# Data 102 Fall 2022 Lecture 1

Data, Inference, and Decisions:

what does that mean?

### Your Instructors



Jacob Steinhardt



Ramesh Sridharan

## This Course Has Two Big Ideas:

 Making Decisions Under Uncertainty

Modeling in the Real World:
 Assumptions & Robustness

## Big Ideas

 Making <u>Decisions</u> Under <u>Uncertainty</u>

Modeling in the Real World:
 Assumptions & Robustness

## Course Topics

- Repeated binary decision-making
- Causal Inference
- Bayesian & frequentist modeling
- Prediction: regression & nonparametrics
- Quantifying uncertainty (intervals and more)
- Interpretability
- Concentration inequalities
- Sequential decisions w/feedback
- Matching Markets
- Robustness
- Privacy

## Logistics

Everything you'll need to know will be on the course website or Ed

## data102.org/fa22

## Problem setup: what are we trying to do?

- 1. We observe data: x, y
- 2. We want to understand hidden (unknown) state of the world:  $\theta$

| Data: x                 | Data: y                        | Unknown: $	heta$                                                       |  |
|-------------------------|--------------------------------|------------------------------------------------------------------------|--|
| -                       | Heights in a sample            | Average population height                                              |  |
| -                       | Video from a car camera/sensor | What objects/people are near the car?                                  |  |
| Patient medical records | Patient health outcomes        | Prediction formula for health outcomes                                 |  |
| Phone usage (survey)    | Happiness (survey)             | How much does phone usage <i>cause</i> happiness to increase/decrease? |  |

## Assumptions: Bayesian/Frequentist and (Non)parametric

#### Bayesian vs Frequentist

- rightarrow Frequentist: data (y) are random, unknowns (θ) are **fixed**
- Bayesian: data (y) are random\*, unknowns (θ) are random
- Sounds simple, but has huge consequences!

#### Parametric vs Nonparametric

- Parametric
  - $\blacksquare$  Make assumptions about relationship between unknowns (θ) and data (y)
  - Use assumptions to find  $\theta$  from y
- Nonparametric:
  - Don't bother with assumptions
  - Find any good function f so that  $\theta = f(y)$
  - (there's another definition we'll talk about later in the semester too)

## Binary Decision Making

- The simplest kind of decision: yes or no (0 or 1)
- Setup
  - Reality is 0 or 1
  - We observe noisy data, and use that to make a <u>decision</u> (our best guess for reality)
  - Our <u>decision</u> is 0 or 1

#### Examples

- COVID testing
- Fraud detection
- Predicting recidivism (will someone commit another crime?)
- Detecting underground oil wells
- Movie/TV recommendations

## Binary Decision Making

#### Examples

- COVID testing
- Fraud detection
- Predicting recidivism
- Detecting an underground oil well
- Movie/TV recommendations



## Multiple Decisions





## Multiple Decisions

We usually don't know "Reality"

In real-world scenarios, we also need to make more than one decision

Next: strategies and theory around how to make those decisions intelligently

## "Row-wise" rates: what if we knew reality?

| • | TNR: specificity        | $\frac{n_{00}}{n_{00} + n_{01}}$ |         |   | Deci<br>0 | sion<br>1 |
|---|-------------------------|----------------------------------|---------|---|-----------|-----------|
| • | FPR:                    | $\frac{n_{01}}{n_{00} + n_{01}}$ | Reality | 0 | $n_{00}$  | $n_{01}$  |
| • | TPR: sensitivity recall | $\frac{n_{11}}{n_{10} + n_{11}}$ | Rea     | 1 | $n_{10}$  | $n_{11}$  |
| • | FNR:                    | $\frac{n_{10}}{n_{10} + n_{11}}$ |         |   |           |           |

Wikipedia: Sensitivity and Specificity

A column-wise rate: what if we made a "1" decision?

