LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Sejam P1, P2, ..., Pn ($n \ge 1$) proposições quaisquer (simples ou compostas),

chama-se <u>Argumento</u> toda afirmação de que uma dada sequência <u>finita</u> P1, P2, ..., Pn ($n \ge 1$) de proposições tem como consequência (ou acarreta) uma proposição final Q.

- As proposições P1, P2, ..., Pn são as <u>Premissas</u> do Argumento;
- A proposição final Q é a <u>Conclusão</u> do Argumento;
- Um argumento de Premissas P1, P2, ..., Pn e Conclusão Q é denotado por:

- ▶ P1, P2, ..., Pn |--- Q pode ser lido de uma das seguintes maneiras:
 - P1, P2, ..., Pn acarretam Q;
 - Q se decorre de P1, P2, ..., Pn;
 - Q se deduz de P1, P2, ..., Pn;
 - Que se infere de P1, P2, ..., Pn.
- Um argumento que consiste em duas premissas e uma conclusão é chamado de Silogismo.

- Exemplos de argumentos em linguagem simbólica:
 - $p \rightarrow q$, $p \mid ---q$
 - $p \rightarrow q$, $\sim q \mid --- \sim p$
 - ▶ p ∨ q , ~q |--- p
 - $p \rightarrow q$, $q \rightarrow r \mid ---p \rightarrow r$
 - $p \rightarrow q$, $r \rightarrow s$, $p \lor r \mid ---q \lor s$
 - $p \rightarrow q$, $r \rightarrow s$, $\sim q \vee \sim s \mid --- \sim p \vee \sim r$
 - $p \rightarrow q \mid ---p \rightarrow (p \rightarrow q)$

- Um argumento é uma sequencia finita de sentenças (proposições), em que uma delas é considerada como conclusão e as demais são consideradas como premissas.
- As premissas de um argumento são consideradas como <u>justificativas</u> para a conclusão.

- Exemplos de argumentos em linguagem natural:
- Sócrates é homem.
 Todos os homens são mortais.
 Logo, Sócrates é mortal.
- Vovó se chama Ana.
 Vovô se chama Lúcio.
 Consequentemente, eu me chamo Ana Lúcia.

- Exemplos de argumentos em linguagem natural:
- Há exatamente 136 caixas de laranja no depósito. Cada caixa contém pelo menos 140 laranjas. Nenhuma caixa contém mais do que 166 laranjas. Deste modo, no depósito estão pelo menos 6 caixas contendo o mesmo número de laranjas.
- Nunca se provou que existe uma quantidade finita de pares da forma (p, p + 2), onde p e p + 2 são primos. <u>Daí</u>, existe uma quantidade infinita de tais pares.

Não são Exemplos de argumentos:

- Todos os professores que fazem pesquisa gostam de ensinar. Márcia é uma professora que gosta de ensinar. Existem professores que não fazem pesquisa.
- Se a função seno é derivável e se toda função derivável é contínua, então a função seno é contínua.
- 1 é um número natural e é positivo.
 - 2 é um número natural e é positivo.
 - 3 é um número natural e é positivo.
 - 4 é um número natural e é positivo

. . . .

Logo, todo número natural é positivo.

- Um Argumento P1, P2, ..., Pn |--- Q diz-se <u>válido</u> se a conclusão Q é <u>Verdadeira</u> todas as vezes que as Premissas P1, P2, ..., Pn são (todas) <u>Verdadeiras</u>.
- Se as premissas do argumento em questão são aceitas como verdadeiras, não se pode considerar como falsa a sua conclusão.

- ▶ Em outros termos, um argumento P1, P2, ..., Pn |--- Q é válido se e somente se for V o valor lógico da Conclusão Q todas as vezes que as Premissas P1, P2, ..., Pn tiverem valor lógico V.
- A verdade das Premissa é incompatível com a falsidade da Conclusão.

Um argumento é válido se, em qualquer contexto, é impossível que sua conclusão seja falsa, caso se admita que suas premissas são verdadeiras.

Um argumento válido também é chamado de correto, legítimo.

- Um argumento inválido é chamado Sofisma;
- Um argumento é inválido se não é válido, isto é, se é possível que, em algum contexto, admitindo que suas premissas sejam verdadeiras se possa ter a conclusão falsa.

