Exercise 2: Prove that the unit ball (open or closed) is convex in every normed linear space.

Proof. Let B be the unit ball in a normed linear space X, let $x, y \in B$ and $\lambda \in [0, 1]$. Then we have:

$$||\lambda x + (1 - \lambda)y|| \le \lambda ||x|| + (1 - \lambda)||y|| \tag{1}$$

$$\leq \lambda + (1 - \lambda) = 1 \tag{2}$$

 $\therefore \lambda x + (1 - \lambda)y \in B.$

Exercuse 8: Let X be a normed linear space, and let X^* be its dual space with the norm

$$||f|| = \sup\{|f(x)| \colon ||x|| \le 1\}$$

- (a) Prove that X^* is a Banach space.
- (b) Prove that the mapping $f \to f(x)$ is, for each $x \in X$, a bounded linear functional on X^* , of norm ||x||
- (c) Prove that $\{||x_n||\}$ is bounded if $\{x_n\}$ is a sequence in X such that $\{f(x_n)\}$ is bounded for every $f \in X^*$.

Proof. (a) Note is clear that X^* is a vector space, now let $f, g \in X^*$ and $\alpha \in \mathbb{F}$ (where \mathbb{F} is the field for which X^* is a vs over), we have:

$$|f(x) + g(x)| \le f(x) + g(x) \le ||f|| + ||g||$$
, for all $||x|| \le 1$
 $\therefore ||f + g|| = \sup\{|f(x) + g(x)| \mid ||x|| \le 1\} \le ||f|| + ||g||$

$$\begin{aligned} ||\alpha f|| &= \sup\{|\alpha f(x)| \mid ||x|| \le 1\} \\ &= |\alpha| \sup\{|f(x)| \mid ||x|| \le 1\} \\ &= |\alpha| \cdot ||f|| \end{aligned}$$

$$0 \le |f(x)|$$
 for all $x \Rightarrow 0 \le ||f||$

If
$$||f|| = 0 \Rightarrow \sup\{|f(x)| \mid ||x|| \le 1\} = 0$$

 $\Rightarrow |f(x)| = 0$ for all $||x|| \le 1$

But in this case, notice that for all $x \in X \neq \{0\}$, we have $\frac{x}{||x||}$ has norm 1 and:

$$|f(x)| = ||x|||f(\frac{x}{||x||})| = 0 \iff f(x) = 0.$$

So f = 0.

Finally we will show that X^* is complete. Let $\{f_n\}$ be a cauchy sequence in X^* . So let $\epsilon > 0$ and $N \ge 1$ such that for all $n, m \ge N$:

$$||f_n - f_m|| < \epsilon \iff |f_n(x) - f_m(x)| < \epsilon \text{ for all } ||x|| \le 1$$
 (3)

So notice this means that for all $x \in X \setminus \{0\}$, we have:

$$|f_n(x) - f_m(x)| = ||x|| \cdot |f_n(\frac{x}{||x||}) - f_m(\frac{x}{||x||})| < ||x||\epsilon$$
(4)

So $\{f_n(x)\}\$ is a cauchy sequence for all $x \in X$, so we define $f: X \to \mathbb{F}$ by:

$$f(x) = \lim_{n \to \infty} f_n(x) \tag{5}$$

Now it is clear that f is a linear map, since $\{f_n\}$ is a Cauchy sequence, it is bounded. Indeed let N be such that $|||f_n|| - ||f_N||| < 1 \Rightarrow ||f_n|| \le 1 + ||f_N||$ for all $n \ge N$. So let M be such that $||f_n|| < M$, for all n,

Therefore for $||x|| \le 1$, let N be such that $|f(x) - f_N(x)| < 1$:

$$|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| < 1 + M \tag{6}$$

So |f(x)| < 1 + M for all $||x|| \le 1$, so we have $||f|| < 1 + M < \infty$. So $f \in X^*$.

