Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil D: Komplexitätstheorie

18: NP und NP-Vollständigkeit

Version von: 26. Juni 2018 (12:13)

NP-Vollständigkeit: Einleitung (1/6)

- Eine kleine Geschichte
 - nach Garey&Johnson, abgewandelt von Wim Martens
- Stellen Sie sich vor...
- Sie sollen ein Tool entwickeln, das superschnell Anfragen auf graphstrukturierten Daten auswertet
- Die Anfragen sind reguläre Ausdrücke

SPARQL

- ullet Bei Eingabe eines regulären Ausdrucks $oldsymbol{lpha}$ soll das Tool in der Datenbank Knotenpaare $(oldsymbol{a}, oldsymbol{b})$ finden, die durch einen Weg verbunden sind, dessen Label-Folge in $oldsymbol{L}(oldsymbol{lpha})$ liegt
- ...aber der Weg muss wirklich ein Weg sein

kein Knoten doppelt

NP-Vollständigkeit: Einleitung (2/6)

• Anfrage: Gibt es einen Weg von ID1 zu ID6, der zum regulären Ausdruck $\alpha = ({\rm knows})^*$ passt?

NP-Vollständigkeit: Einleitung (3/6)

- Sie versuchen einen Algorithmus zu entwerfen, merken aber, dass Sie kein schnelles Verfahren für dieses Problem finden
- Sie haben schon Effizienzprobleme beim regulären Ausdruck (knows knows)*
- Sie können das Problem kaum besser lösen, als durch Ausprobieren aller Wege, und das sind sehr, sehr viele...
- Heute ist der Termin für die Vorstellung Ihrer Ergebnisse
- Was tun?

NP-Vollständigkeit: Einleitung (4/6)

• Option 1:

"Ich kann keine effiziente Methode finden. Ich glaube, ich bin einfach unfähig."

• Wäre das klug?

NP-Vollständigkeit: Einleitung (5/6)

- Option 2: "Ich kann keine effiziente Methode finden, weil es keine solche Methode gibt."
- Das wäre ideal. Damit hätten Sie auch gleich eine Million Dollar verdient...

NP-Vollständigkeit: Einleitung (6/6)

• Option 3:

"Ich kann keine effiziente Methode finden, aber alle diese berühmten Informatiker können es auch nicht."

• Besser als nichts. Damit das klappt, brauchen wir: NP-Vollständigkeit

Übersicht

- In diesem Kapitel werden wir
 - eine Reihe schwieriger Berechnungsprobleme kennen lernen,
 - ihre Ähnlichkeit näher unter die Lupe nehmen,
 - einen Teil ihrer Ähnlichkeit durch die Definition der Komplexitätsklasse NP formalisieren, und
 - ein noch stärkeres Maß ihrer Ähnlichkeit durch den Begriff der NP-Vollständigkeit formalisieren

Inhalt

▶ 18.1 Beispiele schwieriger Berechnungsprobleme

18.2 **NP**

18.3 **NP**-Vollständigkeit

Schwierige Berechnungsprobleme: Rucksack

Beispiel

- In zwei Monaten startet die n\u00e4chste Rakete zur Raumstation
- Die Weltraumagentur ist etwas knapp bei Kasse und bietet deshalb kommerziellen Forschungsinstituten an, wissenschaftliche Experimente in der Raumstation durchzuführen
- Die Rakete kann noch maximal 645 kg zusätzliche Last für Experimente mitnehmen
- Die Agentur erhält von den Instituten verschiedene Angebote, in denen steht,
 - wieviel sie für Transport und Durchführung des Experiments zu zahlen bereit sind und
 - wie schwer die Geräte für ihr Experiment sind
- Welche Experimente soll die Weltraumagentur auswählen, um den Gewinn zu maximieren?

Objekt-Nr.	1	2	3	4	5	6	7	8
Gewicht	153	54	191	66	239	137	148	249
Gewinn (1000)	232	73	201	50	141	79	48	38

Rene Beier, Saarbrücken, Berthold Vöcking, Aachen

 Dieses Beispiel führt zu einer Eingabe für das folgende Rucksackproblem:

Definition (KNAPSACKO)

Gegeben: Gewichtsschranke G und m Gegenstände repräsentiert durch

- ullet Werte w_1,\ldots,w_m und
- Gewichte g_1, \ldots, g_m ,

 \square alle Zahlen aus $\mathbb N$

Gesucht:
$$I\subseteq\{1,\ldots,m\}$$
, so dass $\sum_{i\in I}w_i$ maximal ist und $\sum_{i\in I}g_i\leqslant G$ gilt

ullet Informell: gesucht ist eine Menge von Gegenständen mit maximalem Gesamtwert und Gewicht $\leqslant G$

