VSCODE 和 KEIL 协同使用开发 stm32 程序

VSCODE 是一款广受好评的代码编辑器,KEIL 是常用的嵌入式开发工具但编程界面简陋。将两个工具一起搭配使用,能大大提高我们的效率。

你可以把 VSCODE 专门用来编辑和编译,KEIL 用来对文件进行增删下载配置环境。原始的 KEIL 代码编辑界面在编辑和阅读上都十分的不方便,只要你用过 VSCODE 的编辑界面就再也不想回去使用 KEIL 的代码编辑界面了。如下是同一份代码在 KEIL 和 VSCODE 上呈现的不同效果。KEIL 的阅读和编辑体验是远远不如 VSCODE。

```
    E:\BaiduNetdiskDownload\江科大stm32\STM32入门教程资料\程序源码\STM32Project\9-1 串口发送\Project.uvproix - μVision

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

  □ ♣ ♣ □ □ → ○ ♦ ♠ □ □ •
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
                            GPIO_initTupeDef GPIO_initStructure;
GPIO_initStructure.GPIO_Mode - GPIO_Mode_AF_PP;
GPIO_initStructure.GPIO_Pin - GPIO_Pin_0;
GPIO_initStructure.GPIO_Speed - GPIO_Speed_SWMX;
GPIO_init(GPIOA, GGPIO_InitStructure);
                           USARI InitIypeDef USARI InitStructure;
USARI InitStructure:USARI Baudhate = 0600;
USARI InitStructure:USARI StopHits = USARI StopHits = 1;
USARI InitStructure:USARI StopHits = USARI UsarI USARI StopHits = 1;
USARI InitStructure:USARI MordLength = USARI UsarI USARI StopHits = 0500;
                                                                                                                                                                                                                                                                     USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Pode_Tx;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_NordLength = USART_MordLength_StopBits_1;
USART_InitStructure.USART_NordLength = USART_MordLength_StopBits_1;
USART_Init(USART1, &USART_InitStructure);
                           USART Cmd(USART1, ENABLE);
                           d Serial_SendByte(uint8_t Byte)
                           USART_SendData(USART1, Byte);
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
                                                                                                                                                                                                                                                               void Serial_SendByte(uint8_t Byte)
                                                                                                                                                                                                                                                                     USART_SendData(USART1, Byte);
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
                         id Serial_SendArray(uint8_t ×Array, uint16_t Length)
                            uint16_t i;
for (i = 0; i < Length; i ++)
                                                                                                                                                                                                                                                                oid Serial_SendArray(uint8_t *Array, uint16_t Length)
                                  Serial SendBute(Arrau[i]):
                                                                                                                                                                                                                                                                     uint16_t i;
for (i = 0; i < Length; i ++)</pre>
                         id Serial_SendString(char *String)
                                                                                                                                                                                                                                                                            Serial SendByte(Array[i]):
                           uint8_t i;
for (i = 0; String[i] != '\0'; i **)
                                   Serial SendByte(String[i]);
                                                                                                                                                                                                                                                                 oid Serial SendString(char *String)
                       int32 t Serial Pow(uint32 t X, uint32 t Y)
                                                                                                                                                                                                                                                                            Serial_SendByte(String[i]);
                            uint32_t Result = 1;
while (Y --)
```

1、下载 VSCODE

可以从其官网上下载, 地址是

Download Visual Studio Code - Mac, Linux, Windows

下载完成后,界面如下所示,你可以把 VSCODE 设想成专门用来编辑代码文件的 WORD 编辑器,如果你会用 WORD 写文档,那么你也就也能一定会学会用 VSCODE 编辑代码。不过比 WORD 更复杂一点的是 VSCODE 可以安装各种各样的扩展来专门针对特定的编程语言。

2、安装扩展

2.1 安装汉语扩展

安装 VSCODE 打开后默认语言是英语,你可以在扩展安装选项下载一个汉语扩展让 VSCODE 界面变成中文。选中中文扩展安装后再重启一下 VSCODE,你的界面就变成中文的了。

2.2 安装 C/C++的扩展

同样的,在扩展商店的输入框上写个 C,找到 C/C++ Extension Pack,安装上它。

2.3 安装 Keil Assitant

安装 Keil Assitant,要详细阅读自带的使用说明。安装之后还要做一些关于这个扩展的设置才行。

进入 Keil Assitant 的扩展设置界面,需要你填写你已经安装好的 Keil 程序的安装路径,记得要填你自己安装 Keil 程序的安装路径,因为到时候你要编译程序其实是 VSCODE 调用 Keil 的编译功能实现在 VSCOE 上编译工程文档的。

3、安装 MinGW

VS Code 是一个代码编辑器,它本身不包含编译器和调试器,所以你需要安装一个外部的编译器和调试器来编译和运行 C语言代码。MinGW 是一个常用的 Windows 平台的 C++编译器和调试器,所以想要进行编译 C语言项目的话就必须装这个。

针对 windows PC 用户,你可以从下面的这个网址上下载 mingw-get-setup .exe 这个软件来配置。

网址: MinGW - Minimalist GNU for Windows download | SourceForge.net

下载成功后点击 mingw-get-setup .exe 这个程序,点击安装

点击继续

等待安装

百分之百后按继续

MinGW Installation Manager 是一个用来管理 MinGW 的安装包的工具,你可以用它来选择和下载你需要的编译器和库。

如果你想配置 C语言环境,你至少需要安装以下几个 Package:

mingw-developer-toolkit:包含一些开发工具,如 make, gdb 等。

mingw32-base:包含基本的 MinGW 运行时和头文件。

mingw32-gcc-g++: 包含 C++编译器。

mingw32-gcc-objc: 包含 Objective-C 编译器。

msys-base: 包含一个类似 Unix 的命令行环境。

你可以在 MinGW Installation Manager 的 Basic Setup 中找到这些 Package,并且把它们都打上勾,然后点击 Installation->Apply Changes 来安装它们。

