

Exercise 5A

Question 7:

Let be an equilateral triangle.

Since it is an equilateral triangle, all the angles are equiangular and the measure of each angle is 60°

The exterior angle of ∠A is ∠BAF

The exterior angle of $\angle B$ is $\angle ABD$

The exterior angle of $\angle C$ is $\angle ACE$

We can observe that the angles $\angle A$ and $\angle BAF$, $\angle B$ and $\angle ABD$, $\angle C$ and $\angle ACE$ and form linear pairs.

Therefore, we have

Similarly, we have

Also, we have

Thus, we have, $\angle BAF = 120^\circ$, $\angle ABD = 120^\circ$, $\angle ACE = 120^\circ$ So, the measure of each exterior angle of an equilateral triangle is 120°.

Question 8:

Given: Two lines AB and CD intersect at O and O is the midpoint of AB and CD.

⇒AO =OB and CO = OD

To prove: AC = BD and AC || BD

Proof: In △AOC and △BOD, we have,

AO = OB [Given: O is the midpoint of AB]

∠AOC = ∠BOD [Vertically opposite angles]

CO = OD [Given: O is the mipoint of CD]

So, by Side-Angle-Side congruence, we have, $\triangle AOC \cong \triangle BOD$

The corresponding parts of the congruent triangles are equal.

Therefore, we have, AC = BD.

Similarly, by cp.ct, we have, This implies that alternate angles formed by AC and BD with

∠ACO = ∠BDO and transversal CD are equal. This means that, AC || BD.

 \angle CAO = \angle DBO Thus, AC = BD and AC || BD.

********** END *******