Using the constraints

 $\begin{cases}
\operatorname{Tr}^{(i)}(\rho_i) = 1 & \to a + b = 1 \\
\operatorname{Tr}^{(i)}((\rho_i S_i) = m_i & \to a - b = m_i
\end{cases}$ (1)

November, 2019. Compiled: Wednesday 11th December, 2019.

Wednesday 27th

Lecture 13.

where a, b are the functions of the order parameter. In that case we have not to write the functions for all the i. For $S_i = 1$ we have one value, for all the other values another one.

The results of the previous equation are:

$$\begin{cases}
a = \frac{1 - m_i}{2} \\
b = \frac{1 + m_i}{2}
\end{cases}$$
(2)

Hence,

$$\rho_i = \frac{1 - m_i}{2} (1 - \delta_{S_i, -1}) + \frac{1 + m_i}{2} \delta_{S_i, -1}$$
(3)

In matrix form

$$\begin{pmatrix}
\frac{(m_i+1)}{2} & 0\\
0 & \frac{(1-m_i)}{2}
\end{pmatrix}$$
(4)

Mean-field energy term

Let us consider the Hamiltonian

$$\langle \mathcal{H} \rangle_{\rho_{MF}} = \left\langle -J \sum_{\langle ij \rangle} S_i S_j - \sum_i H_i S_i \right\rangle_{\rho_{MF}} = -J \sum_{\langle ij \rangle} \left\langle S_i S_j \right\rangle_{\rho_{MF}} - \sum_i H_i \left\langle S_i \right\rangle_{\rho_{MF}} \tag{5}$$

Since

$$\rho_{MF} = \prod_{i=1}^{N} \rho_i \tag{6}$$

the term $\langle S_i S_j \rangle_{\rho_{MF}}$ will trasform into

$$\langle S_i S_j \rangle_{\rho_{MF}} = \langle S_i \rangle_{\rho_{MF}} \langle S_j \rangle_{\rho_{MF}} \tag{7}$$

Moreover, for all function g of S_i we can write

$$\langle g(S_i) \rangle_{\rho_{MF}} = \operatorname{Tr}^{(i)}(g(S_i)\rho_i) = \sum_{S_i = \pm 1} g(S_i)\rho_i$$

$$= \sum_{S_i = \pm 1} g(S_i) \left[\frac{1 + m_i}{2} \delta_{S_i, 1} + \frac{1 - m_i}{2} (1 - \delta_{S_i, 1}) \right]$$

$$= \frac{1 + m_i}{2} g(1) + \frac{1 - m_i}{2} g(-1)$$
(8)

Note that, if $g(S_i) = S_i$,

$$\langle S_i \rangle_{\rho_{MF}} = m_i$$

as expected.

Hence,

$$\langle \mathfrak{H} \rangle_{\rho_{MF}} = -J \sum_{\langle ij \rangle} m_i m_j - \sum_i H_i m_i$$
 (9)

Remark. This has the form of the original Hamiltonian where S_i have been replaced by their statistical averages.

The entropy term is:

$$\langle \ln \rho \rangle_{\rho_{MF}} = \operatorname{Tr}(\rho \ln \rho) \stackrel{MF}{=} \sum_{i} \operatorname{Tr}^{(i)}(\rho_{i} \ln \rho_{i})$$

$$= \sum_{i} \left[\frac{1 + m_{i}}{2} \ln \frac{1 + m_{i}}{2} + \frac{1 - m_{i}}{2} \ln \frac{1 - m_{i}}{2} \right]$$
(10)

The total free energy becames:

$$F_{\rho_{MF}} = \langle \mathcal{H} \rangle_{\rho_{MF}} + k_B T \langle \ln \rho \rangle_{\rho_{MF}}$$

$$= -J \sum_{\langle ij \rangle} m_i m_j - \sum_i H_i m_i + k_B T \sum_i \left[\frac{1 + m_i}{2} \ln \frac{1 + m_i}{2} + \frac{1 - m_i}{2} \ln \frac{1 - m_i}{2} \right]$$
(11)