(b) For $x \in X$, let $\Lambda_x \colon X^* \to \mathbb{F}$, be $\Lambda_x(f) = f(x)$. Notice that $\Lambda_x(f+g) = (f+g)(x) = f(x) + g(x) = \Lambda_x(f) + \Lambda_x(g)$ and $\Lambda_x(\alpha f) = \alpha f(x) = \alpha \Lambda_x(f)$. Furthermore, for $||f|| \le 1$ we have:

$$|\Lambda_x(f)| = |f(x)| \le ||f|| \cdot ||x|| \le ||x|| \tag{7}$$

So this function is indeed bounded. Now let $f: \{\alpha x : \alpha \in \mathbb{F}\} \to \mathbb{F}$

$$f(\alpha x) = \|\alpha x\| \tag{8}$$

We can extend this to a bounded linear functional on X, such that $||f|| = ||f||_{\{\alpha x : \alpha \in \mathbb{F}\}} = 1$.

So we have $|\Lambda_x(f)| = |f(x)| = ||x|| \Rightarrow ||\Lambda_x|| = ||x||$.

(c) For all $n \in \mathbb{N}^*$,

$$F_n \colon X^* \to \mathbb{F}$$
 be given by $F_n(f) = f(x_n)$ (9)

Let f be such that $||f|| \le 1$, we have: $|F_n(f)| = |f(x_n)| \le ||x_n|| \iff ||F_n|| \le ||x_n|| < \infty$. On the otherhand, in a method similar to in (b), where we define $g(\alpha x_n) = ||\alpha x_n||$, we see that $||F_n|| = ||x_n||$

Finally, note that since $\{f(x_n)\}$ is bounded for all f:

$$\sup_{n \in \mathbb{N}} |F_n(f)| = \sup_{n \in \mathbb{N}} |f(x_n)| < \infty \quad \forall f \in X^*$$
 (10)

So by Banach-Steinhaus, there exists a $M < \infty$ such that for all $n \in \mathbb{N}$, we have that:

$$||x_n|| = ||F_n|| \le M; \text{ for all } n \tag{11}$$

So $\{||x_n||\}$ is bounded.

Exercise 9. Prove the following four statements.

- (a) If $y = \{y_i\} \in \ell^1$ and $\Lambda x = \sum x_i y_i$, for every $x = \{x_i\} \in c_0$, then Λ is a bounded linear functional on c_0 , and $||\Lambda|| = ||y||_1$. Moreover, every $\Lambda \in (c_0)^*$ is obtained in this way. So, $(c_0)^* = \ell^1$
- (b) In the same sense, $(\ell^1)^* = \ell^{\infty}$
- (c) Every $y \in \ell^1$ induces a bounded linear functional on ℓ^{∞} , as in (a). However, $(\ell^{\infty})^*$ contains nontrivial functionals that vanish on all of c_0
- (d) c_0 and ℓ^1 are separable but ℓ^{∞} is not.

Proof. (a) Let $x = \{x_i\} \in c_0$, notice that:

$$|x_i y_i| \le ||x||_{\infty} |y_i| \text{ for all } i \tag{12}$$

Since $y \in \ell^1$, we see that $\sum ||x||_{\infty} |y_i|$, so by the comparison theorem, $\Lambda x = \sum x_i y_i$ converges absolutely. This is true for all $x \in c_0$ so we have for $x, z = \{z_i\} \in c_0$ and $\alpha \in \mathbb{C}$ we have:

$$\Lambda(x+z) = \sum (x_i + z_i)y_i = \sum x_i y_i + \sum z_i y_i = \Lambda x + \Lambda z$$
(13)

$$\Lambda(\alpha x) = \sum \alpha x_i y_i = \alpha \Lambda x \tag{14}$$

$$|\Lambda(x)| = |\sum x_i y_i| \le \sum |x_i y_i| \le ||x||_{\infty} \sum |y_i| = ||x||_{\infty} ||y||_1$$
(15)

The final equation tells us that for $||x||_{\infty} \le 1$, we have $|\Lambda(x)| \le ||y||_1$ so $\Lambda(x)$ is indeed a bounded linear functional. Now for all $n \in \mathbb{N}^*$, let $y^n = \{y_i^n\}$ is such that

$$y_i^n = \begin{cases} 0 \text{ if } i > n \text{ or } y_i = 0\\ \frac{\bar{y_i}}{|y_i|} \text{ otherwise} \end{cases}$$

Note is clear that $y^n \in c_0$ and that $||y^n||_{\infty} = 1$, now let $\epsilon > 0$ and N be such that for all $n \ge N$: $|\sum_{i=1}^{\infty} |y_i| - \sum_{i=1}^{n} |y_i|| = \sum_{i=n+1}^{\infty} |y_i| < \epsilon$.

$$||\Lambda(y^n)| - ||y||_1| = |\sum_{i=1}^n |y_i| - \sum_{i=1}^\infty |y_i|| = \sum_{i=n+1}^\infty |y_i| < \epsilon$$
(16)

So $|\Lambda(y^n)| < ||y||_1 + \epsilon$ We can find such an element for all $\epsilon > 0$, so we see that $||\Lambda|| = ||y||_1$.

