Modulhandbuch

Bachelorstudiengang "Mathematik" mit einem Fachanteil von 100%

Ruprecht-Karls-Universität Heidelberg Fakultät für Mathematik und Informatik

Fassung vom 08.02.2023 zur Prüfungsordnung vom 05.10.2022 Rückwirkend für das Wintersemester 2022/23

Studienform: Vollzeit

Art des Studiengangs: Grundständig

Regelstudienzeit: 6 Semester

Anzahl der im Studiengang zu erwerbenden Leistungspunkte: 180

Einführungsdatum: 05.08.2008

Studienstandort: Heidelberg

Anzahl der Studienplätze: Keine Zulassungsbeschränkung

Gebühren/Beiträge: Gemäß allgemeiner Regelung der Universität Heidelberg

Inhaltsverzeichnis

1		einem Fachanteil von 100%	4
	1.1		4
	1.2		4
	1.3	Überfachliche Qualifikationsziele des Studiengangs	
	1.4	Berufsfelder für Absolventinnen und Absolventen des Studiengangs	
	1.5		10
	1.0		0 110
		1.5.2 Beschreibung der Lehr- und Lernformen	
			6
		1.9.5 Trutungsmodantaten	C
2		lienverlaufsplan und Mobilität	7
	2.1	Studienverlaufsplan	
	2.2	Mobilitätsfenster	S
3	Pflic	chtbereich 1	.(
		Analysis I	
		Lineare Algebra I	2
		Einführung in die Praktische Informatik	
		Analysis II	
		Lineare Algebra II	
		Einführung in die Numerik	
		Einführung in die Wahrscheinlichkeitstheorie und Statistik	
		Proseminar	
		Höhere Analysis	
		Seminar im Bachelor	
		Bachelorarbeit	
		Präsentation zur Bachelorarbeit	
4		nlpflichtbereich 2	
	4.1	Teilbereich Reine Mathematik	
		Algebra I	
		Algebra II	
		Funktionentheorie I	35
		Funktionentheorie II	36
		Algebraische Topologie I	3(
		Differentialgeometrie I	31
		Discrete Structures 1	32
	4.2	Teilbereich Angewandte Mathematik	33
		Gewöhnliche Differentialgleichungen	34
		Partielle Differentialgleichungen	35
		Funktionalanalysis	36

	Wahrscheinlichkeitstheorie	37
	Numerik	38
	Statistik	39
	Grundlagen der Optimierung	40
	Die Programmiersprache R und ihre Anwendungen in der Stochastik	41
	Numerical Linear Algebra	42
5	Wahlbereich Mathematik	43
	Mengentheoretische Topologie	44
	Einführung in die Theoretische Informatik	45
	Complex Network Analysis	47
6	Übergreifende Kompetenzen	49
	Tutorenschulung Mathematik	50
	Fun Facts aus der Analysis und Linearen Algebra	52
	HEGL Praktikum/Bachelorforschung	
	Ausgewählte Kapitel der Finanz- und Versicherungsmathematik	
	Einführung in die Mengenlehre	
	Bildung durch Sommerschule, Ferienkurs oder Konferenz	
	Industriepraktikum	
	Anfängerpraktikum	
	Fortgeschrittenenpraktikum	
	Einführung in das Textsatzsystem LaTeX	
7	Anwendungsgebiete	62
	Astronomie	62
	Biowissenschaften	
	Chemie	
	Computerlinguistik	
	Informatik	
	Philosophie	
	Physik	
	Psychologie	
	Wirtschaftswissenschaften	71

1 Qualifikationsziele, Profil und Besonderheiten des Bachelorstudiengangs Mathematik mit einem Fachanteil von 100%

1.1 Präambel - Qualifikationsziele der Universität Heidelberg

Anknüpfend an ihr Leitbild und ihre Grundordnung verfolgt die Universität Heidelberg in ihren Studiengängen fachliche, fachübergreifende und berufsfeldbezogene Ziele in der umfassenden akademischen Bildung und für eine spätere berufliche Tätigkeit ihrer Studierenden. Das daraus folgende Kompetenzprofil wird als für alle Disziplinen gültiges Qualifikationsprofil in den Modulhandbüchern aufgenommen und in den spezifischen Qualifikationszielen sowie den Curricula und Modulen der einzelnen Studiengänge umgesetzt:

- Entwicklung von fachlichen Kompetenzen mit ausgeprägter Forschungsorientierung;
- Entwicklung transdisziplinärer Dialogkompetenz;
- Aufbau von praxisorientierter Problemlösungskompetenz;
- Entwicklung von personalen und Sozialkompetenzen;
- Förderung der Bereitschaft zur Wahrnehmung gesellschaftlicher Verantwortung auf der Grundlage der erworbenen Kompetenzen.

1.2 Fachliche Qualifikationsziele des Studiengangs

Der Bachelorstudiengang Mathematik mit einem Fachanteil von 100% hat das Ziel einer fundierten mathematischen Grundausbildung. Mathematische Arbeit umfasst die Konstruktion und Analyse abstrakter Strukturen mit Hilfe formaler logischer Deduktion. Die Absolventinnen und Absolventen sind in der Lage zu beurteilen, ob ein Problem einer Behandlung mit mathematischen Methoden zugänglich ist. Solche Probleme können sie dann auf der Grundlage des erworbenen Wissens mathematischen Methoden aus der Algebra, Analysis, Topologie, Geometrie, Wahrscheinlichkeitstheorie, Statistik, Numerik oder Optimierung zuordnen, mathematisch modellieren und bearbeiten, und die Ergebnisse interpretieren. Die Absolventinnen und Absolventen haben den Umgang mit grundlegenden Methoden so weit erlernt, dass sie existierende Verfahren verstehen und anwenden können, sich weiterführende mathematische Methoden eigenständig erschließen können und anfangen können wissenschaftlich zu arbeiten.

1.3 Überfachliche Qualifikationsziele des Studiengangs

Die fachbezogenen Kompetenzen, die Absolventinnen und Absolventen des Bachelorstudiengangs Mathematik mit einem Fachanteil von 100% im Prozess der Aneignung und Anwendung mathema-

tischer Inhalte und Methoden erworben haben, sind in vielfältiger Weise zugleich von überfachlicher Relevanz. Absolventinnen und Absolventen

- besitzen strukturelles Denken und Abstraktionsvermögen, sowie Problemlösungsstrategien
- sind in der Lage, wissenschaftliche Texte zu verfassen und Berichte, Sachverhalte und Ideen einem Publikum zu präsentieren
- können den eigenen Arbeitsprozess effektiv organisieren, eigene Wissenslücken erkennen und den eigenen Lernprozess aktiv steuern
- sind in der Lage, relevante Literatur zu recherchieren und sich selbständig neues Wissen und Fähigkeiten anzueignen
- können sich mit Fachvertretern und Laien über Informationen, Ideen, Probleme und Lösungen austauschen und in einem interdisziplinären/interkulturellen Kontext in einem Team erfolgreich arbeiten

1.4 Berufsfelder für Absolventinnen und Absolventen des Studiengangs

Das erfolgreiche Studium des Studienganges ermöglicht eine Tätigkeit in verschiedenen beruflichen Bereichen, wie der Finanz- und Versicherungsbranche, Unternehmensberatung und Softwareentwicklung.

1.5 Erläuterungen zum Studiengang und den Modulbeschreibungen

1.5.1 Begründung für Module mit weniger als 5 LP:

In diesem Studiengang gibt es einige Module mit weniger als 5 Leistungspunkten. Bei diesen Modulen handelt es sich um inhaltlich abgeschlossene Studieneinheiten, die nicht sinnvoll mit anderen Modulen zusammengelegt werden können.

1.5.2 Beschreibung der Lehr- und Lernformen

Vorlesung: Präsentation des Lehrstoffs durch die Lehrperson mittels geeigneter Medien, Interaktion und Nachfragen möglich

Übung: Übungsaufgaben und kleinere Teile des Lehrstoffs werden erläutert, Nachfragen, Interaktion und Diskussion von und mit den Studierenden zum Verständnis des Lehrstoffs und der Beispielaufgaben

Seminar: Selbstständiges Erarbeiten eines wissenschaftlichen Themas, Erstellen einer Präsentation, Halten des Vortrags mit anschließenden Fragen und Diskussion der Teilnehmer zum Vortrag

Praktikum: Projektarbeit anhand einer Programmieraufgabe, selbstständiges Erstellen einer Software inklusive Dokumentation, Anfertigen eines Projektberichts und eines Vortrags, Halten des Vortrags zur Präsentation der Software

1.5.3 Prüfungsmodalitäten

Zu Beginn jeder Veranstaltung werden die Details und insbesondere Abweichungen zu den unten aufgeführten Prüfungsmodalitäten von der Lehrperson bekannt gegeben.

Viele Module haben eine einheitliche Regelung bei der Vergabe der LP, daher wird diese Regelung hier einmal ausführlich beschrieben und bei den Modulbeschreibungen dann nur hierher verwiesen.

Regelung zur Vergabe der LP: In diesem Modul werden die LP bei bestandener Abschlussprüfung vergeben. Die Details zur Abschlussprüfung stehen bei den einzelnen Modulen. In diesem Modul gibt es einen Übungsbetrieb mit der Bearbeitung von Übungsaufgaben. Um zur Abschlussprüfung zugelassen zu werden, sollen in der Regel 50% der Punkte in den Übungsaufgaben erreicht werden, nach Ermessen der Lehrenden kann in Einzelfällen davon abgewichen werden.

Prüfungsschema: In diesem Feld der Modulbeschreibung ist eingetragen, wieviele Versuche zum Bestehen des Moduls laut Prüfungsordnung vorgesehen sind. Eine bestandene Prüfung kann nicht wiederholt werden. Jede Prüfung (mündlich, schriftlich oder praktisch) zählt als ein Prüfungsversuch.

Nach der Prüfungsordnung gibt es drei Schemata:

1+3 besagt: dass nach dem ersten Versuch noch 3 Wiederholungsmöglichkeiten bestehen.

1+2 besagt: dass nach dem ersten Versuch noch 2 Wiederholungsmöglichkeiten bestehen.

1+1 besagt: dass nach dem ersten Versuch nur eine Wiederholungsmöglichkeit besteht.

Prüfungszeitraum: Für die schriftlichen Prüfungen (Klausuren) zum Ende jeden Semesters wurden zwei Prüfungszeiträume von jeweils 3 Wochen festgelegt. Der erste Prüfungszeitraum besteht aus der letzten Woche der Vorlesungszeit und den ersten beiden Wochen der vorlesungsfreien Zeit. Der zweite Prüfungszeitraum besteht aus den letzten 3 Wochen der vorlesungsfreien Zeit. In Ausnahmefällen können Prüfungen außerhalb dieser Prüfungszeiträume stattfinden.

Prüfungstermine: Bei Modulen die einmal jährlich oder seltener angeboten werden, werden im Anschluss an das Modul immer zwei Prüfungstermine angeboten. Bei schriftlichen Prüfungen liegen diese innerhalb der oben genannten Prüfungszeiträume. Bei mündlichen Prüfungen werden die Termine von den Lehrenden festgelegt.

Bei Modulen, die in jedem Semester angeboten werden, gibt es im Anschluss an das Modul nur einen Prüfungstermin.

Falls es Ausnahmen zu den Prüfungsterminen gibt, insbesondere wenn diese außerhalb der oben genannten Prüfungszeiträume liegen, müssen diese von der Lehrperson zu Beginn der Veranstaltung bekannt gegeben werden.

2 Studienverlaufsplan und Mobilität

2.1 Studienverlaufsplan

In diesem Kapitel ist der Studienverlaufsplan aufgeführt, an welchem sich die Abfolge des Studiums orientieren sollte. Zur zügigen Gestaltung des Studiums müssen die Zyklen Analysis und Lineare Algebra im ersten Studienjahr absolviert werden. Die Orientierungsprüfung besteht aus der erfolgreichen Teilnahme an den Pflichtmodulen Analysis I und Lineare Algebra I. Weiteres zur Orientierungsprüfung ist der Prüfungsordnung zu entnehmen.

Pro Semester sollten ungefähr 30 Leistungspunkte (LP) erbracht werden, es ist jedoch grundsätzlich möglich, weniger oder mehr Punkte zu absolvieren.

Die einzelnen Module im Studium sind zeitlich vertauschbar, soweit dies mit den fachlichen Voraussetzungen vereinbar ist.

${\bf Studien verlauf splan}$

1. Jahr:	1. Semester:	
	Analysis I	8 LP
	Lineare Algebra I	8 LP
	Einführung in die Praktische Informatik	8 LP
	2. Semester:	
	Analysis II	8 LP
	Lineare Algebra II	8 LP
	Einführung in die Numerik $oder$	
	Einführung in die Wahrscheinlichkeitstheorie und Statistik	8 LP
	Proseminar	6 LP
	Frei verteilbar:	
	Anwendungsgebiet und/oder freie FÜK	6 LP
Summe		60 LP
2. Jahr:	3. Semester:	
	Höhere Analysis	8 LP
	Einführung in die Numerik $oder$	
	Einführung in die Wahrscheinlichkeitstheorie und Statistik	8 LP
	Wahlpflicht I	8 LP
	4. Semester:	
	Wahlpflicht II	8 LP
	Wahlpflicht III	8 LP
	Seminar im Bachelor	6 LP
	Frei verteilbar:	
	Anwendungsgebiet und/oder freie FÜK	14 LP
Summe		60 LP
3.Jahr:	5. Semester:	
	Wahlpflicht IV	8 LP
	Wahl Mathematik I	8 LP
	Wahl Mathematik II	8 LP
	6. Semester:	
	Bachelorarbeit	12 LP
	Präsentation zur Bachelorarbeit	8 LP
	Frei verteilbar:	
	Anwendungsgebiet und/oder freie FÜK	16 LP
Summe		60 LP
Gesamt:		180 LP

2.2 Mobilitätsfenster

Das Mobilitätsfenster für den Bachelorstudiengang Mathematik mit einem Fachanteil von 100% liegt in der Regel im vierten und fünften Fachsemester. Diese beiden Semester eignen sich besonders gut für einen Studienaufenthalt an einer anderen Hochschule im In- und Ausland. In diesen beiden Semestern liegen nur wenige Pflichtmodule, welche teilweise auch in andere Semester verschoben werden könnten. Bei Modulen aus dem Wahlpflicht- oder Wahlbereich, dem Bereich FÜK oder dem Anwendungsgebiet ist eine Anerkennung durch die Wahlmöglichkeiten tendenziell einfacher.

