Multiplying Polynomials

Suppose we have two (uni-variate) phynmials
$$A(x) = 3x^{2} - 5x + 7$$

$$B(x) = -2x^{2} + x - 4$$

$$What is A(x) \cdot B(x)?$$

$$3x^{2} - 5x + 7$$

$$-2x^{2} + x - 4$$

$$-12x^{2} + 20x - 28$$

$$3x^{3} - 5x^{2} + 7x$$

$$-6x^{4}+10x^{3}-14x^{2}$$

$$-6x^{4}+13x^{2}-31x^{2}+27x-28.$$

If
$$A(x)$$
 and $B(x)$ have degree (at most) n ,
$$A(x) = a_0 + a_1x + \dots + a_nx^n = \sum_{i=0}^{n} a_i \cdot x^i$$

$$B(x) = b_0 + b_1x + \dots + b_nx^n = \sum_{i=0}^{n} b_i \cdot x^i$$
each is "represented" by n+1 coefficients and multiplication takes $O(n^2)$ time.

Con we do better? Similar to integer multiplication...

Point-value representation. Suppose that A(x) is a
polynonial of degree at most n, and we know
$\int A(x_0) = 9_0$
for not distinct Xo,, Xn. (*)
$A(x_n) = y_n$
Then, do we "know" A(x)? Marc precisely is those
a unique phynomial $A(x)=0.0+0.00000000000000000000000000000000$
Existence, $A(x) = \sum_{i=0}^{N} Y_i \frac{J_i (x_i - k_j)}{J_i (x_i - k_j)}$ sotisfies $(+)$
Uniqueness, If A(x), B(x) both satisfy (x), then $A(x) - B(x) = 0 \forall i \in \{0,, n\}.$
It is a degree-n polynomial with not zeros, so should
be the zero polynomial.
So, (Xo, A(X.1),, (Xn, A(Xn)) is another way to represent
a degree-n polynomial A(x).
If A(x) B(x) are degree-n polynomials represented as
(Xo, A(Ko)),, (X2n, A(X2n)) and (Xo, B(X0)),, (X2n, B(X2n)),
and $C(x) := A(x) \cdot B(x)$, then $(x_0, A(x_0)B(x_0))$,, $(x_2, A(x_2)B(x_2))$
represents C(x), so we multiplied A and B in linear time!
Can we use this even when A.B are given by coefficients?

First step: given n-degree polynomial $A(x) = \sum_{i=0}^{n} a_i - x^i$, compute
(Xo, A(Xo)),, (Xon, A(Xon)) at different XoXon.
(actually, treat A(x) as degree - 2n polynomial so that
degree = (# evaluations we want).)
Again, naively, D(n) evaluations, each of which takes
$\Theta(n)$ times $\longrightarrow O(n^2)$ total.
But, we have freedom to choose Xo,Xm.
So each X: doesn't need to be computed "from scrotch" What choices of Xo,, Xon are good?
What choices of Xo,,Xon are good?

Complex roots of unity

Define $W_n = e^{2\pi i t/n} = \cos(\frac{2\pi t}{n}) + i \cdot \sin(\frac{2\pi t}{n}) \cdot \epsilon(\frac{2\pi t}{n})$

Factsi

4 If k is not a multiple of n, $\sum_{i,j=0}^{n-1} (\omega_n^k)^j = 0$.

Fast Fourier Transform.

Definition, Given N-dimensional vector $(a_0,...,a_{n-1}) \in \mathbb{C}^n$ (which represents polynomial $A(x) = \sum_{j=0}^{n-1} a_j x^j$), its Discrete Fourier Transform (DFT) is $(y_0...y_m) \in \mathbb{C}^n$ defined by $y_k = A(w_n) = \sum_{j=0}^{n-1} a_j (w_n)^j = \sum_{j=0}^{n-1} a_j \cdot e^{-2\pi i (k_j \cdot m_j)}$. The "Standard" Fourier Transform, given $f: \mathbb{R} \to \mathbb{C}$

The "standard" Fourier Transform, given $f: \mathbb{R} \to \mathbb{C}$, outputs $\widehat{f}: \mathbb{R} \to \mathbb{C}$ defined by $\widehat{f}(\alpha) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \, dx} dx$.

(D)FT is important in signal processing, moth/physics,...

Fast Fourier Transform (FFT): O(n logn)-time algorithm to compute it.

Will use Divide and Conquer
- How to "split the problem into two?"

 $A(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \cdots + \alpha_{pr} x^{q-1}$ $A_0(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$ $A_1(x) = \alpha_1 + \alpha_2 x + \cdots + \alpha_{pr} x^{q-1}$

Simple but cruc	tal magic: A(x)=	A=(x2) + x · A,(x	2) [[
	Α	Ao, Ai	
degree	N-1	n/2 -1	
want to evaluate at	$\omega_n^{\circ},,\omega_n^{\circ-1}$	Was was	, 62n/2
		$= \omega_n^*, \omega_n^2,$	
		(by toes (3)
		_	
So, if we evalu	vate As, Ai at i	Wn/2,, Wn/2, for	any jelon-d
$A(\omega_n^2) = A_0(\omega_n^2)$) + Wn · A. (Wn)		
$= A_0 \left(\omega_{n/2}^{3} \right)$	= A, (w,	2)	
= A= (W1	$\frac{1}{2}$ = $A_1 \left(\frac{1}{\omega} \right)$	m.d %)	
Can be computed	in O(1) time! S	o total "merge" til	ne = 0(n).
	(a, n) (n is po		· ·
1 .	c= (a1, a=	_	1
S = Recursive-FF	=7(b) t= Recursi	ue-FFT (c)	
ω=(
For k=0 to 1	n-I		
yk= Sk mod 1/2)-	t W-tak mod 1/21		11
ω=ω·ωn.			
Ration U -			

Running time, Breaks a problem of size n into
x k=2 smaller problems
* each with size 1/6=1/2
* with cost O(nd) = O(n) to combine.
Master Theorem with (c=b=2, d=1 gives O(n log n)

Finishing Polynomial Mult.

Given degree-n polynomials A(x1, B(x). Want to compute ((x)=164). B(x). Let mEN 5+. (1) 2n+1 < m < 4n, (2) m is power of 2.

Using FFT, computed A(Win), B(Win) for $j \in \{0,...,m-1\}$. Then, easy to compute C(Win) for $j \in \{0,...,m-1\}$. Since degree of $C \leq 2n < m$, C already "determined". But how to compute coefficients of C?

Let $C \in \mathbb{C}^m = \sum_{j=0}^{m-1} C_j x^j$. Let $y \in \mathbb{C}^m = \sum_{j=0}^{m-1} C_j w_m^{kj} = \sum_{j=0}^{m-1$

Lemma, $\forall j \in \{0, ..., N-1\}$, $C_j = \frac{1}{M} \cdot \sum_{k=0}^{N-1} y_k \cdot W_m$.

If $f_{1}x_j$ for each $k \in \{0, ..., n-1\}$, consider $y_k = \sum_{k} C_k W_m^k \Rightarrow W_m \cdot y_k - \sum_{k} C_k W_m^k$ and sum in equations. $\sum_{k} W_m^k y_k = \sum_{k} C_k \left(\sum_{k} W_m^k\right) = M C_j \quad (by \text{ fact } \oplus)$ $K = \sum_{k} C_k \left(\sum_{k} W_m^k\right) = M C_j \quad (by \text{ fact } \oplus)$ So, just replacing L_m by U_m^k , C_j can be obtained from J_j V_j in another J_j J_j