PCT

INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION FUBLISHED UNDER THE PATENT COC. FRATION TREATY (PCT)

(51) International Patent Classification 6:

C07H 21/02, 2/04, C12N 5/00, 5/10, 15/00, 15/09, 15/11, 15/31

(11) International Publication Number:

WO 98/58943

A1

(43) International Publication Date: 30 December 1998 (30.12.98)

(21) International Application Number:

PCT/US98/12764

(22) International Filing Date:

18 June 1998 (18.06.98)

(30) Priority Data:

20 June 1997 (20.06.97)	US
22 July 1997 (22.07.97)	US
22 July 1997 (22.07.97)	US
3 September 1997 (03.09.97)	US
	22 July 1997 (22.07.97) 22 July 1997 (22.07.97)

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). MEDIMMUNE, INC. [US/US]; 35 West Watkins Mill Road, Gaithersburg, MD 20878 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; 11915 Glen Mill Road, Potomac, MD 20854 (US). WHITE, Owen, R. [US/US]; 886 Quince Orchard Boulevard #202, Gaithersburg, MD 20878 (US). CLAYTON, Rebecca [US/US]; 6706 B. Polor Avenue, Takoma Park, MD 20912 (US). DOUGHERTY, Brian, A. [US/US]; 10 Rosemary Lane, Killingworth, CT 06419 (US). LATHIGRA, Raju [IN/US]; 19051 Steeple Place, Germantown, MD 20874

(US). SMITH, Hamilton, O. [US/US]; 8222 Carrbridge Circle, Towson, MD 21204 (US).

(74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: BORRELIA BURGDORFERI POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of Borrelia Burgdorferi, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ ·	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary .	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	TL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	. IT	Italy	MX	Mexico	UZ	Uzbekistan .
CF	Central African Republic	JP	Japan	NE	Niger .	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	. KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	. SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Borrelia burgdorferi Polynucleotides and Sequences

5

10

15

Field of the Invention

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Borrelia burgdorferi*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development

Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government may have certain rights in the invention - DE-FC02-95ER61962; DE-FC02-95ER61963; and NAGW 2554.

20

25

30

35

Background of the Invention

Spirochetes are a family of motile, unicellular, spiral-shaped bacteria which share a number of structural characteristics. Three genera of the spirochetes are pathogenic in humans: (a) *Treponema*, which includes the pathogens that cause syphilis (*T. pallidum*), yaws (*T. pertenue*), and pinta (*T. carateum*); (b) *Borrelia*, which includes the pathogens that cause epidemic and endemic relapsing fever and Lyme disease; and (c) *Leptospira*, which includes a wide variety of small spirochetes that cause mild to serious systemic human illness (Koff, A. B. and Rosen, T. *J. Am. Acad. Dermatol.* 29:519-535 (1993)).

Lyme borreliosis, more commonly known as Lyme disease, is presently the most common human disease in the United States transmitted by an arthropod vector. Centers for Disease Control, Morbid. Mortal. Weekly Rep. 44:590-591 (1995). Further, infection of household pets, such as dogs, is a considerable problem. The causative agent of this affliction is the spirochete *Borrelia burgdorferi*, which is generally transmitted to mammalian hosts by feeding ticks. Barbour, A. and Fish, D. Science 260:1610-1616 (1993). Once the bacteria pass through the skin they disseminate and produce a variety of clinical manifestations. Diagnosis of this disease is often made serologically by the identification of antiborrelial antibodies. Hilton, E. et al., J. Clin. Microbiol. 35:774-776 (1997).

10

15

20

25

30

35

While initial symptoms often include a rash at the infection point, Lyme disease is a multisystemic disorder that may include arthritic, carditic, and neurological manifestations. While antibiotics are currently used to treat active cases of Lyme disease, *B. burgdorferi* appears to be able to persist even after prolonged antibiotic treatment. Further, *B. burgdorferi* can persist for years in a mammalian host even in the presence of an active immune response. Straubinger, R. et al., J. Clin. Microbiol. 35:111-116 (1997); Steere, A., N. Engl. J. Med. 321:586-596 (1989).

Animal models have proven useful for studying the progression of Lyme disease, methods for preventing this disease, and immunological responses to antigenic challenges with *B. burgdorferi* proteins. Garcia-Monoco, J. et al., J. Infect. Dis. 175:1243-1245 (1997). Using a canine model, Starubinger, R. et al., Infect. Immun. 65:1273-1285 (1977), demonstrated that *B. burgdorferi* migrates into joints and induces up-regulation of interleukin-8 in synovial membranes. Similarly, *B. burgdorferi* induction of interleukin-8 production has been demonstrated in cultured human endothelial cells. Burns, M. et al., Infect. Immun. 65:1217-1222 (1997).

Antigenic heterogeneity has been postulated as a mechanism used by *B. burgdorferi* for evasion of host immune responses. Schwan, T. et al., Can. J. Microbiol. 37:450-454 (1991). In support of this mechanism, antigenic variation has been described with other pathogenic bacteria. Hagbloom, P. et al., Nature 315:156-158 (1985). Further, cassette type genetic recombination of genes encoding *B. burgdorferi* surface proteins has been shown to decrease the antigenicity of these organisms to antibodies generated against strains which have not undone the same recombination. Zhang, J. et al., Cell 89:275-285 (1997).

A number of different types of Lyme disease vaccines have been tested and shown to induce immunological responses. Whole-cell *B. burgdorferi* vaccines have been shown to induce both immunological responses and protective immunity in several animal models. Reviewed in Wormser, G., Clin. Infect. Dis. 21:1267-1274 (1995). For example, dogs inoculated with a chemically inactivated whole-cell vaccine primarily develop antibodies to outer surface membrane proteins of the administered organism. Further, passive immunity has been also demonstrated in animals using *B. burgdorferi* specific antisera. Similarly, passive immunity is conferred human by the administration of sera obtained from Lyme disease patients.

While whole-cell Lyme disease vaccines confer protective immunity in animal models, use of such vaccines presents the risk that responsive antibodies will be generated which cross react with human antigens. Reviewed in Wormser, G., supra. This problem is at least partly the result of the production of *B. burgdorferi* specific antibodies which cross-react with hepatocytes and both muscle and nerve cells. *B. burgdorferi* heat shock proteins and the 41-kd flagellin subunit are believed to contain the antigens against which these cross-reactive antibodies are generated.

It is clear that the etiology of diseases mediated or exacerbated by *B. burgdorferi* genes, and that characterizing the genes and their patterns of expression would add dramatically to our

10

15

20

25

30

35

understanding of the organism and its host interactions. Knowledge of *B. burgdorferi* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *B. burgdorferi* would provide reagents for, among other things, detecting, characterizing and controlling *B. burgdorferi* infections. There is a need therefore to characterize the genome of *B. burgdorferi* and for polynucleotides and sequences of this organism.

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-155.

The present invention provides the complete nucleotide sequence of the *Borrelia burgdorferi* chromosome and 154 contigs representing the majority of the sequence of the B. burgdorferi extrachromosomal elements, all of which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS: 1-155.

The present invention further provides nucleotide sequences which are at least 95%, 96%, 97%, 98%, and 99%, identical to the nucleotide sequences of SEQ ID NOS:1-155, ORF IDs and corresponding ORFs.

The nucleotide sequences of SEQ ID NOS:1-155, ORF ID or ORF within, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to said nucleotide sequence may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Borrelia burgdorferi* genome.

Another embodiment of the present invention is directed to fragments of the *Borrelia* burgdorferi genome having particular structural or functional attributes. Such fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression

10

15

20

25

30

35

modulating fragments or EMFs, and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORF IDs and ORFs in fragments of the *Borrelia burgdorferi* genome disclosed in Tables 1-6, and the EMFs found 5' prime of the initiation codon, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Borrelia burgdorferi* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Borrelia burgdorferi* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such

10

15

20

25

30

35

methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Borrelia burgdorferi* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Borrelia burgdorferi* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Borrelia burgdorferi* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the *Borrelia burgdorferi* genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377

sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth

10

15

25

35

Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Borrelia burgdorferi relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed to trim portions of the sequences with a high rate ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against B. burgdorferi sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-6.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS: 1-155. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.) SEQ ID NOS:1-155

In addition, the present invention provides the nucleotide sequences of SEQ ID NOS: 1-155, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-155" refers to any portion of the SEQ ID NOS: 1-155 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Borrelia burgdorferi* open reading frames (ORFs) represented by ORF IDs, expression modulating fragments (EMFs) and diagnostic fragments (DFs) which can be used to diagnose the presence of *Borrelia burgdorferi* in sample. A non-limiting identification of preferred representative portions are provided in Tables 1-6 as ORF IDs. As discussed in detail below, the information provided in SEQ ID NOS:1-155 and in Tables 1-6 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including ORFs encoding a large variety of *Borrelia burgdorferi* proteins.

10

15

20

25

30

35

The present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Fragments include portions of the nucleotide sequences of Table 1-6 (ORF IDs) and SEQ ID NOS:1-155, at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in SEQ ID NOS:1-155 is position 1 (therefore, the sequence postions for each ORF ID is determined by the numbering of the SEQ ID comprising the ORF ID). That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention. At least means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence of SEQ ID NOS:1-155 minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of SEQ ID NOS:1-155 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.

Further, the invention includes polynucleotides comprising fragments specified by size, in nucleotides, rather than by nucleotide positions. The invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire ORF ID or SEQ ID NO:, minus 1. Preferred sizes of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides. Other preferred sizes of contiguous nucleotide fragments, which may be useful as diagnostic probes and primers, include fragments 50-300 nucleotides in length which include, as discussed above, fragment sizes representing each integer between 50-300. Larger fragments are also useful according to the present invention corresponding to most, if not all, of the nucleotide sequences shown in Tables 1-6 (ORF IDs) and SEQ ID NOS:1-155. The preferred sizes are, of course, meant to exemplify not limit the present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1, of each ORF ID and SEQ ID NO:, are included in the invention.

The present invention also provides for the exclusion of any fragment, specified by 5' and 3' base positions or by size in nucleotide bases as described above for any ORF ID or SEQ ID NOS:1-155. Any number of fragments of nucleotide sequences in ORF IDs or SEQ ID NOS:1-155, specified by 5' and 3' base positions or by size in nucleotides, as described above, may be excluded from the present invention.

While the presently disclosed sequences of SEQ ID NOS: 1-155 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS: 1-155. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS: 1-155 and Tables 1-6 has been made available), resolving a rare sequencing error in SEQ ID NOS: 1-155 will be well within the skill

10

20

25

30

35

of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS: 1-155 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-155.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of *Borrelia burgdorferi* strains that can be used to prepare *B. burgdorferi* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the *B. burgdorferi* strain that provided the DNA of the present Sequence Listing, has been deposited with the ATCC, 10801 University Blvd. Manassas, VA 20110-2209, as Deposit No. 202012, on 8 August 1997. The ATCC Deposit is provided merely as a convenience to those of skill in the art. Reference to the deposit is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Borrelia burgdorferi* differ somewhat. However, the nucleotide sequences of the genomes of all *Borrelia burgdorferi* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS: 1-155 and the ORF IDs within. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

The present application is further directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in SEQ ID NOS: 1-155 and the ORF IDs within. The above nucleic acid sequences are included irrespective of whether they encode a polypeptide having *B. burgdorferi* activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having *B. burgdorferi* activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having *B. burgdorferi* activity include, *inter alia*, isolating a *B. burgdorferi* gene or allelic variants thereof from a DNA library, and detecting *B. burgdorferi* mRNA expression from

10

15

20

25

30

35

biological or environmental samples, suspected of containing *B. burgdorferi* by Northern Blot, PCR, or similar analysis.

Preferred, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, which do, in fact, encode a polypeptide having *B. burgdorferi* protein activity. By "a polypeptide having *B. burgdorferi* activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the *B. burgdorferi* protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein.

Due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, will encode a polypeptide having *B. burgdorferi* protein activity. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having *B. burgdorferi* protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

The biological activity or function of the polypeptides of the present invention are expected to be similar or identical to polypeptides from other bacteria that share a high degree of structural identity/similarity. Tables 1, 2, 4, and 5 lists accession numbers and descriptions for the closest matching sequences of polypeptides available through Genbank. It is therefore expected that the biological activity or function of the polypeptides of the present invention will be similar or identical to those polypeptides from other bacterial genuses, species, or strains listed in Tables 1, 2, 4, and 5.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the *B. burgdorferi* polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide. The query sequence may be an entire sequence shown in SEQ ID NOS: 1-155, an ORF ID, or the ORF within each ORF ID, or any fragment specified as described herein.

PCT/US98/12764

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. See Brutlag et al. (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end. The 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%. In another example, a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the

10

15

20

25

30

35

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS: 1-155, including ORF IDs and corresponding ORFs, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99%, and most preferably at least 99.9% identical to said nucleotide sequences may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of the present invention. Such a manufacture provides a large portion of the *Borrelia burgdorferi* genome and parts thereof (e.g., a *Borrelia burgdorferi* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Borrelia burgdorferi* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase,

10

15

20

25

30

35

Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of the present invention (e.g. SEQ ID NOS: 1-155), a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98%, 99% and most preferably at least 99.9% identical to a sequence of the present invention (e.g. SEQ ID NOS: 1-155) enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Borrelia burgdorferi genome which contain homology to ORFs or proteins from both Borrelia burgdorferi and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Borrelia burgdorferi genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Borrelia burgdorferi* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of

15

20

25

30

35

commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Borrelia burgdorferi* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Borrelia burgdorferi* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990), is used to identify open reading frames within the *Borrelia burgdorferi* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device

10

15

20 .

25

30

35

114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Borrelia burgdorferi* genome. The fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Borrelia burgdorferi* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS: 1-155, to representative fragments thereof as described above including ORF IDs and ORFs, to polynucleotides at least 95%, preferably at least 96%, 97%, 98%, or 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Borrelia burgdorferi* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a *Borrelia burgdorferi* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-6 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-155. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or *Borrelia burgdorferi* genomic DNA. Thus, given the availability of SEQ ID NOS:1-

10

15

20

25

30

35

155, the information in Tables 1-6, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-155 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA. For purposes of numbering and reference to polynucleotide and polypeptide sequences the entire sequence of each sequence of SEQ ID NOS:1-155 is included with the first nucleotide being position 1. Therefore, for reference purposes the numbering used in the present invention is that provided in the sequence listing for SEQ ID NOS:1-155.

As used herein, an open reading frame (ORF), means a series of nucleotide triplets coding for amino acid residues without any termination codons and is a sequence translatable into protein. Further, unless specified, the term "ORF" for each ORF ID is defined by the termination codon at the 3' end and the 5' most methionine codon, at the 5' end, in frame with said 3' termination codon. Unless specified, the term "ORF" also refers to a particular polypeptide sequence defined by the ORF polynucleotide sequence, wherein the N-terminus is defined by the 5' most methionine codon in frame with the termination codon at the 3' end of the ORF ID and the C-terminus is defined by the last codon before the said 3' termination codon. As used herein, an ORF ID represents a sequence without any internal termination codons flanked by termination codons.

Tables 1-6 list ORF IDs in the *Borrelia burgdorferi* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

The *B. burgdorferi* genome consists of one large linear chromosome containing approximately two thirds of its genetic material and multiple extrachromosomal elements (approximately 15) containing the remaining one third of its genetic material. SEQ ID NO:1 (Contig ID 1) is the complete sequence of the large linear *B. burgdorferi* chromosome. SEQ ID NOS:2-155 (Contig ID 2-155 respectively) are fragments (contigs) of the extrachromosomal elements. Tables 1-3 below relate only to SEQ ID NO:1. Tables 4-6 relate to the extrachromosomal elements (SEQ ID NOS:2-155).

Table 1 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that cover a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis using default parameters) to a nucleotide sequence available through GenBank in July, 1997.

Table 2 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

10

15

20

25

30

35

Table 3 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

Table 4 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in July, 1997.

Table 5 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

Table 6 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

In each table, the first and second columns identify the ORF ID by, respectively, contig number and ORF ID number within the contig; the third column indicates the first nucleotide of the ORF ID, counting from the 5' end of the contig strand; and the fourth column indicates the last nucleotide of the ORF ID, counting from the 5' end of the contig strand.

In Tables 1, 2, 4 and 5, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the database accession numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column seven provides the BLAST identity score from the comparison of the ORF ID and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). As is known in the art, substitution of one amino acid for a "similar" amino acid is a conservative substitution. Generally, proteins are highly tolerant of conservative substitutions. Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1, 2, 4 and 5 herein enumerate the percent identity and similarity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

10

15

20

25

30

35

PCT/US98/12764

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Borrelia burgdorferi* genome other than those listed in Tables 1-6, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Borrelia burgdorferi* genome by their proximity to the ORFs provided in Tables 1-6. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-6 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Borrelia burgdorferi* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Borrelia burgdorferi* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Borrelia burgdorferi* genome, such as by using well-known computer analysis software, and by generating and testing probes or

10

15

20

25

30

35

determines amplification or hybridization selectivity.

amplification primers consisting of the DF sequence in an appropriate diagnostic format which

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-155, ORF IDs and ORFs within, a representative fragment thereof, or a nucleotide sequence at least 99% and preferably 99.9% identical to SEQ ID NOS: 1-155, ORF IDs and ORFs within, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Borrelia burgdorferi origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORF IDs and ORFs of the Borrelia burgdorferi genome disclosed in Tables 1-6, and the EMFs found 5' to the ORF IDs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Borrelia burgdorferi. Especially preferred in this regard are ORF IDs and ORFs such as those of Tables 3 and 6, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Borrelia burgdorferi. Also particularly preferred are ORF IDs and ORFs that can be used to distinguish between strains of Borrelia burgdorferi, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helixformation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano,

10

15

20

25

30

35

J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORF IDs or ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF ID or ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF ID or ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia); pQE vectors (available from Promega). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

20

25

30

35

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORF IDs depicted in Tables 2, 3, 5 and 6, and ORFs witin, which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the *B. burgdorferi* polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40. Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification.

The invention further provides for isolated *B. burgdorferi* polypeptides comprising an amino acid sequence selected from the group including: (a) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence from the first methionine codon to the termination codon of each sequence listed in SEQ ID NOS:1-155, wherein said termination codon is at the end of each SEQ ID NO: and said first methionine is the

10

15

20

25

30

35

first methionine in frame with said termination codon; and (b) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence in (a) excepting the N-terminal methionine.

The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a) and (b) above.

The present invention is further directed to polynucleotides encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences described herein at least 5 contiguous amino acid in length and selected from any two integers, one of which representing an N-terminal position and another representing a C-terminal position. The initiation codon of the ORFs of the present invention is position 1. The initiation codon (positon 1) for purposes of the present invention is the first methionine codon of each ORF ID which is in frame with the termination codon at the end of each said sequence. Every combination of a N-terminal and C-terminal position that a fragment at least 5 contiguous amino acid residues in length could occupy, on any given ORF is included in the invention, i.e., from initiation codon up to the termination codon. "At least" means a fragment may be 5 contiguous amino acid residues in length or any integer between 5 and the number of residues in an ORF, minus 1. Therefore, included in the invention are contiguous fragments specified by any Nterminal and C-terminal positions of amino acid sequence set forth in SEQ ID NOS:1-155 or Tables 1-6 wherein the contiguous fragment is any integer between 5 and the number of residues in an ORF minus 1.

Further, the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions. The invention includes any fragment size, in contiguous amino acid residues, selected from integers between 5 and the number of residues in an ORF, minus 1. Preferred sizes of contiguous polypeptide fragments include about 5 amino acid residues, about 10 amino acid residues, about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues. The preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 5 and the number of residues in a full length sequence minus 1 are included in the invention. The present invention also provides for the exclusion of any fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.

The above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the protein, as vaccines, and as molecular weight markers.

10

15

20

25

30

35

Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a *B. burgdorferi* polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the amino acid sequence of a *B. burgdorferi* polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the ORF amino acid sequences encoded by the sequences of SEQ ID NOS:1-155, as described hererin, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are:

Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size

Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, the results, in percent identity, must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject

10

15

20

25

30

35

sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected. No other manual corrections are to made for the purposes of the present invention.

The above polypeptide sequences are included irrespective of whether they have their normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies. Other uses of the polypeptides of the present invention that do not have *B. burgdorferi* activity include, *inter alia*, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.

As described below, the polypeptides of the present invention can also be used to raise polyclonal

As described below, the polypeptides of the present invention can also be used to raise polyclos and monoclonal antibodies, which are useful in assays for detecting *B. burgdorferi* protein expression or as agonists and antagonists capable of enhancing or inhibiting *B. burgdorferi* protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" *B. burgdorferi* protein binding proteins which are also candidate agonists and antagonists according to the present invention. *See, e.g.*, Fields et al. (1989) Nature 340:245-246.

10

15

20

25

30

35

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Borrelia burgdorferi* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to

10

15

20

25

30

35

produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, Salmonella typhimurium and various species within the genera Pseudomonas and Streptomyces. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney

10

15

20

25

30

35

fibroblasts, described in Gluzman, *Cell* 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. Particularly preferred in this regard are conservative substitutions, known to those of skill in the art. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence (e.g., removal of leader sequence(s)) should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Borrelia burgdorferi, of the fragments of the Borrelia burgdorferi genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Borrelia burgdorferi is defined as a homolog of a fragment of the Borrelia burgdorferi fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Borrelia burgdorferi genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 95% or more homology. Among especially

10

15

20

25

30

35

preferred homologs those with 96, 97%, 98%, 99% or more homology are particularly preferred. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS: 1-155 or from a nucleotide sequence at least 95%, particularly at least 96%, 97%, 98% or 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS: 1-155 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS: 1-155 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-155, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-155, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS: 1-155, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Borrelia burgdorferi*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF of the ORF IDs provided in Tables 1, 2, 4 and 5 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Borrelia burgdorferi* ORFs in a manner similar to the known type

10

15

20

25

30

35

of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Borrelia burgdorferi* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-6 and SEQ ID NOS:1-155.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Borrelia burgdorferi*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

. 5

10

15

20

25

30

35

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton,

10

15

20

25

30

35

PCT/US98/12764

Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein.

B. burgdorferi protein-specific antibodies for use in the present invention can be raised against the intact B. burgdorferi protein or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments. Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single-chain Fvs (scFv) and disulfide-linked Fvs (sdFv). Also included in the present invention are chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention. The antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. For example, a preparation of *B*. burgdorferi polypeptide or fragment thereof is prepared and purified to render it substantially free

10

15

20

25

30

35

of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In a preferred method, the antibodies of the present invention are monoclonal antibodies or binding fragments thereof. Such monoclonal antibodies can be prepared using hybridoma technology. See, e.g., Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981). Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, B. burgdorferi polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.

Alternatively, additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, *B. burgdorferi* polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the *B. burgdorferi* polypeptide-specific antibody can be blocked by the *B. burgdorferi* polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the *B. burgdorferi* polypeptide-specific antibody and can be used to immunize an animal to induce formation of further *B. burgdorferi* polypeptide-specific antibodies.

Antibodies and fragements thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody. Antibody binding fragements of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragements discussed above., i.e, by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C-terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies the specifically bind a particuarly discribed fragement of a polypeptide of the present invention and allows for the exclusion of the same.

Antibodies and fragements thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragements that do not bind polypeptides of any other species of *Borrelia* other than *B. burgdorferi* are included in the present invention. Likewise, antibodies and fragements that bind only species of *Borrelia*, i.e. antibodies and fragements that do not bind bacteria from any genus other than *Borrelia*, are included in the present invention.

PCT/US98/12764

In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the *B. burgdorferi* polypeptides of the present invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. *See, e.g.,* Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998- 4002. Amino acid residues comprising anigenic epitopes may be determined by algorithms such as the the Jameson-Wolf analysis or similar algorithms or by *in vivo* testing for an antigenic response using the methods described herein or those known in the art.

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, e.g., Sutcliffe, et al., (1983) Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. See, Sutcliffe, et al., supra, p. 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. See Sutcliffe, et al., supra, p. 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids)

10

15

20

25

30

35

can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the present invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten et al. (1985) Proc. Natl. Acad. Sci. 82:5131-5135 at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, e.g., Sutcliffe, et al., supra;; Wilson, et al., supra;; and Bittle, et al. (1985) J. Gen. Virol. 66:2347-2354. Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such

10

15

20

25

30

35

as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (*i.e.*, a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. *et al.* (1996) discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods. The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is

10

15

20

25

30

35

hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, *e.g.*, for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EPA 0,394,827; Traunecker et al. (1988) Nature 331:84-86. Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric *B. burgdorferi* polypeptide or fragment thereof alone. *See* Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of *B. burgdorferi* polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.

4. Diagnostic Assays and Kits

The present invention further relates to methods for assaying Borrelia infection in an animal by detecting the expression of genes encoding Borrelia polypeptides of the present invention. The methods comprise analyzing tissue or body fluid from the animal for *Borrelia*-specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to *Borrelia* is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. *See, e.g.*, Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol. 32:803-810 (describing differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA) and Chen et al. 1994 J. Clin. Microbiol. 32:589-595 (detecting *B burgdorferi* nucleic acids *via* PCR).

Where diagnosis of a disease state related to infection with *Borrelia* has already been made, the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced *Borrelia* gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.

By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains *Borrelia* polypeptide, mRNA, or DNA. Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing *Borrelia* polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.

The present invention is useful for detecting diseases related to *Borrelia* infections in animals. Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.

15

20

25

30

35

Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159. mRNA encoding *Borrelia* polypeptides having sufficient homology to the nucleic acid sequences identified in SEQ ID NOS:1-155 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

Northern blot analysis can be performed as described in Harada et al. (1990) Cell 63:303-312. Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A *B. burgdorferi* polynucleotide sequence shown in SEQ ID NOS:1-155 labeled according to any appropriate method (such as the ³²P-multiprimed DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 nucleotides in length.

S1 mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367. To prepare probe DNA for use in S1 mapping, the sense strand of an above-described *B. burgdorferi* DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (*i.e.*, mRNA encoding *Borrelia* polypeptides).

Levels of mRNA encoding *Borrelia* polypeptides are assayed, for *e.g.*, using the RT-PCR method described in Makino et al. (1990) Technique 2:295-301. By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate

10

15

20

25

30

35

bands (corresponding to the mRNA encoding the *Borrelia* polypeptides of the present invention) are quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan. Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).

The polynucleotides of the present invention, including both DNA and RNA, may be used to detect polynucleotides of the present invention or Borrelia species including B. burgdorferi using bio chip technology. The present invention includes both high density chip arrays (>1000 oligonucleotides per cm²) and low density chip arrays (<1000 oligonucleotides per cm²). Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Borrelia species, including B. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection. The bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid diffenential pathogenic detection and diagnosis. The bio chips can also be used to monitor an B. burgdorferi or other Borrelia infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention. The polynucleotides used to comprise a selected array may be specified in the same manner as for the fragements, i.e, by their 5' and 3' positions or length in contigious base pairs and include from. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including B. burgdorferi, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each incorporated herein in their entireties.

Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor *B. burgdorferi* or other Borrelia species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including *B. burgdorferi*, using biosenors include those known in the art and those of: U.S. Patent Nos 5721102, 5658732, 5631170, and World Patent Nos. WO97/35011, WO/9720203, each incorporated herein in their entireties.

10

15

20

25

30

35

Thus, the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.

Assaying *Borrelia* polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques. For example, *Borrelia* polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, *e.g.*, with urea and neutral detergent, for the liberation of *Borrelia* polypeptides for Western-blot or dot/slot assay. *See*, *e.g.*, Jalkanen, M. et al. (1985) J. Cell. Biol. 101:976-985; Jalkanen, M. et al. (1987) J. Cell . Biol. 105:3087-3096. In this technique, which is based on the use of cationic solid phases, quantitation of a *Borrelia* polypeptide can be accomplished using an isolated *Borrelia* polypeptide as a standard. This technique can also be applied to body fluids.

Other antibody-based methods useful for detecting *Borrelia* polypeptide gene expression include immunoassays, such as the ELISA and the radioimmunoassay (RIA). For example, a *Borrelia* polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a *Borrelia* polypeptide. The amount of a *Borrelia* polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11:19-30. In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect *Borrelia* polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.

The "one-step" assay involves contacting the *Borrelia* polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).

Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable

10

15

20

25

30

35

labels include radioisotopes, such as iodine (¹²⁵I, ¹²¹I), carbon (¹⁴C), sulphur (³⁵S), tritium (³H), indium (¹¹²In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Further suitable labels for the *Borrelia* polypeptide-specific antibodies of the present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, Borrelia nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ³H, ¹¹¹In, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ⁵⁷To, ⁵⁸Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, etc. ¹¹¹In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ¹²⁵I or ¹³¹I-labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging. *See, e.g.*, Perkins et al. (1985) Eur. J. Nucl. Med. 10:296-301; Carasquillo et al. (1987) J. Nucl. Med. 28:281-287. For example, ¹¹¹In coupled to monoclonal antibodies with 1-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumors tissues, particularly the liver, and therefore enhances specificity of tumor localization. See, Esteban et al. (1987) J. Nucl. Med. 28:861-870.

Examples of suitable non-radioactive isotopic labels include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Tr, and ⁵⁶Fe.

Examples of suitable fluorescent labels include an ¹⁵²Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycocyanin label, an phycocyanin label, an o-phthaldehyde label, and a fluorescamine label.

Examples of suitable toxin labels include, *Pseudomonas* toxin, diphtheria toxin, ricin, and cholera toxin.

Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al. (1976) Clin. Chim. Acta 70:1-31, and Schurs et al. (1977) Clin. Chim. Acta 81:1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against *B. burgdorferi* infection. Such a kit may include an isolated *B. burgdorferi* antigen comprising an epitope which is specifically immunoreactive with at least one anti-*B. burgdorferi* antibody. Such a kit also includes means for detecting the

10

15

20

25

30

35

binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantly produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.

In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the *B. burgdorferi* antigen can be detected by binding of the reporter labeled antibody to the anti-*B. burgdorferi* polypeptide antibody.

In a related aspect, the invention includes a method of detecting *B. burgdorferi* infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated *B. burgdorferi* antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.

The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

The polypeptides and antibodies of the present invention, including fragments thereof, may be used to detect Borrelia species including *B. burgdorferi* using bio chip and biosensor technology. Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Borrelia species, including *B. burgdorferi*. Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Borrelia species, including *B. burgdorferi* or specific polypeptides of the present invention. Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Borrelia species, including *B. burgdorferi*, in biological and environmental samples and to diagnose an animal, including humans, with an *B. burgdorferi* or other Borrelia infection. Thus, the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.

The bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid differential pathogenic detection and diagnosis. The bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal

10

15

20

25

30

35

PCT/US98/12764

polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips and biosensors of the present invention may also be used to monitor an B. burgdorferi or other Borrelia infection and to monitor the genetic changes (amio acid deletions, insertions, substitutions, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention. The polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Borrelia species, including B. burgdorferi, or specific polypeptides using bio chip and biosensor technology include those known in the art, those of the U.S. Patent Nos. and World Patent Nos. listed above for bio chips and biosensors using polynucleotides of the present invention, and those of: U.S. Patent Nos. 5658732, 5135852, 5567301, 5677196, 5690894 and World Patent Nos. WO9729366, WO9612957, each incorporated herein in their entireties.

5. Screening Assay for Binding Agents

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Borrelia burgdorferi* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Borrelia burgdorferi* genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic

10

15

20

25

30

35

Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

6. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Borrelia burgdorferi*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Borrelia burgdorferi or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or

10

15

20

25

30

35

PCT/US98/12764

rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc*. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc*. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

10

15

20

25

30

35

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action.

Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by

10

15

20

25

a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

7. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

35

30

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

10

15

20

25

30

35

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, *Genomics* 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P0, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation P0 = e-m, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, P0 = e-1 = 0.37. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation G = Le-m, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Borrelia burgdorferi DNA is prepared by phenol extraction. A mixture containing 200 μg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 μl TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

10

15

20

25

30

35

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 μg of DNA fragments, 2 μg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 μl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 μl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 μM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 μl TE. The final ligation to produce circles is carried out in a 50 μl reaction containing 5 μl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 μl aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μl aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl2 (1 M), and 1 ml MgSO4/100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 μl aliquot of transformation.

10

20

25

30

35

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two Borrelia burgdorferi lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified 15 library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, Borrelia burgdorferi DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage are plated directly without amplification from the packaging mixture (after dilution with 500 µl of recommended SM buffer and chloroform treatment). Yield is about 2.5x103 pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x104 pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Liquid lysates (100 µl) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed

10

15

20

25

30

35

by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of bothend sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

10

15

20

25

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods

10

15

20

25

30

35

in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library). The process resulted in 155 contigs as represented by SEQ ID NOs:1-155.

3. Identifying Genes

The predicted coding regions of the *Borrelia burgdorferi* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (July, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity (using default parameters). Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Borrelia burgdorferi Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

10

15

20

25

30

35

PCT/US98/12764

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature 256*:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., *Meth. Enzymol. 70:*419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.*, *Basic Methods in Molecular Biology*, Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological

samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Borrelia burgdorferi* genome, such as those of Tables 1-6 and SEQ ID NOS: 1-155 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

15

20

25

30

35

5

10

5. Isolation of a Selected DNA Clone From B. burgdorferi

Three approaches are used to isolate a *B. burgdorferi* clone comprising a polynucleotide of the present invention from any *B. burgdorferi* genomic DNA library. The *B. burgdorferi* strain B31PU has been deposited as a convienent source for obtaining a *B. burgdorferi* strain although a wide varity of strains *B. burgdorferi* strains can be used which are known in the art.

B. burgdorferi genomic DNA is prepared using the following method. A 20ml overnight bacterial culture grown in a rich medium (e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth), pelleted, ished two times with TES (30mM Tris-pH 8.0, 25mM EDTA, 50mM NaCl), and resuspended in 5ml high salt TES (2.5M NaCl). Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells. The solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C. Five hundred micro liter of 20% sarcosyl in TES (final concentration 2%) is then added to lyse the cells. Next, guanidine HCl is added to a final concentration of 7M (3.69g in 5.5 ml). The mixture is swirled slowly at 55C for 60-90 min (solution should clear). A CsCl gradient is then set up in SW41 ultra clear tubes using 2.0ml 5.7M CsCl and overlaying with 2.85M CsCl. The gradient is carefully overlayed with the DNA-containing GuHCl solution. The gradient is spun at 30,000 rpm, 20C for 24 hr and the lower DNA band is collected. The volume is increased to 5 ml with TE buffer. The DNA is then treated with protease K (10 ug/ml) overnight at 37 C, and precipitated with ethanol. The precipitated DNA is resuspended in a desired buffer.

In the first method, a plasmid is directly isolated by screening a plasmid *B. burgdorferi* genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention. Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The

15

20

25

30

35

oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (*See, e.g.*, Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.

Alternatively, two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of SEQ ID NOS:1-155 are synthesized and used to amplify the desired DNA by PCR using a *B. burgdorferi* genomic DNA prep as a template. PCR is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above DNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Finally, overlapping oligos of the DNA sequences of SEQ ID NOS:1-155 can be chemically synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.

6(a). Expression and Purification Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression of some of the polypeptide fragements of the present invention. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin (QIAGEN, Inc., *supra*) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6

10

15

20

25

30

35

X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of a *B. burgdorferi* protein of the present invention is amplified from *B. burgdorferi* genomic DNA using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portions of the *B. burgdorferi* polynucleotide shown in SEQ ID NOS:1-155. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

For cloning the mature protein, the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired *B*. burgdorferi polynucleotide sequence in SEQ ID NOS:1-155. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form. The 3' primer has a sequence containing an appropriate restriction site followed by nucleotides complementary to the 3' end of the polypeptide coding sequence of SEQ ID NOS:1-155, excluding a stop codon, with the coding sequence aligned with the restriction site so as to maintain its reading frame with that of the six His codons in the pQE60 vector.

The amplified *B. burgdorferi* DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together. The *B. burgdorferi* DNA is inserted into the restricted pQE60 vector in a manner which places the *B. burgdorferi* protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al., *supra*.. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing a *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on LB agar plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin ($100\,\mu g/ml$) and kanamycin ($25\,\mu g/ml$). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell

10

20

25

30

35

debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity are purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., *supra*). Briefly the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the *B. burgdorferi* polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein could be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

The polypeptide of the present invention are also prepared using a non-denaturing protein purification method. For these polypeptides, the cell pellet from each liter of culture is resuspended in 25 mls of Lysis Buffer A at 4°C (Lysis Buffer A = 50 mM Na-phosphate, 300 mM NaCl, 10 mM 2-mercaptoethanol, 10% Glycerol, pH 7.5 with 1 tablet of Complete EDTA-free protease inhibitor cocktail (Boehringer Mannheim #1873580) per 50 ml of buffer). Absorbance at 550 nm is approximately 10-20 O.D./ml. The suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature. The cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice. The sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C. The supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.

The pre-cleared flow-through is applied to a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (Quiagen, Inc., *supra*). Proteins with a 6 X His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure. Briefly, the supernatant is loaded onto the column in Lysis Buffer A at 4°C, the column is first washed with 10 volumes of Lysis Buffer A until the A280 of the eluate returns to the baseline. Then, the column is washed with 5 volumes of 40 mM Imidazole (92% Lysis Buffer A / 8% Buffer B) (Buffer B = 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5). The protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of

10

15

20

25

30

35

150 mM Imidazole, 5 volumes of 500 mM Imidazole. The fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE depending on the protein size. The purified protein is then dialyzed 2X against phosphate-buffered saline (PBS) in order to place it into an easily workable buffer. The purified protein is stored at 4°C or frozen at -80°.

The following alternative method may be used to purify B. burgdorferi expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm

(Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the *B. burgdorferi* polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4

Ê

5

10

15

20

25

30

35

volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(b). Alternative Expression and Purification Borrelia polypeptides in E. coli

Tthe vector pQE10 is alternatively used to clone and express some of the polypeptides of the present invention for use in the soft tissue and systemic infection models discussed below. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide. The bacterial expression vector pQE10 (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) was used in this example. The components of the pQE10 plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag")) covalently linked to the amino terminus.

The DNA sequences encoding the desired portions of a polypeptide of SEQ ID NOS:1-155 were amplified using PCR oligonucleotide primers from genomic *B. burgdorferi* DNA. The PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention. Additional nucleotides containing restriction sites to facilitate cloning in the pQE10 vector were added to the 5' and 3' primer sequences, respectively.

For cloning a polypeptide of the present invention, the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 5' primer was designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of *B. burgdorferi* polypeptide. The 3' was designed to include an stop codon. The amplified DNA fragment was then cloned, and the protein expressed, as described above for the pQE60 plasmid.

15

20

25

30

35

The DNA sequences of SEQ ID NOS:1-155 encoding amino acid sequences may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE10.

The above methods are not limited to the polypeptide fragements actually produced. The above method, like the methods below, can be used to produce either full length polypeptides or desired fragements therof.

6(c). Alternative Expression and Purification of Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented and, therefore, the polypeptide is produced with no 6 X His tag.

The DNA sequence encoding the desired portion of the *B. burgdorferi* amino acid sequence is amplified from an *B. burgdorferi* genomic DNA prep the deposited DNA clones using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the *B. burgdorferi* polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences.

For cloning a *B. burgdorferi* polypeptides of the present invention, 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively. The 3' primer is additionally designed to include an in-frame stop codon.

The amplified *B. burgdorferi* DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the *B. burgdorferi* DNA into the restricted pQE60 vector places the *B. burgdorferi* protein coding region including its associated stop codon downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on

10

15

20

25

30

35

LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 µg/ml) and kanamycin (25 µg/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the *lac* repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

To purify the *B. burgdorferi* polypeptide, the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *B. burgdorferi* polypeptide. The purified protein is stored at 4°C or frozen at -80°C.

The following alternative method may be used to purify *B. burgdorferi* polypeptides expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

10

15

20

25

30

35

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the *B. burgdorferi* polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(d). Cloning and Expression of B. burgdorferi in Other Bacteria

B. burgdorferi polypeptides can also be produced in: B. burgdorferi using the methods of S. Skinner et al., (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.

7. Cloning and Expression in COS Cells

A B. burgdorferi expression plasmid is made by cloning a portion of the DNA encoding a

10

15

20

25

30

35

B. burgdorferi polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.). The expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767. The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope. pDNAIII contains, in addition, the selectable neomycin marker.

A DNA fragment encoding a *B. burgdorferi* polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The DNA from a *B. burgdorferi* genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of *B. burgdorferi* in *E. coli*. The 5' primer contains a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide. The 3' primer, contains nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* DNA, a stop codon, and a convenient restriction site.

The PCR amplified DNA fragment and the vector, pDNAI/Amp, are digested with appropriate restriction enzymes and then ligated. The ligation mixture is transformed into an appropriate *E. coli* strain such as SURE™ (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the *B. burgdorferi* polypeptide

For expression of a recombinant *B. burgdorferi* polypeptide, COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (*supra*). Cells are incubated under conditions for expression of *B. burgdorferi* by the vector.

Expression of the *B. burgdorferi*-HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., *supra*.. To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (*supra*). Proteins are

precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

5

10

15

20

25

30

35

\$3

8. Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of *B. burgdorferi* polypeptide in this example. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented. *See, e.g.*, Alt et al., 1978, J. Biol. Chem. 253:1357-1370; Hamlin et al., 1990, Biochem. et Biophys. Acta, 1097:107-143; Page et al., 1991, Biotechnology 9:64-68. Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol. 5:438-447: plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV), Boshart, et al., 1985, Cell 41:521-530. Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: Bam HI, Xba I, and Asp 718. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human \(\beta\)-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the B. burgdorferi polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci. USA 89:5547-5551. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from

10

15

20

25

30

35

a 1% agarose gel. The DNA sequence encoding the *B. burgdorferi* polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene. A 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide is synthesized and used. A 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* polypeptides is synthesized and used. The amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. Five μg of the expression plasmid pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using a lipid-mediated transfection agent such as LipofectinTM or LipofectAMINE.TM (LifeTechnologies Gaithersburg, MD). The plasmid pSV2-neo contains a dominant selectable marker, the *neo* gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μM, 2 μM, 5 μM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100-200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

The disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference in their entireties.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and components are within the scope of the invention, in addition to those shown and described herein and will become apparant to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 1.

Contig ID	3 2 2 3 1 3	Start (nt)	Stop (nt)	match acession	match gene name	% sim	% ident
	92	100363	100184 gi	gil500722	similar to entire extracellular domain of glycine receptors	100	99
				- 1	[Caenorhabditis elegans]		
1	537		513608	60	ribosomal protein \$12 [Streptococcus pneumoniae]	92	
1	283		270849	gil1001376	ATP-dependent protease ATPase subunit [Synechocystis sp.]	68	75
	847	798835	799131	467373	ribosomal protein S18 [Bacillus subtilis]	98	69
	78		91235	1573896	ribosomal protein L27 (rpL27) [Haemophilus influenzae]	85	70
	732	687538	686753 gil	gil1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	84	9
	788	739513	739232 gil	gil142459	initiation factor 1 [Bacillus subtilis]	84	89
	096	901448	901780	gnllPDle2437 69	901780 gnllPIDle2437 ORF YGL149w [Saccharomyces cerevisiae] 69	84	89
	09/	717009	715843	-	orf 361; ranslated orf similarity to SW: RFI_SALTY peptide chain release factor 1 of Salmonella typhimurium [Coxiella burnetii]	83	09
	1115	115536	115312		NADH dehydrogenase subunit [Digitalis grandiflora]	82	58
	184	178954	176918	176918 bbs157690	EF-G=elongation factor G [Thermotoga maritima, Peptide, 682	82	
					aa] [Thermotoga maritima]		
	447		425453	gil143804	Ndk [Bacillus subtilis]	82	٠
1	201	194702	194103	П	arabinose transport protein [Mycoplasma capricolum]	81	53
1	477	446671	445589		fructose 1,6-bisphosphate aldolase [Escherichia coli]	81	19
	109		568650	568650 gil349227	transmembrane protein [Escherichia coli]	81	99
	887	838084	837224		Srb [Bacillus subtilis]	81	52
1	886	840561	839497		peptide chain release factor 2 [Salmonella typhimurium]	81	99
	968	846681	845440		aminopeptidase [Bacillus subtilis]	81	09
	09	71604	06889	68890 gil1619909	DNA mismatch repair protein [Thermotoga maritima]	08	. 59
	354	•	349157		chemotaxis protein CheY [Treponema pallidum]	08	42
	423	409238	408855	gnIIPIDle2118 29	408855[gnllPIDle2118] 50S ribosomal protein L14 [Odontella sinensis]	08	. 61
	426	410130	409711	gi 1652420	50S ribosomal protein L16 [Synechocystis sp.]	8	59
	507	482736	482936 gil	515924	glucosyltransferase [Saccharomyces cerevisiae]	80	40
	534	505081	505467	1A027711R	ribosomal protein L7/L12 - Micrococcus luteus	80	<i>L</i> 9

	566532 gil580899 9994 gnllPIDle2426 14 446835 gnllPIDle2881 24 757704 gil455176 31894 gil1017809 134323 gil159199 216028 gnllPIDle2655	Section	180899 OppF gene product [Bacillus subtilis] 180899 OppF gene product [Bacillus subtilis] 181810le2426 arginine deiminase [Clostridium perfringens] 181810le2881 glucose epimerase [Bacillus thuringiensis] 185176 glucosamine-6-phosphate deaminase protein [Escherichia coli] 181809 similar to dihydropryridine-sensitive I-type, skeletal muscle calcium channel alpha-1 subunit (SP:CICI_RABIT, P07293) 189199 cecropin D [Hyalophora cecropia] 189199 similar to dihydroptyridine-sensitive I-type, skeletal muscle calcium channel alpha-1 subunit (SP:CICI_RABIT, P07293) 189199 cecropin D [Hyalophora cecropia]	808 79 87 87 87 87 87	59 60 60 60 60 60
		e2426 argi e2881 gluc 76 gluc 309 sim [Ca ₂ 99 cect e2655 Dna 49 Na+ 54 heat	nine deiminase [Clostridium perfringens] cose epimerase [Bacillus thuringiensis] cosamine-6-phosphate deaminase protein [Escherichia coli] liar to dihydropryridine-sensitive I-type, skeletal muscle ilar to dihydropryridine-sensitive I-type, s	97 87 87 87 87 87 87 87 87 87 87 87 87 87	66 50 50 50 50 60 60
	446835 gnllPIDI 24 757704 g145517 31894 g110178 134323 g115919 216028 gnllPIDI	62881 gluc 76 gluc 309 simi 309 calc [Cac 62655 Dna 33 ribo 49 Na+ 54 heat	cose epimerase [Bacillus thuringiensis] cosamine-6-phosphate deaminase protein [Escherichia coli] ilar to dihydropryridine-sensitive I-type, skeletal muscle ium channel alpha-1 subunit (SP:CIC1_RABIT, P07293) enorhabditis elegans] ropin D [Hyalophora cecropia] ionin D [Hyalophora cecropia] somal protein L11 [Thermus aquaticus thermophilus] - ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas givalis]	97 87 87 87 87 87 87 87 87 87 87 87 87 87	50 50 50 60 60
	757704 gil45517 31894 gil10178 134323 gil15919 216028 gnllPIDI	76 gluc simi solution simi simi simi simi simi simi simi sim	cosamine-6-phosphate deaminase protein [Escherichia coli] ilar to dihydropryridine-sensitive I-type, skeletal muscle ilam channel alpha-1 subunit (SP:CICI_RABIT, P07293) enorhabditis elegans] ropin D [Hyalophora cecropia] IJ-homologue [Thermus aquaticus thermophilus] somal protein L11 [Thermus aquaticus thermophilus] F-ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas	78 78 78 78 78 78 78	50 50 58 58 60 60
		9	ilar to dihydropryridine-sensitive I-type, skeletal muscle ium channel alpha-1 subunit (SP:CICI_RABIT, P07293) enorhabditis elegans] ropin D [Hyalophora cecropia] somal protein [Thermus aquaticus thermophilus] somal protein L11 [Thermus aquaticus thermophilus]ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas	87 87 87 87	50 59 59 60
	ig Rg 72	655	ropin D [Hyalophora cecropia] J-homologue [Thermus aquaticus thermophilus] somal protein L11 [Thermus aquaticus thermophilus] ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas	78 78 78 78	58 59 60
	gn 7	, ,	N-homologue [Thermus aquaticus thermophilus] somal protein L11 [Thermus aquaticus thermophilus]ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas givalis]	78 87	59
	<u>``</u>	· ·	somal protein L11 [Thermus aquaticus thermophilus] ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas	78	80 09
<u> </u>	503849 gil587583	· ·	F-ATPase alpha subunit [Enterococcus hirae] t shock protein 60 (GroEL) like protein [Porphyromonas givalis]	78	9
	819579 gil912449	(t shock protein 60 (GroEL) like protein [Porphyromonas givalis]	<u>5</u>	9
	127745 gil537364			77	2
Ŀ	182251 gil 1235682		mevalonate pyrophosphate decarboxylase [Homo sapiens]		51
l	212388 gil1651340	Γ	Phosphoglycerate mutase 1 [Escherichia coli]	77	59
	272165 gil 1001349		ATP-dependent protease ClpP [Synechocystis sp.]	17	62
	314789 gil1573746		DNA polymerase III, alpha chain (dnaE) [Haemophilus influenzae]	7.7	28
530150	531370 gil143795		transfer RNA-Tyr synthetase [Bacillus subtilis]	11	52
722470	722892 gil1653602		hypothetical protein [Synechocystis sp.]	11	54
790115	790909 gnllPIDI 86	e2488 unk	IIPIDIe2488 unknown [Mycobacterium tuberculosis]	1.1	26
	61918 gnllPIDI 66	189	IIPIDIe1189 ribosomal protein S15 [Thermus aquaticus thermophilus]	92	09
141975	141736 bbs/77721		KHS toxin, killer heat sensitive toxin=KHS [Saccharomyces cerevisiae, Peptide, 708 aa] [Saccharomyces cerevisiae]	92	38
280702	280529 gil1146275		VP2 protein [Bluetongue virus 9]	9/	47
	314199 gil1651915		hypothetical protein [Synechocystis sp.]	9/	48
356749	355508 gil633147		ribose-phosphate pyrophosphokinase [Bacillus caldolyticus]	9/	44

30S ribosomal protein SI 3 [Synechocystus sp.] neural cell adhesion protein BIG-2 precursor [Rattus norvegicus] neural cell adhesion protein BIG-2 precursor [Rattus norvegicus] unknown [Bacillus subtilis] 74eQ [Bacillus subtilis] 77	402922 gil
0 log	403341 gil1652405
27 77 77 77 77 77 77 77 77 77 77 77 77 7	431003 gil1016012
01 77 75 77 75 77 75 77 77 77 77 77 77 77	671569 gil467376
57 57 57 57 57 57 57 57 57 57 57 57 57 5	9 826675 gil1303804
27 27 27 27 27 27 27 27 27 27 27 27 27 2	183839
75 75 75 75 75 77 77 77 77 77 77 77 77 7	552842
75 77 75 77 75 77 77 77 77 77 77 77	59735 gil1184680
27 27 27 27 27 27 27 27 27 27 47 47 47	9954
ing protein (potA) 75 subtilis] 75 subtilis] 75 subtilis] 75 asma capricolum] 75 asma capricolum] 75 ania tarentolae 75 rmophilus 74 rmophilus 74	PIDle2891
ing protein (potA) 75 subtilis] 75 subtilis] 75 subtilis] 75 asma capricolum] 75 asma capricolum] 75 ania tarentolae 75 rmophilus 74 rmophilus 74	98283 gil687583
el [Homo sapiens] 75 subtilis] 75 subtilis] 75 color] 75 asma capricolum] 75 asma capricolum] 75 ania tarentolae 75 rmophilus 74 rmophilus 74 cus thermophilus] 74	
subtilis] 75 s] 75 s] 75 clor] 75 asma capricolum] 75 asma capricolum] 75 ania tarentolae 75 rmophilus 74 rmophilus 74 icus thermophilus] 74	
15	284461 gil556886
olor]	366903 gil467372
icolum] 75 nophilus 75 olae 75 75 76 77 74 74 74	377114 gil45986
icolum] 75 nophilus 75 olae 75 77 74 74 74 74 74	405925 gil1044981
icolum] 75 nophilus 75 olae 75 74 74 ophilus] 74	406812 gil600032
75 nophilus 75 olae 75 77 74 74 74 74 74 74 74	4218
nophilus 75 olae 75 74 74 74 74 76 ophilus] 74	196321
olae 75 75 74 74 74 Ophilus] 74	
75 74 74 74 76 Ophilus] 74	546579 548393 pirlC30010IC hy
74 74 74 Ophilus] 74	
74 74 ophilus] 74	~
74 ophilus] 74	
J 74	172327 171950 pirlA45434lA ri

100	*/4*	ᆁ	irgdorferi - Putative coding regions of novel proteins similar to know proteins	ī	[
1 549	524561	ᅃ	S-adenosylmethionine synthetase [Staphylococcus aureus]	/4/	مُ
1 595	565672	564347 gil 460259	enolase [Bacillus subtilis]	74	58
1 720	68125	680489 gill 651962	hypothetical protein [Synechocystis sp.]	74	49
1 745	702297		UDP-glucose pyrophosphorylase [Bacillus subtilis]	74	50
1 13	20409	17551 gil1652531	excinuclease ABC subunit A [Synechocystis sp.]	73	26
1 98	103790	104947 gi	sensor kinase [Bacillus subtilis]	73	49
1 188	182064	181102	Erg8p [Saccharomyces cerevisiae]	73	43
1 314	303616	302786 gi	'ORF' [Escherichia coli]	73	53
1 366	358916	361078 gr	hilpIDie2457 ORF YLR069c [Saccharomyces cerevisiae]	73	51
1 444	424047	4231811gil1574704	hypothetical [Haemophilus influenzae]	73	51
1 556	531372	533672 gil	hemolysin [Serpulina hyodysenteriae]	73	52
1 576	548257		glycoprotein 120 [Simian immunodeficiency virus]	73	53
1 598	568379	L	sporulation protein [Bacillus subtilis]	73	55
1 604	572375	i	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aa] [Borrelia coriaceae]	73	53
1 674	634175	633648 gil1595810	type-I signal peptidase SpsB [Staphylococcus aureus]	73	47
1 692	654267	188	IIPIDIe2684 unknown [Mycobacterium tuberculosis]	73	54
1 719	679186	680499 gil500705	Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	73	56
 1 725	682189	682899 gnIIPIDle2436 81	IIIPIDle2436 ORF YGR248w [Saccharomyces cerevisiae]	73	. 63
1 895	845455	844964 gil1652288	hypothetical protein [Synechocystis sp.]	73	50
1 16	24242	ᢛ	hemolysin [Serpulina hyodysenteriae]	72	53
1 99	104935	106305 gi	NtrC/NifA-like protein regulator [Escherichia coli]	72	54
1 133	134036	135055	Similar to Saccharomyces cerevisiae SUA5 protein [Bacillus subtilis]	72	51
1 270	256925		transcription-repair coupling factor [Bacillus subtilis]	72	. 49
1 280	267529	268221 gil1573812	[ribosomal protein S4 (rpS4) [Haemophilus influenzae]	72	51
1 282	270922	268472 gil402504	lon protease [Bacillus brevis]	.72	51
1 325	319544	318363 gi	[haemolysin releasing protein (AA 1-548) [Vibrio cholerae]	72	41
1 328	322678		CTP synthase [Methanococcus jannaschii]	72	42

	348	341460	Borrelia 341182	burgdorferi - Pute	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 1182 gil 145687 ptsH protein Escherichia coli	72	55
	405	399941	399096	399096 gil1045937	M. genitalium predicted coding region MG246 [Mycoplasma	72	53
					genitalium]		
	420	408009	407779	gil580930	S14 protein (AA 1-61) [Bacillus subtilis]	72	55
	593	563383	563850		ribosomal protein L13 (rpL13) [Haemophilus influenzae]	72	2
	682	641030	643399		sporulation protein (spoIIIE) [Haemophilus influenzae]	72	51
-	754	710160	710750		D-alanine:D-alanine ligase-related protein [Enterococcus faecalis]	72	.47
	767	721422	721640	721640 gil868029	large ribosomal subunit protein L35 [Buchnera aphidicola]	72	48
-	098	811923	810511	gil1001357	asparaginyl-tRNA synthetase [Synechocystis sp.]	72	54
	41	22434	20407	gil1737482	UvrB [Helicobacter pylori]	71	52
-	72	87471	87674	gil1016781	beta-b protein [Barley stripe mosaic virus]	71	42
	289	278760	278239	gil534842	ORF9 [Rhizobium meliloti]	71	43
·	307	298685	296736	gil1652099	long-chain-fatty-acid CoA ligase [Synechocystis sp.]	71	48
	321	313551	312130	gil1732243	RecG [Treponema pallidum]	71	52
-	522	494911	496383	gil459009	similar to multifunctional aminoacyl-tRNA synthetase, especially to the prolyl-tRNA synthetase region [Caenorhabditis elegans]	711	48
	554	528795	530156	1	oirIS58522IS5 glycyl-tRNA synthetase - Thermus thermophilus	71	54
	582	553725	552271		pyruvate kinase [Bacillus stearothermophilus]	71	52
1	684	644626	1	gil217121	ORF1 [Synechococcus elongatus]	71	52
	723	681731	681561	1~~	secretion protein SecY (AA 1-482) [Mycoplasma capricolum]	71	42
	856	806939	807700	gil216341	ORF for methionine amino peptidase [Bacillus subtilis]	71	53
	947	960068	890665	gil147485	queA [Escherichia coli]	71	56
-	28	38112	40613 _g	gil1439562	Cdc28p [Schizosaccharomyces pombe]	70	53
	36	45750	44806g	gil290494	o287 [Escherichia coli]	70	32
	8	94408	95220	gil47677	flgG protein product (AA 1-260) [Salmonella typhimurium]	70	20
	128	127889	1	128569 gil1574387	H. influenzae predicted coding region HI1534 [Haemophilus influenzae]	. 0/	58
	468	441049	441330	gil1673757	(AE000012) Mycoplasma pneumoniae, phosphocarrier protein HPr; similar to GenBank Accession Number A49683, from M.	70	41
•					capricolum [Mycoplasma pneumoniae]	C	1
	532	503834	504529 s	splQ06797IRL 1 BACSU	50S RIBOSOMAL PROTEIN L1 (BL1).	0/	48

initiation of DNA 70 visiae] 70 ium longisporum] 70 ciparum] 69 ciparum] 69 st thermophilus] 69 atus] 69 X - Bacillus 69 [IS] 68	Somelia burgdorferi - Putative of 563858 564280 gil606169 30S 561070 591606 gil 53906 Che	Sorrelia burgdorferi - Putative of 564280 gil606169 30S 501606 oi1153906 Che	a burgdorferi - Putative (gi1606169 30S)	30S J	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 64280 gil606169 30S ribosomal subunit protein S9 [Escherichia coli] 61606 gil63066 [Che W protein [Salmonella typhimurium]	70	56
initiation of DNA 70 70 70 70 70 70 70 70 70 70 70 70 70	-	2910/0	291600	g1153906	Chew protein [Salmonella typnimurium]	2 5	40
68.2659 gil836815 cic4 gene product which is essential for initiation of DNA 70 721417 gil436165 Deg [Myxococcus xanthus] 70 722008 gnilPIDie2249 inbosomal protein L20 [Bacillus subtilis] 70 903465 gil100074 tryptophanyl-RNA synthetase [Clostridium longisporum] 70 97336 gil100073 ABC transporter, Protein [Pasmodium falciparum] 69 113602 gil1001733 ABC transporter, Synchrocysis sp. 69 113602 gil100173 ABC transporter, Synchrocysis sp. 69 113602 gil1001733 ABC transporter [Synchrocysis sp.] 69 113602 gil1001733 ABC transporter Export membrane protein SecD [Synechocystis sp.] 69 218076 gil1001493 protein-export membrane protein SecD [Synechocystis sp.] 69 407371 gil400357 protein-export membrane protein SecD [Synechocystis sp.] 69 487977 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 48734 gil1501808 [Sil200 sporulation protein [Bacillus subtilis] 69 887926 gil1608 [Sil200 sporulation protein [Bacillus subtilis] 69 887926 gil1809583 unknown [Saccharolyticus 69 87976 gi	• :	64161	662611	gnIIPIDle2839 19	glycerol kınase [Sulfolobus solfatarıcus]	2	8
721417 gil436165 Dsg [Myxococcus xanthus] 70 722008 gnllPDDe2549 ribosomal protein L20 [Bacillus subtilis] 70 905465 gil100074 tryptophanyl-tRNA synthetase [Clostricium longisporum] 70 905465 gil100073 asparagine-rich protein [Plasmodium falciparum] 69 91336 gil1001733 ABC transporter [Synechocystis sp.] 69 113602 gil1001733 ABC transporter [Synechocystis sp.] 69 173762 pir(C47154IC ribosomal protein Slo - Bacillus subtilis 69 218076 gil1001433 protein-export membrane protein SecD [Synechocystis sp.] 69 363977 gil154200 hypothetical [Haemus aquaticus thermophilus] 69 407371 gil498771 ribosomal SB protein [Thermus aquaticus thermophilus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 68738 gil143606 sporulation protein [Bacillus subtilis] 69 844547 gil159234 My jamaschii predicted coding region MJ1172 [Methanococcus of Bacillus subtilis] 69 87976 gil809583 unknown [Saccharomyces cerevisiae] 68 111313 gnllPIDIe2559 [Mo4B2.4 [Caenorhabditis elegans] 43 142642 gnllPIDIe2538 [hypot	-	682886	682659	gil836815	cdc4 gene product which is essential for initiation of DNA replication in yeast [Saccharomyces cerevisiae]	70	35
722008 gnllPDle2549 ribosomal protein L20 [Bacillus subtilis] 70008 gnllPDle2549 ribosomal protein L20 [Bacillus subtilis] 70 905465 gil100074 tryptophanyl-tRNA synthetase [Clostridium longisporum] 70 97336 gil100073 asparagine-rich protein [Plasmodium falciparum] 69 113602 gil1001733 ABC transporter [Synechocystis sp.] 69 173762 pirlC47154C ribosomal protein S16 - Bacillus subtilis 69 218076 gil1001433 protein-export membrane protein SecD [Synechocystis sp.] 69 363977 gil157420 hypothetical [Haemophilus influenzae] 69 407371 gil167220 hypothetical [Haemophilus influenzae] 69 407371 gil15722 ribosomal S8 protein [Therma aquaticus thermophilus] 69 491207 gil15732 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 Ygl [Bacillus subtilis] 69 8183 psychrosaccharolyticus 8183 844547 gil1592324 m. jannaschii predicted coding region MJ1172 [Methanococcus 69 57976 gil809583 unknown [Saccharomyces cerevisiae] 68		720854	721417	gi 436165	Dsg [Myxococcus xanthus]	70	47
905465 gill 100074 tryptophanyl-tRNA synthetase [Clostridium longisporum] 70 97336 gill 60092 asparagine-rich protein [Plasmodium falciparum] 69 113602 gill 001733 ABC transporter [Synechocystis sp.] 69 17362 pirl(247154IC ribosomal protein S16 - Bacillus.subtilis 69 218076 gill 001493 protein-export membrane protein SecD [Synechocystis sp.] 69 219922 gill 402532 ORF11 [Enterococcus faccalis] 69 363977 gill 574200 hypothetical [Haemophilus influenzae] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 491207 gill 51932 fortose enzyme II [Rhodobacter capsulatus] 69 491207 gill 51932 fortotose enzyme II [Rhodobacter capsulatus] 69 687336 gill 402532 yorulation protein [Bacillus subtilis] 69 8744547 gill 593856 Yegli Bacillus subtilis] 69 87937 gill 592324 M. jannaschii predicted coding region MJ1172 [Methanococcus of S8 68 87937 gill 59256 ORF (19K protein) [Enterococcus faecalis] 68 87937 gill 59258 unknown [Saccharomyces cerevisiae] 68 <		721649	722008	gnilPIDle2549 81	ribosomal protein L20 [Bacillus subtilis]	, 70	48
97336 gil160092 asparagine-rich protein [Plasmodium falciparum] 69 113602 gil1001733 ABC transporter [Synechocystis sp.] 69 173762 pir(747154lC ribosomal protein S16 - Bacillus.subtilis 69 47154 protein-export membrane protein SecD [Synechocystis sp.] 69 218076 gil1001493 protein-export membrane protein SecD [Synechocystis sp.] 69 219922 gil1402532 ORF11 [Enterococcus faecalis] 69 363977 gil151932 ribosomal S8 protein [Themus subtilis] 69 401207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 Yqg1 [Bacillus subtilis] 69 827746 pirlS08183ISO L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 8183 psychrosaccharolyticus 8183 844547 gil159234 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 87926 gil809583 unknown [Saccharomyces cerevisiae] 43 11513 gnllPDle2559 M04B2.4 [Caenorhabditis elegans] 43 142642 gillDDle238 hypothetical protein [Bacillus subtilis] 66<	1 .	904395	905465	gil1100074	tryptophanyl-tRNA synthetase [Clostridium longisporum]	70	47
113602 gil1001733 ABC transporter [Synechocystis sp.] 69 173762 pirlC47154C ribosomal protein S16 - Bacillus, subtilis 69 47154 47154 69 218076 gil1001493 protein-export membrane protein SecD [Synechocystis sp.] 69 219922 gil1402532 ORF11 [Enterococcus faecalis] 69 363977 gil1574200 hypothetical [Haemophilus influenzae] 69 491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 YagI [Bacillus subtilis] 69 82746 pirlS0818310 hypothetical edehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gallPIDIe2559 MO4B2.4 [Caenorhabditis elegans] 68 142642 gallPIDIe2338 hypothetical protein [Bacillus subtilis] 66 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotra	1	98696	97336	gil160092	asparagine-rich protein [Plasmodium falciparum]	69	46
173762 pirlC47154IC ribosomal protein S16 - Bacillus.subtilis 69 218076 gil1001493 protein-export membrane protein SecD [Synechocystis.sp.] 69 218076 gil1001493 protein-export membrane protein SecD [Synechocystis.sp.] 69 219922 gil1402532 ORFI1 [Enterococcus faecalis] 69 363977 gil1574200 hypothetical [Haemophilus influenzae] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 YqgI [Bacillus subtilis] 69 827746 pirlS081831S0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii] 69 879237 gil159256 ORF (19K protein) [Enterococcus faecalis] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 115148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68	Ĭ	112658	113602	1001733	ABC transporter [Synechocystis sp.]	69	46
218076 gil1001493 protein-export membrane protein SecD [Synechocystis sp.] 69 219922 gil1402532 ORF11 [Enterococcus faecalis] 69 363977 gil1574200 hypothetical [Haemophilus influenzae] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 827746 pirlS08183180 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil159234 M. jannaschii predicted coding region MJ1172 [Methanococcus faecalis] 69 879237 gil1592324 M. jannaschii] 69 879237 gil159256 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 11513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68	l	174037	173762	rIC47154IC 7154	ribosomal protein S16 - Bacillus, subtilis	69	52
219922 gil1402532 ORF11 [Enterococcus faecalis] 69 363977 gil1574200 hypothetical [Haemophilus influenzae] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 YqgI [Bacillus subtilis] 69 827746 pirlS08183lS0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil159234 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 879237 gil1592324 M. jannaschii [Enterococcus faecalis] 68 879237 gil15956 ORF (19K protein) [Enterococcus faecalis] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		219872	218076	gil1001493	protein-export membrane protein SecD [Synechocystis sp.]	69	47
363977 gil1574200 hypothetical [Haemophilus influenzae] 69 407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 Yqg1 [Bacillus subtilis] 69 82746 pirl508183ISO L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil159234 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		220245	219922	gil1402532	ORF11 [Enterococcus faecalis]	69	32
407371 gil498771 ribosomal S8 protein [Thermus aquaticus thermophilus] 69 491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 YqgI [Bacillus subtilis] 69 827746 pirlS08183IS0] L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus of jannaschii] 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPIDle2559 M04B2.4 [Caenorhabditis elegans] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		366148	363977	gil1574200	hypothetical [Haemophilus influenzae]	69	48
491207 gil151932 fructose enzyme II [Rhodobacter capsulatus] 69 568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 Yqg1 [Bacillus subtilis] 69 827746 pirlS08183IS0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus of jannaschii] 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		407781	407371	gil498771	ribosomal S8 protein [Thermus aquaticus thermophilus]	69	46
568388 gil143606 sporulation protein [Bacillus subtilis] 69 687536 gil1303856 YqgI [Bacillus subtilis] 69 827746 pirlS08183IS0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPIDle2559 M04B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 74 Pt 74 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		489315	491207	gil151932	fructose enzyme II [Rhodobacter capsulatus]	69	42
687536 gil1303856 YqgI [Bacillus subtilis] 69 827746 pirlS08183lS0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68			568388	gil143606	sporulation protein [Bacillus subtilis]	69	44
827746 pirlS08183IS0 L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus 69 844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii] 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 111513 gnllPIDle2559 MO4B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68			687536	gil1303856	YqgI [Bacillus subtilis]	69	46
844547 gil1592324 M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii] 69 879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 68 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPDle2559 M04B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		826778	827746	pirlS08183lS0 8183	L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus psychrosaccharolyticus	69	50
879237 gil153566 ORF (19K protein) [Enterococcus faecalis] 69 57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPIDle2559 M04B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		844392	844547	gil1592324	M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii]	69	53
57976 gil809583 unknown [Saccharomyces cerevisiae] 68 111513 gnllPIDle2559 M04B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68		879725	879237	gil153566	ORF (19K protein) [Enterococcus faecalis]	69	42
111513 gnllPIDle2559 M04B2.4 [Caenorhabditis elegans] 68 133148 gil1001663 rare lipoprotein A [Synechocystis sp.] 68 142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis] 68 144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68	1	57779	57976	gil809583	unknown [Saccharomyces cerevisiae]	89	36
133148gil1001663rare lipoprotein A [Synechocystis sp.]68142642gnllPIDle2338hypothetical protein [Bacillus subtilis]687474144005gil558574pyrophosphatefructose-6-phosphate 1-phosphotransferase68		110374	111513	gnIIPIDIe2559 43	M04B2.4 [Caenorhabditis elegans]	89	48
142642 gnllPIDle2338 hypothetical protein [Bacillus subtilis]687474144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase68		133978	133148	gil1001663	rare lipoprotein A [Synechocystis sp.]	89	53
144005 gil558574 pyrophosphatefructose-6-phosphate 1-phosphotransferase 68	1	141239	142642	gnIIPIDIe2338 74	hypothetical protein [Bacillus subtilis]	89	45
		145381	144005	gil558574	pyrophosphatefructose-6-phosphate 1-phosphotransferase	89	48

	42	20	,	42			42	50							51		52		_			52	43		47
	89	89	68	68	68	68	89	89	8 8	00	98	68	68	68	89	68	89	89	68	68	68	68	<i>L</i> 9	<i>L</i> 9	67
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins Figure Figure	93442 beta-galactoside binding protein [Mus musculus]		1653392 signal recognition particle protein [Synechocystis sp.]	[46854 galactose binding protein [Escherichia coli]	[573101 hypothetical [Haemophilus influenzae]	652530 glucose 6-phosphate dehydrogenase [Synechocystis sp.]	[573422 fructose-permease IIBC component (fruA) [Haemophilus	MILLINGIEZAC)			699588 [Sec Y protein [Corynebacterium glutamicum]	1591164 ribosomal protein L29 [Methanococcus jannaschii]	[498049 adenylate kinase [Paracoccus denitrificans]	3817 ORF [Escherichia coli]	PIDIe2551 hypothetical protein [Bacillus subtilis]		7.	466482 outer surface protein F [Borrelia burgdorferi]	1652037 hypothetical protein [Synechocystis sp.]	[072418 [glcA gene product [Staphylococcus carnosus]	47774 ORF III [Escherichia coli]	PDIe2902 polypeptide deformylase [Calothrix PCC7601]	IIPIDIe2804 unknown [Streptococcus pneumoniae]	8991 ILS1 protein [Saccharomyces cerevisiae]	1652946 DNA topoisomerase I [Synechocystis sp.]
ia burgdorf	Ei]		S gil1653	:50	4 gil1573	3 gil1652	7 gil1573	17201: 0	핆	50	2 gil6995			9 gil473817	lug C	675460 gil927711	0 gil 1707	gi	5 gil 1652	7 gil 1072			E 8	29640 gil498991	9 gil 1652
Borrel	147295	16929	174035 gil	i	1	235943 gil1	251077	,000	303333 gil	399874		1	482087	524549	l	1		702609	745815	/197807 Jil	827776 gill	850680	24255	1	1
	147107	170051	175384	195720	228084	237406	249185	210120	364016	401421	405181	409759	482737	525298	658281	678378	685905	704201	744799	770967	829335	850141	22531	26452	35545
	151	173	182	203	243	255	263	0.00	3/2	407	412	425	206	550	L69	717	730	747	793	843	875	006	15	20	27
				1		-	-			-	1		-	-			_	-	П	F	Γ		I	-	

		Borrelia bu	burgdorferi - Puta	rgdorferi - Putative coding regions of novel proteins similar to know proteins	į	
111	113572	114333 gil	gil1001529	hypothetical protein [Synechocystis sp.]	/ 0	ş
1 170	166286	165876 gil	gil567036	CapE [Staphylococcus aureus]	.67	35
1 202		19465	gil1674275	(AE000056) Mycoplasma pneumoniae, hypothetical ABC	<u>L9</u>	41
				transporter (yjcW) homolog; similar to Swiss-Prot Accession Number P32721, from E. coli [Mycoplasma pneumoniae]		
1 206	197487	197098	gil1653841	P protein [Synechocystis sp.]	19	35
1 271		261551	gil349834	acetate kinase [Methanosarcina thermophila]	<i>L</i> 9	44
1 313	302731		gnllPIDle2499	IIPIDle2499 phosphotransacetylase [Thermoanaerobacterium	. 129	51
				thermosaccharolyticum]	Į.	- (
1 422	408897	408535 pirl/ 5BS	A02819IR 24	ribosomal protein L24 - Bacillus stearothermophilus	67	49
1 480			gil1574032	hypothetical [Haemophilus influenzae]	<i>L</i> 9	42
1 529		1	gil1001264	50S ribosomal protein L33 [Synechocystis sp.]	67	56
1 588	559618		gil1224069	amidase [Moraxella catarrhalis]	<i>L</i> 9	51
1 683		•	gil710340	ribosomal protein S21 [Myxococcus xanthus]	<i>L</i> 9	49
1 698		ı	gil460955	TagE [Vibrio cholerae]	<i>L</i> 9	38
1 700	660039		gil467420	unknown [Bacillus subtilis]	67	42
1 725			gnIIPIDIe2676 07	685888 gnllPIDle2676 alanyl-tRNA synthatase [Thermus aquaticus thermophilus]	67	51
1 835	791754	792341	gnIIPIDie2487 63	gnlIPIDle2487 unknown [Mycobacterium tuberculosis]	29	46
1 857	807722	809191	gil1526428	GsrA protein [Yersinia enterocolitica]	19	46
1 868	ľ	820905	gil1590954	ATP synthase, subunit B [Methanococcus jannaschii]	29	53
1 74	88393	88028	gil1572979	hypothetical [Haemophilus influenzae]	99	43
1 91			gil561690	sialoglycoprotease [Pasteurella haemolytica]	99	44
1 123	121472	120783 gil	gil1652843	endonuclease III [Synechocystis sp.]	99	42
1 149		145379	gil1216385	orf304 gene product [Treponema pallidum]	99	43
1 185		179001	gil1574811	neutrophil activating protein (napA) [Haemophilus influenzae]	99	49
1 275	5 265075	265584	gil401785	cytidine deaminase [Mycoplasma pirum]	99	41
1 330			gil1574641	ribonucleotide transport ATP-binding protein (mkl) [Haemophilus influenzae]	99	41
1 335		326888 gil5	10670	cheY gene product [Rhodobacter sphaeroides]	99	44
1 355	349142	349603	99382	FliS [Bacillus subtilis]	99	28

. . .

