Lecture 16: Dynamic Programming over Intervals

DP Over Intervals

Main idea of interval dynamic programming.

- Problem contains items 1,2,...n. Recurrence gives optimal solution of the original problem [1,n] as function of optimal solution of subproblems of smaller length (length refers to the number of items in the problem)
- Base case contains problems of length 1, i.e., problem [1,1], problem [2,2],..., problem [n,n].
 - All solutions are stored in diagonals of a 2D array. Solutions of small problems are re-used by bigger ones.
- Then, we solve n-1 problems of length 2, i.e., problem[1,2], problem[2,3],..., problem[n-1,n].
-
- Then, we solve n-l+1 problems of length l, i.e., problem[1, l], problem[2,l+1],..., problem [n-l+1,n]
- Finally, we solve 1 problem of size n: problem [1,n]
- Algorithm fills diagonals in a 2D table from smallest to largest problem length. First the main diagonal (base case), then the one on top of that,....At the end, the solution of the problem[1,n] is at the top right cell.

Longest Palindromic Substring

Def: A palindrome is a string that reads the same backward or forward.

Ex:

- radar, level, racecar, madam
- "A man, a plan, a canal Panama!" (ignoring space, punctuation, etc.)

Problem: Given a string $X = x_1 x_2 \dots x_n$, find the longest palindromic substring.

Fx:

- X = ACCABA
- Palindromic substrings: CC, ACCA, ABA
- Longest palindromic substring: ACCA

Note:

- Brute-force algorithm takes $O(n^3)$ time.
- Recall: A substring must be contiguous

Dynamic Programming Solution

Def: Let p[i,j] be true iff X[i..j] is a palindrome.

The Recurrence:

Initial Conditions (subproblems of sizes 1 & 2)

- p[i,i] = true, for all i
 - ACBBCABA
- $p[i, i+1] = true \ if \ x_i = x_{i+1}$
 - ACBBCABA

The Actual Recurrence

- p[i,j] = true $\text{if } x_i = x_j \text{ AND } p[i+1,j-1] = true$
 - ACBBCABA
 - ACBBCABA

i	1	2	3	4	5	6	7	8
	В	A	В	В	C	C	C	В

A Completed DP Table

Initial Condition j=i; j=i+1

i/j	1	2	3	4	5	6	7	8
1	T	F						
2		T	۴					
3			Τ	T				
4				T	F			
5					T	T		
6						T	T	
7							T	F
8								T

i/j 1 2 3 4 5 6 7 8
1 T F T
2 T F F
3 T F F
4 T F F
5 T T T
6 T T F
7 T T T
8

j=i+2

i/j 1 2 3 4 5 6 7 8
1 T F T F
2 T F F F
3 T F F F
4 T F F
5 T F F
6 T T F F
7 T F F
8

j=i+3

i/j 1 2 3 4 5 6 7 8
1 T F T F F
2 T F F F F
3 T F F F F
4 T F F F T
5 T T T F
6 T T F
7 T F

j=i+4

The Algorithm

```
max \leftarrow 1
for i \leftarrow 1 to n-1 do
                                             initial conditions
     p[i,i] \leftarrow true
                                                    length 1
     if x_i = x_{i+1} then
                                                    length 2
          p[i, i+1] \leftarrow true, max \leftarrow 2
     else p[i, i+1] \leftarrow false
for l \leftarrow 3 to n do
                         for each length 3 to n
     for i \leftarrow 1 to n - l + 1 do starting character
          i \leftarrow i + l - 1
                           ending character
           if p[i+1,j-1] = true and x_i = x_j then
                p[i,j] \leftarrow true, max \leftarrow l
           else p[i,j] \leftarrow false
return max
```

Running time: $O(n^2)$

Space: $O(n^2)$ but can be improved to O(n)

Tree-Search (T, k):

```
x \leftarrow T.root

while x \neq nil and k \neq x.key do

if k < x.key then x \leftarrow x.left

else x \leftarrow x.right

return x
```


The (worst-case) search time in a balanced BST is $\Theta(\log n)$

Q: If we know the probability of each key being searched for, can we design a (possibly unbalanced) BST to optimize the expected search time?

