Family list 31 family members for: JP61047487 Derived from 23 applications.

11 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: ES551964D D0 - 1987-10-16 ES8800231 A1 - 1988-01-01

12 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: GR851895 A1 - 1985-12-03

13 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: HU38348 A2 - 1986-05-28

14 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: HU193338 B - 1987-09-28

15 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: IE58695 B1 - 1993-11-03 **IE851921L** - 1986-02-02

16 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: IL75991D D0 - 1985-12-31

17 No English title available

Inventor: Applicant:

C: IPC:

Publication info: JP6070063B B - 1994-09-07 **JP61047487 A** - 1986-03-07

18 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: KR8801430 B1 - 1988-08-08

19 No English title available

Inventor: Applicant:

EC: IPC:

Publication info: NZ212946 A - 1988-07-28

Publication info: PH22541 A - 1988-10-17

20 No English title available

Inventor: Applicant:

EC: IPC:

-

Data supplied from the *esp@cenet* database - Worldwide

Family list 31 family members for: JP61047487

Derived from 23 applications.

21 No English title available

Inventor:

Applicant:

EC:

IPC:

Publication info: PT80899 A - 1985-09-01

PT80899 B - 1987-12-30

22 No English title available

Inventor:

Applicant:

EC:

IPC:

Publication info: SU1421258 A3 - 1988-08-30

23 No English title available

Inventor:

Applicant:

EC:

IPC:

Publication info: ZA8505830 A - 1987-03-25

Data supplied from the $\emph{esp@cenet}$ database - Worldwide

(19)日本国特許庁(JP)

(12) 特許公 報(B2)

(11)特許出願公告番号

特公平6-70063

(24) (44)公告日 平成6年(1994)9月7日

(51)Int.Cl.5 FΙ 識別記号 庁内整理番号 技術表示箇所 C 0 7 D 498/04 105 8415-4C A 6 1 K 31/435 7431-4C AAB AAK ABUAEF

発明の数2(全 15 頁)

(21)出願番号 特願昭60-170980

(22)出願日 昭和60年(1985)8月1日

(65)公開番号 特開昭61-47487

(43)公開日 昭和61年(1986) 3月7日

(31)優先権主張番号 637232 (32)優先日 1984年8月2日 (33)優先権主張国 米国(US)

(71)出願人 99999999

イーライ・リリー・アンド・カンパニー アメリカ合衆国46285インディアナ州イン デイアナポリス市、リリー・コーポレイ ト・センター(番地の表示なし)

(72)発明者 ジョン・メーナート・シャウス

アメリカ合衆国インディアナ州46220、イ ンデイアナポリス市、ノース・デラウエア

ー・ストリート5427番

(72)発明者 ロバート・ダニエル・タイタス

アメリカ合衆国インデイアナ州46203、イ ンデイアナポリス市、スパン・アペニユー 3818番

(74)代理人 弁理士 青山 葆 (外1名)

審査官 鶴見 秀紀

(54) 【発明の名称】 オクタヒドロ-オキサゾロ[4,5-g キノリン

【特許請求の範囲】

[式中、RはH、ベンジル、C1~3 直鎖アルキルまたは アリルであり、R1はH、CI、Br、C1~3 アルキル、O-C 1~3 アルキル、OH、NH2、NHC1~3 アルキル、N(C1~3 ア ルキル)2、1-ピロリジニル、1-ピペリジニルまたは NHCOC1~3 アルキルであり、4aおよび8a位の水素原子は トランスの関係にある。ただし、Rがベンジルまたはア リルの時、R1はC1、Br、0-C1~3 アルキル、1ーピロリ ジニル、1-ピペリジニルまたはNHCOC1~3 アルキルで 50 項に記載の化合物。

【請求項1】式(I):

(I)

2

2

はない。]

で示されるトランスーオクタヒドローオキサゾロ [4.5 - g] キノリンまたはその製薬上許容し得る塩。

【請求項2】第1項記載の式(1)で示されるトランス - (-) -4aR,8aRエナンチオマーまたはその製薬上許 容し得る塩。

【請求項3】Rがn-プロピルである第1項または第2

【請求項4】R¹がNH2である第1項~第3項のいずれか 1項に記載の化合物。

【請求項5】4aR, SaR-2-アミノ-5-n-プロピル

$$R^{1}$$
 O
 N
 R

-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ [4, 5 - g] キノリンである第1項に記載の化合物。

【請求項6】式(1):

(I)

「式中、RはC1~3 直鎖アルキルまたはアリルであり、R 10 分とするパーキンソン病治療薬。 1はH、C1~3 アルキル、O-C1~3 アルキル、NH2、NHC 1~3 アルキル、N(C1~3 アルキル)2、1ーピロリジニ ル、1-ピペリジニルまたはNHCOC1~3 アルキルであ り、4aおよび8a位の水素原子はトランスの関係にある。 ただし、Rがアリルの時、R1はO-C1~3 アルキル、1 ーピロリジニル、1ーピペリジニルまたはNHCOC1~3 ア ルキルではない。]

で示されるトランスーオクタヒドローオキサゾロ [4,5 - g] キノリンまたはその製薬上許容し得る塩を必須成

【発明の詳細な説明】

本発明は、オクタヒドローオキサゾロ〔4,5-g〕キノ リン環系を有し、価値ある薬理学的性質、より詳しくは ドパミンアゴニスト活性を有する化合物に関する。 本発明化合物が有している新規な三環系化合物について 文献における教示はないが、米国特許明細書第4230861 号には、ドパミンアゴニスト特性を持つピラゾロ〔3,4 -g]キノリン誘導体の記載がある。

本発明は、式(1):

〔式中、RはH、ベンジル、G1~3 直鎖アルキルまたは アリルであり、R1はH、CI、Br、C1~3 アルキル、O-C1 アルキル、OH、NH2、NH-C1~3 アルキル、N(C1~3 アルキ ル)2、1-ピロリジニル、1-ピペリジニルまたはNHCO 30 C1~3 アルキルであり、4aおよび8a位の水素原子はトラ ンスの関係にある〕

で示されるトランスーオクタヒドローオキサゾロ〔4,5 **- g〕キノリンまたはその製薬上許容し得る塩を提供す** るものである。

- (i) RがHもしくはペンジルである化合物および、
- (ii) R¹が一OH、CIもしくはBrである化合物以外の式
- (1) の化合物は、ドパミンアゴニストでる。R¹がNH2 である化合物は、アシン化してR¹がNHCOC1~3 アルキル である化合物とすることができる。RがHである化合物 40 は、一般にこれをアルキル化してRがメチル、エチル、 アリルまたはn-プロプルである誘導体を生成できると いう点で、これもまた中間体である。Rがアルキルであ る化合物は、CNBrによる処理、次いで加水分解を行なう ことにより、脱アルキル化してRがHである化合物を生 成できる。Rがベンジルである化合物においては、この ベンジル基は水素添加分解により除去することができ る。R¹がO-C1~3 アルキルである化合物は、加水分解 してR¹がOHである化合物とすることができる。

前述のごとく、RがCi~3 直鎖アルキルまたはアリルで

あり、R1がOH、CIまたはBr以外である式(I)の化合物 は、ドパミンロー2アゴニストであり、これらの活性 は、プロラクチン分泌阻害剤として、パーキンソン病の 治療において、性的機能不全、不安もしくはうつ病の治 療において、または血圧降下剤としての有用性を立証す べく立案された試験において示される。

上の式中、「C1~3 アルキル」という語は、メチル、エ チル、nープロピルおよびイソプロピルを包含し、「直 鎖C1~3 アルキル」という語は、最初の3個の基のみを 包含する。

本発明化合物の製薬上許容し得る酸付加塩とは、塩酸、 硝酸、リン酸、硫酸、臭化水素酸、ヨウ化水素酸、亜リ ン酸等のような非毒性無機酸から誘導される塩、ならび に脂肪族モノおよびジカルボン酸、フエニル置換アルカ ン酸、ヒドロキシアルカンおよびアルカン二酸、芳香族 酸、脂肪族および芳香族スルホン酸等のような非毒性有 機酸から誘導される塩を包含する。このような製薬上許 容し得る塩は、したがつて硫酸塩、ピロ硫酸塩、重硫酸 塩、亜硫酸塩、重亜硫酸塩、硝酸塩、リン酸塩、リン酸 一水素塩、リン酸二水素塩、メタリン酸塩、プロリン酸 塩、塩化物、臭化物、ヨウ化物、酢酸塩、プロピオン酸 塩、カプリル酸塩、アクリル酸塩、蟻酸塩、イソ酪酸 塩、カプリン酸塩、ヘプタン酸塩、プロピオール酸塩、 50 シュウ酸塩、マロン酸塩、コハク酸塩、スペリン酸塩、

セバシン酸塩、フマル酸塩、マレイン酸塩、マンデル酸 塩、ブチン-1,4-ジオアート、ヘキシン-1,6-ジオア 一ト、安息香酸塩、クロロ安息香酸塩、メチル安息香酸 塩、ジニトロ安息香酸塩、ヒドロキシ安息香酸塩、メト キシ安息香酸塩、フタル酸塩、テレフタル酸塩、ベンゼ ンスルホン酸塩、トルエンスルホン酸塩、クロロベンゼ ンスルホン酸塩、キシレンスルホン酸塩、フエニル酢酸 塩、フエニルプロピオン酸塩、フエニル酪酸塩、クエン 酸塩、乳酸塩、 β ーヒドロキシ酪酸塩、グリコール酸 塩、リンゴ酸塩、酒石酸塩、メタンスルホン酸塩、プロ 10 れるトランスー(+)ー4aS, 8aS立体異性体:

〔式中、RおよびR1は前記と同意義〕

から成る。RがHまたはベンジル以外であり、R¹がOH、 CIまたはBr以外である式 (III) のトランスー (一) -4 aR,8aR立体異性体は、ラセミ体(I)のドパミンロー2 アゴニストの活性成分を構成し、トランスー(+)一立 体異性体(IIIa)より好ましい。

よつて式(III)のトランスー(ー)-4aR,8aRエナンチ オマーは、本発明の第2の、そして好ましい態様を形成 するものである。

RがHまたはベンジル以外であり、R¹がCI、BrまたはOH 以外である、前記式(III)で示される化合物は、ドパ ミンDー2アゴニストとして、遊離塩基または製薬上許 容し得る酸付加塩のいずれかの型で薬物として使用する ことができる。

式(III)に係る薬物の好ましい群は、

- (1) Rがnープロピル、
- (2) R¹がNH2、
- (3) R¹がNHCH₃、
- (4) R¹がN(CH₃)₂、
- (5) R¹ がNH-CO-CH3 である群である。

本発明化合物は、例えば、

トランスー(±) -2-アミノ-5-エチル-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4, 5-g〕キ ノリンマレイン酸塩、

トランスー(±)-2-n-プロピルアミノー5-n-プロピルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサ ゾロ〔4,5-g〕キノリン硫酸塩、

トランスー(±) -5-エチルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4,5~g〕キノリン、

トランスー(±)-2-ジメチルアミノー5-n-プロ

パンスルホン酸塩、ナフタレンー1-スルホン酸塩、ナ フタレンー2ースルホン酸塩等の塩を包含する。

前記式(I)で示される化合物は、4aおよび8a位に2個 の不斉炭素(光学活性中心)を持ち、したがつて、トラ ンスー(土)ラセミ体およびシスー(土)ラセミ体と通 常呼称される2組のラセミ体から成る4種の立体異性体 として存在する。本発明に係るトランスー(土)ラセミ 体(1)は、以下の式(111)により示されるトランス - (一) -4aR, 8aR立体異性体および式 (IIIa) で示さ

20 [4,5-g] キノリン二臭化水素酸塩、

> 4aR, 8aR-2-メチルエチルアミノ-5-エチル-4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ〔4, 5ーg〕 キノリンコハク酸塩、

> 4aR, 8aR-2-アミノー5-メチルー4, 4a, 5, 6, 7, 8, 8a, 9 ーオクタヒドローオキサゾロ〔4,5-g〕キノリン二塩 酸塩、

> トランスー(±)-2-メチルアミノ-5-n-プロピ ルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ [4,5-g] キノリン酒石酸塩、

4aR, 8aR-2-ジメチルアミノ-5-エチル-4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ〔4, 5ーg〕キノ リンリン酸塩、

4aR, 8aR-2-アセチルアミノ-5-メチル-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4, 5-g〕キノ リンテレフタル酸塩、

トランスー(±)-2-プロピオニルアミノ-5-エチ ルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ [4,5-g] キノリンジニトロ安息香酸塩、

トランスー(±)-2-アミノー5-n-プロピルー4, 40 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4, 5g]キノリンメタンスルホン酸塩(メシラート)、 トランスー(±)-2-ジメチルアミノー5-n-プロ ピルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ [4.5-g] キノリンPートルエンスルホン酸塩 (P-トシラート) 等を包含する。

RがCi~3 直鎖アルキルまたはアリルである、ドパミン (D-2) アゴニストとしての式(III) で示される化 合物は、実質的に他のアゴニストまたはアンタゴニスト (阻害)活性を欠いている。ドパミンロー2アゴニスト ピルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ 50 として、この化合物は、パーキンソン症候群の治療に、

性的機能不全の治療に、抗うつまたは抗不安剤として、 高血圧の哺乳動物の血圧低下に、そしてプロラクチン分 泌の阻害に有用である。したがつて、本発明のもう1つ の態様には、RがHもしくはベンジル以外でありR¹が0 H、CIもしくはBr以外である4aR,8aR- (III) エナンチ オマーまたはラセミ体(Ⅰ)による、高血圧、うつ病、 不安、パーキンソン病、性的機能不全、ならびに乳漏症 および不適当な乳汁分泌のようなプロラクチンの分泌過 多により特徴付けられる病態の治療が含まれる。

本発明のさらに別の態様は、RがHまたはペンジル以外 10

であり、RIが前記のごとく限定される式(I)または (111) の薬物を、前述の治療方法の際に投与するため の、医薬製剤の供給である。

式(I)により表わされるトランスー(±)ーラセミ体 は、D-2アゴニストとして、また、4aR,8aR-エナン チオマーの供給源としても使用することができる。 式 (I) においてR¹がNH₂、NH (C₁~3 アルキル)、また はN(C1~3 アルキル)2である、本発明のラセミ化合物 は、以下の反応式に従い容易に合成できる:

合成経路1

$$HO-C = \begin{pmatrix} NH \\ R^1 \end{pmatrix} + \begin{pmatrix} O = 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 4a & 3 \\ 8a_{1} & 2 \\ N \end{pmatrix} \longrightarrow (I)$$

〔式中、4a,8aの環融合はトランスである〕。 この反応は40~100℃の温度で実施できる。好ましい溶 媒は、C1~3 アルカノールのような有機極性溶媒であ る。上記式(IV)は、以下の平衡により示されるような 対応するウレアと互変異性のイソウレアを表わす:

$$\begin{array}{ccc}
 & \text{NH} & \longrightarrow & \text{NH} 2 \\
 & \parallel & & & \parallel & \\
 & \text{HO} - \text{C} - \text{R}^1 & & \text{O} = \text{C} - \text{R}^1
\end{array}$$

合成経路1の他方の出発物質(V)は、N-C1~3直鎖ア ルキルー6ーオキソデカヒドロキノリンを臭素化するこ とにより製造する。この後者の化合物は、式(VI):

[式中、alkは低級アルキルである]

20 水素添加して、式(VII):

alkO

〔式中、RはC1~3 直鎖アルキルであり、alkは前記と同 意義であり、環接合部の水素はトランスである〕 で示されるオクタヒドロキノリンが生成する。このエノ

ールエーテルは、酸で処理するとNー置換デカヒドロキ ノリンー6ーオン(IX):

