目录

第1章 衔接课	1
记号	. 1
映射, 有穷集, 无穷集与等势	. 1
笛卡尔积	. 5
等价关系,Cauchy 列与实数	. 6
开集与闭集	. 10
第2章 数列极限	13
数列极限的定义	. 13
数列极限存在的准则	. 16
数列极限的性质	. 17
数列极限的运算	. 20
高阶无穷大	. 30
Stolz 定理及其应用	. 35
实数集完备性的五个等价命题	. 38
综合练习	. 41
第3章 函数极限	44
函数极限的定义	. 45
函数极限的四则运算法则	. 47
3个重要的函数极限及其证明	. 49
函数无穷大的比较	. 50
函数 $y = f(x)$ 的连续性	. 51

第1章 衔接课

记号

记号 (数集)

记号 (大平行算数符号)

对于上述运算, 我们经常称 i 为**指标**, 称 i=1 与 i=n 分别为**下限**与**上限**. 有时指标的取值范围以集合的形式给出, 如 $\sum_{i\in I}a_i$ 表示对所有 $i\in I$ 的 a_i 求和, 称 I 为**指标集**.

有时指标的个数不止一个, 如 $\sum_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} a_{ij}$ 表示对所有 $1 \leqslant i \leqslant m$ 与 $1 \leqslant j \leqslant n$ 的 a_{ij} 求和, 即

$$\sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} a_{ij} = \sum_{i=1}^m \sum_{j=1}^n a_{ij}.$$

正如 0! = 1 一样, 我们规定 \sum 与 \prod 的空和与空积为:

$$\sum_{i \in \emptyset} a_i = 0, \quad \prod_{i \in \emptyset} a_i = 1.$$

映射,有穷集,无穷集与等势

定义 1.1 (映射) 设 A 与 B 为两个集合, 若对任意 $x \in A$, 都能唯一地指定一个 $y \in B$ 与之对应, 则称从 A 到 B 的这种对应关系为映射, 记为 $f: A \to B$, 并称 x 为自变量, y = f(x) 为因变量.

A 称为映射 f 的定义域,A 在 f 映射下的像 $f(A) = \{f(x) \mid x \in A\} \subset B$ 称为 f 的值域.

我们在验证一个对应关系是否是映射时,或者说,验证一个映射是否良定 (well-defined) 时,需要验证两个条件:

- (1) 对任意 $x \in A$, 都能找到 $y \in B$ 与之对应.
- (2) 对任意 $x \in A$, 只能找到唯一的 $y \in B$ 与之对应.

前者称为映射的存在性,后者称为映射的唯一性.

我们将从数集到数集的映射称为函数, 在这门课之中, 我们几乎只考虑从实数集 \mathbb{R} 到实数 集 \mathbb{R} 的函数.

记号 对于映射

$$f: A \to B$$

$$x \mapsto f(x)$$

我们用 \rightarrow 表示映射的范围, $A \rightarrow B$ 表示该映射是从集合 A 到集合 B 的映射. \mapsto 表示映射的具体规则, $x \mapsto f(x)$ 表示 x 在该映射下对应 f(x).

定义 1.2 (单射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射.

定义 1.3 (满射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $y \in B$, 存在 $x \in A$, 使得 f(x) = y, 则称 f 为从 A 到 B 的满射.

定义 1.4 (双射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 既是单射又是满射, 则称 f 为从 A 到 B 的双射. 也称为 A 与 B 之间存在一一对应关系.

例

$$f: [0,1] \to [0,1)$$

$$x \mapsto x, \qquad x \notin \left\{ \frac{1}{k} \mid k \in \mathbb{N}^+ \right\}$$

$$\frac{1}{k} \mapsto \frac{1}{k+1}, \qquad k \in \mathbb{N}^+$$

不难验证, f 为从 [0,1] 到 [0,1) 的双射. 我们将在后续证明之中使用该思想.

这个双射使用了类似希尔伯特酒店的操作:通过将某些元素映射到不同位置,展示了即使是"满"的区间也可以为新的元素腾出"空间".

下面两个命题建议同学们自己先尝试证明,以加深对双射的理解.

命题 1.1 双射存在逆映射, 且逆映射也是双射,

证明 设 $f:A \to B$ 为双射,则对任意 $y \in B$,存在唯一 $x \in A$,使得 f(x) = y.定义映射 $g:B \to A$ 为:对任意 $y \in B$,有 g(y) = x,其中 x 为唯一满足 f(x) = y 的元素.则 g 为 f 的逆

映射. 我们常将 f 的逆映射记为 f^{-1} .

下面我们证明g为双射.

- (1) g 为单射: 对任意 $y_1, y_2 \in B$, 当 $y_1 \neq y_2$ 时, 设 $x_1 = g(y_1), x_2 = g(y_2)$, 则 $f(x_1) = y_1 \neq y_2 = f(x_2)$, 由 f 为单射可知, $x_1 \neq x_2$, 即 $g(y_1) \neq g(y_2)$, 所以 g 为单射.
- (2) g 为满射: 对任意 $x \in A$, 设 y = f(x), 则 $y \in B$, 且 g(y) = g(f(x)) = x, 所以对任意 $x \in A$, 都存在 $y \in B$, 使得 g(y) = x, 所以 g 为满射.

命题 1.2 双射的复合仍为双射.

证明 设 $f: A \to B = g: B \to C$ 均为双射,则对任意 $z \in C$,存在唯一 $y \in B$,使得 g(y) = z, 又对该 y,存在唯一 $x \in A$,使得 f(x) = y.定义映射 $h: A \to C$ 为:对任意 $x \in A$,有 h(x) = g(f(x)).则 h 为从 A 到 C 的映射. 我们常将 f 与 g 的复合记为 $g \circ f$,表示先用 f 作用 x,再用 g 作用 f(x),从而得到 g(f(x)).

下面我们证明 h 为双射.

- (1) h 为单射: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 设 $y_1 = f(x_1), y_2 = f(x_2)$, 则 $y_1 \neq y_2$, 又由 g 为单射可知, $g(y_1) \neq g(y_2)$, 即 $h(x_1) \neq h(x_2)$, 所以 h 为单射.
- (2) h 为满射: 对任意 $z \in C$, 存在唯一 $y \in B$, 使得 g(y) = z, 又对该 y, 存在唯一 $x \in A$, 使得 f(x) = y. 则 h(x) = g(f(x)) = g(y) = z. 所以对任意 $z \in C$, 都存在 $x \in A$, 使得 h(x) = z, 所以 h 为满射.

定义 1.5 (有穷集) 设 A 为一个集合, 称 A 为有穷集, 若存在自然数 n, 使得 A 与 $\{1, 2, \dots, n\}$ = $\{i \mid 1 \le i \le n, i \in \mathbb{N}\}$ 之间存在一一对应关系.

当 n=0 时, $\{1,2,\cdots,n\}=\varnothing$,此时有穷集称为空集.

在此基础上,我们才可以对有限集合的个数进行计数描述,具体而言如下例

例 1.1 $A = \{a, b, c, d, e\}$ 为有穷集, 由于 A 与 $\{1, 2, 3, 4, 5\}$ 之间存在一一对应关系, 因此 A 中有 5 个元素.

其中的一一对应关系可以取为:

$$f: A \to \{1, 2, 3, 4, 5\}, \quad a \mapsto 1, b \mapsto 2, c \mapsto 3, d \mapsto 4, e \mapsto 5.$$

f 是一个双射, 也可以取为:

$$q: A \to \{1, 2, 3, 4, 5\}, \quad a \mapsto 3, b \mapsto 5, c \mapsto 1, d \mapsto 4, e \mapsto 2.$$

q 也是一个双射.

其中我们可以不在乎 A 与 $\{1,2,3,4,5\}$ 之间具体的对应关系, 只在乎双射到 $\{1,2,\cdots,n\}$ 的自然数 n. 这就是为什么我们说 A 中有 5 个元素.

顺带一提, $A = \{a, b, c, d, e\}$ 与 $\{1, 2, 3, 4, 5\}$ 的双射共有 $A_5^5 = 5! = 120$ 种, 这是 a, b, c, d, e

的全排列.

定义 1.6 (等势) 设 A 与 B 为两个集合, 若存在从 A 到 B 的双射, 则称 A 与 B 等势.

也就是说,A 是有穷集等价于: 存在 $n \in \mathbb{N}$, 使得 A 与 $\{1, 2, \dots, n\}$ 等势.

记号 我们用 s.t. (such that) 来表示"使得", 用 i.e. (id est) 来表示"也就是说".

对于无穷集合, 我们给出两种定义方式:

定义 1.7 (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若 A 不为有穷集.

定义 **1.8** (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若存在 A 的真子集 A', 使得 A 与 A' 等势. 下面我们先承认定义 **1.7** 是无穷集的定义, 证明上述两种定义方式是等价的.

证明 存在真子集与其等势一定是无穷集

考虑 A 满足:A 与某个真子集 A' 等势. 即 $\exists f: A \to A'$ 为双射. 使用反证法, 假设 A 为有穷集, 根据定义 1.5, 则 $\exists n \in \mathbb{N}$, s.t. A 与 $\{1, 2, \dots, n\}$ 等势, 即存在双射 $g: A \to \{1, 2, \dots, n\}$.

由命题 1.1 与命题 1.2, 可知 $g \circ f^{-1}: A' \to A \to \{1, 2, \dots, n\}$ 为双射. 又由 $A' \subset A$, 可推出 A' = A, 这与 A' 为 A 的真子集矛盾.

其中最后的部分, 我们总结为以下命题

命题 1.3 给定某个 n, 若存在 $f:A \to \{1,2,\cdots,n\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}:A' \to \{1,2,\cdots,n\}$ 为双射, 则 A'=A.

该命题留作思考,这里给出助教的证明.

证明 我们归纳的给出证明, 当 n=0 时, $\{1,2,\cdots,n\}=\varnothing$, 而空集只能双射到空集: 若 $\mu:\varnothing\to S, S\neq\varnothing$, 则 $\exists s\in S$, 考虑 $\mu^{-1}(s)\in\varnothing$ 可知矛盾. 因此 $A=\varnothing$, $A'=\varnothing$, 所以 A'=A.

当 n = k 成立时, 即存在 $f: A \to \{1, 2, \dots, k\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}: A' \to \{1, 2, \dots, k\}$ 为双射, 则 A' = A.

我们希望证明: 若存在 $g: B \to \{1, 2, \cdots, k+1\}$ 为双射, 且对于 B 的某个子集 B', 存在 $\tilde{g}: B' \to \{1, 2, \cdots, k+1\}$ 为双射, 则 B' = B.

取 $b = \tilde{g}^{-1}(k+1) \in B'$, 则 \tilde{g} 将 $B' \setminus \{b\}$ 映射到 $\{1, 2, \dots, k\}$ 上. $g(b) \in \{1, 2, \dots, k+1\}$, 不难证明存在双射 $\tau : \{1, 2, \dots, k+1\} \setminus \{g(b)\} \to \{1, 2, \dots, k\}$. 因此, 存在双射 $\tau \circ g : B \setminus \{b\} \to \{1, 2, \dots, k\}$, 且 $B' \setminus \{b\} \subset B \setminus \{b\}$, 由 n = k 时的归纳假设, 可知 $B' \setminus \{b\} = B \setminus \{b\}$, 从而 B' = B.

证明 无穷集一定存在真子集与其等势

即证明: 已知 A 是无穷集, 则不存在 $n \in \mathbb{N}$, 使得 A 与 $\{1, 2, \dots, n\}$ 等势.

由 n=0 时的情况可知,A 非空,取 $a_1 \in A$,设 $A_1 = A \setminus \{a_1\}$,则 A_1 为 A 的真子集,且不为有穷集.于是 $A_1 \neq \emptyset$,取 $a_2 \in A_1 \cdots$ 依此类推,可得 A 的一个真子集列 $\{a_i\}_{i=1}^{\infty}$,两两不等.因

此构造出双射:

$$f: A \to A_1$$

$$x \mapsto x, x \notin \{a_i\}_{i=1}^{\infty}$$

$$a_i \mapsto a_{i+1}, i = 1, 2, \cdots$$

由此可知, $A 与 A_1$ 等势.

接下来,我们以定义 1.8 作为无穷集的定义,证明上述两种定义方式是等价的.这个证明过程留作思考,这里给出助教的证明.

证明 A 存在等势真子集 $\Rightarrow A$ 不为有穷集

当 $A = \emptyset$ 时,A 不存在真子集.

当 $A \neq \emptyset$ 时, 设 $f: A \rightarrow A'$ 为双射, 其中 A' 为 A 的真子集. 取 $x_0 \in A \setminus A'$, 构造序列:

$$x_1 = f(x_0), x_2 = f(x_1), \cdots, x_n = f(x_{n-1}), \cdots$$

则有:

- (1) $x_i \in A' \subset A, i = 1, 2, \dots,$
- (2) $x_i \neq x_j, \forall i \neq j, i, j = 0, 1, 2, \cdots$

否则, 存在 $n, m \in \mathbb{N}, n > m \geq 0$, 使得 $x_n = x_m$, 则 $f(x_{n-1}) = f(x_{m-1})$, 由 f 为单射可 $\mathfrak{p}, x_{n-1} = x_{m-1}$, 依此类推, 可知 $x_{n-k} = x_{m-k}, k = 1, 2, \cdots, m$, 从而 $x_0 = x_{n-m} \in A'$, 这 与 $x_0 \in A \setminus A'$ 矛盾.

由此得到了 A 的一个两两不同的无限子集 $\{x_i\}_{i=0}^{\infty}$.

 $\forall n \in \mathbb{N}^+, A$ 都不与 $\{1, 2, \dots, n\}$ 等势: 否则 $\exists n \in \mathbb{N}^+, g : A \to \{1, 2, \dots, n\}$. 考虑 $\{g(x_i)\}_{i=0}^{\infty}$ 两两不同, 且都属于 $\{1, 2, \dots, n\}$. 这就证明了 A 不是有穷集.

证明 A 存在等势真子集 $\leftarrow A$ 不为有穷集

这与上述定义 1.7定义下的无穷集一定存在真子集与其等势的证明过程完全一样.

笛卡尔积

定义 1.9 (笛卡尔积) 设 A 与 B 为两个集合,则 A 与 B 的笛卡尔积为:

$$A \times B = \{(a, b) \mid a \in A, b \in B\},\$$

其中 (a,b) 为有序对.

例 1.2 设 $A = \{1, 2\}, B = \{x, y, z\}, 则$

$$A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}.$$

如果 A 与 B 均为有穷集, 且 A 中有 m 个元素, B 中有 n 个元素, 则 $A \times B$ 中有 $m \times n$ 个元素, 即

$$\#(A \times B) = \#A \times \#B.$$

给出一列集合 $\{A_i\}_{i=1}^n$, 则

$$\prod_{i=1}^{n} A_i = A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, i = 1, 2, \dots, n\},\$$

其中 (a_1, a_2, \cdots, a_n) 为 n 元有序组.

例 1.3
$$\mathbb{R}^n = \prod_{i=1}^n \mathbb{R} = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, i = 1, 2, \dots, n\}, \mathbb{R}^n$$
 称为 n 维欧氏空间.

等价关系,Cauchy 列与实数

定义 1.10 (等价关系) 设 A 为一个集合, 若在 A 上定义了一个关系 \sim , 且对任意 $x,y,z\in A$, 均满足:

- (1) (自反性) $x \sim x$;
- (2) (对称性) $x \sim y \Rightarrow y \sim x$;
- (3) (传递性) $x \sim y, y \sim z \Rightarrow x \sim z$;

则称 \sim 为 A 上的等价关系.

定义 1.11 集合 A 在等价关系 ~ 下的等价类为: 对任意 $a \in A$, 定义 $[a] = \{b \in A \mid b \sim a\}$, a 称为 [a] 这个等价类的代表元.

注意到

$$[a] \cap [b] = \begin{cases} [a] = [b], & a \sim b \\ \varnothing, & a \nsim b \end{cases}$$

证明

- (1) 若 $a \sim b$, 则对任意 $x \in [a]$, 有 $x \sim a$, 由 $a \sim b$ 与等价关系的传递性可知, $x \sim b$, 所以 $x \in [b]$, 即 $[a] \subset [b]$. 同理可知 $[b] \subset [a]$, 所以 [a] = [b].
- (2) 若 $a \nsim b$, 则对任意 $x \in [a]$, 有 $x \sim a$, 由 $a \nsim b$ 与等价关系的对称性与传递性可知, $x \nsim b$, 所以 $x \notin [b]$, 即 $[a] \cap [b] = \varnothing$.

因此集合 A 可以被拆为若干 (可能是无穷个) 互不相交的等价类的并, 这称为 A 的一个分 拆. 具体而言, 记 $A \sim$ 为 A 中所有等价类构成的集合, 称为 A 在等价关系 \sim 下的商集, 即

$$A{\sim} := \{[a] \mid a \in A\}.$$

则 A 可以写为不交并

$$A = \bigcup_{[a] \in A \sim} [a].$$

例 1.4 如果 ~ 是集合 A 上的等价关系, 对于自然映射

$$p: A \to A \sim, \quad a \mapsto [a],$$

这个映射是满射,也称为商映射.

例 1.5 Z上有一种基础的等价关系:

$$a \sim b \iff a - b = 2k, k \in \mathbb{Z},$$

即 a 与 b 同为奇数或同为偶数. 则存在两个等价类

$$[0] = \{\cdots, -4, -2, 0, 2, 4, \cdots\},\$$

$$[1] = {\cdots, -3, -1, 1, 3, 5, \cdots},$$

 $\mathbb{H}[0] \cap [1] = \emptyset, \mathbb{H}$

$$\mathbb{Z} = [0] \cup [1].$$

我们将 $\mathbb{Z} = [0] \cup [1]$ 称为 \mathbb{Z} 在该等价关系下的一个分拆.

商映射

$$p: \mathbb{Z} \to \mathbb{Z} \sim, \quad a \mapsto [a]$$

具体为

例 1.6 集族 *A* 上的等价关系:

$$A \sim B \iff \exists \, \text{双射} \, f : A \to B, \quad A, B \in \mathcal{A}.$$

证明

- (1) (自反性) 对任意 $A \in \mathcal{A}$, 恒有 $A \sim A$, 因为恒有恒等映射 $id_A : A \to A$ 为双射.
- (2) (对称性) 对任意 $A, B \in A$, 若 $A \sim B$, 则存在双射 $f: A \to B$, 由命题 1.1 可知, f 的逆映射 $f^{-1}: B \to A$ 也为双射, 所以 $B \sim A$.
- (3) (传递性) 对任意 $A, B, C \in \mathcal{A}$, 若 $A \sim B$ 且 $B \sim C$, 则存在双射 $f: A \rightarrow B$ 与 $g: B \rightarrow C$, 由命题 1.2 可知, $g \circ f: A \rightarrow C$ 也为双射, 所以 $A \sim C$.

