

Projektmunka I.

Mérésautomatizálás delta robottal

OE-KVK 2024. november 28.

Hallgtó neve: S Neptun kód: Y

Széles Péter YYHITZ

Tartalomjegyzék

1.	Specifikáció	2			
2.	Irodalomkutatás2.1. Léptetőmotor pozícionálás2.2. Inverz kinematika2.3. Effektor mozgásának útja	6			
3.	Logikai rendszerterv	10			
4.	Ütemterv	11			
5.	Fizikai rendszerterv 5.1. Mikrokontroller 5.2. Léptetőmotorok 5.3. Szenzorok 5.4. Kommunikáció	12			
6.	. Szoftver terv 1				
7.	Megvalósítás				
8.	Tesztelés 8.1. Gyorsulási rámpa tesztelése	15 15			
9.	. Tesztelés eredményeinek értékelése				
10	0.Fejlesztési lehetőségek				
11.	I1.Hivatkozások				

1. Specifikáció

Dolgozatomban egy delta robottal megvalósított, úgynvezett "Flying probe" automata áramkör mérőrendszert szeretnék megvalósítani. A nyomtatott áramköröm meglévő mérési pontokat kamera segítségével azonosítom, és a mérőtüskét a delta robot helyezi pozícióba legalább +-1mm pontossággal. A mérést automatikusan digitális műszer segítségével végződik. A digitális műszerret és a robotkarrart egy számítógép vezérelné, ami a mérési eredményeket tárolná és visszajelezné.

2. Irodalomkutatás

2.1. Léptetőmotor pozícionálás

Léptetőmotor pozícionálása történhet vezrléssel, vagy szabályozással. Vezérlés előnye hogy mevalósítása egyszerűbb és olcsóbb, ha a rendszer mozgatásához szükséges nyomaték, soha nem haldja meg a léptetőmotor által képes ladott nyomaték nagyságát, ez a módsze hosszú távon pontos pozícionálást tud lehetővé tenni. Olyan rendszerekben ahol a rendszer mozgatásához szükséges nyomaték gyorsan, vagy előre meg nem jósolható módon megváltozhat, a léptető motor lépést téveszthet, így ott visszacsatolást kell bevezetni. Ez a visszacsatolás történhet a motor tengelypozíciójának mérésével, vagy a motor tekercsein folyó áram mérésével. [1]

Nyíthurkú működés során a megtett lépések számolásával határoznánk meg a pozíciónkat. A kezdeti pozíciót a rendszer újraindításakor meg kell adni. Ez történhet kézzel ismert pozícióba mozgatással, törénhet végálláskapcsolókkal vagy motoráram mérésen alapuló "homeing"-al. A motor számított, és enkóderrel mért valós pozícióját adott időközönként összehasonlítjuk. Amint a várt és valós érték közt egy lépésnél nagyobb eltérét mérünk átkapcsolunk szabázáson alapuló irányításra. Amint a pozició megegyezik a kívántal visszakapcsolunk vezérelt működésre és újrakalkulájuk az útvonalat a jelenlegi pozíciótól.

Léptetőmotor lépéstévesztésének lehetséges okai:

- Motor indításakor a vezérlő frekvencia túl nagy.
- A motor saját rezonanciafrekvenciájához közeli vezérlőfrekvenciával vezéreljük.
- Maximális vezérlőfrekvencia túl nagy.
- Külső hatás.

Az első három ok orvosolható megfelelő gyorsulási rámpák implementálásával. Külső hatások ellen csak a motor nyomatékának növelésével tudunk védekezni. A gyorsulási rámpa lehet Trapéz ("Trapezoidal"), Sgörbe ("S-curve") vagy parabola (sebesség) jellegű.

2. ábra. S-görbe és Trapéz gyorsuási görbe

1. ábra. Parabola gyorsulási görbe

Trapéz görbe matematikai leírása:

$$s_t = s_0 + v_0 T + \frac{1}{2}at^2$$
$$V_t = V_0 + at$$

s₀: kezdő pozíció.

 V_0 : kezdő sebesség.

 s_t : pillanatnyi pozíció.

 v_t : pillanatnyi sebesség.

a: állandó gyorsulás.

t: eltelt idő.

