Solving Linear Systems of Equations

HHL Quantum Algorithm

(A. Harrow, A. Hassidim, and S. Lloyd (Phys. Rev. Lett. 15, 150502 (2009))

Variational Quantum Linear Solver

(Carlos Bravo-Pietro et. al. (arXiv:1909.05820v2 [quant-ph]))

Variational Quantum Algorithm for solving Poisson Equation

(H Liu et. al., Phys. Rev. A 104, 022418 (2021))

1

• LSE (Linear System of Equations) represented in matrix form:

Problem: for matrix $\pmb{A} \in \mathbb{C}^{N \times N}$ and vector $\vec{b} \in \mathbb{C}^N$ find vector $\vec{x} \in \mathbb{C}^N$ that solves the equation: $\pmb{A}\vec{x} = \vec{b}$

- HHL algorithm requires that matrix ${\bf A}$ is s-sparse, i.e. it has at most s non-zero coefficients per row or column and has a low condition number ($k=\lambda_{max}/\lambda_{min}$). It also assumes that the user is not interested in the full solution but only in the outcome when a function $F(\vec{x})$ is applied.
- HHL is often used in qML algorithms, e.g. qSVM (quantum Support Vector Machine)
- HHL takes advantage of the QPE (Quantum Phase Estimation) algorithm, which rotates a set of qubits by the eigenphases of an applied unitary operator *U*.

2

HHL Schematics:

Size of quantum registers:

- n_l to store eigenvalues of **A**
- n_b containing the solution vector
- n_a auxiliary (= n_b)

(Note: the problem size is $N = 2^{n_b}$)

- 1. Load $|b\rangle$: so $|0\rangle_{n_b} \to |b\rangle_{n_b}$
- $\text{2. Apply QPE with } \ U=e^{iAt}:=\sum_{j=0}^{N-1}e^{i\lambda_jt}|u_j\rangle\langle u_j| \quad \text{ so the register state is changed to: } \ \sum_{j=0}^{N-1}b_j|\lambda_j\rangle_{n_l}|u_j\rangle_{n_b}$
- 3. Add a scratch qubit and apply a rotation conditioned on $|\lambda_j\rangle$: $\sum_{j=0}^{N-1}b_j|\lambda_j\rangle_{n_l}|u_j\rangle_{n_b}\left(\sqrt{1-\frac{C^2}{\lambda_j^2}}|0\rangle+\frac{C}{\lambda_j}|1\rangle\right)$
- 4. Apply inverse QPE (rotates $|\lambda_j
 angle_{n_l}
 ightarrow |0
 angle_{n_l}$)
- 5. Measure scratch qubit and repeat steps 2-4 until the outcome is $|1\rangle$
- 6. Apply the observable M that is supposed to be measured: $F(\vec{x}) = \langle \vec{x} | M | \vec{x} \rangle$

3

VQLS: hybrid quantum-classical algorithm

Concept: prepare a state $|x\rangle$ such that $A|x\rangle$ is proportional to $|b\rangle$; to this end define a gate sequence $V(\alpha)$ that prepares a possible solution: $|x(\alpha)\rangle = V(\alpha)|0\rangle$.

VQLS input preparation: a) construct ${\bf A}$ as sum of unitary operators ${\bf A}_l$ with complex coeffs. c_l b) provide unitary operator that transforms $|0\rangle_{n_b} \rightarrow |b\rangle$

Parameters α are provided to the quantum circuit, which outputs a cost function $C(\alpha)$.

If $C(\alpha) > \gamma$, the algorithm is run again with updated parameters: otherwise the algorithm terminates, and the ansatz is calculated with the last (optimal) parameters, this gives the state vector $|x\rangle$ (= normalized form of x).

4

VQA for Poisson Equation

Similar approach like VQLS!

Potential energy is minimized (cost function): $E(\boldsymbol{\theta}) = \left\langle \psi(\boldsymbol{\theta}) \left| A \left(I - \left| f \right\rangle \left\langle f \right| \right) A \left| \psi(\boldsymbol{\theta}) \right\rangle \right.$

Both, A and A², are decomposed!

Matrix A must be modified to account for boundary conditions (periodic, Dirichlet, Neumann);

e.g. 1-dim. Poisson Eq., discretized by finite element method with N nodes in one direction:

$$A_{\rm periodic} := \begin{bmatrix} 2 & -1 & 0 & \dots & 0 & -1 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & 0 & -1 & 2 & -1 \\ -1 & 0 & & \dots & 0 & -1 & 2 \end{bmatrix}$$

|0>

(a) Find an explicit decomposition of

(b) Input: ε , θ_0 , U and each item of A and A^2

 $\big\langle \varphi(\boldsymbol{\theta}) \big| A^2 \big| \varphi(\boldsymbol{\theta}) \big\rangle$

 $\langle \boldsymbol{b} | A | \varphi(\boldsymbol{\theta}) \rangle$

(c) Quantum computing

 $E(\boldsymbol{\theta}) = \langle \varphi(\boldsymbol{\theta}) | H | \varphi(\boldsymbol{\theta}) \rangle$

Update θ

(e) Output: $|\varphi(\boldsymbol{\theta}_{opt})\rangle \approx |x\rangle$

 $\delta E \leq \varepsilon$

(d) Classical computing

apply a classical

minimize $E(\theta)$

 $\delta E > \varepsilon$

5

Better quantum approach to Navier-Stokes?

Budinski, arXiv: 2103.03804v2 (2022)

- using stream function-vorticity formulation for fluid flow equations;
- Lattice Boltzmann Method used for solving numerically for single time steps;

Conceptually promising approach using Hamiltonian Simulation!

 \dots seems to be working on D2Q5 lattice.

Encoding of vorticity $\omega(\vec{x},0)$, stream function $\psi(\vec{x},0)$ and source term $S(\vec{x},0)$ appears difficult (approximate decomposition into unitaries);

Propagation step via quantum walk;

Measurement of macroscopic quantities from $|\phi_4(t)\rangle$.

6