OCTO: 分布式服务通信框架及服务治理系统

张熙 基础架构中心 2016.6

Agenda

- SOA及服务治理介绍
- 服务架构演进
- OCTO架构设计
- 服务治理实践

面向服务架构

- 单应用设计
 - Function
 - Module
- 面向对象设计
- 组件化设计
- 面向服务架构
 - Service
 - API

Before SOA

After SOA

服务治理

- 服务架构原则
 - 轻耦合
 - 标准化
 - 可重用
 - 高可靠
 - 可伸缩
- 服务治理过程
 - 服务定义
 - 服务实现
 - 服务运营

早期服务架构

- 服务注册中心
 - 基于zookeeper
- 服务通信框架
 - Thrift协议
 - 暂只支持Java
- Http协议服务
 - 还需手动维护
- 服务治理涉及不多

早期服务架构 - 遇到的问题

• 服务注册中心

- 上万服务节点,如何保障足够稳定
- 多种语言带来的服务注册/发现需求,还存在直接依赖IP的情况
- 功能扩展的灵活性

• 服务通信框架

- 过多逻辑放到客户端
- 大并发高压力下,要能保障业务高可用
- 数据、监控方面支持不够
- 多语言支持
- 未实现全生命周期的服务治理,做到服务规范化、标准化

OCTO整体架构

• OCTO是什么?

 面向服务架构,公司所有业务都使用 OCTO作为统一的服务通信框架,达到 基本的标准化。并具备良好的服务运营 能力,轻松实现服务注册、服务自动发 现、负载均衡、容错、灰度发布、数据 可视化、监控告警等。

• OCTO关键组件

• MNS: 命名服务

• SG_agent:治理代理

• 服务通信框架

• MSGP: 服务治理平台

服务注册中心 - 遇到的问题

• zookeeper集群问题

- session timeout,临时节点抖动下线
- 突发链接过多
- 突发事务过多
- 网络因素导致集群故障
- 其它人为因素,如误操作、迁移扩容

• 故障恢复及影响	响
-----------	---

- 集群受业务侧影响导致故障时,较难解决
- 网络方面导致的故障,恢复时间可能会较长
- 所有业务都需依赖,难以隔离影响范围

可用性百分比	一天 24 小时为基准	一天8小时为基准
99.9%	8.76小时	2.91小时
99.99%	52.56分钟	17.47分钟
99.999%	5.256分钟	1.747分钟

几种解决思路

- 增加voter
 - 受限于集群投票机制,通过增加voter并不能很好达到扩容预期
- 增加observer
 - 能很好缓解读请求,但不能解决所有问题
- 集群拆分
 - 能实现事业群间隔离,但带来更多问题
 - 违背统一注册中心的设计初衷
- 框架层内置缓存策略
 - 能部分解决抖动、不可用问题,但服务一旦需要重启还是受影响

OCTO服务注册中心 - 引入SG_agent

- 代理模式
- 本地部署
- 分布式
- 灵活可扩展

引入代理后的注册流程

服务通信框架 - 设计要点

- 客户端做薄
- 稳定、高可用
- 数据驱动
- 高性能
- 多语言支持
- 异步化

•

异地多机房下的路由策略需求

• 单机房场景

• 全部节点列表,按weight分配流量

• 多机房场景

- 同机房优先,同机房内的节点,按weight分配流量
- 同机房节点不可用时,跨机房分配流量

• 异地多机房场景

- 同机房优先,同机房内的节点,按weight分配流量
- 同机房节点不可用时,优先在本地域内,跨机房分配流量
- 本地域无可用节点时, 跨地域分配流量

客户端做薄-策略下移

• 框架层实现

- 单机房 -> 多机房 -> 异地多机房
- 机房、地域等网络拓扑信息在框架层维护不合适

• 策略下移

- 权重做归一化处理
- MNS、SG_agent基于网络拓扑做自动识别
- 下移后的全局拓扑信息可进一步对其它中间件开放
 - KV、MQ等

客户端做薄 - 权重归一化

如何保障业务的稳定性、高可用

• 场景1

• 调用失败了,是否要重试,什么策略?

