# Reglerdimensionierung mittels Phasengangmethode

## Fachbericht

24. Mai 2015

Studiengang | EIT

Modul | Projekt 2

Team 4

Auftraggeber | Peter Niklaus

Fachcoaches | Peter Niklaus, Richard Gut, Pascal Buchschacher, Anita Gertiser

Autoren | Anita Rosenberger, Benjamin Müller, Manuel Suter, Florian Alber, Raphael Frey

Version | Entwurf

### **Abstract**

Im Gebiet der Regelungstechnik ist das Dimensionieren von Regler eine zentrale Aufgabe, da mit der korrekten Einstellung der Regler stabil und die Differenz zwischen Ist und Soll-Wert möglichst klein ist.

Die Phasengangmethode ist eine ursprünglich eine graphische Berechnungsart, welche anhand der Schrittantwort die Reglerwerte berechnet. Die Aufgabe der Implementierung dieser Methode in Java war die Hauptaufgabe.

Die Ziel dieses Projektes war, ein benutzerfreundliches Softwaretool, das heisst auch für ein ungeübter Regelungstechniker benutzen kann, zu entwickeln, welches anhand der Phasengangmethode die Dimensionierung eines PI und PID Reglers durchführt. Die Ausgabe des Tools soll anhand der Eingabe der Schrittantwortwerte die numerische wie auch die graphische Lösung ausgeben.

Die Phasengangmethode und die als Vergleich angewendete Faustformeln wurden in Matlab geschrieben und mit Referenzdaten getestet. Die Implementierung in Java war ein zweistufiger Prozess, in welchem zuerst die matlabtypischen Berechungsfunktionen ausprogrammiert und im zweiten Schritt die Regeldimensionierung implementiert wurden.

Das Softwaretool besitzt eine graphische Benutzeroberfläche, über welche auf der linken Seite die Werte der Schrittantwort eingelesen und die numerserischen Lösungen des Reglers ausgegeben und über die rechte Seite die graphischen Lösungen dargestellt werden.

Das Zentrale an der Lösung ist die Berechungungseschwindigkeit mit welcher das Tool arbeitet. Dies ermöglicht eine Echtzeit "Dimensionierung des Reglers. Das Neue an dieser Lösung ist das Einbinden der Phasengangmethode in ein Reglerdimensionierungstool.

## Projekt P2 - Aufgabenstellung vom Auftraggeber (FS\_2015)

## Reglerdimensionierung mit Hilfe der Schrittantwort

## 1. Einleitung

In der Praxis werden die klassischen Regler (PI, PID, PD, ...) oft mit sog. Faustformeln dimensioniert. Dazu benötigt man bestimmte Informationen der zu regelnden Strecke. Handelt es sich dabei um "langsame Strecken" mit Zeitkonstanten im Bereich von Sekunden bis Minuten, so ist das Bestimmen und Ausmessen der Schrittantwort oft die einzige Möglichkeit zur Identifikation der Strecke. Typische Beispiele dafür sind Temperaturheizstrecken, welc. • meistens mit einem PTn-Verhalten modelliert werden können (Kaffeemaschine, Boiler, Raumhe ungen, Lötkolben, Warmluftfön, usw.).

Die Schrittanwort wird mit Hilfe einer Wendetangente vermessen und die Kenngroßen Streckenbeiwert ( $K_s$ ), Verzugszeit ( $T_u$ ) und Anstiegszeit ( $T_g$ ) werden bestimmt. Nies kann so vohl von Hand (grafisch) oder auch automatisiert durchgeführt werden, frohs die Mendaten elektronisch vorliegen. Mit diesen drei Kenngrössen können mit Hilfe sog. Faus Normeln 1.1- und PID-Regler dimensioniert werden (Ziegler/Nichols, Chien/Hrones/Renwork, Oppen Rosenberg). Die Faustformeln liefern zwar sehr schnell die Reglerdaten, aben die Sch. Hantworten der entspr. Regelungen sind teilweise weit vom "Optimum" entfernt und der Regelkreis kann sogar instabil werden. In der Praxis muss man diese "Startwerte" häufig in Noptimieren, damit die Schrittantwort der Regelung die Anforderungen erfüllt.

Die sog. "Phasengangmethode zu. Reglerd. Persionierung" wurde von Jakob Zellweger (FHNW) entwickelt und liefert Regle Arten, welche näher am "Optimum" sind und für die Praxis direkt verwendet werden können. Dabei kann das Überschwingen der Schrittantwort vorgegeben werden (z.B. 20%, 10%, 2%, oder ageriodische Bei dieser Methode kann also das für viele Anwendungen wich ager Verhalm der Schrittantwort beeinflusst werden. Um die Phasengangmethode anwenden zu können, mund der Frequenzgang der Strecke bekannt sein (analytisch oder numerisch gemessen). Mit Hilfe der Problem gelös in dem vorgängig aus den Kenngrössen der Schrittantwort ( $K_s$ ,  $T_u$ ,  $T_g$ ) eine PTn-aproximation der Strecke erzeugt wird. Mit dem Frequenzgang der PTn-Approximation können. Jann die Regler dimensioniert werden (I, PI, PID). Die Phasengangmethode war ursprünglich eine geläsche Methode, basierend auf dem Bodediagramm der Strecke. Aktuell soll die Methode direkt numerisch im Rechner durchgeführt werden.

In dieser Arbeit geht es um die Entwicklung und Realisierung eines Tools zur **Reglerdimensionierung mit der Phasengangmethode**. Ausgehend von der PTn-Schrittantwort der Strecke sollen "optimale Regler" (PI, PID-T1) dimensioniert werden, wobei das Überschwingen der Regelgrösse vorgegeben werden kann. Zum Vergleich sollen die Regler auch mit den üblichen Faustformeln dimensioniert werden. Wünschenswert wäre auch eine Simulation der Schrittantwort des geschlossenen Regelkreises, so dass die Dimensionierung kontrolliert und evtl. noch "verbessert" werden könnte.

## 2. Aufgaben/Anforderungen an Tool

Entwerfen und realisieren Sie ein benutzerfreundliches Tool/Programm/GUI/usw. mit welchem PI- und PID-Regler mit der Phasengangmethode dimensioniert werden können. Dabei sind folgende Anforderungen und Randbedingungen vorgegeben:

- Die zu regelnden Strecken sind PTn-Strecken, wobei entweder die Schrittantwort grafisch vorliegt oder die Kenngrössen  $K_s$ ,  $T_u$  und  $T_g$  schon bekannt sind
- Die Bestimmung einer PTn-Approximation wird vom Auftraggeber zur Verfügung gestellt und muss entsprechend angepasst und eingebunden werden (Matlab zu Java)
- Das Überschwingen der Regelgrösse (Schrittantwort) soll gewähl werden können
- Zum Vergleich sind die Regler auch mit den üblichen Faustformeln 2. dimensionieren.
- Das dynamische Verhalten des geschlossenen Regelkreises soll auch berecated visualisiert werden (Schrittantwort)

## 3. Bemerkungen

Die Software und das GUI sind in enger Absprache mit dem Auftraggeb Azu entwickeln. Der Auftraggeber steht als Testbenutzer zu Verfügung und soll bei au Evaluation des GUI eingebunden werden. Alle verwendeten Formeln, Algoritht en und Berechnungen sind zu verifizieren, eine vorgängige oder parallele Programmierung in Machbist zu empfehlen. Zum Thema der Regelungstechnik und speziell zur Reglerdimen ionierung mit der Phasengangmethode werden Fachinputs durchgeführt (Fachcoach

#### Literatur

- [1] J. Z. dweger, Regelkreise und Pegelungen, Vorlesungsskript.
- [2] J. Zen ger, 'nazengang Methode, Kapitel aus Vorlesungsskript.
- [3] H. Unbeh. 'n, Regelung technik I, Vieweg Teubner, 2008.
- [4] W. Schumach, W. Leonhard, *Grundlagen der Regelungstechnik*, Vorlesungsskript, TU Braunschweig, 2003.
- [5] B. Bate, *PID-Einstellregeln*, Projektbericht, FH Dortmund, 2009.

