// recommendation engines

stuff to learn today:

- 1. name different kinds of recommendation engines
- 2. explain the concepts behind each kind of engine
- 3. pros and cons of the different engines + when to use which

part 1: types of recommendation engines, and why????

- three main types of recommendation engines:
 - a. non-personalized
 - b. content-based
 - c. collaborative filtering
- why do we need recommendation engines + what are some examples?

part 2: non-personalized recommendation engines

- top-rated items
- most bought/watched/consumed items
- items who will give companies highest ROI
- easy to make recommendations (same recommendations for everyone)
- is it the most effective?

part 3: content-based recommendation engines

- makes recommendations based on an item's features
- models we already know that can do this!!

 how would you build a recommendation engine using models you already know?

	Items								
		A	В	С	D				
	Genre	2	3	5	1				
	Actor	5	4	2	1				
Features	Director	1	1	1	3				
	Year	3	4	5	2				
	IMDB Ratings	5	4	1	2				

similarity metrics

- euclidean distance
- jaccard index
- cosine similarity
- adjusted cosine similarity
- pearson correlation

	ltems								
		A	В	С	D				
	Genre	2	3	5	1				
	Actor	5	4	2	1				
Features	Director	1	1	1	3				
	Year	3	4	5	2				
	IMDB Ratings	5	4	1	2				

part 3: content-based recommendation engines

- what are some pros and some pitfalls of content-based recommendations?

Chinese Money Plant Pass It On Plant - UFO
Plant - Pilea
peperomioides -4" Pot
☆☆☆☆☆ 184
\$8.61

Dolphin Plant - Senecio Peregrinus - Extremely Rare - Live Plant Rooted in 2.5X 3.5 inch Pot - Dolphin Necklace 会会会会 1 \$55.00

8 Hardy Succulent Variety Pack | 2" | Hens & Chicks | Chick Charms | Fairy Garden | Live Plants 1 offer from \$15.99

Chinese Money Plant -Pass It On Plant -Pilea peperomioides-3" Clay Pot/Saucer 会会会会 10 \$9.99

Shop Succulents Crassula Ovata 'Jade' 2In Plant Kit ☆☆☆☆☆ 2 \$14.99 √prime

part 4: collaborative filtering -- the utility matrix

a utility matrix shows user ratings of different items (usually sparse 😞)

the idea is to fill in the blanks, and recommend items with the highest predictions

	Movie 1	Movie 2	Movie	Movie N
User 1	1	BLANK	BLANK	3
User 2	BLANK	5	BLANK	3
User 3	BLANK	BLANK	1	BLANK
User 4	2	3	BLANK	BLANK
User 5	BLANK	BLANK	1	BLANK
User 6	4	BLANK	5	BLANK
User 7	BLANK	4	BLANK	BLANK
User	BLANK	3	BLANK	BLANK
User m	BLANK	BLANK	BLANK	4

part 4: collaborative filtering

- recommends items based on ratings of other users
- different ways to do collaborative filtering:
 - memory-based (aka neighborhood-based)
 - user-user similarity
 - item-item similarity
 - model-based (matrix factorization)

part 4a: user-user collaborative filtering

filling up the utility matrix based on user similarities

to get recommendations for user X:

- 1. get user similarity values
- 2. the predicted rating for item A is a weighted average of others' ratings

	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

cos	U1
U2	0.65
U3	0.76
U4	0.83
S	um = 2.24

part 4a: collaborative filtering -- pros and cons

- personalized for each user
- computationally heavy
- popularity bias
- the **cold start** problem

part 4b: item-item collaborative filtering

filling up the utility matrix based on item similarities

to get recommendations for user X:

- 1. get ITEM similarity values
- 2. the predicted rating for item A is a weighted average of other items

	U1	U2	U3	U4
l1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

cos	13
11	0.78
12	0.83
14	0.87
S	um = 2.48

part 4b: user-user vs item-item

which is better?????

- in general, item-item has proven to be more effective
- it's hard to predict users' unique tastes

time complexity (for **m** users and **n** items)

- user-user: O(m²n)
- item-item: O(mn²)
- which would be faster if m > n (more users than items)?

similarity metrics:

- experimentally, **Pearson correlation** has demonstrated to be the best

part 4c: model-based collaborative filtering

singular value decomposition:

- another way to fill in the utility matrix via matrix factorization

modified SVD in recommendation engines:

- breaks down the utility matrix into a user matrix and an item matrix
- the other dimensions are latent features
- gradient descent using Alternating Least Squares to preserve the relationship between items and between users (parallelizable)

very math, but best-in-class models use some form of SVD

part 4c: modified SVD for filling in utility matrices

	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

I1	×	×		
12	×	×		
13	×	×		
14	×	×		
latent features				

part 4c: gradient descent with Alternating Least Squares

I1	1	1
12	1	1
13	1	1
14	1	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
l1	2	2	2	2
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

RMSE = 1.75

part 4c: gradient descent with Alternating Least Squares

I1	×	1
12	1	1
13	1	1
14	1	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
I1	x+1	x+1	x+1	x+1
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

Finding **x** to minimize:

$$(4-(x+1))^2 + (2-(x+1))^2 + (3-(x+1))^2 + (5-(x+1))^2$$

setting
$$d/dx = 0$$
, $x = 2.5$

part 4c: gradient descent with Alternating Least Squares

l1	2.5	1
12	1	1
13	1	1
14	1	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
I1	3.5	3.5	3.5	3.5
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

RMSE = 1.58!!

stuff we've learned

recommendation engines!!!

1. non-personalized				
2. content-based				
collaborative filtering	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3. user-user		
	memory-based	4. item-item		
	model-based	5. SVD		