PART I: THEORETICAL BACKGROUND

Lecture 1-Extended Real-Valued Functions

- An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and ∞ .
- ► Infinite values arithmetic:

▶ For an extended real-valued function $f : \mathbb{E} \to [-\infty, \infty]$, the effective domain or just the domain is the set

$$dom(f) = \{ \mathbf{x} \in \mathbb{E} : f(\mathbf{x}) < \infty \}.$$

▶ For any subset $C \subseteq \mathbb{E}$, the indicator function of C is

$$\delta_{C}(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in C, \\ \infty & \mathbf{x} \notin C. \end{cases}$$

Closedness

lacktriangle The <code>epigraph</code> of an extended real-valued function $f:\mathbb{E} o [-\infty,\infty]$ is

$$\operatorname{epi}(f) = \{(\mathbf{x}, y) : f(\mathbf{x}) \leq y, \mathbf{x} \in \mathbb{E}, y \in \mathbb{R}\} \subseteq \mathbb{E} \times \mathbb{R}.$$

- ▶ $f: \mathbb{R}^n \to [-\infty, \infty]$ is proper if it does not attain the value $-\infty$ and $dom(f) \neq \emptyset$.
- $f: \mathbb{E} \to [-\infty, \infty]$ is called closed if its epigraph is closed.

Theorem. The indicator function δ_C is closed if and only if C is closed.

Proof.

$$\operatorname{epi}(f) = \{(\mathbf{x}, y) \in \mathbb{E} \times \mathbb{R} : \delta_{C}(\mathbf{x}) \leq y\} = C \times \mathbb{R}_{+},$$

which is evidently closed if and only if C is closed. \square

Example

$$f(x) = \begin{cases} \frac{1}{x}, & x > 0, \\ \infty, & \text{else.} \end{cases}$$

f is closed.

Lower Semicontinuity

Definition

▶ A function $f : \mathbb{E} \to [-\infty, \infty]$ is called lower semicontinuous at $\mathbf{x} \in \mathbb{E}$ if

$$f(\mathbf{x}) \leq \liminf_{n \to \infty} f(\mathbf{x}_n),$$

for any sequence $\{\mathbf{x}_n\}_{n\geq 1}\subseteq \mathbb{E}$ for which $\mathbf{x}_n\to\mathbf{x}$ as $n\to\infty$.

▶ $f: \mathbb{E} \to [-\infty, \infty]$ is lower semicontinuous if it is lower semicontinuous at each point in \mathbb{E} .

Theorem. Let $f: \mathbb{E} \to [-\infty, \infty]$. Then the following three claims are equivalent:

- (i) f is lower semicontinuous.
- (ii) f is closed.
- (iii) for any $\alpha \in \mathbb{R}$, the level set

$$Lev(f, \alpha) = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \le \alpha \}$$

is closed.

Operations Preserving Closedness

Theorem.

(a) Let $\mathcal{A}: \mathbb{E} \to \mathbb{V}$ be a linear transformation and $\mathbf{b} \in \mathbb{V}$, and let $f: \mathbb{V} \to (-\infty, \infty]$ be closed. Then the function $g: \mathbb{E} \to [-\infty, \infty]$ given by

$$g(\mathbf{x}) = f(A(\mathbf{x}) + \mathbf{b})$$

is closed.

- (b) Let $f_1, f_2, \ldots, f_m : \mathbb{E} \to (-\infty, \infty]$ be extended real-valued closed functions, and let $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}_+$. Then the function $f = \sum_{i=1}^m \alpha_i f_i$ is closed.
- (c) Let $f_i : \mathbb{E} \to (-\infty, \infty], i \in I$ be extended real-valued closed functions, where I is a given index set. Then the function

$$f(\mathbf{x}) = \max_{i \in I} f_i(\mathbf{x}).$$

is closed.

Closedness Vs. Continuity

Theorem Let $f: \mathbb{E} \to [-\infty, \infty]$ be an extended real-valued function that is continuous over its domain, and suppose that dom(f) is closed. Then f is closed.

Examples

• $f: \mathbb{R} \to (-\infty, \infty]$ is given by

$$f_{\alpha}(x) = \left\{ egin{array}{ll} lpha, & x = 0, \\ x, & 0 < x \leq 1, \\ \infty, & ext{else.} \end{array}
ight.$$

for which values of α is the function closed? continuous over its domain?

Consider the l_0 -norm function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(\mathbf{x}) = \|\mathbf{x}\|_0 \equiv \#\{i : x_i \neq 0\}.$$

f is closed but not continuous.

Weierstrass theorem for closed functions

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper closed function, and assume that C is a compact set satisfying $C \cap \text{dom}(f) \neq \emptyset$. Then

- (a) f is bounded below over C.
- (b) f attains a minimizer over C.

Convex Extended Real-Valued Functions

- ▶ An extended real-valued function is called convex if epi(f) is convex.
- ▶ $f : \mathbb{E} \to (-\infty, \infty]$ is convex \Leftrightarrow dom(f) is convex and the real-valued function $\tilde{f} : \text{dom}(f) \to \mathbb{R}$ which is the restriction of f to dom(f) is convex over dom(f).
- ▶ Result: A proper function $f : \mathbb{E} \to (-\infty, \infty]$ is convex iff

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$
 for all $\lambda \in [0, 1], \mathbf{x}, \mathbf{y} \in \mathbb{E}$

► Jensen's inequality

$$f\left(\sum_{i=1}^k \lambda_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \lambda_i f_i(\mathbf{x}_i)$$

for any $\lambda \in \Delta_k$ (k being an arbitrary positive integer), $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{E}$.

