课外练习题5

1. 设矩阵
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & a & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
与 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 相似,则 $a = \underline{\qquad}$.

- 2. 已知三阶方阵 A 的特征值为1,-1,2,则矩阵 B=2A+E 的特征值为_____.
- 3. 已知矩阵 $A = \begin{pmatrix} x & 1 & 2 \\ -10 & 6 & 7 \\ y & -2 & -1 \end{pmatrix}$ 的特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$,则 $x = __$, $y = ___$.
- 4. 已知矩阵 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 可对角化,则 $a = \underline{\qquad}$.
- 5. 设三阶矩阵 A 与 B 相似,且满足 $\left|A-2E\right|=0,\left|A+2E\right|=0,\left|2A-E\right|=0$,则 $\left|B^{-1}-E\right|=\underline{\qquad}.$
- 6. 若 4 阶矩阵 A 与 B 相似,矩阵 A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$,则行列式 $\left|B^{-1}-E\right|=$ ______.
- 7.设矩阵 \mathbf{A} 与 \mathbf{B} 相似,其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & x & 2 \\ 0 & 0 & 1 \end{pmatrix}$,已知矩阵 \mathbf{B} 有特征值 1, 2, 3, 则 $\mathbf{x} =$
- 8. 设A为 2 阶矩阵, α_1 , α_2 为线性无关的 2 维列向量, $A\alpha_1$ = 0, $A\alpha_2$ = $2\alpha_1$ + α_2 ,则A 的非零特征值为_____.

9.
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & a \end{pmatrix}$$
, 若 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 是 \mathbf{A} 的一个特征向量,则 $a = \underline{\qquad}$.

- 10. 若 3 维列向量 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 满足 $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 2$,则 $\boldsymbol{\beta} \boldsymbol{\alpha}^T$ 的非零特征值为______.
- 11. 设 $\lambda = 2$ 是矩阵 \boldsymbol{A} 的特征值, $|\boldsymbol{A}| = 4$,则矩阵 $\boldsymbol{A}^* + \boldsymbol{A}^2 3\boldsymbol{E}$ 的特征值().

(A) 3 (B)
$$-3$$
 (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$

12.设A 为n阶实对称矩阵,则().

(B) A 的 n 个特征向量组成单位正交向量组
(C) 若 A 的 k 重特征值为 λ_0 ,则有 $R(A-\lambda_0E)=n-k$
(D) 若 A 的 k 重特征值为 λ_0 ,则有 $R(A-\lambda_0E)=k$
13. 已知 A 为三阶实对称阵,且 $A^2 = A$, $R(A) = 2$, 则 A 的特征值为().
(A) 0,0,0 (B) 0,0,1 (C) 0,1,1 (D) 1,1,1
14. 设 n 阶方阵 A 满足 $A^3 = O$,则().
(A) $A = 0$ (B) A 仅有一个特征值为零,其它 $n-1$ 个可能不为零
(C) \mathbf{A} 的特征值全为零 (D) \mathbf{A} 有 \mathbf{n} 个线性无关的特征向量
15.
A,B,C,D 中不能与对角阵相似的矩阵是 ().
(A) \boldsymbol{A} (B) \boldsymbol{B} (C) \boldsymbol{C} (D) \boldsymbol{D}
16. 齐次线性方程组 $\mathbf{A}\mathbf{x} = 0$ 和 $\mathbf{B}\mathbf{x} = 0$ 同解的充分必要条件为().
(A) $A 与 B$ 等价 (B) $A 与 B$ 相似
(C) \mathbf{A} 与 \mathbf{B} 的列向量组等价 (D) \mathbf{A} 与 \mathbf{B} 的行向量组等价
17. A , B 均为3阶实方阵,如果 A 与 B 相似,则下列说法错误的是().
(A) 若 A 可对角化, B 必可对角化 (B) A 与 B 的特征值相同
(C) A 必可通过初等行变换变为 B (D) A 与 B 的迹相同
18. 设 A , B 都是 n 阶方阵,则下列结论正确的是 ().
(A) 若 A 与 B 相似,则 A 与 B 有相同的特征值和特征向量
(B) 若 A 与 B 相似,则 A 与 B 都相似于同一个对角阵
(C) 若 A 与 B 相似,则 A 与 B 等价
(D) 若 A 与 B 等价,则 A 与 B 相似
19. 设 3 阶方阵 A 有 3 个线性无关的特征向量, $\lambda = 3$ 是 A 的二重特征值,则 $R(A - 3E) =$
().

