Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas ICS1102 Optimización – 2do Semestre 2008 – secciones 2,3 y 4

PROFESORES: Juan Carlos Muñóz, Pablo Rey, Sergio Toloza

AYUDANTE: Mathias Klapp

Ayudantía N°12: SIMPLEX MATRICIAL

ANÁLISIS MATRICIAL

Dado un vértice factible separemos el problema por variables básicas y no básicas:

$$\begin{array}{cccc} \textit{Min } C^T X & & & \textit{Min } C_B^T X_B + C_R^T X_R \\ \textit{s.a.} & & & & \\ \textit{AX} = b & & & \\ x_i \geq 0, & & \\ x_i \geq 0, & & \\ & & &$$

Con:

B: Matriz de columnas de A asociadas a las variables básicas (cuadrada e invertible).

R: Matriz de columnas de A asociadas a las variables no básicas.

 C_B : Vector de costos de las variables básicas.

 C_R : Vector de costos de las variables no básicas.

Encontremos el valor de X_B :

Tomando las restricciones: $BX_B + RX_R = b$, podemos despejar X_B :

$$X_B = B^{-1}(b - RX_R) = B^{-1}b - B^{-1}RX_R$$
 (*)

Sabiendo que el vector no básico X_R es nulo:

$$X_B = B^{-1}b$$

Encontremos el valor de la función objetivo:

Reemplazando (*) en el problema de minimización y arreglando la expresión un poco:

$$\begin{array}{ll}
Min \ C_B^{\ T}(B^{-1}b - B^{-1}RX_R) + C_R^{\ T}X_R & Min \ C_B^{\ T}B^{-1}b + (C_R^{\ T} - C_B^{\ T}B^{-1}R)X_R \\
s.a. & s.a$$

Como X_R es nulo en tenemos que <u>el valor de la F.O. es:</u>

$$V(F.O.) = C_B^T B^{-1} b$$

Costos reducidos:

Por otro lado del problema (**) podemos ver la función objetivo y darnos cuenta de que si $X_R = 0$ varía en una unidad, la F.O. cambia en: $(C_R^T - C_B^T B^{-1} R)$. Es decir, los costos reducidos no básicos son:

$$r_{R}^{T} = C_{R}^{T} - C_{B}^{T} B^{-1} R$$

¿Que sacamos con todo este análisis?:

- 1 Tomando una configuración de Base cualquiera, podemos ver si es factible revisando que las variables básicas sean positivas y ver si es óptima revisando los costos reducidos no-básicos.
- 2 Conocemos el valor de la función objetivo en esa Base.
- Podemos iterar de forma matricial tomando una SIBF, viendo sus costos reducidos y así incluir variables a la base con costos reducidos negativos. (Esto es lo que hace un software) <u>Dificultad:</u> Necesitamos calcular la inversa de B en cada iteración.

¿Y qué hay con el Tableau?:

El Tableau en cada iteración representa lo siguiente:

X_{B}	X_R	L.D.
Ι	$B^{-1}R$	$X_B = B^{-1}b$
$\vec{0}$	$C_R^T - C_B^T B^{-1} R$	$-C_B^T B^{-1} b$

Luego podemos construirlo para cualquier vértice sabiendo la configuración de su Base asociada.

Problema 1: SIMPLEX matricial

Resolver por SIMPLEX matricial:

$$Max: X_1 + 2X_2$$

s.a.

$$3X_1 + X_2 \le 6$$

$$-X_1 + 2X_2 \le 2$$

$$X_1, X_2 \ge 0$$

Respuesta:

$$Min - X_1 - 2X_2$$

s.a.

Estandarizando: $3X_1 + X_2 + X_3 = 6$

$$-X_1 + 2X_2 + X_4 = 2$$

$$X_1, X_2, X_3, X_4 \ge 0$$

Iteración 1:

Base = (3,4) No Base = (1,2)

Las matrices son:

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; R = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}; b = \begin{pmatrix} 6 \\ 2 \end{pmatrix}; C_B^T = \begin{bmatrix} 0 & 0 \end{bmatrix}; C_R^T = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

I) Calculo de B⁻¹:

En este caso es trivial y es $B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

II) Calculo de la solución básica:

$$\overrightarrow{\mathbf{X}}_{\mathrm{B}} = \mathbf{B}^{-1} \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{b}} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

III) Costos reducidos:

$$r_{R}^{T} = (C_{R}^{T} - C_{B}^{T} B^{-1} R) = [-1 \quad -2]$$

Entra la segunda variable fuera de base (X_2) .

