Serie Numeriche (cenni) - Sommario

Appunti sulle serie, parte del programma riservato al C.d.L. di Chimica, svolto dal prof. Daniele del Santo.

A. LE DEFINIZIONI DI SERIE

A1. Definizione di Serie

Definizione di Serie

Problema preliminare per le serie; definizione di serie; definizione di successione dei termini, di somme parziali, di parziale n-esima per una serie. Esempi notevoli di serie.

0. Osservazione preliminare

#Osservazione

Osservazione (problema preliminare).

Supponiamo di avere una successione $(a_n)_n$ in \mathbb{R} (o \mathbb{C}) (Definizione 1 (successione)).

Voglio trovare un *modo rigoroso* per considerare la *somma* di tutti i termini $(a_n)_n$; si tratta tuttavia di *operazioni infinite*, dunque non posso effettivamente fare la somma.

Infatti, procedendo in questo modo si avrebbero dei risultati che *sembrano* degli assurdi, tra cui la c.d. *serie di Ramanujan* (<u>ulteriori approfondimenti su Wikipedia</u>).

$$1+2+3+\ldots = -rac{1}{12} \ (\mathfrak{R})$$

Vogliamo dunque trovare un altro modo per fare le somme dei termini a_n , senza dover ricorrere a teorie più speciali. Useremo dunque la *teoria dei limiti*, creando effettivamente un nesso tra la *teoria dei limiti* (per le successioni) con le *serie*.

1. Definizioni basilari

#Definizione

Definizione (Serie).

Sia $(a_n)_n$ una successione a valori reali (o complessi).

Per ogni $n \in \mathbb{N}$ definiamo la "somma parziale"

$$s_n = \sum_{i=0}^n a_i$$

cioè

$$s_0 = a_0; s_1 = a_0 + a_1; \dots; s_n = a_n + s_{n-1} = a_0 + \dots + a_n$$

Allora definisco la coppia

$$((a_n)_n,(s_n)_n)$$

come serie e la indico come

$$oxed{((a_n)_n,(s_n)_n)\sim\sum_{n=0}^{+\infty}a_n}$$

#Definizione

Definizione (Successione dei terimini, somme parziali, parziale n-esima per una serie).

Data una serie

$$((a_n)_n,(s_n)_n)\sim \sum_{n=0}^{+\infty}a_n$$

Definisco le seguenti:

- $(a_n)_n$ si dice la successione dei termini o il termine generale della serie.
- $(s_n)_n$ si dice la successione delle somme parziali o delle ridotte nesime della serie
- s_n si dice successione parziale o ridotta n-esima della serie.

#Definizione

Definizione (Resto *k*-esimo della serie).

Data una serie

$$((a_n)_n,(s_n)_n)\sim \sum_{n=0}^{+\infty}a_n$$

posso considerare un qualsiasi numero $k \in \mathbb{N}$ e definire la seguente sotto successione (Successione e Sottosuccessione > ^502a75).

$$(b_k)_k := (a_{n+k})_n$$

ovvero, scegliendo ad esempio k=3

$$k=3 \implies (b_k)_k=a_3,a_4,\ldots,a_n,\ldots$$

La serie

$$\sum_{n=0}^{+\infty}b_n=\sum_{n=k}^{+\infty}a_n$$

si dice il resto k-esimo della serie $((a_n)_n, (s_n)_n)$.

2. Esempi notevoli di Serie

#Esempio

Esempio (Successione costante).

Sia $a_n=1, \forall n$; allora abbiamo

$$a_0 = a_1 = \ldots = a_n = 1 \ s_0 = 1; s_1 = 1+1; \ldots; s_n = 1+1+\ldots+1 = n+1$$

Allora abbiamo

$$\sum_{n=0}^{+\infty}a_n=\sum_{n=0}^{+\infty}1$$

#Esempio

Esempio (Successione identità).

Sia definita la successione $a_n=n, orall n$; allora abbiamo la serie

$$\sum_{n=0}^{+\infty} a_n \sim \left((n)_n, (rac{n(n+1)}{2})_n
ight)$$

Per una derivazione della nomenclatura a destra si provi per *induzione* che

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$

#Esempio

Esempio (Successione binaria).

Sia definita la successione $a_n = (-1)^n$, ovvero del tipo

$$1, -1, 1, -1, \dots, 1, -1, \dots$$

Allora troviamo che

$$s_n = egin{cases} 1 & ext{se } n ext{ pari} \ 0 & ext{se } n ext{ dispari} = rac{(-1)^n + 1}{2} \end{cases}$$

Allora

$$\sum_{n=0}^{+\infty} (-1)^n \sim ((a_n)_n,(s_n)_n) = \ldots$$

#Esempio

Esempio (Serie geometrica di ragione ho).

Sia $ho \in \mathbb{R}$ (denominata come ragione) e definiamo la successione $a_n =
ho^n$

.

Conoscendo la *ridotta della serie geometrica* (Esempi di Induzione > ^98ba76), sappiamo che

$$ho^0 +
ho^1 + \ldots +
ho^n = rac{1 -
ho^{n+1}}{1 -
ho} = s_n$$

Allora abbiamo

$$\sum_{n=0}^{+\infty}
ho^n \sim \left((
ho^n)_n, \left(rac{1-
ho^{n+1}}{1-
ho}
ight)_n
ight)$$

#Osservazione

Osservazione (Casi $n = 0 \in n = 1$).

