PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-151707

(43)Date of publication of application: 18.06.1993

(51)Int.CI.

G11B 20/10 G11B 20/12

(21)Application number: 03-316883

(71)Applicant: AIWA CO LTD

(22)Date of filing:

29.11.1991

(72)Inventor: MOGI HISAO

SHIMIZU IWAO

(54) METHOD FOR REGENERATING AUDIO SIGNAL

(57)Abstract:

PURPOSE: To easily regenerate an original audio signal by detecting a keycode from the header part of each block of a regenerating signal, using a discramble pattern corresponding to this keycode and discrambling the audio signal of a segment section.

CONSTITUTION: At the time of reproduction, a switch circuit 2 is connected to a (b) side, a regenerating signal SA 2 outputted to the terminal 3b of a cassette deck 3 is supplied to an A/D converter 6 and converted into digital data by the sampling clock of 32kHz. Then, audio data corresponding to the areas of #1 to #12 provided on the format of a segment section is only written into a RAM 9, these are read out by the clock of 24 kHz, a time axis is expanded, this is changed into the discramble pattern corresponding to the keycode and a discramble processing is operated. That is, the audio signal read out of the RAM 9 is supplied to the D/A converter 12, changed into an analog audio signal and this is outputted from a terminal 15.

LEGAL STATUS

[Date of request for examination]

17.07.1997

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

2948964

[Date of registration]

02.07.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-151707

(43)公開日 平成5年(1993)6月18日

(51) Int. Cl. 5

識別記号

庁内整理番号

FI

技術表示箇所

G11B 20/10

H 7923-5D

20/12

102

9074-5D

審査請求 未請求 請求項の数2

(全16頁)

(21) 出願番号

特願平3-316883

(22) 出願日

平成3年(1991)11月29日

(71)出願人 000000491

アイワ株式会社

東京都台東区池之端1丁目2番11号

(72)発明者 茂木 尚雄

東京都台東区池之端1丁目2番11号 アイ

ワ株式会社内

(72)発明者 清水 巌

東京都台東区池之端1丁目2番11号 アイ

ワ株式会社内

(74)代理人 弁理士 山口 邦夫 (外1名)

(54) 【発明の名称】オーデイオ信号の再生方式

(57) 【要約】

【目的】アナログオーディオ信号にスクランブル処理を して記録した記録媒体より元のオーディオ信号を良好に 再生する。

【構成】ヘッダ部とセグメント部とで構成される各プロックの信号を磁気テープに記録する。ヘッダ部には暗証コード、キーコードを配する。セグメント部には、キーコードに応じてスクランブル処理したオーディオ信号をでスクランブル処理する。これにより、元のオーディオ信号を容易に再現できる。再生信号のヘッダ部より同じキーコードが2回連続して検出されるときデスクランブル処理を開始し、その後はヘッダ部より連続して検出される3つのキーコードのうち2以上が一致しているときそのキーコードに応じてデスクランブル処理を続ける。磁気テープの傷等でキーコードによるデスクランブル処理を開始、継続できる

【特許請求の範囲】

【請求項1】 キーコードを有するヘッダ部と、上記キ ーコードに応じてスクランブル処理された所定期間分の オーディオ信号を有するセグメント部からなるプロック が連続して記録された記録媒体よりオーディオ信号を再

再生信号のヘッダ部より検出されるキーコードに応じた デスクランブルパターンで再生信号のセグメント部のオ ーディオ信号をデスクランブル処理して元のオーディオ 信号を得ることを特徴とするオーディオ信号の再生方 式。

【請求項2】 上記再生信号のヘッダ部より同じキーコ ードが2回以上連続して検出されるとき上記デスクラン ブル処理を開始すると共に、その後は3つの連続したブ ロックのヘッダ部より検出されるキーコードのうち2以 上のキーコードが一致しているとき、そのキーコードに 応じたデスクランブルパターンで上記デスクランブル処 理を続けることを特徴とする請求項1記載のオーディオ 信号の再生方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、例えばアナログオー ディオ信号をスクランブル処理して記録した磁気テープ より元のオーディオ信号を得る再生方式に関する。

[0002]

【従来の技術】従来、テープレコーダを使用して磁気テ ープにアナログオーディオ信号を記録することは周知で ある。

[0003]

にアナログオーディオ信号を記録する場合、記録内容に よっては秘話性を持たせたい場合もある。秘話性を持た せるため、例えばアナログオーディオ信号にスクランプ ルをかけることが考えられる。

【0004】アナログオーディオ信号にスクランブルを かける場合、元のアナログオーディオ信号を再現するた めにスクランブル情報が必要となるが、例えばヘッダ部 を設けてスクランブル情報を配することが考えられる。

