El Problema de las Ocho Reinas

Rafael García Leiva

Email: rafael.garcia@entropycs.com

Twitter: @rgarcialeiva

Blog: http://mundoalgoritmos.blogspot.com.es/

Movimiento de la Reina en Ajedrez

Descripción del problema

Colocar ocho reinas en el tablero de tal manera que no se ataquen entre ellas

Fuerza bruta simple

64x64x64x64x64x64x64= 281.474.976.710.656

Mejora 1: No colocar dos piezas en la misma casilla

64x63x62x61x60x59x58x57= 178.462.987.637.760

Mejora 3: Colocar una sola reina en cada columna

8x8x8x8x8x8x8x8 = 16.777.216

[1,1,1,1,1,1,1,1] [1,1,1,1,1,1,1,2]

. . .

[1,1,1,1,1,1,2,1] [1,1,1,1,1,1,2,2]

. . .

[8,8,8,8,8,8,8,7] [8,8,8,8,8,8,8,8,8]

Mejora 4: Colocar una sola reina en cada fila

8x7x6x5x4x3x2x1= 40.320

[1,2,3,4,5,6,7,8] [1,2,3,4,5,6,8,7] [1,2,3,4,5,8,6,7]

. . .

Mejora 5: No colocar dos reinas en la misma diagonal

¿posibilidades?

¿algoritmo?

Permutaciones en R

```
> library(combinat)
                              > library(gtools)
                              > permutations(3, 3,
> permn(letters[1:3])
                              letters[1:3])
[[1]]
                                    [,1] [,2] [,3]
[1] "a" "b" "c"
                               [1,] "a"
                                         "b" "c"
[[2]]
                               [2,] "a"
                                         " C "
                                               "b"
[1] "a" "c" "b"
                               [3,] "b"
                                              " C "
                                        "a"
                               [4,] "b"
                                         " C "
                                               "a"
[[6]]
                               [5,] "c"
                                         "a"
                                               "b"
[1] "b" "a" "c"
                               [6,] "c"
                                         "b"
                                               "a"
```

Algoritmo de Fuerza Bruta

```
library(combinat)
correcto <- function(p) {</pre>
                                                            b
    n <- length(p)</pre>
    for (i in 1: (n-1)) {
         for(j in (i+1):n) {
             if(abs(p[j] - p[i]) == abs(j - i))
                  return (FALSE)
    return (TRUE)
```

Algoritmo de Fuerza Bruta

```
reinas <- function(n) {</pre>
    permutaciones <- permn(1:8)</pre>
    for(i in 1:length(permutaciones)) {
         p <- permutaciones[[i]]</pre>
         if(correcto(p)) {
             cat(p, "\n")
             k < - k + 1
```

La Técnica de la Vuelta Atrás

No siempre es necesario construir completamente una solución para saber que esta es incorrecta

La Técnica de la Vuelta Atrás

La Técnica de la Vuelta Atrás

Algoritmo Vuelta Atrás

```
correcto <- function(x, k) {</pre>
    if (k==1) return (TRUE)
    for(i in 1:(k-1)) {
        if(x[i] == x[k] \mid |
                 abs(x[i] - x[k]) == abs(i - k))
             return (FALSE)
    return (TRUE)
```

Algoritmo Vuelta Atrás

```
reinas <- function() {</pre>
    x \leftarrow c(0, 0, 0, 0, 0, 0, 0, 0)
    k < -1
    while (k \gg 1) {
        x[k] \leftarrow x[k] + 1
        while (!correcto(x, k)) {
             x[k] < -x[k] + 1
             if (x[k]>8) break
         if (x[k] > 8) {
           k <- k - 1
         } else {
             if (k == 8) {
                cat(x, "\n")
             } else {
                 k < - k + 1
                 x[k] < -0
```

Temas para Futuras Charlas

- Las torres de Hanoi
- El problema de la mochila
- El problema del viajante
- Ordenación súper rápida
- Los filósofos comensales
- Otros: sudoku, el famoso, la bandera holandesa, el juego del 15, asignación cuadrática, etc.