Center-based 3D Object Detection and Tracking

Tianwei Yin, et al. 2021, CVPR

Introduction

- 3D detection on point-clouds offers a series of interesting challenges
 - 1. First, point-clouds are sparse, and most parts of 3D objects are without measurements
 - 2. Second, the resulting output is a three dimensional box that is often not well aligned with any global coordinate frame
 - 3. Third, 3D objects come in a wide range of sizes, shapes, and aspect ratios
- These marked differences between 2D and 3D detection made a transfer of ideas between the two domains harder

- We argue that the main underlying challenge in linking up the 2D and 3D domains lies in this representation of objects
- We show how representing objects as points greatly simplifies 3D recognition

Introduction

 Our two-stage 3D detector, CenterPoint, finds centers of objects and their properties using a keypoint detector, a second-stage refines all estimates

- The center-based representation has several key advantages:
 - 1. Unlike bounding boxes, points have no intrinsic orientation. This dramatically reduces the object detector's search space
 - 2. A center-based representation simplifies downstream tasks such as tracking
 - 3. Point-based feature extraction enables us to design an effective two-stage refinement module that is much faster than the previous approaches

Preliminaries – 2D CenterNet

- 2D CenterNet rephrases object detection as keypoint estimation
- It takes an input image and predicts a $w \times h$ heatmap $\hat{Y} \in [0,1]^{w \times h \times K}$ (K classes)
 - Each local maximum (i.e., pixels whose value is greater than its eight neighbors) in the output heatmap corresponds to the center of a detected object
- To retrieve a 2D box, CenterNet regresses to a size map $\hat{S} \in \mathbb{R}^{w \times h \times 2}$ shared between all categories

Preliminaries – 3D Detection

- Let $\mathcal{P} = \{(x, y, z, r)_i\}$ be an orderless point cloud of 3D location (x, y, z) and reflectance r measurements -> 3D object detection aims to predict a set of 3D object bounding boxes $\mathcal{B} = \{b_k\}$, $b = (u, v, d, w, l, h, \alpha)$
- Modern 3D object detectors uses a 3D encoder that quantizes the point-cloud into regular bins
- The output of a backbone network is a map-view feature-map $\mathbf{M} \in \mathbb{R}^{W \times L \times F}$ of width W and length L with F channels
- With a map-view feature map M, a detection head then produces object detections from some predefined anchor boxes

CenterPoint

Center heatmap head

- Goal: Produce a heatmap peak at the center location of any detected object
- This head produces a **K-channel heatmap** \hat{Y} , one channel for each of K classes $\hat{Y} \in [0,1]^{w \times h \times K}$
- It targets a 2D Gaussian produced by the projection of 3D centers of annotated bounding boxes into the map-view

CenterPoint

Regression heads

- We store several object properties at center-features of objects
 - 1. Sub-voxel location refinement
 - 2. Height-above-ground
 - 3. The 3D size
 - 4. A yaw rotation angle
- Combined with box size, these regression heads provide the full state information of the 3D bounding box

Velocity head and tracking

• To track objects through time, we learn to predict a two-dimensional velocity estimation $\mathbf{v} \in \mathbb{R}^2$ for each detected object as an additional regression output

Two-Stage CenterNet

- The second stage extracts additional point-features from the output of the backbone
- We extract one point-feature from the 3D center of each face of the predicted bounding box
 - Only consider the four outward-facing box-faces together with the predicted object center
- We concatenate the extracted point-features and pass them through an MLP
- The second stage predicts a class-agnostic confidence score and box refinement on top of one-stage CenterPoint's prediction results
 - CenterPoint and computes the final confidence score as the geometric average of the two scores $\hat{Q}_t = \sqrt{\hat{Y}_t * \hat{I}_t}$
 - For box regression, the model predicts a refinement on top of first stage proposals

Experiments – Main Results

• Evaluate CenterPoint on Waymo Open Dataset and nuScenes dataset

3D Detection

• Our model displays a consistent performance improvement over all categories

Difficulty	Method		ehicle mAPH		estrian mAPH
Level 1	StarNet [34] PointPillars [27] PPBA [34] RCD [5] Ours	61.5 63.3 67.5 72.0 80.2	61.0 62.8 67.0 71.6 79.7	67.8 62.1 69.7 78.3	59.9 50.2 61.7 72.1
Level 2	StarNet [34] PointPillars [27] PPBA [34] RCD [5] Ours	54.9 55.6 59.6 65.1 72.2	54.5 55.1 59.1 64.7 71.8	61.1 55.9 63.0 - 72.2	54.0 45.1 55.8 - 66.4

