Тема 5. Множества решений интервальных задач.

А.Н. Баженов

ФТИ им. А.Ф.Иоффе

a_bazhenov@inbox.ru

16.02.2022

ПЛАН

Теория

- Виды множеств решений
- АЕ-решения
- Объединенное множество решений
- Допусковое множество решений

Простые примеры объединённого множества решений

- Для неизвестных известны их сумма и дополнительные условия
- Для неизвестных известны их сумма и отношение
- Нахождение AE-решений с помощью IntLinInc2D

Общий случай

Общий случай

Постановки интервальных задач

Для заданных входов и выходов системы найти (или как-то оценить) её состояние.

Постановки интервальных задач - формализация

Входные воздействия

- Возмущения a_1, \ldots, a_r , действуют независимо от нашей воли в пределах интервалов a_1, \ldots, a_r
- Управления a_{r+1}, \ldots, a_l , значения которых мы сами можем устанавливать в интервалах a_{r+1}, \ldots, a_l

Множество выходов

- Компоненты b_1, \ldots, b_s , которые мы должны быть способны перевести в любое значение из заранее заданных интервалов b_1, \ldots, b_s (интервалы достижимости)
- Компоненты b_{s+1}, \ldots, b_m , для которых должны обеспечить гарантированное попадание их значений в интервалы ${\pmb b}_{s+1}, \ldots, {\pmb b}_m$ (интервалы стабилизации)

Постановки интервальных задач

Пример. Лямбда-механизм Чебышёва

Прямолинейное движение конечной точки механизма (шатунная кривая)

Пример. Лямбда-механизм Чебышёва

Входные воздействия

- Возмущения неточности изготовления и сборки
- Управления —- вращения вала

Множество выходов

- интервалы достижимости длина прямолинейного участка движения
- *интервалы стабилизации* размах вертикального хода конечной точки

Пример стабилизируемого выхода

Типичным примером *стабилизируемого выхода* системы может служить температура внутри химического реактора в ряде химико-технологических процессов.

Она не должна отличаться от номинальной \tilde{T} больше, чем на некоторую предписанную величину $\delta \, {\cal T}$, но при этом любая температура из интервала

$$[\tilde{T} - \delta T, \tilde{T} + \delta T]$$

в равной степени приемлема, при этом какие-то значения температуры из этого интервала могут оказаться недостижимыми реальным процессом.

Пример стабилизируемого выхода

Рис. 1.1: Измерення температуры двумя датчиками. На верхнем рисунке представлены данные во всем интервале проведения эксперимента, всего около 2-х суток. На нижнем рисунке — данные в течение 2-х часового интервала после выхода на стационарный режим.

Множества решений интервальных уравнений.

Пусть зависимость «вход-состояние-выход» имеет вид

$$F(a,x)=b$$

с некоторым отображением $F:\mathbb{R}^1 imes\mathbb{R}^n o\mathbb{R}^m$,

$$F(a,x) = \begin{pmatrix} F_1(a,x) = 0 \\ F_2(a,x) = 0 \\ \vdots \\ F_n(a,x) = 0 \end{pmatrix},$$

$$F_i(a,x) = F_i(a_1, a_2, \dots, a_l, x_1, x_2, \dots, x_n),$$

 $i = 1, 2, \dots, m.$

п неизвестных, *m* уравнений.

Задача гарантированного оценивания внутреннего состояния

Задача гарантированного оценивания внутреннего состояния системы по значениям сигналов на её входах и выходах:

Для каких состояний x системы при любых внешних возмущениях $a_1 \in \pmb{a}_1, \dots, a_r \in \pmb{a}_r$ и любых а priori заданных значениях $b_1 \in \pmb{b}_1, \dots, \pmb{b}_s$ мы можем выбрать соответствующие управления $\pmb{a}_{r+1}, \dots, \pmb{a}_l$ так, чтобы выходной отклик системы F(a,x) был бы в точности равен на управляемых выходах b_1, \dots, b_s и находился бы внутри на стабилизируемых выходах $\pmb{b}_{s+1}, \dots, \pmb{b}_m$?

Задача гарантированного оценивания внутреннего состояния

Иначе, «задана интервальная система уравнений»

$$F(\boldsymbol{a},x)=\boldsymbol{b}$$

с интервальными параметрами $\pmb{a}=(\pmb{a}_1,\pmb{a}_2,\ldots,\pmb{a}_l)^T\in\mathbb{IR}^l$ и $\pmb{b}=(\pmb{b}_1,\pmb{b}_2,\ldots,\pmb{b}_m)^T\in\mathbb{IR}^m.$

мы не имеем права выполнять какие-либо преобразования (приводить подобные члены, переносить члены из одной части в другую и т. п.), пока не определены точный смысл «решения» системы и то, как следует понимать эквивалентность преобразований.

Формулировка на языке предикатов

Исчисление предикатов первого порядка.

Логические кванторы:

$$\forall$$
 (квантор всеобщности, «для всех») и \exists (квантор существования, «существует»)

Переформулируем задачу гарантированного оценивания внутреннего состояния:

$$(\forall a_1 \in \mathbf{a}_1) \dots (\forall a_r \in \mathbf{a}_r)(\forall b_1 \in \mathbf{b}_1) \dots (\forall b_s \in \mathbf{b}_s)$$
$$(\exists a_{r+1} \in \mathbf{a}_{r+1}) \dots (\exists a_l \in \mathbf{a}_l)(\exists b_{s+1} \in \mathbf{b}_{s+1}) \dots (\exists b_m \in \mathbf{b}_m)$$
$$F(a, x) = b.$$

Множество решений на языке предикатов

Множество всех состояний x, отвечающих задаче гарантированного оценивания внутреннего состояния, будем обозначать посредством Ξ :

$$\Xi = \{x \in \mathbb{R}^n \mid (\forall a_1 \in \mathbf{a}_1) \dots (\forall a_r \in \mathbf{a}_r)(\forall b_1 \in \mathbf{b}_1) \dots (\forall b_s \in \mathbf{b}_s) \\ (\exists a_{r+1} \in \mathbf{a}_{r+1}) \dots (\exists a_l \in \mathbf{a}_l)(\exists b_{s+1} \in \mathbf{b}_{s+1}) \dots (\exists b_m \in \mathbf{b}_m) \\ (F(a, x) = b).\}$$

Найти (или как-нибудь оценить) множество \varXi

Множество решений на языке предикатов

Найти (или как-нибудь оценить) множество \varXi

Определение. Логическая формула, выписанная после вертикальной черты в определении множества решений Ξ и задающая характеристическое свойство точек этого множества, будет называться

выделяющим предикатом

соответствующего множества решений интервальной системы уравнений

Виды множеств решений

Математически свойства и отношения, представляющие задачу P(v), могут выражаться, точечными уравнениями, неравенствами и т. п. Могут представиться следующие две принципиально различные ситуации:

- Рассматриваемое свойство имеет место для всех точек из заданного интервала.
- Свойство выполняется лишь **для некоторых точек** из интервала, не обязательно всех.

Принята следующая терминология:

- ullet в первом случае говорят о \forall -типе (А-типе) неопределённости, $(\forall v \in oldsymbol{v})P(v)$
- ullet во втором случае говорят о \exists -типе (E-типе) неопределённости, $(\exists v \in \mathbf{v})P(v)$.

Виды множеств решений

Рассуждения, мотивирующие использование логических кванторов и кванторного языка в отношении интервально неопределённых параметров, в равной мере приложимы не только к

интервальным алгебраическим системам,

но также к

интервальным неравенствам, интервальным дифференциальным и интегральным уравнениям и т. п.

В частности, при определении для них «решений» и «множеств решений» мы должны аккуратно принимать во внимание различие между указанными типами интервальной неопределённости.

