AIRCRAFT ENGINES

AMBASSADEUR SAFRAN ECL – EPSAC MATERIAUX

2019-05-16

OBJECTIF – CONTEXTE

- Un besoin est identifié de supporter l'EPSA dans ses choix matériaux, les <u>caractéristiques</u> utilisées, les évolutions techniques.
- Le retour d'expérience observé en Top Copeau montre un besoin de définition des <u>valeurs</u> <u>admissibles</u> en fonction des cas de charge et type de sollicitations.
- La formation est destinée aux élèves de 1ere année en fin d'année scolaire Mai/Juin en préparation de la phase de conception du 1^{er} trimestre de la 2eme année.

■ Sommaire:

- > Introduction aux matériaux aéronautiques
- > Sollicitations des matériaux
- > Matériau Aluminium
- Matériau Acier
- > Take Away

AIRCRAFT ENGINES

INTRODUCTION MATERIAUX AERONAUTIQUES

2019-05-16

Matériaux aéronautiques - généralités

CELLULES

- PIECES EN ALLIAGE D'ALUMINIUM 75 %
- PIECES EN ALLIAGE DE TITANE 10 %
- PIECES EN ACIER ET COMPOSITES 15%

Material Breakdown by Mass

Press Hardened / Hot Stamped

Multiphase Bake Hardened High Strength Low

Mild / Low Carbon

■ Alliages de nickel + titane + aciers = 85% poids du réacteur

TURBOREACTEUR

- PIECES EN ALLIAGE DE NICKEL
- PIECES EN ALLIAGE DE TITANE
- PIECES EN ACIER
- PIECES EN ALLIAGE DE COBALT
- PIECES EN ALLIAGE D'ALUMINIUM
- PIECES COMPOSITES

45 %

25 %

15 %

6 %

4 %

5 %

Familles de matériaux dans les turboréacteurs

■ Comparaison des propriétés mécaniques spécifiques en fonction de la température.

Matériaux mis en oeuvre aujourd'hui

AIRCRAFT ENGINES

MATERIAUX – SOLLICITATIONS

2019-05-16

Exigences en termes de propriétés d'usage

Sollicitations mécaniques

- Les sollicitations monotones
 - **✓** FLUAGE
 - Effet du temps de maintien en contraintes et à haute température
 - => déformation viscoplastique du matériau (modification des jeux, balourd / frottement, rupture)
 - **✓ TRACTION**
 - Dimensionnement en cas de « survitesse » accidentelle => plasticité généralisée

- Les sollicitations complexes
 - ✓ LA FATIGUE DE CONTACT (FRETTING)
 - Effet de petits déplacements à forte contraintes sur les 2 surfaces d'appui
 - ✓ LA FATIGUE FLUAGE
 - ✓ LA FATIGUE THERMIQUE
 - Endommagement des matériaux pour chambre de combustion

Sollicitations mécaniques : la fatigue

- ➤ La fatigue oligocyclique (< 30 000 cycles)
 - Elle correspond aux cycles de forte amplitude dérivés de l'analyse des missions complexes (1 mission = décollage + vol + atterrissage)
- ➤ La fatigue vibratoire (> 50 000 à 100 000 cycles)
 - Elle correspond aux cycles de faible amplitude liés aux vibrations de l'ensemble du moteur.

- Caractéristiques
 - Pour des températures et des sollicitations relativement faibles (bien en dessous de la limite élastique), la rupture en fatigue peut se produire après de nombreux cycles de chargement/ déchargement mécanique.
 - La rupture en fatigue se caractérise par la création d'une micro-fissure (amorçage) puis par sa propagation (par stries contigues) jusqu'à ce que la surface de fissure traverse la pièce.
 - Le cheminement de la fissure est étudiée pour avoir une idée de la durée de vie de la pièce et définir l'intervalle inter-inspections.

Influence des « vieillissements »

OXYDATION

Les alliages aéronautiques (base Ti et base Ni) sont peu sensibles à l'oxydation en général. Certaines conditions extrêmes (température élevée / pression élevée d'oxygène) conduisent parfois au périssement par oxydation. C'est le cas des chambres et turbines haute pression

CORROSION

Un certain nombre d'agents corrosifs sont à l'origine du périssement des pièces. Les sels, sables, huiles ou produits de lavages peuvent être à l'origine de piqûres puis de corrosion des pièces. Si les aciers (Maraging) sont les plus sensibles à ce phénomène, les autres alliages ne sont pas épargnés.

