Thermodynamics & Statistical Physics

Chapter 6. The most probable distribution of nearly independent particles

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

 Macro quantities are statistical average of micro quantities.

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1, ..., q_r; p_1, ..., p_r)$, where r is the degree of freedom.

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1, ..., q_r; p_1, ..., p_r)$, where r is the degree of freedom.
- Change of the state is a curve in the phase space.

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1,...,q_r;p_1,...,p_r)$, where r is the degree of freedom.
- Change of the state is a curve in the phase space.
- Energy of a particle: $\varepsilon = \varepsilon(q_1,...,q_r;p_1,...,p_r)$.

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1,...,q_r;p_1,...,p_r)$, where r is the degree of freedom.
- Change of the state is a curve in the phase space.
- Energy of a particle: $\varepsilon = \varepsilon(q_1,...,q_r;p_1,...,p_r)$.
- Eg.1: Free particle: coordinate (x, y, z), momentum (p_x, p_y, p_z) , trajectory \rightarrow

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1,...,q_r;p_1,...,p_r)$, where r is the degree of freedom.
- Change of the state is a curve in the phase space.
- Energy of a particle: $\varepsilon = \varepsilon(q_1,...,q_r;p_1,...,p_r)$.
- Eg.1: Free particle: coordinate (x, y, z), momentum (p_x, p_y, p_z) , trajectory \rightarrow

- Macro quantities are statistical average of micro quantities.
- To describe the state of motion, use generalized coordinates and generalized momentum (phase space): $(q_1, ..., q_r; p_1, ..., p_r)$, where r is the degree of freedom.
- Change of the state is a curve in the phase space.
- Energy of a particle: $\varepsilon = \varepsilon(q_1,...,q_r;p_1,...,p_r)$.
- Eg.1: Free particle: coordinate (x, y, z), momentum (p_x, p_y, p_z) , trajectory \rightarrow energy: $\varepsilon = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2)$.

$$F = -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}$$
,

$$F = -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m},$$

 $x = C_1 \sin(\omega t + \phi_0),$

$$F = -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m},$$

$$x = C_1 \sin(\omega t + \phi_0),$$

$$p = m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0),$$

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \end{split}$$

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \\ &\Rightarrow \frac{p^2}{2m\varepsilon} + \frac{x^2}{2\varepsilon/(m\omega^2)} = 1 \text{ (trajectory in phase space)}. \end{split}$$

Eg.2. Linear oscillator:

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \\ &\Rightarrow \frac{p^2}{2m\varepsilon} + \frac{x^2}{2\varepsilon/(m\omega^2)} = 1 \text{ (trajectory in phase space)}. \end{split}$$

Eg.3. Rotator: Rotating with fixed radius:

Eg.2. Linear oscillator:

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \\ &\Rightarrow \frac{p^2}{2m\varepsilon} + \frac{x^2}{2\varepsilon/(m\omega^2)} = 1 \text{ (trajectory in phase space)}. \end{split}$$

• Eg.3. Rotator: Rotating with fixed radius: Kinetic energy: $\varepsilon = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$.

Eg.2. Linear oscillator:

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \\ &\Rightarrow \frac{p^2}{2m\varepsilon} + \frac{x^2}{2\varepsilon/(m\omega^2)} = 1 \text{ (trajectory in phase space)}. \end{split}$$

• Eg.3. Rotator: Rotating with fixed radius: Kinetic energy: $\varepsilon = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$. To polar coordinate: $x = r\sin\theta\cos\varphi$, $y = r\sin\theta\sin\varphi$, $z = r\cos\theta$.

Eg.2. Linear oscillator:

$$\begin{split} F &= -Ax = m\ddot{x} \Rightarrow \omega = \sqrt{A/m}, \\ x &= C_1 \sin(\omega t + \phi_0), \\ p &= m\dot{x} = m\omega C_1 \cos(\omega t + \phi_0), \\ \text{energy: } \varepsilon &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \text{Const.} \\ &\Rightarrow \frac{p^2}{2m\varepsilon} + \frac{x^2}{2\varepsilon/(m\omega^2)} = 1 \text{ (trajectory in phase space)}. \end{split}$$

 Eg.3. Rotator: Rotating with fixed radius: Kinetic energy: $\varepsilon = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$. To polar coordinate: $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$. Kinetic energy: $\varepsilon = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

• ::
$$\dot{r} = 0$$
, :: $\varepsilon = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

• : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$. Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$.

• : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$.

: $\varepsilon = \frac{1}{2}\left[\frac{(mr^2\dot{\theta})^2}{mr^2} + \frac{(mr^2\sin^2\theta\dot{\varphi})^2}{mr^2\sin^2\theta}\right]$

• : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\theta^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$.

: $\varepsilon = \frac{1}{2}\left[\frac{(mr^2\dot{\theta})^2}{mr^2} + \frac{(mr^2\sin^2\theta\dot{\varphi})^2}{mr^2\sin^2\theta}\right]$ $= \frac{1}{2I}(p_{\theta}^2 + \frac{1}{\sin^2\theta}p_{\varphi}^2).$

- : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2)$. Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$. : $\varepsilon = \frac{1}{2}\left[\frac{(mr^2\dot{\theta})^2}{mr^2} + \frac{(mr^2\sin^2\theta\dot{\varphi})^2}{mr^2\sin^2\theta}\right]$ $= \frac{1}{2I}(p_{\theta}^2 + \frac{1}{\sin^2\theta}p_{\varphi}^2)$.
- Without external force, angular momentum conserved. Choose z-axis as the direction of the angular momentum, i.e., $\theta = \frac{\pi}{2} = \text{const.}$,

- : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\theta^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

 Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$.

 : $\varepsilon = \frac{1}{2}\left[\frac{(mr^2\dot{\theta})^2}{mr^2} + \frac{(mr^2\sin^2\theta\dot{\varphi})^2}{mr^2\sin^2\theta}\right]$ $= \frac{1}{2I}(p_{\theta}^2 + \frac{1}{\sin^2\theta}p_{\varphi}^2).$
- Without external force, angular momentum conserved. Choose z-axis as the direction of the angular momentum, i.e., $\theta = \frac{\pi}{2} = \text{const.}$, $p_{\theta} = 0$, $p_{\varphi} = mr^2 \sin^2 \theta \dot{\varphi} = mr^2 \dot{\varphi} = mr^2 \omega = M$,

- : $\dot{r} = 0$, : $\varepsilon = \frac{1}{2}m(r^2\theta^2 + r^2\sin^2\theta\dot{\varphi}^2)$.

 Conjugate momentum of θ , φ : $p_{\theta} = mr^2\dot{\theta}$, $p_{\varphi} = mr^2\sin^2\theta\dot{\varphi}$.

 : $\varepsilon = \frac{1}{2}\left[\frac{(mr^2\dot{\theta})^2}{mr^2} + \frac{(mr^2\sin^2\theta\dot{\varphi})^2}{mr^2\sin^2\theta}\right]$ $= \frac{1}{2I}(p_{\theta}^2 + \frac{1}{\sin^2\theta}p_{\varphi}^2).$
- Without external force, angular momentum conserved. Choose z-axis as the direction of the angular momentum, i.e., $\theta = \frac{\pi}{2} = \text{const.}$, $p_{\theta} = 0$, $p_{\varphi} = mr^2 \sin^2 \theta \dot{\varphi} = mr^2 \dot{\varphi} = mr^2 \omega = M$, $\varepsilon = \frac{M^2}{2I}$.

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

• Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda\nu=v_{\rm ph}.$

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator:

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator: $\varepsilon = h\nu(n+\tfrac{1}{2}) \text{, } n=0,1,2... \text{ discrete energy level}.$

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator: $\varepsilon = h\nu(n+\tfrac{1}{2}), \ n=0,1,2... \ \text{discrete energy level}.$
- Eg.2. Rotator:

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator: $\varepsilon = h\nu(n+\frac{1}{2})$, n=0,1,2... discrete energy level.
- Eg.2. Rotator: $\varepsilon=\frac{M^2}{2I} \text{, where } M^2=l(l+1)\hbar^2 \text{, } l=0,1,2,....$

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}.$
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator: $\varepsilon = h\nu(n+\tfrac{1}{2}),\ n=0,1,2... \ \text{discrete energy level}.$
- Eg.2. Rotator: $\varepsilon = \frac{M^2}{2I}, \text{ where } M^2 = l(l+1)\hbar^2, \ l=0,1,2,....$ $M_z = m\hbar, \ m=0,\pm 1,\pm 2,...,\pm l.$

- Wave-particle duality: $\varepsilon=h\nu$, $p=h/\lambda$, where $\lambda \nu=v_{\rm ph}$.
- $\Delta q \Delta p \simeq h$, minimal "phase volume" in the phase space.
- Eg.1. Linear oscillator: $\varepsilon = h\nu(n+\tfrac{1}{2}), \ n=0,1,2... \ \text{discrete energy level}.$
- Eg.2. Rotator: $\varepsilon=\frac{M^2}{2I}\text{, where }M^2=l(l+1)\hbar^2\text{, }l=0,1,2,....$ $M_z=m\hbar\text{, }m=0,\pm 1,\pm 2,...,\pm l.$ Degenerated.

