L^2 -Theorie

Christian Schulz

28. September 2017

In diesem Papier, wird die Fortsetzung der Fouriertransformation auf L^2 erarbeitet.

Motivation: Für Funktionen $f \in L^2(\mathbb{R}^n)$ muss das Fouriertransformationsintegral

$$\int_{\mathbb{R}^n} f(t)e^{-iw\cdot t}dt$$

nicht existieren. Um eine Fouriertransformation für Funktionen $f \in L^2(\mathbb{R}^n)$ zu definieren müssen wir anders vorgehen. Die Idee ist klassische Analysis. Wir nehmen zunächst eine dichte Menge X ($\emptyset \neq X \subset L^2(\mathbb{R}^n)$) auf der die Fouriertransformation definiert ist. Dann folgt mit dem Fortsetzungssatz für stetige Abbildungen die eindeutige Existenz auf $L^2(\mathbb{R}^n)$.

Definition

- (1) Das *n*-Tupel $\alpha = (\alpha_1, \dots, \alpha_n)$ wird im folgenden als *Multi-Index* bezeichnet.
- (2) $|\alpha| = \sum \alpha_i$ wird als *Ordnung* bezeichnet.
- (3) Für $t \in \mathbb{R}^n$ sei $t^{\alpha} := \prod t_i^{\alpha_i}$.
- (4) $D^{\alpha} = \prod (\frac{\partial}{\partial x_i})^{\alpha_i}$
- (5) $D_{\alpha} = i^{-|\alpha|} D^{\alpha} = \prod (\frac{1}{i} \frac{\partial}{\partial x_i})^{\alpha_i}$
- (6) $P(\xi) := \sum c_{\alpha} \xi^{\alpha} = \sum c_{\alpha} \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}$
- (7) $P(D) := \sum c_{\alpha} D_{\alpha}, P(-D) := \sum (-1)^{|\alpha|} c_{\alpha} D_{\alpha}$
- (8) $e_t(x) := e^{i\mathbf{t}\cdot\mathbf{x}} = e^{i(\mathbf{t}_1\mathbf{x}_1 + \dots + \mathbf{t}_1\mathbf{x}_n)} \ \forall t, x \in \mathbb{R}^n$
- (9) $dm_n(x) := (2\pi)^{-\frac{n}{2}} dx$
- (10) $(\tau_x f)(y) := f(y x) \ (x, y \in \mathbb{R}^n)$

Beispiel

In obiger Definition folgt: $\forall t, x \in \mathbb{R}^n : P(D)e_t = P(t)e_t$

Beweis

Seien
$$t, x \in \mathbb{R}^n$$
 bel. $\Rightarrow P(D)e_t = \sum c_{\alpha}D_{\alpha}e_t(x)$

$$= \sum c_{\alpha}(\frac{1}{i})^{|\alpha|}D^{\alpha}e^{i(t_1x_1+\cdots+t_1x_n)}$$

$$= \sum c_{\alpha}(\frac{1}{i})^{|\alpha|}i^{|\alpha|}t_1^{\alpha_1}\cdots t_n^{\alpha_n}e_t(x) = \sum c_{\alpha}t^{\alpha}e_t(x) = P(t)e_t$$

Beispiel

Der Ausdruck Fouriertransformation wird für die Abbildung benutzt, die f auf \hat{f} abbildet. Dabei sei angemerkt, dass gilt

$$\widehat{f}(t) = \int_{\mathbb{R}^n} f e_{-t} dm_n = (f * e_t)(0)$$

Definition (Schnell fallende Funktionen)

Sei $S := \{ f \in C^{\infty}(\mathbb{R}^n) | \sup_{|\alpha| \leq N} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^N | (D_{\alpha}f)(x) | < \infty, N \in \mathbb{N}_0 \}$ der Raum der schnell fallenden Funktionen ($|x|^2 = \sum x_i^2$).

Bemerkung: Mit anderen Worten gilt für alle $f \in \mathcal{S}$, dass $PD_{\alpha}f$ eine beschränkte Funktion auf \mathbb{R}^n ist und zwar für jedes Polynom P und jeden Multi-Index α .

Folgerung 0.1

 \mathcal{S} ist ein Vektorraum.