Are Closed and Convex Functions Continuous?

Not in general, but it is correct in the 1D case:

Theorem (continuity of 1D closed convex functions) Let $f : \mathbb{R} \to (-\infty, \infty]$ be a proper closed and convex function whose domain is dom f = [a, b], where $a, b \in \mathbb{R}$, a < b. Then f is continuous over [a, b].

Proof. technical and long.

Support Functions

▶ Let $C \subseteq \mathbb{E}$ be nonempty. Then the support function of C, $\sigma_C : \mathbb{E} \to (-\infty, \infty]$ is given by

$$\sigma_C(\mathbf{y}) \equiv \max_{\mathbf{y} \in C} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Theorem. Let $C \subseteq \mathbb{E}$ be a nonempty set. Then σ_C is a closed and convex function.

Proof. σ_C is a maximum of convex functions.

Examples of Support Functions

С	$\sigma_{\mathcal{C}}(\mathbf{y})$	assumptions	Example No.
$\{\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n\}$	$\max_{i=1,2,,n} \langle \mathbf{b}_i, \mathbf{y} \rangle$	$\mathbf{b}_i \in \mathbb{E}$	1
K	$\delta_{\mathcal{K}^{\circ}}(\mathbf{y})$		
\mathbb{R}^n_+	$\delta_{\mathbb{R}^n}(y)$	$\mathbb{E} = \mathbb{R}^n$	3
Δ_n	$\max\{y_1,y_2,\ldots,y_n\}$	$\mathbb{E} = \mathbb{R}^n$	4
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq 0\}$	$\delta_{\{\mathbf{A}^T \boldsymbol{\lambda}: \boldsymbol{\lambda} \in \mathbb{R}_+^m\}}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n$, $\mathbf{A} \in$	5
		$\mathbb{R}^{m \times n}$	
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{B}\mathbf{x} = \mathbf{b}\}$	$\langle \mathbf{y}, \mathbf{x}_0 angle + \delta_{\mathrm{Range}(\mathbf{B}^T)}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n$, $\mathbf{B} \in$	6
		$\mathbb{R}^{m\times n}$, b \in	
		\mathbb{R}^m , $\mathbf{B}\mathbf{x}_0 = \mathbf{b}$	
$B_{\ \cdot\ }[0,1]$	y *	∥·∥ - arbitrary	7
		norm	

A Discontinuous Closed and Convex Function

lf

$$C = \left\{ (x_1, x_2) : x_1 + \frac{x_2^2}{2} \le 0 \right\}.$$

Then

$$\sigma_{\mathcal{C}}(\mathbf{y}) = \begin{cases} \frac{y_2^2}{2y_1}, & y_1 > 0\\ 0, & y_1 = y_2 = 0\\ \infty, & \text{else.} \end{cases}$$

Lecture 2 - Subgradients

▶ Definition: Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper function, and let $\mathbf{x} \in \text{dom}(f)$. A vector $\mathbf{g} \in \mathbb{E}$ is called a subgradient of f at \mathbf{x} if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$
 for all $\mathbf{y} \in \mathbb{E}$.

▶ The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$:

$$\partial f(\mathbf{x}) \equiv \{ \mathbf{g} \in \mathbb{E} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathbb{E} \}.$$

When $\mathbf{x} \notin \text{dom}(f)$, we define $\partial f(\mathbf{x}) = \emptyset$.

Subdifferentiability

▶ If $\partial f(\mathbf{x}) \neq \emptyset$, f it is called subdifferentiable at \mathbf{x} .

$$dom(\partial f) \equiv \{ \mathbf{x} \in \mathbb{E} : \partial f(\mathbf{x}) \neq \emptyset \}.$$

Example:

$$f(x) = \begin{cases} -\sqrt{x}, & x \ge 0, \\ \infty, & \text{else.} \end{cases}$$

Existence and Boundedness of $\partial f(\mathbf{x})$

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper convex function, and assume that $\tilde{\mathbf{x}} \in \operatorname{int}(\operatorname{dom}(f))$. Then $\partial f(\tilde{\mathbf{x}})$ is nonempty and compact.

Corollary. Let $f: \mathbb{E} \to \mathbb{R}$ be a convex function. Then f is subdifferentiable over \mathbb{E} .

The Subdifferential at Differentiability Points

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper convex function, and let $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$. If f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$. Conversely, if f has a unique subgradient at \mathbf{x} , then f is differentiable at \mathbf{x} and $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$.

Example:
$$f(\mathbf{x}) = \|\mathbf{x}\|_2$$
 ($\mathbb{E} = \mathbb{R}^n$). Then $\partial f(\mathbf{x}) = \left\{ \begin{array}{l} \left\{ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\}, & \mathbf{x} \neq \mathbf{0}, \\ B_{\|\cdot\|_2}[\mathbf{0}, 1], & \mathbf{x} = \mathbf{0}. \end{array} \right.$

Fermat's Optimality Condition

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be an extended real-valued convex function. Then

$$\mathbf{x}^* \in \operatorname{argmin}\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}\$$
 (1)

if and only if

$$\mathbf{0}\in\partial f(\mathbf{x}^*)$$

Proof. $\mathbf{0} \in \partial f(\mathbf{x}^*)$ is satisfied iff

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle \mathbf{0}, \mathbf{x} - \mathbf{x}^* \rangle$$
 for any $\mathbf{x} \in \text{dom}(f)$,

which is the the same as (1).