• Eg.3. Spin angular momentum:

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer.

Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar, \ m_s = -s, ..., s$.

8 / 37

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar, \; m_s = -s, ..., s.$

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$, $m_s = -s, ..., s$.

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$.

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$, $m_s = -s, ..., s$.

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z = \pm \frac{1}{2}$,

Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$, $m_s = -s, ..., s$.

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z = \pm \frac{1}{2}$, $\mu_z = \mp \frac{e\hbar}{2m}$.

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$. $m_s = -s$, ..., s .

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z=\pm\frac{1}{2}$, $\mu_z=\mp\frac{e\hbar}{2m}$.

Energy in the external field: $-\vec{\mu} \cdot \vec{B} = \pm \frac{e\hbar}{2m} B$.

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$, $m_s = -s, ..., s$.

Electron, $s = \frac{1}{2}$, $m_s = \pm \frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z = \pm \frac{1}{2}$, $\mu_z = \mp \frac{e\hbar}{2m}$. Energy in the external field: $-\vec{\mu} \cdot \vec{B} = \pm \frac{e\hbar}{2m}B$.

• Eg.4. Free particle:

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$. $m_s = -s$, ..., s .

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu}=-\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z=\pm\frac{1}{2}$, $\mu_z=\mp\frac{e\hbar}{2m}$.

Energy in the external field: $-\vec{\mu} \cdot \vec{B} = \pm \frac{e\hbar}{2m} B$.

• Eg.4. Free particle: 1-D, periodic border, $L=|n_x|\lambda$, $n_x=0,\pm 1,\pm 2,...$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$, $m_s = -s, ..., s$.

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z = \pm \frac{1}{2}$, $\mu_z = \mp \frac{e\hbar}{2m}$.

Energy in the external field: $-\vec{\mu} \cdot \vec{B} = \pm \frac{e\hbar}{2m} B$.

Eg.4. Free particle:

1-D, periodic border,
$$L=|n_x|\lambda$$
, $n_x=0,\pm 1,\pm 2,...$
De Broglie relation: $p_x=h/\lambda=\frac{h}{L}n_x$,

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• Eg.3. Spin angular momentum:

$$\vec{s}^2 = s(s+1)\hbar^2$$
, where s is integer or half integer. $s_z = m_s \hbar$. $m_s = -s$ s .

Electron,
$$s=\frac{1}{2}$$
, $m_s=\pm\frac{1}{2}$.

Magnetic momentum: $\vec{\mu} = -\frac{e}{m}\vec{s}$. In the external \vec{B} , two choices of $m_z=\pm\frac{1}{2}$, $\mu_z=\mp\frac{e\hbar}{2m}$.

Energy in the external field: $-\vec{\mu} \cdot \vec{B} = \pm \frac{e\hbar}{2m} B$.

Eg.4. Free particle:

1-D, periodic border,
$$L=|n_x|\lambda$$
, $n_x=0,\pm 1,\pm 2,...$

De Broglie relation: $p_x = h/\lambda = \frac{h}{L}n_x$,

energy:
$$\varepsilon_{n_x}=rac{p_x^2}{2m}=rac{h^2}{2m}rac{n_x^2}{L^2}.$$

• 3-D,
$$p_x = \frac{h}{L} n_x$$
, $p_y = \frac{h}{L} n_y$, $p_z = \frac{h}{L} n_z$,

• 3-D,
$$p_x = \frac{h}{L}n_x$$
, $p_y = \frac{h}{L}n_y$, $p_z = \frac{h}{L}n_z$, $\varepsilon = \frac{p_x^2 + p_y^2 + p_z^2}{2m} = \frac{h^2}{2m} \frac{n_x^2 + n_y^2 + n_z^2}{L^2}$.

• 3-D,
$$p_x=\frac{h}{L}n_x$$
, $p_y=\frac{h}{L}n_y$, $p_z=\frac{h}{L}n_z$,
$$\varepsilon=\frac{p_x^2+p_y^2+p_z^2}{2m}=\frac{h^2}{2m}\frac{n_x^2+n_y^2+n_z^2}{L^2}.$$
 Degenerated.

- 3-D, $p_x=\frac{h}{L}n_x$, $p_y=\frac{h}{L}n_y$, $p_z=\frac{h}{L}n_z$, $\varepsilon=\frac{p_x^2+p_y^2+p_z^2}{2m}=\frac{h^2}{2m}\frac{n_x^2+n_y^2+n_z^2}{L^2}.$ Degenerated.
- $p_x = \frac{h}{L}n_x$, there is one state for each n_x .

- 3-D, $p_x=\frac{h}{L}n_x$, $p_y=\frac{h}{L}n_y$, $p_z=\frac{h}{L}n_z$, $\varepsilon=\frac{p_x^2+p_y^2+p_z^2}{2m}=\frac{h^2}{2m}\frac{n_x^2+n_y^2+n_z^2}{L^2}.$ Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x, p_x + \mathrm{d}p_x)$: $(n_x + \Delta n_x) n_x$, where $p_x + \mathrm{d}p_x = h\frac{n_x + \Delta n_x}{I}$,

- 3-D, $p_x=\frac{h}{L}n_x$, $p_y=\frac{h}{L}n_y$, $p_z=\frac{h}{L}n_z$, $\varepsilon=\frac{p_x^2+p_y^2+p_z^2}{2m}=\frac{h^2}{2m}\frac{n_x^2+n_y^2+n_z^2}{L^2}.$ Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x,p_x+\mathrm{d}p_x)$: $(n_x+\Delta n_x)-n_x$, where $p_x+\mathrm{d}p_x=h\frac{n_x+\Delta n_x}{L}$, $\Delta n_x=\frac{L}{h}\mathrm{d}p_x$,

- 3-D, $p_x=\frac{h}{L}n_x$, $p_y=\frac{h}{L}n_y$, $p_z=\frac{h}{L}n_z$, $\varepsilon=\frac{p_x^2+p_y^2+p_z^2}{2m}=\frac{h^2}{2m}\frac{n_x^2+n_y^2+n_z^2}{L^2}.$ Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x, p_x + \mathrm{d}p_x)$: $(n_x + \Delta n_x) n_x$, where $p_x + \mathrm{d}p_x = h\frac{n_x + \Delta n_x}{L}$, $\Delta n_x = \frac{L}{h}\mathrm{d}p_x$, also $\Delta n_y = \frac{L}{h}\mathrm{d}p_y$, $\Delta n_z = \frac{L}{h}\mathrm{d}p_z$.

- 3-D, $p_x = \frac{h}{L} n_x$, $p_y = \frac{h}{L} n_y$, $p_z = \frac{h}{L} n_z$, $\varepsilon = \frac{p_x^2 + p_y^2 + p_z^2}{2m} = \frac{h^2}{2m} \frac{n_x^2 + n_y^2 + n_z^2}{L^2}$. Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x,p_x+\mathrm{d}p_x)$: $(n_x+\Delta n_x)-n_x$, where $p_x+\mathrm{d}p_x=h\frac{n_x+\Delta n_x}{L}$, $\Delta n_x=\frac{L}{h}\mathrm{d}p_x$, also $\Delta n_y=\frac{L}{h}\mathrm{d}p_y$, $\Delta n_z=\frac{L}{h}\mathrm{d}p_z$. Total number of state: $\Delta n_x\Delta n_y\Delta n_z=\frac{V}{h^3}\mathrm{d}p_x\mathrm{d}p_y\mathrm{d}p_z$.

- 3-D, $p_x = \frac{h}{L} n_x$, $p_y = \frac{h}{L} n_y$, $p_z = \frac{h}{L} n_z$, $\varepsilon = \frac{p_x^2 + p_y^2 + p_z^2}{2m} = \frac{h^2}{2m} \frac{n_x^2 + n_y^2 + n_z^2}{L^2}$. Degenerated.
- $p_x = \frac{h}{L}n_x$, there is one state for each n_x .
- The number of state $(p_x, p_x + \mathrm{d} p_x)$: $(n_x + \Delta n_x) n_x$, where $p_x + \mathrm{d} p_x = h \frac{n_x + \Delta n_x}{L}$, $\Delta n_x = \frac{L}{h} \mathrm{d} p_x$, also $\Delta n_y = \frac{L}{h} \mathrm{d} p_y$, $\Delta n_z = \frac{L}{h} \mathrm{d} p_z$. Total number of state: $\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} \mathrm{d} p_x \mathrm{d} p_y \mathrm{d} p_z$. h^3 acts as the elementary volume in phase space.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- 3-D, $p_x = \frac{h}{L} n_x$, $p_y = \frac{h}{L} n_y$, $p_z = \frac{h}{L} n_z$, $\varepsilon = \frac{p_x^2 + p_y^2 + \overline{p_z^2}}{2m} = \frac{h^2}{2m} \frac{n_x^2 + \overline{n_y^2} + n_z^2}{L^2}$. Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x, p_x + dp_x)$: $(n_x + \Delta n_x) n_x$, where $p_x + \mathrm{d}p_x = h^{\frac{n_x + \Delta n_x}{L}}$, $\Delta n_x = \frac{L}{h} \mathrm{d} p_x$, also $\Delta n_y = \frac{L}{h} \mathrm{d} p_y$, $\Delta n_z = \frac{L}{h} \mathrm{d} p_z$. Total number of state: $\Delta n_x \Delta n_y \Delta n_z = \frac{V}{\kappa^3} \mathrm{d} p_x \mathrm{d} p_y \mathrm{d} p_z$. h^3 acts as the elementary volume in phase space.
- Convert to polar coordinate: $p_x = p \sin \theta \cos \varphi$, $p_y = p \sin \theta \sin \varphi$, $p_z = p \cos \theta$,