We now look for the values $m_i = \bar{m}_i$, that minimizes $F_{\rho_{MF}}$ (equilibrium phases):

$$\left. \frac{\partial F_{\rho_{MF}}}{\partial m_i} \right|_{m_i = \bar{m}_i} = 0 \tag{12}$$

This gives:

$$0 = -J \sum_{j \in n.n. \text{ of } i} \bar{m}_j - H_i + \frac{k_B T}{2} \ln \left[\frac{1 + \bar{m}_i}{1 - \bar{m}_i} \right]$$
 (13)

To solve it, remember that

$$\tanh^{-1}(x) = \frac{1}{2} \ln \frac{1+x}{1-x} \quad (TODO) \tag{14}$$

Hence,

$$k_B T \tanh^{-1}(\bar{m}_i) = J \sum_{j \in n.n. \text{ of } i} \bar{m}_j + H_i$$
(15)

which implies

$$\bar{m}_i = \tanh\left[(k_B T)^{-1} \left(J \sum_{j \in n.n. \text{ of } i} \bar{m}_j + H_i \right) \right]$$
(16)

Defining

$$z\bar{m}_i \equiv \sum_{j \in n.n. \text{ of } i} \bar{m}_j \tag{17}$$

we get

$$\bar{m_i} = \tanh\left[\beta(Jz\bar{m_i} + H_i)\right] \tag{18}$$

this is the Bragg-William approximation.

Example 1 (Ising antiferromagnet in an external field). Consider the model

$$\mathcal{H} = +J\sum_{\langle ij\rangle} S_i S_j - H\sum_i S_i, \tag{19}$$

Remark. Note the + before J. This means that the interactions are antiferromagnetic.

• If H = 0 ferromagnetic and antiferromagnetic behave similarly when the interactions are between nearest neighbours on a bipartite lattice, i.e. a lattice that can be divided into two sublattices, say A and B, such that a A site has only B neighbours and a B site only A ones.

(a) Square lattice is bipartite.

(b) Triangular lattice is not bipartite.

Figure 1

Remark. FCC is not bipartite, while BCC it is. See Figure 1.

If the lattic is bipartite and J_{ij} is non zero only when i and j belong to different sublattices (they do not have to be only n.n.!), one can redefine the spins such that

$$S_{j}' \begin{cases} +S_{j} & j \in A \\ -S_{j} & j \in B \end{cases}$$
 (20)

Clearly, $S_i'S_j' = -S_iS_j$. It is like if the J_{ij} have changed sign and we are formally back to ferromagnetic model for the two sublattices:

$$\mathcal{H}^* = -J \sum_{\langle ij \rangle} S_i' S_j' \tag{21}$$

i.e. a ferromagnetic Ising.

 In presence of a magnetic field H, we need to reverse its sign when applied to sites B.

The thermodynamic of a ferromagnetic Ising model on a bipartite lattice in a uniform magnetic field H is identical to the one of the Ising antiferromagnetic model in presence of the so called *staggered field*, i.e. $H_A = H$ and $H_B = -H$.

$$\mathcal{H}^*[S] = -J \sum_{\langle r_A r_B \rangle} S(r_A) S(r_B) - H \sum_{r_A} S(r_A) + H \sum_{r_B} S(r_B), \quad J > 0, H > 0$$
(22)

The average magnetization per spin is

$$m \equiv \frac{1}{2}(m_A + m_B) \tag{23}$$

while

$$m_S = \frac{1}{2}(m_A - m_B) \tag{24}$$

is the staggered magnetization.

