

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

(NASA-CR-161693) SPACE FABRICATION
DEMONSTRATION SYSTEM Quarterly Progress
Report, 27 Aug. - 15 Nov. 1977 (Grumman
Aerospace Corp.) 194 p HC A09/MP A01

N81-21090

Unclassified
CSCL 22A G3/12 20656

GRUMMAN

SPACE FABRICATION DEMONSTRATION SYSTEM

QUARTERLY PROGRESS REPORT NO. 3

August 27, 1977 - November 15, 1977

NASA-MSFC Contract NAS8-32472

PROPERTY OF
MANUFACTURER

NSS-SFDS-LR022
Contract NAS8-32472
November 30, 1977

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Attention: Erich E. Engler, COR
Code EP-13 Bldg. 4610

Subject: SPACE FABRICATION DEMONSTRATION SYSTEM - Quarterly
Progress Report No. 3 August 27, 1977 - November 15,
1977

Enclosures: (1) SFDS Program Review Vu-graph Presentation Copy -
25 October 1977
(2) TASK 1.2.2 Fabrication Facility Design

References: (a) SFDS - Monthly Progress Letter No. 5, September 30,
1977
(b) SFDS - Monthly Progress Letter No. 6, October 30,
1977

SUMMARY

The Space Fabrication Demonstration System (SFDS) program concluded three milestones during this third quarter year. Two were the successful completions of Incremental Critical Design Reviews (ICDRs) held on September 29, 1977 and October 26, 1977 and the third was a program review held on October 25, 1977, see enclosure (1). This report, supplemented by our previous monthly progress letters, references (a) and (b), constitutes our third quarterly report.

At the conclusion of the above ICDRs we had received concurrence to proceed with the fabrication of the following SFDS subsystems:

- o September 29, 1977 - Fabrication facility support structure
 - Control
- o October 26, 1977 - Clamp/weld block and welding
 - Truss cut-off

NSS-SFDS-LR022

During the next monthly reporting period, we anticipate successful completion of the third and last ICDR for the cross brace magazine/ dispenser subsystem and the rolling mill supply reel, guide and drive. Currently, this is scheduled to be held on December 14, 1977 with the location still to be determined.

The weekly telcon review continues to provide an excellent information base for problem resolution as they occur. These and the periodic meetings of NASA-MSFC and Grumman program personnel have assisted in keeping the program progressing smoothly.

No major problems are anticipated at this time which would prevent us from meeting our next major milestone, assembly of the SFDS by the end of February, 1978.

DISCUSSION

WBS 1.1 PROGRAM MANAGEMENT

Continued detailed review of tasks committed versus task completion has kept the SFDS program essentially on schedule. Our progress, in percent completion, where applicable, is shown in Figure 1. SFDS Master Program Schedule.

WBS 1.2 DESIGN and DEVELOPMENT

1.2.1 Structural Member Development

No further analysis effort is being conducted in this area at present. The test of the structural test truss has been delayed by the late receipt of the rolling mills and is being rescheduled for early next year. This delay will not impact our next major milestone, assembly of the fabrication facility.

1.2.2 Fabrication Facility Design

Enclosure (2) provides data associated with the status of the design of the beam builder (fabrication facility). Our effort during the next reporting period is directed toward completing the detail design for the cross brace magazine and dispensing subsystem and the rolling mill reel, feed and drive mechanisms.

NSS-SFDS-LR022

WBS 1.3 FABRICATION and ASSEMBLY

1.3.1 Detailed Parts

The difficulties associated with the roll forming tooling report in reference (b) has been partially resolved at this time. It is anticipated that full resolution will be completed within the next reporting period. The delay in the delivery of the rolling mills while impacting our schedule will not prevent us from meeting the next major milestone, completion of the assembly of the beam builder by the end of February, 1978.

Detailed parts fabrication for other long lead purchased parts continues at various vendors. No problems have been encountered that will effect on-time delivery of components needed to complete the various beam builder subsystems.

Fabrication of detailed parts at Grumman is discussed in enclosure (2).

1.3.2 Assembly

Assembly of the beam builder has been waiting for the delivery and assembly of detailed parts and components into the various subsystems. It is anticipated that assembly will be initiated during the next reporting period.

WBS 1.4 TEST

Acceptance testing of the Yoder rolling mills will take place during the next reporting period.

The revised magazine/dispensing subsystem mock-up was completed and operationally tested during this reporting period. It has now become the design to be incorporated in the beam builder. See enclosure (2) for more detailed information.

No other development tests were conducted during this reporting period.

WBS 1.5 FLIGHT DEMONSTRATION PLAN

We have initiated a comparison of the final design of the ground demonstration beam builder with that of the preliminary design configuration utilized in the preliminary Flight Demonstration Program Plan to better define space flight capability of each subsystem incorporated in the machine. We do anticipate receiving shortly NASA's questions and comments to this plan, cost and schedule which we submitted to them this past July.

NSS-SFDS-LR022

CONCLUSION

The SFDS program has progressed satisfactorily during this third quarter reporting period including successful conclusion of the two ICDRs scheduled.

RECOMMENDATION

Continued close management surveillance of all SFDS program elements by NASA/MSFC and Grumman program management personnel with continued telcon and face-to-face information interchange and program discussions.

Should you have any questions or comments with regard to the above, the program in general or the enclosed, please contact us.

Very truly yours,

GRUMMAN AEROSPACE CORPORATION

Walter K. Muench
SFDS Program Manager

WKM/ys

cc: Distribution: NASA/MSFC
Grumman

DISTRIBUTION: NASA-MSFC

CODE	COPIES	ATTENTION	BLDG.
EH 44	1	James H. Ehl	4711
EP 12	1	W. Prasthofer	4610
EP 13	13	Erich E. Engler	4610
EM 34-13	1		
AS21D	5		
AP 12	1		
AT 01	1		
NAVPRO KK 105	1	B. Miller, Navy Contracts	Grumman, Plt. 30

DISTRIBUTION: GRUMMAN

MAIL STOP

R. S. Mickey	1	C03-05
D. A. Ingram	1	A13-25
R. W. Johnson	1	A13-25
A. Alberi	1	A09-25
J. Huber	2	A04-12
P. Jacknis	1	A15-25
L. Junen	1	-
E. Mastik	1	A01-10
H. Morfin	1	A09-25
W. Muench	4	A09-25
L. Rooney	1	A02-25

SFDS MASTER PROGRAM SCHEDULE

STATUS 11-15-77

3-5-77
REV 6-17-77
5-30-77 GRUMMAN

FIGURE 1

ENCLOSURE (1)

SFDS PROGRAM REVIEW

SPACE FABRICATION
DEMONSTRATION
SYSTEM
PROGRAM REVIEW

PRESENTED

25 OCTOBER 1977

2420-140W
WM-1T

SPACE FAB DEMO SYSTEM

FLIGHT
DEMONSTRATION
PLAN

2420-231W
WPA-76

SPACE FAB DEMO SYSTEM

SPACE FAB DEMO SYSTEM

BEAM BUILDER IN ORBITAL PAYLOAD BAY

URBANIAN

2420-289W
WM-75

ORIGINAL PAGE IS
OF POOR QUALITY

SFDS MASTER PROGRAM SCHEDULE

SPACE FAB DEMO SYSTEM

ל/י/ו/ע/נ/ב/מ/א/ב

250

2420-203W
WM-5TA

SPACE FAB DEMO SYSTEM

SFDS MASTER PROGRAM SCHEDULE (CONT)

2420-204W
WM-5TB

ICDR SCHEDULE/SUBSYSTEM

SEPT 29, 1977	-	SUPPORT STRUCTURE & CONTROLS
OCT 31, 1977	-	CLAMP/WELD BLOCK & CUTOFF
DEC 14, 1977	-	MAGAZINE/DISPENSER & ROLLING MILL AUXILIARY EQUIPMENT

SPACE FAB DEMO SYSTEM - WSB 1.2.2

FLIGHT
DEMONSTRATION
PLAN

SPACE FAB DEMO SYSTEM – WBS 1.2.1

STRUCTURAL DESIGN CONDITIONS – 1-M DEEP BEAM

- DESIGN CONDITION I – FABRICATION IN ORBITER PAYLOAD BAY
 - ORBIT 215 N MI 28.5° INCLINATION
 - CRITICAL LOAD COND: ORBITER RCS THRUSTER FIRING
 - THERMAL CONDITION: ORBITER +Y AXIS EARTH POINTING

- DESIGN CONDITION II – SATELLITE SOLAR POWER SYSTEM (SSPS)
 - ORBIT: GEOSYNCHRONOUS, SUN ORIENTED
 - CRITICAL LOAD COND: STATION KEEPING MANEUVER
 - THERMAL COND: SOLAR ARRAY – SUN POINTING
MW ANTENNA – EARTH POINTING

SPACE FAB DEMO SYSTEM – WBS 1.2.1
"BUILDING BLOCK" TRUSS – 1-M DEPTH

2420-067W
AA.12

1-M BEAM DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.1

SPACE FAB DEMO SYSTEM – WBS 1.2.1
LARGE SPACE STRUCTURE COMPARISON STUDY

TYPICAL MODULE
LARGE SPACE STRUCTURE

MATERIAL COMPARISON

SPACE FAB DEMO SYSTEM – WBS 1.2.1

• PROPERTIES OF 2024-T3 AND 6061-T6 APPROXIMATELY THE SAME

COMPOSITE BEAM DESIGN STUDIES

SPACE FAB DEMO SYSTEM – WBS 1.2.1

- BEAM CONFIGURATION IS SAME AS ALUMINUM DESIGN
- SELECTED CANDIDATE LAYUP CONFIGURATION OF 2.5 MIL. 3501-5 RESIN
- ANALYZED VARIOUS FAILURE MODES
- ESTIMATED WEIGHT SAVING

SPACE FAB DEMO SYSTEM – WBS 1.2.1

COMPOSITE BEAM DESIGN STUDIES

TYPE AS-3501

LAMINATE	LAYUP* FROM N.A. OUT	TEMP. °F	E_x' MS1	G_{xy}' MS1	EULER, LB	LOCAL BUCKLING, LB	TORSION/ FLEXURE, LB	DES LOAD, LB
$[\pm 45, 0, 90_2]$	3, 3, 1, 2	200°	7.2	2.75	1310	447	282	420
$[\pm 45_2, 0_2, 90_4]$	3, 3, 1, 1, 2	200	9.5	2.3	2006	569	565	420
$[\pm 45, 0_2, 0]$ _s	3, 3, 1, 1, $\bar{1}$	200	11.5	2.5	844	–	755	420

*1 = 0°PLY, 2 = 90°PLY, 3 = 45°PLY

** $[\quad]_s$ SYMMETRIC
(EACH PLY 2.5 MILS)

COMPOSITE BEAM DESIGN STUDIES

WEIGHT SAVING USING COMPOSITE DESIGN
 $[\pm 45, 0_2, \bar{0}]_s$ FOR CAPS & $[2/0_0/4]$ FOR
BATTENS & DIAGONALS IS 28%

SPACE FAB DEMO SYSTEM – WBS 1.2.1

ULTIMATE BENDING MOMENT AT POINT A vs BEAM LENGTH RCS FIRING

2430-062W
AA7

CANDIDATE THERMAL COATINGS

- BLACK ANODIZE MIL A-8625
 - ELECTROLYTICALLY PRODUCED DYED OXIDE COATING
 - THICKNESS .01 TO .1 MILS
 - ABSORPTANCE TO EMITTANCE RATIO ≤ 1.00
- SPRAY PAINTS
 - POLYURETHANE
 - FLUOROCARBON
 - THICKNESS APPROX .8 TO 1 MIL
 - $\alpha = .96, \epsilon = .91$

BEAM ORBITAL ORIENTATION

SPACE FAB DEMO SYSTEM – WBS 1.2.1

TEMPERATURE DATA $\theta = 180^\circ$

SPACE FAB DEMO SYSTEM – WBS 1.2.1

ORBITAL TEMPERATURE RESPONSE

ORBITAL TEMPERATURE
RESPONSE

$$\alpha S/\epsilon = .86/.83$$

BLACK ANODIZE

$$\Delta T = 17.8^\circ F$$

$$T = 110.9^\circ F$$

SUN VECTOR
180°

I

$$\Delta T = 49.1^\circ F$$

$$T = 99.7^\circ F$$

VELOCITY
VECTOR

$$\Delta T = 44.2^\circ F$$

$$T = 98.12^\circ F$$

EARTH

II

III

$\Delta T = 49.1^\circ F$ MAX TEMP DIFFERENCE IN TRIANGLE
 $\Delta T_{AV} = 12.8^\circ F$ MAX TEMP DIFFERENCE BETWEEN TRIANGLES AREA WEIGHTED

2420-071W
AA-16

SOLAR BLOCKAGE GEOMETRY

SPACE FAB DEMO SYSTEM – WBS 1.2.1

BLOCKAGE LASTS FOR 6.1°
OF TRAVEL AND 95 SEC
OF TIME

SOLAR RAYS END
OF BLOCKAGE

6.1°

(I)

SOLAR RAYS
START OF
BLOCKAGE

45 IN.

DIRECTION OF MOTION
 $W = 3.9^\circ/\text{MIN}$

$\Delta T = 37^\circ\text{F}$

SPACE FAB DEMO SYSTEM - WBS 1.2.1

**THERMAL STRESS IN 1.5-M LONG CAP MEMBER DUE TO
THERMAL GRADIENT, FULLY RESTRAINED IN ROTATION
ABOUT Y AND Z AXES**

SPACE FAB DEMO SYSTEM – WBS 1.2.1

THERMAL STRESS IN CAP – 1-M TRUSS

+497 PSI (PEAK TENS)

TENSION

COMPRESSION

-493 PSI
(PEAK COMPR)

SPACE FAB DEMO SYSTEM – WBS 1.2.1
DESIGN CONDITION II – SSSPS STATIONKEEPING MANEUVER

MAXIMUM APPLIED THRUSTER FORCES INCREASED BY DYNAMIC
MAGNIFICATION FACTOR = 2.0, FACTOR OF SAFETY = 1.40

SPACE FAB DEMO SYSTEM – WBS 1.2.1

ISOMETRIC VIEW OF ONE-BAY SSPS

DESIGN CONDITION II

SPACE FAB DEMO SYSTEM – WBS 1.2.1

SSPS 1 X 40 M BEAM CRITICAL CAP LOAD FUNCTION OF FOLLOWING:

- AXIAL LOAD DUE TO BENDING – STATIONKEEPING
- REFLECTOR PRELOAD
- MANUFACTURING MISALIGNMENT OF 20 X 493 M BEAM
- THERMAL GRADIENT/DEFLECTION OF 20 X 493 M BEAM
- MANUFACTURING MISALIGNMENT OF THE 1 X 40 M BEAM
- THERMAL GRADIENT/DEFLECTION OF THE 1 X 40 M BEAM

SPACE FAB DEMO SYSTEM – WBS 1.2.1

DESIGN LOADING CONDITION – 20 x 483 M BEAM

DESIGN LOADING CONDITION
20 M X 483 M BEAM

$P = 3630 \text{ N}$
 $w = 1.21 \text{ N/m}$ LIMIT

2420-073W
AA-18

SPACE FAB DEMO SYSTEM - WBS 1.2.1

MAXIMUM BEAM CAP STRESSES - 1 X 40 M BEAM

- DESIGN CONDITION I:
 - COMPRESSION STRESS - APPLIED LOADS - 2505 PSI
 - Thermal Gradient - 690 PSI
 - TOTAL - 3195 PSI
- DESIGN CONDITION II (SSPS):
 - COMPRESSION STRESS - APPLIED LOADS - 2272 PSI
 - Thermal Gradient - 690 PSI
 - TOTAL - 2962 PSI
- ALLOWABLE AVERAGE COMPR STRESS
BASED ON STATIC TEST - 4421 PSI

SPACE FAB DEMO SYSTEM – WBS 1.2.1

EFFECT OF MANUFACTURING MISALIGNMENT ON BEAM
MOMENT (APPLIES IN X-Z PLANE ONLY)*

CONCLUSIONS

- DESIGN LOADS AND TEMPERATURES EVALUATED FOR:
 - I FABRICATION IN ORBITER PAYLOAD BAY
 - II SSSPS VEHICLE
- MATERIALS AND PROCESSES SELECTED MEET REQUIREMENTS
 - 2024-T3; 2219-T6; 6061-T6
 - THERMAL COATINGS
 - ROLL FORMING
 - SPOTWELDING
- BEAM DESIGN HAS BEEN DEFINED AND SATISFIES CRITICAL CONDITIONS
- FABRICATION ACCURACY REQUIREMENT FOR BEAM DEFINED FOR FABRICATION FACILITY
- STRUCTURAL TEST ON NOV 1976 ESTABLISHES CONFIDENCE IN BASIC DESIGN

SPACE FAB DEMO SYSTEM - WSB 1.2.2

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

• OVERALL CONFIGURATION

- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

DESIGN REQUIREMENTS

- LOW COST
- COMPLY WITH SHUTTLE PAYLOAD CONSTRAINTS
- MAXIMUM USE OF COMMERCIAL "OFF-THE-SHELF" HARDWARE
- MAXIMUM USE OF EXISTING "STATE-OF-THE-ART" EXPERTISE
- COMPATIBLE WITH FUTURE FLIGHT TEST NEEDS
- FULLY AUTOMATED FABRICATION OF TRUSS

PRINCIPAL MACHINE PROCESSES

- ROLL-FORM CAP MEMBERS
- MAGAZINE STORE PREFAB BRACES
- RESISTANCE-WELD ATTACHMENT
- COMPUTER CONTROL CAP ALIGNMENT

SELECTED BEAM BUILDER

SPACE FAB DEMO SYSTEM – WBS 1.2.2

2420-199W
WM-18T

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

SUPPORT STRUCTURE

SPACE FAB DEMO SYSTEM – WSB 1.2.2

OBJECTIVES

- SUPPORT OPERATING MACHINERY WITHIN SHUTTLE GEOMETRIC CONFIGURATION
- GUIDE TRUSS DURING FABRICATION

SPACE FAB DEMO SYSTEM – WBS 1.2.2

EXTERNAL SUPPORT STRUCTURE

- MATERIAL – HOT ROLLED STEEL
- ARC WELD AND BOLTED CONSTRUCTION
- DWG NO. RDM 447-2070

2420-154W
WM-227

INTERNAL SUPPORT STRUCTURE

SPACE FAB DEMO SYSTEM – WBS 1.2.2

- MATERIAL – HOT ROLLED STEEL
- ARC WELD AND BOLTED CONSTRUCTION
- DWG NO. RDM 447-2069

2420-159W
WM-23T

SUPPORT STRUCTURE

SPACE FAB DEMO SYSTEM – WSB 1.2.2

STATUS

- ICDR – COMPLETED 9/29/77
- BOX BEAMS – WELDMENT AND MACHINING COMPLETE
- BULKHEAD – WELDMENTS COMPLETE, READY FOR MACHINING
- BASE FRAME – WELDMENT COMPLETE, READY FOR INSTALLATION
- BRACKETS – COMPLETE, READY FOR ASSEMBLY
- INTERNAL STRUCTURE – WELDMENT COMPLETE, READY FOR MACHINING

