82 0.099	-25,4 0.980	-10.0 0,487	+10.47 0.064	REF = 644	F -0.140
REGIONAL	24,240		PERT. R/O		0.767	0.457	0.069	SIM = 851	W -0.434 SP -0.126
			REF. MONTH-	0.092	3.634	2.600	0.258		SU +0,160
		· · · · · · · · · · · · · · · · · · ·	LY R/O			-5.8	+28.3	+61.76	-14,67
RUN ID RW29	ļ		Δ% OF R/O	-19.5 10/15/67	-23.1 1/8/68	4/26/68	8/18/68		STORM U/S
SUB-			STORM R/F	2.16	1.91	3.49	2,79 0,059	9/25/68 REF = 34	F -0.390
NO.	2,326	50	REF. R/O	0.045	1.609	0.749			W -0.462
1			PERT. R/O	0.036	1.237	0.706	0.075	SIM = 55	SP -0.116 SU +0.566
			REF (R/F/R/O)	48	1.18	4.65	46.5		
RUN ID RW29			Δ% OF R/O	-18.7 10/15/67	-14.8 1/9/68	-5.6 4/25/68	+17.4 7/31/68	+34.78	-11.95
SUB-			STORM R/F	2.51	3.11	1.70	2.21	9/2/68	STORM U/S F -0.374
WATERSHED NO.	813	50	REF, R/O	g.095	2.170	0.521	0.117	REF = 23	W -0.296
3			PERT. R/O	0.077	1.848	0.492	0.138	SIM = 31	SP -0.112
			REF (R/F/R/O)	26.4	1,43	3.26	18.9		SU +0.348
RUN ID RW29		ļ	∆% OF R/O	-2.3	-20.9	-6.1	+5.6	+75,0	-13.85
SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S F -0.046
WATERSHED NO.	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	W ~0.418
5			PERT. R/O	0.035	1.508	0.865	0,091	SIM = 7	SP -0.122
			REF (R/F/R/O)	30	1.06	1.97	25.8	<u> </u>	SU +0.112
RUN ID			Δ% OF R/O	-29.2	-26.2	-11.4	+28.5	+30.0	-17.31
RW29 SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2,95	9/30/68	STORM U/S
WATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.584 W -0.524
7			PERT. R/O	0.021	1.149	0.540	0.163	SIM = 52	SP -0.228
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU +0.570
RUNID		1	Δ% OF R/O	-2.2	-28.7	-9.8	+2.9	+33.33	-18.46
RW29			STORM R/F	10/28/67	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	0.769	0.588	0.031	REF = 9	F -0.044
NO. 11	*/		PERT. R/O	0.147	0.548	0.530	0.032	SIM = 12	W -0.574 SP -0.196
			REF (R/F/R/O)	9,0	1.8	3.24	16.1	- ···· ·- ·-	SU -0.058

^{*} A FUNCTION OF SOIL ASSOCIATION, SLOPE, TYPE OF VEGITATION AND FOREST COVERS

Figure 6-17. Lower Zone Storage Capacity Study, Winter Storms

6.3.7 ETLF, EVAPOTRANSPIRATION LOSS FACTOR

ETLF is an index used to estimate the maximum rate of evapotranspiration which could occur within the watershed under current conditions of soil moisture content. This maximum rate is then used to estimate current actual evapotranspiration. A higher value of ETLF should be used for watersheds containing many large trees because transpiration will continue from trees long after more shallow rooted vegetation withers. The parameter ETLF logically relates to verland slope and forest cover. Forest cover enters because trees are the primary deep rooted plants able to keep transpiration continuing during long dry periods, and slope enters because moisture would normally drain faster by gravity from steeper slopes and thus be available for a lesser time to plants for transpiration. Watersheds with steep slopes are also more likely to have large areas in shaded north slopes where evaporation rates are lower.

The parameter ETLF can be indirectly obtainable from land-use classification after a good relationship between slope and forest cover to ETLF is established. It is presently quantified by calibration and manual adjustment.

Sensitivity analysis results indicate that ETLF is influential throughout the year, but during summer flows and low flows it is very sensitive. The average unit sensitivity is 0.14 for the fall seasons and 1.03 for the summer seasons. Results are shown in Tables 6-66 through 6-75 and Figure 6-18.

SENSITIVITY ANALYSIS OF ETLF (0.20)
SMALL WATERSHED 366 SQ. KM.

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

ALL WATE	H2HED .	365 SQ. KM					TOTAL OBSER	VED ANNUAL	R/O = 31.38
	T			-	SIGNIFICA	NT STORMS		9/27/64	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	11/ 4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAI FLOW
		 	Δ% OF R/O	+24.6	+1,6	+3.5			
D036	0.001	-100	STORM R/F	3.13	3.19	2.87	2.16		STORM U
			REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.2 W -0.0
	ŀ	ļ	PERT. R/O (IN)	0.22	2,35	2.01] SIM =	SP -0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		su
	<u> </u>	<u> </u>	Δ% OF R/O	+9.4	+0.4	+1.1	+89.7	+43.0	+4.68
			STORM R/F	3.13	3.19	2.87	2.16		STORML
\$037	0.10	-50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.1 W -0.0
			PERT. R/O (IN)	0.19	2.32	1.96	0.48	SIM = 11.3	SP0.0
		1	REF (R/F/R/O)	17.9	1.38	1.47	8.3		\$∪ — 1.7
	<u> </u>		Δ% OF R/O	-5.9	0.2	-0.4	-30.2	-20.3	-2.17
			STORM R/F	3.13	3.19	2.87	2.16		STORM
	0.00	+50	REF. R/O (IN)	0.175	2.31	1.94	0.255*	REF = 7.9	F +0.1 W +0.0
S038	0.30	***	PERT. R/O (IN)	0.17	2,31	1,93	0.18	SIM = 6.3	SP +0.0
	}		REF (R/F/R/O)	17.9	1.38	1,47	8.3		SU +0.6
	1		Δ% OF R/O	-9.8	-0.4	-0.6			
			STORM R/F	3.13	3.19	2.87	2.16		STORMU
D039	0.40	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F0.0
			PERT, R/O (IN)	0.16	2.30	1.93		SIM =	SP -0.0
	İ		REF (R/F/R/O)	17.9	3.19	1.47	8.3		SU
	 		Δ% OF R/O	-16.6	0.7	1.0			
			STORM R/F	3.13	1.38	2.87	2.16	_	STORMU
D040	1,0	.0 +400	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.0
			PERT. R/O (IN)	0.15	2,30	1.92		SIM =	SP -0.0
6-93	į		REF (R/F/R/O)	17.9	1.38	1.47	8.3		\$U

SENSITIVITY ANALYSIS OF

SNOW WATERSHED 277 SQ. KM

ETLF (0.30)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

					SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОПТРПТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAI FLOW
•			Δ% OF R/O	+1.6	+2.0	+0.8	+4.2	+113.3	+2.4
			STORM R/F	2.99	0.0	1.78	1.09		STORM U
RW16	0.15	-50	REF, R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 6.4	F −0.03
			PERT, R/O (IN.)	0.033	0.040	0.923	0.045	21M = 0.1	SP -0.01
			REF (R/F/R/O)	91		1.94	25		SU -0.08
			Δ% OF R/O	+0.5	+0.7	+0.3	+1.2	+30,0	+0.77
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
RW17	0,225	-25	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F0.0
			PERT. R/O (IN.)	0.033	0.040	0.919	0.044	SIM = 3.9	W -0.0: SP0.0
			REF (R/F/R/O)	91		1.94	25		SU -0.0
			Δ% OF R/O	-0.3	0.4	-0.2	-0.6	0.0	0.43
			STORM R/F	2.99	0.0	1.78	1.09	,	STORMU
RW18	0.375	+25	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F0.0 W0.0
			PERT. R/O (IN.)	0.032	0.039	0.915	0.043	SIM = 3.0	SP -0.0
			REF (R/F/R/O)	91		1.94	25		SU -0.0
			Δ% OF R/O	-0.5	-0.7	-0.3	-1.0	-20.0	-0.69
			STORM R/F	2.99 .	0.0	1.78	1.09		STORM U.
RW19	0.45	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0.0 W -0.0
		1	PERT. R/O (IN.)	0.033	0.039	0.914	0.043	SIM = 2.4	SP0.0
5-94	•		REF (R/F/R/O)	91		1.94	25		SU -0.0

SENSITIVITY ANALYSIS OF REGIONAL WATERSHED 22,248 SQ. KM

ETLF (0.20)

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	T STORMS		9/15/68		
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW	
			Δ% OF R/O	+9.1	+8.3	+8.6	+79.3	+429.5	+16.7	
			Δ% OF MONTHLY R/O	OCT +3.95	JAN +12,52	APR +3,77	AUG +106.6		STORM U/S	
RW32	0.0	-100	REF, R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.091 W -0.083	
	i		PERT, R/O (IN)	0.11	1.06	0,53	0.11	SIM = 3410	SP -0.086	
		ŀ	REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.793	
-			Δ% OF R/O	+3.7	+3.2	+2.2	+32.0	+152.2	+5.84	
			Δ% OF MONTHLY R/O	OCT +1.69	JAN +4.73	APR +0.88	AUG +41.1		STORM U/	
			REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.074 W -0.064	
RW 34	0.10	-50	PERT. R/O (IN)	0.102	1.011	0,498	0.085	SIM = 1624	SP .0.044	
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.640	
			∆% OF R/O	-2.5	-2.1	-0.9	-11.1	-41.6	-2.92	
RW 33	0.30	+50	Δ% OF MONTHLY R/O	OCT -1.13	JAN -3. 05	APR -0.54	AUG -13.6		STORM U/	
nw 33	0.30	1.30	REF. R/O (IN)	0.099	0.980	0,487	0.064	REF = 644	F -0.050 . W0.042	
		ļ	PERT. R/O (IN)	0.098	0.960	0.483	0.057	SIM = 376	SP -0.018	
	ł I		REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU-0.222	
		**************************************	∆% OF R/O	-6.7	-6.8	-2.4	-21.0	-71.3	-7.91	
RW 35	0.95	+375	Δ% OF MONTHLY R/O	OCT -2.82	JAN -9.77	APR -1.62	AUG -25.58	·	STORM U/	
	3.50		REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.018 W 0.018	
			PERT. R/O (IN)	0.09	0.91	0.48	0.05 ~	SIM = 185	SP -0.006	
6-95			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.056	

SENSITIVITY ANALYSIS OF

ETLF (0.20)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

SUBWATERSH	ED NO. 1	2,326 SQ. KM	1				TOTAL OBSER	VED ANNUAL	R/O = 19.63 IN
					SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A % PERTUR BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+24.2	+7.5	+18.8	+249	+573.6	+17.6
,			STORM R/F	2.16	1.91	3.49	2.79	•	STORM U/S
RW 32	0.0	-100	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.242 W -0.075
			PERT. R/O (IN.)	0.06	1.73	0.89	0.20	SIM = 229	SP -0.188
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU .0,249
			Δ% OF R/O	+8.8	+2.9	+4.8	+105.5	+238.2	+7.06
			STORM R/F	2.16	1.91	3,49	2.79		STORM U/S
RW 34	0.10	-50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.176 W -0.058
	,		PERT. R/O (IN.)	0.049	1.657	0.785	0.121	SIM = 115	SP -0.096
<u>.</u>	Ì		REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.211
			Δ% OF R/O	-6.6	-2.0	-1.8	-35.2	-50.0	-3.43
		İ	STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW 33	0.30	+50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF =34	F -0.132 W -0.040
1111 33	0.30	1 750	PERT, R/O (IN.)	0.042	1.577	0.736	0.038	SIM = 17	SP -0.036
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.704
			Δ% OF R/O	-21.9	-7.2	-4.7	-62.3	-79.4	-9.68
			STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW 35	0.95	+375	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.058 W -0.019
		ļ	PERT. R/O (IN.)	0.03	1.49	0.71	0.02	SIM = 7	SP -0.013
6-96			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.166

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 3 813 SQ. KM

ETLF (0.20)

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

- ,			٠,		SIGNIFICA	ANT STORMS	·	9/2/68	T
RUN ID	PARAM VALUE	A % PERTUR- BATION	ОПТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
RW 32	0.0	-100	Δ% OF R/O	+19.5	+2.9	+14.2	+162.5	+195.7	+14.7
1141 34	0.0	-100	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.195 W -0.029
			PERT, R/O (IN.)	0.11	2.23	0.60	0.31	SIM = 68	SP -0.142
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -1.625
RW 34	0.10	-50	Δ% OF R/O	+8.4	+1.2	+3.5	+56.4	+104.4	+5.38
			STORM R/F	2.51	3.11	1.70	2,21		STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F -0.168 W -0.024
			PERT. R/O (IN.)	0.103	2.196	0.539	0.184	SIM = 47	SP0.070
			REF (R/F/R/O)	26.4	1.43	3,26	18.9		WU1.308
5		Ī	Δ% OF R/O	-6. 1	-0.8	-1.3	-15.9	-30.4	-2,40
RW 33	0.30	+50	STORM R/F	2.51	3.11	1.70	2.21	<u>-</u>	STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF≈23	F0,122 w0.016
			PERT. R/O (IN.)	0.089	2.152	0.515	0.099	SIM = 16	SP -0.026
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	,	SU -0.318
RW 35	0.95	+375	Δ% OF R/O	-19.8	~-3.0	3.3	-27.5	56.5	-6.78
1171 30	0.80	73/5	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	-0.117	REF = 23	F -0.053 w -0.008
			PERT. R/O (IN.)	0.08	2.11	0.50	0.09	SIM = 10	SP0.009
6-97			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.074

SENSITIVITY ANALYSIS OF ETLF (0.20) SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	ANT STORMS		9/29/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
RW 32	0.0	-100	Δ% OF R/O	+2.8	+5.9	+7.1	+93.3	+825.0	+9.4
nw 32	0,0	-100	STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
			REF. R/O (1N.)	0.036	1.907	0.921	0.086	REF = 4	F -0,028
			PERT. R/O (IN.)	0.04	2.02	0.99	0.17	SIM =37	W ~0.059 SP ~0.071
			REF (R/F/R/0)	30	1.06	1.97	25.8	1	SU _0.933
RW 34	0.10	50	Δ% OF R/O	+1.2	+2.4	+1,4	+20.5	+225.0	+3.29
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/
			REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF=4	F -0.024 W -0.048
			PERT. R/O (IN.)	0.036	1.954	0.934	0.104	SIM = 13	SP0.028
	1		REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU ~0.410
			Δ% OF R/O	-0.9	-1.6	-0.6	-3.8	-25.0	1.80
RW 33	0.30	+50	STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
			REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F -0.018 W -0.032
		1	PERT. R/O (IN.)	0.036	1.876	0.916	0.083	SIM = 3	SP -0.012
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.076
RW 35	0.95	+375	Δ% OF R/O	-2.9	~-5.8	-1.6	-6 .5	50.0	-5.72
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
			REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F -0.008 w -0.015
		ĺ	PERT. R/O (IN.)	0.03	1.80	0.91	0.08	\$IM = 2	SP0.004
6-98			REF (R/F/R/O)	30	1.06	1.97	25.8		SU0.017

TABLE 6-72 SENSITIVITY ANALYSIS OF ETLF (0.20)
SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN .

					SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
		-	∆% OF R/O	+30.9	+10.3	+11.9	+386.7	+270.0	+18.9
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW 32	0.0	-100	REF, R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 148	F -0.309 W -0.103
			PERT. R/O (IN.)	0.04	1.72	0.68	0,62]	SP -0.11
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -3.86
			Δ% OF R/O	+14.6	+3.7	+2.7	+126.1	+125.0	+7,35
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW 34	0.10	- 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 90	F -0.29 W -0.07
	ļ		PERT. R/O (IN.)	0.034	1.615	0.626	0.287]	SP -0.05
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.52
·			Δ% OF R/O	-8.6	-2.3	-1.3	-39.4	-40.0	-3.65
			STORM R/F	1.58	2.76	1.92	2.95		STORMU
RW 33	0.30	+ 50	REF. R/O (IN.)	0,029	1.557	0.610	0.127	REF = 40 SIM = 24	F =0.17 W =0.04
			PERT. R/O (IN.)	0.027	1.521	0.602	0,077	31W - 24	SP -0.03
			REF (R/F/R/0)	54.5	1.77	3.14	23.2		SU -0.7
	<u> </u>		Δ% OF R/O	-21.0	-6.2	-3.0	-73.5	-82.5	-8.63
	Ī	,	STORM R/F	1.58	2.76	1.92	2.95		STORMU
RW 35	0.95	+375	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 7	F -0.0 W -0.0
			PERT. R/O (IN.)	0.02	1.46	0.59	0,03	311VI = /	SP -0.0
5-99			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.1

SENSITIVITY ANALYSIS OF ETLF (0.20) SUBWATERSHED NO. 11 2.551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ООТРОТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUA FLOW
•			Δ% OF R/O	+3,9	+11.7	+7.7	+44.3	+444.4	+12.3
			STORM R/F	1.35	1.37	1.91	0.50]	STORMU
RW 32	0.0	-100	REF. R/O (1N.)	0.150	0.769	0.588	0.031	REF = 9	F -0.035
			PERT. R/O (IN.)	0.16	0.86	0.63	0.05	SIM = 49	SP -0.07
	_		REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU ~0,44:
			Δ% OF R/O	+1.6	+4.2	+1.9	+17.7	+144.4	+4.17
			STORM R/F	1.35	1.37	1.91	0.50		STORM U
RW 34	0.10	- 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.03
			PERT, R/O (1N.)	0.153	0.802	0.599	0.037	SIM = 22	W -0.08 SP -0.03
		1	REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.35
			∆% OF R/O	-0.9	-2.6	-0.8	-5.9	-22.2	-2.33
	ļ		STORM R/F	1.35	1.37	1.91	0.50		STORM U
RW 33	0.30	+ 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.01
			PERT. R/O (IN.)	0.149	0.750	0.583	0.029	SIM = 7	W -0.053 SP -0.016
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.11
			Δ% OF R/O	-2.0	-6.9	-2.1	-11.7	-44.4	-5.89
			STORM R/F	1.35	1.37	1.91	0.50		STORM U
RW 35	0.95	+375	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.00
			PERT. R/O (IN.)	0.15	0,72	0.58	0.03	SIM = 5	W -0.01 SP -0.00
5-100			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.03

SENSITIVITY ANALYSIS OF ETLF +50% PERTURBATION (0.20 - 0.30)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	. WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID \$038			Δ% OF R/O	-5.9	-0.2	-0.4	-30,2	-20.3	-2.17
3036			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1,94	0.255	REF = 7.9	F +0.118 W +0.004
			PERT. R/O	0.17	2.31	1.93	0.18	SIM = 6.3	SP +0.008
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.604
RUN ID			Δ% OF R/O	-0.5	-0.7	-0.3	-1.0	-20.0	-0.69
19			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0.010 W -0.014
			PERT. R/O	0.033	0.039	0,914	0.043	SIM = 2.4	SP -0.006
			REF (R/F/R/O)	91		1.94	25	1	SU -0.020
RUN ID			Δ% OF R/O	-2.5	-2.1	-0.9	-11,1	-41.6	-2.92
AM 33			∆% OF	ОСТ	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O REF. R/O		-3.05 0.980	-0.54 0.487	-13.6 0.064	REF = 644	F -0.050
			PERT. R/O	0.096	0,960	0,483	0.057	SIM = 376	W -0.042 SP -0.018
			REF. MONTH-	0.177	3.634	2.600	0.258	}	SU -0.222
RUNID			Δ% OF R/O	-6.6	-2.0	-1.8	-35.2	-50.0	-3.43
RW 33			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.509	3.49 0.749	2.79 0.059	REF = 34	F -0.132
NO. 1			PERT, R/O	0.042	1,577	0.736	0.038	SIM = 17	W -0.040 SP -0.036
			REF (R/F/R/O)	48	1,18	4.65	46.5		SU -0.704
RUN ID			Δ% OF R/O	-6.1	-0.8	-1,3	-15.9	-30,4	-2.40
RW 33			STORM R/F	10/15/67	1/9/68	4/25/68	7/31/68	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	2.51 0.095	3.11 2.170	1.70 0.521	0,117	REF = 23	F -0.122
NO. 3	013	30	PERT, R/O	0.089	2.152	0.515	0.099	SIM = 16	W -0.016
_		ļ	REF (R/F/R/O)	26.4	1.43	3.26	18.9	2	SP -0.026 SU -0.318
RUN ID			Δ% OF R/O	-0.9	-1.6	-0.6	-3.8	-25.0	-1,80
RW 33			STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF, R/O	1.08 0.036	2.04 1.907	1.82 0.921	2.22 0.086	REF = 4	F -0.018
NO. 5	1,054	"	PERT. R/O	0.036	1.876	0,916	0.083	SIM = 3	W -0.032
			REF (R/F/R/O)	30	1.06	1,97	25.8	3111 - 3	SP -0.012 SU -0.076
RUN ID		<u> </u>	Δ% OF R/O	-8.6	-2.3	-1.3	-39.4	- 40.0	
RW 33			STORM R/F	-8.0 10/15/67	1/8/68	-1.3 4/26/68	8/14/68		-3.65
SUB- WATERSHED	1 114	40		0.029	2.76	1.42 0.610	2.95	9/30/68	STORM U/S F -0.172
NO. 7	1,111	40	REF. R/O		1.557		0.127	REF = 40	W -0.046
·			PERT. R/O	0.027	1.521	0.602	0.077	SIM = 24	SP -0.026 SU -0.788
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		
RUN ID RW 33			Δ% OF R/O	-0.9 10/28/67	-2.6 1/8/68	-0.8 5/8/68	-5.9 8/20/68	-22.2	-2.33
SUB- WATERSHED	. :		STORM R/F	1.35	1.37	1.91	0.50	9/14/68	STORM U/S F -0.018
NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF≈9	W -0.052
11			PERT, R/O	0.149	0.750	0.583	0.029	SIM = 7	SP -0.016
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.118

SENSITIVITY ANALYSIS OF ETLF -50% PERTURBATION (0.20 - 0.30)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	ANT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID S037			Δ% OF R/O	+9.4	+0.4	+1.1	+89.7	+43.0	+4.68
3037		ł	STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F -0.188 W -0.008
			PERT. R/O	0.19	2.32	1.96	0.48	SIM = 11.3	W -0.008 SP -0.022
			REF (R/F/R/O)	17.9	1,38	1.47	8.3	L	SU -1.794
RUN ID 16			Δ% OF R/O	+1.6	+2.0	+0.8	÷4.2	+113,3	+2.4
·			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF ≈ 3.0	F -0.032 W -0.040
			PERT. R/O	0.033	0.040	0.923	0.045	SIM ≈ 6.4	SP -0.016
			REF (R/F/R/O)	91		1,94	25		SU -0.084
RUN ID			Δ% OF R/O	+3.7	+3.2	+2.2	+32.0	+152.2	+5.84
RW 34			Δ% OF MONTHLY R/O	OCT +1. 69	JAN +4.73	APR +0,88	AUG +41.1	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F0.074
			PERT. R/O	0.102	1.013	0.498	0.085	SIM = 1624	W -0.064 SP -0.044
			REF. MONTH-	0.177	3.634	2.600	0.258		SU -0.640
RUN ID	· · · · · · · · · · · · · · · · · · ·		Δ% OF R/O	+8.8	+2,9	+4.8	+105.5	+238.2	+7.86
RW 34 SUB-			STORM R/F	10/15/67 2.16	1/8/68 1,91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
WATERSHED NO.	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F -0.176
1			PERT. R/O	0.049	1.657	0.785	0,121	SIM = 115	W -0.058 SP -0.096
İ			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.211
RUN ID			Δ% OF R/O	+8.4	+1.2	+3.5	+56.4	+104.4	+5.38
RW 34			STORM R/F	10/15/67 2,51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.168
3 NO.			PERT. R/O	0.103	2,196	0.539	0.184	SIM = 47	W -0.024 SP -0.070
			REF (R/F/R/O)	26.4	1,43	3.26	18.9		SU -1.308
RUN ID			Δ% OF R/O	+1.2	+2,4	+1.4	+20.5	+225,0	+3.29
RW 34 SUB-			STORM R/F	10/15/67 1.08	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.036	2.04 1.907	1.82 0.921	2.22 0.086	REF = 4	F -0.024
5		<u> </u>	PERT. R/O	0.036	1.954	0.934	0.104	SIM = 13	W -0.048 SP -0.028
ĺ			REF (R/F/R/O)	30	1.06	1,97	25.8		SU -0.410
RUN ID RW 34			Δ% OF R/O	+14.6	+3.7	+2.7	+126.1	+125.0	+7,35
SUB-			STORM R/F	10/15/67 1.58	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
WATERSHED	1,111	40	REF. R/O	0.029	2.76 1.557	1.42 0.610	2.95 0.127	REF = 40	F -0.292
7			PERT. R/O	0.034	1.615	0.626	0.287	SIM = 90	W -0.074
			REF (R/F/R/O)	54.5	1,77	3.14	23.2		SP -0.054 SU -2.522
RUN ID			Δ% OF R/O	+1.6	+4.2	+1.9	+17.7	+144.0	+4.17
RW 34			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1,35 0.150	1.37 0.769	1.91 0.588	0.50 0.031	REF = 9	F -0.032
NO. 11	İ		PERT. R/O	0.153	0.802	0,599		i	W -0.084
			REF (R/F/R/O)				0.037	SfM ≈ 22	SP -0.038 SU -0.354
			TET (N/F/N/O)	9.0	1.8	3.24	16.1		J. T.007

* A FUNCTION OF TYPE AND DENSITY OF VEGITATIVE COVER

Figure 6-18. Evapotranspiration Loss Factor Study, Summer Storms

6.3.8 SIAC, SEASONAL INFILTRATION ADJUSTMENT FACTOR

SIAC is an index to adjust infiltration rates for seasonal variation. It logically varies with seasonal variation in vegetative cover. Growing root systems and waste vegetative matter loosen the soil surface and growing plants take water from the soil and thereby cause fine soils to more quickly dry and crack during dry periods.

The parameter SIAC can be indirectly obtainable from land-use classification after a relationship of the type and density of vegetation and forest covers are related to SIAC parameter. At present, it is quantified by calibration and manual adjustment.

Sensitivity analysis shows that SIAC is most influential during the winter season, when its average unit sensitivity is 0.11. Results appear in Tables 6-76 through 6-86 and Figure 6-19.

SENSITIVITY ANALYSIS OF SIAC (0.25) SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

	I	T	T I		CICNIFIC	NIT PTOPAG	TOTAL OBSE	RVED ANNUA	1	
	B. B. A.	Δ%	1		SIGNIFICA	ANT STORMS	,	9/27/64		
RUN ID	PARAM VALUE	PERTUR- BATION	оитрит	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW	
			Δ% OF R/O	-2.86	-9.52	+1.55				
DAEA	2001	***	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S	
D053	0.001	-100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.029 w +0.095	
			PERT. R/O (IN)	0.17	2.09	1.97		SIM =	SP -0.016	
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	<u> </u>	su	
			Δ% OF R/O	-0.8	-4.8	+0.8	+3.9	-1:27	+0.01	
S054	0.125	-50	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S	
			REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.016 W +0.096	
]	İ	PERT. R/O (IN)	0.17	2.20	1,95	0.27	SIM = 7.8	SP -0.076	
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	1	SU -0.078	
		, i	Δ% OF R/O	+0.8	+4.5	-0,8	-3.6	+2.53	-0.01	
T055	0.375	+50	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S	
			REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.016	
			PERT. R/O (IN)	0.18	2.42	1.92	0.25	SIM = 8.1	W +0.090 SP0.016	
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.072	
			2% OF R/O	0.0	+9.09	-1.55				
D056	0.50	+100	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S	
	İ		REF, R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	p 0.0	
		PERT. R/O (IN)	0.175	2.52	1.91		SIM =	W +0.091 SP −0.015		
			REF (R/F/R/O)	17.9	3.19	1.47	8.3		su	

TABLE 6-77

SENSITIVITY ANALYSIS OF SIAC (0.42)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN

	ľ				SIGNIFICA	ANT STORMS	- :	0 to to -	
RUN ID	PARAM VALUE	A% PERTUR- BATION	TU9TUO	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	9/7/58 LOW FLOW	ANNUAL FLOW
			2% OF R/O	+0.2	2.2	-17.8	+3.1	+3.33	-0.59
122	0.0	100	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
]	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0.002
			PERT. R/O (IN.)	0.033	0.038	0.75	0.045	SIM = 3.1	W +0.022 SP+0.178
,, <u></u>			REF (R/F/R/O)	91		1.94	25		SU-0.031
			Δ% OF R/O	-0.2	+0.4	+18.0	-3.9	-6.67	+0.63
123	0.84	+100	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
			REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0.002
			PERT. R/O (IN.)	0.033	0.039	1.081	0.041	SIM = 2.8	w +0.004 SP +0.180
6-105			REF (R/F/R/O)	91		1.94	25		SU -0.039

SENSITIVITY ANALYSIS OF SIAC (0.60)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	T STORMS		9/15/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОПТРОТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LÓW FLOW	ANNUAL FLOW
•		· · · · · · · · · · · · · · · · · · ·	Δ% OF R/O	+0.1	-8.0	+6.1	+2.2	+7.30	-0.89
			Δ% OF MONTHLY R/O	0.8 ^{CT}	JAN 4.4	APR -1. 50	AUG +3.10		STORM U/S
RW44	0.001	100	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F0.001 W +0.080
		ļ	PERT. R/O (IN)	0.10	0.90	0.52	0.07	SIM = 691	SP -0.061
			REF. MONTHLY R/O (IN)	0.177	.3.634	2.600	0.258		SU -0.022
			Δ% OF R/O	+0.1	-4.4	+3.3	+1.2	+3.57	0,49
RW46	0.30	50	∆% OF MONTHLY R/O	OCT 0.0	JAN -2,42	APR -0.85	AUG +1.55		STORM U/S
			REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F0.002 W +0.088
			PERT. R/O (IN)	0.10	0.94	0,50	0.06	SIM = 667	SP -0.066
			REF. MONTHLY R/O (IN)	0.177	3.634	2.60D	0.258		SU -0.024
			∆% OF R/O	+0.1	+4.7	3.5	1.3	-3.26	+0.56
			Δ% OF MONTHLY R/O	OCT 0.0	JAN +2.67	APR +0.85	AUG 1.55		STORM U/S F +0.002
RW45	0.90	+50	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	W +0.094
			PERT. R/O (IN)	0.10	1.03	0.47	0.06	SIM = 623	SP0.070
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU0.026

TABLE 6-79

SENSITIVITY ANALYSIS OF SIAC (0.60)

SUBWATERSHED NO. 1

2,326 SQ. KM

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

JBWATERSH	CD NO. 1	2,326 SU. KN	·					· ·	/
		.			SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	ОПТРОТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	ANNUAL FŁOW
			Δ% OF R/O	0.0	-14.5	+5.7	+3.1	+2.94	-0.77
RW44	0.001	-100	STORM R/F	2.16	1,91	3.49	2.79		STORM U
		ŀ	REF, R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F 0.0 W +0.145
			PERT. R/O (IN.)	0.04	1.38	0.79	0.06	S1M = 35	SP -0.057
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.03
			Δ% OF R/O	0 .0	8.5	+3,5	+1.8	+2.94	-0.44
RW46	0.30	-50	STORM R/F	2.16	1.91	3.49	2.79		STORM U
,,,,,,	5.50		REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F 0.0 W +0.17
			PERT. R/O (IN.)	0.04	1,47	0.78	0,06	SIM = 35	SP -0.0
	•		REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.03
			∆% OF R/O	0.0	+8.7	4.0	-2.2	-5.88	+0.56
RW45	0,90	+50	STORM R/F	2.16	1.91	3.49	2.79		STORM U
	0.00	1.50	REF. R/O (1N.)	0.045	1.609	0.749	0.059	REF =34	F 0.0 W +0.17
			PERT. R/O (IN.)	0.04	1.75	0.72	0.06	SIM = 32	SP0.08
5-106			REF (R/F/R/O)	48	1,18	4.65	46.5		SU0.04

SENSITIVITY ANALYSIS OF SIAC (0.60) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

,		. ~			SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ОПТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
	1		Δ% OF R/O	+0.6	11.3	+4.3	+3.7	+4.35	-0.58
RW44	0.001	100	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.006 W +0.113
			PERT. R/O (IN.)	0.10	1.92	0.54	0.12	REF = 23 SIM = 24	W +0.113 SP0.043
-			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU -0.037
			Δ% OF R/O	+0.3	-6.3	+2,5	+1.8	0.0	-0.34
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW46	0.30	-50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F -0.006
		;	PERT. R/O (IN.)	0.10	2.03	0,53	0.12	SIM = 23	W +0.126 SP0.050
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU −0.036
			Δ% OF R/O	-0.3	+6.3	-3.1	-1.8	0.0	+0.38
RW45	0.90	+50	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
		RE	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F0,006
	ł		PERT. R/O (IN.)	0.09	2.31	0.50	0.12	SIM = 23	w +0.126 sp0.062
		[REF (R/F/R/O)	26.4	1.43	3.26	18.9	- 1	SU0.036

SENSITIVITY ANALYSIS OF SIAC (0.60)

SUBWATERSHED NO. 5 1,064 SQ. KM

TABLE 6-81

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

JRMA I EHSH		1,064 SQ. KW					TOTAL OBSE	TYLU ANNUAL	. 11/0 - 22.30 1
					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	10.0	+6.0	+0.9	+25.0	0.70
RW44	0.001	-100	STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
			REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF≃4 SIM≈5	F 0.0 W +0.100
			PERT. R/O (IN.)	0.04	1.72	0.98	0.09	2114 = 2	SP -0.060
	ľ		REF (R/F/R/O)	30	1.06	1.97	25.8	<u></u>	SU -0.009
			Δ% OF R/O	0,0	-4,8	+3.4	+0.5	+25.0	-0.35
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW46	0,30	50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F 0.0 W +0.096
			PERT, R/O (IN.)	0.04	1.82	0.95	0.09	SIM = 5	SP -0.068
			REF (R/F/R/O)	30	1.06	1.97	25.8		su -0.010
			∆% OF R/O	0.0	+4.7	-4.2	-0.7	0.0	+0.48
			STORM R/F	1.08	2.04	1,82	2.22		STORM U/S
RW45	0.90	+50	REF. R/O (IN.)	0,036	1.907	0.921	0.086	REF = 4	F 0.0 W +0.094
			PERT, R/O (IN.)	0.04	2.00	0.88	0.09	SIM = 4	SP0.084
6-107			REF (R/F/R/O)	30	1.06	1.97	25.8		SU0.014

SENSITIVITY ANALYSIS OF SIAC (0.60)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F \approx 50.93 IN EVAPOTRANSPIRATION NET \approx 33.02 IN TOTAL OBSERVED ANNUAL R/O \approx 18.29 IN

					SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/69 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+0.1	-12.2	+4.2	+18.2	+5.0	-1.09
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/
RW44	0.001	-100	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 42	F -0,00° W +0,12
			PERT. R/O (IN.)	0.03	1.37	0.64	0.15		SP -0.04
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.18
			Δ% OF R/O	0.0	-6.2	+2.4	+8.1	+2.5	-0.61
		İ	STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW46	0.30	- 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 41	F 0,0
		ļ	PERT. R/O (1N.)	0.03	1.46	0.62	0.14	31101 - 47	SP -0.04
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.16
	<u> </u>	<u> </u>	∆% OF R/O	+0.2	+5.8	-2.5	-6,3	-2 .5	+0.63
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW45	0.90	+ 50	REF. R/O (IN.)	0,029	1.557	0.610	0.127	REF = 40 SIM = 39	F +0.00 W +0.11
0.20	1	PERT. R/O (IN.)	0.03	1.65	0.59	0.12	31W = 35	SP -0.05	
			REF (R/F/R/O)	54.5	1.77	3.14	23.2]	SU -0.12

TABLE 6-83

SENSITIVITY ANALYSIS OF SIAC (0.60)

SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	ĺ
RUN ID	PARAM VALUE	Δ % PERTUR BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPR ING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	-7.1	+5.2	+1.8	+11.11	-0.97
	1		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW44	0.001	-100	REF. R/O (IN.)	Q. 150	0.769	0.588	0.031	REF = 9	F 0.0 W +0.071
			PERT. R/O (IN.)	0.15	0.71	0.62	0,03	SIM = 10	SP -0.052
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.018
			Δ% OF R/O	0.0	-3.4	+2.8	+1.0	+11.11	-0.53
	İ		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW46	0.30	- 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F 0.0 W +0.068
			PERT. R/O (IN.)	0.15	0.74	0.60	0.03	SIM = 10	SP -0.056
	}		REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.020
			Δ% OF R/O	0.0	+3.3	-2.8	-1.0	0.0	+0.59
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW45	0.90	+ 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F 0.0 W +0.066
			PERT. R/O (IN.)	0.15	0.79	0.57	0,03	SIM = 9	W +0.066 SP -0.056
6-108	1		REF (R/F/R/O)	9,0	1.8	3.24	16.1		SU -0.020

TABLE 6-84

SENSITIVITY ANALYSIS OF SIAC -100% PERTURBATION (0.25 - 0.60) SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			}
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-2.86	-9.52	+1.65			
D053			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF. R/O	0.175	2.31	1,94	0.255	REF = 7.9	F +0.029 W +0.095
			PERT, R/O	0.17	2.09	1.97	-	\$IM =	SP -0.016
1			REF (R/F/R/O)	17.9	1.38	1.47	8.3		su -
RUN ID		<u> </u>	Δ% OF R/O	+0.2	-2,2	-17.8	+3.1	+3.33	-0.59
122		ļ	STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
snow	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0.002 W +0.022
İ			PERT. R/O	0.033	0.038	0.75	0.045	SIM = 3.1	SP +0.178
ŀ			REF (R/F/R/O)	91		1.94	25	1	รบ -0.031
RUN ID		-	Δ% OF R/O	+0.1	-8,0	+6.1	+2.2	+7.30	-0.89
RW44			Δ% OF	OCT	JAN	APR	AUG	9/15/68	STORM U
REGIONAL	22,248	41	MONTHLY R/O	0.0	-4.4 0.980	-1.50 0.487	+3,10 0.064	REF = 644	F -0.001
ILLOIOIVAL			PERT, R/O	0,10	0.90	0.52	0.07	SIM = 691	W +0.080 SP -0.061
			REF. MONTH-	0.177	3,634	2.600	0.258		SU -0.022
			LY R/O	0.0	-14.5	+5.7	+3.1	+2,94	-0.77
RUN ID RW44			Δ% OF R/O	10/15/67	1/8/68	4/26/68	8/19/68	9/25/68	STORM U
SUB- WATERSHED	9 990	F0	STORM R/F	2.16	1.91	3.49 0.749	2.79 0.059	REF = 34	F 0.0
NO.	2,320	2,326 50	REF. R/O	0.045	1.609			SIM = 35	W +0.145
'			PERT. R/O	0,04	1.38	0.79	0.06	21141 - 22	SP -0.057 SU -0.031
	·		REF (R/F/R/O)	48	1.18	4.65	46.5	.405	<u> </u>
RUNID RW44			Δ% OF R/O	+0.6 10/15/67	-11.3 1/9/68	+4.3 4/25/68	+3.7	+4.35	-0.58
SUB-			STORM R/F	2.51	3.11	1.70	2.21	9/2/68	STORM U/ F -0.006
WATERSHED NO.	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	W +0.113
3			PERT, R/O	0.10	1.92	0.54	0.12	SIM = 24	SP -0.043
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.037
RUN ID RW44			Δ% OF R/O	0.0	-10.0	+6.0	+0.9	+25.0	-0.70
SUB-		1	STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/ 29 /68	STORM U
WATERSHED NO.	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0.0 W +0.100
5		İ	PERT. R/O	0.04	1.72	0.98	0.09	SIM ≈ 5	SP -0.060
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.009
RUN ID			Δ% OF R/Q	+0.1	-12.2	+4.2	+18.2	+5.0	-1.09
RW44 SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	B/14/68 2.95	9/30/68	STORM U
WATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.001
7 T			PERT. R/O	0.03	1.37	0.64	0.15	SIM = 42	W +0.122 SP -0.042
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU -0,182
RUN ID			Δ% OF R/O	0.0	-7.1	+5.2	+1.8	+11.11	-0.97
RW44			STORM R/F	10/28/67 1.35	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORMU
SUB- WATERSHED	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F 0.0
NO. 11	• • • • • • • • • • • • • • • • • • • •	1 }	PERT. R/O	0.15	0.71	0.62	0.03	SIM = 10	W +0.071 SP -0.052
			REF (R/F/R/O)	9.0	1.8	3.24	16.1	1	SU -0.018

SENSITIVITY ANALYSIS OF SIAC -50% PERTURBATION (0.25 - 0.60)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-0.8	-4.8	+0.8	+3.9	-1,27	+0.01
S054			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.1 6	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F +0.016 W +0.096
		ŀ	PERT. R/O	0.17	2.20	1.95	0.27	SIN = 7.8	SP -0.016
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.078
RUN ID			Δ% OF R/O						
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25		su
RUN ID			Δ% OF R/O	+0.1	-4,4	+3.3	÷1.2	+3.57	-0.49
RW46			Δ% OF MONTHLY R/O	OCT 0.0	JAN -2,42	APR -0.85	AUG +1.55	9/15/68	STORM U/
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.002
]	PERT. R/O	0,10	0.94	0.50	0,06	SIM = 667	W +0.088 SP -0.066
			REF. MONTH-	0.177	3.634	2.600	0.258		SU -0.024
RUN ID		 	Δ% OF R/O	0.0	-8.5	+3.5	+1.8	+2.94	-0.44
RW46			STORM R/F	10/15/67	1/8/68	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.609	0.749	0.059	REF = 34	F 0.0
NO. 1			PERT, R/O	0.04	1.47	0.78	0.06	SIM ≈ 35	W +0.170 SP -0.070
			REF (R/F/R/O)	48	1.18	4.65	46.5	ĺ	SU -0.036
RUN ID		 	Δ% OF R/O	+0.3	-6.3	+2.5	+1,8	0.0	-0.34
RW46			STORM R/F	10/15/67	1/9/68 3.11	4/25/68 1,70	7/31/68 2.21	9/2/68	STORM U/
SUB- WATERSHED	813	50	REF. R/O	2.51 0.095	2.170	0.521	0.117	REF = 23	F -0.006
NO. 3	013	"	PERT, R/O	0.10	2.03	0.53	0.12	SIM = 23	W +0.126 SP -0.050
			REF (R/F/R/O)	26.4	1,43	3.26	18.9		SU -0.036
RUN ID			Δ% OF R/O	0.0	-4.8	+3.4	+0.5	+25.0	-0.35
RW46			STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/
SUB- WATERSHED	1,064	37	REF. R/O	1.08 0.036	2.04 1.907	0.921	0.086	REF = 4	F 0.0
NO. 5			PERT. R/O	0.04	1.82	0.95	0.09	SIM = 5	W +0.096 SP -0.068
			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU -0.010
RUN ID			Δ% OF R/O	0.0	-6.2	+2.4	+8.1	+2.5	· -0.61
RW46			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/
SUB- WATERSHED	1,111	40	REF.R/O	1.58 0.029	2.76 1.557	1,42 0.610	2.95 0.127	REF = 40	F 0.0
NO. 7	.,		PERT, R/O	0.03	1.46	0.62	0.14	SIM = 41	W +0.124
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SP -0.048 SU -0.162
RUN ID			Δ% OF R/O	0.0	-3.4	+2,8	+1.0	+11.11	-0.53
RW46			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	1.37 0.769	1.91 0,588	0.50 0.031	9/14/68 REF = 9	F 0.0
NO. 11	2,001		PERT. R/O		·		 	SIM = 10	W +0.068
			 	0.15	0.74	0.60	0,03	Janvi - IU	SP -0.056 SU -0.020
		<u> </u>	REF (R/F/R/O)	9.0	1.8	3.24	16.1		

SENSITIVITY ANALYSIS OF SIAC +50% PERTURBATION (0.25 - 0.60)

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			
VATERSHED	AREA (SQ. KM)	EPAET (IN)	ОИТРИТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	+0.8	+4.5	-0.8	-3.6	+2.53	-0.01
T055			STORM R/F	11/4/63 3,13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1:94	0,255	REF = 7.9	F +0.016 W +0.090
			PERT. R/O	0.18	2.42	1.92	0.25	SIM = 8.1	SP -0.016
			REF (R/F/R/O)	17.9	1,38	1.47	8.3		SU -0.072
RUN ID			∆% OF R/O		,				
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
		*	PERT. R/O					SIM =	SP
		1	REF (À/F/R/O)	91		1.94	25		SU
RUNID		t	Δ% OF R/O	+0.1	+4.7	-3.5	-1.3	-3.26	+0.56
RW45		,	Δ% OF MONTHLY R/O	OCT 0.0	JAN +2.67	APR +0.85	AUG -1.55	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F +0.002 W +0.094
			PERT. R/O	0.10	1,03	0.47	0.06	SIM = 623	SP -0.070
			REF. MONTH-	0.177	3.634	2.600	0,258]	SU -0.026
RUN ID	_ -	 	Δ% OF R/O ·	0,0	+8.7	-4.0	-2.2 ·	-5.88	+0.56
RW45]	STORM R/F	10/15/67 2.16	1/8/68 1,91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F 0.0 W +0.174
NO. 1	•		PERT. R/O	0.04	1,75	0.72	0.06	SIM = 32	W +0.174 SP -0.080
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.044
RUN ID		 	Δ% OF R/O	-0.3	+6.3	-3.1	-1.8	0.0	+0.38
RW45]	STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2,21	9/2/68	STORM U/
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.006 W +0.126
NO. 3	0.5		PERT. R/O	0,09	2,31	0.50	0.12	SIM = 23	SP -0.062
-			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU -0.036
RUN ID		 -	Δ% OF R/O	0.0	+4.7	-4.2	-0.7	0.0	+0.48
RW45		İ	STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0.0
NO. 5	.,		PERT. R/O	0.04	2.00	0.88	0.09	SIM = 4	W +0.094 SP -0.084
			REF (R/F/R/O)	30	1.06	1.97	25.8.	1	SU -0.014
RUN ID	<u> </u>	 	Δ% OF R/O	+0.2	+5.8	-2.5	-6.3	-2.5	+0.63
RW45	Ì		STORM R/F	10/15/67 1,58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/
SUB- WATERSHED	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F +0.004
NO. 7	""		PERT, R/O	0.03	1,65	0.59	0.12	SIM = 39	W +0.116
			REF (R/F/R/O)	54.5	1,77	3.14	23.2	1	SU -0.126
DUNIE	-		Δ% OF R/O	0.0	+3.3	-2,8	-1.0	0.0	+0.59
RUN ID RW45			STORM R/F	10/28/67	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U
SUB- WATERSHED	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F 0.0
NO. 11	2,00		PERT. R/O	0.15	0.79	0.57	0.03	SIM = 9	W +0.066 SP -0.056
			REF (R/F/R/O)	 	1.8	3.24	16.1	1	SU -0.020

(STAC — SEASONAL INFILTRATION ADJUSTMENT CONSTANT/INDIRECTLY OBTAINABLE FROM LAND – USE CLASSIFICATION)

Figure 6-19. Seasonal Infiltration Study, Summer Storms

6.3.9 BMIR, BASIC MAXIMUM INFILTRATION RATE

BMIR is the basic infiltration index used to control the rate of infiltration. Since infiltration rate varies considerably from point to point in a watershed and most runoff will be from points with smaller rates, an average infiltration value is not appropriate for use in watershed modeling. Instead a cumulative frequency distribution of infiltration capacity is used in the model.

The distribution of moisture supply among surface detention, interflow detention and infiltration is assumed to be linear from zero (equalled or exceeded by all points in the watershed) to a maximum value (reached only at a single point in the watershed). Hence, at times when moisture supply is larger, the fraction of new moisture entering overland flow and interflow is larger because the infiltration capacity of larger portions of the watershed is exceeded.

The parameter BMIR would logically relate to the "A" horizon permeability; the permeability of the surface layer of the watershed soil will most often influence the infiltration capacity of the watershed.

The parameter BMIR is important since it determines the basic division between surface runoff and infiltration to interflow, soil water, and ground water. As such it is influential in all seasons.

The average unit sensitivity is 0.20 during the winter seasons and 0.13 during the summer seasons. Results appear in Tables 6-87 through 6-96 and Figure 6-20.

The parameter can be inferred from land-use classification after a relationship of soil associations, type and density of vegetation and forest cover is related to BMIR. At present, the parameter is quantified by calibration and manual adjustment.

SENSITIVITY ANALYSIS OF BMIR (7.0) SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

	<u> </u>	Δ%			SIGNIFICA	NȚ STORMS		9/27/64	
RUN ID	PARAM VALUE	PERTUR- BATION	QUTPUT	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+1420.0	+36.6	+14.4			
	ŀ		STORM R/F	3.13	3.19	2.87	2.16	i,	STORM U/
D058	0.001	-100	REF, R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F - 14.20 W - 0.368
			PERT. R/O (IN)	2.66	3.16	2.22		SIM =	SP - 0.14
		į .	REF (R/F/R/O)	17.9	1.38	1.47	8.3 -		\$U
			Δ% OF R/0	+129.9	+13.4	+4.1	+32.8	-27.85	+1.71
			STORM R/F	3.13	3.19	2.87 ·	2.16		STORMU
S059 3.5	50	REF. R/O (IN)	0.175	2.31	1,94	0.255	REF = 7.9	$\mu = 2.59$ $\mu = 0.26$	
	1	1	PERT. R/O (IN)	0.40	2.62	2.02	0.34	SIM = 5.7	SP - 0.08
	1		REF (R/F/R/O)	17.9	1.38	1.47 .	8.3]	S⊔ – 0.6 5
			Δ% OF R/O	-26.5	-9.0	-3.3	-12.0	+13.92	0.65
			STORM R/F	3.13	3.19	2.87	2.16		STORM U
S060	10.5	+50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F 0.53 W 0.18
			PERT. R/O (IN)	0.13	2.11	1.87	0.22	SIM = 9,0	SP - 0.06
	1		REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU 0,24
			4% OF R/O	-37.14	-15.58	-6.19			
	1		STORM R/F	3.13	3.19	2.87	2.16		STORMU
D061	D061 14.0	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F - 0.37 W - 0.15
			PERT. R/O (IN)	0.11	1.95	1.82		SIM = -	SP = 0.07
-114	İ		REF (R/F/R/O)	17.9.	3.19	1.47	8.3		SU

SENSITIVITY ANALYSIS OF BMIR (20.0) SNOW WATERSHED 277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

					SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/18/67 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	+0.5	+5.8	+27.7	-6.6	-16.67	+1.11
•			STORM R/F	2.99	0.0	1.78	1.09		STORMU
62	10.0	-50	REF. Á/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.5	F - 0.01 W - 0.11
]	PERT. R/O (IN.)	0.033	0.042	1,170	0.040	31111 = 2.3	SP - 0.55 SU + 0.13
			REF (R/F/R/O)	91		1.94	25		
			Δ% OF R/O	+0.2	+1.3	+8.5	-1.8	-6.67	+0.29
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
63	63 16.0	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.8	F = 0.0 W = 0.04 SP = 0.4
			PERT. R/O (IN.)	0.033	0.040	0.994	0.042		
			REF (R/F/R/O)	91		1.94	25		SU +0.09
			Δ% OF R/O	0.0	-1.2	-6.2	+1.2	0.0	-0.20
	1.	1	STORM R/F	2.99	0.0	1.78	1.09		STORMU
64	24.0	+20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 StM = 3.0	F 0.0
			PERT. R/O (IN.)	0.033	0.038	0.859	0.044	31141 =	SP -0.31
		1	REF (R/F/R/O)	91		1.94	25		SU +0.06
			∆% OF R/O	-0.5	-2.9	-12.6	+2.5	+3.3	37
	1		STORM R/F	2.99	0.0	1.78	1.09		STORMU
65	30.0	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F = 0.0 W = 0.0
		'	PERT. R/O (IN.)	0.032	0.038	0.800	0.044	3.1	SP - 0.2
-115	1		REF (R/F/R/O)	91		1.94	25		SU - 0.0

ANNUAL R/F = 41.89 IN
EVAPOTRANSPIRATION NET = 32.90 IN
TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	T STORMS		9/15/68	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/21/68 WINTER	6/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+0.2	+9.0	-2.2	6.6	-8.39	+ 1.79
			∆% OF MONTHLY R/O	OCT 0.0	JAN +4.71	APR +2.96	AUG 6.98		STORMU
RW51	6.0	60	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F ~ 0.004 W ~ 0.18
			PERT. R/O (IN)	0.099	1.069	0.476	0.059	SIM:	SP + 0.044
	Ì		REF MONTHLY	0.177	3,634	2,600	0,258] <i>.</i>	SU + 0.132
-	!		∆% OF R/O	+0.1	+1.3	+0.3	-1.0	1.55	.+ 0.26
	}	·	4% OF MONTHLY R/O	OCT 0.0	JAN +0.74	APR + 0.46	AUG -1,16		STORMU
RW50	10.8	-10	REF. A/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F ~ 0.03 W ~ 0.13
	1		PERT, R/O (IN)	0.10	0.99	0.49	0.06	SIM = 634	SP - 0.03
		!	REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU+ 0.10
	İ		∆% OF R/O	+0.1	1.2	-0.3	+0.9	+1.40	-0.21
	·		3% OF MONTHLY R/O	OCT 0.0	JAN -0.69	APR 0.42	AUG +1.16		STORMU
RW48	13.2	+10	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF ≈ 644	F + 0.010 W - 0.12
	1		PERT. R/O (IN)	0.10	0.97	0.49	0.06	SIM = 653	SP 0.03
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258	L	SU+ 0.09
· 			∆% OF R/O	+0.4	-4.9	+0.5	+3.5	+6.06	- 0.76
			.1% OF MONTHLY R/O	ОСТ 9.0	_3 <u>A</u> .9₀	APB -1.69	+3.88		STORM U
RW49	18.0	+50	REF. R/O (IN)	0.093	0.980	0.487	0.064	DEE - 644	F + 0.008
			PERT. R/O (1N)	0.099	0.932	0.490	0.066	REF = 644 SIM = 683	SP + 0.01
6-116			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258	1	SU+0.070

SENSITIVITY ANALYSIS OF BMIR (10.0)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

					SIGNIFICA	NT STORMS		9/25/68	
FUN ID	PARAM VALUE	A% PERTUR BATION	ОИТРИТ	10/15/6 7 FALL	1/8/68 WINTER	4/26/68 SPR ING	8/18/68 SUMMER	LOW FLOW	ANNUA FLOW
			∆% OF R/O	+0.9	+17.2	+1.5	10.1	20.59	+ 1.30
			STORM R/F	2.16	1.91	3.49	2.79		STORM
RW51	5.0	–50 .	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F - 0.0°
			PERT. R/O (IN.)	0.045	1.887	0,761	0.053	SIM = 27	SP - 0.0
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU + 0.20
			Δ% OF R/O	-0.5	+2.8	+0.2	-1.5	2.94	+0.1
			STORM R/F	2.16	1.91	3.49	2.79		STORM L F + 0.00 W 0.2 SP 0.0
RW50	v50 9.0		REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34 SIM = 33	
			PERT. R/O (IN.)	0.04	1.65	0.75	0.06		
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU + 0.19
			Δ% OF R/O	-0.4	-2.6	-0.1	+1.3	+2.94	0.14
			STORM R/F	2.16	1.91	3.49	2.79		STORM
RW48	11.0	+10	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF =34	F 0.0 W 0.2
,,,,,	,		PERT. R/O (IN.)	0.04	1.57	0.75	0.06	SIM =	SP - 0.0
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU + 0.13
			Δ% OF R/O	+1.9	10.1	-0.6	+5.5	+8.82	- 0.46
RW49 15.0 +5		STORM R/F	2.16	1.91	3,49	2.79		STORM	
	+50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F + 0.0	
			PERT. R/O (IN.)	0.0456	1.4473	0.7445	0.0619	SIM = 37	SP - 0.0
-117			REF (B/F/B/O)	48	1.18	4.65	46.5		SU + 0.1

SENSITIVITY ANALYSIS OF BMIR (10.0) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

			· · · · · · · · · · · · · · · · · · ·		OLONIELGA	. :	TOTAL OBSER	VED ANNOAL	170 - 20.14
		1 4%	ļ ļ		SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	PERTUR- BATION	OUTPUT	10/15/67 Fall	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	+4.6	+9.6	+8.4	-7.2	-17,39	+ 1.60
			STORM R/F	2.51	3.11	1.70	2.21		STORM U
RW51	5,0	-50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F = 0.092 W = 0.192
	1		PERT. R/O (IN.)	0.099	2.377	0,565	0.109	SIM = 19	SP 0.168
	<u> </u>		REF (R/F/R/O)	26.4	1.43	3.26	18.9]	SU+ 0.144
			Δ% OF R/O	+0.3	+1.5	+1.0	-1. 1	-4.35	+ 0.22
			STORM R/F	2.51	3.11	1.70	2.21	REF =23 SIM = 22	STORMU
RW50	RW50 9.0	-10	REF. R/O (IN.)	0.095	2.170	0.521	0.117		F - 0.03 W - 0.15 SP- 0.10
			PERT. R/O (IN.)	0.10	2.20	0.53	0.12		
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU+ 0,110
			Δ% OF R/O	-0.3	-1.5	-0.8	+1.0	+4.35	- 0.21
			STORM R/F	2.51	3.11	1.70	2.21		STORM U
RW48	11,0	+10	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F - 0.03 W - 0.15
			PERT. R/O (IN.)	0.09	2.14	0.52	0.12	SIM = 24	SP - 0.08
	!		REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU+ 0.10
			Δ% OF R/O	-0.6	-6.0	-2.7	+4.2	+13.04	- 0.73
			STORM R/F	2.51	3.11	1.70	2.21		STORMU
RW49	15.0	+50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F - 0.012
			PERT. R/O (IN.)	0.0943	2.0398	0,5069	0,1222	SIM = 26	SP - 0,054
6-118			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU+ 0.084

SENSITIVITY ANALYSIS OF BMIR (10.0) SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	-0.8	+9.7	+1.9	-5.2	-25.0	+ 1,67
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
RW51	5.0	-50	REF. R/O (IN.)	0.036	1,907	0.921	0.086	REF = 4 SIM = 3	F + 0.01 W - 0.19
		1	PERT. R/O (IN.)	0.036	2.092	0.939	0.082	31141 - 3	SP - 0.03
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU+ 0.10
			Δ% OF R/O	+0.1	+1.5	+0.4	-0.7	0.0	+ 0.18
			STORM R/F	1.08	2.04	1.82	2.22		STORMU
RW50	9.0	-10	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 StM = 4	F - 0.0
	İ		PERT. R/O (IN.)	0.04	1.93	0.92	0.09		SP - 0.0
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU + 0.07
-			∆% OF R/O	0,0	-1.3	-0.3	+0.6	+25.0	- 0.14
			STORM R/F	1.08	2.04	1.82	2.22		STORM
RW48	11,0	+10	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = S	F 0.0 W - 0.1
			PERT. R/O (IN.)	0.04	1.88	0.92	0.09	3114 - 0	SP - 0.0
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU + 0.00
		<u> </u>	Δ% OF R/O	+0.6	-6.4	-1.9	+2.4	+25.0	0.57
			STORM R/F	1,08	2.04	1.82	2.22		STORM
RW49	15.0	+50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 5	F + 0.01 W = 0.13
			PERT. R/O (IN.)	0.0361	1.7844	0.9037	0.0882		SP - 0.0
5-119		}	REF (R/F/R/O)	30	1.06	1.97	25.8		SU+ 0.04

SENSITIVITY ANALYSIS OF BMIR (12,0)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

					SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	оитрит	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAI FLOW
			∆% OF R/O	+2.4	+11.4	+13.3	+6.0	-15.0	+ 2.02
			STORM R/F	1.58	2.76	1.92	2.95		STORM U
RW51	6.0	-50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 34	F = 0.048 W = 0.228
			PERT. R/O (IN.)	0.030	1.735	0.691	0.135	GHVI — JAG	SP 0,266
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU- 0.120
			Δ% OF R/O	+0.5	+1.7	+1.8	+0.2	-2.50	+ 0.28
			STORM R/F	1.58	2.76	1.92	2.95		STORMU
RW50	10.8	10	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 39	F 0.05 W 0.17
			PERT. R/O (IN.)	0.03	1.58	0.62	0.13	21M = 22	SP - 0.18
			REF (R/F/R/O)	54.5	1.77	3,14	23.2		SU- 0.02
***************************************			Δ% OF R/O	+0.3	-1.9	-1.6	0.0	+2.50	- 0.29
			STORM R/F	1.58	2.76	1.92	2.95		STORMU
RW48	13.2	+10	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F + 0,030 W - 0.19
			PERT. R/O (IN.)	0.03	1.53	0.60	0.13	SIM ≈ 41	SP 0.16
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU 0.0
			4% OF R/O	+1.5	-7.4	4.7	+0.1	+7.5	- 0.91
			\$TORM R/F	1.58	2.76	1.92	2.95		STORM U
RW49	18.0	+50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F + 0.030
	'3.0		PERT. R/O (IN.)	0.0299	1.4412	0.581	0.1271	SIM = 43	SP - 0.09
-120			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU+ 0.002

SENSITIVITY ANALYSIS OF BMIR (8.0) SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-0.4	+4.0	+1.3	-4.4	-11.11	+ 1.65
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW51	4.0	-50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F + 0.008 W 0.080
			PERT. R/O (IN.)	0.150	0.800	0.595	0.030	SIM = 8	SP- 0.026
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU+ 0,088
			Δ% OF R/O	-0.1	+0.8	+0.1	-0.6	0.0	+ 0.26
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW50	7.2	10	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF≃9	F + 0.010 W - 0.016
			PERT. R/O (IN.)	0.15	0.78	0.59	0.03	SIM = 9	SP 0.010
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU + 0.060
			Δ% OF R/O	0.0	-0.8	-Ó.2	+0.6	0.0	- 0.21
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW48	8.8	+10	REF, R/O (IN.)	0.150	0.769	0.588	0.031	REF=9 SIM=9	F 0,0
			PERT. R/O (IN.)	0.15	0,76	0.59	0.03	Silvi = 9	W = 0.080 SP = 0.020
			REF (R/F/R/O)	9.0	1,8	3.24	16.1		SU+ 0.060
			Δ% OF R/O	+0.3	-3.6	-0.7	+2.2	+11.11	- 0.82
]		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW49	12.0	+50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9 SIM = 10	F + 0.006 W - 0.072
			PERT. R/O (IN.)	0.1506	0.7414	0.5835	0.0319		SP- 0.014
6-121	ĺ		REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU+ 0.044

SENSITIVITY ANALYSIS OF BMIR -50% PERTURBATION (7.0 - 20.0)

SMALL, SNOW & REGIONAL WATERSHEDS

	-				SIGNIFICA	NT STORMS			1
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID	•		Δ% OF R/O	+129.9	+13.4	+4.1	+32.8	-27.85	1.71
S059		}	STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2,16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F -2.598 W -0.268
			PERT. R/O	0.40	2.62	2.02	0.34	SIM = 5.7	SP -0.082
	!		REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.656
RUN ID			Δ% OF R/O	+0.5	+5.6	+27.7	-5.6	-16.67	+1,11
62			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/ 58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0,010 W -0,112
			PERT. R/O	0.033	0.042	1,170	0.040	SIM = 2.5	SP -0.554
		-	REF (R/F/R/O)	91		1.94	25		SU +0.132
RUNID			Δ% OF R/O	+0.2	+9.0	-2.2	-6.6	-8.39	+1.79
51			Δ% OF MONTHLY R/O	OCT 0.0	JAN +4.71	APR +2.96	AUG -6,98	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.004
			PERT. R/O	0.099	1.068	0.476	0.059	SIM = 590	W -0.180 SP +0.044
			REF. MONTH- LY R/O	0.177	3.634	2.600	0.258		SU +0.132
RUNID		 	Δ% OF R/O	+0.9	+17.2	+1.5	-10,1	-20.59	+1.30
51			STORM R/F	10/15/67	1/8/68	4/26/68 3,49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91	0.749	0.069	REF = 34	F -0.018
NO. 1			PERT. R/O	0.045	1.887	0,761	0.053	SIM = 27	W -0.344 SP -0.030
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.202
RUNID			Δ% OF 8/Q	+4.6	+9.6	+8.4	·7.2	-17.39	+1.60
51			STORM R/F	10/15/67	1/9/68 3.11	4/25/68 1.70	7/31/68	9/2/68	STORM U/
SUB- WATERSHED	813	50	REF. R/O	2.51 0.095	2.170	0.521	0.117	REF - 23	F -0.092
NO. 3	0.5	"	PERT. R/O	0.099	2.377	0.565	0,109	SIM = 19	W -0.192 SP -0.168
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU +0.144
RUN ID	<u> </u>	 	Δ% OF R/O	-0.8	+9.7	+1,9	-5.2	-25.0	+1.67
51			STORM R/F	10/15/67 1.08	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	1.82 0.921	2.22 0.086	REF = 4	F +0.016
NO. 5			PERT. R/O	0.036	2.092	0.939	0.082	SIM = 3	W -0.194 SP -0.038
			REF (R/F/R/O)	30	1 06	1.97	25.8		SU +0.104
RUN ID			Δ% OF R/O	+2.4	+11.4	+13.3	+6.0	-15.0	+2.02
51			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	0.029	2.76 1.557	0.610	2.95 0.127	REF = 40	F -0.048
NO. 7	.,		PERT, R/O	0.030	1.735	0.691	 	SIM = 34	W -0.228
			REF (R/F/R/O)	54.5	1.77	3.14	0.135 23.2	1	SP -0.266 SU -0.120
RUN ID			Δ% OF R/O	-0.4	+4.0	+1,3	4.4	-11,11	***************************************
51			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68		+1.65
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	1.37	1.91	0.50	9/14/68	STORM U/ F +0.008
NO. 11	الالب	50			0.769	0.588	0.031	REF≈9	w -0.080
			PERT. R/O	0.150	0.800	0.595	0.030	SIM ≖8	SP -0.026 SU +0.088
	<u> </u>		REF (R/F/R/O)	9.0	1.8	3.24	16.1		00,000

SENSITIVITY ANALYSIS OF BMIR +50% PERTURBATION (7.0 - 20.0)

SMALL, SNOW & REGIONAL WATERSHEDS

			T		SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ООТРОТ	FALL	. WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-26.5	-9.0	3.3	-12.0	+13.92	-0.65
SO 60			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2;31	1.94	0.255	REF = 7.9	F -0.530 W -0.180
		1	PERT. R/O	0.13	2.11	1.87	0.22	\$IM = 9.0	SP -0.066
į			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.240
RUN ID			Δ% OF R/O	-0.5	-2:9	-12.6	+2.5	+3.3	-0.37
65			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/ 58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F -0,010 W -0.058
			PERT. R/O	0.032	0.038	0.800	0.044	SIM = 3.1	SP -0.252
			REF (R/F/R/O)	91		1.94	25	1	SU -0.050
RUNID			Δ% OF R/O	+0.4	-4.9	+0.5	+3.5	+6.06	-0.76
RW 49			Δ% OF	OCT	JAN -2,70	APR 1.69	AUG +3,88	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	0.0	0.980	0.487	0.064	REF = 644	F +0.008
			PERT, R/O	0,099.	0.932	0.490	0.066	SIM = 683	W -0.098 SP +0.010
			REF. MONTH-	0.177	3.634	2.600	0.258	1	SU +0.070
RUNID		-	LY R/O Δ% OF R/O	+1,9.	-10.1	-0.6	+5.5	+8.82	-0.46
RW49			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.609	3.49 0.749	2,79 0,059	REF = 34	F +0.038
NO.	2,320	30	PERT R/O			·	0.0619	SIM = 37	W -0.202 SP -0.012
			REF (R/F/R/O)	0.0456 48	1,18	0.7445 4.65	46.5		SP -0.012 SU +0.110
SUM ID		ļ. <u></u>				· · ·		122.04	0.72
RUN ID RW 49			Δ% OF R/O	-0.6 10/15/67	-6.0 1/9/68	2.7 4/25/68	+4.2 7/31/68	+13.04 9/2/68	-0.73 STORM U/S
SUB-				2.51 0.095	3.11 2.170	1.70 0.521	2.21 0,117	REF = 23	F -0.012
WATERSHED	813	50	REF. R/O				<u> </u>	SIM = 26	W -0.120
3			PERT. R/O	0.0943	2.0398	0.5069	0.1222 18.9	31111 - 20	SP -0.054 SU +0.084
			REF (R/F/R/O)	26.4	1.43	3.26			
RUN ID RW49			Δ% OF R/O	+0.6 10/15/67	1/9/68	1.9 4/25/68	+2.4 8/13/68	+25.0	0.57
SUB-			STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/S F +0.012
NO. 5	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	W -0.128
n			PERT, R/O	0.0361	1.7844	0.9037	0.0882	SIM = 5	SP -0.038 SU +0.048
		ļ. ———	REF (R/F/R/O)	30	1.06 · .	1.97	25.8	ļ	30 10.040
RUN ID RW 49			Δ% OF R/O	+1.5 10/15/67	-7.4 1/8/68	-4.7 4/26/68	+0.1 8/14/68	+7.5	-0.91
SUB-			STORM R/F	1.58	2.76	1.42	2.95	9/30/68	STORM U/S F +0.030
WATERSHED NO.	1,111	40	REF. R/Q	0.029	1.557	0.610	0.127	REF = 40	W -0.148
7		ļ	PERT. R/O	0.0299	1.4412	0.581	0.1271	SIM = 43	SP -0.094
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU +0.002
RUN ID			Δ% OF R/O	+0.3	-3,6	-0.7	+2.2	+11.11	-0.82
RW 49 SUB-			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
WATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F +0.006 W -0.072
11			PERT. R/O	0.1506	0,7414	0.5835	0.0319	SIM = 10	SP -0.014
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.044

Figure 6-20. Basic Maximum Infiltration Rate Study, Winter Storm

6.3.10 OVERLAND FLOW SURFACE SLOPE

OFSS is the average slope in meters per meter of the overland flow surfaces perpendicular to the receiving channels and may be estimated by averaging a series of measurements made for a randomly selected group of points on a topographic map of the watershed.

This parameter is used to calculate the rate of discharge from overland flow. This rate is based on the Chezy-Manning equation

$$q = \frac{1.486}{n} (y^{5/3})(s^{1/2})$$

where q is discharge in cfs/ft, y is the depth in feet at the lower edge of the flow plane, and s is the slope of the surface in ft/ft. The outflow depth (y) is expressed empirically in terms of surface detention in order that continuous overland flow can be calculated.

Sensitivity analysis results indicate that the small watershed has a unit sensitivity of 0.21 for the fall season for a -50% perturbation of OFSS. In all other basins and seasons the unit sensitivity is less. This is due to a combination of factors: (1) overland flow (a concept useful in modeling but not believed by all hydrologists actually to exist) contributes only a portion of streamflow; (2) in the fall, after a dry summer season, infiltration is maximum, and the proportion of streamflow due to overland flow is greater; (3) overland flow rate in the model is proportional to (OFSS)½, causing the parameter to be more influential, in terms of unit sensitivity, in basins for which the reference value of OFSS is small. In the regional watershed, all the initial values of OFSS were initially very low. They were raised to a reference value of 0.10 for all subwatersheds to provide for wider parameter variations at reasonable percentage variations.

Results are shown in Tables 6-97 through 6-106, and in Figures 6-21 and 6-22.

SENSITIVITY ANALYSIS OF SMALL WATERSHED 365 SQ. KM

OFSS (0.062)

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

					SIGNIFICA	NŢ STORMS	· · · · ·	9/27/64	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-38.B	-6.0	0.0		· · _	
		İ	STORM R/F	3.13	3.19	2.87	2.16		STORM U
D067	0.001	-100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.38 W +0.06
5007	0.551		PERT. R/O (IN)	0.11	2.18	1.94	-	SIM = -	SP 0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -
			Δ% OF R/O	-10.5	-0.7	+0.4	-3.9	+3.80	-0.12
			STORM R/F	3.13	3.19	2.87	2.16		STORM
T068	0.031	- 50	REF. R/O (IN)	0.175	2.31	1.94	0.256	REF = 7.9	F +0.2 W +0.0
			PERT. R/O (IN)	0.16	2.30	1.95	0.25	SIM = 8.2	SP -0.0
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.0
		<u> </u>	∆% OF R/O	+6.2	+0.4	-0.2	+2.2	-1.3	+0.07
			STORM R/F	3.13	3.19	2.87	2.16		STORMU
T069	0.093	+ 50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.1 W +0.0
			PERT. R/O (IN)	0.19	2.32	1.93	0.26	SIM = 7.8	SP -0.0
	ļ		REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +0.0
	 	+	Δ% OF R/O	+10.8	+0.7	-0.4	_		
	1		STORM R/F	3.13	3.19	2.87	2.16	•••	STORMU
D070	0.124	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +0.1
			PERT. R/O (IN)	0.19	2.33	1.93		SIM = -	SP -0.0
6-126	1		REF (R/F/R/O)	17.9	3.19	1.47 '	8.3		su –

SENSITIVITY ANALYSIS OF OFSS (0.34)
SNOW WATERSHED 277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

OW WATER:	SHED 2	277 SQ. KM						VED ANNUAL	R/O = 10.0			
					SIGNIFICA	NT STORMS		9/7/58	•			
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUA FLOW			
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01			
	Ì		STORM R/F	2.99	0.0	1.78	1.09		STORM			
20	0.0001	-100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	F 0.0 W 0.0			
			PERT. R/O (IN.)	0.033	0.039	0,916	0.043	3114 - 3.0	SP 0.0			
			REF (R/F/R/O)	91		1.94	25		SU 0.0			
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01			
		ł	STORM R/F	2.99	0.0	1.78	1.09		STORM			
22	0.170	- 50	REF. R/O (1N.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	F 0.0			
			PERT. R/O (IN.)	0.033	0.039	0.916	0.043	31W - 3.0	SP 0.0			
			REF (R/F/R/O)	91		1.94	25		SU 0.0			
			Δ% OF R/O	0.0	0.0	O .D	0.0	0.0	-0.01			
						STORM R/F	2.99	0.0	1.78	1.09		STORM
25	0 .510	+ 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	F 0.0 W 0.0			
			PERT. R/O (IN.)	0,033	0.039	0.916	0.043	SIIW = 3.0	SP 0.0			
		İ	REF (R/F/R/O)	91		1.94	25		\$U 0.0			
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01			
			\$TORM R/F	2.99	0.0	1.78	1.09	-	STORMU			
27	0.680	+100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0 W 0.0			
			PERT. R/O (IN.)	0.033	0.039	0.916	0.043	SIM = 3.0	SP 0.0			
6-127			REF (R/F/R/O)	91		1.94	25		SU 0.0			

SENSITIVITY ANALYSIS OF OFSS (0.10 REF.) REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN			9/15/6B	
RUN	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FAŁL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-0.10	-0.72	+0.06	+0.63	+0.84	-0.23
			Δ% OF MONTHLY R/O	OCT 0.0	JAN +0.03	APR +0.15	AUG +0,78		STORM U/S
RW 56	0.001	-100	REF. R/O (IN)	0.0988	0.9824	0.4874	0.0834	DEE - 661	F +0.001 W +0.007
			PERT. R/O (IN)	0.0987	0.9753	0.4877	0.0643	REF = 641 SIM = 647	SP -0.001
			REF. MONTHLY R/O (IN)	0.177	3.631	2.599	0.257		SU -0.003
			2% OF R/O	0.0	+0.07	+0.14	-0.31	-0.47	+0.10
			1% OF MONTHLY R/O	OCT 0.0	JAN -0.06	APR 0.0	AUG -0.39		STORM U/S
RW 60	0,30	+200	REF. R/O (IN)	0.0988	0.9824	0,4874	0.085ಎ	REF= SCT	F 0.0
			PERT. R/O (fN)	0.988	0.9831	0.4881	0.0637	REF = 501 SIM = 638	W +0.001 SP ÷0.0
			REF. MONTHLY R/O (IN)	0.177	3.631	2.599	0,257		SU -0.007

TABLE 6-100

SENSITIVITY ANALYSIS OF OFSS (0.10 REF.)

SUBWATERSHED NO. 1

2,326 SQ. KM

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

		4.04			SIGNIFICA	NT STORMS		0/05/60	
RUN ID	PARAM VALUE	A % PERTUR BATION	ООТРОТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	9/25/68 LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	-2.22	+0.09	+0.51	0.0	-0.10
	•		STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW 56	0.001	-100	REF. R/O (IN.)	0.0447	1.6242	0.7496	0.0585	REF = 34	ະ
•			PERT. R/O (IN.)	0.0447	1.5881	0.7503	0,0588	SIM = 34	₩ +0.022 SP -0.001
			REF (R/F/R/O)	48.32	1.18	4.68	47.69		SU -0,005
			Δ% OF R/O	+0,22	+0.50	+0.20	-0.17	-2.94	+0.05
) 	1		STORM R/F	2.16	1.91	3.49	2.79		STORM U/S
RW GO	0.30	+200	REF. R/O (IN.)	0.0447	1.6242	0.7496	0.0585	REF = 34	F +0.001
			PERT, R/O (IN.)	0.0448	1.6323	0.7511	0.0584	SIM = 33	W +0.002 SP +0.001
			REF (R/F/R/O)	48.32	1.18	4.66	47.69		SU -0.001

TABLE 6-101

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

		4.07			SIGNIFICA	NT STORMS		0/2/00	Y
RUN ID	PARAM VALUE	A % PERTUR- BATION	ООТРОТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	9/2/68 LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-0.21	+0.46	+0.31	+0.26	0.0	-0.08
	ļ -		STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW 56	0.001	-100	REF. R/O (IN.)	0.0949	2.1655	0.5205	0.1171	REF = 23	F +0.002
	•	İ	PERT. R/O (IN.)	0.0947	2.1754	0.5221	0.1174	SIM = 23	W -0.005 SP -0.003
			REF (R/F/R/O)	26.45	1.44	3.27	18.87		SU -0.003
	Ì		Δ% OF R/O	+0.21	-0.18	-0.13	-0.17		+0.05
:			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
RW 60	0.30	+200	REF. R/O (IN.)	0.0949	2.1655	0.5205	0.1171	REF = 23	F +0.001
			PERT. R/O (IN.)	0.0951	2.1617	0.5198	0.1169	SIM =	W -0.001 SP -0.0
6-128			REF (8/F/R/O)	26.45	1.44	3.27	18.87		WU -0.001

SENSITIVITY ANALYSIS OF OFSS (0.10 REF.)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

·					SIGNIFICA	INT STORMS		9/29/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
	 		Δ% OF R/O	0.0	-0.89	-0.98	+0.12	+25.0	-0.04
	ļ		STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW 56	0.001	-100	REF. R/O (IN.)	0.0358	1,9169	0.9269	0.0860	REF =4 SIM = 5	F 0.0 W +0.009
			PERT. R/O (IN.)	0.0358	1,8999	0.9178	0.0861	3114) - 3	SP +0.010
			REF (R/F/R/O)	30.17	1.06	1.96	25.81		SU ~0.001
			Δ% OF R/O	0.0	+0.52	+0.61	0.0	0.0	+0.03
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW 60	0.30	+200	REF. R/O (IN.)	0.0358	1.9169	0.9269	0.0860	REF =4	F 0.0 W +0.003
		,	PERTR/O (IN.)	0.0358	1.9269	0.9326	0.0860	SIM = 4	SP +0.003
			REF (R/F/R/O)	30.17	1.06	1.96	25.81		SU 0.0

TABLE 6-103

SENSITIVITY ANALYSIS OF OFSS (0.10 REF.)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN

EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

	<u> </u>	<u> </u>			SIGNIFICA	NT STORMS		9/30/68	Ĭ
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	QUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	-0.40	+0.18	-0.08	0.0	-0.06
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW 56	0.001	-100	REF. R/O (IN.)	0.0294	1.5612	0.6088	0.1270	REF = 40 SIM = 40	F 0.0 W +0.004
			PERT. R/O (IN.)	0.0294	1.5550	0.6099	0.1269	3111 - 40	SP -0.002
] 	İ	REF (R/F/R/O)	53.74	1.77	3.15	23.23		SU -0.001
· · · · · · · · · · · · · · · · · · ·			∆% OF R/O	0.0	+0.31	-0.05	+0.08	0.0	+0.04
]		STORM R/F	1.58	2.76	1.92	2.95		STORM U/
RW 60	0,30	+200	REF. R/O (IN.)	0.0294	1.5612	0.6088	0.1270	REF = 40	F 0,0
			PERT. R/O (IN.)	0.0294	1.5660	0.6085	0.1271	SIM ≃ 40	W +0.001 SP 0.0
			REF (R/F/R/O)	53.74	1.77	3.15	23.23		SU 0.0

TABLE 6-103A

SENSITIVITY ANALYSIS OF

SUBWATERSHED NO. 11 2,551 SQ. KM

OFSS (0.10 REF.)

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	RUNID PARAM VALUE	Δ % PERTUR- BATION	TUSTUO	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	-2.12	-4.84	+0.96	0,0	-0.06
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 56 0.001	-100	REF. R/O (IN.)	0,1502	0.7786	0.6033	0,0311	REF = 9	F 0.0	
	-		PERT, R/O (IN.)	0.1502	0.7621	0.5741	0.0314	SIM = 9	W +0.021 SP +0.048
			REF (R/F/R/O)	8.99	1.76	3,17	16.08		SU +0.001
			Δ% OF R/O	+0.07	+1,44	+2.80	-0.64	0.0	0.0
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 60	60 0.30 +200	+200	REF. R/O (IN.)	0.1502	0.7786	0.6033	0,0311	REF = 9	F 0.0 W +0.028
	1		PERT. R/O (IN.)	0.1503	0.7898	0.6202	0.0309	\$IM = 9	SP +0.056
6-129			REF (R/F/R/O)	8.99	1.76	3.17	16.08		SU -0.003

SENSITIVITY ANALYSIS OF OFSS 100% PERTURBATION

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA				
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-38.8	-6.0	0.0			
DO 67			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F +0.388 W +0.060
(0.062 REF)			PERT. R/O	0.11	2,18	1,94		SIM =	SP 0.0
			REF (R/F/R/0)	17.9	1.38	1.47	8.3		su
RUN ID			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01
20			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW (0.34 REF)	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0 W 0.0
(U.34 NET)		<u>[</u>	PERT. R/O	0.033	0.039	0,916	0.043	SIM = 3.0	W 0.0 SP 0.0
			REF (R/F/R/O)	91		1.94	25		SU 0.0
RUN ID			Δ% OF R/O	-0.10	-0,72	+0.06	+0.63	+0.94	-0.23
RW 56			Δ% OF MONTHLY R/O	OCT 0.0	JAN +0.03	APR +0.15	AUG +0.78	9/15/68	STORM U/S
REGIONAL (0.10 REF)	22,248	41	REF. R/O	0.0988	0.9824	0.4874	0.0639	REF = 641	F +0.001
(U. 10 REF)			PERT. R/O	0,0987	0.9753	0.4877	0.0643	SIM = 647	W +0.007 SP -0.001
ļ			REF. MONTH- LY R/O	0.177	3.631	2.599	0.257		SU -0.006
RUN ID			Δ% OF R/O	0,0	-2,22	+0.09	+0.51	0.0	0.0
RW 56 SUB-	:		STORM R/F	10/15/67 2.16	1/8/68 1,91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
WATERSHED NO.	2,326	50	REF. R/O	0.0447	1.6242	0.7496	0.0585	REF = 34	F 0.0
(0.10 REF)			PERT. R/O	0.0447	1.5881	0.7503	0.0588	SIM = 34	W +0.022 SP -0,001
(0.10 KEF)			REF (R/F/R/O)	48.32	1,18	4,66	47.69		SU -0.005
RUN ID			Δ% OF R/O	-0.21	+0.46	+0.31	+0,26	0.0	-0.08
RW 56 SUB-			STORM R/F	10/15/67 2,51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
WATERSHED	813	50	REF. R/O	0.0949	2.1655	0.5205	0.1171	REF = 23	F +0.002
NO. 3			PERT. R/O	0.0947	2.1754	0.5221	0,1174	SIM = 23	W -0.005 SP -0.003
(0.10 REF)			REF (R/F/R/O)	26.45	1.44	3.27	18.87	•	SU -0.003
RUN ID			Δ% OF R/D	0.0	-0.89	-0.98	+0.12	+25.0	-0.04
RW 56 SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.0358	1.9169	0.9269	0.0860	REF = 4	F 0.0
5			PERT. R/O	0.0358	1.8999	0.9178	0.0861	SIM = 5	W +0.009 SP +0.010
(0.10 REF)			REF (R/F/R/O)	30,17	1.06	1.96	25.81	-	SU .0.001
RUNID			Δ% OF R/O	0.0	-0.40	+0.18	-0.08	0.0	-0.06
RW 56 SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68	8/14/68	9/30/68	STORM U/S
WATERSHED NO.	1,111	40	REF. R/O	0.0294	1.5612	1.42 0.6088	2.95 0.1270	REF = 40	F 0.0
7			PERT. R/O	0.0294	1.5550	0.6099	0.1269	SIM = 40	W 0.004
(0.10 REF)			REF (R/F/R/O)	53.74	1.77	3.15	23.23		SP -0.002 SU -0.001
RUNID			Δ% OF R/O	0.0	-2.12	-4.84	+0.96	0.0 -0.06	
RW56	1		STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- NATERSHED	2,551	30	REF. R/O	1.35 0.1502	1.37 0.7786	1.91 0.6033	0.50 0.0311	REF = 9	F 0.0
NO. 11			PERT. R/O	0.1502	0.7621	0.5741	0.0311	SIM = 9	W +0.021 SP +0.048
(0.10 REF)									~× 70 040

SENSITIVITY ANALYSIS OF OFSS+100% PERTURBATION

SMALL,	SNOW &	REGIONAL	WATERSHEDS

AREA' (SQ. KM)								
(SG. ROW)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
		Δ% OF R/O	+10.8	+0.7	-0.4			~~
		STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F +0.108 W +0.007
		PERT. R/O	0.19	2.33	1.93		SIM =	SP -0.004
		REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU
		Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01
		STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
		PERT. R/O	0.033	0.039	0.916	0,043	SIM = 3.0	SP 0.0
		REF (R/F/R/O)	91		1,94	25		SU 0.0
		Δ% OF R/O						
		Δ% OF MONTHLY R/O	OCT	JAN	APR	AUG	9/15/68	STORM U/S
22,248	41	REF. R/O					REF =	F
		PERT. R/O					SIM =	W SP
		REF. MONTH-						SU
•		Δ% OF R/O						
		STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U/S
2,326	50	REF. R/O	2.10	1,01	3.43	2.75	REF =	F
		PERT. R/O				-	SIM =	W SP
		REF (R/F/R/O)						S∪
		Δ% OF R/O			· · · · · · · · · · · · · · · · · · ·			
		STORM R/F	10/15/67	1/9/68 3.11	4/25/68	7/31/68	9/2/68	STORM U/S
813	50	REF. R/O	2,51	J.11	1.70	<u> </u>	REF =	F
		PERT, R/O					SIM =	W SP
		REF (R/F/R/O)						SU
		Δ% OF R/O						
		STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68	9/29/68	STORM U/S
1,064	37	REF, R/O	1.00	2.04	1.02	2.22	-	F
		PERT. R/O						W SP
		REF (R/F/R/O)				·		SU
		4% OF R/O						,
		STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	0/20/69	STORM U/S
1.111	40		1.58	2.76	1.42	2.95		F
				-				w
			·	i			ann -	SP SU
	···							
			10/28/67	1/8/68	5/8/68	8/20/68	Disting	OTO 0 : 1 : 1 / -
2.551	30 .		1.35	1.37	1.91	0.50		STORM U/S
-,								W
į					· · · · · · · · · · · · · · · · · · ·		S1M =	SP SU
	277 22,248 2,326	277 32 22,248 41 2,326 50 31,064 37 1,111 40	STORM R/F REF. R/O PERT. R/O PERT. R/O A% OF R/O STORM R/F A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O A% OF R/O STORM R/F A% OF R/O A% OF	STORM R/F 11/4/63 3.10 3.10	365 45 REF. R/O 0.175 2.31 PERT. R/O 0.19 2.33 REF (R/F/R/O) 17.9 1.38 Δ% OF R/O 0.0 0.0 STORM R/F 10/18/57 0.0 PERT. R/O 0.033 0.039 PERT. R/O 0.033 0.039 PERT. R/O 0.033 0.039 PERT. R/O 0.033 0.039 REF (R/F/R/O) 91 Δ% OF R/O	STORM R/F 11/4/63 1/23/64 5/1/64 3.13 1/23/64 5/1/64 3.13 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.87 1.94 2.99 1.38 1.47 2.99 1.38 1.47 2.99 1.78 5/10/58 5/1	STORM R/F 17/4/63 3.19 3.19 57/194 2.16 REF. R/O 0.175 2.31 1.94 0.255 PERT. R/O 0.19 2.33 1.93 REF (R/F/R/O) 17.9 1.38 1.47 8.3 Δ% OF R/O 0.0 0.0 0.0 0.0 STORM R/F 10/18/57 4/21/58 5/10/58 8/13/58 1.98 1.99 1.78 1.99 STORM R/F 10/18/57 4/21/58 1.99 277 32 REF. R/O 0.033 0.039 0.916 0.043 PERT. R/O 0.033 0.039 0.916 0.043 PERT. R/O 0.033 0.039 0.916 0.043 PERT. R/O PERT. R/O 91 1.94 25 Δ% OF R/O Δ% OF R/O	STORM R/F 114/83 1723/84 2517/84 8/14/84 8/27/84 REF - R/O 0.175 2.31 1.34 0.255 REF - 7.9 PERT, R/O 0.19 2.33 1.93 PERT, R/O 0.19 2.33 1.93 REF (RIF/R/O) 17.9 1.38 1.47 8.3 AM OF R/O 0.0 0.0 0.0 0.0 0.0 STORM R/F 2.99 0.0 1.78 1.09 8/13/58

SENSITIVITY ANALYSIS OF

OFSS +200% PERTURBATION

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS		ł	
WATERSHED	AREA' (SQ. KM)	EPAET (IN)	ОИТРИТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O					REF =	l f W
			PERT. R/O	:				SIM =	SP
		ļ	REF (R/F/R/O)						ŞU
RUN ID			Δ% OF R/O					<u> </u>	
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
snow	277	32	REF. R/O					REF≕	l F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)						SU
RUN ID			Δ% OF R/O	0.0	+0.07	+0.14	0.31	-0.47	+0.10
RW 60			Δ% OF MONTHLY R/O	OCT 0.0	JAN -0.06	APR 0,0	AUG -0.39	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.0988	0.9824	0.4874	0.0639	REF =641	F 0.0
0.10 REF)			PERT. R/O	0.0988	0.9831	0.4881	0.0637	SIM = 638	SP 0.0
			REF, MONTH- LY R/O	0.177	3.631	2.599	0.257		SU -0.007
RUN ID			Δ% OF R/O	+0.22	+0.50	+0.20	-0.17	-2.94	+0.05
RW 60 SUB-			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
WATERSHED NO.	2,326	50	REF. R/O	0.0447	1.6242	0.7496	0.0585	REF =34	F +0.001 W +0.002
1			PERT, R/O	0.0448	1,6323	0.7511	0.0584	SIM = 33	SP +0.002
0.10 REF)			REF (R/F/R/O)	48.32	1.18	4.66	47.69]	SU -0.001
RUN ID			Δ% OF R/O	+0.21	-0.18	-0.13	-0.17		+0.05
RW 60			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.0949	2.1655	0.5205	0.1171	REF =23	F +0.001 W -0.001
NO. 3			PERT. R/O	0.0951	2.1617	0.5198	0.1169	SIM:=	W -0.001 SP -0.0
(0.01 REF)			REF (R/F/R/O)	26.45	1.44	3.27	18.87		SU -0.001
RUN ID			Δ% OF R/O	0.0	+0.52	+0.61	0.0	0.0	+0.03
RW 60 SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.0358	1.9169	0.9269	0.0860	REF ≃4	F 0.0 W +0.003
5 (0.10 REF)			PERT. R/O	0.0358	1.9269	0.9326	0.0860	SIM = 4	SP +0.003
(0.10 1121)	l 1		REF (R/F/R/O)	30.17	1.06	1.96	25.81]	SU 0.0
RUN ID			Δ% OF R/O	0,0	+0.31	-0.05	+0.08	0.0	+0.04
RW 60 SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/S
WATERSHED	1,111	40	REF. R/O	0.0294	1.5612	0.6088	0.1270	REF =40	F 0.0
7			PERT. R/O	0.0294	1.5660	0.6085	0.1271	SIM = 40	W +0.001 SP 0.0
(0.10 REF)			REF (R/F/R/O)	53.74	1.77	3.15	23.23	1	SU 0.0
RUN ID	,		Δ% OF R/O	+0.07	+1,44	+2.80	0.64	0.0	0,0
RW 60 SUB-		Į.	STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
WATERSHED NO.	2,551	30	REF, R/O	0.1502	0.7786	0.6033	0.0311	REF≃9	F 0.0
11		8	PERT. R/O	0.1503	0.7698	0.6202	0.0309	SIM =9	₩ +0.028 SP +0.058
(0.10 REF)			REF (R/F/R/O)	:		1		1	SU -0.003

Figure 6-21. Overland Flow Surface Slope Study, Winter Storms

Figure 6-22. Overland Flow Surface Slope Study, Small Watershed

6.3.11 OFSL OVERLAND FLOW SURFACE LENGTH

OFSL is the mean overland flow length in feet. That is, the average distance that surface runoff in the watershed travels before reaching a channel defined in the same manner as was used for OFSS in the preceding section. OFSL may also be estimated by averaging randomly measured distances on topographic maps.

Hydrologically, the larger value of OFSL increases infiltration opportunity and thereby slightly increases the base flow and interflow, and also decreases the direct runoff. The sensitivity analysis results of the small watershed is in agreement. A +50% perturbation in OFSL results in a -0.24 unit sensitivity during the fall season. (Storm runoff has decreased by 12.2%). The response of the low flows to the same perturbation is opposite to that of the fall season.

Results appear in Tables 6-107 through 6-117 and Figures 6-23 and 6-24.

