Погружение в statistics

STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT

Статистика

• Статистика или Оценка — измеримая функция от выборки, не зависящая от любых других параметров.

Чаще всего статистики используются для поиска неизвестного параметра распределения θ и имеют вид $T:\mathbb{R}^n \to \Theta$

Функция правдоподобия

$$f_{\theta}(y) = \begin{cases} \text{плотность } f_{\theta}(y), & \text{если } \mathcal{P}_{\theta} \text{ абсолютно непрерывно}, \\ P_{\theta}(X_1 = y), & \text{если } \mathcal{P}_{\theta} \text{ дискретно}. \end{cases}$$

Функция правдоподобия выборки X: $L(X, \theta) = \prod_{i=1}^{} f_{\theta}(x_i)$

Функция правдоподобия

$$f_{\theta}(y) = \begin{cases} \text{плотность } f_{\theta}(y), & \text{если } \mathcal{P}_{\theta} \text{ абсолютно непрерывно}, \\ P_{\theta}(X_1 = y), & \text{если } \mathcal{P}_{\theta} \text{ дискретно}. \end{cases}$$

Функция правдоподобия выборки X: $L(X, \theta) = \prod_{i=1}^n f_{\theta}(X_i)$

В дискретном случае принимает вид:

$$L(X,\theta) = \mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n)$$

Оценка максимального правдоподобия

Оценка максимального правдоподобия $\theta^*(X)$ параметра θ — точка параметрического множества Θ , в которой функция правдоподобия $L(X, \theta)$ при заданной реализации выборки x достигает максимума, т.е.:

$$L(x, \theta^*) = \max_{\theta \in \Theta} L(x, \theta)$$

Виды оценок (статистик)

• Несмещённая оценка параметра θ — статистика T(X), т.ч. $\forall \theta \in \Theta \mathbb{E}_{\theta} T(x) = \theta$

• Асимптотическая оценка параметра θ — статистика T(X), т.ч.

$$\forall \theta \in \Theta : \mathbb{E}_{\theta} T_n(X) \xrightarrow[n \to +\infty]{} \theta$$

• Состоятельная оценка параметра θ — статистика T(X), т.ч.

$$\forall \theta \in \Theta : T_n(X) \xrightarrow[n \to +\infty]{p} \theta$$

Sampling

Доверительный интервал

- Доверительный интервал для параметра θ с коэффициентом доверия $\gamma \in (0;1)$ интервал $(T_1(X),T_2(X))$, где T_i статистика, т.ч.:
 - $T_1(X) \leq_{(\Pi O \Psi \Pi)} Habephoe_{(\Pi O \Psi \Pi)} T_2(X)$
 - $\mathbb{P}_{\theta}(T_1(X) \leq \theta \leq T_2(X)) \geq \gamma$

Доверительный интервал

Правило трёх σ

$$\mathbb{P}(\mu - \sigma \le X \le \mu + \sigma) \approx 0.6827$$

$$\mathbb{P}(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$\mathbb{P}(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$$

Статистическая гипотеза H — любое предположение о распределении наблюдаемой случайной величины.

Как правило, рассматривается сразу две взаимоисключающие гипотезы. Одна из них называется основной и обозначается H_{\circ} , а другая — альтерна— тивной и обозначается H_{\circ} .

На понятном языке

Критерий — правило, согласно которому по выборке делается заключение о верности гипотезы.

На заумном языке

Критерий — статистика $\phi(X)$ со значениями из [0;1], трактуемая как вероятность отвергнуть H_0

 $S \subset \mathbb{R}^n : \mathbb{P}_{\theta}(X \in S) \leq \alpha, \alpha \in (0;1)$, альфа — критическая область По смыслу критическая область — это множество таких значений выборки, которые маловероятны при условии истинности Н0

Истинная гипотеза	Результат принятия решения	
	H_0 принята	H_0 отклонена
H_0	$1-\alpha$	α
H_1	β	$1-\beta$

Вероятность отвергнуть верную H_0 : $\alpha(S) = P_{\theta}(X \in S \mid H_0) = P_{\theta}(X \in S)$

P-value — расчётная вероятность получить значение статистики критерия равное наблюдаемому или более нетипичное по сравнению с наблюдаемым, если нулевая гипотеза верна.

Основные виды статтестов

T-test

Проверяет, что среднее двух независимых выборок значительно отличается для небольших выборок

Предположения о распределении:

 H_0 : средние выборок равны

• Наблюдения - НОРСВ

 H_1 : средние выборок неравны

- Наблюдения распределены по стьюденту
- Наблюдения имеют одинаковую дисперсию

Z-test

Проверяет, что среднее двух независимых выборок значительно отличается для больших выборок. Предполагаем, что работаем с нормальным распределением и известным σ

Предположения о распределении:

• Наблюдения - НОРСВ

 H_0 : средние выборок равны

 H_1 : средние выборок неравны

- Наблюдения распределены нормально
- Наблюдения имеют одинаковую дисперсию

ANOVA

Применяется аналогично предыдущим, но для > 2 групп.

Предположения о распределении:

 H_0 : средние выборок равны

• Наблюдения - НОРСВ

 H_1 : средние выборок неравны

- Наблюдения распределены нормально
- Наблюдения имеют одинаковую дисперсию
- Наблюдения имеют одинаковый размер

Correlation Test

Будем говорить о тесте корреляции Пирсона

Предположения о распределении:

- Наблюдения НОРСВ
- Наблюдения распределены нормально
- Наблюдения если зависимы, то зависимы линейно

 H_0 : отсутствует значительная связь

 H_1 : присутствует связь

χ^2 -test

Проверяет взаимосвязь двух категориальных признаков

 H_0 : отсутствует значительная связь

Предположения о распределении: H_1 : присутствует связь

- 25 и более размер выборки
- Наблюдения в таблице соответствий независимы