16.02.2015 Peter Niklaus

## Inhaltsverzeichnis

| T                         | Ein                           | leitung                                                           | 6         |
|---------------------------|-------------------------------|-------------------------------------------------------------------|-----------|
| 2                         | Fac                           | hlicher Hintergrund                                               | 7         |
|                           | 2.1                           | Grundlagen                                                        | 7         |
|                           | 2.2                           | Frequenzgang der Regelstrecke                                     | 8         |
|                           | 2.3                           | Reglerdimensionierung mittels Faustformeln                        | 9         |
|                           | 2.4                           | Reglerdimensionierung mittels Phasengangmethode: PI-Regler        | 11        |
|                           | 2.5                           | Reglerdimensionierung mittels Phasengangmethode: PID-Regler       | 15        |
|                           | 2.6                           | Umrechnung zwischen bodekonformer und reglerkonformer Darstellung | 21        |
|                           | 2.7                           | Schrittantwort des geschlossenen Regelkreises                     | 21        |
| 3                         | Soft                          | tware                                                             | 23        |
|                           | 3.1                           | View                                                              | 23        |
|                           | 3.2                           | Controller                                                        | 23        |
|                           | 3.3                           | Model                                                             | 23        |
|                           | 3.4                           | Benutzungs-Beispiel (Use-Case)                                    | 24        |
| 4                         | Tes                           | ts                                                                | <b>25</b> |
| 5                         | $\operatorname{\mathbf{Sch}}$ | lussfolgerungen                                                   | 26        |
| $\mathbf{A}_{\mathbf{j}}$ | ppen                          | dix                                                               | 28        |
| $\mathbf{A}$              | Ma                            | nuelle Berechnung des Hilfsparameteres $\beta$                    | 28        |
| T.i                       | terat                         | urverzeichnis                                                     | 30        |

## Versionsgeschichte

04.05.2015: Version 0.01 06.05.2015: Version 0.02

6 1 EINLEITUNG

## 1 Einleitung

referenz script Zellweger Im Rahmen des Projektes soll ein Tool entwickelt werden, welches einen PI- respektive einen PID-Regler mittels der von Prof. Jakob Zellweger entwickelten Phasengangmethode dimensioniert. Zum Vergleich soll der entsprechende Regler ebenfalls mittels verschiedenen Faustformeln berechnet werden.

Die Phasengangmethode ist eine graphische Methode, die bis anhin mit Stift und Papier durchgeführt wurde. Folglich ist die Ausführung zeitaufwändig, speziell wenn Schrittantworten mit unterschiedlichen Parameterwerten durchgespielt werden sollen. Das Tool soll ausgehend von drei Parametern aus der Schrittantwort der Strecke (Verstärkung  $K_s$ , Anstiegszeit  $T_g$ , Verzögerungszeit  $T_u$ ) mittels der Phasengangmethode möglichst ideale Regelparameter berechnen sowie die Schrittantwort des darauf basierenden geschlossenen Regelkreises graphisch darstellen. Die Benutzeroberfläche der Software soll intuitiv sein, sodass sich auch mit dem Thema nicht eingehend vertraute Regelungstechniker einfach zurechtfinden.

mehr/andere<mark>r</mark> Inhalt? Die erforderlichen Algorithmen wurden zuerst in Matlab als Prototypen implementiert und anschliessend vollständig in Javakonvertiert. Die graphische Benutzeroberfläche baut ganz auf Java. Um optimale Wartbarkeit, Übersichtlichkeit und Modularität des Codes zu gewährleisten, ist die Software gemäss Model-View-Controllern-Pattern aufgebaut.

Nach der Implementierung in Matlab wurde klar, dass die Berechnung durch die hohe Rechenleistung sehr schnell durchgeführt werden kann und somit eine Dimensionierung des geschlossenen Regelkreises anhand dieser Methode von Herrn Zellweger möglich ist.

Der Bericht gliederte sich in zwei Teile: Der ersten Teil erläutert die theoretischen Grundlagen und darauf aufbauend stellt der zweite Teil der Aufbau der Software dar.

## 2 Fachlicher Hintergrund

Das Kernstück dieser Arbeit und des zugehörigen Softwaretools stellt die so genannte "Phasengang-Methode zur Reglerdimensionierung" von Jakob Zellweger dar [1]. Diese wurde ursprünglich als vereinfachte grafische Methode zur Approximation der -20dB/Dek Methode erarbeitet und im Rahmen dieses Projektes in einem Java-Tool automatisiert. Als Vergleich wertet die Software ebenfalls einige der gängigen Faustformeln aus.

Das Tool führt grob vereinfacht folgende Schritte aus:

- Bestimmung des Frequenzgangs der Regelstrecke aus Verzögerungszeit  $T_u$ , Anstiegszeit  $T_g$  und Verstärkung  $K_s$  (Abschnitt 2.2)
- Dimensionierung des Reglers mittels Faustformeln (Abschnitt 2.3)
- Dimensionierung des Reglers durch Phasengangmethode (Abschnitte 2.4 und 2.5)
- Umrechung der Regler-Darstellung zwischen bodekonformer und reglerkonformer Darstellung (Abschnitt 2.6)
- Berechnung der Schrittantwort des geschlossenen Regelkreises (Abschnitt??)

Im folgenden Kapitel wird auf diese Punkte genauer eingegangen und das Vorgehen anhand eines konkreten Beispiels rechnerisch und grafisch erläutert. Die Durchrechnung der Phasengangmethode orientiert sich an den Rezepten, welche im fachlichen Teil des Pflichtenheftes dieses Projektes zu finden sind [2]. Genauere Hintergrundinformationen zur Phasengangmethode selbst sind dem Vorlesungs-Skript von J. Zellweger zu entnehmen [1].

Das Überschwingverhalten kann im Software-Tool vom Benutzer auf einen Zielwert zwischen 0% und 30% eingestellt werden. Das Tool optimiert den resultierenden Regler dann entsprechend, um dieser Vorgabe möglichst nahe zu komen.

### 2.1 Grundlagen

Abschnitt verfassen

#### 2.2 Frequenzgang der Regelstrecke

Als Ausgangspunkt der Reglerdimensionierung dient die Schrittantwort der Strecke. Durch Einzeichnen der Wendetangente <sup>1</sup> ergeben sich Schnittpunkte der Wendetangente mit der Zeitachse  $[T_u, 0]$  und mit dem Zielwert  $[T_g + T_g, 1]$ . Es können nun also die Verzögerungszeit  $T_u$  und die Anstiegszeit  $T_g$  aus aus Abbildung 1 abgelesen werden.