Schwierige Berechnungsprobleme: Graphfärbung

- Landkartenfärbung: Lassen sich die Länder einer gegebenen Landkarte mit einer gegebenen Anzahl von Farben so färben, dass benachbarte Länder verschiedene Farben haben?
- Beispiel: lässt sich die Karte der deutschen Bundesländer in dieser Art mit 3 Farben färben? Nein!
- 4 Farben genügen immer (wenn alle Länder zusammenhängen)
 Vierfarbensatz
- Das Problem der Landkartenfärbung lässt sich zurückführen auf das allgemeinere Problem, die Knoten eines Graphen zu färben

Definition (COL)

Gegeben: Ungerichteter Graph G, Zahl k

Frage: Lassen sich die Knoten von G mit k Farben zulässig färben, also so, dass durch Kanten verbundene Knoten verschiedene Farben haben?

Graphentheorie: Wiederholung

 Wir wiederholen sicherheitshalber einige Grundbegriffe aus der Graphentheorie:

Definition (Kantenfolge, Weg)

- ullet Sei $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ ein Graph
- ullet Sei $v_0,\ldots,v_n\in V$ eine Folge von Knoten von G mit der Eigenschaft, dass $e_i\stackrel{ ext{def}}{=}(v_{i-1},v_i)$ für jedes $i\in\{1,\ldots,n\}$ eine Kante von G ist
- ullet Dann heißt e_1, \dots, e_n eine Kantenfolge von G
- ullet Ist $oldsymbol{v_0} = oldsymbol{v_n}$, so heißt die Kantenfolge $oldsymbol{\mathsf{geschlossen}}$
- ullet Eine Kantenfolge ist ein $\underline{\mathsf{Weg}}$ oder $\underline{\mathsf{Pfad}}$, wenn die Knoten v_0, \dots, v_n paarweise verschieden sind
 - (es darf allerdings $v_0 = v_n$ gelten)
- Einen geschlossenen Weg nennen wir einen Kreis

Beispiel

- (a,b),(b,e),(e,d),(d,b),(b,c) ist eine Kantenfolge von G
- (a,b),(b,e),(e,d),(d,b),(b,c), (c,a) ist eine geschlossene Kantenfolge von G
- $ullet (oldsymbol{a},oldsymbol{b}),(oldsymbol{b},oldsymbol{e}),(oldsymbol{e},oldsymbol{d}),(oldsymbol{d},oldsymbol{c})$ ist ein Weg von $oldsymbol{G}$
- ullet (a,b),(b,e),(e,d),(d,c),(c,a) ist ein Kreis von G

Schwierige Berechnungsprobleme: Hamilton-Kreise

Beispiel

Definition (EULERCYCLE)

Gegeben: Ungerichteter Graph G

Frage: Gibt es eine geschlossene Kantenfolge in G, die *jede Kante* genau einmal besucht?

Fakt

• Ein zusammenhängender Graph G hat genau dann einen Euler-Kreis, wenn jeder Knoten geraden Grad hat

gerade viele Nachbarknoten

→ Das ist in polynomieller Zeit testbar

Beispiel

Definition (HAMILTONCYCLE)

Gegeben: Ungerichteter Graph G

Frage: Gibt es einen geschlossenen Weg in G, der jeden Knoten genau einmal besucht?

- Für HAMILTONCYCLE ist kein Algorithmus mit polynomieller Laufzeit bekannt
- Ein Euler-Kreis ist meistens kein Kreis sondern nur eine geschlossene Kantenfolge, die Bezeichnung Euler-Kreis ist aber allgemein üblich

Schwierige Berechnungsprobleme: Das Cliquen-Problem

- ullet Zwei Knoten $oldsymbol{u},oldsymbol{v}$ eines ungerichteten Graphen $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ heißen $oldsymbol{ t benachbart}$, wenn $(oldsymbol{u},oldsymbol{v})\inoldsymbol{E}$
- ullet Eine $k ext{-Clique}$ ist eine Menge C von k Knoten, die paarweise benachbart sind

- Das Cliquen-Problem hat viele Anwendungen, z.B.
 - im Data Mining
 - in der Bioinformatik

Definition (CLIQUEO)

Gegeben: Graph $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$

Gesucht: Maximale Clique in G, d.h.:

maximale Menge $oldsymbol{C}$ von Knoten, die paarweise benachbart sind

Definition (CLIQUE)

Gegeben: Graph $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$, Zahl $oldsymbol{k}$

Frage: Gibt es in G eine Clique mit k Knoten?