Ein Studienaufenthalt an einer anderen Hochschule im In- und Ausland kann auch in anderen Semestern stattfinden. Allerdings sollten die Zyklen Analysis und Lineare Algebra im ersten Studienjahr mit der Orientierungsprüfung, bestehend aus der erfolgreichen Teilnahme an den Pflichtmodulen Analysis I und Lineare Algebra I, an der Universität Heidelberg absolviert werden.

Die Planungen für einen solchen Studienaufenthalt sollten frühzeitig begonnen werden, gerade für einen Auslandsaufenthalt kann diese Organisationsphase durchaus ein Jahr betragen.

Informationen zum Auslandsstudium finden Sie auf den Seiten der Fakultät https://www.mathinf.uni-heidelberg.de/de/exchangeprograms.

3 Pflichtbereich

Nachfolgend sind die Pflichtmodule der Mathematik beschrieben, welche auch ein Modul aus der Informatik die Einführung in die Praktische Informatik enthalten. Die Reihenfolge der Module orientiert sich dabei an der Abfolge im Studienverlaufsplan auf Seite 8.

Analysis I

Code	Name		
MA1	Analysis I		
LP	Dauer	Angebotsturnus	
8	ein Semester	jährlich im Winter	
Format Vorlesung 4 SWS + Übung	Arbeitsaufwand 240 h; davon 60 h Vorlesung	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO)	
2 SWS	30 h Übung 120 h Bearbeitung der Übungsaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	B.Sc. Angewandte Informatik B.Sc. Informatik	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+3 (im BSc Informatik gesonderte Regelung beachten)	
- Grundwissen über reelle und komplexe Zahlen, die Konvergenz von Formanderlichen und die Differential- und Integralrechnung für Funktionen einer Veränderlichen und damit Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können; - Verständnis der Beweistechniken auf diesem Gebiet und die Fähigkeit, Beweise selbst durchführen zu können; - Abstraktes und analytisches Denken auf Grenzwertprozesse anzuwende - Fähigkeit, selbständig Aussagen aus dem Bereich der Analysis zu beweisten aus dem Themenbereich zu lösen und die Ergebnisse zu präse		ng für Funktionen einer ren handhaben und die ebiet und die Fähigkeit, kleinere wertprozesse anzuwenden; ch der Analysis zu beweisen,	
Lerninhalte	9 2		
Teilnahme-	empfohlen sind: Schulkenntnisse		
voraus- setzungen			
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche	O. Forster: Analysis I (bzw. II, bzw. III)		
Literatur	K. Königsberger: Analysis I (bzw. II) H. Amann, J. Escher: Analysis I (bzw. II, bzw. III)		

Lineare Algebra I

Code	Name		
MA4	Lineare Algebra I		
LP	Dauer	Angebotsturnus	
8	ein Semester	jährlich im Winter	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO) B.Sc. Angewandte Informatik B.Sc. Informatik B.Sc. Physik	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+3 (im BSc Informatik gesonderte Regelung beachten)	
Lernziele	Abstraktes und strukturelles Denken, Kenntnis mathematischer Grundstrukturen wie Gruppen, Körper und Vektorräume und ihrer Homomorphismen und damit Fähigkeit die Zusammenhänge erläutern. Verständnis mathematischer Strukturbildung und damit Fähigkeit die Strukturen handhaben. Selbständig Eigenschaften mathematischer Grundstrukturen wie Gruppen, Körper und Vektorräume nachweisen und anwenden. Fähigkeit zum selbständigen Beweisen von Aussagen und Lösen von Aufgaben aus dem Themenbereich und zur schriftlichen und mündlichen Darstellung der Ergebnisse.		
Lerninhalte	I. Grundlagen: Logische Operatoren, Mengen, Relationen, Abbildungen, Gruppen, Homomorphismen, Permutationen. II. Vektorräume: (affine) Unterräume, Faktorräume, direkte Summen, Basis, Dimension, Koordinaten, lineare Abbildungen. III. Lineare Operatoren: Matrizen, lineare Gleichungssysteme, Basiswechsel, Eigenvektoren, Determinanten IV. Innenprodukträume: Bilinearformen, Orthogonalität und Orthonormalbasen, normale Operatoren, selbstadjungierte Operatoren und Isometrien. Alle Resultate werden mit vollständigen Beweisen vermittelt.		
Teilnahme- voraus- setzungen	empfohlen sind: Schulkenntnisse		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	S. Bosch: Lineare Algebra F. Lorenz: Lineare Algebra I G. Fischer: Lineare Algebra		

Einführung in die Praktische Informatik

Code	Name		
IPI	Einführung in die Praktische Informatik		
LP	Dauer	Angebotsturnus	
8	ein Semester	jedes Wintersemester	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 90 h Präsenzstudium 15 h Prüfungsvorbereitung 135 h Selbststudium und Bearbeitung der Übungsaufgaben (eventuell in Gruppen)	Verwendbarkeit B.Sc. Angewandte Informatik B.Sc. Informatik Lehramt Informatik B.Sc. Mathematik	
Sprache	Lehrende	Prüfungsschema	
Deutsch Lernziele	wechselnd Die Studierenden erlernen die Entwicklung von Software im Kleinen und können mit diesem Wissen kleine Programme in C++ entwerfen, realisieren, testen und Eigenschaften der Programme ermitteln, dazu können sie mit einfachen Programmierwerkzeugen umgehen		
Lerninhalte	Programmierwerkzeugen umgehen. Die Lehrveranstaltung führt in die Entwicklung von Software im Kleinen ein. Überblick über die Praktische Informatik. Technische und formale Grundlagen der Programmierung. Sprachliche Grundzüge (Syntax und Semantik von Programmiersprachen). Einführung in die Programmierung (Wert, elementare Datentypen, Funktion, Bezeichnerbindung, Sichtbarkeit von Bindungen, Variable, Zustand, Algorithmus, Kontrollstrukturen, Anweisung, Prozedur) Weitere Grundelemente der Programmierung (Typisierung, Parametrisierung, Rekursion, strukturierte Datentypen, insbesondere z.B. Felder, Listen, Bäume). Grundelemente der objektorientierten Programmierung (Objekt, Referenz, Klasse, Vererbung, Subtypbildung). Abstraktion und Spezialisierung (insbesondere Funktions-, Prozedurabstraktion Abstraktion und Verifikation von Algorithmen, insbesondere einfache Testtechniken. Terminierung. Einfache Komplexitätsanalysen. Einfache Algorithmen (Sortierung).		
Teilnahme- voraus- setzungen Norabe den Des Medel with insulation besetzten Klausen als weeklassen Die Med		geschlossen. Die Modulendnote	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	Wird von der bzw. dem Lehrenden bekannt gegeben.		

Analysis II

Code	Name		
MA2	Analysis II		
LP	Dauer	Angebotsturnus	
8	ein Semester	jährlich im Sommer	
Format	Arbeitsaufwand	Verwendbarkeit	
Vorlesung 4	240 h; davon	B.Sc. Mathematik	
SWS + Übung	60 h Vorlesung	Mathematik Lehramt (GymPO)	
2 SWS	30 h Übung		
	120 h Bearbeitung der Hausaufgaben und	B.Sc. Angewandte Informatik	
	Nachbereitung der Vorlesung	B.Sc. Informatik	
G 1	30 h Klausur mit Vorbereitung	D "C 1	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+3 (im BSc Informatik	
Deutsch	wechseind	gesonderte Regelung beachten)	
Lernziele	- Grundwissen über gewöhnliche Differentialgleie	,	
Leinziele	Differential- und Integralrechnung in mehreren		
	die Strukturen handhaben und die Zusammenhänge erläutern zu können.		
- Abstraktes und analytisches Denken anwenden,		9	
	- Selbständiges Beweisen und Lösen von Aufgaben aus dem Themenb		
	Präsentation in den Übungen		
Lerninhalte	- Metrische und normierte Räume		
	- Gewöhnliche Differentialgleichungen, Picard-Li		
	- Differentialrechnung in höheren Dimensionen,	partielle und totale Ableitung,	
	Extremwerte, Taylorreihe	TT	
	- Satz von der impliziten Funktion, Umkehrsatz, Untermannigfaltigkeiten, Extrema mit Nebenbedingungen		
	- Wegintegrale, Vektorfelder, Rotation und Divergenz		
	- Alle Resultate werden mit vollständigen Beweisen vermittelt.		
Teilnahme-	empfohlen sind: Analysis I (MA1), Lineare Alge		
voraus-	compression sind. Timoty sis I (i.i.I.I.), Elliottic Hige		
setzungen			
Vergabe der	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote		
LP und	wird durch die Note der Klausur festgelegt. Für	9	
Modulendnote	Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche	O. Forster: Analysis I (bzw. II, bzw. III)		
Literatur	K. Königsberger: Analysis I (bzw. II)		
	H. Amann, J. Escher: Analysis I (bzw. II, bzw. III)		

Lineare Algebra II

Code	Name		
MA5	Lineare Algebra II		
LP	Dauer	Angebotsturnus	
8	ein Semester	jährlich im Sommer	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und	Verwendbarkeit B. Sc. Mathematik Mathematik Lehramt (GymPO)	
	Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung		
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+3	
Lernziele	Vertiefende Kenntnisse der Linearen Algebra und damit die Fähigkeit die Strukturen zu handhaben und die Zusammenhänge zu erläutern Fähigkeit zum selbständigen Beweisen von Aussagen und Lösen von Aufgaben aus dem Themenbereich und zur schriftlichen und mündlichen Darstellung der Ergebnisse.		
Lerninhalte	Inhalt: Ringe und Ideale, Moduln und Homomorphismen, Basis und Rang, direkte Summen und Produkte, Tensorprodukt, äußere und symmetrische Potenzen und Determinanten, Moduln über Hauptidealringen, Elementarteilertheorie, Normalformen von Endomorphismen, verallgemeinerte Eigenräume, Jordansche Normalform, nilpotente und halbeinfache Endomorphismen. Alle Resultate werden mit vollständigen Beweisen vermittelt.		
Teilnahme- voraus- setzungen	empfohlen ist: Lineare Algebra I (MA4)		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	S. Bosch: Lineare Algebra F. Lorenz: Lineare Algebra II		

Einführung in die Numerik

Code	Name		
MA7	Einführung in die Numerik		
LP	Dauer	Angebotsturnus	
8	ein Semester	jedes Semester	
Format	Arbeitsaufwand	Verwendbarkeit	
Vorlesung 4	240 h; davon	B.Sc. Mathematik	
SWS + Übung	60 h Vorlesung	Mathematik Lehramt (GymPO)	
2 SWS	30 h Übung		
	80 h Bearbeitung der Hausaufgaben und	B.Sc. Angewandte Informatik	
	Nachbereitung der Vorlesung	B.Sc. Informatik	
	40 h Programmieraufgaben		
	30 h Klausur mit Vorbereitung		
Sprache	Lehrende	Prüfungsschema	
Deutsch	wechselnd	1+2 (im BSc Informatik	
		gesonderte Regelung beachten)	
Lernziele Prinzipien numerischer Algorithmen und ihrer praktischen Realisierung fü		raktischen Realisierung für	
Grundaufgaben der numerischen Analysis und linearen		9 ,	
	Abstraktes und algorithmisches Denken anwenden,		
	Anwendung von Techniken der Analysis und line	9	
	selbständige Durchführung von Beweisen und Lö	ösen von theoretischen und	
	praktischen Aufgaben aus dem Themenbereich,		
	die Fähigkeit, Algorithmen und Beweise einer Zuhörerschaft zu erklären.		
Lerninhalte	I. Rechnerarithmetik, Fehleranalyse, Konditionierung		
	II. Interpolation und Approximation, Numerisch	=	
	III. Lineare Gleichungssysteme und Ausgleichsprobleme (LR- und		
	QRZerlegung)		
	IV. Iterative Verfahren (Nullstellenberechnung,	lineare Gleichungssysteme,	
	Eigenwertaufgaben)		
Teilnahme-	empfohlen sind: Analysis I und II (MA1/ MA2)	_ , , , ,	
voraus-	Einführung in die Praktische Informatik (IPI), I	Programmierkurs (IPK),	
setzungen	Programmierkenntnisse		
Vergabe der	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote		
LP und	wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die		
Modulendnote	Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche	J. Stoer, R. Bulirsch: Numerische Mathematik		
Literatur	G. Hämmerlin, KH. Hoffmann: Numerische Mathematik		
	P. Deuflhard, A. Hohmann: Numerische Mathematik		

Einführung in die Wahrscheinlichkeitstheorie und Statistik

Code	Name		
MA8	Einführung in die Wahrscheinlichkeitstheorie und Statistik		
LP	Dauer	Angebotsturnus	
8	ein Semester	mindest. jedes 2. Semester	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO) B.Sc. Angewandte Informatik B.Sc. Informatik	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2 (im BSc Informatik gesonderte Regelung beachten)	
Lernziele	In der Grundvorlesung Statistik werden statistische Methoden und die ihnen zugrunde liegende Wahrscheinlichkeitstheorie behandelt. Mathematisches Modellieren zufälliger Phänomene, selbstständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen.		
Lerninhalte I. Wahrscheinlichkeitsräume: Ereignisse, diskrete Dichte, Dichtetransformation, bedingte Wahrsch Formel von Bayes II. Zufallsvariable: Erwartungswert, Varianz und Verteilungen von Zufallsvariablen, Faltung. III. Grenzwertsätze: Konvergenz von Zufallsvari Schwaches Gesetz der großen Zahlen, zentraler IV. Testtheorie: Hypothesentest, Fehler erster und Neyman-Pearson-Test, weitere Testmethoden. V. Schätztheorie: Konstruktionsprinzipien, Erwansen-Varianz-Zerlegung, Konsistenz, Konfidenzber VI. Beispiele für statistische Methoden: wie line Hauptkomponentenanalyse.		leinlichkeiten, Unabhängigkeit, Kovarianz, gemeinsame ablen und ihren Verteilungen, Grenzwertsatz. and zweiter Art, Likelihood, artungstreue, ereiche. are Regression, Varianzanalyse,	
Teilnahme- voraus- setzungen empfohlen sind: Analysis I und II (MA1, MA2), Lineare Algebra I und II MA5)		Lineare Algebra I und II (MA4,	
Vergabe der LP und Modulendnote	nd wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die		
Nuetzliche Literatur	Rice, J.: Mathematical statistics and Data Analysis Georgii, H.: Stochastik, de Gruyter		

