Algèbre de Boole — Séquence 1

Maël Mignard

14 octobre 2025

Table des matières

1	$\mathbf{R\acute{e}s}$	umé du cours				
	1.1	Opérations de base				
	1.2	Propriétés fondamentales				
2	Exercices					
	2.1	Exercice 1				
	2.2	Exercice 2				
3	Le tableau de Karnaugh					
	3.1	Introduction				
	3.2	Principe du tableau de Karnaugh				
	3.3	Construction d'un tableau de Karnaugh				
	3.4	Exemple détaillé avec 3 variables				
	3.5	Avantages du tableau de Karnaugh				
	3.6	Limites				
	3.7	Résumé des étapes d'utilisation				
	3.8	Àretenir				

1 Résumé du cours

L'algèbre de Boole est un système mathématique utilisé pour représenter et manipuler des valeurs logiques (vrai/faux, 1/0). Elle est à la base de l'électronique numérique et de la logique des circuits.

1.1 Opérations de base

- **NON** (\overline{A}) : inversion
- **ET** $(A \wedge B \text{ ou } A \cdot B)$: produit logique
- **OU** $(A \lor B \text{ ou } A + B)$: somme logique

1.2 Propriétés fondamentales

- Idempotence, commutativité, associativité, distributivité
- Loi de De Morgan : $\overline{A \cdot B} = \overline{A} + \overline{B}$ et $\overline{A + B} = \overline{A} \cdot \overline{B}$

2 Exercices

2.1 Exercice 1

Simplifier l'expression suivante : $\overline{A}B + A\overline{B}$ Solution :

$$\overline{A}B + A\overline{B} = (A \oplus B) \text{ (XOR)}$$

2.2 Exercice 2

Donner la table de vérité de $F = (A + B)\overline{C}$

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

3 Le tableau de Karnaugh

3.1 Introduction

Le tableau de Karnaugh est un outil graphique essentiel pour la simplification des fonctions logiques. Il permet de passer facilement d'une table de vérité à une expression booléenne simplifiée, en visualisant les regroupements possibles de valeurs identiques (souvent les 1) dans une grille.

3.2 Principe du tableau de Karnaugh

Le tableau de Karnaugh (ou carte de Karnaugh) est une représentation bidimensionnelle de la table de vérité d'une fonction logique. Chaque case du tableau correspond à une combinaison possible des variables d'entrée. Les cases sont organisées de façon à ce que deux cases adjacentes ne diffèrent que d'une seule variable (code Gray).

3.3 Construction d'un tableau de Karnaugh

- 1. Déterminer le nombre de variables :
 - $-2 \text{ variables} \rightarrow \text{tableau } 2x2$
 - $-3 \text{ variables} \rightarrow \text{tableau } 2x4$
 - $-4 \text{ variables} \rightarrow \text{tableau } 4\text{x}4$
- 2. **Placer les variables** sur les lignes et colonnes en respectant l'ordre du code Gray (ex : 00, 01, 11, 10).
- 3. Remplir le tableau avec les valeurs de la fonction (généralement 0 ou 1) issues de la table de vérité.
- 4. **Regrouper les 1 adjacents** en paquets de 1, 2, 4, 8... cases (puissances de 2), horizontalement ou verticalement (jamais en diagonale). Les groupes peuvent "boucler" sur les bords du tableau.
- 5. Écrire l'expression simplifiée en identifiant, pour chaque groupe, les variables qui restent constantes.

3.4 Exemple détaillé avec 3 variables

Soit la fonction F(A, B, C) définie par la table de vérité suivante :

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

extbfÉtape 1 : On construit le tableau de Karnaugh (2 lignes pour A, 4 colonnes pour BC en code Gray : 00, 01, 11, 10) :

	00	01	11	10
0	0	1	1	1
1	0	1	1	0

extbfÉtape 2 : On regroupe les 1 adjacents :

- Un groupe de 1 sur la première ligne (colonnes 01 et 11)
- Un groupe de 1 sur la deuxième ligne (colonnes 01 et 11)
- Un groupe de 1 sur la première ligne (colonnes 10 et 11)

extbfÉtape 3 : On déduit l'expression simplifiée en identifiant les variables constantes dans chaque groupe.

3.5 Avantages du tableau de Karnaugh

- Permet de simplifier visuellement les fonctions logiques sans calculs complexes.
- Réduit le risque d'erreur lors de la simplification.
- Utile pour concevoir des circuits logiques optimisés.

3.6 Limites

- Peu pratique au-delà de 4 ou 5 variables (tableaux trop grands).
- Pour un grand nombre de variables, on préfère les méthodes algébriques ou informatiques.

3.7 Résumé des étapes d'utilisation

- 1. Écrire la table de vérité de la fonction.
- 2. Construire le tableau de Karnaugh en respectant le code Gray.
- 3. Remplir le tableau avec les valeurs de la fonction.
- 4. Regrouper les 1 adjacents en paquets de taille maximale.
- 5. Écrire l'expression simplifiée.

3.8 À retenir

- Le tableau de Karnaugh est un outil graphique puissant pour la simplification logique.
- Toujours regrouper le maximum de 1 adjacents pour obtenir l'expression la plus simple.
- Les groupes doivent être des puissances de 2 et peuvent "boucler" sur les bords.