Schwierige Berechnungsprobleme: AL-Erfüllbarkeit

• Aussagenlogische Formeln:

- $-x_1, x_2, x_3, \dots$ seien Variablen
- Jedes x_i ist eine aussagenlogische Formel
- Ist φ eine aussagenlogische Formel, so auch $\neg \varphi$
- Sind φ_1, φ_2 aussagenlogische Formeln, so auch $\varphi_1 \wedge \varphi_2$ und $\varphi_1 \vee \varphi_2$
- ullet Eine Wahrheitsbelegung $lpha:\{x_1,x_2,\ldots\} o\{0,1\}$ ordnet jeder Variablen einen Wert zu
- $\alpha \models \varphi$: Die Formel φ erhält durch die Wahrheitsbelegung α den Wert 1
- Eine Formel φ ist <u>erfüllbar</u>, wenn es ein α gibt mit $\alpha \models \varphi$

Beispiel

 $\begin{array}{cccc} \bullet & (x_{3} \lor x_{1}) \land \\ & (\neg x_{2} \lor ((x_{3} \land \neg x_{1}) \lor (x_{2} \lor \neg x_{1}))) \end{array}$

 Wir beschränken uns auf Formeln in konjunktiver Normalform (KNF):

$$egin{array}{l} (x_3ee x_1)\wedge \ (
eg x_2ee x_3ee x_2)\wedge (
eg x_2ee -x_3ee x_2)\wedge \ (
eg x_2ee x_3)\wedge (
eg x_2ee -x_3) \end{array}$$

- ullet Die x_i und $\neg x_i$ heißen Literale
- Die disjunktiven Teilformeln heißen Klauseln
- Eine KNF-Formel ist in <u>3-KNF</u>, wenn jede Klausel genau drei Literale enthält
 - Das selbe Literal darf mehrfach in einer Klausel vorkommen

Definition (SAT)

Gegeben: Aussagenlogische Formel φ in KNF

Frage: Ist φ erfüllbar?

Definition (3-SAT)

Gegeben: Aussagenlogische Formel φ in 3-KNF

Frage: Ist φ erfüllbar?

Inhalt

18.1 Beispiele schwieriger Berechnungsprobleme

⊳ 18.2 NP

18.3 **NP**-Vollständigkeit

Eigenschaften der betrachteten Probleme (1/2)

- Nur für zwei der in diesem und im letztem Kapitel erwähnten Probleme ist ein Algorithmus mit polynomieller Laufzeit bekannt:
 - EULERCYCLE
 - MINSPANNINGTREEO
- Für die folgenden Probleme ist kein solcher Algorithmus bekannt:
 - TSP
 - HAMILTONCYCLE
 - SAT
 - COL
 - KNAPSACK
 - 3-SAT
 - CLIQUE
- Wir werden jetzt untersuchen, wie "ähnlich" diese Probleme zueinander sind

Eigenschaften der betrachteten Probleme (2/2)

- Bei allen betrachteten Problemen gibt es für jede Eingabe eine Menge von Lösungskandidaten und es geht um die Frage, ob einer dieser Lösungskandidaten eine Lösung ist
- Lösungskandidaten sind für:
 - TSP, HamiltonCycle:

alle Permutationen der Knotenmenge

- SAT, 3-SAT: alle Wahrheitsbelegungen
- Col: alle Färbungen mit $oldsymbol{k}$ Farben
- KNAPSACK: alle Teilmengen der Gegenstandsmenge
- CLIQUE: alle Mengen mit k Knoten
- Lösungen sind für:
 - SAT: Wahrheitsbelegungen, die alle Klauseln wahr machen
 - Col: Färbungen, die benachbarte Knoten verschieden färben
 - CLIQUE: Mengen von $m{k}$ Knoten, die alle paarweise miteinander durch Kanten verbunden sind

Polynomielle Lösungskandidaten: NP (1/2)

- Die betrachteten Entscheidungsprobleme haben folgende Eigenschaften:
 - (1) Sie haben einen Suchraum von Lösungskandidaten
 - (2) Die Lösungskandidaten sind polynomiell groß in der Eingabe
 - (3) Jeder einzelne Lösungskandidat kann in polynomieller Zeit überprüft werden
- Verständnisfrage: Hat PCP auch die Eigenschaften (1)-(3)?
- Wir verwenden die Eigenschaften (1) (3) zur Definition der Komplexitätsklasse NP

Polynomielle Lösungskandidaten: NP (2/2)

