Automata and formal languages - 2IRR90

Contents

1.	Regular Languages	- 1	1 -
	1.1. Finite Automata	- 1	1 -
	1.2. Nondeterminism	- 2	2 -
	1.3. Regular Expressions	_ 4	4 -
	1.4. Nonregular Languages		
	Context-Free Languages		
	2.1. Context-Free Grammars	- :	5 -
	2.2. Pushdown Automata	_ 9	9 -
	2.3. Non-context-free languages	11	1 -

1. Regular Languages

1.1. Finite Automata

Figure 1: A finite automaton called M_1 that has three states

Figure 1 is called the **state diagram** of M_1 . It has three **states**, labled q_1, q_2, q_3 . The **start state**, q_1 , is indicated by the arrow pointing at it from nowhere. The **accept state**, q_2 , is the one with a double circle. The arrow going from one state to another are called **transitions**.

Definition 1.1.1 (Finite Automaton): A **finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the **states**
- 2. Σ is a finite set called the **alphabet**,
- 3. $\delta: Q \times \Sigma \to Q$ is the **transition function**,
- 4. $q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the **set of accept states**.

Example: We can describe M_1 in Figure 1 formally by writing $M_1=(Q,\Sigma,\delta,q_1,F)$ where

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. δ is described as

$$\begin{array}{c|cccc} & 0 & 1 \\ & q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

- 4. q_1 is the start state, and
- 5. $F = \{q_2\}$

If A is the set of all strings tha machine M accepts, we say the A is the **language** of machine M and write L(M) = A. We say that M recognizes A or that M accepts A.

Formal Definition of Computation

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton and let $w=w_1w_2\cdots w_n$ be a string where each $w_i\in\Sigma$. Then M accepts w if a sequence of states $r_0,r_1,...,r_n\in Q$ exists with three conditions:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1, and
- 3. $r_n \in F$

We say that M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$.

Definition 1.1.2 (Regular language): A language is called a **regular language** if some finite automaton recognizes it.

Definition 1.1.3 (The regular operations): Le A and B be languages. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x \mid x \in A \lor x \in B\}.$
- Concatenation: $A \circ B = \{xy \mid x \in A \land y \in B\}.$
- Star: $A^* = \{x_1 x_2 ... x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

Theorem 1.1.1: The class of regular languages is closed under the union operation.

 A_1, A_2 are regular languages $\Longrightarrow A_1 \cup A_2$ regular language

Proof: Let M_1 recognize A_1 , where $M_1=(Q_1,\Sigma_1,\delta_1,q_1,F_1)$, and M_2 recognize A_2 , where $M_2=(Q_2,\Sigma_2,\delta_2,q_2,F_2)$.

Construct $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$

- 1. $Q = Q_1 \times Q_2$
- 2. $\Sigma = \Sigma_1 \cup \Sigma_2$
- 3. $\delta: Q \times \Sigma \to Q$ is defined by

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- 4. $q_0 = (q_1, q_2)$
- 5. $F = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$

By construction, M recognizes $A_1 \cup A_2$.

1.2. Nondeterminism

Figure 2: The nondeterministic finite automaton N_1

In a nondeterministic machine, several choices may exist for the next state at any point. Nondeterministic finite automata may have additional features.

- a state may have zero, one, or many exiting arrows for each alphabet symbol
- can have an arrow with the label ε .

Definition 1.2.1 (Nondeterministic Finite Automaton): A **nondeterministic finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet
- 3. $\delta:Q\times \Sigma_{\varepsilon}\to \mathscr{P}(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Example: The formal definition of Figure 2 is $N_1 = (Q, \Sigma, \delta, q_1, F)$, where

- 1. $Q = \{q_1, q_2, q_3, q_4\},\$
- 2. $\Sigma = \{0, 1\},\$
- 3. δ is described as

- 4. q_1 is the start state, and
- 5. $F = \{q_4\}.$

Formal Definition of Computation

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w=y_1y_2...y_m$, where each $y_i\in\Sigma_\varepsilon$ and a sequence of states $r_0,r_1,...,r_m\in Q$ exists with three conditions:

- 1. $r_0 = q_0$
- 2. $r_i \in \delta(r_{i-1}, y_i)$ for i = 1, 2, ..., m, and
- 3. $r_m \in F$.

