

Speaking Professor Recognition

BA865 #7 Jiadai Yu, Shu Wang, Yulu Jiang

((01))

Overview

Objective & Motivation

(((02)))

Pre-processing

Data Collection & Pre-processing

((03))

Model

Performance comparison

((04))

Conclusion

Implication & Improvements

Objective

Recognize QST professor through speaker classification

Motivation

- 1 Enhance student learning experience
 - navigate speaking professor
- 2 New project challenges
 - audio inputs, new packages
- 3 High data accessibility
 - Echo360 lecture recording

Dataset & Pre-processing

9 classes

BA810 Sahoo

BA775/780 Soltanieh-Ha

BA875 Bellamy

BA830 Fradkin

ES710 Hutchinson

BA865 Burtch

> BA820 Lee

BA860 Lin

> ES720 McGinnis

Sample audio segment:

Segment

For each class, ~20 minutes split into ~120 audio pieces -> 1222 samples in total

Downsample 48 kHz -> 8 kHz

Truncating (LSTM only)

80k -> 4k

Original vector: [[left_1, right_1], [left_2, right_2], ... [left_48k, right_48k]]

Same length,
Different amount of info stored

Padding Make sure equal length

4)

2D CNN Model Preprocessing

Audio Signal Spectrogram

Time (Second)

Spectrogram Comparison

Takeaways:

- 1. Well-defined border for female voice spectrogram
- 2. Female vocal tracts are shorter and narrower than male ones.
- 3. Higher frequencies and shorter wavelengths.

1D CNN Model

Activation function: ReLu for first/hidden layers; Softmax for output layer

Loss function and Metrics: Sparse_categorical_crossentropy; Sparse_categorical_accuracy

For **multiclass-label** classification

Sequence of numbers

Structure of 1D CNN: Conv1D->Max pooling Conv1D->Average pooling Flatten->Hidden Layers Output Layer

Labels:
Give each professor a number from 0-8

Model Performance

2D CNN Model

Activation/Loss function: Same as in 1D CNN

For **multiclass-label** classification

Spectrogram

visual representation of the spectrum of frequencies of a signal as it varies with time

Image Augmentation: Rescaling, RandomFlip/Rotation Structure of 2D CNN:
Conv2D->Batch
Normalization->Max Pooling
2D->Batch Normalization
Flatten -> Dropout -> Output

Model Performance

LSTM Model

Legend: Layer ComponentwiseCopy Concatenate

Activation/Loss function: Same as in 1D CNN

For **multiclass-label** classification

Structure of LSTM: LSTM -> Dropout -> Hidden Layer -> Output Layer

Model Performance

Fine-tuning on 1D CNN

2D CNN takes much longer time to fine-tuning 1D CNN has a more stable performance compared to 2D-CNN

Hyperparameters: Kernel Size, Dropout Rate, Batch Size

Grid Search results for best model:
Training accuracy -> 95%
Validation accuracy -> 92%
More complex models lead to overfitting

Conclusions

	1D CNN	2D CNN	LSTM
Validation Accuracy	93%	97%	20%
Pros	Efficient, and growing accuracy with fine tuning and more epoches	Good at capturing both local and global dependencies, high accuracy	Simple, easy to use
Cons	Not be as effective for capturing global dependencies in data	Computationally expensive	Low accuracy because of the length of sequences

Implications

- Biometrics & Security authentication (voice prints) Confirm the identity of the speaker
- Voice-controlled interfaces Customized services
- Natural language processing Take the accents or speaking habit of the speaker into consideration, make speech-to-text more accurate
- Academic tool Automatically identify and verify the course to which the recording file belongs,

and help to manage the learning materials better

Limitations & Improvements

Data collection

The audio files are manually extracted from Echo360, so the efficiency and data size is limited.

Preprocessing

Professor's speech is mixed with noise, reverberation and classroom discussions of students

Computational power

GPU ran out of RAM while fine-tuning 2D CNN has high accuracy, but training process takes a lot of time

Network structure

CRNNs, GANs, etc.

Performance evaluation

Precision, recall and robustness

Bonus Speaker Test

Audio **mis**classified as Mohammad's voice: FP/(FP+TP) = 0.03 Gordon's audio being **in**accurately classified: FN/(TP+FN) = 0.01

	precision	recall	fl-score	support
0	0.98	0.98	0. 98	127
1	0.97	0.84	0.90	134
2	1.00	0.99	1.00	118
3	0.98	0.98	0.98	128
4	0.88	0.94	0.91	129
5	0.92	0.99	0. 95	140
6	0.92	0.93	0.92	129
7	0.99	0.97	0.98	159
8	0.99	0.99	0.99	158
accuracy			0. 96	1222
macro avg	0.96	0.96	0.96	1222
weighted avg	0.96	0.96	0.96	1222

McGinnis

Takeaways:

- 1. Similar voice feature across male professors
- 2. Limited sample size to identify feature in detail

References

- Beigi, H. (2011). Speaker Recognition. In: Fundamentals of Speaker Recognition.
 Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77592-0_17 [Accessed on: April 25th]
- Burtch, G. (2023). Github resource page for BA865.
 https://github.com/gburtch/BA865-2023 [Accessed on: April 20th]
- Ramgire, J. B., & Jagdale, S. M. (2016). A survey on speaker recognition with various feature extraction and classification techniques. International Research Journal of Engineering and Technology, 3(04), 709-712.
- Echo360 https://echo360.org/ [Accessed on: April 15th]

Thanks!

Any questions?