Proseminar

Code	Name		
MPS	Proseminar		
LP	Dauer	Angebotsturnus	
6	ein Semester	jedes Semester	
Format Seminar 2 SWS + Tutorium 2 SWS, aktive und passive Teilnahme an Vorträgen	Arbeitsaufwand 180 h, davon 30 h Präsenzzeit 150 h Vorbereitung inkl. Betreuung	Verwendbarkeit B.Sc. Mathematik	
Sprache Deutsch oder Englisch	Lehrende je nach Angebot	Prüfungsschema 1+1	
Lernziele	Befähigung mathematische Literatur (in der Regel ein einfacher Text) zu lesen, sich selbständig mit einer mathematischen Fragestellung zu beschäftigen und hierüber vorzutragen. Befähigung, mathematische Argumente klar und verständlich einem kleineren Kreis von Hörern mitzuteilen. Die Studierenden sind in der Lage, Fragen zu den vorgetragenen mathematischen Themen zu stellen und zu beantworten.		
Lerninhalte Vortrag über das eigene Seminarthema, insbesondere ein dem Vortrag vorausgehendes umfangreiches Beratungsgespräch bei der bzw. dem Leh Fragen zu den vorgetragenen mathematischen Themen zu stellen und Fragen zum eigenen Vortrag zu beantworten		h bei der bzw. dem Lehrenden	
Teilnahme- voraus- setzungen empfohlene Vorkenntnisse werden von der bzw. dem Lehrenden bekanntgeg setzungen		lem Lehrenden bekanntgegeben	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Prüfung abgeschlossen. Diese Prüfung umfasst die Ausarbeitung und das Halten eines Vortrages von etwa 40 bis 90 Minuten Dauer. Zur Vergabe der LP muss die Prüfung bestanden werden und aktive und passive Teilnahme an weiteren Vorträgen ist erforderlich. Die Modulendnote wird durch die Note der Prüfung festgelegt. Die bzw. der Lehrende kann eine Frist festsetzen bis zu welcher die Studierenden von ihrem angemeldeten Vortrag zurücktreten können. Nach Ablauf dieser Frist ist ein Zurücktreten nicht mehr möglich und bei nichtgehaltenem Vortrag gilt die Prüfung als nicht bestanden.		
Nuetzliche Literatur	Nuetzliche wird von der bzw. dem Lehrenden bekanntgegeben		

Höhere Analysis

Code	Name		
MA3	Höhere Analysis		
LP	Dauer	Angebotsturnus	
8	ein Semester	jährlich im Winter	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+3	
Lernziele	 - Ausbau der Differential- und Integralrechnung mehrerer Veränderlicher. Insbesondere Grundwissen über das Lebesgueintegral und die klassische Integralsätze und damit die Fähigkeit die Strukturen zu handhaben und die Zusammenhänge zu erläutern - Erlangung höherer Abstraktionsfähigkeit, selbstständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen. 		
Lerninhalte	= = = = = = = = = = = = = = = = = = = =		
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2) sowie Lineare Algebra I und II (MA4, MA5)		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	Bekanntgabe in der Vorlesung		

Seminar im Bachelor

Code	Name	
MSB	Seminar im Bachelor	
LP	Dauer	Angebotsturnus
6	ein Semester	jedes Semester
Format Seminar 2 SWS + Tutorium 2 SWS, aktive und passive Teilnahme an Vorträgen	Arbeitsaufwand 180 h, davon 60 h Seminar und Tutorium 120 h Vorbereitung inkl. Betreuung	Verwendbarkeit B.Sc. Mathematik Lehramt Mathematik (GymPO)
Sprache Deutsch oder Englisch	Lehrende je nach Angebot	Prüfungsschema 1+1
Lernziele	Befähigung mathematische Literatur (in der Regel ein anspruchsvollerer Text) zu lesen, sich selbständig mit einer mathematischen Fragestellung zu beschäftigen und hierüber vorzutragen. Befähigung mathematische Argumente klar und verständlich einem kleineren Kreis von Hörern mitzuteilen. Die Studierenden sind in der Lage, Fragen zu den vorgetragenen mathematischen Themen zu stellen und zu beantworten.	
Lerninhalte	Vortrag über das eigene Seminarthema, insbesondere ein dem Vortrag vorausgehendes umfangreiches Beratungsgespräch bei der bzw. dem Lehrenden Fragen zu den vorgetragenen mathematischen Themen zu stellen und Fragen zum eigenen Vortrag zu beantworten	
Teilnahme- voraus- setzungen	empfohlene Vorkenntnisse werden von der bzw. dem Lehrenden bekanntgegeben	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Prüfung abgeschlossen. Diese Prüfung umfasst die Ausarbeitung und das Halten eines Vortrages von etwa 40 bis 90 Minuten Dauer. Zur Vergabe der LP muss die Prüfung bestanden werden und aktive und passive Teilnahme an weiteren Vorträgen ist erforderlich. Die Modulendnote wird durch die Note der Prüfung festgelegt. Die bzw. der Lehrende kann eine Frist festsetzen bis zu welcher die Studierenden von ihrem angemeldeten Vortrag zurücktreten können. Nach Ablauf dieser Frist ist ein Zurücktreten nicht mehr möglich und bei nichtgehaltenem Vortrag gilt die Prüfung als nicht bestanden.	
Nuetzliche Literatur	wird von der bzw. dem Lehrenden bekanntgegeben	

Bachelorarbeit

Code	Name	
MBA_100	Bachelorarbeit	
LP	Dauer	Angebotsturnus
12	3 Monate	jedes Semester
Format	Arbeitsaufwand	Verwendbarkeit
Betreutes	360 h Bearbeitung eines individuellen Themas	B.Sc. Mathematik mit einem
Selbststudium	(Forschungs- und Entwicklungsarbeiten) und	Fachteil von 100%
1 SWS	schriftliche Ausarbeitung	
Sprache	Lehrende	Prüfungsschema
Deutsch oder	je nach Angebot	1+1
Englisch		
Lernziele	Einsatz der erlernten Fachkenntnisse und Methoden zum selbstständigen Lösen	
	einer überschaubaren Problemstellung aus der Mathematik und ihren	
	Anwendungen	
	Fähigkeit, eine wissenschaftlichen Arbeit zu erstellen	
Lerninhalte	selbstständiges wissenschaftliches Bearbeiten einer beschränkten	
	Aufgabenstellung aus der Mathematik und ihren Anwendungen	
Teilnahme-	nach Prüfungsordnung mindestens 120 LP; weiterhin sind empfohlen:	
voraus-	Wahlpflichtvorlesungen und Modul Seminar (MS)	
setzungen		
Vergabe der	Zur Vergabe der LP ist das Bestehen der benoteten Bachelorarbeit nötig. Die	
LP und	Bachelorarbeit umfasst regelmäßige Treffen mit der Betreuerin bzw. dem	
Modulendnote	Betreuer und die schriftliche Ausarbeitung.	
Nuetzliche		
Literatur		

Präsentation zur Bachelorarbeit

Code	Name	
MPBA	Präsentation zur Bachelorarbeit	
LP	Dauer	Angebotsturnus
8		jedes Semester
Format Seminar 2 SWS	Arbeitsaufwand 240 h, davon 30 h Seminar 180 h umfangreiche Literaturrecherche zum Thema der Bachelorarbeit 30 h Selbstständige Ausarbeitung des Vortrags zur Bachelorarbeit	Verwendbarkeit B.Sc. Mathematik mit einem Fachanteil von 100%
Sprache Deutsch oder Englisch	Lehrende je nach Angebot	Prüfungsschema 1+1
Lernziele	Die Studierenden: - erlangen und zeigen die Fähigkeit, eigene mathematische Arbeiten in einem wissenschaftlichen Vortrag darzustellen und mathematische anspruchsvolle Sachverhalte klar und verständlich einem kleineren Kreis von Hörern zu vermitteln - sind in der Lage, sich in ihrem Gebiet der Bachelorarbeit eingeschränkt zu positionieren, dies zu kommunizieren, und die Ergebnisse der eigenen Arbeit im wissenschaftlichen Kontext einzuordnen - erwerben die Fähigkeit zur selbstständigen Literaturrecherche im Themengebiet der Bachelorarbeit	
Lerninhalte	- selbstständige Literaturrecherche im Themengebiet der Bachelorarbeit - Präsentation des Inhaltes der Bachelorarbeit und Einordnung der Ergebnisse im wissenschaftlichen Kontext im Rahmen eines Vortrags vor der Betreuerin bzw. dem Betreuer und anderen Bachelorstudierenden	
Teilnahme- voraus- setzungen	empfohlene Vorkenntnisse werden von der Betreuerin bzw. dem Betreuer bekanntgegeben	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten mündlichen Prüfung abgeschlossen. Diese Prüfung umfasst einen etwa 1-stündigen Vortrag über die Bachelorarbeit. Die Modulendnote wird durch die Note der Prüfung festgelegt.	
Nuetzliche Literatur	Literaturempfehlung wird von der Betreuerin bzw. dem Betreuer bekanntgegeben	

4 Wahlpflichtbereich

Im Wahlpflichtbereich Mathematik sind insgesamt 32 LP zu erbringen (4 Module). Die Module sind den Teilbereichen Reine Mathematik und Angewandte Mathematik zugeordnet (siehe Tabelle). Fortgeschrittene Vorlesungen sind mit (*) gekennzeichnet. Weitere Module des Wahlpflichtbereichs können im Modulhandbuch ausgewiesen werden.

Die folgenden Regeln müssen beachtet werden:

- 1) In den beiden Teilbereichen Reine Mathematik und Angewandte Mathematik muss jeweils mindestens ein Wahlpflichtmodul bestanden werden.
- 2) Es muss mindestens ein fortgeschrittenes Modul bestanden werden. Anstelle eines Fortgeschrittenenmoduls kann ein Grundmodul (max. 8 LP) aus dem Masterstudiengang Mathematik als vertiefende Vorlesung gewählt werden.

Teilbereich Reine Mathematik		
Algebra I		8 LP
Algebra II	(*)	8 LP
Algebraische Topologie I		8 LP
Differentialgeometrie I		8 LP
Funktionentheorie I		8 LP
Funktionentheorie II	(*)	8 LP

Teilbereich Angewandte Mathematik		
Die Programmiersprache R und ihre Anwendungen in der Stochastik		8 LP
Funktionalanalysis	(*)	8 LP
Gewöhnliche Differentialgleichungen		8 LP
Grundlagen der Optimierung		8 LP
Numerical Linear Algebra		8 LP
Numerik		8 LP
Partielle Differentialgleichungen		8 LP
Statistik		8 LP
Wahrscheinlichkeitstheorie		8 LP

4.1 Teilbereich Reine Mathematik

Nachfolgend sind die Module für den Teilbereich Reine Mathematik aufgeführt.

Algebra I

Code	Name	
MB1	Algebra I	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Winter
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO)
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Grundwissen über Gruppen, Ringe und Körper einschließlich der Galoisschen Theorie; Abstraktes und strukturelles Denken, Erlernen einer begrifflich komplexen mathematischen Theorie, mit diesen genannten Kenntnissen die Fähigkeit die Strukturen zu handhaben und die Zusammenhänge zu erläutern, selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	I. Gruppen: Homomorphie- und Isomorphiesätze, Normalreihen und auflösbare Gruppen, Konstruktion und Darstellung von Gruppen, endlich erzeugte abelsche Gruppen, Operation von Gruppen, Sylowsätze, einfache Gruppen. II. Ringe: Homomorphismen und Ideale, Polynomringe, Hauptidealringe und euklidische Ringe, faktorielle Ringe, simultane Kongruenzen, Quotientenringe, symmetrische Polynome. III. Körper: Algebraische und transzendente Körpererweiterungen, endliche Körper, separable und normale Körpererweiterungen, algebraisch abgeschlossene Hülle, Fundamentalsatz der Galoistheorie, Berechnung der Galoisgruppe, abelsche und Kummererweiterungen, Konstruktionen mit Zirkel und Lineal.	
Teilnahme- voraus- setzungen	empfohlen sind: Lineare Algebra I (MA4) und Lineare Algebra II (MA5)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	S. Bosch: Algebra S. Lang: Algebra F. Lorenz, F. Lemmermeyer: Algebra	

Algebra II

Code	Name	
MB2	Algebra II	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Sommer
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik Lehramt Mathematik (GymPO)
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Aneignung vertiefter Kenntnisse im Bereich Algebra, z.B. Kommutative Algebra, Homologische Algebra oder Darstellungstheorie, wobei die Stoffauswahl insbesondere die Bedüfnisse der algebraischen und arithmetischen Geometrie berücksichtigt; Abstraktes und strukturelles Denken, Erlernen begrifflich komplexer mathematischer Theorien, mit diesen genannten Kenntnissen die Fähigkeit die Strukturen zu handhaben und die Zusammenhänge zu erläutern, selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	Der Dozent stellt eine Auswahl aus den folgenden Themenbereichen vor: I. Kommutative Algebra: Noethersche und Artinsche Ringe und Moduln, Hilbertscher Basissatz, Spektrum und Primärzerlegung, Komplettierung, weitere Themen aus dem Bereich kommutative Algebra II. Darstellungstheorie: Halbeinfache Algebren, Wedderburn-Theorie, Brauergruppe, Gruppencharaktere, induzierte Charaktere und Darstellungen, weitere Themen aus dem Bereich Darstellungstheorie. III. Homologische Algebra: Universelle Konstruktionen, projektive und injektive Moduln, Kategorien und Funktoren, abelsche Kategorien, abgeleitete Funktoren, Gruppenkohomologie, weitere Themen aus dem Bereich Homologische Algebra. IV. Unendliche Galoistheorie: unendliche Galoiserweiterungen, die absolute Galoisgruppe, Galoiskohomologie, Hilberts Satz 90, weitere Themen aus dem Bereich Unendliche Galoistheorie. V. Weitere Themenbereiche der Algebra.	
Teilnahme- voraus- setzungen	empfohlen ist: Algebra I (MB1)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten mündlichen oder schriftlichen Prüfung abgeschlossen. Die Modulendnote wird durch die Note der Prüfung festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	

