- 1. Prove that $||Bx|| \ge ||x||/||B^{-1}||$, for any non singular matrix B.
- 2. Given a square nonsingular matrix A. Consider its rank-one update $\bar{A}=A+ab^T$, where $a,b\in\mathcal{R}^n$
 - (a) Verify that when \bar{A} is nonsingular, we have

$$\bar{A}^{-1} = A^{-1} - \frac{A^{-1}ab^TA^{-1}}{1 + b^TA^{-1}a}$$

(b) Using the above formula to show that

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

is the inverse of

$$H_{k+1} = H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k}$$

where $H_k^{-1} = B_k$ is symmetric, $s_k = x_{k+1} - x_k$ and $y_{k+1} = \nabla f(x_{k+1}) - \nabla f(x_k)$.

- 3. Minimize the Rosenbrock function $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$ and Beale function $f(x) = (1.5 x_1 + x_1x_2)^2 + (2.25 x_1 + x_1x_2^2)^2 + (2.625 x_1 + x_1x_2^3)^2$ by the steepest descent method and Newtons method respectively, where $x^{(0)} = (-1.2, 1)^T$.
- 4. Let $f(x) = \frac{1}{2}x^{T}x + \frac{1}{4}\sigma(x^{T}Ax)^{2}$, where

$$A = \begin{bmatrix} 5 & 1 & 0 & \frac{1}{2} \\ 1 & 4 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 3 & 0 \\ \frac{1}{2} & 0 & 0 & 2 \end{bmatrix}$$

Let (1) $x^{(0)} = (\cos 70^{\circ}, \sin 70^{\circ}, \cos 70^{\circ}, \sin 70^{\circ})^{T}$;

(2) $x^{(0)} = (\cos 50^{\circ}, \sin 50^{\circ}, \cos 50^{\circ}, \sin 50^{\circ})^{T}$.

In the case of $\sigma = 1$ and $\sigma = 10^4$, discuss the numerical results and behavior of convergence rate of pure Newtons method and Newtons method with line search respectively.

5. Please solving the modified LASSO problem in $x \in \mathbb{R}^n$,

$$\min f(x) = \frac{1}{2} ||Ax - b||^2 + \mu L_{\delta}(x)$$

with $L_{\delta}(x) = \sum_{i=1}^{n} \ell_{\delta}(x_i)$, and

$$\ell_{\delta}(x_i) = \begin{cases} \frac{1}{2\delta} x_i^2, & |x_i| < \delta \\ |x_i| - \frac{\delta}{2}, & otherwise. \end{cases}$$

Parameter Setting: $A \in \mathbb{R}^{m \times n}$, m = 512; n = 1024; A is a random matrix, which can be generated by randn(m,n); x is a random sparse matrix, which can be generated by sprandn(n,1,r) with sparticity rate r = 0.1, $\mu = 10^{-2}$ or 10^{-3} , $\delta = 10^{-3}\mu$.

Utilizing steepest decent method and Barzilar-Borwein method to solve this problem respectively.