Optimality Conditions for the Composite Model (Mixed Convex/Nonconvex)

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be proper, and let $g: \mathbb{E} \to (-\infty, \infty]$ be a proper convex function such that $dom(g) \subseteq int(dom(f))$. Consider the problem

(P)
$$\min f(\mathbf{x}) + g(\mathbf{x})$$
.

(a) (necessary condition) If $\mathbf{x}^* \in \text{dom}(g)$ is a local optimal solution of (P), and f is differentiable at \mathbf{x}^* , then

$$-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*). \tag{2}$$

(b) (necessary and sufficient condition for convex problems) Suppose that f is convex. If f is differentiable at $\mathbf{x}^* \in \text{dom}(g)$, then \mathbf{x}^* is a global optimal solution of (P) if and only if (2) is satisfied.

Stationarity in Composite Models

(P)
$$\min f(\mathbf{x}) + g(\mathbf{x})$$
.

- ▶ $f : \mathbb{E} \to (-\infty, \infty]$ proper.
- $g: \mathbb{E} \to (-\infty, \infty]$ proper convex.
- ▶ $dom(g) \subseteq int(dom(f))$.

Definition A point $\mathbf{x}^* \in \text{dom } g$ in which f is differentiable is called a stationarity point of (P) if $-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*)$

Example: If $g(\mathbf{x}) = \delta_C(\mathbf{x})$ for convex C, then stationarity is the same as

$$\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \geq 0$$

Example: $\min f(\mathbf{x}) + \lambda ||\mathbf{x}||_1 \ (f : \mathbb{R}^n \to \mathbb{R})$

Lecture 3 - Conjugate Functions

Definition. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper extended real-valued function. The function $f: \mathbb{E} \to [-\infty, \infty]$ defined by

$$f^*(\mathbf{y}) = \max_{\mathbf{x} \in \mathbb{E}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \}.$$

is called the conjugate function of f.

Result: Conjugate functions are **always** closed and convex (regardless of the properties of f). Why?

Example: $f = \delta_C$, where $C \subseteq \mathbb{E}$ is nonempty. Then for any $\mathbf{y} \in \mathbb{E}$

$$f^*(\mathbf{y}) = \max_{\mathbf{x} \in \mathbb{E}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - \delta_C(\mathbf{x}) \} = \max_{\mathbf{x} \in C} \langle \mathbf{y}, \mathbf{x} \rangle = \sigma_C(\mathbf{y}).$$

$$\delta_{\mathsf{C}}^* = \sigma_{\mathsf{C}}.$$

The Biconjugate

The conjugacy operation can be invoked twice resulting with the biconjugacy operation. Specifically, for a function f we define

$$f^{**}(\mathbf{x}) = \max_{\mathbf{y} \in \mathbb{E}} \langle \mathbf{x}, \mathbf{y} \rangle - f^*(\mathbf{y})$$

Theorem $(f \geq f^{**})$. Let $f : \mathbb{E} \to [-\infty, \infty]$ be an extended real-valued function. Then $f(\mathbf{x}) \geq f^{**}(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{E}$.

Proof. For any $x \in \mathbb{E}$:

- $f^*(\mathbf{y}) \geq \langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x})$
- $f(\mathbf{x}) \geq \langle \mathbf{y}, \mathbf{x} \rangle f^*(\mathbf{y}).$

Fenchel's Inequality

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be an extended real-valued proper function. Then for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$

$$f(\mathbf{x}) + f^*(\mathbf{y}) \geq \langle \mathbf{y}, \mathbf{x} \rangle.$$

$$f^{**} = f$$

Theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a closed and proper extended real-valued function. Then $f^{**} = f$.

Examples

• $f = \sigma_C$, where C is nonempty closed and convex. Then

$$f^* = \sigma_C^* = (\delta_C^*)^* = \delta_C^{**} = \delta_C.$$

• $f(\mathbf{x}) = \max\{x_1, x_2, \dots, x_n\}$. Then $f^* = \delta_{\Delta_n}$. Why?

Simple Algebraic Rules

function definition	conjugate	
$g(\mathbf{x}_1,\ldots,\mathbf{x}_m)=\sum_{i=1}^m f_i(\mathbf{x}_i)$	$g^*(\mathbf{y}_1,\ldots,\mathbf{y}_m)=\sum_{i=1}^m f_i^*(\mathbf{y}_i)$	
$g(\mathbf{x}) = \alpha f(\mathbf{x})$	$g^*(\mathbf{y}) = \alpha f^*(\mathbf{y}/\alpha)$	
$g(\mathbf{x}) = \alpha f(\mathbf{x}/\alpha)$	$g^*(\mathbf{y}) = \alpha f^*(\mathbf{y})$	
$f(\mathcal{A}(\mathbf{x}-\mathbf{a}))+\langle\mathbf{b},\mathbf{x}\rangle+c$	$\left \ f^* \left((\mathcal{A}^T)^{-1} (\mathbf{y} - \mathbf{b}) ight) + \langle \mathbf{a}, \mathbf{y} angle - c - \langle \mathbf{a}, \mathbf{b} angle \ ight $	

