Lecture 3: Recursion 1 Power
Write a program to find x to the power n (i.e. x^n). Take x and n from the user. You need to return the answer. Do this recursively.
Input format: Two integers x and n (separated by space)
Output Format: x^n (i.e. x raise to the power n)
Constraints: 0 <= x <= 30 0 <= n <= 30
Sample Input 1:
Sample Output 1:
Sample Input 2:

Sample Output 2:

Print Numbers

_									
ς.	n	М			М	h	9	0	v

Given is the code to print numbers from 1 to n in increasing order recursively. But it contains few bugs that you need to rectify such that all the test cases pass.

Input Format:

Integer n

Output Format:

Numbers from 1 to n (separated by space)

Constraints:

1 <= n <= 10000

Sample Input 1:

6

Sample Output 1:

123456

Sample Input 2:

4

Sample Output 2:

Number of Digits

Send Feedback

1

Given the code to find out and return the number of digits present in a number recursively. But it contains few bugs, that you need to rectify such that all the test cases should pass.

Sum of Array

Send Feedback

Given an array of length N, you need to find and return the sum of all elements of the array. Do this recursively.

Input Format:

Line 1: An Integer N i.e. size of array

Line 2: N integers which are elements of the array, separated by spaces

Output Format:

Sum

Constraints:

1 <= N <= 10^3

Sample Input 1:

3

989

Sample Output 1:

26

Sample Input 2:

3

421

Sample Output 2:

Check Number

Send Feedback

Given an array of length N and an integer x, you need to find if x is present in the array or not. Return true or false.

Do this recursively.

Input Format:

Line 1: An Integer Ni.e. size of array

Line 2: N integers which are elements of the array, separated by spaces

Line 3 : Integer x

Output Format:

'true' or 'false'

Constraints:

1 <= N <= 10^3

Sample Input 1:

3

9810

8

Sample Output 1:

true

Sample Input 2:

3

9810

2

Sample Output 2:

false

First Index of Number

Send Feedback

Given an array of length N and an integer x, you need to find and return the first index of integer x present in the array. Return -1 if it is not present in the array.

First index means, the index of first occurrence of x in the input array.

Do this recursively. Indexing in the array starts from 0.

Input Format:

Line 1: An Integer N i.e. size of array

Line 2: N integers which are elements of the array, separated by spaces

Line 3: Integer x

Output Format:

first index or -1

Constraints:

1 <= N <= 10^3

Sample Input:

4

98108

8

Sample Output:

Last Index of Number

Send Feedback

Given an array of length N and an integer x, you need to find and return the last index of integer x present in the array. Return -1 if it is not present in the array.

Last index means - if x is present multiple times in the array, return the index at which x comes last in the array.

You should start traversing your array from 0, not from (N - 1).

Do this recursively. Indexing in the array starts from 0.

Input Format:

Line 1: An Integer N i.e. size of array

Line 2 : N integers which are elements of the array, separated by spaces

Line 3 : Integer x

Output Format:

last index or -1

Constraints:

1 <= N <= 10^3

Sample Input:

4

98108

8

Sample Output:

All Indices of Number

Send Feedback

Given an array of length N and an integer x, you need to find all the indexes where x is present in the input array. Save all the indexes in an array (in increasing order).

Do this recursively. Indexing in the array starts from 0.

Input Format:

Line 1: An Integer N i.e. size of array

Line 2: N integers which are elements of the array, separated by spaces

Line 3 : Integer x

Output Format:

indexes where x is present in the array (separated by space)

Constraints:

1 <= N <= 10^3

Sample Input:

5

981088

8

Sample Output:

Multiplication (Recursive)

Send Feedback

Given two integers M & N, calculate and return their multiplication using recursion. You can only use subtraction and addition for your calculation. No other operators are allowed.

Input format:

Line 1 : Integer M Line 2 : Integer N

Output format:

 $M \times N$

Constraints:

0 <= M <= 1000 0 <= N <= 1000

Sample Input 1:

3

5

Sample Output 1:

15

Sample Input 2:

4

0

Sample Output 2:

Count Zeros

Send Feedback

Given an integer N, count and return the number of zeros that are present in the given integer using recursion

Input Format:

Integer N

Output Format:

Number of zeros in N

Constraints:

0 <= N <= 10^9

Sample Input 1:

0

Sample Output 1:

1

Sample Input 2:

00010204

Sample Output 2:

2

Explanation for Sample Output 2:

Even though "00010204" has 5 zeros, the output would still be 2 because when you convert it to an integer, it becomes 10204.

Sample Input 3: 708000

Sample Output 3:

Geometric Sum Send Feedback Given k, find the geometric sum i.e. $1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^k)$ using recursion. Input format: Integer k **Output format:** Geometric sum (upto 5 decimal places) **Constraints:** 0 <= k <= 1000 Sample Input 1: Sample Output 1: 1.87500

Sample Output 2:

Sample Input 2:

1.93750

Explanation for Sample Input 1:

Check Palindrome (recursive)

_	 	
Sano	Inack	
OCITIO	 IDatr	

Check whether a given String S is a palindrome using recursion. Return true or false.

Input Format :
String S
Output Format :
'true' or 'false'
Constraints :
0 <= S <= 1000
where S represents length of string S.
Sample Input 1:
racecar
Tacecai
Sample Output 1:
true
Sample Input 2 :
ninja
Council a Contract Co
Sample Output 2:
false

Sum of digits (recursive)

_				_							
ς.		n	\sim	-		$^{\circ}$	М	h	9	0	v
\cup	C		u		ᆫ	ᆫ	u	IJ	α	\mathbf{C}	n

Write a recursive function that returns the sum of the digits of a given integer.

Input format: Integer N **Output format:** Sum of digits of N

Constraints:

0 <= N <= 10^9

Sample Input 1:

12345

Sample Output 1:

15

Sample Input 2:

Sample Output 2: