

In [168... for lr in [0.01, 0.001, 0.0001, 0.00005, 0.00001]:
 a = plot_reward_by_episode_and_reset(df[(df['model'] == 1) & (df['learning_rate'] == lr) & (df['replay_ratio'] == 16)], 100)
 display(a)


```
In [169... for lr in [0.01, 0.001, 0.0001, 0.00005, 0.00001]:
    a = plot_hyperparams(df[(df['model'] == 1) & (df['learning_rate'] == lr)], 100)
    display(a)
```


In [170...
for lr in [0.01, 0.001, 0.0001, 0.00005, 0.00001]:
 a = plot_model_comparison(df[(df['replay_ratio'] == 16) & (df['learning_rate'] == lr)], 100)
 display(a)

Average Reward After 1000 Episodes, Learning Rate = 0.01, Replay Ratio 16 -

Average Reward After 1000 Episodes, Learning Rate = 0.001, Replay Ratio 16 ...

Average Reward After 1000 Episodes, Learning Rate = 0.0001, Replay Ratio 16 ...

Average Reward After 1000 Episodes, Learning Rate = 5e-05, Replay Ratio 16 ...

Average Reward After 1000 Episodes, Learning Rate = 1e-05, Replay Ratio 16 ---

Episode

