2.9.3 Арифметика на основі абелевих груп

460

100

Нехай задана деяка скінченна множина цілих чисел, наприклад, $N_5 = \{0,1,2,3,4\}$. Оскільки ми хочемо побудувати адитивну абелеву групу, то ця множина обов'язково повинна включати 0. Для того, щоб N_5 перетворити в групу GN_5 , необхідно коректно задати значення для операції додавання з одним із елементів групи, скажімо з 1. Дійсно, оскільки a+0=a для довільного $a\in GN_5$, то перший рядок таблиці додавання елементів групи визначений (таблиця 1), а на підставі комутативності (оскільки GN_5 абелева) і перший стовпчик цієї таблиці. Нехай, наприклад, задано $0+1=1,\ 1+1=4,\ 1+4=2,\ 1+2=3,\ 1+3=0$. Таке задання коректне, оскільки має місце єдиність результату (але єдиність результату, як буде показано нижче, не достатня умова гарантії коректності). Тепер послідовно знаходимо результати додавання з елементом 4, оскільки 4=1+1:

$$4 + 2 = (1+1) + 2 = 1 + (1+2) = 1 + 3 = 0,$$
 $4 + 3 = (1+1) + 3 = 1 + (1+3) = 1,$ $4 + 4 = (1+1) + 4 = 1 + (1+4) = 1 + 2 = 3,$

Далі знаходимо значення 4+1=2 і обчислюємо операцію додавання з елементом 2:

$$2+2=(1+4)+2=1+(4+2)=1+0=1$$
, $2+3=(1+4)+3=1+(4+3)=1+1=4$, $2+4=(1+4)+4=1+(4+4)=1+3=0$.

Далі знаходимо значення 2+1=3 і обчислюємо операцію додавання з елементом 3:

$$3+2=(1+2)+2=1+(2+2)=1+1=4$$
, $3+3=(1+2)+3=1+(2+3)=1+4=2$, $3+4=(1+2)+4=1+(2+4)=1+0=1$.

Заносимо ці значення в таблицю 2.9.2 і на цьому закінчуємо побудову групи GN_5 .

Таблиця 2.9.1							Таблиця 2.9.2						Таблиця 2.9.3						
+	0	1	2	3	4	1	+	0	1	.2	3	4	1	+	0	1	2	3	4
0	0	1	2	3	4	1 1	0	0	1	2	3	4		0	0	1	2	3	4
1	1	4	3	0	2	1 1	1	1	4	3	0	2		1	1	3	0	4	2
2	2	3				,	2	2	3	1	4	0	,	2	2	0	4	1	3
3	3	0				1 1	3	3	0	4	2	1		3	3	4	1	2	0
4	4	2				1 1	4	4	2	0	1	3	1	4	4	2	3	0	1

Аналогічно можна задати і довільну іншу групу GN_5 . Дійсно, для цього задамо рядок таблиці додавання таким:

$$1+0 = 1, 1+1 = 3, 1+2=0, 1+3=4, 1+4=2.$$

Звідси отримуємо вищенаведену таблицю 3.

Варто зауважити, що для визначення групи можна взяти довільний її елемент. Наприклад, визначимо групу GN_5 , елементами якої є $0,\,2,\,3,\,5,\,6$, за допомогою додавання з елементом 3:

	Ta	абли	ця 2	.9.4			Таблиця 2.9.5							
+	0	3	5	6	2]	+	0	3	5	6	2		
0	0	3	5	6	2		0	0	3	5	6	2		
3	3	5	6	2	0	1	3	3	5	6	2	0		
5	5	6				,	5	5	6	2	0	3		
6	6	2				1	6	6	2	0	3	5		
2	2	0				1	2	2	0	3	5	6		

Зауважимо, що для побудови групи GN_k , мало вимагати тільки однозначності операції додавання. Якщо визначити додавання в групі так $0+1=1,\ 1+1=0,\ 1+2=3,\ 1+3=4,\ 1+4=2,$ то, обчислюючи 1+3, отримаємо

$$1+3=1+(1+2)=(1+1)+2=0+2=2$$
,

що не збігається з визначеним вище. Справа в тім, що так визначена операція додавання не охоплює весь цикл елементів групи, тому що має елемент скінченного порядку $2 < 5 \ (1+1=0)$.

