This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

DOMETORS CONTRACT

F16.2

INA


```
Module: identify_caller
1
        Submodule of: routing_to_skill
2
                              ANI : 9digits
3
        Input attributes:
                              home phone : 9digits
4
5
6
7
8
        Output attributes:
                              account_number : 15digits
                              cust rec : tuple( name: string,
                                                 address: string,
                                                 card_color: {"platinum",
                                                 "gold", "green"},
9
                                                 hates_promos? : boolean,
10
                                                 estimated income bracket :
11
                                                 {"0-10K", ">10K-20K", ...,}
12
                                                 ">100K-150K", ">150K"},
13
                                                 last_sent_bonus_check:date)
14
15
        Enabling condition:
                              true
16
        Type:
                        flowchart
17
        Computation:
                        See Fig. 3
18
                        yes
        Side-effect:
19
        Side Effect function: (IVR Dip)
```

FIG. 4

F16. 5

```
Module: info_about_customer
 1
        Submodule of: routing_to_skill
2
 3
        Input attributes:
                              account_number
 4
                              cust_rec
 5
                              cust_value : [1..10]
        Output attributes:
6
7
8
9
10
                              frustration_score : [1..10]
                              late_payments_score : [1..10]
                              recent purchases :list(tuple( date : date,
                                                              item : 20digit,
                                                              qty : int,
                                                              amount: $value ))
11
12
                              marketing_vs_collections : {"market",
13
                              "collect"}
14
15
                              VAL(account_number)
     Enabling condition:
16
                        declarative
        Type:
17
        Side-effect:
                        no
```


on-went SCREEK" 1145 CALTUTATE . D.M. CHEVE. PROND 296 ON-QUEVE. ABOMD 976 FRISTRATION SCORE BIZINESS . VALVE. OF CALL MARKETIME - US_CELLE CTIONS C. TPM. WEB DESTINATIONS CALL . PRIORITY CALLVIATE - LALL. CALCULATE SKILL ZVR, CHOICE D~ 1S 27145 OUTPUT. IN PUT: EDUSTRATION - SCORE > S BUSINESS - VAIVE > 10. 296 DISALLETE (Teve) 930 CALLUATE -SEND-BONUS-CHECE SEND. EITUS, CHECK 920 andational ve. leatedows BUSINESS LAIVE - OF CALL 1ATE. PAYMENTS. SCORE NET. PROFIT. SCORE FACTABLIEN SCORE CUSTOFF 4 EB. OFSTIMASIONS OUTPUT: INK.CHOICE Service for CALMATE, BUSINES IMPKIONE) · TUDY INK CHUICE foutling secions BOOVS. CHECK CART. OF AE 7 1000 CUSTUALUE 47 Cit Porting agested CREETINGS: "MANEY" NR AND AMBRETTAN WE THE STATE FLOW T. RINGS FASTER STATES WEB-praylows LAYE PHILIPS C. S. P. C. RIWNT-STANS STORE SKEED ANT. N.

こりる

```
1
    Module: routing decisions
2
          Submodule of:
                             routing_to skill
3
          Input attributes: ANI
4
5
6
7
8
9
10
                             account_number
                             cust_rec
                             cust_value
                             recent_purchases
                             frustration_score
                             late_payments_score
11
                             web_destinations
          Output attributes:call_priority : [1..4] \corresponds to "low", "med", "high", "top"
12
13
                             14
15
                                         collections"}
16
17
                             on_queue_promo : message_identifier
                             screen_pop_list : list ( screen_entry )
18
19
        Enabling condition: true
20
       Type:
                       declarative
21
       Side-effect:
                             yes
```

```
Module: calculate_wrap_up
1
        Submodule of: routing_to_skill
2
                              Ani
3
        Input attributes:
                              dnis
 4
 5
                              Web DB Load
 6
7
                               Promos_Of_The_Day
                               Cust Rec
 8
                               Home Phone
                              Account Number
 9
                               Cust Value
10
                               Frustration Score
11
                               Late Payments_Score
12
                               Recent Purchases
13
                               Marketing_VS_Collections
14
                               Web Destinations
15
                               Call Priority
16
                               Skill
17
                               On_Queue_Promo
18
                               Screen Pop_List
19
                               Promo_Hit_List
20
                               wrap_up : set ( tuple ( att_name: string,
         Output attributes:
21
                                                           value: string ))
22
         Enabling condition: true
23
24
         Type:
                         decision
25
         Computation:
                               if true then wrap_up <- (att_name: "DNIS",
26
            Rules:
                                              value : convert-to-string (DNIS))
27
                               if true then wrap_up <- (att_name: "ANI",
. 28
                                              value: convert-to-string (ANI))
29
                               if true then wrap_up <- (att_name: "skill",
30
                                              value: skill)
31
                               if web destinations not empty then wrap_up <-
32
                                               (att_name: \"web_destinations",
33
                                              value: (convert-to-string
 34
                                                       (web_destinations))
 35
                               if cust_rec.card_color = "gold" <-</pre>
36
                                              (att_name: "frustration_score",
 37
                                              value: convert-to-string
 38
                                               (frustration score))
 39
                                      wrap-up-cp //use contributions of all
 40
            Combining policy:
                                                     rules with true condition
 41
                                      yes
 42
            Side-effect:
                                      write_into_archive ( wrap_up )
            Side-effect function:
 43
```



```
1
    Module: get_recent_purchases_for_this_customer
2
        Submodule of: info_about_customer
3
        Input attributes: account_number
4
        Output attributes: recent_purchases : list ( tuple ( date: date,
5
6
7
                                                  item : 20digit,
                                                  qty : int,
                                                  amount : $value ) )
8
        Enabling condition:
                            true
9
        Type:
                       foreign
10
        Computation:
                             using purchase_db
11
                              select date, item, qty, amount
12
                              from purchases
13
                             where acct_num = account_number
14
        Side-effect:
                             no
```