- ullet Wir betrachten im Folgenden Turingmaschinen, die Paare $(oldsymbol{w}, oldsymbol{y})$ von Strings über $oldsymbol{\Sigma}$ als Eingabe verarbeiten
 - Zur Erinnerung: formal erhält die TM also eine Eingabe der Form w#y mit $w,y\in\{0,1\}^*$
- ullet Die Rechenzeit von $oldsymbol{M}$ bei Eingabe $(oldsymbol{w}, oldsymbol{y})$ bezeichnen wir mit $oldsymbol{t_M}(oldsymbol{w}, oldsymbol{y})$

Definition (Nichtdet. Akzeptieren/Entscheiden)

- ullet Sei $oldsymbol{\Sigma} = \{ oldsymbol{0}, oldsymbol{1} \}$ und sei $oldsymbol{M}$ eine Turingmaschine
- ullet Wir sagen, dass M einen String $oldsymbol{w} \in \Sigma^*$ nichtdeterministisch akzeptiert, wenn es einen String $oldsymbol{y} \in \Sigma^*$ gibt, so dass M bei Eingabe $(oldsymbol{w}, oldsymbol{y})$ akzeptiert $oldsymbol{w}$ ist die Zusatzeingabe
- M entscheidet eine Sprache $L\subseteq \Sigma^*$ nichtdeterministisch, falls für alle Strings $w\in \Sigma^*$ äquivalent sind:
 - $-w \in L$
 - M akzeptiert $oldsymbol{w}$ nichtdeterministisch

Definition (NTIME(T), NP)

- ullet Sei $\Sigma=\{0,1\}, T:\mathbb{N} o\mathbb{R}$
- ullet NTIME $(oldsymbol{T}) \stackrel{ ext{def}}{=}$ Klasse aller $oldsymbol{L} \subseteq oldsymbol{\Sigma}^*$, für die es eine TM $oldsymbol{M}$ gibt, die $oldsymbol{L}$ nichtdeterministisch entscheidet

$$ullet$$
 $ullet$ $$

Bemerkungen: NP (1/2)

- Die in der Definition von NP verwendete Zusatzeingabe y entspricht gerade den Lösungskandidaten in den betrachteten schwierigen Entscheidungsproblemen
- \rightarrow SAT, 3-SAT \in **NP**
 - Zusatzeingabe: Wahrheitsbelegung der in der gegebenen Formel vorkommenden Variablen
- **→** 3-Col, Col ∈ NP
 - Zusatzeingabe: Knotenfärbung
- **→** HamiltonCycle, TSP ∈ **NP**
 - Zusatzeingabe: Knotenfolge bzw. "Reisefunktion"
- **►** KNAPSACK ∈ **NP**
 - Zusatzeingabe: Menge von Gegenständen
- **→** CLIQUE ∈ **NP**
 - Zusatzeingabe: Menge von Knoten

- ullet Zu beachten: bei der Definition von $\mathbf{NTIME}(oldsymbol{T})$ hängt die Zeitschranke nur von der (Länge der) Eingabe $oldsymbol{w}$, aber nicht von der Zusatzeingabe $oldsymbol{y}$ ab
- Es genügt also, Zusatzeingaben der Länge $\leqslant T(|w|)$ zu betrachten, da die TM mehr Zeichen der Zusatzeingabe gar nicht lesen kann

Bemerkungen: NP (2/2)

- Oft wird zur Definition der Klasse NP das Berechnungsmodell nichtdeterministischer Turingmaschinen verwendet
- Nichtdeterministische TMs k\u00f6nnen, wie NFAs, in derselben Situation (Zustand, gelesenes Zeichen) mehrere Transitionen haben
- Die nichtdeterministische Vorgehensweise solcher NTMs lässt sich intuitiv als "Raten" auffassen:
 - Wenn $oldsymbol{w} \in oldsymbol{L}$, dann gibt es eine Berechnung der NTM, die "richtig rät" und akzeptiert
 - Wenn $oldsymbol{w}
 otin oldsymbol{L}$, dann lehnt die NTM ab, unabhängig davon, was sie rät
- Die Zusatzeingabe in unserer Definition entspricht den "geratenen Bits" in der NTM-Definition
- Die hier gegebene Definition von NP betont stärker den Aspekt des Überprüfens von Lösungskandidaten polynomieller Größe und vermeidet "ratende Algorithmen"

Bemerkungen: P vs. NP

• Lösungen finden:

	6		2			7		
					4			9
2		3				5		
	2			3				8
			4		7			
1				8			6	
		5				8		4
9			1					
		4			2		9	

