TRFCR_EL2, Trace Filter Control Register (EL2)

The TRFCR EL2 characteristics are:

Purpose

Provides EL2 controls for Trace.

Configuration

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to TRFCR EL2 are undefined.

If EL2 is not implemented, this register is res0 from EL3.

Attributes

TRFCR EL2 is a 64-bit register.

Field descriptions

63626160595857565554535251504948474645444342414039	3837	36	35	34	33	32
RES0						
RES0	TS	RES0	CX	RES0	E2TRE	EOHTRE
31302928272625242322212019181716151413121110 9 8 7	6 5	4	3	2	1	0

Bits [63:7]

Reserved, res0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

TS	Meaning	Applies when
0b00	Timestamp controlled by <u>TRFCR_EL1</u> .TS or <u>TRFCR</u> .TS.	

0b01	Virtual timestamp. The traced timestamp is the physical counter value minus the value of CNTVOFF EL2.		
0b10	Guest physical timestamp. The traced timestamp is the physical counter value minus a physical offset. If any of the following are true, the physical offset is zero, otherwise the physical offset is the value of CNTPOFF_EL2 : • SCR_EL3 . ECVEn == 0. • CNTHCTL_EL2 . ECV == 0.	When FEAT_ECV is implemented	
0b11	Physical timestamp. The traced timestamp is the physical counter value.		

This field is ignored by the PE when SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [4]

Reserved, res0.

CX, bit [3]

CONTEXTIDR EL2 and VMID trace enable.

CX	Meaning
0b0	CONTEXTIDR_EL2 and VMID trace
	prohibited.
0b1	CONTEXTIDR_EL2 and VMID trace
	allowed.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [2]

Reserved, res0.

E2TRE, bit [1]

EL2 Trace Enable.

E2TRE	Meaning	
0b0	Trace is prohibited at EL2.	
0b1	Trace is allowed at EL2.	

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EOHTRE, bit [0]

EL0 Trace Enable.

E0HTRE	Meaning
0b0	Trace is prohibited at EL0
	when $\underline{HCR_EL2}$. $TGE == 1$.
0b1	Trace is allowed at EL0 when
	$\underline{HCR_EL2}$.TGE == 1.

This field is ignored if any of the following are true:

- SelfHostedTraceEnabled() == FALSE.
- EL2 is disabled in the current security state.
- HCR EL2.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRFCR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRFCR EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TRFCR\_EL2;
```

MSR TRFCR_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRFCR\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TRFCR\_EL2 = X[t, 64];
```

When FEAT_VHE is implemented MRS <Xt>, TRFCR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0010	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x880];
    else
        X[t, 64] = TRFCR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        X[t, 64] = TRFCR\_EL2;
    else
        X[t, 64] = TRFCR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TRFCR\_EL1;
```

When FEAT_VHE is implemented MSR TRFCR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0010	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGWTR EL2.TRFCR EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x880] = X[t, 64];
    else
        TRFCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        TRFCR EL2 = X[t, 64];
    else
        TRFCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TRFCR\_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.