SENSITIVITY ANALYSIS OF 365 SQ. KM

SMALL WATERSHED

OFSL (1550)

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

SIGNIFICANT STORMS 9/27/64 Δ% LOW FLOW ANNUAL 8/14/64 PARAM 5/1/64 PERTUR-11/4/63 1/23/64 OUTPUT FLOW RUN VALUE BATION SUMMER SPRING ID WINTER FALL -0.6 +2.50 +91.9 ∆% OF R/O STORM U/S 2.16 2.87 3.13 3.19 STORM R/F -0.919 0.255 1.94 **REF = 7.9** 2.31 0.175 -100 REF. R/O (IN) -0.025 0.01 w D074 SIM = -1,93 SP +0.006 PERT, R/O (IN) 0.34 2.37 SU 8.3 1.47 1.38 REF (R/F/R/0) 17.9 -5.1 +0.24 -0.6 +7.9 +1.3 ∆% OF R/O +22.9 STORM U/S 2.16 3.19 2.87 3.13 STORM R/F -0.458 1.94 0.265 REF. R/O (IN) 2.31 0.175 **REF = 7.9** -0.026 W - 50 775 T075 SIM = 7.50.28 +0.012 1,93 SP PERT. R/O (IN) 2.34 0.22 -0.158 SU 1.47 8.3 1.38 REF (R/F/R/0) 17.9 -0.14 -4.7 +3.80 +0.4 8.0--12.2 ∆% OF R/O STORM U/S 2.16 2.87 STORM R/F 3.13 3.19 -0.2441.94 0.255 2.31 REF. R/O (IN) 0.175 + 50 REF = 7.9 -0.016 W T076 2325 SIM = 8.21.95 0.24 SP +0.008 0.15 2.29 PERT, R/O (IN) -0.094 SU 8.3 1.38 1.47 17.9 REF (R/F/R/O) +0.7 ∆% OF R/O -19.7 -1.4 STORM U/S 2.16 3.19 2.87 3.13 STORM R/F -0.197 1.94 0.255 0.175 2.31 **REF = 7.9** REF, R/O (IN) 3100 +100 W -0.014 D**077** SIM = -SP +0.007 2.28 1,95 PERT. R/O (IN) 0.14 SU 1.47 8.3 REF (R/F/R/O) 17.9 3.19 6-136

SENSITIVITY ANALYSIS OF OFSL (1000.)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

		<u> </u>			SIGNIFICA	NT STORMS		9/7/58	. H7O - 10.03 I
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	0.0	0.0	+3.2	-0.2	0.0	+0.01
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
28	1.0	-100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
			PERT. R/O (IN.)	0.033	0.039	0,945	0.043	SIM = 3.0	W 0.0 SP -0.032
	L		REF (R/F/R/O)	91		1.94	25	L	SU +0.002
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
30	30 500, -	- 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.0	F 0.0 W 0.0
			PERT. R/O (IN.)	0.033	0.039	0.916	0.043		W 0.0 SP 0.0
			REF (R/F/R/O)	91		1.94	25		SU 0,0
			Δ% OF R/O	0.0	0.0	0.0	0.0	0,0	-0.01
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
31	1500.	+ 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
			PERT, R/O (IN.)	0.033	0.039	0.916	0.043	SIM = 3.0	W 0.0 SP 0.0
			REF (R/F/R/Q)	91		1.94	25		SU 0.0
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
33	2000.	+100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0 W 0.0
			PERT, R/O (IN.)	0.033	0.039	0.916	0.043	SIM = 3.0	SP 0.0
6-137			REF (R/F/R/O)	91		1.94	25		SU 0.0

SENSITIVITY ANALYSIS OF OFSL (6914)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

		<u> </u>			SIGNIFICAN	T STORMS		9/15/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/21/68 WINTER	5/9/68 Spring	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+0.2	+0.6	+0.6	-1.3	-2.02	+0.42
			Δ% OF MONTHLY R/O	OCT 0.0	JAN -0.22	APR +0.04	AUG -1.55		STORM U/S
RW61	691.4	- 90	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.002 W -0.007
		1	PERT. R/O (IN)	0.0989	0.9861	0.490	0,0633	SIM = 631	SP -0.001
]		REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU+0.014
		- 50	Δ% OF R/O	+0.02	+0.24	+0.02	-0.27		-
			Δ% OF MONTHLY R/O	OCT +0.01	JAN -0.05	APR -0.05	AUG -0.29	REF = 644 SIM = _	STORM U/S F 0.0 W -0.005 SP 0.0
RW63	3457		REF. R/O (IN)	0.099	0.980	0.487	0.064		
	}		PERT. R/O (IN)	0.0988	0.9822	0.4873	0.06395		
		ļ	REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.002
			Δ% OF R/O	-0,01	-0.17	+0.01	+0.12	_	
			Δ% OF MONTHLY R/O	OCT 0.0	JAN +0.01	APR +0.03	AUG +0.05		STORM U/S
RW62	10371	+ 50	REF. R/O (IN)	0.099	0.980	0.487	0.064	HEF = 644 SIM = _	F 0.0 W -0.004
			PERT. R/O (IN)	0.0987	0.9782	0.4872	0.0642		SP 0.0
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU +0.002

SENSITIVITY ANALYSIS OF OFSL (4974)

TABLE 6-110

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

UBWATERSH	ED NO. 1	2,326 SQ. KN	1				TOTAL ODSER	VED ANNUAL	γ	15.00
					SIGNIFICA	NT STORMS		9/25/68		
RUN ID	PARAM VALUE	A % PERTUR BATION	ОПТРОТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	AN FL	NUAL DW
.			Δ% OF R/O	+0.7	+2.7	+1.2	-1.2	-2.94	+	0,25
		- 90	STORM R/F	2.16	1.91	3.49	2.79		sto	RM U/S
RW61	497.4		REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	w	-0.008 -0.030
			PERT. R/O (IN.)	0.0450	1.6522	0.7580	0.0580	SIM = 33		-0.013
			REF (R/F/R/O)	48	1.18	4.65	46.5		su	+0.013
	<u> </u>	- 50	Δ% OF R/O	+0.07	+0.80	+0.04	-0.16	-		
			STORM R/F	2.16	1.91	3.49	2.79	REF = 34 SIM =	1	RM U/S
RW63	2487		REF. R/O (IN.)	0.045	1.609	0.749	0.059			0.0 -0.016
			PERT. R/O (IN.)	0.0447	1.6221	0.7494	0.0586		SP	0.0
			REF (R/F/R/O)	48	1.18	4.65	46.5		su	+0.032
			Δ% OF R/O	-0.03	-0.55	+0.03	+0,09	_		
			STORM R/F	2.16	1.91	3.49	2.79		STO	RM U/S
RW62	7461	+ 50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F	0.0
	ĺ	1 1	PERT. R/O (IN.)	0.0447	1.600	0.7493	0.0587	SIM = -	W -0.01 SP 0.0	
6-138			REF (R/F/R/O)	48	1.18	4.65	46.5		s∪	+0.00

SENSITIVITY ANALYSIS OF OFSL (3415) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

			T		SIGNIFICA	NT STORMS	'	9/2/68		
RUN ID	PARAM VALUE	A % PERTUR- BATION	оитрит	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW	
	! !		Δ% OF R/O	+1.4	-0.3	-0.1	-1.0	0.0	+0.22	
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S	
RW61	341.5	- 90	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.016 w +0.004	
			PERT. R/O (IN.)	0.0961	2.1635	0.5203	0.1161	SIM = 23	SP +0.001	
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.011	
		o7 - 50	Δ% OF R/O	+0.12	-0,21	,- 0.11	-0,17	_		
			STORM R/F	2.51	3.11	1.70	2.21	REF =23	STORM U/S	
RW63	1707		REF. R/O (IN.)	0.095	2.170	0.521	0.117		F -0.002 W +0.004	
•			PERT. R/O (IN.)	0.0949	2.1650	0.5204	0.1170	SIM = -	SP +0.002	
i			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU +0,003	
			Δ% OF R/O	-0.05	+0.11	+0.05	+0,05			
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S	
RW62	5123	+ 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.001 W +0.002	
			PERT. R/O (IN.)	0.0947	2.1720	0.5213	0.1173	SIM =	SP +0,001	
				REF (R/F/R/O)	26.4	1.43	3.26	18.9	,	SU +0,001

TABLE 6-712

SENSITIVITY ANALYSIS OF OFSL (4692)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

	T		T				TOTAL OBSER	1	1
					SIGNIFICA	NT STORMS		9/29/68	
	PARAM	Δ% PERTUR-	OUTPUT	10/15/67	1/9/68	4/25/68	8/13/68	LOW	ANNUAL
RUN ID	VALUE	BATION		FALL	WINTER	SPRING	SUMMER	FLOW	FLOW
			Δ% OF R/O	0.0	+2.5	+2.7	-0.3	0.0	+0.13
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW61	469.2	- 90	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 4	F 0.0 W -0.028
	1		PERT. R/O (IN.)	0.036	1,9542	0.9466	0.0858	31W = 4	SP -0.030 SU +0.003
			REF (R/F/R/O)	30	1.06	1.97	25.8		
		- 50	Δ% OF R/O	+0.04	+0.42	+0.48	-0.07	-	
	ļ		STORM R/F	1.08	2.04	, 1.82	2.22	REF=4	STORM U/S
RW63	2346		REF. R/O (IN.)	0.036	1.907	0.921	0.086		F 0.0 W -0.008
			PERT. R/O (IN.)	0.0358	1.9150	0.9259	0.0860	SIM =	SP -0,010
			REF (R/F/R/O)	30	1.06	1.97	25.8	_	SU +0.001
			∆% OF R/O	+0.04	-0.16	-0.17	-0.02	_	
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW62 7038	7038	+ 50	REF. R/O (IN.)	0,036	1.907	. 0.921	0.086	REF = 4	F 0.0 W -0.003
			PERT. R/O (IN.)	0.0358	1.9039	0,9199	0.0861	SIM ≈	W -0.003 SP -0.003
6-139	1 ! -	REF (R/F/R/O)	30	1.06	1.97	25.8	•	SU 0.0	

SENSITIVITY ANALYSIS OF OFSL (6915)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

.		1	T		SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPR ING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
-:-	 	├ ──	Δ% OF R/O	0.0	+1.6	-0.3	+0.5	0.0	+0.18
	}	- 90	STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW61	691.5		REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 40	F 0.0 W -0.018
	33.11		PERT. R/O (IN.)	0.029	1.5820	0.6082	0,1276		SP +0.003
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.005
		- 50	Δ% OF R/O	-0.06	+0.17	-0.14	+0.04	-	-
			STORM R/F	1.58	2.76	1.92	2.95	REF = 40 SIM =	STORM U/
RW63	3457		REF. R/O (IN.)	0.029	1.557	0.610	0.127		F +0.001 W -0.003
			PERT. R/O (IN.)	0.0294	1.5596	0.6089	0.1269		SP +0.002
			REF (R/F/R/O)	54.5	1.77	3.14	23.2]	SU 0.0
	 		Δ% OF R/O	-0.07	-0.06	+0.01	-0.03		
			STORM R/F	1,58	2.76	1.92	2.95		STORM U/S
RW62	10373	+ 50	REF. R/O (IN.)	0,029	1.557	0.610	0.127	REF = 40	F +0.00
		- F	PERT. R/O (IN.)	0.0294	1.5560	0.6098	0,1268	SIM =	SP 0.0
			REF (R/F/R/O)	54.5	1.77	3.14	23.2]	SU 0.0

TABLE 6-114

SENSITIVITY ANALYSIS OF OFSL (5921)

SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

	<u> </u>	T			SIGNIFICA	NT STORMS		9/14/68	ANNUAL FLOW
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	9/14/68 LOW FLOW	
			Δ% OF R/O	+0.1	+6.7	+12.3	-2.4	-11,11	+0.30
		- 90	STORM R/F	1.35	1.37	1.91	0.50	, , , , , , , , , , , , , , , , , , , ,	STORM U/S
RW61	592.1		REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF=9	F -0.001
·			PERT. R/O (IN.)	0.1504	0.8210	0.6597	0.0305	SIM = 8	W -0.074 SP -0.137
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.027
		- 50	Δ% OF R/O	+0,01	+1.06	+2.31	-0.42		
			STORM R/F	1.35	1.37	1.91	0.50	REF≃9	STORM U
RW63	2955		REF. R/O (IN.)	0.150	0.769	0.588	0.031		F 0.0
			PERT. R/O (IN.)	0.1502	0.7775	0.6012	0,0311	SIM =	W -0.021 SP -0.046
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.008
·····			Δ% OF R/O	-0.01	-0.41	-1.0	+0.17		
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW 62	8887	+ 50	REF, R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F 0.0 w -0.008
			PERT, R/O (IN.)	0.1502	0.7662	0.5818	0,0313	SIM =	W -0.008 SP -0.020
6-140			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +0.003

SENSITIVITY ANALYSIS OF OFSL 90% PERTURBATION SMALL, SNOW & REGIONAL WATERSHEDS

			1 1		SIGNIFICA	ANT STORMS	·]	l ,
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ОПТРПТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			∆% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	<u> </u>	su
RUN ID			Δ% OF R/O			,			
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
ļ			PERT. R/O					SIM =	SP
İ			REF (R/F/R/O)	91		1.94 · ·	25		\$U
RUNID			Δ% OF R/O	+0.2	+0.6	+0.6	-1,3	2.02	+0.42
RW 61			Δ% OF MONTHLY R/O	OCT 0.0	JAN -0.22	APR +0.04	AUG -1.55	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	f 0.002
(6914 REF)			PERT. R/O	0.0989	0.9861	0.490	0.0633	SIM = 631	W -0.007 SP -0.001
			REF. MONTH-	0.177	3.634	2.600	0.258		SU +0.014
RUN ID			Δ% OF R/O	+0.7	+2.7	+1.2	-1.2	-2.94	+0.25
RW 61			STORM R/F	10/15/67 2.16	. 1/8/68 1.91	4/26/68 3,49	8/18/68 2,79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F 0.008
NO. 1			PERT. R/O	0.0450	1.6522	0.7580	0.0580	SIM = 33	W -0.030 SP -0.013
(4974 REF)			REF (R/F/R/O)	48 · ·	· ·1.18 ·-	4.65	46.5	4.1	SU +0.013
RUNID			Δ% OF R/O	+1.4	0.3	-0.1	-1.0	0.0	+0.22 ,
RW 61	•		STORM R/F	10/15/67 2.51	1/9/ 68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F 0.016
NO. 3			PERT R/O	0.0961	2.1635	0.5203	0.1161	SIM = 23	W +0.004 SP +0.001
(3415 REF)			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.011
RUN ID			Δ% OF R/O	0.0	+2.5	+2.7	-0.3	0.0	÷0.13
RW 61 SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0.0
NO. 5			PERT. R/O	0.036	1.9542	0.9466	0.0858	SIM = 4	W -0.028 SP -0.030
(4692 REF)			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +0.003
RUN ID			Δ% OF R/O	0.0	+1.6	-0.3	+0.5	0.0	+0.18
RW 61			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	0.029	1.557	. 0.610	0.127	REF = 40	F 0.0
NO. 7			PERT. R/O	0.029	1.5820	0.6082	0.1276	SIM = 40	W -0.018 SP +0.003
(6915 REF)	,		REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.005
RUN ID			Δ% OF R/O	+0.1	+6.7	+12.3	-2.4	-11,11	+0.30
RW 61			STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U/S
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.15u	1.37 0.769	1.91 0.588	0.50	REF = 9	F -0.001
NO. 11	•		PERT. R/O	0.1504	0.8210	0.6597	0.0305	SIM = 8	W -0,074
(5921 REF)			REF (R/F/R/O)	9.0	1.8	3.24	16.1	O.W D	SP -0,137 SU +0.027

SENSITIVITY ANALYSIS OF OFSL-50% PERTURBATION

SMALL, SNOW & REGIONAL WATERSHEDS

			I 4	_	SIGNIFICA	NT STORMS			
NATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	+22.9	+1.3	-0.6	+7.9	-5.1	+0.24
TO 75			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1,94	0.255	REF = 7.9	F -0.458 W -0.026
(1550 REF)		1	PERT. R/O	0.22	2.34	1.93	0.28	SIM = 7.5	SP +0.01:
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.158
RUN ID	-		Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-0.01
30			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
(1000 REF)			PERT. R/O	0.033	0.039	0.916	0.043	SIM = 3.0	SP 0.0
			REF (R/F/R/O)	91		1.94	25]	SU 0.0
RUN ID			∆% OF R/O	+0.02	+0.24	+0.02	-0.27		
RW 63			Δ% OF MONTHLY R/O	OCT +0.01	JAN -0.05	APR -0.05	AUG -0.29	9/15/68	STORM U/
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F 0.0
(6914 REF)			PERT. R/O	0.988	0.9822	0.4873	0.06395	SIM =	W -0.005 SP 0.0
			REF. MONTH-	0.177	3.634	2.600	0.258]	SU +0.008
RUN ID		 _	Δ% OF R/O	+0.07	+0.80	+0.04	-0,16		
RW 63			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2,79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F 0.0
NO. 1			PERT. R/O	0.0447	1.6221	0.7494	0.0586	SIM =	W -0.016 SP 0.0
(4974 REF)			REF (R/F/R/O)	48	1.18	4.65	46.5	1	SU +0.032
RUN ID		1	Δ% OF R/O	+0.12	-0.21	-0.11	-0.17		
RW 63			STORM R/F	10/15/67 2.51	1/9/68 3,11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F 0.002
NO. 3		"	PERT. R/O	0.0949	2.1650	0,5204	0,1170	SIM =	W +0.004 SP +0.002
(3415 REF)			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU +0.003
RUN ID		 	Δ% OF R/O	+0.04	+0,42	+0.48	-0.07		
RW 63			STORM R/F	10/15/67 1.08	1/9/68	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0,0
NO. 5			PERT, R/O	0.0358	1,9150	0.9259	0,0860	SIM =	W -0.008 SP -0.010
(4692 REF)			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU +0.001
RUN ID			Δ% OF R/O	-0.06	+0.17	-0.14	+0.04		
RW 63			STORM R/F	10/15/67	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U
SUB- WATERSHED	1,111	40	REF, R/O	1.58 0.029	1.557	0.610	0.127	HEF = 40	F +0.001
NO. 7			PERT. R/O	0.0294	1.5596	0.6089	0,1269	SIM =	W -0.003 SP +0.002
(6915 REF)			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU 0.0
RUN ID	 	 	Δ% OF R/O	+0,01	+1.06	+2.31	-0.42	1	
RW 63	1		STORM R/F	10/28/67	1/8/68	5/8/68	8/20/68	9/14/68	STORM U.
SUB- WATERSHED	2,551	30	REF. R/O	1.35 0.150	1.37 0.769	0.588	0.50	REF = 9	F 0.0
NO. 11	_,		PERT. R/O	0.1502	0.7775	0.6012	0.0311	SIM =	W -0.021 SP -0.046
(5921 REF)	ł	1	L	V. 1002	L v.///8	0.0012	0.0311	J ~	SU +0.008

SENSITIVITY ANALYSIS OF OFSL +50% PERTURBATION SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS]	
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ОИТРИТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-12.2	-0.8	+0.4	-4.7	+3.80	0.14
TO 76			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F -0.244 W -0.016
(1550 REF)			PERT. R/O	~ 0.15	2.29	1,95	0.24	SIM = 8.2	SP +0.008
			REF (R/F/R/0)	17.9	1.38	1.47	8.3		SU -0.094
RUN ID			Δ% OF R/O	0.0	0.0	0,0	0.0	0.0	-0.01
31			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S F 0.0
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	W 0.0
(1000 REF)			PERT. R/O	0.033	0.039	0.916	0.043	SIM = 3,0	SP 0.0
			REF (R/F/R/O)	91		1.94	25		SU 0.0
RUN ID			∆% OF R/O	-0.01	-0.17	+0.01	+0.12		
RW 62			Δ% OF MONTHLY R/O	OCT 0.0	JAN +0.01	APR +0.03	AUG +0.05	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F 0.0 W -0.004
(6914 REF)		·	PERT. R/O	0.0987	0.9782	0.4872	0.0642	SIM =	SP 0.0
			REF. MONTH-	0.177	3.634	2.600	0.258		SU +0.002
RUN ID			Δ% OF R/O	0.03	-0,55	+0.03	+0.09		
RW 62			STORM R/F	10/15/67 2.16	1/8/68 1,91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F 0.0 W -0.011
NO. 1			PERT. R/O	0.0447	1.600	0.7493	0.0587	SIM =	SP 0.0
(4974 REF)			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +0.001
RUN ID			Δ% OF R/O	-0.05	+0.11	+0.05	+0.05		
RW 62			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0,001 W +0.002
NO. 3			PERT, R/O	0.0947	2.1720	0.5213	0.1173	SIM =	SP +0.001
(3415 REF)			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +0.001
RUN ID		 	Δ% OF R/O	+0.04	-0.16	-0.17	-0.02		
RW 62			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0.0 W -0.003
NO. 5			PERT. R/O	0.0358	1.9039	0.9199	0.0861	SIM =	SP -0.003
(4692 REF)			REF (R/F/R/O)	30	1.06	1.97	25.8	7	SU 0.0
RUN ID		+	Δ% OF R/O	-0.07	-0.06	+0.01	-0.03		
RW 62			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U
SUB- WATERSHED	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F +0.001
NO. 7	·	ļ	PERT. R/O	0.0294	1.5560	0.6098	0.1268	SIM =	W -0.001 SP 0.0
(6915 REF)			REF (R/F/R/O)	54.5	1,77	3.14	23.2	1	SU 0.0
RUN ID		 	Δ% OF R/O	-0.01	0.41	-1.0	+0.17		
RW62			STORM R/F	10/28/67	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U
SUB- WATERSHED	2,551	30	REF, R/O	1,35 0,150	0.769	0.588	0.031	 REF = 9	F 0.0
NO. 11			PERT. R/O	0.1502	0.7662	0.5818	0.0311	SIM =	W -0.008 SP -0.020
(5921 REF)			REF (R/F/R/O)		1.8	3.24	16.1	-{	SU +0.003

Figure 6-23. Overland Flow Surface Length Study, Winter Storms

Figure 6-24. Overland Flow Surface Length Study, Small Watershed

6.3.12 OFMN, OVERLAND FLOW ROUGHNESS COEFFICIENT

OFMN is Manning's n roughness coefficient for overland flow on soil surfaces and may be estimated from Table 6-118.

The parameter is indirectly obtainable from land-use classification using the above table.

Sensitivity analysis results of the small watershed shows that OFMN is most influential during the fall season, when it has a unit sensitivity of -0.458 for a perturbation of -50%. For all practical purposes it has no influence in the other watersheds.

The overland flow contribution to streamflow is inversely proportional to OFMN, as it is to OFSL. In the fall the relative contribution of overland flow to streamflow is greater than in other seasons. The influence of OFMN is accordingly greater in the fall.

Results appear in Tables 6-119 through 6-127 and Figure 6-25. For Tables of OFMN perturbed by -50% and +50%, the results are approximately the same as for OFSL, Table 6-116 and 6-117.

Table 6-118. Manning's Roughness Coefficient for Overland for Various Surface Types (Chow)

WATERSHED SURFACE	MANNING'S n
Smooth Asphalt or Concrete (Trowel Finish)	.013
Rough Asphalt	.016
Concrete (Unfinished)	.017
Smooth Earth	.018
Firm Gravel	.020
Cemented Rubble Masonry	.025
Pasture (Short Grass)	.030
Pasture (Heavy Grass) or Cultivated Area (Row Crops)	.035
Cultivated Area (Field Crops)	.040
Scattered Brush, Heavy Weeds, or Light Brush & Trees (Winter)	.050
Light Brush & Trees (Summer)	.060
Dense Brush (Winter)	.070
Dense Brush (Summer) or Heavy Timer	.100

SENSITIVITY ANALYSIS OF OFMN (0.05)
SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN
EVAPOTRANSPIRATION NET = 24.24 IN

		Δ%			SIGNIFICA	NȚ STORMS		9/27/64		
RUN ID	PARAM VALUE	PERTUR- BATION	ОИТРИТ	11/4/63 FALL	1/23/64 WINTER	5/1/ 64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUA FLOW	
	1		Δ% OF R/O	+90.7	+2.6	-0.6	-	- .		
			STORM R/F	3.13	3.19	2.87	2.16	·	STORMU	
D079	0.001	-100	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.9 W -0.0	
			PERT. R/O (IN)	0.33	2.37	1.93	-	SIM = -	SP +0.0	
			REF (R/F/R/OI	17.9	1.38	1.47	8.3		SU	
			Δ% OF R/O	+22.9	+1.3	-0,6	+7.9	-5.06	+0.24	
			STORM R/F	3.13	3.19	2.87	2.16		STORM L	
T080 0.025	- 50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.4 W -0.0		
			PERT, R/O (IN)	0.22	2.34	1.93	0.28	SIM = 7.5	SP +0.0	
	ŀ	ŀ	REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.1	
			Δ% OF R/O	-12.2	-0.8	+0.4	-4.7	+3.80	-0.14	
			STORM R/F	3.13	3.19	2.87	2.16	,	STORMU	
T081	0.075	+ 50	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.2 W -0.0	
			PERT. R/O (IN)	0.15	2.29	1.95	0.24	SIM = 8.2	SP +0.0	
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU -0.0	
			Δ% OF R/O	-19.7	-1.4	+0.7		_	-	
		1	STORM R/F	3.13	3.19	2.87	2.16	REF = 7.9 SIM =		STORM U
D082	0.10	+100	REF. R/O (IN)	0.175	2.31	1.94	0.255		F -0.1 W -0.0	
	}		PERT. R/O (IN)	0.14	2.28	1.95	- ::		SP +0.0	
-147	İ	1	REF (R/F/R/O)	17.9	3,19	1.47	B.3		SU	

SENSITIVITY ANALYSIS OF OFMN (0.35)

SNOW WATERSHED 277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

,					SIGNIFICA	NT STORMS		9/7/58	I	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/18/57 FALL	4/21/58 WINTER	5/10/58 \$PRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW	
			Δ% OF R/O	0,0	0.0	+3.2	-0.2	0.0	+(0.01
			STORM R/F	2.99	0.0	1.78	1.09		sto	RM U
37	0.0001	-100	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F	0.0
			PERT. R/O (IN.)	0.033	0.039	0.945	0.043	SIM = 3.0	SP	-0.03
			REF (R/F/R/O)	91		1.94	25		su	+0.00
			Δ% OF R/O	0.0	0.0	0,0	0.0	0.0	4	0.01
			STORM R/F	2.99	0.0	1.78	1.09		STO	RML
39 0.175	- 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F	0.0	
		PERT, R/O (IN.)	0.033	0,039	0.916	0.043	SIM = 3.0	W SP	0.0	
			REF (R/F/R/O)	91		1,94	25		su	0.0
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	-	0,01
			STORM R/F	2.99	0.0	1.78	1.09		STO	RMU
42	0.525	+ 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F	0.0
			PERT. R/O (IN.)	0.033	0.039	0.916	0.043	SIM = 3.0	W SP	0.0
			REF (R/F/R/O)	91		1.94	25		SU	0.0
			Δ% OF R/O	0.0	0.0	0.0	0.0	0.0	_	0.01
			STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 3.0	sto	RM U
44	0.70	+100	REF. R/O (IN.)	0.033	0.039	0.916	0.043		F	0.0
			PERT. R/O (IN.)	0.033	0.039	0.916	0.043		SP	0.0
5-148	Ì		REF (R/F/R/O)	91		1.94	25		SU	0.0

SENSITIVITY ANALYSIS OF OFMN (0.066)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

IEGIONAL I	VATERSHED 2				SIGNIFICANT	T STORMS		9/15/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОПЪРП	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
	 		Δ% OF R/O	+5.4	+1.4	+1.7	-3.6	-7.45	+1.25
	į		Δ% OF MONTHLY R/O	OCT +1.69	JAN -0.85	APR +0.50	AUG -3.49		STORM U/S F -0.054
64	0.001	-100	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	W -0.014
04	0.00		PERT. R/O (IN)	0.1040	0.9937	0.4953	0.0618	SIM = 596	SP -0.017
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0,258		SU -0.036
			Δ% OF R/O	+0.02	+0.24	+0.01	-0,27	-	
	Ì		∆% OF MONTHLY R/O	OCT +0.01	JAN -0.05	APR -0.05	-0.29		STORMU/S
66	0,033	- 50	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F 0.0 W -0.005
•		1	PERT. R/O (IN)	0.0988	0.9822	0.4872	0.0639	SIM = -	SP 0.0
	1	Ì	REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258		SU -0.005
	 		∆% OF R/O	-0.01	-0.17	+0.02	+0.12		
			Δ% OF MONTHLY R/O	OCT 0,0	JAN 0.01	APR +0.03	AUG +0.13		STORMU/S F 0.0
65	0,099	+ 50	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	W -0.003
0.5	"""		PERT. R/O (IN)	0.0987	0.9782	0.4873	0.0642	SIM = -	SP 0.0
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258	<u> </u>	SU +0.002

TABLE 6-122

SENSITIVITY ANALYSIS OF OFMN (0.056)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

JBWATERSHI	ED NO. 1	2,326 SQ. KN	·				TOTAL OBSERV				
					SIGNIFICAL	NT STORMS		9/25/68			
RUN ID	PARAM VALUE	A% PERTUR BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 . SPRING	B/18/68 SUMMER	∾bOW FLOW	AN FLO	NUAL OW	
			Δ% OF R/O	+21.5	+5.9	+8.3	-5.4	-8.82	+	0.86	
			STORM R/F	2.16	1.91	3.49	2.79		Į.	RM U/S	
64	0.001	-100	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F W	-0.215 -0.059	
04			PERT. R/O (IN.)	0.0543	1.7041	0.8115	0.0555	SIM = 31	SP	-0.083	
		ļ	REF (R/F/R/O)	48	1.18	4.65	46.5		SU	-0.054	
			Δ% OF R/O	+0.07	+0.80	+0.04	-0.16	_			
			STORM R/F	2.16	. 1.91	3,49	2.79		sto	RM U/S	
66	0.028	- 50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	REF = 34	F	-0.00° -0.01°
00	0.020	r.	PERT. R/O (IN.)	0.0447	1.6221	0.7494	0.0586	SIM = -	SP	0.0	
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU	+0.003	
	 		Δ% OF R/O	-0.03	-0.55	+0.03	+0.09	_			
			STORM R/F	2.16	1.91.	3.49	2.79			RM U/9	
65	0.084	+ 50	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF =34	F W	0.0 -0.01	
00	0.004		PERT. R/O (IN.)	0.0447	1.6005	0.7493	0.0587	SIM =	SP	0.0	
6-149			REF (R/F/R/O)	48	1.18	4.65	46.5		su	+0.00	

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 3 813 SQ. KM

OFMN (0.07)

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

	<u> </u>				SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+22.7	+1.3	+3.6	+2.6	-4.35	+0.62
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
64	0.001	- 100	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.227 W -0.013
			PERT, R/O (IN.)	0.1163	2.1988	0.5398	0.1204	\$IM ≈ 22 .	SP -0.036
	ŀ		REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.026
			Δ% OF R/O	+0.11	-0.21	-0.11	-0.17	-	-
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
66	0.035	- 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F -0.002 W +0.004
	ļ	ŀ	PERT. R/O (IN.)	0.0949	2.1650	0.5204	0.1171	SIM = -	SP +0.002
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	WU +0.003
			Δ% OF R/O	-0,05	+0.11	+0,05	+0,05	-	-
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
65	0.105	+ 50	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.001 W +0.002
		}	PERT. R/O (IN.)	0.0948	2.1720	0.5213	0.1173	SIM =	SP +0.001
			REF (R/F/R/O)	26.4	1.43	3.26	18,9		SU +0 ,001

TABLE 8-724

SENSITIVITY ANALYSIS OF OFMN (0.068) SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
	<u> </u>	<u> </u>	Δ% OF R/O	0.0	+3.8	+5.1	-1.6	0.0	+0.36
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/
64	0.001	-100	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 4	F 0.0 W -0.038
		1	PERT, R/Q (IN.)	0.036	1.9808	0.9688	0.0847	21141 = 4	SP -0.051
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +0.016
			Δ% OF R/Q	+0.04	+0.42	+0.48	-0.07		_
			STORM R/F	1.08	2.04	1.82	2.22		STORM U
66	0.034	- 50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F 0.0 W -0.008
		1	PERT. R/O (IN.)	0.0358	1.9150	0.9259	0.0860	SIM =	SP -0.010
	1	-	REF (R/F/R/O)	30	1.06	1.97	25.8	l	SU +0.001
			∆% OF R/O	+0.04	-0.16	-0.17	-0.02		
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/
65	0.102	+ 50	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F 0.0 W -0.003
			PERT. R/O (IN.)	0.0358	1.9039	0.9199	0.0861	SIM =	SP -0.003
6-150			REF (R/F/R/O)	30	1.06	1.97	25.8]	SU 0.0

SENSITIVITY ANALYSIS OF

SUBWATERSHED NO. 7 1,111 SQ. KM

OFMN (0.065)

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

-					SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	оитрит	10/15/67 FALL	1/8/ 68 WINTER	4/26/68 SPR ING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+6.7	+6.4	+5.0	+25.9	-5.0	+1.01
			STORM R/F	1.58	2.76	1.92	2.95	ļ	STORM U/S
64	0.001	-100	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 38	F -0.067 W -0.064
	,		PERT, R/O (IN.)	0.0314	1.6573	0.6408	0.1597]	SP -0.050
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.259
			Δ% OF R/O	-0.06	+0.17	-0.14	+0.04		-
·			STORM R/F	1.58	2.76	. 1.92	2.95	REF = 40	STORM U/S
66	0.033	- 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127		F +0.001 W -0.003
			PERT. R/O (IN.)	0.0294	1.5596	0.6089	0.1270] 51111	SP -0.003
			REF (R/F/R/O)	54.5	1.77	3.14	23.2]	SU 0.0
,			Δ% OF R/O	-0.07	-0.06	+0.01	-0.03		_
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
65	0.098	+ 50	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40	F -0.001 W -0.001
			PERT. R/O (IN.)	0.0294	1.5560	0.6098	0.1269	SIM =	SP 0.0
			REF (R/F/R/O)	54,5	1.77	3.14	23.2		SU 0.0

TABLE 6-126

SENSITIVITY ANALYSIS OF

SURWATERSHED NO. 11 2 551 SQ. KM

OFMN (0.073)

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

					SIGNIFICA	NT STORMS	4	9/14/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОЏТРЦТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPR ING	-8/20/68 SUMMER	. LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+3.8	+10.7	+17.3	-5.7	-22.2	+1.63
			STORM R/F	1.35	1.37	1.91	0.50		STORM U
64	0.001	-100	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.038 W -0.107
			PERT. R/O (IN.)	0.1560	0.8519	0.6895	0.0295	SIM = 7	W -0.107 SP -0.173
			REF (R/F/R/O)	9.0	1.8	3.24	16.1]	\$U -0.05
			Δ% OF R/O	+ 0 .01	+1.05	+2.30	-0.42	-	-
			STORM R/F	1.35	1.37	1,91	0.50		STORM U
66	0.037	- 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F 0.0 W -0.02
			PERT. R/O (IN.)	0.1502	0.7775	0.6011	0.0311	SIM = -	W -0.02 SP -0.04
			REF (R/F/R/O)	9.0	1.8	3.24	16.1	1	SU +0.001
			Δ% OF R/O	-0.01	-0.41	-0.99	+0.17	-	
			STORM R/F	1.35	1.37	1.91	0.50		STORM U
65	0.11	+ 50	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF=9	F 0.0
			PERT. R/O (IN.)	0.1502	0.7662	0.5818	0.0313	SIM = -	W -0.00 SP -0.02
5-151			REF (R/F/R/O)	9,0	1.8	3.24	16.1	1	\$U +0.00

SENSITIVITY ANALYSIS OF

OFMN

-100% PERTURBATION (0.048 -- 0.35)

WATER\$HED	AREA (SQ. KM)	EPAET (IN)		SIGNIFICANT STORMS					
			ООТРОТ	FALL	. WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	+90.7	+2.8	-0.6			
D079 SMALL			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F -0.907 W -0.026
			PERT. R/O	0.33	2.37	1.93		SIM =	SP +0.006
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		su
RUN ID			Δ% OF R/O	0.0	0,0	+3.2	0.2	0.0	+0.01
37 SNOW			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0 W 0.0
			PERT. R/O	0.033	0.039	0.945	0.043	SIM = 3.0	SP -0.032
			REF (R/F/R/O)	91		1.94	25		SU+0.002
RUN ID RW64			Δ% OF R/O	+5.4	+1.4	+1,7	- 3.6	-7.45	+1.25
			Δ% OF MONTHLY R/O	OCT +1.69	JAN - 0.85	APR +0.50	AUG - 3.49	9/15/68	STORM U/
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F - 0.054 W - 0.014
			PERT. R/O	0.1040	0.9937	0.4953	0.0618	SIM ≈ 596	W - 0.014 SP - 0.017
			REF. MONTH- LY R/O	0.177	3.634	2.600	0.258		SU - 0.036
RUN ID			Δ% OF R/O	+21.5	+5.9	+8.3	- 5.4	-8.82	+0.86
RW64 SUB- WATERSHED NO. 1			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2,79	9/25/68	STORM U
	2,326	50	REF, R/O	0.045	1.609	0.749	0.059	REF = 34	F -0.215
			PERT, R/O	0.0543	1.7041	0.8115	0.0655	SIM = 31	W -0.059 SP -0.083
			REF (R/F/R/O)	48	1.18	4.65	46.5	1	SU -0.054
RUN ID RW64 SUB- WATERSHED NO. 3			Δ% OF R/O	+22.7	+1.3	+3.6	+2.6	-4.35	+0.62
			STORM R/F	10/15/67 2.51	1/9/68 3. 11	4/25/68 1.70	7/31/ 6 8 2.21	9/2/68	STORM U/
	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.227
		1	PERT. R/O	0.1163	2.1988	0.5398	0.1204	SIM = 22	W -0.013 SP -0.036
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU -0.026
RUN ID RW64 SUB- WATERSHED NO. 5		<u> </u>	Δ% OF R/O	0.0	+3.8	+5.1	- 1.6	0.0	+0.36
			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/
	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F 0.0
			PERT, R/O	0.036	1.9808	0.9688	0.0847	SIM = 4	W -0.038 SP -0.051
			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU +0.016
RUN ID RW64 SUB- WATERSHED NO. 7			Δ% OF R/O	+6.7	+6.4	+5.0	+25,9	-5.0	+1.01
	-		STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U
	1,111	40	REF, R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.067
			PERT. R/O	0.0314	1.6573	0,6408	0.1597	SIM = 38	W -0.064 SP -0.050
			REF (R/F/R/O)	 	1.77	3.14	23.2	1	SU -0.259
RUN ID RW64 SUB- WATERSHED NO. 11	2,551	30	Δ% OF R/O	+ 3.8	+10.7	+17.3	- 5.7	22.2	+1.63
			STORM R/F	10/28/67	1/8/68 1.37	5/8/68	8/20/68	9/14/68	STORM U
			REF. R/O	1.35 0.150	0.769	1.91 0.588	0.50 0.031	REF = 9	F -0.038
	,		PERT. R/O	0.1560	0.8519	0.6895	0,0295	SIM = 7	W -0.107 SP -0.173
				4	2,00.0		1	4	SU -0.057

$\{\textsc{OFMN}\cdot \textsc{OVERLAND}\ \textsc{FLOW}\ \textsc{Manning's}\ \textsc{Number/indirectly}\ \textsc{OBTAINABLE}\ \textsc{FROM}\ \textsc{Land}\ \cdot \textsc{USE}\ \textsc{Classification}\}$

^{*} A FUNCTION OF TYPE OF SURFACE, TYPE AND DENSITY OF VEGITATION AND FOREST COVERS

Figure 6-25. Overland Flow Manning's N Study, Winter Storms

6.3.13 RGPMB, RECORDING GAGE PRECIPITATION MULTIPLIER

This parameter permits adjustment of the precipitation data. If, during the calibration procedure, it is observed that simulated stream discharge values are consistently high or low, it may be due to a consistent under or over estimation of the precipitation gage data which may be corrected by this parameter.

The precipitation data can be directly obtainable from climatological data recorders, and eventually it will telemetered through communication satellites.

Sensitivity analysis (Tables 6-128 through 6-137 and Figure 6-26) show the models to be very sensitive to changes in RGPMB, the effect of which is to introduce a constant percentage bias in the precipitation input. Over a long period of time, this bias accumulates a large excess or deficiency in soil moisture, compounding the effects on output accuracy. It would be more realistic to introduce random errors in precipitation input, according to some probability density function, to represent the inability of the precipitation gages and preprocessing functions to synthesize a mean basin precipitation record. That would be a worthwhile undertaking for some future investigation. A small step in that direction was taken in the snowshed sensitivity analysis, when precipitation data was perturbed only during selected storms, as reported in Paragraph 6.3.15.

SENSITIVITY ANALYSIS OF RGPMB (1.0) **SMALL WATERSHED** 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

		Δ%			SIGNIFICA	NT STORMS		9/27/64	
RUN ID	PARAM VALUE	PERTUR- BATION	OUTPUT	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUA! FLOW
···			Δ% OF R/O	- 40.3	-16.1	-14.4	-35.7	-22.78	-16.19
			STORM R/F	3.13	3.19	2.87	2.16]	STORM U/
S005	0.9	- 10	REF, R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +4.03 W +1.61
			PERT. R/O (IN)	0.10	1.94	1.66	0.16	REF = 7.9 SIM = 6.1	W +1.61 SP +1.44
			REF (R/F/R/O)	17.9	1.38	1,47	8.3		SU +3.57
			Δ% OF R/O	+66.5	+15.8	+14.5	+45.4	+25.32	+16.55
			STORM R/F	3.13	3.19	2.87	2.16		STORM U
S006	1.1	+ 10	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F +6.65 W +1.58
			PERT. R/O (IN)	0.29	2.68	2.22	0.37	SIM = 9.9	W +1.58 SP +1.45
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +4.5

TABLE 6-129

SENSITIVITY ANALYSIS OF

SNOW WATERSHED 277 SQ. KM **RGPMB (1.0)**

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

SIGNIFICANT STORMS 9/7/58 ∆% PERTUR-10/18/57 4/21/58 5/10/58 -ANNUAL 8/3/58 OUTPUT LOW FLOW FLOW **RUNID** VALUE BATION FALL. WINTER SPRING SUMMER ∆% OF R/O -9.6 +19.3 -8.3 -25.2 -50.0 -18.56 STORM R/F 2.99 0.0 1.78 1.09 STORM U/S +0.960 REF. R/O (IN.) 0.033 45 0.9 - 10 0.039 0.916 0.043 REF = 3.0 SIM = 1.5 +1.930 PERT, R/Q (IN. 0.030 0.840 0.032 0.047 +0.830 REF (R/F/R/O) 91 1.94 25 +2,520 Δ% OF R/O +10.7 -13.5 +9.3 +28.2 +18.99 STORM R/F 2.99 0.0 1.78 1.09 STORM U/S +1.070 46 1,1 + 10 REF, R/O (IN. 0.033 0.039 0.9160.043 REF = 3.0 w +1.350 SIM = PERT. R/O (IN. 0.036 1.002 0.055 0.034 SP +0.930 +2.820 SU REF (R/F/R/O) 91 1 94 25

TABLE 6-130

SENSITIVITY ANALYSIS OF REGIONAL WATERSHED 22,248 SQ. KM

RGPMB (1.0)

ANNUAL R/F = 41.89 IN

EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

SIGNIFICANT STORMS 9/15/68 Δ% 10/28/67 1/21/68 5/9/68 8/11/68 PERTUR-BATION RUN PARAM ANNUAL LOW QUTPUT WINTER SPRING !D VALUE FALL SUMMER FLOW FLOW Δ% OF R/O -11.7 -18.2 -22.5 -43.94 -18.83 APR -17.15 AUG -23.64 4% OF MONTHLY R/O OCT JAN STORM U/S 6.21 18.93 F +1,170 RW03 0.9 - 10 REF, R/O (IN) 0.099 0.980 0.487 0.064 **REF = 644** W +1.820 PERT, R/O (IN) SIM = 361 0.09 0.40 0.05 0,80 SP +1,820 REF. MONTHLY SU +2.250 0.177 3.634 2.600 0.258 **1% OF R/O** +27.9 +12.6 +18.3 +18.5 +80.90 +19.82 3% OF MONTHLY R/O OCT JAN +19.07 APR +17.31 AUG +31.40 STORM U/S F +1.260 +10 REF. R/O (IN) 0.099 0.980 0.487 RW02 1.1 0.064 **REF = 644** W +1.830 SIM = 1165 PERT. R/O (IN) 0.11 1.16 0.58 0.08 SP +1.850 REF. MONTHLY SU+2.790 0.177 3.634 2.600 0.258 8/0 (IN)

SENSITIVITY ANALYSIS OF RGPMB (1.0)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

			I		SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	оитеит	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPR ING	8/18/68 SUMMER	9/25/68 LOW FLOW -47.06 REF = 34 SIM = 18	ANNUA! FLOW
			Δ% OF R/O	-13.6	-20.7	-18.7	-37.3	-47.06	-19.57
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
RW03	0.9 -10	-10	REF. R/O (IN.)	0.045	1.609	0.749	0.059		F +1.3 W +2.0
			PERT. R/O (IN.)	0.04	1.28	0.61	0.04	LOW FLOW -47.06 REF = 34 SIM = 18	SP +1.8
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +3.7
			Δ% OF R/O	+19.1	+21.1	+19.7	+49.7	+50.0	+20.53
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
RW02	1.1	+10	REF. R/O (IN.)	0.045	1.609	0.749	0.059		F +1.9 W +2.1
			PERT. R/O (IN.)	0.05	1.95	0.90	0.09	SIM = 68	SP +1.9
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU +4.9

TABLE 6-132

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 3 813 SQ. KM

RGPMB (1.0)

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

,					SIGNIFICA	NT STORMS		9/2/68	
RUN ID	PARAM VALUE	A % PERTUR- BATION	QUTPUT	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
		,	Δ% OF R/O	-14.4	-16.3	-19.6	-22.0	-30.43	-17.71
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/
RW03	0.9	-10	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F +1.44 W +1.63
	•		PERT. R/O (IN.)	0.08	1.82	0.42	0.09	REF = 23 SIM = 16	SP +1.96
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU +2.20
			Δ% OF R/O	+16.6	+16,4	+21.9	+27.6	+43.48	+18.37
			STORM R/F	2.51	3.11	1.70	2,21		STORM U
RW02	1.1	+10	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF=23	F +1.65 W +1.64
			PERT. R/O (IN.)	0.11	2.53	0.64	0.15	SIM = 33	SP +2.19
	ĺ	-	REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU +2,76

TABLE 6-133

SENSITIVITY ANALYSIS OF

SUBWATERSHED NO. 5 1,064 SQ. KM

RGPMB (1.0)

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	Ουτρυτ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
	· · · · · ·		Δ% OF R/O	-12.2	-17.6	-17.3	-14.6	-25.0	16.80
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW03	0.9	-10	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 3	F +1.220 W +1.760
į			PERT. R/O (IN.)	0.03	1,57	0.76	0.07		SP +1.730
ĺ			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +1.460
			∆% OF R/O	+12.5	+17.9	+18.0	+15.3	+75.0	+17.26
j			STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW02	1.1	+10	REF, R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F +1.250 W +1.790
			PERT. R/O (IN.)	0.04	2.25	1.09	0.10	SIM = 7	SP +1.800
5-156			REF (R/F/R/O)	30	1.06	1.97	25.8		SU +1.530

SENSITIVITY ANALYSIS OF RGPMB (1.0)

SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

			:		SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	оитрит	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
	,		Δ% OF R/O	-13.7	-19.0	-20.4	-37,5	-40.0	-19. 0
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW03	0.9	-10	REF. R/O (IN.)	0.029	1,557	0.610	0.127	REF = 40 SIM = 24	F +1,370 W +1,900
	ļ		PERT. R/O (IN.)	0.03	1.26	0.49	0.08	Siin - E4	SP +2.040
			REF (R/F/R/O)	54.5	1,77	3.14	23.2		SU +3.750
			Δ% OF R/O	+17.7	19,1	+22.5	+55.4	+57.5	+19,9
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW02	1.1	+10	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 63	F +1.770
			PERT. R/O (IN.)	0.03	1.85	0.75	0,20		W +1,910 SP +2,250
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU +5.540

TABLE 6-135

SENSITIVITY ANALYSIS OF RGPMB (1.0)

SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

	<u> </u>				SIGNIFICA	NT STORMS		9/14/68	I
RUN ID PARAM VALUE	A % PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW	
			Δ% OF R/O	-7.1	-19.1	-20.8	-21.3	-33.33	-18.07
		ļ	STORM R/F	1.35	1.37	1.91	0.50	REF = 9	STORM U/
RW03	0.9	-10	REF. R/O (IN.)	0.150	0.769	0.588	0.031		F +0.716
			PERT. R/O (IN.)	0.14	0.62	0.47	0.02	SIM = 6	W +1.916 SP +2.086
			REF (R/F/R/O)	9.0	1.8	3.24	16.1	,	SU +2,130
•			Δ% OF R/O	+7.3	+19.1	+22.4	+26.0	+88.9	+18.92
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/
RW02	1.1	+10	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F +0.730
			PERT. R/O (IN.)	0.16	0,92	0.72	0,04	SIM = 17	W +1.916 SP +2.246
6-157			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU +2.600

SENSITIVITY ANALYSIS OF SMALL, SNOW & REGIONAL WATERSHEDS RGPMB -10% PERTURBATION (1.0)

]			SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O	-40.3	-16.1	14.4	-35.7	22.78	-16.19
S005			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F +4.03 W +1.61
			PERT. R/O	0.10	1.94	1.66	0.16	SIM ≈ 6.1	SP +1.44
İ			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +3.57
RUNID			Δ% OF R/O	-9.6	+19.3	-8.3	-25.2	50.0	-18.56
45			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORMU
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F +0.96 W +1.93
			PERT. R/O	0.030	0.047	0.840	0.032	SIM = 1.5	SP +0.83
			REF (R/F/R/O)	91		1.94	25		SU +2.52
RUN ID			∆% OF R/O	-11.7	-18.2	18.2	-22.5	-43.94	-18.83
RW 03			Δ% OF MONTHLY R/O	OCT -6.21	JAN -18.93	APR 17,15	AUG -23.64	9/15/68	STORM U.
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F +1.17
		Ì	PERT. R/O	0.09	0.80	0.40	0.05	SIM = 361	W +1.82 SP +1.82
			REF. MONTH-	0.177	3.634	2.600	0.258		SU +2.25
RUN ID	.,		LY R/O Δ% OF R/O	-13.6	-20.7	-18.7	-37.3	-47.06	-19.57
RW 03			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68 2.79	9/25/68	STORMU
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91 1.609	3.49 0.749	0.059	REF = 34	F +1.36
NO . 1			PERT, R/O	0,04	1.28	0.61	0.04	SIM = 18	W +2.07 SP +1.87
	ļ Į		REF (R/F/R/O)	48	1.18	4,65	46.5	1	SU +3.73
RUN ID		-	Δ% OF R/O	-14,4	-16.3	-19.6	-22.0	30.43	-17.71
RW 03			STORM R/F	10/15/67	1/9/68	4/25/68 1.70	7/31/68	9/2/68	STORMU
SUB- WATERSHED	813	50	REF. R/O	2,51 0.095	3.11 2.170	0.521	2.21 0.117	REF = 23	F +1.44
NO. 3	013	50	PERT. R/O	80.0	1,82	0.42	0.09	SIM ≈ 16	W +1.63 SP +1.96
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SP +1.96 SU +2.20
RUN ID RW 03		+	Δ% OF R/Q	-12.2	-17.6	-17.3	-14.6	-25.0	-16.80
		-	STORM R/F	10/15/67	1/9/68	4/25/68	8/13/68	9/29/68	STORMU
SUB- WATERSHED	1,064	37	REF, R/O	1.08 0.036	1.907	1.82 0.921	2.22 0.086	REF = 4	F +1.22
NO. 5	","		PERT. R/O	0.03	1.57	0.76	0.07	SIM = 3	W +1.76 SP +1.73
			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU +1.46
RUN ID			Δ% OF R/O	-13.7	-19.0	-20.4	-37.5	40.0	-19.0
RW 03			STORM R/F	10/15/67	1/8/68	4/26/68	8/14/68	9/30/68	STORML
SUB- WATERSHED	1,111	40	REF. R/O	1.58 0.029	2.76 1.557	1.42 0.610	2.95 0.127	REF = 40	F +1.3
NO. 7	, ,,,,,	40	PERT. R/O	0.03	1.26	0.49	0.08	SIM = 24	W +1,90
			REF (R/F/R/O)	·	1.77	3.14	23.2	-	SP +2.04 SU +3.79
DUNIO		·		-7.1	-19.1	-20.8	_21.3	-33.33	-18.07
RUN ID RW 03			Δ% OF R/O	10/28/67	1/8/68	5/8/68	8/20/68	 	STORMU
SUB- WATERSHED	2 554	20	STORM R/F	1.35	1.37	1.91	0.50	9/14/68	F +0.7
NO. 11	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	W +1.9
- ,			PERT. R/O	0.14	0.62	0.47	ł	SIM = 6	SP +2.08
<u> </u>			REF (R/F/R/O)	9.0	1.8	3.24	16.1		

TABLE 6-137

SENSITIVITY ANALYSIS OF RGPMB +10% PERTURBATION (1.0) SMALL, SNOW & REGIONAL WATERSHEDS

T					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	оитрит	FALL	. WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID	-		Δ% OF R/O	+66.5	+15.8	+14.5	+45.4	+25.32	+16.55
S006			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F +6.650 W +1.580
			PERT. R/O	0.29	2.68	2.22	0.37	SIM = 9.9	SP +1.450
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU +4.540
RUN ID			Δ% OF R/O	+10.7	-13.5	+9.3	+28.2		+18.99
46		ļ.	STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
snow	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F +1.070 W +1.350
			PERT. R/O	0.036	0.034	1.002	0.055	SIM =	SP +0,930
ļ			REF (R/F/R/O)	91		1.94	25		SU +2.820
RUNID		<u> </u>	∆% OF R/O	+12.6	+18.3	+18.5	+27.9	+80.90	+19.82
RW 02			Δ% OF	ост	JAN	APR	AUG	9/15/68	STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	0.099	0.980	0.487	0.064	REF = 644	F +1.260 W +1,830
			PERT. R/O	0.11	1.16	0.58	0.08	SIM ≃1165	SP +1.850
			REF. MONTH-	0.177	3.634	2,600	0.258	1	SU +2.790
RUN ID		 	Δ% OF R/O	+19.1	+21.1	+19.7	+49.7	+50.0	+20.53
RW 02			STORM R/F	10/15/67 2,16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F +1.910 W +2.110
NO. 1			PERT. R/O	0.05	1.95	0.90	0.09	SIM = 68	W +2.110 SP +1.970
			REF (R/F/R/O)	48	1.18	4.65	46.5	1	SU +4.970
RUN ID			Δ% OF R/O	+16.6	+16.4	+21.9	+27.6	+43.48	+18.37
RW 02			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1,70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F +1.660
NO. 3	0.0	"	PERT. R/O	0.11	2.53	0.64	0.15	SIM = 33	W +1.640 SP +2.190
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU +2.760
RUN ID		†	Δ% OF R/O	+12.5	+17.8	+18.0	+15.3	+75.0	+17.26
RW 02			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF=4	F +1.250 W +1.790
NO. 5			PERT. R/O	0.04	2.25	1.09	0.10	SIM = 7	SP +1.800
			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU +1.530
RUN ID			Δ% OF R/O	+17.7	+19.1	+22.5	+55.4	+5 7.5	+19.9
RW 02			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/
SUB- WATERSHED	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F +1.770
NO. 7			PERT. R/O	0.03	1.85	0.75	0.20	SIM = 63	SP +2.250
			REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	SU +5.540
RUN ID			Δ% OF R/O	+7.3	+19.1	+22.4	+26.0	+88.9	+18.92
RW 02			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/
SUB- WATERSHED	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F +0.730
NO. 11			PERT. R/O	0.16	0.92	0.72	0.04	 SIM ≈17	W +1.910 SP +2.240
	ŀ	ļ	REF (R/F/R/O)	9.0	1.8	3.24	16.1	7	SU +2.600

Figure 6-26. Precipitation Multiplier Study Fall Storms

6.3.14 EVAPORATION AND MEAN NUMBER OF RAINY DAYS

The model uses lake evaporation data to estimate evapotranspiration losses from the upper zone or, in the event all upper zone moisture has evaporated, from soil moisture storage.

Information on evaporation is the most difficult climatological data to obtain for most watersheds. So few evaporation pan records are available that only by coincidence will one be found close to a watershed being modeled. If one does have good information, daily pan evaporation totals and monthly pan evaporation coefficients can be read directly.

The evaporation data used for the small watershed is daily pan evaporation totals and monthly pan evaporation coefficients. All the monthly pan evaporation coefficients were perturbed $\pm 10\%$.

If the closest evaporation pan is too far away for the daily weather-related fluctuations in evaporation totals to be indicative of conditions over the watershed, or if it is desired to shorten the job of estimating evaporation from climatological data, pan evaporation totals may be read as average values over fixed ten-days periods (Table 6-138). The model has been programmed to adjust the potential evaporation total during rainy days (rainfall equal to or greater than 0.01 inch) to half what it would be if no rain occurred.

The evaporation data used for the snow watershed is average ten-days periods and monthly pan evaporation coefficients. The ten-day averages were perturbed by $\pm 20\%$ and $\pm 50\%$, but only during storms.

Where evaporation data is particularly sparse or a large number of watersheds are to be modeled in an area where a single evaporation pan must be used to distributed a geographically variable total annual pan evaporation over the year, a further data simplification is possible by using an estimate of the potential average annual lake evaporation (EPAET) and the mean annual number of days with measurable rainfall (MNRD).

The evaporation data used for the regional watershed and all its subwatersheds is the potential average annual lake evaporation (EPAET) and the mean annual number of days (MNRD) with measurable rainfall calculated in a special program.

The evaporation data can be directly obtainable from climatological data recorders, and eventually it will be telemetered through communication satellites from data collection sites.

Sensitivity analysis indicate that the evaporation input data is most influential during the fall and summer seasons. The average unit sensitivity is +2.0 for the evaporation data during summer, and -0.5 for the mean number of rainy days. The results appear in Tables 6-139 through 6-150 and Figures 6-27 and 6-28.

Table 6-138. Ten-Day Intervals for Averaging Evaporation Data

					MARKET STATE OF THE PARKET
OCTOBER	1-OCTOBER	10	APRIL	1-APRIL	10
OCTOBER	11-OCTOBER	20	APRIL	11-APRIL	20
OCTOBER	21-OCTOBER	30	APRIL	21-APRIL	30
OCTOBER	31-NOVEMBER	9	MAY	1-MAY	10
NOVEMBER	10-NOVEMBER	19	MAY	11-MAY	20
NOVEMBER	20-NOVEMBER	29	MAY	21-MAY	30
NOVEMBER	30-DECEMBER	9	MAY	31-JUNE	9
DECEMBER	10-DECEMBER	19	JUNE	10-JUNE	19
DECEMBER	20-DECEMBER	31	JUNE	20-JUNE	29
JANUARY	1-JANUARY	10	JUNE	30-JULY	9
JANUARY	11-JANUARY	20	JULY	10-JULY	19
JANUARY	21-JANUARY	30	JULY	20-JULY	29
JANUARY	31-FEBRUARY	9	JULY	30-AUGUST	8
FEBRUARY	10-FEBRUARY	19	AUGUST	9-AUGUST	18
FEBRUARY	20-MARCH	1*	AUGUST	19-AUGUST	28
MARCH	2-MARCH	11	AUGUST	29-SEPTEMBER	7
MARCH	12-MARCH	21	SEPTEMBER	8-SEPTEMBER	17
MARCH	22-MARCH	31	SEPTEMBER	18-SEPTEMBER	27
			SEPTEMBER	28-SEPTEMBER	30

^{*}This is an eleven-day interval on leap years.

SENSITIVITY ANALYSIS OF EVAPORATION (ALL PAN COEFF.S) SMALL WATERSHED 365 SQ. KM

ANNUAL R/F = 58.23 IN EVAPOTRANSPIRATION NET = 24.24 IN TOTAL OBSERVED ANNUAL R/O = 31.38 IN

					SIGNIFICA	NT STORMS	_	9/27/64	•
RUN ID	PARAM VALUE	A% PERTUR- BATION	ООТРИТ	11/4/63 FALL	1/23/64 WINTER	5/1/64 SPRING	8/14/64 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+5.8	+1.4	+3.4	+32.1	+16.46	+4.11
T157	ļ	- 10	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
			REF. R/O (IN)	0.175	2,31	1,94	0.255	REF = 7.9	F -0.580 W -0.140
			PERT. R/O (IN)	0.19	2.35	2.00	0,34	SIM = 9.2	SP-0.340
	,		REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU-3.210
			Δ% OF R/O	- 5 .l	1.4	-2.4	-21.0	-12.66	-3.78
T162		+10	STORM R/F	3.13	3.19	2.87	2.16		STORM U/S
1102		``*	REF. R/O (IN)	0.175	2.31	1.94	0.255	REF = 7.9	F -0.510 W -0.140
		PERT. R/O (IN)	0.17	2.28	1.89	0.20	SIM = 6.9	SP-0.240	
			REF (R/F/R/O)	17.9	1.38	1.47	8.3	T	SU-2.100

TABLE 6-140

SENSITIVITY ANALYSIS OF STORM EVAPORATION (10 DAY PERIODS)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

OW WATERS		77 SQ. KM					TOTAL OBSER	VED ANNUAL	N/O = 10.03 1
					SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	оитрит	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 \$UMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+11.3	+27.0	+2.3	+7.1	+463.3	+5.66
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
50A	: E	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM =16.9	F -0.226 W0.540
			PERT. R/O (IN.)	0:036	0:050	0.937	0.046	SIN = 10.5	SP -0.046
			REF (R/F/R/O)	91		1.94	25		SU -0.142
			∆% OF R/O	+4.4	+8.8	+0.9	+2.7	+123.33	+1.74
51A		20	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
			REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 6.7	F —0,220 W —0.440
			PERT, R/O (IN.)	0.034	0.043	0.925	0.044		SP -0.045
	İ		REF (R/F/R/O)	91		1.94	25		SU0,135
-, -			Δ% OF R/O	-4.3	8.0	-0.9	-2.6	-30 .0	-1.26
52A		+20	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
U L.			REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.1	F -0.215 W -0.400
			PERT. R/O (IN.)	0.031	0.036	0.908	0.042	SIM = 2.1	SP -0.045
			REF (R/F/R/O)	91		1.94	25		SU0.130
			Δ% OF R/O	-8,6	-15.1	-2.1	-6.0	-36.67	-2.36
53A		+50	STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 1.9	STORM U/S
			REF. R/O (IN.)	0.033	0.039	0.916	0.043		F -0.172 W -0.302
	<u> </u>		PERT. R/O (IN.)	0.030	0.033	0.897	0.041		SP -0.042
6-163		1	REF (R/F/R/O)	91		1.94	25		SU -0.120

SENSITIVITY ANALYSIS OF EPAET (38)

REGIONAL WATERSHED 22,248 SQ. KM

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

· · · · · · · · · · · · · · · · · · ·					SIGNIFICAN	IT STORMS		9/15/68	
RUN ID	PARAM VALUE	A% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/21/68 WINTER	5/9/68 \$PRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+6.1	+6.3	+16.3	+46.4	+170.19	+13.27
RW123	30.4	-20	∆% OF MONTHLY R/O	OCT +3.39	JAN +6.85	APR +8.96	AUG +55.81		STORM U/S
			REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F0.305 W0.265
			PERT. R/O (IN)	0.10	1.03	0.57	0.09	SIM =1740	SP0.815
		ţ	REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258	1	SU-2.320
			Δ% OF R/O	-5.2	-4.9	-14.2	-20.0	-49.5	-10 .03
RW122	45.6	+20	Δ% OF MONTHLY R/O	OCT -3.39	-6. ⁴ AN	8.46 ^{PR}	_22.48		STORM U/S
			REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.260 W -0.245
			PERT. R/O (IN)	0.09	0.93	0.42	0.05	SIM = 325	SP -0.710
			REF. MONTHLY R/O (IN)	0.177	3.634	2.600	0.258	<u></u>	SU-1,000

TABLE 6-141B

SENSITIVITY ANALYSIS OF MNRD (107)

ANNUAL R/F = 41.89 IN EVAPOTRANSPIRATION NET = 32.90 IN TOTAL OBSERVED ANNUAL R/O = 15.41 IN

					SIGNIFICAN	TSTORMS		9/15/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/28/67 FALL	1/21/68 WINTER	5/9/68 SPRING	8/11/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+1.4	+1.8	+4.1	+7.7	+26.1	+3.09
			Δ% OF MONTHLY R/O	OCT +0.56	JAN +1.95	APR +2.42	AUG +8.91		STORM U/S
RW125	86	20	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.070 W -0.090
			PERT. R/O (IN)	0.10	1.00	0.51	0.07	SIM = 812	SP -0.205
]	REF. MONTHLY	0.177	3.634	2.600	0.258		SU -0.385
······			Δ% OF R/O	-1.3	1.7	-3.9	-6.2	-17.4	-2.84
			Δ% OF MONTHLY R/O	OCT -1.13	JAN -1.87	APR 2.38	AUG 6.98		STORM U
RW124	128	+20	REF. R/O (IN)	0.099	0.980	0.487	0.064	REF = 644	F -0.065 W -0.085
		1	PERT. R/O (IN)	0.10	0.96	0.47	0.06	SIM = 532	SP0.195
6-164	}		REF. MONTHLY R/O (1N)	0.177	3.634	2.600	0.258	1	SU0.310

TABLE 6-142A

SENSITIVITY ANALYSIS OF EPAET (50)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

BWATERSHE	D NO. 1	2,326 SQ. KN	l						
					SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	ОПТРОТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	ANNUAL FLOW
·			Δ% OF R/O	+11.9	+6.5	+18.5	+96.9	+226.47	+14.61
RW123	40	-20	STORM R/F	2.16	1.91	3.49	2.79		STORM U/
			REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34 SIM =111	F -0.595 W -0.325
		1	PERT. R/O (IN.)	0.05	1.71	0.89	0.12	SIM ='''	SP -0.925
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU ^{-4.845}
		 	Δ% OF R/O	-9.6	-5.9	15.2	-45.4	-55.9	-11.43
RW122	60	+20	STORM R/F	2.16	1.91	3.49	2.79		STORM U/
NW 122	00	1.20	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.478
			PERT. R/O (IN.)	0.04	1.51	0.64	0.03	SIM = 15	SP0.760
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -2.270

TABLE 6-1428

SENSITIVITY ANALYSIS OF MNRD (128)

ANNUAL R/F = 59.30 IN EVAPOTRANSPIRATION NET = 40.29 IN TOTAL OBSERVED ANNUAL R/O = 19.63 IN

WATERSHE		2,326 SQ. KN			SIGNIFICA	NT STORMS		9/25/68	
RUN ID	PARAM VALUE	A% PERTUR BATION	OUTPUT	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/18/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+2.6	+2.4	+4.6	+16.8	+35.3	+3.48
			STORM R/F	2.16	1.91	3,49	2.79		STORM U/
RW125	102	-20	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F -0.130 W -0.120
	ļ	1	PERT. R/O (IN.)	0.05	1.65	0.78	0.07	SIM = 46	SP -0.230
			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -0.840
	 	 	Δ% OF R/O	-2.5	-2.3	-4.3	-14.2	-26.5	-3.27
			STORM R/F	2.16	1.91	3.49	2.79		STORM U
RW124	154	+20	REF. R/O (IN.)	0.045	1.609	0.749	0.059	REF = 34	F0.125 W0.115
			PERT. R/O (IN.)		1.57	0.72	0.05	SIM = 25	SP -0.215
6-165			REF (R/F/R/O)		1.18	4.65	46.5	1	SU0.710

SENSITIVITY ANALYSIS OF EPAET (50) SUBWATERSHED NO. 3 813 SQ. KM

. 1

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

				,	SIGNIFICA	NT STORMS		9/2/68	
RUNID	PARAM VALUE	Δ% PERTUR- BATION	ОПТРПТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	7/31/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+8.2	+3.5	+21.9	+46.7	+82.61	+11,17
RW12°	40	-20	STORM R/F	2.51	3.11	1.70	2.21	!	STORM U/S
			REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F -0.410 W0.175
		<u> </u>	PERT, R/O (IN.)	0.10	2.25	0.63	0.17	SIM = 42	SP1.095
			REF (R/F/R/O)	26.4	1.43	3.26	18.9	[SU -2.335
			Δ% OF R/O	-6.1	-3.3	-16.1	-21.1	-39.1	-9.04
RW127	60	+20	STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
NW 127		120	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF =23	F0.305 W0.165
			PERT. R/O (IN.)	0.09	2.10	0.44	0.09	SIM = 14	SP -0.805
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU1.055

TABLE 6-143B

SENSITIVITY ANALYSIS OF MNRD (116) SUBWATERSHED NO. 3 813 SQ. KM

ANNUAL R/F = 63.88 IN EVAPOTRANSPIRATION NET = 37.42 IN TOTAL OBSERVED ANNUAL R/O = 26.14 IN

					SIGNIFICA	NT STORMS		9/2/68	
RUNID	PARAM VALUE	A % PERTUR- BATION	оитрит	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPR ING	7/31/68 SUMMER	LOW FŁOW	ANNUAL FLOW
			Δ% OF R/O	+1.7	÷1.3	+5.1	+7.1	+13.0	+2.56
			STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
125	93	20	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF = 23	F - 0.085 W - 0.065
			PERT, R/O (IN.)	0.10	2.20	0.55	0.13	SIM = 26	SP 0,255
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU 0.355
			Δ% OF R/O	-1.1	-0.8	-3.1	-4.3	-8.7	- 1.64
	İ		STORM R/F	2.51	3.11	1.70	2.21		STORM U/S
124	131	+20	REF. R/O (IN.)	0.095	2.170	0.521	0.117	REF=23	F - 0.055 W - 0.040
			PERT. R/O (IN.)	0.09	2.15	0.51	0.11	SIM = 21	SP - 0.155
6-166			REF (R/F/R/O)	26.4	1.43	3.26	18.9		WU - 0.215

SENSITIVITY ANALYSIS OF EPAET (37)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

		T			SIGNIFICA	NT STORMS		9/29/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/ 1 5/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+5.4	+3.6	+13.6	+12.9	+125.0	+8.23
		}	STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW123	29.6	20	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4 SIM = 9	F -0.270 W -0.180
			PERT. R/O (IN.)	0.04	1.98	1.05	0.10	21M = 8	SP -0.680
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.645
-			Δ% OF R/O	-4.8	-3.2	-11.8	-8.4	-25.0	-7.1
		-	STORM R/F	1.08	2.04	1.82	2.22		STORM U/S
RW122	44.4	+20	REF. R/O (IN.)	0.036	1.907	0,921	0.086	REF = 4	F -0.240 W -0.160
			PERT. R/O (IN.)	0.03	1,85	0.81	0.08	SIM = 3	SP0,590
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0,420

TABLE 6-144B

SENSITIVITY ANALYSIS OF MNRD (150)

SUBWATERSHED NO. 5 1,064 SQ. KM

ANNUAL R/F = 48.24 IN EVAPOTRANSPIRATION NET = 27.87 IN TOTAL OBSERVED ANNUAL R/O = 22.36 IN

					SIGNIFICA	NT STORMS		9/29/68	
RŲN ID	PARAM VALUE	A% PERTUR- BATION	ОИТРИТ	10/15/67 FALL	1/9/68 WINTER	4/25/68 SPRING	8/13/68 SUMMER	FLOW FLOW	ANNUAL FLOW
	 		Δ% OF R/O	+1.4	+1.5	+3.8	+2.7	+25.0	+ 2.35
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/
125	120	-20	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F - 0.070 W - 0.079
			PERT. R/O (IN.)	0.04	1.94	0.96	0.09	SIM ≈ 5	SP - 0.190
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU - 0.139
			Δ% OF R/O	-1.4	-1,4	-3.6	-2.4	0.0	- 2.21
			STORM R/F	1.08	2.04	1.82	2.22		STORM U/
124	180	+20	REF. R/O (IN.)	0.036	1.907	0.921	0.086	REF = 4	F - 0.070
124	'00		PERT. R/O (IN.)	0.04	1.88	0.89	-0.08	SIM ≒ 4	SP - 0.18
6-167		i	REF (R/F/R/O)	30	1.06	1.97	25.8		SU - 0.12

SENSITIVITY ANALYSIS OF SUBWATERSHED NO. 7 1,111 SQ. KM (40)

ANNUAL R/F = 50,93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

	-	<u> </u>			SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	∆% PERTUR- BATION	ООТРИТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPRING	8/14/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+14.2	+4.9	+17.4	+99.2	+112.50	+13.11
RW123	32	-20	STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
			REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 85	F -0.710 W -0.245
			PERT. R/O (IN.)	0.03	1.63	0.72	0.25]	SP0.870
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU-4.960
			∆% OF R/O	-9.9	-4.7	-15.0	43.1	47.5	-10.26
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
RW122	48	+20	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 21	F -0.495 W -0.235
			PERT. R/O (IN.)	0.03	1.48	0.52	0.07	3101 21	SP -0.750
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU-2.155

TABLE 6-145B

SENSITIVITY ANALYSIS OF MNRD (102) SUBWATERSHED NO. 7 1,111 SQ. KM

ANNUAL R/F = 50.93 IN EVAPOTRANSPIRATION NET = 33.02 IN TOTAL OBSERVED ANNUAL R/O = 18.29 IN

	[SIGNIFICA	NT STORMS		9/30/68	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	О∪ТРИТ	10/15/67 FALL	1/8/68 WINTER	4/26/68 SPR ING	8/14/68 SUMMER	LOW '	ANNUAL FLOW
			Δ% OF R/O	+1.9	+1.4	+4.1	+15.1	+17.5	+ 2.59
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
125	82	-20	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 47	W - 0.095
			PERT. R/O (IN.)	0.03	1.58	0.63	0.15] 7,	SP - 0.205
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU- 0.755
		<u> </u>	Δ% OF R/O	2.0	-1.4	-4.0	-12.2	-12.5	- 2.49
			STORM R/F	1.58	2.76	1.92	2.95		STORM U/S
124	122	+20	REF. R/O (IN.)	0.029	1.557	0.610	0.127	REF = 40 SIM = 35	F = 0.100 W = 0.070
			PERT. R/O (IN.)	0 .03	1.53	0.59	0,11] 31111 - 33	SP - 0.200
6-168			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU- 0.610

TABLE 6-146A

SENSITIVITY ANALYSIS OF EPAET (30)

SUBWATERSHED NO. 11 2,551 SQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O = 12.82 IN

				· · · · · · · · · · · · · · · · · · ·	SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	ОИТРИТ	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPRING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
<u> </u>			Δ% OF R/O	+2.1	+6.1	+20.2	+40.5	+244.4	+11.44
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW123	24	-20	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F -0.105 W -0.305
			PERT, R/O (IN.)	0.15	0.82	0.71	0.04	SIM = 31	SP -1.010
	_		REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU2.025
			Δ% OF R/O	-1.6	∽5.7	-16.8	-16.5	33.3	-8.86
	:		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
RW122	^l 36 i	+20	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF=9	F0.080 W0.285
			PERT, R/O (IN.)	0.15	0.73	0,49	0.03	SIM ≈ 6	SP -0.840
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU0.825

TABLE 6-146B

SENSITIVITY ANALYSIS OF MNRD (115) SUBWATERSHED NO. 11 2,551 ŞQ. KM

ANNUAL R/F = 35.81 IN EVAPOTRANSPIRATION NET = 26.35 IN TOTAL OBSERVED ANNUAL R/O \approx 12.82 IN

					SIGNIFICA	NT STORMS		9/14/68	
RUN ID	PARAM VALUE	Δ % PERTUR- BATION	OUTPUT	10/28/67 FALL	1/8/68 WINTER	5/8/68 SPR ING	8/20/68 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	+0.4	+1.6	+4.6	+6.5	+77.8	+ 2.49
			STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
125	92	-20	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F - 0.020 W - 0.080
			PERT. R/O (IN.)	0.15	0.78	0.61	0.03	SIM ≖16	Sp - 0.230
		1	REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU ^{— 0.325}
			Δ% OF R/O	-0.4	1.6	⊸4.5	-4.9	-11.11	-2.40
	,		STORM R/F	1.35	1.37	1.91	0.50		STORM U/S
124	i 138	+20	REF. R/O (IN.)	0.150	0.769	0.588	0.031	REF = 9	F - 0.020 W - 0.080
			PERT. R/O (IN.)	0.15	0.76	0.56	0.03	SIM = 8	SP 0.225
6-169			REF (R/F/R/O)	9.0	1.8	3.24	16.1	1	SU- 0.245

SENSITIVITY ANALYSIS OF EPAET -20% PERTURBATION

SMALL, SNOW & REGIONAL WATERSHEDS

					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ОИТРОТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O			· <u>-</u>			
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F W
		}	PERT. R/O					SIM =	SP
			REF (R/F/R/O)	17,9	1.38	1.47	8.3		\$U
RUN ID			Δ% OF R/O						
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
Į			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25		SU
RUN ID			Δ% OF R/O	+6.1	+5.3	+16.3	+46.4	+170.19	+13.27
RW 123		:	Δ% OF MONTHLY R/O	OCT +3,39	JAN +6.85	APR +8.96	AUG +55.81	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.305 W -0.265
(37)			PERT. R/O	0.10	1.03	0.57	0.09	SIM = 1740	W -0.265 SP 815
			REF. MONTH-	0.177	3.634	2.600	0.258	1	SU2,320
RUN ID			Δ% OF R/O	+11.9	+6.5	+18.5	+96.9	+226.47	+14.61
RW 123			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1.609	0.749	0.059	REF = 34	F0.595 W0.325
NO. 1			PERT. R/O	0.05	1.71	0.89	0.12	SIM =111	SP -0.925
(50)			REF (R/F/R/O)	48	1.18	4.65	46.5		SU -4.845
RUN ID			Δ% OF R/0	+8.2	+3.5	+21.9	+46.7	÷82.61	+11.17
RW 123			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/
SUB- WATERSHED	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	F0.410 W0.175
NO. 3 (50)			PERT. R/O	0.10	2.25	0.63	0.17	SIM = 42	SP _1.095
(50)			REF (R/F/R/O)	26.4	1.43	3.26	18.9	1	SU2.335
RUN ID			Δ% OF R/O	+5.4	+3.6	+13.6	+12.9	+125.0	+8.23
RW 123 SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.036	1,907	0.921	0.086	REF=4	F -0.270
5 (37)			PERT. R/O	0.04	1.98	1.05	0.10	SIM = 9	SP -0.680
(,			REF (R/F/R/O)	30	1.06	1.97	25,8]	SU -0.645
RUN ID			Δ% OF R/O	+14.2	+4.9	+17.4	+99.2	+112.50	+13.11
RW 123 SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/
WATERSHED	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.710 w -0.249
NO. 7 (40)			PERT. R/O	0.03	1.63	0.72	0.25	SIM = 85	SP0.87
(40)			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -4.96
RUN ID RW 123			Δ% OF R/O	+2.1	+6.1	+20.2	+40.6	+244.4	+11,44
			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1,91	8/20/68 0.50	9/14/68	STORM U
SUB- WATERSHED	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F -0.10
NO. 11			PERT. R/O	0.15	0.82	0.71	0.04	SIM =31	W -0.30 SP -1.01
(30)			REF (R/F/R/O)	9.0	1.8	3.24	16.1	1	SU _2.02

SENSITIVITY ANALYSIS OF

SMALL, SNOW & REGIONAL WATERSHEDS

EPAET +20% PERTURBATION

_ , <u> </u>					SIGNIFICA	NT STORMS			
WATERSHED	AREA (SQ. KM)	EPAET (IN)	ОПТРОТ	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/1 4/64 2.16	9/27/64	STORM U/S
SMALL	365	45	REF. R/O	0.175	2,31	1.94	0.255	REF = 7.9	W
			PERT, R/O					SIM =	SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU
RUN ID			∆% OF R/O					<u> </u>	
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	91		1.94	25		SU
RUN ID			Δ% OF R/O	-5.2	-4.9	-14.2	-20.0	-49 .5	-10.03
RW 122			Δ% OF MONTHLY R/O	OCT -3.39	JAN -8.11	APR -8.46	AUG -22.48	9/15/68	STORM U/S
REGIONAL	22,248	41	REF. R/O	0.099	0.980	0.487	0.064	REF = 644	F -0.260 W0.245
(37)		}	PERT. R/O	0.09	0.93	0.42	0.05	SIM = 325	SP _0.710
			REF. MONTH-	0.177	3.634	2,600	0.258		SU1.000
RUNID			Δ% OF R/O	-9.5	-5.9	-15.2	-45.4	-55.9	-11.43
RW 122			STORM R/F	10/15/67 2.16	1/8/68 1.91	4/26/68 3.49	8/18/68 2.79	9/25/68	STORM U/S
SUB- WATERSHED	2,326	50	REF. R/O	0.045	1,609	0.749	0.059	REF = 34	F0.475 W0.295
NO. 1 (50)			PERT. R/O	0.04	1.51	0.64	0.03	SIM = 15	SP -0.760
(50)			REF (R/F/R/O)	48	1.18	4.65	46.5]	SU -2.270
RUN ID			Δ% OF R/O	-6. 1	3.3	-16.1	-21.1	-39.1	-9.04
RW 122			STORM R/F	10/15/67 2.51	1/9/68 3.11	4/25/68 1.70	7/31/68 2.21	9/2/68	STORM U/S
SUB- WATERSHED	813	50	REF, R/O	0.095	2.170	0.521	0.117	REF = 23	F -0.305 W -0.165
NO. 3			PERT. R/O	0.09	2.10	0.44	0.09	SIM = 14	SP -0.805
(50)			REF (R/F/R/O)	26.4	1.43	3.26	18.9]	SU -1.055
RUN ID			Δ% OF R/O	-4.8	-3.2	-11.8	-8.4	25.0	,7.1
RW 122			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
SUB- WATERSHED	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF=4	F0.240
NO. 5	!		PERT. R/O	0.03	1.85	0.81	0.08	SIM = 3	W -0.160 SP0.590
(37)			REF (R/F/R/O)	30	1.06	1.97	25.8	1	SU -0.420
RUN ID		†	Δ% OF R/O	-9.9	-4.7	-15.0	-43.1	-47.5	-10. 2 6
RW 122			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/S
SUB- WATERSHED	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.495
NO. 7			PERT. R/O	0.03	1.48	0.52	0.07	SIM = 21	W -0.235 SP -0.750
(40)	ļ		REF (R/F/R/O)	54.5	1.77	3.14	23.2	1	su -2.155
RUNID	_	1	Δ% OF R/O	-1.6	-5.7	-16.8	16.5	-33.3	-8.86
RW 122			STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
SUB-	2551	30	REF. R/O	0,150	0.769	0.588	0.031	REF≂9	F -0.080
WATERSHED	2,551						•		1 300 0 000
WATERSHED NO. 11	2,551		PERT. R/O	0.15	0.73	0.49	0.03	SIM = 6	W -0.285 SP -0.840

SENSITIVITY ANALYSIS OF MNRD -20% PERTURBATION

SMALL, SNOW & REGIONAL WATERSHEDS

WATERSHED (EPAET (IN)			SIGNIFICA				
	AREA (SQ, KM)		OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF, R/O	0.175	2.31	1.94	0.255	REF = 7.9	F
			PERT. R/O		1			SIM ≃	SP SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		su
RUN ID			∆% OF R/O						
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/
snow	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F
			PERT, R/O					SIM =	W SP
			REF (R/F/R/O)	91		1.94	25		SU
RUN ID			Δ% OF R/O	+1.4	+1.8	+4.1	+7.7	+26.1	+3.09
RW 125			Δ% OF MONTHLY R/O	OCT +0.56	JAN +1.05	APR	AUG	9/15/68	STORM U/
REGIONAL	22,248	41	REF. R/O	0.099	+1,95 0.980	+2.42 0.487	+8.91 0.064	REF = 644	F -0.070
(107)			PERT. R/O	0.10	1.00	0.51	0.07	SIM = 812	W -0.090 SP -0.205
			REF. MONTH -	0.177	3.634	2.600	0.258		SU -0.385
RUN ID	•		Δ% OF R/O	+2.6	+2.4	+4.6	+16.8	+35.3	+3.48
RW 125			STORM R/F	10/15/67	1/8/68	4/26/68	8/18/68	9/25/68	STORM U
SUB- WATERSHED	2,326	50	REF. R/O	2.16 0.045	1.91	3.49 0.749	2.79 0.059	REF = 34	F -0.130
NO. 1			PERT, R/O	0.05	1.65		}	SIM = 46	W 0.120
(128)			REF (R/F/R/O)	48	1.18	0.78 4.65	0.07 46,5	31111 ~ 48	SP -0.230 SU -0.840
RUN ID	 		Δ% OF R/O				} 		
RW 125			STORM R/F	+1.7 10/15/67	+1.3 1/9/68	+5.1 4/25/68	+7.1 7/31/68	+13.0	+2.55
SUB- WATERSHED				2.51	3.11	1.70	2.21	9/2/68	STORM U/ F -0.085
NO.	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	W 0.065
(116)			PERT. R/O	0.10	2.20	0.55	0.13	SIM = 26	SP -0.255
RUN ID			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU -0.355
RW 125			Δ% OF R/O	+1.4 10/15/67	+1.5 1/9/68	+3.8 4/25/68	+2.7 8/13/68	+25.0	+2.35
SUB- WATERSHED	4.554		STORM R/F	1.08	2.04	1.82	2.22	9/29/68	STORM U/ F -0.070
NO. 5	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	W -0.075
(150)			PERT. R/O	0.04	1.94	0.96	0.09	SIM = 5	SP -0.190
	<u></u> .		REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.135
RUN ID RW 125			Δ% OF R/O	+1.9	+1.4 1/8/68	+4.1	+15.1	+17.5	+2.59
SUB- WATERSHED			STORM R/F	10/15/67 1.58	2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/
NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF = 40	F -0.095 W -0.070
7 {102}			PERT, R/O	0.03	1.58	0.63	0.15	SIM = 47	SP -0.205
			REF (R/F/R/O)	54.5	1.77	3.14	23.2		SU -0.755
RUN ID RW 125			Δ% OF R/O	+0.4	+1.6	+4.6	+6.5	+77.8	+2.49
SUB-	i		STORM R/F	10/28/67 1.35	1/8/68 1.37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/
NATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	REF = 9	F -0.020 W -0.080
11 (115)			PERT. R/O	0,15	0.78	0.61	0.03	SIM = 16	SP -0.230
			REF (R/F/R/O)	9.0	1.8	3.24	16.1		SU -0.325

SENSITIVITY ANALYSIS OF MNRD +20% PERTURBATION SMALL, SNOW & REGIONAL WATERSHEDS

			[SIGNIFICA	ANT STORMS	<u>,</u>	1	1
WATERSHED	AREA (SQ. KM)	EPAET (IN)	OUTPUT	FALL	WINTER	SPRING	SUMMER	LOW FLOW	ANNUAL FLOW
RUN ID			Δ% OF R/O						
			STORM R/F	11/4/63 3.13	1/23/64 3.19	5/1/64 2.87	8/14/64 2.16	9/27/64	STORM U/
SMALL	365	45	REF. R/O	0.175	2.31	1.94	0.255	REF = 7.9	F W
			PERT. R/O					SIM =	SP
			REF (R/F/R/O)	17.9	1.38	1.47	8.3		SU
RUN ID			Δ% OF R/O						
			STORM R/F	10/18/57 2.99	4/21/58 0.0	5/10/58 1.78	8/13/58 1.09	9/7/58	STORM U/S
SNOW	277	32	REF. R/O	0.033	0.039	0.916	0.043	REF = 3.0	F
			PERT. R/O					SIM =	W SP
			REF (R/F/R/O)	91		1.94	25	1	su
RUN ID			Δ% OF R/O	-1.3	-1.7	-3.9	-6.2	17.4	2.04
RW 124			Δ% OF	ост	JAN	APR	AUG	-17.4 9/15/68	-2.84 STORM U/S
REGIONAL	22,248	41	MONTHLY R/O	-1.13 0.099	-1.87 0.980	-2.38 0.487	-6.98 0.064	REF = 644	F -0.065
(107)	ŕ		PERT, R/O	0.10	0.96	 	<u> </u>	SIM = 532	W -0.085
			REF. MONTH-	0.10	3.634	2.600	0.06	01111 - 332	SP -0.195 SU -0.310
RUN ID			LY R/O Δ% OF R/O			[[
RW 124			STORM R/F	-2.5 10/15/67	-2.3 1/8/68	-4.3 4/26/68	-14.2 8/18/68	-26.5	-3.27
SUB- WATERSHED	2,326	50	ļ	2.16	1.91	3.49	2.79	9/25/68 REF = 34	STORM U/S F -0.125
NO.	2,320	30	REF. R/O	0.045	1.609	0.749	0.059	1	W -0.115
(128)			PERT. R/O	0.04	1.57	0.72	0.05	SIM = 25	SP -0.215 SU -0.710
			REF (R/F/R/O)	48	1,18	4.65	46.5		30 -0.710
RUN ID RW 124			Δ% OF R/O	-1.1 10/15/67	-0.8 1/9/68	-3,1 4/25/68	-4.3 7/31/68	-8.7	-1.64
SUB-	:		STORM R/F	2.51	3.11	1.70	2.21	9/2/68	STORM U/S F -0.055
WATERSHED NO.	813	50	REF. R/O	0.095	2.170	0.521	0.117	REF = 23	W -0.040
3 (116)			PERT. R/O	0.09	2,15	0.51	0.11	SIM = 21	SP -0.155
			REF (R/F/R/O)	26.4	1.43	3.26	18.9		SU 0.215
RUN ID RW 124			Δ% OF R/O	-1.4	·1.4	-3.6	-2.4	0.0	·2.21
SUB-			STORM R/F	10/15/67 1.08	1/9/68 2.04	4/25/68 1.82	8/13/68 2.22	9/29/68	STORM U/S
WATERSHED NO.	1,064	37	REF. R/O	0.036	1.907	0.921	0.086	REF = 4	F -0.070 W -0.070
5 (150)			PERT. R/O	0.04	1.88	0.89	-0.08	SIM = 4	SP -0.180
			REF (R/F/R/O)	30	1.06	1.97	25.8		SU -0.120
RUN ID RW 124		- " -"-"	Δ% OF R/O	-2.0	-1.4	-4.0	-12,2	-12.5	-2.49
SUB-			STORM R/F	10/15/67 1.58	1/8/68 2.76	4/26/68 1.42	8/14/68 2.95	9/30/68	STORM U/S
WATERSHED NO.	1,111	40	REF. R/O	0.029	1.557	0.610	0.127	REF≈40	F -0.100
7 (102)			PERT. R/O	0.03	1.53	0.59	0.11	SIM = 35	W -0.070 SP -0.200
,,,,,			REF (R/F/R/O)	54 .5	1.77	3.14	23.2		SU -0.610
RUN ID			Δ% OF R/O	-0.4	-1.6	-4.5	4,9	-11.11	-2.40
RW 124 SUB-			STORM R/F	10/28/67 1.35	1/8/68 1,37	5/8/68 1.91	8/20/68 0.50	9/14/68	STORM U/S
NATERSHED NO.	2,551	30	REF. R/O	0.150	0.769	0.588	0.031	R £ F = 9	F -0.020
11	ļ		PERT. R/O	0.15	0.76	0.56	0.03	SIM = 8	W -0.080 SP -0.225
(115)			REF (R/F/R/O)	9.0	1.8	3.24	16.1	-	SU -0.245

Figure 6-27. Evaporation Data Study, Summer Storms

(MNRD -- MEAN ANNUAL NUMBER OF RAINY DAYS)

Figure 6-28. MNRD Study, Summer Storms

- 6.3.15 SENSITIVITY OF SMALL SNOWSHED MODEL TO CLIMATOLOGICAL INPUT
 PERTURBATIONS DURING STORMS
 - Precipitation Sensitivity analysis results indicate that the precipitation is sensitive during fall (October), spring (May), and summer (August) as was expected. The highest unit sensitivity occurs during spring at +0.90, and the low flows show 11.33. Hydrological consideration would suggest a unit sensitivity near unity.
 - Evaporation Sensitivity analysis shows the evaporation input data is most sensitive during April with a unit sensitivity of 0.40, and large sensitivity during low flows.
 - required in the model if the snowmelt subroutine is called. These values are read in as an array of alternating maximum and minimum values for each day of the water year. Since air temperatures vary over a watershed, recorded temperatures from a station (preferably within the watershed) are adjusted by the main program to the mean elevation of the basin. Adjusted temperatures are then used for the remainder of the calculations involving temperature.

Sensitivity analysis results show that the temperature input data is very influential as was expected. It shows strong effects during April and May when the snow is melting. Results for all the seasons are presented in Table 6-151 and Figures 6-29 through 6-31.

SENSITIVITY ANALYSIS OF STORM (PRECIP, EVAP, TEMP.)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

		<u> </u>	<u> </u>		SIGNIFICA		9/7/58		
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	ŁOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-5.5	-0.1	-8.6	-4.6	-13.33	-3.43
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S F +0.550 W +0.010
48 (PRECIP.)		- 10	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	
(FILEGIF.)			PERT. R/O (IN.)	0.0309	0.0393	0.8376	0.0412	SIM = 2.6	SP +0.860
			REF (R/F/R/O)	91		1.94	25		SU+0.460
			Δ% OF R/O	+5.6	+0.4	+9.2	+7.3	+20.0	+3.86
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
49 (PRECIP.)	_	+10	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.560 W +0.040 SP +0.920 SU+0.730
(1112011.)	1		PERT. R/O (IN.)	0.0346	0.0395	1.0003	0.0464	SIM = 3.6	
			REF (R/F/R/O)	91		1.94	25		
		-20	Δ% OF R/O	+4,4	+8.8	+0.9	+2.7	+123.33	+1.74
	<u>-</u> '		STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 6.7	STORM U/S F -0.220 W -0.440 SP -0.045 SU -0.135
51A (EVAP,)			REF. R/O (IN.)	0.033	0.039	0.916	0.043		
(EVAP.)			PERT. R/O (IN.)	0.0342	0.0428	0.9245	0.0444		
			REF (R/F/R/O)	91		1.94	25		
		+20	Δ% OF R/O	-4.3	-8.0	-0.9	-2.6	-30.0	-1,26
			STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 2.1	STORM U/S F -0.215 W -0.400 SP -0.045 SU -0.130
52A (EVAP.)	_		REF. R/O (IN.)	0.033	0.039	0.916	0.043		
(EVAL.)			PERT. R/O (IN.)	0.0314	0.0362	0.9081	0.0421		
			REF (R/F/R/O)	91		1.94	25		
			Δ% OF R/O	, -15.6	-28.4	-26.0	+11.4	+20.0	-0.24
	İ		STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
55A (TEMP.)	<u> </u>	-10	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.6	F +1.560 W +2.840
,, =,			PERT. R/O (IN.)	0.0276	0.0281	0.6777	0.0481	31W ~ 3.0	SP +2.600
			REF (R/F/R/O)	91		1.94	25		SU -1.140
		 	Δ% OF R/O	+0.8	+182.1	+37.0	-11.1	-23.33	+1.97
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
56A (TEMP.)	_	+10	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.800 W +18.210
f t Figures			PERT. R/O (IN.)	0.0330	0.1109	1.2553	0.0384	SIM = 2.3	SP +3.700
			REF (R/F/R/O)	91		1.94	25]	SU - 1.110

Figure 6-29. Storm Precipitation Study, Small Snowshed

Figure 6-30. Storm Evaporation Study, Small Snowshed

ALOMOSA CREEK, COLORADO
WATERSHED AREA 277 SQ. KM
PERTURBATION OF TEMPERATURE DURING STORM

Figure 6-31. Storm Temperature Study, Small Snowshed

6.3.16 FIRR, FRACTION OF INCIDENT RADIATION REFLECTED BY SNOW

This is an array of 15 values which are used to adjust snowmelt rates as snow surface albedo changes. It is well known that snow surface albedos change with age and also with rainfall on the surface. Snow albedos have been shown to vary from a maximum of about 0.80 for new fallen snow to a minimum of about 0.40 for a ripe snowpack during the melt season. Under melting conditions, the albedo can change from the maximum to the minimum in about 15 days (Figure 6-32). This relationship is the basis for the FIRR array.

Results of the sensitivity analysis (Table 6-152) show that it is most influential during the snowmelt period. Results of all four seasons and annual and low flows are all plotted and presented in Figure 6-33. The average unit sensitivity is -1.48.

Figure 6-32. FIRR Array

SENSITIVITY ANALYSIS OF

SNOW WATERSHED

277 SQ. KM

FIRR (15)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

		<u> </u>	Ī		SIGNIFICA	NT STORMS		9/7/58 LOW FLOW	ANNUAL FLOW
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	OUTPUT	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER		
			Δ% OF R/O	-0.1	+125.9	+24.6	-10.2	-23.33	+2.66
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
66		- 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.3	F +0,002 W -2,518
,			PERT, R/O (IN.)	0,0327	0.0888	1.1411	0.0388	3101 - 2,3	SP -0.492
			REF (R/F/R/O)	91		1.94	25		SU +0.204
			Δ% OF R/O	0.0	+36.8	+9.6	-4,1	-10,0	+1.13
			STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 2.7	STORM U/S F 0.0 W -1.840 SP -0.480
67		- 20	REF. R/O (IN.)	0.033	0.039	0.916	0.043		
			PERT, R/O (IN.)	0.033	0.0538	1,0044	0.0414		
			REF (R/F/R/O)	91		1.94	25		SU +0.205
			Δ% OF R/O	+0.1	-24.0	-9.4	+4.3	+10.0	-1.33
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
68		+ 20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.005 W -1.200
			PERT. R/O (IN.)	0.033	0,0299	0.8304	0.0451	SIM = 3,3	SP -0.470
			REF (R/F/R/O)	91		1.94	25		SU +0.215
			Δ% OF R/O	+0.2	-29.2	-23.7	+12.1	+26.67	-3.41
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
69		+ 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.004 W -0.584
			PERT, R/O (IN.)	0.033	0.0279	0,6995	0.0485	SIM = 3.8	W -0.584 SP -0.474
6-182			REF (R/F/R/O)	91		1.94	25		SU +0.242

Figure 6-33. Incoming Radiation Study, Small Snowshed

6.3.17 BDDFSM, BASIC DEGREE DAY FACTOR FOR SNOWMELT

Although defined by Liou as a degree day melt factor, this parameter is actually a degree hour melt factor since the melt calculation is done hourly throughout the melt season. The parameter value represents the amount of melt which will occur in one hour for every degree F above a base temperature, usually 32°F, during the maximum melt rate season. The maximum melt rate calculated is reduced by several other factors since it is known that degree day melt factors are not uniform over a melt season. This parameter is important in determining the timing of snowmelt runoff and the height of peak runoff events during the snowmelt season. It is difficult to determine for any particular watershed. However, the values used by Anderson and Crawford ranged from .0035 to .0085. This parameter is usually optimized for a best fit.

Sensitivity analysis results indicate that it is very influential when perturbed at +10% and +20% during May. The unit sensitivities for those perturbations are +6.82 and +8.22, respectively (Table 6-153). Results of all four seasons are plotted and presented in Figure 6-34.

SENSITIVITY ANALYSIS OF SNOW WATERSHED 277 SQ. KM

BDDFSM (0.0033)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

			<u> </u>		SIGNIFICA		9/7/58		
RUN 1D	PARAM VALUE	∆% PERTUR- BATION	OUTPUT	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPR ING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
· · · · · ·			Δ% OF R/O	-0.3	-29,5	-29.4	+15.9	+36.67	-4.36
			STORM R/F	2.99	0.0	1.78	1.09		STORM U
75	0.00264	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 4.1	F +0.0° W +1.4°
•			PERT. R/O (IN.)	0.033	0.0277	0.6470	0.0501	31111 - 41.1	SP +1.4
	ľ		REF (R/F/R/O)	91		1.94	25		SU -0.7
			Δ% OF R/O	-0.1	-28.7	-14.8	+6.0	+13.33	-2.98
		-10	STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 3.4	STORM
76	0.00297		REF. R/O (IN.)	0.033	0.039	0.916	0.043		F +0.01 W +2.87 SP +1.48
,,	3,1111		PERT. R/O (IN.)	0.0328	0.0280	0.7808	0.0458		
			REF (R/F/R/O)	91		1.94	25		\$U -0.6
			Δ% OF R/O	0.0	+68.2	+16.3	-7.3	-16.67	+1.04
			STORM R/F	2.99	0.0	1.78	1.09		STORM
77	0.00363	+10	REF. R/O (IN.)	0.033	0.039	0,916	0.043	REF = 3.0	F 0.0 W +6.8
"	0.0000		PERT. R/O (IN.)	0.033	0.0661	1.0566	0.0401	SIM = 2.5	SP +1.5
			REF (R/F/R/O)	91		1.94	25		SU -0.7
		<u> </u>	Δ% OF R/O	-0.1	+164.4	+31.1	-11.9	-26.67	+3.88
			STORM R/F	2.99	0.0	1.78	1.09]	STORM
			REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	
78	0,00396	+20	PERT, R/O (IN.	0.033	0.1040	1.2015	0.0381	SIM = 2.2	
6-185			REF (R/F/R/O)			1.94	25]	SU ~0.

Figure 6-34. Degree Day Factor Study, Small Snowshed

6.3.18 SPBFLW, SNOWPACK BASIC MAXIMUM FRACTION IN LIQUID WATER

This parameter refers to the liquid water holding capacity of the snowpack expressed as a proportion of its total water content. Anderson and Crawford report literature values ranging from 4 to 7 percent depending on the density and other characteristics of the snowpack. This parameter is important in that it determines the timing of snowmelt runoff. In the snowmelt subroutine, no melt water will be released from the snowpack until water holding capacity has been filled. SPBFLW is generally estimated and optimized for a best fit value.

Results of sensitivity analysis (Table 6-154) show that it is most influential during May, and the average unit sensitivity to a $\pm 50\%$ perturbation is -0.74.

Results for all four seasons are plotted and presented in Figure 6-35.

SENSITIVITY ANALYSIS OF SPBFLW (0.040) AND SPTWCC (4.0) SNOW WATERSHED 277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

NOW WATERS			<u> </u>		SIGNIFICA		9/7/58		
		Δ%	ОПТРПТ	10/18/57	4/21/58	5/10/58	8/3/58	LOW	ANNUAL FLOW
RUN ID	PARAM VALUÉ	PERTUR- BATION	001701	FALL	WINTER	SPRING	SUMMER	FLOW	FLOW
		<u> </u>	Δ% OF R/O	+3.1	+47.9	+1.2	-1.0	-3.33	+0.13
		<u> </u>	STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
80	0.02	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.9	F -0.062 W -0.958
SPBFLW			PERT. R/O (IN.)	0,0338	0.0581	0.9268	0.0428	31141 - 2.3	SP -0.024
			REF (R/F/R/O)	91		1.94	25		SU +0.020
			Δ% OF R/O	-2.9	-25.9	-1.5	+0.9	0.0	-0.14
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
81	0.06	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SiM = 3.0	F -0.058 W -0.518
SPBFLW		1	PERT. R/O (IN.)	0.0318	0,0291	0.9025	0.0436	SIW = 3.0	SP -0.030 SU +0.018
		,	REF (R/F/R/O)	91		1.94	25	1	
			Δ% OF R/O						
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
			REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM =	F W
			PERT, R/O (IN.)					SIIV =	SP
			REF (R/F/R/O)	91		1.94	25		SU
			Δ% OF R/O	0.0	+2.1	+0.8	+6.7	3,33	+7.95
		-50	STORM R/F	2.99	0.0	1.78	1.09	REF = 3.0 SIM = 3.1	STORM U/S
82	2.0		REF. R/O (IN.)	0.033	0.039	0.916	0.043		F 0.0 W -0.042
SPTWCC			PERT. R/O (IN.)	0.033	0,0401	0.9238	0.0461		SP -0.016
			REF (R/F/R/O)	91		1.94	25	<u> </u>	SU -0.134
			∆% OF R/O	0.0	0.0	0.0	-7.2	-3.33	-7.97
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
83	6.0	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.9	F 0.0
SPTWCC			PERT. R/O (IN.	0.033	0.039	0.916	0.0401	31107 = 2.5	SP 0.0
	!		REF (R/F/R/O)	91		1.94	25		SU -0.144
			.3% OF R/O						
			STORM R/F	2.99	0.0	1.78	1.09	_	STORM U/S
			REF. R/O (IN.)	0.033	D. 03 9	0.916	0.043	REF = 3.0	F W
			PERT. R/O (IN.)				SIM =	SP
<u> </u>			REF (R/F/R/O	91		1.94	25		SU
				<u> </u>					

Figure 6-35. Snowpack Liquid Water Fraction Study

6.3.19 SPTWCC, SNOWPACK MINIMUM TOTAL WATER CONTENT FOR COMPLETE BASIN COVERAGE

In mountain watersheds with large elevation differences, considerable snow accumulation can take place on the upper watershed before the entire watershed is covered. This parameter attempts to define the water content at the point the entire basin becomes covered with snow. The parameter is used to adjust snowmelt for incomplete snow cover on the basin. When the water equivalent is less than the parameter index value, it is assumed that the snow covered area is proportionately less and melt is adjusted accordingly. This parameter is generally estimated and optimized for a best fit. A knowledge of snowpack water contents and accumulation patterns on the watershed is essential to assign a realistic value to the parameter.

Results of sensitivity analysis (Table 6-155) show that it is not an influential parameter. It shows some sensitivity during the summer season, and the annual flow. The unit sensivity for $\pm 50\%$ perturbation during summer is ± 0.14 .

Results for all four seasons are plotted and presented in Figure 6-36.

Figure 6-36. Snowpack Minimum Total Water Study

6.3.20 ELDIF, ELEVATION DIFFERENCE BETWEEN THE BASE THEROMETER AND THE MEAN BASIN ELEVATION

This parameter provides an elevation adjustment for temperature data. Since temperature stations on mountain watersheds are generally located at more accessible sites, usually low on the watershed, a temperature adjustment to estimate mean basin temperature from measured station temperature is required. The parameter, expressed in thousands of feet, is easily determined from a topographic map of the watershed. The parameter is positive if the station is below the mean basin elevation. It is obtainable from topographic maps.

Sensitivity analysis results (Table 6-156) indicate that it is very influential when perturbed -20% and -50% during May. The unit sensitivities for those perturbations are -2.75 and -4.67, respectively. Results for all four seasons are plotted and presented in Figure 6-37.

SENSITIVITY ANALYSIS OF ELDIF (1.113)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

	·	·						RVED ANNUA	10.001
					SIGNIFICA	ANT STORMS		9/7/58	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОИТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/ 58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-1.7	+233.7	+35.5	-16.4	-30.0	+1.96
			STORM R/F	2.99	0.0	1.78	1.09	1	STORM U/S
86	0.5565	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.1	F +0.034 W -4.674
		<u> </u>	PERT, R/O (IN.)	0.0322	0.1312	1,2418	0.0361	SIM = 2.1	SP -0.710
			REF (R/F/R/O)	91	,	1.94	25		SU +0.328
			Δ% OF R/O	-2.6	+55.0	+11.5	-5.1	-10.0	+0.42
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
87 .	0.8904	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.130 W -2.750
•			PERT, R/O (IN.)	0.0319	0.0609	1.0217	0.0410	SIM = 2.7	SP -0.575
			REF (R/F/R/O)	91	- <u>-</u>	1.94	25		SU +0.255
			Δ% OF R/O	-0.4	-27.8	-12.8	+5.7	+10.0	-1.0
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
88	1.3356	+20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F -0.020 W -1.390
	ļ		PERT. R/O (IN.)	0.0326	0.0284	0.7987	0.0457	SIM = 3.3	W -1.390 SP -0.640
			REF (R/F/R/O)	91		1.94	25		SU +0.285
-			Δ% OF R/O	+21.7	+25.8	-25.4	+12,0	+23.33	-1.69
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
89	1.6695	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.434 W +0.516
	1		PERT. R/O (IN.)	0.0398	0.0292	0.6838	0.0484	SIM = 3.7	SP -0.508
6-193			REF (R/F/R/O)	91		1.94	25		SU +0.240

ALAMOSA CREEK, COLORADO WATERSHED AREA 277 SQ. KM

(ELDIF — ELEVATION DIFFERENCE BETWEEN BASE TEMPERATURE STATION AND MEAN BASIN EVEVATION)

Figure 6-37. Elevation Difference Study, Small Snowshed

6.3.21 FFOR, FRACTION OF THE WATERSHED FORESTED

This parameter is defined as the area of forest cover times the average cover density. Thus, a knowledge of the proportion of forest cover plus the average density of the forest is required to estimate this parameter. The proportion of forest cover on a watershed can easily be determined from cover type maps or aerial photographs. For larger watersheds, satisfactory estimates can be obtained from the USGS topographic quadrangle maps with the green forest cover overprint. An estimate of the average canopy density on the watershed is more difficult, although satisfactory estimates can be obtained from cover type maps and aerial photographs. This parameter is important in that it determines snow interception losses and snowmelt adjustments due to reflected radiation. It can be directly obtained from land-use classification in remotely-sensed image analysis.

This parameter is influential during winter, spring, summer, low flows and annual flows. Only during an October storm has it shown no significant influence.

The results of all four seasons, the low flows, and the annual flow appear in Table 6-157 and in Figure 6-38.

SENSITIVITY ANALYSIS OF

SNOW WATERSHED

277 SQ. KM

FFOR (0.40)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

<u> </u>	Ī	<u> </u>	I		SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	Δ% PERTUR- BATION	ОПТРИТ	10 /18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUAL FLOW
			Δ% OF R/O	-0.3	-15.5	+9.1	+14.9	+30,0	+10.48
	1		STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
94	0.20	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.006
		}	PERT. R/O (IN.)	0.0327	0.0332	0.9996	0.0497	SIM = 3.9	W +0.310 SP -0.182
			REF (R/F/R/O)	91		1.94	25		SU -0.298
			Δ% OF R/O	-0.1	-10.6	+2.6	+6.1	+10.0	+4.55
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
95	0.32	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	f +0,005
		E	PERT. R/O (IN.)	0.0327	0.0351	0.9401	0.0459	SIM = 3.3	W +0.530 SP -0.130
			REF (R/F/R/O)	91		1.94	25		SU -0.305
			Δ% OF ਜ/O	+0.1	+4.5	-1.6	-5.4	-10.0	-4.08
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
96	0.48	+20	REF. 8/0 (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.005
			PERT. R/O (IN.)	0.0328	0.0411	0.9015	0.0409	SIM = 2.7	W +0.225 SP -0.080
			REF (R/F/R/O)	91		1.94	25		SU -0.270
			Δ% OF R/O	+0.3	+22.0	-2.3	-13.9	-26.67	-9.80
			STORM R/F	2.99	0.0	1.78	1.09		STORM U/S
97	0.60	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F +0.006
			PERT. R/O (IN.)	0.0329	0.0480	0.8950	0.0372	SIM = 2.2	W +0.440 SP -0.046
6-196			REF (R/F/R/O)	91		1.94	25		SU -0.278

Figure 6-38. Forested Area Study, Small Snowshed

6.3.22 FRACTION OF SNOW INTERCEPTED

This parameter is defined as the proportion of snow which would be intercepted by a forest canopy if the cover density were 100%. This assumes that the amount of snow intercepted is a linear function of the total snowfall. This may be true to a point but for very large snowfalls or snowfall events accompanied by strong winds, the assumption does not hold. Leaf and Brink calculated snow interception for sprucefir and lodgepole pine forests as 0.15 and 0.10, respectively of the snowfall for canopy densities up to a maximum of 0.30 and 0.20. Anderson and Crawford use a value of 0.15 for a sub-alpine watershed in the Sierras.

This parameter shows some influence during storms in May and August. The unit sensitivity to a -50% perturbation is +0.16 in May and -0.12 in August. Note that the polarity of unit sensitivity from May to August changes.

Results of all seasons, low and annual flows, appear in Table 6-158 and Figure 6-39.