Beweis

Sei
$$\psi, \phi \in \mathcal{S}$$
 und $\delta := \sup_{|\alpha| \leq N} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^N |(D_{\alpha}\psi)(x)|, \widetilde{\delta} := \sup_{|\alpha| \leq N} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^N |(D_{\alpha}\phi)(x)| \Rightarrow \forall \alpha \in \mathbb{R} : \sup_{|\widetilde{\alpha}| \leq N} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^N |(D_{\widetilde{\alpha}}(\alpha\psi + \phi))(x)| \leq \alpha\delta + \widetilde{\delta} < \max\{|\alpha|, 1\} \max\{\delta, \widetilde{\delta}\} =: \gamma$

Beispiel

$$\phi(x) := e^{-x^2}, \phi \in \mathcal{S}.$$

Beweis

Es gilt $\phi'(x) = -2xe^{-x^2}$, $\phi''(x) = 2xe^{-x^2}(2x^2 - 1)$, ... es folgt per Induktion, dass $\phi^{(n)}(x) = p(x) * e^{-x^2}$ (p Polynom) $\forall n \in \mathbb{N}_0$. Da $\lim_{x \to \pm_{\infty}} \phi^{(n)}(x) = 0$ gilt folgt, dass $\widetilde{p}\phi^{(n)}$ beschränkt ist, wobei \widetilde{p} ein bel. Polynom ist.

Satz 0.2

- (1) S ist ein Fréchet Raum.
- (2) Sei P ein Polynom, $g \in \mathcal{S}$, und α ein Multi-Index. Dann sind folgende Abbildungen stetig und linear:

$$T_1: \mathcal{S} \to \mathcal{S}, f \mapsto Pf$$

 $T_2: \mathcal{S} \to \mathcal{S}, f \mapsto gf$
 $T_3: \mathcal{S} \to \mathcal{S}, f \mapsto D_{\alpha}f$

(3) Sei $f \in \mathcal{S}$ und P ein Polynom, dann gilt

$$(P(D)\widehat{f}) = P\widehat{f} \text{ und } (P\widehat{f}) = P(-D)\widehat{f}.$$

(4) Die Fouriertransformation ist eine stetige Abbildung von S in S.

Beweis

(1) Sei $(f_i)_{i\in\mathbb{N}}$ eine Cauchyfolge in \mathcal{S} . D.h. $\forall \epsilon > 0 \; \exists n_0 \in \mathbb{N} : ||f_m - f_n|| < \epsilon \; \forall n > m \geq n_0$. Für jedes Paar von Multi-Indizes α, β konvergiert die Funktion $x^{\beta}D^{\alpha}f_i(x)$ (gleichmäßig auf \mathbb{R}^n) gegen die beschränkte Funktion $g_{\alpha\beta}$ (für $i \to \infty$) \Rightarrow

$$g_{\alpha\beta} = x^{\beta} D^{\alpha} g_{00}(x)$$

und damit folgt $f_i \to g_{00} \Rightarrow \mathcal{S}$ ist vollständig.

- (2) Sei $f \in \mathcal{S}$. Dann ist offensichtlich $D_{\alpha}f \in \mathcal{S}$, $Pf \in \mathcal{S}$ und $gf \in \mathcal{S}$. Die Stetigkeit der drei Abbildungen folgt aus dem closed graph theorem.
- (3) Sei $f \in \mathcal{S} \Rightarrow P(D)f \in \mathcal{S}$ und

$$(P(D)f) * e_t = f * P(D)e_t = f * P(t)e_t = P(t)[f * e_t]$$

Wenn man diese Funktionen nun im Ursprung des \mathbb{R}^n auswertet, liefert uns das den ersten Teil von (3). Nämlich:

$$(P(D)\widehat{f})(t) = P(t)\widehat{f}(t)$$

Sei
$$\widetilde{t} := (t_1 + \epsilon, ..., t_n), t := (t_1, ..., t_n), x \in \mathbb{R}^n$$

 $h(x) := e_{-\widetilde{t}}(x) - e_{-t}(x) = e^{-\mathrm{i}((t_1 + \epsilon)x_n + \cdots + t_n x_n)} - e^{-\mathrm{i}(t_1 x_1 + \cdots + t_n x_n)}$
 $= (e^{-\mathrm{i}\epsilon x_1} - 1)e_{-t}(x)$

Sei weiterhin $\gamma(x_1,\epsilon):=\frac{e^{-\mathrm{i}\epsilon x_1}-1}{\mathrm{i}\epsilon x_1}=\frac{h(x)}{\mathrm{i}\epsilon x_1\mathrm{e}_{-\mathrm{t}}(\mathbf{x})}$.

