考试允许带简单的计算器,切勿使用智能手机、电脑等设备!

学院规定,试题必须用英文出,请同学们做好准备。英文的试题中的英文词汇很少,基本上都是在课堂上使用过的。我们尽量在最后两次课和复习中,概括所有可能出现的词汇。

复习 (待完善)

1. Chapter 1

◆ Significant digit (有效数字)

Approximate value

True value

定义 若近似值 x^* 的误差限是某一位的半个单位,该位到 x^* 的第一位非零数字共有 n 位,就说 x^* 有 n 位有效数字。

切勿简单地比较有几个数字相同。一定要先计算绝对误差的绝对值, 然后看小于哪位的半个单位, 最后再往前数到首个非零的数字。

例如,假设 $x^* = 12.34567$ 有 5 位有效数字, $x^* = 12.34567$,则

$$\varepsilon(x^*) = |x^* - x| < \frac{1}{2} \times 0.001 = \frac{1}{2} \times 10^{-3} = \frac{1}{2} \times 10^{2-5}$$

Absolute error bound

注意绝对误差限与有效数字之间的关系

$$\varepsilon_r(x^*) = \frac{\varepsilon(x^*)}{|x^*|}$$

Relative error bound

$$e(x^*) = x^* - x$$

Absolute error

$$e_r(x^*) = \frac{e(x^*)}{x^*}$$

Relative error

- Iteration for solving x=g(x)
 - Fixed point Theorem

The key point is to select an interval [a, b], y=g(x) satisfies

- 1. 自映射: [a, b]到[a, b]的映射
- 2. 压缩:存在K < 1,使得

$$|g(x_1)-g(x_2)| \le K|x_1-x_2|$$

或

$$|g'(x)| \leq K$$

Results:

There is one and only one fixed point: x=g(x)

For any initial point x_0 in [a, b], the iteration $x_n = g(x_{n-1})$ converges to

fixed point

- 常见的迭代格式
 - 1. Newton's Methods

Newton-Raphson iteration function (牛顿迭代函数)

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Recursive rule (递推规则)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Speed of convergence(收敛速度): Order of convergence is 2 for single root 1 for multiple root.

注意应用牛顿迭代法的前提条件:

- 1、函数 f 在闭区间[a,b]二阶连续可微
- 2、函数f在闭区间有零点p
- 3、在零点的导数非零(单根): $f'(p)\neq 0$
- 2. Secant method (弦截法)

Iteration formula(迭代公式)

$$p_{n+1} = p_n - \frac{f(p_n)}{f(p_n) - f(p_{n-1})} (p_n - p_{n-1})$$

Speed of convergence(收敛速度): Order of convergence is $\frac{\sqrt{5}+1}{2}$

◆ Horner's method (秦九韶算法)

Exercise Write out a **recursive rule** to evaluate a polynomial and it derivative at the same time.

$$\begin{aligned} b_n &= a_n, c_n = 0 \\ b_k &= a_k + x_0 b_{k+1} \\ c_k &= b_{k+1} + x_0 c_{k+1} \end{aligned} \qquad k = n-1, n-2, ..., 0$$

则

$$\begin{cases} b_0 = P(x_0) \\ c_0 = P'(x_0) \end{cases}$$

- Bisection
 - $[a_0,b_0]\subset[a_1,b_1]\subset[a_2,b_2]\subset[a_3,b_3]...$
 - Approximate value $c_k = \frac{a_k + b_k}{2}$
 - ◆ 误差估计

$$\varepsilon(x^*) = |c_k - x| < \frac{b_k - a_k}{2} = \frac{b_0 - a_0}{2^{k+1}}$$

- 2、Chapter 2
 - ◆ Gaussian Elimination(高斯消去法)
 - Elimination process

• Triangular factorization

A=LU,对应于不做行交换的高斯消去法 PA=LU,对应于行交换的高斯消去法

参见作业和讲义上的分解算法

- Solution of a Linear System
 - 1. Elimination and back substitute
 - 直接使用高斯消去法求解方程组,要选列主元以减少误差
 - 2. Using triangular factorization
 - ◆ 首先将矩阵 A 做 PA=LU 分解,在此基础上再来求解方程组。

$$AX = b$$

$$PAX = Pb$$

$$LUX = Pb$$

$$\int LY = Pb$$

$$UX = Y$$

• 求解 n 个方程组就可以得到矩阵的逆矩阵

设
$$A^{-1} = (X_1, X_2, ..., X_n)$$
,则
$$A(X_1, X_2, ..., X_n) = (e_1, e_2, ..., e_n)$$

$$AX_k = e_k \qquad k = 1, 2, ..., n$$

Computational Complexity

1.
$$AX = b$$
 $\frac{n^2 - n}{2} + \frac{n^2 + n}{2} = n^2$

- 2. 求逆矩阵的计算量 $n^2 \cdot n = n^3$
- Iterative Methods for Linear Systems,掌握迭代格式
 - Jacobi Iteration
 - Gauss-Seidel Iteration