S-görbe és Parabola görbe matematikai leírása:

$$s_{t} = s_{0} + v_{0}T + \frac{1}{2}a_{0}t^{2} + \frac{1}{6}jt^{3}$$

$$V_{t} = V_{0} + a_{0}t + \frac{1}{2}jt^{2}$$

$$a_{t} = a_{0} + jt$$

s₀: kezdő pozíció.

 V_0 : kezdő sebesség.

a₀: kezdő gyorsulás.

 s_t : pillanatnyi pozíció.

 v_t : pillanatnyi sebesség.

 a_t : pillanatnyi gyorsulás.

j: állandó rándulás(a gyorsulás idő szerinti deriváltja).

t: eltelt idő.

Trapéz gyorsulási karakterisztika megvalósítása a legegyszerűbb. S-görbe gyorsulási karakterisztika használata lecsökkenti a rendszerben keletkező negyfrekvenciás rezgések energiáját, ez járhat jorsabb beállási idővel. Ahogy az alábbi léptetőmotor sebesség/nyomaték görbélyén látható, a motor által leadni képes nyomaték a sebeség növekedésével jelentősen lecsökken, így érdemes a gyorsulást sebesség növekedésével arányosan csökkenteni. Ezt valósítja meg a parabola sebesség görba.^[3]

ÓBUDAI EGYETEM KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR

3. ábra. Léptetőmotor sebesség nyomaték görbéje

2.2. Inverz kinematika

A kordinátarendszerünk x tengelye az 1-es számú motor felé mutat. A 2-es és 3-as számú motor szögének számításához a kordinátarendszer el kell forgatni 2-es esetén 120 fokkal, 3-as esetén -120 fokkal, hogy az x tengely a megfelelő motor irányába mutasson.

Kordinátarendszer forgatása:

Deszkartes -> Polár kordinátarendszer átváltás:

$$\alpha = Arctg2(y_1; x_1)$$
$$r = \sqrt{x_1^2 + y_1^2}$$

Polár -> Deszkartes kordinátarendszer átváltás:

$$x_2 = rSin(\alpha + -120)$$

$$y_2 = rCos(\alpha + -120)$$

 x_1 : kezdeti x kordináta.

 y_1 : kezdeti y kordináta.

r: vektor hossza. α : vektor iránya.

 x_2 : elforgatott x kordináta.

 y_2 : elforgatott y kordináta.

Ki kell számítani az alsó kar xz síkon vett vetületét. https://lucidar.me/en/mathematics/how-to-calculate-the-intersection-points-of-two-circles/

Alsó kar xz síkon vett vetülete:

$$r_{a1} = \sqrt{r_a^2 + y_e^2}$$

y_e: effektor y kordinátája.

 r_a : alsó kar hossza.

 r_{a1} : alsó kar xz síkon vett vetületének hossza.

Alsó és felső kar csatlakozási pontjának kiszámításához fel kell írnunk egy egyenletrendszert. Első egyenlet egy kört ír le xz síkon, amely középpontja a motor tengelye és a felső kar csatlakozási pontja, sugara megeggyezik a felső kar hosszával. Második egyenlet szintén egy kört ír le xz síkon, amely középpontja az effektor asztal és az alsó kar csatlakozási pontja, sugara megeggyezik az alsó kar hosszával.

Egyenletrendszer felírása:

$$(x-f)^{2} + (z-m)^{2} = r_{f}^{2}$$
$$(x-(x_{e}+e))^{2} + (z-z_{e})^{2} = r_{a1}^{2}$$

x: alsó és felső kar csatlakozási pontjának x kordinátája.

z: alsó és felső kar csatlakozási pontjának z kordinátája.

 x_e : effektor x kordinátája.

 z_e : effektor z kordinátája.

 r_a : alsó kar hossza.

 r_f : felső kar hossza.

e: effektor asztal sugara.

m: motorrögzítő lap magassága.

f: motorrögzítő lap sugara.

Az alsó és felső kar csatlakozási pontjának x;z kordinátája valamint a motor tengelye és a felső kar csatlakozási pontjának kordinátáiból kiszámíthatjuk a felsőkar szögét. A motor tengelyének szöge megegyezik a

felső kar szögével.

