Ordinamento, algoritmi quadratici

Algoritmi e strutture dati

Ugo de'Liguoro, Andras Horvath

1

Sommario

- Obiettivi
 - sviluppo di algoritmi di ordinamento di complessità quadratica,
 verifica della correttezza con invariante e introduzione dell'analisi di complessità
- Argomenti
 - problema dell'ordinamento (sorting)
 - insertion-sort
 - selection-sort

Ricerca in vettore non ordinato

- come si cerca un elemento in un vettore non ordinato?
- dobbiamo esaminare il vettore elemento per elemento
- quanti confronti servono per cercare un elemento in un vettore di *n* elementi nel caso peggiore e nel caso migliore?
- *n* nel caso peggiore (elemento non c'è)
- 1 nel caso migliore (il primo elemento esaminato è quello cercato)
- come si procede nel caso in cui il vettore è ordinato?

3

Ricerca binaria (dicotomica)

- algoritmo di ricerca per cercare elementi in vettori ordinati
- l'idea: confrontiamo l'elemento centrale e quello ricercato
 - se sono uguali, allora l'elemento è presente
 - se l'elemento ricercato è più grande, bisogna cercare nella prima meta del vettore
 - se l'elemento ricercato è più piccolo, bisogna cercare nella seconda meta del vettore
- iterando l'idea, in ogni giro o si trova l'elemento o si dimezza la dimensione del problema
- quando la porzione ancora "valida" del vettore contiene un elemento solo, è facile decidere se l'elemento c'è o meno

Ricerca binaria (dicotomica)

```
BINSEARCH-RIC(x, A, i, j)
     \triangleright Pre: A[i..j] ordinato
     \triangleright Post: true \text{ se } x \in A[i..j]
if i > j then
                     \triangleright A[i..j] = \emptyset
    return false
else
    m \leftarrow \lfloor (i+j)/2 \rfloor
    if x = A[m] then
        {\bf return}\ true
    else
         if x < A[m] then
             return BINSEARCH-RIC(x, A, i, m - 1)
                   \triangleright A[m] < x
             return BINSEARCH-RIC(x, A, m + 1, j)
         end if
    end if
end if
```

5

Ricerca in vettore ordinato

- quanti confronti servono con la ricerca binaria nel caso peggiore e nel caso migliore?
- 1 nel caso migliore (il primo elemento esaminato è quello cercato)
- nel caso peggiore (elemento ricercato non c'è) si dimezza il problema in ogni giro: numero di confronti è all'incirca log_2n (possiamo dimezzare il vettore log_2n volte senza svuotarlo)

Conviene ordinare se bisogna fare tante ricerche.

Problema dell'ordinamento

Ordinamento come problema computazionale:

Input: una sequenza di n numeri a_1, a_2, \ldots, a_n

Output: una permutazione $a_{i_1}, a_{i_2}, \dots, a_{i_n}$ della sequenza in ingresso tale che $a_{i_1} \le a_{i_2} \le \dots \le a_{i_n}$

7

Forza bruta

```
\operatorname{SORTED}(A)

for i \leftarrow 2 to length(A) do

if A[i-1] > A[i] then

return false

end if

end for

return true

Trivial-Sort(A)

for all A' permutazione di A do

if \operatorname{SORTED}(A') then

return A'

end if

end for
```

Il numero di permutazioni di un vettore di *n* elementi distinti sono *n*!

Crescita di 2ⁿ ed n!

```
n!
               1
               2
   16
   32
               120
   64
               720
   128
               5040
   256
               40320
   512
               362880
18 262144
               6402373705728000
   524288
               121645100408832000
```

9

Ordinamento per inserimento

- l'idea per ordinare il vettore A[1..n]:
 - quando la parte A[1..i-1] è già ordinato
 - si può inserire l'elemento A[i] nella parte ordinata tramite scambi:
 - se $A[i] \ge A[i-1]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i] con A[i-1]
 - se $A[i-1] \ge A[i-2]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i-1] con A[i-2]
 - se $A[i-2] \ge A[i-3]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i-2] con A[i-3]
 - ...
 - dopo gli scambi A[1..i] è ordinato
- per partire abbiamo che A[1..1] è ordinato
- si inserisce nella parte ordinata prima A[2], poi A[3], ... e infine A[n]

