Université Abdelmalek Éssaadi Ecole Nationale des Sciences Appliquées Al Hoceima

AP1: Analyse 2

Année: 2019/2020

Sol. de TD:Suites et Séries de Fonctions

séries $N^{\circ}3$ (Partie 2)

Professeur A. MOUSSAID

probléme 1

On note, pour tout

$$\forall n \in \mathbb{N}^*, \quad \forall x \in [0, +\infty], \quad f_n(x) = \frac{x^n}{n(x^{2n} + 1)}$$

- 1. Montrer que la série de fonction $\sum_{n\geq 1} f_n(x)$ converge simplement sur $D=[0,1[\cup]1,+\infty[$ On note S la somme de cette série de fonction .
- 2. Montrer que S est de classe C^1 sur D et étudier le signe de S'(x) pour $x \in D$
- 3. Déterminer les limites de S en 1 et en $+\infty$
- 4. Dresser le tableau de variations de S et tracer l'allure de la courbe représentative de S.

Solution

1- Soit $x \in [0, +\infty[$

*- Si
$$0 \le x < 1$$
, alors $f_n(x) = \frac{x^n}{n(x^{2n+1})} \le \frac{x^n}{n} \le x^n$, $\forall n \in \mathbb{N}$

- Si $0 \le x < 1$, alors $f_n(x) = \frac{x^n}{n(x^{2n}+1)} \le \frac{x^n}{n} \le x^n$, $\forall n \in \mathbb{N}^$ comme |x| < 1, la série géométrique $\sum_{n \ge 1} x^n$ converge, donc, par théorème de comparaision pour des séroes à termes

réels positifs, on conclut que la série $\sum_{n>1}^{\overline{n\geq 1}} f_n(x)$ converge.

*- Si
$$x=1$$
, alors $f_n(x)=\frac{1}{2n}$, donc la série $\sum_{n\geq 1}f_n(x)$ diverge.

*- Si
$$x > 1$$
, alors $f_n(x) = \frac{x^n}{n(x^{2n}+1)} \le \frac{x^n}{nx^{2n}} = \frac{1}{nx^n} \le \frac{1}{x^n}$

comme $\left|\frac{1}{x}\right| < 1$, la série géométrique $\sum_{n \geq 1} \frac{1}{x^n}$ converge, donc , par théorème de comparaision pour des séroes à termes

réels positive, on conclut que la série $\sum_{n\geq 1}^{n\geq 1} f_n(x)$ converge.

Finalement, la série de fonction $\sum_{n\geq 1} f_n(x)$ converge simplement sur $D=[0,1[\cup]1,+\infty[$ et diverge en 1

2- pour tout $n \in \mathbb{N}^*$, f_n est de classe C^1 sur [0,1[et sur $]1,+\infty[$. $*\sum_{i=1}^n f_n(x)$ converge simplement sur [0,1[et sur $]1,+\infty[$.

* soit $n \in \mathbb{N}^*$, On a, pour tout $x \in [0, +\infty[$

$$f'_n(x) = \frac{1}{n} \frac{nx^{n-1}(x^{2n}+1) - x^n 2nx^{2n-1}}{(x^{2n}+1)^2} = \frac{x^{n-1}(1-x^{2n})}{(x^{2n}+1)^2}$$

Soit $a \in [0, 1]$ On a.

 $\forall n \in \mathbb{N}^*, \quad \forall x \in [0, a],$

$$|f'_n(x)| = \left| \frac{x^{n-1}(1 - x^{2n})}{(x^{2n} + 1)^2} \right|$$

$$\leq \left| \frac{x^{n-1}(1 + x^{2n})}{(x^{2n} + 1)^2} \right|$$

$$= \left| \frac{x^{n-1}}{(x^{2n} + 1)} \right|$$

$$\leq x^{n-1}$$

$$\leq a^{n-1}$$

D'où $\forall n \in \mathbb{N}^*$, $\sup_{[0,a]} |f_n'(x)| \le a^{n-1}$ Comme |a| < 1, la série géométrique $\sum_{n \ge 1} a^{n-1}$ convege, donc , par théorème de comparaision pour des séroes à termes réels positifs, on conclut que la série $\sum_{n\geq 1}^{n\geq 1}\sup_{[0,a]}|f_n^{'}(x)|$ converge.

Ceci montre que la série $\sum f_n^{'}(x)$ converge normalement, donc uniformément, sur tout segment inclus dans [0,1[.