- 3-D, $p_x = \frac{h}{L} n_x$, $p_y = \frac{h}{L} n_y$, $p_z = \frac{h}{L} n_z$, $\varepsilon = \frac{p_x^2 + p_y^2 + \overline{p_z^2}}{2m} = \frac{h^2}{2m} \frac{n_x^2 + \overline{n_y^2} + n_z^2}{L^2}$. Degenerated.
- $p_x = \frac{h}{L} n_x$, there is one state for each n_x .
- The number of state $(p_x, p_x + dp_x)$: $(n_x + \Delta n_x) n_x$, where $p_x + \mathrm{d}p_x = h^{\frac{n_x + \Delta n_x}{I}}$, $\Delta n_x = \frac{L}{h} \mathrm{d} p_x$, also $\Delta n_y = \frac{L}{h} \mathrm{d} p_y$, $\Delta n_z = \frac{L}{h} \mathrm{d} p_z$. Total number of state: $\Delta n_x \Delta n_y \Delta n_z = \frac{V}{\kappa^3} \mathrm{d} p_x \mathrm{d} p_y \mathrm{d} p_z$. h^3 acts as the elementary volume in phase space.
- Convert to polar coordinate: $p_x = p \sin \theta \cos \varphi$, $p_y = p \sin \theta \sin \varphi$, $p_z = p \cos \theta$, $\mathrm{d}p_x \mathrm{d}p_y \mathrm{d}p_z = p^2 \sin\theta \mathrm{d}p \mathrm{d}\theta \mathrm{d}\varphi.$

• Number of state:

$$\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} dp_x dp_y dp_z = \frac{V}{h^3} p^2 \sin \theta dp d\theta d\varphi.$$

10 / 37

- Number of state:
 - $\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} dp_x dp_y dp_z = \frac{V}{h^3} p^2 \sin \theta dp d\theta d\varphi.$
- For isotropic system, $\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta = 4\pi$, the number of state: $\frac{4\pi V}{h^3} p^2 dp$.

• Number of state:

$$\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} dp_x dp_y dp_z = \frac{V}{h^3} p^2 \sin \theta dp d\theta d\varphi.$$

• For isotropic system, $\int_0^{2\pi} \mathrm{d}\varphi \int_0^\pi \sin\theta \mathrm{d}\theta = 4\pi$, the number of state: $\frac{4\pi V}{h^3} p^2 \mathrm{d}p$. Convert to energy $(\varepsilon = p^2/2m)$: $D(\varepsilon) \mathrm{d}\varepsilon = \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$, where $D(\varepsilon)$ is the number density of state.

Number of state:

$$\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} dp_x dp_y dp_z = \frac{V}{h^3} p^2 \sin \theta dp d\theta d\varphi.$$

- For isotropic system, $\int_0^{2\pi} \mathrm{d}\varphi \int_0^\pi \sin\theta \mathrm{d}\theta = 4\pi$, the number of state: $\frac{4\pi V}{h^3} p^2 \mathrm{d}p$. Convert to energy $(\varepsilon = p^2/2m)$: $D(\varepsilon) \mathrm{d}\varepsilon = \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$, where $D(\varepsilon)$ is the number density of state.
- Also considering the spin s, the number of state enhances to 2s+1 times.

Number of state:

$$\Delta n_x \Delta n_y \Delta n_z = \frac{V}{h^3} dp_x dp_y dp_z = \frac{V}{h^3} p^2 \sin \theta dp d\theta d\varphi.$$

- For isotropic system, $\int_0^{2\pi} \mathrm{d}\varphi \int_0^\pi \sin\theta \mathrm{d}\theta = 4\pi$, the number of state: $\frac{4\pi V}{h^3} p^2 \mathrm{d}p$. Convert to energy $(\varepsilon = p^2/2m)$: $D(\varepsilon) \mathrm{d}\varepsilon = \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$, where $D(\varepsilon)$ is the number density of state.
- Also considering the spin s, the number of state enhances to 2s+1 times.
 - E.g., electrons, s = 1/2, degeneracy is 2s + 1 = 2.

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

 Object: system with nearly independent identical particles.

 Object: system with nearly independent identical particles.

nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$,

Object: system with nearly independent identical particles.

nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$, identical: same kind of particle.

- Object: system with nearly independent identical particles.
 - nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$, identical: same kind of particle.
- Classification: classical particles, Fermions, Bosons.

- Object: system with nearly independent identical particles.
 - nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$, identical: same kind of particle.
- Classification: classical particles, Fermions, Bosons.
 Classical particles: distinguishable, can occupy the same state, like ideal gas particle;

6.3 Description of the system's microscopic arrangement

- Object: system with nearly independent identical particles.
 - nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$, identical: same kind of particle.
- Classification: classical particles, Fermions, Bosons.
 Classical particles: distinguishable, can occupy the same state, like ideal gas particle;
 Boson: indistinguishable, can occupy the same state, like photon, ⁴He;

6.3 Description of the system's microscopic arrangement

- Object: system with nearly independent identical particles.
 - nearly independent: very weak interaction, $E = \Sigma_i \varepsilon_i$, identical: same kind of particle.
- Classification: classical particles, Fermions, Bosons.
 Classical particles: distinguishable, can occupy the same state, like ideal gas particle;
 Boson: indistinguishable, can occupy the same state, like photon. ⁴He:

Fermion: indistinguishable, cannot occupy the same state, like electron, proton.

6.3 Description of the system's microscopic arrangement

- Object: system with nearly independent identical particles.
 - nearly independent: very weak interaction, $E = \sum_{i} \varepsilon_{i}$, identical: same kind of particle.
- Classification: classical particles, Fermions, Bosons. Classical particles: distinguishable, can occupy the same state, like ideal gas particle; Boson: indistinguishable, can occupy the same state, like photon, ⁴He;
 - Fermion: indistinguishable, cannot occupy the same state, like electron, proton.
- Aim: find the number of microscopic arrangement.

Description of the system's microscopic arrangement

Classical particle system

		<u>, </u>
State 1	State 2	State 3
АВ		
	АВ	
		АВ
А	В	
В	А	
	А	В
	В	А
А		В
В		Α

Description of the system's microscopic arrangement

Classical narticle system

Classical particle system		
State 2	State 3	
АВ		
	АВ	
В		
А		
А	В	
В	А	
	В	
	А	
	State 2 A B B A	

Boson system

· -) · · · ·		
State 1	State 2	State 3
AA		
	АА	
		АА
Α	А	
	А	А
Α		А

Description of the system's microscopic arrangement

Classical particle system

Classical	particle system	
State 1	State 2	State 3
АВ		
	АВ	
		АВ
А	В	
В	А	
	А	В
	В	А
А		В
В		А

Boson system

State 1	State 2	State 3
ΑA		
	AA	
		АА
А	А	
	А	А
А		А
Earmian a	cyctom	

Fermion system

State 1	State 2	State 3
Α	А	
	А	А
Α		Α

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

6.4 The principle of equal a priori probabilities

 Given an isolated system in equilibrium, it is found with equal probability in each of its accessible micro-states.

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

• Object: nearly independent identical particles.

- Object: nearly independent identical particles.
- Constraints: N, E, V.

- Object: nearly independent identical particles.
- Constraints: N, E, V.
- Aim: count the number of micro-states.

- Object: nearly independent identical particles.
- Constraints: N, E, V.
- Aim: count the number of micro-states.

	energy level	$\varepsilon_1, \varepsilon_2,, \varepsilon_l,$
•	degeneracy	$\omega_1, \omega_2,, \omega_l,$
	particle number	$a_1, a_2,, a_l,$

- Object: nearly independent identical particles.
- Constraints: N, E, V.
- Aim: count the number of micro-states.

	energy level	$\varepsilon_1, \varepsilon_2,, \varepsilon_l,$
•	degeneracy	$\omega_1, \omega_2,, \omega_l,$
	particle number	$a_1, a_2,, a_l,$

• $\{a_l\}$ represents one kind of distribution (contains multiple micro-state),

- Object: nearly independent identical particles.
- Constraints: N, E, V.
- Aim: count the number of micro-states.

	energy level	$\varepsilon_1, \varepsilon_2,, \varepsilon_l,$
•	degeneracy	$\omega_1, \omega_2,, \omega_l,$
	particle number	$a_1, a_2,, a_l,$

• $\{a_l\}$ represents one kind of distribution (contains multiple micro-state), obeys: $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.