(X)

(WI)

で示される6-アルコキシキノリンを、C1~3 直鎖アル キルハライド(RIX)によつて四級化し、この第四級塩を

で示されるN-C1~3 直鎖アルキルー6-アルコキシー1,

2,3,4-テトラヒドロキノリンとすることにより製造で

[式中、RはC1~3 直鎖アルキルである]

【式中、4a,8aの環接合部はトランス融合であり、Nー 置換基(R)はC1~3 直鎖アルキルである〕を生成す る。上の方法は、欧州特許明細書第127708号に、より詳 細に開示されている。

例えば氷酢酸中の臭化水素および臭素を、所望ならばUV 光の存在下で用いた、(IX)のC-7位での臭素化によ つて、合成経路1に使用する出発物質の1つである

(∨)が生成する。この方法は、米国特許出願第604687 号に、より完全な記載がある。

トランスー (±) - 1 - C1~3 直鎖アルキル-6-オキソデカヒドロキノリン (IX) の別途製造は、米国特許41

〔式中、Rは前記と同意義〕

は、次いで合成経路 1 のラセミケトン (IX) に置き換え 20 ることができる。即ち、 (IXa) の臭素化によつて4aR,8 aR-1-Ci~3 直鎖アルキル-6-オキソ-7-ブロモデカヒドロキノリン ((Va):橋頭水素が4aR,8aRである (V)の化合物)を生成し、次にこの誘導体をウレアまたは互変異性イソウレアIV)と反応させ、RがCi~C3 直鎖アルキル基である (III)の化合物を生成させる。

10

98415号4~5欄(Cols.) に記載されている(ここでは反応図式中の化合物番号(VII)で示されている)。式(III)および(IIIa)で示される光学活性オクタヒドローオキサゾロ〔4,5-g〕キノリンは、前記(I)で表わされるトランスー(土)ラセミ体の分割によつて製造できる。しかしながら好ましい方法は、米国特許第4471121号の方法を用いてトランスー(土)ケトン(IX)を分割することであり、該方法においては、このラセミケトンは光学活性ジトルオイル酒石酸塩を経て分割10される。こうして製造した4aR,8aRエナンチオマー(IXa):

([X a)

式 (I)、(III) または (IIIa) においてR¹がNH (CO ーC1~3 アルキル) である本発明の薬物は、R¹がNH2である対応化合物をアシル化することによつて製造する。R¹がH、OC1~3 アルキルまたはC1~3 アルキルである式 (I)、(III) または (IIIa) の化合物は、以下の合成経路 2 に従つて製造することができる:合成経路 2

〔式中、R¹はC1~3 アルキル、O-C1~3 アルキルまたはH であり、Rは水素でない〕。

上の合成経路2において、互変異性((IX)に対して) 二環式ケトンであるトランスー(±)-1-CI~3 直鎖 アルキルーフーオキソデカヒドロキノリンを、THFまたはその他の適当な溶媒中で、塩基(Ktーブトキシド、Na H等)の存在下に、蟻酸エチルのごとき低級アルキル蟻酸エステルと反応させて、4個の互変異性構造(XIa~

d) によつて表わされる6-ホルミル-7-オキソ誘導 体を得る。この反応では、予想されるような6ーホルミ ルおよび8ーホルミル誘導体の混合物ではなく、専ら6 ーホルミル誘導体が生成する(このホルミル化方法のよ り詳細な記述については欧州特許明細書第110496号を参 照されたい)。この6ーホルミル誘導体(互変異性体 (Xla~d)) を、フエニルジアゾニウムブロミド、p ーメトキシフエニルジアゾニウムスルフアート、ナフタ レンジアゾニウムクロリド、pーニトロフエニルジアゾ ニウムクロリド、フェニルジアゾニウムクロリド等のよ うなアリールジアゾニウム塩と、ジヤツプークリンゲマ ン反応(アナーレン(Ann.), 247190(1888); ベリヒ テ (Ber.), 20, 2942, 3284, 3398 (1887); オーガニツ ク・リアクションズ (Prg. Reactions), 10,143 (195 9)を参照されたい)によつて反応させると、ホルミル 基を失つて6ーアリールヒドラゾン(XII)が生成す

式(XXI)の化合物はトランスー(±)ー2ーヒドロキシー5ー置換4、4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ [4,5-g] キノリン、そして式(XXIa)の化合物はトランスー(±)ー5ー置換ー4、4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ [4,5-g] キノリンー2(1H)ーオンと命名される。脱水反応は20~150°Cの温度範囲で実施することができる。溶媒の存在は必須ではない。何故なら脱水剤自体が溶媒の役割をし得るからで

(IVI)

R¹が0Hである式 (I)、 (III) または (IIIa) の化合物は、R¹が0-C₁~3 アルキルである対応化合物の加水分解により製造できる。

R¹が1-ピロリジニルまたは1-ピペリジニルである式(I)、(III) または(IIIa)の化合物は、対応する2-O(C₁~3 アルキル)、2-ブロモまたは2-クロロ化合物を、その適当な第二級アミンと反応させることにより製造できる。これら後者のハロゲン誘導体は、R¹50

14

る。酸性エタノール中、担持または非担持貴金属触媒、 例えば高圧下の5%Pd/Cにより、6-アリールヒドラゾ ンの水素添加を行なつて、酸付加塩、好適には二塩酸塩 の形の1-アルキル-6-アミノ-7-オキソデカヒド ロキノリン (XIII) を生成させる。このジアミン (XII 1) は、前にオクタヒドローオキサゾロ〔4,5-g〕キノ リン((I)(III)および(IIIa)に対して列挙した ものと同一の酸と共に酸付加塩を形成する。第一級アミ ン (XIV) のアシル化に続いて、POCl3のような脱水剤に より閉環反応を行なうと、RがC1~3 直鎖アルキルであ り、R1がH、OC1~3 アルキルまたはC1~3 アルキルであ る前記式(1)の化合物が生成する。R¹が0C1~3 アルキ ルである中間体を、相互溶媒中の酸、即ち水性HCIで処 理すると、アルキル基が開裂して、オキサゾロンと互変 異性のヒドロキシ誘導体となる。構造式(XXI)および (XXIa) は、この互変異性を図示するものである。

$$\stackrel{\text{H}}{\rightleftharpoons} 0 \stackrel{\text{H}}{\rightleftharpoons} 0$$

(XXIa)

ある。好ましい脱水剤はPOCl3であるが、PCl3または発煙硫酸のような他の試薬を使用してもよい。

前記の合成経路2において、もし光学活性エナンチオマー、即ち4aR,8aR-1-C1~3 アルキル-7-オキソデカヒドロキノリンを使用するならば、最終生成物は光学活性オクタヒドローオキサゾロ〔4,5-g〕キノリン(II)または(IIIa)(下記の(XVI)および(XVIa)になる:

(XVIa).

がOHである化合物をハロゲン化することにより製造できる。

最後に、Rがアリルであり、特にR¹がNH2である式 (I)、(III)または(IIIa)の化合物は、以下の合 成経路3に従つて6ーオキソまたは7ーオキソデカヒド ロキノリン(X)から製造できる:

合成経路3

$$X = 15$$
 $X = 16$ $X = 16$

[式中、XおよびYのうち一方は酸素を、他方は2個の水素を表わし、R⁶はC1~3 アルキルまたはベンジルである]。

上の方法において、基R6は、相互不活性溶媒中、CNBrと の反応でシアノ基に置換される。次にシアノ基を加水分 解により除去して第二級アミンとし、これは標準的方法 でアリル化することができる。XがOでありYがH2であ るN-アリル生成物 (XX) は、合成経路1に従つて臭素 化して、Rがアリルである式(V)の化合物とするが、 この化合物を生成させるにあたり、N-アリル基を臭素 化しないよう留意する。臭素化を防ぐ注意を行なつても これが起こる場合は、別の経路をとることができる。即 ち、R6がベンジルであり、6-オキソ基(XがO、Yが H2) がケタールの形成により保護されている式(XVII) の化合物を、ペンジル基が水素添加分解して第二級アミ ンを生成するよう、水素添加する。ケタール保護基を酸 で除去すると、X=OそしてY=H2である式(XIX)の 化合物が生成し、この化合物はアリル化して(XX)とす ることができる。上の方法は、米国特許出願第535,522 号に概説されている。

YがOであり Xが№である時は、合成経路2の出発物質 (X)として 1 - アリル- 7 - オキソデカヒドロキノリンが使用できる。

第2の合成方法は、RIがNHC1~3 アルキルまたはN ンスー(生)ー1ーnープロピルー6ーオキソー7ーフ (C1~3 アルキル)2である式(I)、(III)また ロモデカヒドロキノリン臭化水素酸塩が得られる。この 塩10mmoleをメタノール10mlに溶解する。ここに尿素1.2 gを加える。得られた混合物を窒素雰囲気下に約24時間 のエナンチオマーを、第一級または第二級アミン、H2 図流する。この反応混合物を、ほど室温まで冷却し、溶 NーC1~3 アルキルまたはHN(C1~3 アルキル)2 50 媒を減圧留去する。残留物を水に溶解し、この水溶液に

と、加圧下に反応させる工程を含む。

上記のどの合成方法においても、光学活性エナンチオマー、4aR、8aRー6ーオキソデカヒドロキノリン、4aS、8aSー6ーオキソデカヒドロキノリン、4aS、8aSー6ーオキソデカヒドロキノリン(合成経路1ー究極的出発物質(IX))または4aR、8aRー7ーオキソデカヒドロキノリンもしくは4aS、8aSー7ーオコソデカヒドロキノリン(合成経路2ー(X))を、実際に表示したトランスー(土)ラセミ体に代えて使用して、光学活性な最終生成物(III)または(IIIa)を得ることができる。本発明を、以下の個別的実施例によつてさらに詳細に説明する。実施例中、「フラツシユクロマトグラフイー」という語は、ステイル(Still)等、ジェー・オルグ・ケム(J. Org、Chem.)、43、2923(1978)に記載のクロマトグラフイー方法を意味する。

実施例 1 トランスー (±) -2-アミノ-5-n-プロピル-4,4a,5,6,7,8,8a,9-オクタヒドローオキサゾロ(4,5-g] キノリンの製造

水酢酸25mlにトランスー(±) -1-n-プロピルー6 ーオキソデカヒドロキノリン1.95gを溶解して溶液を調製する。氷酢酸中の37%(重量)臭化水素2.3mlを加え、続いて氷酢酸5mlに溶解した臭素0.6mlを滴下する。反応混合物を、全ての反応体の添加後1/2時間撹拌する。次いで揮発成分を減圧で除くと、残留物としてトランスー(±)-1-n-プロピルー6-オキソーフーブロモデカヒドロキノリン臭化水素酸塩が得られる。この塩10mnoleをメタノール10mlに溶解する。ここに尿素1.2gを加える。得られた混合物を窒素雰囲気下に約24時間還流する。この反応混合物を、ほど室温まで冷却し、溶媒を減圧留去する。残留物を水に溶解し、この水溶液に

14N水酸化アンモニウム水溶液を加えて塩基性とする。 アルカリ層を同容量の塩化メチレンで数回抽出する。有 機抽出液を合し、飽和塩化ナトリウム水で洗浄し、硫酸 ナトリウムで乾燥する。溶媒を減圧で留去すると、上の 反応で生成したトランスー(±)-2-アミノー5-n ープロピルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキ サゾロ〔4,5-g〕キノリンの茶色の粘性油状物が得ら れる。この残留物を、5%のメタノールおよび微量の水 酸化アンモニウムを含むクロロホルムに溶解し、シリカ ゲルクロマトグラフィー (溶離液は、5%メタノールお 10 よび微量の水酸化アンモニウムを含有するCHCI3)に付 す。所望のオキサゾロキノリンを含有する分画を合し、 溶媒を蒸発させた後に黄色の粘性油状物が得られ、これ は徐々に結晶化した。この結晶性固体、トランスー (±) -2-アミノー5-n-プロピルー4,4a,5,6,7, 8,8a,9-オクタヒドローオキサゾロ〔4,5-g〕キノリ ンをメタノールに溶解し、このメタノール性溶液を気体 状HCIで飽和する。溶媒を除き、残留物をエタノールか ら再結晶すると、トランスー(±)-2-アミノ-5n-プロピルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオ キサゾロ〔4,5-g〕キノリン二塩酸塩0.2gが得られ た。融点は225℃以上であり、マススペクトルに於い て、235の分子イオンを得た。

元素分析

 C
 H
 N

 理論値:
 50.65
 7.52
 13.63

 実測値:
 50.52
 7.28
 13.34

出発物質として4aR,8aR-1-置換-6-オキソデカヒ ドロキノリンを用いて上の方法を反復する(1-n-プ ロピルー6ーオキソデカヒドロキノリンの合成を、後の 30 製造例1に示す)。4aR.8aR-1-n-プロピルー6-オキソデカヒドロキノリン3.9gを氷酢酸40mlに溶解す る。氷酢酸に入れた31%HBr4.6mlを加え、続いて氷酢酸 10mlに入れたBr21.2mlの溶液を滴下する。室温で約0.5 時間撹拌した後、溶媒を減圧留去すると、残留物とし て、上の反応で生成した(一)-1-n-プロピルー6 ーオキソーフーブロモデカヒドロキノリンを含む橙色の 泡状物質が得られる。この橙色の泡をメタノール30mlに 溶解する。尿素1.32gを加え、この混合物を約18時間還 流温度に加熱し、この時点で氷上に注ぐ。酸性の水性混 40 合物を14N水酸化アンモニウム水で塩基性とし、この塩 基性溶液を同量の塩化メチレンで数回抽出する。上の反 応で生成した4aR,8aR-2-アミノー5-n-プロピル -4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4, 5 −g] キノリンは、水性塩基に不溶であるため、有機層 に移る。有機層を合し、これを水およびブラインで洗浄 し、乾燥する。溶媒を蒸発させると暗色の粘性残留物が 得られる。この残留物を、3%メタノールおよび微量の 14N水酸化アンモニウム水を含む塩化メチレンを溶離液 とするシリカゲルのフラツシュクロマトグラフィーに付 50 18

す。9:1のCH2 CI2/MeOH+微量のNH4 OHを用いたTLCにより所望物質を含有すると認められた分画を合し、溶媒を減圧留去する。精製された4aR、8aR-2-アミノー5-n-プロピルー4、4a、5、6、7、8、8a、9-オクタヒドローオキサゾロ [4、5-g] キノリンを含む淡黄色の泡状残留物をMeOHに溶解し、得られた溶液を気体状HCIにて飽和する。こうして生成した塩酸塩を、メタノール/酢酸エチル溶媒混合液から再結晶する。収量=.25g(出発物質のケトン3、9gより)。この塩は以下の物理特性を示した:M.P. = 225℃以上

マススペクトル:m/e 235

▲ [α] ²⁰ p ▼=−103.1° (H₂0、C=1.0) 元素分析

 C
 H
 N

 理論値:
 50.65
 7.52
 13.63

 実測値:
 50.93
 7.25
 13.39

上の方法を4aS, 8aS, -1-n-プロピル-6-オキソデカヒドロキノリンから出発して反復して4aS, 8aS-2-アミノー5-n-プロピル-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドロオキサゾロ〔4, 5-g〕キノリンを製造し、塩酸塩として精製した。収量=. 26g(出発物質のケトン3. 9gより)。M.P.=225°C以上。分子イオン235。 [α] \triangle 20 D =102. 0° (H2 0, C =1. 0)

元素分析

 C
 H
 N

 理論値:
 50.65
 7.52
 13.63

 実測値:
 50.37
 7.70
 13.69

実施例 2 トランスー (±) -2-メチルー5-nープロピルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ [4, 5-g] キノリンの製造

リチウム9.9gを無水液体アンモニア21に溶解することにより溶液を調製する。4ー(3ーnープロピルアミノ)プロピルアニソール98.7gを無水エタノール27.8mlおよびTHF300mlの混合物に溶解する。この溶液を、リチウムの液体アンモニア溶液中に、撹拌しつつ徐々に滴下する。添加終了後、反応混合物を約45分間撹拌する。次いで、溶解しているLiの青色が消失するまで、水を徐々に加える。N2気流を反応混合物に一夜通し、アンモニアを蒸発させる。次いでさらに水を加えて、生成した塩を溶解する。このアルカリ性水溶液を同容量のジエチルエーテルで3回抽出する。エーテル性抽出液を合し、乾燥する。エーテルを蒸発させると1ーメトキシー4ー(3ーnープロピルアミノ)プロピルー1,4ーシクロヘキサジエン93,2gが得られた。収率=93.5%。

1ーメトキシー4ー(3ーnープロピルアミノ)プロピルー1,4ーシクロヘキサジエン121gを15%硫酸 1 & に溶解する。この酸性溶液を約6時間還流し、次いで氷に注ぐ。稀釈された酸性溶液を50%水酸化ナトリウム水で塩基性とする。塩基性となつた水溶液を塩化メチレンで抽出する。塩化メチレン抽出液を乾燥し、溶媒を除くとシ

スー(\pm) - 1 - n - プロピル- 7 - オキソデカヒドロキノリン25.6gが得られる。

上の粗生成物約23.8gをメタノール300mlに溶解し、この溶液にナトリウムメチラート1.3gを加える。反応混合物を室温で一夜撹拌し、次に水で稀釈する。この水性混合物を塩化メチレンで抽出する。塩化メチレン抽出液を乾燥し、溶媒を除き、クロマトグラフイー後にトランスー(土)ー1-n-プロピルーフーオキソデカヒドロキノリン11.4gが生成した。

この化合物は以下の物質特性と示した。

IR (CHC13) 2904, 1457, 1081 cm⁻¹ .