ļ	0.0	1100100	Borrelia		burgdorferi - Putative coding regions of novel proteins similar to know proteins		,
	238	100100	330827		tar-1 [Trichostrongylus colubritormis]	00	3
.	404	399121	398324	gil296626	hemolysin [Serpulina hyodysenteriae]	99	53
-	491	461335	460550	gil45713	P. putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB, uncI and uncB [Pseudomonas putida]	99	41
1	513	486046	485159	gil153903	methyltransferase (cheR; EC 2.1.1.24) [Salmonella typhimurium]	99	42
	552	526495	527316		A 'c' was inserted after nt 369 (=nt 10459 in genomic sequence (M10126)) to correct -1 frameshift probably due to gel	99	40
					compression [Leishmania tarentolae]		
1	611	579933	581069	gil886130	putative pectinesterase [Medicago sativa]	99	33
1	627	595395	296288		gnllPIDle2639 OrfD [Streptococcus pneumoniae]	99	47
-	772	723788	723522	gil1762342	could accelerate degradation of certain transcripts [Bacillus subtilis]	99	47
. 1	816	770251	770060	gil393266	glycerol ester hydrolase [Staphylococcus aureus]	99	33
1	841	795927	795208	gil662880	novel hemolytic factor [Bacillus cereus]	99	46
1	882	835002	834262		similar to the ATP-binding transport protein family [Buchnera aphidicola]	99	40
	73	87915	87619	gil39656	spoVG gene product [Bacillus megaterium]	65	40
	97	103039	102803	gil532272	phosphatidylserine decarboxylase [Bacillus subtilis]	65	39
1	106	110281	109649		ClpP [Yersinia enterocolitica]	9	42
1	159	156186	154372	gil1572977	penicillin-binding protein 2 (pbp2) [Haemophilus influenzae]	65	41
1	172	168084	169325	gil1146238	poly(A) polymerase [Bacillus subtilis]	[29]	38
	268	255918	253819	gil829194	bacterial cell wall hydrolase [Enterococcus faecalis]	9	43
1	353	348568	346553		DNA ligase (lig) [Haemophilus influenzae]	9	45
1	969	657577	655781	gil1651216	Pz-peptidase [Bacillus licheniformis]	65	47
-	741	695297	693456	gil1575784	DNA mismatch repair protein [Aquifex pyrophilus]	9	45
-	846	798339	798827	gil1001362	single-stranded DNA-binding protein [Synechocystis sp.]	[59	45
1	932	, 876643	878559		gyrase A [Helicobacter pylori]	[59	40
1	936	881238	882224		leader peptidase I [Synechocystis sp.]	9	40
1	961	902331	901519		YbbQ [Bacillus subtilis]	65	48
1	963	903280	904407		hypothetical [Haemophilus influenzae]	59.	41
	37	47101	45683	gil556014	UDP-N-acetyl muramate-alanine ligase [Bacillus subtilis]	64	46

61 72211 71241 71242		41	43	43	48	45	47	34	47	30	33	36	52	42	44	41	45	44	42	42	41	38	38	42	38	41	45
Borrelia burgdorferi - Puta 71642 gil1041785 131969 129336 gil1574225 152924 151140 gil43066 170326 170033 gil1652390 171105 170545 gil1573650 171105 170545 gil1573650 173764 173513 gil1046163 173764 173513 gil1046160 1230149 230967 gil1046160 1230149 230967 gil1046160 1230149 230967 gil1046160 1233349 332783 gil467430 137565 gil1653737 1428137 426437 gil467409 1484558 483998 pil46005471X PEBET 570416 569451 gil1574678 60 771784 771969 gnllPIDIe2833 1607 771784 771969 gnllPIDIe2833 181972 812853 gil472918 853492 853492 853884 gil992960 1833884 gil992960 1833884 gil992960 1833884 gil992960		64	64	64	64	42	49	45	64	64	64	64	64	64	64	64	46	49	<u>4</u>	4	4	42	64	64	64	64	63
Borrelia bu 131969 129336 gil 152924 151140 gil 170326 170033 gil 171105 170545 gil 17303 172293 gil 173764 173513 gil 228146 229036 gil 230149 230967 gil 233349 332783 gil 333349 332783 gil 484558 483998 pil 484558 483998 pil 60771784 771969 gn 771784 771969 gil 821501 823339 gil 853668 851615 gil 853492 853884 gil 853492 853884 gil	tative coding regions of novel proteins similar to know proteins	rhoptry protein [Plasmodium yoelii]	[valyl-tRNA synthetase (valS) [Haemophilus influenzae]	[threonyl-tRNA synthetase (thrS; EC 6.1.1.3) [Escherichia coli]	acyl carrier protein [Synechocystis sp.]	lipopolysaccharide core biosynthesis protein (kdtB) [Haemophilus influenzae]	tRNA (guanine-N1)-methyltransferase [Mycoplasma genitalium]	unknown [Mycobacterium tuberculosis]	ORF2136 [Marchantia polymorpha]	N-acetylmuramoyl-L-alanine amidase [Synechocystis sp.]	, ,	[transmembrane protein [Escherichia coli]	unknown [Bacillus subtilis]	cheW peptide [Escherichia coli]	monophosphatase [Synechocystis sp.]	DNA polymerase III subunit [Bacillus subtilis]	protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium	dipeptide transport system permease protein (dppB) [Haemophilus influenzae]	soluble lytic transglycosylase [Synechocystis sp.]	unknown [Mycobacterium tuberculosis]	W04B2.3 [Caenorhabditis elegans]	hypothetical [Haemophilus influenzae]	glutamate synthase [Escherichia coli]	v-type Na-ATPase [Enterococcus hirae]	[methionyl-tRNA formyltransferase [Escherichia coli]	[thioredoxin [Arabidopsis thaliana]	SbcC (AA 1-1048) [Escherichia coli]
72211 131969 152924 170326 171105 171105 173764 197654 206795 228146 230149 253160 333349 428137 484558 484558 637996 709637 771784 771784 811972 821501 853668 853492	burgdorferi - Pu	gil1041785	gil1574225	gil43066	gil1652390	gil1573650	gil1046163	gnIIPIDIe2488 93	gil11665	gil1652866	gil1046160	gil147336	gil467430	gil145520	gil1653737	gil467409	pirlA00547IX YEBET	gil1574678	gil1001335	gnIIPIDIe2833 60	gnliPIDle2503 07	gil1573939	gil396314	gil472918	gil581088	gi1992960	gil42914
131969 152924 170326 171105 171105 173033 173033 173033 173033 173033 173033 173033 173033 17303 17303 17303 17303 17303 17309 17303 171784 17	Borrelia	71642	129336	151140	170033	170545	172293	173513	197436	205761	229036	230967	253723	332783	375565	426437	483998	569451	640224	710194	771969	795211	812853	823339	851615	853884	31444
1 61 1 1 1 1 1 1 1 1		72211	131969	152924	170326	171105	173033	173764	197654	206795	228146	230149	253160	333349	376509	428137	484558	570416				Щ	811972	821501			
		61	130	156	174	175	178	180	207	217	244	246	267	340	384	449	510	603	629	753	817	839	861	870	901	90 4	24
		1	1	1	1	Ī	-	1	1	T	1	1	1	1	1	1	1		1	1	1	1	I	1	1	-	=

Į	ŀ			Borreli	a burgdorferi - Put	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins		Ī
	1	101	10/458	106/93 g1	gil1652679	hypothetical protein [Synechocystis sp.]	6.7	34
	1	102	107464		gi115893	predicted 12.5Kd protein [Mycobacteriophage 15]	62	44
	Π	226	213238	l	gil1001678	ribose 5-phosphate isomerase [Synechocystis sp.]	62	39
<u> </u>	_	266	251889	253175 gi	gil529118	similar to APE1/LAP4, vacuolar aminopeptidase [Saccharomyces cerevisiae]	62	42
	-	299	288749		gil289284	cysteinyl-tRNA synthetase [Bacillus subtilis]	62	46
		357	349982	1	gil1633576	similar to proofreading 3'-5' exonuclease and polymerase [Treponema pallidum]	62	41
	Г	443	423190	422495 gi	gil312380	putative orfW gene product [Clostridium acetobutylicum]	62	32
	1	489	458740	459582 gi	gil40031	spoOJ93 gene product [Bacillus subtilis]	62	36
		511	485147	484494	gil145524	cheB peptide [Escherichia coli]	62	28
	Ţ	518	491201	492322 gil	gil 146722	phosphomannose isomerase [Escherichia coli]	62	45
	1	685	646727	644598 gi	gil1574144	single-stranded-DNA-specific exonuclease (rec1) [Haemophilus influenzae]	. 62	40
<u> </u>		695	655800	655063 gil	gil1477770	unknown [Helicobacter pylori]	62	37
	1	758	715668	714979	gil1574130	protoporphyrinogen oxidase (hemK) [Haemophilus influenzae]	62	36
	1	762	718374	719198 gi	gil1652444	hypothetical protein [Synechocystis sp.]	62	40
		837	792941	793891 gil	gil1652668	phosphatidate cytidylyltransferase [Synechocystis sp.]	62	41
	T	917	862498		gil440851	collagenase [Clostridium perfringens]	62	29
لــا	1	46	25889	1 1	60	tRNA guanine transglycosylase [Zymomonas mobilis]	[9]	35
Ш ;	1	81	92710	92174	gil726305	adenine phosphoribosyltransferase form 1 [Triticum aestivum]	[9]	45
	1	100	106820	106557	gil460955	TagE [Vibrio cholerae]	[19	45
	_	109	111699	112664 gi	gil1001126	hypothetical protein [Synechocystis sp.]	61	48
	_	157	154445	153051	gi1143657	endospore forming protein [Bacillus subtilis]	[9]	40
	1	193	185315		gil148409	gene not found in Erwinia uredovora crt gene cluster; ORF6 [Erwinia herbicola]	61	42
· .	1	223	209790		spiP37214IER A_STRMU	210668 sp P37214 ER GTP-BINDING PROTEIN ERA HOMOLOG. A_STRMU	61	37
	-	273	262392	264062 gi	gil438455	possible N-terminal signal sequence; mature protein may be	19	37
						as overlap with Candida pelliculosa beta-glucosidase.; putative IRacillus subtilis		•
	┢	277	265982	265581	gil1513240	ORFveg 110 [Dictyostelium discoideum]	61	29

		•	Borrelia b	a burgdorferi - Putz	urgdorferi - Putative coding regions of novel proteins similar to know proteins		
1	301	291935	289686	50	MCP-1 [Treponema pallidum]	61	43
	322	314201	313338	gil1732243	RecG [Treponema pallidum]	19	37
	380	371430	372392		OrfC [Bacillus subtilis]	[19	38
	408	401874	401479	gil147716	ribosomal protein L17 [Escherichia coli]	[9]	44
	413	404277	40444	98	ORF [Sulfolobus shibatae]	. 61	47
	415	405927	405616	405616 pirlA02827IR 5BS3F	ribosomal protein L30 - Bacillus stearothermophilus	61	31
	417	406848	406435	02IR	ribosomal protein L18 - Bacillus stearothermophilus	61	44
	441	421784	421224	gil153045	prolipoprotein signal peptidase [Staphylococcus aureus]	19	29
1	467	440722	441042	gil173128	ubiquitin-specific processing protease [Saccharomyces cerevisiae]	[19	32
	613	582695	581547	gil1303756	YqbP [Bacillus subtilis]	[19	38
	615	584397	585476	gil551522	TpN38(b) [Treponema pallidum]	[9]	26
	673	632123	633622	gil143999	dnaK homologue [Borrelia burgdorferi]	61	41
	675	634207	635469	gil1653709	Lipoprotein NIpD [Synechocystis sp.]	61	50
1	743	699438	698647	gil1303863	YqgP [Bacillus subtilis]	[9]	45
П	897	847575	846688	gil1573586	hydrolase (GB:Z33006_1) [Haemophilus influenzae]	61	43
	938	882836	883282	gil1303831	YqfM [Bacillus subtilis]	61	36
-	7	10415	10627		T24A11.1 [Caenorhabditis elegans]	09	45
F	23	31428	30475	gil1303865	YqgR [Bacillus subtilis]	09	45
	35	44812	44267	gil1591369	cytidylate kinase [Methanococcus jannaschii]	09	49
	198	192994	192053	0.0	hypothetical protein (SP:P32720) [Mycoplasma genitalium]	09	33
	347	341167	339440	gil602680	phosphocarrier protein (enzyme I) [Mycoplasma capricolum]	09	37
	369	361817	362233	gil1372995	OrfH [Borrelia burgdorferi]	09	37
	409	402924	401872	gil142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	09	40
	438	420142	418793	gnIIPIDIe2768 30	UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	09	40
	999	540696	539698	gil1573923	prolipoprotein diacylglyceryl transferase (1gt) [Haemophilus influenzae]	09	57
-	587	559368	559655	gil1335805	CD45 homolog [Heterodontus francisci]	09	26
	289	561098	562558 gil	gil1653395	PET112 [Synechocystis sp.]	09	37
		7					

	36006	-	Borrelia burgdorferi - Pu	rgdorferi - Putative coding regions of novel proteins similar to know proteins	09	47
7		+	7070 E1112001200	hypotherat protein [5] the since of the sinc	3 5	7
-			629/8111g/829	elongation factor P [Synechococcus PCC/942]	3	7
1	750 707879		626 gil1573060	hypothetical [Haemophilus influenzae]	9	33
	734589		735635 gil 1164996	mxaC gene product [Methylobacterium extorquens]	09	26
I	829 785899		567 gil1046033	cytidylate kinase [Mycoplasma genitalium]	09	38
3 1	862 812835		773 gil1574569	hypothetical [Haemophilus influenzae]	09	. 36
	863 813727		105 gnllPIDle2550 93	816105 gnllPIDle2550 hypothetical protein [Bacillus subtilis]	09	38
	878 831250	1	943 gil 1742766	NifS protein. [Escherichia coli]	09	34
5 1	929 872578		1110 gil1002666	unknown [Schistosoma mansoni]	09	30
<u> 1</u>	937 8822		882861 gil 1595810	[type-I signal peptidase SpsB [Staphylococcus aureus]	-09	40
1	54 63(63629 63	1234 gil580902	ORF6 gene product [Bacillus subtilis]	59	38
1	96 102744	i	802 gil467409	DNA polymerase III subunit [Bacillus subtilis]	29	40
I	120 118925		119914 gil1574678	dipeptide transport system permease protein (dppB) [Haemophilus influenzae]	29	33
1	140 139567		141174 gil42377	phosphoglucose isomerase (AA 1-549) [Escherichia coli]	29	42
1	195 18657		187659 gil1573129		29	41
1 2	259 242174		245713 gil1574781	exodeoxyribonuclease V (recB) [Haemophilus influenzae]	29	38
7	288 278281		276257 pirlD64084lD 64084	rep helicase, single-stranded DNA-dependent ATPase (rep) homolog - Haemophilus influenzae (strain Rd KW20)	59	36
7 1			281525 gil882504	ORF_f560 [Escherichia coli]	29	34
-	306 294923		296707 gil487937	Similar to arginyl-tRNA synthetase (E. coli) [Saccharomyces cerevisiae]	29	35
	332 325664	ı	1.20	alternate gene name yibD [Escherichia coli]	59	39
1 4			405179 gil216338	ORF for L15 ribosomal protein [Bacillus subtilis]	- 26	40
1 4	465 439470	L	440759 gil39269	sigma factor (ntrA) (AA 1-502) [Azotobacter vinelandii]	29	35
7	492 462064		461411 pirlA301911A 30191	hypothetical protein L - Bacillus subtilis (fragment)	29	39
1 4	495 462955		463752 gil467425	unknown [Bacillus subtilis]	59	38
ş I			481016 gil1651878	regulatory components of sensory transduction system [Synechocystis sp.]	. 59	38
1 5	523 497621	Ш	496395 gil 143002	proton glutamate symport protein [Bacillus caldotenax]	59	34

- 1	Ļ	elia burgdorferi - Puta	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins	05	26
885060		0116801118	tetranydrotolate denydrogenase/cyclonydrolase [Streptococcus thermophilus]		ಗ
		51 gil1574003	pantothenate permease (panF) [Haemophilus influenzae]	58	38
90160 89534 gi		34 gil1303791	YqeJ [Bacillus subtilis]	58	32
115845 1156		115654 gnllPIDle2758 92	T06E6.f [Caenorhabditis elegans]	28	37
173515 1730		173009 gil1573163	hypothetical [Haemophilus influenzae]	28	37
191904 1896		189634 gil1066850	putative [Rhodobacter capsulatus]	28	37
215111 21450		214563 gil1573441	oxygen-independent coproporphyrinogen III oxidase (hemN) [Haemophilus influenzae]	58	34
238952 241873 gi		73 gil1041785	rhoptry protein [Plasmodium yoelii]	28	30
i		92 gil1674178	(AE000047) Mycoplasma pneumoniae, MG246 homolog, from M. genitalium [Mycoplasma pneumoniae]	28	37
533653 5347.		534750 gil974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	58	41
557259 559370	ц~	70 gil153062	helicase [Staphylococcus aureus]	28	41
l	16.4.3	i on	hypothetical protein [Synechocystis sp.]	58	35
i i	·	14 gil790935	fliG [Treponema denticola]	58.	31
	-	8 gil 1574412	alanine racemase, biosynthetic (alr) [Haemophilus influenzae]	58	29
$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		23 gil 1 2 0 9 8 3 6	minus strand repeat motif-containing gene [Borrelia burgdorferi]	58	22
786540 788225 gi		25 gil1574150	ribosomal protein S1 (rpS1) [Haemophilus influenzae]	.58	34
796255 7960		19 gnilPIDle2434 74	796019 gnilPIDle2434 ORF YGR089w [Saccharomyces cerevisiae]	. 58	35
834332 834520 gi		20 gil1575792	low Mr GTP-binding protein Rab32 [Homo sapiens]	28	43
853953 854435 gi		35 gil 303823	YqfG [Bacillus subtilis]	28	34
863594 8628		75 gil 1256625	putative [Bacillus subtilis]	58	34
865297 8647		864725 gil1054584	putative protein highly homologous to E. coli RNase HII [Magnetospirillum sp.]	58	42
189636 1877		187702 gil496484	tlpC gene product [Bacillus subtilis]	27	32
249142 2481		248192 gil46605	lacC polypeptide (AA 1-310) [Staphylococcus aureus]	.57	41
1 1		301660 gil467431	high level kasgamycin resistance [Bacillus subtilis]	57	35
Ш	4	358495 gil396943	early protein [Human papillomavirus type 19]	57	38
378249] 3780		25 gil45986	NAD synthetase [Rhodobacter capsulatus]	57	32

	31	36	29	30	33	31	36	36	36	39	33	43	36	38	28	39	26	30	35	36	29	41	38	36	40
٠	57	57	57	27	27	57	57	57	27	57	27	.57	57	27	26	99	56	99	26	50	99	99	99	26	56
tative coding regions of novel proteins similar to know proteins	994247 gil 1592085 M. jannaschii predicted coding region MJ1437 [Methanococcus jannaschii]	GTP-binding protein [Treponema pallidum]	Ribosomal Protein L10 [Bacillus subtilis]	[YqgH [Bacillus subtilis]	ORF2136 [Marchantia polymorpha]	acriflavine resistance protein (acrB) [Haemophilus influenzae]	histidyl-tRNA synthetase [Methanococcus jannaschii]	elongation factor Ts [Chlamydia trachomatis]	[hypothetical [Haemophilus influenzae]	50S ribosomal subunit protein L9 [Escherichia coli]	replicative DNA helicase [Synechocystis sp.]	acetyl coenzyme A acetyltransferase (thiolase) (fadA) homolog - Haemophilus influenzae (strain Rd KW20)	M. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	ORF4 [Bacillus subtilis]	phospholipase C (EC 3.1.4.3) precursor - Clostridium bifermentans	exonuclease SbcD [Escherichia coli]	probable com101A gene [Haemophilus influenzae]	large tegument protein [Human herpesvirus 7]	gnlIPIDle2469 ORF YPL216w [Saccharomyces cerevisiae]	[NADH oxidase [Serpulina hyodysenteriae]	M. jannaschii predicted coding region MJ0240 [Methanococcus jannaschii]	aminodeoxychorismate lyase (pabC) [Haemophilus influenzae]	[xylose repressor [Bacillus subtilis]	300922 gnllPIDle2202 red alga1 chloroplast [Plasmodium falciparum]	UDP-N-acetylmuramoylalanine-D-glutamate ligase (murD) [Haemophilus influenzae]
ı burgdorferi - Pu	gil 1592085	gil1732241	gil786163	gil1303855	gil11665	gil1573914	gil1591660	gil1518661	gil1573941	gil537044	gil1001271	pirlA64092lA 64092	gil1499620	gil1237015	14156 pirlB30565lB 30565	gi 1657594	gil148876	gil1139633	gnilPIDle2469 33	gil642030	gil1499018	gil1573431	gil143841	gnliPIDle220740	gil1574691
Borrelia	394247 g	396193	505022 gi	689096 gi	747644 gi	771866gi	778244 gi	791752 gi	793038 gi	799670 gi	801041	803742 pi	806952 g	867809 gi	14156	34277	68271	91480 gi	113571	143988	149100 gi	164388 gil	175432	300922	306992
	394690	397512	504504	266689	745857	768735	776835	790907	792328	980662	899661	802510	805240	865347	17611	35530	68915	91821	113768	142606	148561	165431	176655	301170	308362
	399	402	233	735	194	814	821	834	836	848	846	851	\$22	625	12	97	65	62	112	147	£\$1	169	183	312	317
			1	1	I	1		I	1	1	1	1	1	1	1	1	1	[]	1	1	1	1	1	Ī	1
-	}.		<u> </u>					لــا	لــا		لب	L		_	L'		L	L		_		ш	لــا		l

	448	426477	Borrelia 426133		burgdorferi - Putative coding regions of novel proteins similar to know proteins gil467410 unknown [Bacillus subtilis]	56	28
	456	432628	434457	gil142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	56	34
T	460	438178	437312	gil882453	ORF_f286; alternate name yggB; orf4 of X14436 [Escherichia coli]	56	31
1	469	441309	443438	gil148316	NaH-antiporter protein [Enterococcus hirae]	56	32
Ī	809	574772	574951	gil1019630	NADH dehydrogenase subunit 2 [Paramecium aurelia]	99	37
	669	659498	660055	gil1372995	OrfH [Borrelia burgdorferi]	95	24
	757	713509	713712	gil861327	F31D5.5 gene product [Caenorhabditis elegans]	99	40
	791	741305	742837		[4-alpha-glucanotransferase [Synechocystis sp.]	99	43
	822	779478	778291		M. jannaschii predicted coding region MJ1428 [Methanococcus jannaschii]	99	28
	<i>L</i> 96	907556	908932	gil1749528	similar to Saccharomyces cerevisiae probable UTP-glucose-1-	99	37
					phosphate uridylyltransferase, SWISS-PROT Accession Number P32861 [Schizosaccharomyces pombe]		
	39	48953	48048	gil1045895	hypothetical protein (SP:P23851) [Mycoplasma genitalium]	55	41
	131	132989	131967	gil1574007	nitrogen fixation nifR3 protein (nifR3) (PIR:S49971)	55	39
	152	148506	147148	911653100	Nat -A TPase subunit I I Synechocystis sn 1	55	31
<u>'</u>		2000	21.202.0	201001119			
-	359	352690	353313	gil1213334	OrfX; hypothetical 22.5 KD protein downstream of type IV prepilin leader peptidase gene; Method: conceptual translation supplied by author [Vibrio vulnificus]	33	33
	361	355510	354140	gil882698	L-fuculose kinase [Escherichia coli]	55	44
1	515	488398	487652	gil397486	endonuclease G [Bos taurus]	55	33
	551	526427	525285	gil558266	orf gene product [Wolinella succinogenes]	55	30
1	2.40	543745	544482	gil1303811	YqeU [Bacillus subtilis]	55	33
1	279	551201	551494	gil290487	50S ribosomal subunit protein L28 [Escherichia coli]	55	37
	584	555359	556063	gil1592301	M. jannaschii predicted coding region MJ0687 [Methanococcus jannaschii]	52	32
	902	665310	665936	gil403984	deoxyguanosine kinase/deoxyadenosine kinase(I) subunit [Lactobacillus acidophilus]	55	38
	771	722876	723538	gil1736440	O-sialoglycoprotein endopeptidase (EC 3.4.24.57) (Glycoprotease). [Escherichia coli]	, 55	. 39
	786	736537	737187	gil1589778	SPINDLY [Arabidopsis thaliana]	55	34

	35	34	46	41	32	50	31	37	35	29	45	24	34	36	40	30	1	25	35	35	28	9	35	39	Ö	28	. 58	31	41
	25	25	55	55	55	55	54	54	54	54	₹		40	54	54	54	-	54	54	54	54	53	23	53	1	53	53	53	53
tative coding regions of novel proteins similar to know proteins	[Blycine betaine-binding protein precursor [Bacillus subtilis]	ATP synthase, subunit K [Methanococcus jannaschii]	849462 gil1517942 aminopeptidase P [Sus scrofa]	POM1 [Plasmodium chabaudi chabaudi]	CheR [Rhizobium meliloti]	[ARS-binding factor 1 [Kluyveromyces marxianus]	delta-2-isopentenyl pyrophosphate transferase [Escherichia coli]	Orf635 gene product [Euglena gracilis]	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	ribose transport system permease protein [Mycoplasma genitalium]	M. jannaschii predicted coding region MJ0539 [Methanococcus	Jainiasciiii	nliPIDie2450 unknown [Mycobacterium tuberculosis]	exodeoxyribonuclease V (recD) [Haemophilus influenzae]	D,D-carboxypeptidase [Enterococcus faecalis]	M. jannaschii predicted coding region MJ0263 [Methanococcus	jannaschii]	[bride of sevenless] gene product [Drosophila virilis]	'dosage-dependent dnaK suppressor protein' [Escherichia coli]	ribosomal protein S6 [Mycoplasma genitalium]	YqfU [Bacillus subtilis]	flagellar P-ring protein [Pseudomonas putida]	No definition line found [Escherichia coli]	M. jannaschii predicted coding region MJ0798 [Methanococcus	[jannaschii]	YqkI [Bacillus subtilis]	similar to Saccharomyces cerevisiae unknown, EMBL Accession Number Z68194 [Schizosaccharomyces pombe]	methyl accepting chemotaxis homolog [Treponema denticola]	M. jannaschii predicted coding region MJ0798 [Methanococcus
burgdorferi - Pu	gi1984805	gil1590959	gil1517942	868236 gill 142660	gil534839	gil312694	43124 gil146860	gil415736	gil151259	gil1045800	gil1591243		gnliPIDie245(24	gil1574782	gil1209528	gil1499043		gil290216	gil473804	gil1045767	gil1303842	gil405550	gil912478	gil1499620		gil1303989	gil1749686	gil1015945	gil1499620
Borrelia	766130	823790	849462	868236	870039	903900	43124	74679	182969	192951	212320 gi		238954 gnl	247542	312133	579909 gi		719999	739996 gi	798366	893912	97032	99215	158562		232861 gi	267426 gi	294309	357702 gi
	765243	823341	847660	867811	870905	904091	44068	79094	184282	194105	210749		237491	245698	311333	277096		720685	739607	797932	894898	96019	98331	159533		234276	266053	292150	358298
	810	871	868	924	927	964	.33	63	192	200	224		526	260	320	610		765	789	845	951	98	68	164		250	278	302	364
	F									-										F	-		_	-		Γ	-		-

																					$\overline{}$							_
000	97	33	32	35	30	26	26	34	37	24	34	25	28	26	32	47	28	27	9	35	29	30	27	33	29	30	25	29
62	2	53	53	53	53	53	52	52.	52	52	52	52	52	52	52	52	52	52	25	52	52	52	52	52	52	52	52	21
redorferi - Putative coding regions of novel proteins similar to know proteins	ort 06111 gene product (Saccharomyces cerevisiae)	YlxH [Borrelia burgdorferi]	cell division protein J [Methanococcus jannaschii]	GlcNAc 6-P deacetylase [Vibrio furnissii]	YqhZ [Bacillus subtilis]	H. influenzae predicted coding region HI1555 [Haemophilus influenzae]	hypothetical protein [Synechocystis sp.]	P35 gene product (AA I - 314) [Escherichia coli]	repeat organellar protein [Plasmodium chabaudi]	colicin V production protein (pur regulon) (cvpA) [Haemophilus influenzae]	secA gene product [Antithamnion sp.]	hypothetical protein [Synechocystis sp.]	trigger factor [Bacillus subtilis]	glutamic acid-rich protein [Plasmodium falciparum]	24K membrane protein [Pseudomonas aeruginosa]	phnP protein [Escherichia coli]	unknown [Bacillus subtilis]	hypothetical protein (GP:X91006_2) [Methanococcus jannaschii]	(AE000047) Mycoplasma pneumoniae, MG246 homolog, from M. genitalium [Mycoplasma pneumoniae]	aspartyl-tRNA synthetase (aspS) [Haemophilus influenzae]	[fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	dihydroorotate dehydrogenase [Plasmodium falciparum]	S2 gene product [Borrelia burgdorferi]	SpoVD [Bacillus subtilis]	ATP synthase, subunit D [Methanococcus jannaschii]	repeat organellar protein [Plasmodium chabaudi]	putative [Bacillus subtilis]	[beta subunit RNA polymerase [Plasmodium falciparum]
Borrelia burgdorferi - Pu	486888 gil940842	540684 gil1165254	591032 gil1592021	758537 gill 732203	805298 gill 303915	834944 gil1574399	56944 gil1652686	62383 gil42219	65665 gil1151158	102746 gil1574136	116879 gil288998	208446 gil1652602	272764 gnilPIDle255 28	346532 gil160299	361800 gil216861	367695 gil147213	372412 gil467459	416768 gil1591425	420166 gil1674178	443798 gil1573287	553802 gil496254	715610 gil397703	750674 gil1063419	774852 gil580936	821516 gil1592298	838106 gil1151158	862110 gil1256625	81610 gil 587604
L		ı	590418	ı	804825	835705	58236	63264	66168	102255	115800	208898	274152	344946	361087		373209	418141	420801	443436	555235	715852	751384	891911	820887	839581	862856	83112
	514	567	621	805	854	884	48	53	56	95	117	220	285	352	368	376	381	437	439	474	583	759	797	820	869	888	916	<i>L</i> 9
	=	_	-		F	-	+	-	-		-	F	-	+	-	F	F	-	-	 -	F	-	-	F	-	-	_	
- 1					ŀ	1					1	1		1					1	1	Ī	l	[İ

		Borrelia	burgdorferi - Putz	burgdorferi - Putative coding regions of novel proteins similar to know proteins		
150	147190	146360		orf4 [Bacillus subtilis]	51	26
194	186516	185275	gil211931	3-hydroxy-3-methylglutaryl-CoA synthase [Gallus gallus]	51	29
300	288759	289676	gil142833	ORF2 [Bacillus subtilis]	51	33
371	362209	362874	gil1698880	protein antigen LmSTI1 [Leishmania major]	51	27
464	438943	439497	gil1591434	chromate resistance protein A [Methanococcus jannaschii]	51	29
618	772935	774842	gnllPIDle2390	gnllPIDle2390 AMP-binding protein [Brassica napus]	51	53
	,		57			ľ
976	869257	869955		a negative regulator of pho regulon [Pseudomonas aeruginosa]	51	26
1 45	54760	54062	gil505363	ORF2 [Salmonella typhimurium]	20	32
1 94	101155	102261	gil39995	phospho-N-acetylmuramoyl-pentapeptide- transferase [Bacillus subtilis]	50	29
118	118397	117096	gil1762996	RING-finger protein [Helicoverpa armigera nucleopolyhedrovirus]	20	25
155	151159	150506		PgsA [Bacillus subtilis]	20	35
239	224187	224744	gil1303843	YqfV [Bacillus subtilis]	20	29
1 274	265044	264040		gnllPIDle2767 unknown [Mycobacterium tuberculosis]	20	32
287	276164	274710	gil147140	peptidase D [Escherichia coli]	50	28
310	299525	300778		ComE [Synechocystis sp.]	20	33
1 349	342477	341581		gnllPIDle2202 frameshift [Plasmodium falciparum] 45	20	30
1 457	435120	434509		beta-galactosidase [Thermoanaerobacterium thermosulfurigenes]	20	29
1 479	448691	447948		B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB [Bacillus subtilis]	20	32
089	640194	641039		CG Site No. 29739 [Escherichia coli]	20	31
1 737	690152	690400	gil1086864	T03G11.2 gene product [Caenorhabditis elegans]	20	39
1 752	708130	709662		murE gene product [Bacillus subtilis]	50	30
1 360	353288	354157		involucrin [Saguinus oedipus]	49	70
1 44	54046	53216	gil505363	ORF2 [Salmonella typhimurium]	48	21
122	119896	120774	gil405908	yejE [Escherichia coli]	48	29
161	157504	156653	gil143213	putative [Bacillus subtilis]	.48	23
316	305940	306995	_	FemA [Staphylococcus simulans]	48	78
1 459	436152	437315	gil1001478	hypothetical protein [Synechocystis sp.]	48	25
	4					

-	628	596267	Borrelia bui 596566 gil	burgdorferi - Puta gil156218	gdorferi - Putative coding regions of novel proteins similar to know proteins [56218 putative [Caenorhabditis elegans]	48	32
F	694	690559	654452 gill:	574476	dedA protein (dedA) [Haemophilus influenzae]	48	22
-	731	686392	686129	gil915207	gastric mucin [Sus scrofa]	84	27
-	893	844951	843476	gnIIPIDIe2202 45	[PID]e2202 frameshift [Plasmodium falciparum]	48	32
F	62	74673	72196	766042	outer membrane protein [Neisseria gonorrhoeae]	47	30
-	103	107896	108780 gill	256885	P24A protein (unknown function) (Swiss Prot. accession number P32802) [Saccharomyces cerevisiae]	47	27
-	187	181111	180215	gil1184118	mevalonate kinase [Methanobacterium thermoautotrophicum]	47	30
	204	195930	196616 gil	1573552	phosphoglycolate phosphatase, chromosomal (SP:P40852) [Haemophilus influenzae]	47	21
-	265	251835	251098	1209847	repeat motif-containing gene [Borrelia burgdorferi]	47	30
-	334	325837		591893	uridylate kinase [Methanococcus jannaschii]	47	56
-	356	349581	349991	gil849173	Probable essential component of the nucleoskeleton (Swiss Prot. accession number P32380) [Saccharomyces cerevisiae]	47	27
	490	460559	459834	gil1592264	type I restriction enzyme [Methanococcus jannaschii]	47	34
-	526	499992	499264	gil710551	ankyrin 3 [Mus musculus]	47	29
-	277	549541	548390	gnIIPIDle2202 45	IIPIDIe2202 frameshift [Plasmodium falciparum]	47	27
-	744	701189	699441	gnllPIDle1604 36	gnIIPIDle1604 orfA gene product [Borrelia burgdorferi] 36	47	23
	755	713050	710765	pirlS41649lS4 1649	710765 pirlS41649IS4 DNA polymerase - Plasmodium falciparum 1649	47	22
-	761	717229	718392 gil	gil1500309	M. jannaschii predicted coding region MJ1428 [Methanococcus jannaschii]	47	37
-	813	767745	768737	7 pirlG64100lG 64100	membrane fusion protein (mtrC) homolog - Haemophilus influenzae (strain Rd KW20)	47	23
-	824	779587	780546	gil687844	contains TPR domain-like repeats [Caenorhabditis elegans]	47	28
-	881	834283	833015 gill	gil1574393	H. influenzae predicted coding region HI1548 [Haemophilus influenzae]	47	24
-	988	837236	836199 gil8	gil887563	serine/threonine-protein kinase [Plasmodium falciparum]	47	30
F	47	57001	55880	gil1652686	hypothetical protein [Synechocystis sp.]	94	23
-	160	156659	156171	gil13261	ORF4 protein (AA 1-156) [Paramecium aurelia]	46	30

249 231765 23280-gial Ha2681 Lpp38 [Pasteurella haenolytical smilar to know proteins 1 329 32280-gial Ha2681 Lpp38 [Pasteurella haenolytical 2 2 2 2 2 2 2 2 2																							
Borrelia burgotefari. Putan're coding regions of novel proteins similar to know proteins 323695 32383 gil1612039 ILDp38 (Bestevetla haenolytical 32909 327309 gil457146 ILDp38 (Bestevetla haenolytical 32909 327309 gil457146 hoputy protein [Plasmodium yoelii] 428632 423511 421747 gil1591598 hypothetical protein (GP-U19364-6) [Methanococcus jannaschii] 428632 423573 pil4571469184 DNA polymerase - Plasmodium falciparum hook are found at the carboxy terminus of CarD. This protein has book are found at the carboxy terminus of CarD. This protein has been purified and found to bind in vitro to a promoter region [Myxococcus xanthus] 886903 887863 gil1022328 hypothetical protein [Ascaris suum] 668290 666710 gil1573271 apolipoprotein N-acyltransferase (cuie) [Haemophilus influenzae] 668290 666710 gil1573271 apolipoprotein N-acyltransferase (cuie) [Haemophilus influenzae] 873463 gil19174573 apolipoprotein n-acyltransferase (cuie) [Haemophilus influenzae] 688903 887863 gil1878457 nebulin [Homo saplens] 698917 909948 gil48455 nebulin [Homo saplens] 698917 909948 gil48455 nebulin [Homo saplens] 698657 695295 gil1499043 membrane-anchored and start at Cys-17. 17.5% identity over 354-a are overlap with Candida pelliculosa beta-glucosidase.; putative Bacillus subtilis annaschiii predicted coding region MJ0263 [Methanococcus jannaschii] 698657 695295 gil1499043 M. jannaschiii predicted coding region MJ0263 [Methanococcus jannaschii] 668406 670430 gillPIDle2202 [rameshift [Plasmodium falciparum]] 688069 670430 gillPIDle2202 [rameshift [Plasmodium falciparum]]	28	20	18	27	21	28		29	32	29	19	26	29			27	23	23	26	26	31	25	19
Borrelia burgdorferi - Pute 231765 232829 gil1142681 323695 322838 gil562039 327303 gil457146 422511 421747 gil1591598 428632 429375 pirlS41649IS4 1649 545081 545596 gil1022328 586903 587865 gil1022328 586903 587865 gil10722328 5853463 852741 gil806562 908917 909948 gil438455 908917 909948 gil438455 908917 909948 gil438455 908957 695295 gil1499043 698657 695295 gil1499043 99196 98756 gil303895 99196 670430 gnllPIDIe2302 436119 435118 gil1303799	. 46	46	46	46	46	46		46	46	46	46	46	46		•	45	45	45	44	44	44	4	43
Borrelia bul 231765 232829 gil 329090 327303 gil 422511 421747 gil 428632 429375 pir 428632 586903 587865 gil 741189 740008 gil 843474 841147 gil 853463 852741 gil 908917 909948 gil 698657 695295 gil 698657 695295 gil 668406 670430 gil 668406 670430 gil 668406 670430 gil 833802490 801045 gil 832802490 801045 gil 832802490 801045 gil 832802490 801045 gil 832803	ative coding regions of novel proteins similar to know proteins Lpp38 [Pasteurella haemolytica]	NADH dehydrogenase, subunit 2 [Acanthamoeba castellanii]	rhoptry protein [Plasmodium yoelii]	(DNA polymerase - Plasmodium falciparum	Four tandem repeats of a DNA-binding domain known as the AT-	hook are found at the carboxy terminus of CarD. This protein has been purified and found to bind in vitro to a promoter region [Myxococcus xanthus]			TpN50 precursor [Treponema pallidum]	outer membrane integrity protein (tolA) [Haemophilus influenzae]	nebulin [Homo sapiens]	possible N-terminal signal sequence; mature protein may be	membrane-anchored and start at Cys-17. 17.5% identity over 354-	aa overlap with Candida pelliculosa beta-glucosidase.; putative [Bacillus subtilis]	open reading frame [Mus musculus]	similar to a chromate resistance protein (ChrA) from A. eutrophus, Swiss-Prot Accession Number P17551 [Synechococcus sp.]	M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii]	ORF 8: This ORF is required for the secretion of IpaB, IpaC and IpaD [Plasmid pMYSH6000]	Na+/H+ antiporter [Bacillus firmus]	F54G8.4 [Caenorhabditis elegans]		YqeN [Bacillus subtilis]
231765 323695 329090 422511 428632 586903 586903 586903 668290 741189 843474 843474 843474 843477 908917 99196 698657 698657 698657 438197	a burgdorferi - Put gil1142681	3 gil562039	3 gil457 146	7 gil1591598	5 pirlS41649lS4 1649	5 gil1022328		5 gnllPIDle3332 9	0 gil1573271	8 gil458015	7 gil 1574537	1 gil806562	8 gil438455		-	6 gil220578	9 gil687689	5 gil 1499043	5 gil303895	3 gil 143245) gn1 PID e2364 83	SgallPIDIe2202 45	8 gill 303799
	Borreli 232829	322838	32730	42174	42937.	54559		58786	66671	74000	84114	85274	90994		4	19851	43894	69529	9875	23434	67043	80104	435118
1 329 1 329 1 329 1 1 329 1 1 442 1 1 708 1 1 617 1 709 1 850 1 850 1 452 1 1 709 1 709	231765	323695	329090	422511	428632	545081	:	586903	668290	741189	843474	853463	908917			197467	438197	698657	99196	235698	668406	802490	436119
	249	329	336	442	452	573		617	708	790	892	903	896			208	462	742	06	253	709	850	458
		F	F			-		-	F	-	F	-				F	7		-				 -

	30	27	19	24	25	56	26	70	24				 28	19	24		35	26
•	43	43	42	42	42	41	41	41	40				 40	40	40		40	40
												r					,	
burgdorferi - Putative coding regions of novel proteins similar to know proteins	809967 pirlS17998IS1 gene COX1 intron 4 protein - yeast (Kluyveromyces marxianus 7998 var. lactis) mitochondrion (SGC2)	gil1045905 no score generated - score shown is bogus [Mycoplasma genitalium]	591425	gil1045801 [hypothetical protein (SP:P32720) [Mycoplasma genitalium]	gil343962 VAR1 protein [Candida glabrata]	gil413976 [ipa-52r gene product [Bacillus subtilis]	gnlIPIDle1632 MURF2 protein (AA 1-348) [Crithidia fasciculata] 5	gil1151158 repeat organellar protein [Plasmodium chabaudi]	1256888	(GenBank accession number L00602), chromosome segregation	protein Cut3p of S. pombe (Swiss Prot. accession number	P41004), and C. elegans hypothetical proteins R13G10.1	gil1150836 neural specific DNA binding protein [Xenopus laevis]	gil1591425 [hypothetical protein (GP:X91006_2) [Methanococcus jannaschii]	gil499647 [Mus musculus (strain C3HF/RL) ORF mRNA, complete cds.],	gene product [Mus musculus]	gil304179 [wall-associated protein [Bacillus subtilis]	gil1151158 repeat organellar protein [Plasmodium chabaudi]
Воrrelia bu	19660	879701 gil	309877 gill	588672 gi	594572 gil	101021 gild	546581 gnllP]	692403 gil	6796 gil		_		214742 gil	8377	429700 gild		749516 _{gil}	905528 gil
щ			<u> </u>	1				L							ł			
	810560	621188	311250	587863		161001	545523	693458	5192				214440		431037		747813	907336
	859	935	319	618	625	93	574	740	3				228	318	453		795	996
		1	F	F	1	-	1	F	F				I	_	1		ı	1
			<u> </u>	Ļ		L	L	L_	<u> </u>						L		<u> </u>	Ц

Borrelia burgdorferi - Coding regions containing know proteins

Contig	Orf ID Star	_		match	match gene name	percent	HSP nt
			(nt)	acession			length
	69		,	85018 gblL32144	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	9	220
	70	86918		86340 gblL321441	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	100	579
	71	87573	11698	gblL321441	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	100	129
	124		121759	gbIM60802I	B.burgdorferei immunogen gene, 5' flank	66	2127
	- 126	127421	125700	125700 emblX91965l BBATPBP	B.burgdorferi abp gene	. 62	284
	137	136332	139151	gbIL314241	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	98	248
	138	138676		138515 gblL31424l	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	96	09
	165	160705	159932	gbIU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	774
	166	162604		160703 gbIU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	1902
	167	162835		162602 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	232
	168	164397	ļ	162811 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	1216
	210	198495		199028 gblU614981	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	86	127
	211	199527		199069 gblÜ61498	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	459
-	212	200067		199549 gbIU61498I	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	519
	213	201455	1 1	200046 gblU61498I	Borrelia burgdorferi CheA (cheA) gene, partial	66	1410

Borrelia burgdorferi - Coding regions containing know proteins

201453 gblU28962 Borrelia burgdorferi histidine kinase (cheA)	
204115 gblU62900l Borrelia burgdorferi flagellar filament outsheath protein (flaA) gene, complete cds, and chemotaxis histidine kinase (cheA) gene, partial cds	
220232 emblX65139 B.burgdorferi hsp60 gene for 60kDa heat shock BBHSP60 protein	(V)
	165 %
66.	$\Delta \bigcirc$
	
ις Χ	l& ≪
gblM584311 Borrelia burgdorferei PCR target sequence	84
305942 gblL32146 Borrelia burgdorferi methionyl tRNA synthetase (metG) gene, partial cds	
gbIU602361 Borrelia burgdorferi response regulator gene, partial cds	22
gblL39965l Borrelia burgdorferi histidine kinase (cheA) gene, complete cds	Q.
	<u> </u>
338830 gblU51878 Borrelia burgdorferi phosphotransferase enzyme	18

Borrelia burgdorferi - Coding regions containing know proteins

				II (crr) gene, hsp90 (hptg) gene, complete cds		
346	339458	1	338868 gblU51878l	Borrelia burgdorferi phosphotransferase enzyme II (crr) gene, hsp90 (hptg) gene, complete cds	100	591
388	378955	379590	379590 gblM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	100	636
389	379566	381521	emblX67646l BBHSPRO	B.burgdorferi dnaK gene for heat-shock protein	100	1956
390	381512	381943	gbIM979141	Borrelia burgdorferi DnaJ gene, complete cds	22	424
391	381907	382617	382617 gblM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	100	687
392	382656	1	383360 gblM968471	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	95	144
 393	383005	<u> </u>	382688 gblM968471	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	95	-144
394	384408	1	383416 gbiU82978i	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (txB) genes, complete cds		956
395	384799	1	384467 gblU82978I	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl- tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	292
396	386169		384733 gblU82978l	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	1416
397	387733	1	386144 gblU82978l	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	1220

Borrelia burgdorferi - Coding regions containing know proteins

	,	(rpiC), L4 (rpiD), L23 (rpiW), L2 (rpiB), S19 (rpsS), and L22 (rpiV)genes, complete cds, and					
047	3 3	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3	412846 gbIU78193I		413487	432	
	3	S3 (rpsC) gene, partial cds					
		(rpsS), and L22 (rplV) genes, complete cds, and					
		factor (tuf), ribosomal proteins \$10 (rpsJ), L3					
324	66	Borrelia burgdorferi tuf-s10 operon: elongation	412529 gbIU78193I	1	412852	431	
		S3 (rpsC) gene, partial cds					
		(rpsS), and L22 (rpIV)genes, complete cds, and					
•		(rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19		-	-		
8	₹	factor (111) ribosomal proteins \$10 (msl). L3	4110/4 golU/8193	4110/4	412531	430	-
020	9	S3 (rpsC) gene, partial cds					
		(rpsS), and L22 (rpIV)genes, complete cds, and	٠.				
		(трІС), L4 (трІD), L23 (трІW), L2 (трІВ), S19				-	
ì	`	factor (tuf), ribosomal proteins \$10 (ros1), L3	411300 g010 / 01931	•	4110/0	474	_
100	,	S3 (rpsC) gene, partial cds		ļ			
		(rpsS), and L22 (rpIV)genes, complete cds, and					
		(rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19				·	-
)	?	factor (111), ribosomal proteins \$10 (ros1), L3	41101/ggi0/01931		411388	478	-
757		S3 (rpsC) gene, partial cds		- 1		-	
		(rpsS), and L22 (rpIV)genes, complete cds, and		,			
		(rpiC), L4 (rpiD), L23 (rpiW), L2 (rpiB), S19					
		factor (tuf), ribosomal proteins S10 (rpsJ), L3		201011		}	
287	66	Borrelia burgdorferi tuf-s10 operon: elongation	gb U78193	410132	411019	427	
152	86	B.burgdorferei promoter region DNA	gbIM286811	407981	408559	421	
		thioredoxin reductase (trxB) genes, complete cds					
		IRNA synthetase beta subunit (pheT) and					
	`	conthetese alpha culturit (phes) phenylalanyl-	1016760108 17110C		757460	370	
730	8	The state of the s	107000701	١	6	000	

Borrelia burgdorferi - Coding regions containing know proteins

	633	324	1212	148 8	171	312	180
	66	100	100	00	001	100	100
IS3 (msC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi elongation factor EF-Tu (tuf) gene, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA),
	413485 gblU781931	414141 gblU781931	.414503 gblL231251	450310 gblU045271	gblU045271	450897 gblU045271	451467 gbiU045271
	413485	414141	.414503	450310	450650	450897	
	414117	414464	415714	450681	450820	451208	451288
	433	434	435	481	482	483	484
				_		-	

Borrelia burgdorferi - Coding regions containing know proteins

	1170	1497	904	289	2/0	210	209
	66	100	86	96	90	96	66
DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rmpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	emblZ12165IB B.burgdorferi gyrA gene encoding DNA gyrase BGYRAG subunit A (partial)	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes,
	451287 gblU045271	452685 gbIU04527I	456237 gbiU045271	embiZ12165lB BGYRAG	464394 gbIU03396l	466958 gblU03396l	468033 gblU03396i
	451287	452685	456237	458681	464394	466958	468033
	452456	454181	454315	456228	463825	466650	467437
	485	486	487	488	. 496	497	. 498
				-			1

Borrelia burgdorferi - Coding regions containing know proteins

ļ			complete sequence		
468167	468433 gblU03396		Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrIA and rrIB), and 5S rRNA (rrfA and rrIB) genes, complete sequence	86	267
391	468999 gbiU03396		Borrella burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrIA and rrIB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	95	386
714	470445 gblM88330	Τ	Borrelia burgdorferi 23S ribosomal RNA gene	100	270
475597	480090 gblU03396		Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrIA and rrIB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	97	131
505532 5	509017 gblL484881		Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	86	2490
509015 5	513166 gblL48488	_	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	97	76
909	514106 gb	gbIU35450I	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	100	82
514120 5	15229 gb	515229 gblU35450l	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	66	1110
515472	516605 gblU49938		Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	66	1134
641 5	517666 gblL24194		Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	66	1026

Borrelia burgdorferi - Coding regions containing know proteins

457	909	1461	1386	453	130	314	1404	900
86	66	66	66	100	86	66	100	100
Borrelia burgdorferi (clone pB46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	B.bergdorferi (ZS7) YSC1-like gene	B.bergdorferi (ZS7) YSC1-like gene	537144 emblX70826 B.burgdorferi gene for lipoprotein
518256 ghlL35050i	518779 gblL24194I	520316 gblU49938l	521734 gbiU49938l	522204 gblU49938I	522893 gbiU49938I	534772 embIX78708 BBYSC1	535058 embIX78708 BB.YSC1	emb X70826
518256	518779	520316	521734	522204	522893	534772		1 1
517732	518168	518856	520349	521752	522168	535086	536461	536545
542	543	544	545	546	547	529	260	561
-	-		-	_	1		Ι.	

Borrelia burgdorferi - Coding regions containing know proteins

			100 264		92 805	100 84		100 354	100 1185		99 912	1	99 750	100 1269	100 1224	969 001	98 712	100 561
	B.burgdorferi gene for lipoprotein	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi periplasmic substrate- binding protein homolog (p30) gene, complete	cos Borrelia burgdorferi periplasmic substrate-	binding protein homolog (p30) gene, complete cds	Borrelia burgdorferi (clone Bb2.13) phoA fusion	Borrelia burodorferi fesmid clone 31 complete	seduence control of the control of t	B.burgdorferi cell division genes	B.burgdorferi cell division genes	B.burgdorferi ftsW, ftsQ & ftsA genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete
BBLA7	5	gbIM90084I	537968 gblM90084l	538757 gblM90084l	572497 gblU291431	574204 gblU291431		586936 gbiL314221	ob/1/43739		emblX96685I BBCDG	600153 emblX966851 BBCDG	600932 emblX964331 BBFTSWQA	gbIU43739I	gbIU43739I	604087 gblU43739I	605041 gblL763031	605599 gbiU437391
	537191	537665	537968	538757	572497	574204		586936	507083	20/1/2	599052	600153	600932	602173	603394	604087	605041	605599
	537652	539695	537705	538395	574092	575817		585458	506586		297967	299050	600183	906009	602171	603392	604085	60203
	295	, 563	564	595	909	209		616	069	(70	630	631	632	633	634	635	636	637
		-	Γ	_		-	-	ı	=	-			-	-T			-	

Borrelia burgdorferi - Coding regions containing know proteins

231	<u> </u>	Borrelia burgdorferi fesmid clone 31, complete sequence	617507 gblU437391		617277	651	
1350	8	Borrelia burgdorferi fesmid clone 31, complete sequence	617260 gblU43739l	617260	615911	929	_
447	00	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	615927 gblL763031	615927	615481	. 649	
1221	66	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	615470 gblL763031		614250	648	
050	001	Borrelia burgdorferi fesmid clone 31, complete sequence	gbIU43739I	614284	913655	647	
453	66	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	613674 gblL ₇ 6303l		613222	646	·
1332	66	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	613246 gblL76303		916119	. 645	
957	001	Borrelia burgdorferi fesmid clone 31, complete sequence	611917 gblU43739l	216119	610961	644	
1053	<u>8</u>	Borrelia burgdorferi fesmid clone 31, complete sequence	gbIU437391	·	066609	643	
0//1	001	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	609932 gblL763031		608163	642	
3/8	001	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	. 608208 gblL763031	·	607831	641	
480	9	Borrelia burgdorferi fesmid clone 31, complete sequence	607861 gblU437391		607382	640	
444	001	Borrelia burgdorferi fesmid clone 31, complete sequence	607379 gblU43739l		<u> </u>	639	1
1404	6	606938 emblX96685 B.burgdorferi cell division genes BBCDG	emblX96685l BBCDG		605535	638	

Borrelia burgdorferi - Coding regions containing know proteins

<u>م</u>	أحق	<u>∞</u> 1	2	တ္	2	<u> </u>		· ·	m	<u> </u>	<u>5</u>
789	789	588	1062	348	642	789	207	288	813	189	249
100	100	100	100	100	100	66	100	100	99	100	100
		,									
					, -		<u>.</u>	<u>.</u>			<u>(6)</u>
lete	lete	lete	lete	lete	lete	(flgl iL, R,	EL, E	(flgi iL, R,	(flgi iL, R,	(figi liL, R,	(flgl
omp	duio	duio	duo	omp	Juo	tein 3), fl iiPQ	iPQ	3), fl iiPQ	tein 3), fl IiPQ	tein 3), fl IiPQ	tein 3), f
31, c	31, c	31, c	31, c	31, c	31,0	pro ot AI ot AI su (f)	pro ot AI us (f)	pro otAl us (f)	otAl otAl ss (f	pro ot AI us (f	ot Al
one.	one .	one.	one	one	one	hook s (m aratı	nook s (m aratı	s (m aratı	nook s (m aratı	s (m aratı	hook s (m
ld cl	ld cl	o p	o pi	lg c	id cl	llar l ıratu app	llar l ratu app	llar l ratu app	llar l ıratu app	llar l ıratu app	llar ıratu
esm	esm	esm	esm	esm	esm	lage appa sport	lage appa cport	lage appa cport	Tage appa cport	lage appa cport	lage app
eri f	eri f	eri f	feri f	feri f	eri f	feri fotor otor ar ey	feri feri otor ar ey	feri f otor ar e) gene	feri f otor ar e) gen	feri f otor ar e) gen	feri otor
dor	gdori	gdori	gdor	gdor	gdor	ar m agell	ar m agell	ar m agell	gdor ar m agell	gdor ar m agell	gdor ar m
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE) flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE) flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL,
Borrelia l sequence	Borrelia l sequence	Borrelia sequence	Borrelia l sequence	Borrelia beseguence	Borrelia l sequence	1, fig. 2), fig. 3), fig. 5),	3, ft (5)	7, fig. 1, fig. 3), fig. 5), fig. 61	relia 7, fig 1, fii 3), fi	7, fig. (2), fig. (3), fig. (4), fig. (5), fig	relia O, fla
Bor	Seq.	Seq 1	Se Bor	Seg Bor	Bor	8 5 5 E	Bor File File File	Bor fibi fih	Bor File File	BE EN	Bor
16	6	6	5	6	6	15	15	<u> </u>	<u> </u>	<u>S</u>	51
1373	1 373	4373	4373	4373	4373	7594	7594	7594	7594	7594	7594
618286 gbIU437391	619068 gblU43739	619653 gbIU43739	620749 gbiU43739	621136 gblU43739	gblU43739	622530 gblL75945	621822 gblL75945l	gbIL759451	gbIL759451	622819 gblL75945	623458 gblL759451
86 g	89 89	53 g	49 8	36 g	55 g	300	22 g			3 61	.58 E
5182	2190	9619	5207	5211	621755	5225	5218	622802	623623	5228	5234
l	`		1				1	•	-		
617498	618280	619066	619688	620789	621114	621742	622028	622515	62281	623007	623706
19	19	19	19		79		[9]	29	2 9	79	79
652	653	654	655	959	657	658	629	099	199	662	663
	·										
	-	_	-	-	_	-	 	-			-
						}					
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>

Borrelia burgdorferi - Coding regions containing know proteins

664 623608 624741 gblL759451 Borrelia burgdorferi flagellar hook protein (figE), flagellar anotor apparatus (filtPR, flagellar export exported exported filtPR, flagellar export apparatus (filtPR, flagellar export apparatus (filtPR, flagellar exported filtPR, flagellar exported exported filtPR, flagellar						fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes		
624735 626843 gblL75945I 626841 628013 gblU43739I 627998 628912 gblU43739I 629151 628807 gblU43739I 629371 631305 gblU43739I 631314 631634 gblU43739I 631834 631634 gblU43739I 636891 635476 gblL77216I 651760 649409 gblL77216I 671567 672412 gblU35673I 672418 672744 gblU35673I		664	623608	624741	gbIL759451	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	66	1134
626841 628013 gblU437391 627998 628912 gblU437391 628910 629398 gblU437391 629371 631305 gblU437391 631314 631634 gblU437391 636891 635476 gblU437391 646982 649420 gblL772161 671567 672412 gblU356731 672751 673083 gblU486511		599	624735	626843	gbIL759451	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), (hF, flbE genes	100	2109
629151 628807 gblU437391 629151 628807 gblU437391 629371 631305 gblU437391 631314 631634 gblU437391 636891 635476 gblM286821 646982 649420 gblL772161 651760 649409 gblL772161 671567 672412 gblU356731 672418 672744 gblU356731		999	626841	628013	gbIU43739I	Borrelia burgdorferi fesmid clone 31, complete sequence	100	1173
629151 628807 gblU437391 628910 629398 gblU437391 629371 631305 gblU437391 631314 631634 gblU437391 636891 635476 gblU737391 646982 649420 gblL772161 671567 672412 gblU356731 672418 672744 gblU356731 672751 673083 gblU486511		<i>L</i> 99	627998	628912	gbIU43739I	Borrelia burgdorferi fesmid clone 31, complete sequence	66	816
628910 629398 gblU437391 629371 631305 gblU437391 631314 631634 gblU437391 636891 635476 gblM286821 646982 649420 gblL772161 651760 649409 gblL772161 671567 672412 gblU356731 672418 672744 gblU356731 672751 673083 gblU486511		899	629151	628807	gbIU43739I	Borrelia burgdorferi fesmid clone 31, complete sequence	100	345
629371 631305 gblU437391 631314 631634 gblU437391 636891 635476 gblM286821 646982 649420 gblL772161 651760 649409 gblL772161 671567 672412 gblU356731 672751 673083 gblU486511		699	628910	629398	gbIU43739I	Borrelia burgdorferi fesmid clone 31, complete sequence	100	489
631314 631634 gblU437391 636891 635476 gblM286821 646982 649420 gblL772161 651760 649409 gblL772161 671567 672412 gblU356731 672418 672744 gblU356731 672751 673083 gblU486511		929	629371	631305	gbIU43739l	Borrelia burgdorferi fesmid clone 31, complete sequence	100	1935
636891 635476 gblM286821 646982 649420 gblL772161 651760 649409 gblL772161 671567 672412 gblU356731 672418 672744 gblU356731 672751 673083 gblU486511		671		631634	gbIU43739I	Borrelia burgdorferi fesmid clone 31, complete sequence	100	286
646982 649420 gblL77216l 651760 649409 gblL77216l 671567 672412 gblU35673l 672418 672744 gblU35673l 672751 673083 gblU48651l	_	9/9	636891	635476	gbIM28682I	B.burgdorferei promoter element DNA	100	78
651760 649409 gblL77216l 671567 672412 gblU35673l 672418 672744 gblU35673l 672751 673083 gblU48651l		289	646982	649420	gbIL77216l	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	66	2439
671567 672412 gblU356731 672418 672744 gblU356731 672751 673083 gblU486511		889			gblL772161	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	100	274
672418 672744 gblU356731 672751 673083 gblU486511		711	671567	672412	gblU356731	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	66	542
672751 673083 gbiU486511		712	672418	672744	gblU35673l	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	100	327
		713	672751	673083	gbIU486511	Borrelia burgdorferi P1G histone-like protein HBbu (hbb) gene, complete cds	100	327

建筑。

Borrelia burgdorferi - Coding regions containing know proteins

411	1566	106			11		780	-	1841			519		1185	611	1893	381		789
66	66	100	1.6				66		66			66		ŏ	2	66	86		66
Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook associated proteins FloK (floK) and FloL (floL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook associated proteins FloK (floK) and FloL (floL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds,	associated proteins FigK (figK) and FigL (figL)	Borrelia burgdorferi thdF gene, nartial cds.	putative motility protein (flbF), flagellar hook associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cds	Borrelia burgdorferi thdF gene, partial cds,	associated proteins FlgK (flgK) and FlgL (flgL)	genes, complete cus	D. טנו ביות ביות ביות ביות ביות ביות ביות ביו	731176 emblZ12160lB B.burgdorferi thdF, gidA and gidB genes BGIDAG	B.burgdorferi gidA, gidB and moxR genes		732848 emblX964341 B.burgdorferi gidB moxR genes and ORF
673491 gblU356731	675118 gblU356731	675424 gblU356731	723770 gblU629011		724181 gbIU629011	.=	.56 724164 gbIU629011		725441 ohl 1629011			727336 gbIU629011		770300 ambiV056601	BBTHDFGD	embiZ12160lB BGIDAG	731799 emblX95668l BBGIDMOX	R	emblX96434l
673491	675118	675424	723770		724181		724164		725441			727336	-	720200	006677	731176	731799		732848
673081	673553	675164	724171		723891		725456		777348			727854		000202	006171	729284	731149	,	731772
714	715	716	773		774	-	775		776			777		770	0/	779	780		781
	-	-			—		-			•		-			⊣			-	I

Borrelia burgdorferi - Coding regions containing know proteins

	84	57	<i>L</i> 9	20	2041	158	1149	1017	1146	253	1122	476	139	75
	100	100	6	96	66	100	86	66	66	92	66	82	66	94
	B.burgdorferi gidB moxR genes and ORF	Borrelia burgdorferi phosphotransferase enzyme II (crr) gene, hsp90 (hptg) gene, complete cds	753118 gbIAF003354 Borrelia burgdorferi SecA (secA) gene, complete cds	Borrelia burgdorferi SecA (secA) gene, complete cds	757015 gblAF003354 Borrelia burgdorferi SecA (secA) gene, complete complete	757641 gblAF003354 Borrelia burgdorferi SecA (secA) gene, complete cds	Borrelia burgdorferi flagellar filament cap (filD) gene, complete cds and flagellin protein (flaB) gene, partial cds	Borrelia burgdorferi gene for flagellum- associated 41kD antigen (flagellin)	B.burgdorferi DNA for hypothetical protein	B.burgdorferi DNA for hypothetical protein	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi RecA (recA) gene, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI)
BBGIDBMO X	733738 emblX964341 BBGIDBMO X	751372 gblU51878	gblAF0033541	754243 gblAF003354	gbIAF003354I	gbIAF003354I	761930 gblU66699	emblX16833l BBFAA	764339 emblX63898l BBHYPP	emblX63898l BBHYPP	gbIU23457I	785182 gbIU23457I	785918 gbiU23457I	857182 gblU28760l
			753118			757641	761930	763067	764339	765245	784400	785182	785918	857182
	732815	752154	754266	753992	754283	756991	759909	762051	763194	764337	783276	784412	785142	855179
	782	798	008	801	805	803	908	807	808	608	826	827	828	907
		_												1
<u> </u>	L		1	L	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	L	L

Borrelia burgdorferi - Coding regions containing know proteins

	1035	1194								252	293
	66	66	66	97	95	92	93	96	99	100	86
genes complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	B.burgdorferi ruvA, ruvB and queA genes
	858262 gblU28760l	859463 gbiU28760	860226 gblU28760l	860604 gbIU576831	860316 gbIU57683I	860704 gblU57684I	861397 gbIU57684l	gbIU57684I	874859 gblL328611	876679 gblL328611	886758 emblY088851 BBRUVABH L
	858262	859463	860226	860604	860316	860704	861397	862113	874859	876679	886758
	857228	858270	859315	860224	860645	861447	861020	861439	874089	874877	887900
	806	606	910	911	912	913	914	915	930	931	943
					-						_

Borrelia burgdorferi - Coding regions containing know proteins

909	1056	342	1320	919	324	684	1989	152	741
66	66	97	66	26	88	66	66	100	66
B.burgdorferi ruvA, ruvB and queA genes	B.burgdorferi ruvA, ruvB and queA genes	B.burgdorferi ruvA, ruvB and queA genes	B.burgdorferi pfpB gene	B.burgdorferi yfil gene	B.burgdorferi priA and udk genes	895991 emblX974491 B.burgdorferi priA and udk genes BBPRIAUDK	B.burgdorferi priA and udk genes	B.burgdorferi pri A and udk genes	B.burgdorferi truA gene
888570 emblY088851 BBRUVABH L	889658 emblY088851 BBRUVABH L	890271 emblY088851 BBRUVABH L	892404 emblY091401 BBPFPB	893909 emblY09142l BBYFII	895371 emblX97449l BBPRIAUDK	emblX97449I BBPRIAUDK	895988 emblX974491 BBPRIAUDK	897963 emblX97449l BBPRIAUDK	898555 emblY091411 BRTRIIA
888570	889658		892404	893909	Ĭ	ŀ	l	897963	898555
887965	888603	889615	890719	892893	894973	895308	916168	898577	862668
944	945	946	948	950	952	953	954	955	926
	_	1				_			1
		1	·	Ц	·	Ь	Ц		Ь

TABLE 3.Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
1	1	2330	1134
1	2	3317	2934
ī	8	11375	13021
1	. 9	11673	11386
` 1	10	12925	13629
1	11	13538	14146
1	17	25212	24700
1	18	25782	25357
1	19	26115	25870
1	21	27308	27051
1	22	29628	30458
1	29	40696	41217
1	30	41201	41992
1	31	42542	41985
1	32	42593	42982
1	34	44234	44031
1	38	48041	47079
1	41	49318	49617
1	43	53234	51810
1	50	59737	58208
1	58	68227	67733
1	65	79757	80404
1	66	81516	80401
1	75	89552	88353
. 1	82	93338	92766
1	85	95207	95854
1	104	108788	108621
1	. 105	109764	108943
1	108	112003	111599
1	113	114317	115846
1	114	114522	114316
1	119	118439	118927
1	121		1
1	125	125688	
1	129		129235
1	135	136116	
1	136		136298
1	139	139149	139559
1	141	140573	140121
1	143	141738	141412
1	145	142218	142060
1	146		142342
1	154	150528	149074
1	158		153981
1	163	158277	158474

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1.	171	168052	166205
1	176	171592	171038
1	186	179607	180089
1	189	182345	182046
1	191	182567	182773
1	199	192561	192716
1	205	196592	197476
1	218	207717	206752
1	219	207733	208437
1	221	209337	208915
1	222	209712	209335
1	231	217179	216025
. 1	238	223660	223418
1	240	224720	225724
1	242	227006	227275
1	248	231761	231501
1	251	232973	233308
1	252	233669	234004
1	254	235115	235456
1	258	241824	242198
1	261	248009	247773
1	269	256846	255872
1	276	265430	265158
1	279	266582	266298
1	281	268474	268280
1	286	274157	274384
1	292	280495	280274
. 1	294	281344	281042
1	298	287276	285714
. 1	303	292943	292644
1	304	293273	293037
1	305	294965	294648
1	308	299427	298699
1	309	299051	299212
1	326	320375	319785
1	327	320425	321036
1	331	324198	324413
1	339	332785	332459
1	341	333503	334138
1	342	334116	334739
1	343	334880	335446
1	350	342916	342443
1	351	344789	342897
1	363	357596	356931
1	367	361065	360859
1	370	362519	362196
	570	202217	302170

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

		_	
. 1	374	366905	366114
1	377	368632	369537
1	378	369928	370560
1	379	370532	371353
1	382	375028	373193
1	383	375102	375542
1	387	378677	378198
1	400	394952	394722
1	. 401	396247	394937
1	403	397569	398327
1	406	399103	399294
1	436	416160	416570
1	445	424660	423950
1	446	425181	424642
1	450	428559	428200
1	451	428933	428619
1	455	432590	431628
1	461	437823	438092
1	463	438690	438313
1	466	440749	440222
1	470	441568	441350
1	471	442039	441614
1	472	442216	442037
1	473	442666	442262
1	476	445202	445017
1	493	462106	462519
1	494	462893	462549
. 1	504	482111	481035
. 1	505	481552	481800
1	509	483249	483668
1	512	484864	485157
1	516	489171	488527
1	519	492989	492375
1	520		
1	521	494169	494864
1	524	497185	497385
	525	497163	497383
<u>l</u>	527	500251	501294
1			
1	528	501281 533912	502156
	558 569	541267	533667
1	568 571		541491
1	571	544436	544257
1 1	572 579	544565	545068
1	578	549603	551198
1	580	551508	551657
1	581	552337	551513

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

		•	
. 1	585	556051	557271
1	590	561342	561139
1	591	561825	561520
1	592	562536	563360
1	596	565758	566519
1	599	568389	568682
1	602	568680	568856
1	605	570829	571167
1	609	576170	577093
1	612	581549	581091
1	614	582910	584013
1	619	589384	588674
1	624	592665	593465
~1	626	594542	595405
1	672	631642	632175
. 1	677	636650	636892
1	678	637059	638078
1	681	640861	640412
1	686	644887	645207
1	689	649716	649961
1	690	650436	650735
1.	691	650733	651056
1	693	653303	653689
1	705	664733	664918
1	707	665979	666770
1	718	679155	678391
1	721	680664	681047
1	722	681523	681849
1	724	681809	682171
1	727	682853	683272
1	734	687648	688067
1	739	691613	692290
1	751	707290	707718
· · · I	763	719197	
1	764	720030	719257
1	769	722198	722482
1	. 783	733736	734647
1	785	735554	736618
1	787	737124	739184
1	792	742924	744801
1	799	753128	752655
1	. 811	766129	765980
1	812	766438	767772
1	815	770062	769790
1	818	771890	772282
1	831	788219	788836

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

. 1	832	788824	789615
1	838	793566	793414
1	840	794295	794119
1	844	796774	796586
1	852	803096	802908
1	858	809371	809970
1	864	816108	816497
1	865	816672	817283
. 1	866	817281	817838
1	872	823841	824836
1	876	828191	828739
1	877	828749	829147
1	879	831328	831714
1	880	831698	833005
1	885	836201	835677
1	890	841171	840590
1	891	840594	840860
1	899	849453	850148
1	902	851608	852687
1	918	862867	863109
1	920	864292	864705
1	923	865660	865346
1	925	868212	869273
1	928	871012	872580
1	933	878576	879166
1	939	884338	883268
1	940	884999	884325
1	949	892388	892924
1	957	900141	899296
1	958	900534	900139
1	959	901526	900510
1	962	902383	903258

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 4.

(int) 69 1 69 2 26 3 1 2 48 41 6 20 14 52 5	1 2		inching (air) door				
69 20 69 20 69 69 69	1 2			on			
69 26 2 2 6 6	2	291	4	gil146582	beta-lactamase [Escherichia coli]	100	
22 2 6		692	240	240 gil344797	galactosidase fusion protein [unidentified]	100	66
52 6	3	1575		2093 gil458219	ORF 4 [Borrelia burgdorferi]	94	9/
52	48	41836	4	.1459 gil47453	ribosomal protein S12 [Streptococcus pneumoniae]	92	-
52	20	14234	12951	2951 bbs 161785	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aa] [Borrelia coriaceae]	88	19
	5	1080	1652	gnilPIDle2012 50	1652 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	88	74
152		337	26	gnllPIDle1589 79	gnilPIDle1589 orfA gene product [Borrelia burgdorferi] 79	98	75
71	2	1421	1128	gnllPIDle1604 37	1128 gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	85	46
131		381	674	674 gil458220	ORF 5 [Borrelia burgdorferi]	85	9/
æ	113	98152	97367	7367 gil1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	84	9
2	107	108403	109485)9485 gil882454	fructose 1,6-bisphosphate aldolase [Escherichia coli]	8	19
10	4	4059	4754	pirlA34520lA3 4520	4754 pirlA34520IA3 29K calcium-binding protein, brain-specific - guinea 4520 pig (fragments)	81	
20	6	6084	5791	gnilPIDle2012 49	5791 gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	81	72
7	52	4	49600	pirlA027711R7 MCML	pirlA02771IR7 ribosomal protein L7/L12 - Micrococcus luteus MCML	08	67
41		3071	3	gil1522636	M. jannaschii predicted coding region MJECS02 [Methanococcus jannaschii]	08	09
. 59	2	218	-	409 gil1752736	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w [Saccharomyces cerevisiae]	08	37
32	2	719	925	925 gil433720	CDC25 [Homo sapiens]	08	73
100		2	946	946 gil 1522636	M. jannaschii predicted coding region MJECS02 [Methanococcus jannaschii]	80	09

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

cursor 79	78	78	78	78	78	78	78	. 1.1	1.1	177	76	9/	76	75	75	75
cursor				 										•		
98239 gnllPIDle2881 glucose epimerase [Bacillus thuringiensis] 24 4735 gil1543076 outer membrane porin protein Oms28 precursor	[Borrelia burgdorferi] ribosomal protein L11 [Thermus aquaticus thermophilus]	gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	27177 gnllPIDle2532 ORF YDL065c [Saccharomyces cerevisiae]	2966 gnllPIDle2012 ORF-B gene product [Borrelia burgdorferi]	CG Site No. 29739 [Escherichia coli]	171 gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	742 gnllPIDle2532 ORF YDL065c [Saccharomyces cerevisiae]	transfer RNA-Tyr synthetase [Bacillus subtilis]	cellobiose phosphotransferase enzyme II" [Bacillus stearothermophilus]	similar to dihydropryridine-sensitive l-type, skeletal muscle calcium channel alpha-1 subunit (SP:CIC1_RABIT, P07293) [Caenorhabditis elegans]	unknown [Bacillus subtilis]	(pos:59955997,aa:Met) [Bacillus subtilis]	orfC gene product [Borrelia burgdorferi]	6674 pirlC30010lC3 hypothetical ORF-6 protein - Sauroleishmania 0010 tarentolae mitochondrion (SGC6)	H. influenzae predicted coding region HI0491 [Haemophilus influenzae]	nusG [Escherichia coli]
8239 gnllPIDle2881 24 4735 gil1543076	gil587583	gnilPIDIe 1604 37	gnllPIDle2532 11	gnllPIDIe2012 48	4943 gil882579	gnilPIDle2012 49	gnilPIDle2532 11	23697 gil 143795	.4080 gil466474	536 gil1017809	82183 gil467376	2 gil1065989	3 gnllPIDle1589 80	pirlC30010lC3	32163 gil1573470	1701 gil396321
108239	51218	38742	27177	2966	4943	171	742	23697	24080	536	82183	2	.	6674	32163	51701
107148	51661	39290	27416	2382	5107	1	503	24917	22722	889	81071	208	909	8488	31639	52261
106	55	54	46	4	5	1	. 2	30	34	 	91	1	1	6	37	26
7 8	2	4	5	7	19	. 78	105	2	9	∞	3	11	89	7	2	2

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

62	09	37	55	42	58	57	52	49	56	59	58	53	52	47	54	. 56	63	. 53	40
75	75	75	75	75	75	74	74	74	74	74	74	73	73	73	73	73	73	73	73
protein p23 [Borrelia burgdorferi]	1652 gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	62 gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	unknown [Borrelia burgdorferi]	orfA gene product [Borrelia burgdorferi]	S-adenosylmethionine synthetase [Staphylococcus aureus]	aspartyl-tRNA synthetase [Thermus aquaticus thermophilus]	hypothetical protein [Synechocystis sp.]	2974 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	orfC gene product [Borrelia burgdorferi]	CdsK [Borrelia burgdorferi]	glycoprotein 120 [Simian immunodeficiency virus]	hemolysin [Serpulina hyodysenteriae]	type-I signal peptidase SpsB [Staphylococcus aureus]	gnllPIDle2684 unknown [Mycobacterium tuberculosis] 56	Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	ORF YGR248w [Saccharomyces cerevisiae]	NADH dehydrogenase, subunit 5 [Acanthamoeba castellanii]	emml gene product [Streptococcus pyogenes]
414 gil520778	gniiPIDle2012 49	gnllPIDIe2012 49	578 gil458217	gil520783	gnllPIDIe1604 c 36	gil1020317	gil396501	91103 gil1651962	gnIIPIDIe1589 79	3 gnllPIDle1589 c	gil1655798	7022 gil406135	21395 gil511145			gil500705	3 gnllPIDle2436 (0 81	3512 gil562035	8079 gil694092
414	1652	62	578	388	684	31693	109871	91103	2974	1253	719	7022	21395	44262	62341	91113	93513	3512	8079
653	2437	856	1153	744		30506	111301	92143	4080	468	396	6810	23695	44789	64881	00868	92803	3697	8519
-	m		3	-	<u> </u>	36	109	101	ν.	7	-	10	29	56	73	100	106	4	6
20	20	58	89	117	130	7	7	က	70	36	42	2	7	33	<u>г</u>	3	(C)	4	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

8	16	17562	17756 gill 500401	reverse gyrase [Methanococcus jannaschii]	73	40
14	3	4280	4438 gil520778	protein p23 [Borrelia burgdorferi]	73	55
19	6	7074	6742 gil1773311	NADH dehydrogenase [Ceanothus cuneatus]	73	.36
25	3	2369	2587 gil1655790	CdsC [Borrelia burgdorferi]	73	64
78	2	176	619 gnilPIDIe2012 (C	ORF-D gene product [Borrelia burgdorferi]	73	50
108		α ⁻	382 gil1573074	adhesin B precursor (fimA) [Haemophilus influenzae]	73	41
120	-	16	342 gil1978	heat shock protein 70 [Sus scrofa]	73	.46
3	49	51644	54013 gil1574437	sporulation protein (spoIIIE) [Haemophilus influenzae]	72	.51
5	9	5899	2654 gil212383	myosin heavy chain [Gallus gallus]	72	41
9	31	22140	21799 gil895748	putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis]	72	46
∞	∞	8812	9600 gil1655859	Orf1 [Borrelia hermsii]	72	55
10	12	8579	8376 gil536681	ORF YBR257w [Saccharomyces cerevisiae]	72	36
45	7	1440	394 gil1699017	ErpB2 [Borrelia burgdorferi]	72	42
2	7	1342	2796 gil285623	pyruvate kinase [Bacillus stearothermophilus]	71	52
7	31	26272	2IS5	glycyl-tRNA synthetase - Thermus thermophilus	71	54
2	64	60156	58684 gil459009	similar to multifunctional aminoacyl-tRNA	71	48
				synthetase, especially to the prolyl-tRNA synthetase region [Caenorhabditis elegans]	<u>.</u>	•
3	99	55240	54275 gil217121	ORF1 [Synechococcus elongatus]	71	52
r.	104	92345	92175 gil44228	secretion protein SecY (AA 1-482) [Mycoplasma capricolum]	7.1	42
ν,	43	25567	25734 gil213778	sodium-hydrogen exchange protein-beta [Oncorhynchus mykiss]	71	20
7	3	1179	2384 gil458216	ORF 1 [Borrelia burgdorferi]	71	09
20	4	2964	2392 gil458217	ORF 2 [Borrelia burgdorferi]	71	47
51	2	984	2066 gil1373144	ErpD [Borrelia burgdorferi]	71	41
54	1	251	883 gil145280	ORF1 [Escherichia coli]	71	40

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

•	48	41		48	09	35	51	. 58	48	54	40	47	47	20	42	46	46	47	38	26	46	42	37
																			Ŀ				
	70	70		70	70	70	20	20	70	70	20	70	70	0/	69	69	69	69	69	69	69	89	89
	•																						
	50538 splQ06797IRL 50S RIBOSOMAL PROTEIN L1 (BL1). 1_BACSU	(AE000012) Mycoplasma pneumoniae,	phosphocarrier protein HPr; similar to GenBank Accession Number A49683, from M. capricolum [Mycoplasma pneumoniae]	CheW protein [Salmonella typhimurium]	73225 gnllPIDle2839 glycerol kinase [Sulfolobus solfataricus]	cdc4 gene product which is essential for initiation of DNA replication in yeast [Saccharomyces cerevisiae]	Thy1 protein [Dictyostelium discoideum]	dciAE gene product [Bacillus subtilis]	ORF 5 [Borrelia burgdorferi]	Orf2 [Borrelia hermsii]	F01G12.6 gene product [Caenorhabditis elegans]	Var1p [Saccharomyces douglasii]	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain 4 - wheat mitochondrion	1653 gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	fructose enzyme II [Rhodobacter capsulatus]	Yqgl [Bacillus subtilis]	orfI; product unknown [Borrelia burgdorferi]	P30 [Borrelia burgdorferi]	protein 69 [Mycoplasma hyorhinis]	ND6 (AA 1 - 296) [Podospora anserina]	2402 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	'ORF' [Escherichia coli]	adenylate kinase [Paracoccus denitrificans]
	spiQ06797IRL 1_BACSU	13744 gil1673757		2220 gil153906	gnllPIDle2839 19	93273 gil836815	123 gil167913	35807 gil48808	47976 gil1421734	15904 gil1655860	3173 gil1255880	5237 gil1236921	3970 pirIS16447IS1 6447	gnllPIDle1604 37	63860 gil 151932	98150 gil1303856	24694 gil1663561	14204 gil1616644	7258 gil150176	gil13233	gnllPIDle1589 79	30518 gil473817	72980 gil 1498049
	50538	113744	· •	2220	73225	93273	123	35807	47976	15904	3173	5237	3970	1653	09869	98150	24694	14204	7258	8587	2402	30518	72980
	51233	114025		1684	74775	93500	926	35616	48320	16458	2940	5470	4173	1270	65752	99712	25614	14584	7025	8414	1332	29769	72330
	5 2	116		4	8	107		47	65	23	4	∞	S.	6	69	114	36	21	12	14	7	35	79
	ন	7		3	m	m	4	4	4	9	17	70	23	36	2	8	4	9	12	12	54	77	2
Į		_							_		<u> </u>					L	<u>L</u>						

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

42	.51	52	. 52	54	57	43	48	46	44	26	49	38	42	51	49	41	51	48	37	47
89	89	89	89	89	89	89	89	89	89	<u> </u>	1.9	<i>L</i> 9	<i>L</i> 9		29	<i>L</i> 9	<i>L</i> 9	<i>L</i> 9	<i>L</i> 9	. 67
74032 [hypothetical [Haemophilus influenzae]	2551	7711 D9461.18p; CAI: 0.15 [Saccharomyces cerevisiae]	coded for by C. elegans cDNA CEESSS5F; coded for by C. elegans cDNA yk84a1.3; coded for by C. elegans cDNA yk78g7.3; coded for by C. elegans cDNA yk168g9.5; coded for by C. elegans cDNA yk168g9.5; coded for by C. elegans cDNA yk84a1.5; strong s		8216 ORF 1 [Borrelia burgdorferi]	gil1655859 Orf1 [Borrelia hermsii]	55859 Orf1 [Borrelia hermsii]	8217 ORF 2 [Borrelia burgdorferi]	7175 L8479.4 gene product [Saccharomyces cerevisiae]		0340 ribosomal protein S21 [Myxococcus xanthus]	0955 TagE [Vibrio cholerae]	7420 unknown [Bacillus subtilis]	96502 gnilPIDle2676 alanyl-tRNA synthatase [Thermus aquaticus 107 146-mophilus]	61785 60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aa] [Borrelia coriaceae]	7 gallPIDle1604 orfD gene product [Borrelia burgdorferi]	55859 Orf1 [Borrelia hermsii]	'IDle8903 SERA protein [Plasmodium falciparum]	52736 gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w [Saccharomyces cerevisiae]	1817 gnllPIDle1589 orfB gene product [Borrelia burgdorferi]
106385 gil 1574032	68287 gnllPl	86074 gil927711	97364 gil 1707057	40046 gil458217	40678 gil458216	16520 gil16.	3694 gil1655859	3254 gil458217	1133 gil577175	52558 gil1001264	54051 gil710340	70114 gil460955	71150 gil467420	96502 gnllP 07	31941 bbs 161785	2967 gnllP 37	6276 gil 1655859	6889 gnllPIDIe8903	5906 gil1752736	1817 gnllPl
104748	56889	88992	96519	40648	41916	17296	2894	3832	927	52752	54290	89069	70653	94703	30304	3590	5524	6611	4995	1221
104	78	86	111	56	57	24	5	9	7	57	65	62	81	110	42	9	6	10	9	2
7	د	т	<u>r</u>	4	4	9	1	29	72	7	6	3	3	6	4	-12	12	12	17	34

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

	_		00	<u> </u>			
28	2	1347	796 g	796 gil458217	ORF 2 [Borrelia burgdorferi]	<i>L</i> 9	. 52
7	33	28572	27751 g	27751 gil340613	A 'c' was inserted after nt 369 (=nt 10459 in	99	40
			·	1944	genomic sequence (M10126)) to correct -1 frameshift probably due to gel compression [Leishmania tarentolae]		
2	73	69021	g 80669	69908 gil153903	methyltransferase (cheR; EC 2.1.1.24) [Salmonella typhimurium]	99	42
7	93	93739	94524 gil45713	il45713	P.putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB, uncI and uncB [Pseudomonas putida]	99	41
8	6	6009	6902 g	nllPIDle2639 1	6902 gnllPIDle2639 OrfD [Streptococcus pneumoniae]	99	47
4	28	20922	20665 gil471731	il471731	vacuolating cytotoxin homolog [Helicobacter pylori]	99	50
4	64	47985	47107 g	47107 gil1421735	ORF 6 [Borrelia burgdorferi]	99	43
9	13	7227	8591 g	8591 gil1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	99	48
34	4	2556	3161 g	gil458218	ORF 3 [Borrelia burgdorferi]	99	42
37	1	982	689 g	689 gil974334	non-receptor tyrosine kinase [Dictyostelium discoideum]	99	55
m	77	16189	66395 g	66395 gil1651216	Pz-peptidase [Bacillus licheniformis]	9	47
3	123	105911	104070 g	04070 gil1575784	DNA mismatch repair protein [Aquifex pyrophilus]	92	45
9	6	5726	7126g	7126 gil1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	65	49
∞	6	9684	10325 gn 50	12	ORF-D gene product [Borrelia burgdorferi]	65	48
10		3	971 g	gil1373144	ErpD [Borrelia burgdorferi]	65	47
13	5	3956	3411g	gil1209872	REV [Borrelia burgdorferi]	65	47
2	92	70509	71069 p. Y	X	protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium	64	45
3	19	48610	50838 g	50838 gil1001335	soluble lytic transglycosylase [Synechocystis sp.]	64	42
4	5	3519	3773 g		M protein [Streptococcus pyogenes]	64	32
4	53	38288	37824 g	37824 gil 1373141	ORF-10 [Borrelia burgdorferi]	49	50

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

30	35	46	30	44	35	41	52	27	49	48	34	43	47	37	45	- 40	40	38	48	42	45	28
64	64	6 4	49	7 9	49	2 9	29	63	63	63	63	63	63	63	63	63	63	63	63	63	62	62
delta-endotoxin CryIG protoxin [Bacillus thuringiensis]	rhoptry protein [Plasmodium yoelii]	2.9-3 ORF-D [Borrelia burgdorferi]	hypothetical protein [Synechocystis sp.]	gnllPIDle2763 AARP1 protein [Plasmodium falciparum] 80	P35 antigen protein [Borrelia burgdorferi]	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w [Saccharomyces cerevisiae]	kinetoplast-associated protein [Trypanosoma cruzi]	2592 gnllPIDle2362 ZK287.2 [Caenorhabditis elegans]	carboxyl-terminal protease [Synechocystis sp.]	GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17) (GLUTAMATETRNA LIGASE) (GLURS).	TRAB [Plasmid pPD1]	Bts1p [Saccharomyces cerevisiae]	EC 1.1.99.5 [Mus musculus]	glycerol 3 phosphate dehydrogenase [Saccharomyces cerevisiae]	glycerol uptake facilitator [Bacillus subtilis]	ORF-D gene product [Borrelia burgdorferi]	replicative DNA helicase [Bacillus subtilis]	bifunctional protein [Methanococcus jannaschii]	adenine deaminase [Bacillus subtilis]	unknown [Borrelia burgdorferi]	phosphomannose isomerase [Escherichia coli]	cheB peptide [Escherichia coli]
5824 gil40271.	gil1041785	19289 gil1209840	2339 gil1652934	gnllPIDle2763 80	gil1553115	1788 gil1752736	gil162142	gnllPIDle2362 74	gil1652577	26266 spIP15189ISY E_RHIME	gil1041116	gil1098641	71237 gil1339938	71349 gil763191	gil142997.	4304 gnilPIDle2012 50	24956 gil467330	3853 gil1592217	7906 gil633167	268 gil520783	62745 gil146722	70573 gil145524
5824	4499	19289	2339	. 839	1177	1788	7	2592	11320	26266	72308	28	71237	71349	74773	4304	24956	3853	9062	708	62745	70573
5985	8611	19738	1608	537	308	1928	589	2837	12750	27753	71067	1056	71398	72845	75552	3747	24123	4161	9228	753	99869	69920
10	7	30	3		1	m .	1	3	15	32	11	7	82	83	85	9	38	5	13	1	89	75
9	7	7	11	16	19	24	142	7	7	2	77	3	3	ж -	3	7	7	11	12	32	7	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

L	Č		1,0070	1001				20
	7	כא ו	90334	95492		spooly gene product [Bacillus subtilis]	70	30
	3	<i>L</i> 9	57341	55212	55212 gil1574144	single-stranded-DNA-specific exonuclease (recJ) [Haemophilus influenzae]	62	40
Щ	3	9/	66414	12959	65677 gil 1477770	unknown [Helicobacter pylori]	9	. 37
	9	I	1762	104	104 gil1072419	glcB gene product [Staphylococcus carnosus]	62	43
L	18	4	4431	5144	5144 gil1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	62	36
L	19	∞	6743	9769	6976 gil1513302	CigB [Dictyostelium discoideum]	62	99
L	20	9	4563	4378	4378 bbs1144872	Fu=putative serine/threonine kinase [Drosophila	62	. 37
-·				- -		melanogaster, Peptide Partial Mutant, 152 aa] [Drosophila melanogaster]	,	
<u> </u>	81	-	95	538	gnllPIDle1539	538 gnllPIDle1539 ORF-A gene product [Borrelia burgdorferi]	62	98
	106	7	586	356	356 gil1151158	repeat organellar protein [Plasmodium chabaudi]	62	43
	114	1	138	629	gallPIDle1539 57	629 gnllPIDie1539 ORF-A gene product [Borrelia burgdorferi]	62) 36 36
<u>. </u>	2	117	114352	114032	14032 gil173128	ubiquitin-specific processing protease [Saccharomyces cerevisiae]	19	32
<u> </u>	3	55	42737	44236	44236 gil143999	dnaK homologue [Borrelia burgdorferi]	19	41
<u></u>	8	57	44821	46083	46083 gil1653709	lipoprotein NIpD [Synechocystis sp.]	19	20
<u> </u>	3	125	110052	109261	09261 gil1303863	YqgP [Bacillus subtilis]	61	45
L	4	63	47119	46478	46478 gil1421736	ORF 7 [Borrelia burgdorferi]	19	34
<u> </u>	7	35	21496	22971	22971 gil1655797	CdsJ [Borrelia burgdorferi]	19	44
L	∞	7	8300	8872	8872 gil458217	ORF 2 [Borrelia burgdorferi]	19	48
L	12	∞	2006	5551	5551 gil458217	ORF 2 [Borrelia burgdorferi]	19	20
L	14	10	9398	8652	gnllPIDle2012 50	8652 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	61	44
	15	12	9079	4377	4377 gil836624	methyltransferase [Bacillus aneurinolyticus]	19	38
	16	4	2449	2240	2240 gil 1066497	Similar to S. cerevisiae hypothetical protein Ykl012p (Swiss Prot. accession number P33203) and C	61	38
	-					elegans hypothetical protein ZK1098.1 (Swiss Prot.		
						accession number F34000) [Saccharomyces		

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

	45	52	57	47	34	50	. 40	47	51	36	. 31	34	38	38	39	.35	34	37	43
	61	61	09	09	09	09	09	09	09	09	09	59	59	65	59	. 59	59	29	59
cerevisiae	gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	gnllPIDle2763 AARP1 protein [Plasmodium falciparum]	prolipoprotein diacylglyceryl transferase (lgt) [Haemophilus influenzae]	hypothetical protein [Synechocystis sp.]	elongation factor P [Synechococcus PCC7942]	L-type calcium channel alpha-1 [Mus musculus]	ORF 2 [Borrelia burgdorferi]	(pos:59955997,aa:Met) [Bacillus subtilis]	pfs [Escherichia coli]	M protein [group G streptococcus]		proton glutamate symport protein [Bacillus caldotenax]	regulatory components of sensory transduction system [Synechocystis sp.]	unknown [Bacillus subtilis]	3663 pirlA301911A3 hypothetical protein L - Bacillus subtilis (fragment) 0191	sigma factor (ntrA) (AA 1-502) [Azotobacter vinelandii]	lipoprotein [Borrelia burgdorferi]	contains 4 ankyrin repeats; similar to D. melanogaster notch protein, Swiss-Prot Accession Number P07027 [Paramecium bursaria Chlorella virus 1]	ORF-B gene product [Borrelia burgdorferi]
	gnllPIDle1604 37	gnlIPIDle2763 80	5369 gil 1573923	20690 gil1001260	gil1399829	22162 gil 192960	gil458217	3851 gil1065989	gil147158	2984 gil153727	3772 pirlS40422IS4 0422	8672 gil 143002	4051 gil 165 1878	1322 gil467425	pirlA301911A3 0191	4315 gil39269	9210 gil1209831	2058 gil624056	/ gnllPIDle2012 (
	1853	1156	15369	100690	102273	22162	24101	13851	2091	2984	3772	58672	74051	91322	639663	114315	29210	2058	17257
	2323	1374	14371	101571	101692	21869	23373	13570	5327	3316	2744	57446	74989	92119	93010	115604	29875	3323	17793
	4	2	18	118	120	32	37	11	5	7	က	62	82	89	65	118	41	4	25
-	59	20	2	3	3	9	7	8	14	15	27	7	7	7	7	7	4	9	9

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

22125 gil153677 6026 gil133997		22493
	5970 pil1539977	5970 pil1539977
055144 similar to galactoside 3(4)-1-fucosyltransferase [Caenorhabditis elegans]	4	3742 gil1055144
359436 Mag44 [Dermatophagoides farinae]	8 gil1359436	
74332	20317 gil974332	
653618	3049 gil1653618	2156 3049 gil 1653618
90935	94718 gil790935	6
553115	3340 gi 1553115	2423 3340 gil1553115
663562	24238 gil 1663562	,
PID e2647 myosin heavy chain [Sus scrofa]	647	
57336 Pv200 [Plasmodium vivax]		
PDIe2203 brca2 gene product [Homo sapiens]	1498 gnllPIDle2203 50	
522636 M. jannaschii predicted coding region MJECS02 [Methanococcus jannaschii]	9	247 gil1522636
86163 Ribosomal Protein L10 [Bacillus subtilis]	50045 gil786163	50045 gil786163
303855	99710 gil1303855	
499632 M. jannaschii predicted coding region MJ0809 [Methanococcus jannaschii]	gil1499632	26232 gil 1499632
553115 P35 antigen protein [Borrelia burgdorferi]	13117 gil1553115	gi11553115
A45605IA4 mature-parasite-infected erythroc J5 MESA - Plasmodium falciparum	A4	3183 2470 piriA45605IA4 r 5605
553115 P35 antigen protein [Borrelia burgdorferi	7899 gil1553115	
PIDle2614	gn] PID e2614 09	3027 2818 gnllPIDle2614 1
73817 'ORF' [Escherichia coli	1178 gil473817	336 1178 gil473817
PIDI62012 (1064 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	1654 1064 gnllPIDle2012 (

/ proteins
o knov
imilar t
steins s
g regions of novel prote
ns of n
g regio
ative codin
utative
Η-
rferi
ourgdo
Borrelia !