EROSION

- Effet du sable (granulométrie de l'ordre de 100 microns)
 - => rayures, dégradation de la rugosité
 - => risque d'accrochage d'agents corrosifs
 - => ablation de matière (pb de géométrie et d'état de surface)

AIRCRAFT ENGINES

MATERIAU ALUMINIUM

2019-05-16

- Métaux Al et Mg isolés pour la 1ère fois : 1805-1830
- Minerais parmi les plus répandus sur Terre (Al: 8,2% et Mg : 2,3%)
- Production industrielle dès début XXème siècle : aéronautique : 1930

■ Aujourd'hui:

Production AI: > 40 MT/an

> Production Mg: 0,6 MT/an

> Industries:

Consommation mondiale d'aluminum*

par secteur d'utilisation finale en 2015

Production mondiale d'Aluminium

2- Généralités Alliages Légers

Des Atouts...

...et des limitations

■ Propriétés physiques:

- ➤ Faible densité : Alliages Al : 2,65 2,9 / Alliages Mg : 1,75 1,95
- > Al : Conductivité thermique (60% Cu) et électrique (2/3 Cu)
- > Al : Tenue à la corrosion
- > Al, Mg : Recyclage (Al : 25-30% de la production)

■ Al : Diversités des alliages

> Nuance adaptée à l'application (~200 nuances normalisées)

■ Diversité des modes de transformation et demi-produits

- > Produits laminés, filés, forgés, matricés, emboutis, usinés ...
- > Fonderie (sable, cire-perdue, coquille, injection, ...)
- > Assemblage : soudage, brasage, ...

■ Alliages d'Aluminium:

- > Résistances mécaniques : 50 à 580 MPa
- > Température d'emploi : < 200°C
- > Sensibilité à certaines formes de corrosion (galvanique, intergranulaire, CSC, ...) => Besoin d'une protection

■ Alliages de Magnésium:

- Résistances mécaniques : 150 à 350 Mpa
- > Température d'emploi : < 250°C
- Sensibilité extrême à la corrosion galvanique
- Peu de nuances aptes à la mise en forme par déformation (laminage, ...)

Classes d'alliages Aluminium - désignation

- Base Aluminium + 5 éléments majeurs : Cu, Mg, Si, Mn, Zn,
 - > + éléments d'additions : Cr, Ni, Ti, Zr, Li, ...

éléments	7	4
Cu	Caract. méca, tenue à chaud fluage, usinabilité	Tenue corrosion, soudabilité, conductivité électrique
Mn	Aptitude déformation, tenue corrosion, aptitude brasage	
Si	Coulabilité	Usinabilité, CTE
Mg	Caract. méca, tenue corrosion, soudabilité	Déformabilité à chaud
Zn (+Mg)	Caract. méca, usinabilité	Tenue corrosion, soudabilité

- Familles de nuances définies selon les éléments d'alliage principaux
- Système de désignation international à 4 chiffres : 1er chiffre = famille d'alliage
 - > Série 1000 : Al commercialement pur
 - > Série 3000 : Mn (0,5-1,5%) + Mg, Cu
 - > Série 5000 : Mg (0,5-5%) + Mn, Cr
 - Série 2000 : Cu (2-6%) + Si, Mg
 - > Série 6000 : Mg, Si (0,5-1,5%) + Cu, Cr
 - Série 7000 : Zn (5-7%), Mg (1-2%) + Cu
 - > Série 4000 : Si (0,8-1,7%)

■ Alliages à durcissement par écrouissage:

- > Séries 1000, 3000, 5000
- > États O, H1x, H2x, H3x
- > Adoucissement par recuit

■ Alliages à durcissement structural

- > Séries 2000, 6000, 7000
- > États T3, T4, T5, T6, T7, T8
- > Détensionnement
 - par traction: Tx51
 - par compression : Tx52

Alliages d'Aluminium – états métallurgiques

Alliages Aluminium - Propriétés

■ Les propriétés pilotent les domaines d'applications

Série	Nuances principales	E (Gpa)	Rm (Mpa)	λ (W/mK)	Soudage	Mise en forme	Tenue corrosion	Utilisations principales
1000	1050A, 1200	69	50-150	220-240	Ok	+	+	Chaudronnerie, tôlerie, bâtiment, décoration, échangeur thermique, conducteurs électriques, emballage
2000	2024, 2618A, 2219, 2014	74	300-450	120-150	Ko (Ok:2219)	-	-	Mécanique, aéronautique & défense
3000	3003, 3004	69	100-260	160-190	Ok	+	+	Bâtiment, mobilier urbain, échangeur thermique, emballage
5000	5083, 5086, 5754	70	100-340	120-140	Ok	++	++	Chaudronnerie, tôlerie, plasturgie, automobile, construction navale, bâtiment, décoration, mobilier urbain, emballage
6000	6060, 6061, 6063, 6082	69,5	150-310	170-220	Ok	++	++	Chaudronnerie, tôlerie, plasturgie, automobile, construction navale, bâtiment, mobilier urbain, échangeur thermique
7000	7010, 7020, 7050, 7x75	72	320-600	130-180	Ko (Ok:7020)	-	-	Mécanique, aéronautique & défense

