- 1. Написать КС-грамматику для всех префиксов арифметических выражений над натуральными числами с операциями сложения и умножения и двумя видами скобок, таких что никакой вид скобок не навешивается повторно на одно и то же подвыражение. Например, выражения ((1))+ и [([10+[1]])] не входят в этот язык (в первом случае круглые скобки повторно навешены на 1, во втором квадратные повторно навешены на выражение 10+[1]), а выражения [[1]+10 и ([1])+[(2) входят.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow aAb$$
 $A \rightarrow bcB \mid AAb \mid c$ $B \rightarrow Bbb \mid A$

3. Проанализировать контекстно-свободный язык $\{wa^nc^nw^R\,|\,w\in\{a,b\}^+\ \&\ n\geq 1\}.$

- 1. Написать КС-грамматику для языка арифметических выражений над натуральными числами с операциями сложения, вычитания и умножения, структурными скобками и унарным минусом, таких что к ним не применимы следующие правила переписывания: $x+0 \to x, \ 0+x \to x, \ x*0 \to 0, \ 0*x \to 0, \ a$ также правило $(n) \to n$ (если n это терм натуральное число). Таким образом, словами искомого языка будут (0-10)+10 и (((1-1)+2)), но не (1)+(10-5) или 0+(1*2).
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow Abc \mid A \mid B$$
 $A \rightarrow bcB \mid bA \mid b$ $B \rightarrow BbB \mid b$

3. Проанализировать контекстно-свободный язык $\{a^{n+i}b^nc^j\,|\,i=j\lor j=2\}.$

- 1. Написать КС-грамматику для языка тождественно истинных логических формул со связками &, \neg , скобками и единственной переменной P таких, что к ним не применимы правила переписывания $\neg \neg x \to x$ и $\neg (\neg x) \to x$.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow SaS \mid AAA$$
 $A \rightarrow bBa \mid bA \mid abc$ $B \rightarrow BB \mid b$

3. Проанализировать контекстно-свободный язык $\{wv^Rvw^R\,|\,w\in\{a,b\}^+\ \&\ v\in\{a,c\}^+\}.$

- 1. Написать КС-грамматику для языка логических формул только со связкой \Rightarrow и переменной P, не являющихся ни тождествами, ни тривиальными противоречиями, причём таких, что к ним не применимо правило переписывания $((x)) \to (x)$.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow bSa \mid aSSb \mid A$$
 $A \rightarrow aaa \mid bAb \mid B$ $B \rightarrow S \mid b$

3. Проанализировать контекстно-свободный язык $\{wv^Rbvw^R\,|\,w\in\{a,b\}^*\,\&\,v\in\{a,c\}^*\}.$

- 1. Написать КС-грамматику для логических формул со связками &, \neg , \lor и структурными скобками над переменными $A,\ B,\ C$, не являющихся ДНФ.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow Sbc \mid Aa \mid AB$$
 $A \rightarrow bcB \mid bA \mid b$ $B \rightarrow SbB \mid b$

3. Проанализировать контекстно-свободный язык $\{a^nb^mwcw^Rc^{n+m}\,|\,w\in\{a,b\}^*\}.$

- 1. Написать КС-грамматику для тождественно истинных формул в монадической логике предикатов в пустой модели. Предикаты Q(...), P(...), связки \Rightarrow и \neg , разрешённые имена переменных: x и y, свободные вхождения переменных в формулу не допускаются.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \to Abc \mid A \mid SS$$
 $A \to bBc \mid bA \mid b$ $B \to BbA \mid b$

3. Проанализировать контекстно-свободный язык $\{a^{n+m}b^mwcw^Rc^m\,|\,w\in\{a,b\}^+\}.$

- 1. Написать КС-грамматику для тождественно истинных формул в монадической логике предикатов без вложенных кванторов в моделях с единственным элементом. Предикат P(x), связки \Rightarrow и \neg , разрешённое имя переменной только x, свободные вхождения переменных в формулу не допускаются.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow SaS \,|\, ASA \,|\, d \qquad A \rightarrow bBa \,|\, bA \,|\, abc \qquad B \rightarrow bB \,|\, bbB \,|\, b$$

3. Проанализировать контекстно-свободный язык $\{c^ia^nb^kc^j\,|\, k=n\lor i+j>1\}.$

1. λ -выражения строятся конструкциями λ <переменная>.<выражение> и (<выражение>_<выражение>), где _ — это аналог пробела, обозначающий инфиксную операцию применения. Комбинатор — это выражение λ -исчисления, не содержащее свободных вхождений переменных.