Equivalence of NFA's and DFA's

Theorem 1.2.1: Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary 1.2.1.1: A language is regular if and only if some nondeterministic finite automaton recognizes it.

Closure Under The Regular Operations

Theorem 1.2.2: The class of regular languages is closed under the concatenation operations.

 A_1, A_2 regular languages $\Longrightarrow A_1 \circ A_2$ regular language

Proof: Let
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 recognize A_1 , and
$$N_2=(Q_2,\Sigma,\delta,q_2,F_2)$$
 recognize $A_2.$

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \circ A_2$.

- 1. $Q = Q_1 \cup Q_2$
- 2. $q_0 = q_1$
- 3. $F = F_2$
- 4. Define δ so that for any $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

Theorem 1.2.3: The class of regular languages is closed under the star operation.

1.3. Regular Expressions

Definition 1.3.1 (Regular Expression): Say that R is a **regular expression** if R is

- 1. a for some $a \in \Sigma$,
- $2. \varepsilon$
- 3. Ø,
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- 6. (R_1^*) , where R_1 is a regular expression.

Example: Let $\Sigma = \{0, 1\}$.

- 1. $0*10* = \{w \mid w \text{ contains a single 1}\}.$
- 2. $\Sigma^* 1 \Sigma^* = \{ w \mid w \text{ has at least one } 1 \}.$
- 3. $1^*(01^+)^* = \{w \mid \text{ every } 0 \text{ in } w \text{ is followed by at least one } 1\}.$
- 4. $(\Sigma\Sigma)^* = \{w \mid \text{the length of } w \text{ is even}\}.$
- 5. $(\Sigma\Sigma\Sigma)^* = \{w \mid \text{the length of } w \text{ is a multiple of } 3\}.$

1.4. Nonregular Languages

Let's take the language $B = \{0^n 1^n \mid n \ge 0\}$. There is no NFA that recognizes this language, since the machine would need to remember unlimited number of 0's. We say that B is a nonregular language.

Theorem 1.4.1 (Pumping Lemma): If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, tthen s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Example: Let B be the language $\{0^n1^n \mid n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Assume that B is regular. Let p be the pumping length given by the pumping lemma. Choose $s=0^p1^p$. Since $s\in B \land |s|>p$, the pumping lemma guarantees that s can be divided into three pieces, s=xyz, where |y|>0, $|xy|\le p$, and $xy^iz\in B$ for all $i\ge 0$. We now consider three cases.

- 1. The string y consists of only 0's. Then xy^2z has more 0's than 1's, so $xy^2z\notin B$.
- 2. The string y consists of only 1's. Then xy^2z has more 1's than 0's, so $xy^2z\notin B$.
- 3. The string y consists of both 0's and 1's. Then xy^2z may have the same number of 0's and 1's, but they will be out of order. Hence $xy^2z \notin B$

All three cases lead to a contradiction, thus B is not regular.

2. Context-Free Languages

2.1. Context-Free Grammars

 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$

Figure 3: Context free grammar G_1

A grammar consits of a collection of **substitution rules**, also called **productions**. Each rule appears as a line in the grammar, comprising a symbol and a string separated by an arrow. The symbol is called a **variable**. The string consists of variables and other symbols called **terminals**. One variable is designated as the **start variable**.

A grammar describes a language by generating each string of the language in the following way:

- 1. Start with the string consisting of the start variable.
- 2. Replace each variable in the string by the right-hand side of one of its rules.
- 3. Repeat step 2 until no variables remain.