Now let, $\Lambda \in (c_0)^*$, we define $y = \{y_i\} = \{\Lambda(e_i)\}$, where e_i is the sequence such that the i^{th} element is 1 and all other elements are 0.

Now let
$$x^n = \{x_i^n\}$$
, where $x_i^n = \begin{cases} 0 \text{ if } i > n \text{ or } y_i = 0 \\ \frac{\bar{y_i}}{|y_i|} \text{ otherwise} \end{cases}$

Then we have:

$$\left|\sum_{i=1}^{n} |y_i|\right| = \left|\sum_{i=1}^{n} y_i x_i^n\right| = \left|\sum_{i=1}^{n} \Lambda(e_i) x_i^n\right| = \left|\Lambda(\sum_{i=1}^{n} e_i x_i^n)\right| = \left|\Lambda(x^n)\right| \le ||\Lambda||$$
(17)

Since this is true for all n, and Λ is bounded. Then we see that $\sum_{i=1}^{\infty} |y_i| < \infty$, so $y \in \ell^1$.

Now let $x = \{x_i\} \in c_0$, then:

$$\Lambda(\sum_{i=1}^{n} e_i x_i) = \sum_{i=1}^{n} x_i \Lambda(e_i) = \sum_{i=1}^{n} x_i y_i$$

This is true for all n, so by taking limits using the fact that Λ is bounded we get that:

$$\Lambda(x) = \Lambda(\sum_{i=1}^{\infty} e_i x_i) = \sum_{i=1}^{\infty} \Lambda(e_i) x_i = \sum_{i=1}^{\infty} y_i x_i \text{ for all } x$$
(18)

(b) Let $\Lambda \in (\ell^1)^*$, let $y = \{y_i\}$ where $y_i = \Lambda(e_i)$, where we define e_i as above. Since $||e_i||_1 = 1$ for all i:

$$|\Lambda(e_i)| \le ||\Lambda||, \ \forall i; \ :: ||y||_{\infty} = \sup |\Lambda(e_i)| \le ||\Lambda|| < \infty \tag{19}$$

For all $x = \{x_i\} \in \ell^1$ we have:

$$\Lambda(x) = \sum x_i \Lambda(e_i) = \sum x_i y_i \tag{20}$$

Now if $||x||_1 \le 1$, we see that:

$$|\Lambda(x)| = |\sum x_i y_i| \le ||y||_{\infty} ||x||_1 \le ||y||_{\infty} \Rightarrow ||\Lambda|| \le ||y||_{\infty}$$
(21)

Likewise since we can show that there is a i, such that $||e_i||_1 = 1$ and $||\Lambda(e_i) - ||y||_{\infty}|| = ||y_i - ||y||_{\infty}|| < \epsilon$ So $||\Lambda|| = ||y||_{\infty}$.

Likewise if we have a $\{y_i\} \in \ell^{\infty}$, then for all $x = \{x_i\} \in \ell^1$, we see that since $|y_i x_i| \le ||y||_{\infty} |x_i|$ for all i. Then $\sum y_i x_i$ converges absolutely and so if we define $\Lambda(x) = \sum y_i x_i$ for all $x \in \ell^1$ we can see similarly to before that this is a bounded linear functional with $||\Lambda|| = ||y_i||_{\infty}$.

(c) Let $y = \{y_i\} \in \ell^1$, the same argument as in (a) can be used to show that $\Lambda x = \sum y_i x_i$, for all $x = \{x_i\} \in \ell^{\infty}$. Is a bounded linear functional on ℓ^{∞} with $||\Lambda|| = ||y||_1$.

But let $c = \{\{x_n\} \in \ell^{\infty} : \{x_n\} \text{ converges in } \mathbb{C}\}$, now notice that $c \subseteq \ell^{\infty}$, since all convergent sequences are bounded. Furthermore, if $\{x_n\}, \{z_n\} \in c$ then from properties of the limit we have $\{x_n + z_n\} \in c$ and $\{\alpha x_n\} \in c$ for all $\alpha \in \mathbb{C}$.