• 场景2

• 高峰期出现抖动时,不恰当重试导致雪崩

• 场景3

- 某个调用方逻辑问题, 大量访问, 需降级
- 高峰期压力大,需执行过载保护

导致调用失败的几种场景

• 服务查找阶段failure

- 无provider,直接抛出
- 失败节点快速降权、淘汰
- 请求阶段failure
 - 请求确认丢失,可以重试
 - 如果难以确认server是否未收到,需考虑调用是否幂等
- server侧failure
 - 分执行前失败、执行后失败两种情况
 - 从client侧难以区分这两种情况,需考虑调用是否幂等
- client等待response超时
 - 需考虑调用是否幂等

通信框架 - 容错降级机制

• 几种策略

- Fail over:失败自动重试,可指定重试次数
- Fail fast:失败立即报错,用于非幂等调用

• 过载保护

- 针对来源服务,一键设置流量的降级比例
- 支持自定义降级逻辑,不执行一些耗时操作

服务治理 - 数据驱动业务

- 谁调用了我?
- 对哪个服务是强依赖?
- 线上调用量突增,来源是哪里?
- 线上响应时间突增,原因是在哪个环节?
- 一次请求失败了,什么原因?怎么能看到详细信息?
- 该业务线涉及几十个服务,整体视图是什么样的?
- 业务线哪些服务是关键服务?可用性如何,当前容量是否足够?

数据采集设计

数据采集&处理

• 自定义协议

- 框架添加header : requestInfo、responseInfo、traceInfo、context
- 结合mtrace, 记录调用链路

• 数据采集

- 采集调用信息后,通过SG_agent上报
- 采集应用层的异常信息,实时上报并分析

• 数据处理

- 一天近百亿的上报数据,需要实时处理: Akka Actor
- 同一个服务、指标等数据,需要先汇聚:一致性hash
- 非实时数据,定时分析:Spark

一站式服务治理平台

服务注册中心

服务数据分析

业务指标 New! 上下游分析 New! 调用链分析 New! 性能指标 来源分析 主机分析 去向分析 Dashboard 角色: 来源 去向 环境ૄ: 日期: 查询 可用性指标❷ TP耗时数据₽ 同比环比❷ prod stage test 2016-06-22 成功数/百分比 异常数/百分比 过载数/百分比 TP50耗时 TP90耗时(毫 TP95耗时 TP99耗时 QPS(次/秒),环比, 接口◆ 调用总量 ♦ **\$** 同比◆ (毫秒) \$ 秒),环比,同比 ♦ (毫秒) \$ (毫秒) \$ all 2447391900 2447391594, 306, 0.0000% 0, 0.0000% 28326.295,-4%,8% 4,0%,33% 6 29 2 100.0000% 1666041915 1666041719, 196, 0.0000% 0, 0.0000% 19282.893,-2%,8% 2 3,0%,0% 9 4 100.0000% 294961094 294961062, 32, 0.0000% 0, 0.0000% 3413.902,-2%,9% 4,0%,33% 13 2 6 100.0000% 177186291 177186264, 27, 0.0000% 0, 0.0000% 2050.767,-13%,11% 2 4,0%,0% 6 11 100.0000% 54548506 54548502, 0, 0.0000% 631.348,-8%,13% 4,0%,0% 6 11 4, 0.0000% 2 100.0000%

服务视图

配送调度服务 调用 配	送人员交易类服务	化 的详	青 			,com.meituan.banma.api(骑手APP调用的API接口)
接口	描述	QPS	tp50(ms)	tp90(ms)	tp95(ms)	
mUserThriftIface.getUserByIdAndOtherConditions	该方法暂无描述	1815.433				
mUserThriftlface.isWorkingForRider	该方法暂无描述	58.367				
mOrgThriftlface.getOrgViewById	该方法暂无描述	37.717				honne dieneteh ending/和学用在职务\
mUserThriftIface.batchGetUserViews	该方法暂无描述	31.317				banma.dispatch.engine(配送调度服务) com.sankuai.banma.operat
mUserThriftIface.searchBmUserOrgSimpleViewPage	该方法暂无描述	18.433	5	8	8	
ImUserThriftIface.searchBmUserOrgSimpleViewPage ImUserThriftIface.getVicinalRidersByOrgType com.sankuai.banma.matrix.eva(配送算法评测)	该方法暂无描述		13	16	16	com.sankuai.banma.mess
mUserThriftIface.getVicinalRidersByOrgType com.sankuai.banma.matrix.eva(配送算法评测) n.sankuai.banma.biz.proxy(banma_open对应的	该方法暂无描述		13	16	16	com.sankuai.banma.mess 骑手服务化,提供骑手相关服务) com.sankuai.banma.package
mUserThriftIface.getVicinalRidersByOrgType com.sankuai.banma.matrix.eva(配送算法评测) m.sankuai.banma.biz.proxy(banma_open对应的	该方法暂无描述	1 接 C 端)	com.sa	16 ankuai.bar	16 nma.rider(∄	骑手服务化,提供骑手相关服务)

com.sankuai.banma.business(为商家端提供服务化接口)

OCTO-后续展望

数据驱动 架构Review 性能数据 整体视图 会话链数据 治理报告 服务可用性 资源成本报告 机房分布 服务容量报告 最大吞吐 可用性报告 可用性数据 服务运维 效率 资源利用率 弹性调度平台

谢谢

