Teorema de Lagrange No Contexto de Teoria de Grupos

Marco Busetti

UTFPR

8 de setembro de 2025

Roteiro

- Um Pequeno Histórico
- 2 Conceitos Fundamentais
- Subgrupos
- Classes Laterais
- Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- 4 Classes Laterais
- Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

A pré-história do Teorema de Lagrange

Lagrange, em seus escritos de 1770/71, introduziu uma ideia importantíssima que, ao longo de um século, se desenvolveu no que hoje conhecemos como Teorema de Lagrange. Embora o teorema moderno conhecido em Teoria de Grupos — que afirma que a ordem de um subgrupo de um grupo finito sempre divide a ordem do grupo — não estivesse presente em seu trabalho original, sua percepção inicial foi o alicerce para essa descoberta fundamental.

Os *m*-valores para funções de *n* variáveis

Supondo f uma função bem definida de n entradas, definimos m como o número de diferentes funções obtidas em permutar as n variáveis de entrada. Isto é, os 'valores' de f.

Denotamos:

- $n \rightarrow \text{um}$ inteiro positivo;
- $x_1, x_2, x_3, \ldots, x_n \rightarrow n$ variáveis;
- $f(x_1, x_2, x_3, ..., x_n) \rightarrow \text{uma função avaliada em } n$ variáveis;
- $m \rightarrow$ o número de diferentes funções obtidas via permutação das variáveis $x_1, x_2, x_3, \dots, x_n$.

Lagrange: Dado *n*, quais são os diferentes valores que *m* pode ter?

Valores possíveis para *m* e a conjectura de Lagrange

n	m (valores possíveis para f)
1	1
2	1, 2
3	1, 2, 3, 6
4	1, 2, 3, 4, 6, 8, 12, 24
5	E quanto a esta linha ??

• Na seção 97 de Réflexions de Lagrange, é conjecturado:

O número m de valores possíveis para f divide n!

Teorema de Lagrange: 1770 e 1870

Teorema de Lagrange 1770: o número m de valores possíveis de uma função de n varíaveis divide n!

Teorema de Lagrange 1870: Si le groupe H est contenu dans le groupe G, son ordre n est un diviseur de N, ordre de G.

[Camille Jordan, Traité des Substitutions et des Équations Algébriques (1870), p. 25— onde foi dada a origem do nome ao teorema que conhecemos hoje como Teorema de Lagrange.

A pergunta central: Como esses teoremas se conectam??

Tabela de Conteúdo

- 1 Um Pequeno Histórico
- Conceitos Fundamentais
- 3 Subgrupos
- Classes Laterais
- Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Operação Binária

Definição

Sejam G e E conjuntos não-vazios e \oplus uma função tal que:

$$\oplus: \begin{array}{c} G\times G\to E\\ (a,b)\mapsto a\oplus b \end{array}$$

Definimos \oplus como uma **operação binária** de dois elementos de G em E.

Operação Binária

Definição

Sejam G e E conjuntos não-vazios e \oplus uma função tal que:

$$\oplus: \begin{array}{c} G\times G\to E\\ (a,b)\mapsto a\oplus b \end{array}$$

Definimos \oplus como uma **operação binária** de dois elementos de G em E.

Definição

Dizemos que \oplus é uma **lei de composição interna** em G se E=G.

Definição de Grupo

Definição

Seja G um conjunto não-vazio. Dizemos que (G, \cdot) é um **grupo** se, e somente se, \cdot é uma lei de composição interna em G tal que:

- **1 Elemento neutro:** $\exists e \in G, \forall x \in G : x \cdot e = e \cdot x = x$
- **2** Elemento inverso: $\forall x \in G, \exists x^{-1} \in G : x \cdot x^{-1} = x^{-1} \cdot x = e$
- **3** Associatividade: $\forall x, y, z \in G : (x \cdot y) \cdot z = x \cdot (y \cdot z)$

Definição de Grupo

Definição

Seja G um conjunto não-vazio. Dizemos que (G, \cdot) é um **grupo** se, e somente se, \cdot é uma lei de composição interna em G tal que:

- **1 Elemento neutro:** $\exists e \in G, \forall x \in G : x \cdot e = e \cdot x = x$
- **2** Elemento inverso: $\forall x \in G, \exists x^{-1} \in G : x \cdot x^{-1} = x^{-1} \cdot x = e$
- **3** Associatividade: $\forall x, y, z \in G : (x \cdot y) \cdot z = x \cdot (y \cdot z)$

Observação: Se \forall $(x,y) \in G \times G$: $x \cdot y = y \cdot x$, dizemos que G é um grupo *abeliano* (ou *comutativo*).