SENSITIVITY ANALYSIS OF

SNOW WATERSHED 277 SQ. KM

FF81 (0.15)

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O = 10.03 IN

			T		SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОШТРИТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	-0.4	-7.9	-0.6	+6.8	+10.0	+3,93
		ŀ	STORM R/F	2.99	0.0	1.78	1.09		STORMU
102	0.075	- 50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.3	F +0.00 W +0.19
			PERT. R/O (IN.)	0.0326	0.0362	0,9108	0.0457	31W - 3.5	SP +0.0
			REF (R/F/R/O)	91		1.94	25		SU -0.1
			Δ% OF R/O	-0,2	-1.5	-0.1	+2.4	+3.33	+1.72
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
103	0.120	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 3.1	F +0.0
			PERT. R/O (IN.)	0.0327	0.0387	0.9149	0.0442	3141 - 3,1	SP +0.0
		1	REF (R/F/R/O)	91		1.94	- 25		su -0.1
			Δ% OF R/O	+0.2	+1,1	+0.1	-2.1	-6.67	-1.50
			STORM R/F	2.99	0.0	1.78	1.09		STORML
104	0.180	+20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.8	F +0.0 W +0.0
		1	PERT. R/O (IN.)	0.0328	0.0398	0.9174	0,0423	SIMI = 2,8	SP +0.0
			REF (R/F/R/O)	91		1.94	25		SU -0.1
_			Δ% OF R/Q	+0.4	+4.2	+0.5	-6.5	-13,33	-4.97
			STORM R/F	2.99	0.0	1.78	1.09		STORML
05	0.225	+50	REF, 8/0 (IN.)	0.033	0.039	0.916	0.043	REF = 3.0 SIM = 2.6	F +0.04 W +0.04
			PERT. R/O (IN.)	0.0329	0.0410	0.9206	0.0404	SIN = 2.0	SP +0.0
6-199			REF (R/F/R/O)	91		1.94	25		SU +0.1:

Figure 6-39. Intercepted Snow Study

6.3.23 PXCSA, PRECIPITATION INDEX FOR CHANGING SNOW ALBEDO

In the snowmelt subroutine the maximum snowmelt rate as determined by the basic degree hour factor is adjusted for shortwave radiation inputs and changes in the albedo of the snowpack. Various processes will affect the albedo of the snowpack including aging and the deposition of fresh snow or rain on the pack. The deposition of fresh snow deposit on the snowpack will increase the albedo while a rain on a snowpack will decrease the albedo. In the accounting procedure, the snowmelt adjustment factor (FIRR) is increased or decreased whenever an index value of new snow or rain is reached. The parameter, PXCSA, represents the index value for determining when changes in the albedo occur. Since the parameter is empirical and does not necessarily represent actual conditions, it is best determined by estimating and optimizing for a best fit. Anderson and Crawford used an index of 0.2 inches.

Results of sensivity analysis indicate that the parameter PXCSA is influential when it is reduced from its normal value during the May storm. It has not effect during fall and low flows.

The unit sensitivity to a -20% perturbation in May is +0.93.

Results appear in Table 6-159 and Figure 6-40.

SENSITIVITY ANALYSIS OF PXCSA (0.199)

SNOW WATERSHED

277 SQ. KM

ANNUAL R/F = 33.38 IN EVAPOTRANSPIRATION NET = 18.79 IN TOTAL OBSERVED ANNUAL R/O \approx 10.03 IN

					SIGNIFICA	NT STORMS		9/7/58	
RUN ID	PARAM VALUE	A% PERTUR- BATION	ОПТРОТ	10/18/57 FALL	4/21/58 WINTER	5/10/58 SPRING	8/3/58 SUMMER	LOW FLOW	ANNUA FLOW
			Δ% OF R/O	0.0	-27.7	-3,3	+1.5	0.0	-0.27
			STORM R/F	2.99	0.0	1.78	1.09		STORM U
114	0.0995	-50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
			PERT. R/O (IN.)	0.0327	0.0284	0,8860	0.0439	SIM = 3.0	W +0.0 SP +0.0
			REF (R/F/R/O)	91		1,94	25		SU -0.0
			Δ% OF R/O	0.0	-18.5	-1,4	+0.8	0.0	-0.01
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
115	0,1592	-20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
			PERT. R/O (IN.)	0.0327	0.0320	0.9034	0.0436	SIM = 3.0	W +0.9 SP +0.0
]	REF (R/F/R/O)	91		1.94	25		su -0.0
			Δ% OF R/O	0.0	+1.9	+0.2	-0.1	0.0	+0.03
			STORM R/F	2.99	0.0	1.78	1.09		STORMU
116	0.2388	+20	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0
	1		PERT. R/O (IN.)	0.0327	0.0401	0.9179	0.0432	SIM = 3,0	W +0.0 SP +0.0
		ļ	REF (R/F/R/O)	91		1.94	25		SU -0.0
			Δ% OF R/O	0.0	+2.4	+0.2	-0.1	0.0	+0,03
	1		STORM R/F	2.99	0.0	1.78	1.09		STORM U
117	0.2985	+50	REF. R/O (IN.)	0.033	0.039	0.916	0.043	REF = 3.0	F 0.0 W +0.0
			PERT. R/O (IN.)	0.0327	0.0403	0.9183	0.0432	SIM = 3.0	SP +0.0
6-202			REF (R/F/R/O)	91		1.94	25		SU -0.0

Figure 6-40. Snow Albedo Index Study

6.4 REFERENCES, SECTION 6

- 1. Anderson, Eric A. and Norman H. Crawford, 1964: "The synthesis of continuous snowmelt runoff hydrographs on a digital computer."

 Technical Report No. 36, I.D. 71-72-11, Department of Civil Engineering, Stanford University, Stanford, California, 103 p.
- 2. Chow, V. T., 1964: "Handbook of applied hydrology." New York: McGraw-Hill.
- 3. Liou, E. Y., OPSET: Program for Computerized Selection of Watershed Parameter Values for the Stanford Watershed Model, Lexington: University of Kentucky, Water Resources Institute, Research Report No. 34, 1970.
- 4. Ricca, Vincent T., 1972: "The Ohio State University version of the Stanford streamflow simulation model: Part I Technical Aspects, May 1972." Office of Water Resources Research, U. S. Department of the Interior, 144 p.
- 5. Ricca, Vincent T., 1972: "The Ohio State University version of the Stanford streamflow simulation model: Part III User's Manual, August 1972." Office of Water Resources Research, U. S. Department of the Interior, 68 p.
- 6. Ross, G. A., The Stanford Watershed Model: The Correlation of Parameter Values Selected by a Computerized Procedure with Measurable Physical Characteristics of the Watershed, Lexington: University of Kentucky Water Resources Institute, Research Report No. 35, 1970.
- 7. Striffler, W. D., "Users Manual for the Colorado State University Version of the Kentucky Watershed Model," Colorado State University, published under NASA Contract NAS9-13142, September 1973.

SECTION 7

RELATED TECHNICAL ARTICLES AND ABSTRACTS

In previous studies, the study team has collected a small library of books and technical articles dealing with environmental applications of remote sensing and the multitude of disciplines involved in all its aspects. Appendix D of this volume contains a nearly complete listing ("nearly complete," because additions have been made since the index was updated) of literature items and abstracts. Listings by keyword are also available.

APPENDIX A

SAMPLE SIMULATION RUN OUTPUT, SMALL WATERSHED MODEL

The watershed designated "Town Creek near Geraldine, Alabama," was one of a number studied by IBM under a previous NASA contract. Six years of usable historical data had previously been collected, using two hourly and five daily precipitation stations, and model calibration had been completed. The basin is representative of temperate-climate rural areas of moderate topography.

The basin is located in northeast Alabama, at the edge of the Tennessee River Valley, in the Cumberland Plateau physiographic region. Its area (see Figure A-1) is 365 square kilometers (141 square miles), approximately 65% moderately forested and 35% cultivated. Impervious surfaces and water surfaces represent approximately 0.2% and 0.1%, respectively, of the entire watershed area. Surface soil is predominately sandy loam; the watershed is, in fact, located on top of what is known as "Sand Mountain." The stream channels are generally deep and steep-sided, without well-defined flood plains; overflows have not occurred, even after the heaviest of recent precipitation events (e.g., March 1973).

Most accurate simulation was achieved using climatological data for water year 1964 (October 1963 through September 1964). A comparison of some single-year and long-term statistics is included in Figure A-1. Although October was one of the dries t months ever recorded, total precipitation was approximately 8% over the long-term average. Some heavy rains occurred in March 1964 (approximately 10 inches on March 25) but did not cause damage.

The observed daily discharge used in original model calibration is that recorded by USGS Gage 3-5729. The data was tabulated in Table A-1. Mean basin hourly precipitation was synthesized from two hourly and five daily precipitation stations.

Page A-4 and subsequent pages of this appendix contain a reproduction of the printout from one simulation run in which the parameter BMIR was perturbed by -50%, from a reference value of 7.0.

Print plots have been omitted from the report, in favor of SC4020 plots. In the plots, "P," "R," and "S" indicate precipitation (unscaled), reference and simulated.

Figure A-1. Town Creek Watershed

Table A-1. Town Creek Observed Discharge Data, WY 1964

TENNESSEE RIVER BASIN

3-5729. Town Creek near Geraldine, Ala.

Location. -- Lat 34°22'42", long 85°59'25", in SEL sec. 34, T. 7 S., R. 6 E., on downstream side of bridge on State Highway 75, 1,600 ft downstream from Reedy Creek, 4,500 ft upstream from Traylor Branch, 2 miles north northeast of Garaldine, and 15 miles northeast of Albertville.

Drainage area. -- 141 sq mi.

Records available .-- July 1957 to September 1964.

Gage .-- Water-stage recorder. Altitude of gage is 1,000 ft (from topographic map).

Average discharge. -- 7 years, 28% cfs.

Extremes. --Maximum discharge during year, 10,700 cfs Mar. 25 (gage height, 15.72 ft); no flow Oct. 5 to Nov. 23.

1957-64: Maximum discharge, 17,700 cfs Apr. 29, 1963 (gage height, 21.70 ft); no flow Sept. 6-13, 1957, July 17, 19-21, 24-29, 1960, Sept. 23, 24-27, 28, Oct. 5 to Nov. 23, 1963.

Remarks . - - Records good .

Discharge, in cubic feet per second, water year October 1963 to September 1964

Day	Oct.											
	QCL.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	U.1	(1,	42	129	424	307 965	430	*490	28	6.1	304	13
2	<u>U.1</u> .1	<u>0</u>	*26	124	358	965	*379	1,400	31	3.6	131	
3		(r	L9 .	169	316	1,450	340	3,040	31	2.2	75	8.8
4	i	6	16	272	288	1,160	550	1,160	25	$\frac{1.9}{2.2}$. 48	7.3
. 5	<u>o</u> ''	ö	12	346	295	2,340	556	759	19	2.2	75	6.4
	<u> </u>	1				l .						
6	υ	Ú	11 .	415	424	984	1,970	574	32	*4.2	46	5.5
7	υ.	ű.	9.2	774	379	742	2,230	469	<u>60</u> 54	3.4	36	4.7
é	ō	O.	10	*586	322	662	1,730	391		2.6	28	3.9
9	اً أ	Ū	il	1,770	293	602	984	337	32	2.4	22	3.2
10	*0	ő	11	1,070	271	686	726	310	22	25	18	2.5
10		. ~							!			i
11	U '	0	206	694	258	528	581	266	18	124	15	2.2
12	ŏ	ò	862	558	233	457	607	223	j 14	326	★ 37	1.8
13	Ü	0	436	467	321	406	· 3,070	190	10	. 429	27	1.4
14	g	Ü	372	366	4.78	2,280	2,280	160	9.0	169	19	1.3
15	0	Ď	287	320	51.7	7,980	1,020	140	15	107	15	1.1
	1.	ľ							1			
16	d o	0	21/	290	764	2,220	746	118	14	68	35	*1.0
17	ű.	0	176	271	556	1,060	598	101	9.0	50	451	.8
18	0	t)	154	. 246	★782	786	497	86	7.2	36	166	.8
19	o o	ő	126	222	718	638	427	72	5.5	28	94	.8
20	Ö	ű	108	290	567	620	367	62	4.0	320	61	.8
-9	"		10.0		l '*'							
21	u	υ	97	292	472	630	313	54	3.0	390	. 42	.7
22		ŭ	88	244	421	542	274	46	2.4	164	33	. 6
23	0	ľň	110	225	367	466	271	4.2	5.2	132	29	. 5
24	Ü	۱ <u>ٽ</u> . ا	116	1,700	331	412	595	50	56	299	30	.4
25	Ü		106	5,380	367	4,710	881	*4	34	155	2.7	.4
	. "	' .										
26	0	.3	118	1,470	394	6,120	795	33	15	178	22	.4
27	ŏ	.4	131	872	3 3 4	1,470	1,560	28	9.0	116	18	.4
28	l ŏ	.8	129	658	349	939	1,080		5.5	70	89	د. ا
29	*o	78	116	528	343	710	813	2 <u>5</u>	3.6	48	31	<u>-3</u>
30		90	104	457		567	602	28	2.6	40	20	2.0
31	ű	L . 	106	430		525		26		214	15	
							ļ					
Total	0.4	169.9	4,332.2	21,615	11,942	43,964	27,272	10,746	576.0	3,516.6	2,059	84.9
Mean	0.01	5.66	140	697	412	1,418	909	34.7	19.2	113	66.4	2.83
	0.000071	0.040	0.993	4.94	2.92	10.1	6.45	2.46	0.136	0.801	0.471	0.020
in.	0.00001	0.04	1.14	5,70	3.15	11.60	7.19	2.83	0.15	0.93	0.54	0.02
	1 3.000	<u> </u>	l	<u></u>	<u> </u>	L,	l				L	1

Calendar year 1963: Max 9,620 Min 0 Mean 246 Cfsm 1.73 In. 23.48 Water year 1963-64: Max 7,980 Min 0 Mean 345 Cfsm 2.45 In. 33.29

Peak discharge (base, 4,800 cfs)

			Ischarge (D	, -	,000 013	,	
Dare	Time	Cage height	Discharge	Date	Time	Gage height	Discharge
1-25	0400	13.00	8,000	3-25	2400	15.72	10,700
3-15	U730	14.85	9,850	4-13	0600	9.70	4,860

* Discharge measurement made on this day.


```
$059 *TOWN CREEK NR, GERALDINE ALA.
                                          (141.0 SQ. MI.) WY64 STUDY
         *CONTROL OPTIONS (BALANCE OF DATA VARIES WITH SPECIFIED OPTIONS
       (2) (3) (4) (5) (6) (7) (8) (9)(10)(11)(12) (13)(14)(15)(16)
                                        2 1 0
                                                     0
                                                         1 0
 * TIME - AREA HISTOGRAM DEFINITION
                    (2) (3) (4) (5) (6) (7) (8)
0.061 0.071 0.086 0.054 0.079 0.071 0.085
 * NRTRI-BTRI(1) (2)
           0.043
   16
* BTRI- (9) (10) (11) (12) (13) (14) (15) (16)

0.085 0.083 0.069 0.026 0.023 0.070 0.049 0.045

0.0 * OUTPUT PARAMETER - PMPF, IF ANY DAILY FLOW EXCEEDS RMPF
 * WATERSHED PARAMETERS - RGPMB - AREA - FIMP - SWTP
1.0 141.0 .002 .001
* SOIL MOISTURE PARAMETERS
* VINTMR-BUZC- SUZC - LZC - ETLF - SUBWF - GWETF- STAC - BMIR - BIVE
   0.15 0.20 0.20 4.0
                               .20 0.0 0.0
                                                        -25 3.5
* OVERLAND FLOW PARAMETERS - OFSS - OFSL - OFMN - OFMNIS - IFRO
                                0.062 1550.0 0.05
                                                       0.014
                                                                 0.184
 *CHANNEL ROUTING AND GROUND WATER PARAMETERS
 * CSRX - FSRX - CHCAP - EXOPV - BENLR - BERC
            0.94 4800.0 0.25
                                      0.85
                                              0.93
*MOISTURE STORAGE VALUES - GWS - UZS - LZS - 0.0 0.0 0.40
                                                      BENX - IFS
                                                       0.04
                                                                 0.0
         *(JULDI) NUMBER OF JULIAN DATES REQUESTED FOR PUNOFF PLOTS
308 121 23 121 46 121 73 121 122 121 227 121
          LAST TWO DIGITS IN CALENDER YEAR OF THE WATER YEAR TO BE RUN
         * YEAR1 - YEAR2
         * EVAPORATION DATA
         * IF CONOPT(3)=0 DAILY EVAPORATION DATA ARE READ
                                                                                    50
 0.18 0.13 0.07 0.07 0.10 0.12 0.09 0.12 0.15 0.13
                                                                             *1 00T*63
0.12 0.10 0.15 0.13 0.17 0.13 0.11 0.11 0.11 0.10
                                                                             *2 OCT*63
 0.03 0.04 0.09 0.08 0.09 0.12 0.11 0.09 0.09 0.08 0.07
                                                                             *3 OCT 63
0.13 0.15 0.13 0.07 0.03 0.03 0.07 0.09 0.03 0.11
                                                                             *1 NOV '63
 0.06 0.04 0.03 0.01 0.01 0.06 0.10 0.05 0.03 0.02
                                                                            *2 NCV163
0.05 0.01 0.01 0.04 0.11 0.02 0.04 0.03 0.05 0.04
                                                                             *3 NOV163
 0.03 0.02 0.00 0.04 0.01 0.13 0.09 0.02 0.06 0.02
                                                                             #1 DEC163
0.00 0.00 0.01 0.08 0.03 0.01 0.00 0.04 0.09 0.06
                                                                             #2 DEC*63
0.03 0.02 0.04 0.07 0.01 0.02 0.00 0.03 0.03 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.00 0.09 0.00 0.01 0.01
                                                                            *3 0EC163
                                                                            *1 JAN:*64
 0.01 0.02 0.02 0.02 0.02 0.02 0.08 0.04 0.02 0.02
                                                                            #2 JAN 64
 0.02 0.00 0.04 0.04 0.03 0.03 0.06 0.02 0.02 0.12 0.10
                                                                             *3 JAN*64
 0.04 0.03 0.10 0.07 0.07 0.04 0.06 0.03 0.11 0.15
                                                                            *1 FEE 64
0.05 0.06 0.07 0.13 0.10 0.03 0.08 0.06 0.12 0.13
                                                                             *2 FER*64
 0.03 0.04 0.11 0.11 0.07 0.03 0.06 0.08 0.05
                                                                             *3 FFB164
0.05 0.06 0.09 0.04 0.05 0.00 0.01 0.03 0.03 0.04
                                                                             *1 MAP #64
 0.05 0.11 0.28 0.06 0.15 0.11 0.10 0.11 0.08 0.04
                                                                             *2 MAR 164
0.14 0.10 0.05 0.12 0.11 0.06 0.09 0.14 0.12 0.17 0.05
                                                                             *3 MAP *64
 0.06 0.13 0.07 0.12 0.13 0.05 0.01 0.03 0.16 0.22
                                                                            *1 APR*64
0.08 0.08 0.07 0.10 0.15 0.15 0.16 0.09 0.18 0.29
                                                                            *2 APR 164
 0.03 0.24 0.25 0.11 0.16 0.18 0.18 0.21 0.07 0.20
                                                                            *3 APP164
0.15 0.25 0.20 0.21 0.13 0.23 0.24 0.22 0.23 0.17
                                                                               MAY* 64
0.21 0.08 0.21 0.24 0.26 0.27 0.26 0.22 0.24 0.24
                                                                             *2 MAY 64
0.23 0.27 0.24 0.27 0.19 0.20 0.23 0.24 0.31 0.22 0.13
                                                                            *3 MAY 64
0.16 0.18 0.16 0.17 0.21 0.12 0.20 0.23 0.22 0.18
                                                                            *1 JUN'64
0.17 0.12 0.02 0.27 0.20 0.26 0.23 0.26 0.24 0.24
                                                                            *2 JUN*64
0.16 0.24 0.22 0.23 0.16 0.19 0.12 0.04 0.14 0.14
                                                                            *3 JUN'64
0-23 0-15 0-30 0-15 0-20 0-18 0-06 0-09 0-22 0-17
                                                                            *1 JUL 164
0.25 0.21 0.24 0.27 0.26 0.22 0.24 0.19 0.29 0.24
0.26 0.21 0.27 0.25 0.23 0.04 0.26 0.24 0.16 0.07 0.21
                                                                            *2 JUL 164
                                                                            *3 JUL'64
0.24 0.19 0.15 0.13 0.15 0.21 0.22 0.15 0.18 0.27
                                                                            #1 AUG!64
0.21 0.19 0.17 0.14 0.22 0.20 0.22 0.12 0.19 0.19
                                                                            *2 AUG*64
0.11 0.18 0.16 0.22 0.20 0.21 0.20 0.24 0.25 0.25 0.22 0.19 0.17 0.11 0.19 0.12 0.15 0.14 0.13 0.14 0.13
                                                                            #3 AUG*64
                                                                            *1 SEP 64
0.11 0.23 0.20 0.19 0.16 0.14 0.02 0.14 0.20 0.13
                                                                            *2 SEP 64
0.22 0.08 0.11 0.17 0.13 0.03 0.02 0.17 0.10 0.11
                                                                            *3 SEP164
         * IF CONOPT(3)=0 MONTHLY PAN COEFFICIENTS ARE READ
                                                                                    51
 0.70 0.70 0.40 0.48 0.49 0.60 0.70 0.70 0.70 0.79 0.76 0.70
```

* STREAM	MELOW DA	ATA - TO	WN CRES	K. ALA	. (141	SO. MILE	ES) WY	64		-
0.0	0.0	0.0	0.0	0.0			0.0		0.0	+ OC T
0.0	0.0	0.0	0.0	0.0			0.0		0.0	*OCT
0.0	0.0	0.0	0.0	0.0			0.0		0.0	×D€T
0.0		.,,,							-	^OC T
8.9	5.0	1.3	17.7	427.9	82.6	71.9	67.1	62.5	57.9	
54.0	50.2	46.7	43.5	40.4			32.4		28.0	* NOV
26.0	24.3	22.6	20.9	19.2			15.6		17.3	*NOV
16.0	19.0	19.5	17.7	16.7			29.3		24.2	"OEC
76.8	166.4	138.5	173.4	159.7			129.9		112.5	*DEC
104.6	107.7	190.2	160.4	145.4			116.7		100.9	7.0EC
142.8					13.10		11041	10043	20047	*DEC
512.6	254.0	204.B	185.5	171.8	295.2	440.9	268-6	2523.1	480.3	*JAN
305.8	276.5	267.5	248.1	231.1	215.3			179.0	321.0	#JAN
240.6	197.3		2377.4	5271.7			328.9		278.7	*JAN
296.4					30202	3,700	3604)	30141	210.1	#JAN
289.9	253.9	232.2	215.2	233.4	371.3	280.4	237.4	215.9	200.3	*FEB
187.3	173.9	162.8	152.8		1268.7		680.9		290.3	*F6B
249.9	227.1	210.1	195.1	249.B	262.1	216.0	248.9	239.4	<u> </u>	*FFR
	1585.9			1563.6	451.0		339.3		1077.2	*MAR
358.1	283.2		3832.7	3175 0	847.6		427.1	407.4	446.3	-MAR
536.8	411.1		319.3							
392.0	71111	75404	21762	<u> </u>	7430.7	740.2	220.3	467.0	424.2	#MAR
363.6	327 2	313.2	666 Q	517 5	1024 0	3055.8	1020 /		400 3	
443.7		2702.P	1045.3	708.1	540.5	480-4	441.8	408.9	<u>499.)</u>	*4PR
352.3	326.3	331.8				1408.4			379.0	
	2015.6		733.0	490.4	421.9			498.8	403.5	*APR
284.8	264,6	245.2	227.5	211.0	195.8	385.3	356.2	330.6	307.1	* MAY
134.9	125.1	116.2	107.8				168.8	156.6	145.3	* MAY
68.5	15301	110.2	107.5	100.2	93.0	86.3	81.3	79.7	72.1	MAY
73.4	66.6	61.8	57.3	53.1	510.7	272.0	150.7			· MAY
123.6	114.9	560.7	151.9	122.6	112.7	272.0	159.7	,	133.1	#JUN
78.0	72.3	89.2	204.8	124.5	114.8	104.7 108.9	97.2	90.3	83.8	*JUN
94.5	94.6	95.6	90.9	82.7	76.9	73.8	,		87.4	JUN
186.6	880.9	770.6	369.6				94.2			<u> </u>
686.6	295.9	261.3	240.2	309.8 222.8	284.3	261.3	242.7	225.1		* JUL
143.0		<u> </u>	24045	222.0	207.5	192.2	110-2	166.0	154.5	*101
132.8	123.4	114.8	106.7	99_0	91.8	85.2	79.3	72 (10. 1	* JUL
63.4	59.0	54.8	51.0	238.0	337.9	153.5	141.2	73.6	<u>68.1</u>	*AUG
113.3		98.0	91.0	84.7	78.8	73.2	67.9	131.0	121.7	*AUG
54.4			71.0	47.		1362	0/49	63.0	<u>.58.5</u> _	* AUG
50.6	47.1	43.9	40.5	37.8	35.1	32.6	30.3	28.1	26.1	∺AUG ÷SEP
24.3	22.3	20.7	19.2	17.9	16.7	15.R	16.3	14.4	13.0	*5EP
11.8	11.3	10.4	9.5	8.9	8.5	7.9	7.0	30.3	53.3	*SEP
* RAINFA			N CREEK	ALA.		Q. MILE	S) WY		23.3	2 E b
	SGRD.				• • • • •		J,	• •		
0957 63		0.04 0	.02 0-00	0.00	0.02 0.	01 0 01	0 00 0	00 0 0	2 0 00	0.00
0957 63	10 13 2	0.00 0.	-00 0-00	0.00	0.00 0	00 0.00	0.00 0	.00 0.0		0.00
0957 63	10 31 1	0.00 n	00 0-00	0.00	0.00 0.	00 0-00	0.00 0	*00 D.U	0.00	0.00
0957 63	10 31 2	0.00 0.	.00 0.00	0.00	0.00 0.	00 0-00	0.00 0	.00 0.0	3 0.00	0.00
0957 63	11 1 1	0.00 0.	00 0.00	0.00	0.00 0.	00 0.00	0.11 0	-21 0.3	5 D 22	0.11
0957 63	11 1 2	0.02 0.	02 0-01	0.00	0.00 0.	00 0.00	0.00 0	.00 0 0	3 0 00	0.11
0957 63	11 4 2	0.00 0	04 0-12	0.16	0-11 0-	19 0.21	0.14 0	-41 0.7	0.00	0 21
0957 63	11 5 1	0.16 0	14 0.06	0.05	0.01 0.	01 0.01	0.00.0	00 0 0	7 0 00	0.21
0957 63	11 5 2	0.01 0.	01 0-00	0.00	0.00 0	00 0-00	0.00 0	.00 0 0	7 7 4 7 0 0	0.00
0957 63	11 2) 2	0.00 0	.00 0.00	0.00	0.00 0.	01 0.00	0.000	*00 0 Vi	ጋ በ ለሳ	0.00
0957 63	11 22 2	0.00 0.	00 0-01	0.00	0.00 0	00 0 00	0.00 0	-00 0 0) () () ()	0.00
0957 63	11 25 1	0.00 0	.00 0.00	0.00	0.00 0	00 00 00	0.000	-00 0.00	10.00	0.00
0957 63	11 25 7	0.00 0	.00 0.00	0.00	0-00 0	00 0 00	0.00 0	00 0 0	2 0 00	0.00
0957 63	11 26 1	0.00 0.	00 0.00	0.00	0.00 0	00 0 00	0.00.0	60 0.00	3 3 30	0.00
0957 63	11 26 2	2.04 0.	00 0-00	0.00	0-00 0	00 0.00	0.00 0	00 0 00	<u> </u>	0.e00
0957 63	11 27 1	0.000	00 0-00	0_00	0.00 0	00 0.00	0.000	.00 0.01	3 0.00	0±00 0.00
0957 63	11 27 2	0.00 0	.00 p.nr	0_00	0.00 0	00 0.00	0.00.0	.00 0 00) () ()	0 00
0957 63	11 29 1	0.06 0	04 0 06	0.09	0.06 0.	01 0:01	0.000	-00 0.00	3 0 00	0.00
							. v= vvv.	TAR CAN	<u>. UniUU</u>	Ua UU

```
8 1 0.00 0.00 0.04 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.00
0957 63 12
0957 63 12
   0957 63 12 11 2 0.03 0.05 0.15 0.06 0.02 0.00 0.00 0.08 0.19 0.02 0.05 0.02
*NWS 3043 63 12 13 3PM-MIDNITE 0.36 PRECIP DIST ESTIMATED
                       WF .045
*NWS 3043 63 12 14 1AM-4AM
          0.11 PRECIP DIST ESTIMATED
*NWS 0957 63 12 22 5PM-MIDNITE 0.51 PRECIP DIST ESTIMATED
                      WF ... 136
0957 63 12 22 2 0.00 0.00 0.00 0.00 0.01 0.04 0.13 0.14 0.04 0.03 0.03 0.02
*NWS 0957 63 12 23 1AM-7AM
          0.27 PRECIP DIST ESTIMATED
                       WF . 136
0957 63 12 23 1 0.02 0.03 0.04 0.04 0.06 0.03 0.02 0.00 0.00 0.00 0.00
*NWS 3043 63 12 31 2PM-11PM
           1.00 PRECIP DIST ESTIMATED
                       WF .045
0957 63 12 31 2 0.00 0.13 0.02 0.03 0.01 0.17 0.18 0.01 0.02 0.13 0.17 0.00
*NWS 3043 64 01 01 1AM-7AM
           0.23 PRECIP DIST ESTIMATED
                       WF - 045
0957 64
    0957 64
   *NWS 3043 64 01 06 10AM-10PM
          0.52 PRECIP DIST ESTIMATED
                      WF .045
2 0.15 0.16 0.07 0.01 0.00 0.01 0.01 0.03 0.03 0.04 0.01 0.00
0957 64
0957 64
   1
    0957 64
0957 64
    <u>0957 64</u>
    0957 64
    0957 64
   0957 64
0957 64
   0957 64
0957 64
   0957 64
0957 64
   0957 64
0957 64
     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
   14 1
*NWS 3043 64 01 19 11PM-MIDNITE 0.23 PRECIP DIST ESTIMATED
                      WF .045
0957 64
  *NWS 3043 64 01 20 IAM-3AM
          0.07 PRECIP DIST ESTIMATED
   0957 64
                      WF .045
   1 24 1 0.00 0.01 0.00 0.00 0.01 0.14 0.18 0.33 0.19 0.09 0.07 0.07
0957 64
0957 64
   24 2 0.01 0.07 0.29 0.06 0.08 0.86 0.60 0.05 0.15 0.03 0.00 0.00
   0957 64
0957 64
   0957 64
   5 2 0-08 0-10 0-06 0-03 0-00 0-08 0-03 0-11 0-05 0-00 0-00 0-05
0957 64
   0957 64
   2
0957 64
    0957 64
   0957 64
   0957 64
  0957 A4
```

```
0957 64 2 15 1 3.00 0.00 0.00 0.01 0.07 0.02 0.03 0.01 0.01 0.02 0.15 0.18
   0957 64
    *NWS 3043 64 02 17 10PM-MIDNITE 0.30 PRECIP DIST ESTIMATED
                            WF . 045
    9957 64
                           0.04 0.09
*NWS 3043 64 02 18 1AM-7AM
             0.45 PRECIP DIST ESTIMATED
                            WF .045
0957 64 2 18 1 0.15 0.15 0.09 0.00 0.00 0.01 0.08 0.07 0.01 0.00 0.00 0.00
0957 64
    0957 64
    0957 64
0957 64
    2
    0957 64
    25 1 0.00 0.00 0.01 0.09 0.08 0.04 0.01 0.03 0.06 0.09 0.02 0.03
0957 64
    0957 64
0957 64
    0957 64
    0957 64
0957 64
    0957 64
      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0957 64
     0957 64
0957 64
     0957 64
0957 64
      4 2 0.00 0.00 0.00 0.00 0.00 0.04 0.14 0.23 0.31 0.00 0.00 0.00
0957 64
0957 64
     0957 64
     0957 64
     0957 -64
0957 64
     9 2 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.36 0.03 0.05 0.00 0.00
0957 64
    3 14 1 0.00 0.00 0.00 0.00 0.00 0.05 0.08 0.31 0.90 0.36 0.29 0.03
0957 64
    3 14 2 0.02 0.04 0.09 0.21 0.15 0.10 0.06 0.04 0.04 0.09 0.05 0.06
0957 64
0957 64
    0957 64
    0957 64
0957 64
    3 19 2 0.02 0.05 0.06 0.08 0.09 0.01 0.00 0.00 0.00 0.00 0.00
0957 64
0957 64
    0957 64
    0957 64
    0957 64
0957 64
    3 25 1 0.01 0.01 0.32 0.21 0.16 0.39 0.44 0.22 0.15 0.03 0.00 0.03
0957 64
    25 2 0.08 0.09 0.10 0.33 0.32 0.08 0.00 0.00 0.65 0.27 0.06 0.04
0957 64
    0957 64
     0957 64
0957 64
      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
     0957 64
0957.64
     0957 64
     0957 64
     4 1 0.05 0.07 0.13 0.01 0.09 0.21 0.06 0.07 0.01 0.00 0.00 0.00
    5 2 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.18 0.19 0.18 0.12 0.11
0957 64
*NWS 0957 64 04 06 3AM-5AM
             0.33 PRECIP DIST ESTIMATED
                           WF .136
    0957 64
    0957 64
   4
*NWS 0957 64 04 07 2PM-9PM
             0.60 PRECIP DIST ESTIMATED
                           WF .136
0957 64
    7 1 0.00 0.00 0.00 0.00 0.00 0.04 0.39 0.03 0.01 0.53 0.28 0.01
   4
0957 64
    0957 64
0957 64
   4 12 1 0.00 0.00 0.00 0.01 0.00 0.02 0.04 0.06 0.09 0.10 0.17 0.06
0957 64 4 12 2 0.06 0.08 0.03 0.02 0.02 0.04 0.03 0.01 0.01 0.00 0.00 0.00
```

```
4 13 1 0.00 0.00 0.03 0.14 0.29 0.11 0.03 0.00 0.28 0.28 0.22 0.05
0957 64
    0957 64
   0957 64
   0957 64
0957 64
   4 23 2 0.00 0.00 0.00 0.00 0.13 0.23 0.23 0.03 0.00 0.00 0.00 0.00
   0957 64
   0957 64
*NWS 0957 64 04 26 11PM-MIDNITE 0.05 PRECIP DIST ESTIMATED
   WF . 136
   0957 64
*NWS 0957 64 04 27 1AN-3AM
          0.12 PRECIP DIST ESTIMATED
   4 27 1 0.23 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.00
                     WF .136
                    0.00 0.00
*NWS 0957 64 04 28 4AM-5AM
          0.11 PRECIP DIST ESTIMATED
                     WF .136
0957 64
   4 28 1 0.00 0.00 0.00 0.06 0.12 0.00 0.00 0.00 0.00 0.00 0.00
   0957 64
   0957 64
0957 64
    0957 64
*NWS 0957 64 05 02 BAM-MIDNITE 1.74 PRECIP DIST ESTIMATED
    2 1 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.16 0.01 0.05 0.12
0957 64
0957.64
    2 2 0.23 0.55 0.60 0.34 0.20 0.13 0.03 0.02 0.11 0.08 0.06 0.04
    0957 64
    0957 64
   0957 64
0957 64
   0957 64
0957 64
   0957 64
   0957 64
   0957 64
0957 64
   0957 64
0957 64
    0957 64
   0<u>957 64</u>
   0957 64
   0957 64
  0957 64
0957 64
0957 64
   0957 64
   6
*NWS 3043 64 06 06 2AM-7AM
         - 0.99 PRECIP DIST ESTIMATED
0957 64 6 6 1 0.00 0.01 0.01 0.14 0.20 0.19 0.34 0.27 0.20 0.05 0.03 0.00
   0957 64
  0957 64
0957 64
   0957 64
  0957 64
  0957 64
  0957 64
  6 23 2 0.00 0.00 0.00 0.00 0.00 0.05 0.57 0.21 0.16 0.11 0.03 0.00
0957 64
  0957 64
   0957 64
0957 64
  0957 64
0957 64
   1 1 0.00 0.00 0.00 0.00 0.00 0.11 0.08 0.11 0.12 0.01 0.01
0957 64
0957 64
    0957 64
0957 64
   3 2 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00
   0957 64
```

```
0957 64
   0957 64
   7 10 1 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.23 0.00 0.00 0.00 0.00
0957 64
   0957 64
   *NWS 0957 64 07 12 9AM-6PM
          0.42 PRECIP DIST ESTIMATED
                       WF . 136
0957 64 7 12 1 0.00 0.00 0.00 0.00 0.35 0.24 0.11 0.28 0.23 0.24 0.21 0.30
0957 64
   7 12 2 0.04 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.02 0.00 0.00 0.00
0957 64
   7 15 2 0.00 0.02 0.00 0.03 0.14 0.07 0.01 0.00 0.00 0.00 0.01 0.00
0957 64
   0.957 64
   0957 64
0957 64
   0957 64
   0957 64
    0957 64
   .__0957_64_
   0957 64
   7 20 1 0.00 0.00 0.00 0.00 0.20 0.01 0.22 0.16 0.68 0.10 0.01 0.00
0957 64
   0957 64
   0957 64
    0957 64
    0957 64
   0957 64
   0957 64
   7 24 2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0957 64
   0957 64
   0957 64
   0957 64
   7 26 2 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
    0957 64
   7 30 2 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0957 64
   0957 64
0957 64
     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0957 64
    0957 64
    0957 64
0957 64
   8 10 2 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
   0957 64
0957 64
   0957 64
0957 64
   0957 64
*NWS 0957 64 08 16 4AM-9PM
           1.22 PRECIP DIST ESTIMATED
                      WF - 136
   0957 64
0957 64
   8 16 2 0.00 0.00 0.00 0.00 0.08 0.04 0.02 0.00 0.05 0.00 0.00 0.00
   0957 64
   0957 64
0957 64
   0957 64
0957 64
   0957 64
   8 23 2 ).00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
0957 64
   0957 64
0957 64
   0957 64
   0957 64
   0957 64
   9 29 1 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
0957 64
   8 29 2 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0957 64
0957 64
   0957 64
   0957 64
   0957 64
```

```
0957 64
        0957 64
0957 64
        0957 64
        0957 64
        0957 64
0957 64
        0957 64
0957 64
        9 29 1 0.00 0.01 0.04 0.21 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.02
         29 2 0.24 0.14 0.29 0.14 0.17 0.04 0.00 0.00 0.01 0.02 0.01 0.02
0957 64
        0957 64
        0957 64
0957 98
        9 30 1
*STORM 14 64
* TOWN CREEK, ALA. (141 SQ. MT)
                                11/05/63
                                        YOUTS MEETS
1-0 141-0 121 -1 1
1.0
                                     1.5
    1.1
          1.1
                 1.1
                       1.1
                              1.1
                                     1.2
                                           1.6
                                                  2.6
                                                        4.6
    7.7
          11.2
                19-0
                       41.5
                             110.1
                                   206.0
                                          308.5
                                                410.4
                                                       466.9
  521.7
         566.7
               614.2
                      657.3
                            687.5
                                   689.7
                                         638.3
                                                576.3
                                                       567.3
  <u>560.4</u>
         538.1
               469.4
                      391.4
                            <u> 325.6</u>
                                   272.8
                                         230.6
                                                197.3
                                                       171.3
  150.9
         134.8
               122.3
                      112.4
                            L04.7
                                    98.6
                                          93.9
                                                 90.1
                                                       87.2
   84.8
          83.0
                81.3
                      80-1
                             79.2
                                    78.4
                                          77.7
                                                 77.2
                                                       76.7
   76.4
          76.0
                75.7
                       75.4
                             75.2
                                    75.1
                                          74.8
                                                 74.6
                                                       74.4
   74.2
          <u>73.9</u>
                73.8
                      73.6
                             <u>73.4</u>
                                    73.2
                                          73.1
                                                 <u>72. 9</u>
                                                       72.3
   72.2
          72+0
                71.8
                      71.6
                             71.4
                                    71.3
                                          71.1
                                                 70.9
                                                       70.7
   70.5
          <u>70.3</u>
                70.4
                                    <u>69. 8</u>
                      70.2
                             70.0
                                          69.6
                                                 69.4
                                                       69.2
   69.0
         68.8
                68.6
                             68.2
                      68.4
                                    67.5
                                          67.3
                                                 67.1
                                                       66.9
   <u>66.7</u>
         66.5
                66.3
                      66.1
                             65.9
                                   65.7
                                          45.5
                                                 65.3
                                                       65.6
   65.4
         65.2
                65.0
* TOWN CREEK. ALA. (14) SO. MI)
                               01/25/64 STORM STJDY
1.0 141.0 121 -1 1
  186.0
         185.3
               184.6
                     183.9
                            183.2
                                  182.6
                                         181.9
                                                181.3
                                                      180.5
  179.8
        179.2
               178.5
                      <u> 177. 9</u>
                            177.3
                                   <u> 176-6</u>
                                                175.4
                                         176.0
                                                      <u> 174.7</u>
  174.1
        173.6
               173.1
                     172.5
                            172.0
                                  171.4
                                         170.8
                                                170.2
                                                      169.7
  169.2
        168.7
               180. B
                     202.5
                            253.4
                                   <u>437.8</u>
                                               1111.1
                                         751.8
                                                     <u> 1465.5</u>
 1708.3
        1919.2
              2133.2
                     2419.6
                           2745.3
                                  3082.3
                                        3761.3
                                               4721.6
                                                     5799.6
 7023.7
        7927.6
              8564.4
                     9026.5
                           9361-6
                                  9639.1
                                        9821.4
                                               9839.7
                                                     9284.8
       7904.2
 8378.2
              7715.8
                    7376.4
                           6585.9
                                  5507-8
                                        4548.6
                                               3771.4
                                                     3148.9
 <u> 2653.7</u>
        2259.1
              <u> 1943.9</u>
                     1691-1
                           1<u>487.4</u>
                                  1322.5
                                        1188.3
                                               1078.3
                                                      987.6
  912.3
        849.3
               796.3
                            712.5
                                  679.1
                     751.1
                                         650.0
                                               624.5
                                                      601.8
  581.7
        563.7
               547.5
                     532.7
                            <u>519. 3</u>
                                         495.8
                                  507.1
                                               485.3
                                                      475.6
  466.7
        458.4
               450.8
                     443.5
                            436.8
                                  430.4
                                         424.5
                                               418.9
                                                      413.6
  408.7
        404.0
                     395.4
               399.6
                            <u> 391.5</u>
                                  387.5
                                         <u> 383.9</u>
                                               380.6
                                                      377.4
  374.3
        371.4
               368.6
                     366.0
                            363.3
                                  360. B
                                         358.5
                                               356.2
                                                      354.2
 352.1
        350.1
               348.2
```

	<u>0 121 -1</u>	1						
1.0								·
147-2			145.9		149.9			
155.4		192.9		406.7		1115.9		
2009.6			2639.7	2808.2	2883.9		2570.2	2482.9
2482.0	2433.9	2237.5		1661.9	1432.5	1247.5	1097.5	975.3
<u>875.1</u>	792.5		666.2					483.5
460.0 332.7		420.9	404.3	389.4	376.0	363.7	352.5	342.2
272.7					294.7	258.6		
	268.0 301.3	263.7	259.6	255.7		249.0	248.6	259 1
763.4	818+2	858.7	417.4					
	775.9	795 1	877.7 700.2	861.8	843.9		868.5	862.6
545.5		508.3	491.8		640.8			
414.2			386.2	377 0				
344.2	338.5	333.2	300.2	3:109	310.2	<u> 362.9</u>	356.1	350.2
* TOWN C		1141 6	0 911	0.3	1116166	CTORM (TUSV	
1.0 141.0	1 121 -1	1	3 1 1		2714704	21087	<u> </u>	
1.0	J 1.1. L	•						
266.3	265.2	264.2	263.2	262.1	261.2	260.2	259.2	257.0
256.1		254.2	253.3		251.6	250 7		
247.9	247.1	247.5	246.7	245.8	245.0	244.2	243.3	242.5
241.7	240.9		247.0		348.5	900.4		20HA 7
4166.4	4955.4	5691.6	5292.7	6975.9	7673.9			8291.0
7754.1	7640.2	7622.4	7560.1		6246.7			
3874.0	3572.6	3294.1	3027.8	2800.1	2610.5	2436.3	2271.7	2138.4
2036-5	1944.7	1346.1	1738.8	1635.9	1543.6	1459.7	1384.0	1315.2
1252.5	1195.1	1142.5	1094.2	1049.5	1008.3	970.2	934.8	901.4
<u> </u>	842.5	316.1	791.4	768,4	746.9	726.9	707.3	690.3
673.9	658.5	644.6	631.1	618.5	606.6	595.5	585.0	575.1
565.9		548.9	541.2	533.9	526.6	520.0	513.9	508.1
502.6	497.3	492.4	487.7		478.7			467.6
	460.7				<u> </u>			
* TOWN CP	EEK, ALA	. {141 \$	Q. MI)	05	/03/64	STORM S	YOUT	
1-0-141-0	121 -1	1	•					
1.0	277.0	77/ 7						
379.4		<u> 3/6.3</u>	374.9			370.6	369.2	367.0
365.7	364.4	363.1	361.8	360.5	359.2	353.0	356.5	355.3
354.1	352.9	352.5	<u>351.3</u>	350.1		347.7	346.6	345.4
344.3	343.1	342.0	340.9	341.1	348.5	348.5	354.2	369.6
6261.8	441.6		1356.0		3412.2		5050.1	5673.6
	6851.7 5612.9	7382.6	7729.9	7695.1	7237.5	6809.2	6705.1	6633.8
1926.2	1753.9				3063.9			2134.2
1038.9	992.4	1609.2		1393.1	1294.9	1217.7	1150.4	1091.2
746.7	726.3	707.4	913.0		848.0	819.7		
606.5	595.7	586.6	689.9	673.6	658.4	644.2	630.6	618.2
530.2	523.8	517.9	577.0 512.2		559.5	251.5	544.0	
	479.1	475 3	512.2 471.7	506.8 468.0	501.0	496.2	491.6	497.2
453.4	450.7	448.1			404.	401.5	455.4	<u> 956.2</u>
* TOWN CR			O. MT3	OB	/15/64	* MOUT?	TIDY	•
1.0 141.0					(17/04	מיחיני	1101	
1.0								
53.2	53.0	52.9	52.7	52.6	52.4	52.2	52.1	E1 1
51.0		50.6		50.3		50.0	49.9	51.1
49.6	49.4	50.1	49.3	49.7	49.6	49.4	49.3	49.7
49.0	48.8	48.7	48.6	48.4	47.0	47.6	49.5	49.1 61.5
95.3	175.3	282.4	395.1	502.7	557.8	612.2	657.8	708.9
754.2	785.9	787.2	727.7	659.4	655.1	643.8	625.2	548.4
467.6	402.4	350.6	307.2	273.3	246.7	225.9	209.5	196.8
186.8	181.7	178.2	174.3	170.2		169.1		
163.8	162.4	161.2	160.2	159.2	158.2	157.4	156.7	<u> 165.4</u> 154.7
	153.3	152.6	151.9	151.2	150.6	150.0	149.4	148.9
148.3	147.8	148.6	148.1	147.6	147.1	146.6	146.2	145.7
145.3	144.8	144.4	143.9	143.5			141.5	141.1
140.6	140.2 137.0	139.8	139.3	138.9	138.5	138.0	137.6	137.9

		RE	FERENCE		SIMULAT	€D			REFER	ENCE	\$11	AULA TED	· ·
MEAN		9	914.90		10085.	50			325	- 06		330.65	
MAXIMUM		32	757.35		34005.	84			5430	. an		017.22	j.,
VARIANCE		1105	96272.0	Λ									
-		1147	702 1Z = U	<u>u</u>	117735	280.00	W 1		42	9042.81		601067	<u>• 06</u>
STANDARD DEVIATION		10	51 <u>6.48</u>		10850.	59			655	-01		775.29	· · · · · · · · · · · · · · · · · · ·
.SUM OF TREFERENCE -	SIMULA	TED)		-2047.31					·	-20	47.32		
ROOT SUM SQUARE			- <u>-</u>	2630.77	,	<u>.</u> .				32	68.44		
SUM SQUARED			·	0.39	,	 					54-14		 .
SUM SQUARED (IBM MET	(COD			0.31					 		48.38		
CORRELATION COEFFICE				0.9979							.9855		
			_	LY OF	MONT	HLYA	ND A	N N U A	LTO	TALS		- , <u>-</u>	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ANNUAL
PRECIPITATION EVP/TRAN-NET	0.100 0.317	4-580 1-106	3.790 0.412			11.240	9.140	3.670	3.810		3.090	1.910	58.230
-POTENTIAL	2-296	1.155	0.412		1.034	1.584 1.584	2.583 2.772	3.646 4.753	3.082 3.836		3.320	1.810	
SURFACE RUNOFF	0.000	0.347	0.123		0.834	5.921	3.314	1.405	0.549			2.891	30.753
INTERFLOW	0.0	0.0	0.010		0.268	0.917	1.017	0.214	0.000		0.232	0.015	17.510 2.774
BASE FLOW	0,000	0.212	0,652			2.133	2.346	1.315	0.564			0.131	11.666
STREAM EVAP.	0.000	0.001	0.000			0.002	0.003	0.005	0.004		0.005	0.003	
TOTAL RUNOFF(SIM) TOTAL RUNOFF(REF)	0.000	0.558	0.785		2.331	8.969	6-674	2.929	1.109	2-438	0.758	0.144	
	0.0	0.370	0.791	4.798	2.434	8.640	6.683	3.248	1.100		0.861	0.188	31.382
REFERENCE TOTALS	0.0	1401.6	3000 0	18189.9	0370 p 3	2757 / 2	5334 6 5						
SIMULATED TOTALS		2114.8	2978.0	19815.4	8837.7 3	4005.8 2	5302.3 1	2314.6 1104.3	4170.2 4206.3	8604.3 9244.3	3264.1 2873.1		118978.8 121026.1
BALANCE	-0.011	7 INCHE	s								•		

			_		EAN	DAIL	YPEI	EREN	ICF F	LOWS	(CFS)			
	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	£ E D.T.	
	1	0.0							_	O O III	3011	AUG	SEPT	ANNUAL
	2	0.0	8.9	16.0	512.6	289.9	209.0	363.6	363.1	73.4	94.5	132.8	50.6	
	3	0.0	5.0	18.0	254.0	253.9	1585.9	337.2	2015.6	66.6	94.6	123.4	47.1	
	4	0.0	1.3 17.7	19.5 17.7	204.8	232.2	2093.4	313.2	3765.1	61.8	95.6	114.8	43.9	
	5	0.0	427.9	16.7	185.5	215.2	506.7	555 <u>.</u> 8	733.0	57.3	90.9	106.7	40.5	
	•		421.09	10.7	171.8	233.4	1563.6	517.5	490.4	53.1	82.7	99.0	37.8	
	6	0.0	82.6	15.5	295.2	371.3	453.0							
_	7	0.0	71.9	14.4	440.9	280.4	451.0	1834.9	421-9	510.7	76.9	91.8	35.1	
	8	0.0	67.1	29.3	268.6	237.4	338.9 339.3		385.3	272.0	73.8	85.2	32.6	
	9	0.0	62.5	24.6	2523.1	215.9	373.9	1928.4	356-2	159.7	94.2	79.3	30.3	
	10	0.0	57.9	24.2	480.3	200.3	1077.2	661.6	330.6	144.4	86.9	73.6	28.1	
					12043	20043	10/1-2	499.9	307.1	133.1	332.4	68.1	26.1	
	11	0.0	54.0	76.8	305.8	187.3	358.1	443.7	20 6 0	122 (<u> </u>
	12	0.0	50.2	166.4	276.5	173.9	283.2	567.6	284.8 264.6	123.6	186.6	63.4	24.3	
	13	0.0	46.7	138.5	267.5	162.8	254.6	2702.8	245.2	114.9	880.9	59.0	22.3	
	14	0.0	43.5	173.4	248.1	152.8	3832.7	1845.3	227.5	560.7 151.9	770.6	54 - 8	20.7	
	15	0.0	40.4	159.7	231-1	943.0	3175.9	708.1	211.0	122.6	368.6 309.8	51.0	19.2	
						<u> </u>				12240	303.0	288.0	17.9	
	16	0.0	37.4	149.3	215.3	1268.7	847.6	540.5	195.8	112.7	284.3	337.0		
	17	0.0	34.7	139.3	200.3	303.4	512.8	480.4	_ 181.7	104.7	261.3	337.9	16.7	
	18	0.0	32.4	129.9	186.2	680.9	427.1	441.8	168.8	97.2	242.7	153.5 141.2	15.8	
·	19 20	0.0	30.1	120.9	179-0	438.4	407.4	408.9	156.6	90.3	225.1	131.0	16.3 14.4	
	20	0.0	28.0	112.5	321.0	290.3	446.9	379.0	145.3	83.8	1203.4	121.7	13.0	
	21		34 0	101						-			134V	
	22	0.0	26.0 24.3	104.6	240.6	248.9	536.8	352.3	134.9	78.0	686.6	113.3	11.8	
	23	0.0	22.6	107.7	197.3	227.1	411-1	326.3	125.1	72.3	295.9	105.1	11.3	
	24	0.0	20.9	190.2	178.4	210.1	350.4	331.8	116.2	89.2	261.3	98.0	10-4	
	. 25	0.0	19.2	160.4 145.4	2377.4	195.1	319.3	573.0	107-8	204.8	240.2	91.0	9.5	
	·	V *0	1706	147.4	5271.7	249.8	3855.7	1114.5	100.2	124.5	222.8	84.7	8.9	
	26	0.0	18.1	134.8	582.2	242	6400						- 	
	27	0.0	16.8	125.4	379.6	262.1 216.0	5430.9	1020.6 1408.4	93.0 86.3	114.8	207.5	78.8	8.5	
										108.9				

67.9

63.0

58.5

54.4

7.0

53.3

118978.8 CFS

30.3

711.6

29

30

31

REFERENCE TOTALS

0.0

0.0

20.6

17.3

108.5

100.9

301.1

278.7

142.8 286.4

239.4

556.3

467.0

424.2

0.0 1401.6 3000.0 18189.9 9228.8 32757.4 25336.6 12314.6 4170.2 8604.3 3264.1

392.0

721.4

498.8

403.5

81.3

79.7

72-1

68.5

101.6

94.2

87.4

178.5

166.0

154.5

143.0

		·				-	 		····				
····		·	М	EAN	AILY	Y SIM	ULAT	ED FL	DWS (CFSI			
DAY	OC T	NOV	DEC	JAN	FF8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ANN
1	0.0	10.5	12.7	1028.8	235.0	165.1	245.4	255.5	53.3	69.3	89.8	35.8	
<u>2</u>	0.0	5.6	14.7	214.0	182.3	2029.4	227.7	2323.0	47.7	69.7	83.6	33.3	
3	0.0	1.1	16.0	165.3	162.4	2336.8	211.6	4217.8	44.3	71.9	77.7	31.0	
	0.0	37.5	14.3	149.8	149.5	415.5	639.0	526.8	41.1	68.5	72.3	28.6	
5	0.0	1302.5	13.5	138.9	194.6	1858.2	476.6	341.1	38.0	61.0	67.1	26.8	
6	0.0	82.7	12.4	502.7	446.5	311.2	2706.3	292.1	1055.9	56.7	62.1	24.8	
	0.0	56.3	11.6	660.1	235.9	241.0	3257.8	266.6	337.7	54.8	57.7	23.0	
8	0.0	52.6	32.7	215.5	180.3	270.5	1867.6	246.7	102.2	75.3	53.8	21.4	
9	0.0	49,1	20.8		160.4	315.4	462.1	229.1	95.3	67.0	49.9	19.8	
10	0.0	45.5	19.9	374.5	148.0	1174.6	341.5	213.1	88.5	605.5	46.1	18.4	
11	0.0	42.4	98.4	217.6	138.6	268.7	302.1	197.7	82.2	212.8	43.0	17.2	-
12	0.0	39.5	278.1	201.0	128.7	205.3	563.2	183.9	76.5	2068.1	39.9	15.6	
13	0.0	36.7	120.6	198.2	120.9	183.8	3427.9	170.4	684.6	1063.7	37.1	14.6	
14	0.0	34.2	152.8	183.3	115.2	4387.4	1750.5	158-1	107.5	233.4	34.6	13.5	
15	0.0	31.8	137.7	170.8	1271.5	3898.0	490.4	146.7	80.2	202.0	506.1	12.6	
16	0.0	29.4	128.8	159.4	1474.6	655.4	373.5	136.2	74.7	107			
17	0.0	27.2	120.3	148.4	203.7	363.9	332.2		74.3	187.4	537.9	11.8	
18	0.0	25.4	112.3	138.1	1032.1	298.7	305.7	126.5 117.5	69.1	172.2	109.9	11.2	
19	0.0	23.7	104.6	136.4	371.6	294.7	283.2	109.1	64.0 59.5	160.1	99.6	12.0	
20	0.0	22.0	97.4	419.6	208.6	382.7	262.5	101.3	55.3	148.4 1489.5	92.4 85.8	9.2	
21	0.0	20.4	90.6	206.2	174.4	516.6	244.4	94.0					
22	0.0	19.1	104.7	154.5	158.2	306.6	226.4	87.2	51.5	718.7	80.0	8.3	
23	0.0	17.7	284.6	137.3	146.2	253.9	264.9	81.0	47.6 82.3	195.8	74.2	8.0	
24	0.0	16.4	144.0	3144.5	135.8	230.2	626.4	75.2	329.9	175.4	69.2	7.4	
25	0.0	15.1	128.2	6017.2	221.8	4865.6	1289.7	70.0	87.5	162.0 150.5	64.2 59.8	6.7	
26	0.0	14.2	118.6	406.0	240.4	5904.3	1192.7	65.0	78.8	140 6	E 2		·
27	0.0	13.2	110.4	253.8	168.7	636.0	1689.0	60.2	75.2	140.4 129.9	55.7 51.7	6.1 5.7	

285.7

264.4

0.0 2114.8 2978.0 19815.4 8837.7 34005.8 25302.3 11104.3 4206.3 9244.3 2873.1

287.0

50.7

48.4

60.5

104.6

96.8

41.3

38.4

63.1

544.3

121026.1 CFS

0.0

0.0

31 SIMULATED

TOTALS

13.8

190.2

88.9

187.6

218.1

DAILY FLOW DURATION AND ERROR TABLE

	FLOW INTERVAL	CASES	AV.ERROR	AVR. ABS. ERRO	R STANDARD ERROR	
	0.0-	31.0	0.0	0.00	0.00	
	1.0-	1.0	-0.2	0.21		
	1.6-	0.0				
	2.7-	0.0				
	4.5-	2.0	-0.7	1.37	1.94	
	7.4-	8.0	-2.3	2.69	1.63	
	12.2-	20.0	-2.7	4.68	5.34	· · · · · · · · · · · · · · · · · · ·
	20.1-	19.0	5.0	6.09	3.94	
	33-1-	17.0	-10.5	11.64	5.91	
	54.6-	37.0	-18.9	20.03	8.89	
	90-0-	54.0	-28.2	30.00	14.92	
	148.4-	53.0	-40.1	53.61	41.54	
	244.7-	57.0	-55.0	94.91	89.79	
	403-4-	34.0	-25.3	167.45	235.95	
	665+1-	12.0	117.8	292.44	408.09	
	1096.6-	6.0	281.0	280.98	93.23	
	1808.0-	8.0	435.0	473.89	386.62	
	2931.0-	5.0	589.3	588.27	_301.79	
	4914.8-	2.0	609.5	609.48	192.39	
- · · · · · · · · · · · · · · · · · · ·	8103-1-	0.0			* * * * * * * * * * * * * * * * * * * *	
	13359.7-	0.0				
	22026.5-	0.0				
		366.0	5.6	91.65	1791.97	
	CORRELATION CO	SEFICIENT (DATLY)	0.9855	-1/20/1	

TWENTY HIGHEST CLOCKHOUR RAINFALL EVENTS IN THE WATER YEAR
0.900 0.860 0.710 0.680 0.650 0.630 0.600 0.600 0.570 0.550 0.530 0.530 0.500 0.470 0.440 0.410 0.390 0.390 0.370 0.370

TWENTY HIGHEST CLICKHOUR OVERLAND FLOW PUNDER EVE NTS IN THE WATER YEAR
0-738 0-684 0-564 0-557 0-444 0-400 0-369 0-343 0-330 0-327 0-321 0-322 0-321 0-322

DAILY SOIL MOISTURE

DAY	OCT	NOV	DEC	NAL	F5B	MAR	APR	MAY	JUNE	JULY	AUG	SEPT
1	0.4	0.8	2.9	4.6	5.3	5.7	6.2	6.1	3.8	3.7	3.6	2.9
2	0.4	0.9	2.9	4.6	5.3	5.7	6.2	6.2	3.8	3.7	3.5	2.8
3	0.4	0.9	2.9	4-6	5.3	5.7	6.2	6.2	3.8	3.8	3.5	2.7
4	0.4	2.6	2.9	4.6	5.3	5.8	6.2	6.2	3.7	3.8	3.4	2.7
	0.4	3.0	2.9	4.6	5.4	5.8	6.3	6.2	3.7	3.7	3.4	2.6
6	0.3	3.1	2.9	4.7	5.4	5.8	6.3	6.1	4.0	3.6	3.3	2.6
7	0.3	3.1	2.9	4.7	5.4	5 • B	6.3	6.0	4.0	3.7	3.2	2.5
8	0.3	3.1	3.1	4.8	5.4	5.8	6.3	5.9	4.0	3.8	3.1	2.4
9	0.3	3.1	3.1	4.9	5.4	5.8	6.3	5.8	4.0	3.8	3.0	2.4
10	0.3	3.1	3.2	4.9	5.4	5.8_	6,3	5.7	3.9	4.0	3.0	2.3
11	0.3	3.1	3.7	4.9	5.4	5.8	6.3	5.6	3.8	4.0	2.9	2.3
12	0.3	3.1	3.8	4.9	5.4	5.8	6.4	5.6	3.8	4.4	2.9	2.2
13	0.3	3.1	4.0	4.9	5.4	5.9	6.5	5.5	3.9	4.4	2.8	2.2
14	0.3	3.1	4.0	4.9	5.4	6.0	6.5	5.4	3.9	4.4	2.7	2.1
15	0.3	3.1	4.0	4.9	5.5	6.0	6.5	5.2	3.9	4.3	3.5	2.0
	_											
16	0.3	3.0	4.0	4.9	5.5	6.0	6.5	5.1	3.8	4.3	3.6	2.0
17	0.3	3.0	4.0	4.9	5.5	6.0	6.5	5.0	3.7	4.2	3.6	2.0
18	0.3	3.0	4.0	4.9	5.5	6.0	6.4	4.9	3.6	4.2	3.6	2.0
19	0-2	2.9	4-0	5.0	5.5	6.0	6.3	4.8	3.5	4-0	3.6	2.0
20	0.2	2.9	4.0	5.0	5.5	6.1	6.2	4.7	3.4	4.3	3.5	2.0
							-					
21	0.2	2.9	4-0	5.0	5.5	6.1	6.2	4.6	3.4	4.3	3.5	1.9
22	0.2	2.9	4.2	5.0	5.5	6.1	6.1	4.5	3.3	4.3	3.4	1.9
23	0.2	2,9	4.3	5.0	5.5	6.1	6.0	4.4	3.6	4-3	3.4	1.9
24	0.2	2.9	4.3	5.2	5.5	6.1	6.0	4.2	3.6	4.2	3.3	1.8
25	0.2	2.8	4.3	5.2	5.6	6.2	6.0	4.2	3.6	4.1	3.3	1.8
24		• •			_							
26	0.2	2.8	4.3	5.2	5.6	6.2	6.0	4.1	3.6	4-1	3-2	1.7
27 28	0.2	2.8	4.3	5.2	5.6	6.2	6.1	4.0	3.6	4.0	3.2	1.7
29	0.2	2.8	4.3	5.2	5.6	6.2	6.1	3.9	3.6	3.9	3.2	1.7
30	0.2 0.2	2.9 2.9	4.3	5.2	5.6	6.2	6.1	3.9	3.6	3.8	3.1	2.6
31	0.2	2.9	4.3	5.2		6.2	6.1	3.8	3.6	3.8	3.0	2.6
21	U• 2		4+5	5.3		6.2		3 . 8		3.7	2.9	
IULT I =	0	CONOPT ()	10)=	0 C	ONOPT(15)	= 0	IBF	LAG=	0 • к	HMA I N=	2	
ULT I=	0	CONOPT()	10)=	0 C	ONOPT(15)	= 0	IBF	LÁG=	13 K	WMA [N=	3	
DFLAG=	0	IENDEG=	= 0	ISFL	AG= 1	3 MAI		3				

TOWN CREEK		I. SQ.MI.I SIMULATE			STUDY **ANNUAL DIFF	<u>\$059</u>	<u>}</u>
PEAK(CFS)	689.7	2232.5	1543.30	223.8			_
ANNUAL Peak (Ces)		11684-1			13.2		_
PEAK (HR)	33	33	0	0.0			-
RUNOFF(IN)	0.18	0.40	0.23	129.9)		_
TOWN CREEK,	ALA. (141 REFERENCE	• SQ.ME.) SEMULATED	STORM DI	/25/64 ቹቦIFF	STUDY SANNUAL CIFF	\$059	_
PEAK (CFS)	9839.7	11671.9	1832.30	18.6			_
ANNUAL PEAK (CES)		11684-1			15.7		-
PEAK (HR)	5.3	52	-1	1.9			
RUNOFF(IN)	2.31	2.62	0.31	13.4			_
TOWN CREEK,	ALA. (141. PFFERENCE					S059	
PEAK(CFS)	2883.9	4023.6	1140.10	39.5			_
NNUAL PEAK (CES)		11684.1			9.8		_
PEAK (HR)	24	24	0	0.0			_
UNDEF(IN)	0.96	1.15	0.19	19 • 9			_

TOWN CREFK,	ALA. (14			3/14/64 %DIFF	STUDY RANNUAL DIFF	\$059	
PEAK (CFS)	8594.8	10033.7	1439.20	16.7			_
ANNUAL PEAK(CFS)		11684.1			12.3		
PEAK (HR)	44	44	0	0.0		N	_
RUNJEF(IN)	2.27	2,50	0.23	10.1			
TOWN CREFK,	ALA. (14) REFERENCE		STORM 05	/03/64 *01FF	STUDY **ANNUAL DIFF	\$059	
PEAK(CFS)	7729.9	9399.9	1670-10	21.6			_
ANNUAL PEAK(CFS)		11684.1			14.3		
PEAK(HR)	49	49	0	0.0			
RUNOFF(IN)	1.94	2.02	0.08	4.1			
					110		_
TOWN CREEK,	ALA. (14)			/15/64 \$DIFF	STUDY TANNUAL DIFF	\$059	_
PEAK(CFS)	787.2	1573.4	786.80	99.9			_
ANNUAL PEAK(CFS)		11684.1			6.7		
PEAK(HR)	48	48	0	0.0			_
RUNDEF(IN)	0.26	0.34	0.08	32.8	1961		_

1 1

				TOTAL	DAILY	STPEAMFLOW	STATIS	STUDY	UMMAPY	9 <u>≠</u> FOR	1 WATER	YRS				
		MEAN	MAXIMUM	VARIANCE	STO DEV	SUM OF	ROOT	CORR	<u>. </u>							
		(CFS)	(CFS)			0-\$	SUM SQUARE	COLFF	·							
REFERÊNCE W	Y 64	325	5430	429042	655										· · · · · · · · · · · · · · · · · · ·	
SIMULATED		330	6017	601067	775	-2047	3268	0.99							-	
MODEL PARAMETERS	LZC 4.0		SUZC 8U 0.20 0.		\$140 V 0.25	INTMR CSR 0.15 0.9	X FSRX 4 0.94	BFRC 0.93	0FMN 0.050	NCTRI 16	EPAET 31.04	MNRD	AREA C	HCAP	BIVF 0.50	11
·																
	-								·	·						
	TOWN	CREEK N	IR GERALD	INE, AL. (141 50	MIA	WY 64	STUDY	COE							
	+ TOWN	CREEK I	NR GERALD	INE, AL. (TOTAL MO	141 SO NTHLY S	MI.) TREAMFLOW	WY 64 STATIST	STUDY	<u> </u>		. WATER	YRS				
*	FTOWN	CREEK MEAN	NR GERALD	INE, AL. (TOTAL MO	NTHLY S	TREAMFLOW SUM (STATIST	ICAL S	UMMARY T (FOR 1	WATER	YRS				
	TOWN			TOTAL MO	NTHLY S	SUM (STATIST	ICAL S	UMMARY T (FOR 1	WATER	YRS				
REFERENCE WY		MEAN	MAXIMUM	VAPIANCE	STD DEV	SUM (OF SUM)	STATIST FOOT SUM	DRICS MONTH (CFS)	UMMARY T (** C(FOR 1	. WATER	YRS				
		MEAN (CFS)	MAXIMUM (CFS)	TOTAL MO	STD DEV 10516	SUM (OF SUM)	STATIST FOOT SUM	DRICS MONTH (CFS)	UMMARY T (** C(FOR 1	. WATER	YRS				
REFERENCE WY		MEAN (CFS)	MAXIMUM (CFS) 32757	TOTAL MO VAPIANCE 110596272 117735280	STD DEV 10516 10850	SUM (OF SOME)	STATIST FOOT SUM SOUARE 2630	DRICS MONTH (CFS)	UMMARY ** CC	FOR 1	WATER	YRS				

,
•
3
0
_

NO 1 MONTH OCT	2 Nov	DEC .	JAN	5 FEB	6 MAR A	7 PR M	8 1A Y	9 JUNE	10 JUL	11 AUG	12 SEPT										
												·		 , , <u>.</u>	 -	·	·- ··			<u> </u>	
	*TO	IN CREE	CNR	GERALI	DINE,	AL. (WY 64	STU	DY	\$059	*						
							TO	TAL ST	ORM A	NALY	SIS S	JMMAR	Y FOR	1 1	ATER	YRS			· · · · · ·	_	
			AK (HR)	R/O	(CF	PEAK S) (H		R/O (IN)	(CFS	PEAK	R) (II	/O		EAK (HR)	R/O (IN)		PEAK (HR)	R/0 (IN)	PE (CFS)		R/O (IN)
· · · · · · · · · · · · · · · · · · ·		. 1	/05/	63		01/2	5/6	4		02/1	5/64		0	3/14/	64		05/03/	64		/15/	
REFERENCE SIMULATED	WY 64	689 2232	33 33		983 1167	-		2.31 2.62	2883 4023		4 0.9		8594 0033	44	2.27 2.50	7729 9399	49 49	1.94	787 1573		0.26 0.34
									· .							*·					~
MODEL	LZ		R_SU	ZC BL	ZC E	rlf	SIA	VIN	TMR C	SRX	FSRX	BFR	c n	FMN N	CTRI	EPAET	MNRD	AREA	CHCAP	D 7 1/2	C 150
PARAMETERS	4.	0 3.	5 0.	20 0.	20 0.	.20	0.2		15 0		0.94	0.9		050	16		****		4800.0	BIV	

.

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B

SAMPLE SIMULATION RUN OUTPUT, SMALL SNOWSHED MODEL

The basin designated "Alamosa Creek above Terrace Reservoir," is in the south central part of Colorado in the Rocky Mountains. The dominant precipitation is winter snow. Moisture accumulates in the snowpack during winter, when streamflow is small but unreadable because the stage height - discharge relationship is affected by icing. Greatest runoff occurs in the spring during snowmelt.

The Alamosa Creek watershed (Figure B-1) was selected as a basis for modeling and sensitivity analysis in the study because it is representative of small mountainous snowsheds yet low enough in altitude so that seasonal effects on its hydrological behavior are pronounced. Additionally, it has previously been the subject of modeling and study by Colorado State University, using the same basic simulation model as was used in the IBM study. Basin descriptive data, model parameters, streamflow and mean basin climatological data for the water year 1958 were provided by CSU.

For the water year 1958, the reference average and peak discharges were 2.24 and 24.8 cubic meters per second respectively. The published 17-year average was 3.25 m³/s, and the highest recorded discharge was 147.2 m³/s. The least actual discharge cannot be determined. The total annual mean basin precipitation for the reference year is 85 cm, compared with an annual average estimated at 120 cm. (Note: In a mountainous region, average annual precipitation varies widely for points only a few miles apart; calculation of mean basin precipitation on a long-term or a short-term basis in such a region is hazardous at best.)

The observed daily discharge used in the original model calibration is that recorded by USGS gage 2360, shown in Table B-1.

Page B-4 and subsequent pages of this appendix contain a reproduction of the printout from one simulation run in which the parameter BMIR was perturbed by -50%, from a reference value of 20.0.

Print plots have been omitted in favor of the SC4020 plots at the end of the appendix. In those plots, "R" indicates reference and "S" indicates simulated streamflow.

Figure B-1. Alamosa Creek Watershed

Table B-1. Alamosa Creek Observed Discharge Data, WY 1958

Reproduced from best available copy

RIO GRANDE BASIN

8360. Alamosa Creek above Terrace Reservoir, Colo.

Location. -- Let 37*23*, long 106*21*, in sec. 8, T. 36 N., R. 6 E., on left bank 3 miles upatream from Terrace Reservoir Dam and 15 miles northwest of Capulin.

Records available. --September 1911 to June 1912 and October 1934 to September 1958 in reports of Geological Survey. April 1915 to October 1919, October 1923 to September 1927, and October 1934 to September 1944 in reports of State engineer. (No winter records most years.) September 1911 to June 1912 published as Rio Alamosa near Monte Vista.

Gago. --Mater-stage recorder. Altitude of gage in 8,600 ft (from topographic map).

Sept. 29, 1911, to June 4, 1912, staff gage at ranger station if miles upstream at different datum. Apr. 1 to May 6, 1915, staff gage and May 7, 1915, to Sept. 30, 1927, water-stage recorder, near present site at different datum.

Average discharge. -- 17 years (1923-34, 1940-41, 1943-58), 115 cfs (83,260 acre-ft per year).

Extremes. --Maximum discharge during year, 1,120 cfs May 27 (gage height, 3.32 ft), from rating curve extended above 930 cfs; minimum not determined.
1911-12, 1915-19, 1923-27, 1934-56: Maximum discharge, 5,200 cfs Oct. 5, 1911 (gage height, 11.0 ft, site and datum then in use, from floodmark), from rating curve extended above 1,000 cfs on basis of computation of peak flow over dam about 8 miles upstream; minimum not determined.

Remarks. --Records good except those for periods of ics effect or no gage-height record, which are poor. No diversion above station.

Revisions [water years]. -- WSP 898: 1911(M).

Rating tables, water year 1957-58, except period of ice effect (gage height, in feet, and discharge, in cubic feet per second)
(Shifting-control method used Apr. 23 to May 5)

	Oct. 1	to June 29	•	J.	une 50	to Sept.	30
1.0 1.3 1.6 2.0	18 60 115 225	2,5 3.0 4.0	460 800 1,700	0.8 1.0 1.3	17 32 66	1.6 2.0	116 225

Discharge, in subic feet per second, water year October 1957 to September 1958

Day	Oct.	Nov.	Dec.	Jan.	Peb.	Mar.	Apr.	May	June	July	Aug.	Sept,
	28	30	·	<u> </u>	5		19 21	104 104	120	110 101	32	2
2 3	30	31	1 1	11 1	1	ii 1	21	T04	712	101	30	2
: 1	28	32			1	il 3	19	106	652	101	30	5
9	28	35	1 1	j	1	11	21	114	619	92	34	2
š l	28	35		4 1			. 26	164	586	84	*44	s
	20	31	l i		(*)		21	228	776	78	42	3
7	20	30		!! }	11	11	23	305	668	76	37	2
έl	28	28			}	11	7.2	365	556	72	34	1
9	27	97	1			11	22	390	496	69	31	3
ιŏ	26	27 26	(•)	(•)	-	[19	412	430	•65	27	2
	24	h		1		(+)	*21	442	395	63	30	3
12	24 26		11 1			11 ' '	22	496	360	56	59	2
13		1 1	i L) 10	32	418	325	57	30	5
	30 28 30					11	23	406	296	52	•30	10
14	20		i i			1	31	412	284	51	34	- 1
,,		21	23) 10	> 20					50	31	•;
6	28				: I	11	45	484	585	50	35	•
7	-28	l E	1	11 :	} †	11 '	62	490	284			
i i	28	(*)	i I '	11	11		83	593	*268	49	39	
ě	34	11	II .	!! !	11		102	645	256	51	42	
6	36	י ע			11	[104	682	256	45	44	
1	30	h l		!	i I	11	183	668	250	41	38	
ż	37	11		11	!	11	132	•760	219	39	. 61	
3	30	11			11	11	121	808	196	38	50	
	39 30		11		H	11	102	808	184	36	39	
4	30		H	l ī	11))	110	840	173	3A	35	,
25	. 30) 15	[]	.	!!	r	1	١	·	39	31	
6	28	11	H	11	ki .	15	114	856	149		*30	l
7	27	11	11	11	()	15	130	904	142	39		
	20	11 .	11	l i	ע	15	139	040	123	34	30 27	
9	28	l I	H	[]	r -	16		816	121	33 35	27	
ió	Šõ	11	H	11		17	110	824	118	35	26 26	
ii.	31	F	IJ	IJ		5.5		728		34	56	
Tida i	917	659	71.3	650	660			16,812	10,906	1,700	1,070	1,2
M-AII	20,6	22.0	63	10	20		64.0	632	384	67.4	34.0	40
	1,820		1,410	1,110	1,110	1,41:83	3,000	32,100	21,030	3,630	2,140	2.3

Peak discharge (bane, 670 ofs).--May 19 (9 p.m.) 70s ers (2.95 ft); May 27 (10 p.m.) 1/120 ofs (3.37 ft); June 6 (7 p.m.) 95s ers (5.10 ft).

^{*} Discharge measurement made on this day.

Note. -- Ho gage-height record Nov. 22 to Mar. 25 (stage-discharge relation effected by ice during most of period), Mar. 28; discharge estimated on basis of 4 discharge measurements, weather records, and reserve for mearly stations. Stage-discharge relation affected by ice Nov. 8-21.

```
SNOW62 *ALAMOSA CREEK NEAR MONTE VISTA, COLO. (107 SQ. MI.) WY 58
            *CONTROL OPTIONS (BALANCE OF DATA WARTES WITH SPECIFIED ORTIONS)
          (2) (3) (4) (5) (6) (7) (8) (9)(10)(11)(12) (13)(14)(15)(16)
    __0 1 __
                      1 1
                                           0 1 0 1 3 1
    * TIME - AREA HISTOGRAM DEFINITION
 - *NBTRI BTRI(1) (2) (3) (4) (5) (6) ...
     6 .056 .198 .199 .240 .281 .026
           * SNOW PARAMETERS
            *FIRR (15)
    <u>.80 .75 .70 .85 .60 .55 .53 .50 .49 .48 .47 .45 .43 .41 .40</u>
            *RICY (37)
        .56 .57 .61 .67 .75 .80 .83 .87 .92 .96 .99 1.0 1.0 .98 .91 .87 .84 .81 .79 .77 .75 .73 .72 .71 .70 .69 .68 .67
         .64 .62 .60 .57 .56 .55
            *DPSE (37)
*BDDESM-SPBFLW-SPIWCC-SPM-ELDIE-XDFNS-EEDR--EESI-MRNSM-DSMGH-PXCSA
            .0033 .040 4.00 1.00 1.113 .04 .40 .15 .015 .018 .199
* OUTPUT PARAMETER - RMPF, IF ANY DATLY FLOW EXCEEDS RMPF
..... * WATERSHED PARAMETERS .- .RGPMB - AREA.... : FIMP - EWIR ...
                              1.0 107.
                                                •01
                                                          0.006
  . * SOIL MOISTURE PARAMETERS.
  _ * VINTMR-BUZC- SUZC = LZC = ETLE = SUBWF = GWETE- SIAC = EMIR - BIVE
   0.15 1.0 1.5 6.0 0.30 0.0 0.0 0.42 10.0 2.9 # OVERLAND FLOW PARAMETERS - DESS - DESL - DEMN - DEMNIS - IFRC
   *CHANNEL ROUTING AND GROUND WATER PARAMETERS
   * CSRX - FSRX - CHCAP - EXOPV - BFNLR - BFRC
. 0.91  0.94  670.0  0.30  0.90  0.95

*MOISTURE STORAGE VALUES - GWS - UZS - LZS - BFNX - IFS
0.187  0.0  4.0  0.90  0.0
          ALAMOSA CREEK ABOVE TERRACE RESERVOIR. NEAR MONTE VISTA. COLO.
            *JULDI- NUMBER OF SELECTED HOURLY STORMS
   291 121 111 121 130 121 215 121 265 121
          .* LAST TWO DIGITS IN THE CALLADER YEARS OF THE WATER YEAR TO BE RUN
            * YEARI - YEAR2
  * ABOVE CARD IS ALPHANUMERIC DATA TO LOCATE STREAMGAGE
  * EVAPORATION DATA
  * AVERAGE DATLY EVAPORATION VALUES OVER 10-DAY PERIODS
     0.081 0.027 0.034 0.040 0.028 0.013 0.019 0.024 0.021
                                                                       * 1 4LL 57
     0.027 0.024 0.019 0.029 0.032 0.039 0.029 0.040 0.051 # MINTER58 0.048 0.071 0.082 0.095 0.120 0.153 0.173 0.218 0.235 0.212 # SPRING58
     0.223 0.207 0.118 0.165 0.095 0.124 0.102 0.090 0.098
  * MONTHLY PAN COEFICIENTS 1956- 1959
   * STREAMFLUW DATA
  * AVERAGE REGURDED STREAMFLOW VALUES DURING DAY IN CFS
     25.63 24.27 24.78 22.49 20.60 19.89 19.05 17.45 16.50 18.07 15.74 20.63 17.86 14.87 13.07 12.14 21.17 12.44 12.94 23.05
                                                                                    PRICT
           20.63 17.86 14.87 13.07
20.50 18.81 18.23 17.46
                                                                                    ≉∩∩T
     26-09
                                          16.54 16.34 15.04 14.92 14.39
                                                                                     ↑OCT
     16.28
                                                                                    #CCT
            19.57 17.67 17.46 17.22 15.99 16.73 16.46 16.18
     18.95
     15.66 15.42
                                                                        15.52
                                                                                   *NOV
                    15.19
                           14.97
                                  14.70 14.57 14.40 14.23 14.38
           13.69 13.58
                                                                        13.94
            13.69 13.58 13.49 13.40 13.32 13.25 13.18 13.10 19.80 20.15 20.12 19.95 19.74 19.51 19.28 19.05 18.45 18.28 18.12 17.97 17.84 17.72 17.61 17.51
                                                                                    *NOV
     13.81
                                                                        13.08
                                                                                   *NOV
     17.49
           19.80 20.15
                                                                        13.84
     18.64
     17.34 17.26 17.29 17.15 17.10 17.06 17.03 17.01 16.93 16.98
                                                                        17.42
                                                                                   *DFC
                                                                                   *DEC
     16.97
                                                                                   *DEC
```

```
....16.97 16.98 16.99 17.00 17.02 17.04 17.07 17.10 17.14
                                                                                                     17.18.
                 17.27 17.31 17.37 17.42 17.48 17.54 17.60 17.66 17.87 17.94 18.02 18.09 18.17 18.25 18.33 18.40
        17.22
                                                                                                                    *JAN .
                                                                                                     17.73
                                                                                                                    #JAN
        17.80
   ....18.58
                                                                                                                    #JAN
                   18.75 18.84
                                                                                                                    *FE8
  . 18.67
                                       18.93. 19.02 19.11 19.20 19.29 19.39
 19.58 19.67 19.77 19.87 19.96 20.06 20.16 20.26 20.36 20.23 20.08 20.04 20.08 20.17 20.28 20.40 20.53 20.66 20.79 20.92 21.05 21.18 21.31 21.44 21.57 21.70 21.95 22.07 22.19 22.32 22.44 22.56 22.68 22.80 22.92
                                                                                                     29.17
                                                                                                                    ≠FF8
                                                                                                                    *FEB
                                                                                                     21.82
                                                                                                                    *MAR
                                                                                                                    *MAR
    .... . 23 • 15.
                                                                                                                    *MAR
                  23.26 23.37 23.48 23.59 23.69 23.79 23.89 24.00
        24.18
                                                                                                                    *MAR
        24.28
                  24.37
                            24.46 24.55 24.64 24.72 24.81 24.89 24.98
                                                                                                                    *APE
       25.14
                  25.22. 25.30...24.85...24.30...23.39...22.35 21.27...20.21
                                                                                                                    *APR
                  21.61 25.97 25.07 23.27 22.50 22.08 21.84 21.80 21.58 25.36 28.21 49.35 86.02 132.04 205.44 214.58 199.58 201.48
                                                                                                                    *APR
        18.12
                                                                                                                    *MAY
        24.03
       316.83 919.23.679.52 534.95.460.79.430.48 433.22 478.82 527.57 609.11
                                                                                                                    * MAY
       737.33 749.34 753.09 770.00 765.96 727.57 683.21 640.01 607.3
                                                                                                                    *MAY
       532.92
                                                                                                                    #MAY
      .502.32 474.49 448.84 424.94 418.11 431.72 392.56 369.98 349.72 330.18
                                                                                                                    #JUN
       312.67 296.22 280.72 266.00 252.14 239.07 226.67 214.91 203.75 192.88
                                                                                                                    #JUN
       182.85 173.33 164.30 155.74 147.61 139.90 132.59 125.65 119.1 113.22
                                                                                                                    #JUN
     107.29 101.67 96.33 91.27 86.46 83.50 81.45 73.77 69.69 65.79 62.27 58.93 55.76 52.75 49.89 47.18 44.60 45.81 40.41 37.96 35.87 33.88 31.99 30.20 30.88 30.25 25.40 23.94 23.60 41.33
                                                                                                                    #JIII.
                                                                                                                    *JUL
                                                                                                                    *JUL
 . . _ . _ 22.4.81
                                                                                                                    #JUL
                 19.35 23.62 26.31 32.11 28.09 15.07 14.21 12.58 19.15 15.10 10.48 9.31 12.88 17.43 7.98 12.91 29.37 9.01 8.52 8.02 7.54 7.08 6.64 5.70
        20.49
                                                                                                     33.31
                                                                                                                    *AUG
        22.05
                                                                                                      8.63
                                                                                                                    *AUG
       19.66
                                                                                                      5.33
                                                                                                                    * ALIG
         4.96
                                                                                                                    *AUG

    4.60
    .4.26
    .3.94
    .5.17
    .14.59
    .4.42
    .2.96
    .5.07
    .3.21

    6.64
    .27.17
    .39.57
    .38.66
    .17.02
    .6.01
    .14.67
    .18.25
    .19.52

                                                                                                      5.58
                                                                                                                    *SFP
                                                                                                    18.84
                                                                                                                    *SEP
        17.28 16.36 17.89 35.82 18.75 17.82 16.87 16.68 15.20 14.29
                                                                                                                    *55P
   * TEMPERATURE DATA FOR 1958 WATER YEAR
63. 28. 60. 22. 53. 30. 51. 38. 55. 41. 57. 35. 55. 27. 57. 19.
   58. 20. 57. 21. 56. 20. 52. 31. 39. 25. 44. 31. 47. 18. 48. 20.
   48. 30. 40. 21. 46. 28. 42. 26. 46. 22. 36. 23. 46. 3. 46. 5.
45. 7. 47. 8. 40. 7. 48. 15. 43. 29. 55. 15. 51. 22.

44. 30. 36. 19. 40. 28. 43. 24. 38. 15. 29. 17. 38. 12. 40. -10.

40. -6. 35. 5. 39. 6. 39. 9. 39. 5. 39. 12. 33. 11. 35. 10.
                                                                                                              #2
  30. 0. 30. -8. 27. -9. 27. -8. 23. -1. 14. -10. 13. -8. 32. 0.
                                                                                                               #3
   37. -1. 39. -1. 36. 1. 20. -10. 20. -10. 26. -12. 24. -14. 29. -10. 28. -11. 28. -11. 31. 0. 41. 7. 30. -3. 28. 8.
                                                                                                              *4
 . <del>42.</del> 3. 41. -3. 37. -5. 31. -7. 35. -6. 36. -3. 36. 1. 35. 6.
                                                                                                              ‡2
   40. 7. 44. 2. 36. 5. 31. -4. 35. -3. 33. 0. 43. -1. 33. 5. 32. -4. 32. -6. 35. 2. 27. -7. 32. -1. 36. 2. 37. -11. 35. 8. 33. 11. 32. 14. 30. 15. 29. 9. 29. 8. 40. 9. 37. 14.
                                                                                                              *4
                                                                                                              ‡1
   32. 10. 32. 9. 26. 12. 27. 9. 24. 13. 23. 9. 36. 1. 40. 12. 35. 9. 27. 9. 19. 11. 19. 1. 26. -7. 24. -1. 20. -9. 27. 12.
                                                                                                              *2
                                                                                                              *3
  24. 14. 28. 12. 28. 17. 25. 0. 32. 16. 25. 13. 20. -4.
                                                                                                             *4
   28. 12. 32. 1. 35. 12. 30. 21. 31. 11. 29. 8. 32. 1. 32. 9. 27. 20. 28. 4. 25. 5. 27. -3. 26. 15. 25. -2. 32. 7. 38. 11.
   39. 12. 43. 13. 42. 18. 63. 15. 42. 18. 44. 13. 40. 17. 37. 17.
                                                                                                              *3
   33. 21. 32. 12. 27. 5. 20. -10. 22. -10. 24. -4. 24. -5. 28. 1. 28. -2. 29. 4. 29. 14. 29. 2.
                                                                                                              *4
                                                                                                              *1
   25. 6. 27. -8. 27. 4. 24. 1. 30. -4. 24. 10. 26. 12. 30. 19. 32. 18. 35. 10. 33. 4. 38. 8. 40. 21. 35. 22. 38. 21. 40. 18. 35. 15. 35. 19. 35. 2. 30. 19. 38. 6. 37. 8. 32. 10. 33. 11. 38. 38. 38. 40. 21. 37. 8. 32. 10.
                                                                                                             *2
                                                                                                             # 3
                                                                                                             *4
   33. 11. 28. 18. 29. 19. 28. 14. 28. -3. 38. 1. 37. 20. 30. 20.
                                                                                                            . ≠ 1
   35. 15. 32. 8. 29. 9. 29. 15. 36. 3. 48. 6. 50. 16. 48. 20.
```

```
38. 28. 40. 20. 38. 19. 36. 27. 42. 22. 46. 16.
  42. 21. 48. 20. 50. 26. 56. 25. 57. 25. 58. 29. 57. 35. 51. 24. 52. 18. 55. 21. 55. 23. 50. 32. 51. 21. 53. 25. 56. 21. 55. 25.
                                                                                     #1
                                                                                      *2
  63. 23. 62. 26. 63. 27. 64. 28. 64. 26. 62. 27. 64. 27. 69. 28.
                                                                                     *3
  66. 33. 68. 30. 68. 29. 70. 27. 69. 35. 65. 27. 63. 29.
                                                                                      #4
  67. 27. 67. 32. 67. 26. 71. 26. 63. 39. 55. 37. 62. 32. 63. 33.
                                                                                     # 1
 _60. 41. 62. 23. 65. 27. 62. 25. 65. 27. 66. 37. 69. 25. 68. 30.
                                                                                     ‡2
  71. 30. 69. 30. 71. 28. 72. 33. 71. 36. 73. 31. 75. 30. 71. 33.
  69. 28. 70. 27. 74. 31. 75. 28. 73. 34. 70. 34. 72. 29. 72. 34. 70. 33. 70. 25. 68. 25. 66. 32. 70. 28. 75. 29. 77. 29. 80. 30. 81. 30. 79. 30. 77. 30. 77. 30. 71. 46. 74. 35.
                                                                                     *2
  74. 38. 70. 42. 72. 40. 70. 30. 73. 28. 76. 28. 77. 28. 68. 32.
  71. 35. 69. 37. 70. 28. 77. 27. 72. 35. 70. 37. 72. 32.
  73. 30. 76. 33. 78. 39. 75. 42. 72. 42. 69. 40. 70. 39. 71. 35. 76. 35. 76. 36. 72. 37. 73. 43. 78. 37. 76. 40. 74. 37. 73. 43.
  69. 41. 72. 43. 73. 38. 67. 35. 60. 40. 67. 43. 67. 43. 65. 34.
  72. 28. 67. 31. 72. 29. 72. 29. 71. 34. 75. 30. 75. 28. 73. 25. 72. 27. 71. 36. 67. 30. 70. 32. 65. 34. 60. 33. 68. 38.
  70. 36. 71. 32. 71. 33. 63. 32. 60. 46. 60. 33. 56. 22. 65. 20.
                                                                                     * 2
  65. 22. 61. 24. 65. 22. 67. 23. 70. 23. 67. 24. 59. 34. 49. 38.
  57. 25. 58. 24. 57. 30. 62. 35. 61. 25. 57. 22.
  * AUXILLARY RAINGAGE DAILY TOTALS
           * NSGRD, NUMBER OF STORAGE GAGE RAINFALL DAYS
  * HOURLY RAINFALL TOTALS FROM BASE REORDING GAGE
  * NO CARDS REQUIRED FOR PERIODS WITH NO RAINFALL
          * IWBG, INDEX NO OF WEATHER BUREAU RAINGAGE
          * YEAR, LAST TWO DIGITS OF CURRENT YEAR
         * MONTH, CURRENT MONTH OF YEAR ____
          * DATE, CURRENT DAY OF MONTH, 1-31
        * CN. 1 FOR AM 2 FOR PM
  * IMBG YR MO DY CN HOURLY RAINEALL TOTALS IN CHRONOLOGIC ORDER
  370 57 10 03 1 .00
370 57 10 04 1 .00
                        .00 .02 .02 .02
                                               .02 .00 .00 .00 .00
                                                                            .00
                                                                                  .00
                       .00
                              .00
                                    .00 .00
                                                          .01
                                                .00 .00
                                                                 .00
                                                                            .00
                                                                       -00
                                                                                  .00
  370 57 10 06 2 .00
                         .00 .00 .00 .00 .02 ..03 ..02
                                                                 - 00
                                                                       .00
                                                                            .00
                                                                                  +00
  370 57 10.10.1...00
                        .00
                              .00 .00 .00
                                                          •00
                                                -00
                                                    .03
                                                                       .00
                                                                            •00
                                                                 • 00
                                                                                  .06
  370 57 10 12 1 .00 .00
                              --00
                                   - -00 --00
                                               _00 _00 _00
                                                                 • 00
                                                                       • 91
                                                                            .02
                                                                                  . 04
                                    _00
370 57 10 12 2 .05
                        -02
                               .02
                                          _01
                                                    ___00
                                                          ....03
                                                -00
                                                                       • OQ
                                                                 __00
                                                                           ....02
                                                                                  .00
  370 57 10 13 1 .02
                                                     .00
                                                           .00
                         •00
                               •00
                                    .00
                                          .00
                                                                 .00
                                                .00
                                                                       .00
                                                                            .00
                                                                                  .00
  370 57 10 13 2 .00
                         .00
                               .02
                                    .04
                                          -00
                                                •00
                                                    .00
                                                           .00
                                                                 .00
                                                                       .00
                                                                            .00
                                                                                  .00
  370 57 10 14 2 .00
                                   ..... 0.0.
                                          .00
                        -00
                               ~00.
                                                          _.00_
                                               _.03__.00
                                                                 ±00
                                                                       .00
                                                                            •.00
                                                                                  .00
  370 57 10 17 1 .00
                                    .05
                         .00
                              .00
                                         • 02
                                                    • 03
                                                          • 05
                                                                .07
                                               •00
                                                                       . 03
                                                                            .02
                                                                                  .00
 .370 57 10 19 1 .05
                         .10 .15 .10 .10 .00 .00 .00
                                                                __.00 ..
                                                                       •00
                                                                            .00
                                                                                  -00
  370 57 10 19 2 .00
                        -00
                              __00___00__
                                               -- 05
                                                    - 05 - 05
                                                                 - 05
                                                                       _00
                                                                            .00
                                                                                  .00
  370 57 10 20 1 .05
                        .10
                              . 25
                                    .10
                                        -10
                                                    .00
                                                .00
                                                           .00
                                                                 • 00
                                                                       .00
                                                                            .00
                                                                                  .00
  370 57 10 20 2 .00
                              .00
                                    .05
                         .00
                                         .10
                                                    • 05
                                                                 .00
                                                .10
                                                           • 04
                                                                       .00
                                                                            .00
                                                                                  .00
  370 57 10 21 1 .05
                         -05 -05
                                   _ .05_
                                                           ......00
                                         -05
                                               -00---00
                                                                       •.00
                                                                                  .00
                                                                            •OO
  370 57..10 21 .2...05
                                    .05
                        ♣ 05. .......05
                                                    • 00
                                         .04
                                                .00
                                                           .00 . .00
                                                                       +00
                                                                            .00
                                                                                  .00
 370 57 10 22 1 -20
                                    .10
                        .....30......25
                                         ... 0.1.
                                               -00--00--00
                                                                . .00
                                                                       +00
                                                                            •00
                                                                                  .00
370 57 10 29 1 .00
                                    .00
                        .00 .00
                                         .303
                                                .00 .00
                                                          _00
                                                               .00مـــــ
                                                                       +.00.
                                                                            .00
                                                                                 . .00
  370 57 11 01 2 .00
                                        .00
                                                           .0+
                        .00 .00
                                    .00
                                                                 • 02
                                                .00 . .05
                                                                       .00
                                                                            .00
                                                                                 .00
  370 57 11 02 2 .00
                        .00 .00
                                    .00
                                                    • 00
                                                                 .00
                                          .00
                                                .00
                                                           •50
                                                                       .00
                                                                            -00
                                                                                  .00
  370 57 11 03 1 .00
                        -05
                                   ....10
                             ----10
                                                          .00
                                         -15
                                               -06
                                                     __04
                                                                 _00
                                                                      ..00
                                                                             • Q Q_
                                                                                 . •00.
 370 57 11 04 1 .00
                                    .00
                                          .00
                        .00_ .00
                                               .00
                                                    • 00
                                                          •10
                                                                • 05
                                                                      .00
                                                                            .00
                                                                                 • 00
 370 57 11 05 1 +05
                                               .00......00
                       -10--05
                                   -.0.0
                                                                 .00
                                          .00_
                                                                       • 00
                                                                            .00
                                                                                 .00
  370 57 11 06 1 .00 .00 .00
                                   -00
                                          -00.
                                                          ...O.B
                                               -00
                                                     .00
                                                                - 12
                                                                     _ 40.0
                                                                            .00...00.
  370 57 11 06 2 .05
                       -10 -01
                                                    .00
                                    +00
                                         - 00
                                               -00
                                                          . .00
                                                                 • 00
                                                                      .00
                                                                            •00
                                                                                  .00
 370 57 11 15 1 .10
                                    .25
                        .20 .25
                                          -20
                                                     .07
                                                                 .00
                                                                      .00
                                                .10
                                                          • 05
                                                                            -00
                                                                                 .00
 370 57 11 16 1 400
                        -00 -00
                                   --0.0
                                                           .05
                                          -00
                                                .00
                                                     -00
                                                                 -10
                                                                       10
                                                                           ....10.
                                                                                 ..... 10
 370 57 11 16 2 410
                        .10 .04
                                    .00
                                          •00
                                                .00
                                                     .00
                                                           .00
                                                                 . 00
                                                                       .00
                                                                            .00
```

