

**(19) World Intellectual Property Organization  
International Bureau**



A standard linear barcode is located at the bottom of the page, spanning most of the width.

(43) International Publication Date  
20 October 2005 (20.10.2005)

PCT

(10) International Publication Number  
**WO 2005/098047 A2**

(51) International Patent Classification<sup>7</sup>: C12Q 1/68

C12Q 1/68

92009 (US), LARSON, Brons, M. [US/US]; 10657 Birch

(21) International Application Number:  
PCT/US2005/005356

Terrance [US/US]; Suite F, 3589 Walnut Street, Lafayette, CA 94549 (US).

(22) International Filing Date: 18 February 2005 (18.02.2005)

(74) Agent: LEGAARD, Paul, K.; Cozen O'Connor, 1900  
Market Street, Philadelphia, PA 19103 (US).

(25) Filing Language: English

(26) Publication Languages: English

*kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,*

(30) Priority Data:

GB-GB-GE-GH-GM-HR-HU-ID-JL-IN-IS-JP-KE-

60/545,425 18 February 2004 (18.02.2004) US

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

|            |                               |    |
|------------|-------------------------------|----|
| 60/559,754 | 5 April 2004 (05.04.2004)     | US |
| 60/632,862 | 3 December 2004 (03.12.2004)  | US |
| 60/639,068 | 22 December 2004 (22.12.2004) | US |
| 60/648,188 | 28 January 2005 (28.01.2005)  | US |

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,  
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SI, SM, SY, TJ,  
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,  
ZM, ZW.

(71) Applicants (for all designated States except US); ISIS PHARMACEUTICALS, INC. [US/US]; 1896 Rutherford Road, Carlsbad, CA 92008 (US). SCIENCE APPLICATIONS INTERNATIONAL CORPORATION [US/US]; 10260 Campus Point Drive, MSC4; San Diego, CA 92121 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZMA, ZW), Eurasian (AM, AZ, BY, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, CI, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

**Published:**

— without international search report and to be republished upon receipt of that report

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

## COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

### CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority to: U.S. Provisional Application Serial No. 60/545,425 filed February 18, 2004, U.S. Provisional Application Serial No. 60/559,754, filed April 5, 2004, U.S. Provisional Application Serial No. 60/632,862, filed December 3, 2004, U.S. Provisional Application Serial No. 60/639,068, filed December 22, 2004, and U.S. Provisional Application Serial No. 60/648,188, filed January 28, 2005, each of which is incorporated herein by reference in its entirety.

### STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with United States Government support under DARPA/SPO contract BAA00-09. The United States Government may have certain rights in the invention.

### FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of genetic identification of bacteria and provides nucleic acid compositions and kits useful for this purpose when combined with molecular mass analysis.

### BACKGROUND OF THE INVENTION

[0004] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.

[0005] Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of

bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.

[0006] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

[0007] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.

[0008] There is a need for a method for identification of bioagents which is both specific and rapid, and in which no culture or nucleic acid sequencing is required. Disclosed in U.S. Patent Application Serial Nos: 09/798,007, 09/891,793, 10/405,756, 10/418,514, 10/660,997, 10/660,122, 10/660,996, 10/728,486, 10/754,415 and 10/829,826, each of which is commonly owned and incorporated herein by reference in its entirety, are methods for identification of bioagents (any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus) in an unbiased manner by molecular mass and base composition analysis of "bioagent identifying amplicons" which are obtained by amplification of segments of essential and conserved genes which are involved in, for example, translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like. Examples of these proteins include, but are not limited to, ribosomal RNAs, ribosomal proteins, DNA and RNA polymerases, elongation factors, tRNA synthetases, protein chain initiation factors, heat shock protein groEL, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, DNA gyrases and DNA topoisomerases, metabolic enzymes, and the like.

[0009] To obtain bioagent identifying amplicons, primers are selected to hybridize to conserved sequence regions which bracket variable sequence regions to yield a segment of nucleic acid which can be amplified and which is amenable to methods of molecular mass analysis. The variable sequence regions provide the variability of molecular mass which is used for bioagent identification. Upon amplification by PCR or other amplification methods with the specifically chosen primers, an amplification product that represents a bioagent identifying amplicon is obtained. The molecular mass of the amplification product, obtained by mass spectrometry for example, provides the means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass of the amplification product or the corresponding base composition (which can be calculated from the molecular mass of the amplification product) is compared with a database of molecular masses or base compositions and a match indicates the identity of the bioagent. Furthermore, the method can be applied to rapid parallel analyses (for example, in a multi-well plate format) the results of which can be employed in a triangulation identification strategy which is amenable to rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent identification.

[0010] The result of determination of a previously unknown base composition of a previously unknown bioagent (for example, a newly evolved and heretofore unobserved bacterium or virus) has downstream utility by providing new bioagent indexing information with which to populate base composition databases. The process of subsequent bioagent identification analyses is thus greatly improved as more base composition data for bioagent identifying amplicons becomes available.

[0011] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicons and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

## SUMMARY OF THE INVENTION

[0012] The present invention provides primers and compositions comprising pairs of primers, and kits containing the same for use in identification of bacteria. The primers are designed to produce bacterial bioagent identifying amplicons of DNA encoding genes essential to life such as, for example, 16S and 23S rRNA, DNA-directed RNA polymerase subunits (*rpoB* and *rpoC*),

valyl-tRNA synthetase (valS), elongation factor EF-Tu (TufB), ribosomal protein L2 (rplB), protein chain initiation factor (infB), and spore protein (sspE). The invention further provides drill-down primers, compositions comprising pairs of primers and kits containing the same, which are designed to provide sub-species characterization of bacteria.

[0013] In particular, the present invention provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, or a composition comprising the same; an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 26, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 388.

[0014] The present invention also provides an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 29, and a second oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 391.

[0015] The present invention also provides an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, or a composition comprising the same; an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 37, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 362.

[0016] The present invention also provides an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, or a composition comprising the same; a composition comprising both primers; and

a composition comprising a first oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 48, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 404.

[0017] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 160, and a second oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 515.

[0018] The present invention also provides an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 261, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 624.

[0019] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, or a composition comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; , or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 231, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 591.

[0020] The present invention also provides an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, or a composition

comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 349, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 711.

[0021] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, or a composition comprising the same; an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 240, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 596.

[0022] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:414, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 58, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 414.

[0023] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:369, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 6, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 369.

[0024] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 246, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 246, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 602.

[0025] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, or a composition comprising the same; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 620, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 256, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 620.

[0026] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 344, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 700.

[0027] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of

SEQ ID NO: 235, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 587.

[0028] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 322, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 686.

[0029] The present invention also provides compositions, such as those described herein, wherein either or both of the first and second oligonucleotide primers comprise at least one modified nucleobase, a non-templated T residue on the 5'-end, at least one non-template tag, or at least one molecular mass modifying tag, or any combination thereof.

[0030] The present invention also provides kits comprising any of the compositions described herein. The kits can comprise at least one calibration polynucleotide, or at least one ion exchange resin linked to magnetic beads, or both.

[0031] The present invention also provides methods for identification of an unknown bacterium. Nucleic acid from the bacterium is amplified using any of the compositions described herein to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The base composition or molecular mass is compared with a plurality of base compositions or molecular masses of known bacterial bioagent identifying amplicons, wherein a match between the base composition or molecular mass and a member of the plurality of base compositions or molecular masses identifies the unknown bacterium. The molecular mass can be measured by mass spectrometry. In addition, the presence or absence of a particular clade, genus, species, or sub-species of a bioagent can be determined by the methods described herein.

[0032] The present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with any of the compositions described

herein and a known quantity of a calibration polynucleotide comprising a calibration sequence. Concurrently, nucleic acid from the bacterium in the sample is amplified with any of the compositions described herein and nucleic acid from the calibration polynucleotide in the sample is amplified with any of the compositions described herein to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular mass and abundance for the bacterial bioagent identifying amplicon and the calibration amplicon is determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. The method can also comprise determining the base composition of the bacterial bioagent identifying amplicon.

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Figure 1 is a representative pseudo-four dimensional plot of base compositions of bioagent identifying amplicons of enterobacteria obtained with a primer pair targeting the *rpoB* gene (primer pair no 14 (SEQ ID NOs: 37:362). The quantity each of the nucleobases A, G and C are represented on the three axes of the plot while the quantity of nucleobase T is represented by the diameter of the spheres. Base composition probability clouds surrounding the spheres are also shown.

[0034] Figure 2 is a representative diagram illustrating the primer selection process.

[0035] Figure 3 lists common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.

[0036] Figure 4 is a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0037] Figure 5 is a representative mass spectrum of amplification products representing bioagent identifying amplicons of *Streptococcus pyogenes*, *Neisseria meningitidis*, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.

[0038] Figure 6 is a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplicon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rplB. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.

[0039] Figure 7 is a representative process diagram for identification and determination of the quantity of a bioagent in a sample.

[0040] Figure 8 is a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 741), and primer pair number 350 which targets the capC gene on the virulence plasmid pXO2 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

#### DESCRIPTION OF EMBODIMENTS

[0041] The present invention provides oligonucleotide primers which hybridize to conserved regions of nucleic acid of genes encoding, for example, proteins or RNAs necessary for life which include, but are not limited to: 16S and 23S rRNAs, RNA polymerase subunits, t-RNA synthetases, elongation factors, ribosomal proteins, protein chain initiation factors, cell division proteins, chaperonin groEL, chaperonin dnaK, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, metabolic enzymes and DNA topoisomerases. These primers provide the functionality of producing, for example, bacterial bioagent identifying amplicons for general identification of bacteria at the species level, for example, when contacted with bacterial nucleic acid under amplification conditions.

[0042] Referring to Figure 2, primers are designed as follows: for each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). Primers are designed by selecting appropriate priming regions (230) which allows the selection of candidate primer pairs (240). The primer pairs are subjected to *in silico* analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as, for example, GenBank or other sequence collections (310), and checked for specificity *in silico* (320). Bioagent identifying amplicons obtained from GenBank sequences (310) can also be analyzed by a probability model which predicts the capability of a particular amplicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by *in vitro* amplification by a method such as, for example, PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products that are obtained are optionally analyzed to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[0043] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed.

[0044] The primers can be employed as compositions for use in, for example, methods for identification of bacterial biologics as follows. In some embodiments, a primer pair composition is contacted with nucleic acid of an unknown bacterial bioagent. The nucleic acid is amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of one strand or each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as, for example, mass spectrometry wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value

obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known bacterial bioagents. A match between the molecular mass or base composition of the amplification product from the unknown bacterial bioagent and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known bacterial bioagent indicates the identity of the unknown bioagent.

[0045] In some embodiments, the primer pair used is one of the primer pairs of Table 1. In some embodiments, the method is repeated using a different primer pair to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[0046] In some embodiments, a bioagent identifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[0047] In some embodiments, the oligonucleotide primers are "broad range survey primers" which hybridize to conserved regions of nucleic acid encoding RNA, such as ribosomal RNA (rRNA), of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% of known bacteria and produce bacterial bioagent identifying amplicons. As used herein, the term "broad range survey primers" refers to primers that bind to nucleic acid encoding rRNAs of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% known species of bacteria. In some embodiments, the rRNAs to which the primers hybridize are 16S and 23S rRNAs. In some embodiments, the broad range survey primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 3, 10, 11, 14, 16, and 17 which consecutively correspond to SEQ ID NOS: 6:369, 26:388, 29:391, 37:362, 48:404, and 58:414.

[0048] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional “division-wide” primer pair (*vide infra*). The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as “triangulation identification” (*vide infra*).

[0049] In other embodiments, the oligonucleotide primers are “division-wide” primers which hybridize to nucleic acid encoding genes of broad divisions of bacteria such as, for example, members of the *Bacillus/Clostridia* group or members of the  $\alpha$ -,  $\beta$ -,  $\gamma$ -, and  $\epsilon$ -proteobacteria. In some embodiments, a division of bacteria comprises any grouping of bacterial genera with more than one genus represented. For example, the  $\beta$ -proteobacteria group comprises members of the following genera: *Eikenella*, *Neisseria*, *Achromobacter*, *Bordetella*, *Burkholderia*, and *Ralsonia*. Species members of these genera can be identified using bacterial bioagent identifying amplicons generated with primer pair 293 (SEQ ID NOs: 344:700) which produces a bacterial bioagent identifying amplicon from the tufB gene of  $\beta$ -proteobacteria. Examples of genes to which division-wide primers may hybridize to include, but are not limited to: RNA polymerase subunits such as rpoB and rpoC, tRNA synthetases such as valyl-tRNA synthetase (valS) and aspartyl-tRNA synthetase (aspS), elongation factors such as elongation factor EF-Tu (tufB), ribosomal proteins such as ribosomal protein L2 (rplB), protein chain initiation factors such as protein chain initiation factor infB, chaperonins such as groL and dnaK, and cell division proteins such as peptidase ftsH (ftsH). In some embodiments, the division-wide primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 34, 52, 66, 67, 71, 72, 289, 290 and 293 which consecutively correspond to SEQ ID NOs: 160:515, 261:624, 231:591, 235:587, 349:711, 240:596, 246:602, 256:620, 344:700.

[0050] In other embodiments, the oligonucleotide primers are designed to enable the identification of bacteria at the clade group level, which is a monophyletic taxon referring to a group of organisms which includes the most recent common ancestor of all of its members and all of the descendants of that most recent common ancestor. The *Bacillus cereus* clade is an example of a bacterial clade group. In some embodiments, the clade group primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to

100% sequence identity with primer pair number 58 which corresponds to SEQ ID NOs: 322:686.

[0051] In other embodiments, the oligonucleotide primers are “drill-down” primers which enable the identification of species or “sub-species characteristics.” Sub-species characteristics are herein defined as genetic characteristics that provide the means to distinguish two members of the same bacterial species. For example, *Escherichia coli* O157:H7 and *Escherichia coli* K12 are two well known members of the species *Escherichia coli*. *Escherichia coli* O157:H7, however, is highly toxic due to the its Shiga toxin gene which is an example of a sub-species characteristic. Examples of sub-species characteristics may also include, but are not limited to: variations in genes such as single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs). Examples of genes indicating sub-species characteristics include, but are not limited to, housekeeping genes, toxin genes, pathogenicity markers, antibiotic resistance genes and virulence factors. Drill-down primers provide the functionality of producing bacterial bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with bacterial nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of bacterial infections. Examples of pairs of drill-down primers include, but are not limited to, a trio of primer pairs for identification of strains of *Bacillus anthracis*. Primer pair 24 (SEQ ID NOs: 97:451) targets the capC gene of virulence plasmid pXO2, primer pair 30 (SEQ ID NOs: 127:482) targets the cyA gene of virulence plasmid pXO2, and primer pair 37 (SEQ ID NOs: 174:530) targets the lef gene of virulence plasmid pXO2. Additional examples of drill-down primers include, but are not limited to, six primer pairs that are used for determining the strain type of group A *Streptococcus*. Primer pair 80 (SEQ ID NOs: 310:668) targets the gki gene, primer pair 81 (SEQ ID NOs: 313:670) targets the gtr gene, primer pair 86 (SEQ ID NOs: 227:632) targets the murI gene, primer pair 90 (SEQ ID NOs: 285:640) targets the mutS gene, primer pair 96 (SEQ ID NOs: 301:656) targets the xpt gene, and primer pair 98 (SEQ ID NOs: 308:663) targets the yqiL gene.

[0052] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, DNA of bacterial plasmids, or DNA of DNA viruses.

[0053] In some embodiments, the primers used for amplification hybridize directly to ribosomal RNA or messenger RNA (mRNA) and act as reverse transcription primers for obtaining DNA from direct amplification of bacterial RNA or rRNA. Methods of amplifying RNA using reverse

transcriptase are well known to those with ordinary skill in the art and can be routinely established without undue experimentation.

[0054] One with ordinary skill in the art of design of amplification primers will recognize that a given primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% sequence identity with any of the primers listed in Table 1. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues ( $18/20 = 0.9$  or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have  $15/20 = 0.75$  or 75% sequence identity with the 20 nucleobase primer.

[0055] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison WI), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, homology, sequence identity, or complementarity of primers with respect to the conserved priming regions of bacterial nucleic acid, is at least 70%, at least 80%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or is 100%.

[0056] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein. Thus, for example, a primer may have between 70% and 100%, between 75% and 100%, between 80% and 100%, and between 95% and 100% sequence identity with SEQ ID NO: 26. Likewise, a primer may have similar sequence identity with any other primer whose nucleotide sequence is disclosed herein.

[0057] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.

[0058] In some embodiments of the present invention, the oligonucleotide primers are between 13 and 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin.

[0059] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue does not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated A residues as a result of the non-specific enzyme activity of *Taq* polymerase (Magnuson et al. Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass analysis.

[0060] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3<sup>rd</sup> position) in the conserved regions among species is likely to occur in the third position of a DNA triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroindoles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 14, 1001-1003), the degenerate nucleotides dP or dK (Hill et al.), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 1053-1056) or the purine analog 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-carboxamide (Sala et al., Nucl. Acids Res., 1996, 24, 3302-3306).

[0061] In some embodiments, to compensate for the somewhat weaker binding by the "wobble" base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs which bind with greater affinity than the unmodified

nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Patent Nos. 5,645,985, 5,830,653 and 5,484,908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S. Serial No. 10/294,203 which is also commonly owned and incorporated herein by reference in entirety. Phenoxazines are described in U.S. Patent Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Patent Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

[0062] In some embodiments, non-template primer tags are used to increase the melting temperature ( $T_m$ ) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucleotide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to a A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.

[0063] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynyluridine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.

[0064] In some embodiments, the primers contain mass-modifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of *de novo* determination of base composition of a given bioagent identifying amplicon (*vide infra*) from its molecular mass.

[0065] In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-

deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxycytidine-5'-triphosphate, 5-iodo-2'-deoxycytidine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 4-thiothymidine-5'-triphosphate, 5-aza-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, O<sub>6</sub>-methyl-2'-deoxyguanosine-5'-triphosphate, N<sub>2</sub>-methyl-2'-deoxyguanosine-5'-triphosphate, 8-oxo-2'-deoxyguanosine-5'-triphosphate or thiothymidine-5'-triphosphate. In some embodiments, the mass-modified nucleobase comprises <sup>15</sup>N or <sup>13</sup>C or both <sup>15</sup>N and <sup>13</sup>C.

[0066] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as "bioagent identifying amplicons." The term "amplicon" as used herein, refers to a segment of a polynucleotide which is amplified in an amplification reaction. In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 200 nucleobases (i.e. from about 45 to about 200 linked nucleosides), from about 60 to about 150 nucleobases, from about 75 to about 125 nucleobases. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, and 200 nucleobases in length, or any range therewithin. It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is prudent to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[0067] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with restriction enzymes or cleavage primers, for example. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[0068] In some embodiments, amplification products corresponding to bacterial bioagent identifying amplicons are obtained using the polymerase chain reaction (PCR) which is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA) which are also well known to those with ordinary skill.

[0069] In the context of this invention, a “bioagent” is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a “pathogen” is a bioagent which causes a disease or disorder.

[0070] In the context of this invention, the term “unknown bioagent” may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species *Staphylococcus aureus* for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. Patent Serial No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of “unknown” bioagent are applicable since the SARS coronavirus was unknown to

science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. Patent Serial No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of "unknown" bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.

[0071] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by analyzing a plurality of bioagent identifying amplicons selected within multiple core genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

[0072] In some embodiments, the triangulation identification process can be pursued by characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids.

[0073] In some embodiments, the molecular mass of a particular bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus, mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular

weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

[0074] In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[0075] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

[0076] In some embodiments, conversion of molecular mass data to a base composition is useful for certain analyses. As used herein, a "base composition" is the exact number of each nucleobase (A, T, C and G). For example, amplification of nucleic acid of *Neisseria meningitidis* with a primer pair that produces an amplification product from nucleic acid of 23S rRNA that has a molecular mass (sense strand) of 28480.75124, from which a base composition of A25 G27 C22 T18 is assigned from a list of possible base compositions calculated from the molecular mass using standard known molecular masses of each of the four nucleobases.

[0077] In some embodiments, assignment of base compositions to experimentally determined molecular masses is accomplished using "base composition probability clouds." Base compositions, like sequences, vary slightly from isolate to isolate within species. It is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" (Figure 1) can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice

of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[0078] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other embodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement.

[0079] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

[0080] In one embodiment, a sample comprising an unknown bioagent is contacted with a pair of primers which provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2 to 8 nucleobase deletion or

insertion within the variable region between the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

[0081] In some embodiments, the identity and quantity of a particular bioagent is determined using the process illustrated in Figure 7. For instance, to a sample containing nucleic acid of an unknown bioagent are added primers (500) and a known quantity of a calibration polynucleotide (505). The total nucleic acid in the sample is subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (535). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[0082] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied, provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.

[0083] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the

calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.

[0084] In some embodiments, the calibrant polynucleotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.

[0085] In some embodiments, the calibration sequence is inserted into a vector which then itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a calibrant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

[0086] The present invention also provides kits for carrying out, for example, the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs, from one to ten primer pairs, or from two to five primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 1.

[0087] In some embodiments, the kit may comprise one or more broad range survey primer(s), division wide primer(s), clade group primer(s) or drill-down primer(s), or any combination thereof. A kit may be designed so as to comprise particular primer pairs for identification of a

particular bioagent. For example, a broad range survey primer kit may be used initially to identify an unknown bioagent as a member of the *Bacillus/Clostridia* group. Another example of a division-wide kit may be used to distinguish *Bacillus anthracis*, *Bacillus cereus* and *Bacillus thuringiensis* from each other. A clade group primer kit may be used, for example, to identify an unknown bacterium as a member of the *Bacillus cereus* clade group. A drill-down kit may be used, for example, to identify genetically engineered *Bacillus anthracis*. In some embodiments, any of these kits may be combined to comprise a combination of broad range survey primers and division-wide primers, clade group primers or drill-down primers, or any combination thereof, for identification of an unknown bacterial bioagent.

[0088] In some embodiments, the kit may contain standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0089] In some embodiments, the kit may also comprise a sufficient quantity of reverse transcriptase (if an RNA virus is to be identified for example), a DNA polymerase, suitable nucleoside triphosphates (including any of those described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.

[0090] In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner. Throughout these examples, molecular cloning reactions, and other standard recombinant DNA techniques, were carried out according to methods described in Maniatis et al., Molecular Cloning - A Laboratory Manual,

2nd ed., Cold Spring Harbor Press (1989), using commercially available reagents, except where otherwise noted.

## EXAMPLES

### [0091] Example 1: Selection of Primers That Define Bioagent Identifying Amplicons

[0092] For design of primers that define bacterial bioagent identifying amplicons, relevant sequences from, for example, GenBank are obtained, aligned and scanned for regions where pairs of PCR primers would amplify products of about 45 to about 200 nucleotides in length and distinguish species from each other by their molecular masses or base compositions. A typical process shown in Figure 2 is employed.

[0093] A database of expected base compositions for each primer region is generated using an *in silico* PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nuc. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

[0094] Table 1 represents a collection of primers (sorted by forward primer name) designed to identify bacteria using the methods herein described. The forward or reverse primer name indicates the gene region of bacterial genome to which the primer hybridizes relative to a reference sequence eg: the forward primer name 16S\_EC\_1077\_1106 indicates that the primer hybridizes to residues 1077-1106 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence represented by a sequence extraction of coordinates 4033120..4034661 from GenBank gi number 16127994 (as indicated in Table 2). As an additional example: the forward primer name BONTA\_X52066\_450\_473 indicates that the primer hybridizes to residues 450-437 of the gene encoding *Clostridium botulinum* neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 1 are defined in Table 2). In Table 1, U<sup>a</sup> = 5-propynyluracil; C<sup>a</sup> = 5-propynylcytosine; \* = phosphorothioate linkage. The primer pair number is an in-house database index number.

**Table 1: Primer Pairs for Identification of Bacterial Bioagents**

| Primer pair number | For. primer name | Forward sequence  | For. SEQ ID NO: | Rev. primer name | Reverse sequence    | Rev. SEQ ID NO: |
|--------------------|------------------|-------------------|-----------------|------------------|---------------------|-----------------|
| 1                  | 16S EC 107       | GTTGAGATGTGGGGTAA | 1               | 16S EC 1175      | GACGTCATCCCCCACCTTC | 368             |

|     |                                   |                                    |    |                                   |                               |     |
|-----|-----------------------------------|------------------------------------|----|-----------------------------------|-------------------------------|-----|
|     | 7 1106 F                          | GTCGCCGTAACGGAG                    |    | 1195 R                            | TC                            |     |
| 266 | 16S EC_108<br>2 1100 F            | ATGTTGGGTTAAGTCCC<br>GC            | 2  | 16S EC_1177<br>1196_10G_1<br>1G_R | TGACGTCA TGGCCACCTTC<br>C     | 372 |
| 265 | 16S EC_108<br>2 1100 F            | ATGTTGGGTTAAGTCCC<br>GC            | 2  | 16S EC_1177<br>1196_10G_R         | TGACGTCA TGGCCACCTTC<br>C     | 373 |
| 230 | 16S EC_108<br>2 1100 F            | ATGTTGGGTTAAGTCCC<br>GC            | 2  | 16S EC_1177<br>1196_R             | TGACGTCA TCCCACCTTC<br>C      | 374 |
| 263 | 16S EC_108<br>2 1100 F            | ATGTTGGGTTAAGTCCC<br>GC            | 2  | 16S EC_1525<br>1541_R             | AAGGAGGTGA TCCAGOC            | 382 |
| 2   | 16S EC_108<br>2 1106 F            | ATGTTGGGTTAAGTCCC<br>GCAACGAG      | 3  | 16S EC_1175<br>1197_R             | TTGACGTCA TCCCCACCTTC<br>CTTC | 371 |
| 278 | 16S EC_109<br>0 1111 2_T<br>MOD_F | TTAAGTCCCGAACGAG<br>CGCA           | 4  | 16S EC_1175<br>1196_R             | TGACGTCA TCCCCACCTTC<br>CTC   | 369 |
| 361 | 16S EC_109<br>0 1111 2_T<br>MOD_F | TTAAGTCCCGAACGAG<br>CGCAA          | 5  | 16S EC_1175<br>1196_TMOD_         | TGACGTCA TCCCCACCTTC<br>CTTC  | 370 |
| 3   | 16S EC_109<br>0 1111 F            | TTAAGTCCCGAACGAT<br>CGCA           | 6  | 16S EC_1175<br>1196_R             | TGACGTCA TCCCCACCTTC<br>CTC   | 369 |
| 256 | 16S EC_109<br>2 1109 F            | TAGTCCCGAACGAGCG<br>C              | 7  | 16S EC_1174<br>1195_R             | GACGTCATCCCCACCTTC<br>TCC     | 367 |
| 159 | 16S EC_110<br>0 1116 F            | CAACGAGCGAACCTT<br>TA              | 8  | 16S EC_1174<br>1188_R             | TCCCCACCTTCCTCC               | 366 |
| 247 | 16S EC_119<br>5 1213 F            | CAAGCTCATCATGGCTCT<br>TA           | 9  | 16S EC_1525<br>1541_R             | AAGGAGGTGA TCCAGCC            | 382 |
| 4   | 16S EC_122<br>2 1241 F            | GCTCACACAGTGCTACA<br>ATG           | 10 | 16S EC_1303<br>1323_R             | CGAGATTGCA GACTGCGATC<br>CG   | 376 |
| 232 | 16S EC_130<br>3 1323 F            | CGGATTGGAGTCGCA<br>CTCG            | 11 | 16S EC_1389<br>1407_R             | GACGGGCCGGTGTACAAAG           | 378 |
| 5   | 16S EC_133<br>2 1353 F            | AGTGTGGGATGCTGTAGT<br>AATCG        | 12 | 16S EC_1389<br>1407_R             | GACGGGCCGGTGTACAAAG           | 378 |
| 252 | 16S EC_136<br>7 1387 F            | TACCGGTAAATCGTTCC<br>CGGG          | 13 | 16S EC_1485<br>1506_R             | ACCTGTGTACGACTTCAAC<br>CCA    | 379 |
| 250 | 16S EC_138<br>7 1407 F            | GCCTGTACACACCCTCC<br>CTTC          | 14 | 16S EC_1494<br>1513_R             | CACGGCTACCTTGTACGA<br>C       | 381 |
| 231 | 16S EC_138<br>9 1407 F            | CTTTACACACCGCCG<br>TC              | 15 | 16S EC_1525<br>1541_R             | AAGGAGGTGA TCCAGCC            | 382 |
| 251 | 16S EC_139<br>0 1411 F            | TTGTCACACCGGCGT<br>CATAC           | 16 | 16S EC_1486<br>1505_R             | CCTTGTACGACTTCAACCC<br>C      | 380 |
| 6   | 16S EC_30_54 F                    | TGACAGCTGGTGGCATG<br>CTTACAC       | 17 | 16S EC_105_<br>126_R              | TACGCA TTACTACCGCGTC<br>CGC   | 361 |
| 243 | 16S EC_314<br>332 F               | CACTGGAATCGAGACAC<br>GG            | 18 | 16S EC_556_<br>575_R              | CTTACGCGCAGTAAATTCC<br>G      | 385 |
| 7   | 16S EC_38_64 F                    | GTGCAATGCTTAATACA<br>TGCAGTCG      | 19 | 16S EC_101_<br>120_R              | TTACTCACCGCGCCGCGC<br>T       | 357 |
| 279 | 16S EC_405<br>432 F               | TGAGTGTAGTGAAGCCCTT<br>AGGGTTGTAAA | 20 | 16S EC_507_<br>527_R              | CGCTGCTGGCACGAGTT<br>AG       | 384 |
| 8   | 16S EC_49_68 F                    | TAACACATGCAAGTCGA<br>ACG           | 21 | 16S EC_104_<br>120_R              | TTACTCACCGCGCC                | 359 |
| 275 | 16S EC_49_68 F                    | TAACACATGCAAGTCGA<br>ACG           | 21 | 16S EC_1061_<br>1078_R            | ACGACACGAGCTGACGAC            | 364 |
| 274 | 16S EC_49_68 F                    | TAACACATGCAAGTCGA<br>ACG           | 21 | 16S EC_880_<br>894_R              | CGTACTCCCGAGCG                | 390 |
| 244 | 16S EC_518<br>535 F               | CCAGCAGCGCGGTAAAT<br>AC            | 22 | 16S EC_774_<br>795_R              | GTATCTAATCTGTGTTGCT<br>CCC    | 387 |
| 226 | 16S EC_556<br>575 F               | CGGNAATTACTGGCGCTA<br>AAG          | 23 | 16S EC_683_<br>700_R              | CGCATTTCACCGCTACAC            | 386 |
| 264 | 16S EC_556<br>575 F               | CGGNAATTACTGGCGCTA<br>AAG          | 23 | 16S EC_774_<br>795_R              | GTATCTAATCTGTGTTGCT<br>CCC    | 387 |
| 273 | 16S EC_683<br>700 F               | GTGTAGCGGTGAAATGC<br>G             | 24 | 16S EC_1303_<br>1323_R            | CGAGATTGCA GACTGCGATC<br>CG   | 377 |
| 9   | 16S EC_683<br>700 F               | GTGTAGCGGTGAAATGC<br>G             | 24 | 16S EC_774_<br>795_R              | GTATCTAATCTGTGTTGCT<br>CCC    | 387 |
| 158 | 16S EC_683<br>700 F               | GTGTAGCGGTGAAATGC<br>G             | 24 | 16S EC_880_<br>894_R              | CGTACTCCCGAGCG                | 390 |
| 245 | 16S EC_683<br>700 F               | GTGTAGCGGTGAAATGC<br>G             | 24 | 16S EC_967_<br>985_R              | GGTAGGGTCTTCGCGTGTG<br>CTC    | 396 |
| 165 | 16S EC_7_3<br>3 F                 | GAGGATTGATCTGGC<br>TCAAGCAAA       | 25 | 16S EC_101_<br>122_R              | TGTACTCACCGCGTCGCG<br>ACT     | 358 |
| 10  | 16S EC_713<br>732 F               | AGAACACCGGATGGCGA<br>GGC           | 26 | 16S EC_789_<br>809_R              | CGTGGACTACCAGGGTAT<br>TA      | 388 |
| 346 | 16S EC_713<br>732 F               | TAGAACACCGGATGGCGA<br>AGGC         | 27 | 16S EC_789_<br>809_TMOD_R         | TCGTTGGACTACCAGGGTAT<br>CTA   | 389 |
| 228 | 16S EC_774                        | GGGGCGAAACAGGATTA                  | 28 | 16S EC_880                        | CGTACTCCCGAGCG                | 390 |

|      |                                |                                |    |                             |                               |     |  |
|------|--------------------------------|--------------------------------|----|-----------------------------|-------------------------------|-----|--|
|      | 795 F                          | GATAC                          |    | 894 R                       |                               |     |  |
| 11   | 16S EC_785<br>806 F            | GGATTAGAGACCCCTGGT<br>AGTC     | 29 | 16S EC_880_<br>897 R        | GGCCGTACTCCCCAGGCG            | 391 |  |
| 347  | 16S EC_785<br>806 TMOD_ F      | TGGATTAGAGACCCCTGGT<br>TAGTCC  | 30 | 16S EC_880_<br>897 TMOD R   | TGGCCGTACTCCCCAGGCG           | 392 |  |
| 12   | 16S EC_785<br>810 F            | GGATTAGAGACCCCTGGT<br>AGTCACAC | 31 | 16S EC_880_<br>897 2 R      | GGCCGTACTCCCCAGGCG            | 391 |  |
| 13   | 16S EC_789<br>810 F            | TAGATTAACCCCTGGTAGTC<br>CACCG  | 32 | 16S EC_880_<br>894 R        | CGTACTCCCCAGGCG               | 390 |  |
| 255  | 16S EC_789<br>810 F            | TAGATTAACCCCTGGTAGTC<br>CACCG  | 32 | 16S EC_882_<br>899 R        | GCGACCGTACTCCCCAGG            | 393 |  |
| 254  | 16S EC_791<br>812 F            | GATACCCCTGGTAGTC<br>CACCG      | 33 | 16S EC_886_<br>904 R        | GCCTTGCGACCGTACTCCCC          | 394 |  |
| 248  | 16S EC_8_2<br>7 F              | AGAGTTTGATCATGGCT<br>CAG       | 34 | 16S EC_1525<br>1541 R       | AAGGAGGTGATCCAGCC             | 382 |  |
| 242  | 16S EC_8_2<br>7 F              | AGAGTTTGATCATGGCT<br>CAG       | 34 | 16S EC_342_<br>358 R        | ACTGCTGCCTCCCGTAG             | 383 |  |
| 253  | 16S EC_804<br>822 F            | ACCACGCCGTAACCGAT<br>GA        | 35 | 16S EC_909_<br>929 R        | CCCCCGTCATTCCTTIGA<br>GT      | 395 |  |
| 246  | 16S EC_937<br>954 F            | AAGCGGTGGAGCATGTG<br>G         | 36 | 16S EC_1220<br>1240 R       | ATTGTAGCAGYGTGTAGC<br>CC      | 375 |  |
| 14   | 16S EC_960<br>981 F            | TTTCGATGAAACCGCGAAG<br>AACCT   | 37 | 16S EC_1054<br>1073 R       | ACGACGCTGACGACAGCCAT<br>G     | 362 |  |
| 348  | 16S EC_960<br>981 TMOD_ F      | TTTCGATGCAACCGCGAA<br>GAACCT   | 38 | 16S EC_1054<br>1073 TMOD R  | TACGAGCTGACGGACAGCCA<br>TG    | 363 |  |
| 119  | 16S EC_969<br>985 1P F         | ACCGGQNAGAACCTTA<br>U'C        | 39 | 16S EC_1061<br>1078 2P R    | ACGACACGAGU'C'GAGAC           | 364 |  |
| 15   | 16S EC_969<br>985 F            | ACGGGNAGAACCTTACC              | 39 | 16S EC_1061<br>1078 R       | ACGACACGAGCTGAGAC             | 364 |  |
| 272  | 16S EC_969<br>985 F            | ACGGNAGAACCTTACC               | 40 | 16S EC_1389<br>1407 R       | GACGGGCGGTGTYGTAACAG          | 378 |  |
| 344  | 16S EC_971<br>990 F            | GGGNAAGAACCTTACCAAG<br>GTC     | 41 | 16S EC_1043<br>1062 R       | ACACCCATGCAACCACTGT<br>C      | 360 |  |
| 120  | 16S EC_972<br>985 2F F         | CGGAAGAU'U'TTACCC              | 42 | 16S EC_1064<br>1075 2P R    | ACACGAGU'C'GAC                | 365 |  |
| 121  | 16S EC_972<br>985 F            | CGGAAGAACCTTACC                | 42 | 16S EC_1064<br>1075 R       | ACACGAGCTGAC                  | 365 |  |
| 1073 | 23S BR_11<br>10 1L29 F         | TGGCGCGGAGATGTAC               | 43 | 23S BRM_117<br>6 1L01 R     | TCCGAGGCTTACAGACGC<br>TCCTCTA | 397 |  |
| 1074 | 23S BR_51<br>5 536 F           | TGCTTACAAACAGTCGG<br>AGCTC     | 44 | 23S BRM_616<br>635 R        | TCCGAGCTGCTTTCGCTAC<br>G      | 398 |  |
| 241  | 23S BS_2<br>68 -44 F           | AAACTAGTATACAGTAG<br>ACATCAC   | 45 | 23S BS_5_21<br>R            | GTGCGCCCTTCTRACTT             | 399 |  |
| 235  | 23S EC_160<br>2 1620 F         | TACCCCCAACCGACACR<br>GG        | 46 | 23S EC_1686<br>1703 R       | CCTTCTCCGAAGTTACAG            | 402 |  |
| 236  | 23S EC_168<br>5 1703 F         | TGCTAACCTTCGGGAGGA<br>GG       | 47 | 23S EC_1828<br>1842 R       | CACCGGGCAGGCGTC               | 403 |  |
| 16   | 23S EC_182<br>6 1843 F         | CTGCRCCCTGCCCGGT<br>C          | 48 | 23S EC_1906<br>1924 R       | GACCCCTTATAGTTCAGGCC          | 404 |  |
| 349  | 23S EC_182<br>6 1843 TMOD_ D F | TCTGACACCTGGCCGGT<br>GC        | 49 | 23S EC_1906<br>1924 TMOD_ R | TGACCGTTATAAGTTACGGC<br>C     | 405 |  |
| 237  | 23S EC_182<br>7 1843 F         | GACCOCTGCCGGTGC                | 50 | 23S EC_1929<br>1949 R       | CCGACAGGRRTTCGCTA<br>CC       | 407 |  |
| 249  | 23S EC_183<br>1 1849 F         | ACCTGCCCACTGGCTGA<br>AG        | 51 | 23S EC_1919<br>1936 R       | TCCGCTACCTTACGGACCGT          | 406 |  |
| 234  | 23S EC_187<br>207 F            | GGGNACTGAAACATCTA<br>AGTA      | 52 | 23S EC_242_<br>256 R        | TTCGGCTGCCGGTAC               | 408 |  |
| 233  | 23S EC_23_<br>37 F             | GCTGCGTTCGCTTGC                | 53 | 23S EC_115_<br>130 R        | GGGTTTCCCCATTCGG              | 401 |  |
| 238  | 23S EC_243<br>4 2456 F         | AAAGCTACTCCGGGGATA<br>ACAGGC   | 54 | 23S EC_2490<br>2511 R       | ACCGGACATCAGGTTGCC<br>AAC     | 409 |  |
| 257  | 23S EC_258<br>5 2607 F         | TAGAGCTGCCGAGACCA<br>GTTCG     | 55 | 23S EC_2658<br>2677 R       | AGTCACATCCCGGTCTCTC<br>G      | 411 |  |
| 239  | 23S EC_264<br>5 2616 F         | GACAGTTGGTCCCTTA<br>C          | 56 | 23S EC_2653<br>2669 R       | CCGGTCCCTCTCGTACTA            | 410 |  |
| 18   | 23S EC_264<br>5 2669 2 F       | CTGCTCTAGTACGAGA<br>GGACCG     | 57 | 23S EC_2751<br>2767 R       | GTTCACGCTTACAGTCGTT<br>TCACG  | 417 |  |
| 17   | 23S EC_264<br>5 2669 F         | TCTGCTCTAGTACGAGA<br>GGACCG    | 58 | 23S EC_2744<br>2761 R       | TGCTTAGATGCTTCAGC             | 414 |  |
| 118  | 23S EC_264<br>6 2667 F         | GGAC                           | 59 | 23S EC_2745<br>2765 R       | TTTCGCTGCCGGTAC               | 415 |  |
| 360  | 23S EC_264                     | TCTGCTCTAGTACGAG               | 60 | 23S EC_2745                 | TTTCGCTGCCGGTAC               | 416 |  |

|      | 6_2667_TMO_D_R                            | AGGACC                                 |    | 2765_TMOD_R                          | CAG                                    |     |
|------|-------------------------------------------|----------------------------------------|----|--------------------------------------|----------------------------------------|-----|
| 147  | 238_EC_265<br>2_2669_F                    | CTAGTACGGAGGGACCG<br>G                 | 61 | 238_EC_2741<br>2760_R                | ACITAGATGCCTTCAGCGG<br>T               | 413 |
| 240  | 238_EC_265<br>3_2669_F                    | TAGTAGGAGGGACCG<br>CTGAACCG            | 62 | 238_EC_2737<br>2758_R                | TTAGATGCCTTCAGCACTT<br>ATC             | 412 |
| 20   | 238_EC_493<br>518_2_F                     | GGGGAGCTAACAGAGATC                     | 63 | 238_EC_551<br>571_2_R                | ACAAJAGGCACGCCATCAC<br>CC              | 418 |
| 19   | 238_EC_493<br>518_F                       | GGGGAGCTAACAGAGATC                     | 63 | 238_EC_551<br>571_R                  | ACAAAAGGTACGCCGTAC<br>CC               | 419 |
| 21   | 238_EC_571<br>992_F                       | CGAGAGGGAAACACCC<br>AGACC              | 64 | 238_EC_1059<br>1077_R                | TGGCTGCTTCTAAGCCAAC                    | 400 |
| 1158 | AB_MLST-<br>11-<br>OIF007_120<br>2_1225_F | TCGTGCCCGCAATTTC<br>ATRAAAC            | 65 | AB_MLST-11-<br>OIF007_1266<br>1298_R | TAATGCCGGGTAGTGCAAT<br>CCATTCTCTAG     | 420 |
| 1159 | AB_MLST-<br>11-<br>OIF007_120<br>2_1225_F | TCGTGCCCGCAATTTC<br>ATRAAAC            | 65 | AB_MLST-11-<br>OIF007_1299<br>1316_R | TGCACCTGCGGTGAGCG                      | 421 |
| 1160 | AB_MLST-<br>11-<br>OIF007_123<br>4_1264_F | TTGTACCCACAGCAAGGC<br>AATTCCTGAAAC     | 66 | AB_MLST-11-<br>OIF007_1335<br>1362_R | TGCCCATCCATAATCACGCC<br>ATACTGACG      | 422 |
| 1161 | AB_MLST-<br>11-<br>OIF007_132<br>7_1356_F | TAGGTTTACGTCACTAT<br>GGCGTGTATTATGG    | 67 | AB_MLST-11-<br>OIF007_1422<br>1448_R | TGCCAGTTCCACATTCA<br>CGGTCGTG          | 423 |
| 1162 | AB_MLST-<br>11-<br>OIF007_134<br>5_1369_F | TCGTGATTATGGATGCC<br>AACGTGAA          | 68 | AB_MLST-11-<br>OIF007_1470<br>1494_R | TCGCTTGACTGTAGTCATG<br>ATTGCG          | 424 |
| 1163 | AB_MLST-<br>11-<br>OIF007_135<br>1_1375_F | TTATGGATGCCAACGTC<br>AARCGCGT          | 69 | AB_MLST-11-<br>OIF007_1470<br>1494_R | TCGCTTGACTGTAGTCATG<br>ATTGCG          | 424 |
| 1164 | AB_MLST-<br>11-<br>OIF007_138<br>7_1412_F | TCTTGTCCATTGAGAT<br>GACTTAAGC          | 70 | AB_MLST-11-<br>OIF007_1470<br>1494_R | TCGCTTGACTGTAGTCATG<br>ATTGCG          | 424 |
| 1165 | AB_MLST-<br>11-<br>OIF007_154<br>2_1569_F | TACTAGCGGTAAAGCTTA<br>AACAGAATTG       | 71 | AB_MLST-11-<br>OIF007_1656<br>1680_R | TGAGTCGGGTTCACTTAC<br>CTGGCA           | 425 |
| 1166 | AB_MLST-<br>11-<br>OIF007_156<br>6_1593_F | TTGCCAATGTATTTC<br>TGGTGTGAAAG         | 72 | AB_MLST-11-<br>OIF007_1656<br>1680_R | TGAGTCGGGTTCACTTAC<br>CTGGCA           | 425 |
| 1167 | AB_MLST-<br>11-<br>OIF007_161<br>1_1638_F | TGGCGGAAATCGTATT<br>CCTGAAATGA         | 73 | AB_MLST-11-<br>OIF007_1731<br>1757_R | TACCGGAAAGCACCGCGAC<br>ATTAATAG        | 427 |
| 1168 | AB_MLST-<br>11-<br>OIF007_172<br>6_1752_F | TACCACTTAATGTCG<br>CTGTGCTTC           | 74 | AB_MLST-11-<br>OIF007_1790<br>1821_R | TGCCAATGAAATGATTGCA<br>GTAATCTTAAAGC   | 428 |
| 1169 | AB_MLST-<br>11-<br>OIF007_179<br>2_1826_F | TTATAACTTACTGCAT<br>CTTACAGTGTGCTGGT   | 75 | AB_MLST-11-<br>OIF007_1876<br>1909_R | TGAAATTATGCAGAAGTGA<br>TCAATTCTCACGA   | 429 |
| 1170 | AB_MLST-<br>11-<br>OIF007_179<br>2_1826_F | TTAAACAATTTACTGCAT<br>CTTACAGTGTGCTGGT | 75 | AB_MLST-11-<br>OIF007_1895<br>1927_R | TGCCGTAACAACTAGATAGA<br>GAATTATGCAAGAA | 430 |
| 1172 | AB_MLST-<br>11-<br>OIF007_185<br>214_F    | TATTGTTCAAAAGTAC<br>JAGGTGAAAGTGC      | 76 | AB_MLST-11-<br>OIF007_291<br>324_R   | TCACAGGTCTACTTCATC<br>AATAATTTCACATG   | 432 |
| 1171 | AB_MLST-<br>11-<br>OIF007_197<br>2002_F   | TGGTTATGACCAAATA<br>CTTGTGCTGAAAGATGG  | 77 | AB_MLST-11-<br>OIF007_2097<br>2118_R | TGACGGCATCGTACCCACC<br>GTC             | 431 |
| 1174 | AB_MLST-<br>11-<br>OIF007_206<br>239_F    | TGAAGTGCCTGATGATA<br>TCGTGCACTTGTGTA   | 78 | AB_MLST-11-<br>OIF007_318<br>344_R   | TCCGGCAAAACTCCCTT<br>TTCACAGG          | 433 |

