Dynamic Power Redundancy Using Online Current
Measurement
Inventor(s): Ken Gary Pomaranski, et al.
Atty Docket No. 200311114-1

Determine N at design time based on maximum power levels 102

Configure power subsystem with N+1 power supplies 104

FIG. 1A (Background Art)



FIG. 1B (Background Art)

Inventor(s): Ken Gary Pomaranski, et al. Atty Docket No. 200311114-1



Dynamic Power Reaunaancy Using Unline Current

Measurement
Inventor(s): Ken Gary Pomaranski, et al.
Atty Docket No. 200311114-1



Measurement
Inventor(s): Ken Gary Pomaranski, et al.
Atty Docket No. 200311114-1

Determine initial value for N at design time based on more realistically expected power needs 402

Determine margin of safety desired and configure power subsystem accordingly 404

FIG. 4A



FIG. 4B