Wir werden in diesem Bericht folgende Strecke als Beispiel nehmen:



**Abbildung 1:** Schrittantwort der Beispielstrecke (schwarz), Wendetangende (rot),  $T_u$  und  $T_g$  (blau)

Ausmessen der Schrittantwort ergibt:

- $K_s = 2^2$   $T_u = 1.1 \,\mathrm{s}$   $T_g = 8.9 \,\mathrm{s}$

Der geschlossene Regelkreis soll schlussendlich maximal etwa 16.3% überschwingen.

Da die Reglerdimensionierung mit der Phasengangmethode vom Frequenzgang einer Strecke ausgeht und nicht von deren Schrittantwort, besteht der nächste Schritt nun darin, aus den obigen Werten den Frequenzgang der Strecke zu bestimmen. Dies erledigt die Methode p\_sani<sup>3</sup>, welche uns die Werte für die Übertragungsfunktion der Strecke liefert. In unserem Fall ergibt dies folgendes Polynom:

<sup>&</sup>lt;sup>1</sup>Die Wendetangante ist die Tangente an den Wendepunkt in der Anstiegs-Phase der Schrittantwort.

<sup>&</sup>lt;sup>2</sup>Abbildung 1 ist auf 1 normiert, die Verstärkung unserer Beispielstrecke beträgt 2. An den Werten für die Verzögerungs- und Anstiegszeit oder am Ausmessen der Schrittantwort ändert sich dadurch nichts

<sup>&</sup>lt;sup>3</sup>Die Methode p\_sani wurde zu Beginn des Projektes in einer Matlab-Implementation zur Verfügung gestellt und anschliessend für unser Tool in Java übersetzt.

Sie kann aus der Verzögerungszeit, der Anstiegszeit und der Verstärkung der Strecke ein Polynom für deren Übertragungsfunktion vom Grad 1 bis 8 ausrechnen.

Als Eingabeparameter werden die Werte  $T_u$ ,  $T_g$  und  $K_s$  benötigt, als Rückgabewert erhält man ein Array mit den Zeiten  $T_i$  für die Nenner der Faktoren des Polynoms (siehe Gleichung 1).

$$H_s(s) = K_s \cdot \frac{1}{1 + s \cdot T_1} \cdot \frac{1}{1 + s \cdot T_2} \cdot \frac{1}{1 + s \cdot T_2}$$

$$= 2 \cdot \frac{1}{1 + s \cdot 0.4134 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 1.4894 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 5.3655 \,\mathrm{s}}$$
(1)

Mit einem geeigneten Tool kann man sich den dazugehörigen Plot erstellen lassen.



Abbildung 2: Frequenzgang der Strecke

Somit ist der Frequenzgang der Strecke bekannt und man kann mit einer geeigneten Methode den Regler dimensionieren.

### 2.3 Reglerdimensionierung mittels Faustformeln

Im Praxiseinsatz stehen für die Dimensionierung von Reglern einfache Berechnungsformeln zur Verfügung. Diese Lieferun Einstellwerte anhand von  $T_u$ ,  $T_g$  und  $K_s$ . An dieser Stelle wird daher unsere Beispielstrecke zuerst mit einigen der gängigen Faustformeln dimensioniert, um das Ergebnis anschliessend mit dem Resultat der Phasengangmethode vergleichen zu können.

| Faustformel                                          | PI-Regler       |                                          | PID-T1-Regler    |                  |                                          |
|------------------------------------------------------|-----------------|------------------------------------------|------------------|------------------|------------------------------------------|
|                                                      | $T_n$           | $K_p$                                    | $T_n$            | $T_v$            | $K_p$                                    |
| Chiens, Hrones, Reswick (0% Überschwingen) [3], [4]  | $1.2 \cdot T_g$ | $\frac{0.35}{K_s} \cdot \frac{T_g}{T_u}$ | $T_g$            | $0.5 \cdot T_u$  | $\frac{0.6}{K_s} \cdot \frac{T_g}{T_u}$  |
| Chiens, Hrones, Reswick (20% Überschwingen) [3], [4] | $T_g$           | $\frac{0.6}{K_s} \cdot \frac{T_g}{T_u}$  | $1.35 \cdot T_g$ | $0.47 \cdot T_u$ | $\frac{0.95}{K_s} \cdot \frac{T_g}{T_u}$ |
| Oppelt [5]                                           | $3 \cdot T_u$   | $\frac{0.8}{K_s} \cdot \frac{T_g}{T_u}$  | $2 \cdot T_u$    | $0.42 \cdot T_u$ | $\frac{1.2}{K_s} \cdot \frac{T_g}{T_u}$  |

| Faustformel   | PI-Reglei $T_n$ | r $K_p$                                  | PID-T1-F $T_n$ | Regler $T_v$     | $K_p$                                   |
|---------------|-----------------|------------------------------------------|----------------|------------------|-----------------------------------------|
| Rosenberg [5] | $3.3 \cdot T_u$ | $\frac{0.91}{K_s} \cdot \frac{T_g}{T_u}$ | $2 \cdot T_u$  | $0.45 \cdot T_u$ | $\frac{1.2}{T_s} \cdot \frac{T_g}{T_u}$ |

Tabelle 1: Faustformeln zur Reglerdimensionierung



| Faustformel                                          | PI-Regl           | er    | PID-T1-Regler     |                  |       |
|------------------------------------------------------|-------------------|-------|-------------------|------------------|-------|
|                                                      | $T_n$             | $K_p$ | $T_n$             | $T_v$            | $K_p$ |
| Chiens, Hrones, Reswick (0% Überschwingen) [3], [4]  | $10.68\mathrm{s}$ | 1.42  | 8.9 s             | $0.55\mathrm{s}$ | 2.43  |
| Chiens, Hrones, Reswick (20% Überschwingen) [3], [4] | $8.9\mathrm{s}$   | 2.43  | $12.02\mathrm{s}$ | $52\mathrm{s}$   | 3.84  |
| Oppelt [5]                                           | $3.3\mathrm{s}$   | 3.24  | $2.2\mathrm{s}$   | $0.46\mathrm{s}$ | 4.85  |
| Rosenberg [5]                                        | $3.63\mathrm{s}$  | 3.68  | $2.2\mathrm{s}$   | $0.50\mathrm{s}$ | 4.85  |

Setzt man die Werte für  $K_s, T_u, T_g$  in diese Formeln ein, ergibt sich Folgendes:

Tabelle 2: Reglerparameter bestimmt mit Faustformeln aus Tabelle 1

### 2.4 Reglerdimensionierung mittels Phasengangmethode: PI-Regler

Es werden nun anhand der Phasengangmethode sowohl ein PI- wie auch ein PID-Regler für die in Abschnitt 2.2 ausgemessene Strecke dimensioniert (siehe nächster Abschnitt für PID-Regler).

