Ch—03 Current Electricity Daily Practice Problem 02

- **Q1.** A copper wire of cross-sectional area 3.00 x 10⁻⁶ m² carries a current 10.0 A.
- (a) Find the drift speed of the electrons in the wire. Assume that each copper atom contributes one free electron to body of material.
- **(b)** Find the average time between collisions for electrons in the copper at 20° C. The density of copper is 8.95 gcm⁻³, molar mass of copper is 63.5 gmol⁻¹, Avogadro number is 6.02 x 10^{23} electrons per mol and resistivity of copper is $1.7 \times 10^{-8} \Omega m$.
- **Q2.** Consider a wire of length 0.1 m with an area of cross section 1 mm² connected to 5 V. Find the current flowing through the metallic wire where $\mu = 5 \times 10^{-6} \, m^2 \, V^{-1} s^{-1}$, $e = 1.6 \times 10^{-19} \, C$, and $n = 8 \times 10^{28} \, m^{-3}$.
- **Q3.** The free electrons of a copper wire of cross-sectional area 10^{-6} m² acquire a drift velocity of 10^{-4} m/s when a certain potential difference is applied across the wire. Find the current flowing in the wire if the density of free electrons in copper is 8.5×10^{28} electrons/m³.

- **Q4.** Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area $2.5 \times 10^{-7} \text{ m}^2$ carrying a current of 2.7 A. Assume the density of conduction electrons to be $9 \times 10^{28} \text{ m}^{-3}$.
- **Q5.** A current of 1.8 A flows through a wire of cross-sectional area 0.5 mm². Find the current density in the wire. If the number density of conduction electrons in the wire is $8.8 \times 10^{28} \text{ m}^{-3}$, find the drift speed of electrons.
- **Q6.** A current of 30 ampere is flowing through a wire of cross-sectional area 2 mm². Calculate the drift velocity of electrons. Assuming the temperature of the wire to be 27°C, also calculate the rms velocity at this temperature. Which velocity is larger? Given that Boltzmann's constant = 1.38 x 10⁻²³ J K⁻¹, density of copper 8.9 g cm⁻³, atomic mass of copper = 63.

- **Q7.** What is the drift velocity of electrons in silver wire of length 1 m, having cross-sectional area 3.14×10^{-6} m² and carrying a current of 10 A? Given atomic mass of silver = 108, density of silver = 10.5×10^{3} kg m⁻³, charge on electron = 1.6×10^{-19} C and Avogadro's number = 6.023×10^{26} per kg-atom.
- **Q8.** A potential difference of 4.5 V is applied across a conductor of length 0.1 m. If the drift velocity of electrons is $1.5 \times 10^{-4} \, \text{ms}^{-1}$, find the electron mobility.
- **Q9.** The number density of electrons in copper is 8.5×10^{28} m⁻³. A current of 1 A flows through a copper wire of length 0.24 m and area of cross-section 1.2 mm², when connected to a battery of 3 V. Find the electron mobility.

- **Q10.** Drift speed of electrons, when 1.5 A of current flows in a copper wire of cross-section 5 mm² is v. If the electron density in copper is 9 x 10^{28} / m³, the value of v in mm /s is close to (Take, charge of electron to be = 1.6×10^{-19} C)
 - (a) 0.02
 - (b) 0.2
 - (c) 2
 - (d) 3
- **Q11.** A current of 5 A passes through a copper conductor (resistivity = $1.7 \times 10^{-8} \Omega m$) of radius of cross-section 5 mm. Find the mobility of the charges, if their drift velocity is 1.1×10^{-3} m/s.
 - (a) $1.5 \text{ m}^2 / \text{V-s}$
 - (b) $1.3 \text{ m}^2 / \text{V-s}$
 - (c) $1.0 \text{ m}^2 / \text{V-s}$
 - (d) $1.8 \text{ m}^2 / \text{V-s}$

ANSWERS

1. (a) $2.46 \times 10^{-4} \text{ ms}^{-1}$ (b) $2.5 \times 10^{-14} \text{ s}$

2. 3.2 A

3. 1.36 A

4. 0.75 mrns⁻¹

5. $3.6 \times 10^6 \text{ Am}^{-2}$, $2.56 \times 10^{-4} \text{ ms}^{-1}$

6. $1.1 \times 10^{-3} \text{ ms}^{-1}$, $1.17 \times 10^{5} \text{ ms}^{-1}$

7. 3.399 x 10⁻⁴ ms⁻¹

8. 3.33 x 10⁻⁶ m² V⁻¹ s⁻¹

9. $4.9 \times 10^{-6} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$

10. a

11. c