【0005】この発明では、アナログオーディオ信号に スクランブル処理をして記録した記録媒体より元のオー 40 ディオ信号を良好に再生できる再生方式を提供するもの である。

[0006]

【課題を解決するための手段】この発明は、キーコード を有するヘッダ部と、キーコードに応じてスクランブル 処理された所定期間分のオーディオ信号を有するセグメ ント部からなるブロックが連続して記録された記録媒体 よりオーディオ信号を再生する際、再生信号のヘッダ部 より検出されるキーコードに応じたデスクランブルパタ ーンで再生信号のセグメント部のオーディオ信号をデス 50

クランブル処理して元のオーディオ信号を得るものであ る。

【0007】その場合、例えば再生信号のヘッダ部より 同じキーコードが2回以上連続して検出されるときデス クランブル処理を開始すると共に、その後は3つの連続 したブロックのヘッダ部より検出されるキーコードのう ち2以上のキーコードが一致しているとき、そのキーコ ードに応じたデスクランブルパターンでデスクランブル 処理を続けるものである。

10 [0008]

【作用】再生信号の各プロックのヘッダ部よりキーコー ドを検出し、そのキーコードに応じたデスクランブルパ ターンでセグメント部のオーディオ信号をデスクランブ ル処理するため、元のオーディオ信号を容易に再現し得

【0009】再生信号のヘッダ部より同じキーコードが 2回以上連続して検出されるときデスクランブル処理を 開始すると共に、その後は3つの連続したブロックのへ ッダ部より検出されるキーコードのうち2以上のキーコ 20 ードが一致しているとき、そのキーコードに応じたデス クランプルパターンでデスクランプル処理を続けること で、磁気テープの傷等の物理的な障害で再生信号より検 出されるキーコードにエラーが生じても、そのエラーが 連続的でなければ、正しいキーコードによるデスクラン ブル処理が開始されると共に、正しいキーコードによる デスクランブル処理が継続される。

[0010]

【実施例】以下、図面を参照しながら、この発明の一実 施例について説明する。本例は、磁気テープにオーディ 【発明が解決しようとする課題】このように磁気テープ 30 オ信号をスクランブル処理して記録再生する例である。 【0011】まず、図6~図10を使用して記録信号の フォーマットについて説明する。

> 【0012】図6Aに示すように、600msec毎に 1プロックの信号が配される。各プロックは、119. 5msecのヘッダ部と、480.5msecのセグメ ント部とで構成される(図6Bに図示)。

【0013】図7はヘッダ部のフォーマットを示してい る。ヘッダ部の最初の10msecの領域に12.5K Hzのバースト信号が配され、その後に9msecの無 音領域が設けられ、その後の100.5msecの領域 に24ビットの暗証コードおよび16ビットのキーコー ドが配される(図7Aに図示)。

【0014】100.5msecの期間の最初および最 後の0.5msecの領域には信号分離用に12.5K Hzのパースト信号が配されると共に、これらパースト 信号の間にビット信号が配される(図7日に図示)。各 ビット信号を配するためにそれぞれ2msecの領域が 設けられ、各領域の間に0.5msecの無音領域が設 けられる。

【0015】ビット信号は、図7Cに示すように構成さ

れる。すなわち、 $8 \, \text{KHz}$ の信号が $8 \, \text{サイクル挿入}$ されてデータ "0" の信号とされ、一方 $16 \, \text{サイクル挿入}$ されてデータ "1" の信号とされる。図 $7 \, \text{Cは、暗証コードが } 1 \, \text{Colored}$ であるときの例である。

【0016】図8はセグメント部のフォーマットを示している。セグメント部の最初および最後の0.5msecの領域には信号分離用に12.5KHzのバースト信号が配され(図8Bに図示)、これらバースト信号の間に600msec分のオーディオ信号が配される。

【0017】600msec分のオーディオ信号は各5 10 0msec分の12期間に分割され、ヘッダ部に配され たキーコードに応じたスクランブルパターンでもって並 べ換えられた後に、それぞれ#1~#12の領域に順次 配される(図8Aに図示)。

【0019】ところで、 $\#1 \sim \#12$ の領域は37.520 m s e c しかなく、50 m s e c 分のオーディオ信号をそのまま配することができないため、オーディオ信号は以下のように時間軸圧縮処理されて配される。