Osserviamo che data una qualunque successione $(a_n)_n$, tratteremo in modi simili le situazioni in cui n parte da 0 o da 1.

#Esempio

Esempio (Serie armonica).

Sia $a_n = \frac{1}{n}$.

Allora abbiamo la serie

$$\sum_{n=1}^{+\infty}rac{1}{n}\sim\left(\left(rac{1}{n}
ight)_n,\left(1+\ldots+rac{1}{n}
ight)_n
ight)$$

Notare che non è possibile trovare una formula che calcoli la successione ridotta n-esima $1+\ldots+\frac{1}{n}$, dunque è necessario esprimerlo esplicitamente.

#Esempio

Esempio (Serie armonica generalizzata).

Sia $lpha \in [0,+\infty)$. Prendendo la *serie armonica*, indico la *serie*

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

come la serie armonica generalizzata.

A2. Carattere di una Serie

Carattere di una Serie

Carattere di una serie: definizione di serie convergente, divergente, indeterminata; esempi; osservazioni sulle serie convergenti.

0. Osservazione preliminare

#Osservazione

Osservazione (Problema preliminare).

Ora vogliamo capire come si *comporta* la ridotta $(s_n)_n$ a partire dal termine generale della serie $(a_n)_n$ (Definizione di Serie).

1. Definizione di serie convergente, divergente e indeterminata

#Definizione

Definizione (Serie convergente, divergente, indeterminata).

Data la serie

$$\sum_{n\in\{0,1\}}^{+\infty}a_n\sim ((a_n)_n,(s_n)_n)$$

questa si dice:

• convergente se esiste finito il limite

$$\lim_n s_n = s \in \mathbb{R} \; (\mathbb{C})$$

in tal caso s si dice la somma della serie.

• divergente se invece esiste ma non è finito il limite

$$\lim_n s_n = \pm \infty \in ilde{\mathbb{R}}$$

• indeterminata se non esiste il limite

$$ot \exists \lim_n s_n$$

La "caratteristica" di essere convergente, divergente o indeterminata si dice il carattere della serie.

2. Osservazioni sulle serie convergenti

Notiamo che le serie convergenti hanno certe proprietà interessanti.

#Osservazione

Osservazione (Le ridotte di una serie condivide il carattere della serie padre).

Consideriamo una qualsiasi serie convergente e un suo qualsiasi resto k-esimo

$$\sum_{n=0}^{+\infty}a_n;\sum_{n=0}^{+\infty}a_{n+k}$$

Ho che entrambe le serie hanno lo stesso carattere.

Considerando s_n come la ridotta di $\sum a_n$, σ_n la ridotta di $\sum a_{n+k}$, troviamo una relazione tra le due ridotte, ovvero

$$\sigma_n = s_{n+k} - s_{k-1}$$

Infatti, guardando il membro destro dell'uguaglianza, il *primo termine* rappresenta la somma di tutti i termini della successione $(a_n)_n$ fino a n+k; invece il *secondo termine "toglie"* gli elementi che non appartengono al resto k-esimo, ovvero i termini (a_0,\ldots,a_{k-1}) . In definitiva possiamo dire che le ridotte differiscono per una *costante*.

Osservazione (Le serie convergenti formano un spazio vettoriale su R).

Considero una qualsiasi serie e un scalare $\lambda \in \mathbb{R}$;

$$\sum_{n=0}^{+\infty}a_n;\sum_{n=0}^{+\infty}\lambda\cdot a_n$$

Troviamo che entrambe le serie hanno lo *stesso carattere*. In particolare, se la serie è convergente allora "*scalandolo*" per un qualsiasi numero rimane comunque convergente.

Adesso consideriamo due serie convergenti del tipo

$$\sum_{n=0}^{+\infty} a_n; \sum_{n=0}^{+\infty} b_n$$

Se sono entrambi *convergenti*, allora sicuramente sarà convergente pure la *somma* tra le due serie definita come

$$\sum_{n=0}^{+\infty} a_n + \sum_{n=0}^{+\infty} b_n := \sum_{n=0}^{+\infty} (a_n + b_n)$$

allora la serie ottenutosi a destra sarà pure convergente.

Infatti, da questa breve osservazione si evince che le *serie convergenti* formano un \mathbb{R} -spazio vettoriale (Definizione 1 (spazio vettoriale sul campo K)).

3. Esempi di studio delle serie

Nota: la maggior parte degli esempi verranno tratti dalla pagina Definizione di Serie

#Esempio

Esempio (Serie costante).

Prendiamo la serie

$$S = \sum_{n=0}^{+\infty} 1$$

Sappiamo che la successione delle somme parziali è $s_n=n+1.$ Ma allora da ciò segue che

$$\lim_n s_n = \lim_n (n+1) = +\infty$$

Allora la serie è divergente.

#Esempio

Esempio (Serie identità).

Prendiamo adesso la serie

$$S=\sum_{n=0}^{+\infty}n=1+2+\ldots$$

Vediamo che

$$\lim_n s_n = \lim_n \frac{(n)(n+1)}{2} = +\infty$$

Allora anche questa serie è divergente.

#Esempio

Esempio (Serie binaria).

Ora prendiamo la serie

$$S=\sum_{n=0}^{+\infty}(-1)^n$$

Vediamo che

$$s_n = egin{cases} -1, n \in \mathbb{P} \ 1, n \in \mathbb{D} \end{cases}$$

Ma allora in questo caso il limite

$$\lim_n s_n$$

non esiste, dal momento che scegliendo opportune sotto successioni otteniamo valori diversi.