Similar Problem seen in Huffman Codes: Binary Merge Tree You are given a set of leaf nodes $a_1, ..., a_n$ and associated leaf weights $w(a_1), ..., w(a_n)$

Create a binary tree from the leaf nodes towards the root, in which the size of each node is the sum of the sizes of the two children.

A binary merge tree is optimal if it minimizes the weighted external path length. The weighted external path length of the tree is $B(T) = \sum_{i=1}^{n} w(a_i) d(a_i)$

Optimal Binary Merge Tree Greedy Algorithm - Same as Huffman Coding

Input: $n \ge 2$ leaf nodes, each with a size (i.e., # list elements).

Output: a binary tree with the given leaf nodes which has a minimum total weighted external path lengths

Algorithm:

Create a min-heap T[1..n] based on the n initial sizes.

While (the heap size \geq 2) do

extract from the heap two smallest values a and b

create intermediate node of size a + b whose children are a and b

insert the value (a + b) into the heap

Time complexity O(nlogn)

It can be shown that the Binary Merge Tree is optimal

The Optimal Binary Search Tree Problem

Problem Definition (simpler than the version in textbook):

Given n keys $a_1 < a_2 < \cdots < a_n$, with weights $f(a_1), \ldots, f(a_n)$, find a binary search tree T on these n keys such that

$$B(T) = \sum_{i=1}^{n} f(a_i)(d(a_i) + 1)$$

is minimized, where $d(a_i)$ is the depth of a_i .

Note: Similar to the Binary Merge Tree problem but with 2 key differences:

- The tree has to be a BST, i.e., the keys are stored in sorted order. In a Binary Merge Tree, there is no ordering among the leaves.
- Keys appear as both internal and leaf nodes. In a Binary Merge Tree, keys (characters) appear only at the leaf nodes.

Motivation: If the weights are the probabilities of the elements being searched for, such a BST will minimize the expected search cost.

Greedy Won't Work

Cannot apply Huffman algorithm because it assumes that all keys must be at leaves. Alternative greedy algorithm: Always pick the heaviest key as root, then recursively build the tree top-down.

T was built using greedy strategy and has cost

$$B(T) = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 2$$

T' has a smaller cost

$$B(T') = 0.4 \cdot 2 + 0.3 \cdot 1 + 0.2 \cdot 2 + 0.1 \cdot 3 = 1.8$$

Let $T_{i,j}$ be some tree on the subset of nodes $a_i < a_{i+1} < \cdots < a_j$. The cost is well defined as $B\left(T_{i,j}\right) = \sum_{t=i}^j f(a_t)(d(a_t)+1)$

Let
$$w[i,j] = f(a_i) + \dots + f(a_j)$$

Suppose we **knew** root of $T_{i,j}$ was a_k .

 $T_{i,j}$ is a BST, so left and right sub-tree children of a_k are some tree $T_{i,k-1}$ on $a_i < \cdots < a_{k-1}$ and some tree $T_{k+1,j}$ on $a_{k+1} < \cdots < a_j$

Nodes in $T_{i,k-1}$ and $T_{k+1,j}$ are one level deeper in $T_{i,j}$ than in their original trees. So the cost of $T_{i,j}$ is

$$B(T_{i,j}) = (B(T_{i,k-1}) + w[i,k-1]) + f(a_k) + (B(T_{k+1,j}) + w[k+1,j])$$

$$= B(T_{i,k-1}) + B(T_{k+1,j}) + w[i,k-1] + f(a_k) + w[k+1,j]$$

$$= B(T_{i,k-1}) + B(T_{k+1,j}) + w[i,j]$$

Let $T_{i,j}$ be some tree on the subset of nodes $a_i < a_{i+1} < \cdots < a_j$. The cost is well defined as $B\left(T_{i,j}\right) = \sum_{t=i}^j f(a_t)(d(a_t)+1)$

Let
$$w[i,j] = f(a_i) + \dots + f(a_j)$$

Suppose we **knew** root of $T_{i,j}$ was a_k .