Conjugates of Simple Functions

function (f)	dom f	conjugate (f^*)	assumptions
$\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$	\mathbb{R}^n	$\frac{1}{2}(\mathbf{y}\!-\!\mathbf{b})^T\mathbf{A}^{-1}(\mathbf{y}\!-\!\mathbf{b})-$	$oldsymbol{A}\succ oldsymbol{0}, oldsymbol{A}\in \mathbb{R}^{n imes n}, \ oldsymbol{b}\in$
		C	$\mathbb{R}^n, c \in \mathbb{R}$
$\sum_{i=1}^n x_i \log x_i$	\mathbb{R}^n_+	$\sum_{i=1}^{n} e^{y_i-1}$	_
$\sum_{i=1}^{n} x_i \log x_i$ $\sum_{i=1}^{n} x_i \log x_i$	Δ_n	$\log\left(\sum_{i=1}^n e^{y_i}\right)$	_
$\log\left(\sum_{i=1}^n e^{x_i}\right)$	\mathbb{R}^n	$\frac{\sum_{i=1}^{n} y_i \log y_i}{(\text{dom } f^* = \Delta_n)}$	_
		$(\operatorname{dom} f^* = \Delta_n)$	
$\delta_{\mathcal{C}}(\mathbf{x})$	С	$\sigma_{\mathcal{C}}(\mathbf{x})$	$\emptyset \neq C$ arbitrary
$\sigma_{\mathcal{C}}(\mathbf{x})$	\mathbb{R}^n	$\delta_{\mathcal{C}}(\mathbf{x})$	$\emptyset \neq C$ closed, convex
x	\mathbb{R}^n	$\delta_{B_{\ \cdot\ _*}[0,1]}$	$\ \cdot\ $ arbitrary norm
$-\sqrt{1-\ \mathbf{x}\ ^2}$	$B_{\ \cdot\ }[0,1]$	$\sqrt{\ \mathbf{y}\ _*^2+1}$	$\ \cdot\ $ arbitrary norm
$\frac{1}{p} x ^p$	\mathbb{R}	$\frac{1}{q} y ^q$	$p > 1, \frac{1}{p} + \frac{1}{q} = 1$
$\frac{1}{2}\ \mathbf{x}\ ^2$	\mathbb{R}^n	$\frac{1}{2} \ \mathbf{y}\ _{*}^{2}$	∥ · ∥ arbitrary norm

Conjugate Subgradient Theorem

Theorem. Let $f: \mathbb{R}^n \to (-\infty, \infty]$ be a proper convex extended real-valued function. The following two claims are equivalent for any $\mathbf{x} \in \mathbb{E}, \mathbf{y} \in \mathbb{E}$:

- (i) $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y}).$
- (ii) $\mathbf{y} \in \partial f(\mathbf{x})$.

If, in addition f is closed, then (i) and (ii) are equivalent to

(iii) $\mathbf{x} \in \partial f^*(\mathbf{y})$.

Proof.

▶ $\mathbf{y} \in \partial f(\mathbf{x})$ iff

$$f(\mathbf{z}) \geq f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{z} - \mathbf{x} \rangle$$
 for all $\mathbf{z} \in \mathbb{E}$,

- iff $\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x}) \ge \langle \mathbf{y}, \mathbf{z} \rangle f(\mathbf{z})$ for all $\mathbf{z} \in \mathbb{E}$.
- iff $\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x}) \geq f^*(\mathbf{y})$,
- which combined with Fenchel's inequality is equivalent to $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y}).$
- ▶ If f is closed, then (i) is the same as $\langle \mathbf{x}, \mathbf{y} \rangle = g(\mathbf{y}) + g^*(\mathbf{x})$, where $g = f^*$, and thus it is equivalent to $\mathbf{x} \in \partial g(\mathbf{y}) = \partial f^*(\mathbf{y})$.

Conjugate Subgradient Theorem Contd.

▶ The equivalence $(i) \Leftrightarrow (ii)$ can be compactly written as

$$\partial f^*(\mathbf{y}) = \underset{\mathbf{x}}{\operatorname{argmax}} \left\{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \right\}$$

▶ If f is closed, the equivalence $(i) \Leftrightarrow (iii)$ is the same as

$$\partial f(\mathbf{x}) = \operatorname{argmax} \{ \langle \mathbf{x}, \mathbf{y} \rangle - f^*(\mathbf{y}) \}$$

▶ If f is differentiable at a point x, then

$$f(\mathbf{x}) + f^*(\nabla f(\mathbf{x})) = \langle \mathbf{x}, \nabla f(\mathbf{x}) \rangle.$$

In particular,

$$\partial f^*(\mathbf{0}) = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}).$$

- ▶ Example: $g(\mathbf{x}) = ||\mathbf{x}||$ (arbitrary norm). What is $\partial g(\mathbf{0})$?
- Exercise 1: f proper closed and convex, $\lambda \in \mathbb{R} \setminus \{0\}$, $\mathbf{a} \in \mathbb{R}^n$. Define $g(\mathbf{x}) = f(\lambda \mathbf{x} + \mathbf{a})$. Find a formula for g^* in terms of f^* .
- Exercise 2: Let $f(x_1, x_2) = \max\{1 2x_1, 0\} + 2e^{3x_2}$. Find f^*
- Exercise 3: Let $f: \mathbb{R}^n \to (-\infty, \infty]$ be a closed proper convex function. Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, and define $g(\mathbf{x}) = f^*(\mathbf{A}\mathbf{x} + \mathbf{b})$. Explain how to compute a member in $\partial g(\mathbf{x})$ (in terms of \mathbf{A} , \mathbf{b} and f).

