Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas

Departamento de Estatística

Especialização em Estatística e Modelagem Quantitativos Séries Temporais

Seja breve e sucinto em suas respostas!

NOME: Poliane Flávia Picolo Czapela

DATA: 17/10/2024

1. Em sua opinião qual a diferença fundamental de séries temporais e modelos de

regressão;

<u>Séries temporais:</u> dados coletados sequencialmente ao longo do tempo, com o objetivo de prever

valores futuros com base nos padrões passados. Captura tendências, sazonalidade e padrões de

autocorrelação nos dados.

Modelos de regressão: conjunto de dados que explora a relação de dependência entre diferentes

variáveis, sem necessidade de existir sequência temporal entre as observações. Além disso, os

dados são independentes entre si.

2. O que é sazonalidade e ciclo. Diferencie estas duas componentes de uma série

temporal;

Sazonalidade: Padrão repetitivo que ocorre em intervalos de tempo regulares e fixos, dentro de

um período definido. Possui causas conhecidas, como condições climáticas, hábitos de consumo

ou datas comemorativas.

Ciclo: Padrão repetitivo, porém em periodicidade mais longa e irregular. Influenciados por

fatores econômicos, demográficos, políticos e tecnológicos, de longo prazo.

3. Diferencie um modelo simples de um modelo sazonal;

Simples: Foca na previsão com base em padrões como tendência e autocorrelação, mas sem

incorporar componentes sazonais.

Sazonal: Além dos padrões avaliados nos modelos simples, inclui componentes sazonais que

permitem capturar as variações periódicas previsíveis ao longo do tempo.

4. O que é a metodologia Box & Jenkins?

Metodologia utilizada para previsão de séries temporais, envolvendo um processo iterativo de identificação, estimação e validação do modelo.

- Na identificação, é determinada a estrutura adequada do modelo ARIMA para os dados, definindo valores de *p*, *d* e *q*. É feita análise de estacionariedade e das funções de autocorrelação e autocorrelação parcial.
- Na estimação do modelo, são definidos os parâmetros, como os coeficientes autorregressivos e de médias móveis.
- Na validação, é verificado se o modelo é adequado, avaliando os resíduos, para garantir que sejam ruídos brancos, ou seja, sem padrões de autocorrelação.
- Por fim, o modelo pode ser usado para prever valores futuros da série temporal.

5. Explique o que é um modelo ARIMA (1, 1, 2).

AR(1): utiliza o valor anterior da série temporal para prever o valor atual (lag de 1 período)

I(1): a série temporal precisou ser diferenciada uma vez para se tornar estacionária.

MA(2): utiliza erros de dois períodos anteriores para prever o valor atual.

6. Como podemos verificar se um modelo encontrado pela metodologia B&J é melhor do que outro? Que tipos de critérios podemos utilizar?

Critérios de Informações: quanto menor o AIC e o BIC, melhor o modelo.

Análise dos Resíduos: deve ser Ruído Branco, ou seja, autocorrelações próximas a zero.

Parcimônia: quanto menos parâmetros, melhor.

Significância dos parâmetros: verificar se são significativos (parâmetros entre -1 e 1; p-valor < 0,05)

7. Para que serve um correlograma e um correlograma parcial?

A Função de Autocorrelação (FAC) ajuda a entender se existe relação entre os valores passados e futuros de uma série temporal. Mede o quanto cada observação da série está correlacionada com suas observações anteriores em diferentes intervalos de tempo.

A Função de Autocorrelação Parcial (FACP) mede a correlação entre as observações, controlando os efeitos das correlações em intervalos intermediários.

8. Como fica graficamente o correlograma e o correlograma parcial, quando se tem um modelo AR e um MA?

Funções de autocorrelação e autocorrelação parcial de um modelo AR(1):

Função de autocorrelação e autocorrelação parcial de um modelo MA(1):

9. Escreva o modelo AR(1) genérico;

$$Z_t = \mu + \phi_1 Z_{t-1} + e_t$$

10. Escreva o modelo MA (1) genérico;

$$Z_t = \mu + \theta_1 e_{t-1} + e_t$$

11. O que são e para que servem as condições de estacionariedade e inversibilidade no AR e no MA?

A estacionariedade (AR) implica que as características estatísticas (média, variância e autocorrelação) não mudam ao longo do tempo, e podem gerar previsões mais confiáveis.

A inversibilidade (MA) permite reescrever o modelo como um modelo autorregressivo infinito, garantindo que seja identificável, estimando os parâmetros de maneira única.

12. As transformações utilizadas em ST são úteis para que finalidade?

Facilitam a análise e a modelagem de dados, permitindo que as características intrínsecas da série sejam exploradas de maneira mais eficaz. Elas ajudam a garantir que os dados atendam aos pressupostos dos modelos estatísticos e melhoram a interpretação e a previsão dos dados temporais.

13. Se você fosse realizar uma análise de ST, o que você observaria em primeiro lugar?

Primeiro, faria o gráfico da série em nível, para verificar se a série é estacionária ou precisa de diferenciação. Depois, faria os gráficos de autocorrelação e autocorrelação parcial da série, para entender o quanto cada observação da série está correlacionada com as observações anteriores.

14. Realize a primeira diferença e a segunda diferença até o décimo lag.

t	Zt	I(1)	I(2)		
1	0,466				
2	0,069	-0,397	-0,397 1,486		
3	1,158	1,089			
4	0,187	-0,971	-2,06		
5	0,483	0,296	1,267		
6	0,92	0,437	0,141		
7	0,754	-0,166	-0,603 -0,37		
8	0,218	-0,536			
9	0,81	0,592	1,128		
10	1,25	0,44	-0,152		

15. Do banco de dados fornecido calcule as funções de autocorrelações e autocorrelações parciais, e trace os respectivos gráficos até o terceiro lag.

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_			1 2 3	0.604 0.525 0.394	0.604 0.253 0.008	19.329 34.251 42.826	0.000 0.000 0.000