1

Module: get_account_history_for_this_customer 2 Submodule of: info_about_customer 3 account number Input attributes: 4 account_history : tuple (overdue_amount: Output attributes: 5 6 7 8 9 \$value, number_days_overdue: īnt, history: list (tuple (date: date, 10 item : 20digit, amount : \$value))) 11 12 Enabling condition: true 13 foreign Type: 14 using account_history_db Computation: 15 select over_amt, num_days, history 16 from account_history 17 where acct_num = account_number 18 Side-effect: no

```
Module: calculate_frustration_score
1
       Submodule of: info_about_customer
2
3
                             recent_contacts
       Input attributes:
                             frustration_score : [1..10]
4
       Output attributes:
                             VAL(recent_contacts)
5
       Enabling condition:
                       decision
6
       Type:
7
       Computation:
8
                              if recent_contacts#1 defined then
           Rules:
                              frustration_score <-
                                          (value/50) *
10
                                          [(delay during contact/2) +
11
                                          max(0,delay_before_shipment -
12
13
                                          10)/3]
14
                              if recent_contacts#2 defined then
15
                              frustration_score <-
                                          (value/100) *
16
                                          [(delay_during_contact/2) +
17
                                          max(0,delay_before_shipment -
18
                                          10)/3]
19
20
           Combining policy: frustration-score-cp //add contributions
21
                                                      of true rules and
22
                                                    round up, to max
23
24
                                                      of 10
25
26
        Side-effect:
                              no
```

```
Module: calculate_net_profit_score
1
       Submodule of: info_about_customer
2
                              recent_contacts,
3
       Input attributes:
                              recent_purchases,
4
5
                              account_history,
6
                              cust_rec
       Output attributes:
7
                            net profit score
        Enabling condition: recent purchases#1.date<=now-60
8
9
                       decision
       Type:
10
       Computation:
                                    if recent purchases not empty then
11
           Rules:
12
                                    net profit score <-
                                    10% * sum (recent purchases#i.amount
13
                                    where recent_purchases#i.date > now -
14
15
                                    60)
                                    if recent contacts not empty then
16
                                    net profit score <-
17
                                    -(5 * count ( recent_contacts#i
18
                                    where recent contacts#i.type =
19
                                    "complaint"))
20
                                    if account_history.overdue_amount > 0
21
                                    then net profit score <-
22
                                    - account history.overdue_amount *
23
                                    account history.number_days_overdue / 30
24
                                    if cust_rec.card_color = "platinum" then
25
                                    net profit score <- 100
26
                                    if cust rec.card color = "gold" then
27
                                    net profit_score <- 50</pre>
28
                                     if cust_rec.card color = "green" then
29
                                     net profit_score <- 10
30
31
                                     if DISABLED (cust rec) then
                                     net profit_score <- 20</pre>
32
                                     net-profit-score-cp //add contributions
33
           Combining policy:
                                                            of rules with true
34
                                                            conditions
35
36
37
        Side-effect:
                              no
```

```
Module: calculate late_payment_score
        Submodule of: info_about_customer
2
                             account history
3
        Input attributes:
                             late_payment_score
4
        Output attributes:
5
        Enabling condition: VAL(account_history)
6
                       decision
        Type:
7
        Computation:
                              if cust rec.card color = "platinum" then
8
           Rules:
9
                              late payments score <-
10
                              (account history.overdue_amount
                              number_of_days_overdue)/100
11
                              if cust_rec.card_color = "gold" then
12
13
                              late payments_score <-</pre>
                              (account_history.overdue_amount *
14
15
                              number_of_days_overdue)/50
                              if cust rec.card color = "green" then '
16
17
                              late_payments_score <-
                              (account history.overdue_amount *
18
                              number_of_days_overdue)/10
19
20
        Combining policy:
                              late-payment-score-cp //rule with true
                                                       condition wins;
21
                                                       default is 0
22
23
        Side-effect:
24
                              no
```

```
Module: calculate_cust_value
1
       Submodule of: info_about_customer
2 -
3
       Input attributes:
                             net_profit_score,
                             late_payments_score,
4
                             cust_rec
5
                             cust_value
6
       Output attributes:
7
       Enabling condition:
                             true
8
       Type:
                       decision
9
       Computation:
                              if VAL(net_profit_score) then cust_value <-
10
           Rules:
                                          (1 - 1/net_profit_score) * 75
11
                             if cust_rec.card_color = "platinum" then
12
13
                              cust_value <- 20
                              if cust_rec.card_color = "gold" then cust_value
14
                              <- 10
15
                              if cust_rec.card_color = "green" then
16
                              cust_value <- 5
17
                              if VAL(frustration_score) then cust_value 

18
                              5*frustration_score
19
           Combining policy: calculate-cust-val-cp //Add values of true
20
                                                       rules and round up, to
21
                                                       max of 100, default is
22
23
24
25
        Side-effect:
                              no
```

Fig. 18

```
Module: calculate_marketing_vs_collections
1
       Submodule of: info_about_customer
2
3
       Input attributes:
                             cust value,
                             late_payments_score
4
                             marketing_vs_collections
5
       Output attributes:
       Enabling condition: late_payments_score > 0
6
7
                       decision
       Type:
8
        Computation:
9
                              if late payments_score > f(cust_value) then
           Rules:
                             marketing vs collections <- "collect"</pre>
10
                              // f is function from [1..100] into [1..10],
11
                              // it could be linear, i.e., f(cust_value) =
12
13
                              // cust value/10
                              // or it could be shallower in beginning and
14
15
                                    steeper
                              // towards end
16
17
18
                                    marketing-vs-collection-cp //default is
19
           Combining policy :
                                                                   "marketing",
20
                                                                  any rule
21
                                                                  with true
22
                                                                   condition
23
                                                                  wins
24
25
26
        Side-effect:
                              no
```