2		113765	111636	11636 gil148316	NaH-antiporter protein [Enterococcus hirae]	56	32
3	80	70112	69901	70669 gil1372995	OrfH [Borrelia burgdorferi]	95	24
3	116	98676	99212	pirlE22845IE2 2845	99212 pirlE22845IE2 hypothetical protein 4 - Trypanosoma brucei 2845 mitochondrion (SGC6)	56	36
9	26	18732	17791	gil1655797	CdsJ [Borrelia burgdorferi]	95	41
7	21	14706	13510	13510 gil1574247	H. influenzae predicted coding region HI1410 [Haemophilus influenzae]	56	. 32
11	∞	6722	7087	gnlIPIDle2428 97	7087 gnllPIDle2428 aBIM [Lactococcus lactis]	99	28
53	7	2446	2018	2018 gil1421737	ORF 8 [Borrelia burgdorferi]	99	38
61	2	712	1410	gil583161	albumin binding protein [unidentified]	56	35
2	9	3866	3573	3573 gil290487	50S ribosomal subunit protein L28 [Escherichia coli]	55	37
2	14	11322	10585	10585 gil1303811	YqeU [Bacillus subtilis]	55	33
2	34	28640	29782	29782 gil558266	orf gene product [Wolinella succinogenes]	55	30
2	71	69999	67415	67415 gil397486	endonuclease G [Bos taurus]	55	33
3	87	75924	76550	76550 gil403984	deoxyguanosine kinase/deoxyadenosine kinase(I) subunit [Lactobacillus acidophilus]	55	38
4	99	48434	48958	48958 gil1100900	70 kDa heat shock protein [Theileria parva]	55	32
140	1	322	89	68 gil15611	gene 17, tail fiber protein [Bacteriophage T7]	55	38
4	34	24244	23867	563	orfIII; product unknown [Borrelia burgdorferi]	54	31
ν	6	5510	4179	4179 gil1513238	ORFveg132; similar to Caenorhabditis elegans ORF F59B10.1 encoded by EMBL Accession Number Z49132 [Dictyostelium discoideum]	52	. 25
5	45	27187	25895	gnllPIDie2614 09	nuclear/mitotic apparatus protein [Xenopus laevis]	54	30
7	28	17905	18162	gil36501	C protein [Homo sapiens]	54	41
11	9	4415	5215	5215 gil 1707287	putative outer membrane protein [Borrelia burgdorferi]	54	25
19	. 2	1674	2501	gil392799	G5/D6 ORF [Dictyostelium discoideum]	54	25
29	5	3284	2532	gallPIDle1589 80	2532 gnllPIDle1589 orfC gene product [Borrelia burgdorferi]	54	33
31	6	3328	4137	pirlS41649lS4	pirlS41649IS4 DNA polymerase - Plasmodium falciparum	54	28

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

	36	37	33	28	32	35	25	27	28	25		27	42	29	35	24	26	26	35	52	52	29
	54	54	53	53	53	53	53	53	53	53		53	53	52	52	52	52	52	52	52	52	51
	bud-emergence protein [Saccharomyces cerevisiae]	Rpi1p [Saccharomyces cerevisiae]	YlxH [Borrelia burgdorferi]	orf 06111 gene product [Saccharomyces cerevisiae]	cell division protein J [Methanococcus jannaschii]	vacuolar aspartic proteinase precursor [Candida albicans]	ErpB2 [Borrelia burgdorferi]	XLR related protein [Mus musculus]		coded for by C. elegans cDNA	by C. elegans cDNA yk54h9.3; similar to matrin F/G (DNA binding protein, SP:MAFG_RAT, Q00910) [Caenorhabditis elegans]	XLR related protein [Mus musculus]	Orf1 [Borrelia hermsii]	fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	aspartyl-tRNA synthetase (aspS) [Haemophilus influenzae]	rhoptry protein [Plasmodium yoelii]	repeat organellar protein [Plasmodium chabaudi]	ORF YGR023w [Saccharomyces cerevisiae]	YHR146w gene product [Saccharomyces cerevisiae]	NADH dehydrogenase, subunit 5 [Allomyces macrogynus]	NADH dehydrogenase, subunit 5 [Allomyces macrogynus]	chromate resistance protein A [Methanococcus
1649	gil499695	997 gil763227	4383 gil1165254	58179 gil940842	1646 gil1592021	4427 gil1039462	4152 gil1699017	gil398581	8925 gnllPIDle2483 24	3679 gil 1055 100		gil398581	2527 gil 1655859	1265 gil496254	1276 gil1573287	6150 gil457146	1999 gil1151158	8 gnllPIDle2439 27	3499 gil500655	241 gil 1236411	322 gil1236411	5577 gil1591434
	2865	166	14383	68179	1646	14427	34152	3893	8925	3679	-	291	2527	1265	111276	6150	31999	18808	3499	241	322	115577
	2560	95	13235	68814	1032	14627	34850	3672	8485	3497		70	1787	3	111638	5323	32562	18485	3287	38	119	116131
	5	1	16	72	3	18	63	5	17	S		1	3	 .	110	8	44	29	4	2	2	120
	32	95	7	2	3	4	5	10	15	25		29	34	7	2	4	4	7	25	92	148	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

					jannaschii]		
4	6	6362	7153	7153 gil1553115	P35 antigen protein [Borrelia burgdorferi]	51	26
10	01	6603	7196	gniiPIDie2563 93	7196 gnllPIDle2563 anti-P.falciparum antigenic polypeptide [Saimiri 93 sciureus]	. 51	34
11	12	10333	9422	pirlA427711A4 2771	9422 pirlA427711A4 reticulocyte-binding protein 1 - Plasmodium vivax 2771	51	31
19	7	5919	6119	6179 gil173241	ZIP1 protein [Saccharomyces cerevisiae]	51	38
23	-1	er.	287	0	cell wall-associated protease precursor [Bacillus subtilis]	51	25
7	105	106383	107126	gil580905	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB [Bacillus subtilis]	20	32
m .			195	gniiPIDie2202 01	195 gnilPIDie2202 rps5 gene product [Plasmodium falciparum]	20	38
6	62	20808	51653	51653 gil882579	CG Site No. 29739 [Escherichia coli]	20	31
6	119	100766	101014	01014 gil1086864	T03G11.2 gene product [Caenorhabditis elegans]	20	39
4	32	23555	22992	22992 gil1663565	orfV; product unknown [Borrelia burgdorferi]	20	36
5	8	4168	3470	3470 gil49402	M1.1 protein [Streptococcus pyogenes]	20	. 27
10	7	5190	4612	gnliPIDle1589 81	4612 gnllPIDle1589 orfE gene product [Borrelia burgdorferi]	20	28
E	2	1277	504	504 gil1553115	P35 antigen protein [Borrelia burgdorferi]	20	26
13	3	1948	1634	gnllPIDle2682 43	1634 gnllPIDle2682 p21 [Borrelia afzelii]	20	32
92	3	582	941	gnilPIDIe2012 50	gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi] 50	20	40
148	I	339	4	gniiPIDie2369 01	gnllPIDle2369 unknown [Saccharomyces cerevisiae]	20	34
28	3	2001	2630	2630 gil499325	STARP antigen [Plasmodium falciparum]	49	22
3	10	6881	7180	7180 gil156218	putative [Caenorhabditis elegans]	48	32
3	75	65683	99059	65066 gil1574476	dedA protein (dedA) [Haemophilus influenzae]	48	2
3	112	90026	96743	96743 gil915207	gastric mucin [Sus scrofa]	48	27
7	23	14743	14970	14970 gil172294	protein-tyrosine phosphatase [Saccharomyces cerevisiae]	48	E.

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

28	30	27	29	34	32	78	· .	32	23	21	37	23	23	. 23	27	27	31	78
~~	~	. 41	_				<u></u>											
48	48	47	47	47	≥ 47	, 46		46	46	46	46	46	45	45	45	45	44	44
M. genitalium predicted coding region MG422 [Mycoplasma genitalium]	chorismate mutase subunit B [Methanococcus jannaschii]	frameshift [Plasmodium falciparum]	ankyrin 3 [Mus musculus]	type I restriction enzyme [Methanococcus januaschii]	P35 antigen protein [Borrelia burgdorferi]	Four tandem repeats of a DNA-binding domain known as the AT-hook are found at the carboxy	terminus of CarD. This protein has been purified and found to bind in vitro to a promoter region	apolipoprotein N-acyltransferase (cute) [Haemophilus influenzae]	ribosomal protein S19 [Methanococcus jannaschii]	glutamic acid-rich protein [Plasmodium falciparum]	C41G6.i [Caenorhabditis elegans]	bicaudalD protein [Drosophila melanogaster]	M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii]	5465 pirlS30782IS3 integrin homolog - yeast (Saccharomyces cerevisiae) 0782	gnllPDle2369 unknown [Saccharomyces cerevisiae]	gnllPIDle2369 unknown [Saccharomyces cerevisiae]	gnllPIDle2364 F54G8.4 [Caenorhabditis elegans]	repeat organellar protein [Plasmodium chabaudi]
9293 gil 1046137	2825 gil 159 1322	gnllPIDle2202 45	gil710551	95240 gil 1592264	gil1553115	gil1022328		77324 gil1573271	25719 gil1592272	8816 gil160299	3648 gnllPIDle2755 06	gil157006	15909 gil 1499043	pirIS30782IS3 0782	gnllPIDle2369 01	gniiPIDle2369 01	gnllPIDle2364 83	5019 gil1151158
9293	2825	LL99	55803	95240	9941	9471	·	77324	25719	8816	3648	15	105909	15465	4852	4	81044	5019
7980	2628	5526	55075	94515	9057	9866		78904	24361	9895	3412	632	109271	14212	3950	258	79020	4075
=	4	∞	09	94	111	12		68	36	13	4		124	17	4		06	7
11	28	2	7	7	4			8	9	10	13	138	m	4	23	92	m	12

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

17	6	1735	-	pirlA427711A4	2142 pirlA427711A4 reticulocyte-binding protein 1 - Plasmodium vivax	44	26
				2771			
22	7	4179		2827 gil563812	XCAP-C [Xenopus laevis]	44	20
31	2	1682		2761 gil1438951	cutinase negative acting protein [Fusarium solani f. sp. pisi]	43	. 23
3	7	4086		5186 gil343962	VAR1 protein [Candida glabrata]	42	25
82	1	110	496	496 gil157804	laminin B2 chain [Drosophila melanogaster]	42	23
28	5	2889		pirlS30782IS3 0782	3833 pirlS30782IS3 integrin homolog - yeast (Saccharomyces cerevisiae) 0782	42	. 18
34	1	500		1234 gil1655797	CdsJ [Borrelia burgdorferi]	42	27
65	3	1035		1415 gil1654220	variable major protein 16 [Borrelia hermsii]	42	34
7	11	9544		gnllPIDle1632 6	8486 gnllPIDle1632 MURF2 protein (AA 1-348) [Crithidia fasciculata] 6	41	26
3	122	104072	10	3017 gil1151158	repeat organellar protein [Plasmodium chabaudi]	41	20
18	9	5122		6366 gil1591494	M. jannaschii predicted coding region MJ0797 [Methanococcus jannaschii]	40	20
9	9	4662		3964 gil600448	var1 protein (aa 1-339) [Candida utilis]	39	24
4	10	7637		8914 gil1293695	microfilarial sheath protein SHP3 [Litomosoides	37	61
					organical in the second of the		1

Borrelia burgdorferi - Coding regions containing to know proteins

TABLE 5.

Contig	Orf III	Contig Orf In Start (nt) Ston	-	(nt) motch	motoh gono nomo	poroont	HSD nt
ID		(am) a mac		ou	march gene name	jdent	length
2	20	15372		7402 gblM90084I	Borrelia burgdorferi 22 kD antigen	100	786
2	$\frac{1}{2}$		Ī	6310 gblM90084l	Borrelia burgdorferi 22 kD antigen	100	56
2		2 17362			Borrelia burgdorferi 22 kD antigen	100	264
2			·	7876 emblX70826IB BLA7	B.burgdorferi gene for lipoprotein	100	57
2	24	18522		emblX70826IB BLA7	7923 emblX70826IB B.burgdorferi gene for lipoprotein BLA7	100	009
2	25	18606	2	0009 emblX78708lB BYSC1	B.bergdorferi (ZS7) YSC1-like gene	100	1404
2	26	19981	20295	emblX78708lB BYSC1	0295 emblX78708IB B.bergdorferi (ZS7) YSC1-like gene BYSC1	66	314
2	. 38	32899	3	2174 gblU49938l	Borrelia burgdorferi potential virulence gene cluster	86	130
					membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4,		
					Mg ion transporter MgtE (mgtE), protein kinase Cl		
2	39	33315	32863	2863 gbIU49938l	Borrelia burgdorferi potential virulence gene cluster	100	453
)	membrane proteins BmpC (bmpC) and BmpA		
				·	(bmpA), BmpB protein (bmpB), putative protein 4,		
					Mg ion transporter MgtE (mgtE), protein kinase CI inhibitor PKCI (pkci) genes, complete cds		
2	40	34718	33	3333 gbIU49938I	Borrelia burgdorferi potential virulence gene cluster	66	1386
					membrane proteins BmpC (bmpC) and BmpA		
					(bmpA), BmpB protein (bmpB), putative protein 4,		
					Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKC1 (nkci) genes complete cds		
2	41	36211	34751	gblU49938I	Borrelia burgdorferi potential virulence gene cluster	66	1461
					membrane proteins BmpC (bmpC) and BmpA		
			•		(bmpA), BmpB protein (bmpB), putative protein 4,		•
					Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds		
2	42	36899	3	6288 gblL241941	Borrelia burgdorferi immunodominant antigen P39	66	909

Borrelia burgdorferi - Coding regions containing to know proteins

•		98 457	66 1026	99 1134	99 111	100 82	97 76	98. 2490	97 131	100 270	95 386	99 209
	gene, complete cds	Borrelia burgdorferi (clone pB46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase betal subunit (rpoC) gene, 5' end of cds	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi 23S ribosomal RNA gene	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes,
		6811 gblL350501	7401 gblL24194!	38462 gblU49938I	39838 gbIU35450I	40961 gblU35450I	1901 gblL484881	6050 gblI.484881	4977 gblU03396l	34620 gblM88330l	86066 gblU03396l	7041 gblU03396l
		36811	37401	38462	39838	40961	41901	46050	74977	84620	99098	87041
		37335	38426	39595	40947	41461	46052	49535	79470	84351	86923	87637
		43	44	45	94.	47	49	51	83	84	82	98
		7	7	2	7	2	2	7	2	2	7	2

Borrelia burgdorferi - Coding regions containing to know proteins

210	570	289	904	1497	1170	180	317
96	100	96	86	100	66	100	100
Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	B.burgdorferi gyrA gene encoding DNA gyrase subunit A (partial)	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN) and
8116 gblU03396l	0680 gblU03396l	6393 emblZ12165lB BGYRAG	8837 gbIU045271	2389 gbIU045271	3787 gbIU045271	3607 gbiU045271	4177 gblU045271
88116	08906	96393	98837	102389	103787	103607	104177
88424	91249	98846	100759	100893	102618	103786	103866
87	88	96	97	86	66	100	101
2	2	7	7	7	2	7	2

Borrelia burgdorferi - Coding regions containing to know proteins

	171	. 148	1185	912	1104	213	750	1269	1224	969	712	561	1404
	100	100	100	66	66	100	66	100	100	100	86	100	76
ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferi cell division genes	0767 emblX96685 B B.burgdorferi cell division genes BCDG	0614 emblX96433IB B.burgdorferi ftsW, ftsQ & ftsA genes BFTSWQA	B.burgdorferi ftsW, ftsQ & ftsA genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferi cell division genes
)4424 gbiU045271	4764 gbIU04527I	8597 gblU437391	9666 emblX966851B BCDG	emblX96685IB BCDG	emblX96433IB BFTSWQA	1546 emblX96433IB BFTSWQA	2787 gbIU43739I	4008 gb U43739 	4701 gblU437391	5655 gblL763031	6213 gblU43739l	7552 emb X96685 B RCDG
	104424	104764	8597	9996	10767	10614	11546	12787	14008	14701	15655	16213	17552
	104254	104393	7200	8581	9664	10826	10797	11519	12785	14006	14699	15653	16149
	102	103	11	12	13	14	15	16	17	18	19	20	21
	2	2	3	3	3	3	3	e .	3	3	3	3	3

Borrelia burgdorferi - Coding regions containing to know proteins

444	480	378	1770	1053	957	1332	453	630	1221	447	1350	231	789
100	100	100	100	100	100	66	66	100	66	100	100	100	100
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence
7993 gblU437391	8475 gbIU43739I	8822 gblL763031	0546 gblL763031	1596 gbIU43739I	2531 gbIU43739I	23860 gblL76303	24288 gblL763031	24898 gblU437391	6084 gblL763031	6541 gblL76303	7874 gblU43739l	28121 gblU437391	8900 gbIU437391
17993	18475	18822	20546	21596	22531	23860	24288	24898	26084	26541	27874	28121	28900
17550	17996	18445	18777	20544	21575	22529	23836	24269	24864	26095	26525	27891	28112
22	23	24	25	26	27	. 28	53	30	31	32	33	34	35
33	3	3	3	3	3	3	£.	3	3	3	3	3	3

Borrelia burgdorferi - Coding regions containing to know proteins

588	1062	348	642	789	207	288	813	249	1134
100	100	100	100	66	100	100	100	100	66
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes
7 gblU437391	3 gbIU43739I	0 gblU43739I	gbIU43739I	4 gblL759451	6 gbIL75945i	6 gblL75945i	7 gblL75945i	2 gbiL75945i	5355 gblL759451
3026	3136	3175	3236	3314	3243	3341	3423	3407.	3535
29680	30302	31403	31728	32356	32642	33129	33425	34320	34222
37	38	39	40	41	42	43	4	45	46
33	3	3	3	£	m	m m	E .	£ .	£
	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence 38 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 1 sequence	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 38 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 1 sequence 39 31403 31750 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 38 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 1 39 31403 31750 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 40 31728 32369 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence sequence 100	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 38 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 1 39 31403 31750 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 40 31728 32369 gblU437391 Borrelia burgdorferi famid clone 31, complete 100 41 32356 33144 gblL759451 Borrelia burgdorferi flagellar hook protein (flgE), flib, flib, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), fliL, fliM, flibF, flbE genes 99	39 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence 31, complete 100 lone 31, complete 100 lone 31, complete 100 lone 31, complete 100 sequence 31, complete 100 sequence 31, complete 100 sequence 31728 32369 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence 11728 32369 gblU437391 Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (fliPQR, flhB), flbC, flagellar motor apparatus (fliPQR, flhB), flbC, flagellar motor apparatus (motAB), fliL, fliM, fliL, flagellar motor apparatus (motAB), fliL, fliM, fliL, flagellar motor apparatus (fliPQR, flhB), flbC, flagellar motor apparatus (fliPQR, flhB), flbC, flagellar motor apparatus (fliPQR, flhB), flbC, flagellar export apparatus (fliPQR, flhB), flagellar export apparatus (fliPQR, flagellar export apparatus fluPQR, flagellar export apparatus (fliPQ	37 29680 30267 gblU43739 Borrella burgdorferi fesmid clone 31, complete 100 1	37 29680 30267 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence sequence 33 30302 31363 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence 39 31403 31750 gblU437391 Borrelia burgdorferi fesmid clone 31, complete 100 sequence 312356 33144 gblL759451 Borrelia burgdorferi fagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fill., fliM, fliD, flagellar export apparatus (fliPQR, flhB), flbD, flagellar motor apparatus (fliPQR, flhB), fliD, flagellar export apparatus (fliPQR, flhB), fliD, flagellar motor apparatus (fliPQR, flhB), fliD, flagellar export apparatus (fliPQR, flhB), fliD, flagellar motor apparatus (fliPQR, flhB), fliD, flagellar export apparatus (fliPQR, flhB), fliD, flagellar export apparatus (fliPQR, flhB), fliD, flagellar motor apparatus (fliPQR, flhB), fliD, flagellar motor apparatus (fliPQR, flhB), fliD, flagellar export apparatus (fliPQR, fluBR, fliDR, fluBR, fliDR, flagellar export apparatus (fliPQR, fluBR, fliDR, fliDR, fliDR, fl	39, 31363 gblU43739l Bornelia burgdorferi fesmid clone 31, complete 100 sequence sequence 31, complete 100 sequence 31, some sequence 11, complete 100 sequence 31, some sequence 11, seque

Borrelia burgdorferi - Coding regions containing to know proteins

2109	1173	816	345	489	1935	286	78	2439	274	542	327	327	411	1566	106
100	100	66	100	100	100	100	100	66	001	66	100	100	66	66	100
Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferei promoter element DNA	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi P1G histone-like protein HBbu (hbb) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds					
37457 gblL759451	88627 gblU437391	39526 gbIU43739I	gbIU43739I	40012 gblU43739I	41919 gblU43739l	12248 gbIU437391	16090 gblM286821	50034 gblL77216	50023 gblL77216	33026 gblU356731	83358 gblU356731	gblU486511	84 105 gblU356731	85732 gblU356731	86038 gb U35673
37457	38627	39526	39421	40012	41919	42248	46090	60034	60023	83026	83358	83697	84105	85732	86038
35349	37455	38612	39765	39524	39985	41928	47505	57596	62374	82181	83032	83365	83695	84167	82778
47	48	49	20	51	52	53	58	89	69	92	93	94	95	96	6
Ç,	3	3	3	3	3	<u> </u>	8	က	က	3	3	e	က	E.	3

Borrelia burgdorferi - Coding regions containing to know proteins

i. Ng	789	996	213	373	370	243	169	329	564	147	533	731	903	. 882	370	375
	66	100	100	100	78	66	100	66	66	100	93	69	66	100	∞ ∞	68
	Borrelia burgdorferi outer membrane porin protein Oms28 precursor (oms28) gene, complete cds	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	Borrelia burgdorferi strain B31 6.6 kDa lipoprotein gene, complete cds	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	Borrelia burgdorferi 27kD protein antigen gene (p27), complete cds	Borrelia burgdorferi 49kb linear plasmid small 12kDa lipoprotein gene, complete cds	Borrelia burgdorferi (clone BbK2.1) phoA fusion protein gene, partial cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	Borrelia burgdorferi decorin binding protein A (DbpA) gene, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi (27985CT2) OspA gene, 3' end and OspB gene, complete cds	B.burgdorferi OspA gene and 5'flanking region	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete
	1147 gb U61142	1002 gblU59487I	1153 gblU598591	2230 gbIU59487I	3414 gblM85216	3753 gblU224511	gblL314271	gbIU75867I	36929 gbIU758671	36692 gb U75867	37624 gbIU75866I	gbIU425991	42447 gblL231371	13347 emblA04009IA 04009	14403 gblL 197021	4758 gblL197021
,	1147	11002	11153	12230	13414	13753	17793	36347	36929	36692	37624	39318	42447	43347	44403	44758
•	1935	10037	11365	11577	12578	13511	18668	36694	36351	36838	37001	40073	43349	44228	44792	45198
	7	12	13	4 <u>1</u>	15	16	23	49	20	51	52	55	28	59	09	61
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	<u> </u>	L	L	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	L	L		L	<u> </u>	I	

Borrelia burgdorferi - Coding regions containing to know proteins

					cds		
4		46440	45382	5382 gblL19702l	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	82	622
4	<i>L</i> 9	49363	50622	50622 gblL34016	Borrelia burgdorferi (clone 8) S1 gene, complete cds	66	1260
4	89	50708	51580	1580 gb L34017	Borrelia burgdorferi (clone 8) S2 gene, complete cds	66	837
4	69	52203	51655	51655 gblL314231	Borrelia burgdorferi (clone BbK2.14) phoA fusion protein gene, partial cds	66	292
4	70	53018	52488	52488 gblL411511	Borrelia burgdorferi (clone 8) s3 gene, complete cds	66	297
5		535	7.1	71 gbIU60642l	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	91	465
5	. 2	1526	546	546 gbIU60642I	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	68	374
5	4	2395	2129	2129 gblL31425i		98	135
5	11	6832	6542	6542 gblS66708l	{target sequence for detection of Lyme disease agent} [Borrelia burgdorferi, B31, 30-kb circular plasmid pIP87, Plasmid, 416 nt]	97	290
2	12	7422	6817	6817 gblU44914l	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	87	. 595
5	13	8167	7565	7565 gbIU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	. 84	147
2	14	9408	8284	8284 gbIU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	72	568
	15	10122	9427	9427 gbIU30617I	Borrelia burgdorferi Bbk2.11 (bbk2.10), complete cds	93	560
5	16	10533	11324	1324 gbIU44912I	Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	93	. 790
5	17	11590	11330	1330 gblU449131	Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	95	261

Borrelia burgdorferi - Coding regions containing to know proteins

	-	100 552		100										
Borrella burgdorren plasmid cp18, OspE (ospE) gene, partial cds	OspE (ospE)	, D, E, & F	, C, D, E, & F		/ , D, E, & F 7	, D, E, & F 7 , D, E, & F 7	C, D, E, & F B17 C, D, E, & F B17 C, D, E, & F C, D, E, & F B17	/, D, E, & F 7 7 7 7 7 10, E, & F 7 10 10 10 10 10 10 10 10 10 10	/ D, E, & F / RF-A-D, genes, complete and lipoprotein	/ D, E, & F 7 7 7 7 7 10, E, & F 7 10, E, & F 7 10, D, E, & F 10, E, & F 11, D, E, & F 12, D, E, & F 13, D, E, & F 14, D, E, & F 16, D, E, & F 17, D, E, & F 18, D, E, & F 19, D, E, & F 10, E, & F 10, E, & F 10, E, & F 11, D, E, & F 11, D, E, & F 12, D, E, & F 13, D, E, & F 14, D, E, & F 14, D, E, & F 15, D, E, & F 16, D, E, & F 17, D, E, & F 18, D, E, & F 18, D, E, & F 19, D, E, & F 19, D, E, & F 10, D, E, E, E 10, D, E, E 10, D, E, E 10, D, E, E 10, D,	/, D, E, & F 7 7 7 7 7 RF-A-D, genes, complete and lipoprotein 1 (LP) genes, 1 (LP) genes, 1 (LP) genes,	/ , D, E, & F 7 7 7 7 7 10, E, & F 7 10, E, & F 7 11, D, E, & F 12, Benes, complete and lipoprotein and lipoprotein (LP) genes, (LP) genes, (LP) genes, (LP) genes, al cds	/, D, E, & F 7 7 7 7 7 10, E, & F 7 7 18F-A-D, genes, complete and lipoprotein 1(LP) genes, 1(L	/ , D, E, & F 7 7 7 7 (BF-A-D, genes, complete and lipoprotein li
	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, genes, clone pOMB14 and pOMB17	I, orfA, B, C, D, I and pOMB17		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	I, orfA, B, C, D, E and pOMB17 I, orfA, B, C, D, I and pOMB17 I, orfA, B, C, D, I and pOMB17 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complet cds Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, comple cds Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds CLP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, comple cds Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Complete cds Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB 14 and pOMB 17 Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds
rtial cds	burgdorferi pla rtial cds	B.burgdorferi plasmid, orfA, B, C, genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, genes, clone pOMB14 and pOMB17	مادستات	orieri piasimu, one pOMB14 a	b.burguorieri piasiniu, ori.A, b, C, genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, genes, clone pOMB14 and pOMB17	b.burgdorferl plasmid, off.A, B, C, genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orfA, B, C, genes, clone pOMB14 and pOMB17	b.burguorieri piasiniu, ort.A. B. C., genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orf.A. B. C., genes, clone pOMB14 and pOMB17 B.burgdorferi plasmid, orf.A. B. C., genes, clone pOMB14 and pOMB17 Borrelia burgdorferi 2.9-5 locus, OF REP+, REP-, and lipoprotein (LP) gcds	ontern prasmud, one pOMB14 one pOMB14 one pOMB14 on orferi plasmid, one pOMB14 in purgdorferi 2.9 EP-, and lipop burgdorferi 2.9 burgdorferi 2.9 complete co les, complete co	b. burgdorlert plasmid, of genes, clone pOMB14 and B. burgdorferi plasmid, of genes, clone pOMB14 and B. burgdorferi plasmid, of genes, clone pOMB14 and Borrelia burgdorferi 2.9-3. REP+, REP-, and lipoprocds. Borrelia burgdorferi 2.9-3. partial cds, ORF-D, REP-4. REP	ontent prasmus, one pOMB14 or polyB14 or pol	ontern prasmus, one pOMB14 one pOMB14 one pOMB14 one pOMB14 orferi plasmid, orferi plasmid, orferi plasmid, orferi plasmid, orferi plasmid, orferi plurgdorferi 2.9 burgdorferi 2.0 burgdorferi 2.0 burgdorferi 2.0 burgdorferi 2.0 cds burgdorferi 2.0 cds cds cds cds cds	ontern prasmus, one pOMB14 one pOMB16 one pOMB16 one pOMB16 one pOMB16 one pOMB16 one pomplete on purgdorferi 2.0 ords burgdorferi 2.0 ords cods burgdorferi 2.0 ords burgdorferi 2.0 ords cods burgdorferi 2.0 ords cods burgdorferi 2.0 ords burgdorferi 2.0 ords cods burgdorferi 2.0 ords cods burgdorferi 2.0 ords enes, complete	B. burgdorieri plasmid, ort. genes, clone pOMB14 and laborrelia burgdorferi 2.9-5 Borrelia burgdorferi 2.9-2 partial cds, ORF-D, REP+, (LP) genes, complete cds Borrelia burgdorferi 2.9-1 A-D, REP+, REP-, and lipocomplete cds Borrelia burgdorferi 2.9-6 Complete cds and REP+ genes, complete cds Borrelia burgdorferi 2.9-6 Complete cds and REP+ genes, complete cds and R
gene, partial cds	Borrelia burgdor gene, partial cds	B.burgdo genes, clc	B.burgdo genes, clc	B.burgdo	genes, clo	genes, clc B.burgdo genes, clc	genes, clc B.burgdo genes, clc B.burgdo genes, clc	genes, clc B.burgdo genes, clc B.burgdo genes, clc Borrelia I REP+, Rl	genes, clc B.burgdo genes, clc Borrelia I REP+, RJ cds Borrelia I Borrelia I Cds	genes, clone B.burgdorfer genes, clone B.burgdorfer genes, clone Borrelia burg REP+, REP-cds Borrelia burg partial cds, C (LP) genes, c Borrelia burg A-D, REP+, complete cds	genes, clone genes, clone genes, clone genes, clone genes, clone Borrelia burg REP+, REP-, cds Borrelia burg partial cds, C (LP) genes, c Complete cds A-D, REP+, complete cds	genes, clc B.burgdo genes, clc B.burgdo genes, clc Borrelia I REP+, RJ cds Dorrelia I A-D, REI Complete Borrelia I A-D, REI Complete	genes, clc B.burgdo genes, clc B.burgdo genes, clc Borrelia I REP+, Rl cds Borrelia I A-D, REI complete Borrelia I A-D, REI complete Borrelia I A-D, REI complete Borrelia I A-D, REI Complete	genes, clc B.burgdo genes, clc B.burgdo genes, clc Borrelia I REP+, RJ cds Dorrelia I A-D, REI complete Borrelia I A-D, REI complete Borrelia I Borrelia I A-D, REI complete Borrelia I Borrelia I Borrelia I Complete
	1808 gblU42599l	3636 emblX87201IB BBRGABCD	4185 emblX87201lB BBRGABCD	4788 emb X872011B	BBRGABCD	5519 emblX87201IB BBRGABCD	BBRGABCD 5519 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD	BBRGABCD 5519 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU454251	BBRGABCD 5519 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU454251	BBRGABCD 5519 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU454251 8564 gblU454221	BBRGABCD BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU454251 8564 gblU454221 9775 gblU454211	BBRGABCD 15519 emblX87201IB BBRGABCD 16158 emblX87201IB BBRGABCD 18526 gblU454251 18564 gblU454221 19116 gblU454211 19775 gblU454211	BBRGABCD 6158 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU454251 9715 gblU454211 9775 gblU454211	BBRGABCD 5519 emblX87201IB BBRGABCD 6158 emblX87201IB BBRGABCD 8526 gblU45425I 8564 gblU45422I 9775 gblU45421I 9775 gblU45421I
200 200	11808 gt	13636 er B	14185 er B	14788 er	<u>m</u>	15519 er	15519 EB B B B B B B B B B B B B B B B B B B	15519 er B 16158 er 18526 gk	15519 er 16158 er 18526 gt	15519 er 16158 er 18526 gt 18564 gt	15519 er B 16158 er 18526 gt 18526 gt 19775 gt	15519 er 16158 er 16158 er 18526 gt 18564 gt 19116 gt	15519 er B 16158 er 18526 gt 18526 gt 18564 gt 19775 gt 20121 gt	15519 er 16158 er 18526 gl 18526 gl 19116 gl 19775 gl 20121 gl 20797 gl
.	13256	14187	14727	15588		16097	16097	17276	16097 17276 17558 19040	16097 17276 17558 19040 19712	16097 17276 17558 19040 19712	16097 17276 1758 19040 19712 20164	16097 17276 17558 19040 19712 20164 20164	16097 17276 1758 19040 19712 20164 20799 20799
	10	70	21	22		23	23	23 24 25	23 24 25 26	25 25 27 27 27	23 24 24 25 27 28 27 28	23 24 24 26 27 26 29 29 29	23 24 24 23 25 25 25 29 30 30	23 24 24 23 26 25 29 30 30 31 31 30 31 31 31 31 31 31 31 31 31 31 31 31 31
<u> </u>	5	ν.	δ.	5	-	5	S S	N N N	N N N N	N N N N				

Borrelia burgdorferi - Coding regions containing to know proteins

31 36 28 23 23 23 23 23 33 33 33 33 33 33 33 33			94 151	90 467	93 286	95 242	96 317	95 381	90 495	97 300	99 435	97 447	96 465	98 .374	
21625 gblU967141 22051 gblU454211 22516 gblU454211 23080 gblU454211 23388 gblU454211 23750 gblU454211 29417 gblU606421 29980 gblU606421 30357 gblU606421 30357 gblU606421	21470 21625 gblU967141 22518 22051 gblU454211 22806 22516 gblU454211 23397 23080 gblU454211 23758 23388 gblU454211 24331 23750 gblU454211 30414 29980 gblU606421 30803 30357 gblU606421 31204 30740 gblU606421 31775 31215 gblU606421	genes, complete cds	i burgdorferi B31 BlyA (blyA) and BlyB genes, complete cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	a burgdorferi 2.9-1 locus, ORF 5-8, ORF- EP+, REP-, and lipoprotein (LP) genes, e cds	i burgdorferi plasmid cp32-4, sequence at i 4-6kb	t burgdorferi plasmid cp32-4, sequence at 14-6kb	burgdorferi plasmid cp32-4, sequence at 14-6kb	t burgdorferi plasmid cp32-4, sequence at 14-6kb	burgdorferi plasmid cp32-4, sequence at	14-6kb
31 30 30 23 23 23 23 33 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	21470 21 22518 22 23806 22 23397 23 23768 23 24331 23 30414 29 30414 29 30803 30 31204 30								_						
			21				2	. 23	. 23750 gblU	25	52	30357	3(-

Borrelia burgdorferi - Coding regions containing to know proteins

137	3	1590	1212	510	693	375	437	193	140	362	309	756	675	447	. 1155	345
001	0	86	100	100	66	86	TT.	08	95	96	100	66	100	100	100	100
10 - 11: 1	(ospC) gene, complete cds	Borrelia burgdorferi 26 kb plasmid GMP synthetase (guaA) gene, complete cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, partial cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, partial cds	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 16 kb plasmid DNA fragment	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence
-Lir IO10041	7022 gulou16741	11425 gblL258831	2664 gblU13372l	1686 gblU13372l	gbIU85588I	677 gblU85588I	25847 gbIU454231	746 gblŪ45424I	gbIU84396I	17876 gblU855881	2507 gblU43414l	2767 gblU43414l	5862 gbiU434141	7255 gblU43414I	7467 gblU43414l	8735 gblU43414l
0000	7707	11425	12664	11686	8	<i>LL</i> 9	25847	746	14087	17876	2507	2767	5862	7255	7467	8735
10620	9010	9836	11435	12195	695	1081	25041	1420	14287	18352	2815	3522	5188	6089	8621	6/06
7	2	17	18	19		7	39	2	12	17		2	8	4	5	9
7	o ,	9	9	9	7	7	7	∞	∞	∞	6	6	6	6	6	6

Borrelia burgdorferi - Coding regions containing to know proteins

ľ	911	603	738	٠,٠	273		372		278	-		143		290		531		713		224		1202		519		414		576		210	
	100	100	100		66		66		78			. 67		91		66	,	98		88		82		. 81		78		84		91	
	Borrelia burgdorfen linear plasmid ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA,	Borrelia burgdorferi linear plasmid Ip16 DNA,	complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence	Borrelia burgdorferi 2.9-2 locus, ORF-C gene,	partial cds, ORF-D, REP+, REP-, and lipoprotein	(LP) genes, complete cds	Borrelia burgdorferi 16 kb plasmid hypothetical	protein gene, complete cds	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi exported neurotoxin-like	protein gene, complete cds	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi plasmid cp18, OspE (ospE)	gene, partial cds	B.burgdorferi repeated DNA element, 30.5 kb	circular plasmid copy	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi Ip21 circular plasmid, complete sequence	
		0972 gblU43414l	1107 gblU43414l		3027 gblU43414 E		3241 gb U43414 E		1604 gblU45422 I			2886 gblU12332l E		842 gblU036411 I		983 gbl 16625 E		4901 gblU036411 E		4467 gb U036411 E		5041 gblU425991 E		71B		8355 gb U036411 E		8968 gblU036411 E		9544 gbiU036411 E	
	9214	10972	11107		13027		13241		1604			2886		842		683		4901		4467		5041		7788		8355		8968		9544	-
	10224	10370	11844		13299		13612		2164			2686		<u>m</u>		1525		4098		4691		6348		6673		21/86		8393		9290	7
		∞	6	,	10		11		7			.		1		2		9		7		<u>⊸</u> ∞		5		10		11		17	
	6	6	6		6		6		01	-		10		13		13		13		13		13		13		13		13		13	-

Borrelia burgdorferi - Coding regions containing to know proteins

5768	6217 gblL31616	61 Borrelia burgdorferi protein p23 gene, complete cds	89	396
	6671 gblL31616		85	242
	2854 gblM97452		100	807
(4)	3657 gblL41151	11 Borrelia burgdorferi (clone 8) s3 gene, complete cds	77	267
	4 gbIU60963	33 Borrelia burgdorferi plasmid cp32-1 PCR target site, partial sequence	95	296
	834 gbIU449141		93	594
1	1581 gblU44914		83	130
7	2257 gbiU80956i		91	350
2	2964 gblU449131		100	401
5.	5143 gblU44913	[3] Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	66	413
51	5183 gblU44913	·	. 91	180
53	5360 gbIU425991		76	221
	4 gblU4542]	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	95	303
	317 gblU4542	A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	97	336
	658 gbIU45421		68	406
40	4058 gbIU76406	6 Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete	97	2305

Borrelia burgdorferi - Coding regions containing to know proteins.

ľ						
				sequence		
	4056	5108	5108 gblU764061	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	94	750
	383	092	760 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	378
	1333	1536	1536 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	204
	684	87	82 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	96	.603
	903	682	682 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	96	221
4;	2181	2573	2573 gblAF0002701	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	94	362
	3073	2621	2621 gblU454271	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	80	220
	3745	3149		Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	87	478
	4663	4355	4355 gblU45424I	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	86	309
	266	434		Borrelia burgdorferi (clone BbK2.5-6) unknown protein gene, complete cds	96	219
	1395	2258		Borrelia burgdorferi protein p23 gene, complete cds	86	610
	252	989		B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	97	419
	760	1545		B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	001	786
-	1543	2157	2157 emb X87127IB	B.burgdorferi repeated DNA element, 30.5 kb	100	615

Borrelia burgdorferi - Coding regions containing to know proteins

					circular plasmid copy		
30	4	2158	2802	2802 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	100	. 645
30	5	3247	4230		Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	95	976
33		450	995		Borrelia burgdorferi plasmid cp32-5, erpI gene, complete cds	100	546
33	2	1008	2159	2159 gbIU78764I	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	100	1152
. 33	3	2253	2882		Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	86	379
33	4	3050	3628	3628 gblU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	93	577
35		m	176	176 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes,	91	174
35	2	976	737	gblM88330l	Borrelia burgdorferi 23S ribosomal RNA sene	19	240
36	1		525	IB D	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	11	159
38	1	672	28	28 gblU44914l	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	92	571
38	2	820	653	653 gblU42598I	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	100	133
38	3	1516	983	983 emblX82409IB BOSPG	B.burgdorferi ospG and bapA genes	100	534
38	4	2200	1604	emblX82409IB BOSPG	1604 emblX82409IB B.burgdorferi ospG and bapA genes BOSPG	100	597
38	5	2602	3132	3132 gblU42598l	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	66	529
39	1	196	999	665 emblX87202lB BBRGBCDE	B.burgdorferi plasmid, orfA, B, C, D, E, & G genes, clone pOMB10	76	170
39	7	1505	957	957 emblX87202lB	B.burgdorferi plasmid, orfA, B, C, D, E, & G	86	176

Borrelia burgdorferi - Coding regions containing to know proteins

	137	291	284	168	465	1179	1269	411	785	572	571	236	356	392
	91	96	91	93	100	100	66	66	80	80	65	93	96	06
genes, clone pOMB10	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
BBRGBCDE	1553 gblU425991	2284 emblX87201IB BBRGABCD	2572 emblX87127IB BPBRGEA	2861 emblX87127IB BPBRGEA	132 gblU764061	575 gbIU76406I	1732 gbIU764061	411 emblX872011B BBRGABCD	1127 emblX87201IB BBRGABCD	1747 emblX87201IB BBRGABCD	gbIU425991	1384 gbIU85588I	embIX87127IB BPBRGEA	1741 gblAF000270I
	1553	2284	2572	2861	132	575	1732	411	1127	1747	2338	1384	4	1741
	2353	2574	2874	3028	965	1753	3000	-	342	1172	1745	1133	360	635
	m	4	2	9	-	7	<u> </u>	1	2	3	4	7		2
	39	39	36	39	40	40	40	41	41	41	41	42	43	43

Borrelia burgdorferi - Coding regions containing to know proteins

	421	259	374	135	153	386	230	16	692	564	. 603	315	525	483
	82	95	68	66	8	06	06	96	100	100	66	86	95	96
orf1 gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	Borrelia burgdorferi outer surface protein E (OspE) gene, complete cds	Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds
	1784 gblU45423I 	2318 gblU45421 	178 gblU60642I	1761 gb L314251	3 gbIU78764	1453 gblL139241	2893 gbIU44912I	338 gb U42599	966 gblU425991	1527 gblU42599l	2111 gblU42599l	2851 emblX87201IB BBRGABCD	526 gbIU45425I	724 gbIU45424I
	1784	2318	178	1761	3	1453	2893	338	996	1527	2111	2851	526	724
	2242	2860	1158	2531	287	2037	2663	174	259	964	1509	2537	2	1245
-	ω `.	4		3		m .	4	Ţ	2	3	4	5	-	2
	43	43	4	44	45	45	45	46	46	46	46	46	47	47

Borrelia burgdorferi - Coding regions containing to know proteins

47 3 1971 1321 gbIU454241 Borrelia burgdorferi 2.9.4 locus, ORF-C gene, Partial cds, ORP-D, REP-, REP-, and lipoprotein (L.P. genes, complete cds complete cds and by the complete cds complete cds and by the complete cds complete cds	651	327	91	804	909	1596	612	269	146	140	146	422	489	101
3 1971 1321 gblU454241 2 412 1182 gblU729971 3 2047 1244 gblU729971 1 713 18 gblU764061 2 2308 704 gblU764061 3 2203 2487 gblU449141 2 336 emblX872021B BBRGBCDE 2 179 319 emblX872011B BBRGABCD 3 250 1050 gblU425991 6 1650 2201 gblU425991 1 93 581 gblAF0002701	68	87	100	66	66	86	66	98	94	94	98	81	66	100
3 1971 1 2 412 1 3 2047 1 1 713 1 613 2 2308 2 2308 2 2308 2 2308 2 2308 3 2203 2 250 1 3 250 1 6 1650 2	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & G genes, clone pOMB10	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrella burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
3 1971 1 2 412 1 3 2047 1 1 713 1 613 2 2308 2 2308 2 2308 2 2308 2 2308 3 2203 2 250 1 3 250 1 6 1650 2	gblU45424I	gbIU44914I	gblU729971	gbIU72997I	gbIU764061	gbIU76406I	gbIU425991	gbIU44914I	emblX87202lB BBRGBCDE	emblX87201IB BBRGABCD	gblU425991	gbiU42599I	gblAF000270l	gblAF0002701
2 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 1 3 7 1 1 3 7 1 1 1 1	1321	25	1182	1244	18	704	2	2487	236	319	1050	2201	581	719
	1971	363	412	2047	713	2308	613	2203	3	179	250	1650	93	883
53 52 52 52 53	د		2	m	·	7	-	3	-	7	<u>c</u>	9		2
	47	48	48	48	49	49	51	51	52	52	52	52	53	53

Borrelia burgdorferi - Coding regions containing to know proteins

						ŀ	
						-	
53	m	1107	811	gblAF000270l	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like	8	289
53	4	1447	1064	1064 gblAF000270	train B31 2.9-like locus.	96	381
	•	•			36.		
		,			kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds		
53	5	1742	1380	1380 gblU45427I	V,	93	362
			-		and lipoprotein (LPA and LPB) genes, complete cds		
53	9	1949	1740	1740 gblU45426I	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes,	86	210
22		C.	727	434 ohl 1454221	gene	6	308
5	•		2		ein	<u>, </u>	1
					(LP) genes, complete cds		
27	7	1580	471	471 gbl AF0002701	n B31 2.9-like locus,	86	362
					OrfC, OrfD, Rev (rev), lipaprotein (LP), and 36		
				-	kDa-like orf2 genes, complete cds, and 36 kDa-like		
				7	-	4	
57	m	1837	2109	71B	ed DNA element, 30.5 kb	84	246
						-	
28	.	1573	1800	1800 gblL31425i	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	8	. 118
09	T	899	111	111 emb X87201 B	3, C, D, E, & F	75	519
		1					
09	2	1479	694	71B		72	786
					circular plasmid copy		
9	m	1907	1410	В	D, E, & F	95	498
			-			_	;
62		284	C.	മ	D, E, & F	6/	260
				_			;;
62	2	828	282	282 emb X87202IB	D, E, & G	74	501

Borrelia burgdorferi - Coding regions containing to know proteins

		70000	1		
		BBRGBCDE	genes, clone pUMB10		
	1704	910 gblU42599l	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	78	351
	263	54 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	510
	1320	1117 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	100	204
	647	75 gbIU60642I	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	93	300
	1075	641 gbIU60642I	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	96 .	435
3	1530	1018 gblU60642l	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	96	440
	3	275 gbIU96714I	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	86	207
7	217	600 gblU45426	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	66	384
6	557	946 gblU454231	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	86	390
4	1424	1083 gblAF000270l	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	66	342
	7	925 gblU606421	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	86	374
7	936	1328 gbIU60642I	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	96	393
	464	12 gblU45422I	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	88	281
7	1256	540 gbIU45425I	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete	91	552

Borrelia burgdorferi - Coding regions containing to know proteins

422 Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein	
(LP) genes, complete cds	2 gblU45422i
	509 gbiU45424l
	1034 gbIU43414I
	1202 gbIU764061
	360 gblU454211
714 Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	1008 gblU967141
	636 gblU967141
	289 gblU45422l
	954 gbIU45427I
642l Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	gbIU60642I
	131 gb U60642
	323 gbIU60642I
642l Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	508 gbIU60642I

Borrelia burgdorferi - Coding regions containing to know proteins

00	_	1001	108	9011 abit 1606/10!	Romalia himadorfari nlacmid an 29 9 canionas at	180	100
				Succession S	position 5kb		107
91		927	34	34 gbIU45422I	Borrelia burgdorferi 2.9-2 locus, ORF-C gene,	1.6	313
		,			(LP) genes, complete cds:		
93	1	162		578 gblU454211	Borrelia burgdorferi 2.9-1, locus, ORF 5-8, ORF-	68	331
					A-D, REP+, REP-, and lipoprotein (LP) genes,		
					complete cds		
93	2	572		940 gblU454211	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-	96	368
	· ·				A-D, REP+, REP-, and lipoprotein (LP) genes,		
					complete cds		
8		3		245 gblU45425	Borrelia burgdorferi 2.9-5 locus, ORF-A-D,	16	243
	. — — — — — — — — — — — — — — — — — — —			٠	REP+, REP-, and lipoprotein (LP) genes, complete		
					cds		
94	2	749		282 gbIAF000270	Borrelia burgdorferi strain B31 2.9-like locus,	06	458
					OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36		
					kDa-like orf2 genes, complete cds, and 36 kDa-like		
					orf1 gene, partial cds		
97	-	909	3	gbIU44914I	Borrelia burgdorferi plasmid cp32-2, erpC and	94	472
					erpD genes, complete cds		
86	=	827		264 gblU425991	Borrelia burgdorferi plasmid cp18, OspE (ospE)	70	380
					gene, partial cds		
66	1	175	408	408 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA,	100	234
					complete sequence		
66	7	329		757 gbIU43414l	Borrelia burgdorferi linear plasmid lp16 DNA,	86	220
					complete sequence		
101	-	207	440	440 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA,	100	234
					complete sequence		
101	7	361	837	837 gblU43414l	Borrelia burgdorferi linear plasmid lp16 DNA,	66	.477
					complete sequence		,
102		<u>ო</u>		911 gblU76406l	Borrelia burgdorferi putative vls recombination	66	688
_					cassettes VIs2-VIs16b (vls) gene, complete		
					sequence		
104	1	388		242 gblU45426l	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes,	100	146

Borrelia burgdorferi - Coding regions containing to know proteins

	210	789	201	366	228	456	310	405	300	374	391	234	356	. 238	234
	100	95	98	63	66	95	63	68	86	86	85	100	66	100	100
complete cds and REP+ gene, partial cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi protein p23 gene, complete cds	Borrelia burgdorferi protein p23 gene, complete cds	Borrelia burgdorferi (clone BbK2.5-6) unknown protein gene, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi linear plasmid 1p16 DNA, complete sequence
	386 gbIU967141	811 gbIU45425	4 gblL31616	173 gblL316161	580 gb L31615 	456 gblU454211	761 gbIU454211	215 gblU454211	84 gbiU60642i	123 gbIU60642I	2 gbIU44914I	408 gbIU43414	700 gblU43414l	697 embIX87201IB BBRGABCD	467 gbIU43414I
	386	811	4	173	280	. 456	761	215	84	123	2	408	700	L69	467
	. 295		264	298	807	1	450	787	653	719	403	175	329	458	234
	7		1	2	င		7	-	1	-	1	1	7	1	=
	104	107	109	109	109	110	110	111	119	121	122	128	128	129	132

Borrelia burgdorferi - Coding regions containing to know proteins

	171		80 243	78 331		100 513		100 153	-	98 432	-	94 495		86 144		88 296		97 351	
	Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence	560 emblX87127IB B.burgdorferi repeated DNA element, 30.5 kb	4 emblX87202lB B.burgdorferi plasmid, orfA, B, C, D, E, & G	genes, clone pÔMB10	Borrelia burgdorferi B31 BlyA (blyA) and BlyB	(blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB	(blyB) genes, complete cds	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG)	and BapA (bapA) genes, complete cds	3 emblX871271B B.burgdorferi repeated DNA element, 30.5 kb	circular plasmid copy	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi plasmid cp32-4, sequence at	position 4-6kb	Borrelia burgdorferi GrpE protein homologue gene,	DnaK protein homologue gene, and DnaJ protein
	660 gbIU43414l Ba	03	embIX87127IB B.	mbIX87202IB B.	BBRGBCDE ge	33 gblU96714l Bo	<u>එ</u>	276 gblU967141 Bo	<u>(</u>)	498 gbIU42598I Bo	an	mbIX87127IB B.	BPBRGEA cii	2 gblU036411 Bc	03	542 gbIU60642I Bo	<u>od</u>	2 gblM968471 Bo	Ω
	099		560	4		338	!	276		498		3(28		542		2	:
*	388		2	339		554		124	_	<u>1</u> 9		497		193		3		352	
	7		1			П	-	2						1		=		-	
	132		133	134	J	141		141		143		144		146		147	•	153	

TABLE 6.

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Cardia ID	ODE ID	[54==4 (=4)	(04 (4)
Contig ID	ORF ID	Start (nt)	Stop (nt)
2	4	2730	3554
2	5	3559	3410
2		5464	3869
2	13	10502	9999
2	17	13800	13576
2	19	15368	15204
2	28	21155	21400
	50 58	- 41944 53796	42186
2	59	53786	52911
2	61	54816 57393	53773 55813
2	63	57882	
2	65	60898	57682 60203
2	66	61441	62070
2	67	62078	62692
2	70	65896	66540
2	74	70203	69910
2	74	70203	71399
2	80	72956	74032
2	81	73515	73267
2	90	92181	92525
2	91	92968	92555
$\frac{2}{2}$	108	109872	110057
$\frac{2}{2}$	112	112408	112812
2	113	112858	113037
2	114	113035	113460
2	115	113506	113724
2	119	114325	114852
3	6	3279	4079
3	8	5156	6019
3	54	42256	42789
` 3	59	47264	47506
3	60	47673	48692
3	63	51475	51026
. 3	70	60330	60575
3	71	61050	61349
3	72	61347	61670
3	74	63917	64303
3	86	75347	75532
3	88	76593	77384
3	99	89769	89005
3	102	91278	91661
3	103	92137	92463
3	105	92423	92785
3	108	93467	93886
. 3	115	- 98262	98681

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

	· · · · · · · · · · · · · · · · · · ·		
- 3	121	102227	102904
3	126	111308	110055
4	6	3751	4179
4	7	4218	5042
4	19	16115	15516
4	20	17028	16075
4	21	17379	17092
4	22	17735	17397
4	24	19243	18785
4	25	18942	19196
4	26	20677	19259
4	27	19431	19751
4	29	21376	20876
4	30	21899	21423
4	31	22918	21845
4	33	23951	23553
4	37	26253	25627
4	38	26991	26332
4	39	28181	26931
4	40	29175	28522
4	43	30605	30342
4	45	34906	33548
4	48	35750	35932
5	3	2102	1527
5	5	2656	2393
5	7	3460	2900
5	10	6544	5645
5	40	25278	24322
5	41	. 23233	25600
5	42	25665	25276
5	44 47	25881 27883	25663 27410
5 5	48 49	28351 29028	27881 28324
5	50	29028	28324
5	56	32199	31666
5	50 57	32199	32200
5	58	32826	32569
5	60	32826	33245
5	61	33766	33575
5	62	34173	33742
5	64	35514	34861
6	2	954	1181
6	3	1590	1763
6		3400	3954
6		4691	5218
. 6		5187	5699
	l •	310/	2099

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

			•
6	11	6498	5983
6	12	6975	6727
6	14	7978	7448
6	15	8479	7976
.6	22	15106	15636
6	27	19999	18842
6	28	20036	20668
6	29	21814	20690
6	30	20949	21269
. 6	35	24136	23630
6	37	25697	26248
7	8	8100	7792
7	10	8145	8288
7	. 11	9374	8517
7	12	9771	9325
7	13	9652	10185
7	14	10163	9765
7	15	10517	10173
7	16	11363	10524
7	17	11904	11392
7	18	12495	11902
7	19	13516	12473
7	20	12807	13154
7	22	15149	14697
7	24	15855	15046
7	25	15503	15826
7	26	16638	15853
7	27	19344	16636
7	31	19473	19727
7	32	20067	19675
7	33	20762	20049
7	34	21136	20738
7	36	22975	23406
7	40		
8	3	2907	4118
. 8	5	5898	6059
8	6	7399	8313
8	13	15645	15899
8	14	17281	16331
8	15	16905	17111
10	4	3211	3684
10	6	3857	4456
10	8	5982	5599
10	1	8038	7802
10	14	10255	10100
11	7	5688	5828
11	9	7248	7685
L11	9	7240	/003

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

11	10	7672	8028
11	13	9642	10154
12	1	101	370
12	2	982	680
12	3	1390	1115
12	4	1528	1388
12	5	1913	1431
12	11	7308	6616
14	2	3588	3328
14	. 4	4657	4815
14	9	7981	8511
15	1	1	327
15	2	325	1077
15	3	1478	657
15	4	2360	1758
15	5	2839	2507
15	9	3922	3743
15	10	4145	3900
15	11	4112	4270
15	13	7677	6127
15	14	7852	7709
15	15	8052	7825
15	16	8222	7857
16	2	1733	1936
16	3	1905	2063
16	6	5212	4220
16	7	8903	8505
17	2	1500	1709
17	5	4097	4660
· 17	. 7	6344	6189
18	1	1635	2465
18	2	2509	3306
18	3	3332	4390
18	5	4933	4727
18	7	6353	7084
18	8	7098	7625
20	7	4700	4557
22	4	2175	1228
22	5	2132	2314
22	6	2829	2173
22	8	3254	3601
22	9	4408	4169
22	10	4875	4402
22	11	5343	4873
23	2	2283	1537
23	3	3564	2617
25	6	3677	4147

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

26	. 7	4251	3889
28	2	732	1739
29	3	310	885
31	1	28	195
32	3	935	1603
32	.4	1637	2332
37	2	1379	1059
42	4	2708	2388
44	2	1734	1159
. 44	4	2942	2532
47	4	2336	2115
50	1	908	120
52	4	674	501
56	1	152	1465
56	2	611	459
56	3	1479	2150
58	3	1691	1329
58	5	1867	2046
59	2	2018	1044
61	1	1	657
61	3	1389	1907
62	4	1115	1345
63	1	663	325
63	2	769	446
63	3	1759	1013
65	1	472	903
65	2	901	1236
67	1	387	4
67	2	979	401
67	3	1482	961
68		451	612 574
69	3	840 363	
71	· ·	586	933
73	1	300	933
73		824	
73		1396	
79		22	1119
82	1	701	303
82		1188	775
84		331	134
84		983	348
87		277	2
87	2	1136	267
96		434	57
96		748	
97		976	659
	<u> </u>		

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

, 103	· 1	301	2
103	2	. 886	299
105	1	36	509
106	1	425	3
106	3	761	600
112	1	416	799
113	. 1	685	59
118	1	1	489
118	2	. 487	753
120	. 2	299	691
124	1	1	630
127	1	702	322
135	1	287	3
135	2	649	407
136	1	1	645
140	2	619	332
145	1	1	480

(1) GENERAL INFORMATION:

- (i) APPLICANT: Human Genome Sciences, Inc. et al.
- (ii) TITLE OF INVENTION: Borrelia burgdorferi Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 155
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Brookes, A. Anders
- (B) REGISTRATION NUMBER: 36,373
- (C) REFERENCE/DOCKET NUMBER: PB370PCT

(vi) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (301) 309-8504
- (B) TELEFAX: (301) 309-8512

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 910715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATATAATTTT	TAATTAGTAT	AGAATATGTT	AAACTTTACC	CTTGAATTTT	TCTACTCTAT	60
TTGTATATTC	TATAGAAAAA	ACGATTAGAA	TTAAACAAAG	CCATAACTGA	ACCAACGGTA	120
ATTAGTAGAT	AAAGGGATCA	AAATATTTTT	TATTGCAGCA	AGAATACCTT	GGTATATTAG	180
AAAAACCAAA	AGTCATAGTC	AAATÇATCTT	TTGATAAÇAA	TCCCCAAATC	ТАТААТТТАТ	240.
TATGAAATTA	ATTGCTCCCT	TGAAAAGATT	AGTTTTTAAA	ACTACAAGAC	ТАСТАТСААТ	300
CACTATCAGA	TAGATTAAAA	CAACCTTTAC	AAGAAAAAA	TCTTACTACT	ATTTTATTGT	360
AAATGTATTA	TAAAATAAGT	TCATGCAAAA	ACTTACAATT	TTTCACAACA	AACTACAATA	420
AAATCATGTA	AACAAACAAT	TTCTTTGAAA	ATTAAGCAAA	ТТТАТАААТА	ТАААТТАТАА	480
AGATATATAT	TTTTATÁTGA	TCAATAATAA	AAATTAATAG	GATACTTATT	TGGAAAAATT	540
ATTGAAAAA	CAATAAGCAT	GAATTGCCAC	AATAAGCTAA	TTGTCACTTA	ATAATTCTTG	600
TTTACTAGAC	CACATTAGTA	TAAACTCAAA	TATTGGCTAC	TATAATATAG	GGGCTTTATA	660
CGCCACATGT	TTAATGATAA	CATAAGAAAA	TATTGCAATA	ATAAAAAGAT	TGAAATATCT	720
TTATTAGAAA	AGAATCTCGA.	TAATTTAGAA	AACAGAATAA	AAATCATAAC	ТААТАААТАТ	780
AACGTTGAAA	ААААТАТАТ Т	CAAACTTTAA	CTATACAATT	AATTACACCT	TAAAAATGCG	840
ТТАСАТАААА	ATTAAGGACT	АСТАТАААТА	GAAAACACCA	CATAACCTAC	AGACTCTAAA	900
GGAATAATTA	AATCCTCATA	TTTCAGTTCŤ	CCAAAAGTTT	AAATAGGGGC	CTTTTACTTT	960

TCTTGATTAG	CATATACATT	ATTAAAGGCA	TCTTCTTGGG	САСТАТССТА	AACTTTTTTA	1020
CATTATTATT	ATTTTATTCT	ТТАТТАТТАС	AAGATAATTC	AAGAATCTAG	ATTACAAGAT	1080
ATCAATCCTG	CCATTAGTAG	ТТСААТАААА	CATTTAGAAT	АТТТАТАСАТ	TATTTAATGT	1140
ATTTTTTCA	TTTTTGAAAT	AATATTGTTA	TAACTTAACT	TAATAAGATA	TTTGATTTCT	1200
TCAACTTGAG	AATCCGATGT	ACATAGAATC	TGAACATCTC	CTCTGCCCCA	TTTGCCAATA	1260
TTCTTAATAT	ATCTAGTAAA	ACCCTCTTTT	AAAATTATTT	GATCTAGAGC	AACAGTAATA	1320
GTAATATTAA	TTTTATTTAC	CCCAGGTCTA	AAGCTAAAAT	СТАСААААТА	TCCGCCCTGT	1380
ACTTTAAATC	CTGTATAGCA	CTGTGTTTCA	ACTTTCTCAA	TTTCATTAAA	АТТТААААСА	1440
AAAATAAAAT	CTTCTAATTC	TTTATATATT	GCTTTCATAT	CGGAATTTAA	TTTTTCAAAT	1500
ТТТТТТАААТ	TTTCGGTTTT	AATATTATTA	TCTTTTATAC	CAGAATCTGT	GTCATCTTCT	1560
ATGTCACTTT	TCTTGCTGTT	TACTAATACA	TCGCTTTTTT	ТТТСАТСАДА	АААСАТАСТА	1620
AAAATATTTT	TAATAATATC	ATTAAATATT	TTATCTGAAT	ATGTTTTTT	AAAACCAATT	1680
TTAGCTTTAA	AAAAATCAAG	CAAATCAACA	CTTGGATTTT	TTGTTTCCTT	ТТТТАААТАА	1740
GCTGAAAATT	TGTCTGTATA	ТТТТТТТТСТ	AATGCAAAAG	ATCTAGCCTC	TTCAACATTC	1800
AAAGAATTTC	TAGAAAACTT	TTTAAGATAT	TCAAAATCCT	TAGATGTTAA	ТТТТТСТААА	1860
TTAACAACCA	TAAAAGGCTC	ATTGTCTAAC	AAATTATCTT	TATCTAGGTC	AGTATAGAAT	1920
CTATATTCTA	TGCCATCTGT	TAATATACCA	AATTCAACTC	TCTTTGCTTG	AGAACGAATA	1980
TTTTCAAAAT	AAGGTTTTAA	TTGCTTTAGA	TGATTTTCAA	GCTTTTCCCT	GCTATTATGA	2040
TATTTGGCCT	СТАТТААААТ	AGTGGGTTCT	TCATCCTTTT	TTGTTGGATA	AATAACATAA	2100
TCAACCCTTT	TTAGTCCATC	TTTAAGAATA	TCTGCCTTCT	CTTCAACTTT	AACAATTGAA	2160
ATATCAGTAT	GATCATAGCC	CATCGCATCT	AAAAATGGAT	CAATAAGATT	TTGTCTTGTT	2220
TGTGCTTCAT	TTTCAATAAG	ATCCTTATCC	TTTTGAATTT	TTCTACTTAC	AGCTTTTATT	2280
GAATTTTCAA	AATTTATATC	TTTGTATTCA	TTTGGCATAA	ТТАТАТТТТА	ССААТААААТ	2340
ТАААААТТАА	ТААТТСТААА	AATAAATTTC	CAAAATGTTG	TCTATTTTAA	ACTCTTAACT	2400
GATACCTTAA	TTCTTTTTTC	TACCTAATTT	TTTAGTTTAA	AATCTTATTT	TTTAATTTTA	2460
ТТАТТТТТТС	CTTACCTTAT	ТТАТАСТААА	ATTTTTAGTA	TTTAGCGAAT	AATTTTCATA	2520
TCCTTTTATT	AAAGACAAAA	TATGATTTTC	TCTTTTTTGT	TTTTTAATAC	СТТААААТСА	2580
CTAAGCAAAG	TAATAAAGTC	TTCTTTGGTT	AATGAATAAA	AGACTAGCTA	ТААТАААТТ	2640
ATTTTATTTT	тстттастаа	ATTCAAAATG		AGCAAATTAG	AGAAATTCAA	2700

WU 98/58943					PC170S98/127	64
•		3	159			
AGGATCATTT	TTAGCTATTA	GCAGAGAAGT	GTTTTTTACC	AAAGTTAGAC	ATAATGAACT	2760
AGCCAAAATT	TCTTCTTTGG	GTTGAGGCAT	TGGACATTGA	CAAAGAAATG	ATTTTACAAT	2820
GTCGGTATTT	ТААААСАААТ	CTTCTAATCA	ТААААТСААА	TACAGTGCAT	TGAAAATAGA	2880"
ТАТААТАААС	AATTTTTTAT	AAAAAGATAT	TGGTATTTTC	TCACAATTCA	ТАТСТАТТТТ	2940
ATAGAAACAC	AATAATAATT	TTTAGGAGAT	AAAGTGCTAA	TCATGGTTCT	TTCATTTGTA	3000
TTGCTTGCAA	TTCTTCTATA	AAATATTCTT	TCATTTGGGT	ACTGATCATC	TTTAGTTAAG	3060
АТТТТТТСТА	AATCTTCTTT	ATATCCTATC	CATAAAAGCT	TATAACCTTC	TTTTACATAA .	3120
TCATAAGTAA	AAAATCTTAA	ATTAAATTGA	TAGATATTAG	CCCCAGAATA	AAGAAATATA	3180
AAGTTTTCAT	TATTATATTC	СТТТААТААА	GATTTGCGAT	TCTTTATACT	TGGATCTGGC	3240
CCTTTTTTAA	AATTAATATC	TTCTTTACTA	AGAATACTAA	ATGAACTAAA	TATTTTGTTT	3300
AATTTGGCCC	ATGTTTAATT	CAATTCCTTT	ATAAGGATTT	TCTTTGCAGT	CTTTTAAGTC	.3360
TCTAGTTATT	ССТТААТААТ	ATTATCACTA	CTTTGAATAA	CAAATTTTGC	ТТТААААТТТ	3420
AATGTAAAAG	TTTATTACTA	CGAGGAAATA	TCGCAAATTT	AAAACTTGAA	TGCATATCTT	3480
AAAACCTTTT	TTTGTTTTCA	AACTGATAAA	TAAGTTAAGT	TTATAATTAC	ТАААТАТАТС	3540
CTTTCTTAGC	AAGCTAAGAC	CAAATATCAC	AATAGAAGTA	ATTCTCAATA	AAÇAAAATAC	3600
AAAAAGTAGT	TATCATATCG	TCTTTAACCT	TAAATAAGGT	TGCTATAAAC	AACCAAGATA	3660
TTTAATTTCT	TTTAAAACCC	TTATTCAATC	TTTTTAAGCA	TAGGATCTTA	ТААТТАТААС	3720
AATATAATTT	TATTTACATC	тстататтаа	TAGAAAGATG	CAAATATGTG	ATCAAATTGT	3780
TATTTTTGTA	ATATGGAATA	GTCCTTTATA	GGGACGCTTA	ATGCTCTATA	CTTAAGATTG	3840
GAATTCTCTA	TGAAAATATA	TACTCGCTAC	CCATGTAAAG	CTGACTTATT	TTAGCACGTA	3900
TCGCTTAAAC	AATTATATTT	ATATTATCTT	TTATAAAGTT	AATTTTTTCT	TGTAGATTAT	3960
TTTTTAATAA	AAAAGGCACA	AATTACCACA	ACAAGTTCCA	GTATAAATTA	ATAGTTCTTA	4020
TCTCAACACT	AAAGTACATA	AACATCAAAT	АТСАААААТА	TATAAGAACA	ACATACTACA	4080
TTGTTTTAAT	GAAAACCTTA	AAAGGAATGG	ттааастстс	ATTAAGCTAA	AACCAATGCA	4140
AAAATATCTT	TATAAATTAG	CAAAAGAACT	AAAAGTCACA	AACAACTACC	АТАААААТТ	4200
GGTAGTAAAT	TCTGGAACTG	AAATTTACTA	TAAACTCAAT	ТАТТСТАААА	AAAATATTGC	4260
СТТАААТТАА	AGAATGCCTT	AAAAAAACAA	AATGCTCTGA	ТТТАААССТА	TACCCAAAAT	4320
ACAAATTTAC	TAAAGAAGAA	GATATAGATT	TAGAGAAGAT	СТТААТААТА	AAAATATTAA	4380
TATAAAAGTT	GCTCAGTATG	CTAAAGGCAA	AGAGTTTAAG	TCAAGTTTAG	AAATTACAAA	4440
GAGTAAAACT	ATAAACTTCC	TTTAAGAATG	ТТАТТТАААА	TTTATACTTA	CTTGGCTT A A	4500

TATTAAGATT	TTTTTATTCT	TTTCATAATA	ATCTCTTCTA	TCACTTAACA	TTTTGCTATA	4560
CAAAAATCTT	ACACATCTAA	ATACTTTTTA	AAAAAATTTG	ATTAGTGTTA	GAATATATTC	4620
ТАТАТТТАТА	AACTTTATTA	GCACTCATAA	ТТТТАСТААА	ТТААТАТАТТ	АТАТТТААТТ	4680
TATTTTTAAA	ATTTATCTCC	ATTTACCAAA	ААААСТАААА	TAAAACTCTC	CAAACTTATA	4740
ААААААААА	TAAGGCAAAA	CCCCAACAAA	CTCAAGATCT	АТААТАСААА	AATACAATAT	4800
AAGAATCCCA	AGCTTAAAAA	CAACCCCCTA	AAATCTTTTT	TTATTGGCGT	TTTTAAATAA	4860
TGGTAATAAA	GAATTCCAAT	CAACACGATC	CCCCCTACAA	CTTTTCAAAC	CCTATAGCTT	4920
GGCTTTTTAT	ATTATTTTTA	AATTTACATG	TCACAACAAT	AGATAATGCA	TAAAATAAGT	4980
ATTAATAAAA	CAAATACATT	TATAGAACCT	ATACAATTAT	TGAGCATATG	GCTAGTACTA	5040
AAAATGAAAA	TGTACAAGAT	AATATGCTAT	ТААТААААТ	TAATGGCTAC	TAAAACTTTT	5100
GAATCCACAT	TTTTTCTTTA	AAAAAATTCT	AAATTAŢŢĄĄ	AATAAATAGA	AATTAAAATT	5160
ACCAAAAATA	TTATTATAGT	AATAAATATG	TAAAGCTATT	ТТТАТТАААА	CTGATAATAA	5220
АААТАТААТА	GCTAAAATAA	CATAAATTAA	СТТТАААТТА	TATCAAAGAC	TTAGATTTAA	5280
AATATTTAAT	AAAAGGCAAA	GCTATAAACA	CCATATACTT	ATTTTATTAT	TTTTTTCATT	5340
TTATTTAAAT	ТААТТТАААТ	AAGACTCAAT	CAAATAATCA	ATCAAACATA	TTGGGTGAAG	5400
AAAAAATAGG	GTATTCTTGG	TGAATCGTTT	TAAAAGGGGG	TATAGTAAGC	TAAAAAACTC	, 5460
TTATTAAAGA	GGATGTTTAT	AGACTTAAAA	GTCTAATTCA	ATATGAAAGA	GGCTTTTTAA	5520
ÄGCTAAAAAT	GTTAAAGAAA	АТСААА ТТ А А	GCAACAAGAT	GGTTTTGTTT	CTATAAATAG	5580
TTTTAAAGAA	TATATACATT	TGCACATACC	CTTCATTATA	ACATCTACTA	ATTACACAAT	5640
ААААТАААА	ATGATTTATT	AAGAATTATT	AGTAACTTAT	AAAAACTTTA	TAAGTTACAT	570.0
AGTCAAAAAT	ATAAAAAATT	ААААСААААА	ATTAACGATA	TGGAAAAATT	GTATTTTATA	5760
GAAATAGAAA	TATATTTGCA	TTAAACAACT	ATGAATTTAT	AAAGATTCTA	GTAGGAGAGA	5820
AAATATGAAA	AAAAAAAATT	TATCAATTTA	CATGATAATG	CTAATAAGTT	TATTATCATG	5880
TAATACAAGT	GACCCCAATG	AATTAACTCG	TAAAAAAATG	CAAGACAAGA	ACGTGAAAAT	5940
TTTAGGATTT	TTAGAGAAAA	TTCAAGCAGA	TAATAAAGAA	ATTGTTGAAA	AACATATAGA	6000
AAAAAAAGAA	AAACAAATGG	TGCAGGCTGC	TTCTGTAGCA	CCTATTAATG	TAGAGAGTAA	6060
TTTCCCATAT	TATCTTCAAG	AAGAAATAGA	GATAAAAGAA	GAAGAGTTGG	TTCCAAATAC	6120
TGATGAAGAA	AAGAAGGCAG	AGAAGGCAAT	TAGCGATGGG	AGTCTTGAAT	TTGCTAAATT	6180
AGTTGATGAT	GAAAATAAAC	TTAAAAATGA	ATCTGCGCAA	TTAGAATCTA	GTTTŤAATAA	6240

TGTTTATAAA GAAATCTTAG AACTTGCAGA TTTAATACAA GCAGAGGTGC ATGTTGCAGG 6300 AAGGATAAAT AGCTATATAA AAAAAAGAAA GACCACTAAA GAAAAAGAAT ATAAGAAGAG 6360 AGAAATTAAG AATAAGATAG AAAAACAGGC TCTAATTAAG TTGTTCAATC AGTTATTAGA 6420 AAAAAGAGC GATATTGAAA ATCTTCATAC TCAATTAAAT AGTGGACTTA GCGAGAGAGC 6480 ATCTGCAAAA TACTTTTTTG AGAAAGCCAA AGAAACTTTA AAAGCTGCTA TTACTGAAAG 6540 ATTAAATAAC AAACGTAAAA ATCGGCCATG GTGGGCAAGA AGAACACATA GTAATTTAGC 6600 AATACAGGCA AAAAATGAGG CAGAGGATGC TTTAAACCAA TTAAGTACTT CTTCTTTTAG 6660 GATACTTGAA GCAATGAAAA TAAAGGAAGA TGTAAAACAG CTTCTTGAAG AAGTAAAATC 6720 TTTTCTAGAT TCTTCAAAGA GCAAAATCTT TTCTAGTGGC GATAGATTAT ATGATTTTTT 6780 AGAGACGAGT AAATAAAAAA ATATATTTTA AAGGCTAATA ACTTAAAATC AAAGTCTTCT 6840 GTTAAAGGAA GACTTTTTTA TAATTTTATT TAAATAACGA AAAGCTTGAT AGTTAAAAAA 6900 TCTTTTTTAT TAAAAATATG TTTACTAAAC AGAGCTCAAA AATGACTATA TTTAGTATCT 6960 CTATAAAAGA ATTTTTCAAT ATTTTAAAAA ATTTATAGAT AAACATAATC TAAAACCATG 7020 CATTAATACA AACCTAAAAC ATACTTGGTC ACTTGTAAAA GTAAATTGTA TCTAACTTTT 7080 TTTATTTATT GAATATACGT AAAAATTCTT TATAATTTCT ATTTTAAAAC GCTGCTATTT 7140 7200 TTACCCTCTG TTCTAATCCT ATCAAACAAG GTAATAAATT CTTTAAATTT CTAAAAGCCT 7260 AAACTTTAAA AGAACTTGTC GAAAATAATA TTTCTCTTAA AAAAGGTTCT AATCTTTTAT 7320 TTATAAGAAC TTTTATACTA TTATAAAAAT GTATCTTGCC TTGATATATT TGTATTCTTT 7380 ATAAATCAAG CCTTCTACTT TTTTTAAGAA TATTTCTATT TTTTATAAAC TAGTTTTCTA 7440 CAATAGAAAA GAAATAACCC AAAGCCCTAA AAACTTAAAT AAATGTTAGC TATAATAACT 7500 AAAATAGAGA TAAAAAACTC AATCATAAAT AATGGTAAAA CAAACTTAAA CCACGTACCA 7560 TAACTCAATC TGGATATCCC CAATACAGCC ATTATAACTC CGCTGGTAGG TGTTATCAAA 7620 TTAATAAGCC CAGATGCAGT CTGCATGGCA ATAACAACTG AAGCTCTTGG AATTGACAAA 7680 AAATCGGCAA GAGGAGCCAT TATTGGCATA GTGAGACTAG CATGTCCTGA TGAAGATGGA 7740 ACAACAAATC CTATAAATAT TTGAATAATT TCATTCAATA TGATAAAAAG GGGTCTTGGA 7800 AGATTGTATA AAAAATTAGT AGCAGCATTT AACATAGTAT CTGTAATCAA CCCATCATCA 7860 CATACTATCA TAACACCTCT AGCAAGTCCA ATAACAAGAG CAGCGGTTAG CAGACTTTCA 7920 GAACCTTTCA CAAACGCATC CCACATTTCA GTTTCACCTA ATTTACAAAT AAAAGCCGAT 7980 ATAATAGCAA CTCCAAGATA CAACATTGTC ATTTCTTGCA TCCACCAACC AAGATTAACA 8040

ACTATATTTT TACCTTTAAG	DEDUCTOR CO.	163	CA MA MOMBO	GRAMMAN A A	0040
ACTATATTT TACCTTTAAG	TTTTGCACT	TCAATTCCTG	CATAT-I-I-IGA	C'I"I"I"I"I'AAA	9840
TTAATCGATA AATCAAGTAA	ATATTTAATA	TCTTTGCTTG	ТААААТСТАА	AAGATTTAAA	9900
AAGCTCCTAT TTCGTAAATT	ATACATCAAC	CACCAACCTT	TACAATCAAG	TTTTTAAAAA	9960
CTCATTTAAC TCATGCTTAA	ACATGCTTAA	ATATTAAATA	TCCTCTCTTA	CTAAAGACAT	10020
AGACATGCAT CTTGGCCCAC	CACGACCCCT	TGAAAGCTCG	CTAGACGGAA	TTCTGTGAAC	10080
TTTAATACCA TTTTCTTCAA	ACAGCTTATT	AGTTACATGA	TTTCTAGAAT	AAGCAATTAC	10140
TTCTCCTGGA GCTATCGCCA	AAACATTAGC	ACCATCATTC	CATTGTTCTC	TTGCACCATG	10200
TATTAAATCT CCACCCGCAC	ATTTTATTAT	GTCAATTTTT	CTGCCTAAAT	AAAAGCTCAA	10260
AACATCTTTA AGCTTGGCTT	TTTCTTTTT	AATATTAATT	TTATTAGAAT	TTGAATTGTA	10320
AGTTAAAACA TAAATTGAGA	AATACATATC	ATCACTTGTA	AAACTTGTAA	AAACGCTATA	10380
ATCAATTTGG GTAAAAACTG	TGTCTAAGTG	CATATAGGCT	CTGTTTTTTG	GAATTTTAAA	10440
AGCCAAAATT GTGCTAAATG	GAGCCTTATT	TTTAAAAAGA	CTAGCAGCTA	GTTTTTCTAC	10500
AGACCCCGCT TCTGTTCTTT	CTGAGATTCC	AATAACCAAA	AGATCTTTAT	TTAAAACAAA	10560
CTCATCCCCA CCTTCCAAAG	AAGTTTCTTC	CCATCTATTA	AACCAAATTG	GAACATTTTC	10620
TTTGTAAGCG GAATGATATT	ТАААААТАТА	CTCTGCAAAT	ATTGTCTCTC	TACGTCTAAC	10680
CTTGGTATAC ATTTTATTTA	TTGTAATTCC	ATTGCCAATA	CTGGCAAAAG	GATCTCTGGT	10740
AAATAAAACA TTGGGCATAG	GATCAATAAC	AAAAAGACTT	GAACCATTAA	CCCAATCATC	10800
AAGCGAAAAT TCACAATCTT	TAAGCTCTTC	TCTTGCAACG	CCGGAAATCA	TTTTAGAAAC	10860
CATATTATCA ACGGTTAAAT	TAGAAAAATA	ATCTTTTAAA	ATATTAATTA	CACCATCTGT	10920
TTTTATTTCT GCTTCCAGAA	TAAATTGAGA	ТАТАААТТТА	TTTTTGAGCG	CTACAGAAGA	10980
AGCAAGAACT TCACTAACAA	GATCCTCAAC	ATACTCAATT	TCAACTGAAT	TATCTTTTAA	11040
AATATTTACA . AAAACTTCAT	GCTCTTGTCT	TGCAACTTTA	AGATAAGGAA	TATCATCAAA	11100
ТАААААТТТ ТТСАТААТСА	AGGGTGTCAA	ATTTTCTAAT	TCTTCTCCTG	GCCTATGAAG	11160
CAAAACTTTT TTCAAACGAC	CTATTTCCGA	AAATATATTT	ATTGGATTTA	AATATTCTTC	11220
TTCCATCGAT TTCCCCCTTT	ATGAAAATTG	TCATATATTA	AAATACTATA	GTTTATATTA	11280
AAAAACATCA ACTATTTTTA	ATAATATTAA	АААТАТААТА	ТАААТАТААА	AAATTGAAAA	11340
AATAAAAGTT CTAAAAAACT	TCAAATCAAA	AACATAAACA	AAAAATTATG	СТААААТАСТ	11400
AATCATGAAG AATATTAATA	GATTAATATT	АТТААТАТТА	ACTACACACA	CTTTATTATT	11460
CTCTTGTGCC TTAATTGCAG	ATAATAAGTC	АААААТТ ТА	AGCACATCAG	AAATCATATT	11520
AACACAAAAA ACACTACTAG	AAAGCTCTTT	ААТААААААТ	CCTTCTAATG	TAGAATATCG	11580

