Note del corso di Geometria 1

Gabriel Antonio Videtta

10 maggio 2023

Classificazione delle coniche

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Nota. Si assume che, nel corso del documento, valga che char $\mathbb{K} \neq 2$.

Definizione (quadriche). Si dice **quadrica** un qualsiasi luogo di zeri di un polinomio $p \in \mathbb{K}[x_1, \dots, x_n]$ con deg p = 2.

Definizione (coniche). Si dice **conica** una quadrica relativa ad un polinomio in due variabili.

Osservazione.

- ▶ Una quadrica è invariante per la relazione \sim su $\mathbb{K}[x_1,\ldots,x_n]$, dove $p_1 \sim p_2 \iff \exists \alpha \in \mathbb{K}^* \mid p_1 = \alpha p_2$. Infatti il luogo di zeri di un polinomio non varia se esso viene moltiplicato per una costante non nulla di \mathbb{K} .
- ▶ Una quadrica può essere vuota (come nel caso della conica relativa a $x^2 + y^2 + 1$ in \mathbb{R}).
- ▶ Si identifica con la notazione $p(\underline{x})$ con $\underline{x} \in \mathbb{K}^n$, la valutazione del polinomio p nelle coordinate di \underline{x} . Per esempio, se $\underline{x} = (1,2)$ e $p(x,y) = x^2 + y^2$, con $p(\underline{x})$ si identifica il valore $p(1,2) = 1^2 + 2^2 = 5$.

Osservazione (riscrittura di p mediante matrici). Sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora p si può sempre scrivere come $p_2 + p_1 + p_0$, dove p_i è un polinomio omogeneo contenente soltanto monomi di grado i.

In particolare, $p_2(x_1, \ldots, x_n)$ può essere sempre riscritto come $\sum_{i=1}^n \sum_{j=1}^n a_{ij}$ con $a_{ij} \in \mathbb{K}$ con $a_{ij} = a_{ji}$. È infatti sufficiente "sdoppiare" il coefficiente c_{ij} di x_ix_j in due metà, in modo tale che $c_{ij}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_ix_j$. Inoltre, anche $p_1(x_1, \ldots, x_n)$

può essere riscritto come $\sum_{i=1}^{n} b_{ij}$.

Si possono allora considerare la matrice $A \in M(n, \mathbb{K})$ ed il vettore $\underline{b} \in \mathbb{K}^n$, definiti in modo tale che:

$$A = (a_{ij})_{i,j=1-n}, \qquad b = (b_i)_{i=1-n} \in \mathbb{K}^n.$$

Infatti, $A \in \underline{b}$ soddisfano la seguente identità:

$$p(x) = x^{\top} A x + b^{\top} x + c,$$

che, riscritta tramite l'identificazione di $\mathcal{A}_{n}(\mathbb{K})$ come l'iperpiano $H_{n+1} \in \mathcal{A}_{n+1}(\mathbb{K})$, diventa:

$$p(\underline{x}) = \hat{\underline{x}}^{\top} \hat{A} \hat{\underline{x}}, \text{ dove } \hat{A} = \begin{pmatrix} A & | \underline{b}/2 \\ \underline{b}^{\top}/2 & c \end{pmatrix}.$$

Si osserva che \hat{A} è una matrice simmetrica di taglia n+1 a elementi in \mathbb{K} , e in quanto tale essa induce un prodotto scalare su \mathbb{K}^{n+1} . Pertanto la quadrica relativa p è esattamente l'intersezione tra H_{n+1} e $\mathrm{CI}(\hat{A})$, identificando \mathbb{K}^{n+1} come H_{n+1} , ossia la quadrica è esattamente $\iota^{-1}(H_{n+1}\cap\mathrm{CI}(\hat{A}))$.

Definizione (matrice associata ad una quadrica). Si definisce la costruzione appena fatta di \hat{A} come la **matrice associata alla quadrica relativa a** p, e si indica con $\mathcal{M}(p)$. In particolare, A è detta la matrice che rappresenta la parte quadratica, e si indica con $\mathcal{A}(p)$, mentre b/2 rappresenta la parte lineare, indicata con $\mathcal{L}(p)$, e c = c(p) è detto termine noto.

Definizione (azione di $A(\mathcal{A}_n(\mathbb{K}))$ su $\mathbb{K}[x_1,\ldots,x_n]$). Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$. Allora $A(\mathcal{A}_n(\mathbb{K}))$ agisce su $\mathbb{K}[x_1,\ldots,x_n]$ in modo tale che $p'=p\circ f$ è un polinomio per cui p'(x)=p(f(x)).

Proposizione (formula del cambiamento della matrice associata su azione di $A(\mathcal{A}_n(\mathbb{K}))$). Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$ e sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora vale la seguente identità:

$$\mathcal{M}(p \circ f) = \hat{M}^{\top} \mathcal{M}(p) \hat{M} = \begin{pmatrix} M^{\top} \mathcal{A}(p) \underline{t} M & M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \\ \left(M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \right)^{\top} & p(\underline{t}) \end{pmatrix},$$

$$\operatorname{con} \hat{M} = \begin{pmatrix} M & \underline{t} \\ 0 & 1 \end{pmatrix},$$

 $\text{dove } f(\underline{x}) = M\underline{x} + \underline{t} \; \forall \, \underline{x} \in \mathbb{K}^n \text{ con } M \in \mathrm{GL}(n,\mathbb{K}) \text{ e } \underline{t} \in \mathbb{K}^n.$