

Transmissão de dados por uma canal banda base

Dados digitais possuem um **espectro amplo** com conteúdo de baixa frequência significativo.

A transmissão exige de um canal passa-baixas com uma largura de banda grande para acomodar o conteúdo de frequências.

Canal é altamente dispersivo pois sua resposta em frequência se afasta de um filtro passa-baixa ideal.

Fonte de erros:

Neste tipo de canal existe a interferência Intersimbólica (ISI) – cada pulso recebido é afetado de alguma forma pelos pulsos adjacentes. Resultando em erros de bits.

Ruído do receptor (**ruído do canal**)

Código de linhas para transmissão de dados binários

Espectro de potência de uma

código de linha em que 0 e 1

longa sequência de bits

aleatórios com um dado

são equiprováveis.

Tb – Período do bit

UNIPOLAR NRZ

Figura 8.1 (a) Código de linha unipolar NRZ e seu espectro de magnitude. (b) Código de linha polar NRZ e seu espectro de magnitude. (c) Código de linha unipolar RZ e seu espectro de magnitude. (d) Código de linha bipolar RZ e seu espectro de magnitude. (e) Código de linha Manchester e seu espectro de magnitude.

Suposição para um canal de banda base ideal:

- Sistemas de Comunicação
- I. A resposta em frequência do canal seja relativamente ideal: cabo pequeno com taxa de transmissão baixa.
- II. Canal tem **pouco efeito** sobre a **forma** do **pulso transmitido**: espectro em magnitude é constante no domínio da frequência.
 - O pulso transmitido para cada bit não é afetado pela transmissão, exceto pela adição de ruído branco na entrada do receptor.
 - W(t) função amostral de um processo de ruído branco de média zero e densidade espectral de potência N0/2.
- III. Supõe que o receptor tem conhecimento da forma de onda do sinal de pulso. A fonte de incerteza existe no ruído branco.

Detecção de uma forma de onda conhecida através FLIT.

RECEPTOR - FILTRO CASADO

Figura 8.2 Receptor linear.

w(t)

Ruído branco aditivo

T – intervalo de observações arbitrário.

A saída do filtro linear será:

$$y(t) = g_o(t) + n(t)$$

onde $g_o(t)$ é produzido pelo sinal e n(t) é produzido pelas componentes do ruído da entrada x(t).

O receptor deve detectar o sinal de pulso de maneira ótima, para isto o projeto do filtro deve ser otimizado no sentido de minimizar os efeitos de ruído na sua saída.

Sinal g(t) x(t) Filtro linear invariante no tempo de resposta h(t) y(t) y(T) Amostra no tempo t = TRuído branco w(t)

FILTRO CASADO - RECEPTOR

Figura 8.2 Receptor linear.

Deve-se **maximizar** a relação sinal ruído de pico do pulso, definida como:

$$\eta = \frac{\left|g_o(T)\right|^2}{E[n^2(t)]}$$

Em que $|g_0(T)|^2$ é a potência instantânea no sinal de saída; E é o operador esperança estatística;

 $E[n^2(t)]$ é a medida da potência média de ruído de saída.

A relação sinal ruído não dependerá da função de transferência H(f) do filtro, mas apenas da energia do sinal e da densidade espectral de potência do ruído.

$$\eta_{m\acute{a}x} = \frac{2}{N_0} \int_{-\infty}^{\infty} |G(f)|^2 df$$

_Se a função de transferência *H(f)* obedece a desigualdade de Schwarz.

FILTRO CASADO - RECEPTOR

Figura 8.2 Receptor linear.

Um filtro casado é caracterizado, no domínio da frequência, por uma função de transferência que é, exceto por um fator de atraso e de escala k, o complexo conjugado da Transf. Fourier do sinal de entrada g(t).

$$H_{opt}(f) = kG^*(f)exp(-j2\pi fT)$$

Filtro linear invariante no tempo definido como filtro casado

FILTRO CASADO - RECEPTOR

Figura 8.2 Receptor linear.

