

A TUTORIAL FOR Qualikiz USERS

Clarisse Bourdelle, Jonathan Citrin

January 2018

ENERGY CONFINEMENT GOVERNED BY TURBULENCE

Large T and n gradients and curvature and B gradient \rightarrow turbulence >> collisions governs transport To maximize τ_E need to understand and predict turbulent transport

pedestal

core

INSTABILITY: LINEAR ONSET AND NON-LINEAR SATURATION

Linear phase exponential growth as $e^{\gamma t}$ gives info on instability threshold, parametric dependences

Saturated phase resulting from non-linear interactions between modes provides turbulent particle, heat, angular momentum fluxes

Ultimate goal: <u>fast and first principle prediction of particle</u>, heat, ang. momentum <u>turbulent fluxes</u>. Need to study linear phase first.

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Density, temperature and rotation profiles time evolution
- Conclusions and perspectives

LINEAR KINETIC FRAMEWORK TO CALCULATE MODE FREQUENCIES AND GROWTH RATES

- In core of tokamak plasmas $\frac{\delta n}{n} < \sim 1$ % fluctuations << equilibrium distribution function of species s: $f_s = f_{s,0} + \delta f_s$ electrostatic potential: $\phi = \phi_0 + \delta \phi$ with: $\delta \phi = \sum_{\vec{n},\omega} \phi_{\vec{n}\omega}(\vec{J}) e^{i(\vec{n}.\vec{\vartheta} \omega t)}$, $(\vec{J},\vec{\vartheta})$ the action and angle variables $\omega = \omega_r + i\gamma$, ω_r is the mode frequency and γ its growth rate
- $\delta \phi$ and δf_s related through 2 equations:
 - Vlasov linearized, $\delta f \times \delta \phi$ neglected

$$f_{\vec{n}\omega}(\vec{J}) = R_{lin}(\omega)\phi_{\vec{n}\omega}(\vec{J}) = -\vec{n} \cdot \frac{df_0(\vec{J})}{d\vec{J}} \frac{1}{\omega - \vec{n} \cdot \frac{d\vec{\vartheta}}{dt} + i0^+} e_s \phi_{\vec{n}\omega}(\vec{J})$$

- Maxwell for electrostatic case: $\sum_{s} e_{s} n_{s} = 0$
- \rightarrow dispersion relation in 6D : $\sum_{s} e_{s} \langle R_{lin}(\omega) \phi_{\vec{n}\omega} \rangle = 0$ eigenfunction $\phi_{\vec{n}\omega}$ and eigenvalue $\omega = \omega_{r} + i\gamma$

SIMPLIFYING THE LINEAR KINETIC DISPERSION RELATION FROM 6D DOWN TO ...

- Due to large B, cyclotron fqy >> ω and Larmor radius $\rho_L \ll L$ average on gyromotion: $\phi_{\vec{n}\omega} \to \int \phi_{\vec{n}\omega} \frac{d\vartheta_L}{2\pi} \to 5D$
- 4D by assuming toroidal axisymmetry
- Turbulent eddies elongated along B field lines: $k_{//} \ll k_{\perp}$

use field aligned coordinate $\varphi - q(r)\theta$, with $q(r) \approx \frac{rB_{\varphi}}{RB_{\theta}}$ assume $\phi_{\vec{n}\omega}$ ballooned around $\theta = 0$ $\phi_{\vec{n}\omega}(r,\theta) \to \phi_{n\omega}(\theta) \equiv 3D$

GYSELA 5D [Grandgirard JCP06]

ADDITIONAL APPROXIMATIONS TO REDUCE COMPUTING TIME: Qualikiz

[Bourdelle, Garbet et al NF02; Bourdelle, Garbet et al PoP07]

- eigenfunction in fluid limit $\omega \gg n \frac{d\vartheta}{dt}$: a shifted Gaussian in good agreement with self-consistent eigenfunc from 4D code GKW [Peeters CPC09]
- 1/R and ∇B drift and transit frequencies simplified, assuming very trapped/passing part. and circular concentric s-α mag. equi. → 2D integrals
- Efficient search of all eigenvalues in complex plane based on residue theorem [Davies JCP86]

