Painel / Meus cursos / SC26EL / 5-Projeto de Controlador Pl pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PI pelo Método do Lugar das Raízes

niciado em	domingo, 18 jul 2021, 23:07		
Estado	Finalizada		
ncluída em	domingo, 18 jul 2021, 23:16		
Tempo	8 minutos 36 segundos		
empregado			
Notas	1,9/3,0		
Avaliar	6,2 de um máximo de 10,0(62 %)		
do 1.0			
alterar sign controlado tiver um po a inserção	dor PI pode ser utilizado quando desejamos zerar o erro em regime permanente para uma certa referência sem ificativamente a resposta transitória do sistema original em malha fechada com realimentação unitária. O ratinge esse objetivo inserindo um polo na origem do sistema em malha aberta e com isso, se o sistema não olo na origem, este passará a ter erro nulo para entrada do tipo degrau. Caso o sistema tenha um polo na origem, de um polo adicional na origem irá zerar o erro para uma entrada do tipo rampa.		
possível se um sistema sistema em	para compensação do erro via controlador PI, o polo e o zero deste controlador estão próximos. Todavia, é fazer a compensação do erro em regime permanente ao mesmo tempo que se modifica a resposta transitória de a, para alguns cenários, afastando o zero do controlador da origem. Com isso, adiciona-se um polo na origem do malha aberta ao mesmo tempo em que se leva os polos dominantes do sistema em malha fechada para onde se a impor o comportamento transitório almejado.		
O controla	dor PI somente pode ser utilizado para a compensação do erro em regime permanente de sistemas.		
O controla	dor PI e o controlador de atraso são equivalentes. Como o controlador PI é mais simples, este é preferido para		
	Estado ncluída em Tempo empregado Notas Avaliar de 1,0 e a(s) alterna O controlac alterar sign controlado tiver um po a inserção No projeto possível se um sistema sistema em deseja para O controlac		

Questão **2**

Parcialmente correto

Atingiu 0,8 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{K}{s^2+2s+1}$ e K é um ganho ajustável pelo usuário. Deseja-se projetar um controlador PI $C(s)=K_p\left(1+\frac{1}{T_is}\right)$ para que o sistema, em malha fechada, tenha tenha polos dominantes próximos de $s_{1,2}=-1\pm\sqrt{3}$ e erro em regime permanente nulo para uma referência do tipo degrau. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

O ganho K do sistema deve ser: K =

3

~

Se o zero do compensador está em s=-0, 05, tem-se que $T_i=$

20

~

Para manter o mesmo coeficiente de amortecimento dos polos de malha fechada originais do sistema sem o compensador, os polos de malha fechada, após a inserção do compensador devem estar em: $s_{1,2} =$

-1

✓ ± j

~

Para os novos polos de malha fechada do sistema compensado, o ganho proporcional do compensador projetado é $K_p =$

1.012

X .

na referência do nas com as

considere of sistema describe hat figure abando office $S(s+4)$. Describe of policy dominantes de mainta rectiada lo
sobressinal de 16,3% e tempo de acomodação de 4 segundos. Adicionalmente, o erro em regime permanente para uma refe
tipo rampa deve ser nulo. Projete um controlador PI $C(s)=K_p \frac{\left(s+\frac{1}{T_i}\right)}{s}$ que atenda esses requisitos. Preencha as lacunas co
respostas adequadas considerando 3 algarismos significativos.
C(s) $G(s)$
Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$
$f{x}$. A frequência natural destes polos deve ser $\omega_n=$
Threquencial natural desics poios deve ser ω_{η}
🗶 rad/s.
A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$
-1
<u>♥ ±j</u>
x .
A contribuição angular que o compensador de avanço deve inserir no lugar das raízes é $\phi=$
🗶 graus.
O zero do compensador deve estar em $s =$
$igstar$. Com isso, $T_i =$
x .
O ganho do compensador projetado é ${\it K_p}=$
x .
O sistema compensado em malha fechada tem polos em $s_{1,2}=$
Sistema compensado em mama rechada tem polos em 3 _{1,2}
× ±j
\times e $s_3 =$
x e um zero em <i>s</i> =
X .
O sobressinal do sistema compensado é $M_p =$
$m{ imes}$ % enquanto o tempo de acomodação é $m{t_s}=$

x segundos.

eprojeto.	ssinal e tempo de acomodação seja de 20%, esse	