例 1.7 $\mathbb{Z} \times \mathbb{N}^*$ 上的等价关系:

$$(p,q) \sim (p',q') \iff pq' = p'q, \quad p,p' \in \mathbb{Z}, q,q' \in \mathbb{N}^*.$$

良定的证明

- (1) (自反性) 对任意 $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, 恒有 $(p,q) \sim (p,q)$, 因为 pq = pq.
- (2) (对称性) 对任意 $(p,q), (p',q') \in \mathbb{Z} \times \mathbb{N}^*$, 若 $(p,q) \sim (p',q')$, 则 pq' = p'q, 从而 p'q = pq', 所以 $(p',q') \sim (p,q)$.
- (3) (传递性) 对任意 $(p,q), (p',q'), (p'',q'') \in \mathbb{Z} \times \mathbb{N}^*$, 若 $(p,q) \sim (p',q')$ 且 $(p',q') \sim (p'',q'')$,则 pq' = p'q = p'q' = p''q' 成立,从而 pq'q'' = p'qq'' = p''q'q,由于 $q' \neq 0$,可知 pq'' = p''q,所以 $(p,q) \sim (p'',q'')$.

我们将商集

$$(\mathbb{Z} \times \mathbb{N}^*) \sim = \{ [(p,q)] \mid (p,q) \in \mathbb{Z} \times \mathbb{N}^* \}$$

记为 \mathbb{Q} , 并将 [(p,q)] 记为 $\frac{p}{q}$, 则

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\},\,$$

即有理数集.

 $\frac{1}{3}=[(1,3)]=[(2,6)]=[(3,9)]=\cdots$,即 $\frac{1}{3}$ 可以表示为 $(1,3),(2,6),(3,9),\cdots$ 等有序对的等价类. 这提供了一个新的看待 $\frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\cdots$ 的视角.

定义 1.12 (Cauchy 列) 设 $\{a_n\}$ 为实数列, 若对任意 $\varepsilon > 0$, 都存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon$, 则称 $\{a_n\}$ 为 Cauchy 列.

我们称两个 Cauchy 列 $\{a_n\}$ 与 $\{b_n\}$ 等价, 若对任意 $M \in \mathbb{N}^*$, 都存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n - b_n| < \frac{1}{M}$. 记为 $\{a_n\} \sim \{b_n\}$.

命题 1.4 上述等价关系等价于: 对任意 $\varepsilon>0$,都存在 $N\in\mathbb{N}$,使得当 n>N 时,有 $|a_n-b_n|<\varepsilon$. 证明 充分性: 对任意 $\varepsilon>0$,取 $M=\left[\frac{1}{\varepsilon}+1\right]\in\mathbb{N}^*$,使得 $\frac{1}{M}<\varepsilon$,则存在 $N\in\mathbb{N}$,使得当 n>N 时,有 $|a_n-b_n|<\frac{1}{M}<\varepsilon$.

必要性: 对任意 $M\in\mathbb{N}^*$, 取 $\varepsilon=\frac{1}{M}$, 则存在 $N\in\mathbb{N}$, 使得当 n>N 时, 有 $|a_n-b_n|<\varepsilon=\frac{1}{M}$.

命题 1.5 上述等价关系具有传递性, 即: 若 Cauchy 列 $\{a_n\} \sim \{b_n\}$ 且 $\{b_n\} \sim \{c_n\}$, 则 $\{a_n\} \sim \{c_n\}$.

证明 对任意 $M \in \mathbb{N}^*$, 取 $\varepsilon = \frac{1}{2M}$, 则存在 $N_1, N_2 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n - b_n| < \varepsilon$, 且 当 $n > N_2$ 时, 有 $|b_n - c_n| < \varepsilon$. 取 $N = \ge \{N_1, N_2\}$, 则当 n > N 时, 有

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \varepsilon + \varepsilon = \frac{1}{M}.$$

因此 $\{a_n\} \sim \{c_n\}$.

或者我们也可以更简化的写为

证明 对任意 $M \in \mathbb{N}^*$, 取 $M \in \mathbb{N}^*$, 则存在 $N_1, N_2 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n - b_n| < \frac{1}{M}$, 且 当 $n > N_2$ 时, 有 $|b_n - c_n| < \frac{1}{M}$. 取 $N = \geqslant \{N_1, N_2\}$, 则当 n > N 时, 有

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \frac{1}{M} + \frac{1}{M} = \frac{2}{M}.$$

第一种写法用到的是 $\frac{1}{2M}$, 第二种方法用的是 $\frac{1}{M}$. 注意到这两种写法本质上是等价的。第二种写法得到的是

$$\forall M' \in \mathbb{N}^* \ \exists \ N \ \forall n > N : \ |a_n - c_n| < \frac{2}{M'},$$

令 M' = 2M 就正好得到

$$\forall M \in \mathbb{N}^* \ \exists \ N \ \forall n > N : \ |a_n - c_n| < \frac{1}{M}.$$

因此两种写法只是参数选择方式不同,通过简单的替换 M' = 2M 就可以互相转化,因而在逻辑上完全等价。

这也启发了我们,以下命题的成立:

命题 1.6 $\{a_n\}$ 为 Cauchy 列等价于: 对任意 $\varepsilon>0$, 都存在 $N\in\mathbb{N}$, 使得当 n>N 时, 有 $|a_n-b_n|< c\varepsilon$. 其中 c 为任意正常数.

对于每一个与n无关的c > 0,这个命题都是成立的.

证明 充分性: 对任意 $\varepsilon > 0$, 取 $\varepsilon' = c\varepsilon > 0$, 则存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon' = c\varepsilon$.

必要性: 对任意 $\varepsilon > 0$, 取 $\varepsilon' = \frac{\varepsilon}{c} > 0$, 则存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon' = \frac{\varepsilon}{c} < c\varepsilon$.

上述对 Cauchy 列的等价, 就是一个等价关系, 我们仅验证了传递性, 自反性与对称性是显然的.

Cachuy 列之间等价关系的自反性与对称性验证

自反性: 对任意 $M \in \mathbb{N}^*$, 取 N = 1, 则当 n > N 时, 有 $|a_n - a_n| = 0 < \frac{1}{M}$, 所以 $\{a_n\} \sim \{a_n\}$.

对称性: 对任意 $M \in \mathbb{N}^*$, 取 N 使得当 n > N 时, 有 $|a_n - b_n| < \frac{1}{M}$, 则当 n > N 时, 有 $|b_n - a_n| = |a_n - b_n| < \frac{1}{M}$, 所以 $\{b_n\} \sim \{a_n\}$.

现在我们可以定义实数集了. 记 $A = \{\{a_n\} \mid \{a_n\} \text{ b Cauchy } \emptyset, a_n \in \mathbb{Q}\}, \sim \text{ b L述 Cauchy } \emptyset$ 之间的等价关系, 则实数集 \mathbb{R} 定义为商集

$$\mathbb{R} = A \sim = \{ [\{a_n\}] \mid \{a_n\}$$
为 Cauchy 列, $a_n \in \mathbb{Q} \}$,

其中 $[\{a_n\}]$ 为 Cauchy 列 $\{a_n\}$ 的等价类.

总体来说,在这一节中,我们介绍了等价关系与商集的概念,并通过 Cauchy 列与等价关系的方式定义了实数集.这种方式虽然比较绕,但它是严谨的,并且可以帮助我们理解实数的本质.

开集与闭集

我们为了描述欧式空间中的点集,引入了开集与闭集的概念.

定义 1.13 (开集) 设 $A \subset \mathbb{R}$, 若对任意 $x \in A$, 都存在 r > 0, 使得 $(x - r, x + r) \subset A$, 则称 A 为 \mathbb{R} 中的开集.

例 1.8 \mathbb{R} 与 \varnothing 均为开集. 设 $a,b \in \mathbb{R}$, a < b, 则 (a,b) 为开集. 设 $n \in \mathbb{N}^*$, 则 \mathbb{R}^n 中的开球

$$B(x,r) = \{ y \in \mathbb{R}^n \mid |y - x| < r \},$$

其中 $x \in \mathbb{R}^n$, r > 0, 为 \mathbb{R}^n 中的开集.

定义 1.14 (闭集) 设 $A \subset \mathbb{R}$, 若 $\mathbb{R} \setminus A$ 为开集, 则称 A 为 \mathbb{R} 中的闭集.

于是我们可以给出聚点的两种定义:

定义 1.15 [聚点] 设 $A \subset \mathbb{R}, x \in \mathbb{R}$, 若存在点列 $\{x_n\} \subset A \setminus \{x\}$, 满足 $x_n \neq x, \forall n \in \mathbb{N}$, 且 $\lim_{n \to \infty} x_n = x$, 则称 $x \to A$ 的聚点.

定义 1.16 [聚点] 设 $A \subset \mathbb{R}, x \in \mathbb{R}$, 若对任意 r > 0, 都有 $(x - r, x + r) \cap A \setminus \{x\} \neq \emptyset$, 则称 $x \in \mathbb{R}$ 为 A 的聚点.

命题 1.7 上述两种聚点的定义是等价的.

定义 1.15 ⇒ 定义 1.16

设 x 为 A 的聚点,则存在点列 $\{x_n\} \subset A \setminus \{x\}$,满足 $x_n \neq x, \forall n \in \mathbb{N}$,且 $\lim_{n \to \infty} x_n = x$.对任意 r > 0,由 $\lim_{n \to \infty} x_n = x$,可知存在 $N \in \mathbb{N}$,使得当 n > N 时,有 $|x_n - x| < r$,即 $x_n \in (x - r, x + r)$.因此 $(x - r, x + r) \cap A \setminus \{x\} \neq \emptyset$.

定义 1.16 ⇒ 定义 1.15

设 x 为 A 的聚点,则对任意 r>0,都有 $(x-r,x+r)\cap A\setminus\{x\}\neq\varnothing$. 对每个 $n\in\mathbb{N}^*$,取 $r=\frac{1}{n}$,则存在 $x_n\in(x-\frac{1}{n},x+\frac{1}{n})\cap A\setminus\{x\}$,使得 $x_n\neq x$. 由此可构造出点列 $\{x_n\}\subset A\setminus\{x\}$,满足 $x_n\neq x$, $\forall n\in\mathbb{N}$,且 $\lim_{n\to\infty}x_n=x$.

记 A' 为 A 的所有聚点构成的集合,则称 A' 为 A 的导集. 由定义可知,A' 为闭集.

命题 1.8 A 为闭集等价于 $A' \subset A$.

证明 充分性: 设 $A' \subset A$, 则 $\mathbb{R} \setminus A \subset \mathbb{R} \setminus A'$. 对任意 $x \in \mathbb{R} \setminus A$, 则 $x \notin A'$, 即 x 不是 A 的聚点,

则存在 r > 0, 使得 $(x - r, x + r) \cap A \setminus \{x\} = \emptyset$, 从而 $(x - r, x + r) \subset \mathbb{R} \setminus A$. 因此 $\mathbb{R} \setminus A$ 为开 集, 所以 A 为闭集.

必要性: 设 A 为闭集,则 $\mathbb{R}\setminus A$ 为开集. 对任意 $x\in A'$, 若 $x\notin A$,则 $x\in \mathbb{R}\setminus A$. 由 $\mathbb{R}\setminus A$ 为 开集,则存在r > 0,使得 $(x - r, x + r) \subset \mathbb{R} \setminus A$.从而 $(x - r, x + r) \cap A = \emptyset$,这与 $x \to A$ 的聚 点矛盾. 因此 $x \in A$, 所以 $A' \subset A$.

命题 1.9 开集的任意并与有限交为开集, 闭集的任意交与有限并为闭集.

证明 设 $\{A_i\}_{i\in I}$ 为 \mathbb{R} 中的开集族,则对任意 $x\in\bigcup A_i$,存在 $i_0\in I$,使得 $x\in A_{i_0}$.由 A_{i_0} 为开 集,则存在r > 0,使得 $(x - r, x + r) \subset A_{i_0} \subset \bigcup_{i \in I} A_i$.因此 $\bigcup_{i \in I} A_i$ 为开集.

注设 $\{A_i\}_{i\in I}$ 为限中的开集族,则对任意 $x\in\bigcup A_i$,存在 $i_0\in I$,使得 $x\in A_{i_0}$.实际利用了选 择公理. 选择公理是集合论中的一个重要公理, 它断言对于任意非空集合族, 都存在一个选择 函数,该函数从每个集合中选择一个元素.在这里,我们利用选择公理从开集族 $\{A_i\}_{i\in I}$ 中选择 一个包含 x 的开集 A_{io} .

设 A_1, A_2, \cdots, A_n 为 \mathbb{R} 中的开集,则对任意 $x \in \bigcap_{i=1}^n A_i$,则 $x \in A_i, i = 1, 2, \cdots, n$. 由 A_i 为 开集, 则存在 $r_i > 0$, 使得 $(x - r_i, x + r_i) \subset A_i, i = 1, 2, \dots, n$. 取 $r = \min_n \{r_1, r_2, \dots, r_n\}$, 则 $(x-r,x+r)\subset A_i, i=1,2,\cdots,n$,从而 $(x-r,x+r)\subset\bigcap_{i=1}^nA_i$. 因此 $\bigcap_{i=1}^nA_i$ 为开集.

设 $\{B_i\}_{i\in I}$ 为 \mathbb{R} 中的闭集族,则 $\mathbb{R}\setminus B_i$ 为开集,则

$$\mathbb{R} \setminus \bigcap_{i \in I} B_i = \bigcup_{i \in I} (\mathbb{R} \setminus B_i)$$

为开集. 因此 $\bigcap_{i \in I} B_i$ 为闭集. 设 B_1, B_2, \cdots, B_n 为 \mathbb{R} 中的闭集, 则 $\mathbb{R} \setminus \bigcup_{i=1}^n B_i = \bigcap_{i=1}^n (\mathbb{R} \setminus B_i)$

$$\mathbb{R} \setminus \bigcup_{i=1}^{n} B_i = \bigcap_{i=1}^{n} (\mathbb{R} \setminus B_i)$$

为开集. 因此 $\bigcup_{i=1}^{n} B_i$ 为闭集.

上面的证明过程中, 我们用到了 De Morgan 定律, 即

$$A \setminus \bigcup_{i \in I} B_i = \bigcap_{i \in I} (A \setminus B_i),$$

以及

$$A \setminus \bigcap_{i \in I} B_i = \bigcup_{i \in I} (A \setminus B_i).$$

我们给出一个简要的证明.

证明 对任意 $x \in A \setminus \bigcup_{i \in I} B_i$, 则 $x \in A$ 且 $x \notin \bigcup_{i \in I} B_i$, 则 $x \notin B_i$, $\forall i \in I$, 从而 $x \in A \setminus B_i$, $\forall i \in I$,

即
$$x \in \bigcap_{i \in I} (A \setminus B_i)$$
. 因此 $A \setminus \bigcup_{i \in I} B_i \subset \bigcap_{i \in I} (A \setminus B_i)$.

即 $x \in \bigcap_{i \in I} (A \setminus B_i)$. 因此 $A \setminus \bigcup_{i \in I} B_i \subset \bigcap_{i \in I} (A \setminus B_i)$.
对任意 $x \in \bigcap_{i \in I} (A \setminus B_i)$, 则 $x \in A \perp x \in A \setminus B_i$, $\forall i \in I$, 则 $x \notin B_i$, $\forall i \in I$, 从而 $x \notin \bigcup_{i \in I} B_i$,

即
$$x \in A \setminus \bigcup_{i \in I} B_i$$
. 因此 $\bigcap_{i \in I} (A \setminus B_i) \subset A \setminus \bigcup_{i \in I} B_i$. 综上所述, $A \setminus \bigcup_{i \in I} B_i = \bigcap_{i i n I} (A \setminus B_i)$. 同理可证 $A \setminus \bigcap_{i i n I} B_i = \bigcup_{i i n I} (A \setminus B_i)$. **例 1.9** 闭集的无穷并不一定为闭集. 例如, 对每个 $n \in \mathbb{N}^*$, 令

$$A_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right],$$

则 A_n 为闭集, 但

$$\bigcup_{n=1}^{\infty} A_n = (-1, 1)$$

为开集, 所以不是闭集.

同理, 开集的无穷交不一定为开集. 例如, 对每个 $n \in \mathbb{N}^*$, 令

$$B_n = \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right),$$

则 B_n 为开集, 但

$$\bigcap_{n=1}^{\infty} B_n = [-1, 1]$$

为闭集, 所以不是开集.

理解了有关开集与闭集的基本性质,可以更好的理解实数集的等价命题: 开覆盖定理与闭 区间套定理.

第2章 数列极限

数列极限的定义

定义 2.1 (数列极限) 对于数列 $\{a_n\}$, 若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立, 则 $\{a_n\}$ 以常数 a 为极限, 记为 $\lim_{n \to \infty} a_n = a$ 或 $a_n \to a(n \to \infty)$.

常数列是指所有项都相等的数列, 例如 2, 2, 2, 2, · · · .

注 一般而言, 对于语句 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*$, 一般暗示了其中 $N = N(\varepsilon)$, 即 N 是依赖于 ε 的. 不太严谨的说, 当 ε 变小时, 对应的 N 会变大.

我们判断数列是否收敛,就是判断其是否满足数列极限存在的定义.

习题 1.2.1 用定义证明下面的结论:

(1)
$$\lim_{n \to \infty} \frac{n}{5+3n} = \frac{1}{3};$$

$$(2) \lim_{n \to \infty} \frac{\sin n}{n} = 0;$$

(3)
$$\lim_{n\to\infty} (-1)^n \frac{1}{\sqrt{n+1}} = 0;$$

$$(4) \lim_{n\to\infty} \frac{n!}{n^n} = 0.$$

解

. (1)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{5}{9\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n}{5+3n} - \frac{1}{3} \right| = \left| \frac{3n - (5+3n)}{3(5+3n)} \right| = \frac{5}{3(5+3n)} < \frac{5}{9n} < \varepsilon.$$

(2)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \leqslant \frac{1}{n} < \varepsilon.$$

(3)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon^2} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| (-1)^n \frac{1}{\sqrt{n+1}} - 0 \right| = \frac{1}{\sqrt{n+1}} < \varepsilon.$$

(4)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{n!}{n^n} - 0 \right| = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} < \frac{1}{n} < \varepsilon.$$

除定义之外,也可以使用如下的两个与定义等价的命题:

习题 1.2.2 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在正整数 N, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

证明 对任意 $\varepsilon > 0$, 取 $\varepsilon' = \frac{\varepsilon}{M} > 0$, 则存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon' = M \cdot \frac{\varepsilon}{M} = \varepsilon$.

习题 1.2.3 证明: 当且仅当 $\lim_{n\to\infty} (a_n - a) = 0$ 时, 有 $\lim_{n\to\infty} a_n = a$. (数列极限的许多证明问题, 都可用同样的方法处理.)

证明 充分性: 由 $\lim_{n\to\infty} (a_n-a)=0$, 则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty} a_n=a$.

必要性: 由 $\lim_{n\to\infty}a_n=a$,则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty}(a_n-a)=0$.

事实上, 所有的收敛的有理数列, 其极限点的全体即是实数集 \mathbb{R} . 即实数集 \mathbb{R} 是有理数列的极限值构成的.