[Cottier, Bourdelle et al PPCF14]

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Density, temperature and rotation profiles time evolution
- Conclusions and perspectives

LINEAR STABILITY ANALYSIS

To compute dispersion relation need:

$$\frac{r}{a}$$
, $\frac{R}{a}$, $\frac{\nabla n_s}{n_s}$, $\frac{\nabla T_s}{T_s}$, $\frac{\nabla U_{//}}{v_{th}/R}$, $\frac{U_{//}}{v_{th}}$, $\frac{\nabla E_r}{B}$ / $\frac{v_{th}}{R}$, $\frac{r\nabla q}{q}$, q , $\frac{T_i}{T_e}$, α , Z_{eff} from:

- fitted experimental profiles, requires team work and care
- ad hoc values to explore parametric trends
- Output: growth rate spectrum $\gamma(k_{\theta}\rho_{D})$

QuaLiKiz

ONSET OF UNSTABLE MODES ABOVE A T AND n THRESHOLD, ILLUSTRATION OF T_i/T_e IMPACT

$$-\frac{R\nabla T}{T}$$

Large $\frac{T_i}{T_e}$ stabilizing for ITG at low $-\frac{R\nabla n}{n}$

but different impact at high $-\frac{R\nabla n}{n}$ and on TEM threshold

→ need gyrokinetic code

[Casati, Bourdelle et al PoP08]

Threshold depends also on $\frac{s}{q} = -\frac{r\nabla q}{q^2}$, Z_{eff} , etc

Stand alone analysis allow building up knowledge on turbulence trends

EXPERIMENTAL PROOF OF EXISTENCE OF A CRITICAL TEMPERATURE THRESHOLD

- Expected electron T threshold observed experimentally in Tore Supra [Hoang PRL01], AUG [Ryter03], TCV [Camenen05], DIII-D [DeBoo05], etc.
- $-R \frac{\nabla T_e}{T_e}\Big|_{threshold}$ increases with $\frac{s}{q} = -\frac{r\nabla q}{q^2}$ as predicted

[Hoang, Bourdelle et al PRL01] threshold 10 0.2 0.4 0.6 0.8 11

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Density, temperature and rotation profiles time evolution
- Conclusions and perspectives

TOWARDS PREDICTING T, n AND U: CONSTRAIN ON COMPUTING TIME

CRONOS

$$\frac{\partial n}{\partial t} = -\overrightarrow{\nabla} \cdot \overrightarrow{\Gamma} + S = 0, \ \Gamma = -\overrightarrow{D} \nabla n + \overrightarrow{V} n = \int_0^r S dr_1$$

For heat, particle or momentum:

INTEGRATED MODELING NEEDS FAST AND FIRST PRINCIPLE TURBULENT FLUXES

Aim: $t_{integrated sim.} \approx 10^4 \times t_{turb.fluxes} < \sim 24 h$ on ~30 CPU

need $t_{turb.fluxes}$ < ~5 min for 20 radial points and 10 $k_{\theta}\rho_{s}$

Gyrokinetic full-f flux driven	Gyrokinetic δf gradient driven			Gyro-Landau fluid gradient driven		
GT5D [Idomura POP06], GYSELA [Grandgirard JCP06]	GS2 [Kotschenred PoP95], GE [Jenko CPC0] GYRO [Carl JCP03], GK [Peeters CP0]	NE 00], idy-Waltz W	additional approximations: electrostatic, s-α, etc: Qualikiz [Bourdelle, Garbet et al PoP07]	calibrated to gyro- kinetic theory TGLF [Staebler, Waltz et al PoP05, PoP10, PRL13]		
Nonlinear			Quasilinear			
~10 Mh	~ 50 000 h	~ 500 h	~ 30 s			
easing interface with experiments						

easing interface with experiments

Other more approximated/faster fluid quasilinear models: Weiland/Multi-Mode Model [Weiland NF89, Rafiq PoP13] IFS-PPL [Kotschenreuther PoP95] GLF23 [Waltz PoP97]