Tabelle 3 fasst die häufig verwendeten Begriffe in einer Übersicht zusammen:

| $H_s(j\omega)$ Übertragungsfunktion der Regelstrecke                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |
| $A \cdot (\cdot) \mid TT \cdot (\cdot) \mid$ $A \cdot 1 \cdot $ |
| $A_s(j\omega) =  H_s(j\omega) $ Amplitudengang der Regelstrecke                                                                 |
| $\varphi_s(j\omega) = arg(H_s(j\omega))$ Phasengang der Regelstrecke                                                            |
| $H_r(j\omega)$ Übertragungsfunktion des Reglers                                                                                 |
| $A_r(j\omega) =  H_r(j\omega) $ Amplitudengang des Reglers                                                                      |
| $\varphi_r(j\omega) = arg(H_r(j\omega))$ Phasengang des Reglers                                                                 |
| $H_o(j\omega) = H_s \cdot H_r(j\omega)$ Übertragungsfunktion des offenen                                                        |
| Regelkreises                                                                                                                    |
| $A_o(j\omega) =  H_o(j\omega) $ Amplitudengang des offenen Regel-                                                               |
| kreises                                                                                                                         |
| $\varphi_o(j\omega) = arg(H_o(j\omega)) = \varphi_s(j\omega) + \varphi_r(j\omega)$ Phasengang des offenen Regelkrei-            |
| ses                                                                                                                             |
| $H_{rpid} = K_{rk} \left[ \frac{(1+sT_{nk})(1+sT_{vk})}{sT_{nk}} \right]$ Übertragungsfunktion des PID-                         |
| $\operatorname{Reglers}$ (bodekonform)                                                                                          |
| $H_{rpi} = K_{rk} \left[ 1 + \frac{1}{sT_{rk}} \right]$ Übertragungsfunktion des PI-                                            |
| $T_{rpi} = T_{rk} \begin{bmatrix} 1 & s_{T_{nk}} \end{bmatrix}$ Reglers (bodekonform)                                           |
|                                                                                                                                 |

Tabelle 3: Die wichtigsten Begriffsdefinitionen

#### Ziel

Das Ziel ist die Bestimmung der Parameter  $K_{rk}$  und  $T_{nk}$  in der Übertragungsfunktion des Reglers:

$$H_{rpi} = K_{rk} \cdot \left[ 1 + \frac{1}{s \cdot T_{nk}} \right] \tag{2}$$

## 1 Bestimmung der Reglerfrequenz $\omega_{pi}$

Zuerst wird im Phasengang der Strecke die Frequenz  $\omega_{pi}$  bestimmt, für welche die Phase der Strecke  $-90^{\circ}$  beträgt, ersichtlich in Abbildung 3 <sup>4</sup>.

$$\varphi_s(\omega_{pi}) = -90^{\circ} \tag{3}$$



**Abbildung 3:**  $\omega_{pi}$  eingetragen (vertikale gestrichelte Linie).

Wie man aus Abbildung 3 ablesen kann, liegt dieser Wert für  $\omega_{pi}$  in unserem Beispiel bei ungefähr  $0.3\,\mathrm{s}^{-1}$ . Die Kontrollrechnung mittels Matlab ergibt:

$$\omega_{pi} = 0.3039 \,\mathrm{s}^{-1} \tag{4}$$

<sup>&</sup>lt;sup>4</sup>Der Winkel stellt keinen endgültigen Wert dar. Dieser wurde von Jakob Zellweger fixiert, um eine grafische Evaluation überhaupt zu ermöglichen. Durch Anpassung dieses Wertes kann je nach Regelstrecke das Regelverhalten weiter optimiert werden.

### 2 Bestimmung von $T_{nk}$

Damit kann nun  $T_{nk}$  direkt bestimmt werden<sup>5</sup>:

$$T_{nk} = \frac{1}{\omega_{pi}} = \frac{1}{0.3039 \,\mathrm{s}^{-1}} = 3.2902 \,\mathrm{s}$$
 (5)

#### 3 Bestimmung der Durchtrittsfrequenz $\omega_d$

Die Durchtrittsfrequenz ist die Frequenz, bei der eine betrachtete Übertragungsfunktion eine Verstärkung von  $0 \, dB = 1$  aufweist. In der Phasengangmethode soll sie so festgelegt werden, dass der offene Regelkreis Gleichung 6 erfüllt. Dabei ist für  $\varphi_s$  abhängig vom gewünschten Überschwingverhalten ein Wert aus Tabelle 4 auszuwählen <sup>6</sup>. Nach dem Festlegen der Durchtrittsfrequenz wird dann im nächsten Abschnitt die Verstärkung des Reglers noch angepasst.

$$\varphi_o(\omega_d) = \varphi_s.$$
Überschwingen 0% 16.3% 23.3%
$$\varphi_s \qquad -103.7^{\circ} \quad -128.5^{\circ} \quad -135^{\circ}$$
(6)

**Tabelle 4:** Werte für  $\varphi_s$ 

Um Gleichung 6 auswerten zu können, wird der Phasengang des offenen Regelkreises benötigt. Dazu wird der in Gleichung 5 erhaltene Wert für  $T_{nk}$  in die Übertragungsfunktion des Reglers (Gleichung 2) eingesetzt.  $K_{rk}$  ist noch unbekannt, hat aber auf die Phase keinen Einfluss und wird somit vorerst einfach auf 1 gesetzt.

$$H_{rpi} = K_{rk} \cdot \left[ 1 + \frac{1}{s \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ 1 + \frac{1}{s \cdot 3.2902 \,\mathrm{s}} \right]$$
(7)

Daraus kann nun der Frequenzgang des offenen Regelkreises (Übertragungsfunktion  $H_o$ , Amplitudengang  $A_o$ , Phasengang  $\varphi_o$ ) bestimmt werden.

$$H_{o}(s) = H_{rpi}(s) \cdot H_{s}(s)$$

$$= \left(K_{rk} \cdot \left[1 + \frac{1}{s \cdot T_{nk}}\right]\right) \cdot K_{s} \cdot \left(\frac{1}{1 + s \cdot T_{1}} \cdot \frac{1}{1 + s \cdot T_{2}} \cdot \frac{1}{1 + s \cdot T_{2}}\right)$$

$$= \left(1 \cdot \left[1 + \frac{1}{s \cdot 3.2902 \,\mathrm{s}}\right]\right) \cdot 2 \cdot \left(\frac{1}{1 + s \cdot 0.4134 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 1.4894 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 5.3655 \,\mathrm{s}}\right)$$
(8)

<sup>&</sup>lt;sup>5</sup>Um die Akkumulation von Ungenauigkeiten zu minimieren, werden bei diesen Berechnungen die genauen Werte aus Matlab verwendet und nicht die gerundeten Zwischenresultate, was zu Abweichungen zu den von Hand berechneten Ergebnissen führen kann.

<sup>&</sup>lt;sup>6</sup>Die Werte für  $\varphi_s$  aus Tabelle 4 stellen keine abschliessende Auflistung dar und sind lediglich als Anhaltspunkte zu betrachten. Weicht das Verhalten des geschlossenen Regelkreises am Schluss zu stark vom gewünschten Ergebnis ab, besteht durch die Wahl anderer Werte für  $\varphi_s$  die Möglichkeit weiterer Optimierung.

Von besonderem Interesse ist der Phasengang  $\varphi_o(j\omega)$  dieser Übertragungsfunktion (siehe Tabelle 3). Wie Anfangs spezifiziert, soll ein maximals Überschwingen von ca. 16.3% angestrebt werden. Dazu muss gemäss Tabelle 4 die Durchtrittsfrequenz  $\omega_d$  gefunden werden, an welcher der offene Regelkreis eine Phase von  $-128.5^{\circ}$  aufweist (Gleichung 6). In Abbildung 4 kann dies grafisch verifiziert werden.