In order to use the variational density matrix method for this problem we consider two independent variational parameters m_A and m_B for sublattice A and B respectively. On each sublattice, the model is like the standard Ising

$$\begin{cases} \rho_A^{(1)}(S) = \frac{1+m_A}{2} \delta_{S,1} + \frac{1-m_A}{2} \delta_{S,-1} \\ \rho_B^{(1)}(S) = \frac{1+m_B}{2} \delta_{S,1} + \frac{1-m_B}{2} \delta_{S,-1} \end{cases}$$
(25)

Remark. Note that, being H uniform, $\langle S_i \rangle = m$, i.e. does not depend on i. Same for the 1-particle distribution functions $\rho_A^{(1)}(S)$ and $\rho_B^{(1)}(S)$.

By performing the calculation for the terms

$$\langle \mathcal{H} \rangle_{\rho_{MF}} = -J \sum_{\langle ij \rangle} \langle S_i S_j \rangle_{\rho_{MF}} - H \sum_i \langle S_i \rangle_{\rho_{MF}}$$
 (26)

$$\langle \ln \rho \rangle_{\rho_{MF}} = \sum_{i} \operatorname{Tr}^{(1)}(\rho_{i} \ln \rho_{i})$$
 (27)

as before, but remembering to partition the procedure into the two sublattices A and B, one can show (TO DO) that the variational free energy is given by

$$\frac{F(m_A, m_B)}{N} = \frac{z\hat{J}}{2}m_A m_B - \frac{1}{2}H(m_A + m_B) - \frac{1}{2}k_B T s(m_A) - \frac{1}{2}k_B T s(m_B) \tag{28}$$

where the entropy is given by

$$s(m) = \left[\frac{1+m}{2}\ln\left(\frac{1+m}{2}\right) + \frac{1-m}{2}\ln\left(\frac{1-m}{2}\right)\right]$$
(29)

By differentiating $\frac{F}{N}$ with respect to m_A and m_B , one gets

$$\frac{\partial(F/N)}{\partial m_A} = 0 \qquad \Rightarrow m_B = \frac{H}{z\hat{J}} - \frac{k_B T}{z\hat{J}} \ln\left(\frac{1 + m_A}{1 - m_A}\right) \tag{30a}$$

$$\frac{\partial (F/N)}{\partial m_B} = 0 \qquad \Rightarrow m_A = \frac{H}{z\hat{J}} - \frac{k_B T}{z\hat{J}} \ln \left(\frac{1 + m_B}{1 - m_B} \right)$$
 (30b)

As before, since

$$\tanh^{-1}(x) = \frac{1}{2} \ln \frac{1+x}{1-x} \tag{31}$$

these self-consisten equations can be written as

$$\begin{cases}
m_A = \tanh\left(\beta \left(H - z\hat{J}m_B\right)\right) \\
m_B = \tanh\left(\beta \left(H - z\hat{J}m_A\right)\right)
\end{cases}$$
(32)

The sites $\in A$ experience an internal field $H_{A,MF} = -z\hat{J}m_B$ from the B neighbours and viceversa for the sites $\in B$.

0.0.1 Second approach: Blume-Emery-Griffith model

We apply this approach to the so called Blume-Emery-Griffith model. This is a spin model with vacancies that describes the phase diagram and the critical properties of an interacting system displaying a *tricritical point*. Perhaps the most famous of these systems is the $\mathrm{He}^3-\mathrm{He}^4$ mixture undergoing a fluid-superfluid transition.

Remark. $\mathrm{He^4}$ is a non radiative isotope with two protons and two neutrons. Roughly 1/4 of the universe matter is $\mathrm{He^4}!$ From a quantum statistical point of view $\mathrm{He^4}$ is a boson.

A gas of He⁴ undergoes a fluid-superfluid transition at $T_{\lambda} = 2.17K$ and a $P = P_0$. It is known as λ -transition since at $T \sim T_{\lambda}$ the specific heat C(T) behaves as in Figure 2a.

Remark. The λ -transition is a genuine critical point (second order). For $T < T_{\lambda}$, He⁴ is in the superfluid phase and it can be described by a two-fluids model in which one component has zero viscosity and zero entropy.

