(arXiv2019)

Guillaume Lample*
Facebook Al Research
Sorbonne Universites'
glample@fb.com

Alexis Conneau*
Facebook Al Research
Universite Le Mans ´
aconneau@fb.com

https://github.com/facebookresearch/XLM

1. Introduction

- 1.1 Two methods to learn cross-lingual language models(XLMs):
 - unsupervised (CLM, MLM)

• supervised (TLM)

1.2 Contributions:

- We introduce a new unsupervised method for learning cross-lingual representations using cross-lingual language modeling and investigate two monolingual pre-training objectives.
- We introduce a new supervised learning objective that improves crosslingual pre-training when parallel data is available.

1.2 Contributions:

- We significantly outperform the previous state of the art on cross-lingual classification, unsupervised machine translation and supervised machine translation.
- We show that cross-lingual language models can provide significant improvements on the perplexity of low-resource languages.

1.3 Shared sub-word vocabulary:

- Byte Pair Encoding (BPE) (Sennrich et al., 2015).
- We Sentences are sampled according to a multinomial distribution with probabilities $\{q_i\}_{i=1...N}$, where $(\alpha=0.5)$:

$$q_i = \frac{p_i^{\alpha}}{\sum_{j=1}^{N} p_j^{\alpha}}$$
 with $p_i = \frac{n_i}{\sum_{k=1}^{N} n_k}$.