- Object: nearly independent identical particles.
- Constraints: N, E, V.
- Aim: count the number of micro-states.

	energy level	$\varepsilon_1, \varepsilon_2,, \varepsilon_l,$
•	degeneracy	$\omega_1, \omega_2,, \omega_l,$
	particle number	$a_1, a_2,, a_l,$

- $\{a_l\}$ represents one kind of distribution (contains multiple micro-state), obeys: $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- For a distribution, the number of micro-states is NOT obvious.

Boltzmann system:

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles.

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.)

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.
- 2. For another level $\varepsilon_{l'}$, number of micro-state: $\omega_{l'}^{a_{l'}}$.

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.
- 2. For another level $\varepsilon_{l'}$, number of micro-state: $\omega_{l'}^{a_{l'}}$. Total number of these two levels: $\omega_{l}^{a_{l}}\omega_{l'}^{a_{l'}}$. (not really)

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.
- 2. For another level $\varepsilon_{l'}$, number of micro-state: $\omega_{l'}^{a_{l'}}$. Total number of these two levels: $\omega_{l}^{a_{l}}\omega_{l'}^{a_{l'}}$. (not really) Total number of all levels: $\prod \omega_{l}^{a_{l}}$.

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.
- 2. For another level $\varepsilon_{l'}$, number of micro-state: $\omega_{l'}^{a_{l'}}$. Total number of these two levels: $\omega_{l}^{a_{l}}\omega_{l'}^{a_{l'}}$. (not really) Total number of all levels: $\prod \omega_{l}^{a_{l}}$.
- 3. Exchanging any two particle in different level produces a new micro-state: $N!/\prod a_l!$ (no new state for the same level).

- Boltzmann system:
- 1. Consider an energy level ε_l , there are ω_l quantum states, a_l particles. For any particle, there are ω_l choices. (Each choice is a different micro-state.) $\omega_l^{a_l}$ in total.
- 2. For another level $\varepsilon_{l'}$, number of micro-state: $\omega_{l'}^{a_{l'}}$. Total number of these two levels: $\omega_{l}^{a_{l}}\omega_{l'}^{a_{l'}}$. (not really) Total number of all levels: $\prod \omega_{l}^{a_{l}}$.
- 3. Exchanging any two particle in different level produces a new micro-state: $N!/\prod a_l!$ (no new state for the same level).
- 4. Total number of micro-states for one distribution $\{a_l\}$:

 $\Omega_{\text{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l}$.

• Bose system: indistinguishable

• Bose system: indistinguishable

• Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

• Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable,

• Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable, so divided by $a_l!$.

• Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable, so divided by $a_l!$. Exchange the position of two quantum states does not

produce new arrangement,

Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable, so divided by $a_l!$. Exchange the position of two quantum states does not

produce new arrangement, divided by $\omega_l!$.

• Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable, so divided by $a_l!$.

Exchange the position of two quantum states does not produce new arrangement, divided by $\omega_l!$.

Then for one energy level ε_l , the number is

$$\frac{\omega_l \cdot (\omega_l + a_l - 1)!}{\omega_l! \cdot a_l!} = \frac{(\omega_l + a_l - 1)!}{a_l! (\omega_l - 1)!}.$$

Bose system: indistinguishable

If they are distinguishable, the number is $\omega_l \cdot (\omega_l + a_l - 1)!$ (the first one must be a quantum state).

But the particles are indistinguishable, so divided by $a_l!$.

Exchange the position of two quantum states does not produce new arrangement, divided by $\omega_l!$.

Then for one energy level ε_l , the number is

$$\frac{\omega_l \cdot (\omega_l + a_l - 1)!}{\omega_l! \cdot a_l!} = \frac{(\omega_l + a_l - 1)!}{a_l! (\omega_l - 1)!}.$$

The total number of micro-state for a given distribution

$$\{a_l\}$$
 is: $\Omega_{\mathrm{B.E.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!}$

• Fermi system: indistinguishable, repulsive.

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle.

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle. To find the number of micro-states, equivalent to find the choices to pick up a_l quantum states in ω_l quantum states.

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle. To find the number of micro-states, equivalent to find the choices to pick up a_l quantum states in ω_l quantum states, which is $\omega_l \cdot (\omega_l - 1)...(\omega_l - a_l + 1) = \frac{\omega_l!}{(\omega_l - a_l)!}$. (state is distinguishable)

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle. To find the number of micro-states, equivalent to find the choices to pick up a_l quantum states in ω_l quantum states, which is $\omega_l \cdot (\omega_l - 1)...(\omega_l - a_l + 1) = \frac{\omega_l!}{(\omega_l - a_l)!}$. (state is distinguishable)

But the particles are indistinguishable, divided by $a_l!$.

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle. To find the number of micro-states, equivalent to find the choices to pick up a_l quantum states in ω_l quantum states, which is $\omega_l \cdot (\omega_l - 1)...(\omega_l - a_l + 1) = \frac{\omega_l!}{(\omega_l - a_l)!}$. (state is distinguishable)

But the particles are indistinguishable, divided by $a_l!$.

Then for one energy level ε_l , the number is $\frac{\omega_l!}{a_l!(\omega_l-a_l)!}$.

• Fermi system: indistinguishable, repulsive.

Each quantum state can only contain one particle. To find the number of micro-states, equivalent to find the choices to pick up a_l quantum states in ω_l quantum states, which is $\omega_l \cdot (\omega_l - 1)...(\omega_l - a_l + 1) = \frac{\omega_l!}{(\omega_l - a_l)!}$. (state is distinguishable) But the particles are indistinguishable, divided by $a_l!$.

Then for one energy level ε_l , the number is $\frac{\omega_l!}{a_l!(\omega_l-a_l)!}$. The total number of micro-state for a given distribution

$$\{a_l\}$$
 is: $\left|\Omega_{\mathrm{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l - a_l)!}\right|$.

Classical limit
$$\Omega_{\text{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

Classical limit
$$\Omega_{ ext{M.B.}} = rac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod rac{\omega_l^{a_l}}{a_l!}$$

• If
$$a_l \ll \omega_l$$
,

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\mathrm{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!}$

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{u_l}}{a_l!}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

21 / 37

Classical limit
$$\Omega_{ ext{M.B.}} = rac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod rac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{il}}{a_l!}$ $=\frac{\Omega_{\mathrm{M.B.}}}{N!}$.

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!}$ $=\frac{\Omega_{\text{M.B.}}}{N!}$.
- $\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l-a_l)!}$

Classical limit
$$\Omega_{\text{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\mathrm{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!}$ $=\frac{\Omega_{\text{M.B.}}}{N!}$.
- $\Omega_{\text{F.D.}} = \prod_{\alpha_l!(\omega_l a_l)!} \frac{\omega_l!}{a_l!(\omega_l a_l)!} = \prod_{\alpha_l!} \frac{\omega_l(\omega_l 1)...(\omega_l a_l + 1)}{a_l!}$

December 30, 2013

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!} = \frac{\Omega_{\text{M.B.}}}{N!}.$
- $\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!} = \prod \frac{\omega_l(\omega_l 1)...(\omega_l a_l + 1)}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!}$

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\mathrm{B.E.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!}$ $=\frac{\Omega_{\text{M.B.}}}{N!}$.
- $\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!} = \prod \frac{\omega_l(\omega_l 1)...(\omega_l a_l + 1)}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!}$ $=\frac{\Omega_{\text{M.B.}}}{N!}$.

Classical limit
$$\Omega_{\mathrm{M.B.}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l} = N! \prod \frac{\omega_l^{a_l}}{a_l!}$$

- If $a_l \ll \omega_l$,
- $\Omega_{\text{B.E.}} = \prod_{\substack{\alpha_l! (\omega_l 1)! \\ N!}} \frac{(\omega_l + a_l 1)!}{a_l!} = \prod_{\substack{\alpha_l! \\ N!}} \frac{(\omega_l + a_l 1)(\omega_l + a_l 2)...\omega_l}{a_l!} \simeq \prod_{\substack{\alpha_l! \\ a_l!}} \frac{\omega_l^{a_l}}{a_l!}$
- $\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!} = \prod \frac{\omega_l(\omega_l 1)...(\omega_l a_l + 1)}{a_l!} \simeq \prod \frac{\omega_l^{a_l}}{a_l!} = \frac{\Omega_{\text{M.B.}}}{N!}.$
- In the classical limit, both F.D. and B.E. reach to the same number of micro-states $\frac{\Omega_{\rm M.B.}}{N!}$.

State: $(q_1, q_2, ..., q_r; p_1, p_2, ..., p_r)$, continuous, uncountable.

State: $(q_1, q_2, ..., q_r; p_1, p_2, ..., p_r)$, continuous, uncountable. Define unit "phase volume" (cell): $h_0 = \delta q_i \delta p_i$. Take the particles locate at the same unit "volume" as same state.

State: $(q_1,q_2,...,q_r;p_1,p_2,...,p_r)$, continuous, uncountable. Define unit "phase volume" (cell): $h_0=\delta q_i\delta p_i$. Take the particles locate at the same unit "volume" as same state. In the total phase volume $\Delta q\Delta p$, number of cells (states): $\frac{\Delta q\Delta p}{h_0}$.