 A Lógica só se preocupa com a validade dos argumentos e não com a verdade ou falsidade das premissas e conclusão;

A validade de um argumento depende exclusivamente da relação existente entre as premissas e a conclusão.

Qu seja ...

- 1. Existem argumentos válidos em que as premissas e a conclusão são verdadeiras.
- 2. Existem argumentos válidos em que uma, ou mais, premissas são falsas e a conclusão é verdadeira.
- 3. Existem argumentos válidos em que uma, ou mais, premissas são falsas e a conclusão é falsa.
- 4. Não existem argumentos válidos em que as premissas são verdadeiras e a conclusão é falsa.

Portanto, afirmar que um argumento é válido significa afirmar que as premissas estão de tal modo relacionadas com a conclusão que não é possível ter a conclusão falsa se as premissas são verdadeiras.

Uma das formas de verificar a validade de um argumento utiliza-se o seguinte teorema:

<u>Teorema:</u> Um argumento P1, P2, ..., Pn |--- Q é valido se e somente se a condicional:

 $(P1 \land P2 \land ... \land Pn) \rightarrow Q$ é uma tautologia.

- Exemplo: Verificar a validade dos seguintes argumentos por tabelaverdade:
 - $p \rightarrow q$, $p \mid ---q$
 - $p \rightarrow q$, $\sim q \mid --- \sim p$
 - $p \lor q, \sim q \mid ---p \mid$
 - $p \rightarrow q$, $q \rightarrow r \mid ---p \rightarrow r$
 - $p \rightarrow q, r \rightarrow s, p \vee r \mid ---q \vee s$
 - $p \rightarrow q$, $r \rightarrow s$, $\sim q \vee \sim s \mid --- \sim p \vee \sim r$

Argumentos Válidos Fundamentais

- Adição (AD)
 - ∘ p | p v q
 - $\circ p \vdash q v p$
- Simplificação (SIMP)
 - ∘ p ^ q | p
 - ∘ p ^ q ⊢ q
- Conjunção (CONJ)
 - p, q | p ∧ q
 - p, q ⊢ q ∧ p
- Absorção (ABS)
 - $p \rightarrow q \mid p \rightarrow (p \land q)$

Argumentos Válidos Fundamentais

- Modus ponens (MP)
 - \circ p \rightarrow q, p \vdash q
- Modus tollens (MT)
 - $p \rightarrow q, \sim q \vdash \sim p$
- Silogismo disjuntivo (SD)
 - p v q, ~p ⊢ q
 - p v q, ~q ├ p
- Silogismo hipotético (SH)
 - \circ p \rightarrow q, q \rightarrow r \vdash p \rightarrow r

Argumentos Válidos Fundamentais

Dilema construtivo (DC)

$$\circ$$
 p \rightarrow q, r \rightarrow s, p $^{\vee}$ r \vdash q $^{\vee}$ s

Dilema destrutivo (DD)

$$\circ$$
 p \rightarrow q, r \rightarrow s, \sim q $^{\vee} \sim$ s $\vdash \sim$ p $^{\vee} \sim$ r

- Os argumentos fundamentais da lista anterior são utilizados para fazer inferências, por isso chamam-se também regras de inferência;
- Fazer Inferências: execução dos passos de uma dedução ou demonstração;
- As regras de inferência são utilizadas para verificar a validade de argumentos por meio de deduções (método dedutivo)

A notação utilizada para se escrever as regras de inferência lembra uma operação matemática, colocando-se as premissas sobre um traço horizontal e a conclusão logo abaixo do mesmo traço.

- Adição (AD): i) p ii) p q v p
- Simplificação (SIMP): i) p^q ii) p^q q
- Conjunção (CONJ): i) p ii) p q q q q ^ p ^ q
- Absorção (ABS): p → q p → p ∧ q

- Modus ponens (MP): $p \rightarrow q$ p
- Modus tollens (MT): p → q ~q ~p
- Silogismo disjuntivo (SD): i) pvq ii) pvq ~q ~q p
- Silogismo hipotético (SH): $p \rightarrow q$ $q \rightarrow r$