|      |                                      |                                            |     |                                     |                                                               |     |
|------|--------------------------------------|--------------------------------------------|-----|-------------------------------------|---------------------------------------------------------------|-----|
|      | AB_MLST-11-OIF007_260<br>269 F       | TGGNACGTTATCAGGTG<br>CCCCAAAAATTGCG        | 79  | AB_MLST-11-OIF007_364<br>393 R      | <sup>T</sup> TGCAACATGCACATATCCAT<br><sup>T</sup> TCACCATGCC  | 434 |
| 1153 | AB_MLST-11-OIF007_522<br>532 F       | TCGGTTTACTAAGAAC<br>CGTATTGCTCAACC         | 80  | AB_MLST-11-OIF007_587<br>610 R      | <sup>T</sup> TCTGCTTGAGGAATAGTG<br><sup>C</sup> GTTG          | 435 |
| 1155 | AB_MLST-11-OIF007_547<br>571 F       | TGACCTTGACTGCGTGA<br>ATGGTTGT              | 81  | AB_MLST-11-OIF007_656<br>686 R      | <sup>T</sup> ACGGTCTAGGTTCTC<br><sup>A</sup> TCAGGTACATC      | 436 |
| 1156 | AB_MLST-11-OIF007_601<br>627 F       | TGAGCAGAAGCTTGG<br>AAGAAGAGG               | 82  | AB_MLST-11-OIF007_710<br>736 R      | <sup>T</sup> ACACACTGTATAACACGA<br><sup>C</sup> CAGAAGC       | 437 |
| 1157 | AB_MLST-11-OIF007_62<br>91 F         | TGAGATGCTGACATT<br>TAAGCTGATTGA            | 83  | AB_MLST-11-OIF007_169<br>203 R      | <sup>T</sup> TGACATTGAAACATA<br><sup>I</sup> GCATGACATGTTGAAT | 426 |
| 1151 | ASD_FRT_1_29_F                       | TTGGTAAAGTGTGTTT<br>TATTGGTTGGC            | 84  | ASD_FRT_86<br>116 R                 | <sup>T</sup> GAGTGTGGAAAAAAAAGC<br><sup>I</sup> TGGCAAATAC    | 439 |
| 1100 | ASD_FRT_43<br>76 F                   | TCAGGTTTATGCTCG<br>TATGATCGAATCAANG        | 85  | ASD_FRT_129<br>156 R                | <sup>I</sup> CCATATTGTTGCAATAAA<br><sup>C</sup> CTGTTGC       | 438 |
| 1101 | ASPS_EC_40<br>5 422 F                | GCACACCCATGGGGCTGC<br>G                    | 86  | ASPS_EC_521<br>538 R                | <sup>A</sup> CGCACGAGGTAGTCGC                                 | 440 |
| 291  | BONTA_X520<br>66_450_473<br>F        | TCTGTAATAATAGGAC<br>CTCCAGC                | 87  | BONTA_X5206<br>6_517_539_R          | <sup>T</sup> ACACATTGCTGTAAGAT<br><sup>I</sup> CAA            | 441 |
| 485  | BONTA_X520<br>66_450_473<br>F        | TAU**CAGTAAATAAG<br>GA*U*U*U*U*C*U*AG<br>C | 87  | BONTA_X5206<br>6_517_539R           | <sup>T</sup> ACACCA*C*C*C*U*GC<br><sup>G</sup> TAAGA*C*C*U*AA | 441 |
| 486  | BONTA_X520<br>66_538_552<br>F        | TATGGCTCTACTCAA                            | 88  | BONTA_X5206<br>6_647_660_R          | <sup>T</sup> GTACTGCTGGAT                                     | 443 |
| 481  | BONTA_X520<br>66_538_552<br>F        | TA*C*GGC*C*U*C*A<br>*U*C*C*U*AA            | 88  | BONTA_X5206<br>6_647_6602_R         | <sup>T</sup> G*C*A*C*U*U*C*G*U*C<br>*GGAT                     | 443 |
| 482  | BONTA_X520<br>66_591_620<br>F        | TGAGTCACTTGAAGTTG<br>ATACAAATCCTCF         | 89  | BONTA_X5206<br>6_644_671_R          | <sup>T</sup> CATGTGCTAATGTTACTG<br><sup>C</sup> TGGATCTG      | 442 |
| 483  | BONTA_X520<br>66_701_720<br>F        | GAATGCAATTAAATCCA<br>AAT                   | 90  | BONTA_X5206<br>6_759_775_R          | <sup>T</sup> TACTTCTAACCCACTC                                 | 444 |
| 484  | BONTA_X520<br>66_701_720<br>F        | GA*U*C*AG*U*AA*C*C<br>*AA*C*U*U*AAAT       | 90  | BONTA_X5206<br>6_759_7752_R         | <sup>T</sup> TA*U*C*U*U*U*AA*<br>U*U*U*U*U*U*C*C              | 444 |
| 774  | CAF1_AF053<br>947_33407_-<br>33430 F | TCAGTTCCGTTATCGCC<br>ATTGCAAT              | 91  | CAF1_AF0539<br>47_33494_33<br>514 R | <sup>T</sup> CGGGCTGGTTCAACAG<br><sup>A</sup> G               | 445 |
| 776  | CAF1_AF053<br>947_33435_-<br>33457 F | TGGAATCTTGTCAACTG<br>CTATAG                | 92  | CAF1_AF0539<br>47_33495_33<br>517 R | <sup>T</sup> GATGGGGCTGGTTCAAC<br><sup>T</sup>                | 446 |
| 775  | CAF1_AF053<br>947_33451_-<br>33454 F | TCACTCTTACATATAAG<br>GAGGGCTC              | 93  | CAF1_AF0539<br>47_33495_33<br>621 R | <sup>T</sup> CCTGTTTATAGCCGCC<br><sup>A</sup> GAGTAAG         | 447 |
| 777  | CAF1_AF053<br>947_33467_-<br>33716 F | TCAGGATGGAAAATACAC<br>ACCAATTCACTAC        | 94  | CAF1_AF0539<br>47_33755_33<br>762 R | <sup>T</sup> CAAGCTCTCACCGTTA<br><sup>C</sup> CTTAGGAG        | 448 |
| 22   | CAPC_BA_10<br>4 131 F                | GTATTATGACTCTGT<br>TTTATCTGACCG            | 95  | CAPC_BA_180<br>205 R                | <sup>T</sup> GAATCTTGAACACCAT<br><sup>C</sup> GAACG           | 449 |
| 23   | CAPC_BA_11<br>4 135 F                | ACTCGTTTAAACCGC<br>CCG                     | 96  | CAPC_BA_185<br>205 R                | <sup>T</sup> GAATCTTGAACACCAT<br><sup>C</sup> G               | 450 |
| 24   | CAPC_BA_27<br>4 303 TMQD<br>F        | GATTATGTTATCTGT<br>TATGCCATTGAG            | 97  | CAPC_BA_349<br>376 R                | <sup>T</sup> GAACCCCTTGTCTTGAAT<br><sup>T</sup> GTATTGTG      | 451 |
| 350  | CAPC_BA_27<br>6 296 F                | TGATTATGTTATCTGT<br>TTATGCCATTGAG          | 98  | CAPC_BA_349<br>376 TMQD             | <sup>T</sup> GTAAACCTTGTCTTGA<br><sup>T</sup> GTATTGTG        | 452 |
| 25   | CAPC_BA_27<br>1 301 F                | TTATGTTATCTGTTA<br>TTG                     | 99  | CAPC_BA_358<br>377 R                | <sup>G</sup> GAACCCCTTGTCTTGA<br><sup>T</sup>                 | 453 |
| 26   | CAPC_BA_28<br>5 334 F                | GTATCTGTTATGCGCA<br>TTG                    | 100 | CAPC_BA_361<br>378 R                | <sup>T</sup> GGTAACCCCTTGTCTTGA<br><sup>T</sup>               | 454 |
| 27   | CAPC_BA_31<br>5 334 F                | CGGTGTATTGGAGTT<br>TTG                     | 101 | CAPC_BA_361<br>378 R                | <sup>T</sup> GGTAACCCCTTGTCTTGA<br><sup>T</sup>               | 454 |
| 1053 | CJST_CJ_10                           | TTGAGGGTATGCCCGT                           | 102 | CJST_CJ_116<br>T                    | <sup>T</sup> CCCCCTCATGT<br><sup>T</sup> AAATGA               | 456 |

|      |                                  |                                        |     |                             |                                         |     |
|------|----------------------------------|----------------------------------------|-----|-----------------------------|-----------------------------------------|-----|
|      | 80 1110 F                        | CTTGTGATTCCTT                          |     | 6 1198 R                    | TGAGGATAAAAANGC                         |     |
| 1063 | CJST_CJ_12<br>68 1299 F          | AGTTAATACACGGCTT<br>TCCCTATGGCTTATCC   | 103 | CJST_CJ_134<br>9 1379 R     | TGGCTTAAAGCTTACATG<br>ATCCPAMGGATA      | 457 |
| 1050 | CJST_CJ_12<br>90 1320 F          | TGGCTTAACTCAAAATTTA<br>GATCGGGTTTAC    | 104 | CJST_CJ_140<br>6 1433 R     | TTTGCCTATGNTCTGCATG<br>AAGCATCAA        | 458 |
|      | CJST_CJ_16<br>43 1670 F          | TTATCGTTTGTGGAGCT<br>AGTGCTTATTCG      | 105 | CJST_CJ_172<br>4 1752 R     | TGAGCTTGCTCTATGTC<br>GCAAATGAT          | 459 |
| 1045 | CJST_CJ_16<br>60 1700 F          | TGGCTGAGGTATTGGCT<br>TTGCTTAATTAGAGA   | 106 | CJST_CJ_177<br>4 1799 R     | TGAGCTGTTGGAAARGC<br>TTGGAG             | 460 |
| 1064 | CJST_CJ_16<br>80 1713 F          | TGATTTTGTAAATTITA<br>GAGGAATTGGCGATGAA | 107 | CJST_CJ_179<br>5 1822 R     | TATGTTAGTTGAGCTTAC<br>TACATGAGC         | 461 |
| 1056 | CJST_CJ_18<br>80 1910 F          | TGCCAAATTATCTGCC<br>ATTTCAGGAT         | 108 | CJST_CJ_198<br>1 2011 R     | TGGTTCTACTTGCTTTC<br>ATAAACCTTCCA       | 462 |
|      | CJST_CJ_20<br>60 2090 F          | TCCGGGACTTAAATACA<br>ATGAAATTGTTGGA    | 109 | CJST_CJ_214<br>8 2114 R     | TGAGATGCCATCACCACTCA<br>AAGACCAA        | 463 |
| 1059 | CJST_CJ_21<br>65 2194 F          | TGGCGATCGTTGGGG<br>TTGAGATGAA          | 110 | CJST_CJ_224<br>7 2278 R     | TCCACACTGNGITGAAATT<br>TACCTTGTCTTT     | 464 |
| 1046 | CJST_CJ_21<br>71 2197 F          | TGGTTGGGGGTGGTAG<br>ATGAAAGAG          | 111 | CJST_CJ_228<br>3 2313 R     | TCTCTTCAAAAGCACCATT<br>GCTCATTTAATAGT   | 465 |
| 1057 | CJST_CJ_21<br>85 2212 F          | TAGATGAAAGGGCGGA<br>GTGGCTTATG         | 112 | CJST_CJ_228<br>3 2316 R     | TGAATTCTTAAAGCACC<br>ATTGCTCATTTATAGT   | 466 |
| 1049 | CJST_CJ_26<br>36 2668 F          | TGGCTTACGAGATCTTAA<br>AAATTTACGGCAACTT | 113 | CJST_CJ_275<br>3 2777 R     | TTGCTGCATAGCGAAAGCC<br>TACAGC           | 467 |
| 1062 | CJST_CJ_26<br>78 2703 F          | TCCCCAGGACACCTGTA<br>ATTTCAC           | 114 | CJST_CJ_276<br>0 2787 R     | TGTCCTTTTTGCTGCGCCA<br>TAGCAAGC         | 468 |
|      | CJST_CJ_28<br>57 2887 F          | TGGCAATTCTTATGAG<br>CTTGTCTCTAGCA      | 115 | CJST_CJ_296<br>5 2998 R     | TGCTTAAANACGCTATT<br>ACATTTCGTTAAAG     | 469 |
| 1065 | CJST_CJ_28<br>69 2895 F          | TGAGCTTGTGTTCTTATG<br>CAGGACTCTA       | 116 | CJST_CJ_297<br>9 3007 R     | TCTCTCTGTGCGCTCAAAA<br>CCGATTTTTA       | 470 |
| 1055 | CJST_CJ_32<br>67 3293 F          | TTGCTTATTCGCCGTC<br>CTCCAGGTC          | 117 | CJST_CJ_335<br>6 3385 R     | TCCRABGRACCGGRCRCA<br>TTCATCATTTA       | 471 |
| 1061 | CJST_CJ_36<br>0 393 F            | TCTGTATATCCCTGAG<br>TAGTAAATCAAGTTGT   | 118 | CJST_CJ_443<br>477 R        | TACAACTGGTTCAAACACA<br>TTAACGTGTAATYGTG | 473 |
|      | CJST_CJ_36<br>0 394 F            | TCTGTATATCCCTGAG<br>TAGTAAATCAAGTTGT   | 119 | CJST_CJ_442<br>476 R        | TCACTGGTTAAAAACAT<br>TAAGTGTAAATTGTC    | 472 |
| 1048 |                                  | TAGGCGAAGATATACAA<br>AGAGTATTAAGACTAG  |     | CJST_CJ_104<br>137 R        | TGCCCTATTTTTTCTA<br>CTACCTTCGGTAT       | 455 |
| 1052 | CJST_CJ_5<br>39 F                | TGGGACCAATGTT<br>AAAATGTCAGAG          | 120 | CJST_CJ_663<br>692 R        | TTCATTTTGTTGCTCAAG<br>TAACGATAC         | 474 |
| 1047 | CJST_CJ_58<br>4 616 F            | TGAAAGTGTCAAGAG<br>TAAATGTCAGAG        | 121 | CJST_CJ_711<br>743 R        | TGCCGACCAATGGTTGTA<br>TAACTATTTTAC      | 475 |
| 1060 | CJST_CJ_59<br>9 632 F            | TGAAAGTGTCAAGAG<br>GUATGACAAAAAAACA    | 122 | CTXA_VBC_19<br>4 218 R      | TGCCCTACAAANTCCGGTCT<br>GAGTC           | 476 |
| 1096 | CTXA_VBC_1<br>17 142 F           | TGTTTGTGCAAGGAGAC<br>AGAGTGTAGT        | 123 | CTXA_VBC_44<br>1 466 R      | TGTCATCAAGAACCCAAA<br>ATGAACT           | 477 |
| 1097 | CTXA_VBC_3<br>51 377 F           | TGTATTAGGGGATACATA<br>GTCCTCATTC       | 124 | CTYA_BA_1112<br>1130 R      | TGTTGAGCATCTCTCTAG<br>TAC               | 479 |
| 28   | CTYA_BA_105<br>5 1072 F          | GAAGAGTTCCGATGTTG<br>G                 | 125 | CTYA_BA_1426<br>1447 R      | CTTCTACATTTTACGCT<br>CAC                | 480 |
| 277  | CTYA_BA_134<br>9 1370 F          | ACRAGGAAGTAACTAAC<br>AAAGAC            | 126 | CTYA_BA_1448<br>1467 R      | TGTTAACGGCTTCAGGAC<br>C                 | 482 |
| 30   | CTYA_BA_135<br>3 1379 F          | CGAGTACAACTAACAGA<br>CAAAAGAACG        | 127 | CTYA_BA_1448<br>1467_TMOD_R | TGTTAACGGCTTCAGGAC<br>CC                | 483 |
| 351  | CTYA_BA_135<br>3 1379_TMO<br>D_F | TCGAGTACAACTACAG<br>ACAAAAGAACG        | 128 | CTYA_BA_1447<br>1461 R      | CGGCTCAAGACCC<br>ACCACTTTAAATAGGTTT     | 481 |
| 31   | CTYA_BA_135<br>9 1379 F          | ACATACAGAACAAAG<br>AAGG                | 129 | CTYA_BA_999<br>1026 R       | CGACACTTTAAATAGGTTT<br>GTAGCTAAC        | 484 |
| 32   | CTYA_BA_914<br>937 F             | CAGCCTTGTAGTACCGAGA<br>CATCGAG         | 130 | CTYA_BA_1003<br>1025 R      | CGACTTTAAATAGGTT<br>TAGC                | 478 |
| 33   | CTYA_BA_916<br>935 F             | GCTTGTAGTACCGAGACA<br>TGC              | 131 | DNAK_EC_503<br>522 R        | TGTTAACGGCTTCAG<br>A                    | 485 |
| 115  | DNAK_EC_42<br>8 449 F            | CGGGCTACTTCAACGAC<br>AGCCA             | 132 | DNAK_EC_24<br>1 269 R       | TGACCTTACAGCTTTAAAGC<br>CAGCAAAATG      | 486 |
| 1102 | GALB_FRT_8<br>68 199 F           | TTATCAGTAGCTCTT<br>TAGGTAAAGCTTACG     | 133 | GALB_FRT_24<br>0 422 R      | TCTCTTGTAAAGGGTGT<br>TATTATTCATCCCA     | 487 |
| 1104 | GALB_FRT_3<br>0 8 339 F          | TCCAGGTACAACTAAC<br>TTACTCTGAGCTAATC   | 134 | GALB_FRT_39<br>0 422 R      | TGAACTTTGGCTTAAAG<br>AAACAT             | 488 |
| 1103 | GALB_FRT_8<br>34 865 F           | TCAAAAGGCTTACGAGTA<br>AAGAGTTCATAC     | 135 | GALB_FRT_90<br>1 923 R      | TAGGCTTGGCACATCAGC<br>AAACAT            | 489 |
| 1092 | GLTA_RPK_1<br>023 1055 F         | TCCGACTTACAAATAG<br>CATATAAACGAGC      | 136 | GLTA_RPK_11<br>29 1156 R    | TTGGCGACGGTACACCAT<br>AGCTTATA          | 489 |
|      | GLTA_RPK_1<br>043 1072 F         | TGGAGCTTGAAGCTATC<br>GCTCTTAAAGATG     | 137 | GLTA_RPK_11<br>38 1162 R    | TGAACATTGGCGACGGTAT<br>ACCCAT           | 490 |

|      |                                  |                                     |     |                                 |                                      |     |
|------|----------------------------------|-------------------------------------|-----|---------------------------------|--------------------------------------|-----|
|      | GLTA_RKP_1<br>043_1072_3<br>F    | TGGAACTTGAAAGCTCTC<br>GCTCTTAAAGATG | 138 | GLTA_RKP_11<br>38_1164_R        | TGTGAACATTTCGCGACGGT<br>ATACCCAT     | 492 |
| 1094 | GLTA_RKP_1<br>043_1072_3<br>F    | TGGAACTTGAAAGCTCTC<br>GCTCTTAAAGATG | 139 | GLTA_RKP_11<br>38_1162_R        | TGRACATTTCGCGACGGTAT<br>ACCCAT       | 491 |
| 1091 | GLTA_RKP_4<br>00_428_F           | TCTTCCTCATCCTATGGC<br>TATTATGGCTTC  | 140 | GLTA_RKP_49<br>9_529_R          | TGGGGGGATCTTTGCAAT<br>CATTCATATAGC   | 493 |
| 1095 | GLTA_RKP_4<br>00_428_F           | TCTTCCTCATCCTATGGC<br>TATTATGGCTTC  | 140 | GLTA_RKP_50<br>5_534_R          | TGCCATGGTAAAGTATCTA<br>GCACATCATCT   | 494 |
| 224  | GROL_EC_21<br>9_242_F            | GGTAGAARGAAGTTGGCT<br>CTAAGAC       | 141 | GROL_EC_328<br>350_R            | TTCAAGTCCATCGGGTCTA<br>TGCC          | 496 |
| 280  | GROL_EC_49<br>6_518_F            | ATGGCACAGGTTGGCAA<br>GGANGG         | 142 | GROL_EC_577<br>596_R            | TAGCGCGGGTCAATTGCA<br>T              | 498 |
| 281  | GROL_EC_51<br>1_536_F            | AAAAGGAGGCCGTATCAC<br>CGTTGAGA      | 143 | GROL_EC_571<br>593_R            | CGCGGGTCAATTGCAATGC<br>CTTC          | 497 |
| 220  | GROL_EC_94<br>1_959_F            | TGGAGATCTGGGTCA<br>GC               | 144 | GROL_EC_103<br>9_1060_R         | CAATCTGTCGACGGATCTG<br>AGC           | 495 |
| 924  | GYRA_AF100<br>557_4_23_F         | TCTCCCGCTGCTGTTGG<br>TGA            | 145 | GYRA_AF1005<br>57_119_142_R     | TCGAACCGAAGTAACTCTG<br>ACCAT         | 499 |
| 925  | GYRA_AF100<br>557_70_94_F        | TCCATTGCTCGTATGG<br>TCAGACT         | 146 | GYRA_AF1005<br>57_178_201_R     | TGCCACCTTACTACATACGG<br>ACTTC        | 500 |
| 926  | GYRB_AB008<br>700_19_40_F        | TCAAGTGGCTTACACGG<br>CTGAG          | 147 | GYRB_AB0087<br>00_111_140_R     | TATTGGGGATCACCATSAT<br>GATATCTCTTC   | 501 |
| 927  | GYRB_AB008<br>700_265_29_F       | TCTTCTTGAATGCTGG<br>TGTACGTATCG     | 148 | GYRB_AB0087<br>00_369_395_R     | TCGTTGAGATGGTTTAC<br>CTTCGTTG        | 502 |
| 928  | GYRB_AB008<br>700_368_39_F       | TCAACGAAAGGAAAAAC<br>CATCTCAACG     | 149 | GYRB_AB0087<br>00_466_494_R     | TTTGTAAACAGCGGACAT<br>TTCTTGTTA      | 503 |
| 929  | GYRB_AB008<br>700_477_50_F       | TGTTCGCTGTTTCACAA<br>ACACATTCCA     | 150 | GYRB_AB0087<br>00_611_632_R     | TCAAGGCGATCATCACCAAG<br>TCA          | 504 |
| 949  | GYRB_AB008<br>700_760_78_F       | TACTACTTGAGAGATCC<br>ACAGCTGCAA     | 151 | GYRB_AB0087<br>00_852_888_R     | TCTCTGCAATATCTAATGCA<br>CTCTTACG     | 505 |
| 930  | GYRB_AB008<br>700_760_78_F       | TACTACTTGAGAGATCC<br>ACAGCTGCAA     | 151 | GYRB_AB0087<br>00_852_888_R     | ACCGACAAATCTAATGCA<br>CTCTTACG       | 506 |
| 222  | HFLB_EC_10<br>82_1022_F          | TGGCGAACCTGGTGRAC<br>GARGC          | 152 | HFLB_EC_114<br>4_1168_R         | CITTCACCTTCTCGAACTC<br>ARCCAT        | 507 |
| 1128 | HUPB_CJ_11<br>3_134_F            | TAGTTGCTCAACAGCT<br>GGGG            | 153 | HUPB_CJ_157<br>188_R            | TOCCCTAAATGAGAAATAA<br>CTGCCACACTAGC | 509 |
| 1130 | HUPB_CJ_76<br>102_F              | TCCCCGAGCTTTATGAA<br>CTAARACAGAT    | 154 | HUPB_CJ_114<br>135_R            | TAGGCCAGCTGTTGACCA<br>ACT            | 508 |
| 1129 | HUPB_CJ_76<br>102_F              | TCCCCGAGCTTTATGAA<br>CTAARACAGAT    | 154 | HUPB_CJ_157<br>188_R            | TCCCTAAATGAGAAATAA<br>CTGCCACACTAGC  | 510 |
| 1079 | ICD_CXB_17<br>6_198_F            | TGGCGCTGGGAAAAATCC<br>TACCTC        | 155 | ICD_CXB_224<br>247_R            | TAGCCCTTTCTCCGGCGTA<br>GATCT         | 512 |
| 1078 | ICD_CXB_92<br>120_F              | TTCCGTGACCCGACCATT<br>ATTCCTTTATC   | 156 | ICD_CXB_172<br>194_R            | TAGGATTTTACCGGGCG<br>CATC            | 510 |
| 1077 | ICD_CXB_93<br>120_F              | TCTCGACCGACCCATT<br>TCCCCCTTATC     | 157 | ICD_CXB_172<br>194_R            | TAGGATTTTACCGGGCG<br>CATC            | 511 |
| 221  | INFB_EC_11<br>03_1124_F          | GTCGTGAAAGACGCTG<br>GAAGA           | 158 | INFB_EC_117<br>4_1191_R         | CATGATGGTCACACCGG                    | 513 |
| 964  | INFB_EC_13<br>47_1367_F          | TGGCTTTACCGCAATGC<br>TGTC           | 159 | INFB_EC_141<br>4_1432_R         | TGGCGATCACCGCGTCGTC                  | 514 |
| 34   | INFB_EC_13<br>65_1393_F          | TGCTCGTGGTGCACAG<br>TGAAGTTAA       | 160 | INFB_EC_143<br>9_1467_R         | TGCTGCTTTCCGATGGTT<br>ATTGCTTC       | 515 |
| 352  | INFB_EC_13<br>65_1393_TD<br>OD_F | TTGCTCGTGGTGCACAA<br>GTACCGGATATTA  | 161 | INFB_EC_143<br>9_1467_TMDD<br>R | TRGCTGCTTTCCGATGGTT<br>AMTTGCTTC     | 516 |
| 223  | INFB_EC_19<br>69_1994_F          | CGTAGGGTAAATTCGG<br>TGAAGTTAA       | 162 | INFB_EC_203<br>8_2058_R         | AACTTCGCGCTTCGGTCTG<br>TT            | 517 |
| 781  | INV_U22457<br>1558_1581_F        | TGGTAACAGAGCCCTTAT<br>AGGGCGA       | 163 | INV_U22457<br>1619_1643_R       | TNGCGTTGCGAGATATCTT<br>TACCAA        | 518 |
| 778  | INV_U22457<br>515_539_F          | TGGCTCTTGGTATGAC<br>TCTGCTTC        | 164 | INV_U22457<br>571_598_R         | TGTTAAAGTGTGCGGCT<br>GTCCTATT        | 519 |
| 779  | INV_U22457<br>699_724_F          | TGCYGGGGCTGGACCG<br>ATTATTTAC       | 165 | INV_U22457<br>753_776_R         | TCAACGGACAGTGGCCATC<br>CATTC         | 520 |
| 780  | INV_U22457<br>834_858_F          | TTATTTACCTGCACTCC<br>CACAACTG       | 166 | INV_U22457<br>942_966_R         | TGACCCAAAGCTGAAGACST<br>TTACTG       | 521 |

|                                      |                                         |                                       |                                       |                                       |                                          |     |
|--------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------|-----|
| 1106                                 | IPAH_SGF_1<br>13_134_F                  | TCCGTGACGCCCTTFC<br>C                 | 167                                   | IPAH_SGF_17<br>2_191_R                | TTTCAGGCATGCAGCGA<br>C                   | 522 |
| 1105                                 | IPAH_SGF_2<br>58_277_F                  | TGAGGACCGTGTGCGGC<br>TCA              | 168                                   | IPAH_SGF_30<br>1_327_R                | TCCCTCTGATGCCTGATGG<br>ACCAGGAG          | 523 |
| 1107                                 | IPAH_SGF_4<br>62_486_F                  | TCAAGACCAAGCTGCAG<br>AGAAACTT         | 169                                   | IPAH_SGF_52<br>2_540_R                | TGTCACGCCGACAGGCCA                       | 524 |
| 181111A_NC<br>002971_606<br>6_6891_F | TCAAGTATGATCACCG<br>TAGCCAGTC           | 170                                   | IS1111A_NC0<br>02971_6928<br>6_6954_R | TAACGTCCGATACARTG<br>GTTGCCTC         | 525                                      |     |
| 1080                                 | IS1111A_NC<br>002971_745<br>6_7483_F    | TGGGAGACATTGATCAA<br>TTTCATCGTC       | 171                                   | IS1111A_NC0<br>02971_7529<br>7_7554_R | TCAACACACCTCCCTATT<br>CCCACTC            | 526 |
| 1081                                 | LEF_BA_103<br>3_1052_F                  | TCAGAAGAAAGAAAGC<br>CAAGAGAAAGAAAGCCT | 172                                   | LEF_BA_1119<br>1139_R                 | GATAATCAGTTTGAGC                         | 527 |
| 35                                   | LEF_BA_103<br>6_1066_F                  | TCTTAAAGGATACAT                       | 173                                   | LEF_BA_1119<br>1149_R                 | AGATAAAGAACTACGATA<br>TCAATTGTTAGC       | 528 |
| 36                                   | LEF_BA_756<br>781_F                     | AGCTTTCGATATATATA<br>TCGAGCCAC        | 174                                   | LEF_BA_843<br>872_R                   | TCTTCCAGGATAGATTTA<br>TTTCCTGTTCG        | 530 |
| 37                                   | LEF_BA_756<br>781_TMD_                  | TAGCTTTCGATATATAT<br>ATCGAGCCAC       | 175                                   | LEF_BA_843<br>872_TMD_R               | TTCTTCCAAGGATAGATT<br>ATTCTTGTTCG        | 531 |
| 38                                   | LEF_BA_758<br>778_F                     | CTTTTCGATATATATC<br>GAGC              | 176                                   | LEF_BA_843<br>865_R                   | AGGATAGATTATTCTTG<br>TTGG                | 529 |
| 39                                   | LEF_BA_795<br>813_F                     | TTTACAGCTTATGCA<br>CG                 | 177                                   | LEF_BA_883<br>900_R                   | TCTTGCACAGCATCCGTG<br>CAGATAAGAAATCGCTCA | 532 |
| 40                                   | LEF_BA_883<br>899_F                     | CAACGGATGCTGCCAAG<br>CG               | 178                                   | LEF_BA_939<br>958_R                   | 939_G                                    | 533 |
| 782                                  | LL_NC00314<br>3_2366996_23<br>2367019_F | TGTAGCCGCTAACGACT<br>ACCATCC          | 179                                   | LL_NC003143<br>2367073_23<br>67097_R  | TCTCATCCCAGTATTACCG<br>CCATGA            | 534 |
| 783                                  | LL_NC00314<br>3_2367172_23<br>2367194_F | TGGCACGGCATCACGATT<br>CTCTAC          | 180                                   | LL_NC003143<br>2367249_23<br>67271_R  | TGGCACAGCCTCACACCT<br>TTGG               | 535 |
| 878                                  | Meca_Y1405<br>1_3645_367<br>0_F         | TGAAGTAGAATGACTG<br>AACGTCGGA         | 181                                   | Meca_Y14051<br>3690_3719_R            | TGATCTGAAATGTTTATAT<br>CTTAAAGCGCT       | 536 |
| 877                                  | Meca_Y1405<br>1_3774_380<br>2_F         | TAACACAAACTACGGTA<br>ACATTGATCGCA     | 182                                   | Meca_Y14051<br>3828_3854_R            | TCCCCATCTAACCTCCACA<br>TACCACT           | 537 |
| 879                                  | Meca_Y1405<br>1_4507_453<br>0_F         | TCAGGTACTGCTATCCA<br>CCCTCAA          | 183                                   | Meca_Y14051<br>4555_4581_R            | TGGTAGACGTCATATGAA<br>GGTGTGCT           | 538 |
| 880                                  | Meca_Y1405<br>1_4510_453<br>0_F         | TGATCTGCTATCCACCC<br>TCAA             | 184                                   | Meca_Y14051<br>4586_4610_R            | TATCTTCGTTACTCATGC<br>CATACA             | 539 |
| 882                                  | Meca_Y1405<br>1_4520_453<br>0_F         | TU'U'AU'U'U'C'U'AA                    | 185                                   | Meca_Y14051<br>4590_4600P_R           | C'AU'C'U'AC'GU'U'A                       | 540 |
| 883                                  | Meca_Y1405<br>1_4520_453<br>0_F         | TU'U'AU'U'U'C'U'AA                    | 185                                   | Meca_Y14051<br>4600_4610P_R           | C'AC'C'U'C'U'GC'T                        | 541 |
| 881                                  | Meca_Y1405<br>1_4669_469<br>0_F         | TCACCAAGGTTCAACTCA<br>AAAATATTAACCA   | 186                                   | Meca_Y14051<br>4765_4793_R            | TAMCCACCCCAAGATTTAT<br>CTTTTGCCCA        | 542 |
| 876                                  | Meca_Y140<br>51_3315_33<br>41_F         | TTACACATATGCGAGC<br>ATAAGCTGA         | 187                                   | Meca_Y14051<br>4765_4793_R            | TGTGATATGGAGGTGAGA<br>AGGGTTTA           | 543 |
| 914                                  | OMPA_AY485<br>227_272_30<br>1_F         | TTACTCCATTATGCTT<br>GGTACACTTCC       | 188                                   | OMPA_AY4852<br>27_364_388_R           | GAGCTGGGCCAACGAATA<br>ATCGTC             | 544 |
| 916                                  | OMPA_AY485<br>227_311_33<br>5_F         | TACACACACATGGCGGT<br>AARAGATCG        | 189                                   | OMPA_AY4852<br>27_424_453_R           | TACGTGGCCCTTTAACITGG<br>TTATTTTCAGC      | 545 |
| 915                                  | OMPA_AY485<br>227_379_40<br>1_F         | TGGCGCAGCTCTGGTAT<br>CGAGTT           | 190                                   | OMPA_AY4852<br>27_492_519_R           | TGCCGTTAACATAGAAGTTA<br>CGCGTTGATT       | 546 |
| 917                                  | OMPA_AY485<br>227_415_44<br>1_F         | TGCTCGAAGCTGAATA<br>TAACCAAGT         | 191                                   | OMPA_AY4852<br>27_514_546_R           | TGGGGCGTAGTTTTTGTAG<br>ATTAATCAGAAGT     | 547 |
| 918                                  | OMPA_AY485<br>227_494_52<br>0_F         | TCAACGGTTAACCTCTAT<br>GTAACTTCG       | 192                                   | OMPA_AY4852<br>27_569_596_R           | TGCGTGTATTTATAGTGAC<br>CAGCACCTA         | 548 |
| 919                                  | OMPA_AY485<br>227_551_57<br>7_F         | TGAGCGGTACGTTATA<br>TTAGGTCTG         | 193                                   | OMPA_AY4852<br>27_658_680_R           | TTAAAGCGGCCAGAAAGCAC<br>CAGAC            | 550 |

|      |                                  |                                    |     |                              |                                    |     |
|------|----------------------------------|------------------------------------|-----|------------------------------|------------------------------------|-----|
| 920  | OMPA_AY485<br>227_555_58<br>1_F  | TCCGTACGTATTATAG<br>TGTCGGTCA      | 194 | OMPA_AY4852<br>27_635_662_R  | TCAACACCAGGGTTACCTA<br>AAGTACTT    | 549 |
| 921  | OMPA_AY485<br>227_556_58<br>3_F  | TGCTACGTATTATAGG<br>TGCTGGTCACT    | 195 | OMPA_AY4852<br>27_659_683_R  | TGGTTTAAAGGCCAGAAG<br>CACCAA       | 551 |
| 922  | OMPA_AY485<br>227_657_67<br>9_F  | TGTTGCGTCTCTGGC<br>GCTTAA          | 196 | OMPA_AY4852<br>27_739_765_R  | TAAGCAGCAAGAGCTGTA<br>TAGTTCGA     | 552 |
| 923  | OMPA_AY485<br>227_660_68<br>3_F  | TGGGCCTCTCGGGCCT<br>TAACAGA        | 197 | OMPA_AY4852<br>27_786_807_R  | TACAGGAGCAGCAGGCTTC<br>AAG         | 553 |
| 1088 | OMPR_RKP_1<br>192_1221_F         | TCTACGTATTGGTAA<br>TCTTGCAGCACAG   | 198 | OMPR_RKP_12<br>88_1315_R     | TAGCAGGAAAAGTTATCAC<br>ACCTCGAGT   | 554 |
| 1089 | OMPR_RKP_3<br>417_3440_F         | TGAGAGTGTAACTCAA<br>CATGGGG        | 199 | OMPR_RKP_35<br>20_3550_R     | TGGTTCTGTTCTCTAGT<br>TGTGCAATTAAAC | 555 |
| 1087 | OMPR_RKP_3<br>60_890_F           | TTAACAGGAGTTAGGT<br>GGTAACTAAAMAGG | 200 | OMPR_RKP_97<br>2_996_R       | TCCIGCAGCTCTAACCTGCT<br>CCCATTA    | 556 |
| 41   | PAG_BA_122<br>142_F              | CAGRATCAAGTCCCCAG<br>GGG           | 201 | PAG_BA_190_209_R             | CCTGTAGTAGAGAGGGTAA<br>C           | 558 |
| 42   | PAG_BA_123<br>145_F              | AGATCACTGGTCCCAGG<br>GGTAC         | 202 | PAG_BA_187_210_R             | CCCTGTAGTAGAAGAGGTA<br>ACAC        | 557 |
| 43   | PAG_BA_269<br>287_F              | AATCTGCTATTGGTCA<br>GG             | 203 | PAG_BA_326_344_R             | TGATTATCAGCGGAAGTAG<br>TG          | 559 |
| 44   | PAG_BA_655<br>675_F              | GAAGGATATACGGTTGA<br>TGAGC         | 204 | PAG_BA_755_772_R             | CCGTGTCGCACTTTTCAG<br>G            | 560 |
| 45   | PAG_BA_753<br>772_F              | TCTCTAAATGGAGCA<br>CGG             | 205 | PAG_BA_849_868_R             | TCGGATAAGCTGCCACAG<br>G            | 561 |
| 46   | PAG_BA_763<br>781_F              | TGGACGACGGCTCTGTA<br>TC            | 206 | PAG_BA_849_868_R             | TGGGATAACGCTGCCACAG<br>G           | 562 |
| 912  | PARC_X9581<br>9_123_147_F        | GCGTCACCCATTTAGTT<br>ACCGCTAT      | 207 | PARC_X95819<br>232_260_R     | TCCGTCAGCAATATTAC<br>TATAAGCCGA    | 566 |
| 913  | PARC_X9581<br>9_43_63_F          | TCACGGCGTACAGTGGG<br>TGAT          | 208 | PARC_X95819<br>143_170_R     | TCCCTCTGAGCTTCGATTA<br>AAGGAATAGC  | 563 |
| 911  | PARC_X9581<br>9_87_110_F         | TGGTGAATCGGCATGTT<br>ATGAAAC       | 209 | PARC_X95819<br>192_219_R     | GGTATACGCATCCGACGA<br>AAAGATTAA    | 564 |
| 910  | PARC_X9581<br>9_87_110_F         | TGGGATCTGGCATGTT<br>ATGAAAC        | 209 | PARC_X95819<br>201_222_R     | TTCGGTTAAACGCATCGCA<br>GCA         | 565 |
| 773  | PLA_AF0539<br>45_7186_72<br>11_F | TTATACCGGAAACTTC<br>CGAAAGGC       | 210 | PLA_AF05394<br>5_7257_7280_R | TAATGCGTACTGGCCTGC<br>AAAGTC       | 567 |
| 770  | PLA_AF0539<br>45_7377_74<br>02_F | TGACATCCGCTCACGT<br>TATTATGTT      | 211 | PLA_AF05394<br>5_7434_7462_R | TGTTAATTCGGCAARAGCT<br>TGGCATAG    | 568 |
| 771  | PLA_AF0539<br>45_7382_74<br>04_F | TCCGGCTACGTTATTA<br>TGTTAC         | 212 | PLA_AF05394<br>5_7482_7502_R | TGGTCTGAGTACCTCTTT<br>GC           | 569 |
| 772  | PLA_AF0539<br>45_7481_75<br>03_F | TGCAAAGGGGTACTCA<br>GACAT          | 213 | PLA_AF05394<br>5_7559_7562_R | TATTGGAATTCGGCAGC<br>ATTC          | 570 |
| 909  | RECA_AF251<br>469_169_19<br>0_F  | TGACATCGTTCGCGTT<br>CAGGC          | 214 | RECA_AF2514<br>69_277_300_R  | TGGCTCATAGAGGGCGCTT<br>GTAGA       | 572 |
| 908  | RECA_AF251<br>469_43_68_F        | TGGTACATGTGCTTCA<br>TTGATGCTG      | 215 | RECA_AF2514<br>69_140_163_R  | TTCAAGTGCTGCTCACCA<br>TTGTC        | 571 |
| 1072 | RNASEP_BDP<br>574_592_F          | TGGCACGGCCATCTCG<br>TC             | 216 | RNASEP_BDP<br>616_635_R      | TGGTTTACCCCTGTCATGC<br>CG          | 573 |
| 1070 | RNASEP_BRN<br>580_599_F          | TGGGGTACGGAGCTTG<br>ACC            | 217 | RNASEP_BRN<br>665_686_R      | TCCGATAAGCCGGATTCTG<br>TGC         | 574 |
| 1071 | RNASEP_BRN<br>616_637_F          | TCTTAGGGAAATGGCTG<br>CCAGC         | 218 | RNASEP_BRN<br>665_687_R      | TGCCGATTAAGCCGGATTCT<br>GTGC       | 575 |
| 1112 | RNASEP_BRN<br>325_347_F          | TACCCCGGGGAAAGTC<br>CACAGA         | 219 | RNASEP_BRN<br>402_428_R      | TCTCTTACCCACCCCTTC<br>ACCTCTAC     | 576 |
| 1172 | RNASEP_BRN<br>461_485_F          | TAACCCCATCGGGAGC<br>AAAGCCGATTA    | 220 | RNASEP_BRN<br>542_561_R      | TGGCTCGTGCRAACCCACCC<br>G          | 577 |
| 1111 | RNASEP_BRN<br>461_488_F          | TAACCCCATCGGGAGC<br>AAAGCCGATTA    | 220 | RNASEP_BRN<br>542_561_R      | TGGCTCGGCAACCTACCC<br>G            | 578 |
| 258  | RNASEP_BS<br>43_61_F             | GAAGGAAAGTCATGCTC<br>GC            | 221 | RNASEP_BS_3<br>63_384_R      | GTAAGCCATGTTTGTCTC<br>ATC          | 579 |
| 259  | RNASEP_BS<br>43_61_F             | GAAGGAAAGTCATGCTC<br>GC            | 221 | RNASEP_BS_3<br>63_384_R      | GTAAGCCATGTTTGTCTC<br>ATC          | 578 |
| 258  | RNASEP_BS<br>43_61_F             | GAAGGAAAGTCATGCTC<br>GC            | 221 | RNASEP_EC_3<br>45_362_R      | ATAAGCCGGTTCTGTCG<br>G             | 581 |

|      |                               |                                      |     |                           |                                      |     |
|------|-------------------------------|--------------------------------------|-----|---------------------------|--------------------------------------|-----|
| 258  | RNASEP_BS_43 61 F             | GAGGAAAGTCATGCTC<br>GC               | 221 | RNASEP_SA_3 58 379 R      | ATAAGCCATGTCTGTTC<br>ATC             | 584 |
| 1076 | RNASEP_CLB_459 487 F          | TAGGATATGTYCAACAG<br>RGATATACCGGC    | 222 | RNASEP_CLB_498 522 R      | TTTACCTGGCCCTTCACC<br>CTTAC          | 579 |
| 1075 | RNASEP_CLB_459 487 F          | TAAGGATAGTCGACACRG<br>AGATATACCGGC   | 222 | RNASEP_CLB_498 526 R      | TGCTCTAACCTCACCGGTC<br>CACCCATTAC    | 580 |
| 258  | RNASEP_EC_61 77 F             | GAGGAAAGTCGGGCTC                     | 223 | RNASEP_BS_3 63 384 R      | CTAACGCCATGTCTGTTC<br>ATC            | 578 |
| 258  | RNASEP_EC_61 77 F             | GAGGAAAGTCGGGCTC                     | 223 | RNASEP_EC_3 45 362 R      | ATAAGCCGGGTTCTGTTCG                  | 581 |
| 260  | RNASEP_EC_61 77 F             | GAGGAAAGTCGGGCTC                     | 223 | RNASEP_EC_3 45 362 R      | ATAAGCCGGGTTCTGTTCG                  | 581 |
| 258  | RNASEP_EC_61 77 F             | GAGGAAAGTCGGGCTC                     | 223 | RNASEP_SA_3 58 379 R      | ATAGGCATGTCTGTTC<br>ATC              | 584 |
| 1085 | RNASEP_RKP_264 287 F          | TCTAAATGCGCTGCAGC<br>TTGGTGY         | 224 | RNASEP_RKP_295 321 R      | TCTATAGAGTCGGACTT<br>CTCTGTGA        | 582 |
| 1082 | RNASEP_RKP_419 448 F          | TGTTAAGAGCCACGGG<br>TAAGTTGGTATACA   | 225 | RNASEP_RKP_542 565 R      | TCAAGGGATCTACCGGAT<br>TACAA          | 583 |
| 1083 | RNASEP_RKP_422 443 F          | TAAGAGCGACCGGTA<br>GTGG              | 226 | RNASEP_RKP_542 565 R      | TCAAGCGATCTACCCGAT<br>TACAA          | 583 |
| 1086 | RNASEP_RKP_426 446 F          | TGCAATACCGGTAAGTGT<br>GCACAA         | 227 | RNASEP_RKP_542 565 R      | TCAAGCGATCTACCCGAT<br>TACAA          | 583 |
| 1084 | RNASEP_RKP_466 491 F          | TCCCAACAGAGCAAGAT<br>CAATAAGGC       | 228 | RNASEP_RKP_542 565 R      | TCAAGCGATCTACCCGAT<br>TACAA          | 583 |
| 258  | RNASEP_SA_31 49 F             | GAGGAAAGTCATGCTC                     | 229 | RNASEP_BS_3 63 384 R      | GTAAAGCCATGTCTGTTC<br>ATC            | 578 |
| 258  | RNASEP_SA_31 49 F             | GAGGAAAGTCATGCTC                     | 229 | RNASEP_BS_3 45 362 R      | ATAAGCCGGGTTCTGTTCG                  | 581 |
| 258  | RNASEP_SA_31 49 F             | GAGGAAAGTCATGCTC                     | 229 | RNASEP_SA_3 58 379 R      | ATAAGCCATGTCTGTTC<br>ATC             | 584 |
| 262  | RNASEP_SA_31 49 F             | GAGGAAAGTCATGCTC                     | 229 | RNASEP_SA_3 58 379 R      | ATAAGCCATGTCTGTTC<br>ATC             | 584 |
| 1098 | RNASEP_VBC_331 349 F          | TCCCGCGAGGTGACTGG<br>GT              | 230 | RNASEP_VBC_388 414 R      | TGACTTCTCTCCCCCTTAT<br>CATGTCYC      | 585 |
| 66   | RPLB_EC_65 0 679 F            | GACCTACAGTAAGGGT<br>TCTGTAAATGAC     | 231 | RPLB_EC_739 762 R         | TCCAAGTGCTGTTAACCC<br>CATGG          | 591 |
| 356  | RPLB_EC_65 0 679 TMOD         | TGAGCTACAGTAAGGG<br>TCTGTAAATGAC     | 232 | RPLB_EC_739 762 TMOD R    | TTCCAAAGTGCTGTTAACCC<br>CATGG        | 592 |
| 73   | RPLB_EC_66 9 698 F            | TGAAATGAGACCTTAATG<br>ACCACTCACACCGG | 233 | RPLB_EC_735 761 R         | CCAAAGTGCTGGTTACCCC<br>ATGGGATA      | 586 |
| 74   | RPLB_EC_67 1 700 F            | TAATGAACTCTTAATGAC<br>CATCACACCGGG   | 234 | RPLB_EC_737 762 R         | TCCAAGTGCTGTTAACCC<br>CATGGG         | 590 |
| 67   | RPLB_EC_68 8 710 F            | CATCACACGGGGTGG<br>TGAGG             | 235 | RPLB_EC_736 757 R         | GTGTTGGTTAACCCATGG<br>AGT            | 587 |
| 70   | RPLB_EC_68 8 710 F            | CATCACACGGGGTGG<br>TGAGG             | 235 | RPLB_EC_743 771 R         | TGTTTTGTATCCAAAGTGT<br>GGTTACCCC     | 593 |
| 357  | RPLB_EC_68 8 710 TMOD F       | TCATCCACACGGGGT<br>GTGAGG            | 236 | RPLB_EC_736 757 TMOD R    | TGTGCTGGTTAACCCATG<br>GAGT           | 588 |
| 449  | RPLB_EC_69 0 710 F            | TCCACACGGGGTGG<br>AAGG               | 237 | RPLB_EC_737 758 R         | TGTGCTGGTTAACCCATG<br>GAG            | 589 |
| 113  | RPOB_EC_13 36 1353 F          | GACCAACCTCGGCAACCG<br>T              | 238 | RPOB_EC_143 8 1455 R      | TTCCCTCTCCGGCTTGCGC<br>594           |     |
| 963  | RPOB_EC_15 27 1549 F          | TCAGCTGTGCGCAGTTC<br>TGGAAC          | 239 | RPOB_EC_163 0 1649 R      | TGTCGGCGGACTTCCGAGC<br>C             | 595 |
| 72   | RPOB_EC_16 45 1866 F          | WTATGCTCAGGGCGACT<br>CCAC            | 240 | RPOB_EC_190 9 1929 R      | GCTGGATTCGCCCTTGCCTA<br>CG           | 596 |
| 359  | RPOB_EC_18 45 1866 TM<br>OJ F | TTATCGCTCGGGCAGAC<br>TCACAC          | 241 | RPOB_EC_190 9 1929 TMOD R | TGCTGGATTCGCCCTTGCCT<br>ACG          | 597 |
| 962  | RPOB_EC_20 05 2027 F          | TCGTTCTGGAAACAGGA<br>TGACG           | 242 | RPOB_EC_204 1 2064 R      | TTGACCTTGTGATGTTCCAG<br>CCCAT        | 598 |
| 69   | RPOB_EC_37 62 3790 F          | TCAACAAACCTCTGGAG<br>CTTAAAGCTGAG    | 243 | RPOB_EC_383 6 3665 R      | TTCTTTGAGAGGTATGAGC<br>TGCCTGGFAAG   | 600 |
| 111  | RPOB_EC_37 75 3803 F          | CTTGTGAGGTGATGCTCA<br>TTTGGTGGCGCA   | 244 | RPOB_EC_382 9 3658 R      | CCTATAAGCTGTCACCAATA<br>GTTTGTAAATGC | 599 |
| 940  | RPOB_EC_37 98 3821 F          | TGGCCAGCGCTTCCGGC<br>AATTCGA         | 245 | RPOB_EC_386 2 3689 R      | TGTCGGCRCTGACGGTTAG<br>CATTTCTCG     | 604 |
| 939  | RPOB_EC_37 98 3821 F          | TGGCCAGCGCTTCCGGC<br>AATTCGA         | 245 | RPOB_EC_386 2 3689 R      | TGTCGGCRCTGACGGTTAG<br>CATTTCTCG     | 605 |
| 289  | RPOB_EC_37 99 3821 F          | TGGCCAGCGCTTCCGGC<br>AATTCGA         | 246 | RPOB_EC_386 2 3688 R      | TGTCGGCRCTGACGGTTAG<br>ATTTCTCG      | 602 |
| 362  | RPOB_EC_37 99 3821 TM         | TGGCCAGCGCTTCCGGC<br>AATTCGA         | 245 | RPOB_EC_386 2 3688 TMOD   | TGTCGGCRCTGACGGTTAG<br>CATTTCTCG     | 603 |

