Optimization II: Unconstrained Multivariable

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

minimize

 $f: \mathbb{R}^n \to \mathbb{R}$

Recall

$$\nabla f(\vec{x})$$

"Direction of steepest ascent"

$$-\nabla f(\vec{x})$$

"Direction of steepest descent"

If
$$\nabla f(\vec{x}) \neq \vec{0}$$
, for sufficiently small $\alpha > 0$,

$$f(\vec{x} - \alpha \nabla f(\vec{x})) \le f(\vec{x})$$

Gradient Descent Algorithm

Iterate until convergence:

- **1.** $g_k(t) \equiv f(\vec{x}_k t\nabla f(\vec{x}_k))$
- **2.** Find $t^* \ge 0$ minimizing (or decreasing) g_k
- **3.** $\vec{x}_{k+1} \equiv \vec{x}_k t^* \nabla f(\vec{x}_k)$

$$\nabla f(\vec{x}_k) \approx \vec{0}$$

Don't forget: Check optimality!

Line Search

$$g_k(t) \equiv f(\vec{x}_k - t\nabla f(\vec{x}_k))$$

- One-dimensional optimization
- Don't have to minimize completely: Wolfe conditions

Newton's Method

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k)$$
$$+ \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k) + \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

$$\implies \vec{x}_{k+1} = \vec{x}_k - [H_f(\vec{x}_k)]^{-1} \nabla f(\vec{x}_k)$$

Newton's Method (again!)

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k)$$
$$+ \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

$$\implies \vec{x}_{k+1} = \vec{x}_k - [H_f(\vec{x}_k)]^{-1} \nabla f(\vec{x}_k)$$

Consideration:

What if H_f is not positive (semi-)definite?

∇f might be hard to compute but H_f is harder

 \cdot H_f might be dense: n^2

Approximate derivatives to avoid expensive calculations

e.g. secant, Broyden, ...

 ∇f known

ullet H_f unknown or hard to compute

Newton's Method

$$\vec{x}_{k+1} = \vec{x}_k - \alpha_k B_k^{-1} \nabla f(\vec{x}_k)$$
$$B_k \approx H_f(\vec{x}_k)$$

Quasi-Newton

0000000000

Warning

<advanced_material>

See Nocedal & Wright

$$B_{k+1}(\vec{x}_{k+1} - \vec{x}_k) = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

Additional Considerations

- $\, \, \, \, B_k \,$ should be symmetric
- B_k should be positive (semi-)definite

Davidon-Fletcher-Powell (DFP)

$$\min_{B_{k+1}} \|B_{k+1} - B_k\|$$
s.t. $B_{k+1}^{\top} = B_{k+1}$

$$B_{k+1}(\vec{x}_{k+1} - \vec{x}_k) = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

Observation

$$\|B_{k+1}-B_k\|$$
 small does not mean $\|B_{k+1}^{-1}-B_k^{-1}\|$ is small

Observation

 $||B_{k+1} - B_k||$ small does not mean $\|B_{k+1}^{-1}-B_k^{-1}\|$ is small

Idea: Try to approximate B_k^{-1} directly

$$\min_{HB_{k+1}} \|H_{k+1} - H_k\|$$
s.t. $H_{k+1}^{\top} = H_{k+1}$

$$\vec{x}_{k+1} - \vec{x}_k = H_{k+1}(\nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k))$$

State of the art!

Lots of Missing Details

▶ Choice of $\|\cdot\|$

Limited-memory alternative

