

Bayesian Methods for Clinical Trials

Lecture 5: Two- or multi-stage clinical trials

Libby Daniells & Pavel Mozgunov & Thomas Jaki MRC Biostatistics Unit February 24, 2025

A simple fixed-sample design

Context: a phase II trial of a new cancer drug (E)

Subjects: patients for whom other treatments have failed

Endpoint: response to treatment, which is shrinkage or

disappearance of the tumour

A patient will be said to SUCCEED if they respond within some given time period (such as 4 weeks)

p = P(SUCCEED) for a patient on the experimental therapy

 $p_0 = P(SUCCEED)$ for a patient on standard therapy

 p_1 is a success rate that would be considered "promising"

n patients will be treated in the trial: all will receive E $x_h = 1$ if the h^{th} patient succeeds, and = 0 otherwise, $h = 1, \ldots, n$ $S = x_1 + \cdots + x_n$ is the total number of successes We need a rule:

such that

$$P(PROCEED|p = p_0) \le \alpha$$
 and $P(PROCEED|p = p_1) \ge 1 - \beta$

Clearly, the rule should be based on S alone (it is a sufficient statistic):

$$S \ge u$$
 \longrightarrow PROCEED $S \le u$ \longrightarrow ABANDON

The trial can be expressed as a test of

$$H_0: p = p_0 \text{ versus } H_1: p = p_1$$

with rejection of H_0 (\Rightarrow PROCEED) if the one-sided p-value is $\leq \alpha$, and with power $\geq 1 - \beta$.

Sample size for a fixed sample design

Assume that all patients succeed independently, with probability p. Then $S \sim B(n,p)$ and

$$P(PROCEED; p) = P(S \ge u; p) = \sum_{h=1}^{n} \binom{n}{h} p^{h} (1-p)^{n-h}$$

Find values of n and u such that

$$P(PROCEED; p_0) \le \alpha$$
 and $P(PROCEED; p_1) \ge 1 - \beta$ and take the pair with the smallest n

Simon's two-stage design Simon (1989)

After n_i observations

PROCEED if $S_2 \geq u$ ABANDON if $S_i \leq \ell_i$, with $\ell_2 = u - 1$ take $(n_2 - n_1)$ more observations if $S_1 \geq \ell_1$.

Simon's frequentist two-stage design

Choose n_1 , n_2 , ℓ_1 and ℓ_2 to minimise $\mathbb{E}(n^*; p_0)$, where n^* is the (random) sample size on termination.

Simon's design is appropriate when it is more important to discard a bad treatment than to progress a good one

 patients in the trial are to be protected from a bad treatment, but will benefit from a good one

Thus, there is no early stopping to PROCEED, and the sample size is to be minimised in the null case of no benefit

Introduction: Sequential Designs

Fixed sample design:

Adaptive Design:

Group-Sequential Trial:

- "Proceed" = Move to next phase of drug development
- Each interim aims to answer if E > C
- Reasons: ethical; administrative; economic

General Setting

Setting: For Phase II or Phase III, randomized controlled trial

- Two Treatment arms: Experimental (E) and Control (C)
- Equal allocation: $n_E = n_C = \frac{n}{2}$
- Advantage measurement of E over C: θ
- Objective: Whether or not to PROCEED to next phase, such as
 - ► from Phase II to Phase III
 - from Phase III to registration

For Normal responses

- $X_{ik} \sim N(\mu_i, \sigma^2)$ where j = E or $C, k = 1 \dots n/2$, known σ^2
- $\theta = \mu_E \mu_C$
- $Z = \frac{\sqrt{n}}{2\sigma}(\bar{X}_E \bar{X}_C);$
- $Z \sim N(\frac{\theta\sqrt{n}}{2\sigma}, 1)$
- PROCEED if $Z \geq c$

General Setting: Two Requirements

$$\begin{array}{lcl} \mathbb{P}\{\text{PROCEED}|\theta=0\} &=& \alpha \\ \mathbb{P}\{\text{PROCEED}|\theta=\theta_{R}\} &\geq& 1-\beta \end{array}$$

- PROCEED \equiv Reject $H_0: \theta = 0$ of no treatment advantage in favour of alternative $H_A: \theta > 0$
- θ_R : Treatment advantage worthwhile for development
- Set a small α : Type I error rate
- Set a big 1β : Power

Two-Stage Design

- Two looks (one interim). Each look calculate Z_i .
- Stop at first interim if $Z_1 \notin (I_1, u_1)$
- $\mathbb{P}(PROCEED) = \mathbb{P}(Z_1 \ge u_1 \cup \{Z_1 \in (I_1, u_1) \cap Z_2 \ge u_2\})$ = $\mathbb{P}(Z_1 \ge u_1) + \mathbb{P}(Z_1 \ge I_1 \cap Z_2 \ge u_2\} - \mathbb{P}\{Z_1 \ge u_1 \cap Z_2 \ge u_2\}$

