SERIA 9

Twierdzenie. Załóżmy, że:

- (1) $f_n : [a, b] \to \mathbb{R}$ są różniczkowalne;
- (2) Szereg funkcyjny $\sum_{n=1}^{\infty} f'_n(x)$ jest zbieżny jednostajnie na [a,b] do funkcji g;
- (3) Istnieje taki punkt $x_0 \in [a, b]$, że szereg liczbowy $\sum_{n=1}^{\infty} f_n(x_0)$ jest zbieżny. Wówczas:
 - (1) Szereg $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżny jednostajnie do pewnej funkcji ciągłej $f: [a, b] \to \mathbb{R}$;
 - (2) Funkcja f jest różniczkowalna na [a, b] i f' = g.

Zadanie 1. Niech

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \ln\left(1 + \frac{x}{n}\right)$$
 dla $x \in [0, \infty)$.

Udowodnić, że f jest różniczkowalna na $[0,\infty)$. Znaleźć f'(0), f'(1) oraz $\lim_{x\to\infty} f'(x)$.

Zadanie 2. Niech

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}} \operatorname{arctg} \frac{x}{\sqrt{n}}, \quad x \in \mathbb{R}.$$

Udowodnić, że $f \in C^1(\mathbb{R})$.

Zadanie 3. Niech

$$f(x) = \sum_{n=0}^{\infty} \frac{e^{-nx}}{1+n^2}, \quad x \in [0, \infty).$$

Udowodnić, że $f \in C([0,\infty))$ i $f \in C^{\infty}((0,\infty))$ oraz, że f'(0) nie istnieje.

Zadanie 4. Wykazać, że funkcja

$$f(x) = \sum_{n=1}^{\infty} \frac{|x|}{x^2 + n^2}$$

1

jest określona i ciągła na \mathbb{R} . Zbadać jej różniczkowalność.