9.2 Điều khiển động cơ điện Động cơ bước

TS Nguyễn Hồng Quang

Electrical Engineering

1

9.2.1 Động cơ bước

- Phát triển theo nguyên lý động cơ 1 chiều
- Dùng điều khiển đặc biệt chính xác
 - Dùng trong máy in, máy photocopier
- Điểu khiển cả tốc độ và vị trí
- Được dùng phổ biến trong mạch điểu khiển vị trí
- Công suất nhỏ (moment kéo nhỏ)

Electrical Engineering

9.2.1 Các loại động cơ bước

- Động cơ bước nam châm vĩnh cửu
 - − Động cơ đơn cực (unipolar)
 - Động cơ lưỡng cực (bipolar)
- Động cơ bước có từ cảm thay đổi, variable reluctance
- Động cơ lai

Electrical Engineering

9.2.1 Vài nhận xét

- Cho phép điều khiển vị trí ở mạch vòng hở
- Khả năng trượt bước là có thế khi moment nhỏ hơn moment cản
- Khả năng dừng chính xác là rất cao (kết hợp với mạch điều khiển)

8

Electrical Engineering

9.2.1 Thông số cần quan tâm

- Điện áp làm việc 12VDC, 7.5VDC, 3.6VDC
- Dòng điện làm việc 1A, 4.5A..
- Số bước 1.8°, 3.6°, 7.5°, 15° ...
- Công suất Moment

Electrical Engineering

7

9.2.1 Động cơ lưỡng cực (bipolar)

00000000

- Hay còn gọi là động cơ 4 dây (không cực chung)
- Gồm 2 cuộn dây độc lập

8

Electrical Engineering

9.2.2 Nguyên tắc điều khiển

- Điều khiển động cơ bước lưỡng cực
 - Điều khiển từng pha (full step)
 - Điều khiển 2 pha (full step)
 - Điều khiển nửa bước (half step)

Electrical Engineering

Circuit

9

9.2.2 Nguyên tắc điều khiển – full step

Position

A+ B- 1 C+ D- 2		A 0 +
A– B+ 3 C– D+ 4		1' 4'
Circuits A+ B– and C+ D– A– B+ and C+ D– A– B+ and C– D+	Position 1' 2' 3'	2′ 3′ — D
A+ B- and C- D+	4′	

Electrical Engineering

9.2.3 Điều khiển nửa bước (half step)

Step	1a	1b	2a	2b
1	1	0	0	1
2	1	0	0	0
3	1	1	0	0
4	0	1	0	0
5	0	1	1	0
6	0	0	1	0
7	0	0	1	1
8	0	0	0	1

Electrical Engineering

9.2.5 Phần mềm điều khiển mov stepper, #08H stepper equ P1 acall delay mov stepper, #OCH main: mov stepper, #OCH acall delay acall delay mov stepper, #04H mov stepper, #06H acall delay acall delay mov stepper, #03H acall delay mov stepper, #06H acall delay mov stepper, #09H acall delay mov stepper, #02H acall delay sjmp main mov stepper, #03H acall delay delay: mov r7,#4 mov stepper, #01H wait2: acall delay mov r6,#0FFH mov stepper, #09H wait1: acall delay mov r5,#0FFH wait: sjmp main djnz r6, wait1 djnz r7, wait2 end Electrical Engineering