• $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ - grupos abelianos

- $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ grupos abelianos
- ullet (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{Q}^*,\cdot) grupos abelianos

- $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ grupos abelianos
- ullet (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{Q}^*,\cdot) grupos abelianos
- $(GL_n(\mathbb{K}), \times)$ grupo das matrizes $n \times n$ invertíveis

- $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ grupos abelianos
- ullet (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{Q}^*,\cdot) grupos abelianos
- $(GL_n(\mathbb{K}), \times)$ grupo das matrizes $n \times n$ invertíveis
- $(\mathbb{Z}/n\mathbb{Z},+)$ grupos cíclicos finitos

- ullet $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ grupos abelianos
- ullet (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{Q}^*,\cdot) grupos abelianos
- $(GL_n(\mathbb{K}), \times)$ grupo das matrizes $n \times n$ invertíveis
- $(\mathbb{Z}/n\mathbb{Z},+)$ grupos cíclicos finitos
- ullet (\mathbb{Z}_p^*,\odot) grupo multiplicativo módulo p primo

- $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ grupos abelianos
- ullet (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{Q}^*,\cdot) grupos abelianos
- $(GL_n(\mathbb{K}), \times)$ grupo das matrizes $n \times n$ invertíveis
- $(\mathbb{Z}/n\mathbb{Z},+)$ grupos cíclicos finitos
- ullet (\mathbb{Z}_p^*,\odot) grupo multiplicativo módulo p primo
- S_n grupo simétrico (permutações de n elementos)

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- Classes Laterais
- Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Definição de Subgrupo

Definição

Seja (G, \cdot) um grupo. Um subconjunto $H \subseteq G$ é chamado de **subgrupo** de G (denotamos $H \subseteq G$) se, e somente se, (H, \cdot) é um grupo.

Definição de Subgrupo

Definição

Seja (G, \cdot) um grupo. Um subconjunto $H \subseteq G$ é chamado de **subgrupo** de G (denotamos $H \subseteq G$) se, e somente se, (H, \cdot) é um grupo.

Teorema

Seja $H \subseteq G$ tal que $H \neq \emptyset$ e (G, \cdot) é um grupo. Então $H \leq G$ se, e somente se:

- $\bullet h_1 \cdot h_2 \in H, \ \forall (h_1, h_2) \in H \times H$
- $\bullet^{-1} \in H, \ \forall h \in H$

• G e {e} são subgrupos **triviais** de G

- G e {e} são subgrupos **triviais** de G
- $(n\mathbb{Z},+) \leq (\mathbb{Z},+)$ para todo $n \in \mathbb{Z}$

- G e {e} são subgrupos **triviais** de G
- $(n\mathbb{Z},+) \leq (\mathbb{Z},+)$ para todo $n \in \mathbb{Z}$
- $SL_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) : \det(A) = 1\} \leq GL_n(\mathbb{K})$

- G e {e} são subgrupos **triviais** de G
- $(n\mathbb{Z},+) \leq (\mathbb{Z},+)$ para todo $n \in \mathbb{Z}$
- $SL_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) : \det(A) = 1\} \leq GL_n(\mathbb{K})$
- Centro do grupo: $Z(G) = \{x \in G : xg = gx, \forall g \in G\}$

Subgrupo Gerado

Definição

Seja (G,\cdot) um grupo e $X\subseteq G$ não-vazio. O **subgrupo gerado por** X é:

$$\langle X \rangle = \bigcap \{ H : H \le G \in X \subseteq H \}$$

Subgrupo Gerado

Definição

Seja (G,\cdot) um grupo e $X\subseteq G$ não-vazio. O **subgrupo gerado por** X é:

$$\langle X \rangle = \bigcap \{ H : H \leq G \text{ e } X \subseteq H \}$$

Proposição

$$\langle X \rangle = \{ x_1 x_2 \dots x_n : x_i \in X \cup X^{-1}, \ n \ge 1 \}$$