FACILITY DESIGN

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

ROLL FORMING EQUIPMENT

SPACE FAB DEMO SYSTEM - WSB 1.2.2

OBJECTIVE

PROGRESSIVE ROLL FORM THREE CAP MEMBERS
FROM FLAT ALUMINUM STRIP STOCK

ROLL-FORMING CAP MEMBER

PROGRESSIVE FORMATION OF CAP

SPACE FAB DEMO SYSTEM – WBS 1.2.2

2420-2000W
WMM-25T

DEVELOPMENT TEST SUMMARY

TASK	RESULTS	ACTION
ESTABLISH 2219-T62, 2024-T3 SPRING BACK	2219-T62 (10 DEG) 2024-T3 (2 DEG)	PRELIMINARY ROLL DESIGN
REDUCE ROLL STATIONS	STATION REQMTS 8 → 7	ESTABLISH 65-IN LENGTH
PRELIMINARY CONFIGURATION EVALUATION	• RIPPLED FLANGE • LONGITUDINAL BOW	MODIFY ENTRY AND TRANSITION ROLLS
CONFIGURATION REFINEMENT	• IMPROVED FLANGE • ELIMINATE BOW	REDESIGN TRANSITION ROLLS
FLANGE EVALUATION	• MINIMAL WAVE	<ul style="list-style-type: none"> • ADD CROWN TO FLANGE • PROCEEDED WITH FINAL DESIGN

SPACE FAB DEMO SYSTEM - WSB 1.2.2

ROLL FORMING EQUIPMENT

STATUS

- ICDR COMPLETED 9/29/77
- ROLLING MILLS & TOOLING IN ACCEPTANCE TESTING
AT YODER
- PROJECT EQUIPMENT DELIVERY TO GAC WEEK OF 10/24

FACILITY DESIGN

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- **BRACE MEMBER MAGAZINE & DISPENSER**
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

SPACE FAB DEMO SYSTEM - WSB 1.2.2

BRACE MEMBER MAGAZINE AND DISPENSER

OBJECTIVES

- STORE BRACES NESTED IN A MAGAZINE
- DISPENSE THEM INTO THE PROPER POSITION
ON THE CAP MEMBER

BRACE FABRICATION

SPACE FAB DEMO SYSTEM WBS 1.2.2

- SLIT MATERIAL
- ROLL SECTION
- ADD DIMPLES OR SPACERS
- ANODIZE (FLIGHT ARTICLE)

2420-279W
WM-75

SPACE FAB DEMO SYSTEM – WIBS 1.2.2

VERTICAL MAGAZINE

2420-305
WM-89

SPACE FAB DEMO SYSTEM – WBS 1.2.2

MAGAZINE/DISPENSER SUBSYSTEM

2420-312W
WM-91

SPACE FAB DEMO SYSTEM - WSB 1.2.2
BRACE MEMBER MAGAZINE AND DISPENSER

STATUS

- 1 CDR SCHEDULED FOR 12/14/77
- MOCKUP BUILT FOR BASELINE APPROACH
- MOCKUP BUILT FOR REVISED SYSTEM
- YODER TO TEST ROLL FORM TOOLING IN OCT.

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- **WELD CLAMP MECHANISM**
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

WELD CLAMP MECHANISM

SPACE FAB DEMO SYSTEM - WSB 1.2.2

OBJECTIVES

- HOLD BRACE MEMBER TO CAP
- POSITION WELD ELECTRODES
- PROVIDE WELD ELECTRODE CLAMP FORCE

SPACE FAB DEMO SYSTEM – WBS 1.2.2

CLAMP MECHANISM PRINCIPAL FORCES

2420-159
WM-32T

SPACE FAB DEMO SYSTEM - WBS 1.2.2

VERTICAL CLAMP MECHANISM WITH ELECTRODES FOR WELD

2420-202W
WPA-3117

WELD ELECTRODE DRIVE

2420-163W
WM-377

WELD CLAMP MECHANISM

SPACE FAB DEMO SYSTEM – WSB 1.2.2

STATUS

- 1 CDR SCHEDULED FOR 10/31
- DRAWINGS SENT TO MSFC 10/18/77
- MOCKUP OF MECHANISM BUILT

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

BRACE ATTACHMENT

SPACE FAB DEMO SYSTEM – WSB 1.2.2

OBJECTIVE

- JOIN VERTICAL AND DIAGONAL
BRACE MEMBERS TO CAPS

BRACE ATTACHMENT

SPACE FAB DEMO SYSTEM – WBS 1.2.2

PRIMARY SYSTEM

• RESISTANCE SPOT-WELDING

ALTERNATES CONSIDERED

- ULTRASONICS
- HOLLOW INTEGRAL RIVET
- INTEGRAL RIVET
- STAPLING
- ELECTRON-BEAM WELDING
- ADHESIVE BONDING

WELD SYSTEM PRINCIPAL COMPONENTS

- TRANSFORMER
- CONTROLLER
- POWER CABLES
- ELECTRODES

WELD POWER SUPPLY GROUND DEMONSTRATION
SYSTEM

- MANUFACTURER - SCIAKY
- QUANTITY - 6
- TYPE - SOLID STATE A/C
- COOLANT - WATER
- OUTPUT - 63 KVA, 4.5 V
- DUTY CYCLE - APPRX. 0.01%
- WEIGHT - 91 KG (200 LBS)
- SIZE - 25.4 x 30.5 x 50.8 CM (10 x 12 x 20 IN.)

WELD PEAK ENERGY REQUIREMENTS

12 WELDS (TYPICAL)
EACH LASTS \approx 17 mSEC

2420-208W
WM-35T

WELDING PROCESS SCHEMATIC

SPACE FAB DEMO SYSTEM – WBS 1.2.2

WELD ELECTRODE LIFE TEST

896

672

448

224

AVG. RIGHT ELECTRODE

SHEAR,
NEWTONS

- MAT'L: 2024-T3 Al ALLOY
- 0.4 MM (0.016 IN.) TK.
- ELECTRODE FORCE
- 1334 N (300 LBS)
- SERIES WELD ON 50 MM
- (2 IN.) CENTERS
- RIGHT ELECTRODE
- LEFT ELECTRODE

BRACE ATTACHMENT

SPACE FAB DEMO SYSTEM – WSB 1.2.2

STATUS

- 1 CDR SCHEDULED FOR 10/31
- WELD EQUIPMENT ON ORDER DUE END OF NOV.
- ELECTRODE LIFE TESTS COMPLETED
- SIX WELD JOINT TESTS COMPLETED

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

2420-164W
WM-38T

TRUSS CUT OFF MECHANISM

SPACE FAB DEMO SYSTEM – WSB 1.2.2

OBJECTIVE

PROVIDE CLEAN CUTOFF OF THREE CAP MEMBERS TO END TRUSS

2420-259
WM-70

BEAM CUT-OFF MECHANISM

2420-166W
WM-40AT

TRUSS CUTOFF MECHANISM

STATUS

- ICDR SCHEDULED FOR 10/31
- WORKING MOCKUP FABRICATED

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

CONTROLS

SPACE FAB DEMO SYSTEM – WSB 1.2.2

OBJECTIVES

- ASSURE SYNCHRONOUS ROLL FORMING
OF CAP MEMBERS
- SEQUENCE MACHINE OPERATIONS

CONTROL SYSTEM DESIGN GUIDELINES

SPACE FAB DEMO SYSTEM – WBS 1.2.2

- MAXIMUM USE OF "OFF-THE-SHELF" COMMERCIAL COMPONENTS
- MINIMUM-COST SYSTEM
- INSURE BEAM STRAIGHTNESS
- HIGH RELIABILITY

2420-170W
WM-43T

PRINCIPAL COMPONENTS

- CENTRAL PROCESSOR
- CAP SYSTEM SERVO
- ASSEMBLY SUBSYSTEM
- OPERATOR CONTROL PANEL
- TELETYPE

CONTROL SYSTEM OVERVIEW

SPACE FAB DEMO SYSTEM – WBS 1.2.2

2420-172W
WM-45T

DIGITAL EQUIPMENT CORP - PDP8/A

SPACE FAB DEMO SYSTEM – WBS 1.2.2

CAP POSITION CONTROLS

SPACE FAB DEMO SYSTEM – WBS 1.2.2

ASSEMBLY SUBSYSTEM SEQUENCE

SPACE FAB DEMO SYSTEM – WBS 1.2.2

PERFORMANCE SUMMARY

CRITERION	REQUIREMENTS	GOAL
BAY LENGTH (1.5 METERS)	± 0.8 MM	± 0.15 MM
BAY FABRICATION RATE	60 - 300 SEC	100 - 300 SEC
MAXIMUM CAP LENGTH VARIATION (40-METER BEAM)	± 20 MM	± 0.15 MM
ROLLING MILL DRIVE SPEED	1.5 - 3.0 M/MIN	1.5 - 3.3 M/MIN

CONTROLS

SPACE FAB DEMO SYSTEM - WSB 1.2.2

STATUS

- I CDR COMPLETED 9/29/77
- COMPUTER ORDERED, DUE AT GAC
END OF NOV.
- DRIVE MOTORS FOR ROLL EQUIP
REC'D
- ACTUATOR MOTORS TO BE ORDERED
BY NOV. 1
- SOFTWARE FLOW CHARTS COMPLETED

FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

AREAS OF DISCUSSION

- OVERALL CONFIGURATION
- SUPPORT STRUCTURE
- ROLL-FORMING EQUIPMENT
- BRACE MEMBER MAGAZINE & DISPENSER
- WELD CLAMP MECHANISM
- BRACE ATTACHMENT
- TRUSS CUTOFF
- CONTROLS
- SUMMARY

SPACE FAB DEMO SYSTEM – WBS 1.2.2

PROJECTED WEIGHT DISTRIBUTION

PROJECTED AVG POWER DISTRIBUTION

AVG. 2.2 KVA

2420-302W
WM-36

SPACE FAB DEMO SYSTEM - WBS 1.2.2

TOTAL POWER REQUIREMENTS FOR GROUND
DEMONSTRATION SYSTEM

SPACE FAB DEMO SYSTEM - WBS 1.2.2

AVERAGE POWER vs BAY FABRICATION TIME

2420-151W
WM-19T

SUMMARY-FACILITY DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

	OVERALL CONFIGURATION	ROLL FORMING	BRACE DISPENSER	ATTACHMENT	TRUSS CUTTER	CONTROLS	
WORKING MOCKUP	✓	✓	✓	✓	✓	✓	-
PRELIMINARY TESTING PERFORMED	NA	✓	✓	-	✓	✓	✓
PROVEN COMMERCIAL PROCESS EQUIPMENT	-	✓	-	-	✓	✓	✓
COMMERCIAL EXPERTISE UTILIZED	-	✓	-	-	✓	✓	✓
PDR CONCURRENCE	✓	✓	✓	✓	✓	✓	✓
COMPATIBLE WITH SHUTTLE GEOMETRY	✓	✓	✓	✓	✓	✓	✓
COMPATIBLE WITH SHUTTLE POWER REACT	-	✓	✓	✓	✓	✓	✓

2420-179W
WMA-527

SPACE FAB DEMO SYSTEM - WSB 1.2.2

SUMMARY

	DWGS	MAJOR COMP	DETAIL FAB	ASSY
SUPPORT STRUCT	100%	NA	70%	NOV
ROLL FORM	100%	ACCEPT TEST	NA	OCT/ NOV
BRACE MAG	LAY-OUTS	NA	DEC	JAN
WELD CLAMP		NA	OCT/ NOV	DEC
BRACE ATTACH	80%	NA		
TRUSS CUTOFF	NA	DEC	NA	DEC
CONTROLS	90%	NA	NOV	NOV/ DEC
				JAN/ FEB

2420-262
WM-73

SPACE FAB DEMO SYSTEM - WSB 1.2.2

ROLL FORMING

TASK	RESULTS	ACTION
ESTABLISH 2219-T62, 2024-T3 SPRING BACK	2219-T62 (10 DEG) 2024-T3 (2 DEG)	PRELIMINARY ROLL DESIGN
REDUCE ROLL STATIONS	STATION REQUITS 8 → 7	ESTABLISH 66 IN LENGTH
PRELIMINARY CONFIGURATION EVALUATION	• RIPPLED FLANGE • LONGITUDINAL BOW	MODIFY ENTRY AND TRANSITION ROLLS
CONFIGURATION REFINEMENT	• IMPROVED FLANGE • ELIMINATE BOW	REDESIGN TRANSITION ROLLS
FLANGE EVALUATION	• MINIMAL WAVE	<ul style="list-style-type: none"> • ADD CROWN TO FLANGE • PROCEED WITH FINAL DESIGN

BRACE ATTACHMENT

PRIMARY SYSTEM

- RESISTANCE SPOT-WELDING

ALTERNATES CONSIDERED

- ULTRASONICS
- HOLLOW INTEGRAL RIVET
- INTEGRAL RIVET
- STAPLING
- ELECTRON-BEAM WELDING
- ADHESIVE BONDING

SFDS COMPOSITE DEVELOPMENT STATUS

MATERIALS USED

- GRAPHITE/POLYSULFONE
- POLYETHER SULFONE
- GRAPHITE/POLYETHERSULFONE

ROLL FORMING PROCESS

- FOUR SET-UPS
 - MIXED RESULTS
- NEXT APPROACH

SPACE FAB DEMO SYSTEM

2420-233W
VM-78

SUMMARY

SPACE FAB DEMO SYSTEM

- STRUCTURAL TRUSS DESIGN
- FABRICATION FACILITY DESIGN
- DEVELOPMENT TESTING
- ICDR TOMORROW
- NEXT PROJECT MILESTONE
- FLIGHT DEMONSTRATION PLAN

2420-184W
WM-57T

1-M BEAM DESIGN

SPACE FAB DEMO SYSTEM – WBS 1.2.1

CONCLUSIONS

- DESIGN LOADS & TEMPERATURES EVALUATED FOR:
 - I FABRICATION IN ORBITER PAYLOAD BAY
 - II SSPS VEHICLE
- MATERIALS & PROCESSES SELECTED MEET REQUIREMENTS
 - 2024-T3; 2219-T6; 6061-T6
 - THERMAL COATINGS
 - ROLL FORMING
 - SPOT WELDING
- BEAM DESIGN HAS BEEN DEFINED & SATISFIED CRITICAL CONDITIONS
- FABRICATION ACCURACY REQUIREMENT FOR BEAM DEFINED FOR FABRICATION FACILITY

SELECTED BEAM BUILDER

SPACE FAB DEMO SYSTEM – WBS 1.2.2

2420-199W
WM-18T

DESIGN REQUIREMENTS

- LOW COST
- COMPLY WITH SHUTTLE PAYLOAD CONSTRAINTS
- MAXIMUM USE OF COMMERCIAL "OFF-THE-SHELF" HARDWARE
- MAXIMUM USE OF EXISTING "STATE-OF-THE-ART" EXPERTISE
- COMPATIBLE WITH FUTURE FLIGHT TEST NEEDS
- FULLY AUTOMATED FABRICATION OF TRUSS

FACILITY DESIGN PLAN

SPACE FAB DEMO SYSTEM – WBS 1.2.2

- OBTAIN CONCURRENCE WITH MSFC ON DESIGN FOR ALL SUBSYSTEMS
- START FABRICATION AND PROCUREMENT OF DETAIL PARTS
- CONTINUE WITH CONSTRUCTION TO MEET EXISTING PROGRAM SCHEDULE REQUIREMENTS

2420-167W
WM-408T

SPACE FAB DEMO SYSTEM – WBS 1.2.2

PRINCIPAL SUBSYSTEMS

- SUPPORT
- ROLL FORMING
- MAGAZINE/DISPENSER
- CLAMP/ATTACHMENT
- CUTOFF
- CONTROLS

SPACE FAB DEMO SYSTEM – WBS 1.2.2

PERFORMANCE SUMMARY

CRITERION	REQUIREMENTS	GOAL
BAY LENGTH (1.5 METERS)	± 0.8 MM	± 0.15 MM
BAY FABRICATION RATE	60 - 300 SEC	100 - 300 SEC
MAXIMUM CAP LENGTH VARIATION (40-METER BEAM)	± 20 MM	± 0.15 MM
ROLLING MILL DRIVE SPEED	1.5 - 3.0 M/MIN	1.5 - 3.3 M/MIN

2420-17AW
WM-477

ITEMS TO BE ADDRESSED

SPACE FAB DEMO SYSTEM – WBS 1.2.2

- ELECTRODE LIFE FOR WELDS IN VACUUM
- MECHANICAL ATTACHMENT
- WELD ELECTRODE AUTO CLEANING
- AUTO THREADING OF RESUPPLY REEL
- MODIFICATION FOR SPACE FLIGHT USE

SPACE FAB DEMO SYSTEM – WBS 1.5

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SPACE FAB DEMO SYSTEM – WBS 1.5.1
PRELIMINARY SFDS FLIGHT DEMONSTRATION PROGRAM PLAN

FLIGHT DEMONSTRATION PROGRAM PLAN OBJECTIVE

DEVELOP LOW COST FLIGHT DEMONSTRATION PROGRAM
WHICH DEMONSTRATES THE SPACE FABRICATION
DEMONSTRATION SYSTEM (SFDS) CAPABILITY AND PROVIDES
ORBITAL OPERATIONAL BASE LINE DATA

SPACE FAB DEMO SYSTEM – WBS 1.5.1
PRELIMINARY SFDS FLIGHT DEMONSTRATION PROGRAM PLAN

2020-0700W
Page 2

SPACE FAB DEMO SYSTEM – WBS 1.5.1

APPROACH FOR FLIGHT DEMONSTRATION PROGRAM DEFINITION

- ESTABLISH GUIDELINES AND ASSUMPTIONS CONSISTENT WITH OBJECTIVE
- ESTABLISH DESIGN, QUALIFICATION AND FLIGHT DEMONSTRATION REQUIREMENTS
- ASSESS ABILITY OF SFDS GROUND DEMO HARDWARE TO MEET THESE REQUIREMENTS
- DEFINE THE TASKS REQUIRED TO IMPLEMENT FLIGHT DEMO PROGRAM
- DEVELOP TASK LOGIC AND TIMELINES FOR FLIGHT DEMO PROGRAM
- DEVELOP PRELIMINARY COST ESTIMATES COMENSURATE WITH TASKS AND SCHEDULES