Resposta ao impulso do filtro ótimo será:

$$h_{opt}(t) = k \int_{-\infty}^{\infty} G(-f)e^{-j\omega(T-t)}df = h_{opt}(t) = kg(T-t)$$

Exceto pelo fator de escala, é uma versão invertida no tempo e atrasada do sinal de entrada g(t); ou seja, ele é casado com o sinal de entrada.

FILTRO CASADO - RECEPTOR

Figura 8.2 Receptor linear.

$$H_{opt}(f) = kG^*(f)exp(-j2\pi fT)$$

Domínio do tempo:

$$h_{opt}(t) = kg(T-t)$$

Um filtro, casado com um sinal g(t) de duração T, é caracterizado por uma resposta ao impulso que é uma versão invertida no tempo e atrasada do sinal de entrada g(t).

Propriedades dos FILTROS CASADOS

Figura 8.2 Receptor linear.

Pela propriedades dos filtros casados: A relação sinal ruído de pico de pulso de um filtro casado depende apenas da razão entre a energia do sinal e a densidade espectral de potência do ruído branco na entrada do filtro.

$$\eta_{\text{max}} = \frac{2E}{N_0}$$

Exemplo: FILTRO CASADO PARA PULSO RETANGULAR

SINAL g(t) na forma de um pulso retangular

Resposta ao impulso h(t) do filtro casado na forma de impulso retangular

Para caso especial de um pulso retangular, o filtro casado pode ser implementado utilizando um circuito integrador de descarga

Figura 8.4 Circuito integrador com descarga.

Figura 8.3 (a) Pulso retangular. (b) Saída do filtro casado. (c) Saída do integrador.

Sistemas de Comunicação

Probabilidade de erro devido ao ruído:

Análise de um Filtro casado como detector ótimo de pulso.

- ✓ Sistema de transmissão binário baseado na sinalização polar não retorna a zero (NRZ).
- ✓ O ruído é modelado como um ruído branco gaussiano aditivo w(t) de média zero e densidade espectral de potência N0/2.
- ✓ O sinal recebido no intervalo de tempo 0<=t<=Tb será escrito por:
 </p>

$$x(t) = \begin{cases} +A + w(t), & \text{símbolo 1 enviado} \\ -A + w(t), & \text{símbolo 0 enviado} \end{cases}$$

Em que Tb é a duração do bit, e A é a amplitude do pulso transmitido.

Figura 8.5 Receptor para transmissão em banda base de uma onda binária utilizando sinalização NRZ.

Um valor apropriado para o limiar λ, supondo que os símbolos 0 e 1 ocorrem com igual probabilidade:

$$p_0 + p_1 = 1 \quad p_0 = p_1 = \frac{1}{2}$$

A probabilidade de erro (Pe) de símbolo média com sinalização binária:

$$Pe = Q\left(\sqrt{\frac{2E_b}{N0}}\right)$$

Eb- energia por bit do sinal transmitido

$$E_b = A^2 T_b$$

- Depende da razão entre a energia por bit do sinal transmitido e a densidade espectral do ruído.
- Q função complementar de erro área sob as caudas da distribuição gaussiana

Figura 8.6 Análise do efeito de ruído de canal em um sistema binário. (a) Função densidade de probabilidade da variável aleatória *Y* na saída do filtro casado quando um 0 é transmitido. (b) Função densidade de probabilidade de *Y* quando um 1 é transmitido.

Figura 8.7 Probabilidade de erro em ruído branco gaussiano aditivo com sinalização binária.

Interferência intersimbólica – ISI

- Surge quando o canal de comunicação é dispersivo.
 - ✓ **Dispersivo -** possui um espectro em magnitude dependente da frequência.

Figura 8.8 Sistema de transmissão de dados binários em banda base.

