Teorema Uma série de termos não negativos converge se, e só se, a sua sucessão das somas parciais é limitada superiormente.

Exemplo: $\sum_{n=1}^{\infty} \frac{1}{n!}$

Teorema (Critério do Integral) Sejam $a_n \geq 0$ e $f: [1, +\infty[\to \mathbb{R}$ uma função decrescente tal que $f(n) = a_n$, para todo $n \in \mathbb{N}$. Então a série $\sum_{n=1}^{\infty} a_n$ e $\int_1^{+\infty} f(x) \, dx$ têm a mesma natureza.

Séries de Dirichlet de ordem α :

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

A série de Dirichlet de ordem α converge se e so se $\alpha > 1$. Em particular, a chamada série harmónica $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente.

Teorema (Critério de Comparação) Suponha-se que existe $n \in \mathbb{N}$ tal que $0 \le a_n \le b_n$, para todo $n \ge n_0$. Então:

- **1** Se $\sum_{n=1}^{\infty} b_n$ converge então $\sum_{n=1}^{\infty} a_n$ converge.
- ② Se $\sum_{n=1}^{\infty} a_n$ diverge então $\sum_{n=1}^{\infty} b_n$ diverge.

Exemplo:

$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

O Critério de comparação nada diz nas situações em que a série de termo geral mais pequeno é convergente, ou quando a série de termo geral maior é divergente. A comparação dos termos gerais de duas séries pode também ser feita na forma de limite do seguinte modo:

Corolário (comparação por passagem ao limite) Sejam a_n e b_n tais que $a_n \ge 0$ e $b_n > 0$ para todo $n \in \mathbb{N}$. Suponha-se que existe o limite (finito ou infinito)

$$L:=\lim_{n\to\infty}\frac{a_n}{b_n}$$

Então:

- Se $L \notin \{0, +\infty\}$, as séries $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são da mesma natureza;
- ② Se L = 0 e $\sum_{n=1}^{\infty} b_n$ converge então $\sum_{n=1}^{\infty} a_n$ converge;
- **3** Se $L = +\infty$ e $\sum_{n=1}^{\infty} b_n$ diverge então $\sum_{n=1}^{\infty} a_n$ diverge.

Exemplos:

- $\sum_{n=1}^{\infty} \frac{2n+5}{1+n^4}$
- $\sum_{n=1}^{\infty} \frac{1}{2^n + 3^n}$
- $\bullet \ \sum_{n=1}^{\infty} \sin(\frac{1}{n})$

Exercícios de revisão capítulos 1 e 2:

1^a teste 2014/15 (cont.

- Resolve:
 - **1** $y' + \frac{x \cos x}{y \sin y} = 0$
 - 2 $xy'' y' = 3x^2$ (sugestão: começa por fazer uma mudança de variável z=v').
- 3. Considera a EDO $y'' 5y + 6y = e^{3x}$.
 - Determina a solução geral da EDO homogénea associada.
 - Determina a solução geral da EDO pelo método dos coeficientes.
 - Determina a solução geral da EDO pelo método da variação das constantes.