東大数学理科後期 1992 年度

1 問題1

定数 a にたいして、曲線 $y = \sqrt{x^2 - 1} + \frac{a}{x}$ の $x \ge 1$ の部分を C(a) とおく.

- 1. C(a) が直線 y = x の下部 y < x に含まれるような実数 a の最大値 a_0 を求めよ.
- 2. $0 < \theta < \frac{\pi}{2}$ のとき, $C(a_0)$ と 3 直線 y=x,x=1, $x=\frac{1}{\cos\theta}$ によって囲まれる図形を x 軸のまわりに回転させてできる立体 V の体積 $V(\theta)$ をもとめよ.
- 3. $\lim_{\theta \to \frac{\pi}{2} 0} V(\theta)$ をもとめよ.

2 問題 2

- 1. 空間内の直線 L を共通の境界線とし、角 θ で交わる 2 つの半平面 H_1 、 H_2 がある。 H_1 上に点 A、L 上に点 B、 H_2 上に点 C がそれぞれ固定されている。ただし、A、C は L 上にはないものとする。半平面 H_1 を、L を軸として、 $0 \le \theta \le \pi$ の範囲で回転させる。このとき、 θ が増加すると $\angle ABC$ も増加することを証明せよ。
- 2. 空間内の相異なる 4 点 A, B, C, D について, 不等式

$$\angle ABC + \angle BCD + \angle CDA + \angle DAB < 2\pi$$
 (1)

が成り立つことを証明せよ. ただし, 角の単位はラジアンを用いる.

3 問題3

多項式の列 $P_0(x)=0$, $P_1(x)=1$, $P_2(x)=1+x$, …, $P_n(x)=\sum_{k=0}^{n-1}x^k$, … をかんがえる.

- 1. 正の整数 n, m に対して, $P_n(x)$ を $P_m(x)$ で割ったあまりは $P_0(x)$, $P_1(x)$, …, $P_{m-1}(x)$ のいずれかであることを証明せよ.
- 2. 等式 $P_1(x)P_m(x^2)P_n(x^4)=P_{100}(x)$ が成立するような正の整数の組 (l,m,n) をすべて求めよ.