POLS 6481. Research Design and Quantitative Methods II Lecture 9. Rescaling, Partialling, and Mediation

Readings: Wooldridge, *Introductory Econometrics 5e,* 2.4a + 6.1

Outline:

- 1. Effects of Rescaling a Regressor (x)
- 2. Effects of Rescaling the Regressand (y)
- 3. Beta Coefficients

1½, 2½ and 3½. Example: *The NYC Marathon*

Readings: Wooldridge, Introductory Econometrics 5e, 2.4a + 6.1

1. Effects of Rescaling a Regressor

Suppose I double the value of x... let X = 2x; then:

Effects on $\widehat{\beta_1}$

$$cov(X, y) = 2 \times cov(x, y)$$
 each "rectangle" has double the area $var(X) = 4 \times var(x)$ each "square" has quadruple the area

The ratio
$$\frac{cov(X,y)}{var(X)} = \frac{1}{2} \cdot \frac{cov(x,y)}{var(x)}$$
: twice as much ΔX is needed to yield the same Δy

Effects on $se(\widehat{\beta_1})$

The residual standard error $(\hat{\sigma})$ will be unchanged

The standard deviation of *X* doubles: $s_x = 2 \times s_x$, and therefore $\sqrt{n} \cdot s_x$ will double

The ratio
$$\frac{\widehat{\sigma}}{\sqrt{n} \cdot s_X} = \frac{1}{2} \cdot \frac{\widehat{\sigma}}{\sqrt{n} \cdot s_X}$$

Effects on t statistic

The ratio
$$\frac{\widehat{\beta_1}}{se(\widehat{\beta_1})}$$
 will be unchanged

Readings: Wooldridge, *Introductory Econometrics 5e*, 2.4a + 6.1

1½. Example: *The NYC Marathon*

To investigate the effects of age on marathon finish times, the article "Master's Performance in the New York City Marathon" (*British Journal of Sports Medicine* [2004: 408-412]) gave the following data on average finishing time by age group for female participants in 1999:

The dependent variable is *y*, *Average.finish.time* (in minutes) by runners in 10-year age group

The independent variable is *x*, *Representative.age* for generic member of 10-year age group

The dataset is *NYCmarathon.csv*. The R script is *Lecture 9 NYCmarathon.R*.

Age Group	Representative Age	Average Finish Time
10-19	15	302.38
20-29	25	193.63
30-39	35	185.46
40-49	45	198.49
50-59	55	224.30
60-69	65	288.71

Readings: Wooldridge, *Introductory Econometrics 5e*, 2.4a + 6.1

1½. Example: *The NYC Marathon*

To investigate the effects of age on marathon finish times, the article "Master's Performance in the New York City Marathon" (*British Journal of Sports Medicine* [2004: 408-412]) gave the following data on average finishing time by age group for female participants in 1999:

The dependent variable is *y*, *Average.finish.time* (in minutes) by runners in 10-year age group

The independent variable is *x*, *Representative.age* for generic member of 10-year age group

The dataset is *NYCmarathon.csv*. The R script is *Lecture 9 scaling variables.R*.

The simple correlation of x and y is .04 including the 10–19 age group; the simple correlation of x and y is .86 excluding the 10–19 age group.

A simple regression of y on x yields
$$\widetilde{\beta_1} = 2.29 \& se(\widetilde{\beta_1}) = .781$$
 $\rightarrow t = 2.933$

Suppose we transform the independent variable from years to decades, so that a 1-unit change in *x* refers to being a decade older.

A simple regression of
$$y$$
 on $\frac{x}{10}$ yields $\widetilde{\beta_1} = 22.9 \& se(\widetilde{\beta_1}) = 7.81 $\rightarrow t = 2.933$$

Readings: Wooldridge, Introductory Econometrics 5e, 2.4a + 6.1

2. Effects of Rescaling the Regressand

Suppose I double the value of y ... let Y = 2y; then:

Effects on $\widehat{\beta_1}$

$$cov(x, Y) = 2 \times cov(x, y)$$

var(x) will be unchanged

The ratio
$$\frac{cov(x,Y)}{var(x)} = 2 \times \frac{cov(x,y)}{var(x)}$$
, implying the same Δx yields twice as much ΔY

Effects on $se(\widehat{\beta_1})$

The Residual standard error $(\hat{\sigma})$ will double

The standard deviation of x (s_x) will be unchanged, and therefore $\sqrt{n} \cdot s_x$ will be unchanged

The ratio
$$\frac{\widehat{\sigma}}{\sqrt{n} \cdot s_{x}}$$
 will be doubled

Effects on t statistic

The ratio
$$\frac{\widehat{\beta_1}}{se(\widehat{\beta_1})}$$
 will be unchanged

Readings: Wooldridge, *Introductory Econometrics 5e*, 2.4a + 6.1

2½. Example: *The NYC Marathon*

To investigate the effects of age on marathon finish times, the article "Master's Performance in the New York City Marathon" (*British Journal of Sports Medicine* [2004: 408-412]) gave the following data on average finishing time by age group for female participants in 1999:

The dependent variable is y, Average.finish.time (in minutes) by runners in 10-year age group

The independent variable is *x*, *Representative.age* for generic member of 10-year age group

The dataset is *NYCmarathon.csv*. The R script is *Lecture 9 scaling variables.R*.

The simple correlation of x and y is .04 including the 10–19 age group; the simple correlation of x and y is .86 excluding the 10–19 age group.

A simple regression of y on x yields
$$\widetilde{\beta_1} = 2.29 \& se(\widetilde{\beta_1}) = .781$$
 $\rightarrow t = 2.933$

Suppose we transform the dependent variable from minutes to hours, so that a 1-unit change in *y* refers to the race taking an hour longer.

A simple regression of
$$\frac{y}{60}$$
 on x yields $\widetilde{\beta_1} = .038 \& se(\widetilde{\beta_1}) = .013$ $\rightarrow t = 2.933$

Readings: Wooldridge, Introductory Econometrics 5e, 2.4a + 6.1

3. Standardized Coefficients

Regression coefficients indicate how *y* changes in response to a 1–unit change in *x*:

- sign indicates whether y increases (+) or decreases (-);
- magnitude indicates by how many units y changes.

Standardized coefficients indicate how *y* changes in response to a 1–*standard deviation* change in *x*:

- sign indicates whether y increases (+) or decreases (-);
- magnitude indicates by how many standard deviations y changes.

Characteristics of standardized coefficients:

- 1. in a simple regression, beta equals the correlation coefficient ($\widehat{beta_j} = \widehat{\beta_j} \cdot \frac{s_y}{s_{x_j}}$)
- 2. just like correlation coefficients, betas will be between -1 and +1

Approach A. Standardize all variables prior to running model.

can use Make.Z function in QuantPsyc package

Approach B. Modify results afterward using lm.beta(model) function in QuantPsyc package