注

- (1) ◎ 对极限是不封闭的, 即: 由 ◎ 组成的数列的极限不一定是 ◎ 中的元素;
- (2) 由 ℚ 组成的数列的极限只能是实数;
- (3) 由 ℚ 组成的所有收敛数列, 他们的极限的集合, 恰好就是 ℝ, 不多不少.

理由如下:

对 $\forall x \in \mathbb{R}$, 设 x 的小数表示为: $x = a_0.a_1a_2a_3\cdots$, 则有理数列: $a_0, a_0.a_1, a_0.a_1a_2, \cdots$ 当 $n \to \infty$ 时, 其极限为 x. 若 x 是有理数, 则 $a_0.a_1a_2\cdots a_n$ 是有限小数或循环小数, 若 x 是无理数, 则 $a_0.a_1a_2\cdots a_n$ 是无限不循环小数, 则极限点 x 是无理数.

此处 $x = a_0.a_1a_2a_3\cdots$,其中每一个 a_i 都是一个数字, a_0 是整数部分, $a_1a_2a_3\cdots$ 是小数部分. 比如 $x = 3.1415926\cdots$,那么 $a_0 = 3$, $a_1 = 1$, $a_2 = 4$, $a_3 = 1$, $a_4 = 5$, $a_5 = 9$, $a_6 = 2$, $a_7 = 6$, \cdots .

可以由 $x = a_0.a_1a_2a_3\cdots$ 构造出一个数列 $\tau_1 = a_0, \tau_2 = a_0.a_1, \tau_3 = a_0.a_1a_2, \cdots$, 说 x 为极限指的, 是 x 是数列 $\{\tau_n\}$ 的极限, 记为 $\lim_{n\to\infty} \tau_n = x$. 都用 x 代指, 是因为这里不能确定 x 是不是有限小数, 有理数还是无理数. 但是 x 是数列 $\{\tau_n\}$ 的极限是确定的.

定义 2.2 (子列) 一个数列 $\{a_n\}$ 的子列, 是指取自原数列 $\{a_n\}$ 的无穷多项, 按照原数列中的同样顺序写成的一个新的数列. 于是 $\{a_n\}$ 的子列通常形如 $\{a_{n_k}\}(k \geq 1)$, 其中 n_k 是正整数, 满足 $n_1 < n_2 < \cdots < n_k$.

命题 2.1 数列 $\{a_n\}$ 收敛于 a,则其任意一个子列也收敛于 a.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立.

对于子列 $\{a_{n_k}\}$, 由于 n_k 是正整数, 且 $n_1 < n_2 < \cdots < n_k$, 因此当 k > N 时, $n_k > N$, 则有

 $|a_{n_k}-a|<\varepsilon$. 由数列极限的定义, 可知 $\lim_{k\to\infty}a_{n_k}=a$.

命题 2.2 数列 $\{a_n\}$ 的某个子列收敛于 a 的充要条件在 a 的任意小邻域内有无穷多项.

证明 充分性: 设 $\{a_{n_k}\}$ 为 $\{a_n\}$ 的子列, 且 $\lim_{k\to\infty}a_{n_k}=a$. 则 $\forall \varepsilon>0, \exists K\in\mathbb{N}^*, \forall k>K$ 都有 $|a_{n_k}-a|<\varepsilon$ 成立. 因此 a 的任意小邻域内有无穷多项.

必要性: 设 a 的任意小邻域内有无穷多项. 则 $\forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 取 $a_{n_1} \in (a - 1, a + 1), a_{n_2} \in \left(a - \frac{1}{2}, a + \frac{1}{2}\right), \dots, a_{n_k} \in \left(a - \frac{1}{k}, a + \frac{1}{k}\right), \dots$. 则 $\{a_{n_k}\}$ 为 $\{a_n\}$ 的子列, 且 $\lim_{k \to \infty} a_{n_k} = a$.

聚点是对于集合而言的, 极限是对于数列而言的, 他们之间存在一些联系:

命题 2.3 a 为数列 $\{a_n\}$ 的聚点, 当且仅当存在收敛于 a 的子列 a_{n_k} .

习题 1.2.6 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty}a_{2k+1}=a$, 及 $\lim_{k\to\infty}a_{2k}=a$, 则 $\lim_{n\to\infty}a_n=a$.

对于 m 个子列的情况, 也是类似的, 即

$$\lim_{n \to \infty} a_n = a \Leftrightarrow \lim_{k \to \infty} a_{mk+1} = a, \lim_{k \to \infty} a_{mk+2} = a, \cdots, \lim_{k \to \infty} a_{mk+m} = a$$

上述的例子也能用于判定数列不收敛.

习题 1.2.7 证明下列数列不收敛:

(1)
$$a_n = (-1)^n \frac{n}{n+1}$$
; (2) $a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$.

解

(1) 取
$$a_{2n} = \frac{2n}{2n+1}$$
, $a_{2n+1} = -\frac{2n+1}{2n+2}$, 则 $\lim_{n\to\infty} a_{2n} = 1$, $\lim_{n\to\infty} a_{2n+1} = -1$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1}$, 矛盾.

(2) 取
$$a_{2n} = 5\left(1 - \frac{1}{n}\right) + 1$$
, $a_{2n+1} = 5\left(1 - \frac{1}{n}\right) - 1$, 则 $\lim_{n \to \infty} a_{2n} = 6$, $\lim_{n \to \infty} a_{2n+1} = 4$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1}$, 矛盾.

下面两个命题有一定的难度,可以先自行思考,这里给出助教的证明,

命题 2.4 数列有界的充要条件为他的每个子列有收敛子列.

证明 充分性: 设数列 $\{a_n\}$ 有界,则 $\{a_{n_k}\}$ 也有界. 由定理 2.1可知, $\{a_{n_k}\}$ 有收敛子列.

必要性: 设数列 $\{a_n\}$ 无界, 则对任意 M>0, 都存在 $n\in\mathbb{N}^*$, 使得 $|a_n|>M$. 取 M=1, 则存在 $n_1\in\mathbb{N}^*$, 使得 $|a_{n_1}|>1$. 取 $M=|a_{n_1}|+1$, 则存在 $n_2>n_1$, 使得 $|a_{n_2}|>|a_{n_1}|+1$. 依此类推, 可得数列 $\{a_{n_k}\}$, 其中 $k\in\mathbb{N}^*$, 且 $|a_{n_k}|>k$. 显然, $\{a_{n_k}\}$ 无收敛子列.

命题 2.5 数列收敛的充分必要条件是存在一个数 a, 使数列的每个子列有收敛于 a 的子列.

证明 充分性: 设数列 $\{a_n\}$ 收敛于 a,则其任意子列也收敛于 a.因此其每个子列都有收敛于 a的子列.

必要性: 设数列 $\{a_n\}$ 不收敛, 则存在 $\varepsilon_0 > 0$, 使得对任意 $N \in \mathbb{N}^*$, 都存在 n > N, 使得 $|a_n - a| \ge \varepsilon_0$. 取 N = 1, 则存在 $n_1 > 1$, 使得 $|a_{n_1} - a| \ge \varepsilon_0$. 取 $N = n_1$, 则存在 $n_2 > n_1$, 使得 $|a_{n_2} - a| \ge \varepsilon_0$. 依此类推, 可得数列 $\{a_{n_k}\}$, 其中 $k \in \mathbb{N}^*$, 且 $|a_{n_k} - a| \ge \varepsilon_0$. 显然, $\{a_{n_k}\}$ 无收敛于 a 的子列.

数列极限存在的准则

1. 定义判别 如果能够找到合适的 N, 使得后续的定义都成立, 则可以判定数列极限存在. 这里的 N 的存在性一般由构造来得出,

例 2.1 证明
$$\lim_{n\to\infty} \sqrt[n]{n+1} = 1$$

证明 $\forall \varepsilon > 0$, 欲求 N, 使得 $|\sqrt[n]{n+1} - 1| < \varepsilon$, 记 $a_n = \sqrt[n]{n+1} - 1$, 则

$$1 + n = (1 + \alpha)^n = 1 + n\alpha + \frac{n(n-1)}{2}\alpha^2 + \dots + \alpha^n \geqslant \frac{n(n-1)}{2}\alpha^2$$

因此

$$0 < \alpha < \sqrt{\frac{2(n+1)}{n(n-1)}} \leqslant \sqrt{\frac{4}{n-1}} < \varepsilon$$

对每一个不等号组成的不等式组求解, 就可以得到 n 的范围了, 即得 $N \geqslant \left\{2, \frac{16}{\varepsilon^2} + 1\right\} + 1$.

例 2.2 证明
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \alpha>0$$

证明 $\forall \varepsilon > 0, \exists N = \left[\sqrt[\alpha]{\frac{1}{\varepsilon}} \right]$, 使得当 n > N 时, 有

$$|a_n - 0| = \frac{1}{n^{\alpha}} < \frac{1}{N^{\alpha}} \leqslant \varepsilon.$$

记号 记号 [x] 表示不大于 x 的最大整数, 如 [3.14] = 3, [-3.14] = -4. 记号 [x] 表示不小于 x 的最小整数, 如 [3.14] = 4, [-3.14] = -3. 即

$$\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leqslant x\},\$$

$$\lceil x \rceil = \min\{n \in \mathbb{Z} : n \geqslant x\}.$$

2. 单调有界准则 数集的上界和下界定义为:

定义 2.3

(1) $\sup E = \inf\{u \in \mathbb{R} : u \geqslant x, \forall x \in E\};$

(2) inf $E = \sup\{u \in \mathbb{R} : u \leqslant x, \forall x \in E\}.$

定理 2.1 (单调有界极限存在准则) 若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界,则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty}a_n=\sup a_n(\inf a_n)$.

证明 单调增有界极限存在.

设数列 $\{a_n\}$ 单调增且有上界,由确界存在定理, $\{a_n\}$ 有上确界. 令 $\sup a_n = \beta$,则 β 满足以下两点:

- 1. $\forall n \in N, a_n \leqslant \beta$;
- 2. $\forall \varepsilon > 0, \exists a_{n_0} \in \{a_n\}, \beta \varepsilon < a_{n_0}$.

又因为 $\{a_n\}$ 单调增, 故 $\forall n > n_0, a_n \geqslant a_{n_0} > \beta - \varepsilon$, 且 $a_n \leqslant \beta < \beta + \varepsilon$. 即 $|\beta - a_n| < \varepsilon$ 在 $n > n_0$ 时成立.

由数列极限定义,有 $\lim_{n\to\infty} a_n = \beta = \sup\{a_n\}$. 同理,单调减有下界极限存在.

3. 夹逼准则

定理 2.2 (夹逼准则) 设数列 $\{a_n\}, \{b_n\}, \{c_n\}$ 满足 $a_n \leq b_n \leq c_n, \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 则 $\lim_{n \to \infty} b_n = a$.

证明 从 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*, \forall n > N_1$ 都有 $|a_n - a| < \varepsilon. \Rightarrow a - \varepsilon < a_n < a + \varepsilon$ 当 $n > N_1$ 时恒成立.

再从 $\lim_{n\to\infty} c_n = a \Rightarrow$ 对上述 ε , $\exists N_2 \in \mathbb{N}^*, \forall n > N_2$ 都有 $|c_n - a| < \varepsilon$. $\Rightarrow a - \varepsilon < c_n < a + \varepsilon$ 当 $n > N_2$ 时恒成立.

令 $N = \max\{N_1, N_2\}$, 则当 n > N 时, $a - \varepsilon < a_n \leqslant b_n \leqslant c_n < a + \varepsilon$, 即 $|b_n - a| < \varepsilon$ 成立. 由数列定义, $\lim_{n \to \infty} b_n = a$.

数列极限的性质

命题 2.6 (唯一性) 若 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} a_n = b$, 则 a = b.

证明 如果 $\{a_n\}$ 有两个极限值 a 和 b. 根据极限的定义, 对于任意的正数 ε , 注意到 $\frac{\varepsilon}{2}$ 也是一个正数, 因此对应两个极限值, 分别存在正整数 N_1 和 N_2 , 使得当

$$n > N_1$$
 时有 $|a_n - a| < \frac{\varepsilon}{2}$,
 $n > N_2$ 时有 $|a_n - b| < \frac{\varepsilon}{2}$.

因此, 当 $n > \max\{N_1, N_2\}$ 时(即 $n > N_1, n > N_2$), 上面两个不等式都满足, 所以

$$|a-b| = |(a-a_n) + (a_n-b)| \leqslant |a-a_n| + |a_n-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

两个数的距离要小于任意一个正数,这两个数必须相等,即 a = b.

定义 2.4 (数列有界) 设 $\{a_n\}$ 为实数列, 若存在常数 M>0, 使得对任意 $n\in\mathbb{N}^*$, 都有 $|a_n|< M$, 则称 $\{a_n\}$ 为有界数列.

命题 2.7 (有界性) 若 $\lim_{n\to\infty} a_n = a$, 则数列 $\{a_n\}$ 有界.

证明 取 $\varepsilon = 1$, 由定义知道, 当存在一个自然数 N, 使得当 n > N 时, 有 $|a_n - a| < 1$, 即当 n > N 时, 有 $|a_n| < |a| + 1$. 取

$$M = \max\{|a| + 1, |a_1|, |a_2|, \dots, |a_N|\}.$$

注意到,第一,有有限个数中一定能取得一个最大的;第二,上面确定的 M 显然与 n 无关.则对所有自然数 n,也就是说数列的所有项,都会有 $|a_n| \leq M$.

不难推出如下结论:

命题 数列 $\{a_n\}$ 有界等价于数列 $\{a_n\}$ 自第 N 项之后有界, 其中 N 已知.

命题 2.8 (保号性) 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty} a_n = a, a_n \ge 0, \forall n \ge n_0, 则必有 <math>a \ge 0.$

证明 若 a > l, 取 $\varepsilon = a - l > 0$, 则存在一个自然数 N, 使得当 n > N 时, 有

$$|a_n - a| < \varepsilon = a - l,$$

因此

$$-(a-l) < a_n - a$$

即, 当 n > N 时, 不等式 $a_n > l$ 成立. 对于 a < l 的情况, 可类似证明, 在这种情况下, 只要取 $\varepsilon = l - a > 0$ 即可. 对于此问, 取 l = 0.

由此不难推出:

命题 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty} a_n = a, a_n \geqslant l, \forall n \geqslant n_0,$ 则必有 $a \geqslant l$.

该命题的逆命题不成立, 如 $a_n = (-1)^n \cdot \frac{1}{n}$, 则 $\lim_{n \to \infty} a_n = 0$, 但 a_n 既不恒大于零, 也不恒小于零. 然而, 加上如果是不严格不等, 则在 N 充分大时成立, 具体而言如下所述:

命题 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty}a_n=a$, 则 $\forall l>a$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $a_n< l$.

证明 反证: 若 $\exists l_0 > a$, 使得对任意 $N \in \mathbb{N}^*$, 都存在 n > N, 使得 $a_n \ge l_0$. 取 $\varepsilon_0 = l - a > 0$, 则对任意 $N \in \mathbb{N}^*$, 都存在 n > N, 使得 $|a_n - a| \ge \varepsilon_0$. 与数列极限的定义矛盾.

命题 **2.9** (保序性) 若 $a_n \to a, b_n \to b$, 且 $a_n \leq (\geq)b_n, \forall n \geq n_0$, 则必有 $a \leq (\geq)b$.

证明 令 $c_n = b_n - a_n$,则 $c_n \to b - a$,且 $c_n \le 0, \forall n \ge n_0$,由保号性可知, $b - a \le 0$,即 $a \le b$.

其中唯一性暗示了, 改变数列中有限多项的值, 不会影响数列的收敛性及其极限. 例如, 对于数列 $1,1/2,1/3,1/4,\ldots$, 它的极限是 0, 即 $\lim_{n\to\infty}\frac{1}{n}=0$. 如果我们改变数列的前 10 项, 如

1,1,1,1,1,1,1,1,1,1,1/11,1/12,1/13,1/14,...,则数列的极限仍然是 0. 这个性质在证明数列极限的存在性时,常常会被用到.

有界性质给出了收敛数列的一个必要条件. 因此无界数列一定是发散的. 例如对于数列 0,1,0,2,0,3,0,4,··· 显然是无界的, 且发散的.

保号性的条件是不严格不等, 若调整为 $a_n > 0$, 则无法说明 a > 0. 例如数列 $1, 1/2, 1/3, 1/4, \dots$ 的极限是 0, 但数列的每一项都是正数.

习题 1.2.13 设数列 $\{a_n\}$ 与 $\{b_n\}$ 分别收敛于 a,b. 若 a>b, 则从某一项开始, 有 $a_n>b_n$; 反之, 若从某项开始恒有 $a_n\geqslant b_n$, 则 $a\geqslant b$.

解 这是保序性的直接推论.

- **例 2.3** 设 $a \in \mathbb{R}$, $\{a_n\}$ 为实数列, 请考虑以下对命题的语句, 说明了 $\{a_n\}$ 具有什么性质?
 - (1) 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
 - (2) 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 存在 n > N, 有 $|a_n a| < \varepsilon$ 成立.
 - (3) 存在 $N \in \mathbb{N}$, 对于任意的 $\varepsilon > 0$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
 - (4) 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 当 n > N 时, 有 $|a_n a| < \varepsilon$.
 - (5) 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.
 - (6) 对于任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.

解

- (1) $\{a_n\}$ 以 a 为极限.
- (2) a 为 $\{a_n\}$ 的聚点, 或者有一项等于 a.
- (3) $\{a_n\}$ 从某一项开始恒等于 a.
- $(4) \{a_n\}$ 有界.
- (5) 恒成立.
- (6) a 为 $\{a_n\}$ 的聚点.

这里仅给出部分证明.

证明 3. 存在 $N \in \mathbb{N}$, 对于任意的 $\varepsilon > 0$, 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow \{a_n\}$ 从某一项开始恒等于 a.

相邻的全称量词是可以交换的, 因此上式等价于 $\exists N \in \mathbb{N}$, 使得 $\forall n > N$, $\forall \varepsilon > 0$, $|a_n - a| < \varepsilon$. 由 $\forall \varepsilon > 0$, $|a_n - a| < \varepsilon \Leftrightarrow a_n = a$, 可知 $\exists N \in \mathbb{N}$, 使得 $\forall n > N$, $a_n = a$. 即证.

证明 4. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 当 n > N 时, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow \{a_n\}$ 有界.

充分性: 取 N=1, 存在 $\varepsilon>0$, 当 n>1 时, 有 $|a_n-a|<\varepsilon$. 则存在 $M=|a|+\varepsilon+|a_1|$, 则

$$|a_1| < |a| + \varepsilon + |a_1| = M$$

$$|a_n| < |a| + \varepsilon < |a| + \varepsilon + |a_1| = M, \forall n > 1$$

即证有界.

必要性: 若有界 M, 则 $\forall N$, $\exists \varepsilon = M + |a|$, 当 n > N 时,

$$|a_n - a| \leqslant |a_n| + |a| \leqslant M + |a| = \varepsilon.$$

证明 5. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon = |a_{N+1} - a| + 1 > 0$, 存在 n = N + 1 > N, 使得 $|a_n - a| = |a_{N+1} - a| < \varepsilon$ 成立. 恒成立.