**Abbildung 4:** Phasengang  $\varphi_o(j\omega)$  des offenen Regelkreises mit eingetragener Durchtrittsfrequenz  $\omega_d$  (vertikale gestrichelte Linie). Wie man sieht, weist der offene Regelkreis unseres Beispiels bei dieser Kreisfrequenz eine Phase von  $-128.5^{\circ}$  auf (etwa  $-2.24\,\mathrm{rad}$ ).

Dies ergibt:

$$\omega_d = 0.2329 \,\mathrm{s}^{-1} \tag{9}$$

#### 4 Bestimmung der Reglerverstärkung $K_{rk}$

Im letzten Schritt muss nun wie im vorherigen Abschnitt erwähnt die Verstärkung  $K_{rk}$  des Reglers noch angepasst werden, damit der offene Regelkreis bei der angestrebten Durchtrittsfrequenz  $\omega_d$  auch effektiv eine Verstärkung von 1 aufweist. Dazu wird  $j\omega_d$  in Gleichung 8 für den Parameter s eingesetzt und  $|H_o(j\omega_d)| = 1$  gesetzt.

$$A_{o} = |H_{o}(j\omega_{d})| = |H_{rpi}(j\omega) \cdot H_{s}(j\omega)|$$

$$= \left| \left( K_{rk} \cdot \left[ 1 + \frac{1}{j \cdot \omega_{d} \cdot T_{nk}} \right] \right) \cdot K_{s} \cdot \left( \frac{1}{1 + j \cdot \omega_{d} \cdot T_{1}} \cdot \frac{1}{1 + j \cdot \omega_{d} \cdot T_{2}} \cdot \frac{1}{1 + j \cdot \omega_{d} \cdot T_{2}} \right) \right| \quad (10)$$

$$= 1$$

Mit den Werten

$$K_s = 2$$

$$T_{nk} = 3.2902 \,\mathrm{s}$$

$$T_1 = 0.4134 \,\mathrm{s}$$

$$T_2 = 1.4894 \,\mathrm{s}$$

$$T_3 = 5.3655 \,\mathrm{s}$$

$$\omega_d = 0.2329 \,\mathrm{rad} \,\mathrm{s}^{-1}$$
(11)

löst man Gleichung 10 nun nach  $K_{rk}$  auf und erhält:

$$K_{rk} = 0.517577 \tag{12}$$

#### 5 Resultat

Somit ist der PI-Regler vollständig bestimmt und hat folgende Form:

$$H_{rpi} = 0.518 \cdot \left[ 1 + \frac{1}{s \cdot 3.29 \,\mathrm{s}} \right]$$
 (13)

In Abbildung 5 sind die wichtigsten Werte für diesen Prozess nochmals in einer Übersicht zusammengefasst.



**Abbildung 5:** Frequenzgang des Reglers (grün), der Strecke (blau) und des offenen Regelkreises (rot).

Fix vertical line  $\omega_d$ 

#### 2.5 Reglerdimensionierung mittels Phasengangmethode: PID-Regler

## Ziel

Das Ziel ist die Bestimmung der Parameter  $K_{rk}$ ,  $T_{nk}$  und  $T_{vk}$  in der Übertragungsfunktion des Reglers:

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + s \cdot T_{nk}) \cdot (1 + s \cdot T_{vk})}{s \cdot T_{nk}} \right]$$
(14)

## 1 Bestimmung der Reglerfrequenz $\omega_{pid}$

Analog zum PI-Regler wird zuerst im Phasengang der Strecke die Frequenz  $\omega_{pid}$  bestimmt, für welche die Phase einen bestimmten Wert aufweist, nur wird hier  $-135^{\circ}$  benutzt <sup>7</sup>:

$$\varphi_s(\omega_{pid}) = -135^{\circ} \tag{15}$$

In unserem Beispiel ergibt dies:

$$\omega_{pid} = 0.6714 \,\mathrm{s}^{-1} \tag{16}$$

Eine grafische Überprüfung kann anhand von Abbildung 6 durchgeführt werden.

#### 2 Steigung des Phasengangs bei der Reglerfrequenz

Anschliessend wird die Steigung des Phasengangs  $\varphi_s$  der Strecke bei der Frequenz  $\omega_{pid}$  bestimmt. Ausgangspunkt dafür ist die von p\_sani bestimmte Übertragungsfunktion der Strecke (siehe Gleichung 1).

$$\frac{d\varphi_s}{d\omega}\Big|_{\omega=\omega_{pid}} = \frac{d(arg(H_s(j\omega)))}{d\omega}\Big|_{\omega=\omega_{pid}} = -1.5124 s$$
(17)

Einheit überprüfen

#### 3 Hilfsparameter $\beta$

Zwischen den Steigungen der Phasen des offenen Regelkreises  $(\varphi_o)$ , der Strecke  $(\varphi_s)$  und des Reglers  $(\varphi_r)$  gilt gemäss Tabelle 3 folgende Beziehung:

$$\varphi_o = \varphi_s + \varphi_r \tag{18}$$

Da die Ableitung eine lineare Funktion ist, gilt somit auch:

$$\frac{d\varphi_o}{d\omega} = \frac{d\varphi_s}{d\omega} + \frac{d\varphi_r}{d\omega} \tag{19}$$

Diese Beziehungen können auch gut in Abbildung 6 von Hand überprüft werden.

Es soll nun gelten:

$$\left. \frac{d\varphi_o}{d\omega} \right|_{\omega = \omega_{pid}} = -\frac{1}{2} \tag{20}$$

Da  $\frac{d\varphi_s}{d\omega}$  durch die Strecke gegeben und somit unveränderlich ist, kann lediglich der Wert von  $\frac{d\varphi_r}{d\omega}$  angepasst werden, damit  $\frac{d\varphi_o}{d\omega}$  Gleichung 20 erfüllt.

Dazu führt man den Hilfsparameter  $\beta$  ein, für den gilt:

$$\frac{1}{T_{vk}} = \frac{\omega_{pid}}{\beta}$$

$$\frac{1}{T_{nk}} = \omega_{pid} \cdot \beta$$

$$0 < \beta < 1$$
(21)

<sup>&</sup>lt;sup>7</sup>Wie auch beim PI-Regler stellt diese Frequenz lediglich einen Ausgangspunkt dar und kann zur weiteren Optimierung des Resultats noch angepasst werden.

Wie in Abbildung 6 gesehen werden kann <sup>8</sup>, liegen die beiden Frequenzen  $\frac{1}{T_{vk}}$  und  $\frac{1}{T_{nk}}$  symmetrisch um den Faktor  $\beta$  respektive  $\frac{1}{\beta}$  oberhalb bzw. unterhalb der Frequenz  $\omega_{pid}$ .

Will man  $\beta$  von Hand berechnen, trifft zuerst eine "vernünftige" Annahme, zum Beispiel:

$$\beta = 0.5 \tag{22}$$

Mit diesem Startwert bestimmt man nun  $T_{nk}$  und  $T_{vk}$ :

$$T_{vk} = \frac{\beta}{\omega_{pid}} = \frac{0.5}{0.6714 \,\mathrm{s}^{-1}} = 0.7447 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{pid} \cdot \beta} = \frac{1}{0.6714 \,\mathrm{s}^{-1} \cdot 0.5} = 2.9789 \,\mathrm{s}$$
(23)

Die somit erhaltenen Werte setzt man in Gleichung 14 ein, zusammen mit dem Wert für  $\omega_{pid}$  aus Gleichung 16. Da  $K_{rk}$  noch unbekannt ist, aber auf den Phasengang keinen Einfluss hat, setzt man vorerst  $K_{rk} = 1$ , um weiterrechnen zu können.

