#### Introduction to data science

Patrick Shafto

Department of Math and Computer Science

#### Plan for today

- Projects
- HW 5
- Tidy data!
- HW for next class

#### Projects!

Pitches start Oct 3rd!

First round due Nov 18th by 11:59 pm

Will then get comments

Give presentation in class

Turn in final assignment Dec 14 11:59 pm

#### HW 5 for monday

- Replicate this analysis in your own jupiter notebook
- http://tomaugspurger.github.io/modern-5-tidy.html
- Add comments explaining what exactly the code is doing
- Stop at "Mini Project: Home Court Advantage?"

• Wickham, 2014

- It is often said that 80% of data analysis is spent on the process of cleaning and preparing the data (Dasu and Johnson 2003).
- Data preparation is not just a first step, but must be repeated many over the course of analysis as new problems come to light or new data is collected.
- Despite the amount of time it takes, there has been surprisingly little research on how to clean data well.

- Part of the challenge is the breadth of activities it encompasses:
  - from outlier checking,
  - to date parsing,
  - to missing value imputation.
- To get a handle on the problem, focus on a small, but important, aspect of data cleaning called data tidying: structuring datasets to facilitate analysis.

- Two types of data:
  - Tidy data:
    - Variables on the columns, observations on the rows, each observational unit forms a table
  - Messy data:
    - Anything else!

|              | treatmenta | treatmentb |
|--------------|------------|------------|
| John Smith   |            | 2          |
| Jane Doe     | 16         | 11         |
| Mary Johnson | 3          | 1          |

Table 1: Typical presentation dataset.

|            | John Smith | Jane Doe | Mary Johnson |
|------------|------------|----------|--------------|
| treatmenta |            | 16       | 3            |
| treatmentb | 2          | 11       | 1            |

Table 2: The same data as in Table 1 but structured differently.

- A <u>dataset</u> is a collection of <u>values</u>, usually either numbers (if quantitative) or strings (if qualitative).
- Values are organized in two ways.
- Every value belongs to a variable and an observation.
- A <u>variable</u> contains all values that measure the same underlying attribute (like height, temperature, duration) across units.
- An <u>observation</u> contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The dataset contains 18 values representing three variables and six observations. The variables are:

- 1. person, with three possible values (John, Mary, and Jane).
- 2. treatment, with two possible values (a and b).
- 3. result, with five or six values depending on how you think of the missing value (-, 16, 3, 2, 11, 1).

|              | treatmenta | treatmentb |
|--------------|------------|------------|
| John Smith   |            | 2          |
| Jane Doe     | 16         | 11         |
| Mary Johnson | 3          | 1          |

Table 1: Typical presentation dataset.

| name         | trt | result |
|--------------|-----|--------|
| John Smith   | a   |        |
| Jane Doe     | a   | 16     |
| Mary Johnson | a   | 3      |
| John Smith   | b   | 2      |
| Jane Doe     | b   | 11     |
| Mary Johnson | b   | 1      |

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

- The <u>experimental design</u> tells us more about the structure of the observations.
- In this experiment, every combination of of person and treatment was measured, a <u>completely crossed design</u>.
- The experimental design also determines whether or not missing values can be safely dropped.
- In this experiment, the missing value represents an observation that should have been made, but wasn't, so it's important to keep it.
- Structural missing values, which represent measurements that can't be made (e.g., the count of pregnant males) can be safely removed.

| name         | trt          | result |
|--------------|--------------|--------|
| John Smith   | a            |        |
| Jane Doe     | a            | 16     |
| Mary Johnson | $\mathbf{a}$ | 3      |
| John Smith   | b            | 2      |
| Jane Doe     | b            | 11     |
| Mary Johnson | b            | 1      |

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

- For a given dataset, it's usually easy to figure out what are observations and what are variables, but it is surprisingly difficult to precisely define variables and observations in general.
- For example, if the columns in the Table 1 were height and weight we would have been happy to call them variables. If the columns were height and width, it would be less clear cut, as we might think of height and width as values of a dimension variable.
- If the columns were home phone and work phone, we could treat these as two variables, but in a fraud detection environment we might want variables phone number and number type because the use of one phone number for multiple people might suggest fraud.