The cost of $T_{i,j}$ is

$$(*) B(T_{i,j}) = B(T_{i,k-1}) + B(T_{k+1,j}) + w[i,j].$$

In particular, suppose $T_{i,j}$ has root a_k and is a minimum cost tree over all trees with nodes a_i,\dots,a_i

 \Rightarrow its left subtree $T_{i,k-1}$ must be a minimum cost tree with nodes a_i, \dots, a_{k-1}

If it wasn't, we could replace $T_{i,k-1}$ by a lesser cost subtree with nodes $a_i, ..., a_{k-1}$. By (*), this would reduce $B(T_{i,j})$, contradicting that $T_{i,j}$ is a minimum cost tree.

Similarly, the right subtree $T_{k+1,j}$ must be minimum cost for $a_{k+1}, ..., a_j$

Def: e[i,j] =the minimum cost of any BST on $a_i, ..., a_j$

Idea: The root of the BST can be any of $a_i, ..., a_j$. We try each of them.

Recurrence:

Let
$$w[i,j] = f(a_i) + \dots + f(a_j)$$

Suppose we knew min-cost BST $T_{i,j}$ for [i,j] and that its root was a_k .

Its left subtree $T_{i,k-1}$ must be optimal for [i,k-1] and its right subtree $T_{k+1,j}$ must be optimal for [k+1,j]

$$= e[i,j] = B(T_{i,j})$$

$$= B(T_{i,k-1}) + B(T_{k+1,j}) + w[i,j]$$

$$= e[i,k-1] + e[k+1,j] + w[i,j]$$

To find $T_{i,j}$ we can try out every possible value of k and return the one which minimizes tree cost!

Def: e[i,j] = the minimum cost of any BST on $a_i, ..., a_j$

Idea: The root of the BST can be any of $a_i, ..., a_j$. We try each of them.

Recurrence:

Let
$$w[i,j] = f(a_i) + \dots + f(a_j)$$

$$e[i,j] = \min_{i \le k \le j} \{e[i,k-1] + e[k+1,j] + w[i,j]\}$$
 $e[i,j] = 0 \text{ for } i > j.$
 $e[i,i] = f(a_i) \text{ for all } i$

Note: All w[i,j]'s can be pre-computed in $O(n^2)$ time.

The Algorithm

Idea: We will do the bottom-up computation by the increasing order of the problem size.

```
let e[1...n, 1...n], w[1...n, 1...n], root[1...n, 1...n] be new arrays of all 0
for i = 1 to n
                                                        computation of w[i,j]
      w[i,i] \leftarrow f(a_i)
      for j = i + 1 to n
            w[i,j] \leftarrow w[i,j-1] + f(a_i)
for l \leftarrow 1 to n
                                                              length of [i, j]
      for i \leftarrow 1 to n-l+1
                                                              First node
           j \leftarrow i + l - 1
                                                              Last node
           e[i,j] \leftarrow \infty
            for k \leftarrow i to i
                                                              Root k that
                  t \leftarrow e[i, k-1] + e[k+1, j] + w[i, j] minimizes
                  if t < e[i,j] then
                                                              e[i, k-1] + e[k+1, j] + w[i, j]
                        e[i,j] \leftarrow t
                        root[i, i] \leftarrow k
return Construct-BST (root, 1, n)
```

Running time: $O(n^3)$

Space: $O(n^2)$

Construct the Optimal BST

```
Construct-BST (root, i, j):

if i > j then return nil

create a node z

z.key \leftarrow a[root[i,j]]

z.left \leftarrow Construct-BST(root, i, root[i,j] - 1)

z.right \leftarrow Construct-BST(root, root[i,j] + 1, j)

return z
```

Running time of this part: O(n)