So we see that c is a subspace of ℓ^{∞} . So let us define, $\gamma \colon c \to \mathbb{C}$, by:

$$\gamma(x) = \lim_{n \to \infty} x_n, \text{ where } x = \{x_n\}$$
 (22)

This is clearly a linear functional on c, furtheremore for $x \in c$, with $||x||_{\infty} \le 1$ then we have:

$$|\gamma(x)| = |\lim_{n \to \infty} x_n| = \lim_{n \to \infty} |x_n| \le 1.$$
(23)

Recall we can pull out the limit since $|\cdot|$ is a continuous function and since $|x_n| \le 1$, for all n we have that $\lim |x_n| \le 1$.

Since the sequence $\{1, 1, 1, \ldots\} \in c$, we have $|\gamma(\{1, 1, \ldots\})| = \lim |1| = 1$. So $||\gamma|| = 1$.

Now by the Hahn-Banach Theorem, γ can be extended to a bounded linear functional Γ on ℓ^{∞} such that $||\Gamma|| = ||\gamma||$.

Now notice that for all $x \in c_0$, we have $\Gamma(x) = \gamma(x) = \lim_{n \to \infty} x_n = 0$. So assume that there exists $y = \{y_n\} \in \ell^1$ such that:

$$\Gamma(x) = \sum x_i y_i \text{ for all } x_i$$
 (24)

Then let $e^i \in c_0$, be the sequence such that $e^i{}_n = \delta^i{}_n = \begin{cases} 1 \text{ if } i = n \\ 0 \text{otherwise} \end{cases}$. Now notice that:

$$y_i = \Gamma(e^i) = 0 \text{ for all } i$$
 (25)

So y = 0 and $\Gamma = 0$, but this is impossible since $||\Gamma|| = 1$ (recall that $\Gamma(\{1, 1, 1, ...\}) = 1$). Therefore $\Gamma \in (\ell^{\infty})^*$ but is not given by a $y \in \ell^1$.

- (d) For all $k \geq 0$, let $T_k = \{(x_1, x_2, \dots, x_k, 0, 0, 0, \dots) \mid x_i \in \mathbb{C}\}$ and let $T = \bigcup_{k \geq 1} T_k$, we will first show that T is dense in c_0 and ℓ^1 , then we will find a countable set that whose closure contains T.
 - First of all it is clear that $T \subseteq c_0$. Let $x = \{x_1, x_2, \dots\} \in c_0$, let $\epsilon > 0$ and $N \ge 1$ be such that $|x_n| < \epsilon$, for all n > N. Now let:

$$x^{N} = \{x_{1}, x_{2}, \dots, x_{N}, 0, 0, \dots\} \in T$$
(26)

We have:

$$||x - x^N||_{\infty} = ||(0, \dots, 0, x_{N+1}, x_{N+2}, \dots)||_{\infty} = \sup_{n > N} |x_n| \le \epsilon$$
 (27)

So we can find a sequence $\{x^N\} \in T$ such that $x^N \to c_0$. So, $c_0 \subseteq \overline{T}$ therefore we indeed see that T is dense in c_0 .

• Once again it is clear that $T \subseteq \ell^1$. Now let $y = \{y_1, y_2, \dots\} \in \ell^1$, and let $\epsilon > 0$, since $\{\sum_{i=1}^n |y_i|\}$ is a convergent sequence, it is a cauchy sequence. So let $N \ge 1$ be such that

$$\left| \sum_{i=1}^{N} |y_i| - \sum_{i=1}^{m} |y_i| \right| = \sum_{i=N+1}^{m} |y_i| < \epsilon \text{ for all } m > N$$
 (28)

Since this is true for all m > N, this means that if $y^N = \{y_1, y_2, \dots, y_N, 0, 0, \dots\} \in T$ we have:

$$||y - y^N||_1 = \sum_{i=1}^{\infty} |y_i - y_i|^N = \sum_{i=N+1}^{\infty} |y_i| = \sup_{m>N} \left(\sum_{i=N+1}^m |y_i| \right) < \epsilon$$
 (29)

So once again we indeed see that T is dense in ℓ^1 .

