

Capstone **Project** Identifying Offensive **Tweets**

Joel Cheung DSI-28

TABLE OF CONTENTS

INTRODUCTION

PROBLEM STATEMENT

TABLE OF CONTENTS

INTRODUCTION

TWITTER

- Is a micro-blogging social media site
- 217.5 million active users globally
- 500 million tweets everyday

TWITTER

- Corporations brand outreach
- Individuals entertainment, news, discussions
- Freedom to discuss a wide range of topics (hashtags)

TWITTER'S POLICY

Twitter is a social broadcast network that enables people and organizations to publicly share brief messages instantly around the world. This brings a variety of people with different voices, ideas, and perspectives. People are allowed to post content, including potentially inflammatory content, as long as they're not violating the Twitter Rules. It's important to know that Twitter does not screen content or remove potentially offensive content.

2

PROBLEM STATEMENT

PROBLEM STATEMENT

BALANCING ACT

Maintaining a growing user base to attract corporations, while keeping a safe space for users

IDENTIFY OFFENSIVE TWEETS

A model to flag offensive tweets to point users to resources before they publish the tweet

DATA SOURCES

TRAINING DATASET

kaggle: Classified Tweets

TEST DATASET

kaggle: Cyberbullying Classification challenge

DATA CLEANING

- Remove emojis <u>u</u>
- Remove mentions (@username) and URLs
- Make texts lowercase
- Removing punctuations
- Removing stopwords
- Lemmatizing with Part-of-Speech (POS) tagging

EXPLORATORY DATA ANALYSIS

CONTENT WARNING!!

From this slide on, there will be mentions of sensitive topics such as religion, misogyny and other topics that may be offensive to many

UNIGRAM

make gay rape

Count

rape joke onstage -

black life matter

Count

PERFORMANCE METRIC: F1-SCORE

$$F_1$$
-score = 2 × $\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

Precision: Of all positive predictions, how many are really positive?

Recall: Of all real positive cases, how many are predicted positive?

MULTINOMIAL NAIVE BAYES

Simple, easy to train model

$$Pr(Racist|text) = \frac{Pr(text|Racist) * Pr(Racist)}{Pr(text)}$$

RANDOM FOREST

Algorithm trains many decision trees and returns the classification of the majority vote

Using some representative points (support vectors), the algorithm aims to maximize the space between each category (margin)

BERT

- Bidirectional Encoder Representations from Transformers (BERT)
- Pre-trained model created by Google in 2018
- Trained on the entire English Wikipedia and BookCorpus by having it fill in masked words (blanks)
 - Total of 3.3 billion words
 - Useful for contextual word embeddings
 - Different representation for different contexts (despite being same word e.g. dog's bark vs tree bark
- Takes into account words before and after a particular word
 - Truly bidirectional compared to LSTM

MODELLING RESULTS

MODELLING RESULTS

Model	F1-Score		
	Train	Validation	Test
Multinomial NB	0.922	0.889	0.640
Random Forest	0.999	0.931	0.883
SVM	0.963	0.927	0.882
BERT	0.999	0.927	0.856

LIMITATIONS
& FUTURE
STEPS

LIMITATIONS

Dataset issues

Training dataset might not be comprehensive enough in terms of region and timeframe; no data dictionary available

Computing Constraints

Long training time, may not achieve true optimal hyperparameters

FUTURE STEPS

More data

More tweets from all over the globe in order to generalize better

Acquire better computing equipment

More types of data

User information

Allows for more granular GridSearch

CONCLUSION

CONCLUSION

Model

Multinomial Naive Bayes for **speed**, Random Forest for **better predictions**

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution