ALGARISMOS SIGNIFICATIVOS

MENOR MEDIDA = 1 cm

$$L = 7,2 \text{ cm}$$
 2 1

 $L = 72 \text{ mm}$ 2

 $L = 0,072 \text{ m}$ 2

NA MEDIDA

Zeros à esquerda não são significativos.

Quando fazemos conversões de unidades, o número de algarismos significativos tem que ser mantido

Todo algarismo diferente de zero conta como significativo

Todo zero entre dois algarismos significativos, será significativo também YISOR PA BALANÇA

(2) 1, o

(3) 1,00

A1,000

61,0000

0,60 g ARREDONDAMENTO

0,598 9

0,59849

m = 0.59849

NOTA CALCULADA

(1) SISTEMA ACEITA DUAS CASAS DECIMAIS

68,79 + 70,00 2) SISTEMA QUE SO ACEITA Nº

69 # 70

operações com algarismos significativos

Adição e subtração:

Calcule a distância percorrida por uma partícula que descreveu os seguintes trechos: $d1=0,125 \text{ km} \quad d2=2,5 \text{ m} \quad d3=535,4 \text{ cm}$

$$d_1 = 126m$$
 $d_2 = 2.5m$ $d_3 = 5.354m$

$$d_T = 125 + 2.5 + 6.354 = 132.854 m$$

$$133 m : R$$

Procurar nas parcelas o valor com o menor número de casas decimais e expressar o resultado com o mesmo número de casas decimais.

calcular a intensidade da corrente i3 do esquema abaixo, sabendo que i=200,2 mA i1=523 mA i2=0,1A
$$i=0,2002$$
 A $i1=0,523$ A $i=0,2002$ A $i1=0,523$ A $i=0,10$ $i=0,13$ $i=0,14$ $i=0,$

Calcule o volume em cm cúbicos, do cilindro de uma moto, dados o seu diâmetro, 72,0 mm e o seu curso (altura) = 61 mm $D = 7,20 \text{ cm} \qquad h = 6,1 \text{ cm}$

$$\overline{V} = \frac{\pi D^2 h}{4} = \frac{\pi (7.20)^2 \cdot 6.1}{4} = \frac{248,23584 \text{ cm}^3}{248 \text{ cm}^3}$$

O resultado final deverá apresentar a mesma quantidade de algarismos significativos (ou no máximo 1 elemento a mais) do fator "mais pobre" em algarismos significativos.

NOTAÇÃO CIENTÍFICA PRÓXIMA
$$25 \times 10 \text{ cm}^3 \qquad \Rightarrow 56 \times 14 \text{ -FEILA}$$

$$25 \times 10^2 \text{ cm}^3$$

- a) Erro Sistemático: é aquele devido à equipamentos incorretamente ajustados e/ou calibrados, procedimento incorreto pelo experimentador ou falha conceitual. Este tipo de erro atua de modo constante, sempre positivo ou sempre negativo, devendo ser eliminado ou reduzido ao mínimo pelo experimentador.
- b) Erro Estatístico: é aquele causado por variações incontroláveis e aleatórias dos instrumentos de medida, e de condições externas tais como temperatura, tensão da rede elétrica, umidade do ar, etc.

i	Diâmetro (mm)	d_i (mm)	$(d_i)^2$ (mm ²)
1	5,11	0,107	0,01145
2	5,06	0,057	0,00325
3	4,93	-0,073	0,00533
4	4,99	-0,013	0,00017
5	5,07	0,067	0,00449
6	4,88	-0,123	0,01513
7	5,03	0,027	0,00073
8	5,00	-0,003	0,000009
9	4,94	-0,063	0,00397
10	5,02	0,017	0,00029
SOMA	50,03		0,044819