Виды множеств решений - ОДУ

Пусть некоторый объект описывается системой дифференциальных уравнений

$$\dot{x} = f(t, x, u), \quad t \in [0, T], \ x(0) = x_0.$$

где t — переменная времени,

x(t) — вектор-функция фазового состояния,

u(t)— вектор-функция управления.

Будем предполагать, что управление

u(t) — кусочно непрерывная функция с областью определения

 $[0,\,T]\subseteq\mathbb{R}$, значения которой принадлежат некоторому брусу.

Обозначим множество всех таких функций C([0,T],U).

Виды множеств решений - ОДУ

Множеством достижимости

рассматриваемой системы для момента t=T называется множество всех концов x(t) траекторий системы, исходящих из точки x_0 и соответствующих всевозможным управлениям u(t), т. е. множество

$$\{ x(T) \mid (x(0) = x_0) \& (\exists u(t) \in C([0, T], U)) \ (\dot{x} = f(t, x, u)) \}$$

Теоретико-игровая интерпретация множеств решений

Для интерпретации множеств кванторных решений интервальных систем уравнений достаточно ограничиться простейшей игрой двух лиц, в которой

- дерево игры является простой цепью
- платёжные функции булевозначны, т.е принимают значения 0 или 1,
- интересы игроков (т. е. получаемые ими значения платёжных функций) диаметрально противоположны.

Такие игры называются антагонистическими.

Мы, следовательно, можем считать, что множество возможных исходов игры $\{0,1\}$ — это просто состояния «выигрыш-проигрыш», причём проигрыш одного игрока означает выигрыш другого и наоборот.

Теоретико-игровая интерпретация множеств решений

Рассмотрим подобную игру между игроками П (Природа) и М (Мы), в которой ходы делаются поочерёдно, один за другим, так что дерево игры есть простая цепь, и его возможные виды представлены на рисунке в зависимости от того, кто из игроков делает первый ход.

Теоретико-игровая интерпретация множеств решений

К примеру, множество решений

$$\{ x \in \mathbb{R} \mid (\exists a_2 \in \boldsymbol{a}_2)(\forall a_1 \in \boldsymbol{a}_1)(\forall a_3 \in \boldsymbol{a}_3)(\exists a_4 \in \boldsymbol{a}_4)(\forall b_2 \in \boldsymbol{b}_2) \\ (F(a,x) = b) \}$$

может быть проинтерпретировано следующим образом: у игрока М (который начинает игру) существует такой первый ход a_2 , что вне зависимости от ответного хода игрока П, (F(a,x)=b) на котором тот выбирает последовательно значения a_1 из a_1 и a_3 из a_3 , игрок М снова найдет подходящий ответ в виде a_4 из a_4 и т. д., так что равенство F(a,x)=b будет в конечном итоге достигнуто.

В первом случае (А) интервал отождествляется с совокупностью всех своих точек, тогда как во втором (Е) он представляет собой лишь границы, «вместилище» для некоторой неизвестной величины, которая может и не принимать некоторых значений из заданного интервала (возможно, что она принимает даже только одного значение из интервала).

Для краткости вполне уместно говорить интервальная А-неопределённость, интервальная Е-неопределённость и т.п. Далее мы собираемся исследовать лишь множества решений, у которых в выделяющем предикате все вхождения квантора всеобщности «∀» предшествуют вхождениям квантора существования «∃». Можно сказать, что соответствующий выделяющий предикат должен иметь

АЕ-форму.

Определение. Множествами AE-решений называются множества решений интервальных уравнений (неравенств ит. п.) для которых выделяющий предикат имеет AE-форму.

Множества АЕ-решений — неформально

Имеем задачу

$$F(a,x)=b$$

«Переформулируем» её в квантором формализме, заменив численные объекты, матрицу и вектор правой части на объекты, состоящие из кванторов

$$F(\alpha, x) \longrightarrow \beta$$

Например

$$\alpha = \begin{pmatrix} \forall & \forall \\ \forall & \forall \end{pmatrix}, \quad \beta = \begin{pmatrix} \exists \\ \exists \end{pmatrix}$$

Прямое указание кванторов

1. Прямое указание кванторов.

Введём \emph{n} -вектор $\alpha=(\alpha_i)$ и \emph{m} -вектор $\beta=(\beta_i)$, составленные из логических кванторов и такие, что

$$\alpha_i = \begin{cases} \forall & \text{если } \alpha_i \text{ имеет A-неопределённость,} \\ \exists & \text{если } \alpha_i \text{ имеет E-неопределённость,} \end{cases}$$

$$\beta_i = \begin{cases} \forall & \text{если } \beta_i \text{ имеет A-неопределённость,} \\ \exists & \text{если } \beta_i \text{ имеет E-неопределённость.} \end{cases}$$

Задание разбиения индексных множеств компонент векторов задачи

2. Задание разбиений индексных множеств компонент векторов a и правой части b.

Пусть все множество индексов i- компонент a_i , т. е. множество $\{1,2,\ldots I\}$, разбито на две непересекающиеся части $\hat{\Gamma}=\{\hat{\gamma}_1,\hat{\gamma}_2,\ldots\hat{\gamma}_p\}$ и $\check{\Gamma}=\{\check{\gamma}_1,\hat{\gamma}_2,\ldots\check{\gamma}_q\}$, p+q=I, так, что

- a_i имеет интервальную А-неопределённость при $i\in \hat{\Gamma},$
- a_i имеет интервальную Е-неопределённость при $i\in \check{\Gamma}.$

Задание разбиения индексных множеств компонент векторов задачи

Аналогичным образом введём непересекающиеся множества натуральных индексов $\hat{\Delta}=\{\hat{\Delta}_1,\hat{\Delta}_2,\dots\hat{\Delta}_s\}$ и $\check{\Delta}=\{\check{\Delta}_1,\hat{\Delta}_2,\dots\check{\Delta}_t\}$, s+t=m, так, что

 b_i имеет интервальную А-неопределённость при $i\in\hat{\Delta},$ b_i имеет интервальную Е-неопределённость при $i\in\check{\Delta}.$

Естественно, возможно, что некоторые из множеств $\hat{\Gamma}, \check{\Gamma}, \hat{\Delta}, \check{\Delta}$ пусты.

Способы описаний АЕ-решений

Очевидно, что если $\alpha=(\alpha_i)$ и $\beta=(\beta_i)$ — кванторные векторы, определённые в предшествующем пункте нашего списка, то

$$\alpha_i = \begin{cases} \forall & i \in \hat{\Gamma}, \\ \exists & i \in \check{\Gamma} \end{cases} \quad \beta_i = \begin{cases} \forall & i \in \hat{\Delta}, \\ \exists & i \in \check{\Delta} \end{cases}$$

Дизъюнктные разложения векторов a и b

3. Дизъюнктные (взаимнодополнительные) разложения векторов a и b. Именно, определим интервальные векторы $\mathbf{a}^{\forall}=(a_i)^{\forall}$ и $\mathbf{a}^{\exists}=(a_i)^{\exists}$ и интервальные векторы $\mathbf{b}^{\forall}=(b_i)^{\forall}$ и $\mathbf{b}^{\exists}=(b_i)^{\exists}$, тех же размеров, что a и b соответственно, следующим образом:

$$\begin{aligned} \mathbf{a}_i^\forall &:= \left\{ \begin{matrix} a_i, & \alpha_i = \forall, \\ 0, & \text{иначе}, \end{matrix} \right. & \mathbf{a}_i^\exists &:= \left\{ \begin{matrix} a_i, & \alpha_i = \exists, \\ 0, & \text{иначе}, \end{matrix} \right. \\ b_i^\forall &:= \left\{ \begin{matrix} b_i, & \beta_i = \forall, \\ 0, & \text{иначе}, \end{matrix} \right. & b_i^\exists &:= \left\{ \begin{matrix} b_i, & \beta_i = \exists, \\ 0, & \text{иначе}, \end{matrix} \right. \end{aligned}$$

Тогда

$$a = a^{\forall} + a^{\exists}, \quad a_i^{\forall} \cdot a_i^{\exists} = 0$$

 $b = b^{\forall} + b^{\exists}, \quad b_i^{\forall} \cdot b_i^{\exists} = 0$

для любого *і*.

