章宇

y.zhang@swufe.edu.cn

Discuss: how would you invest your money?

In stock market? portfolio optimization!

- Data (Parameters)
 - -i: stock, i = 1,2.
 - \tilde{r}_i : reward from stock *i* (random variable)
 - $-\mu_i = \mathbb{E}[\tilde{r}_i]$: expected reward from stock i
 - $Var(\tilde{r}_i)$: variance of reward from stock i
 - $-\sigma_{ij} = \mathbb{E}[(\tilde{r}_i \mu_i)(\tilde{r}_j \mu_j)]$: covariance
 - Note that $\sigma_{ii} = Var(\tilde{r}_i)$
 - B: budget for investment
 - β : target on expected portfolio reward

- Decisions
 - x_i : the amount to invest in stock i = 1,2.
- Objective
 - minimize total portfolio variance
- Constraints
 - Expected reward is above target β
 - Total investment stays within budget B
 - No short sales

Model

min
$$Var(\tilde{r}_1 x_1 + \tilde{r}_2 x_2)$$

s.t. $x_1 + x_2 \le B$
 $\mu_1 x_1 + \mu_2 x_2 \ge \beta$
 $x_i \ge 0$, $i = 1,2$

- How to solve it?
- Is it a linear optimization problem?

Is the objective linear?

$$Var(\tilde{r}_{1}x_{1} + \tilde{r}_{2}x_{2})$$

$$= \mathbb{E}\left[\left((\tilde{r}_{1} - \mu_{1})x_{1} + (\tilde{r}_{2} - \mu_{2})x_{2}\right)^{2}\right]$$

$$= \sigma_{11}x_{1}^{2} + 2\sigma_{12}x_{1}x_{2} + \sigma_{22}x_{2}^{2}$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{2} \sigma_{ij}x_{i}x_{j}$$

$$= \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

NO! Quadratic in x

More generally...

$$Var(\tilde{r}_{1}x_{1} + \dots + \tilde{r}_{n}x_{n})$$

$$= \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \dots & \sigma_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= \mathbf{x}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{x}$$

- Σ is an $n \times n$ square matrix

Covariance matrix

- Σ: covariance matrix
 - symmetric matrix
 - positive semidefinite matrix $x^{\mathsf{T}} \Sigma x \geq 0$, $\forall x \in \mathbb{R}^n$
 - The eigenvalues are real and nonnegative
 - There exists matrix A such that $\Sigma = A^{\top}A$

How to estimate Σ?

Covariance matrix

- Estimating Σ from historical data
 - I stocks, T periods of data
 - \hat{r}_{ti} : historical return of stock *i* at period *t*.
 - $-\mathbf{R} \in \mathbb{R}^{T \times I}$: matrix of \hat{r}_{ti}
 - $-\mu_i = \frac{1}{T}\sum_{t=1}^T \hat{r}_{ti}$: estimated mean reward
 - Covariance matrix:

$$\mathbf{\Sigma} = \frac{1}{T-1} (\mathbf{R} - \mathbf{1}\boldsymbol{\mu}^{\mathsf{T}})^{\mathsf{T}} (\mathbf{R} - \mathbf{1}\boldsymbol{\mu}^{\mathsf{T}})$$

where
$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_I \end{bmatrix} \in \mathbb{R}^I$$
 and $\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^T$

Covariance matrix

Example

-I = 2 stocks, T = 3 periods of data

$$\mathbf{\Sigma} = \frac{1}{T-1} (\mathbf{R} - \mathbf{1}\boldsymbol{\mu}^{\mathsf{T}})^{\mathsf{T}} (\mathbf{R} - \mathbf{1}\boldsymbol{\mu}^{\mathsf{T}})$$

$$= \frac{1}{T-1} \begin{bmatrix} \hat{r}_{11} - \mu_1 & \hat{r}_{21} - \mu_1 & \hat{r}_{31} - \mu_1 \\ \hat{r}_{12} - \mu_2 & \hat{r}_{22} - \mu_2 & \hat{r}_{32} - \mu_2 \end{bmatrix} \begin{bmatrix} \hat{r}_{11} - \mu_1 & \hat{r}_{12} - \mu_2 \\ \hat{r}_{21} - \mu_1 & \hat{r}_{22} - \mu_2 \\ \hat{r}_{31} - \mu_1 & \hat{r}_{32} - \mu_2 \end{bmatrix}$$

$$= \frac{1}{T-1} \begin{bmatrix} \sum_{t=1}^{3} (\hat{r}_{t1} - \mu_1)^2 & \sum_{t=1}^{3} (\hat{r}_{t1} - \mu_1)(\hat{r}_{t2} - \mu_2) \\ \sum_{t=1}^{3} (\hat{r}_{t2} - \mu_2)(\hat{r}_{t1} - \mu_1) & \sum_{t=1}^{3} (\hat{r}_{t2} - \mu_2)^2 \end{bmatrix}_{10}$$