Figure 2

Now, the question is: what happens to the system if a given amount of He^3 is inserted to form a $He^3 - He^4$ mixture? He^3 is a non-radiative isotope with 2 protons and 1 neutron. From a quantum statistical point of vieq is a *fermion*.

Hence, if inserted in a system of He^4 it will "dilute" its bosonic property. Then, one expects that T_{λ} decreases. Indeed, denoting by x the concentration of He^3 one observes

$$T_{\lambda} = T_{\lambda}(x) \tag{33}$$

with $T_{\lambda}(x)$ that decreases as x increases.

At the same time, at a given point the mixture undergoes a separation between a phase rich and a phase poor of He³. In particular one observes that, for

$$x > x_t = \frac{n_3}{n_3 + n_4} \sim 0.67 \tag{34}$$

the fluid-superfluid transition becames first order! It is accompained by a phase separation. The point (x_T, T_t) is a *tricritical point*, i.e. a critical point that separates a line of second order transition from a line of first order transition.

BEG Model

The BEG Model is the model of a diluited ferromagnetic system. The spins are $S_i = \pm 1, 0$ (similar to a lattice gas model), we have $S_i = \pm 1$ for He⁴ atom at site i, $S_i = 0$ for He³ atom at site i.

Let us consider:

- $\langle S_i \rangle = m_i$, order parameter.
- $\langle S_i^2 \rangle$ is the density He⁴ atoms.

Let us define the density of He³ atoms as

$$x \equiv 1 - \left\langle S_i^2 \right\rangle \tag{35}$$

The chemical potentials difference is

$$\Delta \propto \mu_3 - \mu_4 \tag{36}$$

and controls the number of He³ atoms.

If:

 $\bullet \ \Delta \to -\infty \quad \Rightarrow x \to 0.$

•
$$\Delta \to +\infty \Rightarrow x \to 1$$
.

and the order parameter for the λ -transition becomes

$$\langle S_i \rangle = \begin{cases} 0 & T > T_\lambda \\ m & T < T_\lambda \end{cases} \tag{37}$$

The minimal version of the model is:

$$\mathcal{H} = -J \sum_{\langle ij \rangle}^{N} S_i S_j + \Delta \sum_{i=1}^{N} S_i^2 - \Delta N$$
(38)

Remark. The ΔN term is a typical term for a gas in gran canonical ensemble.

Variational mean field approach to BEG

Since $\rho_{MF} = \prod_i \rho_i$,

$$G(T, J, \Delta) = \langle \mathcal{H} \rangle_{\rho_{MF}} + k_B T \sum_{i} \text{Tr}(\rho_i \ln \rho_i)$$
(39)

where the first term can be written as

$$\langle \mathfrak{H} \rangle_{\rho_{MF}} = -J \sum_{\langle ij \rangle} \langle S_i S_j \rangle + \Delta \sum_i \langle S_i^2 \rangle - N \Delta$$

$$\stackrel{MF}{\simeq} -J \sum_{\langle ij \rangle} \langle S_i \rangle \langle S_j \rangle + \Delta \sum_i \langle S_i^2 \rangle - \Delta N$$

$$(40)$$

where

$$\langle S_i \rangle = \langle S_j \rangle \equiv m \tag{41}$$

Hence,

$$G(T, J, \Delta)_{MF} = -\frac{1}{2}NJz(\operatorname{Tr}_{S_i}(\rho_i S_i))^2 + N\Delta\operatorname{Tr}_{S_i}(\rho_i S_i^2) - N\Delta + Nk_BT\operatorname{Tr}_{S_i}(\rho_i \ln \rho_i)$$
(42)