证明 6. 对于任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow a \to \{a_n\}$ 的聚点.

充分性: 由 a 为 $\{a_n\}$ 的聚点 $\Rightarrow \forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 则对任意的 $N \in \mathbb{N}$, 存在 n > N, 使得 $|a_n - a| < \varepsilon$.

必要性: 由对任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 使得 $|a_n - a| < \varepsilon$ 成立. 则 $\forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 因此 a 为 $\{a_n\}$ 的聚点.

上述例子给出了数列极限的定义,交换量词后,会得到意义大相径庭的命题.通过理解这些含义不同的命题,可以加深对数列极限的理解.

数列极限的运算

定理 2.3 (数列极限的线性性质) 设 a,b,c_1,c_2 为常数且 $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$, 则

$$\lim_{n \to \infty} (c_1 a_n + c_2 b_n) = c_1 a + c_2 b = c_1 \lim_{n \to \infty} a_n + c_2 \lim_{n \to \infty} b_n.$$

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*, \exists n > N_1 \text{ 时}, |a_n - a| < \varepsilon.$ 由 $\lim_{n\to\infty} b_n = b$,对上述 $\varepsilon > 0, \exists N_2 \in \mathbb{N}^*, \exists n > N_2 \text{ 时}, |b_n - b| < \varepsilon.$

令
$$N = \max\{N_1, N_2\}$$
, 则当 $n > N$ 时, $|a_n - a| < \varepsilon$, $|b_n - b| < \varepsilon$, 则

$$|c_1a_n + c_2b_n - c_1a - c_2b| = |c_1(a_n - a) + c_2(b_n - b)| \le |c_1(a_n - a)| + |c_2(b_n - b)| \le (|c_1| + |c_2|)\varepsilon,$$

$$\mathbb{F}\lim_{n \to \infty} (c_1a_n + c_2b_n) = c_1a + c_2b.$$

数列的极限具有线性性质,同理函数极限也是具有线性性质的,统称为极限的线性性质. 由极限的线性性质,可导出微积分中绝大多数概念也具有线性性质.如函数的导数、导数、微分、积分,都具有线性性质.

从上述极限的线性性质,不难得到以下结论:

- (1) $\stackrel{\text{def}}{=} c_1 = c_2 = 1 \text{ pd}, \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n;$
- (2) $\stackrel{\longrightarrow}{=} c_1 = 1, c_2 = -1 \text{ pt}, \lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n;$
- (3) $\stackrel{\text{def}}{=} c_1 = k, c_2 = 0$ 时, $\lim_{n \to \infty} ka_n = k \lim_{n \to \infty} a_n$.
- (4) 数列的线性性质可推广到任意有限个收敛数列的情形: 设 $a_{1n} \rightarrow a_1, a_{2n} \rightarrow a_2, \cdots, a_{mn} \rightarrow a_{mn}$

$$a_m$$
, 且 $a_1, a_2, \dots, a_m, c_1, c_2, \dots, c_m$ 为常数, 则

$$\lim_{n \to \infty} (c_1 a_{1n} + c_2 a_{2n} + \dots + c_m a_{mn})$$

$$= c_1 a_1 + c_2 a_2 + \dots + c_m a_m$$

$$= c_1 \lim_{n \to \infty} a_{1n} + c_2 \lim_{n \to \infty} a_{2n} + \dots + c_m \lim_{n \to \infty} a_{mn}$$

对 $\forall m \in \mathbb{N}^*$ 成立.

定理 2.4 (收敛数列极限的四则运算法则) 设 $\{a_n\}$, $\{b_n\}$ 收敛, 且 $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$, 则有

- (1) $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- (2) $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n.$ (3) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \not \perp \lim_{n \to \infty} b_n \neq 0.$

证明

- (1) 由极限的线性性质可得:
- (2) 注意到

$$|a_n b_n - ab| \le |a_n b_n - a_n b| + |a_n b - ab| = |a_n||b_n - b| + |b_n - b||a_n - a|.$$

由于 $\{a_n\}$, $\{b_n\}$ 是收敛数列, 故都是有界的, 取一个大的界 M, 使得

$$|a_n|, |b_n| < M(n \geqslant 1)$$

因此 $|b| \leq M$. 对于任意的正数 ε , 对应 $\frac{\varepsilon}{2M}$, 分别存在整数 N_1 和 N_2 , 使得当 n > N 时,

$$|a_n - a| < \frac{\varepsilon}{2M}, |b_n - b| < \frac{\varepsilon}{2M}.$$

同时成立. 因此当n > N时,有

$$|a_n b_n - ab| < M|b_n - b| + M|a_n - a| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon.$$

(3) 因为

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n},$$

且 $b \neq 0$, 由 2° 可知, 只需证明数列 $\left\{\frac{1}{b_n}\right\}$ 收敛于 $\frac{1}{b}$ 即可. 假设 b > 0, 则

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{|b_n - b|}{|b_n b|} \right|.$$

由于 b_n 收敛于 b, 一方面对于正数 b/2 > 0, 存在 N_1 , 当 $n > N_1$ 时,

$$|b_n - b| < \frac{b}{2}.$$

另一方面,对于任意给定的正数 ε ,存在 N_2 ,使得当 $n > N_2$ 时,

$$|b_n - b| < \frac{b^2 \varepsilon}{2}.$$

所以, 当 $n > N = \max\{N_1, N_2\}$ 时,

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| \leqslant |b_n - b| \cdot \frac{2}{b^2} \cdot \frac{\varepsilon}{2} = \varepsilon.$$

即

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{b}.$$

定理 2.4说明有限组收敛数列的极限运算和四则运算是可以交换的,并可推广到有限多个 收敛数列与四则运算的情况. 对于 3 中的结论, 会因为某些 b_n 为 0 而使得分式没有意义. 但是 因为 $\{b_n\}$ 的极限 $b \neq 0$, 所以 b_n 为 0 的项至多只有有限个. 可以改变这有限多项的值, 这不会 改变 $\{b_n\}$ 的收敛性和极限. 或者在 $\{a_nb_n\}$ 中删去这些没有定义的有限多项, 不会改变其收敛 性和极限.

有了定理 2.4, 在计算数列极限时, 可以将其化为简极限的四则运算, 而不必再使用 " ε -N" 语言作繁琐的论述.

习题 1.2.8 求下列极限:

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(2) $a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n};$

(3)
$$a_n = \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{6}\right) \cdots \left(1 - \frac{1}{n(n+1)/2}\right), \ n = 2, 3, \ldots;$$

(4)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right);$$

(5)
$$a_n = (1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m}), (|q|<1).$$

解

(1)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4 + \frac{5}{n} + \frac{2}{n^2}}{3 + \frac{2}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} 4 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3}.$$

(2)
$$a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

(3)
$$a_n = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{(n+2)(n-1)}{n(n+1)} = \frac{2 \cdot 5 \cdot \cdot \cdot (n^2 + n - 2)}{3 \cdot 6 \cdot \cdot \cdot n(n+1)} = \frac{1}{2} \cdot \frac{n+2}{n+1} = \frac{n+2}{2(n+1)},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+2}{2(n+1)} = \frac{1+\frac{2}{n}}{2(1+\frac{1}{n})} = \frac{1+0}{2(1+0)} = \frac{1}{2}.$$

(4)
$$a_n = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdots \frac{(n-1)(n+1)}{n \cdot n} = \frac{1}{2} \cdot \frac{n+1}{n} = \frac{n+1}{2n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} = \frac{1+0}{2} = \frac{1}{2}.$$

(5)
$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m})}{1-q} = \frac{1-q^{2^{m+1}}}{1-q},$$

$$\lim_{n\to\infty} a_n = \lim_{m\to\infty} \frac{1-q^{2^{m+1}}}{1-q} = \frac{1-\lim_{m\to\infty} q^{2^{m+1}}}{1-q} = \frac{1-0}{1-q} = \frac{1}{1-q}.$$

然而,这种交换对于极限和绝对值并不总是成立,具体而言:

习题 1.2.4 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$; 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0$, 则有 $\lim_{n\to\infty} a_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \exists n > N$ 时, 有 $|a_n - a| < \varepsilon$. 则

$$||a_n| - |a|| \leqslant |a_n - a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}|a_n|=|a|.$

反之不一定成立, 如数列 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |a_n| = 1$, 但 $\{a_n\}$ 发散.

$$|a_n - 0| = |a_n| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_n=0.$

习题 1.2.5 证明: 若 $\lim_{n\to\infty} a_n = 0$, $\mathbb{Z}|b_n| \leqslant M$, $(n = 1, 2, \cdots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = 0 \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \exists n > N$ 时, 有 $|a_n - 0| < \frac{\varepsilon}{M}$. 则

$$|a_n b_n - 0| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_nb_n=0.$

习题 1.2.9 若 $a_n \neq 0 (n = 1, 2, ...)$ 且 $\lim_{n \to \infty} a_n = a$, 能否断定 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$?

解 不能. 例如 $a_n = \frac{1}{2^n}$, 则 $\lim_{n \to \infty} a_n = 0$, 但 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} = 2$.

一个可能的错误做法是

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_{n+1}} = \frac{a}{a} = 1,$$

但这是不允许的, 因为 $\lim_{n\to\infty} a_n$ 可能为 0.

习题 1.2.10 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty} a_n \cdot b_n = 0$, 是否必有 $\lim_{n\to\infty} a_n = 0$ 或 $\lim_{n\to\infty} b_n = 0$? 若还

假设 $\lim_{n\to\infty} a_n = a$, 回答同样的问题.

解 不一定. 例如 $a_n = \frac{1}{n}, b_n = n(-1)^n$,则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} (-1)^n$ 不存在,但 $\lim_{n \to \infty} a_n = 0$. 当 $\lim_{n \to \infty} a_n = a$ 时成立. 假设 $a \neq 0$ 时,则 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{a_n b_n}{a_n} = \frac{0}{a} = 0$.

习题 1.2.11 若数列 $\{a_n\}$ 收敛, 数列 $\{b_n\}$ 发散, 则数列 $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ 的收敛性如何? 举例说明. 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散, 回答同样的问题.

解 设 $\{a_n\}$ 收敛于 a, $\{b_n\}$ 发散. 则 $\{a_n+b_n\}$, $\{a_n-b_n\}$ 都发散. 例如 $a_n=1$, $b_n=n$, 则 $a_n+b_n=n+1$, $a_n-b_n=1-n$ 都发散. 但 $\{a_n\cdot b_n\}$ 的收敛性不确定. 例如 $a_n=\frac{1}{n}$, $b_n=n$, 则 $a_n\cdot b_n=1$ 收敛; 但 $a_n=1$, $b_n=n$, 则 $a_n\cdot b_n=n$ 发散.

若 $\{a_n\}$, $\{b_n\}$ 都发散, 则 $\{a_n+b_n\}$, $\{a_n-b_n\}$, $\{a_n\cdot b_n\}$ 的收敛性都不确定. 例如 $a_n=n$, $b_n=n$, 则 $a_n+b_n=2n$, $a_n-b_n=0$, $a_n\cdot b_n=n^2$ 中只有 a_n-b_n 收敛; 又如 $a_n=n$, $b_n=(-1)^n n$, 则 $a_n+b_n=n+(-1)^n n$, $a_n-b_n=n-(-1)^n n$, $a_n\cdot b_n=(-1)^n n^2$ 都发散.

下面三个命题是定理 2.4的推广,它们说明了极限与指数、对数、幂运算是可以交换的.请利用数列极限的定义先自行尝试,这里给出助教的证明.在后续学习了函数极限之后,会有更简洁的过程.

命题 2.10 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty} e^{a_n} = e^a$.

证明 $\{a_n\}$ 收敛于 a, 则 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*$, 当 n > N 时, 有 $|a_n - a| < \varepsilon$.

 $\forall \varepsilon \in (0, e^a), \exists N \in \mathbb{N}^*, \exists n > N_1 \forall n, \uparrow 1$

$$a_n - a < \ln(\varepsilon/e^a + 1),$$

即

$$e^{a_n - a} - 1 < \varepsilon / e^a,$$

 $\exists N_2 \in \mathbb{N}^*$, 当 $n > N_2$ 时, 有

$$a - a_n < -\ln(1 - \varepsilon/e^a),$$

即

$$1 - e^{a_n - a} < \varepsilon / e^a.$$

令 $N = \max\{N_1, N_2\}$, 则当 n > N 时, 有

$$|e^{a_n} - e^a| = e^a |e^{a_n - a} - 1| < \varepsilon.$$

 $\mathbb{F}\lim_{n\to\infty}\mathrm{e}^{a_n}=\mathrm{e}^a.$

命题 2.11 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty} \ln a_n = \ln a$, 其中 $a_n > 0, a > 0$.

证明 $\{a_n\}$ 收敛于 a, 则 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \exists n > N$ 时, 有 $|a_n - a| < \varepsilon$.

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \exists n > N_1 \text{ th, } \uparrow$

$$a_n - a < a(e^{\varepsilon/a} - 1),$$

即

$$\ln a_n - \ln a < \varepsilon.$$

 $\exists N_2 \in \mathbb{N}^*$, 当 $n > N_2$ 时, 有

$$a - a_n < a(1 - e^{-\varepsilon/a}),$$

即

$$\ln a - \ln a_n < \varepsilon.$$

令 $N = \max\{N_1, N_2\}$, 则当 n > N 时, 有

$$|\ln a_n - \ln a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty} \ln a_n = \ln a.$

命题 2.12 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty}a_n^\alpha=a^\alpha$, 其中 $a_n>0, a>0, \alpha\in\mathbb{R}$.

证明 由

$$a_n^{\alpha} = e^{\alpha \ln a_n}, a^{\alpha} = e^{\alpha \ln a},$$

结合前两个命题可得, 具体而言:

 \diamondsuit $b_n = \ln a_n, b = \ln a$, 则 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \ln a_n = \ln a = b$. 再 \diamondsuit $c_n = a_n^{\alpha} = e^{\alpha b_n}, c = a^{\alpha} = e^{\alpha b}$, 则 $\lim_{n \to \infty} c_n = \lim_{n \to \infty} e^{\alpha b_n} = e^{\alpha b} = c$. 即 $\lim_{n \to \infty} a_n^{\alpha} = a^{\alpha}$.

命题 2.13 设数列 $\{a_n\}$ 收敛于 $a,a_n>0, a>0.$ $\{b_n\}$ 收敛于 b. 则 $\lim_{n\to\infty}a_n^{b_n}=a^b.$

极限与极限, 极限与函数, 极限与无穷运算大都是不可交换的, 如课本例 1.2.6, 如下的做法 是完全错误的:

例 2.4 请说明错误在哪里

$$\lim_{n\to\infty} \frac{1+2+\cdots+n}{n^2} = \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n^2} + \cdots + \lim_{n\to\infty} \frac{n}{n^2} = 0$$

解

第一步将分子拆开是错误的,不能将一个数列的极限拆成无穷多个数列极限的和.

例 2.5 请说明错误在哪里 $\lim_{n\to\infty} a_n^{1/n} = \left(\lim_{n\to\infty} a_n\right)^{1/n}$

解 我们对整一个数列做极限运算, 而不是对数列中的每一个数做极限运算. 这个式子的意义是 $\lim_{n\to\infty} a_n^{1/n}$ 是一个数, 而 $\left(\lim_{n\to\infty} a_n\right)^{1/n}$ 是一个数列. 前者与 n 无关, 后者与 n 有关.

习题 1.2.12 下面的推理是否正确?

(1) 设数列 $\{a_n\}$: $a_1 = 1, a_{n+1} = 2a_n - 1$ (n = 1, 2, 3, ...), 求 $\lim_{n \to \infty} a_n$. 解: 设 $\lim_{n\to\infty} a_n = a$, 在 $a_{n+1} = 2a_n - 1$ 两边取极限, 得 a = 2a - 1, 即 a = 1.

(2)

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= \underbrace{0 + 0 + \dots + 0}_{n \uparrow} = 0.$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right]^n = 1^n = 1.$$

- (1) 错误. 不能在未知数列是否收敛时, 就假设极限存在并对递推公式两边取极限. 实际上, 该数列的通项公式为 $a_n=1$ 所以 $\lim_{n\to\infty}a_n=1$.
- (2) 错误. 不能将一个数列的极限拆成无穷多个数列极限的和. 实际上

$$\frac{1}{\sqrt{n^2 + k}} = \frac{1}{n\sqrt{1 + \frac{k}{n^2}}} \sim \frac{1}{n}, (k = 1, 2, \dots, n).$$

因此

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) \sim \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} \right) = 1.$$

(3) 错误. 不能将一个数列的极限拆成无穷多个数列极限的积. 实际.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

例 2.6 设 $a_n = \left(1 + \frac{1}{n}\right)^n, n \in \mathbb{N}^*$, 证明: $(1) \lim_{n \to \infty} a_n = e \approx 2.718281828;$

(2)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x, x \in \mathbb{R};$$

(3) $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, x \in \mathbb{R}.$

解函数极限还没有讲到,此处仅证明第1问.证明数列 a_n 收敛即可.首先证明该数列是递增 的. 事实上由二项式定理可得

$$a_n = 1 + \sum_{k=1}^n C_n^k \cdot \frac{1}{n^k} = 1 + \sum_{k=1}^n \frac{1}{k!}.$$

$$= 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{k-1}{n} \right),$$

$$a_{n+1} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right) + \left(\frac{1}{n+1} \right)^{n+1}.$$

比较 a_n 和 a_{n+1} 两个表达式的右端和号中的对应项显然前者较小. 而 a_{n+1} 所多出来的一项 $\left(\frac{1}{n+1}\right)^{n+1}>0$ 故 $a_{n+1}>a_n$. 所以 $\{a_n\}$ 为严格递增数列.

其次我们将证明数列是有界的. 在 a_n 的上述展开式中

$$0 < \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) < 1.$$

所以

$$2 < a_n < 2 + \sum_{k=2}^{n} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

$$<2+\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\cdots+\frac{1}{n(n-1)}=3-\frac{1}{n}<3,$$

即 $n=2,3,\ldots$ 也就是说数列 $\{a_n\}$ 是单调递增且有上界的因此一定收敛.