Finally if for all k, let

$$S_k = \{ (q_1 + ip_1, \dots, q_k + ip_k, 0, 0, \dots) \mid p_n, q_n \in \mathbb{Q} \} \text{ and } S = \bigcup_{k>1} S_k$$
 (30)

Then we see that S is the countable union of countable sets, so it's countable, furthermore since $\mathbb{Q}[i]$ is dense in \mathbb{C} , we see that $T \subseteq \overline{S}$, so we see that S is dense in c_0 and in ℓ^1 . So they are indeed separable.

Now let $V = \{(x_1, x_2, \dots) \in \ell^{\infty} \mid x_i \in \{0, 1\} \text{ for all } i \geq 1\}$. Note that for any $x, y \in V$ such that $x \neq y$, we have $x_i \neq y_i$ for some i, so WLOG we have $x_i = 1$ and $y_i = 0$, and so we have:

$$||x - y||_{\infty} = \sup_{n} |x_n - y_n| = 1$$
 (31)

So for all $x \in V$, we define $B(x, \frac{1}{2}) = \{z \in \ell^{\infty} \mid ||x - z||_{\infty} < \frac{1}{2}\}$. So $B(x, \frac{1}{2}) \cap B(y, \frac{1}{2}) = \emptyset$, for all $x \neq y$. Now let S be a dense subset of ℓ^{∞} , then notice that since $B(x, \frac{1}{2})$ is open we have that:

$$S \cap B(x, \frac{1}{2}) \neq \emptyset$$
, for all $x \in V$ say $v_x \in S \cap B(x, \frac{1}{2})$ (32)

Now notice that $v_x \neq v_y$ for all $x, y \in V$ such that $x \neq y$.

So we notice that $\{v_x \mid x \in V\} \subseteq S$, but since we have an injection from [0,1] to V, by $\sum_{i=1}^{\infty} 2^{x_i} \to \{x_i\}$, we see that V is uncountable. Therefore, $\{v_x \mid x \in V\}$ is uncountable so S is also. Since S is an arbitrary dense set in ℓ^{∞} , we see that ℓ^{∞} is not separable.

Exercise 11. For $0 < \alpha \le 1$, let Lip α denote the space of all complex functions f on [a,b] for which

$$M_f = \sup_{s \neq t} \frac{|f(s) - f(t)|}{|s - t|^{\alpha}} < \infty$$

- (a) Prove that Lip α is a Banach space, if $||f|| = |f(a)| + M_f$.
- (b) Prove that Lip α is a Banach space, if $||f|| = M_f + \sup_x |f(x)|$.

Proof. Notice that for all $f, g \in \text{Lip } \alpha$, we have for all $s \neq t$:

$$\frac{|(f(s)+g(s))-(f(t)+g(t))|}{|s-t|^{\alpha}} \leq \frac{|f(s)-f(t)|}{|s-t|^{\alpha}} + \frac{|g(s)-g(t)|}{|s-t|^{\alpha}} \leq M_f + M_g$$

Therefore, $M_{f+g} \leq M_f + M_g$.

And for all $\omega \in \mathbb{C}$ we have:

$$\sup_{s \neq t} \frac{|\omega f(s) - \omega f(t)|}{|s - t|^{\alpha}} = |\omega| \sup_{s \neq t} \frac{|f(s) - f(t)|}{|s - t|^{\alpha}} = |\omega| M_f$$

Furthermore, let $f \in \text{Lip } \alpha$ and $\epsilon > 0$, for all $s, t \in [a, b]$ with $s \neq t$, such that $|s - t| < \sqrt[\alpha]{\frac{\epsilon}{M_f}}$, we have:

$$\frac{|f(s) - f(t)|}{|s - t|^{\alpha}} < M_f \Rightarrow |f(s) - f(t)| < M_f |s - t|^{\alpha} < \epsilon$$

So all $f \in \text{Lip } \alpha$ are uniformly continuous.

(a) For all $f, g \in \text{Lip } \alpha$ and $\omega \in \mathbb{C}$:

$$||f+g|| = |f(a)+g(a)| + M_{f+g} \le |f(a)| + |g(a)| + M_f + M_g = ||f|| + ||g||$$

$$||\omega f|| = |\omega| \cdot |f(a)| + |\omega|M_f = |\omega| \cdot ||f||$$

Si this is indeed a norm on Lip α . Now Let $\{f_n\}$ be a Cauchy sequence in Lip α .