* De même, $\sum_{i=1}^{n} f_n^{'}(x)$ converge normalement, donc uniformément, sur tout segment inclus dans $]1,+\infty[$, et même sur tout $[a, +\infty[, a > 1 \text{ fixé.}]$

D'après le théorème du cours sur convergence uniforme et dérivation, on conclut que S est de classe \mathcal{C}^1 sur D et que

$$\forall x \in D = [0, 1[\cup]1, +\infty[, \qquad S'(x) = \sum_{n>1}^{+\infty} f'_n(x) = \sum_{n>1}^{+\infty} \frac{x^{n-1}(1-x^{2n})}{(x^{2n}+1)^2}$$

Alors, il est clair que:

$$\begin{cases} \forall x \in [0, 1[, & S'(x) > 0 \\ \forall x \in]1, +\infty[, & S'(x) < 0. \end{cases}$$

*- Étude en 1

On a, pour tout $n \in \mathbb{N}^*$ fixé:

$$f_n(x) = \frac{x^n}{n(x^{2n} + 1)} \xrightarrow[x \to 1]{} \frac{1}{2n}$$

. Soit A >fixé.

Puisque la série numérique $\sum_{n\geq 1} \frac{1}{2n}$ diverge et est à termes réels \geq on a $\sum_{k=1}^{n} \frac{1}{2k} \xrightarrow[n\to+\infty]{} +\infty$.

il existe donc $N \in \mathbb{N}^*$ tel que $\sum_{k=1}^N \frac{1}{2k} \ge 2A$ (utilisation de la définition de la limite infinie)

$$\forall x \in D, \quad S(x) = \sum_{k=1}^{+\infty} f_k(x) \ge \sum_{k=1}^{N} f_k(x) \text{ (car les } f_k(x) \text{ sont tous } \ge.)$$

Comme $\sum_{k=1}^{N} f_k(x) \xrightarrow[x \to 1]{} \sum_{k=1}^{N} \frac{1}{2k}$ et que $\sum_{k=1}^{N} \frac{1}{2k} \ge 2A$, il existe $\eta > 0$ tel que :

$$\forall x \in D, \quad |x - 1| \le \eta \Rightarrow \sum_{k=1}^{N} f_k(x) \ge A$$

On a donc:

$$\forall A > 0, \quad \exists n > 0, \quad \forall x \in D, \quad |x - 1| < \eta \Rightarrow S(x) > A$$

On conclut: $S(x) \xrightarrow[x \to 1]{} +\infty$ (définition d'une limite infinie).

*- Étude en $+\infty$

On a, pour tout $n \in \mathbb{N}^*$ fixé:

$$f_n(x) = \frac{x^n}{n(x^{2n} + 1)} \sim_{x \to +\infty} \frac{x^n}{nx^{2n}} = \frac{1}{nx^n} \xrightarrow[x \to 1]{} 0$$

. *- Montrons que la série $\sum_{n=1}^{+\infty} f_n(x)$ converge normalement, donc uniformément , sur $[2,+\infty[$

On a

 $\forall n \in \mathbb{N}^*, \quad \forall x \in [2, +\infty[,$

$$|f_n(x)| = \frac{x^n}{n(x^{2n} + 1)}$$

$$\leq \frac{x^n}{nx^{2n}}$$

$$= \frac{1}{nx^n}$$

$$\frac{1}{x^n}$$

$$\frac{1}{2^n}$$

Donc $\forall n \in \mathbb{N}^*$, $\sup_{[2,+\infty[} |f_n(x)| \le \frac{1}{2^n}$

Comme $|\frac{1}{2}| < 1$, la série géométrique $\sum_{n \geq 1} \frac{1}{2^n}$ convege, donc , par théorème de comparaision pour des séroes à termes réels positifs, on conclut que la série $\sum_{n \geq 1} \sup_{[2,+\infty[} |f_n(x)|$ converge.