例 2.7

(1)
$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, n \in \mathbb{N}^*.$$

(2)
$$\left(\frac{1}{n+1}\right) < \ln\left(1+\frac{1}{n}\right) < \left(\frac{1}{n}\right), n \in \mathbb{N}^*.$$

(3)
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}, \ \mathbb{P} \sqrt[n]{n!}e \sim n.$$

注
$$a_n \sim b_n$$
 定义为 = $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

解

(1)
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 单调递增且有上界, $\lim_{n \to \infty} a_n = e$. 故 $e = \sup a_n$, 由于 a_n 单调增的严格单调, 因此 $\left(1 + \frac{1}{n}\right)^n \neq e$, 故 $a_n < e$, $n \in \mathbb{N}^*$. 设 $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$. 由平均值不等式, 有
$$\left(\left(\frac{n}{n+1}\right)^{n+1} \cdot 1\right)^{\frac{1}{n+2}} = \left(\frac{n}{n+1} \cdot \frac{n}{n+1} \cdots \frac{n}{n+1} \cdot 1\right)^{\frac{1}{n+2}} \leqslant \frac{\frac{n}{n+1} + \frac{n}{n+1} + \cdots + \frac{n}{n+1} + 1}{n+2} = \frac{n+1}{n+2}.$$
 故 $\Rightarrow \left(\frac{n}{n+1}\right)^{n+1} \leqslant \left(\frac{n+1}{n+2}\right)^{n+2} \Rightarrow b_n = \left(1 + \frac{1}{n}\right)^{n+1} \geqslant \left(1 + \frac{1}{n+1}\right)^{n+2} = b_{n+1}$. 且 $b_n > 0$, 故 $\{b_n\}$ 单调递减有下界, 故有极限. $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) = e \cdot 1 = e$.

(2) 对 1. 中的不等式取对数, 得

与 a_n 的推导类似, 可得 $b_n > e, n \in \mathbb{N}^*$.

$$n\ln\left(1+\frac{1}{n}\right) < 1 < (n+1)\ln\left(1+\frac{1}{n}\right) \Rightarrow \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}, \ln\left(1+\frac{1}{n}\right) > \frac{1}{n+1}.$$

(3) 有

$$\left(\frac{2}{1}\right)^1 < e < \left(\frac{2}{1}\right)^2,$$

$$\left(\frac{3}{2}\right)^2 < e < \left(\frac{3}{2}\right)^3,$$

$$\left(\frac{n}{n+1}\right)^n < e < \left(\frac{n}{n+1}\right)^{n+1}.$$

乘积得

$$\left(\frac{2}{3}\right)^2 \left(\frac{3}{4}\right)^3 \cdots \left(\frac{n}{n+1}\right)^{n+1} < e^n < \left(\frac{2}{3}\right)^3 \left(\frac{3}{4}\right)^4 \cdots \left(\frac{n}{n+1}\right)^{n+2}.$$

即

$$\frac{(n+1)^n}{n!} < e^n < \frac{(n+1)^{n+1}}{(n+1)!}$$

$$\Rightarrow \left(\frac{n+1}{e}\right)^n < n! < \left(\frac{n+1}{e}\right)^{n+1}$$

$$\Rightarrow \frac{n+1}{ne} < \sqrt[n]{n!} < \frac{n+1}{ne} \sqrt[n]{n+1}$$

而 $\lim_{n\to\infty} \frac{n+1}{ne} = \lim_{n\to\infty} \frac{\frac{1}{n}+1}{e} = \frac{1}{e}, \lim_{n\to\infty} \sqrt[n]{n+1} = 1$, 故由夹逼定理, 得证. 例 2.8 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n, n \in \mathbb{N}^*$, 证明:

- (1) $\{a_n\}$ 收敛;
- (2) $\lim_{n\to\infty} \frac{1}{n+1} + \dots + \frac{1}{2n} = \ln 2;$
- (3) $\lim_{n \to \infty} \frac{1}{3n+1} + \dots + \frac{1}{3n+2n} = \ln \frac{5}{3};$ (4) $1 + \frac{1}{2} + \dots + \frac{1}{n} \sim \ln n.$

(1) 由例2.6可知,

$$\ln \frac{2}{1} < \frac{1}{1},$$

$$\ln \frac{3}{2} < \frac{1}{2},$$

$$\ln \frac{n+1}{n} < \frac{1}{n}.$$

相加得 $\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$. 则 $a_n > 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > 0$. 又 $a_{n+1} - a_n = 0$ $\frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0$,故 $\{a_n\}$ 单调递减有下界,故有极限.

(2)

$$\lim_{n \to \infty} \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2n} - \ln 2n \right) + \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right) + \ln 2n - \ln n$$

$$= \ln 2.$$

(3)

$$\lim_{n \to \infty} \frac{1}{3n+1} + \dots + \frac{1}{3n+2n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{5n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{3n} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{5n} - \ln 5n \right) + \left(1 + \frac{1}{2} + \dots + \frac{1}{3n} - \ln 3n \right) + \ln 5n - \ln 3n$$

$$= \ln \frac{5}{3}.$$

(4)

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n}{\ln n} + 1$$

质 $\lim_{n \to \infty} 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n = \gamma$, $\lim_{n \to \infty} \ln n = +\infty$, 故 $\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n}{\ln n} = 0$.

记 $\lim_{n\to\infty} a_n = \gamma \approx 0.57721$ 称为 Euler 常数.

写成等价无穷大的形式,即

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n(n \to \infty).$$

事实上有以下命题

命题 2.14 $a_n \sim b_n \Leftrightarrow a_n = b_n + o(b_n)$.

证明 由 $a_n \sim b_n$, 则 $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, 即 $\lim_{n \to \infty} \frac{a_n - b_n}{b_n} = 0$, 即 $a_n - b_n = o(b_n)$. 由 $a_n = b_n + o(b_n)$, 则 $\lim_{n \to \infty} \frac{a_n - b_n}{b_n} = 0$, 即 $\lim_{n \to \infty} \frac{a_n}{b_n} - 1 = 0$, 即 $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, 即 $a_n \sim b_n$. 极限运算与最大值、最小值运算也是可以交换的,

习题 1.2.14 设数列 $\{a_n\}$, $\{b_n\}$ 分别收敛于 a 及 b. 记 $c_n = \max(a_n, b_n)$, $d_n = \min(a_n, b_n)$ (n = 1, 2, ...). 证明

$$\lim_{n \to \infty} c_n = \max(a, b), \quad \lim_{n \to \infty} d_n = \min(a, b).$$

解由 $\max(x,y) = \frac{x+y+|x-y|}{2}$, $\min(x,y) = \frac{x+y-|x-y|}{2}$, 以及数列极限的四则运算和绝对值运算可得.

习题 1.2.15 求下列极限:

(1)
$$\lim_{n\to\infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right];$$

(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k)$$
, $\sharp + 0 < k < 1$;

(3)
$$\lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdots \sqrt[2^n]{2});$$

$$(4) \lim_{n \to \infty} \sqrt[n]{n^2 - n + 2};$$

(5)
$$\lim_{n \to \infty} \left(\sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \right).$$

解

(1)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^2} \leqslant \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n^2} = \lim_{n \to \infty} \frac{n}{n^2} = 0.$$

(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k) = \lim_{n \to \infty} n^k \left(\left(1 + \frac{1}{n} \right)^k - 1 \right) \le \lim_{n \to \infty} n^k \left(\left(1 + \frac{1}{n} \right)^1 - 1 \right) = \lim_{n \to \infty} n^{1-k} = 0.$$

(3)
$$\lim_{n \to \infty} \prod_{k=1}^{n} \sqrt[2^k]{2} = \lim_{n \to \infty} 2^{\sum_{k=1}^{n} \frac{1}{2^k}} = 2^1 = 2.$$

(4) 由
$$\frac{1}{n}\ln(n^2 - n + 2) = O\left(\frac{\ln n}{n}\right) = o(1)$$
, 故
$$\lim_{n \to \infty} \sqrt[n]{n^2 - n + 2} = \lim_{n \to \infty} e^{\lim_{n \to \infty} \frac{1}{n}\ln n^2 - n + 2} = e^0 = 1.$$

(5)
$$1 = \lim_{n \to \infty} \sqrt[n]{\cos^1} \leqslant \lim_{n \to \infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \leqslant \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

高阶无穷大

定义 2.5 (无穷大) 设 $\{a_n\}$ 是一个数列, 若 $\forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, |a_n| > M, 则称 <math>\{a_n\}$ 是 无穷大数列, 记为 $\{a_n\} \to \infty$.

(1)
$$\{a_n\} \to +\infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, a_n > M.$$

(2)
$$\{a_n\} \to -\infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, a_n < -M.$$

(3)
$$\{a_n\} \to \infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, |a_n| > M.$$

命题 2.15 (常用无穷大数列的比较) 设 a, A, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明: $n^n >> n! >> a^n >> n^\alpha >> (\ln n)^m$, 在 $n \to \infty, n \in N^*$ 时成立; 其中 $n^n >> n! \Leftrightarrow \lim_{n \to \infty} \frac{n^n}{n!} = +\infty$, 称

为 n^n 是 n! 的高阶无穷大.

证明

(1)
$$\lim_{n \to \infty} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} < \lim_{n \to \infty} \frac{1}{n} = 0, \text{ if } n^n >> n!.$$

(1)
$$\lim_{n \to \infty} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} < \lim_{n \to \infty} \frac{1}{n} = 0, \text{ if } n^n >> n!.$$
(2)
$$\lim_{n \to \infty} \frac{a^n}{n!} = \lim_{n \to \infty} \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdots \frac{a}{n} < \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdot \lim_{n \to \infty} \frac{a}{n}, \text{ if } \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \notin n \text{ for } n \text{ for$$

(3) 先设
$$\alpha \in N^*$$
, $a = 1 + \lambda$, 则 $\lambda > 0$, $a^n = (1 + \lambda)^n > C_n^{\alpha + 1} \lambda^{\alpha + 1}$. 故 $0 > \frac{n^{\alpha}}{a^n} < \frac{n^{\alpha}}{C_n^{\alpha + 1} \lambda^{\alpha + 1}} \to 0$, $n \to \infty$.

例 2.9 (Stirling 公式) 证明

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

Stirling 公式的证明在目前不作要求, 这是教材中最后一节的内容. 这里给出一种使用高中 知识以及数列极限的证明方法,仅供参考.

引理 2.1

$$\sin^2 \frac{2\pi}{4m} \sin^2 \frac{4\pi}{4m} \sin^2 \frac{6\pi}{4m} \cdots \sin^2 \frac{(2m-2)\pi}{4m} = \frac{m}{2^{2m-2}}.$$

证明 复数可以写成 z = x + iy 的形式也可以写成三角形式即令 $x = r \cos \theta, y = r \sin \theta$, 因此可 以设 $z_0 = r(\cos\theta + i\sin\theta)$ 为 $z^n - 1 = 0$ 的根,则由 De Moiver 定理: 若 $z_1 = r_1(\cos\alpha + i\sin\alpha)$, $z_2 = r_1(\cos\alpha + i\sin\alpha)$ $r_2(\cos\beta + i\sin\beta)$, 则 $z_1z_2 = r_1r_2(\cos(\alpha + \beta) + i\sin(\alpha + \beta))$, 因此

$$z^{n} = 1 = r^{n}(\cos x + i\sin x)^{n} = r^{n}(\cos nx + i\sin nx),$$

得
$$r=1, \theta=\frac{2k\pi}{n}(k\in\mathbb{N})$$
, 故 $z_0=\cos\frac{2\pi}{n}+\mathrm{i}\sin\frac{2\pi}{n}$.
习惯上称 $\omega=\cos\frac{2\pi}{n}+\mathrm{i}\sin\frac{2\pi}{n}$ 称为 n 次单位原根.

由代数学基本定理可得 z^n-1 只有 n 个复根, 且上面验证了 $\{\omega^k\}_{k=1}^n$ 恰为这 n 个复根, 因 此 $z^n - 1 = (z - 1)(z - \omega)(z - \omega^2) \cdots (z - \omega^{n-1})$, 两边同除 z - 1, 得

$$1+z+z^2+\cdots+z^{n-1}=(z-\omega)(z-\omega^2)\cdots(z-\omega^{n-1})$$
 代入 $z=1$,并对两边取模长,由 $\left|1-\omega^k\right|=\sqrt{\left(1-\cos\frac{2\pi k}{n}\right)^2+\left(2\sin\frac{\pi k}{n}\right)^2}=\sqrt{2-2\cos\frac{2\pi k}{2}}=2\sin\frac{\pi k}{n}$,可得

$$n = \prod_{k=1}^{n-1} |1 - \omega^k| = \prod_{k=1}^{n-1} 2\sin\frac{\pi k}{n}$$

取 n=2m, 并注意到对于 $k=1,2,\cdots,2m-1$ 有对称性 $\sin\frac{\pi(2m-k)}{2m}=\sin\frac{\pi k}{2m}$, 且当 k=m 时 $\sin\frac{\pi m}{2m}=\sin\frac{\pi}{2}=1$, 因此

$$\frac{m}{2^{2m-2}} = \prod_{k=1}^{2m-1} \sin \frac{\pi k}{2m} = \left(\prod_{k=1}^{m-1} \sin \frac{\pi k}{2m}\right)^2 = \sin^2 \frac{2\pi}{4m} \sin^2 \frac{4\pi}{4m} \sin^2 \frac{6\pi}{4m} \cdots \sin^2 \frac{(2m-2)\pi}{4m}$$

引理 2.2

$$\sin^2 \frac{\pi}{4m} \sin^2 \frac{3\pi}{4m} \sin^2 \frac{5\pi}{4m} \cdots \sin^2 \frac{(2m-1)\pi}{4m} = \frac{1}{2^{2m-1}}.$$

证明 已知:

$$\prod_{k=1}^{n-1} \sin \frac{\pi k}{n} = \frac{n}{2^{n-1}}.$$

取 n=4m 得

$$\prod_{k=1}^{4m-1} \sin \frac{\pi k}{4m} = \frac{4m}{2^{4m-1}}.$$

偶数项 k = 2r(r = 1, ..., 2m - 1) 为:

$$\prod_{r=1}^{2m-1} \sin \frac{2r\pi}{4m} = \prod_{r=1}^{2m-1} \sin \frac{r\pi}{2m} = \frac{2m}{2^{2m-1}}.$$

奇数项为:

$$\prod_{k=1}^{2m} \sin \frac{(2k-1)\pi}{4m} = \left(\prod_{j=1}^{m} \sin \frac{(2j-1)\pi}{4m}\right)^{2},$$

因此

$$\frac{4m}{2^{4m-1}} = \frac{2m}{2^{2m-1}} \cdot \left(\prod_{j=1}^{m} \sin\frac{(2j-1)\pi}{4m}\right)^{2},$$

整理得

$$\left(\prod_{j=1}^{m} \sin \frac{(2j-1)\pi}{4m}\right)^2 = \frac{1}{2^{2m-1}},$$

即

$$\sin^2 \frac{\pi}{4m} \sin^2 \frac{3\pi}{4m} \cdots \sin^2 \frac{(2m-1)\pi}{4m} = \frac{1}{2^{2m-1}}.$$

引理 2.3

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} < \frac{(k-1)a}{ka} \frac{(k+1)a}{ka}.$$

证明 由以下两恒等式

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} = 1 - \left(\frac{\sin a}{\sin ka}\right)^2,$$
$$\frac{(k-1)a}{ka} \frac{(k+1)a}{ka} = 1 - \left(\frac{a}{ka}\right)^2,$$

以及 $\frac{\sin x}{x}$ 在 $0 < x < \pi/2$ 单调减, 因此

$$\frac{\sin a}{\sin ka} > \frac{a}{ka}$$

以及

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} < \frac{(k-1)a}{ka} \frac{(k+1)a}{ka}.$$

引理 2.4 (Wallis 公式)

$$\lim_{m \to \infty} \frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \cdots \frac{2m-2}{2m-3} \frac{2m-2}{2m-1} = \frac{\pi}{2}$$

证明 由引理 2.1,引理 2.2得:

$$\frac{\sin^2\frac{2\pi}{4m}}{\sin^2\frac{\pi}{4m}}\frac{\sin^2\frac{2\pi}{4m}}{\sin^2\frac{3\pi}{4m}}\frac{\sin^2\frac{4\pi}{4m}}{\sin^2\frac{5\pi}{4m}}\cdots\frac{\sin^2\frac{(2m-2)\pi}{4m}}{\sin^2\frac{(2m-3)\pi}{4m}}\frac{\sin^2\frac{(2m-2)\pi}{4m}}{\sin^2\frac{(2m-1)\pi}{4m}}=m\sin\frac{\pi}{2m},$$

$$\frac{\sin^2\frac{2\pi}{4m}}{\sin^2\frac{2\pi}{4m}}\frac{\sin^2\frac{2\pi}{4m}}{\sin^2\frac{\pi}{4m}}\frac{\sin^2\frac{4\pi}{4m}}{\sin^2\frac{5\pi}{4m}}\frac{\sin^2\frac{6\pi}{4m}}{\sin^2\frac{5\pi}{4m}}\cdots\frac{\sin^2\frac{(2m-2)\pi}{4m}}{\sin^2\frac{(2m-2)\pi}{4m}}\frac{\sin^2\frac{2m\pi}{4m}}{\sin^2\frac{(2m-1)\pi}{4m}}=m\tan\frac{\pi}{4m}.$$

由引理 2.3得

$$\frac{\frac{2\pi}{4m}}{\frac{\pi}{4m}} \frac{\frac{2\pi}{4m}}{\frac{\pi}{4m}} \frac{4\pi}{\frac{\pi}{4m}} \cdots \frac{\frac{(2m-2)\pi}{4m}}{\frac{\pi}{4m}} \frac{\frac{(2m-2)\pi}{4m}}{\frac{\pi}{4m}} < m \sin \frac{\pi}{2m},$$

$$\frac{2\pi}{4m} \frac{4\pi}{\frac{4m}{4m}} \frac{6\pi}{\frac{\pi}{4m}} \cdots \frac{\frac{(2m-2)\pi}{4m}}{\frac{\pi}{4m}} \frac{\frac{2m\pi}{4m}}{\frac{\pi}{4m}} > m \tan \frac{\pi}{4m}.$$

整理得

$$\frac{\pi}{2}\sin\frac{\pi}{2m} > \frac{2}{1}\frac{2}{3}\frac{4}{3}\frac{4}{5}\cdots\frac{2m-2}{2m-3}\frac{2m-2}{2m-1} > \frac{\pi}{2}\left(1-\frac{1}{2m}\right)\tan\frac{\pi}{4m},$$

由夹逼定理即证.

这一条定理在后面学了积分之后可以更快速的得到,而不途径引理中繁琐的等式.

引理 2.5

$$\lim_{n \to \infty} \frac{4^n (n!)^2}{\sqrt{n} (2n)!} = \sqrt{\pi}.$$

证明 将 Wallis 公式写为:

$$\lim_{n \to \infty} \frac{(2n)!!^2}{(2n-1)!!^2(2n+1)} = \frac{\pi}{2}.$$

展开分式,整理得

$$\lim_{n \to \infty} \frac{(2n)!^2 (2n)!!^2}{(2n)!!^2 (2n-1)!!^2 (2n+1)} = \lim_{n \to \infty} \frac{2^{4n} (n!)^4}{(2n)!^2 (2n+1)} = \frac{\pi}{2}.$$

利用
$$\lim_{n\to\infty} a_n^{\alpha} = \left(\lim_{n\to\infty} a_n\right)^{\alpha}$$
, α 为常数, 此处 α 取 $\frac{1}{2}$, 得

$$\lim_{n \to \infty} \frac{4^n (n!)^2}{(2n)! \sqrt{2n+1}} = \sqrt{\frac{\pi}{2}} \quad \Rightarrow \quad \lim_{n \to \infty} \frac{4^n (n!)^2 \sqrt{2}}{(2n)! \sqrt{2n+1}} = \lim_{n \to \infty} \frac{4^n (n!)^2}{(2n)! \sqrt{n}} = \sqrt{\pi}.$$

引理 2.6

$$a_n = \frac{n! e^n}{\sqrt{n} n^n}$$

单调递减,收敛到某个正实数.