|     | OD_F                               | R                                   |                                      |                                   |       |
|-----|------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|-------|
| 288 | RPOC_EC_38<br>02_3821_F            | CAGCGTTCCGGCGAAAT<br>GGA            | RPOC_EC_386<br>2_3885_R              | CGACTTGACGGTAAACATT<br>TCCTG      | 601   |
| 48  | RPOC_EC_10<br>18_1045_F            | CAAACTTATTAGGTA<br>GGCTGTGACT       | RPOC_EC_109<br>5_1124_R              | TCAAGCGCATCTCTTTCG<br>GTAAACACAT  | 610   |
| 47  | RPOC_EC_10<br>18_1045_F            | CAAACTTATTAGGTA<br>GGCTGTGACT       | RPOC_EC_109<br>5_1124_R              | TCAAGGGCATTTCTTTG<br>GTAAACACAT   | 611   |
| 68  | RPOC_EC_10<br>36_1660_F            | CGTTTCAG                            | RPOC_EC_109<br>7_1126_R              | ATTCAGGACCTTCTTT<br>TGGTAACAC     | 612   |
| 49  | RPOC_EC_11<br>4_146_F              | TAAGNAGCCGGAACCCA                   | RPOC_EC_213<br>232_R                 | GGGGCTGTACTTACCGCA<br>C           | 617   |
| 227 | RPOC_EC_12<br>56_1277_F            | TCACACTACCG                         | RPOC_EC_129<br>5_1315_R              | GTTCAATGCCGATACC<br>CA            | 613   |
| 292 | RPOC_EC_13<br>74_1393_F            | ACCCAGTGCCTGAC                      | RPOC_EC_143<br>7_1455_R              | GAGCATCAGCGTGCCTGCT               | 614   |
| 364 | RPOC_EC_13<br>74_1393_TM<br>OD_F   | TCGCCGACTTCGACGGT                   | RPOC_EC_143<br>7_1455_TM0D<br>R      | TGAGCATCAGCGTGCCTGCT<br>T         | 615   |
| 229 | RPOC_EC_15<br>84_1604_F            | TGGCCCGAAAAGAACGCTG                 | RPOC_EC_162<br>3_1643_R              | ACGCCGGCATGCAGGATG<br>CC          | 616   |
| 978 | RPOC_EC_21<br>45_2175_F            | TCAGGAGTCGTTCACT<br>CGATCTACATGATG  | RPOC_EC_222<br>8_2247_R              | TTACGCCATCAGGCCACGC<br>A          | 622   |
| 290 | RPOC_EC_21<br>46_2174_F            | CGAGGAGTCGTTCACTC<br>GATCYACATGAT   | RPOC_EC_222<br>7_2245_R              | ACGCCATCAGGCCACGCAT               | 620   |
| 363 | RPOC_EC_21<br>46_2174_TM<br>OD_F   | TCAGGAGTCGTTCACT<br>CGATCTACATGAT   | RPOC_EC_222<br>7_2245_TM0D<br>R      | TAGGCCATCAGGCCAOGCA<br>T          | 621   |
| 51  | RPOC_EC_21<br>78_2196_F            | TGATTCGGTGGCCGTG<br>GT              | RPOC_EC_222<br>5_2246_R              | TTGGCCATCAGGCCACGCA<br>TAC        | 618   |
| 50  | RPOC_EC_21<br>78_2196_F            | TGATTCCTGGTGGCCGTG<br>GT            | RPOC_EC_222<br>5_2246_R              | TTGGCCATCAGGCCACGCA<br>TAC        | 619   |
| 53  | RPOC_EC_22<br>18_2241_F            | CTTGTGTTGGTATGGCTGG<br>TCTGATG      | RPOC_EC_231<br>3_2337_R              | CGCACCATGCGTAGAGATG<br>AAGTAC     | 623   |
| 52  | RPOC_EC_22<br>18_2241_F            | CTTGTGTTGGTATGGCTGG<br>TCTGATG      | RPOC_EC_231<br>3_2337_R              | CGCACCATGGGTAGAGATG<br>AAGTAC     | 624   |
| 354 | RPOC_EC_22<br>18_2241_TM<br>OD_F   | TCTGGCAGGTATGGCTG<br>GTCTGATG       | RPOC_EC_231<br>3_2337_TM0D<br>R      | TCCGACCGTGGTTGAGAT<br>GAGATAC     | 625   |
| 958 | RPOC_EC_22<br>23_2243_F            | TGGTATGGTGGTCTGTA<br>TGCG           | RPOC_EC_232<br>9_2352_R              | TGGTATGACCTTACGTGC<br>CCGT        | 626   |
| 960 | RPOC_EC_23<br>34_2357_F            | TGCTGTTAGGGTCTGG<br>CGGATAC         | RPOC_EC_238<br>0_2403_R              | TACTAGACGACGGTCAGG<br>TRAC        | 627   |
| 55  | RPOC_EC_80<br>8_833_F              | CGTCGTGAAATTAAACCG<br>TAACACCG      | RPOC_EC_865<br>891_R                 | ACGTTTTCTGGTTGACG<br>ATAATAGCT    | 629   |
| 54  | RPOC_EC_80<br>8_833_F              | CGTCGGGTGATTAACCG<br>TAACACCG       | RPOC_EC_865<br>895_R                 | GTTTTTCTGGCTACGAT<br>GATGTC       | 628   |
| 961 | RPOC_EC_91<br>7_938_F              | TATTCGGACAACGGCTGT<br>CGGG          | RPOC_EC_100<br>9_1034_R              | TTACCGGAGCAGGTTCTGAC<br>GGAAACG   | 607   |
| 959 | RPOC_EC_91<br>8_938_F              | TCTGGATAACGGTCGT<br>CGCG            | RPOC_EC_100<br>9_1034_R              | TCCAGCAGGTTCTGACGGA<br>AAGC       | 606 . |
| 57  | RPOC_EC_99<br>3_1019_F             | CGAAGGTAAAGCAGGAC<br>GTTTCCGTC      | RPOC_EC_103<br>6_1059_R              | CGAGCGGCCAGGTAGTC<br>ACACG        | 608   |
| 56  | RPOC_EC_99<br>3_1019_F             | CGAAGGTAAAGCAGGTC<br>GTTTCCGTC      | RPOC_EC_103<br>6_1059_R              | CGAGCGGCCAGGTAGTC<br>ACACG        | 609   |
| 75  | SP101_SPET<br>11_1154_F            | AACCTTAAATTGGAAAGA<br>ACCCCAAGAGT   | SP101_SPET1<br>1_92_116_R            | CCYACCCAAACGTTACCAA<br>GGGCAG     | 676   |
| 446 | SP101_SPET<br>11_1154_F            | TAACCTTAAATTGGAAAG<br>AAACCCAAAGAGT | SP101_SPET1<br>1_92_116_TM<br>OD_R   | TCCCTACCCAAACGTTACCAA<br>AGGCAG   | 677   |
| 85  | SP101_SPET<br>11_1154_11<br>75_F   | CAATACCGCAACAGCG<br>TGCCCTGGG       | SP101_SPET1<br>1_1251_1277_R         | GACCCAAACCTGGCCCTTT<br>GTCTGTTGA  | 630   |
| 424 | SP101_SPET<br>11_1154_11<br>TM0D_F | TCATAACCGCAACAGCG<br>GTGCGCTTGGG    | SP101_SPET1<br>1_1251_1277_TM0D<br>R | TGACCCCAACCTGGCCCTTT<br>TGTCGTTGA | 631   |
| 76  | SP101_SPET<br>11_118_147_F         | GCTGGTAAAGAAAAACCC<br>AGATGTGCTCTT  | SP101_SPET1<br>1_213_238_R           | TGTCGCGGATTTGACCAAC<br>TGCCTCT    | 644   |
| 425 | SP101_SPET<br>11_118_147<br>TM0D_F | TGCTGGTAAAGAAAAACCC<br>AGATGTGCTCTT | SP101_SPET1<br>1_213_238_T<br>MOD_R  | TTGGCGCGATTTGACCAAC<br>CTGCTCT    | 645   |
| 86  | SP101_SPET1                        | CGCAAAAATCCAGCT                     | SP101_SPET1                          | AAACTATTTTTAGCTAT                 | 632   |

|     |                                       |                                     |     |                                      |                                     |     |
|-----|---------------------------------------|-------------------------------------|-----|--------------------------------------|-------------------------------------|-----|
|     | 11_1314_13<br>36_F                    | ATTAGC                              |     | 1_1403_1431<br>R                     | ACTCGAACAC                          |     |
| 426 | SP101_SPET<br>11_1314_13<br>36_TM0D_F | TGCGAAGAAATCCAGC<br>TATTAGC         | 278 | SP101_SPET1<br>1_1403_1431<br>TMOD_R | TAAACTATTTTTAGCTA<br>TACTCGAACAC    | 633 |
| 87  | SP101_SPET<br>11_1408_14<br>37_F      | CGAGTATAGCTAAAAAA<br>ATAAGTTTGTGACA | 279 | SP101_SPET1<br>1_1486_1515<br>R      | GGATATTGGTCGTAACAA<br>GGGATAGTGAG   | 634 |
| 427 | SP101_SPET<br>11_1408_14<br>37_TM0D_F | TGCGTATAGCTAAAAAA<br>ATAAGTTTGTGACA | 280 | SP101_SPET1<br>1_1486_1515<br>TMOD_R | TGGATATTGGTCGTAACAA<br>AGGGATAGTGAG | 635 |
| 88  | SP101_SPET<br>11_1668_17<br>16_F      | CCTATAATTAATCGTTA<br>CAAGAACTGGCT   | 281 | SP101_SPET1<br>1_1763_1808<br>R      | ATATGATTATCATGAACT<br>CCGGCCG       | 636 |
| 428 | SP101_SPET<br>11_1668_17<br>16_TM0D_F | TCTCTATTAATCGTT<br>ACGAAACTGGCT     | 282 | SP101_SPET1<br>1_1763_1808<br>TMOD_R | TATATGATTATCATGAACT<br>TGGGCCG      | 637 |
| 89  | SP101_SEET<br>11_1711_17<br>33_F      | CTGGCTAAACTTGGC<br>RAAGCT           | 283 | SP101_SPET1<br>1_1808_1835<br>R      | GCGTGACGACCTCTTGTAA<br>TTGTAACTA    | 638 |
| 429 | SP101_SPET<br>11_1711_17<br>33_TM0D_F | TCTGGCTAAACTTGG<br>CRAAGCT          | 284 | SP101_SPET1<br>1_1808_1835<br>TMOD_R | TGCGTGCACGCCCTCTTGTAA<br>ATTGTAACTA | 639 |
| 90  | SP101_SEET<br>11_1807_18<br>35_F      | ATGATTACRATTCAAGA<br>AGGTCTGTCAGC   | 285 | SP101_SPET1<br>1_1901_1927<br>R      | TTGGACCTGTAATCAGCTG<br>AACTACTGG    | 640 |
| 430 | SP101_SPET<br>11_1807_18<br>35_TM0D_F | TATGATTACAATTCAAG<br>AAGTCGTCAGC    | 286 | SP101_SPET1<br>1_1901_1927<br>TMOD_R | TTTGGACCTGTAATCAGCTG<br>AACTACTGG   | 641 |
| 91  | SP101_SEET<br>11_1967_19<br>91_F      | TAACCGTTATCATGCC<br>CAAGATGGG       | 287 | SP101_SPET1<br>1_2062_2083<br>R      | ATTGCCACGAAATCAAATC<br>ATC          | 642 |
| 431 | SP101_SPET<br>11_1967_19<br>91_TM0D_F | TTAACCGTTATCATGCC<br>CCAGATGGG      | 288 | SP101_SPET1<br>1_2062_2083<br>TMOD_R | TATTGCCACGAAATCAAATC<br>ATC         | 643 |
| 77  | SP101_SEET<br>11_216_243<br>F         | AGCAGGTGGTAAATCG<br>GCCACATGATT     | 289 | SP101_SPET1<br>1_308_333_R           | TGCCACTTGTACAACTCCT<br>GTTGCTG      | 654 |
| 432 | SP101_SPET<br>11_216_243<br>TMOD_F    | TAGCAAGGGTGAAYTC<br>GGCCACATGATT    | 290 | SP101_SPET1<br>1_308_333_T<br>MOD_R  | TTGCCACTTGTACAACTCCT<br>GTTGCTG     | 655 |
| 92  | SP101_SEET<br>11_2250_22<br>83_F      | CAGAGACCGTTTATCC<br>TATCCAGC        | 291 | SP101_SPET1<br>1_2375_2397<br>R      | TCTGGGTGACCTGGTTTT<br>TAGA          | 646 |
| 433 | SP101_SPET<br>11_2250_22<br>83_TM0D_F | TCAGAGACCCCTTTATC<br>CTATCAGC       | 292 | SP101_SPET1<br>1_2375_2397<br>TMOD_R | TTCTGGGTGACCTGGTTTT<br>TTAGA        | 647 |
| 93  | SP101_SEET<br>11_2375_23<br>99_F      | TCTAAACACCAGGTCA<br>CCCAGAG         | 293 | SP101_SPET1<br>1_2470_2497<br>R      | ACCTGCTAGATGAGCTCT<br>GCCATGGCC     | 648 |
| 434 | SP101_SPET<br>11_2375_23<br>99_TM0D_F | TCTAAACACCAGGTCA<br>ACCCAGAG        | 294 | SP101_SPET1<br>1_2470_2497<br>TMOD_R | TAGCTGCTAGATGAGCTCT<br>TGCCATGGCC   | 649 |
| 94  | SP101_SPET<br>11_2468_24<br>87_F      | ATGCCCATGGCAGAAGC<br>TCA            | 295 | SP101_SPET1<br>1_2543_2570<br>R      | CCATAGCTACCGTCACCC<br>ATTCAAAC      | 650 |
| 435 | SP101_SPET<br>11_2468_24<br>87_TM0D_F | TATGGCCATGGCAGAAG<br>CTCA           | 296 | SP101_SPET1<br>1_2543_2570<br>TMOD_R | TCCATAACGTCACCGTCAC<br>CATTCAAAC    | 651 |
| 78  | SP101_SPET<br>11_266_295<br>F         | CTTGTACTTGGCTCA<br>CACGGCTGTTGG     | 297 | SP101_SPET1<br>1_355_380_R           | GCTGCTTGTGATGGCTGAAT<br>CCCCCTTC    | 661 |
| 436 | SP101_SPET<br>11_266_295<br>TMOD_F    | TCTTGTACTTGGCTC<br>ACACGGCTGTTGG    | 298 | SP101_SPET1<br>1_355_380_T<br>MOD_R  | TGCTGCTTGTGATGGCTGAAT<br>CCCCCTTC   | 662 |
| 95  | SP101_SPET<br>11_2961_29<br>84_F      | ACCATGACAGAAGGCAT<br>TTTGACA        | 299 | SP101_SPET1<br>1_3023_3045<br>R      | GGAAATTACCGCGATAG<br>CACC           | 652 |
| 437 | SP101_SPET<br>11_2961_29<br>84_TM0D_F | CTTGTACTTGGCTCA<br>TTTGACA          | 300 | SP101_SPET1<br>1_3023_3045<br>TMOD_R | TGGAAATTACCGCGATAG<br>ACAC          | 653 |
| 96  | SP101_SPET<br>11_3075_31<br>03_F      | GATGACTTTAGCTAA<br>TGGTCAGGCAGC     | 301 | SP101_SPET1<br>1_3168_3196<br>R      | AATCGACGACCATCTTGG<br>AAGATTTCTC    | 656 |
| 438 | SP101_SPET                            | TGATGACTTTAGCTA                     | 302 | SP101_SPET1                          | TAATCGACGACCACTCTGG                 | 657 |

|     |                                       |                                       |     |                                       |                                     |     |
|-----|---------------------------------------|---------------------------------------|-----|---------------------------------------|-------------------------------------|-----|
|     | 11_3075_31<br>03 TMOD_F               | ATGGTCAGGCAGC                         |     | 1_3168_3196<br>TMOD_R                 | AAAGATTTCTC                         |     |
| 448 | SP101_SPET<br>11_3085_31<br>04_F      | TAGCTAATGGTCAGGCA<br>GCC              | 303 | SP101_SPET1<br>1_3170_3194<br>R       | TCCGACGACCATCTTGGAAA<br>GATTTC      | 658 |
| 79  | SP101_SPET<br>11_322_344<br>F         | GTCBARGTGGCACGTT<br>ACTGGC            | 304 | SP101_SPET1<br>1_423_441_R            | ATCCCCCTGCTTCGCTGCC                 | 665 |
| 439 | SP101_SPET<br>11_322_344<br>TMOD_F    | TGTCAAAGTGGCACGTT<br>TACITGGC         | 305 | SP101_SPET1<br>1_423_441_T<br>MOD_R   | TATCCCCCTGCTTCGCTGCC                | 666 |
| 97  | SP101_SPET<br>11_3386_34<br>03 TMOD_F | AGCGTAJAGGTGAACCT<br>T                | 306 | SP101_SPET1<br>1_3460_3506<br>R       | CCACGAGTACTGTCCCC<br>CATCTTTG       | 659 |
| 440 | SP101_SPET<br>11_3386_34<br>03 TMOD_F | TAGCGTAJAGGTGAACCC<br>TT              | 307 | SP101_SPET1<br>1_3460_3506<br>TMOD_R  | TCCAGCAGTTACTGTCCCC<br>TCATCTTG     | 660 |
| 98  | SP101_SPET<br>11_3511_35<br>35_F      | GCTTCAGGAATCAATGA<br>TGGAGCG          | 308 | SP101_SPET1<br>1_3605_3629<br>R       | GGGTCTACACCTGCACTG<br>CATACAC       | 663 |
| 441 | SP101_SPET<br>11_3511_35<br>35 TMOD_F | TGCTTCAGGAATCAATG<br>ATGGAGCG         | 309 | SP101_SPET1<br>1_3605_3629<br>TMOD_R  | TGGGTCTACACCTGCACTT<br>GCATAAC      | 664 |
| 80  | SP101_SPET<br>11_358_387<br>F         | GGGGATTCAGGCCATCRA<br>AACGAGCTATTGAC  | 310 | SP101_SPET1<br>1_448_473_R            | CCAACCTTTCCACRACAG<br>AATCAGC       | 668 |
| 442 | SP101_SPET<br>11_358_387<br>TMOD_F    | TGGGGATTTCAGGCCATCA<br>AACGAGCTATTGAC | 311 | SP101_SPET1<br>1_448_473_T<br>MOD_R   | TCCACCTTTCCACRACAG<br>GAATCAGC      | 669 |
| 447 | SP101_SPET<br>11_364_385<br>F         | TCAACCATCAAAGCAGC<br>TATTG            | 312 | SP101_SPET1<br>1_448_471_R            | TACCTTTTCCACACAGAA<br>TCAGC         | 667 |
| 81  | SP101_SPET<br>11_600_629<br>F         | CCTTACTTCGACTATAG<br>AATCTTTTGGAG     | 313 | SP101_SPET1<br>1_686_714_R            | CCCATTTTTCCACGCCATGC<br>TGAATAATTC  | 670 |
| 443 | SP101_SPET<br>11_600_629<br>TMOD_F    | TCTCTACTTCGAACTAT<br>GAATCTTTGGAG     | 314 | SP101_SPET1<br>1_686_714_T<br>MOD_R   | TCCCCATTTCACGCCATG<br>CTGAAATAATTC  | 671 |
| 82  | SP101_SPET<br>11_658_684<br>F         | GGGGATGTGATATCACCG<br>ATAAGAAGAA      | 315 | SP101_SPET1<br>1_756_784_R            | GATTGGCGATAAAGTGATA<br>TTTTCTAAAA   | 672 |
| 444 | SP101_SPET<br>11_658_684<br>TMOD_F    | TGGGGATTGATATCACC<br>GTAAGAAGAA       | 316 | SP101_SPET1<br>1_756_784_T<br>MOD_R   | TGATTGGCGATAAAGTGATA<br>TTTTCTAAAA  | 673 |
| 83  | SP101_SPET<br>11_776_801<br>F         | TGCCCACATCAACACTAA<br>GGGANNTGGC      | 317 | SP101_SPET1<br>1_871_896_R            | GCCCCACAGAAAGRCTAGC<br>AGGATAAA     | 674 |
| 445 | SP101_SPET<br>11_776_801<br>TMOD_F    | TTCCGCAACATCAACACTA<br>AGGGAAATGGC    | 318 | SP101_SPET1<br>1_871_896_T<br>MOD_R   | TGCCACACGAAAGACTAG<br>CAGGATAAA     | 675 |
| 84  | SP101_SPET<br>11_893_921<br>F         | GGGCACAGCAGCGGGAT<br>TGGCATTGGCGC     | 319 | SP101_SPET1<br>1_988_1012_R           | CATGCACAGCAAGRCCTCA<br>CCCCACC      | 678 |
| 423 | SP101_SPET<br>11_893_921<br>TMOD_F    | TGGCACAACAGCAGCGGA<br>TTGGCATGGCGC    | 320 | SP101_SPET1<br>1_988_1012_T<br>TMOD_R | TCAAGNCAGCCAGACCTC<br>ACCCACCC      | 679 |
| 706 | SSPE_BA_11<br>4_137_F                 | TCAAGCAACAGCACAACT<br>CAGAGNC         | 321 | SSPE_BA_196<br>222_R                  | TTGCACGCTGTGTTCAAGTT<br>GCAAAATTC   | 683 |
| 612 | SSPE_BA_11<br>4_137_F                 | TCAAGCAACAGCACAC<br>U'AGAAAGC         | 321 | SSPE_BA_196<br>222P_R                 | TTGCACGCTGTGTTCAAGTT<br>TGCACAAATTC | 684 |
| 58  | SSPE_BA_11<br>5_137_F                 | CAACCAACGCCAACATC<br>AGAGNC           | 322 | SSPE_BA_197<br>222_R                  | TGACAGCTGTGTTCAAGTT<br>CAAAATTC     | 685 |
| 355 | SSPE_BA_11<br>5_137_TMOD_F            | TCAAGCAACAGCACAACT<br>CAGAGNC         | 321 | SSPE_BA_197<br>222_TMOD_R             | TTGCACGCTGTGTTCAAGTT<br>GCAAAATTC   | 687 |
| 215 | SSPE_BA_12<br>1_137_F                 | ANCCACAATCAGAACG<br>AGACGC            | 323 | SSPE_BA_197<br>216_R                  | TCAGTTTCAGTTGCAAAATTC<br>C          | 685 |
| 699 | SSPE_BA_12<br>3_153_F                 | TGCAACATCAGAACGCTA<br>AGAAGCGCGAAC    | 324 | SSPE_BA_202<br>231_R                  | TTTCACAGCATGCACGCT<br>GTTTCAGTTGC   | 688 |
| 704 | SSPE_BA_14<br>6_168_F                 | TGCACGCTTCGGCT<br>AGCATT              | 325 | SSPE_BA_242<br>267_R                  | TTTGATGATTTGGCAGCT<br>GATTGTTG      | 689 |
| 702 | SSPE_BA_15<br>0_168_F                 | TGCTTCCTGGCTAGCA<br>TT                | 326 | SSPE_BA_243<br>264_R                  | TGATTTGTTTGGCAGCTGAT<br>TGT         | 691 |
| 610 | SSPE_BA_15<br>0_168_F                 | TGCTTCCTGGC'GU'CAG<br>U'ATT           | 326 | SSPE_BA_243<br>264P_R                 | TGATTTGTTTGGCAGCT<br>C'C'GT         | 691 |

|      | SSPE BA_15<br>6_168_F             | TGGTGCCTAGCATT                    | 327 | SSPE BA_243<br>255_R              | TCCAGCTGATTGT                      | 690 |
|------|-----------------------------------|-----------------------------------|-----|-----------------------------------|------------------------------------|-----|
| 700  | SSPE BA_15<br>6_168_F             | TGGC"GU'C"AGU'ATT                 | 327 | SSPE BA_243<br>255_R              | TGU"AGU"TGAC"C"GT                  | 690 |
| 608  | SSPE BA_63<br>89_F                | TGCTAGTTAAGTACAG<br>AGTTGCCAC     | 328 | SSPE BA_163<br>191_R              | TCAATRACTACCATTTGTC<br>TTTGAATGCT  | 682 |
| 705  | SSPE BA_72<br>89_F                | TGGTACAGAGTTTGCAGA<br>C           | 329 | SSPE BA_163<br>182_R              | TCAATTGCTCTTGTGATTC<br>T           | 681 |
| 703  | SSPE BA_72<br>89_F                | TGGTAAU"AGAGC'C'C'G<br>U"GAC      | 329 | SSPE BA_163<br>182_P_R            | TCAATTGTYGCC'C'C'GAAC<br>"GU"      | 681 |
| 611  | SSPE BA_75<br>89_F                | TACAGAGTTGCGAC                    | 330 | SSPE BA_163<br>177_R              | TGTGCTTTGANTGCT                    | 680 |
| 701  | SSPE BA_75<br>89_F                | TACAGAGTTGCGAC                    | 330 | SSPE BA_163<br>177_E_R            | TGTGCC'C'C'GAAC"GU"                | 680 |
| 609  | SSPE BA_75<br>89_F                | TACAGAGTTGCGAC                    | 330 | TOX_VBC_22<br>1_246_R             | TTCAAAACCTTGCTTCGC<br>CAACAA       | 692 |
| 1099 | TOX_VBC_1<br>35_158_E             | TGAGTATTGGCACACG<br>AAAGCGC       | 331 | TOX_VBC_22<br>1_246_R             | TTCAAAACCTTGCTTCGC<br>CAACAA       | 692 |
| 905  | TRPE_AY094<br>355_1064_1<br>06_F  | TCGACCTTGGCAGGRA<br>CTAGAC        | 332 | TRPE_AY0943<br>55_1171_119<br>6_R | TACATCGTTGCCCCRAAG<br>TCAATCA      | 693 |
| 904  | TRPE_AY094<br>355_1278_1<br>303_F | TCAAATGTACAGGTGA<br>AGTGGCTGA     | 333 | TRPE_AY0943<br>55_1392_141<br>8_R | TCCCTTTTACAGGCTCT<br>ACTTCATC      | 694 |
| 903  | TRPE_AY094<br>355_1445_1<br>471_F | TGGATGGCATGGTARA<br>TGGATATGTC    | 334 | TRPE_AY0943<br>55_1551_158<br>0_R | TATTGGGTTTACATCCAC<br>TCAGATTCTGG  | 695 |
| 902  | TRPE_AY094<br>355_1467_1<br>491_F | ATGGTGGATTGCAATCCG<br>TACTTGTG    | 335 | TRPE_AY0943<br>55_1569_159<br>2_R | TGCCCGAGCTTTTATTGG<br>GTTTC        | 696 |
| 906  | TRPE_AY094<br>355_666_68<br>8_F   | GTCATCGGGATACAGA<br>GCAGAG        | 336 | TRPE_AY0943<br>55_769_791<br>R    | TTCJAATGCGGAGGCATA<br>TGTG         | 697 |
| 907  | TRPE_AY094<br>355_757_77<br>6_F   | TGCAAGGGGACCAT<br>ACG             | 337 | TRPE_AY0943<br>55_864_883<br>R    | TGCCAGGTACAACCTGCA<br>T            | 698 |
| 114  | TUFB_EC_22<br>5_251_F             | GGCATATGACACGTAG<br>ATTGCTCTG     | 338 | TUFB_EC_284<br>309_R              | TATAGCACCACCATCTGCA<br>GGCCAC      | 706 |
| 60   | TUFB_EC_23<br>9_259_F             | TTGACTGCCAGGTAC<br>GCTG           | 339 | TUFB_EC_283<br>303_R              | GCCGTCATTTGAGCAGCA<br>CC           | 704 |
| 59   | TUFB_EC_23<br>9_259_F             | TAAGCTGCCAGGACAC<br>GCTG          | 340 | TUFB_EC_283<br>303_R              | GCCGTCATCTGAGCAGCA<br>CC           | 705 |
| 942  | TUFB_EC_25<br>1_278_F             | TGAGCGCCGACATATGTT<br>AAGCANATGAT | 341 | TUFB_EC_337<br>360_R              | TATGIGCTACGGAGTTGC<br>GGCAT        | 707 |
| 941  | TUFB_EC_27<br>5_259_F             | TGATCACTGGGCTGCT<br>CAGATGGA      | 342 | TUFB_EC_337<br>362_R              | TGAGATGCTACAGGCT<br>GTGGCAT        | 708 |
| 117  | TUFB_EC_75<br>7_74_F              | AAAGACGACTGCACGGG<br>C            | 343 | TUFB_EC_849<br>667_R              | GGGTCTACAGCITCTACGC<br>T           | 709 |
| 293  | TUFB_EC_95<br>7_979_F             | CCACACCGCGTTCTCA<br>ACAAT         | 344 | TUFB_EC_103<br>4_1058_TMOD<br>R   | GGCATCACCAATTCTCTGT<br>CCTTCG      | 700 |
| 367  | TUFB_EC_95<br>7_979_TMOD<br>F     | TCCACACGCCGTTCTTC<br>ACAACAT      | 345 | TUFB_EC_103<br>4_1058_TMOD<br>R   | TGGCATCACCAATTCTCTTG<br>CTCTCG     | 701 |
| 62   | TUFB_EC_97<br>6_1000_F            | AACATCCGGCTCAGTT<br>CTACTCTTC     | 346 | TUFB_EC_104<br>5_1068_R           | GTTGTCACCAAGGCTTAC<br>ATTC         | 702 |
| 61   | TUFB_EC_97<br>6_1000_F            | AACATCCGGCTCAGTT<br>CTACTCTTC     | 347 | TUFB_EC_104<br>5_1068_R           | GTTGTCACCAAGGCTTAC<br>ATTC         | 703 |
| 63   | TUFB_EC_98<br>5_1012_F            | CCACAGCTTACTTCCG<br>TACTACTGAGC   | 348 | TUFB_EC_103<br>3_1062_R           | TCCAGGCATTACCATTTCT<br>ACTCCCTCTGG | 699 |
| 225  | VALS_EC_11<br>05_1124_F           | CGWGGCGCCCTGGTTAT<br>CGA          | 349 | VALS_EC_119<br>5_1214_R           | ACGAACTGGATGTCGGT<br>T             | 710 |
| 71   | VALS_EC_11<br>05_1124_F           | CGTGGCGCCGGTGTAT<br>CGA           | 349 | VALS_EC_119<br>5_1214_R           | CGTAGCAGRACTGGATGTC<br>CGGT        | 711 |
| 358  | VALS_EC_11<br>05_1124_TM<br>CD_F  | TGTCGGCGCTGGTTA<br>TCCA           | 350 | VALS_EC_119<br>5_1218_TMOD<br>R   | TCCGTCAGAACCTGGATGTC<br>GCCGT      | 712 |
| 965  | VALS_EC_11<br>28_1151_F           | TATGCTGACCCGACCACT<br>GGACGT      | 351 | VALS_EC_123<br>1_1257_R           | TTCGGCGCATCCAGGAGRAAG<br>TACATGTT  | 713 |
| 112  | VALS_EC_18<br>33_1850_F           | CGACGCCGCTGGCGCTCA<br>C           | 352 | VALS_EC_192<br>0_1943_R           | GGGTTCACAGCTTGTC<br>AGAAG          | 714 |
| 116  | VALS_EC_19<br>20_1943_F           | CTTCCTGCAACAGCTGT<br>GGACGC       | 353 | VALS_EC_194<br>8_1970_R           | TCCGACTTACATCAGCAGA<br>AGCC        | 715 |
| 295  | VALS_EC_61<br>0_649_F             | ACGGACCAJAGGAGACCA<br>GC          | 354 | VALS_EC_705<br>727_R              | TATACCGCACATCGTCAGG<br>GTGA        | 716 |
| 931  | WAIAA_Z9692<br>5_229_F            | TCTTCGCTTTCGAG<br>TTCAGTAAATG     | 355 | WAIAA_Z96925<br>115_138_R         | CARGCGGTTTGCTCRAAT<br>AGTC         | 717 |
| 932  | WAIAA_Z9692<br>5_229_F            | TGCGATCTGCTTGTACGC<br>C           | 356 | WAIAA_Z96925<br>115_138_R         | TGGCAGCGGCTGACCTGT                 | 718 |

|  |             |           |  |            |  |  |
|--|-------------|-----------|--|------------|--|--|
|  | 5_286_311_F | TGTTTCAGT |  | _394_412_R |  |  |
|--|-------------|-----------|--|------------|--|--|

[0095] Primer pair name codes and reference sequences are shown in Table 2. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name includes coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label “no extraction.” Where “no extraction” is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the “Gene Name” column.

Table 2: Primer Name Codes and Reference Sequences

| Primer name code | Gene Name                                                                                                                                   | Organism                                                                       | Reference GenBank gi number | Extracted gene coordinates of gi number                                                        | Extraction or entire gene SEQ ID NO: |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|
| 16S EC           | 16S rRNA (16S ribosomal RNA gene)                                                                                                           | <i>Escherichia coli</i>                                                        | 16127994                    | 4033120..4034661                                                                               | 719                                  |
| 23S EC           | 23S rRNA (23S ribosomal RNA gene)                                                                                                           | <i>Escherichia coli</i>                                                        | 16127994                    | 4166220..4169123                                                                               | 720                                  |
| CAPC BA          | capC (capsule biosynthesis gene)                                                                                                            | <i>Bacillus anthracis</i>                                                      | 6470151                     | Complement (55628..56074)                                                                      | 721                                  |
| CYA BA           | cya (cyclic AMP gene)                                                                                                                       | <i>Bacillus anthracis</i>                                                      | 4094216                     | Complement (154288..156626)                                                                    | 722                                  |
| DNAK EC          | dnaK (chaperone dnaK gene)                                                                                                                  | <i>Escherichia coli</i>                                                        | 16127994                    | 12163..14079                                                                                   | 723                                  |
| GROL EC          | grol (chaperonin grol)                                                                                                                      | <i>Escherichia coli</i>                                                        | 16127994                    | 4368603..4370249                                                                               | 724                                  |
| HflB EC          | hflB (cell division protein peptidase ftsH)                                                                                                 | <i>Escherichia coli</i>                                                        | 16127994                    | Complement (3322645..3324576)                                                                  | 725                                  |
| INFb EC          | infB (protein chain initiation factor infB gene)                                                                                            | <i>Escherichia coli</i>                                                        | 16127994                    | Complement (3310983..3313655)                                                                  | 726                                  |
| LEF BA           | lef (lethal factor)                                                                                                                         | <i>Bacillus anthracis</i>                                                      | 21392688                    | Complement (149357..151786)                                                                    | 727                                  |
| PAG BA           | pag (protective antigen)                                                                                                                    | <i>Bacillus anthracis</i>                                                      | 21392688                    | 143779..146073                                                                                 | 728                                  |
| RPLB EC          | rplB (50S ribosomal protein L2)                                                                                                             | <i>Escherichia coli</i>                                                        | 16127994                    | 3449001..3448180                                                                               | 729                                  |
| RPOB EC          | rpoB (DNA-directed RNA polymerase beta chain)                                                                                               | <i>Escherichia coli</i>                                                        | 6127994                     | Complement 4178823..4182851                                                                    | 730                                  |
| RPCC EC          | rpoC (DNA-directed RNA polymerase beta' chain)                                                                                              | <i>Escherichia coli</i>                                                        | 16127994                    | 4182928..4187151                                                                               | 731                                  |
| SP101ET_SFET_1   | Concatenation comprising:<br>gki (glucose kinase)<br>gtr (glutamine transporter protein)<br>muri (glutamate racemase)<br>mutS (DNA mismatch | Artificial Sequence* - partial gene sequences of <i>Streptococcus pyogenes</i> | 15674250                    | Complement (1258294..1258791)<br>complement (1236751..1237200)<br>312732..313169<br>Complement | 732                                  |

|                   |                                                                                                                                                     |                                                                                              |          |                                                                                    |            |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|------------|
|                   | repair protein)<br>xpt (xanthine<br>phosphoribosyl<br>transferase)<br><br>wglL (acetyl-CoA-<br>acetyl<br>transferase)<br><br>tkt<br>(transketolase) |                                                                                              |          | (1787602..1788007)<br>930977..931425<br><br>129471..129903<br><br>1391844..1391386 |            |
| SSPE_BA           | sspE (small acid-<br>soluble<br>spore<br>protein)                                                                                                   | <i>Bacillus<br/>anthracis</i>                                                                | 30253828 | 226496..226783                                                                     | 733        |
| TUFB_RC           | tufB (Elongation<br>factor Tu)                                                                                                                      | <i>Escherichia<br/>coli</i>                                                                  | 16127994 | 4173523..4174707<br>Complement<br>(4481405..4478550)                               | 734<br>735 |
| VALS_EC           | wals (Valyl-tRNA<br>synthetase)                                                                                                                     | <i>Escherichia<br/>coli</i>                                                                  | 16127994 | complement (1946777..<br>1948546)                                                  | 736        |
| ASPS_EC           | aspS (Aspartyl-<br>tRNA synthetase)                                                                                                                 | <i>Escherichia<br/>coli</i>                                                                  | 16127994 | No extraction -<br>GenBank coordinates<br>used                                     | -          |
| CAF1_AF<br>053947 | caf1 (capsular<br>protein caf1)                                                                                                                     | <i>Yersinia<br/>pestis</i>                                                                   | 2996286  | No extraction -<br>GenBank coordinates<br>used                                     | -          |
| INV_U22<br>457    | inv (invasin)                                                                                                                                       | <i>Yersinia<br/>pestis</i>                                                                   | 1256565  | 74..3772                                                                           | 737        |
| LL_NC00<br>3143   | y. pestis specific<br>chromosomal genes<br>- difference<br>region                                                                                   | <i>Yersinia<br/>pestis</i>                                                                   | 16120353 | No extraction -<br>GenBank coordinates<br>used                                     | -          |
| BONTA_X<br>52056  | BoNT/A (neurotoxin<br>type A)                                                                                                                       | <i>Clostridium<br/>botulinum</i>                                                             | 40381    | 77..3967                                                                           | 738        |
| Meca_Y1<br>4051   | meca methicillin<br>resistance gene                                                                                                                 | <i>Staphylococcus<br/>aureus</i>                                                             | 2791983  | No extraction -<br>GenBank coordinates<br>used                                     | 739        |
| TRPE_AY<br>094355 | trpE (anthranilate<br>synthase (large<br>component))                                                                                                | <i>Acinetobacter<br/>baumannii</i>                                                           | 20853695 | No extraction -<br>GenBank coordinates<br>used                                     | -          |
| RECA_AF<br>251469 | recA (recombinase<br>A)                                                                                                                             | <i>Acinetobacter<br/>baumannii</i>                                                           | 9965210  | No extraction -<br>GenBank coordinates<br>used                                     | 740        |
| GYRA_AF<br>100557 | gyrA (DNA gyrase<br>subunit A)                                                                                                                      | <i>Acinetobacter<br/>baumannii</i>                                                           | 4240540  | No extraction -<br>GenBank coordinates<br>used                                     | 741        |
| GYRB_AB<br>008700 | gyrB (DNA gyrase<br>subunit B)                                                                                                                      | <i>Acinetobacter<br/>baumannii</i>                                                           | 4514436  | No extraction -<br>GenBank coordinates<br>used                                     | 742        |
| WAAA_Z9<br>6925   | waaB (3'-deoxy-D-<br>manno-octulosonic-<br>acid transferase)                                                                                        | <i>Acinetobacter<br/>baumannii</i>                                                           | 2765828  | No extraction -<br>GenBank coordinates<br>used                                     | 743        |
| CJST_CJ           | Concatenation<br>comprising:                                                                                                                        |                                                                                              |          |                                                                                    |            |
|                   | tkt<br>(transketolase)                                                                                                                              | Artificial<br>Sequence* -<br>partial gene<br>sequences of<br><i>Campylobacter<br/>jejuni</i> |          | 1569415..1569873                                                                   |            |
|                   | glyA (serine<br>hydroxymethyltrans<br>ferase)                                                                                                       |                                                                                              | 15791399 | 367573..368079                                                                     |            |
|                   | gltA (citrate<br>synthase)                                                                                                                          |                                                                                              |          | complement<br>(1604529..1604930)                                                   |            |
|                   | aspA (aspartate<br>ammonia lyase)                                                                                                                   |                                                                                              |          | 96692..97168                                                                       | 745        |
|                   | glnA (glutamine<br>synthase)                                                                                                                        |                                                                                              |          | complement<br>(657609..658085)                                                     |            |
|                   | pgm<br>(phosphoglycerate<br>mutase)                                                                                                                 |                                                                                              |          | 327773..328270                                                                     |            |

|                |                                            |                                                                          |          |                               |     |
|----------------|--------------------------------------------|--------------------------------------------------------------------------|----------|-------------------------------|-----|
|                | uncA (ATP synthetase alpha chain)          |                                                                          |          | 112163..112651                |     |
| RNASEP_RDP     | RNAse (ribonuclease P)                     | P <i>Bordetella pertussis</i>                                            | 33591275 | Complement (3226720..3227933) | 746 |
| RNASEP_BRM     | RNAse (ribonuclease P)                     | P <i>Burkholderia mallei</i>                                             | 53723370 | Complement (2527296..2528220) | 747 |
| RNASEP_BS      | RNAse (ribonuclease P)                     | P <i>Bacillus subtilis</i>                                               | 16077068 | Complement (2330250..2330962) | 748 |
| RNASEP_CLB     | RNAse (ribonuclease P)                     | P <i>Clostridium perfringens</i>                                         | 18306982 | Complement (229757..2292584)  | 749 |
| RNASEP_EC      | RNAse (ribonuclease P)                     | P <i>Escherichia coli</i>                                                | 16127994 | Complement (3267457..3268233) | 750 |
| RNASEP_RKP     | RNAse (ribonuclease P)                     | P <i>Rickettsia prowazekii</i>                                           | 15603801 | complement(605276..6 06109)   | 751 |
| RNASEP_SA      | RNAse (ribonuclease P)                     | P <i>Staphylococcus aureus</i>                                           | 15922990 | complement(1559869.. 1560651) | 752 |
| RNASEP_VBC     | RNAse (ribonuclease P)                     | P <i>Vibrio cholerae</i>                                                 | 15640032 | complement(2580367.. 2581452) | 753 |
| ICD_CXB        | icd (isocitrate dehydrogenase)             | Coxiella burnetii                                                        | 29732244 | complement(1143867.. 1144235) | 754 |
| IS1111A        | multi-locus IS1111 insertion element       | Acinetobacter baumannii                                                  | 29732244 | No extraction                 | -   |
| CMPA_AY_485227 | ompA (outer membrane protein A)            | Rickettsia prowazekii                                                    | 40287451 | No extraction                 | 755 |
| CMPB_RK_P      | ompB (outer membrane protein B)            | Rickettsia prowazekii                                                    | 15603801 | complement(881264..8 86195)   | 756 |
| GLTA_RK_P      | gltA (citrate synthase)                    | Vibrio cholerae                                                          | 15603801 | complement(1062547.. 1063857) | 757 |
| TCXR_VB_C      | toxR (transcription regulator toxR)        | Francisella tularensis                                                   | 15640032 | complement(1047143.. 1048024) | 758 |
| ASD_FRT        | asd (Aspartate semialdehyde dehydrogenase) | Francisella tularensis                                                   | 56707187 | complement(438608..4 39702)   | 759 |
| GALE_FR_T      | gale (UDG-glucose 4-epimerase)             | Shigella flexneri                                                        | 56707187 | 809039..810058                | 760 |
| IPAH_SG_F      | ipah (invasion plasmid antigen)            | Campylobacter jejuni                                                     | 30061571 | 2210775..2211614              | 761 |
| HUPB_CJ        | hupB (DNA-binding protein Hu-beta)         | Coxiella burnetii                                                        | 15791399 | complement(849317..8 49819)   | 762 |
| AB_MLST        | Concatenation comprising :                 | Artificial Sequence* - partial gene sequences of Acinetobacter baumannii |          |                               | 763 |
|                | trpB (anthranilate synthase Component I))  |                                                                          |          |                               |     |
|                | adk (adenylate kinase)                     |                                                                          |          |                               |     |
|                | mutX (adenine glycosylase)                 |                                                                          |          |                               |     |
|                | fumC (fumarate hydratase)                  |                                                                          |          |                               |     |
|                | efp (elongation factor p)                  |                                                                          |          |                               |     |
|                | ppa (pyrophosphate phospho-hydrolase)      |                                                                          |          |                               |     |
|                |                                            |                                                                          | -        | Sequenced in-house            |     |

[0096] \* Note: These artificial reference sequences represent concatenations of partial gene extractions from the indicated reference genome number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design. The stretches of arbitrary residues "N"s were added for the convenience of separation of the partial gene extractions (100N for SP101\_SPET11 (SEQ ID NO: 732); 50N for CJST\_CJ (SEQ ID NO: 745); and 40N for AB\_MLST (SEQ ID NO: 763)).

**[0097] Example 2: DNA isolation and Amplification**

[0098] Genomic materials from culture samples or swabs were prepared using the DNeasy<sup>®</sup> 96 Tissue Kit (Qiagen, Valencia, CA). All PCR reactions are assembled in 50 µl reactions in the 96 well microtiter plate format using a Packard MPII liquid handling robotic platform and MJ Dyad<sup>®</sup> thermocyclers (MJ research, Waltham, MA). The PCR reaction consisted of 4 units of AmpliTaq Gold<sup>®</sup>, 1x buffer II (Applied Biosystems, Foster City, CA), 1.5 mM MgCl<sub>2</sub>, 0.4 M betaine, 800 µM dNTP mix, and 250 nM of each primer.

[0099] The following PCR conditions were used to amplify the sequences used for mass spectrometry analysis: 95C for 10 minutes followed by 8 cycles of 95C for 30 seconds, 48C for 30 seconds, and 72C for 30 seconds, with the 48C annealing temperature increased 0.9C after each cycle. The PCR was then continued for 37 additional cycles of 95C for 15 seconds, 56C for 20 seconds, and 72C for 20 seconds.

**[0100] Example 3: Solution Capture Purification of PCR Products for Mass Spectrometry with Ion Exchange Resin-Magnetic Beads**

[0101] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, 25 µl of a 2.5 mg/mL suspension of BioClone amine terminated supraparamagnetic beads were added to 25 to 50 µl of a PCR reaction containing approximately 10 pM of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed 3x with 50mM ammonium bicarbonate/50% MeOH or 100mM ammonium bicarbonate/50% MeOH, followed by three more washes with 50% MeOH. The bound PCR amplicon was eluted with 25mM piperidine, 25mM imidazole, 35% MeOH, plus peptide calibration standards.

**[0102] Example 4: Mass Spectrometry and Base Composition Analysis**

[0103] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, MA) Apex II 70e electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus, components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 µl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autosampler (LEAP Technologies, Carrboro, NC) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl /hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, CT) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capillary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A counter-current flow of dry N<sub>2</sub> was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles > 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signal-to-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[0104] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOF™. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOF™ ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source. Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve ionization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 µs.

[0105] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equilibration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[0106] Raw mass spectra were post-calibrated with an internal mass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well for the ribosomal DNA-targeted primers and 100 molecules per well for the protein-encoding gene targets. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Serial No. 60/545,425.

**[0107] Example 5: *De Novo* Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosphates**

[0108] Because the molecular masses of the four natural nucleobases have a relatively narrow molecular mass range ( $A = 313.058$ ,  $G = 329.052$ ,  $C = 289.046$ ,  $T = 304.046$  – See Table 3), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands is  $G \leftrightarrow A$  (-15.994) combined with  $C \leftrightarrow T$  (+15.000). For example, one 99-mer nucleic acid strand having a base composition of  $A_{27}G_{30}C_{21}T_{21}$  has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of  $A_{26}G_{31}C_{22}T_{20}$  has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a

molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

[0109] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged nucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).