State: $(q_1,q_2,...,q_r;p_1,p_2,...,p_r)$, continuous, uncountable. Define unit "phase volume" (cell): $h_0=\delta q_i\delta p_i$. Take the particles locate at the same unit "volume" as same state. In the total phase volume $\Delta q\Delta p$, number of cells (states): $\frac{\Delta q\Delta p}{h_0}$. For r-dimension, volume $\Delta w=\Delta q_1...\Delta q_r\Delta p_1...\Delta p_r$. Number of states: $\frac{\Delta w}{h^r}$.

State: $(q_1,q_2,...,q_r;p_1,p_2,...,p_r)$, continuous, uncountable. Define unit "phase volume" (cell): $h_0=\delta q_i\delta p_i$. Take the particles locate at the same unit "volume" as same state. In the total phase volume $\Delta q\Delta p$, number of cells (states): $\frac{\Delta q\Delta p}{h_0}$. For r-dimension, volume

 $\Delta w = \Delta q_1...\Delta q_r \Delta p_1...\Delta p_r$. Number of states: $\frac{\Delta w}{h_0^r}$.

energy	$\varepsilon_1, \varepsilon_2, \varepsilon_l,$
phase volume	$\Delta w_1, \Delta w_2, \Delta w_l,$
degeneracy	$\frac{\Delta w_1}{h_0^r}, \frac{\Delta w_2}{h_0^r}, \dots, \frac{\Delta w_l}{h_0^r}, \dots$
particle number	$a_1, a_2,, a_l,$

State: $(q_1, q_2, ..., q_r; p_1, p_2, ..., p_r)$, continuous, uncountable. Define unit "phase volume" (cell): $h_0 = \delta q_i \delta p_i$. Take the particles locate at the same unit "volume" as same state. In the total phase volume $\Delta q \Delta p$, number of cells (states): $\frac{\Delta q \Delta p}{h_0}$. For r-dimension, volume $\Delta w = \Delta q_1...\Delta q_r \Delta p_1...\Delta p_r$. Number of states: $\frac{\Delta w}{h^r}$.

$$\begin{array}{ll} \text{energy} & \varepsilon_1, \varepsilon_2, ... \varepsilon_l, ... \\ \text{phase volume} & \Delta w_1, \Delta w_2, ... \Delta w_l, ... \\ \text{degeneracy} & \frac{\Delta w_1}{h_0^r}, \frac{\Delta w_2}{h_0^r}, ..., \frac{\Delta w_l}{h_0^r}, ... \\ \text{particle number} & a_1, a_2, ..., a_l, ... \end{array}$$

• Number of micro-states: $\Omega_{\rm cl} = \frac{N!}{\prod a_l!} \prod \left(\frac{\Delta w_l}{h_{\scriptscriptstyle c}^{\scriptscriptstyle L}}\right)^{a_l}$.

 $a_1, a_2, ..., a_l, ...$

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

• For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- "The principle of equal a priori probabilities" says each micro-state (including different distribution) appears in the same probability.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- "The principle of equal a priori probabilities" says each micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- "The principle of equal a priori probabilities" says each micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- "The principle of equal a priori probabilities" says each micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.
- Obeys $\delta\Omega=0$, and $\delta^2\Omega<0$.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.

• "The principle of equal a priori probabilities" says each

• Obeys $\delta\Omega=0$, and $\delta^2\Omega<0$. Or equivalently, $\delta\ln\Omega=0$, and $\delta^2\ln\Omega<0$.

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.

• "The principle of equal a priori probabilities" says each

- Obeys $\delta\Omega=0$, and $\delta^2\Omega<0$. Or equivalently, $\delta\ln\Omega=0$, and $\delta^2\ln\Omega<0$.
- For Boltzmann system:

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- "The principle of equal a priori probabilities" says each micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.
- Obeys $\delta\Omega=0$, and $\delta^2\Omega<0$. Or equivalently, $\delta \ln \Omega = 0$, and $\delta^2 \ln \Omega < 0$.
- ullet For Boltzmann system: $\Omega = rac{N!}{\prod a_l!} \prod \omega_l^{a_l}$,

24 / 37

- For each distribution $\{a_l\}$, there are $\Omega(\{a_l\})$ micro-states.
- micro-state (including different distribution) appears in the same probability. So, the distribution with more micro-states appears with more probability. The highest one is called the most probable distribution.

• "The principle of equal a priori probabilities" says each

- Obeys $\delta\Omega=0$, and $\delta^2\Omega<0$. Or equivalently, $\delta\ln\Omega=0$, and $\delta^2\ln\Omega<0$.
- For Boltzmann system: $\Omega = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l}$, $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$.

• Math: if $m \gg 1$, $\ln m! \simeq m(\ln m - 1)$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes.

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum a_l (\ln a_l - 1) + \sum a_l \ln \omega_l]$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\begin{split} \delta \ln \Omega &\simeq \delta [N(\ln N - 1) - \sum a_l (\ln a_l - 1) + \sum a_l \ln \omega_l] \\ &= \delta [N \ln N - \sum a_l \ln a_l + \sum a_l \ln \omega_l] \end{split}$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum a_l (\ln a_l - 1) + \sum a_l \ln \omega_l]$$

$$= \delta [N \ln N - \sum a_l \ln a_l + \sum a_l \ln \omega_l]$$

$$= 0 - [\sum a_l \frac{1}{a_l} \delta a_l + \sum \ln a_l \delta a_l] + \sum \ln \omega_l \delta a_l$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum_{l} a_{l}(\ln a_{l} - 1) + \sum_{l} a_{l} \ln \omega_{l}]$$

$$= \delta [N \ln N - \sum_{l} a_{l} \ln a_{l} + \sum_{l} a_{l} \ln \omega_{l}]$$

$$= 0 - [\sum_{l} a_{l} \frac{1}{a_{l}} \delta a_{l} + \sum_{l} \ln a_{l} \delta a_{l}] + \sum_{l} \ln \omega_{l} \delta a_{l}$$

$$= -\sum_{l} \delta a_{l} + \sum_{l} \ln \frac{\omega_{l}}{a_{l}} \delta a_{l}$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l]$$

$$= \delta [N \ln N - \sum a_l \ln a_l + \sum a_l \ln \omega_l]$$

$$= 0 - [\sum a_l \frac{1}{a_l} \delta a_l + \sum \ln a_l \delta a_l] + \sum \ln \omega_l \delta a_l$$

$$= -\sum \delta a_l + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

$$= 0 + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l.$
- For different distribution, N and E does not change. Only $\{a_I\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l]$$

$$= \delta [N \ln N - \sum a_l \ln a_l + \sum a_l \ln \omega_l]$$

$$= 0 - [\sum a_l \frac{1}{a_l} \delta a_l + \sum \ln a_l \delta a_l] + \sum \ln \omega_l \delta a_l$$

$$= -\sum \delta a_l + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

$$= 0 + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

$$= 0.$$

- Math: if $m \gg 1$, $\ln m! \simeq m(\ln m 1)$.
- $\ln \Omega = \ln N! \sum \ln a_l! + \sum a_l \ln \omega_l$ $\simeq N(\ln N - 1) - \sum a_l(\ln a_l - 1) + \sum a_l \ln \omega_l$
- For different distribution, N and E does not change. Only $\{a_l\}$ changes. So:

$$\delta \ln \Omega \simeq \delta [N(\ln N - 1) - \sum a_l (\ln a_l - 1) + \sum a_l \ln \omega_l]$$

$$= \delta [N \ln N - \sum a_l \ln a_l + \sum a_l \ln \omega_l]$$

$$= 0 - [\sum a_l \frac{1}{a_l} \delta a_l + \sum \ln a_l \delta a_l] + \sum \ln \omega_l \delta a_l$$

$$= -\sum \delta a_l + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

$$= 0 + \sum \ln \frac{\omega_l}{a_l} \delta a_l$$

$$= 0$$
,

•
$$\Rightarrow \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0.$$

• $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.

26 / 37

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0.$

26 / 37

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0$.
- Introduce two parameters α, β .

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0$.
- Introduce two parameters α, β . $\delta \ln \Omega - \alpha \delta N - \beta \delta E = 0$.

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0$.
- Introduce two parameters α, β .

$$\delta \ln \Omega - \alpha \delta N - \beta \delta E = 0$$
, or $-\sum \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l\right] \delta a_l = 0$.

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0$.
- \bullet Introduce two parameters $\alpha,\beta.$

$$\delta \ln \Omega - \alpha \delta N - \beta \delta E = 0$$
, or $-\sum \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l\right] \delta a_l = 0$.

• As two of $\{a_l\}$ are not independent, say a_1, a_2 .

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0$.
- Introduce two parameters α, β . $\delta \ln \Omega \alpha \delta N \beta \delta E = 0$, or

$$-\sum \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l\right] \delta a_l = 0.$$

• As two of $\{a_l\}$ are not independent, say a_1, a_2 . Notice α, β are arbitrary.

