KLASSZIUKS FIZIKA LABORATÓRIUM

Fázisátalakulások vizsgálata jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.03.22

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.04.04

Tartalomjegyzék:

1	A mérés célja és menete:	2
2	A mérőeszközök	2
3	Fontos összefüggések és képletek	2
4	Gyors folyamat: 4.1 Felfűtés: 4.1.1 Olvadáspont: 4.1.2 Olvadáshő: 4.2 Hűtés: 4.2.1 Olvadáspont: 4.2.2 Olvadáshő:	2 3 4 4
5	Lassú folyamat: 5.1 Felfűtés: 5.1.1 Olvadáspont: 5.1.2 Olvadáshő: 5.2.1 Olvadáspont: 5.2.2 Olvadáshő:	6 7 7
6	Mérési adatok:	9
7	Összehasonlítás:	9
8	Diszkusszió:	10

1 A mérés célja és menete:

A mérés célja egy minta hőmérséklet változásának hatására bekövetkező fázisátalakulás jellemzőinek vizsgálata. Fázisátalakulásnak azt a jelenséget nevezzük, mikor az anyag egy bizonyos hőmérsékletet elérve hirtelen szerkezeti változáson megy keresztül. A mérést egy DTA (*Differential Thermal Analysis*) - berendezéssel végezzük, melybe a mintát belehelyezve több különböző program lefuttatása mellett mérjük a minta hőmérsékletét, és a fázisátalakulások jellemzőit.

2 A mérőeszközök

• Ólom minta: 1.4499 g \pm 0.00005 g

· Digitális mérleg

• DTA - berendezés

· Számítógépes mérő- és kiértékelő program.

3 Fontos összefüggések és képletek

Az egyes testek közötti hőátadást a Newton-féle lehűlési törvénnyel írhatjuk le:

$$\frac{dQ}{dt} = -h(T - T_k) \tag{1}$$

Ahol Q az időegység alatt a környezetnek átadott hő, h a hőátadási tényező, T a test és T_k a környezet hőmérséklete.

A mérés során a környezet hőmérsékletét egy kezdeti T_0 hőmérsékletről α sebességgel növeljük lineárisan:

$$T_k(t) = T_0 + \alpha t \tag{2}$$

Ha a mért $\Delta T(t)$ görbére megfelelően behúzunk egy alapvonalat, ami illeszkedik az olvadás előtti és utáni szakaszokra, akkor a különbséget integrálva az olvadáshővel arányos mennyiséget kapunk.

$$Q = h \int_{t_1}^{t_2} \delta \Delta T dt = hF \tag{3}$$

Ahol F a bezárt terület, tehát az integrál értéke.

A fázisátalakulási fajlagos hőket az alábbi kifejezés adja:

$$q = \frac{Q}{m} = \frac{hF}{m}$$

ahol m a minta tömegét jelenti.

4 Gyors folyamat:

4.1 Felfűtés:

4.1.1 Olvadáspont:

Az olvadáspont meghatározását a DTAevalue program segítségével végeztem.

A kiértékelés során első lépésként elvégeztem az olvadás előtti szakszra való illesztést, az alapvonal meghatározását, majd a "Difference" funkció segítségével levontam az alapvonalat és leosztottam a minta tömegével is. Végül az "Onset/Melt" gomb benyomásával a $\delta\Delta T$ görbe megfelelő szakaszára illesztve meghatároztam a minta olvadáspontját.

A pontosabb kiértékelés érdekében egy adott folyamatra többször is illesztettem.

1. ábra: Illesztések az olvadásra

Az illesztésekből kapott értékek:

	$T_{olvadas}[^{\circ}C]$
1. illesztés	308.13
2. illesztés	308.06
3. illesztés	308.06
4. illesztés	308.15

Az adatok alapján az olvadáspont:

$$T_{olvadas} = 308.10 \pm 0.02 \, ^{\circ}C$$

A hibát az átlag empirikus szórás képletével határoztam meg:

$$S_{\bar{y}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n(n-1)}}$$
 (4)

4.1.2 Olvadáshő:

Az integrálás értékét az "Area" gomb lenyomását, valamint az intervallum kiválasztását követően kaptam meg.

