

Assessing Aerosol Data Assimilation Products Using DIAL/HSRL Measurements

**Richard Ferrare¹, John Hair¹, Sharon Burton¹, Anthony Notari¹
Chris Hostetler¹, Syed Ismail¹, Amin Nehrir¹, Carolyn Butler²,
James Collins², Marta Fenn², Amy Jo Scarino², Cynthia Randles³,
Pete Colarco³, Arlindo daSilva³, James Campbell⁴,
Angela Benedetti⁵, Samuel Remy⁵**

¹NASA Langley Research Center, Hampton, VA USA

²SSAI, Hampton, VA USA

³NASA Goddard Space Flight Center, Greenbelt, MD USA

⁴U.S. Naval Research Laboratory, Monterey, CA USA

⁵ECMWF, Shinfield Park, Reading Berkshire, UK

Ozone DIAL/HSRL System

Ozone Differential
Absorption Lidar (DIAL)
and NASA SEAC4RS
Aerosol/Cloud High
Spectral Resolution Lidar
(HSRL)
NASA DC-8
SEAC⁴RS Field Mission

Instrument Summary
Simultaneous Nadir & Zenith measurements
Aerosol/Cloud 355, 532 (HSRL), 1064 nm
Nominal resolutions:
Extinction: 1min (~12 km), 270m
Backscatter/Depol: 10sec (~2 km), 30m

Profile Measurements:

- Aerosol Extinction (532nm)
- Layer AOT, AOT at 532nm (from aircraft altitude)
- Aerosol/Cloud Backscatter (532,1064nm)
- Backscatter Color Ratio (1064/532nm)
- Lidar Ratio (extinction/backscatter) (532nm)
- Aerosol/Cloud Depolarization (532,1064nm)
- Spectral Depolarization Ratio (1064/532nm)
- Mixed Layer Heights

DIAL/HSRL AOT comparison with AERONET

- AOT derived from DIAL/HSRL nadir data when DC-8 flew at or above 5 km
- AOT compared with AERONET level 2.0 AOT within 15 km, 30 min
- DIAL/HSRL AOT slightly lower than AERONET, possibly due to AOT not included above (> 5 km) or below (<150 m) profile

AERONET data – thanks to Brent Holben,
Rick Wagener, Joe Shaw, Kevin Repasky,
Kevin Knupp, Doug Moore

DIAL/HSRL Comparisons with GEOS-5 During SEAC4RS

GEOS-5 Atmospheric Data Assimilation System

- GEOS-5 Earth Modeling System, GOCART aerosol module
- Five non-interactive species - dust, sea salt, BC, OC, sulfate
- Convective and large scale wet removal
- Dry deposition and sedimentation
- Optics based on OPAC model (Nonspherical Dust) from Colarco; Kim
- Fire emissions – Quick Fire Emission Dataset (QFED)
 - Based on MODIS Fire Radiative Power
 - Emission factors tuned using MODIS AOT
 - Daily mean emissions
- Aerosol Data Assimilation
 - Terra/Aqua MODIS AOT
 - MISR AOT over bright surfaces
- Resolution
 - Horizontal: 25 km
 - Vertical: 72 layers
- PBL heights defined when diffusion coefficient falls below threshold
- **GEOS-5 3-hourly results from SEAC4RS reanalysis are examined here**

dust	wind and topographic source, 5 mass bins
sea salt	wind driven source, 5 mass bins
black carbon	anthropogenic and wildfire source, mass hydrophobic and hydrophilic
organic carbon	anthropogenic, biogenic, and wildfire source, mass hydrophobic and hydrophilic
sulfate	anthropogenic and wildfire source of SO ₂ , oxidation to SO ₄ mass

(more info in Randles et al. talk A52A-05 Friday AM)

SEAC4RS Aug. 19, 2013 DIAL/HSRL Smoke flight over Midwest

DIAL/HSRL

GEOS-5

DIAL/HSRL and GEOS-5 Median Backscatter and Extinction Profiles During SEAC4RS

GEOS-5 shows slightly higher backscatter and extinction in free troposphere

DIAL/HSRL and GEOS-5 Median Intensive Parameter Profiles During SEAC4RS

- Both DIAL/HSRL and GEOS-5 intensive parameters vary with altitude suggesting aerosol type varies with altitude
- Backscatter Angstrom exponent increasing with altitude suggests decreasing particle size with height
- GOES-5 lidar ratio higher than DIAL/HSRL
- DIAL/HSRL measured more nonspherical particles (i.e. dust) near the surface than represented by GEOS-5