We noe minimize $G(T, J, \Delta)_{MF}$ with respect to the function ρ_i with constraint $\text{Tr}_{S_i}(\rho_i) = 1$:

$$\frac{\mathrm{d}G}{\mathrm{d}\rho_i} = 0\tag{43}$$

Let us consider each term

$$\frac{\mathrm{d}}{\mathrm{d}p_i}(\mathrm{Tr}(\rho_i S_i))^2 = 2(\mathrm{Tr}(\rho_i S_i))S_i = 2\langle S_i \rangle S_i = 2mS_i$$
(44a)

$$\frac{\mathrm{d}}{\mathrm{d}p_i} \left(\mathrm{Tr} \left(\rho_i S_i^2 \right) \right) = S_i^2 \tag{44b}$$

$$\frac{\mathrm{d}}{\mathrm{d}p_i}(\mathrm{Tr}(\rho_i \ln \rho_i)) = \ln \rho_i + 1 \tag{44c}$$

Remark. Remind that $\rho_i = \rho^{(1)}(S_i)$.

$$0 = -JNzmS_i + \Delta NS_i^2 + Nk_BT \ln \rho_i + Nk_BT \tag{45}$$

Dividing by Nk_BT ,

$$\ln \rho_i \equiv \ln \rho^{(1)}(S_i) = \beta J z m S_i - \beta \Delta S_i^2 - 1 \tag{46}$$

which implies

$$\rho^{(1)}(S_i) = A^{-1} e^{\beta(zJmS_i - \Delta S_i^2)} \tag{47}$$

Remark. In A^{-1} it is included the term e^{-1} .

The constant A can be found by imposing $\operatorname{Tr}_{S_i} \rho^{(1)}(S_i) = 1$, (TO DO)

$$A = 1 + 2e^{-\beta\Delta}\cosh(\beta z J m) \tag{48}$$

Given $\rho^{(1)}(S_i)$ it is possible to show (TO DO)

$$\langle S_i^2 \rangle = \text{Tr}_{S_i}(\rho_i S_i^2) = \frac{1}{A} 2e^{-\beta \Delta} \cosh(\beta z J m)$$
 (49)

and

$$x = 1 - \langle S_i^2 \rangle = \frac{A - 2e^{-\beta\Delta} \cosh(\beta z J m)}{A} \quad \Rightarrow x = \frac{1}{A}$$
 (50)

Hence,

$$\frac{G(T,\Delta,m,J)}{N} = \frac{z}{2}Jm^2 - \Delta - k_B T \ln A \tag{51}$$

Remark. Now we should minimize $G(T, \Delta, m, J)$ with respect to m to obtain the equilibrium phases.

The expansion for small values of m is

$$\cosh(t) = 1 + \frac{t^2}{2} + \frac{t^4}{24}, \quad \ln(1+t) = t - \frac{t^2}{2}$$
 (52)

(TO DO)

$$G(T, \Delta, J, m) = a_0(T, \Delta) + a(T, \Delta)m^2 + b(T, \Delta)m^4 + \frac{c(T, \Delta)}{6}m^6$$
 (53)

where

$$\begin{cases} a(T,\Delta) = \frac{zJ}{2} \left(1 - \frac{zJ}{\delta k_B T} \right) \\ b(T,\Delta) = k \left(1 - \frac{\delta}{3} \right) \\ c(T,\Delta) > 0 \end{cases}$$
 (54)

and the parameter

$$\delta \equiv 1 + \frac{e^{\beta \Delta}}{2} = \delta(T, \Delta) \tag{55}$$

is related to the concentration of $He^3 - x$. This can be seen as follows.

Since

$$x(T, \Delta, J) \equiv 1 - \langle S_i^2 \rangle = \frac{1}{A} = \left(1 + 2e^{-\beta \Delta} \cosh(\beta z J m)\right)^{-1}$$
 (56)

In the disordered phase (m=0) one has

$$x(T, \Delta, J) = \left(1 + 2e^{-\beta \Delta}\right)^{-1} = \frac{\delta - 1}{\delta}$$
(57)