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + j\omega \cdot T_{nk}) \cdot (1 + j\omega \cdot T_{vk})}{j\omega \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ \frac{(1 + j\omega \cdot 2.9789 \,\mathrm{s}) \cdot (1 + j\omega \cdot 0.7447 \,\mathrm{s})}{j\omega \cdot 2.9789 \,\mathrm{s}} \right]$$
(24)

Von dieser Gleichung bestimmt man nun den Phasengang und wertet danach dessen Ableitung an der Stelle  $\omega = \omega_{pid}$  aus. Die zugehörige Rechnung kann in Anhang A gefunden werden.

$$\varphi_r(j\omega) = arg(H_{rpid}(j\omega))$$

$$\frac{d\varphi_r}{d\omega}\Big|_{\omega=\omega_{pid}} = 1.1920 \,\mathrm{s}$$
(25)

Setzt man dies in Gleichung 18 ein, erhält man:

$$\frac{d\varphi_o}{d\omega}\Big|_{\omega=\omega_{pid},\beta=0.5} = \frac{d\varphi_s}{d\omega}\Big|_{\omega=\omega_{pid}} + \frac{d\varphi_r}{d\omega}\Big|_{\omega=\omega_{pid},\beta=0.5}$$

$$= -1.5124 \,\mathrm{s} + 1.1920 \,\mathrm{s}$$

$$= -0.3204 \,\mathrm{s}$$

$$> -\frac{1}{2}$$
(26)

Mit  $\beta = 0.5$  erhält man also eine zu hohe Steigung des offenen Regelkreises an der Stelle  $\omega_{pid}$ , folglich muss  $\beta$  verkleinert werden. Diese Berechnungen werden nun mit jeweils neuen Werten für  $\beta$  solange wiederholt, bis die Steigung des offenen Regelkreises die gewünschte Nähe zu  $-\frac{1}{2}$  aufweist.

Da die manuelle Iterierung dieses Prozesses enorm viel Zeit in Anspruch nimmt, bietet sich hier eine Automatisierung an. Die Berechnung mittels eines geeigneten Algorithmus in Matlab liefert schlussendlich folgendes Ergebnis:

Allenfalls
MatlabAlgo in
Anhang
und Verweis

$$\beta = 0.2776$$

$$T_{vk} = \frac{\beta}{\omega_{pid}} = 0.4134 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{nid} \cdot \beta} = 5.3656 \,\mathrm{s}$$
(27)

Diese Werte sind in ebenfalls in 6 eingetragen.

Sollte man für  $\beta$  einen komplexen Wert erhalten, wird  $\beta = 1$  gesetzt.

#### 4 Durchtrittsfrequenz $\omega_d$

Als letzte Unbekannte verbleibt die Verstärkung  $K_{rk}$ . Wie auch beim PI-Regler ist zum Finden der Verstärkung die Durchtrittsfrequenz  $\omega_d$  zu bestimmen, um anschliessend mit deren Hilfe  $K_{rk}$  auszurechnen.

Die Resultate aus Gleichung 27 werden in Gleichung 14 eingesetzt.  $K_{rk}$  ist immer noch unbekannt, und wird daher vorerst bei 1 belassen.

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + s \cdot T_{nk}) \cdot (1 + s \cdot T_{vk})}{s \cdot T_{nk}} \right] = 1 \cdot \left[ \frac{(1 + s \cdot 5.3656 \,\mathrm{s}) \cdot (1 + s \cdot 0.4134 \,\mathrm{s})}{s \cdot 5.3656 \,\mathrm{s}} \right]$$
(28)

Es interessiert hier der Phasengang des offenen Regelkreises (auch eingetragen in Abbildung 6), wozu die Übertragungsfunktion der Strecke (siehe Gleichung 1) mit der soeben bestimmten provisorischen Übertragungsfunktion des Reglers (Gleichung 28) multipliziert wird.

$$H_o(j\omega) = H_{rpid}(j\omega) \cdot H_s(j\omega) \tag{29}$$

Nun wird die Durchtrittsfrequenz  $\omega_d$  bestimmt, an welcher der offene Regelkreis eine Verstärkung von  $0 \, dB = 1$  aufweisen soll. Wie auch beim PI-Regler werden wir hier ein Überschwingen von 16.3% anstreben, womit gemäss Tabelle 4 gilt:

$$\varphi_s(\omega_d) = \varphi_s = -128.5^{\circ} \tag{30}$$

Dieser Wert wird analog zum PI-Regler aus dem Phasengang des offenen Regelkreises abgelesen (siehe Abbildung 6). Eine Nachrechnung mittels Matlab ergibt:

$$\omega_d = 0.5341 \,\mathrm{s}^{-1} \tag{31}$$

Wie kann dies egtl. bassieren?

 $<sup>^8</sup>$ Man beachte dabei, dass der Plot logarithmisch skaliert ist. Eine identische Wegstrecke zwischen zwei Punkte-Paaren auf der Frequenzachse bedeutet also, dass diese um denselben Faktor auseinander liegen, und nicht, dass die Differenz zwischen den jeweiligen Punkten identisch ist. Im Falle der Punkte-Paare  $\left[\frac{1}{T_{nk}},\omega_{pid}\right]$  und  $\left[\omega_{pid},\frac{1}{T_{vk}}\right]$  ist dieser Faktor  $\beta$ , wie in Gleichung 21 ersichtlich.

#### 5 Bestimmung der Reglerverstärkung $K_{rk}$

Im letzten Schritt wird nun der Amplitudengang des offenen Regelkreises an der Stelle  $\omega_d$  gleich 1 gesetzt und diese Gleichung nach  $K_{rk}$  aufgelöst:

$$A_{o}(j\omega_{d}) = |H_{o}(j\omega_{d})| = |H_{rpid}(j\omega_{d}) \cdot H_{s}(j\omega_{d})|$$

$$= \left| K_{rk} \cdot \left[ \frac{(1 + j\omega_{d} \cdot T_{nk}) \cdot (1 + j\omega_{d} \cdot T_{vk})}{j\omega_{d} \cdot T_{nk}} \right] \right|$$

$$\cdot \left| K_{s} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{1}} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{2}} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{2}} \right|$$

$$= 1$$
(32)

Die einzusetzenden Werte sind:

$$K_s = 2$$
 $T_1 = 0.4134 \,\mathrm{s}$ 
 $T_2 = 1.4894 \,\mathrm{s}$ 
 $T_3 = 5.3655 \,\mathrm{s}$ 
 $T_{nk} = 5.3656 \,\mathrm{s}$ 
 $T_{vk} = 0.4134 \,\mathrm{s}$ 
 $\omega_d = 0.5341 \,\mathrm{s}^{-1}$ 
(33)

Womit man für die Verstärkung den Wert

$$K_{rk} = 1.83084 \tag{34}$$

erhält.

#### 6 Resultat

Somit ist der Regler vollständig bestimmt und hat folgende Übertragungsfunktion:

$$H_{rpid}(s) = 1.83084 \cdot \left[ \frac{(1+s \cdot 5.3656 \,\mathrm{s}) \cdot (1+s \cdot 0.4134 \,\mathrm{s})}{s \cdot 5.3656 \,\mathrm{s}} \right]$$
(35)

Zusammenfassend sind in Abbildung 6 die verschiedenen Frequenzgänge und Frequenzen eingetragen.