0) 2.79 (bd, 1H, J=2.5) $2.61\sim2.50$ (m, 1 H) $2.42\sim1.98$ (m, 6H) $1.92\sim1.22$ (m, 8H) 1. $10 \sim 0.98$ (m, 1H), 0.82 (t, 3H, J = 1.2). トランスー(±)-1-n-プロピルーフーオキソデカ ヒドロキノリン19.5gおよび蟻酸エチル32.3mlをTHF100m Iに溶解して溶液を調製する。次に、この溶液を、THF40 Oml中のカリウム t ーブトキシド22.4gの溶液にO℃で添 加する。この反応混合物を約1時間撹拌すると、この時 20 点で出発物質の存在しないことがTLC(THF+微量の水酸 化アンモニウム)により確認される。次に、アニリン9. 3gを1:1の12N塩酸/水混合液60mlに溶解して、ベンゼン ジアゾニウムクロリド溶液を調製する。氷を添加してこ の溶液を速やかに冷却する。氷の添加により反応混合物 の温度を約0℃に保持しつつ、亜硝酸ナトリウム6.8gお よび水30mlの溶液を加える。

ホルミル化ケトンを含有する反応混合物のpHを、10%塩酸の添加によりpH=約6に調節する。酢酸ナトリウム4 2.4gを水100mIに入れた溶液を添加し、続いて上で調製したベンゼンジアゾニウムクロリド溶液を加える。この新しい反応混合物を約4℃で一夜撹拌する。橙色の固体が生成し、これを炉別する。重量=12.9g。この固体は捨てる。

戸液を15N水酸化アンモニウム水で強塩基性とする。得られた2相系を、同容量の3:1クロロホルム/イソプロパノール溶媒混液で数回抽出する。有機抽出液を合し、溶媒を減圧留去すると赤色の粘性残留物10.5gが生成する。この残留物を、5%メタノールおよび微量の水酸化アンモニウムを含む塩化メチレンに溶解し、この溶液を40フラツシュシリカカラムにかける。カラムを展開し、生成物を同じ溶媒混合液で溶離する。TLC(9:1の塩化メチレン/メタノール+微量の水酸化アンモニウム)により所望生成物の含有が示される分画を合し、溶媒を蒸発させると、上の反応で生成したトランスー(土)ー1ーnープロピルー6ーフエニルヒドラゾノーフーオキソデカヒドロキノリンを含む明るい橙色の固体9.4gが得られる。

別法として、上の反応を逆の添加手順で行なつた。蟻酸 エチル5.5ml、トランスー(±)-1-n-プロピルー 20

フーオキソデカヒドロキノリン3.3gおよびTHF20mlから 溶液を調製する。この溶液を、TFF80ml中のカリウム t ーブトキシド3.8gの溶液に加える。反応混合物を約0℃ で2時間撹拌すると、TLCにより全ての出発物質ケトン が反応し終つたことが認められる。10%塩酸の添加によ りpHを約6に調節する。酢酸ナトリウム7.2gを水20mlに 入れた溶液を加える。次にアニリン1.6gから、前記のご とくフエニルジアゾニウムクロリド溶液を調製する。ト ランスー(±)-1-n-プロピルー6-ホルミルー7 10 -オキソーデカヒドロキノリン溶液を、O℃に保つたフ エニルジアゾニウムクロリド溶液の表面下に、N2の陽圧 の下で速やかにカニユーレで添加する。反応混合物をこ の温度で2時間撹拌し、前記のごとく後処理する。フラ ツシユクロマトグラフイーにより所望のトランスー (±)-1-n-プロピル-6-フエニルヒドラゾノー **フーオキソデカヒドロキノリン43.5%(通常の添加によ** る31.4%に比較)を得た。

この生成物を、エタノール/塩酸中、5%Pd/Cを用いて 触媒的水素添加を行なう。水素添加混合物を沪過し、沪 液を濃縮してトランスー(土)-1-n-プロピルー6 ーアミノーフーオキソデカヒドロキノリンの粗製品を二 塩酸塩として得る。収量=10.34gの緑色の泡状物質。 上記のごとく製造した粗トランスー(±)-1-n-プ ロピルー6ーアミノーフーオキソデカヒドロキノリンニ 塩酸塩2gを、THF50mlおよび無水酢酸10mlの混合物に懸 濁する。反応混合物を約0℃に冷却する。次いでトリエ チルアミン10mlを加える。固体は直ちに溶解する。得ら れた溶液を周囲温度で一夜撹拌する。次いで反応混合物 を水中に注ぎ、この水性混合物を15N水酸化アンモニウ ム水の添加によつて強塩基性とする。このアルカリ性水 性混合物を同容量の塩化メチレンで数回抽出する。有機 層を合し、これをブラインで洗浄し、次いで乾燥する。 揮発成分を蒸発させると暗茶色の残留物が得られる。こ の残留物を微量の水酸化アンモニウムを含むTHFに溶解 し、この溶液を、微量の水酸化アンモニウムを添加した THFを用いたシリカのフラツシユクロマトグラフィーに 付す。TLC(THF+微量の水酸化アンモニウム)により所 望生成物の含有が認められる分画を合し、溶媒を蒸発さ せて、上の反応において生成したトランスー(±)-1 -n-プロピル-6-アセチルアミノ-7-オキソデカ ヒドロキノリンを含む黄色のろう状の固体、65gを得

オキシ塩化リン25mlに入れたアセチルアミノ化合物0.58 gの溶液を、還流温度で約4時間加熱する。次いで反応 混合物を周囲温度で週末過ぎまで放置する。溶媒を減圧 留去し、得られた残留物を水に溶解する。水溶液を15N 水酸化アンモニウム水で塩基性とする。この水層を、同 容量の塩化メチレンで数回抽出する。塩化メチレン抽出 液を合し、これをブラインで洗浄し、乾燥する。溶媒を 蒸発させて暗色の粘性残留物を得、これを、微量の水酸 化アンモニウムを含むTHFに溶解し、溶液を、同じ溶媒を溶離液とするフラツシュシリカによるフラツシュクロマトグラフイーに付す。TLC(THF+微量の水酸化アンモニウム)により所望物質の含有が示される分画を合し、溶媒を蒸発させると、麦わら色の油状物. 48gが得られる(収率89. 2%)。この油を少量のメタノールに溶解し、ここに1当量のパラートルエンスルホン酸を加える。この溶液を加熱沸騰させ、酢酸エチルを加える。結晶化が始まるまで煮沸を続ける。生成した固体を沪別し、メタノール/エーテル溶媒混液より再結晶する。上の反応で10生成したトランスー(土)-2-メチル-5-n-プロピル-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ(4, 5-g〕キノリンは198~200℃で融解した。収量=.38g。

元素分析

C H N

理論値: 62.04 7.44 6.89 実測値: 61.82 7.24 6.78

実施例3 トランスー(±)ー5ーnープロピルー4,4 a,5,6,7,8,8a,9ーオクタヒドローオキサゾロ〔4,5ー g〕キノリンの製造

実施例2の方法に従い、トランスー(±)-1-n-プ ロピルー6-アミノーフーオキソデカヒドロキノリンニ 塩酸塩3.0gを乾燥THF25mlに懸濁し、この混合物を冷却 し、蟻酸酢酸混合無水物6mlを加え、引き続きトリエチ ルアミン5mlを滴下する。このアシル化混合物を室温で 1時間撹拌し、次いで水に注ぐ。水性混合物を10%塩酸 で酸性にする。得られた酸性の水層をエーテルで抽出 し、エーテル抽出液は捨てる。次に酸性層を15N水酸化 アンモニウム水を加えることにより塩基性とし、アルカ 30 リ性となつた層を同量の塩化メチレンで数回抽出する。 塩化メリレン抽出液を合し、これをブラインで洗浄し、 次いで乾燥する。溶媒を蒸発させると粘性の黄色油状物 1.9gが生成する。この油をTHFに溶解し、溶液を、微量 の水酸化アンモニウムを含むTHFを溶離液とするシリカ のフラツシユクロマトグラフィーに付す。TLC(同じ溶 離液を使用)により所望のトランスー(±)-1-n-プロピルー6ーホルミルアミノーフーオキソデカヒドロ キノリンの含有が示された分画を合し、これより溶媒を 蒸発させると黄色の透明な粘性残留物1.0g(収率83.9 %)が得られる。この残留物は放置すると結晶化した。 トランスー(±)-1-n-プロピルー6-ホルミルア ミノーフーオキソデカヒドロキノリン. 63gをメタンスル ホン酸8.8mlに溶解して溶液を調製する。混合物を約100 ℃に加熱し、その後五酸化リン1.26gを加える。この新 しい反応混合物を100℃で2.5時間撹拌し、次いで氷上に 注ぐ。この酸性溶液を15%水酸化ナトリウム水の添加に より塩基性とする。塩基性混合物を同量の塩化メチレン で数回抽出する。塩化メチレン抽出液を合し、乾燥す る。溶媒を蒸発させて粘性の茶色の透明な油状物を得、

22

これをTHFに溶解してシリカのフラツシュクロマトグラフィーに付す。カラムは微量の水酸化アンモニウムを含むTHFで溶出する。第2の分画は、上の反応で生成したトランスー(±)-5-n-プロピルー4,4a,5,6,7,8,8a,9-オクタヒドローオキサゾロ〔4,5-g〕キノリンを含む粘性の茶色の透明な油状物.26gで構成されていた。この化合物をエタノール中でマレイン酸塩に変換する。この塩をエーテル/エタノール溶媒混合液から再結晶して、収量=.26gの金色の結晶を得た。融点158~160℃。マススペクトル、分子イオン220。

元素分析

C N Н 60.78 7.19 8.33 理論値: 60. 94 実測値: 7. 26 8 20 実施例4 トランスー(±)-2-オキソー5-n-プ ロピルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾ ロ〔4,5-g〕キノリンの製造 実施例2の方法に従い、トランスー(±)ー1-n-プ ロピルー6ーアミノーフーオキソデカヒドロキノリンニ 20 塩酸塩5gをTHF50mlに懸濁する。懸濁液を約0°Cに冷却 する。クロロ蟻酸メチル10mlを加え、続いてトリエチル アミン10mlを滴下する。反応混合物を室温で2時間撹拌 し、その後過剰の1N塩酸で希釈する。酸性層をエーテル で1回抽出し、エーテル抽出液は捨てる。次に、酸性層 を氷に注ぐことにより冷却し、得られた冷混合物を15N 水酸化アンモニウム水で強塩基性とする。アルカリ性混 合物を同量の塩化メチレンで数回抽出する。塩化メチレ ン抽出液を合し、乾燥する。溶媒を蒸発させて暗黄色の 粘性残留物を得、これを微量の水酸化アンモニウムを含 む1:1のTHF/ヘキサンに溶解する。この溶液を、同じ溶 媒を溶離液としてシリカのフラツシュクロマトグラフィ 一に付す。TLC(同じ溶媒系を使用)により所望のトラ ンスー(±)-1-n-プロピルー6-メトキシカルボ ニルアミノーフーオキソデカヒドロキノリンの含有が示

上のカルバメート 4gを発煙硫酸10mlに入れて溶液を調製する。この酸性混合物を室温で18時間撹拌し、次いで 40 氷に注ぐ。次にこの水性酸性層を15N水酸化アンモニウム水の添加により塩基性とする。アルカリ性となつた層を同量の塩化メチレンで数回抽出する。塩化メチレン抽出液を合し、ブラインで洗浄し、乾燥する。溶媒を蒸発させると暗色の粘性残留物が得られる。残留物を微量の水酸化アンモニウムを含む1:2のTHF/ヘキサンに溶解し、この溶液をシリカのフラツシユクロマトグラフイーに付す。TLC (1:1のTHF/ヘキサン+微量の水酸化アンモニウム)によりトランスー(土) -2-メトキシー5-n-プロピルー4,4a,5,6,7,8,8a,9-オクタヒドロオキサゾロ [4,5-g] キノリンの含有を確認した分画を合

された分画を合し、溶媒を蒸発させると、マススペクト

ルにより268に分子イオンを示す粘性の黄色残留物1.47g

(収率67%) が得られた。

23

し、溶媒を除いて、粘性の黄色残留物.1gを得る。この残留物をエーテルに溶解し、エーテル溶液を気体状塩化水素で飽和する。得られた塩をエタノール/エーテル溶媒混合液から結晶化するが、この操作の間に2-メトキシ基が加水分解されて、対応する2-オキサゾロンが生成する。トランスー(±)-2-オキソー5-n-プロピルー4,4a,5,6,7,8,8a,9-オクタヒドローオキサゾロ〔4,5-g〕キノリン0.07gが塩酸塩として回収された。融点250℃以上。マススペクトルにより、236の分子イオンが確認された。

元素分析

C H N

理論値: 57.24 7.76 10.27 実測値: 57.28 7.75 10.20

こうして製造したトランスー(±) -2-オキソ-5- n-プロピルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドロー1H ーオキサゾロ〔4, <math>5-g〕 キノリンは、五塩化リンもしくはオキシ塩化リンまたはPBr3 と反応させて、対応するクロロまたはブロモ誘導体、トランスー(±) -2-ク ロロー5-n-プロピルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキサゾロ〔4, <math>5-g〕 キノリンまたはトランスー(±) -2- ブロモー5-n- プロピルー4, 4a, 5, 6, 7, 8, 8a, 9- オクタヒドローオキサゾロ〔4, 5-g〕 キノリンを生成されることができる。次いでこの化合物は、第二級もしくは第一級アミンと、またはアンモニアあるいはピペリジン、ピロリジンもしくはモルホリンのような環状アミンと反応させて、対応する2-アミノまたは置換アミノオクタヒドローイオキサゾロ〔4, 5-g〕 キノリンを得ることができる。