Simulazione

• simuliamo l'idea con A = (5,4,7,3,6,6) (4,5,7,3,6,6) (4,5,3,7,6,6) (4,3,5,7,6,6) (3,4,5,7,6,6) (3,4,5,6,7,6)(3,4,5,6,6,7)

11

Ordinamento per inserimento

A[1..n] i

A[1..i-1], parte ordinata

Ordinamento per inserimento

15

Ordinamento per inserimento

Ordinamento per inserimento

```
INSERTION-SORT(A)

for i \leftarrow 2 to length(A) do

\triangleright inserisce A[i] in A[1..i-1]

j \leftarrow i

while j > 1 and A[j-1] > A[j] do

scambia A[j-1] con A[j]

j \leftarrow j-1

end while

end for

return A
```

- Insertion-Sort(A) termina per ogni A?
- La sequenza che restituisce è ordinata?
- Quanto tempo impiega in funzione di n = length(A)?

La
terminazione è
assicurata dal
fatto che sia il
for che il while
sono cicli
limitati.

17

Correttezza dell'algoritmo

```
Insertion-Sort(A)
                                               Insertion-Sort è
for i \leftarrow 2 to length(A) do
                                               iterativo con due cicli,
        \triangleright inserisce A[i] in A[1..i-1]
                                               usiamo invarianti per la
                                               sua verifica.
   while j > 1 and A[j-1] > A[j] do
       scambia A[j-1] con A[j]
                                               L'invariante del ciclo
       j \leftarrow j - 1
   end while
                                               esterno?
end for
return A
                                               A[1..i-1] è ordinato.
A[1..n]
```

A[1..i-1] è ordinato

Dimostrazione dell'invariante esterno: A[1..i-1] è ordinato:

- inizializzazione:
 - prima di eseguire il ciclo per la prima volta i = 2
 - con i = 2 l'invariante diventa A[1..1] è ordinato e questo è vero

A[1..n] i

A[1..i-1] è ordinato

19

Correttezza dell'algoritmo

Dimostrazione dell'invariante esterno: A[1..i-1] è ordinato:

- mantenimento:
 - dobbiamo dimostrare che "A[1..i-1] ordinato \Rightarrow A[1..i'-1] ordinato" dove i'=i+1
 - se A[i] viene inserito correttamente in A[1..i-1], allora l'invariante viene mantenuto

A[1..i'-1] è ordinato

- Invariante del ciclo interno?
- osserviamo la situazione con un j generico

- verde: elemento che era nella posizione *i* prima di eseguire il ciclo interni
- abbiamo già eseguiti degli scambi
- rosso: elemento da confrontare con verde
- invariante:
 - A[1..j-1] e A[j..i] sono ordinati
 - ciascun elemento in A[1..j-1] è minor uguale di tutti gli elementi di A[j+1..i]

21

Correttezza dell'algoritmo

- **dimostriamo l'invariante**: A[1..j-1] e A[j..i] sono ordinati e ciascun elemento in A[1..j-1] è minor uguale di tutti gli elementi di A[j+1..i] (abbrev.: $A[1..j-1] \le A[j+1..i]$)
- inizializzazione: con j = i l'invariante diventa:
 - A[1..i-1] e A[i..i] (vettore di singolo elemento) sono ordinati
 - ciascun elemento in A[1..i-1] è minor uguale di tutti gli elementi di $A[i+1..i] = \emptyset$
- quindi j = i l'invariante si riduce a: A[1..i 1] è ordinato
- e questo è garantito dal invariante esterno