Способы описаний АЕ-решений

Следует отметить, что три рассмотренные группы объектов, возникающих в связи с множествами АЕ-решений интервальных систем уравнений, именно

- ullet кванторные векторы lpha и eta
- ullet разбиения индексных множеств векторов a и b на непересекающиеся подмножества $\hat{\Gamma}, \check{\Gamma}, \hat{\Delta}, \check{\Delta}$
- ullet дизъюнктные разложения интервальных векторов $a=a^{orall}+a^{\exists}$ и $b=b^{orall}+b^{\exists}$

находятся во взаимно однозначном соответствии, таком что указание любого одного из пунктов этой триады немедленно определяет два других.

Определение. Пусть для интервальной системы уравнений $F(\pmb{a},x)=\pmb{b}$ распределение типов неопределённости по интервальным элементам параметров \pmb{a} и \pmb{b} задаётся кванторными векторами α и β или же дизъюнктными разложениями $\pmb{a}=\pmb{a}^\forall+\pmb{a}^\exists,\;\pmb{b}=\pmb{b}^\forall+\pmb{b}^\exists$ Множество

$$\{x \in \mathbb{R}^{n} \mid (\forall a_{\hat{\gamma}_{1}} \in \boldsymbol{a}_{\hat{\gamma}_{1}}) \dots (\forall a_{\hat{\gamma}_{p}} \in \boldsymbol{a}_{\hat{\gamma}_{p}})(\forall b_{\hat{\delta}_{1}} \in \boldsymbol{b}_{\hat{\delta}_{1}}) \dots (\forall b_{\hat{\delta}_{s}} \in \boldsymbol{b}_{\hat{\delta}_{s}}) \\ (\exists a_{\hat{\gamma}_{1}} \in \boldsymbol{a}_{\hat{\gamma}_{1}}) \dots (\exists a_{\hat{\gamma}_{q}} \in \boldsymbol{a}_{\hat{\gamma}_{q}})(\exists b_{\hat{\delta}_{1}} \in \boldsymbol{b}_{\hat{\delta}_{1}}) \dots (\exists b_{\hat{\delta}_{t}} \in \boldsymbol{b}_{\hat{\delta}_{t}}) \\ (F(a, x) = b)\}$$

решений с выделяющим предикатом AE-типа будем называть **множеством** AE-решений типа $\alpha\beta$ для интервальной системы уравнений $F(\mathbf{a},x)=\mathbf{b}$ и обозначать через $\Xi_{\alpha\beta}(F,\mathbf{a},\mathbf{b})$.

Основные множества решений

Объединённое множество решений,

образованное решениями всех точечных систем F(a,x)=b

$$\varXi_{\mathit{uni}}(F,\mathtt{a},\mathtt{b}) = \{x \in \mathbb{R}^n \mid (\exists a \in \mathtt{a})(\exists b \in \mathtt{b})(F(a,x) = b)\}$$

Основные множества решений

Допусковое множество решений, образованное всеми точечными векторами x, такими что образ F(a,x) попадает в правую часть \boldsymbol{b} для всех \boldsymbol{a}

$$\Xi_{tol}(F, a, b) = \{x \in \mathbb{R}^n \mid (\forall a \in a)(\exists b \in b)(F(a, x) = b)\}$$

Основные множества решений

Управляемое множество решений

$$\Xi_{ctl}(F, \mathsf{a}, \mathsf{b}) = \left\{ x \in \mathbb{R}^n \mid (\forall b \in \mathsf{b})(\exists a \in \mathsf{a})(F(a, x) = b) \right\}$$

образованное точечными векторами x, такими что для любого желаемого b можем найти подходящий параметр в a

Пример возникновения множеств АЕ-решений

Рассмотрим проблему управления качеством продукции на промышленном предприятии естественно разделить множество всех факторов (параметров), влияющих на выходные характеристики производства некоторой продукции, на следующие три подмножества:

- проектируемые факторы $x \in \mathbb{R}^n$, значения которых выбираются на этапе проектирования продукции,
- факторы помех $\nu \in \mathbb{R}^q$, значения которых мы не можем ни предсказать на стадии проектирования, ни изменить в процессе производства,
- факторы управления производством $u \in \mathbb{R}^p$, которые мы можем и должны использовать на стадии производства для компенсации влияний факторов помех, чтобы обеспечить желаемые выходные характеристики производства.

Пример возникновения множеств АЕ-решений

Типичная задача управления качеством продукции состоит в требовании достичь определённых целевых y_i^\star значений рассматриваемых характеристик функционирования $y_i, i=1,2,\ldots,m$, в то время как зависимость y_i от факторов u,v,x описывается некоторой математической моделью

$$y_i = F_i(u, v, x), \quad i = 1, 2, ..., m,$$

с известными функциями $F_i:\mathbb{R}^p imes\mathbb{R}^q imes\mathbb{R}^n o\mathbb{R}.$

Доступная информация о значениях факторов помех выражена в виде интервалов их возможных значений: $[\underline{\nu}_i, \overline{\nu}_i], i=1,2,\ldots,q$.

Производственные факторы иі также не могут быть совершенно произвольными они конечны, т. е. мы можем выбирать их из некоторых интервалов $[u_i, \overline{u}_i], i = 1, 2, \dots, p$.

На выходе производственного процесса назначаем для характеристик функционирования интервалы ненулевой ширины $[y_i,\overline{y}_i], i=1,2,\ldots,m$.

Пример возникновения множеств АЕ-решений

Основная задача управления качеством формулируется следующим образом:

Как следует выбрать проектируемые параметры $x_1, x_2, \ldots x_n$, чтобы для любых возмущающих факторов $\tilde{\nu}_1, \tilde{\nu}_2, \ldots \tilde{\nu}_q$, лежащих в пределах интервалов $\boldsymbol{\nu}_1, \boldsymbol{\nu}_2, \ldots \boldsymbol{\nu}_q$ соответственно, могли бы быть найдены такие факторы управления производством $\tilde{u}_1 \in \boldsymbol{u}_1, \tilde{u}_2 \in \boldsymbol{u}_2, \ldots \tilde{u}_p \in \boldsymbol{u}_p$, что результирующие выходные характеристики $F(\tilde{u}, \tilde{\nu}, \tilde{x})$ будут оставаться в пределах $y_i, i=1,2,\ldots,m$, заданных спецификацией производственного процесса?

