Feedback — Quiz: Week Two

Help Center

You submitted this quiz on **Tue 19 May 2015 12:21 AM PDT**. You got a score of **6.00** out of **6.00**.

Question 1				
we feel that the var	iable	el are more accurate when a variable is included in the model, then onse that completes the sentence above.		
Your Answer	Score	Explanation		
is not significant				
● is✓significant	1.00	Good job! This may be used as criteria for whether or not you decide to keep a variable in your model during the model building process.		
is a good				
is normally distributed				
Total	1.00 / 1.00			

Question 2

The comparison of observed to predicted values using the likelihood function is based on which of the following expressions?

Your	Score	Explanation
∆nswer		

Likelihood of the saturated model		
•	✓ 1.00	Yes, you got it right!
Deviance		This is how much the predicted values 'deviate' from the observed value. The deviance statistic can also be used to compare multiple potential models. Those with the lowest deviance statistic are best.
Likelihood		
of the model		
Total	1.00 /	
	1.00	

Question 3

When conducting a likelihood ratio test, if you are comparing two models that differ by two variables, how many degrees of freedom will you have when estimating your chi-square (χ^2) test statistic?

Your Answer		Score	Explanation
0 1			
2	~	1.00	Great job!
			The degrees of freedom for comparison are the full model compared to the reduced model.
4			
Cannot be determined			
Total		1.00 /	
		1.00	

Question 4

When conducting a likelihood ratio test for the variable age, a p-value of .001 indicates which of the following?

Your Answer	Score	e Explanation
 Age should not be included in the model 		
Age is a significant predictor of the outcome	✓ 1.00	Great job. Because the p-value is less than .05 we know this is significant. This indicates that the model with age is a better model than the naïve model
Age is not a significant predictor of the outcome		
Not enough information provided		
Total	1.00 / 1.00	

Question 5

The covariance between a variable and itself (ex. covariance of age and age) is known as which of the following?

Your Answer		Score	Explanation
The variance	~	1.00	Great job!
The correlation			
The covariance			
Total		1.00 / 1.00	

Question 6

What do you need to do to the confidence interval of the logit in order to get the confidence interval for the probability?

Your Answer	Score	Explanation
Exponentiate the	1 .00	Nice work!
confidence interval for the logit		The coefficients you obtain are for the log-odds therefore you have to exponentiate.
Nothing, they are the same		
 Square the confidence interval for the logit 		
Total	1.00 /	
	1.00	