[0110] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the G ↔ A combined with C ↔ T event (Table 3). Thus, the same the G ↔ A (-15.994) event combined with 5-Iodo-C ↔ T (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the base composition A<sub>27</sub>G<sub>30</sub>**5-Iodo-C<sub>21</sub>T<sub>21</sub>** (33422.958) is compared with A<sub>26</sub>G<sub>31</sub>**5-Iodo-C<sub>22</sub>T<sub>20</sub>**, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is A<sub>27</sub>G<sub>30</sub>**5-Iodo-C<sub>21</sub>T<sub>21</sub>**. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

**Table 3: Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions**

| Nucleobase | Molecular Mass | Transition           | Δ Molecular Mass |
|------------|----------------|----------------------|------------------|
| A          | 313.058        | A-->T                | -9.012           |
| A          | 313.058        | A-->C                | -24.012          |
| A          | 313.058        | A--> <b>5-Iodo-C</b> | 101.898          |
| A          | 313.058        | A-->G                | 15.994           |
| T          | 304.046        | T-->A                | 9.012            |
| T          | 304.046        | T-->C                | -15.000          |
| T          | 304.046        | T--> <b>5-Iodo-C</b> | 110.900          |
| T          | 304.046        | T-->G                | 25.006           |
| C          | 289.046        | C-->A                | 24.012           |
| C          | 289.046        | C-->T                | 15.000           |
| C          | 289.046        | C-->G                | 40.006           |

|          |         |              |          |
|----------|---------|--------------|----------|
| 5-Iodo-C | 414.946 | 5-Iodo-C-->A | -101.888 |
| 5-Iodo-C | 414.946 | 5-Iodo-C-->T | -110.900 |
| 5-Iodo-C | 414.946 | 5-Iodo-C-->G | -85.894  |
| G        | 329.052 | G-->A        | -15.994  |
| G        | 329.052 | G-->T        | -25.006  |
| G        | 329.052 | G-->C        | -40.006  |
| G        | 329.052 | G-->5-Iodo-C | 85.894   |

[0111] Example 6: Data Processing

[0112] Mass spectra of bioagent identifying amplicons are analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the input to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[0113] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probability-of-false-alarm plots for conditions involving complex backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of *a priori* expectations of signal values given the set of primers used for each of the bioagents. A genomic sequence database is used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted. The maximum likelihood process is applied to this “cleaned up” data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[0114] The amplitudes of all base compositions of bioagent identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of molecules of each base composition contained in the spectra. The quantity of amplification product

corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

**[0115] Example 7: Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation**

**[0116]** This investigation employed a set of 16 primer pairs which is herein designated the "surveillance primer set" and comprises broad range survey primer pairs, division wide primer pairs and a single *Bacillus* clade primer pair. The surveillance primer set is shown in Table 4 and consists of primer pairs originally listed in Table 1. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row. Primer pair 449 (non-T modified) has been modified twice. Its predecessors are primer pairs 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

**Table 4: Bacterial Primer Pairs of the Surveillance Primer Set**

| Primer Pair No. | Forward Primer Name      | Forward Primer (SEQ ID NO:) | Reverse Primer Name      | Reverse Primer (SEQ ID NO:) | Target Gene |
|-----------------|--------------------------|-----------------------------|--------------------------|-----------------------------|-------------|
| 346             | 16S_EC_713_732_TMOD_F    | 27                          | 16S_EC_789_809_TMOD_R    | 389                         | 16S rRNA    |
| 10              | 16S_EC_713_732_F         | 26                          | 16S_EC_789_809           | 388                         | 16S rRNA    |
| 347             | 16S_EC_785_806_TMOD_F    | 30                          | 16S_EC_880_897_TMOD_R    | 392                         | 16S rRNA    |
| 11              | 16S_EC_785_806_F         | 29                          | 16S_EC_880_897_R         | 391                         | 16S rRNA    |
| 348             | 16S_EC_960_981_TMOD_F    | 38                          | 16S_EC_1054_1073_TMOD_R  | 363                         | 16S rRNA    |
| 14              | 16S_EC_960_981_F         | 37                          | 16S_EC_1054_1073_R       | 362                         | 16S rRNA    |
| 349             | 23S_EC_1826_1843_TMOD_F  | 49                          | 23S_EC_1906_1924_TMOD_R  | 405                         | 23S rRNA    |
| 16              | 23S_EC_1826_1843_F       | 48                          | 23S_EC_1906_1924_R       | 404                         | 23S rRNA    |
| 352             | INFb_EC_1365_1393_TMOD_F | 161                         | INFb_EC_1439_1467_TMOD_R | 516                         | infB        |
| 34              | INFb_EC_1365_1393_F      | 160                         | INFb_EC_1439_1467_R      | 515                         | infB        |
| 354             | RPOC_EC_2218_2241_TMOD_F | 262                         | RPOC_EC_2313_2337_TMOD_R | 625                         | rpoC        |
| 52              | RPOC_EC_2218_2241_F      | 261                         | RPOC_EC_2313_2337_R      | 624                         | rpoC        |
| 355             | SSPE_BA_115_137_TMOD_F   | 321                         | SSPE_BA_197_222_TMOD_R   | 687                         | sspe        |
| 58              | SSPE_BA_115_137_F        | 322                         | SSPE_BA_197_222_R        | 686                         | sspe        |
| 356             | RPLB_EC_650_679_TMOD_F   | 232                         | RPLB_EC_739_762_TMOD_R   | 592                         | rplB        |
| 66              | RPLB_EC_650_679_F        | 231                         | RPLB_EC_739_762_R        | 591                         | rplB        |
| 358             | VALS_EC_1105_1124_TMOD_F | 350                         | VALS_EC_1195_1218_TMOD_R | 712                         | valS        |
| 71              | VALS_EC_1105_1124_F      | 349                         | VALS_EC_1195_1218_R      | 711                         | valS        |
| 359             | RPOB_EC_1645_1666_TMOD_F | 241                         | RPOB_EC_1909_1929_TMOD_R | 597                         | rpoB        |
| 72              | RPOB_EC_1845_1866_F      | 240                         | RPOB_EC_1909_1929_R      | 596                         | rpoB        |
| 360             | 23S_EC_2646_2667_TMOD_F  | 60                          | 23S_EC_2745_2765_TMOD_R  | 416                         | 23S rRNA    |
| 118             | 23S_EC_2646_2667_F       | 59                          | 23S_EC_2745_2765_R       | 415                         | 23S rRNA    |
| 17              | 23S_EC_2645_2669_F       | 58                          | 23S_EC_2744_2761_R       | 414                         | 23S rRNA    |

|     |                           |     |                          |     |          |
|-----|---------------------------|-----|--------------------------|-----|----------|
| 361 | 16S_EC_1090_1111_2_TMOD_F | 5   | 16S_EC_1175_1196_TMOD_R  | 370 | 16S rRNA |
| 3   | 16S EC 1090 1111 2 F      | 6   | 16S EC 1175 1196 R       | 369 | 16S rRNA |
| 362 | RPOB_EC_3799_3821_TMOD_F  | 245 | RPOB_EC_3862_3888_TMOD_R | 603 | rpoB     |
| 289 | RPOB EC 3799 3821 F       | 246 | RPOB EC 3862 3888 R      | 602 | rpoB     |
| 363 | RPOC_EC_2146_2174_TMOD_F  | 257 | RPOC_EC_2227_2245_TMOD_R | 621 | rpoC     |
| 290 | RPOC EC 2146 2174 F       | 256 | RPOC EC 2227 2245 R      | 620 | rpoC     |
| 367 | TUFB_EC_957_979_TMOD_F    | 345 | TUFB_EC_1034_1058_TMOD_R | 701 | tufB     |
| 293 | TUFB EC 957 979 F         | 344 | TUFB EC 1034 1058 R      | 700 | tufB     |
| 449 | RPLB_EC_690_710_P         | 237 | RPLB_EC_737_758_R        | 589 | rplB     |
| 357 | RPLB_EC_688_710_TMOD_F    | 236 | RPLB_EC_736_757_TMOD_R   | 588 | rplB     |
| 67  | RPLB EC 688 710 F         | 235 | RPLB EC 736 757 R        | 587 | rplB     |

[0117] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from *Streptococcus pyogenes* can be amplified by nine of the sixteen surveillance primer pairs and *Streptococcus pneumoniae* can be amplified by ten of the sixteen surveillance primer pairs. The base compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[0118] *Bacillus anthracis* is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of *Bacillus anthracis*, additional drill-down analysis primers were designed to target genes present on virulence plasmids of *Bacillus anthracis* so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 1 and 5. In Table 5 the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which

constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row.

**Table 5: Drill-Down Primer Pairs for Confirmation of Identification of *Bacillus anthracis***

| Primer Pair No. | Forward Primer Name     | Forward Primer (SEQ ID NO:) | Reverse Primer Name     | Reverse Primer (SEQ ID NO:) | Target Gene |
|-----------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------|
| 350             | CAPC_BA_274_303_TMOD_F  | 98                          | CAPC_BA_349_376_TMOD_R  | 452                         | capC        |
| 24              | CAPC_BA_274_303_F       | 97                          | CAPC_BA_349_376_R       | 451                         | capC        |
| 351             | CYA_BA_1353_1379_TMOD_F | 128                         | CYA_BA_1448_1467_TMOD_R | 483                         | cyaK        |
| 30              | CYA_BA_1353_1379_F      | 127                         | CYA_BA_1448_1467_R      | 482                         | cyaK        |
| 353             | LEF_BA_756_781_TMOD_F   | 175                         | LEF_BA_843_872_TMOD_R   | 531                         | lef         |
| 37              | LEF_BA_756_781_F        | 174                         | LEF_BA_843_872_R        | 530                         | lef         |

[0119] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 4 and the three *Bacillus anthracis* drill-down primers of Table 5 is shown in Figure 3 which lists common pathogenic bacteria. Figure 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of Figure 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for *Chlamydia trachomatis* by amplification with, for example, primer pairs 346-349, 360 and 361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from *Bacillus anthracis* (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon). Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[0120] In Tables 6A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (\*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

**Table 6A – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348**

| Organism                           | Strain                        | Primer 346<br>[A G C T]         | Primer 347<br>[A G C T]         | Primer 348<br>[A G C T]         |
|------------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|
| <i>Klebsiella pneumoniae</i>       | MGH78578                      | [29 32 25 13]<br>[29 31 25 13]* | [23 38 28 26]<br>[23 37 28 26]* | [26 32 28 30]<br>[26 31 28 30]* |
| <i>Yersinia pestis</i>             | CO-92 Biovar Orientalis       | [29 32 25 13]                   | [22 39 28 26]                   | [29 30 28 29]<br>[30 30 27 29]* |
| <i>Yersinia pestis</i>             | KIM5 P12 (Biovar Mediaevalis) | [29 32 25 13]                   | [22 39 28 26]                   | [29 30 28 29]<br>[29 30 28 29]* |
| <i>Yersinia pestis</i>             | 91001                         | [29 32 25 13]                   | [22 39 28 26]                   | [30 30 27 29]*                  |
| <i>Haemophilus influenzae</i>      | KW20                          | [28 31 23 17]                   | [24 37 25 27]                   | [29 30 28 29]                   |
| <i>Pseudomonas aeruginosa</i>      | PAO1                          | [30 31 23 15]                   | [26 36 29 24]<br>[27 36 29 23]* | [26 32 29 29]                   |
| <i>Pseudomonas fluorescens</i>     | PfO-1                         | [30 31 23 15]                   | [26 35 29 25]                   | [28 31 28 29]                   |
| <i>Pseudomonas putida</i>          | KT2440                        | [30 31 23 15]                   | [28 33 27 27]                   | [27 32 29 28]                   |
| <i>Legionella pneumophila</i>      | Philadelphia-1                | [30 30 24 15]                   | [33 33 23 27]                   | [29 28 28 31]                   |
| <i>Francisella tularensis</i>      | schu 4                        | [32 29 22 16]                   | [28 38 26 26]                   | [25 32 28 31]                   |
| <i>Bordetella pertussis</i>        | Tohama I                      | [30 29 24 16]                   | [23 37 30 24]                   | [30 32 30 26]                   |
| <i>Burkholderia cepacia</i>        | J2315                         | [29 29 27 14]                   | [27 32 26 29]                   | [27 36 31 24]<br>[20 42 35 19]* |
| <i>Burkholderia pseudomallei</i>   | K96243                        | [29 29 27 14]                   | [27 32 26 29]                   | [27 36 31 24]                   |
| <i>Neisseria gonorrhoeae</i>       | FA 1090, ATCC 700825          | [29 28 24 18]                   | [27 34 26 28]                   | [24 36 29 27]                   |
| <i>Neisseria meningitidis</i>      | MCS8 (serogroup B)            | [29 28 26 16]                   | [27 34 27 27]                   | [25 35 30 26]                   |
| <i>Neisseria meningitidis</i>      | serogroup C, FAM18            | [29 28 26 16]                   | [27 34 27 27]                   | [25 35 30 26]                   |
| <i>Neisseria meningitidis</i>      | Z2491 (serogroup A)           | [29 28 26 16]                   | [27 34 27 27]                   | [25 35 30 26]                   |
| <i>Chlamydophila pneumoniae</i>    | TW-183                        | [31 27 22 19]                   | NO DATA                         | [32 27 27 29]                   |
| <i>Chlamydophila pneumoniae</i>    | AR39                          | [31 27 22 19]                   | NO DATA                         | [32 27 27 29]                   |
| <i>Chlamydophila pneumoniae</i>    | CWL029                        | [31 27 22 19]                   | NO DATA                         | [32 27 27 29]                   |
| <i>Chlamydophila pneumoniae</i>    | J138                          | [31 27 22 19]                   | NO DATA                         | [32 27 27 29]                   |
| <i>Corynebacterium diphtheriae</i> | NCTC13129                     | [29 34 21 15]                   | [22 38 31 25]                   | [22 33 25 34]                   |
| <i>Mycobacterium avium</i>         | k10                           | [27 36 21 15]                   | [22 37 30 28]                   | [21 36 27 30]                   |
| <i>Mycobacterium avium</i>         | 104                           | [27 36 21 15]                   | [22 37 30 28]                   | [21 36 27 30]                   |
| <i>Mycobacterium tuberculosis</i>  | CSU#93                        | [27 36 21 15]                   | [22 37 30 28]                   | [21 36 27 30]                   |
| <i>Mycobacterium tuberculosis</i>  | CDC 1551                      | [27 36 21 15]                   | [22 37 30 28]                   | [21 36 27 30]                   |
| <i>Mycobacterium tuberculosis</i>  | H37Rv (lab strain)            | [27 36 21 15]                   | [22 37 30 28]                   | [21 36 27 30]                   |
| <i>Mycoplasma pneumoniae</i>       | M129                          | [31 29 19 20]                   | NO DATA                         | NO DATA                         |
| <i>Staphylococcus aureus</i>       | MRSA252                       | [27 30 21 21]                   | [25 35 30 26]                   | [30 29 30 29]<br>[29 31 30 29]* |
| <i>Staphylococcus aureus</i>       | MSSA476                       | [27 30 21 21]                   | [25 35 30 26]                   | [30 29 30 29]<br>[30 29 29 30]* |
| <i>Staphylococcus aureus</i>       | COL                           | [27 30 21 21]                   | [25 35 30 26]                   | [30 29 30 29]<br>[30 29 29 30]* |
| <i>Staphylococcus aureus</i>       | Mu50                          | [27 30 21 21]                   | [25 35 30 26]                   | [30 29 30 29]<br>[30 29 29 30]* |
| <i>Staphylococcus aureus</i>       | MW2                           | [27 30 21 21]                   | [25 35 30 26]                   | [30 29 30 29]<br>[30 29 29 30]* |

|                                 |               |               |                                 |                                 |
|---------------------------------|---------------|---------------|---------------------------------|---------------------------------|
| <i>Staphylococcus aureus</i>    | N315          | [27 30 21 21] | [25 35 30 25]                   | [30 29 30 29]<br>[30 29 29 30]* |
| <i>Staphylococcus aureus</i>    | NCTC 8325     | [27 30 21 21] | [25 35 30 26]<br>[25 35 31 25]* | [30 29 30 29]<br>[30 29 29 30]  |
| <i>Streptococcus agalactiae</i> | NEM316        | [26 32 23 18] | [24 36 31 25]<br>[24 36 30 26]* | [25 32 29 30]                   |
| <i>Streptococcus equi</i>       | NC 002955     | [26 32 23 18] | [23 37 31 25]                   | [29 30 25 32]                   |
| <i>Streptococcus pyogenes</i>   | MGAS8232      | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pyogenes</i>   | MGAS315       | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pyogenes</i>   | SSI-1         | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pyogenes</i>   | MGAS10394     | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pyogenes</i>   | Manfredo (M5) | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pyogenes</i>   | SF370 (M1)    | [26 32 23 18] | [24 37 30 25]                   | [25 31 29 31]                   |
| <i>Streptococcus pneumoniae</i> | 670           | [26 32 23 18] | [25 35 28 28]                   | [25 32 29 30]                   |
| <i>Streptococcus pneumoniae</i> | R6            | [26 32 23 18] | [25 35 28 28]                   | [25 32 29 30]                   |
| <i>Streptococcus pneumoniae</i> | TIGR4         | [26 32 23 18] | [25 35 28 28]                   | [25 32 30 29]                   |
| <i>Streptococcus gordonii</i>   | NCTC7868      | [25 33 23 18] | [24 36 31 25]                   | [25 31 29 31]                   |
| <i>Streptococcus mitis</i>      | NCTC 12261    | [26 32 23 18] | [25 35 30 26]                   | [24 31 35 29]*                  |
| <i>Streptococcus mutans</i>     | UA159         | [24 32 24 19] | [25 37 30 24]                   | [28 31 26 31]                   |

**Table 6B – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356**

| Organism                         | Strain                        | Primer 349<br>[A G C T]         | Primer 360<br>[A G C T]         | Primer 356<br>[A G C T] |
|----------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------|
| <i>Klebsiella pneumoniae</i>     | MGH78578                      | [25 31 25 22]                   | [33 37 25 27]                   | NO DATA                 |
|                                  | CG-92 Biovar                  | [25 31 27 20]<br>[25 32 26 20]* | [34 35 25 28]                   | NO DATA                 |
| <i>Yersinia pestis</i>           | Orientalis                    | [25 32 26 20]*                  | [34 35 25 28]                   | NO DATA                 |
|                                  | KIM5 P12 (Biovar Mediaevalis) | [25 31 27 20]<br>[25 32 26 20]* | [34 35 25 28]                   | NO DATA                 |
| <i>Yersinia pestis</i>           | 91001                         | [25 31 27 20]                   | [34 35 25 28]                   | NO DATA                 |
| <i>Haemophilus influenzae</i>    | KW20                          | [28 28 25 20]                   | [32 38 25 27]                   | NO DATA                 |
| <i>Pseudomonas aeruginosa</i>    | PRO1                          | [24 31 26 20]                   | [31 36 27 27]<br>[31 36 27 28]* | NO DATA                 |
| <i>Pseudomonas fluorescens</i>   | Pf0-1                         | NO DATA                         | [30 37 27 28]<br>[30 37 27 28]  | NO DATA                 |
| <i>Pseudomonas putida</i>        | KT2440                        | [24 31 26 20]                   | [30 37 27 28]                   | NO DATA                 |
| <i>Legionella pneumophila</i>    | Philadelphia-1                | [23 30 25 23]                   | [30 39 29 24]                   | NO DATA                 |
| <i>Francisella tularensis</i>    | schu 4                        | [26 31 25 19]                   | [32 36 27 27]                   | NO DATA                 |
| <i>Bordetella pertussis</i>      | Tohama I                      | [21 29 24 18]                   | [33 36 26 27]                   | NO DATA                 |
| <i>Burkholderia cepacia</i>      | J2315                         | [23 27 22 20]                   | [31 37 28 26]                   | NO DATA                 |
| <i>Burkholderia pseudomallei</i> | K96243                        | [23 27 22 20]                   | [31 37 28 26]                   | NO DATA                 |
| <i>Neisseria gonorrhoeae</i>     | FA 1090, ATCC 700825          | [24 27 24 17]                   | [34 37 25 26]                   | NO DATA                 |
| <i>Neisseria meningitidis</i>    | MC58 (serogroup B)            | [25 27 22 18]                   | [34 37 25 26]                   | NO DATA                 |
| <i>Neisseria meningitidis</i>    | serogroup C, FAM18            | [25 26 23 18]                   | [34 37 25 26]                   | NO DATA                 |
| <i>Neisseria</i>                 | z2491 (serogroup A)           | [25 26 23 18]                   | [34 37 25 26]                   | NO DATA                 |

|                                    |                    |                                 |               |               |
|------------------------------------|--------------------|---------------------------------|---------------|---------------|
| <i>meningitidis</i>                |                    |                                 |               |               |
| <i>Chlamydophila pneumoniae</i>    | TW-183             | [30 28 27 18]                   | NO DATA       | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | AR39               | [30 28 27 18]                   | NO DATA       | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | CWL029             | [30 28 27 18]                   | NO DATA       | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | J138               | [30 28 27 18]                   | NO DATA       | NO DATA       |
| <i>Corynebacterium diphtheriae</i> | NCTC13129          | NO DATA                         | [29 40 28 25] | NO DATA       |
| <i>Mycobacterium avium</i>         | k10                | NO DATA                         | [33 35 32 22] | NO DATA       |
| <i>Mycobacterium avium</i>         | 104                | NO DATA                         | [33 35 32 22] | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | CSU#93             | NO DATA                         | [30 36 34 22] | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | CDC 1551           | NO DATA                         | [30 36 34 22] | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | H37Rv (lab strain) | NO DATA                         | [30 36 34 22] | NO DATA       |
| <i>Mycoplasma pneumoniae</i>       | M129               | [28 30 24 19]                   | [34 31 29 28] | NO DATA       |
| <i>Staphylococcus aureus</i>       | MRSA252            | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | MSSA476            | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | COL                | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | Mu50               | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | MW2                | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | N315               | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Staphylococcus aureus</i>       | NCTC 8325          | [26 30 25 20]                   | [31 38 24 29] | [33 30 31 27] |
| <i>Streptococcus agalactiae</i>    | NEM316             | [28 31 22 20]                   | [33 37 24 28] | [37 30 28 26] |
| <i>Streptococcus equi</i>          | NC 002955          | [28 31 23 19]                   | [33 38 24 27] | [37 31 28 25] |
| <i>Streptococcus pyogenes</i>      | MGAS8232           | [28 31 23 19]                   | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pyogenes</i>      | MGAS315            | [28 31 23 19]                   | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pyogenes</i>      | SSI-1              | [28 31 23 19]                   | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pyogenes</i>      | MGAS10394          | [28 31 23 19]                   | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pyogenes</i>      | Manfredo (M5)      | [28 31 23 19]                   | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pyogenes</i>      | SF370 (M1)         | [28 31 23 19]<br>[28 31 22 20]* | [33 37 24 28] | [38 31 29 23] |
| <i>Streptococcus pneumoniae</i>    | 670                | [28 31 22 20]                   | [34 36 24 28] | [37 30 29 25] |
| <i>Streptococcus pneumoniae</i>    | R6                 | [28 31 22 20]                   | [34 36 24 28] | [37 30 29 25] |
| <i>Streptococcus pneumoniae</i>    | TIGR4              | [28 31 22 20]                   | [34 36 24 28] | [37 30 29 25] |
| <i>Streptococcus gordoni</i>       | NCTC7868           | [28 32 23 20]                   | [34 36 24 28] | [36 31 29 25] |
| <i>Streptococcus mitis</i>         | NCTC 12261         | [28 31 22 20]<br>[29 30 22 20]* | [34 36 24 28] | [37 30 29 25] |
| <i>Streptococcus mutans</i>        | UA159              | [26 32 23 22]                   | [34 37 24 27] | NO DATA       |

**Table 6C – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352**

| Organism                           | Strain               | Primer 449<br>[A G C T] | Primer 354<br>[A G C T] | Primer 352<br>[A G C T] |               |
|------------------------------------|----------------------|-------------------------|-------------------------|-------------------------|---------------|
| <i>Klebsiella pneumoniae</i>       | MGH78578             | NO DATA                 | [27 33 36 26]           | NO DATA                 |               |
| <i>Yersinia pestis</i>             | CO-92<br>Orientalis  | Bicvar                  | NO DATA                 | [29 31 33 29]           | [32 28 20 25] |
| <i>Yersinia pestis</i>             | KIM5<br>Mediaevelis) | P12<br>(Bicvar          | NO DATA                 | [29 31 33 29]           | [32 28 20 25] |
| <i>Yersinia pestis</i>             | 91001                |                         | NO DATA                 | [29 31 33 29]           | NO DATA       |
| <i>Haemophilus influenzae</i>      | KW20                 |                         | NO DATA                 | [30 29 31 32]           | NO DATA       |
| <i>Pseudomonas aeruginosa</i>      | PAO1                 | -                       | NO DATA                 | [26 33 39 24]           | NO DATA       |
| <i>Pseudomonas fluorescens</i>     | PF0-1                |                         | NO DATA                 | [26 33 34 29]           | NO DATA       |
| <i>Pseudomonas putida</i>          | KT2440               |                         | NO DATA                 | [25 34 36 27]           | NO DATA       |
| <i>Legionella pneumophila</i>      | Philadelphia-1       |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Francisella tularensis</i>      | schu 4               |                         | NO DATA                 | [33 32 25 32]           | NO DATA       |
| <i>Bordetella pertussis</i>        | Tohama I             |                         | NO DATA                 | [26 33 39 24]           | NO DATA       |
| <i>Burkholderia cepacia</i>        | J2315                |                         | NO DATA                 | [25 37 33 27]           | NO DATA       |
| <i>Burkholderia pseudomallei</i>   | K96243               |                         | NO DATA                 | [25 37 34 26]           | NO DATA       |
| <i>Neisseria gonorrhoeae</i>       | FA 1090, ATCC 700825 |                         | [17 23 22 10]           | [29 31 32 30]           | NO DATA       |
| <i>Neisseria meningitidis</i>      | MC58 (serogroup B)   |                         | NO DATA                 | [29 30 32 31]           | NO DATA       |
| <i>Neisseria meningitidis</i>      | serogroup C, FAM18   |                         | NO DATA                 | [29 30 32 31]           | NO DATA       |
| <i>Neisseria meningitidis</i>      | Z2491 (serogroup A)  |                         | NO DATA                 | [29 30 32 31]           | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | TW-183               |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | AR39                 |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | CWL029               |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Chlamydophila pneumoniae</i>    | J138                 |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Corynebacterium diphtheriae</i> | NCTC13129            |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycobacterium avium</i>         | k10                  |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycobacterium avium</i>         | 104                  |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | CSU#93               |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | CDC 1551             |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycobacterium tuberculosis</i>  | H37Rv (lab strain)   |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Mycoplasma pneumoniae</i>       | M129                 |                         | NO DATA                 | NO DATA                 | NO DATA       |
| <i>Staphylococcus aureus</i>       | MRS252               |                         | [17 20 21 17]           | [30 27 30 35]           | [36 24 19 26] |
| <i>Staphylococcus aureus</i>       | MSSA476              |                         | [17 20 21 17]           | [30 27 30 35]           | [36 24 19 26] |
| <i>Staphylococcus aureus</i>       | COL                  |                         | [17 20 21 17]           | [30 27 30 35]           | [35 24 19 27] |
| <i>Staphylococcus aureus</i>       | Mu50                 |                         | [17 20 21 17]           | [30 27 30 35]           | [36 24 19 26] |
| <i>Staphylococcus aureus</i>       | MW2                  |                         | [17 20 21 17]           | [30 27 30 35]           | [36 24 19 26] |

|                                 |               |               |               |               |
|---------------------------------|---------------|---------------|---------------|---------------|
| <i>Staphylococcus aureus</i>    | N315          | [17 20 21 17] | [30 27 30 35] | [36 24 19 26] |
| <i>Staphylococcus aureus</i>    | NCTC 8325     | [17 20 21 17] | [30 27 30 35] | [35 24 19 27] |
| <i>Streptococcus agalactiae</i> | NBN316        | [22 20 19 14] | [26 31 27 38] | [29 26 22 28] |
| <i>Streptococcus equi</i>       | NC_002955     | [22 21 19 13] | NO DATA       | NO DATA       |
| <i>Streptococcus pyogenes</i>   | MGAS8232      | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pyogenes</i>   | MGAS315       | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pyogenes</i>   | SSI-1         | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pyogenes</i>   | MGAS10394     | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pyogenes</i>   | Manfredo (M5) | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pyogenes</i>   | SF370 (M1)    | [23 21 19 12] | [24 32 30 36] | NO DATA       |
| <i>Streptococcus pneumoniae</i> | 670           | [22 20 19 14] | [25 33 29 35] | [30 29 21 25] |
| <i>Streptococcus pneumoniae</i> | R6            | [22 20 19 14] | [25 33 29 35] | [30 29 21 25] |
| <i>Streptococcus pneumoniae</i> | TIGR4         | [22 20 19 14] | [25 33 29 35] | [30 29 21 25] |
| <i>Streptococcus gordonii</i>   | NCTC7868      | [21 21 19 14] | NO DATA       | [29 26 22 28] |
| <i>Streptococcus mitis</i>      | NCYC 12261    | [22 20 19 14] | [26 30 32 34] | NO DATA       |
| <i>Streptococcus mutans</i>     | UA159         | NO DATA       | NO DATA       | NO DATA       |

**Table 6D – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359**

| Organism                         | Strain               | Primer 355<br>[A G C T]   | Primer 358<br>[A G C T] | Primer 359<br>[A G C T] |
|----------------------------------|----------------------|---------------------------|-------------------------|-------------------------|
| <i>Klebsiella pneumoniae</i>     | MGB78578             | NO DATA                   | [24 39 33 20]           | [25 21 24 17]           |
| <i>Yersinia pestis</i>           | CO-92                | Biovar Orientalis         | NO DATA                 | [26 34 35 21]           |
| <i>Yersinia pestis</i>           | KIM5                 | F12 (Biovar Mediaevialis) | NO DATA                 | [26 34 35 21]           |
| <i>Yersinia pestis</i>           | 91001                | NO DATA                   | [26 34 35 21]           | [23 23 19 22]           |
| <i>Haemophilus influenzae</i>    | KW20                 | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Pseudomonas aeruginosa</i>    | PAO1                 | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Pseudomonas fluorescens</i>   | Pf0-1                | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Pseudomonas putida</i>        | KT2440               | NO DATA                   | [21 37 37 21]           | NO DATA                 |
| <i>Legionella pneumophila</i>    | Philadelphia-1       | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Francisella tularensis</i>    | schu 4               | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Bordetella pertussis</i>      | Tohama I             | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Burkholderia cepacia</i>      | J2315                | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Burkholderia pseudomallei</i> | K96243               | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Neisseria gonorrhoeae</i>     | FA 1090, ATCC 700825 | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Neisseria meningitidis</i>    | MC58 (serogroup B)   | NO DATA                   | NO DATA                 | NO DATA                 |
| <i>Neisseria meningitidis</i>    | serogroup C, FAM18   | NO DATA                   | NO DATA                 | NO DATA                 |

|                                    |                     |         |         |         |
|------------------------------------|---------------------|---------|---------|---------|
| <i>Neisseria meningitidis</i>      | Z2491 (serogroup A) | NO DATA | NO DATA | NO DATA |
| <i>Chlamydophila pneumoniae</i>    | TN-183              | NO DATA | NO DATA | NO DATA |
| <i>Chlamydophila pneumoniae</i>    | AR39                | NO DATA | NO DATA | NO DATA |
| <i>Chlamydophila pneumoniae</i>    | CWL029              | NO DATA | NO DATA | NO DATA |
| <i>Chlamydophila pneumoniae</i>    | J138                | NO DATA | NO DATA | NO DATA |
| <i>Corynebacterium diphtheriae</i> | NCTC13129           | NO DATA | NO DATA | NO DATA |
| <i>Mycobacterium avium</i>         | k10                 | NO DATA | NO DATA | NO DATA |
| <i>Mycobacterium avium</i>         | 104                 | NO DATA | NO DATA | NO DATA |
| <i>Mycobacterium tuberculosis</i>  | CSU#93              | NO DATA | NO DATA | NO DATA |
| <i>Mycobacterium tuberculosis</i>  | CDC 1551            | NO DATA | NO DATA | NO DATA |
| <i>Mycobacterium tuberculosis</i>  | H37Rv (lab strain)  | NO DATA | NO DATA | NO DATA |
| <i>Mycoplasma pneumoniae</i>       | M129                | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | MRS252              | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | MSSA476             | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | COL                 | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | Mu50                | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | MW2                 | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | N315                | NO DATA | NO DATA | NO DATA |
| <i>Staphylococcus aureus</i>       | NCTC 6325           | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus agalactiae</i>    | NEM316              | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus equi</i>          | NC 002955           | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | MGAS8232            | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | MGAS315             | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | SSI-1               | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | MGAS10394           | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | Manfredo (M5)       | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>      | SF370 (M1)          | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i>    | 670                 | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i>    | R6                  | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i>    | TIGR4               | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus gordonii</i>      | NCTC7860            | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus mitis</i>         | NCTC 12261          | NO DATA | NO DATA | NO DATA |
| <i>Streptococcus mutans</i>        | UA159               | NO DATA | NO DATA | NO DATA |

**Table 6E – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367**

| Organism                           | Strain                        | Primer 362<br>[A G C T] | Primer 363<br>[A G C T] | Primer 367<br>[A G C T] |
|------------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|
| <i>Klebsiella pneumoniae</i>       | MGH78578                      | [21 33 22 16]           | [16 34 26 26]           | NO DATA                 |
| <i>Yersinia pestis</i>             | CO-92 Biovar Orientalis       | [20 34 18 20]           | NO DATA                 | NO DATA                 |
| <i>Yersinia pestis</i>             | KIM5 Pl2 (Biovar Medievialis) | [20 34 18 20]           | NO DATA                 | NO DATA                 |
| <i>Yersinia pestis</i>             | 91001                         | [20 34 18 20]           | NO DATA                 | NO DATA                 |
| <i>Haemophilus influenzae</i>      | KW20                          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Pseudomonas aeruginosa</i>      | PAO1                          | [19 35 21 17]           | [16 36 28 22]           | NO DATA                 |
| <i>Pseudomonas fluorescens</i>     | PF0-1                         | NO DATA                 | [18 35 26 23]           | NO DATA                 |
| <i>Pseudomonas putida</i>          | KT2440                        | NO DATA                 | [16 35 28 23]           | NO DATA                 |
| <i>Legionella pneumophila</i>      | Philadelphia-1                | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Francisella tularensis</i>      | schu 4                        | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Hordeola pertussis</i>          | Tohama I                      | [20 31 24 17]           | [15 34 32 21]           | [26 25 34 19]           |
| <i>Burkholderia cepacia</i>        | J32315                        | [20 33 21 18]           | [15 36 26 25]           | [25 27 32 20]           |
| <i>Burkholderia pseudomallei</i>   | K96243                        | [19 34 19 20]           | [15 37 28 22]           | [25 27 32 20]           |
| <i>Neisseria gonorrhoeae</i>       | FA 1090, ATCC 700825          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Neisseria meningitidis</i>      | MC58 (serogroup B)            | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Neisseria meningitidis</i>      | serogroup C, FAM18            | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Neisseria meningitidis</i>      | Z2491 (serogroup A)           | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Chlamydophila pneumoniae</i>    | TW-183                        | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Chlamydophila pneumoniae</i>    | AR39                          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Chlamydophila pneumoniae</i>    | CWL029                        | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Chlamydophila pneumoniae</i>    | J138                          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Corynebacterium diphtheriae</i> | NCTC13129                     | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Mycobacterium avium</i>         | k10                           | [19 34 23 16]           | NO DATA                 | [24 26 35 19]           |
| <i>Mycobacterium avium</i>         | 104                           | [19 34 23 16]           | NO DATA                 | [24 26 35 19]           |
| <i>Mycobacterium tuberculosis</i>  | CSU#93                        | [19 31 25 17]           | NO DATA                 | [25 25 34 20]           |
| <i>Mycobacterium tuberculosis</i>  | CDC 1551                      | [19 31 24 18]           | NO DATA                 | [25 25 34 20]           |
| <i>Mycobacterium tuberculosis</i>  | H37Rv (lab strain)            | [19 31 24 18]           | NO DATA                 | [25 25 34 20]           |
| <i>Mycoplasma pneumoniae</i>       | M129                          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus aureus</i>       | MRSA252                       | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus aureus</i>       | MSSA476                       | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus aureus</i>       | COL                           | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus aureus</i>       | M150                          | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus aureus</i>       | NW2                           | NO DATA                 | NO DATA                 | NO DATA                 |
| <i>Staphylococcus</i>              | N315                          | NO DATA                 | NO DATA                 | NO DATA                 |

| <i>aureus</i>                   |               |               |         |         |
|---------------------------------|---------------|---------------|---------|---------|
| <i>Staphylococcus aureus</i>    | NCTC 8325     | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus agalactiae</i> | NEM316        | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus equi</i>       | NC 002955     | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | MGAS8232      | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | MGAS315       | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | SSI-1         | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | MGAS10394     | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | Manfredo (M5) | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pyogenes</i>   | SF370 (M1)    | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i> | 670           | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i> | R6            | [20 30 19 23] | NO DATA | NO DATA |
| <i>Streptococcus pneumoniae</i> | TIGR4         | [20 30 19 23] | NO DATA | NO DATA |
| <i>Streptococcus gordonii</i>   | NCTC7868      | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus mitis</i>      | NCTC 12261    | NO DATA       | NO DATA | NO DATA |
| <i>Streptococcus mutans</i>     | UA159         | NO DATA       | NO DATA | NO DATA |

[0121] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to December 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A *Streptococcus* in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A *Streptococcus* colonies. A second set of 15 original patient specimens was taken during the height of this group A *Streptococcus*-associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A *Streptococcus*, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[0122] Pure colonies isolated from group A *Streptococcus*-selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of *Streptococcus pyogenes*. Shown in Figure 4 is a 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair

number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0123] In addition to the identification of *Streptococcus pyogenes*, other potentially pathogenic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOs: 49 and 405) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of *Streptococcus pyogenes* (A27 G32 C24 T18), *Neisseria meningitidis* (A25 G27 C22 T18), and *Haemophilus influenzae* (A 28 G28 C25 T20) (see Figure 5 and Table 6B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U. S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0124] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplicons for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 232;592) primarily amplifies the nucleic acid of members of the classes *Bacilli* and *Clostridia* and is not expected to amplify proteobacteria such as *Neisseria meningitidis* and *Haemophilus influenzae*. As expected, analysis of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of *Neisseria meningitidis* and *Haemophilus influenzae* but does indicate the presence of *Streptococcus pyogenes* (Figures 3 and 6, Table 6B). Thus, these primers or types of primers can confirm the absence of particular bioagents from a sample.

[0125] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most common were *Haemophilus influenzae*, *Neisseria meningitidis*, and *Streptococcus pyogenes*. *Staphylococcus epidermidis*, *Moraxella catarrhalis*, *Corynebacterium pseudodiphtheriticum*, and *Staphylococcus aureus* were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial

flora dominated by multiple, commensal non-beta-hemolytic *Streptococcal* species, including the viridans group *streptococci* (*S. parasanguinis*, *S. vestibularis*, *S. mitis*, *S. oralis* and *S. pneumoniae*; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

[0126] **Example 8: Drill-down Analysis for Determination of emm-Type of *Streptococcus pyogenes* in Epidemic Surveillance**

[0127] As a continuation of the epidemic surveillance investigation of Example 7, determination of sub-species characteristics (genotyping) of *Streptococcus pyogenes*, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. *Infection and Immunity*, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass, from which base composition can be determined, the challenge was to determine whether resolution of *emm* classification of strains of *Streptococcus pyogenes* could be determined.

[0128] An alignment was constructed of concatenated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murl), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqiL)) from each of the 212 previously *emm*-typed strains of *Streptococcus pyogenes*. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of *emm*-type of *Streptococcus pyogenes*. These six primer pairs are displayed in Table 7. This drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row.

**Table 7: Group A *Streptococcus* Drill-Down Primer Pairs**

| Primer Pair No. | Forward Primer Name            | Forward Primer (SEQ ID NO:) | Reverse Primer Name           | Reverse Primer (SEQ ID NO:) | Target Gene |
|-----------------|--------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------|
| 442             | SP101_SPET11_358_387_TMOD_F    | 311                         | SP101_SPET11_448_473_TMOD_R   | €69                         | gki         |
| 80              | SP101_SPET11_358_387_F         | 310                         | SP101_SPET11_448_473_TMOD_R   | €68                         | gki         |
| 443             | SP101_SPET11_600_629_TMOD_F    | 314                         | SP101_SPET11_686_714_TMOD_R   | €71                         | grt         |
| 81              | SP101_SPET11_600_629_F         | 313                         | SP101_SPET11_686_714_R        | €70                         | grt         |
| 426             | SP101_SPET11_1314_133_6_TMOD_F | 278                         | SP101_SPET11_1403_1431_TMOD_R | €33                         | murI        |
| 86              | SP101_SPET11_1314_133_6_F      | 277                         | SP101_SPET11_1403_1431_R      | €32                         | murI        |
| 430             | SP101_SPET11_1807_183_5_TMOD_F | 286                         | SP101_SPET11_1901_1927_TMOD_R | €41                         | mutS        |
| 90              | SP101_SPET11_1807_183_5_F      | 285                         | SP101_SPET11_1901_1927_R      | €40                         | mutS        |
| 438             | SP101_SPET11_3075_310_3_TMOD_F | 302                         | SP101_SPET11_3168_3196_TMOD_R | €57                         | xpt         |
| 96              | SP101_SPET11_3075_310_3_F      | 301                         | SP101_SPET11_3168_3196_R      | €56                         | xpt         |
| 441             | SP101_SPET11_3511_353_5_TMOD_F | 309                         | SP101_SPET11_3605_3629_TMOD_R | €64                         | yqIL        |
| 98              | SP101_SPET11_3511_353_5_F      | 308                         | SP101_SPET11_3605_3629_R      | €63                         | yqIL        |

[0129] The primers of Table 7 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplicons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[0130] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 8A-C rows 1-3), all except three samples were found to represent *emm3*, a Group A *Streptococcus* genotype previously associated with high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 8A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and *emm* types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and *emm* gene sequencing were found to be concordant for the epidemic and historical samples.

**Table 8A: Base Composition Analysis of Bioagent Identifying Amplicons of Group A *Streptococcus* samples from Six Military Installations Obtained with Primer Pair Nos. 426 and 430**

| # of Instances | emm-type by Mass Spectrometry | emm-Gene Sequencing | Location (sample)                    | Year | mutI (Primer Pair No. 426) | mutS (Primer Pair No. 430) |
|----------------|-------------------------------|---------------------|--------------------------------------|------|----------------------------|----------------------------|
| 48             | 3                             | 3                   | MCRD San Diego<br>(Cultured)         | 2002 | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 2              | 6                             | 6                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 28                            | 28                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 15             | 3                             | ND                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 6              | 3                             | 3                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 3              | 5,58                          | 5                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 6              | 6                             | 6                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 11                            | 11                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 3              | 12                            | 12                  |                                      |      | A40 G24 C20 T34            | A38 G26 C24 T33            |
| 1              | 22                            | 22                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 3              | 25,75                         | 75                  | NHRC San Diego-Archive<br>(Cultured) | 2003 | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 4              | 44/61, 82,9                   | 44/61               |                                      |      | A40 G24 C20 T34            | A38 G26 C24 T33            |
| 2              | 53,91                         | 91                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 2                             | 2                   |                                      |      | A39 G25 C20 T34            | A38 G27 C24 T32            |
| 2              | 3                             | 3                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 4                             | 4                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 6                             | 6                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 11             | 25 or 75                      | 75                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 25,75, 33,<br>34,4,52,84      | 75                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 44/61 or 82<br>or 9           | 44/61               |                                      |      | A40 G24 C20 T34            | A38 G26 C24 T33            |
| 2              | 5 or 58                       | 5                   | Ft. Leonard Wood<br>(Cultured)       | 2003 | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 3              | 1                             | 1                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 2              | 3                             | 3                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 4                             | 4                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 28                            | 28                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 3                             | 3                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 4                             | 4                   |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 3              | 6                             | 6                   |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 11                            | 11                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 13                            | 94**                |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 44/61 or 82<br>or 9           | 62                  | Ft. Benning<br>(Cultured)            | 2003 | A40 G24 C20 T34            | A38 G26 C24 T33            |
| 1              | 5 or 58                       | 58                  |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 78 or 89                      | 89                  |                                      |      | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 2              | 5 or 58                       |                     |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 2                             |                     |                                      |      | A39 G25 C20 T34            | A38 G27 C24 T32            |
| 1              | 81 or 90                      |                     |                                      |      | A40 G24 C20 T34            | A38 G27 C23 T33            |
| 1              | 78                            |                     |                                      |      | A38 G26 C20 T34            | A38 G27 C23 T33            |
| 3***           | No detection                  |                     |                                      |      | No detection               | No detection               |
| 7              | 3                             | ND                  | Lackland AFB<br>(Throat Swabs)       | 2002 | A39 G25 C20 T34            | A38 G27 C23 T33            |
| 1              | 3                             | ND                  |                                      |      | No detection               | A38 G27 C23 T33            |
| 1              | 3                             | ND                  |                                      |      | No detection               | No detection               |
| 1              | 3                             | ND                  |                                      |      | No detection               | No detection               |
| 2              | 3                             | ND                  |                                      |      | No detection               | A38 G27 C23 T33            |
| 3              | No detection                  | ND                  |                                      |      | No detection               | No detection               |

**Table 8B: Base Composition Analysis of Bioagent Identifying Amplicons of Group A *Streptococcus* samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441**

| # of Instances | emm-type by Mass Spectrometry | emm-Gene Sequencing | Location (sample)                    | Year | xpt (Primer Pair No. 438) | yqIL (Primer Pair No. 441) |
|----------------|-------------------------------|---------------------|--------------------------------------|------|---------------------------|----------------------------|
| 48             | 3                             | 3                   | MCRD San Diego<br>(Cultured)         | 2002 | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 2              | 6                             | 6                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 28                            | 28                  |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C18 T32     |
| 15             | 3                             | ND                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 6              | 3                             | 3                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 3              | 5, 58                         | 5                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 6              | 6                             | 6                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 11                            | 11                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 3              | 12                            | 12                  |                                      |      | A30 G36 C19 T37           | A40 G $\geq$ 9 C19 T31     |
| 1              | 22                            | 22                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 3              | 25, 75                        | 75                  | NHRC San Diego-Archive<br>(Cultured) | 2003 | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 4              | 44/61, 82, 9                  | 44/61               |                                      |      | A30 G36 C19 T37           | A41 G $\geq$ 8 C18 T32     |
| 2              | 53, 91                        | 91                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 2                             | 2                   |                                      |      | A30 G36 C19 T37           | A40 G $\geq$ 9 C19 T31     |
| 2              | 3                             | 3                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 4                             | 4                   |                                      |      | A30 G36 C19 T37           | A41 G $\geq$ 8 C18 T32     |
| 1              | 6                             | 6                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 11             | 25 or 75                      | 75                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 25, 75, 33,<br>34, 45, 84     | 75                  |                                      |      | A30 G36 C19 T37           | A40 G $\geq$ 9 C19 T31     |
| 1              | 44/61 or 82<br>or 9           | 44/61               |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C19 T31     |
| 2              | 5 or 58                       | 5                   | Ft. Leonard Wood<br>(Cultured)       | 2003 | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 3              | 1                             | 1                   |                                      |      | A30 G36 C19 T37           | A40 G $\geq$ 9 C19 T31     |
| 2              | 3                             | 3                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 4                             | 4                   |                                      |      | A30 G36 C19 T37           | A41 G $\geq$ 8 C19 T31     |
| 1              | 28                            | 28                  |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C18 T32     |
| 1              | 3                             | 3                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 4                             | 4                   |                                      |      | A30 G36 C19 T37           | A41 G $\geq$ 8 C19 T31     |
| 3              | 6                             | 6                   |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 11                            | 11                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 13                            | 94**                |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C19 T31     |
| 1              | 44/61 or 82<br>or 9           | 62                  | Ft. Benning<br>(Cultured)            | 2003 | A30 G36 C20 T36           | A41 G $\geq$ 8 C19 T31     |
| 1              | 5 or 58                       | 58                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 78 or 89                      | 69                  |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C19 T31     |
| 2              | 5 or 58                       |                     |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 2                             |                     |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 81 or 90                      |                     |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 78                            |                     |                                      |      | A30 G36 C20 T36           | A41 G $\geq$ 8 C19 T31     |
| 3***           | No detection                  |                     |                                      |      | No detection              | No detection               |
| 7              | 3                             | ND                  | Lackland AFB<br>(Throat Swabs)       | 2003 | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 3                             | ND                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 1              | 3                             | ND                  |                                      |      | A30 G36 C20 T36           | No detection               |
| 1              | 3                             | ND                  |                                      |      | No detection              | A40 G $\geq$ 9 C19 T31     |
| 2              | 3                             | ND                  |                                      |      | A30 G36 C20 T36           | A40 G $\geq$ 9 C19 T31     |
| 3              | No detection                  | ND                  |                                      |      | No detection              | No detection               |

**Table 8C: Base Composition Analysis of Bioagent Identifying Amplicons of Group A *Streptococcus* samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441**

| # of Instances | emm-type by Mass Spectrometry | emm-Gene Sequencing | Location (sample)                    | Year | gki (Primer Pair No. 442) | gtt (Primer Pair No. 443) |
|----------------|-------------------------------|---------------------|--------------------------------------|------|---------------------------|---------------------------|
| 46             | 3                             | 3                   | MCRD San Diego<br>(Cultured)         | 2002 | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 2              | 6                             | 6                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 28                            | 28                  |                                      |      | A30 G36 C17 T33           | A39 G28 C16 T32           |
| 15             | 3                             | ND                  |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 6              | 3                             | 3                   |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 3              | 5, 58                         | 5                   |                                      |      | A30 G36 C20 T30           | A39 G28 C15 T33           |
| 6              | 6                             | 6                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 11                            | 11                  |                                      |      | A30 G36 C20 T30           | A39 G28 C16 T32           |
| 3              | 12                            | 12                  |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 22                            | 22                  |                                      |      | A31 G35 C17 T33           | A38 G29 C15 T33           |
| 3              | 25, 75                        | 75                  | MHRC San Diego-Archive<br>(Cultured) | 2003 | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 4              | 44/61, 82, 9                  | 44/61               |                                      |      | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 2              | 53, 91                        | 91                  |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 2                             | 2                   |                                      |      | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 2              | 3                             | 3                   |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 4                             | 4                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 6                             | 6                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 11             | 25 or 75                      | 75                  |                                      |      | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 1              | 25, 75, 33,<br>34, 4, 52, 84  | 75                  |                                      |      | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 1              | 44/61 or 82<br>or 9           | 44/61               |                                      |      | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 2              | 5 or 58                       | 5                   | Ft. Leonard Wood<br>(Cultured)       | 2003 | A30 G36 C20 T30           | A39 G28 C15 T33           |
| 3              | 1                             | 1                   |                                      |      | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 2              | 3                             | 3                   |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 4                             | 4                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 28                            | 28                  |                                      |      | A30 G36 C17 T33           | A39 G28 C16 T32           |
| 1              | 3                             | 3                   |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 4                             | 4                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 3              | 6                             | 6                   |                                      |      | A31 G35 C17 T33           | A39 G28 C15 T33           |
| 1              | 11                            | 11                  |                                      |      | A30 G36 C20 T30           | A39 G28 C16 T32           |
| 1              | 13                            | 94**                |                                      |      | A30 G36 C19 T31           | A39 G28 C15 T33           |
| 1              | 44/61 or 82<br>or 9           | 82                  | Ft. Benning<br>(Cultured)            | 2003 | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 1              | 5 or 58                       | 58                  |                                      |      | A30 G36 C20 T30           | A39 G28 C15 T33           |
| 1              | 78 or 89                      | 89                  |                                      |      | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 2              | 5 or 58                       |                     |                                      |      | A30 G36 C20 T30           | A39 G28 C15 T33           |
| 1              | 2                             |                     |                                      |      | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 1              | 81 or 90                      |                     |                                      |      | A30 G36 C17 T33           | A39 G28 C15 T33           |
| 1              | 78                            |                     |                                      |      | A30 G36 C18 T32           | A39 G28 C15 T33           |
| 3***           | No detection                  |                     |                                      |      | No detection              | No detection              |
| 7              | 3                             | ND                  | Lackland AFB<br>(Throat Swabs)       | 2003 | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 3                             | ND                  |                                      |      | No detection              | No detection              |
| 1              | 3                             | ND                  |                                      |      | A32 G35 C17 T32           | A39 G28 C16 T32           |
| 1              | 3                             | ND                  |                                      |      | A32 G35 C17 T32           | No detection              |
| 2              | 3                             | ND                  |                                      |      | A32 G35 C17 T32           | No detection              |
| 3              | No detection                  | ND                  |                                      |      | No detection              | No detection              |

[0131] **Example 9: Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)**

[0132] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 4) and the *Bacillus anthracis* drill-down set (Table 5).