【0020】 すなわち、アナログオーディオ信号は24 KH z のサンプリング周波数でもってディジタル信号に変換されてメモリに書き込まれると共に、メモリより32 KH z のクロックでもって読み出される。これにより、各50 ms e c分のオーディオ信号は37.5 ms e cに時間軸圧縮され、ぞれぞれ#1~#12の領域(37.5 ms e c期間)に配することが可能となる。【0021】#1~#120各領域の両端に設けられる1 ms e c期間ののりしろ部には、各領域に配されるオーディオ信号の両端の信号が延長して配される。

【0022】スクランブルパターンによる並べ換えの処理やのりしろ部に配される信号の形成は、例えば上述した時間軸圧縮処理においてメモリの読み出しアドレスを制御することで実行される。

【0023】並べ換え処理やのりしろ部に記録される信 号について、図9を使用してさらに説明する。

【0024】例えば、図9Aに示すようにオーディオ信 40 号が各50msec分ずつに分割されるとき、各50m sec分のオーディオ信号に対してのりしろ部に配され る信号は図9Bに示すように両端の信号が延長されて形 成される。そして、元のオーディオ信号がDATA1、 DATA2、DATA3、DATA4の順であるとき (図9Aに図示)、スクランブルパターンによってDA TA3、DATA1、DATA4、DATA2の順に並 べ換えられるとき、図9Cに示すように記録信号が形成 される。

【0025】図10は記録信号の周波数スペクトラムを 50 2.5 KHzのパースト信号が検出されると共に、8 K

示している。上述したようにオーディオ信号は時間軸圧縮処理の後に記録されるため、元のオーディオ信号の帯域を9MHz以下に制限するとき(破線図示)、実際に記録されるオーディオ信号の帯域は12MHz以下に制限される(実線図示)。これにより、オーディオ信号と12.5KHzのバースト信号とが混合することなく記録され、再生時にオーディオ信号より12.5KHzの信号が検出されてヘッダ部が誤って検出されるということを防止できる。

【0026】本例においては、以上のようなフォーマットの記録信号が磁気テープに記録され、またこれより再生される。

【0027】図1は、上述したような記録信号フォーマットでもって磁気テープにオーディオ信号を記録再生する記録再生装置の一例である。

【0028】同図において、オーディオインの端子1に供給されるアナログオーディオ信号SA1はスイッチ回路2のa側の固定端子に供給される。スイッチ回路2のb側の固定端子には、例えばコンパクトオーディオカセットテープを使用するカセットデッキ3のオーディオアウトの端子3bに出力される再生信号SA2が供給される。スイッチ回路2の切り換えはCPU4によって制御され、記録時にはa側に接続され、再生時にはb側に接続される。

【0029】スイッチ回路2の出力信号はローパスフィルタ5で帯域制限された後A/D変換器6に供給され、例えば1サンプル16ビットのディジタルオーディオデータに変換される。

【0030】7はシーケンス発生器であり、このシーケ ンス発生器7にはCPU4より制御信号が供給され、そ の動作が制御される。上述したA/D変換器6にはシーケンス発生器7よりクロックCK1が供給され、このクロックCK1に同期してサンプリングが行なわれる。クロックCK1の周波数は、記録時には24KHzとされ、再生時には32KHzとされる。

【0031】A/D変換器6より出力されるディジタルオーディオデータは、データバッファ8を介してRAM9に書き込みデータとして供給される。この場合、シーケンス発生器7よりアドレスバッファ10を介してRAM9にアドレス信号が供給され、RAM9の所定アドレスにオーディオデータの書き込みが行なわれる。

【0032】記録時にはA/D変換器6より出力されるオーディオデータがRAM9に順次書き込まれるが、再生時には各プロックのセグメント部の#1~#12の領域に配されたオーディオ信号をディジタル変換したオーディオデータのみがRAM9に書き込まれる。

【0033】カセットデッキ3のオーディオアウトの端子3bに出力される再生信号SA2は、ビット・バースト検出回路11に供給される。検出回路11では、12、5KH2のバースト信号が検出されると共に、8K

Hzの信号のサイクル数に基づいてビット信号(暗証コ ードおよびキーコード)が検出され、その検出信号はシ ーケンス発生器7に供給される。

【0034】再生時には、カセットデッキ3のオーディ オアウトの端子3 bに出力される再生信号SA2より各 ブロックのヘッダ部の先頭に配される12.5KHzの バースト信号が検出されることで各プロックのヘッダ部 が検出される。また、セグメント部に配される12.5 KHzのパースト信号が検出されることで、#1~#1 2の領域が検出される。これに基づき、上述したように 10 #1~#12の領域に配されたオーディオ信号をディジ タル変換したオーディオデータのみがRAM9に書き込 まれるように制御される。