Nuetzliche	M. Atiyah, I. MacDonald: Introduction to Commutative Algebra
Literatur	D. Eisenbud: Commutative Algebra
	P. Hilton, U. Stammbach: A Course in Homological Algebra
	H. Matsumura: Commutative Ring Theory
	JP. Serre: Linear Representations of Finite Groups
	C. H. Weibel: An Introduction to Homological Algebra

Funktionentheorie I

Code	Name	
MB3	Funktionentheorie I	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Sommer
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO)
Sprache	Lehrende	Prüfungsschema
Deutsch Lernziele	wechselnd Einführung in die komplexe Analysis und damit Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können. Selbstständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen; Fähigkeit der Anwendung auf andere Gebiete wie z. B. Mathematische und Theoretische Physik	
Lerninhalte	I. Differentialrechnung im Komplexen: Komplexe Ableitung, die Cauchy-Riemannsche Differentialgleichungen. II. Integralsätze: Der Cauchysche Integralsatz, die Cauchyschen Integralformeln. III. Singularitäten analytischer Funktionen, Residuensatz: Potenzreihen, Abbildungseigenschaften analytischer Funktionen, Fundamentalsatz der Algebra, Singularitäten analytischer Funktionen, Laurentzerlegung, der Residuensatz. IV. Konforme Abbildungen. V. Topologische Ergänzungen: Die Homotopieversion des Cauchyschen Integralsatzes, Charakterisierungen von einfach zusammenhängenden Gebieten.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2) sowie Lineare Algebra I und II (MA4, MA5)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Freitag, Busam: Funktionentheorie I Remmert, Schumacher: Funktionentheorie I Fischer, Lieb: Funktionentheorie	

Funktionentheorie II

Code	Name	
MB4	Funktionentheorie II	
LP	Dauer	Angebotsturnus
8	ein Semester	unregelmäßig
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und	Verwendbarkeit B.Sc. Mathematik Mathematik Lehramt (GymPO)
	Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Fortsetzung der Vorlesung Funktionentheorie I (MB3) und damit Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können, Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen.	
Lerninhalte	I. Konstruktion analytischer Funktionen: Spezielle Funktionen (z. B. Gammafunktion), der Weierstraßsche Produktsatz, der Partialbruchsatz von Mittag-Leffler II. Elliptische Funktionen III. Modulformen	
	Mögliche Vertiefungen finden in den folgenden Gebieten statt: I. Riemannsche Flächen II. Funktionentheorie mehrerer Veränderlicher III. Analytische Zahlentheorie IV. Wertverteilungstheorie, geometrische Funktionentheorie	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I (MA1), Lineare Algebra I (MA4), Funktionentheorie I (MB3)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Wird in der Vorlesung bekannt gegeben.	

Algebraische Topologie I

Code	Name	
MB5	Algebraische Topologie I	
LP	Dauer	Angebotsturnus
8	ein Semester	2-jährlich
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik
Sprache Deutsch	Lehrende Markus Banagl	Prüfungsschema 1+2
Lernziele	Grundwissen der Algebraischen Topologie und damit die Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können, Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen.	
Lerninhalte	Grundlagen der Punktmengentopologie, Homotopie, Fundamentalgruppe, Satz von Seifert-Van Kampen, Theorie der Überlagerungen, Homologie, Grundlegende Begriffsbildungen aus der Kategorientheorie, Eilenberg-Steenrod Axiomatik, Mayer-Vietoris Sequenz, die Euler-Charakteristik, Anwendungen.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2) sowie Lineare Algebra I und II (MA4, MA5)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten mündlichen oder schriftlichen Prüfung abgeschlossen. Die Modulendnote wird durch die Note der Prüfung festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Glen E. Bredon: Topology and Geometry James R. Munkres: Elements of Algebraic Topology	

Differentialgeometrie I

Code	Name	
MG15	Differentialgeometrie I	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Sommer
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung	Verwendbarkeit B.Sc. Mathematik
	120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Kenntnis der Grundbegriffe der Differentialgeometrie, Beherrschung des Kalküls Fähigkeit, Methoden aus der Analysis und Algebra zu Behandlung geometrischer Probleme anzuwenden. Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	Differenzierbare Mannigfaltigkeit, (Semi-) Riemannsche Mannigfaltigkeiten, Zusammenhänge, Geodätische, Krümmung.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2) und Lineare Algebra I und II (MA4, MA5))	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Do Carmo: Riemannian Geometry Gallot-Hulin-Lafontaine: Riemannian Geometry Gromoll-Klingenberg-Meyer: Riemannsche Geometrie im Großen Kobayashi-Nomizu: Foundations of Differential Geometry Petersen: Riemannian Geometry Spivak: Differential Geometry	

Discrete Structures 1

Code	Name		
IDS1	Discrete Structures 1		
LP	Dauer	Angebotsturnus	
8	one semester	every winter semester	
Format Lecture 4 SWS + Exercise course 2 SWS	Arbeitsaufwand 240 h; thereof 90 h lecture 20 h preparation for exam 130 h self-study and working on assignments/projects (optionally in groups)	Verwendbarkeit B.Sc. Angewandte Informatik B.Sc. Informatik B.Sc. Mathematik	
Sprache English	Lehrende Felix Joos	Prüfungsschema 1+1 (im BSc Mathematik 1+2)	
Lernziele	Students - understand several basic graph parameters and the central theorems in these areas - can solve easy problems involving discussed topics - can describe graph algorithms computing discussed graph parameters - know how to use graphs and graph parameters to model real world problems - Introduction to graph theory terminology - Matchings in graph and hypergraphs - Graph connectivity - Planar graphs - Graph Colouring - Hamilton Cycles - Ramsey Theory - Random graphs - Algebraic Graph constructions (Cayley graphs, Kneser graphs,)		
Teilnahme- voraus- setzungen	- Algorithms computing discussed graph parameters recommended are: Einführung in die Praktische Informatik (IPI), Mathematik für Informatiker 1 (IMI1) or Lineare Algebra 1 (MA4), Mathematik für Informatiker 2 (IMI2) or Analysis 1 (MA1)		
Vergabe der LP und Modulendnote	The module is completed with a graded oral or written examination. The final grade of the module is determined by the grade of the examination. The requirements for the assignment of credits follows the regulations in section modalities for examinations.		
Nuetzliche Literatur	 Reinhard Diestel Graph Theory, 5th edition, Springer, 2016/17 Douglas West, Introduction to Graph Theory, Pearson, 2011. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008. Bernhard Korte and Jens Vygen, Combinatorial Optimization, 6th edition, 2018. 		

4.2 Teilbereich Angewandte Mathematik

Nachfolgend sind die Module für den Teilbereich Angewandte Mathematik aufgeführt.

Gewöhnliche Differentialgleichungen

Code	Name		
MC1	Gewöhnliche Differentialgleichungen		
LP	Dauer	Angebotsturnus	
8	ein Semester	mindst. jedes 4. Semester	
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema	
Lernziele	wechselnd 1+2 Einführung in die Lösungstheorie gewöhnlicher Differentialgleichungen und damit Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können, Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen		
Lerninhalte	I. Elementare Lösungsmethoden: Trennung der Variablen, Variation der Konstanten, exakte Differentialgleichungen II. Existenz- und Eindeutigkeitsätze: eindeutige Lösbarkeit von Anfangswertproblemen, maximale Lösungen, Lemma von Gronwall III. Abhängigkeit von Parametern: stetige und differenzierbare Abhängigkeit von Anfangswerten und Parametern IV. Lineare Differentialgleichungen: Fundamentalsystem, Wronskideterminante, Evolutionsoperator, Exponentialfunktion V. Dynamische Systeme und Flüsse: Orbit, Phasenporträt, Satz von Liouville, ebene lineare Flüsse, hyperbolische lineare Flüsse, Koordinatentransformation, Flussäquivalenz VI. Stabilität: Ljapunovstabilität, invariante Mengen, Ljapunovfunktionen		
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1,MA2), Lineare Algebra I (MA4)		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	H. Amann: Gewöhnliche Differentialgleichungen W. Walter: Gewöhnliche Differentialgleichungen V.I. Arnold: Gewöhnliche Differentialgleichungen		

Partielle Differentialgleichungen

Code	Name		
MC2	Partielle Differentialgleichungen		
LP	Dauer	Angebotsturnus	
8	ein Semester	mindst. jedes 4. Semester	
Format	Arbeitsaufwand	Verwendbarkeit	
Vorlesung 4	240 h; davon	B.Sc. Mathematik	
SWS + Übung	60 h Vorlesung		
2 SWS	30 h Übung		
	120 h Bearbeitung der Hausaufgaben und		
	Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung		
C	Lehrende	Df	
Sprache Deutsch	wechselnd	Prüfungsschema 1+2	
Lernziele			
Lernziele	Einführung in das Gebiet der partiellen Different	0	
	klassischer Beispiele sowie Grundwissen über einen funktionalanalytischen Zugang und damit Fähigkeit die Strukturen handhaben und die		
	Zusammenhänge erläutern zu können		
	Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in		
	den Übungen		
Lerninhalte	I. Die Potentialgleichung: Fundamentallösung, Maximumprinzip,		
	Perron-Verfahren, Newton-Potential		
	II. Die Wärmeflussgleichung: Anfangswertproblem		
	III. Die Wellengleichung: Wellengleichung in niederen Raumdimensionen,		
	Cauchy-Problem		
E 1 1	IV. Die Hilbertraummethode bei elliptischen Randwertproblemen		
Teilnahme-	empfohlen sind: Analysis I und II (MA1, MA2), Lineare Algebra I und II		
voraus- setzungen	(MA4, MA5), Höhere Analysis (MA3)		
	D - M - d - l - i - d - i - i - i l	- J : : [[] : - D : : []	
Vergabe der LP und	Das Modul wird mit einer benoteten mündlichen oder schriftlichen Prüfung abgeschlossen. Die Modulendnote wird durch die Note der Prüfung festgelegt.		
Modulendnote	Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche	J. Jost: Partielle Differentialgleichungen		
Literatur	o. vois. 1 at tione Differential generality		

Funktionalanalysis

Code	Name		
MC3	Funktionalanalysis		
LP	Dauer	Angebotsturnus	
8	ein Semester	in der Regel jährlich	
Format Vorlesung 4 SWS + Übung	Arbeitsaufwand 240 h; davon 60 h Vorlesung	Verwendbarkeit B.Sc. Mathematik	
2 SWS	30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung		
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2	
Lernziele	Grundwissen der Funktionalanalysis und damit die Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können, Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen		
Lerninhalte	I. Metrische Räume und ihre Abbildungen: u.a. Vervollständigung, Satz von Baire, (relativ) kompakte Teilmengen und ihre Charakterisierung, Fortsetzbarkeit gleichmässig stetiger Abbildungen II. Normierte Räume und ihre Abbildungen: inklusiv Banach-Räume, Dualräume, schwache Topologien, topologische Vektorräume, Beispiele von Funktionenräumen, Spektraltheorie kompakter Operatoren, mit den üblichen Sätzen (inklusiv Spektralsatz) III. Hilbert-Räume und ihre Abbildungen		
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2) , Lineare Algebra I und II (MA4, MA5), Höhere Analysis (MA3)		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.		
Nuetzliche Literatur	Bekanntgabe in der Vorlesung		

Wahrscheinlichkeitstheorie

Code	Name	
MC4	Wahrscheinlichkeitstheorie	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Sommer
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik
Sprache	Lehrende	Prüfungsschema
Deutsch	wechselnd	1+2
Lernziele	Grundlagen für alle Gebiete der Wahrscheinlichkeitstheorie und Statistik und damit die Fähigkeit die Strukturen handhaben und die Zusammenhänge erläutern zu können. Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	I. Maß- und Integrationstheorie: Algebren, Borel-Algebra, messbare Abbildungen, Konstruktion von Wahrscheinlichkeitsmaßen, Produkträume. Erwartungswert als Maßintegral, Sätze von Lebesgue, Beppo Levi, Fubini und Radon-Nikodym. II. Konvergenz von Zufallsvariablen: Lp-Räume, Zusammenhang zwischen fast sicherer, stochastischer und Lp-Konvergenz, Starkes Gesetz der großen Zahlen, Konvergenz in Verteilung, charakteristische Funktionen, zentraler Grenzwertsatz. III. Bedingte Verteilungen: Bedingte Erwartungen, Markov-Kerne, Martingale in diskreter Zeit. IV. Stochastische Prozesse: Brownsche Bewegung, Poisson-Prozess, Empirischer Prozess.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II (MA1, MA2), Lineare Algebra I und II (MA4, MA5), Höhere Analysis (MA3), Einführung in die Wahrscheinlichkeitstheorie und Statistik (MA 8)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Bauer, H.: Wahrscheinlichkeitstheorie, de Gruyter. Billingsley, P.: Probability and Measure, Wiley. Dudley, R.N.: Real Analysis and Probability Durrett, R.: Probability: Theory and Examples, Duxbury Press Jacod, J. and Protter, P.: Probability Essentials, Springer Shiryaev, A.: Probability, Springer.	