54. 25. 51. 26. 49. 25. 47. 18. 46. 22. 50. 26. 49. 24. 47. 17.

```
370 57 11 17 1 .00
                            .00
                                        .10
                                  .05
                                             .15
                                                   . 1,0
                                                         .10
                                                                .05
                                                                                 .00
                                                                     .00
                                                                           •00
                                                                                       .00
 370 57 12 15 2 .00
                            ٥٥
                                  -00
                                        .00
                                             _00_
                                                   ..00
                                                          -10
                                                                .15
                                                                     _15
                                                                           .15
                                                                                 .10
                                                                                       .07
    370 57 12 16 1 .05
                                       .00
                                             200
                           .04
                                  .04
                                                   .00
                                                         .00
                                                               .00
                                                                     .00
                                                                           .00
                                                                                 .00
                                                                                       .00
                           .00
    370 57 12 18 2 .00
                                  .00
                                        .00
                                             .00
                                                         . 05
                                                   .00
                                                               .05
                                                                     . 08
                                                                           .07
                                                                                 .04
                                                                                       . 03
   .370 57 12 19 1 .04
                           .03
                                                   ۵٥.
                                                         .00.
                                                               ...00
                                 ..02
                                       .04
                                             .00
                                                                     ▲00
                                                                                 .00
                                                                           .00
                                                                                       .00
    370 57 12 24 1 .00
                           .00
                                  .03
                                        .06
                                             .00
                                                   .00
                                                         .00
                                                                                       .00
                                                               .00
                                                                     • 00
                                                                           .00
                                                                                 .00
    370.58 01 12 1 .00
                                             .01
                                                   .... 0.0.
                           ...00
                                 .02
                                       ...0.3
                                                          ...00...
                                                               •00
                                                                     .00
                                                                           .00
                                                                                 .00
                                                                                       .00
 370 58 01 13 2 .00
                                  وم
                            ٥٥
                                       -00
                                             .00
                                                  .00
                                                              -02
                                                         .00
                                                                     -02
                                                                          . 4.00
                                                                                 .00
                                                                                       .00
    370, 58 01 14 1, .00
                                       .10
                                                   ...00
                                                         . 00
                           .05
                                             . 02
                                                               .00
                                                                           .00
                                 • 05
                                                                     .00
                                                                                 .00
                                                                                       .00
    370 58 01 19 2 .00
                           .03
                                 •00
                                        .00
                                             .00
                                                   .00
                                                         .00
                                                                                       .00
                                                               .00
                                                                     .00
                                                                           .00
                                                                                 .00
   .370 58 01 23 1 ...00
                           • Q.Q:
                                                   ..00.
                                                         .00
                                 _ __000....
                                       ·•00... •02.
                                                               ...00
                                                                     ..00
                                                                           a 00
                                                                                 • 00
                                                                                       .00
    370 58 01 24, 1 .00
370 58 01 25 1 .00
                           .00
                                             . 05
                                 .00
                                       .05
                                                   .00
                                                         .00
                                                               .00
                                                                     .00
                                                                           .00
                                                                                 .00
                                                                                       .00
                                                   .02
                                                                     . 04
                           .00
                                 .00
                                       .00
                                             .00
                                                         .03
                                                                           .00
                                                               .08
                                                                                 •00
                                                                                       .00
 ....3.70 58 01.26.2. .00
                           _.00
                                 -00
                                       -00 -00
                                                   ۵.0.م..
                                                                                       .00
                                                        ....00......08
                                                                     . . 0.0
                                                                           .00
                                                                                 .00
    370 58 01.28 1 .05
                           .05
                                             .00
                                                   .00
                                 .05
                                       .06
                                                         ..00
                                                                                 .00
                                                              •00
                                                                     .00
                                                                           .00
                                                                                       .00
    370 58 01 29 1 .00
                           .00
                                 .00
                                       .00
                                             .00
                                                   -02
                                                         .00
                                                              •00
                                                                     .00
                                                                           .00
                                                                                 .00
                                                                                       -00
   370 58 01 30 2 ... 03.
                          ... . 04.
                                            .00
                                                  ...00
                                 ...00...
                                       -00...
                                                         ...00 .. .00
                                                                     ... 00
                                                                           •00
                                                                                 -00
                                                                                       .00
   370 58 02 04 1 .00
                           .00
                                             •00
                                 .00
                                       .00
                                                   .00
                                                         • 02
                                                               .05
                                                                     . 05
                                                                           . 12
                                                                                 .00
                                                                                       .00
   370 58 02 05 1 .05
                           -10
                                 -10
                                       .10
                                            ...10
                                                   .10
                                                         . 05
                                                               .00
                                                                           .00
                                                                     • 00
                                                                                 .00
                                                                                       .00
   370 58 02 09 2 .00
                           .00
                                 .00
                                            ..08
                                                         -07
                                                              ___07__
                                       .05
                                                   .07
                                                                    - 00
                                                                           .00
                                                                                      . 20
                                                                                 • 00
  370 58 02 13 1 .00
                           .10
                                                               .00
                                                                     .00
                                 .10
                                       .08
                                             .00
                                                   .00
                                                                           .00
                                                         .00
                                                                                      •00
                                                                                 .00
   370 58 02 25 2 .10
                           .10
                                 .10
                                                         .10
                                       .10
                                             -10
                                                   .10
                                                               .10
                                                                     . 03
                                                                           .00
                                                                                 .00
                                                                                       .00
   370.58 02 26.1...00...
                          •£0.0.
                                 .00
                                            - 05
                                       ...0.0...
                                                 ... . 05...
                                                               .10
                                                                     . 04
                                                        -10
                                                                           .00
                                                                                 .00
                                                                                       .00
   370 58 03 05 1 .01
                           .03
                                 .05
                                       .05
                                             .05
                                                        .00
                                                              .00
                                                   .01
                                                                     • 00
                                                                           .00
                                                                                 • 00
                                                                                      .00
   370 58 03 01 al .02
                           -02
                                 .05
                                       .10.....08
                                                   .00 ......00
                                                              .00
                                                                     .00
                                                                           • )0
                                                                                 .00
                                                                                      .00
   370 58 03 09 1 .00
                           -00
                                 - OO
                                       _00_ _00
                                                   .00
                                                         - 00
                                                              .00
                                                                   . 04
                                                                          .10
                                                                                 .15
                                                                                       .00
   370 58 03 09 2 .07
                                 -00
                           .00
                                       .00
                                            .00
                                                   .00
                                                        .00
                                                              .00
                                                                    • 00
                                                                          •00
                                                                                •00
                                                                                      .00
   370 58 03 11 2 .00
                           .00
                                 .00
                                       .10
                                             .10
                                                   .00
                                                              .00
                                                         .00
                                                                     .00
                                                                          .00
                                                                                .00
                                                                                      .00
   370 58 03 14 1 ...00
                          ...0.5
                                 -0.0
                                                        .00
                                                              .00
                                                                    .00
                                                                                .00
                                                                           .00
                                                                                      .00
   370 58 03 15 2 .00
                          .00
                                      .00
                                 .00
                                            .00
                                                               .05
                                                   .00
                                                         .00
                                                                    • 05
                                                                                      .01
                                                                          .05
                                                                                .05
   370 58.03 16 1 .00
                                      ....10.
                           .00
                                 -00
                                            .10
                                                  ....10
                                                        . 10
                                                              -10
                                                                    -10
                                                                          .10
                                                                                . 05
                                                                                      .00
 ...370 .58 .03 .18 .1 .00
                          .00
                                 -00
                                       _00_
                                            ..... 06.
                                                   -00
                                                                               ..00
                                                         -00
                                                              .00
                                                                     -00
                                                                          .00
                                                                                      .00
   370 58 03 22 2 .07
                                            .10
                                                  .00
                                                                          .00
                                                                                .00
                         . 10
                                 -10
                                       -10
                                                         - 00
                                                              -00
                                                                    .00
                                                                                      -00
   370 58 03 23 2 .00
                          •00
                                 -06
                                       .00
                                            .00
                                                  -00
                                                        .00
                                                                                .00
                                                              .00
                                                                    .00
                                                                          .00
                                                                                      .00
370 58 03 24 2 .00
                           .00
                                 -06
                                      ....06...
                                           __00
                                                  .Q0
                                                        .00
                                                              ...00
                                                                   .... . 00
                                                                          .00
                                                                                .00
                                                                                      .00
   370 58 03 25 2 .00
                           .00
                               ...07
                                       .06
                                            .00
                                                  .00
                                                        .00
                                                              .00
                                                                    .00
                                                                                .00
                                                                          • DO
                                                                                      .00
                          .00
   370 58 03 26 1 .00
                               .00
                                      ..00
                                             .06
                                                  ...00
                                                                    - 00
                                                                          .00
                                                                              . .00
                                                                                      .00
 370 58 03 28 1 .00
                          ..00
                                .00
                                      __0.0
                                            .00
                                                  .00
                                                        -00
                                                              -10
                                                                    ....15
                                                                          .15
                                                                                .15
                                                                                      .15
                          ..00
                                      .00
   370 58 03 31 2 .00
                                 .00
                                            .00
                                                  •00
                                                        -10
                                                              .00 .00
                                                                          -00
                                                                                .00
                                                                                      .00
   370 58 04 02 1 .00
                                +00
                           .00
                                       .00
                                            .10
                                                  .05:
                                                        - 25
                                                              .05
                                                                    • 05
                                                                                .10
                                                                          .05
                                                                                      . 05
370 58 04 04 1 .05
                               ..... 1.0.
                          -10
                                      ...10
                                            .__10.
                                                  ...10...
                                                        ....10
                                                              ....10
                                                                   _ 410
                                                                          .10
                                                                                . 05
                                                                                      .00
   370 58 04 08 2 .10
                          .20
                                .15
                                      .10
                                            05
                                                  ·20
                                                        .10
                                                                          .08
                                                              -10
                                                                    . 10
                                                                                .00
                                                                                      - 00
   370 58 04 09 2 .00
                                       .03
                          400 ..... 03
                                            .03
                                                             ....0.0
                                                  -00
                                                       ......00.
                                                                   ....00
                                                                          .00
                                                                                .00
                                                                                      .00
370 58 04 11 2 .00
                           -00
                                 •00
                                      .00
                                            .00
                                                  ...05
                                                        -08
                                                              .07
                                                                    - 06
                                                                          ...04
                                                                               .02
                                                                                      .00
  370 58 04 12 1 .00
                          .00
                                -00
                                      .02
                                            .03
                                                  .05
                                                                    . 03
                                                        .07
                                                              .05
                                                                                      .02
                                                                          .02
                                                                                .01
   370 58 04 29 1 .00
                          .00
                                            .03
                                .00
                                      .00
                                                  .05
                                                        .07
                                                              .04
                                                                    . 04
                                                                          .03
                                                                                •00
                                                                                      .00
  370 58 04 29 2 .02
                          410.
                                -15
                                      .08.....07.
                                                  -00
                                                        .00
                                                                    .00
                                                              __00
                                                                          .00
                                                                                .00
                                                                                      - 00
   370 58 04 30 1 .00
                                .05
                                           • 03
                                                                    .00
                          •03
                                      .05
                                                  -00
                                                        .00
                                                              .00
                                                                          .00
                                                                                .00
                                                                                      .00
   370 58 05 11 2 ...00
                         - 00
                                ...00
                                      .10. .20
                                                  ·40
                                                        . 20
                                                             ...10
                                                                   .. . 20
                                                                          .10
                                                                                .10
                                                                                      .08
  370 58 05 12 1 .08
                                .05
                           -07
                                      ـ 23 ـ
                                           ___02
                                                  .00
                                                       .00
                                                             _00_
                                                                   .00
                                                                                ■ 0.0
                                                                         __ 00
                                                                                      .00
   370 58 05 16 1 .00
                          .00
                                -00
                                      400
                                            -05
                                                  .00
                                                        .00
                                                              .00
                                                                    .00
                                                                                .00
                                                                         •00
                                                                                      .00
   370 58 05 18 2 .00
                          .03
                                      .00
                                -00
                                            -00
                                                  .00
                                                        .00
                                                                    .00
                                                                          .00
                                                              .00
                                                                                . 10
                                                                                      .00
  370 58 05 20 2 .01
                                .04
                          _03
                                      ...03. ...02
                                                  ...0.5.
                                                        .08
                                                              ...03
                                                                    ...02
                                                                          .01
                                                                                .00
                                                                                      .00
   370 58 05 21 2 .00
                          .00
                                .00
                                      .00
                                            .00
                                                  .00
                                                       .03
                                                                    . 02
                                                              . 02
                                                                          .00
                                                                                .00
                                                                                      .00
   370 58 05.23 2 ...00
                                • 03
                                    . .02
                                                       ..............................
                         .00
                                                  .. 00
                                                             .... 0:0
                                                                    .00
                                                                          .00
                                                                               ..00
                                                                                      .00
   370 58 06 05 2 .00
                         -25
                                -00
                                      .02
                                            ـەمـ
                                                  -02
                                                        .02
                                                              مم
                                                                    .00
                                                                          -00
                                                                                .00
                                                                                      400
   370 58 06 06 1 ..00
                          .00
                                .02
                                     ..07
                                            .02
                                                  .07
                                                        . 06
                                                              .11
                                                                    . 02
                                                                          .02
                                                                                .04
                                                                                      .00
   370 58 06 06 2 .11
                          .02
                                :00
                                      .00
                                            .00
                                                              .00
                                                  .00
                                                        .00
                                                                    .00
                                                                          .00
                                                                                .00
                                                                                      .00
370 58 07 06 2 -00
                          0.0
                                .00
                                      .OQ.
                                           _-.09
                                                              ...0.0
                                                  .00
                                                        -00
                                                                    ...0.0
                                                                               .00
                                                                          .00
                                                                                      .00
  370 58 07 07 2 .11
                          .02
                                .00
                                      .00
                                            .00
                                                  .00
                                                        .00
                                                              .00
                                                                                      .00
                                                                    .00
                                                                          .00
                                                                                .00
```

```
370 58 07 18 2 .04
                       - 06
                                  • 26
                                        .00
                                                   .01
                                                         .03
                             .00
                                              .00
                                                                    •90
                                                                          . 22
                                                               • 00
370 56 07 25 2 .00
                       .00
                             .00
                                  .00
                                                   • 09
                                        .00
                                              .00
                                                         .09
                                                                                .00
                                                               • 00
                                                                    . 00
                                                                          . 00
370 58 07 30 2 .38
                       .03
                                  •00
                             .07
                                        .00
                                              .00
                                                   .00
                                                         .00
                                                               .00
                                                                    • ວຄ
                                                                          •00
                                                                                .00
370 58 08 03 2 .00
                       .00
                             .05
                                  •06
                                        .08
                                                         .00
                                              .01
                                                   .00
                                                               .00
                                                                    .00
                                                                          -00
                                                                                .00
370 58 08 04 2 .12
                                  .04
                       -04
                             . 04
                                                         .00
                                        .00
                                              .00
                                                   .00
                                                               .00
                                                                    •00
                                                                               .00
                                                                          .ΩJ
370 58 08 05 2 .00
                       •00
                             .30
                                  •00
                                        .20
                                              .15
                                                   •10
                                                         • 10
                                                                          .00
                                                               .10
                                                                    .00
                                                                                .00
370 58 08 10 2 .00
                             .00
                                  .00
                       .00
                                        20
                                              40
                                                   .15
                                                         .00
                                                                    .00
                                                               • 00
                                                                          . na
                                                                               .00
370 58 08 12 1 .00
                             .05
                       .00
                                  -05
                                        .03
                                              .00
                                                         .08
                                                   .00
                                                              .00
                                                                    • 30
                                                                          .00
                                                                               • 03
370 58 08 12 2 .00
                             .00
                       .00
                                                   .00
                                                         .00
                                  • 06
                                        .00
                                              .00
                                                               .00
                                                                    .00
                                                                         .00
                                                                               • 00
370 58 08 13 1 .00
                       .00
                             .00
                                  .00
                                                   .00
                                        .00
                                              .00
                                                         .00
                                                                          .03
                                                              • 00
                                                                    .00
                                                                               .10
370 58 08 13 2 .00
                                        .00
                       .00
                             .00
                                  •00
                                             .07
                                                   .00
                                                         .00
                                                              .00
                                                                          .70
                                                                    .00
                                                                               .00
370
     58 08 16 2 .03
                             .02
                       .06
                                  .00
                                        •00
                                                   .00
                                             .00
                                                         .11
                                                              • 00
                                                                    .17
                                                                         .00
                                                                               .00
370 58 08 19 2 .07
                       •01
                             .07
                                  .00
                                        .00
                                             .00
                                                   .00
                                                              .00
                                                         .00
                                                                         .00
                                                                    .00
                                                                               .01
370 58 08 20 2 .00
                       .00
                            . 0∪
                                  .03
                                        .01
                                              .00
                                                   .00
                                                         .00
                                                              • 00
                                                                    · 00
                                                                          .00
                                                                               . J0
370 58 08 21 2 .00
                       .09
                            .01
                                  .09
                                        .01
                                             .08
                                                   .07
                                                         . 05
                                                              .07
                                                                               .01
                                                                    . 08
                                                                          • 06
           22 1 .07
370 58 08
                                  .00
                                        .00
                       .04
                            .03
                                             .00
                                                              .00
                                                   • 00
                                                         .00
                                                                    .00
                                                                         .00
                                                                               .00
370 58 08 23 2 .00
                       .00
                            .00
                                  .00
                                                         .00
                                        .03
                                             .01
                                                   .00
                                                              .00
                                                                         .00
                                                                    .00
                                                                               .00
370 58 09 04 2 .03
                       .03
                            .03
                                  .00
                                        .00
                                             -00
                                                   • 00
                                                        .00
                                                                               .00
                                                              .00
                                                                    . 20
                                                                         .00
370 58 09
           05 1 .00
                      .00
                            .00
                                 •00
                                       .00
                                             .00
                                                   .00
                                                        .00
                                                                    .00
                                                              .00
                                                                          .05
                                                                               .05
370 58 09
           05
              2 .05
                                  . 25
                                       .04
                                             .00
                       . 05
                            .05
                                                        .00
                                                              .00
                                                   .00
                                                                    •00
                                                                               .00
                                                                         .00
370 58 09 08 2 .02
                                        . 02
                       •03
                            .02
                                  .02
                                             .00
                                                         .00
                                                              .00
                                                   .00
                                                                    .00
                                                                         •00
                                                                               .00
370 58 09
           10 2 .00
                      .00
                            .00
                                  .00
                                       .00
                                                              .03
                                             .10
                                                   .03
                                                         .02
                                                                    • 00
                                                                         .00
                                                                               .00
370
    58 09
           11 2 .00
                      .00
                                       .00
                            .00
                                 .00
                                             .00
                                                   .06
                                                       . .04
                                                              .04
                                                                    .00
                                                                          ٥0.
                                                                               .00
370 58 09
           12 2 .00
                      .00
                            . ))
                                  -00
                                       .00
                                             •50
                                                        .20
                                                              . 15
                                                                    .14
                                                   • 10
                                                                         .10
                                                                               .10
370 58 09 14 1 .40
                                       .05
                                                              .00
                      .10
                            .08
                                  .07
                                             .06
                                                   .00
                                                        .00
                                                                    •00
                                                                         • 00
                                                                               . 00
370 59 09 15 2 .00
                      .05
                            .03
                                  .00
                                       .00
                                             •00
                                                   .00
                                                        .00
                                                              .00
                                                                    .00
                                                                         .00
                                                                               .00
370 58 09
           16 1 .00
                      .00
                                       .00
                            .03
                                  •00
                                             .00
                                                   .00
                                                              .00
                                                        .00
                                                                    .00
                                                                         .00
                                                                               .00
370 59 09
                      .05
          18 2 .00
                                       .02
                            .04
                                  .03
                                             .00
                                                   • 00
                                                        .00
                                                              .00
                                                                    .00
                                                                         .00
                                                                               - 00
370 58 09 19 2 .00
                      -00
                            • 90
                                  .04
                                       .06
                                                              .00
                                             -02
                                                   • 02
                                                        .00
                                                                    • 00
                                                                         -00
                                                                               .00
370 58 09 23 2 .00
                      .00
                            .00
                                  .00
                                       .05
                                             • 03
                                                   .03
                                                        .02
                                                              .02
                                                                    .03
                                                                         .00
                                                                               .00
370 58 09
                      .01
                            .08
          24 1 .02
                                  •02
                                       .01
                                             .06
                                                   • 03
                                                        .05
                                                              - 02
                                                                    • 32
                                                                         .02
                                                                               • 00
370 58 09 27 2 .00
                     ..00
                            .00
                                                   .00
                                  .00
                                       .00.
                                             .00
                                                        •00
                                                              .00
                                                                    .04
                                                                         .00
                                                                               .00
370 58 09 28 2 .00
                      .02
                            .03
                                  .02
                                       .00
                                             .00
                                                   .00
                                                        .00
                                                              .00
                                                                    • 00
                                                                         .00
                                                                               .00
370 98 09 30 1
# 98 IN LAST CARD NOTIFIES PROGRAM THAT IT HAS COME TO THE END OF HOURLY
* RAINFALL TUTALS
* RETURN TO NEW YEAR CARD AND REPEAT DATA TO THIS POINT FOR EACH YEAR
* IN CHRUNOLOGICAL ORDER FOR WHICH FLOWS ARE TO BE SYNTHESIZED
          *STORM DATA - ALAMOSA CREEK NEAR MOOTE VISTA, COLO.
*ALAMOSA CREEK NEAR MONTE VISTA, COLO. STORM 10/18/57
1.0 107. 121 -1 1
1.0
     16.7
              15.2
                       14.2
                                13.5
                                         13.0
                                                  12.7
                                                           12.5
                                                                    12.3
                                                                             12.2
    . 12.1
              12.0...
                       11.9
                                11.8
                                         11.8
                                                  .11.8
                                                           11.8
                                                                    11.7
                                                                             11.7
     11.7
              11.7
                       11.6
                                11.6
                                         11.6
                                                  11.6
                                                           11.5
                                                                    11.5
                                                                             11.5
     11.5
              11.4
                       11.4
                                11.4
                                         11.4
                                                  10.9
                                                           10.8
                                                                    10.8
                                                                             10.8
     10.8
            .. 10.8
                       10.7
                                10.7
                                         10.7
                                                ....10.7
                                                           10.8
                                                                    11.5
                                                                             14.5
     19.1
              25.0
                       30.3
                                33.5
                                         32.3
                                                  26.9
                                                           22.1
                                                                    18.9
                                                                             16.7
     15.2
              14.1
                       13.4
                                12.9
                                         12.6
                                                  12.3
                                                           12.2
                                                                    12.1
                                                                             12.1
     12.1
              12.6
                       14.7. __19.7.
                                         28.8
                                                . 39.0
                                                           49.6
                                                                    55.8
                                                                             53.4
     46.6
              38.1
                       31.3
                                26.7
                                         23.5
                                                21.3
                                                           19.8
                                                                    18.7
                                                                             17.5
     17.0
              16.7
                       16.4
                                16.3
                                         16.2
                                                  16.7
                                                           18.1
                                                                    21.6
                                                                             26.8
     33.0
              38.5.
                       41.7.
                                39.6
                                         34.4
                                                 ...29.8
                                                           26.6
                                                                    24.4
                                                                             22.8
              21.1
     21.8
                       20.6
                                20.3
                                         20.1
                                                  19.9
                                                           19.8
                                                                    19.7
                                                                             19.7
     19.7
              19.6
                       19.6
                                19.6
                                         19.6
                                                  19.6
                                                           19.6
                                                                    19.6
                                                                             19.6
 19.6.
            19.6
```

```
*ALAMOSA CREEK NEAR MONTE VISTA COLO. STORM 4/21/58
    1.0 107. 121 -1 1
  _ 1.0 _____
                            19.1 19.0 19.0 18.9 18.9 18.0
17.6 17.5 17.5 17.5 17.4 17.4
18.3 18.3 18.3 18.2 18.2 18.2
18.0 18.0 17.9 16.7 16.7 16.7
16.5 16.9 17.9 20.0 23.6 28.1
           19.1
                     19.1
                                                                                            17.7
          17.7
                     17.6
       17.3 17.3
                                                                                        .. 18.1
          18.1 18.0
16.6 16.6
  38.2 39.8 38.8 36.3 33.1 29.9 27.5 25.8
 20.7
35.7
                                                                                            20.6
                                                             26.2 25.8 25.4
                                                                                        . . 24.0
                                                             23.3 23.2
23.8 23.8
23.4 23.3
                                                                                 23.2
                                                                                 23.7
                                                                                          23.7
  23.3
                                                                                            23.2
    23.2
                 23.2 23.1 23.1
22.9 22.9
                                                23.1 23.1 23.0
                                                                                 23.0
                                                                                           23.0
          _22.9
  *ALAMOSA CREEK NEAR MONTE VISTA, COLO. STORM 5/10/58
  1.0 107. 121 -1 1
    1.0
     -0
-207.4 203.8 200.1 197.2 194.9 193.1 191.6 190.3
186.9 186.0 185.2 184.4 183.7 185.5 189.4 194.9
211.5 221.7 231.4 235.7 236.4 234.2 229.9 224.6
214.7 211.3 208.8 206.7 205.1 202.1 200.9 199.9
198.1 197.3 199.8 211.8 232.9 271.3 331.9 426.0
694.4 831.9 929.5 984.9 1024.8 1041.5 1041.0 1029.3
991.0 972.9 954.4 938.3 923.1 908.4 894.8 884.3
867.7 861.9 857.3 853.5 848.0 841.7 831.5 819.6
792.4 778.4 765.1 752.9 741.5 730.8 720.6 710.8
690.5 681.6 672.9 664.4 656.2 648.1 640.2 633.1
 _ 207.4
     690.5 681.6 672.9 664.4 656.2 648.1 640.2
                                                                               633.1
   624.0 620.7 619.5 616.5 613.2 607.5

573.7 566.1 559.0 552.4 546.1 538.4

516.1 510.9 507.4 506.5 506.7 508.5
                                                                     599.8
                                                                               591.0
                                                                                          582.0
                                                                    532.6
                                                                                526.9
                                                                                          521.4
                                                                     511.7.
                                                                               515.7
 519.6. 516.1 510.0
 *ALAMOSA CREEK NEAR MONTE VISTA, COLO. SJORM 8/3/58
1.0 107. 121 -1 1
 . 1.0

    20.8
    20.8
    20.7
    20.7
    20.6
    20.6
    20.6
    20.6
    20.5

    16.3
    16.3
    16.3
    16.2
    16.2
    16.1
    16.3
    17.8

    29.7
    36.2
    45.5
    45.8
    39.9
    33.8
    29.4
    26.3

    22.8
    21.8
    21.1
    20.6
    20.2
    15.9
    15.7
    15.5

    15.5
    14.9
    21.8
    28.1
    35.6
    43.6
    44.8
    42.6

                                                                                          16.4
                                                                                          22.6
      15.5 16.9 21.8 28.1 35.6 43.6 44.8 42.4
                                                                                        41.8
19.5
         35.3 30.1 26.6 24.2 22.5 21.3 20.5 19.9 19.2 19.0 14.8 14.7 14.6 14.4 14.4 14.3
      14.2 14.5 17.8 29.4 46.6 71.5
                                                                      95.1....107.8.. 106.2
         97.3 83.3 64.7 50.1 40.1 33.2
17.3 16.3 15.5 15.0 14.6 14.3
                                                                      28.5 25.2 18.9
       17.3
                                                                      14.1
                                                                                14.0
                                                                                          13.9
     13.8 13.6 17.7
                                        17.6 17.6 17.6
                                                                      17.5
                                                                             .... 17.5
         17.4 17.4 17.3 17.3 17.3
                                                        13.2
                                                                             13.1
                                                                      13.1
                                                                                          13.0
         13.0
                           12.9
                                                        12.8
                   13.0
                                       12.9
                                                                      12.8
                                                                                12.8
                 16.7
        16.8
                            16.7
   *ALAMOSA CREEK NEAR MONTE VISTA, COLO. STORM 9/22/58
 .. 1.0 107. 121 -1 1
      18.4 18.4 18.3 18.3 18.3 18.2 18.2 18.2 15.0 14.9 14.8 14.7 14.7 14.7 14.6 14.6 14.5 14.5 17.5 17.5 17.4 17.4 17.4
                                                                                        15.0
                                                                                        14.5
                                                                                        17.3
13.9
         17.3
                17.2
13.8
                                    17.2 17.1 14.0 14.0
13.7 13.8 14.0 15.2
                             17.2
                                                                             13.9
17.7
         13.8
                          .. 13.8
        __28_4 _
                 32.3 34.7 34.6 33.5 32.7
                                                                     31.5
                                                                               <u> 33.6</u> <u> 37.4</u>
         41.7 48.0
35.5 30.7
                         48.1 49.8 52.3 51.8
27.1 24.6 22.8 23.2
                                                                      49.8
                                                                                45.2
                                                                                        40.3
                                                                                        21.4
                                                                      22.4
                                                                               21.8
       21.1 20.9
                          20.B 20.7 20.6
                                                          20.5
                                                                     20-4 20-4
                                                                                        17.2
      17.2 17.2 17.2
                                    17.1
                                               17.1 17.1
                                                                             17.0 17.0
                          20.0
       16.9
                16.9
                                     19.9
                                                 19.9
                                                           19.9
                                                                     19.8
                                                                               19.8
       19.7
                 19.7
                             19.6
                                       19.6 19.6
                                                           16.4
                                                                     16.4 16.3
      16.3
        16.3 16.2 16.2
19.0 19.0 18.9
                                       16.1
                                                 16.1 16.1 16.0 16.0
                        and the same
العدادا بالطار الأساسات
```

| *ALAMO: | SA CREEK NEAR MONTE | VISTA, CHEB. (170 | SQ. MI.) b | FY 58 ST | OWDMS YOU | Repro
best | duced from
available c | ору. | <u> </u> | • |
|---|--|---------------------------------------|----------------------|------------------------|----------------------|---------------|---------------------------|--------------|---------------|------|
| 3 AM 25.0
PM 23.5
MAXIMUM= | 24.9 24.9
24.8 25.9
= 28.2 C.F.S. | 24.8 24.8
26.9 27.8
TIME 4.45 | 24.7
26.6
P.1. | 24.7
25.3 | 24•6
24•4 | 23.2
25.2 | 23.1
24.9 | 23.1
24.4 | 23.0
24.2 | 24.8 |
| 4_ AM 24.0
PM 21.7
MAXIMUM= | 23.9 23.8
21.7 21.6
24.1 C.F.S. | 23.6 23.5
21.6 21.5
TIME 0.15 | 23.5
21.5
A.M. | 23.4
21.4 | 23.4
21.4 | 21.9
22.7 | 21.9
22.7 | 21.8
22.6 | 21.8
22.6 | 22.5 |
| 6 AM 21.4
PM 18.1
MAXIMUM= | 21.4 21.3
18.0 18.0
24.6 C.F.S. | 21.3 21.2
17.9 17.9
TIME 12.00 | 21.2
17.8
P.M. | 21.1
17.9 | 21-1
17-8 | 18.2
21.2 | 18.2
22.4 | 18.2
23.4 | 18.1.
24.3 | 19.9 |
| 7 AM 24.7
PM 17.0
MAXIMUM= | 17.0 16.9 | 21.7 21.2
16.9 16.9
TIME 0.45 | 20.8
16.8
A.M. | 20.6
16.8 | 20.4
16.7 | 17.4
19.5 | 17.3
19.4 | 17.2
19.4 | 17.1
19.4 | 19.1 |
| 10 AM 17.4
PM 16.4
MAXIMUM= | 17.4 17.3
18.6 20.4
24.1 C.F.S. | 17.3 17.3
22.2 23.6
TIME 4.45 | 17.2
21.7
P.M. | 17.2
19.7 | 17.2
18.3 | 15.7
18.7 | 15.7
18.1 | 15.7
17.6 | 15.7
17.3 | 18.1 |
| 11 AM 17.0
PM 15.2
MAXIMUM= | 16.8 16.7
15.2 15.1
17.1 C.F.S. | 15.1 15.1 | 16.4
15.0
A.M. | 16.3
15.0 | 16.3
15.0 | 15.3
15.9 | 15.3
15.8 | 15.3
15.8 | 15.2
15.9 | 15.7 |
| 12 AM 15.7
PM 15.1
MAXIMUM=
12 SDEPTH= | 15.7 15.7
17.6 22.0
35.0 C.F.S.
0.14 STMD= 0.13 | 26.9 32.0
TIME 5.45 | 15.6
34.4
P.M. | 15.5
32.9
SPLW= | 15.5
29.8 | 14.5
27.4 | 14.5
25.9 | 14.5
24.5 | 14.5
23.7 | 20.6 |
| 13 AM 23.3
PM 14.7
MAXIMUM=
13 SDEPTH= | 21.2 19.2
14.6 14.6
24.9 C.F.S. | 17.8 16.9
14.8 16.2
TIME 8.45 | 16.2
19.0
P.M. | 15.8
21.4 | 15.4
23.6 | 15.2
24.5 | 15.0
22.0 | 14.9
19.6 | 14.8
17.9 | 17.9 |
| 14 AM 16.8
PM 13.9
MAXIMUM= | | 15.0 14.7
13.8 13.8
**IME 10.45 | 14.5
13.8
P.M. | SPLW=
14.4
14.2 | 0.00
14.3
15.2 | 14.2
16.0 | 14.1
16.8 | 14.7 | 14.7
16.6 | 14.0 |
| 14 SOEPTH= 15 AM 15.6 PM 12.3 MAXIMUM= | 0.12 STMD= 0.03
15.0 14.5
12.3 12.3
16.0 C.F.S. | 14.2 13.9 | 13.8
12.2 | SPI N=
12.6
12.2 | | 12.5 | 12.4
13.0 | 72.4
13.0 | 12.4 | 13.1 |

| , | | | 12.3_ | | 12.2 | | 12.2 | 12.1 | . 12.1 | 12.1 | 11.7 | 12.1 | 13.9 | 17.6 | | |
|---|-------------|---------------|----------------------------------|----------------------|-------------------------------------|----------------------------------|-----------------------|---------------------------------|----------------------------|----------------------|-----------------|--------------|---------------|---------------|--------------|-----------------------|
| | | M | 22.6
MAXIMUM= | 28.7
= 36.8 | 33.7
C.F.S. | 36.2
TIME | 36.7
-4.45 | 35.6
P.M. | 34.1 | 31.9 | 29.4 | 25.8 | 21.8 | 18.8 | 21.2 | |
| | 18 A | M. | 16.7
11.8
MAXIMUM= | 15.2
11.8 | , 14.2
11.8
.C.E.S. | 13.5
11.8
.TIME | 13.0
11.7
.0.15 | 12.7
11.7
A.M. | 12.5
11.7 | 12.3 | 12.2
11.6 | 12.1
11.6 | 12.9
11.6 | 11.9
11.6 | 12.4 | |
| | | М | 11.5
LO.8
MAXIMUM= | 31.8 | 11.5
10.7
C.F.S. | TIME | 12.00 | 11.4
10.7 | 11.4 | 11.4 | 10.9
14.5 | 10.8
19.1 | 10.8
25.0 | 10.8 | 12.9 | |
| | 19 | SD | EPTH= | 2.77 S | TMD= 0.1 | B SAX= | 15.00 T | ANSM= (| 0.04 SPLW= | 0.02 | | | | 2** | | |
| | 20 A | М | 33.5
12.0
4AX EMUM= | 32.3
12.0
57.3 | 26.8
11.9
C.F.S. | 22.1
11.9
TIME | 10 15 | 16.6
14.5
P.M. | 15.0
19.5 | 14.0
28.6 | 13.3
38.8 | 12.8
49.6 | 12.4
56.0 | 12.2
53.8 | 22.9 | |
| | 20_ | SDI | PIH= | <u>6-16 S</u> | <u>IMD=0.1</u> ! | 9 <u>SAX=</u> | 15.00 T | ANSM= C | .06 .SPLW= | 0.04 | · · · · · · · · | | | | - Peramana a | |
| | 21 AI
PI | 4 | 47•1
16•7
1AXIMUM=
PTH= | | 32.0
17.0
C.F.S.
IMD= 0.19 | 27.3
18.4
TIME
9 SAX= 1 | 24.1
21.9
0.15 | 21.9
27.1
A.M.
ANSM= 0 | 20.4
33.3
0.04 SPLW= | 19.3
38.9
0.06 | 18.0
42.1 | 17.5
40.1 | 17.1
34.9 | 16.8
30.3 | 26.5 | - |
| | 22 AI | 4 | 27.1
19.8 | 24.9 | 23.3 | 22.3 | 21.5 | 21.0 | 20.6
19.5 | 20.4 | 20.2
19.5 | 20.0 | | 19.8 | 20-7 | eri
Nu. |
| _ | 22 |
S.D.I | PTH= | 28 . 1 | . C.E.S | TIME | 0.15 | A . M | .18 SPLW= | | | | | | | |
| | | 4 | 19.4
17.8
MAXIMUM= | 19.3
17.8 | 19.3
17.8
C.F.S. | 19.3
17.7
TIME | 19.2
17.7
0.15 | 19.2
17.7 | 19.2
17.6 | 17.6 | 17.9
18.7 | 17.9
18.7 | 17.9
18.7 | 17.8
18.6 | 18.4 | 3- |
| | 23 | SDE | PTH= | 12.715 | TMD= .018 | SAX= | 13.00 T | ANSM= C | .17 _SPLW= | 0.06 | | | | | | |
| | 24 AI | | 18.6
17.0 | 18.6
17.0 | 18.5
16.9 | 18.5
16.9 | 18.4
16.9 | <u> 18.4</u>
16.8 | | 18.3
16.8 | | 17.1
17.9 | 17.1.
17.8 | 17.0_
17.8 | 17.6 | -: |
| | | `) | AXIMUM= | 18.6 | C.F.S. | TIME | 0.15 | A.M. | 17 SPLW= | 0.06 | 1149 | 1147 | 11.5 | | 17.6 | |
| | 25 | 1
1
SDE | 16.2
 AXIMUM=
 PTH= | 17.8
12.63 S | C.F.S.
TMD= 0.17 | 16 <u>-1</u> | 0.15 | 16.0
A.M. | 17.5
16.0 | 15.9 | 16.3
17.1 | 16.3
17.0 | 16.2
17.0 | 16.2
17.0 | 16.8 | ·
, |
| | 26. Al | !
! | 16.9
15.3
AXIMUM= | 15.3
17.0 | 16.9
. 15.3
C.F.S. | 15.3
TIME | 15.2
0.15 | 16.8
15.2
A.M. | 15.2 | 16.7
15.1 | 15.5
16.3 | 15.4
16.2 | 15.4
16.2 | 15.4
16.2 | 16.0 | |
| | * *0 | | | 12.00 2 | IMU= U.L | , 24X=] | 15.00 1 | ANSM= 0 | .17 SPLW= | 0.06 | | | | | ٠ | |
| | | | | | | | | | | | | | • | • | | |

| | 97 AM 14 1 14 1 14 0 14 0 14 0 | | | | | | | |
|------|--|-------------------------|----------------------|--------------|--------------|--------------|--------------|----|
| | 27 AM 16-1 16-1 16-0 16-0 16-0 PM 15-7 15-7 15-7 15-6 15-6 15-5 | | 15.9 | 15.9 | 15.8 | 15.8 | 15.8 | |
| | PM 15.7 15.7 15.6 15.6 15.5 15.5 MAXIMUM= 16.2 C.E.S. TIME 0.15 A.M. | 15.5 | 15.4 | 15.3 | 15.3 | 15.3 | 15.3 | |
| | 27 SDEPTH= 12.41 SIMD= 0.17 SAX= 15.00 JANSM= 0.17 | SPLW= | 0.06. | | | | | |
| | | | | | | · | | |
| | 28 AM 15.2 15.2 15.2 15.1 15.1 | 15.1 | 15.1 | 13.9 | | . 13.8 | 13.8 | |
| | PM 13.8 13.7 13.7 13.7 13.6 | 13.6 | 13.6 | 14.7 | 14.7 | 14.7 | 14.6 | |
| | | SPLW= . | 0-06 | | | | | |
| | | | | * | | | | _ |
| | 29 AM 14.6 14.6 14.5 14.5 14.5 | 14.4 | 14.4 | | | 14-3 | | |
| | PM 14.3 14.3 14.2 14.2 14.2 14.2 14.2 MAXIMUM= 14.3 C.F.S. TIME 11.15 A.M. | 14.1 | 14.1 | 14.1 | 14.1 | 14.0 | 14.0 | |
| | 29 SDEPTH= 11.03 STMD= 0.20 SAX= 15.00 TANSM= 0.12 | SPLW= | 0.06 | | | | • | •• |
| | | | | | | | | |
| | 30 AM 14.0 14.0 13.9 13.9 13.9 13.9 | 13.8 | 13 <u>-8</u> | . 12.6 | 12.6 | .12.6. | 12.5 | |
| | PM 12.5 12.5 12.5 12.4 12.4
MAXIMUM= 20.7 C.F.S. TIME 12.00 P.M. | 12.5 | 12.9 | 15.1 | 16.7 | 18.5 | 20.2 | |
| | MAXIMUM= 20.7 C.F.S. TIME 12.00 P.M.
30: SDEPTH= 9.66 STMD= 0.21 SAX= 15.00 JANSM= 0.03 | 501 H- | 0.00 | | | | | |
| | JAN JAN JAN JAN JAN JAN JAN JAN JAN JAN | SFL_H= | V=.UB | | • | | | |
| | 31 AM 21.0 20.2 18.7 17.3 16.3 15.6 | 15.1 | 14.8 | 13.2 | 13.0 | 12.9 | 12.8 | |
| - | PM 12-8 12-7 12-7 12-7 12-7 12-8 | 13-1 | 14.2 | _17.5. | 19.9. | 22.46 | 24.5 | |
| B-12 | MAXINUM 24-8 C.F.S. TIME 12.00 P.M. | | | | | | | |
| 72 | 31 SDEPTH= 8.51 STMD= 0.23 SAX= 15.00 TANSM= 0.0 | SPLW= | 0.08 | | | | | • |
| † | EUVENDER | | | | • | | | |
| - | 1 AM 24.8 23.8 22.1 20.2 18.6 17.4 | 16.6 | 16-0 | 15.6 | 15.3 | 15.1 | 15.0 | |
| | PM 14.9 14.9 14.8 14.7 14.7 14.7 | 15.4 | 17.0. | _ 19.9 | . 23.9. | | 31-0- | |
| | MAXIMUM# 31.6 CZF.S. TIME 11.45 P.M. | | | | | | | |
| | 1 SDEPTH= 8.04 STMD= 0.24 SAX= 15.00 TANSM= 0.06 | SPLW= | 0.07 | | | | | |
| | 2 AM 31.2 27.9 24.7 22.4 20.9 19.8 | 19.1 | 18.6 | 18.2 | 18.0 | 17.8 | 17.7 | |
| | PM 17.6 17.6 17.5 17.5 17.5 17.4 | 17.4 | | 17.4 | 17.4 | | 17.4 | |
| | MAXIMUM= 31.5 C.F.S. TIME 0.15 A.M. | | | | | | | |
| | The state of the s | | | | | | | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 | SP.L.W= (| 0.07 | | | | | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 | | | 17 2 | 17 2 | 17 7 | 17.0 | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 | 17.3 | 17.3 | 17.3 | 17.3 | 17.3 | 17.2 | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 PM 17.2 17.2 17.2 17.2 17.2 17.2 MAXIMUM= 17.4 C.F.S. TIME 0.15 A.M. | 17.3
17.2 | | 17.3
17.2 | 17.3
17.2 | 17.3
17.2 | 17.2
17.2 | |
| | 2 SDEPIH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 PM 17.2 17.2 17.2 17.2 17.2 | 17.3
17.2 | 17.3 | | | | | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 PM 17.2 17.2 17.2 17.2 17.2 17.2 MAXIMUM= 17.4 C.F.S. TIME 0.15 A.M. 3 SDEPTH= 11.81 STMD= 0.24 SAX= 13.00 TANSM= 0.22 | 17.3
17.2
SPLW= 3 | 17.3
17.2 | 17.2 | 17.2 | 17.7 | 17.2 | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 PM 17.2 17.2 17.2 17.2 17.2 17.2 MAXIMUM= 17.4 C.F.S. TIME 0.15 A.M. 3 SDEPTH= 11.81 STMD= 0.24 SAX= 13.00 TANSM= 0.22 4 AM 17.1 17.1 17.1 17.1 17.1 | 17.3
17.2
SPLW= 3 | 17.3
17.2
0.07 | 17.2 | 17.2 | 17.2 | 17.2 | |
| | 2 SDEPTH= 9.60 STMD= 0.25 SAX= 15.00 TANSM= 0.19 3 AM 17.4 17.4 17.4 17.3 17.3 17.3 PM 17.2 17.2 17.2 17.2 17.2 17.2 MAXIMUM= 17.4 C.F.S. TIME 0.15 A.M. 3 SDEPTH= 11.81 STMD= 0.24 SAX= 13.00 TANSM= 0.22 | 17.3
17.2
SPLW= 3 | 17.3
17.2 | 17.2 | 17.2 | 17.7 | 17.2 | |

| - | | | | | | - | ., | | | | | | | | |
|------------------------|----------------------------|----------------|-----------|-----------------------------|------------|----------------|-----------------|---------|----------------|-------------|----------------|--------------------|---------------------|---------|---------|
| | | | | | . . | | | | | | | | | | |
| | | | | | | | | | | | • | | | • | ** |
| | | | | | | | | | | | | | | | |
| 5 | AM . 1 | | 16.0 | 16.0 | 14.0 | , | ٠.3 | <u></u> | | | | | | | |
| - | PM 1 | 6.7 | 16.7 | 16.9
16.7 | 16.7 | 16.8 | 10.8 | , | 16.8 | 16.8 | 16.8 | 16.8 | 16.8 | 16.7 | |
| | MAXI | MUM= | 16_9 | C.E.S. | TIME | : 1941 | 10 . I | | 10+1 | 10.7 | 16+7 | 16.6 | 16,6 | 16.6 | 16.7 |
| | 5 SDEPTH | = 1 | 4.17 5 | TMD= 0.22 | SAX= | 13.00 | TANSM= | 0.24 | SPLW= | 0.07 | | * * | | | * * *** |
| 6 | AM 1 | 6.6 | 16.5 | 16.4 | 16.4 | 16-4 | 16.4 | | 16.4 | 16.4 | 16.6 | 14.6 | 3.6 . | 14 . 4 | |
| | PM 1 | 6.3 | 16.3 | 16.3 | 16.3 | 16.3 | 16.3 | i | 16.3 | 16.3 | 16.3 | 16.3 | - 3.0 a.4 ,
16 2 | 16.3 | |
| | MAXI | MUM= | 16.6 | C.F.S. | TIME | n. | 15 A.M. | | | | | 20.5 | 1000 | 10.5 | 10.4 |
| | SDEPTH | =1 | 6-29S | IMD= _0.21 | S.A.X = . | .12.00 | IANSM= | 0.27 | SPLW= | 0 . 0.7 | | | | | • |
| | | | | | | | | | | | | | | | |
| , | AM I | 0 <u>-1</u> | 1.6.4.3 | 16.2
16.1 | 16.2. | 16.2 | 16 2 | | 16.2 | 16.2 | 16.2 | 16.2 | 16.1 | 16.1 | |
| | MAYI | MIHA. | 16 1 | 16.1
C.F.S. | TIME | | 16,1 | | 16_1_ | 16_1 | 16.1 | 16_1 | _ Lo.L | 16.0 | 16.1 |
| | 7 SDEPTH | = 1 | 6.19 \$ | TMD= 0.21 | TITE | 13.00. | TANCH. | 0. 37 | CDLU | 6.07 | | • | • | 0.00 | |
| F-14 | | | <u>.</u> | | | | | | | | 4. | • | | | |
| , . . 8 | .AM 1 | 6.0 | 16.0 | 16.0 | 16.0 | 160 | 14 0 | | 1/ 0 | | | | 15.9 | 15.9 | |
| | <u>PM 1</u> | 5.9 | | | | | | | | | | | | 15.8 | 15_9 |
| | | | | | | | | | | | | | | | |
| 4 - SU | | - A | | 1110- 10-21 | SAA- | 14.00 | (ANSM= | 0.20 | 25FM= | 0.07 | | | ,* | | |
| 9 | AH 1 | 5.8 | 15.8 | 15.8 | 158 _ | 158 | 15 7 | | 15.7 | 15.7 | 15.7 | 15_7 | 15.7 | 15.7 | |
| | and a place and the second | | · # J = 1 | 17.0 | 13.0 | 1246 | 17.6 | | 15.6 | 15 4 | 15.6 | 15.6 | 15.6 | 15.6 | 15.7 |
| a fatefragen, cross, c | MAXI | MUM=_ | 15.7 | C-E-S- | T I.ME | 11. | 15. A.M. | | | | - - | | | 1310 | 7341 |
| | TORETH | =-,1 | 5.84. 5 | IMD= 0.21 | SAX= | 15.00 | LANSM= | 0.26_ | _SPLW= | 0.07 | | | <u>-</u> | | |
| 10 | AM . 1 | 5.6 | 15.6 | 15.5 | 15.5 | 15.5 | 15.5 | | 15.5 | 15.5 | 15.5 | 15.5 | 1181 A | 15 / | • |
| | <u>PM 1</u> | 5.4 | 12.4 | | 15.4. | 15.4 | 15.4 | | 15.4 | 15.4 | 15.4 | 15.4 | 15.3 | 17.4 | 15 6 |
| | MAXI | HUM= | 15.4 | C.F.S. | TIME | 11. | 15 A.M. | | | | | 1941. | | | |
| | T 2DELIH | ≣1. | 5S | TMD= 0.21 | SAX=_ | 1500 | =M2MA.T | 026 | SPLW= | 0.07 | · · | | | | |
| ** I 1 | AM 1 | 53 | 15.3 | 15.3 | 15.3 | 15.3 | | | | 15.3 | 15.2 | 15_2 | - 15 2 | 15 2 | · |
| | PM 1 | 5.2 | 15.2 | 15.2 | 15.2 | 15.2 | 15.2 | | 15.2 | 15.1 | 15.1 | 15.1 | 15.1 | 15.1 | 15.2 |
| . 1. | MAXI | 111M= | 15.2 | 15.2
C.F.S.
TMD= 0.21 | IIME | 11. | 15 A.M. | | | | | | | | 1202 |
| 11 | SDEPIH | = L | 5.58 S | | | 15.00 | | | 0. 2.1 | 0.07 | | | | | |
| 12 | AM 1 | 5.1 | 15.1 | 1 = 1 | 15 1 | 15 1 | 15 1 | | 15.0 | 15.0 | | | | | |
| 1 m | PM 1 | 5.0 | 15.0 | 15.1
15.0 | 15.0 | 15.0 | 14.0 | | 1249.
14 p. | 14.9 | .1.30 | . 1.5 . (1. | 15.0 | 1.50 | |
| A Section 1 | MAXI | 4UM= | 15.0 | C.F.S. | | | | | | | 14+7 | 14.9 | 14.9 | 14.9 | 15.0. |
| 12 | SDEPTH | E _ L | 5.42 . S | TMD= 0.21 | - SAX= | 15.00 | TANSM= | .0.26 | SPLW= | 0.07 | • | | | | |
| 12 | AM 14 | . 0 | 16 0 | 16.0 | 16.0 | 14.0 | | | | | | | | | • |
| | PM14 | . 8 | 14-8 | 14.7
14.2 | 14.9 | 14.8 | 14.8 | | 14.8 | 14.8 | | 14-8 | 14.8 | 14.8 | |
| | MAXI | 1UM= | 14.8 | | TIME | | .14.7
. A.M. | | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.8 . |
| 13 | SDEPTH: | - 19 | 5.25 S | TMD= 0.21 | 5AX= | 15.00 | TANSM≃ | 0.25 | SPIW= | 0.07 | | | | | |
| | · · | | | | • | - - | | | | 0.01 | | | | | |
| | AM 14 | | 14.7 | 14.7 | | | 14.6 | | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | |
| | PM . 14 | | 14.6 | 14.6 | 14.5 | 14.5 | 14.5 | | 14.5 | 14.5 | | 14.5 | 14.5 | | 14.6 |
| | COEDTU- | um≡ | 14-6 | C.E.S | TIME | 11.1 | 15. A.M. | : | | | | | | | |
| £*,** | anti-tu- | . 1: | 2.05 3 | TMD= 0.21 | = X A C | 15.00 | TANSME | 0.25 | SPLW= | 0.07 | | | | _ | |

e³

| 15_AH | | | | | | | | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | |
|---------------|--------------------|-----------------|------------------------|--------------|------------------|---------------|-----------|-----------------|--------|------|------|-------|-------|------|
| | 14.4
Aximum= | 14.4
14.4 | | 14.4
TIME | 14.4 | 14.3
A.M. | | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.4 |
| 15 SDE | | | 4D= 9.14 | _SAX= | 11.00 T | ANSM= | 0.34 | SPLW= | 0.07 | | | - | | |
| 16 AM | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | | 14.3 | 14.2 | 14.2 | 14.2 | 14.2 | 14.2 | |
| | 14.2
AXIMUM= | 14.2
14.2 | 14.2
C.F.S. | 14.2
TIME | 14.2
11.19 | 14.2
A.M. | | 14.2 | 14.2 | 14.2 | 14.2 | 14.1 | 14.1 | 14.2 |
| 16 SDE | PTH= 31 | .02 ST | MD= 0.16 | SAX= | 8.00 1 | ANSM= | 0.39 | SPLW= | 0.07 | | | | | |
| 17 AM | 14-1 | | | 14.1 | 14.1 | 14.1 | | 14.1 | 14.1 | 14.1 | 14.1 | 14.0 | 14.0 | |
| PM | | 14.0 | 14.0
C-E-S- | 14.0
TIME | 14.0 | 14.0 | | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 |
| . 17 SDE | P.TH= . 39 | .01 . ST | MD= . 014. | SAX= | 7.00 1 | ANSM= | 0.43 | SPLW= | 0.07 | | | | | • |
| 18 · AM | 14.0 | 14.0 | 14-0 | 13.9 | 13.9 | 13.9 | | 139 | 13.9. | 13.9 | 13.9 | 13.9. | 13.9 | |
| ₽M | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | | 13.9 | 13.9 | 13.8 | 13.8 | 13.8 | 13.8 | 13.9 |
| 18 SDE | TH= 38 | . 89 SII | 10= 0.14 | SAX= | 11.15
8.00 T | A.M.
ANSM= | 0.43 | SPLW= | . 0.07 | | | | | |
| . 19 AM | | | 13.8 | | 13.8 | | | | 13.8 | 13.8 | 13.8 | 13.7 | 13.7 | |
| PM | 13.7 | 13.7 | 13.7 | 13.7 | 13.7 | 13_7 | | 13.7 | 13.7 | 13.7 | 13.7 | .13.7 | 13.7. | |
| 19 SDEF | XXIMUM=
PTH= 38 | 13.7
.77 ST! | C.F.S.:
1D= 0.14 | TIME
SAX= | 11.15
9.00 T | A.M.
ANSM= | 0.42 | S₽L₩≔ | .0+07 | | | | | |
| 20AM | 13.7. | 13.7. | 13.7 | 13.7 | 13.7 | 13.7 | | 13.6 | 13.6 | 13.6 | 13-6 | 13.6 | 13.6 | • |
| PM | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 |
| 20 SDEF | TH= 38 | 64 ST | 1D= 0.14 | SAX= 1 | 11-15
10-00 T | A.M.
ANSM= | 0.42 | SPLW= | 9.07 | | | | | |
| 21 AM | 13.6 | 13.6 | 13.5 | 13.5 | 13-5 | 13.5 | | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 | |
| PM | .13.5 | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 | • | 13.5 | | 13.5 | 13.5 | 13.5 | | 13.5 |
| 21 SDEP | XIMUM∓
PTH- 29 | 13.5 | C_F_S | TIME. | 11.15 | A.M. | ñ 4.5 | Cma u= | 0.07 | | | | | |
| | | | 11)- 11-114 | | L.L. & Q.Q 1. | AN.SM= | . U.=.4-Z | Zh.F.M= | 0.07 | | | | | |
| 22 AM | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | |
| PMMA | <u>13.4</u> | | 13.4
C.F.S. | 13.4 | | 13.4 | | 13.4 | 13.4 | 13.4 | 13.3 | 13.3 | 13.3 | 13.4 |
| . 22 SDEP | TH= 38. | .39 STM | 1D= 0.14 | SAX= 1 | 11.15
12.00 T | | 0.42 | SPL₩≃ | 0.07 | | | | | |
| 23 AM | | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | |
| | 13.3 | | | 13.3 | 13.3 | 13.3 | | 13.3 | 13.3 | 13.3 | 13.2 | | | 13.3 |
| MA
23 SDEP | | | .CE.S
!D= 0.14 | | . 11.15 | | 0_41 | SP1 ⊌± | 0.07 | | | | | |
| *. | | | | | | .,,,,,,,,, | U + T L | Jr ⊆ π ~ | Jaur | | | | | |
| 24AM | | | | | | 13.2 | | 13.2 | 13.2 | 13.2 | 13.2 | 13.2. | | |
| | | 13.2
13.2 | | 13.2
TIME | 13.2
11.15 | 13.2
A.M. | | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 |
| 24SDEP | | | | | | | 0.41 | SPLW= | 0.07 | | | | | |

| | 25 AM | 13.2 | 13.1. | 13.1 | 13.1
13.1 | 13.1
13.1 | 13.1
13.1 | | 13.1
13.1 | 13.1 | 13.1
_13.1 | 13.1
13.1 | 13.1
13.1 | 13.1
13.1 | |
|-----------|---------------|---------------------|--------------------|-----------------------------|--------------|--------------|---------------------|-------|---|--------------|---------------|---------------------------------------|---------------------------------------|-------------------|---------|
| | 25 S | MAXIMUM:
DEPTH= | 37.99 S | C.F.S.
 MD= 0.14 | TIME
SAX= | 15.00 | L5 A.M.
TANSM≃ | 0.41 | SPLW= | 0.07 | | | | • | • |
| | 26 AM
P.M. | 13.1
_ 13.0 | | 13.1 | 13.1 | 13.1 | 13.0 | | 13.0 | 13.0 | 13.0
13.0 | 13.0
13.0 | 13.0
13.0 | 13.0 | - |
| | 26 S | MAX (MUM:
DEPTH= | = 13.0
37.77 ST | | TIME
SAX= | 15.00 | L5. A.M.
Tansm= | 0.41 | SPLW= | 0.07 | | | | | |
| | 27AM | 13.0 | 13.0 | 13-0 | 13.0 | 13.0 | 13_0 | | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 12.9 | |
| | <u>PM</u> | MAXIMUM | 13.0 | C_F_S | TIME | 11.1 | 15 A. M. | | | . 12.9 | 12.9 | | 12.9 | 12.9 | |
| | | 100 | 37.64 S | <u>[MD= 0.14</u> | SAX= | 15.00 | TANSM= | 0.40 | SPLW= | 0.07 | | | | | |
| | 28 AM | | 12.9
12.9 | 12.9
12.9 | 12.9
12.9 | | 12.9
12.9 | | 12.9
12.9 | 12.9
12.9 | 12.9
12.9 | 12.9
12.9 | 12.9
12.9 | | |
| | 28 S | | = 12.9
37.51 Si | C.F.S.
[MD= 0.14 | TIME
SAX= | | IS A.M.
Tansm= | | SPLW= | .0.07 | | | | • | |
| | . 29 AM | 12.9 | 12.9 | | 12.9 | 12.9 | | | 12.9 | 12.9 | 12.9 | 12.8 | 12.8 | 12.8 | |
| -
В-15 | PM
no c | 12.8
MAXIMUM= | 12.8 | C.F.S. | | 11. | 15 A.M. | | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | |
| 7 | | | | [MN= 0.14 | | | | | | | | | | | |
| | era£ i.aPM | 12.8 | 1.2.8 | | 12.8 | 12.8 | 12.8 | | 12.8 | . 12-8 | | 12.8 | | | |
| | | CEPTH= | | MD= 0.14 | TIME
SAX= | 15.00 | 15. A.M.
Lansm=_ | _0.40 | SPLW= | 0.07 | · | | · · · · · · · · · · · · · · · · · · · | ···· | |
| | DECEMBER | **** | | | | | | | - · · · · · · · · · · · · · · · · · · · | | , | | | | · |
| | PM | 17.1 | 17.4 | 17.5 | 17.7 | 17.9 | 18.0 | | 18.1 | 18.2 | 16.3
18.4 | 16.5
18.5 | | 18.6 | |
| · | | DEPTH= | 37.14 ST | C.F.S.
[MD=O.14 | | | | | SPLW= | 0.07 | | · · · · · · · · · · · · · · · · · · · | | | ···· |
| | 2 AM | 18.7 | | _18.9 | | | 19.0 | | 19.1 | 19.1 | | 19.2 | | 19.3 | |
| | • * | MAXIMUM= | 19.2 | 19.4
C.F.S.
TMD= 0.13 | TIME | 11. | 15 A.M. | | | | 1.91 | 1.9 • 7 | 19. (| <u>19.7.</u>
∵ | - |
| | 3 AM | 19.7 | | | 19.8 | | . 19.8 | | | | 10.2 | | 10.0 | 10.0 | |
| | | | | 19.9 | | | _ 20.0 | | 19.8
20.0 | 19.8
20.0 | 19.8
20.0 | 19.9
20.0 | | 19.9
20.0 | |

. .

| M, | 20.0
20.0
AXIMUM=
PJH= 36 | 20.0
20.0
20.3
.78 ST | 20.0
20.0
C.F.S.
MD= 0.13 | 29.0
TIME | 20.0
20.0
11.15
15.90 TA | 20.0
20.0
A.M.
ANSM= | 0.39 | 20.0
20.0
SPEW= | 20.0
20.0
0.07 | 20.0
20.0 | 20.0
20.0 | 20.0
20.0 | 20.0
20.0 | 20.0 |
|------------------|------------------------------------|--------------------------------|------------------------------------|----------------------|-----------------------------------|--------------------------------|------|-----------------------|----------------------|--------------|--------------|--------------|--------------|------|
| . PM
M/ | AXIMUM= | 19.9 | 20.0
. 19.9
C.F.S. | 20.0
19.9
TIME | 20.0
19.9
11.15 | 20.0
19.9
^.M. | | 20.0
19.9 | 20.0
19.9 | 19.9
19.9 | 19.9
19.9 | 19.9
19.9 | 19.9
10.0 | 19.9 |
| | | - 65 21 | MD= 0.13 | 2 A X = | 15.00 T/ | MSM= 1 | 0.39 | SPLW= | 0.07 | | | | | |
| PM
M | 19.9
19.8
∆XIMUM= | 19.9
19.8
- 19.8 | 19.9
19.7
CaFaSa | 19.8
19.7
TIME | 19.8
19.7
11.15 | 19.8
19.7
A.M. | | 19.8
19.7 | 19.8
19.7 | 19.8
19.7 | 19.8
19.7 | 19.8
19.7 | 19.7
19.7 | 19.8 |
| - 6 SDEF | PTH= 36. | .32 ST | MD= 0.13 | SAX= | 15.00 TA | INSM= | 0.33 | SPLW= | 0.07 | | | | | |
| | 19.5
XXIMUM= | 19.5
19.6 | 19.7
19.5
C.F.S.
MD= 0.13 | 19.5
TIME | 19.6
19.5
11.15 | 19.6
19.5
A.M. | O 34 | 19.6
19.5
SPLW= | 19.6
19.5 | 19.6
19.5 | 19.6
19.5 | | 19.6
19.5 | l°•6 |
| | | | | | | | 0.00 | 21.5#- | 5.01 | | | | | |
| 8 AM
PM | 19 _* 3
XIMUM= | 19.4 | 19.3
C.F.S. | 19.3
TIME | 19.4
19.3
11.15 | 19.4
19.3
A.M. | | 19.4
19.3 | 19.4
19.3 | 19.4
19.3 | 19.4
19.3 | 19.4
19.3 | 19.3
19.3 | 19.4 |
| 8 SDEP | | | | SAX= | 15.00 TA | NSM= (| 0.38 | SPLW= | 0.07 | | | | | |
| 9 AM
PM
MA | 19.3
19.1
XIMUM= | 19.3
19.1
19.1 | . 19.1
C.F.S. | 19.2
19.1
TIME | 19.2
19.1
11.15 | 19.2
19.1
A.M. | | 19.2
19.1 | 19.2
19.1 | 19.2
19.1 | 19.1
19.1 | 19.1 | 19.1
19.1 | 19.1 |
| 9 SDEP | TH= 35. | .67 ST | 4D= 0.13 | SAX= | 15.00 TA | NSM≈ (| 3+37 | SPLW= | 0.07 | | | | | |
| MA | 18.9
XIMUM= | 18.9
18.9 | C.F.S. | 18.9
TIME | 18.9
11.15 | 19.0
18.9
A.M. | | 19.0
18.9 | 19.0
18.9 | 18.9
18.9 | 18.9
18.9 | 18.9
18.9 | 18.9
18.8 | 18.9 |
| 10 SDEP | LTH≆. 35. | .36SIA | 1D= 0.13 | SAX= | 15.00 TA | NSM= C | 37 | SPLW= | 0.07 | | | | | |
| PM MA | 18.7
XIMUM= | 18.7
18.7 | 18.7
C.F.S. | 18.7
TIME | 18.8
18.7
11.15 | 18.8
18.7 | | 18.8
18.7 | 18.8
18.7 | 18.7
18.7 | 18.7
18.7 | 18.7
18.7 | 18•7
18•6 | 18.7 |
| II SDEP | TH= 35. | 23 STM | 10= 0.13 | SAX= 1 | 15.00 TA | NSM= C | 3.37 | SP1 W= | 0.07 | | | | | |
| PM | 18.5
XIMUM= | 18.5 | 18.5
C.F.S. | 18.5
TIME | 18.6
19.5
11.15
15.00 TA | 18.6
18.5
A.M.
NSM= 0 | | 18.6
18.5
SPLW= | 18.6
18.5 | 18.5
18.5 | 18.5
18.5 | 18.5
18.5 | 18.5
18.5 | 18.5 |
| | | | | | | _ | | | · | | | | | |

| | | | | | _ | | | | | | | | |
|-------------------|--------------------------------|---------------------|-----------------|--------------------|------------------|---------------------------------------|--------------|-------------|--------------|--------------|--------------|--------------|---------------|
| • | | | | | | | | | | | | | • |
| | | | | | | | | | | | | | |
| 13AM1 | 8.5 18.4 | -18.4 | 18.4 | 18.4 | 18.4 | | 18.4 | 18.4 | 18.4 | 18 4 | 18 3 | 19 2 | • |
| - PM 1 | 8.3 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | | | 18.3 | | | | 18.3 | |
| MAXI
13 SDEPTH | | C.F.S.
MD= _0.13 | TIME
SAX= | 11.15
L5.00 1 | 5 A.M.
ΓANSM≃ | 0.37 | SPLW= | 0-07 | | | | | |
| | | | | | | | | | | | | | |
| 14AM I | 8.2 18.2 | 18.3
18.2 | 18.2 | . 18.2
. 19.2 | 18.2 | | 18.2 | 18.2 | 18.2 | 18.2
18.1 | 18.2
18.1 | 18.2
18.1 | 18.2 |
| | MUM= 18.2 | C.F.S. | TIME | 11.19 | A.M. | | _ | | | | | | , |
| 14 30CP11 | = 34.89 S1 | - U-13 | 3AX= | | IANSM= | U.31 | 25F#± | 0.07 | i. | | | | |
| 15 AM 1 | | | 18.1 | | | | | | | | 18.0 | 18.0 | |
| MAX 1 | MUM= 18.0 | 18.0
C.F.S. | TIME | 11.15 | 5AM | | | | 18.0 | .18.0 | 18.0 | .18.0 | 18.0 |
| 15 SDEPTH | = 37.58 S1 | MD= 0.14 | SA X=] | t2.00 1 | TANSM= | 0.39 | SPLW= | 0.07 | • | ٠. | | | |
| _16 AM1 | | 18.0 | 17.9 | 17.9 | 17.9 | · · · · · · · · · · · · · · · · · · · | 17.9 | 17.9 | 17.9 | _ 17.9 | 17.9 | 17.2 | |
| | 7.9 17.9
MUM= 17.9 | 17.9 | 17.9 | 17.9 | . 17.9 | | 17.9 | 17.9 | 17.9 | 17.48 | 17.8 | 17.8 | 17.9, : |
| 16 SDEPTH | <u> 39.18 SI</u> | MD= 0.14 | SAX= | 13.00 | CANSM= | 0.42 | SPL₩= | 0.07 | | | | | |
| 17 AM 1 | 7.8 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | | 17.8 | 17_A | 17.8 | 17 7 | 17.7 | 17 7 | |
| PM] | 7.7 17.7 | 17.7 | 1.7.7 | 17.7_ | 17.7 | · | 17.7 | _ 17 | 17.7 | | | 17.7 | 1.7.8 |
| MAXI | mum= 17.7
=. 38.90 51 | C.F.S.
MD= 0.14 | TIME
SAX= 1 | 11.15
14.00 1 | S A.M.
Sansm= | 0.42 | SPLW= | 0-07 | | | | | |
| | | | | | | | | | | | | | |
| | 7.7 17.7
7.6 17.6 | 17.7
17.6 | 17.7
17.6 | 17.6 | 17.7
17.6 | | 17.7
17.6 | | 17.6
17.6 | 17.6
17.6 | | 17.6
17.6 | 17.6 |
| MAXI | MUM= 17.6 | CaFaSa_ | TIME | 11.19 | <u> </u> | A 35 | | | <u> </u> | | | | ····· |
| 18 SDEPTH | | NU- 0-14 | 28 V =_1 | | AN SMF. | U-35. | 7.6 F.M= | 0.07 | | | | | |
| 19 AM 1 | 7.6 17.6
7.5 17.5 | 17.6
17.5 | 17.6
17.5 | 17.6 | 17.6 | | 17.5 | 17.5 | 17-5 | 17.5 | 17.5 | 17.5 | |
| MAXI | MUM= 17.5 | C.F.S. | TIME | 11.15 | A.M. | - | | | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 |
| 19 SDEPTH | = 40.81 SI | MD = 0.14 | SAX= | L5. 00 | TANSM= | 0.45 | SPLW= | 0.4.0.7 | | | | | <u> </u> |
| `.20AM1 | | | 1.7.4.5 | 17.5. | 17.5 | | 17.4 | 17.4 | 17.4 | 17-4 | 17.4 | 17.4 | - |
| PM 1 | 7.4 17.4
MUM= 17.4 | 17.4
C.F.S. | 17.4
TIME | | 17.4
5 A.M. | | 17.4. | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 |
| | = 40.71 51 | | | 15.00 1 | ANSM= | 0.45 | SPLW= | 0.07 | | | | | |
| 21 AM 1 | 7.4 17.4 | | 17.4 | | 17.4 | | 17.4 | 17.3 | 17.3 | 17.3 | 17.3 | 17.3 | |
| | 7.3 _ 17.3 | 17.3 | 17.3 | 17.3 | 17.3 | | 17.3 | 17.3 | | 17.3 | 17.3 | 17.3 | 17.3 . |
| 21 SDEPTH | <u>MUM= 17.3</u>
= 40.60 ST | MD= 0.14 | SAX= 1 | _ II.15
15.00 1 | A.A.M.
ANSM= | 0.45 | SPL W= | 0.07 | | - | | | |
| . 22 AM 1 | | | | | | | | | 17 ~ | | | 4.99 - | |
| PM 1 | 7.2 17.2 | 17.2 | 17.2 | 17.2 | 17.2 | | 17.3 | 17.2 | 17.3
17.2 | 17.2 | 17.2 | 17.2 | |
| MAXI | MUM=1. 17.2. | C.F.S. | TIME | 11.15 | _A.M. | · | C D1 !!- | | | | | | - · - · - · . |
| | | | | اا€ وماسيا | HANGE . | U.s.9.0 | PLFM= | 0.01 | • | | | | |

| ₩ | |
|----------|--|
| _ | |
| ∞ | |

| | PM 17.2
MAXIMUM: | 17.2
= 17.2 | 17.2
17.2
C.F.S.
TMD= 0.14 | 17.2 17.
17.2 17.
TIME 11
SAX= 15.00 | 2 17.2
.15 A.M. | 0.42 | 17.2
17.2
SPLW= | 17.2
17.2 | 17•2
17•2 | 17.2
17.2 | 17.2
17.2 | 17.2
17.2 | 17.2 |
|---------------|--------------------------------|----------------------|-------------------------------------|---|--------------------|-------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------|
| 24 | PM 17.1
MAXIMUR: | 17.1
= 17.1 | 17.2
17.1
C.F.S. | 17.2 17.
17.1 17.
TIME 11 | 1 17.1
.15 A.M. | | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1 |
| 24 | S 7F P TH= | 41.15 5 | 170= 0.14 | 5AX= 15.00 | TANSM= (| 0.45 | SPLW= | 7.07 | | | | | |
| 25
H | AM 17.1
PM 17.1
MAXIMUM= | 17.1
17.1 | 17.1
17.1
*C.F.S. | 17.1 17.
17.1 17.
TIME 11 | | | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.1
17.1 | 17.0
17.1 | 17-1 |
| 2.5 | | | | 54X= 15.00 | TANSM= (| 0.45 | SPLW= | 0.07 | | | | | |
| 26 <i>i</i> | 17-1
0-71 M9
=MUMIXAM | 17.1
17.0 | 17.1
17.0
C.F.S. | 17.1 17.
17.0 17.
TIME 11 | | | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.9 | 17.0 |
| 26 | | | | SAX= 15.00 | | 0.44 | SPLW= | 0.07 | | | | | • |
| 27 <i>l</i> | 17.0
0.71 MA
=MUMIXAM | 17.0
17.0 | 17.0
17.0
C.F.S. | 17.0 17.
17.0 17.
TIME 11 | 0 17.0 | | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 17.0 . |
| 27 | | | | SAX= 15.00 | | 0.44 | 5 ° 1. W= | 0.07 | | | | | |
| 28 A | AM 17.0
PM 16.9
MAXIMUM= | 17.0
16.9 | 17.0
17.0
C.F.S. | 17.0 17.
17.0 17.
TIME 11 | | | 17.0
17.0 | 17.0
17.0 | 17.0
17.0 | 16.9
17.0 | 16.9
17.9 | 16.9
17.0 | 17.0 |
| 28 | | | | SAX= 15.00 | | .44 | SPLW= | 0.07 | | | | | |
| | PM 16.9
MAXIMUM= | | 17.0
16.9
C.F.S. | 17.0 17.
16.9 16.
TIME 11 | 9 16.9
.15 A.M. | | 15.9
16.9 | 16.9 | 16.9
16.9 | 16.9
16.9 | 15.9
16.9 | 16.9
16.9 | 16.9 |
| | | | | SAX= 15.00 | FANSM= L | J. 44 | 21. F.M= | 0.07 | | | | | |
| | PM 16.9
MAXIMUM= | 16.9
16.9
16.9 | 16.9
16.9
C.f.S. | | 9 16.9
.15 A.M. | | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9 |
| 30 | SDEPTH= | 40.53 \$1 | TMD= 0.14 | SAX= 15.00 | TANSM= C | 43 | SPLW= | 0.07 | | | | | |
| 31 A | AM 16.9
PM 16.9
MAXIMUM= | 16.9
16.9
16.9 | 15.9
15.9
C.F.S. | 16.9 16.
16.9 16.
TIME 11 | | | 15.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 15.9
16.9 | 16.9
16.9 | 16.9 |
| 31
JANUARY | | 40.42 ST | MD= 0.14 | CG.61 =XA2 | TANSM= C | 43 | SPLW= | 0.07 | | | | | |
| 1 4 | | 16.0 | 16.0 | 16.0 |) 16 O | | 17.0 | 17.0 | 14.0 | 1 | | | |
| p | PM 16.9
=MAXIMUM= | | 16.9
C.F.S. | | 9 16.9
.15 A.M. | | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | 16.9
16.9 | | 16.9 |
| 1 | SDEPTH= | 40.32 ST | MD= 0.14 | SAX= 15.00 | TANSM= 0 | 43 | SPLW= | 0.07 | | | | | |

| -AM
PM | - 16.9.
16.9 | 16.9 | 16.9
16.9 | 16.9.
16.9 | 16.9 | 16.9 | | 16.9 | 16.9 . | 16.9 | 16.9 | 16.9 | 16.9
16.9 | 14 0 |
|---------------|------------------|---------------|--------------------------------|---------------|---------|---|------|------------------------|---------|-------------------------|-------------|--------------|--------------|-------------------|
| 7. | MAX I MUM: | 16. | 9 C.F.S. | TIME | 11 14 | 5 A M | | | 10,0 7 | 10. | 10.00 | 1.0.4.2 | | 19.•.3. |
| 2 | SDEPTH= | 40.22 | STMD= 0.13 | SAX= | 15.00 | TANSM= 1 | | | 0.07 | | | | | |
| | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | | 16.9 | | 16.9 | 16.9 | 16.9 | 16.9 | · |
| _ PM | | | | 16.9 | 16.9 | 16.9 | | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 |
| | MAX I MUM | ≞ i 6. | 9 . C. E.S | IIME | | 5A.M | | | | | - | | | |
| | | | STMD= 0.13 | | | | | | | | | *. * | | |
| <u>4 AM</u> | 16.9 | 16.9 | 16-9 | 16.9 | 16.9 | 16.9 | | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | |
| PM | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 | 16.9 |
| erym.n.mm n + | MAXIMUM: | 16. | 9. C.F.S. | TIME | 11.1 | 5 . A.M. | | | 1 cent | | | | | |
| | | | 16.9
9 C.F.S.
STMD= 0.13 | | | | | | | | | | | |
| 5 AM | 16.9 | 16.9 | 16.9 | 16.9 | 16-9 | 16.9 | | 16.9 | 16.9 | 16.0 | 16.0 | 14 0 | 16.0 | |
| PM | 16.9 | 16.9 | 16.9
16.9 | 16.9 | 16-9 | 17.0 | | 17.0 | 17-0 | 17-0 | 17.0 | 17.0 | 10.7
17 n | 16.0 |
| | MAAIMUM | = 10• | 9 C.F.S. | 11ME | 11.1 | > Aa.Ma | | | | | A.1. B.V | | | |
| 5 | SDEPTH= | 3994 | STMD=0.13. | SAX= | 15.00 | TANSM= | 0.42 | SPLW= | 0.07 | | - | | - | |
| 6. AM | 17.0 | 17-0 | 17-0 | 17.0 | 17.0 | 17.0 | | 17.0 | 16.0 | 16.0. | 14 0 | 16.9 | 74 0 | |
| PM | 16.9 | 16-9 | 17-0 | 17.0 | 17.0 | 17.0 | • | 17.0 | . 17 0 | 10.7 | 17 0 | 17.0 | 10.7 | 17.0 |
| | MAX IMUM | | 17.0
9 C.E.S. | TIME | 11.15 | 5 A.M. | | 2 f. e U | 11.0 | 1140 | 11.0 | T.4.* [7] | 11.0 | 17.0 |
| 6 | SDEPTH= | 39.84 | STMD= 0.13 | SAX= | 15.00 | TANSM= | 0.42 | SPLW= | 0.07 | | . , | | | * And Aller Aller |
| 7 AM | 17.0 | 17.0 | 17.2 | 17.0 | 17.0 | 17.0 | | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 34.0 | |
| PM | 17-0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | | - 1 - 0 - - | 17.0 | | 17.0 | 17.0 | 10-7 | 17.0 |
| | MAXIMUM | 17. | 0 C.F.S. | TIME | 11_1 | 5 A.M. | | . I Ia.U | | | . Life.U | L_LL | 11.0 | |
| 7 | SDEPTH= | 39.57 | STMD= 0.13 | SAX= | 15.00 | FANSM= (| 0.42 | SPLW= | 0.07 | | | - | | • • |
| B AM | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | | |
| | | | 17.0 | 17.0 | 17.0 | 17.0 | | 17.0 | | | 17.0 | 17.0
17.0 | 17.0 | 17.0 |
| | MAXIMUM= | 17. | 0 C.F.S. | TIME | 11-19 | 5 A-M- | | | | | 1 | | | 17.0 |
| 8 | SDEPTH= | 39.47 | STMD= 0.13 | SAX= | 15.00 | TANSM=, (| | | | | | • | | |
| AM | 17.0 | 17.0 | 17.0 | 1.7.0 | 17.0 | 17.0 | | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | |
| PM | 1.70 | 17.0 | 1.7 3 | 17.0 | 1.7.1 | 17.1 | | 17.1 | 17.1 | 17.1 | | 17.1 | | |
| | <u> MAXIMUM:</u> | 17. | 0 C.F.S.
STMD= 0.13 | I_ME | 11-15 | A.M. | | | | | | | | |
| | | | | | 17400 | , | | 3 LH- | 0.01 | | | | 4. | |
| MA0 | 1.7.1 | 17.1 | 17.1 | 17.1 | 17.1 | 173 | | 17-1 | 17 1 | 17.1 | 17.1 | 17.1 | 17.0 | |
| PM | 17.1 | 17.1 | | | | | | | 17.1 | 17.1 | | 17.1 | 17.0 | 17.1 |
| | | | 1 C.F.S. | TIME | 11.15 | 5 A-M- | | _ 101 | * 1 * * | TIFI | 4 4 4 4 | 11.1 | Liel | l [• l |
| 10 | SDEPTH= | 39.27 | SIMD=D.13_ | SAX= | 15.00 | ANSM= | 3.41 | SPI W= | 2.07 | | | | | • |
| | · · · · | | | | | | | J. 231 | . 35.01 | | - | | | |
| L AM | | | 17.1 | 17.1 | 17.1 | 17.1 | | 17.1 | 17-1 | 17-1 | 17.1 | 17.1 | 17.1 | - 1 - 2 |
| PM | 17.1 | 17.1 | 17.1 | 17.1 | 17.1 | 17.1 | | . 1.7. î | 17.1 | 17.2 | 17.2 | 17.5 | 1.0±
17 9 | 17 1 |
| | . MAXIMUM= | 17. | l C.F.S. | TIME | 11.15 | 5 A.M. | | | | ar radio I di dipanja a | A 1 4.5 | 1102 | 41.64 | 11.e.L |
| 11 | SQEPTH= | 39.18 | STMD= 0.413. | SAX= | 15.00 1 | TANSM= (| 0.41 | SPLW= | 0.07 | | | | - | |
| | | | | | | | | | | | | | | |
| | | | | | | - | | | | | , | • | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

| | | • | | | | | | | | | | | |
|---|------------------------------------|-------------------------------------|--------------------------------|-----------------------|---------------------------------|------|-----------------------|----------------------|--------------|--------------|--------------|--------------|-------|
| | | 17.2
17.2
C.F.S.
TMD= 0.13 | 17.2
17.2
TIME
SAX= 1 | 17.2
17.2
11.15 | 17.2
17.2
A.M.
ANSM= (| J•41 | 17.2
17.2
SPLW= | 17.1
17.2 | 17.1
17.2 | 17.1
17.2 | 17.1
17.2 | 17.1
17.2 | 17.2 |
| | | 17.2
17.2
C.F.S.
TMD= 0.13 | 17.2
17.2
TIME
SAX= 1 | 17.2
17.2
11.15 | 17.2
17.2
A.M.
ANSM= 0 | 0.41 | 17.2
17.2
SPLW= | 17.2
17.2 | 17.2
17.2 | 17.2
17.2 | 17.2
17.3 | 17.2
17.3 | 17.2 |
| 14 AM 17
PM 17
MAXIM
14 SDEPTH= | 1.3 17.3
1.2. 17.2
IUM= 17.2 | 17.3
17.1
C.F.S. | 17.3
17.3
TIME | 17.3
17.3
11.15 | 17.2
17.3 | | 17.2
17.3
SPLW= | 17.2
17.3 | 17.2
17.3 | 17.2
17.3 | 17.2
17.3 | 17.2
17.3 | 17.3. |
| | .3 17.3
.3 17.3
UM= 17.3 | 17.3
17.3
C.F.S. | 17.3 -
17.3
TIME | 17.3
17.3
11.15 | 17.3
17.3 | | 17.3
17.3
SPLW= | 17.3
17.3 | 17.3
17.3 | 17.3
17.4 | 17.3
17.4 | 17.3
17.4 | 17.3 |
| 16 AM 17
PM 17
MAXIM
16 SDEPTH= | .4 17.4
.3 17.4
UM= 17.3 | 17.4
17.4
C.F.S. | 17.4
17.4
TIME | 17.4
17.4
11.15 | 17.4
17.4
A.M. | | 17.4
17.4
SPLW= | 17.3
17.4 | 17.3
17.4 | 17.3
17.4 | 17.3
17.4 | 17.3
17.4 | 17.4 |
| 17 AM 17
PM 17
MAXIM
17 SDEPTH= | .4 17.4
.4 17.4
UM= 17.4 | 17.4 | 17.4
17.4
TIME | 17.4
17.4 | 17.4
17.4 | | 17.4
17.5
SPLW= | 0.07
17.4
17.5 | 17.4
17.5 | 17.4
17.5 | 17.4
17.5 | 17.4
17.5 | 17.4 |
| 18 AM 17
PM 17
MAXIM
18 SDEPTH= | .5 17.5
.5 17.5
UM= 17.5 | 17.5
17.5
C.F.S. | 17.5
17.5
TIME | 17.5
17.5
11.15 | 17.5
17.5
A.M. | | 17.5
17.5 | 17.5
17.5 | 17.5
17.5 | 17.5
17.5 | 17.5
17.5 | 17.4
17.5 | 17.5 |
| 19 AM 17. PM 17. MAXIMI 19 SDEPTH= | .5. 17.5
.5 17.5
UM= 17.5 | 17.5
17.5
C.F.S. | 17.5
17.6
TIME | 17.5
17.6 | 17.5
17.6 | | 17.5
17.6
SPLW= | 17.5
17.6 | 17.5
17.6 | 17.5
17.6 | 17.5
17.6 | 17.5
17.6 | 17.5 |
| 20 AM 17. PM 17. MAXIMU 20 SDEPTH= | .6 17.6
.6 17.6
JM= 17.6 | 17.5 | 17.6
17.6
TIME | 17.6
17.6
11.15 | 17.6
17.6 | | 17.6
17.6
SPIW= | 17.6
17.6 | 17.6
17.7 | 17.6
17.7 | 17.6
17.7 | 17.6
17.7 | 17.6 |
| 21 AM 17.
PM 17.
MAXIML
21 SDEPTH= | .7 17.7
.7 17.7
JM= 17.6 | 17.7
17.7 | 17.7
17.7
TIME | 17.7
17.7
11.15 | 17.7
17.7
A.N. | | 17.7
17.7
SPLW= | 17.7
17.7 | 17.7
17.7 | 17.6
17.7 | 17.6 | 17.6
17.7 | 17.7 |

| | | | | | | | | | | | | | | |
|------------------|--|-----------------------------|--------------------------|-------------------|------------------|-------------------|-------------|--------------|----------------|--------------|--------------|--------------|----------------|---|
| | | | | | | | | | | | | | • | |
| of. | | | 1 | | | | | | | | | | - | ~ |
| | 22 AM 1 | 7.7 17.7 | 17.7
17.7 | 17.8 | | 17.7
17.8 | | 17.7
17.8 | 17.7
17.8 | | 17.7
17.8 | | 17.7 .
17.8 | |
| | MAX1 | WM≃17.J | C. F.S. | TIME | 11.1 | 15A.M. | | | | - * | 1,10 | | | |
| <u> 200</u> | 22 SDEPTH | 41.31 | TMD= 0.13 | SAX=_ | 15.00 | TANSM= | 0.41 | SPLW= | 0.07 | | | | | - |
| | 23 AM 1 | 7.8 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | | 17.8 | 17.8 | 17.8 | | 17.8 | 17.8 | |
| | PM 1 | | 17 <u>.8:</u>
LC.F.S. | 1 <u>7.8_</u>
 | | 17.8
 | | 17.8 | 17.9 | 17_9 | 17.9 | 17.9 | 17.9 | |
| | 23 SDEPTH | | | | | | | SPLN= | . 0.07 | _ | | - | | |
| · 4- | 24 AM 1 | 70 170 | 17.9 | 17.9 | 170 | 17.9 | | 17 0 | 17.9 | 17.0 | 17.0 | 17.0 | 17.0 | |
| | PM 1 | 7.9 17.9 | 17.9 | 17.9 | 17.9 | 17.9 | ļ., | 17.9 | 17.9 | 17.9 | 17.9 | 17.9
17.9 | 17.9 | • |
| | 24 SDEPTH | 4UM= 17.9 | TMD= 0.13 | TIME | 15 00 | L5AM. | | | | | | | | _ |
| | Z-J JUCE III: | | | 7AA- | 19.00 | TANSET. | Ue HZ. | SPLME | | | | | | |
| · 3 | 25 AM 1 | 7.9 17.9 | | | 17-9 | | | 17-9 | | | | 17.9 | | _ |
| | MAXI | 17.9 | C.F.S. | 18.0
TIME | 18.0
[] 11.1 | .18.0
.a.m. | | 18.0 | | 18.0 | 18.0 | 18.0 | 18.0 | |
| | 25 SOFPTH | 42.92 | TMD= 0.13 | =XAZ | 15.00 | TANSM= | 0.43 | SPLW= | _0.07 | | | | | , |
| | 26 AM 1 | 18.0 | 18.0 | 18.0 | 18.0 | 18_0 | L | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | |
| 1 27, | PM 1 | 18.0 | 18.0 | 18.0 | 18.1 | 18-1 | | 18.1 | 18.1 | | | 18_,1 | | |
| | 26 SDEPTH | |) | | | I5 A.M.
TANSM= | | | | | - | • | | |
| P - | 77 AN 11 | | | ·· | | . p | | | | - :_ : | - ** | | | |
| ن ن | 27 AM 1 | 3.1 18.1
3.1 <u>18.1</u> | 18.1 | 18.1
18.1 | 18.1 | 18.1 | | 18.1 | . 18.1
18.2 | 18.1 | 18.1
18.2 | 18.2 | 18.1
18.2 | |
| <u>ائت</u> ا ا | MAXII | 1UM= 18. | C.F.S. | TIME | 11- | 15 A-M- | | | | | | | | - |
| | 27 SOEPTH | #Z./6 | TUMDE OF E | K. \SAX≐ | 15.00 | I ANSM# | 0.43 | SPLW#. | 0.07 | | | | | |
| | 28 AM 1 | | 18-2 | 18.2 | 18.2 | 18.2 | <u> </u> | 18.2 | 18.2 | | | 18-2 | | |
| 21 | | 3.2 18.2
4UM= 18.2 | | 18.2.
TIME | 18.2 | 18.2
15. A.M. | | .18.2 | . 18.2 | 18.2 | 18.3 | 18.3 | 1.8 3 | |
| ৰ | 28 SDEPTH | 45.33 | IMD = 0.12 | SAX= | 15.00 | TANSM= | 0.45 | SPLW= | 0.07 | | - | | | |
| | | 18.3 | 18.3 | 18.3 | | 18.3 | | 18.3 | 18.3 | 18.3 | 18.2 | 18.2 | 18.2 | |
| | PM 1 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | L | 18.3_ | 18.3 | . 18.3. | | 18.3 | | _ |
| p. 941 | MAXII
HEDDO - 29 - 20 - 20 - 20 - 20 - 20 - 20 - 20 | | ! C.F.S.
 TMD= 0.12 | TIME
SAX= | | I5 A.M.
TANSM≕ | | SPLW= | 0.07 | 4 | | | | |
| | | | | . | | · | | <u> </u> | <u> </u> | | | | | |
| | | 3.3 18.3
3.3 18.3 | 18.3
18.4 | 18.3
18.4 | 18.3
18.4 | | | 18.3 | 18.3
18.4 | 18.3
18.4 | 18.3
18.4 | 18.3
18.4 | 18.3
18.4 | |
| _ | MAXIM | <u>lum=18.3</u> | CFS | TIME | 11 • 1 | L5A_M. | | - | | | | | | |
| | 30 SDEPTH= | 45.25 | FMD= 0.13 | SAX= | 15.00 | IANSM= | 0.45 | SPLW= | 0.07 | | | | | |
| | 31 AM 11 | | 18.4
18.4 | 18.4
18.5 | | | | | 18_4 | | | 18.4 | _18.4 | |
| | | | | | | 18.5 | | 10 6 | 18.5 | 18.5 | | 18.5 | 18.5 | |

FEBRUARY

Reproduced from best available copy.

| | AL MC | 18.5
!= 18.5 | 18.5 | 13.5
18.5
T(%F | 18.5
18.5
11.15 | 18.5
18.6
A.M. | | 18.5
19.6 | 18.5
18.6 | 18.5
18.6 | 18.5
18.6 | 18.5
18.6 | 18.5
18.6 | 18.5 |
|-----------------|------------------------------|----------------------------------|------------------------|--------------------------------|-----------------------|----------------------|-------------|--------------|--------------|--------------|--------------|--------------|---------------|------|
| 7 | SOFFTH= | 45.U9 S | (Ma)= 0.13 | SAX = 0 | 15.00 T | ANSM= | 0.45 | SPLW= | 0.07 | | | | | |
| | MAXIMUM | 18.6
= 18.6 | 18.6
C.F.S. | 13.6
18.6
TIME | 18.6
19.6
11.15 | 18.6
18.6 | | 18.6
18.7 | 18.6
18.7 | 18.6
18.7 | 18.6
18.7 | 18.6
18.7 | 18.6
18.7 | 18.6 |
| 2 | SDEPTH= | 45.01 S | - বিষ্ণ= 12 | SAX= 1 | 15.00 T | ANSM= | 0.44 | SPLW= | 7.07 | | | | | |
| 3 A | M 18.7 M 18.7 MAXIMUM | 18.7 | | 18.7
18.7
TIME | | 18.7 | | 18.7
18.7 | 18.7
18.7 | 18.7
18.8 | 18.7
18.8 | 18.7
18.9 | 18.7
18.8 | 18.7 |
| 3 | SDEPTH= | 44.93 S | TMD= 3.12 | SAX= 1 | 11.15
5.00 T | A.M.
ANSM= | 0.44 | SPLW= | 2.07 | | | | - • | |
| 4 A
P | M 18.8
M 18.8
MAXIMUM: | 18.8
18.3
= 18.8 | 18.8
18.8
C.E.S. | 18.8
18.8 | 18.8
18.8 | 18.8
18.8 | | 18.8
13.8 | 18.8
18.8 | 18.8
18.8 | 18.8
18.8 | 18.8
18.9 | 18.7
18.9 | 18.8 |
| 4 | SDEPTH= | 44.84 5 | TMD= J.1 3 | SAX= 1 | 5.00 T | ΔN SM= | 9.45 | SPLW= | 2.07 | | | | | |
| , | MAXIMUM: | = 18.3 | C.F.S. | 18.9
18.9
TIME | 18.9
18.9
11.15 | 18.9
18.9
A.M. | | 18.9
18.9 | 18.9
18.9 | 18.9
18.9 | 18.8
18.9 | 18.8
18.9 | 18.8
18.9 | 18.9 |
| ッ | SOEPTH= | 49.90 S | TM0= 0.13 | SAX= [| 3.00 T | \NSM= | 0.49 | SPt W= | 0.07 | | | | | • |
| , , | MAXIMUM= | | 19.J
C.F.S. | 18.9
19.0
TIME | 18.9
19.0
11.15 | 18.9
19.0
4.M. | | 18.9
19.0 | 18.9
19.0 | 18.9
19.3 | 18.9
19.0 | 18.9
19.0 | 18.9
-19.0 | 19.0 |
| | SOEPTH= | 47.37 31 | 140= J•12 | SAX = 1 | 4+00 T# | INSM= | 0.49 | SPLW= | 0.07 | | | | | |
| 7 A)
P)
7 | | 19.0
19.0
19.0
49.74 ST | 19.1
C-E-S- | 19.0
19.1
TIME
SAX= 1 | 19.1 | 19.0
19.1
A.M. | 9 20 | 19.0 | 19.0
19.1 | 19.0
19.1 | 19.0
19.1 | 19.0
19.1 | 19.0
19.1 | 19.1 |
| | | | | | 2.00 IA | 1.14.2 bat = | J.49 | S₽L₩≈ | 0.07 | | | | | |
| | 19.1
MAXIMUM= | 19.1
19.1 | 0.6.5. | 19.2 | 19.1
19.2
(1.15 | 19.1
19.2
4.M. | | 17.1
19.2 | 19.1
19.2 | 19.1
19.2 | 19.1
19.2 | 19.1 | 19.1
19.2 | 19.2 |
| | SDEPTH= | 45.400 21 | et0= J.12 | \$4X= [3 | 5.)) FA | NSM≡ | A. 49 | 5Pt W= | 0.07 | | | | | |
| , , | 19.2
MAXIMUM= | 19.2 | 19.2
C.E.S. | 19.3 | 19.3 | 19.2
19.3 | | 19.2 | 19.2
19.3 | 19.2
19.3 | 19.2
19.3 | 19.2 | 19.2
19.3 | 19.2 |
| Ġ | SDEPTH= | 49.70 ST | MD= 0.13 | SAX= 14 | ++00 TA | NSM= | 0.51 | SPLW= | 0.07 | | | , | | |

| | | | | | | | | | | | | | • |
|--|-------------|----------------------|------------|-------------------------|------------------|----------------------|---------------|-------------|---------|-------------|---------------|-----------|---------------------------------------|
| 10 AM | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | 19.3 | |
| . PM. | 19.43 | .19.3 | 19.3 | 19.4 | 19.4 | | | 19.4 | | | | 19.4 | 19.3 |
| and a complete come account to the comment of the com- | MAX I.MUM.= | 19.3 | | | | | | | | 1,4, | | 1 · • • | * > • 3 |
| 10 5 | DEPTH= 4 | 9.63 5 | LMD = 0.13 | SAX= | 15.00 T | ANSM= 0.51 | SPI W= | 0-07 | | | | | |
| | | | | | | | | | • | • | | | |
| 11 AM | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19.4 | 19-4 | 19.4 | |
| P M_ | 19.4 | 19.4 | 19.4 | | 19.5 | 19.5 | 19.5 | | | 19.5 | | | . 10 4 |
| | MAXIMUM= | | | TIME | | | | 1747 | . 1/4/ | 1202 | 17.0 | . 1 7 • 2 | 1 2.4 →. |
| 11S | DEPTHE | 49.56_S | TMD= 0.13 | SAX= | 15.00 T | ANSM= 0.51 | SPIW= | 0.07 | | | | • | , |
| | | | | | | | J. 2.1 | | • | • | == | | |
| 12 AM | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 7. 7 1. |
| PM | 19.5 | 19.5 | 19.5 | 19.5 | 19 5 | 10 6 | 10 4 | 10 4 | 10.4 | 10:4. | 10 (| 10.6 | |
| | MAXIMUM= | 19.5 | C.F.S. | IIME | 11.15 | A-M- | 1 | | 1,40 | ., | 1700 | 17.0 | 1202 |
| 1.2 S | DEPTH= | 49.48 S | TMD= 0-13 | SAX= | 15.00 T | ANSM= 0.51 | 591 W= | 0-07 | | | · | | |
| | | | | _ | | | | | | | | | |
| 13 AM | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6
19.7 | 19.6 | 19.6 | 19.6 | 19.6 | 10 4 | 10 4 | |
| PM | 19.6 | 19.6 | 19.6 | 19-6 | 19.6 | 19.7 | 19.7 | 19.7 | 10 7 | 10.7 | 10.7 | 10.7 | 10. |
| | カム人じおい代本 | 19.0 | Lataba | I I ME | 11.15 | Δ. M. | | | | | | 1741 | 1 2 • O |
| 13_5 | DEPTH= 9 | 50.91 S1 | TMD= 0.13 | SAX= | 15.00 T | ANSM= 0.53 | SPI W= | 0.07 | | | | ** | • |
| | | | | | | | | | | | . | | |
| .14AM. | 19.7 | _ 19.7 | 19.7 | 19.7 | 19.7 | 19.7 | 19.7 | 19.7 | 19.7 | 10.7 | 10.7 | 10.7 | h - Henri |
| PM | 19.7 | 19.7 | 19.7 | 19.7 | 19.7 | 19_8 | IO.R. | 10.8 | 10 R | 17 a.r | 10.0 | 100 | 30.7 |
| Y H | MAX IMUM= | 19.7 | C.F.S. | TIME | 11.15 | A.M. | | | | | | . 1.7.0 | 1941 |
| 14 5 | DEPTH= 5 | 50 84 S | TMD= 0.13 | SAX= | 15.00 T | ANSM= 0.52 | SD1 W- | 0.:07 | | | | | a series (|
| | | | | | | | 31 CH- | 0.01 | | | | | * |
| 15 AM | 19.8 | 19.8 | 19.8 | 19.8 | 19-8 | 19.8 | 10_R | 10.8 | 10 0 | 10 9 | 10 9 | 100 | · · · · · · · · · · · · · · · · · · · |
| PM | 19.8 | 19.8 | 19.8 | 19.8 | 19-8 | 19.8
19.8 | 19.0 | 10.0 | 10.0 | 10.0 | 17+0. | 19.0 | |
| | | | C.F.S. | TIME | 11.15 | A.M | 1347 | 1707 | 1747 | 19.9 | 19.9 | 13-3 | 19.8 |
| 1.5 S | DEPTH= | i0-77 SI | [MD= 0.13 | CAYE | 15.00 T | A.M.
ANSM= 0.52 | | 0.07 | | | : | | |
| | | | | - | | | | U | | | | | |
| 16 AM | 19.9 | 19.9 | 19.9 | 19.9 | 10.0 | 10 0 | 100 | 19.9 | 10.0 | 10.0 | | | • • - |
| РМ | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | | | | | | | |
| | MAXIMUM= | | | | 11.15 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 19.9 |
| 16 5 | | in. 63 (\$) | เพย= นาว | 2 A Y - | 11.17
T 00 31 | ANSM=0.52. | 501.11- | 0.03 | | | | | - |
| | | | | 3MA=_ | | 4N3M≡Q <u>. 3∠</u> . | ZELME- | UU.Z | | · · · | | | |
| | 20.0 | 20 n | 20.0 | 20 O | 20.0 | 30 0 | 20.0 | 20.0 | | | | | |
| | | 20.0 | 20.0 | 20.0 | 2040 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | | |
| | MAXIMUM= | 20.0 | C.F.S. | ~~~~~~~~~.
T T A A E | | | 20 - 1 | 20. L | 20.41 . | 20.1 | .201 | 20.1 | 20.0 |
| | | ነው ቀይ ይህ
የህ አን ይህ | EMD~ O 12 | 1 1 M E | 11.15 | A.M.
ANSM= 0.52 | | | | | | | |
| | ocrine | M.4.4.2 31 | | | | ANSM= 0.52 | SPLM= | 0.07 | | | | | |
| 1R AM | 20.1 | 20.1 | 20.1 | 20.1 | | | | | | • | | | |
| PM | | | | | | | | | 20.1 | - | | 20.1 | • |
| | | 23.1 | 20.1 | 20.1 | 20.1 | 20.1 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.1 |
| 10 6 | _MAXIMUM= | | | LIME | | A.M. | - | | | | · | | |
| T.D | DEPIN= 4 | A*97 21 | MD= 7.13 | SAX= | 15.00 T | NSM= 0.46 | SPLW= | 0.07 | | | | | |
| 10 44 | 20.2 | | | | | | | | | | | | |
| TA WW | 20.2 | <u></u> | | _20-2 | 202 | 20.2 | 20.2 | _ 20.2 | 20.2 | 20.2 | . 20.2 | 20.2 | |
| P:M | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 | 20.2 |
| 10 5 | MAXIMUM= | 20.2 | C.F.S. | TIME | 11.15 | A.M. | | | | • | | | = |
| | UEP.1H= | 9.27. SI | MU=0.13 | S∆X≃ | 15.00. T/ | NSM= 0.45 | SPL₩= | 0.07 | | | | | |

4: 1

Reproduced from best available copy.