Fig. 19

Module: Ask_Reason_For_Call 1 Submodule of: routing_decisions 2 Input attributes: < none > 3 IVR_choice Output attributes: 4 Enabling condition: cust_value < 7 and DNIS not =</pre> "Australia_promotion" 6 foreign 7 Type: $x := IVR_dip(question(2));$ 8 Computation: if x = 1 then IVR_choice := "dom"; 9 else if x = 2 then IVR_choice := "intl"; 10 else IVR_choice[state] = EXC and 11 IVR_choice[EXC]=1 12 13 14 Side-effect: yes side-effect-function: IVR_dip(question(2)) 15

```
Module: calculate_business_value_of_call
1
        Submodule of: routing_decisions
2
                              IVR choice,
3
        Input attributes:
                              web destinations,
4
5
6
7
                              frustration score,
                              marketing_vs_collections,
                              late payments_score,
                              net profit score
8
                              business_value_of_call : int
9
        Output attributes:
        Enabling condition: true
10
                        decision
11
        Type:
        Computation:
12
13
           Rules:
                        if true then business_value_of_call <-
14
                               (cust_value/50 * net_profit_score)
15
                        if true then business_value_of_call <-
16
                               10*frustration_score
17
                        if DNIS = "Australia_promotion" then
18
                               business_value_of_call <- 100</pre>
19
                        if "Australia" in web_destinations[i].regions for
20
                               some i where
21
                               web_destinations[i].date_last_modified > now -
22
                               30
23
                               then business_value_of_call <- 100
24
                         if IVR_choice = "intl" then business_value_of_call <-
25
                               <del>5</del>0
26
                         if marketing_vs_collections = "collect" then
27
                               business_value_of_call <-
28
                                (late_payments_score *
29
                                account_history.overdue_amount)/5
30
      Combining policy: business-value-of-call-cp // Add contributions of
 31
                                                        rules with true
 32
                                                        conditions and round up,
 33
                                                        default is 0
 34
 35
         Side-effect:
                                no
 36
```

```
Module: Calculate send_bonus_check
 2
        Submodule of: routing_decisions
 3
        Input attributes:
                              cust rec
 4
        Output attributes:
                              send_bonus_check?
 5
        Enabling condition:
                              if net_profit score > 1000
 6
7
                              and cust_rec.last_sent_bonus_check < now - 60
                              and marketing_vs_collections = "market"
 8
9
                              if net_profit_score > 500
10
                               and frustration score > 8
11
                              and cust_rec.last_sent_bonus_check < now - 60</pre>
12
                               and marketing_vs_collections = "market"
13
14
                       foreign
      Type:
15
      Side-effect:
                              yes
16
           side-effect-function:
17
                 issue_and_send_check($50,cust_rec.name,cust_rec.address)
```

```
Module: call_priority
1
       Submodule of: routing_decisions
2
                              business_value_of_call
3
        Input attributes:
                              frustration_score
4
                              call_priority
5
       Output attributes:
        Enabling condition: true
6
                        decision
7
        Type:
8
        Computation:
                              if business_value_of_call < 25 then
9
           Rules:
                                     call priority <- 1
10
                              if 25 =< business_value_of_call < 100 then
11
                                     call_priority \leftarrow \overline{2}
12
                               if 100 =< business_value_of_call < 500 then
13
                                     call_priority <- 3
14
                               if 500 =< business_value_of_call then;
15
                                     call_priority <- 4
16
                               if frustration_score > 8 then
17
                                     call_priority <- 4.
18
                               if 6 =< frustration_score <= 8 then
19
                                     call_priority <- 3
20
           Combining policy: call-priority-cp // high value wins with
21
                                                    default result 2
22
23
                               no
24
        Side-effect:
```

Fig. 23

```
1
     Module: calculate_skill
2
                            routing decisions
         Submodule of:
3
                                   business_value_of_call
         Input attributes:
4 5
                                   marketing_vs_collections
                                   IVR choice
                                   DNIS
6
7
                                   web destinations
8
                                   skill
         Output attributes:
9
         Enabling condition:
                                   true
10
         Type:
                            decision
11
         Computation:
                            if marketing_vs_collections = "collections"
12
             Rules:
13
                                   then skill <- ["collections", infinity]</pre>
                            if business_value_of_call > 100
15
                                   then skill <- ["high tier", 40]
                            if DNIS = "australia_promotion" then
16
17
                                   skill <- ["australia_promo", infinity]</pre>
18
19
20
21
                            if "Australia" in web_destinations[i].regions
                                   for some i where web_destinations[i].date_last_modified >
                                   now - 30 then
                                   skill <- ["australia promo", 20]
22
23
24
25
26
27
28
29
30
                            if cust_rec.estimated_income_bracket = ">100K-150K" then
                                    skill <- ["australia_promo", 25]
                            if cust_rec.estimated_income_bracket = ">150K" then
                                    skill <- ["australia_promo", 35]
                            if IVR choice = "dom" then skill <- ["norm_tier_dom", 30]
                            if IVR_choice = "intl" then skill <- ["norm_tier_intl",30]</pre>
31
                            if "US" in web_destinations[i].regions for some
32
33
34
35
36
37
38
39
                                    i where web destinations[i].date_last_modified >
                                    now - 30 then
                                    skill <- ["norm_tier_dom", 20]</pre>
                            if "US" not in web_destinations[i].regions for
                                    some i where web_destinations[i].date_last_modified > now -
                                    30 then
40
                                    skill <- ["norm_tier_intl", 20]
41
42
43
44
             Combining policy: skill-cp //weighted sum policy, and ties are
                                         broken by ordering "collections",
"australia_promo", "high_tier",
                                          "low_tier_intl", "low_tier_dom",
45
                                          default is __
46
47
```