Worked example of the Optimal BST Problem

input

i 1 2 3 4 5 6 7

 a_i A B C D E F G

 $f(a_i)$ 5 20 30 50 10 20 10

Optimal (min-cost) given input
Its cost is

5*4 + 20*3 + 30*2 + 50*1 + 10*3 + 20*2 + 10*3 = 290

Worked example of the Optimal BST Problem

input

i 1 2 3 4 5 6 7

 a_i A B C D E F G

 $f(a_i)$ 5 20 30 50 10 20 10

Precompute: $w[i,j] = f(a_i) + \dots + f(a_j)$

Define: $e[i,j] = \text{the minimum cost of any BST on } a_i, ..., a_j$

Recurrence: $e[i,j] = \min_{i \le k \le j} \{e[i,k-1] + e[k+1,j] + w[i,j]\}$

Initial Conditions: for i > j e[i,j] = 0and $e[i,i] = w[i,i] = f(a_i)$

$$e[1,1] = f(a_1) = 5$$

 $e[2,2] = f(a_2) = 20$
 $e[3,3] = f(a_3) = 30$
 $e[4,4] = f(a_4) = 50$
 $e[5,5] = f(a_5) = 10$
 $e[6,6] = f(a_6) = 20$
 $e[7,7] = f(a_7) = 10$


```
e[i,j]
                     3
                           4
                                  5
                                             7
i∖j
       1
                                        6
                                                           e[1,2] = \min_{1 \le k \le 2} \{e[1,k-1] + e[k+1,2] + w[1,2]\} = \min\{45,30\} = 30
 1
       5
              30
                                                           e[2,3] = \min_{2 \le k \le 3} \{e[2,k-1] + e[k+1,3] + w[2,3]\} = \min\{80,70\} = 70
 2
                    70
              20
                                                         e[3,4] = \min_{2 \le k \le 3} \{e[3,k-1] + e[k+1,4] + w[3,4]\} = \min\{130,110\} = 110
 3
                         110
                    30
                                                          e[4,5] = \min_{4 \le k \le 5} \{e[4,k-1] + e[k+1,5] + w[4,5]\} = \min\{70,110\} = 70
                          50
                                 70
                                                           e[5,6] = \min_{5 \le k \le 6} \{e[5,k-1] + e[k+1,6] + w[5,6]\} = \min\{50,40\} = 40
 5
                                       40
                                 10
                                                           e[6,7] = \min_{6 \le k \le 7} \{e[6,k-1] + e[k+1,7] + w6[,7]\} = \min\{40,50\} = 40
                                       20
 6
                                              40
 7
                                              10
```


i 1 2 3 4 5 6 7 a_i A B C D E F G $f(a_i)$ 5 20 30 50 10 20 10

i 1 2 3 4 5 6 7 a_i A B C D E F G $f(a_i)$ 5 20 30 50 10 20 10

```
e[i,j]
                     3 4
i∖j
                                  5
                                        6 7
       1
                                                       e[1,4] = \min_{1 \le k \le 4} \{ e[1,k-1] + e[k+1,4] + w[1,4] \}
 1
       5
              30
                    85
                                                                     \begin{cases} e[1,0] + e[2,4] + 105, & e[1,1] + e[3,4] + 105, \\ e[1,2] + e[4,4] + 105, & e[1,3] + e[5,4] + 105 \end{cases}
 2
                         170
              20
                    70
                                                          = \min_{1 \le k \le 4} \langle
 3
                    30
                          110
                                130
                           50
                                 70
                                       120
 5
                                 10
                                        40
                                              60
                                                                            (0 + 170 + 105, 5 + 110 + 105,)
 6
                                        20
                                              40
                                                                 = \min_{1 \le k \le 4} \left\{ 30 + 50 + 105, \right.
 7
                                              10
                    root[i, j]
                                                                     = \min\{275, 220, 185, 190\} = 185
i∖j
                           4
                                        6
                                             7
       1
 1
       1
                           3
              2
 2
 3
                     3
                           4
                                  4
                                        4
 5
                                         6
                                               6
 6
                                         6
                                               6
                                                                                                                                            5
                                                                                                                                                        7
 7
                                               7
                                                                                                                         В
                                                                                                                                     D
                                                                                                                                                 F
                                                                                                                               C
                                                                                                                                                        G
                                                                                                           f(a_i)
                                                                                                                   5
                                                                                                                        20
                                                                                                                               30
                                                                                                                                     50
                                                                                                                                           10
                                                                                                                                                 20
                                                                                                                                                      10
```