- **dimostriamo l'invariante**: A[1..j-1] e A[j..i] sono ordinati e $A[1..j-1] \le A[j+1..i]$
- mantenimento: bisogno dimostrare che "se l'invariante vale prima allora vale anche dopo l'esecuzione del ciclo"
- il ciclo si esegue solo se $j > 1 \land A[j-1] > A[j]$
- se il ciclo si esegue allora si scambiano A[j-1] e A[j] e j viene decrementato (j'=j-1), implicazioni:
 - A[1..j-1] è ordinato $\Rightarrow A[1..j'-1] = A[1..j-2]$ è ordinato
 - A[j..i] è ordinato $\land A[1..j-1] \le A[j+1..i] \land$ $A[j-1] > A[j] \Rightarrow A[j'..i] = A[j-1..i]$ è ordinato j

23

Correttezza dell'algoritmo

- **dimostriamo l'invariante**: A[1..j-1] e A[j..i] sono ordinati e $A[1..j-1] \le A[j+1..i]$
- mantenimento: bisogno dimostrare che "se l'invariante vale prima allora vale anche dopo l'esecuzione del ciclo"
- il ciclo si esegue solo se $j > 1 \land A[j-1] > A[j]$
- se il ciclo si esegue allora si scambiano A[j-1] e A[j] e j viene decrementato (j'=j-1), implicazioni:
 - $A[1..j-1] \le A[j+1..i] \land A[j-1] > A[j] \Rightarrow$ $A[1..j'-1] \le A[j'+1..i]$ ovvero $A[1..j-1] \le A[j+1..i] \land A[j-1] > A[j] \Rightarrow$ $A[1..j-2] \le A[j..i]$

- invariante interno: A[1..j-1] e A[j..i] sono ordinati e $A[1..j-1] \le A[j+1..i]$
- all'uscita dal ciclo interno abbiamo $j = 1 \lor A[j-1] \le A[j]$
- in ogni caso all'uscita l'invariante implica che A[1..i] è ordinato
- quindi abbiamo dimostrato che se prima di eseguire il ciclo interno A[1..i-1] è ordinato allora dopo l'esecuzione del ciclo interno A[1..i] è ordinato

25

Correttezza dell'algoritmo

- invariante esterno: A[1..i-1] è ordinato
- all'uscita dal ciclo interno abbiamo i = n + 1
- dunque all'uscita l'invariante implica che A[1..n] è ordinato
- quindi abbiamo dimostrato che

l'algoritmo è corretto

Il tempo di calcolo di Insert-Sort

Quanto tempo impiega? Dipende dalla dimensione dall'ingresso, n = length(A).

27

Il tempo di calcolo di Insert-Sort

Riga 1: l'esecuzione prevede assegnare un valore alla variabile i (2 la prima volta e i + 1 successivamente) e controllare se i sia $\leq length(A)$; il controllo viene eseguito con i=2,3,...,length(A)+1, quindi n volte

 $t_i =$ n. esecuzioni del test del **while** = $\begin{cases} 1 & \text{nel caso migliore} \\ i & \text{nel caso peggiore} \end{cases}$

Il tempo di calcolo di Insert-Sort

Con $t_i = i$, caso peggiore:

$$T_{ins}(n) = c_1 n + c_2 (n-1) + c_3 \sum_{i=2}^{n} i + c_4 \sum_{i=2}^{n} (i-1) + c_5 \sum_{i=2}^{n} (i-1)$$

$$= (c_1 + c_2) n - c_2 + c_3 \sum_{i=2}^{n} i + (c_4 + c_5) \sum_{i=2}^{n} (i-1)$$

$$\sum_{i=2}^{n} i = 2 + 3 + \dots + n = \frac{n+2}{2} (n-1) = \frac{n^2 + n - 2}{2}$$

$$\sum_{i=2}^{n} (i-1) = 1 + 2 + \dots + (n-1) = \frac{n}{2} (n-1) = \frac{n^2 - n}{2}$$

$$T_{ins}(n) = \frac{c_3 + c_4 + c_5}{2} n^2 + \left(c_1 + c_2 + \frac{c_3 - c_4 - c_5}{2}\right) n - (c_2 + c_3)$$

$$= an^2 + bn + c$$

Nel caso peggiore Insert-Sort ha complessità temporale quadratica.