矩阵的表示形式 $X_k = BX_{k-1} + f$ 和一般的代数表示形式

- Vector norm, Matrix norm
 - 1. 懂得如何计算向量的 1 范数、二范数和无穷范数

Let
$$X = (x_1, x_2, ..., x_n)$$
, then
$$\|X\|_1 = |x_1| + |x_2| + ... + |x_n|$$

$$\|X\|_2 = \sqrt{(x_1)^2 + (x_2)^2 + ... + (x_n)^n}$$

$$\|X\|_2 = \max(|x_1|, |x_2|, ..., |x_n|)$$

- 2. 矩阵的 1 范数 (列范数)和无穷范数 (行范数) 2 范数的计算公式参见教案
- 3. 掌握线性方程组迭代收敛的条件

当
$$||B|| < 1$$
时,迭代 $X_{k+1} = BX_k + f$ 收敛

3、Chapter 3

(书上介绍了求解插值问题的三种方法 拉格朗日插值基法

牛顿插值公式

如果节点是 Chebysev 多项式的零点,那么利用正交性,方便地求出插值多项式)

- Lagrange Interpolation(拉格朗日插值)
 - ◆ Lagrange Interpolation base function(拉格朗日插值基函数)
 - ◆ Lagrange Interpolation polynomial(拉格朗日插值多项式)
 - Error function (插值公式的误差估计)

$$f(x) - L_N(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_0)(x - x_1)...(x - x_N)$$

其中 ξ 是位于x, x_1 , x_2 , ..., x_n 之间的一个点。

- Newton Interpolation(牛顿插值)
 - Divided difference(均差,差商)
 - ◆ Divided difference table (均差表)
 - 1. 给出 n+1 个函数值约束,要懂得计算均差表
 - 2. 在此基础上再算出 Newton Interpolation polynomial
 - The relation between divided difference and derivative

$$f[x_0, x_1, x_2, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Where $\min(x_0, x_1, x_2, ..., x_n) \le \xi \le \max(x_0, x_1, x_2, ..., x_n)$

- Newton polynomial
- ◆ Chebysheve Polynomial(切比雪夫多项式)
 - Recurrence relation (切比雪夫多项式的递推关系)

$$\begin{cases} T_0(x) = 1 \\ T_1(x) = x \\ T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x) \end{cases}$$

◆ Trigonometric representation(三角表示法)

The Chebysheve polynomial **of degree n** can be represented in trigonometric form as

$$T_N(x) = \cos(N \arccos(x))$$

• Zeros (切比雪夫多项式零点的计算).

The Chebysheve Polynomial of degree n has n distinct zeros:

$$\cos\left(\frac{2k+1}{2n}\pi\right), k = 0, 1, 2, ..., n-1$$

• point of alternation (切比雪夫多项式的交错点的计算) 在交错点的值交替地为为-1、1。

$$\cos(N \arccos(x)) = \pm 1$$

$$N \arccos(x) = k\pi$$

$$\arccos(x) = \frac{k\pi}{N}$$

$$x = \cos\left(\frac{k\pi}{N}\right)$$

N+1 个交错点:
$$1,\cos\left(\frac{\pi}{N}\right),\cos\left(\frac{2\pi}{N}\right),...,\cos\left(\frac{(N-1)\pi}{N}\right),-1$$

• 以 N+1 次 Chebyshev 多项式的 N+1 零点为节点,讨论 Lagrange 插值误差

$$\begin{aligned} \left| f(x) - L_{N}(x) \right| &= \left| \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_{0})(x - x_{1}) ...(x - x_{N}) \right| \\ &= \left| \frac{f^{(N+1)}(\xi)}{(N+1)!} \right| \cdot \left| \frac{P_{N+1}(x)}{2^{N}} \right| \\ &= \left| \frac{f^{(N+1)}(\xi)}{(N+1)!} \right| \cdot \left| \frac{\cos(N \arccos(x))}{2^{N}} \right| \\ &\leq \frac{1}{2^{N}} \left| \frac{f^{(N+1)}(\xi)}{(N+1)!} \right| \end{aligned}$$