证明

$$\frac{a_n}{a_{n+1}} = \frac{n!}{\sqrt{n} \, n^n e^{-n}} \cdot \frac{\sqrt{n+1} \, (n+1)^{n+1} e^{-(n+1)}}{(n+1)!} = \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{(n+1)^n}{n^n e} = \frac{1}{e} \left(\frac{n+1}{n}\right)^{\frac{2n+1}{2}}.$$

$$b_n - b_{n+1} = \ln\left(\frac{a_n}{a_{n+1}}\right) = \frac{2n+1}{2}\ln\left(\frac{n+1}{n}\right) - 1$$

 $\Rightarrow k = \frac{1}{2n+1} > 0,$

$$b_n - b_{n+1} = \frac{1}{2k} \ln \left(\frac{1+k}{1-k} \right) - 1,$$

分析函数 $f(x) = \frac{1}{2x} \ln \left(\frac{1+x}{1-x} \right) - 1$ 知 $f'(x) > 0, x \in (0,1), f\left(\frac{1}{2n+1} \right) > 0$, 即可证明 b_n 单 调减,因此 a_n 单调减

再由类似的分析方式可以得到

$$(b_n - b_{n+1}) - \frac{1}{4n} + \frac{1}{4(n+1)} = \frac{1}{2k} \ln \left(\frac{1+k}{1-k} \right) - 1 + \frac{k^2}{k^2 - 1} < 0,$$

因此

$$b_n - \frac{1}{4n} < b_{n+1} - \frac{1}{4(n+1)}.$$

因此 $b_n > b_n - \frac{1}{4n} > b_1 - \frac{1}{4} = \frac{3}{4} \Rightarrow a \geqslant e^{0.75} > 0.$

 a_n 单调减,有正下界,因此 $\lim_{n\to a_n}=a$ 存在且 a>0. 由 a>0 才可以用极限的四则运算 (除法),以及由引理 2.5

$$a = \lim_{n \to \infty} \frac{a_n^2}{a_{2n}} = \frac{\left(\frac{n!e^n}{\sqrt{n}n^n}\right)^2}{\frac{(2n)!e^{2n}}{\sqrt{2n}2n^{2n}}} = \sqrt{2} \lim_{n \to \infty} \frac{4^n(n!)^2}{(2n)!\sqrt{n}} = \sqrt{2\pi}$$

由此证明了 Stirling 公式.

更正式的表示无穷大之间的关系需要引入两个记号:O和 o.

定义 2.6 设 $\{a_n\}$ 和 $\{b_n\}$ 是定义在 \mathbb{N}^* 上的数列. 如果 $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ 则称 a_n 是 b_n 的 $o(b_n)$ 记作 $a_n = o(b_n)(n \to \infty).$

设 $\{a_n\}$ 和 $\{b_n\}$ 是定义在 \mathbb{N}^* 上的数列. 如果 $\exists M, \frac{a_n}{b_n} \leqslant M$ 对充分大的 n 成立则称 a_n 是 b_n 的 $O(b_n)$ 记作 $a_n = O(b_n)(n \to \infty)$.

o,O 仅表示相对的大小关系, 只有在极限意义下才有意义. $o(a_n)$ 的含义实际是所有 a_n 的

无穷小量组成的集合,因此前面的等号实际含义是 ∈. 具体而言

$$o(a_n) = \left\{ t_n \mid \lim_{n \to \infty} \frac{t_n}{a_n} = 0 \right\}, a_n = o(b_n) \Leftrightarrow a_n \in o(b_n).$$

我们试图用阶定量的表示这种无穷小的比较关系, 以一个有显式表达式的数列 $a_n = \frac{1}{n^2} + \frac{2}{n} + 10$ 为例, 我们可以说 $a_n = 10 + o(1)$, 也可以说 $a_n = 10 + \frac{2}{n} + o(\frac{1}{n})$, 也可以说 $a_n = 10 + \frac{2}{n} + o(\frac{1}{n})$, 也可以说 $a_n = 10 + \frac{2}{n} + \frac{1}{n^2} + o(\frac{1}{n^2})$. 从此可以直观的看出我们逐渐给出了对 a_n 更精确的估计, 可以说这叫做 a_n 的渐近展开, 或者 a_n 的估计.

对于那些不能够给出显式表达式的数列,如何求解其高阶渐近估计,这是一个相当复杂的问题,Stolz 定理是解决这类问题的一个重要工具.

习题 1.2.16 设 a_1, a_2, \ldots, a_m 为 m 个正数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max(a_1, a_2, \dots, a_m).$$

解 设 $a_k = \max(a_1, a_2, \dots, a_m)$ 则

$$a_k = \sqrt[n]{a_k^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \sqrt[n]{ma_k^n} = m^{\frac{1}{n}} a_k.$$

由夹逼定理可得

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_k = \max(a_1, a_2, \dots, a_m).$$

Stolz 定理及其应用

定理 2.5 ($\frac{\infty}{\infty}$ 型 Stolz 定理) 设 $\{a_n\}$, $\{b_n\}$ 是两个数列, 且 $\{b_n\}$ 严格递增趋于 $+\infty$. 如果

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = A,$$

则有

$$\lim_{n \to \infty} \frac{a_n}{b_n} = A,$$

其中 A 可以是实数, 也可以是 $+\infty$ 或 $-\infty$.

注 完整的利用 Stolz 定理的计算过程要求先证明 $\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A$ 极限存在并求得 A, 然后 再利用 Stolz 定理求 $\lim_{n \to \infty} \frac{a_n}{b_n}$. 不过不严谨的直接写出 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}}$ 也是能接受的. 注 当 $\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \infty$ 时,Stolz 定理不一定成立. 反例可取 $a_n = (-1)^n$, $b_n = n$.

证明 先证明 A 是有限数 (实数) 的情况. 不妨设 $\{b_n\}$ 是正项数列. 假设条件成立对任意正数 ε 存在自然数 N_1 使得

$$A - \varepsilon < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} < A + \varepsilon, \quad n > N_1.$$

由于 $\{b_n\}$ 严格单调增所以

$$(A-\varepsilon)(b_{n+1}-b_n) < a_{n+1}-a_n < (A+\varepsilon)(b_{n+1}-b_n), \quad n > N_1.$$

在上面不等式中分别列出 $N_1+1, N_1+2, \ldots, n-1$ 并将所得不等式相加得到

$$(A - \varepsilon)(b_n - b_{N_1+1}) < a_n - a_{N_1+1} < (A + \varepsilon)(b_n - b_{N_1+1}).$$

同除以 b_n 并整理得

$$\frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} - \varepsilon \left(1 - \frac{b_{N_1+1}}{b_n}\right) < \frac{a_n}{b_n} - A < \frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} + \varepsilon \left(1 - \frac{b_{N_1+1}}{b_n}\right).$$

注意到 $\{b_n\} \to +\infty$ 对固定的 N_1 存在自然数 N_2 使得当 $n > N_2$

$$-\varepsilon < \frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} < \varepsilon.$$

取 $N = \max\{N_1, N_2\}$ 于是当 n > N 时有

$$-2\varepsilon < \frac{a_n}{b_n} - A < 2\varepsilon.$$

若 $A = +\infty$ 此时由题设及保号性 $\Rightarrow \exists N_2, N \geqslant N_2$, 使得

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} > 1 \Rightarrow a_{n+1} > a_n, \quad n > N.$$

并且 $a_{n+1}-a_n>b_{n+1}-b_n$, $a_n-a_{n-1}>b_n-b_{n-1}$,..., $a_{N_2+1}-a_{N_2}>b_{N_2+1}-b_{N_2}$. 从而 得 $a_{n+1} - a_{N_2} > b_{n+1} - b_{N_2} \Rightarrow \lim_{n \to \infty} a_{n+1} = +\infty$ 且 $\{a_n\}$ 严格增加.

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=0\Rightarrow\lim_{n\to\infty}\frac{b_n}{a_n}=+\infty.$$

定理 2.6 ($\frac{0}{0}$ 型 Stolz 定理) 设 $\{a_n\}$, $\{b_n\}$ 是两个收敛于 0 的数列, 且 $\{b_n\}$ 是严格递减数列. 如 果

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = A,$$

则有

$$\lim_{n \to \infty} \frac{a_n}{b_n} = A,$$

其中 A 可以是实数, 也可以是 $+\infty$ 或 $-\infty$.

例 2.10 证明:

(1) 若
$$\lim_{n \to \infty} a_n = a$$
, 則 $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$;
(2) 若 $\lim_{n \to \infty} a_n = a \ge 0$, 則 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.
(3) 若 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a \ge 0$, 則 $\lim_{n \to \infty} \sqrt[n]{a_n} = a$.

(2) 若
$$\lim_{n\to\infty} a_n = a \geqslant 0$$
, 则 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

(3) 若
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a \geqslant 0$$
, 则 $\lim_{n \to \infty} \sqrt[n]{a_n} = a$.

$$(1) \diamondsuit b_n = n, \alpha_n = a_1 + a_2 + \dots + a_n, \ \mathbb{M} \ b_n \uparrow + \infty \ \mathbb{H} \lim_{n \to \infty} \frac{\alpha_n - \alpha_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{a_n}{n - (n-1)} = a.$$

(2)
$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = \exp\left(\lim_{n \to \infty} \frac{\ln a_1 + \ln a_2 + \cdots + \ln a_n}{n}\right) = \exp\left(\lim_{n \to \infty} \frac{\ln a_n}{n - n - 1}\right) = \exp^{\ln a} = a.$$

(3) 改变有限项, 不会影响极限值, 不妨假设 $a_0 = 1$, 则 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{a_1}{a_0} \frac{a_2}{a_1} \cdots \frac{a_n}{a_{n-1}}} = a$. **例 2.11** 设 a_1, a_2, \dots, a_m 是 m 个常数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{|a_1|^n + |a_2|^n + \dots + |a_m|^n} = \max\{|a_1|, |a_2|, \dots, |a_m|\}.$$

解 设 $h = \max\{|a_1|, |a_2|, \cdots, |a_m|\}$, 则 $h < (|a_1|^n + |a_2|^n + \cdots + |a_m|^n)^{\frac{1}{n}} < m^{\frac{1}{n}}h$, 且 $\lim m^{\frac{1}{n}}h = \lim m^{\frac{1}{n}}h$ h. 由夹逼定理, 得证.

例 2.12

(1)
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2} = \frac{1}{2};$$

(2)
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \frac{1}{3};$$

(3)
$$\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} = \frac{1}{4}.$$

(4)
$$\lim_{n \to \infty} \frac{1^k + 2^k + 3^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}.$$

$$(1) \lim_{n \to \infty} \frac{1+2+3+\dots+n}{n^2} = \frac{1}{2};$$

$$(2) \lim_{n \to \infty} \frac{1^2+2^2+3^2+\dots+n^2}{n^3} = \frac{1}{3};$$

$$(3) \lim_{n \to \infty} \frac{1^3+2^3+3^3+\dots+n^3}{n^4} = \frac{1}{4}.$$

$$(4) \lim_{n \to \infty} \frac{1^k+2^k+3^k+\dots+n^k}{n^{k+1}} = \frac{1}{k+1}.$$

$$\mathbf{PR} \text{ (A if } 4, \lim_{n \to \infty} \frac{1^k+2^k+3^k+\dots+n^k}{n^{k+1}} = \lim_{n \to \infty} \frac{n^k}{n^{k+1}-(n-1)^{k+1}} = \lim_{n \to \infty} \frac{n^k}{(k+1)n^k-\dots}.$$

 \cdots 中的项形如 n^{k-1}, n^{k-2}, \cdots 满足 $\lim_{n \to \infty} \frac{n^{k-1}}{n^{k+1}} = 0$. 且至多有 k 项. 有限项极限相加, 可以 用极限的四则运算.

数
$$\lim_{n\to\infty} \frac{n^k}{(k+1)n^k - \dots} = \frac{1}{(k+1) + \lim_{n\to\infty} \left(C_{k+1}^2 \frac{1}{n} + \dots + C_{k+1}^{k+1} \frac{1}{n^k}\right)} = \frac{1}{k+1}.$$

定理 2.7 常用的平均值不等式:

设 a_1, a_2, \cdots, a_n 是 n 个正数,则有:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

取等号的条件是 $a_1 = a_2 = \cdots = a_n$.

这几个平均数分别名为:

调和平均数 =
$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$
,
几何平均数 = $\sqrt[n]{a_1 a_2 \dots a_n}$,
算术平均数 = $\frac{a_1 + a_2 + \dots + a_n}{n}$,
平方平均数 = $\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$.

实数集完备性的五个等价命题

以下五个命题等价,且都说明了实数集是完备的.

定理 2.8 (确界存在原理) 有上 (下) 界的非空实数集 E 必有上 (下) 确界 $\sup E(\inf E)$.

定理 2.9 (单调有界极限存在准则) 若数列 $\{a_n\}$ 单调增 (滅) 且有上 (下) 界, 则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty} a_n = \sup a_n (\inf a_n)$.

定理 2.10 (闭区间套定理) 若 $\{[a_n,b_n]\}$ 是一列闭区间, 满足 $[a_n,b_n]\supset [a_{n+1},b_{n+1}], n=1,2,\cdots$, 且 $\lim_{n\to\infty}(b_n-a_n)=0$, 则存在唯一的实数 ξ , 使得 $\xi\in[a_n,b_n], n=1,2,\cdots$.

定理 2.11 (列紧性原理) 若 $\{a_n\}$ 有界且含无穷多项,则 $\{a_n\}$ 必有收敛子列 $\{a_{n_k}\}$.

定理 2.12 (柯西 (Cauchy) 准则) 数列 $\{a_n\}$ 收敛的充要条件是: 对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n, m > N, |a_n - a_m| < \varepsilon.$

证明

- $1 \Rightarrow 2$ 设 a_n 单减且有下界 $m, a_n \geqslant m > m \varepsilon, \forall n \in \mathbb{N}^*$, 由确界存在原理, $E = \{a_n\}$ 有下确界, 记为 $a = \inf E$, 则 $a \geqslant m$, 且 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N, a \varepsilon < a_n \leqslant a$, 即 $|a_n a| < \varepsilon$. 由定义, $\lim_{n \to \infty} a_n = a = \inf \{a_n\}$.
- $2 \Rightarrow 3$ 所有区间的左端点构成的数列 $\{a_n\}$ 是单调递增有上界的, 故有极限, 记为 a, 即 $\lim_{n \to \infty} a_n = a$. 同理, 所有区间的右端点构成的数列 $\{b_n\}$ 是单调递减有下界的, 故有极限, 记为 b, 即 $\lim_{n \to \infty} b_n = b$. 因此 $a b = \lim_{n \to \infty} (a_n b_n) = 0$, 即 a = b. 即证存在 $\xi = a = b$. 若存在另一实数 $\eta \in [a_n, b_n], n = 1, 2, \cdots$, 则 $\xi \leqslant \eta \leqslant \xi$, 即 $\xi = \eta$. 故唯一性得证.
- $3 \Rightarrow 4$ 设 $|a_n| < M$, 取 $[\alpha_1, \beta_1] = [-M, M]$,将其二分为 $[\alpha_1, \beta_1] = [\alpha_1, \frac{\alpha_1 + \beta_1}{2}] \cup [\frac{\alpha_1 + \beta_1}{2}, \beta_1]$,两个子区间中至少有一个子区间包含无穷多个 a_n 的项,记为 $[\alpha_2, \beta_2]$,重复上述过程,得到 $[\alpha_1, \beta_1] \supset [\alpha_2, \beta_2] \supset \cdots$,且 $\lim_{n \to \infty} (\beta_n \alpha_n) = \frac{M (-M)}{2^n} = 0$,由闭区间套定理,存在唯一的实数 ξ ,使得 $\xi \in [\alpha_n, \beta_n]$, $n = 1, 2, \cdots$.

然后构造收敛子列 $\{a_{n_k}\}$, 令 $n_1=1$, 由于区间 $[\alpha_2,\beta_2]$ 中包含无穷多个 a_n 的项, 可以找到 $n_2>n_1$, 使得 $a_{n_2}\in[\alpha_2,\beta_2]$, 以此类推, 可以找到 $n_3>n_2>n_1$, 使得 $a_{n_3}\in[\alpha_3,\beta_3]$, 重复此过程, 得到一个收敛子列 $\{a_{n_k}\}$.

 $4\Rightarrow 5$ 必要性是容易证明的,因为 $\{a_n\}$ 收敛,对于任意的一个正数 ε ,存在整数 N,使得当 m,n>N 时 $|a_m-a|<\frac{\varepsilon}{2},\quad |a_n-a|<\frac{\varepsilon}{2},$ 因此就有 $|a_m-a_n|<\varepsilon$. 下面证明充分性. 对于正数 $\varepsilon=1$,存在整数 N_1 ,使得当 $m,n>N_1$ 时,有 $|a_m-a_n|<1$. 令

$$M = \max\{|a_1|, |a_2|, \dots, |a_{N_1}|, |a_{N_1+1}|\},\,$$

则有 $|a_n| \leq M, n=1,2,\ldots$ 这说明 $\{a_n\}$ 是有界的. 由列紧性原理存在收敛的子列 $\{a_{n_k}\}$. 因为 $\{a_n\}$ 是 Cauchy 列, 所以对于任意意定的 ε , 存在整数 N_2 , 使得当 $m,n>N_2$ 时, 有 $|a_m - a_n| < \frac{\varepsilon}{2}$. 对于这个 ε , 因为 $\lim a_{n_k} = a$, 存在一个整数 K, 使得当 k > K 时, 有 $|a_{n_k}-a|<rac{arepsilon}{2}$;特別取一个 n_k 使得 $n_k>N_2$ 且 $n>N_2$ 时,

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

所以, $\lim_{n\to\infty} a_n = a$.

Cauchy 收敛准则的强大之处在于, 它不要求事先猜出极限值. 也正是如此, 在我们说明一 个数列发散的时候,通常不利用极限定义的否定形式(可以自行尝试一下这有多么繁琐),而是 利用 Cauchy 收敛准则的否命题.

命题 2.16 (Cachuy 收敛准则的否命题) 设数列 $\{a_n\}$, 则 $\{a_n\}$ 发散的充要条件是: 存在 $\epsilon_0 > 0$, 使得对 $\forall N \in \mathbb{N}^*$, 存在 $n_0, m_0 > N$, 有 $|a_m - a_n| \ge \varepsilon_0$.

例 2.13 证明 $\lim_{n\to\infty} \sin n$ 不存在

证明 对于任意
$$n$$
, 存在 $p_1 = \left\lfloor \frac{n}{\pi} \right\rfloor \pi + \frac{3}{2}\pi, p_2 = \left\lfloor \frac{n}{\pi} \right\rfloor \pi + \frac{5}{2}\pi > \left\lfloor \frac{n}{\pi} + 1 \right\rfloor \pi > n$, 使得 $|a_{p_1} - a_n|, |a_{p_2} - a_n| > \frac{1}{2}$

二者至少有其一成立.