**Abbildung 6:** Frequenzgang der Strecke (blau), des Reglers (grün) und des offenen Regelkreises (rot). Ebenfalls eingetragen sind die Reglerfrequenz  $\omega_{pid}$ , die beiden Frequenzen  $\frac{1}{T_{vk}}$  und  $\frac{1}{T_{nk}}$  sowie die Durchtrittsfrequenz  $\omega_d$ .

## 2.6 Umrechnung zwischen bodekonformer und reglerkonformer Darstellung

Die Formeln in Tabelle 5 dienen zur Umrechnung zwischen der bodekonformen Darstellung und der reglerkonformen Darstellung. Nähere Informationen zu den verschiedenen Darstellungsarten können der Quelle [6] entnommen werden.

|     | $bodekonform \rightarrow reglerkonform$                                                                                                                                       | $\operatorname{reglerkonform} \to \operatorname{bodekonform}$                                                                                                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI  | $T_n = T_{nk}$                                                                                                                                                                | $K_{rk} = K_r$                                                                                                                                                                           |
| PID | $T_{n} = T_{nk} + T_{vk} - T_{p}$ $T_{v} = \frac{T_{nk} \cdot T_{vk}}{T_{nk} + T_{vk} - T_{p}} - T_{p}$ $K_{r} = K_{rk} \cdot \left(1 + \frac{T_{vk} - T_{p}}{T_{nk}}\right)$ | $T_{nk} = 0.5 \cdot (T_n + T_p) \cdot (1 + \epsilon)$ $T_{vk} = 0.5 \cdot (T_n + t_p) \cdot (1 - \epsilon)$ $K_{rk} = 0.5 \cdot K_r \cdot (1 + \frac{T_p}{T_{nk}}) \cdot (1 + \epsilon)$ |
|     | wobei $\epsilon^2 = 1 - \left(4 \cdot T_n \cdot \frac{T_v - T_p}{(T_n + T_p)^2}\right)$                                                                                       |                                                                                                                                                                                          |

Tabelle 5: Formeln zur Umrechung zwischen bode- zu reglerkonformer Darstellung [6], [7]

Für die Berechnungen in diesem Projekt wird, wenn nicht anders angegeben, mit  $T_p = \frac{1}{10} \cdot T_v$  gerechnet.

## 2.7 Schrittantwort des geschlossenen Regelkreises

Die Aufgabe eines geschlossenen Regelkreises (Abbildung 7) ist es, einen vorgegeben Sollwert zu erreichen und diesen auch bei Störungen aufrecht zu erhalten. Dabei sollen die unten genannten dynamischen Anforderungen eingehalten werden, damit die Stabilität des Regelsystems garaniert ist. Die wichtigste Bedingung für die Schrittantwort ein geschlossenen Regelkreis heisst, dass der Regelfehler, die Differenz zwischen Ist-und Sollwert, gleich Null oder möglichst klein ist.



Abbildung 7: Geschlossener Regelkreis

- y<sub>s</sub>oll bezeichnet den Sollwert der Regelgrösse.
- e Regelabweichung (Regelfehler)
- u Steuergrösse
- x Stellgrösse
- y Regelgrösse
- $\bullet$  z Störgrösse
- $y_i st$  ist der Ist-Wert der Regelgrösse und wird auch als die Schrittantwort des Regelkreis bezeichnet.

Allenfalls noch ein paar kurze Sinn dieser Übung Sonst wire nirgends darauf wirklich Bezug genommen, Abschnitt ist ein wenig ohne Kontext in der Landschaft.

Grundsätzlich können fünf Anforderungen für einen geschlossenen Regelkreis und deren Schrittantworten zusammengefasst werden:

Bild Schrift tantworter passend zu Aufzählung unten

- 1. Der Regelkreis muss stabil sein:
  - Das heisst für die Schrittantwort, dass nach dem Erreichen des eingeschwungenen Zustand kein erneutes Überschwingen stattfinden darf.
  - Für das Regelsystem heisst stabil, dass es in seinen Gleichgewichtszustand zurückgeführt werden kann.
- 2. Der Regelkreis muss genügend gedämpft sein:
  - Die Dämpfung der Schrittantwort soll so stark sein, dass der eingeschwungene Zustand möglichst rasch erreicht wird ohne dass das Überschwingen des Systems zu stark wird.
- 3. Der Regelkreis muss eine bestimmte stationäre Genauigkeit aufweisen: Das bedeutet, der Regelfehler e(t) soll für t-> oo gegen Null gehen. Für die Schrittantwort heisst das, dass die Schrittantwort gleich  $y_soll$  sein muss.
- 4. Der Regelkreis muss hinreichend schnell sein: Die Schnelligkeit des Einschwingvorganges der Schrittantwort ist stark von der Dämpfung abhängig. Ist die Dämpfung zu stark oder zu schwach, braucht der Einschwingvorgang mehr Zeit. Hierbei muss darauf geachtet werden, dass die spezifischen Anforderungen an das Regelsystem eingehalten werden.
- 5. Der Regelkreis muss robust sein: Der Regelkreis muss so ausgelegt werden, dass das Regelsystem auch im schlimmsten Fall (je nach Regelsystem situationsabhängig) in der Lage ist, das System zurück in den stabilen Zustand (vgl. 1.) zu regeln.

#### 3 Software

Zweck der Applikation ist die Dimensionierung eines Reglers ausgehend von einer Strecke und der zugehörigen Schrittantwort. Abschliessend werden die numerischen Parameter des dimensionierten Reglers ausgegeben sowie die Schrittantwort des geschlossenen Regelkreises grafisch dargestellt.

Verweis auf Klassendiagramm

Erklärung geschlossener Regelkreis, kurz

sonstige Aufgaben der View

Die Software ist im bekannten Model-View-Controller-Pattern aufgebaut. Die View ist verantwortlich für den Aufbau der Benutzeroberfläche sowie .

Der Controller fungiert als Schnittstelle zwischen View und Model, kontrolliert Benutzereingaben und gibt diese an das Model weiter.

Im *Model* werden sämtliche Berechnungen ausgeführt. Diese beinhalten die Bestimmung der gesuchten Regelparameter sowie die Aufbereitung der Daten, die zur grafischen Darstellung des geschlossenen Regelkreises notwendig sind.

#### **3.1** View

Die View ist aus zwei übergeordneten Panels aufgebaut. Im linken Panel befinden sich Ein- und Ausgabefelder für numerische Werte, im rechten Panel werden die zugehörigen Plots dargestellt.

Im Bereich 1 werden die Parameter der vermessenen Strecke eingegeben. Darunter befinden sich die Schalftflächen zur Wahl zwischen der Dimensionierung eines PI- respektive eines PID-T1-Reglers.

Das Panel Reglerwerte dient hauptsächlich der Ausgabe der berechneten Reglerwerte mittels der verschiedenen Berechnungsmethoden. Ebenfalls kann für die Phasengangmethode die Zeitkonstante  $T_p$  spezifiziert werden.

Der obere Bereich des rechten Panels beinhaltet zwei Slider zur Eingabe des gewünschten Überschwingens respektive des Phasenrands.