все такие проекты $x=(x_1,x_2,\ldots x_n)^T$ образуют множество

$$\left\{ x \in \mathbb{R}^n \mid (\forall \nu_1 \in \nu_1) \dots (\forall \nu_q \in \nu_q) \right.$$

$$\left(\exists u_1 \in \mathsf{u}_1 \right) \dots \left(\exists u_p \in \mathsf{u}_p \right)$$

$$\left(\exists y_1 \in \mathsf{y}_1 \right) \dots \left(\exists y_m \in \mathsf{y}_m \right)$$

$$\left(F(u, \nu, x) = y \right) \right\}$$

Массовая интервальная задача оценивания

Определение. Массовой интервальной задачей P (M3) оценивания назовём упорядоченную четверку вида

$$(\mathcal{S}, \mathcal{E}, \mathcal{M}, \rho),$$

\mathcal{S} — семейство множеств решений —

отображение некоторого подмножества Π интервального пространства \mathbb{R}^p в множество подмножеств \mathbb{R}^q , причём Π описывает возможные значения интервалов параметров задачи M3, так что индивидуальная задача оценивания И3 выделяется из P путём присвоения переменным в S некоторых конкретных значений, которые определяют (в результате процесса решения или каким-нибудь другим способом) индивидуальное множество решений $\Xi \in S$;

Массовая интервальная задача оценивания

- ${\cal E}$ класс оценивающих множеств, являющийся каким-то множеством интервалов (брусов, шаров определённой нормы и т. п.), посредством которых мы собираемся оценивать и приближать множества решений из S;
- \mathcal{M} способ оценивания множеств решений, т. е. бинарное отношение между элементами S и элементами \mathcal{E} , которое должно удовлетворяться в соответствии с содержательным смыслом решаемой задачи;
- ho неотрицательный функционал на $S imes \mathcal{E}$ (метрика), который определяется постановкой задачи и указывает «ошибку» результата, т. е. меру близости оценивающего множества к множеству решений S.

Индивидуальная интервальная задача оценивания

Под решением индивидуальной задачи ИЗ будем понимать оценивающее множество $\Omega \in \mathcal{E}$, такое что удовлетворено отношение

$$\Xi \mathcal{M} \Omega$$

и, возможно, дополнительно выполняется некоторое условие на величину

$$\rho(\Xi,\Omega)$$

Популярные способы оценивания

В современном интервальном анализе таковыми являются

- внешнее интервальное оценивание, когда ищется брус $E \in \mathbb{IR}^n$, объемлющий множество решений S, т. е. такой что $E \supseteq S$,
- внутреннее интервальное оценивание, когда ищется брус $E \in \mathbb{IR}^n$, содержащийся во множестве решений S, т. е. такой что $E \subseteq S$.

Трудоёмкость интервальных задач

Основные полученные к настоящему моменту результаты по теории сложности интервальных алгебраических задач таковы: задача оценивания области значений полинома от многих переменных на брусе является NP-трудной;

задача нахождения глобального минимума для невыпуклых целевых функций на брусе является труднорешаемой;

задачи распознавания (проверки непустоты) объединённого множества решений ИСЛАУ и задачи его внешнего оценивания являются NP-трудными, причём они остаются NP-трудными даже в том случае, если матрица системы сильно неособенна, или если мы накладываем условия на знаки элементов матрицы, или ограничимся неплотно заполненными матрицами (в частности, NP-полны задачи распознавания и оценивания объединённого множества решений ИСЛАУ с трёхдиагональными матрицами и с неотрицательными матрицами);

Трудоёмкость интервальных задач

заданном брусе является NP-трудной.

задачи распознавания и оценивания множеств АЕ-решений интервальных линейных систем являются NP-трудными; задача нахождения формального решения интервальной линейной системы является NP-трудными; задача распознавания решения нелинейной системы уравнений в

Линейные задачи

Линейные задачи

Множества АЕ-решений линейных интервальных задач

Детально рассмотрим простейшие интервальные задачи — системы линейных алгебраических уравнений (ИСЛАУ)

$$\begin{cases}
 \mathbf{a}_{11} \cdot x_1 + \mathbf{a}_{12} \cdot x_2 + \dots + \mathbf{a}_{1n} \cdot x_n = \mathbf{b}_1 \\
 \mathbf{a}_{21} \cdot x_1 + \mathbf{a}_{22} \cdot x_2 + \dots + \mathbf{a}_{2n} \cdot x_n = \mathbf{b}_2 \\
 \vdots \\
 \mathbf{a}_{m1} \cdot x_1 + \mathbf{a}_{m2} \cdot x_2 + \dots + \mathbf{a}_{mn} \cdot x_n = \mathbf{b}_m
\end{cases}$$

в краткой форме,

$$\mathbf{A}x = \mathbf{b}$$

с интервальной m imes n -матрицей $m{A} = (m{a}_{ij})$ и интервальным m-вектором $m{b} = (m{b}_i)$

Множество АЕ-решений ИСЛАУ

Определение. Множества AE-решений (или, иначе, AE-множества решений) — это множества решений интервальных линейных систем уравнений, для которых выделяющий предикат имеет AE-форму, т. е. такой, что

все вхождения кванторов существования « \exists » предшествуют в нём вхождениям кванторов всеобщности « \forall ».

Способы описания соответствия типов неопределённости

Как и в общем случае, для множеств *AE*-решений интервальных линейных систем уравнений существуют три эквивалентных способа описания соответствия типов неопределённости интервальным элементам системы:

- 1) указание для системы кванторной матрицы и кванторного вектора правой части,
- 2) разбиения индексных множеств матрицы и вектора правой части системы на подмножества, соответствующие элементам с A- и E-неопределённостями,
- 3) дизъюнктные разложения интервальной матрицы и правой части на слагаемые, отвечающие A- и E-неопределённостям системы.

Прямое указание кванторных матриц и вектора ИСЛАУ

Поскольку порядок кванторов в выделяющем предикате зафиксирован, то простейший способ описания типов неопределённости заключается в прямом указании того, какие логические кванторы соответствуют тем или иным элементам интервальной системы.

Именно, если ввести $m \times n$ -матрицу $\mathcal{A} = (\alpha_{ij})$ и m-вектор $\beta = (\beta_i)$, составленные из логических кванторов и такие, что

$$\alpha_{ij} = \begin{cases} \forall & \text{если } \alpha_{ij} \text{ имеет A-неопределённость,} \\ \exists & \text{если } \alpha_{ij} \text{ имеет E-неопределённость,} \end{cases}$$

$$\beta_i = \begin{cases} \forall & \text{если } \beta_i \text{ имеет A-неопределённость,} \\ \exists & \text{если } \beta_i \text{ имеет E-неопределённость.} \end{cases}$$

то указание ${\cal A}$ и ${\cal \beta}$ полностью определяет конкретное множество ${\cal AE}$ -решений ИСЛАУ.

Задание разбиения индексных множеств

Задание разбиения индексных множеств элементов матрицы ${m A}$ и правой части ${m b}$. Более точно, пусть множество всех индексных пар (i,j) элементов матрицы ${m A}$, т. е. множество

$$\{(1,1),(1,2),...,(m,n)\},\$$

разбито на две непересекающиеся части

$$\hat{\Gamma}=\{\hat{\gamma}_1,\hat{\gamma}_2,\dots\hat{\gamma}_p\}$$
 и $\check{\Gamma}=\{\check{\gamma}_1,\hat{\gamma}_2,\dots\check{\gamma}_q\}$, $p+q=m$ n, так, что

 a_{ij} имеет интервальную А-неопределённость при $(i,j)\in\hat{\Gamma},$ a_{ij} имеет интервальную Е-неопределённость при $(i,j)\in\check{\Gamma}.$

Задание разбиения индексных множеств

Аналогичным образом введём непересекающиеся множества натуральных индексов

$$\hat{\Delta}=\{\hat{\Delta}_1,\hat{\Delta}_2,\dots\hat{\Delta}_s\}$$
 in $\check{\Delta}=\{\check{\Delta}_1,\hat{\Delta}_2,\dots\check{\Delta}_t\}$, $\hat{\Delta}\cup\check{\Delta}=\{1,2,\dots,n\}$, tak, uto

 b_i имеет интервальную А-неопределённость при $i\in\hat{\Delta},$ b_i имеет интервальную Е-неопределённость при $i\in\check{\Delta}.$

Возможно, что некоторые из множеств $\hat{\Gamma}, \check{\Gamma}, \hat{\Delta}, \check{\Delta}$ пусты.