Fenchel's Duality Theorem

(P)
$$\min_{\mathbf{x} \in \mathbb{E}} f(\mathbf{x}) + g(\mathbf{x}).$$

Lagrangian duality:

$$\blacktriangleright \ \operatorname{min}_{\mathbf{x},\mathbf{z}\in\mathbb{E}}\{f(\mathbf{x})+g(\mathbf{z}):\mathbf{x}=\mathbf{z}\}\$$

► Lagrangian:

$$L(\mathbf{x},\mathbf{z};\mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \langle \mathbf{y},\mathbf{z} - \mathbf{x} \rangle = -\left[\langle \mathbf{y},\mathbf{x} \rangle - f(\mathbf{x}) \right] - \left[\langle -\mathbf{y},\mathbf{z} \rangle - g(\mathbf{z}) \right].$$

▶ Dual objective function: $q(y) = \min_{x,z} L(x,z;y) = -f^*(y) - g^*(-y)$

Fenchel's dual problem:

(D)
$$\max_{\mathbf{y} \in \mathbb{E}^*} \{-f^*(\mathbf{y}) - g^*(-\mathbf{y})\}.$$

Theorem (Fenchel's duality theorem) Let $f,g:\mathbb{E}\to (-\infty,\infty]$ be proper convex functions. If $\operatorname{ri}(\operatorname{dom}(f))\cap\operatorname{ri}(\operatorname{dom}(g))\neq\emptyset$, then

$$\min_{\mathbf{x} \in \mathbb{E}} \{ f(\mathbf{x}) + g(\mathbf{x}) \} = \max_{\mathbf{y} \in \mathbb{E}^*} \{ -f^*(\mathbf{y}) - g^*(-\mathbf{y}) \},$$

and the maximum in the right-hand problem is attained whenever it is finite.

Lecture 4 - The Proximal Operator

Definition. Given a closed, proper and convex function g, the proximal mapping of g is defined by

$$\mathrm{prox}_g(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ g(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

Examples

▶ **Constant.** If $f \equiv c$ for some $c \in \mathbb{R}$, then

$$\operatorname{prox}_f(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ c + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\} = \mathbf{x}$$

The identity mapping.

▶ Affine. Let $f(x) = \langle a, x \rangle + b$, where $a \in \mathbb{E}$ and $b \in \mathbb{R}$. Then

$$\operatorname{prox}_{f}(\mathbf{x}) = \underset{\mathbf{u} \in \mathbb{E}}{\operatorname{argmin}} \left\{ \langle \mathbf{a}, \mathbf{u} \rangle + b + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\} \\
= \mathbf{x} - \mathbf{a}.$$

Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{S}^n_+$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. The vector $\operatorname{prox}_f(\mathbf{x})$ is the solution of

$$\min_{\mathbf{u} \in \mathbb{E}} \left\{ \frac{1}{2} \mathbf{u}^T \mathbf{A} \mathbf{u} + \mathbf{b}^T \mathbf{u} + c + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

The optimal solution is attained at **u** satisfying $(\mathbf{A} + \mathbf{I})\mathbf{u} = \mathbf{x} - \mathbf{b}$, and hence

$$\operatorname{prox}_{\mathfrak{c}}(\mathbf{x}) = \mathbf{u} = (\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b}).$$

The Orthogonal Projection

▶ Definition. Given a nonempty closed and convex set $C \subseteq \mathbb{E}$ and $\mathbf{x} \in \mathbb{E}$, the orthogonal projection operator $P_C : \mathbb{E} \to C$ is defined by

$$P_C(\mathbf{x}) \equiv \underset{\mathbf{y} \in C}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|.$$

First projection theorem. Let $C \subseteq \mathbb{E}$ be a nonempty closed convex set. Then $P_C(\mathbf{x})$ is a singleton.

Prox of Indicator = Orthogonal Projection

▶ If $C \subseteq \mathbb{E}$ is nonempty, then $\text{prox}_{\delta_C} = P_C$

$$\operatorname{prox}_{\delta_{\mathcal{C}}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ \delta_{\mathcal{C}}(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^{2} \right\} = \operatorname*{argmin}_{\mathbf{u} \in \mathcal{C}} \|\mathbf{u} - \mathbf{x}\|^{2} = P_{\mathcal{C}}(\mathbf{x}).$$

First prox theorem. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper closed and convex function. Then $\operatorname{prox}_f(\mathbf{x})$ is a singleton for any $\mathbf{x} \in \mathbb{E}$.