2420-0000W
MM-7

SFDS FLIGHT DEMO PROGRAM GUIDELINES AND ASSUMPTIONS

- SFDS FLIGHT ARTICLE MUST OPERATE FROM THE SHUTTLE IN ORBIT
- SFDS CONTAMINATION OF PAYLOAD BAY SHALL BE ELIMINATED OR CONTAINED
- UTILIZE THE SFDS GROUND ARTICLE HARDWARE TO GREATEST EXTENT POSSIBLE AND MODIFY AS REQUIRED
- UTILIZE THE SFDS FLIGHT ARTICLE FOR GROUND QUALIFICATION AND ACCEPTANCE
- UTILIZE POST FLIGHT GROUND TESTS TO VERIFY INTEGRITY OF THE STRUCTURE PRODUCED BY SFDS
- RESERVE PAYLOAD ACCOMMODATIONS 16,000 LB
- FLIGHT TEST ORBITAL PARAMETERS WILL BE SELECTED ON THE BASIS OF GROUND ANALYSIS AND THERMAL VACUUM TESTS

PRELIMINARY SFDS FLIGHT DEMONSTRATION PROGRAM PLAN
SPACE FAB DEMO SYSTEM – WBS 1.5.1

SFDS FLIGHT PROGRAM DEVELOPMENT

SPACE FAB DEMO SYSTEM – WBS 1.5.1

2420-065W
MM-6

SFDS SYSTEM REQUIREMENTS

SPACE FAB DEMO SYSTEM – WBS 1.5.1

- BEAM PRODUCED
 - 1-M BEAM (3 CAPS WITH 90° BATTENS AND 3 40.87° DIAGONALS PER BAY)
 - STRENGTH MAX LOAD 5610 N COMPRESSION
 - MATERIAL 2024-T3, 2219-T6, 6061-T6
 - BEAM LIFE/FATIGUE – TBD
- SFDS
 - FORMING PROCESSING – ROLL FORMING FOR ALL ELEMENTS
 - ATTACHMENT PROCESS – ALL JOINTS SHALL BE WELDED
 - SYSTEM AUTOMATION – ROLL FORMING, MAGAZINE FEED, SPOT-WELDING, TRUSS CUTOFF, STATUS SENSING, ACCURACY CONTROL
 - MAN/MACHINE INTERFACE – REMOTE START/STOP, CAUTION AND WARNING, OVERRIDE MONITORING AND CONTROL
 - POWER AND HEAT REQUIREMENTS – TBD
- PRODUCIBILITY
 - RATE – 1 TO 6 FT/MIN
 - STRAIGHTNESS – 0.5% L
 - CAP CASSETTE CAPACITY 168M, MAGAZINE CAPACITY – 109 PRE-FORMED BATTENS OR BRACES

2430-047W
MM-10

SFDS VERIFICATION REQUIREMENTS

- **QUAL TESTS**

- VERIFY CRITICAL COMPONENTS @ 6 DB ABOVE LAUNCH VIBRATION LEVELS AND SUBSYSTEMS/COMPLETE SFDS @ 3 DB ABOVE LAUNCH LEVEL
- VERIFY SFDS COMPATABILITY WITH ACOUSTIC VIBRATION @ 3 DB ABOVE LAUNCH LEVELS
- CONDUCT THERMAL VACUUM TESTS OF COMPLETE SFDS
- FUNCTIONAL TESTS DURING QUAL PROGRAM WILL INCLUDE FAB-
ICATION OF BEAM SECTIONS

- **ACCEPTANCE TESTS**

- INTEGRATED WITH SYSTEM LEVEL QUAL TESTS
- INCLUDE VERIFICATION OF JOINTS

- **LAUNCH SITE TESTS**

- VERIFY OPERATION OF SFDS
- DEMONSTRATE COMPATIBILITY WITH CARGO INTEGRATION TEST EQUIPMENT (CITE)
- PASSIVE STATUS CHECK @ PAD

SFDS QUALIFICATION TEST REQUIREMENTS

ASSEMBLY LEVEL	SFDS	SUBSYSTEM			COMPONENT		
	SFDS	SUBSYSTEM			COMPONENT		
	SFDS	SUBSYSTEM			COMPONENT		
QUALIFICATION TEST REQUIREMENT							
(1) VERIFY MOTOR CHARACTERISTICS							
(A) DYNAMIC TORQUE							
(B) STALL TORQUE							
(C) START-UP TORQUE							
(D) POWER UTILIZATION							
(E) BRAKING							
(2) VERIFY COMPATIBILITY OF MOTOR WITH SPACE ENVIRONMENT							
(A) RANDOM VIBRATION							
(B) ACOUSTIC LAUNCH VIBRATION							
(C) THERMAL VACUUM							
(3) VERIFY MOTOR EMC WITHIN SHUTTLE							
(4) VERIFY COMPATIBILITY OF ROLLER FORMING ASSEMBLIES WITH LAUNCH VIBRATION							
(A) 6 db ABOVE LAUNCH							
(B) 3 db ABOVE LAUNCH							
(5) VERIFY COMPATIBILITY OF CROSS BRACE MAGAZINE/TRANSFER ASSEMBLIES WITH LAUNCH VIBRATION							
(A) 6 db ABOVE LAUNCH							
(B) 3 db ABOVE LAUNCH							
(6) VERIFY COMPATIBILITY OF CROSS BRACE WELD/CLAMP ASSEMBLIES WITH LAUNCH VIBRATION							
(A) 6 db ABOVE LAUNCH							
(B) 3 db ABOVE LAUNCH							

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SORTIE MISSION TEST REQUIREMENTS

LOCATION	POST-FLT		SPEC LAB
	OPF	IN-ORBIT	
SORTIE MISSION TEST REQUIREMENTS			
(1) VERIFY PROPER ACTIVATION AND POWER-UP		X X	
(2) VERIFY RELEASE OF MECHANICAL CONSTRAINTS		X X X	
(3) VERIFY SYSTEM START-UP		X X X	
(A) AFTER COLD CASE SOAK		X X X	
(B) AFTER HOT CASE SOAK		X X X	
(C) OBLIQUE SUNLIGHT		X X X	
(4) VERIFY CONTINUOUS BEAM PRODUCTION		X X X X X X X X	X X X
(A) FULL SUNLIGHT OPERATION		X X X X X X X X	
(B) FULL ECLIPSE OPERATION		X X X X X X X X	
(C) OBLIQUE SUNLIGHT		X X X X X X X X	
(D) ECLIPSE/SUNLIGHT TRANSITIONS		X X X X X X X X	
(5) DEMONSTRATE CREW PROCEDURES		X X X X X X X X	
(6) VISUAL/PHOTOGRAPHIC INSPECTION OF 9-M BEAMS		X X X X X X X X	
(7) VERIFY PROPER WELDS		X X X X X X X X	
(8) VERIFY STRUCTURAL INTEGRITY OF 9-M BEAMS		X X X X X X X X	
(9) VERIFY DIMENSIONAL ACCURACY OF BEAMS		X X X X X X X X	
(10) VERIFY PROPER GUILLOTINE OPERATION		X X X X X X X X	
(11) DEMONSTRATE PRODUCTION OF 39-M BEAM		X X X X X X X X	
(12) DETERMINE EFFECTS OF DYNAMIC RESPONSE TO RCS STATION KEEPING/ATTITUDE HOLD JET FIRINGS		X X X X X X X X	
(13) DEMONSTRATE PRODUCTION OF 90-M BEAM		X X X X X X X X	
(14) VERIFY RELOADING OF CONSUMABLES (OPTIONAL-TBO)		X X X X X X X X	
(A) CANISTERS		X X X X X X X X	
(B) MAGAZINES		X X X X X X X X	

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SORTIE MISSION FUNCTIONAL FLOW

**NOTE: DOTTED BOXES
ARE OPTIONAL.
ACTIVITIES**

10

2420-0933W
144-16

PRELIMINARY SFDS FLIGHT DEMONSTRATION PROGRAM PLAN
SPACE FAB DEMO SYSTEM – WBS 1.5.1

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SFDS GND DEMO HARDWARE READILY CONVERTIBLE FOR
FLIGHT DEMONSTRATION

SUBSYSTEM	MODS CURRENTLY PLANNED	REMARKS
ROLLING MILL	WEIGHT REDUCTION MODS, LOCKING MECHANISMS, FLIGHT INSTRUMENTATION	ADDITIONAL MODS BASED ON GROUND DEMO TEST RESULTS
MAGAZINE	LOCKING MECHANISMS, FLIGHT INSTRUMENTATION	
WELDING	LOCKING MECHANISMS, FLIGHT INSTRUMENTATION	
GUILLOTINE	LOCKING MECHANISMS, FLIGHT INSTRUMENTATION	
SENSORS/CONTROLS	SPACE CUAL UNITS	

FLIGHT DEMONSTRATION PROGRAM CONSIDERATIONS

<u>ITEM</u>	<u>CONSIDERATIONS</u>
• GND TESTS	<ul style="list-style-type: none"> - COMPONENT QUAL @ 6 DB ABOVE MISSION LEVEL - SYSTEM QUAL @ 3 DB ABOVE MISSION LEVEL - ORBITER INTEGRATION @ MSFC
• THERMAL	<ul style="list-style-type: none"> - SFDS MAINTAINED @ $21^{\circ}\text{C} \pm 10^{\circ}\text{C}$ - COOLING SYSTEM COUPLED TO ORBITER - BLANKETS REQUIRED FOR COLD SOAK
• POWER CONDITIONING	<ul style="list-style-type: none"> - DELIVER 1.2 KW @ 220V, 60 Hz, SINGLE PHASE - ISOLATE ORBITER FROM 63 KVA .017 SEC SPIKES - MINIMIZE EMI
• REPACKAGE MONITOR & CONTROL SUBSYSTEM	<ul style="list-style-type: none"> - MINIATURIZED COMPUTER - INCORPORATE CAUTION AND WARNING DISPLAY - CONTROLS AND DISPLAYS INSTALLED @ PAYLOADS SPECIALIST STATION

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SFDS POWER/CONDITIONING CANDIDATES

SYSTEM	PRIMARY	SECONDARY	CONDITIONING
			<ul style="list-style-type: none"> SMALLEST BATTERY RECHARGEABLE FULL UTILIZATION OF STS PWR MISSION UNLIMITED
		<ul style="list-style-type: none"> LOW VOLUME LOW WEIGHT UTILIZE STS PWR 	<ul style="list-style-type: none"> HIGHEST COST MOST COMPLEX
	ADV'TGS <ul style="list-style-type: none"> LOWEST COST SIMPLEST MINIMUM INTERFACES 	DISADV'TGS <ul style="list-style-type: none"> MAX WEIGHT MAX VOLUME MISSION LIMITED 	<ul style="list-style-type: none"> INVERTER REQUIRES SPECIAL PWR SWITCHING CONTROLS MISSION LIMITED

PRELIMINARY SFDS FLIGHT DEMONSTRATION PROGRAM PLAN

SPACE FAB DEMO SYSTEM - WBS 1.5.1

2420-042W
WMA-5

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SUMMARY TASK SCHEDULE

2420-097W
MM-20

SFDS FLIGHT DEMONSTRATION PROGRAM: PRELIMINARY PROJECTED COSTS

	LOW (\$M)	HIGH (\$M)
PROGRAM MANAGEMENT	0.63	
SYSTEM ENGINEERING	2.37	
TEST/FLIGHT/OPERATIONS	1.96	
SUBTOTAL	4.96	5.20
SUBSYSTEMS ENGINEERING	1.35	
MANUFACTURING/ASSEMBLY/MATERIAL	1.92	
SUBTOTAL	0.11	
QUALITY ASSURANCE	3.38	8.60
SUBTOTAL		
GSE	8.34	13.80
SUBTOTAL	0.83	1.40
TOTAL	9.17	15.20

2420-098W
MM-21

SPACE FAB DEMO SYSTEM – WBS 1.5.1

SFDS POWER SYSTEM CANDIDATES

(A) FUEL CELL/BATTERY INVERTER			(B) FUEL CELL/BATTERY CHG CONTR BATTERY/INVERTER SYST			(C) PRIMARY BATTERY SYSTEM							
POWER REQ: FUEL CELL = 2.9 KWH BATTERY = 1.4 KWH			POWER REQ: FUEL CELL = 3.4 KWH BATTERY = 9 KWH			POWER REQ = 4.3 KWH							
NICKEL-ZINC BATT	SILVER-ZINC BATT	NICKEL-ZINC BATT	SILVER-ZINC BATT	NICKEL-ZINC BATT	SILVER-ZINC BATT	WT	VOL	WT	VOL	WT	VOL	WT	VOL
—	—	—	—	50	1.5	50	1.5	—	—	—	—	—	—
CHARGE CONTROLLER	—	—	—	—	—	—	—	—	—	—	—	—	—
BATTERY	NICKEL-ZINC	2.0	—	20	1.5	50	1.75	—	25	1.5	150	4.5	—
	SILVER-ZINC	—	—	—	—	—	—	—	—	—	—	75	2.5
INVERTER	300	15.0	300	15.0	300	15.00	300	15.0	300	15.0	300	15.0	300
TOTALS	300	17.0	330	16.5	400	18.25	375	18.0	450	18.5	375	17.5	375
PRELIMINARY ESTIMATED COSTS	\$100,000	\$500,000	\$500,000	\$500,000	\$700,000	\$350,000	\$700,000	\$350,000	\$700,000	\$350,000	\$700,000	\$350,000	\$700,000
NOTE: WEIGHT = LB VOL = FT ³													

FURTHER ACTION REQUIRED

SPACE FAB DEMO SYSTEM - WBS 1.5.1

ACTION REQUIRED	ACTION REQ'D BY	
	GRUMMAN	NASA
• COMMENTS ON PRELIMINARY PROGRAM PLAN REQD. BY NOV 1, 1977		X
• FINAL AGREEMENT ON FLIGHT PROGRAM REQMTS BY JUNE 1, 1978		X
• UPDATED FLIGHT DEMONSTRATION PLAN DELIVERED BY SEPT 1, 1978	X	X

2420-099W
HM-22

ENCLOSURE (2)

FABRICATION FACILITY

(BEAM BUILDER)

QUARTERLY PROGRESS REPORT NO. 3

1.2.2 Fabrication Facility Design

The first and second Interum Critical Design Reviews (ICDR) have been completed. The first ICDR was held 9/29/77 at MSFC Huntsville, Alabama and covered the overall equipment support structure and the machine control system. The drawings reviewed at the ICDR are listed in Table I. The second ICDR was held on 10/26/77 at Grumman Aerospace, Bethpage, N.Y. and covered the brace attachment mechanism, resistance spot weld process and the truss cutoff mechanism. The drawings reviewed at this ICDR are listed in Table II. The third and final ICDR is presently scheduled for 12/14/77 and will cover the brace storage magazine, the brace dispensing mechanism and Yoder Roll supply reel, guide and drive.

Roll Forming

The roll forming equipment has been assembled and the tooling is undergoing acceptance testing at the Yoder Co. in Cleveland, Ohio. (Figure 1) The detail parts for the equipment support structure are in the final phases of fabrication. The three bulkhead weldments RDM 447-2063-1, 2065-1 and 2067-1 Fig. 2 have been welded, stress relieved and are being final machined. The three box beam weldments RDM447-2082-1 Fig. 3 are complete and awaiting delivery of Yoder rolling mills to be mounted on them. The internal support structure RDM 447-2076-1 Fig. 4 has been welded, stress relieved and is being final machined. The base frame and all brackets Fig. 5 are complete and ready for assembly operations.

Welding and Clamp Mechanism

The brace attachment design was changed from an earlier concept of eight spot welds per joint to six welds per joint. The integrity of the six spot weld joint was tested Fig. 6 and the results in Table III indicated that the six weld joint was satisfactory. The design of the weld mechanism was modified from an eight weld system to a six weld system to achieve the following overall system benefits

- o increase weld electrode life
- o reduced weld power requirements
- o simplified brace attachment mechanism

The electrode weld life was improved by a factor of two because previously four electrodes were located in the weld clamp block assembly and were used two times at two different positions to achieve an eight weld joint configuration. The modified design has six electrodes located in the weld block assembly and they are used only once to provide the necessary six weld per joint configuration. The additional motion, stops and feedback data for a two position per joint weld system has been eliminated by going to the one stop six weld joint simplifying the overall weld mechanism. The weld power requirements were reduced by 25% in reducing the number of spot welds per joint from eight to six. Details for the brace attachment mechanism are being fabricated. Figure 7 shows some of these details prior to final machining.

Static and fatigue characteristics of spot welded 2024T3 aluminum joints was evaluated as discussed in Appendix "A".

Brace Magazine and Dispensing Mechanism

As a result of the August Quarterly Program Review the brace dispensing mechanism has been redesigned to improve reloading of brace members and replacement of entire unit as a separate module. A preliminary design for both the vertical and diagonal braces is shown in Figure 10. The unit uses a rotating Helix as the brace selector device. The Helix separates one brace member from the stack stored in the magazine. A separate handling carriage Figure 11 then grips the selected brace member and is used to move the braces 12 13/16 inches from the magazine to the position for welding on the cap member. The entire magazine unit is designed as a module to be readily removed from the machine. A series of hinge points on each of the magazines Fig. 12 will be used to provide easy re-loading directly on the machine. A mock-up Fig. 13 of the brace magazine and helix dispenser has been built and was successfully demonstrated as part of an October program review.

Truss Cutoff

The truss cutoff mechanism Fig. 14 is a screw driven guillotine double shear device with the lower die section retractable to clear the brace members when the truss section is in motion. The shear blade is .170 inches thick and will remove .170 inches of material from the truss during the shear operation. The excess material is captured in a cavity of the lower die. A mockup of the cutoff approach Fig. 15 has been made and evaluated. The principal advantages of the approach are the lack of extraneous particles and clean cut achieved by using the double shear cutting action. The double shear action also means no transverse motion of the overall truss assembly must be made to obtain the shearing action.

Controls

All major actuator motors have been selected. Table IV shows each subsystem's motor and gear reduction if applicable. Speed torque requirements versus speed-torque obtainable from each motor is also shown. The motor designations and location are shown on the Motor Cross Reference in Appendix B. Appendix B also shows the limit switch designation/location and the confidence signals which are derived from these switches. The individual bit assignments to the computer have been made for both the motor and confidence feedback signals. These are shown in Appendix B along with the device codes for each of the I/O ports. The motor control circuits will consist of electromechanical relays to perform the direction control and on/off function.

The preliminary layout of the operator control panel is shown in Figure 16. In the manual mode the operator can drive the 3 rolling mills synchronously, and can perform a manual shear or assembly cycle. In the automatic mode the operator can select the continuous operation with the "start" switch or single task control using the "single cycle" switch. The "Initialize" push button is used to tell the controller to perform the special functions required when starting a new beam.