Alliages Aluminium - Propriétés Exemple Aluminium 7075 T73

■ Caractéristiques thermophysiques moyennes

DMD0544-1006 A, COEFFICIENT DE POISSON, 7075, TOUT APPLICABLE, TO Courbes - Propriétés thermo physiques

Valeur 20degC: 0.330

■ Caractéristiques statiques minimales

Alliages Aluminium - Propriétés Exemple Aluminium 7075 T73

DMD0544-2006 B, LIMITE ELASTIQUE A 0.2% (CONVENTIONNELLE), 7075,								
Informations sur la donnée matériau								
Nom de la série	2 - STATIQUE							
Désignation de la caractéristique	LIMITE ELASTIQUE A 0.2% (CONVENTIONN							
Type de sollicitation	AXIALE							
Classe d'applicable	PIECES FORGEES							
Applicable	PIECES FORGEES EPAISSEUR INFERIEUR 20 MM							
Traitement Thermique	T73							
Catégorie SAFRAN AE	III							
Prélèvement de la matière	PLATEFORME AUBE FAN, AUBE REDRESS FAN CFM56-7							

■ Caractéristiques statiques – comparaison Re mini et moyenne

Alliages Aluminium - Propriétés Exemple Aluminium 7075 T73

3- Fondamentaux techniques – Alliages Légers

■ Caractéristiques fatigue minimales

Remarque:
Re(20degC)=366MPa
Contraint alternée admissible (20degC)=120MPa
pour contrainte statique nulle

Hypothèse raisonnable: σ_alt_max=1/3*Re

This document and the information therein are the property of Sairan. They must not be copied of communicated to a third party without the prior written authorization of Safrar

AIRCRAFT ENGINES

FAMILLE ACIER

2019-05-16

- Les premières coulées de fonte ont été réalisées par les Chinois durant la période des Royaumes combattants (entre -453 et -221)
- 1786 → métallurgie scientifique : 3 savants français de l'école de Lavoisier, Berthollet, Monge et Vandermonde11 présentent devant l'Académie royale des sciences un Mémoire sur le fer introduisant 3 produits ferreux : le fer, la fonte et l'acier
- Production industrielle dès début XIXème siècle.

■ Aujourd'hui:

- Production Acier: > 1200 MT/an
- Utilisation acier:

2- Généralités Alliages Légers

■ Propriétés physiques:

- > Densité moyenne : acier 7.8
- > Acier: fort module Young ~210GPa.
- > Acier: dilatation thermique « moyenne » ~12e-6 degC-1
- > Acier: recyclage de près de 80-90% production.

■ Acier: Diversités des alliages

- > Aciers non-alliés d'usage général (construction) ;
- Aciers non-alliés spéciaux, pour traitement thermique, malléables, soudables, forgeables, etc.;
- Aciers faiblement alliés, pour trempe et revenu (éléments d'alliage favorisent trempabilité → structures martensitiques ou bainitiques → haute dureté, haute limite élastique → pour les outils, les ressorts, les roulements, etc.;
- > Aciers fortement alliés :
 - Aciers inoxydables,
 - ◆ Aciers rapides, pour les outils à forte vitesse de coupe comme les forets.

■ Diversité des modes de transformation et demi-produits

- > Estampage, pliage (grande déformation).
- > Produits laminés, filés, forgés, matricés, emboutis, usinés ...
- > Fonderie (sable, cire-perdue, coquille, injection, ...)
- > Assemblage : soudage, brasage, ...

■ Acier:

- Résistances mécaniques : 200 à 1800 Mpa
- Masse volumique élevée 7800kg/m3
- ➤ Sensibilité à la corrosion → Besoin d'une protection

Des Atouts...

...et des limitations

3- Fondamentaux techniques – Aciers

Aciers – états métallurgiques

Aciers - Propriétés

■ Les propriétés pilotent les domaines d'applications

PAS ENCORE DISPONIBLE

Aciers- Propriétés Exemple Acier 40CDV12

3- Fondamentaux techniques – Aciers

■ Caractéristiques thermophysiques moyennes

OMD0113-1002 A, COEFFICIENT DE DILATATION LINEIQUE MOYENNE (20 Courbes - Propriétés thermo physiques

Valeur 100degC: 10.9e-6 deg-1

Valeur 660degC: 14e-6 deg-1

■ Caractéristiques statiques minimales

Aciers - Propriétés Exemple Aluminium 7075 T73

3- Fondamentaux techniques – Alliages Légers

■ Caractéristiques fatigue minimales

Remarque:
Re(20degC)=366MPa
Contraint alternée admissible (20degC)=120MPa
pour contrainte statique nulle

Hypothèse conservative: σ_alt_max=1/3*Re

AIRCRAFT ENGINES

CONCLUSIONS

2019-05-16

Proposition de règles de dimensionnement

■ Admissibles cas normaux

- Contrainte Von Mises : Min(Re*0,75 ; Rm*0,5).
- > Cisaillement : 0,5*Re.
- **>** Matage : 0,5*Ps.
- Contrainte alternée moyenne : contrainte de Wohrler pour une durée de vie de 10 000 cycles.