$$i$$
 1 2 3 4 5 6 7 a_i A B C D E F G $f(a_i)$ 5 20 30 50 10 20 10

i	1	2	3	4	5	6	7
a_i	Α	В	C	D	E	F	G
$f(a_i)$	5	20	30	50	10	20	10

i	1	2	3	4	5	6	7
a_i	Α	В	C	D	E	F	G
$f(a_i)$	5	20	30	50	10	20	10

```
e[i,j]
i∖j
      1
                                             e[1,7] = \min_{1 \le k \le 7} \{e[1,k-1] + e[k+1,7] + w[1,7]\} = \min\{415,360,325,290,370,365,405\} = 290
                                      290
                     185
                                260
 2
                     170
                           190
                                240
                                     270
           20
                70
                           130 180 210
                30
                     110
                      50
                            70
                                120
                                     150
                                                                               Optimal Tree: Cost =
 5
                            10
                                 40
                                       60
                                                                               290
                                 20
 6
                                       40
                                                                                            50
                                       10
 7
                                                                                                        20
                 root[i, j]
                                            • root[1, 7] =
i∖j
      1
 2
                 3
 3
 6
                                       6
                                                                                                                              7
 7
                                       7
                                                                                                               D
                                                                                                                              G
                                                                                         f(a_i)
                                                                                                5
                                                                                                    20
                                                                                                          30
                                                                                                               50
                                                                                                                    10
                                                                                                                         20
                                                                                                                             10
```

```
e[i,j]
i∖j
      1
                      4
                                  6
                                             e[1,7] = \min_{1 \le k \le 7} \{e[1,k-1] + e[k+1,7] + w[1,7]\} = \min\{415,360,325,290,370,365,405\} = 290
 1
           30
                     185
                                260
                                      290
                     170
                           190
                                240
                                     270
 2
           20
                70
                           130 180 210
 3
                 30
                     110
                      50
                                120
                                     150
                           70
                                                                               Optimal Tree: Cost =
 5
                           10
                                 40
                                      60
                                                                               290
                                 20
 6
                                      40
 7
                                      10
                                                                                               50
                                                                                            30
                                                                                                           20
                 root[i,j]
                                           • root[1,7] = 4 (D)
i∖j
      1
                                            • root[1,3] = 3 (C)
1
 2
            2
                                            • root[5,7] = 6 (F)
 3
                 3
                                            • root[1, 2] = 2 (B)
                                            • root[1,1] = 1 (A)
 5
                                            • root[5,5] = 5 (E)
                                  6
 6
                                                                                                                              7
                                            • root[7,7] = 7 (G)
 7
                                                                                                               D
                                                                                                                              G
                                                                                         f(a_i)
                                                                                                5
                                                                                                    20
                                                                                                         30
                                                                                                              50
                                                                                                                   10
                                                                                                                        20
                                                                                                                             10
```

Interval DP: Matrix-Chain Multiplication

The product of two matrices $A_{p\times q}$ and $B_{q\times r}$ (with dimensions $p\times q$ and $q\times r$) is a matrix $C_{p\times r}$. Generating $C_{p\times r}$ requires pqr scalar multiplications.

Given matrices A, B with entries $a_{i,j}$, $b_{i,j}$, the entries in the product matrix $C = A \times B$ are

$$c_{i,j} = \sum_{k=1}^{q} a_{i,k} b_{k,j}$$

Diagrams on this and the next few pages modified from http://ramos.elo.utfsm.cl/~lsb/elo320/aplicaciones/aplicaciones/CS460AlgorithmsandComplexity/lecture17

Matrix-Chain Multiplication - 3 Matrices

The product of two matrices $A_{p\times q}$ and $B_{q\times r}$ (with dimensions $p\times q$ and $q\times r$) is a matrix $C_{p\times r}$ with pr entries.