4、Chapter 4

- Spline function (样条函数)
 - boundary conditions
 - 1. Clamped cubic spline (第一类边界条件,夹持条件)
 - Natural cubic spline(自然边界条件)
 Second boundary condition 第二类边界条件
 - 3. Third boundary conditions
 - three-moment equation (三弯矩方程)
 - 1. 内部点的约束规则

$$\mu_k m_{k-1} + 2m_k + \lambda_k m_{k+1} = g_k$$
 $k = 1, 2, 3, ..., n-1$

2. 如何记忆边界约束

第一类边界条件:虚构出两个点,与端点重合,并利用均差和导数之间的关系

$$f[x_0, x_0] = f'(x_0)$$

第二类边界条件: m_0 、 m_n 已知

n-1 个未知量, n-1 个方程

第三类边界条件: $m_0 = m_n$

不把 mo 看着未知变量

内部点 n-1 个, n-1 个方程

边界点 x_n 建立的方程记忆要点:在 x_n 右边虚构一个点:

$$\begin{cases} x_{n+1} = x_n + (x_1 - x_0) \\ y_{n+1} = y_1 \end{cases}$$

- 3. 样条函数的表达式
- Curve Fitting (曲线拟合)
 - Least Squares line (最小二乘拟合直线)
 列正规方程,解方程组!
 求 A、B有两种方法: (1)解方程组; (2)习题中介绍的更稳定的算法
 - 求非线性曲线拟合
 - 1. Transformation for Data Linearization;

参见 Example 4.4

- 2、直接按照定义,求偏导数,列方程组。
- Linear Least Squares (最小二乘拟合一组函数的线性组合)
 - Problem: Let $f(x) = \sum_{j=1}^{M} c_j f_j(x)$, find out $\{c_j\}$, so that it minimize

$$E(c_1, c_2, ..., c_M) = \sum_{k=1}^{N} (f(x_k) - y_k)^2 = \sum_{k=1}^{N} \left(\sum_{j=1}^{M} c_j f_j(x_k) - y_k \right)^2$$

给定一组基函数, The process to derive the normal equation (推导出最小二乘拟合曲线的正规方程)

对 $E(c_1,c_2,...,c_M)$ 两边求偏导数(共M个),并令偏导数等于零,

得到一个含M个未知变量的方程组(M个),用矩阵的形式可以表示为

$$F^T F C = F^T Y$$

• How to solve **normal equation**(正规方程)

一般来说, F^T 不是可逆矩阵,甚至不是一个方阵。

 F^TF 是一个对称矩阵,当基函数相互独立时,他们是非奇异的!

Example

Suppose M=3, $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $\boxed{1}$

$$F = \begin{pmatrix} f_1(x_1) & f_2(x_1) & f_3(x_1) \\ f_1(x_2) & f_2(x_2) & f_3(x_2) \\ f_1(x_3) & f_2(x_3) & f_3(x_3) \\ f_1(x_N) & f_2(x_N) & f_3(x_N) \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_N & x_N^2 \end{pmatrix}, C = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_N \end{pmatrix}$$

$$F^T F C = F^T Y$$

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_N \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_N^2 \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ & & & \\ 1 & x_N & x_N^2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_N \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_N^2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_N \end{pmatrix}$$

$$\begin{pmatrix} N & x_1 + x_2 + x_N & x_1^2 + x_2^2 + x_N^2 \\ x_1 + x_2 + x_N & x_1^2 + x_2^2 + x_N^2 & x_1^3 + x_2^3 + x_N^3 \\ x_1^2 + x_2^2 + x_N^2 & x_1^3 + x_2^3 + x_N^3 & x_1^4 + x_2^4 + x_N^4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} y_1 + y_2 + y_N \\ x_1 y_1 + x_2 y_2 + x_N y_N \\ x_1^2 y_1 + x_2^2 y_2 + x_N^2 y_N \end{pmatrix}$$

如果选择的基函数不是 $1, x, x^2$,可能可以得到更简单的表达式,比如对角矩阵!

5 Chapter 5

- Degree of precision of a quadrature (积分)
 - $\mathbb{H}_{1,x,x^2,x^3,\dots}$ 逐个代入,直到求积公式的左右不相等!
 - ◆ N+1 个节点插值型求积公式的代数精度**至少** N
 - 如果 N 为偶数,且 N+1 个节点是等分点,则代数精度为 N+1。
 (梯形公式=1、Simpson formula=3)
- ◆ Stability (稳定性)

Error propagation:

if the sum of all absolute of coefficient >(b-a), then the quadrature(求积分) formula is unstable.