[0133] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Table 4 (primer names have the designation "TMOD"). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 9. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEQ ID NO: 722. In Table 9, the forward (\_F) or reverse (\_R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S\_EC\_713\_732\_TMOD\_F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of *E. coli* K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 10. The designation "TMOD" in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (*vide supra*).

[0134] The 19 calibration sequences described in Tables 9 and 10 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 741 - which is herein designated a "combination calibration polynucleotide") which was then cloned into a pCR<sup>®</sup>-Blunt vector (Invitrogen, Carlsbad, CA). This combination calibration polynucleotide can be used in conjunction with the primers of Table 9 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (16S rRNA) will be produced in an amplification

reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (*rpoC*) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 783) are indicated in Table 10.

**Table 9: Bacterial Primer Pairs for Production of Bacterial Bioagent Identifying Amplicons and Corresponding Representative Calibration Sequences**

| Primer Pair No. | Forward Primer Name        | Forward Primer (SEQ ID NO.) | Reverse Primer Name      | Reverse Primer (SEQ ID NO.) | Calibration Sequence Model Species | Calibration Sequence (SEQ ID NO.) |
|-----------------|----------------------------|-----------------------------|--------------------------|-----------------------------|------------------------------------|-----------------------------------|
| 361             | 16S_EC_1090_1111_TMOD_F    | 5                           | 16S_EC_1179_1196_TMOD_R  | 370                         | <i>Bacillus anthracis</i>          | 764                               |
| 346             | 16S_EC_713_732_TMOD_F      | 27                          | 16S_EC_789_809_TMOD_R    | 369                         | <i>Bacillus anthracis</i>          | 765                               |
| 347             | 16S_EC_785_806_TMOD_F      | 30                          | 16S_EC_880_897_TMOD_R    | 392                         | <i>Bacillus anthracis</i>          | 766                               |
| 348             | 16S_EC_960_981_TMOD_F      | 38                          | 16S_EC_1054_1073_TMOD_R  | 363                         | <i>Bacillus anthracis</i>          | 767                               |
| 349             | 23S_EC_1826_1843_TMOD_D_F  | 49                          | 23S_EC_1906_1924_TMOD_R  | 405                         | <i>Bacillus anthracis</i>          | 768                               |
| 360             | 23S_EC_2646_2667_TMOD_D_F  | 60                          | 23S_EC_2745_2765_TMOD_R  | 416                         | <i>Bacillus anthracis</i>          | 769                               |
| 350             | CAPC_BA_274_303_TMOD_F     | 98                          | CAPC_BA_349_376_TMOD_R   | 452                         | <i>Bacillus anthracis</i>          | 770                               |
| 351             | CVA_BA_1353_1379_TMOD_D_F  | 128                         | CVA_BA_1440_1467_TMOD_R  | 483                         | <i>Bacillus anthracis</i>          | 771                               |
| 352             | INFB_EC_1365_1393_TMOD_D_F | 161                         | INFB_EC_1439_1467_TMOD_R | 516                         | <i>Bacillus anthracis</i>          | 772                               |
| 353             | Lef_BA_756_781_TMOD_F      | 175                         | Lef_BA_843_872_TMOD_R    | 531                         | <i>Bacillus anthracis</i>          | 773                               |
| 356             | RPLB_EC_650_679_TMOD_F     | 232                         | RPLB_EC_739_762_TMOD_R   | 592                         | <i>Clostridium botulinum</i>       | 774                               |
| 449             | RPLB_EC_680_710_F          | 237                         | RPLB_EC_737_758_R        | 589                         | <i>Clostridium botulinum</i>       | 775                               |
| 359             | RPOB_EC_1845_1866_TMOD_D_F | 241                         | RPOB_EC_1909_1929_TMOD_R | 597                         | <i>Yersinia Pestis</i>             | 776                               |
| 362             | RPOB_EC_3799_3821_TMOD_D_F | 245                         | RPOB_EC_3662_3888_TMOD_R | 603                         | <i>Burkholderia mallei</i>         | 777                               |
| 363             | RPOC_EC_2146_2174_TMOD_D_F | 257                         | RPOC_EC_2227_2245_TMOD_R | 621                         | <i>Burkholderia mallei</i>         | 778                               |
| 354             | RPOC_EC_2218_2241_TMOD_D_F | 262                         | RPOC_EC_2313_2337_TMOD_R | 625                         | <i>Bacillus anthracis</i>          | 779                               |
| 355             | SSBE_BA_115_137_TMOD_F     | 321                         | SSBE_BA_197_222_TMOD_R   | 687                         | <i>Bacillus anthracis</i>          | 780                               |
| 367             | TUFB_EC_957_979_TMOD_F     | 345                         | TUFB_EC_1034_1058_TMOD_R | 701                         | <i>Burkholderia mallei</i>         | 781                               |
| 358             | VALS_EC_1105_1124_TMOD_D_F | 350                         | VALS_EC_1195_1218_TMOD_R | 712                         | <i>Yersinia Pestis</i>             | 782                               |

**Table 10: Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence Coordinates within the Combination Calibration Polynucleotide**

| Bacterial Gene and Species | Gene Extraction Coordinates of Genomic or Plasmid Sequence | Reference GenBank GI No. of Genomic (G) or Plasmid (P) Sequence | Primer Pair No. | Coordinates of Calibration Sequence in Combination Calibration Polynucleotide (SEQ ID NO: 783) |
|----------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|
| 16S E. coli                | 4033120...4034661                                          | 16127994 (G)                                                    | 346             | 16...109                                                                                       |
| 16S E. coli                | 4033120...4034661                                          | 16127994 (G)                                                    | 347             | 83...190                                                                                       |
| 16S E. coli                | 4033120...4034661                                          | 16127994 (G)                                                    | 348             | 246...353                                                                                      |
| 16S E. coli                | 4033120...4034661                                          | 16127994 (G)                                                    | 361             | 368...469                                                                                      |
| 23S E. coli                | 4166220...4169123                                          | 16127994 (G)                                                    | 349             | 743...837                                                                                      |
| 23S E. coli                | 4166220...4169123                                          | 16127994 (G)                                                    | 360             | 865...981                                                                                      |
| rpoB E. coli               | 4178823...4182851                                          | 16127994 (G)                                                    | 359             | 1591...1672<br>(complement strand)                                                             |
| rpoB E. coli               | 4178823...4182851                                          | 16127994 (G)                                                    | 362             | 2081...2167<br>(complement strand)                                                             |
| rpoC E. coli               | 4183928...4187155                                          | 16127994 (G)                                                    | 354             | 1810...1925                                                                                    |
| rpoC E. coli               | 4183928...4187155                                          | 16127994 (G)                                                    | 363             | 2183...2278                                                                                    |
| infB E. coli               | 3313655...3310983                                          | 16127994 (G)                                                    | 352             | 1692...1791                                                                                    |
| tufB E. coli               | 4173523...4174707                                          | 16127994 (G)                                                    | 367             | 2400...2498                                                                                    |
| rplB E. coli               | 3449001...3448180                                          | 16127994 (G)                                                    | 356             | 1945...2060                                                                                    |
| rplB E. coli               | 3449001...3448180                                          | 16127994 (G)                                                    | 449             | 1986...2055                                                                                    |
| vals E. coli               | 4481405...4478550                                          | 16127994 (G)                                                    | 358             | 1462...1572<br>(complement strand)                                                             |

|                             |                                    |              |     |            |
|-----------------------------|------------------------------------|--------------|-----|------------|
| capC<br><i>B. anthracis</i> | 56074..55628 (complement strand)   | 6470151 (P)  | 350 | 2517..2616 |
| cya<br><i>B. anthracis</i>  | 156626..154286 (complement strand) | 4894216 (P)  | 351 | 1338..1449 |
| lef<br><i>B. anthracis</i>  | 127442..129921                     | 4894216 (P)  | 353 | 1121..1234 |
| sepA<br><i>B. anthracis</i> | 226496..226783                     | 30253628 (G) | 355 | 1007..1104 |

[0135] **Example 10: Use of a Calibration Polynucleotide for Determining the Quantity of *Bacillus Anthracis* in a Sample Containing a Mixture of Microbes**

[0136] The process described in this example is shown in Figure 7. The capC gene is a gene involved in capsule synthesis which resides on the pXO2 plasmid of *Bacillus anthracis*. Primer pair number 350 (see Tables 9 and 10) was designed to identify *Bacillus anthracis* via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 3 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of *Bacillus anthracis*. Upon amplification of the bacterial bioagent nucleic acid and the combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in Figure 8). The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of *Bacillus anthracis*) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pXO2 plasmid of the Ames strain of *Bacillus anthracis*. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[0137] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pXO2 plasmid.

[0138] **Example 11: Drill-down Genotyping of *Campylobacter* Species**

[0139] A series of drill-down primers were designed as described in Example 1 with the objective of identification of different strains of *Campylobacter jejuni*. The primers are listed in Table 11 with the designation “CJST\_CJ.” Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: tkt (transketolase), glyA (serine

hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain).

**Table 11: *Campylobacter* Drill-down Primer Pairs**

| Primer Pair No. | Forward Primer Name | Forward Primer (SEQ ID NO:) | Reverse Primer Name | Reverse Primer (SEQ ID NO:) | Target Gene |
|-----------------|---------------------|-----------------------------|---------------------|-----------------------------|-------------|
| 1053            | CJST CJ 1080 1110 F | 102                         | CJST CJ 1166 1198 R | 456                         | gltA        |
| 1064            | CJST CJ 1680 1713 F | 107                         | CJST CJ 1795 1822 R | 461                         | glnA        |
| 1054            | CJST CJ 2060 2090 F | 109                         | CJST CJ 2148 2174 R | 463                         | pgm         |
| 1049            | CJST CJ 2636 2668 F | 113                         | CJST CJ 2753 2777 R | 467                         | tkt         |
| 1048            | CJST CJ 360 394 F   | 119                         | CJST CJ 442 476 R   | 472                         | aspA        |
| 1047            | CJST CJ 584 616 F   | 121                         | CJST CJ 663 692 R   | 474                         | glnA        |

[0140] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained *Campylobacter jejuni* and 25 of which contained *Campylobacter coli*. Primers used in this study were developed primarily for the discrimination of *Campylobacter jejuni* clonal complexes and for distinguishing *Campylobacter jejuni* from *Campylobacter coli*. Finer discrimination between *Campylobacter coli* types is also possible by using specific primers targeted to loci where closely-related *Campylobacter coli* isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 12A-C.

**Table 12A — Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1048 and 1047**

| Group | Species          | Isolate origin | MLST type or Clonal Complex by Base Composition analysis | MLST Type or Clonal Complex by Sequence analysis | Strain           | Base Composition of Bioagent Identifying Locus Obtained with Primer Pair No: 1048 (aspA) | Base Composition of Bioagent Identifying Locus Obtained with Primer Pair No: 1047 (glnA) |
|-------|------------------|----------------|----------------------------------------------------------|--------------------------------------------------|------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| J-1   | <i>C. jejuni</i> | Goose          | ST 690 /692/707/991                                      | ST 991                                           | RM3673           | A30 G25 C16 T46                                                                          | A47 G21 C16 T25                                                                          |
| J-2   | <i>C. jejuni</i> | Human          | Complex 206/48/353                                       | ST 356, complex 353                              | RM4192           | A30 G25 C16 T46                                                                          | A48 G21 C17 T23                                                                          |
| J-3   | <i>C. jejuni</i> | Human          | Complex 354/179                                          | ST 436                                           | RM4194           | A30 G25 C15 T47                                                                          | A48 G21 C18 T22                                                                          |
| J-4   | <i>C. jejuni</i> | Human          | Complex 257                                              | ST 257, complex 257                              | RM4197           | A30 G25 C16 T46                                                                          | A48 G21 C18 T22                                                                          |
| J-5   | <i>C. jejuni</i> | Human          | Complex 52                                               | ST 52, complex 52                                | RM4277           | A30 G25 C16 T46                                                                          | A48 G21 C17 T23                                                                          |
| J-6   | <i>C. jejuni</i> | Human          | Complex 443                                              | ST 51, complex 443                               | RM4275<br>RM4279 | A30 G25 C15 T47<br>A30 G25 C15 T47                                                       | A48 G21 C17 T23                                                                          |
| J-7   | <i>C. jejuni</i> | Human          | Complex 42                                               | ST 604, complex 42                               | RM1864           | A30 G25 C15 T47                                                                          | A48 G21 C18 T22                                                                          |
| J-8   | <i>C. jejuni</i> | Human          | Complex 42/49/362                                        | ST 362, complex 362                              | RM3193           | A30 G25 C15 T47                                                                          | A48 G21 C18 T22                                                                          |
| J-9   | <i>C. jejuni</i> | Human          | Complex 45/283                                           | ST 147, Complex 45                               | RM3203           | A30 G25 C15 T47                                                                          | A47 G21 C18 T23                                                                          |
|       | <i>C. jejuni</i> | Human          | Consistent                                               | ST 828                                           | RM4183           | A31 G27 C20 T39                                                                          | A48 G21 C16 T24                                                                          |

|     |                |          |                                                                                     |         |        |                 |                 |
|-----|----------------|----------|-------------------------------------------------------------------------------------|---------|--------|-----------------|-----------------|
|     |                |          | with 74 closely related sequence types (none belong to a clonal complex)            | ST 832  | RM1169 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          | Poultry                                                                             | ST 1056 | RM1957 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 889  | RM1166 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 829  | RM1182 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1050 | RM1518 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1051 | RM1521 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1053 | RM1523 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1055 | RM1527 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1017 | RM1529 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 860  | RM1840 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1063 | RM2219 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1066 | RM2241 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1067 | RM2243 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1068 | RM2439 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1016 | RM3230 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          | Swine                                                                               | ST 1069 | RM3231 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1061 | RM1904 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 825  | RM1534 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 901  | RM1505 | A31 G27 C20 T39 | A48 G21 C16 T24 |
| C-2 | <i>C. coli</i> | Human    | ST 895                                                                              | ST 895  | RM1532 | A31 G27 C19 T40 | A48 G21 C16 T24 |
| C-3 | <i>C. coli</i> | Poultry  | Consistent with 63 closely related sequence types (none belong to a clonal complex) | ST 1064 | RM2223 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1082 | RM1178 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                | Marmoset |                                                                                     | ST 1054 | RM1525 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 1049 | RM1517 | A31 G27 C20 T39 | A48 G21 C16 T24 |
|     |                |          |                                                                                     | ST 891  | RM1531 | A31 G27 C20 T39 | A48 G21 C16 T24 |

Table 12B – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1053 and 1064

| Group | Species          | Isolate origin | MLST type or Clonal Complex by Base Composition analysis | MLST Type or Clonal Complex by Sequence analysis | Strain | Base Composition of Biosignt Identifying Amplicon Related with Primer No.: 1053 (gtAT) | Base Composition of Biosignt Identifying Amplicon Related with Primer No.: 1064 (gtYA) |
|-------|------------------|----------------|----------------------------------------------------------|--------------------------------------------------|--------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| J-1   | <i>C. jejuni</i> | Goose          | ST 690 /692/707/991                                      | ST 991                                           | RM3673 | A24 G25 C23 T47                                                                        | A40 G29 C29 T45                                                                        |
| J-2   | <i>C. jejuni</i> | Human          | Complex 206/48/353                                       | ST 356, complex 353                              | RM4192 | A24 G25 C23 T47                                                                        | A40 G29 C29 T45                                                                        |
| J-3   | <i>C. jejuni</i> | Human          | Complex 354/179                                          | ST 436                                           | RM4194 | A24 G25 C23 T47                                                                        | A40 G29 C29 T45                                                                        |
| J-4   | <i>C. jejuni</i> | Human          | Complex 257                                              | ST 257, complex 257                              | RM4197 | A24 G25 C23 T47                                                                        | A40 G29 C29 T45                                                                        |
| J-5   | <i>C. jejuni</i> | Human          | Complex 52                                               | ST 52, complex 52                                | RM4277 | A24 G25 C23 T47                                                                        | A39 G30 C26 T48                                                                        |
| J-6   | <i>C. jejuni</i> | Human          | Complex 443                                              | ST 51, complex 443                               | RM4275 | A24 G25 C23 T47                                                                        | A39 G30 C28 T46                                                                        |
|       |                  |                |                                                          |                                                  | RM4279 | A24 G25 C23 T47                                                                        | A39 G30 C28 T46                                                                        |
| J-7   | <i>C. jejuni</i> | Human          | Complex 42                                               | ST 604, complex 42                               | RM1864 | A24 G25 C23 T47                                                                        | A39 G30 C26 T48                                                                        |

|     |           |         |                                                                                     |                     |        |                 |                 |
|-----|-----------|---------|-------------------------------------------------------------------------------------|---------------------|--------|-----------------|-----------------|
| J-8 | C. jejuni | Human   | Complex 42/49/362                                                                   | ST 362, complex 362 | RM3193 | A24 G25 C23 T47 | A39 G31 C28 T46 |
| J-9 | C. jejuni | Human   | Complex 45/283                                                                      | ST 147, complex 45  | RM3203 | A24 G25 C23 T47 | A39 G31 C28 T46 |
|     | C. jejuni |         |                                                                                     | ST 828              | RM4183 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 832              | RM1169 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1056             | RM1857 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 869              | RM1166 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 829              | RM1182 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1050             | RM1518 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1051             | RM1521 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1053             | RM1523 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1055             | RM1527 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1017             | RM1529 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 860              | RM1840 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1063             | RM2219 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1066             | RM2241 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1067             | RM2243 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1068             | RM2439 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1016             | RM3230 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1069             | RM3231 | A23 G24 C26 T46 | NO DATA         |
|     |           |         |                                                                                     | ST 1061             | RM1904 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 825              | RM1534 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 901              | RM1505 | A23 G24 C26 T46 | A39 G30 C27 T47 |
| C-2 | C. coli   | Human   | ST 895                                                                              | ST 895              | RM1532 | A23 G24 C26 T46 | A39 G30 C27 T47 |
| C-3 | C. coli   | Poultry | Consistent with 63 closely related sequence types (none belong to a clonal complex) | ST 1064             | RM2223 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1082             | RM1178 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 1054             | RM1525 | A23 G24 C25 T47 | A39 G30 C27 T47 |
|     | Marmoset  |         |                                                                                     | ST 1049             | RM1517 | A23 G24 C26 T46 | A39 G30 C27 T47 |
|     |           |         |                                                                                     | ST 891              | RM1531 | A23 G24 C26 T46 | A39 G30 C27 T47 |

Table 12C – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1054 and 1049

| Group | Species   | Isolate origin | MLST type or Clonal Complex by Base Composition analysis | MLST Type or Clonal Complex by Sequence analysis | Strain | Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm) | Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt) |
|-------|-----------|----------------|----------------------------------------------------------|--------------------------------------------------|--------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| J-1   | C. jejuni | Goose          | ST 690 /692/707/991                                      | ST 991                                           | RM3673 | A26 G33 C18 T38                                                                            | A41 G28 C35 T38                                                                            |
| J-2   | C. jejuni | Human          | Complex 206/48/353                                       | ST 356, complex 353                              | RM4192 | A26 G33 C19 T37                                                                            | A41 G28 C36 T37                                                                            |
| J-3   | C. jejuni | Human          | Complex 354/179                                          | ST 436                                           | RM4194 | A27 G32 C19 T37                                                                            | A42 G28 C36 T36                                                                            |
| J-4   | C. jejuni | Human          | Complex 257                                              | ST 257, complex 257                              | RM4197 | A27 G32 C19 T37                                                                            | A41 G29 C35 T37                                                                            |
| J-5   | C. jejuni | Human          | Complex 52                                               | ST 52, complex 52                                | RM4277 | A26 G33 C18 T38                                                                            | A41 G28 C36 T37                                                                            |

|     |                  |         |                      |                           |                  |                                    |                                    |  |  |
|-----|------------------|---------|----------------------|---------------------------|------------------|------------------------------------|------------------------------------|--|--|
| J-6 | <i>C. jejuni</i> | Human   | Complex 443          | ST 51,<br>complex<br>443  | RM4275<br>RM4279 | A27 G31 C19 T39<br>A27 G31 C19 T39 | A41 G28 C36 T37<br>A41 G28 C36 T37 |  |  |
| J-7 | <i>C. jejuni</i> | Human   | Complex 42           | ST 604,<br>complex<br>42  | RM1864           | A27 G32 C19 T37                    | A42 G28 C35 T37                    |  |  |
| J-8 | <i>C. jejuni</i> | Human   | Complex<br>42/49/362 | ST 362,<br>complex<br>362 | RM3193           | A26 G33 C19 T37                    | A42 G28 C35 T37                    |  |  |
| J-9 | <i>C. jejuni</i> | Human   | Complex<br>45/283    | ST 147,<br>Complex 45     | RM3203           | A28 G31 C19 T37                    | A43 G28 C36 T35                    |  |  |
|     | <i>C. jejuni</i> | Human   | Poultry              | ST 828                    | RM4183           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
| C-1 | <i>C. coli</i>   |         |                      | ST 832                    | RM1169           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1056                   | RM1857           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 889                    | RM1166           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 829                    | RM1182           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1050                   | RM1518           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1051                   | RM1521           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1053                   | RM1523           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1055                   | RM1527           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1017                   | RM1529           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 860                    | RM1840           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
| C-2 | <i>C. coli</i>   | Swine   | Unknown              | ST 1063                   | RM2219           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1066                   | RM2241           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1067                   | RM2243           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1068                   | RM2439           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1016                   | RM3230           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1069                   | RM3231           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 1061                   | RM1904           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
| C-3 | <i>C. coli</i>   | Poultry | Marmoset             | ST 825                    | RM1534           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 901                    | RM1505           | A27 G30 C19 T39                    | A46 G28 C32 T36                    |  |  |
|     |                  |         |                      | ST 995                    | RM1532           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |
|     |                  |         |                      | ST 1064                   | RM2223           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |
|     |                  |         |                      | ST 1082                   | RM1178           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |
|     |                  |         |                      | ST 1054                   | RM1525           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |
|     |                  |         |                      | ST 1049                   | RM1517           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |
|     |                  |         |                      | ST 891                    | RM1531           | A27 G30 C19 T39                    | A45 G29 C32 T36                    |  |  |

[0141] The base composition analysis method was successful in identification of 12 different strain groups. *Campylobacter jejuni* and *Campylobacter coli* are generally differentiated by all loci. Ten clearly differentiated *Campylobacter jejuni* isolates and 2 major *Campylobacter coli* groups were identified even though the primers were designed for strain typing of

*Campylobacter jejuni*. One isolate (RM4183) which was designated as *Campylobacter jejuni* was found to group with *Campylobacter coli* and also appears to actually be *Campylobacter coli* by full MLST sequencing.

**[0142] Example 12: Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance**

[0143] To test the capability of the broad range survey and division-wide primer sets of Table 4 in identification of *Acinetobacter* species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners). In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[0144] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 4) all produced bacterial bioagent amplicons which identified *Acinetobacter baumannii* in 215 of 217 samples. The organism *Klebsiella pneumoniae* was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of *Acinetobacter baumannii*) were identified and assigned arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

[0145] The epidemiology of strain type 7 of *Acinetobacter baumannii* was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The index patient infected with strain 7 was a pre-war patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospital in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was not related involved in Operation Iraqi Freedom, it was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.

[0146] The epidemiology of strain type 3 of *Acinetobacter baumannii* was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and enemy prisoners) who were treated on the USNS Comfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of a nosocomial infections.

[0147] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

**[0148] Example 13: Selection and Use of MLST *Acinetobacter baumannii* Drill-down Primers**

[0149] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by multi-locus sequence typing (MLST) such as the MLST methods of the MLST Databases at the Max-Planck Institute for Infectious Biology ([web.mpiib-berlin.mpg.de/mlst/clbs/Mcatarrhalis/documents/primersCat.arrahali.html](http://web.mpiib-berlin.mpg.de/mlst/clbs/Mcatarrhalis/documents/primersCat.arrahali.html)), an additional 21 primer pairs were selected based on analysis of housekeeping genes of the genus *Acinetobacter*. Genes to which the drill-down MLST analogue primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydrolase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 13. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and amplify segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of mutY. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa. The primer names given in Table 13 indicates the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1151 is named AB\_MLST-11-OIF007\_62\_91\_F because it hybridizes to the *Acinetobacter* MLST primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (OIF) at positions 62 to 91.

**Table 13: MLST Drill-Down Primers for Identification of Sub-species characteristics  
(Strain Type) of Members of the Bacterial Genus *Acinetobacter***

| Primer Pair No. | Forward Primer Name           | Forward Primer (SEQ ID NO:) | Reverse Primer Name           | Reverse Primer (SEQ ID NO:) |
|-----------------|-------------------------------|-----------------------------|-------------------------------|-----------------------------|
| 1151            | AB_MLST-11-OIF007_62_91_F     | 83                          | AB_MLST-11-OIF007_169_203_R   | 426                         |
| 1152            | AB_MLST-11-OIF007_185_214_F   | 76                          | AB_MLST-11-OIF007_291_324_R   | 432                         |
| 1153            | AB_MLST-11-OIF007_260_289_F   | 79                          | AB_MLST-11-OIF007_364_393_R   | 434                         |
| 1154            | AB_MLST-11-OIF007_206_239_F   | 78                          | AB_MLST-11-OIF007_318_344_R   | 433                         |
| 1155            | AB_MLST-11-OIF007_522_552_F   | 80                          | AB_MLST-11-OIF007_587_610_R   | 435                         |
| 1156            | AB_MLST-11-OIF007_547_571_F   | 81                          | AB_MLST-11-OIF007_656_686_R   | 436                         |
| 1157            | AB_MLST-11-OIF007_601_627_F   | 82                          | AB_MLST-11-OIF007_710_736_R   | 437                         |
| 1158            | AB_MLST-11-OIF007_1202_1225_F | 65                          | AB_MLST-11-OIF007_1266_1296_R | 420                         |
| 1159            | AB_MLST-11-OIF007_1202_1225_F | 65                          | AB_MLST-11-OIF007_1299_1316_R | 421                         |
| 1160            | AB_MLST-11-OIF007_1234_1264_F | 66                          | AB_MLST-11-OIF007_1335_1362_R | 422                         |
| 1161            | AB_MLST-11-OIF007_1327_1356_F | 67                          | AB_MLST-11-OIF007_1422_1448_R | 423                         |
| 1162            | AB_MLST-11-OIF007_1345_1369_F | 68                          | AB_MLST-11-OIF007_1470_1494_R | 424                         |
| 1163            | AB_MLST-11-OIF007_1351_1375_F | 69                          | AB_MLST-11-OIF007_1470_1494_R | 424                         |
| 1164            | AB_MLST-11-OIF007_1387_1412_F | 70                          | AB_MLST-11-OIF007_1470_1494_R | 424                         |
| 1165            | AB_MLST-11-OIF007_1542_1569_F | 71                          | AB_MLST-11-OIF007_1656_1680_R | 425                         |
| 1166            | AB_MLST-11-OIF007_1566_1593_F | 72                          | AB_MLST-11-OIF007_1656_1680_R | 425                         |
| 1167            | AB_MLST-11-OIF007_1611_1638_F | 73                          | AB_MLST-11-OIF007_1731_1757_R | 427                         |
| 1168            | AB_MLST-11-OIF007_1726_1752_F | 74                          | AB_MLST-11-OIF007_1790_1821_R | 428                         |
| 1169            | AB_MLST-11-OIF007_1792_1826_F | 75                          | AB_MLST-11-OIF007_1876_1909_R | 429                         |
| 1170            | AB_MLST-11-OIF007_1792_1826_F | 75                          | AB_MLST-11-OIF007_1895_1927_R | 430                         |
| 1171            | AB_MLST-11-                   | 77                          | AB_MLST-11-OIF007_2097_2118_R | 431                         |

|  |                    |  |  |  |
|--|--------------------|--|--|--|
|  | OIF007_1976_2002_F |  |  |  |
|--|--------------------|--|--|--|

[0150] Analysis of bioagent identifying amplicons obtained using the primers of Table 13 for over 200 samples from Operation Iraqi Freedom resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28<sup>th</sup> Combat Support Hospital in Baghdad. Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

[0151] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, cephalosporins, carbipenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, anti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

[0152] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

**WHAT IS CLAIMED IS:**

1. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 414, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 369, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 24-6, an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, an oligonucleotide primer 14 to 35 nucleobases in length

comprising 70% to 100% sequence identity with SEQ ID NO: 620, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587;

wherein said primer comprises a non-templated T residue on the 5'-end, or at least one non-template tag.

2. A composition comprising one or more of the oligonucleotide primers of claim 1.
3. A composition comprising two or more of the oligonucleotide primers of claim 1.
4. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.
5. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
6. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
7. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
8. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, and an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686.
9. A composition comprising one or both of the oligonucleotide primers of claim 8.
10. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.

11. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.

12. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.

13. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.

14. A kit comprising the composition of claim 3 or claim 9.

15. The kit of claim 14 further comprising at least one calibration polynucleotide.

16. The kit of claim 14 further comprising at least one ion exchange resin linked to magnetic beads.

17. A method for identification of an unknown bacterium comprising:  
amplifying nucleic acid from said bacterium using the composition of claim 3 or claim 9  
to obtain an amplification product;

determining the molecular mass of said amplification product;  
optionally determining the base composition of said amplification product from said  
molecular mass; and

comparing said molecular mass or base composition of said amplification product with  
a plurality of molecular masses or base compositions of known bacterial bioagent  
amplicons, wherein a match between said molecular mass or base composition of said  
amplification product and the molecular mass or base composition of a member of said plurality  
of molecular masses or base compositions identifies said unknown bacterium.

18. The method of claim 17 wherein said molecular mass is determined by mass  
spectrometry.

19. A method of determining the presence or absence of a bacterium of a particular clade,  
genus, species, or sub-species in a sample comprising:

amplifying nucleic acid from said sample using the composition of claim 3 or claim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with the known molecular masses or base compositions of one or more known clade, genus, species, or sub-species bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of one or more known clade, genus, species, or sub-species bioagent identifying amplicons indicates the presence of said clade, genus, species, or sub-species in said sample.

20. The method of claim 19 wherein said molecular mass is determined by mass spectrometry.

21. A method for determination of the quantity of an unknown bacterium in a sample comprising:

contacting said sample with the composition of claim 3 or claim 9 and a known quantity of a calibration polynucleotide comprising a calibration sequence;

concurrently amplifying nucleic acid from said bacterium in said sample with the composition of claim 3 or claim 9 and amplifying nucleic acid from said calibration polynucleotide in said sample with the composition of claim 3 or claim 9 to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon;

determining the molecular mass and abundance for said bacterial bioagent identifying amplicon and said calibration amplicon; and

distinguishing said bacterial bioagent identifying amplicon from said calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in said sample.

22. The method of claim 21 further comprising determining the base composition of said bacterial bioagent identifying amplicon.

**Figure 1**

1/8



**Figure 2**



Figure 3



Figure 4

## Base Composition Signatures from primer pair 14 (16S rRNA)



**Figure 5**

**Figure 6**

Figure 7



**Figure 8**

## SEQUENCE LISTING

<110> Isis Pharmaceuticals, Inc.  
Sampath, Rangarajan  
Hall, Thomas A.  
Ecker, David J.  
Eshoo, Mark. W.  
Massire, Christian  
Science Applications International Corporation  
Larson, Brons M.  
Leighton, Terrance

<120> COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

<130> IBIS0074-500WO (DIBIS-0057W01)

<150> 60/545,425  
<151> 2004-02-18

<150> 60/559,754  
<151> 2004-04-05

<150> 60/632,862  
<151> 2004-12-03

<150> 60/639,068  
<151> 2004-12-22

<150> 60/648,188  
<151> 2005-01-28

<160> 785

<170> FastSEQ for Windows Version 4.0

<210> 1  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 1  
gtgagatgtt gggtaaagtccgttaacgag

30

<210> 2  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 2  
atgttgggtt aagtccccgc

19

<210> 3  
<211> 25  
<212> DNA  
<213> Artificial Sequence

|                            |    |
|----------------------------|----|
| <220>                      |    |
| <223> Primer               |    |
| <400> 3                    |    |
| atgttgggtt aagtccgca acgag | 25 |
| <210> 4                    |    |
| <211> 22                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 4                    |    |
| ttaagtcccg caacgagcgc aa   | 22 |
| <210> 5                    |    |
| <211> 23                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 5                    |    |
| ttaagtccc gcaacgagcga caa  | 23 |
| <210> 6                    |    |
| <211> 22                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 6                    |    |
| ttaagtcccg caacgatcgc aa   | 22 |
| <210> 7                    |    |
| <211> 18                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 7                    |    |
| tagtccccca acgagcgc        | 18 |
| <210> 8                    |    |
| <211> 17                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 8                    |    |

caacgagcgc a~~a~~ccctt 17  
<210> 9  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 9  
caagtcatca t~~g~~gccctta 19  
<210> 10  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 10  
gctacacacg t~~g~~ctacaatg 20  
<210> 11  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 11  
cg~~g~~attggag t~~c~~tgcactc g 21  
<210> 12  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 12  
aa~~g~~t~~c~~ggaaat cg~~c~~tagtaat cg 22  
<210> 13  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 13  
ta~~c~~gg~~t~~gaat ac~~g~~ttcccg~~g~~ g 21  
<210> 14  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 14  
gccttgtaca cacctcccgta c 21

<210> 15  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 15  
cttgtacaca ccggccgc 19

<210> 16  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 16  
ttgtacacac cgccccgtat ac 22

<210> 17

<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 17  
tgaacgctgg tggcatgctt aacac 25

<210> 18  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 18  
cactgaaact gagacacagg 19

<210> 19  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 19

|                                |    |
|--------------------------------|----|
| gtggcatgcc taatacatgc aagtgc   | 26 |
| <210> 20                       |    |
| <211> 28                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <br>                           |    |
| <220>                          |    |
| <223> Primer                   |    |
| <br>                           |    |
| <400> 20                       |    |
| tgagtatgaa aggccttagg gttgtaaa | 28 |
| <210> 21                       |    |
| <211> 20                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <br>                           |    |
| <220>                          |    |
| <223> Primer                   |    |
| <br>                           |    |
| <400> 21                       |    |
| taacacatgc aagtgcgaacg         | 20 |
| <210> 22                       |    |
| <211> 19                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <br>                           |    |
| <220>                          |    |
| <223> Primer                   |    |
| <br>                           |    |
| <400> 22                       |    |
| ccagcagccg cggttaatac          | 19 |
| <210> 23                       |    |
| <211> 20                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <br>                           |    |
| <220>                          |    |
| <223> Primer                   |    |
| <br>                           |    |
| <400> 23                       |    |
| cggaaattact gggcgtaaag         | 20 |
| <210> 24                       |    |
| <211> 18                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <br>                           |    |
| <220>                          |    |
| <223> Primer                   |    |
| <br>                           |    |
| <400> 24                       |    |
| gtgttagcggt gaaatgcg           | 18 |
| <210> 25                       |    |
| <211> 27                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |

<220>  
<223> Primer  
  
<400> 25  
gagagtttga tcctggctca gaacgaa 27  
  
<210> 26  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 26  
agaaacaccga tggcgaaggc 20  
  
<210> 27  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 27  
tagaacacccg atggcgaagg c 21  
  
<210> 28  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 28  
gggagcaaac aggatttagat ac 22  
  
<210> 29  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 29  
ggatttagaga ccctggtagt cc 22  
  
<210> 30  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 30  
tggatttagag accctggtag tcc 23

<210> 31  
<211> 26  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 31  
ggatttagata ccctggtagt ccacgc 26

<210> 32  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 32  
tagataccct ggtagtcac gc 22

<210> 33  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 33  
gataccctgg tagtcccac ac 22

<210> 34  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 34  
agagtttgat catggctcag 20

<210> 35  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 35  
accacgcccgt aaacgatga 19

<210> 36  
<211> 18  
<212> DNA

<213> Artificial Sequence  
<220>  
<223> Primer  
  
<400> 36  
aagcgggtgga gcatgtgg 18  
  
<210> 37  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 37  
ttcgatgcaa cgcgaaagaac ct 22  
  
<210> 38  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 38  
tttcgatgca acgcgaagaa cct 23  
  
<210> 39  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 39  
acgcgaagaa ccttacc 17  
  
<210> 40  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 40  
acgcgaagaa ccttacc 17  
  
<210> 41  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 41

|                             |    |
|-----------------------------|----|
| gcgaagaacc ttaccaggtc       | 20 |
| <210> 42                    |    |
| <211> 14                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 42                    |    |
| cgaaagacct tacc             | 14 |
| <210> 43                    |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 43                    |    |
| tgcgcggaag atgtAACGGG       | 20 |
| <210> 44                    |    |
| <211> 22                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 44                    |    |
| tgcatacacaaa cagtccggagc ct | 22 |
| <210> 45                    |    |
| <211> 24                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 45                    |    |
| aaactagata acagtagaca tcac  | 24 |
| <210> 46                    |    |
| <211> 19                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 46                    |    |
| taccccaaac cgacacagg        | 19 |
| <210> 47                    |    |
| <211> 19                    |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 47  
ccgttaacttc gggagaagg 19

<210> 48  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 48  
ctgacacacctg cccgggtgc 18

<210> 49  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 49  
tctgacacacct gccccgggtgc 19

<210> 50  
<211> 16  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 50  
gacgcctgcc cggtgc 16

<210> 51  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 51  
acctgcccag tgctggaaag 19

<210> 52  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220> .

<223> Primer  
<400> 52  
gggaactgaa acatctaagt a 21  
<210> 53  
<211> 15  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 53  
ggtggatgcc ttggc 15  
<210> 54  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 54  
aaggtaactcc gggataaca ggc 23  
<210> 55  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 55  
tagaacgtcg cgagacagtt cg 22  
<210> 56  
<211> 18  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 56  
gacagttcg tccctatac 18  
<210> 57  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 57  
ctgtccctag tacgagagga ccgg 24

|                             |    |
|-----------------------------|----|
| <210> 58                    |    |
| <211> 25                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 58                    |    |
| tctgtcccta gtacgagagg accgg | 25 |
| <br>                        |    |
| <210> 59                    |    |
| <211> 22                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 59                    |    |
| ctgttcttag tacgagagga cc    | 22 |
| <br>                        |    |
| <210> 60                    |    |
| <211> 23                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 60                    |    |
| tctgttctta gtacgagagg acc   | 23 |
| <br>                        |    |
| <210> 61                    |    |
| <211> 18                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 61                    |    |
| ctagtacgag aggacgg          | 18 |
| <br>                        |    |
| <210> 62                    |    |
| <211> 17                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
| <br>                        |    |
| <220>                       |    |
| <223> Primer                |    |
| <br>                        |    |
| <400> 62                    |    |
| tagtacgaga ggacgg           | 17 |
| <br>                        |    |
| <210> 63                    |    |
| <211> 26                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |

<220>  
<223> Primer

<400> 63  
ggggagtgaa agagatcctg aaaccg 26

<210> 64  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 64  
cgagagggaa acaacccaga cc 22

<210> 65  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 65  
tcgtgccccg aatttgcata aagc 24

<210> 66  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 66  
ttgttagcaca gcaaggcaaa ttccctgaaa c 31

<210> 67  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 67  
taggtttacg tcagtatggc gtgattatgg 30

<210> 68  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 68  
tcgtgattat ggatggcaac gtgaa 25

<210> 69  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 69  
ttatggatgg caacgtgaaa cgcgta

25

<210> 70  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 70  
tctttgccat tgaagatgac ttaagc

26

<210> 71  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 71  
tactagcggt aagcttaaac aagattgc

28

<210> 72  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 72  
ttgccaatga tattcggtgg ttagcaag

28

<210> 73  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 73  
tcggcgaat ccgtattcct gaaaatga

28

<210> 74  
<211> 27

<212> DNA

<213> Artificial Sequence  
<220>  
<223> Primer  
  
<400> 74  
taccactatt aatgtcgctg gtgcattc 27  
  
<210> 75  
<211> 35  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 75  
ttataactta ctgcaatcta ttcaagttgct tggtg 35  
  
<210> 76  
<211> 30  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 76  
tattgttca aatgtacaag gtgaagtgcg 30  
  
<210> 77  
<211> 33  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 77  
tggttatgtta ccaaatactt tgtctgaaaga tgg 33  
  
<210> 78  
<211> 34  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 78  
tgaagtgcgt gatgatatacg atgcacttga tgta 34  
  
<210> 79  
<211> 30  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 79

|                                   |    |
|-----------------------------------|----|
| tggAACGTTA TCAGGTGCC CAAAAATTCG   | 30 |
| <210> 80                          |    |
| <211> 31                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      | !  |
| <br>                              |    |
| <400> 80                          |    |
| TCGGTTTAGT AAAAGAACGT ATTGCTAAC C | 31 |
| <210> 81                          |    |
| <211> 25                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 81                          |    |
| TCAACCTGAC TGCgtGAATG GTTGT       | 25 |
| <210> 82                          |    |
| <211> 27                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 82                          |    |
| TCAAGCAGAA GCTTtGGAAG AAGAAGG     | 27 |
| <210> 83                          |    |
| <211> 30                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 83                          |    |
| TGAGATTGT GAACATTAA TGCTGATTGA    | 30 |
| <210> 84                          |    |
| <211> 29                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 84                          |    |
| TTGCTTAAAG TTGGTTTTAT TGGTTGGCG   | 29 |
| <210> 85                          |    |
| <211> 34                          |    |
| <212> DNA                         |    |

<213> Artificial Sequence

<220>  
<223> Primer

<400> 85  
tcagtttaa tgtctcgat gatcgaatca aaag

34

<210> 86  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 86  
gcacaacactg cggctgcg

18

<210> 87  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 87  
tcttagtaata ataggaccct cagc

24

<210> 88  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 88  
tatggctcta ctcaa

15

<210> 89  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 89  
tgagtcaatt gaagttgata caaatccctct

30

<210> 90  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                                  |    |
|----------------------------------|----|
| <400> 90                         |    |
| gaatagcaat taatccaaat            | 20 |
| <210> 91                         |    |
| <211> 24                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 91                         |    |
| tcaagtccgt tatacgccatt gcat      | 24 |
| <210> 92                         |    |
| <211> 23                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 92                         |    |
| tggaaactatt goaacttgtcta atg     | 23 |
| <210> 93                         |    |
| <211> 27                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 93                         |    |
| tcacttttac atataaggaa ggccgttc   | 27 |
| <210> 94                         |    |
| <211> 30                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 94                         |    |
| tcaggatgga aataaccacc aattcactac | 30 |
| <210> 95                         |    |
| <211> 28                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 95                         |    |
| gttattttgc actcgttttt aatcagcc   | 28 |
| <210> 96                         |    |
| <211> 20                         |    |

<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 96  
actcgttttt aatcagcccg 20

<210> 97  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 97  
gattattgtt atccctgttat gccatttgag 30

<210> 98  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 98  
tgattattgt tatccctgtta tgccatttga g 31

<210> 99  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 99  
ttatttgttat cctgttatgc c 21

<210> 100  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 100  
gttattccctgt tatgccattt g 21

<210> 101  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 101  
ccgtggattt ggagttattt 20  
<210> 102  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 102  
ttgagggtat gcaccgtt tttgatttt t 31  
<210> 103  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 103  
agtataaac acggctttcc tatggcttat cc 32  
<210> 104  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 104  
tggcttatcc aaattttagat cgtggttta c 31  
<210> 105  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 105  
ttatcgtttg tggagctagt gcttatgc 28  
<210> 106  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 106  
tgctcgagtg attgactttt ctaaatttag aga 33

<210> 107  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 107  
tgattttgct aaattttagag aaattgcgga tgaa 34

<210> 108  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 108  
tcccaattaa ttctgccatt tttccaggta t 31

<210> 109  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 109  
tcccgaggact aatatcaatg aaaattgtgg a 31

<210> 110  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 110  
tgcggtatgt ttgggtggttg tagatgaaaa 30

<210> 111  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 111  
tcgtttggtg gtggtagatg aaaaagg 27

<210> 112  
<211> 28  
<212> DNA

<213> Artificial Sequence  
<220>  
<223> Primer  
  
<400> 112  
tagatgaaaa gggcgaagtg gctaatgg 28  
  
<210> 113  
<211> 33  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 113  
tgcctagaag atcttaaaaa ttccgccaa ctt 33  
  
<210> 114  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 114  
tcccccaggac accctgaaat ttcaac 26  
  
<210> 115  
<211> 31  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 115  
tggcatttct tatgaagttt gttcttttagc a 31  
  
<210> 116  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 116  
tgaagcttggt tcttttagcag gacttca 27  
  
<210> 117  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer

|                                         |  |    |
|-----------------------------------------|--|----|
| <400> 117                               |  |    |
| tttgatttta cgcgcgtcctc caggtcg          |  | 27 |
| <210> 118                               |  |    |
| <211> 34                                |  |    |
| <212> DNA                               |  |    |
| <213> Artificial Sequence               |  |    |
| <220>                                   |  |    |
| <223> Primer                            |  |    |
| <400> 118                               |  |    |
| tcctgttatac cctgaagtag ttaatcaagt ttgt  |  | 34 |
| <210> 119                               |  |    |
| <211> 35                                |  |    |
| <212> DNA                               |  |    |
| <213> Artificial Sequence               |  |    |
| <220>                                   |  |    |
| <223> Primer                            |  |    |
| <400> 119                               |  |    |
| tcctgttatac cctgaagtag ttaatcaagt ttgtt |  | 35 |
| <210> 120                               |  |    |
| <211> 35                                |  |    |
| <212> DNA                               |  |    |
| <213> Artificial Sequence               |  |    |
| <220>                                   |  |    |
| <223> Primer                            |  |    |
| <400> 120                               |  |    |
| taggcgaaga tatacaaaga gtattagaag ctaga  |  | 35 |
| <210> 121                               |  |    |
| <211> 33                                |  |    |
| <212> DNA                               |  |    |
| <213> Artificial Sequence               |  |    |
| <220>                                   |  |    |
| <223> Primer                            |  |    |
| <400> 121                               |  |    |
| tccaggacaa atgtatgaaa aatgtccaag aag    |  | 33 |
| <210> 122                               |  |    |
| <211> 34                                |  |    |
| <212> DNA                               |  |    |
| <213> Artificial Sequence               |  |    |
| <220>                                   |  |    |
| <223> Primer                            |  |    |
| <400> 122                               |  |    |
| tggaaaaatgt ccaagaagca tagaaaaaaaa agca |  | 34 |
| <210> 123                               |  |    |
| <211> 26                                |  |    |
| <212> DNA                               |  |    |

<213> Artificial Sequence  
<220>  
<223> Primer  
  
<400> 123  
tctttatgccta agaggacaga gtgagt

26

<210> 124  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 124  
tgtttaggg gcatacagtc ctcatcc

27

<210> 125  
<211> 18  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 125  
gaaagagttc ggattggg

1.8

<210> 126  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>

<223> Primer  
  
<400> 126  
acaacgaagt acaataacaag ac

2.2

<210> 127  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>

<223> Primer  
  
<400> 127  
cgaagtacaa tacaagacaa aagaagg  
  
<210> 128  
<211> 28  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer

2.7

|                                      |    |
|--------------------------------------|----|
| <400> 128                            |    |
| tcgaagtaca atacaagaca aaagaagg       | 28 |
| <210> 129                            |    |
| <211> 21                             |    |
| <212> DNA                            |    |
| <213> Artificial Sequence            |    |
| <220>                                |    |
| <223> Primer                         |    |
| <400> 129                            |    |
| acaatacaag aaaaaagaag g              | 21 |
| <210> 130                            |    |
| <211> 24                             |    |
| <212> DNA                            |    |
| <213> Artificial Sequence            |    |
| <220>                                |    |
| <223> Primer                         |    |
| <400> 130                            |    |
| caggtttagt accagaacat gcag           | 24 |
| <210> 131                            |    |
| <211> 20                             |    |
| <212> DNA                            |    |
| <213> Artificial Sequence            |    |
| <220>                                |    |
| <223> Primer                         |    |
| <400> 131                            |    |
| ggtttagtac cagaacatgc                | 20 |
| <210> 132                            |    |
| <211> 22                             |    |
| <212> DNA                            |    |
| <213> Artificial Sequence            |    |
| <220>                                |    |
| <223> Primer                         |    |
| <400> 132                            |    |
| cggcgtactt caacgacagc ca             | 22 |
| <210> 133                            |    |
| <211> 32                             |    |
| <212> DNA                            |    |
| <213> Artificial Sequence            |    |
| <220>                                |    |
| <223> Primer                         |    |
| <400> 133                            |    |
| ttatcagcta gacccttttag gttaagctaa gc | 32 |
| <210> 134                            |    |
| <211> 32                             |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 134  
tccaaaggtag actaaactta ctttagctaa tg 32

<210> 135  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 135  
tcaaaaagcc ctaggtaaag agattccata tc 32

<210> 136  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 136  
tccggttctta caaatagcaa tagaacttga agc 33

<210> 137  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 137  
tggagcttga agctatcgct cttaaagatg 30

<210> 138  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 138  
tggaaccttga agctctcgct cttaaagatg 30

<210> 139  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 139  
tgggacttga agctatcgct cttaaagatg 30

<210> 140  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 140  
tcttctcatc ctatggctat tatgcttgc 29

<210> 141  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 141  
ggtgaaaagaa gttgcctcta aaggc 24

<210> 142  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 142  
atggacaagg ttggcaagga agg 23

<210> 143  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 143  
aaggaaaggcg tgatcacccgt tgaaga 26

<210> 144  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 144  
tggaaagatct gggtcaggc 19

<210> 145  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 145  
tctgccccgtg tcgttgttga 20

<210> 146  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 146  
tccattgttgc gttatggctca agact 25

<210> 147  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 147  
tcaggtggct tacacggcgt ag 22

