7.4 Connections to Matrices and Relations

Please write down all people in your team.

- 1. 2.
- 3. 4.

7.4.1 Adjacency matrix

Given a graph G with vertex set $V = \{v_1, v_2, ..., v_n\}$ and edge set E, we define the **adjacency matrix** of G as follows. The matrix M is an $n \times n$ array of natural numbers, which we imagine having rows and columns labelled as follows:

Columns
$$1, 2, ..., n$$

The entry in row i, column j (referred to as the (i, j) - entry of M or, more concisely, M_{ij}) is defined as

 M_{ij} = the number of edges connecting v_i and v_j in G.

a

^aDiscrete Mathematics, by Ensley and Crawley

Question 1 ____ / 2

Fill out the adjacency matrix for the following graph.

7.4.2 Directed graphs

- 1. A **directed graph**, like a graph, consists of a set *V* of vertices and a set *E* of edges. Each edge is associated with an ordered pair of vertices called its **endpoints**. In other words, a directed graph is the same as a graph, but the edges are described as *ordered pairs* rather than unordered pairs;
- 2. If the endpoints for edge e are a and b in that order, we say e is an edge **from** a **to** b, and in the diagram we draw the edge as a straight or curved arrow from a to b.
- 3. For a directed graph, we use (a, b) rather than [a, b] to indicate an edge from a to b. This emphasizes that the edge is an **ordered** pair, by utilizing the usual notation for ordered pairs.
- 4. A walk in a directed graph in a sequence $v_1e_1v_2e_2...v_ne_nv_{n+1}$ of alternating vertices and edges that begins and ends with a vertex, and where each edge in the list between its endpoints in the proper order. (That is, e_1 is an edge from v_1 to v_2 , e_2 is an edge from v_2 to v_3 , and so on.) If there is no chance of confusion, we omit the edges when we describe a walk.
- 5. The **adjacency matrix** for a directed graph with vertices $\{v_1, v_2, ..., v_n\}$ is the $n \times n$ matrix where M_{ij} (the entry in row i, column j) is the number of edges from vertex v_i to vertex v_j .

^aDiscrete Mathematics, Ensley and Crawley

Question 2 ____ / 2

Draw a graph that corresponds to the adjacency matrix. This is a directed graph, so the matrix is not symmetric. It should be read as row $i \to \text{column}$ j. For example, row 1 shows $1 \to 2$, $1 \to 4$, and $1 \to 5$.

Question 3 ____ / 2

Draw a directed graph with vertices $V = \{1,2,3,4,5\}$ and edges $E = \{(1,4),(1,5),(2,1),(3,4),(4,3),(5,2)\}.$

1. • 2

• 5

4 • • 3