Monadic Interface

Unit Transformation

Unit is a natural transformation.

Indeed, for any f:A o B,

 $\operatorname{chain_of}(f, \operatorname{wrap}) \equiv \operatorname{chain_of}(\operatorname{wrap}, \operatorname{with_elements}(f))$

Using Unit Transformation

Unit transformation can adapt any regular transformation to the monadic interface.

Monadic Interface: Examples

Composition Challenge

Two monadic transformations can be composed.

Multiplication Transformation

It is easy to check that the multiplication is a natural transformation.

Using Multiplication Transformation

Multiplication can be used to combine two monadic transformations into a new monadic transformation.

chain_of(employee, with_elements(manager), flatten)

Monad

In general, a *monad* is a functor wire which posesses two special natural transformations: unit and multiplication.

Monadic transformation is a transformation with the following shape.

Monadic Composition

Using multiplication, two compatible monadic transformations can be composed to form a new monadic transformation.

For this definition to be coherent, unit and multiplication must satisfy certain properties.

Associativity of Monadic Composition 1

Given three compatible monadic transformations, they could be composed in two distinct ways.

Associativity of Monadic Composition 2

Given three compatible monadic transformations, they could be composed in two distinct ways.

Associativity of Monadic Composition 3

We demand that these two transformations are equivalent for any f, g, and h.