#Esempio

Esempio (Serie geometrica per $\rho = 0.5$).

Prendiamo la serie geometrica per $ho=\frac{1}{2}.$ Ovvero,

$$S = \sum_{n=0}^{+\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n} + \ldots$$

Allora abbiamo

$$s_n = 2(1-rac{1}{2^n}) \implies \lim_n s_n = 2(1-0) = 2$$

Allora la serie S è "convergente con somma 2.

#Esempio

Esempio (Serie geometrica generalizzata).

Ora generalizziamo l'esempio precedente per un $ho \in \mathbb{R}.$ Ovvero,

$$S = \sum_{n=0}^{+\infty}
ho^n$$

Ora distinguiamo casi diversi.

Per ho=1, osserviamo che la serie si comporterà come la *serie costante* (ovvero $\sum_{0\leq n<+\infty}1$), dunque S diventa divergente.

Invece per $\rho \neq 1$, abbiamo che la successione delle ridotte parziali è

$$s_n = rac{1-
ho^{n+1}}{1-
ho} \implies \lim_n s_n = \lim_n rac{1-
ho^{n+1}}{1-
ho}$$

Notiamo che "l'unica parte che si muove" è ρ^{n+1} ; studiamo dunque solo il limite

Dunque deduciamo che

Allora la serie è divergente per $\rho \geq 1$, convergente per $\rho \in (-1,1)$, e indeterminata per $\rho \leq -1$.

#Esempio

Esempio (Serie armonica).

Ora vogliamo studiare il carattere della serie

$$S = \sum_{n=1}^{+\infty} \frac{1}{n}$$

Consideriamo la successione $(s_n)_n$.

$$s_1 = 1$$
 $s_2 = 1 + \frac{1}{2}$
 $s_3 = 1 + \frac{1}{2} + \frac{1}{3}$
 $s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + 2 + \frac{1}{4} + \frac{1}{4} \ge 1 + 2 \frac{1}{2}$
 \vdots
 $s_8 = 1 + \ldots + \frac{1}{8} \ge 1 + \frac{1}{2} + 2 \frac{1}{4} + 4 \frac{1}{8} = 1 + 3 \frac{1}{2}$
 $s_{2^n} = 1 + \frac{1}{2} + \ldots + \frac{1}{2^{n-1}} + \ldots + \frac{1}{2^n}$

Ma allora svolgendo un'operazione simile per s_4, s_8 , possiamo minorare s_{2^n} come

$$s_{2^n} \geq 1 + rac{1}{2} + 2rac{1}{4} + 4rac{1}{8} + \ldots + 2^{n-1}rac{1}{2^n} = 1 + rac{n}{2}$$

Pertanto, per il teorema del confronto (Osservazione 5 (i teoremi per i limiti di funzioni valgono anche per i limiti di successioni)), il limite è

$$\lim_n s_{2^n} = +\infty$$

Allora dato che stiamo considerando una sottosuccessione su s_n , anche il limite s_n è

$$\lim_n s_n = +\infty$$

(*N. B.* dimostreremo questo risultato nelle pagine successive, considerando le *successioni a termini positivi*). Pertanto la serie armonica è *divergente*.

#Esempio

Esempio (Serie di Mengoli).

Consideriamo la serie

$$S = \sum_{n=1}^{+\infty} rac{1}{n(n+1)} = rac{1}{(1)(2)} + rac{1}{(2)(3)} + \ldots + rac{1}{(n)(n+1)} + \ldots$$

Vogliamo determinare il carattere della serie S (di Mengoli). Innanzitutto osserviamo che

$$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$$

Allora, considerando la successione delle ridotte di *S* abbiamo una *serie telescopica*:

$$s_n = rac{1}{1(2)} + \ldots + rac{1}{n(n+1)} = 1 - rac{1}{2} + rac{1}{2} - rac{1}{3} + \ldots + rac{1}{n} - rac{1}{n+1} = 1 - rac{1}{n+1}$$

Di conseguenza il suo limite è

$$s_n = 1 - rac{1}{n+1} \implies \lim_n s_n = 1$$

Allora la serie di Mengoli è "convergente con somma 1".

#Esempio

Esempio (Problema di Basilea).

Consideriamo la serie

$$S=\sum_{n=1}^{+\infty}rac{1}{n^2}$$

Notiamo che questa è "approssimabile" con la serie di Mengoli; allora si deduce che S è convergente. Ma con quale somma? Questa domanda venne posta per la prima volta nel 1644 come il problema di Basilea (approfondimenti storici su Wikipedia) e risolta dal noto matematico L. Euler, dimostrando che la somma esatta è

$$\frac{\pi}{6}$$

FIGURA 1. (Foto di Pietro Mengoli e Leonhard Euler)

A3. Serie a termini non negativi

Serie a Termini non negativi

Definizione di serie a termini non negativi (o positivi); proprietà fondamentale delle serie a termini non negativi (o positivi); teorema dell'aut-aut per le serie a termini non negativi.

0. Voci correlate

- Definizione di Serie
- · Carattere di una Serie

1. Definizione di serie a termini non negativi

#Definizione

Definizione (Serie a termini non negativi o positivi).

Sia

$$\sum_{n\in\mathbb{N}}^{+\infty}a_n$$

una serie, tale che $\forall n, a_n \geq 0$ (ovvero tutti i *termini della successione dei termini della serie sono positivi*), allora la serie si dice *a termini non negativi*. Parimenti, se invece si verifica $a_n > 0$, allora la serie si dice *a termini positivi*.

