Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

2ª Prova 19/02 - Soluções

1. (2,0) Determine para quais valores de x cada uma das séries abaixo é convergente:

a)
$$\sum_{n=1}^{\infty} n^k x^n$$
, com $k \in \mathbb{N}, k \ge 1$.

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n};$$

b)
$$\sum_{n=1}^{\infty} n^n x^n;$$

$$d) \sum_{n=1}^{\infty} n! x^n.$$

Solução:

a) Seja $a_n = n^k \cdot x^n$, então

$$\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)^k |x|^{n+1}}{n^k |x|^n} = \left(1 + \frac{1}{n}\right)^k |x|.$$

Como $k \ge 1$ é constante, temos $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$. Assim, pelo critério de D'Alembert, se |x| < 1 a série é (absolutamente) convergente e se |x| > 1 a série é divergente. Se $x = \pm 1$, então a_n claramente não converge para 0, logo a série diverge. Assim, essa série converge apenas para valores de x tais que |x| < 1.

- b) Seja $a_n = n^n x^n$, então $\sqrt[n]{|a_n|} = n|x|$. Logo se $x \neq 0$ então |x| > 0 e portanto $n|x| \to \infty$ e assim a série diverge pelo critério de Cauchy. Se x = 0, então $a_n = 0$ para todo n e portanto a série é claramente convergente. Logo o único valor de x para o qual esta série converge é x = 0.
- c) Seja $a_n = \frac{x^n}{n^n}$, então $\sqrt[n]{|a_n|} = \frac{|x|}{n}$. Logo seja qual for $x \in \mathbb{R}$ vale $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 0 < 1$, e portanto a série converge pelo critério de Cauchy. Assim a série converge para todo $x \in \mathbb{R}$.
- d) Seja $a_n = n!x^n$, então $\sqrt[n]{|a_n|} = \sqrt[n]{n!} \cdot |x|$. Se $x \neq 0$, como $\sqrt[n]{n!} \to \infty$ e |x| > 0 então $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$ e portanto a série diverge pelo critério de Cauchy. Se x = 0, então $a_n = 0$ para todo n, logo a série é claramente convergente. Assim, o único valor de x para o qual a série converge é x = 0.
- 2. (2,5) Assumindo que funções exponenciais e trigonométricas são contínuas (no maior subconjunto da reta possível onde podem ser definidas) responda as seguintes questões:
 - a) Prove que existe $x \in \mathbb{R}$ tal que sen(x) = x.
 - b) Prove que existe $x \in \mathbb{R}$ tal que $e^x = x^2$.
 - c) Prove que existe $x \in \mathbb{R}$ tal que $x^4 = 3^x$.
 - d) Prove que existe $x \in \mathbb{R}$ tal que $e^{\cos(\pi \cdot x)} = \log(x)$.

Solução:

- a) Para x = 0 temos sen(0) = 0, que satisfaz o pedido.
- b) Se $f: \mathbb{R} \to \mathbb{R}$ é dada por $f(x) = e^x x^2$, então f é contínua pois é a diferença de funções contínuas. Note que $f(-1) = \frac{1}{e} 1 < 0$ pois e > 2, de modo que $\frac{1}{e} < \frac{1}{2}$, o que implica $\frac{1}{e} 1 < \frac{1}{2} 1 = -\frac{1}{2} < 0$. Por outro lado, f(0) = 1 0 = 1 > 0. Assim f(-1) < 0 e f(0) > 0 e pelo Teorema do Valor Intermediário existe $x \in (-1,0)$ tal que f(x) = 0, isto é, $e^x = x^2$.
- c) Se $f: \mathbb{R} \to \mathbb{R}$ é dada por $f(x) = x^4 3^x$, então f é contínua pois é diferença de funções contínuas. Note que f(0) = 0 1 = -1 < 0 e que $f(-1) = 1 \frac{1}{3} = \frac{2}{3} > 0$. Assim, pelo TVI existe $x \in (-1,0)$ tal que f(x) = 0, ou seja, $x^4 = 3^x$.
- d) Se $f:(0,\infty)\to\mathbb{R}$ é dada por $f(x)=e^{\cos(\pi\cdot x)}-\log(x)$, então f é diferença de funções contínuas e portanto é contínua. Note que $f(1)=\frac{1}{e}>0$. Por outro lado, $f(3)=\frac{1}{e}-\log(3)$. Como e<3, $\log(3)>1$ e portanto $-\log(3)<-1$, o que implica $\frac{1}{e}-\log(3)<\frac{1}{e}-1=\frac{1-e}{e}<0$. Assim f(1)>0 e f(3)<0 e portanto pelo TVI existe $x\in(1,3)$ tal que f(x)=0, ou seja, $e^{\cos(\pi\cdot x)}=\log(x)$.
- 3. (1,5) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função e suponha que exista C > 0 tal que $|f(x) f(y)| \le C|x y|$ para todos $x, y \in \mathbb{R}$. Mostre que f é contínua.