Felsőkar szögénak kiszámítása:

$$\theta = Arctg2(z-m; x-f)$$

x: alsó és felső kar csatlakozási pontjának x kordinátája.

z: alsó és felső kar csatlakozási pontjának z kordinátája.

m: motorrögzítő lap magassága.

f: motorrögzítő lap sugara.

 θ : motor tengelyének szöge.

2.3. Effektor mozgásának útja

Az efektor útjának tervezésekor célunk hogy az asztal egy pontjáról kiindulva az asztalon található objektumok felett kellő magasságban elhaladjom. Mindezt a leggyorsabban, minimális energiabevitellel, és lehető legkevesebb nemkívánt rezgések gerjesztésével tegye. Erre a problémára egy kielégítő megoldás ha úgynevezett "Lamé" görbék mentén végezzük az effektor mozgatását^{[4][5]}

4. ábra. Lamé" görbe

Lamé görbe matematikai leírása:

$$\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n = 1$$

|a|: x tengely metszéspontjai. a>0

|b|: y tengely metszéspontjai. b>0

n: a görbe alakját adja meg. $n=1,2,3\dots$ Esetünkben n>2.

3. Logikai rendszerterv

A teljes rendszer három fő részből fog állni. A delta robotból, a rendszert vezérlő PC-ből, és egyéb műszerekből.

5. ábra. Teljes rendszer terve

A delta robot vezérlés egy mikrokotroller köré fog felépülni. amihez csatakozik a három motorvezérlő, kijelző, gombok és relék. A mikrokontroller végzi el a PC-vel való kommunikálást is.

6. ábra. Delta robot rendszerterve

4. Ütemterv

Oktatási hét	Feladatok	Elvégzett feladat
1	Megbeszélés, tájékoztató	
2	Ütemterv kidolgozása	Megbeszélés, tájékoztató
3	Specifikáció kidolgozása	Ütemterv kidolgozása
4	Specifikáció kidolgozása	Specifikáció kidolgozása
5	Rendszerterv kidolgozása	Rendszerterv kidolgozása
6	Irodalomkutatás	Irodalomkutatás
7	Félévközi projektbemutató	Irodalomkutatás
8	Fizikai rendszeterv	Fizikai rendszeterv
9	Hardver elkészítése	Hardver elkészítése
10	Szoftver elkészítése	Szoftver elkészítése
11	Szoftver elkészítése	Szoftver elkészítése
12	Tesztelés	Tesztelés
13	Projektbemutató	Tesztelés
14	Projektbemutató pótlás	

5. Fizikai rendszertery

5.1. Mikrokontroller

Mikrokontrollernek egy STM32H533 at választottam. Ez az STM32 csalág egyik modern tagja, számos sorors kommunikációs interfésszel rendelkezik, és a 250MHz-es órajel elegendő számítási kapacitást tesz lehetővé a feladatunkhoz. Első válastás egy STM32C031 mokrovezérlőre esett, de ennek mind órajelfrekvenciája, mind az I/O interfészek számakevésnek bizonyult.

5.2. Léptetőmotorok

A Robotban használt léptető motrok típusa ********. Ezek négyvezetékes léptetőmotrok két tekercsel. A motrok maximális árama ——*, eszerint lettek felparaméterezve a dm556d léptető motor vezérlők. Amiket 24V-os tápfeszültséggel látunk el Mean Well RD-125-2412 tápegységek segítségével. A léptetőmotor vezérlők három 5V-os bemenettel rendelkeznek. Ezek funkciói engedéjezés, sebesség, és irányváltás.

5.3. Szenzorok

A léptetőmotrok tengejeire mágnesek voltak elhelyezve, amik pozícióját AS5048A hallszenzorokkal érzékeljük. A szenzoro 12 bites szögértéket és térerősség értéket adnak, amit SPI buszon keresztül olvas ki a mikrovezérlő.

5.4. Kommunikáció

A számítógépes kapcsolathoz egy FT232RL USB-UART interfészt használok.