The coding for the task controller major modules used for the assembly subsystem is complete. Figure 17 shows the general flow of events in this task controller. At the time a task is to be implemented it is placed into a task queue along with any other tasks which are to be made active at the same time. The task activator routine continually sweeps through this queue and makes the tasks active. That is, the task activator turns on or off the discrete output signals called for by the particular task that is being swept out of the task que. Examples of tasks are:

- o Turn on motor to close top vertical scissor
- o Turn on motor to drive right diagonal carriage up

The tasks made active are taken out of the task que and placed in the "ACTIVE TASK" table. This table is constantly being serviced by the task completion monitor which looks at the confidence input signals and sees if they satisfy the completion requirements for the task. When they do, the completion control' routine will turn off or on the discrete outputs called for by the task. This task then waits in a wait que until any interlocking tasks are also complete. When all interlocking tasks are together in the wait que they signal the "Task Selector" routine to fetch the task from the task resident table that is pointed to by the completing tasks. The task selector then takes the tasks from the task resident table, along with any parallel tasks from the residenttable, and places these tasks into the task que. The completed tasks in the wait que are then destroyed.

Major modules for the cap rolling system software are being integrated to implement the basis control algorithm described in earlier reports for maintaining synchronized cap rolling. The primary difficulty in synchronized rolling is due to random slippage in the rolling mills. This slippage has been measured for the Yoder mill now at Grumman and is shown in Figure 18. This data was the amount of material going into the rolling mill. Since there are three mills, the magnitude of the problem is something like that shown in Figure 19, which superimposes three similar curves with an arbitrary phase shift.

Since the control algorithm attempts to correct for slippage based on encoder feedback and projections of continued slippage, there is always a possibility of under or overshooting the final target. To correct for this possibility, the control algorithm is being modified to reduce the maximum number of pulses that are loaded into the FIFO as a function of remaining distance to the target. This approach will reduce the final positioning error.

In order to determine how well the control algorithm might work, a computer simulation of the machine was developed using the three superimposed slippage curves as input to the program. The simulation indicates that the maximum cap length variation during rolling is about 0.0418 inches (1.062 mm) indicated as MAX-ERROR on the printout. At the end points, however, the cap length variation is reduced to an insignificant amount (0.0005 in. = 0.0125 mm) indicated as END-ERROR on the printout. The simulation was written in PL/1 and run on an IBM 360/67. The program listing, input file and sample output is shown in Appendix C.

Assembly subsystem software major module assembly is in progress. Coded source files have been transferred to a disc for assembly and preliminary debugging.

Analysis of actuator requirements for the redesigned Electrode block cams is complete with final control system redesign to be completed next month. Preliminary analysis of redesigned magazine actuator requirements is underway.

Control system wire run lists are being computerized to facilitate rapid correction and modifications.

TABLE I ICDR #1 DRAWINGS

STRUCTURE

<u>Drawing Number</u>	<u>Title</u>
RMD 447-1701 Sht. 2	Roll Die Configuration
RDM 447-2060 Sht. 1	Yoder Base Plast
RDM 447-2061 Sht. 1	Yoder Mach. W/Base
RDM 447-2061 Sht. 2	Section Thru Mill
RDM 447-2063 Sht. 1	Bulkhd. #1 Weld & Mach
RDM 447-2065 Sht. 1	Bulkhd. #2 Weld & Mach
RDM 447-2067 Sht. 1	Bulkhead #3 Weld & Mach
RDM 447-2068 Sht. 1	Internal Struct. Brkt.
RDM 447-2069 Sht. 2	Int. Weld Block Sub-Ass'y.
RDM 447-2070 Sht. 1	Structural Sub-Ass'y.
RDM 447-2071 Sht. 1	Yoder Mill-Box Beam Ass'y.
RDM 447-2072 Sht. 2	Bulkhd. #1 Bracketry
RDM 447-2072 Sht. 2	Bulkhd. #2 Bracketry
RDM 447-2072 Sht. 3	Bulkhd. #3 Bracketry
RDM 447-2073 Sht. 2	Int. Weld Blk Supp Det .
RDM 447-2076 Sht. 1	Int. Struct Frame
RDM 447-2076 Sht. 2	Section at Bulkhd. #3
RDM 447-2076 Sht. 3	Section at Bulkhd. #2
RDM 447-2075 Sht. 4	Section at Bulkhd. #1
RDM 447-2077 Sht. 1	Base Frame
RDM 447-2082 Sht. 1	Box Beam Weldment
RDM 447-2082 Sht. 2	Box Beam Machining
RDM 447-2083	Inst. Tool
RMD 447-2116	Brackets
RDM 447-2115	Drawing Tree
RDM 447-2079	Base Tie Down Bracket
RDM 447-2050	Configuration

TABLE I (continued)

CONTROLS

<u>Drawing Number</u>	<u>Title</u>
RDM 447-2001	Assembly Diagram
RDM 447-2002	System Cabling
RDM 447-2003	Interface Rack Utilization
RDM 447-2004	Control Panel Configuration
RDM 447-2005	Control System Functional Diagram
RDM 447-2006	Lamp Drivers
RDM 447-2010	Material Position Registers
RDM 447-2011	Voltage Controlled Oscillator and Linear Ramp Generator
RDM 447-2012	Fifo Buffer and Control
RDM 447-2013	Isolators and Line Drivers
RDM 447-2014	Slot Sense Detectors
RDM 447-2015	Limit Switch Filter Network
RDM 447-2016	Motor Control Relay Junction Box Layout
RDM 447-2017	Motor Control Relay Junction Box Wiring
RDM 447-2018	Typical Motor, Solenoid Control Circuits
RDM 447-2019	115VAC Power Supply Control
RDM 447-2020	Motor Power Supplies
RDM 447-2021	Emergency Stop Wiring
RDM 447-2022	Limit Switch Wiring

TABLE II ICDR #2 Drawings

Weld Mechanism

<u>Drawing No.</u>	<u>Title</u>
RDM 447-2051 Sht. 1 Sht. 2	Vertical Clamp Mech
RDM 447-2091 Sht. 1 Sht. 2 Sht. 3 Sht. 4	Scissor Mech (Vert Clamp)
RDM 447-2092 Sht. 1 Sht. 2	Weld Block Assembly (Vert. Clamp)
RDM 447-2093 Sht. 1 Sht. 2	Scissor Mech Details (Aft Diag Clamp)
RDM 447-2094 Sht. 1	Weld Support Block Assembly (For Aft and Fwd. Diag Clamp)
RDM 447-2095 Sht. 1	Scissor Mech Details (Fwd Diag. Clamp)
RDM 447-2096 Sht. 1 Sht. 2	Weld Block Assembly (For Fwd & Aft Diag Clamp)
RDM 447-2103 Sht. 1 Sht. 2	Aft Clamp Mech. Assembly
RDM 447-2104 Sht. 1 Sht. 2	Fwd Clamp Mech. Assembly

Cut-Off

RDM 447-2121 Sht. 1 Sht. 2	Upper Movable Die Details
RDM 447-2122 Sht. 1	Stationary Die Details
RDM 447-2123 Sht. 1 Sht. 2 Sht. 3	Lower Movable Die Details
RDM 447-2107 Sht. 1	Upper Movable Die Sub-Assy
RDM 447-2108 Sht. 1	Stationary Die Sub-Assy
RDM 447-2109 Sht. 1	Lower Movable Die Sub-Assy
RDM 447-2081 Sht. 1 Sht. 2	Cut-Off Mechanism Assy

Table III Weld Configuration Test

<u>Spots/Joint</u>	<u>Pitch, In.</u>	<u>Max Load to Failure, Lbs.</u>
6	1.38	775
6	1.25	778
8	0.5/0.75/0.5	765

TABLE IV

BASIC MOTOR CHARACTERISTICS

FUNCTION	MOTOR TYPE	QUANTITY REQUIRED	TORQUE (IN. LBS.) REQUIRED	AVAILABLE	SPEED (RPM) REQUIRED	AVAILABLE
Rolling Mill Drives	A	3	235	751	53.3	58.6
Vert./Horiz. Magazine Banking, Selecting	B	12	96	144	4	7.3
Cherry Pickers						
Rotate	C	6	3	5	20	20
Translate	D	6	1.3	2.3	312	290
Electrode Block						
Clamp	E	9	80	100	120	120
Scissors	E	9	23	100	96	120
Cams	E	12	86	200	30	30

MOTOR TYPES

Type	Manufacturer - Model No.
A	Control Systems Research SM709
B	Elinco - AS 281 180:1 Gear
C	Bodine - KCI-24T3-#750
D	Bodine - NCI-12R-#406
E	PMI MOTORS - U9FG

FIGURE 1 - SFDS Yoder Roll Forming Mill

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2 - SFDS Bulkhead Weldments

FIGURE 3 - SFDS Box Beam Weldments

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4 - SFDS Internal Support Structure

FIGURE 5 - SFDS Base Frame and Assembly Brackets

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 6 - Six Weld/Joint Test Specimen

FIGURE 7 - SFDS Clamp/Weld Block Detail Parts

ORIGINAL PAGE IS
OF POOR QUALITY

91-2

HOLDOUT FRAME

32.625
DATA MAGAZINES

65.89
DIMS. BRACE

ZOLDOUT FRAME 4

FIG. 10

RE 11-11-04

71-2

3
SOLVENT BATH

CARRIAGE

RE 847

FIG. 13.

Figure 12 - SFDS Magazine Hinge Layout

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 13 - SFDS Magazine/Dispenser Mockup

FIGURE 15 - SFDS Truss Cutoff Mockup

FIGURE 14 - SFDS Truss Cutoff

FIGURE 16 CONTROL PANEL LAYOUT

ASSEMBLY SUBSYSTEM SOFTWARE

FIGURE 17

FIGURE 18
ROLLING MILL SLIPPING
VERSUS DRIVE SHAFT
REVOLUTIONS

FIGURE 19
ROLLING MILL SLIPPAGE
VERSUS DRIVE SHAFT
REVOLUTIONS

CONFIDENTIAL

APPENDIX A
MEMORANDUM

CHECK (✓) BOXES
AS APPROPRIATE

ACTION
INFO ONLY
REPLY REQUESTED...

FROM: R. Messler, Jr.

AMPD

A04/12

2244

DATE 7 October 1977

TO: J. Huber/R. Witt

GROUP NO. & NAME
AMPD

PLANT NO. COMPANY EXT.
A04/12 7363/2244

NO.MP-AMPD-MO-77-129

SUBJECT:

Static and Fatigue Characteristics of Spotwelded 2024-T3
Aluminum Joints

As part of an effort to evaluate techniques for joining structural elements fabricated in space to form a truss, resistance spot-welded 2024-T3 aluminum alloy (0.016-inch thick) was tested for static and fatigue properties. Test specimens, consisting of single lap shear joints, were resistance spot-welded to each of four configurations shown in Figure 1. Welding was performed on a 100 kva welder using 300 lb. per spot electrode pressure. Single spot direct welding using one cycle of heat was employed to simulate the series resistance welding concept proposed for space fabrication. Three samples of each configuration (Figure 1) were statically tested. Results are shown in Figure 2.

Configuration "D" (four spots in-line) resulted in the highest total (700 lbs.) and per spot (175 lbs.) shear load carrying capacity and was therefore selected for fatigue testing. Twenty-six additional samples were welded. Twelve specimens were tested in constant amplitude tension-fatigue ($R=0.05$) in an unrestrained (free) manner and twelve restrained between oiled Micarta to prevent end curling or lifting in the lap joint area. The three remaining specimens were statically tested to determine the shear ultimate strength of the lot. Test results are tabulated in Figure 3 and plotted as an S-N curve in Figure 4.

Fatigue testing in the unrestrained condition resulted in a predominant failure mode consisting of spot pull-out, attributed to a tension component induced by sample curling or lifting in the lap joint area. Fatigue run-out (endurance limit) occurred for loads below 10% of the ultimate shear load. Restraining the fatigue specimen in the lap joint area prevented curling or lifting and resulted in a predominant failure mode consisting of fatigue failure through the aluminum, initiating at one of the end spot welds. Fatigue run-out occurred between 10 and 15% of the shear ultimate load.

In conclusion, spot welds which are representative of those which would be made in space (i.e. single spot direct welded) produced ultimate shear tension strengths of 700 lbs. using four spots in-line. Fatigue run-out averages 10-15% of shear ultimate load which is within the range of values obtained by other programs (e.g. Goodyear spot-welding studies).

✓cc:W. Marx
A. Alberi
W. Muench
D. Layton
A. Sinowitz

0100 REV. 0
8-74 250M

Figure 1. Spot Weld Evaluation Static and Fatigue
Test Specimen Configurations

Spec. No.	No. of Spots	Ultimate Failing Load (lbs)	Failing Load Per Spot (lbs)	Comment
A-1	1	170	170	
A-2	1	150	150	
A-3	1	191	191	
		—	—	
		170 Avg.	170 Avg.	
B-1	3	467	156	
B-2	3	479	159	
B-3	3	473	158	Considerable Bending Extracted Spots as "Plugs"
		—	—	
		473 Avg.	158 Avg.	
C-1	4 (2)	676	169	
C-2	4 (Rows)	652	163	Slight Bending
C-3	4 (of 2)	685	171	
		—	—	
		671 Avg.	168 Avg.	
D-1	4 (4)	715	179	
D-2	4 (Spots)	675	169	Selected for Phase II
D-3	4 (in) (Line)	709	177	
		—	—	
		700 Avg.	175 Avg.	

Figure 2. Spot Weld Evaluation: Static Test Results

Spec. No.	Max. Load (lbs)	% Static Test Ultimate	Cycles to Failure	Mode of Failure
<u>UNRESTRAINED JOINT</u>				
1	350	55	6,000	Spot
2	210	33	106,000	Al
3	140	22	238,000	"
4	175	27.3	177,000	"
5	280	44	31,000	Spot
6	280	44	19,000	"
7	245	38.3	65,000	"
8	245	38.3	68,000	Al
9	227 $\frac{1}{2}$	35.8	100,000	Spot
10	227 $\frac{1}{2}$	35.8	100,000	"
11	140	22	255,000	Al
12	70	11	10,000,000	No Failure
12R	350	55	8,000	Spot
<u>RESTRAINED JOINT</u>				
13	210	33	109,000	Al
14	140	22	483,000	"
15	140	22	235,000	"
16	315	49.3	38,000	"
17	315	49.3	27,000	Spot
18	210	33	106,000	Al
19	140	22	510,000	"
20	105	16.4	2,560,000	"
21	70	11	10,000,000	No Failure
21R	245	38.3	63,000	Al
22	175	27.3	280,000	"
23	105	16.4	8,345,000	"
STATIC	ULT. LOAD (LBS)		LOAD PER SPOT (LBS)	-4 SPOTS IN LINE
24	660		165	
25	631		158	
26	627		157	
Ave.	639		160	

Figure 3. Spot Weld Evaluation: Fatigue Test Results

FIGURE 4: SPOT WELD EVALUATION FATIGUE TEST RESULTS.

APPENDIX B
MOTOR CROSS REFERENCE

<u>MOTOR NUMBER</u>	<u>LOCATION</u>	<u>TYPE</u>
<u>Vert Magazines</u>		
M1	Right Vertical	
M2	Bottom Vertical	
M3	Left Vertical	
<u>Diagonal Magazines</u>		
M4	Right Diagonal	
M5	Bottom Diagonal	
M6	Left Diagonal	
<u>Vert Carriage</u>		
M7	Right Vertical	
M8	Bottom Vertical	
M9	Left Vertical	
<u>Diag Carriage</u>		
M10	Right Diagonal	
M11	Bottom Diagonal	
M12	Left Diagonal	

ELECTRODE BLOCK CLAMP DEVICE
TRANSLATE

<u>MOTOR NUMBER</u>	<u>LOCATION</u>	<u>TYPE</u>
M13	Top Vertical	PMI U9 50:1
M14	Right Vertical	60 RPM
M15	Left Vertical	
M16	Right Diagonal Aft	
M17	Right Diagonal Fwd	
M18	Bottom Diagonal Aft	
M19	Bottom Diagonal Fwd	
M20	Left Diagonal Aft	
M21	Left Diagonal Fwd	

Scissors

M22	Top Vertical	PMI U9FG 25:1
M23	Right Vertical	120 RPM
M24	Left Vertical	
M25	Right Diagonal Aft	
M26	Right Diagonal Fwd	
M27	Bottom Diagonal Aft	
M28	Bottom Diagonal Fwd	
M29	Left Diagonal Aft	
M30	Left Diagonal Fwd	

Cams

M31	Right Vertical Top	PMI U9FG 50:1
M32	Right Vertical Bottom	Extended Shaft - Keyway
M33	Bottom Vertical Right	
M34	Bottom Vertical Left	
M35	Left Vertical Top	
M36	Left Vertical Bottom	
M37	Right Diagonal Aft	
M38	Right Diagonal Fwd	
M39	Bottom Diagonal Aft	
M40	Bottom Diagonal Fwd	
M41	Left Diagonal Aft	
M42	Left Diagonal Fwd	

Guillotines

M43	Top Guillotine Upper	PMZ U9FG 50:1
M44	Top Guillotine Lower	
M45	Right Guillotine Upper	
M46	Right Guillotine Lower	
M47	Left Guillotine Upper	
M48	Left Guillotine Lower	

MOTOR CONTROL SIGNALS

(CONT'D)

<u>NO.</u>	<u>MOTOR</u>	<u>FUNCTION</u>
75	M41	cw
76	M41	ccw
77	M42	cw
78	M42	ccw
79	M43	Up
80	M43	Dn
81	M44	Up
82	M44	Dn
83	M45	Up
84	M45	Dn
85	M46	Up
86	M46	Dn
87	M47	Up
88	M47	Dn
89	M48	Up
90	M48	Dn

SOLENOID CONTROL SIGNALS

NO.	SOLENOID	FUNCTION
1	SOL 1, SOL 2, SOL 3, SOL 4,	Retract
2	SOL 5, SOL 6, SOL 7, SOL 8	Retract
3	SOL 9, SOL 10, SOL 11, SOL 12	Retract
4	SOL 13, SOL 14, SOL 15, SOL 16	Retract
5	SOL 17, SOL 18, SOL 19, SOL 20	Retract
6	SOL 21, SOL 22, SOL 23, SOL 24	Retract
7	SOL 25, SOL 26	Extend
8	SOL 27, SOL 28	Extend
9	SOL 29, SOL 30	Extend
10	SOL 31, SOL 32	Extend
11	SOL 33, SOL 34	Extend
12	SOL 35, SOL 36	Extend
13	SOL 37	Release
14	SOL 38	Release
15	SOL 39	Release
16	SOL 40	Release
17	SOL 41	Release
18	SOL 42	Release
19	SOL 43	Release
20	SOL 44	Release
21	SOL 45	Release
22	SOL 46	Release
23	SOL 47	Release
24	SOL 48	Release