Betrachte

$$\lim_{\epsilon \to 0} \gamma(x_1, \epsilon) = \lim_{\epsilon \to 0} \frac{e^{-i\epsilon x_1} - 1}{i\epsilon x_1} = \lim_{\epsilon \to 0} -e^{-i\epsilon x_1} = -1$$

Nun gilt:

$$\frac{\widehat{f}(\widetilde{t}) - \widehat{f}(t)}{\mathrm{i}\epsilon} = \int_{\mathbb{R}^n} f(x) \frac{h(x)}{\mathrm{i}\epsilon} dm_n = \int_{\mathbb{R}^n} x_1 f(x) \frac{h(x)}{\mathrm{i}\epsilon x_1 \mathrm{e}_{-t}(x)} e_{-t}(x) dm_n = \int_{\mathbb{R}^n} x_1 f(x) \gamma(x_1, \epsilon) e_{-t}(x) dm_n$$

Da $x_1 f \in L^1$ folgt für $\epsilon \to 0$ mit dem Satz von der dominierenden Konvergenz

$$-\frac{1}{\mathrm{i}}\frac{\partial}{\partial t_1}\widehat{f} = \int_{\mathbb{R}^n} x_1 f(x) e_{-t}(x) dm_n$$

und damit der zweite Teil der Behauptung für den Fall $P(x) = x_1$. Der allgemeine Fall folgt durch Iteration.

(4) Sei
$$f \in \mathcal{S}$$
 und $g(x) = \underbrace{(-1)^{|\alpha|} x^{\alpha}}_{:=\widetilde{P}(x)} f(x) \Rightarrow g \in \mathcal{S}$. Nun folgt mit (3), dass

$$\widehat{g} = D_{\alpha} \widehat{f}$$
, denn

$$\widehat{g} = \widehat{\widetilde{P}f} = \widetilde{P}(-D)\widehat{f} = D_{\alpha}\widehat{f}$$

 $\widehat{g}=\widehat{\widetilde{P}f}=\widetilde{P}(-D)\widehat{f}=D_{\alpha}\widehat{f}$ und $P\widehat{g}=(P(D)g)$, welche eine beschränkte Funktion ist, da $P(D)g\in$ $L^1(\mathbb{R}^n)$. Das beweist, dass $\widehat{f} \in \mathcal{S}$. Wenn $f_i \to f$ in \mathcal{S} dann folgt $f_i \to f$ in $L^1(\mathbb{R}^n)$. Schließlich folgt nun direkt $\widehat{f}_i \to \widehat{f} \ \forall t \in \mathbb{R}^n$. Die Stetigkeit der Abbildung $f \to \hat{f}$ von S nach S, folgt wieder aus dem closed graph theorem.

Satz 0.3

$$(1) (\tau_x f) = e_{-x} \widehat{f}$$

(2) Sei
$$\lambda > 0$$
 und $h(x) = f(x/\lambda) \Rightarrow \widehat{h}(t) = \lambda^n \widehat{f}(\lambda t)$

Satz 0.4 (Das Inversionstheorem)

- (1) $g \in \mathcal{S} \Rightarrow g(x) = \int_{\mathbb{R}^n} \widehat{g} e_x dm_n \ (x \in \mathbb{R}^n)$
- (2) Die Fouriertransformation ist eine stetige, lineare, 1-zu-1 Abbildung von \mathcal{S} auf \mathcal{S} , dessen Inverse ebenfalls stetig ist.
- (3) $f \in L^1(\mathbb{R}^n), \ \widehat{f} \in L^1(\mathbb{R}^n), \ f_0(x) = \int_{\mathbb{R}^n} \widehat{f} e_x dm_n \ (x \in \mathbb{R}^n) \Rightarrow$ $f(x) = f_0(x)$ fast überall $(x \in \mathbb{R}^n)$