6. Szoftver terv

A robot teszteléséhez öszeraktam egy egyszerű menürendszert amit soros prton keresztül érünk el a PC-ről.

7. ábra. Program terve

8. ábra. Menu frissítése

A menüpontokon keresztül megváltztathatjuk a gyorsulási rámpa állandóit, ki/be kapcsolhatjuk a reléket, kiolvashatunk szenzor értékekt, és a kart mozgathatjuk motorszögek, vagy effektor XYZ pozíció megadásával.

7. Megvalósítás

8. Tesztelés

8.1. Gyorsulási rámpa tesztelése

A mikronkntroller által előállított változó frekvenciájú jelet ami a léptetőmotor PUL bemenetére kapcsolunk, Agilent 64522A oszcilloszkóp segítségével ellenőriztem.

9. ábra. Mért gyorsulási rámpa jel

A képről leolvasható hogy a jel kezdeti és végső periódusideje 10ms, így frekvenciája 100Hz ami megfelel a várt értéknek. A frekvencia egyenletesen növekszik, majd csökken. A mximális tesztel frevencia 200kHz volt.

10. ábra. 10 lépést tartalmazó jel

ÓBUDAI EGYETEM KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR

11. ábra. 10 lépést tartalmazó jel nullaátlépéssel

A jel generálás jól működik ha 0-tól 19999-ig és -20000-től 0-ig tartó tartományokon mozgatjuk a léptetőmotrot. De abban az esetben ha a kedőpoíció nullánál kissebb és a végpozíció nullánál nagyobb, vagy a kedőpozíció nullánál nagyobb és a végpozíció nullánál kissebb a generált jelünkből egy periódus kimarad.

9. Tesztelés eredményeinek értékelése

10. Fejlesztési lehetőségek

- Nyákterv elkészítése.
- Külömböző gyorsulási rámpák megvalósítása és összehasonlítása.
- Görbe mentén való mozgás megvalósítása.
- Robot mozgásterének lehatárolása, ütközések megakadájoozása.
- Automata "homeing" megvalósítása. Kezdőpozíció automata megállapítása.
- SCPI (Standard Commands for Programmable Instruments) alapuló vezérlés soros porton keresztül.
- alternatív komunikációs interfészek kialakítása, példáil RS232, RS485, CAN, USB.
- Billentyűmátrix és kijelző vel ellátni a robotvezérlőt.
- Motot hibás szögének érzékelése és annak korrigálása.

11. Hivatkozások

- [1] Stănică Dorin-Mirel; Ioan Lita; Mihai Oproescu Comparative analysis of stepper motors in open loop and closed loop used in nuclear engineering, 2017 (https://ieeexplore.ieee.org/document/8259924)
- [2] FAULHABER How to recognize and prevent step losses with stepper motors, DR. FRITZ FAULHABER GMBH CO. KG (https://cdn.faulhaber.com/media/DAM/Documents/Tutorials/faulhaber-tutorial-stepper-motor-step-loss-prevention.pdf)
- [3] Chuck Lewin *Mathematics of Motion Control Profiles*, Performance Motion Devices, Inc. (http://www.pmdcorp.com/)
- [4] Zhiwei Chen; Shixu Xu; Jingwen Wu; Yanlong Geng *The simulation study of optimization of pick-and-place route for delta robot based on lame curves*, 2018 (https://ieeexplore.ieee.org/document/8407178)
- [5] Weidi Chen; Honggen Fang; Yang Yang; Wensong He Optimal Trajectory Planning for Delta Robot Based on Three-Parameter Lamé Curve, 2017 (https://ieeexplore.ieee.org/document/8328303)

Ábrák jegyzéke

2.	S-görbe és Trapéz gyorsuási görbe	4
1.	Parabola gyorsulási görbe	4
3.	Léptetőmotor sebesség nyomaték görbéje	6
4.	Lamé" görbe	8
5.	Teljes rendszer terve	10
6.	Delta robot rendszerterve	10
7.	Program terve	13
8.	Menu frissítése	13
9.	Mért gyorsulási rámpa jel	15
10.	10 lépést tartalmazó jel	15
11.	10 lépést tartalmazó jel nullaátlépéssel	16