- $\delta \ln \Omega = \sum \ln \frac{\omega_l}{a_l} \delta a_l = 0$, a_l can not vary independently.
- Two constraints: $\delta N = \sum \delta a_l = 0$, $\delta E = \sum \varepsilon_l \delta a_l = 0.$
- Introduce two parameters α, β .

$$\delta \ln \Omega - \alpha \delta N - \beta \delta E = 0$$
, or $-\sum \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l\right] \delta a_l = 0$.

• As two of $\{a_l\}$ are not independent, say a_1, a_2 . Notice α, β are arbitrary. Now set α, β by $\ln \frac{a_1}{\alpha_2} + \alpha + \beta \varepsilon_1 = 0,$ $\ln \frac{a_2}{\omega_2} + \alpha + \beta \varepsilon_2 = 0.$

•
$$\sum_{l=1} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l$$

•
$$\sum_{l=1} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = \sum_{l=3} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l$$

•
$$\sum_{l=1} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = \sum_{l=3} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = 0.$$

• $\sum_{l=1} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = \sum_{l=3} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent,

• $\sum_{l=1}^{\infty} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = \sum_{l=3}^{\infty} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0, \ (l=3,4,...).$

- $\sum_{l=1} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = \sum_{l=3} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0, \ (l=3,4,...).$
- Combine, $\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0$, (l = 1, 2, 3, 4, ...),

- $\sum_{l=1} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = \sum_{l=3} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0, \ (l=3,4,...).$
- Combine, $\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0$, (l = 1, 2, 3, 4, ...), or, $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$.

- $\sum_{l=1} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = \sum_{l=3} [\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0, (l=3,4,...).$
- Combine, $\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0$, (l = 1, 2, 3, 4, ...), or, $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$. α, β are determined by the constraints: $N = \sum \omega_l e^{-\alpha \beta \varepsilon_l}$, $E = \sum \omega_l e^{-\alpha \beta \varepsilon_l} \varepsilon_l$.

- $\sum_{l=1} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = \sum_{l=3} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{a_l} + \alpha + \beta \varepsilon_l = 0$, (l = 3, 4, ...).
- Combine, $\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0$, (l = 1, 2, 3, 4, ...), or, $a_l = \omega_l e^{-\alpha - \beta \overline{\varepsilon_l}}$. α, β are determined by the constraints: $N = \sum \omega_l e^{-\alpha - \beta \varepsilon_l}$, $E = \sum \omega_l e^{-\alpha - \beta \varepsilon_l} \varepsilon_l$.
- For any quantum state: the population is $f = \frac{a_l}{\omega_l} = e^{-\alpha - \beta \varepsilon_l}$.

- $\sum_{l=1} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = \sum_{l=3} \left[\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l \right] \delta a_l = 0.$ Now $\{a_l\}$ (l=3,4,...) are independent, $\therefore \ln \frac{a_l}{a_l} + \alpha + \beta \varepsilon_l = 0$, (l = 3, 4, ...).
- Combine, $\ln \frac{a_l}{\omega_l} + \alpha + \beta \varepsilon_l = 0$, (l=1,2,3,4,...), or, $|a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}|$. α, β are determined by the constraints: $N = \sum \omega_l e^{-\alpha - \beta \varepsilon_l}$, $E = \sum \omega_l e^{-\alpha - \beta \varepsilon_l} \varepsilon_l$.
- For any quantum state: the population is $f = \frac{a_l}{\omega_l} = e^{-\alpha - \beta \varepsilon_l}$.
- Only depends on the energy for the special quantum state. Suitable for any quantum state: $f_s = e^{-\alpha - \beta \varepsilon_s}$.

• Obeys: $N=\sum f_s=\sum e^{-\alpha-\beta arepsilon_s}$,

• Obeys: $N=\sum f_s=\sum e^{-\alpha-\beta\varepsilon_s}$, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.

- Obeys: $N = \sum f_s = \sum e^{-\alpha \beta \varepsilon_s}$, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha \beta \varepsilon_s}$.
- $\delta^2 \ln \Omega = \delta(-\sum_{l} \ln \frac{a_l}{\omega_l} \delta a_l)$

- Obeys: $N=\sum f_s=\sum e^{-\alpha-\beta\varepsilon_s}$, $E=\sum f_s\varepsilon_s=\sum \varepsilon_s e^{-\alpha-\beta\varepsilon_s}$.
- $\delta^2 \ln \overline{\Omega} = \delta(-\sum_{l} \ln \frac{a_l}{\omega_l} \delta a_l)$ = $-\sum_{l} (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum_{l} \ln \frac{a_l}{\omega_l} \delta^2 a_l$

• Obeys:
$$N=\sum f_s=\sum e^{-\alpha-\beta\varepsilon_s}$$
, $E=\sum f_s\varepsilon_s=\sum \varepsilon_s e^{-\alpha-\beta\varepsilon_s}$.

•
$$\delta^2 \ln \overline{\Omega} = \delta(-\sum_{i=1}^{n} \ln \frac{a_i}{\omega_l} \delta a_l)$$

$$= -\sum_{i=1}^{n} (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum_{i=1}^{n} \ln \frac{a_l}{\omega_l} \delta^2 a_l$$

$$= -\sum_{i=1}^{n} (\frac{\delta a_l}{a_l})^2 - \sum_{i=1}^{n} (-\alpha - \beta \varepsilon_l) \delta^2 a_l$$

• Obeys:
$$N = \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}$$
, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.
• $\delta^2 \ln \Omega = \delta(-\sum \ln \frac{a_l}{\omega_l} \delta a_l)$ $= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l)$

• Obeys:
$$N = \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}$$
, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.
• $\delta^2 \ln \Omega = \delta(-\sum \ln \frac{a_l}{\omega_l} \delta a_l)$ $= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l)$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 \sum a_l + \beta \delta^2 \sum \varepsilon_l a_l$

$$\begin{split} \bullet \text{ Obeys: } N &= \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}, \\ E &= \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}. \\ \bullet \delta^2 \ln \Omega &= \delta (-\sum \ln \frac{a_l}{\omega_l} \delta a_l) \\ &= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l \\ &= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l \\ &= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l) \\ &= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 \sum a_l + \beta \delta^2 \sum \varepsilon_l a_l \\ &= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 N + \beta \delta^2 E \end{split}$$

Boltzmann distribution

• Obeys:
$$N = \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}$$
, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.
• $\delta^2 \ln \Omega = \delta(-\sum \ln \frac{a_l}{\omega_l} \delta a_l)$ $= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l)$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 \sum a_l + \beta \delta^2 \sum \varepsilon_l a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 N + \beta \delta^2 E$ $= -\sum \frac{(\delta a_l)^2}{a_l}$

Boltzmann distribution

• Obeys:
$$N = \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}$$
, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.
• $\delta^2 \ln \Omega = \delta(-\sum \ln \frac{a_l}{\omega_l} \delta a_l)$ $= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l)$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 \sum a_l + \beta \delta^2 \sum \varepsilon_l a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 N + \beta \delta^2 E$ $= -\sum \frac{(\delta a_l)^2}{a_l}$ < 0

Boltzmann distribution

• Obeys:
$$N = \sum f_s = \sum e^{-\alpha - \beta \varepsilon_s}$$
, $E = \sum f_s \varepsilon_s = \sum \varepsilon_s e^{-\alpha - \beta \varepsilon_s}$.
• $\delta^2 \ln \Omega = \delta(-\sum \ln \frac{a_l}{\omega_l} \delta a_l)$ $= -\sum (\frac{\omega_l}{a_l} \frac{1}{\omega_l} \delta a_l) \delta a_l - \sum \ln \frac{a_l}{\omega_l} \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} - \sum (-\alpha - \beta \varepsilon_l) \delta^2 a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \sum \delta^2 a_l + \beta \sum \delta^2 (\varepsilon_l a_l)$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 \sum a_l + \beta \delta^2 \sum \varepsilon_l a_l$ $= -\sum \frac{(\delta a_l)^2}{a_l} + \alpha \delta^2 N + \beta \delta^2 E$ $= -\sum \frac{(\delta a_l)^2}{a_l}$ < 0

• This $\{a_l\}$ is the most probable distribution.

• Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$:

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...$,

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...$, $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2}\sum \frac{(\Delta a_l)^2}{a_l}$.

