#### Módulo 5: Métodos de Optimización No Restringida

Departamento MACC

Matemáticas Aplicadas y Ciencias de la Computación

Universidad del Rosario

Primer Semestre de 2021

### Agenda

- Búsqueda de línea con intervalos
  - Sección áurea
- Búsqueda de línea con interpolación
  - Ajuste cuadrático
- Taller en clase tarea
- Búsqueda de línea con derivadas
  - Método de Newton

#### Sección áurea

- Iteración con  $[a_k, b_k]$
- Long. de nuevo intervalo:  $\mu_k a_k$  o  $b_k \lambda_k$
- $\lambda_k$  y  $\mu_k$  tal que long. nuevo intervalo no depende de  $f(\lambda)$  vs.  $f(\mu)$ :
  - $\bullet \ \mu_k a_k = b_k \lambda_k$
  - $\bullet \ \frac{\mu_k a_k}{b_k a_k} = \alpha = \frac{b_k \lambda_k}{b_k a_k}$
- Entonces
  - $\bullet \ \mu_k = a_k + \alpha(b_k a_k)$
  - $\lambda_k = a_k + (1 \alpha)(b_k a_k)$
  - $\Rightarrow \mu_k \lambda_k = (2\alpha 1)(b_k a_k)$

- Escoger  $\lambda_{k+1}$  y  $\mu_{k+1}$  tal que se reutilice  $\lambda_k$  o  $\mu_k$
- Caso 1:  $f(\lambda_k) > f(\mu_k)$ 
  - $a_{k+1} = \lambda_k$ ,  $b_{k+1} = b_k$ : reutilizar  $\mu_k (= \lambda_{k+1})$
  - $\mu_k = \lambda_{k+1} = a_{k+1} + (1-\alpha)(b_{k+1} a_{k+1}) = \lambda_k + (1-\alpha)(b_k \lambda_k)$
  - $\Rightarrow \mu_k \lambda_k = (1 \alpha)(b_k \lambda_k)$
  - $b_k \lambda_k = b_k a_k (1 \alpha)(b_k a_k) = \alpha(b_k a_k)$
  - $\Rightarrow \mu_k \lambda_k = (1 \alpha)\alpha(b_k a_k)$

$$\bullet \ \mu_k - \lambda_k = (2\alpha - 1)(b_k - a_k)$$

$$\bullet \ \mu_k - \lambda_k = (1 - \alpha)\alpha(b_k - a_k)$$

$$\bullet \Rightarrow 2\alpha - 1 = \alpha(1 - \alpha)$$

• 
$$\alpha^2 + \alpha - 1 = 0$$

• 
$$\alpha = \frac{-1 \pm \sqrt{5}}{2} \approx \{-1,618; 0,618\}$$

• 
$$\alpha = 0.618$$

- Caso 2:  $f(\lambda_k) < f(\mu_k)$ 
  - $a_{k+1} = a_k$ ,  $b_{k+1} = \mu_k$ : reutilizar  $\lambda_k(\mu_{k+1})$
  - $\lambda_k = \mu_{k+1} = a_{k+1} + \alpha(b_{k+1} a_{k+1}) = a_k + \alpha(\mu_k a_k)$
  - $\bullet \Rightarrow \lambda_k a_k = \alpha(\mu_k a_k) = \alpha(a_k + \alpha(b_k a_k) a_k) = \alpha^2(b_k a_k)$
- Dado que  $\lambda_k a_k = (1 \alpha)(b_k a_k)$ 
  - $\bullet \Rightarrow \alpha^2 = 1 \alpha$
  - $\alpha^2 + \alpha 1 = 0$
  - $\alpha \approx 0.618$



- Cada iteración: factor de reducción de 0.618 con una evaluación (excepto primera)
- $\Rightarrow$  Relación de reducción:  $(0,618)^{n-1}$

## Sección áurea - Algoritmo

```
Paso 0: Long. final de intervalo I, intervalo inicial [a_0, b_0], k = 0
\lambda_0 = a_0 + (1 - \alpha)(b_0 - a_0), f(\lambda_0)
\mu_0 = a_0 + \alpha(b_0 - a_0), f(\mu_0)
Paso 1:
if b_{k} - a_{k} < l then
  Stop, \lambda^* \in [a_k, b_k]
else
  if f(\lambda_k) > f(\mu_k) then
      Go to Paso 2
   else
      Go to Paso 3
   end if
end if
```

# Sección áurea - Algoritmo (cont.)

Paso 2 
$$(f(\lambda_k) > f(\mu_k))$$
:  
 $a_{k+1} = \lambda_k, b_{k+1} = b_k, \lambda_{k+1} = \mu_k$   
 $\mu_{k+1} = a_{k+1} + \alpha(b_{k+1} - a_{k+1})$   
 $f(\mu_{k+1}), k = k+1$ , Go to Paso 1  
Paso 3  $(f(\lambda_k) < f(\mu_k))$ :  
 $a_{k+1} = a_k, b_{k+1} = \mu_k, \mu_{k+1} = \lambda_k$   
 $\lambda_{k+1} = a_{k+1} + (1 - \alpha)(b_{k+1} - a_{k+1})$   
 $f(\lambda_{k+1}), k = k+1$ . Go to Paso 1

## Agenda

- Búsqueda de línea con intervalos
  - Sección áurea
- Búsqueda de línea con interpolación
  - Ajuste cuadrático
- Taller en clase tarea
- 4 Búsqueda de línea con derivadas
  - Método de Newton

### Ajuste cuadrático

- Ajuste mediante la interpolación de tres puntos a una parábola que contiene el punto optimo
- Estimación de  $\hat{x}$ ,

$$\hat{x}_k = \frac{b_{23}f_1 + b_{31}f_2 + b_{12}f_3}{2(a_{23}f_1 + a_{31}f_2 + a_{12}f_3)}$$

donde,  $b_{ij} = x_i^2 - x_j^2$  y  $a_{ij} = x_i - x_j$ .