SOLENOID CROSS REFERENCE

Vert Magazines

SOL 1	Right Vert A
SOL 2	Right Vert B
SOL 3	Right Vert C
SOL 4	Right Vert D
SOL 5	Bottom Vert A
SOL 6	Bottom Vert B
SOL 7	Bottom Vert C
SOL 8	Bottom Vert D
SOL 9	Left Vert A
SOL 10	Left Vert B
SOL 11	Left Vert C
SOL 12	Left Vert D

Diag Magazines

SOL 13	Right Diagonal A
SOL 14	Right Diagonal B
SOL 15	Right Diagonal C
SOL 16	Right Diagonal D
SOL 17	Bottom Diagonal A
SOL 18	Bottom Diagonal B
SOL 19	Bottom Diagonal C
SOL 20	Bottom Diagonal D
SOL 21	Left Diagonal A
SOL 22	Left Diagonal B
SOL 23	Left Diagonal C
SOL 24	Left Diagonal D

Vert Carriage

SOL 25	Right Vert A
SOL 26	Right Vert B
SOL 27	Bottom Vert A
SOL 28	Bottom Vert B
SOL 29	Left Vert A
SOL 30	Left Vert B

Diagonal Carriage

SOL 31	Right Diagonal A
SOL 32	Right Diagonal B
SOL 33	Bottom Diagonal A
SOL 34	Bottom Diagonal B
SOL 35	Left Diagonal A
SOL 36	Left Diagonal B

SOLENOID CROSS REFERENCE

Cams

SOL 37	Right Vert Top
SOL 38	Right Vert Bottom
SOL 39	Bottom Vert Right
SOL 40	Bottom Vert Left
SOL 41	Left Vert Top
SOL 42	Left Vert Bottom
SOL 43	Right Diagonal Aft
SOL 44	Right Diagonal Fwd
SOL 45	Bottom Diagonal Aft
SOL 46	Bottom Diagonal Fwd
SOL 47	Left Diagonal Aft
SOL 48	Left Diagonal Fwd

POSITION SWITCHES

SWITCH NUMBER	LOCATION
<u>Vert Magazines</u>	
LS1	Right Vert Home
LS2	Bottom Vert Home
LS3	Left Vert Home
LS4	Right Solenoid A Retract
LS5	Right Solenoid B Retract
LS6	Right Solenoid C Retract
LS7	Right Solenoid D Retract
LS8	Bottom Solenoid A Retract
LS9	Bottom Solenoid B Retract
LS10	Bottom Solenoid C Retract
LS11	Bottom Solenoid D Retract
LS12	Left Solenoid A Retract
LS13	Left Solenoid B Retract
LS14	Left Solenoid C Retract
LS15	Left Solenoid D Retract
<u>Diagonal Magazines</u>	
LS16	Right Diagonal Home
LS17	Bottom Diagonal Home
LS18	Left Diagonal Home
LS19	Right Solenoid A Retract
LS20	Right Solenoid B Retract
LS21	Right Solenoid C Retract
LS22	Right Solenoid D Retract
LS23	Bottom Solenoid A Retract
LS24	Bottom Solenoid B Retract
LS25	Bottom Solenoid C Retract
LS26	Bottom Solenoid D Retract
LS27	Left Solenoid A Retract
LS28	Left Solenoid B Retract
LS29	Left Solenoid C Retract
LS30	Left Solenoid D Retract
<u>Vertical Carriage</u>	
LS31	Right Vertical Home
LS32	Right Vertical Extend
LS33	Bottom Vertical Home
LS34	Bottom Vertical Extend
LS35	Left Vertical Home
LS36	Left Vertical Extend

POSITION SWITCHES (cont'd)

SWITCH NUMBER	LOCATION
<u>Vertical Carriage</u>	
LS37	Right Solenoid A Extend
LS38	Right Solenoid B Extend
LS39	Bottom Solenoid A Extend
LS40	Bottom Solenoid B Extend
LS41	Left Solenoid A Extend
LS42	Left Solenoid B Extend
<u>Diagonal Carriage</u>	
LS43	Right Diag Home
LS44	Right Diag Extend
LS45	Bottom Diag Home
LS46	Bottom Diag Extend
LS47	Left Diag Home
LS48	Left Diag Extend
LS49	Right Solenoid A Extend
LS50	Right Solenoid B Extend
LS51	Bottom Solenoid A Extend
LS52	Bottom Solenoid B Extend
LS53	Left Solenoid A Extend
LS54	Left Solenoid B Extend
<u>Electrode Flock Clamp Device Translate</u>	
LS55	Top Vertical Home
LS56	Top Vertical Extend
LS57	Right Vertical Home
LS58	Right Vertical Extend
LS59	Left Vertical Home
LS60	Left Vertical Extend
LS61	Right Diagonal Aft
LS62	Right Diagonal Aft Extend
LS63	Right Diagonal Fwd Home
LS64	Right Diagonal Fwd Extend
LS65	Bottom Diagonal Aft Home
LS66	Bottom Diagonal Aft Extend
LS67	Bottom Diagonal Fwd Home
LS68	Bottom Diagonal Fwd Extend

POSITION SWITCHES (cont'd)

Electrode Block Clamp Device Translate

LS69	Left Diagonal Aft Home
LS70	Left Diagonal Aft Extend
LS71	Left Diagonal Fwd Home
LS72	Left Diagonal Fwd Extend
<u>Scissors</u>	
LS73	Top Vertical Home
LS74	Top Vertical Contact
LS75	Right Vertical Home
LS76	Right Vertical Contact
LS77	Left Vertical Home
LS78	Left Vertical Contact
LS79	Right Diagonal Aft Home
LS80	Right Diagonal Aft Contact
LS81	Right Diagonal Fwd Home
LS82	Right Diagonal Fwd Contact
LS83	Bottom Diagonal Aft Home
LS84	Bottom Diagonal Aft Contact
LS85	Bottom Diagonal Fwd Home
LS86	Bottom Diagonal Fwd Contact
LS87	Left Diagonal Aft Home
LS88	Left Diagonal Aft Contact
LS89	Left Diagonal Fwd Home
LS90	Left Diagonal Fwd Contact
<u>Cams</u>	
LS91	Right Vertical Top Home
LS92	Right Vertical Top Position A + B + C
LS93	Right Vertical Bottom Home
LS94	Right Vertical Bottom Position A + B + C
LS95	Bottom Vertical Right Home
LS96	Bottom Vertical Right Position A + B + C
LS97	Bottom Vertical Left Home
LS98	Bottom Vertical Left Position A + B + C
LS99	Left Vertical Top Home
LS100	Left Vertical Top Position A + B + C

POSITION SWITCHES (cont'd)

Cams

LS101	Left Vertical Bottom Home
LS102	Left Vertical Bottom Position A + B + C
LS103	Right Diagonal Aft Home
LS104	Right Diagonal Aft Position A + B + C
LS105	Right Diagonal Fwd Home
LS106	Right Diagonal Fwd Position A + B + C
LS107	Bottom Diagonal Aft Home
LS108	Bottom Diagonal Aft Position A + B + C
LS109	Bottom Diagonal Fwd Home
LS110	Bottom Diagonal Fwd Position A + B + C
LS111	Left Diagonal Aft Home
LS112	Left Diagonal Aft Position A + B + C
LS113	Left Diagonal Fwd Home
LS114	Left Diagonal Fwd Position A + B + C

Cam Solenoid

LS115	Right Vertical Top in Pos.
LS116	Right Vertical Bottom in Pos.
LS117	Bottom Vertical Right in Pos.
LS118	Bottom Vertical Left in Pos.
LS119	Left Vertical Top in Pos.
LS120	Left Vertical Bottom in Pos.
LS121	Right Diagonal Aft in Pos.
LS122	Right Diagonal Fwd in Pos.
LS123	Bottom Diagonal Aft in Pos.
LS124	Bottom Diagonal Fwd in Pos.
LS125	Left Diagonal Aft in Pos.
LS126	Left Diagonal Fwd in Pos.

Guillotine

211SM6-T

LS127	Top Guillotine Upper Home
LS128	Top Guillotine Cut Done
LS129	Top Guillotine Lower Home
LS130	Top Guillotine Lower Extended
LS131	Right Guillotine Upper Home
LS132	Right Guillotine Cut Done
LS133	Right Guillotine Lower Home
LS134	Right Guillotine Lower Extended
LS135	Left Guillotine Upper Home
LS136	Left Guillotine Cut Done
LS137	Left Guillotine Lower Home
LS138	Left Guillotine Lower Extended

POSITION SWITCHES (cont'd)

Scissors

LS139	Top Vertical.	Pre Position
LS140	Right Vertical	Pre Position
LS141	Left Vertical	Pre Position
LS142	Right Diagonal Aft	Pre Position
LS143	Right Diagonal Fwd	Pre Position
LS144	Bottom Diagonal Aft	Pre Position
LS145	Bottom Diagonal Fwd	Pre Position
LS146	Left Diagonal Aft	Pre Position
LS147	Left Diagonal Fwd	Pre Position

FEEDBACK SIGNALS

SIGNAL NO.	FUNCTION	<u>SWITCHES</u>
<u>Vertical Magazines</u>		
S-1	Right Vertical Home	LS1
S-2	Bottom Vertical Home	LS2
S-3	Left Vertical Home	LS3
S-4	Right Vertical Solenoids Retract	LS4
S-5	Bottom Vertical Solenoids Retract	LS8, LS9, LS10, LS11
S-6	Left Vertical Solenoids Retract	LS12, LS13, LS14, LS15
<u>Diagonal Magazines</u>		
S-7	Right Diagonal Home	LS16
S-8	Bottom Diagonal Home	LS17
S-9	Left Diagonal Home	LS18
S-10	Right Diagonal Solenoids Retract	LS19, LS20, LS21, LS22
S-11	Bottom Diagonal Solenoids Retract	LS23, LS24, LS25, LS26
S-12	Left Diagonal Solenoids Retract	LS27, LS28, LS29, LS30
<u>Vertical Carriage</u>		
S-13	Right Vertical In Position	LS31 + LS32
S-14	Bottom Vertical In Position	LS33 + LS34
S-15	Left Vertical In Position	LS35 + LS36
S-16	Right Vertical Solenoids Extend	LS37, LS38
S-17	Bottom Vertical Solenoids Extend	LS39, LS40
S-18	Left Vertical Solenoids Extend	LS41, LS42
<u>Diagonal Carriage</u>		
S-19	Right Diagonal In Position	LS43 + LS44
S-20	Bottom Diagonal In Position	LS45 + LS46
S-21	Left Diagonal In Position	LS47 + LS48
S-22	Right Diagonal Solenoids Extend	LS49, LS50
S-23	Bottom Diagonal Solenoids Extend	LS51, LS52
S-24	Left Diagonal Solenoids Extend	LS53, LS54
<u>Electrode Block Clamp Devices</u>		
S-25	Top Vertical In Position	LS55 + LS56
S-26	Right Vertical In Position	LS57 + LS58
S-27	Left Vertical In Position	LS59 + LS60
S-28	Right Diagonal Aft In Position	LS61 + LS62
S-29	Right Diagonal Fwd In Position	LS63 + LS64
S-30	Bottom Diagonal Aft In Position	LS65 + LS66
S-31	Bottom Diagonal Fwd In Position	LS67 + LS68
S-32	Left Diagonal Aft In Position	LS69 + LS70
S-33	Left Diagonal Fwd In Position	LS71 + LS72

FEEDBACK SIGNALS (Cont'd)

<u>SIGNAL NO.</u>	<u>FUNCTION</u>	<u>SWITCHES</u>
<u>Scissors</u>		
S-34	Top Vertical In Position	LS73 + LS74
S-35	Right Vertical In Position	LS75 + LS76
S-36	Left Vertical In Position	LS77 + LS78
S-37	Right Diagonal Aft In Position	LS79 + LS80
S-38	Right Diagonal Fwd In Position	LS81 + LS82
S-39	Bottom Diagonal Aft In Position	LS83 + LS84
S-40	Bottom Diagonal Fwd In Position	LS85 + LS86
S-41	Left Diagonal Aft In Position	LS87 + LS88
S-42	Left Diagonal Fwd In Position	LS89 + LS90
S-43	Right Vertical Top Home	LS91
S-44	Right Vertical Top In Position	LS92
S-45	Right Vertical Bottom Home	LS95
S-46	Right Vertical Bottom In Position	LS96
S-47	Bottom Vertical Right Home	LS95
S-48	Bottom Vertical Right In Position	LS96
S-49	Bottom Vertical Left Home	LS97
S-50	Bottom Vertical Left In Position	LS98
S-51	Left Vertical Top Home	LS99
S-52	Left Vertical Top In Position	LS100
S-53	Left Vertical Bottom Home	LS101
S-54	Left Vertical Bottom In Position	LS102
S-55	Right Diagonal Aft Home	LS103
S-56	Right Diagonal Aft In Position	LS104
S-57	Right Diagonal Fwd Home	LS105
S-58	Right Diagonal Fwd In Position	LS106
S-59	Bottom Diagonal Aft Home	LS107
S-60	Bottom Diagonal Aft In Position	LS108
S-61	Bottom Diagonal Fwd Home	LS109
S-62	Bottom Diagonal Fwd In Position	LS110
S-63	Left Diagonal Aft Home	LS111
S-64	Left Diagonal Aft In Position	LS112
S-65	Left Diagonal Fwd Home	LS113
S-66	Left Diagonal Fwd In Position	LS114
<u>Cam Solenoids</u>		
S-67	Right Vertical Top In Position	LS115
S-68	Right Vertical Bottom In Position	LS116
S-69	Bottom Vertical Right In Position	LS117
S-70	Bottom Vertical Left In Position	LS118

FEEDBACK SIGNALS (CONT'd)

SIGNAL NO.	FUNCTION	SWITCHES
<u>Cam Solenoids</u>		
S-71	Left Vertical Top In Position	LS119
S-72	Left Vertical Bottom In Position	LS120
S-73	Right Diagonal Aft In Position	LS121
S-74	Right Diagonal Fwd In Position	LS122
S-75	Bottom Diagonal Aft In Position	LS123
S-76	Bottom Diagonal Fwd In Position	LS124
S-77	Left Diagonal Aft In Position	LS125
S-78	Left Diagonal Fwd In Position	LS126
<u>Guillotine</u>		
S-79	Top Guillotine Upper Home	LS127
S-80	Top Guillotine Cut Done	LS128
S-81	Top Guillotine Lower In Position	LS129 + LS130
S-82	Right Guillotine Upper Home	LS131
S-83	Right Guillotine Cut Done	LS132
S-84	Right Guillotine Lower In Position	LS133 + LS134
S-85	Left Guillotine Upper Home	LS135
S-86	Left Guillotine Cut Done	LS136
S-87	Left Guillotine Lower In Position	LS137 + LS138
<u>Scissors</u>		
S-88	Top Vertical Pre Position	LS139
S-89	Right Vertical Pre Position	LS140
S-90	Left Vertical Pre Position	LS141
S-91	Right Diagonal Aft Pre Position	LS142
S-92	Right Diagonal Fwd Per Position	LS143
S-93	Bottom Diagonal Aft Per Position	LS144
S-94	Bottom Diagonal Fwd Per Position	LS145
S-95	Left Diagonal Aft Per Position	LS146
S-96	Left Diagonal Fwd Per Position	LS147

M1705 CARD #4A - Load Command IOT 6363

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>	
0	M37	1/0 - Off/cw	Cam Right Diag	Aft
1	M37	1/0 - Off/ccw	Cam Right Diag	Aft
2	M38	1/0 - Off/cw	Cam Right Diag	Fwd
3	M38	1/0 - Off/ccw	Cam Right Diag	Fwd
4	M39	1/0 - Off/cw	Cam Bottom Diag	Aft
5	M39	1/0 - Off/ccw	Cam Bottom Diag	Aft
6	M40	1/0 - Off/cw	Cam Bottom Diag	Bwd
7	M40	1/0 - Off/ccw	Cam Bottom Diag	Fwd
8	M41	1/0 - Off/cw	Cam Left Diag	Aft
9	M41	1/0 - Off/ccw	Cam Left Diag	Aft
10	M42	1/0 - Off/cw	Cam Left Diag	Fwd
11	M42	1/0 - Off/ccw	Cam Left Diag	Fwd

M1705 CARD #4B - Load Command IOT 6373

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>	
0	M43	1/0 - Off/Up	Guillotine Top	Upper
1	M43	1/0 - Off/Dn	Guillotine Top	Upper
2	M44	1/0 - Off/Up	Guillotine Top	Lower
3	M44	1/0 - Off/Dn	Guillotine Top	Lower
4	M45	1/0 - Off/Up	Guillotine Right	Upper
5	M45	1/0 - Off/Dn	Guillotine Right	Upper
6	M46	1/0 - Off/Up	Guillotine Right	Lower
7	M46	1/0 - Off/Dn	Guillotine Right	Lower
8	M47	1/0 - Off/Up	Guillotine Left	Upper
9	M47	1/0 - Off/Dn	Guillotine Left	Upper
10	M48	1/0 - Off/Up	Guillotine Left	Lower
11	M48	1/0 - Off/Dn	Guillotine Left	Lower

M1705 CARD #5A - Load Command IOT 6403

<u>BIT</u>	<u>SOLENOID</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	1,2,3,4	1/0 - Off/On	Right Vertical Magazine
1	5,6,7,8	1/0 - Off/On	Bottom Vertical Magazine
2	9,10,11,12	1/0 - Off/On	Left Vertical Magazine
3	13,14,15,16	1/0 - Off/On	Right Diagonal Magazine
4	17,18,19,20	1/0 - Off/On	Bottom Diagonal Magazine
5	21,22,23,24	1/0 - Off/On	Left Diagonal Magazine
6	25,26	1/0 - Off/On	Right Vertical Carriage
7	27,28	1/0 - Off/On	Bottom Vertical Carriage
8	29,30	1/0 - Off/On	Left Vertical Carriage
9	31,32	1/0 - Off/On	Right Diagonal Carriage
10	33,34	1/0 - Off/On	Bottom Diagonal Carriage
11	35,36	1/0 - Off/On	Left Diagonal Carriage

