Computer Science

Theory of Computation

Undecidability

Lecture No.- 1

Recap of Previous Lecture

Topic

Turing Machine

Topics to be Covered

Table:

Ę.,)
W

	Problem	FA	1890	MK	Nyw	(m)
o t	Halling					X
رد ا	Membership		/	/		X
3)	Emptiness		/	/	×	×
5/ 4)	Finitenen				X	×
s)	Totality			X	×	×
ه) (۵)	Equivalence	1		×	×	×
7)	Disjoint		X	- ×	X	X
8)	Set containment		X	X	X	X

/: Derikth X: Undecidate

Di Problem SDUD:
Toroblem No X

Not RE

problem > Yes X

Halting Problem:

IS FA halts on w?

IS DPDA halfs on w?

Is PDA halts on w?

IS HIM halfs on w?

Is I'm halfs on w? Jyos: Halfs at fine y (SDUD)


```
IS M allepts h?)
IS WELl?
IS L(G)?
Mcmbership problem
                                                 HTM
                                                  TM: Valid > Hats Valid > Hats Valid > Paks V
```


Emptineus Problem:

Finitenes:

Totality:

IS L = \(\Sigma^*\)?

Is Marcepts everything?

Equivalence:

Set Containment [Subset Check]:

2 mins Summary

Decision properties

THANK - YOU