2. Proprietà fondamentale delle serie a termini non negativi

#Osservazione

Osservazione (Proprietà fondamentale delle serie a termini non negativi).

Osserviamo che se una serie è a termini non negativi, allora $(s_n)_n$ è sicuramente una successione monotona crescente. Questa proprietà sarà importante in quanto ci permetterà di enunciare il c.d. teorema dell'aut-aut per le serie a termini non negativi.

#Teorema

Teorema (dell'aut-aut per le serie a termini non negativi).

Sia

$$\sum_{n\in\mathbb{N}}^{+\infty}a_n$$

una *serie* a termini non negativi, allora la serie o *è divergente* o *è convergente*, come suggerirebbe il termine Kierkegaardiano "Aut-Aut" (approfondimenti sull'Aut-Aut di S. Kierkegaard).

#Dimostrazione

DIMOSTRAZIONE del Teorema 3 (dell'aut-aut per le serie a termini non negativi).

La dimostrazione è semplice, basta prendere l'osservazione 2 (vedere sopra)

e applicare il teorema dei limiti per le successioni monotone (Teorema 7 (esistenza dei limiti delle successioni monotone)), per cui se una successione è monotona (in particolare $(s_n)_n$), allora il suo limite deve esistere. Pertanto se esiste il limite

$$\lim_n s_n = s \in ilde{\mathbb{R}}$$

allora la serie non può essere indeterminata, per definizione.

B. I CRITERI PER LA VALUTAZIONE DELLE SERIE

B1. Teorema del confronto

Teorema del Confronto per le Serie a Termini non negativi

Teoremi sulle serie a termini non negativi: teorema del confronto (+ due corollari), tecnica di valutazione delle serie con Taylor.

0. Voci correlate

- Serie a Termini non negativi
- Definizione di Serie
- Carattere di una Serie
- Formula di Taylor
- Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore

1. Teorema del confronto per le serie a t. n. n.

#Teorema

Teorema (del confronto per le serie a termini non negativi).

Siano $\sum_n a_n$, $\sum_n b_n$ due serie a termini non negativi.

Supponiamo che valga $a_n \leq b_n, \forall n$ (ovvero che tutti i termini di $(b_n)_n$ "stanno sopra" tutti quelli di $(a_n)_n$)

Allora:

i. Se $\sum_n a_n$ è divergente, allora anche $\sum_n b_n$ è divergente.

ii. Se $\sum_n b_n$ è convergente con somma s_b , allora anche $\sum_n a_n$ è convergente con somma s_a , con $s_a \leq s_b$.

#Dimostrazione

DIMOSTRAZIONE del Teorema 1 (del confronto per le serie a termini non negativi).

i. Supponiamo che $\sum_n a_n$ sia *divergente*. Ora consideriamo le *ridotte* n-esime per le serie $\sum_n a_n$, $\sum_n b_n$ e le denotiamo rispettivamente con s_n^a , s_n^b . Per ipotesi so che per una qualsiasi $n \in \mathbb{N}$ ho $a_n \leq b_n$, di conseguenza $a_0 + a_1 \leq b_0 + b_1$; $a_0 + a_1 + a_2 \leq b_0 + b_1 + b_2$; e procedendo per induzione ottengo

$$a_0 + \ldots + a_n \leq b_0 + \ldots + b_n$$

I membri della disuguaglianza sono esattamente $s_n^a, s_n^b.$ Ma allora

$$s_n^a \leq s_n^b$$

Dato che $\sum_n a_n$ è *divergente*, per definizione deve seguire il limite

$$\lim_n s_n^a = \pm \infty$$

Ma allora per il teorema del cfr. per i limiti di successione (Osservazione 5 (i teoremi per i limiti di funzioni valgono anche per i limiti di successioni)) ho il limite

$$\lim_n s_n^a = \pm \infty \wedge s_n^a \leq s_n^b \implies \lim_n s_n^b = \pm \infty$$

Allora per definizione la serie $\sum_n b_n$ è divergente.

ii. Ora supponiamo invece che $\sum_n b_n$ sia convergente con somma s_b . Per definizione ho il limite finito

$$\lim_n s_n^b = s_b$$

Però, considerando che trattiamo di *serie a termini non negativi*, abbiamo che la *successione delle ridotte* è monotona crescente; allora vale anche

$$s_b = \sup_{n \in \mathbb{N}} s_n^b$$

Ovvero " s_b è il maggiorante di tutti i termini di $(s_n^b)_n$ ", dunque $s_n^b \leq s_b$. Ora possiamo concatenare l'ipotesi iniziale col risultato appena ottenuto:

$$s_n^a \leq s_n^b \leq s_b$$

Ma allora s_n^a è una successione strettamente crescente e limitata da s_b ; allora per il teorema sulle successioni monotone e limitate (Corollario 8 (convergenza delle successioni monotone e limitate)), s_n^a dev'essere convergente, ovvero

$$\lim_n s_n^a = s_a \leq s_b$$

che è la tesi.

2. Conseguenze del teorema del cfr.

#Corollario

Corollario (caso resto k-esimo).

Siano $\sum_n a_n$, $\sum_n b_n$ due *serie a termini non negativi*. Supponendo che valga

$$\exists k \in \mathbb{N} : \forall n, n > k \implies a_n \leq b_n$$

(ovvero "da un certo punto a_n sta sotto b_n ") allora:

i. Se $\sum_n b_n$ è convergente, allora anche $\sum_n a_n$ è convergente.

ii. Se $\sum_n a_n$ è divergente, allora anche $\sum_n b_n$ è divergente.

