

古帕内帕耳上学

	实验报告	姓名:	
实验名称: _	玻尔共 振实验	日 期: 评 分:	

· 通与社会工作。

一,实验目的:

- 1. 探究玻尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性, 总结共振记象规律
- 2、研究不同阻尼力矩 对受迫振动的影响
- 3. 学习利用 频闪法 测定运动构体 的相位
- 4 掌握逐差法和极值取点的数据处理方法

二、 实验原理.

构体在周期 外力的 持续作用下发生的振动 移为受迫振动,这种周期 性的外力 称为 强迫力

摆轮的运动方程. J. de =-k0-bde + Mo cos(wt)

了为摆转的转动惯量, -k的为弹性力矩,k为弹性力矩系数,b为电磁阻尼力矩系数 M。 为强迫力矩的幅值 , w 为强迫力的 圆频率

3 $\omega_0^2 = \frac{1}{J}$, $\mu = \frac{1}{J}$, $\mu = \frac{M_0}{J}$ $M = \frac{M_0}{dt}$ $M = \frac{1}{M_0}$ $M = \frac{1$

若强迫外力 m=0,则摆轮做阻尼振幼治w>p, 0= Oiteme cos(w+t+α) WE = 1462- B2

当强迫针为 m = 0,则程转做受迫损功, B= Ditem e cos(Wet+2) + Os cos(wt+10)

$$\theta_{S} = \frac{m}{\sqrt{(\omega^{2}-\omega^{2}+4\beta^{2}\omega^{2})}} \qquad \varphi = \tan^{-1}\left(\frac{-2\beta\omega}{\omega^{2}-\omega^{2}}\right) = \tan^{-1}\left(\frac{-\beta T_{s}^{2}T}{\pi(T_{s}^{2}-T_{s}^{2})}\right)$$

当强迫力的图频率 ω= √wi-2β' 对, θs 有极大值 , 产生共振, ωr= √wi-2β', θr= 2β√wi-β' 共振时相位差为 $\beta = \tan^{-1}(\frac{-\sqrt{w_0^2-2\beta^2}}{\beta})$

组尼尔数 B越山, 共振时的圆频率wr 越接近系统的固够率 wo, 振动幅 Br 越大

硐 β 畔 稳定受迫振 动的幅频特性和相频特性

在城值附近, waw, wi-wi a 2 m/(wo-w) : 0 ≈ 2 m/(wo-w)+β2

由上式可见,当1w~w1=p时,振幅降为峰值的方,根据幅频特性曲线的相应点可确定p的值。

三、实验内容与步骤

- 1、实验准备。 三芯电源线板可靠接地 & 根据是否连接电脑选择单机模式
- 2. 轴振幼 一测量摆轮振幅85自由周期 T的对应关系,
- 小进门组振荡。 传动摆轮160左右,有效振幅电图 160°-50° 将记录振幅 00,对应图期下 可得 振幅 8 6周期下 的对应表。

《由于此时 图尼很小· 网出的 同期非常接近摆转的目有周期下。

3. 测定阻尼系数β (阻尼2档)

- ·)选中"阻尼振荡" ,选择 阻尼2档
- (2) 蘇褐旗盘指针F放在0°位置,用转动摆转16°左右,这取00在10°左右, 被测量数据,记到组数据后测量自到关闭
 - 的 回查读出摆轮作图尼振的时振幅数据 A., Az. ···· An.
 - (4) 由 $\ln \left(\frac{A_1}{A_{\text{Hell}}} \right) = \ln \left(\frac{\partial_{t} e^{-\beta t}}{\partial_{t} e^{-\beta (t + nT)}} \right) = n \beta T$ 本出 β 的頂

(n内 图尼振动火数, An 为第n火振动振幅, 下为图尼振动周期平均值)

- 4. 测定受迫振动的幅频特性和相频特性曲线。
- " 选中"强迫"振荡", 搜默认状态选中电机 , 启动电机
- 「特異教和电机前周期相同,特别是振幅已稳定后, 为可开始测量
- (3) 测量前把周期改为10 , 再打开测量
- (4) -次测量完成,显示测量关后,读取摆轮的振幅值,并利用闪光灯测足受迫位移和强迫力之间相位差
- (5) 改变电机转速,即改变强迫外力矩频率的,进行多次测量。 (a)(2)0°)
 - 义,建议在不同心的记录下 电机转速旋钮上读数 49
 - ※ 测量相位时应把闪长灯 效在电机转盘前下方, 按下闪长灯 按组, 恨据 频闪 观察来测量, 任组观察相位位置