So we let $\epsilon > 0$ and $N \ge 1$ such that for $n \ge m \ge N$:

$$\sup_{s \neq t} \frac{|(f_n(s) - f_m(s)) - (f_n(t) - f_m(t))|}{|s - t|^{\alpha}} = M_{f_n - f_m} \le |f_n(a) + f_m(a)| + M_{f_n - f_m} = ||f_n - f_m|| < \epsilon$$

This means that for all $s \neq t$ we have:

$$|(f_n(s) - f_m(s)) - (f_n(t) - f_m(t))| < \epsilon |s - t|^{\alpha}$$

(b) For all $f, g \in \text{Lip } \alpha$ and $\omega \in \mathbb{C}$:

$$||f + g|| = \sup_{x} |f(x) + g(x)| + M_{f+g} \le \sup_{x} |f(x)| + \sup_{x} |g(x)| + M_{f} + M_{g} = ||f|| + ||g||$$
$$||\omega f|| = |\omega| \cdot \sup_{x} |f(x)| + |\omega| M_{f} = |\omega| \cdot ||f||$$

Si this is indeed a norm on Lip α . Now Let $\{f_n\}$ be a Cauchy sequence in Lip α . Then note for every $\epsilon > 0$, let $N \ge 1$ such that for all $m, n \ge N$ we have:

$$\sup_{x} |f_n(x) - f_m(x)| \le \sup_{x} |f_n(x) + f_m(x)| + M_{f_n + f_m} = ||f_n - f_m|| < \epsilon$$
(33)

Therefore for all $x \in [a, b]$ we have $|f_n(x) - f_m(x)| < \epsilon$, so $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{C} . So we define $f: [a, b] \to \mathbb{C}$ such that

$$f(x) = \lim_{n \to \infty} f(x) \tag{34}$$

Not done

Exercise 13.

Proof. (a) For all $n \in \mathbb{N}^*$, let:

$$F_n: X \to \mathbb{C}$$
, such that $F_n(x) = f_n(x)$ (35)

Now note that since $\lim_{n\to\infty} f_n(x)$ exists for all $x\in X$, we have that $\{f_n(x)\}$ is a bounded sequence for all $x\in X$. Therefore:

$$\sup_{n \in \mathbb{N}^*} |F_n(x)| = \sup_{n \in \mathbb{N}^*} |f_n(x)| < \infty \text{ for all } x$$
(36)

So by Banach-Steinhaus, there exists $M < \infty$ such that:

$$\sup_{||x|| \le 1} |f_n(x)| = ||F_n|| \le M \text{ for all } n \in \mathbb{N}^*$$
(37)

But if we let $V = \{x \in X : ||x|| < 1\} = B(0,1)$, be the open unit ball. Then:

$$|f_n(x)| \le ||F_n|| \le M \text{ for all } x \in V, \& n = 1, 2, 3, \dots$$
 (38)

(b) Let $\epsilon > 0$, and for $N = 1, 2, 3, \dots$ let:

$$A_N = \{ x \in X : |f_m(x) - f_n(x)| \le \epsilon, \text{ if } m \ge N \text{ and } n \ge N \}$$

$$(39)$$

First we claim that A_N is closed for all N. This is indeed true let, $\{x_k\}$ be a sequence in A_N such that $x_k \to x \in X$. Then since f_n is continuous for all n we see that:

$$|f_m(x) - f_n(x)| = \lim_{k \to \infty} |f_m(x_k) - f_n(x_k)| \le \epsilon, \text{ since } |f_m(x_k) - f_n(x_k)| \le \epsilon \text{ for all } k$$

$$(40)$$

So $x \in A_N$, so A_N is indeed closed.

Now let $x \in X$ be arbitrary, since $\{f_n(x)\}$ converges, there is some N such that $x \in A_N$, by the definition of a Cauchy sequence. So we see that $X = \bigcup A_N$, since X is complete by Baire's category theorem it is not of first category, so there is a N such that $\overline{A_N} = A_N$ has a nonempty interior.

Let V be a non-empty open set in A_N . Then we have that:

$$|f_m(x) - f_n(x)| \le \epsilon$$
 for all $x \in V$, for all $m, n \ge N$

$$\therefore |f(x) - f_n(x)| = |\lim_{m \to \infty} f_m(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \le \epsilon \text{ for all } x \in V, \text{ for all } n \ge N$$

6