Dilema construtivo (DC): $p \rightarrow q$ r → s p v r q v s

Dilema destrutivo (DD): p → q r → s ~q v ~s ~p v ~r

Regras de Inferência -Exemplos

► Absorção (ABS):
$$(r \lor s) \to (q \lor p)$$

 $(r \lor s) \to (r \lor s) \land (q \lor p)$

Regras de Inferência -Exemplos

Modus ponens (MP): a)
$$\sim p \rightarrow \sim q$$
 b) $\sim p \vee r \rightarrow s \wedge \sim q$ $\sim p \vee r$ $\sim p \vee r$

b)
$$\sim p \vee r \rightarrow s \wedge \sim q$$

 $\sim p \vee r$
 $s \wedge \sim q$

b)
$$\sim p \vee r \rightarrow s \wedge \sim q$$

 $\sim (s \wedge \sim q)$
 $\sim (\sim p \vee r)$

a)
$$(p \land q) \lor r$$
 b) $\sim p \lor \sim q$

$$\frac{\sim r}{p \land q}$$
 $\sim q$

$$\frac{(p \to q) \to r}{r \to (q \land s)}$$

$$\frac{(p \to q) \to (q \land s)}{(p \to q) \to (q \land s)}$$

Regras de Inferência -Exemplos

▶ Dilema construtivo (DC): $(p \land q) \rightarrow \neg r$ $s \rightarrow t$ $(p \land q) \lor s$ $\neg r \lor t$

Dilema destrutivo (DD): ~q → r p → ~s ~r v ~~s
~~q ∨ ~p

Regras de Inferência (Implicações)

Regras de Inferência		
Adição disjuntiva (AD)	$p \Rightarrow p \lor q$	$p \Rightarrow q \lor p$
Simplificação	$p \land q \Rightarrow p$	$p \land q \Rightarrow q$
Modus Ponens(MP)	$(p \rightarrow q) \land p \Rightarrow q$	
Modus Tollens(MT)	$(p \rightarrow q) \land \neg q \Rightarrow \neg p$	
Silogismo Disjuntivo(SD)	$(p \lor q) \land \neg q \Rightarrow p$	
Silogismo Hipotético(SH)	$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$	
Dilema Construtivo(DC)	$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \Rightarrow q \lor s$	
Dilema Destrutivo(DD)	$(p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s) \Rightarrow \neg p \lor \neg r$	
Absorção(ABS)	$p \rightarrow q \Rightarrow p \rightarrow (p \land q)$	

- Exercício: Indicar a Regra de Inferência que justifique a validade dos seguintes argumentos.
- a) $p \rightarrow q \vdash (p \rightarrow q) \vee r$
- b) $\sim p \land (q \rightarrow r) \vdash \sim p$
- c) $p \rightarrow q, q \rightarrow \sim r \vdash p \rightarrow \sim r$
- d) $p \rightarrow (q \rightarrow r), p \vdash q \rightarrow r$
- e) $(q \vee r) \rightarrow \sim p, \sim \sim p \vdash \sim (q \vee r)$
- $p \rightarrow q, r \rightarrow \sim s \vdash (p \rightarrow q) \land (r \rightarrow \sim s)$
- g) $(p \land q) \lor (\sim p \land r), \sim (\sim p \land r) \vdash (p \land q)$
- h) $p \rightarrow q v r \vdash p \rightarrow p \land (q v r)$
- i) $x+y=z \rightarrow w-t=u, x+y=z \vdash w-t=u$
- $\{x,y\} \in R \rightarrow x+y \in R, x+y \notin R \models \{x,y\} \notin R$
- k) $x \neq 0$, $x \neq 1$ | $x \neq 0 \land x \neq 1$
- 3 < 5 + 3 < 5 v x < y
- m) $x < 0 \ v \ x = 1, \ x \ne 1 \ | x < 0$
- n) $x=1 \to x<3, x<3 \to x+y<5 \vdash x=1 \to x+y<5$
- $\pi > 3 \land \pi < 4 \vdash \pi < 4$