注其实我们不满足于这个结果,在深入的学习中会发现这个数列的极限点几乎可以取遍[-1,1], 或者对于任 [-1,1] 中的点, 都可以找到一个子列收敛到这个点. 这个问题的构造从知识结构上 现在就可以解决,请大家尝试进行证明.

习题 1.2.17 证明下列数列收敛:

(1)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right);$$

(2)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1};$$

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\sharp \vdash |\alpha_k| \leq M, (k = 1, 2, \dots)$, $\vec{m} |q| < 1$;

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\not \exists \psi \mid \alpha_k \mid \leq M, (k = 1, 2, \dots)$, $\overrightarrow{m} \mid q \mid < 1$;
(4) $a_n = \frac{\cos 1}{1 \cdot 2} + \frac{\cos 2}{2 \cdot 3} + \frac{\cos 3}{3 \cdot 4} + \dots + \frac{\cos n}{n(n+1)}$.

(1) 由
$$1 - \frac{1}{2^n} < 1$$
, 可知 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(2) 由
$$a_n < \sum_{k=1}^n \frac{1}{3^k} < \frac{1}{2}$$
, 可知 $\{a_n\}$ 有上界, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(3) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left\lfloor \log_{|q|} \frac{\varepsilon(1-|q|)}{2M} \right\rfloor + 1$, 则当 $m, n > N$ 时,

$$|a_m - a_n| = |\alpha_{n+1}q^{n+1} + \dots + \alpha_m q^m| \le M(|q|^{n+1} + |q|^{n+2} + \dots) = M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon.$$

(4) 利用 Cauchy 收敛准则, 对 $\forall \varepsilon > 0$, 取 $N = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$, 则当 m, n > N 时,

$$|a_m - a_n| = \left| \frac{\cos(n+1)}{(n+1)(n+2)} + \dots + \frac{\cos m}{m(m+1)} \right| \le \sum_{k=n+1}^m \frac{1}{k(k+1)} = \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \varepsilon.$$

例 2.14 证明

$$\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}=2.$$

解 设 $a_1 = \sqrt{2}$, $a_n = \sqrt{2 + a_{n-1}}$, 则 $\{a_n\}$ 单调增, 且 $a_n < 2$, 因此 $\{a_n\}$ 收敛, 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \sqrt{2 + a} \Rightarrow a^2 - a - 2 = 0 \Rightarrow a = 2$.

习题 1.2.18 证明下列数列收敛,并求出其极限:

(1)
$$a_n = \frac{n}{c^n}$$
, $(c > 1)$;

(2)
$$a_1 = \frac{c}{2}$$
, $a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2}$ $(0 \le c \le 1)$;

(3)
$$a > 0, a_0 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
 (提示: 先证明 $a_n^2 \ge a$);

(4)
$$a_0 = 1$$
, $a_n = 1 + \frac{a_{n-1}}{a_{n-1} + 1}$;

(5) $a_n = \sin \sin \cdots \sin 1$ $(n \uparrow \sin)$.

解

(1) 由 $a_n > 0$, 且 $\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \cdot \frac{1}{c} < 1$ 在充分大时成立, 注 详细而言, 当 $n > \frac{1}{c-1}$ 时, 有 $\frac{a_{n+1}}{a_n} < 1$. 但数列极限与有限项无关, 我们只需要考虑充分大的 n. 可知 $\{a_n\}$ 在充分大时单调减, 因此 $\{a_n\}$ 收敛. 又由 Stolz 定理, 有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{c^n} = \lim_{n \to \infty} \frac{(n+1) - n}{c^{n+1} - c^n} = \lim_{n \to \infty} \frac{1}{c^n(c-1)} = 0.$$

(2)

$$a_{n+1} - a_n = \frac{1}{2}(a_{n+1} - a_n)(a_{n+1} + a_n)$$

由 $a_2-a_1=\left(\frac{c}{2}\right)^2>0$,可递归的得知 $a_{n+1}-a_n>0$,因此 $\{a_n\}$ 单调增,且 $a_1< c$,归纳的可得 $a_{n+1}<\frac{c}{2}+\frac{c^2}{2}<\frac{c}{2}+\frac{c}{2}=c$,因此 $\{a_n\}$ 有上界,故 $\{a_n\}$ 收敛. 设 $\lim_{n\to\infty}a_n=a$,则 $a=\frac{c}{2}+\frac{a^2}{2}\Rightarrow a^2-2a+c=0\Rightarrow a=1\pm\sqrt{1-c}$,又由 $a_n>0$,可知 $a=1-\sqrt{1-c}$.

(3) 由均值不等式,

$$a_{n+1} = \left(\frac{1}{2}\left(a_n + \frac{a}{a_n}\right)\right)^2 \geqslant a$$

于是

$$a_{n+1} - a_n = \frac{a - a_n^2}{2a_n} \le 0$$

因此 $\{a_n\}$ 在 $n \ge 1$ 时单调减, 且有下界 \sqrt{a} , 因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 a = a

$$\frac{1}{2}\left(a + \frac{a}{a}\right) = \sqrt{a}.$$

$$a_n - a_{n-1} = \frac{1 + a_{n-1} - a_{n-1}^2}{a_{n-1} + 1}$$

$$1 + a_n - a_n^2 = 1 + 1 + \frac{a_{n-1}}{a_{n-1} + 1} - \left(1 + \frac{a_{n-1}}{a_{n-1} + 1}\right)^2 = \frac{1 + a_{n-1} - a_{n-1}^2}{(a_{n-1} + 1)^2}$$

由 $1 + a_0 - a_0^2 = 1 > 0$ 归纳的可得 $1 + a_n - a_n^2 > 0$,因此 $a_n - a_{n-1} > 0$,即 $\{a_n\}$ 单调增,且 $1 + a_n - a_n^2 > 0 \Rightarrow a_n < \frac{1 + \sqrt{5}}{2}$ 有上界,因此 $\{a_n\}$ 收敛. 递推式两侧取极限,得 $a = 1 + \frac{a}{a+1} \Rightarrow a^2 - a - 1 = 0 \Rightarrow a = \frac{1 + \sqrt{5}}{2}$.

(5) $a_n = \sin a_{n-1} < a_{n-1}$,因此 $\{a_n\}$ 单调减, 且 $a_n > 0$,因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$,则 $a = \sin a \Rightarrow a = 0$.

综合练习

习题 1.2.19 设 $a_n \le a \le b_n \ (n=1,2,\ldots)$, 且 $\lim_{n\to\infty} (a_n-b_n)=0$. 求证: $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$. 解 由 $\lim_{n\to\infty} (a_n-b_n)=0$, 对 $\forall \varepsilon>0$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $|a_n-b_n|<\varepsilon$. 又由 $a_n\le a\le b_n$, 可知 $|a_n-a|=a-a_n\le b_n-a_n<\varepsilon$, 同理 $|b_n-a|<\varepsilon$. 因此 $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$.

例 2.15 设 $a_n > 0, n = 1, 2, \ldots$,且 $\lim_{n \to \infty} a_n = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$. 证明

(1) a = 0 时,

$$0 \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n} \stackrel{\text{Stolz}}{=} \frac{\mathbb{Z}}{1} \to 0.$$

由夹逼定理,得证.

(2) a > 0 时,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

由 Stolz 定理,有

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_n}} = a,$$

且

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} a_n = a.$$

由夹逼定理,得证.

习题 1.2.20 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 则 $\lim_{n \to \infty} a_n = 0$.

解 由2.15, 可知 $\lim_{n\to\infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1}} = \lim_{n\to\infty} \frac{a_n}{a_{n-1}} = \frac{1}{l} < 1$. 因此 $\exists r = \frac{1+\frac{1}{l}}{2} \in (0,1)$, 使得 当 n 充分大时, $\sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1}} < r$. 由此可知,

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} < r^n$$

即 $a_n < a_1 r^n$. 因此 $\lim_{n \to \infty} a_n = 0$.

习题 1.2.21 设数列 $\{a_n\}$, $\{b_n\}$ 是正数列, 满足 $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$ 求证: 若 $\{b_n\}$ 收敛, 则 $\{a_n\}$ 收敛.

解 若 $\lim_{n\to\infty} b_n = 0$, 则由 $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdot \cdots \cdot \frac{a_n}{a_{n-1}} \leqslant a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdot \cdots \cdot \frac{b_n}{b_{n-1}} = a_1 \cdot \frac{b_n}{b_1}$ 可知 $\lim_{n\to\infty} a_n = 0$. 若 $\lim_{n\to\infty}b_n=b>0$,由原式有 $\frac{a_{n+1}}{b_{n+1}}\leq \frac{a_n}{b_n}$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 单调减,且 $\frac{a_n}{b_n}>0$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,设 $\lim_{n \to \infty} \frac{a_n}{b_n} = c, \text{ M} \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{b_n \cdot \lim_{n \to \infty} \frac{a_n}{b_n}}{b_n \cdot \lim_{n \to \infty} \frac{a_n}{b_n}} = bc.$

习题 1.2.22 利用极限 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求下列数列的极限:

(1)
$$a_n = \left(1 + \frac{1}{2n+1}\right)^{2n+1};$$
 (2) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+1};$

(3)
$$a_n = \left(\frac{1+2n}{2+2n}\right)^{2n^3}$$
; (4) $a_n = \left(1+\frac{1}{n^3}\right)^{n^3}$.

简要说明: 由 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 故 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 的任意子列 $\left\{\left(1+\frac{1}{n_k}\right)^{n_k}\right\}$ 也收敛于 e. 因此, 我们可以通过适当的变形, 将题目中的数列变形为 $\left(1+\frac{1}{n_k}\right)^{n_k}$ 的形式, 从而求出极限. 在此过程中

设数列 $\{a_n\}$ 收敛于 $a, a_n > 0, a > 0.$ $\{b_n\}$ 收敛于 b. 则 $\lim_{n \to \infty} a_n^{b_n} = a^b$. 也相同有用.

(1)
$$\left(1 + \frac{1}{2n+1}\right)^{2n+1} = \left(1 + \frac{1}{m}\right)^m \Big|_{m=2n+1} \to e;$$

(2)
$$\left(1 - \frac{1}{n-2}\right)^{n+1} = \left(1 + \frac{1}{n-2}\right)^{n-2 \cdot \frac{n+1}{n-2}} = e^1 = e;$$

(3) $\left(1 - \frac{1}{n+2}\right)^{-(n+2) \cdot \left(-\frac{n}{n+2}\right)} = e^{-1};$

(3)
$$\left(1 - \frac{1}{n+2}\right)^{-(n+2)\cdot\left(-\frac{n}{n+2}\right)} = e^{-1};$$

(4)
$$\left(1 + \frac{1}{n^3}\right)^{n^3 \cdot 2} = e^2$$
.

习题 1.2.23 设 $\lim_{n \to \infty} a_n = \infty$, 且 $|b_n| \ge b > 0$ (n = 1, 2, ...), 则 $\lim_{n \to \infty} a_n b_n = \infty$.

解 对 $\forall M>0$,由 $\lim_{n\to\infty}a_n=\infty$,存在 $N\in\mathbb{N}^*$,使得当 n>N 时, $a_n>\frac{M}{b}$. 又由 $|b_n|\geq b>0$,可 知 $|a_nb_n|\geqslant a_n|b|>M$. 因此 $\lim_{n\to\infty}a_nb_n=\infty$.

习题 1.2.24 确定 $n \to \infty$ 时, $\sqrt[n]{n!}$ 与 $n \sin \frac{n\pi}{2}$ $(n \ge 1)$ 是否有界, 是否趋于无穷大.

 $\mathbf{R} \sqrt[n]{n!}$ 无界,且趋于无穷大.由均值不等式,

$$\sqrt[n]{n!} \geqslant \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}} \stackrel{\text{Stolz} \text{ \tilde{z}} \text{ $\frac{1}{n}$}}{=} \frac{1}{\frac{1}{n}} = n \to \infty.$$

无界, 但是不趋于无穷大. 当 n=4k+1 时, $n\sin\frac{n\pi}{2}=4k+1$, 趋于无穷大; 当 n=4k+3 时, $n\sin\frac{n\pi}{2}=-(4k+3)$, 趋于负无穷大; 当 n 为偶数时, $n\sin\frac{n\pi}{2}=0$.

习题 1.2.25 设数列 $\{a_n\}$ 由 $a_1=1, a_{n+1}=a_n+\frac{1}{a_n}\ (n\geq 1)$ 定义,证明: $a_n\to +\infty\ (n\to \infty)$.

解 由 $a_{n+1}^2 - a_n^2 = (a_{n+1} - a_n)(a_{n+1} + a_n) = \frac{1}{a_n}(a_n + a_n + \frac{1}{a_n}) = 2 + \frac{1}{a_n^2} > 2$,可知 $a_n^2 > 2(n-1)$,因此 $\lim_{n \to \infty} a_n = \infty$.

第3章 函数极限

三角函数,反三角函数与双曲函数

正割函数 $\sec x = \frac{1}{\cos x}$, 余割函数 $\csc x = \frac{1}{\sin x}$, 余切函数 $\cot x = \frac{1}{\tan x}$. 六个三角函数之 间有如下关系:

(1)
$$\sin x = \tan x \cdot \cos x$$

(2)
$$\cos x = \sin x \cdot \cot x$$

(3)
$$\tan x = \sin x \cdot \sec x$$

(4)
$$1 + \tan^2 x = \sec^2 x$$

(5)
$$1 + \cot^2 x = \csc^2 x$$

(6)
$$\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$$

(7)
$$\sec 2x = \frac{1 + \tan^2 x}{1 - \tan^2 x}$$

(8)
$$\csc 2x = \frac{1 + \tan^2 x}{2 \tan x}$$

 $y = \sin x$ 在 R 上不单调, 不存在反函数. 我们取 $y = \sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的反函数, 记为 $y = \arcsin x$. 因此 $f(x) = \sin(\arcsin x), g(x) = \arcsin(\sin x)$, 都不一定等于 x.

反三角函数有如下相互关系:

(1)
$$\arcsin x + \arccos x = \frac{\pi}{2}$$

(2)
$$\arcsin(-x) = -\arcsin x$$

(3)
$$\arccos(-x) = \pi - \arccos x$$

正割函数 $\sec x = \frac{1}{\cos x}$, 余割函数 $\csc x = \frac{1}{\sin x}$, 余切函数 $\cot x = \frac{1}{\tan x}$. 六个三角函数之 间有如下关系:

(1)
$$\sin x = \tan x \cdot \cos x$$

(2)
$$\cos x = \sin x \cdot \cot x$$

(3)
$$\tan x = \sin x \cdot \sec x$$

(4)
$$1 + \tan^2 x = \sec^2 x$$

(5)
$$1 + \cot^2 x = \csc^2 x$$

(6)
$$\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$$

(7)
$$\sec 2x = \frac{1 + \tan^2 x}{1 - \tan^2 x}$$

(8)
$$\csc 2x = \frac{1 + \tan^2 x}{2 \tan x}$$

双曲正弦函数 $\sinh x = \frac{e^x - e^{-x}}{2}$, 双曲余弦函数 $\cosh x = \frac{e^x + e^{-x}}{2}$, 双曲正切函数 $\tanh x = \frac{e^x - e^{-x}}{2}$ $\frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. 双曲函数有如下性质:

$$(1) \sinh(-x) = -\sinh x$$

$$(2) \cosh(-x) = \cosh x$$

(3)
$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$

(3)
$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$
 (4) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$

 $(5) \cosh^2 x - \sinh^2 x = 1$

(6) $\sinh 2x = 2\sinh x \cosh x$

(7) $\cosh 2x = 2\cosh^2 x - 1 = 1 + 2\sinh^2 x$

(8) $\sinh' x = \cosh x$

(9) $\cosh' x = \sinh x$

函数极限的定义

之前我们以 ε -N 语言定义了数列极限,

定义 3.1 (数列极限)

- (1) $\lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N \in N^*, \forall n > N, |a_n a| < \varepsilon.$
- (2) $\lim_{n\to\infty} a_n = +\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n > M.$
- (3) $\lim_{n \to \infty} a_n = -\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n < -M.$
- (4) $\lim_{n \to \infty} a_n = \infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, |a_n| > M.$

类似地, 我们可以用 ε -δ 语言定义函数极限.

定义 3.2 设 x_0 为常数, 函数在 x_0 处的极限为 a 定义为:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon.$$

若x从大于 x_0 的一侧趋近于 x_0 ,则称为 x_0 的右极限,记为

$$\lim_{x \to x_0^+} f(x) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x, x_0 < x < x_0 + \delta \Rightarrow |f(x) - a| < \varepsilon;$$

若x从小于 x_0 的一侧趋近于 x_0 ,则称为 x_0 的左极限,记为

$$\lim_{x \to x_0^-} f(x) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x, x_0 - \delta < x < x_0 \Rightarrow |f(x) - a| < \varepsilon.$$

考虑 $\lim_{x\to\alpha} f(x) = \beta, \beta$ 可以是常数 $A, +\infty, -\infty, \infty$. α 可以是常数 $x_0, x_0^+, x_0^-, +\infty, -\infty$. 一共有 24 种情况. 我们全部列举如下:

- (1) $\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall 0 < |x x_0| < \delta \Rightarrow |f(x) A| < \varepsilon.$
- (2) $\lim_{x \to x_0^+} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow |f(x) A| < \varepsilon.$
- (3) $\lim_{x \to x_0^-} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x_0 \delta < x < x_0 \Rightarrow |f(x) A| < \varepsilon.$
- (4) $\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x x_0| < \delta \Rightarrow f(x) > M.$
- (5) $\lim_{x \to x_0^+} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow f(x) > M.$
- (6) $\lim_{x \to x_0^-} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 \delta < x < x_0 \Rightarrow f(x) > M.$
- (7) $\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x x_0| < \delta \Rightarrow f(x) < -M.$
- (8) $\lim_{x \to x_0^+} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow f(x) < -M.$

(9)
$$\lim_{x \to x_0^-} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow f(x) < -M.$$

(10)
$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \Rightarrow |f(x)| > M.$$

(11)
$$\lim_{x \to x_0^+} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow |f(x)| > M.$$

(12)
$$\lim_{x \to x_0^-} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow |f(x)| > M.$$

(13)
$$\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

(14)
$$\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

(15)
$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

(16)
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow f(x) > M.$$

(17)
$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow f(x) < -M.$$

(18)
$$\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

(19)
$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow f(x) > M.$$

(20)
$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow f(x) < -M.$$

(21)
$$\lim_{x \to -\infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

(22)
$$\lim_{x \to \infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow f(x) > M.$$

(23)
$$\lim_{x \to \infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow f(x) < -M.$$

(24)
$$\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

注 也有的时候将函数 f(x) 在 x_0 处的左极限记为 $f(x_0-0)$, 右极限记为 $f(x_0+0)$.