#Osservazione

Osservazione (pezzo mancante).

Notare attentamente che questo corollario non coincide completamente col teorema del confronto, dal momento che nel caso delle serie convergenti non vale più la tesi $s_a \leq s_b$, dato che stiamo solo considerando il resto k-esimo delle serie.

#Dimostrazione

DIMOSTRAZIONE del Corollario 2 (caso resto k-esimo).

Basta applicare il *teorema del confronto* ai *resti k*-esimo delle serie $\sum_n a_n$, $\sum_n b_n$, ovvero $\sum_{n=k} a_n$, $\sum_{n=k} b_n$.

#Corollario

Corollario (seconda conseguenza).

Siano $\sum_n a_n$, $\sum_n b_n$ serie a termini positivi.

Supponendo che esista finito e strettamente positivo il limite

$$\lim_n rac{a_n}{b_n} = \lambda \in (0,+\infty)$$

Allora le due serie hanno lo stesso carattere.

#Dimostrazione

DIMOSTRAZIONE del Corollario 4 (seconda conseguenza).

Supponiamo il limite

$$\lim_n rac{a_n}{b_n} = \lambda \in (0,+\infty)$$

Allora per definizione del limite ho

$$orall arepsilon > 0, \exists k \in \mathbb{N}: orall n, \ n > k \implies \left| rac{a_n}{b_n} - \lambda
ight| < arepsilon \iff \lambda - arepsilon < rac{a_n}{b_n} < \lambda + arepsilon$$

Scegliamo $\varepsilon = \frac{\lambda}{2}$. Allora ho

$$egin{aligned} rac{1}{2}\lambda < rac{a_n}{b_n} < rac{3}{2}\lambda \ rac{1}{2}\lambda \cdot b_n < a_n < rac{3}{2}\lambda \cdot b_n \end{aligned}$$

Il secondo passaggio è giustificato dal momento che b_n è sempre strettamente positivo.

Allora, supponendo che $\sum_n a_n$ sia convergente, allora segue che $\sum_n \frac{\lambda}{2} b_n$ è convergente, ovvero $\sum_n b_n$ è anche convergente.

Il ragionamento è analogo per il caso in cui $\sum_n a_n$ è divergente.

3. Tecnica di valutazione delle serie con Taylor

#Osservazione

Osservazione (L'utilità pratica del corollario del teorema del confronto).

Sarà utile utilizzare il Corollario 4 (seconda conseguenza) per valutare il carattere di certe serie, in specie se lo si usa accompagnandolo ai

sviluppi di Taylor per le funzioni (Teorema 2.1. (di Taylor col resto di Peano))

Supponiamo di dover studiare il carattere di una serie del tipo

$$\sum_{n}^{+\infty} f(\frac{1}{n})$$

Prendiamo lo sviluppo di Taylor per f(x) con $x_0=0$ e n=2. Ovvero la f diventa una funzione del tipo

$$f(x)=f(0)+f'(0)x+rac{f''(0)}{2}x^2+r_2(0,x)$$

con il limite

$$\lim_{x o 0}rac{r_2(0,x)}{x^2}$$

Ora supponiamo di avere i seguenti casi:

- Se $f(0) \neq 0$, allora la funzione vicino a 0 non si annulla mai; dunque per qualsiasi valori di x, abbiamo la somma di un numero più grande di f(0). Allora la serie è divergente.
- Se f(0) = 0 e $f'(0) \neq 0$, allora sarà utile valutare f in $\frac{1}{n}$ e prendere il suo limite.

Infatti si avrebbe una situazione del tipo

$$\lim_n rac{f(rac{1}{n})}{rac{1}{n}} = \lim_n f'(0) + rac{r_2(0,rac{1}{n})}{rac{1}{n^2}} \cdot rac{1}{n}
eq 0$$

dunque la serie sarà sicuramente divergente, dato che si comporta come $\frac{1}{n}$.

• Se f(0) = 0, f'(0) = 0 e $f''(0) \in \mathbb{R}$, ripetiamo lo stesso procedimento di prima e si avrebbe la situazione del tipo

$$\lim_n rac{f(rac{1}{n})}{rac{1}{n^2}} = \lim_n rac{f''(0)}{2} + rac{r_2(0,rac{1}{n})}{rac{1}{n^2}}$$

Infatti, se il limite fosse 0, allora $f(\frac{1}{n})$ sarebbe più piccola di $\frac{1}{n^2}$, dunque convergente in ogni caso.

B2. Criteri per le serie a termini non negativi

Teoremi sulle Serie a Termini positivi

Tre criteri di convergenza sulle serie a termini positivi: criterio del rapporto, della radice, della serie condensata.

0. Voci correlate

- Definizione di Serie
- Serie a Termini non negativi
- Limite di Successione

1. Criterio del rapporto

#Teorema

Teorema (criterio del rapporto).

Sia $\sum_n a_n$ una serie a termini positivi. Supponendo che esiste e valga l il limite

$$\lim_n rac{a_{n+1}}{a_n} = l$$

Allora:

- Se l < 1, allora la serie è convergente.
- Se l > 1, allora la serie è divergente.
- Se invece l = 1 o il limite non esiste, allora non si può dire niente.