Calculating any one entry in $C_{p \times r}$ requires q scalar multiplications, so generating $C_{p \times r}$ requires pqr scalar multiplications (sm).

For three matrices (e.g., $A_{10\times100}$, $B_{100\times5}$ and $C_{5\times50}$) there are 2 ways to parenthesize:

```
 \begin{array}{lll} (A(BC)) = A_{10\times 100} \cdot E_{100\times 50} & & & & & & & & & & & \\ - & BC \Rightarrow 100 \cdot 5 \cdot 50 = 25,000 \text{ sm} & & - & AE \Rightarrow 10 \cdot 100 \cdot 50 = 50,000 \text{ sm} \\ - & AE \Rightarrow 10 \cdot 100 \cdot 50 = 50,000 \text{ sm} & - & DC \Rightarrow 10 \cdot 5 \cdot 50 = 2,500 \text{ sm} \\ - & Total = 75,000 & - & Total = 7,500 \\ \end{array}
```

General problem: Given a sequence or chain $A_1, A_2, ..., A_n$, of n matrices, determine the optimal way to parenthesize (i.e., the solution with the minimum number of scalar multiplications).

Matrix-Chain Multiplication - 5 Matrices

X

There are 5 different ways to multiply ABCD together

- 1. (A (B (CD)))
- 2. (A ((BC) D))
- 3. ((AB)(CD))
- 4. ((A(BC))D)
- 5. (((AB)C)D)

 5×4

CD

$$4 \times 2$$

$$5 \times 2$$

Matrix-Chain Multiplication - 5 Matrices

X

 5×4

 4×2

 5×2

There are 5 different ways to multiply ABCD together

- 1. (A (B (CD)))
- 2. (A ((BC) D))
- 3. ((AB)(CD))
- 4. ((A (BC)) D)
- 5. (((AB)C)D)

Costs are

- 1. 5(5)2 + 5(4)2 + 4(8)2 = 154
- $2. \quad 5(5)2 + 5(4)8 + 5(8)2 = 290$
- 3. 5(5)4 + 4(8)2 + 5(4)2 = 204
- 4. 5(5)8 + 5(4)8 + 5(8)2 = 440
- 5. 5(5)4 + 5(4)8 + 5(8)2 = 340

Recall: Multiplying

p×q and q×r matrices requires

p×q×r multiplications

And yields a p×r matrix

Problem Definition

- Input: Values $p_0 p_1 \cdots p_{n-1} p_n$
- These represent sizes of n matrices $A_1 A_2 \cdots A_n$ Matrix A_i has dimensions $p_{i-1} \times p_i$
- $A_{i\cdots j}$: matrix that is the product of A_i $A_{i+1}\cdots A_j$ By construction $A_{i\cdots j}$ has dimensions $p_{i-1}\times p_j$
- Goal: To find a minimum cost way of multiplying $A_1A_2\cdots A_n$ to get the final result $A_{1\cdots n}$.

 cost = # of total scalar multiplications performed

This is known as an optimal parenthesization of $A_1A_2\cdots A_n$ because the parentheses denote how to perform the multiplications e.g., ((AB)(CD)) means first calculate X = AB, then calculate Y = CD and finally calculate XY.