29

Il tempo di calcolo di Insert-Sort

Con $t_i = 1$, caso migliore:

$$\begin{split} T_{ins}(n) &= c_1 n + c_2 (n-1) + c_3 \sum_{i=2}^n 1 + c_4 \sum_{i=2}^n (1-1) + c_5 \sum_{i=2}^n (1-1) \\ &= (c_1 + c_2) n - c_2 + c_3 \sum_{i=2}^n 1 \\ \sum_{i=2}^n 1 &= 1 + 1 + \dots + 1 = n - 1 \\ T_{ins}(n) &= (c_1 + c_2 + c_3) n - (c_2 + c_3) = dn + e \end{split}$$

Nel caso migliore Insert-Sort ha complessità temporale lineare.

L'idea dell'algoritmo:

- assumiamo che la parte sinistra del vettore sia ordinato e quella a destra contiene elementi maggiori-uguali
- graficamente:

A[1..i-1], parte ordinata

tutti gli elementi di questa parte sono maggiori-uguali di quelli nella parte ordinata,

abbrev.: $A[1..i-1] \le A[i..n]$

- cerchiamo l'elemento minimo in A[i..n] e lo scambiamo con A[i]
- cosi la parte ordinata si allarga (la disordinata diminuisce)

31

Ordinamento per selezione

```
\begin{aligned} & \text{SELECT-SORT}(A) \\ & \text{for } i \leftarrow 1 \text{ to } length(A) - 1 \text{ do} & \triangleright n = length(A) \\ & k \leftarrow i \\ & \text{for } j \leftarrow i + 1 \text{ to } length(A) \text{ do} \\ & \text{ if } A[k] > A[j] \text{ then} \\ & k \leftarrow j \\ & \text{ end if} \\ & \text{ end for} \\ & \text{ scambia } A[i] \text{ con } A[k] \\ & \text{ end for} \end{aligned}
```

Invariante del ciclo esterno:

- A[1 ... i 1] è ordinato
- se x è in A[i ... n] ed y è in A[1 ... i-1] allora $x \ge y$

A[1..n]

i

Inizializzazione:

- con i=1 la porzione A[1 ... i-1] è vuota
- dunque la proposizione espressa dall'invariante non può che valere

33

Ordinamento per selezione

Mantenimento:

- dobbiamo dimostrare che "se vale prima allora vale anche dopo"
- come ipotesi possiamo assumere che prima di eseguire il corpo del ciclo interno
 - A[1..i-1] è ordinato e
 - se x è in A[i..n] ed y è in A[1..i-1] allora $x \ge y$
- assumiamo che la ricerca del minimo in A[i..n] sia eseguita correttamente e di conseguenza A[k] sia il minimo valore in A[i..n] (dimostreremo dopo che è corretto)
- A[k] è minimo in A[i..n] ma è maggior-uguale di qualunque elemento in A[1..i-1] ⇒ scambiando A[i] con A[k] e incrementando i di 1 l'invariante si mantiene

A[1..n]

Invariante del ciclo interno:

• A[k] è minimo in A[i..j-1]

Inizializzazione:

• con k=i e j=i+1 l'invariante si riduce a "A[i] è minimo in A[i..i]" e questo è evidente che sia vero

35

Ordinamento per selezione

Invariante del ciclo interno:

• A[k] è minimo in A[i..j-1]

Mantenimento:

- come ipotesi induttiva assumiamo che l'invariante vale prima di eseguire il ciclo
- il corpo del ciclo aggiorna la posizione del massimo se A[k] > A[j] e, in ogni caso, incrementa j
- dunque l'invariante viene mantenuto

Invariante del ciclo interno:

- A[k] è minimo in A[i..j-1]
- quando si esce dal ciclo j=n+1 quindi A[k] è minimo in A[i..n] dunque il minimo si trova correttamente

Invariante del ciclo esterno:

- A[1 ... i 1] è ordinato
- se $x \in A[i ... n]$ ed $y \in A[1 ... i-1]$ allora $x \ge y$
- quando si esce dal ciclo i=n quindi A[i..n-1] è ordinato e A[n]
 è maggiore uguale di qualunque elemento di A[1 .. n-1],
 dunque il vettore è ordinato e l'algoritmo è corretto