【0035】また、RAM9に書き込まれたオーディオ データは、記録時には32KHzのクロックでもって読 み出しが行なわれて時間軸圧縮され、再生時には24K Hzのクロックでもって読み出しが行なわれて時間軸伸 張される。この場合、記録時には、記録信号フォーマッ トの#1~#12の領域(のりしろ部を含む)に対応し たタイミングで読み出しが行なわれる。

【0036】この際、記録時にあっては、CPU4でラ ンダムに発生されてシーケンス発生器 7 に供給されるキ ーコードに応じたスクランブルパターンでもって、60 Omsec分のオーディオ信号を構成する各50mse c分の12期間のオーディオ信号に対応するオーディオ データの並べ換え、従ってスクランプル処理が行なわれ ると共に、各50msec分のオーディオデータの両端 のデータを連続して1msecだけ延長して読み出して のりしろ部のデータが形成される。

より検出回路11で検出されたキーコードに応じたデス クランプルパターンでもって、#1~#12の領域のオ ーディオデータの並べ換え、従ってデスクランブル処理 が行なわれる。

【0038】このようなオーディオデータの並べ換えや のりしろ部のデータの形成は、シーケンス発生器 7より RAM9に供給されるアドレス信号を制御することで行 なわれる。

【0039】RAM9より読み出されるオーディオデー タはデータバッファ8を介してD/A変換器12に供給 40 される。D/A変換器12には、シーケンス発生器7よ りクロックCK2が供給される。クロックCK2の周波 数は、記録時には32KHzとされ、再生時には24K Hzとされる。

【0040】D/A変換器12より出力されるアナログ オーディオ信号はローパスフィルタ13で帯域制限され た後、スイッチ回路14の可動端子に供給される。スイ ッチ回路14の切り換えはCPU4によって制御され、 記録時にはa側に接続され、再生時にはb側に接続され る。そして、スイッチ回路14のb側の固定端子はオー 50 ィオデータのみがRAM9に順次書き込まれる。

ディオアウトの端子15に接続される。

【0041】上述せずも記録時には、ユーザのキーボー ド17の操作でCPU4に供給される暗証コードは、キ ーコードと共にシーケンス発生器7に供給される。そし て、シーケンス発生器7より12.5KHzのパースト 信号の発生タイミングと、ビット信号(暗証コードおよ びキーコード)を示す8KHzの信号の発生タイミング を示すデータがビット・バースト発生回路16に供給さ れる。

【0042】発生回路16より出力されるバースト信号 およびビット信号は合成回路18に供給され、スイッチ 回路14のa側の固定端子に得られるオーディオ信号と 合成される。そして、合成回路18の出力信号はカセッ トデッキ3のオーディオインの端子3aに供給される。 【0043】以上の構成において、まず記録時の動作に ついて説明する。

【0044】記録時にはスイッチ回路2がa側に接続さ れているので、端子1に供給されるアナログオーディオ 信号SA1がA/D変換器6に供給されて24KHzの サンプリングクロックでもってディジタルオーディオデ ータに変換され、RAM9に順次書き込まれる。

【0045】そして、RAM9に書き込まれたオーディ オデータは、記録信号フォーマットの#1~#12の領 域(のりしろ部を含む)に対応して32KHzのクロッ クで読み出されて時間軸圧縮される。このとき、600 msec分のオーディオデータを構成する各50mse c分の12期間のオーディオデータは、CPU4でラン ダムに発生されたキーコードに応じたスクランブルパタ ーンで並べ換えられてスクランブル処理される。またこ 【0037】一方、再生時にあっては、再生信号SA2 30 のとき、各50msec分の12期間のオーディオデー タの両端のデータが 1 m s e c の期間延長して読み出さ れ、のりしろ部のデータが形成される。

> 【0046】RAM9より読み出されたオーディオデー タはD/A変換器12に供給されてアナログオーディオ 信号に変換される。記録時にはスイッチ回路14がa側 に接続されているので、合成回路18ではD/A変換器 12より出力されるアナログオーディオ信号に発生回路 16より出力されるパースト信号およびビット信号が合 成される。

【0047】合成回路18からは、上述した記録信号フ オーマットに沿った信号SA3が出力され、この信号S A3はカセットデッキ3のオーディオインの端子3aに 供給され、磁気テープに記録される。

【0048】次に、再生時の動作について説明する。

【0049】再生時にはスイッチ回路2がb側に接続さ れているので、カセットデッキ3の端子3bに出力され る再生信号SA2がA/D変換器6に供給されて32K Hzのサンプリングクロックでディジタルデータに変換 される。そして、#1~#12の領域に対応するオーデ

