Eli Griffiths Homework #6

Problem 1

Part A

$$\int_{97}^{107} \frac{1}{5\sqrt{2\pi}} e^{-\frac{(x-102)^2}{50}} \mathrm{d}x \approx 0.682689.$$

Part B

$$\mathbb{P}(X=120) = \int_{120}^{120} \frac{1}{5\sqrt{2\pi}} e^{-\frac{(x-102)^2}{50}} dx = 0.$$

$$\mathbb{P}(X<120) = \int_{-\infty}^{120} \frac{1}{5\sqrt{2\pi}} e^{-\frac{(x-102)^2}{50}} dx \approx 0.9998.$$

Part C

The 90th percentile is 108.41 degrees Fahrenheit.

Part D

The distribution 0.55X - 17.6 is a normal distribution with $\mu = 38.5$ and $\sigma = 2.75$.

Part E

The distribution of the sample mean of the daily temperatures is an approximate normal distribution with a mean the same as $X \implies \mu = 102$ and a variance of $\sigma^2 = \sigma_X^2/n = 25/25 = 1$.

Part F

The sample mean in Celsius follows an approximate normal distribution with $\mu = 38.5$ and $\sigma = 0.55$.

Problem 2

Part A

The sum $\sum_{i=1}^{n} X_i$ is a binomial distribution with p = 0.5 and n = 100.

Part B

 \bar{X} will follow an approximate normal distribution with $\mu=0.5$ and $\sigma=0.05$.

Eli Griffiths Homework #6

Part C

$$\mathbb{P}\left(\overline{X} \ge 0.5\right) = \int_{0.5}^{\infty} \frac{1}{0.05\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-0.5}{0.05}\right)^2} dx = 0.5.$$

Problem 3

Part A

$$rac{\overline{X}-\mu}{rac{\sigma}{\sqrt{n}}}\sim N(0,1).$$

Part B

The condifence interval is

$$(\hat{x}-z^*\cdot\frac{s}{\sqrt{n}},\hat{x}+z^*\cdot\frac{s}{\sqrt{n}}).$$

Since this is a 95% condifence interval, $z^* = 1.96$. Therefore substituting in values results in

(5.8510, 6.7890).