Numerik

Code	Name	
MD1	Numerik	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Sommer
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik
Sprache Deutsch oder Englisch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Kenntnisse der numerischen Lösung von Anfangswert- und Randwertaufgaben gewöhnlicher Differentialgleichungen und einfacher partieller Differentialgleichungen. Abstraktes und algorithmisches Denken, Anwendung von Techniken der Analysis und linearen Algebra, selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	I. Theorie von Anfangs- und Randwertaufgaben II. Einschrittmethoden: Konsistenz, Stabilität, Konvergenz. III. Numerische Stabilität und steife Anfangswertaufgaben IV. Andere Verfahrensklassen: Lineare Mehrschrittmethoden, Extrapolationsmethoden, Galerkin-Methoden (optional). V. Lösung von Differentiellalgebraischen Aufgaben VI. Lösung von Randwertaufgaben: Schießverfahren, Differenzen und Galerkin-Verfahren (optional). VII. Differenzenverfahren für elliptische partielle Differentialgleichungen, Laplace-Gleichung, 5-Punkte-Approximation. VIII. Iterative Lösungsverfahren für diskretisierte Probleme.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I (MA1), Lineare Algebra I (MA4), Einführung in die Numerik (MA7)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Bekanntgabe in der Vorlesung (Vorlesungsskripu	m)

Statistik

Code	Name	
MD2	Statistik	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich im Winter
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	Verwendbarkeit B.Sc. Mathematik
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	Prinzipien der mathematischen Statistik. Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	I. Entscheidungstheorie: Dualität von Tests und Konfidenzbereichen, Neyman-Pearson-Theorie, allgemeine Entscheidungsverfahren, Risikofunktionen, Bayes- und Minimaxoptimalität II. Asymptotische Statistik: Verteilungsapproximation, Fisher-Information, relative asymptotische Effizienz von Tests und Schätzern, Likelihood-basierte Verfahren, nichtparametrische Verfahren.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I (MA1), Lineare Algebra I (MA4), Einführung in die Wahrscheinlichkeitstheorie u. Statistik (MA8), Wahrscheinlichkeitstheorie (MC4)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Bickel, P. J. and Doksum, K. A.: Mathematical Statistics, Prentice Hall Lehmann, E. L.: Testing Statistical Hypotheses, Springer Verlag Van der Vaart, A. W.: Asymptotic Statistics, Cambridge University Press	

Grundlagen der Optimierung

Code	Name	
MD3	Grundlagen der Optimierung	
LP	Dauer	Angebotsturnus
8	ein Semester	jährlich
Format	Arbeitsaufwand	Verwendbarkeit
Vorlesung 4 SWS + Übung 2 SWS	240 h; davon 60 h Vorlesung 30 h Übung	B.Sc. Mathematik
	120 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 30 h Klausur mit Vorbereitung	
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2
Lernziele	 einen Überblick über verschiedene Klassen kontinuierlicher, unrestringierter und restringierter Optimierungsaufgaben zu gewinnen, typische Argumentationsweisen zur Herleitung von Optimalitätsbedingungen kennenzulernen, wesentliche Lösungsalgorithmen und ihre Konvergenzeigenschaften zu verstehen 	
Lerninhalte	 Klassifikation von Optimierungsaufgaben Optimalitätsbedingungen, Gradienten- und Newton-Verfahren für unrestringierte differenzierbare Optimierungsaufgaben Optimalitätsbedingungen, Dualität, Simplex-Verfahren für lineare Optimierungsaufgaben Richtungsableitung und Subdifferential konvexer Funktionen, Optimalitätsbedingungen, Gradienten- und Proximale-Punkte Verfahren für konvexe Optimierungsaufgaben 	
Teilnahme- voraus- setzungen	Empfohlen sind: Lineare Algebra I, Analysis I und II, Programmierkenntnisse	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten mündlichen oder schriftlichen Prüfung abgeschlossen. Die Modulendnote wird durch die Note der Prüfung festgelegt. Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche Literatur	Geiger, Kanzow: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben Vanderbei: Linear Programming Beck: First-Order Methods in Optimization	

Die Programmiersprache R und ihre Anwendungen in der Stochastik

Code	Name	
MD7	Die Programmiersprache R und ihre Anwendungen in der Stochastik	
LP	Dauer	Angebotsturnus
8	ein Semester	unregelmäßig
Format Vorlesung 4 SWS + Übung 2 SWS	Arbeitsaufwand 240 h; davon 60 h Vorlesung 30 h Übung 60 h Bearbeitung der Hausaufgaben und Nachbereitung der Vorlesung 20 h Klausur mit Vorbereitung 50 h Programmierprojekt 20 h Erstellen eines Berichts sowie Vorbereitung und Durchführung einer Kurzpräsentation des Projektes	Verwendbarkeit B.Sc. Mathematik B.Sc. Angewandte Informatik B.Sc. Informatik
Sprache Deutsch	Lehrende wechselnd	Prüfungsschema 1+2 (im BSc Informatik 1+1)
Lernziele	 Selbstständige Umsetzung einfacher theoretischer Konzepte aus der Stochastik am Computer Selbstständiges Bearbeiten von praktischen Programmieraufgaben in R Schreiben von effektiven und wiederverwendbaren Programmcodes Implementierung eines umfangreicheren Projekts 	
Lerninhalte	Grundlagen der R-Programmierung Datenstrukturen, Subsetting, Funktionen, Objekte, funktionale Programmierung Grundkenntnisse zur Effizienz von R-Programmen Simulation von Zufallsexperimenten und deren Analyse Anwendungen von R in der Statistik Informationsvisualisierung Erstellung von Paketen	
Teilnahme- voraus- setzungen	empfohlen sind: Einführung in die Praktische Informatik (IPI), Einführung in die Wahrscheinlichkeitstheorie u. Statistik (MA8) (diese kann auch parallel gehört werden)	
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Prüfung abgeschlossen. Die Prüfung umfasst die Klausur, den Bericht und die Kurzpräsentation des Projektes. Die Modulendnote wird durch die Note der Prüfung festgelegt. Weitere Details zur Vergabe der LP werden vom Lehrenden zu Beginn der Veranstaltung bekannt gegeben.	
Nuetzliche Literatur	https://de.wikibooks.org/wiki/GNU_R Hadley Wickham - Advanced R	

Numerical Linear Algebra

Code	Name	
MD8	Numerical Linear Algebra	
LP	Dauer	Angebotsturnus
8	one semester	annually in winter
Format	Arbeitsaufwand	Verwendbarkeit
Lecture 4	240 h; thereof	B.Sc. Mathematik
SWS +	60 h lectures,	
Exercise	30 h exercises,	
course 2 SWS	120 h homework and lecture wrap-up,	
	30 h exam preparations	
Sprache	Lehrende	Prüfungsschema
Englisch	Guido Kanschat	1+2
	Understanding eigenvalue problems from a numerical point of view; conditioning and estimates. Knowledge of methods for determining single and more eigenvalues of dense matrices and understanding their theoretical foundation. Understanding of the particular demands of sparse linear systems. Knowledge of Krylov space methods and being able to analyze them mathematically.	
Lerninhalte	Conditioning of eigenvalue problems, eigenvalue estimates, power iterations for single eigenvalues, the QR method to compute the whole spectrum of dense matrices; the concept of sparse matrices and matrix free computations, Krylov space methods for the solution of sparse linear systems: the conjugate gradient method and the generalized minimal residual method. Krylov space methods for sparse eigenvalue problems: Lanczos and Arnoldi methods.	
Teilnahme- voraus- setzungen	recommended are: Analysis I and II (MA1, MA2), Lineare Algebra I and II (MA4, MA5), Einführung in die Numerik (MA7)	
Vergabe der LP und Modulendnote	The module is completed with a graded oral or written exam. The final grade of the module is determined by the grade of the exam. The requirements for the assignment of credits is sufficient success with homework assignments, theoretical as well as programming and passing the final exam. Details will be given by the lecturer at the beginning of the class.	
Nuetzliche Literatur	Y. Saad: Iterative methods for sparse linear systems Y. Saad: Numerical methods for large eigenvalue problems	

5 Wahlbereich Mathematik

Nachfolgend sind die Module für den Wahlbereich Mathematik aufgeführt.

Im Wahlbereich Mathematik sind 16 LP zu erbringen (2 Module). Anstelle der Module aus diesem Bereich können auch eins oder beide Module aus dem Wahlpflichtbereich Teilbereiche Reine und Angewandte Mathematik gewählt werden. Diese dürfen jedoch nicht doppelt angerechnet werden. Das Modul Einführung in die Theoretische Informatik kann im Wahlbereich nicht angerechnet werden, wenn das Anwendungsgebiet Informatik ist.

Anstelle eines Moduls aus dem Wahlbereich kann ein Grundmodul (max. 8 LP) aus dem Masterstudiengang Mathematik gewählt werden.

Mengentheoretische Topologie

Code	Name	
ME5	Mengentheoretische Topologie	
LP	Dauer	Angebotsturnus
8	ein Semester	unregelmäßig
Format	Arbeitsaufwand	Verwendbarkeit
Vorlesung 4	240 h; davon	B.Sc. Mathematik
SWS + Übung 2 SWS	60 h Vorlesung 30 h Übung	
2500	120 h Bearbeitung der Hausaufgaben und	
	Nachbereitung der Vorlesung	
	30 h Klausur mit Vorbereitung	
Sprache	Lehrende	Prüfungsschema
Deutsch	wechselnd	1+1
Lernziele	Grundkenntnisse über mengentheoretische Topol die Strukturen handhaben und die Zusammenhä	9
	Selbständiges Lösen von Aufgaben aus dem Themenbereich mit Präsentation in den Übungen	
Lerninhalte	- Grundlagen (topologische Räume, Erzeugung topologischer Räume, stetige	
	Abbildungen, Trennungsaxiome, Eigenschaften topologischer Räume)	
	Im Anschluss wird die Theorie in einem oder mehreren Themen vertieft:	
	- Konstruktion stetiger Funktionen auf topologischen Räumen - Uniforme Räume	
	- Homotopietheorie	
	- CW-Komplexe	
	- Topologische Gruppen	
	- Topologische Vektorräume	
Teilnahme-	empfohlen sind: Analysis I (MA1), Lineare Algeb	ora I (MA4)
voraus- setzungen		
Vergabe der	Das Modul wird mit einer benoteten mündlichen	oder schriftlichen Priifung
LP und	Das Modul wird mit einer benoteten mündlichen oder schriftlichen Prüfung abgeschlossen. Die Modulendnote wird durch die Note der Prüfung festgelegt.	
Modulendnote	Für die Vergabe der LP gilt die Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche	Jänich: Topologie	
Literatur	Laures, Szymik: Grundkurs Topologie	
	Schubert: Topologie Kelley: Ceneral Topology	
	Kelley: General Topology Weitere Literatur wird gegebenenfalls in der Vor	lesung bekanntgegeben
		2220 20101111020200111

Einführung in die Theoretische Informatik

Code	Name	
ITH	Einführung in die Theoretische Informatik	
LP	Dauer	Angebotsturnus
8	ein Semester	jedes Sommersemester
Format Vorlesung 4 SWS + Übung 2 SWS Sprache	Arbeitsaufwand 240 h; davon 90 h Präsenzstudium 15 h Prüfungsvorbereitung 135 h Selbststudium und Bearbeitung der Übungsaufgaben (eventuell in Gruppen) Lehrende	Verwendbarkeit B.Sc. Angewandte Informatik B.Sc. Informatik Lehramt Informatik B.Sc. Mathematik Prüfungsschema
Deutsch Lernziele		
Lerninhalte	Die Studierenden sind mit grundlegenden Aspekten des Berechenbarkeitsbegriffs vertraut, insbesondere mit dessen anschaulicher Bedeutung, der Formalisierungen durch Turingmaschinen und der Church-Turing-These. Sie wissen um die Grenzen der Berechenbarkeit, können die Unentscheidbarkeit des Halteproblems nachweisen und durch die Reduktionsmethode auf weitere Probleme übertragen. Sie sind vertraut mit universellen Maschinen und weiteren Konzepten und Herangehensweisen der Berechenbarkeitstheorie. Sie kennen wichtige Sätze wie das Rekursionstheorem und den Satz von Rice und können diese selbstständig anwenden. Die Studierenden sind vertraut mit regulären Sprachen, insbesondere deren Charakterisierung durch endliche Automaten und mit dazu verwandten Konzepten wie L-Äquivalenz und Pumping-Lemma. Neben den regulären Sprachen können sie kontextfreie, kontextsensitive und allgemeine Chomsky-Sprachen in die Chomsky-Hierarchie einordnen. Zudem können sie die Stufen der Chomsky-Hierarchie durch generative Grammatiken charakterisieren und haben einen Überblick über die dazugehörigen Automatenmodelle. Die Studierenden können Probleme hinsichtlich deren Zeit- und Platzschranken. Zudem kennen sie die Bedeutung der Klassen P und NP, das P-NP-Problem, die NP-Vollständigkeit des Erfüllbarkeitsproblems und können diese durch die Reduktionsmethode auf weitere Probleme übertragen.	
	Informatik: in die Berechenbarkeitstheorie, die Theorie Formaler Sprachen und die Komplexitätstheorie.	
Teilnahme- voraus- setzungen	empfohlen sind: Grundkenntnisse aus Mathematik (wie in einführenden Mathematikvorlesungen vermittelt) und Informatik	

Vergabe der	Das Modul wird mit einer benoteten Klausur abgeschlossen. Die Modulendnote	
LP und	wird durch die Note der Klausur festgelegt. Für die Vergabe der LP gilt die	
Modulendnote	Regelung aus dem Kapitel Prüfungsmodalitäten.	
Nuetzliche	Wird vom Lehrenden bekannt gegeben	
Literatur		

Complex Network Analysis

Code	Name	
ICNA	Complex Network Analysis	
LP	Dauer	Angebotsturnus
8	one semester	every 2nd wintersemester
Format Lecture 4 SWS + Exercise course 2 SWS	Arbeitsaufwand 240 h; thereof 90 h lecture 20 h preparation for exam 130 h self-study and working on assignments/projects (optionally in groups)	Verwendbarkeit M.Sc. Angewandte Informatik M.Sc. Data and Computer Science M.Sc. Scientific Computing B.Sc. Mathematik
Sprache English	Lehrende Michael Gertz	Prüfungsschema 1+1
Lernziele	Students - can describe basic measures and characteristics of complex networks - can implement and apply basic network analysis algorithms using programming environments such as R or Python - can describe different network models and can describe, compute, and analyze characteristic parameters of these models - know how to compute different complex network measures and how to interpret these measures - know different generative models for constructing complex networks, especially scale-free networks - know the fundamental methods for the detection of communities in networks and the analysis of their evolution over time - are familiar with basic concepts of network robustness - understand the principles behind the spread of phenomena in complex networks	
Lerninhalte	 Graph theory and graph algorithms; basic network measures Random networks and their characteristics (degree distribution, component sizes, clustering coefficient, network evolution), small world phenomena Scale-free property of networks, power-laws, hubs, universality Barabasi-Albert model, growth and preferential attachment, degree dynamics, diameter and clustering coefficient Evolving networks, Bianconi-Barabasi model, fitness, Bose-Einstein condensation Degree correlation, assortativity, degree correlations, structural cutoffs Network robustness, percolation theory, attack tolerance, cascading failures Communities, modularity, community detection and evolution Spreading phenomena, epidemic modeling, contact networks, immunization, epidemic prediction 	
Teilnahme- voraus- setzungen	recommended are: Algorithmen und Datenstrukturen (IAD), Knowledge Discovery in Databases (IKDD), Lineare Algebra I (MA4)	

Vergabe der LP und Modulendnote	The module is completed with a graded written examination. The final grade of the module is determined by the grade of the examination. The requirements for the assignment of credits follows the regulations in section modalities for examinations.
Nuetzliche Literatur	 Albert-Laszlo Barabasi: Network Science, Cambridge University Press, 2016. M.E.J. Newmann: Networks: An Introduction, Oxford University Press, 2010. Vito Latora, Vincenzo Nicosia, Giovanni Russo: Complex Networks - Principles, Methods and Applications, Cambridge University Press, 2017. David Easley, Jon Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010. Stanley Wasserman, Katherine Faust: Social Network Analysis-Methods and Applications, Cambridge University Press, 1994.