Дизъюнктные разложения A и b

Определим интервальные матрицы ${m A}^{\forall}=({m a}_{ij}^{\forall})$ и ${m A}^{\exists}=({m a}_{ij}^{\exists})$ и интервальные векторы ${m b}^{\forall}=(b_i)^{\forall}$ и ${m b}^{\exists}=(b_i)^{\exists}$, тех же размеров, что ${m a}$ и ${m b}$ соответственно, следующим образом:

$$\begin{split} \boldsymbol{a}_{ij}^\forall := \left\{ \begin{aligned} &\boldsymbol{a}_{ij}, & \alpha_{ij} = \forall, \\ &0, & \text{иначе}, \end{aligned} \right. \quad \boldsymbol{a}_{ij}^\exists := \left\{ \begin{aligned} &\boldsymbol{a}_{ij}, & \alpha_{ij} = \exists, \\ &0, & \text{иначе}, \end{aligned} \right. \\ \boldsymbol{b}_i^\forall := \left\{ \begin{aligned} &\boldsymbol{b}_i, & \beta_i = \forall, \\ &0, & \text{иначе}, \end{aligned} \right. \quad \boldsymbol{b}_i^\exists := \left\{ \begin{aligned} &\boldsymbol{b}_i, & \beta_i = \exists, \\ &0, & \text{иначе}, \end{aligned} \right. \end{split}$$

Тогда

$$m{A} = m{A}^{orall} + m{A}^{\exists}, \quad m{a}_{ij}^{orall} \cdot m{a}_{ij}^{\exists} = 0$$

 $m{b} = m{b}^{orall} + m{b}^{\exists}, \quad m{b}_{i}^{orall} \cdot m{b}_{i}^{\exists} = 0$

Между тремя введёнными выше группами объектов, которые порождаются интервальной линейных системой и её множеством AE-решений, имеется взаимно однозначное соответствие.

Множество АЕ-решений ИСЛАУ кванторного типа $\alpha \beta$

Определение. Пусть для интервальной $m \times n$ -системы линейных алгебраических уравнений заданы кванторные $m \times n$ -матрица α и m-вектор β и ассоциированные с ними разбиения индексных множеств матрицы и вектора тех же размеров на непересекающиеся подмножества $\hat{\Gamma} = \{\hat{\gamma}_1, \dots \hat{\gamma}_p\}$ и $\check{\Gamma} = \{\check{\gamma}_1, \dots \check{\gamma}_q\}$, p+q=mn и $\hat{\Delta} = \{\hat{\delta}_1, \dots \hat{\delta}_r\}$ и $\check{\Delta} = \{\check{\delta}_1, \dots \check{\delta}_s\}, r+s=m$. Множество

$$\Xi_{\alpha\beta} = \{x \in \mathbb{R}^n \mid (\forall a_{\hat{\gamma}_1} \in \boldsymbol{a}_{\hat{\gamma}_1}) \dots (\forall a_{\hat{\gamma}_p} \in \boldsymbol{a}_{\hat{\gamma}_p})(\forall b_{\hat{\delta}_1} \in \boldsymbol{b}_{\hat{\delta}_1}) \dots (\forall b_{\hat{\delta}_s} \in \boldsymbol{b}_{\hat{\delta}_s}) (\exists a_{\hat{\gamma}_1} \in \boldsymbol{a}_{\hat{\gamma}_1}) \dots (\exists a_{\hat{\gamma}_q} \in \boldsymbol{a}_{\hat{\gamma}_q})(\exists b_{\delta_1} \in \boldsymbol{b}_{\delta_1}) \dots (\exists b_{\delta_t} \in \boldsymbol{b}_{\delta_t}) Ax = b\}$$

будем называть множеством AE-решений типа $\alpha\beta$ для интервальной системы уравнений $\mathbf{A}x = \mathbf{b}$ (либо AE-множеством решений типа $\alpha\beta$).

Основные множества решений ИСЛАУ

Объединённое множество решений, образованное решениями всех точечных систем Ax = b

$$\Xi_{uni}(\mathbf{A}, \mathbf{b}) = \{x \in \mathbb{R}^n \mid (\exists A \in A)(\exists b \in \mathbf{b})(Ax = b)\}$$

Допусковое множество решений, образованное всеми точечными векторами x, такими что образ F(a,x) попадает в правую часть ${m b}$ для всех ${m a}$

$$\Xi_{tol}(\mathbf{A}, \mathbf{b}) = \{x \in \mathbb{R}^n \mid (\forall A \in \mathbf{A})(\exists b \in \mathbf{b})(Ax = b)\}$$

Управляемое множество решений,

$$\Xi_{ctl}(\mathbf{A}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid (\forall b \in b)(\exists A \in \mathbf{A})(Ax = b) \}$$

образованное точечными векторами x, такими что для любого желаемого b можем найти подходящий параметр в a

Основные множества решений ИСЛАУ Барта-Нудинга

$$\mathbf{A} = \begin{pmatrix} [2,4] & [-2,1] \\ [-2,1] & [2,4] \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} [-2,2] \\ [-2,2] \end{pmatrix}$$

Количество решений ИСЛАУ

Пусть i-ая строка матрицы α целиком состоит из кванторов всеобщности \forall и соответствующим элементом кванторного вектора β также является \forall .

Тогда $\Xi_{lphaeta}(A,b)=\emptyset$, если среди элементов a_{1j},\dots,a_{in},b_i имеется хотя бы один интервал с ненулевой шириной.

Из-за этого $C_m^1+C_m^2+\ldots+C_m^m=2^m-1$ штук множеств AE-решений интервальной линейной $m\times n$ -системы оказываются заведомо пустыми (здесь C_m^k — это биномиальные коэффициенты).

Количество решений ИСЛАУ

Таким образом, количество «нетривиальных» множеств АЕ-решений для таких систем уравнений уменьшается до

$$2^{m(n+1)} - 2m + 1 = 2^m(2^{mn} - 1) + 1$$

Например, для интервальной линейной 2×2 -системы уравнений можно рассматривать

$$2^2(2^4-1)+1=61$$

множество АЕ-решений.

Количество решений ИСЛАУ

Как уменьшить количество рассматриваемых вариантов?

— Упорядочить.

Всегда

$$\Xi_{\alpha\beta}(A,b) \subseteq \Xi_{Uni}(A,b),$$

т. е.

объединенное множество решений является наиболее широким в семействе всех множеств *АЕ*-решений для интервальных систем уравнений, и это наблюдение может быть обобщено.

Именно, если на множестве логических кванторов $\{\forall,\exists\}$ ввести частичный порядок «¬ », положив

$$\forall \neg \exists$$

а отношения $\alpha\neg\alpha',\beta\neg\beta',\alpha\beta\neg\alpha'\beta'$ договориться понимать покомпонентно и поэлементно, то для любых A и b имеет место импликация

$$\alpha\beta\neg\alpha'\beta'\Rightarrow \Xi_{\alpha\beta}(A,b)\subseteq\Xi_{\alpha'\beta'}(A,b)$$

Основные множества решений ИСЛАУ Барта-Нудинга

Свойство

$$\alpha\beta\neg\alpha'\beta'\Rightarrow \Xi_{\alpha\beta}(A,b)\subseteq\Xi_{\alpha'\beta'}(A,b)$$

может оказаться очень полезным при исследовании множеств кванторных решений интервальных систем уравнений. Если мы уже обнаружили, к примеру, что для системы

$$\mathcal{Z}_{\left(\exists\begin{array}{cc}\exists\end{array}\begin{array}{cc}\exists\\\exists\end{array}\end{array}\right),\left(\forall\atop\exists\end{array}\right)}=\mathcal{Z}_{\left(\exists\begin{array}{cc}\exists\end{array}\begin{array}{cc}\forall\\\forall\end{array}\right),\left(\scriptsize\vdots\atop\forall\right)}=\emptyset$$

то, посредством «ослабления», в смысле порядка, кванторов в выделяющем предикате, можно заключить, что управляемое множество решений Ξ_{ctl} также пусто, и пустыми являются еще 45 множеств решений системы, получающиеся из вышеупомянутых трёх путем комбинирования кванторов перед элементами матрицы.