Example: Grammar G_1 in Figure 3 generates the string 000#111. The sequence of substitutions to obtain a string is called a **derivation**. A derivation 000#111 in grammar G_1 is

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111.$$

Figure 3 generates the language $L(G_1) = \{0^n \# 1^n \mid n \ge 0\}.$

Any language that can be generated by some context-free grammar is called a **context-free language** (CFL). We abbreviate several rules with the same left-hand side into a single line using the symbol |.

```
\langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle
\langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle \mid \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle \mid \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{NOUN-PHRASE} \rangle
\langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle
\langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle \mid \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle
\langle \text{ARTICLE} \rangle \rightarrow a \mid \text{the}
\langle \text{NOUN} \rangle \rightarrow \text{boy} \mid \text{girl} \mid \text{flower}
\langle \text{VERB} \rangle \rightarrow \text{touches} \mid \text{sees} \mid \text{likes}
\langle \text{PREP} \rangle \rightarrow \text{with}
```

Figure 4: G_2 is another CFG

Grammar G_2 in Figure 4 has 10 variables (the capitalized grammatical terms inside brackets); 27 terminals (the standard English alphabet plus a space character); and 18 rules. Strings in $L(G_2)$ include:

- a boy sees
- the boy sees a flower
- a girl with a flower like the boy

Example: *a boy sees* is derived in the following way:

```
\begin{split} \langle \text{SENTENCE} \rangle &\Rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle \\ &\Rightarrow \langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle \\ &\Rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle \\ &\Rightarrow a \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle \\ &\Rightarrow \text{a boy } \langle \text{VERB-PHRASE} \rangle \\ &\Rightarrow \text{a boy } \langle \text{CMPLX-VERB} \rangle \\ &\Rightarrow \text{a boy } \langle \text{VERB} \rangle \\ &\Rightarrow \text{a boy sees} \end{split}
```

Definition 2.1.1 (Context-free grammer): A **context-free grammer** is a 4 -tuple (V, Σ, R, S) , where

- 1. V is a fintie set called the **variables**,
- 2. Σ is a finite set, disjoint from V, called the **terminals**,
- 3. *R* is a finite set of **rules**, wirht each rule being a variable and a string of vairables and terminals, and
- 4. $S \in V$ is the start variable.

If u, v, and w are strings of variables and terminals, and $A \to w$ is a rule, we say that uAv **yields** uwv, written $uAv \Rightarrow uwv$, Say that u **derives** v, written $u \stackrel{*}{\Rightarrow} v$, if u = v or if a sequence $u_1, u_2, ..., u_k$ exists for $k \ge 0$ and

$$u \Rightarrow u_1 \Rightarrow u_1 \cdots \Rightarrow u_k \Rightarrow v.$$

The langauge of the grammer is $\{w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w\}$.

Example: In grammar G_2 in Figure 4, $V = \{A, B\}, \Sigma = \{0, 1, \#\}, S = A$, and R is the collection of the three rules appearing in Figure 4

Example: Conisder the grammar $G_3 = (\{S\}, \{(,)\}, R, S)$. The set of rules, R, is

$$S \to (S) \mid SS \mid \varepsilon$$
.

Then the language $L(G_3)$ is the set of strings of properly nested parentheses.

Note: the right-hand side of a rule may be the empty string.

Example: Consider grammar $G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle)$. Where $V = \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \}$ and $\Sigma = \{a, +, \times, (,)\}$ The rules are

$$\begin{split} \langle \text{EXPR} \rangle &\to \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle \\ \langle \text{TERM} \rangle &\to \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle \\ \langle \text{FACTOR} \rangle &\to (\langle \text{EXPR} \rangle) \mid a \end{split}$$

The two strings $a+a\times a$ and $(a+a)\times a$ can be generated with grammar G_4 . The parse trees are shown in the following figure:

Figure 5: Parse trees for the strings $a + a \times a$ and $(a + a) \times a$

Proposition 2.1.1 (Constructing a CFG from a DFA):

- 1. Make a vairable R_i for each state q_i
- 2. Add the rule $R_i \to aR_j$ if $\delta(q_i, a) = q_j$
- 3. Add the rule $R_i \to \varepsilon$ if q_i is an accept state.
- 4. Make R_0 the start variable, where q_0 is the start state in the DFA.