TESTING THE QUASILINEAR APPROXIMATION

$$\Gamma_{s} = \langle \delta f_{s} \delta V_{E} \rangle_{\tau} = \sum_{k_{\theta}, \omega, \omega_{k}} Re \left(\left| \delta f_{s} \frac{i k_{\theta} \delta \phi^{*}}{B} \right|_{\tau} \right) \qquad f_{n\omega} = R_{lin} (\omega) \phi_{n\omega}$$

$$\Gamma_{s} = -\sum_{k_{\theta}, \omega, \omega_{k}} \frac{k_{\theta}}{B} Im \langle R_{lin}(k_{\theta}, \omega, \omega_{k}) \rangle |\delta \phi(k_{\theta}, \omega, \omega_{k})|^{2}$$

quasi-linear flux = linear response x saturated potential

Questions:

- Is the linear response valid?
- How to build the saturated potential?
- Test quasi-linear fluxes against non-linear sim. and experiments

Tools:

- Non-linear gyrokinetic simulations
- Turbulence measurements and experimental results

FIELD TRAPPING OR RANDOM WALK?

quasi-linear flux = linear response x saturated potential

Is it correct to neglect non-linear coupling $\delta f \times \delta \phi$?

Turbulence auto-correlation time: τ_{ac} vs particle "flight" time: $\tau_{flight} = \frac{\lambda_x}{\delta V_x} = \frac{1}{\sqrt{\epsilon}}$

- If τ_{ac} < τ_{flight} , K>1, field trapping, need non-linear physics If τ_{flight} < τ_{ac} , K<1, linear response is sufficient

Run	$\sqrt{\langle E_y^2 \rangle}$	λ_x	t_{ac}	K
A: s=1	8.6	12.60	1.85	0.42
A: s=0.6	11.78	11.2	2.05	0.72
A: s=0.1	12.23	7.12	0.58	0.33
A: s=-0.4	9.66	6.94	1.85	0.86

Non-linear GENE

[Citrin, Bourdelle et al PoP12]

LINEAR ≈ NON LINEAR CROSS PHASE

quasi-linear flux = linear response x saturated potential

cross phase of linear response vs PDF of non-linear cross phase: $\Gamma_{NL}/\delta\phi^2$

agreement at low $k_{\theta}\rho_{s}$ where most of transport

LINEAR FREQUENCY WIDTH ~ LINEAR GROWTH RATE

quasi-linear flux = linear response x saturated potential

GYRO linear and non-linear

of TS39596 at r/a = 0.7 [Casati 2009 PhD]

HOW TO BUILD THE FREQUENCY SPECTRUM?

quasi-linear flux = linear response x saturated potential

$$|Im\langle R_{lin}(k_{\theta},\omega,\omega_{k})\rangle \propto Im\left(\frac{1}{\omega-n\frac{d\vartheta}{dt}+i\Delta\gamma_{k}}\right) = \frac{\Delta\gamma_{k}}{\left(\omega-n\frac{d\vartheta}{dt}\right)^{2}+(\Delta\gamma_{k})^{2}}$$

Frequency broadening: Lorentzian of width $\Delta \gamma_k \approx \gamma_{lin}$ at low $k_\theta \rho_s$ but at higher $k_\theta \rho_s$ and for |s| < 0.6 interplay with zonal flow and probably with damped mode modify $\Delta \gamma_k$

Lack of 1st principle theoretical model \rightarrow ad-hoc renormalization factor for |s| < 0.6

[Citrin, Bourdelle et al PoP12]

HOW TO BUILD THE k SPECTRUM?

quasi-linear flux = linear response x saturated potential

Mixing length rule:
$$max\left(D_{eff}\approx\frac{R\Gamma_S}{n_S}\right)\Big|_{k_{max}}=\frac{\gamma_{lin}}{\langle k_\perp^2\rangle}\Big|_{k_{max}}\propto max\left(|\delta\phi|^2\right)$$

$$\langle k_{\perp}^2 \rangle = k_{\theta}^2 (1 + (s - \alpha)^2 \langle \theta^2 \rangle)$$
 with $\langle \theta^2 \rangle = \frac{\int \theta^2 \phi_{n\omega}(\theta) d\theta}{\int \phi_{n\omega}(\theta) d\theta}$ and $\phi_{n\omega}(\theta)$ lin. eigenfunc.

