

Esercizi codice correzione Hamming

Es1: Si supponga che una parola di dati da 8 bit memorizzata sia

11001010

Adottando l'algoritmo di Hamming, determinare quali bit di controllo verrebbero immagazzinati in memoria insieme alla parola di dati.

Es2: Per la parola

00111001

i bit di controllo memorizzati sono 0111. Si supponga che, quando la parola viene letta dalla memoria, i bit di controllo siano calcolati per essere 1101. Quale parola di dati è letta dalla memoria ?

Es3: Quanti bit di controllo sono necessari se il codice a correzione di errore di Hamming viene usato per rilevare errori di bit singoli in una parola di dati a 1024 bit ?

Es4: Sviluppare un codice SEC per una parola di dati a 16 bit. Generate il codice per la parola dati

0101000000111001

Esercizi codice correzione Hamming

Soluz. es1:

Poiché
$$C1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7$$

 $C2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7$
 $C4 = D2 \oplus D3 \oplus D4 \oplus D8$
 $C8 = D5 \oplus D6 \oplus D7 \oplus D8$

si ha

$$C1 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$C2 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$C4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$C8 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

Esercizi codice correzione Hamming

Soluz. es2: I dati e bit di controllo scritti in memoria sono:

I bit di controllo calcolati dai dati letti da memoria sono **1101**, pertanto la *parola sindrome* è:

$$(0\ 1\ 1\ 1) \oplus (1\ 1\ 0\ 1) = 1\ 0\ 1\ 0$$

quindi il bit errato è quello in posizione 10 (bit dati D6). Ne consegue che la parola letta dalla memoria è

00011001

Esercizi codice correzione Hamming

Soluz. es3: Bisogna trovare il valore di K tale che:

$$2^{K}-1 \geq M + K$$

con
$$M = 1024 = 2^{10}$$

$$2^{K}-1 \ge 2^{10} + K$$

Pertanto sicuramente K deve essere maggiore di 10. Verifichiamo se K=11 soddisfa la disuguaglianza di sopra:

$$2047 = 2^{11} - 1 \ge 2^{10} + 11 = 1035$$
 VERO!

Soluz. es4: Poiché $M = 16 = 2^4$, K deve essere >4, K=5 va bene:

$$31 = 2^5 - 1 \ge 2^4 + 5 = 21$$

Pertanto dobbiamo avere M + K = 16 + 5 = 21 bit disposti secondo lo schema che assegna ai bit di controllo le posizioni che sono potenze di 2 (C1, C2, C4, C8, C16) e alle altre posizioni i bit dati (da D1 a D16):

Esercizi codice correzione Hamming

Per capire quali bit dati contribuiscono a formare il valore per i vari bit di controllo bisogna rappresentare tutte le posizioni tramite i 5 bit di controllo e selezionare per ogni bit di controllo i bit dati che corrispondono ad un valore di 1 per quel bit:

C16	C8	C4	C2	C1	posizione	bit dati					
0	0	0	0	1	1						
0	0	0	1	0	2						
0	0	0	1	1	3	D1					
0	0	1	0	0	4						
0	0	1	0	1	5	D2					
0	0	1	1	0	6	D3					
0	0	1	1	1	7	D4					
0	1	0	0	0	8						
0	1	0	0	1	9	D5					
0	1	0	1	0	10	D6					
0	1	0	1	1	11	D7					
0	1	1	0	0	12	D8					
0	1	1	0	1	13	D9					
0	1	1	1	0	14	D10					
0	1	1	1	1	15	D11					
1	0	0	0	0	16						
1	0	0	0	1	17	D12					
Continuare in modo analogo											

Risultato finale:

 $C1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7 \oplus D9$ $\oplus D11 \oplus D12 \oplus D14 \oplus D16$

 $C2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7$ $\oplus D10 \oplus D11 \oplus D13 \oplus D14$

 $C4 = D2 \oplus D3 \oplus D4 \oplus D8 \oplus D9$ $\oplus D10 \oplus D11 \oplus D15 \oplus D16$

 $C8 = D5 \oplus D6 \oplus D7 \oplus D8 \oplus D9$ $\oplus D10 \oplus D11$

 $C16 = D12 \oplus D13 \oplus D14 \oplus D15$ $\oplus D16$

Esercizi codice correzione Hamming

Quindi in memoria si deve immagazzinare la seguente configurazione binaria

21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D16	D15	D14	D13	D12		D11	D10	D9	D8	D7	D6	D5		D4	D3	D2		D1		
					C16								C8				C4		C2	C1
0	1	0	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	1