Sale:
$$B^{-1}R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$

Min(6/1, 2/2) = 1. Por lo tanto sale la 2^{da} variable de base (X_4) .

Iteración 2:

Base = (3,2) No Base = (1,4)

Las matrices son:

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}; R = \begin{pmatrix} 3 & 0 \\ -1 & 1 \end{pmatrix}; b = \begin{pmatrix} 6 \\ 2 \end{pmatrix}; C_B^T = \begin{bmatrix} 0 & -2 \end{bmatrix}; C_R^T = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

I) Calculo de B⁻¹

$$B^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$$

II) Calculo de la solución básica:

$$\overrightarrow{\mathbf{X}_{\mathrm{B}}} = \mathbf{B}^{-1} \overrightarrow{\mathbf{b}} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

III) Costos reducidos:

$$r_R^T = (C_R^T - C_B^T B^{-1} R) = \begin{bmatrix} -1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -2 \end{bmatrix} 1 / 2 \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ -1 & 1 \end{pmatrix} = \begin{bmatrix} -2 & 1 \end{bmatrix}$$

Entra la primera variable fuera de base (X_1) .

Sale:
$$B^{-1}R = \begin{pmatrix} 7/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

Min(5/(7/2), *) = 10/7. Por lo tanto sale la 1^{ra} variable de base (X₃).

Iteración 3:

Base = (1,2) No Base = (3,4)

$$B = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}; R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; b = \begin{pmatrix} 6 \\ 2 \end{pmatrix}; C_B^T = \begin{bmatrix} -1 & -2 \end{bmatrix}; C_R^T = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

I) Calculo de B⁻¹:

$$B^{-1} = 1/7 \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

$$\overrightarrow{X}_{B} = B^{-1} \overrightarrow{b} = 1/7 \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 10/7 \\ 12/7 \end{pmatrix}$$

III) Costos reducidos:

$$r_R^T = (C_R^T - C_B^T B^{-1} R) = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & -2 \end{bmatrix} 1/7 \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} 4/7 & 5/7 \end{bmatrix}$$

Son todos mayores que cero, por lo tanto estamos en el óptimo y es único.

El valor óptimo es
$$V = C_B^T B^{-1} \vec{b} = \begin{bmatrix} -1 & -2 \end{bmatrix} \begin{bmatrix} 10/7 \\ 12/7 \end{bmatrix} = -34/7$$

Problema 2: Determinación de rangos óptimos de forma matricial

Considere el siguiente problema:

Max
$$60x_1 + bx_2 + 20x_3$$

s.a.
 $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le a$
 $x_1, x_2, x_3 \ge 0$

Se le indica que considere la base $[h_1, X_3, X_1]$ en que h_1 corresponde a la variable de holgura de la primera restricción.

- a) ¿En qué rango de a y b la base es óptima y única?
- b) ¿En que rango de a y b la base es óptima, pero no única.
- c) ¿En que rango de a y b la solución asociada es degenerada. En este caso identifique todas las restricciones activas en la solución asociada (elija una solución degenerada si es que encuentra más de una).

Hint:
$$\begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{pmatrix}^{-1} \equiv \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix}$$

Respuesta:

Pasemos a formato estándar:

$$Min - 60x_1 - bx_2 - 20x_3$$
s.a.
$$8x_1 + 6x_2 + x_3 + h_1 = 48 \qquad (1)$$

$$4x_1 + 2x_2 + 1.5x_3 + h_2 = 20 \quad (2)$$

$$2x_1 + 1.5x_2 + 0.5x_3 + h_3 = a \quad (3)$$

$$x_1, x_2, x_3, h_1, h_2, h_3 \ge 0$$

Tomando la base: $[h_1,x_3,x_1]$, Nuestras variables no básicas son: $[x_2, h_2, h_3]$.

$$B = \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{pmatrix} \qquad R = \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} \qquad b = \begin{bmatrix} 48 \\ 20 \\ a \end{bmatrix} \qquad B^{-1} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix}$$

$$C_B = [0, -20, -60] \qquad C_R = [-b, 0, 0]$$

Por lo tanto:

Por 10 tanto:
$$X_{B} = B^{-1}b = \begin{bmatrix} 88 - 8a \\ 40 - 4a \\ -10 + 1.5a \end{bmatrix}$$

$$r_{R}^{T} = C_{R}^{T} - C_{B}^{T}B^{-1}R = [-b, 0, 0] - [0, -20, -60] \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix} \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} = [-b + 35, 10, 10]$$