If a grammar generates the same string in several different ways, we say that the string is derived **ambiguously** in that grammar. Such a grammar is called an **ambiguous grammer**.

Definition 2.1.2: A string w is derived **ambiguously** in context-free grammar G if it has two or more different leftmost derivations. Grammar G is **ambiguous** if it generates some string ambiguously.

Example: Consider grammar G_5 :

$$\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{EXPR} \rangle \mid \langle \text{EXPR} \rangle \times \langle \text{EXPR} \rangle \mid (\langle \text{EXPR} \rangle) \mid a$$

This grammar gernerates the string $a + a \times a$ ambiguously. the following figure shows the tow different parse trees.

Figure 6: The two parse trees for the string $a + a \times a$ in grammar G_5

This grammar doesn't capture the usual precedence relations and so may group the + before the \times or vice versa. In contrast, grammar G_4 generates exactly the same language, but every generated string has a unique parse tree. Hence, G_4 is unambiguous, whereas G_5 is ambiguous.

Definition 2.1.3: A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$A \to BC$$
$$A \to a$$

where a is any terminal and A,B, and C are any variables - except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Theorem 2.1.1: Any context-free language is generated by a context-free grammar in Chomsky normal form.

Algorithm 2.1.1: First, we add a new start variable S_0 and the rule $S_0 \to S$, where S was the original start variable. This cannge guarantees that the start variable doesn't occur on the right-hand side of a rule.

Second, we take care of all ε -rules. We remove an ε -rule $A \to \varepsilon$, where A is not the start variable. Then for each occurance of an A on the right-hand side of a rule, we add a new rule with that occurence deleted. In other words, if $R \to uAv$ is a rule in which u,v are strings of variables and terminals, we add rule $R \to uv$. We do so for each occurrence of A, so the rule $R \to uAvAw$ causes us to add $R \to uvAw$, $R \to uAvw$, $R \to uvw$. If we have the rule $R \to A$, we add $R \to \varepsilon$, unless we had previously removed the rule $R \to \varepsilon$.

Third, we handle all unit rules. We remove a unit rule $A \to B$. Then, whenever a rule $B \to u$ appears, we add the rule $A \to u$ unless this was a unit rule previously removed.

Finally, we convert all remaining rules into the proper form. We replace each rule $A \to u_1 u_2 \cdots u_k$, where $k \geq 3$ and each u_i is a variable or a terminal symbol, with the rules $A \to u_1 A_1, A_1 \to u_2 A_2, \ldots, A_{k-2} \to u_{k-1} u_k$. The A_i 's are new variables. We replace any terminal u_i in the preceding rules with the new variable U_i and add the rule $U_i \to u_i$

Example: Let G_6 be the following CFG and convert it to Chomsky normal form. Rules in bold have just been added, while rules in gray have just been removed.

1. left-hand side: original CFG G_6 .

2. left-handside: remove $B \to \varepsilon$, right-hand side: remove $A \to \varepsilon$.

$$\begin{array}{lll} S_0 \to S & S_0 \to S \\ S \to ASA \mid aB \mid a & S \to ASA \mid aB \mid a \mid SA \mid AS \mid S \\ A \to B \mid S \mid \varepsilon & A \to B \mid S \mid \varepsilon \\ B \to b \mid \varepsilon & B \to b \end{array}$$

3. a. left-hand side: remove unit rules $S \to S,$ right-hand side: remove $S_0 \to S$

b. Remove unit rules $A \to B$ and $A \to S$

4. Convert the remaining rules into the propert form by adding additional variables and rules

$$\begin{split} S_0 &\rightarrow AA_1 \mid UB \mid a \mid SA \mid AS \\ S &\rightarrow AA_1 \mid UB \mid a \mid SA \mid AS \\ A &\rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS \\ A_1 &\rightarrow SA \\ U &\rightarrow a \\ B &\rightarrow b \end{split}$$

2.2. Pushdown Automata

These automata are like nondeterministic finite automata but have an extra component called a **stack**.