Exemplo: canal limitado em banda

Interferência intersimbólica

Considere um sistema PAM binário de banda $a_k = \begin{cases} +1 & se\ o\ símbolo\ b_k \ \'e\ 1 \\ -1 & se\ o\ símbolo\ b_k \ \'e\ 0 \end{cases}$ base:

$$s(t) = \sum_{k} a_{k} g(t - kT_{b})$$

Sinal transmitido resultante da sequencia de pulsos curtos aplicado em um filtro de transmissão de resposta ao impulso g(t).

XO(t) – sinal s(t) modificado em consequência da transmissão através do canal.

y(t) – a saída do filtro é amostrada sincronicamente como o transmissor.

Sistemas de Comunicação

Interferência intersimbólica - ISI

$$\mu p(t) = g(t) * h(t) * c(t)$$
Resp. ao impulso do filtro de recepção Resp. ao impulso do canal

Resp. ao impulso do filtro de transmissão

Interferência intersimbólica - ISI

Saída do filtro amostrada:

$$y(t_i) = \mu \sum_{k=-\infty} a_k p[(i-k)T_b)] + n(t_i)$$

Contribuição do *i-ésimo* bit transmitido.

Amostra de ruído no tempo ti.

$$y(t_i) = \mu a_i + \mu \sum_{\substack{k=-\infty\\k\neq i}}^{\infty} \left[a_k p[(i-k)T_b) \right] + n(t_i)$$

Efeito residual de todos outros bits transmitidos na decodificação do *i-ésimo* bit. **ISI**

$$y(t_i) = \mu a_i$$

 Ausência de ISI – i-ésimo bit transmitido e decodificado corretamente.

Natureza dispersiva do canal telefônico – EXEMPLO

Sistemas de Comunicação

Exemplo de transmissão de dados por um canal telefônico

Figura 8.10 Transmissão de dados por um canal telefônico a 1600 bps: (a) código de linha polar NRZ e (b) código de linha Manchester.

Exemplo de transmissão de dados por um canal telefônico

Figura 8.11 Transmissão de dados por um canal telefônico a 3200 bps: (a) código de linha polar NRZ e (b) código de linha Manchester.

Critério de Nyquist para transmissão sem distorção

No receptor o objetivo é recuperar as sequencias de dados binários originais {bk}

$$y(t_i) = \mu a_i + \mu \sum_{\substack{k=-\infty\\k\neq i}}^{\infty} a_k p[(i-k)T_b)] + n(t_i)$$

Para isto, no receptor:

- extrai e decodifica as sequencias correspondentes aos coeficientes {ak} a partir da saída y(t);
- \Box a **extração** envolve a **amostragem** da saída no tempo t=iTb;
- □ a **decodificação** exige que a contribuição do **efeito residual** de todos outros bits transmitidos seja livre de ISI quando k=i;

Então, o pulso global p(t) deve ser controlado:

$$p[(i-k)T_b)]\begin{cases} 1, & i=k\\ 0, & i\neq k \end{cases}$$

Resultando em uma recepção perfeita na ausência de ruído.

$$y(t_i) = \mu a_i$$

, para todo i

Critério de Nyquist para transmissão sem distorção

Na frequência:
$$P_{\delta}(f) = R_b \sum_{n=-\infty}^{\infty} P(f - nR_b)$$

É a taxa de bits dada em bits/s; $R_b=1/T_b$

É a T. F. de uma sequência periódica infinita de funções delta de $P_{\delta}(f)$ período T_b, cujas áreas são ponderadas pelos respectivos valores de amostras de p(t).