<210> 148  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 148  
ttttttttga atgctggtgt acgtatacg 28

<210> 149  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 149  
tcaacgaagg taaaaaccat ctcaacg 27

<210> 150  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 150  
tgttcgctgt ttcacaaaaca acattcca 28

<210> 151  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 151  
tacttacttg agaatccaca agctgcaa 28

<210> 152  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 152  
tggcgaacct ggtgaacgaa gc 22

<210> 153  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 153  
tagttgctca aacagctggg ct 22

<210> 154  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 154  
tcccgaggact tttatgacta aagcagat 28

<210> 155  
<211> 23  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 155

|             |                     |           |    |
|-------------|---------------------|-----------|----|
| tcggcggtgga | aaaatccctac         | gct       | 23 |
| <210>       | 156                 |           |    |
| <211>       | 29                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |
| <220>       |                     |           |    |
| <223>       | Primer              |           |    |
| <400>       | 156                 |           |    |
| ttcctgaccg  | accatttattt         | ccctttatc | 29 |
| <210>       | 157                 |           |    |
| <211>       | 28                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |
| <220>       |                     |           |    |
| <223>       | Primer              |           |    |
| <400>       | 157                 |           |    |
| tccgtaccga  | cccatttattt         | cctttatc  | 28 |
| <210>       | 158                 |           |    |
| <211>       | 22                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |
| <220>       |                     |           |    |
| <223>       | Primer              |           |    |
| <400>       | 158                 |           |    |
| gtcgtgaaaa  | cgagctggaa          | ga        | 22 |
| <210>       | 159                 |           |    |
| <211>       | 21                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |
| <220>       |                     |           |    |
| <223>       | Primer              |           |    |
| <400>       | 159                 |           |    |
| tgcgtttacc  | gcaatgcgtg          | c         | 21 |
| <210>       | 160                 |           |    |
| <211>       | 29                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |
| <220>       |                     |           |    |
| <223>       | Primer              |           |    |
| <400>       | 160                 |           |    |
| tgctcgttgt  | gcacaagtta          | cgatattt  | 29 |
| <210>       | 161                 |           |    |
| <211>       | 30                  |           |    |
| <212>       | DNA                 |           |    |
| <213>       | Artificial Sequence |           |    |

<220>  
<223> Primer

<400> 161  
ttgtctcgtag tgcacaagta acggatatta 30

<210> 162  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 162  
cgtcagggtt aattccgtga agttaa 26

<210> 163  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 163  
tggtaacaga gccttatagg cgca 24

<210> 164  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 164  
tggtctccctt gtagactct gcttc 25

<210> 165  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 165  
tgctgaggcc tggaccgatt atttac 26

<210> 166  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 166  
ttatTTacct gcactcccac aactcg 25

<210> 167  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 167  
tccttgaccgg cctttccgat ac 22

<210> 168  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 168  
tgaggaccgt gtcgcgctca 20

<210> 169  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 169  
tcagaccatg ctgcgcgaga aacct 25

<210> 170  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 170  
tcagttatgtt tccaccgtcg ccagt 26

<210> 171  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 171  
tgggtgacat tcatcaattt catcgttc 28

<210> 172  
<211> 17  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 172

tcaagaagaa aaagagc

17

<210> 173

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 173

caagaagaaa aagagttct aaaaagaata c

31

<210> 174

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 174

agcttttgca tattatatcg agccac

26

<210> 175

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 175

tagcttttgc atattatatc gagccac

27

<210> 176

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 176

cttttgatca ttatatcgag c

21

<210> 177

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 177  
tttacagctt tatgcaccg 19  
<210> 178  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 178  
caacggatgc tggcaag 17  
<210> 179  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 179  
tgttagccgt aagcactacc atcc 24  
<210> 180  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 180  
tggacggcat cacgatttc tac 23  
<210> 181  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 181  
tgaatgtaaa atgactgaac gtcccg 26  
<210> 182  
<211> 29  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 182  
taaaacaaac tacggtaaca ttgatcgca 29  
<210> 183

<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 183  
tcaggtactg ctatccaccc tcaa 24

<210> 184  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 184  
tgtactgcta tccmccctca a 21

<210> 185  
<211> 11  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 185  
tccaccctca a 11

<210> 186  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 186  
tcaccaggtt caacatcaaaa aatattaaca 30

<210> 187  
<211> 27  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 187  
ttacacatat cgtgagcaat gaactga 27

<210> 188  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer  
<400> 188  
ttactccatt attgcttggc tacac<tttcc 30  
<210> 189  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 189  
tacacaacaa tggcggtaaa gatgg 25  
<210> 190  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 190  
tgcgcagtc ttggtatcga gtt 23  
<210> 191  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 191  
tgcctcgaag ctgaaataaa ccaagtt 27  
<210> 192  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 192  
tcaacggtaa cttctatgtt acttctg 27  
<210> 193  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 193  
tcaagccgta cgtattatta ggtgtcg 27  
<210> 194

<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 194  
tccgtacgta ttatttagtg ctggtca 27

<210> 195  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 195  
tcgtacgtat tatttagtgtc tggtcact 28

<210> 196  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 196  
ttttgggtgc ttctggcgat taa 23

<210> 197  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 197  
tggtgcttgc tggcgcttaa acga 24

<210> 198  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 198  
tctactgatt ttggtaatct tgcagcacag 30

<210> 199  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 199  
tgcaagtgg acttcaacat gggg 24

<210> 200  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 200  
ttacaggaag ttttaggttgtt aatctaaaag g 31

<210> 201  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 201  
cagaatcaag ttcccagggg 20

<210> 202  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 202  
agaatcaagt tcccagggg tac 23

<210> 203  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 203  
aatctgttat ttggtcagg 19

<210> 204  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 204  
gaaggatata cggttgatgt c 21

<210> 205

<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 205  
tcctgaaaaa tggagcacgg 20

<210> 206  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 206  
tggagcacgg cttctgtac 19

<210> 207  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 207  
ggctcagcca tttagttacc gctat 25

<210> 208  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 208  
tcagcgcgta cagtgggtga t 21

<210> 209  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 209  
tggtgactcg gcatgtttagt aago 24

<210> 210  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 210  
ttataccgga aacttccccga aaggag 26

<210> 211  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 211

tgacatccgg ctcacgttat tatggt 26

<210> 212  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 212  
tccggctcac gttattatgg tac 23

<210> 213  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 213  
tgcaaaggag gtactcagac cat 23

<210> 214  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 214  
tgacatgtt gtccgttcag gc 22

<210> 215  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 215

|                                 |    |
|---------------------------------|----|
| tggcacatgt gccttcattg atgctg    | 26 |
| <210> 216                       |    |
| <211> 19                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 216                       |    |
| tggcacagggc atctcccggt          | 19 |
| <210> 217                       |    |
| <211> 20                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 217                       |    |
| tgcgggtttagg gagcttgac          | 20 |
| <210> 218                       |    |
| <211> 22                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 218                       |    |
| tccttagagga atggctgcccg         | 22 |
| <210> 219                       |    |
| <211> 23                        |    |
| <212> DNA                       |    |
| <br>                            |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 219                       |    |
| taccccaaggaa aaaaatggcoac aga   | 23 |
| <210> 220                       |    |
| <211> 28                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 220                       |    |
| taaaccccat cggggagcaag accgaata | 28 |
| <210> 221                       |    |
| <211> 19                        |    |
| <212> DNA                       |    |

<213> Artificial Sequence  
<220>  
<223> Primer  
<400> 221  
gaggaaagtc catgctcgc 19  
<210> 222  
<211> 29  
  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 222  
taaggatagt gcaacagaga tataaccgc 29  
<210> 223  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 223  
gaggaaagtc cgggctc 17  
<210> 224  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 224  
tctaaatggc cgtgcagttt cgtt 24  
<210> 225  
<211> 30  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 225  
tggtaagago gcaccggtaa gttggtaaca 30  
<210> 226  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer

|                                  |    |
|----------------------------------|----|
| <400> 226                        |    |
| taagagcgca ccggtaagg tt gg       | 22 |
| <210> 227                        |    |
| <211> 23                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 227                        |    |
| tgcatacccg taagtggca aca         | 23 |
| <210> 228                        |    |
| <211> 26                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 228                        |    |
| tccaccaaga gcaagatcaa ataggc     | 26 |
| <210> 229                        |    |
| <211> 19                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 229                        |    |
| gaggaaagtgc atgtctcac            | 19 |
| <210> 230                        |    |
| <211> 19                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 230                        |    |
| tccggggagt tgactgggt             | 19 |
| <210> 231                        |    |
| <211> 30                         |    |
| <212> DNA                        |    |
| <213> Artificial Sequence        |    |
| <220>                            |    |
| <223> Primer                     |    |
| <400> 231                        |    |
| gacctacagt aagaggttct gtaatgaacc | 30 |
| <210> 232                        |    |
| <211> 31                         |    |
| <212> DNA                        |    |

<213> Artificial Sequence

<220>

<223> Primer

<400> 232

tgcacctacag taagagggttc tgtaatgaac c

31

<210> 233

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 233

tgtaatgaac cctaattgacc atccacacgg

30

<210> 234

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 234

taatgaaccc taatgaccat ccacacggtg

30

<210> 235

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 235

catcccacacg gtgggtgtga agg

23

<210> 236

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 236

tcatcccacac ggtgggtgtg aagg

24

<210> 237

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

|                            |    |
|----------------------------|----|
| <400> 237                  |    |
| tccacacgggt ggtgggtgaag g  | 21 |
| <210> 238                  |    |
| <211> 18                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 238                  |    |
| gaccacacctcg gcaaccgt      | 18 |
| <210> 239                  |    |
| <211> 23                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 239                  |    |
| tcagctgtcg cagttcatgg acc  | 23 |
| <210> 240                  |    |
| <211> 22                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 240                  |    |
| tatcgcttag gcgaactcca ac   | 22 |
| <210> 241                  |    |
| <211> 23                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 241                  |    |
| ttatcgctca ggcgaaactcc aac | 23 |
| <210> 242                  |    |
| <211> 23                   |    |
| <212> DNA                  |    |
| <213> Artificial Sequence  |    |
| <220>                      |    |
| <223> Primer               |    |
| <400> 242                  |    |
| tcgttacctgg aacacgatga cg  | 23 |
| <210> 243                  |    |
| <211> 29                   |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 243

tcaacaacct cttggaggta aagctcagt 29

<210> 244  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 244

cttggaggta agtctcattt tggtggca 29

<210> 245  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 245

tgggcagcgt ttcggcgaaa ttga 24

<210> 246  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 246

gggcagcgtt tcggcgaaat gga 23

<210> 247  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 247

cagcgtttcg gcgaaatgga 20

<210> 248  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                                |  |    |
|--------------------------------|--|----|
| <400> 248                      |  |    |
| caaaacttat taggtaagcg tgttgact |  | 28 |
| <210> 249                      |  |    |
| <211> 25                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <400> 249                      |  |    |
| cgttgttact attcggggcg ttccag   |  | 25 |
| <210> 250                      |  |    |
| <211> 27                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <400> 250                      |  |    |
| taagaagccg gaaaccatca actaccg  |  | 27 |
| <210> 251                      |  |    |
| <211> 22                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <400> 251                      |  |    |
| acccagtgtct gctgaacgt gc       |  | 22 |
| <210> 252                      |  |    |
| <211> 20                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <400> 252                      |  |    |
| cgccgacttc gacggtgacc          |  | 20 |
| <210> 253                      |  |    |
| <211> 21                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <400> 253                      |  |    |
| tcggccgactt cgacggtgac c       |  | 21 |

<210> 254  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 254  
tggcccgaaa gaagctgagc g 21

<210> 255  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 255  
tcaggagtcg ttcaactcga tctacatgat g 31

<210> 256  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 256  
caggagtgt tcaactcgat ctacatgat 29

<210> 257  
<211> 30

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 257  
tcaggagtcg ttcaactcga tctacatgat 30

<210> 258  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 258  
tgattcctgt gccccgttgt 19

<210> 259  
<211> 19  
<212> DNA  
<213> Artificial Sequence

|                              |  |    |
|------------------------------|--|----|
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 259                    |  |    |
| tgattctggc gcccgtgg          |  | 19 |
| <210> 260                    |  |    |
| <211> 24                     |  |    |
| <212> DNA                    |  |    |
| <213> Artificial Sequence    |  |    |
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 260                    |  |    |
| cttgcgtggta tgcgtggctc gatg  |  | 24 |
| <210> 261                    |  |    |
| <211> 24                     |  |    |
| <212> DNA                    |  |    |
| <213> Artificial Sequence    |  |    |
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 261                    |  |    |
| ctggcaggta tgcgtggctc gatg   |  | 24 |
| <210> 262                    |  |    |
| <211> 25                     |  |    |
| <212> DNA                    |  |    |
| <213> Artificial Sequence    |  |    |
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 262                    |  |    |
| tctggcaggta atgcgtggtc tgatg |  | 25 |
| <210> 263                    |  |    |
| <211> 21                     |  |    |
| <212> DNA                    |  |    |
| <213> Artificial Sequence    |  |    |
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 263                    |  |    |
| tggtatgcgt ggtctgatgg c      |  | 21 |
| <210> 264                    |  |    |
| <211> 24                     |  |    |
| <212> DNA                    |  |    |
| <213> Artificial Sequence    |  |    |
| <220>                        |  |    |
| <223> Primer                 |  |    |
| <400> 264                    |  |    |
| tgctcgtaag ggtctggcg ggatac  |  | 24 |

<210> 265  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 265  
cgtcggtgtaa ttaaccgtaa caaccg 26

<210> 266  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 266  
cgtcggtgtaa ttaaccgtaa caaccg 26

<210> 267  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 267  
tatggacaca cggtcgtcgc gg 22

<210> 268  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 268  
tctggataaac ggtcgtcgcg g 21

<210> 269  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 269  
caaaggtaag caaggacgtt tcogtca 27

<210> 270  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 270  
caaaggtaag caaggtcggtt tccgtca 27

<210> 271  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 271  
aaccttaatt ggaaagaaac ccaagaagt 29

<210> 272  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 272  
taaccttaat tggaaagaaa cccaaagaatg 30

<210> 273  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 273  
caataccgca acagcgggtgg ctgggg 26

<210> 274  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 274  
tc当地accgc aacagcgggtg gcttggg 27

<210> 275  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 275

|                                       |    |
|---------------------------------------|----|
| gctggtgaaa ataacccaga tgtcgcttcc      | 30 |
| <210> 276                             |    |
| <211> 31                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |
| <br>                                  |    |
| <220>                                 |    |
| <223> Primer                          |    |
| <br>                                  |    |
| <400> 276                             |    |
| tgctggtgaa aataacccag atgtcgctt c     | 31 |
| <210> 277                             |    |
| <211> 23                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |
| <br>                                  |    |
| <220>                                 |    |
| <223> Primer                          |    |
| <br>                                  |    |
| <400> 277                             |    |
| cgcaaaaaaaaa tccagctatt agc           | 23 |
| <210> 278                             |    |
| <211> 24                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |
| <br>                                  |    |
| <220>                                 |    |
| <223> Primer                          |    |
| <br>                                  |    |
| <400> 278                             |    |
| tcgcaaaaaaaa atccagctat tagc          | 24 |
| <210> 279                             |    |
| <211> 30                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |
| <br>                                  |    |
| <220>                                 |    |
| <223> Primer                          |    |
| <br>                                  |    |
| <400> 279                             |    |
| cggatatacg taaaaaaaaata gtttatgaca    | 30 |
| <210> 280                             |    |
| <211> 31                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |
| <br>                                  |    |
| <220>                                 |    |
| <223> Primer                          |    |
| <br>                                  |    |
| <400> 280                             |    |
| tcggatatacg ctaaaaaaaaat agtttatgac a | 31 |
| <210> 281                             |    |
| <211> 29                              |    |
| <212> DNA                             |    |
| <213> Artificial Sequence             |    |

<220>  
<223> Primer

<400> 281  
cctatatattaa tcgtttacag aaactggct 29

<210> 282  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 282  
tcctatatta atcgtttaca gaaactggct 30

<210> 283  
<211> 23  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 283  
ctggctaaaa ctttggcaac ggt 23

<210> 284  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 284  
tctggctaaa actttggcaa cggt 24

<210> 285  
<211> 29  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 285  
atgattacaa ttcaagaagg tcgtcacgc 29

<210> 286  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                                   |    |
|-----------------------------------|----|
| <400> 286                         |    |
| tatgattaca attcaagaag gtcgtcacgc  | 30 |
| <210> 287                         |    |
| <211> 25                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 287                         |    |
| taacggttat catggccag atggg        | 25 |
| <210> 288                         |    |
| <211> 26                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 288                         |    |
| ttaacggta tcatggccca gatggg       | 26 |
| <210> 289                         |    |
| <211> 28                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 289                         |    |
| agcagggtgt gaaatcgccc acatgatt    | 28 |
| <210> 290                         |    |
| <211> 29                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 290                         |    |
| tagcagggtgg tgaaaatcgcc cacatgatt | 29 |
| <210> 291                         |    |
| <211> 24                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 291                         |    |
| cagagaccgtt ttatcctat cagc        | 24 |
| <210> 292                         |    |

<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 292  
tcagagaccc ttttatccta tcagg 25

<210> 293  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 293  
tctaaaacac caggtcaccc agaag 25

<210> 294  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 294  
ttctaaaaaca ccaggtcacc cagaag 26

<210> 295  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 295  
atggccatgg cagaagctca 20

<210> 296  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 296  
tatggccatg gcagaagctc a 21

<210> 297  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 297  
cttgcacttg tggctcacac ggctgtttgg 30

<210> 298  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 298  
tcttgtacctt gtggctcaca cggctgttg g 31

<210> 299  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 299  
accatgacag aaggcattt gaca 24

<210> 300  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 300  
taccatgaca gaaggcattt tgaca 25

<210> 301  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 301  
gatgactttt tagctaattgg tcaggcagc 29

<210> 302  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 302  
ttagtactttt tttagctaattgg gtcaggcagc 30

<210> 303

<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 303  
tagctaatgg tcaggcagcc 20

<210> 304  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 304  
gtcaaaagtgg cacgttact ggc 23

<210> 305  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 305  
tgtcaaaagtg gcacgtttac tggc 24

<210> 306  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 306  
agcgtaaagg tgaacctt 18

<210> 307  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 307  
tagcgtaaag gtgaacctt 19

<210> 308  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 308  
gcttcaggaa tcaatgtatgg agcag 25

<210> 309  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 309  
tgccatcgga atcaatgtatg gagcag 26

<210> 310  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 310  
ggggatttag ccatcaaagc agctattgac 30

<210> 311  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 311  
tggggattca gccatcaaag cagctattga c 31

<210> 312  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 312  
tcagccatca aagcagctat tg 22

<210> 313  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 313

|                                    |    |
|------------------------------------|----|
| cccttacttcg aactatgaat cttttggaaag | 30 |
| <210> 314                          |    |
| <211> 31                           |    |
| <212> DNA                          |    |
| <213> Artificial Sequence          |    |
| <br>                               |    |
| <220>                              |    |
| <223> Primer                       |    |
| <br>                               |    |
| <400> 314                          |    |
| tccttacttc gaactatgaa tctttggaa g  | 31 |
| <210> 315                          |    |
| <211> 27                           |    |
| <212> DNA                          |    |
| <213> Artificial Sequence          |    |
| <br>                               |    |
| <220> -                            |    |
| <223> Primer                       |    |
| <br>                               |    |
| <400> 315                          |    |
| ggggatttat atcaccgata agaagaaa     | 27 |
| <210> 316                          |    |
| <211> 28                           |    |
| <212> DNA                          |    |
| <213> Artificial Sequence          |    |
| <br>                               |    |
| <220>                              |    |
| <223> Primer                       |    |
| <br>                               |    |
| <400> 316                          |    |
| tggggattta tatcaccgat aagaagaaa    | 28 |
| <210> 317                          |    |
| <211> 26                           |    |
| <212> DNA                          |    |
| <213> Artificial Sequence          |    |
| <br>                               |    |
| <220>                              |    |
| <223> Primer                       |    |
| <br>                               |    |
| <400> 317                          |    |
| tccccaatca aaactaaggg aatggc       | 26 |
| <210> 318                          |    |
| <211> 27                           |    |
| <212> DNA                          |    |
| <213> Artificial Sequence          |    |
| <br>                               |    |
| <220>                              |    |
| <223> Primer                       |    |
| <br>                               |    |
| <400> 318                          |    |
| ttcgccaaatc aaaactaagg gaatggc     | 27 |
| <210> 319                          |    |
| <211> 29                           |    |
| <212> DNA                          |    |

<213> Artificial Sequence

<220>

<223> Primer

<400> 319

gggcaacacgc agcgaggattgc gattgcgcg

29

<210> 320

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 320

tgggcaacag cagcggttgc cgattgcgcg

30

<210> 321

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 321

tcaagcaaac gcacaatcag aagc

24

<210> 322

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 322

caagcaaacg cacaatcaga agc

23

<210> 323

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 323

aacgcacaat cagaaggc

17

<210> 324

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

|                                     |    |
|-------------------------------------|----|
| <400> 324                           |    |
| tgcacaatca gaagctaaga aaggcgcaago t | 31 |
| <210> 325                           |    |
| <211> 23                            |    |
| <212> DNA                           |    |
| <213> Artificial Sequence           |    |
| <220>                               |    |
| <223> Primer                        |    |
| <400> 325                           |    |
| tgcagaaggcc ttgttgttgcattt att      | 23 |
| <210> 326                           |    |
| <211> 19                            |    |
| <212> DNA                           |    |
| <213> Artificial Sequence           |    |
| <220>                               |    |
| <223> Primer                        |    |
| <400> 326                           |    |
| tgcggctttt gcttagcattt              | 19 |
| <210> 327                           |    |
| <211> 13                            |    |
| <212> DNA                           |    |
| <213> Artificial Sequence           |    |
| <220>                               |    |
| <223> Primer                        |    |
| <400> 327                           |    |
| tggtttgtttt att                     | 13 |
| <210> 328                           |    |
| <211> 27                            |    |
| <212> DNA                           |    |
| <213> Artificial Sequence           |    |
| <220>                               |    |
| <223> Primer                        |    |
| <400> 328                           |    |
| tgtttttttt ggtagttttt ttgcacat      | 27 |
| <210> 329                           |    |
| <211> 18                            |    |
| <212> DNA                           |    |
| <213> Artificial Sequence           |    |
| <220>                               |    |
| <223> Primer                        |    |
| <400> 329                           |    |
| tgtttttttt ggtagttttt ttgcacat      | 18 |
| <210> 330                           |    |
| <211> 15                            |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 330  
tacagagttt gcgac 15

<210> 331  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 331  
tcgatttaggc agcaacgaaa gccc 24

<210> 332  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 332  
tcgaccctttg gcaggaacta gac 23

<210> 333  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 333  
tcaaatgtac aaggtaagt gcgtga 26

<210> 334  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 334  
tggatggcat ggtaaatgg atatgtc 27

<210> 335  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                                |    |
|--------------------------------|----|
| <400> 335                      |    |
| atgtcgattt caatccgtac ttgtg    | 25 |
| <210> 336                      |    |
| <211> 23                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 336                      |    |
| gtgcattgcgg atacagagca gag     | 23 |
| <210> 337                      |    |
| <211> 20                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 337                      |    |
| tgcaggcg accacatacg            | 20 |
| <210> 338                      |    |
| <211> 27                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 338                      |    |
| gcactatgca cacgttagatt gtcctgg | 27 |
| <210> 339                      |    |
| <211> 21                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 339                      |    |
| ttgactgccc aggtcacgct g        | 21 |
| <210> 340                      |    |
| <211> 21                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 340                      |    |
| tagactgccc aggacacgct g        | 21 |

<210> 341  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 341  
tgcacgccga ctatgttaag aacatgtat 28

<210> 342  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 342  
tgatcaactgg tgctgctcag atggat 25

<210> 343  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 343  
aagacgaccc tgcacgggc 18

<210> 344  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 344  
ccacacgcgc ttcttcaaca act 23

<210> 345  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 345  
tcacaeacgcc gttttcaac aact 24

<210> 346  
<211> 25  
<212> DNA  
<213> Artificial Sequence

|                                |    |
|--------------------------------|----|
| <220>                          |    |
| <223> Primer                   |    |
| <400> 346                      |    |
| aactaccgtc ctcagttcta ctccc    | 25 |
| <210> 347                      |    |
| <211> 25                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 347                      |    |
| aactaccgtc cgcagttcta ctccc    | 25 |
| <210> 348                      |    |
| <211> 28                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 348                      |    |
| ccacagttct acttccgtac tactgacg | 28 |
| <210> 349                      |    |
| <211> 20                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 349                      |    |
| cgtggcgccg tggttatcg           | 20 |
| <210> 350                      |    |
| <211> 21                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 350                      |    |
| tctgtggcgcc gtttatcg a         | 21 |
| <210> 351                      |    |
| <211> 24                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 351                      |    |
| tatgctgacc gaccaggatggt acgt   | 24 |

|                                |  |    |
|--------------------------------|--|----|
| <210> 352                      |  |    |
| <211> 18                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <br>                           |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <br>                           |  |    |
| <400> 352                      |  |    |
| cgacgcgcgtc cgcttcac           |  | 18 |
| <br>                           |  |    |
| <210> 353                      |  |    |
| <211> 24                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <br>                           |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <br>                           |  |    |
| <400> 353                      |  |    |
| cttctgcaac aagctgtgga acgc     |  | 24 |
| <br>                           |  |    |
| <210> 354                      |  |    |
| <211> 19                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <br>                           |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <br>                           |  |    |
| <400> 354                      |  |    |
| accgagcaag gagaccaggc          |  | 19 |
| <br>                           |  |    |
| <210> 355                      |  |    |
| <211> 28                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <br>                           |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <br>                           |  |    |
| <400> 355                      |  |    |
| ttttgtcttt tcgtgagttc agtaaatg |  | 28 |
| <br>                           |  |    |
| <210> 356                      |  |    |
| <211> 26                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |
| <br>                           |  |    |
| <220>                          |  |    |
| <223> Primer                   |  |    |
| <br>                           |  |    |
| <400> 356                      |  |    |
| tcgatctgggt ttcatgtgt ttcagt   |  | 26 |
| <br>                           |  |    |
| <210> 357                      |  |    |
| <211> 20                       |  |    |
| <212> DNA                      |  |    |
| <213> Artificial Sequence      |  |    |

<220>  
<223> Primer  
  
<400> 357  
ttactcaccc gtccggcgat 20  
  
<210> 358  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 358  
tggtaactcac ccgtctgcca ct 22  
  
<210> 359  
  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 359  
ttactcaccc gtccggcc 17  
  
<210> 360  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 360  
acaaccatgc accacacctgtc 20  
  
<210> 361  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 361  
tacggattac tcaccctgtcc: gc 22  
  
<210> 362  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 362

|                           |     |
|---------------------------|-----|
| acgagctgac gacagccatg     | 20  |
| <210> 363                 |     |
| <211> 21                  |     |
| <212> DNA                 |     |
| <213> Artificial Sequence |     |
| <br>                      |     |
| <220>                     |     |
| <223> Primer              |     |
| <br>                      |     |
| <400> 363                 |     |
| tacgagctga cgacagccat g   | 21  |
| <210> 364                 |     |
| <211> 18                  |     |
| <212> DNA                 |     |
| <213> Artificial Sequence |     |
| <br>                      |     |
| <220>                     |     |
| <223> Primer              |     |
| <br>                      |     |
| <400> 364                 |     |
| acgacacgag ctgacgac       | 1 8 |
| <210> 365                 |     |
| <211> 12                  |     |
| <212> DNA                 |     |
| <213> Artificial Sequence |     |
| <br>                      |     |
| <220>                     |     |
| <223> Primer              |     |
| <br>                      |     |
| <400> 365                 |     |
| acacgagctg ac             | 1 2 |
| <210> 366                 |     |
| <211> 15                  |     |
| <212> DNA                 |     |
| <213> Artificial Sequence |     |
| <br>                      |     |
| <220>                     |     |
| <223> Primer              |     |
| <br>                      |     |
| <400> 366                 |     |
| tccccacatt cctcc          | 1 5 |
| <210> 367                 |     |
| <211> 22                  |     |
| <212> DNA                 |     |
| <213> Artificial Sequence |     |
| <br>                      |     |
| <220>                     |     |
| <223> Primer              |     |
| <br>                      |     |
| <400> 367                 |     |
| gacgtcatcc ccacacctt cc   | 22  |
| <210> 368                 |     |
| <211> 21                  |     |
| <212> DNA                 |     |

<213> Artificial Sequence

<220>  
<223> Primer

<400> 368  
gacgtcattcc ccacaccttc c

21

<210> 369  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 369  
tgacgtcata cccacaccttc tc

22

<210> 370  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 370  
ttgacgtcat ccccacaccttc ctc

23

<210> 371  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 371

ttgacgtcat ccccacaccttc ctc

23

<210> 372  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 372  
tgacgtcatg gccacaccttc

20

<210> 373  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 373  
tgacgtcatg cccacaccttcc 20  
<210> 374  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 374  
tgacgtatc cccacaccttcc 20  
  
<210> 375  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 375  
attgttagcac gtgtgttagcc c 21  
<210> 376  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 376  
cgagttgcag actgcgatcc g 21  
<210> 377  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 377  
cgagttgcag actgcgatcc g 21  
<210> 378  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 378  
gacggggcgt gtgtacaag 19  
<210> 379  
<211> 22

<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 379  
accttggtaac gacttcaccc ca 22  
  
<210> 380  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 380  
ccttggttacg acttcacccc 20  
  
<210> 381  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 381  
cacggctacc ttgttacgac 20  
  
<210> 382  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 382  
aaggaggtga tccagcc 17  
  
<210> 383  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 383  
actgctgcct cccgtag 17  
  
<210> 384  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>

<223> Primer

<400> 384

cggtctggcacgaaggta g

21

<210> 385

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 385

ctttacgccc agtaattccg

20

<210> 386

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 386

cgcatttac acgttacac

18

<210> 387

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 387

gtatctaattc ctgtttgctc cc

22

<210> 388

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 388

cgtggactac cagggtatct a

21

<210> 389

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 389

tcgtggacta ccagggtatct ta

22

<210> 390  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 390  
cgtactcccc aggccg 15

<210> 391  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 391  
ggccgtactc cccaggcg 18

<210> 392  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 392  
tggccgtact ccccaggcg 19

<210> 393  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 393  
gcgaccgtac tccccagg 18

<210> 394

<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 394  
gccttgcgac cgtactccc 19

<210> 395  
<211> 21  
<212> DNA  
<213> Artificial Sequence

|                               |    |
|-------------------------------|----|
| <220>                         |    |
| <223> Primer                  |    |
| <400> 395                     |    |
| cccccgtaaa ttcctttgag t       | 21 |
| <210> 396                     |    |
| <211> 19                      |    |
| <212> DNA                     |    |
| <213> Artificial Sequence     |    |
| <220>                         |    |
| <223> Primer                  |    |
| <400> 396                     |    |
| ggtaaggttc ttccgcgttg         | 19 |
| <210> 397                     |    |
| <211> 26                      |    |
| <212> DNA                     |    |
| <213> Artificial Sequence     |    |
| <220>                         |    |
| <223> Primer                  |    |
| <400> 397                     |    |
| tccgcaggctt acagaacgct ctccta | 26 |
| <210> 398                     |    |
| <211> 20                      |    |
| <212> DNA                     |    |
| <213> Artificial Sequence     |    |
| <220>                         |    |
| <223> Primer                  |    |
| <400> 398                     |    |
| tccggactcgc tttcgctacg        | 20 |
| <210> 399                     |    |
| <211> 18                      |    |
| <212> DNA                     |    |
| <213> Artificial Sequence     |    |
| <220>                         |    |
| <223> Primer                  |    |
| <400> 399                     |    |
| gtgcgcctt tctaactt            | 18 |
| <210> 400                     |    |
| <211> 19                      |    |
| <212> DNA                     |    |
| <213> Artificial Sequence     |    |
| <220>                         |    |
| <223> Primer                  |    |
| <400> 400                     |    |
| tggctgcttc taagccaac          | 19 |

<210> 401  
<211> 16  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 401  
gggtttcccc attcgga 16

<210> 402  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 402  
ccttctcccg aagttacg 18

<210> 403  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 403  
cacccgggcag gcgttc 15

<210> 404  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 404  
gaccgttata gttacggcc 19

<210> 405  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 405  
tgaccgttat agttacggcc 20

<210> 406  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
  
<400> 406  
tcgctacattt aggaccgt 18  
  
<210> 407  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 407  
ccgacaagga atttcgctac c 21  
  
<210> 408  
<211> 15  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 408  
ttcgctcgcc gctac 15  
  
<210> 409  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 409  
agccgacatc gaggtgccaa ac 22  
  
<210> 410  
<211> 17  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 410  
ccggtcctct cgtacta 17  
  
<210> 411  
<211> 20  
<212> DNA  
  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 411

|                           |    |
|---------------------------|----|
| agtccatccc ggtcctctcg     | 20 |
| <210> 412                 |    |
| <211> 22                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <br>                      |    |
| <220>                     |    |
| <223> Primer              |    |
| <br>                      |    |
| <400> 412                 |    |
| tttagatgctt tcagcaccta tc | 22 |
| <br>                      |    |
| <210> 413                 |    |
| <211> 20                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <br>                      |    |
| <220>                     |    |
| <223> Primer              |    |
| <br>                      |    |
| <400> 413                 |    |
| acttagatgc tttcagcggt     | 20 |
| <br>                      |    |
| <210> 414                 |    |
| <211> 18                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <br>                      |    |
| <220>                     |    |
| <223> Primer              |    |
| <br>                      |    |
| <400> 414                 |    |
| <br>                      |    |
| tgccttagatg ctttcagc      | 18 |
| <br>                      |    |
| <210> 415                 |    |
| <211> 21                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <br>                      |    |
| <220>                     |    |
| <223> Primer              |    |
| <br>                      |    |
| <400> 415                 |    |
| ttcgtgttta gatgtttca g    | 21 |
| <br>                      |    |
| <210> 416                 |    |
| <211> 22                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <br>                      |    |
| <220>                     |    |
| <223> Primer              |    |
| <br>                      |    |
| <400> 416                 |    |
| tttcgtgttta agatgtttca ag | 22 |
| <br>                      |    |
| <210> 417                 |    |
| <211> 24                  |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 417  
gtttcatgt tagatgcttt cagc 24

<210> 418  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 418  
acaaaaggca cgccatcacc c 21

<210> 419  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 419  
acaaaaggta cgccgtcacc c 21

<210> 420  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 420  
taatgccggg tagtgcaatc catttttcta g 31

<210> 421  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 421  
tgcacctgcg gtcgagcg 18

<210> 422  
<211> 28  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

|                                              |    |
|----------------------------------------------|----|
| <400> 422                                    |    |
| tgc<br>ccatcat aatc<br>acgcca tactgacg       | 28 |
| <210> 423                                    |    |
| <211> 27                                     |    |
| <212> DNA                                    |    |
| <213> Artificial Sequence                    |    |
| <220>                                        |    |
| <223> Primer                                 |    |
| <400> 423                                    |    |
| tgc<br>caggat tc acat ttc ac gtt cgt g       | 27 |
| <210> 424                                    |    |
| <211> 25                                     |    |
| <212> DNA                                    |    |
| <213> Artificial Sequence                    |    |
| <220>                                        |    |
| <223> Primer                                 |    |
| <400> 424                                    |    |
| tcg<br>cattt gagt gtatgc atga ttgcg          | 25 |
| <210> 425                                    |    |
| <211> 25                                     |    |
| <212> DNA                                    |    |
| <213> Artificial Sequence                    |    |
| <220>                                        |    |
| <223> Primer                                 |    |
| <400> 425                                    |    |
| tga<br>gtcgggt tcacttta cc tggca             | 25 |
| <210> 426                                    |    |
| <211> 35                                     |    |
| <212> DNA                                    |    |
| <213> Artificial Sequence                    |    |
| <220>                                        |    |
| <223> Primer                                 |    |
| <400> 426                                    |    |
| ttgt<br>acattt gaaa caataat gcatgacatg tgaat | 35 |
| <210> 427                                    |    |
| <211> 27                                     |    |
| <212> DNA                                    |    |
| <213> Artificial Sequence                    |    |
| <220>                                        |    |
| <223> Primer                                 |    |
| <400> 427                                    |    |
| tacc<br>cgaa agc acca<br>gcgaca ttaatag      | 27 |
| <210> 428                                    |    |
| <211> 32                                     |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 428  
tgcaactgaa tagattgcag taagtataa gc 32

<210> 429  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 429  
tgaattatgc aagaagtgtat caattttctc acga 34

<210> 430  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 430  
tgccgttaact aacataagag aattatgcaa gaa 33

<210> 431  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 431  
tgacggcatc gataccaccg tc 22

<210> 432  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 432  
tcacagggttc tacttcatca ataatttcca ttgc 34

<210> 433  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                                    |    |
|------------------------------------|----|
| <40 O> 433                         |    |
| tccggccaaaa actcccccttt tcacagg    | 27 |
| <21 O> 434                         |    |
| <21 1> 30                          |    |
| <21 2> DNA                         |    |
| <21 3> Artificial Sequence         |    |
| <22 O>                             |    |
| <22 3> Primer                      |    |
| <40 O> 434                         |    |
| ttgcaatcga catatccatt tcaccatgcc   | 30 |
| <21 O> 435                         |    |
| <21 1> 24                          |    |
| <21 2> DNA                         |    |
| <21 3> Artificial Sequence         |    |
| <22 O>                             |    |
| <22 3> Primer                      |    |
| <40 O> 435                         |    |
| ttcttgcttga ggaatagtgc gtgg        | 24 |
| <21 O> 436                         |    |
| <21 1> 31                          |    |
| <21 2> DNA                         |    |
| <21 3> Artificial Sequence         |    |
| <22 O>                             |    |
| <22 3> Primer                      |    |
| <40 O> 436                         |    |
| tacgttctac gatttcttca tcaggtacat c | 31 |
| <21 O> 437                         |    |
| <21 1> 27                          |    |
| <21 2> DNA                         |    |
| <21 3> Artificial Sequence         |    |
| <22 O>                             |    |
| <22 3> Primer                      |    |
| <40 O> 437                         |    |
| tacmaacgtga taaacacgac cagaagg     | 27 |
| <21 O> 438                         |    |
| <21 1> 28                          |    |
| <21 2> DNA                         |    |
| <21 3> Artificial Sequence         |    |
| <22 O>                             |    |
| <22 3> Primer                      |    |
| <40 O> 438                         |    |
| tccatatattgt tgcataaaaac ctgttggc  | 28 |
| <21 O> 439                         |    |

```

<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<4 00> 439
tgagatgtcg aaaaaaacgt tggcaaaata c 31

<210> 440
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<4 00> 440
acggcacgag gtatgcgc 18

<210> 441
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<4 00> 441
taaccatttc gcgttaagatt caa 23

<210> 442
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<4 00> 442
tcatgtgcta atgttactgc tggatctg 28

<210> 443
<211> 14
<212> DNA

<213> Artificial Sequence

<220>
<223> Primer

<4 00> 443
tgttactgct ggat 14

<210> 444
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

```

<223> Primer  
<400> 444  
ttacttctaa cccactc 17  
<210> 445  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 445  
tgccggctgg ttcaacaaga g 21  
<210> 446  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 446  
tgatgcgggc tggttcaac 19  
<210> 447  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 447  
tcctgtttta tagccgccaa gagtaag 27  
<210> 448  
<211> 28  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 448  
tcaaggttct caccgtttac cttagag 28  
<210> 449  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 449  
tgaatcttga aacaccatac gtaacg 26  
<210> 450

<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 450  
tgaatcttga aacaccat~~a~~c g

21

<210> 451  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 451  
gttaacccttg tctttgaatt gtattgc

28

<210> 452  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 452  
tgtaaccctt gtctttgaat tgtatttc

29

<210> 453  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 453  
ggtaaccctt gtctttgaa~~t~~

20

<210> 454  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 454  
tggtaaccct tgtctttg

18

<210> 455  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 455  
tcccttat ttc ttctac tac ct tc gga taat 34

<210> 456  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 456  
tccc ctcatg tttaatgtat caggataaaaa agc 33

<210> 457  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 457  
tcgg tttaa g ctct acatga tcgtaaggat a 31

<210> 458  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 458  
tttg ctcatg atctgc atga agcataaaa 28

<210> 459  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 459  
tgcaatgtgt gctatgtcag caaaaagat 29

<210> 460  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 460  
tgagcgtgtg gaaaaggact tggatg 26

<210> 461  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 461  
tatgtgttagt tgagcttact acatgagc 28

<210> 462  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 462  
tggtttttac ttgccttgca taaaccttcc a 31

<210> 463  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 463  
tcgatccgca tcaccatcaa aagcaaa 27

<210> 464  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 464  
tcccacactgg attgtaattt accttgttct tt 32

<210> 465  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 465  
tctctttcaa agcaccattg ctcattatacg t 31

<210> 466  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 466  
tgaattcttt caaaggacca ttgctcatta tagt 34

<210> 467  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 467  
  
ttgctgccat agcaaagct acagc 25

<210> 468  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 468  
tgtgtttttt ttgctgccat agcaaagg 28

<210> 469  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 469  
tgcttcaaaa cgcattttta cattttcgaa aaag 34

<210> 470  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 470  
tcctccctgt gcctcaaaac gcattttta 29

<210> 471  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 471  
tcaaagaacc cgcacctaatt tcatttttt 30

<210> 472  
<211> 35  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 472  
tcaactggtt caaaaacatt aagttgtaat tgtcc 35

<210> 473  
<211> 35  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 473  
tacaactggt tcaaaaaacat taagctgtaa ttgtc 35

<210> 474  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 474  
ttcattttct ggtccaaagt aaggcagtatac 30

<210> 475  
<211> 33  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 475  
tcccgaaacaa tgagggttat caactatttt tac 33

<210> 476  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 476  
tgccctaacaa atccccgtctg agttc 25

<210> 477  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
  
<400> 477  
tgtcatcaag caccggaaaa tgaact 26  
  
<210> 478  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 478  
ccacttttaa taaggtttgtt agc 23  
  
<210> 479  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 479  
tgttgaccat gcttcttag 19  
  
<210> 480  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 480  
cttctacatt tttagccatc ac 22  
  
<210> 481  
<211> 15  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 481  
cggtttcaag acccc 15  
  
<210> 482  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 482  
tgttaacggc ttcaagaccc 20

<210> 483  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 483  
ttgttaacgg cttcaagacc c 21

<210> 484  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 484  
accactttta ataagggttg tagctaac 28

<210> 485  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 485  
cgccgtcgcc tcggttgcga 20

<210> 486  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 486  
tcacctacag cttaaaagcc agcaaaatg 29

<210> 487  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 487  
tcttcgtaa agggtggttt attattcatc cca 33

<210> 488  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 488  
tagcctggc aacatcagca aaact 25

<210> 489  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 489  
ttggcgacgg tataccata gctttata 28

<210> 490  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 490  
tgaacatttg cgacggtata cccat 25

<210> 491  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 491  
tgtgaacatt tgcgacggta tacccat 27

<210> 492  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 492  
tgtgtggtat cttagcaatc attctaatag 31

<210> 493  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 493

tgcgatggta ggtatcttag caatcattct 30  
<210> 494  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 494  
caatctgtg acggatctga gc 22  
  
<210> 495  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 495  
ttcaggtcca tcgggttcat gcc 23  
  
<210> 496  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 496  
ccgcggtcga attgcatgcc ttc 23  
  
<210> 497  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 497  
tagccgcggc cgaattgcat 20  
  
<210> 498  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 498  
tcgaacccgaa gttaccctga ccat 24  
  
<210> 499

<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 499

tgcgcgttta gtcatacgga cttc 24

<210> 500  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 500  
tattgcggat caccatgatg atattcttgc 30

<210> 501  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 501  
tcgttgagat ggtttttacc ttctgttg 27

<210> 502  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 502  
tttgtgaaac agcgaacatt ttcttggta 29

<210> 503  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 503  
tcacgcgcatt catcaccaggta ca 22

<210> 504  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer  
<400> 504  
tcctgcaata tctaatgcac tcttacg 27  
<210> 505  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 505  
acctgcaata tctaatgcac tcttacg 27  
<210> 506  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 506  
ctttagctt ctgcgaactca accat 25  
<210> 507  
<211> 22  
<212> DNA  
  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 507  
tagccccagct gtttgagcaa ct 22  
<210> 508  
<211> 32  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 508  
tcccttaatag tagaaataac tgcatcgta gc 32  
<210> 509  
<211> 32  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 509  
tcccttaatag tagaaataac tgcatcgta gc 32

<210> 510  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 510  
taggattttt ccacggccgc atc 23

<210> 511  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 511  
tagcccttttc tccggcgtag atct 24

<210> 512  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 512  
catgatggtc acaaccgg 18

<210> 513  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 513  
tcggcatcac gccgtcg 19

<210> 514  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 514  
tgcttgtttc gcatggtaa ttgctcaa 29

<210> 515  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 515  
ttgtgttgcggatggta attgtttcaa 30

<210> 516  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 516  
aacttcgcct tcggcatgt t 21

<210> 517  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 517  
ttcggttgca gattatcttt accaa 25

<210> 518  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 518  
tgttaagtgt gttggggctg tctttatt 28

<210> 519  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 519  
tcacgcgacg agtgcgcattcc attg 24

<210> 520  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 520  
tgaccctaaag ctgaaagctt tactg 25

<210> 521  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 521  
ttttccagcc atgcagcgac 20

<210> 522  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 522  
tccttcgtat gcctgatgga ccaggag 27

<210> 523  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer

<400> 523  
tgtcacgtccc gacacgcc 19

<210> 524  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 524  
taaacgtccg ataccaatgg ttcgctc 27

<210> 525  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 525  
tcaacaacac ctcatttac ccactc 26

<210> 526  
<211> 17  
<212> DNA  
<213> Artificial Sequence

```

<220>
<223> Primer

<400> 526
gaatatacat ttgttagc 17

<210> 527
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 527
agataagaa tcacgaatat caatttttag c 31

<210> 528
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 528
aggatagatt tattttttgt tcg 23

<210> 529
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 529
tcttccaagg atagatttat ttcttgttcg 30

<210> 530
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 530
ttcttccaag gatagattta ttcttgttc g 31

<210> 531
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

```

|                                   |    |
|-----------------------------------|----|
| <400> 531                         |    |
| tcttgacagc atccgttg               | 18 |
| <210> 532                         |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 532                         |    |
| cagataaaaga atcgctccag            | 20 |
| <210> 533                         |    |
| <211> 25                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 533                         |    |
| tctcatcccg atattaccgc catga       | 25 |
| <210> 534                         |    |
| <211> 23                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 534                         |    |
| tggcaaacagc tcaaacacctt tgg       | 23 |
| <210> 535                         |    |
| <211> 30                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 535                         |    |
| tgtatcccaa tgtttatatac tttaacgcct | 30 |
| <210> 536                         |    |
| <211> 27                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <220>                             |    |
| <223> Primer                      |    |
| <400> 536                         |    |
| tcccaaatcta acttccacat accatct    | 27 |
| <210> 537                         |    |
| <211> 27                          |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 537  
tggatagacg tcatatgaag gtgtgcct 27

<210> 538  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 538  
tattttcggt tactcatgcc ataca 25

<210> 539  
<211> 11  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 539  
tactcatgcc a 11

<210> 540  
<211> 11  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 540  
tattttcggt t 11

<210> 541  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 541  
taaccacccc aagatttatac tttttggcca 29

<210> 542  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 542  
tgtgatagg aggtgtagaa ggtgtta 27

<210> 543  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 543  
gagctgcgcc aacgaataaa tcgtc 25

<210> 544  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 544  
tacgtcgct ttaacttggc tatattcagc 30

<210> 545  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 545  
tgccgttaaca tagaagttac cgttgatt 28

<210> 546  
<211> 33  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 546  
tcgggcgttag ttttttagtaa tttaatcaga agt 33

<210> 547  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 547  
tcgtcgatt tatagtgacc agcaccta 28

<210> 548

|                                 |    |
|---------------------------------|----|
| <211> 28                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 548                       |    |
| tcaaacaccag cgttacctaa agtacctt | 28 |
| <br>                            |    |
| <210> 549                       |    |
| <211> 23                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 549                       |    |
| tttaagcgcc agaaaagcacc aac      | 23 |
| <br>                            |    |
| <210> 550                       |    |
| <211> 25                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 550                       |    |
| tcgtttaagc gccagaaagc accaa     | 25 |
| <br>                            |    |
| <210> 551                       |    |
| <211> 27                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 551                       |    |
| taagccagca agagctgtat agttcca   | 27 |
| <br>                            |    |
| <210> 552                       |    |
| <211> 22                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 552                       |    |
| tacaggagca gcaggcttca ag        | 22 |
| <br>                            |    |
| <210> 553                       |    |
| <211> 28                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |

<223> Primer  
<400> 553  
tagcagcaaa agttatcaca cctgcagt 28  
<210> 554  
<211> 31  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 554  
tggttgttagt tcctgttagtt gttgcattaa c 31  
<210> 555  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 555  
tcctgcagct ctacactgctc catta 25  
<210> 556  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 556  
ccctgttagta gaagaggtaa ccac 24  
<210> 557  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 557  
cctgttagtag aagaggtaac 20  
<210> 558  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 558  
tgattatcag cggaagtag 19

<210> 559  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 559  
ccgtgctcca tttttcag 18

<210> 560  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 560  
tcggataagg tgccacaagg 20

<210> 561  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 561  
tcggataagg tgccacaagg 20

<210> 562  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 562  
ttccccctgac cttcgattaa aggatagc 28

<210> 563  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 563  
ggtataaacgc atcgcagcaa aagattta 28

<210> 564  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 564  
ttcgtataa cgcacgcgca 22

<210> 565  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 565  
tcgcctcagca ataattcact ataaggccga 29