A[1..n]

i k j

37

Complessità di Select-Sort

- come nel caso si Insert-Sort possiamo contare per ogni riga quante volte viene eseguito
- **caso migliore**: il minimo si trova sempre all'inizio della parte non ordinata (*k* non viene mai aggiornato)
- caso peggiore: la parte non ordinata in realtà è ordinata decrescente e quindi k viene aggiornato dopo ogni confronto
- in tutti e due i casi la funzione $T_{sel}(n)$ (il costo di eseguire Select-Sort) è un polinomio di secondo grado
- questo succede perché j in ogni caso deve arrivare in fondo delle parte non ordinata

Sia nel caso migliore sia nel caso peggiore Select-Sort ha *complessità temporale quadratica*.

Insertion-Sort vs Select-Sort

```
Select-Sort(A)
Insertion-Sort(A)
                                                         for i \leftarrow 1 to length(A) - 1 do
for i \leftarrow 2 to length(A) do
                                                            k \leftarrow i
       \triangleright inserisce A[i] in A[1..i-1]
                                                            for j \leftarrow i + 1 to length(A) do
                                                               if A[k] > A[j] then
   while j > 1 and A[j-1] > A[j] do
                                                                  k \leftarrow j
      scambia A[j-1] con A[j]
                                                               end if
      j \leftarrow j-1
                                                            end for
   end while
                                                            scambia A[i] con A[k]
end for
                                                         end for
return A
                                                         return A
       C^{min}(n) = n. confronti nel caso migliore
       C^{max}(n) = n. confronti nel caso peggiore
       S^{min}(n) = n. spostamenti nel caso migliore
       S^{max}(n) = n. spostamenti nel caso peggiore
```

39

Insertion-Sort vs Select-Sort

```
Select-Sort(A)
Insertion-Sort(A)
                                                                         \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ length(A) - 1\ \ \mathbf{do}
for i \leftarrow 2 to length(A) do
        \triangleright inserisce A[i] in A[1..i-1]
                                                                             \mathbf{for}\ j \leftarrow i+1\ \mathbf{to}\ length(A)\ \mathbf{do}
                                                                                 if A[k] > A[j] then
   while j > 1 and A[j-1] > A[j] do
                                                                                   k \leftarrow j
       scambia A[j-1] con A[j]
                                                                                 end if
       j \leftarrow j-1
                                                                             end for
   end while
                                                                             scambia A[i] con A[k]
end for
                                                                         end for
return A
                                                                         return A
         C_{Ins}^{min}(n) = ???
                                                              C_{Sel}^{min}(n)
                                                                                      ???
         C_{Ins}^{max}(n) =
                                                              C_{Sel}^{max}(n)
         S_{Ins}^{min}(n)
                                                              S_{Sel}^{min}(n)
         S_{Ins}^{max}(n) = ???
                                                              S_{Sel}^{max}(n)
```

Alberi di decisione

Un albero rappresenta le esecuzioni di un algoritmo:

- i nodi interni rappresentano decisioni da prendere
- le foglie rappresentano possibili uscite (output)
- i rami rappresentano particolari esecuzioni (secondo il risultato decisione)

L'albero di decisione che minimizza l'altezza fornisce un confine inferiore al numero di decisioni necessarie nel caso peggiore.

41

L'albero per l'ordinamento di 3 el.

Il problema dell'ordinamento

Nel caso dell'ordinamento:

- n! foglie (un ordinamento è una permutazione)
- i nodi interni rappresentano confronti

In un albero binario per avere k foglie ci vogliono almeno log_2k livelli.

Nel caso dell'ordinamento (sorting) il numero dei confronti deve essere dunque maggiore di (usando la formula di Stirling per approssimare n!):

$$\log_2 n! \approx \log_2 \left(\sqrt{2\pi n} (n/e)^n \right) = \log_2 \sqrt{2\pi n} + n \log_2 (n/e) \approx n \log_2 n$$