Alan Minero Erik Alcalá Gloria Anahí Diana Vázquez

Visualization Team A - TeamInges

Baker Hughes Hackaton 2022 Data Science

8

Problem description

Having a fleet of gas turbines from the Aeroderivative technology, the corporate wants to have a **tool** that could help **identify, control and reduce** emissions from operations.

Therefore, this tool needs to find a way to communicate the most valuable information that could lead us to reach our goal of deploying the most efficient and least emissive technologies

Site data

- Customers
- Plants
- Location of plants
- Lower heating value of the fuel

Engine data

- Customers
- Plants
- Engine ID

Engine File

- Date 1 year of measurements
- Speed of compressor
- Power output from Low Pressure Turbine
- Fuel Flow into the combustor
- Emissions of CO2

Consider that we are presenting these solution to managers who are interested in knowing the performance of the turbines.

Proposed solution - Productive HOURS

The reason for which we decided to look for visualization solutions was because our client BUSY asked us about the hours that in the year their Turbine 3 worked at their plant "ANCIENT WASP"

Find out the particular turbine file for the client

Decide how is the registration for the hours

Come out with solution

```
# Convert dates in hours
def to_hours(date):
  return date.seconds//3600
# Calculate Operating Hours
acum = 0
hours = []
count= []
for i in range (0, len(df.Time)):
   count.append(i) #ID
   if df.CMP SPEED[i]>0 and
df.CMP SPEED[i+1]>0:
     acum = acum +
to hours(df.Time[i+1]-df.Time[i])
     hours.append(acum)
   else:
     hours.append(acum)
list tuples = list(zip(count, hours))
OperatingHours = pd.DataFrame(list_tuples,
columns=['ID', 'HOURS'])
OperatingHours.to csv('Visualization Team-1A.csv',
index=False)
OperatingHours
                   Baker Hughes >
```


Proposed solution - Visualization of turbines performance

After answering the initial question from our client we decided to propose a series of graphs that could be of use for the visualization of the data, having as a result the following:

Distribution of Gas Turbines by Clients

For us, Baker Hughes a global view of the clients we have and the plants where our turbines are making an impact.

Proposed solution - Visualization of turbines performance

3 Key Performance Indicators:

- CO2 Emissions
- Operating Hours
- Thermal Efficiency

Proposal: these are the behaviours for year 2021 as years go by and we plot over this KPIS we expect to see improvement

Lessons learned

- Visualization is a powerful tool, in order to be able to make an improvement first we have to know which opportunity areas we have.
- Management of data is vital for this.
- There are lots of tools from which we can choose to obtain a result, the path for success is to have clear what's the final goal.
- Research regarding gas turbines is complex.
- Programming languages and plotting libraries can be challenging but are useful for us to communicate with customers.
- Python is a powerful tool for data analysis. The environment is friendly and nowadays is used all around the globe.

Thank you

Time for questions.

All of the information new was learnt from the libraries shared with us at the hackaton rules

https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html

https://pandas.pydata.org/pandas-docs/stable/user_quide/10min.html

https://matplotlib.org/

https://plotly.com/python/

https://youtu.be/MiiANxRHSv4

https://youtu.be/8EMW7io4rSI

