Technische Universität München Fakultät für Informatik Prof. Dr. H. Seidl Summer 2011 Kalmer Apinis apinis@in.tum.de

Virtual Machines

Exercise Sheet 1

Deadline: 17. May 2011, 14:00

Exercise 1: CMa Calculator

4 Points

Generate CMa instructions that calculate the following formula:

$$z = \frac{4x^2 + 3x + 1}{y - 26}$$

The variables x and y are on the stack at indexes $\rho(x)$ and $\rho(y)$, respectively.

Exercise 2: Assembly programming

10 Points

Write a CMa program, that begins with "loadc n" (where $n \in \mathbb{N}$), that calculates the n-th Fibonacci number. You may only use the following instructions: loadc, load, jumpz, jump, store, pop, dup, add, sub and halt.

Exercise 3: Comma Operator

2 Points

Give the CMa translation scheme for the comma operator

$$code_R (e', e) \rho = \dots$$

Note that both expressions must be evaluated (first e', then e) and the value of the expression (e', e) is the value of its right component (e).

Exercise 4: Short circuit evaluation

2 Points

Short circuit evaluation of expressions means that the second argument of the or-operator (||) is not evaluated if the evaluation of the first argument is nonzero. Give the CMa translation scheme for $code_R$ ($e_1 \mid \mid e_2$) ρ , which applies short circuit evaluation.

Exercise 5: Conditional Expressions

2 Points

For the expressions b, e_1 and e_2 , a conditional expression in C has the form b? e_1 : e_2 and its value is e_1 if $b \neq 0$ and e_2 if b = 0. Give the CMa translation scheme for $code_R$ (b? e_1 : e_2) ρ .