Group Project Representation Group 10

Table of Contents

- 1) Model Introduction
- 2 Data Scraping and Processing
- 3 Regression and Result

Part 1 - Model Introduction

$$R_i - R_f = \alpha_i + \beta_i (R_{mkt} - R_f) + \beta_i^{SMB} (R_B - R_S) + \beta_i^{HML} (R_H - R_L)$$

- Explained variable
 - Security premium
- Explanatory variables
 - Market premium
 - Scale difference between corporations
 - Liquidity difference between securities
- Goal
 - Figure out α_i , β_i , β_i^{SMB} , β_i^{HML} for each security with Multiple Linear Regression

Part 1 - Model Introduction

SlickCharts

Symbol of companies in S&P 500

Adjusted close price, volume

U.S. DEPARTMENT OF THE TREASURY

1-month treasury yield

```
def SP500_cap_range_list():
    #web has already sorted by cap
    stocks_pool_url = 'https://www.slickcharts.com/sp500'
    stocks_pool_page = requests.get(stocks_pool_url)
    stocks_pool_DataFrame = pd.read_html(stocks_pool_page.text)[0]

#construct the target list and list_for_test
    stocks_pool_DataFrame_test = stocks_pool_DataFrame[31:61]['Symbol']
    stocks_pool_DataFrame = stocks_pool_DataFrame[0:31]['Symbol']
    security_list_test = stocks_pool_DataFrame_test.tolist()
    security_list_test是回归方程等式右边, security_list是等式左边
    return security_list_test, security_list
```

- Extract the symbols of top 60 securities from S&P 500, equally divided into two lists
- Securities have been sorted by their market capitalization

```
# Establish connection to Yahoo Finance
yahoo_finance_url = 'https://au.finance.yahoo.com/quote/%s/history?periodl=%s&period2=%s&interval=ld&filter=history&frequency=ld'
# July 1, 2018 starting_date = '1530403200'
# June 30, 2019 ending_day = '1561939199'
timestamp = ['1530403200', '1536710400', '1543017600', '1549324800', '1555632000', '1561939199']
# timestamp = [2018. 7. 31, 2018. 9. 12, 2018. 11. 24, 2019. 2. 5, 2019. 4. 19, 2019. 6. 30]

def fetch_Yahoo_Finance(security, timestamp):
    All_DataFrame = None
    for starting in range(0, len(timestamp)-1):
        each_DataFrame = fetch_Yahoo_Finance_part(security, timestamp[starting], timestamp[starting+1])
        All_DataFrame = pd. concat([All_DataFrame, each_DataFrame], axis = 0)
    return All_DataFrame
```

- To get daily adjusted close price
- Yahoo Finance allows only 100 rows to be scraped one time, so we divide the time interval into 5 parts

```
# Add security and daily stock return to the DataFrame
yahoo_hist_price_DataFrame['%s Ri'% security] = yahoo_hist_price_DataFrame['Adj. close**'].pct_change(periods=1)
```

- To calculate daily return of securities
- Use DataFrame.pct_change function on adjusted close price

```
US_treasury_URL = 'https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=%s'
year1 = '2018'
year2 = '2019'
US_treasury_hist_price_page1 = requests.get(US_treasury_URL % year1)
US_treasury_hist_price_page2 = requests.get(US_treasury_URL % year2)

#Read Table from the US Treasury webpage
US_treasury_hist_price_DataFrame1 = pd.read_html(US_treasury_hist_price_page1.text)[1]
US_treasury_hist_price_DataFrame2 = pd.read_html(US_treasury_hist_price_page2.text)[1]
```

- To get daily 1-month yield of US Treasury (risk-free rate)
- US Treasury website put the data of the same year in one page, so we scrape the data of 2018 and 2019 respectively

```
def X1(Rm, Rf):
    X1_DataFrame = pd.merge(Rm, Rf, on = 'Date')
    X1_DataFrame['Rm_Rf'] = X1_DataFrame['^GSPC Rm'] - X1_DataFrame['1 mo']/100/365
    temp = X1_DataFrame.loc[:,['Date', 'Rm_Rf']]
    return temp
```

- To establish the first explanatory variable $R_{mkt} R_f$, we use S&P 500 daily return rate minus 1-month US Treasury yield
- To unify the scales, 1-month US Treasury yield should be divided by 100 and 365

```
def X2(security_list, timestamp):
    list1 = security_list[0:int(len(security_list)/2)]
    list2 = security_list[int(len(security_list)/2):int(len(security_list))]
    R1 = combine_Ri_DataFrame(list1, timestamp)
    R1.rename(columns = {'Ri Average':'R1 Ri Average'}, inplace = True)
    R2 = combine_Ri_DataFrame(list2, timestamp)
    R2.rename(columns = {'Ri Average':'R2 Ri Average'}, inplace = True)
    R = pd.merge(R1, R2, on = 'Date')
    R['Weight'] = R['R1 Ri Average'] - R['R2 Ri Average']
    temp = R.loc[:,['Date', 'Weight']]
    return temp
```