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...,$ $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2} \sum_{l} \frac{(\Delta a_l)^2}{a_l}.$
- For a small deviation, $\frac{\Delta a_l}{a_l} = 10^{-5}$,

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...$, $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2}\sum_{l} \frac{(\Delta a_l)^2}{a_l}$.
- \bullet For a small deviation, $rac{\Delta a_l}{a_l}=10^{-5}$, $\lnrac{\Omega+\Delta\Omega}{\Omega}\simeq -rac{1}{2}\sum(rac{\Delta a_l}{a_l})^2a_l$

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta\Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + \dots,$ $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2} \sum_{l=1}^{\infty} \frac{(\Delta a_l)^2}{a_l}.$
- For a small deviation, $\frac{\Delta a_l}{a_l} = 10^{-5}$, $\ln \frac{\Omega + \Delta \Omega}{\Omega} \simeq -\frac{1}{2} \sum_{l} (\frac{\Delta a_l}{a_l})^2 a_l = -\frac{1}{2} \times 10^{-10} \sum_{l} a_l$

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta\Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + \dots,$ $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2} \sum_{l=1}^{\infty} \frac{(\Delta a_l)^2}{a_l}.$
- For a small deviation, $\frac{\Delta a_l}{a_l} = 10^{-5}$, $\ln \frac{\Omega + \Delta \Omega}{\Omega} \simeq -\frac{1}{2} \sum (\frac{\Delta a_l}{a_l})^2 a_l = -\frac{1}{2} \times 10^{-10} \sum a_l$ $\sim -3 \times 10^{13} \text{ (N} \sim 1 \text{mol} = 6.02 \times 10^{23}).$

29 / 37

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...,$ $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2} \sum \frac{(\Delta a_l)^2}{a_l}.$
- For a small deviation, $\frac{\Delta a_l}{a_l} = 10^{-5}$, $\ln \frac{\Omega + \Delta \Omega}{\Omega} \simeq -\frac{1}{2} \sum_{l} (\frac{\Delta a_l}{a_l})^2 a_l = -\frac{1}{2} \times 10^{-10} \sum_{l} a_l \approx -3 \times 10^{13} \text{ ($N \sim 1$mol} = 6.02 \times 10^{23}$)}$.
- $\frac{\Omega + \Delta\Omega}{\Omega} \sim e^{-3 \times 10^{13}} \rightarrow 0$.

- Suppose a deviation from the most probable distribution $\{\Delta a_l\}$, which corresponds to the micro-states number $\Omega + \Delta \Omega = \Omega(\{a_l + \Delta a_l\})$.
- As $\Delta a_l \ll a_l$, expand $\Omega(\{a_l + \Delta a_l\})$ at $\Omega(\{a_l\})$: $\ln \Omega(\{a_l + \Delta a_l\}) = \ln \Omega(\{a_l\}) + \delta \ln \Omega + \frac{1}{2}\delta^2 \ln \Omega + ...$, $\Rightarrow \ln \frac{\Omega(\{a_l + \Delta a_l\})}{\Omega(\{a_l\})} = -\frac{1}{2}\sum_{i}\frac{(\Delta a_l)^2}{a_l}$.
- For a small deviation, $\frac{\Delta a_l}{a_l} = 10^{-5}$, $\ln \frac{\Omega + \Delta \Omega}{\Omega} \simeq -\frac{1}{2} \sum_{l} (\frac{\Delta a_l}{a_l})^2 a_l = -\frac{1}{2} \times 10^{-10} \sum_{l} a_l$ $\sim -3 \times 10^{13} \text{ (}N \sim 1 \text{mol} = 6.02 \times 10^{23}\text{)}.$
- $\frac{\Omega + \Delta\Omega}{\Omega} \sim e^{-3 \times 10^{13}} \rightarrow 0$.
- The most probable distribution is very close to the whole distribution

•
$$\omega_l \to \frac{\Delta\omega_l}{h_0^r}$$
.

$$\bullet \ \omega_l o rac{\Delta \omega_l}{h_0^r}$$

•
$$\omega_l \to \frac{\Delta \omega_l}{h_0^r}$$
.
• $\therefore a_l = e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}$,

30 / 37

- $$\begin{split} \bullet \ \omega_l &\to \frac{\Delta \omega_l}{h_0^r}. \\ \bullet \ \therefore \ a_l &= e^{-\alpha \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}, \\ \alpha \ \text{ and } \beta \ \text{obeys:} \end{split}$$

$$N = \sum a_l = \sum e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}$$
,

$$E = \sum a_l \varepsilon_l = \sum \varepsilon_l e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}.$$

- $\omega_l \to \frac{\Delta\omega_l}{h_0^r}$.
- $\therefore a_l = e^{-\alpha \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}$, α and β obeys:

$$N = \sum a_l = \sum e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r},$$

$$E = \sum a_l \varepsilon_l = \sum \varepsilon_l e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}.$$

 \bullet Or if the (q, p) are continuous,

- $\bullet \ \omega_l \to \frac{\Delta \omega_l}{h_0^r}$.
- $\therefore a_l = e^{-\alpha \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}$, α and β obeys:

$$N = \sum a_l = \sum e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r},$$

$$E = \sum a_l \varepsilon_l = \sum \varepsilon_l e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}.$$

• Or if the (q,p) are continuous, $a_l = e^{-\alpha - \beta \varepsilon (\{q_i,p_i\})} \frac{\mathrm{d}q_1 \dots \mathrm{d}q_r \mathrm{d}p_1 \dots \mathrm{d}p_r}{h_0^r}.$

- $\omega_l \to \frac{\Delta\omega_l}{h_0^r}$.
- $\therefore a_l = e^{-\alpha \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}$, α and β obeys:

$$N = \sum a_l = \sum e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r},$$

$$E = \sum a_l \varepsilon_l = \sum \varepsilon_l e^{-\alpha - \beta \varepsilon_l} \frac{\Delta \omega_l}{h_0^r}.$$

• Or if the (q,p) are continuous, $a_l = e^{-\alpha - \beta \varepsilon (\{q_i,p_i\})} \frac{\mathrm{d}q_1...\mathrm{d}q_r\mathrm{d}p_1...\mathrm{d}p_r}{h_0^r}.$

Obeys:

$$\int \cdots \int e^{-\alpha - \beta \varepsilon(\{q_i, p_i\})} \frac{\mathrm{d}q_1 \dots \mathrm{d}q_r \mathrm{d}p_1 \dots \mathrm{d}p_r}{h_0^r} = N,$$

$$\int \dots \int \varepsilon(\{q_i, p_i\}) e^{-\alpha - \beta \varepsilon(\{q_i, p_i\})} \frac{\mathrm{d}q_1 \dots \mathrm{d}q_r \mathrm{d}p_1 \dots \mathrm{d}p_r}{h_0^r} = E.$$

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

• N, V, E conserved, require $\{a_l\}$.

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_B = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_{\rm B} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_{\rm B} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$ $\simeq \sum [\ln(\omega_l + a_l)! - \ln a_l! - \ln \omega_l!]$

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_{\rm B}=\prod \frac{(\omega_l+a_l-1)!}{a_l!(\omega_l-1)!}.$
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$ $\simeq \sum [\ln(\omega_l + a_l)! - \ln a_l! - \ln \omega_l!]$ $\simeq \sum \{(\omega_l + a_l)[\ln(\omega_l + a_l) - 1] - a_l(\ln a_l - 1)$ $-\omega_l(\ln \omega_l - 1)\}$

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_B = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$ $\simeq \sum [\ln(\omega_l + a_l)! - \ln a_l! - \ln \omega_l!]$ $\simeq \sum \{(\omega_l + a_l)[\ln(\omega_l + a_l) - 1] - a_l(\ln a_l - 1)$ $-\omega_l(\ln \omega_l - 1)\}$ $= \sum [(\omega_l + a_l)\ln(\omega_l + a_l) - a_l\ln a_l - \omega_l\ln \omega_l].$

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_B = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$ $\simeq \sum [\ln(\omega_l + a_l)! - \ln a_l! - \ln \omega_l!]$ $\simeq \sum \{(\omega_l + a_l)[\ln(\omega_l + a_l) - 1] - a_l(\ln a_l - 1)$ $-\omega_l(\ln \omega_l - 1)\}$ $= \sum [(\omega_l + a_l)\ln(\omega_l + a_l) - a_l\ln a_l - \omega_l\ln \omega_l].$
- $\delta \ln \Omega_{\rm B} = \sum [\delta a_l \ln(\omega_l + a_l) + (\omega_l + a_l) \frac{1}{\omega_l + a_l} \delta a_l (\delta a_l \ln a_l + a_l \frac{1}{a_l} \delta a_l) 0]$

- N, V, E conserved, require $\{a_l\}$.
- Obeys $\sum a_l = N$, $\sum a_l \varepsilon_l = E$.
- Bose system: $\Omega_{\rm B} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$.
- $\ln \Omega_{\rm B} = \sum [\ln(\omega_l + a_l 1)! \ln a_l! \ln(\omega_l 1)!]$ $\simeq \sum [\ln(\omega_l + a_l)! - \ln a_l! - \ln \omega_l!]$ $\simeq \sum \{(\omega_l + a_l)[\ln(\omega_l + a_l) - 1] - a_l(\ln a_l - 1)\}$ $-\omega_l(\ln \omega_l - 1)$ $= \sum [(\omega_l + a_l) \ln(\omega_l + a_l) - a_l \ln a_l - \omega_l \ln \omega_l].$
- $\delta \ln \Omega_{\rm B} = \sum [\delta a_l \ln(\omega_l + a_l) + (\omega_l + a_l) \frac{1}{\omega_l + a_l} \delta a_l \omega_l + \alpha_l \frac{1}{\omega_l + a_l} \delta a_l$ $(\delta a_l \ln a_l + a_l \frac{1}{a_l} \delta a_l) - 0$ $=\sum \ln \frac{\omega_l+a_l}{a_l}\delta a_l=0.$

• Introduce the α , β :

• Introduce the lpha, eta: $\sum [\ln rac{\omega_l + a_l}{a_l} - lpha - eta arepsilon_l] \delta a_l = 0$

• Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln rac{\omega_l + a_l}{a_l} - lpha - eta arepsilon_l = 0$,

• Introduce the α , β : $\sum \left[\ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l\right] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} - 1}$,

33 / 37

• Introduce the α , β : $\sum \left[\ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l\right] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} - 1}$, where α, β obeys: $\sum_{\frac{\alpha_l}{e^{\alpha+\beta\epsilon_l}-1}} = N$, $\sum_{\frac{\alpha_l\epsilon_l}{e^{\alpha+\beta\epsilon_l}-1}} = E$.