Can reproduce ExB shear impact reducing $max(|\delta\phi|^2)$ and shifting it to larger $k_{\theta}\rho_s$

Qualikiz REPRODUCES NON-LINEAR FLUXES OVER A WIDE RANGE OF PARAMETERS

quasi-linear flux = linear response x saturated potential

From $\sum_{k_{\theta},\omega,\omega_{k}} Re\left(\left\langle \delta f_{S} \frac{ik_{\theta} \delta \phi^{*}}{B} \right\rangle_{\tau}\right)$

get particle flux:

$$\mathbf{\Gamma_{s}} = \sum_{k_{\theta}, \omega, \omega_{k}} Re\left(\left|\delta n_{s} \frac{i k_{\theta} \delta \phi^{*}}{B}\right|_{\tau}\right)$$

energy flux:

$$\mathbf{Q}_{s} = \sum_{k_{\theta}, \omega, \omega_{k}} Re \left(\left| \frac{3}{2} \delta P_{s} \frac{i k_{\theta} \delta \phi^{*}}{B} \right|_{\tau} \right) \overset{\text{To}}{\approx}$$

parallel ang. momentum flux:

$$\Pi_{//} = \sum_{s,k_{\theta},\omega,\omega_{k}} Re\left(\left|m_{s}Rv_{//}\delta n_{s}\frac{ik_{\theta}\delta\phi^{*}}{B}\right|_{\tau}\right)^{-5} -10^{-5}$$

[Casati, Bourdelle et al NF09]

WHERE IS THE TUNING DONE??

i.e. on GA standard case ion heat flux only!

QUALIKIZ VS NON-LINEAR: AGREEMENT IN WIDE PARAMETER RANGE

Collisionality scan on

Tore Supra parameters

 $\begin{array}{l} \nu^* \; session: \; r/a = 0.5, \; \rho^* = 1/500, \\ R/L_{Ti} = 10.5, \; R/L_{Te} = 13.4, \; R/L_n = 4.5, \\ q = 2.0, \; s = 1.3, \; T_i/T_e = 1.0 \end{array}$

T_i/T_e scan on GA-std case

 $GA\text{-std case: r/a=0.5, } \rho \text{*=1/400,} \\ R/L_{Ti} = R/L_{Te} = 9.0, \ R/L_{n} = 3.0, \ q=2.0, \\ s=1.0, \ \nu_{ei} = 0.0$

A. Casati et al., Nucl. Fus. 2009

Qualikiz REPRODUCES NON-LINEAR FLUXES OVER A WIDE RANGE OF PARAMETERS

Non-linear GYRO, GENE, GKW (symbols)

QuaLiKiz (lines)

Quasilinear + other approximations = QuaLiKiz turbulent fluxes reproduce well non-linear gyrokinetic fluxes over wide range of parameters with computing time ~ 30 s, ready for integrated modeling

QUALIKIZ VS NON-LINEAR: AGREEMENT NEAR THRESHOLD

Cyclone base case, Dimits PoP2000, with

kinetic electron realistic collisionality

$$\begin{split} & \rho^{*}\text{=}0.006, \, \beta\text{=}0.0, \, \nu_{ei}[c_{s}/a]\text{=}0.03 \\ & r/a\text{=}0.5, \, R/L_{Ti}\text{=}R/L_{Te}\text{=}7.0, \\ & R/L_{n}\text{=}2.24, \, T_{i}/T_{e}\text{=}1.0, \, q\text{=}1.4, \\ & s\text{=}0.78, \, R/a\text{=}2.8 \end{split}$$

Consistent with high col. kin. El. reduced shift obs. in Mikkelsen, Dorland PRL08

QuaLiKiz VERSUS TGLF

TGLF and QualiKiz are accurate enough to be a test of gyro-kinetic theory and are <u>not</u> tuned with experimental data.