- To establish the second explanatory variable $R_B R_S$, we
 - sort the 30 securities by market capitalization (done by SlickCharts)
 - calculate the average return of the first 15 securities and the last 15 securities respectively for every single day
 - calculate the difference between two average returns each day

```
def X3(security_list, timestamp):
    list1 = security_list[0:int(len(security_list)/2)]
    list2 = security_list[int(len(security_list)/2):int(len(security_list))]
    R1 = combine_Ri_DataFrame(list1, timestamp)
    R1. rename(columns = {'Ri Average':'R1 Ri Average'}, inplace = True)
    R2 = combine_Ri_DataFrame(list2, timestamp)
    R2. rename(columns = {'Ri Average':'R2 Ri Average'}, inplace = True)
    R = pd. merge(R1, R2, on = 'Date')
    R['Volume'] = R['R1 Ri Average'] - R['R2 Ri Average']
    temp = R. loc[:, ['Date', 'Volume']]
    return temp
```

- To establish the third explanatory variable $R_H R_L$, we
 - sort the 30 securities by up-to-date volume (done by function fetch_vol)
 - calculate the average return of the first 15 securities and the last 15 securities respectively for every single day
 - calculate the difference between two average returns each day

```
def Y(security_list, timestamp, Rf):
    Ri = combine_Ri_DataFrame(security_list, timestamp)
    Y_DataFrame = pd.merge(Ri, Rf, on = 'Date')
    Y_DataFrame['Ri_Rf'] = Y_DataFrame['Ri Average'] - Y_DataFrame['1 mo']/100/365
    temp = Y_DataFrame.loc[:,['Date', 'Ri_Rf']]
    return temp
```

- To establish the explained variable $R_i R_f$, we
 - simply do subtraction on the data we' ve gotten
 - notice that risk-free rate (1-month US Treasury yield) should be divided by 100 and 365

Part 3 - Regression and Result

102.

OLS Regression Results

Dep. Variable: Model: Method:		Leas	Ri t Squa	_Rf OLS	Adj.	uared: R-squared: atistic:		0. 945 0. 945 4172.
Date: Time:		Tue, 20		2019	Prob	(F-statistic): .ikelihood:		5. 15e-155 1121. 1
No. Observatio	ns:			245	AIC:			-2238.
Df Residuals: Df Model:				243	BIC:			-2231.
Covariance Typ	e:		nonrob	ust				
	coet	f std	err		t	P> t	[0. 025	0. 975]
Intercept Rm_Rf	-0. 0002 1. 0550		.000 .016		. 119 . 592	0. 264 0. 000	-0.000 1.023	0.000 1.087
Omnibus: Prob(Omnibus): Skew:	=====	======	0.	146 930 002		in-Watson: ne-Bera (JB): (JB):	======	2. 004 0. 026 0. 987

- Firstly, we only consider the factor $R_{mkt} R_f$
- Market premium has a positive influence on security return
- R^2 is 0.945, which means $R_{mkt} R_f$ explains the change in security return very well

Part 3 - Regression and Result

0.T. 0	-		-
α	Pageo	20200	Paculte.
OLO	Vest es	227011	Results

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	ions:	Tue, 20	Ri_Rf OLS Squares Aug 2019 18:44:07 245 242 2	Adj. F-sta Prob Log-I AIC:	uared: R-squared: atistic: (F-statistic): Likelihood:		0. 946 0. 946 2119. 4. 44e-154 1123. 3 -2241. -2230.
	coe	f std	err	t	P> t	[0.025	0. 975]
Intercept Rm_Rf Weight	-0.000 1.074 -0.056	0 0.	019	-0. 992 58. 009 -2. 127	0.322 0.000 0.034	-0.000 1.038 -0.109	0.000 1.110 -0.004
Omnibus: Prob(Omnibus) Skew: Kurtosis:	· :		0. 606 0. 739 0. 040 3. 166	Jarqı Prob			1. 994 0. 348 0. 840 180.

- Secondly, we consider both $R_m R_f$ and $R_B R_S$
- R_S R_B has a negative parameter, which means larger company usually brings lower return
 R² only increased by 0.001

Part 3 - Regression and Result

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ons:	Least Squ Tue, 20 Aug 18:4	2019 44:09 245 241 3	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0. 948 0. 947 1451. 6. 49e-154 1127. 0 -2246. -2232.
=========	coef	std err		t	P> t	[0. 025	0. 975]
Weight	-0. 0001 1. 0770 -0. 0732 0. 0934	0. 018 0. 027	58. -2.	. 911 . 808 . 722 . 693		-0. 000 1. 041 -0. 126 0. 025	0. 000 1. 113 -0. 020 0. 162
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	(0. 668 0. 716 0. 013 3. 195	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		2. 014 0. 393 0. 821 230.

- Finally, we consider $R_m R_f$, $R_S R_B$ and $R_H R_L$
- $R_H R_L$ has a positive parameter, so security with higher liquidity has higher return
- R^2 increased by 0.002
- It seems that $R_{mkt} R_f$ can explain $R_i R_f$ pretty well, adding new factors doesn't influence the result much

Thank you