Beweis

(1) Zunächst gilt die Identität

$$\int_{\mathbb{R}^n} \widehat{f}gdm_n = \int_{\mathbb{R}^n} f\widehat{g}dm_n$$

Sei nun $g \in \mathcal{S}, \phi \in \mathcal{S}, \lambda > 0$ und $f(x) = \phi(x/\lambda)$. Dann gilt

$$\Gamma(\lambda) := \int_{\mathbb{R}^n} g(\frac{t}{\lambda}) \widehat{\phi}(t) dm_n(t) = \int_{\mathbb{R}^n} \widehat{g}(\frac{t}{\lambda}) \phi(t) dm_n(t) = \int_{\mathbb{R}^n} \lambda^n \widehat{g}(\lambda t) \phi(t) dm_n(t)$$

Nun führt man eine Substitution durch mit $\gamma(t) = \frac{y}{\lambda}$. Es gilt $\gamma(\mathbb{R}^n) = \mathbb{R}^n$

und $det(\gamma'(t)) = \frac{1}{\lambda^n}$

$$\Rightarrow \Gamma(\lambda) = \int_{\mathbb{R}^n} \widehat{g}(y) \phi(\frac{y}{\lambda}) dm_n(y)$$

$$\Rightarrow \int_{\mathbb{R}^n} g(\frac{t}{\lambda}) \widehat{\phi}(t) dm_n(t) = \int_{\mathbb{R}^n} \widehat{g}(y) \phi(\frac{y}{\lambda}) dm_n(y)$$

Nun konvergiert für $\lambda \to \infty$, $g(\frac{t}{\lambda}) \to g(0)$ und $\phi(\frac{y}{\lambda}) \to \phi(0)$ beschränkt. Satz von der dominierenden Konvergenz \Rightarrow

$$g(0) \int_{\mathbb{R}^n} \widehat{\phi}(t) dm_n(t) = \phi(0) \int_{\mathbb{R}^n} \widehat{g}(y) dm_n(t)$$

Sei nun $\phi(x) = e^{-\frac{1}{2}|x|^2}$. Dann gilt die Behauptung für den Fall x = 0, denn

$$g(0) = g(0) \underbrace{\int_{\mathbb{R}^n} \widehat{\phi}(t) dm_n(t)}_{=1} = \underbrace{\phi(0)}_{=1} \int_{\mathbb{R}^n} \widehat{g}(y) dm_n(y) = \int_{\mathbb{R}^n} \widehat{g}(y) \underbrace{e_0}_{=1} dm_n(y).$$

Der allgemeine Fall folgt direkt, denn

$$g(x) = (\tau_{-x}g)(0) = \int_{\mathbb{R}^n} \widehat{\tau_{-x}g} dm_n = \int_{\mathbb{R}^n} \widehat{g} e_x dm_n$$

(2) Sei vorrübergehend $\phi g = \hat{g}$. Die Inversionsformel (1) liefert uns schon, dass ϕ eine 1-zu-1 Abbildung ist, da offensichtlich $\hat{g} = 0 \Rightarrow g = 0$. Es zeigt sich weiterhin, dass $\phi^2 g = \check{g}$, wobei $\check{g} = g(-x)$. Denn

$$\phi^2 g = \phi \widehat{g} = \int_{\mathbb{R}^n} \widehat{g} e_{-t} dm_n = g(-t)$$

Nun folgt $\phi^4 g = g$ und damit, dass ϕ $\mathcal S$ komplett auf $\mathcal S$ abbildet. Die Stetigkeit von ϕ wurde schon in Satz 1.2.4 bewiesen. Da $\phi^{-1} = \phi^3$ gilt, folgt auch die Stetigkeit von ϕ^{-1} .

