Ma/CS 6b

Class 12: Graphs and Matrices

By Adam Sheffer

Non-simple Graphs

- In this class we allow graphs to be nonsimple.
- We allow parallel edges, but not loops.

Incidence Matrix

- Consider a graph G = (V, E).
 - \circ We order the vertices as $V=\{v_1,v_2,\dots,v_n\}$ and the edges as $E=\{e_1,e_2,\dots,e_m\}$
 - The *incidence matrix* of G is an $n \times m$ matrix M. The cell M_{ij} contains 1 if v_i is an endpoint of e_i , and 0 otherwise.

Playing with an Incidence Matrix

- Let M be the incidence matrix of a graph G = (V, E), and let $B = MM^T$.
 - \circ What is the value of B_{ii} ? The degree of v_i in G.
 - What is the value of B_{ij} for $i \neq j$? The number of edges between v_i and v_j .

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{array} \qquad \begin{array}{c} v_2 \\ e_6 \\ v_3 \end{array}$$

Adjacency Matrix

- Consider a graph G = (V, E).
 - We order the vertices as $V = \{v_1, v_2, ..., v_n\}$.
 - The *adjacency matrix* of G is a symmetric $n \times n$ matrix A. The cell A_{ij} contains the number of edges between v_i and v_j .

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 3 & 0 & 1 & 0 \end{pmatrix}$$

A Connection

- **Problem.** Let G = (V, E) be a graph with incidence matrix M and adjacency matrix A. Express MM^T using A.
- Answer. This is a $|V| \times |V|$ matrix.
 - $(MM^T)_{ii}$ is the degree of v_i .
 - $(MM^T)_{ij}$ for $i \neq j$ is number of edges between v_i and v_j .
 - \circ Let D be a diagonal matrix with D_{ii} being the degree of v_i . We have

$$MM^T = A + D$$
.

Example

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$MM^T = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} = A + D$$

Multiplying by 1's

- Let $\mathbf{1}_n$ denote the $n \times n$ matrix with 1 in each of its cells.
- **Problem.** Let G = (V, E) be a graph with adjacency matrix A. Describe the values in the cells of $B = A1_{|V|}$.
- Answer. It is a $|V| \times |V|$ matrix.
 - The column vectors of B are identical.
 - \circ The i'th element of each column is the degree of v_i .

Playing with an Adjacency Matrix

- Let A be the adjacency matrix of a simple graph G = (V, E), and let $M = A^2$.
 - What is the value of M_{ii} ? The degree of v_i in G.
 - What is the value of M_{ij} for $i \neq j$? The number of vertices that are adjacent to both v_i and v_i .

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad v_{5}$$

What about M^3 ?

- Let A be the adjacency matrix of a simple graph G = (V, E). For $i \neq j$:
 - A_{ij} tells us if there is an edge $(v_i, v_i) \in E$.
 - $(A^2)_{ij}$ tells us how many vertices are adjacent to both v_i and v_i .
 - What is $(A^3)_{ij}$? It is the number of paths of length three between v_i and v_i .
 - \circ In fact, $(A^2)_{ij}$ is the number of paths of length two between v_i and v_i .

The Meaning of M^k

• **Theorem.** Let A be the adjacency matrix of a (not necessarily simple) graph G = (V, E). Then $(A^k)_{ij}$ is the number of (not necessarily simple) paths between v_i and v_i .

An Example

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$A^{2} = AA = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{pmatrix}$$

$$A^{3} = A^{2}A = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 0 & 4 \\ 4 & 0 & 4 & 0 \\ 0 & 4 & 0 & 4 \\ 4 & 0 & 4 & 0 \end{pmatrix}$$

The Meaning of M^k

- Theorem. Let M be the incidence matrix of a (not necessarily simple) graph G = (V, E). Then $(M^k)_{ij}$ is the number of (not necessarily simple) paths between v_i and v_i .
- Proof. By induction on k.
 - Induction basis. Easy to see for k=1 and k=2.

The Induction Step

• We have $A^k = A^{k-1}A$. That is

$$(A^k)_{ij} = \sum_{m=1}^{|V|} (A^{k-1})_{im} A_{mj}$$

- By the induction hypothesis, $(A^{k-1})_{im}$ is the number of paths of length k-1 between v_i and v_m .
- \circ A_{mj} is the number of edges between v_m , v_j .

The Induction Step (cont.)

$$(A^k)_{ij} = \sum_{m=1}^{|V|} (A^{k-1})_{im} A_{mj}$$

- For a fixed m, $\left(A^{k-1}\right)_{im}A_{mj}$ is the number of paths from v_i to v_j of length k with v_m as their penultimate vertex.
 - \circ Thus, summing over every $1 \leq m \leq |V|$ results in the number of paths from v_i to v_j of length k.

Which Classic English Rock Band is

More Sciency?

Computing the Number of Paths of Length k

- **Problem.** Consider a graph G = (V, E), two vertices $s, t \in V$, and an integer k > 0. Describe an algorithm for finding the number of paths of length k between s and t.
 - Let *A* be the adjacency matrix of *G*.
 - We need to compute A^k , which involves k-1 matrix multiplication.

Matrix Multiplication: A Brief History

- We wish to multiply two $n \times n$ matrices.
 - Computing one cell requires about n multiplications and additions. So computing an entire matrix takes cn^3 (for some constant c).
 - In 1969 Strassen found an improved algorithm with a running time of $cn^{2.807}$.
 - In 1987, Coppersmith and Winograd obtained an improved cn^{2,376}.
 - After over 20 years, in 2010, Stothers obtained cn^{2.374}.
 - Williams immediately improved to $cn^{2.3728642}$.
 - In 2014, Le Gall improved to $cn^{2.3728639}$.

