

Types of conformational changes in proteins					
Large scale motions:					
Type of motion	Time Scale Amplitude				
Side chain motions (protein surface)	1-5 Å				
Backbone motions in protein loop regions :	1-10 Å				
Motions of the N- or C-terminus of a protein:	1-5 Å				
Rigid body motions of secondary structures :	1-5 Å				
Protein domain motions :	5-10 Å				
(for example hinge bending motions)					
Allosteric transitions:	5-10 Å				
(correlated motion of several subunits)					
Local folding and unfolding transitions	~5 Å				
(helix-coil transitions, loop folding)					

The challenge of flexibility

Types of conformational changes in proteins

· Large scale motions:

Type of motion	Time Scale	Amplitude
Side chain motions (protein surface)	0.1 ps- 0.1 ns	s 1-5 Å
Backbone motions in protein loop regions :	several ns	1-10 Å
Motions of the N- or C-terminus of a protein:	several ns	1-5 Å
Rigid body motions of secondary structures :	0.05 – 1 μs	1-5 Å
Protein domain motions :	1 µs – 1 ms	5-10 Å
(for example hinge bending motions)		
Allosteric transitions:	1 µs – 100 m	s 5-10 Å
(correlated motion of several subunits)		
Local folding and unfolding transitions	0.1 μs – 10 n	ns ∼5Å
(helix-coil transitions, loop folding)		

(from McCammon & Harvey, Dynamics of proteins and nucleic acids, $\;$ Cambridge University Press)

The challenge of flexibility Types of conformational changes in proteins Large scale motions: Type of motion Time Scale Amplitude Rigid-body docking Side chain motions (protein surface) 0.1 ps- 0.1 ns 1-5 Å Refinement 1-10 Å Backbone motions in protein loop regions : several ns MD ensembles 1-5 Å Motions of the N- or C-terminus of a protein: several ns Flexible docking 1-5 Å Rigid body motions of secondary structures : $0.05 - 1 \, \mu s$ Protein domain motions : 1 µs – 1 ms 5-10 Å (for example hinge bending motions) Allosteric transitions: 1 μs – 100 ms 5-10 Å (correlated motion of several subunits) Ab initio folding Local folding and unfolding transitions 0.1 µs – 10 ms ~5 Å (helix-coil transitions, loop folding) (from McCammon & Harvey, Dynamics of proteins and nucleic acids, $\;$ Cambridge University Press)

	avallable	llable Predictors		Scorers	
	template	PyDock	Successful groups	PyDock	Successtul groups
T110 Homotrimer	yes 19%		22/25		16/16
T111 Homotrimer	^{yes} 54%		27/28		16/16
T112 Homotrimer	^{yes} 23%	•	21/26	•	14/16
T113 Heterodimer	no	O	6/27	O	2/16
T114 Homodimer	no	0	0/29	0	0/16
T116 Homodimer	yes 30%	0	0/30	0	0/16
T117 Dimer of Heterodimer	no	0	1/27	·	2/16
T118 Homo octamer	yes 46%		21/28	***	16/16
T119 Homodimer	yes 32 %	-	22/28	0	14/17
T120 Heterodimer	yes 35%	*	20/28	**	5/15

Large scale docking

Large scale docking

- Homology docking (template-based)
- Ab initio docking (template-free)

The ultimate challenge: discovery of PPI inhibitors

Major difficulties:

Small-molecule vs. Protein-protein interface

- Strategy: Targeting hot-spots.
- Hot-spot experimental identification: alanine-scanning (costly)
- Hot-spot computational prediction:
 ROBETTA, FOLDEF...
 (need 3D structure of complex)

Absence of binding pockets in natural interfaces

- In standard drug design:
 3D structure with bound ligands,
 known active site
- In PPI inhibition: pocket finder, ligand docking and VLS

(need 3D structure of complex)