6 Übergreifende Kompetenzen

Die übergreifenden Kompetenzen (ÜK) zerfallen in einen in die Pflichtveranstaltungen integrierten Teil und einen Wahlbereich. Insgesamt sind 20 LP zu erbringen. In den Pflichbereich integriert sind 8 LP:

- 3 LP Programmieren in Einführung in die Praktische Informatik
- 3 LP Interdisziplinäres Arbeiten in die Veranstaltungen des Anwendungsgebietes
- 2 LP Fachdidaktik in Proseminar und Seminar

Der Wahlbereich besteht aus folgenden Kategorien:

- die unten aufgeführten Module
- bis zu 10 LP aus dem Studienangebot der Universität
- bis zu 10 LP fachdidaktische und bildungswissenschaftliche Veranstaltungen der Universität oder der Pädagogischen Hochschule
- bis zu zwei Auslandssemester zu je 3 LP

In diesem Kapitel sind die Module aufgeführt, die von Studierenden im Rahmen der ÜK aus dem Angebot der Fakultät für Mathematik und Informatik belegt werden können. Module aus der Mathematik oder dem Anwendungsfach können nicht als ÜK angerechnet werden. Bei der Belegung von Software-Praktika ist zu beachten, dass nur eines der Module IAP oder IFM im Rahmen der ÜK im Bachelorstudium Mathematik angerechnet werden kann.

Im Rahmen der ÜK können auch Veranstaltungen aus dem Studienangebot der Universität, die nicht zum Studiengang oder zum Anwendungsgebiet gehören, absolviert werden. Dies umfasst auch Sprachkurse. Dabei werden die Leistungspunkte des Angebots übernommen (insbesondere auch für Sprachkurse).

Tutorenschulung Mathematik

Code	Name	
MTuSchu	Tutorenschulung Mathematik	
LP	Dauer	Angebotsturnus
2 FÜK	ein Semester	zu Beginn jedes Wintersemesters
Format	Arbeitsaufwand	Verwendbarkeit
Schulung	60 h; davon	B.Sc. Mathematik,
	15 h Präsenzzeit Schulung	M.Sc. Mathematik
	2 h Präsenzzeit Kollegiale Kurshospitation	
	5 h Präsenzzeit Kollegiale Praxisberatung	
	38 h Abschlussreflexion	
Sprache	Lehrende	Prüfungsschema
Deutsch		
Lernziele	Die Teilnehmenden haben ihr didaktisches Handlungsrepertoire in Bezug auf die	
	Gestaltung von Lehr-Lern-Situationen erweitert, indem sie:	
	- didaktische Grundkonzepte beschreiben und in der eigenen	
	Veranstaltungsplanung umsetzen können	
	- Methoden zur Aktivierung von Teilnehmenden	
	Bedeutung für den Lernprozess einordnen können	
	- unterschiedliche Rollenmodelle diskutieren und sich in Bezug auf diese	
	verorten können	
	 sich und andere in Unterrichtssituationen beobachten und daraus Rückschlüsse für ihr eigenes Handeln ziehen können sich über im Tutorium erlebte herausfordernde Situationen austauschend beraten können. 	

Lerninhalte	Die Schulung besteht aus folgenden Teilen: - Allgemeine Didaktik-Schulung 1 Tag - Fachdidaktik-Schulung Mathematik 1 Tag - Kollegiale Kurshospitation (jeweils 1 h) - Kollegiale Praxisberatung (1/2 Tag), während des Semesters - Didaktische Reflexion und Dokumentation (Schreiben einer ca. 5-6 seitigen Abschlussreflektion über die eigene Erfahrung)
	Inhalte allgemeiner Didaktikteil: - Leitungsrolle als Tutor - Grundlagen Lehr-Lern-Konzepte - herausfordernde Situationen im Tutorium meistern aktive Lernumgebung schaffen
	Inhalte Fachdidaktikteil Mathematik: - Übungszettel korrigieren - Was macht ein gutes Tutorium aus? - Umgang mit Präsenzaufgaben - Lernen an Lösungsbeispielen
Teilnahme- voraus- setzungen	Das Halten eines Tutoriums im Wintersemester wird empfohlen, da sonst die Teile Kollegiale Kurshospitation und Praxisberatung sowie die Abschlussreflexion nicht absolviert werden können.
Vergabe der LP und Modulendnote	Das Modul wird mit einer unbenoteten Abschlussreflexion abgeschlossen. Weitere Details werden zu Beginn der Lehrveranstaltung bekannt gegeben.
Nuetzliche Literatur	

Fun Facts aus der Analysis und Linearen Algebra

Code	Name		
MFFALA	Fun Facts aus der Analysis und Linearen Algebra		
LP	Dauer	Angebotsturnus	
2 FÜK	ein Semester	unregelmäßig	
Format Vorlesung 2 SWS	Arbeitsaufwand 60h, davon 30h Vorlesung 20h Nachbereitung 10h gemeinsames Projekt	Verwendbarkeit BSc. Mathematik	
Sprache Deutsch	Lehrende Anna Schilling	Prüfungsschema 1+1	
Lernziele	Die Studierenden lernen die in den Grundvorlesungen Analysis 1 (MA1) und Lineare Algebra I (MA4) behandelten Inhalte aus einem neuen Blickwinkel zu sehen und in einen größeren Kontext zu setzen. Sie stellen Zusammenhänge zwischen den beiden Vorlesungen her und bekommen einen ersten Einblick in weitere Bereiche der Mathematik, wobei sie lernen, ihre bereits erworbenen Kenntnisse in neuen Bereichen anzuwenden.		
Lerninhalte	Die Vorlesung ist ein Zusatzangebot zu den Grundvorlesungen Lineare Algebra I (MA4) und Aalysis I (MA1). Ausgehend von den dort behandelten Themen werden Aspekte aus weiteren Bereichen der Mathematik vorgestellt, die über die Inhalte der Grundvorlesungen hinaus gehen. Zum Beispiel: - Konstruktion der reellen Zahlen - besondere (Gegen-)Beispiele konvergenter Folgen - interessante Metriken - Normalformen für Quadriken - Ableitung in Matrixgruppen Der Fokus liegt dabei auf den Verbindungen zwischen den Bereichen der Mathematik und einem allgemeinen Verständnis der größeren Zusammenhänge.		
Teilnahme- voraus- setzungen	keine; gleichzeitiger Besuch der Grundvorlesungen Analysis I (MA1) und Lineare Algebra I (MA4) ist hilfreich		
Vergabe der LP und Modulendnote	Die LP werden für das bestandene Modul vergeben. Zum Bestehen ist eine aktive Teilnahme an der Vorlesung und eine erfolgreiche Teilnahme an einem gemeinsamen Projekt am Ende der Vorlesung notwendig. Weitere Details werden zu Beginn der Lehrveranstaltung bekannt gegeben.		
Nuetzliche Literatur			

HEGL Praktikum/Bachelorforschung

Code	Name	
MHP	HEGL Praktikum/Bachelorforschung	
LP	Dauer	Angebotsturnus
6 ÜK	ein Semester	jedes Semester
Format Praktikum	Arbeitsaufwand 180 h; beinhaltet regelmäßige Treffen mit dem/der Mentor/in	Verwendbarkeit B.Sc. Mathematik
Sprache Deutsch oder Englisch	Lehrende je nach Angebot	Prüfungsschema 1+1
Lernziele	- Entwicklung von Algorithmen, numerischen Experimenten oder symbolischen Berechnungen, um Strukturen in der Mathematik und benachbarten Feldern (wie Physik, Informatik oder Data Science) zu untersuchen. Entwicklung und Umsetzung von Methoden, mit denen man neue Muster und Zusammenhänge in der Mathematik und benachbarten Feldern findet. Analyse von künstlichen und echten Daten. Test und Falsifizierung von Vermutungen. Entwurf von möglichen Herangehensweisen, um neue Ergebnisse zu beweisen. - Umsetzung eines forschungsbasierten Projekts. Unabhängige Durchführung von Forschung. Leitung und Management von Zusammenarbeit mit Kollegen und Mentoren/Mentorinnen. Verwendung digitaler Versionskontrolle und Kollaborations-Software. Demonstration von Planungs- und Zeiteinteilungs-Fähigkeiten. Schreiben einer Dokumentation über die experimentelle Arbeit. Formulierung von Forschungsergebnissen. - Verwendung von Visualisierungs- und Herstellungs-Werkzeugen wie 3D-Drucker, Lasergravierer oder Computergrafik, um abstrakte Konzepte und Daten zu repräsentieren und zu illustrieren.	
Lerninhalte	- Bericht über Forschungsergebnisse in schriftlicher und mündlicher Form. - In diesem Modul setzen Studierende ein Forschungsprojekt um, in dem sie für ein Semester ein Problem in der Mathematik oder benachbarten Feldern wie Physik, Informatik oder Data Science untersuchen. Von den Studierenden wird erwartet, das Problem, je nach Projekt auch in Gruppen, mit experimentellen und computergestützten Methoden zu analysieren. - Studierende erhalten laufend während des Semesters Betreuung von Mentoren/Mentorinnen aus der Forschung der Universität Heidelberg. Das Forschungsprojekt schließt ab, indem die Studierenden ihre Forschungsergebnisse in schriftlicher Form repräsentieren, entweder durch einen Bericht, einen Blog-Artikel oder ein wissenschaftliches Poster. Es wird auch von ihnen erwartet, dass sie ihre Ergebnisse der HEGL-Community in einem Vortrag präsentieren. - Die Forschungsprojekte werden (mit den Erwartungen des/der Mentors/Mentorin) auf der HEGL-Webseite (https://hegl.mathi.uni-heidelberg.de/) im Voraus beworben.	

Teilnahme-	Alle Studierenden müssen mindestens eines der folgenden Module bestanden		
voraus-	haben: Analysis I oder Lineare Algebra I. Weitere Teilnahmevoraussetzungen		
setzungen	können von den Mentoren/Mentorinnen für jedes Projekt festgelegt werden und		
	diese werden dann (falls vorhanden) klar auf der HEGL-Webseite aufgeführt.		
	Die Zustimmung der Mentoren/Mentorinnen ist notwendig.		
Vergabe der	Dieses Modul wird nur mit Bestanden/Nicht-Bestanden benotet. Um zu		
LP und	bestehen, müssen Studierende die folgenden Erwartungen erfüllen: sich aktiv		
Modulendnote	mit Mentoren/Mentorinnen austauschen, zufriedenstellend an		
	Forschungsaktivitäten teilnehmen, einen abschließenden mündlichen Vortrag		
	halten, einen schriftlichen Bericht, Blog-Artikel oder wissenschaftliches Poster		
	erstellen (abgestimmt mit Mentor/in) und eine gut dokumentierte Kopie ihrer		
	Forschungsarbeit bereitstellen (z.B. mathematische Herleitungen oder Beweise,		
	mathematische Modelle, Computerprogramme oder 3D-Modelle). Weitere		
	Details werden am Anfang des Semesters gegeben.		
Nuetzliche	wird vom/von Mentor/in bereitgestellt		
Literatur			

Ausgewählte Kapitel der Finanz- und Versicherungsmathematik

Code	Name		
MFIN	Ausgewählte Kapitel der Finanz- und Versicherungsmathematik		
LP	Dauer	Angebotsturnus	
2 FÜK	ein Semester	jedes Semester	
Format Block- veranstaltung während der vorlesungsfrei- en Zeit	Arbeitsaufwand 60 h; davon 15 h Präsenzzeit 30 h Nacharbeiten, Hausaufgaben und Selbststudium 15 h Prüfungsvorbereitung/Hausarbeit	Verwendbarkeit B.Sc. Mathematik M.Sc. Mathematik	
Sprache Deutsch	Lehrende Johannes Bartels	Prüfungsschema 1+1	
Lernziele	Transfer von mathematischen Aussagen und Methoden auf Anwendungen aus der Finanz- und Versicherungswirtschaft. Grundlagen der Anwendung mathematischer Methoden und Konzepte in der Finanz- und Versicherungswirtschaft, Bedeutung der Mathematik für die Anwendungen, Verständnis für kaufmännische und rechtliche Rahmenbedingungen.		
Lerninhalte	Zu diesen Veranstaltungen lädt die Fakultät ausgewählte Dozenten aus dem staatlichen und privaten Finanz- und Versicherungssektor ein, die aus Ihrer praktischen Erfahrung den Bezug zu Studieninhalten herstellen. Die konkreten Inhalte der Veranstaltung richten sich dabei nach den Dozenten Inhalte sind z. B. die mathematische Darstellung von Lebensversicherungen, versicherungsmathematische Bilanzgleichungen, die Mathematik hinter Geschäftsberichten, Risikoberechnung von Kapitalanlagen, risk management, Mathematik von Derivaten. Zusätzlich zu den Anwendungen der Mathematik in ihren Bereichen geben die Dozenten Einblicke in kaufmännische, rechtliche und politische Rahmenbedingungen.		
Teilnahme- voraus- setzungen			
Vergabe der LP und Modulendnote	Die Details zur Abschlussprüfung und der Verga der Veranstaltung bekannt gegeben.	be der LP werden zu Beginn	
Nuetzliche Literatur			