#Dimostrazione

DIMOSTRAZIONE del Teorema 1 (criterio del rapporto).

i. Supponiamo che valga il limite $\lim_n rac{a_{n+1}}{a_n} = l < 1$.

Allora prendiamo un valore qualsiasi ρ tale che $l<\rho<1$; ovvero " ρ sta in mezzo tra l,1".

Quindi per definizione del limite vale che *esiste* un $ar{n} \in \mathbb{N}$ tale che

$$n \geq ar{n} \implies rac{a_{n+1}}{a_n} <
ho$$

Allora di conseguenza deve seguire

$$rac{a_{ar{n}+1}}{a_{ar{n}}} <
ho \implies a_{ar{n}+1} <
ho \cdot a_{ar{n}}$$

Ma allora vale anche per

$$rac{a_{ar{n}+2}}{a_{ar{n}+1}} <
ho \implies a_{ar{n}+2} <
ho^2 \cdot a_{ar{n}+1} \leq
ho \cdot a_{ar{n}+1}$$

Notiamo che questo vale anche prendendo $\bar{n}+3$, $\bar{n}+4$ e così via... Dunque $per\ induzione$ vale che

$$orall k \in \mathbb{N}, a_{ar{n}+k} <
ho^k \cdot a_{ar{n}}$$

Allora da \bar{n} in poi, il termine a_n è maggiorata dal numero $\rho^{n-\bar{n}} \cdot a_{\bar{n}}$; ovvero

$$a_n \leq
ho^n \cdot rac{a_{ar{n}}}{
ho^{ar{n}}}$$

Ora utilizzo il teorema del confronto per le serie a termini positivi (Teorema 1 (del confronto per le serie a termini non negativi)), confrontando $\sum_n a_n$ con $\sum_n \rho^n \cdot \frac{a_{\bar{n}}}{\rho^{\bar{n}}}$.

Sicuramente la serie

$$\frac{a_{\bar{n}}}{\rho^{\bar{n}}} \sum_n \rho^n$$

è convergente per $ho \in (0,1)$. Allora $\sum_n a_n$ è convergente.

ii. Supponiamo invece il limite $\lim_n rac{a_{n+1}}{a_n} = l > 1$.

Allora per definizione del limite

$$\exists ar{n}: n > ar{n} \implies rac{a_{n+1}}{a_n} > 1$$

Ovvero $a_{n+1} > a_n$. Allora da un certo \bar{n} in poi, la successione $(a_n)_n$ sarà sempre crescente; dunque il resto \bar{n} -esimo della serie è divergente, dunque la serie $\sum_n a_n$ è divergente. \blacksquare

2. Criterio della radice

#Teorema

Teorema (criterio della radice).

Sia $\sum_n a_n$ una serie a termini positivi.

Supponendo che esista e sia finita il limite

$$\lim_n \sqrt[n]{a_n} = l$$

Allora:

- Se l < 1, allora la serie è convergente.
- Se l > 1, allora la serie è divergente.
- Altrimenti non posso dire nulla

#Dimostrazione

DIMOSTRAZIONE del Teorema 2 (criterio della radice).

La dimostrazione è analoga a quella vista per il Teorema 1 (criterio del rapporto), dunque omessa. ■

3. Criterio della serie condensata

#Teorema

Teorema (criterio della serie condensata).

Sia $\sum_n a_n$ una serie a termini positivi.

Supponendo che $(a_n)_n$ sia *decrescente*, ovvero che $\forall n, a_{n+1} \leq a_n$.

Allora la serie $\sum_n a_n$ ha lo stesso carattere della serie $\sum_n b_n := \sum_n (2^n a_{2^n})$

#Definizione

Definizione (serie condensata di una serie).

Sia $\sum_n a_n$ una serie. Allora la serie

$$\sum_{n\in\mathbb{N}}^{+\infty}2^na_{2^n}$$

si dice la "serie condensata" di a_n .

#Dimostrazione

DIMOSTRAZIONE del Teorema 3 (criterio della serie condensata).

Omessa (anche a lezione). ■

B3. Criterio di Leibniz per le serie a termini alternati

Assoluta e Semplice Convergenza di una Serie

Serie a termini di segno qualunque: serie assolutamente, semplicemente convergente; teorema dell'assoluta convergenza; criterio di Leibniz per le serie di segno alternato.

0. Voci correlate

- Definizione di Serie
- Serie a Termini non negativi
- Teoremi Generali sulle Serie
- Conseguenze dell'esistenza dell'estremo superiore

1. Definizione di assoluta e semplice convergenza

#Definizione

Definizione (serie assolutamente convergente).

Sia $\sum_n a_n$ una *serie* con termini in $\mathbb R$ o $\mathbb C$.

La serie $\sum_n a_n$ si dice assolutamente convergente se è convergente la serie $\sum_n |a_n|$.

#Definizione

Definizione (serie semplicemente convergente).

Sia $\sum_n a_n$ una *serie* con termini in $\mathbb R$ o $\mathbb C$.

Se $\sum_n a_n$ è convergente ma $\sum_n |a_n|$ è divergente, allora $\sum_n a_n$ si dice semplicemente convergente.

2. Rapporto tra le serie e le serie assolute

#Osservazione

Osservazione (preambolo).

Ora ci chiediamo se esiste un rapporto che lega $\sum_n a_n \operatorname{con} \sum_n |a_n|$; ovvero vogliamo trovare dei teoremi che sono in grado di garantire (o meno) il rapporto dei caratteri delle serie $\sum_n a_n e \sum_n |a_n|$. Se una serie è assolutamente convergente, allora è convergente? Oppure vale il viceversa? Se è convergente, allora dev'essere assolutamente convergente? Ora lo vediamo.