Admissibles cas limites

- > Contrainte Von Mises: Min(Re*0,75; Rm*0,5).
- > Cisaillement : 0,5*Re.
- Matage : 0,5*Ps.
- Contrainte alternée moyenne : contrainte de Wohrler pour une durée de vie de 100 cycles.

Admissibles cas ultimes

- Contrainte Von Mises : 0,9*Rm.
- > Cisaillement : 0,9*Re.
- Matage : 0,9*Ps.
- Contrainte alternée moyenne : contrainte de Wohrler pour une durée de vie de 10 cycles.

■ Hypothèses raisonnables:

- Caractéristiques statiques:
 σ mini=0.8* σ moy
- Diagramme de Goodman:σ_alt_max=1/3*Re

Quelques propriétés matériaux – exemples

Ancienne	Désignation	Norme Re (MPa) Rr (MPa) E Masse Prix/kg					Hiliantian alaggique	Autro comotóristicas			
	Désignation		Re (MPa)		Rr (MPa)		E		Prix/kg	Utilisation classique	Autre caractéristique
désignation	normalisée	de la dernière					(MPa)	volumique	(2005)		
		désignation normalisée	Min	Max	Min	Max	à 20°C	(kg/dm3)			
Acier											
XC18	C22E	NF EN 10083-1 08/96	250		410			7,8		Structure, axe et arbre	Acier de cémentation
XC38	C35	NF EN 10083-2 08/96	330		550	780		7,8	0,83	Structure, axe et arbre	Acier de trempe dans la masse
											préferer 35NCD16 au lieu de XC38
XC48	C45	EN 10027	370		630	850		7,8		Pièces d'accouplement	
25CD4	25CrMo4	EN 10027	400		650	1000		7,8		Axe, boulon	Trempabilité assez élevée, tenacité
(SCV)			860		1050	1150		7,8			
15CDV6											
35NCD16	36NiCrMo16	NF EN 10083-1 08/96	800	1275?	1000	1710		7,8	3,2	dards et pièces de structure	pièces à fortes sollicitations
										maquette	
Acier Inox										-	
304 L	X2CrNi19-11	DIN EN 10263-5 02/02	175		460	680		7,8		Construction	
Z3 CN 18-10											
316 L	1.4404 X2 Cr	NF	185		460		200000 à	7,8		Inox haute température	Acier austénitique au molybdène
Z3 CND 17 11 02	Ni Mo 17 12 2						20°C				
APX4			750	950	1000	1200		7,8		arbre, tirants, boulonnerie	
(Z6CND16.05.01)											
Alu											
AU4G	2017 A		280		420		74000	2,79	7,3	Mécanique générale	
AlCu4MgSi											
AU2GN	2618A		390		440		74000	2,76			
AG5	5083		160		305		71000	2,66			
Fortal	7xxx		370	460	460	535		2,81			
Fortal	7xxx		370	460	460	535		2,81			

Conclusion

■ Choix matériau guidé par les fonctions et besoins:

- > Environnement thermique
- > Agressions : corrosion, fretting, UV etc
- Cas de charge: statique, fatigue, vibration, etc
- Liens utiles: http://www.matbase.com

■ Approvisionnement et mise en œuvre:

- Accessibilité et cout matière Attention aux mises en forme, état et normes.
- Choix de mise en œuvre: usinage, pliage, soudage, etc
- > Contrôle:
 - Métaux : contrôle dimensionnel souvent suffisant attention aux qualités matière des soudures !
 - Composite: le matériau est créé avec la pièce attention aux porosités, délaminage etc

■ Matériaux innovants:

- > Besoin d'identifier très en amont les matériaux innovants.
- Besoin de disposer des bonnes valeurs caractéristiques et admissibles en amont de la phase de conception.
- > Recommandation: provisionner des marges évolutives:
 - Avant Top Appro: 200%
 - Avant Top Dim: 150%
 - Avant Top Copeau: 120%
- > Besoin de verifier les matériaux innovants :
 - Sur éprouvette avant la conception système
 - Sur pièce finale après production unitaire
 - Sur système assemble après assemblage Validation comportement interfaces (corrosion galvanique par exemple).

AIRCRAFT ENGINES

ANNEXE

2019-05-16

CYCLE EN V EPSA

FATIGUE bm4540_Les hélices_TI