Solução: Sejam $a \in \mathbb{R}$ e $\varepsilon > 0$. Defina $\delta = \frac{\varepsilon}{C}$ e note que $\delta > 0$ por construção. Assim, se $x \in \mathbb{R}$ satisfaz $|x - a| < \delta$ então

$$|f(x) - f(a)| \le C|x - a| < C \cdot \delta = C \cdot \frac{\varepsilon}{C} = \varepsilon.$$

Logo f é contínua em qualquer ponto arbitrário a do domínio.

4. (1,5) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e suponha que exista P > 0 tal que f(x + P) = f(x) para todo $x \in \mathbb{R}$. Mostre que f assume um máximo e um mínimo.

Solução: Afirmamos que $\operatorname{Im}(f) = \operatorname{Im}(f|_{[0,P]})$, isto é, para determinar o conjunto imagem de f basta encontrar o conjunto imagem da restrição de f ao intervalo [0,P] (qualquer intervalo de comprimento P serviria). De fato, dado $y \in \operatorname{Im}(f)$ então existe $x \in \mathbb{R}$ tal que f(x) = y. É claro que $\mathbb{R} = \bigcup_{k \in \mathbb{Z}} [kP, (k+1)P)$ e observe que

essa união é disjunta por definição. Assim existe um único $k \in \mathbb{Z}$ para o qual $x \in [kP, (k+1)P)$, ou ainda, $kP \le x < (k+1)P$, logo $0 \le x - kP < P$ e portanto $x - kP \in [0, P)$. Como f é periódica de período P temos que f(x - kP) = f(x) = y e assim $y \in \operatorname{Im}(f|_{[0,P]})$. A outra inclusão para a igualdade é óbvia. Note que a restrição $f|_{[0,P]}:[0,P] \to \mathbb{R}$ ainda é continua e como está definida em um intervalo fechado, segue do Teorema de Weierstrass que esta função possui um máximo e um mínimo. Mas como o conjunto imagem desta função é o mesmo que da função $f:\mathbb{R} \to \mathbb{R}$, temos que a própria f possui máximo e mínimo.

- 5. (2,5) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função que satisfaz:
 - $f(x+y) = f(x) \cdot f(y)$ para todos $x, y \in \mathbb{R}$;
 - $f(x) \neq 0$ para todo $x \in \mathbb{R}$;
 - f é contínua em x = 0.

Com isso, mostre que

a) (0,5) f(0) = 1.

- b) $(0.5) \ f(-x) = f(x)^{-1} \ \text{para todo} \ x \in \mathbb{R}.$
- c) (1,5) f é contínua em todo seu domínio.

Solução:

- a) Temos em particular que $f(0+0) = f(0) \cdot f(0)$, isto é, $f(0) = f(0)^2$ e portanto f(0) = 0 ou f(0) = 1. Como por hipótese f não se anula, devemos ter f(0) = 1.
- b) Dado $x \in \mathbb{R}$, temos $1 = f(0) = f(x + (-x)) = f(x) \cdot f(-x)$, e como f não se anula, concluímos que $f(-x) = f(x)^{-1}$.
- c) Seja $a \in \mathbb{R}$ e considere (x_n) uma sequência em \mathbb{R} tal que $x_n \to a$. Então $(x_n a) \to 0$ e como f é contínua em 0, temos que $f(x_n a) \to f(0) = 1$. Ou seja, $\frac{f(x_n)}{f(a)} \to 1$, e portanto $f(x_n) \to f(a)$. Assim f é contínua em a.
- 6. (2,0) **Desafio**: Lembramos que a sequência de Fibonacci $(a_n)_{n\geq 0}$ é definida recursivamente por $a_0=0$, $a_1=a_2=1$ e $a_n=a_{n-1}+a_{n-2}$ para $n\geq 3$. Mais ainda, se $x=\frac{1+\sqrt{5}}{2}$ e $y=\frac{1-\sqrt{5}}{2}$, então

$$a_n = \frac{x^n - y^n}{\sqrt{5}}, \ \forall \ n \ge 0.$$

Prove que

$$\sum_{n=0}^{\infty} \frac{a_n}{10^{n+1}} = \frac{1}{89}.$$

Solução:

Primeiramente note que $x-y=\sqrt{5},\ x+y=1$ e que $x\cdot y=-1$. Além disso, $|\frac{x}{10}|<1$ e $|\frac{y}{10}|<1$, de modo que as séries $\sum(\frac{x}{10})^n$ e $\sum(\frac{y}{10})^n$ são convergentes. Daí

$$\sum_{n=0}^{\infty} \frac{a_n}{10^{n+1}} = \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} \frac{x^n}{10^{n+1}} - \sum_{n=0}^{\infty} \frac{y^n}{10^{n+1}} \right)$$

$$= \frac{1}{10\sqrt{5}} \left(\sum_{n=0}^{\infty} \left(\frac{x}{10} \right)^n - \sum_{n=0}^{\infty} \left(\frac{y}{10} \right)^n \right)$$

$$= \frac{1}{10\sqrt{5}} \left(\frac{1}{1 - \frac{x}{10}} - \frac{1}{1 - \frac{y}{10}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{10 - x} - \frac{1}{10 - y} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{x - y}{(10 - x)(10 - y)} \right)$$

$$= \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{100 - 10(x + y) + xy}$$

$$= \frac{1}{100 - 10 - 1}$$

$$= \frac{1}{89}.$$