Method	mAP↑	NDS↑	PKL↓
WYSIWYG [22]	35.0	41.9	1.14
PointPillars [27]	40.1	55.0	1.00
CVCNet [7]	55.3	64.4	0.92
PointPainting [47]	46.4	58.1	0.89
PMPNet [60]	45.4	53.1	0.81
SSN [66]	46.3	56.9	0.77
CBGS [65]	52.8	63.3	0.77
Ours	58.0	65.5	0.69

<3D detection on Waymo dataset>

Experiments – Main Results

3D Tracking

- Our velocity-based closest distance matching significantly outperforms the official tracking baseline in the Waymo paper, which uses a Kalman-filter based tracker
- On nuScenes, our framework outperforms the last challenge winner Chiu et al. by 8.8
 AMOTA

Difficulty	Mathad	MO	ГА↑	MOTP↓		
Difficulty	Method	Vehicle	Ped.	Vechile	Ped.	
Level 1	AB3D [46, 51] Ours			18.6 16.3		
Level 2	AB3D [46, 51] Ours	40.1 59.4		18.6 16.4		

Method	AMOTA↑	FP↓	FN↓	IDS↓
AB3D [51]	15.1	15088	75730	9027
Chiu et al. [10]	55.0	17533	33216	950
Ours	63.8	18612	22928	760

Experiments – Ablation studies

Center-based vs Anchor-based

Encoder	Method	Vehicle	Pedestrain	mAPH
VoxelNet	Anchor-based	66.1	54.4	60.3
	Center-based	66.5	62.7	64.6
PointPillars	Anchor-based	64.1	50.8	57.5
	Center-based	66.5	57.4	62.0

<Comparison between anchor-based and center-based methods on Waymo dataset>

	Vehicle			Pedestrian		
Rel. yaw	0°-15°	15°-30°	30°-45°	$0^{\circ}\text{-}15^{\circ}$	15°-30°	30°-45°
# annot.	81.4%	10.5%	8.1%	71.4%	15.8%	12.8%
Anchor-based	67.1	47.7	45.4	55.9	32.0	26.5
Center-based	67.8	46.4	51.6	64.0	42.1	35.7

<Comparison between anchor-based and center based methods>

Encoder	Method	mAP	NDS
VoxelNet	Anchor-based	52.6	63.0
	Grid Point-based	53.1	62.8
	Center-based	56.4	64.8
PointPillars	Anchor-based	46.2	59.1
	Grid Point-based	47.1	58.8
	Center-based	50.3	60.2

<Comparison between anchor-based, Grid Point-based and center-based methods on NuScenes dataset>

Method	Vehicle			Pedestrian		
	small	medium	large	small	medium	large
Anchor-based	58.5	72.8	64.4	29.6	60.2	60.1
Center-based	59.0	72.4	65.4	38.5	69.5	69.0

<Effects of object size for the performance of anchor-based and center-based methods>

Experiments – Ablation studies

One-stage vs Two-stage

- Two-stage refinement with multiple center features gives a large accuracy boost to both 3D encoders with small overheads (6ms-7ms)
- Center-based feature aggregation achieved comparable performance but is faster and simpler than ROIAlign

Encoder	Method	Vehicle	Ped.	$T_{proposal}$	T_{refine}
VoxelNet	First Stage + Box Center + Surface Center Dense Sampling			71ms	5ms 6ms 8ms
PointPillars	First Stage + Box Center + Surface Center Dense Sampling	67.3 67.5	57.4 57.4 57.9 57.9	56ms 56ms	- 6ms 7ms 8ms

<Comparison between one-stage and two-stage methods on Waymo dataset>

Experiments – Ablation studies

3D Tracking

- Compare with last year's challenge winner Chiu et al. [10], which uses mahalanobis distance-based Kalman filter to associate detection results of CBGS
- Using our simple velocity-based closest point distance matching outperforms the Kalman filter-based Mahalanobis distance matching
- Improvements
 - 1. Model the object motion with a learned point velocity, rather than modeling 3D bounding box dynamic with a Kalman filter
 - 2. Match objects by center point-distance instead of a Mahalanobis distance
 - 3. A simple nearest-neighbor matching without any hidden-state computation

Detector	Tracker	AMOTA↑	AMOTP↓	T_{track}	T_{tot}
CenterPoint-Voxel	Point	63.7	0.606	1ms	62ms
CBGS [65]	Point	59.8	0.682	1ms	> 182ms
CenterPoint-Voxel	M-KF	60.0	0.765	73ms	135ms
CBGS [65]	M-KF	56.1	0.800	73ms	>254ms

<Ablation studies for 3D tracking on nuScenes validation>

Conclusion

 CenterPoint: a center-based framework for simultaneous 3D object detection and tracking from the Lidar point-clouds

 Detection is a simple local peak extraction with refinement, and tracking is a closest-distance matching

• CenterPoint is simple, near real-time, and achieves state-of-the-art performance on the Waymo and NuScenes benchmarks