| | | | | | | | | ים ן | esi avanac | | Zambe - | | | |
|---------------|------------------------------|-------------------------|--------------------|--------------|---------------|--------------------------|------|-------|------------|------|---------|------|--------|---------|
| 20 AM | 23.3 | 23.3 | 20.3 | 20.3 | 20.3 | 20.3 | | 23.3 | 20.3 | 19.7 | 19.7 | 10.7 | 10.7 | |
| P M: | 19.7 | 19.3 | 19.3 | 19.8 | 19.8 | 19.8 | | 19.8 | 19.8 | 20.3 | | 19.7 | 19.7 | |
| | MAXIMUM= | 19.7 | C.F.S. | TIME | 7 7 1 F | . A M | | | 17.0 | 20 | 20.3 | 20.3 | 20.3 | 20.0 |
| 20 S | BEPTH= 4 | +5 • 83 S | TMD= 0.14 | SAX= | 15.00 | ANSM= | 0.05 | SPLW= | 0.07 | | | | | |
| | | | | | | | | | | | | | | |
| ZI AM | 20.3 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | | 20.2 | 20.2 | 20.1 | 20.1 | 20.1 | 20.1 | |
| ÞΜ | | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | | 20.1 | 20.1 | 20.1 | 20.1 | | 20.1 | 20.1 |
| | MAXIMUM= | 20.1 | C.F.S. | TIME | 11.15 | 4 M | | | | 2011 | 2011 | 20.1 | 20.1 | 20.1 |
| 21 S | DEPTH= 4 | 5.32 S1 | FMD = 0.14 | SAX= | 15.00 1 | ANSM= | 0.21 | SPLW= | 0.07 | | | | | |
| | | | | | | | | | | | | | | |
| 22 AM | 20.1 | 20.1 | 20.l | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | |
| ₽M | | 20.0 | 20.J | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
| | =MUMIXAM | 20.0 | C.F.S. | TIME | 11.15 | A.M. | | | | 2200 | 20.0 | 20.0 | 2040 | 20.0 |
| 22 5 | UEPIH= 4 | 4.61 SI | MD= 3.14 | .SAX≕ | 15.00 T | ANSM= | 0.25 | SPLW= | 0.07 | | | | | |
| | | | | | | | | | | | | * | | |
| 23 AM | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 19.9 | 19.9 | 19.9 | 19.9 | |
| PM | | | 20.0 | 20.0 | 20.0 | 20.0 | | 23.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
| 27 6 | =PUMIXAM | 19.9 | C.F.S. | TIME | 11.15 | Λ.Μ. | | | | | 2040 | 7.00 | 20.0 | 20.0 |
| 23 5 | ОЕРГИ= ——4 | 4.30 SI | 图9= 3.14 | SAX= | 15.00 T | ANSM= | 0.34 | SPLW= | 0.07 | | | | | |
| | • | | | | | | | | | | | | | |
| 24 AM | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 19.9 | |
| PM | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
| C. 4 C. | MAXIMUM= | 20.0 | C.F.S. | 1195 | 11.15 | $A_{\bullet}R_{\bullet}$ | | | | | 2000 | 20.0 | 2114 / | 20 € (1 |
| 24 31 | DEPTH= 4 | 4.21 51 | MD=).14 | S 4 X= | 15.00 T | AN SM= | 0.43 | SPEW= | 0.07 | | | | | |
| | | | | | | | | | | | | | | |
| 25 AM | 20.0 | 2 J. J | 20.0 | 20.0 | 20.0 | 20.0 | | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | |
| РМ | 20.0 | 20.0 | 20.1 | 20.1 | 20.1 | 20.1 | | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 |
| 26 65 | MAXIMUM= | 20.0 | C.F.S. | TIME | 11.15 | A . M . | | | | | | | 2001 | ~001 |
| 25 80 | DEPTH= 4 | 3.57 51 | MD= 0.16 | SAX= 1 | 12.00 T. | ANSM= | 0.50 | SPLW= | 0.07 | | | | | |
| | | | | | | | | | | | | | | |
| 26 ДМ
РМ | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | 20.1 | |
| 1-14 | 20.1 | 20.1 | 20.2 | 20.2 | 20.2 | 20.2 | | 27-2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 |
| 27 66 | MAXIMUM= | 20.1 | C.F.S. | TIME | 11.15 | Λ.Μ. | | | | | | | 2012 | # N & C |
| 28 ST | /EP111= 4 | 5.21 51 | MD= 0.16 | SAX = 1 | 11.00 T | ANSM= | 0.56 | SPLW= | 0.07 | | | | | |
| 27 AM | 20.2 | 22.2 | | | | | | | | | | | | |
| 27 A(M. | 20.2 | 20.2 | | 20.2 | 20.2 | 20.2 | | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 | |
| P 19 | ZU•Z
MAXIMUM≃ | 20.2 | | 20.3 | 20.3 | 20.3 | | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 |
| 27 \$6 | | 23.2 | C.F.S. | TIME | 11.15 | Α.Μ. | | | | | | | | |
| Z1 51. | DEPTH= 4 | 0 • 14 Shi | MD= 0.16 | SAX= 1 | .2.90 T/ | \ N:SM= | 7.57 | SPL4= | 0.07 | | | | | |
| 28 AM | 20.3 | 373. 2 | 344 3 | 43.7 | | | | | | | | | | |
| 26 A4 | 20.4 | 20.3
20.4 | | 20.4 | 20.4 | 20.4 | | 20.3 | 20.3 | 20.3 | 20.3 | 20.3 | 29.3 | |
| - | | 20.3 | 20•4 | 27.4
7.11 | 20.4 | 20.4 | | 27.4 | 21.4 | 20.4 | 20.5 | 20.5 | 20.5 | 20.4 |
| 28 50 | ・・・ へくり ・・・・ ムノ
IEDTH= ムノ | - 21 ± 3
- 3Ω - 5 π3 | Latela
Vii 1 47 | TIME | 11.15 | | | | | | | | | |
| ٠١١ ي ١١٠ | · | z• (a. 51) | vn= 0.16 | 30X= [| .3.4 (91 - 17 | 142W= | 0.59 | SPLW= | 0.07 | | | • | | |
| | | | | | | | | | | | | | | |

| | MARCH | ,
 | | 1 | | | | | | | | | | | | |
|---------|---|--------------------|--------------------|----------------------|-------------------------|----------------------|-------------------|--------------------|--------------|-----------------|--------------|--------------|--------------|--------------|-------|-----|
| | 1 AM | 20.5 | 20.5 | 23.5 | 20.5 | 20.5 | 30. | _ | | | | | | | • | |
| | PM | 20.5 | 20.5 | 20.5
20.5 | 20.5
20.5 | 20.5
20.5 | | | 20.5
20.6 | 20.5
20.6 | 20.5
20.6 | 20.5
20.6 | 20.5
20.6 | 20.5
20.6 | 20 5 | |
| | 3 % | MAXIMUM= | | 5 C.F.S. | TIM | E 11. | 15 A.M. | | | | | 20.0 | 20.0 | ∠U• b | 20.5 | |
| | | πrkπu≖ | .4.O. U.L. 3 | STAD= Oal | 5 SAX= | 14.00 | . TANSM≃ | _ Q. - 5.8. | SPLW= | .0.07 | | | | | | |
| | 2 AM
PM | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 | , | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 | 4.4 | |
| | | 20.6
MAXIMUM= | 20.6 | 20.6 | 20_6
TIME | 20•7
= 11• | 20
15 A.M. | Z | _20.•7 | 20 <u>-</u> . 7 | 20.7. | 20 • 7. | _20.Z | 20.7 | 20.6 | |
| | 2. Si | DEPTH= | 4593 | STMD= .0.1 | SAX= | 15.00 | JANSM= | 0.58 | . S.P L W= | 0.07 | | • | | | | . , |
| | 3 AM | 20.7 | 20.7 | 20.7 | 20.7 | 20.7 | 20.7 | | 20.7 | | 20.7 | | | | | - |
| | PΉ | 20.7 | 20.7 | 20.8 | 20.8 | 20.8 | 20.8 | } | 20.8 | 20.7
20.8 | 20.7
20.8 | 20.7
20.8 | 20.7
20.8 | 20.7
20.8 | 20.8 | |
| | 3SI | MAXIMUM=
DEPTH= | | C.E.S.
STMD= 0.10 | | 15-00 | L5 A.M. | 0.58 | | | · · | | | | | |
| | | | | | | | | | | | | | | | | |
| | 4 AM PM | 20.9
20.9 | 20.9 | 20 <u>9</u>
20•9 | _ <u>20.9</u> _
20.9 | 20 <u>.9</u>
20.9 | | | 20.9 | 20.9 | 209 | | 20_8_ | 20.8 | | |
| | | MAXIMUM= | 20.8 | C.F.S. | TIME | 11. | 15 A.M. | ,- | 20.9 | *** | 21.0 | 21.0 | 21.0 | 21.0 | 20.9 | |
| | 4 51 | DEPTH= | 45.77 S | TMD= 0.16 | SAX= | 15.00 | TANSM#. | .0.58 | SPLW≡ | 0.07 | | | | | | |
| | 5AM | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 | Z1_0 | ١. | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 | • | |
| P
Sh | РМ | MAXIMUM≃ | ــ. 21•Ωــ
21-0 | 21.0
C.F.S. | 21.0 | 2.L.1 | 21.1
15 A.M. | | _21.1 | 21.1 | . 21.1 | 21.1 | 21.1 | 21.1 | 21.0_ | |
| - | 5 S.C. | | | TMD= 0.15 | SAX= | 15.00 | TANSM= | 0.59 | SPLW= | 0.07 | | | | | | |
| | | . 21.1 | | | 21.1 | 21.1 | ÷ | | | · | | | <u> </u> | | · | |
| | | 21.1 | 21.1 | 21.2 | 21.7 | 21.2 | 21.2 | | 21 2 | 21.1 | 21.1
21.2 | 21.1 | 21.1 | 21.1 | 21.2 | |
| | *************************************** | MAX IMUM= | | C.F.S.
TMD= 0.15 | _ TIME | 11_1 | 5 A.M. | | | | | | | | 21.2 | |
| | | | | | | | | | | 0.07 | • | | | | • | |
| | 7 AM PM | | 21.3 | 21.2
21.3 | 21.2
21.3 | | 21.2 | | | .21.2 | | 21.2 | | 212 | | |
| | to the second resembles are as a | MAXIMUM=. | 21.2 | C.F.S | TIME | 21.3
11.1 | 21.3
.5 A.M. | | 21.3 | 21.3 | 21.3 | 21.4 | 21.4 | 21.4 | 21.3. | |
| | 7SD | EPTH= | 50.81 S | IMD= 0.15 | SAX= | 15.00 | TANSM= | 0.4.6.1 | S.P.L.W= | _0.07 | • | · . <u>-</u> | | | | |
| | 8 AM | 21.4 | 21.4 | 21.4 | 21.4 | 21.4 | 21.4 | | 21.4 | 21.4 | 21.4 | 21.4 | 21 4 | 21.4 | , | |
| | | 21_4_
MAXIMUM= | | | 21.4 | 21.4 | 21.4 | | 21.5 | 21.5 | 21.5 | 21.5 | 21.4
21.5 | 21.4
21.5 | 21.4 | |
| | | | 50.72 S | C.F.S.
TMO= 0.15 | TIME
SAX= | . 11.1
15.00 | .5 A.M.
Tansm= | 0.61 | SDI M= | 0.07 | | | | | | |
| | | | | | | | . — | | | | | | | | | |
| | PM | 21.5 | 21.5 | 21.5
21.5 | 21.5
21.6 | 21.6 | 21.5
21.6 | | 21.5 | 21.5
21.6 | 21.5 | 21.5 | 21.5 | 21.5 | | |
| | | MAXIMUM= | 21.5 | C. F. S. | TIME | 11.1 | 5 A.M. | | | | 21.6 | 21.6 | 21.6 | 21.6 | 21.5 | |
| | 7.30 | | 92•48 S | TMD= 0.15 | 2¥ X= | 14.00 | IANSM= | 0.63 | SPLW= | 0.07 | | | | | - | |

| Reproduced from best available copy. |
|--------------------------------------|
|--------------------------------------|

| | | | | | | | | besi | availaul | | | | | | |
|------|------------------------|-----------------------------------|---------------------------------|------------------------|------------------------------|----------------------------------|-------------------------------|-------|-----------------------|--------------|--------------|--------------|-------------------------------|--------------|------|
| 10 | b M | 21.6
21.6
MAXIMUM= | 21.6
21.6
21.6 | 21.7
C.F.S. | TIMS | 21.7 | 21.6
21.7
5 A.M. | , | 21.6
21.7 | 21.6
21.7 | 21.6
21.7 | 21.6
21.7 | 21.6
21.7 | 21.6
21.7 | 21.7 |
| 10 |) SD8 | PTH= | 52.39 S | [40= 0.15 | SAX= | 15.00 | TANSM= | 0.63 | SofM= | 0.07 | | | | | |
| | P.K' | AXIMUM= | 21.8
21.8
21.7 | 21.8
21.3
C.F.S. | 21.8
21.8
TIME | 21.8
21.8 | 21.8
21.8
5 A.M. | | 21.8
21.8 | 21.8
21.8 | 21.7
21.9 | 21.7
21.9 | 21.7
21.9 | 21.7
21.9 | 21.8 |
| 1! | SDE | PTH= | 52.49 S1 | [MD= 0.1] | 54 x = | 15.00 | TANSM= | 0.64 | SPLW= | 0.07 | | | | | |
| | PM
M | AXIMUM= | 21.9
21.9
21.9 | 21.)
C.E.S. | 21.9
21.9
Time | 21.9
21.9 | 21.9
22.0
5 A.M. | | 21.9
22.0 | 21.9
22.0 | 21.9
22.0 | 21.9
22.0 | 21.9
22.0 | 21.9
22.0 | 21.9 |
| 12 | SUE | PTH≃ | 52.40 ST | MD= 0.15 | SAX= | 15.00 | TANSM= | 0.64 | SPLW= | 0.07 | | | | | |
| | Р М
М | 22.0
22.0
=MUMIXA | 22.0
22.0
22.0 | C. E. S. | 22.0
TIME | 22.0
22.1
11.1 | 22.0
22.1
5 A.M. | | 22.0
22.1 | 22.0
22.1 | 22.0
22.1 | 22.0
22.1 | 22.0
22.1 | 22.0
22.1 | 22.0 |
| 13 | SDE | PTH= | 52 . 30 \$T | MD= 0.15 | SAX= | 15.00 | TANSM= | 0.64 | SPLW= | 0.07 | + · · · . | | | ,
 | |
| | РМ
M. | 22.1
22.1
AXIMUM= | 22.1
22.1
22.1 | 22.1
22.2
C.F.S. | 22.1
22.2
TIME | 22.1
22.2
11.15 | 22.1
22.2
5 A.M. | | 22.1
22.2 | 22.1
22.2 | 22.1
22.2 | 27.1
22.2 | 22.1
22.2 | 22.1
22.2 | 22+2 |
| | | | | MD= 0.15 | SAX= | 14.09 1 | TANSM= | 0.66 | SPLW= | 0.07 | | | | | |
| | M. | 22.2
22.2
AXIMUM= | | 22.2
22.3
C.F.S. | 22.3
22.3
TIME | 22.3
22.3
11.15 | 22.2
22.3
5 A.M. | , | 22.2
22.3 | 22.2
22.3 | 22•2
22•3 | 22.2
22.4 | | 22.2
22.4 | 22.3 |
| 15 | SOE | PTH= 5 | 55.82 ST | MD= 0.15 | SAX= | 14.00 T | TANSM= | 0.66 | SPLW= | 0.07 | | | | | |
| | PM
M≀ | 22.4
22.4
XIMUM= | 22.4
22.4
22.4 | 22.4
22.4
C.F.S. | 22.4
22.4
TIME | 22.4
22.4
11.15 | 22.4
22.4
A.M. | | 22.4
22.4 | 22.4
22.5 | 22.4
22.5 | 22.4
22.5 | 22.4
22.5 | 22.3
22.5 | 22.4 |
| 16 | SDE | PTH= 5 | 8.11 ST | MD= 0.16 | SAX= | 12.00 T | ANSM= | 0.69 | SPLW= | 0.07 | | | | | |
| | ъм
МХ | 22.5
22.5
XXIMUM=
PTH= 5 | 22.5
22.5
22.5
8.02 ST | 22.5
22.5
C.F.S. | 22.5
22.5
TIME
SAX= | 22.5
22.5
11.15
13.00 T | 22.5
22.6
A.M.
ANSM= | J.71 | 22.5
22.6
SPIN= | 22.5
22.6 | 22.5
22.6 | 22.5
22.6 | 22.5
22.6 | 22.5
22.6 | 22.5 |
| 18 A | | 22.6 | 22.6 | 22.5 | 22.6 | 22.6 | 22.6 | | 22.6 | | 20. | | | | |
| 18 | 4.5 | 22.6
XXIMUM=
PTH= 5 | 22.6
22.6
3.50 SEN | 22.6 | 22.7
ELME | 22.7 | 22.7 | a Ta | 22.7 | 22.6
22.7 | 22.6
22.7 | 22.6
22.7 | 22.6
22.7 | 22.6
22.7 | 22.6 |
| 19 A | | | | | | | | V.I.D | | 0.07 | | | | | |
| þ | M
MA | 22.7
XIMUM= | 22.7
22.7
22.7 | 22.3
C.E.S. | 22.7
22.8
TIME | 22.7
22.8
11.15 | 22.7
22.8
A.M. | | 22.7
22.8 | 22.7
22.8 | 22•7
22•8 | 22.7
22.8 | 22 .7
22 . 8 | 22.7
22.8 | 22.8 |
| 19 | SUEP | 'TH= 5 | 8.41 SIM | 10= 0.16 | SAX= 1 | .4.00 T. | ANSM= | 0.72 | SPLW= | 0.07 | | | | | |

| 20 AM 22.8 22.8 22.9
PM 22.8 22.9 22.9
MAXIMUM= 22.8 C.F.S.
20 SDEPTH= 58.23 STMD= 0.16 | 22.9 22.9 22.9
TIME 11.15 A.M. | 22.8
22.9
22.9 | | 22.8
23.0
23.0 | | 22.9 |
|--|---|--------------------------|-------------------|----------------------|----------------|-------------|
| 21 AM 23.0 23.0 23.0 | 23.0 23.0 23.0 | SPLW= 0.07
23.0 23.0 | 23.0 2 | | 22.9 | |
| PM 23.0 23.0 23.0
 | 23.0 23.0 23.0 | 23.0 23.1 | | 23.1 23.1 | 23.1 | 23.0 |
| 21 SDEPTH= 57.84 STMD= 0.16 | SAX= 15.00 TANSM= 0.68 | | | | | • |
| PM 23.1 23.1 23.1 23.1 PM 23.1 23.1 23.1 23.1 C.F.S. | 23.1 23.1 23.1 | 23.1 23.1
23.2 23.2 | | 3.1 23.1
3.2 23.2 | 23.1
23.2 | 23.1 |
| | TIME 11.15 A.M.
SAX= 14.00 TANSM= 0.70 | SPLW= .0.07 | | . • | | |
| 23 AM 23.2 23.2 23.2
— PM 23.2 23.2 23.2 | 23.223.2 23.2 | 23.2 23.2 | | 3.2 23.2
3.323.3 | | 33 3 |
| MAXIMUM= 23.2 C.F.S.
23 SDEPTH= 56.51 STMD= 0.17 | TTME 11.15 A.M. | - | 23.63 | <u></u> | _23.4.3. | 23.2 |
| | | 23.3 23.3 | 23.3 2 | . – 23.3 | 23.3 | |
| PM 23.3 23.3 23.3 | 23.3 23.4 23.4
IIME 11.15 _A.M. | 23.4 23.4 | | 3.4 23.4 | | . 23.3 . |
| 24 SDEPTH= 56.15 STMD= 0.17 | SAX= 15.00 TANSM= 0.51 | SPEW= 0.07 | | | | *. |
| 25AM23.423.423.4
PM | 23.5 23.5 23.5
TIME 11.15 A.M. | 23.4
23.5
23.5 | 23.5 2 | 3.4 23.4
3.5 23.5 | | 23.4_ |
| 25 SDEPIH= 55.84 SIMD= 0.17 | | | | | | |
| 26 AM 23.5 23.5 23.5
PM 23.5 23.5 23.5
MAXIMUM= 23.5 C.F.S. | 23.5 23.5 23.5
23.6 23.6 23.6
TIME 11.15 A.M. | 23.5
23.6 23.6 | 23.5 2 | | 23.5
23.6 _ | 23.5 |
| 26 SDEPTH= 56.00 STMD= 0.17 | SAX= 15.00 TANSM= 0.60 | | | | | |
| 27 AM 23.6 23.6 23.6
PM 23.6 23.6 23.7
MAXIMUM= 23.6 C.F.S. | 23.7 23.7 23.7
TIME 11.15 A.M. | 23.7 23.7 | 23.6. 2
23.7 2 | | 23.6
23.7 | 23.7 |
| 27 SDEPTH= 55.91 STMD= 0.17 | SAX= 15.00 TANSM= 0.64 | SPEW= 0.07 | | | | |
| 28 AM 23.7 23.7 23.7 23.7 PM 23.7 23.7 23.8 MAXIMUM= 23.7 C.F.S. | 23.8 23.8 23.8
TIME 11.15 A.M. | 23.7. 23.7.
23.8 23.8 | | 3.7 23.7
3.8 23.8 | 23.7
23.8 | 23.8 |
| 28SDEPTH=57.34 STMD= 0.18 | SAX= 12.00 TANSM= 0.66 | SPLW= 0.07 | | | | |
| PM 23.8 23.8 23.9
MAXIMUM= 23.8 C.F.S. | TIME 11.15 A.M. | 23.8
23.9
23.9 | | 3.8 23.8
3.9 23.9 | 23.8
23.9. | .23.9 |
| 29 SDEPTH= 57.18 STMD= 0.18 | SAX= 13.00 TANSM= 0.67 | SPLW= 0.07 | | | | • |

| | AM 23.
PM 23.
MAXIMU
O SDEPTH= | .9 23.9
IM= 23.9 | 24.0 | 23.9
24.0
TIME
SAX= | 1.1 | 24. (| Ö | 23.9
24.0
SPLW= | 24.0 | 23.9
24.0 | 23.9
24.0 | 23.9
24.0 | 23.9
24.0 | 24.0 |
|-------|---|------------------------------|------------------------|------------------------------|-----------------------|-------------------------|--------------|-----------------------|--------------|--------------|--------------|----------------|--------------|--------|
| 31 | AM 24.
PM 24.
MAXIMU | 0 24.0
0 24.0
IM= 24.0 | 24.0
24.0 | 24.0
24.1 | 24.0
24.1 | 24.(
24.1 |) | 24.0
24.1 | 24.0
24.1 | 24.0
24.1 | 24.0
24.1 | 24.0
24.1 | 24.0
24.1 | 24 • 1 |
| APRIL | FREABOS | 27.00 € |) 149=).1 8 | 'SAX= | 15.00 | TANSM= | 0. 72 | SPLW= | 3.07 | | | | | |
| | AM 24.
PM 24.
MAXIMU | 1 24.1
M= 24.1 | rec | 24.2 | 24.1
24.2
11.1 | 24.2 | • | 24.1
24.2 | 24.2 | 24.1
24.2 | | 24.1
24.2 | 24.1
24.2 | 24.1 |
| | L SDEPTH≃ | | | | 15.00 | TANSM= | 0.74 | SPLW= | 0.07 | | | | , <u></u> | · |
| | AM 24. PM 24. MAXIMU | 2 24.2
M= . 24.2 | 24.2 | 24.3 | 24.2
24.3
11.1 | 24.3 | | 24.2
24.3 | 24.2
24.3 | 24.2
24.3 | | 24.2
24.3 | 24.2
24.3 | 24.2 |
| | SDEPTH= | | IMD= 0.18 | SAX= | 13.00 | TANSM= | 0.75 | SPLW= | 0.07 | | | | | |
| | PM 24.3 | 3 24.3
1= 24.3 | 24.3
C.E.S | 24.3 | 24.4 | | | 24.3
24.4 | 24.3
24.4 | | 24.3
24.4 | 24.3
24.4 | 24.3
24.4 | 24.3 |
| | SULFIN- | 60.05 5 | [MD= 0.[8 | 5 A X =] | 14.00 | TANSM= | 0.77 | 5 P L W= | 0.07 | | | | | |
| | AM 24.4
PM 24.4
MAXIMUM | 24.4
1= 24.4 | 24.4
24.4
C.F.S. | 24.4
24.4
TIME | 11 1 | 24.4
24.5
5 A.M. | | 24.4
24.5 | 24.4
24.5 | 24.4
24.5 | | 24.4
24.5 | | 24.4 |
| | SDEPTH= | 67.64 5 | FMD= 0.17 | 5AX= 1 | 0.00 | TANSM= | 0.78 | SPLW= | 0.07 | | | | ٠ | |
| 1 | AM 24.5
PM 24.5
MAXIMUM | .24.5 | 24.5
24.5
C.F.S. | 24.5
24.5
TIME | 24.5
24.5
11.15 | 24.5
24.5
5 A.M. | | 24.5
24.6 | 24.5
24.6 | 24.5
24.6 | 24.5
24.6 | | 24.5
24.6 | 24.5 |
| | SDEPTH= | | IMD= O.If | SAX= 1 | .1.00 | TANSM= | 0.80 | SPLW= | 0.07 | | | | | |
| | PM 24.6
MAXIMUM | 24.6
= 24.6 | 24.6
C.E.S. | 24.6
24.6
TIME | 24.6
24.6
11.15 | 24.6
24.6
A.M. | | 24.6
24.6 | 24.6
24.7 | 24.6
24.7 | 24.6
24.7 | 24.6
24.7 | 24.5
24.7 | 24.6 |
| | SDEPTH= | 01.35 51 | MD= 0.17 | SAX= 1 | 2.00 1 | FANSM≈ | 0.80 | SPLW= | 0.07 | | | | | ÷ |
| | PM 24.7
MAXIYUM | 24.7
= 24.5 | 24.7
C.E.S. | 24.7
24.7
TIME | 24.7
24.7
11.15 | 24.7
24.7
1 A. 4. | | 24.7
24.7 | 24.7
24.7 | 24.7
24.7 | 24.7
24.8 | 24.6
24.8 | 24.6
24.8 | 24.7 |
| | SDEPTH= | 67.22 ST | MD= 0.17 | SAX= 1 | 3.00 1 | ANSM = | 0.80 | SPLW= | 0.07 | | | | | |
| þ | M 24.9
PM 24.7
MAXIMUM: | 24.8
= 24.7 | 24.8
0.E.S | 24.5
24.3
TIME | 24.8
24.8
11.15 | 24.8
24.8
A.M. | | | 24.7
24.8 | 24.7
24.8 | 24.7
24.8 | 24.7 .
24.8 | 24.7
24.8 | 24.8 |
| ਲ | SDEPTH≂ | 58,51 SF | M)=).10 | SAX= | 9.00 T | ANSM= | 0.32 | SPL₩= | 0.07 | | | | | |

| | | | | | | | • | • |
|---------------|---|------------------|---------------|---------------|----------------|-------------------|--------------------------------|-------------------|
| | 9 AM 24.8 24.8 24.8 24.8 24.8 24.8 PM 24.8 24.8 24.9 24.9 24.9 24.9 | 24.8
24.9 | -24.8
24.9 | 24.8
24.9 | 24.8.
24.9 | 24.8
24.9 | 24.8
24.9 | 24.9 |
| | MAXIMUM= 24.8 C.F.S. TIME 11.15 A.M. 9 SDEPTH= 68.31 STMD= 0.19 SAX= 9.00 TANSM= 0.83 | 5 P L W= | 0.07 | | | | | |
| | <u>10 AM 24.9 24.9 24.9 24.9 24.9 24.9</u>
PM 24.9 24.9 24.9 25.0 25.0 25.0 | 24.9 .
25.0 | 24.9
25.0 | 24.9
25.0 | . 24.9
25.0 | 24.9
25.0 | 24.9 | |
| | MAXIMUM= 24.9 C.F.S. TIME 11.15 A.M.
— | | 0.07 | | % J • G | 2.0 • 0 | 25.0 | 24.9 |
| | 11 AM 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 250 | 25.0 | |
| | HAXIMUM= 25.0 C.F.S. TIME 11.15 A.M.
11 SDEPTH= 69.12 STMD= 0.19 SAX= 9.00 TANSM= 0.85 | | 25.1 | 25.1 | 25.1. | 251 | 25 •.1 | 25.0 |
| • | 12 AM 25.1 25.1 25.1 25.1 25.1 25.1 | 25.1 | | 25.1 | 25.1 | 25.1 | 25.1 | · ·· . |
| f . | PM 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 | - | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.1 |
| | _13 AM25.225.225.225.225.225.2 | | | 25.2 | 25.2 | 25.1 | 25.1 | |
| •• | PM . 25.2 . 25.2 . 25.2 . 25.2 . 25.2 . 25.2 | 25.2 | 25.2 | 25.2 | 25.3 | 25.3 | 25.3 | 25.2 |
| ~
~ | 13 SDEPIH= 70.90 STMD= 0.19 SAX= 10.00 TANSM= 0.87 | SPL₩#
25•2 | | | | | | · |
| . 29
▼ | PM 24.3 24.3 24.3 24.3 24.3 24.3 24.3 MAXIMUM= 24.2 C.F.S. TIME 11.15 A.M. | 24.3. | 25.2
24.2 | 24.3
25.2. | 24.3
25.2 | 24.2
25.1 | 24.2
25.1 | 24.7 |
| | 10 AM | | 0.07 | e e e | |
 | | |
| | PM 23.8 23.8 23.7 23.7 23.7 23.7 23.7 | 24.9
23.6 | 24.9
23.6 | 23.9
24.5 | 23.8
24.5 | 23.8
24.5 | 23.8
24.4 | 24.3 |
| | 15. SDEPTH= 67.84 STMD= 0.20 SAX= 12.00 TANSM= 0.46 | SPLW= | 0.07 | | : | | | |
| | 16 AM 24.4 24.4 24.3 24.3 24.2 24.2
PM 23.0 22.9 22.9 22.9 22.8 22.8
MAXIMUM= 23.0 C.F.S. TIME 11.15 A.M. | 24 • 2
22 • 8 | 22.7 | 23.1.
23.7 | | 23 • 0.
23 • 6 | .23 <u>.0</u>
23 . 5 | 23.5 |
| | 16 _SDEPTH= 66.42 STMD= 0.20 SAX= 13.00 TANSM= 0.27 | SPLW= | 0.07 | | | | | |
| | 17 AM 23.5 23.4 23.4 23.3 23.3 23.3 23.3 23.3 23.3 | 23.2
21.8 | 23.2
21.7 | 22.2
22.6 | 22.1
22.6 | 22.1
22.6 | 22.0
22.5 | 22.5 |
| | 17 SDEPTH= 64.05 STMD= 0.21 SAX= 14.00 TANSM= 0.01 | SPLW= | 0.15 | | | | | |
| | 18 AM 22.5 22.4 22.4 22.3 22.2 PM 21.0 20.9 20.9 20.8 20.8 20.8 | 22.2
20.7 | 22.2
20.7 | 21.1
21.6 | 21.1
21.6 | 21.0
21.5 | 21.0
21.5 | 21.5 |
| | MAXIMUM= 21.0 C.E.S. TIME 11.15 A.M. 18 SDEPTH= 62.15 STMD= 0.21 SAX= 15.00 TANSM= 0.03 | SPLW= | 0.35 | | , | en in the fi | | |

| 19 AM
PM
19 S | 21.4
19.9
MAXIMUM=
DEPTH= 6 | 21.4
19.9
20.0 | 21.3
19.8
C.F.S.
MD= 0.22 | 21.3
19.8
TIME
SAX= | 21.3
19.8
11.1
15.00 | 21.2
19.7
5 A.M.
TANSM= | | 21.2
19.7
SPLW= | 21.1
19.6
0.46 | 20.1
20.6 | 20.1
20.5 | 20.9
20.5 | 20.0
20.4 | 20.4 |
|---------------------|--------------------------------------|------------------------|------------------------------------|------------------------------|-------------------------------|----------------------------------|------|-----------------------|----------------------|--------------|--------------|---------------|----------------------|-------|
| 20 AM
PM | 20.4
18.9
MAXIMUM= | 20.4
18.9
19.0 | 20.3
18.8
C.F.S. | 70.3
18.8
TIME | 20.2
18.7 | 20.2
18.7
5 A.M. | | 20.1
19.7 | 20.1
18.6 | 19.1
19.6 | 19.0
19.5 | 19.0
19.5 | 18.9
19.4 | 19•4 |
| 2 0 S | DEPTH= 5 | 9.72 51 | MD= 0.22 | S A X = | 15.00 | TANSM= | 0.04 | SPLW= | 0.48 | | | | | |
| 21 AM
PM | 19.4
17.8
MAXIMUM= | 19.3
17.7
18.6 | | 19.3
17.6
TIME | 19.2
17.6
8.1 | 19.2
17.6
5 2.M. | | 19.1
17.5 | 19.1
17.5 | 17.9
18.6 | 17.9
18.5 | 17.8
18.5 | 17.8
18.5 | 18.4 |
| 21 S | DEPTH= 5 | | | | | TANSM= | 0.03 | SPLW= | 0.50 | | | | | |
| 22 AM
. PM | 18.4
16.8
MAXIMUM= | 18.4
16.8
41.5 | 18.3
16.7 | 18.3
17.2
TIME | 18.3
18.3 | 18.2
20.5
5 P.M. | | | 18.1
28.9 | 17.0
35.1 | 16.9
39.3 | | 16 <u>.9</u>
40.4 | 22.1 |
| 22 \$1 | DEPTH= 5 | 7:13 ST | MD= 0.22 | | | TANSM= | 0.03 | SPLW= | 0.49 | | | | | |
| 23 AM
PM | 38.1
22.7
MAXIMUM= | 34.9
22.6
39.0 | 31.9
22.5
C.F.S. | 29.5
22.3
TIME | 27.8 | 26.7
24.3
5 A.M. | | 25.8
26.4 | 25.2
29.2 | | 23.3 | 23.1
37.8 | 22.9
37.5 | 27.49 |
| 23 SI | EPTH= 5 | 5.84 ST | M0 = 0.23 | SAX=- | 15.00 | TANSM= | 0.04 | SPLW= | 0.49 | | | | | |
| 24 AM
PM | 35.7
25.7
MAXIMUM= | 33.4
25.6
36.5 | 21.6
25.5
C.f.S. | 30.3
25.4
TIME | 29.4
25.3
0.15 | 28.7
25.2
5 A.M. | | 28.2
25.0 | 27.9
24.9 | 26.4
26.0 | 26.2
25.9 | 25.8
25.8 | 25.8
25.7 | 27.3 |
| 24 SI | EPTH≂ 5 | 4.74 SF | MD= 0.23 | . SAX= | 15.00 | TANSM= | 10.0 | SPLW= | 0.49 | | | | | |
| 25 AM
PM | 24.7
MAXIMUM= | 25.5
24.6
. 25.7 | 25.5
24.6
C.F.S. | 25.4
24.5
TIME | 0.15 | 25 • 2
24 • 4
5 A • M • | | 24.3 | 25.1
24.3 | 25.0
24.2 | 24.9
24.1 | 24.8.
24.1 | 24.8
24.0 | 24.8 |
| 25 \$1 | DEPTH= 5 | 4.56 ST | MD= 0.23 | SAX= | 15.00 | TANSM= | 0.23 | SPLW= | . J.49 | | | | | |
| 26 AM
Pm | 24.0
23.3
MAXIMUM= | | | 23.8
23.2
TIME | | 23.7
23.1
5 A.M. | | 23.6
23.1 | 23.6
23.1 | 23.5
23.0 | 23.5
23.0 | 23.4
23.0 | | 23.4 |
| 26 Sf | EPTH= 5 | 4.25 ST | MD= 0.23 | SAX= | 15.00 | TANSM= | 0.31 | SPLW= | D∙49 | - | | | | |
| 27 'AM
PM | 22.9
22.5
MAXIMUM=
EPTH= 54 | 22.9
22.5
22.9 | 22.8
22.4
C.F.S. | 22.8
22.4
TIME | | 22.7
22.4
5 A.M. | 0.20 | 22.7 | 22.6 | 22.6
22.3 | 22.6
22.3 | 22.5
22.3 | 22.5
22.2 | 22.5 |
| | | | | | 15#00 l | =F*2 MA | U.39 | SPIW= | 0.49 | | | | | |
| 28 AM
PM | 22.2
22.0
MAXIMUM= | | 22.2
21.9
C.F.S. | 22.2
21.9
TIME | 22.1
21.9
0.19 | 22.1
21.9
4.M. | | 22.1
21.9 | 22.1
21.9 | 22.0
21.9 | 22.0
21.9 | 22.0
21.9 | 22.0
21.9 | 22.0 |
| 28 SC | EPTH= 53 | 3.98 STI | MD= 0.23 | SAX = | 15.00 1 | TANSM= | 0.48 | SPLW= | 0.49 | | | | | |

| 29 | AM 21. | u 21 | 9 21 9 | 31.0 | • | | _ | | | | | | | |
|---------------------------------|---------------------------------|-------------------|--------------------------------|----------------------|-----------------------|-------------------|---------------|-----------------|----------------|----------------|---------------------------|-----------------|----------------|---------------------------------------|
| | PM. 21.
MAXIMU | 721.
M= 21 | 7 21.7
•9 C.F.S. | TIME | 21.7.
F 0.1 | 15 A.M | 7. | 21.8 | 21.8 | 21.7
21.7 | 21.7
21.7 | 21.7
21.8 | 21.7
21.8 | 21.7. |
| | | | 31mb= 0+2 | | 15.00 | TANSM= | 0.07 | SPLW= | 0.51 | | | | • | |
| - | AM 21.
PM 20.
MAXIMU | 6 20.
M=_ 21 | 6 20.6
•8 C.F.S. | 21.8
20.6
LIME | 21.8
20.6
E 3.1 | 20.6 | 5 | 21.7
20.6 | 21.7
20.6 | 20.5
21.7 | 20.5
21.7 | 20.5
21.7 | 20.5
21.7 | 21.2 |
| MAY | O SOEPTH≓ | 54.92 | STMD= 0.2 | !4 SAX= | 15.00 | TANSM= | 0.08 | SPLW= | 0.51 | | • | | | |
| 1 | PM 23. | 2 23. | 4 23.5 | 22.1
23.6 | 22.3 | 23 0 | 3 | 22.6
24.0 | 2/ 1 | 22.8
24.2 | 22.9
24.2 | 23.0
24.3 | 23.1
24.4 | 23.2. |
| 1 | MAXIMU
SDEPTH= | 54.44 | STMD= 0.2 | LIME
24 SAX= | 15.00 | I5 A.M.
TANSM= | 0.19 | | 0.51 | | | | | · · · · · · · · · · · · · · · · · · · |
| 2 | 1. | | | | | | | | | | | | 3 | • |
| PE - B. Collebourerensimonionio | PM 23. | 8 23.9
Ma≡23. | .Z. C.F.S. | 24.0
TIME | 24.1
F 11.1 | 24.1 | | - 24.8·
24.1 | 24.1 | 23.6
25.4 | 23.7
25.3 | 23.7
25.3 | 23.7
25.3 | 24.4 |
| | SDEPTH= | _53.30_ | SIMD= 0.2 | 5SAX=_ | 15.00 | _TANSM=_ | D <u></u> 0.6 | SPLW=_ | 05.1 | | | , | | |
| . 3 .
لــــــــــ | AM 25.3
PM 23.8
MAXIMUS | 3 23. | 8 23.8 _ | 25.3
-23.8 | 25.2
24.0 | | ١. | 25.2
27.6 | 25.2
30.8 | 23.9
35.8 | 23.8
39.5 | 23.8
43.1 | 23.8
44.3 | 276 |
| | SDEPTH= | | .6 C.F.S.
STMD= 0.2 | IIME
:5 SAX= | 11.4 | FS P.M.
TANSM= | 0.03 | SPLW= | 0.50 | | | | | · |
| 4 / | PM 30.6 | 32.6 | | 37.0
42.2 | 35.6
50.5 | 61.3 | | 74.3 | 33.4
86.8 | 31.7
97.5 | | 31.1
105.3 | 31.0
104.5 | 52.0 |
| 4 | SDEPTH= | 49.83 | STMD= 0.2 | 5 SAX= | 15.00 | :5 P.M.
TANSM= | 0.01 | SPLW= | 0.49 | | F . | | • • | |
| 5 / | PM 72-1 | 75.0 | | 87.0
86.9 | | | | 78.8
124.1 | 77.3
136.8. | 74.7 | 73.7 | 72.8 | 72.0 | |
| 5 | MAXTMUN
SDEPTH= | = 157.
47.58 | 3 C.F.S.
STMD= 0.2 | TIME
6 SAX= | 11.1
15.00 | 5 P.M.
TANSM= | 0.0 | SPLW= | 0.47 | | ይ <i>ታ</i> ቸቀ <u>ት</u> ፡- | | 131.0 | 99.4 |
| 6 A | PM121_8 | L 126.5 | 3 144.3
2 135.1
3 C.F.S. | 146.4 | 160.8 | 130.2
176.2 | | 127.2
190.3 | | 121.6
213.8 | 119.9
221.1 | 118.4
225.9. | 118.9
227.9 | 155.5 |
| 6 | SUEPTH= | 44.93 | STMD= 0.20 | 6 SAX= | 15.00 | TANSM= | | SPLW= | 0.45 | | | | | *** |
| 7 A | AM 227.6
PM 220.6
MAXIMUM | = 230.6
= 304. | h 1 fr 5 | 254.5 | 267.0 | 277.7 | | 204.6
287.1 | 295.0 | 201.2
301.9 | 202.9
304.5 | 206.4
304.0 | 213.0
330.8 | 2 42 • 9 |
| 7 | SDEPTH= | 42.34 | STMO= 0.20 | 6 SAX= | 15.00 | TANSM= | 0.03 | SPLW= | 0.42 | | | | | |
| 8A | | 288.5 | | 274.5 | 269.0 | | | 260.6 | | 252.8 | | | | |

| Ġ | PI | 4 .215.7 | = 250. | 212.5
3 C.F.S. | 211.0
MIT | 211.1
F 0. | 230.6
212.5
15 A.M.
TANSM= | 5 | 228.2
214.9 | 218.3 | | 220.9
227.3 | | | 224.5 |
|----|------------|--|--------------------------|----------------------------|-------------------|-----------------|-------------------------------------|--------|---------------------------------|----------------|------------------|----------------------------------|------------------|-------------------|--------|
| 10 | АД | 4 226.7
4 198.5 | 222.9
197.3 | | 215.5
201.7 | 212.8
206.7 | 210.6
214.0 |)
) | 208.6
223.4 | 206.8 | | 202.5
250.4 | | 199.8
251.1 | 216.8 |
| | 1 0 | SDEPTH= | 37.88 | STMD= 5. | . TIM
.27 SAX= | 15.30 | 45 P.M.
TANSM= | 0.0 | 3 SPLW= | 0.39 | | | | | |
| 11 | Ar
P.v | 212.1 | 210.8 | 237.2
212.7
7 C.F.S. | 221.4 | 237.0 | 268.0 |) | 223.6
333.6 | 221.5
452.3 | 218.0
619.1 | 216.4
809.9 | 214.9
1004.9 | . 213.4
1149.6 | .352.3 |
| i | 11 | SDEPTH= | 35.28 | STMD= 0. | 27 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.37 | | | | • | |
| | | 1243.2
1276.3
MAXIMUM | = 1391. | 2 C.F.S. | . TIME | 1210.7
F 4.4 | .1191.3
45 A.M. | ٠. | 1185.1 | 1171.9, | 1349.2
1158.4 | 1332.9
1141.4 | 1315.0
1122.9 | 1295.9
1103.1 | 1266_6 |
| Į | . 2 | SOEPTH= | 34.40 | STMD= 0. | 28 SAX= | 15.00 | TANSM= | 0.04 | SPLW= | 0.37 | | | | | |
| | ΡM | 1082.4
876.5
MAXIMUM:
SDEPTH= | 862 .7
- 1090. | 849.2
2 C.F.S. | 836.1
TIME | 823.8
- 0.1 | 813.8
5 A.M. | | 969 . 3
804 .6 | 953.0
796.5 | 935.5
790.8 | 920 . 1
783 . 5 | | 890.7
766.6 | 898.0 |
| | | | | STMD=). | | | | | S PL₩= | 0.36 | | | | | |
| | | 628.1
MAXIMUM: | 619.7
759. | 729./
612.9
7 C.F.S. | 608.3
Time | 605.8 | 604.8 | | 685.1
605.4 | 675.2
607.2 | 663.9
609.8 | 654.6
607.7 | | 636.7
594.9 | 650.6 |
| 1 | 4 | SDEPTH= | 31.28 | .c =OMT2 | 29 SAX= | 15.00 | TANSM= | 0.03 | 25 FM = | 0.35 | | | | | ·+ |
| | AM
PM | 495.1
MAXIMUM= | 589. | 487.9
3 C.E.S. | 487.7
TIME | 489.9 | 540.6
494.6
5 | | 533.5
501.6 | 526.8
510.3 | 518.7
518.4 | 512.5
520.9 | | 500.7
515.4 | 520.9 |
| 1 | 5 : | SDEPTH= | 29.37 | STMD= 0. | 29 SAX= | 15.00 | TANSM= | 0.01 | SPLW= | 0.33 | | | | | |
| | | 434.7
MAXIMUM= | 433.4
511.6 | C.F.S. | 437.1
TIME | 442.3 | 469.8
449.9
5 A.M. | | 464.1
459.5 | 468.1 | 452.3
475.2 | 447.6
476.8 | | 438.8
471.0 | 462.2 |
| | | SDEPTH= | | | | 15.00 | TANSM= | 0.03 | SPL₩≃ | 0.32 | | | | | • |
| 17 | РМ | 407.7
MAXIMUM= | 410.9
5 25.4 | 449.0
417.5
C.F.S. | 428.1
TIME | 442.8 | 5 P.M. | | 427.4
480.8 | 497.5 | 417.7
512.3 | 414.1
520.8 | 410.6
524.5 | 407.2
523.9 | 450.5 |
| | | SDEPTH= | | | | 13.00 | : ANSM= | ប.១1 | SPLW= | 0.29 | | | | | |
| 18 | AN' | 519.6
454.4 | 512.6
460.5 | 504.0
468.7 | 495.3
482.7 | 487.6
501.1 | 481.1
523.3 | | 475.4
545.1 | 470.3
561.4 | | | | 452.9
582.9 | 594.2 |

| <u> </u> | AX I MUM: | £ . 585.9 | 7. C.F.S. | TIME | ÷ 10 • | 45 P.M. | | | | | | | | |
|------------------|-----------------|------------------------|--------------------|---------------|-----------------|---------------------|------|-------|--------|-------|---------|-----------|---------|-------|
| 18 SDE | PTH= | 22.63 5 | STMD= 0.30 | 0 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.27 | | | | | |
| 9 AM
PM | 579.2
512.9 | 571.8 | | | | 538.5 | | 532.2 | | | 515.0 | | | |
| Mi | AXIMUM= | 64.2 . 5 . | 529.3
5. C.E.S. | . TIME | E 10.4 | 582.8
45. P.M. | | 600.7 | 616.2 | 630.1 | 638.3 | 642.0 | 641.2 | 561.9 |
| 19 SDEI | PTH= | 19.98 S | STMD= 0.3 | 1 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.24 | | • | | | • |
|)AM | 636.9 | 629.6 | 620.5 | 611.0 | _602.0 | 594.2 | | | 581.2. | 573.9 | 568.7 | 563.7 | 564.5 | |
| | AXIMUM= | - 904.1 | 593.4
L. C.F.S. | . TIME | E 12.0 | 00 P.M. | | | | | 847.7 | 877.2 | 898.4 | |
| 20 SDE | PTH= | 17.19 S | SIMD= _ 0_3 | LL SAX=_ | .15.00 | EM2NAI | • | | | | · | | · . | |
| L AM | 905.9 | 903.1 | 894.2 | 882.9 | 871.5 | 860.8 | | 850.5 | 840.7 | 829.1 | 819.9 | 810.9 | 804.1 | |
| | AXIMUM= | = 910.6 | 805.3
C.F.S. | TIME | E 11.4 | 45 P.M. | | | | 889 2 | 898.9 | . 905.6 . | 908.8. | 854.0 |
| 21 SDEI | ₹TH÷ | 14.725 | STMD= 0.32 | 2. SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.18 | | | | | |
| 2 AM | 906.0 | 897.8 | 885.6 | 872.6 | 860.5 | 849.4 | | 839.2 | 829.6 | 818.5 | 809.9 | 801.5 | 796.9 | |
| PM
M/ | AXIMUM# | 790.4
=908.3 | 801.5
L. C.F.S | RIO./ | 823.6
E 0.1 | . 837∎8:
15 A≞M⇒ | | 850.7 | 861.5 | 871.3 | 875.0 | 874.5 | 870.3 | 843.2 |
| 22 SDEF | ₹H=, | 12.46 \$ | TMD= 0.31 | 3 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.16 | • | | | خ دوت | ** |
| 3_AM | 862.8 | 95.2.9 | 841.5_ | 830.0 | 819.4 | 8.09 • 7 | | 800.9 | 7927 | 779.7 | _772.3. | 7653 | 7.62.6 | |
| r (1) | AXIMUM= | = 888.4 | C.F.S. | TIME | 807.6
E 10.4 | 45 P.M. | | 847.6 | 865.4 | 882.7 | 887.7 | 887.5 | 883.4 | 819.7 |
| _23SDE | <u> </u> | 10.23 S | TMD= 0.3 | 3SAX= | .15.00 | _TANSM= | 0.0. | SPLW= | 0.13 | | • . | • | | |
| 4 AM | 87.6 . 2 | 866.6 | 855.8 | 844.8 | 334.4 | 825.0 | | 816.4 | 808.4 | 795.5 | 788.3 | 781.4 | 779.9 | |
| · 177 # | A A I M UM = | - 017.1 | 791.3
7 C.F.S. | 1 LME | - ()_1 | 15 A_M_ | | | | 864.4 | 867.2. | 866.4 | 862.4 | 826.5 |
| 24 SDEF | PTH= | 8.01 S | TMD= 0.34 | 4 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.11 | | | | | |
| 5 AM | 855.4 | 846.5 | 836.4 | 825.8 | 815.5 | 806.0 | | 797.4 | 789.6 | 778.2 | 774.0 | 771.5 | 772.7 | |
| .PM | AXIMUM= | 858.9 | 786.8
C.F.S | TIME | E 0.1 | 15 A.M. | | 807.0 | 808.4 | 813.2 | 810.6 | 805.8 | 799.2 | 802.2 |
| 25 SDEF | 'TH= | 6.39 S | TMD= 0.34 | 4 SAX= | 15.00 | TANSM= | 0.0 | SPLW= | 0.08 | • | | • | | ** |
| 6AM | | | . 773.5 | 764.8 | 756.8 | 749.7 | | 743.3 | 737.5 | 726.7 | 721.5 | 716.5 | - 713.9 | |
| ₽ М
МД | | 713.3
795.1 | 715.7
C.F.S. | 720.0
TIME | 724.8 | 729.6
15 4.M. | | 732.9 | 734.5 | 739.4 | 737.1 | 732.0 | 727.1 | 737.4 |
| 26 SDEP | 'TH= | 5.02 S | TMD= 0.35 | 5 X= . | .15.00 | TANSM= | 0.0 | SPLW= | 0.07 | | | | | • |
| 7 AM | | | 705.6 | 698.6 | 692.3 | 686.9 | | 681.9 | 677.4 | 668.0 | 664.0 | 660.1 | 656.5 | |
| | 652.9
XIMUM= | 651.4
723.7 | 650.8
C.F.S. | 651.5
TIME | 652.5 | 655.1 | | 659.4 | 660.7 | 566.2 | | | | 671.1 |
| | | 7 See 20 1 | 0 = 1 = 3 = | 1 4 14 | '√ • → | AJ A man | | SPLW= | | | | | | |

| 28 AM 651.2
PM 599.2
MAXIMUM:
28 SDEPTH= | = 653.9 C.F.S. | TIME 0 15 | A 14 | 270.9 | 618.9
601.5 | 610.5
608.0 | | 694.6
605.6 | 601.9
602.5 | 612.3 |
|---|---|---|------------------|-------------------------|------------------------|----------------|----------------|----------------|----------------|-------|
| 29 AM 598.5
PM 559.5
MAXIMUM=
29 SDEPTH= | 594.1 589.5
560.6 562.3
600.8 C.F.S. | 585.2 581.2
564.8 566.9
TIME 0-15 | 577.7
567.3 | 574.7
566.8 | 571.9
565.7 | 564•1
569•2 | | 559.6
563.6 | 559.8
560.1 | 570.5 |
| 30 AM 556.4
PM 522.5 | 552.6 549.1
520.8 519.1 | 546.1 543.4
517.5 515.5 | 541.1 | 59LW=
538.9
512.3 | 0.03
536.8
510.7 | 529.6
514.5 | | 526.0
511.4 | | 527.2 |
| 30 SDEPTH= | 558.5 C.F.S.
1.82 STMD= 0.42 | ' SAX= 15.00 TA | A.M.
NSM= 0.0 | SPLW= | 0.03 | | | | | |
| 31 AM 508.3
PM 485.0
MAXIMUM= | 483.6 482.2
509.5 C.E.S. | 480.9 479.3 | 477.9 | 499.4
476.6 | 475.3 | 490.6
479.9 | 489.2
478.6 | 487.8
477.3 | 486.4
476.0 | 488.8 |
| JUNE | 1.50 STMD= 0.46 | : SAX= 15.00 ΤΔ | NSM= 0.0 | SPLW= | 0.03 | | | | | |
| MAXIMUM= | 473.5 472.2
452.9 451.6
475.8 C.F.S.
1.19 STMO= 0.49 | TIME 0.18 | 4+1.4 | 446.7 | 445.6 | 458.8
450.4 | | 456.4
448.1 | | 457.6 |
| MAXIMUM= | 444.8 443.7
425.8 424.8
446.9 C.F.S.
0.97 STMD= 0.50 | 423.8/ 422.5 | 421.5 | 423.4 | 419.4 | 431.2
424.4 | 430.1
423.3 | 429.0
422.3 | 428.0
421.3 | 430.5 |
| PH 402.6 | 419.3 418.3
401.7 400.7
421.3 C.F.S.
0.80 STMD= 0.52 | 399.8 398.6 (| 39 7. 7 | | 395.8 | 406.5
400.8 | 405.5 | 404.5
399.0 | 403.6
398.1 | 406.1 |
| PM 380.4
MAXIMUM= | 396.2 395.3
379.5 378.6
398.0 C.F.S.
0.61 SIMO= 0.54 | 394.4 393.5 3
377.8 376.7 | 392.6
375.8 | 391.7
375.0 | 390.8
374.1 | 383.9
379.2 | 383.1
378.4 | 382.2
377.5 | 381.3
376.7 | 383.8 |
| 5 AM 375.8
PM 359.8
MAXIMUM= | 375.0 374.1
363.2 366.9
414.5 C.F.S.
0.41 STMD= 0.51 | 373.3 372.4 3
379.3 389.9 4 | 371.6 | 370.8
411.4 | 369.9
405.5 | 363.1
403.2 | 362.3
398.5 | 361.5
395.6 | 360.7
392.9 | 379.1 |
| | 04.1 218B- 0.51 | ouv≡ to*nn jvy | 42M = 0.0 | SPLW= | 0.01 | | | | | |

| | | E Pl | | 421.1 | 418.9 .
C.F.S. | 419.0
TIME | .417.9
- 1.15 | 416.5
P.M. | | 408.1 | 398.5 | 394.8
.394.0 | 404.5
388.5 | 413.4
384.4 | 417.7
381.3 | 397.3 |
|------|-----|-------------|-----------------------------|-------------------------|-------------------|----------------|------------------|---------------|-----|----------------|----------------|-----------------|----------------|---------------------------------------|-----------------------|-------|
| | | | DEPTH= | | | | | | | | | | | | | |
| | - | | 378.8
357.4
_MAXIMUM= | 380- | L.a.E.a.N.a. | 1111 | - 0-15 | : A M | | | | 355.4 | 360.4
354.5 | 353.6 | 352.6 | 361.3 |
| | | 7 5 | DEPTH= | 0.08 ST | MD= 0.4 | 9. SAX= | 15.00 T | ANSM= | 0.0 | SPLW= | 0.00 | · | | · · · · · · · · · · · · · · · · · · · | | |
| | | | 351.7
335.1
MAXIMUM= | 22TeC | J J J J 4 ** | 22242 | 221-7 | 4 4() / | | 346.3
329.8 | 345.4
329.0 | .3386
334.2 | 333.3 | 332.5 | 331.7 | 338.5 |
| • | | AM
PM | 330.9
315.4
MAXIMUM= | 330.1
314.7
331.6 | -313.9 | 313.1 | 312.2 | 311.5 | | 326.1
310.7 | 325.3
310.0 | 318.5
315.2 | 317.8 | 317.0
313.7 | 316.2 | 318.8 |
| φ | 10 | AM
.P.M. | 312.3
296.1
MAXIMUM= | 295.4 | 294.7 . | 294.0 _ | . 293.2 | 292.5 | - | 307.9
291.8 | | 299.0
298.0 | 298.2
297.3 | 29.7.5 | 296.8 | |
| 8-35 | | | 279.8
MAXIMUM= | 279.2 | 278.5
C.F.S. | 277.9
TIME | 277.1
0.15 | 276.5
A.M. | | 291.3
275.8 | 290.6
275.2 | 282.4
282.1 | 281.8
281.5 | 281.1
280.8 | . 280 • 5°
280 • 2 | 283.9 |
| | 12 | AM
PM | 279.6
264.7
MAXIMUM= | 278.9
264.1 | 278.3
263.4 | 277.7 | 277.1
262.1 | 276.5 | | 275.8
260.9 | 275.2
260.3 | 267.1
267.3 | 266.5
266.7 | 265.9
266.1 | 265.3
265.5 | 268.7 |
| | 13. | AM
PM | 264.9
250.5
MAXIMUM= | _ 249.9 _ | 249.3 | . 248.8 | 248.1 | 247 5 | | 261.4
247.0 | | 252.8
253.4 | 252.2
252.8 | 251.6
252.3 | 251.0
251.7 | |
| | 14 | AM.
PM | 251.2
237.1
MAXIMUM= | 250.6
236.6 | 250.1
236.1 | 249.5
235.5 | 249.0
234.9 | 248.4 | | 247.9
233.8 | | 239.3
240.3 | 238.7
239.8 | 238.2
239.3 | 237.7
238.8 | 241.2 |
| | 15 | AM
PM | 238.2
224.5
MAXIMUM= | 224.0 | 223.5 | 223.0 | 222.4 | 221.9 | | 235.1
221.4 | 234.6
220.8 | 226.6
227.8 | 226.1
227.3 | 225.6
226.8 | 225.1
226.4 | 228.5 |
| | | | | | | | | | | | | | | - | | |

JULY

| ć | AM | 79.7 | 79.5 | 79.3 | 79.2 | 79.0 | 78.8 | 78.7 | 78.5 | 71.0 | 70.0 | 70.7 | 70.5 | - |
|-------|----------|------------------|-------|--------|------|--------|-------|-------|------|------|----------------|-----------|---------|--|
| | PM | | 70.2 | 70.0 | 69.8 | 69.8 | 70.5 | 72.7 | 74.6 | 83.8 | 70.8 | 70.7 | 70.5 | 7F 7 |
| | | MAXIMUM= | 85.9 | | TIME | 9.45 | | 17.61 | 14.0 | ೧೨.8 | 85.2 | 83.0 | 80.7 | 75.7 |
| 7 | ΔМ | • - | 77.8 | 76.9 | 76.3 | . 75.9 | 75.4 | 75.1 | 74.8 | 67.3 | 67.0 | 66.8 | 66.6 | - |
| | РM | 00.0 | 67.8 | 71.4 | 74.3 | 78.2 | 80.9 | 78.5 | 74.6 | 78.9 | 76.8 | 75.2 | 74.2 | 74.0 |
| | | MAXIMUM= | 81.9 | C.F.S. | TIME | 5.45 | P.M. | | , | | 1010 | t "J ■ Ł, | 1442 | |
| Đ | | | 72.8 | 72.3 | 72.0 | 71.7 | 71.4 | 71.2 | 71.0 | 63.4 | 63.3 | 63.1 | 63.0 | |
| | PM | | 62.7 | 62.5 | 62.4 | .62.2 | 62.1 | 61.9 | 61.8 | 68.9 | 68.8 | 68.6 | 68.5. | 667 |
| | | MAXIMUM= | 73.7 | C.F.S. | TIME | 0.15 | A.M. | | | | | | | |
| 18 | AM | | 42.3 | 42.7 | 42.6 | 42.5 | 42.4 | 42.3 | 42.2 | 34.5 | 34.4 | . 343 | 34.2 | |
| | PM | | 34.1 | 34.9 | 37.4 | 40.2 | 44.4 | 47.9 | 47.8 | 54.7 | 51.5 | 48.4 | 46.2 | 41.6 |
| | | =MUMIXAM | 55.2 | C.F.S. | TIME | 8.15 | P.M. | | | | | | | |
| 19 | AM
PM | * ' | 43.4 | 42.5 | 41.8 | 41.3 | 40.9 | 40.7 | 40.4 | 32.6 | 32.4 | 32.3 | | |
| | 1-14 | 32.0
MAXIMUM= | 31.9 | 31.9 | 31.3 | 31.7 | 31.6 | 31.5 | 31.4 | 39.0 | 39.0 | 38.9 | 38.8. | 36.4 |
| | | | 45.2 | C.F.S. | BM11 | 0.15 | A.M | ÷ | | | • • | | | |
| 25 | ΔM | 29.9
22.0 | 29.8 | 29.8 | 29.7 | 29.6 | 29.6 | 29.5 | 29.5 | 22.2 | 22.2 | 22.1 | 22.1 | |
| | ₽M | 22.0 | 21.9 | 21.9 | 21.8 | 21.7 | 21.7 | | 22.6 | 33.7 | 40.0 | | 50.8 | 28.0" |
| | | MAXIMU*(= | 52.1 | C.F.S. | TIME | 12.00 | b.M. | | | | 1010. | , ,,,,,,, | 2040 | 20∌.⊈., |
| 26 | ДМ | | 46.1 | 40.4 | 36.5 | 33.9 | 32.0 | 30.8 | 29.9 | 22-1 | . 21.6 | 21.3 | _ 21.0 | |
| | PM | | 20.7 | 20.6 | 20.4 | 20.3 | 20.3 | 20.2 | | 27.2 | 27.2 | 27.1 | 27.1 | 27.5 |
| | | MAXIMUM= | 52.7 | C.F.S. | TIME | 0.45 | A.M. | | | | | | - · · · | |
| 30 | ΔM | | | 23.0 | 23.0 | 22.9 | 22.9 | 22.8 | 22.8 | 18.7 | 18.6 | 18.6 | 18.5 | · · · · · · · |
| | PΜ | | 25.6 | 44.4 | 62.6 | 82.1 | 98.6 | 88.7 | 73.4 | 61.3 | 49.0 | 40.6 | 34.8 | 39.1 |
| | | MAXIMUM= | 102.9 | C.F.S. | TIME | 5.45 | P.M. | | | | | | | |
| 31 | AM | 30.8 | 28.0 | 26.1 | 24.8 | 23.8 | 23.2 | 22.7 | 22.4 | 18.1 | 17.9 | 17.8 | 17.7 | |
| | PM | 4.42 | 17.4 | 17.4 | 17.3 | 17.3 | 17.3. | 17.2 | 17.2 | 21.2 | 21.1 | 21.1 | 21.1 | 20.7 |
| **** | | MAXIMUM= | 32.1 | C.F.S. | TIME | 0.15 | A.M. | | | | | | | |
| AUGUS |) I | | | | • | | | | | | | 4 | | |
| 3 | ΔM | 18.9 | 18.5 | 18.9 | 13.8 | 18.8 | 18.7 | 18.7 | 18.7 | 14.6 | 14.5 | 14.5 | 14.4 | <u>. </u> |
| | MA | 14.4 | 14.4 | 14.3 | 14.4 | 16.0 | 20.8 | 27.9 | 34.4 | 43.7 | 44.0 | 38.2 | 32.0 | 21.8 |
| | | MAXIMUM= | 44.6 | C.F.S. | TIME | 8.45 | P.M. | | | | | | | |
| 4 | | 27.6 | 24.0 | د. 22 | 21.0 | 20.0 | 19.3 | 18.8 | 18.5 | 14.1 | 13.9 | 13.3 | 13.7 | |
| | PM | 13.7 | 15.2 | 20.1 | 26.3 | 33.7 | 41.8 | 43.1 | 40.7 | 40.1 | 33.6 | 28.4 | 24.9 | 24.6. |
| | | ≠MUMIXAM | 43.4 | C.F.S. | TIME | 6.45 | ₽.М. | | | | | , . | _ · • · | 2.4.0 |
| 5 | ΛM | 22.5 | 20.8 | 19.6 | 18.8 | 13.2 | 17.8 | 17.5 | 17.3 | 13.1 | 13.0 | 12.9 | 12.8 | |
| | РМ | 12,.7 | 12.7 | 12.6 | 12.6 | 12.9 | 16.2 | 27.7 | 44.9 | 69.9 | 93.5 | 106.1 | 104.6 | 30.4 |
| | | MAXIMUM= | 108.4 | C.F.S. | TIME | 10.45 | | | | • . | المداجة البداد | 10041 | 104.0 | 29•₩ |
| | | | | | | | | | | | | | | |

| | | PM | 95.6
13.4
MAXIMUM= | 13.0 | 63.1
12.8
C.E.S. | 48.5
12.6
TIME | 12.4 | 31.6
12.3
A.M. | 26.9
12.2 | 23.6
12.1 | 17.3
16.1 | 15.7
16.1 | 14.7
16.1 | 13.9
16.0 | 26.5 |
|---|-----|-----------|--------------------------------|--------------------------|---------------------------|----------------------|----------------------|----------------------|--------------|--------------|---------------------|--------------|--------------|--------------|-------|
| | 10 | AM
MS | | 76 | 13.6
. 7.6 _
C.F.S. | 13.6
7.6 | 78 | 13.5
117 | 13.5
28.1 | | 7.8
.97.9 | 7.7
127.6 | 7.7
142.2 | 7.7
123.7 | 32.0. |
| | 1_ | AM_
PM | 92 <u>2</u>
8.4
MAXIMUM= | 67 <u>. 5</u>
8•1 | 50.5
7.9 | 38.8
7.7 | _ 30-8
7-6 | 25.3
7.5 | 21.6
7.4 | | 11.5 | | 9.4
12.9 | 8.8
12.9 | 20.8 |
| , | 12 | AM. | | | 12.8
18.2 | 13.0
15.6 | 0.15 | 17.3 | 20.9 | 24.3 | 24 . 9 | 26.8 | 26.2 | 26.0 | |
| | | AM | MAXIMUM= | | | 12.7 | 9.45 | 'A.M. | 13•1 | 13.8 | 16.8 | 15.8 | 14.7 | 14.0 | 17.9 |
| | | ** | 8+2
MAXIMUM= | 12.5
23.6 | 16.2
C.F.S. | 19.7 TIME | 22.7
4.45 | 19.5
P.M. | | 14.8 | 19.8 | 19.7 | 6.5
19.9 | 6.7 | 14-0 |
| | | | | ~ • • | • / | 13.2
5.9
TIME | 7.7 | 7.V | | 12.1
5.8 | 6.3
11.5 | 6.2
11.5 | 6.1
11.4 | 6.0
11.4 | 9.4 |
| | 16 | AM
PM | 10.8
4.9
MAXIMUM= | 10.8
4.9
41.1 | 10.8
5.7
C.F.S. | 10-8
8-1
TIME | 10.7 | 13.0 | 10.7
15.1 | 14.1 | 18.7 | 4.9
21.2 | 26.3 | 4.9
37.0 | 11.9 |
| | | | 46.4
5.8
MAXIMUM= | | 51.4
5.2 | 41.4
5.0
TIME | 31.7 | 25.1
4.8 | 20.5 | . 17.2 | 0.5 | 8.0
10.2 | | | |
| | 19_ | AM. | 9.7 | 9 <u>.6</u>
6.8 | 9 <u>-6</u> | 9 <u>-</u> 6 | 9.6
16.7 | 9.5 | 9.5
23.0 | 9.5 | | 6.2 | 6.2 | 6.1
13.6 | |
| | | PM | 12.2
5.8
MAXIMUM≡ | 11.3
5.8
12.7 | 10.6
5.7
C.F.S. | 10.2
5.7
TIME | 9.9
5.7 | 9.6
5.7
A.M. | 9.5
5.7 | 9.4
5.6 | 6.0
8.9 | 5.9
8.9 | 5.8
8.9 | 5.8
8.8 | 7.8 |
| | | AM
_PM | 8.8
5.3
MAXIMUM= | 8 • 8
5 • 4
68 • 5 | 8.8
6.4
C.F.S. | 8.8
9.4
TIME | 8.7
13.7
12.00 | 21.1 | 3•7
29•2 | 8.7
37.1 | 5.4
49. 4 | 5.4
54.7 | 5.4
62.3 | 5+3
67+3 | 18.9 |
| | 22 | | 13.1 | | 10.7 | 65.5 | 59.6 | 55.0
9.2 | 47.8
8.9 | 39.3
8.8 | 29±0
10•3 | 22.6
10.2 | 18.2
10.1 | 15.2
10.0 | 28.5 |

Reproduced from best available copy.

| | | | L | | | | | | | | | | | | |
|------|------------------|-----------------------------------|------------------------|------------------------|----------------------------------|----------------------------------|----------------------|--------------|----------------------|-------------------|--------------|----------------|--------------|------|---|
| 23 | AM
PM | | 6.5 | 9.9
6.4
C.F.S. | 9.9
6.4 | 9.9
6.4 | 9.9
5.4 | 9.9
6.4 | 9.9
6.3 | 6.6
9.6 | 6.5
9.6 | 6.5
9.6 | 6.5
9.5 | 8.1 | - |
| SEPT | FMRE | | - 0#4 | 6.5. | TIME | 4.15 | Р.М. | • | | | | | | | |
| 4 | <u>А</u> м
РМ | | 1.0 | 5.4
1.1
C.F.S. | 5.4
2.3
TIME | 5.4
4.3
8.15 | 5.4
6.0
P.M. | 5•4
7•6 | 5.3
8.0 | 1.0°
10.5 | 1.0 | 1 • 0
7 • 7 | 1.0
6.9 | 4.7 | |
| 5 | AM
PM | 6.3
2.2
MAXIMUM: | 6.0
6.3
39.9 | 5.7
11.9
C.F.S. | 5.5
19.5
TIME | 5.4
28.3
8.15 | 5.3
34.9
P.M. | 5.2
33.2 | 5•1
37•6 | 0.8
38.3 | 0.3
32.0 | 0.8
24.3 | 0.9
18.2 | 14.1 | |
| . 6 | AM
PM | 14.1
0.7
MAXIMUM= | 11.2
0.6
15.4 | 9.3
0.6
C.F.S. | 7.9
0.6
TIME | 7.0
0.6
0.15 | 6.4
0.6
A.M. | 5.9
0.6 | 5.6
0.6 | 1-1 | 1.0
4.8 | 0.9
4.8 | 0.8
4.8 | 4.0. | |
| 8 | AM.
PM | | 4.5
· 0.9
· 13.3 | 4.5
1.0
C.F.S. | 4.5
1.5
TIME | 4.5
2.9
8.45 | 4.5
4.9
P.M. | 4.5
7.3 | 4.5
9.2 | 1.0
13.1 | 0.9
12.2 | 0.9
10.0 | 0.9 | 4.7 | |
| 9 | AM
PM | 7.3
0.7
=MUMIXAM | 5.2
0.7
7.4 | 5.6
0.7
C.F.S. | 5.2°
0.7
TIME | 4.9
0.7
0.15 | 4.7
0.7
A.M. | 4.6
0.7 | 4.5
0.7 | 0.9
4.2 | 0.8
4.2 | 0.7
4.1 | 0.7
4.1 | 2.8 | |
| 10 | AM
PM | 4.1
0.5
MAXIMUM= | 4.1
0.5
25.0 | 4.1
0.5
C.F.S. | 4.1
3.5
TIME | 4.1
0.5
10.45 | 4-1
0-6
P-M. | 4.1
1.7 | 4.1
5.4 | 0.5
13.4 | 0.5
18.5 | 0.5
23.9 | 0.5 | 5.2 | |
| 11 | AM
PM | 22.2
0.6
MAXIMUM= | 19.1
0.5
23.1 | 14.8
0.5
C.F.S. | 11.4
0.3
TIME | 9.1
0.3
0.15 | 7.4
0.3
A.M. | 0.3 | 5.6
0.7 | <u>1.5</u>
6.0 | 1.2
9.5 | .0.9
13.9 | 0.7
17.8 | 6.3 | |
| 12 | ДМ
Р М | 19.9
0.5
MAXIMUM= | 18.9
0.4
162.3 | 14.8
0.3
C.F.S. | 11.4
0.2
TIME | 9.0
0.2
12.00 | 7.3
1.1
P.M. | 6.2
10.2 | 5.4
37.5 | 1.4
71.9 | 1.0
110.6 | 0.8
151.9 | 9•6
162:2 | 26.8 | |
| 13 | AM
PM | 162.7
7.4
MAXIMUM= | 6.0 | 138.5
5.3
C.F.S. | 116.8
4.4
TIME | 93.1
3.9
0.45 | 68.2
3.6
A.M. | 49.0
3.4 | 35.7
3.2 | 23.0
5.6 | 16.7
6.5 | 12.4 | 9.4
6.4 | 39.3 | |
| 14 | РМ | 9.2
20.1
MAXIMUM=
DEPTH= | | 35.7
27.1
0.7.5. | 52.9
33.8
TIME | 69.2
41.6
5.45 | 83.3
46.5
A.M. | 69.7
49.1 | 52.5
48.5 | 38.5
47.2 | 30.0
41.9 | 24.3
34.8 | 21.0
29.1 | 30,4 | |
| 15 | | 25.1
12.4
MAXIMUM= | 22.3
12.4
26.3 | 20.4
13.0 | 7 SAX= 1
19.1
13.9
TIME | 5.00 TA!
18.1
15.7
0.15 | 17.5
17.2 | 17.0
18.6 | 0.00
16.7
19.2 | 12.9
21.2 | 12.7
19.6 | 12.6
18.5 | 12.5
17.7 | 16.9 | |

| œ |
|---|
| |
| w |
| 9 |
| _ |

| | 16AM 17.1
PM 13.8 | | 16.2 16.1
13.7 13.7 | | 15.9 15.8
13.6 13.6 | 14.0
15.3 | 13.9
15.3 | 13.9
15.3 | 13.9
15.2 | 14.9 |
|--------|------------------------------------|---|--------------------------------------|----------------------|------------------------|--------------|---------------|--------------|---------------|-------|
| | | | TIME 0.15
33 SAX= 15.00T. | A.M.
Ansm= 0.00 | SPŁW≃ 0.0 | | | | | |
| | 17 AM 15.2
PM 11.3
MAXIMUM | 11.3 11.2 | 15.1 15.0
11.2 11.2
TIME 0.15 | | 15.0 15.0
11.1 11.1 | 11.4
14.5 | 11.4
14.5 | 11.3 | 11.3
14.4 | 13.1 |
| | 18. AM 14.4
PM 10.8
MAXIMUM | 14.3 14.3
10.9 11.6 | 14.3 14.2
13.2 16.4
TIME 8.15 | 14.2
20.2 | 14.2 14.1
24.3 27.2 | 11.0
30.1 | 10.9
27.6 | 10.9
24.2 | 10.9
21.4 | 16.5 |
| | 19 AM 19.5
PM 12.2
MAXIMUM | 12.2 12.2 | 16.7 16.3
12.2 13.1
IIME 9.45 | 14.5 | 15.8 15.6
18.1 21.9 | 12.4
29.2 | 12.3
32.8 | 32.0 | 12.3
29.3 | 17.7 |
| ,
, | 20 AM 26.0
PM 14.4
MAXIMUM | 14.3 | 20.2 [9.3
14.3 [14.3
TIME 0.15 | 14.2 | 18.3 18.0 | 14.7 | 14.6 | 14.5 | 14.4 | 16.9 |
| | | 17.1 17.1
13.7 13.7 | _ | 17.0
13.6 | 17.0 17.0
13.5 13.5 | | 13.8.
16.5 | 13.8
16.5 | 13.7 | 15.3 |
| B-39 | 22 AM 16.4
PM 12.9
MAXIMUM | 12.9 12.9 | 16.3 16.3
12.8 12.8
TIME 0.15 | 12.8 | 16.2 16.2
12.7 12.7 | 13.1
15.7 | 13.0
15.7 | 13.0
15.7 | 13.0
15.6 | 14.5 |
| • | 23 AM 15.6
PM 12.1
MAXIMUM | 12.0. 12.0 | 15.5 15.5
12.0 12.0
TIME 11.45 | 12.4 | 15.4 15.3
13.6 16.0 | 12.2
22.6 | 12.2
26.8 | | 12.1
_33.0 | 16.1 |
| | 24 AM 33.0
PM 49.0
MAXIMUM | 44.5 39.6 | TIME 10.45 | 26.6 | 40.3 46.7
24.1 22.3 | 46.9
22.6 | 48.7
21.8 | 51.3
21.2 | 50.9
20.8 | 34.9 |
| | 25 AM 20.5
PM 16.3 | 20.3 20.1
16.2 16.2
= 20.6 C.F.S. | | 16.1 | 19.7 19.6
16.0 16.0 | 16.5
19.0 | 16.4
19.0 | 16.4
18.9 | 16.3
18.9 | 17.9 |
| | 26 AM 18.8
- PM 15.2
MAXIMUM | 18.8 18.7
15.115.1 | 18.7 18.6
15.0 15.0
TIME 0.15 | 14.9 | 18.5 18.5
14.9 14.9 | 15.3
17.9 | 15.3
17.9 | 15.3
17.8 | 15.2
17.8 | 16.7 |
| | 27 AM 17-7
PM 14-1
MAXIMUM | | 14.9 13.9 | 17.5
13.9
A.M. | 17.5 17.4
13.9 13.8 | | 14.2 | 14.2
16.8 | 14.2 | 15.7. |
| | 28 AM 16.7
PM 12.9
 | 16.7 16.6
12.8 12.3
= 29.3 C.E.S. | 16.6 16.6
13.1 13.6
TIME 8.45 | 14.6 | 16.5 16.4
15.5 16.4 | 13.0
20.1 | 13.0
19.2 | 12.9
18.2 | 12.9
17.5 | 15.5 |
| | 29 AM 17.0
PM 12.1
MAXIMUM= | 16.7 16.4
12.1 12.0
17.2 C.F.S. | 16.2 16.0
12.0 12.0
TIME 0.15 | | 15.8 15.7
11.9 11.9 | 12.2
15.2 | 12.2
15.2 | 12.2
15.2 | 12.1
15.1 | 14.0 |

| 7 | _ | |
|---|---|--|
| 4 | > | |
| C | 2 | |
| | | |

| | | N. | MONTHLY | | | | | | . DA | ILY. | | <u> </u> |
|---|---|---|--|--|--|---|---|---|---|---|---------|--|
| | | REFERENCE | | SIMULATE | Ð | | | REFERE | ENC F | SIM | MULATED | |
| MEAN | | 2405.60 | | 2432.4 | 4 | | | 79. | .09 | | 79.97 | ·· · · · · · · · · · · · · · · · · · · |
| MAXIMUM | | 14092.04 | | 15398.3 | 9 | | | 919. | .23 | | 266.56 | |
| VARIANCE | | 18195728.00 | | 204655 | 36.00 | | | 25 | 021.94 | | 28993. | 1 1 |
| STANDARD DEVIATION | | 4265.64 | | 4523.8 | 9 | , | | 158. | 18 | | 170.27 | |
| SUM OF (REFERENCE - | - SIMULAT | E01 | -322.07 | - | | | · | * - - | -32 | 2.04 | | |
| ROOT SUM SQUARE | | | 1510.44 | | | 7 · | | | | 6.55 | | المارات الأالين للفتاء والزيم وسيبية بميمستك |
| . SUM SQUARED . | | - | 0.04 | | | | | | | 1.78 | • | |
| SUM SQUARED (IBM ME | етноо) | | 0.03 | | | | | | | 1.47 | - | |
| CORRELATION COEFFIC | CIENT | | 0.9964 | | | | • | | | 9896 | | |
| | | | | | | | | | | | , | VIII. 244 V 44 |
| | | SUMMAR | Y 0 E 1 | M Q N .T .F | t L Y A | ND.A. | N.N.U.A.: | L T 0, T | A.L.S. | | | to an including the control of the c |
| | DCT | NOV DEC | JAN | FEB | . MAR . | APR | MAY | JONE | JUR Y | AUG. | _SEPT | ANNUAL |
| PRECIPITATION EVP/TRAN-NET -POTENTIAL SURFACE RUNDEF INTERFLOW BASE FLOW STREAM EVAP. TOTAL RUNGEF(SIM) TOTAL RUNGEF(REE) | 3.870
0.970
1.071
0.017
0.003
0.182
0.007
0.195
0.197 | 4.280 1.390 0.0 0.0 0.0 0.0 0.002 0.000 0.021 0.0 0.151 0.195 0.0 0.154 0.195 0.158 0.195 | 1.020
0.0
0.0
0.000
0.188
0.0
0.188
0.189 | 2.530
9.016
0.016
0.000
0.0 .
0.191
0.191
0.192 | 3.980
0.0
0.0
0.000
0.0
0.241
0.0
0.241 | 4.430
9.363
0.363
0.003
0.003
0.242
0.002
0.246
0.244 | 2.250
2.265
2.265
0.179
1.877
3.311
0.014
5.352
4.898 | 0.930
5.091
6.126
0.015
0.019
2.556
0.037
2.552
2.809 | 1.080
3.805
6.167
0.012
0.000
0.555
0.039
0.529
0.585 | 3.690
3.360
3.360
0.947
0.000
0.128
0.023
0.152
0.164 | 3.930 | 33.380 IN
18.425 IN
21.938 IN
0.323 IN
1.908 IN
8.054 IN
0.139 IN
10.145 IN
10.033 IN |

545.0 552.3 697.9 701.8 14092.0 8082.1 1682.9 472.9 457.1

708.5 15398.4 7342.7 1521.9 437.9 430.6

28867.2 CFS

29189.3 CFS..

BALANCE

SIMULATED TOTALS

-0.0597 INCHES

MONTHLY FLOW CORRELATION COEFFICIENT MEAN DAILY FLOW CORRELATION COEFFICIENT

REFFRENCE TOTALS 567.2 454.3 561.6

0.9964 0.9896

562.5 442.9 560.4 541.7 548.7 693.2

| | DAY | OCT | . N£¥. | DEC _ | JAN | FEB | . MAR_ | APR | ИАУ | JUNE | JULY | AUG | SEPT | ANNUAL |
|---------------|-----------|--------|----------------|--------------|-------|---------|--------|--------|---------|--------|--------|---------|---------------------|--|
| | 1 | . 25.6 | 19.0 | 17 5 | 17.0 | 10 7 | 30.7 | | 24.0 | 500.0 | | | • | |
| | | 24.3_ | 18.9
19.6 | 17.5
19.8 | 17.0 | 18.7 | 20.7 | 24.3 | 24.0 | 502.3 | 107.3 | 20.5 | 4.6 | |
| | 3 | 24.8 | 17.7 | | 17.0_ | 18.8. | | 24.4 | 25.4 | 474.5 | 101.7 | 19.3 | 4.3 | · · · · · · · · · · · · · · · · · · · |
| | | 22.5 | | 20.1 | 17.0 | 18.8 | 20.9 | 24.5 | 28.2 | 448.8 | 96.3 | 23.6 | 3.9 | |
| | E | 20.6 | 17.5. | 20.1 | 17.0 | 18.9. | 21.0 | 24.5 | 49.3 | 424.9 | 91.3 | 26.3 | 5.2 | and the state of t |
| | | ZU_O | 1.7.2 | 19.9 | 17.0. | . 19.0_ | 21.42 | 24.6 | 860 | 418.1 | 86.5 | .32.1 | 1.4 .6 . | |
| | . 6 | 19.9 | 17.0 | 19.7 | 17.0 | 19.1 | 21.3 | 24.7 | 132.0 | 431.7 | 83.5 | 28.1 | 4.4 | • • |
| | | 19.0 | 16.7_ | 19.5 | 17.1 | . 19.2 | 21.4 | 24.8 | 205.4 | 392.6 | 81.4 | 15.1 | 3.0 | |
| | | 17.4 | 16.5 | 19.3 | 17.1 | 19.3 | 21.6 | 24.9 | 214.6 | 370.0 | | 14.2 | 5.1 | |
| | 9 | 16.5 | .16.2 | 19.0 | 17.1 | 19.4 | 21.7 | 25.0 | 199.6 | 349.7 | 69.7 | 12.6 | . 3.2 | • |
| | 10 | 18.1_ | 15.9 | 18.8 | 17.2 | 19.5 | 21 .8. | 25.1 | | .3302 | 65.8 | 333 | 5.6 | · |
| | | | | | | | | | | | | | | |
| | 11 | 15.7 | 15.7 | 18.6 | 17.2 | 19.6 | 21.9 | 25.1 | 316.8 | 312.7 | 62.3 | 22.0 | 6.6 | • |
| | 12 | 20.6 | 1.5 . 4 | 18.4 | | 19.7 | -22-1 | 25.2 | | 296.2 | 58.9 | 19.1 | | |
| | 13 | 17.9 | 15.2 | 18.3 | 17.3 | 19.8 | 22.2 | 25.3 | 679.5 | 280.7 | 55.8 | 15.1 | 39.6 | · · · |
| . | 14 . | . 14.9 | 15.0. | 18.1 | 17.4 | 19.9 | | 24.8 | 534.9 | 266.0 | 52.8 | 10.5 | 38.7 | |
| B-41 | 15 | 13•1 | 14.8 | 18.0 | 17.4 | | | . 24.3 | 460.8 | 252.1 | 49.9 | .9 • .3 | 17.0 | |
| | | | | | | | | | | | | | 1 : • D | |
| | 16 | 12.1 | 14.6 | 17.8 | 17.5 | 20.1 | 22.6 | 23.4 | 430.5 | 239.1 | 47.2 | 12.9 | 16.0 | |
| | | 21.2 | 14.4_ | 1.7 | 1.7.5 | 20.2 | 22.7 | 22.3 | 433.2 | 226.7 | 44.6 | 17.4 | 14.7 | |
| | · 18 · | 12.4 | 14.2 | 17.6 | 17.6 | 20.3 | 22.8 | 21.3 | 478.8 | 214.9 | 45.8 | 8.0 | 18.3 | · · · · · · · · · · · · · · · · · · · |
| | 19 | 12_9 | 14-1 | 17.5 | 1.77 | 20.4_ | | 20.2 | | 203.8 | 40.4 | 12.9 | 19.5 | |
| | 20 | 23.0 | 13.9 | 17.4 | 17.7 | 20.2 | 23.0 | 19.2 | | 192.9 | | B . 6 | 18.8 | · · · · · · · · · · · · · · · · · · · |
| | | | • | | | | | | | | | | | |
| | 21 | 26.1 | 13.8 | 17.3 | 17.8 | 20.2 | 23.1 | 18.1 | 737.3 | 182.8 | 35.9 | 19.7 | 17.3 | • |
| | 22 | 20.5 | _13.7 | 17.3 | 179 | 20.1 | 23.3 | | 749.3 | 173.3 | 33.9 | 29.4 | 16.4 | |
| | 23 | 18.8 | 13.6 | 17.2 | 17.9 | 20.0 | 23.4 | 26.0 | 753.1 | 164.3 | 32.0 | 9.0 | 17.9 | · - · |
| | 24 | | .13.5 | 17.1 | 18.0 | 20.1 | 23.5 | 25.1 | 770.0 | 155.7 | -30.2 | 8.5 | 35.8 | |
| | 25 | 17.5 | 13.4 | 17.1 | 18.1 | 20.2 | 23.6 | 23.3 | 766.0 | 147.6 | 30.9 | 8.0 | 18.8 | |
| | | | | | | | | | | , - , | 300, | | .2440 | |
| | 26 | 16.5 | 13.3 | 17.1 | 18.2 | 20.3 | 23.7 | 22.5 | 727.6 | 139.9 | 30.3 | 7.5 | 17.8 | |
| | 27 | 16.3 | 13.3 | 17.0 | 18.3 | 20.4 | 23.8 | 22.1 | 683.2 | 132.6 | 25.4 | 7.1 | 16.9 | |
| | 28 | 15.0 | 13.2 | 17.0 | 18.3 | 20.5 | 23.9 | 21.8 | 640.0 | 125.6 | 23.9 | 6.6 | 16.7 | |
| | 29 | 14.9 | 13.1 | 17.0 | 18.4 | | 24.0 | 21.3 | 607.3 | 119.1 | 23.6 | 5.7 | 15.2 | |
| | | 14.4 | 13.1 | 17.0 | 18.5 | | 24.1 | 21.6 | 568.7 | 113.2 | 41.3 | 5.3 | 14.3 | - |
| | 31 | 16.3 | | 17.0 | 18.6 | | 24.2 | | 532.9 | | 22.8 | 5.0 | 14.3 | |
| | REFERENCE | | | | | | | | | | 24. 0 | J.0 | | |
| | _TOTALS | 567.2 | 454.3 | 561.6. | 545.0 | 552.3 | 697.9 | 701.8 | 14092.0 | 8082.1 | 1682.9 | 472.9 | 457.1 | 28867.2 CFS |

MEAN DAILY SIMULATED FLOWS (CFS)

| DAY | UCT | N:)V | ЭЕС | JAN | FEB | MAR | APP | MAY | JUNE | JULY | . AUG. | SEPT | ANNUAL |
|-----------|--------|-------|-------|--------|--------|---------------|--------|---------|---------|--------|--------|---------|--|
| 1 | 25.6 | 18.5 | 16.7 | 16.9 | 18.5 | 20.5 | 24.1 | . 23.2 | 457.6 | 97.1 | 1a E | | |
| 2 | 24.3 | 19.4 | 19.3 | 16.9 | 18.6 | 20.6 | 24.2 | | | 92.0 | 18.5 | 4.0 | |
| 3 | 24.8 | 17.3 | 19.9 | 16.9 | 18.7 | 20.8 | 24.3 | | | | 17.4 | 3.7 | · |
| 4 | 22.5 | 17.0 | 20.0 | 16.9 | 18.8 | 20.9 | 24.4 | | 406.1 | 87.2 | 21.8 | 3.4 | |
| . 5 | 20.6 | 16.7 | 19.9 | 16.9 | 18.9 | 21.0 | | | 383.8 | 82.6 | 24.6 | 4.7 | ين المنظم المساهد |
| | | | -,-, | 10.7 | 10. 9 | 21.0 | 24.5 | .99.4 | 3.79.1 | 78.2 | 30.4 | 14.1 | |
| 6 | 19.9 | 16.4 | 19.8 | 17.0 | 19.0 | 21.2 | 24.6 | 155.5 | 397.3 | 75.7 | 26.5 | 4.0 | |
| .7 | 19.1 | 16.1 | 19.6 | 17.0 | 19.1 | 21.3 | 24.7 | | 361.3 | | 13.6 | 2.5_ | : |
| 8 | 17.4 | 15.9 | 19.4 | 17.0 | 19.2 | 21.4 | 24.8 | | 338.5 | 66.7 | 12.8 | 4.7 | |
| 9 | 16.5 | 15.7 | 19.1 | . 17.0 | 19.2 | 21.5 | 24.9 | | 318.8 | 63.0 | | | |
| 1.0 | . 18.1 | 15.4 | 18.9 | 17.1 | 19.3 | 21.7 | 24.9 | | 300.3 | 60 E | 11.2 | 2.8 | a see the see the see the see the see |
| | | | | | | 2241. | 2.76.7 | 210.00 | JUVAJ. | 59.5 | 32_0_ | 5_2_ | |
| 11 | 15.7 | 15.2 | 18.7 | 17.1 | 19.4 | 21.8 | 25.0 | 352.3 | 283.9 | E4 3 | 30.0 | | * |
| 12 | 20.6 | 15.0 | 13.5 | 17.2 | 19.5 | 21.9 | 25.1 | | 268.7 | 56.3 | 20.8 | 6.3 | 1 |
| 13 | 17.9 | 14.8 | 18.4 | 17.2 | 19.6 | 22.0 | 25.2 | | | . 53.2 | 17.9 | 26 8 | · |
| 14 | 14.9 | 14.6 | 18.2 | 17.3 | 19.7 | 22.2 | 24.7 | | 254.5 | 50.3 | 14.0 | 39.3 | |
| 15 | 13.1 | 14.4 | 18.0 | 17.3 | 19.8 | 22.3 | | | 241.2 | 47-6 | 9.4 | 39.4 | g a management |
| | *** | 2141 | 15.0 | 11.0 | 1740 | 22.3 | 24.3 | . 520.9 | 228.5 | 45.0 | 8.3 | 16.9 | |
| 16 | 12.1 | 14.2 | 17.9 | 17.4 | 19.9 | 22.4 | 23.5 | 462.2 | 216.5 | 42.5 | 11.9 | 16.0 | • • |
| 17 | 21.2 | 14.0 | 17.8 | 17.4 | 20.0 | 22.5 | 22.5 | | 205.3 | 40.2 | | 14.9 | |
| 18 | 12.4 | 13.9 | 17.6 | 17.5 | 20.1 | 22.6 | 21.5 | | 194.7 | 41.6 | | | |
| 19 | 12.9 | 13.7 | 17.5 | 17.5 | 20.2 | 22.8 | 20.4 | | | | 7.1 | .16-5. | MARINE STE |
| 20 | 22.9 | 13.6 | 17.4 | 17.6 | . 20.0 | 22.9 | 19.4 | | 184.6 | 36.4 | 12.0 | 17.7 | of the Section of Additional Conference of the Section of the Sect |
| | | | | 1,10 | . 23.0 | | 1704 | _656.8 | . 174.7 | 34.2. | 2.8_ | 16.9 | |
| 21 | 26.5 | 13.5 | 17.3 | 17.7 | 20.1 | 23.0 | 18.4 | 854.0 | 165.6 | 32.3 | 10.0 | 15.5 | |
| 22 | 20.7 | 13.4 | 17.3 | 17.7 | 20.0 | 23.1 | 22.1 | | 157.0 | | 18.9 | 15.3 | |
| 23 | 18.4 | 13.3 | 17.2 | 17.8 | 20.0 | 23.2 | 27.9 | | | . 30.5 | 285. | 14.5 | |
| 24 | 17.6 | 13.2 | 17.1 | 17.9 | 20.0 | 23.3 | | | 148.8 | 28.8 | 8.1 | 16.1 | |
| . 25 | 16.8 | 13.1 | 17.1 | 18.0 | 20.1 | | 27.3 | 826.5 | 141.0 | 27.1 | 7.7 | 34.9 | · |
| | 1010 | 1301 | 1141 | 13.0 | 20.1 | . 23.4 | 24.8 | 802.2 | 133.7 | .28.0 | 7.2 | . 17.9. | |
| 26 | 16.0 | 13.0 | 17.0 | 18.0 | 20.2 | 23.5 | 23.4 | 737.4 | 126.7 | 27.5 | 6.8 | 1, 3 | |
| 27 | 15.7 | 13.0 | 17.0 | 18.1 | 20.3 | 23.7 | 22.5 | | 120.0 | 22.8 | | 16.7 | |
| 28 | 14.4 | 12.9 | 17.0 | 18.2 | 20.4 | 23.8 | 22.0 | 612.3 | 113.7 | | 6.3 | 15.7 | ÷ |
| 29 | 14.3 | 12.9 | 16.9 | 18.3 | | 23.9 | 21.7 | 570.5 | | 21.5 | 5.9 | 15.5 | |
| 30 | 13.8 | 12.8 | 16.9 | 18.4 | | 24.0 | 21.7 | | 107.8 | 20.2 | 5.1 | 14.0 | |
| 31 | 15.8 | | 16.9 | 18.4 | | 24.1 | 41.7 | 527.2 | 102.5 | 39.1 | 4.7 | 13.0 | |
| SIMULATED | | | | EW T | | ∠ ~ •↓ | | 488.8 | | 20.7 | 4.4 | | |
| TOTALS | 562.5 | 442.9 | 560.4 | 541.7 | 548.7 | 693.2 | 708.5 | 15398.4 | 7342.7 | 1521.9 | 437.9 | 430_6 | 29189.3 CES. |

BFNX

SIAM

...TOTAL STATISTICAL SUMMARY FOR 1 WATER YRS

| | | | | | | | | | | - | | | • | |
|--|-------------------------|---|--------------------------|----------------|-------------------------|---------------------------------------|---|----------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| NO TOTAL PROPERTY AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMINISTRATION ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION ADMINIS | | - | . М | ONTHLY | | | | | | DA | ILY | | | |
| | | REF | FRENCE | | SIMULATE | D | 1 | | REFERE | NCE | SIM | TULATED | | |
| MEAN | | 24. | .05 - 60 | | 2432.4 | 4 | | | 79. | 09 | | 79.97 | | |
| MAXIMUM | | 140 | 92.04 | | 15398.3 | 9 | | | 919. |
23 | <u>i</u> | 266.56 | - | |
| WARIANCE | | 1819 | 5728.00. | | 204.655 | 36.00 | · . | ···· | 25 | 021.94 | | _28993. | 11 | • |
| SIANDARD DEVIATION | | | 65.64 | | 4523.8 | 9 . | · | | | | | 170.27 | | |
| SUM OF (REFERENCE - | SIMULAT | ED) | | -322.07 | | | | | | -32 | 2.04 | | | |
| RDOT SUM SQUARE | | | | 1510.44 | | | | | | . <u></u> .
50 | 6.55 | | | · · · · · |
| SUM SQUARED | · · · · · | · - | ·· ······· | <u>U. 04</u> | | · · · · · · · · · · · · · · · · · · · | | | | | 1.78 | | | . <u>.</u> . |
| SUM SQUARED LIBM MET | (doh | | | | . · | | | | | | 1.47 | | | , |
| CORRELATION COEFFICE | ENT | | | 0.9964 | | | · · · · · · · · · · · · · · · · · · · | | | | 9896 | | <u>.</u> | |
| | | | | - ** | | - | | | · | | | | | |
| Land | | ام. بدت، <u>ندهای طلعه (ایناندیا</u> یا | | | | | and the same of the same of the same of the same of the same of the same of the same of the same of the same of | | · | | | | | |
| | OCI | VOV | DEC | JAN | FEB | MAR | APR | .MAY | .JUNE | JULY | AUG | SEPT | ANNUAL | |
| RAIN+MELT
SURFACE-SNOW-EVAP. | 1.755 | 0.634 | 0.558
0.314 | 0.558
0.215 | 0,504
0,138 | 0.558
0.276 | 0.873 | 13.875
0.930_ | 1.614 | 1.080 | 3.690 | 3.906 | 29.606 | |
| INTSNOWLOSS
Storages-uzs | 0.152
0.555
4.136 | 0.251
0.544 | 0.080
0.330
-5.197 | 0.061
0.345 | 0.152
0.356
5.818 | 0.228
0.368
.6.099 | 0.241
0.449
6.303 | 0.939
0.018
1.224
8.905 | 0.0
0.0
0.0
6.470 | 0.0
0.295
3.450 | 0.0
0.395
3.657 | 0.023
0.814 | 2.564
1.207 | INCHES |
| IFS
GWS | 0.0
0.100 | 0.0
0.087 | 0.0
0.115 | 0.0
J.125 | 0∔0
0∔139 | 0.0
0.163 | 0.0
0.146 | 0.008
3.075 | 0.0
0.695 | 0.0
- 3.142 | 0.0
0.043 | 4.420
0.0
0.097 | | IN
IN
IN |
| | 0.51.7. | | 0.250
0.250 | 0.250_ | . 0.250 | O. 25.0. | 0 25.4 | 1.501 | 3.004 | 2.706 | 1.651 | i.256 | | . . |

0.262

0.330

0.250

0.404

4.131

0.899

1.738

1.331

0.678

1.385

0.282

1.185

0.226

1.050

0.220 0.231

0.330 0.330

0.230

0.330

0.424 0.255

0.797 0.476

CHECK ON SNOW 20.1194 ... 18.9126

DAILY FLOW DURATION AND ERROR TABLE

| | | IDARD ERROR | STANDA | AVR. ABS. ERROR | AV. ERRUR | CASES
O.O | FLOW INTERVAL
0.0- |
|--|----|-------------|--------|-----------------|--------------|--------------|-----------------------|
| - | | | | | | 7.0 | 1.0- |
| • | | | | | | 0.0 | 1.6- |
| | | | 0.01 | 0.46 | -0.5 | 5.0 | 2.7- |
| | | | 0.06 | | -0.5 | 10.0 | 4.5- |
| | | | 0.14 | 0.55 | -0.3 | 2.0 | 7.4- |
| | | | 0.32 | 0.80 | -0.4 | 157.3 | 12.2- |
| <u> </u> | ·- | • | 0.49 | 0.37 | -0.4 | 99.0 | 20.1- |
| | | | 0.94 | 0.54 | -2.6 | 15.0 | 33.1- |
| | | | 2.31 | 3.07 | | 10.0 | 54.6- |
| | | | 6.44 | 7.41 | -4.7
-8.0 | 11.0 | 90.0- |
| | | | 10.55 | 12.25 | | 13.0 | 148.4- |
| 5 | | | 23.89 | 21.83 | -3.6 | 10.0 | 244.7- |
| • | | | 20.32 | | -21.9 | 17.0 | 403.4- |
| | | | 48.80 | | -3.8 | 9.0 | 665.1- |
| | | | 113.56 | 106.40 | 103.7 | 0.0 | 1096.6- |
| | | | | | | | 1808.0- |
| ************************************** | | | | | | 3.0 | 2981.0- |
| | | | | | | 0.0 | 4914.8- |
| • | | 1 1 | | | |) <u>.</u> 0 | |
| and the second s | | | | | | 0.0 | 8103.1- |
| • | | | | | | 0.0 | 13359.7- |
| | | | | | | 0.0 | 22026.5- |
| · · | | | 227.83 | 7.24 2 | 0.9 | 365.0 | 0005147550 |
| | | | | 0.9896 | DAILY) | FFICIENT (| ORRELATION COE |
| | | | | | DAILY) | FFICIENT (! | ATION COE |

TWENTY HIGHEST CLOCKHOUR RAINFALL EVENTS IN THE WATER YEAR 0.500 0.495 0.400 0.400 0.380 0.274 0.265 0.261 0.240 0.200 0.200 0.200 0.170 0.162 0.150 0.150 0.150 0.149 0.143 0.140

TWENTY HIGHEST CLOCKHOUR DVERLAND FLOW RUNDER EVE NTS IN THE WATER YEAR 0.010 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

| DAY | OCT | NOV | DEC | JAN | FEB | MAR | AP | R | MAY | JUNE | JULY | AUG | SEPT |
|---------|---------------|-----------|---------------|-------|------------|--------------|-------|------------|------------|-------|------------|------------|------------|
| | | | | | | | | | 1167 | 00.11 | 301. | 400 | 31.71 |
| 1 | | 4.2 | . 4.48 | 5.2 | 5.6 | 5.8 | 6 | - 1 | 6.3 | 8.9 | 6.3 | 3.5 | 3.7 |
| 2 . | 3.9 | 4.2 | . 4.8 | 5. 2 | 5.6 | 5.8 | 6 | •] | 6.3 | 8.9 | 6.2 | 3.5 | 3.7 |
| 3 | | . 4.3 | 4 • 8 | 5.2 | 5.6 | 5.9 | 6 | • 1 | 6.4 | 8.9 | | 3.5 | 3.7 |
| 4 | 9 | | <u>4.9</u> | 5.2 | . 5.6 | 5.9 | 6 | - 1 | 6.5 | 8.9 | | 3.5 | 3.7 |
| 5 | 3.8 | 4.3 | 4.9 | 5.3 | 5.6 | 5.5 | 6 | • 1 | 6.6 | 8.9 | 5.8 | 3.5 | 3.7 |
| 6 | 3.7 | 4.3 | 4.9 | 5.3 | . 5.6 | 5 9 | . 6 | . 2 | 6.8 | 8.9 | 5∡6 | 3.5 | . 3.7 |
| 7 | 3.7 | | 4.9 | 5.3 | | 5.9 | | -2. | 7.0 | 8.9 | | 3.5 | 3.7 |
| 8 | 3.7 | 4.4 | 4.9 | 5.3 | 5.6 | 5.9 | _ | . 2 | 7.1 | 8.9 | | 3.5 | 3.7 |
| 9 | 3.6 | 4.4 | 4.9 | 53. | 5_6_ | 5.9 | | | | | | | |
| 10 | 3.6 | 4.4 | 4.9 | 5.3 | 5.6 | 5.9 | | - 2 | 7.2 | 8.9 | | 3.5 | 3.6 |
| 11 | 3-6 | - * 4.4 | 5-0 | 5.3 | 57 | 5.0 | 6 | 2 | 7.5 | .8.9 | 5 2 | 3.5 | 3 (|
| .12 | 3.6 | 4.4 | | 5.3 | 5.7 | 5.9 | | • 2 | 7.6 | | | | |
| 13 | | | 5.0 | 5.3 | 5.7. | 5.9 | | • 2 | 7.6 | 8.9 | | 3.5 | 3.7 |
| 14 | | 4.4 | | | 5 <u>7</u> | | | | 7.6 | 8.9 | | 3.5 . | |
| 15 | 3.6 | 4.4 | 5.0 | 5.4 | 5.7 | 6.0 | | | | 8.9 | | . 3.5 | |
| | | | • | 747 | 201 | 0.0 | a | + 2· | 7.7 | 8.9 | 4.7 | 3.5 | 4.0 |
| 16 | 3.46 _ | 4.5 | 5.Q | 5 . 4 | 5.7. | 6.0 | . 6 | • 2 | . 7.8 | 8.7 | 4.6 | 3.5 | 4.1 |
| 17. | 3 . 6. | 4.5 | 5.0 | 5.4 | 5.7 | . 6.0 | 6 | • 2 | 7.9 | 8.5 | | 3.5 | 4.1 |
| 18 | 3.6 _ | 4.5 | 5. . 0 | 5.4 | 5.7 | 6.0 | 6 | . 2 | 8.0 | 8.4 | | 3.5 | 4.1 |
| 19 | 3.7 | 4.5 | 5.1 | . 5.4 | 57 | 6.0 | | . 2 | .8.2 | | 4.4 | 36 | 4 .2 |
| 20 | 3.8 | 4.5 | 5 . I | 5.4 | 5.7 | 6.0 | | . 2 | 8.3 | 8.1 | | 3.6 | 4.3 |
| 21 | 3.9 | 4.5 | 5.1_ | 5.4 | 5.8 | 6.0 | 6 | . 2 | 8.5 | 7.9 | 4.1 | ∴3.6 | . 4.3 |
| 22 | 4.0 | 4.5 | 5.1 | 5.4 | 5.B | 6.0 | | | 8.6 | 7.7 | | 3.7 | 4.3 |
| 2.3 | 4.0 | 4.6 | 5.1 | | 5.8 | 6.0 | | . 3 | 8.7 | 7.6 | | 3.7 | 4.3 |
| 24 | 4.0 | 4.6 | 5. I | 5.5_ | | | | ·3 | . 8 . 8. | .7.4 | | 3.7 | |
| 25 | 4.0 | | . 5.1 | 5.5 | 5.8 | 6.0 | | .3 | 8.8 | 7.2 | | 3.7 | 4.4
4.4 |
| 26 | <u> 4-1 _</u> | 4.6 | 5.1 | 5.5 | . 5.8 | 6 1 | . 6 | • 3 | | 7 1 | 2 7 | | |
| 27 | 4.1 | 4.6 | 5.1 | 5.5 | 5.8 | 6.1 | | -3 | 8.9 | 7.1 | | 3.7 | 4.4 |
| 28 | 4.1 | 4.6 | 5.2 | 5.5 | 5.8 | 6.1 | | | 8.9 | 6.9 | | 3.7 | 4.4 |
| 29 | | 4.6 | | | | | | - 3 | 8.9 | 6.8 | | 3.7 | 4.4 |
| 30 | 4.1 | 4.6 | 5.2 | 5.5 | | 6.1 | - | .3 | 8.9 | 6.6 | | 3.7 | 4.4 |
| 31 | 4.1 | 7.0 | 5.2 | 5.5 | | 6.1 | | - 3 | 8.9
8.9 | 6.5 | 3.5
3.5 | 3.7
3.7 | 4.4 |
| MULTI= | 0 | CONUPT(| 101≈ | 0 | CONOPT(19 | : h = | 3 | 1051 | | | | | |
| | | | | | | | J | İbĿſ | F 14.0= | 0 | KHMAIN= | 2 | |
| MULTI= | 0 | CONDET (| 101= | . a | CONOPT(15 | 5) = | 3 | IBF | L AG= | 10 | KWMAIN= | . 6 | |
| IDFLAG= | . 0 | I END F G | = 0 | ISF | L AG= | 10 | MAIN= | | 3 | | | | |
| | | I END F G | = 1 | | | | | | | | | | |

| *ALAMOSA (| CREEK NEAR M
REEERENCE | NONTE VISTA. | COLO. 10/18/57
DIFF %DIFF | STUDY SNOW62
_%ANNUAL .DIFF |
|----------------------|---------------------------|---------------------------|-------------------------------|--------------------------------|
| - PEAK (CFS) | . 55.8 | 56.0 | 0.20 0.4 | |
| ANNUAL
PEAK(CFS) | | 1391.2 | | 0.0 |
| PEAK (HR) | 71 | 71 | 0 0.0 | |
| RUNGFF(IN) | 0.0328 | 0.0329 | 0.0002 | 0.5 |
| | <u> </u> | · - · == ·· | | · |
| *ALAMOSA C | REFK NEAR M
REFERENCE | ONTE VISTA,C
SIMULATED | COLO. 4/21/58
DIFF . %DIFF | STUDY SNOW62
%ANNUAL DIFF |
| PEAK (CES) | 39.8 | 41.1 | 2.20 5.5 | |
| ANNUAL
PEAK (CFS) | | 1391.2 | · • | 0.2 |
| PEAK (HR) | 47 | 47 | 0 0.0 | |
| RUNOFF(IN) | 0.0393 | 0.0415 | 9,0022 | 5•6
; |
| ≠ALAMOSA C | REEK NEAR MY
RLFERENCE | ONTE VISTA+C
CETALUNIZ | የዜብ• 5/10/5ዘ
DIFC %DIFF | STUPY SHOWE? |
| PEAK(CFS) | 1041.5 | 1389.4 | 348.50 33.5 | |
| ANNUAL
PEAK (CFS) | | 1391-2 | | 25.0 |
| PEAK (HP) | 51 | 53 | 2 3.9 | · |
| RUNOFF(IN) | 0.9162 | 1.1698 | 0.2536 | 27.7 |

| *ALAMOSA | CREEK NEAR MO | NTE VISTA, CO | LO. 8/3/58 | STUDY | 'SNOW62 |
|------------|---------------|---------------|------------|--------------|---------|
| | REFERENCE | SIMULATED | DIFF %DIFF | ZANNUAL DIFF | |
| | | 1 | · | | • |
| PEAK (CFS) | 107.8 | 106.1 | -0.80 0.7 | • | |
| | | | | | |
| ANNUAL | | | | | |
| PEAK (CFS) | • | 1391.2 | | 0.1 | • |
| | • | | | | |
| PEAK (HR) | 71 | 71 | 0.0 | | • |
| | | | | | |
| RUNOFF(IN) | 0.0432 | 0.0404 | 0.0029 | 6.6 | |
| | | · | | | |

| *ALAMOSA | CREEK NEAR MC
REFERENCE | | 016. 9/ | 22/58
%DIFF | STUE
SANNUAL DIE | oy Shomes |
|----------------------|----------------------------|--------|---------|----------------|---------------------|-----------|
| PEAK(CFS) | 52.3 | 51.3 | -0.30 | 0.6. | | |
| ANNUAL
PEAK (CFS) | | 1391.2 | | | 0.0 | |
| PEAK (HR) | 59 | 59 | 0 | 0.0 | • | |
| RUNGEF(IN) | 0.0368 | 0.0346 | 0. | .0022 | 6.1 | |

| œ |
|----|
| |
| خد |
| ᄍ |
| w |

| | | | | | | | | | | | | - | | | |
|--|------------------------|--------------|-----------------|----------------|--------------|-----------|--------------------|-------------------|--------------------|----------------|-------|------------|--------|--------|-------------|
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | • | |
| | | | | | | | | | | | | | | | • |
| | | | | | | | | | | | | | | | |
| | *ALAMU | SA CRE | EK NEAR M | ONTE VISTA | -COLO-1 | 170 SQ. : | MI.) WY S | 8 STUDY | SNOW62
MARY FOR | 1 UATED | vo c | | | • | |
| | | MEAN | MAXIMUM | VARIANCE | STD | SUM | ROOT | CORR | MART FOR | I WATER | 185 . | - | | • | |
| | | (CFS) | (CFS) | | DEV | | SUM | | | | - | | 1870 A | | |
| | | | | | | ∩-2 | SQUARE | | | | | | | | |
| BEEEDENGE | | | | · · | | | , | | | - | | <u> </u> | | | |
| REFERENCE I | | 79
79 | 919
 | 25021
28993 | 158
170 | 322 | 50.6. | 0.9896 | | | | | | | |
| Addition approximate | | | | | | | | | | • | | | | | |
| MODEL PARAMETERS | LZC_
6.0 | BMIR
10.0 | | ZCETLE
00 | SIAC ¥1 | INTMR CSE | RXFSRX.
91 0.94 | BERC | OFMN NCTRI | EPAET
31.46 | MNRD. | AREA_ | CHCAP_ | BIVE | IERC
0.6 |
| | | | | | | | | | •••• | 31.40 | ,,,,, | 10740 | 070.0 | 2 4 70 | 0.0 |
| | | | | | | | | • | | | | | | | e: . |
| | *ALAMOS | A CREE | EK NEAR MO | INTE VISTA | .COLO.(1 | 70 SQ. M | (I.) WY 5 | 8 STUDY S | SNOW62 | | | | | | |
| the state of the s | | MEAN | 144 W + 141 144 | • | | | | | MARY EOR | L.WATER | YRS | | | · | .2. |
| • | | MEAN | | | STD
—_DEV | | ROOT
SUM | DRIEST
MONTH** | CORR
⊁ COEFF | | . = | 3.4 | | | |
| | estronom giano magai e | (CE.S) | (CFS). | 4 | | 0-\$ | SQUARE | (CES) | | | | | | | · |
| and a contraction of the contrac | | 2405 | 14092 | 18195728 | 4265 | | | 454 (2 | | | | ter 10 100 | | · · · | |
| REFERENCE W | Y 58 | | | | 4523 | -322 | 1510 | 430 (12 | | \ | | | | | |
| REFERENCE W | | 2432 | 15398 | 20465536 | 7223 | | | | | | | | | | |

| **- THE MONT
NO 1
MONTH OCT N | ~ ~ . | _ | | | | | | | | | | | | |
|--|--|--|---------------------------|-------------------|------------------------|-----------------|------------------|-----------------------|---|-----------------------|---------------|----------------|-------------|----------------------|
| The decide of the second of th | | A STATE OF THE STA | | | 20. | | | | | | | | | |
| | ALAMOSA CRE | EK NEAR | MONTE | | | | | TUDY SNOW
RY FOR 1 | | RS | | | | |
| | PEA
(CFS) (| K R/C
HR) (IN) |) (CF | PEAK
S) (HR) (| R/O
IN) (C | PEAK
ES1_1HR | R/O | PEAK
(CES) (H | R/O
R)_(1N)_ | ıcesi | PEAK - CHR) (| R/O
IN) | PE
(CFS) | AK RZO
LHRI CLNI |
| | | | | | | | | | VIA 11 100 11 11 11 11 11 11 11 11 11 11 11 | | | | | · |
| REFERENCE WY | | 71 0 0 | 328 3 | 9410 | .0393 10 | 4151 | 0.9162 | 1077 | 1. 0.043 | 2 . 52 | 59 _0 | -036B | | |
| | 58 55 | 71 0 0 | 328 3 | 9410 | .0393 10 | 4151 | 0.9162 | 1077 | 1. 0.043 | 2 . 52 | 59 _0 | -036B | | |
| REFERENCE MY
SIMULATED | 7 58 55 55 55 55 55 55 55 55 55 55 55 55 | 71 0.03
71 0.03 | 328 3:
329 4
BUZC E | 9 47 0
1 47 0 | 0.0393 10
0.0415 13 | 41 51
89 53 | 0.9162
1.1698 | 107 7
106 7 | 1 0.043
1 0.040
NETRI | 2 52
4 51
EPAET | 59 0
59 0 | .0368
.0346 | CHCAP | BIVE IFR |
| REFERENCE MY
SIMULATED | 7 58 55 55 55 55 55 55 55 55 55 55 55 55 | 71 0.03
71 0.03 | 328 3:
329 4
BUZC E | 9 47 0
1 47 0 | 0.0393 10
0.0415 13 | 41 51
89 53 | 0.9162
1.1698 | 107 7
106 7 | 1 0.043
1 0.040
NETRI | 2 52
4 51
EPAET | 59 0
59 0 | .0368
.0346 | CHCAP | BIVE IFR
2.90 or. |

APPENDIX C

SAMPLE SIMULATION RUN OUTPUT, REGIONAL WATERSHED MODEL

The choice of regional watershed was influenced principally by the fact that it has been modeled and calibrated for river forecasting purposes by the National Weather Service Lower Mississippi River Forecast Center, Slidell, Louisiana, using a model of the same basic type as that used by IBM in this study. It is designated "Pearl River at Pearl River, Louisiana," and is located in the Gulf Plain Physiographic Region, lying mostly in south central Mississippi and a small part of Louisiana.