Algorithm 1 Learn BPE operations

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge_vocab(pair, v_in):
  v out = {}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
   w_out = p.sub(''.join(pair), word)
   v out[w out] = v in[word]
  return v out
vocab = {'low </w>' : 5, 'lower </w>' : 2,
         'n e w e s t </w>':6, 'w i d e s t </w>':3}
num merges = 10
for i in range(num_merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge vocab(best, vocab)
  print(best)
```

For instance:

aaabdaaabac

The byte pair "aa" occurs most often, so it will be replaced by a byte that is not used in the data, "Z". Now we have the following data and replacement table:

ZabdZabac Z=aa

Then we repeat the process with byte pair "ab", replacing it with Y:

ZYdZYac Y=ab Z=aa

We could stop here, as the only literal byte pair left occurs only once. Or we could continue the process and use <u>recursive</u> byte pair encoding, replacing "ZY" with "X":

XdXac X=ZY Y=ab Z=aa

2. Cross-lingual language models

2.1 Causal Language Modeling (CLM):

Our causal language modeling (CLM) task consists of a Transformer language model trained to model the probability of a word given the previous words in a sentence $P(wt|w1,...,wt-1,\theta)$.

2.2 Masked Language Modeling (MLM):

2.3 Translation Language Modeling (TLM):

- 2.4 Cross-lingual Language Models:
 - **CLM+MLM**(with batches of 64 streams of continuous sentences composed of 256 tokens.sampled from the distribution $\{q_i\}_{i=1...N}$ above, with $\alpha=0.7$)
 - MLM+TLM(with a similar approach.)

3. XML Pre-training

3. Cross-lingual Language Model Pre-training:

- a better initialization of sentence encoders for zero-shot cross-lingual classification
- a better initialization of supervised and unsupervised neural machine translation systems
- language models for low-resource languages
- unsupervised cross-lingual word embeddings

3.1 Cross-lingual classification:

- Fine-tune XLMs on a cross-lingual classification benchmark.
- Use the cross-lingual natural language inference (XNLI) dataset to evaluate our approach.
- Evaluate the capacity of our model to make correct NLI predictions in the 15 XNLI languages.
- We also include machine translation baselines of train and test sets.
 report our results in Table 1.

3.2 Unsupervised Machine Translation:

- We propose to take this idea one step further by pre-training the entire encoder and decoder with a cross-lingual language model to bootstrap the iterative process of UNMT.
- We explore various initialization schemes and evaluate their impact on several standard machine translation benchmarks.
- report our results in Table 2

3.3 Supervised Machine Translation:

- We extend the approach of Ramachandran et al. (2016) to multilingual NMT (Johnson et al., 2017).
- report our results in Table 3

3.4 Low-resource language modeling:

- For low-resource languages, it is often beneficial to leverage data in similar but higher-resource languages, especially when they share a significant fraction of their vocabularies.
- eg. Nepali-Hindi
- report our results in Table 4

3.5 Unsupervised cross-lingual word embeddings:

- Conneau et al. (2018a) showed with adversarial training (MUSE)
- Lample et al. (2018a) shared vocabulary between two languages and then applying fastText(Concat)
- report our results(XML) in Table 5

•

4. Experiments and results

4.1 Cross-lingual classification(Table 1):

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW	ur	Δ
Machine translation baselines	Machine translation baselines (TRANSLATE-TRAIN)															
Devlin et al. (2018)	81.9	-	77.8	75.9	-	_	_	-	70.7	_	-	76.6	-	-	61.6	_
XLM (MLM+TLM)	85.0	80.2	80.8	80.3	<u>78.1</u>	<u>79.3</u>	78.1	<u>74.7</u>	<u>76.5</u>	<u>76.6</u>	<u>75.5</u>	<u>78.6</u>	72.3	70.9	63.2	<u>76.7</u>
Machine translation baselines	Machine translation baselines (TRANSLATE-TEST)															
Devlin et al. (2018)	81.4	-	74.9	74.4	-	-	-	-	70.4	-	_	70.1	-	-	62.1	-
XLM (MLM+TLM)	85.0	79.0	79.5	78.1	77.8	77.6	75.5	73.7	73.7	70.8	70.4	73.6	69.0	64.7	65.1	74.2
Evaluation of cross-lingual sentence encoders																
Conneau et al. (2018b)	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	65.6
Devlin et al. (2018)	81.4	-	74.3	70.5	_	-	-	_	62.1	-	-	63.8	_	_	58.3	_
Artetxe and Schwenk (2018)	73.9	71.9	72.9	72.6	73.1	74.2	71.5	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0	70.2
XLM (MLM)	83.2	76.5	76.3	74.2	73.1	74.0	73.1	67.8	68.5	71.2	69.2	71.9	65.7	64.6	63.4	71.5
XLM (MLM+TLM)	<u>85.0</u>	78.7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	<u>67.3</u>	75.1

4.2 Unsupervised machine translation(Table 2):

		en-fr	fr-en	en-de	de-en	en-ro	ro-en
Previous state-of-the-art - Lample et al. (2018b)							
NMT		25.1	24.2	17.2	21.0	21.2	19.4
PBSMT	٦	28.1	27.2	17.8	22.7	21.3	23.0
PBSMT	C + NMT	27.6	27.7	20.2	25.2	25.1	23.9
Our res	ults for dij	fferent ei	ncoder d	and deco	der initi	alizatior	ıs
EMB	EMB	29.4	29.4	21.3	27.3	27.5	26.6
_	-	13.0	15.8	6.7	15.3	18.9	18.3
	CLM	25.3	26.4	19.2	26.0	25.7	24.6
<u>-</u>	MLM	29.2	29.1	21.6	28.6	28.2	27.3
CLM	-	28.7	28.2	24.4	30.3	29.2	28.0
CLM	CLM	30.4	30.0	22.7	30.5	29.0	27.8
CLM	MLM	32.3	31.6	24.3	32.5	31.6	29.8
MLM	-	31.6	32.1	27.0	33.2	31.8	30.5
MLM	CLM	33.4	32.3	24.9	32.9	31.7	30.4
MLM	MLM	33.4	33.3	26.4	34.3	33.3	31.8

4.3 Supervised machine translation(Table 3):

Pretraining	_	CLM	MLM	
Sennrich et al. (2016)	33.9	_	_	
$ro \rightarrow en$	28.4	31.5	35.3	
$ro \leftrightarrow en$	28.5	31.5	35.6	
$ro \leftrightarrow en + BT$	34.4	37.0	38.5	

4.4 Low-resource language model(Table 4):

Training languages	Nepali perplexity
Nepali	157.2
Nepali + English	140.1
Nepali + Hindi	115.6
Nepali + English + Hindi	109.3

4.5 Unsupervised cross-lingual word embeddings(Table 5):

	Cosine sim.	L2 dist.	SemEval'17
MUSE	0.38	5.13	0.65
Concat	0.36	4.89	0.52
XLM	0.55	2.64	0.69

Thanks