By combining this result with the order-disorder transition

$$a(T_c(\Delta)) = \frac{zJ}{2} \left(1 - \frac{zJ}{\delta k_B T_c} \right) = 0, \quad \left[\delta = \frac{zJ}{k_B T_c} \right]$$
 (58)

one obtains (TO DO)

$$T_c(x) = T_c(0)(1-x) (59)$$

There is a dependence of the critical temperature λ on the He³ concentration x. The tricritical point is the one that satisfies the conditions

$$\begin{cases} a(T_t, \Delta_t) = 0 \\ b(T_t, \Delta_t) = 0 \end{cases} \Rightarrow \begin{cases} \delta_t = \frac{zJ}{k_B T_t} \\ \delta_t = 3 \end{cases}$$
 (60)

$$x(T_t, \Delta_t) = \frac{\delta_t - 1}{\delta_t} = \frac{2}{3} \tag{61}$$

Remark. Experimental estimate of x_t is ~ 0.67 .

Exercise 1. Expand the free-energy per site

$$\frac{G}{N} = \frac{z}{2}Jm^2 - \Delta - k_B T \ln A \tag{62}$$

where $A = 1 + 2e^{-\beta\Delta} \cosh(\beta z J m)$ for small values of m.

$$x \equiv \beta z J m, \quad B \equiv 2e^{-\beta \Delta}$$
 (63)

Since $\cosh x \simeq 1 + \frac{x^2}{2} + \frac{x^4}{24}$,

$$A = 1 + B \cosh x \simeq 1 + B \left(1 + \frac{x^2}{2} + \frac{x^4}{24} \right) \tag{64}$$

$$\ln A = \ln \left(1 + B + \frac{Bx^2}{2} + \frac{Bx^4}{24} \right)$$

$$\simeq \ln \left[(1+B) \left(1 + \frac{B}{2(1+B)} x^2 + \frac{B}{24(1+B)} x^4 \right) \right]$$

$$= \ln (1+B) + \ln (1+t)$$
(65)

where

$$t \equiv \frac{B}{2(1+B)}x^2 + \frac{B}{24(1+B)}x^4 \tag{66}$$

Let us first consider the term

$$\frac{B}{1+B} = \frac{2e^{-\beta\Delta}}{1+2e^{-\beta\Delta}} = \frac{2}{2+e^{\beta\Delta}} = \delta^{-1}$$
 (67)

$$\Rightarrow \ln A = \ln (1+B) + \frac{x^2}{2\delta} + \left(\frac{1}{24\delta} - \frac{1}{8\delta^2}\right)x^4 - \frac{1}{24\delta^2}x^6$$
 (68)

Remark. We have that $x \equiv \beta z Jm$.

$$-\frac{\ln A}{B} + \frac{z}{2}Jm^2 - \Delta \simeq a_0(T, \Delta) + \left(\frac{z}{2}J - \frac{\beta z^2 J^2}{2\delta}\right)m^2 + \left(\frac{1}{8\delta} - \frac{1}{24\delta}\right)\beta^3 z^4 J^4 m^4 + \frac{1}{24\delta^2}\beta^5 z^6 J^6 m^6$$
(69)

$$G(T, \Delta, J, m) = a_0(T, \Delta) + a(T, \Delta)m^2 + b(T, \Delta)m^4 + c(T, \Delta)m^6$$

$$(70)$$

where

$$a(T, \Delta) = \frac{zJ}{2} \left(1 - \frac{\beta zJ}{\delta} \right) \tag{71a}$$

$$b(T, \Delta) = \frac{\beta^3 z^4 J^4}{8\delta} \left(\frac{1}{\delta} - \frac{1}{3} \right) = \frac{\beta^3 z^4 J^4}{8\delta^2} \left(1 - \frac{\delta}{3} \right)$$
 (71b)

$$c(T, \Delta) = \frac{\beta^5 z^6 J^6}{24\delta^2} > 0 \tag{71c}$$

0.0.2 Mean field again

Another way to introduce the variational approach and the mean field approximation often discussed starts from the general expression of the variational free energy

$$F_{var} = \langle \mathcal{H} \rangle_{\rho_{TR}} + k_B T \langle \ln \rho_{TR} \rangle_{\rho_{TR}}$$
 (72)

