

ilifu Online Training

Session 1: Introduction to slurm

2 September 2025

Dane Kennedy, ilifu Bioinformatics Support University of Cape Town

What is slurm?

https://docs.ilifu.ac.za/#/getting_started/submit_job_slurm

Job scheduling & cluster management tool

- Framework: Login node; Compute nodes; Scheduler; and Accounting

Login node

- Accessed via ssh (\$ ssh <username>@slurm.ilifu.ac.za)
- Submit jobs and manage work directories

Compute nodes

- Where your analysis / simulation runs (in a slurm job)
- Software available via singularity containers or modules

Scheduler and Accounting Database

- Manage Jobs, Partitions and Queues
- Accounting

Specific node / partition use cases

https://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=available-resources

Login node

Run SLURM & bash commands cd, mkdir, ls, etc

Jupyter/Dev. node

Development space
New code / workflows / routines
Debugging / testing software

Main partition

Stable, computationally heavy processing

HighMem/GPU

For single-high memory jobs that can't be split into multiple jobs for MPI

Main, Jupyter, Devel
32 core, ~232GiB RAM

GPU32 core, ~232GiB RAM,
Nvidia GPUs

32 core, 503GiB RAM 96 core, 1.5TiB RAM

85 + 12 Nodes

8 nodes

8 nodes

HighMem

Interacting with slurm

http://docs.ilifu.ac.za/#/getting_started/submit_job_slurm

https://jupyter.ilifu.ac.za

\$ ssh <username>@slurm.ilifu.ac.za

CLI user commands

https://slurm.schedmd.com/quickstart.html

\$ ssh <un>@slurm.ilifu.ac.za → connect to login node (from your machine))

\$ sinfo

→ shows partitions and resources

\$ squeue

→ shows all jobs in SLURM queue/partition

\$ squeue -u \$USER

→ shows your jobs

\$ sbatch slurm_job_script.sh

→ submit job to SLURM

\$ sbatch --help

→ information on job submission parameters

\$ scancel <jobid>

→ cancel running / pending job

Example bash script

#!/bin/bash

module add python/3.11.2

python hello_world.py

Default job parameters

https://docs.ilifu.ac.za/#/tech_docs/running_iobs?id=customising-vour-iob-using-sbatchsrun-parameters

-mem=3G # 3 GiB

-ntasks=1 # one task

-nodes=1 # one node

-partition=Main

-account=<your default>

Example slurm job script


```
#!/bin/bash
#SBATCH --job-name=tutorial2_R_container
#SBATCH --time=00-00:01:00
#SBATCH --mem=4G
#SBATCH --partition=Main
#SBATCH --output=R_container-%j.stdout
#SBATCH --error=R_container-%j.stderr
#SBATCH --mail-user=YOUR_EMAIL_ADDRESS
#SBATCH --mail-type=BEGIN,END,FAIL,TIME_LIMIT_80
#SBATCH --account=ACCOUNTING_GROUP

singularity exec /software/common/containers/RStudio2023.06.1-524-R4.3.1.sif Rscript hello_world.R

container

software
```


Defaults and maximums per partition

https://docs.ilifu.ac.za/#/tech_docs/resource_allocation?id=maximum-allocation

Partition	Node names	Default CPUs	Max CPUs	Default Memory (GiB)	Max Memory (GiB)	Default wall-time	Max wall- time
Main	compute- [002-021]	1	32	3	232	3 hours	14 days
Main	compute- [101-105]	1	48	3	232	3 hours	14 days
Main	compute- [201-260]	1	32	3	251	3 hours	14 days
HighMem	highmem- [001-002]	1	32	15	503	3 hours	14 days
HighMem	highmem- 003	1	96	15	1508	3 hours	14 days
GPU	gpu-[001- 004]	1	32	7	232	3 hours	14 days
GPU	gpu-005	1	24	7	232	3 hours	14 days
GPU	gpu-006	1	48	7	354	3 hours	14 days
GPU	gpu-007	1	48	7	354	3 hours	14 days
Devel	compute-001	1	32	-	-	3 hours	12 hours

DEMO TIME!

https://github.com/ilifu/ilifu_user_training/tree/main/session1/tutorial2

Best practices

https://docs.ilifu.ac.za/#/getting_started/best_practices

Do's:

- Run jobs using sbatch rather than interactive jobs
- Identify job resources requirements:
 - No. of nodes and CPUs, amount of RAM and wall-time.
- Remove files that aren't needed
 - /scratch3 folder after data processing is complete
 - Old raw data, temporary products, etc.
- Use Singularity (cannot install software on nodes)
- Use <username>@transfer.ilifu.ac.za for data transfers

Don't:

- Don't run software/heavy processes on login node
- Don't place large files in your home directory (/users)
- Don't transfer using scp/rsync on the login node

ilifu

Thank you

https://docs.ilifu.ac.za/

support@ilifu.ac.za