A More Efficient Algorithm

- To compute A^k , we do not need k-1 matrix multiplications.
- If *k* is a power of 2:
 - $A^2 = AA, A^4 = A^2A^2, ..., A^k = A^{k/2}A^{k/2}.$
 - Only log₂ k multiplications!
- If k is not a power of 2:
 - We again compute $A, A^2, A^4, ..., A^{\lfloor k \rfloor}$.
 - We can then obtain A^k by multiplying a subset of those.
 - For example, $A^{57} = A^{32}A^{16}A^8A$.
 - At most $2\log k 1$ multiplications!

Connectivity and Matrices

- **Problem.** Let G = (V, E) be a graph with an adjacency matrix A. Use $M = I + A + A^2 + A^3 + \cdots + A^{|V|-1}$ to tell whether G is connected.
- Answer.
 - G is connected iff every cell of A is positive.
 - \circ The main diagonal of A is positive due to I.
 - \circ A cell A_{ij} for $i \neq j$ contains the number of paths between v_i and v_j of length at most k-1. If the graph is connected, such paths exist between every two vertices.

And Now with Colors

Problem. Consider a graph G = (V, E), two vertices s, t ∈ V, and an integer k > 0. Moreover, every edge is colored either red or blue. Describe an algorithm for finding the number of paths of length k between s and t that have an even number of blue edges.

Solution

- We define two sets of matrices:
 - Cell ij of the matrix $\boldsymbol{E^{(m)}}$ contains the number of paths of length m between v_i an v_i using an even number of blue edges.
 - \circ Cell ij of the matrix $o^{(m)}$ contains the number of paths of length m between v_i an v_j using an odd number of blue edges.
- What are $E^{(1)}$ and $O^{(1)}$?
 - \circ $E^{(1)}$ is the adjacency matrix of G after removing the blue edges. Similarly for $O^{(1)}$ after removing the red edges.

Solution (cont.)

- We wish to compute $E^{(k)}$.
 - We know how to find $E^{(1)}$ and $O^{(1)}$.
 - $^{\circ}$ How can we compute $E^{(m)}$ and $O^{(m)}$ using $E^{(m-1)}$ and $O^{(m-1)}$? $E^{(m)} = E^{(m-1)}E^{(1)} + O^{(m-1)}O^{(1)}$.
 - $\circ \left(E^{(m-1)}E^{(1)}\right)_{ij}$ is the number of paths of length m between v_i and v_j with an even number of blue edges and whose last edge is red.
 - \circ Similarly for $\left(O^{(m-1)}O^{(1)}\right)_{ij}$ except that the last edges of the paths is blue.

Solution (cont.)

- How can we similarly compute $O^{(m)}$ using $E^{(m-1)}$ and $O^{(m-1)}$? $O^{(m)} = E^{(m-1)}O^{(1)} + O^{(m-1)}E^{(1)}$.
- Concluding the solution.
 - \circ We compute about 2k matrices.
 - Each computation involves two matrix multiplications and one addition.

Identical Graphs?

Are the following two graphs identical?

- Possible answers:
 - No, since in one v_1 has degree 2 and in the other degree 1.
 - Yes, because they have exactly the same structure.

Graph Isomorphism

- An *isomorphism* from a graph G = (V, E) to a graph G' = (V', E') is a **bijection** $f: V \to V'$ such that for every $u, v \in V, E$ has the same number of edges between u and v as E' has between f(u) and f(v).
 - We say that G and G' are isomorphic if there is an isomorphism from G to G'.
 - In our example, the graphs are isomorphic $(f(v_1) = u_2, f(v_2) = u_1, f(v_3) = u_3)$.

Uniqueness?

- Question. If two graphs are isomorphic, can there be more than one isomorphism from one to the other?
 - Yes!
 - $\circ a \rightarrow w, \ b \rightarrow z, c \rightarrow x, d \rightarrow y.$
 - $\circ a \rightarrow y, b \rightarrow z, c \rightarrow x, d \rightarrow w.$

Isomorphisms and Adjacency Matrices

 What can we say about adjacency matrices of isomorphic graphs?

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Answer

- Two graphs G, G' are isomorphic if and only if the adjacency matrix of G is obtained by permuting the rows and columns of the adjacency matrix of G'.
 - (The same permutation should apply both to the rows and to the column).
 - $0.01 \rightarrow 1, 2 \rightarrow 4, 4 \rightarrow 3, 3 \rightarrow 2$:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Incidence Matrix of a Directed Graph

- Consider a directed graph G = (V, E).
 - \circ We order the vertices as $V=\{v_1,v_2,\dots,v_n\}$ and the edges as $E=\{e_1,e_2,\dots,e_m\}$
 - The *incidence matrix* of G is an $n \times m$ matrix M. The cell M_{ij} contains -1 if e_j is entering v_i , and 1 if e_i is leaving v_i .

$$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix} \quad \begin{matrix} v_{5} \\ e_{4} \\ e_{5} \end{matrix} \quad \begin{matrix} e_{2} \\ e_{3} \\ e_{6} \\ v_{3} \end{matrix}$$

The End: Queen

Ph.D. in astrophysics

Degree in Biology

Electronics engineer

Freddie Mercury