A função da frequência P(f) elimina a interferências intersimbolica para amostras tomadas em intervalos Tb – Critério de Nyquist

Para transmissão em banda base sem distorção na ausência de ruído :

$$\sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b$$

$$W = \frac{1}{2T_b} = \frac{R_b}{2}$$

her

Canal de Nyquist ideal – exemplo:

$$\sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b$$

P(f) – função retangular – função da frequência.

$$P(f) = \begin{cases} \frac{1}{2W}, & -W < f < W \\ 0, & |f| > W \end{cases} = \frac{1}{2W} rect(\frac{f}{2W})$$

 $R_b=1/T_b$ É a taxa de bits dada em bits/s;

 $W=R_b/2=1/(2T_b)$ É a largura de banda do sistema;

$$p(t) = \frac{sen(2\pi Wt)}{2\pi Wt} = sinc(2Wt)$$

Função SINC é uma forma de onda do sinal que produz interferência intersimbolica nula.

 R_b =2W - taxa de bits chamada de taxa de Nyquist;

Figura 8.15 (a) Resposta em magnitude ideal. (b) Forma de pulso básico ideal.

Canal de Nyquist ideal - exemplo

Forma de onda y(t) recebida e amostarda nos instantes de tempo t=0,±Tb,±2Tb,....

Figura 8.16 Uma série de pulsos sinc correspondentes à sequência 1011010.

$$R_h$$
=2W É a taxa de Nyquist;

$$W \ge R_b/2$$
 Valor mínimo ajustável entre W e 2W;

Canal de Nyquist realizável - exemplo

Resposta em frequência

Resposta em frequencia
$$P(f) = \begin{cases} \frac{1}{2W}, & 0 \le |f| < f_1 \end{cases} & 0 \le |f| < f_1 \end{cases}$$

$$p(f) = \begin{cases} \frac{1}{4W} \left\{ 1 - SEN\left[\frac{\pi(|f| - W)}{2W - 2f_1}\right] \right\}, & f_1 \le |f| < 2W - f_1 \end{cases}$$

$$0 \le |f| < f_1 \end{cases}$$

$$\propto = 1 - \frac{f_1}{W}$$

Resposta no tempo

$$p(t) = [sinc(2Wt)] \left(\frac{\cos(2\pi\alpha Wt)}{1 - 16\alpha^2 W^2 t^2} \right)$$

2WP(f)

0,8 0.6

0,4

Sistemas de Comunicação

Figura 8.17 Respostas para diferentes valores de decaimento. (a) Resposta em frequência. (b) Resposta no tempo.

Sistemas de Comunicação

Canal de Nyquist ideal – Largura de banda mínima de transmissão

$$B_T = W = \frac{1}{2T_b}$$

$$W \ge R_b/2$$

W – largura de banda

Rb=1/Tb - É a taxa de bits dada em bits/s;

Canal de Nyquist real ∝= 1 decaimento de cosseno completo

$$B_T = W(1 + \infty) = 2W = \frac{1}{T_b}$$

$$para \propto = 1$$

Exemplo:

Sistema de portadora T1:

- São 255 níveis, ou seja, 8 bits;
- TDM 24 palavras de 8 bits + 1 bit único para sincronização -(24X8)+1=193 bits.
- Quadro básico tem duração de 125µs.
- Duração de cada bit = 125 μs /193=0,647 μs
- Taxa de transmissão resultante será: 1,544Mb/s

Canal de Nyquist ideal – Largura de banda mínima de transmissão

$$B_T = W = \frac{1}{2T_b} = 772kHz$$

Canal de Nyquist real - decaimento de cosseno completo

$$B_T = W(1 + \infty) = 2W = \frac{1}{T_b} = 1,544MHz$$

FDM - SSB

Sistemas de Comunicação

Portadoras Ti e Ei

Transmissão PAM M-ária em banda base

1/T - é a taxa de sinalização do sistema, expressa em símbolos/s ou Baud

$$baud = \log_2 M$$

bits/s

Duração do símbolo T do sistema PAM M-ário, será:

$$T = T_b \log_2 M$$
 $T duração do símbolo $T_b duração de bit$$

Em um sistema PAM M-ário a informação é transmitida a uma taxa $\log_2 M$ mais rápida do que o sistema PAM binário.