 This is not true of other models: Bohm-GB, RLW, CDBM, Coppi-Tang, Multi-mode, GLF23...
 [Staebler ITPA13]

[Baiocchi PPCF2015]

[Bourdelle PPCF 2016]

	QuaLiKiz	TGLF			
Calculated fluxes	Energy, particle and momentum fluxes for unlimited number of ions and electrons				
Dispersion relation	Gyrokinetic	Fluid: 12 moments for circulating particles and 3 for trapped			
	Finds all unstable modes Use the ballooning representation	Finds the top two most unstable modes			
	Includes trapped and passing ions and electrons, i.e. ITG-TEM and ETG				
Eigenfunctions	Estimated in the fluid limit: shifted Gaussians	Hermite basis functions, Gaussian width to maximize γ for 1–2 basis functions then refined to 4			
Collisions	On electrons, use the Krook operator, energy dependent	On electrons, use a pitch-angle scattering operator, energy dependent			
Equilibrium	$s-\alpha$	Bishop eikonal with Miller flux surface shape with elongation, triangularity [40]			
Saturated potential: level, k and frequency spectra	Mixing length: $\gamma / < k_{\perp}^2 >$ with k_{\perp} accounting for the eigenfunction	Three parameters saturation rule optimized to best fit 160 nonlinear GYRO simulations			
	k_{θ} spectrum such that k_{θ}^{-3} above the maximum and k_{θ} below				
	Frequency spectrum: a Lorentzian which width scales as γ adjusted for $ s < 0.6$				
$E \times B$	Self-consistently through modified eigenfunctions	Included in spectral shift of saturated potential based on GYRO nonlinear results			
Fitted parameters	One, such that, for the GA standard case, QuaLiKiz ion energy flux matches the nonlinear GYRO ion energy flux	All of the parameters were determined by fitting to linear and non-linear theory			
Verification	Against nonlinear GYRO, GKW and GENE simulations see table 3	Against 1799 linear gyrokinetic GKS runs and 160 restant votre batterie est faible (119 ordinateur, branchez-le sur			

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Density, temperature and rotation profiles time evolution
- Conclusions and perspectives

Qualikiz IN AGREEMENT WITH NI DIFFUSIVE AND CONVECTIVE TRANSPORT

Ni laser blow-off experiments in ECRH heated plasmas

$$\Gamma = -\mathbf{D}\nabla n + \mathbf{V}n$$

Ni diffusivity increases with $-\frac{R\nabla T_e}{T_e}$

Convection inward and unsensitive $R\nabla T_0$

to
$$-\frac{R\nabla T_e}{T_e}$$

Both trends in qualitative and quantitative agreement with Qualikiz diffusive and convective Ni flux. Convection dominated by compressibility term.

Qualikiz REPRODUCES JET ANGULAR MOMENTUM PINCH

NBI modulation experiment at JET [Tala PRL09] proving existence of angular momentum pinch

QuaLiKiz Prandtl number ~ 1
QuaLiKiz pinch number ~ -4 / -7
in fair agreement with reported
experimental values

Fixed gradient approach depends on $\nabla T/T$, $\nabla n/n$, q, s, etc lead to large uncertainties on prediction

colored regions: uncertainties on $\chi_{//}$ and V_{pinch} impact of varying within 20% $U_{//}$, $\nabla U_{//}$ and ExB

[Cottier PPCF2014]

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Density, temperature and rotation profiles time evolution
- Conclusions and perspectives

QuaLikiz IMPLEMENTED IN CRONOS

Qualikiz turbulent fluxes = Quasilinear + other approximations $t_{turb.fluxes} < \sim 5 \ min$ for a profile i.e. 20 radial points and 10 $k_{\theta} \rho_{s}$

- reproduce well non-linear gyrokinetic fluxes over wide range of parameters in ~10⁶ less computing time
- in agreement with experimental results at a given time
- → ready for integrated modeling

ILW baseline scenario JET 87412 (3.5MA/3.35T)

- Boundary condition at $\rho = 0.85$
- Stable for ρ < 0.2. No sawtooth model
- Assuming core measurements $T_i = T_e$ due to poor core CX
- ETG active, leads to \sim 10% differences. $E \times B$ shear stabilization important (not shown due to brevity)

HYBRID JET-ILW #82722. JETTO-QLK-NEO, INCLUDING W

Qualikiz profiles after 1.5 s ($5x\tau_E$) of time evolution

Comparison of measured and predicted 2D W-distributions at t=6.8s

(a) Predicted n_W at t=6.8s after 1.3s of (b) simulation.