Написать КС-грамматику для комбинаторов λ -исчисления, содержащих только переменные x, y, z, к которым не применимы правила переписывания $((\lambda w.P)) \to (\lambda w.P)$.

2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow AaB \mid aSbS \mid \$$$
 $A \rightarrow zy \mid zABz \mid BB$ $B \rightarrow S \mid b$

3. Проанализировать контекстно-свободный язык $\{a^mb^kc^n \mid k=n \lor \exists i, j(m=2*i \& k=3*i)\}.$

1. λ -выражения с объединенными переменными строятся конструкциями λ <непустой список переменных>.<выражение> и (<выражение>_<выражение>), где _ — это аналог пробела, обозначающий инфиксную операцию применения. Комбинатор — это выражение λ -исчисления, не содержащее свободных вхождений переменных.

Написать КС-грамматику для комбинаторов λ -исчисления с объединенными переменными, содержащих только переменные x, y, к которым не применимы правила переписывания $\lambda x.(\lambda y.P) \to \lambda xy.P, \ \lambda x.\lambda y.P \to \lambda xy.P, \ \lambda y.(\lambda x.P) \to \lambda yx.P.$

2. Построить LR(0)-автомат для следующей грамматики

$$S o Sab \mid aSbS \mid A \qquad A o acc \mid bAb \mid B \qquad B o S \mid b$$

3. Проанализировать контекстно-свободный язык $\{a^mb^kb^na^r\,|\,(m=k\ \&\ n=0)\lor(m=2*k\ \&\ r=0)\}.$

- 1. Пусть в алгебре $\mathcal A$ есть два выделенных элемента $a,\ b$ и единственная неассоциативная операция \circ , относительно которой a и b идемпотентны. Написать КС-грамматику для всех возможных термов алгебры $\mathcal A$, которые нельзя сократить.
- 2. Построить LR(0)-автомат для следующей грамматики

$$S \rightarrow ASB \mid BSA \mid + A \rightarrow ssz \mid sAq \mid Bq \qquad B \rightarrow A \mid b$$

3. Проанализировать контекстно-свободный язык $\{a^kb^nc^m\,|\,(k+n=m)\vee(n=0)\}.$

- 1. Пусть в алгебре $\mathcal A$ есть два выделенных элемента $a,\ b$ и единственная ассоциативная операция \circ , относительно которой a и b идемпотентны. Написать КС-грамматику для всех возможных термов алгебры $\mathcal A$, которые нельзя сократить по правилам $a \circ a \to a,$ $b \circ b \to b,\ (a) \to a,\ (b) \to b.$ Хотя \circ ассоциативна, термы могут содержать структурные скобки.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S o aAb \qquad A o bcB \, | \, aAAb \, | \, c \qquad B o bbB \, | \, A$$

3. Проанализировать контекстно-свободный язык $\{a^kb^nc^m\,|\,(k+n=m)\vee(m=0)\}.$

- 1. Пусть в алгебре $\mathcal A$ есть два выделенных элемента $a,\ b$ и единственная коммутативная и ассоциативная операция \circ , относительно которой a и b идемпотентны. Написать КС-грамматику для всех возможных термов алгебры $\mathcal A$, которые нельзя сократить комбинацией правил $x\circ y\to y\circ x,\ a\circ a\to a,\ b\circ b\to b.$ Хотя \circ ассоциативна, термы могут содержать структурные скобки.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow Abc \mid A \mid B$$
 $A \rightarrow bcB \mid bA \mid b$ $B \rightarrow BbB \mid b$

3. Проанализировать контекстно-свободный язык $\{a^nb^k\,|\, k=n\lor k<5\}.$

- 1. Пусть в алгебре \mathcal{A} есть n выделенных элементов a_1 , ..., a_n и единственная коммутативная и ассоциативная операция \circ , относительно которой идемпотентны все элементы носителя алгебры \mathcal{A} . Написать КС-грамматику для всех возможных термов алгебры \mathcal{A} , которые нельзя сократить комбинацией правил $x \circ y \to y \circ x$, $(x) \circ y \to x \circ y$, $x \circ x \to x$. Хотя \circ ассоциативна, термы могут содержать структурные скобки.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow SaS \mid AAA$$
 $A \rightarrow bBa \mid bA \mid abc$ $B \rightarrow BB \mid b$