Optimal Solution Structure

- Given: Values $p_0 p_1 \cdots p_{n-1} p_n$ s.t. Matrix A_i has size $p_{i-1} \times p_i$
- $A_{i\cdots j}$: denotes matrix that results from the product $A_iA_{i+1}\cdots A_j$
- An (optimal) parenthesization of $A_1A_2\cdots A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$.

$$A_{1\cdots n} = (A_1 A_2 \cdots A_k) \cdot (A_{k+1} A_{k+2} \cdots A_n) = A_{1\cdots k} \cdot A_{k+1\cdots n}$$

In the optimal parenthesization,

 1^{st} : compute matrices $A_{1\cdots k}$ and $A_{k+1\cdots n}$;

 2^{nd} : multiply $A_{1...k}$ and $A_{k+1...n}$ together to get final matrix $A_{1...n}$

- Observation: If parenthesization of $A_1A_2 \cdots A_n$ is optimal
 - => parenthesizations of subchains $A_1A_2\cdots A_k$ and $A_{k+1}\cdots A_n$ must also be optimal (why?)
 - => The optimal solution to the problem contains within it the optimal solution to subproblems

Recurrence

- m[i,j] =minimum number of scalar multiplications necessary to compute $A_{i\cdots j}$
- Suppose the optimal parenthesization of $A_{i\cdots j}$ splits product between A_k and A_{k+1} , for some integer k, $i \le k < j$
 - $A_{i\cdots j} = (A_i A_{i+1} \cdots A_k) \cdot (A_{k+1} A_{k+2} \cdots A_j) = A_{i\cdots k} \cdot A_{k+1\cdots j}$
 - min cost of computing $A_{i\cdots j}$ = min cost of computing $A_{i\cdots k}$ + min cost of computing $A_{k+1\cdots j}$ + cost of multiplying $A_{i\cdots k}$ and $A_{k+1\cdots j}$
 - Cost of multiplying $A_{i\cdots k}$ and $A_{k+1\cdots j}$ is $p_{i-1}p_kp_j$
- But... optimal parenthesization occurs at some value of k.
 Check all possible values of k and select the best one.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \} & \text{if } i < j \end{cases}$$

DP Algorithm

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table m and split table s (s records values of k at which minima occurred)

```
MATRIX-CHAIN-ORDER(p[], n)
                                                              Initial
for i = 1 to n
                                                              Conditions
   m[i,i]=0
for l=2 to n
   for i = 1 to n - l + 1
       j = i + l - 1
       m[i,j] = \infty
       for k = i to j - 1
                                                              Recurrence
           q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j
                                                              Relation
           if q < m[i, j] then
              m[i,j] = q
                                                              Location of
              s[i,j] = k
                                                              Minimum
return m[] and s[]
```

Time is $O(n^3)$, space is $O(n^2)$

Matrix Multiplication Worked Example

Input: $p_0 \ p_1 \cdots p_{n-1} \ p_n$ These represent sizes of n matrices $A_1 \ A_2 \cdots A_n$ Matrix A_i has dimensions $p_{i-1} \times p_i$

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4
	A_1	5 × 4	A_3 :	6 × 2	A_5	$: 7 \times 4$

 A_2 : 4 × 6

 A_4 : 2 × 7

 $A_{i\cdots j}$: matrix product of A_i $A_{i+1}\cdots A_j$ $A_{i\cdots j}$ has dimensions $p_{i-1}\times p_j$

m[i,j] = minimum number of scalar multiplications required to compute $A_{i\cdots j}$

Recurrence

$$m[i, i] = 0$$

$$m[i, j] = \min_{i \le k < j} [i, k] + m[k + 1, j] + p_{i-1} p_k p_j$$

s[i,j] = records values of k at which minimum occurs

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i,i] = 0$$

$$m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

$$l = 1$$

			. / • .		
i \ j	1	2	3	4	5
1					
2					
3					
4					

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i,i] = 0$$

$$m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

$$m[1,1] = 0$$
 A_1
 $m[2,2] = 0$ A_2
 $m[3,3] = 0$ A_3
 $m[4,4] = 0$ A_4
 $m[5,5] = 0$