Necessity of the Conditions in the First Prox Theorem

 \bullet When f is not convex and/or closed, the prox is not guaranteed to uniquely exist, or even to exist at all.

$$g_1(x) \equiv 0,$$

$$g_2(x) = \begin{cases} 0, & x \neq 0, \\ -\lambda, & x = 0, \end{cases}$$

$$g_3(x) = \begin{cases} 0, & x \neq 0, \\ \lambda, & x = 0. \end{cases}$$

$$\operatorname{prox}_{g_1}(x) = x, \operatorname{prox}_{g_2}(x) = \begin{cases} \{0\}, & |x| < \sqrt{2\lambda}, \\ \{x\}, & |x| > \sqrt{2\lambda}, \\ \{0, x\}, & |x| = \sqrt{2\lambda}. \end{cases}, \operatorname{prox}_{g_3}(x) = \begin{cases} \{x\}, & x \neq 0, \\ \emptyset, & x = 0. \end{cases}$$

- Uniquness is not guaranteed in any case.
- Existence is guaranteed whenever f is proper closed and the function $\mathbf{u} \mapsto f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} \mathbf{x}\|^2$ is coercive.

Basic Calculus Rules

- C()	()	
f(x)	$\operatorname{prox}_f(\mathbf{x})$	assumptions
$\sum_{i=1}^m f_i(\mathbf{x}_i)$	$\operatorname{prox}_{f_1}(\mathbf{x}_1) \times \cdots \times \operatorname{prox}_{f_m}(\mathbf{x}_m)$	
$g(\lambda x + a)$	$rac{1}{\lambda}\left[\operatorname{prox}_{\lambda^2 g}(\mathbf{a} + \lambda \mathbf{x}) - \mathbf{a}\right]$	$\lambda \neq 0, \mathbf{a} \in \mathbb{E}, g$
		proper
$\lambda g(\mathbf{x}/\lambda)$	$\lambda \mathrm{prox}_{g/\lambda}(\mathbf{x}/\lambda)$	$\lambda > 0$, g proper
$\ g(\mathbf{x}) + \frac{c}{2} \ \mathbf{x}\ ^2 +$	$\operatorname{prox}_{\frac{1}{c+1}g}(\frac{\mathbf{x}-\mathbf{a}}{c+1})$	$\mathbf{a} \in \mathbb{E}, c > $
$ \langle \mathbf{a}, \mathbf{x} \rangle + \overline{\gamma} $	c+10 C+1	$0, \gamma \in \mathbb{R}$, g
		proper
g(A(x) + b)	$\mathbf{x} + \frac{1}{\alpha} \mathcal{A}^{T} (\operatorname{prox}_{\alpha g} (\mathcal{A}(\mathbf{x}) + \mathbf{b}) - \mathcal{A}(\mathbf{x}) - \mathbf{b})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		g closed
		proper convex,
		$A \circ A^T = \alpha I$
		$\alpha > 0$
$g(\ \mathbf{x}\)$	$\begin{aligned} &\operatorname{prox}_g(\ \mathbf{x}\)\frac{\mathbf{x}}{\ \mathbf{x}\ }, & \mathbf{x} \neq 0 \\ &\{\mathbf{u}: \ \mathbf{u}\ = \operatorname{prox}_g(0)\}, & \mathbf{x} = 0 \end{aligned}$	g proper closed convex,
		$dom(g) \subseteq [0,\infty)$

Proof of One Property

Let
$$g: \mathbb{E} \to (-\infty, \infty]$$
 be proper, and let $\lambda \neq 0$. Define $f(\mathbf{x}) = \lambda g(\mathbf{x}/\lambda)$. Then $\operatorname{prox}_f(\mathbf{x}) = \lambda \operatorname{prox}_{g/\lambda}(\mathbf{x}/\lambda)$

Proof.

Note that

$$\mathrm{prox}_f(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u}} \left\{ f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\} = \operatorname*{argmin}_{\mathbf{u}} \left\{ \lambda g\left(\frac{\mathbf{u}}{\lambda}\right) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

Making the change of variables $z = \frac{u}{\lambda}$, we can continue to write

$$\begin{aligned} \operatorname{prox}_f(\mathbf{x}) &= & \lambda \operatorname{argmin} \left\{ \lambda g(\mathbf{z}) + \frac{1}{2} \| \lambda \mathbf{z} - \mathbf{x} \|^2 \right\} \\ &= & \lambda \operatorname{argmin} \left\{ \lambda^2 \left[\frac{g(\mathbf{z})}{\lambda} + \frac{1}{2} \left\| \mathbf{z} - \frac{\mathbf{x}}{\lambda} \right\|^2 \right] \right\} \\ &= & \lambda \operatorname{argmin} \left\{ \frac{g(\mathbf{z})}{\lambda} + \frac{1}{2} \left\| \mathbf{z} - \frac{\mathbf{x}}{\lambda} \right\|^2 \right\} \\ &= & \lambda \operatorname{prox}_{g/\lambda}(\mathbf{x}/\lambda). \end{aligned}$$