Einführung in die Mengenlehre

Code	Name	
ME6	Einführung in die Mengenlehre	
LP	Dauer	Angebotsturnus
4 FÜK	ein Semester	
Format Vorlesung 2 SWS	Arbeitsaufwand 120 h; davon 30 h Vorlesung 90 h Bearbeitung der Hausaufgaben, Nachbereitung der Vorlesung und Vorbereitung Abschlussprüfung	Verwendbarkeit B.Sc. Mathematik
Sprache Deutsch	Lehrende K. Hauser	Prüfungsschema 1+1
Lernziele	Die Axiome von Zermelo - Fraenkel mit Auswahlaxiom, transfinite Zahlen und Wohlordnungen, fundierte Relationen und Rekursion, Kontinuumhypothese und Unabhängigkeitsbeweise. Selbständiges Lösen von Problemen aus dem Themenbereich	
Lerninhalte	Mannichfaltigkeitslehre wurde in der 2. Hälfte des 19. Jahrhunderts von Georg Cantor ex nihilo als [ein mathematisch- philosophischer Versuch in der Lehre des Unendlichen] entwickelt. Im Mittelpunkt der Vorlesung steht die Axiomatisierung der Cantorschen Mengenlehre sowie die elementare Theorie der transfiniten Zahlen. Ein weiteres Thema sind die erkenntnistheoretischen Aspekte dieser Theorie, welche David Hilbert als [die bewundernswerteste Blüte mathematischen Geistes] gepriesen hat.	
Teilnahme- voraus- setzungen	empfohlen sind: Analysis I und II, Lineare Algeb	ra I und II
Vergabe der LP und Modulendnote	Die Details zur Abschlussprüfung und der Vergader Veranstaltung bekannt gegeben.	be der LP werden zu Beginn
Nuetzliche Literatur	H. D. Ebbinghaus: Einführung in die Mengenleh: Buchgemeinschaft, Darmstadt.	re. Wissenschaftliche

Bildung durch Sommerschule, Ferienkurs oder Konferenz

Code Na	Name		
MBIL Bile	Bildung durch Sommerschule, Ferienkurs oder Konferenz		
LP Dat	uer	Angebotsturnus	
1 LP FÜK pro			
30h			
Format Ark	beitsaufwand	Verwendbarkeit	
Teilnahme an Min	ndestens 30 h Präsenzzeit bei der	B.Sc. Mathematik	
	ranstaltung		
durchgeführ-			
ten			
Mathematik-			
Veranstaltung			
mit Inhalten,			
die im			
Studiengang			
Mathematik			
nicht			
vermittelt			
werden			
	nrende	Prüfungsschema	
	üfungsausschussvorsitzender		
	ahrung mit über das Studium hinausgehenden	fachlichen Inhalten und	
inte	ensiven Diskussionen dazu		
Lerninhalte			
Teilnahme-			
voraus-			
setzungen			
Vergabe der Das	s Modul wird mit einer unbenoteten Prüfung a	abgeschlossen. Diese Prüfung	
	umfasst einen schriftlichen Bericht über die Veranstaltung und dabei		
Modulendnote ges	gesammelte Erfahrungen (ca. 1 Seite pro LP). Zur Vergabe der LP muss dieser		
Ber	richt bestanden werden.		
Nuetzliche			
Literatur			

Industriepraktikum

Code	Name		
MPI	Industriepraktikum		
LP	Dauer	Angebotsturnus	
4 bis 8	4 - 8 Wochen		
Format Praktikum mit Abschlussbe- richt	Arbeitsaufwand 120-240 h; davon 5-10 h Verfassung des Abschlussberichts	Verwendbarkeit B.Sc. Mathematik	
Sprache	Lehrende	Prüfungsschema	
Lernziele	Erfahrung von Anwendungen mathematischer Methoden und Konzepte in der industriellen, handwerklichen und kaufmännischen Praxis; Fähigkeit, mathematische Methoden auf konkrete Probleme anzuwenden; Fähigkeit, mathematische Sachverhalte auch Fachfremden kommunizieren zu können Team- und Kooperationsfähigkeit, Kommunikations- und Transferkompetenzen		
Lerninhalte	Der Inhalt wird zwischen Studierenden, dem Unternehmen, bei dem das Praktikum geleistet wird und einem betreuenden Dozenten individuell vereinbart. Dazu wird vor Beginn des Praktikums ein Praktikumsplan mit Inhalten und Zeitverlauf vereinbart und vom betreuenden Dozenten nach Prüfung bezüglich der Lernziele genehmigt. Die Studierenden fertigen während des Praktikums einen Erfahrungsbericht im Umfang von 600 bis 1000 Wörtern an, der nach dem Praktikum dem betreuenden Dozenten zur Abnahme vorgelegt wird. Der Bericht muss insbesondere den Bezug des Praktikums zum Studium widerspiegeln.		
	Hinweis: Studierende mit Interesse an einem Industriepraktikum sollten zunächst selbständig einen Praktikumsplatz finden. Dann wenden sich an einen Dozenten ihrer Wahl und vereinbaren die Betreuung; die Aufgaben des Dozenten beschränken sich hierbei auf die Genehmigung des Praktikumsplans und die Abnahme des Berichts.		
Teilnahme- voraus- setzungen	Mindestens vier Pflichtmodule des Bachelorstudiengangs Mathematik; Angebot eines mit den Lernzielen verträglichen Praktikumsplatzes		
Vergabe der LP und Modulendnote	Das Modul ist unbenotet und wird mit einem Be Erfahrungsbericht im Umfang von 600 bis 1000 V Bezug des Praktikums zum Studium widerspiege bei bestandenem Bericht.	Wörtern soll insbesondere den	
Nuetzliche Literatur			

Anfängerpraktikum

Code	Name	
IAP	Anfängerpraktikum	
LP	Dauer	Angebotsturnus
2+4ÜK		jedes Semester
Format	Arbeitsaufwand	Verwendbarkeit
Praktikum 4	180 h; davon mind.	B.Sc. Angewandte Informatik
SWS	15 Präsenzstunden	B.Sc. Informatik
		fachübergreifende Kompetenzen Bachelor Mathematik
Sprache	Lehrende	Prüfungsschema
Deutsch oder Englisch	je nach Angebot	1+1
Lernziele	Die Studierenden können allgemeine Entwurfs- und Implementierungsaufgaben im Rahmen von Informatiksystemen lösen; können Problemanalyse- und Beschreibungstechniken anwenden; besitzen Programmierkenntnisse in der jeweiligen für das Projekt erforderlichen Programmiersprache. Zusätzlich stehen die projekttypischen Kompetenzen im Vordergrund, insbesondere das Arbeiten im Team (von bis zu drei Studierenden): Durchführung von Projekten und ihrer Phasenstruktur Planung von Projekt- und Teamarbeit. Zu den zu trainierenden Softskills zählen somit insbesondere Teamfähigkeit, Einübung von Präsentationstechniken sowie eigenverantwortliches Arbeiten. Domänenkenntnisse abhängig von den DozentInnen; allgemeine Lerninhalte sind: Einführung in die Projektarbeit	
Teilnahme-	Eigenständige Entwicklung von Software und deren Dokumentation empfohlen sind: Einführung in die Praktische Informatik (IPI),	
voraus- setzungen	Programmierkurs (IPK)	
Vergabe der	Das Modul wird mit einer benoteten Prüfung ab	geschlossen. Diese Prüfung
LP und Modulendnote	umfasst die Bewertung der dokumentierten Software, des Projektberichts (ca. 5 Seiten) und des Vortrags (ca. 30 Minuten zzgl. Diskussion). Zur Vergabe der LP muss diese Prüfung bestanden werden. Die Modulendnote wird durch die Note der Prüfung festgelegt.	
Nuetzliche Literatur		

Fortgeschrittenen praktikum

Code	Name		
IFP	Fortgeschrittenenpraktikum		
LP	Dauer	Angebotsturnus	
8		jedes Semester	
Format Praktikum 6 SWS	Arbeitsaufwand 240 h; davon mind. 25 h Präsenzzeit 10 h Vorbereitung Vortrag	Verwendbarkeit B.Sc. Angewandte Informatik B.Sc. Informatik Lehramt Informatik	
Sprache Deutsch oder Englisch	Lehrende je nach Angebot	Prüfungsschema 1+1	
Lernziele	Die Studierenden erlangen vertiefende Problemlösungskompetenz für komplexe Entwurfs- und Implementierungsaufgaben können Problemanalyse- und Beschreibungstechniken klar darstellen, differenzieren und anwenden vertiefen Programmierkenntnisse in der jeweiligen für das Projekt erforderlichen Programmiersprache sind in der Lage, das Projekt mit Hilfe einer Softwareentwicklungsumgebung durchzuführen Zusätzlich werden die projekttypischen Kompetenzen vertieft, insbesondere das Arbeiten im Team (von bis zu drei Studierenden): Durchführung und Evaluation von Projekten und ihrer Phasenstruktur Planung und Durchführung von Projekt- und Teamarbeit. Zu den zu trainierenden Softskills zählen somit insbesondere Teamfähigkeit, Verfeinerung von Präsentationstechniken, etwaige Erschließung wissenschaftlicher Literatur sowie		
Lerninhalte	eigenverantwortliches Arbeiten. Domänenkenntnisse abhängig von den Lehrenden; allgemeine Lerninhalte sind: Vertiefung in die Projektarbeit Eigenständige Entwicklung von komplexer Software und deren Dokumentation		
Teilnahme- voraus- setzungen	empfohlen sind: Anfängerpraktikum (IAP), Einführung in Software Engineering (ISW)		
Vergabe der LP und Modulendnote	Das Modul wird mit einer benoteten Prüfung abgeschlossen. Diese Prüfung umfasst die Bewertung der dokumentierten Software, des Projektberichts (5-10 Seiten) und des Vortrags (ca. 30 Minuten zzgl. Diskussion). Zur Vergabe der LP muss diese Prüfung bestanden werden. Die Modulendnote wird durch die Note der Prüfung festgelegt.		
Nuetzliche Literatur			

Einführung in das Textsatzsystem LaTeX

Code	Name		
ILat	Einführung in das Textsatzsystem LaTeX		
LP	Dauer	Angebotsturnus	
2 ÜK	ein Semester	unregelmäßig	
Format Praktikum 2 SWS	Arbeitsaufwand 60 h; davon 30 h Präsenzstudium 15 h praktische Übung am Rechner 15 h Hausaufgaben	Verwendbarkeit B.Sc. Angewandte Informatik B.Sc. Informatik B.Sc. Mathematik M.Sc. Scientific Computing	
Sprache	Lehrende	Prüfungsschema	
Deutsch	wechselnd	1+1	
Lernziele	Nachdem Studierende die Veranstaltung besucht haben, können sie * ein TeX-System installieren und einrichten. * LaTeX-Dokumente mit komplexer Struktur erstellen und bearbeiten. * gängige Fehler in LaTeX-Dokumenten identifizieren und beheben. * LaTeX-Makros programmieren. * LaTeX-Umgebungen mit verschiedenen Paketen aufsetzen.		
Lerninhalte	* LaTeX-Umgebungen mit verschiedenen Paketen aufsetzen. Der Kurs gibt eine Einführung in das Satzsystem LaTeX und vermittelt grundlegende typographische Kenntnisse. Ziel des Kurses ist es, längere und komplexe Dokumente (z. B. Bachelor- und Masterarbeiten sowie Dissertationen) eigenständig in hoher Qualität zu entwickeln, ohne auf die Probleme zu stoßen, die ein komplexes System wie LaTeX dem Anfänger bereitet. Es werden weiterhin auch moderne Konzepte und Entwicklungen von LaTeX vorgestellt, die dem Anwender interessante und hilfreiche Tools zur Verfügung stellen. Behandelt werden u.a. * allgemeine Formatierung, Pakete Schriften * Gleitobjekte: Bilder, Tabellen * Verzeichnisse * Mathematiksatz * mehrsprachige Dokumente * Präsentationen * Diagramme * Typographische Feinheiten * Professionelle Briefe, Lebenslauf		
Teilnahme-	keine		
voraus- setzungen			
Vergabe der LP und Modulendnote	Die Details werden zu Beginn der Lehrveransta	ltung bekannt gegeben.	
Nuetzliche Literatur			

7 Anwendungsgebiete

Im Anwendungsgebiet sind 24 LP zu erbringen, davon werden 3 LP den übergreifenden Kompetenzen zugeordnet, so dass 21 LP für das Anwendungsgebiet gewertet werden.

Informationen zum Anwendungsgebiet sollten schon zum Studienbeginn eingeholt werden, denn einige Anwendungsgebiete sollten bereits mit dem ersten Semester begonnen werden, da sich deren Module über drei Wintersemester erstrecken und anderenfalls ein Studienende in Regelstudienzeit sehr schwierig wird. Die meisten Anwendungsgebiete starten im Wintersemester und erstrecken sich dann über drei bis vier Semester , dies bedeutet, sie sollten im dritten Semester begonnen werden, damit ein Studienende in Regelstudienzeit möglich ist. Da die ersten Veranstaltungen im Anwendungsgebiet häufig die Einführungsveranstaltungen sind, kann es hilfreich sein, im LSF nach vergangenen Semestern zu schauen, denn oft liegen diese großen Veranstaltungen in festen Zeitslots.

Zusätzlich zu den in der Prüfungsordnung angegebenen Anwendungsfächern wurden die Anwendungsgebiete Computerlinguistik und Psychologie in der hier im Modulhandbuch angegeben Fassung genehmigt.

Weitere Anwendungsgebiete können auf Antrag an den Prüfungsausschuss genehmigt werden.

Die Anwendungsgebiete sind in alphabetischer Reihenfolge aufgeführt:

Astronomie

Biowissenschaften

Chemie

Computerlinguistik

Informatik

Philosophie

Physik

Psychologie

Wirtschaftswissenschaften

Astronomie

Für dieses Anwendungsgebiet stehen zwei Varianten zur Verfügung. Ansprechpartner ist die Fachstudienberatung Physik. Alle hier angegebenen Module ausgenommen das $Astrophysikalische\ Praktikum\ I$ bestehen aus Vorlesung und Übung und werden mit einer Klausur abgeschlossen.

Variante 1:

Experimentalphysik I	4+2 SWS	7 LP	WS
Experimentalphysik II	4+2 SWS	7 LP	SS
Einführung in die Astronomie I	2+2 SWS	4 LP	WS
Einführung in die Astronomie II	2+2 SWS	4 LP	SS
Astrophysikalisches Praktikum I	4 SWS	2 LP	

Variante 2:

Theoretische Physik I	4+2 SWS	8 LP	WS
Experimentalphysik II	4+2 SWS	7 LP	SS
Einführung in die Astronomie I	2+2 SWS	4 LP	WS
Einführung in die Astronomie II	2+2 SWS	4 LP	SS
Astrophysikalisches Praktikum I	4 SWS	2 LP	

Variante 2 wird empfohlen, falls das Studium zum Master fortgesetzt werden soll. Diese Variante wird mit $24~\mathrm{LP}$ verbucht.