Model

min
$$Var(\tilde{r}_1 x_1 + \tilde{r}_2 x_2)$$

s.t. $x_1 + x_2 \le B$
 $\mu_1 x_1 + \mu_2 x_2 \ge \beta$
 $x_i \ge 0$, $i = 1,2$

Compact form

min
$$x^{T}\Sigma x$$

s.t. $\mathbf{1}^{T}x \leq B$
 $\mu^{T}x \geq \beta$
 $x \geq \mathbf{0}$

Model

min
$$x^{T}\Sigma x$$

s. t. $\mathbf{1}^{T}x \leq B$
 $\mu^{T}x \geq \beta$
 $x \geq \mathbf{0}$

- A quadratic optimization problem!
- Solvable via Gurobi ©

• Coding...

An alternative model

max
$$\mathbb{P}[\tilde{r}^{T}x \geq \beta]$$

s.t. $\mathbf{1}^{T}x \leq B$
 $\mu^{T}x \geq \beta$
 $x \geq \mathbf{0}$

- Different measures of risk
 - Variance v.s. probability of target attainment
- How to solve it?

- Generally intractable ☺
- Solvable under normal distribution assumption of \tilde{r} \odot

$$\mathbb{P}[\tilde{r}^{\top} x \ge \beta]$$

$$= \mathbb{P}\left[\frac{\mu^{\top} x - \tilde{r}^{\top} x}{\sqrt{x^{\top} \Sigma x}} \le \frac{\mu^{\top} x - \beta}{\sqrt{x^{\top} \Sigma x}}\right]$$

$$= \Phi\left(\frac{\mu^{\top} x - \beta}{\sqrt{x^{\top} \Sigma x}}\right)$$

- $\Phi(\cdot)$: the cumulative distribution function of standard normal.

- Note: "⇔" in the sense that the models have the same optimal solutions
- Recall Sharpe ratio:

$$\frac{\boldsymbol{\mu}^{\top} \boldsymbol{x} - \boldsymbol{\beta}}{\sqrt{\boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}}}$$

Still intractable... Continue...

• Suppose there exists an optimal solution such that $\mu^{\top}x > \beta$, i.e., y > 0.

$$\min \begin{array}{c} \frac{x'\Sigma x}{(\mu'x-\beta)^2} \\ \text{s.t.} & \frac{1'x\leq B}{\mu'x\geq \beta} \\ x\geq 0 \end{array} \Leftrightarrow \begin{array}{c} \min \begin{array}{c} \frac{x'\Sigma x}{y^2} \\ \text{s.t.} & \frac{1'x\leq B}{y^2} \\ \mu'x-\beta=y \\ x\geq 0 \end{array} \Leftrightarrow \begin{array}{c} \min \begin{array}{c} \frac{x'\Sigma x}{y} \\ \text{s.t.} & \frac{1'x\leq B}{y} \\ \mu'x-\beta=y \\ x\geq 0 \end{array} \Leftrightarrow \begin{array}{c} \min \begin{array}{c} \frac{x'\Sigma x}{y} \\ \text{s.t.} & \frac{1'x\leq B}{y} \\ \mu'x-\beta=1 \\ \frac{1}{y}\geq 0 \\ \frac{x}{y}\geq 0 \end{array}$$

- Change of variables (trick!)
 - Let $\overline{x} = x/y$, z = 1/y

$$\min \frac{x'}{y} \frac{x}{y}$$
s.t.
$$1' \frac{x}{y} \le B \frac{1}{y}$$

$$\mu' \frac{x}{y} - \beta \frac{1}{y} = 1$$

$$\frac{1}{y} \ge 0$$

$$\frac{1}{y} \ge 0$$

$$\frac{x}{y} \ge 0$$

$$\min \frac{x'}{x} \frac{x}{y} \le Bz$$
s.t.
$$1' \frac{x}{x} \le Bz$$

$$\mu' \frac{x}{x} - \beta z = 1$$

$$z \ge 0$$

$$\frac{x}{y} \ge 0$$

Solve the quadratic optimization problem:

min
$$\bar{x}'\Sigma\bar{x}$$

s.t. $\mathbf{1}'\bar{x}\leq Bz$
 $\mu'\bar{x}-\beta z=\mathbf{1}$
 $z\geq 0$
 $\bar{x}\geq \mathbf{0}$

• Actual portfolio weights: $x = \overline{x}y = \overline{x}/z$

- Solve the portfolio optimization model on Page 14, using Python and Gurobi
- Use the data in 'data_portfolio.csv'

- Submit the source code through a link to be given in the QQ group
- Deadline: before next class
 - Tardiness is not allowed