M1705 CARD #5B - Load Command 6413

<u>HIT</u>	<u>SOLENOID</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	37	1/0 - Off/On	Right Vertical Top Cam
1	38	1/0 - Off/On	Right Vertical Bottom Cam
2	39	1/0 - Off/On	Bottom Vertical Right Cam
3	40	1/0 - Off/On	Bottom Vertical Left Cam
4	41	1/0 - Off/On	Left Vertical Top Cam
5	42	1/0 - Off/On	Left Vertical Bottom Cam
6	43	1/0 - Off/On	Right Diagonal Aft Cam
7	44	1/0 - Off/On	Right Diagonal Fwd Cam
8	45	1/0 - Off/On	Bottom Diagonal Aft Cam
9	46	1/0 - Off/On	Bottom Diagonal Fwd Cam
10	47	1/0 - Off/On	Left Diagonal Aft Cam
11	48	1/0 - Off/On	Left Diagonal Fwd Cam

M1705 CARD #1A - Load Command IOT 6303

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M1	1/0 - Off/On	Right Vertical Magazine
1	M2	1/0 - Off/On	Bottom Vertical Magazine
2	M3	1/0 - Off/On	Left Vertical Magazine
3	M7	1/0 - Off/Up	Right Vertical Carriage
4	M7	1/0 - Off/Dn	Right Vertical Carriage
5	M8	1/0 - Off/Up	Bottom Vertical Carriage
6	M8	1/0 - Off/Dn	Bottom Vertical Carriage
7	M9	1/0 - Off/Up	Left Vertical Carriage
8	M9	1/0 - Off/Dn	Left Vertical Carriage
9			
10			
11			

M1705 CARD #1B - Load Command IOT 6313

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M4	1/0 - Off/On	Right Diagonal Magazine
1	M5	1/0 - Off/On	Bottom Diagonal Magazine
2	M6	1/0 - Off/On	Left Diagonal Magazine
3	M10	1/0 - Off/Up	Right Diagonal Carriage
4	M10	1/0 - Off/Dn	Right Diagonal Carriage
5	M11	1/0 - Off/Up	Bottom Diagonal Carriage
6	M11	1/0 - Off/Dn	Bottom Diagonal Carriage
7	M12	1/0 - Off/Up	Left Diagonal Carriage
8	M12	1/0 - Off/Dn	Left Diagonal Carriage
9			
10			
11			

M1705 CARD #2A - Load Command IOT 6323

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M13	1/0 - Off/Up	EBCD Top Vertical
1	M13	1/0 - Off/Dn	EBCD Top Vertical
2	M14	1/0 - Off/Up	EBCD Right Vertical
3	M14	1/0 - Off/Dn	EBCD Right Vertical
4	M15	1/0 - Off/Up	EECD Left Vertical
5	M15	1/0 - Off/Dn	EECD Left Vertical
6	M22	1/0 - Off/Close	Scissor Top Vertical
7	M22	1/0 - Off/Open	Scissor Top Vertical
8	M23	1/0 - Off/Close	Scissor Right Vertical
9	M23	1/0 - Off/Open	Scissor Right Vertical
10	M24	1/0 - Off/Close	Scissor Left Vertical
11	M24	1/0 - Off/Open	Scissor Left Vertical

M1705 CARD #2B - Load Command IOT 6333

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M16	1/0 - Off/Up	EBCD Right Diag Aft
1	M16	1/0 - Off/Dn	EBCE Right Diag Aft
2	M17	1/0 - Off/Up	EBCD Right Diag Fwd
3	M17	1/0 - Off/Dn	EBCD Right Diag Fwd
4	M18	1/0 - Off/Up	EBCD Bottom Diag Aft
5	M18	1/0 - Off/Dn	EBCD Bottom Diag Aft
6	M19	1/0 - Off/Up	EBCE Bottom Diag Fwd
7	M19	1/0 - Off/Dn	EBCD Bottom Diag Fwd
8	M20	1/0 - Off/Up	EBCD Left Diag Aft
9	M20	1/0 - Off/DN	EBCD Left Diag Aft
10	M21	1/0 - Off/Up	EBCD Left Diag Fwd
11	M21	1/0 - Off/DN	EBCD Left Diag Fwd

M1705 CARD #3A - Load Command IOT 6343

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M25	1/0 - Off/Close	Scissor Right Diag Aft
1	M25	1/0 - Off/Open	Scissor Right Diag Aft
2	M26	1/0 - Off/Close	Scissor Right Diag Fwd
3	M26	1/0 - Off/Open	Scissor Right Diag Fwd
4	M27	1/0 - Off/Close	Scissor Bottom Diag Aft
5	M27	1/0 - Off/Open	Scissor Bottom Diag Aft
6	M28	1/0 - Off/Close	Scissor Bottom Diag Fwd
7	M28	1/0 - Off/Open	Scissor Bottom Diag Fwd
8	M29	1/0 - Off/Close	Scissor Left Diag Aft
9	M29	1/0 - Off/Open	Scissor Left Diag Aft
10	M30	1/0 - Off/Close	Scissor Left Diag Fwd
11	M30	1/0 - Off/Open	Scissor Left Diag Fwd

M1705- CARD #3B - Load Command IOT 6353

<u>BIT</u>	<u>MOTOR</u>	<u>CONTROL</u>	<u>FUNCTION</u>
0	M31	1/0 - Off/cw	Cam Right Vert Top
1	M31	1/0 - Off/ccw	Cam Right Vert Top
2	M32	1/0 - Off/cw	Cam Right Vert Bottom
3	M32	1/0 - Off/ccw	Cam Right Vert Bottom
4	M33	1/0 - Off/cw	Cam Bottom Vert Right
5	M33	1/0 - Off/ccw	Cam Bottom Vert Right
6	M34	1/0 - Off/cw	Cam Bottom Vert Left
7	M34	1/0 - Off/ccw	Cam Bottom Vert Left
8	M35	1/0 - Off/cw	Cam Left Vert Top
9	M35	1/0 - Off/ccw	Cam Left Vert Top
10	M36	1/0 - Off cw	Cam Left Vert Bottom
11	M36	1/0 - Off/ccw	Cam Left Vert Bottom

FORTE CARD 2MUX WORD #1 - Read Command IOT 6560

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	1	Right Vert Magazine Home
1	2	Bottom Vert Magazine Home
2	3	Left Vert Magazine Home
3	4	Right Vert Magazine Solenoid Retract
4	5	Bottom Vert Magazine Solenoid Retract
5	6	Left Vert Magazine Solenoid Retract
6	13	Right Vert Carriage in Position
7	14	Bottom Vert Carriage in Position
8	15	Left Vert Carriage in Position
9	16	Right Vert Carriage Solenoid Extend
10	17	Bottom Vert Carriage Solenoid Extend
11	18	Left Vert Carriage Solenoid Extend

FORTE CARD 2MUX WORD #2 - Read Command IOT 6561

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	7	Right Diag Magazine Home
1	8	Bottom Diag Magazine Home
2	9	Left Diag Magazine Home
3	10	Right Diag Magazine Solenoid Retract
4	11	Bottom Diag Magazine Solenoid Retract
5	12	Left Diag Magazine Solenoid Retract
6	19	Right Diag Carriage in Position
7	20	Bottom Diag Carriage in Position
8	21	Left Diag Carriage in Position
9	22	Right Diag Carriage Solenoid Extend
10	23	Bottom Diag Carriage Solenoid Extend
11	24	Left Diag Carriage Solenoid Extend

FORTE CARD 2MUX WORD #3 - Read Command IOT 6562

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	25	EBCD Top Vert in Position
1	26	EBCD Right Vert in Position
2	27	EBCD Left Vert in Position
3	28	EBCD Right Diag Aft in Position
4	29	EBCD Right Diag Fwd in Position
5	30	EBCD Bottom Diag Aft in Position
6	31	EBCD Bottom Diag Fwd in Position
7	32	EBCD Left Diag Aft in Position
8	33	EBCD Left Diag Fwd in Position
9		
10		
11		

FORTE CARD 2MUX WORD #4 - Read Command IOT 6563

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	34	Scissors Top Vert in Position
1	35	Scissors Right Vert in Position
2	36	Scissors Left Vert in Position
3	37	Scissors Right Diag Aft in Position
4	38	Scissors Right Diag Fwd in Position
5	39	Scissors Bottom Diag Aft in Position
6	40	Scissors Bottom Diag Fwd in Position
7	41	Scissors Left Diag Aft in Position
8	42	Scissors Left Diag Fwd in Position
9		
10		
11		

FORTE CARD 2MUX WORD #5 - Read Command IOT 6564

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	43	Right Vert Top Cam Home
1	44	Right Vert Top Cam in Position
2	67	Right Vert Top Cam Solenoid in Position
3	45	Right Vert Bottom Cam Home
4	46	Right Vert Bottom Cam in Position
5	68	Right Vert Bottom Cam Solenoid in Position
6	47	Bottom Vert Right Cam Home
7	48	Bottom Vert Right Cam in Position
8	69	Bottom Vert Right Cam Solenoid in Position
9	49	Bottom Vert Left Cam Home
10	50	Bottom Vert Left Cam in Position
11	70	Bottom Vert Left Cam solenoid in Position

FORTE CARD 2MUX WORD #6 - Read Command IOT 6565

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	51	Left Vert Top Cam Home
1	52	Left Vert Top Cam in Position
2	71	Left Vert Top Cam Solenoid in Pos.
3	53	Left Vert Bottom Cam Home
4	54	Left Vert Bottom Cam in Position
5	72	Left Vert Bottom Cam Solenoid in position
6	55	Right Diag Aft Cam Home
7	56	Right Diag Aft Cam in Position
8	73	Right Diag Aft Cam Solenoid in Position
9	57	Right Diag Fwd Cam Home
10	58	Right Diag Fwd cam in Position
11	74	Right Diag Fwd Cam Solenoid in Position

FORTE CARD 2MUX WORD #7 - READ COMMAND IOT 6566

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	59	Bottom Diag Aft Cam Home
1	60	Bottom Diag Aft Cam In Position
2	75	Bottom Diag Aft Cam Solenoid in Pos
3	61	Bottom Diag Fwd Cam Home
4	62	Bottom Diag Fwd Cam In Position
5	76	Bottom Diag Fwd Cam Solenoid in Pos
6	63	Left Diag Aft Cam Home
7	64	Left Diag Aft Cam Home
8	77	Left Diag Aft Cam Solenoid in Pos.
9	65	Left Diag Fwd Cam Home
10	66	Left Diag Fwd Cam In Position
11	78	Left Diag Fwd Cam Solenoid in Pos.

FORTE CARD 2MUX WORD #8 - Read Command IOT 6567

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	79	Top Guillotine Upper Home
1	80	Top Guillotine Cut Done
2	81	Top Guillotine Lower in Position
3	82	Right Guillotine Upper Home
4	83	Right Guillotine Cut Done
5	84	Right Guillotine Lower in Position
6	85	Left Guillotine Upper Home
7	86	Left Guillotine Cut Done
8	87	Left Guillotine Lower in Position
9		
10		
11		

FORTE CARD 1MUX WORD #1 - Read Command IOT 6520

<u>BIT</u>	<u>S#</u>	<u>FUNCTION</u>
0	88	Scissor Top Vert Preposition
1	89	Scissor Right Vert Preposition
2	90	Scissor Left Vert Preposition
3	91	Scissor Right Diag Preposition
4	92	Scissor Right Diag Preposition
5	93	Scissor Bottom Diag Preposition
6	94	Scissor Bottom Diag Preposition
7	95	Scissor Left Diag Preposition
8	96	Scissor Left Diag Preposition
9		

APPENDIX C - PROGRAM LISTING

```

SERVO: PROCEDURE OPTIONS (MAIN)
DCL EMCD(3) FIXED DECIMAL(9,4) INIT(0,0,0);
DCL FIFO(3,2) FIXED DECIMAL(3,0) INIT((6)0);
DCL NEW_F(3) FIXED DECIMAL(9,5);
DCL ERROR(3) FIXED DECIMAL(9,5) INIT(0,0,0);
DCL MH FIXED DECIMAL(9,5) INIT(1.0);
DCL NPW FIXED DECIMAL(9,5) INIT(.00194);
DCL TARGET FIXED DECIMAL(9,5) INIT(59.0);
DCL MAX_LD FIXED DECIMAL(3,0) INIT(192);
DCL MERGE BINARY FIXED INIT(0);
DCL END_ERROR FIXED DECIMAL(9,5) INIT(0);
DCL MAX_ERROR FIXED DECIMAL(9,5) INIT(0);
DCL TEMP FIXED DECIMAL(9,5) INIT(0);
DCL END_POS(3) FIXED DECIMAL(9,4);
DCL PRE_ER(3) FIXED DECIMAL(9,5);
DCL REM(3) FIXED DECIMAL(9,4);
DCL PULSE(3) FIXED DECIMAL(9,1);
DCL OUTPUT(3) FIXED DECIMAL(9,1);
DCL T1 FIXED DECIMAL(9,1);
DCL ER_PULSE(3) FIXED DECIMAL(4,1);
DCL NEW_COUNT(3) FIXED DECIMAL(4,0);
DCL NEW_COUNTA(3) FIXED DECIMAL(4,0);
DCL FIFOA(3,2) FIXED DECIMAL(3,0);

START: /* START */
/* SIMULATE ENCODER READ, DETERMINATION OF NEW
   SLIPPAGE FACTORS (NEW_F) & COMPUTATION OF
   ENCODER MEASURED CUMULATIVE DISTANCE (EMCD)
*/
GET SKIP DATA (NEW_F);
IF NEW_F(1) < .2 THEN DO;
  CLOSE FILE(SYSIN);
  OPEN FILE(SYSIN);
  GO TO START;
END;

DO N=1 TO 3;
  EMCD(N)=EMCD(N)+(NPW)*(FIFO(N,1))*(NEW_F(N));
END;
FIFO=FIFO;
/* COMPUTE POSITION VARIATION OF EACH CAP SECTION
   WITH RESPECT TO SLOWEST CAP SECTION
*/
TEMP=MIN(EMCD(1), EMCD(2), EMCD(3));

DO N=1 TO 3;
  ERROR(N)=EMCD(N)-TEMP;
  MAX_ERROR=MAX(MAX_ERROR, ERROR(N));
END;
/* PREDICT CAP POSITION WHEN FIFO IS EMPTY
*/
DO N=1 TO 3;
  END_POS(N)=EMCD(N)+NEW_F(N)*NPW*FIFO(N,2);
END;
/* PREDICT VARIATION OF EACH CAP SECTION W.R.T.
   SLOWEST CAP WHEN FIFO IS EMPTY
*/
TEMP=MIN(END_POS(1), END_POS(2), END_POS(3));
DO N=1 TO 3;
  END_POS(N)=END_POS(N)+NEW_F(N)*NPW*TEMP;
END;

```

```

ENDI
/* CALCULATE THE REMAINING PREDICTED DISTANCE TO
MOVE WHEN FIFO IS EMPTY
*/
DO N=1 TO 3;
  REM(N)=TARGET-END_POS(N);
  IF REM(N)<0 THEN REM(N)=0;
  IF MERGE=1 THEN
    DO WHILE ((MAX_LD>(REM(N)/(1.25*NPW)))  

              &(MAX_LD>2));
      MAX_LD=ROUND((.75*MAX_LD),0);
      MAX_LD=MAX(MAX_LD,2);
    ENDI;
ENDI;
/*CALCULATE THE TOTAL REMAINING PULSES TO BE
SENT OUT TO EACH MOTOR
*/
DO N=1 TO 3;
  PULSE(N)=REM(N)/(NEW_F(N)*NPW);
ENDI;
/* COMPUTE PULSES TO BE SENT OUT AT NEXT LOAD OF
FIFO WITH NO SLIPPAGE
*/
T1= MAX(PULSE(1),PULSE(2),PULSE(3));
IF T1>MAX_LD THEN
  DO N=1 TO 3;
    OUTPUT(N)=(MAX_LD /T1)*PULSE(N);
  ENDI;
ELSE OUTPUT=PULSE;
/* COMPUTE PULSES REQUIRED TO MAKE UP POSITION
VARIATION IN NEXT LOAD
*/
DO N=1 TO 3;
  ER_PULSE(N)=PRE_ER(N)/(NPW)*(NEW_F(N));
ENDI;
/* CALCULATE THE NEW PULSE STREAM TO SEND OUT
*/
DO N=1 TO 3;
  NEW_COUNTA(N)=ROUND((OUTPUT(N)-ER_PULSE(N)),0);
  IF NEW_COUNTA(N)<0 THEN NEW_COUNTA(N)=0;
ENDI;
/* RENORMALIZE
*/
T1=MAX((PULSE(1)-ER_PULSE(1)),(PULSE(2)-ER_PULSE(2)),  

       (PULSE(3)-ER_PULSE(3)));
IF T1>MAX_LD THEN
  DO
    T1=MAX(NEW_COUNTA(1),NEW_COUNTA(2),NEW_COUNTA(3));
    DO N=1 TO 3;
      NEW_COUNT(N)=(MAX_LD/T1)*NEW_COUNTA(N);
    ENDI;
  ENDI;
ELSE NEW_COUNT=NEW_COUNTA;
/* SIMULATE FIFO LOAD
*/

```

```

DO N=1 TO 3;
  FIFO(N,1)=FIFO(N,2);
  FIFO(N,2)=NEW_COUNT(N);

END;
IF REM(1)<HH ~ REM(2)<HH ~ REM(3)<HH THEN
DO;
  PUT SKIP (2) DATA (NEW_F);
  PUT SKIP DATA (FIFO(1,1),FIFO(2,1),FIFO(3,1));
  PUT SKIP DATA (FIFO(1,2),FIFO(2,2),FIFO(3,2));
  PUT SKIP DATA (EMCD);
  PUT SKIP DATA (ERROR);
  PUT SKIP DATA (END_P08);
  PUT SKIP DATA (PRE_ER);
  PUT SKIP DATA (REM);
  PUT SKIP DATA (PULSE);
  PUT SKIP DATA (OUTPUT);
  PUT SKIP DATA (ER_PULSE);
  PUT SKIP DATA (NEW_COUNTA);
  PUT SKIP DATA (NEW_COUNT);
  PUT SKIP DATA (FIFO(1,1),FIFO(2,1),FIFO(3,1));
  PUT SKIP DATA (FIFO(1,2),FIFO(2,2),FIFO(3,2));
END;
IF (FIFO(1,1)=0) & (FIFO(1,2)=0) & (FIFO(2,1)=0) &
   (FIFO(2,2)=0) & (FIFO(3,1)=0) & (FIFO(3,2)=0) THEN
  IF MERGE=0 THEN
    DO;
      TARGET=59.056;
      MERGE=1;
    END;
  ELSE
    DO;
      DO N=1 TO 3;
        END_ERROR=MAX(END_ERROR,ABS(59.055-EMCD(N)));
      END;
      PUT SKIP (5);
      PUT SKIP DATA (MAX_ERROR);
      PUT SKIP DATA (END_ERROR);
      STOP;
    END;
  GO TO START;
END SERVO;

```

R;
>TRANSFER COMPLETED
RENAME FILE (TEMPIN.PA) IF IT IS TO BE SAVED.

