TP 5: DESCENT METHODS

Introduction to descent methods and to their role in machine learning

Machine learning requires to calibrate a pre-established function in order to match as best as possible with a a training set (inputs (x,...) & outputs v)

Ex: let \mathbf{F}_{p} be the function to calibrate, with a set of parameters p to determine, and (x, ..., v) the training set.

- 1. Pose this problem as an optimization problem
- 2. Is it constrained or unconstrained? Why?

Consider now a linear regression (F(x) = ax + b, where p=(a,b)) and let G(a,b) be the function to minimize

- 1. Is it differentiable or not? Why?
- 2. Write DGa and DGb (gradient of G in a and b respectively) formulas & implement them in python
- 3. Implement a gradient algorithm for this problem, on the training set given in the Excel file (trainingSet1.xlsx)
- 4. Compare your results with Excel linear regression

Gradient descent algorithms

- Start from x_0
- At Step k,
 - choose h^k such that $\nabla \varphi(x^k) \cdot h^k$ (HOW?)
 - choose small Step length $t^k > 0$ (HOW?), and update: $x_{k+1} = x_k + t^k h^k$
- **3** Compute $\nabla \varphi(x^{k+1})$
 - if \sim 0, STOP
 - Otherwise, go back to 2

Main example of descent direction:

- $h^k = -\nabla \varphi(x^k)$: $\nabla \varphi(x^k) \cdot h^k \leq \nabla \varphi(x^k) \cdot h$ provided $|h| = |\nabla \varphi(x^k)|$
- Newton's method $h^k = -(\nabla^2 \varphi(x^k))^{-1} \nabla \varphi(x^k)$
- ullet or $h^k = -Q^k
 abla arphi(x^k)$, for some positive symmetric matrix Q^k

 $x = [x_1, ..., x_N]$

t: fixed (very small)

 $h_i = -$ gradient f in x_i

Stop when $f(x^{k+1}) - f(x^k) < tolerance$