Week #9

Draine 5.3abc

Most interstellar CO is $^{12}\mathrm{C^{16}O}.$ The $J=1\to0$ transition is at $\nu=115.27$ GHz, or $\lambda=0.261$ cm, and the $v=1\to0$ transition is at $\lambda=4.61~\mu\mathrm{m}$ (ignoring rotational effects).

- (a) Estimate the frequencies of the J = 1 0 transitions in ${}^{13}\mathrm{C}^{16}\mathrm{O}$ and ${}^{12}\mathrm{C}^{17}\mathrm{O}$.
- (b) Estimate the wavelengths of the v=1-0 transitions in $^{13}\mathrm{C}^{16}\mathrm{O}$ and $^{12}\mathrm{C}^{17}\mathrm{O}$. Ignore rotational effects.
- (c) Suppose that the $^{13}\mathrm{C}^{16}\mathrm{O}~J=1-0$ line were mistaken for the $^{12}\mathrm{C}^{16}\mathrm{O}~J=1-0$ line. What would be the error in the inferred radial velocity of the emitting gas?