Multilinear Regression(Based on back propagation) is used for optimization. As there are five diffrent modules, we are using Multilinear Regression algorithm to rank them based on there importance.

```
Tn [1]:
       import pandas as pd
       import matplotlib.pyplot as plt
       import numpy as np
In [2]: dataset = pd.read_csv('Results_optimization.csv')
       X = dataset.iloc[:, 1:6].values
       y = dataset.iloc[:, 6].values
In [4]: print(dataset)
       print(X)
       print(y)
                        Name Verbal
                                      Logic
                                              Emotion Object
                                                                Social Result
                              5 5.833333
       0
                                                       6.0 6.666667
                   jay_jain_4
                                              8.333333
                                                                       8.1695
                                 5 3.333333
                                                         4.5 4.166667 5.6966
       1
                 John Abraham
                                              7.500000
                                7 2.500000 9.166667
                                                         6.5 5.833333 7.2655
       2
               Albert_Jonas_6
                                6 5.000000 1.666667
                                                         3.5 6.666667 5.2935
       3
                  joy_marsh_5
                                 4 3.333333
                                             9.166667
                                                         2.5 5.833333 5.5496
       4
                   smith_john
                                7 3.333333 6.666667
                                                         6.5 5.000000 6.5179
       5
                     nothing
                                7 8.333333 6.666667
                                                         7.5 5.833333 8.2216
       6
                Anand_Gupta_6
                                6 7.500000 9.166667
                                                         6.0 3.333333 8.2216
       7
                 Neha_Shah_8
                                2 3.333333 9.166667
                                                         3.5 5.000000 5.1047
       8
                Sheela_Modi_8
                Aarti_Patel_6
                                7 7.166667 5.833333
                                                         4.5 9.166667 7.5695
       9
                                7 2.500000 7.500000
                                                         5.0 0.833333 5.0000
       10
             Priya_Panchal_8
                                                         6.0 4.166667 6.6927
           Karishma_Agrawal_7
                                7 6.666667 10.000000
       11
                                7 5.833333 5.000000
            Elliot_Anderson_8
                                                         3.0 5.833333 6.7640
       12
                               7 6.666667 9.166667
9 8.333333 10.000000
       13
             Saurabh_Tiwari_7
                                                         4.0 5.000000 6.6927
       14
               Brian_Thomas_6
                                                         5.0 4.166667 8.1695
       15
              Sheetal_Patil_5
                                3 5.833333 5.000000
                                                         3.0 5.000000 5.1053
              Rushabh_Mutha_6 2 5.000000 5.000000 Shahid_Khan_5 6 6.666667 5.833333
       16
                                                         2.5 5.833333 5.0000
       17
                                                         5.5 6.666667 8.1695
                                                      6.66666667]
4.16666667]
       [[ 5.
                      5.83333333 8.33333333 6.
          5.
                      3.33333333 7.5
                                            4.5
        Γ
          7.
                     2.5
                                 9.16666667 6.5
                                                       5.83333333]
        Γ
        [ 6.
                      5.
                                 1.66666667 3.5
                                                       6.66666667]
                      3.3333333
                                  9.16666667 2.5
                                                       5.83333333]
          7.
                     3.33333333 6.66666667 6.5
                                                       5.
        Γ
                     8.33333333 6.66666667 7.5
                                                       5.83333333]
        [ 6.
                     7.5
                                 9.16666667 6.
                                                        3.33333333]
                     3.33333333 9.16666667 3.5
        [
          7.
                     7.16666667 5.83333333 4.5
                                                       9.16666667]
                                        5.
          7.
                     2.5
                                 7.5
                                                       0.83333333]
          7.
                     6.66666667 10.
                                            6.
                                                        4.16666667]
          7.
                     5.83333333
                                            3.
                                                       5.83333333]
          7.
                     6.6666667
                                 9.16666667 4.
                                                       5.
                     8.33333333 10. 5.
          9.
                                                       4.16666667]
          3.
                      5.83333333
                                5.
                                            3.
                                                        5. ]
                                            2.5
5.5
          2.
                     5.
                                  5.
                                                        5.83333333]
                                5.83333333
        6.
                      6.6666667
                                                         6.6666667]]
       [ 8.1695 5.6966 7.2655 5.2935 5.5496 6.5179 8.2216 8.2216 5.1047
                       6.6927 6.764
         7.5695 5.
                                     6.6927 8.1695 5.1053 5.
                                                                  8.1695]
In [5]: #Splitting the dataset
       from sklearn.model_selection import train_test_split
       X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_s
       tate=0)
```

```
In [6]: #Fiting multiple linear regression to training set
    from sklearn.linear_model import LinearRegression
    reg = LinearRegression()
    reg.fit(X_train, y_train)
```

Out[6]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

```
In [7]: #Predicting the value
y_pred = reg.predict(X_test)
```

```
In [8]: #Building the optimal model
import statsmodels.formula.api as sms
X_opt = X[: , [0,1,2,3,4]]
reg_ols = sms.OLS(endog = y, exog = X_opt).fit()
reg_ols.summary()
```

C:\Users\expert\Anaconda3\lib\site-packages\scipy\stats\stats.py:1334: UserWar ning: kurtosistest only valid for n>=20 ... continuing anyway, n=18 "anyway, n=%i" % int(n))

