ZWISCHENKLAUSUR THEORETISCHE PHYSIK 2 (ELEKTRODYNAMIK)

10. Januar 2012

Hilfsmittel: keine; Hinweise werden im Text gegeben.

Auf jedem Lösungsblatt angeben: Name, Matrikel-Nr.

Sie haben zur Bearbeitung 90 Minuten Zeit.

Insgesamt können 100 Punkte erreicht werden.

1. Elektrostatik

- 1.1 Wie lautet die Ladungsdichte $\rho(\vec{r})$, welche ein Potential $\phi(\vec{r}) = q/r$ mit der Ladung q erzeugt?
- 1.2 Man finde die Ladungsdichte $\rho(\vec{r})$, die ein Potential

$$\phi(\vec{r}) = \frac{q}{r}e^{-\alpha r}$$

(mit $\alpha > 0$) erzeugt.

[1.1+1.2: **10 Punkte**]

1.3 Man zeige, daß die zu $\rho(\vec{r})$ aus Aufg. 1.2 gehörige Gesamtladung Q verschwindet. [5 Punkte]

2. Magnetostatik

2.1 Man bestimme das magnetische Moment \vec{m} einer homogen geladenen Kugel (Radius a, Ladung q), die mit der Winkelgeschwindigkeit $\vec{\omega}$ um eine Achse durch den Kugelmittelpunkt rotiert.

Hinweise: die Geschwindigkeit eines Punktes der Kugel ist $\vec{v} = \vec{\omega} \times \vec{r}$;

$$\vec{m} = \frac{1}{2c} \int d^3r \ (\vec{r} \times \vec{j}(\vec{r})), \quad \vec{j}(\vec{r}) = \text{Stromdichte}, \ c = \text{Lichtgeschindigkeit};$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b});$$

$$\int d\Omega \ r_i r_j = \frac{4\pi}{3} r^2 \delta_{ij}.$$

[20 Punkte]

2.2 Man diskutiere die potentielle Energie der rotierenden Kugel in einem äußeren homogenen Magnetfeld \vec{B} als Funktion des Winkels zwischen $\vec{\omega}$ und \vec{B} . [5 **Punkte**]

2.3 Man betrachte das Elektron als rotierende Kugel der Ladung q=-e (e= Elementarladung) mit dem Radius $a=e^2/(mc^2)\simeq 2.8\ 10^{-13}$ cm ("klassischer Elektronenradius"; Elektronenmasse $m\simeq 9.1\ 10^{-31}$ kg). Das magnetische Moment des Elektrons ist experimentell bestimmt zu $|\vec{m}|=\frac{e}{2mc^2}\gamma$ (wobei $\gamma\simeq 137\,e^2$). Wie groß ist die Tangentialgeschwindigkeit v_t eines Punktes A auf der Kugeloberfläche entlang der Äquatoriallinie (siehe Abb.)? Man vergleiche v_t mit der Lichtgeschwindigkeit c. Was

folgt hieraus für die Möglichkeit einer "klassischen Deutung" des Elektronenspins? [10 Punkte]

3. Punktladung im Feld einer elektromagnetischen Welle

3.1 Eine monochromatische elektromagnetische Welle werde durch das Feld $\vec{E}(\vec{r},t) = (E_x, E_y, E_z) = E_0(\cos(kz - \omega t), \sin(kz - \omega t), 0)$ beschrieben. Unter Verwendung der Maxwellgleichungen im Vakuum bestimme man das mit dem elektrischen Feld $\vec{E}(\vec{r},t)$ assoziierte zeitabhängige Magnetfeld $\vec{B}(\vec{r},t)$.

[10 Punkte]

3.2 Man zeige, daß die zeitliche Änderung der Energie W eines (punktförmig gedachten) Teilchens der Ladung q, das sich mit der Geschwindigkeit \vec{v} in einem äußeren elektromagnetischen Feld bewegt, gegeben ist durch $dW/dt = q\vec{v} \cdot \vec{E}$. [5 Punkte]

- $3.3\,$ Ein Teilchen der Ladung q und Masse m bewege sich im äußeren Feld der elektromagnetischen Welle aus Aufg. $3.1.\,$ Die Emission von Strahlung durch die bewegte Ladung werde venachlässigt.
 - a) Man stelle die Bewegungsgleichung für den Teilchenimpuls \vec{p} auf. [10 Punkte]
 - b) Welche Bahn beschreibt das Teilchen unter der Nebenbedingung, daß seine Energie W im äußeren Feld konstant bleibt? (Siehe Aufg. 3.2; Anfangsbedingung: $\dot{z}(t=0)=0$.)
 [20 Punkte]
 - c) Man zeige, daß die Richtung des Impulses \vec{p} zu jedem Zeitpunkt mit der Richtung des Magnetfeldes \vec{B} zusammenfällt, und daß $|\vec{p}| = eE_0/\omega$. [5 Punkte]