CSC 503 Homework Assignment 3

Out: September 10, 2018 Due: September 17, 2018 Unity ID: zzha

1. [30 points] Using the method described in lecture, construct a formula ϕ in **DNF** to match the following truth table. Show and explain any intermediate steps.

α	β	γ	ϕ
T	T	T	T
T	T	F	T
T	F	T	F
T	F	F	Т
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	T

Answer

1. Find lines with ϕ true:

α	β	γ	ϕ
T	T	T	T
T	T	F	T
T	F	F	T
F	T	T	T
F	F	F	T

2. Conjoin true literals:

$$(\alpha \land \beta \land \gamma)$$

$$(\alpha \land \beta \land \neg \gamma)$$

$$(\alpha \land \neg \beta \land \neg \gamma)$$

$$(\neg \alpha \land \beta \land \gamma)$$

$$(\neg \alpha \land \neg \beta \land \neg \gamma)$$

3. Disjoin conjunctions:

$$(\alpha \land \beta \land \gamma) \lor (\alpha \land \beta \land \neg \gamma) \lor (\alpha \land \neg \beta \land \neg \gamma) \lor (\neg \alpha \land \beta \land \gamma) \lor (\neg \alpha \land \neg \beta \land \neg \gamma)$$

2. [30 points] Using the method described in lecture, construct a formula ψ in CNF to match the following truth table. Show and explain any intermediate steps.

α	β	γ	ψ
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	T
F	T	T	T
F	T	F	T
F	F	T	F
F	F	F	T

Answer

1. Find lines with ϕ false:

α	β	γ	ϕ
T	T	F	F
T	F	T	F
F	F	T	F

2. All these must be false:

```
 \begin{array}{l} \neg(\alpha \wedge \beta \wedge \neg \gamma) \\ \neg(\alpha \wedge \neg \beta \wedge \gamma) \\ \neg(\neg \alpha \wedge \neg \beta \wedge \gamma) \\ 3. \  \, \text{So disjoin false literals:} \\ (\neg \alpha \vee \neg \beta \vee \gamma) \\ (\neg \alpha \vee \beta \vee \neg \gamma) \\ (\alpha \vee \beta \vee \neg \gamma) \\ 4. \  \, \text{Conjoin disjunctions:} \\ (\neg \alpha \vee \neg \beta \vee \gamma) \wedge (\neg \alpha \vee \beta \vee \neg \gamma) \wedge (\alpha \vee \beta \vee \neg \gamma) \\ \end{array}
```

- 3. [30 points total] Apply the following version of the algorithm HORN from pages 66–67 of the textbook to the following Horn formula φ .
 - (a) Mark each occurrence of \top in each conjunct of φ with a "1" to indicate \top is marked on the first pass.
 - (b) Search the list of conjuncts of φ in order until either
 - i. the end of the list is reached, or
 - ii. a "markable" conjunct is found, that is, one with each of its antecedent propositions marked and its consequent proposition unmarked.
 - (c) If the end of the list was reached,
 - i. If \perp is not marked, return "satisfiable" and halt.
 - ii. If \perp is marked, return "unsatisfiable" and halt.
 - (d) Otherwise, mark every occurrence of the consequent proposition of the first markable conjunct with the pass number (2, 3, ...) in each conjunct of φ .
 - (e) Continue with step (b) again.

$$\varphi = \begin{pmatrix} 1. & (\top \to w) & \land \\ 2. & (w \to q) & \land \\ 3. & (x \land t \to \bot) & \land \\ 4. & (q \land r \to p) & \land \\ 5. & (v \to s) & \land \\ 6. & (w \to r) & \land \\ 7. & (r \land s \to x) & \land \\ 8. & (\top \to v) & \land \\ 9. & (v \land q \to u) & \land \\ 10. & (p \land r \land s \to u) & \land \\ 11. & (u \to v) & \end{pmatrix}$$

Your answer should list propositional letters in the order in which they are marked and indicate the returned value.

Answer

1, Mark each occurrence of \top in each conjunct on the first pass and the others on the following passes:

$$\varphi = \begin{vmatrix} 1. & (\top^1 \to w^2) & \land \\ 2. & (w^2 \to q^3) & \land \\ 3. & (x^4 \land t \to \bot) & \land \\ 4. & (q^3 \land r^3 \to p^4) & \land \\ 5. & (v^2 \to s^3) & \land \\ 6. & (w^2 \to r^3) & \land \\ 7. & (r^3 \land s^3 \to x^4) & \land \\ 8. & (\top^1 \to v^2) & \land \\ 9. & (v^2 \land q^3 \to u^4) & \land \\ 10. & (p^4 \land r^3 \land s^3 \to u^4) & \land \\ 11. & (u^4 \to v^2) & \end{vmatrix}$$

The formula is satisfiable because \bot is not marked. The order of marking of variables is w, v, q, s, r, p, x, u. The variable t is not marked.

4. [10 points] Can one determine whether the following formula ψ is satisfiable more quickly than by applying the HORN algorithm? Explain your answer.

$$\psi = \begin{pmatrix} (\top \to p) & \land \\ (\bot \to q) & \land \\ (p \land q \to v) & \land \\ (q \to r) & \land \\ (v \to s) & \land \\ (\top \to r) & \land \\ (\top \to s) & \land \\ (v \land t \to u) & \land \\ (p \land r \land s \to u) \end{pmatrix}$$

Answer

Yes. Using the HORN algorithm: there will be 3 steps to determine the formula is satisfiable(Please see the following steps), but it is noticed that \bot is not at the right side of a clause, which means it will never get marked, and we can conclude that the formula is satisfiable immediately).

$$\psi = \begin{pmatrix} (\top^1 \to p^2) & \wedge \\ (\bot \to q) & \wedge \\ (p^2 \wedge q \to v) & \wedge \\ (q \to r^2) & \wedge \\ (v \to s^2) & \wedge \\ (\top^1 \to r^2) & \wedge \\ (\tau^1 \to s^2) & \wedge \\ (v \wedge t \to u^2) & \wedge \\ (p^2 \wedge r^2 \wedge s^2 \to u^3) \end{pmatrix}$$