実施例5 トランスー (±) -2-ジメチルアミノ-5 30 -n-プロピル-4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドロー オキサゾロ [4,5-g] キノリンの製造

トランスー(±)-1-n-プロピルー6-メトキシカ ルボニルアミノーフーオキソーデカヒドロキノリン(実 施例4より).99gを発煙硫酸20mlに溶解して溶液を調製 し、この溶液を室温で約20時間撹拌する。この酸性混合 物を次に氷に注ぎ、稀釈された酸性溶液を室温で0.5時 間撹拌する。溶液を過剰の14N水酸化アンモニウム水の 添加により塩基性とする。この水性アルカリ混合物を同 容量の3:1のクロロホルム/イソプロパノール溶媒混合 液を数回抽出する。有機層を合し、これをブラインで洗 浄し、乾燥する。溶媒を蒸発させて琥珀色の粘性残留物 を得、これを微量のNH4OHを含むTHFにてシリカゲルのフ ラッシュクロマトグラフイーに付す。TLCにより所望の 2-メトキシ誘導体の含有が確認された分画を合し、溶 媒を除くと、トランスー(±)-2-メトキシー5-n. -プロピルー4, 4a, 5, 6, 7, 8, 8a, 9-オクタヒドローオキ サゾロ [4,5-g] キノリンからなる油状残留物. 42gが 得られる。NMRは提示された構造と一致した。この生成 物. 15gおよびジメチルアミン10mlを密封管に入れて反応 50 = 2.34g。 24

混合物を調製し、この密封管を100℃で1時間加熱す る。過剰のジメチルアミンを蒸発により除くと粘性の茶 色の残留物が得られる。この残留物を、微量のNH4OHを 含む1:1のTHF/ヘキサンを溶離液とするシリカゲルのフ ラツシユクロマトグラフィーに付す。TLC(同じ溶媒 系)により所望の物質の含有が確認された分画を合し、 溶媒を除去すると、上の反応で生成したトランスー (\pm) -2-ジメチルアミノー5-n-プロピルー4,4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオキサゾロ〔4, 5ー g] キノリンを含む淡黄色の透明なガラス状物質50mgが 得られた。NMRは提示された構造に一致した(δ2.9にお いて6個のプロトンを統合した鋭い一重線)。 実施例6 トランスー(±)-1-n-プロピルー?-オキソデカヒドロキノリンの別途製造 リチウム9.9gを無水液体アンモニア21に溶解して溶液を 調製する。4-(3-n-プロピルアミノ)プロピルア ニソール98.7gを、無水エタノール27.8ml およびTHF300m Iの混合物に溶解する。この溶液を撹拌しながら、リチ ウムの液体アンモニア溶液に徐々に滴下する。滴下終了 後、反応混合物を約45分間撹拌する。次いで、溶解して いるLiの脊色が消失するまで水を徐々に加える。反応混 合物にN2の気流を一夜通し、アンモニアを蒸発させる。 生成した塩を溶解するために、さらに水を加える。この アルカリ性水溶液を、同容量のジエチルエーテルで3回 抽出する。エーテル抽出液を合し、乾燥する。エーテル を蒸発させて1ーメトキシー4ー(3-n-プロピルア ミノ) プロピルー1,4ーシクロヘキサジエン93.2gを得 た。収率=93.5%。

上の化合物0.1gを0.1N塩酸15mlと共に周囲温度で1時間 撹拌する。反応混合物を15NNH4OH水で塩基性とし、この アルカリ性混合物を同容量のCH2 CI2 で数回抽出する。有 機層を合し、乾燥する。溶媒を減圧で蒸発乾固する。 残留物のTLCおよびNMRにより、4-(3-n-プロピル) アミノプロピル)シクロヘキサー3-エンオンおよび、 反応過程で形成された△2異性体の同時閉環によつて生 成した、少量のシスー(±)-1-n-プロピルーフー オキソデカヒドロキノリンの存在が示された。 上記のごとく製造した粗製の化合物5gを、メタノール10 ml中のナトリウムメチラート14.9mmoleの溶液に加え る。得られた溶液を周囲温度で18時間撹拌し、次いで水 に注ぐ。このアルカリ層を同容量のCH2Cl2で数回抽出す る。有機抽出液を合し、乾燥し、溶媒を減圧留去すると 暗赤橙色の残留物4.5gが得られる。残留物を微量のNH40 Hを含むヘキサン/THF(2:1)に溶解し、この溶液を、同 じ溶媒を溶離液とするシリカゲルクロマトグラフイーに 付す。初期の分画からは主にシスー(土)ー1ーnープ ロピルーフーオキソデカヒドロキノリンを得た。後寄り の分画は、トランスー(土)-1-n-プロピルーフー オキソデカヒドロキノリンを含むことがわかつた。収量

製造例1

(一) ージーpートルオイル酒石酸10gを温メタノール7 5mlに溶解する。この溶液を、メタノール15ml中のトラ ンスーdlー1-n-プロピルー6-オキソデカヒドロキ ノリン5.05gの溶液に添加する。反応混合物を煮沸し、 次いで法冷して周囲温度とする。周囲温度で一夜保持し た後、前もつて取得した種晶を添加して結晶化を促す。 酒石酸塩の結晶を沪別し、沪過ケーキをメタノールで洗 浄して、4aR,8aR-1-n-プロピルー6-オキソデカ ヒドロキノリンの(一) -ジ-P-トルオイル酒石酸塩 10 からなる収量=2.813g(18.7%)の白色結晶性固体を得 t_{-} . ▲ [α] 25 D ∇ ° = -107.49° (MeOH, C = 1) . この塩をメタノールから再結晶して光学的に純粋な塩1. 943gを得た。▲ [α] ²⁵ D ▼°=-108. 29° (MeOH、C =1)。こうして得た(一)ージーPートルオイル酒石 酸塩を希水酸化ナトリウム水で処理し、得られたアルカ リ溶液を塩化メチレンで抽出する。塩化メチレン抽出液 を乾燥し、濃縮し、溶媒を減圧留去する。得られた残留 物を蒸留すると、精製された4aR,8aR-1-n-プロピ ルー6ーオキソデカヒドロキノリンからなる無色の油状 20 物が得られた。▲ [α] ²⁵ D ▼°=-88.51° (MeOH、C =1) \circ

同様の方法で(+)ージーPートルオイル酒石酸をラセミ体と反応させることにより、4aS,8aS誘導体が製造できる。

対応する4aR、8aR-1-メチル、1-エチルまたは1-アリル誘導体は、トランス-(±)-1-メチル、1-エチルまたは1-アリルラセミ体から同様にして製造で きる。

本発明化合物の製薬上許容し得る酸付加塩、特にハロゲ 30 ン化水素酸塩の製造を、前記の実施例で説明した。一般 的に述べると、低級アルカノールに入れた式(I)、

(III) または (IIIa) で示される遊離塩基1当量の溶液を、やはり低級アルカノール中の溶液の形の1当量の酸と混合する。この塩は、溶媒を蒸発させて回収し、再結晶により精製する。あるいは、エーテルのような非極性有機溶媒に入れた1当量の遊離塩基を、やはりエーテルに入れた1当量の酸と混合することもできる。この方法においては、塩は通常溶媒系に不溶であるので、炉過によつて回収する。

式(I)、(III)または(IIIa)により示される化合物は、少なくとも2個の塩基性アミン基を有し、塩基性の強い方の基はオクタヒドロキノリン環の窒素である。これらの化合物からは、塩基1当量に付き少なくとも2当量の酸を使用することにより二塩を生成させることができる。一般に、強い有機酸および無機酸、即ち鉱酸、トルエンスルホン酸、メタンスルホン酸等だけが二塩を形成する。二塩酸塩は、遊離塩基をエーテルに溶解し、エーテル溶液をガス状HCIで飽和し、この二塩酸塩を沪過して回収することにより、簡便に製造できる。

26

前述のように、前記式(I) および(III) で示される本発明に係る薬物は、D-2ドパミンアゴニストである。かかるD-2ドパミンアゴニスト活性の一つにプロラクチン分泌阻害があり、これを以下の方法で立証した。

体重約200gのスプラーグードーレイ (Sprague-Dawle y) 系雄ラツトの成体を、照明を調節(午前6時~午後 8時まで点灯) した空調室に入れ、研究室用飼料および 水を自由に摂取させる。各ラツトに、被験薬物投与の18 時間前に、レセルピン2.0mgの水性懸濁液を腹腔内注射 する。レセルピン投与の目的は、ラツトのプロラクチン レベルを均一に上昇した状態を保つことである。被験化 合物を10%エタノールに溶解し、0.017、0.03、0.17お よび0.3μモル/kgの用量で腹腔内注射する。化合物を各 用量レベルで10匹のラツトから成る1群に投与し、10匹 の無傷の雄から成る対照群には、同等量の10%エタノー ルを与える。処置の1時間後に全ラツトを断頭して殺 し、血漿150μ1をプロラクチンの検定に用いる。 処置ラツトのプロラクチンレベルと対照ラツトのプロラ クチンレベルの差を対照ラツトのプロラクチンレベルで 割ると、投用量に応じたプロラクチン分泌の阻害パーセ ントが得られる。

式(I) および(III) で示される化合物は、経口によっても活性であるが、それは高用量においてである。ドパミンD-2アゴニストである式(I) および(III) の化合物は、パーキンソン症候群の治療に有用な化合物を発見するために計画された試験方法において、6ーヒドロキシドパミンにより病変を作つたラツトの旋回行動に影響を及ぼすことも発見された。この試験では、ウンゲルシュテツト(Ungerstedt) およびアルブスノツト(Arbuthnott), ブレイン・レス(Brain Res)、24,485(1970) の方法により調製した黒質新線条体病変ラツトを使用する。ドパミンアゴニスト活性を有する化合物は、このラツトに、病変側とは反対側への円運動を行なわせる。化合物によつて異なる潜伏期間の後、旋回の数を15分間にわたつて計測する。

式(I) および(III) の本発明化合物は、高血圧の治療に有効である。この化合物は、標準的は研究用試験、即ち以下のごとくSHR(高血圧自然発症ラット)に投与した場合に、かかる活性を示した:

体重およそ300gの雄の高血圧自然発症ラット (SHR) (タコニック・フアームズ (Taconic Farms) 、ジヤーマンタウン (Germantown) 、ニユーヨーク) の成体を、ペントバルビタールナトリウム (60mg/kg、i.p.) で麻酔する。気管内挿管してSHRに室内の空気を呼吸させる。スタッタム (Statham) 変換器 (P23ID) を用いて、博動性動脈血圧を、挿管した頸動脈から測定する。平均動脈血圧を、拡張期の血圧+1/3搏圧として算出する。収縮期の血圧パルスにより起動された心臓タコメーターにより、心搏数を監視する。薬物溶液を、大腿部の静脈

に入れたカテーテルを通して静脈内投与する。動脈血圧 および心搏数を多重チヤンネルのオシログラフ(ベツク マン、モデルR511A)上に記録する。処置の平衡化のた め、外科的処置の後15分間を経過させる。

下記の表 1 にこれらの測定結果を示す。表中、 1 欄は薬物の名称、 2 欄は用量(μ g/kg)、 3 欄は平均動脈血圧の変化パーセント±標準誤差、そして 4 欄は心搏数の変化パーセント±標準誤差を表わす。各用量レベルに付き4匹のラツトを使用した。

表		_1_	
薬物の名称	投与量 (μg/kg)	血圧の変 化%	心搏数の 変化%
トランスー(±)-2-アミノー5-nープロピ	0.1	-18.3 ± 5.7	-8.5 ± 2.2
ルー4, 42, 5, 6, 7, 8, 82, 9ーオクタヒドローオ キサゾロ(4, 5-g)ーキ	1	-8.6± 1.6	-4.4 ± 0.9
ノリン二塩酸塩	10	-15.1± 1.1	-5.6± 0.7
	100	-39.0± 1.9*	$\frac{-17.5\pm}{2.3}$
	1000	-51.2± 1.2*	$-19.1\pm$ 3.4

基準線: 平均動脈血圧=187±10 mallg, 平均心搏数=336±13搏/分

トランスー(±)ー2ー メチルー5ーnープロピ	1	-3.2 ± 0.5	-2.4± 0.8
ルー4, 4a, 5, 6, 7, 8, 8a, 9ーオクタヒドローオ キサゾロ(4, 5ーg)ーキ	10	-7.0 ± 1.0	-2.8 ± 0.4
ノリンpートシレート	100	-19.6± 1.4*	$\frac{-16.1\pm}{7.6}$
	1000	-26.2± 4.3*	-23.6±

基準線:平均動脈血圧=212±4mmHg,平均心搏数=381±19搏/分

トランスー(土)ー5ーn ープロピルー4,4a,5,	1	-5.0± 1.2	-3.6± 0.5
6,7,8,8a,9-オクター ヒドローオキサゾロ (4,5-g)-キノリンマ	10	-10.2 ± 1.0	-4.6± 0.6
レイン酸塩	100	$^{-27.4\pm}_{2.0*}$	$^{-28.5\pm}_{2.6}$
	1000	$^{-37.7\pm}_{4.9*}$	-31.8±

基準線:平均動脈血圧=194±5maHg,平均心搏数=371搏/分

* 15分間またはそれ以上の継続

表 1 に掲げた 3 種の化合物は、アポモルフイン結合部位に対する選択的親和性を示す(3H-アポモルフイン結合の阻害により測定した場合)。トランス-(±)-2-メチル-5-n-プロピル-4、4a, 5, 6, 7, 8, 8a, 9-オクタヒドロオキサゾロ [4, 5-g] キノリンの場合、アポモルフイン部位対スピペロン部位への結合比率は40対 1である。

性的に受容可能な雌を行動ケージに導入した場合、薬物で処置する前に射精を達成するのに少なくとも5分間を要した雄のラットを用いて、マウンティングまでの時間 50

28

(mount latency)、挿入までの時間、射精までの時間、射精後の間隔、マウンティングの頻度および挿入の頻度を測定することにより、式(I)の化合物の性的行動に与える影響力を測定した。上記指標の1またはそれ以上における減少は、性的能力の改善(これに限られる訳ではないが)を含む雄の哺乳動物の性的行動に対する正の効果を示している。性的反応を示さない雄ラツトをこのような試験に使用することもできる。式(I)の薬物を、卵巣を切除しエストロジエン処置を行なつたラツトに投与し、前湾姿勢対マウンテイングの比率を測定した結果、雌の哺乳動物の性的行動に対する正の影響が見出された。増大は、性的機能不全に罹患している雌の哺乳動物に期待される正の効果を示す。

本発明化合物は、治療目的には、通常、下に示すような 種々の経口用製剤の形で投与される。

硬ゼラチンカプセル剤は、以下の成分を用いて製造する:

	量 (mg/カブセル)
活性化合物	. 1~20mg
乾燥澱粉	200
ステアリン酸マグネシウム	10
上記成分を混合し、硬ゼラチンガ	プセルに充填する。

錠剤は、以下の成分を用いて製造する:

	量(mg/錠)
活性化合物	. 1~2mg
微結晶性セルロース	400
二酸化ケイ素(微粉)	10
ステアリン酸	5
この成分を混和し、圧縮して錠剤とする。	

別法として、各々.1~2mgの活性成分を含有する錠剤を 以下のごとく製造する:

活性成分	. 1∼2mg
澱粉	45mg
微結晶性セルロース	35mg
ポリビニルピロリドン	4mg
(10%水溶液として)	
カルポキシメチル澱粉ナトリウム	4. 5mg
ステアリン酸マグネシウム	0. 5mg

1mg

タルク

活性成分、澱粉およびセルロースをNo. 45メツシユU. S. ふるいに通し、完全に混合する。得られた粉体にポリビニルピロリドンの溶液を混合し、次いでこれをNo. 14メツシユU. S. ふるいに通す。こうして生成した顆粒を50~60℃で乾燥し、No. 18メツシユU. S. ふるいに通す。予めNo. 60メツシユU. S. ふるいに通しにおいたカルボキシメチル澱粉ナトリウム、ステアリン酸マグネシウムおよびタルクをこの顆粒に加え、混合した後、打錠機で圧縮して錠剤を製造する。

薬物0.1~2mgを各々含有するカプセル剤は以下のように 製造する。

活性成分 . 1~2mg 澱粉 59mg 微結晶性セルロース 59mg ステアリン酸マグネシウム 2mg 活性成分、セルロース、澱粉およびステアリン酸マグネ シウムを混和し、NO. 45メツシユU. S. ふるいに通し、硬 ゼラチンカプセルに充填する。 用量5mlにつき各々、1~2mgの薬物を含有する懸濁剤は以 下のように製造する。 活性成分 カルボキシメチルセルロースナトリウム 50mg 1. 25ml 糖密 安息香酸溶液 0.10ml 香料 適量 着色料

30

精製水で5mlとする

薬物をNo. 45メツシユU. S. ふるいに通し、カルボキシメ チルセルロースナトリウムおよび糖密と混合して滑らか なペーストとする。安息香酸溶液、香料および着色料を 若干量の水で稀釈し、撹拌しながら混合する。次いで必 要な容量とするに足るだけの水を加える。

性的機能不全の治療、性的能力の改善、血圧の低下(D -2またはD-1機作のいずれかによるもの)、腎血流 量の増大、うつ病もしくは不安の治療、パーキンソン症 .1~2mg 10 候群の症状の緩和、またはプロラクチン放出の阻害のた めの経口投与に際し、1投与用量当り約.1~約2mgの活 性薬物を含有する錠剤、カプセル剤または懸濁剤を、1 日に3~4回、.3~8mgの日用量で、即ち75kgの人なら ば約2.25~約600mg/日を投与する。静脈内投与用の用量 は、約.1~約100mcg/kgの範囲である。

Family list 31 family members for: JP61047487 Derived from 23 applications.

