#### SUMMER INTERN PROJECT PRESENTATION

#### DEPARTMENT OF ELECTRICAL ENGINEERING



NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR ASSAM

# Malware Hunter: A CNN powered malicious URL detection system

#### **Presented By:**

Anand Kumar 2013008

Mula Ganesh 2013067

#### **Under the Guidance of:**

Dr. Ripon Patgiri

**Assistant Professor** 

Department of Computer Science and Engineering

National Institute of Technology Silchar

## INTRODUCTION

- Malicious URLs are one of the biggest threats to this digital world and preventing it is one of the challenging tasks in the domain of cyber security.
- Previous research to tackle malicious URLs using hard-coded features have proven good indeed, but it comes with the limitation that these features are non-exhaustive and therefore detection algorithms fail to recognize new or unseen malicious URLs.
- However, with the deep learning revolution, this problem can be easily solved, since deep learning models extract features of their own by learning from patterns occurring in such URLs.

## LITERATURE SURVEY:

| Research Article                                   | authors                                                                  | Research Findings                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Deep Approaches on Malicious URL Classification | Arijit Das , Ankita Das , Anisha Datta,<br>Shukrity Si and Subhas Barman | <ul> <li>The CNN LSTM hybrid model is trained for 120 epochs using preprocessed URLs and their corresponding class labels.</li> <li>The model is validated on a test set of 58,440 URLs.</li> <li>The CNN LSTM model achieves an accuracy of 93.59%.</li> </ul>                                        |
| 2. Malicious URL Detection using Deep Learning     | R, vinayakumar; S, Sriram; KP,<br>Soman; Alazab, Mamoun                  | <ul> <li>Objective is to classify whether the URL is either benign or malicious.</li> <li>Character-level embedding methods were used for text representation.</li> <li>Most of the models performed well on Data set 1 in comparison to Data set 2 random split and Data set 2 time split.</li> </ul> |

## OBJECTIVES:

- > To develop a CNN model for malicious URLs classification that is accurate and efficient.
- > To evaluate the performance of the proposed model on a realworld dataset.
- To identify the limitations of the proposed model and suggest directions for future work.

## METHODOLOGY:

- Collect a dataset of malicious and benign URLs.
- Preprocess the data by tokenizing the URLs by characters and padding them to a fixed length.
- > Train a CNN model on the training data using the Adam optimizer and the sparse categorical crossentropy loss function.
- > Evaluate the model on the testing data.

#### **Dataset:**

- The dataset is loaded from a CSV file containing two columns: 'url' and 'label'.
- 'url' column contains the URLs to be classified.
- ▶ 'label' column contains the corresponding labels ('phishing', 'benign', 'defacement' and 'malware').
- The URLs were collected from a variety of sources, including public blacklists, phishing websites, and legitimate websites.

| URL                                         | Label     |
|---------------------------------------------|-----------|
| gurl.com/category/your-life                 | Benign    |
| lazada.co.id/sanken-official-store          | Benign    |
| codeweavers.com/account/downloads           | Benign    |
| vvorootad.top/admin.php?f=1.dat             | Malicious |
| fryzjer.elblag.pl/dfr/sercurity.htm         | Malicious |
| keepgrowing.net.br/sial/New%20folder%20file | Malicious |

Fig1: Sample dataset

## DATA PREPROCESSING:

- ➤ **Label Conversion:** We converted the labels to numerical format so that the model could better understand them.
  - Benign as 0
  - Defacement as 1
  - Phishing as 2
  - Malware as 3
- ➤ **Data Splitting:** We then split the dataset into training and testing sets to prevent overfitting and to assess the model's performance effectively.
  - Train data contains 80% of dataset
  - Test data contains 20% of dataset

## CONTINUATION:

> **Tokenize The URLs:** The URLs are tokenized by characters using the Tokenizer from Keras.

"https://leetcode.com/problems/single-element-in-a-sorted-array/description/"

> **Sequence Padding:** The sequences are padded to a fixed length (maxlen=100) to ensure uniform input shape for the CNN model.

### MODEL ARCHITECTURE:

The model consists of an Embedding layer, followed by a 1D Convolutional layer, Global Max Pooling, and Dense layers.

- ➤ **The Embedding layer:** It learns the representation of each character in the URL.
- ➤ The Conv1D layer: It performs convolutions over the character embeddings to capture local patterns.
- ➤ Global Max Pooling layer: It extracts the most important features from the convolutional layer.
- **Dense layers:** This layer with ReLU activation and Dropout are used for classification.
- > **Dropout Layer:** This layer randomly drops 50% of the neurons during training. This helps prevent overfitting by reducing the reliance on specific neurons.



#### **Model Training:**

- > The model was trained on the training data using the Adam optimizer and the sparse categorical cross-entropy loss function.
- > The model was trained for 10 epochs.

#### **Model Testing:**

- The model was evaluated on the testing data.
- ➤ The model achieved an accuracy of 98% on the testing data.



Fig2: Model Architecture

## RESULTS:



Fig3: Train & Test accuracy graph

## CONCLUSION:

The CNN model is effective for malicious URL detection. The model achieved a high accuracy on the testing dataset, demonstrating its ability to generalize to new data. The model is also relatively simple and can be easily implemented, making it a suitable model for use in real-world applications.

## THANK YOU