Comparisons of HSRL and GEOS-5 Boundary Layer Heights

Comparison of Boundary Layer Heights from HSRL-2 and GEOS-5 during DISCOVER-AQ

- HSRL-2 boundary layer heights from aerosol backscatter gradients
- GEOS-5 boundary layer heights from thermal diffusivity and aerosol backscatter gradients were about 450-500 m higher than those derived from HSRL-2 and DIAL/HSRL

(see Scarino et al., poster A31C-3040 Wed. AM for more details)

Comparison of Boundary Layer Heights from HSRL-2 and GEOS-5 during SEAC4RS

- DIAL/HSRL boundary layer heights from aerosol backscatter gradients
- GEOS-5 boundary layer heights from thermal diffusivity and aerosol backscatter gradients were about 500-600 m higher than those derived from HSRL-2 and DIAL/HSRL

DIAL/HSRL Comparisons with ECMWF/MACC During SEAC4RS

ECMWF/MACC-II Model

- Monitoring Atmospheric Composition and Climate-Interim Implementation (MACC-II) Model
 - Provides information regarding air quality, global atmospheric composition, climate forcing, solar energy
 - Consumers include WMO, EPA and European Centers, weather services, solar irradiance forecast groups, field campaigns
- Aerosol model has components for dust, sea salt, organic matter, black carbon, sulfate
- Eleven prognostic aerosol variables and one for SO_2
- Aerosol sources taken from
 - Quick Fire Emission Dataset (QFED)
 - Speciated Particulate Emission Wizard (SPEW)
 - Emission Database for Global Atmospheric Research (EDGAR)
- Resolution
 - Horizontal: T255 (~80 km)
 - Vertical: 60 layers
- Aerosol Data Assimilation
 - Terra/Aqua MODIS AOT
 - Working towards assimilation of CALIOP aerosol profiles
- MACC-II 3-hourly results from reanalysis are examined here
- **SEAC4RS DIAL/HSRL data used to examine impacts of:**
 - Assimilation of CALIOP data
 - Increased model resolution
 - Plume rise model impact on smoke injection heights

Example: Comparison of Aerosol Extinction Profiles for August 19 Flight

DIAL/HSRL

MACC-II
MODIS assimilation only

MACC-II
MODIS and CALIOP
assimilation

Comparison of Median Profiles with and without CALIOP assimilation

- Only small effects on median profiles
- Tend to lower the AOT with respect to runs that assimilate only MODIS AOT

Impact of plume rise model smoke injection heights

- Injection heights for smoke emissions are estimated using Plume rise model (Paugam et al., 2015, in preparation, based on Freitas et al., 2007), and Sofiev's parameterization (Sofiev et al., 2012)
- This plume rise model uses MODIS FRP and modelled atmospheric profiles with a shallow convection scheme to represent detrainment from fire plume
- Initial comparisons show that both aerosol extinction and AOT increase throughout the profile, not necessarily at smoke height shown in DIAL/HSRL profile

Impact of MODIS assimilation

- Assimilation of MODIS AOT significantly reduces aerosol extinction profiles in some sections of these flights
- Reductions in aerosol extinction vary with altitude

Impact of Higher Model Resolution

- Model resolution increased from T255 (80 km) to T1279 (16 km)
- Higher resolution seems to do better at representing smoke altitude than MODIS assimilation or plume rise model

Summary

- **HSRL measurements of aerosol extensive and intensive parameters provide additional constraints for developing and assessing models**
- On average, GEOS-5 profiles of aerosol extinction and backscatter are in good agreement with HSRL measurements
- GEOS-5 simulations of aerosol depolarization are biased low
- Both GEOS-5 and airborne HSRL data show aerosol intensive properties vary with altitude during SEAC4RS
- GEOS-5 Boundary layer heights during DISCOVER-AQ Houston are biased 500 m high relative to boundary layer heights derived from airborne lidar data
- Median ECMWF/MACC model extinction profile in agreement with median DIAL/HSRL profile
- Initial comparisons show increased model resolution does a better in representing smoke heights