Figure 7: Schematic of a pushdown automaton

Definition 2.2.1 (Pushdown automaton): A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite set **input alphabet**,
- 3. Γ is a finite set **stack alphabet**,
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathscr{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in Q$ is the start state, and
- 6. $F \subseteq Q$ is the set of accept states.

A pushdown automaton $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ computes as follows. It **accepts** input w if $w=w_1w_2\cdots w_m$, where $m_i\in\Sigma_\varepsilon$ and sequences of states $r_0,r_1,...,r_m\in Q$ and strings $s_0,s_1,...,s_m\in\Gamma^*$ exist that satisfy the following three conditions.

- 1. $r_0 = q_0, s_0 = \varepsilon$
- 2. For i = 0, ..., m 1, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where
- $s_i = at \text{ and } s_{i+1} = bt \text{ for some } a,b \in \Gamma_\varepsilon, t \in \Gamma^*.$
- 3. $r_m \in F$

The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

Example: The following is the formal description of the PDA that recognizes the language $\{0^n1^n\mid n\geq 0\}$. Let $M_1=(Q,\Sigma,\Gamma,\delta,q_1,F)$, where

- 1. $Q = \{q_1, q_2, q_3, q_4\},\$
- 2. $\Sigma = \{0, 1\},\$
- 3. $\Gamma = \{0, \$\},\$
- 4. $F = \{q_1, q_4\}$, and
- 5. δ is given by the following table

Input:		0	1			arepsilon	
Stack:	0	\$ ε	0	\$ ε	0	\$	ε
q_1							$\{(q_2,\$)\}$
q_2		$\{(q_2,\mathtt{0})\}$	$\{(q_3, oldsymbol{arepsilon})\}$				
q_3			$\{(q_3, \boldsymbol{arepsilon})\}$			$\{(q_4, \boldsymbol{arepsilon})\}$	
q_4							

We can use a state diagram to describe a PDA as in Figure 8. We write " $a,b\to c$ " to signify that when the machine is reading an a from the input, it may replace the symbol b on the top of the stack with a c. Any of a,b, and c may be ε . If a is ε , the machine may make this transition without reading any symbol from the input. If b is ε , the machine may make this transition without reading and popping any symbol from the stack. If c is ε , the machine does not write any symbol on the stack when going along this transition.

Figure 8: State diagram for the PDA M_1 that recognizes $\{0^n1^n \mid n \geq 0\}$

This PDA uses the symbol \$ to check whether the stack is empty.

Theorem 2.2.1: A language is context-free if and only if some pushdown automaton recognizes it.

Proof: View in book: page 117 □

2.3. Non-context-free languages

Theorem 2.3.1 (Pumping lemma for context-free languages): If A is a context free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the following conditions:

- 1. for each $i \ge 0$, $uv^i x y^i z \in A$,
- 2. |vy| > 0, and
- $3. \mid vxy \mid \leq p$

Example: USe the pumping lemma to show that the lagrauge $B = \{a^nb^nc^n \mid n \geq 0\}$ is not context free.

We assume that B is a CFL and obtain a contradiction. Let p be the pumping length for B that is guaranteed to exist by the pumping lemma. Select the string $s=a^pb^pc^p$. Clearly $s\in B$ and |s|>p The pumping lemma states that s can be pumped, but we show that it cannot. In other words, we show that no matter how we devide s into uvxyz, one of the three conditions of the lemma is violated.

First, condition 2 stipulates that either v or y is nonempty. Then we consider one of two cases, depending on whether substrings v and y contain more than one type of alphabet symbol.