1 No English title available

Inventor:

TDC:

IPC:

Publication info: AR240822 A1 - 1991-02-28

2 No English title available 🖍

Inventor:

Applicant:

Applicant:

EC:

IPC:

Publication info: AT67766T T - 1991-10-15

3 No English title available

Inventor:

Applicant:

IPC:

Publication info: AU569406 B2 - 1988-01-28

4 No English title available

Inventor:

EC:

Applicant:

IPC:

Publication info: AU4573785 A - 1986-02-06

5 No English title available

Inventor:

Applicant:

IPC:

EC: Publication info: CA1292742 C - 1991-12-03

6 No English title available

Inventor:

EC:

EC:

Applicant:

IPC:

Publication info: CN85105798 A - 1987-01-28

7 No English title available

Inventor:

Applicant:

IPC:

Publication info: DE3584205D D1 - 1991-10-31

8 No English title available

Inventor:

Applicant:

IPC:

Publication info: DK349185 A - 1986-02-03

DK349185D D0 - 1985-08-01

No English title available

Inventor:

EC:

Applicant:

IPC:

Publication info: EP0172697 A2 - 1986-02-26

EP0172697 A3 - 1986-03-12

EP0172697 B1 - 1991-09-25

10 No English title available

Inventor:

Applicant:

EC:

IPC:

Publication info: ES545859D D0 - 1987-04-01

ES8704499 A1 - 1987-06-16

Data supplied from the esp@cenet database - Worldwide

11) Publication number:

0 172 697 A2

12)

EUROPEAN PATENT APPLICATION

(21) Application number: 85305538.2

22 Date of filing: 02.08.85

(a) Int. Cl.4: **C 07 D 498/04** A 61 K 31/435

//C07D215/20, C07D215/38, (C07D498/04, 263:00, 221:00)

- 30 Priority: 02.08.84 US 637232
- (4) Date of publication of application: 26.02.86 Bulletin 86/9
- Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE
- (1) Applicant: ELI LILLY AND COMPANY Lilly Corporate Center Indianapolis Indiana 46285(US)
- (2) Inventor: Schaus, John Mehnert 5427 North Delaware Street Indianapolis Indiana 48220(US)
- (72) Inventor: Titus, Robert Daniel 3818 Spann Avenue Indianapolis Indiana 48203(US)
- (2) Representative: Tapping, Kennath George et al, Erl Wood Manor Windlesham Surrey, GU20 6PH(GB)

- Octahydro-oxazolo4,5-gquinolines.
- (5) Trans-(±)-2- and/or -5-permissibly substituted octahy-dro-oxazolo[4,5-g]quinolines, acid addition salts thereof and individual enantlomers thereof, useful as dopamine agonists or intermediates of the preparation of dopamine agonists.

10

15

OCTAHYDRO-OXAZOLO[4,5-g]QUINOLINES

This invention relates to compounds having the octahydro-oxazolo[4,5-g]quinoline ring system and which possess valuable pharmacological properties, more particularly dopamine agonist activity.

Although there is no teaching in the literature of compounds possessing the novel tricyclic ring system possessed by the compounds of the invention, U.S. Patent Specification No. 4,230,861 does describe pyrazolo[3,4-g]quinoline derivatives which also have dopamine agonist properties.

According to the present invention there is provided a trans-octahydro-oxazolo[4,5-g]quinoline of the formula I

20

wherein R is H, benzyl, C₁₋₃ straight-chain alkyl or allyl and R¹ is H, Cl, Br, C₁₋₃ alkyl, O-C₁₋₃ alkyl, OH, NH₂, NHC₁₋₃ alkyl, N(C₁₋₃ alkyl)₂, 1-pyrrolidinyl, 1-piperidinyl or NHCOC₁₋₃ alkyl and wherein the 4a and 8a hydrogen atoms are in a <u>trans</u> relationship; or a pharmaceutically-acceptable salt thereof.

30

The compounds of formula I, except (i) when R is H or benzyl or (ii) R¹ is -OH, Cl or Br, are dopamine agonists. Compounds in which R¹ is NH₂ can be acylated to yield compounds in which R¹ is NHCOC₁₋₃ alkyl. Compounds in which R is H are also intermediates in that they can, in general, be alkylated to yield derivatives in which R is methyl, ethyl, allyl or n-propyl. Compounds in which R is alkyl can be dealkylated by treatment with CNBr followed by hydrolysis to yield compounds in which R is H. In compounds in which R is benzyl, the benzyl group can be removed by hydrogenolysis. Compounds in which R¹ is O-C₁₋₃ alkyl can be hydrolyzed to yield compounds in which R¹ is O-C₁₋₃ alkyl can be hydrolyzed to

As previously stated, compounds according
to I where R is C₁₋₃ straight alkyl or allyl, and R¹ is
other than OH, Cl or Br are dopamine D-2 agonists,
manifesting their activities in tests designed to
demonstrate utility as prolactin secretion inhibitors,
in the treatment of Parkinson's disease, in treating
sexual dysfunction, anxiety or depression or as hypotensive agents.

In the above formula, the term " C_{1-3} alkyl" includes methyl, ethyl, n-propyl and isopropyl while the term "straight-chain C_{1-3} alkyl" includes only the first three radicals.

Pharmaceutically-acceptable acid addition salts of the compounds of this invention include salts derived from non-toxic inorganic acids such as: hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, phosphorous

acid and the like, as well as salts derived from non-toxic organic acids such as aliphatic mono and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic and alkandioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such 5 pharmaceutically-acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, caprylate, acrylate, formate, 10 isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, butyne-1,4-dioate, hexyne-1,6dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, 15 phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chlorobenzenesulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, \beta-hydroxybutyrate, glycollate, malate, tartrate, methanesulfonate, propanesulfonate, naph-20 thalene-1-sulfonate, naphthalene-2-sulfonate and the like salts.

Compounds according to I above have two asymmetric carbons (optical centers) at 4a and 8a and 25 can thus exist as four stereoisomers occurring as two racemic pairs, ordinarily designated as the trans-(±) racemate and the cis-(±) racemate. The trans-(±) racemates (I) of this invention are composed of a trans-(-)-4aR,8aR stereoisomer represented by III below 30 and a trans-(+)-4aS,8aS stereoisomer represented by IIIa

X-6599A

10

15

20

25

30

5

wherein R and R¹ have their previously assigned meanings. The trans-(-)-4aR,8aR stereoisomers represented by III, wherein R is other than H or benzyl and R1 is other than OH, Cl or Br, constitute the active dopamine D-2 agonist component of the racemate (I) and are preferred over the trans-(+)-stereoisomers (IIIa).

The trans-(-)-4aR,8aR enantiomers according to III thus form a second and preferred aspect of this invention.

As dopamine D-2 agonists, compounds represented by III above in which R is other than H or benzyl and R1 is other than Cl, Br or OH may be employed for use as drugs either as the free base or as a pharmaceutically-acceptable acid addition salt thereof.

Preferred groups of drugs according to III are those in which

- (1) R is n-propyl

- (2) R¹ is NH₂
 (3) R¹ is NHCH₃
 (4) R¹ is N(CH₃)₂
 (5) R¹ is NH-CO-CH₃

Compounds of this invention include, illustratively,

Trans- (\pm) -2-amino-5-ethyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline maleate,

Trans-(±)-2-n-propylamino-5-n-propyl-4,4a,5,-6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline sulfate,

Trans-(±)-5-ethyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline,

Trans-(±)-2-dimethylamino-5-n-propyl-4,4a,5,
6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline dihydrobromide.

4aR,8aR-2-methylethylamino-5-ethyl-4,4a,5,6,-7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline succinate,
4aR,8aR-2-amino-5-methyl-4,4a,5,6,7,8,8a,9-

octahydro-oxazolo[4,5-g]quinoline dihydrochloride,

Trans-(±)-2-methylamino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline tartrate,

4aR,8aR-2-dimethylamino-5-ethyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline phosphate,

4aR,8aR-2-acetylamino-5-methyl-4,4a,5,6,7,8,-8a,9-octahydro-oxazolo[4,5-g]quinoline terephthalate, trans-(±)-2-propionylamino-5-ethyl-4,4a,5,-6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline dinitro-benzoate,

25 Trans-(±)-2-amino-5-n-propyl-4,4a,5,6,7,8,-8a,9-octahydro-oxazolo[4,5-g]quinoline methanesulfonate (mesylate),

Trans-(±)-2-dimethylamino-5-n-propyl-4,4a,5,-6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline p-toluene sulfonate (p-tosylate) and the like.

25

Compounds represented by Formula III wherein R is C1-3 straight chain alkyl or allyl, as dopamine (D-2) agonists are substantially devoid of other agonist or antagonist (blocking) activities. As dopamine D-2 agonists, the compounds are useful in treating Parkinson's Syndrome, in treating sexual dysfunction, as anti-depressants or as anti-anxiety agents, in lowering blood pressure in hypertensive mammals and in inhibiting prolactin secretion. Thus, other embodiments of this invention include the treatment, by the race-10 mates (I) or the 4aR,8aR-(III) enantiomers wherein R is other than H or benzyl, and R1 is other than OH. Cl or Br of hypertension, of depression, of anxiety, of Parkinson's disease, of sexual dysfunction, and of 15 disease states characterized by an excess of prolactin secretion such as galactorrhea and inappropriate lactation.

A still further embodiment of this invention is the provision of pharmaceutical formulations for administering drugs according to I or III wherein R is other than H or benzyl and R¹ is limited as above in the treatment methods outlined above.

The trans-(±)-racemates represented by I can be used as D-2 agonists, and also as a source of the 4aR.8aR-enantiomers.

Racemic compounds of this invention where, in Formula I, R^1 is NH₂, NH(C_{1-3} alkyl), or N(C_{1-3} alkyl)₂, are readily synthesized according to the following reaction scheme:

X-6599A

-7-

Synthetic Route 1

wherein the 4a,8a ring fusion is trans. This reaction can be conducted at temperatures from 40 to 100°C.

Preferred solvents are organic polar solvents such as C₁₋₃ alkanols. Formula IV above represents an iso-urea, tautomeric with the corresponding urea as represented by the following equilibrium

The other starting material (V) for Synthetic Route I
is prepared by brominating an N-C₁₋₃ straight-chain
alkyl-6-oxodecahydroquinoline. These latter compounds
can be prepared by quaternizing a 6-alkoxyquinoline
of formula VI

35

15

X-6599A

wherein alk is lower alkyl, with a C_{1-3} straight-chain alkyl halide (R^1 X) and the quaternized salt hydrogenated to yield an N- C_{1-3} straight-chain alkyl-6-alkoxy-1,2,3,4-tetrahydroquinoline of formula VII

wherein R is C_{1-3} straight-chain alkyl. The particular C_{1-3} alkyl group (R) remains intact through the next two reduction steps: a Birch reduction followed by a sodium cyanoborohydride (or sodium borohydride) reduction to yield, ultimately, an octahydroquinoline of the formula VIII

wherein R^1 is C_{1-3} straight-chain alkyl, alk has its previous meaning, and the ring junction hydrogens are trans. This enol ether, upon treatment with acid, yields the N-substituted decahydroquinolin-6-one (IX)

10

15

20

25

30

in which the 4a,8a ring junction is trans-fused and the N-substituent (R) is C_{1-3} straight-chain alkyl. The above procedure is set forth in greater detail in European Patent Specification No. 127,708.

-9-

Bromination of IX at C-7 using, for example, hydrogen bromide and bromine in glacial acetic acid, permissibly in the presence of UV light, yields V, one starting material for use in Synthetic Route I. This procedure is more fully described in EP Patent Application No. 85302852.0.

An alternate preparation of the trans-(±)-1-C₁₋₃ straight-chain alkyl-6-oxodecahydroquinoline (IX) is disclosed in United States Patent 4,198,415 Cols. 4-5 (where it is compound number VII in the Reaction Scheme).

The optically-active octahydro-oxazolo[4,5-g]-quinolines of formulas III and IIIa can be prepared by resolution of the trans-(±) racemates represented by I above. A preferred procedure, however, is to resolve the trans-(±) ketone (IX) using the procedure of United States Patent No. 4,471,121 whereby the racemic ketone is resolved via an optically-active ditoluoyltartaric acid salt. The 4aR,8aR enantiomer thus prepared, IXa,

wherein R has its previous meaning, can then be substituted for the racemic ketone IX in Synthetic Route I;

i.e., bromination of IXa yields a $4aR,8aR-1-C_{1-3}$ straight-chain alkyl-6-oxo-7-bromodecahydroquinoline (Va -- V in which the bridgehead hydrogens are 4aR,8aR) which derivative then reacts with a urea or a tautomeric iso-urea (IV) to yield compounds according to III in which R is a C_1-C_3 straight-chain alkyl group.

Those drugs of this invention in which R¹ is NH(CO-C₁₋₃ alkyl) in I, III or IIIa are prepared by acylating the corresponding compound in which R¹ is NH₂.

Compounds according to I, III or IIIa in which \mathbb{R}^1 is H, \mathbb{OC}_{1-3} alkyl or \mathbb{C}_{1-3} alkyl can be prepared according to Synthetic Route 2 below.

Synthetic Route 2

wherein R^1 is C_{1-3} alkyl, $O-C_{1-3}$ alkyl or H and R is not hydrogen.