If one assumes that the family of trial distribution is of the Gibbs-Boltzmann form

$$\rho_{TR} = \frac{e^{-\beta \mathcal{H}_{TR}}}{Z_{TR}} \tag{73}$$

with

$$Z_{TR} = e^{-\beta F_{TR}} = \sum_{\{\Phi_i\}} e^{-\beta \mathcal{H}_{TR}(\{\Phi_i\})}$$
 (74)

then, since

$$\ln \rho_{TR} = -\beta \mathcal{H}_{TR} - \ln Z_{TR} \tag{75}$$

we have

$$k_B T \langle \ln \rho_{TR} \rangle_{\rho_{TR}} = k_B T \left\langle \frac{-\mathcal{H}_{TR}}{k_B T} \right\rangle + k_B T \underbrace{\langle -\ln Z_{TR} \rangle}_{\beta F_{TR}}$$
 (76)

$$k_B T \langle \ln \rho_{TR} \rangle_{\rho_{TR}} = \langle -\mathcal{H}_{TR} \rangle + F_{TR}$$
 (77)

$$\Rightarrow F_{var} = \langle \mathcal{H} \rangle_{\rho_{TR}} - \langle \mathcal{H}_{TR} \rangle_{\rho_{TR}} + F_{TR} = \langle \mathcal{H} - \mathcal{H}_{TR} \rangle_{\rho_{TR}} + F_{TR}$$
 (78)

Clearly, $F \leq F_{var}$ and one has to look for the minima of F_{var} by varying ρ_{TR} . Within this approach, the mean field approximation is still given by

$$\rho_{TR}^{MF}(\Phi_1, \dots, \Phi_N) = \prod_{i=1}^{N} \rho_{TR}^{(1)}(\Phi_i)$$
 (79)

that in this case becomes

$$\prod_{i} \rho_{TR}^{(1)}(\Phi_i) = \frac{1}{Z_{TR}^{MF}} e^{-\beta \sum_{i} b_i \Phi_i}$$
(80)

and

$$Z_{TR} = \sum_{\{\Phi\}} e^{-\beta \sum_i b_i \Phi_i} \tag{81}$$

where b_i are the variational parameters.

$$\mathcal{H}_{TR} = -\sum_{i} b_i \Phi_i \tag{82}$$

If we consider again the Ising model

$$\mathcal{H} = -J \sum_{\langle ij \rangle} S_i S_j - H \sum_i S_i \tag{83}$$

$$F_{var} = \langle \mathcal{H} - \mathcal{H}_{TR} \rangle_{\rho_{TR}} + F_{TR}$$

$$= F_{TR} + \left\langle \left(-J \sum_{\langle ij \rangle} S_i S_j - H \sum_i S_i \right) - \left(-\sum_i b_i S_i \right) \right\rangle_{\rho_{TR}}$$

$$= F_{TR} + \left\langle -J \sum_{\langle ij \rangle} S_i S_j + \sum_i (b_i - H) S_i \right\rangle_{\rho_{TR}}$$

$$= F_{TR} - J \sum_{\langle ij \rangle} \langle S_i S_j \rangle_{\rho_{TR}} + \sum_i (b_i - H) \langle S_i \rangle_{\rho_{TR}}$$

$$(84)$$

Since $\rho_{TR} = \prod_i \rho_i$,

$$\langle S_i S_j \rangle_{\rho_{TR}} = \langle S_i \rangle_{\rho_{TR}} \langle S_j \rangle_{\rho_{TR}} \tag{85}$$

$$F_{var} = F_{TR} - J \sum_{\langle ij \rangle} \langle S_i \rangle_{\rho_{TR}} \langle S_j \rangle_{\rho_{TR}} + \sum_i (b_i - H) \langle S_i \rangle_{\rho_{TR}}$$
(86)