33 / 37

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$, where α , β obeys: $\sum \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1} = N$, $\sum \frac{\omega_l \varepsilon_l}{e^{\alpha + \beta \varepsilon_l} 1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$, where α , β obeys: $\sum \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1} = N$, $\sum \frac{\omega_l \varepsilon_l}{e^{\alpha + \beta \varepsilon_l} 1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.
- $\ln \Omega_{\rm F} = \sum [\ln \omega_l! \ln a_l! \ln(\omega_l a_l)!]$

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} - 1}$, where α, β obeys: $\sum \frac{\omega_l}{e^{\alpha+\beta\varepsilon_l}-1} = N$, $\sum \frac{\omega_l\varepsilon_l}{e^{\alpha+\beta\varepsilon_l}-1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.
- $\ln \Omega_{\rm F} = \sum [\ln \omega_l! \ln a_l! \ln(\omega_l a_l)!]$ $\simeq \sum \{\omega_l(\ln \omega_l - 1) - a_l(\ln a_l - 1)\}$ $-(\omega_{l}-a_{l})[\ln(\omega_{l}-a_{l})-1]$

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$, where α , β obeys: $\sum \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1} = N$, $\sum \frac{\omega_l \varepsilon_l}{e^{\alpha + \beta \varepsilon_l} 1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.
- $\ln \Omega_{\rm F} = \sum [\ln \omega_l! \ln a_l! \ln(\omega_l a_l)!]$ $\simeq \sum \{\omega_l(\ln \omega_l - 1) - a_l(\ln a_l - 1) - (\omega_l - a_l)[\ln(\omega_l - a_l) - 1]\}$ $= \sum [\omega_l \ln \omega_l - a_l \ln a_l - (\omega_l - a_l) \ln(\omega_l - a_l)].$

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$, where α , β obeys: $\sum \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1} = N$, $\sum \frac{\omega_l \varepsilon_l}{e^{\alpha + \beta \varepsilon_l} 1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.
- $\ln \Omega_{\rm F} = \sum [\ln \omega_l! \ln a_l! \ln(\omega_l a_l)!]$ $\simeq \sum \{\omega_l(\ln \omega_l - 1) - a_l(\ln a_l - 1) - (\omega_l - a_l)[\ln(\omega_l - a_l) - 1]\}$ $= \sum [\omega_l \ln \omega_l - a_l \ln a_l - (\omega_l - a_l) \ln(\omega_l - a_l)].$
- $\delta \ln \Omega_{\rm F} = \sum \{0 [\delta a_l \ln a_l + a_l \frac{1}{a_l} \delta a_l] [-\delta a_l \ln(\omega_l a_l) + (\omega_l a_l) \frac{-\delta a_l}{\omega_l a_l}]\}$

- Introduce the α , β : $\sum [\ln \frac{\omega_l + a_l}{a_l} \alpha \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l + a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{\alpha^{\alpha + \beta \varepsilon_l} - 1}$, where α, β obeys: $\sum \frac{\omega_l}{e^{\alpha+\beta\varepsilon_l}-1} = N$, $\sum \frac{\omega_l\varepsilon_l}{e^{\alpha+\beta\varepsilon_l}-1} = E$.
- Fermi system: $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!}$.
- $\ln \Omega_{\rm F} = \sum [\ln \omega_l! \ln a_l! \ln(\omega_l a_l)!]$ $\simeq \sum \{\omega_l(\ln \omega_l - 1) - a_l(\ln a_l - 1)\}$ $-(\omega_{l}-a_{l})[\ln(\omega_{l}-a_{l})-1]$ $=\sum [\omega_l \ln \omega_l - a_l \ln a_l - (\omega_l - a_l) \ln(\omega_l - a_l)].$
- $\delta \ln \Omega_{\rm F} = \sum \{0 [\delta a_l \ln a_l + a_l \frac{1}{a_l} \delta a_l] [-\delta a_l \ln(\omega_l \omega_l)] \}$ $(a_l) + (\omega_l - a_l) \frac{-\delta a_l}{\omega_l - a_l}$ $=\sum [\ln(\omega_l-a_l)-\ln a_l]\delta a_l=0.$

• Introduce the α , β :

• Introduce the α , β : $\sum [\ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$

• Introduce the α , β : $\sum [\ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$,

• Introduce the α , β : $\sum [\ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} + 1}$,

• Introduce the α , β : $\sum [\ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} + 1}$, where α , β similarly obeys: $\sum \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} + 1} = N$, $\sum \frac{\omega_l \varepsilon_l}{e^{\alpha + \beta \varepsilon_l} + 1} = E$.

• Introduce the α , β : $\sum [\ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l] \delta a_l = 0$ $\Rightarrow \ln \frac{\omega_l - a_l}{a_l} - \alpha - \beta \varepsilon_l = 0$, or $a_l = \frac{\omega_l}{\varepsilon^{\alpha + \beta \varepsilon_{l-1}}}$, where α , β similarly obeys: $\sum \frac{\omega_l}{e^{\alpha+\beta\varepsilon_{l+1}}} = N$, $\sum \frac{\omega_l\varepsilon_l}{e^{\alpha+\beta\varepsilon_{l+1}}} = E$.

• Similarly, for any individual quantum state
$$s$$
, the average number of particles: $f_s=\frac{1}{e^{\alpha+\beta\varepsilon_s}\pm 1}$, and $\sum f_s=N, \sum \varepsilon_s f_s=E$.

34 / 37

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions

• Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.

- Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.

- Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.
- Fermi distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} + 1}$.

- Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.
- Fermi distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_{l+1}}}$.
- If $\alpha + \beta \varepsilon_l \gg 1$, i.e., $\frac{a_l}{\omega_l} \ll 1$, three distributions merge. Called non-degenerate condition.

36 / 37

- Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.
- Fermi distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_{l+1}}}$.
- If $\alpha + \beta \varepsilon_l \gg 1$, i.e., $\frac{a_l}{\omega_l} \ll 1$, three distributions merge. Called non-degenerate condition.
- Remind: $\Omega_{\mathrm{M}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l}$, $\Omega_{\mathrm{B}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$, $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l-a_l)!}$.

36 / 37

- Boltzmann distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l}}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.
- Fermi distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_{l+1}}}$.
- If $\alpha + \beta \varepsilon_l \gg 1$, i.e., $\frac{a_l}{\omega_l} \ll 1$, three distributions merge. Called non-degenerate condition.
- Remind: $\Omega_{\mathrm{M}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l}$, $\Omega_{\mathrm{B}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$, $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l - a_l)!}$. In the case $\frac{a_l}{\omega_l} \ll 1$, $\Omega_{\rm B} \simeq \frac{\omega_l^{a_l}}{\Pi a_l!}$, $\Omega_{\rm F} \simeq \frac{\omega_l^{a_l}}{\Pi a_l!}$.

- Boltzmann distribution: $a_l = \frac{\omega_l}{\alpha + \beta \varepsilon_l}$.
- Bose distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} 1}$.
- Fermi distribution: $a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_{l+1}}}$.
- If $\alpha + \beta \varepsilon_l \gg 1$, i.e., $\frac{a_l}{\omega_l} \ll 1$, three distributions merge. Called non-degenerate condition.
- Remind: $\Omega_{\mathrm{M}} = \frac{N!}{\prod a_l!} \prod \omega_l^{a_l}$, $\Omega_{\mathrm{B}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!}$, $\Omega_{\rm F} = \prod \frac{\omega_l!}{a_l!(\omega_l-a_l)!}$. In the case $\frac{a_l}{\omega_l} \ll 1$, $\Omega_{\rm B} \simeq \frac{\omega_l^{a_l}}{\Pi a_l!}$, $\Omega_{\rm F} \simeq \frac{\omega_l^{a_l}}{\Pi a_l!}$.

$$\Omega_{\rm B} \simeq \Omega_{\rm F} \simeq \frac{\Omega_{\rm M}}{N!}$$
.

Table of contents

- §6. Most probable distribution of nearly independent particles
 - 6.1 Classical description of particle's movement
 - 6.2 Quantum description of particle's movement
 - 6.3 Description of the system's microscopic arrangement
 - 6.4 The principle of equal a priori probabilities
 - 6.5 Distribution and microscopic state
 - 6.6 Boltzmann distribution
 - 6.7 Bose distribution and Fermi distribution
 - 6.8 Relations between Boltzmann, Bose and Fermi distributions