In the above Synthetic Route 2, an isomeric (to IX) bicyclic ketone, a trans-(±)-1-C1-3 straight chain alkyl-7-oxodecahydroquinoline, is reacted with a lower alkyl formate such as ethyl formate, in the presence of base--K t-butoxide, NaH or the like--in 5 THF or other suitable solvent, to yield a 6-formyl-7-oxo derivative represented by four tautomeric structures, This reaction yields exclusively the 6-formyl derivative rather than a mixture of 6-formyl and 8-10 formyl derivatives as might be expected. (see European Patent Specification No. 110,496 for a more detailed description of this formylation procedure). Reaction of the 6-formyl derivative (the tautomers XIa-d) with an aryldiazonium salt such as phenyldiazonium bromide, 15 p-methoxyphenyldiazonium sulfate, naphthalenediazonium chloride, p-nitrophenyldiazonium chloride, phenyldiazonium chloride or the like via a Japp-Klingemann Reaction -- see Ann., 247 190 (1888); Ber., 20, 2942, 3284, 3398 (1887); Org. Reactions, 10, 143 (1959) -results in the formation of a 6-arylhydrazone (XII) with 20 concomitant loss of the formyl group. Hydrogenation of the 6-arylhydrazone in acidic ethanol with a noble metal catalyst, supported or unsupported, such as 5% Pd/C at high pressure, yields a 1-alkyl-6-amino-7-oxodecahydro-25 quinoline (XIII) in the form of an acid addition salt, conveniently a dihydrochloride salt. The diamine (XIII) forms acid addition salts with the same acids listed above for the octahydro-oxazolo[4,5-g]quinolines (I, III and IIIa). Acylation of the primary amine (XIV) fol-30 lowed by a ring closure reaction with a dehydrating agent such as POCl, yields those compounds according to

I above in which R is C_{1-3} straight chain alkyl and R^1 is H, OC_{1-3} alkyl or C_{1-3} alkyl. Treatment of an intermediate wherein R^1 is OC_{1-3} alkyl with acid in a mutual solvent; i.e. aqueous HCl, cleaves the alkyl group to a hydroxy derivative tautomeric with the oxazolone. Structures XXI and XXIa illustrate this tautomerism.

15

Compounds according to XXI are named as trans-(±)

2-hydroxy-5-substituted 4,4a,5,6,7,8,8a,9-octahydrooxazolo[4,5-g]quinolines and those according to XXIa are
trans-(±)-5-substituted-4,4a,5,6,7,8,8a,9-octahydrooxazolo[4,5-g]quinolin-2(1H)-ones. The dehydration
reaction can be accomplished at temperatures in the

25 range of 20 to 150°C. Presence of solvent is not
essential, since the dehydrating agent may itself act as
the solvent. The preferred dehydrating agent is POCl₃,
but other reagents such as PCl₃ or fuming sulfuric acid
may be used.

20

In Synthetic Route 2 above, if an optically active enantiomer is employed; i.e., 4aR,8aR-1-C₁₋₃ alkyl-7-oxodecahydroquinoline, the final product will be the optically active octahydro-oxazolo[4,5-g]-quinoline, III or IIIa, (XVI and XVIa below)

XVI

Those compounds according to I, III or IIIa wherein \mathbb{R}^1 is OH can be prepared by hydrolysis of the corresponding compound wherein \mathbb{R}^1 is O-C₁₋₃ alkyl.

Those compounds according to I, III or IIIa in which R¹ is 1-pyrrolidinyl or 1-piperidinyl can be prepared by reacting the corresponding 2-O(C₁₋₃ alkyl), 2-bromo or 2-chloro compound with the appropriate secondary amine. These latter halo derivatives can be prepared by halogenating compounds in which R¹ is OH.

Finally, compounds according to I, III or IIIa in which R is allyl particularly where R¹ is NH₂ can be prepared from 6-oxo or 7-oxodecahydroquinoline (X) according to Synthetic Route 3 below.

X-6599A

20

25

-15-

Synthetic Route 3

where one of X and Y represents oxygen and the other represents two hydrogens, and R⁶ is C₁₋₃ alkyl or benzyl. In the above procedure, the R⁶ group is replaced by a cyano group on reaction with CNBr in a mutual inert solvent. The cyano group is then removed by hydrolysis to yield a secondary amine which can be allylated by standard procedures. The N-allyl product when X is 0 and Y is H₂ (XX) can be brominated to yield V in which R is allyl in Synthetic Route I, being careful not to brominate the N-allyl group in producing this compound. Should bromination occur despite precautions to avoid it, an alternate route can be used in

20

25

30

which a compound according to XVII wherein R⁶ is benzyl and the 6-oxo group (X is 0, Y is H₂) is protected as by ketal formation, can be hydrogenated so as to hydrogenolyze the benzyl group to form a secondary amine. Removal of the ketal protecting group with acid yields XIX where X=0 and Y=H₂ which compound can be allylated to give XX. The above procedures are outlined in EP Patent application Serial No. 142920.

When Y is 0 and X is H_2 , the 1-allyl-7-oxodecahydroquinoline can be used as the starting material (X) in Synthetic Route 2.

A second synthetic procedure is available for preparing compounds according to I, III or IIIa in which R^1 is NHC_{1-3} alkyl or $N(C_{1-3}$ alkyl)₂. This procedure involves reacting I ($R^1 = O-C_{1-3}$ alkyl), or an enantiomer thereof, with a primary or secondary amine H_2N-C_{1-3} alkyl or $HN(C_{1-3}$ alkyl)₂, under pressure.

In any of the above synthetic procedures, the optically-active enantiomer, the 4aR,8aR-6-oxodecahydroquinoline, 4aS,8aS-6-oxodecahydroquinoline (Synthetic Route 1-ultimate starting material IX) or 4aR,8aR-7-oxodecahydroquinoline or 4aS,8aS-7-oxodecahydroquinoline (Synthetic Route 2-X) can be used in place of the trans-(±) racemate actually represented to yield optically active final products III or IIIa.

This invention is further illustrated by the following specific examples. In the examples, the term "flash chromatography" refers to the chromatographic procedure described by Still et al., <u>J. Org. Chem.</u>, 43, 2923 (1978).

-17-

Example 1

Preparation of Trans-(±)-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline

5

10

15

20

25

30

A solution was prepared by dissolving 1.95 g. of trans-(±)-1-n-propyl-6-oxodecahydroquinoline in 25 ml. of glacial acetic acid. Two and three tenths milliliters of 37% (by weight) hydrogen bromide in glacial acetic acid were added followed by the dropwise addition of 0.6 ml. of bromine dissolved in 5 ml. of glacial acetic acid. The reaction mixture was stirred for one-half hour after all the reactants had been added. Volatile constituents were then removed in vacuo yielding, as a residue, trans-(t)-1-n-propyl-6-oxo-7-bromodecahydroquinoline hydrobromide. Ten millimoles of this salt were dissolved in 10 ml. of methanol. One and two-tenths grams of urea were added thereto. The resulting mixture was refluxed for about 24 hours under a nitrogen blanket. The reaction mixture was cooled to about room temperature, and the solvent removed in vacuo. The residue was dissolved in water, and the aqueous solution made basic by the addition of 14N aqueous ammonium hydroxide. The alkaline layer was extracted several times with an equal volume of methylene dichloride. The organic extracts were combined, and the combined extracts washed with saturated aqueous sodium chloride and then dried over sodium sulfate. Removal of the solvent in vacuo yielded a brown viscous oil comprising trans-(±)-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9octahydro-oxazolo[4,5-g]quinoline formed in the above The residue was dissolved in chloroform reaction.

containing 5% methanol and a trace of ammonium hydroxide and chromatographed over silica gel (eluant was CHCl3 containing 5% methanol and a trace of ammonium hydroxide). Fractions containing the desired oxazoloquinoline were combined to yield, after evaporation of the solvent, a yellow viscous oil which slowly crystallized. crystalline solid, trans-(t)-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline, was dissolved in methanol and the methanolic solution 10 saturated with gaseous HCl. The solvent was removed and the residue recrystallized from ethanol. Two-tenths grams of trans-(±)-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9octahydro-oxazolo[4,5-g]quinoline dihydrochloride were obtained melting above 225°C; molecular ion at 235 by 15 mass spectrum.

Analysis: Calc.; C, 50.65; H, 7.52; N, 13.63; C, 50.52; H, 7.28; N, 13.34.

The above procedure can be repeated using a 20 4aR,8aR-1-substituted-6-oxodecahydroquinoline as the starting material. (The synthesis of 1-n-propyl-6oxodecahydroquinoline is disclosed in Preparation I below). Three and nine tenths grams of 4aR,8aR-1-npropyl-6-oxodecahydroquinoline were dissolved in 40 ml 25 of glacial acetic acid. Four and six tenths ml of 31% HBr in glacial acetic acid were added followed by the dropwise addition of a solution of 1.2 ml of Br, in 10 ml of glacial acetic acid. After stirring at room temperature for about 0.5 hr., the solvent was 30 removed in vacuo, leaving as a residue, an orange foam comprising (-)-1-n-propyl-6-oxo-7-bromodecahydroquinoline formed in the above reaction. The orange foam was dis-

solved in 30 ml of methanol. 1.32 g of urea were added and the mixture heated to reflux temperature for about 18 hours, at which time it was poured over ice. acidic aqueous mixture was made basic with 14N aqueous ammonium hydroxide, and the basic solution extracted several times with equal volumes of methylene dichloride. 4aR,8aR-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydrooxazolo[4,5-g]quinoline formed in the above reaction being insoluble in aqueous base, passed into the organic layer. The organic layers were combined; the combined 10 layers were washed with water and with brine and were then dried. Evaporation of the solvent left a dark viscous residue. The residue was flash chromatographed over silica, using methylene dichloride containing 3% methanol and a trace of 14N aqueous ammonium hydroxide 15 as the eluant. Fractions containing the desired material as shown by TLC 9:1 CH2Cl2/MeOH + Tr. NH4OH were combined and the solvent removed in vacuo. The residual pale yellow foam, comprising purified 4aR,8aR-20 2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo-[4,5-g]quinoline was dissolved in MeOH and the resulting solution saturated with gaseous HCl. The hydrochloride salt thus formed was recrystallized from a methanol/ethyl acetate solvent mixture; yield = .25 g (from 3.9 g of 25 starting ketone). The salt had the following physical characteristics:

M.P. = above 225°C
Mass spectrum: m/e at 235

30 $\left[\alpha\right]_{D}^{20} = -103.1^{\circ} (H_{2}O, c = 1.0)$

Analysis: Calc.: C, 50.65; H, 7.52; N, 13.63; C, 50.93; H, 7.25; N, 13.39.

The above procedure was repeated starting with

4aS,8aS-1-n-propyl-6-oxodecahydroquinoline to prepare

4aS,8aS-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydrooxazolo[4,5-g]quinoline, purified as the hydrochloride
salt; yield = .26 g (from 3.9 g of starting ketone);

M.P. = above 225°C; molecular ion at 235;

 $[\alpha]_D^{20} = 102.0^{\circ} (H_2O, c = 1.0)$

15

25

30

Analysis: Calc.; C, 50.65; H, 7.52; N, 13.63; Found: C, 50.37; H, 7.70; N, 13.69.

Example 2

Preparation of Trans-(t)-2-methyl-5-n-propyl-20 4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline

A solution was prepared by dissolving 9.9 g. of lithium in 2 l. of anhydrous liquid ammonia. 98.7 g. of 4-(3-n-propylamino)propylanisole were dissolved in a mixture of 27.8 ml. of anhydrous ethanol and 300 ml. of THF. This solution was added slowly in dropwise fashionwith stirring to the lithium in liquid ammonia solution. After the addition had been completed, the reaction mixture was stirred for about 45 minutes. Water was then added slowly until the blue color of dissolved Li had been discharged. A stream of N_2 was passed over the reaction mixture overnight to evaporate the ammonia. Additional water was then added to dissolve the salts

which had formed. The alkaline aqueous solution was extracted three times with equal volumes of diethyl The ethereal extracts were combined and dried. Evaporation of the ether yielded 93.2 g. of 1-methoxy-4-(3-n-propylamino)propyl-1,4-cyclohexadiene; yield = 93.5%.

One hundred twenty-one grams of 1-methoxy-4-(3-n-propylamino)propyl-1,4-cyclohexadiene were dissolved in 1 l. of 15% aqueous sulfuric acid. The acidic solution was refluxed for about 6 hours and was then 10 poured over ice. The dilute acidic solution was made basic with 50% aqueous sodium hydroxide. The now-basic aqueous solution was extracted with methylene dichloride. The methylene dichloride extract was dried and the solvent removed therefrom to yield 25.6 g. of $cis-(\pm)-1-n$ propyl-7-oxodecahydroquinoline.

About 23.8 g. of the above crude product were dissolved in 300 ml. of methanol to which solution was added 1.3 g. of sodium methylate. The reaction mixture was stirred overnight at room temperature, and was then 20 diluted with water. The aqueous mixture was extracted with methylene dichloride. The methylene dichloride extract was dried, and the solvent removed therefrom to yield, after chromatography, 11.4 g. of trans- (\pm) -l-n-25 propyl-7-oxodecahydroquinoline.

The compound had the following physical characteristics:

 $IR(CHCl_3)$ 2904, 1457, 1081 cm⁻¹. Proton NMR (CDCl₃, 270MHz, δ): 2.94 (bd, 30 1H, J=2.0; 2.79 (bd, 1H, J=2.5); 2.61-2.50 (m, 1H); 2.42-1.98 (m, 6H); 1.92-1.22 (m, 8H); 1.10-0.98 (m, 1H); 0.82 (t, 3H, J=1.2).

25

30

A solution was prepared by dissolving 19.5 g. of trans-(±)-1-n-propyl-7-oxodecahydroquinoline and 32.3 ml. of ethyl formate in 100 ml. of THF. This solution was in turn added to a solution of 22.4 g. of potassium t-butoxide in 400 ml. of THF at 0°C. This 5 reaction mixture was stirred for about 1 hour at which time TLC (THF plus a trace of ammonium hydroxide) indicated an absence of starting material. solution of benzene diazonium chloride was prepared by 10 dissolving 9.3 g. of aniline in 60 ml. of 1:1 12 N hydrochloric acid/water mixture. This solution was cooled rapidly by the addition of ice. A solution of 6.8 g. of sodium nitrite and 30 ml. of water was then added while maintaining the temperature of the reaction 15 at about 0°C. by the addition of ice.

The pH of the reaction mixture containing the formylated ketone was adjusted to pH = about 6 by the addition of 10% hydrochloric acid. A solution of 42.4 g. of sodium acetate in 100 ml. of water was added, followed by the addition of the benzene diazonium chloride solution prepared above. This new reaction mixture was stirred overnight at about 4°C. An orange solid formed which was separated by filtration; wt = 12.9 g. The solid was discarded.

The filtrate was made strongly basic with 15N aqueous ammonium hydroxide. The resulting two phase system was extracted several times with equal volumes of 3:1 chloroform/isopropanol solvent mixture. The organic extracts were combined and the solvent evaporated therefrom in vacuo to yield 10.5 g. of a red viscous residue. This residue was dissolved in methylene

10

dichloride containing 5% methanol and a trace of ammonium hydroxide and the solution placed on a flash silica column. The column was developed and the products eluted with the same solvent mixture. Fractions shown by TLC (9:1 methylene dichloride/methanol plus a trace of ammonium hydroxide) to contain the desired product were combined, and the solvent evaporated therefrom to yield 9.4 g. of a bright orange solid comprising trans-(t)-1-n-propyl-6-phenylhydrazono-7-oxodecahydroquinoline formed in the above reaction.

