Gesture Recognition using IMU sensors

Amitangshu Pal

IMU Sensors

Sensing, Communication and Networking for Smart Wireless Devices

Hand Movement Detection with Strokes

Hand Movement Detection with Strokes

Hand Movement Detection with Strokes

Sensing, Communication and Networking for Smart Wireless Devices

Audio Signal Matching

Doors and corners, kid. That's where they get you.

Doors and corners, kid. That's where they get you.

You walk into a room too fast, the room eats you.

Doors and corners, kid. That's where they get you.

Audio Signal Matching

Doors and Corners, Kid. That's where they get you.

You walk into the room too fast, the room eats you.

Doors and Corners, Kid. That's where they get you.(v2)

Doors and Corners, Kid. That's where they get you.(v3)

Audio Signal Matching

Doors and corners, kid. That's where they get you.

Calculating Euclidian Distance is not Sufficient

Walking Pattern Matching

Dynamic Time Warping

- How similar are two signals?
- Which points corresponding to one another?

ED: Produces poor similarity score

DTW: More intuitive similarity score → allows similar shapes to match even if they are out of phase

Src: Herman Kamper, 2021. Licensed under CC BY-SA 4.0

DTW for Audio Signal Matching

DTW for Posture Detection

- How similar are two signals?
- Which points corresponding to one another?

Inputs: $x_{1:N}$ and $y_{1:M}$

Cost matrix: $D \in \mathbb{R}^{N+1 \times M+1}$

<u>Initialization</u>: for i = 1 to N: $D_{i,0} = ∞$

for j = 1 to M: $D_{0,j} = \infty$

 $D_{0,0} = 0$

Calculate cost matrix:

for i = 1 to N:

for j = 1 to M:

$$D_{ij} = d(x_i, y_j) + \min \begin{bmatrix} D_{i-1,j-1} \\ D_{i-1,j} \\ D_{i,j-1} \end{bmatrix}$$

Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

0.5

 $y_{1:7}$

Inputs: $x_{1:N}$ and $y_{1:M}$

Cost matrix: $D \in \mathbb{R}^{N+1 \times M+1}$

<u>Initialization</u>: for i = 1 to N: $D_{i,0} = ∞$

for j = 1 to M: $D_{0,j} = \infty$

 $D_{0,0} = 0$

Calculate cost matrix:

for i = 1 to N:

for j = 1 to M:

$$D_{ij} = d(x_i, y_j) + \min \begin{bmatrix} D_{i-1,j-1} \\ D_{i-1,j} \\ D_{i,j-1} \end{bmatrix}$$

Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

0.5

 $y_{1:7}$

Inputs: $x_{1:N}$ and $y_{1:M}$

Cost matrix: $D \in \mathbb{R}^{N+1 \times M+1}$

<u>Initialization</u>: for i = 1 to N: $D_{i,0} = ∞$

for j = 1 to M: $D_{0,j} = \infty$

 $D_{0,0} = 0$

Calculate cost matrix:

for i = 1 to N:

for j = 1 to M:

$$D_{ij} = d(x_i, y_j) + \min \begin{bmatrix} D_{i-1,j-1} \\ D_{i-1,j} \\ D_{i,j-1} \end{bmatrix}$$

Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

0.5

 $y_{1:7}$

 $y_{1:7}$

0.5

DTW for Audio Signal Matching

Doors and corners, kid. That's where they get you.

Doors and corners, kid. That's where they get you.

293547478.0

Clip 4

You walk into a room too fast, the room eats you.

Doors and corners, kid. That's where they get you.

