

along the axis of current carrying coil.

Schematic far magnetometer Compass box.

- 5) open the key F-F and close key R-R to neverse direction of current. Note down deflection O_R , and O_{R2} of two ends of magnetometer needle. Note down the deflections O_R and O_{R2} for x=-1,-2,-3,---17 cm.
- 6 After reaching left most end again open R-R key and close F-F key to again change the dissection of Curvient. Note down the deflections of, and $0F_2$ for x = -17, -16, -15, -16, -15, -16,

Observations:

Radius of Coil, 91 = 9.5 cmLeast Count of ammeter = 0.5 m A

Current passing through Coil, i = 250.0 mANumber of turns in the Coil, n = 50

 $91^2 = 90.25 \text{ cm}^2$

Table: Deflection of the needle at various distances from the coil.

										A				
Ric	aht I	hand	sic	le					Let	ft h	and			4
Diptance from the centre	flow	int sing one	shows shows	ant ing in ouse	Mear	Tan(0)	Distance from the centre	flow	unt ling in disoction	flou	rant oing every ection		n Tan($\frac{f(\alpha)}{(1+x^2)^3}$
X(cm)	OF,	OF2	OR,	OR	(in degree		X(cm)	OFI	0F2	ORI	OR2	(indeg		M
0	67	68	68	67	67.50		-	-	-	-	-	-		1.000
1	67	66	65	65	65,75	2.220	-1	66	66	66	67	66.25	2,27	3 0.984
2	64	65	65	65	64,75	2.120	-2	65	65	64	64	64.50	2.096	0.937
3	62	63	64	64	63.25	1.984	-3	63	63	62	64	63,00	1.963	0.867
4	60	60	61	62	60.75	1.786	-4	61	60	62	62	61.25	1.823	0.783
5	56	57	59	60	58.00	1.600	-5	58	57	58	59	58.00	1.600	0.693
6	54	53	56	56	54,75	1.415	-6	54	55	54	56	54.75	1.415	0.604
7	50	49	52	52	50.75	1.224	-7	49	51	51	50	50.25	1.202	0.522
8	46	45	48	48	46.75	1.063	-8	47	48	46	47	47.00	1.072	0,447
9	42	41	44	45	43,00	0.932	-9	43	42	43	42	42.50	0.916	0.382
10	36	37	38	39	37.50	0.767	-10	37	38	37	38	37.50	0.767	0.327
11	34	32	34	35	33.75	0.668	-11	34	33	35	33	33,75	0.668	0.279
12	29	28	30	30	29.25	0.560	-12	29	28	29	29	28.75	0.549	0.239
13	26	26	26	26	26.00	0.488	-13	26	27	25			-	0.205
14	23	22	22	23	22.50	10.414	-14	23	23	22				0.177
15	20	19	19	20	19.50	0.354	-15	20	20	19	20	19.75	0.359	0.153
16	17	16	17	18	17.00	0.306	-16	17	17	18	17	17.25	9.310	0.133
17	15	14	14	15	14.50	0.259	-17	15	15	15	16	15.25	0.273	0.116

[where o is in degree]

Dans the		1	
			-1

Calculations !-

Magnetic field at the centere of coil B(0) :-

 $B(0) = 4x3.14 \times 10^{-7} \times 50 \times 0.25$ $291 \qquad 2 \times 9.5 \times 10^{-2}$

B(0)= 8.263 X10-5 Tesla

: From expression, BGV = B(O) F(X) = BH Tano, we have

f(x) = BH Tand B(0)

Thus the graph b/ω^h f(x) and Tan(0) is a straight line with slope $\frac{8H}{8(0)}$. There the horizontal

Component of Earth's Magnetic field is given by

By = B(0) x slope of straight line ---- (i)

foor Right hand side !-

of the stonaight line obtained and taking mean of

$$m_1 = 0.84 - 0.42 = 0.42 = 0.42$$
 $2.00 - 1.00 = 1.00$

$$m_2 = 0.92 - 0.50 = 0.42$$

$$m_3 = 0.63 - 0.21 = 0.42$$
 $1.50 - 0.50$

hence
$$m = \frac{m_1 + m_2 + m_3}{3} = 0.42$$

$$B_H = B.(0) \times \text{slope}$$
 of straight line
 $B_H = 8.263 \times 10^{-5} \times 0.42 = 3.47 \times 10^{-5}$ Tepla.

for left hard side !-

$$m_1 = \frac{0.90 - 0.45}{2.00 - 1.00} = 0.45$$

$$m_2 = 0.98 - 0.53 = 0.45$$
 $\frac{1.20 - 1.20}{}$

$$m_3 = \frac{0.67 - 0.22}{1.50 - 0.50} = 0.45$$

hence slope of straight line =
$$m = \frac{m_1 + m_2 + m_3}{3} = 0.45$$

putting in equ'n (i)

Taking mean of BH calculated from both sides - $B_{H} = B_{H_{R}} + B_{H_{L}} = (3.47 + 3.71) \times 10^{-5}$ Tepla

BH= 3.59 X 10-5 Texla

Result :- The havingontal Component of Earth's magnetic field is 3.59 × 10-5 Tesla.

Discussion: The Theoretical value of BH = 3.5 X10-5 T hence, own theoretical and Calculated values are approximately some.

Precautions: (i) The coil should be adjusted carefully

in the magnetic Meridian.

(ii) All the magnetic materials and Current Carrying Conductors should be at a Considerable distances

from apparatus.

(iii) The Current passed in the Coil should be of such a value as to produce a deflection of nearly 60 - 60.

(iv) Parallax should be removed while reading the position of pointer.

Other Remark!— The Circular Coil should be set in the Magnetic medician position that makes the magnetic field of Coil prependicular to the horizontal Component of earth's magnetic field so that Tangent law Can be applicable.