3. Проанализировать контекстно-свободный язык $\{a^nb^k\,|\, k=n\lor k\geq 5\}.$

- 1. Пусть в алгебре $\mathcal A$ есть два выделенных элемента a, b и единственная ассоциативная операция \circ , относительно которой идемпотентны все элементы носителя алгебры $\mathcal A$. Написать КС-грамматику для всех возможных термов алгебры $\mathcal A$, которые нельзя сократить комбинацией правил $(x)\circ y\to x\circ y,\, x\circ x\to x$. Хотя \circ ассоциативна, термы могут содержать структурные скобки.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow bSa \mid aSSb \mid A$$
 $A \rightarrow aaa \mid bAb \mid B$ $B \rightarrow S \mid b$

3. Проанализировать контекстно-свободный язык $\{a^nwb^kwa^m\,|\,|w|=2\ \&\ w\in\{a,b\}^*\ \&\ (n=m\lor k=0)\}.$

- 1. Написать КС-грамматику для всех возможных грамматик, содержащих только нетерминалы A и B и терминалы a, b, в которых нет непродуктивных нетерминалов. Считаем, что правила разделяются точкой с запятой. Алфавит языка: $\{A, B, a, b, \rightarrow, ;\}$.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \to Sbc \mid Aa \mid AB$$
 $A \to bcB \mid bA \mid b$ $B \to SbB \mid b$

3. Проанализировать контекстно-свободный язык $\{a^nc^ib^k\,|\, k=n\vee i>1\}.$

- 1. Написать КС-грамматику для всех возможных контекстно-свободных грамматик, содержащих только нетерминалы A и B, терминалы a, b, и пустое слово ε , таких что ε входит в языки A и B. Считаем, что правила разделяются точкой с запятой. Алфавит языка: $\{A,B,a,b,\varepsilon,\rightarrow,;\}$. Если ε встречается в правой части правила входной грамматики, значит, вся правая часть правила состоит только из ε .
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \to Abc \mid A \mid SS$$
 $A \to bBc \mid bA \mid b$ $B \to BbA \mid b$

3. Проанализировать контекстно-свободный язык $\{a^n b^k c^i d \, | \, k = n \lor i > 1\}.$

- 1. Написать КС-грамматику для всех возможных контекстно-свободных грамматик, содержащих только нетерминалы A и B и терминалы a, b, таких, что языки нетерминалов A и B бесконечны. Считаем, что правила разделяются точкой с запятой. Алфавит языка: $\{A, B, a, b, \rightarrow, ; \}$.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow SaS \,|\, ASA \,|\, d \qquad A \rightarrow bBa \,|\, bA \,|\, abc \qquad B \rightarrow bB \,|\, bbB \,|\, b$$

3. Проанализировать контекстно-свободный язык $\{c^ia^nb^kd\,|\, k=n\lor i>1\}.$

- 1. Написать КС-грамматику для тождественно истинных формул в диадической логике предикатов без вложенных кванторов в моделях с двумя элементами. Предикат $P(\bullet, \bullet)$, связки \Rightarrow и \neg , разрешённое имя переменной только x (это не опечатка), свободные вхождения переменных в формулу не допускаются.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow AaB \mid aSbS \mid \$$$
 $A \rightarrow zy \mid zABz \mid BB$ $B \rightarrow S \mid b$

3. Проанализировать контекстно-свободный язык $\{a^{n+m}w\,|\,|w|_b=n\ \&\ |w|_c=m\}.$

- 1. Написать КС-грамматику для языка всех возможных суффиксов правильно записанных логических формул над переменными $A,\,B,\,C,\,$ связками $\&,\,\lor$ и \neg и структурными скобками. Связки & и \lor предполагаются ассоциативными, т.е. скобки вокруг их аргументов могут опускаться.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow Sab \,|\, aSbS \,|\, A \qquad A \rightarrow acc \,|\, bAb \,|\, B \qquad B \rightarrow S \,|\, b$$

3. Проанализировать контекстно-свободный язык $\{a^kb^nc^md^j\,|\,k=j\lor n=m\}.$

- 1. Написать КС-грамматику для языка всех возможных суффиксов правильно записанных арифметических выражений над натуральными числами с операциями сложения, вычитания и умножения, структурными скобками и унарным минусом.
- 2. Построить LL(2)-таблицу для следующей грамматики

$$S \rightarrow ASB \mid BSA \mid + A \rightarrow ssz \mid sAq \mid Bq \qquad B \rightarrow A \mid b$$

3. Проанализировать контекстно-свободный язык $\{wv^R cacvw^R \mid w \in \{a,b\}^+ \& v \in \{c,d\}^*\}.$