AA=1, BB=30, DD=59.055, PP=999, LL=.0, FF=100, GG=.004, TAG=0, HH=.1, MM=2;
 NEW_F(1)= 0.84400 NEW_F(2)= 0.86200 NEW_F(3)= 0.82400;
 NEW_F(1)= 0.84850 NEW_F(2)= 0.85595 NEW_F(3)= 0.83725;
 NEW_F(1)= 0.85300 NEW_F(2)= 0.84990 NEW_F(3)= 0.85050;
 NEW_F(1)= 0.85750 NEW_F(2)= 0.84385 NEW_F(3)= 0.86375;
 NEW_F(1)= 0.86200 NEW_F(2)= 0.83780 NEW_F(3)= 0.87700;
 NEW_F(1)= 0.86095 NEW_F(2)= 0.83225 NEW_F(3)= 0.87375;
 NEW_F(1)= 0.85990 NEW_F(2)= 0.82670 NEW_F(3)= 0.87050;
 NEW_F(1)= 0.85885 NEW_F(2)= 0.82115 NEW_F(3)= 0.86725;
 NEW_F(1)= 0.85780 NEW_F(2)= 0.81560 NEW_F(3)= 0.86400;
 NEW_F(1)= 0.85945 NEW_F(2)= 0.81670 NEW_F(3)= 0.86025;
 NEW_F(1)= 0.86110 NEW_F(2)= 0.81780 NEW_F(3)= 0.85650;
 NEW_F(1)= 0.86275 NEW_F(2)= 0.81890 NEW_F(3)= 0.85275;
 NEW_F(1)= 0.86440 NEW_F(2)= 0.82000 NEW_F(3)= 0.84900;
 NEW_F(1)= 0.86275 NEW_F(2)= 0.82100 NEW_F(3)= 0.84725;
 NEW_F(1)= 0.86110 NEW_F(2)= 0.82200 NEW_F(3)= 0.84550;
 NEW_F(1)= 0.85945 NEW_F(2)= 0.82300 NEW_F(3)= 0.84375;
 NEW_F(1)= 0.85780 NEW_F(2)= 0.82400 NEW_F(3)= 0.84200;
 NEW_F(1)= 0.84885 NEW_F(2)= 0.83725 NEW_F(3)= 0.83425;
 NEW_F(1)= 0.83990 NEW_F(2)= 0.85050 NEW_F(3)= 0.82650;
 NEW_F(1)= 0.83095 NEW_F(2)= 0.86375 NEW_F(3)= 0.81875;
 NEW_F(1)= 0.82200 NEW_F(2)= 0.87700 NEW_F(3)= 0.81100;
 NEW_F(1)= 0.82875 NEW_F(2)= 0.87375 NEW_F(3)= 0.80825;
 NEW_F(1)= 0.83550 NEW_F(2)= 0.87050 NEW_F(3)= 0.80550;
 NEW_F(1)= 0.84225 NEW_F(2)= 0.86725 NEW_F(3)= 0.80275;
 NEW_F(1)= 0.84900 NEW_F(2)= 0.86400 NEW_F(3)= 0.80000;
 NEW_F(1)= 0.86000 NEW_F(2)= 0.86025 NEW_F(3)= 0.80000;
 NEW_F(1)= 0.87100 NEW_F(2)= 0.85650 NEW_F(3)= 0.80000;
 NEW_F(1)= 0.88200 NEW_F(2)= 0.85275 NEW_F(3)= 0.80000;
 NEW_F(1)= 0.89300 NEW_F(2)= 0.84900 NEW_F(3)= 0.80000;
 NEW_F(1)= 0.89050 NEW_F(2)= 0.84725 NEW_F(3)= 0.80850;
 NEW_F(1)= 0.88800 NEW_F(2)= 0.84550 NEW_F(3)= 0.81700;
 NEW_F(1)= 0.88550 NEW_F(2)= 0.84375 NEW_F(3)= 0.82550;
 NEW_F(1)= 0.88300 NEW_F(2)= 0.84200 NEW_F(3)= 0.83400;
 NEW_F(1)= 0.88300 NEW_F(2)= 0.83425 NEW_F(3)= 0.83650;
 NEW_F(1)= 0.88300 NEW_F(2)= 0.82650 NEW_F(3)= 0.83900;
 NEW_F(1)= 0.88300 NEW_F(2)= 0.81875 NEW_F(3)= 0.84150;
 NEW_F(1)= 0.88300 NEW_F(2)= 0.81100 NEW_F(3)= 0.84400;
 NEW_F(1)= 0.87775 NEW_F(2)= 0.80825 NEW_F(3)= 0.84855;
 NEW_F(1)= 0.87250 NEW_F(2)= 0.80550 NEW_F(3)= 0.85310;
 NEW_F(1)= 0.86725 NEW_F(2)= 0.80275 NEW_F(3)= 0.85765;
 NEW_F(1)= 0.86200 NEW_F(2)= 0.80000 NEW_F(3)= 0.86220;
 NEW_F(1)= 0.85595 NEW_F(2)= 0.80000 NEW_F(3)= 0.86110;
 NEW_F(1)= 0.84990 NEW_F(2)= 0.80000 NEW_F(3)= 0.86000;
 NEW_F(1)= 0.84385 NEW_F(2)= 0.80000 NEW_F(3)= 0.85890;
 NEW_F(1)= 0.83780 NEW_F(2)= 0.80000 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.83225 NEW_F(2)= 0.80850 NEW_F(3)= 0.85945;
 NEW_F(1)= 0.82670 NEW_F(2)= 0.81700 NEW_F(3)= 0.86110;
 NEW_F(1)= 0.82115 NEW_F(2)= 0.82550 NEW_F(3)= 0.86225;
 NEW_F(1)= 0.81560 NEW_F(2)= 0.83400 NEW_F(3)= 0.86440;
 NEW_F(1)= 0.81670 NEW_F(2)= 0.83650 NEW_F(3)= 0.86275;
 NEW_F(1)= 0.81780 NEW_F(2)= 0.83900 NEW_F(3)= 0.86110;
 NEW_F(1)= 0.81890 NEW_F(2)= 0.84150 NEW_F(3)= 0.85945;
 NEW_F(1)= 0.82000 NEW_F(2)= 0.84400 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.82100 NEW_F(2)= 0.84855 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.82200 NEW_F(2)= 0.85310 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.82300 NEW_F(2)= 0.85765 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.82400 NEW_F(2)= 0.86220 NEW_F(3)= 0.85780;
 NEW_F(1)= 0.83725 NEW_F(2)= 0.86110 NEW_F(3)= 0.84885;
 NEW_F(1)= 0.85050 NEW_F(2)= 0.86000 NEW_F(3)= 0.83990;
 NEW_F(1)= 0.86375 NEW_F(2)= 0.85890 NEW_F(3)= 0.83095;
 NEW_F(1)= 0.87700 NEW_F(2)= 0.85780 NEW_F(3)= 0.82200;
 NEW_F(1)= 0.87375 NEW_F(2)= 0.85945 NEW_F(3)= 0.82875;
 NEW_F(1)= 0.87650 NEW_F(2)= 0.86310 NEW_F(3)= 0.83350;
 NEW_F(1)= 0.87925 NEW_F(2)= 0.86680 NEW_F(3)= 0.83725;
 NEW_F(1)= 0.88195 NEW_F(2)= 0.87050 NEW_F(3)= 0.84095;
 NEW_F(1)= 0.88465 NEW_F(2)= 0.87420 NEW_F(3)= 0.84465;
 NEW_F(1)= 0.88735 NEW_F(2)= 0.87790 NEW_F(3)= 0.84835;
 NEW_F(1)= 0.89005 NEW_F(2)= 0.88160 NEW_F(3)= 0.85205;
 NEW_F(1)= 0.89275 NEW_F(2)= 0.88530 NEW_F(3)= 0.85575;
 NEW_F(1)= 0.89545 NEW_F(2)= 0.88900 NEW_F(3)= 0.85945;
 NEW_F(1)= 0.89815 NEW_F(2)= 0.89270 NEW_F(3)= 0.86315;
 NEW_F(1)= 0.90085 NEW_F(2)= 0.89640 NEW_F(3)= 0.86685;
 NEW_F(1)= 0.90355 NEW_F(2)= 0.90010 NEW_F(3)= 0.87055;
 NEW_F(1)= 0.90625 NEW_F(2)= 0.90380 NEW_F(3)= 0.87425;
 NEW_F(1)= 0.90895 NEW_F(2)= 0.90750 NEW_F(3)= 0.87795;
 NEW_F(1)= 0.91165 NEW_F(2)= 0.91120 NEW_F(3)= 0.88165;
 NEW_F(1)= 0.91435 NEW_F(2)= 0.91490 NEW_F(3)= 0.88535;
 NEW_F(1)= 0.91705 NEW_F(2)= 0.91860 NEW_F(3)= 0.88895;
 NEW_F(1)= 0.91975 NEW_F(2)= 0.92230 NEW_F(3)= 0.89265;
 NEW_F(1)= 0.92245 NEW_F(2)= 0.92600 NEW_F(3)= 0.89635;
 NEW_F(1)= 0.92515 NEW_F(2)= 0.92970 NEW_F(3)= 0.90005;
 NEW_F(1)= 0.92785 NEW_F(2)= 0.93340 NEW_F(3)= 0.90375;
 NEW_F(1)= 0.93055 NEW_F(2)= 0.93710 NEW_F(3)= 0.90745;
 NEW_F(1)= 0.93325 NEW_F(2)= 0.94080 NEW_F(3)= 0.91115;
 NEW_F(1)= 0.93595 NEW_F(2)= 0.94450 NEW_F(3)= 0.91485;
 NEW_F(1)= 0.93865 NEW_F(2)= 0.94820 NEW_F(3)= 0.91855;
 NEW_F(1)= 0.94135 NEW_F(2)= 0.95190 NEW_F(3)= 0.92225;
 NEW_F(1)= 0.94405 NEW_F(2)= 0.95560 NEW_F(3)= 0.92595;
 NEW_F(1)= 0.94675 NEW_F(2)= 0.95930 NEW_F(3)= 0.92965;
 NEW_F(1)= 0.94945 NEW_F(2)= 0.96300 NEW_F(3)= 0.93335;
 NEW_F(1)= 0.95215 NEW_F(2)= 0.96670 NEW_F(3)= 0.93705;
 NEW_F(1)= 0.95485 NEW_F(2)= 0.97040 NEW_F(3)= 0.94075;
 NEW_F(1)= 0.95755 NEW_F(2)= 0.97410 NEW_F(3)= 0.94445;
 NEW_F(1)= 0.96025 NEW_F(2)= 0.97780 NEW_F(3)= 0.94815;
 NEW_F(1)= 0.96295 NEW_F(2)= 0.98150 NEW_F(3)= 0.95185;
 NEW_F(1)= 0.96565 NEW_F(2)= 0.98520 NEW_F(3)= 0.95555;
 NEW_F(1)= 0.96835 NEW_F(2)= 0.98890 NEW_F(3)= 0.95925;
 NEW_F(1)= 0.97105 NEW_F(2)= 0.99260 NEW_F(3)= 0.96295;
 NEW_F(1)= 0.97375 NEW_F(2)= 0.99630 NEW_F(3)= 0.96665;
 NEW_F(1)= 0.97645 NEW_F(2)= 0.99990 NEW_F(3)= 0.97035;
 NEW_F(1)= 0.97915 NEW_F(2)= 0.99990 NEW_F(3)= 0.97405;
 NEW_F(1)= 0.98185 NEW_F(2)= 0.99990 NEW_F(3)= 0.97775;
 NEW_F(1)= 0.98455 NEW_F(2)= 0.99990 NEW_F(3)= 0.98145;
 NEW_F(1)= 0.98725 NEW_F(2)= 0.99990 NEW_F(3)= 0.98515;
 NEW_F(1)= 0.99005 NEW_F(2)= 0.99990 NEW_F(3)= 0.98885;
 NEW_F(1)= 0.99275 NEW_F(2)= 0.99990 NEW_F(3)= 0.99255;
 NEW_F(1)= 0.99545 NEW_F(2)= 0.99990 NEW_F(3)= 0.99625;
 NEW_F(1)= 0.99815 NEW_F(2)= 0.99990 NEW_F(3)= 0.99995;

NEW_F(1)=	0.86725	NEW_F(2)=	0.86275	NEW_F(3)=	0.84225
NEW_F(1)=	0.86400	NEW_F(2)=	0.86440	NEW_F(3)=	0.84900
NEW_F(1)=	0.86025	NEW_F(2)=	0.86275	NEW_F(3)=	0.86000
NEW_F(1)=	0.85650	NEW_F(2)=	0.86110	NEW_F(3)=	0.87100
NEW_F(1)=	0.85275	NEW_F(2)=	0.85945	NEW_F(3)=	0.88200
NEW_F(1)=	0.84900	NEW_F(2)=	0.85780	NEW_F(3)=	0.89300
NEW_F(1)=	0.84725	NEW_F(2)=	0.85780	NEW_F(3)=	0.89050
NEW_F(1)=	0.84550	NEW_F(2)=	0.85780	NEW_F(3)=	0.88800
NEW_F(1)=	0.84375	NEW_F(2)=	0.85780	NEW_F(3)=	0.88550
NEW_F(1)=	0.84200	NEW_F(2)=	0.85780	NEW_F(3)=	0.88300
NEW_F(1)=	0.83425	NEW_F(2)=	0.84885	NEW_F(3)=	0.88300
NEW_F(1)=	0.82650	NEW_F(2)=	0.83990	NEW_F(3)=	0.89300
NEW_F(1)=	0.81875	NEW_F(2)=	0.83095	NEW_F(3)=	0.88300
NEW_F(1)=	0.81100	NEW_F(2)=	0.82200	NEW_F(3)=	0.88500
NEW_F(1)=	0.80825	NEW_F(2)=	0.82875	NEW_F(3)=	0.87725
NEW_F(1)=	0.80550	NEW_F(2)=	0.83550	NEW_F(3)=	0.87250
NEW_F(1)=	0.80275	NEW_F(2)=	0.84225	NEW_F(3)=	0.86725
NEW_F(1)=	0.80000	NEW_F(2)=	0.84900	NEW_F(3)=	0.86200
NEW_F(1)=	0.80000	NEW_F(2)=	0.86000	NEW_F(3)=	0.85595
NEW_F(1)=	0.80000	NEW_F(2)=	0.87100	NEW_F(3)=	0.84990
NEW_F(1)=	0.80000	NEW_F(2)=	0.88200	NEW_F(3)=	0.84385
NEW_F(1)=	0.80000	NEW_F(2)=	0.89300	NEW_F(3)=	0.83780
NEW_F(1)=	0.80850	NEW_F(2)=	0.89050	NEW_F(3)=	0.83225
NEW_F(1)=	0.81700	NEW_F(2)=	0.88800	NEW_F(3)=	0.82670
NEW_F(1)=	0.82550	NEW_F(2)=	0.88550	NEW_F(3)=	0.82115
NEW_F(1)=	0.83400	NEW_F(2)=	0.88300	NEW_F(3)=	0.81560
NEW_F(1)=	0.1	NEW_F(2)=	0.1	NEW_F(3)=	0.1

R>

LOAD SHORTY (XEQ)
EXECUTION BEGINS...
**

APPENDIX A - SAMPLE OUT PUT

NEW_F(1)=	0.84885	NEW_F(2)=	0.83725	NEW_F(3)=	0.83425;
FIFOA(1,1)=	184	FIFOA(2,1)=	191	FIFOA(3,1)=	188;
FIFOA(1,2)=	185	FIFOA(2,2)=	191	FIFOA(3,2)=	188;
EMCD(1)=	57.9307	EMCD(2)=	57.9405	EMCD(3)=	57.9312;
ERROR(1)=	0.00000	ERROR(2)=	0.00980	ERROR(3)=	0.00050;
END_POS(1)=	58.2353	END_POS(2)=	58.2507	END_POS(3)=	58.2354^
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.01540	PRE_ER(3)=	0.00010;
REM(1)=	0.7647	REM(2)=	0.7493	REM(3)=	0.7646;
PULSE(1)=	464.0	PULSE(2)=	461.0	PULSE(3)=	472.0;
OUTPUT(1)=	188.7	OUTPUT(2)=	187.5	OUTPUT(3)=	191.9;
ER_PULSE(1)=	0.0	ER_PULSE(2)=	6.6	ER_PULSE(3)=	0.0;
NEW_COUNTA(1)=	189	NEW_COUNTA(2)=	181	NEW_COUNTA(3)=	192;
NEW_COUNT(1)=	189	NEW_COUNT(2)=	181	NEW_COUNT(3)=	192;
FIFO(1,1)=	185	FIFO(2,1)=	191	FIFO(3,1)=	188;
FIFO(1,2)=	189	FIFO(2,2)=	181	FIFO(3,2)=	192;
;					
NEW_F(1)=	0.83990	NEW_F(2)=	0.85050	NEW_F(3)=	0.82650;
FIFOA(1,1)=	185	FIFOA(2,1)=	191	FIFOA(3,1)=	188;
FIFOA(1,2)=	189	FIFOA(2,2)=	181	FIFOA(3,2)=	192;
EMCD(1)=	58.2321	EMCD(2)=	58.2556	EMCD(3)=	58.2326;
ERROR(1)=	0.00000	ERROR(2)=	0.02350	ERROR(3)=	0.00050;
END_POS(1)=	58.5400	END_POS(2)=	58.5542	END_POS(3)=	58.5404^
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.01420	PRE_ER(3)=	0.00040;
REM(1)=	0.4600	REM(2)=	0.4458	REM(3)=	0.4596;
PULSE(1)=	282.0	PULSE(2)=	270.0	PULSE(3)=	286.0;
OUTPUT(1)=	189.3	OUTPUT(2)=	181.2	OUTPUT(3)=	191.9;
ER_PULSE(1)=	0.0	ER_PULSE(2)=	6.2	ER_PULSE(3)=	0.1;
NEW_COUNTA(1)=	189	NEW_COUNTA(2)=	175	NEW_COUNTA(3)=	192;
NEW_COUNT(1)=	189	NEW_COUNT(2)=	175	NEW_COUNT(3)=	192;
FIFO(1,1)=	189	FIFO(2,1)=	181	FIFO(3,1)=	192;
FIFO(1,2)=	189	FIFO(2,2)=	175	FIFO(3,2)=	192;
;					
NEW_F(1)=	0.83095	NEW_F(2)=	0.86375	NEW_F(3)=	0.81875;
FIFOA(1,1)=	189	FIFOA(2,1)=	181	FIFOA(3,1)=	192;
FIFOA(1,2)=	189	FIFOA(2,2)=	175	FIFOA(3,2)=	192;
EMCD(1)=	58.5367	EMCD(2)=	58.5588	EMCD(3)=	58.5375;
ERROR(1)=	0.00000	ERROR(2)=	0.02210	ERROR(3)=	0.00080;
END_POS(1)=	58.8413	END_POS(2)=	58.8520	END_POS(3)=	58.8424^
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.01070	PRE_ER(3)=	0.00110;
REM(1)=	0.1587	REM(2)=	0.1480	REM(3)=	0.1576;
PULSE(1)=	98.0	PULSE(2)=	88.0	PULSE(3)=	99.0;
OUTPUT(1)=	98.0	OUTPUT(2)=	88.0	OUTPUT(3)=	99.0;
ER_PULSE(1)=	0.0	ER_PULSE(2)=	4.7	ER_PULSE(3)=	0.4;
NEW_COUNTA(1)=	98	NEW_COUNTA(2)=	83	NEW_COUNTA(3)=	99;
NEW_COUNT(1)=	98	NEW_COUNT(2)=	83	NEW_COUNT(3)=	99;
FIFO(1,1)=	189	FIFO(2,1)=	175	FIFO(3,1)=	192;
FIFO(1,2)=	98	FIFO(2,2)=	83	FIFO(3,2)=	99;
;					
NEW_F(1)=	0.82200	NEW_F(2)=	0.87700	NEW_F(3)=	0.81100;
FIFOA(1,1)=	189	FIFOA(2,1)=	175	FIFOA(3,1)=	192;
FIFOA(1,2)=	98	FIFOA(2,2)=	83	FIFOA(3,2)=	99;
EMCD(1)=	58.8380	EMCD(2)=	58.8565	EMCD(3)=	58.8395;
ERROR(1)=	0.00000	ERROR(2)=	0.01850	ERROR(3)=	0.00150;
END_POS(1)=	58.9942	END_POS(2)=	58.9977	END_POS(3)=	58.9952^
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.00350	PRE_ER(3)=	0.00100;
REM(1)=	0.0058	REM(2)=	0.0023	REM(3)=	0.0048;
PULSE(1)=	7.0	PULSE(2)=	1.0	PULSE(3)=	7.0;