AATACCAATA	TCCAGTATCC	AAGAAATTTT	AAACAATAAC	AATGATTCTT	ТТТТААТААА	11640
AAAAACAGCA	GCAAAAATCA	AAATAAGCCC	TCAAAAACTT	GAAGAAATAA	AAAACTATCT	11700
AAATGCTTAT	AAAAATTATC	TAAATAATGA	AACAGAATGG	ATAAAGTTTA	TAGATCAAAG	11760
TAGCGTCAAT	GGAAATTTAA	CAATTAAAAT	TGATACTGCT	TTTGAAAAA	AAACAAATTT	11820
TAATCATACA	AATTCAGATA	ATGAAAATTT	AACAGAACTA	ATAGAACTAC	AAATGCATCT	11880
GGAAAAAGAA	ATTTTAAACT	TAATTGAGCA	AACATTTCAT	GATAAAAATT	TAGGATATAT	11940
ACAATTAAGT	CACATCAACT	CATTCTTTCC	TCAAGAAAAT	ATAAACTCAA	TAACAAAAGA	12000
AATAATAGAT	GGAAAAGAAT	ATATTGCACC	GCACATAATA	GCAAATCAAT	TATTAAAAAT	12060
AAAAGATAAA	AAATATTTTG	AACAATTTAT	GCACTTTTTA	AAAGTTGAAA	ACAGCAAAAT	12120
AAAAACAATA	ATTGAAAAAC	AAAAAATTTC	AGATCTTCAC	AATGAACTGT	ATTATTCAAA	12180
ACAATCCCCG	CCCAGAAGAA	GAAAAAGGTC	AACTGCCGAT	TCCGATAATA	АСААТАААТА	12240
CGATATAATA	ССАААААТАА	TAGACCCAAA	TACAGGCATT	GAAATAACTC	СТАААААТТТ	12300
AAGATCTATT	TTATCAAATG	GCGACATAAT	АСТААТАААА	CCAAAAATAG	ATTGGACAGA	12360
ATTTTTTAT	TTTTGGCAAC	ATGTGGGAAT	ATTTGATGAA	GAAAAATATG	AAGCCACTAA	12420
AAAAATTGCA	TTCAATGGAA	TTGATAGCTT	TGATATAAAA	TCAATAATTA	CAAGCAATCA	12480
AATCAAATTC	GATACAGCAT	CTACTCAAGG	TTCAGGATAC	GAAAAGCTTT	CAACATACGT	12540
ACAATCAAGA	АТАТТААААА	TATTCTCACC	AATAACAGAC	ATAAGAACAA	TTCAAAAAGC	12600
ТАТТААТТТТ	GGAAGAAGTA	GATACATTGA	CAATAACTTT	GGATATATGG	ТТССАТТААТ	12660
АТССТСТААТ	TTATGGACAG	ATTCATTCAA	TCTTGAAGAA	ATTCACAACA	AAACCTATTG	12720
CTCTTTAATG	GTTGATAGAA	ТАТАТААААТ	AGCAGGACTT	AATGTATCAA	GAAATTACGA	12780
AATTTCGGGA	ATAATTACTC	CTGGAGAAAT	AAATGCAGCA	GCTTACAATT	TTTACATGTC	12840
TTATACGATT	GCAGGAATAC	TTCCAAGCGT	GCTTCCAAAA	AGGCTCATTA	AACCAACATT	12900
AAAAGAAAAA	TTCATTGGTT	ACAATAAAGA	AATAGTAGAT	GCAATAGAAT	TAAAAAAATC	12960
GAAAGAAAAA	ATTTTTGGGA	GAGCTTGCAA	CATTACAAAT	CTCTGGTGCT	CAGGAAGTTA	. 13020
ATACTACCCA	TGAACAAATA	TTATGCCTGT	ATTTTGATTA	ACAGCAATGA	АААААТТАТТ	13080
ТТСАААТССТ	GGGAAGAATG	CAAAACCGCT	ATTAAAGGAA	AAAACAATAA	AATAAAAGC	13140
TTCAAAACAA	TAGAACAAGC	TCAAAATTGG	CTATTTAATA	ATGAGAATAA	AATTCACCAT	13200
CACCCAAATG	GAATATATTT	TGATTCTGGA	ACGGGAAGAG	GAAAGGGCAT	AGAAATTAGA	13260
GTTGTAAACG	AAAAAAGAAT	ттсаататтс	GATAAÁATCT	TAGATAAATC	CTTGATTAAT	13320

		1	165	· ·		
GAATATGGAA	ATTATTATGT	CAAAAATTTT	CAAGGAATTA	GCAATAATTT	TGGGGAACTG	13380
CTTGCCCTAT	ATACAGCTCT	CAAAATAGCA	TTAAAAGAAA	ATATAATAAA	CATATTTGGG	13440.
GACAGTAAAT	TAATAATTGA	CTATTGGTCA	AAAGGAATCT	ATAATAGCAA	AAAATTAACA	13500
САААТТАСТА	ТТААТТТААТ	CAAAAAGACA	ACTGAACTAA	GGAAAAAATT	TGAAGAACAA	13560
GGTGGAAAAA	TTTCTTTTAT	TCCAGGAAAT	GAAAATATTG	CAGATCTTGG	TTTTCATAAA	13620
ACTAAGTAGA	AATATTGTCA	AAAAATACAT	AAAAACAATA	TTTCTGATTT	CAATGGTTTA	13680
TTTTTATTGT	TGTACGACAA	TAAAAATAAA	CCATGATTAT	GAAACTGATT	TTAAAGTTCT	13740
AGAATCTCCC	TCTAAATACA	TCAATATAGA	TGTAATTAAA	GCTACAAATG	AATATATTTA	13800
TATTCAAATT	ACAAACAATA	GCTTAGACGT	AGTAAAAATA	AATTGGCAAA	ACACTAGTCT	13860
TAACAACGAT	AAGATCGTCT	TAAAAAAAGA	AGATCTTACA	ATAAACAATG	AAACAGGGTA	13920
ТААААТААА	TACAGAGAGT	TTTTTATTGG	TCCTAAAACT	ТСАТТТАААТ	TTAAAGTATA	13980
TCCACTAÁAA	ATTCATTCTA	ААААСААААА	TAGCAATAAC	TTAAGCTCAA	СТАТТАААТА	14040
TCCGTCTATT	TTTAAGCTCA	ACATAACAAA	AGTAGGAATT	GAAGCAAAAA	AAACAATAAA	14100
TGTTTTAATA	ACAAGAACTA	САААААТТАА	TATTACTAAT	AAATGAAAAT	САТТАТТАТТ	14160
TTTTTGTTTT	TCTATTAATA	ATAAACTCGT	AGTTTGTATC	TTTGTTGTTT	TCAAATGACG	14220
CTTTTATAGG	AGCAAAAAAG	TTCCAAGAAA	TATAAATTGT	AAAATTATTT	CTCCAAATAG	14280
GAGAATAAAT	CCCATCAGAT	ССССТТААТА	AATCTGGTTC	TAAATTATAT	TCTCCAACAA	14340
ATTTCCAATC	ATAAAAATTG	AATTTAAAGC	CTGATGAAAA	ТТТТТТААТТ	TTAAAAAGTG	14400
AATCTŤTTCŤ	GTCTTGAGAA	TTAAAGAAAT	TGAAAGATTT	TGATAAATCA	ACAAAGAAAT	14460
TAACAGGTTC	TAGACCAATT	TGGTCCATAT	ACCCTTTAAA	АТАТТТАААА	GTCTTAGTAT	14520
TAATAGATAA	AGTAGAAAAG	ТАААТТТСТА	AAAATTCTGT	ATATTTAAAC	TTCAAAGTCA	14580
ATGCAGATCG	AAGTTCATTA	TCCGTAAATT	TCTGCAAATT	TATTTTCCAA	CCAACATCTA	14640
CCCCCAAGGT	AAAAGAAAGC	TTATTGTCAA	AAAAAGTTAA	AACGTACAAT	TCCTTTTTGT	14700
AACTAGAATC	TAAAGAATAT	GGAACAAGTT	TGGTTGTAGT	ACCAATCTTG	GAAAAATCTC	14760
CTTTTAAAGG	АТСАТААТТА	TATTCAAAGT	CGTCTTTCAT	AGCAAACAAA	AATTGAAAAT	14820
CAAAAACATT	AAGCTTAAAA	GAAAGTTCAG	AAACTCTATT	TATCAAAGGA	TCATAGGCGA	14880
СТААААААСТ	AAATTTAAAA	TAATCCAAAT	ATCTCGGCTC	AATTTTATAA	TACAAAGCAG	14940
GAGACATTTC	TAAATTTTTA	TAAGGCGATG	ATGGTTTTTG	AGGCTCCAAA	GGACTTTGAA	15000
CAGCAGAAAT	TCCAGAGTTT	TTCATAGCAT	CTTCTTTAAA	СТТТТТАТАА	TATTTAATTC	15060
CAATCCCAGC	TTCTTGTAGC	AAATAAGGAA	AATCTAAAGA	AAGTTTAAGC	TCAGAAGAAG	15120

	*		100			
CTTTAATATC	ттса'аааста	TTTTTTAATT	CACCTGAAAG	CTCAGTAGTA	AAATAATCAT	15180
AATCATAAAT	TAAAGAGGCT	GTTAAACTTT	GATAAAAAGT	TTCCGGATCA	GATAAAAAAA	15240
TACTACTATT	CTTATTAACC	AAAGATTTTA	CATCAGAATC	ATATTTTTTA	TTAAATGAAT	15300
ATAAAGTAGC	CTTATTTTCA	AACTTTAA AG	TACTTCTAGA	AAATAAAGGA	TATCTAATAA	15360
AAGGAAGÇAA	GTTTAAATTT	ÁTTTGGTTAA	TAATAGAGTG	CTCACTTTTT	TTATCTTTAT	15420
CTTCAACTTT	AAAATCTTTA	TTTAAAGGAC	TATACTCAAT	AGTATTAAGA	ТАТААТАААТ	15480
TTTCAAAAGT	AATTAAACGA	TTGTAAAAAT	CAGCATGAAT	TTTTATATCC	GTTTTATTT	15540
ТТАТАТСААА	TAAATAATTT	TTTATTTCAT	AATTAAAGTC	CTTTGGACTT	GTTATGCCAT	15600
AATTATCÁAA	AAAAACATTA	TTTCTTAAAT	AAGGATTAAT	GCCAAACCTA	ATAAAAAAAG	15660
AATCGGATTG	ATCAATATTT	TTTAAAGTAA	TTGGTTCTGG	AGGAATATAT	AAATCTTTGG	15720
TTAATTCTGT	TGTTTTTTTA	GTATTTTCT	CCTTCACACT	CTTTTTATCA	TTATCTTTAT	15780
CTTCTAGATT	TTTAATTTCT	GGGCGCATTA	TCATTTCTTT	AGTATCAGCT	GGAAATGTCC	15840
ATTGGTTATT	GTAAAGATCT	ТТТТСААААТ	TCAAATCAAT	ATATGGAGCA	ТАААТТСТСТ	15900
ССАААТАААА	CCATTTTCTT	GTAGGATCAT	TAACATCTTT	TGGTTTCTCT	AAAGGAGATT	15960
TAACATAAAG	ATTTTCATAG	CCCGACAATT	ТААААСТТАА	ACCTAAATTA	TTTAATTTAT	16020
AATCTAAAAT	CGAACCGTCA	TTAAATGTTC	GCTTATAAAA	AGAAGATAAA	TTCCAATCAA	16080
AAGTGCTAAT	GCTAGTTTGC	TCTTTAACCG	AATCTTTATC	TAAATTTAAA	AGAGAAAAA	16140
ATGTAGCACT	TTCTATCCTA	TCTCTAAAAT	СААТАТТААС	ATACGGGTCA	GAATAGTGCT	16200
CTAAAACAAC	CGAGAAAAGT	GCATCACTTA	AAAGAAATTC	TGTTTTAAAT	TTAAATAAAT	16260
ATCTAAAAGG	AACTTCAAAC	CCAAATACAT	CTCCTTTGTT	AAGATTGGAA	АААСТААААА	16320
GAGATTGTTT	TAAAGTCCTA	TTATCAAAAG	GATAATATCC	TCCATCGTAA	СТАТАААСАТ	16380
TCCTGGTAAA	ACCCAATCCA	AAATTTCCTT	CCAAAGTTTT	AAAATGCCCC	AAAGTATTGC	16440
ССАААТТААА	ATCAATTCCA	GAATAAAATC	CCAGATTAGC	ATAAATGTCA	AAAATAAGCT	16500
TAACATAATC	TTTATTAACA	CTGGGTGCTA	AATTTTCTGC	AAAAAATAA	GTTAAATATC	. 16560
CATTTCTTAT	ATAAGGTTTT	TTACCCGAAT	TATAAACAGA	ATTGAAATCA	АААТССАААА	16620
AAGAAGAATC	TTCACTTGAA	GATTTATTAC	CAAAAAGATA	AACGGTATTA	AAAACAGAAA	16680
AACCTTTTCG	TGGATTTAGA	CCTAAAGATG	GATTAAAAAA	CAAACTATCT	CCCGGTCTGA	16740
AAAAAAAAGG	ААТАТААААТ	ACTGGAACTC	TTCCCATGTA	AAATATGGCA	тттааааасс	16800
СААААТСТСС	CGAGGGCAAT	GCCCATATTT	TAGAAGCCTT	GATTGAATAG	TAAGGCTCTG	- 16860

GAATTTTACT	AGTTGTTGCA	ÄAAGCTTGTT	CCAAAATGGT	AACATCATTG	TCTATCTTTT	16920
TTAAAACCTT	TCCTCCAAAC	GAAAGAATAT	GATCTATTTG	ATTTTTTTGC	ATTTTTTTT	16980
GAAGAATACC	АТТТТТТААТ	AAAAAATTTT	GAGAATCAAA	ATCGACAAGA	AATTCATTGC	17040
САТААААТА	AAGCTTTTCA	TTGGTATCCA	TATCAAGAAT	ATATTCAACA	TTTCCAATAG	17100
CATAAAGTTT	TTTAGAGTTC	TTATTAAGGA	CTATTCTGTC	GCCTTTAATA	TTGTGCTTTT	17160
TATTTTCTTT	AATATCTTCA	ACCAAGATAT	TAACTCTTCC	ттсааааата	ATACTTTCAT	17220
CTTTAGTAAG	TCCATAAGTG	AAATTTTCAA	GATTATCTGC	- AGTTTCAATG	ATTATTTTAT	17280
ATCTACCAGA	TCCGGCAAGT	CCCTTTCCTT	TGATAAAAAG	CTCAGGATCT	ATTCCAAACT	17340
TTTTTAAAAG	CAATTCTCGT	ATTTTTGAAA	CATCTGTTTC	TTTTAAACCC	TCTTTTAAGG	17400
CCCATTTTTT	TAAATCCTCA	TCGGTTGAAA	GCTCAAGTTC	TCTTAAATAA	GATTTTTGAC	17460
TTAAAGTTAG	CTTATCCCTT	TTTTTAGAAT	TTTCATCATC	TATAGTCTGG	GCAAAAATTG	17520
CATTAGAAAA	TGTTAAAAAA	ATTAAAAATA	CTATAAAAGA	TTTTTTAAAA	ACATTCCTGT	17580
ATAGGAATTC	TCGCATTTTG	CAACCTCTTC	AGGAATACCA	GAAACAACGA	TATTTCCCCC	17640
TGCCAACCCA	CCATCAGGAC	CCAAATCTAT	ТАТАТААТСТ	GCCTGTTTAA	TTACATCCAA	17700
ATTATGCTCT	ATTAGTACAA	CTGTATTACC	ATTGGAAACT	AACCGCTGCA	АААССТСТАА	17760
CAACTTCTTT	ATGTCATCAA	AATGCAGCCC	AGTTGTTGGT	TCATCAATAA	TATAAAAGGT	17820
TTTACCCGTG	CTCTTTTTAC	TTAACTCAAA	AGCCAACTTA	ATGCGCTGAG	CTTCTCCTCC	17880
TGATAAAGTT	GTTGCAGATT	GTCCTAATTT	AATATATTCA	AGTCCAACTT	СААТТААААА	17940
ТТТТАААТАА	TGACTAATTT	TTGGGACATT	CTCAAAAAAT	TTACTTGCCT	CAAAAACACT	18000
CATCTCTAAA	ACATCATGTA	TATTTTTCC	TTTGTATCTA	ACTTCTAAAG	TTTCTTCATT	18060
GAATTTTTTA	CCCTTACATA	AATCACAAGG	AACAAAAACA	TCTGGTAAAA	AATGCATTTG	18120
AATATTAAGA	TACCCATCTC	CTTGACATTT	CTCACACCTT	CCACCTTTAA	CATTAAAAGA	18180
AAATCTGCCG	GCTTTAAAAC	CCCTTGACTT	TGCATCTGGA	AGCTTGGCAA	AAAGCTCCCT	18240
AATTTCTGTA	AAAAATCCAA	CATAAGTTGC	TGGGTTTGAT	CTTGAAGTTC	TCCCTATTGG	18300
TTTTTGATTT	ATTTGAATAA	TTTTATCGAT	TTTTTCATAC	ССААСААТАТ	CTTTAAAGCC	18360
ATCACAATAC	ТТТТСАТТАА	GCTTTAATCT	ACTATCAAGA	GCTGGATATA	ACACCTCGTT	18420
AAGTAAAGTA	CTTTTTCCGC	TACCAGAAAC	ACCTGTTATT	ACGGTAAAAA	CTCCCAAAGG	18480
GATACTTAAG	TCTATATTTT	TAAGATTATT	TTTATTAGAG	CCCAAAAGCA	AAATTTCTCC	18540
CTTATCTGCC	TTTCTTCTAG	AGCTTGGAAC	ATCTATTTTA	AACTTGCCGC	TAAGATATTG	18600
ACCAGTTAAA	CTATTTTTGC	ТАТТТААААТ	ATCAATCAAG	GCTCCCTTTG	CAACTATTTC	18660

CCCTCCAAGA ATTCCAGCAC CAGGACCCAT ATCAATAATA TAGTCCGCAG TACGCAAAGT 18720 TTGCTCATCA TGTTCAACAA CAATTACAGT ATTACCAAGA TTTTTAAGAT TAACAAGAGT 18780 AGAGATTAAT TTTTCATTAT CTCTTTGATG AAGACCAATA CTTGGCTCAT CAAGAACATA 18840 AATAACACCC GAAAGTGCTG ATCCTATTTG AGTAGCAAGC CTAATACGCT GAGCCTCGCC 18900 ACCAGATAGA CTACCTGATA TTCTATTTAA ATATAAATAA GAAAGGCCAA CATCAATTAA 18960 AAATTTAAGC CTACTTTAA TTTCCTTTAA AATTTCTTTA GATATTTTTT CGTCCACCAT 19020 ATCAAGCTGC AAGTTTTCAA AAAATACATA AGAATCAAAT ACTGACAAAT TGGTAAGATC 19080 TTGAATGTCT TTTCCATTAA TTTTCACAGT TAAAGCTCCA ACGCTTAGGC GTTTACCTTT 19140 GCATGAATTA CATATTTTT TAGACATCAA ATTTTCGTAA AAAATTTTAG TACTCTCTGA 19200 TTCTGTTGCA AGATATCGCC TTTTTAAAAG GGGCAAAAGT CCTTCAAATG TTTTAGAATA 19260 ATGAAATCCT CCATCTAGCT CTTTTGCTTC CATTTCTTTG GACTGGTAAA TAAAATCTAT 19320 TTTTTCATTT GAGCCGTATA AAATCTGTTT AAGAACTTTA TCTGGAATGT CTTTTATGGG 19380 AGTATTTAAG TCAAAATTAT AATGTTTAGC AAGTCCTTTA AAAATAGCCA CAGACCAAGA 19440 TGAACTTGTC TTAAACGTAA GAAAAGCATC ATCATTAAAA GAAAGACTAG TATCAGGACA 19500 AATGCTCTCA AAATCAAACT CAAGTGTAAC GCCAAGACCA GAGCACTCAC TGCAAGCACC 19560 AAATGGACTA TTAAATGAAA AAAGTCTGGG TTCTATAAGA GGAAGTGAAA ATCCACACAA 19620 AGGACAACTG TTGTGCTCTG TAAATAGTTT GTCTATTTTT TCCAAATCAT TATCAATTTC 19680 CACTCTTAAA TATCCATTAG AAACAGCAAG AGAAGTCTCA ATAGATTCCG CAAGTCTAAC 19740 TCGAACATTA TTACCAAGCT TAATCCTATC AACTATAATT TCAATGGTAT GTTTTTTATT 19800 TTTATGTAAA TTTAAATTAA GTGCATCTTC TATTAAATAA TCTTCAGAAT TTATCCTAAC 19860 TCTATTAAAA CCTTGATTTA ATATTTTTC TAAAACCTTT TTATGAGAGC CTTTAGACCC 19920 CCTTACAATT GGTGCAAAAA GTATAACCTT GGATCCTTCA GAATAACTTA AAATAGTATT 19980 AACTATTTA TCTAAAGATT GCTCTTCTAT TAATCTACCA TCATTTGGAC AGTATGCTTT 20040 ACCAATTTT GCAAATATTA GTCTATAGTA ATCATAAATC TCAGTAATTG TTCCAACAGT 20100 AGAGCGGGGA TTATTGCTTA TTGTTCTCTG CTCAATAGCT ATAGAAGGAG AAAGTCCATC 20160 TATATAATCA ACATTGGGTT TTTTCATTAC ACCTAAAAAC TGCCTTGCAT AAGCTGAAAC 20220 AGATTCCATA TACCTTCTTT GCCCTTCTGC AAAAATAGTA TCAAAAGCCA GAGAAGACTT 20280 GCCAGAGCCA CTCTTGCCAG ATATTACAAC TAAACCATCT TTTGGAATAT CTACATCAAC 20340 ATTTTTAAA TTATGTTCTT TTGCTCCTCT GACAATAATT TTTTTTTTCA AACTTTTTTC 20400

•			169			
CAAAAATTAC	ACCTCTCTTT	TTTTATTACG	AGCTATACTA	ATTTTGCTAC	TAAGCTCTTT	20460
TATTTTATCT	СТТААААСАА	TTGCGTCTTC	AAATCTTTCA	TÇATTAACAG	CTTCTTCTAA	20520
GTCAAATTTA	AGCTTATCAA	TAAGCTTTTT	TTTAGACAAT	CTCTCACCCG	AAATAATTTT	20580
TTCAAAATCA	TAGCCAACAT	TTTTATTTT	ATTATTAAGT	TCCTTTTCTA	AAATATTTTG	20640
AATCTTTTTA	ACAATTGTCT	TAGGAGTAAT	ATTATTTTTT	ТТАТТАТААТ	CAATCTGAAT	20700
TTGACGTCTT	CTATTAGTCT	CCTCAATTGC	CTCCCGCATA	GCTAAACTAA	TTTTGTCGTA	20760
ATACATTATT	ACAAGTCCAT	TAGAATTTCT	AGCAGCCCTA	CCAATTGTTT	GTATTAATGA	20820
AGTAGTAGAT	СТТАААААТС	CCACCTTATC	AGCATCTAAT	ATTGCAĄCAA	GAGATACTTC	20880
TGGAATATCT	AAGCCCTCTC	TAAGCAGGTT	AATCCCAACA	ATAACATCGA	TTTCAGATTT	20940
TCTAAGCAAC	GAAATAACTT	CÇACTCTCTC	AAGGGTATCA	AGCTCTGAAT	GTAAATATTT	21000
TGCCCTTACG	CCAAGATTTA	CCAAATATTC	AGTCAAATCC	TCAGACATTT	TTTTTGTCAA	21060
AGTAGTAATT	AAAACCCGCT	CTTTAAGAGC	CACTCTTTTT	TGAATTTCGĊ	TGTAAAGATC	21120
TTCCATTTGC	CCATCAGAGT	GCCTAGTAAT	AATTTCAGGA	TCAACAAGAC	CTGTTGGACG	21180
AATTATTTGG	TCAACAACCA	CACTACTTTT	CTCATTCTCT	TCAACACCCG	GGGTTGCAGA	21240
TACAAACACA	ACCTGATTAA	TTAATGCTTC	AAATTCATCA	TATTTAAGAG	GTCTGTTTTC	21300
AAGCGCTGCA	GGAAGTCTAA	ACCCAAAGTT	AACAAGATTT	AATTTTCTAG	AATGATCTCC	21360
ATTATACATT	CCCCTAAATT	GAGGCAATGT	AACATGAGAT	TCATCTACAA	АТААТААСТА	21420
ATCTTTCGGA	AAAAAATCAA	AAAGACAATA	AGGTCTTTCC	ATTGTACTTC	CACTCAAATA	21480
TTTAGAATAA	TTTTCAATGC	CCGAACAAAA	CCCTGTTTCT		ССАААТСАТА	21540
CTCTACCCTC	TGTTTGAGTC	TCTCGGCTTC	TACAAGTTTG	CCATTGTCTT	TAAAATATTG	21600
ACATTGAAGA	CTTAAATCAT	GAGATATTTT	GGGTATCGCT	TCTAATACAT	TTTCATAAGG	21660
AATTACAAAÁ	TAAGATTTAG	CAAAAAGAGT	AAAACTATTT	GTAGCTCCTA	AATTTTTTTT	21720
AGAAAATGAA	CTAACTCTAT	ATATTTCAAC	AATTTCATCA	AAATCTAAAC	AAATTCGATA	21780
AGCAAACTCT	CCATGTTCAC	TGCTAGGCCA	AATŢTCAACA	ATATCTCCCT	TAATCGAAAA	21840
TTTATCTCTT	TCTAGATTCA	TTAAAGTTCT	СТСАТААТАА	AGCTCTACAA	AAATATCTGA	21900
ТАТТТСТТТА	ATAGAAATCT	TTTGACCTAC	AAAAAATTCT	CGTGCTGATT	ТТТТGAAAAA	21960
ATCTGGAGAT	CCAAGAGCAT	AAATTGAAGA	TACGGTTGCA	ACAACAATTA	CATCTCGTCT	. 22020
TTTAGCAAGA	GACGTTACCG	TTCTTATTCG	СТТААТТТСТ	ATCTCAGTAT	TAATAGTGGC	22080
TTCTTTTTCA	АТАААТАААТ	CTTTTGAAGG	AACATAAGAT	TCTGGCTGAT	ААТААТСАТА	22140
ATAAGAAACA	АААТАСТСАА	CAGCATTATT	TGGAAAAAA	ТСТТТАААСТ	CTCTATAAAG	22200

CTGTGCTGCT AATGTTTTGT TGTGACTGAC AACTAAGGCA GGCCTGTTTA GATCTTTTAT 22260 TATATTTGCA ATTGTAAAAG TCTTTCCACT GCCTGTAACA CCTTTTAAAG TTTGATATTT 22320 ATTTCCAAGC AAAATAGAAT TTTCAATCTC TTTTATTGCC TTAGGCTGAT CCCCAGCAGG 22380 AAGATATTCT GACTTCAAAA AAAAATCTAT CATTAATTTA ACGACCAAAA TTTAATACAC 22440 ATTCTTATAA ATTATATGAT AATAAATTCT ATATCAAGTA TATAAATTCAT TATAAATCAA 22500 TATAATTTAA TTAATCTTTG TTTAATAAAA TAAAAGGAAA TATTGATGCT AAAAATCGAA 22560 GCTAAAAGAA AATTGAAAAA TTATATTCTT CTTGAAGAAG ATATGCATTT TAAAGAAGAA 22620 GCAATAAAA TTCAAAAAAC AAATAATTCA ACAGAAATTT TAAATAGATT TTACAAAGAT 22680 CTAGAATTTG GCACTGCTGG AATAAGGGGA ATCATTGGAG CTGGAACATG TTACATGAAC 22740 ACATATAATA TAAAAAAAAT AAGCCAAGGA ATATGCAATT ACATACTTAA AATAAACAAA 22800 AACCCTAAAG TTGCAATAAG CTATGATTCA AGATATTTTT CAAAAGAATT TGCTTACAAT 22860 GCTGCTCAAA TTTTTGCCTC AAATAATTTT GAAACATATA TATATAAAAG TTTAAGACCT 22920 TCCCCACAAC TATCTTATAC AATAAGAAAA TTTGACTGTG ATGCTGGCGT TATGATAACA 22980 GCAAGTCATA ATTCAAAAGA ATATAATGGA TATAAAGCAT ATTGGAAAGG TGGAATCCAA 23040 ATAATACCAC CTCATGACAC ACTAATAACT AATGAAATTA AAAATACAAA AAACATAATA 23100 AATACAATTA CCATAAAAGA AGGCATTGAA AAAGGGATCA TCAAAGAACT TGGCAATGAA 23160 ATAGACGAAG AGTATGTGAA AGCAATAAAC AAAGAATTGC CTGATTTTGA AAAGAATAGC 23220 AAAGAAAĆAA ACTTAAAAAT AGCCTACACA GCATTACATG GCACCGGTGG GACCATAATA 23280 AAAAAACTCT TTGCAAATAG CAAAATACGG CTTTTTTTAG AAAAAAATCA AATACTACCA 23340 AACCCTGAAT TTCCAACAAT AAATTATCCT AATCCAGAAA AACAACATC AATGCTTAAA 23400 GTAATAGAGC TTGCAAAAAA AAAAGATTGT GACATTGCCC TTGCAACAGA TCCAGATGCC 23460 GACAGAATAG GGATTGCATT TAAAGATCAA AACGAATGGA TATTCTTAAA CGGAAATCAA 23520 ATATCATGCA TTTTAATGAA CTATATACTC TCAAAAGAAA AAAATCCTAA AAATACATTT 23580 GTAATATCAT CGTTTGTAAC AACACCAATG CTAGAAAAAA TTGCAAAAAA ATATGGTTCT 23640 CAAATTTTTA GAACTTACAC AGGATTTAAA TGGATAGGAA GCTTAATTAA TGAAATGGAA 23700 AAAAATGAAC CAAATAAAAA ATTTGCTTTT GCATGCGAAG AAAGTCATGG ATATCTAATA 23760 GGAAGAAAGG TTAGAGATAA GGATGCATTT TCAGCCATAA AAGGAATTTG TTCTTTAGCA 23820 CTTGACTTAA AAGCCAAACA ACAAACAATT AAGGATTATC TTGAAAAGAT ATACAAAGAA 23880 TTTGGATATT ATGAAGAATT TAATATAGAA AAAAACTTTG AGGGGGCCAA TGGAGAAATT 23940

CAAAGAGAAA	AGTTAATGCT	AAAACTAAGA	AAAGAACAAA	AAGTACAATT	TGCAGGAATT	24000
AAAATAATTG	AAAAATTAGA	СТАТААААСТ	CTTAAAAAGA	TTAACTTTAA	AAATGAAATT	* * .
TCAGAAATTA	AAGAATATAA	ATACCCCATA	AACGCAATAA	AATTTATACT	TGAAAACGAA	24120
ATTGCAATAA	TTGTAAGACC	CTCTGGAACA	GAGCCGAAAA	ТТАААТТТТА	CATATCTGTA	24180
AAACTAGAGT	ATAAGGAAAA	ACATAAAATA	TTTGATATAA	TAAATGCAAT	AAAGATGGAG	24240
TAAAAAAATA	ATTAACATAA	CAGAAAATTT	AATAAATTTG	GTAGAAATAG	ACTCAAAAGA	24300
AATTGCAAGA	AAAATAAAA	ATAAAGAGGT	TTCAATTTGG	CACTTATTAA	TGTCTATAAT	24360
TACCACTCCC	AAAAAATCCG	AAATAAAATT	TATAGATAGC	AAAACTCTAA	AAAACATTAA	24420
ACAAGAAGTT	ATATCTGAAA	TAGATAAATT	AGAGAAAATT	TTAATAGAAA	AAAACGAAAT	24480
AATTATTCCC	AAAATCAATA	AAGAAATCTT	TGCTCTCATA	AAAGAAGCTA	AAAAGGAATT	24540
TAAATCCAAA	CCTTTAATAG	GGGCAAAAGA	AATTTTTAT	САААТАТТАА	ААААТААААА	24600
ACTTCTTAAA	ÄAACATAAAC	TAAGTAAATC	TAGCTTTAAC	TTTAAAGATC	AAAATATATT	24660
AGAATACATG	GAAAAAATA	AAATAAGATT	AATTGAAACC	TACAAAGAAT	TTGATGAAGA	24720
AATACGACTT	GAAAATGAGC	ACTTTGAAAT	TGGAAAGTAT	GTCAAAAATT	TAACAGCACT	24780
TGCAAAAGCC	AAAAAATTAG	ACCCCTTGGT	TGGAAGAGAA	GCAGAGATTA	AAACTCTTAC	24840
АААТАТАСТС	TTGAGAAGAA	ATAAAAATAG	TGCAATGCTA	ATAGGCGAAC	CTGGTGTGGG	24900
AAAAACAGCA	ATAGTTGAAG	GCCTTGCATC	AAGCATAGTG	САААААААА	TAAGTAGCAA	24960
ACTACAAGAC	AAAACAATTC	TAATGCTTAA	GGTTTCAAAC	TTGGTATCGG	GAACAAAATA	25020
TAGAGGCGAG	TTTGAAGATC	GTTTAAATAA	TATAATTAAG	TATATTGAAA	ААААСААААА	25080
CACAATCATA	TTTATTGACG	AAATACACAC	TCTAATAGGA	GCTGGAAACT	CTGAAGGAGC	25140
TCTTGATGCA	TCAAATATAC	TAAAACCATC	ACTTTCTAGA	GCTGAAATAC	AAATTATTGG	25200
CGCAACTACT	TACAATGAAT	ATCGAAAATA	TATTTCAAAA	GACAAAGCAT	TCGCCAGAAG	25260
ATTCCAAACA	ATTACCGTAA	AAGAGCCTGA	TGAAAAAGAT	aCACTAAAAA	TAATCGAAAA	25320
TATTGCAAAA	AATTTTGAAG	ACTATCATGG	AGTGATCTAT	GAAAAAAGCG	CGCTTTTAAA	25380
TATAGTAAAA	CTTTCATCCA	AATATCTAAT	AAATAAAAGA	TTTCCAGATA	AAGCAATAGA	25440
TATAATAGAC	ATTGCCGGCG	CAATTAAAAA	GGAAGAACTT	ACAAAAGACA	ACATCATAAC	25500
ATCAGATGAT	ATACAAAAGG	CAATAAATGA	AATATTATCT	ATTAAAACAG	CAAATAACAC	25560
TAAAGAAGAA	ATTTTAGAAT	TAAAAGAAAT	AGAAAGCGAA	АТАААТАААА	AGGTGATCGG	25620
ACAAAAACAT	GCGGTAAGCG	AACTTATCAA	AGAAATTATT	AAAGTCAAAC	TTGGACTTAA	25680
TGACGATTCT	AAGCCTTTAA	СТТСААТАТТ	GTTAATAGGA	TCAAGTGGAT	GTGGAAAAAC	25740

TGCTTTAACT GATGAAATAT CTAAAAAAAT TATCAAAGAT CAAAATTCAG TATTAAAACT 25800 AGATATGTCA GACTATAAAG AAGAAAACTC TATTTCAAAA TTAATTGGCA CAAATCCAGG 25860 ATACGTAGGC TACTCTGATG GAGGCATTCT GACAAATAAA TTAAGACATT CATTTGAAAC 25920 TTTAATATTG TTTGAAAATA TTGAAAATGC CCACAGCTCT GTATTAAACC TAATAAGTCG 25980 AATGCTTGAA AACGGAGAAC TTATTGACAG CAAAGAAGAT AAAATACTAT TTAAAAACAC 26040 AATTATAATA ATGACTACAA ACATTGGATC TAGAATGCTT CTTGGAGAAA AAAATATTGG 26100 ATTCAACAAA AATCAACAAA AAAGCTTAGA AACAAAAAGC TTTAAAGAAG AAATAAACCA 26160 AGATCTTGAA AAAAGATTTA AATTATCCTT TTTAGACAGA ATTCAAAAAA AAATCATCCT 26220 AAATATCCTT ACaAAGGAAA ATGTAGAAGA AATTTGCAAA AACTACTTAA ACACCCTTAA 26280 AACAAAATTT CACTCTAAAG GAATCGAGAT AGAAATAAAA AAAGATGTTG ACAAATTCAT 26340 AACCACAAA TACTATAAAA AAAATTCAGG AGCAAGAAGC GTAATTGCTG CAATAAAGGG 26400 GAAAATAGAA GAAAATATTA TCACCAAAAT AGCTGAAAAT CAAAACATAA ATAAAATAAC 26460 GATTTATTTA GAAAAAGAAA AAATAATAAT AGAATAAAGA GGAATTATAA TATGTTTAAA 26520 AAAGTAGAAA ACAAGGCAAA TTTTCCTAAA ATAGAAGAAA AAATATTAAA ATTTTGGAAT 26580 GACAATAAGA TCTTTGAAAA ATCAATAAAG CAGAGAGAAG GATGTGAAGA ATTTACATTT 26640 TATGACGGAC CGCCTTTTGC AACAGGACTT CCTCATTTTG GACATTTTGT TCCAAACACA 26700 ATAAAAGACA TAATTCCAAG ATATCAAACA ATGCAAGGCA AGTATGTTAA AAGAAATTTT 26760 GGATGGGATA CTCACGGACT ACCTGTTGAA TACGAAGTAG AAAAAAATT GGGAATTTCT 26820 GGAAAATACG AAATAGAAAA TTATGGCATT GAAAATTTTA ACAAAGAATG CAGAAAAATA 26880 GTACTTAGAT ATACAGAAGA ATGGAAAAAT ATAATCTTGA GACTTGGACG ATGGGTAGAT 26940 TTTGAAAAGG GTTACAAAAC CATGGATATA AGCTTCATGG AATCCGTGTG GTGGGTATTT 27000 AAAAATCTTT ATGAAAAAGG TTTAATCTAC GAAAGTTACT ATGTACTACC CTATTCCCCA 27060 AAGCTTGCAA CTCCGCTTTC AAATTTCGAA GTGAATCTTG GAGAATATAA AGAAGTCAAT 27120 GACCCATCAT TAACAATAAA ATTTAAAATA AAAGATAAAA ACGAATACTT ACTAGTGTGG 27180 ACAACCACCC CCTGGACATT GCCCTCAAAC CTTGGAATTG CAGTAGGACA AGAAATAGAA 27240 TATTCTAAAA TTTTTGACAA AACAAAAGAA GAGATTTTAA TACTTGGATC AAAAAAGCTT 27300 AATAGCTATT ACGATGATGA AAATTCATAT ACTATTATAG AAAAATTCAA AGGCAGCAAG 27360 CTTGAAGGCA TAGAATATGA ACCTATTTT AACTACTTTT TAGAACAAAA AGATAAGGGG 27420 GCTTTCAAGG TACACAGC TGATTATGTT ACAACTGACG ATGGAACAGG AATTGTTCAT 27480'

173 ATTGCTCCTT TTGGAGAAGA AGACTACAGA ATACTCAAAA AACACACAAA TGTCGATATA 27540 ATAGACCCCT TAGATGCTGA ATGTAAATTT ACAAATCAGG TAAAAGATTT TAAAGGACTT 27600 TTTGTAAAAG ATGCTGATAA AAAAATAATA GAAAACCTAA AATTACGCAA TTTTTTATTC 27660 AAAAGAGAAA ATTATCTACA CAGGTATCCA TTTTGTTATA GAACAAACTG CCCAATTATT 27720 TACAGACCAA TAAGTTCGTG GTTTGTAAAT GTAGAAAAAA TAAAAACCAA ACTTTTAGAG 27780 GTAAATGAAA AAATTAATTG GATGCCAGCC CATTTAAAAA AAGGAAGATT TGGAAAATGG 27840 TTAGAAAATG CAAAAGATTG GGCAATAAGC AGAAACAGAT TTTGGGGAAA TCCAATTCCA 27900 ATTTGGATAT GCTCAAAAAC AGGAAAAAA ATTTGCATTG GATCAAAAAA AGAGCTTGAA 27960 AACCTATCTG GCCAAAAAAT CGAAGACTTA CATAAAGACC AAATAGATAA AATAACCTGG 28020 CCAAGCAAAG ACGGTGGCAA ATTTATCAGA ACAAGCGAGG TTCTCGATTG TTGGTTTGAA 28080 TCTGGAGCAA TGCCTTACGC AAGCAACCAT TATCCATTCA CAAATGAAAT TAATTTTAAA 28140 AATATATTC CTGCTGACTT TATTGCAGAA GGTCTAGATC AAACAAGAGG ATGGTTTTAT 28200 ACTCTTACAA TCCTGGGAAC TGCTCTTTTT GAAAACACAG CATTCAAAAA CGTTATTGTA 28260 AATGGACTTG TGCTTTCAAG CGATGGAAGA AAAATGTCAA AATCCTTTAA AAATTATACA 28320 GACCCAATGC AAGTAATAAA CACCTTCGGA GCTGATGCTT TAAGGCTTTA TTTAATAATG 28380 AGCCCTGTAG TTAAAGCTGA TGATTTAAAA TATAGCGACA ATGGAGTAAG AGACGTTCTT 28440 AAAAATATAA TAATACCCAT TTGGAACGCT TATTCATTTT TCACAACTTA TGCAATAATT 28500 GATAAATTCA AACCTCCAAA AAATCTCAGC CTGGCTAAAA ACAATAACCT TGACAAATGG 28560 ATCATAAGCG AACTTGAAAG TCTAAAAAAA ATACTAAATA CAGAAATAGA CAAATACAAT 28620 CTAACAAAAT CAATAGAATC TTTACTTGAA TTTATAGATA AATTAAACAA TTGGTACATA 28680 AGAAGATCAA GGCGAAGATT TTGGAAATCA GAAAACGATA AAGACAAAAA TGATGCCTAC 28740 GAAACATTAT ATTATGCAAT CAAAACTTTA ATGATTTTAC TTGCACCTTT TATTCCATTT 28800 ATAACAGAAG AGATTTATCA AAATTTAAAA ACTGATGAAG ACAAACAATC AATACACCTT 28860 AACGATTATC CAAAAGCAAA TGAAAATTTC ATTAACAAAA CAATTGAAGA GAAAATAAAT 28920 CTCGCAAGAA AAATAACTTC AATGGCAAGA TCACTCAGAT CATTGCACAA TATAAAAATA 28980 CGCATGCCTA TTAGTACGAT ATATATCGTC ACAAAAAATC AAAATGAACA AAATATGCTA 29040 ATGGAAATGC AAGAAATAAT ATTAGATGAA ATAAATGCAA AAGAAATGAA AATAAAAGCT 29100 AACGAAGAG AGCTTATAAC TTACAAAGCA AAAGCAAACT TTAAAGAACT TGGGAAAAAG 29160 CTTGGAAAAG ATATGAAAGC GGTATCTACT GAAATTAGCA AGCTAAAAAA TGAAGACATA 29220 ATAAAAATAA TAAATGGAAC ATCCTACGAG ATAAAAGTAG CCAATGCAAA GCATTATTTA 29280

TCATTAAATG ATATAATATT AGAAAGAGAA GAAAAAGAGA ACTTAAAAGT AATAAATGAA 29340 GAATCCATTA CAATAGGAAT AGACTCACTA ATCACTAAAG AGTTGTACTT GGAAGGGCTG 29400 ACAAGAGAT TTGTAAGGCA AATACAAAAT TTAAGAAAAG AAAAAAATTT TGATGTTAGC 29460 GATAGAATAA ATTTATACAT AGAAAATAAT GAAACTTTGA AAGAAATGCT AAATAAATTT 29520 GAAAAATACA TTAAAACTGA AACATTAGCC TTAAATATCA TATTAAACAA AAGTAAGCTA 29580 GAAAAAAAA TAAACCTTGC CGATGACATA TTTACACTAA TAGGAATTGA AAAATGTTAA 29640 AAACATTAAC AAAAATAATT ACCATTTCAT GCCTCATAGT GGGATGCGCA AGCCTGCCTT 29700 ACACTCCTCC AAAACAAAAT CTAAATTACT TAATGGAACT TTTACCTGGC GCAAATTTAT 29760 ACGCCCATGT AAATTTAATT AAAAACAGGT CTATTTATAA CTCTTTAAGC CCTAAATATA 29820 AATCAGTTCT TGGGCTTATA AGCAATTTAT ACTTTAGCTA TAAAAAAGAA AATAACGATT 29880 TTGCTCTACT AATAATGGGT AATTTCCCAA AAGATATTTT CTGGGGAATT CATAAAAATA 29940 GAAATACAGA ATCAATAGGC AATATATTTA CAAATCCAAA ATGGAAACTT AAAAATTCAA 30000 ATATATACAT TATTCCAAAC AAAGCTAGAA CTAGCATTGC AATAACCCAA ÁAAGATATAA 30060 CCGCAAAAGA CAATAATATG CTAACAACAA AATATATTGG GGAAATAGAA AAAAATGAAA 30120 TGTTTTTTG GATTCAAGAT CCAACATTAT TGCTCCCAAA CCAAATAGTA AGCAGCAAAA 30180 ATTTAATTCC CTTTAGCAGT GGAACTTTGT CTATAAACAG CTTAAATCAA GAAGAATATA 30240 TTTTTAAATC CTTAATCAAA ACAAATAATC CACCAATACT AAAAATATTG TCAAAAAAGT 30300 TAATTCCAAC CGTCTTGACA AACATGACAA ACCTCACAAT ATCAAGCCAC ATAAAGACCA 30360 CAATAAAAGA CCAAAATACG GTTGAAATAG AATTTAATAT TCAAAAATCT AGTGTTGAAA 30420 GCCTTATAGA AAAACTAGCT TCAAATATTC AAACCTAAAA TTTCTGCCAC TCCACTAAAA 30480 TGAGGTATTA TTTTGATTTT TGCAAGTAAA ATAATGAAAC AAAGCTCCAA TTTTACCAGA 30540 TTCATTATTA AATTTAGTAG GCTCAAGTGC TACAAGATTT TTTATATTAT TATTATTATC 30600 AAAAGCCATT TCTAAAGACC ATAAATTTTC TAATTTTTCA TATATTCTAT CTATTAAATC 30660 GGGTCTTGCG CTTATTCCTC CTCCGATCAA AATTTTTTCA GGATTCAAAA TAAAAGTTAA 30720 ATTAAAAATA CCAAATGACA AATTCTCAAA AAATCTATCA ACTTCATTTT TGGCATGAAT 30780 ATTCCCATTC TCAGCTAGAT CAAAAACAAA TTCTCCTGAA ACCTCTTTTA AAGGTTTTCC 30840 TAATCGCATA GCAACTCTTT TTCTTAAAGC CGAAACAGAC GCAATGGATT CCCATTTGCA 30900 ATTAAAGGGA ATATTGTTGC TAATACCTCC AGTAATCATA AATCCAACCT CTCCGGACAT 30960 AAAAGAATTT CCTCTTAAAA GCTTGCCATT TGCAAAAATT CCAGCACCAA TTCCTGTGCC 31020

WO 98/58943 PCT/US98/12764 AAGAGTTATA GCAATAAAAT TATTAGAGTC AATAGCATTA CCCTTAAATT TTTCTGCTAA 31080 GGCTACACAA TTAGCATCAT TTTCAATCTC TGTACTTACT CCGGTTAAAG ATTCTAATCG CTCTTTTAAA GGATAATTAA CAAATCCAGA AATAGCATTT ACCCTAAGAA CATTTCCCTT AAGATCAACA AACCCAGGAA TACAAATTGC AACTCCCGCA ATATCACTTG ATTCTTTGTA AGAATTAATA ATATTAACTA AAATATTTAC TTGTTCGTCA GAAGTAGCAC CTGTGCTTAT TTCATTTTTA TCAAAAAAA CACCGCTTGA ATCTGAAAGC GAATATTTGG TACTAGTCCC GCCAATATCA ATCGCTAAAT AATGTTTCAT ATTTATCCTC AAGGCCTAAT TGTACATAAA

31140 31200 31260 31320 31380 31440 TGATCATAAA TTTTCTATAG CAATATAAGA AATTTTAGAA ATCTTGTTTA TAACTATTTG 31500 CGCTTTAATC ATCTCCTTCA AATAAGAAAC ATGGGAAATT ATGCCAATTT GTCGCCCAGT 31560 CATCATTTGA AACTTAGAAA GCTTAGGCAT AACTTGAGCC AAAGTATCTT CATCAAGATT 31620 GCCAAAACCT TCATCTAGAA AAAAAGCCTC TATTTTTAAC TCACTATCCC TTATTTTATC 31680 AGATAAAGCT AAGGACAAAG CTAAAGACAC AAGAAATTTC TCACCCCCAG ACAAAGTTTT 31740 TACCGTTCTT ATTTTATTAA CATCTTTTTT GTCTTCAATT AAAAAATCAA ACTCTTTGCT 31800 CTCTTTGTTC GTTTTGAGCT CAAAATCAGG AAAAATCCAC CTTAAATACT TTTCATTTGC 31860 CAGTCTTAAA ATATCATTAA TTAAAAAAGT TTGAACATAA TATTTCAATC CAGAAGATCT 31920 AATAACGACC TTCCTTAATA CATCTAGCTT ATCTTTCCTT TCTTTAGCAA GATTTAATTC 31980 ACCCCTTAGC GAGTCTAAAT TAATTTTTTG TTGATTAATC TTTTTTTGAA GAGTTTGAAA 32040 ATTTAAAAGC TTGATTTTAT ACTTTTCAAT ATCTCTGGAT AAAAATTCAA GCTTAGAACT 32100, AATTGATAAA CTCAATTTTT GCAAAAAAGA CAGACTATTC TTATTAATTT GCTCTAAGTC 32160 AGTTGTTGAT TCAAAAGAAA ATGAACTAAA AAAAACATTT TTTAAATTTG AAATTAGATT 32220 AATAAAATTA TTTTGCTCTT CATTTAATCT CGCTTTTAAA GTCAATATAG ATTCCTTTGT 32280 AAATTTAATT TGTGTTTCGG TTTTAATTTT TAAATCTTCT AAATTTTTAA GATTTAAAAC 32340 AAGCATATTC CATTCATTTT CCACACTTTT CTGCTTAGCC AAAACAACAT TAAATTCCCT 32400 TTCCAAAGAA GAATAATCAT TAAAACTTAA ATTTAAATTA AGTTTTAACA ATAAATCCTT 32460 AATCTTTAAA AGATTTTGAT CAAAATTTTT ATTTTTCAAA GAAATTTCAA TTTTTAAATC 32520 TTTTTTCTTA GCCTTAAATT GTTCAAGCTT TTCTAATTTA TTTTCAAATG CTAAAATTTT 32580 TTCTCTGTCA AAATAATTTA TGTATTTGTC AAATAAATTT TTTCCAATCA ATCTTAAAAT 32640 TTCAGCATTA TTCTTTCAA ACTCCAAAGC ATTAACCTCT TGTTTAGAGA TTTCTTCTTG 32700 TCTACAAGAT AGCTGATATT TAAGCTCATC AATTTGATTT TGTATCAAAT GAAGCTTTGA 32760 ATTTAAAGCG TAAAGCTCTT TCAAACTGCA AAGCGATAAT TTATCTTTAT GCTGATAATT 32820

TTTATATTCA	GCCTCAATAT	ATTTTAGCTT	CTCTTTATCA	CTCTCAATAG	AAAAATTŢŢŢ	32880
ATCATCAAGA	ТАТТТТААСА	ACTCTTTATA	CAAGTCAATC	ТТААТААТАТ	ТТТТТТССТТ	32940
ATTTTTATTA	AAATCTTCTT	TGCCAGTAGA	TTTTAATAAA	AATTCTAGCC	ТАТСТСТАТА	33000
TTTTGAAATC	AACTCATCAT	TAAAAGTTTG	GAACAATTTT	AATGCTTCAT	AGTAAACATA	33060
TTTGTCAAAA	TCAAAATTAG	ATTTCTCAGA	AGAAATGCTT	TTAATCTCAT	CATTTTTTT	33120
GCTCTGAGAT	CTTAATAATT	CTTTTTTTC	ATCCTCAAGA	CTATTTTTCC	TTAAAAGCÀA	33180
GCTTTGATAA	TCATTCTCAA	CAAGTTTTAA	ATTAAAAAGA	TTGCAATTTT	TATTATAAAG	33240
CTCCTTAACA	TAATTAAAAT	TAAAATCATT	GCTATACAAA	TCTTTAATTT	CTTCTAAATT	33300
ATTCATCACT	TTTGAAAGTT	CTAAATCAAG	CAATCCAATA	TCATTAAACA	ATTCGCCTTG	33360
TACAGCAACT	AAATTTTTCA	AACTCCAAAA	ATCTGAACAT	AAATAAACTT	TTCGATCCAA	33420
ATCCAAATTT	TCTTTTAATT	TCTTTTGAAG	GGAATGATCC	TTCTCTAAAG	AATTTAAATA	33480
TTTAATCTGA	GAAGATAATT	GATCGTTTAG	AGAAGACATT	TCAATTTCCA	AGCCCAAATA	33540
TCTCTCATTA	GACGCTATTG	CCTGATTACA	TAAAGAAATA	GCTCTTCTAA	TATTTTCAAG	33600
ATCAATTTCT	AATCGATCAA	TATCAACCAA	ATCCAAATAA	CCTTTAAGGG	ATTTACACTC	33660
ACTCTCATCA	TAATCAAGAA	TTGATTTTTC	ATAAGATTCA	GAATTCAACA	ATTTATCTAT	33720
ATTAAACTTT	GTGCGCTCAA	AATCACTTTT	TAAATAAAAT	TCCAAATTAT	CATATTTTTT	33780
САААТТАААА	ATATTATCAA	TTATTGCAGC	TTTCTCTTTG	GGAGTTGACG	TTAAAAATTC	33840
TTGAAAATTG	CCTTGTGGTA	AAATTACAGT	TTGACAAAAT	TGGTTAAAGT	CTAATCGACA	33900
AAGACTTTTA	ATATGCTCTA	AAACATCGGT	TCGACCCTCT	ATAATCCTAT	ТАТСАААААА	33960
ACAATTAAGC	AACATGCTCT	TAGGAGTCTC	TATATTTTTT	ACATTAAGCT	CAACAAAAGA	34020
TTCATAAATC	TTCCCAGAAA	TAGTAAACGT	TAATTTAACA	TAAGCGCTAG	TCTCGCCTTT	34080
TGATATAATA	TCTACAATTT	TTTTTCCAAG	TCTGTAAACA	CGAGCATATA	GTGCCAAAGT	34140
TATGCAATCT	AAAATGGTGC	TTTTGCCTGA	TCCAGTATTA	CCAGAAATTA	AAAAAATGCC	34200
CGATTGTCTT	AAAAGAAGTG	TATCGAAATT	CAACTCATGT	TCGCCTTTAT	AAGAAGCAAT	34260
ATTTTTAAAT	ATGAGCTTAT	TTATCCTCAT	ATTCACCCAA	ATATCCGTTA	GCTAAAACCT	34320
CGTTAAAAAG	AGAAATAAGC	TCTTCTTCCT	TAAATTTGAT	АТСССТААТА	ACACCGTTCT	34380
CAAAATCCCA	TCTCAACTTT	TTCTCAAAAA	AATATŤTTTC	ATCCATTTCA	AGCACTTCAA	34440
GTTCTCCAAT	AAAGTTGGAA	TCGTCTTGCA	AATCCTGACT	TGAGGGTAAA	GAATAGGAAA	34500
TAGAAACTAA	ATTCATAAAA	TTAAGCCTTG	СТАААТСАТА	AATAGACTCC	TCAGCGCTAG	34560

WO 98/58943 PCT/US98/12764 177 TATCAACTGC CTCATTAAGT TCAATTTTCA AATAAATAGT AAAAGACTCT TCTTTTTTGG 34620 AATTAGCCAA AAAATCAAGA ACTTCATTTA AAGAACCTTT AGCAAAGATT AATTTATTGA 34680 AAATCGGCAC CGGAAATGCT TCTTGCAAGA TTAATTTATT GTCATTAAAA TGTAAAACGT 34740 TTATGTATTT ATCACAGGTC TCATTAAATG AATATTGCAT AGGAGATCCT GAATAAACAA 34800 TATTATCTCT TAGTTTCATG AACTTATGAA TATGCCCAAG AGCAACATAA GAAAAACCAT 34860 TTCCAAAAAC ATTAAAAGGG ATAATATAAC TACCTCCCAA GGTGTCAATC TTTTTACTGC 34920 TGCCAAAAAA AGAATGCGCC ATTAATATCT TAGGAATTCC TTTATACTTG TTTTCTAAAA 34980 AATTAGATAA ATTTGATATT TTTTCTCTGT AGGCATTTTC TAAATTTTCA AGAAATAGTT 35040 TGCTGGAATA CTGATCTTCC AGTCCAAAAA TATTGTCAAA ATTTTGACCT AAAATAAGCC 35100 TTTCATTTAT ATGCGGAAGA CAAACAACAA TAAACTTAAG ATTTCCATTA TCTTTTAATA 35160 AAACTATTTG CTCATCAGAA TCATATTCAG TTATTAAAAA AAAATTAAAC CGTGAGAGAA 35220 GTTTTTTÄTT TATACTCAAA TAATCCTTTT TGTCATGATT TCCAGAAATA ACCACACCC 35280 ATTTACAAGA AGTAAAAGAA AGTTCATAAA AAAAATTATT CACTAATCTT TGCTCTTCAA 353,40 ACCCAGGCCT TTTGGAATCA TAAACATCCC CGGCAACAAG TAAAAGATCT ATATTTTCTT 35400 TTTTAATAAA TTCTAAAAGA AAATATAAAA AATTTTTCTG CTCCTTAAGA ATTGAAAAAT 35460 TTTCAATTT TTTTCCAATG TGCCAATCTG AAGTATGCAG AATTTTATAA TTGCTCACAA 35520 AATACTCTCA CTTTTTTTAA TTCTTAAATT ATATTTATAT ATTATAATAC AATATATAAA 35580 CATAGGGAAT TTATGCAAAA TAAAAAGTTG ATAATAGTTG AATCGCCAAC AAAAGCCAAA 35640 ACAATAAAGA AGTTTCTCGA TGAATCATTT CTAGTAGAAG CATGCATTGG ACATGTAGTA 35700 GATCTACCAA ACAACGCAAA AGAAATCCCA AAAGAATATA AAAAATACGA ATGGGCAAAT 35760 ATTTCTATAG ATTATAACAA TGGATTTAAT CCAATTTACA TTATTCCCAG CAATAAAAA 35820 CCAATTGTAT CAAAACTAAA AAAATTAGTA AAAACAATAA ATGAAATATA TCTTGCAACC 35880 GACCAAGACA GAGAAGGAGA AACTATAGCA TTTCACTTAA AAGAAGTATT AAAAATCAAA 35940 AACTACAAAC GGATGATATT TCATGAAATC ACAGAAACCG CAATAACTGA ATCACTAAAA 36000 AATACTAGAA ATATAGACAT GAACCTTGTT AATGCCGGGG AAGCTAGAAG AATATTGGAC 36060 CGACTATACG GGTATACAAT CTCTCCACTA CTTTGGAAAA AAGTAGCTTA TGGACTTTCT 36120 GCTGGGCGAG TACAATCTGT TGGATTAAAA TTATTAATAG AGAAAGAAAA AACTAGAATA 36180 AATTTCAAAA AGGCAAATTA TTATTCAATT TTACTTCAAT GTAAACACGA GAAAAAAAAC 36240 TTGTTGCTTG AAGCAAAATT AGAAGAAATT GACGGCAAAA ATATAGCAGA GGGTAAAGAC 36300

TTTGTAAATG AAACTGGAAA ACTTAAAAAT ATTGCCAAAA CAACAATAAT AACCCAAGAT

TTAATGATAG AGCTTGAAAA AGAATTAAAA AATGGACAAA AAATTGAATT AATTTCAATA 36420 GAAACTAAAA AAATAAAAAT ACCTCCTCCA AAGCCATTTA CCACCTCTAC ACTTCAACAA 36480 GAAATAAATA AGCGTCTTAA AATTGGAACA AAGCAAATCA TGCAACACGC TCAAAAACTT 36540 TACGAACAC GATACATTAC CTATATGAGA ACAGACTCTC ATAATATTGC TAAAATTGCA 36600 AAAGATAAA TAACAAAAAT AATAAAAAT AAATATGGGA AAGAGTATAT AGAGGAAAAA 36660 GATAGAATTT ATGAAAAAGA AAAAATGGCT CAAAATGCAC ATGAGGCAAT AAGGCCTTCT 36720 GAAATATTA TTCCAAATGA AACCATAGAA ATAGAAAGCA AAACCGCTAA AGAAATTTAC 36780 AAAATAATAT GGGATAGAAC CATTATTTCT GGAATGAAAG ATGCAATAAA AGAAAATATA 36840 AAACTGACTT TTAAATATAA AAACTTAATT TTCAGATCAA GTTTTACAAA AATAATTTTT 36900 GATGGATTTC TTAAACACAC TAAAGAACAA GATGAACATC TTAACATAAA TTTTGACTTA 36960 ATTAAAAAGG GAGATACATT TTCCATAGTT AAAATGAAAA CAAGTGAGCA CGAAACAAAG 37020 GCTCCATTTA GATACACAGA AGCGTCTCTT GTGCAAAAAA TGGAAAAAGA AGGAATAGGT 37080 CGTCCCTCGA CCTATTCTAC AATTATATCA ACACTTTTAG AAAGAGAATA TGCATTCAAA 37140 CTTAACAACA CATTAATGCC AACTATAAAA GGCGCTGCTG TAATAAATCT TCTTGAGAAA 37200 TATTTTCCAG TACTCATTGA ACTAAATTTC ACCTCTAATA TGGAAGAAAA ATTAGACAAA 37260 ATAGCAATAG GAAAACTAGA TAAAATAAAA TATCTAAGTA AATTTTATAA TGGCAAAAA 37320 GGACTAAAAG ATACAGTAAT GCAACTAGAG CCTAAAATTG ATTCCTCTGA ATTTAGAACC 37380 GTTATTGAAA GTCAAAAAAT AGAAAATAAA AATAGCATTA ATTACACAAT AAACATTGGT 37440 AAATATGGGC CTTATTTGAT ATTCAAAGGA CATAATTACT CAATTAATGC AAAAACTCCA 37500 TTAGAAAATT TGTACAAAAA AGATGAAATA GAAAAAATAA TAAATGAAAA AGAGCTAAAA 37560 CCCAATATAC TTGGGGTTGA TCCTTTAACA GGACTTAATG TGATCTTTAA AAATACAATT 37620 TACGGAAACA TTGTTCAACT TGGAGAAGAT ACCCATGCCC CTCAAGAATA TACAAAAAAA 37680 GGAAAACCTA AAAAATTAAA AATAATAAAA GCAAAAAAAG CATCAACTAA AAAAATTGAC 37740 CCTGAAAACA TAACATTGGA GCTTGCTTTA AAATTGCTCT CACTGCCAAA ACCAATTGGC 37800 AAACATCCCC AAACCAATGA ACAAATCATT GCTGCAACTG GTGTTTTTGG GGATTATATT 37860 AAAACTGAAA GCGGAAGCAT TGCTTGCTCG CTAAAAAAAG ATTTAAAAGC ATATGACATA 37920 ACACTAGACA AGGCCATCAG CCTACTCAAC GAAAGAGCCA ATAAAGTGGG TATAATCGTT 37980 AAAACAATCA CATTTTCTAA AAACAAAATT GGCAACAAAA TATATATTTA CAAAAAAAAC 38040 GACAAATTTT ATGCTAAAAT TAAAAGAAAG AAGATTGATT TACCTGATAA CATTAATCTT 38100

179 GAAGAAATAA ATGAGAAATA TGTATTCAGC TTGTTATAAA TATGAATGAT TTCAAACTCC 38160 CAATTTATAA ATACAAAGAT GAATTAATTA AAGTACTAAA AAACCACAAT GTTTTAATTG 38220 TAGAAAGTCC AACAGGTAGC GGAAAAACCA CCCAACTACC AAGAATAATA TATGAAGCGG 38280 GTTTTGCAAA ATTAGGAAAA ATTGGAGTAA CTCAACCAAG AAGAATAGCT ACAGTATCAA 38340 TAGCTGAATA TATTGCCAAG CATATTGGCG TAAATGTTGG AGAAGAAGTT GGCTATAAGA 38400 TAAGATTTGA AGAAATTACA AGCCCAAAAA CCAAAATCAA ATTAATGACT GACGGAGTGC 38460 TTCTGCAAGA GCTAAAAAAA GATACACTGC TTTATGAATA TGATGTAATA ATAATAGACG 38520 AAGCACGA AAGAAGTTTA AACATTGATT TTATATTGGG TCTTATCAAA GACATTTCAA 38580 GGAAAAGGGA TGATTTTAAA ATCATAGTTT CGTCTGCTAC AATAAACACA AAAATATTTT 38640 CAAAATATTT TAATAATGCA CCGGTTGTTA GTATTGAAAC TATCACTTAC CCAGTACAAA 38700 TAATATACAA TCCTCCTCTT TTAAACACAT CAAAAGGAAT GATATTAAAA ATAAAAGAAA 38760 TTGTCTTAAA CGTAATAAAA GAAAAAAAG CGGGAGATAT TCTTATATTT TTATCTGGAG 38820 AGAAAGAAAT AAAAGAAACT ATAAAAGAAT TACAAGAATT AAACTCAAAA AAAAATTTAA 38880 TAATATTTCC TTTATACGGC AGAATGCCCA AAGAAGCTCA AGAGCAAATA TTTATGACTA 38940 CTCCTAAAAA TAAAAGAAAA ATAATAGTGT CAACAAACAT AGCAGAAACT TCAATCACAA 39000 TTGAAAATAT TAAAATAGTA ATAGATAGTG GAAAAGTTAA AACAAATAAA TTCCAAACAA 39060 AAACTCATAC CTATTCGCTC CAGGAAGTTC CAATTTCAAA ATCATCAGCA ACTCAAAGAG 39120 CTGGTCGAGC AGGAAGACTT TCAAAAGGAA CTTGCTACAG ACTTTACAAA AGAGAAGATT 39180 ATCAATTAAG AGAAGATTAT CAAAAAGAAG AAATATATAG AACAGACCTA TCTGAGGTAG 39240 TGTTGAGAAT GGCAGATATT GGAATTAGAG ATTTTACCCA CTTTGACTTT ATCTCAAAAC 39300 CATCAACGCA TTCGATTCAA ACTGCAAGCA AAATATTAAA ATCTCTGGAT GCTATAAACA 39360 ATAAAAACGA ACTTACAGAA ATTGGGAAAT ATATGATACT ATTCCCATTA ATACCAGCAC 39420 ATTCAAGAGC ATTAGTCGAA GCAATGATAA ATTACCCACA AGCGATCTAT CAAACCACAA 39480 TAGGTCTATC ATTTTATCC ACAAGTGGAA TTTTTCTACT ACCCCAAAAT GAAGAAATGG 39540 AAGCTAGACA AGCTCACTTA AAATATAAAA ATCCAATGGG AGATTTAATT GGGTTTGTTA 39600 ATATCTTTGA AGATTTTAAA AAAGCTCTAA ATAAAGAAGC TTTCACAAAG GAAAATTATT 39660 TAGATCTACA AGGACTTGAA GAGATAGCAA ATGTGCAAAT GCAGCTTGAA AACATTATTA 39720 GCAAATTAAA TATACCAATA ATACAAAAAG GTGTTTTTGA CAACGAAGGA TATTTAAAAT 39780 CAATAATGAG AGGAATGAGG GATTATATTT GCTTTAAAAC TTCAAAAAAG AAATATAAAA 39840

CCATCAAGGC TCAAAACGTA ATAATTCATC CTGGATCACT TATTAGCACC GATTCTGTGA

39900

AATATTTTGT	TGCAGGAGAA	ATTATAGAAA	СТАСАААААТ	GTATGCAAGA	TCTATTGGTG	39960
ТСТТААААА	AGAATGGATT	GATGACATTA	TCCTTAATGA	AGAGTTTAAA	CATAACGACA	40020
TATCTAGCAA	AGAGAACCAA	АТААСАААТА	CCGGGCAGAC	AAAAATTATC	AATGAAATCA	40080
AAATAGGGAA	AAAAATTTTC	AAAGCGGAAT	АСАААААТАА	CATTTATGTA	АТАААААТТА	40140
ACCTAGAAAC	GCTAAAAGAA	ATAATTTTTA	AAAACGAACT	AAACAATCAA	AATAATGAAG	40200
АТСТСААААА	AATTAAAATA	CAATTGATGC	ATAAAAATAT	AACGGTTTTT	AACAACAAAA	40260
AATTTTTAGA	AACTATAGAA	ATAGTCAAAA	ACATGGGAAA	AGATTGGCAT	TGTATAAAAA	40320
AATATGAAAC	AAAGAATGTA	AACATTGACG	AACCTGAAAA	AATGAAAAAT	CTTTTAGAAT	40380
GCACAATGCA	ATTTATAAGC	TTTCCCCCCA	AAAAAAACGC	TCTTTTTTTA	TCGTTGGAAA	40440
CAGATTATTC	TGGAAATTTT	AGACTAAAAC	CCAAACAAAA	TTTCATAATG	GCAATAGAAG	40500
AATCTATAGA	AAGCATAAAA	AGCCTTATAG	AAAACAAAGA	ATACATACAA	AAGTTACATT	40560
ТТАТАААААА	АТТААТАААТ	AAGGTTTACA	AAAAATTAAA	TTACTTTTT	TAAAAACTAA	40620
ACTTTGAAAG	CCTTGTTATA	АТАТААААТА	TAATAATCAA	ATATTATTCA	AAGTTAACAG	40680
CAATGAAGTT	ТАТААТАААТ	TATGAACTGG	CTATCCTTTT	TTTATGTTTT	ATTATTTTTA	40740
TTAATTTTTC	CTTTTGAATT	ACAGAGTAAT	AATAAAGAAA	ATATAGAAAA	TTTAATAAAG	40800
CTACATATGC	TTTATGATTT	AACCAATAAC	CTGTCAAAAG	AATTAGAAAC	AATAAATAAA	40860
АТТААААТТ	TTGACTTAGA	ACAACATTAT	CTGCTAATTA	СААААТАТТА	ТСТАААААТА	40920
АЛААААТАТА	AAGAAGCTAA	TGATTTTTTA	AAAAAAAAAA	ACCAAAAAA	GATCAAAAAT	40980
СААААААТАА	AAAACGAAAT	CATTTCGCTA	AAATTAAGAA	TAAATGAAGA	TAATATTAAT	41040
GAAGAAGAAA	ТСАААААААТ	TTTAAATAAC	GAAAAAAATA	TAGATGTCAA	AATAATTTAT	41100
САААТАТТСА	GTCTTATAAA	АТТТАААААТ	AAAAAATTAG	САААТААААТ	тааааасата	41160
АТАСТААСАА	ACTATCCCAA	AAGCATTTAT	TCTTATAAAA	TAAAAAGAAA	TGAATAAAA	41220
AATATTAACA	CTGCTAGTAT	TGATTTTAAG	TATTTCATCA	GTACTAATGC	TGTCCAAATC	41280
AATCACCAAA	AAATCCAAAT	ACAAAATTAT	TAGGGATTAT	TTCATAAACA	GCAATTATGT	41340
TCTGGTGAAA	ATTGAAAATA	AAGATCTAAA	ATTTACCATA	тсаааасста	TTTACGACAA	41400
AAAGCTAAAT	AATTACTTCT	TTAAAGGCCA	AACAACAAGC	CATTTCTTAA	TTTCTAACAA	41460
TGTTGACATT	GCAATTAACA	CAAGTCCATA	CGAAGTTAAA	CAAAACATGT	TTTTCCCAAA	41520
AGGACTATAC	•	AAAAAATGAT	TTCAAAACAA	АТАААТААСТ	ACGGAGAGAT	41580
TGTAATAAAG	CACAACAAAA	ТТАТАТТААА	TCCCAAGGAA	GACGAAATAG	AAAACTGCGA	41640

181 -

	TTATGGATTT	AGCGGATTTT	TTGTTTTAAT	CAAAAACGGA	AAGTATAAAA	AAAATTTTAA	41700
	AGAAACAAGG	CACCCAAGAA	CAATAATAGG	AACTGATAAA	AATAACAAGC	ATTTATTTCT	41760
	TGTTACAATA	GAAGGAAGGG	GTGTCAATAA	TAGCAAAGGG	GCCTCTCTTA	ATGAAGCTAT	41820
	TGATTTTGCA	TTAAGCTACG	GCATGACTAA	CGCTATTAAT	CTAGACGGGG	GGGGCTCAAG	41880
	CACTCTTGTT	GTAAAATCAA	ATAACGCTCC	TTACAAATTA	AACTTCACAG	САААСАТСТТ	41940
	TGGACAGGAA	AGACCTGTCC	CATTTCATTT	AGGAATAAAA	CTTCCTAATT	GAAAAATCTC	42000
	CAACCGATAT	TAAATCCAAG	CATAATCTCA	GTTGTTAACC	CAGAAAAATT	ТТТАТААТТА	42060
	GAAAATGGAG	AAATAGAAAG	САТАААСААА	GGCCTAATAT	ATAAACCATC	AAGATCGGGA	42120
	ATAAAAAGAT	CAGCAGCAAG	CCCCATGCTT	AAAAAAAAGA	GATTGAAGTT	ATTAGAGCTT	42180
	AAATCAAAAG	САТАТТТААА	CCCAATTAAT	GGGAAAAGCA	TTCTAACCTG	CTCTTTGAAA	42240
	ACCATTGGAT	ATGTŢCCATA	AAGCCCAAGC	GAGAAATATC	TCCCATTGTG	AGTAACAACA	42300
-	AAAGCCTCTT	TGTAAGACAT	TTCAAAAAGT	ACATAATTTG	САТСААДААА	ТАААТТСААА	42360
	TTAATCCCAT	GATCTGCTCT	GGTAAAATTT	GGAGCAAATT	TAGTGGCGCC	TGTTTTATCA	42420
	GTATAATTAG	TAAATTGATA	AGAAAAACCT	CCACCAAAAG	AAAGTGGATA	AGAAACAATT	42480
	AAATTATTAG	AAGAGATGAG	АААТААААТА	AAAAAAAGAT	ATTTCTTCAT	ТААСААТССТ	42540
	TAAAAATTCT	AAAAAATACT	ATATTATTAT	AGTAACACAC	TAAAGTAGTA	ТАТАААААТ	42600
	CTGGGAAATT	ATGAATACAA	AAACATTATA	TTTAATATCC	TTAATTCTTT	TAGCTTGCAA	42660
	ТАААААТААС	AAAAŤTCCTC	TCATTCAAAA	ATTAGATTTG	CCCAAAAGCA	GCATTCTTGG	42720
	CTTTAGCAAT	AAAATGGGCA	ТААТААТАА	AGATTATGCT	TTTCTTAGTA	AAAGCACTAA	42780
	GAAAAATAGC	GAATTGGATT	ATGATTACGC	AATTCTACTC	AGAAAAGACG	AAGTCGTAAA	42840
	AATTGAAAAA	ACACTAGAAA	AAACAGAGCG	CTATGGAATT	GAAGGAAATT	GGATCCTAGT	42900
	CAATTACAAG	GGAACTAAAA	GATACATCTT	TAGCAAAGAC	ATCAATATAG	TCAACAATTT	42960
	AATAATTGAT	CATTCTAAAT	AGCTTTACTA	CATAACCGGA	CAAAAGTCCG	ATCAATGTAA	43020
	ТАААТТАСТТ	ATTTTTTTC	TTATGTCTAT	тттттсттст	TTTTTTCTTC	CTTTTATGGG	43080
	TAGAAATTTT	ТТТТААТТТТ	CTTTTTCTTC	CGCAAGGCAC	TCCCTAAATC	TCCTTATCAA	43140
	ССТТАААААТ	TAAATTCAAA	ATGTTATCTA	AATCATCCTC	TGGATGAAGC	САТААААСАТ	43200
	CAGAAATTTT	GGCAAAAAAG	GTCATTTGCC	TTTTTGCATA	TAAAAACGAA	ТТТТТСТТТА	43260
	ттааасстат	TATATCATTT	AAACCATAGC	AAGGTCTACT	TTTCCATAAC	AAAAACTCAT	43320
	TATAGCCTAT	TCCTTTAAAA	GCCGGAGTAT	TTTCATTGTA	ACCCTTGCTA	ААТАААССТТ	43380
	TAATCTCGGA	AAGTAGTCCA	CTATTAAGCA	TTTCATTAAT	TCTTATTGAT	ATTCTGGTTT	43440

183 TAACACAAGG GTTGACACTA TGTCTGACTT GGTATTTTCT CCTTCAAAAC TTCTTCCATT 45240 ATTGTAATGT AATAAAGCTT CTTCTAGAAC ACCTTTAAAC AACCCATAAA TCTCTTCTTG 45300 ATGTTCACTA TCCTCATCAA TTATCAAAGC TCCTTTTAAT GATAAAAAAT CGCCCAAACT 45360 TAGTTCGTTT TTAATATTAA GATTGGTATG TGCCAAAGAA TCTCTAAGCC TAGAAATAGC 45420 CTCAATATAA TTGGGATTAA TCGTAAAATT CACACTAGGA ACCAATTCTT TATATCCTAC 45480 ATTTAAAAAA ACATTGCCTC TGCTAATATA TTTTGAAATC AAATTTCTTA TATCAAGATC 45540 ATAGCCAGAA AAAATTTCTG GTAACCTAAA TTTAAATTCT AAAAACTTTC CATTATAAGA 45600 TTTCAAATTA ACACTAAACA TATAGTTACC AATTATCTTT TCCAAATAAA AAAATCCCGT 45660 CATGCTTTTC AATATAACAC CCTTACAGAA AATCGTGTAA AATAAAATTA TTTCCAGCGC 45720 CCATTGTAAT AAACAAGTCT CCAGATATTA ATAAACTTTT TATAAAATTA ATAGAGTCTT 45780 TAACATCCTT AAAAAAATAA GTATTCTTAT TTATTTTTTT AATATTTAAA AACAATTTAA 45840 CAGAAAGTTC ATCTGGATTA AAATTTTCCC TATTTGAAAG ATATATATTG TGCAAAATTA 45900 ATATATCGGC AGCACTTAGA ACTTCAACAA AATCGGCAAA AAATTCTTTT GTTCTTGTAA 45960 AGGTATGAGG CATAAAATCC AAAATTATAC GTTTATTCTT ATAAAAATTT TTĀATACCAA 46020 AAAGAGTATT TTTAATTTCC CTAGGATGAT GAGCATAATC GTCCATGTAA ATCACTCCAT 46080 TTTCCTCTT AACAACTTCA ACCCTTCTT TTATACCGCT ATAATTTTTT GCAATTCTCT 46140 TTATTGCTTC TTCAAAATCA AAAATTGATT TCCCATTACT TTCTAAGAAA AGATTTAAAG 46200 CCAAAAGCGC TGCTGAAAAA TTTAATACAT TATGAAATAA AACAGTCTTA AGCTCAACAT 46260 TTAACAAGCC TAAAAAAGAA AAACAAAAAT ATTCACTCCT AACTGCAATA TTACTTATTT 46320 GAAAATCAGA TAAATCTCCA GACCCATAGC TAAAAATACT TATATCTTTT CTGTTGATTT 46380 GCCTTTTAAT TTTAAGCAAA TTATTATCAT CGGAATTAAT TATCAATATT CCATTTTTCT 46440 TTAAATTATT AATATACTGT AAAAAAGCCT CTTCAAGAGC CTCATAATTT TTAAAAAAAT 46500 CAACATGCTC GTAGTCAACA TTGGTTAAAA TAAGCATATT AGGGCTAAAA TTCAAAAAAT 46560 GTTTCTTATA TTCACAAGTT TCAACAATAA AAATATTGCT AATACCTGCT ATTGCAGAAT 46620 TATCTTTAAA ATCTTTAACA CTTGACCCCA CAATAACATT GGGATTTAAT CCTAATTTAT 46680 TAAAAAGAAC ACCTAAAAAC GCCGTAGTGG TAGTTTTACC ATGAGAACCT GCAATTCCAA 46740 TGCTATAGTA CTTTCTAGAA AGCTCTCCAA GAGCCTCAGG ATAAGATAAA ATAGGTATAT 46800 TTAATTCTTT TGCCTCAAGT AAAACTTGCA AACCATCCTT ATTATAGGCT GAAGAATATA 46860 CTATTAAATC AAAAGACCTA TCAAGCTGTT TTAATGAAAA CTCATAAATA TTATCATAAT 46920 AAGATATTTT ATTATTACTT AAAATTTCAT CGGTATAAAA TTTATCAGAA ACATCTACCC 46980

CTTCTACACA ATACCCTTTT GAATTTAAAA AACAAGCCAG AGAACAAGCC CCACTTCCCT 47040 TTATTCCTAC AAAAAAATA TTATTCAAAT CGTCAAAATC AACCTTCATA GCTCTCTTCT 47100 AAATAATCTT TTTTGTCATA AAATTTATGT ATAACTATAT CGATAGATAA TATATTAATT 47160 ATTGTATACT TAAGTACGTT CGTAATAATA TAGGTTCTAA GCATTTCTGT ATTATTAAGC 47220 AAGTTATTTC CAAGAGGAAT ATTTAAAAAC AGTTAAAAA GGTAATTGTT TCCATCTTTT 47280 TTGATTTTAA GATCATAAAC AATATAATTT CTATCATACT CAGAAACACA ATGTTCAATA 47340 ATTTGCCTTA CAGCTCTCTT AGAAATAGAT AAAACCCCTT CTTCATAAAA ATGGGGCCTT 47400 ACAACAGATC GAATATAATT TTTCTTCCTA GCAAAGAACC ATCCGCTTTT AAAAAAAACT 47460 TTAATTGAGT TTAATAGCAA ATTGGGCCTA ATAGACGTTA TTTCAAAAGC AGCTGCTGGT 47520 ACAACATGCT CCCCCATTTG CCTTGAAATT CTTGCTTTTT CTATTTCCTG CCTGGTTGAA 47580 ACATCTGTTA TGTAAATAAT CTTAAAAACA TTTGGCAACA AAAGTTTTGA AATTATTTTA 47640 TCTATCATTT TAAGACTTGT TCCTAATATT AATATTTTAT TAAATTCTTC TTTTGCAAGC 47700 ACTTCAAGCA TTTCTCTGCA ATGAGCATCA TCTTCAAATA CAGATCGCCT TACCGCTTTA 47760 AAAACATTAT CTTCAAACTT AGCAGAACTT CCGGCAATAA TTTTCATATT TTTAATTAAA 47820 ACACCATCAT CAATTATTAA AGGTATTGAA TATTTATCTG CTACCAAATG CGATCTAAAG 47880 CTCTTGCCAG TTCCAGCAGA TCCTACTAAT GCATACACCT TAACCCTAAC AAATTTATGC 47940 TTAATGCTAA TTGCAAAGTC TTTAACCTTG CTTAATATTT TTTTTAAAAA AAAATCACTT 48000 GAAAAATTCT GAAAATTCAT AGACATCAAA AATATCTTTT ACTTGCTTTA AAAATCTAAA 48060 CTAGGCTTAG AGCAAAATTC ATTCTTTTTA AAGAATGTTC CATTAAATTT TACCAAAAA 48120 GCATGTAAAA AGTAATCGCT TTTCTTGAAT TTATTACAAT ATTTCTTGTC ATTAATTAAA 48180 GGATGATTGT TAAAGGAACA CTGAGACCTT ATTTGATGGG TAAAGCCTGT TTCAATAACA 48240 ATCTCGACAA GAGTAGCTCT TTTGCAAGAT AATATTGGAT TAACCTTTGT AATTGCATTA 48300 ACAAAATTTT TATCTTCTAA AACAAAAGTT TTTCTCAACC TTTTATTTCT AAATAAATGA 48360 TTTTTATAAA CAACAGGAGA CTTAACCTCG CCTAAAAGTA TTGCAAAATA TTTTTTAATT 48420 ATAGATCCAC CACTAAATGC CTCACTTAGC TTTCTTGCAG TATTTATATT TTTTGCAAAA 48480 ATAATAATAC CAGAAGTATT TCTGTCAAGC CTGTGAACTG CCGAAGGCTT AAAGCTTAGG 48540 GATCTTAAAT TTTGACTTAA AAGATAAGAA TTCACTAAAA AATCAAGAGA ATTTTTACCT 48600 CCATGAACTA AAATACCTTT TTGCTTATCT AAAACAAGTA AGTCACTGTC TTCATAAATT 48660 ATTCTTTTTC GAATATATTG AAAATCAATA TTGCTTTTAA AGCATTTATC CGTGGTTAAG 48720

