Indice

1	Minimizzazione di DFA															2														
	1.1	Notazione																												2

1 Minimizzazione di DFA

Parleremo principalmente di minimizzazione di DFA, perché questo è di interesse pratico e gli NFA non possono essere implementeati praticamente.

1.1 Notazione

Sia S un insieme, definiamo una relazione binaria come $S \subseteq S \times S$, e possiamo dire $(x, y) \in R$ o alternativamente xRy. Una relazione è di equivalenza se è

• riflessiva: $\forall x \mid xRx$

• simmetrica: $\forall x, y \mid xRy \Rightarrow yRx$

• transitiva: $\forall x, y, z \mid xRy \land yRz \Rightarrow xRz$

Se abbiamo una relazione di equivalenza su un certo insieme S, questa induce una partizione dell'insieme S. Supponiamo che un certo elemento x appartenga ad una di queste classi di equivalenza, chiamiamo questa $[x]_R$. L'indice di una relazione di equivalenza è il numero di classi di equivalenza.

Sia $S = \mathbb{N}$, diciamo che xRy sse $x \mod 3 = y \mod 3$. Questa genera tre classi di equivalenza [0], [1], [2]. Questa relazione ha indice 3.

Diciamo che R è invariante a destra rispetto ad una operazione \cdot , se

$$\forall x, y, z \in S \mid xRy \Rightarrow xzRyz$$

La relazione di sopra è invariante a destra rispetto all'operazione di somma.

Siano $R_1, R_2 \subseteq S \times S$ due relazioni di equivalenza. Diciamo che R_1 è un raffinamento di R_2 quando ogni classe di equivalenza di R_1 è contenuta in una classe di equivalenza di R_2 . Alternativamente ogni classe di R_2 sarà l'unione di alcune classi di equivalenza di R_1 , e vale che

$$xR_1y \Rightarrow xR_2y$$

Utilizziamo le due relazioni

$$xR_1 \Leftrightarrow x \mod 2 = y \mod 2$$

 $xR_2 \Leftrightarrow x \mod 6 = y \mod 6$

La relazione R_1 induce due classi di equivalenza, mentre R_2 induce sei classi di equivalenza. Abbiamo che R_2 è un raffinamento di R_1 e $[0]_{R_1} = [0]_{R_2} \cup [2]_{R_2} \cup [4]_{R_2}$, e $[1]_{R_1} = [1]_{R_2} \cup [3]_{R_2} \cup [5]_{R_2}$.

Sia $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ un DFA, costruiamo una relazione $R_M \subseteq \Sigma^* \times \Sigma^*$ definita come

$$\forall x, y \mid xR_M y \Leftrightarrow \delta(q_0, x) = \delta(q_0, y)$$

Si può mostrare che questa è una relazione di equivalenza.

L'indice di questa relazione è il numero di stati raggiungibili, quindi è $\leq |Q|$.

Questa relazione è invariante a destra rispetto alla concatenazione, infatti

$$\forall x, y, z \in \Sigma^* x R_M y \Rightarrow x z R_M y z$$

Vale che xR_My implica che x e y non sono distinguibili per il linguaggio accettato dall'automa L(M). E vale che o entrambe appartengono al linguaggio, o entrambe non appartengono. Quindi abbiamo che L(m) è l'unione di alcune classi di equivalenza di R_M .

La partizione corrispondente a q_0 è $[\epsilon]_{R_M}$, o la classe delle parole con un numero pari di a e di b. La partizione corrispondente a q_3 è $[b]_{R_M}$, o la classe delle parole con un numero pari di a e un numero dispari di b. E così via.

Il linguaggio riconosciuto è il linguaggio delle parole con a pari.

Dato un linguaggio $L\subseteq \Sigma^*$ qualsiasi (non per forza regolare). Definiamo $R_L\subseteq \Sigma^*\times \Sigma^*$ tale che

$$\forall xyz \in \Sigma^* \mid xR_L y \Leftrightarrow (xz \in L \Leftrightarrow yz \in L)$$

Quindi $x \in y$ non sono distinguibili.

Si può mostrare che questa è una relazione di equivalenza. Mostriamo che è anche invariante a destra rispetto alla concatenazione, infatti

$$\forall xyw \in \Sigma^* \mid xR_L y \Rightarrow xwR_L yw$$

questo vale banalmente per la proprietà associativa della concatenazione.

Visto che è per un linguaggio qualsiasi, l'indice potrebbe essere anche non finito.

Visto che $xR_Ly \Rightarrow x,y \in L \lor x,y \notin L$, allora posso dire che L è l'unione di alcune classi di equivalenza di R_L .

Prendiamo ad esmepio

$$\mathcal{L} = \{ x \in \{a, b\}^* \mid \#_a(x) \text{ è pari } \}$$

 $R_{\mathcal{L}}$ induce due classi di equivalenza: le stringhe con un numero di a pari, e le stringhe con un numero di a dispari. Questo è anche il linguaggio accettato dall'automa di Ed è facile vedere che questo può essere ristretto ad

Teorema 1 (Teorema di Myhill-Nerode). Sia $L \subseteq \Sigma^*$ un linguaggio, allora le sequenti affermazioni sono equivalenti:

- (a) L è regolare
- (b) L è l'unione di alcune classi di equivalenza di una relazione di equivalenza invariante a destra rispetto alla concatenazione di indice finito
- (c) La relazione R_L associata a L ha indice finito

Dimostrazione. Dimostreremo che $a \Rightarrow b, b \Rightarrow c$ ed infine che $c \Rightarrow a$.

- Dimostriamo che $a \Rightarrow b$. Assumento L regolare, esiste un automa $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ che accetta L. Allora abbiamo già visto primo che R_M è una relazione di equivalenza invariante a destra rispetto alla concatenazione, ed abbiamo anche visto che L è l'unione di alcune delle sue classi di equivalenza.
- Dimostriamo che $b \Rightarrow c$. Sia $E \subseteq \Sigma^* \times \Sigma^*$ una relazione di equivalenza invariante a destra di indice finito tale che L è l'unione di alcune sue

classi di equivalenza. Se xEy allora per ogni z, (xzEyz) per l'invarianza. Quindi $\forall z \in Sigma^*(xz \in L \Leftrightarrow yz \in L)$, sfruttando l'ipotesi che L è l'unione di alcune classi di E. Dalla definizione di R_L segue che xR_Ly , quindi E è un raffinamento di R_L . Quindi l'indice di E è maggiore o uguale all'indice di R_L , e visto che l'indice di E è finito, allora anche l'indice di R_L è finito.

- Dimostraimo che $c \Rightarrow a$. Suppongo che R_L abbia indice finito, allora costruisco l'automa $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$, dove
 - $-\ Q'=\{[x]|x\in\Sigma^*\}$ è l'insieme della classi di equivalenza di R_L
 - $q_0' = [\epsilon]$
 - $-\delta'([x], a) = [xa]$, siccome la relazione è invariante a destra, non dipende dalla scelta della x, va bene qualsiasi elemento della classe di equivalenza
 - $-F'=\{[x]\mid x\in L\},$ l'insieme delle classixtale che x appartiene ad L

Si può mostrare che $\forall x \in \Sigma^* \mid \delta'(q_0', x) = [x]$, quindi si può mostrare che L(M') = L.

Si può mostrare che R_M è un raffinamento di R_L .

Teorema 2 (Teorema dell'automa minimo). Dato $L \subseteq \Sigma^*$ regolare, l'automa deterministico minimo che accetta L è unico a meno di isomorfismi ed è l'automa M' ottenuto nella dimostrazione $c \Rightarrow a$.

5