定理 3.1
$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0^+} f(x) = a = \lim_{x \to x_0^-} f(x).(x_0 为常数)$$

证明
$$\Rightarrow$$
: $\forall \varepsilon > 0, \exists \delta > 0, \forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon$. 即对 $\forall 0 < x - x_0 < \delta \Leftrightarrow x_0 < x < x_0 + \delta \uparrow |f(x) - a| < \varepsilon$, 即 $\lim_{x \to x_0^+} f(x) = a$. 同理可证 $\lim_{x \to x_0^-} f(x) = a$.

$$\Leftarrow: \forall \varepsilon > 0, \exists \delta_1 > 0, \forall x, x_0 < x < x_0 + \delta_1 \Rightarrow |f(x) - a| < \varepsilon.$$
 对上述 $\varepsilon, \exists \delta_2 > 0, \forall x, x_0 - \delta_2 < x < x_0 \Rightarrow |f(x) - a| < \varepsilon.$ 取 $\delta = \min\{\delta_1, \delta_2\},$ 则 $\forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon.$ 即 $\lim_{x \to x_0} f(x) = a.$

定理 3.2
$$\lim_{x \to \infty} = a \Leftrightarrow \lim_{x \to +\infty} f(x) = a = \lim_{x \to -\infty} f(x)$$
.

$$\lim_{t\to 0^-} f\left(\frac{1}{t}\right) \Leftrightarrow \lim_{x\to +\infty} f(x) = a = \lim_{x\to -\infty} f(x).$$

上述最后一个等式由
$$\lim_{t\to 0^+} f\left(\frac{1}{t}\right) = \lim_{x\to +\infty} f(x)$$
, $\lim_{t\to 0^-} f\left(\frac{1}{t}\right) = \lim_{x\to -\infty} f(x)$ 给出.

例 3.1
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e.$$

函数极限的四则运算法则

定理 3.3 设 x_0, a, b, c_1, c_2 为常数, 令 $\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$, 则:

- (1) $\lim_{x \to x_0} (c_1 f(x) + c_2 g(x)) = c_1 a + c_2 b;$
- (2) $\lim_{x \to x_0} f(x)g(x) = a \cdot b;$ 特别地, $\lim_{x \to x_0} f^2(x) = a^2;$
- (3) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} (b \neq 0).$

证明

(1) 目的时要证明对于任意的正数 ϵ , 能够找到一个正数 δ , 使得当 $0 < |x - x_0| < \delta$ 时, $|(c_1 f(x) + c_2 g(x)) - (c_1 a + c_2 b)| \leq \epsilon$ 。

由极限的定义,存在 δ_1,δ_2 ,使得当 $0<|x-x_0|<\delta_1$ 时,

$$|f(x) - a| < \frac{\epsilon}{2|c_1|},$$

当 $0 < |x - x_0| < \delta_2$ 时,

$$|g(x) - b| < \frac{\epsilon}{2|c_2|}.$$

取 $\delta = \min(\delta_1, \delta_2)$, 则当 $0 < |x - x_0| < \delta$ 时, 同时有

$$|f(x) - a| < \frac{\epsilon}{2|c_1|}, \quad |g(x) - b| < \frac{\epsilon}{2|c_2|},$$

因此有

$$|c_1f(x)+c_2g(x)-(c_1a+c_2b)| = |c_1(f(x)-a)+c_2(g(x)-b)| \leqslant |c_1||f(x)-a|+|c_2||g(x)-b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

(2) 证明类似于第一小题。对于任意的正数 ϵ ,存在 δ_1 和 δ_2 ,使得当 $0 < |x-x_0| < \delta_1$ 时,

$$|f(x) - a| < \frac{\epsilon}{2|b|},$$

当 $0 < |x - x_0| < \delta_2$ 时,

$$|g(x) - b| < \frac{\epsilon}{2|a|}.$$

取 $\delta = \min(\delta_1, \delta_2)$, 则当 $0 < |x - x_0| < \delta$ 时, 同时有

$$|f(x)-a|<rac{\epsilon}{2|b|},\quad |g(x)-b|<rac{\epsilon}{2|a|},$$

因此有

我们有

 $|f(x)g(x) - ab| = |f(x)g(x) - af(x) + af(x) - ab| \le |f(x)||g(x) - b| + |g(x) - b||f(x) - a|.$ 由于 f(x) 和 g(x) 在 x_0 附近连续,故当 $x \to x_0$ 时,|f(x)| 和 |g(x)| 被有界地控制。因此

$$|f(x)g(x) - ab| < \epsilon.$$

(3) 因为
$$\frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}$$
, 且 $\lim_{x \to x_0} g(x) = b \neq 0$, 我们只需证明数列 $\left\{ \frac{1}{g(x)} \right\}$ 收敛于 $\frac{1}{b}$ 。 假设 $b > 0$,则

$$\left| \frac{1}{g(x)} - \frac{1}{b} \right| = \left| \frac{|g(x) - b|}{|g(x)b|} \right|.$$

由于 g(x) 收敛于 b, 一方面对于正数 b/2 > 0, 存在 δ_1 , 使得当 $|x - x_0| < \delta_1$ 时,

$$|g(x) - b| < \frac{b}{2},$$

另一方面,对于任意给定的正数 ϵ ,存在 δ_2 ,使得当 $|x-x_0|<\delta_2$ 时,

$$|g(x) - b| < \frac{b^2 \epsilon}{2}.$$

所以, 当 $|x-x_0|<\delta=\min(\delta_1,\delta_2)$ 时,

$$\left| \frac{1}{g(x)} - \frac{1}{b} \right| \leqslant |g(x) - b| \cdot \frac{2}{b^2} \cdot \frac{\epsilon}{2} = \epsilon.$$

即

$$\lim_{x \to x_0} \frac{1}{g(x)} = \frac{1}{b}.$$

函数极限的性质与数列极限的性质类似,即函数极限有**唯一性、局部有界性、保号性、保序性**. 其中有界性在函数极限中表现为**局部有界性**,即函数在某点的极限存在,则该函数在该点的某个邻域内有界. 这与数列极限的有界性表现上略有不同,这里给出证明:

定理 3.4 (函数极限的局部有界性) 设函数 y = f(x) 的定义域为 I, 点 $x_0 \in I$, 则 f(x) 在 x_0 的某邻域内有界, 即 $\exists \delta > 0, \exists M > 0, \forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x)| < M$.

证明 局部有界性的证明: 设函数 y = f(x) 的定义域为 I, 点 $x_0 \in I$, 且 $\lim_{x \to x_0} f(x) = a \Leftrightarrow \forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon \Leftrightarrow |f(x)| < |a| + \varepsilon$. 因此, 函数 f(x) 在 x_0 的某邻域内有界, 但 f(x) 在整个定义域 I 内未必有界.

若函数 f(x) 在 x_0 处有定义,且 $f(x_0) = \lim_{x \to x_0} f(x)$,则称 f(x) 在 x_0 处连续,若 f(x) 在区间 I 上每一点都连续,则称 f(x) 在 I 上连续. 当 f(x) 在 x_0 处连续时,有 $f(x_0) = f\left(\lim_{x \to x_0} x\right) = \lim_{x \to x_0} f(x)$,即连续函数的极限与函数值可以交换次序.

幂 (x^{α}, α) 为常量), 指数 $(a^{x}, a > 0)$, 三角函数 $(\sin x, \cos x, \tan x)$, 对数函数 $(\log_{a} x, a > 0, a \neq 1)$, 指数函数 (e^{x}) , 反三角函数 $(\arcsin x, \arccos x, \arctan x)$, 双曲函数 $(\sinh x, \cosh x, \tanh x)$ 等函数在其定义域内均连续. 一切基本初等函数, 在其定义域内均连续.

3个重要的函数极限及其证明

命题 3.1

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

证明 首先考虑右极限。设 $0 < x < \frac{\pi}{2}$, 由于 $\sin x > 0$, 由引理易知

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}, \quad \mathbb{R} \quad \frac{\sin x}{x} < \frac{\cos x}{x} < 1.$$

因此

$$0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\left(\sin\frac{x}{2}\right)^2 < 2\sin\frac{x}{2} < x.$$

所以,由两边夹的得到

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1.$$

当 $x \to 0$ 时,令 y = -x,则 $y \to 0^+$,所以

$$\lim_{x \to 0^+} \frac{\sin x}{x} = \lim_{y \to 0^+} \frac{\sin(-y)}{-y} = \lim_{y \to 0^+} \frac{\sin y}{y} = 1.$$

命题 3.2

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

证明 由于对于任意的 x > 1, 有 $[x] \leq x < [x] + 1$, 以及

$$\left(1 + \frac{1}{\lfloor x \rfloor}\right)^x < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{\lfloor x \rfloor + 1}\right)^x,$$

因此

$$\lim_{x \to \infty} \left(1 + \frac{1}{\lfloor x \rfloor} \right)^x = \lim_{x \to \infty} \left(1 + \frac{1}{\lfloor x \rfloor + 1} \right)^x = e.$$

根据两边夹定理,有

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

当 $x \to \infty$ 时, 令 y = -x,则 $y \to -\infty$,利用上面结果,就有

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to -\infty} \left(1 + \frac{1}{1 - y} \right)^{-y} = \lim_{y \to -\infty} \left(1 + \frac{1}{y - 1} \right)^{y - 1} = e.$$

这就证明了

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

命题 3.3

$$\lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \begin{cases} \frac{a_0}{b_0}, & n = m; \\ 0, & n < m; \\ \infty, & n > m. \end{cases}$$

证明

(1)
$$\stackrel{\square}{=} m > n$$
, $\lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \lim_{x \to 0} \frac{a_0 x^{n-m} + a_1 x^{n-m-1} + \dots + a_n x^{n-m}}{b_0 + b_1 x^{m-n-1} + \dots + b_m x^{m-n}} = \frac{a_0 \cdot 0 + a_1 \cdot 0 + \dots + a_n \cdot 0}{b_0 + b_1 \cdot 0 + \dots + b_m \cdot 0} = \frac{0}{b_0} = 0.$

(2) $\stackrel{\square}{=} m = n$, $\lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \lim_{x \to 0} \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m} = \frac{a_0}{b_0}.$

(3) $\stackrel{\square}{=} m < n$, $\lim_{x \to 0} \frac{b_0 x^m + b_1 x^{m-1} + \dots + b_m}{a_0 x^n + a_1 x^{n-1} + \dots + a_n} = 0 \Rightarrow \lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \infty.$

$$(2) \stackrel{\text{def}}{=} m = n, \lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \lim_{x \to 0} \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m} = \frac{a_0}{b_0}.$$

(3)
$$\stackrel{\text{def}}{=} m < n, \lim_{x \to 0} \frac{b_0 x^m + b_1 x^{m-1} + \dots + b_m}{a_0 x^n + a_1 x^{n-1} + \dots + a_n} = 0 \Rightarrow \lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \infty.$$

函数无穷大的比较

命题 3.4 (常用函数无穷大) 设 a, A, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明: $x^x >> a^x >>$ $x^{\alpha} >> (\ln x)^m$, 在 $x \to +\infty$, x > 0, $x \in R$ 时成立.

证明

(2)
$$\mbox{ } \mbox{ } \mbox{$$

例 3.2 证明:

(1)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2};$$

(3)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1;$$

(5)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a, a > 0, a \neq 1.$$

(7)
$$\lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}} = \frac{1}{\sqrt{e}}.$$

$$(2) \lim_{x \to 0} \frac{\arcsin x}{x} = 1;$$

(4)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1;$$

(6)
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \alpha \neq 0.$$

(8)
$$\lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6} \right)^{4x} = e^{12}.$$

上述例 (1) \sim (6) 今后可作为公式直接使用, 并可记为: 当 $x \to 0$ 时,

(1)
$$\frac{1-\cos x}{x^2} \sim \frac{1}{2}$$
;

(2) $\arcsin x \sim x$;

(3) $\ln(1+x) \sim x$;

(4) $e^x - 1 \sim x$;

(5) $a^x - 1 \sim \ln a \cdot x$;

(6) $(1+x)^{\alpha} - 1 \sim \alpha \cdot x$.

证明

(1)
$$1 - \cos x = 2\sin^2\frac{x}{2}$$
, $xi \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{2}{4} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}$.

(2)
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arcsin x}{\sin \arcsin x} = \lim_{x \to 0} \frac{\arcsin x}{\arcsin x} = 1$$

(2)
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arcsin x}{\sin \arcsin x} = \lim_{x \to 0} \frac{\arcsin x}{\arcsin x} = 1.$$
(3)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\lim_{x \to 0} (1+x)^{1/x} = \ln e = 1.$$

(4)
$$\Leftrightarrow e^x - 1 = u$$
, $\mathbb{M} \ x \to 0 \ \text{ft}$, $u \to 0$, $\mathbb{H} \ x = \ln(1+u)$, $\text{id} \ \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{u \to 0} \frac{u}{\ln(1+u)} = \lim_{u \to 0} \frac{1}{\frac{1}{u}\ln(1+u)} = 1$.

(6)
$$\Rightarrow u = \alpha \ln(1+x), \ y = 0 \ \exists x = \frac{u}{\alpha}, \ x = \frac{u}{\alpha}, \ x = \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} \frac{\alpha \ln(1+x)}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x} = \lim_{x \to$$

(7)
$$\lim_{x \to 0^{+}} (\cos \sqrt{x})^{\frac{1}{x}} = \lim_{x \to 0^{+}} e^{\frac{1}{x} \ln \cos \sqrt{x}} = \lim_{x \to 0^{+}} \exp\left(\frac{1}{2} \frac{\ln \cos x}{x}\right) = \exp\left(\frac{1}{2} \frac{\ln \cos x}{\cos x - 1} \frac{\cos x - 1}{x}\right) = \exp\left(\frac{1}{2} \cdot 1 \cdot (-1)\right) = \frac{1}{\sqrt{e}}.$$

(8)
$$\frac{x^2 + 3x - 5}{x^2 + 6} = 1 + \frac{3x - 11}{x^2 + 6} \to 1 + 0 = 1, \quad \text{in } \lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6}\right)^{4x} = \lim_{x \to 0} \left(1 + \frac{3x - 11}{x^2 + 6}\right)^{\frac{x^2 + 6}{3x - 11} \cdot 4x} = \lim_{x \to 0} \left(1 + \frac{3x - 11}{x^2 + 6}\right)^{\frac{x^2 + 6}{3x - 11} \cdot 4x} = e^{12}.$$

其中7,8为底数与指数皆为变量,且底数的极限值为1,指数的极限值为 $+\infty$,这种形式的 极限求解时,可以尝试取对数,然后利用对数函数的连续性,将指数提取出来,再求极限.我们称 这种形式的极限为 1∞ 型不定式.

不定式是相对于 $\alpha(x)^{\beta(x)}, \alpha(x), \beta(x)$ 都有非0常数极限而言的,后者很好求极限.若 $\lim_{x\to\infty} \alpha(x) =$ α , $\lim_{x\to x_0} \beta(x) = \beta$, 则 $\lim_{x\to x_0} \alpha(x)^{\beta(x)} = \alpha^{\beta}$. 当 α , β 中有 0, $+\infty$ 时, 则需要仿照 7, 8 的方法进行求

函数 y = f(x) 的连续性

设 x_0 是常数,

- (1) f(x) 在 x_0 处连续 $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) = f\left(\lim_{x \to x_0} x\right)$.
- (2) f(x) 在 x_0 处间断 $\Leftrightarrow \lim_{x \to x_0} f(x) \neq f(x_0)$: 称 x_0 为 f(x) 的间断点.

f(x) 的间断点分类: $\begin{cases} (\mathbf{I}) \ f(x_0 - 0), f(x_0 + 0) \ 均存在的间断点为第一类间断点; \\ (\mathbf{II}) \ f(x_0 - 0), f(x_0 + 0) \ 至少有一个不存在的间断点为第二类间断点. \end{cases}$

例 3.3 六类基本初等函数 (幂, 指数, 三角, 对数, 指数, 反三角, 双曲) 在其定义域内均连续. 如 $f(x) = \tan x = \frac{\sin x}{\cos x}$ 在 $x \neq \frac{\pi}{2} + k\pi$ 时连续, 且从 $f(\frac{\pi}{2} - 0) = +\infty$, $f(\frac{\pi}{2} + 0) = -\infty$ 可知 f(x) 在 $x = \frac{\pi}{2}$ 处第二类间断点.

又如

$$f(x) = \operatorname{sgn} x = \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$

在 x = 0 处, f(0 - 0) = -1, f(0 + 0) = 1, f(0) = 0, 故 f(x) 在 x = 0 处第一类间断点.(跳跃间断点)

定理 3.5 连续函数的和,差,积,商仍是连续函数,

例 3.4 设 $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ 在区间 I 上连续, 且 c_1 , c_2 , ..., c_m 为常数, 则线性组合 $c_1f_1(x)$ + $c_2f_2(x)$ + ... + $c_mf_m(x)$ 在 I 上连续. 这表明连续函数具有线性性.

定理 3.6 连续的函数 y = f(x) 若有反函数 x = g(y) 或写为 y = g(x), 则反函数 y = g(x) 也是连续函数. 理由: 函数与其反函数关于直线 y = x 对称.

例 3.5 $y = \sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上连续且单调增, 故有反函数 $x = \arcsin y$ 在 $\left[-1, 1\right]$ 上连续. $y = \cos x$ 在 $\left[0, \pi\right]$ 上连续且单调减, 故有反函数 $x = \arccos y$ 在 $\left[-1, 1\right]$ 上连续且单调减. $y = \tan x$ 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上连续且单调增, 故有反函数 $x = \arctan y$ 在 $\left(-\infty, +\infty\right)$ 上连续且单调增.

注 六个反三角函数都是有界变量

例 3.6 e^x 在 $(-\infty, +\infty)$ 上连续且单调增, 故有反函数 $x = \ln y$ 在 $(0, +\infty)$ 上连续且单调增.

定理 3.7 连续函数的复合函数仍是连续函数.

证明 对于任意给定的正数 ε ,因为 f 在 u_0 连续,则存在一个正数 $\eta > 0$,使得当 $|u - u_0| < \eta$ 时,

$$|f(u) - f(u_0)| < \varepsilon.$$

对于上述 $\eta>0$,又因为 g 在 x_0 连续,所以下面存在一个正数 $\delta>0$,使得当 $|x-x_0|<\delta$

时,

$$|g(x) - g(x_0)| = |u - u_0| < \eta.$$

于是, 当 $|x-x_0| < \delta$ 时, 从上面两个不等式得到

$$|f(g(x)) - f(g(x_0))| = |f(u) - f(u_0)| < \varepsilon,$$

即函数 f(g(x)) 在 x_0 连续。

该定理也可以表示为下面形式

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right).$$

由六种基本初等函数经过有限次四则运算,有限次符合运算的函数统称为初等函数.

定理 3.8 一切初等函数,包括一切基本初等函数,在其定义域内均连续.(注:初等函数的的定义域中若存在孤立点 x_0 ,则 f(x) 在 x_0 处仍是连续的.)