Matplotlib Tutorial

Part 7

Creating Scatterplot

Notes and codes

```
In [1]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        plt.scatter(x,y)
        # colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


Change the dot size

```
In [2]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        plt.scatter(x,y, s=100)
        # colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
        # 538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


Change the color

```
In [3]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        plt.scatter(x,y, s=100, c='green')
        # colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
        # 538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```



```
In [4]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        plt.scatter(x,y, s=100, c='green', edgecolor='black', linewidth=1, alpha=0.75)
        # colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


Adding multiple colors

• This will allow you to include more data

```
In [5]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        plt.scatter(x,y, s=100, c=colors, edgecolor='black', linewidth=1, alpha=0.75)
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


Add cmap to know the intensity

• Lighter shades are closer to 0

```
In [6]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        plt.scatter(x,y, s=100, c=colors, cmap='Greens', edgecolor='black', linewidth=
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


Add a label in color map

- So people would know what these colors represent.
- Add a color bar legend.
- For instance, we can label it satisfaction. This would mean that those in lighter shades are less satisfied and those in darker shades are more satisfied.

```
In [7]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        plt.scatter(x,y, s=100, c=colors, cmap='Greens', edgecolor='black', linewidth=
        cbar = plt.colorbar()
        cbar.set label('Satisfaction')
        # sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        # data = pd.read csv('2019-05-31-data.csv')
        # view count = data['view count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight layout()
        plt.show()
```


We can change the size of the dots to represent changes

• The bigger the size of the dot, greater level of satisfaction

```
In [8]:
        import pandas as pd
        from matplotlib import pyplot as plt
        plt.style.use('seaborn')
        x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
        y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]
        colors = [7, 5, 9, 7, 5, 7, 2, 5, 3, 7, 1, 2, 8, 1, 9, 2, 5, 6, 7, 5]
        sizes = [209, 486, 381, 255, 191, 315, 185, 228, 174,
                  538, 239, 394, 399, 153, 273, 293, 436, 501, 397, 539]
        plt.scatter(x,y, s=sizes, c=colors, cmap='Greens', edgecolor='black', linewidth
        cbar = plt.colorbar()
        cbar.set label('Satisfaction')
        # data = pd.read csv('2019-05-31-data.csv')
        # view_count = data['view_count']
        # likes = data['likes']
        # ratio = data['ratio']
        # plt.title('Trending YouTube Videos')
        # plt.xlabel('View Count')
        # plt.ylabel('Total Likes')
        plt.tight_layout()
        plt.show()
```


Using real-life data

Data from Top 200 Trending Youtube Videos

```
In [9]: data = pd.read_csv('2019-05-31-data.txt')
     data
```

Out[9]:		view_count	likes	ratio
	0	8036001	324742	96.91
	1	9378067	562589	98.19
	2	2182066	273650	99.38
	3	6525864	94698	96.25
	4	9481284	582481	97.22
	•••			
	195	1069693	3970	90.66
	196	590760	70454	99.18
	197	319347	1208	92.50
	198	27594927	1351963	96.40
	199	26993425	437561	97.42

200 rows × 3 columns

Plot the relationship between Youtube view count and likes

- You will that there wil be an outlier
- But this can be handled by transforming it to logarithmic function, in order to lessen the skewness of the plot

```
import pandas as pd
from matplotlib import pyplot as plt

plt.style.use('seaborn')

data = pd.read_csv('2019-05-31-data.txt')
    view_count = data['view_count']
    likes = data['likes']
    ratio = data['ratio']

plt.title('Trending YouTube Videos')
    plt.xlabel('View Count')
    plt.ylabel('Total Likes')

plt.scatter(view_count,likes, edgecolor='black', linewidth=1, alpha=0.75)

plt.tight_layout()
    plt.show()
```


Transforming to log scale

- In this way, the outliers don't skew the plot so much
- We will see know the correlation between our two variables of interest. That is, the more views the video has, the more likes it generates. Hence, positively related.

```
In [11]:
         import pandas as pd
         from matplotlib import pyplot as plt
         plt.style.use('seaborn')
         data = pd.read csv('2019-05-31-data.txt')
         view count = data['view count']
         likes = data['likes']
         ratio = data['ratio']
         plt.title('Trending YouTube Videos')
         plt.xlabel('View Count')
         plt.ylabel('Total Likes')
         plt.scatter(view count, likes, edgecolor='black', linewidth=1, alpha=0.75)
         plt.xscale('log')
         plt.yscale('log')
         plt.tight layout()
         plt.show()
```


Use a different metric

- Use the like/dislike ratio
- use color maps

```
In [12]:
         import pandas as pd
         from matplotlib import pyplot as plt
         plt.style.use('seaborn')
         data = pd.read csv('2019-05-31-data.txt')
         view count = data['view count']
         likes = data['likes']
         ratio = data['ratio']
         plt.title('Trending YouTube Videos')
         plt.xlabel('View Count')
         plt.ylabel('Total Likes')
         plt.scatter(view count, likes, edgecolor='black', linewidth=1, alpha=0.75,
                     c=ratio, cmap='summer')
         cbar = plt.colorbar()
         cbar.set_label('Like/Dislike Ratio')
         plt.xscale('log')
         plt.yscale('log')
         plt.tight layout()
         plt.show()
```


Final codes

```
In [13]:
         import pandas as pd
         from matplotlib import pyplot as plt
         plt.style.use('seaborn')
         data = pd.read csv('2019-05-31-data.txt')
         view count = data['view count']
         likes = data['likes']
         ratio = data['ratio']
         plt.scatter(view count, likes, c=ratio, cmap='summer',
                      edgecolor='black', linewidth=1, alpha=0.75)
         cbar = plt.colorbar()
         cbar.set label('Like/Dislike Ratio')
         plt.xscale('log')
         plt.yscale('log')
         plt.title('Trending YouTube Videos')
         plt.xlabel('View Count')
         plt.ylabel('Total Likes')
         plt.tight layout()
         plt.savefig('Plot-Part7')
         plt.show()
```


Converting notebook to html

In [14]:

!jupyter nbconvert --to html Matplotlib-Part7.ipynb

[NbConvertApp] Converting notebook Matplotlib-Part7.ipynb to html [NbConvertApp] Writing 939625 bytes to Matplotlib-Part7.html