écolenormale. supérieure paris—saclay—

Projet pluridisciplinaire 2024-2025

Formation SAPHIRE

Formation commune des départements de Sciences Pour l'Ingénieur

Défi CoBRA Localisation d'un dirigeable autonome

Raphaël BARRABES – Andréa BOUVIER – Ibrahim EL KASSIMI – Victor PETROVIC – Maurice VIVET

Introduction et objectifs

Le défi CoBRA consiste à réaliser un ballon dirigeable autonome capable de transporter un colis vers un point précis. Nous combinons 3 solutions permettant au dirigeable de se localiser en temps réel pendant son trajet, pour un vol en intérieur. Le traitement des données est assuré par une carte Raspberry Pi embarquée.

Localisation par Apriltags

Les Apriltags sont des repères visuels facilement imprimables, et placés à des positions prédéterminées sur le chemin emprunté par le dirigeable.

Une caméra placée sur le dirigeable détecte la position des tags sur l'image 2D, et il est possible de remonter à la position de l'appareil dans un repère 3D en résolvant un problème nommé Perspective-n-Point (PnP):

$$\mathbf{s} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{x} & \mathbf{0} & \mathbf{c}_{x} \\ \mathbf{0} & \mathbf{f}_{y} & \mathbf{c}_{y} \\ \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & \mathbf{r}_{13} & \mathbf{t}_{x} \\ \mathbf{r}_{21} & \mathbf{r}_{22} & \mathbf{r}_{23} & \mathbf{t}_{y} \\ \mathbf{r}_{31} & \mathbf{r}_{32} & \mathbf{r}_{33} & \mathbf{t}_{z} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

avec:

- u, v, les coordonnées d'un point du tag sur l'image 2D;
- x, y, z, les coordonnées du même point dans le repère 3D;
- $-\mathbf{f}_{x}$, \mathbf{f}_{v} , \mathbf{c}_{x} , \mathbf{c}_{v} , les paramètres optiques de la caméra, et \mathbf{s} un facteur d'échelle ;
- $-t_x, t_y, t_z, r_{ij}$, la position de la caméra dans le repère 3D, en translation et rotation.

Utilisation de capteurs supplémentaires

d'améliorer la précision de Afin localisation, le dirigeable est équipé de capteurs supplémentaires.

Un lidar infrarouge unidirectionnel orienté vers le sol permet de mesurer l'altitude, et un accéléromètre/magnétomètre permet de mesurer l'orientation.

Lidar TF-LUNA

Accéléromètre/magnétomètre BNO055

Fusion des données

La résolution du problème PnP est appliquée pour chaque point de chaque tag, puis un moyennage des positions estimées est fait en fonction de la proximité des tags.

La valeur de l'altitude calculée est ensuite moyennée avec celle mesurée par le lidar infrarouge, et l'orientation avec celle mesurée par l'accéléromètre/magnétomètre.

Conclusion et perspectives

La localisation par Apriltags permet de connaître la latitude et la longitude du dirigeable avec la précision souhaitée, cependant pour l'altitude et l'orientation les données sont fusionnées avec celles du lidar et de l'accéléromètre, pour arriver à une précision inférieure à 10 cm, satisfaisante. Des essai ultérieurs pourront être réalisés pour affiner la pondération attribuée à chaque moyen de localisation.