Experimental estimated n_W at t=6.8s after 1.3s of simulation.

92398: SECOND HIGHEST PERFORMANCE HYBRID FROM LAST JET CAMPAIGN (C36B)

Density profile time evolution captured, Full line QuaLiKiz

- Fully predictive modelling of high performance hybrid 92398 with JETTO-SANCO-QuaLiKiz-NEO-PION-PENCIL-ESCO
- JETTO-QuaLiKiz fully predictive j,Ni,Ti,Te,Vtor + 3 Imp (including W). 8-channel simulation!
- Motivation: predicting ICRH optimisation for W accumulation control

PREDICTION IN CORE SENSITIVE TO BC!

Ti underestimation being investigated

Aaron Ho EPS2017, paper in prep.

FLAT DENSITY ISSUE FOR L MODE CASE

Too flat density for an L mode case (courtesy T Bache and FJ Casson) Peaking recoved by artificially reducing collisions or increasing Vtor

TURBULENT TRANSPORT IN CORE PLASMAS: BRIDGING THEORY AND EXPERIMENT

- Linear gyrokinetic formulation
- Linear stability and experimental observations
- Deriving and validating quasilinear particle, momentum and heat fluxes
- Quasilinear fluxes vs experimental observations
- Towards density, temperature and rotation profiles prediction
- Conclusions and perspectives

CONCLUSION

- The quasilinear approximation is valid in a wide range of parameters, extensively checked [Casati 2009, Citrin 2012, Angioni's, Jenko's work (see ref in Casati 2009 for example)]
- 2 existing quasilinear codes that are CPU compatible with integrated modelling needs: QuaLiKiz [us] and TGLF [Staebler, Waltz, Kinsey GA, USA]
- Successful multi channels and multiple confinement time predictions by quasilinear codes [Citrin PPCF2017, Breton to be submitted, Linder on AUG to be submitted, Casson on-going]
- But....

STILL IMPROVEMENTS OF Qualikiz TO BE CARRIED OUT

- In integrated modeling framework:
- Understand the cause of the overestimated density profile flattening in some L mode cases
- Is the LOC-SOC transition reproduced? [Bourdelle EPS2017, on-going]
- In stand alone framework:
- s-α interchange modes stabilization overestimated in QuaLiKiz vs GENE [Linder internship report 2016] pb for steady-state regimes with flat and reversed q profiles (ITB) [Citrin PPCF 2017]
- W turbulent transport: impact of trace assumption for poloidal asym. At which level of W concentration the assumption fails (QuaLiKiz vs GKW) [Citrin PPCF 2017]
- roto-diffusion forced to 0 because strange behavior: significative for heavy ions nonetheless. Need to understand pb [Citrin PPCF 2017]
- Add Impact of elongation (K), test Weiland's s_hat=sqrt(2s-1)+K^2(s-1)^2 on R/Ln, R/LT values vs GENE/GKW

HOW DO I STAY TUNED?

www.qualikiz.com Open source code, available on GitHub.

- Links to key publications, where the detailed QuaLiKiz derivation can be found
- all above issues in « issue tracker », and anyone should open an issue tracker whenever encountering a bug or strange behaviour related to QuaLiKiz
- All published integrated modeling runs to be archived and documented also on this page whether JETTO/ASTRA/CRONOS/METIS/RAPTOR. 1st level table being prepared.

HOW DO I GET STARTED?

JETTO-QuaLiKiz info is available on JETTO wiki pages:

https://users.euro-fusion.org/tfwiki/index.php/JETTO_QualikizWill be improved further soon.

And also there, a table with catalogued published JETTO-QuaLiKiz cases has to be made for all users