Exercice 1 Soient a et b deux entiers tels que $a \ge b \ge 1$ et $a \land b = 1$.

- 1. Montrer que $a + b \wedge a b = 1$ ou 2.
- 2. Montrer que $a + b \wedge ab = 1$.
- 3. Montrer que $a + b \wedge a^2 + b^2 = 1$ ou 2.

Exercice 2 Soit p un nombre premier et n un entier positif. On note $\binom{p}{k}$ le nombre de parties à k éléments dans un ensemble à p éléments.

- 1. Si $1 \le k \le p$, montrer que p divise $\binom{p}{k}$.
- 2. En déduire que

$$\forall a, b \in \mathbb{Z}$$
 on a $(a+b)^p = a^p + b^p \mod p$.

Exercice 3 Trouver tous les points dans \mathbb{Z}^3 du plan d'équation 6x + 10y + 15z = 1997. Combien y a-t-il de solutions dans \mathbb{N}^3 ?

Exercice 4 Trouver la décomposition selon le théorème de structure des groupes abéliens finis du groupe

$$\mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/18\mathbb{Z}$$
.

Exercice 5 Montrer qu'un groupe abélien fini non cyclique possède un sous-groupe isomorphe à $(\mathbb{Z}/p\mathbb{Z})^2$ pour un certain nombre premier p.

Exercice 6 1. On rappelle que si p est un nombre premier impair et $n \geq 1$, le groupe $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ des éléments inversibles de $\mathbb{Z}/p^n\mathbb{Z}$ est cyclique. Donner son cardinal.

2. Soit $G = (\mathbb{Z}/6615\mathbb{Z})^{\times}$. Ecrire G sous la forme $G \cong \prod_{i=1}^{s} \mathbb{Z}/d_{i}\mathbb{Z}$ avec s un entier positif et d_{i} des entiers strictement positifs et $d_{i+1}|d_{i}$ pour $1 \leq i \leq s-1$.

Exercice 7 On considère dans $A := \mathbb{Z}^3$ le sous-groupe B engendré par v = (6, -12, 0) et w = (0, 8, 4). On note $A^* := \text{Hom}(A, \mathbb{Z})$ l'ensemble des morphismes de groupes de A à valeurs dans \mathbb{Z} , également appelé ensemble des formes linéaires entières sur A.

- 1. Le groupe A^* est-il de type fini ? libre ? (On peut parfaitement résoudre la fin de l'exercice sans répondre à cette question.)
- 2. Montrer que l'application $A^* \to \mathbb{Z}$ donnée par $f \mapsto f(v)$ (respectivement $A^* \to \mathbb{Z}$, donnée par $f \mapsto f(w)$ est un morphisme de groupes dont l'image est le sous-groupe $6\mathbb{Z}$ \mathbb{Z} (respectivement le sous-groupe $4\mathbb{Z}$ de \mathbb{Z}).
- 3. En déduire que

$$\forall f \in A^*, \ f(B) \subset 2\mathbb{Z}.$$

- 4. Soit $f \in A^*$ la forme linéaire définie par $x \mapsto x_1 x_2$. Trouver $v_1 \in B$ tel que $f(v_1) = 2$ puis montrer que $v_1 = 2u_1$ pour un certain $u_1 \in A$.
- 5. Montrer que

$$A = \mathbb{Z}u_1 \oplus \operatorname{Ker} f$$
,

puis que

$$B = 2u_1 \mathbb{Z} \oplus (\operatorname{Ker} f \cap B).$$

- 6. Écrire les coordonnées d'un vecteur $\lambda v + \mu w$, pour $(\lambda, \mu \in \mathbb{Z})$. En déduire que $\operatorname{Ker} f \cap B$ est l'ensemble des vecteurs de la forme (12t, 0, 12t) où t décrit \mathbb{Z} .
- 7. En déduire une base de B, et une base (u_1, u_2, u_3) de A telles que

$$B = 2u_1 \mathbb{Z} \oplus \mathbb{Z} \cdot 12u_2 \mathbb{Z}.$$

Exercice 8 On considère

$$H := \{(a, b) \in \mathbb{Z}^2 \mid a - b \text{ est divisible par } 10\}.$$

- 1. Montrer que H est un sous-groupe abélien libre de \mathbb{Z}^2 .
- 2. Calculer son rang, en donner une base.
- 3. Décrire le quotient \mathbb{Z}^2/H .
- **Exercice 9** 1. Soit $A = \mathbb{Z}^2$ et B le sous-groupe de A engendré par $b_1 = (14, 2)$ et $b_2 = (2, 4)$. Calculer une base de A adaptée à B (on en rappellera la définition). Donner la structure du quotient A/B.
 - 2. Soit G un groupe abélien (noté additivement) et possédant deux générateurs a et b tels que $14a + 2b = 0_G$ et $2a + 4b = 0_G$. Montrer que G est isomorphe à un quotient du groupe A/B précédent.

Exercice 10 Soit A un groupe aélien.

- 1. Montrer que $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, A) = A[m] := \{a \in A \mid ma = 0\}$ (on donnera explicitement un isomorphisme).
- 2. Montrer que $\operatorname{Hom}(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/q\mathbb{Z}) \simeq \mathbb{Z}/p \wedge q\mathbb{Z}$.
- 3. Montrer que $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}) = \{0\}.$
- 4. Montrer que $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \simeq \mathbb{Z}/m\mathbb{Z}$.

Exercice 11 Soit G un groupe abélien engendré par trois éléments x, y, z vérifiant les deux relations suivantes :

$$5x - 2y + 12z = 0$$
 et $3x + 4z = 0$.

Donner la structure du groupe G.

Exercice 12 Soit K un corps fini de cardinal q. Montrer en utilisant le théorème de structure que le groupe K^* est cyclique. (question annexe : montrer que q est une puissance d'un nombre premier p et donner la structure du groupe (K, +)).

Exercice 13 Soit G un groupe abélien fini. Un caractère de G est un morphisme de G dans \mathbb{C}^* .

- 1. Montrer qu'un caractère de G est à valeur dans le groupe μ_{∞} des racines de l'unité.
- 2. Soit G un groupe abélien fini et H un sous groupe tel qu'il existe x dans G tel G = < H, x >. Soit r le plus petit entier non nul tel que x^r est dans H (justifier son existence). Montrer que tout élément de G s'écrit de manière unique sous la forme hx^k avec h dans H et k entre 0 et r-1.

- 3. Soit χ un caractère de H. Posons ζ une racine r-ieme de l'unité de $\chi(x^r)$ ie telle que $\zeta^r = \chi(x^r)$. Montrer que l'on peut prolonger χ à G en utilisant la décomposition de la question précédente et la racine ζ
- 4. Utiliser ce qui précède pour prouver que si G est un groupe abélien fini et H un sous groupe de G alors tout caractère de H s'étend en un caractère de G.
- 5. Soit G un groupe abélien fini et n_1 l'ordre maximal d'un élément x de G. Justifier que $\langle x \rangle$ est isomorphe (via un morphisme χ_1) au groupe μ_{n_1} des racines n_1 -eme de l'unités. En déduire qu'il existe un isomorphisme entre G et $G/\langle x \rangle \times \langle x \rangle$.
- 6. En déduire une démonstration de l'existence dans le théorème de structure des groupes abéliens finis.