185

			185	. 1		
TTCAAATTTT	GGGCTAAAGA	TTTGTACAAA	TAAATTTTAT	CACCTTTGCA	AACTCTGCAT	48780
GAAAAATGTG	ATTTTAAACC	ATTTAGCCTA	ATGTCACCTT	TTCTAATATG	TTTTATTATA	48840
CTCGCTTTAG	AAAAATTTAA	AATTTTAATT	AAAATTGAAT	CTAGTCGCTT	GCCATTATCA	48900
TTAGCAAGCA	CTTCTAAAAA	AATATATTTA	TCCAAACGCA	AAAAATACCC	CTAACAAACC	48960
ТТАСТАТТТТ	TTTTACAAAA	ААААТТААСТ	ACTAAAAATG	TAAATATAGA	AACAAAAAT	49020
GATGGAAAAA	CGGGGTGAAA	AAACCAAATA	TTTAAACCAA	AGAATAAAAT	GGACAAATAA	49080
AATATTAACC	СТАААААСАТ	AGAAGCAAAA	GCCGCTATTT	TGCTTACAAA	АТТТАААТАА	49140
AGTCCAAAAA	CAATAATAGG	GAAAAACGAA	ACTTCCAAAG	CTCCAAAGGC	АААААТАТТА	49200
ATAAAGAATA	AAAAATTGGG	AGGAAAGAGA	GAAAATATAA	GTATTATTAA	ААТАААААА	49260
ATATTAGAAA	TCATTATTAT	TCTGCCAATC	TTTACATCTT	CTTTTAAATC	TTCTTTATAA	49320
ATAAATATTG	ACTTTATTAA	AACAGATGTT	ATTAATAGCA	AATTTGAATC	CACTGTAGAC	49380
ATTATTGCAG	ATAAAAGACC	ТАТААААААС	ATAAAACAAG	AAAAAGGATT	TAAAACTTTT	49440
AAAGCCACAT	ТТААААСААС	TTTATCATTT	GGACTTAAAT	CTGGAAAAAG	AATAATAGCA	49500
АААААСССТА	TTAAATGCAT	CAAAACAATT	AAAAAGCTAA	TAATAAAAGT	AGAAATGGGA	49560
AGAGAAAATT	TTATAÇCATT	CTCATCTTTA	AATGCTATAA	ААТТАТТААТ	AATCTGAGGC	49620
TGCCCTAGTA	TTCCTATTCC	ТАТТААТАТС	CAAAAAGAAA	TTATATATTG	TGGCTTTAAG	49680
TCAGCATTTG	AAGGAAGTAA	AAGGCTTTTA	TCTAAGCTAG	ACGTTGCTGT	TTTGAATAAA	49740
ттаттаатас	CCCCTCCCAA	ATCTAGCATC	TTGGAAAACA	AAATAACGGA	TGAAACTAGC	49800
АТТАААААТС	CTTGAATCAA	ATCCGTATAA	GCTACTGCCT	TAAAGCCGCC	AAAAAATACA	49860
ТАААТАААА	CCAAGAAGGC	AAAAAAAGTA	AGACCAACTA	CGTAATCAAT	ACCCCAAAAA	49920
ACTTCTATAA	GTTTGGCACC	ACCTATTAAT.	TGGGCAGAAA	TCAAAAACAT	TGAAAAAAA	49980
ATCAATACAA	ATCCACTCAT	TAACGCCAAA	AAATCACTTT	CATATCTATG	ССТААТАТАА	50040
TCAATAATAT	TAATTGCATT	AATTTTTTTT	GATTCGCGAT	TTAATCTCTG	ACCAACAATA	50100
АТАААААСАА	TTAAAGTTGT	AGGAATTTGT	ATGGTAGCTA	АТААТАТААА	AGATAATCCA	50160
TACTTATAAA	CAGCAGAGGG	ACCGGAAATA	AAACTACTAG	САСТААТАТА	GCTAGAAGAA	50220
AATAACAAAG	ССАТААСААТ	AAAATTAATA	TTTCGATTTG	CAAGAAAATA	TTATTTAAT	50280
AACAAAAACC	TACCTCTATT	ТСТТТТТТТА	AGAAAATCTA	ААААТАААА	AATATCAATA	50340
ATGTATCAAG	TTTTACTAAT	ТАСТААААТА	ААААААСААА	ССААААААА	ATTATACTGG	50400
GGAATAAAAT	TCCTGACAAA	AAAAACCACA	AAGGAATATT	АААТАТАСТА	GTTGATGTGT	50460
СААТААААТА	GGCAAAACAA	ААССАСААТА	САААСАТААА	AACATACAAT	AATATAGCGT	50520

ACAAAATCCC ATTTCTCATT TAAAACAACC TTAACAAAAG GACATCAAAA TTTATAAATT 50580 CAAATATAAT GTATATTATA TAATATATAT TATATGGATA AAAATAAACA TATATTAATT 50640 GGTATATGTG GGGGCATAGC CTCTTACAAG TCAGTTTACA TAGTTTCCAG TTTAGTTAAA 50700 TTAGGATACA AAGTTAAAGT TATAATGACA CAAAATGCAA CTAAATTTAT TACTCCATTA 50760 ACTTTAGAAA CCATTTCTAA GAACAAAATA ATTACTAATT TATGGGATTT AGACCACAAT 50820 GAGGTGGAGC ATATAAAAAT TGCAAAATGG GCACACCTAA TTCTTGTTAT TCCTGCTACC 50880 TACAACACAA TATCTAAAAT TGCATCAGGA ATTGCTGATG ATGCATTAAC TACAATAATA 50940 51000 CCTATTTTAA AAGAAAATAT AAAAAAGCTT AAAACTTATA ATTATAAATT CATTGAACCT 51060 GATAAAGGAT TTTTAGCTTG CTCATCAAAT GCTTTAGGGC GCCTTAAAAA TGAAGACAAA 51120 ATTATAAAAA TAATATTGAA TGAATTTAAT CAAAAAGACT ACCTAAAAAA TAAAAAAATA 51180 CTTATAACAG CATCCAGAAC TGAAGAATTA ATAGATCCAA TTCGCTATTT CTCAAATACA 51240 TCAACGGGAA AAATGGGGTT TTGCTTAGCA CAAGAGGCTG TCAAACTAGG AGCTCAAGTT 51300 ACAATTATTA CAGGACCAAC CAATGAAAAT GATCCTGAAG GGGTCAACAT TATAAAAATA 51360 AAAACTGCAA TGGAAATGTA CAAGGAAGCT CTCAAAATAT ATAATAAATT TGAAATAATA 51420 ATTGGAGCCG CAGCTGTTGC CGATTTTAAA CCCAAACACA TTTTCAATAG TAAAATTAAA 51480 AAAAATAAAA TCAATAGATT ATATAAAA TTAGTAAAAA ATCCCGACAT AATCCAACAC 51540 ATAGGACACA TTAAGCTTAA AAACCAAATT GTTATTGGAT TTTGCGCTGA GAATTCTAAA 51600 AATTTAATTC AAAAAGCTAA AGAAAAATTA AAAAAGAAAA ACTTGGACTT TATCATTGCA 51660 AATGAACTTA AATATTTTGG TTCAAAATTA AACAAAGTTT ATATAATAAA TAAACAAAGC 51720 ATAAAAGAAC TGCCAGAAAT GGAAAAATCA GAAGTAGCTA AAGAAATTTT AAAAATTTTA 51780 TACTAATATG CTTAATAGTT TATTAATAAT CAATAATCTT TTAAAAGCAT TTTAATATAT 51840 TCGGAGTTCG TTTCACTTTT AATTTTTTTA AGCTTATCAG AAAGCGATGA AGATTTATTA 51900 TAAACAGCTC CTTTTAATGC TAAATGCCTT AAATCAATAT TTTTGCTGTC AATGATTTTA 51960 GAATAAAAAT TATCAAAATT ACCCTTTTTA CCAGCCAACA TTGAAGCAAC GCCCCTTAAA 52020 ACATTTGAGG GTCTATTAAT ATTTTCTTTA TTAACAATTT CTAAAGCAAT TGACAATGCT 52080 TTTAGAGAAT CCTTATCTAA AAGGTAACTA AACATTGAAA TTTTAAAATT ATTGTCAATC 52140 TTAAAATCAA ACATAATGTT TTTTATCTCA ATATTCCCAA GATCCATATC AATTAAGGCC 52200 TTAGCAGAAG CCTCCCTAAC TTTAAGAGAT GGATCGCTTT TAAGCTTATA AATCAAAATA 52260

187 TCCTTTGCAG AAGAGTCCCT ATGTCCTTTG ATTGCATTAA TAGCTTTAAA CCTAATATTA 52320 TCATCAGAAT CTCTTAAAAA TCCTTGTAAA ATCTCTTTAG ACTTTAAAGA AGGATCTTTG 52380 GACAAAGAAG CAATAATAGC TAATTTAACA TTTAAATTAT TGTTATTACT CTGAAGATAC 52440 AAATCAGCAT TTTCAGTTAC TTTATCTGAA GCAAGATATG ACAACGCTTC GATTGCAGCA 52500 GCCTTAATTG ATGGGCCCTC GTAATTATCT AGCGAAATTT CATAAATTCT ATCCTGATAA 52560 TCAACAGCGG ACATTTTTCC AAGAGCAATA AGTATTTCTC TTCTAGCCCC ATCATTTCCA 52620 GAATATTTTT CAAAAACTTC CATCATGTTT TTAGAATACT CAAGAGAATT AAGCTCTCCT 52680 AAATAATAAG CTGCAATAGA TACCACATTG CCCTCTTTAT TTTCAAGAAT GTCAATAAGA 52740 GTTTTTTTA ATTTTTCTTT ATCATCAAAC TCCTTAAGAT ACGAAATTGC CAAGCCAAAT 52800 AAAGCGTTTG AATATCTTTT ACTCTCATAA TTTTCAAGAA TATAATTTGC TGTATCAATG 52860 CCCCCGAAT ACTTAAGAGA AATAAACAAT TCAAGTATTT CCCTTTTAAG CTCAGCATTA 52920 AAAGTTTTCT CAAGTCTTTT TTTAÄGAGAA AAATTATATT GACTATCGCT TGATTTTTTA 52980 AGAGCTTTTA TAATGCTTGT CACTTGACTA TCAAGCCCAT AAAGAATTGT ATCGTTAACA 53040 TACTTACCAT CTAAACCAAC ATTAGAAAAA TTCTCTCCCT TAGAAGAATT TTCTCTCTCA 53100 ACAGGCTTAT TTTCTGTAAT TTCGGGCAAC AAAGGCGGAC TAGGAAGAGC TGGAGAATTA 53160 ACATTTTGAG CATACACATT AAAAATAAGT AAAAAAAATA AAAAATAAAA GTATTTCATA 53220 AAGCATCCCT TCTAATATAT CTAAAAAGCT TATTTATTCC TAAAACAGAA TAACAAATAA 53280 ACAAAACAAA AATACTAACA ATTCCAGCTG CCATTAAAAA ATAAAGATTT TTAAAACTAA 53340 ACCCCACATC CCACTGAAAC TTTTCAAAAA AGAAATAAAT TGCATATAAA GGAAAAAGTG 53400 TAATAATTGA CTTTAAAAGA ACAAATAAAA TTTCAATTAA ATCAATTTTA ACTCCTCTTT 53460 TCAATATTAT AAAATAAAAA ACAATTACAC AAATCATAAA AGAAATAGAT TGAGCTAATG 53520 CTAAAGCGTT CAAACCATAA TAATTAATAC CAAAAACAGA TATTGCAATA TCAAGAATAG 53580 AAAATAAAAC ACTCAAATAA AACGGTGTTT TTGCATCACG AATAGAAAAA TAATATTTTT 53640 GGAAAAAACC AAACATTGAA TAAAAAAGCA GACCTAAAAG AAAACATTTC AAAACACTCG 53700 CTGTTTTTTG AGTATCATAA ATAGAAAACT TGCCTCCCAT AAGAAATAAA TTTAAAATAT 53760 AATCAGACCA AATAAACATT AAAAAAGACA CTGGAATAAA AATTAACAAT AAAATTTTAA 53820 TTCCATCTAC TAAAAGGGCA TTTAATTTTA TATTATTCCC CAAAACAGCA TGCTCTGCCA 53880 TTTTGGGGAA AATCACTGTT GCAATAGAAA TATAAAAAAT TCCTACAGGA AGCTGATAAT 53940 AAACTACAGC ATTACTAAGG ATAGAAACAC TTCCTATCTC AAGAGTAGAT GCTAATGCAA 54000 ATGAAATCTG CTGAGTAATA ATTGAAATGG GAAAATCCAA GAATCATACG AAGCCATCTG 54060

GTTAAAAATT TAAAACCTTT TCTCTGAAAT AAAATGTTGG CTTCCAGGCA AAACCAATCA 54120-TAAGGCAATT TGCAAACGGA ATTAAAAATT GTAAAAACCC CCCAAAAATT ACGCCAATAA 54180 CAGCACTATA TATTCCAAAA CGACCATAAA ATAAGAATAT GCTCAATATT ATTCCAAAAG 54240 AAAGCATAAT GGGCGAAAAC GAAGGAATGA AAAAAATTTT ATATGAATTT AGAACAGACA 54300 CGAAGATTGA TGATAGGCTT ATTAGTAAAA TATATAATAC CAAATAACCA AATACAGAAC 54360 TTGCAAAAAT TAAGTTTTCT CCCCTATAAT AAGATATAAA ATACATAATA GGCTTTGCAA 54420 AAATAATCAT AACTAAAACA ATTAACCCAA TAGAAATAAT GTTAAAGGTT ATGACAGTTC 54480 TGAAAAAGA AACAGCTTTT TCGTGCGATT TGTTTTTTTC ATGTGTAAAT TCAGGCAAAA 54540 AAGCCGAGGT CATCGCGCCC TCTGAAAGAA TTTTGCGCAA ATTATTAGGA ATATTGAAAA 54600 CATAGTTAAA AATATCAGCA TCAAGATTTG CACCAAAATA ATAAGAGAAA ATCTTTATCT 54660 TTACAAAGCC CATTATTCTT GAAAAAAAAG TGGAAATCAT GACCAAAATT GTAGAAACAA 54720 CATATTTATT CATCGAAATT TTCCTCTTCA TACTTTTTTA AATATGAAGT TCTAAAATTT 54780 AAAAAATCAT CATTTAGAAT TGCGGCTCTG ATCTTTGAAA TCAATCGAAA CATATAGTGG 54840 ATATTATGTT CACTTGCCAA AACTATTCCA AAAAGCTCTT TCGATTTTAT TAAATGTCTT 54900 AAATATCCTC TTGAATACCT TTTACATAAA GTACAGATGC AATTTTTCTC TACCTTAGAA 54960 GTATCATCCT TATACTCCTT TCTACCAATG CACATAATCC CATTATCTGT CAAAAGAGAC 55020 CCATGCCTAG TAATTCTTGC GGGATTAAAG CAATCAAAAA TATCAATGCC ATAATATATG 55080 GCATTAAGTA TGTAATGGGG AGTGCCAATA CCCATTACAT ACCTTGGTTT TTCTTTTGGT 55140 ATCAACAAAA AACTATATTC AAGGATTTCT AAATATTTCT CCCTTGGTTC TCCAACAGAA 55200 ATGCCTCCAA TGGCAATACC TGGGCTGTCT AATTCCAATA TATCATTGAT ACTTCTTTTC 55260 CTTAAATCTT TAAAAAAATT TCCTTGAGTT ATTAAAAATA AAAGCCCGTT GTATCCCTCT 55320 TTTCTGTTTT TAGAAGATTT GAACGTGCTG CTAGCCCAAT TGGTTGTAAT ATTTGTATAT 55380 AAATTGGCTT CATTATAATC AATCCCATAA GAACTGCAAA TGTCAAGTGG CATAATAATA 55440 TCACTGCCAA AAATTTCTTG CATAGCAAAT ATTCCCTCGG AAGTAAAATA ATGGTACGAT 55500 CCATCTATAT GAGATTAAA ATGCACACCT TTTAGATCAA TTTTTCTCAG ATCAGAAAAA 55560 GAAAACACCC GAAATCCGCC CGAATCGGTT AAAAAATTTT TATTCCAAAT TGTAAAATTA 55620 TGAAGACCAA CATATTTTC AACAGTTTTA ATTCCCAGCC TTAAATATAA ATGATAAGTA 55680 TTTGCAAGCA TCAAATTACA TTCTAACTTC TCAAGAACAG CATGTTTTAA CCCTTTCATT 55740 GCCCCCAAAG TACCAACTGG CATAAAACAA GGAATATCTA CTCTACCATG AGGAAGATTT 55800

189 AAAAATCCAA CCCTTGCATT AAAATGCTTA TCATTCTTGA TTACACTAAA CATATAAATA 55860 TCCCAAATAA TTATATATAT TATTTCCTAA CAATCCTATA AACAAAAAA TTGATAATCA 55920 · AAAAAAATAT AGTTGTAAAA GAACTTGCTA TATATATATG CAAATAGCCT AGATCCGCTA 55980 AAAAATTAAA AATTACAATA GAAATAACAT AAACAACAGC AAAAGCAATG CTATTTAATA 56040 GGCTGAGTAT AAAAATATTT TTTTTAAGAG CAAGAGCAAT AAACCCAACA GTAAAGCTAA 56100 GAAGAATCAA TCTAAATGAA AAGAATATCC TATTTAATAA ATCAAAAAAT GCATCAGAAT 56160 AATTTAAACG TTCAGCTTTG AGAAAACTTA TCCAATTAAT AAGTTTAGTA AAATTTAACG 56220 CCTTTGATGA GAGCATCACA GTTCTTATGT AATCGGGCGC CAGCTTAATA ATTCCTGTCC 56280 CATCAAGAAC ATCGTAGGCG TTCTCCTTAA TTTTTTTACC AACCTTAACA AACTCTCTAA 56340 TACCATAAAG CCTCCATTTA TTATCTTTCC ATTCGGCTTT ATTTATATCG TACCTTGTTT 56400 GAAACTCATC TTTATTGTCT TTAATTATAA TCATCAAGTT AGCAAAAGTA TTCTCATCAA 564.60 TATCATAAGA TTTGATATTA TAAATTTCTC TAGCAAAATC CCTTATTATT ATAGTTTTAT 56520-CCCCAGATCT ACTGTCGCCA ATGCTATTCT TAATAAGAAC ATCTCTTCTT GCTATAGTAT 56580 CTATTACCAA ATAATTATCA AAAAAGAAAA GAACAACTGA AATAAATATA CTAATTAAAA 56640 TAATTGGTTT TAATATCCTG GTAAGTGGAA CTCCACAACT AAAAAGACCT ATTATTTCAT 56700 TTCTCATAGA AAGATTGCCA ATAAGATTCG AAATAGCAAA AAGAAAAGAT AAAGCCACCC 56760 CATCTGAGAA TGCCTTTGGC AAATATAAAT AATAAATATA AAGAATATCC TTAAGGCCAA 56820 TATTCTTTTC AAGATAGTTA AGAAGATTAA CAAACAAATC ACCAAGCATA ATTAAAATCA 56880 TGAAAAGCAG GTTCATGGAC AAAAAAGTAA GAATGATGCT TTTTATAAAA AGCTTATCTA 56940 57000 AGGCAAAATA GTAACAATAA TAGGACTTGG TGCATACTGC ACAGTATAAA CTTTTCCACC 57060 AATAAACATT ACCCAATAAA AAACACAAAC AATAATTGAA ATTACAAGTT CAAGAATAAT 57120 GGAATATTTT CTATTAGAAT ACATTCCCAT TGAAAAAGCT AAAAAAATAA AAAATAAAAC 57180 TGAAAGTGGT AAACTAATTT TTTGATAAAA TTCAAGATTA AACAGAGCCA AATTTTGCTT 57240 CATGCTTCTA TCTTGATAAG GTTTGAAATT TAAATTTAAA TTATACATAT AGTTTAAATT 57300 TTCAAAAACA TAAGATTCAT CCACATAATA GTTTTGATTG TATAAATAAT TTAAATAAAG 57360 ATTTGAAAAA TTTAAACTTA AAAAGTCTCC TTCTAGATTA TTTTTTATAT TTGAATCTGC 57420 AATTAAATTA TTTTGCTTTT TAATTAATTT TATAACATCT CTCATGCTCA TTTGTGAAGG 57480 AGTTACATAA TTTAATAAAA AACTATCACT AAATGTAACC TGATCGATTG AATATTTCAT 57540 CTTATCTGCA TAAAAATAAT CATAAAATCC ACTCTCACTG TCTGTTAAGG CAATAGATAG 57600

AACATCATTT AAAATAAAAT ACACTTGAAA ATTTTCTTTT CTAATATCAA GATTTTTTGC 57660 CATAAATATT CTATCAAAAC CCTTAAGCCC AGTGTTATCA AAAAAAGTTA CATTTTTATA 57720 ACCATTTCC GATTTCTCAC CAGAAACAAA AATCAAATCT CCATATTGTT TGCTTGAATA 57780 AGGCTTTAAT ACCAAATGGG GAACTTCTTC TTTTATTTCA TTAAAAATTT TTAATCTGCC 57840 AATAGATCCA AGTGGAAGTA AAATATCATT GGATATAAAA GATACAAAAG CAATAACTAT 57900 TCCCAATTTA AAAAATGGGA CAAGTAAATC AAAAATTGAT ATGCCAATTG AACGAAAAGC 57960 TAAAATTTCA TTGTGAAGCT TGAATTTATG AATAGTAAGA ATTACTGAAA TCAAAGAAGC 58020 AAAAGGGGGA GAAAGCGCAA TAACCATAGG AAGAGAATAT ATAATAAAAA TAAAAGCCTT 58080 AAAAAAGGGA ACATAATTTT GAAGAAGTAT TCTCATAAAG AATAAAATTT GATTTATAAA 58140 AAATACGAAA AAGAAAAATA AAAACGTAAT TAAAAAATAT TTAAAAAATT CAGCAATTAT 58200 GTAAGACTCA TAACTGTTTT TTAATATTTT CATCTACAAA AACCAAACCG TTATTAATAG 58260 TGCCCAGTAT GACATAATTT TCAAATCTAG AAACTTTTAT TAAATTCAAA TTAAGAAGCC 58320 CATTATTGGG TCCAAAATAA TCCCAGTTGT CATTTTCAGA ATCATAAATC AATAACCCAT 58380 GATCAAAGGT TGCAAACAAT AGCTTTTTAT CTTTAATCTC CATATCCATA AAATAATTAA 58440 CATCAATATT ATTGGCAATA ACGTGCTTTT TGTAACTATT TTTATTTAAA TTTAATTCAA 58500 AAAGACCCCC ACCATATGTT CCAACAAAAT AACTATCTTT ATATTCTTTT ATAAAATTAA 58560 TATTTTTTC ATTATCATTT TTGCTAAAAA AATCCAAATG TTCAATCTTT TTCAAATTAT 58620 CGACATTAAC ACTATAAATA GCCTTGTCAA CTGTTCCAAC TAATAATAAA TTTTTTAAAC 58680 TATCAAAGCA GAGTGAAGAA ATTTTATTAG ATCCAAGCGG TATATTTTTC CAATTTTTTA 58740 AATCATAAAA CCATAATCCA GAATTTAGAG TGCCAACAAA TATTCCATTT TTAACAGCAA 58800 GCAAAACTTG TACATTGCTA AAATCAGCAT TACCGGGAAC ATTTATTTGC TTTAAATCCC 58860 CATCAACATC ATCTATATA TAAACAACAT TTTTACCACC AATATAAATT GTTCCATTAT 58920 AATCCGCAAA ACCCCTAATG CCATTTAAAA AAATGCTTTT TTTATCCTTA AGATAGACTC 58980 TACAATCATT TTTTTTAATA TTATATCTTA AAAGCCCTCC CAATATATTA GTTACAAATA 59040 TATTGTCATT AAAGACAAAT GTATCAAAAA CGCTGTTGTC AAGAAATCCT AAAGACTCTA 59100 AGTTTAAATG ACTTACTCCA AGTTTATTAC TTAAAAAGCC ATAAATCTCT CTATCATAAC 59160 CTGAGATAGA AAATTCATTA ATCTCTTTAA ATGCAGAAAT TGCATCAGAT TTTTCTTTAA 59220 CAAGATATTT TAATTCAGCT AATCTTAAAC TAGCATGAGA ATATTTATAG TCTTTTAAAA 59280 ATAGATCAAA ATTATATTCG GAAAGATCAT AAAAACCATT CTCATAATTT ACATATCCAA 59340

ААААСАААТТ	CGCTTTAGCT	AGCAATTCTC	TGCTGTGCTG	ATTCTCATTA	GTTACTATTT	59400
ТАТТСАААТА	ATAATTTGTC	AAGCCAATAT	TTTTTTTAGC	ATAACTTTCC	CTGGCTTTTT	59460
ТААААТААА	ATTATTTTCT	TTTAAAAAAG	CATCACTAAG	AAAAAAAGAT	TCATTATCTT	59520
ттаатсстат	CAAATAGTCT	СТТТТАААТТ	TACCCTCATT	ACTCCCAAGA	ACAACATTAT	59580
TATCATCAAT	AATGACTGCT	TCTTTTTCT	TCTCTACAAT	ATCACTAATA	TGAGAATCTT	59640
GAATAGATCT	ATCTGTAGTA	AGGCAGGAAA	AAAACAAGAA	AAAACATATA	AGACAACCTT	59700
ТАААТАААТТ	ATTCAAAACA	AATTTCATAT	ТАТТТТААТА	ATCTTTATCT	CTAACAATTT	59760
CAAGATCAAT	TTTTCCAAAC	TTGTCTATAT	СААТТАТТТ	GACCTTAATT	CGCTGACCTT	59820
CTTCTAATTT	TGGGGGTCGA	ACTAACCCCG	CATTACCTCT	TATATTCTCT	CCACCGCCAC	59880
CAAATCTAGA	ATATCTATTA	СТАТТСССАА	ATCTTCCAGA	ACCATACTTA	CTGTCTCTGG	59940
GTTTCAAACG	AGTACTTAAA	AATCCTTCCT	TTGCAGGAGT	AAGŢTCAATA	AAAGCCCCAA	60000
AGCTATTAAT	CTTTTTGACA	GTTCCTTCAT	AAATTTCGCC	TACCTTTGGC	ТСТСТТАСАА	60060
ТАСТСТСТАТ	TCTTTCTTTA	GCTTTTTGCA	ТСТТААААТС	ATCATCCCCG	AAAAGAATGA	60120
TTTTTCCATT	CTGCTCAATT	TGAACCTTAA	CTTCAAATTC	ATCTGTTATA	GCCTTAACAG	60180
TTTTTCCAGT	AGATCCTATC	ACAAGAGATA	TCTTGTCAAT	GTCAATTTGA	AGTTGAACAA	60240
TTTTAGGAGC	ATACTTAGAT	ATACCAACTC	TTGAATTAGA	AATTACAGTA	TTCATAATAG	60300
ATAATATATG	TATTCTACCT	ATTCTTGCTT	GCTCAAGAGC	ATCTCTCATT	AAATCTTTAG	60360
TAACATTTTC	ААТСТТААТА	TCCATTTGAA	ATCCAGTAAT	TCCATTTTTT	GTACCGGCCA	60420
CTTTAAAGTC	CATATCACCT	AGATGATCTT	CTTCTCCAAG	AATATCACTT	AAAACTACAT	60480
ATTTATCCCC	TTCGCTAATA	AGCCCCATGG	CTATCCCCGC	AACCTGCCCT	TTAACAGGAA	60540
CCCCTGCTGA	CATTAAAGAC	ATGCTCCCAG	CACAAACAGT	AGCCATTGAA	GAAGATCCGT	60600
TAGACTCTAA	AACCTCAGAA	ACTACCCTAA	TGGTATAAGG	AAAATCATTT	TTTCCAGGAA	60660
CCATTGATTC	TAAAGCTCTT	TGAGCTAAAT	GACCATGGCC	AATCTCGCGC	CTGCCAGTCA	60720
TTAGTCTACC	GGTCTCACCA	ACTGAAAATG	GGGGAAAATT	GTAGTGGAGC	АТААААТТАА	60780
GGCGTTTATC	GCCATCAATA	TCATCCATTA	TTTGTTCATC	AATGCTTGTA	CCAAGAGTAG	60840
TTACCGCTAA	AGCTTGCGTC	TCTCCCCTTG	TAAAAAGCGC	AGATCCATGC	GTTCTACTTA	60900
AAATATCAAC	TTCTGAGATA	ATATCTCTTA	TCTCATTAGG	AGTTCTGCCA	TCTGTTCTAA	60960
TATTATCGTT	AAGAATAGAG	CTTCTAACAA	TCTCCTTCTC	AAAATCATCA	AAAGCCTTAT	61020
GAAAAAGAĞA	TTCATTGCTA	TCAGTCAATT	TCTCAAGAGA	AGAAAAGTAC	TCATAAGATT	61080
TATTTCGCAG	CAAAGTTATG	GCTTTATCTC	TATTAAGCTT	TCCCTTAACA	AAACAAGCTT	61140

193

AAATCTAGGA	GGACTTTGAT	AAATCTCTCC	TACAAAATCT	TTAAGCTTTA	AATCTATATC	629	40
СТСТАСАТТА	GGAATATAAT	CTGTTTTACT	AACTATTCTT	CCATTCGGAT	CAAGGGTATC	630	00
TGTTTCTAAT	CCAAATCTGA	ATTCTGCTAC	ATACTCTTTA	TCTAAAGAAG	ТААААТААСС	630	60
TGAAAGCTTT	GTGTATTTTC	CCACAAGACA	AACCAAAATT	CCACTTGCAA	ATTTATCAAG	631	20
TGTGCCAGCA	TGCCCAACAC	GATTTGTATT	AAAATATTTT	TTTATAGGGA	AAAGAGTTTC	631	80
AAAAGAAGTT	TTACCTTGTT	СТТТАТТААТ	TAAAAGGAAT	CCATTTTCCA	AATTTAATTC	632	40
TCTCTTGTAG	TATTTAATCC	TTCAATTAAC	TTATTAACAT	AAAATGATTT	GGAAAGAGAA	633	00
ТСАТССТТАА	САААТААТАА	TTTGGGAGTG	CTTCTAACTT	TAATTCGCTT	AATAATTTGA	633	60
CTTTGAATAA	ATCCCTTAGC	АТТАТТТААА	GCTTTAACTG	CATTGTCCAA	AGAAGCACCT	634	20
TCCTTAATAG	AGCCCATAAA	CACTTTAGCA	ТТТАТТАААТ	CTTTTGAAAA	ТТСТАСТТТА	634	80
ACCACGGTTA	AAAATGAATG	AATTCTGGGA	TCTTTAATCC	CCCCACTTAC	ТАТТАААТТ G	635	40
CCGATTTCTT	GAGCAATAAA	ACTTTCAAGT	TTAAACTTTT	TAATATTCTT	ATĂCATAAAC	636	00
ACATATAAAT	AAAACAATAC	TAAGTTTTAA	AAGATTTTTT	AACCTTTTTT	ACCTCAAATG	636	60
CTTCAATTAT	ATCTCCTTCT	TTAATATTAG	CATAATTATC	ААТСАТААТА	CCACACTCAT	637	20
ATTGCTCAGC	AACTTCTTTA	ACATCATCTT	TAAATCGCTT	TAAAGATGAA	ATTTTGCCGG	637	80
AATGAATCTG	TAAACCATCT	CTCATTACAT	TAGTAATCGC	ATCTCGCTTT	ATTAGCCCCC	638	40
GAGAAACATA	ACAACCGGCT	ATTACCCCTA	TTTTAGGAAC	ATTTATTACA	GCTCTCACTT	639	00
CAGCAAAGCC	AATAAACTGC	TGCTCAACAT	CTGGCTCAAG	CATTCCTTCA	AGAACTGACC	639	60
TAACATCATT	TATAGCATÇA	ŢAAATAACAŢ	TGTACTTTCT	AATCTCAACT	TTTTCCTGAT	640	20
CTGCTAGTAC	CTGAGCTTTT	GCAGTAGGCC	TTACATGAAA	TCCAATAACA	ATAGCATCGC	640	80
TTGCTGAAGC	AAAGCTAATA	TCTGTTTCGG	TTATTACCCC	TGCTGATGAA	TGCACAACTC	641	40
TTACTCGAAC	CTCATCGTTT	GTTAATTTTT	CAAGAGAATT	CTTTAAAGCT	TCCACTGAGC	642	00
CTTGAACATC	TGCTTTTAAA	ATTATTTTAA	GCTCTTTAAG	CGCTCCTTCT	TTAATTGAAT	642	60
CATAAAGATT	CAACATAGTA	ACTTTCTTTA	CATTTTTGGA	AGATTCATAT	TTTTTAAGAT	643	20
CTTGTCTTTT	AGAACTGATC	AATTTTGCTT	CTTTTTCAGT	TTTAGTTACT	TGAAAAGGAT	643	ŖΟ
CCCCGGCTTG	AGGCATTGAA	GAAAATCCTA	AAACACTAAT	GGCTTTAGCG	GGTCCAACGC	644	40
TCTTAACAGA	AACACCCTTT	TCGCTAATTA	ATGCCTTAAC	TTTACCATAG	CACGCTCCAC	645	00
CCACAAAAGA	ATCTCCCACA	TAAAGCGTTC	САТССТСААТ	AATAACAGAA	CAAACTATTC	645	50
CGCGCCCCAA	ATCAATCTTG	GCATCAAGCA	СТТТТССААТ	-AGCTCTTTTG	GATGGATTŢG	6462	20
CCTTTAACAA	CATCATATCT	GACTGTAAAA	GAATCATATC	AAGTAGTTCA	GAAATTCCTA	6468	30

195 TATCATCCCC TCTTTTAATA TTTTGTTAAT TTCTTCTTGT TTTTCATAAC TTACACCAAG 66480 ATTAAAAAGC ACTCCCTCAT CTGCTTGTAA AAAATTGTTA ATATCATCAA ACCCCTCTTT 66540 TGATAAATTA GAAATCACAG AAGGATCAAG CAATTTAAGA TCACTTATTT TACTAATCTC 66600 TTCAAATTGC TCCTCCTCAA CAACATCTTG CATAACTTTA TCAAACATTT CGAGTGTTTC 66660 TTGCTTAAAC TCCGAATTAG CCTTCATTTC TGCAAATTGA CTGCTAGTTT TAACATCAAT 66720 AGCCCAGTCA AGAAGTCTAT TAGCAAGTCT AACATTTTGA CCCATTTTAC CTATAGCAAG 66780 AGAAAGCTGG TCATCACTAA CAACCACTAA AGCTTTATGT AAATCCTCGT CAAGAATATA 66840 AACATGTTCT ATCTTTGAAG GAGTCAAAGA ATCCTTTATA AATTCTTTAA TATCTTTACT 66900 ATAGGGAATA ATATCAATTT TTTCTCCTTC AAGTTCCTTA ATTATAGATT GAATTCTGAC 66960 TCCTTTTTGT CCTATACAAG GACCAACAGG ATCAATCTCT TCTTTTTCAG AATAAACAGC 67020 GACTTTGATT CTGTAACCAG GATCGCGAAC TATTTTATGA ATCTTAATAA TACCTTCTTC 67080 AATTTCTGGA ATTTCAAGCG CTAAAAGCTC TTCAATAAAC TTTGGATGGG TCCTAGAAAG 67140 AATAACTTCA ATACCATTTT TACCCTTTTT GACATTATAA ACTAAAACTC TAATCTTATC 67200 ATTAAGGTTA TAAACTTCTC TTGGCGATTG ATATTTCTTG GGAATTATAC CATCCGTATT 67260 ACCAAGATTA ACATAAAGAT CACCATTTCT ATTTTGTTGA ACGTACCCAA TAACAACCTT 67320 ATTCAACTTG CTTTTAAATT CTGATAAAAT CTCATTATCC TCAATTCCTT GCAGGTCATT 67380 TTTGGTTCTT TGTTTTGCAA CCTGAATAGA AAGCCTATCA AAAACTTTGG GATTAATTTC 67440 AATGTAAGCA TAATCACCTT CTACAATATT TTCCTTTGAG ATATCTTTTT CTAATATTTC 67500 AAGCAAAGAA TCTTTTACCT CTTTTACAAT TTTCTTTTTT GCATAAACAG ACAAATCTCC 67560 CGTATCATCA TCAAACTTAA TAAAAGCATT CTCATTGCTT CCAAAATACT TCTTATAAGC 67620 TATTAATACT GATTCTTAA TTGTTTTTCT AATAGAATCT ATACTCATGC CACGATCATT 67680 TGCAATATTT ACAATCATAT GCCCCGTGCC CTTTATCATC CAAACTTCCT CCTTAAACTA 67740 ATCTAGCCTT TTTAACATCA CTATAAAAAA CATTTACTTC TTTGCTATCT GTTTTAAAAA 67800 TAAAACTTTT TGGCTTTGAC TCTAATATAA AACCGTCTTC AAATTCATTA TCCAACATCA 67860 ACTTAATCTT TTTACCTTCA AAAATTTTAA ACTCTCTGTC ACTTTTTATT TTTCTATCTA 67920 TTCCTGGAGT AGAAAGCTCT AAAGTAAAAC CATATTTAAG ATTTGCTTCT AAAATTAATA 67980 AAATCATTTT ATGCAAATCA GTCAAAAAAT CAATATCTAA GGAAAAATTT TTACTATAAA 68040 GAACTATTTG AATTTTTCCA TTATTTTTAT TTCTAAAGAT ATTAATTTCT AATATCTCAA 68100 CATTTAACCG CCCTGTTAAA TCTTTTATCA AATTAAAAAC TTCATTATTT TTGTCAAAAT 68160 ACTTAATCAA CTGTATTCCT AAAAATAATA AGGTTCTTTT AAAGAACCTT ATTAAATACA 68220

TAAACTAAAC CTTAAGTCAA GGTTAACACT TAGCAAAAAT AATGTCAACA TTAAACCAAA 68280 TTATAAGATT TGGCCAAAGA AAGCTTTATC ACCTTATAAG CTCCCAATTG CATAATAAGA 68340 TCTTCACAAA TGCACATAGA TGCTCCTGTG GTAACAATAT CATCAAGTAA AACAATCTTT 68400 TTAAACTGAA AATTTTTATA TTTTGATCTT AATTTAATCT TATTTTCAAG ATTTTTAAAT 68460 CTAAGATTCC CTTTCATTAA CTTCTGGCTT TTTCCATACT TTCTTGAAAA AATATTTATA 68520 TAATTAAAAC CAAAACGGCT TAACAAAATA CCAATGTATT CCATATGATC AAAACCATAA 68580 AATAATTTC TTTTAAAACT ACAAGGAACA GTTACTATTT GATCAAAATC AATATTATTT 68640 AAACATTCAG CAATTCCACT TGCCAAAAAT CTACCAATTG ACTTTTGAGC ATCCCTTTTA 68700 TAAGACAAAA TTAAAGATTT GTAATGCTCT TTATATTCAA AAAAATAAAT CAAATTCTCA 68760 TCAAATTTAA TGTTAAAATT AAAAAGTGAC TTACATTGGT CACAAAGAGC ATTAGAAGAT 68820 ACATACCTTT TTCCACAAAA GACACAAAAA GGCAAAAATA TACTCTTTAA AACATTTAAA 68880 TAGCTCATAC TAACTGGACT GAGAAATAAC CTTTAAAACA ATTTGATTTA ACAGCTCAAT 68940 TGATTGAAAA GGAGTAATAT TATTAATATC TATGTTAGAA ATAAAATTTT TTAACTCTAA 69000 ATACTCATTT AATTTAATAT GAATATCAGT GTCATTTTC AAGATCTCTT TATCATTACC 69060 ATCAGAAGAA ACATGGGGAA GAAACTCTAA ACAAGAGTTG CCCTCTCGGC CCACCAAACT 69120 TTCTAGAATA ACATTAGCTC TATCTATTAC CCTTAAGGGA AGTCCTGCTA TGCGAGCAAC. 69180 ATAAATACCA TAAGAATTAA GAGATGGCTT TTCTTCAACT TCTCTTAAGA AAACAAGATC 69240 GTTGCCCTGC TTTTCAATTT TCATTGAAAG ATTAATAAAA GCCTGATGAT TAATAGACGA. 69300 CAATTCATGA AAATGTGTGG CAAACAAACT TCTAGCTTTA ATATACTCTA AAATATACTC 69360 TATAATAGAA TAAGCAATAG CAAGCCCATC ATTTGTGCTA GTACCTCTTC CAACTTCATC 69420 CATAATTATT AAACTCTTTT CTGTTGCATT CCTTAAAATG TTGGCTGTTT CATTCATTTC 69480 AACTAAAAA GTGGATTCCC CTTTGGCAAT GTTATCACTT GCTCCAATCC TGCAAAAAAT 69540 TTTATCTGTA ATACCTATTA AAGCTTTAGA AGCTGGCACA AAAGAGCCTA TATGCGCCAT 69600 TAAAGTAATT AAAGCCACCT GACGCAAATA GGTTGATTTA CCTGCCATAT TAGGTCCAGT 69660 AATTAAACAA AAATACTTTT CTTTATTAAT TCTTACAAAA TTTTCAGTAA AGATTTCAGT 69720 ATTTTTAGTG TAGTGCTCAA CAACAGGATG CCGAGACTTT TCAAGAAGAA TTTCTTTACC 69780 AGATGTCAAT ACAGGCCTTT TATATTCATT TTTTTTTGCC AAATAACCAA AGTTAACAAC 69840 TAAATCAATA TATGCAAAAA ATTCTGCAAC CTTTTTAAGA ACTTTATTAT GCATAACAAC 69900 ATTTGATGCT ATTTCATCAA AAATTTCCTG TTCAAAAGCA ACCACATTAT CTTCAGCATT 69960

197 ATTAATATCC ACCTCAAGAG AAATAAGTTT TTCTGTTTTA TATCTTTTTG AAGAATTTAA 70020 AGCTTGGCTT TCCATAAAAT GTGGTGGCAC TTGAGCATAA TTACTCTTTG TAACTTCAAA 70080 AAATAACCCC CTATTATTAG TTTTTCTAAT CTTTAGGTTA TTAATCTTGC TAAGCAATCT 70140 CTCTGATTCA AGATATTGAT CAATATTTT ATTTGCATTA ATCTTTAAAT CTTTTAAGTT 70200 ATCAAGCTTT AAGTCATAAC CTCTTTTAAT AAGTTCATCA GGTGCACTTG AAATTGCACT 70260 ATTTATCAAA AAATAAACTT TAGAAATACT ATCCTCTTCA AATTTATCAA AATTCCAATA 70320 ATCAAAATTA TGCTTGTCAA ATAACTTTTT TACCGTAAAA AATACAGAAA GAGCTTTTTC 70380 AATAAATAAA AAATCTTTTT TAATATATCT TTTCATTTGA ATCCTAGATA TTATTCTCTC 70440 AATATCCCAT ATATTAATAA AAGTTTCTCT TAAAGTCACA GTCAAGCTAA TATTTTTGCA 70500 AAAAAATTCA ACATGATCTA GCCTGGTATT AATCTCAGAA ATATTTAAAA TTGGATTTAA 70560 AATAAATTCT CTTAAAAGTC TCTTTCCCAT TGCAGTTTTG CAATCATTTA ACACAGAATA 70620 TAATGAATAT TGAGAAGAAA AATCATTATT ATTTTTTACA AGTTCAAGAT TAACTTGAGT 70680 TACGTCATCA AGAAACATGT ACGAAGAATC ATTATTGATA TCTATTTTAT CAATATTACT 70740 TAATAAATTT TTTAAATTAT TTTTTATATG ATTTATAATA AGAAAAATTG AAATGTAATA 70800 GGGCTTTTCC TCATCAAATC CAAGAGAGCT CAATCCAAGT ATGTTAAAAT GCTCCTTTAT 70860 TGTTTTTATT GCAATATCCT TATCAAGATG CCAAGTAGGA ACTCTGTTAA TTAAAAATCT 70920 ACTAAGATTA AGCTTCTCTG AGTATTCATA ATAAAAATTT TCAGAAACTA TTATCTCTTT 70980 AGGAGAGTAT TTCTCAAGAT CCCTTTTAAG TTTTTCAAAA AAACCATTCT CATAAAACAT 71040 TATTCCAAGA CTGGAAGTAG ATAAATCTAT ATAAGAAAAC GAATAATAAT CTTTATAATC 71100 ACTAATAGCA ACTAAATAGT TATTAATATC ATCATTTAAA AAATCTTCAT CAATAATAAC 71160 GCCTGGGGTT ATTACCTCAA CAACCTCTCT TTCTAAAGGC CCCCCAGAAG TAGAATTGGA 71220 CGCTTGTTCA CAAATTGCAA CCTTTTTATC AAATAAAATT AATTTCCTTA TATATTCTTT 71280 ACTGGTATGA TAAGGAACCC CACACATTGG AACATTTTCT CTTTTTGTCA ACGTTAAATT 71340 AAGAAGCTTG CTTACCTCAA TTGCATCATC AAAAAACATT TCATAAAAAC TTCCTACTCT 71400 GAAAAAAAGA ACAGCATCTT TATATTTTTT CTTGATATCT AAATACTGCC TTATCATTGG 71460 GGTAACATTT TTTTCCATAT GCTTCCTAAA TAATATTGAA TTACAATTGA TATTATAAAA 71520 TAAATATAAT TCAATTAAAA AGAAAGAATA TAAAATAATA AAAAGACCAT AAAAAAAATA 71580 TTTTACGCAA TTAAACGCTA TTTAATTATT AAAAAGCCTA ATGTTTTAAA TTTAATTAAC 71640 TTTAAGGGTT TTTATTGTCC TTTTCTAAAA GATGCTTAAC AACATCGTTT GTTATATCAA 71700 CAGTGCTATT GTGGTAAAGA ATATATGGAT TATTTTTTT CATAATCAAA GAAAACCCAT 71760

TAATTTCTGC AACATATTGA ATACCACGAA GTATTTTACT TAAAGATTCA CTATTATTAT 71820 TTAAACTATT AATATTGGCC AATCTCTGCT GTTCTAAATT ATTCTTTGCT AAACTAGACA .71880 CTCTCTTTAG CTCATCAACT TTCAAATTAT ATTGATTTCC AAAAGATCTT GCATTATCTA 71940 AATCATTATC AGCAATCGAT TTATCATACA TATGTTTTAA ATTCTTAAGC TCTAAATTTA 72000 ACGTATTTAT TTGTTCTTGA TACCGATTTT TTATTTGATC AAGATTAGCT TTCAATTGAG 72060 GATTTAAAAC TTCAATCACA ATTCTATCAA AATCAACAAT TCCTATCTTA ATAACATCTA 72120 TCGAAAAAC ATTAAAAGAT AATAAAAAA ACAATGGTAA AATCAAAAAA AACACAAATT 72180 TCTCCATAGC ATTAATCAAT ATCTCATCTC AATTCCTAAG AAAAATTTAA ATCCAGAATA 72240 ATATTTGTAA TAGCTGTTAA CTTTATCATT GTCAAAATAA AAAGGATAAG CTATTACAAA 72300 AGACAGCGGC AATTGAGGTA AAAGACTTCT AATTCCAGTT CCCCAGCTAA AAGCAAAACT 72360 ACTAAAAGGT CTAAACAAAG AATTTTCTTG CCCTTCTAAA GAATAGGAAG CAAAATCTAT 72420 AAAAAAGCA TCCCAAACTA AAATATTTTT TAACAAAGGA ATAGATATCT GCACAGTATT 72480 TACAAAAGAA CTGTAAATAT TTTTCAAAAT CCCCCAACCT CTAGCCTGCA TAAAATTTTC 72540 ACTAAGAATT ATGTGGTGAT GGGGTTGAAT TTCAATTTCA AAACCATTAC CAAGAGGAGG 72600 TAATATATT GAATAGACAC TCCTTAAGGT CAAAATAATA TCAAAATAAG GAGTAAACAC 72660 ATCCTCATAT CCCAAAAGAG AAAAATATCT CTCAAAAGTT GTAGAAGATT TAATAAAATG 72720 GCTCTGACCA AATAAAAATC CACCAAAAAA ATCAAACTGT TGCTTAAGTA AAAATCCATT 72780 ATTAGATAAA GAGGTAGAAT TTCTTGTATC CCAAGCCGCG CTCAAACTAA GAGAATTTTC 72840 AAATCTAAAA GTTTTATAAT TGTCTCTTAA ATAATAATTT GAAGGTCTGT TAACCTCATT 72900 ATCATAAAAA ACATATTTTA AAGCAGTTTG CAAAGTGCCA AGAAGGGTTT GTTTGCCAAG 72960 ATAATTAGAA AAAGTATACC CGGTAAACGC TCCAAAACTA AGTTTAAGCA AAGAATAATT 73020 CATAGCATTA AAATCGGAAA AGCTTTTAGC ATCTCGATAT TCTTCCCAAC TTGTAAATGG 73080 ATCAGGAACT TCCCTCTTGC CAGAAAAAT AGGCCCATTA ATATCCTGAT AAGCAGTATT 73140 AACGGAATGT GAAAAATCTA TAAATCCACC TACGGTCCAT CTTTTTTGAA AAAACCAATT 73200 ATCTCTAAAT GTCAAACTAA GACTTTGCTC TAAAAAAGAT AAATTTAGTC TTGCTGCAAA 73260 ATAATAGCCT TCGCCTAAAA AATTAGAAAG CTCCCACTGC CCAAATACTG AGAATGGAAA 73320 TGAAGAATTT GAATTGCCTC CAAAATTCAT ACCAAATCCA AAATTACTTG TTGCTCGCTC 73380 CTCAATGTTT AAATTTATTT TCATAAGCCC TTCTGTATTG CCTGGAACAA TATCAGGAAT 73440 TACATTTGAA AAATAACCAA GCTGCTGTAA ATTTGCCATA CCCATCTTAA ACTTGTCCAA 73500

199 ACTAAAAACA TCTCCCTCTT JAAGAGGAAT CTCTCTAAGT ATTACATGCG AAGCTGTATT 73560 TTTATTTTTA GAAACAGTAA TAGACTCAAT ATGAGCTTTA TCCTTTTCTA AAATTTTAAT 73620 TAACAAATCA ACAAATTCCC CTCTTATCTT TTGCGAAGGA ATAATTTCTG TAAAAATATA 73680 CCCTTCTCTA AAATAACTTT CCTTAATTTT GACAAAATCC TGCTCAAATT TAGAATCATT 73740 AAAAATATCA CCTTCGCTAA AGGTAATAAA ACTTTTTAAT TCTTCCAAAC TAAAAACTGA 73800 ATTACCAGAA ATTTCAAGCT TTCCAAATCT AAAAACATTG CCTTCTGAAA GAAAATATTT 73860 CAAAAAACT TCCTTTTCTA GTCTTTTAGA ATCTTTAAGG GAATCTTTAA TATCAACAGT .73920 GCTATTGATA ATCTTAACAT CAATATATCC ATTATTTTTA TAAAAAGACT CTAATTGACG 73980 CTTGTCTTTA TCAACATTAC TTTTTAAATA TTTACCATCT GAGAAAAGAG ACACTACTCT 74040 TGATGCTAAA GATTTCCTCA AGGTACTGCT TTTAAAGCTT AAATTTCCTT CAAAGTCAAT 74100 CCCCTTAACA ACATATTTGG GTCCAGCTAC TATATTAAAA ATAATATCAA CTAAATTTCC 74160 TTCTTCTTTG ATTTCAAAAT TTGCAGAAAC CTCAAGATAT CCCATGTCTT TATACATCTC 74220 TTCAAGCTTG CCAATACCTT TATTAACACT TGCAAGATTT AAAGGCTCAT TGGTTTTAAT 74280 ATTCACCTTC TCAACAAGTT CGCTATTCCA AAAAACTCTA CTGCTATCAG AAAAAACAAC 74340 AGAATTAACT AAAGATTTTT CTTTTACAAT AAATGTAATA AAAAGATCCT CACCATCTAT 74400 TTTAAATATA GGCTTAATAA GCCCAGAAAA ATAATCAAGA GAATAAAGAT CAATTTGCAA 74460 TTTATCAAAA ATTTCATTAG AATATGACAC GCCAATGTAA GGTTTTAAAA TATTAATAAA 74520 ATCTCTCTCC TTCTTATTCT TAAGTCCTTC AAAATTAATA CCCTTTATTA TTTTCCCCTT 74580 GTAATTTCA ACTTGACCAA AACTAAAAAC AACAAAAAAT ATTAAAAAAC TTACAAAAAA 74640 CAAACCTCTA ATTGAACCCA TCTTAACCTC TTAACAATTT AATATTTAAA TTTCCAAGAA 74700 ATGCCTATAT TATTTCCTAT TCCATCTAAA CCTTTTTTCA TAAAATTGTA ATCAAACTCA 74760 TAATTAACCA AAAAAAATGG AGAATCAAAC TCAATACCCA AATTGACAAC AAAATTTAAA 74820 TCTTTTGAAA AAGGAGACAT TTGTTCTTTC AAAAAACCAA AGCCCCCACT AATAAAAACA 74880 CCCTCAACAA GATATTTGCC TACCTTAACA CTTGTATTGT CAAGAACATC AACAAAAGTA 74940 GGATTCCCGA TTTTGAAAAA ATTACTATTA ATAGAATTTT TCAATATATC TGTCTTTATA 75000 CTCAACAAGT CTAAGTTTAA TACAGAACGC ATATAATCTT CAATGGGTTG AATTAAAAAA 75060 TCAAGAGCAA TGTCACTTAC TATTCCAATT GCCATTTCAG CAGCATTAGT CCCTGCCGAT 75120 CGCAATCCTC CCTCATACCC TCCTATTGTT GAGCCTGAAA GCAAATATTT AATTTCCTGC 75180 TCATTTCTAG AAGGATAAGA CATAAACTCA ATTTTCCATA AACTTAAAGG ACTATCAATG 75240 CTTATTGTAA CAAGCAGTTT ATCATTTCTA TCCTTAATAG TATTTGTAGC CTCCGCTTTT 75300

TTAGAAACTT TTATTATATT ...ACTCGTCT ATTTTAAATT TCAAATCTTC ATTAAGGCCT 77100 AAATAGTTCC CATTAAAATT TATATTTATT AAAAGATCAG AGGTTTTATT GTAAACCTTA 77160 AAATCATTAA CATTAAGGGT ATAAACTACT TTAGAATCAA AATAATTAAA ATCTAATTTA 77220 ATACCAAGAG GAGATTCGGC AACAATAAAC TTATCTTTAA GATTAACATT AAAATGCAAA 77280 GGATAAACTT TATTCAAATA AGAAAAATTC GTGCTAATAT TAAACCCACT TTCAAATAGT 77340 TCAACAAACA AGTTAGAATG CAAATTGTGA TCATTGTACT GCAAATCAAA ATTGTTTGAT 77400 TTGTAAAAAT TTTTTTCTCC ACTGGCATCA AGCACAAATT TGAAATTGTC TAACTTTGAA 77460 AATACCATGA AATTGAATTT TTTTAATTTA TTTTTATGAT AATTAAATTT ATTAAAATTA 77.520 AAATCAGAAA CCAAATTTAA ATATTTACCT GAAAATAAAG TCTTGGGAAA AAAATTTATC 77580 AAGTGAGAAC TGGGAATAAC TTCTTTTAAA AAAAGCAAAG GAAATTCTTT AATACCTAAG 77640 CTTAAAGAAA ATTCTTCATC ATTAAGATCT CCTTTTAAAG AAATTTGAGA GTTTTTTATTT 77700 TCTAAATAAA TCAAATAGTC AACAAAAATT TTATCCTTTA AAAAATAAGT TTTTAAAATT 77760 AAATTTTGAA AACTAAGATT TCCAAGACTA AAATTATCAG ACTTAACCGA AAAAATATCT 77820 TTATCTTTAT TAAAATCTAA ATACCCATTT AGGTCGTTAA AGTTTAAAAT TTTTGCAGAC 77880 TTAAAGTTAA GACGTCCCAT TGGAAGCAAA TCTTTCAAAG AATAATAACC TTTATAGTTT 77940 ACAACCCCC TTTTAAGCTT TAAAAAAGCA TTCTTAACAC TTACAATTCT ATCATCCCCC 78000 TTGATTTCAA GCTGCAAGCC TTGAACTTCT TTTCCTATAG TATCTACATT TAAAGATGAA 78060 TCTATTATTC CTGCATATCT TAAATCTTTG TCCTTAAAAT CATAAGAAAA TGCCAATTGC 78120 CCATTTAAAC TTATATCAAA ATAATCTTTA TAAATTTCAA AGCCTTTGTT TAGCTTAATC 78180 CAATCTAAAA GACTAACATT GAAAAATAAA GCATCTAATC GAACAAAACC ATTAGCCTTG 78240 TCATAACTTA AATTAAAATC AAAATTCTCT CTTCGTAAAT TAAAAATTTT TAAATTTCCT 78300 TTTGAATAAT TTATTTGGAA CCCCTGCTCA AGTAAAGAAA AATAACTTGT TTTAAATTCA 78360 AAAAAGCTAA AATTAACATA GCCATCTTCA AAGCCTTTTT TGAATTTCCC CTCAAAATAG 78420 AAAGTTGAAT CCAAAATTCC ATCATCAACT CTTTCAAAGG GTAAATTAAT TTCTAAATTT 78480 TTAACAGCAC TAAAATCAAC TACAGAGCTA AATAAAAAAT CTTCATCTAC GGTACTTAAG 78540 GAAAAATTTT TAACTTGAAA ATTAAGCCAA CTATTATCAT TAAGCTTGAT ATTAATATTG 78600 ATATTTTCTA AATTAATATT TAATCTATAA AGGTAGTTTA AAATTTTATT AAAAACTGTA 78660 TTTTCATTGT CAGAATAGGC ATTGCTAGGA TTTAAATCGC CAGATAAACT AAAGTCGTTT 78720 ATATCAAAAT TGAAATTACT TCCTTTAACA TAAACATTTA AAATAATATT TTCATCACCC . 78780 AAAATTAATT TAAACAGATT TAAATCTATC CTAACAATAT CTATTAATAT TTTATCTTTT 78840

CCATCCAAGC	TTAACTCTAA	ACCGTCTATC	TTGATTGATG	ATAAGAAATA	CGGTGAAATT	78900
ТТАТСАТАТТ	ТААТСТТААА	GCCAAATTTT	GATTCAAGAT	ATTTTATAGC	ААААААСТТТ	78960
GCAGAATAAA	TTTGAGCTTG	AACAAATAGA	TTAATGGAAA	AAATTATTAA	ААСАААААТА	79020
AAAAATGGCA	AAATCAACAA	TATAAATGTC	TTACTTCTCA	AAAACAACAA	ATTCATACAC	79080
TCTATCGATA	ATTATTATTA	ТАТААТААТТ	ATCGATAACC	TAATTATTGA	CACCAAAAGA	79140
AAGGAAGAAA	AAATATTTGT	GATTAAAATA	TTGAAAAACT	TTTATTGCAT	AGAAGGAATT	79200
GATGGAAGCG	GGAAAACAAG	САТСАСТААТ	AAACTAAAAG	CTCTTTGCAA	CGATGAATCA	79260
AGGTATTATT	TTACAAAAGA	ACCATCAAGT	GGAATAATTG	GAGAAATGAT	AAGAAAGCAA	79320
TTAATGAATT	TTGAAAATCC	TTTAGAAGAA	TCAACATTTG	САТАТСТТТА	TGCTGCAGAC	79380
CGACACGATC	АТТТАТАТАА	AAAAGGTGGA	ATACTGGAAA	TTTTAAACAC	AAAATCTAGA	79440
АААТААТАА	CTGATCGCTA	TTTATTCTCA	TCGATTGCAT	ATCAAGGAAA	ATTAGGATAT	79500
GAATTAAATA	AAAATTTCCC	ATTGCCTGAA	AAAGTATTCT	TTATCGAAAC	AGACCCAAAC	79560
ATAGCTTATG	AAAGAATACA	GAAAAATAGA	ACACAAAGTG	ATCTTTTTGA	ACTTGAAAAA	79620
TATAAAACTT	TTGAACAAAT	TGCTCTAAAA	ТАТТТААААА	ТАТТТААААА	ACTAGAAAAA	79680
AAAATTAATG	TGATTTACAT	CAACAATTCA	ATAAAAGATA	ATTTAGATAA	AAACGCAAAA	79740
AAAATTTTCA	АТСТААТААА	ATTCTAATAT	AATTAATCAT	ATGCATATTT	TCAAAAATGT	79800
CCCCTTCCAA	АТАААТТТАА	TTTTATTTCT	TTTAGTATCA	GTTGCAAAGA	TAAATGCATC	79860
GTCCAAATTT	TATTACGCAG	AACAATGGTA	TGTAATTTTT	AATTCTCAAA	TGAAAAAAA	79920
ACCTGAAAAC	ТАТААААААА	АТАТАТТТТТ	TCTTCAAAAA	GCCTTAAAAT	ACCCATTTGG	79980
АААТССАААА	TATTCTCTAA	CTAAAATAGA	AACCAAAGAA	CAGTGGGAAA	ААТАТАААСТ	80040
TCTTTTCAAA	ATGCATGTAA	ACTTGCTTCT	AGTTAGGCAA	AATTTACATT	TAGGAGATTT	80100
ATTCGACACA	AGAAATTTAT	ATTTTTTCAA	AACTCCAGAA	AAAGATGGAA	TTATTTCCAA	80160
TCTAGAAAAA	ТСАААААААТ	TATATAAACT	AGCTATTAAT	TACTACAGCG	AAGCACTAAA	80220
ATACCACAAA	AAACTTGAAA	ATTACACAAC	TGTTAAACTA	GAAAACGATG	GAATAACAAA	80280
CTGGGAAGAT	GAATATCATA	AAATTTCTCT	TAAAGAGCTT	AATTACTATG	ACATTATTAA	80340
AAAAGAACTA	CTAAGAATTG	ACGAAACTAA	AGCATTTTTT	GAACAAGGGC	САААСТАТТА	80400
ТТАААААААС	TCTTTGCCCT	CTTTGGAAAA	AAAAATTTTA	TAATATTT	ССТТАТТТАА	80460
AGAAAACTTA	AAAACAÁGAT	СТТТААААТТ	ATCCTTACTC	AAAATACTAT	ATTCTGAGAA	80520
AAGAGTTATT	AAGGCTCTTT	CTGCTAAAAA	AGGCAATTCT	ААААТАТТТС	ТТААААТТТС	80580

GGCTCTAAAT TCACGCGCTT TTCACTATC TAAAGAATTT ACAAAATTAG AATTTTCAAC 80640 ATCAGTGCTT AGTGCTACAA TTTCATTTTC AAGAAATTTT TTATCTCCTT GTGAATATAG 80700 CAAAGCAAAT GGCTTTAAAA AAGAAAAAAA ATATTCCTTA CCTATAAGAT AATGGTGCAT 80760 TGAACATCTT GTAGAGTAAT TTGGGTAAAT AGCAGATTCA ATCTCTTCAT CGCCACCAAC 80820 AATAAGCAAA GGATCAAAAT AAGGAGCTGG AATTTCTTTA TTGTTGTAAA AATAATACCT 80880 ATACGAAAAA AAAGATTCTT CCATGCAATC AATGTGCCCA CAATAAGCTC CAAGCTTATA 80940 AATCTTATCT GAATATTCTA CTAAAAGTTT GGCAGTATCA TTGAAAGATT CTTTTCTAAA 81000 ATTATAAAGC AGTGTAGGTA ATATAAATAA AATATTCTCA TTTGATGAAA TTTTATTTAA 81060 AACAAAATT AAACGTTCAT CATAAAAACA TGCCTCATCA ATAATAAAAG TGCCACAACT 81120 AGGATTAGAG GCTATTAAAT TTTCAATATC AAAAGAGTTG CTAGCATAAC CAATCTCATC 81180 AATTTTATCT TTTCCACCGC CTCTATATGG TATTACGTTT TCTGGATAAT CTTGAAACCT 81240 CCTCTTGTCG AGAAAATTTC TAATAAAAAA TACATTAACC CTACTTCTAT TTCCTTTAAT 81300 AATATTGCCC AATACCTTGA AAGATTTTTT TCTTACAACA AGCGAATCTT TATAAATTTT 81360 TGCAGCATAT TCTGTTTTTC CACTTCCCAT GGGTCCAACT ACAAGAATTA AGTTTATTTT 81420 TACCCTAAAA TCAAAATGAC TAACAGAGAC AATGTTATTT AATTTAGTAT CTTCTTTATT 81480 AGCAAAGTCT AAACAAAAAC CCAAAAATCC TCCCTAAAGT AAATCAAATT CAATTATATA 81540 AATAAAAACA ACAAAAAACA TTAACATTAA AAGCCTAAAA ATTAATAATT TAGGATCTTA 81600 TTAAAGCTAT TATTCAAAAG AATAATAGCT TTCAAAACTA TCATCATCTA ACAAAGCTTT 81660 CTTTATTTT AGTTTATTCT TCTCATAAAT TTCAATATAA TTAAATTTTT TAGAACTATT 81720 AACTTTTTTA TAAATTGAAA CCAAACTTCC AACCACATAA TTTTTAATTT CTACCAAATT 81780 AGATCCAAAA TATTTTTTT TACTTATCAA GCTTGATCTA ATATCCAAAA CAGAAGTTTT 81840 TTCAAAAAT AAATTTAAAG CATTTGGAAT AAAAAAATCC CTAATATCAA TCAAGAACAA 81900 CTCTCTGATC CCAAAACTAT TAAAATTGCA GCCCAAATTG TTAAAAAGAT TAAACTTAAA 81960 AGCATGTAAA GCAAAGGTAT AAACATCTCT TTTATCAGGA TATTGAACCT CAATCATATC 82020 AACATAAGGA TAAACAGAAT AATTTATTTT ATAACCAAGC AAACTATTCT CATAATAAAC 82080 TGGAGACTTA TCTTTAAAAT AAATTTTATT AAAATATTTG CTATTTAAAC TAAATTTGCT 82140 GTCAAAATCT ACTATTCCTG AAAAAATGCC TACTAAAACT CCATCTTTTA GTATGGCAAC 82200 ATTATTTTA TTATCAATGC AATAAATTCC TGACAAACTT TTATAATCTT CTAAAAATTT 82260 ACTCTTCATG TCGGGATCCT CTAAAAGATC ATAAAACATT TTATATTCAT TTATTGTCTC 82320 AGGAGGAAAT TTTTTAAAAA TCCTATAAGC TTCATCAGGA TCTAAAAGTT TGTATTTTAA 82380

204

AAAATAAATA	CCGTGAATTC	CATTATATTC	TTTAATTTTG	CCCTTAAGAA	AAGAAAACAA	82440
AGAAACAGAA	TTGTCATAAT	TAAAATTTGA	ATTTCTAAAT	АТАТААТТАА	TGTTTTCGGT	82500
TGTAAAGAAA	AAATCTTCTT	TTGATCTAAT	AGTATTAAAG	ATGCTAAAAA	AAAACCTATC	82560
TTCTTTTAAA	AACCATTTAA	AAAATAAAA	ATCATTACCA	TATAAAGAAA	AAGCCTTAAA	82620
TAAAATTTTT	TTGAAATCAT	CTCCAAAACT	TTCAAGTCTT	CCAGAAGCTT	CAAGCCTCAT	82680
GCAAATTAAA	TCTTTGTCTA	TTTGCAATTC	TTCATTCAAG	TTTCTATACA	AAGTAATAAT	82740
TTCTTCATAC	ATATTCTTAT	TTTCATTTTG	TCTTAAAAGC	AACGAAAAAT	AATAAGTGTA	82800
TACTTCTTTA	AGGGTTACTG	CTTTAAAGTT	АТТААТАТТА	ATTGCTTCTT	ТТААТААТТА	82860
AATTTTATCC	GTTAAAGCAA	CATTCTCTTT	TAATGAAAGC	TCATAAAGAG	CATCTGAAGC	82920
TAGCAAATTG	AAATCAAGAG	ATCCATAAAT	TAAATCATTT	CCTTTTTGTA	AATTGGAAAA	82980
ATTTTTAGAC	TCATTGAAAA	GAATACTTGA	AATATCTTCA	TCTTCTTTGA	CTGAAATTGC	83040
ATATAGGTTT	ATAGAAATAA	AAAGAATGAA	ACCCATCTTC	АААТААААСА	TAAACACTTG	83100
CCTAACCTTT	TACATCCTCC	CCCTTTACTT	CTTTTGTAGT	AGAGTCTGAT	GAAAATAAAT	83160
CGTATTCATC	CTTATTAGCT	TCAAAACCCA	AAAGCTCTCT	CACTTCTTTG	TCTGTCAAAG	83220
ТТТСТТТТАА	AACAAGTTCT	TTTGCAAGCT	TAACAAGTTG	ATCCTTATGC	TTTAAAAGAA	83280
TATCCGATGC	СТСТТТТААА	CATTCTTCAA	GTATTCTTTT	TACCTCTCTG	TCAACTTTAT	83340
CGGCAGTGTT	CTCAGAATAA	GCTTTAGCCT	TTGAAAACTC	TTTCGGAAGG	AAAATAGGTG	83400
CTTCATCGTC	ТАСТАААААТ	ATTGGACCAA	CTTCTTCACC	CATTCCCCAC	TCCGTAACCA	83460
TTTTTTTAGC	CAAACTAGTA	GCTTGCATTA	AATCATTTTG	AACACCCGCT	GTTGTAACAC	83520
CCAAATTTAT	TTGCTCGCTA	GCATAACCAC	CATAGCATAT	CTTTATTTTG	TCAAGAATTT	83580
GGTGTTTGTT	TATTGAAAGT	CTATCTTCCC	TTGGAAGAGA	AAATGCAACA	CCAAGTGCCC	83640
TGCCCCTTGG	AATAATGGTA	ACTTTGTGAA	GTGGATCAGC	ATGTTCAAGA	TAATAGTGAA	83700
GCAAAGCATG	GCCTGCCTCA	TGATAAGCCG	TCTCAAGCTT	TTGCCTATCA	GTAATAGTCA	83760
TGGATTTTTT	TGCAACTCCC	ATCAATATTT	TATCTCTGGC	TTCTTCCATA	TCCTTCATTA	83820
AAATTTCATC	TTGATTATTC	CTTGCAGCTA	TTAAGGCTCC	TTCATTAATT	AAATTTGCAA	83880
GATCAGCACC	ACTAGCTCÇA	GGAGTAGCTC	TTGCTATTAC	TTGTAAATTA	ATATCTTT T G	83940
AAAGCTTCGT	TTTTAAAGAA	TGAATATTTA	ATATTGCCTC	тстттсстта	ATATCAGGCA	84000
AAGAAACTGT	TACTTGCCTG	TCAAATCGTC	CAGGCCTAAG	CAAAGCAGAG	TCAAGAACAT	84060
CGGGACGATT	TGTAGCGGCC	АТААСААТТА	CATTGGTATG	CGTTCCAAAT	CCATCCATTT	84120

CAACTAACAG CTGATTAAGA TTTGCTCTC TTTCATCATG ACCACCGCCA AGCCCCGCAC 84180 CACGACTTCG ACCAACAGCA TCAAGCTCAT CAATAAAAAT AATACATGGA GAATTTTTTC 84240 TAGCATTATC AAATAAATCT CTAACACGAC TTGCTCCAAC CCCAACAAAC ATTTCAACAA 84300 AATCTGAGCC TGACATGTGA AAGAAACTAA CCCCAGCCTC ACCGGCAACG GCTTTGGCAA 84360 GCAAAGTCTT GCCAGTACCC GGAGAGCCCA CTAAAAGCAC TCCTTTGGGG ATTTTTGCAC 84420 CTATTTTTC AAATTTTTT GGATTTTTAA GAAATTCGAC AACTTCTCGA AGCTCTTGCT 84480 TAACCTCTTC TTGACCAGCC ACATCTTTAA AGGTGATTTT ATTCTTTCCA GCTTCATACT 84540 TTTGAGCATT ACTTTTCCCA AATGTAAAAA CCTTCCCACC GCCACCTTGA GTTTGACGAA 84600 ATATAAAGAA AAAGAAAATA AAAAACAAAA TCCATGGCAA AGTTTGTAAT AAAACCCCAA 84660 TCAGAGAAGC TTGACTTTTC CCTGAGCTAA GCTCAACTTT TTTATTTTTT AGTTCTGAAA 84720 GTAAATTTAT ATCAAGATAG GGAATGCTGG TAGAAAAATA AGACTTTGCA AAGTTAGAAC 84780 CCTTGACGAC AAATTGAATC AAATTTTTAT CAATTATTAC TACAGACTCA ACTAGACCAT 84840 TGTCTAAATA ACTCTGAAAA GTGCTATAAG GAACATTTTT ATAGCTTTCC CCCCCCTTA 84900 TAAAATATGA CATAAATATT GCTGAAATTA GAAAAACAAC AACAAGTCCT AAAATCCAAT 84960 TTTTATTCTT TTTTTTGTTG TTAGATTTTC CATTGTTATT CATATTATTA TTGCCATTCA 85020 TTCCTTTAAA AGCCCTCCAA TCAAAGATAT ATTAATTTTT TTAAGAATGC TTTTTTCACT 85080 CCATACTAAG TTTAAAGTAT TTAAATCAAT AATCCCAATT AACCTGTTAT CTAATGCTAA 85140 CAACATTAAA TAAGCCGGAT TACACCTTAT AAACTTAGAA AAAAATTTTT TTGCTTTCAA 85200 TCTATCCTTA AAAAATTTAT ACCTAAACTC ATAAGAACAA CATTTTAATC TTGATACAGA 85260 AGCTGCATTA CACTCTAAAT ATTTTAGCAA AATCTTACCT AAAGATAAAC TATGCCATTT 85320 ACCAACTTCC AAAATAAAT CAAAAGGTTT GTAAAATTTT TCATCCCTTT TAAAAATTAA 85380 ATTAATTTA TTATGCCTTT TTTCTAAAAA AAAATCATTG GTTTTTAACA AAACATTATT 85440 TTTTTTCCTA TTAATCTCTA CTTTAAACGC TTCATTAAGA GCTTTATAAG AAACTTTGGC 85500 TGCAATTCCT TCTGAATTTA AAATTTTAAA AATCAATCTA AATACCAAAT ACTTAGGAAA 85560 ATCTAAGAAA GTTTTCAGAT CAAAAGAATA ATAATATTTA CCTTTCTCAA CAGGAAAAAA 85620 TTCATCTTTT CCAAAATAAT CCGCAAATTC CTTTGAAAAT TCAGATATTC TTTTAAGACA 85680 TTTTTCATAT CCTTTAAAAA CCTTTTTTAT AGCGGGTAGC AAATTATTTC TAACCCTATT 85740 TCTTAGATAT AAATTTTGAG CATTTGTACT ATCAACAAAA AACCCAATAT TATTCAAAGA 85800 TAAAAAATTT TCAATTTCTA GTCTTGAAAC CTCAAGCAAG GGCCTTATAA TGTTTCTATT 85860 GACACTAGGA ATACCTGAAA GACCATCCAA AAAAGATCCT TGAAAAAATC TCATAATTAT 85920

207 TATATATTCC TTAAAAATAG GTTTGCAA AGCTTTTCTA AAATCCTGAC AATAGGATG 87720 TACAATGTCT TTATATTCAC CGACTCTAGT TCTTCTGTTA GGCATCGCAA TAAATACTCC 87780 CTTTTGCCCT TTAATAACTC TAATATTGTG AAGAACCAAA CAGTTATCAA AAGTAACTGC 87840 AACATATGCT AATAATTTAG AACCAGAATT TTTACTATCA ACTTTCTTAA TCCTTATGTC 87900 TGTAATATCC ACTTATAAGC CTCCCGCAAA AAGTACATAA CTTAAATCTA AAATATTTTC 87960 88020 TAAGTAATTA GGGATAAATA ATGGTTCCTT TGGACCATAT TTTTTCAAGC TCATAGTATT 88080 CCCTAGATTT TTCACTCATT AAATGAATTA CCAAATTTGC ACCAGAAACA ACAGTCCAGT 88140 CATAAACCAA CCCTTTTCCT TCAGCATTAA GATTAATTTT TTTTTCTTTA AAGAATTTAA 88200 TTATCTTGTC AATATAAAA GCTTCCATTT GCTTAAATGA TACAAAAGTG GCTATTATAA 88260 AAAAATCAGT CCAATTACAA ATATCGCTAA CATTAATGCC TATAACATCA ATTCCATTAA 88320 . AATCACTTAT TATTTTACAT AAATCATTAA TATCATTTAC TTTTAACATA CCTTCCATCA 88380 AAATCATCTC CTAAAATAAC TATTACATCA GGATTAATAT CAAGATTATC AAGCTCTAAC 88440 AATCTTTTAG CTTGAACCTC AGAAATTGGC TTAATATTTG AAGTTTTAAT TACCTCTCCA 88500 ACCCTAACAG CCATTTCTAA ATTATCCGAA TTATTTATAA TCAGGGTATT TTTATAAGAA 88560 TTTTTATCTG CATTACCAAA TTTTAAAACT TTAAATTTTA AAGAATTAAA AATATTTGCT 88620 GTTTTTTTTG CAAGCCCAAC AACTTTTGTT CCATTTAAAA CAACAATCTT TACTATCTCT 88680 TCTGCACCTT CATTAACCAA CTCTTTGTTT AATTTATCCA CCGATTCTTT TAAAATAGCA 88740 CCCCCATAAT AAGGAAAAAC CACCTTTATC AAATTATTAT CATTATCCTT AAAAATCTCT 88800 TCTTGTCCTT TAATATTAAT AGAAATAATT TTATCATTAT TTATTATA ATTTTTAACA 88860 ATATACTTAA AAACAACCTC TGAAAGGTTA GTATCTAACA TGGAATATAT TTTAAAAAAA 88920 CTGTCATTTT CAATGCCAAA ATCTGAAATT TGAAAAAGAA GTCTTTTAAA AAATTCTTTA 88980 AAAAATTCAA CTCTCTCTTC AAACTGATTA ACATCATTAA AATATCTCAA ATAATCATAA 89040 GCCTTATCAC CATCAAAATT AGAAGTGCCA GAGGGTATTA AAATAGAATC CTCGAAACTA 89100 TAAACTTTCA CTGGGTTTTT AACAAGAAGT CTAACTCCCC CTAAGTAATC AATAAGCCTA 89160 ACAAAATTTT CTTTTTGAAA ACGAATATAA TAATCTGATT CATGAGATAA TTGTGTATAA 89220 ATTTTAGATA AAAATTTATT AAAAGAATTT TTTTTATAAA GATCTTTAAA CCAAGATATA 89280 TTCCCTTTTA AATCTTCATA TCCAGTATGA ATTGGAATAT CAAAAAACCC AATATTTCCT 89340 GTTTTCATAT TAATAAAAAT TTCTTGCATA CTTACAAGGT TTTTGTTAAG ATCTTCTATT 89400 AGAAACAAAA AACTAATATT ACTCTTTGTA TTAAGCTCGA AGTAAACCAA CTCTTTTTTC 89460

GAACTTCTAA TAAAAAAAT TACTACACTT GCTATTATTA AAACAATTAA AAATAAAAAA 89520 ATTAAATCCT TTCTCAAACA TTTACCTTTT TAACATATAA ATTATTATCT TTAATGTATT 89580 TTAACACCC AAAAGGCAAT AAATAGCTGA CGGGCAATCC ATTTACAATT CTATTTCTAA 89640 TCTCTGATGA GGAAATCGGT ATTATTTTAT TATCTATATA AATATGCTTA AAAGAACTTT 89700 TAAGTCTCTC TTTGTAGATT CTATGAGCAA CAACAAGTTC AACAGAACTT ACAATACTTT 89760 GAGGATCTTT CCATGAATCA AAATTTTGAA AAAGATCATC GCCAATAATT AAAAAAAGTT 89820 TATCGTTTTT GTATTTTTT TTAACACAAG AAATAGTATC AACAGTATAA GTTATACCAC 39880 CATTTATTAT GTCGCAATCA TCTATGAACA TTTTATCTTC ATTCTCTAAT GCAAGCTTGA 89940 GCATATCTAT TCTATTGCTA ACACTAACAT TCTCATCAAT CAATTTATGA GCTGGATTGC 90000 AAGTAGGAAT AAATATTACT CTATCAATAT TTAATAAATA CTCTATTTCT TTAGCCAAAA 90060 AAATATGTCC AATATGAACT GGATTATAAG TGCCCCCTAA TATTGCAATT CTCACGATTT 90120 CTTTCCTAAA TAAAATCTGA TATCCAAAAA CCAAGTCTTA AAAATAAAAA GCCCACAATA 90180 AAAATCAATT TTATTAAAAA GTTTTAGCCA AAATAAAAAA TTCTTTAATA AGTTCATCAA 90240 TTCCTCTATT CTCATAAATA GAGATGCCAA CAACCTTTTC TTTTCCTAAG GCTTTTATCA 90300 GGCAATCAAA ATTTTTCTCA GAACCGTCCA AATCAAGCTT GTTGGCAATA ATAATTTTTT 90360 TTTTATTAAA AAGCTTATGG CTATAAGATT TTAATTCATT TAAAAGAATG TTATATGACT 90420 CCAAAAATT TGCTTCAGAA ATATCAATAA CCAAAGCTAA AATTTTAGTT TTAGCAATAT 90480 GCTTTAAAAA TTTAGTCCCG AGCCCTACTC CAAAACTAGC ACCTTTAATT ATTCCGGGAA 90540 TATCTGCAAT AATCAAATCA TCATAAGAAC GCCTGAGCAT ACCAAGATGA GGAATCTTTG 90600 90660 ATTTACCAGC ATTGGGTAAT CCAACAAGCC CAATATCCGC CACCAAAAAA AGTTCAAGAC 90720 GCACGCTCAA ACTATTACCC GATTCTCCAG GTTGAGCAAA CCTTGGAACC CTTCTAACTG 90780 AAGTTTTAAA ATTCCAATTA CCAAGACCCC CTCTGCCACC TTTTAAAACA ACAAATTCGT 90840 CATTTAAATT TTTAAGCCTA TACAAAAGAG TTCCATCATT TTCATTATAA ACTTCTGTAT 90900 TTGGAGGAAC AAAAAGAGTT AAATCTTTAC CATTAGCACC ACTTCTTTTA AAACCCATTC 90960 CAGGTTTACC ATTTTCAGCA CAAAGCACAT GACCATTTTT GTAAAAAGAT AAAGTGCTAA 91020 GATTTTCCCT CACCTTGAAA ATTACACTCC CACCACTCCC ACCGTTTCCG CCATCTGGAC 91080 CACCTTTTGC ATTAAACTTT TCTCTTAAAA AAGAAACACA CCCAGAACCA CCATTGCCCG 91140 AAACTACCGT TATATTTACA GAGTCCTTAA AGTTATACAA ACTTTCTCCA ATTTTTCAAT 91200