Side-effect: no

```
Module: calculate_on_queue_promo
1
       Submodule of: routing_decisions
2
       Input attributes: promo_hit_list
3
       Output attributes: on_queue_promo
4
       Enabling condition: DISABLE if business_value > 100 or
5
    frustration_score > 5
6
                       decision
7
       Type:
8
       Computation:
                             if 60 < ACD.expected_wait_time(skill)</pre>
9
           Rules:
                                    then on_queue_promo <-
10
                                    promo hit_list[#1]
11
                              if business_value_of_call < 30</pre>
12
                                    then on_queue_promo <- promo_hit_list[#1]
13
           Combining policy: on-queue-promo-cp // first true wins, default
14
15
16
        Side-effect:
                              no
17
```


•		
$\frac{\sigma \vdash e:t}{\sigma \vdash value(e):bool}$	value	
$\frac{\sigma \vdash f : AM : t_1 \times \dots \times t_n \to t, \sigma \vdash e_1 : t_1, \dots \sigma \vdash e_n : t_n}{\sigma \vdash Apply((f, e_1, \dots, e_n)) : t}$	apply	
$\frac{\sigma\vdash e_1:t_1,\cdots\sigma\vdash e_n:t_n}{\sigma\vdash (e_1,\cdots,e_n):(a_1:t_1,\cdots,a_n:t_n)}$	tupling	
$\frac{\sigma \vdash e_1 : t, \dots, \sigma \vdash e_n : t}{\sigma \vdash \{e_1, \dots, e_n\} : \{t\}}$	bagging	
$\frac{\sigma\vdash e_1:t,\cdots,\sigma\vdash e_n:t}{\sigma\vdash [e_1,\cdots,e_n]:[t]}$	listing	
$\frac{\sigma \vdash e: \{t\}}{\sigma \vdash unitval(e):t}$	unitval	
$\frac{\sigma \vdash e: \langle a_1:t_1, \cdots, a_n:t_n \rangle}{\sigma \vdash e.a_i:t_i}$	projection on tuples	
<u>σ+e:[t]</u> σ+e#i:t	projection on lists	
$\frac{\sigma \vdash e_1 : [t_1], \sigma \vdash e_2 : t_2}{\sigma \vdash factor(e_1, e_2) : [(f_a : t_1, s_a : t_2)]}$	factor (on lists)	
$\frac{\sigma\vdash e_1:\{t_1\},\sigma\vdash e_2:t_2}{\sigma\vdash factor(e_1,e_2):\{\langle \hat{1}_a:t_1,s_a:t_2\rangle\}}$	factor (on bags)	
$\frac{\sigma \vdash f: t_1 \to t, \sigma \vdash S: [t_1]}{\sigma \vdash map(f)(S): [t]} \cdot$	map (on lists)	
$\frac{\sigma \vdash f: t_1 \to t, \sigma \vdash S: \{t_1\}}{\sigma \vdash map(f)(S): \{t\}}$	map (on bags)	
$\frac{\sigma \vdash id_{\theta}: t, \sigma \vdash \theta: t \times t \to t, \sigma \vdash S: \{t\}}{\sigma \vdash collect(id_{\theta}, \theta)(S): t}$	collect (on bags)	
$\frac{\sigma \vdash id_{\theta}: t, \sigma \vdash \theta: t \times t \to t, \sigma \vdash S:[t]}{\sigma \vdash collect(id_{\theta}, \theta)(S): t} \qquad C$	ollect (on lists)	

F16.27

F16 29

F16 30

F16. 31

F16. 32

Global variables:

```
These variables are global to the whole execution of workflow instance G: a dependency graph S: set of source attribute nodes of G T: set of target attribute nodes of G \sigma []: array of attribute states \mu []: array of attribute values \alpha []: array of three valued logic values (true, false unknown) HIDDEN\_EDGE: set of hidden edges of G. HIDDEN\_ATT: set of hidden attribute nodes of G.
```

Notations:

```
\sigma [A]: element of array \sigma [] that corresponds to the attribute node A in G
       \mu[A]: element of array \mu[] that corresponds to the attribute node A in G
       \alpha[p]: element of array \alpha[] that corresponds to the condition node p in G
Initialization phase:
       procedure Init:
       Input:
               g: a dependency graph:
               So: source nodes in g
               Te: terminal nodes in g
        body:
        BEGIN init
               G:=g \; ; S:=So: T:=Te;
               /*Initialization of the states and values of attributes nodes */
               FOR all the attribute nodes A in G DO
                  IF A \in S /* A is a source node */
                                                                                3408
                     THEN \sigma[A] := READY + ENABLED
                     ELSE \sigma[A] := UNITIALIZED;
               \mu[A] := NULL;
             END FOR
             /* Initialization of α-values of condition nodes */
             FOR all the condition nodes p in G DO
                                                                                3410
               \alpha[A] := unknown;
             END FOR
             */ Initialization of the set of hidden edges and hidden nodes */
             HIDDEN\ EDGE := \emptyset, HIDDEN\_ATT := \emptyset
        END init
```