- Exercício: Indicar a Regra de Inferência que justifique a validade dos seguintes argumentos.
- a) $p \rightarrow q \vdash (p \rightarrow q) \vee r (AD)$
- b) $\sim p \land (q \rightarrow r) \vdash \sim p \text{ (Simp)}$
- c) $p \rightarrow q, q \rightarrow \sim r \mid p \rightarrow \sim r \text{ (SH)}$
- d) $p \rightarrow (q \rightarrow r), p \vdash q \rightarrow r (MP)$
- e) $(q \vee r) \rightarrow \sim p, \sim \sim p \vdash \sim (q \vee r) (MT)$
- $p \rightarrow q, r \rightarrow \sim s \vdash (p \rightarrow q) \land (r \rightarrow \sim s)$ (Conj)
- g) $(p \land q) \lor (\sim p \land r), \sim (\sim p \land r) \vdash (p \land q) (SD)$
- h) $p \rightarrow q v r \vdash p \rightarrow p \land (q v r) (ABS)$
- $x+y=z \rightarrow w-t=u, x+y=z \vdash w-t=u (MP)$
- $\{x,y\} \in R \rightarrow x+y \in R, x+y \notin R \models \{x,y\} \notin R \pmod{MT}$
- k) $x \neq 0$, $x \neq 1 \mid -x \neq 0 \land x \neq 1$ (Conj)
- 3 < 5 + 3 < 5 v x < y (AD)
- m) $x < 0 \ v \ x = 1, \ x \ne 1 \ | x < 0 \ (SD)$
- n) $x=1 \to x<3, x<3 \to x+y<5 \mid x=1 \to x+y<5 \text{ (SH)}$
- $\pi > 3 \wedge \pi < 4 \mid \pi < 4$ (Simp)

Método Dedutivo

- O método dedutivo busca obter a conclusão de um argumento a partir das premissas, por meio de uma sequência de aplicações de regras de inferência;
- Ao se obter a conclusão, demonstra-se que o argumento é válido;
- A notação utilizada para se escrever as demonstrações também é feita colocando-se as premissas sobre um traço horizontal.

Validade de Argumentos Mediante Regras de Inferência

Seja P1, P2, P3, ... Pn ⊢ Q um argumento qualquer, cuja validade deve ser verificada, ele deve ser apresentado seguindo a notação:

As Premissas Intermediárias são resultados das aplicações das Regras de Inferência sobre as outras premissas, incluindo as intermediárias também

> Ao se obter a conclusão, demonstra-se que o argumento é válido

Exemplos: Demonstrar a validade dos seguintes argumentos.

a)
$$p \rightarrow q$$
, $p \wedge r \vdash q$

Exemplos: Demonstrar a validade dos seguintes argumentos.

a)
$$p \rightarrow q$$
, $p \land r \vdash q$

$$\begin{array}{c}
1) p \rightarrow q \\
2) p \land r \\
\hline
3) p \\
4) q
\end{array}$$
2- Simp
$$\begin{array}{c}
1,3 - MP
\end{array}$$

b)
$$p \land q, p \lor r \rightarrow s \vdash p \land s$$

b)
$$p \land q, p \lor r \rightarrow s \vdash p \land s$$

```
1) p ^ q

2) p v r → s

3) p

4) p v r

5) s

6) p ^ s

1 - Simp

3 - Ad

2,4 - MP

3,5 - Conj
```

c)
$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash r$$

c)
$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash r$$

$$\begin{array}{c}
1) p \rightarrow (q \rightarrow r) \\
2) p \rightarrow q \\
3) p \\
\hline
4) q \rightarrow r \\
5) p \rightarrow r \\
6) r
\end{array}$$
1,3- MP

2,4 - SH

3,5 - MP

d)
$$p \rightarrow q$$
, $p \land q \rightarrow r$, $\sim (p \land r) \vdash \sim p$

d)
$$p \rightarrow q$$
, $p \land q \rightarrow r$, $\sim (p \land r) \vdash \sim p$

```
1) p \rightarrow q
```

2)
$$p \land q \rightarrow r$$

3)
$$\sim$$
(p \wedge r)

4)
$$p \rightarrow (p \land q)$$
 1 – Abs

5)
$$p \rightarrow r$$

6)
$$p \rightarrow (p \land r)$$
 5 - Abs

e)
$$p \vee q \rightarrow r$$
, $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$, $p \wedge s \vdash s \leftrightarrow t$

e)
$$p \vee q \rightarrow r$$
, $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$, $p \wedge s \vdash s \leftrightarrow t$

```
1) p v q \rightarrow r
```

4) p	3- Simp
5) p v q	4 - Ad
6) r	1,5 - MP
7) r v q	6 - Ad

8)
$$p \rightarrow (s \leftrightarrow t)$$
 2,7 - MP
9) $s \leftrightarrow t$ 4,8 - MP

