Evaluating Mobile User Interfaces

Evaluation Methods

- i) Expert Evaluation
 - Cognitive Walkthrough
 - Heuristic Evaluation
- II) User Evaluation in the Lab
 - Think Aloud Study
 - Performance Evaluation
- III) User Evaluation in the Field
 - Diary Study
 - Experience Sampling Method (ESM)
 - Logging Study

CRUX OF THE TOPIC

Once you've started building your mobile interface, there are many ways to test it for usability

- Expert evaluation methods should be used early and often to find basic problems
- User evaluations can be conducted in the lab, and are useful for identifying domain-specific problems
- Once you have a deployable application, field evaluations can help you understand how your application is used in context

Web link for detailed study:

http://hcibib.org/tcuid/chap-4.html

I) EXPERT EVALUATION METHODS

a) COGNITIVE WALKTHROUGH METHOD

- ... one or more evaluators work through a series of tasks
- ... and ask a set of questions from the perspective of the user
- ... users typically prefer to learn a system by using it to accomplish tasks and not just by studying a user- manual.

... focusing on how easy it is for new users to accomplish tasks with the system

- ✓ The designers of an interface walk through the interface step-by-step in the context of core tasks an end-user will need to accomplish.
- ✓ It is a formalized technique for imagining user's thoughts and actions when user will finally use the user interface.
- ✓ The focus of the cognitive walkthrough is on understanding the system's *learnability* for new or infrequent users.

Example:

Courtesy: https://stronska.wordpress.com/2016/03/20/wireframes-user-testing-cognitive-walkthrough/

Example (contd...): Alternate ways to design a User Interface

Advantages of Cognitive Walkthrough Method:

- -This method generate results quickly with low cost.
- Has the ability to apply the method early in the design phases before coding even begins.

<u>Disadvantages</u> of Cognitive Walkthrough Method:

- Walkthroughs are difficult to do when tasks are not well defined
- The walkthrough does not test real users on the system.

Jacob Nielsen

- ☐ Heuristics, also called **guidelines**, are general principles or rules of thumb that can guide design decisions.
- ☐ Developed by Jacob Nielsen
- ☐ Can be performed on Working User Interfaces.
- ☐ Small set (ie 3 to 5) evaluators or experts examine the User Interface.
 - ✓ Evaluators check compliance with usability heuristics /guidelines
 - ✓ Different evaluators will find different problems
 - ✓ Evaluators only communicate with each other after evaluation so
 as to aggregate the findings

NOTE

Heuristic evaluation is never a substitute for user testing, since it does not provide any insights on how actual users use the system, it is hard even for experts to predict it.

Nielsen and Molich used their own experience to identify NINE GENERAL HEURISTICS as listed below: (These 9 Heuristics are implicit or explicit in almost all the lists of guidelines that have been suggested for User Interfaces

		Simple means no irrelevant or rarely used information.
1 -	Simple and Natural dialog	Natural means an order that matches the task.
		Use words and concepts from the user's world.
2	Speak the user's language	Don't use system-specific engineering terms.
		Don't make the user remember things from one action to the next.
3	Minimize user memory load	Leave information on the screen until it's not needed.
		Users should be able to learn an action sequence in one part of the system and apply it again
4	Be consistent	to get similar results in other places.
5	Provide feedback	Let users know what effect their actions have on the system.
5	Provide leedback	
		If users get into part of the system that doesn't interest them, they should always be able to
6	Provide clearly marked EXITS	get out quickly-+.
		Shortcuts can help experienced users avoid lengthy dialogs and informational messages that
7	Provide shortcuts	they don't need.
		Good error messages let the user know what the problem is and how to correct it.
8	Good error messages	
	Dunnant aurana	Whenever you write an error message you should also ask, can this error be avoided?
9	Prevent errors	

EXAMPLE: HEURISTIC EVALUATION – Checklist prepared by Xerox Xorporation

Usability Techniques

Heuristic Evaluation - A System Checklist

By Deniese Pierotti, Xerox Corporation

Heuristic Evaluation - A System Checklist

1. Visibility of System Status

The system should always keep user informed about what is going on, through appropriate feedback within reasonable time.

	#	Review Checklist	Yes No N/A	Comments	
l	1.1	Does every display begin with a title or header that describes screen contents?	000		
l	1.2	Is there a consistent icon design scheme and stylistic treatment across the system?	000		
l	1.3	Is a single, selected icon clearly visible when surrounded by unselected icons?	000		
	1.4	Do menu instructions, prompts, and error messages appear in the same place(s) on each menu?	000		1

More Examples

Can't copy info from one window to another

- Violates "Minimize the users' memory load"
- Fix: allow copying

Typography uses mix of upper/lower case formats and fonts

- Violates "Consistency and standards"
- Slows users down
- Fix: pick a single format for entire interface

Benefits of Heuristic Evaluation:

- They provide quick feedback to designers, relatively easy to do compared to other methods;
- Cheaper than many other methods, such as user testing.
- Could be carried out before user testing
- Reviews are also excellent in competitive benchmarking, since they allow comparing the usability of your product to your competitor's product.

Why Multiple Evaluators?

- Every evaluator doesn't find every problem
- Good evaluators find both easy & hard ones

Expert vs. User Evaluation

Expert evaluation is much faster

- 1-2 hours each evaluator vs. days-weeks

Doesn't require interpreting user's actions

User testing is far more accurate (by def.)

- Takes into account actual users and tasks
- HE may miss problems & find "false positives"

Good to alternate between expert & user-based testing

- Find different problems
- Don't waste participants

II) User Evaluation in the Lab

Lab Testing

- Bring real people into the lab
- Participants perform tasks with user interface
- Often pre- and postquestionnaires to elicit extra feedback

Two Kinds of Lab Studies

a) "Think Aloud" Study

- Focus is on qualitative data
- Find confusing and difficult elements of UI
- Typically used early in the design process

b) Performance Study

- Focus is on quantitative data
- Measure completion time, errors
- Typically used later in the design process
- Requires a point of comparison (earlier or competitor's designs)

"Think Aloud" Study

Key: Ask users to say everything they are thinking aloud

- Remind them when they forget

As with any other user study, be careful not to introduce bias

- Let users work through any confusion, don't help them
- Avoid laughing, making facial expressions, etc.

Benefits

The Problem with Lab Studies

Lab studies cannot perfectly simulate the real world

Inherently artificial

- Artificial setting
- Artificial motivation
- (in the case of mobile) Artificial events
- Etc.

III) User Evaluation in the Field

Three Field Study Methods

a) Diary Study

- Capture activities from users' real mobile environments
- Users jot down responses to questions given before hand in a journal
- Relies on self-reporting, so may miss some data points

b) Experience Sampling Method (ESM)

- Developed in the mid 70's by Csikszentmihalyi, Larson, and Prescott
- Useful for studying mobile users because it gathers data in their environment
- Beep users several times a day to answer questions
 - At random
 - After a relevant event

c) Logging Study

- Install program on users' devices to capture data
- Infer user activity or intent from log data
- Capture data that may be missed through selfreporting methods
- Obviously, many privacy concerns!

