

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

8. Übung zur Vorlesung Theoretische Informatik I

Aufgabe 1 (••): Wandeln Sie einen DEA $M=(Z,\Sigma,\delta,z_0,E)$ formal korrekt in einen äquivalenten NEA $M'=(Z',\Sigma,\delta',\mathcal{S},E')$ um.

Aufgabe 2 (•): Sei L die folgende Sprache über $\Sigma = \{0, 1\}$:

 $L := \{ w \mid w \text{ beginnt und endet mit einer } 0 \}$.

- a) Konstruieren Sie einen DEA M mit L(M) = L (die Angabe des Zustandsgraphen ist ausreichend).
- b) Geben Sie einen regulären Ausdruck aus $Reg(\Sigma)$ an, der L beschreibt.

Aufgabe 3 (•): Vereinfachen Sie den regulären Ausdruck $((a^+ \mid a \mid aa)^* \mid \varepsilon \mid \emptyset)b$.

Aufgabe 4 (••): Betrachten Sie die Sprache

 $L := \{w \in \{0,1\}^* \mid \text{die Länge } |w| \text{ ist ungerade, und in der Mitte von } w \text{ steht eine Eins} \}$.

- a) Notieren Sie fünf Wörter aus der Sprache L.
- b) Zeigen Sie mit Hilfe des Pumping-Lemmas, dass L nicht regulär ist. (*Tipp*: Verwenden Sie für den Beweis Wörter der Form $0^n 10^n$.)

Aufgabe 5 (••): Sei $\Sigma = \{0,1\}$ und $w \in \Sigma^*$. Mit $|w|_0$ und $|w|_1$ bezeichnen wir die Anzahl der Nullen bzw. Einsen in w, d.h. für z.B. w := 10100010 gilt $|w|_0 = 5$ und $|w|_1 = 3$.

- a) Sei $L \subseteq \Sigma^*$ die Sprache aller Wörter x, für die $|x|_0$ und $|x|_1$ jeweils eine der ersten 100 Primzahlen ist. Das obige w ist also in L enthalten, denn sowohl 5 als auch 3 sind Primzahlen. 10111 ist nicht in L, denn $|10111|_1 = 4$ ist keine Primzahl (und im Übrigen $|10111|_0 = 1$ auch nicht). Beweisen Sie, dass L regulär ist.
- b) Sei $L := \{w \in \Sigma^* \mid |w|_0 = |w|_1\}$. Zeigen Sie mit Hilfe des Pumping-Lemmas, dass L nicht regulär ist. (*Tipp:* Argumentieren Sie z.B. mit einem Wort der Form $0^k 1^k$ mit $k \in \mathbb{N}$.)
- c) Sei $L := \{w \in \Sigma^* \mid |w|_0 < |w|_1\}$. Zeigen Sie mit Hilfe des Pumping–Lemmas, dass L nicht regulär ist. (*Tipp:* Argumentieren Sie z.B. mit einem Wort der Form $0^k 1^{k+1}$ mit $k \in \mathbb{N}$.)

Aufgabe 6 ($\bullet \bullet \bullet$): Die folgende Sprache über $\Sigma := \{a, b\}$ sieht den obigen Sprachen in gewisser Weise ähnlich, ist jedoch überraschenderweise regulär:

 $L := \{ w \mid \text{die Infixe } ab \text{ und } ba \text{ kommen in } w \text{ gleich oft vor} \}$.

Versuchen Sie, einen regulären Ausdruck für L zu finden. (*Hinweis:* Schreiben Sie sich zunächst einige Wörter aus L auf, die mit einem a beginnen, um sich deren Aufbau klar zu machen. Verfahren Sie genauso für die Wörter aus L mit einem b am Anfang.)