	4			. 4	· ·	
TAAAACCAAA	AATCTCCAAT	CTTTTCAATT	209 AAAACTAAAC	AATACTTACG	TATTTTCGCC	91260
CCTTTAAAGT	ТТТАААСТСТ	ACCTTACCAG	ATGAAAGCGC	AAATATTGTA	TAATCTCTTC	91320
CAAGACCAAC	GTTTTTACCT	TTATGAAACT	TTGTACCTCT	TTGTCTAACA	ATTATCTCTC	91380
CAGCTTTAAC	AAACTGACCA	CCACTTCTTT	TAACTCCAAG	TCGCTTGGAT	ATAGAATCTC	91440
GTCCATTTTT	TGAACTACCA	CCACTTTTAC	TTGTTGCCAT	TAATTTTCCT	ССААААСТАА	91500
ТТТААТАТСА	TTAGGATACT	CAAAGCACAA	ATCATTTATG	ССТСТААТТА	AAAACCTACT	. 91560
ATAGTAAAAA	AGACTTTCTT	TGTTCAAATC	CTTAAAAAAG	GGCTTAAATT	СТАААТААСС	91620
TCTTTTTGAA	TTTTTCACAA	CAAAAGCCTC	ACCCTCAAGA	TCAAGAACAC	TAAAAAAGGT	91680
ТСТСААААТА	AAAGAAAAAG	AAGAACAGAC	AACGTTAACA	TTATTCTTAC	CTATAGCATG	91740
ACCATTGGCT	AAAAGATAAA	TAATTACATC	GTCTTTTACT	TTTACCAAAA	САТТААТСАА	91800
ТАТАСТТААА	AAACTATTTC	ATCAACCAAA	ATATAAGAAT	AGGTTTGCCT	GTGCCCAACT	91860
TTTCTCTCAC	TTGATTTTCT	TCTTCTGTAT	CTGTAAGAAA	CAACCTTTTT	ATCTTTTTTA	91920
TCTTCTTTAT	AGGTACATCT	AATAAGAGAA	TTTACGACAT	AAGGCTTTCC	ТАТТТТААСС	91980
TCTCCGTCTT	TATTAATAAG	CAAAACACTA	ТТАААТТССА	ACTTATCTTT	TTCAACAGGA	92040
GAAATTTTGT	СТАТТТТТАА	AAATTCACCC	TCAATAGCCT	TATATTGCTT	GCCATTTATT	92100
TCTACCAGTG	САТАСАТАТА	TTACCTCAAC	TAAACATTGT	AAATTTAATA	ÄAAAAGAAAA	92160
GTCAAGCATT	АААТТААТТА	TACCTTACAA	GGGAATTGAC	TTCATAACTT	TCAAGACTTT	92220
GTCTACCATT	AATAGCGCAA	AGCTCAATAA	ААСАААААТ	ATCCTTAACC	TTGCCCCCGG	92280
CTCTCTCTAG	CAAAATTGCA	GACGACTTTA	AAGTTCCACC	GGTAGCTAAT	ATGTCATCTA	92340
TTAAAAGAAT	ATTGGAATAC	GTCCTAACAT	CGTCTTTGTG	CACCTCTATT	CTCCCAAAAC	92400
CATATTCAAG	CTCATACTCT	ТСАСТААААА	CCTCTCTGGG	CAATTTACCC	TCTTTTCGAA	92460
TTAAAACAAG	GGGTAGCTGC	ATTTTTAAAG	ACAAAGGAGC	ACCTATTAAA	TATCCCCTAG	92520
ACTCAACAAC	TGCAATGCAA	TCGATCTTTT	ТААААТТАТА	AAAAGAATAT	ACTTCATTTA	92580
TTAATGAACT	ATAAACTTCG	GGTTTTAGCA	AAACGCTAGT	AATATCATAA	AAAAGAACAC	92640
CCTTTTTAGG	AAAATTGGGT	ATTTTTGAAA	TAAACTGATC	ATAATACTCT	GTCTTATTTT	92700
TCATAACCTA	CTTATCCCAT	CTATATGTTT	ATATATTTTT	САААТАТСАА	GACCAAAAGC	92760
САААТТТАТТ	TTTTCACAGG	GGGCGCTGGA	ACAAGATTAT	GCAAATCTAA	TTTTGGTATT	92820
TCATCATCTT	TAGCTCTTGT	ССАААТТТТА	CTTCTACCAA	AAATCCAAAC	TTTCCCCTTG	92880
GTAATAAGAT	TTCCGGTTTT	ACTATCAACA	CGCATCTCAG	ААТТАТАААТ	TTTACCGTTT	92940
TTAGGATCTA	TTATTTTGCC	CCTATCCCAC	TTTTTAGAAG	AAGAAGAATA	CTTAAGACCC	93000

CTACCTGATG GAACTTATGC AATACTAGA GATGGGTCAT TTAAAATCGA TICTAATCGA 94800 GAGCTTGTAA CAAGCCAAGG ATACAAAGTA TTGCCTAATA TACTCTTCCC AGAAGAATAT 94860 ATCCAAAACT CAATTACAAT ATCTGAAGAG GGAATAGTAT CGGTAAAAAT TGATACCAGC 94920 AACGAACCAA TAGAGCTTGG GCAAATTGAA ATATCAAGAT TTATCAATCC TGCAGGACTA 94980 AGTGCCATTG GAAGCAATTT ATTTAAAGAA ACAGCTGGAT CAGGCCAAGA AATAGCAGGA 95040 95100 TCTATTGCTG AAGAAATGGT AACAATGATA GTAGCTCAAA GGGCTTATGA AATAAACTCA 95160 AAAGCTATTC AAACTTCTGA CAATATGTTA GGAATTGCAA ATAACTTAAA AAGGCAATAA 95220 AATAAAAAA AGATTATTTA TTTTTATTTT ATTTTTCACA ACAAGCTCAA TTATAAGAGC 95280 TTCTCATGAT TTATGTTTCA ACATTGCGCC TAGTAAAACA TATTTCTTTT CAAAGAAGTA 95340 TTCAAAAATA TGTAACAATC AAAGCTTATC AAAAATATAT ATCCCCCCAC ATTTAACAAA 95400 AAAATCAATA ATTTTTGAAA TGATTTATTA CATTACAAAA AATTTATCAA ATGAAAATAT 95460 CTATATACTT CAATTTAACT TTGATGAATC TGAAATAAAC ATAGAAGATA AATTTTTCAA 95520 AAAAGTAAAA TTTAAGGTAA AAAGCAACAA TTCATACAAA AATATTCCAA TTGAAAAAAC 95580 TCTTGTTTAT TATGCAAAAA ACTTTGAAAG CTACAAAAGA CACAATTACA TCAATATGTA 95640 CATTGATGTA ATCGAGCCAA TTGTATTTGC AAAAGAAAAT CTAAAAAAAA ATGAAATCCT 95700 TAATGAGTAC AATACATACT TTAAATACAA AATTAACACA ACAAGAATAA ATGATGTTTT 95760 AAGTCTAAAT GAATTAAACA ATAGCAAATA CAAAGTTATA CGCAACACAA TCAAAAATGA 95820 AGAGATAAGA TTAAATAAGG TGCAAAAAGA ATAATACCTA ATTTTATCTT CCTTTTCTAA 95880 AAATTATTAT TTTAATCTCC CTTAATGCAG CTAATATTTA ACAAATCAAG GATTAATTAG 95940 TAATTTAACG AAAAAAGTTT CATTAATTGC AATAATTGAT ATAAAATAAT AGATATTAAA 96000 GAAATACAAT AAATAAGGTA AAGAATGAAC AAACTAATGT TGATGTTAAT TACATTTGCA 96060 ACGAGTCTAT TAGCCCAAAC AAACAAAGCT TCAACAGGAC TAAAAACAGA TCAATCATTT 96120 AACAATAGCC TATCTGAAAG CGTAAAATTA AAAGAAATTG CGGATATTTA TCCCACAAAT 96180 ACAAATTTTT TAACAGGTAT TGGAATAGTA GCGGGACTTG CTGGAAAAGG AGACTCTATA 96240 AAACAAAAAG ACCTTATAAT TAAAATTTTA GAAGAAAACA ATATAATAAA TGAAATAGGC 96300 TCTAATAACA TAGAAAGTAA AAATATTGCA CTAGTAAATG TCAGTCTCCA AGTAAAAGGT 96360 AATACAATCA AAGGTTCAAA ACATAAAGCT TGCGTTGCAT CAATACTGGA CTCAAAAGAT 96420 TTAACAAATG GAATACTTTT AAAAACAAAT CTTAAAAAATA AAGAGGGGGA AATAATAGCA 96480 ATTGCATCAG GAATTACACA GCCCAATAAT AAATTAAAAG GATCTGGATA TACTATAGAT 96540

AGTGTAATAA	TAAATGAGAA	TCAAAATATT	AACCACAGTT	АТААТАТААТ	TCTTAAAAAA	96600
GGAAATTATA	САТТААТААА	TAGAATTCAT	AAAATATTAA	CCTCTAAAAA	AATCAACAAC	96660
TAAATTAAAT	CAGACAGCAC	AATAGAAATA	GAAGCAAAAA	ACATAAGCCT	ATTAGAAGAG	96720
ATTGAAAATA	TTAAAATAGA	AACCAACCCC	AAGATATTAA	TAGACAAAAA	AAATGGTATT	96780
	GTGAAAATGC	AAAAATAGGA	ACTTTTACAT	TTTCCATTGA	AAAAGACAAT	96840
CAAAACATTT	TTTTAAGTAA	АААТААСААА	ACAACAATTC	AAGTAAACTC	AATGAAATTA	96900
AATGAATTTA	ТАТТАААААА	TTCCAACAAT	CTTAGCAATA	AAGAATTAAT	ТСАААТААТТ	96960
CAAGCTGCGC	ААААААТТАА	ТАААТТАААТ	GGGGAACTTA	TCTTGGAGGA	AATTGATGGA	97020
AACCAAAATT	AATTCACAAA	ATCTAAAATT	ТАААААТСАА	ATAAATAATT	ТТАААААТТС	97080
TGTAGAAATA	ААААААТССТ	ТТСАААААА	CGAAGATCTT	CGAAAAGCTT	CTTTAGAATT	97140
TGAAGCTATG	TTTATCAAGC	AAATGCTTGA	AAGCATGAAA	AAAACTCTTA	ACAAAGATCA	97200
AAATTTGCTA	AACGGAGGCC	AAGTAGAAGA	AATTTTTGAA	GATATGCTTT	GCGAACAAAG	97260
AGCAAAACAA	ATGGCACAAG	CTCAAAGCTT	TGGCCTTGCC	GATTTAATTT	ACAATCAATT	97320
ACAAAAAAGT	AAATAATTCA	AAAAATACTC	CCCCTAAACT	СААААТТАТА	TCCTATTTAG	97380
TTTAAAACCA	ТТТТТАААТТ	AAATTGGCAC	AGTTTTTGCA	TGGAAATTAA	GTAGTAAAA	97440
CTTAATCACA	ATATTCAAGA	AAGGGGAGAA	ААТАТААТАА	CTATGAACAT	ATTTAGTAAT	97500
GAGGATTTAA	ACATATATTT	AAAATCAGTA	AGAGAACACA	AGCTAATTAC	TCACGAAGAA	97560
GAAATCAAAC	TTGCAGGACA	AATACAAAGA	GGCAATGCAA	AAGCAAAAA	CAAGATGATA	97620
AATGCAAACT	TGCGACTTGT	ТТТАААААТА	ATAAAAAGAT	ATGCGGGTAA	AGGGTTAAAA	97680
ATTGAAGACT	TAATTCAAGA	AGGCAACTTG	GGATTAATAA	GAGCTGCTGA	AAAATATGAC	97740
CCGAATAAAA	ATACCAAATT	TTCAACTTAT	GCATCATTTT	GGATTAAGCA	ATCACTACAA	97800
AGAGCATTAA	ACACTAAAAC	CAGATTGGTA	AAAGTCCCAT	ACAGAAAAGA	AAATCTAATA	97860
СТАСАААТАА	АТАААТАТТТ	AACAGAAGAA	GAAAAATCGC	CCAAAAAAGA	AGAAATAATG	97920
AAAAGATTCA	ACCTATCTCC	TGCTCAGTAT	АТАААААТТА	TTCCCTATCT	TGAAAAAGAA	97980
TATTCTCTGG	ACAAAGAAAT	AGAGGGATCT	GAAAATTCAA	CACTCTTGAA	TCTATACGAG	98040
GATAATTCTT	TTAACCCTGA	AATTACCCTT	GAACAAGATT	CAACTCTAAA	ACATTTGAAT	98100
TATATACTTG	AAACAAAATT	AAATGAAAAG	GAAAGATACA	ТААТТАААА	AAGATATAAC	98160
CTGGACAATA	GTCCCAAAAA	AAGCACCTTA	AAAGATATTT	CAACAGAACT	TGGAATATCA	98220
TCAGAAACTG	TAAGACAGAT	TGAAAAAAGA	GTTCTTAAAA	AATTAAAAGA	AGAAATAAAT	98280

213 TAACATTGAC ATTCATGACA ATTCTGGTC TACTTGTAAG TCAGTGGTCA GAATGTTTG 98340 TATTTTATAT TAAAAAAAAC AAGTTTATTA TTGTAATTTT TATTATAATT TCTATTGTTA 98400 TTGCAATAAC TCAGGCATTT GCAAGTTTTT TATATTTTAA TGACAATTCA AAAATTGCAA 98460 ATGCCCCACT TAAAAATAGG TTTGAAAAAA CACAAAAAGA AAGCTTAATA ATAAAAAACA 98520 ACAACGAGGA TAAAAAAGCC AAAAGCAAAC CTAAGTTTTA CTTAATCATT GACGACGTGG 98580 GCTATGATGA ATTTATGTTA GAACAATTTA TAAAACTTAA TCTTAAAATA ACTTATGCTA 98640 TTATTCCATT TTTACCAAAA TCAATGAGTT TATACAAAAA ACTAAAAAAT GCTAACAAAA 98700 CAGTAATAAT ACATTTCCCA ATGCAATCAA AACATAGAAA TTCAATAGAA AAATTTCATA 98760 TAAACATAAA AGATAAAAAA GAAGAAATAC ACAAAAAAAT CGAAAAAGCA TTTAAAAAGT 98820 ATCCTGATGC AAAAATAATG AATAACCATA TGGGAAGTTT AATCACTTCA AATAAAGATT 98880 TGATGAAAAT CATTTTAGAA AAGCTTAAAG AGATTGACAG ATATTTTTTC GACAGCGTAA 98940 CTATTGCAGG AAGCGTACCA GAAATAATAG GCAAAGAAAT TGGAGTTAAA GTAGAAAAAA 99000 GAGACGTATT TCTTGATAGC AAAGACACAG AAGAGTCCGT AACAAAGGAG CTTGAAAAAG 99060 CAAAAAATAT TGCTAGAAAA AATGGAATGG TAAAAGTAAT AGGACACATT TGGTCTAAAA 99120 ATACGCTAAA AGTCCTTAAA AAAGAAGGAC CTGATTTAAA CCAGGAATTC GAATTCGACA 99180 ACTTATTAAA TCTTTACGAG GAAACAATCA GATGAAAGTG CTTGGAATAG AAACCTCTTG 99240 TGACGACTGT TGCGTAGCTG TAGTAGAAAA TGGAATTCAT ATTTTAAGCA ATATAAAATT 99300 AAATCAAACC GAACACAAAA AATATTACGG CATAGTGCCT GAGATTGCCT CAAGACTTCA 99360 TACGGAAGCT ATTATGTCTG TTTGTATAAA AGCACTAAAA AAGGCAAATA CTAAAATATC 99420 TGAAATTGAC TTAATAGCTG TAACATCTAG ACCTGGACTT ATTGGATCTT TAATAGTTGG 99480 ATTAAACTTT GCCAAAGGTC TAGCAATTTC ATTAAAAAAG CCCATTATTT GCATTGATCA 99540 CATCTTGGGT CATCTTTACG CCCCTTTAAT GCACTCAAAA ATAGAATATC CATTTATATC 99600 ATTATTATTA AGTGGTGGAC ATACATTGAT TGCTAAACAA AAAAATTTCG ATGATGTTGA 99660 AATACTTGGA AGAACTCTAG ATGATGCTTG TGGAGAGGCT TTTGATAAAG TGGCAAAACA 99720 TTATGATATG GGATTTCCGG GAGGTCCAAA CATCGAACAA ATATCTAAAA ATGGAGATGA 99780 AAATACATTT CAATTTCCAG TTACCACCTT TAAAAAAAA GAAAACTGGT ATGATTTTTC 99840 ATACTCTGGA CTAAAAACAG CTTGCATACA CCAACTCGAA AAATTCAAAA GCAAAGATAA 99900 CCCAACAACA AAAAATAATA TAGCTGCAAG CTTCCAAAAA GCTGCCTTTG AAAATCTAAT 99960 CACCCCACTA AAAAGGCAA TAAAAGATAC TCAAATCAAC AAATTGGTAA TAGCAGGAGG 100020 TGTTGCAAGC AATTTATATT TAAGAGAAAA AATAGATAAG CTTAAAATAC AAACTTACTA 100080

CCCTCCTCTT GACCTTTGCA CAGACAATGG AGCAATGATT GCGGGACTTG GATTTAATAT 100140 GTATTTAAAA TATGGAGAAA GTCCAATTGA AATTGATGCA AATTCAAGAA TAGAAAATTA 100200 TAAAAACCAG TATAGGGGGA AAAATAATGA AAAGAATTTT AGCAATGCAT GATATTTCAA 100260 GCATGGGAAG AACATCTCTT ACAATATGCA TACCAGTAAT ATCTTCGTTT AATATGCAAG 100320 TTTGTCCTTT TGTGACAGCT GTCCTTTCTG CTTCCACAGC TTATAAAAAA TTTGAAATAG 100380 TGGATTTAAC CGATCATTTA GAAAAATTTA TCAATATATG GAAAGAACAA AATGAGCACT 100440 TTGACATACT CTATACCGGA TTTCTGGGAA GCGAAAAACA ACAAATAACA ATAGAGAAAA 100500 TAATTAAATT AATAAAATTT GAAAAAATTG TAATTGATCC TGTGTTTGCT GACGATGGAG 100560 AAATTTACCC TATATTTGAT AATAAAATAA TTAGTGGATT TAGAAAAATC ATAAAGTACG 100620 CAAACATAAT AACACCCAAT ATCACAGAAC TTGAAATGCT AAGCAAAAGC TCAAAACTTA 100680 ACAACAAAGA TGATATCATA AAAGCAATAT TAAATCTTGA TACAAAAGCG ACGGTAGTTG 100740 TTACAAGCGT TAAAAGGGGA AATCTCTTGG GAAACATTTG CTACAATCCT AAAAACAAAG 100800 AATACTCGGA GTTTTTTTTA GAAGGATTAG AACAAAATTT CAGTGGAACA GGAGATTTAT 100860 TTACCAGCTT ACTTATAGGA TATTTGGAAA AATTTGAAAC AGAGCAAGCC TTAGAAAAAA 100920 CAACAAAGGC TATTCACCTA ATAATAAAAG AGTCAATTAA AGAAAATGTT TCAAAAAAAG 100980 AAGGGGTCCG AATTGAAAAT TTCTTAAAAA ATACATTTTG AATTTAAATT CCATTAAATT 101040 CAATTTTTAA GATTGAATCA ATTTCTTGGT ACAAAGGAAA TACTGATATT GCAATATATT 101100 ATTAAAATAA AATGTGAAAA AATTTATTAC AAAGTAAATG CTTTATTGTT TTCATGAGTA 101160 AATAAAAATA TGTCAAATAA AAAAATAATA TTTTTTACAG GGGGAGGAAC TGGGGGTCAC 101220 GTATTTCCAG GAATTTCCAT CATACAAAAA TTAAAAGAAT TTGATAATGA AATTGAATTT 101280 TTTTGGATAG GTAAAAAAA TTCTATAGAA GAAAAACTAA TAAAAGAACA AGATAATATT 101340 AAATTTATTT CGATTCCATG CGGAAAACTT AGACGCTATT TTTCTTTTAA AAATTTTACT 101400 GACTTTTTCA AAGTAATACT TGGAATAATA AAAAGCTTTT ACGTTTTAAA AAAATATAAA 101460 CCTCAGCTTA TTTACGCAAC CGGAGGATTT GTTTCAACTC CTGCAATTAT TGCATCCAGC 101520 TTGCTAAAAA TAAAAAGCAT AACCCATGAA ATGGATCTAG ATCCCGGACT TGCAACAAAA 101580 ATTAACTCTA AATTCGCAAA TAACATACAC ATAAGCTTTA AAGAAAGTGA AAAATACTTC 101640 AAAAATTACA AAAACATTAT TTACACAGGA TCTCCTATAA GAAGAGAATT TTTAAATCCA 101700 GATCCCAAAA TAATCAAACA ATTGACACAA AACACTAACA AACCAATTAT TAGCATACTT 101760 GGGGGATCTC TTGGCGCTAA TGCTTTAAAC AACCTTGCAC TCTGCATTAA AAAGGATGCT 101820

GAAATCTACT TCATCCATCA TCGGGGAAA AATTTAAATG ACCTAAGCGA AAGAATTAC 101880 CTTAGAAGGC AATTTTTTAA CGCAGAAGAA ATGGCAAGTA TAGTTAAATT TTCTAATCTA 101940 ATAATAAGCA GAGCCGGAGC TGGAGCAATA AAGGAATTTG CAAATGCTGG TGCATGTGCA 102000 ATTTTGATTC CATTTAAAAA AGGCTCTAGA GGAGATCAAA TTAAAAATGC AAAATTACTA 102060 ACAAATCAAA ATGCCTGCAT TTATATAGAT GAAGATGAAA TTTTAAATAT AAATATTTTA 102120 AAAATTATAA AAAAAACTTT AAAAGATAGA GAAAAAATCA ACTCTCTCAA AGAAAATATC 102180 AAAAAATTCA ATAATAAGCA TTCTTCAACT TTAATAGCCA AATTGCTAAT AAAAGATATT 1.02240 AAGGAGACAA AATCTAAATG ATAATAAACG ATCCTGTAAA AATAACTGGA ATAGTAGACA 102300 TATTAATAAT AATAATTTTT ACATCTTTGG GATTTAGAGG ATTTTTAAGA GGATTTATTA 102360 AAGAAATTAG CGGATTTGCT GAAGTTTTTG TTTTAATCCT ACTGCTTTAC AAAAAAACTG 102420 AAGAATTTAG AAGGTTTGTT GAACCTATTA TTGAGCTATC CTACATTCAA GCACTACTTG 102480 TATTTTTTT GCTTATACAT ATAGGATTTT TAATACTACA ATCCCTAATA GAATCAATAA 102540 TAAGTCAACT TAAATTGCTA TTCTTCAATA GAATACTAGG CTTAGTGCTT GGCCTACTTG 102600 AAGCTTTTGG AATAATTGCA ATCGTGGTTT ACATAATACA CTCACAACAA ATATTTAAAC 102660 CTGAATATTT CCTAAAAGAA AGCAAACTAC TTGATTATTT AAATCCTGGA ATAAACTATC 102720 TCTTTAAAAT TTCAAAAACA AAATAAGGGC CAGCAATGAC AATGCTTCCA AAAATTGCAA 102780 AAGAGATAAT AAACGAATAT GATCAAAAAA TACTGCCAAA TGCAATTCTT TTACTAGGAG 102840 AAAAATTTTC TTCAAAAAAG ATTAGCGCAA TTGAGCTTGC AAAAAAAATA TTAAACGGAA 102900 AAAACTTAAC AAACCCTAAT TTGCTCATTT TCTCAAATCT TGACACAGTA GAAGCAAAAG 102960 CACATCTTTC TACAAATTCG CAAAAGATAG CAAATAAATA CCTAGAATAT ATTAAAACTG 103020 TAATTTTTAC CAAATGTTAT TTCAGCAATG AAAAAAATTT AAAAAAAATA GAAAAAAATA 103080 TCAACTACAT TAATTCTGTT TATTATGAAA AAGAATACAA TGAAAACATA AAAAATGAGC 103140 TTATAAAAA TATAGAAAAT ATAAACAAAG AATTAAATCA TAGCATTACT GTTTATGATG 103200 TAAAAAAAT TCAAACTTGG ATTTTTTCTG AAAAAGAAAA ACCAAAGGTA ATCTACATAA 103260 ACGAAATCGA AAATTTATCA TTTAATGTCC ATAACTCACT TTTAAAAATA TTGGAAGAGC 103320 CTCCCTCAAA TATTTACTTT ATCTTGGCAG CAAGAAATAA AAACAAAATA CCAAAAACAA 103380 TACTTTCAAG ACTTAGAGTC TACAATTTCG CAAAACTAGA CAGAAGCTTA GAAATTCAAA 103440 GATTTAAAGA AAGCTTTCTA ATAAATAAAG ATATAACAAT TGAAGAGTAT TTCGCCTCAT 103500 TTTACAAAGA AGAAAGCAAA AAAATAAAAA AAGAATTGGC AAAAATTCTA AATATAATAA 103560 AAGAAAAAA ATCCATATTT AATCTTGAAG AAGTCGACTT TATAAAAGAT GAGCAAAGCT 103620

				•		
TTAAAATATT	TTTAAACGAA	CTTACAATTA	ACATTAGAAA	AGATTTTTTA	GAAAACAAAA	103680
TAGATATTAA	ТСААТАТСТА	AAGTACACAG	AGCATTTGAA	AAATATTTAC	AAATATCGCC	103740
CCTATAATCA	АААТААААА	TTAATAATAG	AAAACTTAAT	GCTAAATTAT	GAGGAGATAT	103800
GAATAATTTT	TTCAAAAAAG	CTTTAACAAA	GCTAAACAAA	TTATCTAACG	AACAAAAAAC	103860
ТАААТТТАТТ	GAACAAATTT	АСААААААТ	AGAAATATAT	GACGGAATAT	TTGCATCAAT	103920
TAATGAAGGA	ATCATTGTAC	TTGACAAACA	AAACAATATA	ATCTATGCAA	ACAAGATTTT	103980
ATACCAAATT	TTAGCTTTAA	CATCTAAATC	AAAAATAGAA	ATTCTTGATG	ACATTCAAAT	104040
TCCAAACTTA	ATAAATTTAA	TAAAAGAACT	AGTTAGAACA	GAAGATAAAA	TAATAGGATT	104100
AGAAGTTCCA	ATCTCAAACG	GCATATATAT	ТААААТСТСА	TTTATGCCTT	ATGTAAAAGA	104160
AAAAAAACTT	GAAGGCAACA	TAATTTTATT	CGAAGACATT	AAAGAGAAAA	AAAAGAAAGA	104220
GGAACTATTT	AGAAGAGTTG	AGGCTTTGGC	CTCTTTTACA	AGGCATGCAA	GAAATATTGC	104280
CCATGAAATC	AAAAACCCAC	TTGGAGCAAT	ССАТАТАААТ	TTACAACTGC	TAAAAAAGGA	104340
AATTGAAAAA	CAAAAAATGA	AAAATGGTAA	AGCTGAAAAT	TATTTTAAAG	TAATAAAAGA	104400
AGAAATAAAC	AGAGTAGATA	AAATAGTAAC	AGAATTTTTA	CTAACTGTCA	GACCAATAAA	104460
AATTAACTTA	CAAGAAAAAG	ATATTAAACA	AGTAATAGGC	AGCGTATGTG	AATTGTTAAA	104520
TCCTGGATTA	GAAAATAAAC	ACATAAAACT	ATTGCTTAAT	TTAAACAAAA	TAAGCAATAT	104580
TCTCATTGAT	GAAAAACTAT	TAAAACAAGT	TATTATAAAC	ATCGTTAAAA	ACGCAGAAGA	104640
AGCACTGCTT	GAAACAAAAA	AAGAAATAAA	AAAAATAGAA	ATTTTTCTCT	TCGAAAAAGA	104700
СААТААААТА	CATATCAACA	TAAAAGATAA	CGGAAACGGA	ATAAAAGATG	GGGTAAAAGA	104760
GGAAATATTT	AAGCCTCAAT	TTAGCACAAA	AGAAAAAGGA	AGTGGAATAG	GACTTACTAT	104820
ТТСТТАТААА	ATAATAAAAG	AGCTTGGAGG	TGAAATTTTT	GTGGAAAGCA	AAGAGGGCAA	104880
AGGCACTATT	TTTACAATTA	CGCTGCCTAA	АСТАААТААА	AAAAATATTT	TAATTGAAGG	104940
GTATTGAAAA	TGAGCAAAAT	ACTTGTAGCT	GATGATGAAA	AGAATATTAG	AGAAGGAATT	105000
GCTACTTATC	TTGAGGATGA	AGGATATTTT	GTTTTCACTG	CTAGTGACGG	AGAAGAAGCT	105060
CTTGAAACAA	TTGAAAATGA	AAATCTTGAT	GTAATAATÄT	CTGACCTGAG	AATGCCCCAG	105120
ATATCTGGAG	AAAAATTGCT	CAAAATAGTT	AAAGAAAAAA	ACTTGGGAAT	ACCTTTTATT	105180
ATTCTAACAG	CCCACGGAAC	AGTTGATTCT	GCTGTAGATG	CCATGAGAGA	GGGTGCTTAT	105240
GATTTTTTAA	CAAAGCCCTT	AGACCTTGAA	AGACTTTTGC	ТААТААТААА	AAGATCACTA	105300
AATAAAAAAG	AAAATAACGA	TAATGAAAAT	GCTAATTTAG	ААААТАТАСТ	AATAAGAAAA	105360

GATCTAAAAT ACTATGAAAA AATCATGGGA AAATCCCTAT TAATGCAAAA AATTTTTGAA 105420 CTTGTAATAA AAATAGCAAA ATCAAATGCA TCTATTCTTA TAACGGGCGA AAGCGGTGTT 105480 GGTAAAGAAA TAATAGCAGA TGCTATTTTT GATCTTTCAA ATAGAAATGA CAAACCATTT 105540 ATAAAAGTAA ATTGCGCAGC ACTTTCTGAA AGCATTCTTG AAAGTGAACT TTTTGGCCAT 105600 GAAAAAGGAG CATTCACTGG AGCAATTTCC AAAAAAAAAG GCAGATTTGA ACTTGCAAAC 105660 AAAGGCACAA TTTTTCTTGA TGAGATAGCA GAAATTCAC CTGAAATTCA AGTCAAGCTT 105720 TTAAGAGTAC TGCAAAACAA AACTTTTGAA CGTGTTGGGG GAGAAGCTAC AATTAAAGTT 105780 GATATCAGGC TTCTGGCTGC AACAAACAAA AACATTGAAG AGGAAATTAA AAAGGAAAAA 105840 TTTAGAGAAG ATTTATTTTA TAGATTAAAT ATCATTAATA TAAACATACC GCCTTTAAGA 105900 GAAAGAAAAG ATGATATATC TTATTTAACA AACATACTAA TAAAAGACGT CGCAAAGGAA 105960 AACAATAGAG AAGAAAAAAC TCTTTCTAAT GATGCAATGA AAGCTCTCTA TTATTACGAT 106020 TGGCCAGGAA ATATTAGAGA ATTAAAAAAT GTGCTTGAAA GTGCATTAAT ATTATCAAAA 106080 GGCAAACAAA TCACTAAAGA AGATTTGCCA GCAAAAATCA AAAATAATGA AAATCTTATA 106140 TTTAAAATAA CACTACCAAT AGGAATTAGC CTAAAAGAAG CTGAAAAAGA AATAATAAAA 106200 CAAACACTTT TTCATTCCAA AAACAACAAA AGCAAATGCG CCGAAATACT AAAAATAGGA 106260 AGAAAAACTT TACACAATAA AATAATCGAA TATAATATTG ATTAATAGGA TTTATTTTAA 106320 ATTATTAAAT TATAATGGGT ACAAAAAAT AATACTGCTT TAAATTCCAT GTATATTTTT 106380 GAAACCAAAA AATTTTTAA TGCCAATAAT TATATTAAAA TGAAACACTT TCTTTTAAAA 106440 TCATGGCGCA AAAGTGTAAA AATATTTTTA TCAAACAAAT AATTATACAC CATTATTTGT 106500 TAATAATCAA TACAATTTGA TAATTTAATA TATTTAGCTG GCTACAGAGC CTGACCTTAC 106560 TTTAAAAACT TTAAAGGGTT AATAGGAATA TTTTTTTTTA ATATTTCAAA GTGCAAATGA 106620 GGACCAGTTG CGCGACCCGT TTGCCCAACC nTTCCAAGAA ATTCTCCCGA TTTAACAAAA 106680 TCACCTATCT TTACAGAATA TAAATTTAAA TGCCCATAAA GAGATTTAAT ATTATTTTTG 106740 TGACCAACCA CAACAAAATT CCCATAAAGA TCATTGTATC CAGCTTCAAT AACTATTCCA 106800 GAAGAAGAAG ATACACTTCA GCATTCATTG GAGCTGCAAG ATCTATTCCT GTATGGAAAC 106860 TTTTGTTGCC AGTGAAAGGG TCATTTCTAA ATCCAAAATC AGAACTAACA ATAAATTTTT 106920 TTAAAGGAAA AATAAAATTG GCATTTAAGA AAAAAAGCAA TTCTGTGCCT GAAAAAAGTC 106980 CAAAATCTGG ATTCTTAACA AAATCAAAAA AATAAAATTC ATAAACTCTG TCGTTCCTTT 107040 TAATTTTTAC CTTTTCAGCT TTAGCAAGAT CCCTTGTTGC TAAAAGCAAA TTATTAAATC 107100 TATAATCTTT ACTATCAAAA ACAAAAACTC CTTTTTTACT GGGAATAAGA ATCTCTTGCC 107160

CAACACTCAC AGCAGGAGAA TCTAATAAAT TAATAGTAGC AATGCCGGAC TGCCATCCAT 107220 TTATTTATT GGCAATTTTA AAAAAAGTAT CCCCTTTTTT AACTTTATAT GAGTAAAAAA 107280 ACAGAGGAAT ATGTTGTTTT TTGTTATATT TTAAAACTTT AATTTTAAGA TCAGAAAAAA 107340 CAGGATCTTG CCTTGAGAAA TTTTTTATTT CTGGATAAGA AAAAACATAA ATTATTTTTA 107400 AAAAAAAGAA ACCTGCATTA AATAATAAAA AAATTTTACT CATACTATAA ATTCTTTAAC 107460 107520 ATAATAACAA ACTGTAATAA ACTGTCTCTC AACATGGAGC TAAACGAATA CCAAGAAAAA 107580 GCAAAAAAA CTGCTAAATA CAAAAATAAA AAAGAAGAAT TAATTTTAAC AACACTTGGT 107640 CTTGCTGGTG AAACTGGAGA AGTTGTTGAA AAAATAAAAA AATTGGGAAG AGATAAAAAT 107700 TACATTATTG ATGATGAGTA TTTAATATCA ATTAAAAAAG AGCTTGGGGA CGTATTATGG 107760 TACTTGTCAA GTTTAAGCAA TAATTTAGGC ATTACGCTTG AAGATGTTGC CCTCACAAAC 107820 CTAAAAAAA TACAAAAACG ACATGAAAAT GGAACAATAA ATGGCGAAGG CGATGACAGA 107880 TAAGGCATTT AAATTTAAAA TACTCAAAGT TTAAAAATAA AAATGCTTAA TATTTATATC 107940 AAGGGAATTT TACTTGGAAT TGCAAACATA ATCCCAGGGG TTTCTGGGGG AACGCTGGCT 108000 TTAATATAA AAATTTATTA CAAAATAATA AACTCCATCT CAGAAATCTT AAAGCTCACA 108060 GAAATTAAAA AAAATTTAAT GTTTTTAACT ATTTTGGCAA CAGGAATGTT AACCTCAATA 108120 TTATTAACTG CAAAAATATT TAAAACTTAT GCTTTTGACA ATGGAATAAT AGAAGCACTG 108180 CTAATAGTAT TTTTCATAGG ATTAGCATTT GGAAATATAC TAACACTAAA AACAGAAATA 108240 TCTATAAAAG AAATAAATAG TAATACAAAA ATATTAAATA ATTTATTGTT TTTCATTGGT 108300 ATGAGCATTA TTGTACTCTT CTTAATACTC AAAGAATCTA ATATACAATT GCAAAGTACA 108360 ATACCTAAAG ACAAAAACTC AATAAAATAT TACTTATTAT TGATATCCTC TGGAACAATA 108420 AGCGGAGCAT CAATGATCTT ACCGGGAATC TCAGGATCTG CAATGCTTTT ACTGCTTGGC 108480 TTTTATAAAG AAATAATACT TATTGTGTCT GAATTTAACA TTATTCTTAT TACAATATTT 108540 GCAGCTGCTG CAACAATGGG AATAATTACA TCAATATTAA TAATAAAGAA AATAATAGAT 108600 AAGCACTTAA ATAATTTAT TTATTTATCA AAAGGCTTAA TTTTTGGATC AATTCTACAA 108660 ATGATATTAA TTGTATTAAA ATTGAACTTT AAAATCGGCT TTACATCTTT TACATCTCTG 108720 GGAACATCAT TCATACTGGG AATCTTTATA AACAAAAAT TGGCTGAGAA ATATAAATAA 108780 AAAATTTAAA AATACCGAAG ACCGGACTTG AACCGGTACG AGCTTCCTCC TCAGGATTTT 108840 108900

ATATTGCAAT	GTCAAGTTAA	AAGAAAAT	219 АААТАТАДАА	ACTCAATTGA	AACTATTTT	108960
TTGAGGAAAA	TTCTCAACAA	САТААТТССТ	ATGCAAATAA	TCTGCAATTA	CAAACATAAA	109020
ТGААТАТААА	GAAACCCTAG	САААААААТТ	AGAAAAAACT	СТААААТСАА	TTTTATTTGC	109080
TAACATTGAA	GTGTAGTTTG	AATCATTTAT	TAAGCTAAAA	AATCCATTTT	TGATTAATAA	109140
АТСАААААТА	ACAAATTCAG	АТТСАТСТАА	AATAAACATC	AATTTATCCA	TTTGGGCTTT	109200
ТАААТАТААА	ATTTGTTCAC	TAATTTGCAA	ATTGGCAATA	CTTTTAATAA	AATCCTTGCT	109260
ТАААТТАТАА	АТААСААТАС	CATAGTGATT	ATTCTCAAAT	ТТААААТССА	CAAGCAATCC	109320
ТААТТТТААА	TCGCAAGAAT	CTTGCATTAC	ACTTAAAACT	ТТААТАТТТА	TTTTGCGCTT	109380
AGAAAGAATG	CTAACAGAAA	GGCCACTACC	TTGATCAATA	AAATAAGCAT	TCTTAAAAGC	109440
тстааатааа	ACTCTATTAT	ТААТТАААТС	AAGAACATTT	ТТАТТСТТАА	GATTCTTAAT	109500
ААТТАТТААА	TCAAAACTTC	GATTTAGAAT	ATTATAAGCA	GAATCAAGTA	ACCCTTGAGA	109560
AAAATCATCA	TTTAAATTAA	AATTTGCAAC	CTTAAACTCC	AAAACACTAA	AATCTGTATC	109620
TACAACATTA	CAGGAAAAAA	ATAAAACACT	AAGCGGAAAT	AAACTCTTCA	AGTTGATACT	109680
TTGTCTCAAC	AACTTCAAAT	ACAAGCCCAT	ACTTTTTTGC	AGCACTACTA	TCCAACCAAA	109740
AATCTCTATC	AGTATCCTTT	TCTATTTTAG	AAATTTTTTG	ACCCGTTTCT	TTTGAAATAA	109800
TATTATTAAG	TTCTTTTTTA	ACTTTATTTA	ACTCATTAGT	GTAAATCTCA	ATATCTGTAG	109860
CAACTCCCTT	AAATCCACTC	AAGGGCTGGT	GCAATAAATA	TCTGGCAAAG	GGCAGTGAAA	109920
ATCTATTTTC	TAATTTTGCA	GCCAAAAAAA	TTAAAGCAGC	AGCGCTAGCA	ACAAGCCCTA	109980
CTCCAACTGT	AAAAACTTTA	GGCTTAACAA	AGCGAATCAT	АТТАААААТА	GCAAATCCAG	110040
CATCAATGTC	GCCTCCTTCT	GAATCAATAT	АСАСАААТАТ	AGGCTTTTTA	AAATCTAGAG	110100
CCTCTAGCAA	TAATATTTT	TCCTGAAAAA	GCCTGGAAAC	ATCCTTGGTA	ATCTCACCAG	110160
CAATAACTAT	TGATCTGCTC	ТТТААААСТА	ACTTCAATGA	TTTATCATGC	AAAACACAAG	110220
CATCATTATC	TTCTTTCCCG	GTCATAAAAC	ATCCCTTATA	CAAAAACATA	ATGATATATT	110280
ATAATTGAAA	ATAAAAGGTT	TTTAAATGAT	AAAAAAGCAC	AAAAATTAAA	CAATTGCACT	110340
TAATTTCTGA	AAAGCAAAAG	ACTAATAAAT	СТТТААТСАА	GCTTCATTAA	AGTTAAAAAA	110400
TACTCTAAAT	TTTACAAATT	AAGTAAAATT	AAAAAGGAGT	TTATAATGCA	CCATGAATTT	110460
GCGGTTATCG	GAGGGGGAAT	AGCGGGAAGC	ACCGTTGCTT	ACGAACTGCT	TAAAAGAAAT	110520
AAAAAAGTAA	TTCTTTTTGA	TAATGAAGAT	ACAAAAGCAA	CAATGGTAGC	GGGCGGCTT	110580
ATTAATCCTA	TTATGGGTAG	AAAAATGAAC	ATTGCCTGGA	AAGAACCACA	TATTTTTGAA	110640
TTTGCAAAAA	ACTACTATCA	AGAAATTGAA	ААААССАТТА	ААТССАААТТ	TTTTATAGAA	110700

CCGATAAAAA	ACTTCACTTA	ACAGCTGGCG	221 GGGCTGCAAA	TATTGTCAAG	CAAGCAAAAG	112500
TTTTACAAAC	AGGACTTATC	CATTTTAGTG	AAAGATATAC	ATTAAGAAAA	GATCTTGAAA	112560
АСТТАСТААА	GGAGGCAAAA	TTGGAACATC	CAGACGGAGA	AATTTTTTTA	ACAAGAGATG	112620
GAATGAGGCT	TGAAGCAAAC	AAAAATAACT	ТТАТТАТТАА	ATAGGAGGGT	ATATGATAAA	112680
TGTAGAAAAA	GTTACTAAAA	TGTATGGGCC	ATTTACAGCA	CTATTTAATG	TTAGCTTTAA	112740
GGTTGAAGAA	GGCGAAGTAC	TTGGTATACT	TGGCCCAAAC	GGAGCCGGAA	AGTCCACATT	112800
AATCAAAATC	ТТААСАТСАТ	TTCATTATCC	AAGCAAAGGT	AATGTAAAAA	TTTTTGGAAA	112860
AGACATTGTA	GAGCATTCGA	AAGAAATACT	ACAGCAAATA	GGATATGTTC	CTGAAAAACT	112920
AGCTCTTTAT	CCAGAGCTTT	CTGTTAAAGA	ATATTTAAAG	TTTATATCAG	AAATAAAAGG	112980
TGTTAAAAAA	TTAAAAAAAG	AAATTGACAG	AGTAATAAGC	ATATTCAAAT	TAAAAGAGGT	113040
TGAAGATAAG	CTGATTTCTC	AÀCTTTCAAA	AGGATTTAGA	CAAAGAGTAG	GAATAGCTGG	113100
CGCTTTAATA	AACAATCCTA	AACTTGTAAT	ACTTGATGAG	CCAACAAACG	GTCTTGATCC	113160
АААТСАААТА	ATTGAATTTA	AAGAATTTTT	AAGAGAACTT	GCAAAAGAAA	GTACAATATT	113220
ATTCTCTTCG	CACATACTAA	GCGAAGTAGA	ATCTATTTGT	AAAAGAATAA	TTATTGTCAA	113280
CAACGGAGTA	ATTGTTGCTG	ATGACACAAA	AGAAAATATT	АТТАААААТА	AACTTAAAGA	113340
GATTGAAATA	GAATTAATAG	TTTCAAAAAA	ATCTGAAAAT	GAGAAAAAA	TTTTCAACAG	113400
CAAAAATGAT	ATTTTTTCAT	TAATAAAGCT	TGAAGAACAC	GAAAAAGACT	TAAATATTTC	113460
АТТААААСТА	TCTCAAGGCA	AAACAGAAGA	AGATCTCTTT	AGCTACATAG	ТАААААТАА	113520
TATAATCTTA	AAAGCAATGA	TTCCAAAACA	TGAAAGCCTT	GAAAAGATAT	TTAGCAAATT	113580
AACCAAGGAG	AGAGAAAAAT	GAAAATAGAT	TTAAAGCAAT	CTTTATCGCT	ТТСТААААА	113640
GAACTAAAAA	TATTATTTGG	AACCCCAACT	GCATACGTTG	TGATGCTATT	TTTTTTAATA	113700
TTCATAAACT	TTTCATTTAT	TTTTTTATCA	GGATTTTTTA	TTAAAGACAA	TGCATCTCTT	113760
ACCTCTTATT	TCTCTTCAAT	GCCTATTATT	TTAATGTTGG	TACTGCCAGC	ACTTAGCATG	113820
GGAGTATTCT	CAGAAGAACA	CAAAACAGGA	AGCATTGAAC	TTCTTTATGC	TCTACCGCTA	113880
AGTCCTCAAG	AGATAGTCTT	GGGCAAATTT	ATTACGCTTA	AAATATTTAC	СТТААТАСТА	113940
TTCTCACTTA	CCCTACCTCT	TACAATAATG	ACAATTTTCA	TGGGCGAATT	TGATCTTGGG	114000
ATAATATTGC	TTCAATATCT	AGGAATAATT	CTTTATTCTC	TTTCTGTGCT	AAGCATGGGA	114060
ACATTTATAT	CCTCCATTAC	AAAAAGCCAA	ATAGTCTCTT	ACATTCTTAC	CGTATTTACA	114120
CTGATATTAA	ТАСТАТТТТС	TGGGAAATTG	GTTATGATCT	TTGGAAAAGA	АЛАТАТААТА	114180
GGAGAAATAC	TTAATTTTGT	TTCAATAACC	AATCACTTTA	GCTATTTTAA	TATGGGTATA	114240

223 CAAGGATCCT TGAAGAAAAA TTTTTGATT TTGACTTTAA TTTAATTTCT AAAATTGAAA 116040 CAGAGCTTGA AGGAACGCTA ACAAAACTTG GCAAAGATTG GATTTTAACA TACAATAAAC 116100 AAAATATTCC TGTTGATAAC AAAAAAGTCA ACTCTCTAAT CAAAGCATTA GACGAGCTTC 116160 AAAAAAACAA GCTTGTAAGT AGAGATCAAA AAAAACACAA GGAACTAGGA ATTGGAGAAA 116220 ATCCAAGCTT TAAATTATTT GACAATAATA ATAAGCTGTT AACAGAAATT TTTGTTGGAA 116280 AATCAGGAGA AGGCGATTCA AGACTGGCAT ACATTAAAGG TAGTGACGAA AATGTTTACT 116340 TAACAAAAA CATTTTCTTA TCATACAAAG GAAATTCTTA CAATACATTT TCAGATACTA 116400 CATTGTTCCA AGAAAAAAC ACAAAATTAG AAAATTTATC ATTCAAAATA ATAAGAAAAT 116460 TAAACAAGGA AAATGAAAAT AACATAAATA ATAACTATGA GATTATCAGT AAAGATGGCC 116520 TTTATTTTT AAATAACCAA AAAATGACAA AAGAAAGGCC TTTAAATATT ATTGCTGAAT 116580 TTAAAGCTGA CGGACTTGAA ATTGATAAAT CTAAAATAGA TGATTATAAT CTTCAATACA 116640 AAATTGAAGT CAAATGGAGC AATAAAAGTG TCAATAATAT TGAAGTTTAT TTTAATAAAA 116700 ACGAAGAAAA TGACAAAGAC ATATTAATCA AAAAAGATAA AGATGAATAT TACTACACGA 116760 CTAGCAAATG GACTTTTTTT GATGTATTCG ACTTAGAAAA AAAATTAACA GAAAAAGATG 116820 ATATTTCTAG CAACGATAAT CAAGAAGATC ATCATGAACA TCACAACAAT GCAGATTAAT 116880 CTTGCTATAT ATAAAAAGCA TTAAAAGAAA AACATATAAA AATAAATATA ATTAAAATAT 116940 ACCATGACAA AGACAACATT TTATCAAAAG ATAAGATGTT GTTTGGCTTT ACTGATATAT 117000 CTTTTAAATT AAAATTAATA TCAAACAAAC CGCTCAGTTA TCAAATATTA ATTTTAAGAA 117060 TTTTTATAAA AAATAGAACT TAAACGAATG GATTTTCAAC CTTTAGTAAG TAAAAATTTA 117120 ACTTTTTTTA AAACTTCATA CTCTTGTTTA ATTTTAAAAA TATTTCTATT AGGATTTAAC 117180 TCAAGTTCAC TTTCTACCCT ATCAATAAAA TTTATTAATA TGGCTTTTTC ATCGCTATTT 117240 AGCACAACAT TACTTAAAGA TTCTTCAGCA TTAAATTTGC TTACAACCTT TTCAACATCA 117300 TTAAAATTAA AATTAGAAGG AAAAGGGTCC TTAGTTATGC TTTGAGAGCT GGGCTTTTCA 117360 TAATTAGCAA CATCATTACT TTGGTCTTGA TCTGATTTAT CTCTCAAATT ATCATGCAAA 117420 TTTTTCTCTC CAGCATTAGA AAAAGAGCCT TCGGCAACCG TAGAATCCAG ATCCTCTTTT 117480 AAAATATTTT CAAAATCATC AAATTCTTTT GACTCAAAAC GTTCACCAAA GCTTTTAAGA 117540 ATCGCACAAT TATCACCATT CTCATGCTCA ATGTTTTCAT TCTCATTAAT TAAATCCAAA 117600 CGTTGTTTAT TATTATCTAC AAAGCTCTCC AATTTTCGAG AGTTATCGCA ATTAGCAATA 117660 GAATAGGGAT CTTCTGCTCC CACTTCATGT TCCAAAGAAG AACTATTATC CAAATTTTTA 117720 TTAACAGAAT CTAACAGTTT ATCTGGCTCT GTAGTAAAAC TTTCCAATTT TTTACTGTGA 117780

224

	'			•		
TCGTTATTAT	ТАТТТААСТС	CATATTTCCT	ATGGACACAT	TATCACTGTC	AACATTAATA	117840
TCCTCTTTTT	TAAGAATATT	ATTAGAAAAA	TTATCAGCCA	CATGTAAATT	GTTAGTCAAA	117900
TTCAAATCTT	TATCTCTATT	AAATTTAACA	TCGTGCTGAA	СТТСТТСАТТ	TTCTTTTGGG	117960
GTATAATTGA	TACCTTCAAG	CAGCGCATCT	AATTCTTCTT	GACCAATAGA	AATATTAGGC	118020
AAATTATCTT	CTTTTTTGA	AAATGAATCA	TCCGTCTCGG	ATGATTTTTT	TTCAAAATCC	118080
TTCGAATCAT	AAGAAATAAA	ATCCCTTTGA	ACAAACTTAA	GACTATTATC	AAGCATTTCT	118140
TTTTCAACTC	TCTCAACACG	AAGCTCAACA	CCCTTTAAAC	AATTAATCAG	CTCGCCGTGC	118200
CTTTCTTTTA	AGATGTTATC	GAGTTTTAAC	AGCTTTTCAT	CCAAAAAAGT	TTTAAGATTA	118260
TCTGGGGCTA	TAGAAACAAT	ATCAACAGAC	TCACTTCTTA	AAAATACCTT	TTCAATATCA	118320
AAATTAACTT	CCTTGGGACC	TTCTTTGATA	AAAAAAACAC	TTTCCTTCAT	GCCAAACTTG	118380
CTCTCCAAAA	CTACTCAATA	AAACTACAAT	CTAAAGCAAT	TTTAACTACT	TGTAAATATA	118440
GTATATTAAG	AATATAATTA	CAAGCTATAT	GACTATTTAT	AAAAAAATTG	CAATGTCTTT	118500
TTACTCAGGA	ATACTAAGCT	ACTTTATAAT	AGCTCCCATA	TTTGGAGAGA	GAGGATTTGT	118560
TAATTATCAA	AAATTGGATA	ACAACTTAAC	АТТААТАААА	AATCACATCG	АААААСТААА	118620
AGAAATTCAA	AAAGAATTAA	AAGCAAGATA	TATTAACCTA	CAAGTATCTA	AATCGGAAAT	118680
TCTAAAAGAA	GCTAAAAAAT	TGGGCTACTA	CCCAAAAAAC	TCAACAGTAA	TAAAAACCAA	118740
СААТААТААА	GATCAATATA	ACCAAGGGCA	AATATTAACC	TTACAAAAAC	CCCTTTCCAA	118800
GAATCAAAAT	TTTTACCTTA	TATCAATAGC	AATAGGTTTA	ATTTATTATT	TTTTATCAAG	118860
CTGCATTATC	CAAACCAAGA	AAATTACAAA	AATCAATAAA	CTTGCTTCCA	ACAACTCTAA	118920
GGATTAGTCT	TTATTGAAAA	TATTTATTTT	TAAAAATACA	АТАТАТТТАТ	ТААТТААТТТ	118980
AATTTGTGCA	TCATTTTTTT	GCGTATCGTT	AGTAAATCTT	TTTTCAAATG	AACAACAGTA	119040
TACTCCTTTT	GTTAAAACAA	ATGTCATAAA	AAATTACTTA	CAATACATTG	GAGTATATAA	119100
AAGTATAGAA	AGATATGCCC	TGATACATGA	CTTTAACCCT	АААТСААААТ	TAGAAAAGA	119160
TTGCTTTTTG	AAGCATATAG	CTGGCAATTC	АТАТАТААТА	TACAAAACAA	AAAATGAAGG	119220
AATGCTGTGG	GGCGATCATC	GATACTCTCT	GCTGAGCAAA	GGAAAGCCAA	СТАСТААААТ	119280
AATTTTTCAA	AAAATATTTA	ATACTTTAAA	AATCTCAATT	CCAGGCGCCC	TACTCTCTTA	119340
TATTGCGGCA	ATAATCCTTA	TTATAATTTG	GAAAATTTAC	АТАААААТА	АТСТААТААА	119400
ТААТАТТСТА	GAATATTTAA	TGCTATTGCT	CCACTCCATG	CCAAGAAACT	TAACAGTATT	119460
TTTAATACTG	TCTTTAATAT	ATTACCTTAA	TTTAAATCCA	AAAAATTTAA	TAATGGGTGG	119520

ATTTGCATGG	TTTTTTCAT	TTCATATT	225 TAATTCTGTA	АТТТТТАААС	ATCTCTTGA	119580
СААААСТТТА	TCAGAATTTT	ACATAAAAGC	TGCAAAATCA	AGAGGAATAA	ATAAATTGCA	119640
AATAATCTTA	AAACATGCAT	TAATTCCATC	AATAACACCA	TTACTCACAA	ACATGAGACC	119700
ТАТТАТТАСА	ACAGCTTTTT	TTGGAGCATC	AATGATTGAA	TCAATGTTTG	AAATTGATGG	119760
AATTGGGGCC	ТТАТАТТТАА	ATGCTTTGAA	ATTTAACGAT	TATGCTATTT	CTAAAGATTT	119820
GATTTTTATT	GGCGTTTTCA	TTATGCTTAT	TCCAAATATA	ATAACAGATA	TACTAATTTA	119880
CAAAATTAAC	CCATATAAGG	ACACTCTAAA	CTAATGAAAA	CAGATACAAT	AAAAAAAA	119940
ATTTATATCG	TACTCTTTAA	TATATTTATT	GTGTTGCTAA	TTATTACTCC	GTCATTGGTT	120000
AATGAAAATT	CAAAAATTGC	AATCTATAAA	AAAGATCCAA	ATAAAGTCTA	ТТТААААТСТ	120060
ATTAAAAATG	TACCTATGCC	ACCCACAAAA	GACAACCCAT	TAGGAATCGA	CAAAATGGGA	120120
AGAGATATTA	TGGCAAGATT	AATAATTGCA	ACCAGAAACT	СТАТТТТАСТ	TTCACTAAGC	120180
TACGCAACAA	TTTCTGCAAT	AATTGGAATC	TTTATTGGAA	CAATCATTGG	CATGTTTAGT .	120240
TTTGAAATTT	GCATGCTGAT	ТТСААААССА	ATTGAAACAT	TGCAAACATT	ACCTTTTTTT	120300
TACGTTGTGT	CTTTAGTTTT	TTATTACTTT	ТТААААСААА	AAACTTACAA	TATGCTTCAA	120360
ACAGCAACAC	TATTAGCATT	GATTCATGGA	TGGATTAGAT	TTGCTTTTAT	TGCAAGAAAC	120420
AATACATTAA	TAATAAAAAA	TTTAGATTAT	ATTAAAGCCA	GCGAAGCTAT	GGGAGCAAGC	120480
AAAATTAGAA	ТААТАТТСТА	ТСАТАТТТТТ	CCAGAAGTAT	TCTCATCAAT	ATCATCTATA	120540
ATCCCATTAC	AAATGGGAAG	AAGTCTTACT	ACTTTTGAAG	TAGTAAGTTT	TTTACAAAAA	120600
CAAGATAAAA	ATCTATATCC	CAGTCTTGGA	GAACTGCTCA	ACTATATGCA	AATGGGCAAT	120660
AAATATCTAT	GGATATGGAT	CAATCCCTTA	СТСАТАТТАА	TAGGCATAAA	CATAATACTA	120720
GCAATTATAA	ATTTTAAGCT	AAGAAAAAA	ATGAAACATT	ТААТАТСАТС	ТТАААТАААА	120780
AATTAACAAA	CTCTTGGAGC	AAATTTTTCT	ААААААСААТ	TATCACAATT	TACATTTCTA	120840
GAAGTACAAA	TTTCTCTTGC	ATGCTTATTA	ATAGCCATAG	ААААТСТАТА	CTGCTTACAA	120900
GGCTTTATTC	TTCTTTTTAG	ATCCAATTCA	ATCTTAATAG	GAGAACTTTC	CAAAGAAAGA	120960
GCATGTCTTG	ТААТААСТСТ	ACTAAAATGA	GTATCTACAA	TAATTGCGGG	TTTATTGTAA	121020
ACAGATCCAA	GAATAACATT	TGCCGTTTTT	CGACCTACTC	CAGGTAGCTT	AATAAGATCA	121080
AAAATATTAT	TTGGAATAAC	ACCATTAAAT	ТТТТСТАААА	TATCAATAGA	GCAATTCACA	121140
ATATTTTAG	CCTTTCTTGA	ATAAAAACCA	GTCTTATAAA	TTAATTTTTC	AACATCTCTC	121200
ACATTTGCTC	TTGATAAACT	TTCAAAATTC	TCGTACCTTT	CAAAAAGGTA	TGGAGAAATT	121260
TTATTCACCA	AATTATCTGT	TGTTCTTGCA	СТТААААТАА	ССАТТАТТАА	AAGTTCATAA	121320

TTGTTTTTA	T AATTTAAAA	AGGTTTAACA	TCAGGATATC	TAAATAAAGT	TTCATCAACA	121380
ATCAAATCA	А GATTAATCAT	ААААААТТА	ТААААСАТТА	TAAACACAAA	АСАААААТАА	121440
AAAATATAC	A AAGTAAAGGT	ATCTAGACTT	TATTGACAAG	GATTTTTCAA	AATGATATAC	121500
TCATCATTA	G ААТТТТАААТ	GCACCAATAG	CTCAATTGGA	TAGAGCAACA	GACTTCTAAT	121560
CTGTAGGTT	T TAGGTTCGAG	TCCTAATTGG	TGCGCTTCAT	TCGGGATGTG	GCCTAGTGGC	121620
TAAGGCACC	T GCTTTGGGAG	CAGGGGATCG	TGAGTTCGAA	TCCCACCATC	СССВАЛАЛАТ	121680
АТТАААААА	G СТАААААСТТ	TTGTTTTAG	CTTTTTTGGT	TTTTTAACGA	ТТТАТАСААА	121740
ттааатста	A CTGTAAAGTT	ACTTAACTTT	CTTTAAAGTA	TTTACATCTA	AAATAACTAG	121800
ACTTTTAAA	C TCATCTTGCA	ААТАААТААА	ATTTTTTCTC	ACAGAAAAGC	TAGTAAAAGG	121860
CATAATTTT	A TTCTCTGAAA	GAATAAACTC	ATCTAAATTT	TTAGGAGAAA	ATTTGGCCAA	121920
TCTCCAATC.	А ТТАСТАСТАТ	CTTTATCCCT	AACAGCTACT	AAAATCATTT	TAGAATCAAC	121980
ATAAAGAGA	r gaatttttat	TAATCTCAAA	ATTAGACTCT	GATACCACTT	TTAAATTTTC	122040
AAGTTTATC	A AGTATCTGAA	GCTTAGCTTT	TCCTGAATCC	ATTTTAATAA	CAACCAAATC	122100
TTTTTCACG	r tcataaattc	CATACCGCTG	AATGCCTTGC	TGAGTGCTTT	CTTTAAGCCT	122160
AACACCAGT.	A TTTAAATCAA	TAAGTTGAAG	AGTTCCTAAA	TTTGTAATTG	GATCAATAAC	122220
СТСТААААА	r acaggactac	TGGAATCTAT	AGACATAGTA	GTCAAATCTT	CATTCAAAGA	122280
AGTAACTTG	G TCTTTAACCT	GAGGCTTAGT	CTTTTGCAAA	TTAACATCTT	TATTAACTGT	122340
CTCCTCTTT	GAATCAATGT	CTTTATAAGA	AGATTTATCT	AACGGTGATA	ATTCTCCAAC	122400
ATTGTTATT	A GACTTGAAAA	TCTTATCTAA	TTTCTCAACC	TCAGAAACAG	GTTTAAATTC	122460
TTTTTTGCT	A TCTAATTTTT	TAACCTCAGG	TAATTTTTGA	TCTTCTGGCA	TCATAAGATT	122520
TTCATCATT	A TTCAAATCGC	CTAAGCTTTT	CTGTGACTTA	CCCTTGGTTA	TTTCTTCTTC	122580
CTTGGCTTT	A CTTTTTTCTT	TGCTAGAAGC	TTTAGAATTT	AATTCTCGAT	CAAGATCCAA	122640
GGCTTTACC	A TCTTTACTTG	CTTTATCATC	TTTACTTTTT	AAAAGCTTTT	CATCACTTTT	122700
TTTGATTTC	ATTTGCTTTT	CAATTTCTCT	TTTCTGATTT	TCATCACCAG	TTTCTTTAAG	122760
CTGCTCCTG	AAATCTTCCA	GGCTCTCTTT	TATTTGTAGT	TGCTTATCAA	CTTTAGGAGA	122820
ACTTACATC	A CCAGGCTTTG	GTAAATTCTT	TTCCTTGTTA	ATTTCGTTAA	TATCCTCTTG	122880
AATTTTCTCT	CTAACAGTAT	TTCTTTGAAC	АТСТАААТТА	TCTTCAGCAG	AATCTAATTT	122940
TTGCTGAGCT	TTATCAAGAT	TTATTGCCTT	TTTATCTAGC	TCTTCCTTTT	GTTTCTTTTT	123000
AGCATCAACO	TGACTTTCAA	TCTCTTTTTT	ATGCTCTTCA	TCTGTAGCTT	TTTCAAGCTG	123060

АТСССТТААА	ጥጥጥ ሮል ልጥልር	СТСТСТТАТ	227 ልጥፕርርል ልጥር አ	CTTTC 2 TC 2 2	ATTGTCTAA	123120
		GATCTGCCTT				123120
					CCTTATCTGT	123240
					CCTTTTTAAG	123300
		TTCCAGCCCA	•	•		123360
	•	AAGCAGCCTC	~			123420
		ATATTGTAAT		•	•	. 123420
		TTAAATACCC				123540
		CAATAGAAAA				123540
		AATATTTACC				123660
	•	CCCCAATACC			•	123720
		CAAACTCAAG				
					AAAAACTAAA	123780
	•	ТААААGАААТ				123840
		TAAACCTAAT		*		123900
		TTGAAATATC				123960
					•	124020
		AATTTTGACG				124080
					TCAAATTTAA	124140
		CCAAATTACC				124200
		•			TTTTGACTAT	
					TCTTAATTGC	
		•			CAATTCTATC	
			•		TTAAATATTT	124440
				•	ATTTATTATA	124500
				•	TTTTATCATA	124560
					TACCTCCAAA	124620
					TACTAAGAAC	124680
					ACAAGCCCTT	124740
					TTCCATTTGA	124800
TTTGGTTGAA	ATTAAAAGAT	TTCTATTATT	ATAAAGAACA	GCTTTCTCAA	TCTCAAAGTT	124860

CATTTTTTT TTAAATTTAA GCTTAAAGTT TCTATTCAAA TCAAAAAACA TACCAACATT 124920 TGAAATTGCG ACATATTCAC CATTAAACTT TTCAAACAA AAATTAATAG GAAAATCCAA 124980 CTTAATAGAG CTAATAACTT CCCCAAAATC TCTTCCATAA GCAACAATAT GCCCTGACTT 125040 ATGTCCAACA ACTACCTCTT TTTTTGTATT TATCATTAAC AAAAAAGGGA AAGCAACTAA 125100 TCTGAAAAAC CATTTCTTAT TACCCAAAGA ATCAAACAAA AATATTTCAT CATTTTCACT 125160 TGCAATACAA AAATCCCCAT TATCAAAAAC TACAGGAGAA GTAGCAGGCC TACCACCTAT 125220 GTCAACCTCA AACATTTTTT TACCGCTATT TAAATCAATA GAAACAACT TTTCATTAGC 125280 AAGAGGAATT AGGATGTTAA CATTTCCTAT TGCAGGAGAG CTCAAAGGTG AAAAATCAAG 125340 CTTATACTTC CAAACGAGTT TTCCTCTTCT GATCTTTTGA ACTTCATTTC TAACTGTAAT 125400 AACATAATAC CCATTATCAA AATCTTTCAA AAGAAAAGGA TATGGCATTC TATTTAATCT 125460 ATAAGAATAT TTCTTCTCAA ATGACATTGT ATAAGTAGTC AACCATCTAT CTTTTGTTAA 125520 AACTGTAATA GTGTCACGTT TTTCATCAAT AATTGGATTG CCTGCAACTT TGCCAGTTAA 125580 TGCTTTTTGA AAATATAAAT TAATATCAGA ATAAAGCCTT AAAAAAGAAG CTGAAAACAC 125640 AAATATGAAA AGTAGACCTC TCAAAATAAA AAACCTTTTG AGTTTCTAAA AAACTGCTAC 125700 TAAAGCCTAA AACCAGCATT ATTGCCATAA AGATTATTTC TCAGATCCCT AATCTTAGCA 125760 TCATCAACAT ACTCAGAAAA AGTCATATAT CGATCAATTA TTCCGTTAGG AGTAAACTCT 125820 ATAATCCTAT TAGCAACAGT ATCTATAAAT TGATGATCAT GTGATGTAAA AAGAACAACT 125880 CCTTTAAACT CTTTAAGCCC GGAATTTAAA GATGTAATTG CCTCAAGATC TAAGTGATTT 125940 GTGGGTTGGT CCAGTATTAA AACATTAGCT CCGCTAAGCA TAGCCTTAGC AAGCATGCAT 126000 CTTACTTTT CTCCCCCTGA GAGAACATTT ACCTTTTTTA AAGCTTCATC TTGGCTGAAA 126060 AGCATTCGAC CTAAAAATCC TCTAATATAA GTTTCATCTT GTTCTTTTGA ATACTGACGT 126120 AACCAATCGA CTAAATTTAA ATCTAAATCA AAATATTTTC CATTATCTTT ATTAAAATAC 126180 GAAAAATTAA CGGTAGATCC CCATTCATAA TGACCTTTAT AATTTCTATC TTCATTTGTA 126240 ATAATATCAA ACAAAAAGT TGCAAACATG GGATTTCCCA AAAAAACAAT CTTTTGCTGA 126300 GGTTCAACAA TAATACTAAA TTTATTTAAA ATTAAATTCC CTTCAAATTC TTTTATTAAA 126360 TTTTTAATTG TAAGAACATT CTTGCCAAGT TCTCTTTCGC TTTTGAAATT AACATAAGGG 126420 AACTTCCTTG AAGAAGGCTT TAAATCTTCA ACCTTTATTT TTTCAATCAA CTTTTTCCTT 126480 126540 GATGTTGCTT GCTTAGACTT AGATGCATTA CTAGAAAATC TTTGAATAAA TGTCTTAAGT TCAGCAATTT TATCTTCAGA TCGCTTTTTA GCATCTTTTA GTTGCTTGTT TAAAATCTGA 126600

229 CTTGTTTCAT ACCAAAAATC AAATTTCCA AGATACACTT GAATCTTGCC ATAATCAATG 126660 TCAACAATAT GAGTACAAAC TTGATTTAAA AAATGTCTAT CGTGAGATAC AACAATAACT 126720 GTATTTCAA AATTAATTAA AAACTCTTCT AACCATTTAA TAGATTGTAG ATCAAGGTTA 126780 TTAGTAGGCT CATCAAGAAG TAATACATCG GGATCACCAA AAAGTGCTTG AGCCAAAAGA 126840 ACCCTAACTT TTAAAGCCCC TTCAACATCA CCCATTAAAT TATTATGAAT TGCCTCATCT 126900 ATTCCAAGAC CTTTAAGAAG AACCGCTGCA TCAGATTCAG CCTCGTATCC TCCAAGCTCT 126960 GAAAATTCTG CTTCAAGCTC TCCAGCTCTA ATTCCATCCT CATCAGTAAA ATCAAGCTTA 127020 CTATAAATTT CATCTTTTC TTTTTGAACA GAATAAAGTC TTTTGTGACC CATAATAACA 127080 GTATCGATAA CCTTATATCC ATCATAAGCA AATTGATCTT GTTCAAGAGC TGCTACTCTT 127140 TGATTTTTGG GGATAGATAT TTCACCCTTA CTAGCTTCAA TCATTCCCCC TAATACTTTT 127200 AAAAAAGTGC TTTTTCCTGC CCCATTAGCA CCAATTATTC CATAGCAATT TCCAGGAGAA 127260 AATTTAATAT TTACATCTTT GAATAAAACT CTCTCTCCAA ATGCAACTTC CAAATTACTT 127320 ACAGTTATCA AACCATTACC CTGCCTAAAT TGATATTCTA ATAACAAAAT TATCTTGAAA 127380 ATTAATTTAA TTTTCAAGCA CCATATAAAT ATATTGACTC AACTCTCAGT TTTTTCGTAT 127440 ATTTAATATT ATTATATAG GAGATGTTTG AGATGAAAAA TATTAAGCCG TTAGCTGATA 127500 GAGTTTTAAT AAAAATCAAA GAAGCTGAGA GTAAAACAAT CTCAGGACTT TACATACCAG 127560 AAAATGCAAA AGAAAAAACA AATATTGGGA CAGTTATAGC TGTTGGTTCT AACAAGAAG 127620 AGATCACTGT AAAAGTTGGT GATACTGTGC TTTATGAAAA ATACGCAGGA GCTGCTGTAA 127680 AAATCGAGAA TAAAGAACAT TTAATACTAA AAGCAAAAGA AATAGTTGCA ATAATAGAAG 127740 AGTAAAAAGC TAAGTTTAGC TACTTAGCTT TAATTTTTAT TAAATATTTA ATAAAAATTA 127800 CAAATTTATA CATAAAAACT TATTATTCTG ATCAATCAAA TTAAAAATTT CAAGCTTACA 127860 AAATTCTGTA AGCTTGAAAA AATAAAATTA AATGAAAAAG CCAATTTTTA AAGAAAATAC 127920 CATATATTCA AGCAAATTCG ATGACATCTA TTACAATCCA AAGCAGGGAA TTGAAGAGAG 127980 TTTTTATACA TTTATTAAAG GTTGCAATTT AGATTTAGAA TTAAAAACAA AAAAAAATAT 128040 TTTAATAGCA GAGTTGGGAT TTGGAACAGG ATTAAACTTT ATATGTCTTT TAAAATTCAT 128100 AAAAGAAAAC AACATAACCT CAAAAATTAA TTATTATTCT ATAGAAAAAT TTCCACTCGA 128160 AAAAAAAACA ATAATGCAAA TTTCAAAGTT CTTTGCTAAA GAAACCGCTT ATTTTAAATT 128220 AATGTTGAAA AAATTCTA AAATTCCAAA AAAAAATTTA AAACTAAAAA TAACAGAAAA 128280 TGTTAATTTA AAAATTTTAA TTGGAGACGC CAAAATAAAA ATCAAAGAAA TTCCTGAAAA 128340 TGTAGAATAC TGGTTTTTAG ACGGATTTAA TCCCAAAAAA AATCCTGAAA TGTGGAGCAA 128400

	•					
TGAAATATTT	AATTTAATTT	CTGAGAAAAG	CAGTCCGAAA	TGCAAGCTTT	CAACATTTTC	128460
CTCTGCAAGA	ATTGTAAAAG	ATGGCCTAAA	ACTTGCTAAT	TTTAAATACA	TTCACATAGA	128520
AAAAGGATTT	GGAAATAAAA	GACATATGAT	AAAAGCTCAA	ААААТТААА	AATTTATTTT	128580
TAACATAAGT	CGTTAAAAAA	ATCCCAACAA	GTATGATATA	CTTCCAAATG	GCACAAGGAG	128640
AATTTTAATG	ACAAAAAAAT	TGTTTGTGAG	GGTATTAATĆ	ТТТТТААТАТ	CCAATAATTA	128700
TGCTTTTGCA	AAAGACACAA	TCAAAGATTT	GTTCTTTATA	CAAGATATAC	ТААТААААА	128760
AGAGAAATAT	TCCGAGGTTC	TAAATAATGC	AAGCCTTGAA	GGCATTATTG	AAATTGAACA	128820
TAACGGACCA	TACATTAAAG	ATCACGATTC	AGAAGTTAAA	СТТАТССТАА	AAGAAAACGG	128880
ATATAGAAGA	AATTTCAACT	TTTTTAATCT	ТТТАААТАСТ	AGTAATATAA	TCAAAAGTCT	128940
AAGCTTATTT	GACAGCAGAC	СААААААСАТ	TAAAGAAAAT	GAAATCATAT	TATTAGAGAC	129000
AAAAATGATT	AAAGAAAATC	CCTATAAACG	ATACAAAGAC	GATGATGATT	TTGAATTAAA	129060
ACTAAGTGTA	ACTCGAAAAA	ATAATCAAAT	ТТАТТТААТТ	CTTGATTTCA	ATTTCCTATT	129120
TGATCAAAGA	AAAACGTTTC	CATCAATTTA	CATCAAAGAA	GAAGATGTAT	СААСААТААТ	129180
AAACAGCTTC	ATGAAACTAC	AAGATTCAAG	CTTTTTATCT	CCTCAAGCTT	СТТААСААТТ	129240
AATAGCACAA	AATGTGCTAT	TTCTAATAAA	AAGCAAGCAT	TTTACTGAAA	AGCTAACCAT	129300
AGCCAATTTC	ATTACATAAT	AATTTTTCAA	TCTTTTTACA	GATTTTTTAA	АТТААТААТА	129360
TAATTATTTA	ТТТТАТТААТ	TAAAGAAGAA	AATTCTACAA	ATTTTAATTT	TTCAGATTCA	129420
ACAATTTCCT	TGGGAGCATT	CATTAAAAAA	TTTTCATTTT	CAAGTTTCTT	TGAAACAGAA	129480
ATATTGAGCA	TTTTATACTT	TTCAAGCTGC	TTTTCAAGCC	TTATCAACTC	TTTGGTTTTA	129540
TCTATCAATG	ACTTAACATC	TGCATAAATT	TCAAAACCAA	CTGCAGCTAC	ACCAAGCATG	129600
CCATCATAAT	TTTCATTGTA	AAATATATTT	TTAAAATTAA	TCATTCTTTT	TACAATGCTT	129660
TCATTAGCCT	TAAAGTATGC	CTCATATTTA	AAATCAGCAT	CAAACTTCAA	AGCAACATCA	129720
ATTTCAACAC	TAGCAGGTAT	ATTAAATTCA	CTCTTAAGTG	TTCTAATAGC	ТАТААТААА	129780
GTTTTCAATA	СТТТАААААТ	TTCAAATTCT	TCTTGAAAAT	TATTGGCAAT	ATCAAAATTT	129840
GGATATTCAT	TTAAAGCTAA	AATATCTTCC	TTTTCTGCAA	ATTCAGAATA	AATTTTTTCT	129900
GTAACAAAAG	GAATAAACGG	ATGCAAAATT	AACAATGATT	TTTTAAGAAA	AAATAGCAAC	129960
TTAGAAATAG	CCATATTTTG	AATATCAACA	TTTTCATTAT	ТТАААТСААТ	TTTGCTAATT	130020
TCAATATACC	AATCACAAAA	ATCATTCCAA	AAAAACTCAT	AAACAAATTT	TGAAGCTTCG	130080
ТТАТАТТТАТ	AATTTGCAAA	AGAAGACTCT	ACACCAAGAA	TAGTCGAATT	TAAGCTTGTA	130140

231 TAAATTTC AAATCATTTA ATATTTTCT AGCAGCCATT TGTCAATGTC 130200 TTTAAAAGAA TAAATTTGGA AGCATTAAAA ACTTTGTTTG CAAATTTAGC CCCAAACATA 130260 AAATCTTTAG CGTCAATATT TAAATCTTGA CCCTGAACAG ACAAAAAGGA TAAAGTAAAC 130320 CGCAAAGAAT CACTTCCATA CTCATTAATA ATATCAAGAG GGTCTATTCC ATTGCCTAAA 130380 GACTTTGACA TTTTTTTACC TTGTTTGTCA CGCAAAAGAG GTGTTATATA AACATCTTTG 130440 AAAGGAACTT GCCCTGTAAA TTCTAATCCT GCCATCACCA TTCTTGCAAC CCAAAAAAAT 130500 ATTATATCGT AAGCTGTTAT CAAGGTATTT GTTGGATAAT AATTTTTAAA ATCAACATCA 130560 ACATTGGGCC ATCCAAGCGA AGAAAAGGGC CATAGCCAAG AAGAAAACCA AGTATCAAGA 130620 ACATCTGGAT CTTGAACAAA CCTCTTCCCC ATATTCTTTT CATCTAAAGA AGGATCAGTA 130680 TCACTAACAA TAAGTTCAGA TGTATCAACA TTGTACCAAA CCGGTATTCT ATGTCCCCAA 130740 ACAAGCTGTC TTGATATACA CCAATCTCTA ATATTTGATA ACCAATATTT ATATGTATTT 130800 TCCCACTTTT TAGGATAAAA TTTTAATTCG CCATTCTCTA AAGCCTTTAA AGCTTTGTCT 130860 GCTAAAGGCT TCATTCTCAC AAACCACTGA GTAGACAAAT AAGGTTCAAT AACCTCACCT 130920 GACCGATAAC AATGCCCAAC CTGTTGTTTA TGCTTCTTAA CATCTTGCAA AAAACCCTTT 130980 TCCATTAATT CTGTTTCAAT TTTAAATCTT GCATCTTTCG CACTTAATCC TTGGTATTGC 131040 AAAGGAACAT TTTTATTAAG TTTTCCATCT TGAGTTAAAA TATTGACCTT AGAAATATTG 131100 TGCCTTTTTG AAATTTCAAA ATCATTAGGA TCGTGTGCAG GAGTAACTTT TAAAGCCCCA 131160 GTGCCAAAAG CGCTGTCAAC ATAAAAATCT GCAATAACTT TTATCTTTTT AGTTGTCAAA 131220 GGAATTGTAA CTTCTTTGCC AACTAAAGAC TTATATCTCT CATCATTAGG ATTAACAGCA 131280 ATAGCAGTAT CCCCAAACAT TGTCTCAGGC CTAGTTGTTG CAACCTCAAT AAAAGAAGAG 131340 TTATCAATAA AATACTTAAC AAAATAAAGC TTACCATCAA CTTCTTTGTA TTCAATCTCT 131400 TCATCGCTAA CAACACTCCC AGATCCAGGA TCAAGATTAA CAAGATACTC ACCCCTATAA 131460 ATCAACCCCT TAAAATACAA GTCCTTAAAA ACCTTGTTAA CAGCCTTACA AAGATTCTCA 131520 TCAAGAGTAA ACCTTTCTCT TGAGTGATCA TAAGACGCCC CAAGTTTGTT TATCTGATTA 131580 131640 TCAAAATCAT CTTTGCTTTT ACCAATCTTT TTAAGATGTC TTTCAAAAAC AGCCTGCGTT 131700 GCTATTCCTG CATGATCTGT GCCAAAAAGC CACAAAGTAT TGTGTCTTTT CATTCTTTTA 131760 TACCTTACAA GAACATCTTG CAAAACAAAA TTAAGAGCAT GCCCCATGTG CAACACGCCA 131820 GTAACATTAG GAGGAGGCGC AACCATACTA AATTTTTCAA ATAAAGAATT ATCTGGCAAA 131880 AAAACATTGT TTTTAAGCCA CTTAGTGTAA ATTTCATCTT CAAATGCCTT AGGATCATAT 131940

ттасаасаас	ТСАТСТАТТА	TAAAAGAT	233 TTGTAACCTT	TACGGTAGTA	AAAGGGCA	133740
ATTCTTTGTG	AGCAGCAGTA	AGCGCCATCA	ТАТСАААТТТ	TTCGCCATTA	GCAGTAGTTT	133800
TGCCGTGAAA	AGCTTCGCCA	TACCATGAAG	CAAGACCCAC	TGTGGCAGAA	TTTAAATGAG	133860
AAGCAATAAA	AAAAAATACA	AAGAGAAAAA	CAAAGTTTTT	ATTATCTCTT	AAGATGGCAT	133920
СААТТАААТТ	TCTCATAATG	ТТТАТТАТАА	ТАТАААААСА	ТАТТТСААТА	AACAATTAAG	133980
CTTGCAAATT	GCTTATTTAC	ATTTTTTTG	ATTTAATTAT	AAAAAGAAAA	AAGTCTAAAA	134040
AATGATATCA	ACAGAAATAA	TTAGCAGCAG	CCAAATACAA	AAAGCAGCAA	AACTTATCAA	134100
AATGGGAGAA	CTTGTAGTAT	TCCCAACAGA	AACAGTTTAC	GGAATTGGCG	CAAATGCTTA	134160
CAATGAAGAT	GCTGTAAAAA	TGATTTTTT	AGTAAAAAA	AGGCCCATCA	ACAATCCTTT	134220
AATAGTACAT	GTTGATACGG	TAAAAAAAAT	AAAAGAATTA	TCAGAATATA	TTCCCAAAAG	134280
TGCCCTCATG	СТААТСАААА	AATTTAGTCC	AGGCCCTTTA	ACTTATGTTC	ТТААААААТС	134340
ААТААААТА	TCTAGATTTG	TAAGTGGAAA	CCTAGACACA	GTGGCAATAA	GAATTCCTGC	134400
АААТААААСА	GCTTTAAGCC	TAATAAAAGC	ATCTAAAGTC	CCCATAGTAG	CACCGTCTGC	134460
AAACATATCA	AAAAGACCAA	GCTCAACAAA	TTTCGAAATG	GCCTTAAAAG	AATTAAATGG	134520
ACTTGTAAGA	GGAATAATAA	AACCGGAAGA	GAACAAAGAC	TTTAATATTG	GAATCGAATC	134580
AACTGTGGTT	GGGTTTGACC	TAAAAGATAA	CGTACTGATA	TTAAGACCAG	GCGCAATAAC	134640
AAAAAAAATG	ATAGAAAATG	AACTTCAAGG	AAAATATACA	GTAAATTACG	CAGAAACAAA	134700
AATGGAACTA	GAAAAATCAC	CTGGAAACAT	AATTGAACAT	TATAAGCCAA	AAATTCCCGT	134760
TTATTTATTT	AAAAGTCAAG	ATAACATAAG	AAGATACTTA	AACAAAGATA	CGAAAATACT	134820
TATCACAAAA	GCTACTCTAA	AATCCTATTT	ATTCAATTTT	TTTTGGAATA	ААААААТАТ	134880
TACAGTATTT	AACACTCTTG	AAGAATATGC	ACAAAACCTT	TACAAAGAGT	TGGTAAATTC	134940
TGAAAACAAC	ŢACAAACAAA	TACTTAGCGA	АТТСТТАААА	GACGAAGAAC	TTGGACATTC	135000
AATAAACAAT	AGAATCAAAA	AAGCTAGTTC	AAATAGATTC	ATTAACAAAA	AATGACGCTA	135060
AATTGTTATT	TAAAATAATT	CAAAAAGCAT	АААТАТТСАТ	ТААТАААТА	ATGCTAAAGC	135120
					AACCAGCAAA	
٠		•			TCACATAAGA	
					ACTCAAGTGG	•
					GAGTCTGAAT	
					АТТСААААСТ	
AAAAATCAAA	TCAATTGCAT	CTTCCTCGAC	ATCCCCATAA	TCAAAAGAAG	АААТТАСТАА	135480