$$l=2$$

$$m[i, i] = 0$$

 $m[i, j] = \min_{i \le k < j} [i, k] + m[k + 1, j] + p_{i-1} p_k p_j$

$$m[1,2] = m[1,1] + m[2,2] + 5 * 4 * 6 = 120$$
 A_1A_2

•
$$m[2,3] = m[2,2] + m[3,3] + 4 * 6 * 2 = 48$$
 A_2A_3

•
$$m[3,4] = m[3,3] + m[4,4] + 6 * 2 * 7 = 84$$
 A_3A_4

•
$$m[4,5] = m[4,4] + m[5,5] + 2 * 7 * 4 = A_4A_5$$
56

$$l=3$$

i∖j	1	2	3	4	5
1	0	120	88		
2		0	48	104	
3			0	84	104
4				0	56
5					0

$$s[i,j]$$
 $i \setminus j$
 1
 2
 3
 4
 5

 1
 1
 1
 1

 2
 2
 3

 3
 3
 3

 4
 4
 4

 5

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

$$m[1,3] = \min \begin{Bmatrix} m[1,1] + m[2,3] + 5 * 4 * 2, \\ m[1,2] + m[3,3] + 5 * 6 * 2 \end{Bmatrix} = 88$$
 $A_1 A_{2..3}$

$$m[2,4] = \min \begin{Bmatrix} m[2,2] + m[3,4] + 4 * 6 * 7, \\ m[2,3] + m[4,4] + 4 * 2 * 7 \end{Bmatrix} = 104$$

$$A_{2..3}A_4$$

$$m[3,5] = \min \left\{ \frac{m[3,3] + m[4,5] + 6 * 2 * 4,}{m[3,4] + m[5,5] + 6 * 7 * 4} \right\} = 104$$

$$l=4$$

m[i,j]

i∖j	1	2	3	4	5
1	0	120	88	158	
2		0	48	104	136
3			0	84	104
4				0	56
5					0

$$m[i,i] = 0$$

$$m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

$$m[1,4] = \min \begin{cases} m[1,1] + m[2,4] + 5 * 4 * 7 \\ m[1,2] + m[3,4] + 5 * 6 * 7 \\ m[1,3] + m[4,4] + 5 * 2 * 7 \end{cases} = 158$$

$$A_{1..3}A_4$$

$$s[i,j]$$
 $i \setminus j$
 1
 2
 3
 4
 5

 1
 1
 1
 3

 2
 2
 3
 3

 3
 3
 3

 4
 4

 5

$$l = 5$$

m[i,j]

i∖j	1	2	3	4	5
1	0	120	88	158	184
2		0	48	104	136
3			0	84	104
4				0	56
5					0

s[i,j]

i∖j	1	2	3	4	5
1		1	1	3	3
2			2	3	3
3				3	3
4					4
5					

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_kp_j$

$$m[1,5] = \max \begin{Bmatrix} m[1,4] + m[5,5] + 5 * 7 * 4, \\ m[1,3] + m[4,5] + 5 * 2 * 4, \\ m[1,2] + m[3,5] + 5 * 6 * 4, \\ m[1,1] + m[2,5] + 5 * 4 * 4 \end{Bmatrix} = 184$$

 $A_{1..3}A_{4..5}$

$$l = 5$$

m[i,j]

i∖j	1	2	3	4	5
1	0	120	88	158	184
2		0	48	104	136
3			0	84	104
4				0	56
5					0

s[i,j]

i \ j	1	2	3	4	5
1		1	1	3	3
2			2	3	3
3				3	3
4					4
5					

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

Optimal solution is

$$(A_{1..s[1,5]}A_{s[1,5]+1..5}) = (A_{1..3}A_{4..5})$$

$$= (A_{1..s[1,3]}A_{s[1,3]+1..5})A_{4..5} = ((A_{1..1}A_{2..3})A_{4..5})$$

$$=((A_1(A_{2..s[2,3]}A_{s[2,3]+1..3}))A_{4..5})$$

$$= ((A_1(A_{2..2}A_{3..3}))A_{4..5})$$

$$=((A_1(A_2A_3))A_{4..5})$$

$$= ((A_1(A_2A_3))(A_{4..s[4,5]}A_{s[4,5]+1,5}))$$

$$=((A_1(A_2A_3))(A_4A_5))$$