

				111111111111111111111111111111111111111							
					Su	bjec	t Co	de:	KC	S302	
Roll No:											

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 COMPUTER ORGANIZATION AND ARCHITECTURE

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1	Attempt <i>all</i> questions in brief.	2x10 = 20
1.	Attempt an questions in prief.	2x10-20

TACCOIL	ipt un questions in brief.	0 =0
Qno	Questions	CO
(a)	List and briefly define the main structural components of a computer.	CO1
(b)	Differentiate between horizontal and vertical microprogramming.	CO3
(c)	Represent the following conditional control statements by two register	CO1
	transfer statements with control functions.	
	If(P=1) then (R1 \leftarrow R2) else if (Q=1) then (R1 \leftarrow R3)	
(d)	Design a 4-bit combinational incremental circuit using four full adder	CO2
	circuits.	
(e)	Differentiate between Daisy chaining and centralized parallel	CO5
	arbitration.	
(f)	What is the transfer rate of an eight-track magnetic tape whose speed is	CO5
	120 inches per second and whose density is 1600 bits per inch?	
(g)	Register A holds the binary values 10011101. What is the register value	CO2
	after arithmetic shift right? Starting from the initial number 10011101,	
	determine the register value after arithmetic shift left, and state whether	D.
	there is an overflow.	1X
(h)	What is an Associative memory? What are its advantages and	CO4
	disadvantages?	
(i)	Differentiate between static RAM and Dynamic RAM.	CO4
(i)	What are the different types of instruction formats?	CO3

SECTION B

2. Attempt any *three* of the following: 10x3 = 30

	,	50-00 00-00
Qno	Questions	CO
(a)	A digital computer has a common bus system for 8 registers of 16 bit	CO1
2 00	each. The bus is constructed using multiplexers.	
	I. How many select input are there in each multiplexer?	
,	II. What is the size of multiplexers needed?	
	III. How many multiplexers are there in the bus?	
(b)	Explain destination-initiated transfer using handshaking method.	CO5
(c)	Explain 2-bit by 2-bit Array multiplier. Draw the flowchart for divide	CO2
	operation of two numbers in signed magnitude form.	
(d)	A digital computer has a memory unit of 64K X 16 and a cache	CO4
	memory of 1K words. The cache uses direct mapping with a block size	
	of four words.	
	I. How many bits are there in the tag, index, block, and word	
	fields of the address format?	
	II. How many bits are there in each word of cache, and how	
	they are divided into functions? Include a valid bit.	
	III. How many blocks can the cache accommodate?	
(e)	Explain with neat diagram, the address selection for control memory.	CO3

Printed Page: 2 of 2 **Subject Code: KCS302** Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 COMPUTER ORGANIZATION AND ARCHITECTURE

SECTION C

2	Attempt any are nort of the followings	10x1 = 1
J.	Attempt any <i>one</i> part of the following:	10X1 - 1

Attem	Attempt any <i>one</i> part of the following: 10x1			
Qno	Questions	CO		
(a)	A binary floating-point number has seven bits for a biased exponent.	CO2		
	The constant used for the bias is 64.			
	I. List the biased representation of all exponents from -64 to +63.			
	II. Show that after addition of two biased exponents, it is necessary			
	to subtract 64 in order to have a biased exponent's sum.			
	III. Show that after subtraction of two biased exponents, it is	,		
	necessary to add 64 in order to have a biased exponent's			
	difference.			
(b)	Show the multiplication process using Booth algorithm, when the	CO2		
	following binary numbers, $(+13)$ x (-15) are multiplied.			

Attempt any one part of the following: 4.

10 1	10
10v1	= 10

Qno	Questions	CO
(a)	Draw a diagram of a Bus system in which it uses 3 state buffers and a	CO1
99 183	decoder instead of the multiplexers.	
(b)	Explain in detail multiple bus organization with the help of a diagram.	CO1

Attempt any *one* part of the following: 5.

) x1	≠1 0	

Qno	Questions	CO
(a)	The logical address space in a computer system consists of 128	CO4
<i>y</i>	segments. Each segment can have up to 32 pages of 4K words each.	
	Physical memory consists of 4K blocks of 4K words each. Formulate	
	the logical and physical address formats.	
(b)	How is the Virtual address mapped into physical address? What are the	CO4
	different methods of writing into cache?	

Attempt any one part of the following: 6.

11	1	1.0	10
) x 1	_	10
	<i>,</i> ,	_	,

Qno	Questions	CO
(a)	Explain how the computer buses can be used to communicate with	
	memory and I/O. Also draw the block diagram for CPU-IOP	
	communication.	
(b)	What are the different methods of asynchronous data transfer? Explain	CO5
	in detail.	

Attempt any one part of the following:

10	XI	=	IU	,

Qno	Questions	CO	
(a)	Write a program to evaluate arithmetic expression using stack	CO3	
	organized computer with 0-address instructions.		
	X = (A-B) * (((C - D * E) / F) / G)		
(b)	List the differences between hardwired and micro programmed control		
	in tabular format. Write the sequence of control steps for the following		
	instruction for single bus architecture.		
	$R1 \leftarrow R2 * (R3)$		