(A) **A** 的 n 个特征向量两两正交

20.	设 A,B 为 n 阶矩阵,且 A 相似于 B ,则().
	(A) A , B 有相同的特征值 (B) A , B 相似于同一个对角矩阵
	(C) 存在正交矩阵 P , 使 $P^TAP = B$ (D) 存在可逆矩阵 P , 使 $P^TAP = B$
21.	n阶矩阵 A 与对角阵相似的充要条件是 ().
	(A) A 可逆
	(B) A 的 n 个特征值无零特征值
	(C) A 的 n 个特征值互不相同
	(D) 对应 A 的每一个 k 重特征根 λ , A 一定有 k 个线性无关的特征向量
22.	设 A 为 n 阶矩阵, P 为 n 阶可逆矩阵, n 维列向量 α 是矩阵 A 属于特征值 λ 的特征向
	量,那么在下列矩阵中① A^2 ;② $P^{-1}AP$;③ A^T ;④ $E-\frac{1}{2}A$, α 肯定是其特征值向
	量的矩阵共有().
	(A) $1 \uparrow$ (B) $2 \uparrow$ (C) $3 \uparrow$ (D) $4 \uparrow$
23.	设 A , B 均为 n 阶方阵,且 A 相似于 B ,则下面说法中正确的是().
	(A) $\mathbf{A} - \lambda \mathbf{E} = \mathbf{B} - \lambda \mathbf{E}$ (B) 存在 \mathbf{n} 阶可逆方阵 \mathbf{P} , 使 $\mathbf{AP} = \mathbf{PB}$
	(C) A,B 与同一对角阵相似 (D) 存在 n 阶可逆方阵 Q ,使 $Q^TAQ=B$
24.	如果向量 $\boldsymbol{\alpha} = (1,k)^T$ 是矩阵 $\boldsymbol{A} = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$ 的逆矩阵 \boldsymbol{A}^{-1} 的特征向量,求常数 k 的值.
25.	(10 分) 设 $\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}, 且 \mathbf{A} 与 \mathbf{B} 相似,求 a,b,并求可逆$
	矩阵 P , 使 $P^{-1}AP = B$.
26.	(10 分)(1)设 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & a \\ 1 & 4 & 9 & a^2 \\ 1 & 8 & 27 & a^3 \end{pmatrix}$,若存在 4 阶非零矩阵 \mathbf{B} ,使 $\mathbf{AB} = \mathbf{O}$,问:① \mathbf{B}

是否可逆?②a可能取哪些值?(2)已知3阶矩阵A的特征值为1,2,-3,求 $\left|A^*+2E\right|$.

(A) 1 (B) 2 (C) 3 (D) 无法确定

27. (12 分) 矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ 可否相似对角化?若能相似对角化,则求可逆矩阵 \mathbf{P} ,

使得 $P^{-1}AP$ 为对角矩阵.

28. (12 分) 已知三阶实对称矩阵 A 的特征值为 $\lambda_1=2$, $\lambda_2=\lambda_3=1$,且对应于 $\lambda_2=\lambda_3=1$ 的

特征向量为
$$\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$. (1) 求 \boldsymbol{A} 的对应于 $\boldsymbol{\lambda}_1 = 2$ 的特征向量; (2) 求 \boldsymbol{A} .

29. $(6 \, \beta)$ 设 A, B 为 n 阶非零矩阵,且 $A^2 + A = O$, $B^2 + B = O$. (1)证明 $\lambda = -1$ 必是 A, B 的特征值;(2)若 AB = BA = O, ξ_1 , ξ_2 分别是 A, B 对应于特征值 $\lambda = -1$ 的特征向量,证明 ξ_1 , ξ_2 线性无关.