Свойство

$$\alpha\beta\neg\alpha'\beta'\Rightarrow \Xi_{\alpha\beta}(A,b)\subseteq\Xi_{\alpha'\beta'}(A,b)$$

может оказаться очень полезным при исследовании множеств кванторных решений интервальных систем уравнений.

Рассуждения, использованные нами при выводе свойства, в равной степени приложимы и к общим нелинейным интервальным системам уравнений,

На рис. последовательно представлены решения ИСЛАУ Барта-Нудинга со следующими кванторными матрицами:

$$A_{\alpha\beta} = \left\{ \begin{pmatrix} \forall & \forall \\ \forall & \forall \end{pmatrix}, \begin{pmatrix} \exists & \forall \\ \forall & \forall \end{pmatrix}, \begin{pmatrix} \exists & \exists \\ \exists & \forall \end{pmatrix}, \begin{pmatrix} \exists & \exists \\ \exists & \exists \end{pmatrix} \right\}.$$

Видно, как увеличивается множество решений, показанное зелёной заливкой, при последовательном изменении кванторов всеобщности на кванторы существования в кванторной матрице.

Пример А.Карповой, 2021

Дана ИСЛАУ — А.Карпова, 2021

$$\begin{pmatrix} [3,6] & [-5,2] \\ [-5,7] & [-3,-1] \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} [-2,2] \\ [-1,1] \end{pmatrix}.$$

Выберем несколько сочетаний кванторных матрицы ${\mathcal A}$ и вектора ${\mathcal B}$:

$$\mathcal{A}_1 = \begin{pmatrix} \exists & \exists \\ \exists & \exists \end{pmatrix}, \beta_1 = \begin{pmatrix} \exists \\ \exists \end{pmatrix}, \quad \mathcal{A}_2 = \begin{pmatrix} \forall & \forall \\ \forall & \forall \end{pmatrix}, \beta_2 = \begin{pmatrix} \exists \\ \exists \end{pmatrix},$$

$$\mathcal{A}_3 = \begin{pmatrix} \exists & \exists \\ \exists & \exists \end{pmatrix}, \beta_3 = \begin{pmatrix} \forall \\ \forall \end{pmatrix}, \quad \mathcal{A}_4 = \begin{pmatrix} \forall & \exists \\ \exists & \forall \end{pmatrix}, \beta_4 = \begin{pmatrix} \exists \\ \exists \end{pmatrix}.$$

Первая, вторая и третья комбинации кванторных матрицы и вектора входят в определения объединенного, допускового и управляемого множеств решений ИСЛАУ, соответственно.

Четвертая комбинация кванторных матрицы и вектора была выбрана произвольно.

Множества решений $(x_1, x_2)^{\top}$, соответствующие каждому из указанных сочетаний кванторных матрицы \mathcal{A} и вектора β , представлены на Рис.

Этот рисунок следует понимать как многослойный, т. е. различные множества АЕ-решений не «вырезают» части друг друга, а лишь визуально накладываются.

Зеленым цветом выделено объединенное множество решений $\equiv_{uni}({m A},{m b}).$

Желтый цвет использован для обозначения допускового множества решений $\Xi_{tol}({m A},{m b})$.

Голубой цвет соответствует управляемому множеству решений $\equiv_{ctl}({m A},{m b}).$

Розовый цвет выбран для выделения множества решений ИСЛАУ с произвольно выбранными кванторными матрицей \mathcal{A}_4 и вектором β_4 .

$$\mathcal{A}_{4} = \begin{pmatrix} \forall & \exists \\ \exists & \forall \end{pmatrix}$$

Как мы видим на Рис., среди множеств АЕ-решений объединенное множество является самым широким, а допусковое — самым узким.

$$\begin{pmatrix} \exists & \exists \\ \exists & \exists \end{pmatrix} \to \ldots \to \begin{pmatrix} \forall & \forall \\ \forall & \forall \end{pmatrix}.$$

Объяснить полученный результат можно следующим образом: множество АЕ-решений расширяется при «ослаблении» (в смысле порядка) кванторов в выделяющем предикате.

Частичный порядок на множестве логических кванторов

Рис.: Множества решений исследуемой ИСЛАУ. Кванторная матрица

$$\mathcal{A}_4 = \begin{pmatrix} \forall & \exists \\ \exists & \forall \end{pmatrix}$$

Частичный порядок на множестве логических кванторов

Заменим в кванторной матрице \mathcal{A}_4 один из кванторов \exists , являющийся элементом (1, 2), на квантор \forall .

$$\mathcal{A}_{4} = \begin{pmatrix} \forall & \exists \\ \exists & \forall \end{pmatrix} \rightarrow \begin{pmatrix} \forall & \forall \\ \exists & \forall \end{pmatrix}$$

Тогда множество решений ИСЛАУ с произвольно выбранной кванторной матрицей ${\cal A}$ и измененным вектором β уменьшится, что показано на Рис. З выделением фиолетовым цветом.

Замена последнего квантора \exists в кванторной матрице \mathcal{A}_4 на квантор \forall приведет нас к получению допускового множества AE-решений.

Частичный порядок на множестве логических кванторов

Рис.: Множества решений исследуемой ИСЛАУ с измененной кванторной матрицей $\mathcal{A}_4 = \begin{pmatrix} \forall & \forall \\ \exists & \forall \end{pmatrix}$

Характеризация и постановки задач

Займёмся выводом различных эквивалентных характеризаций (описаний) множеств *АЕ*-решений интервальных линейных систем. **Теорема**.

$$\Xi_{\mathcal{A}\beta}(\mathbf{A}, \mathbf{b}) = \bigcap_{\hat{A} \in \mathbf{A}^{\forall}} \bigcap_{\hat{b} \in \mathbf{b}^{\forall}} \bigcup_{\check{A} \in \mathbf{A}^{\exists}} \bigcup_{\check{b} \in \mathbf{b}^{\exists}} \left\{ x \in \mathbb{R}^{n} \mid (\hat{A} + \check{A})x = \hat{b} + \check{b} \right\}$$

В частности, если $m{A}$ — неособенная интервальная матрица, то

$$\varXi_{\mathcal{A}\beta}(\mathbf{A}, \mathbf{b}) = \bigcap_{\hat{A} \in \mathbf{A}^{\forall}} \bigcap_{\hat{b} \in \mathbf{b}^{\forall}} \bigcup_{\check{A} \in \mathbf{A}^{\exists}} \bigcup_{\check{b} \in \mathbf{b}^{\exists}} (\hat{A} + \check{A})^{-1} (\hat{b} + \check{b})$$

Объединённое множество решений ИСЛАУ

Например, для объединённого множества решений ИСЛАУ с неособенной матрицей А имеем

$$\Xi_{uni}(\mathbf{A}, \mathbf{b}) = \bigcup_{A \in \mathbf{A}} \bigcup_{b \in \mathbf{b}} A^{-1}b$$

что и обуславливает его название.