【0050】そして、RAM9に書き込まれた#1~#12の領域のオーディオデータは、24KHzのクロックで読み出されて時間軸伸張される。このとき、#1~#12のオーディオデータは、再生信号SA2より検出回路11で検出されるキーコードに応じたデスクランブルパターンで並べ換えられてデスクランブル処理される。

【0051】RAM9より読み出されたオーディオデータはD/A変換器12に供給されてアナログオーディオ信号に変換される。再生時にはスイッチ回路14がb側 10に接続されているので、D/A変換器12より出力されるアナログオーディオ信号SA4が端子15に出力される。

【0052】上述せずも、図1の例においては、ユーザは再生時にもキーボード17を操作し、暗証コードを入力する必要がある。そして、再生時に入力した暗証コードと同じものが再生信号SA2より2回連続して検出されたとき初めてデスクランブル処理が開始される。その後は、3つの連続したブロックで検出される暗証コードが比較され、少なくとも2つの暗証コードが一致してい20ればデスクランブル処理が続けられる。この暗証コードの判定は、検出回路11で検出される暗証コードがシーケンス発生器7を介してCPU4に供給され、CPU4によって判断される。

【0053】暗証コードの判定の具体例を図2を使用して説明する。図示の暗証コードは、各ブロックのヘッダ部より検出回路11で検出される暗証コードであり、16進法で表示したものである。上述したように暗証コードは24ビットのコードであるが、各4ビットが16進法の各桁を示している。

【0054】同図において、暗証コードを「252525」と入力して、P点から再生し始めた場合、No.4のブロックより暗証コードが検出されると、正しい暗証コードが2回連続して検出されたことになり、このNo.4のブロックよりデスクランブル処理が開始される

【0055】No. 6のブロックからは正しくない暗証 コードが検出されるが、2ブロック(No. 4, No. 5)の暗証コードが正しいため、デスクランブル処理は 継続される。

【0056】No. 8のブロックから暗証コードが検出されるとき、2ブロック(No. 6, No. 8)の暗証コードが正しくないため、No. 8のブロックよりデスクランブル処理が停止される。しかし、No. 9のブロックより暗証コードが検出されると、2ブロック(No. 7, No. 9)の暗証コードが正しいため、No. 9のブロックよりデスクランブル処理が再開される。【0057】以下、同様の理由により、No. 13のブ

【0057】以下、同様の理由により、No. 13のブロックよりデスクランブル処理が停止され、No. 17のブロックよりデスクランブル処理が再開される。

【0058】また上述せずも、再生時に再生信号SA2より同一のキーコードが2回連続して検出されたとき、そのキーコードに応じたデスクランブルパターンでデスクランブル処理が開始される。その後は、3つの連続したブロックで検出されるキーコードが比較され、少なくとも2つのキーコードが一致していれば、そのキーコードに応じたデスクランブルパターンでデスクランブル処理が続けられる。

【0059】このキーコードの判定は、検出回路11で 検出されるキーコードがシーケンス発生器7を介してC PU4に供給され、CPU4によって判断される。な お、このキーコードの判定は、上述した暗証コードの判 定でデスクランブル処理が可能となった後に行なわれ

【0060】キーコードの判定の具体例を図3を使用して説明する。図示のキーコードは、各ブロックのヘッダ部より検出回路11で検出されるキーコードであり、16進法で表示したものである。上述したようにキーコードは16ビットのコードであるが、各4ビットが16進法の各桁を示している。

【0061】図3Aにおいて、暗証コードの判定でQ1の時点においてデスクランブル処理が可能となったとする。No.2のプロックよりキーコードが検出されると、同じキーコードが2回連続して検出されたことになり、このNo.2のプロックよりキーコード「FFFF」に応じたデスクランブルパターンでデスクランブル処理が開始される。

【0062】No. 4のブロックからは「8888」の キーコードが検出されるが、2ブロック(No. 2, N 30 o. 3)のキーコードは「FFFF」であるので、キー コード「FFFF」に応じたデスクランブルパターンで デスクランブル処理は継続される。

【0063】No.6のブロックからキーコードが検出されるとき、2ブロック(No.4,No.6)のキーコードが「8888」となるため、No.6のブロックよりキーコード「8888」に応じたデスクランブルパターンでデスクランブル処理が行なわれる。

【0064】暗証コードの判定でQ2の時点においてデスクランブル処理が停止された後、時点Q3でデスクランブル処理が可能となったとする。No.13のブロックよりキーコードが検出されると、同じキーコードが2回連続して検出されたことになり、このNo.13のブロックよりキーコード「0000」に応じたデスクランブルパターンでデスクランブル処理が再開される。