四. 数据记录和处理

1. 白曲振动 — 测量摆轮振幅0与触周期下的关系

振幅 θ (°)	固有周期 To (s)	振幅 0 (°)	固有周期 To(s)	据幅 0(°)	固有周期下(5)
158	T22.1	134	1.362	110	1.566
156	Ttt . 1	133	1.562	109	1.366
155	811.1	131	1.562	104	1.26]
153	8 tt.1	130	1.562	102	[62.1
152	8 £2.1	129	1.562	97	1.268
148 146 144 144 141	1-359 1-359 1-360 1-360	127 126 122 120 118 116	1.563 1.564 1.564 1.565 1.565	95 93 92 90 88 86 83	1.568 1.568 1.569 9.277 1.568 1.568 1.568 1.570
139	1.561 1.561	112	1.266	78	1.57.

2. 阻尼振荡 — 测量阻尼系数β

$$Ai = \theta_{nlem} e^{-\beta i T}$$
 $\rightarrow \ln Ai = \ln \theta_{ilem} - i \beta T$ $(i=1.3.3...lo)$.

 $y = a + b \times a$
 $= a +$

计算不确定债:
$$\frac{U(b)}{b} = \sqrt{\frac{U(\Delta n Y)}{\Delta n Y}}^2 + (\frac{U(\Delta n X)}{\Delta n X})^2$$
 , $\frac{U(\beta)}{\beta} = \sqrt{(\frac{U(\overline{1})}{b})^2} + (\frac{U(\overline{1})}{1})^2$

$$U(\Delta n Y) = \sqrt{\frac{Z(\Delta n Y_1 - \Delta n Y)^2}{k(k-1)}} \quad (k=n) = 0.0032$$

$$U_b(\Delta n Y) = \frac{\Delta n Y_1}{13} \quad \text{diff} \quad U_b(\Delta n Y) = 0$$

$$U(\Delta n X) : \quad U_b(\Delta n X) = 0$$

$$U_b(\Delta n X) = \frac{\Delta n X(X)}{13} \quad \text{diff} \quad U_a(\Delta n Y) = 0$$

$$U_b(\Delta n X) = \sqrt{\frac{U(a(\Delta n Y)}{13})^2 + 0^2} = 0.0065$$

$$\frac{1}{15} = \frac{1}{15} = \frac{1}{15} = \frac{0.001}{15} = 5.7735 \times 10^{-6}.$$

$$\frac{1}{15} = \frac{1}{15} = \frac{0.0065^{2} + \frac{100005}{15}}{15} = 0.0065.$$

3. 受迫振荡 — 测量幅换特性和相频特性曲线

转速指示值	摆轮周期	振幅 &	电机固期	直表1 得 弹簧对龙 固有周期 To(s)	旋闪法测相 世差 p 1°)
(考考值)	10T(5)	(*)	(°T (°S)		158
3.50	15.111	52	13.111.	1.573	
4.00	15.225	61	15.225	1.572	154
4.50	15.332	76	15.332	17579	148
5.00	U.4K1	(02	13.4%1	1.567	135.
5.30	15.490	126	15.495	1.563	120,
5.50	15.533	139	15.533	1.561	107
1.60	15.569	144	(1.569	1.560	101
4.7.	15.588	146	15.588	1.53 9	95
ታ.ኤ	15.605	147	13.605	1.559	90
J.90	15.624	146	15.67 4	1.55 9	86
6.00	13.6% 6	145	15.64 6	1.559	82
6.10	15.65 7	144	15.657	1.560	77
6.30	15.703	139	15.703	1.561	70
6.60	15.771	129	1 1721	1.562	6
7.00	15-850	116	15.85 0	1.565	12
7.50	15.962	100	15.96 2	1.567	43
8.00	16072	85	16.072	1.569	3.6 .
8.50	16.189	13	16.189	1.572	28
9.00	16.287	64	16-287	1.572	75
5.40	To2.21	133	701.21	1.562	115
			10	9.27 F	·

()依据测量数据画出板动幅频和相频曲线:

·在w=wr对,受迫振动的临跃达到极值,且为相战曲线国的拐点 数据分析.

- · 物体在稳定状态 时的运动也是 与强迫力 同處率的简谐振动 具有稳定 的振幅 8、 并与强迫力之间有一个确定的相位差 P
- · 当强迫力频率与系统国有频率相同时,相位差为- 9.0°

由国读出 Or≈141

取 Os: 方 Or = 103.94°, 对应图上的横坐标 光,= 0.9839 和 光,= 1.0147

根据帕敦特性曲线所推出的 $\beta=0.0618$, 5 根据图尼振动所求得的 $\beta=0.0628$ 相差不大, 又考虑到 画圆 所得的 误差,而者误差在可以接受的 范围内。