Ainsi la série $\sum_{n\geq 1} f_n(x)$ converge normalement, donc uniformément, sur $[2,+\infty[$.

puisque, pour tout $n \in \mathbb{N}^*$, $f_n(x) \xrightarrow[x \to +\infty]{} 0$ et que $\sum_{n \ge 1} f_n(x)$ converge uniformément sur $[2, +\infty[$. Alors :

$$S(x) \xrightarrow[x \to +\infty]{} \sum_{n>1}^{+\infty} 0 = 0$$

4-Tableau de variation de S

x	0	1	$+\infty$
$S^{'}(x)$	1 +	_	
$S_n(x)$	0	+∞ +∞	0

Figure 1: La courbe de S

probléme 2

1- Montrer que la série $\sum_{n\geq 1}\frac{(-1)^{n+1}}{n}e^{-nx}$ est uniformément converge sur \mathbb{R}^+

2- Montrer que la fonction $x\mapsto \sum_{n\geq 1}\frac{(-1)^{n+1}}{n}e^{-nx}$ est continue sur \mathbb{R}^+

3- Montrer que la fonction $x\mapsto \sum_{n\geq 1}^-\frac{(-1)^{n+1}}{n}e^{-nx}$ est dérivable sur \mathbb{R}_+^* . et calculer sa dérivée. 4- En déduire que pour tout $x\geq 0$, on a :

$$\sum_{n>1} \frac{(-1)^{n+1}}{n} e^{-nx} = \ln(1 + e^{-x})$$

Solution

1- Montrer que la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est uniformément converge sur \mathbb{R}^+ On a la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est série <u>alternée</u>.

La série de fonctions $g_n(x) = \frac{e^{-nx}}{n}$ est positive, décroissante (car $g'_n(x) = -e^{-nx} < 0$), et converge uniformément vers

 $\lim_{n \to +\infty} g_n(x) = 0, \quad \forall x \in \mathbb{R}^+$

Donc la série $\sum_{n\geq 1}\frac{(-1)^{n+1}}{n}e^{-nx}$ converge uniformément sur \mathbb{R}^+

2- Montrer que la fonction $x \mapsto \sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est continue sur \mathbb{R}^+

Les fonctions $x \mapsto \frac{(-1)^{n+1}}{n} e^{-nx}$ sont continues sur \mathbb{R}^+ , $\forall n \geq 1$

D'aprés 1) la série converge uniformément donc la fonction $x \mapsto \sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est continue sur \mathbb{R}^+

3- Montrer que la fonction $x \mapsto \sum_{n>1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est dérivable sur \mathbb{R}_+^* . et calculer sa dérivée.

La série des dérivées est la série $\sum_{n\geq 1} (-1)^n e^{-nx}$ est normalement convergente sur tout intervalle $[a,+\infty[$,

 $|(-1)^n e^{-nx}| \le e^{-na}$ (terme d'une série géométrique convergente $\forall x \in [a, +\infty[$, donc uniformément convergente sur \mathbb{R}_+^* , (pour x=0, il n'y a pas de convergence).

la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est uniformément convergente d'aprés 1) donc est convergente pour au moins un point de \mathbb{R}_+^* .

D'où la série $\sum_{- > 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est dérivable sur \mathbb{R}_+^* de dérivée

$$x \mapsto \sum_{n>1} (-1)^n e^{-nx} = -\frac{e^{-x}}{1 + e^{-x}}$$

(série géometrique de raison $-e^{-x}$).

4- En déduire que pour tout x > 0, on a :

$$\sum_{n>1} \frac{(-1)^{n+1}}{n} e^{-nx} = \ln(1 + e^{-x})$$

On a:

$$\forall x > 0, \quad \sum_{n>1} (-1)^n e^{-nx} = -\frac{e^{-x}}{1 + e^{-x}}$$

Donc

$$\forall x > 0, \quad \int_0^x \sum_{n \ge 1} (-1)^n e^{-nt} dt = \int_0^x -\frac{e^{-t}}{1 + e^{-t}} dt$$

On peut inverser \int et \sum puis qu'il y a une convergence uniformément de la série donc:

$$\sum_{n>1} (-1)^n \int_0^x e^{-nt} dt = \int_1^{e^{-x}} \frac{du}{1+u} = \ln(1+e^{-x})$$

On en déduit alors que

$$\sum_{n>1} \frac{(-1)^{n+1}}{n} e^{-nx} = \ln(1 + e^{-x}) \qquad \forall x > 0$$

on a alors

$$\lim_{x \to 0} \sum_{n > 1} \frac{(-1)^{n+1}}{n} e^{-nx} = \lim_{x \to 0} \ln(1 + e^{-x}) = \ln(2)$$

D'autre part la série $\sum_{n \ge 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est continue au point 0 donc

$$\lim_{x \to 0} \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} e^{-nx} = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} \lim_{x \to 0} e^{-nx} = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} = \ln(2)$$

On a alors

$$\forall x \ge 0$$
 $\sum_{n>1} \frac{(-1)^{n+1}}{n} e^{-nx} = \ln(1 + e^{-x})$