Dibit	Amplitude
00 01 11 10	-3 -1 +1 +3
	00 01 11

(a)

Mesma probabilidade média de erro símbolo exige mais potência transmitida.

Figura 8.18

Sistemas de Comunicação nais (b)

Figura 8.18 Saída de um sistema quaternário. (a) Forma de onda. (b) Representação dos quatro pares de *bits* possíveis.

QUINTA EDI

Canal telefônico, que é limitado em banda, pode afetar a transmissão em alta velocidade de dados digitais.

Figura 8.11 Transmissão de dados por um canal telefônico a 3200 bps: (a) código de linha polar NRZ e (b) código de linha Manchester.

Na prática é impossível termos conhecimento prévio das características exatas do canal ou é inevitável falta de precisão na implementação física do filtro.

Então para compensar esta distorção residual intrínseca utiliza-se o equalizador.

Sistemas de Comunicação

Equalização - Filtro Tapped Delay Line - TDL

Figura 8.19 Filtro TDL.

- A taxa de dados do sistema é limitada por alguma distorção residual devido à ISI.
- Equalização é utilizada para compensar esta distorção residual intrínseca.

Equalização TDL

- A resposta ao impulso do equalizador TDL é dado por:
- Supondo que o equalizador seja conectado em cascata com um sistema linear cuja resposta ao impulso é c(t). Seja p(t) a resposta ao impulso do sistema equalizado. Então:

$$h(t) = \sum_{k=-N}^{N} W_k \delta(t - kT)$$
Sistema

Resposta ao impulso p(t)

Figura 8.20 Conexão em cascata de um sistema linear e um equalizador TDL.

$$p(t) = c(t) * h(t) = c(t) * \sum_{k=-N}^{N} W_k \delta(t-kT) = \sum_{k=-N}^{N} W_k c(t) * \delta(t-kT) = \sum_{k=-N}^{N} W_k c(t-kT)$$

Soma de Convolução discreta:

$$p(nT) = \sum_{k=-N}^{N} W_k c((n-k)T)$$

Sistemas de Comunicação

Equalização TDL

Soma de Convolução discreta:
$$p(nT) = \sum_{k=-N}^{N} W_k c((n-k)T)$$

$$t=n7$$

Para que não haja interferência intersimbolica:

$$p[(n)T_b)] \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases} \qquad p[(n)T_b)] \begin{cases} 1, & n = 0 \\ 0, & n = \mp 1, \mp 2, ..., \mp N \end{cases}$$

- O equalizador TDL (equalizador zero-forcing) é otimo para eliminar distorção de pico (ISI).
- Ele também é fácil de implementar. Em teoria quanto maior o equalizador (N aproxima do infinito) mais o sistema aproximará da condição ideal pelo critério de Nyquist para transmissão sem

Sistemas dedistorção.

w.bookman.com.br

Figura 8.21 A tradução entre diferentes códigos de linha utilizados como 100BASE-TX.

O link de comunicação possui um máximo de 100 metros.

No primeiro estágio 4 bits são codificados em binário para 5 bits no formato NRZ.

No 2º estágio o formato NRZ e convertido no formato NRZ inverso (NRZI).

No **3º estágio** – os bits NRZI são convertidos em um formato de 3 níveis conhecido como MLT_3. O formato multiníveis reduz a frequência fundamental dos dados de 62,5Mhz para 31,25MHz.

Sistemas de Comunicação

Sistemas de Comunicação

Exemplo – Transmissão de 100Mbps via par trançado. Ethernet rápida – 100BASE-TX

Figura 8.22 Exemplo de forma de pulso para 100BASE-TX.

Figura 8.24 Digramas oculares para (a) sinal transmitido; (b) sinal recebido; (c) sinal recebido equalizado.

Figura 8.23 Pior caso de característica de atenuação de cabo para 100BASE-TX.