PENGANTAR ARTIFICIAL NEURAL NETWORK

Isram Rasal, S.T., MMSI., M.Sc

Machine Learning Course

Masalah pada Klasifikasi

TEST

Grades: 8/10

STUDENT 2

Test: 3/10 Grades: 4/10

STUDENT 3

Test: 7/10 Grades: 6/10

?

STUDENT 3

Test: 7/10

Grades: 6/10

BOUNDARY: A LINE

$$2x_1 + x_2 - 18 = 0$$

BOUNDARY:

A LINE

$$2x_1 + x_2 - 18 = 0$$

2*Test + Grades - 18

PREDICTION:

Score > 0: Accept

Score < 0: Reject

BOUNDARY:

ALINE

$$w_1x_1 + w_2x_2 + b = 0$$

 $Wx + b = 0$
 $W = (w_1, w_2)$
 $x = (x_1, x_2)$
 $y = label: 0 or 1$

$$\hat{y} = \begin{cases} 1 \text{ if } Wx + b \ge 0 \\ 0 \text{ if } Wx + b < 0 \end{cases}$$

BOUNDARY:

A PLANE

$$W_1X_1 + W_2X_2 + W_3X_3 + b = 0$$

 $Wx + b = 0$

$$\hat{y} = \begin{cases} 1 & \text{if } Wx + b \ge 0 \\ 0 & \text{if } Wx + b < 0 \end{cases}$$

	X ₁	X ₂	X ₃		X _n	у
	EXAM 1	EXAM 2	GRADES		ESSAY	PASS?
STUDENT 1	9	6	5		6	1(yes)
STUDENT 2	8	4	8		3	0(no)
•••		•••			***	
STUDENT N	6	7	2		8	1(yes)
	-	n	columns	_	→	

n-dimensional space

BOUNDARY:

n-1 dimensional hyperplane

$$W_1X_1 + W_2X_2 + W_nX_n + b = 0$$

 $Wx + b = 0$

$$\hat{y} = \begin{cases} 1 & \text{if } Wx + b \ge 0 \\ 0 & \text{if } Wx + b < 0 \end{cases}$$

	X ₁	X ₂	X ₃		X _n	у
	EXAM 1	EXAM 2	GRADES		ESSAY	PASS?
STUDENT 1	9	6	5		6	1(yes)
STUDENT 2	8	4	8		3	0(no)
		•••			***	
STUDENT N	6	7	2		8	1(yes)
	-	n	columns	_		

n-dimensional space

BOUNDARY:

n-1 dimensional hyperplane $w_1x_1 + w_2x_2 + w_nx_n + b = 0$

$$Wx + b = 0$$

$$\hat{y} = \begin{cases} 1 & \text{if } Wx + b \ge 0 \\ 0 & \text{if } Wx + b < 0 \end{cases}$$

Perceptron

BOUNDARY:

A LINE

2x1 + x2 - 18 = 0

Score=

2*Test + Grades -18

PREDICTION:

Score ≥ 0 Accept Score < 0 Reject

Score= 2*Test + 1*Grades -18

Score=

2*Test + 1*Grades -18

PREDICTION:

Score ≥ 0 Accept

Score < 0 Reject

Score= 2*Test + 1*Grades -18

PREDICTION:

Score ≥ 0 Accept Score < 0 Reject

Set Function

AND Perceptron

IN	OUT	IN
0	Ø	Ø
0	×	(X)
×	Ø	(X)
×	×	(X)

IN	IN	OUT
1	1	1
1	0	0
0	1	0
0	0	0

AND Perceptron

IN	OUT	IN
Ø	⊘	Ø
Ø	8	8
8	Ø	8
8	8	8

IN	IN	OUT
1	1	1
1	0	0
0	1	0
		0

OR Perceptron

IN	OUT	IN
(Ø	Ø
Ø	×	②
×	Ø	Ø
×	×	(X)

IN	IN	OUT
1	1	1
1	0	1
0	1	1
0	0	0