【0065】また、図3Bにおいて、暗証コードの判定でQ4の時点においてデスクランブル処理が可能となったとする。No.4のブロックよりキーコードが検出されると、同じキーコードが2回連続して検出されたことになり、このNo.4のプロックよりキーコード「FF50FF」に応じたデスクランブルパターンでデスクランブ

【0066】次に、CPU4の動作を、図4および図5 のフローチャートを使用して説明する。

【0067】パワーオンとされると、まずイニシャラズ を行なう(ステップ31)。次に、キーボード17より 暗証コードが入力されたか否か判断し(ステップ3 2)、暗証コードが入力されるときは、その暗証コード をレジスタにセットする (ステップ33)。

【0068】次に、再生キーがオンされたか否か判断し (ステップ34)、オンでないときは録音キーがオンさ 10 れたか否か判断する(ステップ35)。ステップ35で 録音キーがオンされていないときは、ステップ34に戻 る。

【0069】ステップ35で録音キーがオンされている ときは、CPU4でランダムに発生さるキーコードをレ ジスタにセットすると共に(ステップ36)、モードを 録音にセットする (ステップ37)。

【0070】次に、カセットデッキ3を録音モードでス タートさせると共に(ステップ38)、シーケンス発生 器7等の動作をスタートさせる (ステップ39)。そし 20 て、端子1に供給されるアナログオーディオ信号SA1 を24KHzのサンプリング周波数でもってA/D変換 してRAM9に書き込む (ステップ40)。

【0071】そして、RAM9より600msec分の オーディオデータを各50msec分に分割した12期 間のオーディオデータを、32KH2のクロックで、か つキーコードに応じたスクランブルパターンでもって並 べ換えて読み出し、時間軸圧縮処理をすると共にスクラ ンブル処理をする(ステップ41)。このとき、読み出 しアドレスを制御してのりしろ部の信号も形成する。

【0072】そして、発生回路16からのビット信号お よびバースト信号を付加し(ステップ42)、カセット デッキ3に供給して磁気テープに記録する (ステップ4 3)。ステップ40~43までの動作を、キーボード1 7のストップキーがオンとされるまで行なう。

【0073】ステップ44でストップキーがオンとされ ているとき、カセットデッキ3をストップ状態として (ステップ45)、ステップ32に戻る。

【0074】上述したステップ34で再生キーがオンと されているときは、モードを再生にセットし (ステップ 40 46)、カセットデッキを再生モードでスタートさせる と共に (ステップ47)、シーケンス発生器7等の動作 をスタートさせる (ステップ48)。

【0075】次に、再生信号SA2より検出回路11で 検出される暗証コードをロードし (ステップ49)、さ らに次のプロックで検出される暗証コードをロードする (ステップ50)。そして、連続して検出される2つの 暗証コードをキーボード17より入力された暗証コード と比較し (ステップ51) 、暗証コードがアンマッチか 出される2つの暗証コードのいずれかが入力された暗証 コードと一致していないときは、アンマッチと判断す

10

【0076】ステップ52でアンマッチであるときは、 ステップ50に戻って次のブロックより検出される暗証 コードをロードし、ステップ51、52で同様に比較判 断をする。

【0077】ステップ52でアンマッチでないときは、 再生信号SA2より検出回路11で検出されるキーコー ドをロードし(ステップ53)、さらに次のブロックで 検出されるキーコードをロードする (ステップ54)。 そして、連続して検出される2つのキーコードを比較し (ステップ55)、キーコードがアンマッチか否か判断 する(ステップ56)。この場合、連続して検出される 2つのキーコードが一致していないときは、アンマッチ と判断する。

【0078】ステップ56でアンマッチであるときは、 ステップ54に戻って次のブロックより検出されるキー コードをロードし、ステップ55、56で同様に比較判 断をする。

【0079】ステップ56でアンマッチでないときは、 検出されたキーコードに応じてデスクランブルパターン を設定する (ステップ57)。

【0080】そして、再生信号SA2を32KHzのサ ンプリング周波数でもってA/D変換し、あるブロック の#1~#12の領域に対応したオーディオデータのみ をRAM9に書き込む (ステップ58)。

【0081】そして、RAM9より各プロックを構成す る#1~#12の領域のオーディオデータを、24KH zのクロックで、かつデスクランブルパターンでもって 並べ換えて読み出し、時間軸伸張処理をすると共にデス クランブル処理をする(ステップ59)。これにより、 オーディオアウトの端子15にスクランブルが解除され たアナログオーディオ信号SA4が出力される。

