

FACULTAD DE CIENCIAS ÁLGEBRA LINEAL 1

Tarea 06

Semestre 2024 - 1

Profesora:

Mindy Yaneli Huerta Pérez

Ayudantes:

Elizabeth Chalnique Ríos Alvarado Gilbert Raúl Avendaño Aguilar Aldair Reyes Gónzalez

Alumnos:

Paul César Cabañas Segura Marco Silva Huerta José Luis Cruz Mayen

10 de Noviembre de 2023

Ejercicio 1

Sean V un F-espacio vectorial de dimensión finita con base ordenada $\beta = \{x_1, \cdots x_n\}$ y $x_0 = 0_V$. Demostrar que existe una transformación lineal $T: V \to V$ que satisface $T(x_j) = x_j - x_{j-1}$ para $j = 1, \cdots, n$ y calcular $[T]_{\beta}$

Ejercicio 2

Sean V un F-espacio vectorial de dimensión finita, W un subespacio vectorial de V y $T:V\to V$ una proyección sobre W. Escoger una base ordenada adecuada de V tal que $[T]_\beta$ sea la matriz diagonal.

Solución:

Proyección sobre un subespacio vectorial: Una proyección sobre un subespacio vectorial W es una transformación lineal $T:V\to V$ tal que para cualquier vector v en V, T(v) es el punto más cercano a v que está en el subespacio W. En otras palabras, T(v) es el vector en W que está más cerca de v.

Matriz de transformación lineal: Cualquier transformación lineal $T:V\to V$ puede representarse mediante una matriz. En particular, si tenemos una base ordenada β de V, la matriz de T respecto a β , denotada como $[T]_{\beta}$, es la matriz que describe cómo T actúa sobre los vectores en V cuando se expresan en términos de la base β .

Paso 1: Encontrar una base ordenada para W

Supongamos que para $\beta_W = \{w_1, w_2, \dots, w_k\}$ es base de W. Sea la cantidad de vectores que pueda tener forsozamente deben ser linealmente independiente y generar W.

Paso 2: Ampliar β_W a una base ordenada de V

Tomamos los vecotres de β_W para formar una base ordenada de V. Supongamos que

$$\beta = \{w_1, w_2, \dots, w_k, v_{k+1}, v_{k+2}, \dots, v_n\}$$

es una base para V, donde n es la dimensión de V. Esta base tiene k vectores de W y (n-k) vectores adicionales que completan la base de V.

Paso 3: Proyección T en términos de la base β

Para cualquier vector v en V, la proyección T(v) es igual a v si v está en W, y es igual a v si v está en el complemento ortogonal de v. Podemos expresar v0 en términos de la base v0 de la siguiente manera:

$$T(v) = \begin{cases} v, & \text{si } v \in W \\ \mathbf{0}, & \text{si } v \in \text{complemento ortogonal de } W \end{cases}$$

Paso 4: Matriz $[T]_{\beta}$

La matriz $[T]_{\beta}$ tendrá una forma diagonal, donde los bloques correspondientes a W serán matrices identidad y los bloques correspondientes al complemento ortogonal de W serán matrices nulas. Es decir,

$$[T]_{\beta} = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$$

donde I_k es la matriz identidad de tamaño $k \times k$, y 0 representa una matriz nula de tamaño $(n-k) \times (n-k)$. Ahora vamos a considerar el espacio vectorial $V = \mathbb{R}^3$ con la proyección $T : \mathbb{R}^3 \to \mathbb{R}^3$ sobre el subespacio W generado por (1,0,0).

- $\beta_W = \{(1,0,0)\}$ es una base para W.
- Ampliando β_W , obtenemos la base $\beta = \{(1,0,0),(0,1,0),(0,0,1)\}$ para V.

La matriz $[T]_{\beta}$ en esta base es:

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Para demostrar que $[T]_{\beta}$ tiene una forma diagonal, consideremos cómo actúa T sobre los vectores en V expresados en la base β . Para cualquier v en V, T(v) tiene dos posibles casos:

- 1. Si v está en W, entonces T(v) = v. En términos de la matriz $[T]_{\beta}$, esto corresponde a multiplicar $[T]_{\beta}$ por v y obtener v. Esto se logra usando el bloque I_k en la esquina superior izquierda de $[T]_{\beta}$.
- 2. Si v está en el complemento ortogonal de W, entonces $T(v) = \mathbf{0}$. En términos de la matriz $[T]_{\beta}$, esto corresponde a multiplicar $[T]_{\beta}$ por v y obtener el vector nulo. Esto se logra usando los bloques de 0 en la parte inferior de $[T]_{\beta}$.

Por lo tanto, la matriz $[T]_{\beta}$ tiene una forma diagonal como se muestra en el paso 4.

Ejercicio 3

Sea $T: \mathbb{R}3 \to \mathbb{R}3$ dada por T(x, y, z) = (x, 2y + x, z).

- 1. Demuestre que T es una transformación lineal inyectiva y suprayectiva
- 2. Calcular $[T]^{\gamma}_{\beta}$ y $([T]^{\gamma}_{\beta})^{-1}$

$$\beta = \{(1,0,0), (1,2,0), (0,0,1)\}$$

y

$$\gamma = \{(0,0,1), (3,0,0), (0,1,0)\}$$

3. Calcule T^{-1} y verifique que $\left([T]_{\beta}^{\gamma}\right)^{-1}=[T]_{\gamma}^{\beta}$