#Teorema

Teorema (dell'assoluta convergenza).

Sia $\sum_n a_n$ una serie qualunque.

Se $\sum_n |a_n|$ è convergente, allora $\sum_n a_n$ è sicuramente convergente.

Ovvero "se una serie è assolutamente convergente, allora è convergente".

(#Dimostrazione)

DIMOSTRAZIONE del Teorema 4 (dell'assoluta convergenza).

Supponiamo che $\sum_n a_n$ sia assolutamente convergente, ovvero $\sum_n |a_n|$ è convergente.

Allora applico il *criterio di Cauchy* sulla serie $\sum_n |a_n|$ (Teorema 4 (Criterio di Cauchy per le serie)).

$$egin{aligned} orall arepsilon > 0, \exists ar{n}: orall n, k \ n > ar{n} \wedge k \in \mathbb{N} \implies ||a_n| + |a_{n+1}| + \ldots + |a_{n+k}|| < arepsilon \end{aligned}$$

Applico la disuguaglianza triangolare al membro sinistro della disuguaglianza (Teorema 11 (la disuguaglianza triangolare)).

Allora ho una situazione del tipo

$$|a_n + \ldots + a_{n+k}| \le |a_n| + \ldots + |a_{n+k}| = ||a_n| + \ldots + |a_{n+k}|| < \varepsilon$$

Ma allora ho

$$egin{aligned} orall arepsilon > 0, \exists ar{n}: orall n, k \ n > ar{n} \wedge k \in \mathbb{N} \implies |a_n + a_{n+1} + \ldots + a_{n+k}| < arepsilon \end{aligned}$$

che è il *criterio di Cauchy* per la serie $\sum_n a_n$.

#Osservazione

Osservazione (non vale il viceversa).

Abbiamo solo dimostrare che vale l'implicazione " \Longrightarrow ", ma non " \Longleftrightarrow "; ovvero non abbiamo dimostrato che le successioni convergenti sono assolutamente convergenti.

Non sarebbe infatti possibile "replicare" la stessa dimostrazione al contrario, dal momento che in questo caso la disuguaglianza triangolare non vale più.

Infatti si proporrà il *criterio di Leibniz* come "controesempio" per sfatare l'inversa della tesi, ovvero che *esistono* delle serie semplicemente convergenti.

3. Criterio di Leibniz

#Teorema

Teorema (criterio di Leibniz per le serie a termini di segno alternato).

Sia $(a_n)_n$ una successione in $\mathbb R$ tale che:

i. la successione è decrescente e a termini non negativi, ovvero

$$\forall n, 0 \leq a_{n+1} \leq a_n$$

ii. il suo limite è nullo;

$$\lim_{n} a_n = 0$$

Allora la serie

$$\sum_{n=0}^{+\infty} (-1)^n \cdot a_n$$

è convergente.

#Dimostrazione

DIMOSTRAZIONE del Teorema 6 (criterio di Leibniz per le serie a termini di segno alternato).

Si tratta di dimostrare che il limite della successione delle ridotte della serie esiste finito, ovvero il limite $\lim_n s_n$.

Osservo preliminarmente che si costruisce $(s_n)_n$, per ipotesi iniziali, nel seguente modo:

$$s_0 = a_0; s_1 = a_0 - a_1; s_2 = a_0 - a_1 + a_2; \dots$$

Inoltre tengo conto del fatto che i termini sono "più piccoli di quello precedente", dal momento che la successione è decrescente.

Allora ho una situazione del tipo raffigurato nella figura 1..

In parole costruisco la successione di intervalli definita come la seguente:

$$(I_n)_n: [lpha_n,eta_n]:=egin{cases} [s_{n-1},s_n], \exists k\in\mathbb{N}: n=2k\ [s_n,s_{n-1}] ext{ alt.} \end{cases}$$

Inoltre noto che la distanza di due "estremi" di un qualunque intorno è proprio $|a_n|$.

Vedo che posso usare il teorema di *Cantor*; per dimostrarlo bene devo solo dimostrare bene la seguente catena di disuguaglianze

$$s_{2n+1} \le s_{2n+3} \le s_{2n+2} \le s_{2n}$$

ovvero che "le ridotte pari sono decrescenti e stanno sopra le ridotte dispari che sono a loro volta crescenti".

Per dimostrare un pezzo faccio dei calcoli relativi a s_{2n+1}, s_{2n+2} :

$$egin{cases} s_{2n+1} = s_{2n} + (-1)^{2n+1} a_{2n+1} = s_{2n} - a_{2n+1} \implies s_{2n} \geq s_{2n+1} \ s_{2n+2} = s_{2n+1} + (-1)^{2n+2} a_{2n+2} = s_{2n+1} + a_{2n+2} \implies s_{2n+2} \geq s_{2n+1} \ s_{2n+2} = s_{2n} - \underbrace{(a_{2n+1} - a_{2n+2})}_{\geq 0} \implies s_{2n} \geq s_{2n+2} \end{cases}$$

Ultimamente ho $s_{2n+1} \leq s_{2n+2} \leq s_{2n}$.