3406

```
Increment
   Input:
       A: an attribute in G.
       v: a value for A.
                                                             3414
   body:
     BEGIN increment
                                                     3420
   \mu[A] := \nu
   IF \sigma[A] = READY
       THEN propagate att_change(A, COMPUTED
   IF \sigma[A] = READY + ENABLED
       THEN propagate_att_change(A, VALUE)
END Increment
propagate att change
   Input:
       B: an attribute in G.
        \sigma: a state for B
  body:
 /* Set state for B*I
IF ((\sigma[B] = \text{ENABLED}) \text{ AND } (\sigma = \text{READY})) \text{ OR } (\sigma[B] = \text{READY}) \text{ AND } (\sigma = \text{ENABLED}))
       THEN \sigma[B] := READY + ENABLED
       ELSE \sigma [B] := \sigma;
/* push relevant information to the affected successor nodes */
                                                                                                  3430
CASE: \sigma[B] \in \{VALUE, COMPUTED\} /* The value of B is computed */
  /* try to evaluate predicate nodes that are using the value of B */
  FOR each condition node p of the form pred(t_1, r, t_n) such that (B,p) \in G DO\uparrow 243
       IF (B,p) \notin HIDDEN \ EDGE \setminus 3434
               THEN
                                                                                         34 3%
                  Hide_edge ((B,p)), 7 - 3436
                   IF Eval (p) \neq unknown THEN \alpha[p] := Eval(p); propagate cond_change(p)
   END FOR
/* check if the attributes nodes that have B as input parameters are READY */
FOR each attribute node C such that (B, C) \in G DO
                                                                                             3 440
IF \sigma(B)=VALUE THEN
        IF (B, C) \notin HIDDEN \ EDGE
                THEN
                   Hide_edge((B,C));
                   IF there exists no attribute node D such that (D, C) \notin HIDDEN\_EDGE
                       THEN propagate att change (C, READY);
END FOR
CASE : \sigma[B] = \text{ENABLED}
  /* evaluates condition nodes of the form VALUE (B) and DISABLED (B) */
  FOR each condition node p of the form VALUE (B) or DISABLED (B) such that (B,p) \in G DO
        IF (B,p) \notin HIDDEN \ EDGE
```

```
THEN
                                                                                           3442
                Hide edge((B,p))
                IF p is of the form VALUE (A) THEN \alpha[p] := true \ \text{ELSE} \ \alpha[p] := false
                propagate cond change(p);
                                                                                                    3444
      END FOR
CASE: \sigma[B] = DISABLED
    /* evaluate condition nodes of the form VALUE (B) and DISABLED (B) */
    FOR each condition node p of the form VALUE (B) or DISABLED (B) such that (B,p) \in G DO
      IF (B,p) \notin HIDDEN \ EDGE
         THEN
            Hide edge ((B,p));
            IF p is of the form VALUE (A) THEN \alpha[p] := false ELSE \alpha[p] := true;
            propagate cond change(p);
    END FOR
    /* check if the attribute nodes that have B as input parameters are READY */
    FOR each attribute node C such that (B,C) \in G DO
      IF (B,C) \notin HIDDEN \ EDGE
            THEN
                                                                                                3446
              Hide edge((B,C));
              IF there are no more attribute nodes D such that (D,C) \notin HIDDEN \ EDGE
                THEN propagate att change (C, READY);
    END FOR
    /* If the attribute is stable then hide the attribute */
     IF (\sigma[B] \in \{DISABLED, VALUE\}) THEN Hide_node(B);
    END propagate att change
    propagate_cond_change
                                                                                                            3427
            Input:
              p: a condition node in G.
                                                                                                      OZYE
            body:
            BEGIN propagate cond change
            let n be the successor of p in G \rightarrow 3 452
                                                                                                 2454
            IF (p,n) \notin HIDDEN EDGE
               THEN
                    Hide \_edge ((p,n)), \longrightarrow 3 \checkmark5 \checkmark6
                                                                                                3458
                    CASE: n is OR condition node
              3460 \checkmark IF (\alpha [p] = true) THEN \alpha [n] : = true; propagate_cond_change(n); END IF:
                       If \alpha[p] = false AND for each condition node p' where (p',n) \in G, (p',n) \in G
             3462 / HIDDEN EDGE
                            THEN \alpha [n] := false; propagate_cond_change(n); END IF;
                     CASE: n is a AND node
              \geq 466 - \text{IF } (\alpha [p] = \text{false}) \text{ THEN } \alpha [n] := \text{false}; \text{ propagate cond change}(n); \text{END IF};
                       IF \alpha[p] = TRUE AND for each condition node p' where (p',n) \in G, (p',n) \in G
                        HIDDEN EDGE
```

```
3454
             THEN \alpha[n]: = TRUE; propagate cond change(n); END IF;
       CASE: n is NOT node
          \alpha[n] = \neg(\alpha[p]); propagate_cond_change(n);
      CASE: n is an attribute node
          IF (\alpha [p] = true)
               THEN propagate att change(n, ENABLED)
               ELSE propagate_att_change(n,DISABLED);
   END propagate cond change
Hide edge
                                                                                     3457
 Input
    (n,n'): an edge in G.
body
BEGIN Hide_edge
HIDDEN\ EDGE := HIDDEN\ EDGE\ U\ \{(n,n')\};
                                                                         -3474
IF (there are no more edges (n, n) \in G such that (n, n) \notin HIDDEN\_EDGE
   THEN Hide node(n)
END Hide edge
Hide node
   Input
       n: a node in g.
   body
   BEGIN Hide node
                                                                         34%
   HIDDEN ATT := HIDDEN ATT U {n}
   FOR each edge (n',n) \in g such that (n',n) \notin HIDDEN\_EDGE) DO
       Hide edge (n',n)
    END FOR
 END Hide node
```

Global variables:

These variables are global to the whole execution of workflow instance

G: a dependency graph

S: set of attribute nodes of G /* this set contains the source nodes */

T: set of attribute nodes of G/* this set contains target nodes */

of]: array of attribute states

 $\alpha[]$: array of three valued logic values (true, false unknown)

HIDDEN EDGE: set of edges of G.