Examples or Prox Computations

f	dom f	prox_f	assumptions
$\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$	\mathbb{R}^n	$(\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b})$	$\mathbf{A} \in \mathbb{S}^n_{++}$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}$
$\lambda \ \mathbf{x}\ $	E	$\left[1-rac{\lambda}{\ \mathbf{x}\ } ight]_+\mathbf{x}$	Euclidean norm, $\lambda>0$
$\lambda \ \mathbf{x}\ _1$	\mathbb{R}^n	$[\mathbf{x} - \lambda \mathbf{e}]_+ \circ \operatorname{sgn}(\mathbf{x})$	$\lambda > 0$
$-\lambda \sum_{j=1}^n \log x_j$	R"++	$\left(\frac{x_j + \sqrt{x_j^2 + 4\lambda}}{2}\right)_{j=1}^n$	$\lambda > 0$
$\delta_{\mathcal{C}}(\mathbf{x})$	E	$P_{C}(\mathbf{x})$	$C\subseteq\mathbb{E}$
$\lambda \sigma_{\mathcal{C}}(\mathbf{x})$	E	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda)$	C closed and convex
$\lambda \ \mathbf{x}\ $	E	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _*}[0,1]}(\mathbf{x}/\lambda)$	arbitrary norm
$\lambda \max\{x_1, x_2, \dots, x_n\}$	\mathbb{R}^n	$\mathbf{x} - \operatorname{prox}_{\Delta_n}(\mathbf{x}/\lambda)$	$\lambda > 0$
$\lambda d_{\mathcal{C}}(\mathbf{x})$	E	$\mathbf{x} + \min\left\{\frac{\lambda}{d_C(\mathbf{x})}, 1\right\} (P_C(\mathbf{x}) - \mathbf{x})$	C closed convex
$\frac{\lambda}{2} d_{\mathcal{C}}(\mathbf{x})^2$	E	$\frac{\lambda}{\lambda+1}P_C(\mathbf{x}) + \frac{1}{\lambda+1}\mathbf{x}$	C closed convex

Prox of I₁-Norm

- $g(\mathbf{x}) = \lambda ||\mathbf{x}||_1 (\lambda > 0)$
- $g(\mathbf{x}) = \sum_{i=1}^{n} \varphi(x_i)$, where $\varphi(t) = \lambda |t|$.

 $ightharpoonup \operatorname{prox}_{\wp}(s) = \mathcal{T}_{\lambda}(s), ext{ where } \mathcal{T}_{\lambda} ext{ is defined as}$

$$\mathcal{T}_{\lambda}(y) = [|y| - \lambda]_{+} \operatorname{sgn}(y) = \begin{cases} y - \lambda, & y \ge \lambda, \\ 0, & |y| < \lambda, \\ y + \lambda, & y \le -\lambda \end{cases}$$

is the soft thresholding operator.

▶ By the separability of the l_1 -norm, $\operatorname{prox}_g(\mathbf{x}) = (\mathcal{T}_{\lambda}(x_j))_{j=1}^n$. We expend the definition of the soft thresholding operator and write

$$\operatorname{prox}_{\mathbf{g}}(\mathbf{x}) = \mathcal{T}_{\lambda}(\mathbf{x}) \equiv (\mathcal{T}_{\lambda}(\mathbf{x}_{i}))_{i=1}^{n} = [|\mathbf{x}| - \lambda \mathbf{e}]_{+} \odot \operatorname{sgn}(\mathbf{x}).$$

Moreau Decomposition

Theorem. Let f be a closed, proper and extended real-valued convex function. Then for any $\mathbf{x} \in \mathbb{E}$

$$\operatorname{prox}_f(\mathbf{x}) + \operatorname{prox}_{f^*}(\mathbf{x}) = \mathbf{x}.$$

Extended Moreau decomposition. same setting with $\lambda > 0$. For any $\mathbf{x} \in \mathbb{E}$

$$\operatorname{prox}_{\lambda f}(\mathbf{x}) + \lambda \operatorname{prox}_{\lambda^{-1} f^*}(\mathbf{x}/\lambda) = \mathbf{x}.$$

Exercise: Suppose that g is a proper closed and convex function. Define $G(\mathbf{y}) \equiv g^*(-\mathbf{y})$. For any $\lambda > 0$, write $\operatorname{prox}_{\lambda G}$ in terms of $\operatorname{prox}_{\alpha g}$ for some $\alpha > 0$.

Prox of Support Functions

Let C be a nonempty closed and convex set, and let $\lambda > 0$. Then

$$\operatorname{prox}_{\lambda\sigma_{\mathcal{C}}}(\mathbf{x}) = \mathbf{x} - \lambda P_{\mathcal{C}}(\mathbf{x}/\lambda).$$

Proof. By the extended Moreau decomposition formula

$$\operatorname{prox}_{\lambda\sigma_{\mathcal{C}}}(\mathbf{x}) = \mathbf{x} - \lambda \operatorname{prox}_{\lambda^{-1}\sigma_{\mathcal{C}}^{*}}(\mathbf{x}/\lambda) = \mathbf{x} - \lambda \operatorname{prox}_{\lambda^{-1}\delta_{\mathcal{C}}}(\mathbf{x}/\lambda) = \mathbf{x} - \lambda P_{\mathcal{C}}(\mathbf{x}/\lambda)$$

Examples:

- $\blacktriangleright \operatorname{prox}_{\lambda\|\cdot\|_{\alpha}}(\mathbf{x}) = \mathbf{x} \lambda P_{B_{\|\cdot\|_{\alpha,*}}[\mathbf{0},1]}(\mathbf{x}/\lambda). \ (\|\cdot\|_{\alpha} \text{ arbitrary norm})$

Spectral Functions over \mathbb{S}^n

▶ Given a matrix $\mathbf{X} \in \mathbb{S}^n$, its eigenvalues vector is denoted by $\lambda(\mathbf{X})$, where

$$\lambda_1(\mathbf{X}) \geq \lambda_2(\mathbf{X}) \geq \cdots \geq \lambda_n(\mathbf{X})$$

F is a **spectral function** if it is of the form

$$F(\mathbf{x}) = g(\lambda_1(\mathbf{X}), \lambda_2(\mathbf{X}), \dots, \lambda_n(\mathbf{X})),$$

g is the "outer function".