- In a given analysis, there may be multiple levels of observation.
- For example, in a trial of new allergy medication we might have three observational types:
  - demographic data collected from each person (age, sex, race),
  - medical data collected from each person on each day (number of sneezes, redness of eyes), and
  - meterological data collected on each day (temperature, pollen count).

- Two types of data:
  - Tidy data:
    - Variables on the columns, observations on the rows, each observational unit forms a table
    - Codd's 3rd normal form (1990)

|              | treatmenta | treatmentb |
|--------------|------------|------------|
| John Smith   |            | 2          |
| Jane Doe     | 16         | 11         |
| Mary Johnson | 3          | 1          |

Table 1

| name         | trt | result |
|--------------|-----|--------|
| John Smith   | a   |        |
| Jane Doe     | a   | 16     |
| Mary Johnson | a   | 3      |
| John Smith   | b   | 2      |
| Jane Doe     | b   | 11     |
| Mary Johnson | b   | 1      |

Table 3

- Tidy data makes it easy for an analyst or a computer to extract needed variables because it provides a standard way of structuring a dataset.
- Compare Table 3 to Table 1: in Table 1 you need to use different strategies to extract different variables. This slows analysis and invites errors. If you consider how many data analysis operations involve all of the values in a variable (every aggregation function), you can see how important it is to extract these values in a simple, standard way.

- While the order of variables and observations does not affect analysis, a good ordering makes it easier to scan the raw values.
- One way of organizing variables is by their role in the analysis: are values fixed by the design of the data collection, or are they measured during the course of the experiment?
  - Fixed variables describe the experimental design and are known in advance. Computer scientists often call fixed variables dimensions, and statisticians usually denote them with subscripts on random variables.
  - Measured variables are what we actually measure in the study.
- Fixed variables should come first, followed by measured variables, each ordered so that related variables are contiguous.
- Rows can then be ordered by the first variable, breaking ties with the second and subsequent (fixed) variables. This is the convention adopted by all tabular displays in this paper.

- The five most common problems with messy datasets, along with their remedies
  - Column headers are values, not variable names
  - Multiple variables are stored in one column.
  - Variables are stored in both rows and columns.
  - Multiple types of observational units are stored in the same table.
  - A single observational unit is stored in multiple tables.
- Surprisingly, most messy datasets, including types of messiness not explicitly described above, can be tidied with a small set of tools: melting, string splitting, and casting.

```
messy = pd.DataFrame({'row' : ['A', 'B', 'C'],
```

```
• 'a': [1, 2, 3],
```

- 'b': [4, 5, 6],
- 'c' : [7, 8, 9]})



pd.melt(messy, id\_vars='row')



|   | row | variable | value |
|---|-----|----------|-------|
| 0 | А   | а        | 1     |
| 1 | В   | а        | 2     |
| 2 | С   | а        | 3     |
| 3 | А   | b        | 4     |
| 4 | В   | b        | 5     |
| 5 | С   | b        | 6     |
| 6 | А   | С        | 7     |
| 7 | В   | С        | 8     |
| 8 | С   | С        | 9     |

 tidy = pd.melt(messy, id\_vars='row', var\_name='dimension', value\_name='length')

|   | row | variable | value |
|---|-----|----------|-------|
| 0 | А   | а        | 1     |
| 1 | В   | а        | 2     |
| 2 | С   | а        | 3     |
| 3 | А   | b        | 4     |
| 4 | В   | b        | 5     |
| 5 | С   | b        | 6     |
| 6 | А   | С        | 7     |
| 7 | В   | С        | 8     |
| 8 | С   | С        | 9     |



|   | row | dimension | length |
|---|-----|-----------|--------|
| 0 | А   | а         | 1      |
| 1 | В   | а         | 2      |
| 2 | С   | а         | 3      |
| 3 | А   | b         | 4      |
| 4 | В   | b         | 5      |
| 5 | С   | b         | 6      |
| 6 | А   | С         | 7      |
| 7 | В   | С         | 8      |
| 8 | С   | С         | 9      |

 messy1 = tidy.pivot(index='row',columns='dimension',values='length')

|   | row | dimension | length |
|---|-----|-----------|--------|
| 0 | А   | а         | 1      |
| 1 | В   | а         | 2      |
| 2 | С   | а         | 3      |
| 3 | А   | b         | 4      |
| 4 | В   | b         | 5      |
| 5 | С   | b         | 6      |
| 6 | А   | С         | 7      |
| 7 | В   | С         | 8      |
| 8 | С   | С         | 9      |