La base es óptima y única si: a)

Primero la solución debe ser factible, por lo que:
$$\begin{bmatrix} 88-8a \\ 40-4a \\ -10+1.5a \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow a \le 11, \ a \le 10, \ a \ge 20/3 \Rightarrow 20/3 \le a \le 10$$

Luego para que exista solución óptima única todos los costos reducidos deben ser positivos estrictos: $r_R^T = [-b + 35, 10, 10] > [0 \ 0 \ 0]$

$$\rightarrow$$
 $b < 35$

b) La base es óptima y no única:

Debe ser factible, por lo que: $20/3 \le a \le 10$ y para que sea múltiple: b = 35

c) Para que sea degenerada, una (o más) de las variables básica debe ser nula:

Por lo tanto: a = 10 o a = 20/3.

Si a = 10 \rightarrow X₃ = 0. Por lo que están activas las restricciones: (2),(3) Si a = $20/3 \rightarrow X_1 = 0$. Por lo que están activas las restricciones: (2),(3)

Problema 3: Partir SIMPLEX desde un vértice específico

Considere el siguiente problema de programación lineal:

Min:
$$2x_1 - 3x_2$$

s.a.
 $x_1 + x_2 \ge 1$ (1)
 $-x_1 + x_2 \le 0$ (2)
 $-x_1 + 2x_2 \le 2$ (3)
 $12x_1 + 6x_2 \ge 9$ (4)
 $x_1, x_2 \ge 0$

- a) Encuentre el TABLEAU asociado al vértice $x_1 = 1/2$, $x_2 = 1/2$.
- b) A partir de ahí, use SIMPLEX de TABLEAU y encuentre solución óptima.

Respuesta:

a)

Estandarizando:

Min
$$2x_1 - 3x_2$$

s.a.
 $x_1 + x_2 - x_3 = 1 (1)$
 $-x_1 + x_2 + x_4 = 0 (2)$
 $-x_1 + 2x_2 + x_5 = 2 (3)$
 $12x_1 + 6x_2 - x_6 = 9 (4)$

Luego debemos determinar cuáles son las variables básicas cuando $x_1 = 1/2$, $x_2 = 1/2$. Se tiene que en ese punto se activan 3 restricciones, la (1), la (2) y la (4), por lo que se sabe que es un vértice degenerado (3 restricciones activas en un punto en dos dimensiones).

Sólo x_1 , x_2 y x_5 son distintas de cero y tenemos 4 restricciones, lo que nos dice que debieran ser 4 variables en Base. Sabemos, por ende, que existe más de una base. Escogemos arbitrariamente la base: $\{x_1, x_2, x_5, x_6\}$ (podría ser otra) y de esa forma se toma como restricciones activas a (1) y a (2).

Dada la elección de variables básicas y no básicas se obtienen las matrices:

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 12 & 6 & 0 & -1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1/2 & -1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ -1/2 & -3/2 & 1 & 0 \\ 9 & -3 & 0 & -1 \end{bmatrix}, R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 9 \end{bmatrix}, C_B = \begin{bmatrix} 2 \\ -3 \\ 0 \\ 0 \end{bmatrix}$$

$$C_R = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Luego el TABLEAU se obtiene de:

X_{B}	$X_{_R}$	RHS
I	$B^{-1}R$	$X_B = B^{-1}b$
$\vec{0}$	$C_R^T - C_B^T B^{-1} R$	$C_B^T B^{-1} b$

Obtenemos el siguiente TABLEAU:

x_1	x_2	x_3	x_4	x_5	x_6	RHS
1	0	-1/2	-1/2	0	0	1/2
-0	1	-1/2	1/2	0	0	1/2
-0	0	1/2	-3/2	1	0	3/2
-0	0	-9	-3	0	1	0
- 0	0	-1/2	5/2	0	0	1/2

b) En el TABLEAU inicial se observa que entra la variable x_3 a la base y sale x_5 , ya que en la fila 3 es la única con cuociente positivo. Iterando se llega a:

x_1	x_2	x_3	x_4	x_5	x_6	RHS
1	0	0	-2	1	0	2
0	1	0	-1	1	0	2
0	0	1	-3	2	0	3
- 0	0	0	30	18	1	27
- 0	0	-0	1	1	0	2

Por lo tanto la solución óptima para el problema original es $x_1 = 2$, $x_2 = 2$ con valor óptimo V = -2. Gráficamente:

