Homework 3 EECS 510 2022 Fall

1. (10 points) Show that the language $L := \{0^n 10^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: For any $n \in \mathbb{N}$, let $w = 0^n 10^n$. For any splitting of w = xyz where $|xy| \le n$ and $y \ne \epsilon$, it must be the case $y = 0^k$ for some $k \in \mathbb{N}$ with k > 0. By the pumping lemma for regular languages, the string $xz = xy^0z = 0^{n-k}10^n$ must be in the language L. But $n - k \ne n$. Therefore, $xz \notin L$, and the language L cannot be regular.

2. (10 points) Show that the language $L := \{0^n 1^m \mid m \ge n\}$ is not regular.

Solution: For any $n \in \mathbb{N}$, let $w = 0^n 1^n$. For any splitting w = xyz with $|xy| \le n$ and $y \ne \epsilon$, it must be the case that $y = 0^k$ for some $k \in \mathbb{N}$ with k > 0. By the pumping lemma for regular languages, the string $xy^2z = 0^{n+k}1^n$ must be in the language L. But n + k > n. Therefore, $xy^2z \notin L$, and the language is not regular.

3. (10 points) Show that the language $L := \{0^n 1^{2n} \mid n \in \mathbb{N}\}$ is not regular.

Solution: For any $n \in \mathbb{N}$, let $w = 0^n 1^{2n}$. For any splitting w = xyz with $|xy| \le n$ and $y \ne \epsilon$, it must be the case that $y = 0^k$ for some $k \in \mathbb{N}$ with k > 0. By the pumping lemma for regular languages, the string $xz = xy^0z = 0^{n-k}1^{2n}$ must be in the language L. Yet 2n is not twice n - k. Therefore, $xz \notin L$, and the language is not regular.