1 Hoja 1

$$\overline{A} = x \in \mathbb{R}^N; \forall V_x \nearrow V_x \cup A \neq \emptyset$$

, siendo V_x un entorno abierto de x. $\overline{A}=A\cap$

Teorema 1.1. $A \subset \mathbb{R}^N$ es cerrado $\Leftrightarrow \#1 \subset (A) \subset A$

Demostración:

 $A \text{es cerrado} \Rightarrow A^c \text{ es abierto} \Rightarrow \forall x \in A^c, \exists \varepsilon > 0 \diagup B(x,\varepsilon) \subset A^c \Rightarrow A \cap B(x,\varepsilon) = \\ \Rightarrow x \nexists \#1 \subset (()A)$ Falta la recíproca.

Ejercicio 3: a)

$$\bigcup_{k=1}^{\infty} \left[-1, \frac{1}{k} \right)$$

Es cerrado, porque = [-1,0] Demostración: (hay que demostrar las inclusiones \subseteq y \supseteq) b) No es ni cerrado ni abierto.

Obsevación: \mathbb{R} es el cierre de \mathbb{Q} .

Ejercicio 4:

c)