235 TACTAAAATA TTTACCAGAT CGCAAACA TATATAAAGA TGGGTACTCA ATATTCAA 137280 CCCTTGATCT TGAAGCACAA AAATATGCAG ATAAAGTTAC AAACGACATG ATTAATAAAG 137340 CAAGAACAAT GCACAATTTA AATAGATCAT CTGAAACAAT AATCATTAAT TCAGAAATTG 137400 TCCCTGTAGT AGATGCGATA TCAGATTTAT TGGGAATTAA AAATTTAAGA ATAAATGGAA 137460 GACAATATAA AAAACTGAGA AAAAGAAAAT TTTACGAAGA CAATATTGAT CTAATTGCAA 137520 GTTTTGGAGC TATACTTGGA ATTGATAAAA TAGATAAGGC GACAAAAGAA TATATTATCA 137580 AAAATAAATT AACACCGAAA CTTATTGCAC AGCCTGAAGG AGCAATGATA GCAATAGATA 137640 CAACAAGTGG AGCAATAAGA GCCATGGTTG GGGGAAGTGG ACACACTAAA GACAATGAAT 137700 TTAATCGAGC CACACAAGCA AAAGTTCAGC CTGGAAGTGC ATTCAAAGCA TTATATTTTG 137760 CAGCCGCAAT TGATCTAAAA AAAATAACAG CTGCGACAAT GTTTTCAGAC TCTCCAGTAG 137820 CATTTCTAAA TAAAAATGGA GAAGTTTATG CTCCGGGAAA TTATGGCGGC AAATGGAGAG 137880 GCAACGTTTT AACGCGCCAA GCATTAGCTT TGTCCTTAAA TATTCCGGCA TTAAGAATAT 137940 TAGACCGGCT AGGCTTTGAC TCTGCAATTA GCTACTCCTC AAAACTACTA GGAATAACAG 138000 ATCCAAAAGA AATAGAAAAA ACGTTTCCAA AAGTTTATCC ACTAGCGCTA GGTGTAATAT 138060 CAGTTTCTCC AATCCAAATG GCAAGAGCCT TTGCAATTTT AGGAAATAGT GGTAGCGAAA 138120 TCGAACCTTA TGGGATAAGA TACATTGAAG ACAGAGCTGG AAGAATAATA ACAAATGAAG 138180 AAGCAAGCAT ATTGGCTAAA ATAAAAAACA AAGAACACCA AACTCAAATA GTATCTCCTC 138240 AAACCGCTTA CATAATCACA GATATGATGA AATCAACAAT TCAATACGGA ACCCTAGCAA 138300 ATCAAAGATA TACAAATCTC AAAAATTTTA AATCAGACAT TGCTGGAAAA TCGGGAACAA 138360 CACAAAATTG GGCAGACGGA TGGGCAATAG GATACTCTCC TTATATAACA ACAGCATTTT 138420 GGGTTGGATT TGACAAAAA GGATATTCAC TGGGAATATC TGGAACAGGA ACAGGATTGG 138480 CAGGGCCTAG TTGGGGAGAA TTTATGGCAG AATATCACAA AAACTTACCC AAAAAAGTTT 138540 TTGTAAAACC TGCAGGAATA ATTAGCATCC CCGTACAAGC AGAAACGGGT CTACTACCGG 138600 AAGAAATTGC TGATGAAAAA ATAATAAATG AACTATTTAT TTCCGGCACC CAGCCAGTTG 138660 AAAAATCAAA ATATTATGAA AATAAACAAG AATTTAAAAA TACAATAGAA TTTAACATAT 138720 ATGGAATTGA TGAGATTAAT AATAACGATG AAATAAATTT TGACACTCCT GAATTTGAAT 138780 ATCTTGATAA TAATCTTGAA AGCTTTAATA ACAATAGTAA TAATGATAAT AATCTTGAAA 138840 GCTTTAACAA TAATAACAAT GATCTTGAAA GCATTAATGA TAATGAAGAA AATAAAAATG 138900 AAGATGAAAT AGAAATGAAC ATTGAAGAAC CCTTAAATGA AATAGAAAAT AAAAATCCAC 138960 AACAAGATCT AGTTAATAAC AATAATAACC AGGAAATGCT TATTGAAAAC ACCAAAGAAA 139020

TTAAAGACGA	AGTCATTGTT	AATGAAACAA	ACATAGAAAC	ACAAAGCACA	AAAGAATTAA	139080
ATTCAAACAA	CAATGAAAAT	GAAAAAATTA	ACAACAAAGA	CGTCAACGGA	GAAGATATCC	139140
AATTGGATTA	AAACAATATG	TTAATAGATA	TCGATCAAAT	AAAATAAAA	AAAAGAATTA	139200
GAAAAAATAT	AGGAĞACATT	GAAACTCTTA	AAAACAGTAT	TATAAAACAT	GGATTAATTT	139260
ATCCAATAAT	AATAGATAAA	AATAAAAACT	TGATAGCAGG	ACTTAGAAGA	TATCAGGCCT	139320
TAAAAGAAAT	AGGCTATAAA	GAAATTGAAG	TAAAGGTAAT	CTCAATTGAA	AACAAAAAA	139380
CTTTACTTGA	AATTGAACTT	GATGAGAATA	ATGTTAGAAA	ATCATTCACA	AGAAGCGAGG	139440
CAAACGAAGG	AGAAGCTTAC	ТТАААААТТТ	ATTCTGAAAG	СААТАТААТА	ATAAGATTCC	139500
TTAAATTTAT	TATCTTAAAA	ATTAAAAACA	TGTGTAAAAT	AAGAAATAGA	AAAATTTAAA	139560
ТСАТААТААА	GAGGTGTGTT	TATGTTAAAT	TACAAAAATC	TTAATGAACT	TGAAAATTTT	139620
AAAATCCTTG	AAGGTATTGC	TCCAGAAGTG	CTCAAAACGG	CAŢTAACTGG	AAAAAGGATA	139680
AAAGAATACG	ACATTACAAT	AGAAGGAGAT	AGTGTACATT	ATAACTATGC	TTCAAAACAA	139740
ATTAATGAAA	CCCACCTTAA	AATTTTTCÄA	AATTTAAGCG	ATGAAGCAAA	TTTAATAGAA	139800
AAATATAAAG	AAGTGCTTGA	TGGGGAAAAG	ATCAATATTA	GTGAAAATAG	AAAAGTCCTG	139860
CATCACCTTA	CAAGAGGCA	AATTGGTAAG	GACGTAATAG	AAGACAATAA	AGAAAATATG	139920
AGAGAGTTTT	TCCAATCAGA	ACTTGAAAAA	АТАТАТААТТ	TTGCAAAGCA	AATTCATTCT	139980
GGGAACATTA	AAAGTTCAAA	TGGCAAAAAG	TTTAAAAATG	TAGTTCAAAT	AGGAATTGGT	140040
GGATCTAGCC	TGGGGCCAAA	AGCTCTTTAC	AGCTCAATAA	AAAATTATGC	AAAAAAACAC	140100
AATCTAGCCC	TAATGAATGG	ТТАТТТТАТТ	TCAAACATTG	ATCCAGACGA	ATCAGAAGAA	140160
GTATTAAGCA	GCATTAATGT	TGATGAAACG	CTTTTTATTA	TTGTCTCAAA	AAGTGGAAAT	140220
ACATTAGAAA	CTAAAGCTAA	TATGCAATTC	ТТААТАААСА	AATTAAAATT	AAATGGCATA	140280
AAAGAATATA	AAAAACAAAT	GGTCATTATA	ACACTAAAAG	ATAGCATGTT	GGCAATAGAA	140340
GAAAAAGGAT	ATCTTGAATA	TTTCTTCATG	CATGACTCAA	TAGGTGGAAG	ATTTTCTCCA	140400
ACATCAGCAG	TTGGACTTAC	ACTACTTACT	CTTTGCTTCA	CAGAAAAGT	TGCAAAAGAA	140460
ATTCTAAAAG	GAGCCAATGA	GGCTGACAAA	AAATCATTAA	ACAAAAACGT	AAAAGACAAT	140520
GCATCTCTCT	TGGCAGCACT	AATTAGCATA	TATGAAAGAA	ATGTTCTAAA	TTACAGTAGC	140580
AACTGCATCA	TTGCTTATTC	TAAAGCAATG	GAAAATTTTT	ATCTTCATTT	ACAACAACTT	140640
GAAATGGAGA	GTAATGGAAA	AAGTGTAAAC	AGATTTAATG	АААСААТААА	СТАСААААСТ	140700
GTAAGAATAA	TTTGGGGAGG	CATTGGAACA	GATGTTCAAC	ACTCATTCTT	TCAAATGCTT	140760

CACCAAGGAA	CGGATATAGT	CAATGGAT	237 TTCATAGGTT	TTAATGAAAC	ACAACTTAAA	140820
GAAGATGTAA	TATCTGATAA	CAGCTCAAGC	AATGATAAAT	TAAAAGCAAA	TTTAATAGCC	140880
CAAATAATAG	САТТТТСААА	AGGTAAAGAA	AATAGCAATA	AAAATAAAA	TTTCCAAGGC	140940
GAGAGACCTT	CTGCACTAAT	ATATTCAAAA	GAATTAACAC	CTTATGCAAT	AGGAGCAATA	141000
CTCTCCCATT	ATGAAAATAA	AGTAATGTTT	GAGGGATTTT	ТАТТАААТАТ	AAACTCATTC	141060
GACCAAGAAG	GAGTTCAGCT	AGGAAAAATT	ATTGCAAATC	AAATTTTAAA	AAATGACAAT	141120
TTTAAAGATG	AAGTAATAGA	ATCTTATTCT	AAAAAAATTC	ТААААААТТ	TTAAAACAAG	141180
АТТААТТААТ	TTTTGAATAT	ACCCCTTAA	GTTTAAAAAA	GAATGCACTA	AGCTTATATA	141240
AGAGGTAATA	. ATGGATAAAA	TAAGTATATT	АТАТАСАТТА	ATCAATATTA	ТААТААТССТ	141300
ТАТТСТААТА	AGCATAGTTT	ATCTTTGTAA	AAGAAAAAT	GTTTCTTTTA	CAAAAAGAGT	141360
GTTTATAGCG	TTAGCAATCG	GAATAGTATT	TGGAATGACC	АТТСААТАТТ	TTTATGGAAC	141420
AAATTCAGAA	ATAACAAACG	АААСТАТААА	TTGGATAAGT	ATTTTGGGCG	ATGGATACGT	141480
AAGGCTCCTT	AAAATGATTA	TAATCCCCTT	ААТААТААСА	TCAATAATCT	CTGCAATAAT	141540
AAAACTAACC	AATAGTAAAG	ATGTTGGGAA	AATGAGCCTA	CTTGTAATAT	TAACACTAGT	141600
ATTTACAGCA	GGTATTGCTG	CCATAATTGG	CATTTTCACT	GCTTTAGCAT	TGGGATTAAC	141660
AGCCGAAGGA	CTACAAGCGG	GAACCATCGA	AATTTTACAA	AGTGAAAAAT	TGCAAAAAGG	141720
CCTTGAAATA	TTAAATCAAA	CAACAATCAC	AAAAAAAATC	ACAGATCTTA	TTCCACAAAA	141780
TATATTTGAA	GATTTTGCAG	GGCTTAGAAA	AAACTCAACC	ATCGGGGTCG	TGATATTTTC	141840
AGCTATCATA	GGAATAGCCG	CCCTTAAAAC	ATCTATCAAA	AAGCCAGAAT	CAATAGAATT	141900
AAAAATTTT	ATAATATTAA	CACTCCAAGA	САТААТАТТА	GGTGTAGTAA	CTTTGATTTT	141960
AAAACTAACG	CCTTATGCTA	TATTAGCTTT	AATGACAAAA	ATTACAGCAA	CCAGCGAAAT	142020
CAAAAGCATA	ATAAAGCTTG	GAGAATTTGT	AATTGCTTCC	TACATTGCCA	TAGGTCTTAC	142080
ATTTCTTATG	CATATGACAT	TAATTGCAAT	AAATAAATTA	AACCCAATTA	СТТТТАТААА	142140
AAAAATATTC	CCAGCACTAT	CATTTGCATT	CATATCTAGG	TCGAGTGCTG	CAACCATACC	142200
САТТААТАТА	GAAATTCAAA	СТАААААТСТ	GGGAGTAAGC	GAAGGAATAG	CAAATTTATC	142260
AAGCTCCTTT	GGAACATCAA	TTGGGCAAAA	TGGTTGTGCA	GCACTACACC	CCGCTATGCT	142320
TGCAATAATG	ATAGCACCAA	CTCAGGGAAT	AAACCCCACA	GATATTTCAT	TTATACTCAC	142380
ACTTATTGGA	ТТААТААТАА	TAACTTCATT	TGGAGCTGCT	GGCGCTGGTG	GAGGCGCAAC	142440
AACAGCCTCA	CTAATGGTGC	TCTCAGCAAT	GAACTTTCCA	GTGGGATTGG	TAGGACTTGT	142500
AATATCTGTT	GAGCCTATAA	TTGACATGGG	AAGAACAGCT	GTTAATGTAG	GCGGCTCAAT	142560

238

				•		
GCTTGCAGGC	GTTATATCTG	CTAAACAGCT	CAAACAATTC	AACCATAATA	TATACAACCA	142620
AAAAGAGCTT	GTAAACAAAT	AAATAGGAAA	ACAATGATGA	TAATAATAAA	TATTGGGGGC	142680
ACATCAGCAG	GAACTAGTGC	CGCAGCTAAA	GCAAACCGCT	TAAACAAAAA	GCTAGACATT	142740
ACTATCTATG	AAAAAACAAA	TATTGTATCT	TTTGGAACCT	GTGGCCTGCC	TTACTTTGTG	142800
GGGGGATTCT	TTGACAACCC	CAATACAATG	ATCTCAAGAA	CACAAGAAGA	ATTCGAAAAA	142860
ACTGGAATCT	CTGTTAAAAC	TAACCACGAA	GTTATCAAAG	TAGATGCAAA	AAACAATACA	142920
ATTGTAATAA	AAAATCAAAA	AACAGGAACC	ATTTTTAACA	ATACTTACGA	TCAACTTATG	142980
ATAGCAACTG	GTGCAAAACC	ТАТТАТТССА	ССААТСААТА	ATATCAATCT	AGAAAATTTT	143040
CATACTCTGA	AAAATTTAGA	AGACGGTCAA	ААААТАААА	AATTAATGGA	TAGAGAAGAG	143100
АТТАААААТА	TAGTGATAAT	TGGTGGTGGA	TACATTGGAA	TTGAAATGGT	AGAAGCAGCA	143160
ААААТАААА	GAAAAAATGT	AAGATTAATT	CAACTAGATA	AGCACATACT	CATAGATTCC	143220
TTTGACGAAG	AAATAGTCAC	AATAATGGAA	GAAGAACTAA	CAAAAAAGGG	GGTTAATCTT	143280
CATACAAATG	AGTTTGTAAA	AAGTTTAATA	GGAGAAAAA	AGGCAGAAGG	AGTAGTAACA	143340
ААСАААААТА	CTTATCAAGC	TGACGCTGTT	ATACTTGCTA	CCGGAATAAA	ACCTGACACT	143400
GAATTTTTAG	AAAACCAGCT	ТААААСТАСТ	AAAAATGGAG	CAATAATTGT	AAATGAGTAT	143460
GGCGAAACTA	GCATAAAAA	TATTTTTCT	GCAGGAGATT	GTGCAACTAT	TTATAATATA	143520
GTAAGTAAAA	AAAATGAATA	CATACCCTTG	GCAACAACAG	ССААСАААСТ	TGGAAGAATA	143580
GTTGGTGAAA	ATTTAGCTGG	GAATCATACA	GCATTTAAAG	GCACATTGGG	CTCAGCTTCA	143640
ATTAAAATAC	TATCTTTAGA	AGCTGCAAGA	ACAGGACTTA	CAGAAAAAGA	TGCAAAAAAG	143700
CTCCAAATAA	AATATAAAAC	GATTTTTGTA	AAGGACAAAA	ATCATACAAA	TTATTATCCA	143760
GGCCAAGAAG	ATCTTTATAT	ТАААТТААТТ	TATGAGGAAA	ATACCAAAAT	AATCCTTGGG	143820
GCACAAGCAA	TAGGAAAAA	TGGAGCCGTA	ATAAGAATTC	ATGCTTTATC	AATTGCAATC	143880
TATTCAAAAC	TTACAACAAA	AGAGCTAGGG	ATGATGGATT	TCTCATATTC	CCCACCCTTC	143940
TCAAGAACTT	GGGATATATT	AAATATTGCT	GGCAATGCTG	CCAAATAGAA	AGAATTAAAT	144000
ТААТТТААТТ	CTTCATGCTA	ATTGGTTGCC	CCGTACTTGA	AAGAACATCT	CTCCAAAAAG	144060
AACCATTTGG	ATTAACCTTA	TTTCTGTCAA	TTACTGCCAT	CTTAATAGGT	ATATGAACAA	144120
ATTTTGTACT	ССАТАААСТА	ATCAACATTT	TTGTCTTACC	AGCCATTGCA	GCATGCACAG	144180
CATTCGACCC	AAGCCTAGCA	CAATAAAGCG	AATCACTGGC	ATTAGCAGGT	GAACTTCTAA	144240
ТААТАТАССТ	GGGATCAATG	TATTTAAGAG	ТАААТТСТАТ	ATTTTTTGCT	ТТААААТТТ	144300

239 CTGTAATTT ATCTTTAATA .AAAGCCCAA TATCCTCATA AAGCAAATTC CCAGAATCGT 144360 CTTTCTTCTT AGGAAAATGA TCAAAATATT TTTGGCCTGC TCCTTCTGCT ATCAATATTA 144420 CTGCATGGGG AATCTCTTCT AAGCTTTCTT TCTCTAAAAG TCGTCTTTCA AGATGAACAA 144480 GAAATCCATT AGGACCTTCT ATGTCAAAAT CAAGTTCTGG GATTAAACAA AAATTAACAT 144540 CATTAGAAGA AAGTGCGGTA TGAGCAGCAA TAAAGCCAGA ATCCCGTCCC ATAACTTTAA 144600 CAAGTCCAAT GCCATTATAA GCACTATTAG CTTCAAAATG AGCACCAGCA ACAGCTGCAA 144660 CAGCTTGTTC TACAGCAGTC TCAAATCCAA AAGATTTTTG AACAAACATA AAATCATTGT 144720 CTACGGTTTT AGGAATGCCC ACAACTGCTA TTTTTAAATT TCTTTTTTCT ATCTCCTCAG 144780 CAATAAGAAG AGACCCCTTT TGAGTACCAT CCCCGCCAAT GTTAAAAATC ATATTAATGT 144840 TCATTCTCTC TAAAGTATCA ACTATTTCCA CAGGCTTAAT ACCACCCCTT GAAGAACCAA 144900 GAATAGTACC TCCAAATTTA TTAATATCAT CAACAACATC TGGATTAAGA TTAATAAAAG 144960 GTGAATTTGA CTCAGGAAGA AGCCCTTGAT ATCCAAATTT TACTCCATAA ATATTGCGAA 145020 CCCCATATAT TTTCCATAAA GTTCGCACAA TAGAGCGAAT AACATCGTTA AAACCAGGAC 145080 AAAGCCCACC ACAAGTAGTA ATAGCAGCTT TAACATGCCT GGGCACAAAA TAAATTTTTT 145140 CTCTAGGCCC AGCTTTTTCT AAAAGAACAT CTTCATACCT ATCTCCCTTA TCCTCATTCC 145200 TATATACACT AAACTTGATT TTATTTTTTT CATTAACAAA ATGGGAAGAA CCCTCACTAG 145260 CATAAAAATC AATCAAAGGA TTGTTTTGCT TGCATTCTCC CAAGCTATCT ATTTTAAAAT 145320 CTAAATTTC ATTTTAATT CTATACACCA AATACTCCTT TATAGAATTA TAACCTAATT 145380 ATTTTCTAAT AAATCGACTT TGATCTTTAA TCATATCGTA TATGTCATCG TAAATATAAG 145440 GAGACCCTTC AATAGGAGAT TTAATTAAAT TACCAGCTAT GAATTCAAAA TATTTATTCA 145500 ACTTTGAATT TTTCTCAAAA TCAATAAATG GAACTCTATT ATTAATAGCC TCTCTGAAAC 145560 TTTTTGCAAA AGGCACAAAA CCTATAAACT CTATTGGTAT ATTAATATTA TTCTTAACAA 145620 145680 CTCTAGGATA AAAATTATTC ATCATCCTCT TAACTTTCAA AGAGGAACTC AAAGAAATAA 145740 GTTCAATCCC AACAACCAAA TCTTTAAATC CAAGGTTTGT CCCCTCAATC TTATCTTTAA 145800 AAAAATTACC AATATAATCC CGTTCGGGGC TTTTTTTGCGG AAATCCTAAA TATAAAAGAC 145860 GATAAAGAGC ATTCTTTAAA AAAGAATAAG CATTAAGTAT GGAAGGGGTT TCTGGTATTG 145920 TAACAATTAC ACCGCTGTAA GATGCCAAAT AAAAATCTAT TGTATTATAA GAAGTTCCAG :145980 ATCCCAAATY TAAAAAAATA AAATCAGCAA TAAGATCTTT TTGAATGGAT TCTATAATCT 146040 TTTTCTTAAT AGAAAAAGGA AGATTAGCTG TTCCCGTATA AAGAGCATCA CCTGGAATAA 146100

	•					
GATAAAGCTT	ATCATAAGAT	GTTTTACATA	CTAAATCTGA	AAAACTTTTA	СТСТТТТАТ	146160
TAATAAAAGA	ACCAATGCCC	ACACCCTTAT	TTTTAACCCC	CAAACACGTA	TGTAGATTAG	146220
AGCCACCAAG	ATCAAGGTCA	ACAAGTATTA	CAGTTTTACC	CAAACTAGAA	AGCTTATAAC	146280
CAACATTTGC	AACAAAAGAT	GTTTTTCCAA	CACCGCCTTT	GCCACTTGCC	ACAGGAATAA	146340
TTTTAGTCAT	TCTTAAATCC	TAATTATCCT	TACGATCTTT	TTGAAAAATT	ТТСАТААААТ	146400
TGAAAATCCC	ТАААААТСТА	GATTTTTTCT	CAGCATCTTT	ATTTAAATTT	TCATCCTCTT	146460
TAGAGCCTGA	AATTAAATCT	TTAATTAAAT	CTTTATTATT	TGTAAAATTT	TCAATGCTAT	146520
CTGGTTTACC	ACAAATTACA	ATTTTATCAT	СТТТТААААА	AAAATAATCG	CCATCAACAA	146580
ATTCATACCT	AGAATTACTT	AAATTTCTAA	CAGCAATAAC	TGTAATCCCA	CATTCTCTTC	146640
TAAGATCGGC	TTCAAAAAGA	GTTTTACCAA	CATATTCTTT	GGGAATAACA	GTTTCAGCAA	146700
СААТААТАТС	ATACCCAATA	ATATTATAAG	TTGAAAGATT	TGGAGATACT	AATAATGGAG	146760
TTAATCTTCT	TGCAGCATCT	TTACTTGGAA	ATATAATTTT	TGTTGCCCCA	AGAGTTTTTA	146820
AGATTTCAGC	ATCATCTCTA	TTTTCTGTCT	TAACGCATAT	TTCTTTCAAA	CCTAAAAGAT	146880
TACAATAGTG	AGTAACAAGA	GCACTTTTGC	CAAGATCATC	ATCAAAATCA	ATAACAACAG	146940
CGTCTGTATC	TACTGGAATT	ATTCTTTTCA	AAGCATTTTT	AGTGAATTGC	TCAACAACAA	147000
AGCTTTCTGT	AGATATCACA	TCATATTCTT	CAATAAGCTC	TTTAGATGTA	ТСТАТААТАА	147060
TAATTTGACA	ATCAAGCCTG	CTTAAATCTT	CAAGTAAGTG	AATGCCTAAA	TTACTAAGTC	147120
СААТААТААС	AAATGTTTTC	ATATGCTTCA	ACCAACCAAA	ATATCTTGCC	TTGGCCTTGT	147180
AAATTCTTCA	AAACGCGACT	TTCTTGAAAC	AAAAACAGCC	ATTGAAAAAA	GCCCTATTCG	147240
TCCTGCAAAC	ATAGTAAAAA	TTATAATGAC	TTTCCCCCAA	AATGACAAAT	CCTGAGTTAC	147300
TCCAACTGAA	AGACCAACCG	TTCCAAAAGC	AGAAAATACT	TCATAACCTA	AATCAATAAC	147360
CTTCCAATTG	CCAGATCCTC	CCTCAAAAAA	AAGAAGCATG	AAAAAAGAAA	ААСТТААААТ	147420
AAAAATAGCT	CTTGCAAAAA	ATAAAAGTGC	AAATCTTATA	CTATCTATTG	AAACCTTGTA	147480
AGAACCAATA	ATATATCCAT	TGCCGTTTTG	ATTTTTAACA	ACAGCCAATA	СААТТААААА	147540
AAATGTTGTA	ATCTTAATCC	CTCCTGCAGT	TGATCCGGGT	GCACCACCAA	TAAACATGAA	147600
TGGTAGAGAA	ATTATTTGAG	TTCTTCCGCT	TATTAAAGAA	TTATCAAGAT	AATTAAAACC	147660
AGCTGTTCTG	GTACTAATCG	ААТАААААТ	TGAATTAAAT	ATTAAAGTGC	TCATTGAATA	147720
ACCAGCTTTT	AATTTATGCA	TCTCTGTAAA	АААААТААА	ATTGCACCAA	TTATAATTAA	147780
AAAGAAGCTT	AAAGAAAAA	CTATCTTGGC	ATGAAGCGAT	AGTTTTTTT	TGTTTTTAAT	147840

241 AGTGTTATTT ACATCTCTAT ACACCATAAA CCCAAGCCCA CCACAAATTA TAAAATAGA 147900 GACCACAACT ATAGCTTCAG GAACATCTCG CCATGCATAA ATACTCTCAG AATGCATGGA 147960 AAAACCTGCA TTGCAAAAAG CAGAAATTGT CGTAAACAAA GCCTCTAAGA ATGAAATATT 148020 CACTCCCCTA AGTTTAAAAC AAATAAGTAT TAATATTAAA CCTATCATTT CAATTGAAAA 148080 AGTTATAAAC AATATGCTTT TTAAAATTCT AATAGGATTA TATTCTATAT TTGAAAGGGA 148140 ATACTGCTTT ATTATTCTTG CATCTGTTAA ATTCATTTTC TTTTTAGGTA TAAGCAAATA 148200 AAAAGTAGTA ATACTTATAA ATCCAAGTCC CCCAAGCTGG ATTAGCAACA TTATCAAAAT 148260 AAATCCAAAA GTAGAAAAGC CTTCCATTTT AACCGTTGTA AGGCCCGTAA TACTTACAGC 148320 AGAAACAGCA GTAAAAAGAG CATCAATGTA TGCTAATTTG CCATCACCTT CCCAGGAAAT 148380 AGGCAACATC AACAAAAGAG AGCCTATAAA CATAATTAAA ACAAAATAAC TAAAAAGTAA 148440 AAACCTGTCG CTAAATTCAA ATTTCAACAT ATCATACAAA AAGTTGTTTA AATTATTAAA 148500 AATTTATCTT ATATAGCATA ATATTTTAAC ATTGAAATAT TATCATAATT ACATTATTTT 148560 TAATATGT TTGAAATAGA ATCAAAAGCA TTTATTCCTA CAAAAGAGTT AAAAAGAATT 148620 ATCAAGCTAG CAAATAAAAA ATTTAAGTTT ATTAAAGAAG AAATAAAAAC TGACATYTAT 148680 TACTCAAACC AAAAAAAAT TATAAGAATA AGAAAATTAA ATACTCTAGA AAAAATTGTC 148740 ACATTCAAAA AAAAAATATT AGACAACAAC AATACTGTAG AAATTAATAA AGAGATAGAA 148800 TTCAAAATAG ATAGTATTAA TAATTTTTTA ACCCTTATAA AAGAGCTTAA ATTTAAAAAG 148860 CTATACAAAA AGATAAAAAA AAGTTTAATT TATCAAACTA ACAATTTAAA TGTAGAGATA 148920 AACGAAATAA AAAATCTTGG GTTTTTTTTA GAAATAGAAA AAATAATTAA CAATCAAAAT 148980 GATATAGACT TGGCAAAAAA AGAAATTGAC AACATAATCA ACCAATTTGG ATTAAAAGAA 149040 AACATTGAAA CTAGACCTTA CTCTGAATTA CTTTCATTGG CAAATCAAAG TAAAAAATAA 149100 TTCATTGGAA TTAGAGCTTA AAGTAGAGAT TACAAGCCCT TGATTGCCAT AAATTCCAAT 149160 CTGAGGGCTT TTAACATTAC TCTTAAAATT CTCAAGCTTA TTTAAAAAAT ACCAATTTTT 149220 ATTCTTAAAA TAAATTAATC TCACATTATT ATTGTCCTCA AAAGCTAAAA ACAAATTATT 149280 TTTATAAAGC CCAATGTCAG CACTTAAACC TTCCATTTCA ACATTAGGAC TTATATTAAT 149340 CCATCTACTA CTTTTCAAAG GACAAATGTT TACAATAGGT CTATTTTCAG AAACAAAACT 149400 CATAATTATT TGATTAAAAT TAGAATCAAA AAAGCCTTTA ATAAAATTGG CCATATAAAC 149460 AGAAGGAATA TTTGCATTTA CCCAAGCATT TTCATTGTTT ACAATAAATT CAGATTTAAT 149520 CTCATTATTT GACTTATAAT TATAAAAAAT GCCCAAAAAA GGTTCAGATA TTAAACCAAT 149580 GTTTGATGAA TTAACATTAG AATCACCTTT ACTTAAATAA GCATGTATTA CATCGGTCCA 149640

	`					
AATACTTCCG	TAACCCATAT	TCGAGATTAA	ATTAATTTTA	TATTCACCCC	TAATTTCCCT	149700
ТАААТАТССТ	AAATACAACC	ТАТСТТТТАА	ATCAATGCTA	ATATTTAATA	AAGATCCAAA	149760
ATTTTCTATG	TGACCAGGAC	ТААТАТСААТ	ССАТТТТСТА	СТАТТАААТТ	TTTTAACTAT	149820
AAGCTCGCTG	GCAAAATCAG	CCCCTGATTT	CGTAACAAAA	GCAATATATA	AATTTCCTTT	149880
AGAATTAATT	GAAAAATCAA	ААТТААСТАТ	ATTAGTAATA	TTTCTATTAA	CAGATGAATC	149940
AAGATTAAAC	CAACCAACAT	ССТСААТААА	TTCAGCAACT	ТТААТАТСАТ	CGCTATTTTC	150000
TAGCTGATAA	GCAATATAAA	TATTGCTTTT	ATAAATCCTT	AATACATATT	TTTTAAGCTT	150060
GGCAGTTAAA	TTTAAAACAG	GCAAATCTTT	TAAAGTAAAA	AATAAATCTT	CTTTTTCAAT	150120
CTTAGATGTT	TTAGCTTTCA	GGGAATCGCT	ACTTAAAATT	GAAAAATCTA	AATCTGTAAG	150180
CGAAAACTTT	ATGTTTŢCAT	TTTTAGTACC	AACATATATT	ATTGCATAAA	GAGAATTTTT	150240
ATCTAATCTT	ATTTTAAAAT	CTCTTCTTTT	TACTTTATCG	GTTATATATT	TTTTATTAGA	150300
AATGTCATAA	ATTTTAAAAA	CAAAATCGGA	ATTTGAACTC	TTATCTAGGG	ТТААААТАТА	150360
ATCGGAAGAT	TTGCTAACTT	TTAAGTAAAC	ACTTCCTTTC	CCATTTTTGC	ТТААААТАСТ	150420
TAAAGGACTA	ATTTCTGTTA	ATATTTGATT	TGCTTGAGCT	TGAACAAAAG	AAAATTTTGT	150480
АААТААААТ	AGCAAAATGA	ATGTCTTATT	ТАТТТТСАТА	TTTTTTTACA	ТТСАААААТА	150540
TTAACACATA	ТТСТАААААТ	GATAAAATTG	CAAAAAAAGC	AGCACAAACA	TATGTCATTT	150600
GAACAATAAA	ТАААААТТТА	AATTTAAAAG	TTAAAATGTA	ACTAATAAAA	TTTTGAACAG	150660
ACTCTGTAAA	GTTGAGTTGA	TTTAAAGTAT	AAAATAAAAG	GCTTGCAAAA	GTGCAAACAG	150720
CATAAAGAAG	TGACTTTAAT	TTCCCCAAAA	AATTTGCTTG	TTGAACTACA	TTAAACTGAA	150780
ТААТТАААТТ	TCTAACAAAC	CCAATAGAAA	TTTCACGATA	ААТАААТАТТ	АСААААААТ	150840
AATAGGGGGT	TATACCTTTG	TAAAAGAAAA	AAACAAAATA	TGTTAAATGC	TGCAAAACAT	150900
CCGCATAAGG	ATCTAAAATT	TTACCTACAT	TGCTAACAAG	ACCATATTTT	CTTGCAAGAT	150960
AACCATCAAT	AAAATCAGTA	AATTCATTAA	АААТААТТАА	AAACCAAATA	ATTCCAAAAA	151020
ACAAATACGA	AAAAAATACA	TTTTCCAAAA	ААААТААААТ	TAATATGATA	AAGGAAAGTG	151080
СААТТСТААС	TAATGTTATT	TTATTAGGGG	TAATGACCTT	GATTAAATTA	TTCAATTTAT	151140
САААТСТССТ	TATCTCTTAT	ТТТАААТААА	ATAAATTTAA	GAGCTTCATC	AAGTTTCATT	151200
ССАТТТАТТТ	GCTCATTTGT	TCTTGTTCTA	ATAGATATTC	TCTCTTCTGT	TGCTTCTCTC	151260
ТСАССААТТА	ТАААСАТАТА	AGGTATTTTT	TTAGCCTGAT	ATTCTCTAAT	TTTAGCATTC	151320
ATTCTTGAGG	AACTATTATC	AAGCTTTATT	СТААТССССТ	CATTTTTAAA	TTTATTAAAA	151380

243 ACCTTAATAG CATAATCTTC CAATATTG TTAACAGGAA TGATTACTAC CAACAGGA 151440 GATAACCATA AAGGAAAAGC ACCACCATAG TGCTCTACAA GAATTCCAAA AAATCTTTCA 151500 ATAGATCCCA ACAAAGCTCT ATGAATCATA AATGGTCTTT TTTCTTTACC ATCCTCAGCG 151560 GTATAAGTCA TATTAAATCT CTCAGGGAGA TTAAAATCAA ATTGAATTGT ACTCATCTGC 151620 CACTCTCTCT CAAGCGAATC AACTATCTTA AGATCAATTT TAGGCCCATA AAAAGCACCT 151680 CCACCCTTAT CAATTTCATA AGGAACTTCA AAATCGCTTA AAGTCTCTTC AAGAACTTTT 151740 AAAGACATTT CCCAATCAGA ATCATTGCCA ACAGATTTGT CAGGCTTTGT AGAAAGATAT 151800 GCCTTTGGGT TGCTAAAGCC AAATTTACTC CACATATAAA TAGCAAACCT AAGAACTTCT 151860 TTAATCTCAT CTAAAACCTG AGAATGGGTG CATATAATAT GAGCATCATC CTGAGTAAAC 151920 CCTCTGGCTC TCATCATACC ATGCAAAGCA CCTATCTTTT CATAACGATA CACAGTGCCA 151980 AGTTCGGCCC ATCTAAATGG CAAATCTCTA TAAGAATGCT TACCTGTATT GTAAATTGCA 152040 ATATGAAAAG GACAATTCAT GGGTTTAAGA TAATAATCAC TTTTATCCAT TTCTATTTTT 152100 TCAAACATGC TATCCTTATA AAAGTCTAAA TGACCAGAAG TTTGCCAAAG CCAAGATTTG 152160 CCAATATGAG GAGTAAAAAG AATATCATAC CCATTTTTGG AGTGCTCTTC TCTCCAAAAA 152220 TCTTCTATTA AAGCTCTTAT TTTGGCACCA TTGGGATGAA AAAAAACAAG TCCTGGTCCA 152280 ATCTCTTCAT GTATAGAAAA TAAATCAAGC TCTTTTCCAA GCTTTCTATG ATCTCTTTTT 152340 TTTATTTCCT CTCTCAAATT AAGATAAGAT CTCAGTTCTT TTTCATTATT CCATAAAGTT 152400 CCATAAATTC TGGTAAGCAT TGGGTTTTTT TCACTGCCCC GCCAATAAGC CCCAGCAATA 152460 CTAGTAAGCT TAAATGCCTT TGGATCAATT TTATTCATAT TCTCAACATG AGGACCTCTA 152520 CAAAGATCAA CAAAATTGTG ACTCTTGTAA ATAGAAACTT CATTTTGTAA ATCAAAATTT 152580 TTAATCAAAT CAATCTTATA AGGTTCATCT TTAAAAATTT CAAGAGCCTG TTCTACGCTT 152640 ATTATCTCTT TTTCAAAAGA ACTTCCGGTC TTTAAAATTT CTCTCATTCT ATTTTCTATG 152700 TCTAAAAGAG AATCTTCTGT AATCTGCTTT TTAAATTCAA AATCATAATA AAAACCATCT 152760 TTAATAGGAG GACCTATTGC AATCTTGGTA TTTGGAAATA AATCAAGAAC AGCTTCTGCC 152820 ATAACATGAG CTATTGAGTG TCTTTTTTTG TAAAGAATAT CTTCTTTATC TAAATCTTTG 152880 CTCACAACAA TACCTTTTGC CTTTCGCTTT TTATTAAAAA ATTAAAATTC ACACTCATCA 152940 CTTTTACGTA AAAATACGCA CCTCAAATAT TTATAATTAC TAAATTAAAA TATACAAAAA 153000 AATTTTCTAA AAAAATAGAG ATAAGAAAAC AAAAACCTGA AAATAAATTT TCAATCCATA 153060 GCAACTATTG ATTCAATATT AAAATAAAAA GACATTGCTA AAAAAAATGT AATAGTAGAA 153120 GAACCTCCAT AAGAGAGAAA AGGAAAGGGA ATCCCGGTAA TAGGAAGAAC TCCTAAAGAC 153180

				•		
ATTCCAACAT	TAAAAGAAGT	ATGAAAAAAT	AAAAGTCCCA	AAATTCCAGA	TATTACTAAG	153240
GCCATATATC	TATCTTGACT	TTTATTCATT	ATTATCAAAA	ATTTAAAAAA	AAGGAAAAA	15330Ó
AATAATATTA	AAATAGTGCT	AACACCCAAA	AACCCAAACT	CTTCGGCAAG	AATAGAAAAA	153360
ATAAAATCTG	TGCTTTGAGA	TGGCACATAA	TTAGCGTGGG	TATAAGGTCC	СТТТАААААТ	153420
CCTTTGCCCA	AAAGACCGCC	AGAACCAATT	GCTATTTTAA	CCTGATTTAA	ATTCCAACCA	153480
GCACCCTTAG	CATCAATAGC	CGGATCTAAG	AATACCAAAA	ACCGTTTAAT	CTGATAAGTC	153540
TTCATTAACT	TTGAAAGAAC	CTTTGAAAAC	ACTATTGAAA	СТААТААААТ	AGAACTTGCA	153600
АААААТАСАТ	AAAAATAAAT	ТАТТТТААТА	CTCAAACCAT	ATTTAGAAAT	GAAAAATCCT	153660
AAAACAGAAA	TCAAAAGAAT	TAAAAGCAGC	ACTCCCATTA	ТТАСТСТААА	ATAAAAAGGA	153720
TTTGAGAAAA	TAAGATAAAA	TACATTACCC	ATATTCACCT	ТАТАТТСАТА	CCAAACCGGT	153780
AAAATTGCAA	AAACAAAAGA	AAAAAACCCT	ATCÄACGCAA	ATGCTAAAAC	ATAGTGCAAA	153840
TCTATTCCTG	CAAAAAAAGA	AATAAATATA	AAAATGGTTA	AATATACTAT	TGCTGTACCA	153900
AAATCAGGTT	GCAATAATAT	AAGAATTACC	GATGGAAAAA	ТТААТАААА	TGCAGTAATA	153960
AAGGTAAAAA	ATTCATTATA	ACCCTTTTTT	TCAGTGTAAA	ATTTTGAAAG	GGTTAAAATA	154020
ATAACAACTT	TACCAAATTC	AGAAGGCTGT	CCTCCAAGTT	TCCATATGCC	AATCCAAGAT	154080
CTTGCTCCAT	TTACTGTCAT	TCCAAAAAAT	GCAGTAAAAA	TTAAAGCCAA	ТАТТААТААА	154140
AAATATAAAG	GATATACCAT	GCTATAAACA	AATTTTAAAT	CATATTTGCC	CACTATAAAA	154200
ATTAGAAAAA	ATCCAATAAT	TACCCAAAAG	GTTTGTTTTA	TATATTCATT	CTTGGTTAAA	154260
GATCCACTAA	ТАТТАТААТС	GCTAGAATAA	ATCAACAATA	TACCAACAAA	AGAAACTATA	154320
AGTAAGCTTA	TCAAAGCCAA	ATAATCATAA	ТТТТТТСТАА	AAACCATTAA	ТСТАССТААТ	154380
ATACCACGGC	CTATAACCTT	TAAGAATATC	TTCATAACTT	TGATTTGCAA	AAATGCCTTG	154440
CATTATTAAA	TCTGTAGATT	TTGCAGGCCA	CCAATCCACA	TTACTTTTTG	CCŢCAACCAA	154500
ACTAAAAACA	ATAATTTGAT	TATCAGCTGA	ACCGTTATAA	GGGGCAAGTC	CAATAAAAGA	154560
ACTATTTTCA	AAACCATCTA	TTCCAGTTTG	ACCAGTACCT	GTTTTTCCTC	CAACCTCAAC	154620
AGCTTTGGTA	AGAACTGCAT	ATCTTGCTGT	ACCATAAGTT	ATAACACTTC	TCATATATTT	154680
TTTCAGAAGT	TTAAATGTGT	ТТТТАСТААТ	AAGATTTGTC	ТТТСТТААТА	TTTCTGGTTT	154740
ATTTTCAAGA	ACAACCTTAT	TAGTACCACC	TTTAAAATT	ТТАТТТАСАА	TTCTAGGTTT	154800
ATATACAACA	CCTTCATTTG	CAATCATAGC	AACCATATTA	ACAATCTGCA	TAGGAGTAGC	154860
ATTTAAAAAT	CCTTGACCTA	TTGAAAAATT	TACAGTATCT	CCTCCTACCC	AAGGCTGATT	154920

245 AAAAGTTTTT TCTTTCCACT CAGGACTAGG AAGAAGGCCA GCTACTTCAT AGGCAAATC 154980 AATTCCTGTT TTTTCTCCAA ACCCAAATTC TTTTGCATAT TTTCTAATTC TATCAACTCC 155040 AAGATACTTA AGCCCAAGTG TATAAAAATA AACATTAGAA GAATGTGCAA TCGCCTCTTC 155100 TAAATTAACA TACCCATGAC CTCCGGGCTT CCAGCAATGA AAAATTCTAT TTCCAACTTT 155160 AAAATATCCA GGACAATAAA TTTTACGATC TTTGTCTATA ACTCTTTCTT CAAGAATGGC 155220 AGCAGCAACA ACTAATTTAA AAATAGACGC AGGCGGGTAA ACAGATTGAA TTGCTTTATT 155280 TAAAAAAGAG TAATCTTCCT TATTATCTTT ATTGTAAACA TCTTTCATAG AATAATAAGG 155340 ATAATTGTGA AGAGCAAGAA CAGCACCTGT TGATGGTTTT AATACTACAA CAGAACCATA 155400 CCTTTTGCCT AAAGCATTCT TAGCAAGATC TTGAATATCT TTATTGATAT TAAGCACAAC 155460 ATCATTACCG GGCACCATAT TTTTTATAAT AGAACCATCG TCTATTCTTC TCTCCTTAGA 155520 ATCTACCTTG TATTTTATTA ATCCCTCTTG CCCTCTAATG TAATTATCAT AAACTTGTTC 155580 AACGCCCAAC TTTCCAATCG TAGAAGTATT ATCATACCCA CTAACATTGT AAAACGTCCT 155640 AAGTTCTCTT TGATTTATTT GCCCAACATA ACCGATTGAA TGAGAATATG AATCGTCAAC 155700 TAAATAGTTA CGCTTAAAAG AATAGGTCCA CAAAAGAGCA GGATAATAAA ACTTTTTTTC 155760 AGAAATTTTG AAAAGCATCT TTGGGGTAAG TTCAATTATT TCAACATCTT TAAGATATCC 155820 ACCAGGCTCT TGAAGTTTAG ACAAAATAAT TGATTTATCA ATATCTAGAG TGCTTGATAA 155880 AAAATCTATC ATCTCAATTC TAGTAGCAGC AGGCATATTG TAATACTGTT GTAAGCTTAT 155940 CTTTAAGATA AACATAGTTA AATTATTTGC CAAAACATTG GAATTAGAAT CCAAAATTTC 156000 ACCTCTTGAG GCATTGATTT TTTCCAATCT TGATAAAAAA ACATTGGCTT CTCTGTCATA 156060 AAACAAATGC TTACCAATTT GCATTTGGAA TAAAATCGCC AAATAAAGCA CCATAATTAC 156120 TATTAAAAAA AATATGCCGA ACTTGTATCT AAAATTTGTT ATAACACCCA CTAATAATCC 156180 TCTTTAAAAG AATAAAAATT TCTAGTAAAA TAATTTTGAA TTGGATATAA AAAGTTAATA 156240 GACATTATAT TTACAAAAAG ATCAAGGTTG AAAATTGAAT AATTAAAAGA TTTTAAGTCT 156300 ACAAAATCAT AAAACACAAT AGCTAAAAAC CATAATATAA TTTTTGAAAG AATAAAAAAT 156360 156420 ATTATCGTAT ACCCAAAAAC AAAAAATCCA AGTGGTAATC CTGTAAAATA ATCCATAAGA 156480 AGACCATATA AAATGCTAGA TAATAATCCC ACATTAAAAA TAAAATTCAA AGAATTAAAA 156540 ACTAGAAAAA TTAAAAAAAT ATCTATTGAA AAATAAAAAT AAGTTGCAAA ATAGTGTTGA 156600 AAAATTTTGC CTAAAAATGC GCTGGAAATA AAATATGTAA AAAATGTTGC CATTATTCAC 156660 CAATCTCTTT GTTGTTTTTA ACAAGAAAAA CATACTCAAG CTTATCTAAA ACTATAGCTG 156720

GCTCTACTTC TATTTTTAAA AGAGAATTAT AATCAAGAAT ATGAAAATTT GTAATCTTTC 156780 CAATATAAAT ACCAACTGGA TATTCACTAA ATCCAGCAGT AACAATAGAA TCCCCTATTT 156840 TTAAATCTTT TTCAGCAAGT CTATTAACGT AATTCATTTC AAGTTTTTTA CCATAACCAT 156900 TGCCTTCTAT AAGGCCTATA AACCTACTAC TTTGAATCCT TGCGGACACA AAATTTTCAT 156960 AATTAGTTAA AGGCAAAATT TTAGCAGTAT TAGAATAAAC CTTTACAACT TTGCCTACAA 157020 GGCCACTAAA TCCATCCTGA TATGCAACTG CTATCATATC TTTTTCTATC CCATCATTGA 157080 ATCCTTTATT AATAGCCATT AAAGTCGATA TGTTTGAATA GTTTAGATAT ATAATCTCTG 157140 CCGAAATAAA ATCGCTAGAG CTTGACGAAT AAAAATTTAA TTGCTCTTTA AGACGAACAT 157200 TCTCTTGCCT TAGTGACTGT ATATTCTGAG TGACTATTTC AAGCTGTTGT ATCCTTTTTT 157260 TATAAAATTC TATCTTGTCC TTGTAATTTT TGTATTCATT TACAGTTTTA AAAACATTGG 157320 AAATAAACT AAAAACCCCA TGCATTCTGC TTTGAATATA AGAATTAAGA GTAAAAAACA 157380 AAAAATTATC TGATCTTCTC TTTTGAATGC TGCTTGAATC ATGAATCATA AAAACAAGAG 157440 AAACTATCAA TACCAAAAGT ACTTTGATAA AATTCTTGAA TTTGACAAGA AAATTCATAA 157500 CTTATTCATT GATAAAACTG TAAATATTTT TACTAATATC TATTCTATTG GCATAATCAT 157560 AAAATAACCC GGCACCAACA GCTACCGAGA GAAGCGGATT GTCTGCAACA TAAACAGGAA 157620 CTCCAGTCTC TTTTGAAAGA AGTCTATTTA AACCCTTAAG AAGAGCCCCT CCCCTGTCA 157680 AAATAATGCC ACGCTCAACA ATGTCTGTAG CAAGCTCTGG GGGAGTTGCA CCAAGAGTGC 157740 GCTTAACTTC ATCCACAACA ACATTTATAG GTTCTTGCAA AGACTCTCTT ACTTCCATAG 157800 AATCAACAAG TTGCTTTCTA GGAAGACCAG TTACAGCATC TGTACCCTTA ATGTCTATTT 157860 TTTCTACCCT TAAATTTTGA ATATCGGGAT ATACATTTCC TATCTTAATT TTCAATTTTT 157920 CTGCTGTCTG TTGACCAATT ATAATATTAT GAGAATTTCT CATATACTTT ATTATGCTCT 157980 CATCAAATTC GTCACCACCA GTCCTAATTG CTCTACTTAC AACCATGCCG CCAAGAGAAA 158040 TAACAGATAT TTCTGTAGTT CCACCCCAA TATCACACAC CATATGACCT GTAGGTTCAA 158100 AAATAGGAAT ATCAGATCCA ATAGCAGCTG CAAGAGATTC TTCTATTACT TTAACTTCTC 158160 TTGCACCGGC ATTCATTGCG CTCTCTTTTA CAGCTCTTCG CTCAACCTCT GTAATACAAG 158220 TTGGAACACC TATTACCATT CTCGGCTTAA AAAATAATTT TTTACGAGAA AAAATTTGAT 158280 TAATAAAATA TTTGATCATC TTCTCTGTAT TCTCAATGTC AGCAATAACT CCATCTCTAA 158340 GTGGGCGTAC GGCTTTAATA TTTTCTGGAG TTTTCCAAAG CATTTTTTTA GCATTTCTAC 158400 CAACCGCAAC AACTTTATTA CCTTTGGTTA TATCTATTGC AACAACAGAA GGCTCGCTCA 158460

TAACCACGCC	ATAATCTTTA	ALATAAACCA	247 ATGTATTACA	TGTTCCAAGA	TEAATGCCAA	158520
ТАТСТАТСАА	AAAAGACTTA	AACAAATTCA	AAACAACCTC	CCTAAAAGTC	TTCCAAAGTA	158580
ATTCCAAGCC	TCTCTCTTGC	ТСТТСТААА	TAAGGATTAA	GATTGAGAGC	TTCTCTCCAG	158640
TATTTTCTAG	CTTTAGGATA	АТСТТТАТСТ	ТТСТТТСТАТ	АТАТАТСТСС	ТАТТТТААСА	158700
TAAACGCTAG	AATTTGAACT	ATTAATTTCT	AGAACTTTAT	TATAGTAATT	AAAAGCACTG	158760
TCATAATCGC	СТТТАТСТАА	TAGAATGTCT	CCATAAAGCA	AATATACCTT	TTGAATTAAA	158820
TTTTCATCCG	TTTTCTCACC	СТТТGАТААТ	ТТТСТТТСТ	СТТСТТСТАТ	TATTTTTTT	158880
АТАТАСТСАА	TGCTTTTGTT	ТАТАТСАТТС	AACTTATAAT	TAACATAAGC	CAAACTCCAA	158940
AGCACTAAAT	CAGATTTATT	TTCATTAAAA	GCTTTTTCAA	ААААСТТСАА	ACTAGATTTG	159000
ТААТСТСТТА	AAAGCTGATA	CGAATATCCC	AAATATTCAA	AAATATCTTC	TCTAATGTTC	159060
ATGAAATCAA	AATTATCGGC	ATTTAAGGCC	ТТСТТТАААА	ATTTTACAGC	AAGCTCGCTA	159120
TAAAACTCTC	CTTTATGAGA	ATATGCCTTT	CCCAATATGT	AATACAAAGG	GCTTATGGAG	159180
ACTCCATCAT	TTATAGAAAT	ТАААААТСТТ	AGTCTTTCTA	TGGATTTATC	ТАААААСТСТ	159240
CCTTTTAAAT	ACCCTTCATT	TACTATTAAA	GAATAATAAA	AATATGAAAA	TCCTAAAAGT	159300
AAATTCAAAT	ТААААТСААА	TCTATGATTT	TTAATGTCAT	TCTCAGCATA	ATCTATTATT	159360
TCTTTATATT	CTTTTTTATC	CCAGAGTAAA	AGCAAATCAA	CTTCTGTTGG	ACCTGCCTTT	159420
AAATAAGAAC	TAGAAAAAGA	тттаааатат	GATAAAATGT	AATAAATTAA	AAAAATGAAA	159480
ATGAAAATCA	TAAATGAGTA	AAAAATATAT	СТТАААТАТС	TTATTTCCAT	TTAAAACTCT	159540
CTTTTAGGTC	AATGAAATTA	AGCTGACACC	CATAAGCCGA	GTTCTGTACT	ATGCCATCAT	159600
CTCTCTTATT	TTTTTATCGC	TAAAAAAATC	GTGCGATCTA	CCCGTAAGCA	TGTCCTCAAG	159660
AACAAAGGGT	GCTTACATAC	TTGATCTTGC	TCCTAATGAG	GTTTATCTTG	CCTGTATTTA	159720
TTGCTAAATA	AGCGGTGAGC	TCTTACCTCA	CCTTTTCACC	CTTACCTTTT	ACGGCGGTAA	159780
TTTTCTGCGA	CACTTTCTTA	GGTTTAAAAC	CCCTAGGCAT	TACCTAGCAT	TATGTTCTTA	159840
TTGGAGCTCG	GACTTTCCTC	TTAAGCTTTA	ATTATAAAAC	TAAGCGATGG	CTGACTGCCA	159900
GCTTAAATAA	AAAGTATCAA	АТТААТАААТ	TTTATTCAAC	AAGATCTGCT	AAACTACCAG	159960
GAATTATTTC	ATCGCTTATC	TGAACTTTAT	CCTGATAATA	AAGTATTCTG	CTGCAATAAG	160020
GACAAAATTT	AATATCGTTG	GGCTCACGTC	TTACTTTATT	TGCAAATTCA	ATAGGAAGTA	160080
TCATATGACA	ACCTTTGCAA	ACATTGTTAA	CCAAAGGCAC	AACTCCATTT	GATTTATTTC	160140
ТТАТТАТТСТ	TTGAAATTTA	ААТАААААТ	CTTCATTCAT	TTTAGAAGCA	СААТТТААСТ	160200
CTTCACTCTC	ТАТТТСТААА	AGTTTCTTTT	CAATTTCTAA	AAGCTCCAGC	ТСААААСТАС	160260

TGCTTTCAGC	TCTAAAACAT	TCCTCTTCTT	TGATGTGCTT	CTCGTTGACA	TCTAATATTT	160320
CCTTTTCTAT	TTTAGTTTTA	AGCCCATTAA	CATGTGTCAT	СТТТТТТСТА	ATTGTAACTT	160380
CATCGTCAAT	AATAACCTGA	AGTTCTTTTT	CAAGAGCCTC	ATATTCTCTT	TGCGTTTTAA	160440
TGCTATCAAT	ТТТТТСТТСА	GCCTTGCTCT	TTCTTGAATT	AATATCTTGA	ATATCTAACT	160500
TTAAAGCAGA	GTCTTCTTTT	TGATACTCCT	TAAACTTTTG	TTGCAAATCA	ACAAGAACTT	160560
TCGACAATTC	TTCAATCTGA	TTTTTTTCG	CCTCCAAATA	CTTGGGAATA	CTTTTTCGCC	160620
TTTCTTCAAG	CTCAAACTTA	GATTTATATA	TAACTTCAAG	ТТТТТТТААТ	GTATCAATAT	160680
TGTTTTCCAT	CAATCCTCCT	GTTCAATTTA	AATCTTCAAG	ATAATCTTTT	AATTTTTGAG	160740
TTTTTTTGGG	ATTTTTAAGC	CGCCTTAATG	CTTTAGATTC	AATTTGCCTA	ATTCTTTCTC	160800
TTGTAACATT	AAAATGAAGT	CCAACCTCTT	CAAGAGTTAA	AGAATAGCCA	TCTTCAAGTC	160860
CAAATCTCAT	TTTTACAACT	TCTTGTTCTC	TTTCAGGAAG	AGTTCCAAGA	ATTGCTCTTA	160920
TTTGATCTTG	CAAAACTACA	AAAGATGTGT	GATTTGCAGG	ATTTTTTATT	GCCTTATCCT	160980
СААТААААТС	GCTAAGAACA	GAATCTTCCT	CTTCTCCAAT	TGGTGTTTCA	AGAGAAACAG	161040
GTTCTCTTGA	AACACTCTTT	ACAGTTTTAA	CCTTTTTAAG	TTCCCATCCA	AGCCTGTCTG	161100
AAAGCTCTTC	ATCTGTGGGA	TCTTTGCCTA	AAACTTGAAT	TAAATATCTA	GTTTCTCTAT	161160
TAAGCCTATT	TATTTGCTCA	ATCATGTGCA	CAGGAACTCT	AATTGTGCGA	GCTTGATCAG	161220
AAATAGATCT	TGTTATGGCT	TGTCTAATCC	ACCAAGTAGC	ATAGGTTGAA	AACTTAAAAC	161280
СТСТСТТАТА	TTCGAACTTT	TCAACAGCCT	TAATCAATCC	AATATTGCCT	TCTTGAACAA	161340
GATCAAAAA	ATGAAGACCT	CTATTTGCAT	ATTTTTAGC	AATGCTTACA	ACAAGCCTTA	161400
AATTAGCCTT	AATCAACTGA	TCTTTAGCAT	GCTGCATCAT	TTGCTTCCCT	TTAGCAATCT	161460
CTTCTGACAT	GCTTATTATT	TTATCAGTTG	GATATTCATA	ATACATCTCA	ATTCTCTCAA	161520
GTTCTTTTTG	GGCAAGCTGA	GCCTCTGTAA	TCTGCTCTTT	AATAGCATCT	TCTTTAAGCT	161580
TGAGAGATTT	TTCTATCTCT	ATTTTTTTT	CAGCAATAGT	САААТСТСТТ	CCAAGCACCC	161640
TCAAATCTCT	TATTTTTCA	ATTTTCAGCC	TGCTTAGAAT	TATTCTTTGT	TGTCTTTGTA	161700
AATCTTTTAT	TTTGTTAGCA	GAGTCAATAT	AATCATCTGA	GAAAATCCTT	AATTCCTCTT	161760
GATACAAAGG	AATGTCTCTC	AAAAGCTCTT	TTAGGGCCAA	TCTTTCCTTT	ТТТАААТТСТ	161820
TTTCAAAAAT	ATCCCCCCA	AGATCATACA	CCCTATGCTT	ATTATCTACA	ТААСТТАТТА	161880
AACGATCTTG	AATTGGCTTT	AAAGGAATTT	TGTAAAAAGA	GGCAATTCTT	TTTTTTTAT	161940
ТАТААТААТС	CGGACTACTC	TCTTTATCCT	TATCTTTTTC	TCTTTTAAAA	AACTCTTCTC	162000

249 TTTCCATTCT TGAGTAAATA JATTCACAA GATTATAATA ATTTTCTATA ... AAGTCCCT 162060 CATTCTTAAG AATATTCTCA ATTATACTCT CTCCAGAATC CATTTGCTTT GCAAGTTCAA 162120 CTTCTTGATT TCCCGTTAAT AAAAACTCTT TTCCTATTTC CTTTAAATAA AGCTTGATTG 162180 GATCTTCTGA GTGACTATCT TTTAAAACAT TGCCTTTAAT ATACCCTGAA CCTAAATCAT 162240 CCTTAACAGA AATATCTTCT TCATCACAAT CATCCAGCTT AACATCAATG TCAATATCTT 162300 CCTCATCACT TTGAAAACCA TCATCTAAAA TCATAAAATT TCTATCAGAT TCAATCTCAA 162360 CCTCTTCCTC TTCATCATTT CCATCTTCAC TGACAACCAG ATCTAATTCC GAAATTTTAT 162420 TAACCAACCT TATTCCCCTA TCCTCAAGTA CCGAACAAAT ACAATCAAGA ATCTCTGGTT 162480 CTAATATATC ATCGGGAAGC AAATTTGATA ATTCACTAAA ACTAAGAGAT TTTCTATCTC 162540 CCAAATGAGT AATAATACCC TCTATCAGCT TCGAATATTT CTTTTCCAAA TCCGACAAAA 162600 CCTAACTCCC TGGAACATCA TCTATGTAGA TTTTTAAATT TTTTCTCTGC ATATTTAAAA 162660 ACATTAACTC ATTTATTTGA ATCTTAGCAT TTACCAAAGA GTCCCCATCA TATCTTTTTT 162720 TGCAAAGCAA AACACGAGAA TCTAATTTTC TTCTCTTGAT TGCAAGTAAA ATATGAATGA 162780 GCATCTCATC ATCCACTTCA AATTCAGAAT TTAAAATTTC TTCAAAAAAA ATTCACTAAC 162840 TTTATAGGTA TCCTTTAAAT TTTTTTTAA ATCCATTAAT GAAAAATCTT TATTATTTTC 162900 AAATAAATTT TCAAAGCACA TAAAAACTTT TCTGGCATCG ACATTAATTA AATCACTATC 162960 AATAATATTG CGCCTTACTA TGCTAAAATA ACTAAAATTT TTCAACAAAG CTACTATTAG 163020 ATACCTCTCA TAAGAATCAT CATTATGAGC ATACAAATTT CTTTTATTAT TGTCAACTAC 163080 AAATCTTTCT TTTATTCTGT AATAATCTTT CAATAAAGTT GTCACACCAA TACCAAGTTT 163140 ATTGCTTAGC TTGTCTAAAA AAATTTTTTT CTGAGTATCT ACTTTTGATA AATTTATCAA 163200 ATTTAAAAAT AAATTAATCA TGGCATTTAA ATCTACAGTT TTATTTAAAT TATATTTATT 163260 AGAATAAACA TCCAAAAGAT ATTCAAAAGC ATCACATCTA TTATTTAAAA TTTTTTGCAA 163320 GGAGTCTACA CCCTCACTTT TAAGAACATC TGCAGGATCA GTACCAAAAT CCATTCGAAC 163380 AACACTAACA TTGATATTAA ACGGCAAACA AATTTGATAA GCTTTTAAAG TTGCAGAAAG 163440 TCCAGCATCA TCCCCATCAA AAGAAAATAT TATCTCATCA GCATATCTTT GAATTAAAGC 163500 TAAATGCTCT TTTGAAAAAG CAGTGCCAAG AGTAGATACG GCTCTCTTAA TCCCAGATGT 163560 AAAAAAAGCA AGAACATCTA TATACCCTTC TACCAATATA ACTGATTTTG TAGATTTAAT 163620 CTCCTCAAAA CCCTCATAAA ATCCATAAAG AAGCTCCCTT TTTTTAAAAA CTTCAGTTTC 163680 ACCTAAATTA ATATACTTAG AACCTTTCCC ATCTAAATCT CGACCTCCAA AACCAACAAC 163740 GTTTCCTTTA AAGTCTTTAA TTGGAAAAAT TAATCTTTGA AATAAAATAG AAACTTTGGG 163800

ATTGGTTTTC	GAGAACAAAC	CACTTTTTCT	AAGTACTTCA	GAAGAGTATC	CTTTTGAAAC	163860
TAAAAAATCA	TGAAGCTCTA	AACCATTTTT	AAAGTTAAAT	GGCAAATAAC	CAAGTTCAAA	163920
TAAATCAACA	ATTTCCTTAG	ATATTGCTCT	ACTCTTTAAA	ACATAATCTA	AAGCTTTTTT	163980
GTTTTTACTT	АААААААТТ	TAATGGTATT	AATTAACCGA	GAATTCAAAG	AGTAAATTTT	164040
TGAAACCATG	TCTTTATTTT	CATTTTTATT	TTCACTTCCT	CGACTTATTT	TTAAATCATC	164100
АТААТСААТА	CCGGATTTTT	CGCATAAAAT	CTTAAGAGCA	TCATTGTAAT	TGATTTTTC	164160
CATATCCATT	AAAAATCCAA	TAACATCTCC	ACCCTTTTTG	CATCCAAAAC	ААТААААТА	164220
TCCTTGCAAA	GGATTTACAA	AAAAAGAGGG	AGTCTTCTCA	GCATGAAAAG	GACAAAGACC	164280
TTTGTAAGCA	GATCCCGATT	TAACAAGCTT	AATATATTGC	TCCACAATAG	CTACAATATC	164340
AAATTTGCTT	TTCATTGAAG	CTACAGTTTG	TAAATACTTC	ATACTTCTTA	ATCCTTAGTA	164400
ATAAAATTTT	ТААТАТААТС	TTTTGCCCCT	AAAAGATGTG	AAGAATATTC	TGATGAAAAT	164460
TGATGTGTGC	CCAACTTAGA	GTCTTTTACA	АСАААААТА	AATATTGCGT	ATTTTTTGGG	164520
AAAAAAGCTG	CTTGCAGCGA	AATAATACCA	GCATTTGAAA	TTGGAGTAGG	AGGATATCCT	164580
ТТАТТААТАТ	ATGTATTATA	AGGAGAATCT	ATCTCTAAAT	CTGAAAAATA	AATTCTCTTA	164640.
GGATGGCTTC	GTCCTAGCTC	CTCTGTAATA	ACATATTCAA	TAGTAGCACA	GGATTGTAAT	164700
GCCATACCAG	ATTTTATTCT	АТТАТААААА	ACCGAAGACA	TTATTGGGGC	TTCACTTTTA	164760
ACCCTATATT	CACGTTCAAC	AATAGATGCT	ATTATTACCC	TATTĠTAAAG	CTCCTTACTT	164820
GAATAATCGC	TAAGAACAAC	GCCTATAGAC	TTAAGCTTAT	TCAAAAAATT	ATCAACAAAC	164880
ATGCGAACTA	CATTCTTTAT	TTCTATACCC	ТТАТААААТТ	TATAAGTATC	TGGAAATAAA	164940
AATCCTTCAA	GAGAGTCATA	ATCAAGCCCA	AGCTCATAAA	TAAATGATTT	TTTGTTGATT	165000
AAAAAAAGAA	AATCTTGAAC	ATCATCAATA	ACAGAAAATT	CCTTAAGCTT	TAAAGCAATT	165060
CTTCTGCTAG	TATACCCTTC	GGGTATTGTA	ACATCAATAT	TTACGTTAGA	AGATCCCTTT	165120
AAAAACTCTT	ТАТАТАТТТС	AAATGTAGAA	AGATCGCCAT	ТТАТТАААТА	TTTCCCCTCT	165180
TTAAATTGTT	TATCACTACC	ТААААТАТАТ	GAAATAAAAA	CAAGAAGCAG	CTCGGATTTA	165240
ATTAATTTTT	GTTTTTTCAA	TTCTTTAGCT	ATTTTTTTAA	CTCCCCAACC	TTTTTCAATA	165300
TTAAATTCAT	AAACTAAGCC	ATTTGCCAAA	GAAGATAAAT	ттаааааата	TATAAAAATT	165360
GACAAAATAG	ATCCCAAAAA	GAAAAAAAGA	ATAAACACTT	TCCCAATTTT	AATAAGCACA	165420
AGAATCTCCT	AGCTAAACAA	AAGTCTTTGC	TAATTACACT	TTAGCTATCA	ATTAAAATTT	165480
TTAATTGATA	GCTAACATCA	AATATTTATAA	ССААТААТАА	СТТТТСТААА	TAGACAAAAA	165540

TAAAAGCACC AAAATGAAAC GACATAACAC ATTTAAAAGA TCACAATAAA AATTATAAAA 165600 AGGCAAACGC TTATAATTTC ACTAAATTGG GGAGGGTGGG ATTCGAACCC ACGTAGGCAA 165660 AGCCAACAGA TTTACAGTCT GCCCCGGTTA ACCACTTCGG TACCGCCCCA TAAAAGCCGA 165720 CTGTCGGATT CGAACCGACG ACTGCGGTTT ACAAGACCCG CTGCTCTGGC CAGCTGAGCT 165780 AAGTCGGCAA ACAAAAACTA ATAGTTAGTT TATAAAAATA AAATTCATTA GTCAATAGAA 165840 TAATGATAAA TAATTAATAT AATCTTCCTA TTAATCTATT TATTACCAGA AAGAAAAATT 165900 TTAAAAACAA GAGCAATAAA AAAAATTATA AAACTAAAAA TTAAAATTAA ATAATACTTA 165960 ATTTTTTAT TTTTCAAAAA ATAAAAAAAT ATCAGTCTAG TAGATTCAAG TCCAAAAGAA 166020 ACAGAGCTTA AAATAATAGC AAGATCAAGA TAAAATTTCT GAAAATTGTA AACAAAAATA 166080 166140 ACCAAAATTC TAATAAAATT TGAAAAACGT CTTAGATTTT TTACTTTAAA AGCTTTCATG 166200 AAATTTATAA ATTCTTTATT ATAAAAAGTG CTTGATTTAT GATTTCCAAA AGATTGCCAA 166260 TAACATCGGC TAATGTAATT GTTTTATTTT CAGTTACCAT TGATTTGTAA GAAACCGTTA 166320° AAGATTTTCG AATAAAAACA TTATGATTTT CCAACAAAGA CAAGCACCTC TTTTTAAGCT 166380 CAATAAAATA ATCCACAAAT CTACTTGAAA CCTTATCAAT AGAAACGGAT TCAGTTAAGC 166440 ACCACTTCAA AATCCTTTCC TTATAAGAGT TATCAATTTT ACCGTCTCTT TTATACCTTT 166500 CAAACTCTTC ATTTTTATAA TCAATCTCAA AGTAAATATT ATAAATTTCT TTTTTCAAAG 166560 CAGTAATATT ATTTTCAATG TCAACATATA TATTTCTCAA ATCATGATTA TTGATTAATA 166620 CGACATTATT TATAGTTCTT AAAACTTCCA TCATTCTAAC ATCATATATG TTTTTAAAAA 166680 AATCATTAAG AAAATATAAC TTTTTAAAAC TATAACGCCC AAGATTTAAT TCATTAAAAA 166740 TCTCGCCTTT TAAATTTAAA ATTAAACTAG GATCTCTAAC AAGATTTTTT ATTTCTTTGA 166800 TAACAAGAAC TTTTAAAGAG CTATCACGCT TTTTAATAGC CTGACCCATA ACATTTAAAA 166860 ATAAAATGTT CTCATAAAAA TTTTTTACAT CAAAAAAGGG TACATATTTT TTAGGAGATG 166920 CAACAGGATT TTTGCAATAT ACTCTAAAAA TATCTAAATA AGGCAAAGTC CTCGACAAGC 166980 CAACAATCTT AGATACAATA GATAAAACAT TTTTAAATAC ATATTCTACC CGAGATATAT 167040 GATCTTCTCT TGAAATTATC TCTGAATTAC TAATATCATC AGATATTGAA AAATAATTCG 167100 ATATAATGCT TTTAACAATA TCCTCATCTA TCTCAATATC TTTTAATGTA TACAAAATGT 167160 CAAAAAAGA ATTCAAATAC TTACTAACAC TTGAAAAGCT GGTTCCAAAT CCAACCTCAA 167220 AGTCAACAAT GCTAATATTC TCAGCACTAT CTAAAAGATC TACATTAAAA AATGAAAAAA 167280 AAGATTTGTA AGGGAAAAAC GCCAAACTAT TAAAAACATA ATAAAACTCA AACATATCCG 167340

AGACGATTTT GTAAGTACTA GATGGAATAG AATTAATATA TTCATTTATC TTGACCTTAA 167400 GAGATTCTTC TAAATCGTTT TGGGTTTTTT CTTTTTTAA AAAAAGCTCA TATTCACCTT 167460 CATCTAAAAA ATCTTCCAAA TTGTTCTTAG AGTTAAGAAC TTTGCTTTGA ATAATTTCTA 167520 AAATAGTTTG CTCAACAACA ATACCACCTT TTTCTAATTT CCTAAAAAAT TCTTTCAATT 167580 CCATTGAATA TCGGCAAACA CTAAAAAACA TTTCCACAAA ACCAACATGC AAACATTCTC 167640 TCTTAAAATC TATTACTGGA TTTTTACACA TTTCATTAAT TTGATTTTCC AGGTTTTTTA 167700 TAACATAAGC TTTATATATA TCTTCTTTGC TTTTATCTTT CTGAAAAAAA TTTAAAATAG 167760 TTAACCACAT TCTAATAAGA AATGATTCTT CCATTAAGCG CCCCGAAAGA AATTTTTCAA 167820 GCTGAGAATC AACATAAGGC TCATTACTAC TATTGGGCAA AACAAAATCG GAAGAATTCA 167880 AACCTAAGCT TTTTCTTATA TCATTCATCA ACCTATCTTT AGTCTCTTTT GAAAGTTGAC 167940 CTATAGAGTT GTATACGCTA TTGTTATTAC CACTCATAAA ACCCCAATAA AACCATTTAA 168000 AAAATAAAGT ACTACTTACA ACATACTTCA AATAAATTAA AATTGTAAAT CAATTTTAGA 168060 AAAAATTAT TTACACTATA ATATAATTTT ATATGAATCT AGGGAAAAAC AATCCAAATA 168120 TAATTAAAAT TGGTAAAATA TTTAAAAAAA ATAACTACGA ATTTTATTTA GTTGGAGGCG 168180 CTTTAAGAGA CTTACTGCTT AATAAACAGC CTTACGATTT TGATTTTGCA ACAAATGCAA 168240 168300 CTCCTGAAGA AATAATAACA TTATTTCCAA ATAACATCAA AACAGGAATA AAACATGGCA CAATTGGTAT TATTTTAAT AAAAAAATCT TTGAAATCAC CACATACAGA ATAGAAAAAG 168360 AATATGAAAA CAACAGAGCC CCCAAACAAG TAGAATATAC TAAAAATTTA CTTAAAGATC 168420 TTGAAAGAAG AGATTTTACA ATTAATGCAA TTGCAATGGA TATTTTCAAC TTCAACATAA 168480 TAGATTGCTA TAATGGGAAA AAAGACCTTA ATAAGAAAT AATAAGATGC ATAGGAAATC 168540 CAAACAAAG ACTTGAAGAA GACGCCCTTA GAATACTTAG AGCAGCAAGA TTTTCATCCA 168600 CACTTAATTT TAACATTGAA AAAAATACTT TAATTTCAAT GAAATATAAA AAAGAAAATA 168660 TTTTAATGAT TTCAAAAGAA AGAATAAAAA ATGAATTTCA CAAATTGTTA GAAGGCATAA 168720 ATATACAAAA AGGAATTTAT TATCTTAAAA AAGTTGATTT TTTTAAAAAT TTTTTTAATC 168780 TAGAAATAAA AACAAAAGTA ATCAAAAAAA TTGCTCTACT TGATAAAAAC AAATTTTATC 168840 TAAAGGCAAT CACAATATTG ACAATTAAAA AACCTATAAA AGAACTAAAA GAAAAATTAA 168900 CTTTACTTAA ATTCTCAAAT AAAGAAATTA AGCTGATTTT ATTTTATAGA GGCATAATCG 168960 ATAATAACAA TATTTTTAAT GTCAAAAAAT TAAGTGATAT TAGATATTTG CTTAGCAAAA 169020 GCACAAGAGA ACATTATAAA GAAATAATTG ATATATACAA AGCACTCAAA GGAAAAAATA 169080

169140 CTTTAAAAGA TTTAAAAATA AACGGAAAAG ATATTCAAAA TCTAGAACAA ATAGAAAAACA 169200 AAAATATAGG TAAAATTTTA AATATGCTAC TAAGATGTGT AATTGAAAAT CCCAAGCTTA 169260 169320 ATACTAAAAA TTATCTTATA AAAAAAATCA AAACCTTAAA GGTTAATGTT TTCCATAGCT TTTAAAGCTA CTTCAGCCGC TCTCATTTCG GCTTCTTTTT TAGATTTGCC CTTTCCATTT 169380 GATATAAAAT TTTCTCCAAC ATAAAGTTCC ACACAAAAAA CTTTATCATG GTCTGGACCT 169440 ATTTCCTTGT CTAGCTTATA ACTTGGCGAG ATTTTATATT TCTTTTGAAC ATATTCTTGC 169500 AACAAACTCT TATAATCTTT AAAATCCCCC CTATTAAACA TCAATCTTAT ATACATATCA 169560 AAAAGTCCAA CCACAAATTC TGTTGCTCTT GAAAACCCAC TATCAAGATA AATAGCGCCT 169620 ACAAAAGCTT CAATAGCATC TGCAAGAATG CCTTTTTTAT TTCGACCATC ATTACTCTCC 169680 TCCCCTCTAC CTAGCAAAAT ATAAGAACCA AGATTAATCT CTCTAGCAAT ATTAGATAGG 169740 GAATCTTCAC TAACAATATA AGATCTGGCC TTACTGAGCT CTCCTTCACT TTTATTTGGA 169800 TAAGTTTTAT AAAGATGATC TGTAATAATC AAATTAAGCA CAGAATCTCC CAAAAATTCT 169860 AATCTCTCAT TATTACTAGA TTTTTGATCC AACTCATTAG AATACGACGA ATGACACAAT 169920 GCTGTATTCA ATAAATCAAA ATTACTAAAG TCAATGCTCA AATTTTCCAA AAATTTACTC 169980 AATTGAGATT TTCTTTCATT ACACAACCA AAATCAGAAG ATTTTTTTTT CATCAACCCT 170040 TTCTCTTTTT AATAAATTA ACAACATCGC CTACCGTCTC AAATTCATTG GCTTCATTCT 170100 CTGGAATCTT ATCATCAAAG GCCTCTTCAA GCAAATACAA AAGCTCATAA ATATCTAGAC 170160 TATCTGCATT AAGATCTTCA ACAAATCTAG AGTCTGTGGT AATTTCATCT TCTTTTTTAT 170220 CAAGTTGCTC AGATATAATA GACCTAACCT TGCTAAAAAT TTCATCATTA TCCATGAATA 170280 CACCTTCCTT ACTACAAGCT ACAAACCTAT TTCTAGATAT TGGTTATTCC TATAATATCC 170340 ACATTTTAAA CAAATCCTAT GTCTCACGCC AAGATTACCA CAATTAGAAC ATTCTTGAAA 170400 TTGTGGAATT TTTTTCTCA TATTTATACT CCGCCTTGTT CTACTTCTAG ATTTTGAAGG 170460 CTTAAATTTT GGAACAGCCA TTACTTTCTC CTAACTACTT TTAAACTACA TTAAATTATC 170520 TTAATAATAT ATATAATC CAAGTCATTT GTCAATAAAC TTAGATTTTA ATCTATTAAA 170580 CACCAATTCT GGAACAAAAT TAGAAAGATC AACATCCTTT TTCAACATCA ATTCCTTTAC 170640 AAAATCCGAC CTTACATATA AATGTTCTGC ACTACTTGGT AAAAATATAG TATCAATTTC 170700 AAAATTTAAC TTATTATTAA CAAGATATCT TTCAAACTCT ATATCAAAAT CATTAAAAGC 170760 CCTAATTCCT CTAACAATAA ATTTAATAGA ATTAATTAAT GCATAATCAA CAATAAACCC 170820 GCTATACCTA TCTACAAGCA CATTTGAAAA ATTTAAAGAC GAAATAACAT CTTTTGTAAG 170880

254

	•			•		
GCTAAACCTC	TCAATATCAC	TTAGGAAATA	TTTTTTTGAT	TTATTTTTAG	СТАСТААААС	170940
AATAACTTTG	TCAAAAATAG	CCAACGATCT	ТТТААТТААА	TCAATATGAC	CCCAAGTAAT	171000
TGGATCAAAA	GATCCTGGAA	AAACTGCCAC	CCTCATATCA	AGAAAGCCTA	AACCCCCTAT	171060
ТААТАТСТТТ	GAGAATTTTT	TTACGCCATA	GTGGTTGTTC	TTCTAAATTT	TCAAATTCAA	171120
ТТТСТТТААТ	AATTTTGAAA	ТАТАААТАТТ	CTCCTCTAGA	AGATGTATCC	АСААТААААА	171180
ATTTACCAGC	ACCTTTATAA	ACTACTTTTT	CATTACTTGA	AAGATTATTT	TCAGATGTTA	171240
ATTTATTGAT	AACACAATCA	AAATGAACAG	GTTTATCTTC	ATTTTCAACC	TTTAAAGACA	171300
TGCTATAAAC	AATATCATTT	ATTTTTTTTT	CACAAATAGC	ACAAGCAACA	TCAAGATTTA	171360
TTCTTGTTTT	AAATTTTATA	CTTTTTCTTC	ТАААТТТАСС	ТТТАААААСА	TTTTGTTTAT	171420
CTGTATTCAA	GACAGTCGAT	ТТАТТАТТАА	AACTGTTTAG	CGGGGCAACA	TTTTGACTTT	171480
TGCTCTCAGA	ATTTAATCTT	TTATTCTTAA	AACCATAAAA	ACGCTTATTG	TGTTTCTGAA	171540
AATTACTACT	CTTGAACTTA	CTTTGAGTAT	ATTTCAAAAT	TAACTCTCCT	TAACTATAAA	171600
АААТАААТАТ	TTACTCTTCA	AAAAAATAAA	AACAAATATT	TAAGAACAAA	ATCACTCACA	171660
TAGCCTGAAA	GTTTTTCAAA	AAATCAAAAC	TTTAAATCTT	CAGCTTTTTA	AAGACAAAAG	171720
CACAATTAAA	CCCTCATTGA	AATTTAATAA	GAATGGTTAA	TTAATGCTCT	CAATTATAAT	171780
AAATACACAA	CCAAGCTTGC	СААААТТАТТ	TCCCAAAACA	GCAAAAACTC	TACTAAATCT	171840
TGAATAAAAA	TTTACAAAAC	AAAAGATCAA	TCAAAAACAA	TTTTTAACCT	CAATCTAATT	171900
TGATTCATCT	TATGACCTAA	TTTGCTAAAA	TATTTAAAAT	AATTAAAAAC	TAATGCTTAA	171960
CTTTTTTAAT	AGTAAGGCGC	TCCTTTATCT	TCATAGCAGC	CTTACCGATT	CTATTCCTCA	172020
TATAATAAAG	CTTTGCCCTT	CTAACTTTTC	CCCTTCTTAA	AACTTCAACC	ТТТТСТАТАА	172080
TAGGAGAATA	TACTGGGAAA	ATTTTTTCAA	CACCTATTCC	TGAAGAAATT	TTTCTAATCA	172140
AAAATGTTTT	GCCAATTCCC	TTGTTTTGGA	AAGAAATAAC	AATCCCTTCA	AAACTCTGCA	172200
ACCTTTCATT	ACTACCCTCA	ATAATTTTGT	AAACAACCCT	CACAGTATCT	CCCACATTAA	172260
AAACAAAAGC	CTCATTTTTC	TTATTCTGAG	CTTCAATTTT	TCTTATCAAA	TCCATTATCT	172320
TCTCCTATTA	ТСТСТАААТА	TTTAAGGTAT	AAATCATATC	TATTTTTCTT	AGTTTTTTCT	172380
CTAGCTTTAA	CAAGCCTCCA	ATTCTTTATA	TTTGCATGAT	GTCCCGAAAG	AAGAACTTCT	172440
GGGACCTTTA	TCCCCTTAAA	ATCATAGGGC	CTGGTATAAT	GAGGATATTC	AAGCAATCCA	172500
ТТТТТТАСАС	CAAATGATTC	TTCTAATAAA	GAATTGGGAT	TTATTACTCC	ATCTAGCAAC	172560
CTATATACAC	TATCTATTAA	AACAAGAGCT	GCAATCTCTC	CTGAAGATAA	AACATAATCT	172620