## Ajuste cuadrático - Algoritmo

```
Paso 0: Long. final de intervalo I, intervalo inicial [x_1, x_2, x_3], k = 0
Paso 1: x_1, f(x_1); x_2, f(x_2); x_3, f(x_3)
\hat{x}_k, f(\hat{x}_k)
if x_3 - x_1 < \varepsilon then
  Stop, \hat{x}_k \in [x_1, x_3]
else
  if \hat{x}_k > x_2 then
      Go to Paso 2
   else if \hat{x}_k < x_2 then
      Go to Paso 3
   else if \hat{x}_k = x_2 then
      Go to Paso 4
   end if
end if
```

# Ajuste cuadrático - Algoritmo (cont.)

Paso 2 ( $\hat{x}_k > x_2$ ):

if 
$$f(\hat{x}_k) > f(x_2)$$
 then intervalo  $[x_1, x_2, \hat{x}_k]$ , Go to Paso 1

if 
$$f(\hat{x}_k) \leq f(x_2)$$
 then intervalo  $[x_2, \hat{x}_k, x_3]$ , Go to Paso 1

Paso 3 ( $\hat{x}_k < x_2$ ):

if 
$$f(\hat{x}_k) > f(x_2)$$
 then intervalo  $[\hat{x}_k, x_2, x_3]$ , Go to Paso 1

if 
$$f(\hat{x}_k) \leq f(x_2)$$
 then intervalo  $[x_1, \hat{x}_k, x_2]$ , Go to Paso 1

Paso 4 (
$$\hat{x}_k = x_2$$
):

$$\hat{x}_k = \begin{cases} x_2 + \varepsilon/2 & \text{if} \quad x_2 - x_1 < x_3 - x_2 \\ x_2 - \varepsilon/2 & \text{if} \quad x_2 - x_1 > x_3 - x_2 \end{cases}$$
, Go to Paso 1



# Ajuste cuadrático - Ejemplo

• Encontrar el punto mínimo de la función,  $x_1 = 0$ ,  $x_2 = 1$ , y  $x_3 = 4$ ,

$$\min f(x) = \frac{x^2}{10} - 2\sin x$$



### Agenda

- Búsqueda de línea con intervalos
  - Sección áurea
- Búsqueda de línea con interpolación
  - Ajuste cuadrático
- Taller en clase tarea
- 4 Búsqueda de línea con derivadas
  - Método de Newton

#### **Taller**

Implemente el método de sección áurea en MATLAB y de interpolación cuadrática para resolver uno de los siguientes problemas,

- Grupo 1: mín  $x^2 + 2x + 1$ ,  $-3 \le x \le 2$
- Grupo 2: mín  $\frac{x^2}{2} + sen(x)$ ,  $-3 \le x \le 3$
- Grupo 3: mín  $x^2 + cos(x)$ ,  $-4 \le x \le 2$
- Grupo 4: mín  $\exp^{-x} + x^2 + 5$ ,  $-1 \le x \le 5$
- Grupo 5: mín  $2 \exp^{-x} + 2x^2$ ,  $-4 \le x \le 2$
- Grupo 6: mín  $\frac{1}{2}exp^{-x} + x^2$ ,  $-4 \le x \le 4$

#### **Taller**

 Con los resultados obtenidos con el método de sección áurea, llene con al menos 5 iteraciones la siguiente tabla

| iteración | a <sub>k</sub> | $b_k$ | $\lambda_k$ | $\mu_{k}$ | $f(\lambda_k)$ | $f(\mu_k)$ |
|-----------|----------------|-------|-------------|-----------|----------------|------------|
| 1         |                |       |             |           |                |            |
| 2         |                |       |             |           |                |            |
|           |                |       |             |           |                |            |
| <u> </u>  |                |       |             |           |                |            |

 Para el mismo problema, llene la siguiente tabla con los cuatro puntos de aproximación en cada iteración (al menos 5 iteraciones)

| iteración | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 | â |
|-----------|-----------------------|-----------------------|------------|---|
| 1         |                       |                       |            |   |
| 2         |                       |                       |            |   |
| :         |                       |                       |            |   |

## Agenda

- Búsqueda de línea con intervalos
  - Sección áurea
- Búsqueda de línea con interpolaciór
  - Ajuste cuadrático
- Taller en clase tarea
- Búsqueda de línea con derivadas
  - Método de Newton

#### Método de Newton

 Método de Newton-Raphson para encontrar aproximaciones de los ceros o raíces de una función

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

- Valor optimo satisface  $g(\hat{x}) = f'(\hat{x}) = 0$
- Mínimo de una función

$$x_{i+1} = x_i - \frac{g(x_i)}{g'(x_i)} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

# Método de Newton - Algoritmo

Paso 0: Punto inicial  $x_0$ , k=0, error  $\varepsilon$ Paso 1:  $x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$ if  $x_{k+1} - x_k < \varepsilon$  then Stop,  $x^* \in [x_{k+1}, x_k]$ else Repetir

### Método de Newton - Ejemplo

• Encontrar el punto mínimo de la función,  $x_0 = 2.5$ ,

$$\min f(x) = \frac{x^2}{10} - 2\sin x$$