【0082】次に、連続する3つのプロックより検出さ れる暗証コードを入力された暗証コードと比較すると共 に、連続する3つのブロックより検出されるキーコード を相互に比較する (ステップ60)。

【0083】次に、暗証コードがアンマッチか否か判断 する(ステップ61)。少なくとも2つ以上の暗証コー ドが入力された暗証コードと一致していないときはアン マッチと判断する。ステップ61でアンマッチと判断す るときは、次のプロックより検出回路11で検出される 暗証コードをロードした後 (ステップ62)、ステップ 60に戻って暗証コードのアンマッチを判断する。

【0084】ステップ61で暗証コードがアンマッチで ないときは、キーコードがアンマッチか否か判断する (ステップ63)。少なくとも2以上のキーコードが一 致していないときはアンマッチと判断する。ステップ6 否か判断する(ステップ52)。この場合、連続して検 50 3でアンマッチと判断するときは、次のプロックより検

20

出回路11で検出されるキーコードをロードした後 (ス テップ64)、ステップ60に戻って暗証コードおよび キーコードのアンマッチを判断する。

【0085】このように暗証コードまたはキーコードが アンマッチの状態では、ステップ57~59の処理は行 なわれず、次のプロックの#1~#12の領域のオーデ ィオデータの時間軸伸張処理およびデスクランブル処理 の動作が停止される。

【0086】ステップ63でキーコードがアンマッチで ないと判断されるとき、ストップキーがオンとされてい 10 るか否か判断し(ステップ65)、オンとされていない ときはステップ57に戻り、次のブロックの信号に対す る時間軸伸張処理およびデスクランブル処理を継続して 行なう。

【0087】ステップ65でストップキーがオンとされ ているときは、カセットデッキ3を停止状態とした後 (ステップ45)、ステップ32に戻る。

【0088】このように本例においては、オーディオ信 号をスクランブル処理して磁気テープに記録することが でき、秘話性を持たせて記録することができる。

【0089】また、オーディオ信号を時間軸圧縮処理し て時間に余裕を持たせ、これにより各プロック毎にヘッ ダ部を設けてキーコード等をオーディオ信号と同時に記 録するので、再生時には再生信号より検出されたキーコ ードに応じたデスクランブルパターンでオーディオ信号 をデスクランブル処理でき、元のオーディオ信号を容易 に再現できる。

【0090】また、本例においては、ヘッダ部にキーコ ードの他にユーザがキーボード17より入力する暗証コ ードがユーザが入力する暗証コードと一致していないと きは、デスクランブル処理の動作が開始されないように しているので、暗証コードを認識しているユーザのみが デスクランブル処理によって元のオーディオ信号を再現 させることができ、秘話性を高めることができる。

【0091】再生時に再生信号より検出される暗証コー ドがユーザが入力する暗証コードと2回連続して一致し ていないときはデスクランブル処理が開始されないよう にしているので、磁気テープの傷等の物理的な障害で再 生信号より検出される暗証コードにエラーが生じて偶然 40 に入力暗証コードと一致するようになっても、そのエラ ーが連続的でなければデスクランブル処理が開始される ことはなく、暗証コードによる秘話性を良好に保持でき る。

【〇〇92】再生信号より検出される暗証コードがユー ザが入力する暗証コードと2回連続して一致してデスク ランブル処理の動作が開始された後は、3つの連続した プロックで検出される暗証コードのうち少なくとも2つ 以上の暗証コードがユーザが入力する暗証コードと一致 するときは、デスクランブル処理が継続して行なわれ

る。そのため、磁気テープの傷等の物理的な障害で再生 信号より検出される暗証コードにエラーが生じても、そ のエラーが連続的でなければデスクランブル処理が中断 されることはない。

【0093】また、本例においては、再生時に再生信号 より検出されるキーコードが2回連続して同一のもので ないときは、そのキーコードに基づくデスクランブル処 理が開始されず、誤ったデスクランブルパターンでデス クランブル処理されることを防止することができる。

【0094】再生信号より検出されるキーコードが2回 連続して同一となってデスクランブル処理の動作が開始 された後は、3つの連続したブロックで検出されるキー コードのうち少なくとも2つ以上のキーコードが一致す るとき、そのキーコードに基づくデスクランブル処理が 行なわれる。そのため、磁気テープの傷等の物理的な障 害で再生信号より検出されるキーコードにエラーが生じ ても、そのエラーが連続的でなければ、正しいキーコー ドに基づくデスクランブル処理が中断されることはな V.