CCAATAGAAA	TCTCAAAATC	CATACAAA	255 TCTATAATAC	GTTGATCAAT	CTTCATAT	172680
CTTCCACAAA	ТТАТААСААТ	TTCTTCTCTT	TTTGACAAGG	AATACGCCAA	CTCTTGGCTA	172740
TACTTTATCC	CAGAAGGACT	TAAAAATATT	GTCGTTTTCT	TGGCAGACTC	TACATGCTCA	172800
AGAGCAAAAG	AAATCGGTTC	GGCCTTCAAT	ACCATCCCAG	CACCGCCTCC	ATAAGGCAAA	172860
TCATCACATC	TTTTATGCTT	ATCTTTTGAA	AAATCTCTAA	CATCAACAAG	CTCAAAACTT	172920
ACTATTCCCT	TATTAATAGC	TTTTTTCATT	ATTGAATTTT	CAAAAAATGG	СТТААТТАТТ	172980
GCTGGAAAAA	GGGATAAAAC	CGTAAATTTC	ATTTTAAAAG	ATCTAGAACC	TTAAGCTCAA	173040
TTGTTTTTC	TTGAGTATTT	ATATCTCCAA	TATATATACT	TAAAAAGGGA	ATAAAGAAAA	173100
ATTTAATACC	CACTCTGACC	TCAAGAAATA	CACTATTTAA	ATATTCAAAG	AAAGCTACAA	173160
CTTCTCCTAG	ТТТТТТАТТА	ТТАТТААСАА	TGGCATAGCC	AATAAGCTTT	ССТАААТААТ	173220
ATTCGCCTTC	TTTTAAACTC	GATGCAAGCG	AATCATCAAC	CCACAATTCA	AAACCAATCA	173280
GCGGCCTAAC	TGCCTCTGGA	GTATCAATCT	CTTCAAACTT	CAAAAATAAG	GAATTACCCT	173340
ттататтаас	ATCTACAACT	TTAACTTCAA	CACTGGAACT	ATTGCTTTTT	TTTAAAAGAA	173400
CTTTATTGTT	TTTTAGATTA	ATAAAATCAC	AAAAATTATT	GGATATGCTT	TTAACCCTAG	173460
CATACCCATT	AACTCCATAA	GACGATAATA	TAACGCCTTT	AATAAACATA	GATTAATCTA	173520
AAATTTCCAA	TTGCACTCGC	CTATTGGTTT	TGGCAGCACA	AGCTCCAAGC	AAAGTTCTAA	173580
TAGCCCGCGC	AATACGACCC	CGTCTTCCGA	TTATCTTGCC	CACATCACTT	TGAGAAACCC	173640
ТТААТТССАА	AATAGTTGAT	TTTTCCCCTT	CAATTACATT	TAACTTTACT	TCATCTTCTT	173700
TATCTACAAG	AGACTTTACT	ATAAACTCTA	TAAGTTCAAT	CTCATTCCCA	TACTCTTTCA	173760
TTTAAACCTC	CTGACTTTTC	GCATTCAAGT	TGTTTTTATT	TAAAAGCATT	TTCACTGTAT	173820
CACTTAAAAT	TGCTCCCTTG	CTTATCCAAT	CTTTCATTCT	ATCTTCCTTA	ATTTTTATTT	173880
GGTTTTGCTT	TTCAACAGGA	TGATAATAAC	CAAGTTCTTC	AATTGCTCTA	CCATCTCTAG	173940
GAGACGTAGA	ATTCATAACT	ACAACCCTAT	AATAAGGTCT	TTTTTTAGCT	CCCATTCTTT	174000
TCAATCTTAT	CTTAACGCTC	AAATTTATTC	CTCCTTATTT	TCCCAAAAGG	GATGCAATCT	174060
TATTTTGAAA	ATCTTTATTT	TTCATTTTTT	TCATAATCAA	AGTTGCTTGA	CTAAACTTTT	174120
TTATGAGCTT	ATTAACATCA	AAAACAGTTG	TTCCACTTCC	CATGGCTATT	CTTTTTTTC	174180
TTGAGGGATT	ATTCAAAATC	ACTGGATTTA	TTCTTTCTTT	TTTAGTCATA	GAAAGAATAA	174240
TAGCTTCTTC	ТТТАТТАААА	CTTTCTTCAT	ТТАААТТАТТ	GCTATTCAGC	ATTGATTTTG	174300
AAACACCTGG	TAAAAAACTT	ACAAAATTAG	AAAACCCTCC	TACTTGTCTA	ATGCGCCTAA	174360
ATTGACTCAG	ATAATCTTCA	АААТТААААС	TGGCTTTATT	AATTTTTTCT	TCAAGCTTAA	174420

TAGCCTCTTC	TTTGTCAACA	ACACTTTGAA	CCTTCTCTAC	AAGACTAACA	ACATCCCCCA	174480
TGCCAAGAA	TCTAGAAGCA	ATTCTTTCTG	GGTAAAAGGA	ATCAAGATCT	TCGATTTTCT	174540
CTCCAACAC	ATTAAATTA	ATGGGAACTG	CACAAATACT	TTTAAAAGAT	AATACAGCTC	174600
CCCCCTAG	T ATCTGAATCA	AACTTAGAAA	ATATTGCACC	GGTAAGTCCA	ACATTCTCAT	174660
TAAATTCCT	R AGCAATATTT	ACAGCAACTT	GCCCCATCAT	AGAGTCTACT	ACTAAAATGG	174720
TTTCTGCGGC	TCGCAAAATC	CCCTTTATTT	ТТТТТАТСТС	TTCAACCAAC	AAAGATTCAA	174780
TTTCAAGTC	G TCCTCTAGTA	тсаастатта	CAGAATCAAA	AAAATTAGAT	TCAGCAAACT	174840
TCATAGACG	TTTAACAATT	TTAATAGGAT	CTTTTTCCCC	TTCAATTGAA	AATACTGGAA	174900
CACCTACTTY	ACCACCCAAT	ATTTTTAACT	GTTCTACGGC	CGCCGCTCTA	AAAGTATCAG	174960
CAGCTACAA	AAGTACTTTT	CTATTTTCCT	TTTTAAGCTT	TAAAGAAAGC	TTGGCGCATG	175020
TCGTGGTCT	GCCAGAACCT	TGAAGTCCCA	ACATAAGAAT	ATAAGATTGC	TTATTGGCAG	175080
GATGTAAAC	T AAGCTCATAA	TTTTTGCCTC	CCAAAAATTT	AACAAGATTA	TCATTGACAA	175140
TTTTAATAA	A CTGAGATTTA	GGATCAATGC	CCCTTAAAAC	TTTTACTCCC	TTGGATTCTT	175200
CAATTATAGA	AAAAAATTTA A	CGCCTTATAA	CTCTTAAGTT	AACATCAGCA	TCAACTAAAG	175260
AATTTTTAA	T AATCTCAATA	GCCTCTGCAA	TGTTTTTATC	ATTTATCGTA	GATTTTCCAG	175320
AAAGATAGT	тт <u>таааат</u> ат	CTAAAATTTG	ACCCCAAACT	TTCAAGCATT	AAAAACAACC	175380
CTTATTCTC	A ААААТААТСТ	TGTCAAATAT	AAGATACAAA	AAAAGGCAAT	ATTAATCAAT	175440
ATCTCCTCC	A GTCAAATAAA	ATTTATTAAA	AATAACACTG	GAAGCGGGCC	CAACAACAGA	175500
AACTTCAGT	A TCTAATGAAC	TAAGCTTTAA	TACTATATTC	TCTTTATTGA	GCTTTTTAAT	175560
CTCTTCTTT	AACAAATCAA	AAAAAGCTTT	TAATTTAAAA	CTTTGACCAT	AGAGTACTAA	175620
ATAATTAAA	A TCAAGCATTC	TTTGAATATT	AATAATAATT	ATTGCCAAAT	ATTTAACAGT	175680
ATCTTGCATA	A ATTTTATTTA	TAAAATCATA	TTTTTCATAA	AGAGAAAAA	TGTCATATAT	175740
TGTAACCTT	TTCAATCTGC	CCTCATACTT	TTCATAAAGC	TCAGGAATCT	CACCATTCAT	175800
AAATTCTTTC	GAAATCAATC	TCTGCAAAGC	AAAATTAGAT	ATTAGCATAT	TGACACAACC	175860
CTTATTACCA	A CAAGTTGGAC	AATTTTTTC	TCCCTCATAA	TCAATTATCA	TGTGACTAAC	175920
CATACCTGAT	TTATTATTAA	AACCAGGGTA	AACATTGCCG	CCTGACCAAA	TCGAAAGTTC	175980
AGCAGTATC	GTGTAGTCAA	AAAACATAAT	ATTATCTATA	TTTTTACCCA	TAAATTCAGC	176040
AAGAGATAAA	A TTTTTAACAT	AACTTTCAAG	ATAAACTGTT	AGTGAAAAGT	ATTCCTCAAG	176100
TATTCTCTT	ACAGGAACAT	СТТТТТСААТ	CCACGATCCA	TAGCTATCAT	TAACAATGCC	176160

257 CAATTCTTTA TCCTTTATTA ACCTGTAAT ACTAAAGCCT AAGCCAATAA ACTTATCTCT 176220 TGAGAAATTA TGTTTCCAAA TAATTTCTAT CATATGATCT TTTATTTTTT CTAAAATATC 176280 ATAAGCGCTA ACTGGGGGCT CAAAAGAATG AGTCTCGCTT ATTAAAACCT CGCATTTAAG 176340 ATTGGCAATA CCTATTTGAA AATAATTGCT AGAAATAATA ACTCCCATTG AATACGCATA 176400 ATCTTTATTA ATATCGAGAA GTATTTCTTT TCGTCCATGT TTTTTAACAT CAGACACCCT 176460 AGAGCCAACT TCAATCAAAA GATTTTCTTT TATCATTTGA TTAGTCAAAA TAGTAACTGC 176520 AGCATTTGTC AAGCTTAACT TACGAGCCAG GTCTGTTCTT GAATATTGCA TATTTTTCAA 176580 ACTAAGAAGA ATTTTTCTTC TATTTCCGCC TCTAATTGAA ACCATATTTT CACCCTGCAT 176640 176700 CAATACAATA TTTTATCTAT TCTTAAAAGA CAAACATGCC TTTATAAGGC TAAAAAACAT 176760 TTTACATCAT AATATCACAT TCATAAAATA TCAAAAACTT AAAGCTTAAC AAAAAAGGGA 176820 ATAAAATCAT TTTTACATAA AAACTCATCA ATAAAATTAA TTGGATTTAA AAATAATAAA 176880 TACAAGAAAA GCCATTTTGC CTTAAAAACC ACTAACTTTA ACTTAATTTT TCCTTAAAAT 176940 AAGAAAATTC CATAGTAAAA CTGCCCCTTC CTTTAGTAGA ACTTCTCAAA ATAGAAGCAT 177000 ACCCAAAAAG TTTCTCAAAC GCCGCCTCTG ATTTTATCAA GTCATACTCT CCAATATTGC 177060 TAACTGAATG AATAACACCC CCCATAACAT TTAATGTAGA AATAATTTCG CCTGTATGCT 177120 CAATGGGTGT TCTAATTTCT AATAACATTA TTGGCTCAAG TCTAATAGGA TCTGATTTTT 177180 GAAAAATACT ATGAAAAGCA AATCCTGAAA TTGACTCAAA AGCACTCTCG CTAATCTTAT 177240 TGGCCCCACA AACAATAGAA AAAATACTAA CATTAATATC AATAATGGGA TATCCAAAAA 177300 TTCCACTTAC AAATGCAGAT GTAATTCCCC TCAATATTGC AGACTTAATT ACAGGTTCAA 177360 TGCCACATTC AAAATCAATT TTATTTCCCG CACCCCGCGA CAAAGGTTTA ATGATCATTC 177420 CAATTTTAAA ATCAATATTT TTGCCAGCAA AAATATTGTT AAACTCAAAA ACTTCTTTTA 177480 CAATTTTGCC AGCACTTTCT CTGTAACTTA CTTGAGGCTT TCCTGTATAA ACATTAAGAT 177540 TAAATTCATC TTTAATTCTT GTTAAAATAA TCTCAAGATG TAATTCACCC ATTCCAGATA 177600 TAATTAATTG CCCTGTTTCT TTACTCTCAG AATAACTAAA GGTAGGATCT TCTTTAGATA 177660 TTATTTCAAA AATTTCCTTA AGCCTAACCT CATCTGATGA TCTTTCAGGC TCAACAGACA 177720 TTAAAACAAC CGGCTCTGGA AACATAACAG CCTCAAGTAA AACATTATTA TTCTCTTCAA 177780 CAAGAGTATC TCCTGTAACA GAAAACTTTA ATCCCAAAAC AGCACCAATA TCGCCTGTTT 177840 TTACAAAATC TATTTGTTCA TTTTTATTTG AAAAAACTCT AAAAATTTTT GTAAACTTTT 177900 CACGCTTACC ATTTGAAGCA TTGATAATTT TTTTATTAGG ATTAATCTCG CCAGAATAAA 177960

258

			236	1		
СТСТААСААА	ATAAAGATGA	GAAGCAATCA	CGCTTGAATA	TTGAACTTTA	AAAACAAGGG	178020
CTGACAATTT	TTTATTTTCA	TTAGGATCAA	СТААААТТТ	TTTATTTGTG	TCTAAAGAAA	178080
AAGCGCTAAA	ACTTTTTCA	AAAGGACTTG	GCAAGTAATC	TACAATCGAA	TCAATCAAAG	178140
GTTCTATTCC	AATATTTTTT	AAACTAGTTC	CCATTAAAAC	AGGAATAATA	AATCTAGAAA	178200
TAGTGCCTCT	TCTAATCTCT	СТТТТААТАА	TATCTAAACC	AATCTCTTTG	TCTTCAAGAA	178260
ATAATTGAGT	AATTTCTTCA	CTAAATTGGC	TAAGAATGTC	TATTAATTTT	TTTTTAAAAA	178320
GAATCACTTT	TTCAATAAAT	TCTTCTCTAA	TTTGACTATA	AGTTAATTTT	GGAATTCCAT	178380
TTTCCATTGA	AAAATGAAGC	TCTTTATTTA	AAATAATATC	AACTACTCCT	TCAAAATTGC	178440
TTTCATTTCC	AATTGGAATT	TGCAAAACCA	AAGGAATAGT	TTTAAATTTA	TTTTCAATAT	178500
CTCCCACAAC	TTTAAAAAAA	TCAGCACCTA	TTCTATCCAT	CTTATTAACA	TAAGCAAGTC	178560
GTGGGATTTC	GTATTTTTCŢ	GCCTGTTTCC	ATACAGTTTC	TGTTTGGGCC	TGAATTCCAT	178620
CAACAGCGCT	AAAAATAACA	ATACCCCCAT	CAAGAACTCG	AAGAGATCTT	TCAACTTCTG	178680
CTGTAAAATC	CACATGCCCA	GGAGTATCAA	TAATGTTTAT	TTGGCAATCC	TTCCAATGAC	178740
AAGTAATGGC	AGCTGAACTA	ATAGTAATTC	CTCTTTCTTG	CTCTTGAGGC	ATCCAGTCAG	178800
TAATAGTGTT	TCCTGAATCT	ACATCCCCCA	TTTTATGACT	TTTGCCAGTA	ТААТААТАА	178860
TTCTTTCTGT	GGTAGTAGTT	TTTCCAGCGT	CAATATGAGC	CATAATTCCA	ATATTTCTAA	178920
ТАСТСАТААА	TCCCCAACAA	CTACCACAGC	CTCAATGCAG	ATAAATTCAT	TAGCACAGGT	178980
TAAACCTTTT	AATAAAATTG	CTATTTTGCA	TCACACTCGC	AACATTTGCT	TTCATTCTCA	179040
TCGTGACAAA	AACAATCGCA	ATTTTCAAGC	AATGCCTTAT	GCATCCATAA	ATGTTTCTCA	179100
AGATCACTCA	TGATATCATC	САТААТАТТА	GCAGTACCAT	AATCACCAGC	AGTATCAATT	179160
AATTTTCTCA	TTCCAAAAAT	ATTCTTCAAA	ATCTCAGTAA	GACTGCAAAC	AATGCTTTCC	179220
ATTGAGGGCA	AAAAATTAGA	AGTTGATTCA	ATATCAAGCT	ССТТААТААА	GGATTTTTTC	179280
ATAAACTCAG	AATATCTAAA	TTCAGAATCA	TATCCAAGCA	TTCTTGAGCG	TTCTGCAACA	179340
АТАТСААТАА	TTTTTTCAAT	ATATTCATAA	AGTTTTTGAG	TTTTTTTGTG	AATAACAAAG	179400
AAATTGGTAT	СТТТТАТАТТ	CCAATGAATA	CCTCTTAAAT	TAGAATAAAA	AATATGCAAA	179460
CTTGCTAACA	ATTCTTGTAA	TTTTAATTGT	ATTGCGTCTA	AATCATCCTT	TTTTATATAG	179520
СТТАААТАСТ	TTTCCATAAC	TATCTCCTTT	АТАТААТТАТ	TATAATACAT	AATGAGATAT	179580
AATTATGGTT	TTAATACCAT	AATAAATAAA	AAGGATATTT	AATGAAAAA	TTGATTATAA	179640
ТТТТТАСАСТ	GTTTTTATCT	CAAGCATGCA	ATTTAAGTAC	AATGCATAAA	ATAGATACAA	179700

AAGAAGATAT	GAAAATTCTA	TATTCAGAAA	259 TTGCTGAATT	GAGAAAAAA	HAAATCTAA	179760
ACCATCTAGA	AATAGATGAT	ACCCTTGAAA	AAGTTGCAAA	AGAATATGCC	ATTAAACTGG	179820
GAGAAAATAG	ААСААТААСТ	CACACCCTTT	TTGGCACAAC	CCCAATGCAA	AGAATACATA	179880
AATACGATCA	АТССТТТААТ	TTAACAAGAG	AAATACTGGC	ATCAGGAATT	GAACTTAACA	179940
GAGTAGTTAA	TGCATGGCTT	AATAGTCCAA	GCCACAAAGA	AGCTCTTATT	AATACAGATA	180000
CCGATAAAAT	AGGTGGCTAT	AGATTAAAAA	CGACTGACAA	TATAGATATA	TTTGTAGTTC	180060
TTTTTGGAAA	AAGAAAATAT	AAGAATTGAC	ACCATTAAAG	CTTATACTGT	АТАСТАСТТА	180120
TTAGTAATAA	AAGGGCTCAT	AGCTCAGTTG	GTCAGAGCGC	CTGCCTTACA	AGCAGGATGT	180180
CGGGAGTTCG	AATCTCTCTG	GGCCCAAAAA	TAATCTAAGT	CTCAATTACC	TTTAGCTTTA	180240
AAAGCAAATC	TATTTTAGAA	TCTTTAAGCA	TGTTATTTAA	TTCTTTTTGC	ACTATATTAG	180300
CTTTTATTAG	GCTTTCAAAA	AGAAAAATAA	ATGCTCCTCC	TTTACCAGCG	CCACTTAACT	180360
TACCAGAAAG	AGCGCCCAAT	TTGATTCCCT	CACTTATCAG	CCAATCAAGA	GTATCATTAG	180420
ACAACCCCAA	ACGCTTTAAA	CAACATTGTG	CAATATTCAT	TTCATTAGCT	AAAGAATACA	180480
CATCCTTATT	CTGAAAAGAA	GCATAAGAAT	TGCTTACGGC	AAGGCCAAGC	TTTTCAATAA	180540
AAACAAATAA	ATAAGCATTT	GATAATAGAT	СТТТТТТСАА	ATTAACAACT	ATTTCTTTAG	180600
TTGTTAAATC	TCTTTTTATT	GCTCCTATTA	GAAAATAAAA	ACCAGAATCT	TTTATTTTCT	180660
TTGAATGTAA	AACATTTTCT	TTTTTCTCTA	AATAAAAAGT	TCCATTAAGA	TCGATTAGTC	180720
TAATATCCAT	TCCAGAAGAT	TTGCCATGAA	AAATGTTTTC	AATTTGATTT	GCCAACAAAA	180780
TTTTATTACA	ATCCTTATAT	TCAAAATGAC	TTGTAATATA	TTCTGCAAAG	САТАААСТАА	180840
GACTAGCAGA	AGAACCAAGA	CCAACTCCAA	TAGGAATTTC	AGAAATTATA	TCAAACTCAA	180900
TAGGATTAAC	TTTGCTATAA	TTTGAAACAA	TAAAACTTAT	AAGGCTATTT	AATCTTGTAC	180960
TGGGTTTTCC	TAAATATTTC	CAATTTTTAG	ATACACTATA	AATCAGATCC	ATATAAATTG	181020
GAACTGTAGC	GCCAATAACT	GGGAACCCAT	AAACAGCGCT	ATGTTCGCCT	AAGAACAATA	181080
TTTTAGCAGG	CTTTCTTATT	CTTAGCATTT	ATCGCTTTCA	AACTTAATGC	CTTCATTCTC	181140
ТААААСААТТ	GAAATAATTT	TTGACAAATT	AAAAGCTTCA	ATATTGGGCC	TGTAAACTAA	181200
AAAAGTTTCG	TTTCCGGCTC	CCAAAGCTTT	AATCAAATCA	CATTGACCTA	AAAGGTGATC	181260
AAAACTTGAA	GGCAAAGCTG	CCGAAACTCC	TATTGCCTCT	CCAATTGCCA	ATCCCAATTC	181320
TTTAGCCCTT	CTTAAACTAG	AAATTAATGC	GGATTTGGAA	TTGCTAGCAT	TTAAAACAAG	181380
CTTTTTCATC	TCCAAATTGC	ATTTCAATAT	AAAATCTAAA	ATAGAATTTC	TATGTTTATT	181440
GTATTCACAA	ATAGACGTAG	TAGTTTTAAT	TGCTTGCAAA	CCCTGCATCA	AATAAAAATC	181500

ATTAAACTCT	ACAGCACCCA	GCTGCCTGCA	TTTAGGATTA	AAGCCGCCTT	САААСТСААТ	181560
AACACCCCCA	AAAATACTAG	TAGCAATATC	ATATCCACTG	CCTATTCCTC	CTTGAGAATA	181620
CCTGTAAGCT	TCCAAACAAT	АТТТАААААТ	TTCACCTTTC	TCAACAACAT	TGGTAGCATT	181680
GTGAATTAAA	AAAAGCCCAC	ACACTATGCC	AATAGCAACG	ACAGCACTTG	AACCAAATCC	181740
CTTTTTAGTT	CCATCATTAA	AGAAAAAATT	ACTTGTATCA	ATATATACAT	CATACGCAAA	181800
ATTCTCTAGA	ТТАААААААС	AATTTTGACT	CAAGTAAGCA	AACATTTTAA	AAACAAAATC	181860
GCTTCTATTT	TCTATTAAAG	AAAAATCGTC	TATTTTTTC	ТТТТАСТАА	AAAAGCGCCA	181920
AGAATCGCTC	TTTTTAAAAG	AAAAAAATGC	TCTCTTGTTG	ATGGCAATTG	CCAACCCCAA	181980
TCCCTTTTCC	TCTAAAATAG	TATACTCCCC	CATTAAAAGT	AAATTTCCGG	GTACAGAAAA	182040
ACTAATCAAA	TCCATTCTAA	GTCACACCCA	ACCTTTGAAA	СААТААААТС	AATGCCAGTA	182100
AAATTTTGCT	TAAGTCCTTT	TAAAATAGTA	TTTAAATTTT	CCTCCAAACA	AAGAAACTTT	182160
ACTTGGGGGC	CTGCATCCAT	CGTCTCAAAT	ACAAAAATCC	CCTCATTTCT	CAAATCAGCA	182220
GCATACCTAA	TTAAATCTAT	TGTACTATTT	ТТААААТААА	AAATAGAAGA	TGCAAACATT	1,82280
AAGGCAAACA	TATTCTGATA	ACTTTTTACA	ATAGTTGCTC	CAAAATGTAT	AAAATCCTTT	182340
TTTTAAAAAA	AAATATAAAG	CGTCTTTAAA	AATCTTTTTA	CTAGAGGCAA	TCCAAGCATC	182400
АТААТАААТ	TTATGCCGTT	TGCAAATATT	CATTGCGGCT	CTTGAAGACA	ATTCTTTTTC	182460
ATTACTATCA	ATTATGGCAA	ATATTATTCG	CAAATCATTA	AAATAAGATT	GATCTCTTAA	182520
TTGAAAAGAT	TCTTTTGAAC	CCTCTTTTAA	AATAGTAAAC	CCCCGTAAA	TAGCCCTTGC	182580
CGCAGAAGCC	GATCCTACTC	TTGCAAGATT	AGATGCGCTA	TTACAAGAAT	ATTTATTAAA	182640
ATATTTCAAA	ATACAAGCAG	CAATAGAAGC	AAAACCTGAA	CTTGAACTTG	CAAGGCCTGC	182700
TGCTGTCGGG	AAATTGTTTT	TACTTTTAAT	ТТТАААТСТА	ACATTTGGTT	CATTAAGAAT	182760
TTTTCTTGCA	TAATCAAAAA	ACACCTTTTC	TCTATTTTT	AATATAACTG	GCTTTGAATT	182820
TAAAATTATT	TCATCTCGAT	TTGAAAGTTC	AAGCTCACTT	ATTGAATAAA	ACTTGTCAAC	182880
ACTAACAGCA	AGACTGGAAG	TAGCTGGAAT	GTTTAAAAAA	ACATCCTTTT	TCCCCCAATA	182940
ТТТААТТААА	GCTAAGCTTG	CATGAACTTT	ACACTTTATT	TTCATTCTCT	AACCTTATTT	183000
TCTTCAAAAT	TTTAAAAGCA	AAATCAAAAG	ТТАТАААТАТ	CATTCTTTCC	ATTTCCAATA	183060
ATAATTTGTC	ТТТТТСАААА	TCAGAAATAT	TATATTTTGT	CTTTAAAAGA	TGGAGTATTT	183120
TATTAACATG	CAATCTCATA	TGACCCTTTT	GAATCCCATT	AAATGCAAGA	GCCCTTAATG	183180
CTGCAAAATT	ACTAGCAAGT	CCAACACAAG	AGAGAATACC	AATAAATTCG	СТСТТАСТАТ	183240
		•				

TTACATTCAT	AATTTTAAAA	CTTAAAATTG	261 AAGCTTCATT	AAAAGATATA	ACCCACCTT	183300
TAGTTCCAAC	TTGCAAAGGA	ATTTCAATTT	СТССААСТАА	AGCATTGTCA	GTAGTATAAA	183360
ATTTACTAAG	GGGAAAATAT	TTGCCGCTTT	TTGAAGCAAA	TTTATGAACA	GAGGCCTCAA	183420
GAGCTCTTGT	GTCATTAAAA	GTTGCAAGAC	ACACCCCTGT	AATTCCATTC	ATAATACCTT	183480
TATTATTAGT	AACAGCTCGC	TCCTCTTCGT	AAAAACCTAT	ACTAGAAATA	AGTTCAATTT	183540
TTTTAGCCAA	ATTCCAAGAA	TCCTCTTTAC	CCGGTAGCAA	ATGCTTAAAA	TCTAAAACAA	183600
AACGGGCTTT	GGCTGTAAAT	ТСАСТААТАТ	CATTGCTTAA	AACTTTTAAA	ACACACTCAT	183660
ATCCGAATTC	ТААААААТА	AATTCTGCTA	CACGCTCTGC	AATTGAGTTT	AGCAAATTAG	183720
CACCCATAGC	ATCACAAGTA	TCCACATAAA	TATTTAATTT	TTGAATACCT	AATTCTTTAA	183780
TGTGCCTAGT	TGACAACCTT	CTAAATCCAC	CCCCCTTTG	ATTCATATTG	GTTAAAAGAG	183840
GTTCAATCCA	AGTCTTAATT	TTATCACCAA	GGTCAACAAA	AATTTTACTT	AAATCTTTTT	183900
CCGATTTTAT	ATAAATTTGC	GAAATTCCCA	ACACTTCACC	CAAAGAATAC	CTTAAATCAG	183960
CATTTTCAAG	AATCTTTGCC	GCAAAATTTA	GGGCAGCAAC	AACAGAAGAT	TCTTCTGTTG	184020
CAATTGGCAA	AGAATAGTAT	TTGCCATTTA	TTTTCAAATT	ТТТТАСААТТ	CCAATAGGAA	184080
AAGATAAATA	TCCAATATAA	TTTTCTATCA	TATTAAAAAG	AAAATCTTCA	TTGGCATTAT	184140
ТАТАААААА	ATCTTTATAA	GATAATTCCA	AAAAACTTTT	TATCTCTTGC	СТТТТТТСТА	184200
AAACGCTTTT	ATGTCTAAAA	TTTTTACTAA	GTTCCATAAA	ACTGCTTAAA	GACTCCAAGT	184260
TCATCAAGCA	AATAACTACT	ТАААААТАС	TTATTATTTC	TAAACTCTAA	TAAACTTTTG	184320
CTTCCACTTA	AAAACATAGA	CATTTTTAAA	ATATGTTCAT	AATCAGAAAA	AAGACCAAAT	.184380
ACAGCATCTT	CTCCTGAATC	ATAAAAAGCC	CTAAGAACAA	CTGCTGCAAC	ACCTATAAGC	184440
CTGGCTCCAA	GGGCAATGCC	TTTAGCAATA	TCCATGCCCG	TCTCATATCC	ACCAGATGCA	184500
AAAATATTAG	CCTTTAGAGA	ATCATCAATA	CTAAGTAAAG	TAAAAACCGA	AGGTATACCC	184560
CAATCAGAAA	AACAAGATGC	AATGTTTAGA	TTATTACTCT	TCATGCCTTC	TACTAAAATC	184620
CAATTAGTTC	CACCACTCCC	TGCAAGATCA	ACATAAGAAG	CACCAAGGCT	GAACAATTCC	184680
TTAACGTCTT	TTGGCGAAAT	TCCAAAACCT	GTCTCTTTAA	CAATCAATGG	AACACTTAAA	184740
AAGTCTGACA	ATTTGGCTAT	TGACTCTCTT	ATTCCTTTAA	AATTTCTATC	TCCATCAACC	184800
TTCATCAATT	CTTGTCCTGC	ATTAAGATGA	ACAATAATTG	CATCAACTTC	ТААТСТТТТА	184860
ATCATTTCAG	CTATTTTAGA	AATACCAAAT	TCAACAATCT	GAACAGCACC	AACATTGGCA	184920
AACAAAGGAA	TATTATGAGC	ATACCTTTTA	AGAGTAAAGT	CTCTTATGTA	CTCGGGATAC	184980
TTAAACAAAA	GCTTAAAAGA	ACCTAGCCCT	ATAGGAATTT	ТТАААТААТТ	TGCAATTCTA	185040

ACTAAAGATT	TATTAAAGTC	ATTCCCCTCT	TTACTGCCCC	CTGTCATGGA	AGAAATAAAA	185100
ACAGGCATAC	TAATATTGTA	TCCAAATATC	TCTTCTTTTA	TGTTTATCTC	GGAAAAATTA	185160
AAATCACTAA	GAGCATTGTG	TTTTAGCTTA	ATAAACTTTA	AGAAATTACA	GCCACCTTTA	185220
ACATCGTTTT	TATTTAAACA	AATCTCAATA	TGCCTTTTTT	TATTTTCTAA	TATATTAGGC	185280
TCGATACCCA	TAAACTCGGT	ATCCATCATT	CCTTAGTTCT	ТТТАААТААА	ATCCTCTGGA	185340
TTCACCAGGA	ATTATTTTAT	TTTGAAAÄAA	ATCTTTATAT	TCTTCAAAAT	TTGCATTATT	185400
TCTATTTTT	ATAAGACCTT	CAAGATCCCA	ТААТТТААТА	ACATCAAAAG	CACTCTTTTC	185460
GATGGTAAGT	ТСАТАААТАА	TCATAATATT	GCCAGATCCA	TAAGAGCAAA	ACAATATCTT	185520
TTCCCCTGTA	ATATCTTTCT	TGGAAAATAC	TCTTTTTAAA	TAAAATGCTA	AAGATAGAAA	185580
AATTGAACCT	GTATACAAAT	TTCCCACTTC	CATAGCAGCT	TCAACTCCAT	CGTAAAAATC	185640
TATTGATTCT	AAATAAGCAT	TTCTAACAGA	TTCGTCATCG	СТАТААТАТТ	TTTTCAAAAT	185700
ATAATGCATT	GAATCTATTG	GCATTTTAGC	AAAAGGAACA	TGCAAAACAA	ACCTATAATT	185760
AGAAAATAAA	TCTTTCATAC	TAAGTTGCTT	TTTGAAAGCA	AAATCTCTTA	AAGCATTTTC	185820
GTTTGCATTA	TTGTAACATT	CAACTGAATA	CTGACCTCGC	ACCTTAGCCT	CAACACTTCC	185880
AAAAGGCCTA	AAAAAATCGT	CAACATCATC	AGTATAAACT	CCAAATTCAG	ATAAATTGAT	185940
CGAAAGTAGC	TTTGGATTTT	TTTCAATCAA	AATTGCAGTT	GCGCCGGCTC	CTTGGGTAAT	186000
CTCAGCCGTA	GTAAGATTGC	TATAATGTGC	AATATCTGAA	GAAAAAACTA	TGCCGTATTC	186060
AGAATTATTG	GAATGGCTTA	AAACACTTGC	CACAGTGTGC	AAAGACATAG	CAGCACCAGC	186120
ACACGCATGT	TGAACCTGGA	AAGTTAGAAA	ATTATTTCCC	AGACAAATAC	CAGATTGCTT	186180
TAAGGCTCCA	AAAACATAAG	AAGAAATGGC	CTTTGAATGA	TCAACGCCTG	TTTCAGTTCC	186240
ACCCAAAAGT	ATTCTAATTT	TGCTTAAATC	AAGATTATTG	TTGTCAAAAA	TAAGCTTAAC	186300
AGCCGAACTT	GCCATGGTTA	CACTATCCTC	ATTAGGACTG	GTAAACCTAA	AACCTTTTTG	186360
CAAGGTTGCA	TCTATTGCTC	TATTGATTTT.	TTTAAAAAAA	ACTTCATTAG	AAAAATATAA	186420
AGGATTTTCC	AAAAGAACAG	AAAAATCTAA	ATAATTTAAA	GGTAAAAAA	TTCTAATATC	186480
ACTAATACCT	ATTCTCATAT	ACTCCTCAAT	GAATTAATGG	CCTTAAGTAT	AATATTATAA	186540
ТТТАСААААА	TTAGCAAAAT	СТТАТАТААТ	AAAACCTAAA	AATGGAAGTT	TATGAAAATA	186600
GCCGTGCTTT	TATCTGGAGG	AGTCGACAGT	TCTGTTGCCC	TTTATAGAAT	TATAAACAAA	186660
GGATATTCAA	ATATAAAATG	СТАСТАТТТА	AAAATCTGGG	TTGAAGATGA	ACTGTCTTAT	186720
ATTGGAAACT	GCCCTTGGCA	AGAAGATTTA	AATTATGTTG	AAGCTATATG	CAACAAATTT	186780

263 AATGTACCGT ATGAAATAAT AAACTTTCAA AAAGAATATT ATAACAAAGT AGTAAGCTAT 186840 ACTATTGAAG AACTTAAAAA TGGCAATACC CCAAGTCCAG ATATTTTTTG CAATCAAAGG 186900 ATAAAGTTTG GAGCATTTTT TGAGAAAATC AATAGCCAAT ATGATTTGGT TGTAACGGGA 186960 CATTACGCTA AAATACAAAT AAAAGAAAGT AAATTTTTAT TAAAACAGGC AAAAGATAAA 187020 ATTAAAGACC AAAGCTACTT TTTATCTCAT CTCTCAAA AACAAATGTC AAAACTATAC 187080 TTTCCCTTAG GCACATTACT TAAAAGCGAA GTAAGACAAA TAGCTAAAAA CATAAATTTA 187140 CCCAACAAG ATAGAAAAGA TAGTCAGGGT ATTTGCTTTT TAGGAAAAAT TAAATATAAC 187200 GAATTTATCA AATACCATCT TGGAGAGAAA AAGGGAAATA TAATTGAAAA AGAAACGGGA 187260 AAAATAATAG GAATTCACAA CGGATATTGG TTTTTTACAG TTGGACAAAG AAGAGGAATA 187320 AAACTTAGCA ACGGGCCATG GTTCGTCATA GAAAAAGATC TGGAAAAAAA TATTATATAC 187380 ATATCCCATA ACGAGAATTA TTTAAAACAA GCAAAACGCA AATTTTTAGT TCACGAAATA 187440 CATTGGATAA ACGACACC TACGAACTTT GAAAATTTCA AAATTAAAAT AAGACATGGC 187500 GAAAAGAAAT ACTCATGCAA ATTAAAACTT ATTACAAATA ACTTAATGGA AATTTCTTTA 187560 AACAAAAAAG ATCAAGGAAT CTCCCCAGGA CAATTTGCAA TTTTTTATAA AAACACAGAA 187620 TGCCTGGGGG GTGCTAAAAT TTTTAAAATC ATAGAATAAT AATCCGCCCA AAAAGTTAGA 187680 GAAGATTTTT CAATCTTCTA CTTACTTTTC GATCTTAAAA TAATCAACAG ATTCTTTTAA 187740 ATCTTTTACA CTCTCTAACA TCTTTTCAGA CATTGCAGAA AGCTCTTCAC TGCTTGAGGC 187800 TGTAGTTTGG ACTAACTGAC TAACCTGCTC TATTGCATTT TTAAATTGCT CTATTTGAAC 187860 ACTITGCTTA TAACTITCAT TAGAAATATT TITTACAAGT CTGGCTGTTT GTTCCATACC 187920 AGGAACTATT TGTTCAAAAT TTTCCCCAGC ACGACTTGCA ACAGTTAAAC TTCTGTTTGC 187980 AATATCAATA ATCTCTCTTG CTGATTCTTT GCTTTGATCT GCAAGCTTTC TAACCTCAGC 188040 AGCTACCACT TCAAATCCCT TGCCCTTTTC TCCCACTCGT GCAGCTTCAA TCGAGGCATT 188100 TAAAGCAAGC AAATTGGTTT GCCTTGTTAT CTCATCAATA ATTCCAATTT TTTCAGTAAT 188160 TACAGTCATT GCCTCAATAG CCTTAACAAC AGATTTATGC CCCTCTTTAG TCCTTTCATT 188220 AGTATTAACA GCAATTTTTT CAGTAGTAGC TGCATTTTCA GTATTCTCAG AAACACCTTG 188280 TGAAATTTGC TCAATATTTG CTGTCATTTG CTCTAAAGTA GAAGCCTGCT CAACAGCGCC 188340 AGAACTTAAA TTCTGGCTTG CATTTGCTAT TTGAATTGCA TTTTCATAAA GATAATCTAG 188400 ATTTTCAATA ACTCCTTTTG CAACTGAAGA AAAATTGGTT CTCAACTGCT CAAGCCCTTC 188460 GTACAAACTG TAAAGCTCTA CAGTATCCCA TTTGCCAAAA TTAATATCAG CAGTAAAATT 188520 ACCAGAAGCA AGTCTCTCAG AATATTCCAG TATCTTATTC AAAGAAGAC TTAACTTTTT 188580

265 TTCAATAACA CTAACTTTCT CACAATGTC TTGCATAGCA ATAACAGATT CTCAACGGC 190380 CCTACCACCT ATCTGAGAAT TTTCATTCGT CTTTAAAGCT ATTTGTTCTG TTTCATAAGA 190440 ATTATTGGCG CTCATGTTGA CACCTGAGGC TATTTGCTCA ACATTAGCTG ACATTTCTTC 190500 AAGAGCAGAT GCCTGTTGCA ATGCACTAGA GCTTAAATTT TGACTTGAAC TGGCAACTTC 190560 TAAACTTGCC TTATTTACAT AGCTAATATT TCTCAAAACA CTAGAAATTG CTACAGAAAT 190620 AGCTTTTTC ATTTTAACAA CCTGAAGACT TAACATGCCA AGTTCATCAA GAGTATTTTC 190680 ATCATCATCA AGAGCATAAT CTTTATCTAA ATTGCCCTTA ACCATATCTT GAACTAGAAC 190740 TCTAATTGCG TTTAAACGAA AACTAATAAT CCTGTCTATT CTAATTGAAA GAACAATACT 190800 TAATGCTATA ATGCCTAAGA CTGAATATAA AATATACTGA AATCTTAGAC TAGATATTAC 190860 TCCGTAAATA TCCTTATAAG GAAGCCTAGC AATAAGTACT CCACTCTTTT CTCCCAATTT 190920 ACTACTTATG GGCAACATTG CATAATAACA ATCTTCTCCC ATTTCGGACA AAAGTATTCT 190980 ATCAATAGTG TAAACCGACA CTTCACTGGC AATGTTTGAT GGAAAAGGGG GCTTAGAGAA 191040 AACATCTTTA AGAACATTCA AAAATTTAGA ACTAACCCTG CTGGTTTCAT TATATTCTTC 191100 AAAAGGATTA ACTGCTATAT TGTTGGGATC CACATAAATA AAATTGCCTC TTTTATAAAA 191160 ACCGAATCTA AATCTATCAA AACTATCTGC CACAATATCA TTAAGCAAAT ATCCGGCCAA 191220 ATACCCACAA ACAAGTTTAT CTTCTGGGGA ATATACAGGT ACAATTATTG CAAAAGCCTT 191280 TTTTTCGCTT TGTTTAGACC TAATAGCAAC TTCTGCGGAT ATTCCTTCAG AAAGATTTGA 191340 ATACCAACCT ATAAATTTTA ATTGGTTTTG CCTATAATCC TCAACAGCTT TTTTAAAATA 191400 ATTGGTATTA GCCTCAGAAT GACCAAAATC CATATTATTC TCATGTCTTG TGCTAACAAT 191460 TACTCTCCT TCAAAATCAA AAAAAGCGAA TTCTTCAAAA AGGGTATCAT TTTTAAGATT 191520 GGCCATAAAA TTGTATAAGT ATTGTCGATA TTTTTTGCTC ACCTTTACAG AGTCAATAAC 191580 AAATTTTGGA TTTTTTCTTA AATCTATCAA TTCCGACTCA GAGAAATCTT TTCCTCTATT 191640 CTCAGACATT GCAAATTCTG ATATGGTTTC AAGTGCCAAA TTAGAAGCTG CACCATTGAT 191700 TATGACATGC AGGGTGTCTA AAAAAGATTG CAAAGAAAAA GCTGCTCTTC TTACTTGCGC 191760 CCTTGTAAGC TGCTTATAAT AATCTTCTAA ATAACCGCAT AAAACAAAAT TAAAAATCGT 191820 GGAAAAAAGT AGCAGTATAA AAATTAAAAA CAATAATAAA AATCCAACAA ACCTGTATTT 191880 AAGCTTCAAT AACATAATAA ACTACCTCAC AAATCACCTA CTTATTTAAT CAAATAAACT 191940 CAAGACCAAA GGGTATCAAA AAAAAATTTA CAGCAAAAAA TCAAAAAACTC TCAAAAAAAT 192000 AAAAGAATTT TCACAACATG AAAAACAAAT TATAAACTAT TATTATTAAC TGCTAATGCT 192060 TTTTATAGGT TATTCCTAAG AACTTAGGCG CATAATTTTT TTTTGAAAAA AAGATAAGAC 192120

TTAGAATAAT	AATTAAATAT	GGGTAATCA	CTAACATTTT	GGGAGGCATT	ATTAAAGAAA	192180
AAAAGGGTAA	TTGAGCCAAA	ACAATTGCCA	AAGTTTTCAC	AAATGAAAAC	AAAAAACTGC	192240
CTATTAAAAC	TCCCAAAGGC	GTCCATTTTC	CAAAAATCAA	CATTACAATA	GCAATAAAAC	192300
CTTGTCCACC	TGTAACCCCT	TGCACATAAC	TTGATGCAAC	CACCGTTGTA	AGAACAGCAC	192360
CTGAAACCCC	TGCTAAAAAA	CCACTCAAAA	GAACGCAAAA	AAATCTAATT	TTATTTACAC	192420
TAACTCCAAC	AGACTCTAAT	ACCTCTGGAT	TTTCACCACT	TGCATTAATT	CTAAGCCCAA	192480
TTTTAGTGTA	TTTGAAAACA	ATATGAAACA	AAACCACACT	TAGGATTGCA	ATGTATACAG	192540
AATATCTTTT	GCCAAAAATT	TGAAAAATAA	AAGATGTTTT	GTTTAAAATT	ССАТСААААА	192600
GTATCGGCAA	CTTTATTTCT	ATAGGCGGAG	TTGAAATAGA	AGAAAAAATC	AAAGTGCTTA	192660
TAAAAACAGC	AATAGCGGGT	ССТАААААТ	TAAGTGCCAT	TCCGGTTATA	ATTTGATCTG	192720
АТТТТААААА	AATTGTAAAA	ACAGCGTGCA	AAATAGCAAG	AACAAGCCCT	GCTAGCCCAC	192780
CAGCAAAAAT	TGAAAACAAT	GGATCATTTG	TAAAATATGC	AACTGTAGCT	CCTGAAAATG	192840
CTCCTATTGT	CATTATTCCT	TCAAGTCCAA	TATTAATAAT	TCCACTTTTC	TCGCTTATAA	192900
GACCCCCAAG	ACCAGCTAAA	ATTAAGGTTT	GAGAATTTAT	TAAAGTTTCA	CTAATCAAGA	192960
АТАТТАТТАТ	ATTTGACACG	CTTAACACCT	ТТТААААСАА	ТТТТАТТТАА	AAAATAGCTA	193020
GCAGAAATTA	CAAGAACAAT	TATTCCCATC	ATCAAAGATA	CAATTGAAGA	TGGAAGGCCC	193080
ATTAAACTTT	GAACTCTACT	GCTTCCATAA	AGCAATATAG	AAAAAAGAAT	GCTAGAAAAT	193140
ATTATGCCAA	TTGGCGAATT	GTTTCCCATA	AGAGAAGCAG	CTATCCCATT	AAAACCAATT	193200
CCTTGCATAT	AAGAAAGCTT	AAATATAGCT	TTATTAACAC	CCATAAGTTG	AATAGCACCA	193260
GCAAGACCTG	CAACAGCTGC	TGAGAGAAAC	ATTGAAAAA	TTAGCACAGC	ТТТТАСАТТА	193320
ATACCCATAC	ATCTTGAAGC	TTCAATATTA	CTTCCTGTGG	CATTTATTTT	AAATCCAATA	193380
ATAGTTTTAT	TAAGTAAAAA	ССАТАТТААА	ATAGCAAAAA	TTATACCTAA	AATTATTCCA	193440
AAATGAAGAG	GTGCTTTTAA	AAGCTCATTA	ACAAAAGGAT	GAGAAGATCT	ATAAGCAAGA	193500
CCTTCTGGTG	AGAGCTTCCA	AGAAGCTAAA	АААТСААТАТ	ATGCGCTTTC	TTTAATGGGT	193560
TTTGAAAAAT	CACTATTATC	TCTTTTAATA	AAACTAAAAT	СТААААТТАТ	ATTATTTAAA	193620
TGAAATAATA	TCCAATTAAA	CATTATTCCT	GAAATCACTT	CGCTAATATT	GAATTTGGCT	193680
TTTAAATATC	ССАТТААААТ	TCCTAAACTG	CCTGAAGCTA	AAAAAGTAAT	ААТААААТА	193740
GTAATTACAT	GTAAAATTGG	AGGCAAATCA	AGTAAAACTG	ATGCTATTAA	AGCAACAATA	193800
GATCCTAGTA	TAAACTGGCC	TTCAACCCCA	АТАТТАААА	GACCCGCTTT	TAAAGAAATA	193860

			267			
CCAATAGAAA	GACCTGTAAA	1'CAAAGGA	GCTGAATAAC	ТТААААСАТА	CTAAATGT	193920
TTGGGAGAAG	ААААААТААТ	TTCTAATATT	ATAAAATACA	TTCTAAAAGG	AGAATGACCA	193980
AGCCCCATCA	CCACTAGCCC	AACAATTAAA	AATCCAACAA	ATAGAGCAAA	TACACTAACA	194040
AATGCTGAAG	AATTTAAAAA	TTTCAAAATA	AATTTACTAA	ATACGTTTTT	ACTAATTGTC	194100
ATTTAGCTTA	AGCCTATCAT	CATTTTACCA	ATAACATCAA	TATCAAAATT	ATCCTCTAAA	194160
ATGCCCACTA	TTCTTCCACC	ATGCATTACA	GCTATCCTGT	CACAAACATT	AACAAGCTCA	194220
TCAAGTTCAA	GAGAAACCAA	TAAAACAGAT	CTACCCGCAT	CTCTTTGCTC	TATTATTCTT	194280
TTGTAAATAT	TCTCAACAGC	TCCAACATCA	AGGCCTCTTG	TAGGCTGAAT	AGCCAAAAGA	194340
ATATCTGGCT	СТАААСТААТ	CTCACGAGCA	ACAATAACTT	TTTGTTGATT	ACCTCCGGAT	194400
AAATGCTTTA	CCTTGCTTAA	AATATCTCTT	GGTCTAATAT	CAAAATGACT	TACAAGTTGA	194460
TTGCTCAATT	ТТСТТААААТ	ATTAAGATCA	AACCCCACAA	ATTGTTTTTT	AAACTTATTG	194520
AATTGTCTTT	ТААТААААТТ	GAAAAAATTG	AATTTTAAAT	CAAAATTACT	CTTCAAATGA	194580
ATTGTTTTTA	ATCTCAAATA	ATCAGGATTA	TCAAAGCTCT	TAAGTCCAAT	ATTTTGCATA	194640
ACATTGAATT	CTAAAATAAG	GCCGTGTTTT	TGCCTGTCCG	AAGAATATTG	CCAATTTTTT	194700
TATCTATTCT	TTGTTTAATA	GTTAAACCTT	TTAAAGATTC	CAAATTCCCC	GAAGAATTTT	194760
TTTTCAAAAT	ATCGCCCTTA	AATATGCTTT	TCAAACCCAA	AATTGCATCA	ACTAAATCCT	194820
CCTGACCACT	CCCCTCAATA	CCTGATATTC	CAAGAATTTC	TCCATTTCTC	AGATCAAGAT	194880
TAACGTCTTT	AACTTTTAAA	ACTCCTCTCT	CATCTTTAAC	ACTTAAATTC	ТТТАТТТСАА	1,94940
GAATATT A AA	ATGATTTTCA	AATTTAATTT	TAGATGAGCG	AAGTGCAACT	TCTTTTCCTA	195000
TCATTAATTT	TGTAAGATCT	TTGTCATCAA	TATCAGCAAT	ATTAACAGTT	TTTACAACCT	195060
TCCCAAGACG	CATAATTGTA	CATTTCTTTG	CAATAGATCT	AATTTCTTTT	ATTTTATGGG	195120
TAATAAGTAT	TACAGTATGA	CCCTCTTGGG	CGAGTACCTT	ТААААТАТТТ	ATAAAATCAT	195180
CAACTTCACT	TGGAGCAAGC	ACTGCTGTAG	GTTCATCAAA	ААТААТААТА	TCTGCATTTC	195240
GATAAAGAAC	TTTCAATATC	TCTATTTTTT	GTTCCATGCC	AACACTCAAG	TCTTCAACCC	195300
ТТТТТТСТАА	ATCTATCTTT	AAACCATACT	TTTCCGAAAG	AGAACTTATC	TTTTTTCTAG	195360
CTTGTTTGTA	ATCAAGAAAA	CCAAATTTTG	AATTTTCATA	TCCCAAAATA	ATGTTTTGAA	195420
CAGCAGTAAA	TTGCGGAATT	AACATAAAGT	GTTGGAAAAC	CATTCCAATC	CCATTTCGAA	195480
TAGTTCGCTT	GAATCCTTAA	AGTTTATTTC	TTGACCTTTT	AAAATAATTC	GACCACTATT	195540
TACTTGATGA	ATCCCATAAA	TAGTTTTCAT	TAAGGTAGTC	TTTCCAGCAC	CATTTTCTCC	195600
AAGAATAGCA	TGAACTTCGC	CTGCCTTAAA	TTTAATAGAA	ACATTATCAT	TGGCAACAAA	195660

PCT/US98/12764

ATCACCATAC	TTTTTTGTAA	TATTTTCTAA	TACTAGTACA	TCTTCTTTCA	TCAAGCTTTA	195720
ATCCTAATAT	AAATATCAAA	CATAAATGAC	TTACAATATT	CTATTCTAAT	GAAATATAAT	195780
AAAGCTTAAA	ATTTATATTT	TCAATAGCAT	ТТТАААТТТТ	AATAAACAAA	ATAAATTATC	195840
ТАТАААААТТ	AATTGCTAAT	АААТААААТ	GCTTAAAATA	TAAAAACCTT	AATAAAGAGA	195900
GCAAATTAAT	GTŢAAAATAA	AAGAATAAAT	AAATTATTAC	AAAAGAGAGT	ATTATGAAAA	195960
TCAAAGCCTG	CATTTTTGAT	ATGGATGGAA	CACTGGTAAA	TAGTATAATG	GATATTGCAT	196020
TCTCAATGAA	TTCTGCTCTT	TCAAACTTAG	GATACAGTAA	AATAGAACTA	AGCAAATTCA	196080
ATGCCCTTGT	TGGCAGAGGA	TTTAACAAGT	TTGTAATAGA	CACTCTAAAG	CTATTATCTC	196140
TTGAACATGA	TAATCCTAAT	TTACAAGAAA	AACTTTACAA	AGAATTTGTT	AAAGAATACA	196200
АТАААААССТ	TTCATTCCAA	ACAAAACCAT	ATGAAAATAT	AAAACCCCTT	TTAGAAACTA	196260
TGAATAAGCT	TAACATTCCA	ATTGGAATTT	TAAGCAATAA	GAACCACGAA	GAATTAATAA	196320
ATTTGGTGAA	AAATATTTTT	GGAAATATAT	TGTTTTTTGA	AATCAGGGGT	TATTCAAAAA	196380
ATTTTCCACC	AAAGCCAGAT	CCTGAAAATG	CCCTTGATAT	GATATTAGAA	TTAAATGCCC	196440
AAAAAGAAGA	AATTGCATAT	ATTGGAGACA	GCGATGTGGA	TATGCTAACC	GCACTAAACG	196500
CTGGATTTAT	GCCAATAGGG	GTTTCTTGGG	GATTTAGAAG	TGTTCAAGAA	TTAAAAGAAA	196560
GTGGAGCAAA	ACATATAATA	CACAATCCAC	TTGAACTATT	GGACCTAATA	AAATGAATAC	196620
AAAACCATAT	TTTCCTTATT	ТАТАТСАТТА	TCTATTCAAT	CATGAAAGTA	TAAAAAGTTT	196680
ATCTGCCATA	GAAAAAGAAA	TTGAAATACT	СААСТАТТТА	AAAGAAAACA	AAAAAACAAT	196740
TGCTACATTT	ATCAAAAATG	ATTTTGAATC	AGAAATAAAA	GACCTAATTC	AATACGTCAA	196800
GGATAAAACA	GATATAATGA	TTACCCCATT	TGTTTTATCT	GGCATTGAAG	CTATTGATTT	196860
TAACATTGTA	AAGCCTCTTT	TTAGTAAAGA	ATTGACAAAA	AACGACTTAA	ATTTGATATT	196920
TAACTTTGTC	AAAGTCAACT	CATCTTTAAG	AAAAGAATTC	TTTTATAATT	TTAATACCAT	196980
AAGCAATGGA	TACATTACTT	ТТТАТАТААА	CAAACTATTT	GAAGGAAAAA	ACTCTTATAC	197040
AATATACTTA	ATACAAAAGG	AAAATAAAGC	ACTTTATTCA	TCAGACATCA	ТАААААТТА	197100
TATAAAGATA	CTACTTCTCT	TAAAAGTATT	GGTAATTAAA	TACTGCTTTG	AAAAAGGAAT	197160
AGAGCTTACT	ACTAAAAACA	TTGAATCCAC	TTCAAAAGCA	ATAAGCAATG	ATACCGACTT	197220
TCTAGACGAA	AAGACAGCTA	AGCTTATAAT	TGAAAGCTTT	TTCAAATATG	AGACCTTACA	197280
AACAATGTCT	CCAATTTCAA	CATTAATTGC	CATTTTTTCA	GCCAGAGCAA	GAACTCCAAA	197340
ATACAAAAAC	AATCCGGTTA	AAGGTTTTAT	TGGGTATGAT	GAAAGTTGGT	TTTCAATAAA	197400

269 ACAGTCGGGC TCTAGAGAAT ...GATTCAAG AATAATTAAA GAATTATCAG ...ATAGCCAA 197460 GGTAAATAAA TGGTAAAAAA ATTTTCAATT TTCTTAAAAG CAATAATAAT TTTTTCAATA 197520 TTTGAACTTT TAATCGAAGA ACTCTCAATA ATTCTTTTTT TACCATACAA AATACGATTT 197580 GCACTAATAT TTCTTGGGTT TCTATTTGAC ACAATTTTTA TTTTCATTTT TTTATACAAA 197640 ATAACCAAGG CCTACCTTTC CCAAAGATTA GAAATCTACG TCAGAAACAA TCTATTCTTC 197700 GATATAATCC ACTGCCTTAT TCCTTTAGCG TTTTATAGCT CATATCAGCT TAAAAACATA 197760 ATTGTCGCCC ATGAAACAAT ATTAAATCCA ATAATGCTAT CACTTTTCAA GTTAAGATTT 197820 197880 AACCTAATAC TAATAGCATT TGCTAGGACA TTTTCAATGA GCTTATTAAT ACCATTTACA 197940 TTTTTTATAA TAATATCAAG CTCAAAAATT GTAAATTCAA TACCAGAAAA ACAAGAATTT 198000 AATATCATTA AAAATATATC AATAATAAAT GAAAAAGCTT ACATTAAAGA AAAATATCCC 198060 TTCATCTTAA TAATCAAGGA AAAAGATGAC ATAATATACT CAAAATCAGA CGAAATATTT 198120 GTTTACTACA GTCCCAGTGA ATATAGAGTA ATAGAAATGG AGAAAACAAA ATTTTATATA 198180 GATAAATATT TGCAAAGAAA AAGCGATTCT ATTCTTGGAA TTTTTCTATT TACATTGTTT 198240 GCATCATTTA CTATTTTTT AATGAATTTT TATAAATTTT TTAAAGCAAG CTTTTTAAAT 198300. CCTATTATTT TAATGACAAA AATTTTACAA GACCCATTAG AATATCGAAA AATTCAAATT 198360 CCTTTTACTT TAAGCGAAGA AAAAGTATAT GAACTTGCAA AATCATTTAA CAATCTCTTG 198420 CTAAAAGAA AACTAAACTC AAAGCGAAAA AGCAAAATAC CTTTAGAAAT TGAAAAAGTA 198480 AAAAAATAA TTAATAAAAA CCAGGAAATA AAATGAAAAT TCAAATAATT ATAATGCTGC 198540[°] TTGCATTGTT AGATTTTCCA CTTAATGCCA GACTTTTGGA CATTTCAATT GAAAAAAGAG 198600 CAGATGAAGA AATAAAAAA TATTCGTCTT ATAATTTAAT TTTAGAAAAA GAATACTATA 198660 CCAATTTTCC AACAAGCGAA ATAGAAAAAA ATATTTATAA ACTAACAGAA CATTTTGTAA 198720 AAAGCATAAT GCTCAATAAA ACTAACTACA GCTTATTAAA TTCAAACTAC AAAGAAGCAA 198780 ATAAATATCT AATTCAAAGC GAACTCATTG ATAAAAAATT TTTAAAATAT AAAATATTTA 198840 AAATCAAAAA TATAAATGGA ATTTTTAAAA GCCATTCACT AATATATACA AAAAAAGGAT 198900 TTTACAAATT AGAACTTTAC ATAGAAAATA ATGCAGAACC TCTAAAAATA TTTAACCTTA 198960 ACATTACTTA TTTTTTAAAG AATTTAGATA AAATAAGTAA TGAAATGATT TTTTTCCCAA 199020 GGGAATGAAA ATAATAAAAT TAAAGCTTGA ACTTTTTTTA TAAATAATT ATTTAACAAA 199080 TACAGACATT ACTCTTTGAA GAACCTTTGC CCTATCTAAT GGTTTAACAA TAAATGTTTT 199140 TGCTCCTTTT ATTAAGCAAT CCTTAACTAA TTGTTCCTTG CCTAAAGCAG ATATCATTAT 199200

	•					
CACTCTAGCA	TTTTTATCAA	ATTCCATAAT	ATTAGAAAGA	CAAGTTATTC	CATCCATTTT	199260
GGGCATAGTA	ATATCAAGAG	TGACAATATC	AATATTAGGA	TAATGATTCT	TGTATTTTAT	199320
CACAGCCTCT	TCTCCATCAG	CTGCCGTATC	AATAATATTA	AAGCCCTCTG	ATGTAAAAAT	199380
TTGAGTAAGC	TGCTTTACGG	TAAAAACAGA	GTCATCAACA	ATTAAAACAT	TAAAAGGAAT	199440
GCCTGTATCA	TAATTGATTC	CTCTAGGCTT	AGATGAAGAA	TCTGCAGCAA	TTGTAGTCTT	199500
TTGAATCATA	TTAACCTCTC	TCTTCTAATA	AAAAGAATTT	TTTTCATATC	AAACCCTCTC	199560
TCTTATTGCA	ATATTAACTT	CTATAATTTT	ACCATCAGGC	AAAGAAAAAG	GAACAATTAA	199620
AGCCTCAGAA	CCTTTATTAC	TTATTTTCAT	ATTTTCTCCA	TAAATAAAAG	CTGGGGGGGT	199680
TATATCAAAT	ACAAAACCCT	TGGCATGCAA	AGTGGTAACA	AAATTTCCAG	CAATAATATT	199740
GCCAACCTCA	GTTAGAGTTG	CAGCAACCAT	CTCTTTTGTT	TCTTCATCGT	CAAAATCATC	199800
ATACTCTTCA	AAATTTAATT	TAGAAGCAAC	AAAAAGAGCT	GTTTCTATGT	CCATATCAAT	199860
AATTATACTG	CCCTCAACAG	ACCCAGCAAG	CCCTACTATT	ACAGAAACAC	CTTTTATCTT	199920
TTGATTTATC	GACTTAAGCC	CGGGCTTACC	САТТТСТАТА	TTCTCAACAA	GCAACATATC	199980
TCTTAAAACC	GAAGAAGCAG	CATCCAAAAA	TGGCTCTATA	TAATCTATTC	TCATTAATTT	200040
CTCCTTTAGA	CTTTCCTGTA	CAAGTTAAAA	TATTTTGTGG	ATTTCTCTTT	ТАТАААААСА	200100
TCATTATTTT	TAAGCTCTTC	GTTATCTCCC	AAAACCAAAA	GAGCCCCTTT	AATAGCTTTG	200160
GAAGCAATGA	ТАТТТААААТ	TAAAATCTGA	TCTTTACTAT	CCAAGAAACA	TAAAACATCT	200220
TTTAAAAAAA	CCATTCCCAA	ATTATCAGGC	AAATCTGAAA	AAAGAGCATC	GGAATATTCA	200280
AACAAAACAT	TACTTAGGAT	TTCTGACTTA	AATTTATAAA	CTCCGGGACT	TTGTTCAAAA	200340
GAATTCCTAC	TATAAATTTC	ACTAATGCCA	ATTTCTGACT	CTGAAAACAC	CAACCTAGAA	200400
GTTTCAACAA	CTTTTGATAA	ATCATTATCA	ATGGCCGTCA	ACTTAAAAGG	TTTTACATAA	200460
TATTCAGACA	AAGCATTGGC	TAAAGCCATA	GTCTCCTTTC	CACTACCACA	ACCAATTTCC	
AATACATTGA	AAATAGAATT	TAAGTTATTC	ATAAAACTTA	AGCGACTCTC	AACAATTTCA	200580
ТТТТТАААТТ	CTTCCAAACA	ATCAGCTCCC	CACAAATTTC	CCGATGATTT	TGAATAAAAT	200640
TCATTTAAAA	AACTATCGCA	AGGCAAGTAA	TCAGTATCAA	CCATATTAAA	TTTTACTCCA	200700
ACTTTTTCCA	AAAACACATC	ATTTACCAAA	GAAGCATTAA	ACGAGTATTT	CAAAAGATTT	200760
TTTTTAATAT	TTTCCAAATT	AAAAGCTGCA	GTATTGTTTA	GAGTTGAATT	TTCATTGTTA	200820
CCATCATTTT	TTGAAGAAAC	CTTATTGGAA	AAATCATTCT	TAGAATTTTC	TAGTATATCT	200880
AAATTATCAC	AATCGCTTAC	AAAGTCGCTT	TTTTCAACAA	AATTTTGACC	AGGTTTTAAT	200940

AACTTTTCTT	CTTCACCATA	ТТАААААТТ	271 TTAAAAACAT	TAAGAAGTAT	**************************************	201000
TCGTTATAAT	CTACAACGCC	TTTTATATAG	TTTATTAAAG	AATCCTGAGA	TAAAACTGGA	201060
TGTGGATCTT	GAATAAGGCT	AGAATCTATT	GAAAAAACAT	TATTAATTT	АТСААСААТТ	201120
ACCCCTATAA	GAAGGTCTTC	GTTTTTTAAA	АССАТААТАТ	СТТСААТАТС	TTTTTTATTA	201180
AATTCTAAAT	TAAACATTAT	TCTAAGATCT	ATAATAGGAA	TTATTTCACC	CCGTAAATTA	201240
TCAAGCCCAG	СААСАТАСТТ	TTTGGCATTT	GGAACATAAG	TAAAATTACT	AGATTTTCTA	201300
ATTTCTTTAA	CCTGCATAAT	GTCTACTAAA	TAATGATCCG	ACCCAAGCTC	AAAAGAAACA	201360
АСТТТААААТ	CAAAATTGGT	CAATTTAGAA	TTAGAATTTT	TATCATCTAA	AATTTTGGGT	201420
ССААААТААА	TTTCTTTAT	CTGCACAAGA	GATCACTCCT	TAGTATCCTT	ТТСТАААТСА	201480
AAAAGTTTAA	AAACATCAAT	ТАТСААТАСА	ACCTTACCAT	TGCCAAGCGT	AGTAGCCCCA	201540
ACTATACCCG	CGCTTGATGA	AAATTTATCC	TTAATAGGCT	ТТАСТАСААА	ATCTTCCTCA	201600
CCAAGAATAG	AGTCTACAAC	AATTGCTATC	TTCATGTTGC	TAGTATTAAC	AACTATTAAA	201660
AATTTTTCTA	TTAATGAATC	ATCCCTTGTT	ATGTTAAAAA	GTTTATCAAG	CCTGAGAACA	201720
GAAATGACTT	САТСТСТТАА	АТТАТАААСТ	TCATGATAAT	TTTCAAGCAA	ТТТТАТАТСА	201780
TGTTCAGTTA	TTCTATGAGT	TTCAAGAACA	ТТАТТТАААС	GAATAACATA	AGTCTCAGAC	201840
CCCGACTTTA	CTAAAAGACC	TTGTATAATC	ACTAACGTCA	ATGGTAGTTT	ААТТТТАААА	201900
ATTGTTCCAA	.GACCAATTTC	TGATTCCACC	AAAATAGTTC	CATTAAGCTT	TTCAATGCTT	201960
TTTTTCACAA	CGTCAAGACC	AACTCCTCTA	CCTGAAAGGT	CTGTCACTTG	AACTGCTGTT	202020
GAAAACCCAG	GAGCAAAAAT	TAAGTTAATA	AGTTCAAAAT	CAGAGTAAAT	TGCATCTTCT	202080 .
TTTATTGTTC	CCTTTTCAAT	TAATTTGCGC	CTAATGACCT	TTGGATCTAT	ACCAATCCCA	202140
TCATCTTCAA	TCTCAATTGA	TATTACATTA	CCTTCATTCT	TGGCACGCAA	AATTATAGTA	202200
CCTGCTTTGC	TCTTTCCCCT	TTTAACTCTC	TCTTCAACTG	TTTCAAGGCC	ATGATCCATT ·	202260
GAATTTCTAA	CACAATGCAT	CAAAGGATCT	ACAAGGTCAT	CTATAACAGA	CTTATCAAGC	202320
TCAGTTTCTT	CCCCTTCCAT	TTTAAGATTC	ACAATCTTAT	TTAATTTCTT	TGAAAGATCT	202380
CTTACGACTC	TTGTAAACCT	TGAAAATATA	TTAGATATTG	GTAACATTCT	GGTTTTTAAA	202440
ACACTCTCAT	GCAAATCTGT	AATTATTCTT	GACAGCCGCC	CAGAGGTCAT	ТТТААААТТТ	202500
TGAAGAAGTC	TGAAAAAAGA	ATTTCTCAAT	TCAGATATAT	CCTTAAGAGC	CTTTTCCATT	202560
TTAAAACTCA	TCAAAGAATT	AATATGTGAT	TCGATCTCAT	CTTCTAATGT	TAAGCCTGCA	202620
TCTTTGAAAA	СТАТСТТТАА	АТСААТТААА	AAGTTTCTCT	GAAAACTTTC	TTGATAATCA	202680
ТАААААТААТ	ТААААТТАТА	AAATAATGTA	ATCATTTCTG	AATTTATTTG	ATTATAAGAT	202740

272 GATTTACTTA TTACAGCCTC ACTGACAAGA TTTAATATGT AATCTATTTT TTTGCTATCT 202800 ATTCTAATTA AATTAACACT AATTGGACTA TTTTTCTTAA TATTTTTATT TTCCTTAAAA 202860 GGTGCTTCAT CATCTTCTTT TAGCCTTACG CTCTTTAAAG ATTCTAAATT AACATTTTTG 202920 ATTTCAAAAT GACTAACAAC ATCTGGTAAA TTAATCTTTT TAGCAATACT TTCTTCACTG 202980 GTATTTGATA TTAAGTAATA TATTACAAAA TCAAAAAACT TATCTGCCAA TAATTCGCTA 203040 GAATCTGGGA TAGACTTGAA AATTTTACCA AGACTTTTTA ATGCTTGAAG CATTTGAAGC 203100 CCACTAATAG TAGCCATAGG ATTGTCTTTT ACAAAATCCA ATCTAACTTT AAATAACTTT 203160 TGATTTTCAA CCTCAAGTAA TAAATCAGAA ATCTCATCCT CTGTAAAATC AAAATTATCA 203220 TTTAAAACAA AATTGGAATC TAAATCAACA TCTTTAATCT CTTCATCTGC AAGCTTTTTT 203280 AATTCTTCTT TTACGTTAAA TTCATCAACC AAATAGCTTT CAATTAAATT TAAAGAATCT 203340 AAACTTTTTT TCACGCCTTC TATATCTGAA TATATCAGAT AATAATCAAC CCTTTTTAAA 203400 AATTTATCCT CTATGATTTG CTCATATTTA GGAATTGTAT GAAGTACAGA TCCTAAATTT 203460 TTTAAAATAT TAAATATTT TAGCCCACTA TTTTCAACTT CAGAATTGCT ATTTGAATTA 203520 AAAACAACAC TGATCCTTAA AACCTTTTGT CCAATTCCTA GCCCTTCTCT TATCTCCTCA 203580 AGATCTGATT CTGAAAGACA AAAATTGTTT TTAATTGAAT TTCCATCAAA TCTCTTAATA 203640 AAAGTCTGAT CATCAATTAC TAAAAATTGC TTTAATTTGC TTTTAAGATC ACTTATGTCA 203700 TTTAAATAAA CCTTGCCATC AATACGAAGC GCAAGCATTT CCTTGATAAC ATCTAATGAA 203760 CTTAAAAGCA GATCAACAAG ATCATTATTT ATATTTACCT TACCATCTCT AATAGCATCA 203820 AAAACATCTT CGACAATATG GGTAAAATCA GATAACTCCA TCATATCAAG AGAAGCAGAG 203880 CTTCCTTTTA AAGTATGAGC TGCCCTGAAT ATTTCATCAA TAGTATCAGA ATTATTAGGA 203940 TCATCCTCTA ATGACATAAT ATTCTCTTCA AGGATATCTA CAAGATTTTG AGCTTCTTCA 204000 AAAAAAACTC CTAAAAGCTC TTCATTTTCC AAATCTAATA TTTCCATATA CTATTTCCTA 204060 TTATTTTAAT ATGTAAAGCA AACCTTTTAG GTAGCTTTAC ATATTAATTT AAACCTAATT 204120 TTTCGGAGAT GATTCTTCAG GTTTTTCACT CTCAATCTTT TCTACAAAGT TTTGGAAAGA 204180 GCCTTCAGGC ATAGAAATTT TTTCTCTAAG CTTTAAAAACT CTTTTAAAAG TTTCGTGTGC 204240 CTTTAATTTA CGAAGGGATT CAGTTCCGCT AGTCTCATAA ACTTTAAATA CAGACTCACT 204300

GTCAATATCA GAATCTATTG AAACACTCAA CTTATCATAA AGAACTCTTA AATCTTTAAC

ATAAAAGATG AAATTTTGCT CTTTTGAACT GTGTGACTTT GAAACTCTAA AAGCCTTAAA

TCTCATTTTA CTTGAAGCAA GAGGATAATT TGGAACATCG TCTTTAATAA TTCTGGATGA

204360

204420

204480

273 TATATTAGGA ATATAGTTAG TTGACCA AATTAAATCA GCCCACCCTT 204540 AGTACCCATA GAATAAGCAT ATTCCATGCC ATTCATATCT TCAAATAAAA CCTCAAGATC 204600 TATCTCATAC CCTAAACTAT AAACAGATAC CTTAATTTCT TTCATGGTTT TAATGTTATC 204660 AATAAGACCT TTGCCTAAAA ATTGATTGCC ACTTTCCCCT GAATAAAAAG GAATTTTAAA 204720 TGGTGGCATA ATCATAGCAG ATGATTGAGA ATAGCTTGGA AACAAAACTC TTACCCCTAA 204780 AATAGTATCA CCTGCGTACC TTTTTGACTC ACTCTTAACA ACAGCGGGCG CAACAACTGA 204840 ATTTTTAACG TAAGCCTGCA ACCTTGCAGA AGGAGTAAGT AAAACGCTCC AATTATTTAT 204900 CCCAAGATCT ACAACCATAT CTTCCGGCTT AACAATACCA GAAGCGCCCG AATATACATA 204960 ATCAACATAA TTTGTAAGAT CAAGTCTAGT TGAACTTGGA TCTCTTGCAA GCTCGGCAAA 205020 ATCTAAAACT AATTCTCCAG GCTCTGCCCT TTTAGAACCC TCTGCTAATC CATCAGTCTC 205080 205140 GTAAACCAAC TCCTTATATA TATAAATCTT TTATAAAATT TTCGTTTTTT AATTATTTTT 205200 ATTAGTAAAA TTTAATTTAT CAACTTTGCT CCTTTAAGAT ACACCCTTCA ACAAGAATAA 205260 CAATCTTTTT TATCTTACCA GGATAGTTAA AGCGCATTGT TTTTATTAAA GACATAGCAA 205320 AAAGATTGAC CTTAACATCA AAAGATTCAT TAGATTCATT ATAATCACCA TTATTAAAAG .205380 AATCATAAAA TTCTCTTGAA AGATTTACAT AATAAACTCC ATTCTTTAAA AAAGAATATA 205440 AAAATCTTGA ATCACTTAAT AAAAACCCAA AAGAAAACCC TTCATTGCTT CCTAAAAGAA 205500 AATCTTTTAC TAAAAGATCT AAATTATCTT TCAAATTTTG TTCATCTCTT AAATATCTTA 205560 AATTAGCAAC AAATCCCTTG CTAGAATGAA AATAAAAAAC CTTTTTTGAA AAAAGATTAT 205620 CATAATTTAA AAAAACCATA CAAATAGAAA ACAAAAAGCT TACTGCCAAA GACCCCAAAA 205680 GCACCCTAAT CATATGCTCT TTTTTTGAAT TTAAAAATTT ATAAATCACT ACATTATATT 205740 TAAAAAATAT ATCCGAAATA TTATTTTTCA TAAAAATTTA TAAATTCCAT TAAAGCTTTA 205800 AGTATTAGAA TATTAAACTT GCTCATGTAA TTATAATCCA AAATTAATTT AGCATCTAAA 205860 ATATTGGATA AAAACCCCAT TTCAATCAAC ACAGCAGGCA TACTGCTGTT TTTTATTACA 205920 AACCATTGCT CTTTTCTGAT TGGCCTAATA TTAGTTTCGC TTAACTCATT TTTAAACACT 205980 TTATACAAAA TTTCAGCCAA TCTTTTTGAT TCATATTTAT ATTTAATATC TAGTATATCA 206040 206100 206160 GCATCATTAG CATGTATAGA TAAAAATATA ACATTATTGG GGAAATTTGG CTTTATTGCA 206220 TTTGCAAATT CCGACCGTTC TTTTAAAGTT AAATAAACAT CATTTATACG AGTTAACAAA 206280

ATATTTTTAT	TTACAAAATA	ATTACTTAAA	ATTTTAGACA	AATATATAGA	ATAGGTTAAT	206340
GCAAAATCTT	TTTCCTGAAG	CACAACGTCA	TAACCATTTA	TCTTTAAAGT	CACAACAGCA	206400
CCAGTATCAT	GCCCGCCATG	TCCAGGATCA	ATGATTATTG	AAGTAATTCT	GGGTTTATTA	206460
TAGTCTTTAA	GAGAACTAAA	ATAATTTTCA	ATTTGTTTTA	ATACCTTTTG	ACTTATTAAA	206520
ATTTCTCCAC	GAATGTCAAT	AATTGGGTCT	ACAAACATAT	AATAACCAGA	AGATGTAAGC	206580
GCATATŢCAA	AGCCTACCCT	AAACTTCAAA	TATCCCTTAT	CATTTTCÀAT	TGTAAAAACA	206640
TCATTTTCAA	TGTTAAAATC	AAACCTAAAA	ACATTAGTAT	САААААААТС	AAGAACATTT	206700
AAATAATCGG	GGGTCTTAGA	ATACAAGCTT	AAATATGAAA	ACAAAATCAA	ATCAATCAAT	206760
AATATCATTT	TCCCAAAGCT	CAATGGCACT	CTTTAAGTCT	CCTTTGAATC	TTAAGCTATT	206820
TTTAGTAATC	TCACCTTTTA	ТСТССТТААА	CTCTTTTTGG	AAGAGAAAAG	GATTAATTTT	206880
GTATTTTAAA	CAAATTTTGC	AAAACCTTAA	AAAAGAAAAA	ACAACGCCAT	TTCCAACAAA	206940
AATTGGGACA	ТААТТСТТАА	GCAAAAAAAT	СААААААСТТ	TTGCTTTTGG	TTAAATTTTC	207000
TGGCGAATTT	AATGCAGTAT	ACTGGATTCT	CAGCTTTCTA	ТАААТАТААА	CATGCTCCCC	207060
ААААТАААТА	GCTCTTAGTC	CAAAATCTAT	TCTTTGAAAA	TATTCATTTT	GAATTCTTGC	207120
GTCAAAACCT	CCAAGCTGTA	AAAATTTCTC	TTTAGAATAA	AGTCCGCAAT	AATCCATGGT	207180
AATCAAAGTT	TTTTCATAGT	CTTTCTCAGA	ATTTACTAAA	ATTACCTTAA	ACTTTTGCTT	207240
TTTATCTATG	CTGGGAAGAA	AAATTGAAGG	AATCATTTCC	TCTTCTTTAT	СААААААСТС	207300
CCCACCAACA	AGAAGAACAT	TTTTTTTTAC	TATTTCATCG	AATATATTTG	GAATCCAAAA	207360
GGGATTTAAC	AAGTACATAT	CACTTTGCAA	AACAAAAACA	AAATCACAGC	TGGATTCTTT	207420
CATTGCTAAA	TTAACCTTTT	CCCCAGAATT	CAAATCGTCA	GAAAGTAAAA	ТАААТТТТАА	207480
CTTACCATAA	CTTTCTGAAA	TAAACTGCAA	AGAACTTCTA	TTGCTCTGTT	TTTCAATTGA	207540
AATTATTTCT	CTTATAAAGT	CAAAATTTGA	ТАААААТТСА	AACAAATCTT	СТСТАААААТ	207600
TTTTGTTCCT	CTGCTTAATA	TTACAAAAGA	AATTCCAAAA	GAAGATTTTT	GTGAATAATT	207660
ATTTTTAGAT	TGAATAACAG	TATATGAATA	GCCACTACCT	GGAAGACGCA	ТАААТТАСТТ	207720
ТТААААТССТ	ТАТААТТААА	ТТАТААТААТ	CATATGTTAC	ATAATACAAT	GCTAATTGCA	207780
AGAATAATGA	ATATTAATAC	ATTATTCTAC	GGCATGATCA	TTATCATTTT	TGCACTCATT	207840
TCTTGCAATC	ATAAGAATAT	ACAGTACGAC	AAGAGAATTA	AAAAATTTTT	AGATAAAAAC	207900
AAAATTGAAT	ATAAAATAGA	CTCAGAAAAT	GACTTTATAG	CATTTAAAGA	ТАТАААСААТ	207960
AACGAAAAAG	AAGAAGTAAT	CATCAGATCA	AGACTAAACT	САТАТААААА	TTCAAAGATA	208020

AGAGAAATAT TTGGAATTGT AAAGTATTT GATATAAACA CACCAAAAAT AAAGAAATA 208080 TCTGACTCGC TTATGAGCGA TAGTTATAAT AACAGAGTAT TTGGATCGTG GGAGATTATT 208140 CATAATGCAG AAAGAGGAAT CAACTCTTTG GTATATATTG TAAAAGCAGA AGAATTTGCA 208200 AATGATACAT TTTTGCTTGA TGCAATTGAT GAGATTGCCT CAACAATAAG TATTTTCAAA 208260 AAAATAATAA CAACCAACAA CGAAAACATT GATAATAATG AAGAAAATAA CAATACAAAT 208320 GAATCAAATG AACAGCCCAC CTTAAAGCAA GAAAAAACAA ATTCAACAAA AGAATCTAAT 208380 AACGAACTTA AAGAAGATCA AATAGAAGAA GAACTTCAAG AAATCAAAGC CCAATAATTT 208440 CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTTATAA 208560 AGAGAATTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCTCTTT AATAATTCCA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208740 ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208800 TTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAGA CATCGACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760 TATATGAATA TTACATATTT AAGGAATACT AAAACATGAA ATCGGGATTT GCAGCAATAC 209820

				2.9		
TTGGTAGACC	ATCAACTGGA	AAATCTACCC	ТТТТАААТТС	AATATGCGGA	САТААААТАТ	209880
CAATAATATC	CCCTATTCCG	CAAACAACTA	GAAATAATAT	AAAAGGAATC	TTTACGGACG	209940
ACAGAGGACA	AATTATTTTT	ATAGACACAC	CGGGATTTCA	TCTGAGTAAA	AAAAAGTTTA	210000
ATATTGCAAT	GATGAAAAAT	ATCCACTCTT	CAATAGGAGA	AGTTGAACTC	ATTTTATACA	210060
TAATAGACAT	TCAAGACAAA	CCTGGAGAAG	AAGAAAATAA	AATGTTAGAA	ATAATTAAAA	210120
ACTCTAAAAT	TAAATTTTTA	GTAATACTTA	ATAAAATTGA	CCTTAAAAAC	АСАААААТАА	210180
AAGAAATAAC	GCAATTTCTA	AAAGAAAAAG	GAATAGAAGA	TAGTAATATA	ATTAAAATAT	210240
CTGCTGAAAA	AAAAATTAAC	ACAGAAGAAC	ТААААААТАА	AATTTATGAA	AATTTTTCAG	210300
AAGGCCCACT	TTATTATCCA	CAAGAATACT	ACACCGATCA	AGAAATAAAT	TTTAGAATTA	210360
GTGAAATAAT	AAGGGAAAAA	GCTATTGAAA	ACCTAAAAGA	AGAACTCCCC	TATTCTTTGT	210420
ATGTGGATAT	TGATACCTTA	GAAAATAAAA	AAGGAAGTCT	TTTTATCAGA	GCAAATATTT	210480
TTGTAGCCAA	TGAAAGTCAA	AAAGGAATAA	TTGTAGGAAA	AAACGGAAAA	GAAATAAAAT	210540
CAATAGGAGA	AAGGGCAAGA	AAAACAATTG	CAAAAATTTT	TGAAACAAA	TGCAACCTAT	210600
TCTTACAGGT	AAAACTTAAA	AAAAATTGGA	ACAAAGAAGA	TAAGCTAATA	AAAAGACTTA	210660
таааттааса	AACATTAAAC	TGCATTTTTT	TAAATTCTTG	AAACTTGAAA	AACAAAATGC	210720
TAAAATTTAC	СТАААТТТАА	ATTAGGAATA	AAATGTGAAA	ACAGCACACT	GGGCAGATTT	210780
TTACGCAGAA	ААААТАААА	AAGAAAAAGG	TCCAAAAAAC	TTATACACAG	TAGCATCGGG	210840
AATTACTCCA	TCTGGAACTG	TGCACATTGG	CAATTTTAGA	GAAGTTATTT	CGGTAGACCT	210900
TGTAGCAAGA	GCACTAAGAG	ACTCTGGATC	AAAAGTAAGG	TTTATTTATT	CTTGGGATAA	210960
TTACGACGTA	TTTCGAAAAG	TTCCCAAAAA	TATGCCAGAA	CAAGAACTTC	TTACAACTTA	211020
TTTAAGACAA	GCAATAACAA	GGGTCCCTGA	CACAAGAAGC	CACAAAACAA	GTTATGCAAG	211080
GGCTAATGAA	ATTGA'ATTTG	AAAAATATCT	GCCTGTAGTT	GGGATCAATC	CTGAATTCAT	211140
CGACCAAAGC	AAACAATATA	CCAGCAACGC	TTATGCAAGC	САААТААААТ	TTGCACTTGA	211200
TCATAAAAAA	GAACTGTCTG	AAGCATTAAA	CGAATACAGA	ACCTCAAAGC	TTGAAGAAAA	211260
TTGGTATCCA	ATCAGTGTAT	TTTGTACAAA	ATGCAATAGA	GACACAACAA	CTGTAAATAA	211320
TTATGACAAT	CATTACTCTG	TTGAGTATTC	ATGTGAATGT	GGAAATCAAG	AATCTCTAGA	211380
CATAAGAACC	ACATGGGCCA	TTAAACTTCC	TTGGAGAATA	GATTGGCCTA	TGAGATGGAA	211440
ÁTATGAAAAA	GTTGACTTTG	AGCCTGCAGG	AAAAGACCAC	CACAGCAGTG	GCGGCAGTTT	211500
TGATACATCT	AAAAATATTG	TAAAAATTTT	TCAAGGTAGC	CCTCCTGTAA	CATTTCAATA	211560