(3) Es gilt zunächst für $g \in \mathcal{S}$

$$\int_{\mathbb{R}^n} f_0 \widehat{g} dm_n = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \widehat{f} e_x dm_n \widehat{g} dm_n = \int_{\mathbb{R}^n} \widehat{f} \int_{\mathbb{R}^n} \widehat{g} e_x dm_n dm_n = \int_{\mathbb{R}^n} \widehat{f} g dm_n = \int_{\mathbb{R}^n} \widehat{f} \widehat{g} dm_n$$

Also:

$$\int_{\mathbb{R}^n} f_0 \widehat{g} \ dm_n = \int_{\mathbb{R}^n} f \widehat{g} \ dm_n$$

Aus (2) folgt, dass mit \widehat{g} alle schnell fallenden Funktionen abgedeckt werden. Da $\mathcal{D}(\mathbb{R}^n)\subset\mathcal{S}$ folgt

$$\int_{\mathbb{D}^n} (f_0 - f) \phi \ dm_n = 0 \quad \forall \phi \in \mathcal{D}(\mathbb{R}^n)$$

und (durch eine Approximation (Übung)) damit gilt diese Identität für jede stetige Funktion ϕ mit kompakten Träger. Es folgt fast überall $f_0-f=$

0.

Satz 0.5 (Plancherel Theorem)

Es existiert eine Isometrie $\Psi: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$, welche eindeutig festgelegt ist durch

$$\Psi f = \widehat{f} \quad \forall f \in \mathcal{S}$$

Bemerkung: Man beachte, dass die Gleichheit $\Psi f = \widehat{f}$ erweitert wird von \mathcal{S} zu $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, da \mathcal{S} sowohl dicht in L^2 als auch in L^1 liegt. Das liefert uns die Übereinstimmung: das Gebiet von Ψ ist L^2 . \widehat{f} wurde schon definiert für $f \in L^1(\mathbb{R}^n)$ und $\Psi f = \widehat{f}$, falls beide Definitionen anwendbar sind. Daher erweitert Ψ die Fouriertransformation von $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ zu $L^2(\mathbb{R}^n)$. Diese Erweiterung nennt man immer noch Fouriertransformation, und die Notation \widehat{f} wird beibehalten.

Beweis

Es sei $f, g \in \mathcal{S}$, dann liefert uns das Inversionstheorem

$$\int_{\mathbb{R}^n} f\bar{g} \ dm_n = \int_{\mathbb{R}^n} \bar{g}(x) \ dm_n(x) \int_{\mathbb{R}^n} \widehat{f}(t) e^{ix \cdot t} \ dm_n(t)
= \int_{\mathbb{R}^n} \widehat{f}(t) \ dm_n(t) \int_{\mathbb{R}^n} \bar{g}(x) e^{ix \cdot t} \ dm_n(x)$$

Das letzte innere Integral ist das komplex Konjugierte von $\widehat{g}(t)$. Das liefert uns die Parseval Formel

$$\int_{\mathbb{R}^n} f\overline{g} \ dm_n = \int_{\mathbb{R}^n} \widehat{f}\widehat{\widehat{g}} \ dm_n \ (f, g \in \mathcal{S})$$

Wir spezialisieren nun g = f, dann folgt

$$||f||_2 = ||\widehat{f}||_2 \quad f \in \mathcal{S}$$

Nun folgt, da \mathcal{S} dicht in $L^2(\mathbb{R}^n)$ liegt, dass die Abbildung $f \to \widehat{f}$ eine Isometrie (relativ zur Metric in L^2) von $\mathcal{S} \to \mathcal{S}$ ist. Mit dem Satz über die eindeutige Fortsetzung folgt, dass $\psi: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ eine linieare Isometrie von $L^2(\mathbb{R}^n)$ nach $L^2(\mathbb{R}^n)$ ist.

Appendix:

Satz 0.6 (Exkurs: Closed Graph Theorem)

Es gelte:

- (1) X und Y sind F-Räume
- (2) $\Psi: X \to Y$ sei linear
- (3) $G = \{(x, \Psi x) | x \in X\}$ ist abgeschlossen in $X \times Y$

Dann ist Ψ stetig.

Satz 0.7 (Exkurs: Eindeutige stetige Fortsetzung)

Sei X,Y metrische Räume und A sei dicht in $X,\,f:A\to Y$ sei gleichmäßig stetig. Dann gilt:

- (1) f hat eine eindeutige stetige Fortsetzung $F:X\to Y$
- (2) f ist Isometrie $\Rightarrow F$ ist Isometrie und F(X) ist abgeschlossen in Y.