²⁾ $r v q \rightarrow (p \rightarrow (s \leftrightarrow t))$

f)
$$p \rightarrow \sim q$$
, $\sim p \rightarrow (r \rightarrow \sim q)$, $\sim s \ v \sim r \rightarrow \sim \sim q$, $\sim s \ \vdash \sim r$

f)
$$p \rightarrow \sim q$$
, $\sim p \rightarrow (r \rightarrow \sim q)$, $\sim s \ v \sim r \rightarrow \sim \sim q$, $\sim s \ \vdash \sim r$

- 1) $p \rightarrow \sim q$
- 2) $\sim p \rightarrow (r \rightarrow \sim q)$
- 3) \sim s v \sim r $\rightarrow \sim \sim$ q
- 4) ~s
- 5) ~s v ~r
- 6) ~~q
- 7) ~p
- 8) $r \rightarrow \sim q$
- 9) ~r

- 4 Ad
- 3,5 MP
- 1,6 MT
- 2,7 MP
- 6,8 MT

g)
$$p \land q \rightarrow r, r \rightarrow s, t \rightarrow \sim u, t, \sim s \lor u \vdash \sim (p \land q)$$

g)
$$p \land q \rightarrow r, r \rightarrow s, t \rightarrow \sim u, t, \sim s \lor u \vdash \sim (p \land q)$$

- 1) $p \land q \rightarrow r$
- 2) $r \rightarrow s$
- 3) $t \rightarrow \sim u$
- 4) t
- 5) ~s v u
- 6) ~u
- 7) ~s
- 8) ~r
- 9) \sim (p \wedge q)

- 3.4 MP
- 5,6 SD
- 2,7 MT
- 1,8 MT

h)
$$p \rightarrow q, q \rightarrow r, s \rightarrow t, p \vee s \vdash r \vee t$$

h)
$$p \rightarrow q$$
, $q \rightarrow r$, $s \rightarrow t$, $p \vee s \vdash r \vee t$

```
1) p \rightarrow q
```

2)
$$q \rightarrow r$$

3)
$$s \rightarrow t$$

6)
$$p \rightarrow r$$

i)
$$p \rightarrow q$$
, $\sim r \rightarrow (s \rightarrow t)$, $r \vee (p \vee s)$, $\sim r \vdash q \vee t$

Exemplos: Demonstrar a validade dos seguintes argumentos.

i)
$$p \rightarrow q$$
, $\sim r \rightarrow (s \rightarrow t)$, $r \lor (p \lor s)$, $\sim r \vdash q \lor t$

```
1) p \rightarrow q
```

2)
$$\sim r \rightarrow (s \rightarrow t)$$

4) ~r

5)
$$s \rightarrow t$$

$$2.4 - MP$$

$$3,4 - SD$$

³⁾ rv(pvs)

j)
$$p \rightarrow q$$
, $(p \rightarrow r) \rightarrow s \vee q$, $p \wedge q \rightarrow r$, $\sim s \vdash q$

Exemplos: Demonstrar a validade dos seguintes argumentos.

j)
$$p \rightarrow q$$
, $(p \rightarrow r) \rightarrow s \ v \ q$, $p \land q \rightarrow r$, $\sim s \ \vdash q$

```
1) p \rightarrow q
```

2)
$$(p \rightarrow r) \rightarrow s \vee q$$

3)
$$p \land q \rightarrow r$$

4) ~s

5)
$$p \rightarrow (p \land q)$$

6)
$$p \rightarrow r$$

$$3,5 - SH$$

$$2,6 - MP$$

$$4,7 - SD$$

k)
$$p \rightarrow q$$
, $p \vee (\sim r \wedge \sim q)$, $s \rightarrow \sim r$, $\sim (p \wedge q) \vdash \sim s \vee \sim q$

Exemplos: Demonstrar a validade dos seguintes argumentos.

k)
$$p \rightarrow q$$
, $p \vee (\sim r \wedge \sim q)$, $s \rightarrow \sim r$, $\sim (p \wedge q) \vdash \sim s \vee \sim q$

```
1) p \rightarrow q
```

4)
$$\sim$$
(p \wedge q)

5)
$$p \rightarrow (p \land q)$$

6) ~p

7) ~~r ^ ~~q

8) ~~r

9) ~s

10) ~s v ~q

1 - ABS

4,6 - MT

2,6 - SD

7 – Simp

3,8 - MT

9 – AD

³⁾ $s \rightarrow \sim r$

I)
$$p \rightarrow r$$
, $q \rightarrow s$, $\sim r$, $(p \lor q) \land (r \lor s) \vdash \sim p \land \sim q$

Exemplos: Demonstrar a validade dos seguintes argumentos.