### Column headers are values not variable names

 The melt function is key, but it is not always sufficient, as we will see with additional examples used by Wickham.

|   | religion                | <\$10k | \$10-20k | \$20-30k | \$30-40k | \$40-50k | \$50-75k |
|---|-------------------------|--------|----------|----------|----------|----------|----------|
| 0 | Agnostic                | 27     | 34       | 60       | 81       | 76       | 137      |
| 1 | Atheist                 | 12     | 27       | 37       | 52       | 35       | 70       |
| 2 | Buddhist                | 27     | 21       | 30       | 34       | 33       | 58       |
| 3 | Catholic                | 418    | 617      | 732      | 670      | 638      | 1116     |
| 4 | Don't know/refused      | 15     | 14       | 15       | 11       | 10       | 35       |
| 5 | Evangelical Prot        | 575    | 869      | 1064     | 982      | 881      | 1486     |
| 6 | Hindu                   | 1      | 9        | 7        | 9        | 11       | 34       |
| 7 | Historically Black Prot | 228    | 244      | 236      | 238      | 197      | 223      |
| 8 | Jehovah's Witness       | 20     | 27       | 24       | 24       | 21       | 30       |
| 9 | Jewish                  | 19     | 19       | 25       | 25       | 30       | 95       |

# Column headers are values not variable names

- tidy = pd.melt(messy, id\_vars = ['religion'], var\_name='income', value\_name='freq')
- tidy.sort\_values(by=['religion'], inplace=True)
- tidy.head()

| П |                         |        |          |          |          |          |          |
|---|-------------------------|--------|----------|----------|----------|----------|----------|
|   | religion                | <\$10k | \$10-20k | \$20-30k | \$30-40k | \$40-50k | \$50-75k |
| 0 | Agnostic                | 27     | 34       | 60       | 81       | 76       | 137      |
| 1 | Atheist                 | 12     | 27       | 37       | 52       | 35       | 70       |
| 2 | Buddhist                | 27     | 21       | 30       | 34       | 33       | 58       |
| 3 | Catholic                | 418    | 617      | 732      | 670      | 638      | 1116     |
| 4 | Don't know/refused      | 15     | 14       | 15       | 11       | 10       | 35       |
| 5 | Evangelical Prot        | 575    | 869      | 1064     | 982      | 881      | 1486     |
| 6 | Hindu                   | 1      | 9        | 7        | 9        | 11       | 34       |
| 7 | Historically Black Prot | 228    | 244      | 236      | 238      | 197      | 223      |
| 8 | Jehovah's Witness       | 20     | 27       | 24       | 24       | 21       | 30       |
| 9 | Jewish                  | 19     | 19       | 25       | 25       | 30       | 95       |

|    | religion | income   | freq |
|----|----------|----------|------|
| 0  | Agnostic | <\$10k   | 27   |
| 30 | Agnostic | \$30-40k | 81   |
| 40 | Agnostic | \$40-50k | 76   |
| 50 | Agnostic | \$50-75k | 137  |
| 10 | Agnostic | \$10-20k | 34   |

|     | country | year | m014 | m1524 | m2534 | m3544 | m4554 | m5564 | m65 | mu  | f014 |
|-----|---------|------|------|-------|-------|-------|-------|-------|-----|-----|------|
| 10  | AD      | 2000 | 0    | 0     | 1     | 0     | 0     | 0     | 0   | NaN | NaN  |
| 36  | AE      | 2000 | 2    | 4     | 4     | 6     | 5     | 12    | 10  | NaN | 3    |
| 60  | AF      | 2000 | 52   | 228   | 183   | 149   | 129   | 94    | 80  | NaN | 93   |
| 87  | AG      | 2000 | 0    | 0     | 0     | 0     | 0     | 0     | 1   | NaN | 1    |
| 136 | AL      | 2000 | 2    | 19    | 21    | 14    | 24    | 19    | 16  | NaN | 3    |