Per "completare la catena di disuguaglianza" segnata sopra, faccio un calcolo analogo per s_{2n+3} ;

$$egin{cases} s_{2n+3} = s_{2n+2} - a_{2n+3} \implies s_{2n+3} \leq s_{2n+2} \ s_{2n+3} = s_{2n+1} + (a_{2n+2} - a_{2n+3}) \implies s_{2n+3} \geq s_{2n+1} \ >_0 \end{cases}$$

Finalmente ho ottenuto ciò che volevo dimostrare all'inizio.

Pertanto adesso posso essere sicuro di dire che la successione $(s_{2n+1})_n$ è crescente, invece la successione $(s_{2n})_n$ è decrescente ma vale che $\forall n, s_{2n+1} \leq s_{2n}$. Ora posso finalmente applicare il teorema di Cantor in una maniera rigorosa.

Ora definisco il limite di queste due successioni come

$$\lim_n s_{2n+1} = \sigma, \lim_n s_{2n} = \eta$$

ovvero " σ è l'estremo sinistro, η è l'estremo destro".

Per concludere mi basta solo dimostrare che $\sigma=\eta$, ovvero che due successioni estratte di $(s_n)_n$ convergono allo stesso valore, di conseguenza il limite della successione $\lim_n s_n$ esiste.

Considero dunque il fatto che "il limite delle ridotte pari stanno sopra a quelle dispari", e che i limiti delle successioni monotone sono gli estremi delle successioni.

Ovvero,

$$\forall n, s_{2n+1} \leq \sigma \leq \eta \leq s_{2n}$$

Ora, manipolando l'espressione ottengo

$$|orall n, 0 \leq |\sigma-\eta| \leq s_{2n}-s_{2n+1}=a_{2n+1}$$

Per ipotesi iniziale il limite della *successione dei termini generali* è nulla; ovvero

$$\lim_n a_n = 0 \implies \lim_n a_{2n+1} = 0$$

Allora per il teorema dei due Carabinieri (Osservazione 5 (i teoremi per i limiti di funzioni valgono anche per i limiti di successioni)) ho il limite

$$\lim_n |\eta - \sigma| = 0 \implies \eta = \sigma$$

Che dimostra $\sigma=\eta$, come volevasi dimostrare. \blacksquare

FIGURA 1. (Situazione iniziale)

4. Teorema di Riemann

#Teorema

Teorema (di Riemann).

Sia $\sum_n a_n$ assolutamente convergente.

Allora tutte le serie $\sum_n b_n$ del tipo $b_n := a_{\varphi(n)}$, dove φ è una biiezione del tipo $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$, saranno sicuramente convergenti con la stessa somma. Ovvero "se una serie è assolutamente convergente, allora una qualsiasi altra serie con i stessi termini ma rimescolati sarà convergente con la stessa somma".

Notare che vale anche il viceversa.

#Dimostrazione

DIMOSTRAZIONE del Teorema 7 (di Riemann).

Omessa.

C. Esercizi

Esercizi sulle Serie (D. D. S.)

Esercizi sulle serie, proposti dal prof. Daniele del Santo durante il corso "Matematica I con esercitazioni" (parte del programma riservata al CdL di Chimifca).

1. Serie a termini non negativi

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$

usando il teorema del confronto e poi studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^3}$$

utilizzando ciò che avete visto prima.

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \left(\ln(1 + \frac{1}{n}) - \frac{1}{n} \right)$$

Consiglio: vedere lo sviluppo di Taylor per $\ln(1+\frac{1}{n})$ e utilizzare il teorema del confronto.

#Osservazione

Osservazione (La costante di Eulero-Mascheroni).

Risolvendo l'esercizio precedente si vede che

$$\sum_{n=1}^{+\infty} \frac{1}{n} - \ln(1 + \frac{1}{n}) = \gamma$$

è convergente, con γ un *numero*. Questa costante si chiama la costante di *Eulero-Mascheroni*, ed è noto dal momento che non è ancora chiaro se questo numero è *irrazionale* o meno (<u>approfondimenti su Wikipedia</u>).

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \sin\left(\frac{1}{n}\right)$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

per al variare di α .

Consiglio: separare α per $\alpha \leq 1$, $\alpha \geq 2$ e altri casi.

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{n!}{n^n}$$

#Esercizio

Esercizio.

Dire per quali valori $x \in \mathbb{R}$ la seguente serie è convergente.

$$\sum_{n=1}^{+\infty} nx^{n-1}$$

#Esercizio

Esercizio.

Studiare la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n \log n}$$

e la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n (\log n)^2}$$

Infine dire il carattere della serie al variare di $\alpha \in \mathbb{R}$.

$$\sum_{n=1}^{+\infty} rac{1}{n(\log n)^{lpha}}$$

#Esercizio

Esercizio.

Studiare il carattere della serie, al variare di $eta \in \mathbb{R}$

$$\sum_{n=1}^{+\infty} \frac{1}{n(\log n)(\log(\log n)^\beta)}$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$$

se convergente, dire la somma della serie.

Consiglio: se si vuole trovare la somma della serie, considerare lo sviluppo di Taylor per una certa funzione.

#Esercizio

Esercizio.

Dimostrare che le serie semplicemente convergenti *non* soddisfano il *teorema di Riemann*.

Consiglio: In particolare considerare $\ln 2$ e $\frac{3}{2} \ln 2$.

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=0}^{+\infty} \frac{\cos(\pi n)}{n+2}$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \ln(1+\frac{1}{n^3})$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n} \sin(\frac{1}{n+1})$$

#Esercizio

Esercizio.

Studiare il carattere della serie

$$\sum_{n=1}^{+\infty}rac{n^n}{inom{2n}{n}}$$