Alternatively, the above reaction was carried out using a reverse addition procedure: a solution was prepared from 5.5 ml of ethyl formate, 3.3 g of trans-15 (±)-1-n-propyl-7-oxodecahydroquinoline and 20 ml THF. This solution was added to a solution of 3.8 g of potassium t-tutoxide in 80 ml of THF. The reaction mixture was stirred for 2 hours at about 0°C at which time TLC indicated that all the starting ketone had 20 reacted. The pH was adjusted to about 6 by the addition of 10% hydrochloric acid. A solution of 7.2 g of sodium acetate in 20 ml of water was added. Next, a phenyldiazonium chloride solution was prepared as above from 1.6 g aniline. The solution of the trans- (\pm) -1-n-propyl-6-formyl-7-oxo-decahydroquinoline was cannulated rapidly 25 under positive ${\rm N}_2$ pressure beneath the surface of the phenyldiazonium chloride solution held at 0°C. reaction mixture was stirred at that temperature for 2 hours and then worked up as above. Flash chroma-30 tography yielded 43.5% of the desired trans-(±)-1-npropyl-6-phenylhydrazono-7-oxodecahydroquinoline (compared with 31.4% by normal addition).

10

15

20

30

This product was hydrogenated catalytically over 5% Pd/C in ethanol/hydrochloric acid. The hydrogenation mixture was filtered and the filtrate concentrated to reduced to yield crude trans-(±)-1-n-propyl-6-amino-7-oxodecahydroquinoline as the dihydrochloride salt; yield = 10.34 g. of a green foam.

Two g. of crude trans-(±)-1-n-propyl-6-amino-7-oxodecahydroquinoline dihydrochloride prepared as above were suspended in a mixture of 50 ml. of THF and 10 ml. of acetic anhydride. The reaction mixture was Ten ml. of triethylamine were then cooled to about 0°C. The solid dissolved immediately. The resulting solution was stirred overnight at ambient temperature. The reaction mixture was then poured into water, and the aqueous mixture made strongly basic by the addition of 15N aqueous ammonium hydroxide. The alkaline aqueous mixture was extracted several times with equal volumes of methylene dichloride. The organic layers were combined; the combined layers washed with brine and then Evaporation of the volatile constituents yielded a dark brown residue. The residue was dissolved in THF containing a trace of ammonium hydroxide and the solution flash chromatographed over silica with THF to which a trace of ammonium hydroxide had been added. Fractions shown by TLC (THF plus a trace of ammonium hydroxide) to contain the desired product were combined, and the solvent evaporated therefrom to give .65 g. of a yellow waxy solid comprising trans-(t)-1-n-propyl-6-acetylamino-7-oxodecahydroquinoline formed in the above reaction.

A solution of 0.58 g. of the acetyl amino compound in 25 ml. of phosphorous oxychloride was heated to reflux temperature for about 4 hours. The reaction mixture then allowed to stand over the weekend at ambient temperature. The solvent was removed in vacuo 5 and the resulting residue dissolved in water. solution was made basic with 15N aqueous ammonium hydroxide. The aqueous layer was extracted several times with equal volumes of methylene dichloride. methylene dichloride extracts were combined, the com-10 bined extracts washed with brine and then dried. Evaporation of the solvent yielded a dark viscous residue which was dissolved in THF containing a trace of ammonium hydroxide and the solution flash chromatographed over a flash silica using the same solvent as 15 eluant. Fractions shown by TLC (THF plus a trace of ammonium hydroxide) to contain the desired material were combined and the solvent evaporated therefrom to give .48 g. a straw colored oil (89.2% yield). This oil was dissolved in a small amount of methanol to which was 20 added an equivalent of para-toluene sulfonic acid. solution was heated to boiling and ethyl acetate added. Boiling was continued until crystallization began. solid which formed was separated by filtration, and recrystallized from a methanol/ether solvent mixture. 25 trans-(±)-2-Methyl-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline formed in the above reaction melted at 198-200°C.; yield = .38 g. Analysis calculated: C, 62.04; H, 7.44; N, 6.89;

Found: C, 61.82; H, 7.24; N, 6.78.

Example 3

Preparation of trans-(±)-5-n-propyl-4,4a,5,6,-7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline

5

10

15

20

25

30

Following the procedure of Example 2, 3.0 g. of trans-(±)-1-n-propyl-6-amino-7-oxodecahydroquinoline dihydrochloride was suspended in 25 ml. of dry THF, the mixture cooled and 6 ml. of a formic acetic mixed anhydride added, followed by the dropwise addition of 5 ml. of triethylamine. The acylation mixture was stirred for 1 hour at room temperature, and was then poured into water. The aqueous mixture was made acidic with 10% hydrochloric acid. The resulting acidic aqueous layer was extracted with ether, and the ether extract discarded. The acidic layer was then made basic by the addition of 15N aqueous ammonium hydroxide, and the now alkaline layer extracted several times with equal volumes of methylene dichloride. The methylene dichloride extracts were combined, the combined extracts washed with brine and then dried. Evaporation of the solvent gave 1.9 g. of viscous yellow oil. The oil was dissolved in THF and the solution flash chromatographed over silica using THF containing a trace of ammonium hydroxide as the eluant. Fractions shown by TLC (using the same eluant) to contain the desired trans- (\pm) -1-npropyl-6-formylamino-7-oxodecahydroquinoline were combined and the solvent evaporated therefrom to give 1.0 g. a yellow transparent viscous residue (83.9% yield). The residue crystallized while standing.

A solution was prepared by dissolving .63 g. of trans-(±)-1-n-propyl-6-formylamino-7-oxodecahydroquinoline in 8.8 ml. of methanesulfonic acid. mixture was heated to about 100°C. after which time 1.26 g. of phosphorous pentoxide were added. 5 reaction mixture was stirred for 2.5 hours at 100°C., after which time was poured over ice. The acidic solution was made basic by the addition of 15% aqueous sodium hydroxide. The basic mixture was extracted several times with equal volumes of methylene dichloride. 10 The methylene dichloride extracts were combined and Evaporation of the solvent yielded a viscous brown transparent oil which was dissolved in THF and flash chromatographed over silica. The column was eluted with THF containing a trace of ammonium hydroxide. 15 The second fraction consisted of .26 g. of a viscous brown transparent oil comprising trans-(±)-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline formed in the above reaction. The compound was con-20 verted to the maleate salt in ethanol. The salt was recrystallized from an ether/ethanol solvent mixture; yield = .26 g. of gold crystals melting at 158-160°C. Mass spectrum, molecular ion at 220. Elemental analysis:

25 Calc.: C, 60.78; H, 7.19; N, 8.33; Found: C, 60.94; H, 7.26; N, 8.20.

X-6599A

Example 4

Preparation of trans-(±)-2-0xo-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline

5

10

15

20

25

30

Following the procedure of Example 2, 5 g. of trans-(±)-1-n-propyl-6-amino-7-oxodecahydroquinoline dihydrochloride were suspended in 50 ml. of THF. suspension was cooled to about 0°C. Ten ml. of methylchloroformate were added, followed by the dropwise addition of 10 ml. of triethylamine. The reaction mixture was stirred for 2 hours at room temperature, at the end of which time it was diluted with an excess of 1N hydrochloric acid. The acidic layer was extracted once with ether, and the ether extract discarded. acidic layer was then cooled by pouring over ice, and the resulting cooled mixture made strongly basic with 15N aqueous ammonium hydroxide. The alkaline mixture was now extracted several times with equal volumes of methylene dichloride. The methylene dichloride extracts were combined and dried. The evaporation of the solvent yielded a dark yellow, viscous residue which was dissolved in 1:1 THF/hexane containing a trace of ammonium hydroxide. The solution was flash chromatographed over silica using the same solvent as the eluant. Fractions shown by TLC (using the same solvent system) to contain the desired trans-(±)-1-n-propyl-6-methoxycarbonylamino-7-oxodecahydroquinoline were combined and the solvent evaporated therefrom yield 1.47 g. (67% yield) of a viscous yellow residue having a molecular ion by mass spectroscopy at 268.

A solution was prepared from .4 g. of the above carbamate in 10 ml. of oleum. The acidic mixture was stirred for 18 hours at room temperature and then poured over ice. The aqueous acidic layer was then made basic by the addition of 15N aqueous ammonium hydroxide. 5 The now alkaline layer was extracted several times with equal volumes of methylene dichloride. The methylene dichloride extracts were combined, and the combined extracts washed with brine and then dried. Evaporation of the solvent yielded a dark viscous residue. 10 residue was dissolved in 1:2 THF/hexane containing a trace of ammonium hydroxide and the solution flash chromatographed over silica. Fractions shown by TLC (1:1 THF/hexane plus a trace of ammonium hydroxide) to contain trans-(±)-2-methoxy-5-n-propyl-4,4a,5,6,7,-15 8,8a,9-octahydrooxazolo[4,5-g]quinoline were combined and the solvent removed therefrom to yield .1 g. of a viscous, yellow residue. The residue was dissolved in ether, and the ethereal solution saturated with gaseous hydrogen chloride. The resulting salt was crystallized 20 from an ethanol/ether solvent mixture, during which procedure the 2-methoxy group hydrolysed to yield the corresponding 2-oxazolone. 0.07 g. of trans- (\pm) -2oxo-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo-25 [4,5-g]quinoline, as the hydrochloride salt were recovered, melting above 250°C.; molecular ion at 236 by mass spectroscopy.

Analysis calc.: C, 57.24; H, 7.76; N, 10.27; Found: C, 57.28; H, 7.75; N, 10.20.

X-6599A

Trans-(±)-2-oxo-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-1H-oxazolo[4,5-g]quinoline thus prepared can be reacted with phosphorous pentachloride or phosphorous oxychloride or PBr₃ to yield the corresponding chloro or bromo derivative, trans-(±)'-2-chloro-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline or trans-(±)-2-bromo-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline. This compound can in turn be reacted with secondary or primary amines with ammonia or with cyclic amines such as piperidine, pyrrolidine or morpholine to yield the corresponding 2-amino or substituted amino octahydro-oxazolo[4,5-g]-quinoline.

15

10

Example 5

Preparation of trans-(±)-2-Dimethylamino-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline

20

25

30

A solution was prepared by dissolving .99 g of trans-(±)-1-n-propyl-6-methoxycarbonylamino-7-oxodecahydroquinoline (from Example 4) in 20 ml of oleum and the solution stirred at room temperature for about 20 hours. The acidic mixture was then poured over ice and this diluted acidic solution was stirred at room temperature for 0.5 hr. The solution was then made basic by the addition of an excess of 14N aqueous ammonium hydroxide. The aqueous alkaline mixture was extracted several times with equal volumes of a 3:1 chloroform/isopropanol solvent mixture. The organic

layers were combined, and the combined layers washed with brine and then dried. Evaporation of the solvent gave an amber viscous residue which was flash chromatographed over silica with THF containing a trace of Fractions shown by TLC to contain the desired 5 2-methoxy derivatives were combined and the solvent removed to yield .42 g of an oily residue comprising trans-(±)-2-methoxy-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline. NMR was consistent with proposed structure. A reaction mixture was prepared by 10 placing .15 g of this product and 10 ml of dimethylamine in a sealed tube and heating the sealed tube to 100°C for one hour. The excess dimethylamine was removed by evaporation leaving a viscous brown residue. residue was flash chromatographed over silica using 1:1 15 THF/hexane with a trace of NH4OH as the eluant. Fractions shown by TLC (same solvent system) to contain the desired material were combined and the solvent removed to yield 50 mg of a pale yellow transparent glass comprising trans-(±)-2-dimethylamino-5-n-propyl-20 4,4a,5,6,7,8,8a,9-octahydro-oxazolo[4,5-g]quinoline formed in the above reaction. NMR was consistent with the proposed structure (sharp singlet at 62.9 integrating for 6 protons).

X-6599A

-32-

Example 6

Alternate Preparation of Trans- (\pm) -1-n-propyl-7-oxodecahydroquinoline

5

10

20

A solution was prepared by dissolving 9.9 g of lithium in 2 1 of anhydrous liquid ammonia. of 4-(3-n-propylamino)propylanisole were dissolved in a mixture of 27.8 ml of anhydrous ethanol and 300 ml of This solution was added slowly in dropwise fashion with stirring to the lithium in liquid ammonia solution. After the addition had been completed, the reaction mixture was stirred for about 45 minutes. Water was then added slowly until the blue color of dissolved Li had been discharged. A stream of N2 was passed over the reaction mixture overnight to evaporate the ammonia. Additional water was then added to dissolve the salts which had formed. The alkaline aqueous solution was extracted three times with equal volumes of diethyl ether. The ethereal extracts were combined and dried. Evaporation of the ether yielded 93.2 g of 1-methoxy-4-(3-n-propylamino)propyl-1,4-cyclohexadiene; yield = 93.5%.

One-tenth gram of the above compound was

stirred at ambient temperature for one hour with 15 ml

0.1N hydrochloric acid. The reaction mixture was made
basic with 15N aqueous NH₄OH and the alkaline mixture
extracted several times with equal volumes of CH₂Cl₂.

The organic layers were combined and dried. The solvent

was evaporated to dryness in vacuo.

15

20

TLC and NMR of the residue indicated the presence of 4-(3-n-propylaminopropyl)cyclohex-3-enone plus a small amount of cis-(\pm)-1-n-propyl-7-oxodecahydroquinoline produced by spontaneous cyclization of the Δ^2 isomer formed during the reaction.

Five grams of crude compound prepared as above were added to a solution of 14.9 millimoles of sodium methylate in 10 ml of methanol. The resulting solution was stirred at ambient temperatures for 18 hours, and was then poured into water. The alkaline layer was extracted several times with equal volumes of CH₂Cl₂. The organic extracts were combined and dried, and the solvent removed by evaporation in vacuo to give 4.5 g of a dark red-orange residue. The residue was dissolved in hexane/THF (2:1) containing a trace of NH₄OH, and the solution chromatographed over silica, using the same solvent as eluant. Early fractions yielded primarily cis-(±)-1-n-propyl-7-oxodecahydroquinoline. Later fractions were shown to contain trans-(±)-1-n-propyl-7-oxodecahydroquinoline; yield = 2.34 g.

Preparation 1

Ten g. of (-)-di-p-toluoyltartaric acid were
dissolved in 75 ml. of warm methanol. The solution was
added to a solution of 5.05 g. of trans-dl-l-n-propyl-6oxodecahydroquinoline in 15 ml. of methanol. The reaction mixture was brought to a boil and was then allowed
to cool to ambient temperature. After remaining at
ambient temperature overnight, crystallization was
induced by the addition of seed crystals previously

25

30

obtained. The crystalline tartarate salt was isolated by filtration and the filter cake washed with methanol; yield = 2.813 g. (18.7%) of a white crystalline solid comprising the (-)-di-p-toluoyltartrate of 4aR,8aR-1n-propyl-6-oxodecahydroquinoline; $[a]_{D}^{25}$ = -107.49° (MeOH, c = 1). Recrystallization of the salt from methanol gave 1.943 g. of the optically pure salt, $[\alpha]_D^{25}$ = -108.29° (MeOH, c = 1). The (-)-di-p-toluoyltartrate salt thus obtained was treated with dilute aqueous sodium hydroxide and the resulting alkaline 10 solution extracted with methylene dichloride. methylene dichloride extract was dried and concentrated, and the solvent removed therefrom in vacuo. The resulting residue was distilled to yield a colorless oil comprising purified 4aR,8aR-1-n-propyl-6-oxodecahydro-15 quinoline; $[\alpha]_D^{25}$ ° = -88.51° (MeOH, c = 1). The 4aS,8aS derivative can be prepared in

The 4aS,8aS derivative can be prepared in similar fashion by reacting (+)-di-p-toluoyltartaric acid with the racemate.