Das Astrophysikalische Praktikum I wird jedes Semester als einwöchiger Blockkurs während der vorlesungsfreien Zeit angeboten.

Biowissenschaften

Für das Anwendungsgebiet Biowissenschaften stehen drei Varianten zur Verfügung. Die Module sollten in der angegebenen Reihenfolge absolviert werden. Ansprechpartner ist die Studienbaratung für den Bachelor Biowissenschaften.

Variante 1:

Grundvorlesung Biologie II	Vorlesung	Klausur	9 LP	SS
Grundvorlesung Biologie III	Vorlesung	Klausur	9 LP	WS
Grundkurs Methoden der	Praktikum	Protokolle und	6 LP	SS
molekularen Biowissenschaften		Klausur		

Variante 2:

Grundvorlesung Biologie I	Vorlesung	Klausur	5 LP	WS
	Vorlesung	Klausur	6 LP	SS
Biochemie) Grundvorlesung Biologie III	Vorlesung	Klausur	9 LP	WS
0 0			4 LP	$\frac{VVS}{SS}$
Grundvorlesung Biologie IV	Vorlesung	Klausur	4 LP	22

Variante 3:

Grundvorlesung Biologie I	Vorlesung	Klausur	5 LP	WS
Grundvorlesung Biologie II	Vorlesung	Klausur	9 LP	SS
Grundvorlesung Biologie IV	Vorlesung	Klausur	4 LP	SS
Grundkurs Methoden der molekularen Biowissenschaften	Praktikum	Protokolle und Klausur	6 LP	SS

Empfohlen werden die Varianten 1 und 2.

Wichtige Anmerkung: Der Grundkurs Methoden der molekularen Biowissenschaften sollte nicht zeitgleich mit der Grundvorlesung Biologie II absolviert werden, sondern erst im folgenden Sommersemester.

Inhalte der einzelnen Grundvorlesungen:

- Biologie I: Mikroskopie, Zellenlehre, Genetik, Organismenreiche, Evolution
- Biologie II: Biochemie, Molekularbiologie, Molekulare Zellbiologie
- Biologie III: Entwicklung der Tiere, Tierphysiologie, Entwicklung der Pflanzen,

Physiologie und Metabolismus der Pflanzen, Biotechnologie

- Biologie IV: Ökologie, Parasitologie, Virologie, Immunologie
- -Grundkurs Methoden der molekularen Biowissenschaften: Biochemie, Molekularbiologie, Mikrobiologie

Chemie

Für dieses Anwendungsgebiet stehen zwei Varianten zur Auswahl.

Wichtig: Bei beiden Varianten in die Sicherheitsvorlesung *Sicheres Arbeiten im anorganischen Labor (GS I)* eine verpflichtende Einzelveranstaltung.

Die Module sollten in der angegebenen Reihenfolge absolviert werden. Ansprechpartner ist die Fachstudienberatung Chemie.

Variante 1:

Einführung in die Allgemeine Chemie (AC I)	Vorlesung + Tutorium	ca. 3 SWS	Klausur	6 LP	WS (1. Se- mesterhälfte)
Anorganisch-Chemisches Praktikum für Geowissen- schaftler, Geographen und Mathematiker [Link 1]	Praktikum	ca. 8 SWS	Praktikum + Kollo- quien + Klausur	8 LP	SS
Einführung in die Physi- kalische Chemie I (PC I)	Vorlesung + Übung	4+2 SWS	Klausur	9 LP	WS

Variante 2:

Einführung in die Allgemeine Chemie (AC I)	Vorlesung + Tutorium	ca. 3 SWS	Klausur	6 LP	WS (1. Se- mesterhälfte)
Anorganisch-Chemisches Praktikum für Geowissen- schaftler, Geographen und Mathematiker [Link 1]	Praktikum	ca. 8 SWS	Praktikum + Kollo- quien + Klausur	8 LP	SS
Organische Chemie für Biowissenschaftler [Link 2 und 3]	Vorlesung + Seminar + Praktikum	ca. 3 SWS	Klausuren	10 LP	WS (2. Semesterhälfte)

Das Seminar und Praktikum der Organischen Chemie für Biowissenschaftler wird als 10 Tage Block in der vorlesungsfreien Zeit nach dem WS angeboten.

Bei der ersten Variante ergibt sich eine automatische Aufwertung auf 24 LP.

Links zu einigen Veranstaltungen:

Link 1: http://www.uni-heidelberg.de/fakultaeten/chemgeo/aci/linti/Lehre.html#Praktikum Link 2: http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akstraub/Teaching/teaching_ws12_03.html

 $Link\ 3: \ http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akstraub/Teaching/teaching_ws12_04.html$

Computerlinguistik

Der Ansprechpartner für dieses Anwendungsgebiet ist die Studienberatung Bachelor Computerlinguistik (studienberatung-bachelor@cl.uni-heidelberg.de). Die Anmeldung zu den Prüfungen erfolgt über das Sekretariat der Computerlinguistik während der Commitmentfrist (typischerweise ein Zeitraum von 4 Wochen gegen Ende der Vorlesungszeit).

Einführung in die Computerlinguistik	Vorlesung (und Übung)	4 (+2) SWS	Klausur	6 LP	WS
Formale Syntax	Vorlesung (und Übung)	4 (+2) SWS	Klausur	6 LP	SS
Formale Semantik	Vorlesung (und Übung)	4 (+2) SWS	Klausur / Hausarbeit / Projektarbeit	6 LP	WS
Statistical Methods for Computational Linguistics	Vorlesung (und Übung)	4 (+2) SWS	Klausur	6 LP	WS

Die Module sollten in der angegeben Reihenfolge absolviert werden, wobei die letzten beiden Module im gleichen Wintersemester absolviert werden können. Für jede Veranstaltung wird eine Übung (Tutorium) angeboten, deren Teilnahme freiwillig ist, jedoch ausdrücklich empfohlen wird. Das letzte Modul wird in der Regel auf Englisch gehalten, alle anderen Module und die Übungen sind auf Deutsch.

Informatik

Für das Anwendungsgebiet Informatik sind Module aus dem Modulhandbuch des Bachelors Informatik (mit Fachanteil 100%) im Umfang von 24 LP zu absolvieren.

Aus dem Pflichtbereich des Bachelor Informatik 100% stehen die folgenden Module zur Verfügung:

- Einführung in die Technische Informatik (8 LP)
- Algorithmen und Datenstrukturen (8 LP)
- Betriebssysteme und Netzwerke (8 LP)
- Einführung in Software Engineering (8 LP)
- Einführung in die Theoretische Informatik (8 LP)
- Datenbanken (8 LP)
- Programmierkurs (4 LP)

Aus dem Wahlbereich des Bachelor Informatik 100% stehen die folgenden Module zur Verfügung:

- Algorithms and Data Structures 2 (8 LP)
- Computer Graphics (8 LP)
- Data Science for Text Analytics (6 LP)
- Informatik und Gesellschaft (2 LP)
- IT-Sicherheit 1 (6 LP)
- Object-Oriented Programming for Scientific Computing (6 LP)
- Randomisierte Algorithmen (6 LP)
- Requirements Engineering (8 LP)
- Visualisierung im Bereich Cultural Heritage (2 LP)

Für die Modulbeschreibungen wird auf das Modulhandbuch des Bachelor Informatik 100% verwiesen. Bei der Auswahl ist darauf zu achten, dass die Voraussetzungen des jeweiligen Moduls erfüllt sind.

Philosophie

Ansprechpartner ist die Fachstudienberatung Bachelor Philosophie. Eine Beratung wird sehr empfohlen, da der Aufbau und die Struktur der Module sowie die Bezeichnung der Veranstaltungsart sich auf das Studium der Philosophie beziehen und sich von denen der Informatik grundlegend unterscheiden, insbesondere ist die Veranstaltungsart Proseminar in der Philosophie nicht gleichzusetzen mit den Proseminaren in der Informatik. Alle Veranstaltungen werden in jedem Semester angeboten.

Einführung in die Philosophie (Modulkürzel: P1)	2+2 SWS	9 LP
Proseminar	2 SWS	6 LP
Proseminar	2 SWS	6 LP
Vorlesung	2 SWS	3 LP

Die Veranstaltung Einführung in die Philosophie trägt teilweise auch andere Namen und ist im LSF unter "Propädeutik" zu finden, entscheident ist hier die Modulzuordnung "P1", welche unter "Kommentar" eingetragen ist, so können auch die Veranstaltungen mit anderem Namen erkannt werden. Hierzu gibt es ein Pflichttutorium, welches besucht werden muss. Nur wer Seminar und Tutorium sowie die erforderlichen Leistungsnachweise (Klausur und Essay oder Hausarbeit) erbracht hat, erhält neun Leistungspunkte.

Das Proseminar mit 6 LP und die Vorlesung mit 3 LP können frei aus dem Angebot gewählt werden, hierbei sind die Inhaltsbeschreibungen im LSF sehr hilfreich. Diese beiden Veranstaltungen sind im LSF jeweils unter "Proseminar" und "Vorlesung" zu finden. Die Leistungsnachweise sind unterschiedlich und sollten in der jeweiligen Veranstaltung erfragt werden.

Physik

Für dieses Anwendungsgebiet stehen zwei Varianten zur Verfügung. Ansprechpartner ist die Fachstudienberatung Physik. Alle hier angegebenen Module bestehen aus Vorlesung und Übung und werden mit einer Klausur abgeschlossen.

Variante 1:

Experimentalphysik I	4+2 SWS	$7 \mathrm{LP}$	WS
Theoretische Physik I	4+2 SWS	8 LP	WS
Theoretische Physik II	4+2 SWS	8 LP	SS

Variante 2:

Theoretische Physik I	4+2 SWS	8 LP	WS
Theoretische Physik II	4+2 SWS	8 LP	SS
Experimentalphysik II	4+2 SWS	7 LP	SS

Die Module sollten in der jeweils angegebenen Reihenfolge absolviert werden. Bei beiden Varianten ergibt sich eine automatische Aufwertung auf insgesamt 24 LP. Variante 2 wird empfohlen, falls das Studium zum Master fortgesetzt werden soll.

Dazu wird der Kurs *Physikalisches Praktikum für Anfänger* (4 LP im Bereich Fachübergreifende Kompetenzen) in der vorlesungsfreien Zeit empfohlen.

Psychologie

Für dieses Anwendungsgebiet stehen zwei Varianten zur Verfügung. Ansprechpartner ist die Fachstudienberatung Psychologie Bachelor 25% (Beifach). Alle hier angegebenen Module sind Vorlesungen und werden mit einer Klausur abgeschlossen.

Variante 1:

2 SWS	3 LP	WS
		WS
1 SWS	2 LP	1. Semesterhälfte
1 SWS	2 LP	2. Semesterhälfte
		SS
1 SWS	2 LP	1. Semesterhälfte
1 SWS	2 LP	2. Semesterhälfte
2 SWS	4 LP	SS
2 SWS	4 LP	WS
2 SWS	4 LP	SS
	1 SWS 1 SWS 1 SWS 1 SWS 2 SWS	1 SWS 2 LP 1 SWS 2 LP 1 SWS 2 LP 1 SWS 2 LP 2 SWS 4 LP

Variante 2:

Einführung in die Psychologie	2 SWS	3 LP	WS
Allgemeine Psychologie I:			WS
Wahrnehmung und Lernen	1 SWS	2 LP	1. Semesterhälfte
Gedächtnis und Sprache	1 SWS	2 LP	2. Semesterhälfte
Allgemeine Psychologie II:			SS
Denken und Problemlösen	1 SWS	2 LP	1. Semesterhälfte
Emotion und Motivation	1 SWS	2 LP	2. Semesterhälfte
Einführung in die Sozialpsychologie	2 SWS	4 LP	WS
Differentielle Psychologie I - Grundlagen	2 SWS	4 LP	SS
Entwicklung über die Lebensspanne:			
Kindheit und Jugend	2 SWS	$4 \mathrm{LP}$	WS
alternativ			
Erwachsenenalter und hohes Alter	2 SWS	4 LP	SS

Bei beiden Varianten ergibt sich eine automatische Aufwertung auf insgesamt 24 LP. Mit der Einführung in die Psychologie und der Allgemeinen Psychologie I sollte begonnen werden, diese beiden Veranstaltungen können im gleichen Wintersemester absolviert werden. Im darauffolgenden Sommersemsester sollte dann die Allgemeine Psychologie II besucht werden. Bei den nachfolgenden Modulen ist die Reihenfolge variabel, sie können auch zeitgleich mit der Allgemeinen Psychologie II absolviert werden.

Wirtschaftswissenschaften

Für dieses Anwendungsgebiet stehen vier Varianten zur Verfügung. Ansprechpartner ist die Studienberatung Wirtschaftswissenschaften. Alle hier angegebenen Module bestehen aus Vorlesung und Übung und werden mit einer Klausur abgeschlossen.

Variante 1:

Einführung in die Volkswirtschaftslehre	3+2 SWS	8 LP	WS
Mikroökonomik	3+3 SWS	8 LP	SS
Makroökonomik	4+2 SWS	8 LP	WS

Variante 2:

Einführung in die Volkswirtschaftslehre	3+2 SWS	8 LP	WS
Makroökonomik	4+2 SWS	8 LP	WS
Wirtschaftspolitik	3+1 SWS	6 LP	SS

Variante 3:

Einführung in die Volkswirtschaftslehre	3+2 SWS	8 LP	WS
Mikroökonomik	3+3 SWS	8 LP	SS
Spieltheorie	3+1 SWS	6 LP	SS

Variante 4:

Einführung in die Volkswirtschaftslehre	3+2 SWS	8 LP	WS
Mikroökonomik	3+3 SWS	8 LP	SS
Finanzwissenschaft	3+1 SWS	6 LP	SS

Die Module sollten in der jeweils angegebenen Reihenfolge absolviert werden. Bei den Varianten 2, 3 und 4 ergibt sich eine automatische Aufwertung auf insgesamt 24 LP.