×

Question Answering on SQuAD 2.0

Introduction

In the dynamic realm of Natural Language Processing (NLP), the advent of question-answering (QA) systems marks a significant stride in our ability to interact with and process digital information. This project is dedicated to developing a reading comprehension-based QA system inspired by the comprehensive insights in Speech and Language Processing by Daniel Jurafsky & James H. Martin (2023). We aim to create a system that can interpret and respond to questions posed in natural language, drawing answers from provided text passages.

NLP Task - Question Answering

In the Natural Language Processing (NLP) field, extractive Question Answering (QA) is a pivotal task involving locating the answer to a question within a specified text passage. This task is inherently challenging, as it requires the system to comprehend the posed question and accurately extract the specific text portion that contains the answer. As detailed in Hugging Face's documentation and task library (n.d.), extractive QA demands the capability to sift through extensive text and pinpoint information that precisely responds to the query.

Figure 01

Jurafsky and Martin (2023), in their seminal work, Speech and Language Processing, elucidate the complexities of extractive QA, highlighting the necessity for advanced NLP techniques and models. These models are crucial for understanding the context and semantics embedded in both the question and the passage, thus enabling the identification of the exact text span that answers the question. Extractive QA is particularly vital in scenarios necessitating factual answers directly sourced from the provided text, such as in academic research or specific information retrieval tasks. In our project, we embrace the challenges of extractive QA by training our model on the SQuAD 2.0 dataset. This dataset, encompassing diverse questions and passages, provides a comprehensive framework for the system to learn from varying contexts and question types. The model is meticulously trained to parse the subtleties of language in questions and passages, enhancing its ability to discern and extract the relevant answers accurately. This endeavor underscores the significance of sophisticated text processing and comprehension in NLP, laying the groundwork for more intelligent and adept information retrieval systems.

Introduction

Exploratory Data Analysis

Model

Results

Exploratory Data Analysis

Model

Introduction

Results

Demo

Deploy :

The below figure is the comparison of the SQuAD 1.1 and SQuAD 2.0 representing the train, development and test values of the total examples, negative examples, total articles and articles with negatives

	SQuAD 1.1	SQuAD 2.0
Train		
Total examples	87,599	130,319
Negative examples	0	43,498
Total articles	442	442
Articles with negatives	0	285
Development		
Total examples	10,570	11,873
Negative examples	0	5,945
Total articles	48	35
Articles with negatives	0	35
Test		
Total examples	9,533	8,862
Negative examples	0	4,332
Total articles	46	28
Articles with negatives	0	28

Introduction

Exploratory Data Analysis

Model

Demo

Question Answering on SQuAD 2.0

Model Description

ELECTRA

- Two-Component Structure
- Generator: Its role is to replace some tokens in the input data with a plausible alternatives.
- Discriminator: Its role is to determine whether the replaced tokens are real or fake.
- Joint Training: Both the generator and the discriminator are trained simultaneously. (It contrasts with GANs.)
- Final Model Utilization: After training, only the discriminator is used for downstream tasks. (It contrasts with the traditional approach.)
- Efficiency and Scaling: ELECTRA shows that it's more efficient than models like BERT in terms of computational resources needed for training.

Deploy :

Introduction

Exploratory Data Analysis

Model

Reculte

Demo

- Transformer, an attention mechanism :
- Encoder: Its target is to process the input text and understand the context of each word or token within it.
- ATTENTION Mechanism: It gives the model ability to weigh the importance of different words in the sentence relative to each other.
- Embedding Layers: Find the Embedding Representation of Each words (Word Embedding, Positional Embedding, Segment Embedding)
- Pretraining: Masked Language Models/ Next Sentence Prediction
- Fine-Tuning on QA: Start Vector/ End Vector
- Why using LORA? Base BERT model: 110 millions parameters
- A method to learn a lower-dimensional, task-specific representation of the layer's weights.

Exploratory Data Analysis

Model

Introduction

Reculte

Demo

- Pretraining: Masked Language Models/ Next Sentence Prediction
- Fine-Tuning on QA: Start Vector/ End Vector
- Why using LORA? Base BERT model: 110 millions parameters
- A method to learn a lower-dimensional, task-specific representation of the layer's weights.

Figure 2: BERT Architecture (Source: Google Al Language)

×		Deploy :
	Training Setups	
Introduction Exploratory Data Analysis	- Dataset: Utilized the SQuAD 2.0 dataset with 130,319 training, 11,873 development examples.	
Model	- Preprocessing: Tokenization, sliding windows, padding, and answer localization.	
Results Demo	- Evaluation Metrics: Exact Match (EM) and F1 score.	
Jenio .	ELECTRA Model Fine-Tuning for SQuAD 2.0	
	Hyperparameters:	
	- Maximum Sequence Length: 384	
	- Stride: 128	
	- Number of Predictions to Generate: 20	
	- Maximum Answer Length: 30	
	Training Parameters:	
	- Learning Rate: 5e-5	
	- Batch Size: 32	
	- Number of Epochs: 3 (Training duration: 1.5 hours)	
	The model is fine-tuned using HuggingFace's implementation with an AdamW optimizer.	
	BERT Model Fine-Tuning for SQuAD 2.0	
	Hyperparameters:	
	- Model: bert-base-uncased with optional LoRA configuration.	
	- Maximum Sequence Length: 512	
	Learning Pater Fo. F	

Made with Streamlit