Subgrupo Gerado

Definição

Seja (G, \cdot) um grupo e $X \subseteq G$ não-vazio. O **subgrupo gerado por** X é:

$$\langle X \rangle = \bigcap \{ H : H \leq G \text{ e } X \subseteq H \}$$

Proposição

$$\langle X \rangle = \{x_1 x_2 \dots x_n : x_i \in X \cup X^{-1}, \ n \ge 1\}$$

Para um único elemento: $\langle a \rangle = \{ a^n : n \in \mathbb{Z} \}$

Grupos Cíclicos

Definição

Um grupo G é chamado de **cíclico** quando pode ser gerado por um único elemento $a \in G$, isto é, $G = \langle a \rangle$.

Grupos Cíclicos

Definição

Um grupo G é chamado de **cíclico** quando pode ser gerado por um único elemento $a \in G$, isto é, $G = \langle a \rangle$.

Proposição

Se G é um grupo cíclico, então G é abeliano.

Grupos Cíclicos

Definição

Um grupo G é chamado de **cíclico** quando pode ser gerado por um único elemento $a \in G$, isto é, $G = \langle a \rangle$.

Proposição

Se G é um grupo cíclico, então G é abeliano.

Exemplos:

- $\mathbb{Z} = \langle 1 \rangle$
- $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$

Ordem de Elementos

Definição

Seja (G, \cdot) um grupo.

- A **ordem do grupo** $G \notin |G|$ (número de elementos)
- A ordem de um elemento $\alpha \in G$ é $\mathcal{O}(\alpha) = |\langle \alpha \rangle|$

Ordem de Elementos

Definição

Seja (G,\cdot) um grupo.

- A **ordem do grupo** $G \notin |G|$ (número de elementos)
- A ordem de um elemento $\alpha \in G$ é $\mathcal{O}(\alpha) = |\langle \alpha \rangle|$

Proposição

Seja G um grupo e $\alpha \in G$. São equivalentes:

- $\exists t \in \mathbb{Z}_+^* : \alpha^t = e \text{ (onde } t \text{ \'e minimal)}$

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- 4 Classes Laterais
- 5 Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Classes Laterais

Definição

Seja G um grupo, $H \leq G$ e $x \in G$.

- Classe lateral à esquerda: $xH = \{xh : h \in H\}$
- Classe lateral à direita: $Hx = \{hx : h \in H\}$

Classes Laterais

Definição

Seja G um grupo, $H \leq G$ e $x \in G$.

- Classe lateral à esquerda: $xH = \{xh : h \in H\}$
- Classe lateral à direita: $Hx = \{hx : h \in H\}$

Definição

O **índice de** H **em** G é o número de classes laterais distintas:

 $[G:H] = |\{classes | aterais à esquerda de H\}|$

Classes Laterais

Definição

Seja G um grupo, $H \leq G$ e $x \in G$.

- Classe lateral à esquerda: $xH = \{xh : h \in H\}$
- Classe lateral à direita: $Hx = \{hx : h \in H\}$

Definição

O **índice de** H **em** G é o número de classes laterais distintas:

 $[G:H] = |\{classes | aterais à esquerda de H\}|$

Propriedade importante: O número de classes laterais à esquerda é igual ao número de classes laterais à direita.

Proposição

Seja G um grupo, $H \leq G$ e $x, y \in G$. Então:

1 $x \in xH$ (todo elemento está em sua classe lateral)

Proposição

Seja G um grupo, $H \leq G$ e $x, y \in G$. Então:

- **1** $x \in xH$ (todo elemento está em sua classe lateral)
- 2 xH = yH se, e somente se, $x^{-1}y \in H$

Proposição

Seja G um grupo, $H \leq G$ e $x, y \in G$. Então:

- **1** $x \in xH$ (todo elemento está em sua classe lateral)
- ② xH = yH se, e somente se, $x^{-1}y \in H$
- **3** Ou xH = yH ou $xH \cap yH = \emptyset$

Proposição

Seja G um grupo, $H \leq G$ e $x, y \in G$. Então:

- **1** $x \in xH$ (todo elemento está em sua classe lateral)
- ② xH = yH se, e somente se, $x^{-1}y \in H$

Proposição

Seja G um grupo, $H \leq G$ e $x, y \in G$. Então:

- **1** $x \in xH$ (todo elemento está em sua classe lateral)
- ② xH = yH se, e somente se, $x^{-1}y \in H$
- |xH| = |H| para todo $x \in G$

Conclusão: As classes laterais formam uma **partição** de *G*.