- Damit ein Problem in P ist, muss es einen Algorithmus geben, der effizient eine Lösung findet
- Zum Beispiel ist HORNSAT ∈ P: der Markierungsalgorithmus findet effizient eine erfüllende Belegung, wenn es eine gibt

• Lösungskandidaten überprüfen:

4	6	8	2	9	5	7	3	1
7	5	1	3	6	4	2	8	9
2	9	3	7	1	8	5	4	6
5	2	9	6	3	1	4	7	8
8	3	6	4	2	7	9	1	5
1	4	7	5	8	9	3	6	2
3	1	5	9	7	6	8	2	4
9	8	2	1	4	3	6	5	7
6	7	4	8	5	2	1	9	3

- Damit ein Problem in NP ist, genügt ein Algorithmus, der effizient überprüft, ob ein Lösungskandidat eine Lösung ist
- SAT ∈ NP: es kann effizient getestet werden, ob eine gegebene Belegung die gegebene Formel wahr macht

P vs NP vs. EXPTIME

Proposition 18.1

 $P \subseteq NP \subseteq EXPTIME$

Beweisskizze

 P ⊆ NP: die Zusatzeingabe kann einfach ignoriert werden...

• NP ⊆ EXPTIME:

- Sei M eine TM, die L nichtdeterministisch mit polynomieller Zeitschranke p entscheidet
- EXPTIME-Algorithmus:
 - st Simuliere $m{M}$ für alle möglichen Zusatzeingaben $m{y}$ der Länge $\leqslant m{p}(|m{w}|)$
- lacktriangledown maximal $\mathbf{2}^{oldsymbol{p}(|oldsymbol{w}|)}$ Teilberechnungen zu je $\leqslant oldsymbol{p}(|oldsymbol{w}|)$ Schritten

 Ob auch die Umkehrung (NP ⊆ P) der ersten Aussage gilt, ist das größte offene Problem der Theoretischen Informatik

Inhalt

18.1 Beispiele schwieriger Berechnungsprobleme

18.2 **NP**

▶ 18.3 NP-Vollständigkeit

Ähnlichkeit schwieriger Optimierungsprobleme

- Wir werden sehen: die genannten Probleme sind sich noch viel ähnlicher:
 - entweder lassen sie sich alle in polynomieller Zeit lösen oder keines
- Wir betrachten diesen Zusammenhang zunächst anhand von SAT und der folgenden Einschränkung von Col:

Definition (3-CoL)

Gegeben: Ungerichteter Graph G

Frage: Lassen sich die Knoten von $m{G}$ mit $m{3}$

Farben zulässig färben?

Proposition 18.2

- Die folgenden Aussagen sind äquivalent:
 - (a) SAT lässt sich in polynomieller Zeit lösen
 - (b) 3-Col lässt sich in polynomieller Zeit lösen

Beweisskizze

- Wir zeigen hier nur: "(a) ⇒ (b)"
 - "(b) ⇒ (a)" zeigen wir dann in Kapitel19
- ullet Wir nehmen an, A ist ein Algorithmus, der in Zeit $|arphi|^k$ entscheidet, ob eine gegebene KNF-Formel arphi erfüllbar ist
- ullet Wir beschreiben ein Verfahren, das unter Verwendung von A in polynomieller Zeit entscheidet, ob ein gegebener Graph G 3-färbbar ist

Beweis von Proposition 18.2: "(a) \Rightarrow (b)" (1/4)

Illustration des Beweises

ullet Sei G der folgende Graph:

$$\begin{array}{l} \bullet \;\; \varphi_G = \\ (x_{a1} \lor x_{a2} \lor x_{a3}) \land \\ (x_{b1} \lor x_{b2} \lor x_{b3}) \land \\ (x_{d1} \lor x_{d2} \lor x_{d3}) \land \\ (x_{e1} \lor x_{e2} \lor x_{e3}) \land \\ (\neg x_{a1} \lor \neg x_{b1}) \land (\neg x_{a2} \lor \neg x_{b2}) \land (\neg x_{a3} \lor \neg x_{b3}) \land \\ (\neg x_{a1} \lor \neg x_{e1}) \land (\neg x_{a2} \lor \neg x_{e2}) \land (\neg x_{a3} \lor \neg x_{e3}) \land \\ (\neg x_{b1} \lor \neg x_{d1}) \land (\neg x_{b2} \lor \neg x_{d2}) \land (\neg x_{b3} \lor \neg x_{d3}) \land \\ (\neg x_{b1} \lor \neg x_{e1}) \land (\neg x_{b2} \lor \neg x_{e2}) \land (\neg x_{b3} \lor \neg x_{e3}) \land \\ (\neg x_{d1} \lor \neg x_{e1}) \land (\neg x_{d2} \lor \neg x_{e2}) \land (\neg x_{d3} \lor \neg x_{e3}) \land \\ \end{array}$$