Specifying a Two-Stage Design

Five unknowns: n_1 , n_2 , l_1 , u_1 , u_2

Two equations

•
$$\mathbb{P}\{\text{PROCEED}|\ \theta = 0\} = \alpha = \Phi(-u_1) + \Phi_2(-l_1, -u_2, \rho) + \Phi_2(-u_1, -u_2, \rho)$$

•
$$\mathbb{P}\{\text{PROCEED}|\theta=\theta_R\}=1-\beta=\Phi\left(-u_1+\theta_R\frac{\sqrt{n_1}}{2\sigma}\right)+\Phi_2\left(-l_1+\theta_R\frac{\sqrt{n_1}}{2\sigma},-u_2+\theta_R\frac{\sqrt{n_2}}{2\sigma},\rho\right)+\Phi_2\left(-u_1+\theta_R\frac{\sqrt{n_1}}{2\sigma},-u_2+\theta_R\frac{\sqrt{n_2}}{2\sigma},\rho\right)$$

So 3 more constraints needed:

 $l_1 = au_1$; $u_2 = bu_1$; $n_1 = \nu n_2$, and a, b, ν are known constants

Example

Design a two-stage trial with $\alpha = 0.025$, $1 - \beta = 0.9$, $\theta_R = 0.7$

- assume $\sigma^2 = 1$
- Set $I_1 = -u_1$, $u_2 = \sqrt{\frac{n_1}{n_2}}u_1$, $\frac{n_1}{n_2} = 0.6$
- **Solution:** $n_1 = 54$, $n_2 = 90$, $u_1 = 2.572$, $l_1 = -2.572$, $u_2 = 1.9923$

θ	$\mathbb{P}\{Z_1 < I_1\}^{(1)}$	$\mathbb{P}\{Z_1 > u_1\}^{(2)}$	$\mathbb{E}(n)^{(3)}$	$\mathbb{P}\{\mathtt{PROCEED}\}$
0.00	0.00506	0.00506	89.6	0.02499
0.35	0.00001	0.09922	86.4	0.37676
0.70	0.00000	0.50000	72.0	0.90991

- (1) $\mathbb{P}\{Z_1 < I_1\}$: Prob of ABANDON at first stage = $\Phi(I_1 \theta \sqrt{n_1}/(2\sigma))$
- (2) $\mathbb{P}\{Z_1 > u_1\}$: Prob of PROCEED at first stage = $1 \Phi(u_1 \theta\sqrt{n_1}/(2\sigma))$
- (3) Expected sample size: $\mathbb{E}(n) = n_1 \delta + n_2 (1 \delta)$ $\delta = \mathbb{P}\{\text{Stop at first stage}\} = \mathbb{P}\{Z_1 < l_1\} + \mathbb{P}\{Z_1 > u_1\}$

Multi-Stage Design

- Need to find 3k 1 unknowns: n_i , l_i , u_i ; i = 1, ... k
- Still only two equations
- Additional constraints needed
 - ightharpoonup Specify $r = \{r_i, i = 2, ..., k\}$ that $n_i = r_i n_1$
 - ▶ Define functions $l_i = l_i(a)$, $u_i = u_i(a)$
 - ▶ Simplify problem to n_1 and $a \Rightarrow$ two unknowns

Pocock

• $I_i = -a$;

 $u_i = a$

Stage

O'Brien & Fleming

• $I_i = -a/\sqrt{r_i}$; $u_i = a/\sqrt{r_i}$

Triangular Test

• $I_i = -a\{1 - 3(r_i/r_k)\}/\sqrt{r_i}; u_i = a\{1 + (r_i/r_k)\}/\sqrt{r_i}$

Choice of Design

- Symmetric design: $-l_i = u_i$
 - Pocock and O'Brien & Fleming: $\mathbb{P}\{E \text{ worse then } C \mid -\theta_B\} = 1 - \beta$
 - Use when important to prove either harm or establish benefit
 - Compare two existing treatments
 - Fixed sample size designs are symmetric
- Asymmetric designs: $-l_i \neq u_i$
 - ► Triangular: $\mathbb{P}\{E \text{ worse than } C \mid -\theta_R\} \neq 1 \beta$
 - Not important to prove harm, lack of benefit will lead to abandon E
 - Compare a new/expensive/hazardous treatment with placebo/standard

Example

Design 5-stage trial with $\alpha = 0.025$, $1 - \beta = 0.9$, $\theta_R = 0.7$, $\sigma^2 = 1$. Assume equally spaced interim analyses and 1:1 allocation between treatments.

Design	а	n_1	n_5
Pocock	2.413	20.7	103.5
O'Brien & Fleming	4.4	17.6	88.0
Triangular	2.16	21.5	107.6

Fixed sample test requires a total of 85.8 patients.

Example (continued)

Expected sample size curves for our five-stage designs:

References

- O'Brien, P.C. and Fleming, T.R. (1979). A multiple testing procedure for clinical trials. Biometrics, 48, 41-53.
- Pocock, S.J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika, 64, 191-199.
- Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials, 10:1–10.
- Whitehead J, Stratton I.(1983) Group sequential clinical trials with triangular continuation regions. Biometrics. 39:227-36.