 $HIDDEN_ATT$: set of attribute nodes of G.

3504

 $T_N[][]$: Matrix of integers that associates an integer value to each pair (p,A) where p is a condition node and A is an attribute node

in G

/* $T_N[p][A] = 0$ means that the attribute A is True_necessary for the condition node p^* /

 $F_N[][]$: Matrix of integers that associates an integer value to each pair (p;A) where p is a condition node and A is an attribute node in G

 $/*F_N[p][A] = 0$ means that the attribute A is False_necessary for the condition node $p^*/$

 $V_N[][]$: Matrix of integers associates an integer value to each pair (B,A) where B and A are attribute nodes in G

/*V N[B][A] = 0 means that the attribute A is Value_necessary for the attribute node $B^{*/}$

 $S_N[][]$: Matrix of integers associates an integer value to each pair (B,A) where

B and A are attribute nodes in G

 $/*S_N[B][A] = 0$ means that the attribute A is Stable_necessary for the attribute node B^* .

N[]: Array of boolean

N[A] = true means that the attribute A is computed as necessary/*

N[A] = false means that the attribute A is not computed as necessary*/

Notations:

nb pred(p): number of predecessors of p in G

Initialization phase:

procedure Init:

Input:

g: a dependency graph:

So: source nodes in g

Te: terminal nodes in g

body:

BEGIN N_init

3506

```
Init() 7 3508
  /* Initialization of T_N,F_N,S_N,V_N */
  FOR all the condition nodes p in G \overline{DO}
     FOR all the attribute nodes A in G DO
       CASE: p is an OR node:
          T_N[p][A] := nb\_pred(p):
                                                        /* rule 1 */
                                                        /* rule 2 */
          F N[p][A] := 1;
                                                                                     -3510
       CASE: p is an AND node:
          T N[p][A] := 1;
                                                        /* rule 3 */
         F_N[p][A] := nb \ pred(p);
                                                        /* rule 4 */
        CASE: p is a NOT node:
                                                         /* rule 5 */
          T N[p][A] := 1;
                                                         /* rule 6 */
         F N[p][A] := 1;
        CASE: p is a node of the form VAL(B) or DIS(B):
                                                         /* rules 7 and 9 */
          T N[p][A] := 1;
                                                         /* rules 8 and 10 */
         F N[p][A] := 1;
        CASE: p is a node of the form pred(t_1,...t_n):
                                                        /* rule 11 */
          T_N[p][A] := 1;
                                                         /* rule 12 */
          F N[p][A] := 1
      END FOR
   END FOR
    FOR all the attributes nodes A in G DO
                                               3517
      FOR all the attribute nodes B in G DO
        S N[A][B] := 1; V_N[A][B] := 1
      END FOR
    END FOR
    FOR all the attributes nodes A in G DO
      N[A] := false
    END FOR
    END N_init
N Increment
Input:
 A: an attribute in G.
 v: a value for A.
Variables /* Global to one execution of the increment phase (for one execution step) */
```