- ullet Zulässige Färbung: $oldsymbol{c}(oldsymbol{a}) = oldsymbol{c}(oldsymbol{d}) = oldsymbol{1}, oldsymbol{c}(oldsymbol{b}) = oldsymbol{2}, oldsymbol{c}(oldsymbol{e}) = oldsymbol{3}$
- Korrespondierende Wahrheitsbelegung:
 - $lpha(x_{m{a1}})=lpha(x_{m{b2}})=lpha(x_{m{d1}})=lpha(x_{m{e3}})=1$
 - lpha(x)=0 für alle übrigen Variablen x

Beweis von Proposition 18.2: "(a) \Rightarrow (b)" (2/4)

Beweisskizze (Forts.)

- ullet Sei also $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$ eine Eingabe für 3-CoL
- ullet Wir konstruieren eine Formel $arphi_G$, so dass gilt: $arphi_G$ erfüllbar $\Longleftrightarrow G$ 3-färbbar (*)
- ullet $oldsymbol{arphi_G}$ hat für jeden Knoten $oldsymbol{v} \in oldsymbol{V}$ und jedes $oldsymbol{j} \in \{1,2,3\}$ eine Variable $oldsymbol{x_{vj}}$
- Intention:
 - Die Farben heißen 1,2,3
 - $lpha(x_{vj})=1 \Longleftrightarrow lpha$ repräsentiert eine Färbung, in der Knoten v die Farbe j hat

Beweisskizze (Forts.)

• Wir verwenden folgende Teilformeln:

–
$$\psi_{oldsymbol{v}}\stackrel{ ext{def}}{=} (x_{oldsymbol{v}oldsymbol{1}} \lor x_{oldsymbol{v}oldsymbol{2}} \lor x_{oldsymbol{v}oldsymbol{3}})$$

lacksquare $oldsymbol{v}$ hat (mindestens) eine Farbe

$$egin{aligned} egin{aligned} oldsymbol{ au} oldsymbol{u} oldsymbol{v} & oldsymbol{ au} oldsymbol{u} oldsymbol{v} & oldsymbol{ au} oldsymbol{u} oldsymbol{ au} oldsymbol{ au} oldsymbol{u} oldsymbol{u}$$

lacksquare und $oldsymbol{v}$ haben verschiedene Farben

Sei schließlich

$$arphi_G \stackrel{ ext{def}}{=} igwedge_{oldsymbol{v} \in oldsymbol{V}} \psi_{oldsymbol{v}} \wedge igwedge_{(oldsymbol{u}, oldsymbol{v}) \in oldsymbol{E}} \chi_{oldsymbol{u} oldsymbol{v}}$$

Für jede ungerichtete Kante (u,v) verwenden wir nur die Formel χ_{uv} oder die Formel χ_{vu} , aber nicht beide

Beweis von Proposition 18.2: "(a) \Rightarrow (b)" (3/4)

Beweisskizze (Forts.)

- ullet Zu zeigen: $arphi_G$ erfüllbar $\Longleftrightarrow G$ 3-färbbar
- "=":
 - Sei $c:V
 ightarrow \{1,2,3\}$ eine zulässige Färbung und

$$oldsymbol{lpha}(oldsymbol{x_{vi}}) \stackrel{ ext{ iny def}}{=} egin{cases} oldsymbol{1} & ext{falls } oldsymbol{c}(oldsymbol{v}) = oldsymbol{i} \ oldsymbol{0} & ext{sonst} \end{cases}$$

- Behauptung: $lpha \models arphi_G$
- Denn:

$$st lpha \models \psi_{m{v}}$$
 für jeden Knoten $m{v}$ und $st lpha \models m{\chi_{m{u}m{v}}}$ für jedes $(m{u},m{v}) \in m{E}$,

da
$$oldsymbol{c}(oldsymbol{u}) \, + \, oldsymbol{c}(oldsymbol{v})$$

Beweisskizze (Forts.)

- - Sei lpha erfüllende Belegung von $arphi_G$
 - lacktriangledown Für jedes v gilt $lpha \models \psi_v$
 - Sei $oldsymbol{c}(oldsymbol{v})\stackrel{ ext{def}}{=}$ kleinstes $oldsymbol{j}$ mit

$$\alpha(x_{vj}) = 1$$

- Behauptung: $oldsymbol{c}$ ist zulässige Färbung
- Denn: wenn $(oldsymbol{u},oldsymbol{v})\in oldsymbol{E}$,

$$\mathsf{dann}\;\alpha \models \chi_{uv}$$

– Also muss $oldsymbol{c}(oldsymbol{u}) \,
eq \, oldsymbol{c}(oldsymbol{v})$ sein

Beweis von Proposition 18.2: "(a) \Rightarrow (b)" (4/4)

Beweisskizze (Forts.)

