$$P = VI$$
 (2)

Where P is power, I is current and V is the voltage of a system. The energy of one electron is the charge of an electron (i.e. the current flow of one electron per second in amps) times the

$$E = eV$$
 (3)

Where $e = 1.6X10^{-19} C$.

We then solve equation(1) for h and replace the E term with the equivalent of E in equation (3),

Where $c = 3X10^8$ m/sec. We then get:

$$h = \frac{ev\lambda}{c} \tag{4}$$

It is this equation that we will use to determine Planck's constant.

Procedure: 1. Connect the LED to the jack provided on the front panel and switch on the unit.

2. Take the different voltage and current measurement of LED (as tabulated below) for V-I characteristics of LED.

S.No.	Voltage	· · · · · · · · · · · · · · · · · · ·			
1	Voltage (V)		Cur	rent (mA)	
		-		rent (mA)	

- 3. Take different LED's and follow step 2.
- 4. Now plot the V-I characteristics of all the LED's on graph paper and takes voltages corresponding to a constant current based on observation taken in step 2. Draw the line parallel to y-axis and note down values of voltages corresponding to different LED's.
- 5. Make the table as shown below.

S.No.	LED colour	Voltage			
16157 26 0		Lourage	Wavelength	Frequency	
and see a first		(Volts)	λ (nm)	- quency	Energy
				$V = c/\lambda$	E = qV

6. Now plot a graph between voltage V and λ^{-1} and determine the slope of the line . It will give the value of hc/e. Now substitute the value of c (3X10 2 m/s) and e (1.6X10 $^{-19}$ C) deduce the