The regional watershed (Figure C-1) has a total area of 22,248 square kilometers (8,590 square miles) and is composed of 12 watersheds, each with its own stream gage. The water year 1968 was the one for which most accurate overall simulation was achieved. A total of 12 hourly and 25 daily precipitation stations were used to calculate mean basin precipitation for each subwatershed. Table C-1 lists some of the characteristics of interest pertaining to the subwatersheds and their associated precipitation and streamflow data. Approximately half the population of the basin in concentrated in and around the city of Jackson, Mississippi. The topography varies from nearly flat land near the Gulf Coast to gentle hills near the northern end.

The observed daily discharge data for the regional watershed and subwatershed 12, used in the original model for calibration, are shown in Table C-2. Similar tables were used for the other subwatersheds.

Page C-5 and subsequent pages of this appendix contain a reproduction of portions of a printout from one simulation run in which the parameter BMIR was perturbed by -50% for each subwatershed. In order to exercise some restraint on the bulk of this report, only portions of the printout related to subwatershed 12 are included, plus some statistical and storm analysis summaries for all subwatersheds. Original printouts include the same data for all 12 subwatersheds. Print plots have been omitted in favor of SC4020 plots. The symbols "R" and "S" in the plots signify reference and simulated, respectively.

Figure C-1. Pearl River Regional Watershed

Table C-1. Pearl River Subwatershed Characteristics Summary

| SWS | SUBWATERSHED | STREAM | | | AGE
IARGE | LOW
DISCH | ARGE | PEAK
DISCH | ARGE | ANNU | JAL
FALL |
|-----|---------------------------------------|---------------|-------|------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
| NO. | NAME | GAGE
EL, m | AREA, | LONG | REF.
YEAR | LONG
TERM | REF.
YEAR | LONG
TERM | REF.
YEAR | LONG
TERM | REF.
YEAR |
| 1 | PEARL RIVER AT EDINBURG, MS | 104 | 2326 | 29.4 | 36.7 | .048 | .76 | 889 | 306 | 137 | 151 |
| 2 | PEARL RIVER AT CARTHAGE, MS | 96 | 1163 | 37.1 | 55.5 | .88 | 1.22 | 515 | 442 | 132 | 145 |
| 3 | YOCKANOOKANY RIVER NEAR KOSCIUSKO, MS | 114 | 813 | 10.8 | 17.1 | .07 | .34 | 546 | 246 | 132 | 166 |
| 4 | YOCKANOOKANY RIVER NEAR OFAHOMA, MS | 95 | 440 | 17.4 | 24.5 | .14 | 1.13 | 586 | 286 | 135 | 160 |
| 5 | TOSCOLAMETA CREEK AT WALNUT GROVE, MS | 101 | 1064 | 13.2 | 19.1 | .07 | .11 | 979 | 166 | 142 | 125 |
| 6 | PEARL RIVER AT JACKSON, MS | 72 | 2222 | 106 | 125 | 1.27 | 3.08 | 2406 | 848 | 130 | 112 |
| 7 . | STRONG RIVER AT DIO, MS | 79 | 1111 | 15.3 | 16.3 | .34 | .48 | 702 | 133 | 132 | 129 |
| 8 | PEARL RIVER NEAR MONTICELLO, MS | 448 | 3913 | 170 | 186 | 7.61 | 7.8 | 1797 | 969 | 1421 | 123 |
| 9 | PEARL RIVER NEAR COLUMBIA, MS | * | 1684 | * | 204 | * | 2.07 | * | 1006 | 147 | 122 |
| 10 | PEARL RIVER NEAR BOGALUSA, LA | 16.8 | 2435 | 246 | 227 | 28.9 | 14.6 | 2496 | 1030 | 150 | 104 |
| 11 | BOGUE CHITTO RIVER AT FRANKLINTON, LA | * | 2551 | * | 26.3 | * | .35 | * | 270 | 157 | 91 |
| 12 | PEARL RIVER AT PEARL RIVER, LA | 0.1 | 2525 | 280 | 275 | 44.7 | 1.05 | 3246 | 1095 | 163 | 106 |

NOTES: Discharges are in cubic meters per second.

Rainfall is in centimeters.

Long term annual rainfall is an approximation from weather data. Reference year is water year 1968, reference simulation run.

*Data not obtained.

Table C-2. Pearl River Watershed Observed Discharge Data, WY 1968

PEARL RIVER BASTN

SWS No. 12

2-4926. Pearl River at Pearl River, In-

<u>Igention</u>.--Ist 30°23'08", long 80°44'12", in NF₄ sec.1, T.B S., R.H. E., St. Helena meridian, on right bank feader at demartreum side of West Pearl Biver bridge on B.S. Highway 11, 900 ft upstream from Southern Bailway System bridge. 0.5 wife apatreum from old channel, and 0.8 mile northeast of term of Pearl River.

Draining area. -- 8,500 aq mi (including East Pearl River).

Records, available, -- Discharge: October 1963 to September 1968. Paily discharge October 1961 to September 1963 in files of Corps of Engineers, Mobile district.

Gage heights: Since June 6, PANS, in reports of U.S. Wealher Burenu. Oct. 1, 1899, to May 31, 1905, (callected by Couthern

Railway System) on file at the U.S. Weather Burens, Meridian, Miss.

rg.--West Pearl: Water-stage recorder. Datum of gage is 0.36 ft above mean sea level. Supplementary water-stage recorder since June 18, 19%, 500 ft downstream at same datum. Auxiliary water-stage recorder 7.4 miles opetroum. Datum of auxiliary gage is mean sea level.

East fearl: Water-stage recorder used for gage heights below 13.5 ft. Datum of gage is mean sen level. Supplementary staff gage 3.8 miles quetreum at some datum. Auxiliary water-stage recorder 6.5 miles downstream. Butum of muxiliary gage is 0.12 ft.

All levels by Curps of Engineers, datum of 1929.

Average discharge -- 5 years, 9,907 efs.

Extremes. --Maximum discharge during year, 31,600 ofs Jan. 5 (gage height, 14.43 ft); minimum daily, 2,150 ofs Oct. 18, 19. 1963-68; Maximum discharge, 114,700 ofs (gage height, 17.61 ft) Feb. 18, 1766; minimum daily, 1,580 ofs Oct. 24, 600, 10, 1963. Maximum stage reported by U.S. Weather Bureau, 18.6 ft Mar. 16, 1921, maximum stage reported by the Southern Railway System at railroad gage, 19.7 ft Apr. 19, 1900. Flood of 1874 reached a stage of 20.2 ft (furnished by Corps of Engineers).

Remarks. -- Records good. Records of daily dischange are the combined flow of the entire flood plain of the West and Fost Pearl Rivers.
Flow is affected by tide below about 4.000 cfs.

Coperation -- Gage-height record, 9 discharge measurements, and computation of dally discharge furnished by Corps of Engineers; records eviewed by Geological Survey.

| | | | DISCHARG | E, IN CFS | , WATER | YEAR OCTOB | ER 1967 | ro septei | MBER 1968 | | | |
|------------------|--------|----------------------|----------|------------------|---------|------------------------|----------------|-----------|-----------------------|----------------|----------|---------|
| DAY | ост | NOV | DEC | JAN | PEF | RAM F | APR | МАЧ | Jijn | JUL | AUG | SEP |
| 1 | 2,460 | 3.180 | 2,550 | 26,000 | 16,100 | | 18,2(X) | 9,570 | | 2,730 | 3,650 | 2,500 |
| 5 | 2,470 | 3.310 | 2,650 | 27,000 | 14,900 | | 17,6(x) | 10,600 | | 2,750 | 3.280 | 2,440 |
| 3 | 2,490 | 3,350 | 2, 510 | 29, 100 | 14,500 | | 17,300 | 11,000 | | 2,810 | 3,.200 | 2 , 420 |
| 4 | 2,490 | 3,220 | 2,650 | 29,200 | 14,600 | | 17,300 | 11,800 | | 2.880 | 3,210 | 2,420 |
| 5 | 2,430 | 3,270 | 2,860 | 31,100 | 14. h(X | 9,170 | 18,200 | 12,300 | 6, 160 | 2,460 | 3.110 | 2.470 |
| 6 | 2,370 | 3,270 | 3,080 | 31,200 | 14,300 | | 18,500 | 12,4(Y | | 2,870 | 3,020 | 2,520 |
| 7 | 2,390 | 3.090 | 3,350 | 29,700 | 12,900 | | 19,400 | 12,400 | 5,400 | 3,010 | 2,790 | 2,710 |
| 8 | 2,440 | 2,800 | 3,930 | 27;200 | 11,100 | 9,370 | 20,000 | 12,600 | 5,140 | 3,40/1 | 2,670 | 2,750 |
| 9 | 5,310 | 2,560 | 4.170 | 25.000 | 9,450 | 3 9,190 | 20, 100 | 12, 6(X) | 4,800 | 3,480 | 2,580 | 2,670 |
| 10 | 2,280 | 2,490 | 5,420 | 25,300 | 8,520 | 9, 140 | 19, 900 | 18,200 | 4,610 | 3.280 | 2,500 | 12,730 |
| 11 | 2,250 | 2,440 | 7,030 | 23,800 | 8,030 | 9,170 | 20,000 | 11,500 | 4,390 | 3.040 | 2,440 | 2,590 |
| 12 | 2,210 | 2,420 | 8,700 | 23,300 | 7,870 | 9,700 | 19,800 | 10,500 | | 2,910 | 2,430 | 2,470 |
| 13 | 2,220 | 2,310 | 10,600 | 23,300 | 7,640 | 10,600 | 20, 200 | .9,550 | | 2,700 | 2,870 | 2, 190 |
| 14 | 2,200 | 2,280 | 31,4KO | 24,100 | 7,290 | 10,100 | 21,300 | 10,100 | | 2,750 | 3,760 | 2,320 |
| 15 | 2,230 | 2,280 | 11,200 | 24, BOO | 6,860 | | 22,100 | 11,800 | | 2,670 | 4,770 | 2,370 |
| 16 | 2,370 | 2,340 | 9,960 | 25,200 | 6,470 | 8,920 | 22,500 | 13,700 | 3,680 | 2,650 | 4,790 | 2,470 |
| 17 | 2,310 | 2,710 | 9,290 | 25, (XY) | 6,220 | | 23,100 | 15,2(X) | | 2,620 | 4.320 | 2,580 |
| 18 | 2,150 | 2,270 | 11,000 | 26,600 | 6, 160 | | 22,800 | 16,100 | | 2,740 | 4,290 | 3.060 |
| 19 | 2,150 | 2,280 | 16,200 | 26, B(X) | 6,360 | | 22,300 | 16, 900 | | 2.800 | 4,130 | J,(80 |
| 20 | 2,250 | 2,300 | 22,000 | 26, 900 | 6, 950 | | 21,500 | 17.3(x) | | 2.940 | 4,010 | 4,2(X) |
| | | | | | , ,,, | | | 17,7(%) | 3,070 | 21 7411 | 4+010 | 4,2(1) |
| 21 | 2,320 | 2,280 | 26,900 | 26,500 | 7,480 | | 20,5(x) | 17,400 | 3,050 | 3,080 | 3,970 | 4, 180 |
| 22 | 2,400 | 2,250 | 26,400 | 26,500 | 7,540 | 12,600 | 18,800 | 16,600 | 3, 150 | 3,160 | 3,860 | 3,890 |
| 23 | 2,470 | 2,250 | 24,200 | 26,500 | 7,190 | 13,700 | 17,500 | 15,600 | 3,590 | 3,450 | 3,710 | 3.510 |
| 24 | 2,490 | 2,260 | 23,500 | 26,400 | 0,8c/C | 15,200 | 15,300 | 14,800 | 4,000 | 3,760 | 3,530 | 3,170 |
| 75 | 2.430 | 2,250 | 23,700 | 26,500 | 6,570 | 17,500 | 13*100 | 15,500 | | 4,850 | 3,590 | 2,920 |
| 26 | 2,310 | 5,210 | 24, 1(x) | 26,400 | 6,550 | סמב ופו | 11,400 | 15,000 | 4,210 | 4,100 | 3,610 | 2,780 |
| 27 | 2,310 | 2,2(0 | 23 (800) | 25,800 | 6,570 | 20,100 | 10,800 | 13,500 | | 3,750 | 3,540 | 5,790 |
| 28 | 2,280 | 2,410 | 24,600 | 24,600 | 6,660 | | 10, 100 | 11,500 | | 3,220 | 3,330 | 2,600 |
| 29 | 2.370 | 2,580 | 24,900 | 22,8(X) | 6,760 | | 8,910 | 10,400 | | 3,040 | 3,330 | 2.740 |
| 30 | 2,020 | 2,620 | 25,600 | 20, 800 | | | 8,440 | 9,300 | | 1.010 | 3,100 | 2,310 |
| 31 | 3,360 | | 26,000 | 14, 700 | | | | 8,760 | | 3,370 | 2,820 | |
| TOTAL. | 74.130 | 77,140 | 424,800 | 803 , 000 | 263,000 | 380,050 | 536,950 | 398, taba | 140,060 | 96,890 | 106, 400 | 01. 300 |
| MF.AN | 2,391 | 2,571 | 13,703 | 25.900 | 9,069 | | 17,898 | 12.860 | | | | 85,370 |
| MAX | 3,360 | 3,350 | 26,900 | 31,200 | 16, 100 | | 23,100 | 17,400 | | 3,125 | 3,432 | 2,446 |
| MIN | 8, 150 | 2,210 | 2,510 | 18,700 | 6.160 | | 8,440 | 8,760 | 9,300 | 4,850 | 4,790 | 4,200 |
| CF(M | -278 | -299 | 1.60 | 3.02 | 1.06 | | 8,44U
2-08 | | | 2,620 | 2,430 | 2,320 |
| IN. | 32 | .33 | 1.84 | 3.48 | | | | 1.50 | . 544 | - 3(14 | 400 | .331 |
| ••• | - 24. | 1,7,7 | 1.114 | 3-40 | 1.14 | 1.64 | 2,32 | 1.72 | -61 | .42 | -46 | . 37 |
| CAL YR
WAT YR | | 2,454,35
3,386,45 | | 6,724
- 9,253 | | O,800 MIN
1,200 MIN | 2,150
2,150 | | 0.783 ให.
1.08 ไม. | 10.62
14.65 | | |

```
*PEARL RIVER NR PEARL CITY. LA. SWS 12 (8590 SQ MI) WY 68
                     *CONTROL OPTIONS (BALANCE OF DATA VARIES WITH SPECIFIED OPTIONS)
       \pm (1) (2) (3) (4) (5) (6) (7) (8) (9)(10)(11)(12) (13)(14)(15)(16)
       -- <del>0</del>-- -1 2 1 1 1 0
                                                                       0 1 -0 -0 -1 0 1 3 1
       * TIME - AREA HISTOGRAM DEFINITION
  - ** NBTRI- BTRI(1) (2) (3) (4) - (5)
                                                                              (6) (7) (8)
                                                                                                               (9( (10)
      .0060 .0060 .0060 .0060 .0060 .0060
.0105 .0105 .0105 .0105 .0105 .0105
.0171 .0171 .0171 .0171 .0171
.0362 .0342 .0342 .0342 .0342 .0342
.0352 .0352 .0352 .0352 .0352 .0352 .0352 .0299 .0299 .0299 .0299 .0299 .0299 .0124 .0124 .0124 .0124 .0124 .0092 .0092 .0092 .0092 .0092 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 .0097 
 - -99000. * QUIPUT PAPAMETER - RMPF. IF ANY DAILY FLOW EXCEEDS EMPF
     * WATERSHED PARAMETERS - RGPMB - AREA - AREARW - FIMP - FWTR
1.0 975.0 8590.0 0.069 0.080
       * SOIL MOISTURE PARAMETERS
  - * VINTMR-BUZC- SUZC - LZC - ETLF - SUBWF - GWETF- SIAC - EMIR - BIVF
                                            7.00 0.20 0.0 0.0 0.60 6.0 0.60
        0.15 0.60 .40
- - * OVERLAND FLOW PARAMETERS - OFSS - DESL - OFMN - DEMNIS - IFRC
                                                          .017 6914.0 0.066 0.015 0.415
   *CHANNEL ROUTING AND GROUND WATER PARAMETERS
       * CSRX - FSRX - CHCAP - EXQPV - BENLR - BERC
         0.96 0.96 35000. 0.25 0.80 0.96
      #MOISTUPE STOPAGE VALUES - GWS - UZS - LZS - BFNX - IFS - 0.07 - 0.30 3.00 0.50 0.0
                     * STORM ANALYSIS CONFIGURATION WY 68
     0 . . .
     0.0
0.0
    ₹.
                    *(JULDI) NUMBER OF JULIAN DATES REQUESTED FOR RUNDER PLOTS OF
                  * * HOURLY OBSERVED AND SIMULATED STREAM FLOWS ..
   301 169
                   21 169 130 169 224 169
                    * LAST TWO DIGITS IN THE CALENDER YEARS OF THE WATER YEAR TO BE RUN.
     67 68
                    * YEAR1 - YEAR2
                    * EVAPORATION DATA - PEARL RIVER SWS NO. 5 WY 68
                    * IF CONOPT(1)=2 ANNUAL EVAPORATION TOTAL IS PEAD
                                                                                                                                                  27
 · 38∎0
                     * EPAST, ESTIMATED POTENTIAL ANNUAL EVAPOTRANSPIRATION
                    * IF CONOPT(1)=2 MEAN ANNUAL NUMBER OF RAINY DAYS IS READ
       107.0 * MNPD. MEAN ANNUAL NUMBER OF RAINY DAYS
                 * STREAMFLOW DATA " PEARL RIVER SWS NO. 12 WY 68
                                                                                                                  (REF.)
                  * MEAN DAILY OBSERVED STREAMFLOW IN CFS (REF.)
                                                                                                                                              29
                                           364. 979. 985. 976. 1068. 1457. 1130. 998. 1035. 1105. 2136. 2048. 1220. 1388. 970. 972. 964. 915. 992. 1647. 3245.
         37.
                    36.
                                94.
                                                                                                                                           *OCT
       1019.
                     996
                                 995
                                                                                                                                           *OCT
       1910-
                 1520.
                              990.
                                                                                                                                           *OCT
       6643.
                                                                                                                                           *DCT
4393. 3057. 2922. 3336. 2374. 1969. 1841. 1516. 1503. 1357. 1285. 1379. 1793. 1800. 1785. 1692. 1603. 1344. 1083. 947.
                                                                                                                                           *NOV
                                                                                                                                          +NOV
       885.
                   847. 813.
                                           780.
                                                        748.
                                                                    723.
                                                                                 709. 676.
                                                                                                           634 •
                                                                                                                         607.
                                                                                                                                          *NOV
     7597. 6099. 4423. 6245. 7935. 6312. 6108. 8874. 16732. 18578.
*DE€
                                                                                                                                          *DEC
----15887. 17222. 23982. 25164. 26134. 25971. 25736. 26166. 27599. 29243.
                                                                                                                                          #DEC
     31246.
                                                                                                                                          *DEC
-----2<del>9621.</del> 31299. 31526. 30951. 32766. 32630. 25741. 21668. 21925. 25186.
                                                                                                                                          *JAN
   26443. 24291. 22450. 23100. 25863. 26832. 25435. 25557. 26178. 25540.
                                                                                                                                          #JAN
28017. 28964. 30538. 34331. 38699. 36626. 30374. 22949. 18978. 17110. -
                                                                                                                                         -FJAN-
                                                                                                                                          MAL*
   -17148. 17525. 17256. 17284. 18109. 20292. 22140. 20738. 17540. 15217.
                                                                                                                                          *FE8 --
   14564. 14201. 13361. 12501. 11612. 11748. 11167. 10944. 11434. 10308.
                                                                                                                                         *FEA
  ----9876. 9836. 1<del>0535.</del> 10328. 9549. 9765. 10413. 11293. 12450.
                                                                                                                                          *FE8
```

SW512

```
12910. 11401. 11655. 12802. 13014. 11645. 12001. 11911. 11995. 11729.
                                                                          *MAR
---12130: 13394: 12426: 13107: 13648: 12055: 9899: 8632: E360: 9031:
                                                                          *MAR
  10342. 12671. 22024. 17523. 16719. 22017. 25212. 21925. 18134. 17713.
                                                                          *MAR
                                                                          *MAR
  14622. 14418. 15108. 14860. 17483. 22746. 27523. 28797. 24503. 19934.
 14598. 13233. 17617. 23786. 24025. 20675. 21250. 28062. 30492. 27589.
                                                                          *400
                                                                          * APR
  22780. 21192. 21542. 21105. 18897. 16064. 14087. 13297. 14116. 15110.
                                                                          * APR
  13812. 13049. 13505. 16140. 12988. 12124. 13302. 15246. 16044. 15030.
                                                                          *MAY
  15599. 17649. 18794. 15954. 14154. 13594. 12385. 11478. 11174. 12205.
                                                                          *MAY
  16667. 15650. 16080. 14909. 15199. 14399. 13717. 14290. 13779. 11482.
                                                                          *MAY
  10568.
                                                                          *MAY
  10625. 10363.
                 •E809
                       8302.
                              7762.
                                     7355. 7369. 8209.
                                                         9235.
                                                                9672.
                                                                          *JUN
   2550.
          7866.
                 74 73.
                       6612.
                              6046.
                                     5696.
                                           5308.
                                                  4967.
                                                         4739 4578
                                                                          * .11 IN
   4413.
          4781.
                 4920.
                       4446.
                              4444.
                                     4695.
                                           45 06.
                                                  4319.
                                                         3940 .
                                                                3574.
                                                                          *JUN
   3379.
          3554.
                 3729.
                       3765.
                              3658.
                                     3993.
                                           3900.
                                                  3341.
                                                         3128.
                                                                2799.
                                                                          *JUL
  2731.
                2566.
          2787.
                       2195.
                              2262.
                                     2284.
                                           2063. 1831.
                                                         1956.
                                                                1987.
                                                                          *JUL
   1969.
          2454.
                 4207.
                       4181.
                              2703.
                                    2276. 2692.
                                                  2738. 2139. 2142.
                                                                          *JUL
   1913.
                                                                          *JUL
   1647.
          2394.
                2583. 2225.
                              2797. 2807.
                                           2480.
                                                  1720.
                                                         1255.
                                                                1404-
                                                                          *AUG
   1545.
          1383.
                1731. 1994.
                              2486. 2899. 2900. 2824.
                                                         1555.
                                                                1430.
                                                                          # AU G
   1418.
          1222.
                1207.
                              1571. 1643. 1765.
                       1300-
                                                  1826.
                                                         1865.
                                                               2056
                                                                          *AUG
   1585.
                                                                          *AUG
   1074.
          935.
               1113.
                      1 254.
                              1054. 1255. 1742.
                                                  2142.
                                                         1746.
                                                                1220.
                                                                          *SEP
   1364.
         1138.
                981.
                        709.
                               644.
                                   1254. 2862.
                                                  4757. 3785.
                                                                2534.
                                                                          *SEP
   2382. 2381.
                1633.
                        963.
                               848.
                                     755.
                                            667. 777. 1189. 1204.
                                                                         *SEP
        * RATHFALL DATA -
                             PEARL RIVER SWS NO. 12 WY 68
        * NS GRD
        * HOURLY RAINFALL TOTALS FROM BASE RECORDING GAGE
        * NO CARDS REQUIRED FOR PERIODS WITH NO GAINFALL
        * WRG. NUMBER OF WEATHER SUREAU PRECIPITATION CAGE
        * YEAR . LAST TWO DIGITS OF THE CURRENT YEAR
        * MONTH, CURRENT MONTH OF THE YEAR
        * DATE: CURRENT DAY UF THE MONTH (1 - 31)
        * CN = 1 FOR A.M.; CN = 2 FOR P.M.
*WBG YR MC DY CN HOURLY RAINFALL TOTALS IN CHRONOLOGICAL ORDER
0012 67 10 8 1 0.00 0.00 0.00 0.28 0.01 0.01 0.00 0.01 0.00 0.00 0.00
 0012 67 10 16 2 0.19 0.07 0.01 0.02 0.01 0.01 0.01 0.03 0.16 0.09 0.02 0.01
0012 67 10 30 1 0.00 0.00 0.00 0.02 0.38 0.05 0.15 0.24 0.25 0.18 0.07 0.02
```

(REMAINING HOURLY RAINFALL DATA INTENTIONALLY OMITTED)

```
* STORM DATA - PEARL RIVER SUB WS NO. 12
                                                   WY 68
#PEARL RIVER NP PEARL CITY, LA. SWS ND.12 (8590 SQ. MI) 10/28/67
1.0 8590. 159 -1 1
1. 981.0 981.2
c57.7 966.5 961.8 959.5 922.7 920.7 896.9 897.0 874.4 833.8 844.8 862.1 894.0
920.8 961.6 991.8 1053.0 1102.8 1158.6 1210.0 1269.2 1355.5 1409.7 1466.7 1511.3
1569.2 1624.8 1683.3 1700.5 1743.0 1755.8 1786.9 1415.5 1393.8 1411.8 1428.2
1^500.5 1065.6 1080.6 1500.5 1590.5 1668.1 1773.4 1860.0 2348.5 2480.9 2559.6
2615.8 2644.0 2677.2 2708.0 2760.6 2799.3 2889.3 2819.3 2945.6 2685.4 2784.8
2916.1 3038.A 3166.5 3283.6 3403.6 3531.1 3681.5 3805.1 4119.8 4256.3 4786.2
5014.3 5186.2 5367.6 5552.8 5790.2 6035.9 6282.5 6465.6 6687.7 6577.2 6762.4
6505.4 6650.9 6911.8 6955.4 7084.0 7169.0 7231.6 7212.7 7188.6 7096.4 7298.8
7113.1 7278.2 7088.0 6859.8 6615.1 6363.5 6130.1 5904.0 5694.3 5478.0 5313.1
18/5.6 1722.8 1229.0 4049.0 3908.7 3765.4 3620.6 3453.7 3280.8 3101.2 2979.7
2545.2 3057.9 2972.0 3146.6 3094.9 3033.9 2972.9 2915.0 2903.4 2904.6 2919.1
2905.5 2926.7 2643.3 2734.2 2731.7 2794.5 2868.4 2941.0 3020.2 3081.3 3138.4
3177.9 3234.9 3253.2 3573.9 3530.1 3580.2 3578.6 3538.4 3488.8 3420.5 3326.0
3222.4 3152.1 3082.2 3057.0 2726.5 2709.4 2612.2 2563.0 2561.2 2585.8 2619.2
2633.2 2667.7 2650.0 2698.7 2692.3 3000.8 2985.2 3050.1 3098.3
```

```
*PEARL RIVER NR PEARL CITY, LA. SWS NO.12 (8590 SQ. MI) 01/21/68
 1.0 8590. -169 -1 1 ....
 1.0
 · 27254.5 27371.8 27451.3 27559.4 27640.9 27724.0 27755.9 27847.6 27826.6 27872.7
 27840.2 27873.9 27920.6 27974.3 28034.3 28115.8 28183.9 28287.0 28398.4 28445.8
 28631-3 28675-6-28814-0 28896-6 28922-8 28957-8-28950-0 28961-8 28983-7 28983-8
 28980.4 29002.7 28903.7 28917.2 23798.3 28792.9 28799.1 28806.0 28826.4 28859.1
29675.2 29736.8 29796.2 29863.1 29939.4 30041.3 30042.8 30155.6 30131.6 30222.9
-- 30330+7 30+53+3-30565+6 30738+7-30912+4 31061+7-31232+9 31381+6 31629+5 31751+0-
 31978.8 32119.9 32254.0 32359.0 32474.9 32602.9 32739.1 32904.5 33075.7 33279.1
 33397*9 33623*3 33695*3 33943*7 3+205*5 34442*6 34796*2 34922*0 35177*4 35467*9
 25744.5 35994.9 36346.2 36581.2 36898.3 37120.1 37352.7 37575.1 37760.2 37887.6
· 37987+7 38077+6- 38166+0-38287+9 39332+4 38495+4-38557+9 38710+0 38855+5 38994+9
 39111.0 39222.8 39319.1 39378.3 39399.7 39386.4 39492.1 39470.7 39521.1 39436.4
 39269.7 39090.7 38913.3 3 38746.8 36562.8 38390.4 38147.7 37689.3 37504.9 37221.8
 36851.1 36585.6 36343.0 36107.7 35874.1 35653.1 35438.7 35216.9 34984.6 34746.8
 34653.7 34438.5 34299.1 34074.2 33632.1 33592.8 33353.6 33117.2 32879.8 32632.1
 32353.6 32074.0 31676.2 31380.2 30976.5 30645.8 30308.1 29961.6 29611.2 29260.1
-<del>28905+5-28540+3-28169+0-27778+7-27501+3-27118+6-26837+3-26479+8</del>
 *PEARL RIVER NR PEARL CITY. LA. SWS NO.12 (8590 SO. MI) 05/09/68
 1-0 - 0590. 169 -1 -1 --
 1. 16757.0 16815.5 16898.8 16940.6 16943.8 16938.0
 16887*6 16923*3 16469*7 16457*4 15972*3 15901*9 15872*2 15810*1 15685*8 15520*1
 15365.0 15214.8 15118.4 14999.3 15313.0 15195.4 15853.0 15515.3 15486.8 15478.0
 15.459.6-15461.0-15550.7-15564.6-15662.9-15674.1-15265.8-15258.7-14715.3-14593.2
 14532.0 14478.2 14440.1 14385.4 14335.4 14303.7 14338.4 14442.3 14960.5 15018.7
 15557.9 15649.5 15680.7 15716.2 15761.6 15854.1 15954.6 16061.3 16001.4 15992.9
 15499.3 15424.8 14919.3 14874.1 14963.6 15007.5 15141.3 15204.0 15281.8 15324.9
 15406±0-15457±7 15896±5 15930±5 16466±3 16551±9-16622±7 16730±9 16828±7 17024±1
 17239.7 17542.4 17550.3 17717.5 17417.4 17457.0 17077.1 17060.8 17204.2 17304.9
17859.8 17733.4-17887.6 18011.3 18132.2 18168.9 18567.2 18573.3 19088.3 19178.3
 19255.1 19349.8 19403.3 19463.8 19502.9 19543.9 19534.1 19567.1 19204.6 19203.5
 18668.5 18607.3 18538.3 18459.6 18402.5 18325.8 18245.5 18157.9 18106.6 17997.5
 18265.0 18167.0 18570.3 18504.4 18378.8 18241.1 18050.4 17867.5 17680.1 17488.2
 17247.7 17063.6 15513.7 16312.1 15591.2 15341.8 15142.6 15022.4 14962.7 14796.4
 14643.1 14498.5 14409.5 14281.8 14578.5 14569.7 15090.2 15134.6 15116.3 15090.3
15017.6 14973.5 14894.9 14819.4 14690.6 14611.1-14227.7 14171.7 13584.5 13560.1
 13579.7 13542.1 13562.6 13572.5 13533.2 13489.4 13526.3 13510.7 13878.7 13879.3
 1440743 1445540
 *PEARL RIVER NR PEARL CITY. LA. SWS NO.12 (8590 SQ. MI) 08/11/68
 1.0 - 8590. - 169 - 1 1
 1. 1656.2
1666a1-1627a7-7-1613a4-1598a2-1607a2-1536a7-1549a0-1521a0-1627a8-1426a3-1364a1-
 1391.7 1425.7 1487.5 1512.3 1536.9 1515.2 1565.1 1535.6 1548.3 1529.8 1617.2
 1730.9 1744.5 1752.0 1724.8 1726.0 1671.1 1605.8 1462.8 1413.1 1319.8 1283.6
 1170.7 1059.6 1048.9 1039.2 1063.7 1057.8 1095.9 1145.7 1276.7 1321.4 1419.6
 1480 # 6 1601 # 3 1709 # 2 1715 * 8 1727 * 1 1707 * 9 1737 * 6 -1-774 * 2 1816 * 0 1765 * 8 1799 * 8
 1394.5 1413.8 1327.2 1227.8 1231.4 1249.2 1316.4 1408.3 1523.9 1623.1
1796 = 0 - 1673 = 4 - 2380 = 3 - 2440 = 3 - 2578 = 2 - 272 = 0 - 2764 = 6 - 2798 = 5 - 2790 = 1 - 2793 = 2 - 2779 = 2 - - -
 2768.8 2684.9 2682.5 1628.1 1547.9 1393.5 1240.6 1199.2 1182.5 1220.2 1237.5
 1256.8 1264.0 1351.7 1360.4 2396.1 2402.3 2500.7 2616.5 2620.1 2623.3 2610.9
 2612.5 2596.6 2581.6 2468.1 2480.1 1536.4 1650.8 1689.8 1696.5 1793.4 1893.7
2030-9 2138-9 2250-6 2344-2 2503-7 2551-5 3609-0-3660-0 3782-5 3934-6 3985-7--- 3983-9 3876-4 3799-7 3716-4 3646-3 3507-2 3456-7 2369-7 2309-7 2182-9 2053-9
-2043+4-2064+7 2114+3-2125+2-2137+7 2145+8-2243+1-2253+9-3300+4-3328+0-3418+4
3507.1 3469.6 3407.3 3301.6 3205.7 3110.7 3039.5 2899.9 2865.6 2037.5 2071.2 2038.2 1974.6 2011.3 2043.3 2152.8 2346.2 2557.6 2742.7 2975.7 3089.6 3994.2
4013.6 4078.8 4166.3
```

YEARLY STATISTICAL SUMMARY

| | AOM. | ITHLY | - | DAILY |
|--------------------------------|-----------|-----------|---------------|-----------|
| | REFERENCE | SIMULATED |
REFERENCE | STMULATED |
| MEAN | 296673.00 | 301957.81 | 9725.67 | 9899.84 |
| MAXIMUM | 839285.00 | 878819.19 | 38699.00 | 44996.41 |
| VAPIANCE | 0.676E 11 | 0.752E 11 | 0.839E 08 | 0.102E 09 |
| STANDARD DEVIATION | 259945.13 | 274212.31 |
9160.47 | 10113.09 |
| SUM OF (REFERENCE - SIMULATED) | -639 | 02.44 |
-63 | 907.77 |
| ROOT SUM SQUARE | 1.166 | 37.75 |
33 | 742.83. |
| SUM SQUARED | | 0.13 | | 499 |
| SUM SQUARED (IBM METHOD) | | 0.13 |
 | 4.92 |
| CORRELATION COEFFICIENT | 0 | 9930 | | 0.9882 |

SUMMARY OF MONTHLY AND ANNUAL TOTALS

| | 1 20 | MUA | DEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | ANNUAL |
|---|--|--|--|--|--|--|--|--|---|--|--|--|--|
| PRECIPITATION EVP/TRAN-NET —POTENTIAL SURFACE RUNOFF INTEPFLOW BASE FLOW STREAM EVAP. TOTAL RUNOFF(SIM) TOTAL RUNOFF(REF) | 3.170
2.166
3.333
0.186
0.0
0.058
0.066
0.177 | 0.840
1.571
1.761
0.163
0.0
0.111
0.073
0.200 | 8.750
0.958
0.996
1.072
0.326
0.703
0.067
2.035 | 2.490
0.807
0.812
2.025
0.264
1.581
0.065
3.805 | 2.530
0.840
0.848
0.886
0.100
0.635
0.068
1.553 | 3.270
1.173
1.173
0.714
0.355
0.953
0.094
1.929 | 3.020
2.485
2.749
2.097
0.191
0.592
0.204
2.677 | 1.080
3.663
5.231
1.631
0.024
0.367
0.214
1.809 | 3.700
4.758
6.711
0.778
0.000
0.133
0.173 | 5.430
5.721
7.455
0.479
0.0
0.080
0.226
0.333 | 4-190
5-157
7-709
0-373
0-C
0-080
0-213
0-240 | 3.420
3.575
5.647
0.233
0.0
0.064
0.105
0.191 | 41.890 IN
32.824 IN
44.427 IN
10.636 IN
1.261 IN
5.358 IN
1.569 IN |
| TOTAL ROBOTT TREET | 0.177 | 0.201 | 1.626 | 3.634 | 1.728 | 1.878 | 2.600 | . 1.891 | 0.840 | 0.378. | 0.258 | 0.201 | 15.411 IN |

REFFRENCE TOTALS 40834. 40401. 375682. 839285. 399134. 433852. 600511. 436746. 193948. 87222. 59618. 46363. 3559596. CFS SIMULATED TOTALS 40842. 46310. 470369. 878819. 358757. 445561. 618424. 417737. 170391. 76909. 55473. 44207. 3623494. CFS

BALANCE

3.6266 INCHES

MONTHLY FLOW CORRELATION COEFFICIENT MEAN DAILY FLOW CORRELATION COEFFICIENT

J. 9930 0.9882

MEAN DAILY SIMULATED FLOWS (CFS)

| | | | | | - | • | | | | | | | • |
|----------|-----------------|--------|----------|----------|---------|-----------------|-----------|----------|---------|--------|----------|--------|-------------|
| DAY | 100 | ИОЛ | DEC | .JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | ANNUAL |
| 1 | 37. | 4416. | 550. | 33928. | 14542. | 12670. | 14549. | 12055. | 9668. | 2865. | 1438. | 971. | |
| 2 | . 36. | 3048. | 527. | 36517. | 15134. | | 14720. | 11088. | 9747. | 3050. | 2188. | 834. | |
| 3 | 94. | 2929. | 510. | 351.86. | 14875. | | | 11870. | 8048. | 3234. | 2481. | 1009. | |
| | | 3323. | 494. | | | 12936. | | 12962. | 7102. | 3283. | 2029. | 1152. | |
| 5 | 978 | | | | 16.553. | 13116. | 18211. | | 6512. | 3185. | 2.600. | .960. | |
| . 6 | 984. | 2033. | | 38506. | | 11217. | 25888. | 10824. | 6100. | 3435. | 2620 | 1157. | |
| 7 | 975. | 1913. | 2152. | 26002. | 22279. | 11699. | 35122. | 12271. | 6078. | 3468. | 2307. | 1652. | · |
| | 1067. | 1580 | | 20389. | 21153. | . 11773. | . 34485. | 14573. | 7101. | 2921. | 1552. | 2053. | n we a . |
| 9. | 1456. | 1610. | 931. | 21374. | 17019. | 11894. | 25595. | 15195. | 8434. | 2730. | 1093. | 1672. | |
| 10 | 1130- | 1.463. | 3791. | 27.084 | 13720. | | 18803. | 14332. | 9217. | 2406. | 1246. | 1148. | |
| 11 | 1019. | 1379. | 8900. | 28771. | 12691. | 11872. | | 14829. | 8095 | 2350. | 1394. | 1313. | |
| 12 | 995. | 1421. | 8086. | 24365. | 12200. | ~ 13784. | 11500. | 16987. | 7592. | 2421. | 1239 | 1139. | |
| 13 | 994 | 17.97 | 5274. | 21834. | 11401. | 12177. | 1.7858. | 19205. | 7103. | 2216. | 1.595. | 995 | |
| . 14 | 997. | 1780. | 7334. | | | 13346. | 25258. | 16215. | 5698. | 1856. | 1961. | 697. | |
| 15 | 1035. | 1754. | | | | 14860. | | | 5094. | 1936. | 2341. | .590 | • |
| 16 | 1104. | 1650. | | | | 12480. | 20006. | 12852. | 4778. | 1970. | 2750. | 1184. | |
| 17 | 2134. | 1553. | 7939. | 25221. | 9474. | 9594. | 21834. | 11376. | 4426. | 1759. | 2773. | 2781. | |
| 18 | 2046. | 1293 | | 25786. | 9203. | 7.905. | 30591. | . 10398. | 4118. | 1539. | 2720. | 4666 | |
| 19 | 1218. | 1031. | 22736. | 26749. | | | 32721. | | 3925. | 1677. | 1455. | 3694. | |
| 20 | 1385 | 894. | 25434 | . 25790. | 8663. | 8713. | 29917. | 11924. | | 1719. | . 1.315. | | |
| -21 | 1906. | 836. | 21761. | 29073. | 8301. | 10176. | 23460. | 14536. | | 1711. | 1304. | 2316. | |
| 22 | 1515. | 800. | 22014. | 30451. | 8423. | 12585. | 21160. | 15788. | 4062. | 2201. | 1113. | 2325. | |
| 23 | 985 | 768. | _ 31473. | . 33497. | 9323. | 23943. | 21311. | 16795. | 4220. | 3952. | 1096. | 1587. | • |
| 24 | 965. | 736. | 32012. | 38932. | 9285. | 17683. | 21219. | | 3778. | 3926. | 1191. | 895. | |
| 25 | 9.6.4. . | 7.06. | . 33136. | 44996. | 8570. | 16985. | 13038. | 15098. | 3803. | 2480. | l 464. | 778. | |
| 26 | 973. | 683. | 33574. | 40150. | 9855. | 24230. | 15432. | 14133. | 4077. | 2052. | 1536. | 688. | |
| 27 | 932. | 671. | 31749. | 30795. | 9783. | 29434. | 12575. | 13390. | 4001. | 2461. | 1689. | 588. | |
| 28 | 1003. | . 639. | .30361. | 19918. | 13733. | 26066. | 11433. | 14200. | 3734. | 2506. | 1811. | 696. | |
| 29 | 1555. | 593. | 31346. | 15613. | 12078. | | 12366. | 13729. | 3382. | 1932. | 1821. | 1106. | |
| 30 | 3255. | 573. | 34953. | | | 18669. | | | 3037. | 1953. | 1967. | 1122. | |
| 31 | 5644 . | | 33293. | 13535. | | 15016. | · - · · · | 9295. | · · · | 1712. | 1482. | | • |
| TMULATED | | | | | | | | | | | | | |
| TOTALS | 40842. | 4631U. | 470068. | 878819. | 358757. | 445561. | 618424. | 417737. | 170391. | 76909. | 55473. | 44207. | 3623494 CES |

| | ЭСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | ANNUAL |
|---|---|--|---|---|---|---|---|---|---|---|---|---|----------------------|
| STORAGES-UZS
LZS
IFS
GWS
ENDICES- UZC
BFNX
SIAM | 0.600
3.640
0.0
0.089
0.486
0.265
1.024 | 0.0
13.491
0.0
0.048
0.341
0.135
0.791 | 0.38J
7.418
0.410
1.288
0.250
1.462
0.583 | 0.0
8.407
0.0
0.678
0.250
0.996
0.481 | 0.396
8.707
0.029
0.746
0.250
0.986
0.474 | 0.0
9.109
0.0
0.598
0.250
0.848
0.539 | 0.342
8.309
0.024
0.503
0.414
0.697
0.864 | 0.0
6.086
0.0
0.156
0.708
0.287
1.239 | 0.076
5.028
0.0
0.074
0.907
0.147
1.497 | 0.213
4.634
0.0
0.073
0.975
0.115
1.614 | 0.0
3.887
0.0
0.047
1.017
0.075
1.663 | 0.0
3.723
0.0
0.056
0.739
0.078
1.463 | IN
IN
IN
IN |
| * * * - * * * * * * | | | | | | | | | | | | | |

DAILY FLOW DURATION AND ERPOR TABLE

| - | FLOW INTERVAL | CASES | AV.ECROR | AVR. ABS. ER | 3DR STAN | NDARD ERROR | |
 | |
|---|-------------------|---------------|----------|--------------|----------|-------------|---------------------------------------|-----------------|-------|
| | 1.0- | 0.0 | | | | | | | |
| - | 1.6- | 0.0 | | | | | | | • |
| | 2.7- | 0.0 | | | | | | | |
| | 4.5- | 0.0 | | | | | | | |
| | 7.4- | 0.0 | | • | | | | | |
| | 12.2- | 0.0 | | | • | | ** * |
 | |
| | 20-1- | 0.0 | | | | | | | • • |
| | 33.1- | 2.0 | -0.2 | 0.24 | 0.74 | | | | |
| | 54.5- | 0.0 | | 3.24 | D.34 | | | | |
| | 90.0- | 1.3 | -0.3 | 0.29 | | | | | |
| | 148.4- | 0.0 | | | | * ** | | | |
| | 244.7- | 1.0 | -1.0 | 1.02 | · · | • • • • • | · · · · · · · · · · · · · · · · · · · |
 | |
| | 403-4- | 7.0 | -35.3 | 35.31 | 8.73 | • | | | |
| | 665.1- | 37.0 | -30.6 | 33.41 | 35.01 | | | | • |
| | 1096.6- | 49.0 | -57.4 | 75.99 | 72.91 | • | | | · · |
| | 1808.3- | 47.0 | -165.3 | 174.70 | 127.08 | | | | |
| - | 2981.0- | 30.0 | -370.1 | 440.38 | 354.38 | • | | | |
| | 4914.8- | 18.0 | 22.5 | 1095.15 | 1264.19 | | | بريد باساد | |
| | 8103.1- | 5 7. 0 | -786.9 | 893.39 | 734.49 | | | | |
| | 13359.7- | 70.0 | -115.0 | 1340.33 | 2031.32 | | | | |
| | 22026.5- | 45.0 | 2990.8 | 3075.42 | 2715.25 | | | | |
| | | 364.0 | 148.6 | | 17175.13 | | | | |
| | CORRELATION CHEFT | FICIENT (L | AILY) | 0.9882 | F1713413 | | | | *** = |
| | | | | | | | | | |

TWENTY HIGHEST CLOCKHOOR RAINFALL EVENTS IN THE WATER YEAR 1.230 0.920 0.640 0.550 0.540 0.530 0.490 0.490 0.480 0.470 0.450 0.410 0.390 0.380 0.380 0.380 0.360 0.360 0.360 0.360

TWENTY HIGHEST CLOCKHOUR OVERLAND FLOW RUNDEF EVE NTS IN THE WATER YEAR 0.335 0.280 0.186 0.117 J.105 0.132 0.094 0.090 0.077 0.075 0.068 0.065 0.062 0.055 0.054 0.054 0.052 0.052 0.047 0.042

| DAY | oc t | NOV | DEC | JAN | FE. | | | R MA | YJU | NE JU | LY A | JG S | FPT |
|---|------------------------|----------------|-----------------|------------------|---|-----------------|------------|--|--|--|--------------|---------------|---------------------------------------|
| 1 | 3. | 4. | 3 | 8. | · · · · · · · · · · · · · · · · · · · | e in a second | 9 | 9. | 8. | 6. | 5. | . 5 | 4. |
| 3 | 3. | 4 | 3 | | •
• | 8 | | 9 <u>. </u> | 8.
8. | <u>6.</u> | 5 | 5 | 4. |
| 5 | 3 | 4- | 3 | 8. | | 8. | | 9 <u> </u> | _ | 6 | 5 | 5 | 4 |
| 6 | 3. | - Can 4 | A. Y. 3. | 8. | King Car | 8. | 0 | 2. | o de la companya de l | e de la companya de l | | | 是學 |
| 8 | 3。 | 4- | 3. | | <u>. 7</u> | 8. | 9 | 9 | 8 | 6. | 5.
5. | 5 | |
| 10 | 3. | 4. | 5. | 8.
8. | اجـــــــــــــــــــــــــــــــــــــ | 8. | 9 | 9 <u>. </u> | 8 | 5 | 5. | 4. | 4. |
| 11 | | | | | maker of the second | | 9 | 9 | 8. | 5. | 5_ | 4- | 4. |
| 12 | 3. | | | | Asia Marati
T | | 9 | | 7. | 5. | 5. | 🍂 ini Stansin | 3. |
| 13
14 | 3 | 4 | 6 | 8. | | | | 9 | 7 | 5 | 5 | 4. | 3. |
| 15 | 3.
(4.48.48) (4.66. | 4 | 6. | - 8 , | | | | 9. | 7 | 5. | 5 | 4. | _3. |
| 16 ************************************ | 3.
3. | 4 | 6. | . 8. | energe (| | 9_ | 2. | 7. | 5. | 5. | 5. | -3° |
| 18 | | 4 | 7 | 8. | | | 9. | | 7. | 5. | 4 | 5.
5. | 4. |
| 20 | 3. | riasive Vergee | | | | | 9 | | 7. | | 4 | 5 | 4. |
| 21 | 3. | | 7. | 8. | | AMERICAN STREET | | | | | | | |
| 23 | 3 | 4. | | 8. | | | 9 | <u> </u> | | 5 2 1F113 | <u> </u> | <u> </u> | .4. |
| 24
25 | | 4- | 7- | 8.
8. | <u>_</u> | | 9 | | | i | 5. | 4 | 4. |
| 26 | 3. | 4. | 7. | R | | | 1.00 | · day · | | | 京清传: | 4. | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 2 7
28 | 3 | 4 | <u> </u> | 8. | |) <u> </u> | 3 | <u> </u> | · | 5 | 5.
5. | 4.
4. | 4. |
| 29 · | 2. | 4 | 8 | | 9 | |) <u> </u> | - | | i., | 5 | 4. | 4. |
| 31 | A 4 2 | | £ 4 8 | 8. | - | |) | <u> </u> | <u> </u> | * | Strange made | 4. | 4. |
| ULTI= | | CONORTI | 101= | O | CONORI | i.e | | IBFL AG= | 1 | KWMAII | | • •
• | |
| ULTI= | | CONDETC | | | CONORT | | 3 | | _ 10 | | | | |
| DFEAG= | 11 | TENDEĆ. | = . 0 | | FL AG= | | MAIN= | 30 | IV | LEMMALI | ¥= | b | |

| DEAKICECT | | SIMULATED | DIFF % | DIFF | STUDY RW5
%ANNUAL DIFF |
|---|----------|---------------------------------------|--------|-------------|--|
| - CARTONS! | 7298.8 | 7310.0 | 12.20 | 0.2 | and the second s |
| | • | | • | | <u></u> |
| ANNUAL
PEAKLOFS) | | 16550.0. | - | | |
| PEAK(HR) | 93 | 95 | 2 | 22 | |
| RUNOFF(IN) | 0.0987 | 0- 0989 | 0.0 | 002 | 0.2 |
| | | | | | • |
| | | · · · · · · · · · · · · · · · · · · · | | ¥ | - - |
| · · | | • | | | |
| | | | | | |
| R | EFERENCE | SIMULATED | DIFF % | DIFF | STUDY RW51
%ANNUAL DIFF |
| PEAK (CFS) 3 | EFERENCE | SIMULATED | DIFF % | DIFF | SANNUAL DIFF |
| PEAK(CFS) 3 ANNUAL | 9521.1 | 46266.9 | DIFF % | 7.1 | %ANNUAL DIFF |
| PEAK(CFS) 3 ANNUAL | 9521.1 | 46266.9 | DIFF % | 7.1 | SANNUAL DIFF |
| PEAK(CFS) 3 ANNUAL | 9521.1 | 46266.9 | DIFF % | 7.1 | #ANNUAL DIFF 40.8 |
| PEAK(CFS) 3 ANNUAL PEAK(CES) PEAK(HR) 1 | 9521.1 | 46266.9 | DIFF % | 7.1
4.2 | #ANNUAL DIFF 40.8 |

| PEARL RIVER | | SQ MI) S
SIMULATED | | /09/68
%DIFF | ST
SANNUAL | UDY RW' | 5 L |
|---------------------|---------|-----------------------|--------|-----------------|---------------|---------|-----|
| PEAK (CES) | 19567.1 | 19886.4 | 319.90 | . 1.6 | | | |
| ANNUAL
PEAK(CES) | | 16550.0 | | · . | 19 | | |
| PEAK (HR) | 104 | 194 | 0 | 0.0 | | | |
| RUNGFF(IN) | 0.4872 | 0.4764 | 0 | .0109 | 2.2 | | |

| PEARL RIVER | REFERENCE | SIMULATED | DIFF | | S
XANNUAL | | RW51 |
|-------------|-----------|-----------|---------|----------|--------------|-----|------|
| PEAK(CFS) | | 4056.4 | -109.30 | | | | |
| PEAK (CES) | | 15550.0 . | | | 0 • 7 - | | |
| PEAK(HR) | | | | 0. 0
 | | | · · |
| RUNUEE(IN) | 0.0641 | 0.0599 | | 0042 | 66 | . · | • |

REGIONAL WATERSHED TOTAL DATLY STREAMFLOW STATISTICAL SUMMARY FOR 12 SUB WATERSHEDS

| | | | | DE/ | SUM
OF | ROOT
SUM | CORR
COEFF |
|--|---------------|---------|-------------|--------------------|--|--------------------------|---------------|
| | LCES) | CES.l | | · . | R-\$ | SQUARE | |
| 4 - 4 | - | | -· . | | | | |
| | | | | | 1999 | | |
| SUB WATERSHED 1
REFERENCE WY 68 | | | | `\\
.=a. | | | |
| REFERENCE WY 68 | 1295 | 10824 | 0.257E C | 1602 | | 11/25 | 0.0713 |
| SIMULATED. | | Topha- | U. 412E 4 | 2031 | <u>. =0183</u> | - 11033 | 11-3115 |
| , and the second second | | •• ••• | | | | | |
| SUB WATERSHED 2 | | | | VP 2204 | <u> </u> | | |
| REFERENCE WY 68
SIMULATED | 1022 | 20559 | 0.014E (| 11 2070
17 2041 | ·
2 **** | 15290 | 0.9758 |
| 31MOLATED | 1700 | | | | · · · · · · · · · · · · · · · · · · · | | 047/34 |
| SUB WATERSHED 3 | | | | | | | |
| REFERENCE WY 68 | 602 | 8699 | 0.769F (| 6 876 | 5 | | |
| SIMULATED | | 12258 | | | | 5768 | 0.9774 |
| • | • | | | | | | |
| SUB WATERSHED. 4 | | | | | | | ė = |
| REFERENCE WY 68 | 865 | 10121 | | | | | |
| SIMULATED | 879 | 13142 | 0.206E C | 7 1433 | <u>-5349</u> | . 7.1.54 | 0.9786 |
| * * * | • | | | • | | | |
| SUB WATERSHED 5 | | | | | | | _ |
| REFERENCE WY .68. | 6.7.5 | 5888 | 0.807E 0 | 16. 898 | 3 | | |
| SIMULATED | 686 | 8321 | 0.120E.0 | 17 1096 | -4152 | 5256 | 0.9816 |
| | | | | | | | |
| SUB WATERSHED 6 | | | | | _ | | |
| REFERENCE WY 68. | 4402 | 29958 | Q. 257E(| 185065 | <u></u> | | 0.0027 |
| 21MOF T ED | - 4480 | . 34121 | 0.35UE E | 1699 t | 3# <i>%</i> .#** | 249 9 3
- | . 9831 |
| The state of the s | · | | | *************** | | | |
| SUB WATERSHED 7 REFERENCE WY 68 | | | 0 5105 0 | | n | | |
| SIMULĂTED . | | | | | | 4455 | 0.9822 |
| | | | | | | | |
| SUB WATERSHED 8 | | | | | | | * *** |
| REFERENCE WY 68 | | 34246 | 0.487E C | 8 697 | 7 | | |
| SIMULATED | 6691 | | | | **** | 28704 | 0.9862 |
| | | ····· | | | | · · · · · | |
| SUB WATERSHED 9 | | | | | ine de la company de la compan | | |
| REFERENCE WY 68 | 1227 | 35552 | 0.549E.C | | | garanta and a same and a | |
| SIMULATED | 7349 | 41679 | 0.681E (| 82 53 | **** | 29355 | 0.9867 |
| | | | | | | | |
| SUB WATERSHED 10 | | | | | | | |
| REFERENCE WY 68 | 8148 | | 0.629E (| | | 30693 | 0-9872 |
| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | · 34.56 | | | 墨. | | | |
| CIID WATERFUER ** | 5, 3 | | | <i>y</i> *** | x | 1 | |
| REFERENCE WY 68 | 927 | 0524 | 0.139E (| 7 1178 | R | | |
| SIMULATED | 943 | 15437 | | | | 7961 | 0.9780 |
| | ٠. | | | | _ | | |
| REGIONAL WATERSH | | | • | | | | |
| REFERENCE WY 68
SIMULATED | 9725
9899 | | 0.839E 0 | | | 33742 | 0.9882 |
| SINCERTLD | 7077 | 44770 | U. LUZE U | 2 TOT13 | , | 33147 | U # 700Z |

| | MEAN | MAXIMU | JM VAR | LANCE | ST | | ROOT | | |
|--|----------|-----------------|-----------------------|----------------|----------------|---------------------|--------------|------------|---------------|
| | (CES) | (CFS) | h | | DEV | / UF
R-S | | | CDEFF . |
| SUB WATERSHED 1 | 1 | - | | | | , | | • | |
| REFERENCE WY 68 | 39506 | 102115 | 0.140 | F 10 | 37461 | | | 2220 (22) | |
| SINGERILO | 40021 | 106822 | 0.164 | E 10 | 4/1533 | -6191 | 22107 | 2200 (12) | |
| and the second s | ~ | | | | | | | 1914 (12) | 0.9885 |
| SHO MATERIALS S | | | | | | | | | |
| SUB WATERSHED 2 | | | | _ | | | | | |
| REFERENCE MY. 68. | -29166 | 177911 | 976 | 09 | 576.08 | | | 4756 (1) | |
| SIMULATED | 90991 | 177690 | 4716 | 09 | 61834 | -10741 | 34795 | 4694 (1) | 0.9872 |
| | | | | | | | • | | |
| SUB WATERSHED 3 | } . | | | - | | • | | | |
| REFERENCE WY 68 | 18391 | 62597 | 0.3878 | 09 | 19664 | | | 1511 (11 | |
| SIMULATED. | . 186.86 | 72423 | 0.472E | 59 | 21722 | -3543 | 10559 | 1511 (1) | 0.0000 |
| | | | | | | | 10230 | 1721 (11 | 0.9932 |
| CHO HATEDELICO | | | | | | | | | |
| SUB WATERSHED 4 | 24.201 | | | | | | | | |
| REFERENCE WY 68 | 26391 | 80511 | J.770€ | 0.9 | 27744 | | | 2812 (2) | |
| SIMULATED | 20031. | . 92104 | U.937E | 0.9 | 30610 | . - 5349 | 15909 | 2789 (2) | 0.9914 |
| | • | | | | | | | | |
| SUB WATERSHED 5 | | | | | | | | | |
| REFERENCE WY 68 | 2059.7 | 57654 | 0.437F | വര | 20012 | | | **** | |
| REFERENCE WY 68
SIMULATED | 20943 | 58737 | 0.496E | 10 | 22270 | _61 50 | 0554 | 560 (12) | |
| | | | | | | -4132 | 7224 | 483 (12) | 0.9932 |
| | | | | | | | | | |
| SUB WATERSHED 6 | | | | | | | | | |
| REFERENCE WY 68
SIMULATED | 134289 | 401045 | ~.525E | 09 I | 29055 | | | 12782 (2) | |
| SIMOLATED | 130051 | 405248 | 0.186E | .10 1 | 37978 | -28340 | 68476 | 12360 (2) | 0.9904 |
| • | | | | | | | | | |
| SUB WATERSHED. 7. | | | | | | | | | |
| REFERENCE WY 68 | 17582 | 54248 | 0.284E |
 | 14020 | | | | |
| SIMULATED | 17940 | 57904 | 0.326E | 09 | 18056 | -4304 | 4074 | 1112 (1) | |
| | | | | | 10024 | -4274 | | 1101 (1) | 0.9954 |
| | | | | | | | - | | |
| SUB WATERSHED 8 | | | | | | - / | | | |
| REFERENCE WY 68
SIMULATED | 200823 | 5897.26 | 0.913E. | .D2 1 | 87811 | | | 17468 (1) | |
| SIMULATED | 204112 | 604156 | 0.633E | 09 1 | 98210 | -39470 | 92078 | 17227 (12) | 0.9913 |
| | | | | | | | | • | |
| SUB WATERSHED 9 | | | | • • | | - | - | | |
| REFERENCE WY AS | 220437 | 618703 | 0 1475 | 10.2 | 20005 | - | | | |
| SIMULATED | 224169 | 629941 | 0.154E | 10 2 | 10062 . | -44700 | 07734 | 18297 [1] | |
| | | | | 1 | L U.J.M.L. | ∷and LVΩ. | 91130 | 18359 (1) | 0.9911 |
| | | | | | | | | | |
| SUB. WATERSHED 10 | | | | | | | | | |
| ETMULATED | 244307 | 695353 (|).118E | 10 22 | 20066 | | | 21190 (1) | |
| REFERENCE WY 68
SIMULATED. | 248534 | 721851. | 1-191E | 10 .23 | 31195 | -50724 | 100928 | 21280 (1) | 0.9923 |
| Andrew we see the second of th | | | | -· · | | | | | |
| SHE WATERCHER IN | | | | | | | | | |
| REFERENCE. WY 68 | 28302 | 69188 0 |).567E | വര മ | 2021 | | • | | |
| REFERENCE. WY68 | 28771 | 70907 | 0.645F | 09 2 | 54.03 | -5632 | 11102 | 3195 (11) | |
| | | • | <u>-</u> . - . | ۰. ۲ | | 2002 | 11182 | 2979 (11) | 0.9929 |
| REGIONAL WATERSHE | D | | | | | | | | |
| REFERENCE WY 68 : | 296633 | 830295 <u> </u> | 1160 | 10 25 | 9945 | | | 4.000 | |
| SIMULATED | 301957 | 878819 - | .212E | -0 27
10 27 | 7777
4212 - | 639:12 | 116627 | 40834 (1) | |
| | | | | | | | | 40847 (I) | 0.9930 |
| **- THE MONTHS OF | A GIVEN | WATER Y | EAR ARI | E NUM | BERED. | AS FOLI | .OWS: | | |
| <u> </u> | 3 4 | | 7 | a | | | | | |
| MONTH OCT NOV DE | EL JAN | FEB MA | R APR | MAY | JUNE | JUL A | UG SEPT | | · |

REGIONAL WATERSHED TOTAL STORM ANALYSIS SUMMARY FOR 12 SUB WATERSHEDS

| | en j er ne | (CFS) | PEAK
 [HR] | (IN) | lcfs: | (HR) | (IN) | (CFS |) (HR | R/O
(IN) | | | R/O | |
|---|---|------------|----------------|----------------|-------------------------------|------------------|----------------|----------------|-------------|-----------------|---------------------|-------------|----------------|--|
| | | 10/15/67 | | | 01/08/68 | | | | 04/26/68 | | | 08/18/68 | | |
| | SUB WATERSHED 1
REFERENCE WY 68
SIMULATED | 320 | 104
104 | 0.045 | 8794 | 123 | 1.609 | 3508
4088 | 126 | 0.749
0.761 | 3 7 1
348 | 95
95 | 0.059
0.053 | |
| | | 10/15/67 | | 01/08/68 | | | 04/26/68 | | | 08/18/68 | | / 68 | | |
| = | SUB WATERSHED 2
REFERENCE WY 68
SIMULATED | 979 | 73 | 0.071
0.071 | 15907
212 5 7 | 111
111 | 1.987
2.395 | 4398
4863 | 119
.122 | 0.622
.0.609 | 524
496 | 93
93 | 0.055
0.050 | |
| | | 10/15/67 | | | 31/39/68 | | | 04/25/68 | | | 07/31/68 | | | |
| | SUB WATERSHED 3
REFERENCE WY 68
SIMULATED | 315 | 70
72 | 0.095
0.099 | 4757
6010 | 18
74 | 2.170
2.377 | 1156
1482 | 104
104 | 0.521
0.565 | 298
288 | 69
69 | 0.117
0.109 | |
| | | ı | 10/15/67 | | 01/09/68 | | | 04/26/68 | | | 07/31/68 | | 68 | |
| | SUB WATERSHED 4
REFERENCE WY 65
SIMULATED | 388 | 110
110 | 0.097
0.103 | 65 39
80 7 9 | 114 | 2.401
2.792 | 1451
1835 | 120
120 | 0.450
0.477 | 368
351 | 109
109 | 0.113
0.104 | |
| | | 10/15/67 | | 01/09/68 | | | 04/25/68 | | | 08/13/68 | | | | |
| | SUB WATERSHED 5
REFERENCE WY 64
SIMULATED | 202
201 | 84
34 | 0.036
0.036 | 5753
7033 | 90
7 5 | 1.907
2.092 | 3056
3613 | 118
118 | 0.921
0.939 | 392
384 | 108
108 | 0.086
0.082 | |
| | | 10/15/67 | | | 01/09/68 | | | 0 | 04/26/68 | | | 08/15/68 | | |
| | SUB WATERSHED 6
REFERENCE WY 63 2
SIMULATED | 2501 | 94
94 | 0.J93
9.094 | 30736
39061 | 117
112 | 1.821
2.134 | 14331
15595 | 128
128 | 0.680
0.673 | 1482
1431 | 94
94 | 0.058
0.055 | |

| | | 10/15/67 | | | 01/08/68 | | | 04/26/68 | | | 08/14/68 | | |
|--|--------|------------------|------------|---|--|--|---|----------------------------|-------------|----------------|------------------------------|------------|----------------|
| | | | | | | | | | | • | | | |
| SUR WAT FREHE | | | | .1 | | <u> </u> | | | | * | | | |
| REFERENCE WY
SIMULATED | 68 | 8 <i>2</i>
85 | | 0.029 | | | 1.557 | 1860
2560 | | 0.610 | | - | 0.127
0.135 |
| | | *10 | /19/ | | | | 68 | 1 P | 4/28/ | 6.8 | | 8/18/ | 68 |
| SUB WATERSHE
REFERENCE WY
SIMULATED | 68 2 | 736 | 98
98 | 0.069 | 35340 | 121 | 1_437 | 15836
15988 | 168 | 0.570
0.540 | 1814
.1 733 | 122
122 | 0.053
0.050 |
| TANAGEMENT AND A STATE OF THE S | | 10 | /22/ | 5.7 | | 01/15/ | 68 | 0 | 5/03/ | 6 .8 | 0 | 8/20/ | 68 |
| SUB WATERSHEE
REFERENCE WY
SIMULATED | 68 2 | <i>TTT</i> | 86. | 0.064 | 36162 | 1 3 7 | 7 7/14 | ETGIA: | 110 | 0.461 | 21 75
20 86 | 135
135 | 0.055
0.052 |
| | | - 1 | 65 B | 57 - 10 - 2
- 10 - 10 - 2
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | |)1V18A | 58 | 0 | 5/06/4 | 58 | 01 | 3/22/ | 68 |
| SUB WATERSHED | | | | A " A . Property See . It | 58 5 | | A Maria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10. 10. 10. | | والوالديشيث | | | · |
| REEERENCE WY | 68.2 | 825
849 | 108
108 | 0.056
0.057 | 37157
44317 | 131
126 | 1-166 | 18073 | 117 | 0.581 | 247.6 | 138 | 0.059 |
| | 16 | A N | | | | Her in the second of the secon | | | | | | 1.00 | <u></u> |
| | | -107 | 28/6 | 57 | 0 | 1/08/ | .8 | 03 | 5/08/6 | 28 | .08 | /20/ | 58 |
| SUB WATERSHED
REFERENCE WY
SIMULATED | 68 II | 191 | 95 | 0.150 | 5520 | 104 | 0 740 | 4000 | 100 | 0 500 | 363 | | 0.031
0.030 |
| 1 3 y a a | | 10/ | 28/6 | 7 | · · · · · · · · | 172176 | 8 | . os | /09/6 | 8 | 08 | /11/6 | 8 |
| REGIONAL WATE | KSHEL | 100 | | 0.000 | 20501 | | | en in
La Torrio e 1940. | | | | | |
| REFERENCE WY | 0 8 12 | 40 | 93 . | 0.099 | <u> 19521 </u> | 119 | 0.980 | 9567 | 104 | 0.487 | 4166 | 1 60 | 0.064 |

TOTAL SE NOW

APPENDIX D

RELATED TECHNICAL ARTICLES AND ABSTRACTS

73#-00-5011

73W 05011. TARGET DETECTION IN AERIAL PHOTOGRAPHY. AUGUST 1964. KANAL, LN# RANDALL. NC PHILCO FORD CORP., BLUE BELL, PA.

IIP. THIS PAPER WAS PRESENTED AT WESCON/64. THE AJTOMATIC DETECTION OF TARGETS IN TACTICAL AERIAL PHOTOGRAPHY, REGARDLESS OF WHERE THEY MIGHT APPEAR. IS ACCOMPLISHED VIA A TWO LEVEL STATISTICAL DECISION PROCEDURE WHICH INVOLVES MODIFICATIONS OF CLASSICAL METHODS OF MULTIVARIATE DISCRIMINANT ANALYSIS. COMPUTER SIMULATED TARGET DETECTION EXPERIMENTS PERFORMED ON ACTUAL TACTICAL IMAGERY PRODUCED IMPRESSIVE RESULTS ON INDEPENDENT TEST SAMPLES.

AERIAL PHOTOGRAPHY# TARGET ACQUISITION
COMPUTERIZED SIMULATION# PHOTOINTERPRETATION

734-00-5012

AIAA-69-1085. THE ROLE OF SATELLITES IN EARTH ECOLOGY.
AIAA 6TH ANNUAL MEETING AND TECHNICAL DISPLAY. ANAHEIM,
CALIF. DCTDBER 1969.
CASTRUCCIO, P
13M GAITHERSBURG, FSD
AIAA-69-1085

MOST OF THE APPLICATIONS OF EARTH OBSERVATION SATELLITES ARE AIMED AT IMPROVED EXPLOITATION OF SPECIFIC NATURAL RESOURCES. IN PRACTICE, THE SPHERE OF INFLUENCE OF TECHNOLOGICAL EXPLOITATION HAS ALREADY REACHED SUCH A SIZE THAT MANY HUMAN ACTIVITIES, ALBEIT IN DIVERSE FIELDS OF ENDEAVOR, ARE BEGINNING TO COUPLE.

ECOLOGY# ARTIFICIAL SATELLITES

73W-00-5014

73W 05014. RECENT PROGRESS IN REMOTE SENSING WITH AUDIO AND RADIO FREQUENCY PULSES. 1964.
GELEYNSE, M# BARRINGER, AR BARRINGER RESEARCH, LTD., TORONTO, CANADA

25P. THIS PAPER IS FROM THE PROCEEDING OF THE 3RD SYMPOSIUM OF REMOTE SENSING OF ENVIRONMENT, 1964.
FJRTHER DEVELOPMENT OF THE INPUT OR INDUCED PULSE TRANSIENT ELECTROMAGNETIC SYSTEM HAS RESULTED IN HIGHER POWERED MINIATURIZED EQUIPMENT OF IMPROVED SENSITIVITY.
AIRBORNE PROGRAMS IN AUSTRALIA AND THE SOUTHWESTERN UNITED STATES HAVE PROVEN THE CAPABILITIES OF THE SYSTEM FOR DETECTING AND RESOLVING GEOLOGIC FEATURES BENEATH HIGHLY CONDUCTIVE SALINE SOILS. ORE DEPOSITS OF THE PORPHYRY COPPER TYPE HAVE FOR THE FIRST TIME BEEN DETECTED FROM THE AIR IN A COMMREHENSIVE TEST PROGRAM.
CONTINUING DEVELOPMENT OF VERY SHORT PULSE VHE RADAR MOUNTED IN A VEHICLE HAS YIELDED NEW INFORMATION ON THE VHE KEFLECTIVE PROPERTIES OF SOIL UNDER VARYING CONDITIONS OF LAYERING, MOISTURE CONTENT AND SOIL TYPE. THE FEASIBILITY HAS BEEN ESTABLISHED AND THE PARAMETERS OUTLINED FOR AN AIRBORNE LOW LEVEL TERRAIN SENSING SYSTEM UTILIZING VHE PULSES.

REMOTE SENSING# AIRBORNE DETECTORS# RADAR

N69-34879. AN EVALUATION OF CROP AND LAND USE DATA IN A WORLD SAMPLE OF COUNTRIES. NOVEMBER 1968. BAKER, S. AGRICULTURE DEPT., WASHINGTON, D.C. N69-34879# NASA-CR-103944

25 P. THE MAIN OBJECTIVE OF THIS STUDY WAS TO PROVIDE INFORMATION USEFUL IN DETERMINING HOW, AND TO WHAT EXTENT, REMOTE SENSING MIGHT HELP IN SUPPLYING MORE ACCURATE, COMPREHENSIVE, AND TIMELY DATA ON CROP AREAS, CROP YIELDS, CROP PRODUCTION, AND LAND USE AROUND THE WORLD. REMOTE SENSING IS THE METHOD USED TO COLLECT SUCH DATA ABOUT THE EARTH'S SURFACE. THIS METHOD UTILIZED OPTICAL, ELECTROOPTICAL, AND ELECTRONIC DEVICES MOUNTED IN AIRPLANES OR SATELLITES. REMOTE SENSING PROMISES TO CLOSE SOME OF THE REMAINING GAPS IN AVAILABLE DATA, AND TO IMPROVE DATA QUALITY AND TIMELINESS. IT MAY BE POSSIBLE, THROUGH REMOTE SENSING, TO REPLACE SOME PRESENT METHODS WITH LESS COSTLY METHODS.

REMOTE SENSING# LAND USE# AIRBORNE DETECTORS

73W-00-5028

N70-38529. REPORTS, STUDIES, AND INVESTIGATIONS RELATING TO SATELLITE HYDROLOGY: ANNOTATED-BIBLIOGRAPHY. JUNE 1970. BAKER, DR# FLANDERS, AF# FLEMING, M COMMERCE DEPT.
N70-38529# ESSA-TM-NESCTM-10# PB194072

30P. PRESENTED IS AN ANNOTATED BIBLIOGRAPHY FOR A SATELLITE HYDROLOGY PROGRAM. THE OBJECTIVE OF THIS PROGRAM IS TO DEVELOP HYDROLOGIC PROBLEMS FROM SATELLITE INVESTIGATIONS, REPORTS, AND STUDIES.

HYDROLOGY# ARTIFICIAL SATELLITES# METEOROLOGY HYDROMETEOROLOGY# BIBLIOGRAPHIES

73W-00-5029

73W 05029. SIMULATION OF HEAT TRANSFER IN SOILS. JULY 1970. WIERENGA, PJ
NEW MEXICO STATE UNIV., LAS CRUCES
DEWIT, CT
AGRICULTURAL UNIV., WAGENINGEN, NETHERLANDS

8P. THIS PAPER IS FROM THE PROCEEDINGS OF THE SOIL SCIENCE SOCIETY OF AMERICA, VOL. 34,1970. A COMPUTER MODEL WAS DEVELOPED TO PREDICT THE TEMPERATURE FLUCTUATION IN SUBSOIL FROM THE TEMPERATURE VARIATION AT THE SOIL SURFACE. TAKING INTO ACCOUNT CHANGES IN THE APPARENT THERMAL CONDUCTIVITY WITH DEPTH BELOW SOIL SURFACE AND SOIL TEMPERATURE. THE MODEL MAKES USE OF \$/360 CSMP. A RECENTLY DEVELOPED SIMULATION LANGUAGE FOR DIGITAL COMPUTERS. PREDICTED SOIL TEMPERATURES WERE COMPARED WITH SOIL TEMPERATURES OBSERVED AT 2, 10, 15, 25, 30, AND 75 CM BELOW THE SURFACE OF BARE FIELD PROFILES, BEFORE AND AFTER IRRIGATION WITH 13.4 CM WATER. IN WET'SOIL OBSERVED AND PREDICTED TEMPERATURES WERE IN CLOSE . AGREEMENT. IN DRY SOIL SIGNIFICANT DIFFERENCES WERE OBSERVED BETWEEN MEASURED AND PREDICTED SOIL TEMPERATURES DURING PART OF THE DAY. THE INCREASE IN APPARENT THERMAL CONDUCTIVITY WITH SOIL TEMPERATURE HAD A NEGATIVE EFFECT ON THE MAGNITUDE OF THE DIFFERENCE BETWEEN OBSERVED AND PREDICTED VALUES IN THE DRY SOIL.
AGREEMENT WAS FOUND BETWEEN SOIL HEAT FLUX DENSITY VALUES PREDICTED FROM THE MODEL AND CALCULATED WITH THE TEMPERATURE INTEGRAL METHOD. USE OF A DIGITAL SIMULATION LANGUAGE CAN SAVE CONSIDERABLE PROGRAMMING TIME, AND CAN BE APPLIED TO MOVEMENT OF WATER AND GASES IN SOIL PROFILES.

SOIL PROFILES# THERMAL CONDUCTIVITY
HEAT TRANSFER# DIGITAL SIMULATION# IBM SYSTEM/ 360

73H-00-5051

N70-41150. A PRELIMINARY EVALUATION OF AIRBORNE AND SPACEBORNE REMOTE SENSING DATA FOR HYDROLOGIC USES. JULY 1966. RJBINOVE, CJ GEOLOGICAL SURVEY, WASHINGTON, D.C. N70-41150# NASA-CR-76594# TL-NASA-50

13P. REMOTE SENSORS ARE EXAMINED AS VALUABLE TOOLS
FOR OBTAINING WATER RESOURCE DATA ON OCCURRENCE, MOVEMENT,
AND INTERACTIONS OF WATER, AND AS A BASIS FOR CONTROL.
TABULATED DATA PRESENT A BRIEF EVALUATION OF AIRBORNE
AND SPACEBORNE REMOTE SENSORS USED IN HYDROLOGY. LIMITED USE
OF SENSORS IS DEFINED IN THE AREAS OF MEASURING PHYSICAL,
CHEMICAL, AND BIOLOGICAL CHARACTERISTICS OF WATER
SURFACES, MAPPING AND DESCRIBING GROUND WATER FEATURES,
SNOW SURVEYING AND MAPPING, GLACIOLOGY, GEOMORPHOLOGY. AND
MEASURING LIQUID VAPOR TRANSFER.

REMOTE SENSING# HYDROLOGY# WATER RESOURCES

73H-00-5034

REF. NO. 70-13. CRUISE REPORT - CHAIN CRUISE 92. MARCH 1970. GIFFORD, J. WOODS HOLE OCEANOGRAPHIC INSTITUTION, MASS. REF. NO. 70-13# NO0014-66-C-0241

29P. CRUISE 92 DEPARTED WOODS HOLE ON THE 10TH OF JUNE, 1969. A TOTAL OF NINE MODRINGS WERE SET, TWO OF WHICH WERE TEMPORARY, (A SHORT TERM ENGINEERING MODRING AND THE GLASS FLOAT TEST). ONE LONG TERM, (SIX MONTH) SYNTACTIC FOAM FLOAT NEAR BOTTOM MOORING WAS RETRIEVED. OTHER WORK INCLUDED HYDROSTATIONS. XBT'S, GURRENT PROFILE MEASUREMENTS IN CONJUNCTION WITH THE HYDROSTATIONS, AND RADAR TRANSPONDER TESTS.

MOORINGS# TRANSPONDERS# BUUYS

73H-00-5036

....

73W 05036. DRBITAL PHOTOGRAPHY: APPLIED EARTH SURVEY TOOL. 1968. WDBBER; FJ 13M GAITHERSBURG, FSD

9P. ORBITAL PHOTOGRAPHS MAY BE DEFINED AS IMAGES OF PLANETARY SURFACES TAKEN FROM AN ORBITAL POINT OF D3SERVATION, AND MAY BE GENERALLY CONSIDERED AN EXTENSION OF AERIAL PHOTOGRAPHY TO EXTREME ALTITUDES. AS DEFINED HERE, ORBITAL PHOTOGRAPHY IS LIMITED TO SURVEY'S OF THE EARTH'S SURFACE.

SPACEBORNE PHOTOGRAPHY# PHOTOGRAMMETRY# SURVEYS

73H-00-5041

73W 05041. A MODEL OF WATER QUALITY MANAGEMENT UNDER UNCERTAINTY. WATER RESOURCES RESEARCH. JUNE 1970. P690-699. UPTON, C CHICAGO UNIV., ILL.

THE PROBLEMS CAUSED BY INTRODUCING UNCERTAINTY INTO THE AVALYSIS OF WATER QUALITY MANAGEMENT IS ANALYZED IN THIS PAPER. THE FIRST SECTION OF THIS PAPER CONTAINS A DISCUSSION OF THE COST FUNCTIONS, THE STOCHASTIC PROPERTIES OF STREAMFLOW, AND THE OBJECTIVE FUNCTION TO BE USED IN THE MODEL. THE MODEL IS ANALYZED IN THE SECOND SECTION. AN EXAMPLE IS PRESENTED IN THE THIRD SECTION, AND SUMMARY REMARKS ARE CONTAINED IN THE FOURTH.

WATER QUALITY# STREAM FLOW# STOCHASTIC PROCESSES

73W-00-5042

73W 05042. STOCHASTIC MODELS IN HYDROLOGY. WATER RESOURCES RESEARCH. JUNE 1970. P750-755. SCHEIDEGGER, AE GEOLOGICAL SURVEY, URBANA, ILL.

THE STOCHASTIC MODELS THAT CAN BE USED TO REPRESENT GROWTH AND STEADY STATE PHENOMENA IN HYDROLOGY ARE REVIEWED.

HYDROLOGY# STOCHASTIC PROCESSES# STEADY STATE

73W-00-5043

73W 05043. A TWO STEP PROBABILISTIC MODEL OF STORAGE RESERVOIR WITH CORRELATED INPUTS. WATER RESOURCES RESEARCH. JUNE 1970. P756-767. KLEMES, V

FRAGMENTATION OF MORAN'S MODEL AND DECOMPOSITION OF ITS TRANSITION MATRIX INTO A RELEASE RULE AND AN INPUT COMPONENT ARE USED TO SIMPLIFY THE PROBLEM FORMULATION OR RESERVOIRS WITH COMPLEX OPERATING RULES AND TO DERIVE THE LLOYD MODEL DIRECTLY FROM THAT OF MORAN BY INTRODUCING TWO SUCCESSIVE TRANSITIONS OF ONE VARIABLE INSTEAD OF A SINGLE BIVARIATE TRANSITION.

PROBABILITY THEORY# RESERVOIRS# TRANSITION PROBABILITIES

73W-00-5044

73W 05044. DIGITAL ANALYSIS OF AREAL FLOW IN MULTIAQUIFER GROUNDWATER SYSTEMS: A QUASI THREE DIMENSIONAL MODEL.
WATER RESOURCES RESEARCH. JUNE 1970. P883-888.
BREDEHOEFT, JD# PINDER, GF
GEOLOGICAL SURVEY, WASHINGTON, D.C.

A GENERAL SOLUTION FOR THE RESPONSE OF MULTIPLE AQUIFER SYSTEMS TO PUMPING STRESS REQUIRES SOLVING THE THREE DIMENSIONAL FLOW EQUATIONS.

AQUIFERS# GROUND WATER# THREE DIMENSIONAL FLOW

73W-00-5045

73W 05045. NUMERICAL MODELING OF UNSATURATED GROUNDWATER FLOW AND COMPARISON OF THE MODEL TO A FIELD EXPERIMENT. WATER RESOURCES RESEARCH. JUNE 1970. P862-874. GREEN, DW# DABIRI, H# WEINAUG, CF KANSAS UNIV., LAWRENCE PRILL, R GEOLOGICAL SURVEY, GARDEN CITY, KANS.

A MATHEMATICAL MODEL DESCRIBING ISOTHERMAL, THO PHASE FLOW IN POROUS MEDIA HAS BEEN DEVELOPED.

GROUND WATER# MATHEMATICAL MODELS# SOIL WATER

73W-00-5047

73N 05047. LEAST SQUARES ESTIMATION OF CONSTANTS IN A LINEAR RECESSION MODEL. WATER RESOURCES RESEARCH. AUGUST 1970. P1062-1069. JAMES, LD# THOMPSON, WO KENTUCKY UNIV., LEXINGTON

LEAST SQUARES CAN BE USED FOR ESTIMATING CONSTANTS IN A LINEAR RECESSION MODEL FROM PUBLISHED AVERAGE DAILY STREAMFLOWS. A MODEL WITH TWO RECESSION CONSTANTS WAS DERIVED AND SUCCESSFULLY TESTED ON A NUMBER OF KENTUCKY STREAMS.

LEAST SQUARES METHOD# STREAM FLOW# HYDROLOGY

73W-00-5048

1

73W 05048. APPLICATION OF LINEAR RANDOM MODELS TO FOUR ANNUAL STREAMFLOW SERIES. WATER RESOURCES RESEARCH. AUGUST 1970. P1070-1078. CARLSON, RF A.ASKA UNIV., COLLEGE MACCORMICK, AJ# WATTS, DG WISCONSIN UNIV., MADISUN

A SIMPLE METHOD FOR DESCRIBING RANDOM TIME SERIES IS ILLUSTRATED BY APPLICATION TO THE ANNUAL STREAMFLOW DATA OF THE ST. LAWRENCE, THE MISSOURI, THE NEVA, AND THE NIGER RIVERS.

STREAM FLOW# RANDOM PROCESSES# TIME SERIES ANALYSIS

73W-00-5049

73W 05049. A CRITIQUE OF METHODS SIMULATING RAINFALL. WATER RESOURCES RESEARCH. AUGUST 1970. P1104-1114. HALL, MJ
IMPERIAL COLLEGE OF SCIENCE AND TECH., LONDON, ENGLAND

THREE FUNDAMENTAL PROBLEMS ARE ENCOUNTERED IN DESIGNING A RAINFALL SIMULATOR: (1) THE CONTROL OF APPLICATION RATES IN BOTH SPACE AND TIME, (2) THE REPRODUCTION OF DROP SIZE DISTRIBUTIONS OBSERVED IN DIFFERENT INTENSITIES OF NATURAL RAINFALL AT THE CORRESPONDING APPLICATION RATES, (3) THE REPRODUCTION OF THE TERMINAL VELOCITIES OF DROPS IN NATURAL RAINFALL.

RAINFALL# SIMULATION# RAINDROPS

73W-00-5050

73W 05050. NONLINEAR TIME VARYING MODEL OF RAINFALL RUNDFF RELATION. WATER RESOURCES RESEARCH. OCTOBER 1970. P1277-1286. CHIU, CL# HUANG, JT PITTSBURGH UNIV., PA.

THE DEVELOPED NONLINEAR TIME VARYING MODEL OF A HYDROLOGIC SYSTEM THAT RELATES THE RAINFALL AND THE RUNDER IS REPRESENTED BY A PAIR OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH TIME VARYING COEFFICIENTS. THE MODEL DOES NOT REQUIRE THE LINEARITY AND TIME INVARIANCE ASSUMPTIONS NECESSARY IN CONVENTIONAL UNIT HYDROGRAPH METHODS.

RAINFALL# RUNOFF# NONLINEAR SYSTEMS

73W-00-5051

73W 05051. MODELING THE EFFECT DF LAND USE MODIFICATIONS ON RUNOFF.
WATER RESOURCES RESEARCH. OCTOBER 1970. P1287-1295.
ONSTAD, CA
AGRICULTURE DEPT., BROOKINGS, S. DAK.
JAMIESUN, DS
WATER RESOURCES BOARD, READING, ENGLAND.

THE USE OF MATHEMATICAL MODELS FOR SIMULATING THE RESPONSE CHARACTERISTICS OF A WATERSHED HAS BEEN FIRMLY ESTABLISHED. THESE MODELS CAN BE USED FOR GENERATING A JUNGER PERIOD OF FLOW RECORDS FROM A SHORTER RECORD. FROVIDED LONGTERM RAINFALL RECORDS ARE AVAILABLE. IN ADDITION, SOME FLOW SIMULATION MODELS ARE SUITABLE FOR REAL TIME FORECASTING. THE MAJOR PROBLEM IS DEFINING THE PARAMETERS OF A PARTICULAR WATERSHED TO CONVERT THE GENERAL MODEL INTO THE SPECIFIC.

RJNDFF# MATHEMATICAL MODELS# WATERSHEDS

73W 05052. PREDICTING AND MAPPING THE AVERAGE HYDROLOGIC RESPONSE FOR THE EASTERN UNITED STATES. WATER RESOURCES RESEARCH. DCTDBER 1970. P1312-1326. WDODRUFF, JF# HEWLETT, JD GEORGIA UNIV., ATHENS

AN ATTEMPT WAS MADE TO PREDICT THE AVERAGE ANNUAL HYDROLOGIC RESPONSE (RATION OF ANNUAL DIRECT RUNOFF TO ANNUAL PRECIPITATION) OF UNGAGED WATERSHEDS IN THE EAST BY REGRESSION AGAINST 15 PLANIMETRIC, HYPSOMETRIC, AND LAND USE FACTORS AVAILABLE ON 96 SELECTED TEST BASINS 12 TO 100 SQUARE MILES) FROM NEW YORK TO ALABAMA.

MAPPING# RUNOFF# PRECIPITATION (METEOROLOGY)

73W-Q0-5053

73W 05053. ANALYSIS OF STOCHASTIC HYDROLOGIC SYSTEMS. WATER RESOURCES RESEARCH. DECEMBER 1970. P1569-1582. C-IOW, VT# KARELIOTIS, SJ ILLINDIS UNIV., URBANA

THE OBJECTIVE OF THIS STUDY WAS TO FORMULATE THE MATHEMATICAL MODEL OF A STOCHASTIC HYDROLOGIC SYSTEM AND THE MATHEMATICAL MODELS OF THE HYDROLOGIC PROCESSES IN THE SYSTEM, USING THE WATERSHED AS AN EXAMPLE OF THE HYDROLOGIC SYSTEM.

HYDROLOGY# STOCHASTIC PROCESSES# WATERSHEDS

73W-00-5054

73W G5054. A GENERAL NUMERICAL SQLUTION OF THE TWO DIMENSIONAL DIFFUSION CONVECTION EQUATION BY THE FINITE ELEMENT METHOD. WATER RESOURCES RESEARCH. DECEMBER 1970. P1611-1617. GUYMON, GL# SCOTT, VH# HERRMAN, LR CALIFORNIA UNIV., DAVIS

THE TWO DIMENSIONAL DIFFUSION CONVECTION EQUATION, TOGETHER WITH THE APPROPRIATE AUXILIARY CONDITIONS, IS USED TO DESCRIBE APPROXIMATELY THE MOTION OF DISSOLVED CONSTITUENTS IN POROUS MEDIA FLOW, DISPERSION OF POLLUTANTS IN STREAMS, ENERGY TRANSFER IN RESERVOIRS, AND OTHER NATURAL TRANSPORT PROCESSES.

TWO DIMENSIONAL FLOW# LINEAR DIFFERENTIAL EQUATIONS

738-00-5055

73W 05055. FLOOD SERIES COMPARED TO RAINFALL EXTREMES. WATER RESOURCES RESEARCH. DECEMBER 1970. P1655-1667. REICH, BM
PENNSYLVANIA STATE UNIV., UNIV., PARK

ANNUAL SERIES OF MAXIMUM INSTANTANEOUS FLOOD PEAKS FROM 26 PENNSYLVANIAN WATERSHEDS SMALLER THAN 200 SQUARE MILES WERE ANALYZED BY THE GUMBEL, LOG GUMBEL, AND LOG PEARSON 3 METHODS.

FLOODS# WATERSHEDS# RAINFALL

73W-00-5056

73W 05056. DEFINITION AND USES OF THE LINEAR REGRESSION MDDFL. WATER RESOURCES RESEARCH. DECEMBER 1970. P1668-1673. DISKIN, MH AGRICULTURE DEPT., TUCSON, ARIZ.

A SIMPLE THREE ELEMENT MODEL IS PROPOSED AS AN INTERPRETATION OF THE REGRESSION EQUATION FOR THE RELATIONSHIP BETWEEN ANNUAL RAINFALL AND ANNUAL RUNOFF FROM WATERSHEDS.

LINEAR REGRESSION# RAINFALL# WATERSHEDS

73H-00-5057

73W 05057. A COMPARATIVE STUDY OF CRITICAL DROUGHT SIMULATION.
LATER RESDURCES RESEARCH. FEBRUARY 1971. P52-62.
ASKEW, AJ# YEH, WW# HALL, WA
CALIFORNIA UNIV., LOS ANGELES

A SET OF MONTHLY STREAMFLOW RECORDS IS GENERATED AND ANALYZED TO GIVE A SET OF SYNTHETIC CRITICAL PERIODS.

DROUGHTS# STREAM FLOW# SIMULATION

73W-00-5058

73W 05058. SOIL MOISTURE DETECTION WITH IMAGING RADARS. WATER RESOURCES RESEARCH. FEBRUARY 1971. P100-110. MACDUNALD, HC# WAITE, WP KANSAS UNIV., LAWRENCE

THE DATA PRESENTED IN THIS STUDY SUGGEST THAT PRESENTLY AVAILABLE DUAL POLARIZED, K BAND, SIDE LOOKING IMAGING RADARS PROVIDE A CAPABILITY FOR REVEALING A QUALITATIVE ESTIMATE OF SOIL MOISTURE CONTENT.

SOIL WATER# SIDE LOOKING RADAR

73W-00-5059

73W 05059. DISCRETE DIFFERENTIAL DYNAMIC PROGRAMMING APPROACH TO WATER RESOURCES SYSTEMS OPTIMIZATION. WATER RESOURCES RESEARCH. APRIL 1971. P273-282. C-10W, MH# KOKOTOVIO, PV# MEREDITH, DD ILLINOIS UNIV., URBANA

THE OPTIMIZATION OF OPERATING POLICIES OF MULTIPLE UNIT AND MULTIPLE PURPOSE WATER RESOURCES SYSTEMS BY TRADITIONAL DYNAMIC PROGRAMING WITH THE USE OF HIGH SPEED DIGITAL COMPUTERS ENCOUNTERS TWO MAJOR DIFFICULTIES: MEMORY REQUIREMENTS AND COMPUTER TIME REQUIREMENTS. THIS PAPER PRESENTS AN ITERATIVE METHOD THAT CAN EASE THE ABOVE DIFFICULTIES CONSIDERABLY.

DIFFERENTIAL EQUATIONS# DIGITAL COMPUTERS

73W-00-5060

73W 05060. DPERATIONAL HYDROLOGY FOR UNGAGED STREAMS BY THE GRID SQUARE TECHNIQUE. WATER RESOURCES RESEARCH. APRIL 1971. P283-291. PENTLAND, RL# CUTHBERT, DR ENERGY, MINES, AND RESOURCES DEPT., OTTAWA, CANADA

THE GRID SQUARE TECHNIQUE AND ITS EXTENSION TO OPERATIONAL HYDROLOGY ARE DISCUSSED. ALONG WITH AN EXAMPLE FROM THE NEW BRUNSWICK REGION OF CANADA.

HYDROLOGY# STREAM FLOW# WATER RESOURCES

73W-00-5061

73W 05061. USE OF LINEAR PROGRAMMING FOR ESTIMATING GEOHYDROLOGIC PARAMETERS OF GROUND WATER BASINS. WATER RESOURCES RESEARCH. APRIL 1971. P367-374. KLEINECKE, D GENERAL ELECTRIC CO., SANTA BARBARA, CALIF.