Out[8]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.995
Model:	OLS	Adj. R-squared:	0.994
Method:	Least Squares	F-statistic:	559.1
Date:	Sun, 01 Apr 2018	Prob (F-statistic):	1.08e-14
Time:	09:14:46	Log-Likelihood:	-11.495
No. Observations:	18	AIC:	32.99
Df Residuals:	13	BIC:	37.44
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
x1	0.1345	0.085	1.585	0.137	-0.049	0.318
x2	0.2699	0.076	3.554	0.004	0.106	0.434
х3	0.1602	0.053	3.032	0.010	0.046	0.274
х4	0.3726	0.109	3.407	0.005	0.136	0.609
х5	0.2760	0.064	4.308	0.001	0.138	0.414

Omnibus:	0.200	Durbin-Watson:	2.598
Prob(Omnibus):	0.905	Jarque-Bera (JB):	0.034
Skew:	-0.063	Prob(JB):	0.983
Kurtosis:	2.829	Cond. No.	12.9

```
In [9]: #2nd iteration
    X_opt = X[: , [1,2,3,4]]
    reg_ols = sms.OLS(endog = y, exog = X_opt).fit()
    reg_ols.summary()
```

C:\Users\expert\Anaconda3\lib\site-packages\scipy\stats\stats.py:1334: UserWar ning: kurtosistest only valid for n>=20 ... continuing anyway, n=18 "anyway, n=%i" % int(n))

Out[9]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.994
Model:	OLS	Adj. R-squared:	0.993
Method:	Least Squares	F-statistic:	630.2
Date:	Sun, 01 Apr 2018	Prob (F-statistic):	1.25e-15
Time:	09:15:02	Log-Likelihood:	-13.085
No. Observations:	18	AIC:	34.17
Df Residuals:	14	BIC:	37.73
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
x1	0.3113	0.075	4.147	0.001	0.150	0.472
x2	0.1707	0.055	3.093	0.008	0.052	0.289
х3	0.4693	0.096	4.910	0.000	0.264	0.674
х4	0.2785	0.067	4.131	0.001	0.134	0.423

Omnibus:	0.215	Durbin-Watson:	3.027
Prob(Omnibus):	0.898	Jarque-Bera (JB):	0.030
Skew:	-0.062	Prob(JB):	0.985
Kurtosis:	2.843	Cond. No.	9.21

```
In [10]: #3rd iteration
    X_opt = X[: , [1,3,4]]
    reg_ols = sms.OLS(endog = y, exog = X_opt).fit()
    reg_ols.summary()
```

C:\Users\expert\Anaconda3\lib\site-packages\scipy\stats\stats.py:1334: UserWar ning: kurtosistest only valid for n>=20 ... continuing anyway, n=18 "anyway, n=%i" % int(n))

Out[10]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.991
Model:	OLS	Adj. R-squared:	0.989
Method:	Least Squares	F-statistic:	532.8
Date:	Sun, 01 Apr 2018	Prob (F-statistic):	1.87e-15
Time:	09:15:15	Log-Likelihood:	-17.773
No. Observations:	18	AIC:	41.55
Df Residuals:	15	BIC:	44.22
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
x1	0.3521	0.093	3.801	0.002	0.155	0.550
x2	0.6564	0.093	7.079	0.000	0.459	0.854
х3	0.2948	0.084	3.499	0.003	0.115	0.474

Omnibus:	0.947	Durbin-Watson:	2.802
Prob(Omnibus):	0.623	Jarque-Bera (JB):	0.877
Skew:	-0.442	Prob(JB):	0.645
Kurtosis:	2.377	Cond. No.	6.37

```
In [11]: #4th iteration
    X_opt = X[: , [1,3]]
    reg_ols = sms.OLS(endog = y, exog = X_opt).fit()
    reg_ols.summary()

C:\Users\expert\Anaconda3\lib\site-packages\scipy\stats\stats.py:1334: UserWar
    ning: kurtosistest only valid for n>=20 ... continuing anyway, n=18
```

Out[11]: OLS Regression Results

"anyway, n=%i" % int(n))

Dep. Variable:	у	R-squared:	0.983
Model:	OLS	Adj. R-squared:	0.981
Method:	Least Squares	F-statistic:	465.8
Date:	Sun, 01 Apr 2018	Prob (F-statistic):	6.60e-15
Time:	09:15:38	Log-Likelihood:	-23.143
No. Observations:	18	AIC:	50.29
Df Residuals:	16	BIC:	52.07
Df Model:	2		
Covariance Type:	nonrobust		

		coef	std err	t	P> t	[0.025	0.975]
>	c 1	0.5360	0.100	5.387	0.000	0.325	0.747
,	(2	0.7568	0.115	6.577	0.000	0.513	1.001

Omnibus:	2.692	Durbin-Watson:	2.011
Prob(Omnibus):	0.260	Jarque-Bera (JB):	1.008
Skew:	-0.474	Prob(JB):	0.604
Kurtosis:	3.668	Cond. No.	5.06

After each iteration the most insigificant module or 'test' was eliminated. So, Here are the ranking:

- 1. Logic
- 2. Object
- 3. Social
- 4. Emotion
- 5. Verbal

Note: All this calculation are based on Dummy data, just for testing the correctness of model. Actual value may changed when data used in algorithm is based on test performed by kids in real world.