- ▶ if g is symmetric w.r.t. permutations, then F is a symmetric spectral function
- **Examples:** $\lambda_{max}(\mathbf{X})$, $\|\mathbf{X}\|_F$, $\|\mathbf{X}\|_2$, $-\log \det(\mathbf{X})$
- ▶ Spectral Proximal Formula: $F = f \circ \lambda$ spectral symmetric \Rightarrow

$$\operatorname{prox}_F(\mathbf{X}) = \mathbf{U}\operatorname{\mathsf{diag}}(\operatorname{prox}_f(\lambda(\mathbf{X})))\mathbf{U}^T$$

where $\mathbf{X} = \mathbf{U} \operatorname{diag}(\lambda(\mathbf{X}))\mathbf{U}^{T}$ (spectral deocomposition)

Spectral Functions over $\mathbb{R}^{m \times n}$

▶ Given a matrix $X \in \mathbb{S}^n$, its singular values vector is denoted by $\sigma(X)$, where

$$\sigma_1(\mathbf{X}) \geq \sigma_2(\mathbf{X}) \geq \cdots \geq \sigma_r(\mathbf{X}) \ r = \min\{m, n\}$$

F is a **spectral function** if it of the form

$$F(\mathbf{x}) = g(\sigma_1(\mathbf{X}), \sigma_2(\mathbf{X}), \dots, \sigma_r(\mathbf{X})),$$

g is the outer function.

- ▶ if g is symmetric w.r.t. permutations and $g(x) \equiv g(|x|)$, then F is an absolutely symmetric spectral function
- **Examples:** $\sigma_{\max}(\mathbf{X})$, $\|\mathbf{X}\|_F$, $\|\mathbf{X}\|_2$, $\|\mathbf{X}\|_* = \sum_{i=1}^r \sigma_i(\mathbf{X})$
- ▶ Spectral Proximal Formula: $F = f \circ \lambda$ spectral symmetric \Rightarrow

$$\operatorname{prox}_{F}(\mathbf{X}) = \mathbf{U}\operatorname{\mathsf{diag}}(\operatorname{prox}_{f}(\lambda(\mathbf{X})))\mathbf{U}^{T}$$

where $\mathbf{X} = \mathbf{U} \operatorname{diag}(\lambda(\mathbf{X}))\mathbf{U}^{T}$ (spectral deocomposition)

Exercises

For each of the following functions, find an expression for $\operatorname{prox}_{\lambda f}(\mathbf{x})$ for any $\lambda > 0$ and \mathbf{x} .

- 1. elastic net: $f(\mathbf{x}) = \lambda \|\mathbf{x}\|_2^2 + \mu \|\mathbf{x}\|_1 \ (\lambda, \mu > 0)$ (just $\operatorname{prox}_f(\mathbf{x})$)
- 2. $f(t) = \max\{0, t\}$
- 3. $f(t) = \max\{t, 1 3t\}$
- 4. $f(t) = [\max\{0, t\}]^2$
- 5. $f(\mathbf{x}) = \mathbf{x}_{[1]} \equiv \max\{x_1, x_2, \dots, x_n\}$
- 6. $f(\mathbf{x}) = 2x_{[1]} + x_{[2]}$. Write a code implementing $prox_f$. Use this code to find $prox_f((2, 1, 4, 1, 2, 1))$ Final answer: (1.5, 1, 2, 1, 1.5, 1)
- 7. $f(\mathbf{x}) = |\mathbf{a}^T \mathbf{x}|, \ \mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$
- 8. $f(t) = \begin{cases} \frac{1}{t} & t > 0, \\ \infty & \text{else.} \end{cases}$
- 9. $f(\mathbf{X}) = \begin{cases} \operatorname{tr}(\mathbf{X}^{-1}) & \mathbf{X} \succ \mathbf{0} \\ \infty & \text{else} \end{cases}$ (over \mathbb{S}^n). Write a code implementing prox_f .

Use this code to find $\operatorname{prox}_f \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$ Final answer: $\begin{pmatrix} 3.1251 & 0.9511 \\ 0.9511 & 4.0762 \end{pmatrix}$

10.
$$f(\mathbf{x}) = (\|\mathbf{x}\|_2 - 1)^2$$

References

- ▶ A. Beck, First Order Methods in Optimization (2017).
- ▶ D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex analysis and optimization (2013).
- ▶ J. M. Borwein and A. S. Lewis, *Convex analysis and nonlinear optimization* (2006).
- ▶ P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul. (2005).
- ▶ J. B. Hiriart-Urruty and C. Lemarechal. *Convex analysis and minimization algorithms. I* (1996).
- ▶ J. J. Moreau, *Proximité et dualité dans un espace hilbertien*, Bull. Soc. Math. France (1965).
- ▶ Y. Nesterov. Introductory lectures on convex optimization (2004).
- ▶ N. Parikh and S. Boyd, *Proximal algorithms*, Foundations and Trends in Optimization (2014).
- R. T. Rockafellar, Convex analysis (1970).