IN THIS REPURT TWO STUDIES ARE DISCUSSED THAT ATTEMPTED TO ESTIMATE GED-YDROLOGIC PARAMETERS FROM ACTUAL BASIN RECORDS. DATA GATHERED BY THE CALIFORNIA STATE DEPARTMENT OF MATER RESOURCES (DWR) FOR THEIR-SUCCESSFUL CHINO RIVERSIDE BASIN MODEL WERE USED.

THE FIRST APPROACH, PRESENTED BRIEFLY, WAS BASED ON A LEAST SQUARES FITTING PROCEDURE AND PROVED TO BE COMPLETELY UNSUCCESSFUL. THE SECOND APPROACH WAS BASED ON LINEAR PROGRAMING. ALTHOUGH IT HAS NOT PROVED ITS USE, AND THERE ARE SOME SUBSTANTIAL PROBLEMS, THE LINEAR PROGRAMING APPROACH OFFERS SOME PROMISE. THIS PAPER IS PRINCIPALLY A PROGRESS REPORT ON THE LINEAR PROGRAMING APPROACH.

GROUND WATER# LINEAR PROGRAMMING# HYDROGEOLOGY

738-00-5068

RC-3069. TWO ALGORITHMS FOR MULTIPLE VIEW BINARY PATTERN RECONSTRUCTION. SEPTEMBER 1970. CHANG, SK# SHELTON, GL
13M YORKTOWN HEIGHTS, RESEARCH
RC-3069

13P. IN THIS PAPER THE PROBLEM OF RECONSTRUCTING BINARY PATTERNS FROM THEIR SHADOWS OR PROJECTIONS IS TREATED.

THO ALGORITHMS ARE FORMULATED. FOR THE TWO VIEW CASE, BOTH ALGORITHMS GIVE A PERFECT RECONSTRUCTION IF AND ONLY IF THE PATTERN IS TWO VIEW UNAMBIGUOUS. IT IS ALSO SHOWN THAT N VIEWS ARE SUFFICIENT, BUT NOT NECESSARY, TO RECONSTRUCT ANY N.X.N BINARY PATTERN. EXPERIMENTAL RESULTS FOR THE FOUR VIEW RECONSTRUCTION OF 25 X 25 BINARY PATTERNS INDICATE THAT ONE OF THE ALGORITHMS HAS GOOD CONVERGENCY BEHAVIOR.

DIGITAL SYSTEMS# ALGORITHMS

73W-00-5071

RC-3140. A SIMULATOR FOR NORTHEASTERN FOREST GROWTH; A CONTRIBUTION OF THE HUBBARD BROOK ECOSYSTEM STUDY AND IBM RESEARCH. NOVEMBER 1970. BOTKIN, DB# JANAK, JF# WALLIS, JR IBM YORKTOWN HEIGHTS, RESEARCH RC-3140

21P. A NORTHEASTERN FOREST GROWTH SIMULATOR, JABOWA, HAS BEEN WRITTEN IN FORTRAN IV FOR USE UNDER TSS ON AN IBM 360-67. THE PROGRAM SIMULATES STAND GROWTH BY ANNUAL INCREMENTS FOR THE 13 TREE SPECIES OF THE NORTHERN HARDWOOD FOREST TYPE FOUND ON THE USFS HUBBARD BROOK EXPERIMENTAL WATERSHED AT WEST THORNTON, N.H. THREE TYPICAL SIMULATION EXPERIMENTS THAT MAY BE PERFORMED QUITE EASILY BY JABOWA ARE SHOWN, AND THE SOURCE PROGRAM IS LISTED SO THAT THE USER MAY QUICKLY DESIGN OTHERS WHILE AT A REMOTE COMPUTER TERMINAL ISUCH AS AN IBM 2741).

COMPUTERIZED SIMULATION# FORESTRY# IBM SYSTEM/ 360

73H-00-5072

RI-3203. BOUNDARY DETECTION OF RADIOGRAPHIC IMAGES BY A THRESHOLD METHOD. DECEMBER 1970. CHOW, CK# KANEKO, T I3M YORKTOWN HEIGHTS, RESEARCH RI-3203

3)P. A THRESHOLD METHOD BASED ON STATISTICAL PRINCIPLES AND HEURISTICS IS DEVELOPED TO DETECT BOUNDARIES IN RADIOGRAPHIC IMAGES. EACH LOCAL REGION OF THE IMAGE CONTAINING A PORTION OF BOUNDARY IS CHARACTERIZED BY A MIXTURE OF THO (NORMAL) INTENSITY DISTRIBUTIONS. THRESHOLDS ARE SET DYNAMICALLY ACCORDING TO LOCAL, RATHER THAN GLOBAL, CHARACTERISTICS ESTIMATED FROM THE DBSERVED INTENSITY HISTOGRAMS. A PROGRAM TO IMPLEMENT THE METHOD HAS BEEN WRITTEN. EXPERIMENTAL RESULTS ON CARDIOANGIOGRAMS ARE PRESENTED TO SUCCESSFULLY DEMONSTRATE THE FEASIBILITY OF THE METHOD FOR LOW QUALITY IMAGES. THE METHOD IS INSENSITIVE TO SHADING OR GRADUALLY VARYING INTERFERENCE.

PATTERN RECOGNITION# RADIOGRAPHY# BOUNDARIES

N70-15687. A MODEL ATMOSPHERE FOR EARTH RESOURCES APPLICATIONS. NOVEMBER 1969. PITTS, DE# KYLE, KO MANNED SPACECRAFT CENTER, HOUSTON, TEX. N70-15687# NASA-TMX-58033

49P. A COMPUTER SUBPROGRAM SET IS DESCRIBED WHICH PERMITS
THE USE OF RADIOSONDE DATA TO PROVIDE MODEL ATMOSPHERE
DATA FOR EARTH RESOURCES APPLICATIONS. ALL EARTH
ESQURCES RENDTE-SENSING TECHNIQUES ARE AFFECTED BY THE
ATMOSPHERE LYING BETWEEN THE TARGET AND THE SENSOR. THE
COMPUTER PROGRAM PRESENTED IN THIS REPORT OFFERS A METHOD
OF NUMERICAL USE OF RADIOSONDE DATA SO THAT ATMOSPHERIC
EFFECTS MAY BE ASSESSED AND POSSIBLY REMOVED FROM THE SIGNAL.

REMOTE SENSING# RADIOSONDES# COMPUTER PROGRAMS ATMOSPHERES

73W-00-5081

N70-16407. FURTHER INFRARED SYSTEMS STUDIES FOR THE EARTH RESOURCES PROGRAM. FINAL REPORT. DECEMBER 1969. BRAITHWAITE, J# LARSEN, L# WORK, E. MICHIGAN UNIV., ANN ARBOR N70-16407# NASA-CR-102111# WRL-2122-14-F

77P. THIS REPORT DISCUSSES THE DEVELOPMENT OF DESIGN CONCEPTS AND SPECIFICATIONS FOR MULTISPECTRAL SCANNERS FOR USE FROM ORBIT AS PART OF THE EARTH RESOURCES PROGRAM. THE PERFORMANCE OF SUCH SCANNERS MAY BE LIMITED BY COMPONENT PERFORMANCE, BY WEIGHT AND POWER ALLOCATIONS, AND BY THE DATA RATES AND BULKS WHICH CAN BE RETURNED TO THE GROUND. SUME OF THE MORE CRITICAL OF THESE FACTORS HAVE BEEN EXAMINED IN DETAIL, AND METHODS OF DEALING WITH THEM HAVE BEEN INVESTIGATED. IT IS SHOWN, FOR EXAMPLE, THAT A 7 CHANNEL SCANNER WITH A 200 FT GROUND RESOLUTION IS FEASIBLE, BUT THAT THE SWATH WIDTH WOULD BE LIMITED TO LESS THAN 20 MILES UNLESS TELEMETRY BANDWIDTHS LARGER THAN THOSE IN CURRENT USE ARE MADE AVAILABLE.

INFRARED SCANNERS# INFRARED DETECTORS# TELEMETRY

73W-00-5082

N70-17026 THRU N70-17034. PROCEEDINGS OF THE WINTER STUDY ON USES OF MANNED SPACE FLIGHT, 1975-1985. VOLUME 2: APPENDIXES. 1969. NASA, WASHINGTON, D.C. N70-17026 THRU N70-17034# NASA-SP-196-VOL-2

177P. CONTENTS: 1. MANNED SPACE-FLIGHT CAPABILITIES, APPENDIX A (SEE N70-17027), 2. LOW COST SPACE TRANSPORTATION. APPENDIX B (SEE N70-17028), 3. THE LUNAR PROGRAM, APPENDIX C (SEE N70-17029), 4. ASTRONOMY, APPENDIX D (SEE N70-17030), 5. SPACE PHYSICS, APPENDIX E ISEE N70-17031). 6. EARTH SCIENCES AND APPLICATIONS, APPENDIX F (SEE N70-17032), 7. LIFE SCIENCES, APPENDIX G ISEE N70-17033), 8. MATERIALS SCIENCE AND PROCESSING IN SPACE, APPENDIX H (SEE N70-17034).

MANNED SPACE FLIGHT# ASTRONOMY# EARTH SCIENCES

73W-00-50B3

N70-17429. EARTH RESOURCES DATA PROCESSING CENTER STUDY. VJLUME 2: STUDY FINDINGS. SEPTEMBER 1969. FAIRCHILD CAMERA AND INSTRUMENT CORP., SYDSSET, N.Y. N70-17429# NASA-CR-107887# ED-AA-113

338P. A REVIEW IS PRESENTED OF THE BASIC OBJECTIVES AND REQUIREMENTS OF THE MAJOR GOVERNMENT SUPPORT AGENCIES AND EXPERIMENTER GROUPS ASSOCIATED WITH THE EARTH RESOURCES PROGRAM, AS WELL AS THE SENSOR AND AUXILIARY EQUIPMENTS ASSOCIATED WITH THE MANNED SPACECRAFT CENTER AIRCRAFT SURVEY PROGRAM. DATA FLOW MODELS ARE DEVELOPED WHICH DEPICT THE PROCESSING OF TYPICAL DATA FROM EACH SENSOR CLASS THROUGH THE ASSOCIATED MSC GROUND DATA PROCESSING FACILITY. FJTURE TRENDS IN THE EARTH RESOURCES PROGRAM ARE DELINEATED, WITH EMPHASIS ON THE HOUSTON AIRCRAFT PROGRAM, ITS EVENTUAL COORDINATION WITH SPACECRAFT COLLECTION ACTIVITIES, AND ITS ATTENDANT GROUND DATA PROCESSING REQUIREMENTS. PRIDRITY TECHNIQUES, SYSTEM AND FACILITIES GROWTH REQUIREMENTS ARE IDENTIFIED. DEVELOPMENT PLANS ARE PRESENTED TO PERMIT THE TIMELY RESEARCH, DEVELOPMENT, CONSTRUCTION AND TEST OF REQUIRED PROCESSING EQUIPMENT AND FACILITIES. RECOMMENDATIONS AND CONCLUSIONS CONCERNING FUTURE EFFORT AIMED AT FURTHERING THE GROWTH OF THE EARTH RESOURCES DATA PROCESSING FACILITIES AT THE MANNED SPACECRAFT CENTER ARE DEVELOPED.

DATA PROCESSING# REMOTE SENSING# RESOURCES

73W-00-5084

N70-17721. EARTH RESOURCES DATA PROCESSING CENTER STUDY. VOLUME 1: PROGRAM SUMMARY. FINAL REPORT. SEPTEMBER 1969. FAIRCHILD CAMERA AND INSTRUMENT CORP., SYOSETT, N.Y. N70-17721# NASA-CR-107884# NASW-1811# ED-AA-113

47P. THE RESULTS OF A COMPREHENSIVE STUDY AIMED AT ASSISTING NASA HEADQUARTERS IN ITS TASK OF PLANNING R AND D PROGRAMS AND DEVELOPING AN OPERATIONAL CAPABILITY TO ACQUIRE, PROCESS AND DISSEMINATE REMOTELY SENSED EARTH RESOURCES DATA TO APPRUPRIATE EXPERIMENTERS AND USERS ARE DESCRIBED. A REVIEW IS PRESENTED OF THE BASIC OBJECTIVES AND REQUIREMENTS OF THE MAJOR GOVERNMENT SUPPORT AGENCIES AND EXPERIMENTER GROUPS ASSOCIATED WITH THE EARTH RESOURCES PROGRAM. FUTURE TENDS IN THE EARTH RESOURCES PROGRAM ARE DELINEATED, WITH EMPHASIS ON THE HOUSTON AIRCRAFT PROGRAM, ITS EVENTUAL COURDINATION WITH SPACECRAFT COLLECTION ACTIVITIES, AND ITS ATTENDANT GROUND DATA PROCESSING REQUIREMENTS.
RECOMMENDATIONS AND CONCLUSIONS CONCERNING FUTURE EFFORT AIMED AT FURTHERING THE GROWTH OF THE EARTH RESOURCES DATA PROCESSING FACILITIES AT THE MANNED SPACECRAFT CENTER ARE DEVELOPED.

DATA PROCESSING# REMOTE SENSING

N70-21089. MANAGEMENT, PROCESSING AND DISSEMINATION OF SENSORY DATA FOR THE EARTH RESOURCE TECHNOLOGY SATELLITE. DECEMBER 1969. MFRRITT, ES# AHLIN, WC# GOLDSHLAK, L ALIED RESEARCH ASSOCIATES, INC., CONCORD, MASS. N70-21089# NASA-CR-109081# REPT-9G45-43 TR-11# NAS5-10343

135P. THE ELEMENTS OF A DATA CENTER FOR THE MANAGEMENT, PROCESSING AND DISSEMINATION OF PHOTOGRAPHIC PRODUCTS GENERATED BY THE EARTH RESOURCE TECHNOLOGY SATELLITE (ERTS) IS SPECIFIED. IN ADDITION TO THE SPECIFICATION OF FUNCTIONAL ELEMENTS, THIS STUDY EXAMINES AND PROVIDES SPECIFICATION OF: DATA RATES AND DATA FLOW TIME LINES; FACILITY, EQUIPMENT AND MATERIAL REQUIREMENTS FOR A ONE YEAR OPERATION OVER THE CONTINENTAL UNITED STATES; AND SOME PRELIMINARY ANALYSES OF PHOTOGRAPHIC PROCESSING AND MATERIALS THAT CAN INFLUENCE PICTURE ELEMENT ACCURACIES. A PLAN IS PRESENTED FOR THE FURTHER IMPLEMENTATION STEPS NECESSARY TO PROVIDE AN OPERATING DATA CENTER IN TIME FOR AN ERTS LAUNCH IN EARLY 1972.

DATA PROCESSING# PHOTOGRAPHY# REMOTE SENSING

73W-00-5086

N70-21145. SPATIAL SURVEILLANCE OF NATURAL RESOURCES. JANUARY 1969.
RAITT, DI
RJYAL AIRCRAFT ESTAB., FARNBORDUGH, ENGLAND
N70-21145# RAE-LIB-BIB-308

23P. THIS SELECTIVE BIBLIDGRAPHY COVERS THE PERIOD 1944 TO DATE. IN GENERAL THE COVERAGE IS OF THE FOLLOWING FIELDS: MINERAL DEPOSITS, AGRICULTURE (VEGETATION, CROPS, SOILS), FORESTRY (DISEASE, FIRE), WILDLIFE, LIVESTOCK AND WATER RESOURCES. A SELECT LIST OF REFERENCES ON APPLICATIONS SATELLITES IS AUSD INCLUDED.

REMOTE SENSING# ARTIFICIAL SATELLITES

73W-00-5087

N70-22676. APOLLO 9 MULTISPECTRAL PHOTOGRAPHIC INFORMATION. APRIL 1970. KALTENBACK, JL MANNED SPACECRAFT CENTER, HOUSTON, TEX. N70-22676# NASA-IMX-1957# S-226

33P. THE NASA EXPERIMENT SO65 MULTISPECTRAL PHOTOGRAPHY, FLOWN ON THE APOLLO 9 MISSION PROVIDED ORBITAL PHOTOGRAPHY OF THE EARTH. THE PHOTOGRAPHY WAS TAKEN BY FOUR CAMERAS, EACH OF WHICH CONTAINED A DIFFERENT FILM FILTER COMBINATION. SPECIAL COLOR VIEWING AND REPRODUCTION SYSTEMS ARE BEING USED TO DETERMINE THE USE AND VALUE OF M.'LTISPECTRAL PHOTOGRAPHY TO THE EARTH RESDURCES DISCIPLINES AND TO APPLY THESE FINDINGS TO THE DESIGN OF FUTURE IMAGING SYSTEMS.

REMOTE SENSING# PHOTOGRAPHY# FILMS# FILTERS

734-00-5088

N70-23540. USEFUL APPLICATIONS OF EARTH ORIENTED SATELLITES: SYSTEMS FOR REMOTE SENSING INFORMATION AND DISTRIBUTION. 1969.
NATIONAL ACADEMY OF SCIENCES, WASHINGTON, D.C. N70-23540# NASA-CR-109352

99P. THE PROBLEMS AND POTENTIAL FOR THE USE OF DATA GATHERED BY REMOTE SENSING OR DISTRIBUTED COLLECTION DEVICES WITH COLLECTION FROM SATELLITE OR AIRCRAFT ARE CONSIDERED. THE CONSIDERATIONS INCLUDED THE COLLECTION, PROCESSING. STORAGE. AND DISTRIBUTION OF THESE DATA IN BOTH PROCESSED AND RAW FORM. IN GENERAL, THE PROBLEMS CONSIDERED FOCUSED PRIMARILY ON THOSE DATA PROCESSING ASPECTS OF THE TOTAL SYSTEM THAT LIE BETWEEN THE RECEIVING GROUND STATION AND THE USER. INEVITABLY, HOWEVER, BROADER JUDGMENTS WERE REACHED ON OVERALL SYSTEMS ASPECTS, PARTLY BECAUSE OF THE NEED FOR MISSIUN PLANNING AND CONTROL IN THE DATA PROCESSING SYSTEM, PARTLY BECAUSE OF THE INEVITABLE NEED TO DESIGNATE OPERATIONAL PRIORITIES FOR THE COLLECTION AND DISSEMINATION OF DATA.

REMUTE SENSING# ARTIFICIAL SATELLITES

73W-00-5089

N70-31579. SPACE STATION: KEY TO THE FUTURE. 1970. NASA, WASHINGTON, D.C. N70-31579# NASA-EP-75

42P. THE SPACE STATION AND SOME OF ITS FUTURE BENEFITS ARE DESCRIBED IN NONTECHNICAL TERMS TAKEN FROM INFORMATION THAT HAS BEEN PRESENTED AT TECHNICAL CONFERENCES.
POSSIBLE BENEFITS ARE: (1) DETECTION OF LARGE SCALE DYNAMIC EARTH PHENONMENA SUCH AS CHANGES IN SNOW PACK, AIR AND WATER POLLUTION, AND OCCURRENCES IN REMOTE AREAS: (2) MAINTENANCE OF METEOROLOGICAL SATELLITES: (3) PROSPECTING FOR MINERAL RESOURCES: (4) CROP CONDITION IDENTIFICATION: AND (5) LOCATING AREAS OF SUBTERRANEAN WATER SOURCES. SPACE STATION CONFIGURATIONS AND CREW REQUIREMENTS ARE DISCUSSED.

SPACE STATIONS# METEOROLOGICAL SATELLITES EXPLORATION# POLLUTION# WATER RESOURCES

73W-00-5090

N70-35895. REMOTE SENSING: A SURVEY REPORT. AUGUST 1967. CRAIB, KB MANNED SPACECRAFT CENTER, HOUSTON, TEX. N70-35895# NASA-TMX-65067# MSC-CA-R-67-2

132P. A SURVEY OF REMOTE SENSING TECHNIQUES AND MEASUREMENT SYSTEMS IS CONSIDERED BY AREA OF APPLICATION AS EXTRATERRESTRIAL, ATMOSPHERIC, AND GEOPHYSICAL. BASIC EVERGY EQUATIONS, INTERACTIONS, AND ENVIRONMENTAL RESTRICTIONS ARE, REVIEWED. SENSOR SYSTEMS USED IN EACH AREA ARE PRESENTED, DATA SAMPLES ARE SHOWN, AND INFORMATION CONTENT IS DISCUSSED. THE ADVANTAGES PROVIDED BY MULTISPECTRAL SCANNING FROM HIGH ALTITUDE OBSERVATION PLAIFORMS ARE SHOWN.

REMOTE SENSING# ARTIFICIAL SATELLITES

AD699620. SATELLITE IMAGERY OF THE EARTH. JULY 1969. MERIFIELD, PM# CRONIN, J# FOSHEE, SJ# NEAL, JT AIR FORCE CAMBRIDGE RESEARCH LABS., BEDFORD, MASS. AD699620# AFCRL-70-0037

14P. REPRINTED FROM "PHOTOGRAMMETRIC ENGINEERING", V35, N7, P654-668, JULY 1969.
PHOTOGRAPHY OF THE EARTH FROM SPACECRAFT HAS APPLICATION TO BOTH ATMOSPHERIC AND EARTH SCIENCES. GEMINI AND APOLLO PHOTOGRAPHS HAVE FURNISHED INFORMATION ON SEA SURFACE ROUGHNESS, AREAS OF POTENTIAL UPWELLING AND OCEANIC CURRENT SYSTEMS. REGIONAL GEOLOGIC STRUCTURES AND GEOMORPHOLOGIC FEATURES ARE ALSO RECORDED IN ORBITAL PHOTOGRAPHS. INFRARED SATELLITE IMAGERY PROVIDES METEOROLOGICAL AND HYDROLOGICAL DATA AND IS POTENTIALLY USEFUL FOR LOCATING FRESH WATER SPRINGS ALONG COASTAL AREAS, SOURCES OF GEOTHERMAL POWER AND VOLCANIC ACTIVITY. GROUND AND AIRBORNE SURVEYS ARE BEING UNDERTAKEN TO CREATE A BASIS FOR THE INTERPRETATION OF DATA OBTAINED FROM FUTURE SATELLITE SYSTEMS.

EARTH /PLANET/# METEORULOGICAL SATELLITES# HYDROLOGY INFRARED SCANNERS# AERIAL PHOTOGRAPHS

73W-00-5093

N71-29126. EARTH RESOURCES SATELLITES. OCTOBER 1969. ENTRES, SL ROYAL AIRCRAFT ESTAB., FARNBOROUGH, ENGLAND N71-28126# RAE-TR-69219

88P. OPERATIONAL AND TECHNICAL ASPECTS OF EARTH RESOURCES SATELLITE PROJECTS ARE DISCUSSED. TWO BASIC SURVEYING METHODS ARE CONSIDERED: BY REMOTE SENSING SATELLITES AND BY MEASUREMENT COLLECTING SATELLITES. ATTENTION IS CONCENTRATED ON PROBLEMS OF ORBITAL SENSING OF ELECTROMAGNETIC EARTH RADIANCE IN THE VISUAL, INFRARED AND MICROWAVE REGIONS. THE PRINCIPLES OF POLYCHROMATIC MEASUREMENT OF EARTH SURFACE RADIATION SIGNATURES AND THEIR ANALYSIS AS WELL AS SOME MATTERS CONNECTED WITH THE DATA HANDLING OF THE SENSED INFORMATION ARE DISCUSSED. RECOMMENDATIONS ARE MADE FOR SOME USEFUL FIELDS OF STUDY AND FOR COMPLEMENTARY EXPERIMENTAL WORK. A LIST OF URGANIZATIONS ENGAGED IN RELEVANT BRANCHES OF SCIENCE AND TECHNOLOGY TOGETHER WITH CLASSIFIED BIBLIOGRAPHIC REFERENCES ARE APPENDED.

ARTIFICIAL SATELLITES# REMOTE SENSING# RESOURCES TERRESTRIAL RADIATION

73H-00-5094

N70-40086. REMOTE SENSING. MAY 1970. SVENNSON, H. AIR FORCE CAMBRIDGE RESEARCH LABS., BEDFORD, MASS. N70-40086# AD707824# AFCRL-70-0277

IDP. THE PARTS OF THE ELECTROMAGNETIC SPECTRUM ARE DISCUSSED, WITH THE TYPE (S) OF SENSOR (S) REQUIRED TO RECORD ENERGY IN EACH PART. A REVIEW IS GIVEN OF THE CLASSES OF AIRBORNE (AND SATELLITE) REMOTE SENSOR DATA WHICH ARE AVAILABLE TO GEOSCIENTISTS. DIFFERENT TYPES OF REMOTE SENSOR DATA ARE DESCRIBED AND EXAMPLES PROVIDED, INCLUDING PANCHRONATIC, INFRARED, COLOR, AND COLOR INFRARED AERIAL PHOTOGRAPHY (KULLABERG, SWEDEN): MULTISPECTRAL AERIAL PHOTOGRAPHY (WITH IMPORTANCE OF OPTIMUM FILM/FILTER COMBINATION FOR SPECIFIC PHENOMENA): AIRBORNE THERMAL INFRARED IMAGERY (KULLABERG, SWEDEN AND SURTSEY, ICELAND): SIDE LOOKING AIRBORNE RADAR (TUSKAHOMA SYNCLINE, OKLAHOMA): AND RADIO SOUNDING OF GLACIAL ICE (ANTARCTICA). THE PROJECTED FUTURE INCREASE IN AMOUNT OF REMOTE SENSUR DATA WILL REQUIRE COMPUTER PROCESSING TECHNIQUES, ALTHOUGH MAN WILL SERVE THE MOST IMPORTANT ROLE IN THE ANALYSIS AND USE OF REMOTE SENSOR INFORMATION OF THE EARTHS SURFACE.

REMOTE SENSING# ELECTROMAGNETIC SPECTRA ARTIFICIAL SATELLITES# INFRARED DETECTION AERIAL PHOTOGRAPHY# SIDE LUOKING RADAR

734-00-5095

N70-25981. ECOLOGICAL SURVEYS FROM SPACE. 1970. N4SA, WASHINSTUN, D.C. N70-26981# NASA-SP-230

8)P. THE USE OF SPACECRAFT FOR EARTH RESOURCES SURVEYS IS DISCUSSED FOR SEVEN DIFFERENT DISCIPLINES, WHICH INCLUDE GEOGRAPHY, ASRICULTURE, FORESTRY, GEOLOGY, HYDROLOGY, OCEANDGRAPHY, AND CARTOGRAPHY. PHOTOGRAPHS TAKEN WITH DIFFERENT FILTERS AND TYPES OF FILM FROM THE GEMINI AND APOLLO FLIGHTS ILLUSTRATE THE MAN MADE CHANGES OF THE EARTH'S SURFACE AS WELL AS NATURAL RESOURCES.

REMOTE SENSING# ARTIFICIAL SATELLITES# ECOLOGY

73W-00-5096

N69-40391. MODIFICATION OF 16.5 GHZ SIDE LOOKING RADAR SYSTEM FOR NASA C-130 AIRCRAFT. FINAL REPORT. *
SEPTEMBER 1969.
MCCAIN, RE
PHILCO FORD CORP., NEWPORT BEACH, CALIF.
N59-40391# NASA-CR-101746# NAS9-9116# PUBL-U-4710

2DP. TECHNICAL DETAILS ARE GIVEN ON THE MODIFICATIONS MADE.

TO THE SIDE LOOKING RADAR DESIGNED FOR INSTALLATION IN A
C-13G AIRCRAFT IN SUPPORT OF THE NASA EARTH RESOURCES
PROGRAM. THE DELIVERED RADAR SYSTEM CONSISTS OF A
MODIFIED AN/DPD-2 RADAR ELECTRONIC ASSEMBLY, MULTIPLE
POLARIZED ANTENNA, CONTROL PANEL, AND ANTENNA
PRESSURIZATION SYSTEM. SPECIAL TEST EQUIPMENT IN THE FORM
OF A SYSTEM PREFLIGHT CALIBRATOR AND RECORDER
CALIBRATOR WAS FABRICATED AND DELIVERED TO SUPPORT THE
ALIGNMENT, CHECKOUT, AND CALIBRATION OF THE RADAR SYSTEM. IN
ADDITION, COMPONENT AND ASSEMBLY SPARES WERE PROCURED,
FABRICATED, AND DELIVERED TO SUPPORT THE RADAR SYSTEM
DURING THE FLIGHT TEST PROGRAM.

SIDE LOOKING RADAR# INSTALLING# RELIABILITY

RC-3115. THREE DIMENSIONAL TRANSIENT, SATURATED-UNSATURATED FLOM IN A GROUND WATER BASIN. OCTOBER 1970. FREEZE, RA 13M YORKTOWN HEIGHTS, RESEARCH RC-3115

43P. THE REQUIREMENTS OF WATER RESOURCE PLANNING HAVE MADE SIMULATION OF THE HYDROLOGIC RESPONSE OF GROUND WATER BASINS A TECHNIQUE OF INCREASING IMPORTANCE. IN THIS REPORT A NUMERICAL MATHEMATICAL MODEL IS PRESENTED THAT ATTEMPTS TO BRING THE STATE OF THE SCIENCE ONE STEP CLOSER TO HYDROGEOLOGICAL REALITY.

GROUND WATER# HYDROGEOLOGY# WATER RESOURCES MATHEMATICAL MODELS

73W-00-5098

AD692627. USE OF THE PROPERTIES OF THE SOIL COVER IN THE INTERPRETATION OF GROUND WATER ON AERIAL PHOTOGRAPHS. 1962. KUZNETSOV, VV ARMY FOREIGN SCIENCE AND TECH. CENTER, WASHINGTON, D.C. AD692627# N70-11024# FSTC-HT-23-393-68

9P. A STUDY WAS MADE OF THE RELATIONSHIPS BETWEEN THE SOIL COVER AND GROUND WATER USING AERIAL PHOTOGRAPHS TAKEN IN DIFFERENT LANDSCAPE AREAS IN THE NORTHERN CASPIAN LOWLAND AND TURKEMENIA. THE WORK WAS DONE IN KEY AREAS TOGETHER WITH GEOBOTANICAL, GEOMORPHOLOGICAL AND HYDROLOGICAL STUDIES. IT WAS FOUND THAT A STUDY OF THE SUIL COVER ITHICKNESS OF GENETIC HORIZONS, COLOR, MOISTURE CONTENT, HUMUS CONTENT, CONTENT OF SALTS, ETC., AS WELL AS THE CHARACTERISTICS OF THE STRUCTURE AND MECHANICAL COMPOSITION OF THE -SOILS) GIVES INFORMATION ON THE CHARACTER AND DEPTH UF GROUND WATER. SOILS BENEATH WHICH FRESH GROUND WATER IS SITUATED CLOSE TO THE SURFACE APPEAR ON AERIAL PHOTOGRAPHS IN DARK TONES.

GROUND WATER# SOILS# AERIAL PHOTOGRAPHY

1 73W-00-5099 -

73W 05099. CONSIDERATIONS IN CHOOSING THE DRBIT FOR AN EARTH RESOURCES SURVEY SATELLITE. JULY 1969. OTTERMAN, J# BACHOFER, BT GENERAL ELECTRIC CO., VALLEY FORGE, PA.

13P. THE ORBIT PARAMETERS BEST SUITED FOR EARTH RESOURCES SURVEY SATELLITES HAVE BEEN AND WILL CONTINUE TO BE THE SUBJECT OF MANY STUDIES. THIS PAPER ADDRESSES ITSELF TO THE SELECTION OF ONE OF THE IMPORTANT ORBITAL ELEMENTS FOR THE EARTH RESOURCES TECHNOLOGY SATELLITE (ERTS) MISSION - THE LOCAL TIME AT THE ASCENDING NODE.

ARTIFICIAL SATELLITES# REMOTE SENSING# ORBITS

73W-00-5100

N70-14447. FEASIBILITY STUDY OF MICROWAVE RADIOMETRIC
REMOTE SENSING. VOLUME 2: COMPUTER PRINTOUTS. JANUARY 1969.
PJRTER, RA# FLORANCE, ET
ELECTRONICS RESEARCH CENTER, CAMBRIDGE, MASS.
N70-14447# NASA-CR-86297# NAS12-629

249P. PRINTOUTS OF COMPUTED TARGET AND BACKGROUND BRIGHTNESS TEMPERATURES AND CONTRASTS ARE GIVEN, AS WELL AS PRINTOUTS OF COMPUTED SKY BRIGHTNESS TEMPERATURES AND ATMOSPHERIC TRANSMISSION FACTORS.

REMOTE SENSING# PRINTOUTS# SKY BRIGHTNESS

73H-00-5101

N70-14448. FEASIBILITY STUDY OF MICROWAVE RADIOMETRIC REMOTE SENSING. VOLUME 3: ADDITIONAL PLOTS AND PRINTOUTS. JANUARY 1969.
PORTER, RAW FLORANCE, ET ELECTRONICS RESEARCH CENTER, CAMBRIDGE, MASS. N70-14448# NASA-CR-86298# NAS12-629

177P. PRINTOUTS OF SAMPLE MEASURED APPARENT TEMPERATURES AND DERIVED BRIGHTNESS TEMPERATURES, AND THEORETICAL EMISSIVITY AND BRIGHTNESS TEMPERATURE FOR FRESH AND SEA WATER ARE GIVEN. PLOTTED THEORETICAL BRIGHTNESS TEMPERATURES OF SEA WATER IN THE RANGE OF 17 TO 220 GHZ, AND THEORETICAL BRIGHTNESS TEMPERATURES OF FRESH WATER IN THE RANGE OF 1 TO 220 GHZ ARE ALSO GIVEN.

REMOTE SENSING# WATER# SEA WATER# FRESH WATER PRINTOUTS

73W-00-5192

N70-17428. OPTIMIZATION OF MICROWAVE RADIOMETRIC SYSTEMS FOR EARTH RESOURCE SURVEYS. JUNE 1969. EMEN, HI# BARRETT, AH EWEN KNIGHT CORP., EAST NATICK, MASS. N70-17428# NASA-CR-86316# NAS12-2047

177P. PASSIVE MICROWAVE SENSING PROJECTS INSTRUMENTATION. AND TECHNIQUES ARE DISCUSSED. STUDIES AND ANALYTICAL MODELS ARE REVIEWED IN THE AREAS OF OCEANOGRAPHY AND MARINE TECHNOLOGY, GEOLOGY AND HYDROLOGY, GEOGRAPHY AND CARTOGRAPHY, AND AGRICULTURE AND FORESTRY. PRESENT GROUND BASED AND AIRCRAFT MEASUREMENTS ARE DESCRIBED AND INSTRUMENT TECHNOLOGY REQUIREMENTS ARE ANALYZED. ALRBORNE PARAMETRIC DISPLAYS WITH ATTENDANT LABORIOUS DATA REDUCTION REQUIREMENTS AND INEFFECTIVE USE OF AIRCRAFT FLIGHT TIME REDUCE THIS FORM OF DATA DISPLAY TO MINIMAL USE. AIRCRAFT IMAGERY TECHNIQUES ARE CONSIDERED TO BE NOT UPTIMUM. IT IS SUGGESTED THAT AN EXPERIMENTAL INVESTIGATION OF THE POTENTIAL BENEFITS OF PASSIVE REMOTE SENSING BE MADE, UTILIZING MORE DIRECT PARTICIPATION BY USERS IN THE PLANNING AND EXECUTION PHASES. IT IS FELT THAT MICROWAVE ANTENNA SIZE REQUIREMENTS ARE INCOMPATIBLE WITH PRESENT DAY JET AND PISTON TYPE AIRCRAFT, BUT ARE COMPATIBLE WITH SATELLITES. AN ENGINEERING PLAN IS DUTLINE FOR THE DEVELOPMENT OF INSTRUMENT TECHNOLOGY, BASED ON THE BUILDING BLOCK APPROACH.

REMOTE SENSING# MICROWAVES# OCEANOGRAPHY
HYDROLOGY# GEOLOGY# FORESTRY# MAPPING

N70-27083. AN ANALYSIS OF AIRBORNE MICROWAVE RADIOMETRIC DATA. FEBRUARY 1970. RADIOMETRIC TECH., INC., CAMBRIDGE, MASS. N70-27083# NASA-CR-109846# NAS5-11685

130P. DATA FROM MEASUREMENTS TAKEN IN 1967, 1968, AND 1969 OVER OCEAN AND LAND AREAS BY A 19.35 GHZ PHASED ARRAY SCANNER ABOARD THE NASA CUNVAIR 990 ARE ANALYZED. OF PARTICULAR INTEREST ARE DATA WHICH RELATE TO THE RADIATION EMITTED AND AFFECTED BY CLOUDS. OTHER DATA FROM SENSORS MEASURING ENERGY AT IR WAVELENGTHS, TEMPERATURE IN SITU. AND, FOR THE FLIGHTS IN 1969. ENERGY AT 9.3 GHZ, ARE UTILIZED TO RECONSTRUCT ATMOSPHERIC, SURFACE, AND CLOUD CHARACTERISTICS. THEORETICAL BRIGHTNESS TEMPERATURES DERIVED FROM CLOUD MODELS, CONSISTENT WITH THE PHYSICAL DATA AVAILABLE, ARE IN GENERAL AGREEMENT WITH THE BRIGHTNESS TEMPERATURES OBSERVED OVER OCEAN AREAS. ALTHOUGH A SOMEWHAT LIMITED EFFECT IS EVIDENCED BY CLOUDS OVER DRY BARE SOIL AND VESETATION AREAS, A REASONABLY PRONOUNCED EFFECT APPEARS POSSIBLE OVER MOIST SOILS. ANALYSIS OF THUSE CASES IN WHICH COMPUTED BRIGHTNESS TEMPERATURES DO NOT MATCH THE OBSERVED BRIGHTNESS TEMPERATURES INDICATES EITHER: (1) THE EXISTENCE OF CLOUD DROPLETS LARGER THAN CAN BE TREATED SUCCESSFULLY BY THE SIMPLE RAYLEIGH THEORY UTILIZED: OR (2) THE INCOMPLETENESS OF THE CLOUD MODELS THEMSELVES.

ATRBORNE DETECTORS# MICROWAVES# RADIOMETRY PHASED ARRAYS# CLOUDS /METEOROLOGY/

73H-00-5154

N70-32931. PHENOMENA AND PROPERTIES OF GEOLOGIC MATERIALS AFFECTING MICROWAVES: A REVIEW. APRIL 1970. OBERSTE-LEHN, D STANFORD UNIV., CALLE. N70-32931# NASA-CR-108547# NAS9-7313# SU-TR-70-10

72P. A LITERATURE SEARCH MADE ON MICROWAVE REMOTE SENSING INCLUDED MATERIAL ON ELECTROMAGNETIC THEORY, PARAMETERS AFFECTING PASSIVE MICROWAVE SYSTEMS, AND PROPERTIES OF NATURAL OCCURRING MATERIALS. SOME RESULTS AND CONCLUSIONS REACHED WERE: (1) DATA ON ELECTRIC AND THERMAL PROPERTIES OF MATERIALS ARE LACKING IN QUALITY AND QUANTITY: (2) SYSTEMATIC ANALYSES ARE NEEDED OF PARAMETERS IN THE MICROWAVE PORTION OF THE SPECTRUM UNDER CONDITIONS THAT WOULD MAKE THE DATA USEFUL FOR REMOTE SENSING PURPOSES: (3) THE COMPLEX COMPOSITIONAL, STRUCTURAL, AND TEMPORALLY DEPENDENT MAKEUP OF THE NATURAL ENVIRONMENT SUGGESTS THAT EVEN A FUNDAMENTALLY SOUND KNOWLEDGE OF ELEMENTAL INTERACTIONS WITH ELECTROMAGNETIC RADIATION IS PROBABLY INSUFFICIENT TO COMPLETELY SOLVE REAL WORLD PROBLEMS: AND (4) THE EMPIRICAL APPROACH OF MAKING PARAMETRIC MEASUREMENTS UNDER CAREFULLY SELECTED FIELD CONDITIONS MAY PROVIDE BETTER INSIGHT INTO THE CAUSES OF THE-INTEGRATED RESPONSES RECORDED BY PASSIVE MICROWAVE SYSTEMS.

REMOTE SENSING# MICROWAVES# ELECTROMAGNETIC THEORY

N70-38843. HYDROLOGIC INTERPRETATION OF NIMBUS VIDICON IMAGE: GREAT SALT LAKE, UTAH. NOVEMBER 1966. HAHL, DC# HANDY, AH GEOLOGICAL SURVEY, WASHINGTON, D.C. N70-38843# VASA-CR-79887.

6P. THE ANALYSIS WAS MADE TO DETERMINE IF FEATURES OF HYDROLOGIC SIGNIFICANCE WERE VISIBLE AND IDENTIFIABLE. THE FEATURES THAT ARE POINTED OUT ON AN ANNOTATED COPY OF THE IMAGE INDICATE SOME OF THE FACTORS THAT ARE REQUIRED TO PRODUCE AN IMAGE. VEGETATION AND GEOLOGY MAY BE RESPONSIBLE FOR THE DELINEATION OR LACK OF DELINEATION OF SOME FEATURES. DEPTH IS NOT CONSIDERED A FACTOR IN PRODUCING AN IMAGE. THE IMPLICATIONS OF USING THE ADVANCED VIDICON CAMERA SYSTEM IN THE FIELD OF HYDROLOGY ARE ASSESSED.

HYDROLOGY# VIDICONS# 1MAGES# REMOTE SENSING

73W-00-5106

N70-40343. NUKLEONIKA, VOLUME 13, NO. 4-5, P361-590, 1968. CDMMERCE DEPT. N70-40343# AEC-TR-6931/4-5# TT-68-50011/4-5

229P. PAPERS PRESENTED INCLUDE: DETERMINATION OF MAIN COMPONENTS IN ORES BY RADIOMETRIC METHODS, PULSED NEUTRON SOURCE AND BORE HOLE FAST NEUTRON GENERATOR DESIGN. RADIUMETRIC MEASUREMENT OF FILTER TUBE DEPTH IN BORE HOLES. ENERGY DISTRIBUTION OF SCATTERED GAMMA RAYS IN HATURAL GAMMA LIGGING. ELIMINATION OF CHEMICAL COMPOSITION EFFECTS OF ROCKS ON GAMMA-GAMMA DENSITY LOGGING, APPLICATIONS OF ISOTOPIC METHODS FOR DETERMINING PHYSICAL PROPERTIES OF SUILS IN GEDTECHNICAL CROSS SECTION STRUCTURE: AND THE USE OF TRITIUM IN HYGROGEOLOGICAL STUDIES. ALSO DISCUSSED ARE RADIOMETRIC METHODS FOR STUDYING WATER RESERVOIR BUTTOM TIGHTNESS AND AN INDRGANIC SUBSTANCE IN HARD AND BROWN COALS, SINGLE WELL ISOTOPIC METHODS FOR DRAINING PURPOSES IN A MINE, NUCLEAR MEASUREMENT FOR SOIL MOISTURE AND DENSITY, WELL LOGGING FOR SOLID RAW MATERIAL DEPOSIT DETECTION. AND AVALYSIS OF COPPER AND SILVER IN COPPER ORES BY THE PHOTON ACTIVATION METHOD. A RADIOGRAPHIC PROBE WAS USED TO DETERMINE THE DIRECTION OF GROUND WATER FILTRATION IN DRILL HILES AND THE DIRECTION AND FLOW RATE IN OPEN WATER RESERVOIRS WERE MEASURED. TRACER STUDIES ON MIXING OF WASTE WATERS WITH SURFACE WATERS ARE DESCRIBED.

NEUTRON SOURCES# WELL LOGGING# TRITIUM RADIOGRAPHY# FILTRATION# WATER TREATMENT

73W-00-5167

N71-14697. ANDTATED BIBLIDGRAPHY OF REPORTS, STUDIES, AND INVESTIGATION RELATING TO SATELLITE HYDROLOGY. JULY 1970. BAKER, DR# FLANDERS, AF# FLEMING, M COMMERCE DEPT. N71-14697

32P. THE BIBLINGRAPHY IS UN APPLICATIONS OF SATELLITE DATA
TO HYDROLOGIC PROBLEMS CONFRONTING ESSA'S MISSION.

HYDROLOGY# ARTIFICIAL SATELLITES# BIBLIUGRAPHIES

73W-00-5108

SCI-71-005. CONTINUOUS SYSTEMS SIMULATION BIBLIOGRAPHY. MARCH 1971. IBM WHITE PLAINS, DPD SCI-71-005

19P. THIS BIBLIOGRAPHY REPRESENTS A COMPREHENSIVE LIST OF PAPERS, ARTICLES, AND PUBLICATIONS RELATED TO THE IBM CONTINUOUS SYSTEMS MODELING PROGRAMS AND THEIR APPLICATIONS.

COMPUTERIZED SIMULATION# IBM SYSTEM/ 360# IBM1130 BIBLIOGRAPHIES

N71-14871. ON THE THEORY OF THE PHOTOGRAPHY OF SINGLE AND MULTIPLE COLDRS BY THE INTERFERENCE METHOD. NOVEMBER 1970. LIPPMAN, MG SRUMMAN AFROSPACE CURP., BETHPAGE, N.Y. N71-14871# TR-59

17P. PROFESSOR M.G. LIPPMAN'S INVESTIGATIONS ON COLOR PHOTOGRAPHY, CARRIED OUT BEFORE THE TURN OF THE CENTURY, REPRESENT THE FIRST SUCCESSFUL ATTEMPT TO REPRODUCE COLORS ACCURATELY IN A PHOTOGRAPHIC PROCESS. AS AGAINST THE MODERN PRACTICAL, BUT LESS PERFECI APPROACH, LIPPMAN SUCCEEDED IN CREATING AN ACTUAL COLOR PRESERVATION IN THE PHOTOGRAPHIC EMULSION, BY THE PRODUCTION OF STATIONARY WAVES REPRESENTED BY ALTERNATING DARK AND LIGHT LAYERS WITHIN AND PARALLEL TO THE EMULSION.
THE ARTICLE TRANSLATED HERE FROM THE ORIGINAL FRENCH WRITTEN IN 1894 IS A HISTORICAL ONE. IT DESCRIBES THE FIRST PRACTICAL APPROACH TO COLOR PHOTOGRAPHY; IT MAY ALSO BE CONSIDERED AS THE FIRST ATTEMPT OF CREATING AN IMAGE CLOSELY RESEMBLING THE HOLOGRAPHIC TECHNIQUE DEVELOPED HALF A CENTURY LATER.

COLOR PHOTOGRAPHY# HOLOGRAPHY

73W-00-5115

N71-15409. PHOTOGRAMMETRIC TECHNIQUES APPLICABLE TO EARTH RESOURCES AVALYSES. AUGUST 1971. LARSEN, PA GEORGE C. MARSHALL SPACE FLIGHT CENTER. ALA. N71-15409# NASA-TMX-64546.

65P. THE USES OF PHOTOGRAMMETRY AS A TOOL FOR STUDYING OUR NATURAL RESOURCES AND AS AN AID IN UNDERSTANDING AND DEFINING ENVIRONMENTAL PROBLEMS CONFRONTING THE INHABITANTS OF EARTH ARE DISCUSSED. NUMEROUS APPLICATIONS OF PHOTOGRAMMETRY FROM THE PAST ARE CITED, AND SEVERAL VERY RECENT APPLICATIONS ARE DISCUSSED BRIEFLY. ACTUAL MEASUREMENTS OF PHYSICAL FEATURES OF THE EARTH'S AND MOON'S SURFACES, WHICH WERE MADE PHOTOGRAMMETRIČÁLLY ON STEREOGRAMS PREPARED FROM APOLLO 6 AND APOLLO 8 VERTICAL ORBITAL PHOTOGRAPHS, ARE SHOWN. THE SKYLAB EXPERIMENT S-190. SIX CAMERA MULTISPECTRAL PHOTOGRAPHY, IS DISCUSSED, AND A GRAPHICAL ANALYSIS DEALING WITH THE PERCENTAGE OF GROUND OBSERVABLE BY THE SKYLAB CAMERAS AS A FUNCTION OF CUMULUS CLOUD COVERAGE IS PRESENTED.

PHOTOGRAMMETRY# AERIAL PHOTOGRAPHY# GEOGRAPHY
GEOLOGY# METEOROLOGY

73W-00-5116

N71-14802. THE NIMBUS 4 MICHELSON INTERFEROMETER. DECEMBER 1970. HANEL, RA# SCHLACHMAN, B# RÜGERS, D# VANDUS, DGDDDARD, SPACE FLIGHT CENTER, GREENBELT, MD. 1.71-14802# NASA-TMX-65395# X-620-70-421

33P. THE DESIGN AND PERFORMANCE OF THE MICHELSON INTERFEROMETER. IRIS-D, ARE DESCRIBED, AND THE DESIGN DIFFERENCES WHICH EXIST BETWEEN THE INTERFEROMETERS FLOWN ON NIMBUS 3 AND 4 ARE DISCUSSED. THE PERFORMANCE IS DEMONSTRATED BY EXAMPLES OF SPECTRA OBTAINED WHILE IN EARTH ORBIT.

INTERFEROMETERS# EMISSION SPECTRA

N71-14812. AN OPTICAL INTERFEROMETRIC METHOD TO ELIMINATE THE ATMOSPHERIC DEGRADATION OF RESOLUTION. SEPTEMBER 1970. CURRIE, DG MARYLAND UNIV., COLLEGE PARK N71-14812# AD712717# AFOSR-70-2419TR

8P. THE OBJECTIVE OF THE RESEARCH WAS THE DEVELOPMENT, FABRICATION AND USE OF AN INTERFEROMETER CAPABLE OF MAKING HIGH SPACIAL RESOLUTION MEASUREMENTS THROUGH THE TURBULENT ATMOSPHERE. IN PARTICULAR, A PROTOTYPE OF THE INTERFEROMETER WAS DESIGNED AND FABRICATED, AND THEN TESTED, BOTH IN THE LABORATORY AND ON A TELESCOPE. THE KNOWLEDGE GAINED FROM THE PROTOTYPE (A COUDE MODEL) PERMITTED THE DESIGN OF THE FINAL INTERFEROMETER. THIS INTERFEROMETER (A CASSEGRAIN MODEL) IS NOW BEING FABRICATED. THIS PAPER IS AN ENLARGEMENT AND EXPLANATION OF THE RESULTS PRESENTED IN THE WOODS HOLE PAPER.

INTERFEROMETERS# OPTICAL INTERFEROMETERS

73W-00-5118

N71-14886. DUAL CHANNEL SPECTROMETER FOR ROTATIONAL TEMPERATURE MEASUREMENTS. DECEMBER 1970. HOOKSTRA, CR# HOPPE, JC# HUNTER, WW LANGLEY RESEARCH CENTER, HAMPTON, VA. N71-14886# NASA-TMX-2135# L-6859

14P. A UNIQUE DUAL CHANNEL SPECTROMETER CAPABLE OF MAKING ROTATIONAL TEMPERATURE MEASUREMENT OF LOW DENSITY NITROGEN GAS UP. TO 500 K HAS BEEN DEVELOPED AND TESTED. THE INSTRUMENT IMAGES ON A SINGLE VARIABLE WIDTH ENTRANCE SLIT THE FLUORESCENCE OF THE FIRST NEGATIVE SYSTEM OF NITROGEN RESULTING FROM INELASTIC COLLISIONS BETWEEN FAST ELECTRONS AND NITROGEN MOLECULES. THE ROTATIONAL ENERGY INTERVAL OBSERVED BY EACH CHANNEL IS SET BY PRESELECTED EXIT SLIT WIDTHS. THE RATIO OF ROTATIONAL ENERGY WITHIN THE TWO CHANNELS IS THEN A CALCULABLE FUNCTION OF TEMPERATURE.

SPECTROMETERS# TEMPERATURE MEASUREMENT# NITROGEN

73H-00-5131

73W 05131. APPLICATION OF THE STANFORD STREAMFLOW SIMULATION MODEL TO AGRICULTURAL WATERSHEDS. DECEMBER 1969. RICCA, VT# BRIGGS, DL# BALK, EL# TAIGANIDES, EP OHIO STATE UNIV., COLUMBUS PAPER-NO-69-728

19P. HYDROLDGIC DATA FROM THE NORTH APPALACHIAN EXPERIMENTAL WATERSHED IN COSHOCTON, OHIO ARE USED IN A MODIFIED VERSION OF THE STANFORD STREAMFLOW SIMULATION MODEL TO TEST ITS PERFORMANCE ON AGRICULTURAL WATERSHEDS. A CRITICAL ASSESSMENT IS MADE ON THE USE OF THE MODEL FOR SMALL WATERSHEDS.

WATERSHEDS# STREAM FLOW# HYDROLDGY# CLIMATOLOGY DIGITAL SIMULATION

73W-00-5133

73W 05133. SIMULATING THE EFFECTS OF ENVIRONMENT ON CROP AND OF CROP ON MICROCLIMATE. DECEMBER 1969. WAGGONER, PE CONNECTICUT AGRICULTURAL EXPERIMENT STATION NEW HAVEN PAPER-NO-69-915

4P. CONCEIVING A CANOPY OF LEAVES AS A LADDER OF CONDUCTORS FOR WATER VAPOR, SENSIBLE HEAT AND CARBON DIOXIDE ALLOWS CALCULATION OF PHOTOSYNTHESIS AND EVAPORATION AS WELL AS MICROCLIMATIC PROFILES OF TEMPERATURE AND CARBON DIOXIDE FROM LOGICAL WEATHER AND PLANT FACTORS.

MICROCLIMATOLOGY# LEAVES /BOTANY/# SIMULATION

N59-31809. A STUDY OF THE LAND TYPE. MARCH 1969-DAVIS, CM MICHIGAN UNIV., ANN ARBOR N59-31809# AD685871# AROD-6504.2-E-4# REPT-08055-2-F

96P. THE DOCUMENT SIVES AN HISTORICAL STUDY OF THE LAND TYPE, A COMPOSITE LAND UNIT, AS DEVELOPED AND USED IN THE 1920S AND 1930S. ITS PURPUSE IS TO BRING TOGETHER THE HISTORY AND SCATTERED LITERATURE OF THIS CONCEPT. REVIEWS ARE INCLUDED OF THE LAND SYSTEM AS USED IN AJSTRALIA AND IN ENGLAND. PART OF THE REPORT IS A COMPUTER ANALYSIS OF THE DIGITALIZED LAND SURFACE OF DNE MICHIGAN COUNTY. IT EMPLOYS TEN TRANSFORMATIONS OF THE DIGITALIZED SURFACE IN AN ATTEMPT TO FIND TRANSFORMATIONS WHICH WILL REASONABLY PREDICT THE LAND TYPES THAT WERE MADE YEARS AGO.

LANDFORMS# DIGITAL TECHNIQUES

73W-00-5160

N70-41668. HYDROLOGIC DATA REDUCTION TECHNIQUES AND UNIT CONVERSIONS FOR USE IN THE OGRE, T WAVE, FLIP, AND RAVE FLUID FLOW GODES. MARCH 1970. KORVER, JA CALIFORNIA UNIV., BERKELEY N70-41668# JCRL-50854

8P. METHODS USED TO DETERMINE KH, THE PERMEABILITY THICKNESS PRODUCT FOR A GIVEN LOCATION, FROM HYDROLOGIC TEST DATA ARE DESCRIBED, AND METHODS FOR CONVERTING THE UNITS OF PERMEABILITY TO THE CORRECT DIMENSIONAL FORM FOR USE IN SPECIFIC COMPUTER CODES FOR ANALYZING GROUND WATER FLOW ARE PRESENTED.

HYDROLOGY# GROUND WATER# WATER FLOW

73W-00-5162

N59-28505. BIBLIOGRAPHY OF REMOTE SENSING OF EARTH RESOURCES FOR HYDROLOGICAL APPLICATIONS. NOVEMBER 1968. LL AVERIAS, RK MANNED SPACECRAFT CENTER, HOUSTON, TEX. N59-28505# NASA-TMX-61717# NASA-134

75P. THIS PRELIMINARY BIBLIDGRAPHY WAS PREPARED TO ACQUAINT HYDROLOGISTS WITH THE BASIC LITERATURE INVOLVED IN THIS FIELD. SOME OF THE REFERENCES CONCERN SPECIFIC HYDROLOGIC TOPICS OR SPECIFIC REMOTE SENSING METHODS. OTHER REFERENCES ON VEGETATION MAPPING AND GEOLOGY WERE INCLUDED SO THAT THE READER CAN FIND INFORMATION ON THE SELECTION, PROCESSING, AND USE OF REMOTE SENSING DATA IN THESE COGNATE FIELDS. A NUMBER OF METEOROLOGICAL REFERENCES WERE INCLUDED BECAUSE IN MANY REMOTE SENSING APPLICATIONS, ESPECIALLY FROM EARTH ORBITAL SATELLITES, ATMOSPHERIC EFFECTS MUST BE TAKEN INTO ACCOUNT IN INTERPRETING THE VIEWS OF THE EARTH.

REMOTE SENSING# HYDROLOGY# VEGETATION

N59-28360. USEFUL APPLICATIONS OF EARTH ORIENTED SATELLITES: HYDROLOGY. 1969. NATIONAL ACADEMY OF SCIENCES, WASHINGTON, D.C. N59-28360# NASA-CR-101405

81P. THE FINDINGS AND RECOMMENDATIONS OF A TECHNICAL STUDY GROUP ON THE APPLICATIONS OF SPACE TECHNOLOGY TO HYDROLOGIC PROBLEMS ARE PRESENTED. FUUR HYDROLOGIC OBJECTIVES AMENABLE TO CURRENT SPACE TECHNOLOGY AND PROMISING SUBSTANTIAL AMMEDIATE AND LONG TERM BENEFITS ARE IDENTIFIED: BASIC STUDIES OF THE HYDROLOGIC CYCLE AND LARGE SCALE HYDROLOGICAL SYSTEMS: SNOW AND ICE MAPPING: SURVEYS OF COASTAL HYDROLOGIC FEATURES AND LARGE INLAND LAKES, AND REAL TIME COMMUNICATIONS OF GROUND BASED HYDROLOGIC DATA. A GUALITATIVE EVALUATION IS MADE OF THE BENEFITS 10 BE DERIVED FROM A COLLECTION OF MORE AND BETTER HYDROLOGIC DATA AND IMPROVED WEATHER FORECASTING. A COST ESTIMATE ON A HYDROLOGY SATELLITE SYSTEM IS ALSO INCLUDED.

HYDROLOGY# ARTIFICIAL SATELLITES# MAPPING WEATHER FORECASTING# REAL TIME OPERATIONS

73W-00-5165

N59-25113. LAND FORMS AND RESOURCES IN CENTRAL RAJASTHAN (INDIA): RESULTS OF THE JALDR PILOT SURVEY. JANUARY 1969. VERSTAPPEN, HT# GHOSE, B# PANDEY, S INTERNATIONAL INST. FOR AERIAL AND EARTH SCIENCES, DELFT, NETHERLANDS N59-25113# SERIES B NO. 51

2)P. IT IS POINTED OUT TO WHAT EXTENT NATURAL ENVIRONMENTAL FACTORS AFFECT THE UTILIZATION OF THE ARID AND SEMI ARID LANDS OF INDIA. USING THE JALOR AREA IN THE LJN1 RIVER BASIN (CENTRAL RAJASTHAN) AS AN EXAMPLE, IT IS DEMONSTRATED THAT THE CLIMATIC GEOMORPHOLOGICAL DEVELOPMENT OF THE AREA HAS LED TO THE FORMATION OF EXTENSIVE LAYERS OF LIME CONCRETIONS OF LOW PERMEABILITY AND TO LARGE SIZED SAND ACCUMULATIONS TO THE WINDWARD OF RESIDUAL HILLS AND HILL COMPLEXES. THIS DEVELOPMENT HAS HAD A LASTING INFLUENCE ON GROUND AND SURFACE WATER CIRCULATION AND THUS ON THE TYPE AND DISTRIBUTION OF THE PRESENT UTILIZATION OF THE LAND. MOST OF THE MAIN LANDFORM UNITS UCCURRING IN CENTRAL RAJASTHAN ARE REPRESENTED IN THE JALOR PILOT SURVEY AREA. THEY ARE BRIEFLY DESCRIBED AND THEIR HYDROLOGICAL CHARACTERISTICS AND AGRICULTURAL VALUES ARE SJMMARIZED.

LANDFORMS# HYDROLOGY# GEOMORPHOLOGY

N69-17126. EARTH RESOURCES SATELLITE SYSTEM. 1968. CJMMITTEE DN SCIENCE AND ASTRONAUTICS WASHINGTON, D.C. N69-17126

32P. DATA ARE PRESENTED IN SUPPORT OF THE EARTH RESOURCES SATELLITE SYSTEM AND THE DEVELOPMENT OF THE EARTH RESOURCES TECHNOLOGY SATELLITE (ERTS). THE SYSTEM IS CONSIDERED TO HAVE THE POTENTIAL FOR MAKING MAJOR CONTRIBUTIONS TO THE SOLUTION OF MANKIND'S FOOD, WATER, AND MINERAL RESOURCE PROBLEMS, AND TO PROVIDE AN OPPORTUNITY FOR ACHIEVING TANGIBLE ECONOMIC RETURNS FROM THE SUBSTANTIAL SPACE PROGRAM EXPENDITURES. THE EXISTING TECHNOLOGICAL BASE FOR AN OPERATIONAL ERTS DESIGN IS REVIEWED, AND THE HISTORY OF THE PROGRAM IS TRACED. SCIENTISTS IN SIX KEY AREAS ARE GENERALLY CONSIDERED TO BE THE MOST IMPORTANT POTENTIAL USERS OF EARTH RESOURCES DATA. THESE AREAS ARE CARIOGRAPHY, AGRICULTURE, FORESTRY, OCEANOGRAPHY, GEOLOGY, AND HYDROLOGY. IT IS STRONGLY RECOMMENDED THAT. NASA CONCENTRATE A MUCH LARGER PORTION OF ITS EFFORTS AND RESOURCES ON THIS PROJECT, AND THE LAUNCH SCHEDULE SHOULD — BE COMPRESSED IF POSSIBLE.

ARTIFICIAL SATELLITES# RESUURCES# REMOTE SENSING

73W-00-5177

N71-17486 THRU N71-17492. SOVIET BLOC RESEARCH IN GEOPHYSICS, ASTRONOMY, AND SPACE, NO. 245. JANUARY 1971. JINT PUBLICATIONS RESEARCH SERVICE, WASHINGTON, D.C. N71-17486 THRU N71-17492# JPRS-52271

115P. CONTENTS: 1. ASTRONOMY (SEE N71-17487), 2. METEOROLOGY (SEE N71-17488), 3. OCEANOGRAPHY (SEE N71-17489), 4. TERRESTRIAL GEOPHYSICS (SEE N71-17490), 5. UPPER ATMOSPHERE AND SPACE RESEARCH (SEE N71-17491), 6. SUPPLEMENT: WORK OF THE UNDERWATER RESEARCH LABORATORY (SEE N71-17492).

GEOPHYSICS# ASTRONOMY# METEOROLOGY DDEANDGRAPHY# USSR

73W-00-5178 "

N71-16510 THRU N71-16516. SDVIÉT BLOC RESEARCH IN GEOPHYSICS, ASTRONOMY, AND SPACE, NO. 243. DECEMBER 1970.

JOINT PUBLICATIONS RESEARCH SERVICE, WASHINGTON, D.C. N71-16510 THRU N71-16516# JPRS-52087

83P. CONTENTS: 1. ASTRONOMY (SEE N71-16511), 2. METEOROLOGY (SEE N71-16512), 3. DCEANOGRAPHY (SEE N71-16513), 4. TERRESTRIAL GEOPHYSICS (SEE N71-16514), 5. UPPER ATMOSPHERE AND SPACE RESEARCH (SEE N71-16515), 6. OPERATIONS OF CHERNOMOR SEALAB: SUPPLEMENT (SEE N71-16516).

GEUPHYSICS# ASTRONOMY# UCEANOGRAPHY METEOROLOGY# USSR

N71-19086. FIRST FIVE YEARS OF THE ENVIRONMENTAL SATELLITE PROGRAM: AN ASSESSMENT. FEBRUARY 1971. NATIONAL ENVIRONMENTAL SATELLITE CENTER, WASHINGTON, D.C. N71-19086

35P. EXAMPLES OF THE VARIETY OF DIRECT, CONTINUING BENEFITS TO ENVIRONMENTAL OBSERVATION AND PREDICTION IN THE UNITED STATES AND OVERSEAS ARE REVIEWED. WEATHER FORECAST AND WARNING SERVICES ARE EMPHASIZED, AND MARITIME, HYDROLOGIC, SPACE ENVIRONMENT, AND EARTH MAPPING SERVICES ARE DISCUSSED. A PRIMARY CHARACTERISTIC IS CONSIDERED TO BE THE EFFECTIVENESS OF THE SATELLITE IN PROVIDING INFORMATION, ROUTINELY AND DEPENDABLY, ESPECIALLY OVER OCEANS AND REMOTE LAND AREAS. OTHER IMPORTANT FACTORS ARE IDENTIFIED AS THE RAPIDITY WITH WHICH FORECAST OFFICES RECEIVE WEATHER PHUTOGRAPHS AND CHARTS, THE OVERALL VIEW OF THE EARTH AND ATMOSPHERIC FEATURES, AND THE UTILIZATION OF METEUROLOGICAL SATELLITE DATA BY OTHER NATIONS.

ARTIFICIAL SATELLITES# WEATHER FORECASTING METEOROLOGICAL DATA# HYDROLOGY# MAPPING

73W-00-5180

N71-14656 THRU N71-14662. SOVIET BLOC RESEARCH IN GEOPHYSICS, ASTRONOMY, AND SPACE, NO. 240. NOVEMBER 1970. JOINT PUBLICATIONS RESEARCH SERVICE, WASHINGTON, D.C. N71-14656 THRU N71-14662# JPRS-51760

49P. CONTENTS: 1. ASTRONOMY (SEE N71-14657), 2. METEOROLOGY (SEE N71-14658), 3. OCEANOGRAPHY (SEE N71-14659), 4. TERRESTRIAL GEDPHYSICS (SEE N71-14660), 5. UPPER ATMOSPHERE AND SPACE RESEARCH (SEE N71-14661), 6. SUPPLEMENT: "SOYUZ" COMMAND MODULE (SEE N71-14662).

GEOPHYSICS# ASTRONOMY# OCEANOGRAPHY
METEOROLOGY# USSR

73W-00-5181

N70-29735. THE DEVELOPMENT OF EARTH SCIENCES IN THE USSR: SELECTED ARTICLES, VOLUME 1. JANUARY 1969. VINDGRADOV, AP FOREIGN TECH. DIV., WRIGHT PATTERSON AFB, OHIO N70-29735# AD685004# FTD-MT-24-291-68-VOL-1

332P. CONTENTS: THE EARTH DVERALL: (FIGURE AND GRAVITATIONAL FIELD OF THE EARTH, ROTATION OF THE EARTH, TERRESTRIAL TIDES, GRAVIMETRY, THERMOPHYSICS OF THE EARTH, INTERNAL STRUCTURE OF THE EARTH, GEOMAGNETIC FIELD, SEISMOLOGY, GEOCHEMISTRY, BIOSPHERE); THE EARTHS CRUST AND UPPER MANILE: (STRATIGRAPHY, METHODS OF THE DETERMINATION OF ABSOLUTE AGE OF ROCKS AND GEOCHRONOLOGY, PALEOMAGNETIC RESEARCHES, LITHOLOGY, PALEOGEDGRAPHY, CONTEMPORARY SLOW MOVEMENTS OF THE EARTHS CRUST, GEOTECTONICS, VOLCANOLOGY, MINERALOGY, PETROLOGY, GEOLOGY OF ORE DEPOSITS, GEOLOGY OF DIL, HYDROGEOLOGY).

GRAVITATION# EARTH ROTATION#.SEISMOLOGY# GEOLOGY EARTH CRUST# CLIMATOLOGY# METEDROLOGY# USSR

N70-16857. EXPERIMENTAL TECHNIQUES FOR LEVELS OF HIGH PRECISION USING THE ZEISS NI 2-AUTOMATIC LEVEL. 'JULY 1969. BERRY, RM ARMY DEPT. N70-16857# AD693804# MP-69-4

23P. INSTRUMENTATION AND TECHNIQUES DEVELOPED BY THE U. S. LAKE SURVEY FOR LEVELS OF HIGH PRECISION ARE DESCRIBED. AUTOMATIC, OR SELF LEVELING ZEISS NIZ INSTRUMENT IS USED WITH PLANE PARALLEL PLATE MICROMETER. SPECIAL TECHNIQUES ARE USED TO COMPENSATE FOR SYSTEMATIC ERRORS UNIQUE TO AJTOMATIC LEVELS. LEVELS CAN BE RUN WITH THESE METHODS TO A TOLERANCE OF 1.5 MILLIMETERS TIMES THE SQUARE ROOT OF THE LENGTH OF THE SECTION IN KILOMETERS.

INSTRUMENTS# LEVELING# WATER FLOW

73W-00-5186

N70-25618. GUIDE TO SOVIET LITERATURE ACCESSIONS IN THE ATMOSPHERIC SCIENCES LIBRARY, AND THE GEOPHYSICAL SCIENCES LIBRARY. AUGUST 1969. DONEHOO, IA ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION, SILVER SPRING, MD. N70-25618# PB187473T# ESSA-WB-TA-23

72P. THE DOCUMENT PRESENTS TRANSLATED TABLES OF CONTENTS AND ANNOTATIONS, AND ON A SELECTIVE BASIS, AUTHORS' ABSTRACTS, INTRODUCTIONS, SUMMARIES, AND CONCLUSIONS. IT PROVIDES PROMPT DISSEMINATION OF INFORMATION CONCERNING SOVIET CONTRIBUTIONS.

METEOROLOGY# ATMOSPHERIC SCIENCES# GEOPHYSICS DOCUMENTS# USSR

73W-00-5187

N70-28678. *STUDY OF THE USE OF AERIAL AND SATELLITE PHOTOGRAMMETRY FOR SURVEYS IN HYDROLOGY. MARCH 1970. RAMEY, EH COMMERCE DEPT. N70-28678# ESSA-IM-NESCIM-14

23P. POSSIBLE APPLICATIONS OF PHOTOGRAMMETRY IN PROBLEMS OF HYDROLOGY ARE DISCUSSED. THE CRITICAL FACTORS IN THE USE OF SATELLITE PHOTOGRAPHS ARE INCLUDED. THE VARIOUS PHYSICAL AND ECONOMIC FACTORS IN THE USE OF AERIAL PHOTOGRAMMETRY ARE ANALYZED IN THE MEASUREMENT OF BOTH SNOW COVER AND SNOW DEPTH. IT WAS CONCLUDED THAT THE REQUIRED ACCURACY CAN BE STAINED, BUT SOMETIMES THE COST WOULD BE PROHIBITIVE. THE USE OF AERIAL PHOTOGRAPHY AND OTHER RELATED SENSORS TO SOME OTHER PROBLEMS IN HYDROLOGY ARE CONSIDERED.

PHOTOGRAMMETRY# HYDROLOGY# REMOTE SENSING

73W-00-5200

P3187221. HYDROLOGIC BEHAVIOR OF SELECTED WATERSHEDS IN THE NORTHERN APPALACHIAN REGION. AUGUST 1969. SOPPER, WE# HIEMSTRA, LA# CREESE, RC# LAVOIE, RA PENNSYLVANIA STATE UNIV., UNIV. PARK P8187221

120P. TWO MATHEMATICAL WATERSHED MODELS WERE DEVELOPED: (1)
THE HIEMSTRA WATERSHED MODEL TO SIMULATE THE HYDROLOGIC
REHAVIOR OF A SINGLE SMALL WATERSHED; AND (2) RAPHAEL'S
LARKDY CHAIN MODEL TO SIMULATE THE HYDROGRAPH OF A
COMPLEX LARGE WATERSHED SYSTEM CONSISTING OF 10
INTERCONNECTED SUBWATERSHEDS.

HYDROLOGY# WATER SUPPLY# MATHEMATICAL MODELS

SCS-TP-149. A METHOD FOR ESTIMATING VOLUME AND RATE OF RUNOFF IN SMALL WATERSHEDS. JANUARY 1968. ASRICULTURE DEPT., WASHINGTON, D.C. SCS-TP-149

61P. THE SDIL CONSERVATION SERVICE (SCS) HAS DEVELOPED CHARTS ES-1026 AND ES-1027 FOR ESTIMATING THE INSTANTANEOUS PEAK DISCHARGE EXPECTED FROM SMALL AREAS. THEY PROVIDE THE PEAK DISCHARGE RATE FOR ESTABLISHING CONSERVATION PRACTICES ON INDIVIDUAL FARMS AND RANCHES AND FOR THE DESIGN OF WATER CONTROL MEASURES IN SMALL WATERSHEDS. THE GRAPHS WERE PREPARED FROM COMPUTATIONS MADE BY AUTOMATIC DATA PROCESSING (ADP). THE LOGIC AND PROCEDURES USED FOR THE ADP COMPUTATION ARE DESCRIBED.

WATERSHEDS# RAINFALL# SURFACE WATER RUNDEF

73W-00-5208

ARS-41-130. COOPERATIVE RUNDER AND SEDIMENT INVESTIGATIONS ON MEDICINE CREEK WATERSHED IN NEBRASKA. JUNE 1967. AGRICULTURE DEPT., WASHINGTON, D.C. ARS-41-130

95P. COMPREHENSIVE DATA WERE COLLECTED DURING THE PERIOD 1951-58 TO DETERMINE THE IMPORTANT WEATHER, SOIL, CHANNEL, GEDMORPHOLOGIC, AND TOPOGRAPHIC FACTORS AS RELATED TO THE DAMAGE CAUSED BY FLOOD, SEDIMENT, AND EROSION IN THE MEDICINE CREEK WATERSHED OF SOUTHWESTERN NEBRASKA.

WATERSHEDS# SURFACE WATER RUNOFF# SEDIMENTS

73W-00-5209

73W 05239. INFLUENCE OF TOPOGRAPHY ON RAINFALL IN WEST VIRGINIA. JUNE 1969. GRAFTON, CR# DICKERSON, WH WEST VIRGINIA UNIV., MORGANTOWN

45P. THE FUNDAMENTAL AIM OF THE WATER RESEARCH INSTITUTE IS TO OBTAIN THE KNOWLEDGE NEEDED TO GAIN THE GREATEST BENEFIT FROM THE WATER RESOURCES OF WEST VIRGINIA. THE BULLETIN IS USED TO REPORT THE FINAL RESULTS OF PROJECTS 44D PROGRAMS.

RAINFALL# TOPOGRAPHY# CLIMATOLOGY

73W-00-5211

73W 05211. RAINFALL RUNDFF MODELS. KDHLER, MA WEATHER BUREAU, WASHINGTON, D.C.

12P. CONTINUING INVESTIGATIONS ON THE APPLICATION OF HYDROLOGIC ACCOUNTING TO RIVER FORECASTING HAVE BEEN DIRECTED LARGELY TOWARD THE DEVELOPMENT OF IMPROVED MODELS FOR THE RUNOFF AND SOIL MOISTURE DEPLETION PHASES OF THE HYDROLOGIC CYCLE. THE SEVERAL MODELS UNDER STUDY ARE DISCUSSED AND EVALUATED.

RAINFALL# SURFACE WATER RUNOFF# MATHEMATICAL MODELS

73W 05212. RUNDFF ESTIMATION FOR VERY SMALL DRAINAGE AREAS. WATER RESOURCES RESEARCH. FEBRUARY 1968. P87-93 VIESSMAN, W MAINE UNIV., ORONO

DURATION STORMS ON VERY SMALL DRAINAGE AREAS HAVING VARYING PHYSICAL CHARACTERISTICS INDICATED THAT A I MINUTE UNIT. HYDROGRAPH COULD BE USED AS THE BASIS FOR GENERATING RUNDEF FROM AN EFFECTIVE RAINSTORM INPUT.

SURFACE WATER RUNOFF# HYDROGRAPHY# HYDROLOGY

73W-00-5213

73W 05213. RECENT TRENDS IN HYDROGRAPH SYNTHESIS. PROCEEDINGS OF TECHNICAL MEETING 21. 1966. 30P. COMMITTEE FOR HYDROLOGICAL RESEARCH TNO

THE PAPERS IN THESE PROCEEDINGS WERE THE SUBJECT OF LECTURES DELIVERED AT A TECHNICAL MEETING OF THE COMMITTEE FOR HYDROLOGICAL RESEARCH THO IN DECEMBER 1965. THIS MEETING WAS DRGANIZED WITH A VIEW TO CONFRONT THE RELATIVELY YOUNG SURFACE WATER HYDROLUGY IN THE NETHERLANDS WITH RECENT DEVELOPMENTS ABROAD. THE PAPERS MAINLY REVIEW THE RECENT LITERATURE, BUT THEY ALSO INCLUDE SOME MATERIAL THAT IS NOT GENERALLY AVAILABLE TO THE AVERAGE WORKER IN THIS FIELD.

HYDROLOGY# HYDROGRAPHY# RAINFALL

73W-00-5220

73W 05220. MULTICAPACITY BASIN ACCOUNTING FOR PREDICTING RUNDER FROM STORM PRECIPITATION.
JOURNAL DE GEOPHYSICAL RESEARCH. DECEMBER 1962.
P5187-5197.
KOHLER, MAW RICHARDS, MM
WEATHER BUREAU, WASHINGTON, D.C.

AS A RESULT OF VARIATIONS IN SOIL AND SURFACE CHARACTERISTICS, VEGETATIVE COVER, ETC., THE MOISTURE CAPACITY IS HIGHLY VARIABLE FROM POINT TO POINT OVER A RIVER BASIN. THE BASIC PURPOSE OF THE PAPER IS TO DESCRIBE A METHOD OF BASIN ACCOUNTING RATHER THAN THE USE OF SUCH ACCOUNTING TO CORRELATE RAINFALL TO RUNOFF.

RIVER BASINS# RAINFALL# SURFACE WATER RUNOFF

73W-00-5222

73W 05222. EFFECTS OF CLIMATOLOGIC AND BASIN CHARACTERISTICS ON ANNUAL RUNOFF. WATER RESOURCES RESEARCH. FIRST QTR 1967. P123-130. MJSTONEN, SE BJARD OF AGRICULTURE, HELSINKI. FINLAND

CLIMATOLOGIC AND BASIN CHARACTERISTICS AFFECTING THE ANNUAL RUNDEF IN FINLAND ARE SELECTED BY THE URTHOGONAL REGRESSION METHOD.

SURFACE WATER RUNOFF# CLIMATOLOGY# WATERSHEDS

73W-00-5225

73W 05225. RUNOFF VOLUME PREDICTION FROM DAILY CLIMATIC DATA.
WATER RESOURCES RESEARCH. FEBRUARY 1969. P84-94.
KNISEL. WG# BAIRD. RW# HARTMAN, MA
AGRICULTURE DEPT., WASHINGTON, D.C.

A TWO SDIL MOISTURE RESERVOIR MODEL IS DEVELOPED TO IMPROVE THE ESTIMATE ACCURACY OF A RUNOFF VOLUME PREDICTION MODEL.

SURFACE WATER RUNOFF# CLIMATOLOGY# SOIL WATER

73W 05226. PRECIPITATION RUNOFF RELATIONS FOR VERY SMALL SEMIARID RANGELAND WATERSHEDS. WATER RESOURCES RESEARCH. APRIL 1969. P419-425. USBURN, HB# LANE, L AGRICULTURAL RESEARCH SERVICE, TUCSON, ARIZ.

SIMPLE LINEAR REGRESSION MODELS FOR PREDICTING TOTAL VOLUME OF RUNOFF, PEAK RATE OF RUNOFF, DURATION OF RUNOFF, AND HYDROGRAPH LAG TIME WERE DEVELOPED USING THREE YEARS OF DATA FROM FOUR SMALL (0.56 TO 11.0 ACRES) WATERSHEOS.

SURFACE WATER RUNDER# WATERSHED# LINEAR REGRESSION

73W-00-5228

45P. CONTENTS: INTRODUCTION, DESCRIPTION OF STUDY REGIONS, SELECTION OF STREAMFLOW RECORDS FOR ANALYSIS, INDICES OF STREAMFLOW CHARACTERISTICS, DRAINAGE BASIN CHARACTERISTICS, ANALYTICAL METHODS, AND RESULTS.

STREAM FLOW# WATERSHEDS

73W-00-5231

73W 05231. FACTORS THAT INFLUENCE STREAM FLOW IN THE NORTHEAST. WATER RESOURCES RESEARCH. THIRD QTR. 1966. P371-379. LJLL, HW U.S. FOREST SERVICE, UPPER DARBY, PA. SOPPER, WE PENNSYLVANIA STATE UNIV. UNIV. PARK

AVERAGE ANNUAL AND SEASONAL RUNOFF AND DAILY MEAN DISCHARGES AT SELECTED FLOW DURATIONS OF 137 WATERSHEDS IN THE NORTHEAST U.S. TOTALING LESS THAN 100 SQUARE MILES WERE RELATED TO SELECTED CLIMATIC, TOPOGRAPHIC, AND LAND USE VARIABLES.

STREAM FLOW# GEDMORPHOLOGY

73W-00-5233

BJLLETIN NO. 15. A UNIFORM TECHNIQUE FOR DETERMINING FLOUD FLOW FREQUENCIES. DECEMBER 1967. WATER RESOURCES COUNCIL, WASHINGTON, D.C. BULLETIN NO. 15

15P. WITH THE GROWING NEED FOR IMPROVED FLOOD PLAIN MANAGEMENT, DESTRABILITY OF A BASIC, UNIFORM METHOD OF ESTABLISHING FLOOD FREQUENCIES FOR GENERAL USE THROUGHOUT THE NATION IS MANIFEST. WITH THIS NEED IN MIND, THE UNIFORM TECHNIQUE FOR DETERMINING FLOOD FLOW FREQUENCIES SET FORTH IN THIS BULLETIN WAS ADOPTED BY THE COUNCIL'S LYDROLOGY COMMITTEE.

FLOOD PLAINS# RIVER BASINS# FLOOD CONTROL

73W-00-5236

73H 05236, FORESTS AND FLOODS IN THE NORTHWESTERN UNITED STATES. SEPTEMBER 1959. ANDERSON, HWW HOOBA, RL

1)P. FLOOD CAUSES CAN BE DETERMINED BY ANALYSIS OF FLOODS FROM WATERSHEDS WITH WIDE DIFFERENCES IN METEOROLOGICAL HAPPENINGS AND IN TOPOGRAPHIC AND GEOLOGICAL CHARACTERISTICS. VARIATIONS IN THESE BRING ABOUT WIDE FLUCTUATIONS IN FLOOD SIZE.

FLOUDS# FORESTRY# WATERSHEDS:

73H-00-5242

73W 05242. SYMPOSIUM ON ANALYTICAL METHODS IN HYDROLOGY. WASHINGTON, D.C. APRIL 1966. WATER RESOURCES RESEARCH. THIRD QTR 1967. P805-907. AMERICAN GEOPHYSICAL UNION

THE EIGHT PAPERS ARE EXPLANATORY DISCUSSIONS OF SOME AVALYTICAL TECHNIQUES IN CURRENT USE IN SURFACE WATER HYDROLOGY. THEY ARE PRESENTED BY THE SURFACE WATER COMMITTEE IN THE HOPE THAT ALL HYDROLOGISTS MAY BENEFIT THROUGH FULLER UNDERSTANDING OF SUCH TECHNIQUES. THE PAPERS PRESENT EXPLANATIONS OF RECENT AND SIGNIFICANT ADVANCES IN HYDROLOGIC ANALYSIS.

HYDROLDGY# SURFACE WATERS

73H-00-5243

73W 05243. INFILTRATION, OVERLAND FLOW, AND SOIL MOVEMENT ON FROZEN AND SNOW COVERED PLOTS. WATER RESDURCES RESEARCH. FIRST QTR 1967. P145-161. HAUPT, HF FORESTRY SCIENCES LABORATORY, MOSCOW,

THIS SMALL PLOT STUDY SHOWS HOW GROUND COVER, FURROWING, AND THE PRESENCE OF FROST IN SOILS OF THE SIERRA NEVADA AFFECT INFILTRATION FROM PROLONGED SIMULATED WINTER RAINS.

FLUID INFILTRATION# FROST# SNOW

73W-00-5244

73W 05244. RELATIONSHIP BETWEEN PRECIPITATION, EVAPORATION, AND RUNDFF IN TROPICAL EQUATORIAL REGIONS.
WATER RESOURCES RESEARCH. FIRST QTR 1967. P163-172.
SJLUMJN, S.
SHAWINIGAN ENG. CO., LTD., MONTREAL, CANADA

BOUCHET'S THEORY ON ACTUAL AND POTENTIAL EVAPORATION CAN BE USED AS A BASIS TO DEVELOP SEMIEMPIRICAL RELATIONSHIPS BETWEEN PRECIPITATION, ACTUAL EVAPORATION, AND RADIATION.

73W-00-5245

73W 05245. LINEAR TIME VARYING MODEL OF RAINFALL RUNOFF RELATION.
WATER RESOURCES RESEARCH. APRIL 1969. P426-437.
CHIU, C# BITTLER, RP
PITTSBURGH UNIV., PA.
THE LINEAR TIME VARYING SYSTEM MODEL OF THE RAINFALL RUNOFF RELATION CAN BE REPRESENTED BY A FIRST ORDER, LINEAR DIFFERENTIAL EQUATION WITH TIME VARYING COEFFICIENTS THAT DEPEND ON TWO PARAMETERS.

RAINFALL# SURFACE WATER RUNDFF# HYDROLDGY LINEAR DIFFERENTIAL EQUATIONS

73W-00-5247

73W 05247. SOME COMMENTS ON THE USE OF FACTOR ANALYSES. WATER RESOURCES RESEARCH. FIRST QTR. 1967. P213-223. MATALAS, NC# REIHER, BJ GEOLOGICAL SURVEY, ARLINGTON, VA.

FACTOR ANALYSIS IS A TECHNIQUE THAT PURPORTS TO EXPLAIN DBSERVED RELATIONS AMONG SEVERAL VARIATES IN TERMS OF SIMPLER RELATIONS THAT PROVIDE INSIGHT INTO THE UNDERLYING STRUCTURE OF THE VARIATES.

FACTOR ANALYSIS# STATISTICS# MULTIVARIATE ANALYSIS

73W 05248. FACTOR ANALYSIS IN HYDROLOGY - AN AGNOSTIC VIEW. WATER RESOURCES RESEARCH. JUNE 1968. P521-527. WALLIS, JR. 13M YORKTOWN HEIGHTS. RESEARCH

FACTOR ANALYSIS USED AS A NUMERICAL PROCEDURE FOR STREENING VARIABLES IS A USEFUL AND POWERFUL TOOL FOR HYDROLOGIC ANALYSIS THAT CAN BE EXPECTED TO YIELD EQUATIONS THAT OUTPERFORM OTHERS WHEN USED AS PREDICTORS FOR CONTROL SAMPLES.

FACTOR ANALYSIS# REGRESSION ANALYSIS# HYDROLOGY

73W-00-5249

73W 05249. SENSITIVITY ANALYSIS METHOD OF SYSTEM IDENTIFICATION AND ITS POTENTIAL IN HYDROLOGIC RESEARCH. WATER RESOURCES RESEARCH. APRIL 1969. P341-349. VEMURI, V# DRACUP, JA# ERDMANN, RC ENVIRONMENTAL DYNAMICS, INC., LOS ANGELES, CALIF. VEMURI, N BANARIS UNIV., INDIA

THE APPLICABILITY OF THE SENSITIVITY ANALYSIS METHOD TO IDENTIFY BOTH LUMPED AND DISTRIBUTED HYDROLOGIC SYSTEMS WITH DETERMINISTIC OR STATISTICAL INPUT OUTPUT DATA IS DEMONSTRATED.

SENSITIVITY# HYDROLOGY# ALGORITHMS

73W-Q0-5255

73W 05255. WATERSHED MODELING APPROACH TO EVALUATION OF THE HYDROLOGIC POTENTIAL OF UNIT AREAS. 1965. ANDERSON, HW AGRICULTURE DEPT., BERKELY, CALIF.

12P. FACTOR ANALYSIS IS USED IN TESTING THE ADEQUACY OF SAMPLING OF INDEPENDENT VARIABLES; PRINCIPAL COMPONENT REGRESSION ANALYSES ARE USED IN ESTABLISHING PHYSICAL RELATIONS TO SEDIMENT AND SNOW. FACTOR CONTRIBUTIONS AFTER VARIMAX ROTATION ALLOWS IMPROVED INTERPRETATION OF EXPLAINED VARIANCE. APPLICATION OF A MODEL IN EVALUATING FLOOD SOURCES AND THE SEDIMENT POTENTIAL OF UNIT AREAS IS ILLUSTRATED.

WATERSHEDS# HYDROLOGY# FACTOR ANALYSIS

73W-00-5258

73W 05258. USE OF TOPOLOGIC INFORMATION IN PROCESSING DATA FOR CHANNEL NEIWORKS. WATER RESOURCES RESEARCH, JUNE 1970. P932-936. SMART, JS
IBM YORKTOWN HEIGHTS, RESEARCH

THE BINARY DIGIT REPRESENTATION OF CHANNEL NETWORK TOPOLOGY IS PROPOSED AS AN AID TO DATA HANDLING FOR CHANNEL NETWORKS. EXAMPLES OF ITS USE ARE DRAWN FROM THE FIELDS OF WATER POLLUTION CONTROL AND GEOMORPHOLOGY.

TOPOLOGY# DATA PROCESSING# CHANNELS /WATERWAYS/

73W 05262. DISTRIBUTION OF INTERIOR LINK LENGTHS IN NATURAL CHANNEL NETWORKS. WATER RESOURCES RESEARCH. DECEMBER 1969. PI337-1342. SMART, JS. I3M YORKTOWN HEIGHTS. RESEARCH

INTERIOR LINK LENGTHS WERE MEASURED FOR 10 CHANNEL NETWORKS WITH MAGNITUDES BETWEEN 80 AND 200. NONPARAMETRIC STATISTICAL METHODS WERE USED TO TEST THE HYPOTHESIS THAT LINK LENGTH IS INDEPENDENT OF LINK MAGNITUDE. FOUR OF THE NETWORKS SHOW NO SIGNIFICANT CHANGE (5 PERCENT LEVEL) OF LINK LENGTH WITH MAGNITUDE. SOME OF THE OTHER NETWORKS DO HAVE SIGNIFICANT CHANGES IN LINK LENGTH, BUT THE EXACT NUMBER DEPENDS ON THE NATURE OF THE ALTERNATIVE HYPOTHESIS. HALF OF THE DESERVED CHANGES WERE POSITIVE AND HALF WERE NEGATIVE.

CHANNELS /WATERWAYS/# STREAMS ...

73H-00-5263

73W 05263. STATISTICAL PROPERTIES OF STREAM LENGTHS. WATER RESOURCES RESEARCH. OCTOBER 1968. P1001-1014. SMART, JS
18M YORKTOWN HEIGHTS, RESEARCH

TWO BASIC ASSUMPTIONS ARE EMPLOYED IN THIS TREATMENT OF THE STATISTICS OF STREAM LENGTHS: (1) ALL TOPOLOGICALLY DISTINCT NETWORKS WITH A GIVEN NUMBER OF SOURCES ARE EQUALLY LIKELY, (2) LENGTHS OF INTERIOR LINKS IN A GIVEN NETWORK ARE INDEPENDENT RANDOM VARIABLES DRAWN FROM THE SAME POPULATION.

STREAMS# GEDMORPHOLOGY# WATERSHEDS

73W-00-5264

73W 05264. MEAN STREAM NUMBERS AND BRANCHING RATIOS FOR TOPOLOGICALLY RANDOM CHANNEL NETWORKS.
BULLETIN OF THE INTERNATIONAL ASSOC. OF SCIENTIFIC HYDROLOGY. DECEMBER 1968. P61-64.
SMART, JS
13M YORKTOWN HEIGHTS, RESEARCH

SHREVE'S FORMULAS FOR TOPOLOGICALLY RANDOM NETWORKS ARE USED TO CALCULATE MEAN STREAM NUMBERS AND MEAN BIFURCATION RATIOS FOR PARTICULAR VALUES OF N SUB 1. THE EXACT VALUES ARE COMPARED WITH THE MONTE CARLO RESULTS OF LIAO AND SCHEIDEGGER.

STREAMS# CHANNELS /WATERWAYS/# TOPOLOGY

73W-00-5266

73W 05266. THE RELATION BETWEEN MAINSTREAM LENGTH AND AREA IN DRAINAGE BASINS. WATER RESOURCES RESEARCH. FOURTH QTR. 1967. P963-974. SMART, JS# SURKAN, AJ 13M YORKTOWN HEICHTS, RESEARCH

DATA ARE PRESENTED FOR BOTH REAL AND SIMULATED STREAM SYSTEMS. CONCLUSIONS ARE: (1) VARIATION IN MAINSTREAM SINUDSITY WITH AREA CAN BE RESPONSIBLE FOR A SIGNIFICANT PART OF THE DEVIATION OF N PRIME FROM 1/2. (2) THE GENERALLY ACCEPTED STATEMENT THAT DRAINAGE BASINS BECOME MORE ELONGATED AS THEIR AREA INCREASES NEEDS FURTHER INVESTIGATION.

WATERSHEDS# GEOMORPHOLOGY# RIVERS

TR-16. LIST OF SAMPLE PARAMETERS OF QUANTITATIVE PROPERTIES OF LANDFORMS: THEIR USE IN DETERMINING THE SIZE OF GEOMORPHIC EXPERIMENTS. 1958.
MELTON, MA
COLUMBIA UNIV., NEW YORK, N.Y.
TR-16

17P. THE LIST OF SAMPLE PARAMETERS PRESENTED HERE PROVIDES ESTIMATES OF VARIANCE, MEANS, AND COEFFICIENTS OF VARIATION . DR POPULATIONS THAT HAVE BEEN STUDIED IN THE RECENT PAST, AND WILL BE OF CONTINUED INTEREST. BRIEF DESCRIPTIONS OF THE SEOLOGIC AND CLIMATIC ENVIRONMENTS FROM WHICH EACH SAMPLE WAS DRAWN WILL ALLOW AN INVESTIGATOR TO SELECT THE SAMPLE MOST NEARLY LIKE HIS OWN EXPERIMENTAL MATERIAL. AS MORE DATA BECOME AVAILABLE, THIS LIST CAN BE GREATLY ENLARGED. THEREBY INCREASING ITS USEFULNESS.

GEOMORPHOLOGY# LANDFORMS

734-00-5269

73W 05269. HYDRUGEDMORPHOLOGY. OCTOBER 1963. MILLER, CR

15P. GEOMORPHIC AND HYDROGEOMORPHIC FACTORS ARE INHERENTLY INVOLVED IN ANY WATERSHED CONVERVATION OR WATER RESOURCES DEVELOPMENT PROGRAMS.

GEOMORPHOLOGY# WATERSHEDS# MORPHOLOGY

73W-00-5270

TR-17. RELATION OF MORPHOMETRIC PROPERTIES TO RUNOFF IN THE LITTLE MILL GREEK, OHIU, DRAINAGE BASIN. 1959. MJRISAWA, ME COLUMBIA UNIV., NEW YORK, N.Y. TR-17

1)P. QUANTITATIVE GEOMORPHIC CHARACTERISTICS UF FIVE SUBDIVISIONS OF MILL CREEK WATERSHED, OHIO, WERE CURRELATED WITH HYDROLDGIC DATA. IN SUCH A SMALL HOMOGENEOUS BASIN FACTORS OF CLIMATE, STRUCTURE, LITHOLDGY AND SOIL TYPE ARE ASSUMED TO BE MINIMIZED AS SIGNIFICANT VARIABLES. SIGNIFICANT REGRESSIONS WERE OBTAINED FOR AVERAGE STREAM DISCHARCE ON BASIN AREA, RELIEF RATIO, CIRCULARITY, AND ELONGATION. REGRESSIONS FOR PEAK RUNDFF ON EACH OF THESE MORPHOMETRIC MEASUREMENTS ALSO PROVED TO BE SIGNIFICANT. THESE RELATIONSHIPS MAY PROVE USEFUL IN ESTIMATING STREAM FLOW IN UNGAGED PORTIONS OF DRAINAGE BASINS.

GEOMORPHOLOGY# WATERSHEDS# SURFACE WATER RUNOFF

73W-00-5271

0

73W 05271. PHYSIOGRAPHIC CHARACTERISTICS AND THE RUNOFF PATTERN. MAY 1964. GRAY. DM SASKATUON. CANADA

21P. THE INFLUENCE OF SEVERAL GEOMORPHIC CHARACTERISTICS OF A WATERSHED AS, DRAINAGE AREA SIZE, LENGTH AND SLOPE OF THE MAIN STREAM, GENERAL LAND SLOPE AND CHANNEL GEOMETRY ON THE TIME DISTRIBUTION OF SURFACE RUNOFF IS DISCUSSED. THE PRESENTATION EMPHASIZES THE INTERRELATIONSHIPS BETWEEN CERTAIN GEOMORPHIC PROPERTIES OF A WATERSHED AND DEMONSTRATES THE USE OF THE FACTORS FOR SYNTHESIZING UNIT GRAPHS FOR UNGAGED AREAS. CONSIDERATION IS ALSO GIVEN TO THE EFFECT OF SUCH FACTORS AS CLIMATE TUPOGRAPHY AND VEGETATION THAT DETERMINE THE CHARACTERISTICS OF HYOROGRAPHS FROM MELTING SNOW.

GEOMORPHOLOGY# WATERSHEDS# SURFACE WATER RUNDEF

73H-00-5272

73M 05272. THE SYNTHESIS OF DISTRIBUTED INPUTS FOR HYDROGRAPH PREDICTIONS. WATER RESOURCES RESEARCH. FEBRUARY 1968. P79-85. BRAKENSIEK, DL# DNSTAD, CA AGRICULTURE DEPT., BELTSVILLE, MD.

A SURFACE FLOW MODEL BASED ON KINEMATIC WAVE THEORY IS APPLIED TO A FLOW SYSTEM DERIVED FROM THE GEOMORPHIC PROPERTIES OF THE WATERSHED IN QUESTION.

HYDROLOGYW SURFACE WATER RUNDEF# WATERSHEDS

73W-00-5273

73W 05273. ISOLATION AND CHARACTERIZATION OF HYDROLOGIC RESPONSE UNITS WITHIN AGRICULTURAL WATERSHEDS. WATER RESOURCES RESEARCH. FEBRUARY 1968. P73-77. ENGLAND, CB# ONSTAD, CA AGRICULTURE DEPT., BELTSVILLE, MD.

TO EXTRAPOLATE HYDROLOGIC RELATIONS FROM SMALL TO LARGE AREAS, A WATERSHED CAN BE PARTITIONED BY ISOLATION OF UNITS OF RELATIVE HOMOGENEITY WITH RESPECT TO SOIL TYPE, LANDFORM, AND LAND USE THAT FALL INTO A SEQUENCE COMPATIBLE WITH THE HYDRAULICS OF OVERLAND AND SUBSURFACE FLOWS.

HYDROLOGY# WATERSHEDS# SURFACE WATER RUNOFF

73W-00-5278

TR-11. AN ANALYSIS OF THE RELATIONS AMONG ELEMENTS OF CLIMATE, SURFACE PROPERTIES, AND GEOMORPHOLOGY. 1957. MELTON, MA COLUMBIA UNIV., NEW YORK, N.Y.

175P. LANDFORM MORPHOMETRY IS RELATED TO CAUSATIVE FACTORS OF CLIMATE, MANTLE CHARACTERISTICS, VEGETATION DENSITY, AND LITHOLOGY. DRAINAGE BASINS ANALYZED ARE IN MATURE FLUVIAL DEVELOPMENT, FREE FROM OBVIOUS STRUCTURAL INFLUENCE, AND IN CLIMATES RANGING FROM ARID TO HUMID. OVER 80 BASINS IN ARIZONA, COLDRADO, NEW MEXICO, AND UTAH WERE INSPECTED IN THE FIELD: 22 WERE SUBJECTED TO DETAILED FIELD INVESTIGATIONS.

GEOMORPHOLOGY# LANDFORMS# TOPOGRAPHY

73W-00-5279

73W 05279. HORTONS LAW OF STREAM ORDER NUMBERS AND A TEMPERATURE ANALOG IN RIVER NETS. WATER RESOURCES RESEARCH. FEBRUARY 1968. P167-171. SCHEIDEGGER, AE ILLINDIS UNIV., URBANA

STATEMENTS OF HORTONS LAW IN HORTON, STRAMLER AND CONSISTENT STREAM ORDERING SYSTEMS ARE PRESENTED. A TOPOLOGICAL CHARACTERIZATION OF A HORTON NET IS GIVEN.

RIVERS# GEOMORPHOLOGY

73W-00-5288

73W 0528B. THE 3 PARAMETER LOGNORMAL DISTRIBUTION AND ITS APPLICATIONS IN HYDROLOGY. WATER RESOURCES RESEARCH. APRIL 1970. P505-515. SANGAL, BP# BISHAS, AK DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA

THE 3 PARAMETER LOGNORMAL DISTRIBUTION IS A GENERAL SKEW DISTRIBUTION IN WHICH THE LOGARITHM OF ANY LINEAR FUNCTION OF A GIVEN VARIABLE IS NORMALLY DISTRIBUTED.

HYDROLOGY# SKEWED DENSITY FUNCTIONS

73N-00-5289

73W 05289. RUNDFF ESTIMATION FOR VERY SMALL DRAINAGE AREAS. WATER RESOURCES RESEARCH. FEBRUARY 1968. P87-93. VIESSMAN, W MAINE UNIV., DROND

AVALYSIS OF HYDROLOGIC DATA FROM HIGH INTENSITY SHORT DJRATION STJRMS ON VERY SMALL DRAINAGE AREAS HAVING VARYING PHYSICAL CHARACTERISTICS INDICATED THAT A ONE MINUTE UNIT HYDROGRAPH COULD BE USED AS THE BASIS FOR GENERATING RUNDEF FROM AN EFFECTIVE RAINSTORM INPUT. PROCEDURES ARE GIVEN FOR ESTIMATING NET STORM INPUTS.

HYDROLOGY# SURFACE WATER FUNDEF# WATERSHEDS

73W-00-5292

73W 05292. CUMMENTS ON "COMPUTATION OF OPTIMUM REALIZABLE UNIT HYDROGRAPHS" BY PS EAGLESON, R MEJIA, AND F MARCH.
WATER RESOURCES RESEARCH. FEBRUARY 1968. P212-217.
NASH, JE# O'CONNOR, KM
UNIVERSITY COLLEGE, GALWAY, IRELAND

THIS PAPER PRESENTS A NUMERICAL METHOD OF DERIVING UNIT HYDROGRAPHS FROM COMPLEX EVENTS BY PROGRAMMING A LEAST SQUARES SOLUTION OF THE WIENER HOPF EQUATIONS IN DISCRETE TIME FORM.

HYDROGRAPHY# LEAST SQUARES METHOD

73W+00-5293

73W 05293. STEPS TOWARD A BETTER UNDERSTANDING OF URBAN RUNDEF PROCESSES. WATER RESOURCES RESEARCH. APRIL 1968. P335-347. BRATER, EF MICHIGAN UNIV.. ANN ARBOR

THIS PAPER DEALS WITH THE STUDY OF INFILTRATION PROCESSES THAT DETERMINE HOW MUCH OF A RAIN OR SNOW MELT BECOMES STORM RUNDER.

SURFACE WATER RUNDER# FLUID INFILTRATION# STORMS

73W+00-5294

73W 05294. A MATHEMATICAL MODEL FOR SIMULATING THE HYDROLOGIC RESPONSE OF A WATERSHED. WATER RESOURCES RESEARCH. JUNE 1968. P529-539. HJGGINS, LF# MONKE, EJ PURDUE UNIV., LAFAYETTE, IND.

A GENERAL MATHEMATICAL MODEL WAS DEVELOPED TO SIMULATE THE SURFACE RUNGEF FROM WATERSHEDS.