OUTPUT(1)=	3.0	OUTPUT(2)=	1.0	OUTPUT(3)=	3.0
ER_PULSE(1)=	0.0	ER_PULSE(2)=	1.5	ER_PULSE(3)=	0.4
NEW_COUNTA(1)=	3	NEW_COUNTA(2)=	0	NEW_COUNTA(3)=	3
NEW_COUNT(1)=	3	NEW_COUNT(2)=	0	NEW_COUNT(3)=	3
FIFO(1,1)=	98	FIFO(2,1)=	83	FIFO(3,1)=	99
FIFO(1,2)=	3	FIFO(2,2)=	0	FIFO(3,2)=	3
NEW_F(1)=	0.82875	NEW_F(2)=	0.87375	NEW_F(3)=	0.80825
FIFOA(1,1)=	98	FIFOA(2,1)=	83	FIFOA(3,1)=	99
FIFOA(1,2)=	3	FIFOA(2,2)=	0	FIFOA(3,2)=	3
EMCD(1)=	58.9955	EMCD(2)=	58.9971	EMCD(3)=	58.9947
ERROR(1)=	0.00080	ERROR(2)=	0.00240	ERROR(3)=	0.00000
END_POS(1)=	59.0003	END_POS(2)=	58.9971	END_POS(3)=	58.9994
;					
PRE_ER(1)=	0.00320	PRE_ER(2)=	0.00000	PRE_ER(3)=	0.00230
REM(1)=	0.0000	REM(2)=	0.0029	REM(3)=	0.0006
PULSE(1)=	0.0	PULSE(2)=	1.0	PULSE(3)=	0.0
OUTPUT(1)=	0.0	OUTPUT(2)=	1.0	OUTPUT(3)=	0.0
ER_PULSE(1)=	1.3	ER_PULSE(2)=	0.0	ER_PULSE(3)=	0.9
NEW_COUNTA(1)=	0	NEW_COUNTA(2)=	1	NEW_COUNTA(3)=	0
NEW_COUNT(1)=	0	NEW_COUNT(2)=	1	NEW_COUNT(3)=	0
FIFO(1,1)=	3	FIFO(2,1)=	0	FIFO(3,1)=	3
FIFO(1,2)=	0	FIFO(2,2)=	1	FIFO(3,2)=	0
NEW_F(1)=	0.83550	NEW_F(2)=	0.87050	NEW_F(3)=	0.80550
FIFOA(1,1)=	3	FIFOA(2,1)=	0	FIFOA(3,1)=	3
FIFOA(1,2)=	0	FIFOA(2,2)=	1	FIFOA(3,2)=	0
EMCD(1)=	59.0003	EMCD(2)=	58.9971	EMCD(3)=	58.9993
ERROR(1)=	0.00320	ERROR(2)=	0.00000	ERROR(3)=	0.00220
END_POS(1)=	59.0003	END_POS(2)=	58.9987	END_POS(3)=	58.9993
;					
PRE_ER(1)=	0.00160	PRE_ER(2)=	0.00000	PRE_ER(3)=	0.00060
REM(1)=	0.0000	REM(2)=	0.0013	REM(3)=	0.0007
PULSE(1)=	0.0	PULSE(2)=	0.0	PULSE(3)=	0.0
OUTPUT(1)=	0.0	OUTPUT(2)=	0.0	OUTPUT(3)=	0.0
ER_PULSE(1)=	0.6	ER_PULSE(2)=	0.0	ER_PULSE(3)=	0.2
NEW_COUNTA(1)=	0	NEW_COUNTA(2)=	0	NEW_COUNTA(3)=	0
NEW_COUNT(1)=	0	NEW_COUNT(2)=	0	NEW_COUNT(3)=	0
FIFO(1,1)=	0	FIFO(2,1)=	1	FIFO(3,1)=	0
FIFO(1,2)=	0	FIFO(2,2)=	0	FIFO(3,2)=	0
NEW_F(1)=	0.84225	NEW_F(2)=	0.86725	NEW_F(3)=	0.80275
FIFOA(1,1)=	0	FIFOA(2,1)=	1	FIFOA(3,1)=	0
FIFOA(1,2)=	0	FIFOA(2,2)=	0	FIFOA(3,2)=	0
EMCD(1)=	59.0003	EMCD(2)=	58.9987	EMCD(3)=	58.9993
ERROR(1)=	0.00160	ERROR(2)=	0.00000	ERROR(3)=	0.00060
END_POS(1)=	59.0003	END_POS(2)=	58.9987	END_POS(3)=	58.9993
;					
PRE_ER(1)=	0.00160	PRE_ER(2)=	0.00000	PRE_ER(3)=	0.00060
REM(1)=	0.0000	REM(2)=	0.0013	REM(3)=	0.0007
PULSE(1)=	0.0	PULSE(2)=	0.0	PULSE(3)=	0.0
OUTPUT(1)=	0.0	OUTPUT(2)=	0.0	OUTPUT(3)=	0.0
ER_PULSE(1)=	0.6	ER_PULSE(2)=	0.0	ER_PULSE(3)=	0.2
NEW_COUNTA(1)=	0	NEW_COUNTA(2)=	0	NEW_COUNTA(3)=	0
NEW_COUNT(1)=	0	NEW_COUNT(2)=	0	NEW_COUNT(3)=	0
FIFO(1,1)=	0	FIFO(2,1)=	0	FIFO(3,1)=	0
FIFO(1,2)=	0	FIFO(2,2)=	0	FIFO(3,2)=	0
NEW_F(1)=	0.84900	NEW_F(2)=	0.86400	NEW_F(3)=	0.80000
FIFOA(1,1)=	0	FIFOA(2,1)=	0	FIFOA(3,1)=	0
FIFOA(1,2)=	0	FIFOA(2,2)=	0	FIFOA(3,2)=	0
EMCD(1)=	59.0003	EMCD(2)=	58.9987	EMCD(3)=	58.9993
ERROR(1)=	0.00160	ERROR(2)=	0.00000	ERROR(3)=	0.00060
END_POS(1)=	59.0003	END_POS(2)=	58.9987	END_POS(3)=	58.9993

PRE_ER(1)=	0.00160	PRE_ER(2)=	0.00000	PRE_ER(3)=	0.00060
REM(1)=	0.0557	REM(2)=	0.0573	REM(3)=	0.0567
PULSE(1)=	33.0	PULSE(2)=	34.0	PULSE(3)=	36.0
OUTPUT(1)=	18.3	OUTPUT(2)=	18.8	OUTPUT(3)=	19.9
ER_PULSE(1)=	0.7	ER_PULSE(2)=	0.0	ER_PULSE(3)=	0.2
NEW_COUNTA(1)=	18	NEW_COUNTA(2)=	19	NEW_COUNTA(3)=	20
NEW_COUNT(1)=	18	NEW_COUNT(2)=	19	NEW_COUNT(3)=	20
FIFO(1,1)=	0	FIFO(2,1)=	0	FIFO(3,1)=	0
FIFO(1,2)=	18	FIFO(2,2)=	19	FIFO(3,2)=	20
NEW_F(1)=	0.86000	NEW_F(2)=	0.86025	NEW_F(3)=	0.86000
FIFOA(1,1)=	0	FIFOA(2,1)=	0	FIFOA(3,1)=	0
FIFOA(1,2)=	18	FIFOA(2,2)=	19	FIFOA(3,2)=	20
EMCD(1)=	59.0003	EMCD(2)=	58.9987	EMCD(3)=	58.9993
ERROR(1)=	0.00160	ERROR(2)=	0.00000	ERROR(3)=	0.00060
END_POS(1)=	59.0303	END_POS(2)=	59.0304	END_POS(3)=	59.0303
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.00010	PRE_ER(3)=	0.00000
REM(1)=	0.0257	REM(2)=	0.0256	REM(3)=	0.0257
PULSE(1)=	15.0	PULSE(2)=	15.0	PULSE(3)=	16.0
OUTPUT(1)=	7.5	OUTPUT(2)=	7.5	OUTPUT(3)=	8.0
ER_PULSE(1)=	0.0	ER_PULSE(2)=	0.0	ER_PULSE(3)=	0.0
NEW_COUNTA(1)=	8	NEW_COUNTA(2)=	8	NEW_COUNTA(3)=	8
NEW_COUNT(1)=	8	NEW_COUNT(2)=	8	NEW_COUNT(3)=	8
FIFO(1,1)=	18	FIFO(2,1)=	19	FIFO(3,1)=	20
FIFO(1,2)=	8	FIFO(2,2)=	8	FIFO(3,2)=	8
NEW_F(1)=	0.87100	NEW_F(2)=	0.85650	NEW_F(3)=	0.86000
FIFOA(1,1)=	18	FIFOA(2,1)=	19	FIFOA(3,1)=	20
FIFOA(1,2)=	8	FIFOA(2,2)=	8	FIFOA(3,2)=	8
EMCD(1)=	59.0307	EMCD(2)=	59.0302	EMCD(3)=	59.0303
ERROR(1)=	0.00050	ERROR(2)=	0.00000	ERROR(3)=	0.00010
END_POS(1)=	59.0442	END_POS(2)=	59.0434	END_POS(3)=	59.0427
;					
PRE_ER(1)=	0.00150	PRE_ER(2)=	0.00070	PRE_ER(3)=	0.00000
REM(1)=	0.0118	REM(2)=	0.0126	REM(3)=	0.0133
PULSE(1)=	6.0	PULSE(2)=	7.0	PULSE(3)=	8.0
OUTPUT(1)=	3.0	OUTPUT(2)=	3.5	OUTPUT(3)=	4.0
ER_PULSE(1)=	0.6	ER_PULSE(2)=	0.3	ER_PULSE(3)=	0.0
NEW_COUNTA(1)=	2	NEW_COUNTA(2)=	3	NEW_COUNTA(3)=	4
NEW_COUNT(1)=	2	NEW_COUNT(2)=	3	NEW_COUNT(3)=	4
FIFO(1,1)=	8	FIFO(2,1)=	8	FIFO(3,1)=	8
FIFO(1,2)=	2	FIFO(2,2)=	3	FIFO(3,2)=	4
NEW_F(1)=	0.88200	NEW_F(2)=	0.85275	NEW_F(3)=	0.86000
FIFOA(1,1)=	8	FIFOA(2,1)=	8	FIFOA(3,1)=	8
FIFOA(1,2)=	2	FIFOA(2,2)=	3	FIFOA(3,2)=	4
EMCD(1)=	59.0443	EMCD(2)=	59.0434	EMCD(3)=	59.0427
ERROR(1)=	0.00160	ERROR(2)=	0.00070	ERROR(3)=	0.00000
END_POS(1)=	59.0477	END_POS(2)=	59.0483	END_POS(3)=	59.0489
;					
PRE_ER(1)=	0.00000	PRE_ER(2)=	0.00060	PRE_ER(3)=	0.00120
REM(1)=	0.0083	REM(2)=	0.0077	REM(3)=	0.0071
PULSE(1)=	4.0	PULSE(2)=	4.0	PULSE(3)=	4.0
OUTPUT(1)=	2.0	OUTPUT(2)=	2.0	OUTPUT(3)=	2.0
ER_PULSE(1)=	0.0	ER_PULSE(2)=	0.2	ER_PULSE(3)=	0.4
NEW_COUNTA(1)=	2	NEW_COUNTA(2)=	2	NEW_COUNTA(3)=	2
NEW_COUNT(1)=	2	NEW_COUNT(2)=	2	NEW_COUNT(3)=	2
FIFO(1,1)=	2	FIFO(2,1)=	3	FIFO(3,1)=	4
FIFO(1,2)=	2	FIFO(2,2)=	2	FIFO(3,2)=	2
NEW_F(1)=	0.89300	NEW_F(2)=	0.84900	NEW_F(3)=	0.86000
FIFOA(1,1)=	2	FIFOA(2,1)=	3	FIFOA(3,1)=	4

```

EMCD(1)= 59.0477 EMCD(2)= 59.0483 EMCD(3)= 59.0489;
ERROR(1)= 0.00000 ERROR(2)= 0.00060 ERROR(3)= 0.00120;
END_POS(1)= 59.0511 END_POS(2)= 59.0515 END_POS(3)= 59.0520^
;
PRE_ER(1)= 0.00000 PRE_ER(2)= 0.00040 PRE_ER(3)= 0.00090;
REM(1)= 0.0049 REM(2)= 0.0045 REM(3)= 0.0040;
PULSE(1)= 2.0 PULSE(2)= 2.0 PULSE(3)= 2.0;
OUTPUT(1)= 2.0 OUTPUT(2)= 2.0 OUTPUT(3)= 2.0;
ER_PULSE(1)= 0.0 ER_PULSE(2)= 0.1 ER_PULSE(3)= 0.3;
NEW_COUNTA(1)= 2 NEW_COUNTA(2)= 2 NEW_COUNTA(3)= 2;
NEW_COUNT(1)= 2 NEW_COUNT(2)= 2 NEW_COUNT(3)= 2;
FIFO(1,1)= 2 FIFO(2,1)= 2 FIFO(3,1)= 2;
FIFO(1,2)= 2 FIFO(2,2)= 2 FIFO(3,2)= 2;

NEW_F(1)= 0.89050 NEW_F(2)= 0.84725 NEW_F(3)= 0.80850;
FIFOA(1,1)= 2 FIFOA(2,1)= 2 FIFOA(3,1)= 2;
FIFOA(1,2)= 2 FIFOA(2,2)= 2 FIFOA(3,2)= 2;
EMCD(1)= 59.0511 EMCD(2)= 59.0515 EMCD(3)= 59.0520;
ERROR(1)= 0.00000 ERROR(2)= 0.00040 ERROR(3)= 0.00090;
END_POS(1)= 59.0545 END_POS(2)= 59.0547 END_POS(3)= 59.0551^
;
PRE_ER(1)= 0.00000 PRE_ER(2)= 0.00020 PRE_ER(3)= 0.00060;
REM(1)= 0.0015 REM(2)= 0.0013 REM(3)= 0.0009;
PULSE(1)= 0.0 PULSE(2)= 0.0 PULSE(3)= 0.0;
OUTPUT(1)= 0.0 OUTPUT(2)= 0.0 OUTPUT(3)= 0.0;
ER_PULSE(1)= 0.0 ER_PULSE(2)= 0.0 ER_PULSE(3)= 0.2;
NEW_COUNTA(1)= 0 NEW_COUNTA(2)= 0 NEW_COUNTA(3)= 0;
NEW_COUNT(1)= 0 NEW_COUNT(2)= 0 NEW_COUNT(3)= 0;
FIFO(1,1)= 2 FIFO(2,1)= 2 FIFO(3,1)= 2;
FIFO(1,2)= 0 FIFO(2,2)= 0 FIFO(3,2)= 0;

NEW_F(1)= 0.88800 NEW_F(2)= 0.84550 NEW_F(3)= 0.81700;
FIFOA(1,1)= 2 FIFOA(2,1)= 2 FIFOA(3,1)= 2;
FIFOA(1,2)= 0 FIFOA(2,2)= 0 FIFOA(3,2)= 0;
EMCD(1)= 59.0545 EMCD(2)= 59.0547 EMCD(3)= 59.0551;
ERROR(1)= 0.00000 ERROR(2)= 0.00020 ERROR(3)= 0.00060;
END_POS(1)= 59.0545 END_POS(2)= 59.0547 END_POS(3)= 59.0551^
;
PRE_ER(1)= 0.00000 PRE_ER(2)= 0.00020 PRE_ER(3)= 0.00060;
REM(1)= 0.0015 REM(2)= 0.0013 REM(3)= 0.0009;
PULSE(1)= 0.0 PULSE(2)= 0.0 PULSE(3)= 0.0;
OUTPUT(1)= 0.0 OUTPUT(2)= 0.0 OUTPUT(3)= 0.0;
ER_PULSE(1)= 0.0 ER_PULSE(2)= 0.0 ER_PULSE(3)= 0.2;
NEW_COUNTA(1)= 0 NEW_COUNTA(2)= 0 NEW_COUNTA(3)= 0;
NEW_COUNT(1)= 0 NEW_COUNT(2)= 0 NEW_COUNT(3)= 0;
FIFO(1,1)= 0 FIFO(2,1)= 0 FIFO(3,1)= 0;
FIFO(1,2)= 0 FIFO(2,2)= 0 FIFO(3,2)= 0;

```

```

MAX_ERROR= 0.04180;
END_ERROR= 0.00050;
!!! E(01000) !!!
R;
>

```