<210> 566  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 566  
taatgcgata ctggcctgca agtgc 24

<210> 567  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 567  
tgtaaattcc gcaaagactt tggcattag 29

<210> 568  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 568  
tggtctgagt acctcccttg c 21

<210> 569  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 569  
tattggaaat accggcagca tctc 24

<210> 570  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 570  
ttcaagtgc tgctcaccat tgtc 24

<210> 571  
<211> 24  
<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 571  
tggtctataa gacgcgctt taga 24

<210> 572  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 572  
tcgtttcacc ctgtcatgcc g 21

<210> 573  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 573  
tccgataaagc cggattctgt gc 22

<210> 574  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 574  
tgccgataaag ccggattctg tgc 23

<210> 575  
<211> 27

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 575  
tctcttaccc caccctttca cccttac

27

<210> 576

<211> 20

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 576  
tgcctcggtgc aacccacccg

20

<210> 577

<211> 20

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 577  
tgcctcgcgca aacctacccg

20

<210> 578

<211> 22

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 578  
gtaaaggcatg ttttgttcca tc

22

<210> 579

<211> 25

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 579  
tttacctcgca cttttccaccc ttacc

25

<210> 580

<211> 29

<212> DNA

<213> Artificial Sequence

<220>  
<223> Primer

<400> 580

|                                 |    |
|---------------------------------|----|
| tgctcttacc tcaccgttcc acccttacc | 29 |
| <210> 581                       |    |
| <211> 18                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 581                       |    |
| ataagccggg ttctgtcg             | 18 |
| <210> 582                       |    |
| <211> 27                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 582                       |    |
| tctatagagt ccggactttc ctctgtga  | 27 |
| <210> 583                       |    |
| <211> 24                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 583                       |    |
| tcaaggcgatc taccogcatt acaa     | 24 |
| <210> 584                       |    |
| <211> 22                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 584                       |    |
| ataaaggcatg ttctgttcca tc       | 22 |
| <210> 585                       |    |
| <211> 27                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <br>                            |    |
| <220>                           |    |
| <223> Primer                    |    |
| <br>                            |    |
| <400> 585                       |    |
| tgactttct cccccttatc agtctcc    | 27 |
| <210> 586                       |    |
| <211> 27                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |

<220>  
<223> Primer

<400> 586  
ccaaagtgcgtg gtttacccca tggagta 27

<210> 587  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 587  
gtgcgtggttt accccatgg a 22

<210> 588  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 588  
tgtgcgtggttt taccccatgg agt 23

<210> 589  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 589  
tgtgcgtggttt taccccatgg ag 22

<210> 590  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 590  
tccaaagtgcgt gtttacccca atggag 26

<210> 591  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

|                           |                                    |    |
|---------------------------|------------------------------------|----|
| <400> 591                 | tccaaagtgcgt ggtttacccc atgg       | 24 |
| <210> 592                 |                                    |    |
| <211> 25                  |                                    |    |
| <212> DNA                 |                                    |    |
| <213> Artificial Sequence |                                    |    |
| <220>                     |                                    |    |
| <223> Primer              |                                    |    |
| <400> 592                 | ttccaaagtgc tggtttaccc catgg       | 25 |
| <210> 593                 |                                    |    |
| <211> 29                  |                                    |    |
| <212> DNA                 |                                    |    |
| <213> Artificial Sequence |                                    |    |
| <220>                     |                                    |    |
| <223> Primer              |                                    |    |
| <400> 593                 | tgttttgtat ccaaaagtgcgtg gtttacccc | 29 |
| <210> 594                 |                                    |    |
| <211> 18                  |                                    |    |
| <212> DNA                 |                                    |    |
| <213> Artificial Sequence |                                    |    |
| <220>                     |                                    |    |
| <223> Primer              |                                    |    |
| <400> 594                 | ttcgctctcg gcctggcc                | 18 |
| <210> 595                 |                                    |    |
| <211> 20                  |                                    |    |
| <212> DNA                 |                                    |    |
| <213> Artificial Sequence |                                    |    |
| <220>                     |                                    |    |
| <223> Primer              |                                    |    |
| <400> 595                 |                                    |    |
| tcgtcgcggc cttcgaagcc     |                                    | 20 |
| <210> 596                 |                                    |    |
| <211> 21                  |                                    |    |
| <212> DNA                 |                                    |    |
| <213> Artificial Sequence |                                    |    |
| <220>                     |                                    |    |
| <223> Primer              |                                    |    |
| <400> 596                 | gctggattcg cctttgtatc g            | 21 |
| <210> 597                 |                                    |    |

<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 597  
tgcgtggattc gcctttgcta cg 22

<210> 598  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 598  
tttgacgttgc atgttcgagc ccat 24

<210> 599  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 599  
cgtaaaatgc gcaccataag cttgtaatgc 30

<210> 600  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 600  
tttcttgaag agtatgagct gtcggtaag 30

<210> 601  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 601  
cgacttgacg gttaaacattt cctg 24

<210> 602  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 602  
gtccgacttg acggtaaca tttcctg 27

<210> 603  
<211> 28  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 603  
tgtccgactt gacggtaaac atttcctg 28

<210> 604  
<211> 28  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 604  
tgtccgactt gacggtagc atttcctg 28

<210> 605  
<211> 28  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 605  
tgtccgactt gacggtcagc atttcctg 28

<210> 606  
<211> 28  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 606  
tccagcaggc tctgacggaa acg 23

<210> 607  
<211> 26  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 607  
ttaccgagca ggttctgacg gaaaacg 26

<210> 608

<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 608  
cgaa cggcca gagtagtcaa cacg 24

<210> 609  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 609  
cgaa cggcct gagtagtcaa cacg 24

<210> 610  
<211> 30

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 610  
tcaaggcgcca tctctttcgg taatccacat 30

<210> 611  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 611  
tcaaggcgcca ttcttttgg taaaccacat 30

<210> 612  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 612  
attcaagagc cattttttt ggttaaaccac 30

<210> 613  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer  
<400> 613  
gttccaaatgc ctggataccc a 21  
<210> 614  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 614  
gagccatcagg gtgcgtgtct 19  
<210> 615  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 615  
tgaggcatca ggtgcgtgtct 20  
<210> 616  
<211> 21  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 616  
acgcggggcat gcagagatgc c 21  
<210> 617  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 617  
ggcgctttgtta cttaccggcac 20  
<210> 618  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 618  
ttggccatca gaccacgcat ac 22  
<210> 619

<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 619  
ttggccatca ggccacgcat ac 22

<210> 620  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 620  
acgccccatcg gccacgcat 19

<210> 621  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 621  
tacggccatca ggccacgcat 20

<210> 622  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 622  
ttacggccatc aggccacgca 20

<210> 623  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 623  
cgcacccatgc gtagagatga agtac 25

<210> 624  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer  
<400> 624  
cgcaccgtgg gtttagatga agtac 25  
<210> 625  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 625  
tcgcaccgtg ggtttagatg aagtac 26  
<210> 626  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 626  
tgcttagacctt ttacgtgcac cgtg 24  
<210> 627  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 627  
tactagacga cgggtcaggtaacc 24  
<210> 628  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 628  
gtttttcggtt gcgtacgtatgtc 25  
<210> 629  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
<400> 629

|                                   |    |
|-----------------------------------|----|
| acgttttcg ttttgaacga taatgct      | 27 |
| <210> 630                         |    |
| <211> 27                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 630                         |    |
| gaccggcaacc tggccatttg tcgttga    | 27 |
| <210> 631                         |    |
| <211> 28                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 631                         |    |
| tgaccggcaac ctggccattt gtcggttga  | 28 |
| <210> 632                         |    |
| <211> 29                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 632                         |    |
| aaactatattt tttagctata ctcgaacac  | 29 |
| <210> 633                         |    |
| <211> 30                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 633                         |    |
| taaactatattt tttagctat actcgaacac | 30 |
| <210> 634                         |    |
| <211> 30                          |    |
| <212> DNA                         |    |
| <213> Artificial Sequence         |    |
| <br>                              |    |
| <220>                             |    |
| <223> Primer                      |    |
| <br>                              |    |
| <400> 634                         |    |
| ggataattgg tcgtaacaag ggatagttag  | 30 |
| <210> 635                         |    |
| <211> 31                          |    |
| <212> DNA                         |    |

<213> Artificial Sequence  
<220>  
<223> Primer  
  
<400> 635  
tggataattt gtcgttaacaa gggatagtga 31  
  
<210> 636  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 636  
atatgattat cattgaactg cgcccg 26  
  
<210> 637  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 637  
tatatatgatta tcattgaact gggccg 27  
  
<210> 638  
<211> 28  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 638  
gcgtgacgac cttcttgaat tgtaatca 28  
  
<210> 639  
<211> 29  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 639  
tgcgtgacga ccttcttgaa ttgtaatca 29  
  
<210> 640  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer

<400> 640  
ttggacctgt aatcagctga atactgg 27  
<210> 641  
<211> 28  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 641  
tttgcacctg taatcagctg aatactgg 28  
<210> 642  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 642  
attgcccgaga aatcaaatca tc 22  
<210> 643  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 643  
tattgccccag aaatcaaatac atc 23  
<210> 644  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 644  
tgtggccgat ttcaccacct gtcct 26  
<210> 645  
<211> 27  
  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 645  
tttgtggccga tttcaccacc tgctct 27  
<210> 646  
<211> 23

|                                |    |
|--------------------------------|----|
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 646                      | 23 |
| tctgggtgac ctggtgttt aga       |    |
| <210> 647                      |    |
| <211> 24                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 647                      | 24 |
| ttctgggtga cctgggttt taga      |    |
| <210> 648                      |    |
| <211> 28                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 648                      | 28 |
| agctgctaga ttagcttctg ccatggcc |    |
| <210> 649                      |    |
| <211> 29                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 649                      | 29 |
| tagctgctag atgagttct gccatggcc |    |
| <210> 650                      |    |
| <211> 28                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |
| <400> 650                      | 28 |
| ccataaggta accgtcacca ttcaaagc |    |
| <210> 651                      |    |
| <211> 29                       |    |
| <212> DNA                      |    |
| <213> Artificial Sequence      |    |
| <220>                          |    |
| <223> Primer                   |    |

|                                 |    |
|---------------------------------|----|
| <400> 651                       |    |
| tccataagg t accgtcacc attcaaagc | 29 |
| <210> 652                       |    |
| <211> 23                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <220>                           |    |
| <223> Primer                    |    |
| <400> 652                       |    |
| ggaatttacc agcgatagac acc       | 23 |
| <210> 653                       |    |
| <211> 24                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <220>                           |    |
| <223> Primer                    |    |
| <400> 653                       |    |
| tggaaattac cagcgataga cacc      | 24 |
| <210> 654                       |    |
| <211> 26                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <220>                           |    |
| <223> Primer                    |    |
| <400> 654                       |    |
| tgcactttg acaactcctg ttgtctg    | 26 |
| <210> 655                       |    |
| <211> 27                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <220>                           |    |
| <223> Primer                    |    |
| <400> 655                       |    |
| ttgcacttt gacaactcct gttgctg    | 27 |
| <210> 656                       |    |
| <211> 29                        |    |
| <212> DNA                       |    |
| <213> Artificial Sequence       |    |
| <220>                           |    |
| <223> Primer                    |    |
| <400> 656                       |    |
| aatcgacgac catcttgaa agatttctc  | 29 |
| <210> 657                       |    |

<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 657  
taatcgacga ccatcttggaa agatatttc 30

<210> 658  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 658  
tcgacgacca tcttgaaag atttc 25

<210> 659  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 659  
ccagcagttt ctgtccccctc atctttt 27

<210> 660  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 660  
tccagcagttt actgtccccctt catctttt 28

<210> 661  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 661  
gctgttttga tggctgaatc cccttc 26

<210> 662  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>

<223> Primer  
<400> 662  
tgcgtgtttg atggctgaat ccccttc 27  
<210> 663  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 663  
gggtctacac ctgcacttgc ataac 25  
<210> 664  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 664  
tgggtctaca cctgcacttg cataac 26  
<210> 665  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 665  
atccccotgct tctgtgtgcc 19  
<210> 666  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 666  
tatccccctgc ttctgtgtgcc 20  
<210> 667  
<211> 24  
<212> DNA  
  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 667  
taccccttcc acaacagaat cago 24

<210> 668  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 668  
ccaacctttt ccacaacaga atcagc 26

<210> 669  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 669  
tccaaacctttt tccacaacag aatcagc 27

<210> 670  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 670  
ccccatttttt cacgcatgtc gaaaaatatc 29

<210> 671  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 671  
tcccatttttt tcacgcattgc tgaaaatatc 30

<210> 672  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 672  
gattggcgat aaagtgtat tttctaaaa 29

<210> 673  
<211> 30  
<212> DNA  
<213> Artificial Sequence

|                                   |  |    |
|-----------------------------------|--|----|
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 673                         |  |    |
| tgtatggcga taaaagtata ttttctaaaa  |  | 30 |
| <210> 674                         |  |    |
| <211> 26                          |  |    |
| <212> DNA                         |  |    |
| <213> Artificial Sequence         |  |    |
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 674                         |  |    |
| gcccaccaga aagactagca ggataa      |  | 26 |
| <210> 675                         |  |    |
| <211> 27                          |  |    |
| <212> DNA                         |  |    |
| <213> Artificial Sequence         |  |    |
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 675                         |  |    |
| tgcaccacccatc aaagacttagc aggataa |  | 27 |
| <210> 676                         |  |    |
| <211> 25                          |  |    |
| <212> DNA                         |  |    |
| <213> Artificial Sequence         |  |    |
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 676                         |  |    |
| cctacccaaac gttcaccaag ggcag      |  | 25 |
| <210> 677                         |  |    |
| <211> 26                          |  |    |
| <212> DNA                         |  |    |
| <213> Artificial Sequence         |  |    |
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 677                         |  |    |
| tcctacccaa cgtttcacca gggcag      |  | 26 |
| <210> 678                         |  |    |
| <211> 25                          |  |    |
| <212> DNA                         |  |    |
| <213> Artificial Sequence         |  |    |
| <220>                             |  |    |
| <223> Primer                      |  |    |
| <400> 678                         |  |    |
| catgacagcc aagacacctac ccacc      |  | 25 |

<210> 679  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 679  
tcatgacagc caagacacctca cccacc 26

<210> 680  
<211> 15

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 680  
tgtgcgttga atgct 15

<210> 681  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 681  
tcattttgtgc tttgaatgct 20

<210> 682  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 682  
tcataactag catttggct ttgaatgct 29

<210> 683  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 683  
ttgcacgtct gtttcagttt caaattc 27

<210> 684  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer  
  
<400> 684  
ttgcacgtct gtttcagttg caaattc 27  
  
<210> 685  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 685  
tctgtttcaag ttgcaaattc 20  
  
<210> 686  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 686  
tgcacgtctg tttcagttgc aaattc 26  
  
<210> 687  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 687  
ttgcacgtct gtttcagttg caaattc 27  
  
<210> 688  
<211> 30  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 688  
tttcacagca tgcacgtctg tttcagttgc 30  
  
<210> 689  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 689

ttgtgattgt tttgcagctg atttgt 26  
<210> 690  
<211> 13  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 690  
tgcagctgat tgt 13  
<210> 691  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 691  
  
tgattgttt gcagctgatt gt 22  
<210> 692  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 692  
ttcaaaaacct tgctctcgcc aaacaa 26  
<210> 693  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 693  
tacatcgttt cgcccaagat caatca 26  
<210> 694  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 694  
tcctcttttc acaggctcta cttcatc 27  
<210> 695  
<211> 30  
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 695

tat tgg gtt tcattccact cagattctgg

30

<210> 696

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 696

tgcgcgagct ttat ttttggg ttcc

24

<210> 697

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 697

ttcaaaatgc ggaggcgtat gtg

23

<210> 698

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 698

tgc ccaggta caac ctgc at

20

<210> 699

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 699

tccaggcatt accatttcta ctccttctgg

30

<210> 700

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

|                                                                  |    |
|------------------------------------------------------------------|----|
| <400> 7 O0<br>ggcatca cca tttcattgtc cttag                       | 25 |
| <210> 7 O1<br><211> 26<br><212> DNA<br><213> Artificial Sequence |    |
| <220>                                                            |    |
| <223> Primer                                                     |    |
| <400> 7 O1<br>tggcatca ccc atttcattgt ccttcg                     | 26 |
| <210> 7 O2<br><211> 24<br><212> DNA<br><213> Artificial Sequence |    |
| <220>                                                            |    |
| <223> Primer                                                     |    |
| <400> 7 O2<br>gttgtca cca ggcattacca tttc                        | 24 |
| <210> 7 O3<br><211> 24<br><212> DNA<br><213> Artificial Sequence |    |
| <220>                                                            |    |
| <223> Primer                                                     |    |
| <400> 7 O3<br>gttgtcg cca ggcataacca tttc                        | 24 |
| <210> 7 O4<br><211> 21<br><212> DNA<br><213> Artificial Sequence |    |
| <220>                                                            |    |
| <223> Primer                                                     |    |
| <400> 7 O4<br>gccgtccatt tgagcagcac c                            | 21 |
| <210> 7 O5<br><211> 21<br><212> DNA<br><213> Artificial Sequence |    |
| <220>                                                            |    |
| <223> Primer                                                     |    |
| <400> 7 O5<br>gccgtccatc tgagcagcac c                            | 21 |
| <210> 7 O 6<br><211> 26                                          |    |

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 706  
tatagcacca tccatctgag cggcac 26

<210> 707  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 707  
tatgtgctca cgagtttgcg gcat 24

<210> 708  
<211> 26  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 708  
tggatgtgct cacgagtctg tggcat 26

<210> 709  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 709  
ggcgctccacg tcttcacgc 1.9

<210> 710  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 710  
acgaactggta tgtagccgtt 20

<210> 711  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 711  
ccgtacgaac tggatgtcgc cgtt 24  
<210> 712  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 712  
tcggatgtcg ccgtt 25  
<210> 713  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 713  
ttcgcgcata caggagaagt acatgtt 27  
<210> 714  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 714  
gcgttccaca gcttgttgca gaag 24  
<210> 715  
<211> 23  
  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 715  
tcgcagttca tcagcacgaa gcg 23  
<210> 716  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Primer  
  
<400> 716  
tataacgcac atcgtcaggg tga 23  
<210> 717



<212> DNA  
<213> Artificial Sequence

<220>  
<223> Escherichia coli

<210> 721

<211> 447

<212> DNA

<213> Artificial Sequence



caattgttca taacacatca aaaatctaat attgaattta aattatttgta taaacaatt 2339

<210> 723

<211> 1917

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 723

atggtaaaaa taatttgtat cgacctgggt actaccacact ctgtgttago gattatggat 60  
ggccacactc tcgcgctgtg ggagaacccg gaaaggccg gcaaccacgc ttcatccat 120  
gcctatacccg aaggatggcc aactctgtgt tgccattaaa cgcctgttgc gtcgcgtt ccataaactgtc ggcgtatgcg 180  
aaccggcaaa acactctgtt gatgttttccatcgccg tccaaattaat ttgtgttgta taacccggcg 300  
gaagtacagc gatgttttccatcgccg tccaaattaat ttgtgttgta taacccggcg 300  
gcatgggtcg aagttaaagg cgaaaaatgg gacccggccg agatgttgcg tgaatgtgtc 360  
aaaaaaaaatg aaaaaaaacccg aatccatgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 420  
acccgttccgg gatgttttccatcgccg tccaaattaat ttgtgttgta taacccggcg 480  
gctggcttgg aagttaaagg tccaaattaat ttgtgttgta taacccggcg 540  
tcggacaaag gacactggccaa cgcgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 600  
gatattttca ttatccatgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 660  
accaaccgttccatccatgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 720  
gttgaagat tcagaagaaga tccaaattaat ttgtgttgta taacccggcg 780  
cgctgaaag aacgcgcgaga aaaaaggcggaa atccatgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 840  
gttacatccg catatccatccatcgccg tccaaattaat ttgtgttgta taacccggcg 900  
actcggtgcca aatcggttccatcgccg tccaaattaat ttgtgttgta taacccggcg 960  
aaatgttgcac tgcaggacgc tccaaattaat ttgtgttgta taacccggcg 1020  
ggtggtcaga ctcgtatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1080  
cccgctttaaa agatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1140  
gttctgtactg gtggcgtaaa agacgtactg tccatcgccg tccaaattaat ttgtgttgta taacccggcg 1200  
atcgaaacccca tggggcggtgt gatgttgcgatcgccg tccaaattaat ttgtgttgta taacccggcg 1260  
aagcacagcc agctgttccatcgccg tccaaattaat ttgtgttgta taacccggcg 1320  
ctggagggttccatcgccg tccaaattaat ttgtgttgta taacccggcg 1380  
gttataccccc cggcaccggcc cggcatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1440  
gacggatccatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1500  
atacggttccatcgccg tccaaattaat ttgtgttgta taacccggcg 1560  
gttcaaccggcc agactggcccg tccaaattaat ttgtgttgta taacccggcg 1620  
cattctgtccatcgccg tccaaattaat ttgtgttgta taacccggcg 1680  
gaaaaaaactgtccatcgccg tccaaattaat ttgtgttgta taacccggcg 1740  
aaaggccgtatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1800  
atccggccatccatcgccg tccaaattaat ttgtgttgta taacccggcg 1860  
gacggaaatgtccatcgccg tccaaattaat ttgtgttgta taacccggcg 1917

<210> 724

<211> 1647

<212> DNA

### <213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 724

```

ctgatcgctg aaggcgttgg ccaaagtggt aagaaggcg ttatccccgt tgaagacgg 540
atgtttgtcg aggacgaaact ggacgttggt gaaaggatgc atgtccggc tggttacccgt 600
tttccttaat tcatacaaaa gcccggaaat ggccggatgtg aacttggaaat ccgttgtcatc 660
ctgtgggtgtg acacaaggaaaat ctcccaacato cgccaaatgtg ttcgggttt tgaaaggctg 720
ggccaaacaaag gcaaaacccgt gctgtatccat ggtttggatgtg taagaaggccg agccgttggatc 780
actctgttgta ttaccatcat ggttggccat gigaaggctg ctgggtttttt aacccaggcc 840
tttggcgatc tgctgtttaaaat gtatgtcgat gatatccatcg cccgtactgg cggatccggc 900
atctcttcaag atccgttggat tgatgttggaa aaggacccatc ttggaaaggactt ggttacggct 960
aaacatgtgtg tgatcaacaa acagacccacc actatccatcg atggctgtgg tgaaaggact 1020
ggcaatccagg cggctgttgc tgatccatcg cggatccatcg aagaaggccaa ttctgttactac 1080
gaccgtgtaa aactcgaggaa acgcgtatcg aacttggccat gccggctgtc agttatccaa 1140
gttgggtgtcg ctaccggaaat tgaaatggaa aaaaaggaaat ccggctgtcg agatgtccct 1200
cagccggaccg cggctgtccg aagaaggccg gtgttggccat tggttgggttg tgcgttgc 1260

```

|             |            |            |            |            |            |      |
|-------------|------------|------------|------------|------------|------------|------|
| cgcttagtgc  | ctaaatggc  | ttgacccgt  | gttcagaacg | aaggaccagg | cgttgttact | 1320 |
| aaatggtcac  | tggctgeat  | ggagatccg  | cttcgtcaga | tgcgttggaa | cttcggcgaa | 1380 |
| gaacgtctg   | tgtgttca   | caccgttaaa | ggccggcgcg | gcataactcg | ttacaacgca | 1440 |
| gcaatccgaa  | aataccgtca | catatggatc | atgggtatcc | tggatccatc | caaaatgtaa | 1500 |
| gttttcgtct  | tgatggatcg | agtttcgtgt | gttgcgttca | tttttttttt | cgatgtatcg | 1560 |
| gttacggaccc | tgcggaaaaa | cgatcgatgt | gacttggcgc | ctgtctggcg | tatggggcgc | 1620 |
| atggttggcc  | tggccggatc | gtatgtaa   |            |            |            | 1647 |

<210> 725

<211> 1935

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 725

tatgagacta tcgacgcacc gcagattgtat gacctgtatgg caegtcgatcg tgcgtacccg 1800  
ccacgggtt cggaaagaacc aggccgtttt aacaatttgc ggcacaaatgg tagtcataaag 1860  
gttccttcgtc cgggtatgtat accggcgtaac ccgaaccccg gtaaacccat gtcaagagcg 1920  
ttatggcaca actaa 1935

<210> 726

<211> 2673

<212> DNA

<212> SMT

<220>

<223> Escherichia coli

<400> 726

|              |             |              |              |              |              |      |
|--------------|-------------|--------------|--------------|--------------|--------------|------|
| atgacagatg   | taacgattaa  | aacgctggcc   | gcagagcgcac  | agacccctcg   | ggaacgcctg   | 60   |
| gtacagcaat   | tatcgatgce  | aggatcccg    | aaatctcgct   | agactctcg    | gtctgcacaa   | 120  |
| aaacaacgtc   | tttctgttgc  | tcacatcgat   | cagaaaaaat   | caggccccgg   | caaatgtacg   | 180  |
| gtacaatcg    | aaacacgcgg  | cacccttaac   | attctcgtaa   | ccgggtggaa   | aagaacatcg   | 240  |
| ccgttgcag    | aagtccgg    | aaacgcgcac   | tttgatggaa   | cgatccgcga   | agaggtcgaa   | 300  |
| gaagaatccg   | cgaaaggcgg  | agcccaatcg   | gaaaggccaa   | agacccggcc   | tgtggggcca   | 360  |
| aaggctgtgg   | ctaaaacgcgg | ggccgcacaa   | aaatcgacac   | gtgaggccgc   | agaacaatcg   | 420  |
| caaaaagacg   | ctctgtcaaa  | agccggaaatcg | aaatcgatcg   | agatggccac   | atgtggcaat   | 480  |
| gcagatccca   | atatgactaa  | aaacgcceag   | gtctggaaaag  | ccgcgtgt     | cgaggaatcg   | 540  |
| ccgttgtgtc   | agcggtttaa  | tgaaaggaa    | ggccgtcgta   | aatctcgaa    | agaacatcg    | 600  |
| ccgactgtgg   | aaagaaggcgg | ttatcgatcg   | gaaaggaaata  | atgtgactgt   | taacggccga   | 660  |
| gacgaaatcg   | atccgcgg    | ttatccgcgc   | actacttc     | aaatcgatcg   | ccaggccaga   | 720  |
| cgtcgaaaga   | atcggtcg    | cgaaaggccg   | cggtggccgt   | gtctggatcg   | gaaaggccgg   | 780  |
| cgactatcg    | aaggcaacaa  | acatcggtgg   | tttttttttttt | atcgtaaagg   | acacgcgcga   | 840  |
| aaacgtgttc   | ggggtaaaa   | cgaaaaacgt   | aaatggtttt   | cgctgcacga   | aggcttcagg   | 900  |
| ctggcaaca    | aggccgttta  | ccatcggttt   | gtgtatcgcc   | aaatctatcg   | cggtggccaa   | 960  |
| gcaatggcaa   | agatgggggt  | taaaggctct   | cagggtatca   | aagcgatgt    | gaaactggc    | 1020 |
| atggccatcg   | ccatcaacca  | gtttatcgat   | caggaaaccc   | caacatcggt   | tgtggaaag    | 1080 |
| ctggcacacgg  | aatgtatcc   | cggtgtttcg   | aaacatcggtt  | aaagggtttt   | ataggcgccg   | 1140 |
| gaccacggta   | gtgtgcgc    | tgaaaccggc   | ggccgggttg   | tttccatcat   | gggtcaatcg   | 1200 |
| ggggccggca   | aaacctctct  | gtgtggatct   | tttccatgttt  | cgatggatcg   | atgtttccgg   | 1260 |
| acctttctgg   | tttacccggg  | cattttgtca   | taccatcg     | aaatctggaa   | oggcatgtac   | 1320 |
| gcaacggcaca  | tcgtatgt    | gtttttgtt    | gtccgacgacg  | gtgtgtatcg   | tgtggcggc    | 1380 |
| gaaatcgatcc  | agccacggaa  | agccggccag   | gttccgggtt   | tttttttttt   | gaaatcgatcg  | 1440 |
| gataatccatcg | agatgttgtt  | gtatccgggtt  | aaatcgatcg   | tttccatcg    | oggcatctcg   | 1500 |
| ccggaaatcg   | ggggccgtga  | aaatcgatcg   | tttccatcg    | cgccggaaatcg | atgtttccgg   | 1560 |
| atcgatgtac   | tggtggatcc  | tatccgtcg    | cgccggggaa   | tttttttttt   | gttttttttttt | 1620 |
| cglaaaggta   | tttccggccg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1680 |
| gttgcatacg   | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1740 |
| tttccatatcg  | tttccggccg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1800 |
| ggtcggcc     | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1860 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1920 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 1980 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2040 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2100 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2160 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2220 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2280 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2340 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2400 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2460 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2520 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2580 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2640 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2700 |
| tttccggcc    | ttttgtatcg  | tttccggccg   | tttccatcg    | tttttttttt   | tttttttttttt | 2763 |



<210> 729

<211> 822

<212> DNA

<213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 729

|              |             |             |             |              |             |     |
|--------------|-------------|-------------|-------------|--------------|-------------|-----|
| atggcgattt   | ttaaatgtaa  | accgacatct  | ccgggtcgtc  | gccacagtgt   | taaagtggtt  | 60  |
| aacccttgcg   | tgcgcacaaa  | caaaacatccc | ccatgttcgtc | tgaaaaaaa    | ccccaaatccc | 120 |
| gggtggctgt   | caacaatccg  | cgttatccac  | actgtgtata  | tccgggttgtt  | ccccaaacagg | 180 |
| gcttaccgtt   | ttgttgactt  | caaaccgcac  | aaagacgtgt  | tccggcgcgtt  | tgttgaacgt  | 240 |
| cttggatcgg   | atccgcacccg | ttccgcgcac  | atccgcgttt  | tttgcgtatcat | agacgttgtt  | 300 |
| ccgcgttaca   | tccgtggcccc | taaaaggcctt | aaaggatccgg | accatggatcca | tgtgtgggtt  | 360 |
| gatgtgtcga   | tcaaaaccagg | taacaccctg  | cgatgcgc    | acatcccggt   | tgtgttcaact | 420 |
| gtttcaaaacg  | tagaaatggaa | accaggtaaa  | ggggcttcac  | tgttcacgtc   | cgctgtgttt  | 480 |
| taatgttcaga  | tccgtgttcc  | ttgtgttgtt  | tatgtttttt  | tatgttcaccc  | tgcgttcgtcc | 540 |
| atgcgttaaaag | ttagaagcaga | ctgcgtgc    | acttctggcg  | aagtggccaa   | tgtcgatcat  | 600 |
| atgcgtgcgc   | ttctgtggta  | accagggtct  | tttttttttt  | tttttttttt   | tttttttttt  | 660 |
| cccggttaccc  | tttttttttt  | gtatgttttt  | tttttttttt  | tttttttttt   | tttttttttt  | 720 |

ggtaagcacc cggttaactcc gtggggcgtt cagacccaaag gtaagaagac ccgcagcaac 780  
aagcgtactg ataaaattcat ctgtacgttcgc ctgtacgtaaat aa 822

<210> 730  
<211> 4029

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Escherichia coli

gaagtctaca tggcggaaa tcgcgttcatg acagacaacg gtaccttgt tatacacggt 420  
actcgacgtg ttatcgttt ccgcgtttcc cgcgttccgg ggtcttctt tgactccgg 480  
aaaggtaaaa cccacttto ggllaaatgg ctgtatccgc cggtatcatc cocttacgg 540  
ggttcttccgg tggatcttgc attcgcattcc aaggacaacc ttgttgcatacg tatacgg 600  
ocgcgttaac tcgcgtgcac catccatgtt cgcgcctgtg acteaccac agacgatc 660  
ctgcacgtt ttttgaaaaa agttatcttta aatccatggt atacaagaat goagatggaa 720  
ctgtggccgg aacgcgttccgg fggllaaacc gcatctttttt acatcgagg taacgttaaa 780  
gtgtacgtat aaaaaaaaaa cgcgtatcatc ggcccgcacaa ttccgcggat gaaaaaaagc 840  
gacgtcaaac tgatcgaaatg cccgggttag tacatcgacg gtaaagtgtt tgcttaaagc 900  
tatattgtat agtcttacggc cgagatgtac ttgcggcgcgaa atccatggat gaggctgtg 960  
otgtggataa agtgcggcca ctgttgcggcc aacggatccgc aaggtatgcg aacggctgtt 1020  
cttggggatc gccccatataat ttctggaaaaa ttatcggtgg accaaactaa ccacggctgt 1080  
agcccaactgg tagaaatcta cccgtatgtt cgccttggccg agccggccggat tgctgaagca 1140  
gtggaaaggc ttgttgcggaa agtttcaacccg ctgttgcgtt ccggaaaggc gttagactt gtctgggtt 1200  
agccaaaggc acatccatgtt tggttggaaa aaggtatccgc atatccgttta ccgttacaggc 1260  
gaagtcgtat atatcgatcc cctccggcaac cggtatgttcc ttccgcgttgg ccggaaatggc 1320  
gaaaaccatg cccgggttgg ctgttgcgtt ccgttgcgtt gltagacggcgtt ccgttggaaa gogtctgtt 1440  
otggggggatc tggtatccatc gatccacatc gatccatggcc acggccacccg gatttccggc 1500  
cgactgttgg agtttgcgttcc ttccggaaaggc ctgttgcgtt ccgttgcgtt ccggccggat 1560  
otgtctgttggatc ttacggaaaa acgtcgatcc ttccggatcc tcggccgggg tctggccgtt 1620  
gaaactgttgg agtttgcgtt ccgttgcgtt ccggccggat ccactatggcc ctatgttgcgtt 1680  
atccggaaaccctt ctggggggatc gaaatccgtt ccgttgcgtt ccgttgcgtt ccggccggat 1740  
actaaacgtat acggccatcc ttccggatcc ccgttgcgtt ccgttgcgtt ccggccggat 1800  
gacggaaatttcc tttccggatcc ttccggatcc ccgttgcgtt ccgttgcgtt ccggccggat 1860  
tccaaatctgg atggaaaaaa ccacttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat 1920  
gaatcccgatc ttgttgcggcc ccggccggat ccactatggcc ccgttgcgtt ccggccggat 1980  
gtatccgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2040  
atgggttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2100  
ggtactgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2160  
ggltgtgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2220  
atgtatccgg ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2280  
cagaacacccctt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2340  
gtatcaacccatc ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2400  
gacgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2460  
ccgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2520  
ctgttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2580  
ctgtacacca gacgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2640  
gggtctccaa aactcgatcc ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2700  
gacatcttgcgtt ccgttgcgtt ccgttgcgtt ccggccggat ccactatggcc ccgttgcgtt 2760

|             |             |             |            |            |             |      |
|-------------|-------------|-------------|------------|------------|-------------|------|
| cacaaacggtg | tatccggtac  | ggttatcgac  | gttcaggct  | ttactcgca  | tgccgttagaa | 2820 |
| accaaaaaac  | atgcgtgtta  | aatccgaaaga | atgcgtccta | aaacggccgg | gaaaacggct  | 2880 |
| tctgaagaaac | tccatgcattt | ccaaacggct  | ctgttcgcgg | gtatccgtgg | tggtctgttt  | 2940 |
| ggccgtggcg  | tttgcgtttt  | aaaggtcgca  | aaactgcgcg | ggatccgtgt | gtctggggctg | 3000 |
| ggccgtggcg  | ggccgtggcg  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3060 |
| cttgcgtttt  | atgcgttttt  | atgcgttttt  | aaacaaacgg | tttgcgtttt | gtatggacca  | 3120 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3180 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3240 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3300 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3360 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3420 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3480 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3540 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3600 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3660 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3720 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3780 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3840 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3900 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 3960 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 4020 |
| atgcgttttt  | atgcgttttt  | aaacaaacgg  | aaacaaatcg | tttgcgtttt | gtatggacca  | 4029 |

<210> 731

<211> 4224

<212> DNA

### <213> Artificial Sequence

<220>

<223> Escherichia coli

<400> 731

<210> 732

<211> 3734

<212> DNA

<213> Artificial Sequence

<220>

<223> Concatenation of *S. pyogenes* genes

<220>

<221> misc feature

<222> 499-598, 1049-1148, 1587-1686, 2093-2192, 2652-2751,  
3201-3301

<223> n = A.T.C or G

<400> 732





tctggcggca ccattaccgc tcagatgcgc cggtcgca actccgtcgta ctgggacgcgt 420  
 gaacgcttcc ccatggacga aggccgttgc aatgcggta aagaagttt cgttgtcg 480  
 tataaagaag acctgtttaa cctgtggcaa cgcctgtaa acggctatcat ctgacgttgc aactggatcc gaaactcgcc 540  
 cgtatccgc tggctgacgg tgccaaaccgc gcgaatcgaa aagggtcgat gtggcacatc 600  
 actacccgtc cagaaaaaccgt gtcggcgat atgcgttag aagattatctt ggtggtecg 660  
 cgtttaaccgc ggaatcgcc 720  
 cgttacaacag atctgttgcgaaatcgatc cgatcgaa aaaggcaccg ggcacacttgcgatc aatcaactcg 780  
 ggcacgact ttaacgacta tgaagtgggt aaacgtcacg ecctgcccgtatccacatc 840  
 ctgaccccttgc acggcgatatt cctgtggaaacgc gcccggatc tccatggacaa aggttacccaa 900  
 tctgtggatttt attcgcggaa aatccctgcgaa gaggcttccaga tctgtggatcc 960  
 ctgtaaacggatc tggctggccgcg atggcgccgcg ctggcgatc gtcggatcc 1020  
 gacgttgcaccc ttccatcgccgac gggatcgatc tggatcgatc 1080  
 cagtggtagc tggctggccgaa acaccggccgatc tggatcgatc 1140  
 gacatcgatc tggatcgatc aacatgtact tccctggatc gggcgatatt 1260  
 caggactgttgcgtatctcgatc tggatcgatc tggatcgatc 1320  
 gaagcgggttacgtttatgt tggccgcacaa gaaacgcgaaatcgatc 1380  
  
 ggtgtatcgatc ttgtcttgcg tcaaggacgaa gacgttctcg atacctgtttt ctcttctcg 1440  
 ctgtggacact tttcttccatc tggctggccg gaaaataccgc acgcctgtcg tcagttccac 1500  
 ccaacccatcg tggatgttgc tggatgttgc acatcttttc tctggatgtc cccatgtatc 1560  
 atgatggatc tggatgttgc acatcttttc tctggatgtc cccatgtatc 1620  
 gtttacatcg cccgttgcgtatc tggatgtatc gaaaggccgaa aatgttccaa atccaagggtt 1680  
 aacgttacatcg accccatcgatc tggatgtatc gtttacatcg gtcggatcc 1740  
 ctgtatccgcgatc atatgtatc gccgcacgtg gggatccaaatcgatc 1800  
 cagtggccgcgatc atatgtatc gggatccaaatcgatc 1860  
 ctggcgatc tggatgtatc gggatccaaatcgatc 1920  
 ttctgtatcgatc acgttgcgaa cggccggccgc tttgtgtatc tggatgtatc gggatccaaatcgatc 1980  
 ttcggatc tggatgtatc acggccggccgc tttgtgtatc tggatgtatc gggatccaaatcgatc 2040  
 ttcaaccatcgatc cccatcgatc gtcggatcc gggatccaaatcgatc 2100  
 gcaatcgatc tggatgtatc gggatccaaatcgatc 2160  
 aacgcgttgcgatc tggatgtatc gggatccaaatcgatc 2220  
 aacgcgttgcgatc tggatgtatc gggatccaaatcgatc 2280  
 atctgtatcgatc acgttgcgatc tggatgtatc gggatccaaatcgatc 2340  
 ttcccgatc acatgtatc tggatgtatc gggatccaaatcgatc 2400  
 aacacggccgatc tggatgtatc gggatccaaatcgatc 2460  
 cggatcgatc tggatgtatc gggatccaaatcgatc 2520  
 cttgtatcgatc tggatgtatc gggatccaaatcgatc 2580  
 aaaaatccatcgatc tggatgtatc gggatccaaatcgatc 2640  
 ggccatcgatc aacaaagaaga tggatgtatc gggatccaaatcgatc 2700  
 ggttggatcgatc gggatccaaatcgatc 2760  
 gaaatcgatc tggatgtatc gggatccaaatcgatc 2820  
 ctgtatcgatc acgttgcgatc tggatgtatc gggatccaaatcgatc 2886

&lt;210&gt; 736

&lt;211&gt; 1770

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Escherichia coli

&lt;400&gt; 736

atgcgtacag aatattgtgg acgactccgt ttgtcccaacg tggggcagca ggtactctg 60  
 tggatgttggg tcaacccgttgc tggatgtatcc tggatgtatcc ttttcatcgatc tatggcgac 120  
 cgcacggatca tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 180  
 tctgtatcgatc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 240  
 aaaaatattatccatcgatc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 300  
 atcatcaaccgcgcgatcgatc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 360  
 cgtctgaaatccatcgatc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 420  
 cggatcgatc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc tggatgtatcc 480

|              |              |              |             |              |             |      |
|--------------|--------------|--------------|-------------|--------------|-------------|------|
| gaaactccga   | tgctgaccaa   | agccacgcgg   | gaaggcgccg  | gtgactacct   | ggtcgccttt  | 540  |
| cgttgtcaca   | aaggtaataat  | ctacgactcg   | ccgcattcc   | cgccatgttt   | aaacacgcgt  | 600  |
| ctgtatgttgc  | ccgggttttgc  | ccgttactat   | catagatgtt  | aatgttcctcg  | tgcacaaagac | 660  |
| ctgcgtgtcg   | accgtcagcc   | tgaatttact   | catagatgtg  | tgaaacttcg   | tttcatgacc  | 720  |
| ggccgcgaag   | tgctgttgaat  | gatggaaagcg  | ctggtgccgt  | atctgtggct   | gagaatgttgg | 780  |
| gggttgttgc   | ttggggattt   | ccccgttat    | acccgttgggg | aaggcagaacg  | ccgtttaggt  | 840  |
| tctgtatataac | cggtatctcg   | taaccggatg   | gaactgtactg | acgttgcgtt   | tctgctgtaaa | 900  |
| ttctgttgagt  | ttgtgttatt   | tcgcggatcc   | ccggacatcg  | cgaaaggctcg  | cgtaggcgtt  | 960  |
| ctgcgcgttc   | cggggcgccg   | atcgctgtacc  | cgtaaagcaga | tgcgaaatctt  | cggtaaacttc | 1020 |
| gtttaaaatct  | acggcgccgaa  | agggtctgtgt  | tatcacaaag  | ttaaacgaaacg | cgccgaaatgt | 1080 |
| ctggaaaggta  | tcaacaggcc   | gttgcggaaat  | ttcttcataat | cagaatcatct  | cgaaagacatc | 1140 |
| otggatctgt   | ctggccgcga   | agatggcgat   | atgttatttt  | tgcgtgcgtt   | caacaagaaaa | 1200 |
| atttggccg    | acggcgatggg  | tgactcgccg   | ctggaaatggg | gtaaagacccgt | ttgttcgtacc | 1260 |
| gacgaaagca   | atattggccgg  | cggtgtgggtt  | atcgactccgt | cgatgttttgc  | agacggccgtt | 1320 |
| gaaggccggcc  | tgacggcaat   | gcacccatccg  | ttcacccctac | cgaaagatat   | gacggctgtca | 1380 |
| taactaaatgg  | ctgcacccgg   | aatatcggttgc | cgcaaaatgtt | acgatgttgcgt | catcaatgtt  | 1440 |
| ttactaaatgg  | gggtttgttc   | atgtacgtatc  | ataatggatgt | atcgacggatc  | gacggctgtt  | 1500 |
| gttataatgg   | gtatcaacgg   | agaggaaacag  | cgccggaaat  | tccggcttcgt  | gctccgcgtt  | 1560 |
| ctgttaatcc   | gtactccggc   | gcacggatgt   | gttcgttgcgt | gttccgttgcgt | tgcgttgcgtt | 1620 |
| ctgtgttgc    | gcacccggaaa  | tatccgttgc   | gttatacggtt | ttccggaaat   | cacccgcggca | 1680 |
| ggctgtgttgc  | tgactgttgc   | accggatgtt   | gtcaaccgg   | ctgcacttgcc  | ttagctgttt  | 1740 |
| atttcaatgg   | ttqaagaatggc | ttqaataac    |             |              |             | 1770 |

<210> 737

<211> 3699

<212> DNA

### <213> Artificial Sequence

<220>

<223> Yersinia pestis

<400> 737

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| cgttggaaacc | tccaaatgaa   | ctatcgctg   | ggcgagagt   | ttcagtcgca  | acttagccct  | 1800 |
| cgccgttgg   | cgggaaacacg  | tctactgcg   | gagaggccgt  | ataaccttgc  | cgatgtcaaa  | 1860 |
| aataataatcg | tggggatgt    | tcggaaacag  | cagggtgtta  | aactgcattt  | atgcgcacga  | 1920 |
| actatctccg  | gctgcggccgg  | tcagggttat  | cagggtgaacg | caacaatgt   | aggggcatct  | 1980 |
| gctgttggaa  | aaaaatggctcg | gagggtatcc  | gaactgttg   | cgctgtccgg  | catatcaa    | 2040 |
| ccacttgtat  | ccacacaaat   | caacttgtt   | ttacccgttt  | ataacccagg  | acacacaatgt | 2100 |
| agtggggtaa  | cgccgacactt  | gacagccaa   | ttttatcg    | ttatgtcggt  | cgcggttgat  | 2160 |
| caccaaggaa  | acagatctaa   | ctcatttcaca | tttgcgtca   | cggtcagtc   | gcctcagtgg  | 2220 |
| acattaaacgg | cgggccgtat   | ttttgtgg    | ggccacccgtt | ttggggaaa   | tcaatcacc   | 2280 |
| gttggatgtt  | cggtgtgtca   | ttttgggg    | aaaaacccctt | cggggcagg   | atgtgttata  | 2340 |
| accaacataa  | atgggtcgct   | acccatata   | atcacggaa   | acagacatgt  | aatggcgctc  | 2400 |
| gcccgcattt  | cattaaccaa   | taacccat    | ttttgtggaa  | ttttgtggat  | agaatgtgg   | 2460 |
| ggccaaacccg | aaatgtgttg   | atccatcat   | ctatcgccgg  | ggatataatcc | ttttgtccatc | 2520 |
| actctggctc  | cggttacccgg  | atctatcatc  | gtctgtgttc  | ttatcgccgg  | aaacatccacg | 2580 |
| ttggagttga  | aggatatacta  | ttggggaccc  | cagggtggcg  | cgatgtggc   | ttttgcacaca | 2640 |
| acccatgggg  | atttatgggtt  | tatccatgt   | caacaatgc   | gcattatgtt  | ccggccatctt | 2700 |
| accatggatc  | cggtgggggg   | acggaaacatg | acgggtggaa  | ttgtatgggg  | tcgtgttcagt | 2760 |
| gttgcggatgt | tgacgggtta   | tttccatgt   | gtatccattt  | caqtatgtgg  | cgctcccaat  | 2820 |
| tttccatgt   | ccacacccgg   | tatcttgcgt  | gtatggcacc  | ttatgtccctt | atccatgtttt | 2880 |
| gttccctgtcg | aaatggatgtt  | ccatttat    | atggggatgc  | agggtttgtt  | ttttatccaa  | 2940 |
| aacccgttgc  | cggtgtatgt   | tgacccat    | accaggacgc  | cagatgtca   | taccggccgc  | 3000 |
| ttgggttggg  | atccccccgg   | atccatgtt   | atccatgtt   | ttgtgtatcc  | ctgtatctgt  | 3060 |
| atccatgtc   | aaaaaaaat    | atccatattc  | ccgggtacca  | cgctgtccgg  | tatccgttgg  | 3120 |
| aacccggaaa  | atttccgtat   | tgatgttgc   | gtatgttgc   | gtatgttca   | aaacccggaa  | 3180 |
| tttccatgtac | atgtgtatcc   | atccatgtt   | atataacttc  | atccatgttgc | ttttatccat  | 3240 |
| ttcacaccca  | atgtatcggt   | taacgatcg   | ggtcgttgta  | cgatattacta | ccaaacccat  | 3300 |
| acggcaatgg  | ctgtgtggcc   | ggaaatggaa  | aaaaatccca  | ttttatccgtt | ggatgtttcc  | 3360 |
| ttttccatcca | atccatgtat   | atccatgtt   | ggccatccgc  | ttgtatccgc  | tatccggcc   | 3420 |
| acggacaaat  | gcaacgggtt   | atccatgtt   | atccatgtt   | atccatgttgc | tcaacccaa   | 3480 |
| ggcaacgggt  | cgccgtacggc  | ggatgttgc   | gggtttcttgc | ttccatgttgc | ggccatgtat  | 3540 |
| tttccatgtt  | atccatgttgc  | atccatgtt   | ggccatgttgc | ttccatgttgc | ttccatgttgc | 3600 |
| aatatgttgc  | aaatgttgc    | ggccatgtt   | ggccatgttgc | ttccatgttgc | ttccatgttgc | 3660 |
| cttccatgtat | acccatgtat   | ggccatgtt   | ggccatgttgc | ttccatgttgc | ttccatgttgc | 3720 |