$$\frac{\partial F_{var}}{\partial b_i} = 0, \quad \forall i \tag{87}$$

$$0 = \frac{\partial F_{var}}{\partial b_i} = \left[-J \sum_{j \, n.n. \, i} \langle S_i \rangle_{\rho_{TR}} + b_i - H \right] \frac{\partial \langle S_i \rangle}{\partial b_i}$$
(88)

or

$$b_i = J \sum_{j \, n.n. \, i} \langle S_j \rangle_{\rho_{TR}} + H \tag{89}$$

$$\langle S_i \rangle_{\rho_{TR}} = \frac{1}{Z_{TR}} \sum_{\{S\}} S_i e^{\beta \sum_k S_k b_k} = \frac{\prod_k \sum_{S_k} S_i e^{\beta S_k b_k}}{\prod_k \sum_{S_k} e^{\beta S_k b_k}}$$

$$= \frac{\sum_{S_i} S_i e^{\beta S_i b_i}}{\sum_{S_i = \pm 1} e^{\beta S_i b_i}} = \frac{\cosh(\beta b_i)}{\sinh(\beta b_i)}$$

$$= \tanh(\beta b_i)$$
(90)

$$b_i = J \sum_{j,n,n,i} \tanh(\beta b_j) + H \tag{91}$$

Exercise 2. Consider again the antiferromagnetic Ising model

$$\mathcal{H}[\{S\}] = -J \sum_{\langle \vec{\mathbf{r}}_A \vec{\mathbf{r}}_B \rangle} S(\vec{\mathbf{r}}_A) S(\vec{\mathbf{r}}_B) - H \sum_{\vec{\mathbf{r}}_A} S(\vec{\mathbf{r}}_A) + H \sum_{\vec{\mathbf{r}}_B} S(\vec{\mathbf{r}}_B)$$
(92)

where J > 0 and H > 0.

- $\vec{\mathbf{r}}_A$ denotes the site on the A sublattice.
- $\vec{\mathbf{r}}_B$ denotes the site on the B sublattice.

Let us find again the mean-field solution but now using the variational ansatz

$$F \le F_{var} = \langle \mathcal{H} \rangle_{\rho_{TR}} - \langle \mathcal{H}_{TR} \rangle_{\rho_{TR}} + F_{TR} = \langle \mathcal{H} - \mathcal{H}_{TR} \rangle_{\rho_{TR}} + F_{TR}$$
(93)

Remark. Since the problem can be splitted in two sublattices, it is convenient to use

$$\mathcal{H}_{TR} = -H_A \sum_{r_A} S(r_A) - H_B \sum_{r_B} S(r_B)$$
 (94)

• Show that F_{var} has the following expression:

$$F_{var} = F_{TR}(\beta H_A, \beta H_B) - 4NJ \langle S_A \rangle_{\rho_{TR}} \langle S_B \rangle_{\rho_{TR}} - \frac{1}{2} NH \left(\langle S_A \rangle_{\rho_{TR}} - \langle S_B \rangle_{\rho_{TR}} \right) + \frac{1}{2} N \left(H_A \langle S_A \rangle_{\rho_{TR}} + \langle S_B \rangle_{\rho_{TR}} \right)$$
(95)

where

$$\langle S_A \rangle_{\rho_{TR}} \equiv m_A + n$$
 (96a)

$$\langle S_B \rangle_{\rho_{TR}} \equiv m_B - n$$
 (96b)

with $m = m_A + m_B$, and

$$m_A = \tanh(\beta H - 4\beta J m_B) \tag{97a}$$

$$m_B = \tanh(\beta H - 4\beta J m_A) \tag{97b}$$

 \bullet Expand the free energy F_{var} in powrs of m of the form

$$F_{var} = A + Bm^2 + cm^4 + O(m^6) (98)$$

and find the explicit expression of A,B and C as a function of T,H and n.