- ullet Zu beachten: Zu einem gegebenen $G=(oldsymbol{V},oldsymbol{E})$ hat $oldsymbol{arphi_G}$ genau $|oldsymbol{V}|+3|oldsymbol{E}|$ Klauseln
- ullet Ist n die Größe der Kodierung von G (beispielsweise durch Adjazenzlisten), so ist also $|arphi_G|\leqslant cn$, für eine Konstante c
- \bullet Offensichtlich kann φ_G in (polynomieller) Zeit n^ℓ , für ein geeignetes ℓ , berechnet werden
- Also kann 3-Col wie folgt gelöst werden:
 - Bei Eingabe G berechne $arphi_G$
 - Teste mit Hilfe von Algorithmus A, ob $arphi_G$ erfüllbar ist
- ullet Die Gesamtlaufzeit ist $\leqslant n^{m{\ell}} + (m{c}m{n})^{m{k}} = m{\mathcal{O}}(m{n^{\max(m{\ell},m{k})}})$
- ➡ Behauptung

 Um Proposition 18.2 zu beweisen, hätte es genügt zu zeigen, dass gilt:

 $arphi_G$ erfüllbar \Longleftrightarrow G 3-färbbar

- Der Beweis zeigt mehr als das:
 - er konstruiert aus jeder erfüllenden Belegung von φ_G eine korrekte 3-Färbung von G und umgekehrt
- Das ist für diese Art von Beweisen typisch

Polynomielle Reduktionen

- Schauen wir nochmal auf den Beweis von Proposition 18.2 "(a) ⇒ (b)"
- ullet Sei f die Funktion $G \mapsto arphi_G$
- Dann gilt:

$$G$$
 \in 3-Col $\Longleftrightarrow f(G)$ \in SAT

- - ullet Und: f ist in polynomieller Zeit berechenbar

Definition (Polynomielle Reduktion, \leq_p)

- ullet Eine totale Funktion f heißt **polynomielle** Reduktion von L auf L', falls
 - (1) f eine Reduktion ist, also für alle $w \in \Sigma^*$ gilt:

$$oldsymbol{w} \in oldsymbol{L} \iff oldsymbol{f}(oldsymbol{w}) \in oldsymbol{L}'$$
, und

- (2) f in polynomieller Zeit berechenbar ist
- ullet heißt <u>polynomiell reduzierbar auf</u> L', falls es eine polynomielle Reduktion von L auf L' gibt
- ullet Schreibweise: $L\leqslant_{m p} L'$
- Also: 3-CoL \leqslant_p SAT

Abschluss unter Reduktionen

Proposition 18.3

- ullet Seien $L, L' \subseteq \Sigma^*$ und gelte: $L \leqslant_{oldsymbol{p}} L'$
- Dann gelten:
 - (a) wenn $L' \in \mathsf{P} \mathsf{dann} \ L \in \mathsf{P}$
 - (b) wenn $L' \in \mathsf{NP} \operatorname{\mathsf{dann}} L \in \mathsf{NP}$

Beweisskizze für (a)

- ullet Sei $oldsymbol{M}'$ TM, die $oldsymbol{L}'$ mit Zeitschranke $oldsymbol{n^k}$ entscheidet
- ullet Sei M_f eine TM, die mit Zeitschranke n^ℓ eine Reduktion f berechnet, so dass gilt:

$$oldsymbol{w} \in oldsymbol{L} \Longleftrightarrow oldsymbol{f}(oldsymbol{w}) \in oldsymbol{L}'$$

- ullet Wir konstruieren eine TM M, die L entscheidet, indem sie bei Eingabe w wie folgt vorgeht:
 - Berechne $oldsymbol{f}(oldsymbol{w})$

 $^{\scriptscriptstyle{f f ar B}}$ durch TM M_f

– Teste $oldsymbol{f}(oldsymbol{w}) \in oldsymbol{L}'$

- $^{lacktrel{ }}$ durch TM M'
- Falls ja, akzeptiere, falls nein, lehne ab
- ullet Laufzeit: $\leqslant |oldsymbol{w}|^{oldsymbol{\ell}} + |oldsymbol{f}(oldsymbol{w})|^{oldsymbol{k}} \leqslant |oldsymbol{w}|^{oldsymbol{\ell}} + |oldsymbol{w}|^{oldsymbol{k}oldsymbol{\ell}}$
- ightharpoonup \Rightarrow L \in P