<210> 738

£2113 3881

<212> DNB

<212> DNA

5220>

<223> Clostridium botulinum

<400> 738

|                           |              |              |              |              |     |
|---------------------------|--------------|--------------|--------------|--------------|-----|
| atgcattttt ttaataaaca     | atttaaat     | aaagatccgt   | taaatgggt    | tgatattgc    | 60  |
| tatataaaaa ttcccaatgt     | aggacaaaatg  | caaccaggta   | aagcttttaa   | ataatccataa  | 120 |
| aaaatatggg ttatcccaaga    | aaagatataca  | tttacaaatc   | ctcagaagg    | agatttttaa   | 180 |
| ccacccacaa aagcaaaata     | agtcccgat    | tcatatattg   | atcaacata    | ttaaqtacaa   | 240 |
| gataatggaa aagataatata    | ttttaaaggga  | tttacaaaat   | tattttggag   | atattttacta  | 300 |
| actgttttgg gaaatgttt      | gttacatacc   | atatgttggg   | gataatccat   | ttgggttgg    |     |
| atgactaaatg atacagaaat    | aaaatgtttt   | gttacatata   | gttataatgt   | gtacaaaccc   | 420 |
| gttgtttgtt atatgttcaga    | agaacatataat | cttagtaataa  | taggaccctc   | agctgtatatt  | 480 |
| atacagtttgg atatgtttaaaag | cttggacat    | gttgggttga   | atcttcacgg   | aaatgttat    | 540 |
| gtgttacttcc aatacattttc   | atttagccca   | gattttatcat  | tttgggttgg   | ggacttactt   | 600 |
| gaatgttata caatacttct     | tttaggtgc    | ggaaaattttgc | cttacagatcc  | aaatgttaca   | 660 |
| tttagccatcc aatgttttttt   | gtttgtgc     | atgttttttttt | tttttttttttt | tttttttttttt | 720 |

ttataaaaa tggtaacaga . gatttacaca gaggataatt ttgtaagt tttaaagta 1080  
 cttaacaaaa aaacatattt gaattttgtt aaacgcgtt tttagataaa tataactcg 1140  
 aagtaaattt acacataat ttgatgggtt attttaaga atacaattt agcgaacaa 1200  
 ttaatgttc aaaatcaga aataaaaat atgaattttt ctaaactaa aatttttact 1260  
 ggatgttgtt aatttttaaat tttatgtgtt gttaaaggaa ttaactaaat tttaaactaa 1320  
 icatggatata aagatggaaaa tttatgtgtt gttagccata aatgttgat tttatgtt 1380  
 gacttgtttt tttagccccc agaagataat tttaactaaat atctaaataa aggagaagaa 1440  
 attacatctg atactaatat aagaagcga gaagaataat ttatgttgtt tttaactaaat 1500  
 caatattat taatcccttaa tttagtataat ttatgtgtt gttaaaggaa ataaaattt 1560  
 tcaagtgaca ttataggcoca aatggatataat ttatgtgtt atgccttatac tttatgtt 1620  
 aatggatataat ttatggatataa atggatataat ttatgtgtt atgccttatac tttatgtt 1680  
 catgttaat aatggatggc tttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 1740  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 1800  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 1860  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 1920  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 1980  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2040  
 ctgtatggcc tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2100  
 atatggcga aatggatataat ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 2160  
 gttaaatcac agatggatct aataaaaaaa aatggatataat ttatgtgtt ttatgtgtt 2220  
 gaagccaaaa aggtataat aataatggatct aataaaaaaa aatggatataat ttatgtgtt 2280  
 aatattatca tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2340  
 attatataat tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2400  
 atccctttagt gtgttaaaccg tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 2460  
 agatgtatgtt atgtataatag tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 2520  
 gttaataataa cttatggatct aataatggatct aataatggatct aataatggatct 2580  
 agatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2640  
 ttatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2700  
 ttatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2760  
 ttatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2820  
 ttatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2880  
 agatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 2940  
 gtatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3000  
 atccctttagt aataacatgtt atccctttagt aataacatgtt atccctttagt 3060  
 atttcaattt tagtataat aataacatgtt atccctttagt aataacatgtt atccctttagt 3120  
 agatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3180  
 gaaatggaaa tcaaaggattt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 3240  
 tgggtgttattt atttacataat ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 3300  
 tacatgttattt aatggatataat ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat 3360  
 aatataatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3420  
 atccctttagt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3480  
 atttcaattt tagtataat ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3540  
 gaaatggaaa tttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3600  
 tgatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3660  
 gataataatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3720  
 aggtttttttt gatgtatgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3780  
 ctatgtatgtt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3840  
 atccctttagt ttatgtgtt ttatgtgtt ttatgtgtt aatggatataat ttatgtgtt 3900

<210> 739

<211> 9047

<212> DNA

<213> Artificial Sequence

<220>

<223> *Staphylococcus aureus*

<400> 739

```

aaggcttctg taaaaaaaata tcttcacatet tatgaaagat ctccacattt tcgctaactt 60
ttggacagaac tgttttttca atttcaccccg ctcccccatt tgccacccga tacatgtt 120
tatataat aacggcccaqca ccaataccctt tatgtatcat taaaggccaat aattttat 180

```



aactacggta acattgtatcg caacggttcaa tttaatttttg ttaaaaaga tggtatgtgg 3840  
aagttagttt gggatcatcg cgtcatacg ccaggatgc aaaagaaagg accacatcat 3900  
atttaaaaat taaaatccaa acgttgttaaa atttttgcaccc gaaacaatgtt ggaatggcc 3960  
aatacaggaa cacatatcgat attaggcato gttccaaaga atgtatctaa aaaggatatt 4020  
aaacaaatcg ctaaaagactt aagtatttttgc gaagactata ttcaacaaacca atggatcaa 4080  
atgggtacaa algalactata ttgcgtccaa tttaaaaacccg taaaataaaat ggtatqaat 4140  
ttaagtgtt tcgcggaaaaa atttcatactt acaactaaatg aacaggaaag tcgtatcaat 4200  
cctctatggaa aagcgacttc acatcttgc ggttgcattt ggccatccaa ctctgaaagaa 4260  
ttaaaacaaa aaaaataataa aggtatataa gatgtgcgcg tttatgttggaa aaggggactc 4320  
gaaaacactt acgtataaaaa gtcaccaatc gaagatgcgt atctgtcact acatgttgcg 4380  
gataaatgca attaacatcgc acatataatc agatagaaaaaaa aaaaaaaaaa tgccaatag 4440  
atttcaactaa ctatgtatgc taatgttca aagatgtttt aataacacat gaaaatgt 4500  
ttagtgcacg gtactgtttccat cacccttcaaa acagggtat tttttagatc tgtaacgca 4560  
ccttccatccat acgttctatccat attttatgtt ggcatacgatc acggaaataa tataatata 4620  
acccgaagata aaaaagaacc tctgtcaac aagtttccaa gttacaacttc accaggttca 4680  
actcaaaaaaa tattaaacacg aatgttggg tttaataatca aaccaatggaa cgataaaaaa 4740  
agtataaaaaa tctgtatggaa aggttgcgcg aaaaatataat cttgggttgg ttaacatgg 4800  
acaagatatg aagtgttaaa ttgtatatac gactttaaaac aaccaataga atcatcagat 4860  
aacatttttt ttgtatggat agtactcgaa tttagcgtt aaaaatgtt aaaaaggctg 4920  
aaaaaaatctg tggttggggat agatataatc agtgttattt ctatcttataa tgctcaat 4980  
tcaaaaaaaa atttagatataa tgaatattttt ttatgttgcattt cgggttacgg acaagggtaa 5040  
atactgatata acccgatcaca gatcccttca atctatcgcc cttttttttt atatggcat 5100  
attaacgcac ctatccat taaaagacacg aaaaacaaacg ttttggaaat aatattttt 5160  
tccaaagaaa atatacaatctt attaaatgtt ggtatgcac aagtctgtt aaaaacacat 5220  
aaagaagata tttatagatc ttatgcacaa tttatgttgc aatccgttccatc tgcaatgg 5280  
aaaatgaaac aaggagaaag tggcagacaa attgggtggt ttatatcata tgataaagat 5340  
atccaaaaac ttgtatgtgc tttatgttgc aaaaatgtt aacatgttgc aatggatggc aatgggtgc 5400  
taatacgccca aatacttcgc taaaatgttgc tttatgttgc tttatgttgc aatggatggc tttatgttgc 5460  
tagatatacg atgaaataaca aacatgttgc gcaatccgtt aatccgttccatc tgcaatgg 5520  
ttttatgttgc tttatgttgc ttgtgttgc ttcccttca aatccatgttccatc tttatgttgc 5580  
atgtatgttgc aaaaatgttgc ctgttacggc tttatgttgc tttatgttgc tttatgttgc 5640  
ttaattttca gggataacgt acaatgtt acctgggtat acagggtttaa taaaatataa 5700  
gttatttcatt ttgttgccttgc ctatcaatcc tttccgttcat ttatcttccatc tttatgttgc 5760  
tttaatgtat attgtatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 5820  
ttctgttgc ttttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 5880  
aatttttttctt tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 5940  
atgtatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6000  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6060  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6120  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6180  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6240  
gtatctaa aagtgttccat acgttccatc aaccaatgggtt gttatgttgc tttatgttgc 6300  
gttatataat ggcatgttccat cttctgttgc tttatgttgc tttatgttgc tttatgttgc 6360  
atgttccatc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6420  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6480  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6540  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6600  
atttcccccgg aacatatttttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6660  
tctatcttttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6720  
gtttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6780  
atgtatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6840  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6900  
atcatataatcg ctttttttttccatc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 6960  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7020  
ttagatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7080  
tgactcccaa gtttttttttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7140  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7200  
atgttccatc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7260  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7320  
aaacaaacactt tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7380  
ttttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc tttatgttgc 7440

<210> 740  
<211> 1832  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> *Acinetobacter baumanii*

|                                                                                        |  |
|----------------------------------------------------------------------------------------|--|
| <400> 740                                                                              |  |
| cgggtgtacg taatactggt gaaggccccac gtccctaagac gatgttttag ccaaggtaag 60                 |  |
| attacttgcg tatttgacggt ccatttacacag acttttaaagg ttgggttggaa gaggttcaat 120             |  |
| acgataatgc acgtttaacg tttagcattttt acgttgtttaa tcggccaaact cagggtgaac 180              |  |
| tggatatttc caaaggctggaa aaaaacgtttt attttttttttt ggttggaaagg ccccgattt 240             |  |
| tatccggccg tttttttttttt acatgtttttt tagttttttttt ttggggggccccc taaccgggtt 300          |  |
| tgttacccaga ggttattttttt atggcttaagg agatgttgcgg ctatatacgaa ctggaaagtgc 360           |  |
| cgatgttgcg aaccaatccaa ttccccacggg ttggctttttt acttgttgcgg cttttttttttt 420            |  |
| atcatatggc ttgtttttttttaa gaattttttttt aacattttttttt agttttttttttt gttttttttttt 480    |  |
| taccatggctt accaagtttt acggggcggtt ttgggggtttt ttgggtttttt gatgtgtttttt 540            |  |
| gtatccatggc gocatgtttt aaaaatgtttt ctgggggtttt ttgggtttttt tccggattttttt 600           |  |
| ttatgttgcg ttgtttttttttt aacatgtttt ttgggggtttt tttttttttttt tttttttttttt 660          |  |
| taatgttgcg tgccgtatcca gaggcaggatg atgtttttttt agacgtttttt caaaaaaaaat 720             |  |
| atcaatattttt acatgtttttt ggacgtttttt ttgtttttttt aacatgtttttt cttttttttttt 780         |  |
| ccggatttttt atcaatattttt ttgtttttttt aatttttttttt ttgtttttttt ttgtttttttttt 840        |  |
| aatatatatcc ttgtttttttttt ttgtttttttttt ttgtttttttttt ttgtttttttttt ttgtttttttttt 900  |  |
| ttgtatgggtt acgtttttttt ttgtttttttttt ttgtttttttttt ttgtttttttttt ttgtttttttttt 960    |  |
| ttatctttttt tcaaggacggaa acgtttttttt ataaaaaaatttt ttatctttttttt ttgtttttttttt 1020    |  |
| ccggggatttt ttatctttttt ttatctttttt ttatctttttttt ttatctttttttt ttatctttttttt 1080     |  |
| cttagccggcc cttttttttttt ttatctttttttt ttatctttttttt ttatctttttttt ttatctttttttt 1140  |  |
| atggaaaggaa gatgtttttttt ttatctttttttt ttatctttttttt ttatctttttttt ttatctttttttt 1200  |  |
| atgtttttttt ttatctttttttt ttatctttttttt ttatctttttttt ttatctttttttt ttatctttttttt 1260 |  |

tgcccgccacc atttttaaaat ctttaatgtttaa tt 1832

<210> 741

<211> 382

<212> DNA

<213> Artificial Sequence

<220>

<223> *Acinetobacter baumanii*

<400> 741

<210> 742

<211> 344

<212> DNA

<213> Artificial Sequence

52207

<223> *Acinetobacter baumanii*

<400> 742

```

aaatctggcc gtgtcggtgg tgacgtaatc ggtaaatatc acccgatgg tgactcgatg 60
gtttatgtaaa ccattgttgc tagtgccca gatctgttagt tacgtttttt attttgttt 120
ggtcagggtt acatccgttc gatcgtatgg gatagccggcc cggcaatcgcc ttataccggaa 180
gtccgtatga cttaaaggcc acatggatc ttgcggatgtt tagaaaaaga cacagtggac 240
ggaaaatggat actacaaggcc tcggggatgtt acatccgtggact tttccggcc acgtgttccaa 300
aacttgtttaa taacccggcc tggcggtttt gcccgttgggg ttggc 344

```

<210> 743

<211> 909

<212> DNA

<213> Artificial Sequence

<220>

<223> Acid

<400> 743

ctttcaagt.

```

cgctgttcca caaacacat tccacaaaaa gatggtgta cgcaacttagc aggtttccgc 540
gcgactttaa caccgtggcc aaaccaggat ctggaaaatgaa aataatttcct caaaaaagaa 600
aaagtgaatg tgcactgtga tgccgcgcgt gaaggtttcaa caggogatatt ttcttgatgg 660
gttccgtatc caaaatttc gcgtccgacaca aaagaaaaat tggatccaaag tgaggtaaaa 720
ccacgggtatc agcaacagatc ggaaacaaaggg ttctctgtt acttacttggaa gatcccaaa 780
gctgcggaaa caattgcggg caagattattt gatgtcgccac ggcgcgttgc tgctgcacgt 840
aaagacgttca aatagcacggc cccgtaaaggt gcatttagata ttgcagggttt gcctggtaaa 900
ttgcgttatc

```

<210> 744  
<211> 1430  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> *Acinetobacter baumanii*

<210> 745  
<211> 3609  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Concatenation of *C. jejuni* genes

```
<220>
<221> misc_feature
<222> 478-527, 1005-1054, 1457-1506, 2014-2063, 2562-2611,
      3071-3120
<223> n = A.T.C or G
```

<400> 745  
atggatgtt aagatataca aagagtatta gaagcttagaa aattgatttt agagatcaat 60  
ttgggtggaa ctgtctatttg aacaggaaatt aattcttcattt ctgttattt cc gaaggtttgc 120  
aaaaaaaat qaaqagaatq qacaqttttt qaataacttg tgctctggaa tttaatccgg 180

<210> 746  
<211> 1214

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Bordetella pertussis

&lt;400&gt; 746

ttccggatgg gcatgggcgt cgcacacgac gtgcacaacc gtccgggttt cattcagtgc 60  
 gggttctcgcc tcgaccgtgg ccacgcgcag gcccgaactg cggggatgtt cggcgctgc 120  
 gggcccgctg cggccatcgca gcaggcgacag cagcgaaatgtt tgcccccgcg cgttgccccc 180  
 gatcaggccg atgcgcgtcg cttoctcgat ggccaaatcg gctgttgtca gcaagggtgt 240  
 gtggccgtgg gccatgttgc acgtcgatgg cgttaataagg gaagcgaggcc ccatggacac 300  
 acagagtgtat ggttatggc tctgtatgtc gcaggaaaccgc gccccgggggg cagcgccggg 360  
 ccgggacgc gggcgccgac tgtaactaaaa tgcgcgtcg aggccgatgc gggcaatcg 420  
 gggggatggc aatccgttgc ggaagggtccg gatccacacg gggggatag cggcgtacgg 480  
 cccgtccggc acgtcgccgg cgttgcggcc cggaaaacgc gaggaaacagg gccacacaga 540  
 cgagtcgttc atgaggccgc gcttgcggcc caccggccacg gccatctccg tgccgcgcgc 600  
 tccggaaacg ggcggccgca acgtgggtt aaacgcggca acctttatcc ggacgacatc 660  
 caaataggca tgcgtacggc cgttaaggccg ggaagggtgg ctcggccaa gcatcgccgtt 720  
 aggtgggtgg acgtgtcccg caatgggtcg ccaaggaggaa tgattgcggc cccggggaaac 780  
 cccggatcaca gaatccggcc tatagtctcg ctgtcgactcg cattttcatg acagccggcc 840  
 ggaatccggc cggcggtt acggccccc acgttaaaaca atgaaagcac gccgcggccgc 900  
 ctacttctgc atgaatgaca tttaatagtgc ggcgaatgtt gctgtttat cagcaatgtt 960  
 tccggccgcgc gttttttacaa tgccgttcaaa gtcgttggt tgattgaaaa aatttgcaccc 1020  
 aecggcccttgc cccatgttgc acgttcccgat agatgtggaa aaagttaggaa ttttgtcaac 1080  
 taatgtgggg aaacgggtgt tccaggaaag cagcgcaactc acgttggatg cttaaggggcg 1140  
 gatctcgatc cccggccgc atcgtgacgc gctcatggc cgtggccaa gcccggttgcac 1200  
 cctgaccgcgt catc 1214

&lt;210&gt; 747

&lt;211&gt; 925

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Burkholderia mallei

&lt;400&gt; 747

gccaaggcccg gtttcgcgcg gttccgggtg ctggggctgtgc cccggctgggt 60  
 gccggcgaaac ggttgcggcc ctttctacga cgatccgcag gtgtttccgc gccccggccgc 120  
 acgcgcacccg gatgttctcg cccgtgcgcg gtgacggacag acgttgcgtt cggccgcgc 180  
 ggcggccggc ggcggccggc ggtgcggcgtt ttccggcaag cccggccgcgc ggcggccgc 240  
 tccggccgcgc gggatggcgc ttagatcgatc tagaatcccg ctgcacaago aggtctaggca 300  
 gtccggccgtt tccgggttcg ccggaaaggccg cggggaaatgtt cccgacttcca acaggccagg 360  
 gtgtatggcta acggccatccg gtggcgacac gggaaacagg gcaacagaaaa gcaaaacgcgc 420  
 gtatggcccgcc cggcaaggccggc gatcggccaa ggggttacccgc gtgtggtaaagg cggccacccgc 480  
 gggttggccggc acgcggacccg gacacgttac acgttccacccggc acgttccatcc acgttggggaa 540  
 cggccatctt cggatgcggc acgttgcggcc cgttgcgttgc gccgggttagaa aggttgcgc 600  
 cgttcagcaat ggcggccatc gggaaatggc tgccacggcc cggccgcctt cggccgtgc 660  
 gttcggccatc aatccggccgtt atccggccgcgc gatgacgaaaa ggcggccgcgc 720  
 cgtatggccggc cggccctttt ttccgttgcg cggccgcgcgc gacggccgcgc ttgacggacg 780  
 aaggccgttgc cggccggccgcg atttcgaaacg aatcgccatcg ctccggccgc ttggccgtatca 840  
 tgatcgacgc cgaacatgtt ttgtcggtcg acagattgtat cggccgtcg acgttggccgg 900  
 ggttcagggttgc gggcccgctc acccgt 925

&lt;210&gt; 748

&lt;211&gt; 713

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> *Bacillus subtilis*

```
<400> 748
gttcttaacg ttccggtaat cgctgcagat cttgaatctg tagaggaaag tccatgctcg 60
cacgtgtcgtc agatgccgtg agtgtcgtg cttagcgaag tcataactg a gggagtctt 120
tagaggctgtc cgccggaaa aaacgttacag tttccgttgc tggtctgat a ttcttgcggaa 180
ttccacatgtc aacaaatgtc acatlaagaat gtggagatgg aacccggtaa accctcgag 240
cgaaaaaccc aatattttgtt aggggacact ttttaacggca attcacggca gagaaggaca 300
gaatgttccc tttagataga ttgttgccgc ttctggatcgg aatggatggc a ctttgcgtt 360
acatggaaac aaaaatgtcc ttcaacggat tttagaccat tacattaa acatgtaaaa 420
caactgttccc ctgtatggaa aggtttttttt ctggaaaaaa gaaaatgtt tttttttttt 480
gtatagatcat gaaatggatc acatctaatttgc caacggccgc gatgggcatt gaagctgttgc 540
tcgcaaaaggaa agtacgatgt tttagatcata aatgttacggat ttgtatccggg aatgttgggg 600
tttaggttgcg atctgttccgc atctggctgttgc aacatggatc ttgtatccggc gccccggccga 660
taaagggttca ggttgcgtt tttttaacggca aaaaatgttgc ttcaatgttgc qaa 713
```

<210> 749

<211> 828

<212> DNA

<213> Artificial Sequence

<220>

<223> Clostridium perfringens

```

ggctgcgcgt ccgtccctcg gggtgtcgc tttagccatcg cgccacgggt aggcctagat 660
agatgtatgtt caatacaga actccggcta tagactttatc tggattttat aaaaacactag 720
gttataatac ctaagtgttt ttttttttta caaaaaaaaatc tactgatagt ttctttccct 780
attaatcttc attatccatgtt attaaatttta tttttatttca tataatcta 828

```

<210> 750

<211> 777

<212> DNA

### <213> Artificial Sequence

<220>

<223> Esc

gaagctgacc agacagtcgc cggttctcg tcgttcatttt cgggggagac gggcggagg 60  
gaggaaatgc cgggttccat aggccgggtt gcggacgtt acacccggggggg aaacccggac 120  
accgttgcac gagacagaca accggccgtt gcccggcaaa ggccggatcac gtaaagggttca 180  
aaagggttgcgg taagacgcac ccggccgtt ggtaacatgc cgtggcacgg taaactccac 240  
ccggaccaag ccggcaatagg ggttcaataag gtacggccgg tactgaaccc ggtaggttcg 300  
cttgagocac tgagcgttgc ctggccatga tgaatgtact tcacccggcc aaccggccgtt 360  
atccgttcaat ttccatgtat ttacgtaaaa accggcttcg ggggtttttt fdtttggag 420  
ggccggaaatg aataatgtact gtccacggcc ctataccaaa aagaacggcc cttagccgtt 480  
aggttcacct ggtttacgtt aaacccgggtt tcgggggttt ttgtttttt gaggggcggta 540  
aaatgtatgtt actgtccaccc acatataccaa caaaaagg cgggttactc gtaatgttca 600  
ctgtttttttt gtaaaaaacccg cttcccgccq qttttttactt tttttttttt tttttttttt 660

```
atgactgtcc acgacactat accaaaaaga aagcggctta tcggtcagtt ttacacctatg 720  
tacgtataaa accgttccgg cgggtttcag attgttgcgt qcgctttatt catqccg 777
```

<210> 751

<211> 834

<212> DNA

<213> Artificial Sequence

<220>

<223> Rickettsia prowazekii

<400> 751

taataaaatta attttatccat atcaaagtgtt gctaatagtg tatatgttt taagtaactac 60  
attttatata cattggaaa aaatagttag caatgtttaa tttagatata ttctttttaaa 120  
gaattgacat tatggaaattt gtattataa ttgttaattt attggtgtt caataattac 180  
ataaaatttt ccoccttcacaa ctaacaago tatgttaaat ttcttttaa tattttgcac 240  
taatattaaga aagtcacca taatcttaaa ggtcgtgcac ttgcgtgtat ataatcaca 300  
ggaaggtcgg gactctatag aggtatggc cgggtttaacc tcggcagacg tattttact 360  
gttgcgttgc taccacagaa atatatacccg cggatatttc gtaaagggttgc aaaaagggttgc 420  
gttaaggacac ccgggttgc tgccaacaaagg ttacgcattgg ttatcccccc caagggcgttgc 480  
atcaaataagg cattacagaa tttaaatattt tatttttgtt ctgggttacat ctcttaatccg 540  
atttgtatgg gggtatgcac ttggaggaa acggtaatgc ttatggatca taaataactg 600  
caatgaattha atttacatcc agaaatccggc ttatagacca gatggcagg tattttatcg 660  
gtaataacgg cagatgtttt gcgagtaact gaaaaaaatg tgccatcaat gaaaataataat 720  
cagatgttgc gtatgttttag tggtttccctcg caatgcggac aataatccatc gtatgtatcc 780  
cagcatgaga tgatataactt acttactgttca acatataatc atggaaaaatgt tata 834

<210> 752

<211> 783

<212> DNA

### <213> Artificial Sequence

<220>

<223> *Staphylococcus aureus*

<400> 752

<210> 753

<211> 1086

<212> DNA

<213> Artificial Sequence

<220>

<223> Vibrio cholerae

<400> 753

<210> 754  
<211> 369  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> *Coxiella burnetii*

```
<400> 754
gaggtaacc gaggatccat cgtagttac caaacatca aagtccccag ccaagggtaa 60
aaaaatcccg ttaataaaacg cgtttttagaa gttctgtacc gaccattat tccttttata 120
gaaggagatg ggatggcgtat tgatatecgcc cccgtcatga aaaacgtggt cgatgcggcc 180
gtggaaaaat cctacgtgg aaacggaaaaa attgaatgtt tgagatctcg ccggccggaa 240
aaggactacgaa aagtgttggc aaaaacaaat tgccgttcgtt ataggacact ccaaggccatt 300
aaagaatacc aagtggccat taaaaggccc ttaaccacgc cggtgggggg tggcatacg 360
tcctcaat 369
```

<210> 755  
<211> 1317  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> *Acinetobacter baumannii*

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <400> 755 | aaattgtaaat taaaaatggc aataattttc ttgatataaa ttatcaagca 60<br>attacgcgg aaattgtaaat taaaaatggc aataattttc ttgatataaa ttatcaagca 60<br>ctggaaatgt cttcaatgtt tttgtatgtat taaaatgttg atagcttaaa aataataactg 120<br>gggtaaaaaa atatccatgggg ggccaaataaa ttttaggtctga gtttgaacma caattgttat 180<br>ctctggggaa tttccatggaa atttggatgtt atttggatctt ctatctatgt tttgtgtgt 240<br>ccatttagotg ctgtcaatgtt tgccgttcaaa gitatccat tatttgttgg ttatcacatc 300<br>caaaggacccg aacacaacaaat tggccgttaaa gtatgttactt taactaaacgg ttctggatgtt 360<br>caaaggcatt tatttgcgtt tttggatgttactt ttatcttcatgtt gtttggatgtt 420<br>gaagctgtat ataaccatgtt taaaggcgac gtatgtatggc ctttctgtgg tgctgtat 480<br>aaaaaaaaaa aataaccatggc tttacttcatgtt ttatcttcatgtt actttaatccaa taaaactac 540<br>gagcagaaaaa tcacggccatc ctgttattttt ttgttgcgttgc acttataatccaa cgcattttgt 600<br>ggccgtttaaaaaa gggttgcgttgc ttgttgcgttgc acttataatccaa cgcgttgcgttgc 660<br>ggttgcgttgc gggcttcaaa gggctttttt ttttttttttttcttgc ctgttgcgttgc ttgttactttt 720<br>atatctgtatg agaggatgttgc gaaatctataca gtttttttttttcttgc ctgttgcgttgc ttgttactttt 780<br>gggtcaatctg aggttgcgttgc ttcttgcgttgc gaaatgttgc ctgttgcgttgc ttgttactttt 840<br>gttcccaacaa ccaacatgttgc aacttggatgttgc ctgttgcgttgc ttgttactttt 900 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

```

actaaacaaat caaacatcaa agaccaatac aagccaaaaa ttgtoaaagt tgcgtaaaaa 960
ttatctgaat accctacatgc acgttgcacgt atcgaaatgc acacatggaa cacttgtcca 1020
cgtaaatgtga aacgaaatgc ttatcttagt ctgttgaaatc ctgtttaaatc agtctttgtt 1080
aaatgttacaca atggaaatgtc ttatctgggt ttatctactaa ggatcttcacccg 1140
atgttgcggcc agtctttgtt ctgttgcgtt ttatctactaa ggatcttcacccg 1200
aaatgttgcggcc agtctttgtt ctgttgcgtt ttatctactaa ggatcttcacccg 1260
caataattttt agtctttgtt ctgttgcgtt ttatctactaa ggatcttcacccg 1317

```

<210> 756

<211> 4932

<212> DNA

<213> Artificial Sequence

<220>

<223> Rickettsia prowazekii

<400> 756

```

gatcccttta atactaatac tactcttgc gatggataaa atttaggttg tgcagaaaaat 2100
ccacttttca ctatccattt tgcccaataa gctgtcaatc ctgtactatc attaaatgtt 2160
ggtaaaggat taatattttat tgcttaataattt atttactata acgtatgtaa tgtaggtttc 2220
tttacacttta ggctgggtgg tacaagtata gtaagtggta cagggtgggg acagccaagg 2280
cataactttaa attttatataat tagatataatgtt gtatctactt tgaaatttt aggttataca 2340
attttatgtt gtgtttactaa aatttgaaggat attttatccatc tgcaaaatgg caataatttt 2400
actactgttc atgttgaatc tgctgtataat actggatcatc tagaattttt taacactgtat 2460
ccatataaccg taatccataaa taacaaacgggt gttttttttt tggtttttaa acaaaatgtt 2520
attttcgttc caqgtttttttt aqgtttttttt qgatgtttttt atttttttttt totacatgtt 2580

```

<210> 757

<211> 1311

<212> DN

<213> Artificial Sequence

<220>

<223> Rickettsia prowazekii

<400> 757

|             |              |              |              |              |              |     |
|-------------|--------------|--------------|--------------|--------------|--------------|-----|
| atgactaaatg | gcaataataa   | taacttagaa   | tttgagaat    | taaaaattag   | aggtaaacta   | 60  |
| ttaaagtatg  | catactataa   | acgaatgtt    | ggaaatggat   | taatcgat     | aagtggatgg   | 120 |
| tctggcgaag  | cogatattct   | ttactatgtat  | ccgggtttta   | tgttatctgc   | ttcttgtcaa   | 180 |
| tctactatac  | catatataga   | cggtgataaa   | ggcatatttt   | gttatcgagg   | atatgtat     | 240 |
| aaagacttgc  | ttggaaaaatgg | tatgtttttt   | gaatgggttt   | attgtatgg    | ttatgggggg   | 300 |
| ccctaactgtt | gtgtacgttt   | ttgtattttt   | acttggaaatgg | ttgttcatca   | ttccatgttg   | 360 |
| aatgaaatgt  | tacactatttt  | atttcaaaccc  | ttttgtatgtt  | ctttccatcc   | tatgggtattt  | 420 |
| atgtttgtcc  | ctgttggttc   | ttttttccatca | ttttatccctgt | attttttttttt | tttttaatgttt | 480 |
| acacatgtttt | aactttccqcc  | ttatataatgg  | atgttttttttt | tttttttttttt | tttttttttttt | 540 |

<210> 758

<211> 882

<212> DNA

<213> Artificial Sequence

<220>

<223> Vibrio cholerae

<400> 758

<210> 759

<211> 1095

<212> DNA

<213> Artificial Sequence

<220>

<223> *Francisella tularensis*

<400> 759

```

atgtcttaag ttggttttat ttggttggcg ggaatggtcg gtcagttt aatgtctcg 60
atgtatcgaa caaaaggattt tgatgttatt ttgtccaaactg tttttcgac ctatccaggta 120
ggccgcgtgc caaacagggtt tttatcaacaata tatggaggct tacaatgcgt ctatagtatc 180
gaccaactaa ttagtatggatatacttcta agttgccaag gtggtaata taaccaaaaagaa 240
atacaccaca aattaagaaga agccggcttg ccagggttc gttagatcgcc tcgatccatcg 300
ctacggcttag aaaaatggat tttatctatgtt ctatggacccctttaatcatcaga tccaaataattt 360
aatgttattt ataatggtaa aaaagatttt atcgtgtatg attgtactgt ttttgtctaaatgt 420
ttaactcgatca tagttgtttt acttcaaggaa gatcttggatg attgggttata ctctatgtact 480
ttatcaagca ttttcaggagc gggttgcggc gcaatgcgaq aactatctca acaaacaaggc 540
cttttagca aatttgatata tagagatgaa gatattctaa tttagagaaaa aatttctcaga 600
gaatattatca aaaaatggatc aaaaatccct caaaaaaaaaa ctgtacaaacat tttttgttggat 660
atcttataac ctggatataat ttgttggatg ctatggggac aaaaaaaaaa acatgtacaaacat 720

```

<210> 760

<211> 1020

<212> DNA

### <213> Artificial Sequence

<220>

<223> *Francisella tularensis*

<400> 760

|             |               |              |              |              |              |      |
|-------------|---------------|--------------|--------------|--------------|--------------|------|
| atgtaaaaaa  | aatctttagt    | aacaggttgt   | gttaggctata  | taggtatca    | tacagtggta   | 60   |
| gaaccttott  | atagaggatta   | tcagaatgtgt  | gttgttagata  | atattccaa    | tagcaaataa   | 120  |
| cttgcataag  | aacgggtttaa   | aaaatccatca  | aataaaatgtt  | ttgtttttta   | tcagtagac    | 180  |
| cttttagta   | aactgtaaatcgt | aacaaaatgtt  | tttcaagagt   | atgtatatttt  | tgctgtatatt  | 240  |
| cattttgtct  | gtttttaaacg   | ttgttaggttag | atgttttttttt | aaccgttttt   | gttattatcat  | 300  |
| aaaaatattcc | aaatgttactac  | aaacttactt   | gagttatcg    | aaatgttataaa | attttatataa  | 360  |
| ttttgttta   | gttcatcgcc    | gactgttatata | gggtatataa   | ataaacccacc  | ctttacagaa   | 420  |
| gatatgcctc  | taatggatccat  | taaccatccat  | gtgtcaacta   | agttatgttt   | agaagacatt   | 480  |
| tttgcggat   | ttccaaaaatgc  | taataataat   | tttataatata  | catgttttttt  | atatttttaat  | 540  |
| ccatgtcgcc  | cocatagtag    | tttttttttttt | ggagggatcc   | caacagggtat  | acttataaaat  | 600  |
| ctcatgcct   | atgtccgcga    | agttgtttttt  | gttttttttttt | atcaatgttt   | tatctttttgt  | 660  |
| ggtactatgt  | agatataatgt   | tttttttttttt | gttttttttttt | atataatgttt  | tgtgatatttt  | 720  |
| gcaataggtc  | atatatatttc   | tttttttttttt | tttttttttttt | tttttttttttt | cttggagatgt  | 780  |
| ttataatctt  | tttttttttttt  | tttttttttttt | tttttttttttt | tttttttttttt | tttttttttttt | 840  |
| ggccatggta  | aagaggatcc    | atatacagata  | gttttttttttt | tttttttttttt | tatttgcacgt  | 900  |
| agttttgtct  | atgttttttttt  | gttttttttttt | tttttttttttt | tttttttttttt | aaaaatgttttt | 960  |
| gatgtatattt | tttttttttttt  | tttttttttttt | tttttttttttt | tttttttttttt | taataatctatq | 1020 |

<210> 761

<211> 840

<212> DNA

<213> Artificial Sequence

<220>

<223> *Shigella flexneri*

<400> 761

```

cgccccctgg ctgatgcgtg gacagcatgg ttccggaaa acaaacaatc tgatgtatac 60
cagatattggc atgttggta acatgaagag cagcccaaca cttttccgc gttccttgtac 120
gcgtttcccg aatccgttc tgcgcaactt actcccgat tcgttgaaaca gttgtgtca 180
ttggttgtaaa aactcgatc ctctggatcc tcctcgacagg agttttccgc ttgtgtgtc 240
gtatgcgtcc aagatgttg a gacgctgtc gogctcacat gaaacaaatc ccggaaaaac 300
ctctgggtcc aatccggatc aagaaggccc ttgtataat atacccggc ttgtgtctcc 360
ttggggggaa aatgttccg ctcggaaat ttggggaca ttggggggaa taagtctca 420
actctcoatt ttgttgatg gatagaagto tacccgttgc tcagaccat gtcgtccatc 480
aaacttcaggat tttccactg cgtggaaagg agtccgttgc agtccgtgc ggaaatggcc 540
gcaaatgtacc tccgtccatg cggacgatc gtcaaaagcc gtgaaagaaa tggatgtcc 600
gactgttgcgtt cctctgggg accatgttgc gdtgtactg agtccgtcc agtgcaccc 660
ttggcccaaggc caaaagaaatc aaatgtatgg atgttggaaa atgttggaaa cttgttccgc 720

```

gctgaccggc tgaaagcatc aggtctgagc ggtgatcgcc atgcggagag ggaagccggt 780  
gcacaggta tgcgttagac taaacagcac atttaccgtc agctgactga cggaggtaactg 840

<210> 762  
<211> 503  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> *Campylobacter jejuni*

```
<400> 762
aaaaacttaa aaaaagctgt ttttacttg atattgttt ttaaatatgc taaaatttagg 60
cgttcaatt aaaacaaagg agcttttagt actaaagcag atttcatttc attagtgtt 120
caaaacgtgg gcttacaacaaa aaaggacgtt actactgtt ctgtatgcgt tactttct 180
attactgtat tttagttaa aggtatgtatc atcgtttta ttgttttttt tactttttca 240
actcaaaaggag gagctgtatc agaaatgtaa gtaccaaaagg caggaaaaac atcaaagg 300
ctgttccaaat gatgttccaaat atttaaggta ggtaaaaaacc tttaaaggaaat tgttgcaaaa 360
ggaaatcgccaa aaaaacttcgca aggtatggataa attttatgtt ctttatgtttt ataaaactat 420
tttaatccaga tatttttttatc ttttttttttt tttaaactttt ataaaactat 480
cattataaa aaaaaaaaaatc tatc 503
```

<210> 763  
<211> 2118  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Concatenation of *A. baumannii* genes

```
<220>
<221> misc_feature
<222> 447-486, 778-817, 1162-1201, 1495-1534, 1928-1967, 2115-2118
<223> n = A.T.C or G
```

<210> 764

<211> 276

<212> DNA

<213> *Acinetobacter baumannii*

<400> 764

<210> 765

<211> 9610

<212> DNA

<213> Yersinia pestis

<400> 765

```

tgtaacgaac ggtgaatag tgatccacac ccaacgcctg aaatcag atc caggggtaa 60
tctgcgttcc tgatttcagaag gatgtttatgg tcaatttttg gcaatgtt atg aaataaaa 120
tcttcgacaa cggaggatcg atgtacgggg cgtatggccag agaacttggg attcctccga 180
ataccgttaa acgttatttg caggccaaaat ctgagccgcg aaaaat acy ccgcgacactg 240
ctgtgttgcg atctccgtat ggataatccggg attatatttc tcaacgcgtt gccgtatgc 300
atcttcataac aatccggccaa acggtaatcg tcgtcgatgg ctagagac cag ggatatctgg 360
gccggaaatgac catttctcagg gcatatccatc gtttctctc gtttctc tag gagcaggagc 420
cttcgcgttcg gttcggaaatc gggccggac gacatgttgc ggttgcactgg gggactatgc 480
atataatgcg cttccggccatc caccgttttgc ttatgtatcc tcaatcagcc coaatctatc 540

```



tctttttcc taccgttac aacagtatt ttctgttcgt aagacacggg cccttcagg 5640  
 tttgaattt tactttccg gggatctta ttgtaaatc tactgtctt cccatctcc 5700  
 gtatacaatc gaaaaccat atgtacato agtttaaat tactccggc aggagatcc 5760  
 acataactgt gtaatgcatt ttaatcgaa tttagtccaa attttggtt gtaactgtt 5820  
 atgtacttc cgaaaaaagg aaaaacggg acaccatcg aaccatcac taccattgt 5880  
 tctgacataa aattccctt ttaacacata aaaaacaat aagttaaaa aaaatactgt 5940  
 acataaaacc actgtttttt tgtagctaa taaaattacg ccgcgttatt ttctctgtc 6000  
 ataataatgaa atttcattt ttgtatgtc atcaacttta taaaatcatc gaaggaaaga 6060  
 ttcgcagcag aaaaacagca cgggttaaca tcagaaaaaa acagaaaggga gataacgtga 6120  
 gcaaaaaaaa atctggcgc caccgtactc gcaaaacagca ccaacgcctg ctggctgcac 6180  
 ttgtctgtc cgatcagcaa gaaacggcag cccgtgactt catccggaaa caagtttaca 6240  
 cactgacaca ggcgcacccgt ccgcattgtt caatgttcaat cgtaaacggt gtgggacagt 6300  
 cacaggccta qatgcgtt taccaggcga gacgcattcg tctgcgggtt aataactgt 6360  
 gcgaaaaaaa accggaaaggg tggttaaccc gggaaaggcg ggaacggaa gatttacccat 6420  
 aactcccggtt atctgttcca tccggctcaac gctgttgcgc gatgttgcgg aatttgcctc 6480  
 aaatgcataa tttccctgtt tattttocatc gtttttttgcgtt gtagcggaaa tcacataatt 6540  
 ctgtcagacg acgagaaaaac ggatatgtat tatttttttca tatttttaca ttataaaaaa 6600  
 tgatatttta taatcagata aaaaataat tttttgttc atgcagagag attaaagggt 6660  
 tctaataatgaa aaaaatgttca ttgtggcaac cattataactt acttctgtccg ggagtgttca 6720  
 tgtagcatca tctcgatgtt taccaaataat atcccccgtac gatctttacag ttgcagccctc 6780  
 cacccggatg tctgtggaa atgtctgtatc atgtttttat gacgcagaaaa caggaagaaaa 6840  
 gatcagccatc tttagtgcga atgcataaaa ttgtcgatc tctggaaagggtt atatactgt 6900  
 ggatccatcatc tattttgtca ccctgtatc cagggtgggtt acgtttctgg ctcccccgggtt 6960  
 aggtatataatg tgcgtactcg atgttgcgtt taaaatccaa tctgtgttca cagatcactc 7020  
 atctccatctt gctacaaatg ttaatcatgc caatgttataat gacccatcg tgaagggtt 7080  
 gtttactcag gatgaaatg ataaacgggg tataacagca ggtatgttccg aaacacgttt 7140  
 cagggttgcac gttacgggtt gttcatataatg ttttttttttgcgttata cccggaaacctt 7200  
 cccgaaaaaggaa gtccgggttta taggttataatc ccaggcgtttt tctatgcctt atattttggact 7260  
 ttcgcggccatc tattttgttca atgttgcgtt gttatgttcaatc ttttttttttgcgtt 7320  
 gtttgcggca catgataatg atgcacta ttttttttttgcgtt gttatgttca cccatgtt 7380  
 atccggctca ctgtatgttca taaacgttca ttttttttttgcgtt gttatgttca cccatgtt 7440  
 caaaatctt gggggatattt ctttttttttgcgtt gttatgttcaatg ggggggggg gtttttttttgcgtt 7500  
 cattgtataag aataatgttca attttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 7560  
 taaaatattt atctgttccg cgggttgcgtt atatgttccg tggaaaaatatc agatcatatc 7620  
 ttttttttttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 7680  
 aaccccttccatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 7740  
 gtttttttttgcgtt gttatgttcaatg gtttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 7800  
 acgttactctt ctttttttttgcgtt gggggatattt ctttttttttgcgtt 7860  
 caacgttacatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 7920  
 ctgttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 7980  
 cacgttacatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8040  
 ttttttttttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8100  
 ctgttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8160  
 ccgttacatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8220  
 cgcataaaatg gtttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8280  
 gtaccggaaatc ctttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8340  
 tagcttttttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8400  
 gtctgttcaatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8460  
 accccttccatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8520  
 acggcaatattt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8580  
 aaatccaaatc aaaaatccggc gggatccgtt gttatgttcaatg gtttttttttgcgtt 8640  
 gttatgttcaatg gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8700  
 gtgttttttgcgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8760  
 tgccatgtt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 8820  
 cggccggccatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8880  
 ccatttccatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 8940  
 ccacagctt gttatgttcaatg gttatgttcaatg gtttttttttgcgtt 9000  
 aaggctctgtt aaccggaaatc aaccggccatc ttttttttttgcgtt 9060  
 gtctgttcaatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 9120  
 atagctgttcaatc aaccggccatc ttttttttttgcgtt 9180  
 ccgcacccatc ttttttttttgcgtt gttatgttcaatg gtttttttttgcgtt 9240

gataaaaaca aaattaaaga aataattaaat cagaacatcc ctt aacttca gggcattgcc 9300  
 tttgtccat tttgtatata gttgttaact tccgaagggt gat aacaccc ggatatttttt 9360  
 tgctcacata aagccccctcc ttccaggcaga gggggttttt ctt tgccacc acataaaaaaa 9420  
 ggccttcaca ggagggtgtc ttgtgaggcg tatgtataagg act gaatccg tggtaataat 9480  
 gtatgtctt gacttttgc tttccgaata taaaacccctg ttt aacggca tgc当地acca 9540  
 aaaaataaaa atgtgacatc gcaatgccag ataattatgtc cgc atgaggg atatcgatc 9600  
 ccgacccctg 9610

<210> 766  
<211> 102  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 766  
tttaagtccc gcaacgagcg caacccttga tcttagtgt tta gttggc actctaagg 60  
gactgcgggt gacaaacccgg aggaagggtt ggatgacgtc aa 102

<210> 767  
<211> 94  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 767  
tagaacacccg atggcgaagg cgactttctg gtctgttaact gacactgaga aagcgtgggg 60  
agcaaaacagg attagatacc ctgttgatcc acga 94

<210> 768  
<211> 108  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 768  
ttggatagtag accctggtag tccacccgt aaacgatgag tgcataagtgt tagaggcctt 60  
tagtgcgtaa gttaacgtat taagcactcc gcctggggg tacggcca 108

<210> 769  
<211> 108  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 769  
tttcgatcga acgcgaagaa ctttaccagg tcttgacatc ctctgacaac octagttct 60  
ccttcggggag cagagtgaca ggtgggtcat ggctgtcgta agctcgta 108

<210> 770  
<211> 95

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Calibration Polynucleotide

&lt;400&gt; 770

tctgacacct gcccggtgct ggaaggtaaa ggagacgggt tagcgttaact ctgaaactgaa 60  
gcccccgat aaacccggccg taactataac ggtca 95

&lt;210&gt; 771

&lt;211&gt; 117

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Calibration Polynucleotide

&lt;400&gt; 771

tctgttctta gtacgagagg accggggatgg acgcacccggt accagtgtt ctgccaagg 60  
catagctgg tagctatgtg cggaaaggat aagtgcgtgaa agcatctaa caccgaaa 117

&lt;210&gt; 772

&lt;211&gt; 100

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Calibration Polynucleotide

&lt;400&gt; 772

tgattatttgt tatectgttta tgccatttga gatttttgtag tggtagtttga gttatttgttc 60  
caggataat tgeaaataaca attcaaagac aagggttataca 100

&lt;210&gt; 773

&lt;211&gt; 112

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Calibration Polynucleotide

&lt;400&gt; 773

tcgaagtaca atacaagaca aaagaaggta aaattaatgtt tttagggaa aaattcaaga 60  
aatatagaag ttagggctaa aatgttagaa ggggttttga agccgttaac aa 112

&lt;210&gt; 774

&lt;211&gt; 100

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Calibration Polynucleotide

&lt;400&gt; 774

ttgcgtgtgg tgcacaaggta acggatatta caatcaatgtt tgttgcagct gatgacggcg 60  
taataaacat ttgaagcaat taaccatgcg aaagca gcaa 100

&lt;210&gt; 775

&lt;211&gt; 114

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 775  
tagctttgc atattatac gagccacagc atcgatgtt ttacagctt tatgcacccg 60  
aagcttttaa tggataaatt taacgaacaa gaaataatc tataccttggaa agaa 114

<210> 776  
<211> 116  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 776  
tgacctacac taaggaggttc tgtaatgaac cctaatgacc atccacacgg tggtggtgaa 60  
ggtagatctc ctatcgaaa gtccacgtac tccatgggtt aaaccagcac ttggaa 116

<210> 777  
<211> 70  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 777  
tccacacgg ggtggtaag gtagatctcc tatacgaaag tccacgtact ccatgggta 60  
aaccagcacaca 70

<210> 778  
<211> 82

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 778  
ttatcgctca ggcaactcc aacctggatg atgaaggccg cttttagaa ggtgacttgt 60  
cgtacaaag gcaatccaa 82

<210> 779  
<211> 87  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 779  
tggcagcgt ttccggcgaaa tggaaatggc tcgaaggcttca tggcgcttcg tacgtgtgc 60  
agggaaatgtt gaccgtcaag tcggaca 87

<210> 780

<211> 97  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 780  
tcaggagtcg ttcaactcga tctacatgtat ggccgaccgc ccggggttcg gcggtgcaga 60  
ttcgtcagtcg ggcggcgtat cgtggctgtat tggcgtat 97

<210> 781  
<211> 117  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 781  
tctggcaggat atgcgtggtc tgatggccaa tccatctggt cgtatcatcg aacttccat 60  
caagtttccg tgaagggtta acagttacttg agtacttcat ctcaacccac ggtgcga 117

<210> 782  
<211> 98  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 782  
tcagcaaac gcacaatcag aagctaagaa aegcgaagct tctggaaagc acaaatgcata 60  
gttatgttac agaatttgcata actgaaacag acgtgcata 98

<210> 783  
<211> 99

<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Polynucleotide

<400> 783  
tccacacgcgc gttcttcaac aactaccgtg ttctacttcc gtacgacggc cgtgacgggc 60  
tcgatcgatc tgccgaagga caaggaaatg gtgtatgcata 99

<210> 784  
<211> 111  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Calibration Sequence

<400> 784  
tcgtggccgc gttgttatcg aacctatgtat gaccgatcaa tggtagtgc acaccgcggc 60  
ccaaagtgcg gattgaagcc gttagagaacg ggcacatcca gtttgtatccg a 111

```
<210> 785
<211> 2100
<212> DNA
<213> Artificial Sequence

<220>
<223> Combination Calibration Polynucleotide
```