F1/ 35C

```
Case 1:
  \Delta E := \{A | A \text{ is an attribute node in } G \text{ and } \sigma[A] \in \{\text{READY+ENABLED}, \text{ENABLED}\}
  and A \notin prev_E
                                                                                         .3530
 new V N := \emptyset;
  FOR each attribute node A in \Delta_E DO
   V[N][A][A] := 0; new V[N] := new_V_N U\{(A,A)\}/* a node is value_necessary for
   itself*/
  END FOR
Case 2:
  new S N := \emptyset;
                                                                                         3532
  FOR each attribute node B in \Delta_E DO
    FOR each attribute node in A in G such that \sigma[A] \in \{READY + ENABLED\}.
    ENABLED) DO
     IF V N[B][A] = 0 and S N[B][A] = 1
        THEN S[N][B][A] = 0; new S[N] = new[S[N]](B,A) /*
                                                                           rule (13)*/
     END FOR
    END FOR
  Δ HIDDEN EDGE := HIDDEN EDGE - prev HIDDEN EDGE
  prev \ T \ N := \{(p,A) \mid T \ N[p][A] = 0 \}
  prev \ F \ N := \{(p,A) \mid F_N[p][A] = 0 \}
  new T N := \emptyset;
  new F N := \emptyset;
  FOR all edges (n,p) \in \Delta_HIDDEN_EDGE such that p \notin HIDDEN ATT and p is a
  condition node DO
    FOR all attribute nodes A such that \sigma(A) \notin \{COMPUTED, VALUE, DISABLED\}
    DO
        CASE: 3
      CASE: p is an OR node:
                                                                          - 3536
        IF (n,A) \notin prev_T_N
        THEN
                                                     /* rule (1)*/
           T N[p][A] := T_N[p][A] -1;
          IF T_N[p][A] = 0 THEN new_T_N := new_T_N \cup \{(p,A)\}
        CASE: 4
        CASE: p is an AND node:
        IF (n,A) \notin prev_F_N/* same reasoning as for OR nodes but with rule 4*/
        THEN
                                                     /* rule (4)*/
           F N[p][A] := F N[p][A] -1,
           IF F[N[p][A] = 0 THEN new F[N] = new[F[N] \cup \{(p,A)\}]
                                                                                                   352
     END FOR
   END FOR
```

```
/* Propagation step */
   New_propagate(new_V_N, new_S_N, new_T_N, new_F_N) 3540

ID N Increment
END N Increment
New propagate
  Input:
   new V N: set of pairs (A,A) where A is an attribute node
   new S N: set of pairs (B,A) where B and A are attribute nodes
   new T N: set of pairs (p,A) where p is a condition node in G and A is an attribute
   new F N: set of pairs (p,A) where p is a condition node in G and A is an attribute
   node
  body:
  FOR each pair (A,A) in new V N DO
     propagate_V_N(A,A)
     FOR each attribute node B such that (A,B) \in G and (A,B) \notin HIDDEN\_EDGE
                                                  rule (16) */
       V[N][A] := 0; propagate V[N(B,A)/*]
     END FOR
   END FOR
                                                                                         3544
  FOR each pair (B,A) in new S N DO
      propagate S_N(B,A)
   END FOR
    FOR each pair (p,A) in new_TN DO
       propagate T N(p,A)
   END FOR
   FOR each pair (p,A) in new F N DO
       Propagate F N(p,A)
   END FOR
END N-propagate
propagate_V_N
   Input:
    B: an attribute node in G.
    A: an attribute node in G_{\cdot}/*A is newly Value_necessary for B^*/
   body:
   IF \sigma[B] = \text{ENABLED} and S_N[B][A] = 1
                                                         /*rule (13) *
      THEN S N[B][A] = 0; propagate S_N(B,A)
  ELSE let p be the condition node such that (p,B) \in G.
        IF F_N[p][A]=0 and S_N[B][A]=1
          THEN S_N[B][A] = 0; propagate S_N(B,A)
                                                                 /*rule (14)*.
  END IF
  FOR each condition node p of the form pred(t_1, t_n)
        such that (B,p) \in g and (B,p) \notin HIDDEN\_EDGE DO
   IF T N[p][A] = 1
      THEN T_N[p][A] := 0; propagate_T N(p,A)
   IF F N[p][A] = 1
     THEN F_N[p][A] := 0; propagate F_N(p,A)
```

```
END FOR
END propagate_V_N
propagate_S_N
 Input:
    B: an attribute node in G.
                                                                                3560
    A: an attribute node in G_{\cdot}/*A is newly Stable_necessary for B^*/
  FOR each attribute node C such that (B,C) \in g and (B,C) \notin HIDDEN\_EDGE DO
    IF V_N[C][A] = 1 THEN V_N[C][A] = 0; propagate V_N(C,A) /* Rule 17 */
  END FOR
  IF B \in T THEN N[A] := true + <math>2562
END propagate_S_N
propagate F N
                                                                                            3564
  Input:
     p: a condition node in G.
     A: an attribute node in G_{\cdot}/*A is newly False_necessary for p^*/
  body:
     let n be the successor of p in G
     IF (p,n) \in HIDDEN\_EDGE
         THEN
           CASE: n is an OR or AND node
              IF F N[n][A] > 0
                 THEN
                                                       -/*rules (2) and (4)*/
                 F N[n][A] := F N[n][A] - 1;
                 IF F N[n][A] = 0 THEN propagate F_N(n,A)
             CASE: n is a NOT node
              IF T N[n][A] = 1 THEN T_N[n][A] := 0; propagate_T_N(n,A) / *rule (6) */
             CASE: n is an attribute node
               IF (T \ N[p][A] = 0 \text{ or } V \ N[n][A] = 0 \text{ and } S_N[n][A] = 1
                  THEN S[N[n][A] = 0; propagate S[N(n,A)]
                                                             /*rules (14) and (15)*/
                 FOR each condition node p' of the form VALUE (n)
                      such that (n,p') \in g and (n,p') \notin HIDDEN\_EDGE DO
            IF F N[p'][A] = 1 THEN F N[p'][A] := 0; propagate_F_N(p',A) / *rule (8) *
          END FOR
          FOR each condition node p of the form DISABLED (n)
               such that (n,p') \in G AND (n,p') \notin HIDDEN EDGE DO
          IF T[N[p']][A] = 1 THEN (T[N[p']][A]) := 0; propagate T[N(p',A)] / *rule (10) */
        END FOR
 END propagate F N
 propagate T N
   Input:
     p: a condition node in G.
    A: an attribute node in G/* A is newly True_necessary for p^*/
                                                                                        3566
    body:
```

```
let n be the successor of p in G
    IF (p,n) \notin HIDDEN\_EDGE
       THEN
        CASE: n is an OR or AND node
          IF T N[n][A] > 0
             THEN
              T[N[n][A] := T[N[n][A] - 1; /*rules (1) and (3)*/
              IF T[N[n][A] = 0 THEN propagate T[N(n,A)]
        CASE: n is a NOT node
          IF F[N[n][A] = 1 THEN F[N[n][A] := 0; propagate F[N(n,A) /* rule (5) */
         CASE: n is an attribute node
           IF F M[p][A] = 0 and S M[n][A] = 1
              THEN S[N][n][A] = 0; propagate S[N(n,A)] / \text{rule } (15) \text{ }^*/
           FOR each condition node p' of the form VALUE (n)
                such that (n,p') \in G and (n,p') \notin HIDDEN EDGE DO
             IF T N[n][A] = 1 THEN
                                                               /*rule (8)*/
                     T[N[p']][A] := 0; propagate_T[N(p',A)]
            END FOR
            FOR each condition node p of the for DISABLED (n)
                 Such that (n,p') \in G and (n,p') \notin HIDDEN\_EDGE DO
              IF F N[n][A] = 1 THEN
                                                         /*rule (9)*/
              F[N[p']][A] := 0; propagate F[N(p',A)]
                                                                                   3566
             END FOR
END propagate_T_N
```