- molten = pd.melt(messy, id\_vars=['country', 'year'], value\_name='cases')
- molten.sort\_values(by=['year', 'country'], inplace=True)
- molten.head(10)

|     | country | year | m014 | m1524 | m2534 | m3544 | m4554 | m5564 | m65 | mu  | f014 |
|-----|---------|------|------|-------|-------|-------|-------|-------|-----|-----|------|
| 10  | AD      | 2000 | 0    | 0     | 1     | 0     | 0     | 0     | 0   | NaN | NaN  |
| 36  | AE      | 2000 | 2    | 4     | 4     | 6     | 5     | 12    | 10  | NaN | 3    |
| 60  | AF      | 2000 | 52   | 228   | 183   | 149   | 129   | 94    | 80  | NaN | 93   |
| 87  | AG      | 2000 | 0    | 0     | 0     | 0     | 0     | 0     | 1   | NaN | 1    |
| 136 | AL      | 2000 | 2    | 19    | 21    | 14    | 24    | 19    | 16  | NaN | 3    |

|      | country | year | variable | cases |
|------|---------|------|----------|-------|
| 0    | AD      | 2000 | m014     | 0     |
| 201  | AD      | 2000 | m1524    | 0     |
| 402  | AD      | 2000 | m2534    | 1     |
| 603  | AD      | 2000 | m3544    | 0     |
| 804  | AD      | 2000 | m4554    | 0     |
| 1005 | AD      | 2000 | m5564    | 0     |
| 1206 | AD      | 2000 | m65      | 0     |
| 1407 | AD      | 2000 | mu       | NaN   |
| 1608 | AD      | 2000 | f014     | NaN   |
| 1809 | AD      | 2000 | f1524    | NaN   |

```
tidy = molten[molten['variable'] != 'mu'].copy()
def parse_age(s):
  s = s[1:]
  if s == '65':
     return '65+'
  else:
     return s[:-2]+'-'+s[-2:]
tidy['sex'] = tidy['variable'].apply(lambda s: s[:1])
tidy['age'] = tidy['variable'].apply(parse_age)
tidy = tidy[['country', 'year', 'sex', 'age', 'cases']]
tidy.head(10)
```

|      | country | year | variable | cases |
|------|---------|------|----------|-------|
| 0    | AD      | 2000 | m014     | 0     |
| 201  | AD      | 2000 | m1524    | 0     |
| 402  | AD      | 2000 | m2534    | 1     |
| 603  | AD      | 2000 | m3544    | 0     |
| 804  | AD      | 2000 | m4554    | 0     |
| 1005 | AD      | 2000 | m5564    | 0     |
| 1206 | AD      | 2000 | m65      | 0     |
| 1407 | AD      | 2000 | mu       | NaN   |
| 1608 | AD      | 2000 | f014     | NaN   |
| 1809 | AD      | 2000 | f1524    | NaN   |



|      | country | year | sex | age   | cases |
|------|---------|------|-----|-------|-------|
| 0    | AD      | 2000 | m   | 0-14  | 0     |
| 201  | AD      | 2000 | m   | 15-24 | 0     |
| 402  | AD      | 2000 | m   | 25-34 | 1     |
| 603  | AD      | 2000 | m   | 35-44 | 0     |
| 804  | AD      | 2000 | m   | 45-54 | 0     |
| 1005 | AD      | 2000 | m   | 55-64 | 0     |
| 1206 | AD      | 2000 | m   | 65+   | 0     |
| 1608 | AD      | 2000 | f   | 0-14  | NaN   |
| 1809 | AD      | 2000 | f   | 15-24 | NaN   |
| 2010 | AD      | 2000 | f   | 25-34 | NaN   |