【0095】また、本例においては、600msec分 のオーディオ信号が各50msec分の12期間に分割 され、これらを並べ換えることでスクランブル処理が行 なわれる。この場合、並べ換え後の各期間のオーディオ 信号は不連続となり、そのまま連続して記録するものと すれば、記録再生の際に各期間の両端付近の信号が過渡 現象等によって欠落あるいは変化するおそれがある。本 例においては、各期間のオーディオ信号の両端にその両 端の信号を延長した信号をのりしろ部の信号として所定 期間配して記録するようにしたので、各期間の両端付近 ードを記録し、再生時に再生信号より検出される暗証コ 30 の信号が磁気テープへの記録再生の際に欠落等すること を防止でき、デスクランブル処理によって元のオーディ オ信号を良好に再現できる。

> 【0096】なお、上述実施例においては、600ms ec分のオーディオ信号を各50msec分の12期間 に分割し、各オーディオ信号をキーコードに応じたスク ランブルパターンで並べ換えることでスクランブル処理 をするものであるが、スクランブル処理の形式はこれに 限定されない。ただし、デスクランブル処理のために、 ヘッダ部にキーコードを配する必要がある。

【0097】また、上述実施例においては、磁気テープ にオーディオ信号を記録再生する例であるが、この発明 は磁気ディスクに記録再生する場合、あるいは光学的に 記録再生するものにも同様に適用することができる。

[0098]

【発明の効果】この発明によれば、再生信号の各プロッ クのヘッダ部よりキーコードを検出し、そのキーコード に応じたデスクランブルパターンでセグメント部のオー ディオ信号をデスクランブル処理するため、元のオーデ ィオ信号を容易に再現できる。

【0099】また、再生信号のヘッダ部より同じキーコ 50

13

14

ードが2回以上連続して検出されるときデスクランブル処理を開始すると共に、その後は3つの連続したブロックのヘッダ部より検出されるキーコードのうち2以上のキーコードが一致しているとき、そのキーコードに応じたデスクランブルバターンでデスクランブル処理を続けることで、磁気テープの傷等の物理的な障害で再生信号より検出されるキーコードにエラーが生じても、そのエラーが連続的でなければ、正しいキーコードによるデスクランブル処理を継続できる。

【図面の簡単な説明】

- 【図1】記録再生装置の構成を示すブロック図である。
- 【図2】暗証コードの判定を説明するための図である。
- 【図3】キーコードの判定を説明するための図である。
- 【図4】 CPUの動作を示すフローチャートである。
- 【図5】 CPUの動作を示すフローチャートである。
- 【図6】記録信号のフォーマットを説明するための図である。

【図7】ヘッダ部のフォーマットを説明するための図である。

【図8】セグメント部のフォーマットを説明するための図である。

【図9】並べ換え処理やのりしろ部の信号を説明するための図である。

【図10】記録信号の周波数スペクトラムを示す図である。

【符号の説明】

- 1 オーディオインの端子
- 2, 14 スイッチ回路
- 10 3 カセットデッキ
 - 4 CPU
 - 6 A/D変換器
 - 7 シーケンス発生器
 - 9 RAM
 - 11 ビット・バースト検出回路
 - 12 D/A変換器
 - 15 オーディオアウトの端子
 - 16 ビット・バースト発生回路
 - 17 キーボード
- 20 18 合成回路

【図10】

記録信号の周波数スペクトラム

【図1】

<

 $\boldsymbol{\alpha}$

[図2]

800msec

[図6]

暗証コード判定 記録信号フォーマット プロック No. 18 最間コー1、 プロック 田間1-1、 No.0 252525 0 ş 1-0温度 No. 17 1-1-1 超雷 D No. 8 454545 252525 プロシ ゾロッ 7 プロック 本に 1-1、 平 1-1、 No. 16 N 0. 7 252525 959595 **₹** プロ O 田位1-1、 プロック No. 15 4-1-1 a ~ カグメント部 No. 6 353535 プログ Ø ٤ S ロシク 平1-0温度 プロック No. 14 电位3-1-0 No. 5 858585 252525 ∞ プロ ħ 4 母配3-1-0 No. 13 田田1-1-ブロック No. 4 757575 252525 二十二二 温度 プロック No. 12 明証3-1、 No. 3 252525 ? ブロ Ç ψ 4 事款コート No. 1 1 No. 2 ഗ D Ş 151515 656565 プロシ -119.5msec-ブロツ E 0 ッグ部 0 ロック No. 10 ထ 母問2-1-西原3-1、 No. 1 252525 252525 イログ

年間3-1.

252525

₩

プロック S.S

【図3】

キーコード判定

【図4】

CPUの動作

【図5】

【図7】 ヘッダ部の フォーマット

【図8】 セクメント部の フォーマット

[図9] 並べ換え処理やの川3部の形成