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- Classes Laterais
- Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Teorema de Lagrange

Teorema de Lagrange

Seja G um grupo finito e H um subgrupo de G.

Então |H| divide |G|.

Mais precisamente: $|G| = |H| \cdot [G:H]$

Teorema de Lagrange

Teorema de Lagrange

Seja G um grupo finito e H um subgrupo de G.

Então |H| divide |G|.

Mais precisamente: $|G| = |H| \cdot [G:H]$

Ideia da Demonstração:

- As classes laterais de H particionam G
- ullet Cada classe lateral tem cardinalidade |H|
- Existem [G: H] classes laterais distintas
- Logo: $|G| = |H| \cdot [G : H]$

Consequências do Teorema de Lagrange

Corolário

Se G é um grupo finito e $\alpha \in G$, então $\mathcal{O}(\alpha)$ divide |G|.

Consequências do Teorema de Lagrange

Corolário

Se G é um grupo finito e $\alpha \in G$, então $\mathcal{O}(\alpha)$ divide |G|.

Corolário

Se G é um grupo finito de ordem p primo, então G é cíclico.

Consequências do Teorema de Lagrange

Corolário

Se G é um grupo finito e $\alpha \in G$, então $\mathcal{O}(\alpha)$ divide |G|.

Corolário

Se G é um grupo finito de ordem p primo, então G é cíclico.

Teorema de Euler

Seja G um grupo finito com |G| = n. Então:

$$\forall g \in G, \quad g^n = e$$

Pequeno Teorema de Fermat

Pequeno Teorema de Fermat

Seja p um número primo e $a \in \mathbb{Z} \setminus p\mathbb{Z}$. Então:

$$a^{p-1} \equiv 1 \pmod{p}$$

Pequeno Teorema de Fermat

Pequeno Teorema de Fermat

Seja p um número primo e $a \in \mathbb{Z} \setminus p\mathbb{Z}$. Então:

$$a^{p-1} \equiv 1 \pmod{p}$$

Demonstração: Aplicação direta do Teorema de Euler ao grupo (\mathbb{Z}_p^*,\odot) , que tem ordem p-1.

Multiplicatividade do Índice

Proposição

Seja G um grupo e sejam $K \leq H \leq G$. Então:

$$[G:K] = [G:H] \cdot [H:K]$$

Multiplicatividade do Índice

Proposição

Seja G um grupo e sejam $K \leq H \leq G$. Então:

$$[G : K] = [G : H] \cdot [H : K]$$

Demonstração: Aplicação sucessiva do Teorema de Lagrange:

$$|G| = |H| \cdot [G:H] \tag{1}$$

$$|H| = |K| \cdot [H : K] \tag{2}$$

$$|G| = |K| \cdot [G : K] \tag{3}$$

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- Classes Laterais
- 5 Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Teorema de Lagrange (1770): O número m de valores de uma função f de n variáveis divide n!

Seja $G = S_n$ o grupo de todas as permutações dos elementos em $\{x_1, x_2, \dots, x_n\}$.

Seja f^g a função obtida ao aplicar a permutação $g \in G$ nas variáveis em f. Tomemos H como a família de todas as permutações $h \in G$ tais que $f^h = f$.

Logo, H é subgrupo de G e 2 'valores' de f, f^{g_1} e f^{g_2} são iguais se e somente se g_1 e g_2 estão na mesma classe lateral de H.

Portanto, o número de 'valores' de f é o número de classes laterais de H em G e, logo, divide n!

Tabela de Conteúdo

- Um Pequeno Histórico
- Conceitos Fundamentais
- Subgrupos
- Classes Laterais
- 5 Teorema de Lagrange
- 6 Voltando ao Teorema de 1770
- Agradecimentos/Referências

Obrigado!

Dúvidas?

Referências

- $\bullet \ \, \text{https://m-a.org.uk/resources/downloads/3H-Peter-Neumann-Lagrange-Theorem.pdf}$
- https://github.com/MARCOVB5/grupos
- GARCIA, Arnaldo; LEQUAIN, Yves. Elementos de Álgebra. Rio de Janeiro: IMPA, 2003.