点击 Installation->点击 Apply->安装

等待所有项目完成

下载完之后点 Close

4、配置 MinGW 的环境路径

此时 MinGW 还没配置完全,还需要在 PC 上配置路径。 打开此电脑,右键找到属性点击进去。

点击"高级属性设置"

点击环境变量

点击系统变量中的"Path"双击

点击新建,找到 MinGW 的路径填进新建的新行里

打开 CMD 命令行,输入 gcc --version,查看是否正常安装上 GCC。如下图,可以看到 gcc 的版本号,说明安装成功了。

5 打开 Keil 项目

打开 VSCODE,文件 -> 打开文件夹 -> "示例工程文件夹",选择文件夹并打开

点击 KEIL UVSION PROJECT

此时已经可以正常编译了

6可能会遇到的问题

6.1 汉字注释乱码问题:

解决办法: 最底部的蓝条点击"UTF-8"

点击后正上方出现提示,点击通过编码重新打开,选择 Simplified Chinese (GBK)按回车。

此时,汉字能正常显示了。

6.2 某些关键词底下出现了报错的红色波浪线怎么办:

我打开野火的示例代码会发现一些库函数的关键词,库函数名词底下会出现报错的红色波浪线,这中问题和 #include "xx.h"头文件的缺失有关。KEIL 可以通过魔术棒设置 C/C++项目下的 include path 解决,但是 VSCODE 你需要把波浪线所包含的.h 文件写到当前文件。

```
C bsp_usart.c 9+ X
       * @brief USART GPIO 配置,工作参数配置
* @param 无
      void USART_Config(void)
          GPIO_InitTypeDef GPIO_InitStructure;
          USART_InitTypeDef USART_InitStructure;
          DEBUG_USART_GPIO_APBxclkcmd(DEBUG_USART_GPIO_CLK, ENABLE);
         // 打开串口外设的时钟
DEBUG_USART_APBxClkCmd(DEBUG_USART_CLK, ENABLE);
          GPIO_InitStructure.GPIO_Pin = DEBUG USART TX GPIO PIN;
          GPIO_InitStructure.GPIO_Mode = GPIO Mode AF PP;
          GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
          GPIO_Init(DEBUG_USART_TX_GPIO_PORT, &GPIO_InitStructure);
          GPIO_InitStructure.GPIO_Pin = DEBUG USART RX GPIO PIN;
          GPIO InitStructure.GPIO Mode = GPIO Mode IN FLOATING:
          GPIO_Init(DEBUG_USART_RX_GPIO_PORT, &GPIO_InitStructure);
          USART InitStructure.USART BaudRate = DEBUG USART BAUDRATE;
          USART_InitStructure.USART_WordLength = USART_WordLength 8b;
          USART_InitStructure.USART_StopBits = USART_StopBits 1;
          USART_InitStructure.USART_Parity = USART_Parity_No ;
          USART_InitStructure.USART_HardwareFlowControl =
          USART HardwareFlowControl None;
          USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
          USART_Init(DEBUG_USARTx, &USART_InitStructure);
```

```
C bsp usart.c C bsp led.c 2 

User > usart > C bsp usart.c > 😭 USART Config(void)
 17
      #include "bsp usart.h"
      #include "stm32f10x_gpio.h"
      #include "stm32f10x usart.h"
      #include "stm32f10x rcc.h"
 21
      /**
        * @brief USART GPIO 配置,工作参数配置
 25
        * @param 无
                       补全#include就没波浪线了
       * @retval 无
      void USART Config(void)
 28
          GPIO InitTypeDef GPIO InitStructure;
          USART InitTypeDef USART InitStructure;
          // 打开串口GPIO的时钟
          DEBUG USART GPIO APBxClkCmd(DEBUG USART GPIO CLK, ENABLE);
          // 打开串口外设的时钟
          DEBUG USART APBXClkCmd(DEBUG USART CLK, ENABLE);
          // 将USART Tx的GPIO配置为推挽复用模式
          GPIO InitStructure.GPIO Pin = DEBUG USART TX GPIO PIN;
          GPIO InitStructure.GPIO Mode = GPIO Mode AF PP;
          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 42
 43
          GPIO_Init(DEBUG_USART_TX_GPIO_PORT, &GPIO_InitStructure);
 44
        // 将USART Rx的GPIO配置为浮空输入模式
          GPIO InitStructure.GPIO Pin = DEBUG USART RX GPIO PIN;
          GPIO InitStructure.GPIO Mode = GPIO Mode IN FLOATING;
          GPIO Init(DEBUG_USART_RX_GPIO_PORT, &GPIO_InitStructure);
          // 配置串口的工作参数
          // 配置波特率
          USART InitStructure.USART BaudRate = DEBUG USART BAUDRATE;
          // 配置 针数据字长
          USART_InitStructure.USART_WordLength = USART_WordLength_8b;
          // 配置停止位
          USART InitStructure.USART StopBits = USART StopBits 1;
          // 配置校验位
 57
          USART InitStructure.USART Parity = USART Parity No ;
          // 配置硬件流控制
          USART InitStructure.USART HardwareFlowControl =
          USART HardwareFlowControl None;
          // 配置工作模式, 收发一起
```

6.3 虽然下滑波浪线问题解决了,但是编译功能又不能用了?

打开某些示例文档,发现编译功能不能用了。这时候可能和工程文档的某些 KEIL 的设置有关,我目前还没找到原因。不过可以选择在 VSCODE 上查看编辑文档,在 VSCODE 上点击保存后再在 KEIL 打开文档进行上编译。两个工具搭配起来一起用。