I)
$$p \rightarrow r$$
, $q \rightarrow s$, $\sim r$, $(p \lor q) \land (r \lor s) \vdash \sim p \land \sim q$

```
1) p \rightarrow r
```

2)
$$q \rightarrow s$$

3) ~r

4) $(p \vee q) \wedge (r \vee \sim s)$

5)	r	V	~5
----	---	---	----

6) ~s

7) ~q

8) ~p

9) ~p ^ ~q

4 - Simp

3,5 - SD

2,6 - MT

1,3 - MT

7,8 - Conj

Exemplos: Demonstrar a validade dos seguintes argumentos.

I)
$$p \rightarrow r$$
, $q \rightarrow s$, $\sim r$, $(p \lor q) \land (r \lor \sim s) \vdash \sim p \land \sim q$

```
1) p \rightarrow r
```

2)
$$q \rightarrow s$$

3) ~r

4) $(p v q) \wedge (r v \sim s)$

5)	r	٧	~5
----	---	---	----

6) ~s

7) ~q

8) ~p

9) ~p ^ ~q

4 - Simp

3,5 - SD

2,6 - MT

1,3 - MT

7,8 - Conj

m)
$$p \rightarrow q$$
, $q \rightarrow r$, $r \rightarrow s$, $\sim s$, $p \lor t \vdash t$

m)
$$p \rightarrow q$$
, $q \rightarrow r$, $r \rightarrow s$, $\sim s$, $p \lor t \vdash t$

- 1) $p \rightarrow q$
- 2) $q \rightarrow r$
- 3) $r \rightarrow s$
- 4) ~s
- 5) pvt
- 6) $p \rightarrow r$
- 7) $p \rightarrow s$
- 8) ~p
- 9) t

- 1,2 SH
- 3,6 SH
- 4,7 MT
- 5,8 SD

n)
$$(p \rightarrow q) \land (r \rightarrow s)$$
, $t \rightarrow u$, $u \rightarrow v$, $\sim q \lor \sim v \vdash \sim p \lor \sim t$

n)
$$(p \rightarrow q) \land (r \rightarrow s)$$
, $t \rightarrow u$, $u \rightarrow v$, $\sim q \lor \sim v \vdash \sim p \lor \sim t$

- 1) $(p \rightarrow q) \land (r \rightarrow s)$
- 2) $t \rightarrow u$
- 3) $u \rightarrow v$
- 4) ~q v ~v
- 5) $p \rightarrow q$
- 6) $t \rightarrow v$
- 7) ~p v ~t

- 1 Simp
- 2,3 SH
- 4,5,6 DD

o)
$$x=y \rightarrow x=z$$
, $x=z \rightarrow x=1$, $x=0 \rightarrow x\neq 1$, $x=y \vdash x\neq 0$

o)
$$x=y \rightarrow x=z$$
, $x=z \rightarrow x=1$, $x=0 \rightarrow x\neq 1$, $x=y \vdash x\neq 0$

1)
$$x=y \rightarrow x=z$$

2)
$$x=z \rightarrow x=1$$

3)
$$x=0 \rightarrow x\neq 1$$

4)
$$x=y$$

5)
$$x=y \rightarrow x=1$$

6)
$$x = 1$$

$$1.2 - SH$$

$$4,5 - MP$$

$$3,6 - MT$$

Exemplos: Demonstrar a validade dos seguintes argumentos.

p)
$$x=y \rightarrow x=z$$
, $x\neq y \rightarrow x < z$, $x \ge z \ v \ y > z$, $y\neq z \ \land \ x\neq z \ \vdash y > z$

1)
$$x=y \rightarrow x=z$$

2)
$$x \neq y \rightarrow x < z$$

3)
$$x \ge z \ v \ y > z$$

5)	V-7
וכ	$X \neq Z$

6) x≠y

7) x < z

8) y>z

4 - Simp

1,5 - MT

2,6 - MP

3,7 - SD