3547

					ا					
7	calculate_ marketing_vs_ collections (node 532)	"any true rule gives collect; default is marketing"	marketing	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ffaby	"collect" 2-C				
	calculate_ cust_value (node 628)	"add contribs. of true rules and round up, to max of 100"	cust_ value	8	(ration	READY	Т	10 10 7-7	Т	PEAD7
Ŧ	calculate_ late_payments_ score (node 524)	"true rule wins; defautt is 0"	late_ payment_ score	φ.	RELOY	· †	CO-BITION TRVE	1		
9	calculate_ net_profit_ score (node 620)	"add contribs. of true rules"	net_profit_ score	3~	KEROY	PEDDY	(EPDY	PFROY	Т	, S6
F	calculate_ frustration_ score (node 616)	"add contribs. of true rules and round up, to max of 10"	frustration_ score	S	READY	READ?	FEROY	,		
E	get_account_ history (node 512)	foriegn module	account_ history	\ \ \ \	E v. ARLES FEROS					
٥	get_recent_ purchases (node 608)	foriegn module	recent_ purchases	SN	i Marti					
၁	get_recent_ contacts (node 604)	foriegn module	recent_ contacts	V V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
8	e y		account_ number	421136						
A	source		cust_rec	<"John Doe", "101 Ash, LA", "gold", FALSE						
	-	7		•		9	-	<u> </u>	<u></u>	<u> </u>

F16. 38

						I			
ſ	calculate_ marketing_vs_ collections (node 532)	"any true rule gives collect; default is marketing"	marketingvs collections	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ENARLES READY	"collect"			
-	calculate_ cust_value (node 628)	"add contribs. of true rules and round up, to max of 100"	cust_ value	\$ X	ENABLED PEADY	1	1	10 7.7	1 F FAD7
Ξ	calculate_ late_payments_ score (node 624)	"true rule wins; default is 0"	late_ payment_ score	3	VALUE	4	6	1	·
စ	calculate_ net_profit_ score (node 620)	"add contribs. of true rules"	net_profit_ score	L US	DISABLED	7	READY	9 7-5	T 200
4	calculate_ frustration_ score (node 516)	"add contribs. of true rules and round up, to max of 10"	frustration_ score	s _v	PEACY	KEADY	FEADY	;	
ш	get_account_ history (node 512)	foriegn module	account_ history	10,46,[<8-18-38] pay,\$40 > <8-10-38, sv order,\$60> \sigma S	VALUE		•		
a	get_recent_ purchases (node 508)	foriegn module	recent_ purchases	[<8-10-98, coat, 1, \$60> <6-15-98, hat, \$\sqrt{50} > \sqrt{50} >	\$				
0	get_recent_ contacts (node 504)	foriegn	recent_ contacts	3	FADY				
8	ıce		account_ number	421136					
A	source		cust_rec	<"John Doe", "101 Ash, LA", "gold", FALSE	:				
	-	7	_ n	•	9	ဖ][6 01

FW 39

Initialization Based on the DL specification, compute rows 1, 2, and 3 of the display, For source attribute cells of row 4 do: For each source attribute with value, insert value and apply "attribute_value_indication"; For each source attribute that is disabled, apply "attribute_disabled_indication"; 10006 For each non-decision module In row 5, apply "module_uninitialized_indication"; In row 4, apply "attribute_uninitialized_indication"; For each decision module In row 5, apply "module_ready_indication"; In row 4, apply "attribute_uninitialized_indication"; For each cell in rows 6,7,8, , apply "rule_ready_indication" **Iteration** For each event of execution engine do Case on event_type non_dec_module_enabled: in row 5, apply "module_enabled_indication" non_dec_module_ready: in row 5, apply "module_ready_indication" non_dec_module_ready+enabled: in row 5, apply "module_ready+enabled_indication"; non_dec_module_computed:: in row 5, apply "module_computed_indication"; in row 4, label corresponding attribute cell with the value computed 4003and apply "attribute_computed_indication"; 4070 non_dec_module_value: in row 5, label cell for this module as "value" and apply "module_value_indication"; in row 4, label corresponding attribute cell with value assigned and apply "attribute_value_indication" non_dec_module_disabled:

F1/2 40A


```
in row 5, label cell for this module as "disabled" and apply
                   "module_disabled_indication";
            in row 4, label corresponding attribute cell with "1" and apply
                   "attribute disabled indication"
      dec module enabled+ready:
                                                                               4024
             in row 5, label cell with "enabled+ready" and apply
                   "module enabled+ready indication";
      dec module_computed:
             in row 5, label cell with "computed" and apply
                                                                            11036
      "module computed indication";
             in row 4, label cell with the computed value and apply
                   "attribute computed indication";
      dec module value:
             in row 5, label cell with "value" and apply
                                                                           4028
      "module value_indication";
             in row 4, label cell with the computed value and apply
"attribute_value_indication";
      dec module_disabled:
             in row 5, label cell with "disabled" and apply
                                                                            4030
             "module_disabled_indication";
             in row 4, label cell with "⊥" and apply
"attribute disabled_indication";
      comp_rule_condition_true:
                                                                          47.32
             to corresponding cell, apply "rule_cond_true_indication";
      comp rule contribution_computed:
             to corresponding cell, label with computed value and apply
                    "rule contribution computed_indication";
      comp rule contributed_value:
             to corresponding cell, label with computed value and apply
                                                                            4026
                    "rule contributed value_indication";
       comp rule condition_false:
                                                                           10 3 X
             to corresponding cell, label with "L" and apply
"rule condition false_indication";
```

EndCase