

Fast-sampling EM applied to the River Murray and surrounding floodplains in Australia

Michael Hatch¹, Volmer Berens², Andrew Fitzpatrick³, Graham Heinson¹, Tim Munday³, Andrew Telfer⁴

- ¹CRCLEME, School of Earth and Environmental Sciences, University of Adelaide, Adelaide SA, Australia
- ²South Australian Department of Water, Land, and Biodiversity Conservation, Adelaide SA, Australia
- ³CSIRO Exploration and Mining / CRCLEME, Technology Park, Kensington WA, Australia
- ⁴Australian Water Environments, Norwood SA, Australia

Fast sampling EM: Where were these data collected?

(that I am interested in)?

Ocean water is about 28,000 mg/l or 5000 mS/m or 0.2 ohm-m

WHAT ARE THE GEOHYDROLOGICAL ISSUES IN THE MURRAY BASIN

(that I am interested in)?

- Most of the basin is underlain by highly saline groundwater (>25,000 EC). Sea water is >50,000 EC.
- This groundwater is quite shallow, and therefore quite close to the river and floodplains.
- Historically parts of the river have gained saline groundwater.
- This process has been exacerbated by over-irrigation near the river which tends to push the underlying groundwater to the floodplain and then to the river more quickly.

Cooperative Research Centre for Landscape Environments and Mineral Exploration

WHAT IS HAPPENING ON THE FLOODPLAIN?

- Floodplain processes are important to river salinity and health. We need more tools to help characterise floodplain health.
- Floodplains vary in width from tens of metres to kilometres and run along most of the river.
- Access can be difficult and floodplains are often covered in scrub. Airborne techniques will mos likely provide the most complete coverage. For now...

Cooperative Research Centre for Landscape Environments and Mineral Exploration

WHY DO GEOPHYSICS IN THIS ENVIRONMENT?

- Too much salt in the river is bad. And salty, conductive water is a good target for shallow geophysical techniques.
- Older technologies were good for finding large salt infiltrations, but we need to locate smaller sources.
- We need to characterise the floodplains.

Geology of the Murray Basin at Loxton (a typical section along the river)

"Standard" NanoTEM

"Normal" NanoTEM Setup

- Transmitter shuts off in
- <2 microseconds.
- Receiver turns on in
- <2 microseconds.
- Receiver sampling rate can be set to 1.6 or 1.2 microseconds.

Receiver and

Transmitter

"Standard" NanoTEM on Clark's Floodplain

Note that near-surface groundwater sampled at bore was 42,100 uS/m ie approximately ¼ ohm-m.

Instream NanoTEM

Instream NanoTEM

- Equipment enables collection of large amounts of data, quickly.
- System has been commercialised with almost 2000 line km collected so far.
- Each survey as standalone has provided lots of new information about the river. We are in the process of evaluating value of repeat surveys.

Instream NanoTEM: 2006

Instream NanoTEM at Clark's Floodplain

Cooperative Research Centre for Landscape Environments and Mineral Exploration

9.5

3.5

0.75

Resistivity

ohm-m

cliffs/irrigation mound

Towed frame development

Towed frame: Test Line at University of Adelaide campus

Towed frame: Overview of an afternoon's data collection at Clark's Floodplain

Towed frame: Overview of an afternoon's data collection at Clark's Floodplain

Depth slice at 2m

Depth slice at 6m

Depth slice at 10m

Towed frame:

Cooperative Research Centre for Landscape Environments and Mineral Exploration

Comparison with EM-31 at Clark's Floodplain: Area A

Towed frame: Comparison with EM-31 at Clark's Floodplain: Area A

On the EM-31 a true resistivity of 1 ohm-m is read on the instrument as at least 2 ohm-m.

Towed frame: at Clark's Floodplain: Area B

Towed frame: at Clark's Floodplain: Area B

Conclusions

- Fast-sampling shallow TEM is shown to be an important tool in the characterisation of river and floodplain systems. These data sets add high resolution information about salinity and geological variation.
- Development of a system to rapidly look at the top 10 metres of a floodplain (or a farm paddock or...) is a worthwhile extension of the "Standard" NanoTEM system.

ACKNOWLEDGEMENTS

- Murray Darling Basin Commission
- Mid Murray LAP
- SA DWLBC
- NSW DIPNR
- Mallee Catchment Management Authority
- Goulburn Murray Water
- Mid Murray LAP
- North Central Catchment Management Authority
- NSW DIPNR
- Australian Water Environments
- CRCLEME (including GA and CSIRO)
- Zonge Engineering (Australia)
- Brian Barrett (presently at University of Leeds)
- Barry Porter (SA DWLBC, Berri, SA)
- Geophysical Resources and Services (GRS)