HYDROLOGYN WATERSHEDS# SIMULATION MATHEMATICAL MODELS

73W-00-5295

73W 05295. COMMENTS ON "ANALYSIS OF NONLINEARITIES IN GROUND WATER HYDROLDGY: A HYBRID COMPUTER APPROACH" BY V VEMURI AND JA DRACUP. WATER RESOURCES RESEARCH. JUNE 1968. P670-688. T-10MAS, RG UNITED NATIONS, ROME, ITALY

THE PAPER ILLUSTRATES THE RAPID ADVANCES THAT HAVE BEEN MADE IN APPLYING THE NEWER COMPUTER TOOLS TO HYDROLOGIC PROBLEMS.

HYDROLOGY# HYBRID COMPUTERS# DIGITAL COMPUTERS

5

73W 05297. COMMENTS ON PAPER "LINEAR ANALYSIS OF HYDROGRAPHS" BY WD MITCHELL. W.TER RESOURCES RESEARCH. AUGUST 1968. P844-846. JAMIESON, DG# ONSTAD, CA ASRICULTURE DEPT., BELTSVILLE; MD.

LINEAR SYSTEMS HAVE SEVERAL PROPERTIES, MOST OF WHICH HAVE BEEN USED TO DEFINE LINEARITY AT ONE TIME OR ANOTHER. HOWEVER, THE FUNDAMENTAL PROPERTY, AND THEREFORE THE DEFINITION, IS THE PRINCIPLE OF SUPERPOSITION.

HYDRULOGY# LINEAR SYSTEMS

73W-00-5298

73H 05298. OPTIMAL TAXING OF WATER POLLUTION. WATER RESOURCES RESEARCH. OCTOBER 1968. P865-875. UPTUN, C CHICAGO UNIV., ILL.

WITHIN THE CONTEXT OF THE MODEL. OPTIMAL TAXES ON WATER POLLUTION DO EXIST.

WATER QUALITY# WATER POLLUTION# TAXING

73W-00-5299

73W 05299. UNIFORM FLOOD FREQUENCY ESTIMATING METHODS FOR FEDERAL AGENCIES. WATER RESOURCES RESEARCH. OCTOBER 1968. P891-908. BENSON, MA GEOLOGICAL SURVEY, WASHINGTON, D.C.

LARGE SCALE PLANNING FOR IMPROVED FLOOD PLAIN MANAGEMENT. AND EXPANDING WATER RESOURCES DEVELOPMENT HAS MADE IT INCREASINGLY IMPORTANT THAT A CONSISTENT APPROACH BE ADOPTED FOR ESTIMATING FLOOD FREQUENCIES.

FLODOS# RIVERS# STATISTICS -

73W-00-5301

73W 05301. THE USE OF A SQUARE GRID SYSTEM FOR COMPUTER ESTIMATION OF PRECIPITATION, T5MPERATURE AND RUNOFF. WATER RESDURCES RESEARCH. DCTOBER 1968. P919-929. SOLOMON. SIH CHART, EJ# WOOLLEY, JA# CADOU, C JHAWINIGAN ENGINEERING CO., LTD., MONTREAL, CANADA

THIS PAPER PRESENTS THE APPLICATION OF THE SQUARE GRID SYSTEM TO THE ESTIMATION OF THE PRECIPITATION, TEMPERATURE, AND RUNDER DISTRIBUTION IN A LARGE AREA. IT SHOWS HOW THE USE OF THE SYSTEM ENABLES EFFICIENT COMBINATION OF THE METEOROLOGIC AND HYDROLOGIC INFORMATION AVAILABLE IN ASSESSING THE PRECIPITATION, TEMPERATURE, AND RUNOFF DISTRIBUTION.

DIGITAL COMPUTERS# SURFACE WATER RUNOFF# WATERSHEDS

73W-00-5302

73W 05302. SOME COMMENTS DN REGIONALIZATION IN HYDROLOGIC STUDIES.
WATER RESOURCES RESEARCH. DECEMBER 1968. P1361-1374
MATALAS, NC# GILROY, EJ
GEOLOGICAL SURVEY, ARLINGTON, VA.

THIS PAPER EXAMINES THE UTILITY OF REGRESSION ANALYSIS AS A REGIONALIZATION TECHNIQUE.

STATISTICS# SYNTHESIS# HYDROLOGY

NST-39649. AGRICULTURAL APPLICATION OF REMOTE SENSING. THE POTENTIAL FROM SPACE PLATFORMS. SEPTEMBER 1967. FREY, HT AGRICULTURE DEPT., WASHINGTON, D.C. NST-39649# NASA-CR-89645

35P. CURRENT RESEARCH AND LITERATURE WERE REVIEWED TO IDENTIFY AGRICULTURAL APPLICATIONS OF REMOTE SENSING BY LOW ALTITUDE SPACE PLATFORMS. EXISTING PHOTOGRAPHIC SENSORS AND PHOTOGRAPH INTERPRETATION TECHNIQUES WERE FOUND TO BE ADEQUATE TO PERFORM A VARIETY OF AGRICULTURAL SURVEY TASKS FROM SPACE PLATFORMS. RECONNAISSANCE SURVEYS OF MAJOR LAND USES, SUILS, WATER BODIES, RANGE CONDITIONS, AND CROPPING PRACTICES ARE TECHNICALLY FEASIBLE. CONSISTENT AND ACCURATE IDENTIFICATION OF CROP SPECIES, ANALYSIS OF CROP VIGOR, AND ESTIMATION OF CROP PRODUCTION ARE NUT CLEARLY FEASIBLE. HOWEVER+ SUCH INTERPRETATIONS AS THESE ARE PROBABLE IN SPECIAL SITUATIONS USING PHOTOGRAPHIC METHODS. THE DEVELOPMENT OF NUMPHOTOGRAPHIC SENSING AND INTERPRETATION CAPABILITIES MAY RESULT IN SUBSTANTIAL INFORMATION GAINS, PARTICULARLY WHEN USED IN CONJUNCTION WITH PHOTOGRAPHIC IMAGERY. DETAILED SOIL SURVEYS AND LIVESTOCK CENSUSES APPEAR UNATTAINABLE FRUM SPACE ALTITUDES BECAUSE OF INADEQUATE RESOLUTION AND INTERPRETATION TECHNIQUES.

REMOTE SENSING# PHOTOGRAPHIC IMAGES SPACE STATIONS# PHOLOINTERPRETATION

73W-00-5321

N70-13504. A NUMERICAL MODEL FOR THE SIMULATION OF TIDAL HYDRODYNAMICS IN SHALLOW IRREGULAR ESTUARIES. FEBRUARY 1969. MASCH, FD# SHANKAR, NJ# JEFFREY, M# BRANDES, WA TEXAS UNIV., AUSTIN N70-13504# P8184834# HYD-12-6901

135P. WORKING UNDER THE ASSUMPTION OF COMPLETE VERTICAL MIXING, A TWO DIMENSIONAL TIME DEPENDENT MODEL IS DESCRIBED WHICH PROVIDES SPATIAL AND TEMPORAL VARIATIONS OF TIDAL FLOWS AND AMPLITUDES. THE MODEL ACCOUNTS FOR VARIOUS PHYSIOGRAPHIC FEATURES FOUND IN SHALLOW ESTUARIES, VARIABLE INFLOWS, LOW TIDAL ACTION, AND OTHER HYDROLOGIC CHARACTERISTICS. THE MODEL FURTHER PROVIDES FOR THE INCLUSION OF WIND STRESS AND CORIOLIS FORCES.

HYDRODYNAMICS# MATHEMATICAL MODELS# VELOCITY FINITE DIFFERENCE THEORY# TIDES# ESTUARIES

73W-00-5322

N69-28809. AERIAL PHOTOGRAPHY FOR SHALLOW WATER STUDIES ON THE WEST EDGE OF THE BAHAMA BANKS. NOVEMBER 1968. CONROD, A# KELLY, M# BUERSMA, A MIT, CAMBRIDGE N59-28809# AD684146# RE-42

93P. EXPERIMENTS IN ECOLOGICAL SURVEYING AND SHALLOW WATER RECONNAISSANCE BY AERIAL PHOTOGRAPHY ARE REPORTED. THE BIMINI-CAT CAY AREA IS DESCRIBED IN TERMS OF ITS LARGE LALE FEATURES, AND THE RESULTS OF SITE SURVEYS VS AERIAL PHOTOGRAPHIC INTERPRETATION ARE DISCUSSED. THE GENERALIZED PROBLEM OF DEPTH PENETRATION IS PRESENTED, AS ARE METHODS OF PHOTOGRAPHIC IMAGE ENHANCEMENT FOR IMPROVED DEPTH PENETRATION AND BOTTOM DETAIL DISCRIMINATION. PHOTOGRAPHIC AND THERMAL INFRARED IMAGERY OF BISCAYNE BAY IS PRESENTED, THOUGH WITH LIMITED DISCUSSION.

SHALLOW WATER# AERIAL PHOTOGRAPHY PHOTOGRAPHIC IMAGES

N59-18523. INTERPRETATION OF AERIAL PHOTOGRAPHS IN THEORY AND PRACTICE (SELECTED ARTICLES). MARCH 1968. BAKHVALOV, VM# KOLTSOV, VV FOREIGN TECH. DIV., WRIGHT PATTERSON AFB, OHIO N59-18523# AD679721# FTO-HT-23-121-68

43P. CONTENTS: 1. ESTIMATION OF THE SPECTRAL BRIGHTNESS OF HAZE AND ITS EFFECT ON THE PHOTO INTERPRETATION OF AERIAL PHOTOGRAPHY USING A COMPUTER.

AERIAL PHOTOGRAPHY# ATMOSPHERIC SCATTERING
SPECTROMETERS# SPECTROSCOPY# PHOTOINTERPRETATION

77W-00-5324

N68-17408. THE USE OF MULTISPECTRAL SENSING TECHNIQUES TO DETECT PONDERDSA PINE TREES UNDER STRESS FRUM INSECT OR PATHOGENIC ORGANISMS. SEPTEMBER 1967. HELLER, RC# ALDRICH, RC# WEBER, FP# MC CAMBRIDGE, WF PACIFIC SOUTHWEST FOREST AND RANGE EXPERIMENT STATION, BERKELEY, CALIF.
N58-17408# NASA-CR-93173# APR-2

73P. BOTH GROUND AND AIRBORNE OPERATIONS WERE CONDUCTED
TO IDENTIFY THE LIKELIEST SENSORS AVAILABLE TO FORESTERS TO
DETECT EARLY TREE STRESS. AERIAL PHOTOGRAPHY (COLOR AND
FALSE CULOR) WAS TAKEN AT FIVE PERIODS (OCTOBER 1966, MAY,
JUNE, JULY AND AUGUST 1967) OVER SIX INFESTATION CENTERS TO
CAPTURE THE CHANGES IN FOLIAGE COLORATION. OPTICAL
MECHANICAL SCANNING IMAGERY WAS OBTAINED IN THREE
MAVELENGTHS OVER A THREE DAY PERIOD IN JUNE 1967.
BETTER GROUND INSTRUMENTATION WAS DEVELOPED THIS SEASON FOR
MEASURING SAP FLOW, EMITTED FOLIAGE TEMPERATURE, AND
METEDROLOGICAL CONDITIONS. A PROMISING NEW DEVICE
(SCHOLANDER BOMB) MEASURED HIGHLY SIGNIFICANT DIFFERENCES IN
NEEDLE MOISTURE TENSION BETWEEN HEALTHY AND STRESSED
TOLIAGE. FOLIAGE DISCOLORATION WATER OF ALL 204 INFESTED
TREES WERE ESTABLISHED BY COMPARISON WITH MUNSELL
CARDS.

REMOTE SENSING# AERIAL PHOTOGRAPHY# FOREST TREES

73W-00-5325

N58-38142. STATUS OF AERIAL COLOR PHOTOGRAPHY IN GOVERNMENT AGENCIES. MAY 1968. AVSON, A ARMY ENGINEER TOPOGRAPHIC LABS., FORT BELVOIR, VA. N58-38142# AD674189# USAETL-TB-1

92P. THE UTILITY OF AERIAL COLOR PHOTOGRAPHY FOR STUDIES IN THE FIELDS OF GEOLOGY, GEOGRAPHY, ARCHAEOLOGY, LANDFORMS, RANGE MANAGEMENT, TARGET DETECTION, HIGHWAY PLANNING, AND HYDROLOGY HAS BEEN RECOGNIZED BY THOSE WHO ARE WORKING IN AERIAL PHOTOGRAPHY; HOWEVER, THE USEFULNESS OF COLOR HAS NOT BEEN DETERMINED ADEQUATELY FOR MILITARY GEOGRAPHIC INTELLIGENCE. THIS REPORT IS A SUMMATION OF RESEARCH INTO THE STATUS OF AERIAL COLOR PHOTOGRAPHY IN SEVERAL GOVERNMENT AGENCIES, AND ITS APPLICATION TO SPECIFIC PROBLEMS.

AERIAL PHOTOGRAPHY# COLOR PHOTOGRAPHY REMOTE SENSING# TARGET ACQUISITION

N58-17406. THE INTERPRETABILITY OF HIGH ALTITUDE MULTISPECTRAL IMAGERY FOR THE EVALUATION OF WILDLAND RESOURCES. SEPTEMBER 1967. DRAEGER, WC CALIFORNIA UNIV., BERKELY N68-17406# N4SA-CR-93187

43P. HIGH ALTITUDE MULTISPECTRAL IMAGERY OF THE BUCKS
LAKE TEST SITE IN THE SIERRA NEVADA MOUNTAINS OF CALIFORNIA
WAS STUDIED, AND FIELD DATA COLLECTIONS WERE MADE IN AN
ATTEMPT TO ASCERTAIN THE OPTIMUM SPECIFICATIONS FOR REMOTE
SENSING IMAGERY ON WHICH TO IDENTIFY AND EVALUATE WILDLAND
RESOURCES. EXAMPLES OF THE INFORMATION THAT CAN BE EXTRACTED
FROM VARIOUS TYPES OF SMALL SCALE IMAGERY WERE PREPARED
AND DISCUSSED AND A REPRESENTATIVE IMAGE INTERPRETATION
GUIDE FOR USE IN TRAINING INTERPRETERS WAS DEVELOPED.
OPTIMUM IMAGE SPECIFICATIONS WERE FOUND TO VARY WITH BOTH
THE RESOURCE INVOLVED AND THE TYPE OF MANAGEMENT DECISIONS
TO BE MADE. IT WAS CONCLUDED, HOWEVER, THAT THE BEST
SINGLE IMAGE TYPE FOR GENERAL PURPOSES IS THAT UBTAINED
USING EKTA AERO INFRARED FILM IN CONJUNCTION WITH A
WRATTEN 12 FILTER.

REMOTE SENSING# INFRARED FILM# IMAGES INFRARED DETECTORS

73W-00-5327

N69-40203. APOLLO 9 MULTISPECTRAL PHOTOGRAPHY: GEOLOGIC ANALYSIS. SEPTEMBER 1969. LOWMAN, PD GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. N59-40203# NASA-TMX-63714

57P. THE APOLLO 9 MISSION CARRIED A MULTISPECTRAL TERRAIN PHOTOGRAPHY EXPERIMENT IN WHICH THE ASTRONAUTS PHOTOGRAPHED SELECTED LAND AREAS WITH AN ARRAY OF FOUR 70 MM CAMERAS, EACH WITH A DIFFERENT FILTER/FILM COMBINATION, IN AN EFFORT TO DETERMINE THE FEASIBILITY AND VALUE OF MULTISPECTRAL ORBITAL PHOTOGRAPHY FOR EARTH RESOURCES STUDIES. PRESENTED ARE RESULTS OF A GEOLOGICAL STUDY OF SELECTED SETS MADE TO DETERMINE IF MULTISPECTRAL ORBITAL PHOTOGRAPHY DEFERS ANY ADVANTAGES FOR GEOLOGY OVER COMPARABLE COLOR OR PANCHROMATIC ORBITAL PHOTOGRAPHY. VISUAL COMPARISON OF FOUR CAMERA SETS SHOWED THAT MULTISPECTRAL PHOTOGRAPHY WAS DEFINITELY SUPERIOR IN RENDERING GEOLOGICAL STRUCTURES OF HEAVILY VEGETATED AREAS AND PERMITTED EASY DIFFERENTIATION AMONG DECIDUOUS VEGETATION, DPEN WATER, AND ROCK OR SOIL.

APOLLO PROJECT# SPACEBORNE PHOTOGRAPHY GEOLOGICAL SURVEYS# TERRAIN INTELLIGENCE

73W-00-5328

N59-28505. BIBLIOGRAPHY OF REMOTE SENSING OF EARTH RESOURCES FOR HYDROLOGICAL APPLICATIONS. NOVEMBER 1968. LLAVERIAS, RK. MANNED SPACECRAFT CENTER, HOUSTON, TEX. N69-28505# NASA-TMX-61717# NASA-134

75P. THIS PRELIMINARY BIBLIDGRAPHY WAS PREPARED TO ACQUAINT HYDROLOGISTS WITH THE BASIC LITERATURE INVOLVED IN THIS FIELD. SOME OF THE REFERENCES CONCERN SPECIFIC HYDROLOGIC TOPICS OR SPECIFIC REMOTE SENSING METHODS. OTHER REFERENCES ON VESETATION MAPPING AND GEOLOGY WERE INCLUDED SO THAT THE READER CAN FIND INFORMATION ON THE SELECTION, PROCESSING, AND USE OF REMOTE SENSING DATA IN THESE COGNATE FIELDS. A NUMBER OF METEOROLOGICAL REFERENCES WERE INCLUDED BECAUSE IN MANY REMOTE SENSING APPLICATIONS, ESPECIALLY FROM EARTH ORBITAL SATELLITES, ATMOSPHERIC EFFECTS MUST BE TAKEN INTO ACCOUNT IN INTERPRETING THE VIEWS OF THE EARTH.

REMOTE SENSING# HYDROLOGY# MAPPING# GEOLOGY

N70-13062. A SELECTED ANNOTATED BIBLIOGRAPHY ON THE ANALYSIS OF WATER RESOURCE SYSTEMS. AUGUST 1969. GYSI, M# LOUCKS, DP CJRNELL UNIV., ITHACA, N.Y. N70-13062# PB186335

197P. PRESENTED IS AN ANNOTATED BIBLIOGRAPHY OF SOME SELECTED PUBLICATIONS PERTAINING TO THE APPLICATION OF SYSTEMS ANALYSIS TECHNIQUES TO WATER RESOURCE PROBLEMS. THE MAJORITY OF THE REFERENCES INCLUDED IN THIS BIBLIOGRAPHY HAVE BEEN PUBLISHED WITHIN THE LAST FIVE YEARS. ABOUT HALF OF THE ENTRIES HAVE INFORMATIVE ABSTRACTS AND KEYWORDS FOLLOWING THE CITATION. INDEX CHARTS GIVE QUICK KEYWORD ACCESS FOR ALL THE REFERENCES, THE ABSTRACTED DOCUMENTS BEING COMPLETELY KEYWORDED, AND THE OTHERS TITLE KEYWORDED.

WATER RESOURCES# BIBLIOGRAPHIES# SYSTEMS ANALYSIS OPTIMIZATION# OPERATIONS RESEARCH

73W-00-5330

N59-15299. PRACTICAL APPLICATIONS OF AERIAL PHOTOGRAPHS IN FORESTRY AND OTHER VEGETATION STUDIES. MARCH 1968. STELLINGWERF, DA INTERNATIONAL INST. FOR AERIAL AND EARTH SCIENCES, DELFT, NETHERLANDS N59-15299# SERIES B NO. 47/48

43P. AERIAL STEROGRAPHS ILLUSTRATING SEVERAL FOREST, CROP, AND SOIL CONDITIONS ARE PRESENTED AND DESCRIBED. BOTH PANCHROMATIC AND INFRARED FILMS WERE USED, ALONG WITH VARIOUS COMBINATIONS OF FILTERS.

AERIAL PHOTOGRAPHS# STEREDPHOTOGRAPHY# FORESTRY

73W-00-5331

N59-28396. EARTH RESOURCES SURVEY PROGRAM: THE REMOTE MEASUREMENT OF RHODAMINE B CONCENTRATION WHEN USED AS FEUDRESCENT TRACER IN HYDROLOGIC STUDIES. JANUARY 1968. BETZ, HT MANNED SPACECRAFT CENTER, HOUSTON, TEX. N69-28396# NASA-TMX-61713# NASA-101

51P. KNOWLEDGE OF THE TEMPORAL AND SPATIAL DISTRIBUTION OF INJECTED FLUORESCENT TRACER DYES IS USEFUL IN DETERMINING THE MOVEMENT AND DISPERSION OF SULUBLE CONTAMINANTS IN STREAMS, RIVERS AND ESTUARIES. A STANDARD TECHNIQUE INVOLVES THE INJECTION OF A KNOWN QUANTITY OF DYE AT A SPECIFIC LOCATION AND MONITORING THE RESULTING MOVEMENT AND DISPERSION. DYE CONCENTRATION IS MEASURED WITH A LABORATORY FLUDROMETER, AND IS PLOTTED AS A FUNCTION OF DISTANCE AND TIME. SHIPBORNE TECHNIQUES ARE RELATIVELY SLOW SINCE SAMPLES NEED TO BE TAKEN AND MEASURED OVER DISTANCES OF SEVERAL KILOMETERS OR MORE. ADDITIONALLY, THE SLOWLY VARYING CONCENTRATIONS REQUIRE REPEATED OR PERIODIC SAMPLINGS AT A GIVEN LOCATION SO THAT THE ENTIRE PROCEDURE IS HEAVILY TIME CONSUMING. THE USE OF FIXED SAMPLING LICATIONS, E.G., BRIDGE OVERPASSES, PROVIDES PRECISE DISTANCE INFORMATION AND VIRTUALLY CONTINUOUS RECORDS OF THE TIME VARYING CONCENTRATION AT A FIXED SITE BUT IS HIGHLY LIMITED IN SPATIAL COVERAGE.

FLUORESCENT DYES# HYDROLOGY# MEASUREMENT

N59-12097. NASA GEOLOGICAL TEST SITE NO. 126
MARQUETTE-REPUBLIC TROUGHS, MICHIGAN: REPORT ON PHOTOGRAPHIC
IMAGERY OBTAINED ON MISSION 72, MAY, 1968. NOVEMBER 1968.
WHITTEN: EH# BECKMAN, WA# SILVA, ZC
NORTHWESTERN UNIV., EVANSTON, ILL.
N59-12097

15P. CONTINUED INVESTIGATION OF DETERMINING ROCK TYPE, FAULT AND FOLD INFORMATION, AND LOCATION OF GROSS STRUCTURES WITH REMOTE SENSORS IS BRIEFLY REPORTED. ROCK TYPE, FAULTS, LINEAR ELEMENTS, AND SOIL AND VEGETATION WERE DETERMINED BY COLORED PHOTOGRAPHS FROM 2000 FT ALTITUDE. THE INDICATION OF LITHOLOGY WAS LESS CLEAR IN BLACK-AND-WHITE PHOTOGRAPHS THAN IN COLDR, BUT FAULTS, LINEAR STRUCTURES, AND OTHER CHARACTERISTICS APPEARED BETTER.

GEOLOGY# REMOTE SENSING# PHOTOGRAPHIC IMAGES

73W-00-5333

N70-13889. A PLAN FOR A COMPREHENSIVE WATER RESOURCES RESEARCH INFORMATION EXCHANGE SYSTEM. AUGUST 1969. BANKS, HO# WOLFE, CG LEEDS, HILL AND JEWETT, INC., SAN FRANCISCO, CALIF. N70-13889# PB185801

133P. A STUDY WAS MADE OF THE NATURE AND EFFECTIVENESS OF THE PRESENT PROCEDURES USED BY THE OFFICE OF WATER RESOURCES RESEARCH OF THE UNITED STATES DEPARTMENT OF THE INTERIOR AND THE 51 STATE WATER RESOURCES RESEARCH INSTITUTES TO OBTAIN INFORMATION ON PROBLEMS REQUIRING RESEARCH AND TO DISSEMINATE THE RESULTS OF RESEARCH PROJECTS. THE REPORT CONTAINS A RECOMMENDED RESEARCH INFORMATION EXCHANGE SYSTEM IN WHICH THE INFORMATION GATHERING AND DISSEMINATION ACTIVITIES OF OWRE AND THE STATE INSTITUTES WOULD BE BETTER DEFINED AND WOULD BE EXPANDED, AND USE WOULD BE MADE OF THE CAPABILITIES OF FEDERAL INFORMATION DISSEMINATION SERVICES, PROFESSIONAL SOCIETIES, AND OTHER COMMUNICATION MEDIA.

RESEARCH PROJECTS# WATER RESOURCES

73W-00~5334

N69-40545. INTERPRETATION OF GROUND WATER OF TYPICAL LANDSCAPES IN TURKMENIA ON AERIAL PHOTOGRAPHS. JUNE 1969. MEYER, GY# NEFETDY, KY
ARMY FOREIGN SCIENCE AND TECH. CENTER, WASHINGTON, D.C.
N69-40545# AD691566# FSTC-HT-23-498-68

35P. THE REPORT CIVES A GEOGRAPHICAL DESCRIPTION OF THE NATURAL LANDSCAPES EXISTING IN TURKMENIA AND THE INDIVIDUAL LANDSCAPE ELEMENTS IN THAT SOVIET REPUBLIC: TOPOGRAPHY, LLIMATE, HYDROGRAPHY, SOILS AND CULTURE FEATURES. THE ARTICLE GIVES THE RESULTS OF AERIAL SURVEYS MADE IN THE PRINCIPAL LANDSCAPE TYPES OF TURKMENIA; PARTICULAR ATTENTION IN THIS ARTICLE IS GIVEN TO THE RELATIONSHIP BETWEEN GROUND WATER AND RELIEF, VEGETATION AND SOILS, AND A DESCRIPTION OF WHAT FEATURES SERVE AS INDICATORS OF GROUND WATER AND HOW THESE INDICATORS APPEAR ON AERIAL PHOTOGRAPHS.

RASE # STATE ON BOND WATER # USSR SERIAL PARTICION ASPREADETON ASP

N7G-11722. STUDY OF THE SPECTRAL BRIGHTNESS OF SOME LANDSCAPE ELEMENTS FOR INTERPRETATION OF GROUND WATER ON AERIAL PHOTOGRAPHS. JUNE 1969. ARTSYBASHEV. YS ARMY FUREIGN SCIENCE AND TECH. CENTER, WASHINGTON, D.C. N7G-11722# AD692647# FSTC-HT-23-353-68

3BP. THE REPORT PRESENTS EXPERIENCE IN THE STUDY OF THE SPECTRAL REFLECTIVITY OF SUME LANDSCAPE ELEMENTS (PRIMARILY VEGETATION AND SOILS) WHICH ARE GROUND WATER INDICATORS AND DESCRIBES THE USE OF THESE DATA FOR THE HYDROGEOLOGICAL INTERPRETATION OF AERIAL PHOTOGRAPHS. THE STUDIES WERE MADE DURING 1958-1960 IN TWO GEOGRAPHICAL ZONES OF THE SOVIET UNION: DESERT (TURKMENIA) AND SEMI DESERT (CASPIAN LOWLAND). THE METHOD FOR INTERPRETING GROUND WATER DESCRIBED IN THIS PAPER WAS CHECKED BY MAKING SIMILAR STUDIES IN THE FUREST ZONE OF THE NORTHWESTERN REGIONS OF THE USSR.

SPECTROPHOTOMETRY# PHOTOINTERPRETATION# USSR GROUND WATER# AERIAL PHOTOGRAPHS

73W-00-5337

N59-40218. AERIAL PHOTOGRAPHIC METHOD FOR STUDYING GROUND WATER. 1969.
MEYER, GY
ARMY FOREIGN SCIENCE AND TECH. CENTER, WASHINGTON, D.C.
N59-40218# AD690613# FSTC-HT-23-479-68

17P. THIS PAPER PRESENTS A GENERAL REVIEW OF THE USE OF THE AERIAL PHOTOGRAPHIC METHOD IN THE SEARCH FOR GROUND WATER IN VARIOUS PARTS OF THE SOVIET UNION. THE INDIVIDUAL INDICATORS OF THE PRESENCE OF GROUND WATER SHOWN ON AERIAL PHOTOGRAPHS ARE INDIVIDUALLY DISCUSSED; THESE INCLUDE SUCH FEATURES AS VEGETATION, RELIEF, CULTURE FEATURES AND MANY OTHERS. THE ARTICLE DISCUSSES THE MOST USEFUL SCALES OF PHOTOGRAPHY, CAMERAS, LIGHT FILTERS, AIRCRAFT, PROPER SEASON FOR CONDUCTING THE WORK, MOST SUITABLE WEATHER AND BEST TIME OF DAY. SPECIFIC WORK IN THIS FIELD IS DISCUSSED. PARTICULARLY THAT DONE IN TURKMENIA AND THE CASPIAN LOWLAND, BUT THIS IS ALSO CONTRASTED WITH WORK DONE IN OTHER LANDSCAPE REGIONS OF THE COUNTRY. THE VARTOUS CRITERIA USED IN DIFFERENT REGIONS OF THE USSR ARE LISTED. SPECIFIC ASPECTS OF THE FIELD WORK WHICH SUPPLEMENTS AERIAL PHOTOGRAPHY ARE IN SOME DETAIL. THE SIGNIFICANT ROLE OF THE GEOBOTANICAL METHOD IS DISCUSSED, FOLLOWED BY SOME COMMENTS ON THE PREPARATION OF INTERPRETATION KEYS AND PHUTOMOSAICS AND THE ROLE PLAYED BY BLACK AND WHITE AND COLOR PRINTS.

GROUND WATER# AERIAL PHOTOGRAPHS# USSR

73W-00-5338

N69-28326. PRELIMINARY REMOTE SENSING OF THE DELAWARE ESTUARY. OCTOBER 1968.
PAULSON, RW
MANNED SPACECRAFT CENTER, HOUSTON, TEX.
N59-28326# NASA-TMX-61716# NASA-128

35P. POTENTIAL APPLICATIONS OF REMOTE SENSING TECHNIQUES FOR ESTUARINE HYDROLOGY HAVE BEEN REVEALED BY AN ANALYSIS OF INFRARED IMAGERY AND AERIAL PHOTOGRAPHY OF THE DELAWARE ESTUARY. IT IS CLEAR THAT INFRARED IMAGERY CAN BE AN IMPORTANT ESTUARINE RECONNAISSANCE TOOL. IN ADDITION, THE ANALYSIS INDICATES THAT ESTUARINE CIRCULATION, REAERATION, AND DISPERSION MIGHT BE EFFECTIVELY STUDIED WITH REMOTE SENSORS.

REMOTE SENSING# ESTUARIES# INFRARED DETECTION AERIAL PHOTOGRAPHY

NS8-28636. A GEMINI MOSAIC ALONG THE THIRTY SECOND DEGREE OF LATITUDE FROM BAJA CALIFORNIA TO CENTRAL TEXAS.

JJNE 1968.

MACKALLOR, JA
GEOLOGICAL SURVEY, WASHINGTON, D.C.
N58-28636# NASA-CR-95478

15P. A SERIES OF 39 OVERLAPPING PHOTOGRAPHS OF THE SOUTHWESTERN UNITED STATES AND ADJACENT AREAS OF MEXICO WAS CITAINED AS PART OF AN EXPERIMENT OF THE GEMINI 4 MISSION. THENTY-FOUR OF THESE PICTURES PLUS ONE FROM THE GEMINI 3 AND FOUR FROM THE GEMINI 5 MISSION WERE USED TO CONSTRUCT A 1:1,000,000 SCALE, BLACK AND WHITE, SEMICONTROLLED MOSAIC. THIS MOSAIC COVERS ABOUT 150,000 SQUARE MILES AND EXTENDS ALONG THE 32D PARALLEL OF NORTH LATITUDE FROM THE PACIFIC OCEAN TO THE 100TH MERIDIAN IN WEST CENTRAL TEXAS, AND AVERAGES ABOUT 150 MILES IN WIOTH. MANY OF THE INDIVIDUAL RECTIFIED PHOTOGRAPHS CAN BE ENLARGED TO A SCALE OF 1:250,000 WITH LITTLE OR NO LOSS OF RESOLUTION; SJCH ENLARGEMENTS WILL BE OF GREAT VALUE TO EARTH RESOURCES STUDIES.

MUSAIC MAPPING# RESOURCES

73W-00-5340

N59-14450. AN APPRUACH TO THE REMOTE DETECTION OF EARTH RESOURCES IN SUB ARID LANDS. DECEMBER 1968. POUQUET, J GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. N59-14450# NASA-IND-4647

25P. THE PURPOSE WAS TO FIND A BETTER GEOLOGICAL TOOL UTILIZING THE NIGHTTIME INFRARED RADIATIONS EMITTED BY THE GROUND, AND THEREBY OBTAIN A BETTER KNOWLEDGE OF THE ACRICULTURAL POSSIBILITIES OF ARID AND SUB-ARID LANDS. THE EQUIVALENT BLACK BODY TEMPERATURES DERIVED FROM NIMBUS 2 HIGH RESOLUTION INFRARED RADIOMETER WERE ANALYZED FOR ALL AVAILABLE ORBITS FROM MAY UNTIL MID NOVEMBER 1966. FROM THIS PRELIMINARY STUDY CERTAIN PREDUMINANT FEATURES EMERGED AND WERE USED AS A BASIS FOR THE INTERPRETATION OF DATA. FOR THE FINAL INTERPRETATION ONLY A FEW EXAMPLES WERE SELECTED: DEATH VALLEY AND SURROUNDINGS, AND SALTON SEA-COLORADO RIVER REGION.

REMOTE SENSING# INFRARED RADIATION# ARID LAND

73W-00-5341

N68-11714. GEOLOGIC APPLICATIONS OF ORBITAL PHOTOGRAPHY. DECEMBER 1967. LOWMAN, PD GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. N58-11714# NASA-TND-4155.

42P. THE POTENTIAL GEOLOGIC APPLICATIONS OF ORBITAL PHOTOGRAPHY (PHOTOGRAPHY OF THE SURFACE OF THE EARTH OR SIMILAR BODIES FROM ORBITING SPACECRAFT) WITH ILLUSTRATIONS FROM VARIOUS GEMINI FLIGHTS ARE SUMMARIZED.

SPACEBORNE PHOTOGRAPHY# GEOLOGY# MAPPING

73W-00-5342

N59-40998. GEOLOGIC APPLICATIONS OF EARTH ORBITAL SATELLITES. JUNE 1968. PECDRA, WT GEOLOGICAL SURVEY, WASHINGTON, D.C. N59-40998# A/CONF34/4.1# 68-95441

22P. ANALYSES OF GEMINI PHOTOGRAPHS ILLUSTRATE SEVERAL GJALITIES UNIQUE TO ORBITAL PHOTOGRAPHY THAT ARE OF IMPORTANCE TO GEOLOGISTS AND OTHER SCIENTISTS IN ASSESSING NATURAL RESOURCES.

EARTH ORBITS# ARTIFICIAL SATELLITES# GEOLOGY SPACEBORNE PHOTOGRAPHY

N59-28376. EARTH RESOURCES SURVEY PROGRAM: COMPARISON OF A UV SCANVER/PHOTOMULTIPLIER WITH AN IMAGE ORTHICON. OCTOBER 1967. GDLDMAN, H# MARSHALL, R IIT RESEARCH INST., CHICAGO, ILL. N69-28376# VASA-TMX-61710# NASA-97

IBP. A ROTATING MIRROR CAMERA USING A CSTE CATHODE WAS COMPARED TO AN ORTHICON SYSTEM USING A SIMILAR CATHODE. THE ROTATING CAMERA SYSTEM OFFERS A HIGHLY SATISFACTORY SIGNAL TO NOISE RATIO WHEN USING A CSTE PHOTOCATHODE (PLUS FILTER) AT AIRCRAFT ALTITUDES OF ABOUT 2 KM UNDER CLEAR, MID DAY ILLUMINATION CONDITIONS. THE IMAGE ORTHICON APPEARS TO OFFER SIGNAL TO NOISE RATIOS THAT ARE ABOUT 25 TIMES BETTER THAN THOSE OF A ROTATING MIRROR CAMERA OR LINE SCANNER USING A PHOTOMULTIPLIER TUBE. THE ADVANTAGE COMES ABOUT FROM THE SIGNAL INTEGRATION CAPABILITY THAT IMAGE ORTHICUNS POSSESS. THIS MAY BE SOMEWHAT TEMPERED BY THE NOTED FRAGILE CHARACTER OF SUCH TUBES PLUS THE ADDITIONAL COMPLEXITY OF EQUIPMENT. FOR AIRCRAFT USE FURTHER INVESTIGATION OF THESE FACTORS IS INDICATED.

ROTATING MIRROR CAMERAS# DRTHICONS# PHOTOMULTIPLIERS

73W-00-5344

NS8-19214. VEGETATION ANALYSIS WITH RADAR IMAGERY.
APRIL 1966.
MJRAIN, SA# SIMONETT, DS
KANSAS UNIV., LAWRENCE
NS8-19214# NASA-CR-75170# CRES-61-9

21P. THIS PAPER PRESENTS VEGETATION MAPS PREPARED FROM RADAR IMAGERY OBTAINED OVER SEVERAL CLIMATIC ENVIRONMENTS. THE MAPS AND IMAGERY HAVE BEEN COMPARED WITH EACH OTHER TO DETERMINE THE TYPES OF INFORMATION EXTRACTABLE. CONVENTIONAL VEGETATION MAPS WERE EMPLOYED TO A1D IN THE COMPARISON. EMPHASIS WAS ON THE K BAND AND AN/APQ-56 RADAR SYSTEMS.

VEGETATION# MAPPING# RADAR

73W-00-5345

N69-10663. PHOTOGRAPH OF THE EARTH FROM AIS ZOND-5. OCTOBER 1968.
GODDARD SPACE FLIGHT CENTER, GREENBELT, MD.
N69-10663# NASA-CR-97577# ST-PR-LPS-10767

4P. SPACECRAFT ZOND 5 PHOTOGRAPHS OF THE EARTH FROM DUTER SPACE DURING THE FINAL PURTION OF THE TRAJECTORY SHOW THE WELL DEFINED DUTLINES OF REGIONS AROUND THE MEDITERRANEAN, BLACK, CASPIAN, AND ARAL SEAS; ARABIAN PENINSULA; IRANIAN HIGHLANDS; AND THE GREATER PART OF AFRICA. A CUNSIDERABLE PART OF THE EARTH'S SURFACE IS HIDDEN BY CLOUDS.

SPACEBORNE PHOTOGRAPHY# EARTH /PLANET/# USSR

N59-15856. REMOTE SENSING OF CHANGES IN MORPHOLOGY AND PHYSIOLOGY OF TREES UNDER STRESS. SEPTEMBER 1968.
OLSON, CE# WARD, JM
MICHIGAN UNIV., ANN ARBOR
N59-15856#*NASA-CR-99183# APR-2

41P. GREENHOUSE WORK WITH TREE SEEDLINGS EXPOSED TO VARYING CONCENTRATIONS OF NACL AND CACL SUB 2 INDICATES THAT THE OAK SPECIES TESTED ARE MORE RESISTANT TO SALT INJURY THAN ASPEN, TULIP POPULAR, MAPLE, OR WILLOW; AND THAT SALT TOLERANCES OF THESE SPECIES DECREASES IN THE ORDER LISTED. DROUGHT CONDITIONS IN SUGAR MAPLE SEEDLINGS, CREATED BY VARYING THE FREQUENCY OF WATERING, WERE ACCOMPANIED BY INCREASING FOLIAR REFLECTANCE OF THE STRESSED PLANTS AT ALL WAVELENGTHS FROM 0.5 TO 2.5 MICROMETERS. PREVISUAL DETECTION OF DROUGHT OR SALT STRESS WAS NOT ACHIEVED USING COLOR OR INFRARED COLOR PHOTOGRAPHY IN THE LABORATORY. FIELD TESTS OF INFRARED SCANNING SYSTEMS FOR DETECTING MOISTURE STRESS IN MATURE TREES WERE ALSO BEGUN.

REMOTE SENSING# INFRARED PHOTOGRAPHY INFRARED SCANNERS# TREES / PLANTS/

73W-00-5347

N59-12276. GEOLOGICAL EVALUATION OF INFRARED IMAGERY, EASTERN PART OF YELLOWSTONE NATIONAL PARK, WYOMING AND MONTANA. DECEMBER 1968.
SMEDES, HW
GEOLOGICAL SURVEY, WASHINGTON, D.C.
N59-12276# NASA-CR-97813# NASA-83

48P. INFRARED IMAGERY OF PART OF YELLOWSTONE NATIONAL PARK WAS STUDIED TO EVALUATE ITS USEFULNESS IN THE REMOTE SENSING OF GEOLOGIC ENVIRONMENT. APPLICATIONS OF INFRARED IMAGERY TO GEOLOGY AND GEOMORPHOLOGY WERE STUDIED BY DETERMINING WHETHER ROCK AND SOIL TYPES, STRUCTURES, AND THERMAL SPRINGS NOT OBSERVED ON THE GROUND OR FROM CONVENTIONAL AERIAL PHOTOGRAPHS COULD BE DETECTED FROM THIS IMAGERY. THIS REPORT IS PRIMARILY CONCERNED WITH INFRARED IMAGERY OF AREAS UNDERLAIN BY THE EARLY CENOZOIC VOICANICS: IT INVOLVES THE EASTERN THIRD OF THE PARK AND THE WASHBURN RANGE IN THE NORTH CENTRAL PART OF THE PARK.

REMOTE SENSING# INFRARED DETECTION# GEOLOGY

73W-00-5348

N58-22261. CURRENT PROGRAM AND CONSIDERATIONS OF THE FUTURE FOR EARTH RESOURCES SURVEY. APRIL 1968. NEWFLL, HE NASA, WASHINGTON, DC N58-22261

17P. AN OVERVIEW IS PRESENTED ON THE ADVANCES IN SATELLITE SENSING PROGRAMS DURING THE 1962-1968 PERIOD, AND CURRENT NEEDS AND PROBLEM AREAS ARE ASSESSED. PROGRESS IN ESTABLISHING AN OPERATIONAL METEOROLOGICAL SATELLITE PROGRAM IS DISCUSSED, WITH MAJOR ACHIEVEMENTS CITED AS THE AUTOMATIC PICTURE TRANSMISSION SYSTEMS INITIATED WITH TIRDS 8. HIGH RESOLUTION INFRARED IMAGERY ALLOWING NIGHTTIME CLOUD COVER MAPPING INTRODUCED WITH NIMBUS 1, SPIN STABILIZATION IN SUN SYNCHRONOUS ORBIT ACHIEVED WITH TIROS 1), THE OPERATIONAL ADVANCED VIDICON CAMERA SYSTEM OF ESSA 2. AND THE SYNCHRONOUS ORBITAL SATELLITE ATS-1. THE GEODETIC SATELLITE PROGRAM IS REVIEWED, ALONG WITH THE APPLICATION OF REMOTE SENSING TECHNIQUES IN THE FIELD OF OCEANOGRAPHY. DATA REQUIREMENTS ARE IDENTIFIED FOR STUDIES ON FORESTRY, AGRICULTURE, GEOGRAPHY, HYDROLOGY, AND GEOLOGY, FUTURE PLANS ARE OUTLINED, AND THE NEED OF PROVIDING A DATA HANDLING AND DISTRIBUTION NETWORK, AND OF ORGANIZING IT INTO AN OVERALL WORKABLE SYSTEM, IS STRESSED.

REMOTE SENSING# ARTIFICIAL SATELLITES

N69-40906. EARTH RESOURCES SURVEYS: AN OUTLOOK TO THE FJTURE. FEBRUARY 1969. KARTH, JE U.S. CONGRESS N69-40906

13P. A HISTORY OF THE EARTH RESOURCES SATELLITE PROGRAM (ERS) IS PRESENTED. THE VARIOUS PROBLEMS ENCOUNTERED IN DEVELOPING UNMANNED SPACECRAFT AS OPPOSED TO THE APOLLO APPLICATIONS PROGRAM ARE DISCUSSED.

ARTIFICIAL SATELLITES# REMOTE SENSING

73W-00-5352

NASA-SP-193. EVALUATION OF MOTION DEGRADED IMAGES. DECEMBER 1968. ELECTROVICS RESEARCH CENTER, CAMBRIDGE, MASS. NASA-SP-193

192P. THE NECESSITY OF DEALING WITH MOTION DEGRADED IMAGES HAS BEEN WITH US FOR A LONG TIME. AS NEW PROBLEMS HAVE ARISEN, THE SCIENCE AND TECHNOLOGY FOR DEALING WITH THEM HAVE ADVANCED. IN RECENT YEARS, AEROSPACE APPLICATIONS HAVE CREATED REQUIREMENTS FOR THE ULTIMATE IN UNDISTORTED IMAGING UNDER NOVEL OPERATING CONDITIONS.

PHOTOGRAPHIC IMAGES# IMAGE PROCESSING# MOTION ELECTROOPTICS# ATMOSPHERIC MOTION# HOLOGRAMPS TURBULENCE

73W-00-5356

73W 05356. GEOLOGICAL SURVEY RESEARCH 1970: CHAPTER D. 1970.
U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C. PAPER 700-D

317P. THIS COLLECTION OF 45 SHORT PAPERS IS THE THIRD PUBLISHED CHAPTER OF "GEOLOGICAL SURVEY RESEARCH 1970." THE PAPERS REPORT ON SCIENTIFIC AND ECONOMIC RESULTS OF CURRENT WORK BY MEMBERS OF THE GEOLOGIC, WATER RESOURCES, AND TOPOGRAPHIC DIVISIONS OF THE U.S. GEOLOGICAL SURVEY.

GEOLOGICAL SURVEYS# HYDROLOGY# TOPOGRAPHIC SURVEYS

73H-00-5358

73W 05358. PREDICTION OF WATER YIELD IN HIGH MUUNTAIN WATERSHEDS BASED ON PHYSIOGRAPHY. AUGUST 1967. JJLIAN, RW# YEVJEVICH, V# SEYTOUX, HJ COLORADO STATE UNIV., FORT COLLINS

22P. THE PRESENT STUDY IS PART OF A MORE COMPREHENSIVE PROJECT WHICH HAS AS ONE OF ITS OBJECTIVES THE DETERMINATION OF CRITERIA, METHODS AND PROCEDURES TO BE USED IN SELECTING DRAINAGE BASINS SUITABLE FOR ATMOSPHERIC NATER RESOURCES PROGRAMS.

WATERSHEDS# HYDROLOGY# GEOMORPHOLOGY

734-00-5360

73W 05360. SHORT TERM STREAMFLOW FORECASTING FOR HYDRO PLANT UPERATIONS. CODPER, AJ TVA, KNOXVILLE, TENN.

29P. THE PRIMARY PURPOSE OF STREAMFLOW FORECASTS IS TO PROVIDE A BASE FOR PLANNING THE OPERATION OF THE RESERVOIRS SO THAT FLOODS CAN BE REGULATED ANY TIME THEY MAY OCCUR.

STREAM FLUW# HYDROELECTRIC POWER GENERATION HYDROLOGY# WATERSHEDS# FORECASTING

73W 05361. ESTIMATING COEFFICIENTS FOR STORAGE FLOOD ROUTING.

JOURNAL OF GEOPHYSICAL RESEARCH. DECEMBER 1963.

P5471-6474.

BRAKENSIEK, DL

AGRICULTURE DEPT., BELTSVILLE, MD.

STURAGE FLOOD ROUTING IS A METHOD FOR PREDICTING FLOOD WAVE PROPAGATION IN A STREAM. IT IS BASED PRIMARILY ON THE EQUATION OF CONTINUITY. FLOW AT A SECTION IS ASSUMED TO BE A SINGLE VALUED FUNCTION OF THE FLOW AREA. ADDITIONAL ASSUMPTIONS ARE USED TO DEVELOP A LINEAR RELATIONSHIP BETWEEN REACH STORAGE AND REACH INFLOW AND OUTFLOW. THE RELATIONSHIP DEFINES TWO COEFFICIENTS WHICH CORRESPOND TO THE X AND K OF THE MUSKINGUM FORMULATION FOR REACH STORAGE. SEVERAL ESTIMATING PROCEDURES ARE DEVELOPED AS A CONSEQUENCE OF THE DERIVED RELATIONSHIPS.

WAVE PROPAGATION# FLOOD ROUTING# FORECASTING

73W-00-5362

73W 05362. RECURRENCE INTERVALS BETWEEN EXCEEDANCES OF SELECTED RIVER LEVELS. 2 - ALTERNATIVES TO A MARKOV MODEL. WATER RESOURCES RESEARCH. FEBRUARY 1969. P268-275. MCGILCHRIST, CA UNIVERSITY OF NEW SOUTH WALES, AUSTRALIA

IT IS SHOWN THAT THE GENERAL RELATIONSHIP BETWEEN THE EXPECTED RECURRENCE INTERVAL AND THE RETURN PERIOD FOR THE ANNUAL MAXIMUM SERIES DEPENDS ON THE CHOICE OF MODEL.

RIVERS# PROBABILITY THEORY

73W-00-5364

73W 05364. GENERALIZATION OF STREAMFLOW CHARACTERISTICS FROM DRAINAGE BASIN CHARACTERISTICS. 1970. THOMAS, DM# BENSON, MA U.S. GEDLUGICAL SURVEY, WASHINGTON, D.C. PAPER 1975

55P. DEFINITION OF THE NATURAL STREAMFLOW IN ALL STREAMS, GAGED OR UNGAGED, IS ONE OF THE PRINCIPAL OBJECTIVES OF THE STREAMFLOW DATA COLLECTION PROGRAM OF THE GEOLOGICAL SURVEY. THIS REPORT DESCRIBES THE RESULTS OF USING STATISTICAL MULTIPLE REGRESSION ANALYSES TO PROVIDE A GENERALIZED DEFINITION OF THE NATURAL STREAMFLOW IN FOUR WIDELY SEPARATED REGIONS OF THE EASTERN, CENTRAL, SOUTHERN, AND WESTERN AREAS OF THE CONTERMINDUS UNITED STATES.

WATERSHEDS# STREAM FLOW# REGRESSION ANALYSIS

73W-00-5368

73W D5368. THE VARYING SDURCE AREA OF STREAM FLOW FROM UPLAND BASINS. AUGUST 1970. HEWLETT, JD# NUTTER, WL GEORGIA UNIV., ATHENS

13P. THE VARIABLE SOURCE AREA CONCEPT OF UPLAND STREAMFLOW MAY SOON BECOME A WORKING MODEL TO ACCOUNT FOR THE VARIOUS SOURCES. PATHWAYS, AND TIMING DELAYS WHICH UNDERLIE THE DYNAMICS OF DISCHARGE FROM HEADWATER AREAS.

STREAM FLOW# WATERSHEDS# SURFACE WATER RUNOFF

73W-00-5370 .

73W 05370. HYDROGRAPHIC AND SEDIMENTATION SURVEY OF KAJAKAI RESERVUIR, AFGHANISTAN. 1970. PERKINS, DC# CULBERTSON, JK U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C. PAPER 1608-M

37P. A HYDROGRAPHIC AND SEDIMENTATION SURVEY OF BAND-E KAJAKAI (KAJAKAI RESERVOIR) ON THE DARYA-YE HIRMAND (HELMAND RIVER) WAS CARRIED OUT DURING THE PERIOD SEPTEMBER THROUGH DECEMBER 1968. UNDERWATER MAPPING TECHNIQUES WERE USED TO DETERMINE THE RESERVOIR CAPACITY AS OF 1968. SEDIMENT RANGE LINES WERE ESTABLISHED AND MONUMENTED TO FACILITATE FUTURE SEDIMENTATION SURVEYS.

HYDROGRAPHIC SURVEYS# SEDIMENTATION# RESERVOIRS

73W-00-5371

73W 05371. OUTLINE OF GROUND WATER HYDROLOGY. 1969. MEINZER, DF U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C. PAPER 494

71P. CONTENTS: (1) WATER OF THE EARTH, (2) ATMOSPHERIC WATER, (3) SURFACE WATER, (4) SUBSURFACE WATER, AND (5) WELLS.

HYDROLOGY# WATER# SURFACE WATERS WATER WELLS# GROUND WATER

73W-00-5372

73W 0537?. TECHNIQUES OF WATER RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY. BOOK 7: AUTOMATED DATA PROCESSING AND COMPUTATIONS. CHAPTER C1: A DIGITAL MODEL FOR AQUIFER EVALUATION. 1970. PINDER, CF U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C.

18P. THE SERIES OF MANUALS ON TECHNIQUES DESCRIBES PROCEDURES FOR PLANNING AND EXECUTING SPECIALIZED WORK IN WATER RESOURCES INVESTIGATIONS. THE MATERIAL IS GROUPED UNDER MAJOR SUBJECT HEADINGS CALLED BOOKS AND FURTHER SJBDIVIDED INTO SECTIONS AND CHAPTERS; SECTION C OF BOOK 7 IS ON COMPUTER PROGRAMS.

AQUIFERS# DATA PROCESSING# DIGITAL COMPUTERS WATER RESOURCES

73H-00-5373

73W 05373. AN ADVANTAGEOUS, ALTERNATIVE PARAMETERIZATION OF ROTATIONS FOR ANALYTICAL PHOTOGRAMMETRY. SEPTEMBER 1970. PDPE, AJ GEODETIC RESEARCH AND DEVELOPMENT LAB., ROCKVILLE, MD. ESSA-TR-C AND GS-39

18P. A CASE IS MADE FOR INCREASED USE OF A METHOD OF REPRESENTING AN ORTHOGONAL MATRIX THAT IS DIFFERENT FROM THE ONE NOW USED IN MOST ANALYTICAL PHOTOGRAMMETRIC SOLUTIONS. THE RELEVANT COMPUTATIONAL FORMULAS ARE GIVEN, ALONG WITH THEIR DERIVATION AND GEDMETRIC INTERPRETATION.

AVALYTICAL PHOTOGRAMMETRY

73W 05374. ELECTRICAL ANALOG ANALYSIS OF GROUND WATER DEPLETION IN CENTRAL ARIZONA. 1968. ANDERSON, TW U.S. GEGLOGICAL SURVEY, WASHINGTON, D.C. PAPER 1860

21P. THE SALT RIVER VALLEY AND THE LOWER SANTA CRUZ RIVER BASIN ARE THE TWO LARGEST AGRICULTURAL AREAS IN ARIZONA. THE EXTENSIVE USE OF GROUND WATER FOR IRRIGATION HAS RESULTED IN THE NEED FOR A THOROUGH APPRAISAL OF THE PRESENT AND FUTURE GROUND WATER RESOURCES. THE DEPLETION PROBLEM IS OF ECONOMIC IMPORTANCE BECAUSE GROUND WATER WILL BECOME MORE EXPENSIVE AS PUMPING LIFTS INCREASE AND WELL YIELDS DECREASE. THE USE OF ELECTRICAL ANALOG MODELING TECHNIQUES HAS MADE IT POSSIBLE TO PREDICT FUTURE GROUND WATER LEVELS UNDER CONDITIONS OF CONTINUED WITHDRAWAL IN EXCESS OF THE RATE OF REPLENISHMENT. THE PREDICTION OF FJTURE WATER TABLE CONDITIONS IS ACCOMPLISHED BY A SIMPLE EXTENSION OF THE PUMPING TRENDS TO DETERMINE THE RESULTANT EFFECT ON THE REGIONAL WATER LEVELS.

GROUND WATER# AQUIFERS# PUMPING

734-00-5375

73W 05375. ELECTRICAL ANALOG MODEL STUDY OF WATER RESOURCES OF THE COLUMBUS AREA, BARTHOLOMEW COUNTY, INDIANA. 1970. WATKINS, FA# HEISEL, JE U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C. PAPER 1981

22P. THE COLUMBUS STUDY AREA IS IN PART OF A GLACIAL OUTWASH SAND AND GRAVEL AQUIFER THAT WAS DEPOSITED IN A PREGLACIAL BEDRUCK VALLEY. THE STUDY AREA EXTENDS FROM THE NORTH LINE OF BARTHOLOMEW COUNTY TO THE SOUTH COUNTY LINE AND INCLUDES A SMALL PART OF JACKSON COUNTY SOUTH OF SAND CREEK AND EAST OF THE EAST FORK WHITE RIVER. THIS REPORT AREA INCLUDES ABOUT 100 SQUARE MILES OF THE AQUIFER. AN ELECTRICAL ANALOG MODEL WAS BUILT TO ANALYZE THE AQUIFER SYSTEM AND DETERMINE THE EFFECTS OF DEVELOPMENT. ANALYSIS OF THE MODEL INDICATES THAT THERE IS MORE THAN ENOUGH WATER TO MEET THE ESTIMATED NEEDS OF THE CITY OF COLUMBUS WITHOUT SERIOUSLY DEPLETING THE AQUIFER.

WATER RESOURCES# AQUIFERS# HYDROLOGY

73W-00-5376

73W 05376. METHODS AND APPLICATIONS OF ELECTRICAL SIMULATION IN GROUND WATER STUDIES IN THE LOWER ARKANSAS AND VERDIGRIS RIVER VALLEYS, ARKANSAS AND OKLAHOMA. 1970. BEDINGER, MS# REED, JE# WELLS, CJ# SWAFFORD, BF U.S. GEOLOGICAL SURVEY, WASHINGTON, D.C. PAPER 1971

71P. IN 1957 THE U.S. GEOLOGICAL SURVEY AND U.S. ARMY CORPS OF ENGINEERS ENTERED INTO A COOPERATIVE AGREEMENT FOR A COMPREHENSIVE GROUND WATER STUDY OF THE LOWER ARKANSAS AND VERDIGRIS RIVER VALLEYS. AT THE REQUEST OF THE CORPS OF ENGINEERS, THE GEOLOGICAL SURVEY AGREED TO PROVIDE (1) BASIC GROUND WATER DATA BEFORE, DURING, AND AFTER CONSTRUCTION OF THE MULTIPLE PURPOSE PLAN AND (2) INTERPRETATION AND PROJECTIONS OF POSTCONSTRUCTION GROUND WATER CONDITIONS. THE DATA COLLECTED WERE USED BY THE CORPS OF ENGINEERS IN PRELIMINARY FOUNDATION AND EXCAVATION ESTIMATES AND BY THE GEOLOGICAL SURVEY AS THE BASIS FOR DEFINING THE HYDROLOGIC PROPERTIES OF, AND THE GROUND WATER CONDITIONS IN. THE AQUIFER. ANALYSIS AND PROJECTIONS OF GROUND WATER CONDITIONS WERE MADE BY USE OF ELECTRICAL ANALOG MODELS. THESE MODELS USE THE ANALOGY BETWEEN THE FLOW OF ELECTRICITY IN A RESISTANCE CAPACITANCE CIRCUIT AND THE FLOW OF A LIQUID IN A POROUS AND PERMEABLE MEDIUM.

GROUND WATER# AQUIFERS# SIMULATION

73W 05377. MUSKINGUM FLOOD ROUTING OF UPLAND STREAMFLOW.
JJURNAL OF HYDROLOGY. VOL. 4, 1966. P185-200.
OVERTON, DE
AGRICULTURE DEPT.. BELTSVILLE, MD.

THE RESULTS OF FLOOD ROUTING TRIALS ON A SMALL ARS EXPERIMENTAL WATERSHED USING THE MUSKINGUM FLOOD ROUTING SYSTEM SHOWED THAT THE ROUTING COEFFICIENTS K AND X VARY FOR EACH STORM. BY APPROXIMATING THE OBSERVED INFLOW F/DROGRAPHS BY A SIMPLE TRIANGULAR SHAPE, DIRECT SULUTION FOR THE ROUTING COEFFICIENTS WAS POSSIBLE.

FLOOD ROUTING# STREAM FLOW# WATERSHEDS

73W-00-5378

ARS-41-116. A RUNOFF HYDROGRAPH EQUATION. FEBRUARY 1966. DECOURSEY, DG AGRICULTURE DEPT., CHICKASHA, DKLA. ARS-41-116

23P. THIS PAPER PRESENTS AN EQUATION THAT DEFINES THE SURFACE RUNDEF HYDROGRAPH AND DEVELOPS A METHOD FOR DETERMINING THE CONSTANTS IN THE EQUATION. IT WAS DERIVED IN STUDIES OF SIX WATERSHEDS IN THE OKLAHOMA PORTION OF THE WASHITA RIVER BASIN. IT IS BELIEVED THAT THE EQUATION FILLS THE NEED FOR A GENERAL FUNCTIONAL RELATION THAT CAN BE USED IN THE ELECTRONIC COMPUTER ANALYSIS OF STREAMFLOW PROBLEMS.

SURFACE WATER RUNDEF# STREAM FLOW# HYDROGRAPHY

73W-00-5379

73W 05379. JOURNAL OF THE HYDRAULICS DIVISION. PROCEEDINGS OF THE ASCE. VOL. 97. SEPTEMBER 1971. P1349-1523. AMERICAN SOCIETY OF CIVIL ENGINEERS.

CONTENTS INCLUDE: HOURLY RAINFALL SYNTHESIS FOR A NETWORK; MECHANICS OF SHEET FLOW UNDER SIMULATED RAINFALL: AND DE SAINT-VENANT EQUATIONS EXPERIMENTALLY VERIFIED.

RAINFALL# FLOOD ROUTING# HYDROLOGY# HYDRAULICS

738-00-5380

73W 05380. A RAINFALL RUNDFF SIMULATION MODEL FOR ESTIMATION OF FLOOD PEAKS FOR SMALL DRAINAGE BASINS. 1970. DAWDY, DR# LICHTY, RW# BERGMANN, JM GEOLOGICAL SURVEY, WASHINGTON, D.C.

93P. A PARAMETRIC RAINFALL RUNDFF SIMULATION MODEL IS USED WITH POINT RAINFALL AND DAILY POTENTIAL EVAPOTRANSPIRATION DATA TO PREDICT FLOOD VOLUME AND PEAK RATES OF RUNOFF FOR SMALL DRAINAGE AREAS. THE MODEL IS BASED ON BULK PARAMETER PROXIMATIONS TO THE PHYSICAL LAWS GOVERNING INFILTRATION, SOIL MOISTURE ACCRETION AND DEPLETION, AND SURFACE STREAMFLOW. AN OBJECTIVE FITTING METHOD IS USED FOR DETERMINING OPTIMAL BEST FIT SETS OF PARAMETER VALUES FOR THE DATA AVAILABLE FOR USE IN PREDICTING FLOOD PEAKS FOR THREE CASE STUDIES.

RAINFALL# SURFACE WATER RUNOFF# SIMULATION DIGITAL COMPUTERS# HYDROLOGY

RP-7. OPTIMIZATION BY THE PATTERN SEARCH METHOD. JANUARY 1970. GREEN, RF IVA, KNOXVILLE, TENN. RP-7

73P. AN INFINITE NUMBER OF MATHEMATICAL MODELS CAN BE CREATED TO DESCRIBE NATURALLY OCCURRING PHYSICAL SYSTEMS. IN ADDITION THERE IS A SMALLER, BUT LARGE, NUMBER OF CRITERIA WHICH CAN BE USED TO MEASURE THE GOODNESS OF FIT OF A MODEL TO A PHYSICAL PROCESS. TOGETHER, A SELECTED CRIFERION AND A MATHEMATICAL MODEL DEFINE AN OBJECTIVE FUNCTION TO BE OPTIMIZED. THEN THERE ARE SEVERAL DIFFERENT FITTING UR OPTIMIZING TECHNIQUES WHICH CAN BE USED TO OPTIMIZE (MINIMIZE OR MAXIMIZE) THE OBJECTIVE FUNCTION AND PROVIDE A QUANTIFICATION OF THE PARAMETERS OF THE OBJECTIVE FUNCTION.

OPTIMIZATION# MATHEMATICAL MODELS COMPUTER PROGRAMS

73W-00-5391

TR-3. A QUANTITATIVE GEOMORPHIC STUDY OF DRAINAGE BASIN CHARACTERISTICS IN THE CLINCH MOUNTAIN AREA - VIRGINIA AND TENNESSEE. 1953. MILLER, VC COLUMBIA UNIV., NEW YORK, N.Y. TR-3

73P. QUANTITATIVE STUDY OF STREAM LENGTH, BASIN AREA, DRAINAGE DENSITY, BASIN CIRCULARITY, VALLEY SIDE SLOPES, AND HYPSOMETRIC CURVES WAS MADE OF TWO KINDS OF TOPOGRAPHY IN THE CLINCH MOUNTAIN AREA OF VIRGINIA AND TENNESSEE. SAMPLES OF THE FORM ELEMENTS WERE TAKEN FROM LARGE SCALE TOPOGRAPHIC MAPS AND AIR PHOTOGRAPHS, CHECKED BY FIELD OBSERVATIONS. SIGNIFICANT DIFFERENCES IN SAMPLE MEANS WERE DETERMINED THROUGH ANALYSIS OF VARIANCE.

WATERSHEDS# STREAMS# GEOMORPHOLOGY

73W-00-5392

73% 05392. ANNUAL REPORT OF THE TENNESSEE VALLEY AUTHORITY - 1970. DECEMBER 1970. TVA, MUSCLE SHOALS, ALA.

73P. CONTENTS: TVA 1970 + HIGHLIGHTS; TECHNOLOGY - TOOLS TO BJILD A BETTER LIFE; MANAGING THE MULTIPLE USES OF WATER AND LAND; POWER FOR A GROWING REGION; FORESTRY, FISHERIES, AND WILDLIFE; FERTILIZER AND AGRICULTURAL ADVANCES; AND TRIBUTARY AREA DEVELOPMENT.

LAND DEVELOPMENT# ELECTRIC POWER# FISHERIES FORESTRY# AGRICULTURE

73W-00-5395

73W 05395. TVA - 1969. 1970 TVA, KNOXVILLE, TENN.

92P. CONTENTS: TVA 1969 - HIGHLIGHTS; ECONOMIC GROWTH AND ENVIRONMENTAL QUALITY - SEEKING THE GOLDEN MEAN; MANAGING THE MULTIPLE USES OF WATER AND LAND; ELECTRIC POWER PROGRESS; TRIBUTARY AREA DEVELOPMENT; FORESTRY PROGRESS; FERTILIZER AND AGRICULTURE PROGRESS.

LAND DEVELOPMENT# ELECTRIC POWER# FORESTRY AGRICULTURE# FERTILIZERS

73W 05397. THE ROLE OF WEATHER FORECASTS IN TVA RESERVOIR OPERATIONS. FEBRUARY 1969. COOPER, AJ TVA, KNOXVILLE, TENN.

37P. THE EXTENT OF SUCCESS IN THE OPERATION OF THE COMPLEX TVA RESERVOIR SYSTEM TO ACHIEVE MULTIPLE PURPOSES IS DEPENDENT TO A CONSIDERABLE DEGREE UPON THE AVAILABILITY AND RELIABILITY OF OBSERVED AND PREDICTED METEOROLOGIC AND HYDROLOGIC INFORMATION. QUANTITATIVE WEATHER FORECASTS ARE BECOMING -INCREASINGLY IMPORTANT IN THE DAILY OPERATIONS OF THE TENNESSEE VALLEY AUTHORITY RESERVOIRS TO REALIZE THE SYSTEM OBJECTIVES. THE SCOPE OF WEATHER FORECASTS WHICH TVA RECEIVES FROM ESSA WEATHER BUREAU, HOW THEY ARE USED, AND THEIR IMPORTANCE AND EFFECT IN SCHEDULING THE OPERATIONS OF THE WATER CONTROL AND POWER SYSTEMS IS THE SUBJECT OF THIS PAPER.

WEATHER FORECASTING# RESERVOIRS

738-00-5434

73W 05404. UNSTEADY FLOW SIMULATION IN RIVERS AND RESERVOIRS.
JOURNAL OF THE HYDRAULICS DIVISION. SEPTEMBER 1969.
P1559-1576.
GARRISON, JM# GRANJU, JP# PRICE, JT
TVA, KNOXVILLE, TENN.

POST MATHEMATICAL MODELING OF UNSTEADY FLOW PHENOMENA HAS BEEN LIMITED. TO PRISMATIC CHANNELS AND SOMEWHAT IDEALIZED CONDITIONS. THE TENNESSEE VALLEY AUTHORITY (ITVA) USING THE NUMERICAL METHODS DEVELOPED BY STOKER HAS SUCCESSFULLY APPLIED THEM TO A NUMBER OF COMPLEX UNSTEADY FLOW CONDITIONS WHICH HAVE OCCURRED OR ARE EXPECTED TO UCCUR IN SOME OF THE AUTHORITY'S RESERVOIRS AND NATURAL RIVER CHANNELS.

THE RESULTS SHOW THE ADVANTAGES AND APPLICABILITY OF THE DIGITAL COMPUTER OVER QUASISTEADY FLOW METHODS OF HANDLING UNSTEADY FLOW PROBLEMS. ALSO POINTED OUT ARE AREAS IN THE MATHEMATICAL MODEL IN WHICH DIFFICULTIES HAVE BEEN ENCOUNTERED ALONG WITH THE METHODS REQUIRED TO OVERCOME THEM. THESE ARE DESCRIBED TO ASSIST OTHERS IN USING THE MODEL.

RABTURMOD LATIBIG #SJEDOM LADITAMBHTAM NOITALUMIZ #WCJF YDABTZPU

73W-00-5417

73W 05417. SENSOR DEFINITION STUDY IN SUPPORT OF UNIFIED SPACE APPLICATIONS MISSION (USAM). FEBRUARY 1968. I3M, BETHESDA, FSD NAS5-10436

250P. THIS REPORT PRESENTS THE RESULTS OF A SENSOR DEFINITION STUDY IN SUPPORT OF THE UNIFIED SPACE APPLICATIONS MISSION CONCEPT. THE STUDY DETERMINED THE IMPORTANT CHARACTERISTICS OF REQUIRED SENSORS AND IDENTIFIED COMMUNALITY ASPECTS OF SENSORS AND ORBITS TO PERFORM USEFUL EARTH ORIENTED TASKS IN THE 1970 AND 1975 TIME FRAMES. IT ALSO IDENTIFIED EXPERIMENT (TASK) PARAMETERS AGAINST WHICH SENSOR PERFORMANCE WAS EVALUATED.

DETECTORS# REMOTE SENSING# ARTIFICIAL SATELLITES

73W 05419. EARTH ORBITAL EXPERIMENT PROGRAM. IBM. FSD

99P. UNDERLYING THE RECOMMENDED SYNTHESIS APPROACH IS THE RECOGNITION THAT ORL, OF WHICH AAP IS THE INITIAL EMBODIMENT, REPRESENTS NOT JUST A PLATFORM FOR PERFORMING UNRELATED EXPERIMENTS BUT A WORKSHOP FOR CONTRIBUTING TO SOLUTION OF NATIONAL AND INTERNATIONAL PROBLEMS AND FOR ILLUMINATING CRUCIAL SCIENTIFIC QUESTIONS. THIRTEEN FIELDS OF ACTIVITY, CALLED SCIENTIFIC/TECHNICAL (S/T) AREAS, WERE IDENTIFIED AS POTENTIALLY BENEFITING FROM ORL.

EARTH DRBITS# SPACE EXPLORATION

73W-00-5424

73W 05424. THE PRESIDENTS 1971 ENVIRONMENTAL PROGRAM. MARCH 1971. TRAIN, RE# CAHN, R# MACDONALD, GJ COUNCIL DN ENVIRONMENTAL QUALITY

335P. THIS REPORT CONTAINS THE PRESIDENTS MESSAGE ON THE ENVIRONMENT AND SPECIFIC INFORMATION ON THE PRESIDENTS 1971 PROPOSALS. INCLUDED ARE THE BILLS, THE LETTERS OF TRANSMITTAL TO THE CONGRESS, AND ANALYSES OF THE PROPOSED LEGISLATION.

ENVIRONMENTS

73W-00-5430

N69-34930. POTENTIAL BENEFITS TO BE DERIVED FROM APPLICATIONS OF REMOTE SENSING OF AGRICULTURAL. *FOREST, AND RANGE RESOURCES. DECEMBER 1967. BELCHER, DJ# HARDY, EE# SHELTON, RL# SHEPIS, EL CORNELL UNIV., ITHACA, N.Y.
N59-34930# NASA-CR-103946

150P. THIS REPORT EXPLORES THE USES AND ASSOCIATED VALUES OF THE INFORMATION WHICH CAN NOW OR IN THE FUTURE BE PROVIDED BY REMOTE SENSING FROM CONVENTIONAL AND HIGH FLYING AIRCRAFT AND FROM SATELLITES. SUPPORTING MATERIAL, COMPRISING TECHNICAL AND ECONOMIC ANALYSES OF THESE USES (OR APPLICATIONS), STEMMED FROM A DETAILED AND CRITICAL EVALUATION OF REMOTE SENSORS AND OF THE AGRICULTURAL FOREST, AND RANGE RESOURCES TO WHICH THEY ARE APPLIED. THE OBJECTIVE OF THE REPORT IS TO INDICATE THE MAGNITUDE OF THE POTENTIAL VALUES THAT MAY BE DERIVED FROM REMOTE SENSING OF THESE RESOURCES.

REMOTE SENSING# AIRCRAFT# ARTIFICIAL SATELLITES

738-00-5431

N70-25632. REVIEW OF NEW GETTGRAPHIC METHODS AND TECHNIQUES. QUESTIONNAIRE SURVEY. WATER RESOURCES PLANNING AND MAYAGEMENT. RECENT TRENDS IN REMOTE SENSING TECHNOLOGY. OCTOBER 1969. TATA, RJ# PALMER, CE# WITMER, REFLORIDA ATLANTIC UNIV., BOCA RATON N70-25632# AD700176

97P. IN DOING WORK FOR A RESEARCH PROJECT ON NEW GEOGRAPHIC METHODS AND TECHNIQUES, THE THREE REPORTS AND BIBLIDGRAPHIES INCLUDED IN THIS STUDY WERE DEVELOPED. BECAUSE THE REPORTS ARE OF INTEREST, BUT NOT DIRECTLY RELATED, TO THE CENTRAL GOAL OF THE METHODOLOGICAL TREATISE, THEY ARE PRESENTED FOR RESEARCHERS CONCERNED. THE FIRST REPORT SUMMARIZES THE RESULTS OF A QUESTIONNAIRE SJRVEY OF GEOGRAPHERS WHO ARE ACTIVE IN RESEARCHING METHODOLOGICAL TOPICS; THE SECOND REPORT DEALS WITH THE GEOGRAPHERS ROLE IN STUDIES OF WATER RESOURCE PLANNING AND MANAGEMENT; AND THE FINAL STUDY COMPRISES REPORT AND BIBLIDGRAPHY ON NEW SYSTEMS OF REMOTE SENSING TECHNIQUES.

REMOTE SENSING# GEOGRAPHY# WATER RESOURCES

73H-00-5432

N70-18106. OCEANOGRAPHY USING REMOTE SENSING. JANUARY 1969. CAPURRO, LR TEXAS A AND M UNIV., COLLEGE STATION N70-18106# AD682939# NASA-CR-107898

109P. AIRBORNE TESTS OF MULTISPECTRAL REMOTE SENSORS WERE CONDUCTED ON EIGHT OCCASIONS DURING JULY 1966 TO SEPTEMBER 1968 OVER THE MISSISSIPPI DELTA AREA AND EASTERN GULF OF MEXICO TO DETERMINE THEIR USEFULNESS IN SURVEYING RIVER. COASTAL AND DEEP SEA PHENOMENA. FOUR OF THESE TESTS WERE SUPPORTED CONCURRENTLY BY UCEANOGRAPHIC RESEARCH VESSELS, PASSIVE REMOTE SENSORS, INCLUDING METRIC CAMERAS, INFRARED IMAGERS AND MICROWAVE RADIOMETERS. STUDIES INTO THE RELATIONSHIP BETWEEN LOW CLOUD DEVELOPMENT AND HORIZONTAL ANUMALIES IN THE SEA SURFACE TEMPERATURE FIELD AND STUDIES INTO BASIC MICROWAVE RESFARCH HAVE BEEN CONDUCTED.

OCEANOGRAPHY# REMOTE SENSING

73W-00-5437

N71-15653. REMOTE SENSING PROJECT. PHASE C: AGRICULTURE. SEPTEMBER 1970. CDELHO, AG# MCNEILL, HW CDMISSAD NACIONAL DE ATIVIDADES ESPACIAIS, SAO JOSE DOS CAMPOS, BRAZIL N71-15653# TR-LAFE-132

132P. BRAZILIAN AGRICULTURAL REMOTE SENSING
RESEARCH PROJECTS ARE DESCRIBED. SUBJECTS DISCUSSED ARE:
(1) FIELD MEASUREMENTS, (2) COFFEE SPACING, (3) SOILS,
(4) SJIL NUTRIENT STATUS, (5) LAND USE CAPABILITY, (6) YIELD
PREDICTION, (7) PRIMARY YIELD EVALUATION, (8) TOLERANCE
THEORY, (9) SYSTEM FOR CROP BOUNDARY AND NATURAL VEGETATION,
AND (10) BDUNDARY RECOGNITION.

REMOTE SENSING# AGRICULTURE

73W-00-5459

73W 05459. PRINCIPLES OF OPTICAL DATA PROCESSING FOR ENGINEERS. AUGUST 1966. SHULMAN, AP GODDARD SPACE FLIGHT CENTER, GREENBELT, MD.

12 OP. THIS DOCUMENT IS PRIMARILY WRITTEN FOR ENGINEERS AS A SELF TEACHING TEXT ON OPTICAL DATA PROCESSING. BASIC FUNDAMENTALS NECESSARY FOR UNDERSTANDING THE SUBJECT ARE REVIEWED AND EXPANDED UPON TO GIVE A CLEAR UNDERSTANDING AND LUDRKING KNOWLEDGE OF THE ENTIRE AREA, INCLUDING: OPTICAL SPECTRUM ANALYSIS, OPTICAL CORRELATION, PHOTOGRAPHIC FILM CHARACTERISTICS, AND HOLOGRAPHY. IN ADDITION, THIS DUCUMENT INTRODUCES THE USE OF MATHEMATICS TO DESCRIBE THE VARIOUS OPTICAL OPERATIONS, THUS FORMING A BACKGROUND FUR UNDERSTANDING MORE ADVANCED WORKS IN THE FIELD.

OPTICAL STORAGE# DATA PROCESSING# HOLOGRAPHY

734-00-5460

TR-39. DIGITAL SIMULATION IN HYDROLOGY: STANFORD WATERSHED MODEL 4. JULY 1966. CRAWFORD, NH# LINSLEY, RK STANFORD UNIV., CALIF. TR-39

210P. TABLE OF CONTENTS: SIMULATION METHODS AND HYDROLOGIC MODELS; THE HYDROLOGIC CYCLE; A GENERAL SIMULATION MODEL; OPERATION OF THE MODEL; SIMULATION RESULTS; AND APPLICATIONS OF SIMULATION.

HYDROLOGY# DIGITAL SIMULATION# WATERSHEDS

734-00-5503

MSC-02576-VJL. 1. EARTH RESOURCES RESEARCH DATA FACILITY INDEX. VOLUME 1 - DOCUMENTARY DATA. JANUARY 1971. MANNED SPACECRAFT CENTER, HOUSTON, TEX. MSC-02576-VJL. 1

255P. THIS DOCUMENT IS PRESENTED IN TWO VOLUMES AND IS THE CUMULATIVE ISSUE OF THE EARTH RESOURCES RESEARCH DATA FACILITY (ERROF) INDEX. VOLUME 1 LISTS ALL EARTH RESOURCES PROGRAM DOCUMENTARY INFORMATION THAT IS AVAILABLE AT THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION'S MANNED SPACECRAFT CENTER. THE INFORMATION CATALOGED IN THIS VOLUME IS DIVIDED INTO TWO MAJOR DATA CATAGORIES AS FOLLOWS: PART 1 - TECHNICAL DOCUMENTS AND MAPS, AND PART 2 - SATELLITE DATA.

RESOURCES# EARTH /PLANET/# DOCUMENTS

73W-00-5504

MSC-02576-VDL. 2. EARTH RESDURCES RESEARCH DATA FACILITY INDEX. VOLUME 2 - SENSOR DATA. JANUARY 1971. **
MANNED SPACECRAFT CENTER, HOUSTON, TEX.
MSC-02576-VDL. 2

13 OP. THIS DOCUMENT IS PRESENTED IN TWO VOLUMES AND IS THE CUMULATIVE ISSUE OF THE EARTH RESOURCES RESEARCH DATA FACILITY (ERROF) INDEX. INCLUDED IN VOLUME 2 OF THE INDEX ARE SENSOR DATA COLLECTED DURING FLIGHTS OVER TEST SITES AND FROM MISSIONS FLOWN BY SUBCONTRACTORS SUPPORTING THE EARTH RESOURCES SURVEY PROGRAM. THE INFORMATION CATALOGED IN THIS VOLUME IS DIVIDED INTO THREE MAJOR DATA CATAGORIES AS FOLLOWS: PART 3 - FUNCTIONAL AND CHECK OUT DATA, PART 4 - IMAGERY DATA, AND PART 5 - ELECTRONIC DATA.

RESOURCES# EARTH /PLANET/# DETECTION

73W-00-5506

73W 05566. PROCEEDINGS OF 1ES 1969 ANNUAL TECHNICAL MEETING. APRIL 1969. INSTITUTE OF ENVIRONMENTAL SCIENCES

645P. SOME OF THE SPECIFIC ENVIRONMENTS EXPLORED DURING THIS MEETING WERE POLLUTION, TRANSPORTATION, NOISE, AND BIOENGINEERING.

MOITATROGRART #\DNUCS\ SRICE #NDITUISCO

73W-00-5507

NASA-CR-1380. STUDY OF AIR POLLUTANT DETECTION BY REMOTE SENSORS. 1968. LUDWIG, CB# BARTLE, R# GRIGGS, M GENERAL DYNAMICS CORP., SAN DIEGO, CALIF. NASA-CR-1380# GDC-DBE68-011

150P. IN THIS STUDY THE FEASIBILITY OF DETECTING THE MAJOR AIR PULLUTANTS BY EARTH ORIENTED. SATELLITE BORNE SENSORS IS INVESTIGATED. IN THE FIRST PART OF THIS REPORT, A DISCUSSION OF THE POLLUTANT SPECIES, THEIR OCCURRENCE, FORMATION, CHEMISTRY, CONCENTRATION LEVELS, AND DISTRIBUTION PROFILES THROUGH THE ATMOSPHERE IS GIVEN. THE PROBLEMS OF DETECTION IN THE UV AND VISIBLE REGIONS, IN RELATION TO AEROSOL AND MILECULAR SCATTFRING, ARE DISCUSSED. CALCULATIONS OF SIGNAL CHANGES EXPECTED FOR AN IDEAL RAYLEIGH ATMOSPHERE ARE PRESENTED. SOME CONSIDERATIONS OF AEROSOL (PARTICULATE) PULLUTION DETECTION ARE DISCUSSED. IN THE SECOND PART, A PERFORMANCE EVALUATION OF EIGHT DIFFERENT SPECTROSCOPIC NSTRUMENTS FOR THE REMUTE DETECTION OF POLLUTANTS IS MADE.

AIR POLLUTION# DETECTION# REMOTE SENSING SPACEBORNE DETECTORS# SPECTROSCOPY

73W 05508. PROCEEDINGS OF 1ES 1968 ANNUAL TECHNICAL MEETING. MAY 1968.
INSTITUTE OF ENVIRONMENTAL SCIENCES

573P. THE DEVELOPMENT OF THE TECHNOLOGY BASIC TO THE ENDEAVOR OF THE IES HAS IN THE PAST BEEN INSPIRED PRIMARILY BY MILITARY AND AEROSPACE REQUIREMENTS. IT IS TIME FOR THE ENVIRONMENTAL ENGINEER AND SCIENTIST TO CONSIDER NEW CIVILIAN APPLICATIONS FOR ENVIRONMENTAL TECHNOLOGY IN OUR EXPANDING ECONOMY.

THIS TECHNICAL PROGRAM OF THE IES INCLUDES NOT ONLY RECENT DEVELOPMENTS ASSOCIATED WITH THE MILITARY AND AEROSPACE FIELD BUT ALSO APPLICATIONS OF ENVIRONMENTAL SCIENCE TO HIGH-SPEED TRANSPORTATION, POLLUTION CONTROL AND OTHER AREAS OF EFFORT AIMED AT IMPROVING MANS LOT.

TRANSPORTATION# POLLUTION

73W-00-5509

N70-14072 THRU N70-14104. REMOTE SENSING OF THE ENVIRONMENT. AUGUST 1968. CALIFORNIA UNIV., LOS ANGELES N70-14072 THRU N70-14104# REPT-807.4

250P. LECTURES GIVEN DURING A SHORT STUDY COURSE IN REMOTE SENSING OF ENVIRONMENT ARE PRESENTED. WITH EMPHASIS ON FUNDAMENTAL CONCEPTS, TECHNIQUES AND EQUIPMENT, AND POTENTIAL APPLICATIONS. IMAGING TECHNIQUES; SPECIFIC TYPES OF SENSORS, INCLUDING SIDE LOOKING RADAR SYSTEMS AND MULTISPECTRAL SIANNERS; GROUND TRUTH REQUIREMENTS; ENVIRONMENTAL FACTORS AFFECTING SYSTEM PERFORMANCE; AND DATA PROCESSING METHODS ARE TREATED IN DETAIL. FIELDS OF APPLICATION DISCUSSED IN THE VARIOUS LECTURES ARE METEOROLOGY, OCEANOGRAPHY, EARTH RESOURCE MANAGEMENT AND DISCOVERY, GEOLOGY, AND GEOGRAPHY.

REMOTE SENSING# DETECTORS# UTILIZATION

73W-00-5510

N70-42766. EARTH SURVEY BIBLIDGRAPHY: A KWIC INDEX OF REMOTE SENSING INFORMATION. SEPTEMBER 1970. THOMPSON, WI TRANSPORTATION SYSTEMS CENTER, CAMBRIDGE, MASS. N70-42766

269P. A BIBLIOGRAPHY OF CITATIONS PERTAINING TO THE EARTH RESOURCES PROGRAM IS PRESENTED. THE SCOPE RANGES FROM DETAILED DISCUSSIONS ON THE POLITICS OF EARTH SURVEY OPERATIONS TO SELECTION OF FILM USED FOR AERIAL SURVEYS. THE BIBLIOGRAPHY IS INTENDED AS A SOURCE DOCUMENT LEADING TO SPECIFIC INFORMATION AND SOURCES OF ADDITIONAL INFORMATION.

REMOTE SENSING# RESOURCES

73W-00-5511

N71-16166 THRU N71-16186. EARTH RESOURCES AIRCRAFT PROGRAM STATUS REVIEW. VOLUME III: HYDROLOGY, OCEANOGRAPHY, AND SENSOR STUDIES. SEPTEMBER 1968. MANNED SPACECRAFT CENTER, HOUSTON, TEX. N71-16166 THRU N71-16186# NASA-TMX-62566

53OP. UN SEPTEMBER 16, 17, AND 18, 1968 A REVIEW OF VARIOUS ASPECTS OF THE EARTH RESOURCES PROGRAM WAS HELD AT THE MANYED SPACECRAFT CENTER, HOUSTON, TEXAS. A REVIEW OF THE VARIOUS ASPECTS OF THE EARTH RESOURCES PROGRAM, DIVIDED INTO GEOLOGY, GEOGRAPHY, HYDROLOGY, AGRICULTURE AND FORESTRY, AND OCEANOGRAPHY, IS PRESENTED. INFORMATION IS PRESENTED ON THE CURRENT STATUS OF CONTINUING PROGRAMS, WITH EMPHASIS ON REMOTE SENSUR APPLICATIONS IN HYDROLOGY AND OCEANOGRAPHY.

HYDROLOGY# OCEANOGRAPHY# DETECTION REMOTE SENSING

N71-11151 THRU N71-11170. SECOND ANNUAL EARTH RESOURCES AIRCRAFT PROGRAM STATUS REVIEW. VOLUME III: HYDROLOGY AND OCEANOGRAPHY. SEPTEMBER 1969. MANNED SPACECRAFT CENTER, HOUSTON, TEX. N71-11151 THRU N71-11170# NASA-TMX-66481

372P. ON SEPTEMBER 16, 17, AND 18, 1969 A REVIEW OF VARIOUS ASPECTS OF THE EARTH RESOURCES PROGRAM WAS HELD AT THE MANNED SPACECRAFT CENTER, HOUSTON, TEXAS. CONFERENCE PAPERS ARE PRESENTED ON HYDROLOGICAL AND OCEANOGRAPHIC STUDIES, AND THE USE OF AERIAL AND SPACEBORNE PHOTOGRAPHY, INFRARED IMAGERY, RADAR DETECTION, AND REMOTE SENSING IN THE STUDIES.

HYDROLOGY# OCEANOGRAPHY# REMOTE SENSING

73W-00-5513

NASA-SP-7036. REMOTE SENSING OF EARTH RESOURCES. A LITERATURE SURVEY WITH INDEXES. 1970. NASA, WASHINGTON, D.C. NASA-SP-7036

1221P. THIS SURVEY INCLUDES DOCUMENTS RELATED TO THE IDENTIFICATION AND EVALUATION BY MEANS OF SENSORS IN SPACECRAFT AND AIRCRAFT OF VEGETATION, MINERALS, AND OTHER NATURAL RESOURCES, AND THE TECHNIQUES AND POTENTIALITIES OF JRVEYING. IT ENCOMPASSES STUDIES OF SUCH NATURAL PHENOMENA AS CITIES, TRANSPORTATION NETWORKS, AND IRRIGATION SYSTEMS.

REMOTE SENSING# DETECTORS# RESOURCES SPACEBORNE DETECTORS# AIRBORNE DETECTORS

738-00-5525

73W 95525. AN INTRODUCTION TO REGRESSION AND CORRELATION. MARCH 1966. SMILLIE, KW ALBERTA UNIV., EDMONTON, CANADA

158P. THIS BOOK WILL BE OF ASSISTANCE TO THE PERSON OF IS INTERESTED IN A NONMATHEMATICAL ACCOUNT OF REGRESSION ANALYSIS AND WHO IS PREPARED TO LEAVE THE COMPUTATIONAL ASPECTS TO THE PROGRAMMER AND THE COMPUTER.

REGRESSION AVALYSIS# CORRELATION# DIGITAL COMPUTERS

73W-00-5600

73W 05600. AIAA EARTH RESOURCES OBSERVATIONS AND INFORMATION SYSTEMS MEETING. ANNAPOLIS, MD. MARCH 1970. COLLECTION OF TECHNICAL PAPERS. AMERICAN INST. OF AERONAUTICS AND ASTRONAUTICS

132P. CONTENTS INCLUDE: DATA ANALYSIS AND REMOTELY SENSED DATA: A SURVEY OF SENSORS FOR EARTH RESOURCES SENSING; FUTURE APPLICATIONS OF EARTH RESOURCE SURVEYS FROM SPACE; RESOURCE POLICY, MANAGEMENT, AND REMOTE SENSING; REMOTE SENSORS -- A NEW DATA SOURCE FOR AGRICULTURAL STATISTICS.

REMOTE SENSING# INFORMATION SYSTEMS

73W 05601. HYDRODYNAMICS OF MATHEMATICALLY SIMULATED SJRFACE RUNDFF. AUGUST 1968. CHEN, CL# CHOW, VT ILLINDIS UNIV., URBANA

132P. A MACROSCOPIC HYDRODYNAMIC APPROACH TO ANALYZE THE SURFACE FLOW ON WATERSHEDS IS PRESENTED AND DISCUSSED IN THIS REPORT. IN THIS APPROACH, A SET OF SPATIALLY VARIED UNSTEADY FLOW EQUATIONS, THAT INCLUDE TERMS FOR LATERAL MASS FLUX, LATERAL MOMENTUM FLUX, OVERPRESSURE HEAD DUE TO RAINDROP IMPACT, AND BOUNDARY SHEAR, ARE DERIVED FROM THE EQUATION OF CONTINUITY AND THE NAVIER STOKES EQUATIONS FOR THE THREE DIMENSIONAL FLOW OF VISCOUS INCOMPRESSIBLE FLUID IN COOPERATION WITH THE KINEMATIC AND DYNAMIC BOUNDARY CONDITIONS ON THE WATER AND GROUND SURFACES OF A WATERSHED. SEVERAL TYPES OF EXTERNAL AND INTERNAL BOUNDARY CONDITIONS FOR WATERSHED SURFACE FLOW ARE PRESENTED AND DISCUSSED IN THIS REPORT.

HYDRODYNAMICS# MATHEMATICAL MODELS# WATERSHEDS

73W-00-5602

73W 05602. COMPUTER SOLUTION OF A HYDRODYNAMIC WATERSHED MODEL (IHW MODEL 2). MARCH 1971. KARELIOTIS, SJ# CHOW, VT ILLINDIS UNIV., URBANA

128P. THIS REPORT DESCRIBES THE GENERAL COMPUTER SOLUTION OF A HYDRODYNAMIC MODEL OF WATERSHED FLOW, THE SO CALLED ILLINOIS HYDRODYNAMIC WATERSHED MODEL 2 (IHW MODEL 2). THIS MODEL IS FORMULATED MATHEMATICALLY ON THE BASIS OF THE CONTINUITY AND MOMENTUM PRINCIPLES, CONSISTING OF THE USE OF NOWLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND EMPLOYING THE CONCEPTS OF UVERPRESSURE HEAD DUE TO RAINDRUP IMPACT AND THE ADJUSTMENT OF THE DARCY WEISBACH FLOW RESISTANCE. FOR THE COMPUTATION OF THE HYDRODYNAMIC MODEL, A SET OF PROCEDURES IS DEVELOPED FOR THE SELECTION OF THE INITIAL CONDITIONS AND FOR THE NUMERICAL SOLUTION AT BOUNDARY POINTS, INCLUDING HYDRAULIC JUMPS IN THE FLOW. RESULTS OF THIS STUDY INDICATE THAT THE PROPOSED IHW MODEL 2 IS IN GENERAL FEASIBLE FOR THE SIMULATION OF THE HYDRUDYNAMIC BEHAVIOR OF THE WATERSHED FLOW.

HYDRODYNAMICS# WATERSHEDS# MATHEMATICAL MODELS

73W-00-5603

RR-36. AN EVALUATION OF RELATIONSHIPS BETWEEN STREAM FLOW PATTERNS AND WATERSHED CHARACTERISTICS THROUGH THE USE OF OPSET. 1970.

JAMES, LD
KENTUCKY UNIV., LEXINGTON.
RR-36

117P. SELECTION AMONG ALTERNATIVE FLOOD CONTROL MEASURES WHULD BE BETTER INFORMED IF BETTER INFORMATION COULD BE DUTAINED ON THE MARGINAL CHANGE IN FLOOD HAZARD ASSOCIATED WITH LAND USE AND OTHER CHANGES IN THE TRIBUTARY WATERSHED. HYDROLOGIC MODELING IS THE MOST PROMISING APPROACH TO ANSWERING THIS QUESTION; HOWEVER, THE USE OF EXISTING MODELS IS HAMPERED BY THE ABSENCE OF INFORMATION CORRELATING MODEL PARAMETERS WITH PHYSICAL CHARACTERISTICS OF THE WATERSHED. TO DEAL WITH THIS SITUATION, A METHOD WAS DEVELOPED FOR ESTIMATING THE PARAMETER VALUES FOR THE STANFORD WATERSHED MODEL WHICH BEST MATCH REGURDED WITH SIMULATED STREAMFLOWS. PHYSICAL CHARACTERISTICS WERE MEASURED FOR 17 RURAL WATERSHEDS. CORRELATIONS BETWEEN THE CHARACTERISTICS AND THE PARAMETERS WERE EXAMINED. CHANGES IN PARAMETER VALUES WITH URBANIZATION WERE ALSO EXAMINED. THE RESULTS WERE USED TO STUDY VARIATIONS IN DOWNSTREAM FLOOD PEAKS AND IN AVERAGE ANNUAL FLOOD DAMAGES ASSOCIATED WITH VARIOUS TRIBUTARY WATERSHED CHARACTERISTICS.

STREAM FLOW# WATERSHEDS# HYDROLOGY

73W 05604. NUMERICAL SIMULATION OF WATERSHED HYDROLOGY. AUGUST 1970. TEXAS UNIV., AUSTIN

124P. THE LACK OF CONTROLLED EXPERIMENTS IS ONE OF THE MAJOR OBSTACLES TO HYDROLOGIC RESEARCH. THE RESULT HAS BEEN THE HIGH SPEED DIGITAL COMPUTER, IT HAS BECOME FEASIBLE TO CONSTRUCT A MATHEMATICAL MODEL OF THE ENTIRE RUNOFF PROCESS.

DIGITAL SIMULATION# WATERSHEDS# HYDROLOGY

73W-00-5605

73W 05605. EARTH RESOURCES EVALUATION STUDY (SERIES H-1). PROGRESS REPORT JULY 14 - SEPTEMBER 15, 1971. SEPTEMBER 1971. IBM HUNTSVILLE, FSD NASB-14600/SA-1883

94P. CONTENTS: TECHNICAL; NEAR TERM ACTIVITIES; RIVER FORECASTING - TECHNICAL APPROACH; AND DATA OBTAINED FOR SELECTED WATERSHED.

HYDROGRAPHY# WATERSHEDS# FLOOD FORECASTING

739-00-5606

73W 05606. EARTH RESOURCES EVALUATION STUDY (SERIES H-1). WATER FLOW CHARACTERISTIC MODELING STUDY FOR SELECTED WATERSHEDS BY USING AERIAL AND GROUND SENSED DATA. IBM HUNTSVILLE, FSD

33P. OBJECTIVE: INVESTIGATE THE FEASIBILITY OF APPLYING REMOTE SENSING TO MEASUREMENT. CORRELATION AND PREDICTION OF THE WATER FLOW CHARACTERISTICS OF SELECTED HYDROGRAPHIC CATCHMENTS.

REMOTE SENSING# WATERSHEDS# HYDROGRAPHY

73W-00-5607

73W 05607. APPLICATION OF THE STANFORD WATERSHED MODEL TO A SMALL NEW ENGLAND WATERSHED. AUGUST 1968. DRUDKER, PB
NEW HAMPSHIRE UNIV., DURHAM

225P. THE STANFORD WATERSHED MODEL IS A COMPUTER PROGRAM WHICH MATHEMATICALLY REPRESENTS THE PORTIONS OF THE HYDROLOGIC CYCLE WHICH ULTIMATELY PRODUCE STREAMFLOW. IT IS UTILIZED TO SYNTHESIZE THE DISCHARGE OF A SMALL NEW ENGLAND WATERSHED. DESCRIPTIONS ARE GIVEN OF PROBLEMS ENCOUNTERED IN ADAPTING THE PROGRAM TO THE UNIVERSITY OF NEW HAMPSHIRE COMPUTER AND IN ADJUSTING THE PROGRAM TO ACCEPT DATA FROM A WATERSHED DIFFERING IN MANY RESPECTS FROM THE WATERSHEDS USED TO DEVELOP THE MODEL. FAIR CORRELATION BETWEEN ACTUAL AND SYNTHETIC DISCHARGE IS ACHIEVED, AND THE USEFULNESS OF THE MODEL WITH REGARD TO VERY SMALL STREAM BASINS IS SHOWN.

WATERSHEDS# MATHEMATICAL MODELS# COMPUTER PROGRAMS

TR-12. THE SYNTHESIS OF CONTINUOUS STREAM FLOW HYDROGRAPHS DY A DIGITAL COMPUTER. JULY 1962. CRAWFORD, NH# LINSLEY, RK STANFORD UNIV., CALIF.

121P. THIS STUDY INVESTIGATED THE FEASIBILITY OF REPRESENTING THE HYDROLOGIC CYCLE IN A WATERSHED BY A DIGITAL COMPUTER MODEL. THE MODEL WAS BASED AS CLOSELY AS COSSIBLE ON THE PHYSICAL PROCESSES PRESENT IN A WATERSHED. AND PRODUCED HOURLY STREAMFLOW HYDROGRAPHS USING DAILY EVAPOTRANSPIRATION AND HOURLY PRECIPITATION DATA. THE BURROUGHS 220 DIGITAL COMPUTER WAS USED FOR CALCULATIONS. THREE CALIFORNIA WATERSHEDS WITH DIVERSE HYDROLOGIC CHARACTERISTICS WERE USED TO TEST THE MODEL AND ILLUSTRATE THE RESULTS OBTAINABLE. SYNTHETIC STREAMFLOW FROM THE MODEL AND OBSERVED STREAMFLOW ARE GENERALLY IN GUOD AGREEMENT, AND IT WAS CONCLUDED THAT THE USE OF THE MODEL IS FEASIBLE. POSSIBILITIES FOR FURTHER DEVELOPMENT ARE SUGGESTED.

WATERSHEDS# MATHEMATICAL MODELS# DIGITAL COMPUTERS

731-00-5609

RR-40. MEASURING THE INTANGIBLE VALUES OF NATURAL STREAMS, PART 1. APPLICATION OF THE UNIQUENESS CONCEPT. JUNE 1971. DEARINGER, JA# WOOLWINE, GM KENTUCKY UNIV., LEXINGTON RR-40

BSP. THE PURPOSE OF THIS STUDY WAS TO APPLY THE UNIQUENESS CONCEPT TO THE QUANTIFICATION OF THE INTANGIBLE VALUES OF NATURAL STREAMS. IT INVOLVES THE EVALUATION OF A SET DE CHARACTERISTICS OR FACTORS FOR SELECTED STREAM SITES. EACH FACTOR IS RATED FOR EACH SITE ON A NUMERICAL SCALE INDICATIVE OF THE RANGE OF POSSIBLE VALUES FOR THAT FACTOR. AN UNIQUENESS RATIO (THE RECIPROCAL OF THE NUMBER OF STREAM SITES SHARING A GIVEN CATEGORY RATING) IS THEN COMPUTED FOR EACH STREAM FOR EACH FACTOR IN THE SET. THE PRESENT STUDY UTILIZED AN INVENTORY OF FIFTY-FOUR FACTORS WHICH WERE EVALUATED FOR EACH STUDY STREAM. THE INVENTORY WAS DIVIDED INTO FIVE FACTOR GROUPS: PHYSICAL MEASURES, LAND USE MEASURES, WATER QUALITY MEASURES, DISVALUES AND ESTHETIC IMPRESSION MEASURES.

STREAMS# LAND USE# WATER QUALITY

73W-00-5610

73W 05610. EARTH RESOURCES EVALUATION STUDY (SERIES H-1). PROGRESS REPORT SEPTEMBER 16 - NOVEMBER 12, 1971. DECEMBER 1971. IBM HUNTSVILLE, FSD NASB-14000/SA-1883

145P. CONTENTS: TECHNICAL PROGRESS: NEAR TERM ACTIVITIES; GENERAL DESCRIPTION AND SAMPLE DATA WHITE HOLLOW WOTERSHED; PHOTOGRAPH INTERPRETATION RESULTS; AND SELECTED PRUGRAMMING TOPICS.

WATERSHEDS# HYDROGRAPHY# PHOTOINTERPRETATION

73W-00-5612

73W 05612. HYDROLOGIC DIGITAL MODEL OF WILLIAMETTE BASIN TRIBUTARIES FOR OPERATIONAL RIVER FORECASTING. OCTOBER 1967. KJEHL, DW# SCHERMERHORN, VP ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION

38P. THE DIGITAL COMPUTER PROGRAM DEVELOPED TO SYNTHESIZE THE RESPONSE OF A COMPLEX RIVER BASIN TO THE INPUT OF RAINFALL AND SNOWMELT IS DESCRIBED WITH EMPHASIS ON ITS USE IN RIVER FORECASTING OPERATION. APPLICATION OF THE MODEL TO A SAMPLE BASIN IN THE WILLAMETTE DRAINAGE IS SHOWN AND THE MODEL COEFFICIENTS FOR THE ENTIRE NATURAL WILLAMETTE BASIN ARE PRESENTED.

DIGITAL SIMULATION# RIVERS# FORECASTING HYDROLOGY# COMPUTER PROGRAMS