Аналитические характеризации множеств AE-решений ИСЛАV

Фундаментальным результатом теории является **Теорема**. Точка x принадлежит множеству AE-решений тогда и только тогда, когда

$$\mathbf{A}^\forall \cdot x - \mathbf{b}^\forall \subseteq \mathbf{b}^\exists - \mathbf{A}^\exists \cdot x$$

где « \cdot » — интервальное матричное умножение.

Теорема обобщает все частные характеризации для различных множеств решений интервальных линейных систем — характеризацию Бека для объединённого множества решений, характеризации для допускового множества решений и управляемого множества решений.

$$oldsymbol{\Omega}^orall \subseteq oldsymbol{\Omega}^\exists,$$
 где $oldsymbol{\Omega}$ – невязка $oldsymbol{A} \cdot x - oldsymbol{b} = oldsymbol{\Omega}(oldsymbol{A}, oldsymbol{b})$

Характеризация в полной интервальной арифметике Каухера

Определение. Интервальные матрицу ${m A}^c$ и вектор ${m b}^c$, определяемые посредством

$$m{A}^c = m{A}^ee + ext{dual } m{A}^\exists, \quad m{b}^c = ext{dual } m{b}^ee + m{b}^\exists$$

станем называть характеристическими для множества AE-решений ИСЛАУ, задаваемого дизъюнктными разложениями ${\bf A}$ на ${\bf A}^{\forall}$ и ${\bf A}^{\exists}$ и ${\bf b}$ на ${\bf b}^{\forall}$ и ${\bf b}^{\exists}$.

Теорема. Точка $x \in \mathbb{R}^n$ принадлежит множеству AE-решений $\Xi_{\mathcal{A}\mathcal{B}}(\boldsymbol{A},\boldsymbol{b})$ тогда и только тогда, когда

$$\mathbf{A}^c \cdot \mathbf{x} \subseteq \mathbf{b}^c$$

в полной интервальной арифметике Каухера.

Будет совершенно корректным говорить, что множество AE-решений (некоторой) ИСЛАУ задаётся характеристическими матрицей и вектором правой части, и писать $\Xi(\boldsymbol{A}^c, \boldsymbol{b}^c)$, не указывая явно эту систему и распределение типов неопределённостей в ней \boldsymbol{E}

Характеризация Рона множеств АЕ-решений

Теорема. (характеризация Рона множеств AE-решений) Точка х принадлежит множеству AE-решений тогда и только тогда, когда

$$|(\operatorname{mid} \mathbf{A}) \cdot x - \operatorname{mid} \mathbf{b}| \le \left(\operatorname{rad} \mathbf{A}^{\exists} - \operatorname{rad} \mathbf{A}^{\forall}\right) \cdot |x| + \left(\operatorname{rad} \mathbf{b}^{\exists} - \operatorname{rad} \mathbf{b}^{\forall}\right)$$

Доказательство.

На основе

$$p \subseteq q \Leftrightarrow |\operatorname{mid} p - \operatorname{mid} q| \le \operatorname{rad} q - \operatorname{rad} p$$

Характеризация Оеттли-Прагера

Частный случай — эквивалентность

$$x \in \Xi_{Uni}(\mathbf{A}, \mathbf{b}) \Leftrightarrow | \pmod{\mathbf{A}}x - \operatorname{mid} \mathbf{b} | \leq \operatorname{rad} \mathbf{A} \cdot |x| + \operatorname{rad} \mathbf{b}$$

для объединённого множества решений ИСЛАУ называют характеризацией Оеттли-Прагера.

Для точечной матрицы

$$x \in \Xi_{Uni}(A, \boldsymbol{b}) \Leftrightarrow |Ax - \operatorname{mid} \boldsymbol{b}| \leq \operatorname{rad} \boldsymbol{b}$$

Выпуклые полиэдральные множества

Определение. Выпуклым полиэдральным множеством в \mathbb{R}^n называется множество, которое можно представить как пересечение конечного числа замкнутых полупространств \mathbb{R}^n , т. е. как множество решений конечной системы линейных неравенств вида

$$h_{(i)}^T x \leq \xi_i, \quad i = 1, 2, \dots, p,$$

где $h_{(i)}^T \in \mathbb{R}^n, \; \xi_i \in \mathbb{R}$ и p — некоторый натуральный номер.

Вершинами интервального вектора и матрицы

Определение. Вершинами интервального вектора a из \mathbb{IR} будем называть точечные n-векторы, i-ая компонента которых равна \underline{a}_{ij} или \overline{a}_{ij} . Множество вершин интервального вектора обозначаем как

$$\texttt{vert } \boldsymbol{a} := \{ \boldsymbol{a} \in \mathbb{IR} \mid a_i \in \{\underline{\boldsymbol{a}}_i, \overline{\boldsymbol{a}_i}\}, i = 1, 2, \dots, n. \}$$

Определение. Вершинами интервальной матрицы $A=(a_{ij})$ из $\mathbb{IR}^{m\times n}$ назовём точечные $m\times n$ -матрицы, ij-ым элементом которых является \underline{a}_{ij} или \overline{a}_{ij} . Множество вершин интервальной матрицы обозначаем как

$$\text{vert } \boldsymbol{A} := \{A \in \mathbb{IR}^{m \times n} \mid A = (a_{ij}) \ a_{ij} \in \{\underline{\boldsymbol{a}}_{ij}, \overline{\boldsymbol{a}}_{ij}\}\}$$

Выпуклые полиэдральные множества

Теорема. Для любых кванторных матрицы \mathcal{A} и вектора β пересечение множества AE-решений $\Xi_{\mathcal{A}\beta}$ интервальной линейной системы уравнений $\mathbf{A}x = \mathbf{b}, \mathbf{A} \subseteq \mathbb{IR}^{m \times n}, \mathbf{b} \in \mathbb{IR}^m$, с каждым из ортантов пространства \mathbb{R}^n является выпуклым полиэдральным множеством, чьи вершины — это решения точечных линейных $m \times n$ -систем Ax = b, уравнения которых являются либо угловыми (вершинными) линейными уравнениями вида

$$ilde{a}_{i1}x_1+ ilde{a}_{i2}x_2+\ldots+ ilde{a}_{in}x_n= ilde{b}_i,$$
где $(ilde{a}_{i1}, ilde{a}_{i2},\ldots ilde{a}_{in})\in ext{vert}m{A}_{i:},\; ilde{b}_i\in ext{vert}m{b}_i$

либо уравнениями координатных гиперплоскостей вида $x_i=0$ для каких-то $i\in\{1,2,...,n\}.$

Выпуклые полиэдральные множества — IntLinIncXX

Доказательство конструктивно и указывает, как нетрудно понять, способ рисования множеств решений ИСЛАУ в случае двух или даже трех измерений. Действительно, нужно строить эти множества решений «по ортантам», последовательно фиксируя нужным образом знаки компонент точки, соответствующие её принадлежности тому или иному ортанту пространства \mathbb{R}^n .

Выпуклые полиэдральные множества — IntLinIncXX

В отдельно взятом ортанте можно выписать систему неравенств вида,

$$\left\{egin{aligned} A^{'}x \geq b^{'},\ A^{''}x \leq b^{''},\ \end{pmatrix}$$
условие на знаки $x_i, i=1,2,\ldots,n,$

определяющую пересечение множества решений с этим ортантом, а затем решить её графически. В итоге полная картинка множества решений собирается из получившихся кусков (некоторые из которых могут оказаться пустыми) [2].

Свойства основных множеств решений

Допусковое множество решений может оказаться пустым, если интервалы правой части слишком узки в сравнении с интервалами элементов матрицы.

Всегда имеет место отношение

$$\Xi_{tol}(\mathbf{A}, \mathbf{b}) \subseteq \Xi_{uni}(\mathbf{A}, \mathbf{b}),$$

т.е., допусковое множество решений всегда является подмножеством объединённого множества решений.