|   | year | artist        | track                | time | date entered | wk1 | wk2 | wk3 |
|---|------|---------------|----------------------|------|--------------|-----|-----|-----|
| 0 | 2000 | 2,Pac         | Baby Don't Cry       | 4:22 | 2000-02-26   | 87  | 82  | 72  |
| 1 | 2000 | 2Ge+her       | The Hardest Part Of  | 3:15 | 2000-09-02   | 91  | 87  | 92  |
| 2 | 2000 | 3 Doors Down  | Kryptonite           | 3:53 | 2000-04-08   | 81  | 70  | 68  |
| 3 | 2000 | 98^0          | Give Me Just One Nig | 3:24 | 2000-08-19   | 51  | 39  | 34  |
| 4 | 2000 | A*Teens       | Dancing Queen        | 3:44 | 2000-07-08   | 97  | 97  | 96  |
| 5 | 2000 | Aaliyah       | I Don't Wanna        | 4:15 | 2000-01-29   | 84  | 62  | 51  |
| 6 | 2000 | Aaliyah       | Try Again            | 4:03 | 2000-03-18   | 59  | 53  | 38  |
| 7 | 2000 | Adams,Yolanda | Open My Heart        | 5:30 | 2000-08-26   | 76  | 76  | 74  |

```
molten = pd.melt(messy,
          id_vars=['year','artist','track','time','date entered'],
          var name = 'week',
          value name = 'rank',
molten.sort_values(by=['date entered','week'], inplace=True)
molten.head()
```

|    | year | artist  | track          | time | date entered | week | rank |
|----|------|---------|----------------|------|--------------|------|------|
| 5  | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk1  | 84   |
| 13 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk2  | 62   |
| 21 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk3  | 51   |
| 0  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 2000-02-26   | wk1  | 87   |
| 8  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 2000-02-26   | wk2  | 82   |

from datetime import datetime, timedelta

```
def increment_date(row):
  date = datetime.strptime(row['date entered'], "%Y-%m-%d")
  return date + timedelta(7) * (row['week'] - 1)
molten['week'] = molten['week'].apply(lambda s: int(s[2:]))
molten['date'] = molten.apply(increment_date, axis=1)
molten.drop('date entered', axis=1, inplace=True)
molten.head()
```

|    | year | artist  | track          | time | date entered | week | rank |
|----|------|---------|----------------|------|--------------|------|------|
| 5  | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk1  | 84   |
| 13 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk2  | 62   |
| 21 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2000-01-29   | wk3  | 51   |
| 0  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 2000-02-26   | wk1  | 87   |
| 8  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 2000-02-26   | wk2  | 82   |

|    | year | artist  | track          | time | week | rank | date       |
|----|------|---------|----------------|------|------|------|------------|
| 5  | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 1    | 84   | 2000-01-29 |
| 13 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 2    | 62   | 2000-02-05 |
| 21 | 2000 | Aaliyah | I Don't Wanna  | 4:15 | 3    | 51   | 2000-02-12 |
| 0  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 1    | 87   | 2000-02-26 |
| 8  | 2000 | 2,Pac   | Baby Don't Cry | 4:22 | 2    | 82   | 2000-03-04 |

```
tidy_track = molten[['year','artist','track','time']]\
         .groupby(['year','artist','track'])\
         .first()
tidy_track.reset_index(inplace=True)
tidy_track.rename(columns = {'index':'id'}, inplace=True)
tidy_track
```

|   | id | year | artist         | track                | time |
|---|----|------|----------------|----------------------|------|
| 0 | 0  | 2000 | 2,Pac          | Baby Don't Cry       | 4:22 |
| 1 | 1  | 2000 | 2Ge+her        | The Hardest Part Of  | 3:15 |
| 2 | 2  | 2000 | 3 Doors Down   | Kryptonite           | 3:53 |
| 3 | 3  | 2000 | 98^0           | Give Me Just One Nig | 3:24 |
| 4 | 4  | 2000 | A*Teens        | Dancing Queen        | 3:44 |
| 5 | 5  | 2000 | Aaliyah        | I Don't Wanna        | 4:15 |
| 6 | 6  | 2000 | Aaliyah        | Try Again            | 4:03 |
| 7 | 7  | 2000 | Adams, Yolanda | Open My Heart        | 5:30 |

```
tidy_rank = pd.merge(molten, tidy_track, on='track')
tidy_rank = tidy_rank[['id', 'date', 'rank']]
tidy_rank.head()
```

|           | id | date       | rank |
|-----------|----|------------|------|
| 0         | 5  | 2000-01-29 | 84   |
| 1         | 5  | 2000-02-05 | 62   |
| 2         | 5  | 2000-02-12 | 51   |
| $\square$ |    | 2000-02-26 |      |
| 4         | 0  | 2000-03-04 | 82   |

#### HW for weds

Think about your projects!