Beweisskizze für (b)

- Der Beweis für (b) ist eine Erweiterung des Beweises von (a)
- ullet Wir nehmen an, dass M' die Sprache L' nichtdeterministisch entscheidet
- ullet Dann hat M ebenfalls eine Zusatzeingabe y und testet in der zweiten Phase, ob $(f(w),y)\in L'$ ist
- Der Rest ist analog

Folgerung 18.4

- ullet Seien $L, L' \subseteq \Sigma^*$ und gelte $L \leqslant_p L'$
- ightharpoonup Wenn $L \notin \mathsf{P}$ dann $L' \notin \mathsf{P}$

NP-schwierige Probleme

Definition (**NP**-schwierig)

- ullet Eine Sprache L heißt $rac{ extsf{NP-}}{ extsf{schwierig}}$, falls für alle $L' \in extsf{NP}$ gilt: $L' \leqslant_{m p} L$
- Gibt es überhaupt NPschwierige Probleme?

Proposition 18.5

• TM-HALT ist NP-schwierig

Beweisskizze

- ullet Sei $L\in \mathsf{NP}$
- $ightharpoonup L \in \mathsf{EXPTIME}$
 - ullet Sei M TM, die L in exponentieller Zeit entscheidet
 - ullet Sei M' eine TM, die M bei Eingabe w simuliert und
 - akzeptiert, wenn $oldsymbol{M}(oldsymbol{w})$ akzeptiert, aber
 - endlos läuft, wenn $oldsymbol{M}(oldsymbol{w})$ ablehnt
- ullet Sei $oldsymbol{f}(oldsymbol{w})\stackrel{ ext{ iny def}}{=} (oldsymbol{M}',oldsymbol{w})$
- $lacktriangledown w \in L \iff (M',w) \in \mathsf{TM} ext{-Halt}$
 - ullet Klar: f ist in polynomieller Zeit berechenbar

ightharpoonset M' ist fest!

- lacktriangleq f ist eine polynomielle Reduktion von L auf TM-HALT
- Behauptung

NP-vollständige Probleme

- Das zeigt zwar, dass es NP-schwierige Probleme gibt, aber das Halteproblem ist für unsere jetzigen Zwecke nicht interessant...
- Interessanter wären NP-schwierige Probleme innerhalb von NP

Definition (**NP**-vollständig)

- ullet Eine Sprache L heißt $\dfrac{ extstyle extstyle$
- Die NP-vollständigen Probleme sind also gewissermaßen die schwierigsten Probleme in NP

NP-Vollständigkeit: Bedeutung

Satz 18.6

- ullet Sei L eine **NP**-vollständige Sprache
 - (a) Falls $L \in \mathsf{P}$, so ist $\mathsf{P} = \mathsf{NP}$
 - insbesondere sind dann auch alle anderen NP-vollständigen Sprachen in P
 - (b) Falls $L \notin \mathbf{P}$, so ist $\mathbf{P} + \mathbf{NP}$
 - und alle anderen NP-vollständigen
 Sprachen sind auch nicht in P

Beweisskizze

- (a) ullet Sei $L'\in \mathsf{NP}$
 - ullet Da L NP-vollständig ist, gilt $L'\leqslant_{oldsymbol{v}} L$
 - $ightharpoonup L' \in \mathbf{P}$ (gemäß Proposition 18.3)
- (b) $ullet L
 otin { t P} \Rightarrow { t P}
 otin { t NP} ist trivial$
 - Dass dann alle anderen NP-vollständigen
 Sprachen auch nicht in P sind, folgt aus (a)

- Das "Schicksal" der "P vs. NP"-Frage hängt also an jedem einzelnen NPvollständigen Problem
- Es stellt sich aber die Frage:
 - Gibt es überhaupt NP-vollständigeProbleme?Nächstes Kapitel

Zusammenfassung

- Wir haben einige Berechnungsprobleme kennen gelernt, für die keine Algorithmen mit polynomieller Laufzeit bekannt sind
- NP ist die Klasse der Probleme, für die sich in polynomieller Zeit testen lässt, ob ein gegebener Lösungskandidat eine Lösung ist
- Die NP-vollständigen Probleme sind die schwierigsten Probleme in NP:
 - Jedes NP-Problem lässt sich polynomiell auf jedes NP-vollständige Problem reduzieren
- Ob P = NP ist, ist die größte offene Frage der Theoretischen Informatik