2.ábra: integrálás az olvadás folyamatára

Az integrálás eredménye így:

$$F = -0.72 \, \frac{^{\circ}C \cdot s}{mg} = -1043.928 \pm 10.252 \, ^{\circ}C \cdot s$$

Az átalakulás kezdőpontja és végpontja között meghatároztam a hőmérséklet átalágát a *"Temp"* funkció segítségével, és ezen hőmérséklethez tartozó h értékét a labroban hatlálható h(T) függvényről leolvastam. A pontosság kedvéért, itt is több ponton mintavételeztem.

3. ábra: átlag hőmérsékletek

	$T_h[^{\circ}C]$
 érték 	312.24
2. érték	311.98
3. érték	312.12
4. érték	312.09

 T_h értéke, így:

$$T_h = 312.11 \pm 0.05^{\circ} C$$

ahol a hiba az átlagos empirikus szórás.

A laborban lévő grafikonról leolvasva h értéke így: $h=1.625\pm0.0025~\frac{J}{\circ\cdot min}$

4.2 Hűtés:

4.2.1 Olvadáspont:

Megismételtem a felfűtés kiértékelése során végzett lépéseket:

4. ábra: Illesztések a dermedésre

	$T_{olvadas}[^{\circ}C]$
1. illesztés	305.27
2. illesztés	305.27
3. illesztés	305.41
4. illesztés	305.50

Vettem az illesztések átlagát és a korábban használt (4) alapján az olvadáspont és hibája:

$$T_{olvadas} = 305.36 \pm 0.06 \, ^{\circ}C$$

4.2.2 Olvadáshő:

Elvégeztem a fázisátalakulás görbéjének integrálását:

5. ábra integrálás a dermedés folyamatára

Eredményül F-re:

$$F = 1058.427 \pm 10.252 \ ^{\circ}C \cdot s$$

kaptam.

F hibájának mindkét esetben az egy méréshez tartozó fűtési/hűtési folyamat integrálásának szórását vettem. Ezt követően megkeresetem az átalakulás átlaghőmérsékletét:

6. ábra: átlaghőmérsékletek

	$T_h[^{\circ}C]$
1. érték	302.37
2. érték	302.40
3. érték	302.39
4. érték	302.30

 T_h értéke, így:

$$T_h = 302.36 \pm 0.02^{\circ}C$$

ahol a hiba a (4) alapján kapható meg.

A laborban lévő grafikonról leolvasva h értéke így: $h=1.55\pm0.0025~\frac{J}{\circ\cdot min}$

5 Lassú folyamat:

Megismételetem az előző mérést, csak a minta fűtése és hűtése lassabra lett véve.

5.1 Felfűtés:

5.1.1 Olvadáspont:

Az illesztések, és eredményeik:

7. ábra: illesztések az olvadásra

	$T_{olvadas}[^{\circ}C]$
1. illesztés	305.91
2. illesztés	305.92
3. illesztés	305.90
4. illesztés	305.90

Az adatok alapján az olvadáspont:

$$T_{olvadas} = 305.908 \pm 0.004 \, ^{\circ}C$$

Melynek hibája szintén a (4)-as képlet alapján adható meg.