The corresponding 4aR,8aR-1-methyl, 1-ethyl or 1-allyl derivatives can be prepared similarly from the trans-(t)-1-methyl, 1-ethyl or 1-allyl racemate.

The preparation of pharmaceutically-acceptable acid addition salts of the compounds of this invention, particularly the hydrohalide salts, is illustrated in the above examples. Generally speaking, a solution of an equivalent of the free base represented by I, III or IIIa in a lower alkanol is mixed with an equivalent of the acid, also in solution in a lower alkanol. The salt is recovered by evaporation of the solvent and purified by recrystallization. Alternatively, an equivalent of

10

15

20

the free base in a nonpolar organic solvent such as ether can be mixed with an equivalent of the acid, also in ether. In this procedure, the salt is usually insoluble in the solvent system and is recovered by filtration.

The compounds represented by I, III or IIIa have at least two basic amine groups, the more basic group being the octahydroquinoline ring nitrogen.

Disalts can be formed with these compounds by using at least two equivalents of acid per equivalent of base.

In general, only the stronger organic and inorganic acids will form disalts; i.e. the mineral acids, toluenesulfonic acid, methanesulfonic acid etc. Di-hydrochloride salts are conveniently prepared by dissolving the free base in ether, saturating the ethereal solution with gaseous HCl, and recovering the dihydrochloride salt by filtration.

As previously stated, the drugs of this invention as represented by formulas I and III above are D-2 dopamine agonists. One of such D-2 dopamine agonist activities is the inhibition of prolactin secretion, as demonstrated by the following procedure.

Adult male rats of the Sprague-Dawley strain weighing about 200 g. were housed in an air-conditioned room with controlled lighting (lights on 6 a.m. - 8 p.m.) and fed lab chow and water ad libitum. Each rat received an intraperitoneal injection of 2.0 mg. of reserpine in aqueous suspension 18 hours before administration of the test drug. The purpose of the reserpine was to keep the rat prolactin levels uniformly elevated. The compound was dissolved in 10 percent ethanol, and

15

20

25

30

injected intraperitoneally at doses of 0.017, 0.03, 0.17 and 0.3 μ moles/kg. The compound was administered at each dose level to a group of 10 rats, and a control group of 10 intact males received an equivalent amount of 10 percent ethanol. One hour after treatment, all rats were killed by decapitation, and 150 μ l aliquots of serum were assayed for prolactin.

The difference between the prolactin level of the treated rats and prolactin level of the control rats, divided by the prolactin level of the control rats, gives the percent inhibition of prolactin secretion attributable to the given dose.

The compounds represented by I and III are also active by the oral route, but at higher doses.

Compounds according to I and III, dopamine D-2 agonists, have also been found to affect turning behavior in 6-hydroxydopamine-lesioned rats in a test procedure designed to uncover compounds useful for the treatment of Parkinsonism. In this test, nigroneostriatal-lesioned rats are employed, as prepared by the procedure of Ungerstedt and Arbuthnott, Brain Res, 24, 485 (1970). A compound having dopamine agonist activity causes the rats to turn in circles contralateral to the side of the lesion. After a latency period, which varies from compound to compound, the number of turns is counted over a 15-minute period.

The compounds of this invention I, and III are effective in the treatment of hypertension. The compounds demonstrated such activity in a standard laboratory test; ie., upon administration to SHR (spontaneously hypertensive rats) as follows:

at each dose level.

Adult male spontaneously hypertensive rats (SHR) (Taconic Farms, Germantown, New York), weighing approximately 300 g. were anesthetized with pentobarbital sodium (60 mg./kg., i.p.). The trachea was cannulated and SHR respired room air. Pulsatile arteri-5 al blood pressure was measured from a cannulated carotid artery using a Statham transducer (P23 ID). Mean arterial blood pressure was calculated as diastolic blood pressure plus 1/3 pulse pressure. Cardiac rate was monitored by a cardiotachometer which was triggered 10 by the systolic pressure pulse. Drug solutions were administered i.v. through a catheter placed in a femoral vein. Arterial blood pressure and cardiac rate were recorded on a multichannel oscillograph (Beckman, Model R511A). Fifteen minutes were allowed to elapse 15 following surgery for equilibration of the preparation. Table 1 below gives the results of these determinations. In the table, column 1 gives the name of the drug, column 2 dose in µg/kg, column 3 percent

change in mean arterial blood pressure plus or minus

standard error and column 4, percent change in heart rate plus or minus standard error. Four rats were used

Table 1

함						
% change heart ra	2.00 2.00 2.00 2.00 4.00	36 ±	8.0 4.0 4.4	#	0.5	
cha	44444	n) II	4444	38	H H H H	
% change in heart rate	-8.5 # 2.2 -4.4 # 0.9 -5.6 # 0.7 -17.5 # 2.3 -19.1 # 3.4	rate = 336 ±	-2.4 ± 0.8 -2.8 ± 0.4 -16.1 ± 7.6 -23.6 ± 4.4	rate =	-3.6 ± 0.5 -4.6 ± 0.6 -28.5 ± 2.6 -31.8 ± 3.7	rate =
% change in BP	-18.3 ± 5.7 -8.6 ± 1.6 -15.1 ± 1.1 -39.0 ± 1.9* -51.2 ± 1.2*	mm Hg; mean heart	-3.2 ± 0.5 -7.0 ± 1.0 -19.6 ± 1.4* -26.2 ± 4.3*	212 ± 4 mm Hg; mean heart rate = 381 ±	-5.0 ± 1.2 -10.2 ± 1.0 -27.4 ± 2.0* -37.7 ± 4.9*	194 ± 5 mm Hg; mean heart rate
% chan	46404	ig;	7007	= :	0447	# **
0< 1	116	E E	7777	H.	-10 -27 -37	ı Hç
		10 11		4 m		5 E
dose µg/kg	0.1 10 100 1000	187 ± 10	1 100 1000		1 100 1000	194 ±
		ii Ou		ll Ou		# 0.
Name of drug	trans-(1)-2-amino-5-n- propyl-4,4a,5,6,7,8,8a,9- octahydro-oxazolo[4,5-g]- quinoline dihydrochloride	mean arterial BP 13 beats/min.	trans-(±)-2-methyl-5-n- propyl-4,4a,5,6,7,8,8a,9- octahydro-oxazolo[4,5-g]- quinoline p-tosylate	mean arterial BP 19 beats/min.	trans-(t)-5-n-propyl- 4,4a,5,6,7,8,8a,9-octa- hydro-oxazolo[4,5-g]- quinoline maleate	mean arterial BP 371 beats/min.
Name	trans-(t) propyl-4, octahydro quinoline	baseline:	trans-(±) propyl-4, octahydro quinoline	baseline:	trans-(1)-5-n-pro) 4,4a,5,6,7,8,8a,9 hydro-oxazolo[4,5 quinoline maleate	baseline:

* Duration of 15 min or greater

10

15

20

25

The same three compounds from Table 1 exhibit selective affinity for apomorphine binding sites (as measured by inhibition of 3H -apomorphine binding). With trans-(\pm)-2-methyl-5-n-propyl-4,4a,5,6,7,8,8a,9-octahydrooxazolo[4,5-g]quinoline; the ratio of binding, to apomorphine sites \underline{vs} spiperone sites is 40 to 1.

Activity in affecting sexual behavior by the compounds according to I or III where R is allyl, methyl, ethyl or n-propyl or R^1 is R^3 is demonstrated by measuring mount latency, intromission latency, ejaculatory latency, postejaculatory interval, mount frequency and intromission frequency in male rats who require at least five minutes to achieve ejaculation when a sexually receptive female is introduced into the behavioral arena prior to drug treatment. Reduction in one or more of the above indice indicates a positive effect on sexual behaviour in male mammals including, but not limited to, improving potency. Sexually unresponsive male rats can also be used in such tests. Positive effects upon the sexual behaviour of female mammals are found when drugs according to I or III are administered to ovariectomized, estrogen-treated rats, and the lordosis-to-mount ratio measured. An increase indicates a positive effect to be expected in female mammals suffering from a sexual dysfunction.

The compounds of this invention are usually administered for therapeutic purposes in a variety of oral formulations as illustrated below.

Hard gelatin capsules are prepared using the following ingredients:

	Active compound	.1-2 mg
5	Starch dried	200
	Magnesium stearate	10

The above ingredients are mixed and filled into hard gelatin capsules.

10 A tablet formulation is prepared using the ingredients below:

Quantity (mg./tablet)

Quantity (mg./capsule)

	Active compound	.1-2 mg
	Cellulose, microcrystalline	400
15	Silicon dioxide, fumed	10
	Stearic acid	5

The components are blended and compressed to form tablets.

20 Alternatively, tablets each containing
.1-2 mg. of active ingredient are made up as follows:

	Active ingredient	.1-2	mg.
	Starch	45	mg.
	Microcrystalline cellulose	35	mg.
25	Polyvinylpyrrolidone (as 10% solution in water)	4	.mg.
	Sodium carboxymethyl starch	4	.5 mg.
	Magnesium stearate	0	.5 mg.
	Talc	1	mg.

The active ingredient, starch and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50-60°C. and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate and talc, previously passed through a No. 60 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed with a tablet machine to yield tablets.

Capsules each containing 0.1-2 mg. of medicament are made as follows:

	Active ingredient .	.1-2 mg.
15	Starch	59 mg.
	Microcrystalline cellulose	59 mg.
	Magnesium stearate	2 mg.

The active ingredient, cellulose, starch and
magnesium stearate are blended, passed through a No. 45
mesh U.S. sieve, and filled into hard gelatin capsules.
Suspensions each containing .1-2 mg. of
medicament per 5 ml. dose are made as follows:

	Active ingredient -	.1-2 mg.
25	Sodium carboxymethyl cellulose	50 mg.
	Syrup	1.25 ml.
	Benzoic acid solution	0.10 ml.
	Flavor	q.v.
	Color	q.v.
30	Purified water to	5 ml.

The medicament is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethylcellulose and syrup to form a smooth paste. The benzoic acid solution, flavor and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.

dysfunction, improving potency, lowering blood pressure
(either thru a D-2 or D-1 mechanism), for increasing
renal vascular flow, treating depression or anxiety,
alleviating the symptoms of Parkinsonism or inhibiting
prolactin release, tablets, capsules or suspensions
containing from about .1 to about 2 mg. of active drug
per dose are given 3-4 times a day, giving a daily
dosage of .3 to 8 mgs. or, for a 75 kg. person, about
2.25 to about 600 mg./day. The intravenous dose is
in the range from about .1 to about 100 mcg./kg.

X-6599A-(EPO)

-43-

CLAIMS

1. A <u>trans-octahydro-oxazolo[4,5-g]quinoline</u> of the formula I

5

10

15

20

wherein R is H, benzyl, C_{1-3} straight-chain alkyl or allyl and R¹ is H, Cl, Br, C_{1-3} alkyl, $O-C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl, $O+C_{1-3}$ alkyl and wherein the 4a and 8a hydrogen atoms are in a <u>trans</u> relationship; or a pharmaceutically-acceptable salt thereof.

- 2. A trans-(-)-4aR,8aR enantiomer of formula I, or a pharmaceutically-acceptable salt thereof, as claimed in claim 1.
- 3. A compound as claimed in claim 1 or 2 in which R is n-propyl.
- 4. A compound as claimed in any one of claims 1 to 3 in which \mathbb{R}^1 is NH_2 .
- 5. 4aR,8aR-2-Amino-5-n-propyl-4,4a,5,6,7,-8,8a,9-octahydro-oxazolo[4,5-g]quinoline, or a pharmaceutically-acceptable salt thereof.
 - 6. A pharmaceutical formulation which comprises as an active ingredient a compound of formula I,

as claimed in any one of claims 1 to 5, in which R is not hydrogen or benzyl, and R^1 is not OH, Cl or Br, or a pharmaceutically-acceptable salt thereof, associated with one or more pharmaceutically-acceptable carriers therefor.

- 7. A compound of formula I, as claimed in any one of claims 1 to 5, in which R is not hydrogen or benzyl, and R^1 is not OH, Cl or Br, or a pharmaceutically-acceptable salt thereof, for use as a dopamine agonist.
- 8. A process for preparing a compound of formula I as claimed in any one of claims 1 to 5 which comprises:
 - (A) reacting a urea derivative of formula

15

5

20

with a 7-bromo-6-keto derivative of formula:

25

30

wherein R¹ is NH₂, NH(C₁₋₃ alkyl) or N(C₁₋₃ alkyl)₂, to give a compound of formula (I) in which R¹ is as above defined, followed optionally by acylation of a primary amino product of formula I to yield a compound in which R¹ is NHCOC₁₋₃ alkyl;

(B) cyclizing a compound of formula

10

5

wherein R¹ is C₁₋₃ alkyl, O-C₁₋₃ alkyl or H; so as to provide a compound of formula I in which R¹ is C₁₋₃ alkyl, O-C₁₋₃ alkyl or H, by reaction with a dehydrating agent;

15

(C) cleaving the alkyl group from a compound of formula I wherein R¹ is O-C₁₋₃ alkyl to form a compound of formula I in which R¹ is OH, optionally followed by halogenation to yield compounds of formula I where R¹ is halogen, and optionally followed by reaction of those halogen derivatives with an appropriate secondary amine to prepare a compound of formula I in which R¹ is NHC₁₋₃ alkyl, N(C₁₋₃ alkyl)₂, 1-pyrrolidinyl or 1-piperidinyl.

20

AUSTRIA

CLAIMS

1. A process for preparing a trans-octahydro-oxazolo[4,5-g]quinoline of the formula I

5

10

wherein R is H, benzyl, C_{1-3} straight-chain alkyl or allyl and R¹ is H, Cl, Br, C_{1-3} alkyl, $O-C_{1-3}$ alkyl and wherein the 4a and 8a hydrogen atoms are in a trans relationship; or a pharmaceutically-acceptable salt thereof which comprises;

(A) reacting a urea derivative of formula

20

15

25

with a 7-bromo-6-keto derivative of formula:

30

wherein R¹ is NH₂, NH(C₁₋₃ alkyl) or N(C₁₋₃ alkyl)₂, to give a compound of formula (I) in which R¹ is as above defined, followed optionally by acylation of a primary amino product of formula I to yield a compound in which R¹ is NHCOC₁₋₃ alkyl;

(B) cyclizing a compound of formula

10

5

15

wherein R^1 is C_{1-3} alkyl, $O-C_{1-3}$ alkyl or H; so as to provide a compound of formula I in which R^1 is C_{1-3} alkyl, $O-C_{1-3}$ alkyl or H, by reaction with a dehydrating agent;

25

20

cleaving the alkyl group from a compound of formula I wherein R¹ is O-C₁₋₃ alkyl to form a compound of formula I in which R¹ is OH, optionally followed by halogenation to yield compounds of formula I where R¹ is halogen, and optionally followed by reaction of those halogen derivatives with an appropriate secondary amine to prepare a compound of formula I in which R¹ is NHC₁₋₃ alkyl, N(C₁₋₃ alkyl)₂, 1-pyrrolidinyl or 1-piperidinyl.

AUSTRIA

- 2. A process according to claim 1 for preparing trans-(-)-4aR,8aR enantiomer of formula I, or a pharmaceutically-acceptable salt thereof.
- 3. A process according to claim 1 or 2 for preparing a compound of formula I in which R is n-propyl.
 - 4. A process according to any one of claims 1 to 3 for preparing a compound of formula I in which ${\bf R}^1$ is NH₂.
- 5. A process according to claim 1 for preparing 4aR,8aR-2-amino-5-n-propyl-4,4a,5,6,7,8,8a,9octahydro-oxazolo[4,5-g]quinoline, or a pharmaceuticallyacceptable salt thereof.