Всі три групи, побудовані вище, циклічні на підставі теореми Лагранжа (вони мають порядок 5). В перших двох групах твірним був елемент 1, а в третій групі – елемент 3. Неважко переконатися, що всі три групи ізоморфні. Дійсно, бієктивне відображення для перших двох груп має вигляд:

$$f(0) = 0$$
, $f(1) = 1$, $f(4) = 3$, $f(2) = 4$, $f(3) = 2$,

а ізоморфізм першої і третьої груп визначається таким відображенням:

$$f(0) = 0$$
, $f(1) = 3$, $f(4) = 5$, $f(2) = 6$, $f(3) = 2$.

Поставимо у відповідність операції додавання з елементом групи a_1 , за допомогою якого визначається група, підстановку

$$f_{a_1} = \left(\begin{array}{cccc} 0 & a_1 & a_2 & \dots & a_{k-1} \\ a_1 & a_{i_1} & a_{i_2} & \dots & a_{i_k} \end{array} \right).$$

Ця підстановка означає, що $f_{a_1}(0) = 0 + a_1 = a_1, f_{a_1}(a_1) = a_1 + a_1 = a_{i_1}, f_{a_1}(a_{i_1}) = a_{i_1} + a_1 = a_{i_1}, f_{a_1}(a_{i_1}) = a_{i_1} + a_1 = a_{i_1}$ і т. д.

Назвемо групу GN_k повноциклічною, якщо підстановка f_{a_1} є повним циклом довжини k. Справедлива

Теорема 52. Всі скінченні повноциклічні абелеві групи одного і того порядку ізоморфні між собою.

Доведення. Нехай f_{a_1} і f_{b_1} — підстановки, які визначають дві повноциклічні групи k-го порядку, такі що $a_{i_1}=a_1+a_1,a_{j_1}=a_{i_1}+a_1,a_{j_2}=a_{j_1}+a_1,\ldots,a_{j_{k-1}}=a_{j_{k-2}}+a_1$ і $b_{i_1}=b_1+b_1,b_{j_1}=b_{i_1}+b_1,b_{j_2}=b_{j_1}+b_1,\ldots,b_{j_{k-1}}=b_{j_{k-2}}+b_1$. Тоді ізоморфізмом буде відображення

$$f(0) = 0, f(a_1) = b_1, f(a_{i_1}) = b_{i_1}, f(a_{j_1}) = f(a_{i_1} + a_1) = b_{i_1} + b_1,$$

$$f(a_{j_2}) = f(a_{j_1} + a_1) = f(a_{j_1}) + b_1, \dots, f(a_{j_{k-3}}) = f(a_{j_{k-4}}) + b_1. \blacksquare$$

Пряма сума абелевих груп – це операція, яка дозволяє будувати абелеві групи більших порядків з абелевих груп менших порядків.

Означення 61 Прямою (зовнішною) сумою адитивних абелевих груп G_1, \ldots, G_m називається абелева група $G = G_1 \oplus \ldots \oplus G_m$, яка складається зі всіх послідовностей (a_1, \ldots, a_m) , де $a_i \in G_i$, з операцією додавання

$$(a_1,\ldots,a_m)\bar{+}(b_1,\ldots,b_m)=(a_1+b_1,\ldots,a_m+b_m).$$

Throw

Приклад прямої суми абелевих груп. Нехай маємо групи лишків Z_3 і Z_4 за модулем 3 і 4 відповідно. Тоді абелева група $G=Z_3\oplus Z_4$ має такий носій, елементам якого поставлені у відповідність числа:

За такої відповідності таблиця додавання групи G набуває вигляду:

0	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	0	5	6	7	4	9	10	11	8
2	2	3	0	1	6	7	4	5	10	11	8	9
3	. 3	0	1	2	7	4	5	6	11	8	9	10
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	4	9	10	11	8	1	2	3	0
6	6	7	4	5	10	11	8	9	2	3	0	1
7	7	4	5	6	11	8	9	10	3	0	1	2
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	8	1	2	3	0	5	6	7	4
10	·10	11	8	9	2	3	0	1	6	7	4	5
11	11	8	9	10	3	0	. 1	2	7	4	5	6

Відображення $\varphi:Z_{12}\to G$ задане так, як показано нижче,

$$\varphi(0) = 0, \varphi(1) = 5, \varphi(1+k) = 5 + \varphi(k), k = 1, \dots, 10,$$

є ізоморфізмом цих груп. 🌲

Далі будуть розглянуті інші застосування груп, зокрема, при розв'язанні проблеми передачі ключів.