Основные задачи для интервальных линейных систем уравнений

Для интервальной линейной системы уравнений ${m A}x={m b}$ и кванторных матрицы ${\cal A}$ и вектора ${m eta}$ тех же размеров, что ${m A}$ и ${m b}$ соответственно найти внутреннюю интервальную оценку множества решений ${f \Xi}_{{\cal A}{m eta}}({m A},{m b}).$

И

Для интервальной линейной системы уравнений ${m A} x = {m b}$ и кванторных матрицы ${\cal A}$ и вектора ${m eta}$ тех же размеров, что ${m A}$ и ${m b}$ соответственно найти внешнюю интервальную оценку множества решений $\Xi_{{\cal A}{m eta}}({m A},{m b}).$

(2)

Прежде чем двигаться дальше в теории, рассмотрим несколько простых задач.

Пусть для неизвестных x_1,x_2 известны их сумма и есть условия для каждой переменной по-отдельности. Если при этом еще и $x_1\simeq x_2$, то с точностью до множителей система уравнений имеет вид

$$\left. \begin{array}{ccc}
 x_1 & \simeq 1 \\
 x_1 + x_2 & \simeq 2 \\
 x_2 & \simeq 1
 \end{array} \right\}$$

«Решение» этой системы $x_1 \simeq 1, x_2 \simeq 1.$

Для формальной постановки задачи зададим интервалы компонент правой части равными 0.1.

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, b = \begin{pmatrix} [0.9, 1.1] \\ [1.9, 2.1] \\ [0.9, 1.1] \end{pmatrix}$$
(3)

Синтаксис вызова программы пакета IntLinInc2D для представления объединенного множества решений:

[V, P1, P2, P3, P4] = EqnWeak2D(infA, supA, binf, bsup).

Функция возвращает ориентационную матрицу V и 4 множества точек: P1, P2, P3, P4, по одному на каждый ортант на 2D-плоскости. Ориентационная матрица содержит точки пересечения множества с

ориентационная матрица содержит точки пересечения множества с ортантами, множества P1-P4 — вершины множества в каждом ортанте.

Рис.: Формирование объединенного множества решений ИСЛАУ (3). Справа — случай с более «широкой» правой частью

Рис.: Формирование объединенного множества решений ИСЛАУ (3). Справа — случай с более «широкой» правой частью

Если условие на сумму переменных имеет малую неопределённость, оно уточняет оценки переменных. В противном случае переменные независимы.

Рассмотрим следующую характерную ситуации.

Пусть для переменных x_1, x_2 известны их сумма и отношение между ними.

$$\begin{cases}
 x_1 + x_2 \simeq 2 \\
 \frac{x_1}{x_2} \simeq \frac{2}{3}
 \end{cases}$$

Для формальной постановки задачи зададим интервалы компонент правой части равными 0.2.

То же самое сделаем с элементами второй строки матрицы уравнения, поскольку неопределенность имеет отношение переменных.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ [2.8, 3.2] & [-2.2, -1.8] \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} [1.8, 2.2] \\ 0 \end{pmatrix}$$
 (4)

Рис.: Формирование объединенного множества решений ИСЛАУ (4).

Рис.: Формирование объединенного множества решений ИСЛАУ (4).

Как и в примере с суммой переменных, одно из множеств — полоса, пересекающая оси координат. А вот вторая фигура теперь угол, с вершиной в начале координат. Его биссектриса имеет наклон, задаваемый вторым уравнением ИСЛАУ, а образующие определяются степенью неопределенности этого отношения.

Нахождение AE-решений с помощью IntLinInc2D

$$\begin{pmatrix} [-1,1] & [-1,1] \\ [-2,2] & [-2,2] \end{pmatrix} x = \begin{pmatrix} [-1,1] \\ [-2,2] \end{pmatrix}$$
 (5)

Пусть интересует решение

$$\{x \in \mathbf{R}^2 \mid (\forall A_{11} \in \mathbf{A}_{11})(\forall A_{12} \in \mathbf{A}_{12})(\forall b_2 \in \mathbf{b}_2) \\ (\exists A_{21} \in \mathbf{A}_{21})(\exists A_{22} \in \mathbf{A}_{22})(\exists b_1 \in \mathbf{b}_1) \ (Ax = b) \}$$

Зададим кванторные величины

$$A^q = \begin{pmatrix} \forall & \forall \\ \exists & \exists \end{pmatrix}, \quad b^q = \begin{pmatrix} \exists \\ \forall \end{pmatrix}.$$

Нахождение AE-решений с помощью IntLinInc2D

Подготовка переменных и вызов функции

EqnAEss2D

```
» infA=[ -1 -1 ; -2 -2 ];
» supA=[ 1 1 ; 2 2 ];
» infb=[ -1 ; -2 ];
» supb=[ 1 ; 2 ];
» Aq=[ 'A' 'A' ; 'E' 'E' ];
» bq=[ 'E' ; 'A' ];
» EqnAEss2D(infA, supA, Aq, infb, supb, bq);
```

Нахождение AE-решений с помощью IntLinInc2D

Number of orientation points = 4

Рис.: Множество решений системы (5).

В первом ортанте

$$x + y = 1$$
.

Математическая основа пакета.

Для нахождения границ множеств решений в арифметике Каухера решается задача интервального включения

$$Cx \subseteq d$$

 $m{C} = [m{C}, \overline{m{C}}] \in \mathbb{KR}^{2m}$ — интервальная матрица с границами $\underline{m{C}}, \overline{m{C}};$ $x \in \mathbb{R}^2$ — вещественный вектор неизвестных; $m{d} = [m{d}, \overline{m{d}}] \in \mathbb{KR}^m$ — интервальный вектор с границами $\underline{m{d}}, \overline{m{d}};$ $m \in N$ — натуральное положительное число; включение « \subseteq » соответствует покомпонентному выполнению неравенств $\underline{m{C}}x \geq \underline{m{d}}$ и $\overline{m{C}}x \leq \overline{m{d}}, \underline{m{C}}x$ и $\overline{m{C}}x$ левые и правые границы интервального вектора $m{C}x = [m{C}x, \overline{m{C}}x]$.

Имена функций для решения интервальных систем.

Тип	Слабое	Допусковое	Упр-е	Сильное	Кванторное
Ax = b	EqnWeak2D	EqnTol2D	EqnCtl2D	EqnStrong2D	EqnAEss2D
$Ax \geq b$	GeqWeak2D	GeqTol2D	GeqCtl2D	GeqStrong2D	GeqQtr2D
$Ax \leq b$	LeqWeak2D	LeqTol2D	LeqCtl2D	LeqStrong2D	LeqQtr2D
Axσb	MixWeak2D	MixTol2D	MixCtl2D	MixStrong2D	MixQtr2D

Таблица: Имена функций для решения интервальных систем.

MixQtr2D.

Haиболее гибкий синтаксис имеет функция MixQtr2D.

[V,P1,P2,P3,P4] = MixQtr2D(infA, supA, Aq, infb, supb, bq, relations)

В качестве входных параметров она принимает, помимо численных значений матриц и векторов infA, supA, infb, supb, кванторные матрицу и вектор Aq, bq, что даёт возможность получать решения для смешанных типов решений.

Помимо этого, задавая параметр relations, можно для каждого условия описать тип уравнения или неравенства: '=', '>', '<'.

Литература

- Barth W., Nuding E. Optimale Losung von Intervallgleichungssystemen // Computing. 1974. Vol. 12. P. 117–125.
 - Шарая И.А. Пакет IntLinIncXX для визуализации множеств решений интервальных линейных систем с двумя и тремя неизвестными: Программное обеспечение, доступное на http://www.nsc.ru/interval/sharaya