2023 Differential Geometry- TD 3

(E) Théorème de relèvement

(a) Soit f une application continue de [0,1] dans le cercle unité. Montrer qu'il existe $\varphi:[0,1]\to\mathbb{R}$ telle que $f(t)=e^{i\varphi(t)}$, et que φ est unique une fois fixé $\varphi(0)$.

Indication : On découpera [0,1] en intervalles assez petits sur lesquels φ est définie facilement, et on recollera convenablement sur l'intersection de ces intervalles.

- (b) Montrer qu'il en est de même pour $[0,1]^2$ au lieu de [0,1] Indication : Utiliser a) pour le faire sur $[0,1] \times \{y\}$ puis étendre aux bandes $[0,1] \times [y-\varepsilon,y+\varepsilon]$. Terminer en recouvrant $\{0\} \times [0,1]$ par compacité, et en utilisant le a) pour les intersections des bandes.
- (c) De même pour $[0,1]^k$ pour k quelconque
- (d) Montrer que si f est de classe C^k alors ϕ est de classe C^k .
- (F) Soit f une application de \mathbb{R} dans S^1 continue (ou de classe C^{∞} si on préfère) et périodique de période 2π (i.e. $f(t+2\pi)=f(t)$).
 - (a) Montrer que si $\phi(t)$ est le relèvement défini à l'exercice précédent, $\frac{1}{2\pi} \left(\phi(t+2\pi) \phi(t) \right)$ est un entier appelé degré de f et noté $\deg(f)$. Montrer que cet enter ne dépend pas du choix de ϕ .
 - (b) Montrer que si f_s est une famille continue de telles applications, $\deg(f_s)$ ne dépend pas de s.
 - (c) Calculer le degré d'une application constante. De l'application $f(x) = e^{2ix}$

Espace hyperoblique et tore

- 1– Soit $n \ge 1$. Montrer que l'espace hyperbolique S d'équation $x_1^2 + \cdots + x_{n-1}^2 x_n^2 = 1$ est une sous-variété de \mathbb{R}^n .
- 2– Soit $0 < \rho < r$. Montrer que

$$T = \{ ((r + \rho \cos(\theta)) \cos(\varphi), (r + \rho \cos(\theta)) \sin(\varphi), \rho \sin(\theta)), (\theta, \varphi) \in \mathbb{R}^2 \}$$

est une sous-variété de \mathbb{R}^3 .

2. On considère l'hélice circulaire, d'équation paramétrique

$$t \mapsto (a\cos t, a\sin t, bt)$$

dans un repère orthonormé. Montrer que la surface engendrée par l'ensemble des droites qui rencontrent l'hélice et rencontrent orthogonalement l'axe Oz (hélicoïde droit) est une sous-variété de \mathbb{R}^3 .

- **3**. Soit M_1 une sous-variété de \mathbb{R}^n de dimension p_1 et M_2 une sous-variété de \mathbb{R}^m de dimension p_2 . Montrer que $M_1 \times M_2 = \{a = (a_1, a_2), a_1 \in \mathbb{R}^n, a_2 \in \mathbb{R}^m\}$ est une sous-variété de \mathbb{R}^{n+m} dont on précisera la dimension
- 4. Montrer que l'image de la courbe $t \to (t^2, t^3)$ n'est pas une sous-variété.

5. Soit M sous-variété de \mathbb{R}^n de dimension $\leq n-2$. Montrer que $\mathbb{R}^n \setminus M$ est connexe.