Im unteren Bereich werden die Plots der mittels Faustformeln und Phasengangmethode errechneten Resultate ausgegeben. Zu jeder Faustformel wird die zugehörige Schrittantwort abgebildet. Die Resultate der Phasengangmethode werden durch drei Kurven dargestellt. Eine Kurve benutzt den Standardwert des Phasenrands gemäss Zellweger , die beiden anderen Kurven basieren auf Benutzereingaben für einen oberen und unteren Offset des Phasenrandes im Bereich von  $-45^{\circ}$  bis  $+45^{\circ}$ .

#### 3.2 Controller

Leserführung Controller. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

#### 3.3 Model

Leserführung Model. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

Image Gesamt-GUI

Image Panel Schrittantwort vermessen

Image Referenzen

Image Butttons PI-, PID-T1-Regler

Check: korrekter Begriff

Image Panel Phasengangmetho de

Image Panel rechts

Einfügen Wert, Referenz

GUIContro Bezeichnung 3 SOFTWARE

## 3.4 Benutzungs-Beispiel (Use-Case)

Leserführung Use-Case. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.



## 4 Tests



## 5 Schlussfolgerungen



## Ehrlichkeitserklärung

Mit der Unterschrift bestätigt der Unterzeichnende (Projektleiterin), dass das Dokument selbst geschrieben worden ist und alle Quellen sauber und korrekt deklariert worden sind.

| Anita Rosenberger: |   |  |
|--------------------|---|--|
|                    |   |  |
| Ort, Datum:        | , |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |

## A Manuelle Berechnung des Hilfsparameteres $\beta$

Der erste Iterationsschtitt der in Abschnitt 2.5 erwähnten manuellen Berechnung des Hilfsparameteres  $\beta$  ist hier im Detail ausgeführt.

Zur Rekapitulation eine kurze Wiederholung der Ausgangslage:

$$\omega_{pid} = 0.6714 \,\mathrm{s}^{-1}$$

$$T_{vk} = \frac{\beta}{\omega_{pid}} = \frac{0.5}{0.6714 \,\mathrm{s}^{-1}} = 0.7447 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{pid} \cdot \beta} = \frac{1}{0.6714 \,\mathrm{s}^{-1} \cdot 0.5} = 2.9789 \,\mathrm{s}$$

$$K_{rk} = 1$$
(36)

Diese Werte eingesetzt in Gleichung 14 ergeben:

$$H_{rpid}(j\omega) = K_{rk} \cdot \left[ \frac{(1+s \cdot T_{nk})(1+s \cdot T_{vk})}{s \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ \frac{(1+j\omega \cdot 0.7447 \,\mathrm{s})(1+j\omega \cdot 2.9789 \,\mathrm{s})}{j\omega \cdot 2.9789 \,\mathrm{s}} \right]$$

$$= \frac{1+j\omega \cdot (2.9789 \,\mathrm{s} + 0.7447 \,\mathrm{s}) - \omega^2 \cdot 0.7447 \,\mathrm{s} \cdot 2.9789 \,\mathrm{s}}{j\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= \frac{1-2.2184 \,\mathrm{s}^2 \cdot \omega^2 + j\omega \cdot 3.7236 \,\mathrm{s}}{j\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= \frac{-\omega \cdot 3.7236 \,\mathrm{s} + j(1-\omega^2 \cdot 2.2184 \,\mathrm{s}^2)}{\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= -1.250 + j \cdot (\omega^{-1} \cdot 0.3357 \,\mathrm{s}^{-1} - \omega \cdot 0.7450 \,\mathrm{s})$$

$$(37)$$

Von dieser Zahl gilt es nun, das Argument zu bestimmen und abzuleiten.  $H_{rpid}(j\omega)$  ist eine komplexe Zahl in der linken Halbebene (Re < 0), somit kommen folgende Formeln zur Berechnung des Arguments in Frage:

$$\varphi(Re + j \cdot Im) = atan\left(\frac{Im}{Re}\right) + \pi \qquad Re < 0 \land Im \ge 0$$

$$\varphi(Re + j \cdot Im) = atan\left(\frac{Im}{Re}\right) - \pi \qquad Re < 0 \land Im < 0$$
(38)

Da aber in diesem Fall lediglich die Ableitung von  $\varphi$  benötigt wird, fällt der Summand  $\pm \pi$  weg und welche Formel für die Berechnung des Arguments verwendet wird, ist ohne Konsequenz.

$$\varphi(H_{rpid}(j\omega)) = atan\left(\frac{\omega^{-1} \cdot 0.3357 \,\mathrm{s}^{-1} - \omega \cdot 0.7450 \,\mathrm{s}}{-1.250}\right) \pm \pi 
= atan\left(\omega^{-1} \cdot -0.2686 \,\mathrm{s}^{-1} - \omega \cdot 0.5960 \,\mathrm{s}\right) \pm \pi$$
(39)

Die Ableitung des Arkustangens ist:

$$\frac{d}{dx}atan(x) = \frac{1}{1+x^2} \tag{40}$$

Mit

$$x(j\omega) = \omega^{-1} \cdot -0.2686 \,\mathrm{s}^{-1} - \omega \cdot 0.5960 \,\mathrm{s}$$
(41)

folgt

$$\frac{d}{d\omega}\varphi(H_{rpid}(j\omega)) = \frac{d}{dx}atan(x(j\omega)) \cdot \frac{d}{d\omega}x(j\omega) 
= \frac{0.5960 + \omega^{-2} \cdot 0.2686 \,\mathrm{s}^2}{1 + (\omega \cdot 0.5960 \,\mathrm{s} - \omega^{-1} \cdot 0.2686 \,\mathrm{s}^{-1})^2} 
\approx 1.1920$$
(42)

Wie in Gleichung 26 gezeigt, ist dies noch nicht der gesuchte Wert für  $\beta$ . Für den nächsten Iterationsschritt würde nun ein kleinerer Wert gewählt (z.B.  $\beta=0.25$ ), der zu neuen Werten für  $T_{nk}$  und  $T_{vk}$  führen würde, mit denen dann die Berechnungen aus Gleichungen 37 bis 42 erneut ausgeführt würden. Bei zufriedenstellender Nähe der Steigung des offenen Regelkreises zu  $-\frac{1}{2}$  ist die Iteration beendet.

30 LITERATUR

## Literatur

- [1] J. Zellweger, "Phasengang-Methode," Kapitel aus Vorlesungsskript.
- [2] A. Rosengerger, B. Müller, M. Suter, F. Alber, und R. Frey, "Projekt 2: Pflichtenheft Fachlicher Teil," April 2015.
- [3] (2011, März) Reglereinstellung nach Chiens, Hrones, Reswick. [Online]. Verfügbar: http://mathematik.tsn.at/content/files1/CHR\_mit\_ohne\_Ausgleich1344.pdf [Stand: 23. März 2015].
- [4] (2015, März) Faustformelverfahren (Automatisierungstechnik). [Online]. Verfügbar: http://de.wikipedia.org/wiki/Faustformelverfahren\_(Automatisierungstechnik) [Stand: 23. März 2015].
- [5] (1999, Jan) Anpassung eines Reglers an eine Regelstrecke Einstellregeln. [Online]. Verfügbar: http://techni.chemie.uni-leipzig.de/reg/parcalchelp.html [Stand: 23. März 2015].
- [6] J. Zellweger, "Regelkreise und Regelungen," Vorlesungsskript.
- [7] W. Schumacher und W. Leonhard, "Grundlagen der Regelungstechnik," 2001, Vorlesungsskript.