Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite, It complements the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP.

TCP provides error recovery (reliability) and flow control using windowing between applications running on hosts communicating via an IP network.

TCP is connection-oriented, and a connection between client and server is established before data can be sent.

Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP.

TCP Segment

➤ A TCP Segment is composed of a header and payload. The header consists of fixed and optional fields. The payload appears immediately after the header. A TCP Segment is often carried as the payload inside an IP packet.

Source Port (16 bits)

Sequence Number (32 bits)

Acknowledgment Number (32 bits)

HL (4 bits) Reserved (6 bits) Control Bits (6 bits)

Checksum (16 bits)

Urgent pointer (16 bits)

Options + Padding

DATA (Payload : HTTP, FTP,....)

Source

TCP Segment

Source Port (16 bits)	The TCP Source Port is the port number used by the computer sending the TCP segment
Destination Port (16 bits)	The TCP Destination Port is the port number used by the computer receiving the TCP segment
Sequence Number (32 bits)	The sequence number of the first data Byte in this segment.
Acknowledgment Number (32 bits)	The acknowledgement number is the sequence number of the next byte the receiver expects to receive.
Header Length (4 bits)	It indicates the number of bytes in the TCP header and allows the receiver to jump directly to the data.
Reserved (6 bits)	Reserved (6 bits)
Control Bits (6 bits)	URG: Urgent Pointer field, ACK: Acknowledgment field, PSH: Push Function, RST: Reset the connection, SYN: Synchronize sequence numbers, FIN: No more data from sender
Window (16 bits)	It specifies the number of Bytes the receiver is willing to receive
Checksum (16 bits)	It is used for integrity checks TCP segment
Urgent pointer (16 bits)	It indicates the end of urgent data.

Maximum Segment Size (MSS)

The maximum segment size (MSS) is a parameter of the options field of the TCP header that specifies the largest amount of data, specified in bytes, that a computer or communications device can receive in a single TCP segment.

Port Numbers and Multiplexing

Ranges of Port Numbers (Transport Layer)

> The Internet Assigned Numbers Authority (IANA) subdivides the port number ranges into three main ranges.

 FTP data = 20
 FTP Control = 21
 SSH = 22
 Telnet = 23
 DNS = 53
 HTTP = 80
 POP3 = 110
 SSL = 443

 0
 Well Known Ports
 1023

They are used by system processes that provide widely used types of network services

Cisco HSRP = 1985 Cisco SCCP = 2000

1024 Registered Ports 49151

They are assigned by IANA for specific service upon application by a requesting entity

49152 Dynamic or Private Ports 65535

This range is used for private or customized services, for temporary purposes, and for automatic allocation of ports.

TCP 3-Way Handshake

TCP Connection Termination

TCP Sequence Numbers and Acknowledgments

TCP Sequence Numbers and Acknowledgments

Source	Destination	Protocol	Len	Sequence number	Next sequence number	Acknowledgment number	Info
52.216.165.243	192.168.1.10	TCP	1432	4228287	4229719	1544	443 → 18933 [ACK]
52.216.165.243	192.168.1.10	TCP	1432	4229719	4231151	1544	443 → 18933 [ACK]
192.168.1.10	52.216.165.243	TCP	0	1544	1544	4231151	18933 → 443 [ACK]
52.216.165.243	192.168.1.10	TCP	1432	4231151	4232583	1544	443 → 18933 [ACK]
52.216.165.243	192.168.1.10	TCP	1432	4232583	4234015	1544	443 → 18933 [ACK]
192.168.1.10	52.216.165.243	TCP	0	1544	1544	4234015	18933 → 443 [ACK]

SN=4228287, NSN=4229719, ACK=154	Acknowledgment number	Next sequence number	Sequence number	.en
SN=4228287, NOT SN=4229719, NSN=4231151, ACK= 154	1544 1544	4229719 4231151	4228287 4229719	1432 1432
SN=1544, NSN=1544, ACK= 4231151	4231151	1544	1544	0
SN=4231151, NSN=4232583, ACK=1544	0 5			
SN=4231151, NSN SN=4232583, NSN=4234015, ACK=154				
SN=4232583, NSN=4234	1544	4232583	4231151	1432
4	1544	4234015	4232583	1432
SN=1544, NSN=1544, ACK= 4234015	4234015	1544	1544	0

1432

1432

1432

1432

TCP Connection States

User Datagram Protocol (UDP)

- User Datagram Protocol (UDP) is a communication protocol used across the Internet for especially timesensitive transmissions such as video playback or DNS lookups.
- UDP doesn't have the error checking and ordering functionality of TCP and is best utilized when error checking is not needed and speed is important.
- UDP doesn't have 3-way handshake to establish a connection between the client and the server as TCP does and hence it is unreliable protocol.
- Voice and video traffic are sent using UDP because they are both time-sensitive.

UDP Segment

➤ A UDP Segment is composed of a header and payload. The payload appears immediately after the header. A UDP Segment is often carried as the payload inside an IP packet.

Source Port (16 bits)	Destination Port (16 bits)	
Length (16 bits)	Checksum (16 bits)	
DATA (Payload : DNS,)		

UDP Segment

➤ A UDP Segment is composed of a header and payload. The payload appears immediately after the header. A UDP Segment is often carried as the payload inside an IP packet.

Differences Between TCP and UDP

Response

Response

Response

Client

TCP	UDP	
10.	OD!	
20 Bytes Header	8 Bytes Header	
Connection-Oriented	Connectionless	
Flow Control	No Flow Control	
Error Checking	No Error Checking	
Use Acknowledgment	No Acknowledgement	
Three-way Handshake	No Three-way Handshake	
Use Sequent Numbers	No Sequent Numbers	
Used By Critical Applications	Used By Real-time Applications	
HTTP, HTTPs, FTP, Telnet,	DNS, DHCP, TFTP, VOIP,	