5.1.2 Olvadáshő:

Ezt követően elvégeztem az integrálást:

8. ábra: integrálás az olvadás folyamatára

Így F értéke:

$$F = -1014.93 \pm 30.76 \, ^{\circ}C \cdot s$$

Ezt követte a folyamat átlaghőmérsékletének meghatározása:

9. ábra: átlaghőmérsékletek

	$T_h[^{\circ}C]$
1. érték	309.85
2. érték	309.93
3. érték	309.89
4. érték	309.90

Melynek átlaga:

$$T_h = 309.89 \pm 0.02^{\circ} C$$

A grafikonról leolvasva h értéke: $h = 1.60 \pm 0.0025~\frac{J}{\circ \cdot min}$

5.2 Hűtés:

5.2.1 Olvadáspont:

Megint az olvadáspont meghatározásával kezdtem:

10. ábra: illesztések a dermedésre

	$T_{olvadas}[^{\circ}C]$
1. illesztés	303.81
2. illesztés	303.96
3. illesztés	304.12
4. illesztés	303.75

Az illesztések átlaga és hibája:

$$T_{olvadas} = 303.91 \pm 0.08^{\circ}C$$

5.2.2 Olvadáshő:

Az integrálás eredménye:

11. ábra: integrálás a dermedés folyamatára

Ebből adódóan F értéke:

$$F = 1058.43 \pm 30.76 \, ^{\circ}C \cdot s$$

Majd folytattam az átlaghőmérséklet megkeresésével:

12.ábra: átlaghőmérsékletek

	$T_h[^{\circ}C]$
1. érték	301.15
2. érték	301.13
3. érték	300.81
4. érték	301.33

 T_h értéke :

$$T_h = 301.10 \pm 0.10^{\circ} C$$

Az ábráról h értékre így:

$$h = 1.55 \pm 0.0025 \ \frac{J}{^{\circ}C \cdot min}$$

6 Mérési adatok:

	$T_{olvadas}[^{\circ}C]$	$T_h[^{\circ}C]$	$h\left[\frac{J}{\circ C \cdot min}\right]$	$F[{}^{\circ}C] \cdot s]$	Q [J]
gyors fűtés	308.10 ± 0.02	312.11 ± 0.05	1.625 ± 0.0025	-1043.928 ± 10.252	28.27 ± 0.37
gyors hűtés	305.36 ± 0.06	302.36 ± 0.02	1.55 ± 0.0025	1058.427 ± 10.252	27.34 ± 0.31
lassú fűtés	305.908 ± 0.004	309.89 ± 0.02	1.60 ± 0.0025	-1014.93 ± 30.76	27.06 ± 0.87
lassú hűtés	303.91 ± 0.08	301.10 ± 0.10	1.55 ± 0.0025	1058.43 ± 30.76	27.34 ± 0.85

Q-t az m tömeggel leosztva megkaphatjuk a fázisátalakulási fajlagos hőket.

	$q[\frac{J}{g}]$
gyors fűtés	19.49 ± 0.22
gyors hűtés	18.86 ± 0.21
lassú fűtés	18.66 ± 0.60
lassú hűtés	18.86 ± 0.59

Q és q hibáját a következő képletekkel számoltam:

$$\Delta Q = Q\left(\left(\frac{\Delta h}{h}\right) + \left(\frac{\Delta F}{F}\right)\right)$$

$$\Delta q = q\left(\left(\frac{\Delta h}{h}\right) + \left(\frac{\Delta F}{F}\right) + \left(\frac{\Delta m}{m}\right)\right)$$

7 Összehasonlítás:

Sajnos nem tudtam tökéletesen összeilleszteni a két folyamatot, de még így is kivehető, hogy a nagyobb sebességű folyamatok jóval élesebbek mint a lassúak.

8 Diszkusszió:

A mérést egész pontosnak mondhatom, nagyságrendileg megkaptam az ólom 23.16 $\frac{J}{g}$ -os fázisátalakulási fajlagos hőjét. A legpontosabb eredményt a gyors felfűtés folyamata adta 15.6%-os eltéréssel, míg a legpontatlanabbat a lassú fűtés 19.4%-os különbséggel, viszont a különböző folyamatok kiértékelése során közel egyező értékeket kaptam, így az irodalmi értéktől való eltérést döntőrészt a mérőberendezések hibái, de természetesen a leolvasási és kiérékelési pontatlanságok okozták