- Trapezoidal formula, composite formula
 - 懂得推导, 牢记公式

1.
$$\int_{a}^{b} f(x)dx \approx (b-a) \left(\frac{1}{2} f(a) + \frac{1}{2} f(b) \right)$$

2. 系数之和为 b-a, b-a 是不可避免的。

3.
$$T(f,h) = \frac{h}{2}(f(a)+f(b))+h\sum_{k=1}^{M-1}f(x_k)$$

- 懂得误差分析
- Simpson rule, composite simpson rule
 - 懂得推导, 牢记公式

1.
$$\int_{a}^{b} f(x)dx \approx (b-a) \left(\frac{1}{6} f(a) + \frac{4}{6} f(\frac{a+b}{2}) + \frac{1}{6} f(b) \right)$$

2.
$$S(f,h) = \frac{h}{3}(f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M-1} f(x_{2k-1})$$

- 懂得误差分析
- Gauss-Legendre Integration
 - Degree of precision
 - 1. N个节点, 待定的量有 2N个, 可以达到 2N-1 次代数精度
 - 2. The nodes is just the roots of Legendre polynomial of degree No
 - Legendre polynomial

1. Recursive rule

Legendre 多项式↓

$$\begin{cases} P_0(x) = 1 \\ P_1(x) = x \\ (n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x) \end{cases}$$

2. Derivative representation

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left\{ \left(x^2 - 1 \right)^n \right\}$$

$$\frac{1}{2^3 3!} \frac{d^3}{dx^3} \left\{ \left(x^2 - 1 \right)^3 \right\}$$

$$= \frac{1}{2^3 3!} \frac{d^3}{dx^3} \left\{ x^6 - 3x^4 + 3x^2 - 1 \right\}$$

$$= \frac{1}{2^3 3!} \left(6 \cdot 5 \cdot 4x^3 - 3 \cdot 4 \cdot 3 \cdot 2x \right) = \dots$$

3. 几个最简单的高斯求积公式

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$
$$\int_{-1}^{1} f(x)dx \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f\left(0\right) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)$$

◆ Romberg Algorithm(龙贝格算法)

例如 64 等分区间的算法

T(f, 64h)		
T(f, 32h)	S(f, 32h)	
T(f, 16h)	S(f, 16h)	B(f, 16h)
T(f, 8h)	S(f, 8h)	B(f, 8h)
T(f, 4h)	S(f, 4h)	B(f, 4h)
T(f, 2h)	S(f, 2h)	B(f, 2h)
T(f, h)	S(f, h)	B(f, h)

T(f,b-a)		
T(f, (b-a)/2)	S(f, (b-a)/2)	
T(f, (b-a)/4)	S(f, (b-a)/4)	B(f, (b-a)/4)
T(f, (b-a)/8)	S(f, (b-a)/8)	B(f, (b-a)/8)
T(f, 4h)	S(f, 4h)	B(f, 4h)
T(f, 2h)	S(f, 2h)	B(f, 2h)
T(f, h)	S(f, h)	B(f, h)

例如:

$$S(f,h) = \frac{4}{3}T(f,h) - \frac{1}{3}T(f,2h)$$
$$B(f,h) = \frac{16}{15}S(f,h) - \frac{16}{15}S(f,2h)$$

也可以改写成

$$S(f,h) = T(f,h) + \frac{1}{3}(T(f,h) - T(f,2h))$$

Which is better? 从稳定性和计算复杂性的两个方面来看,后者更好! 于是计算 S(f,h)等近似值即可以直接计算,也可以利用 Romberg 算法来计算。

Richardson improvement

1.
$$\int_{a}^{b} f(x)dx = T(f,h) + E_{T}(f,h) = T(f,h) + a_{1}h^{2} + a_{2}h^{4} + a_{3}h^{6} + \dots$$

- 2. 消去 h^2 项(term),得到 Simpson 公式
 - $\int_{a}^{b} f(x)dx = T(f,2h) + E_{T}(f,2h) = T(f,2h) + 4a_{1}h^{2} + 16a_{2}h^{4} + 64a_{3}h^{6} + \dots$ 联立消失 h^{2} 项

$$\int_{a}^{b} f(x)dx = S(f,h) + b_{1}h^{4} + b_{2}h^{6} + \dots$$

- 3. 消去 h^4 项 (term), 得到 Boole 公式
- 4. 消去 h^6 项(term),得到 Romberg 公式
- 6、Chapter 6 Solution of Differential equation(求解常微分方程)

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Establish recursive rule, and generate a sequence of points:

$$(x_0, y_0), (x_0 + h, y_1), (x_0 + 2h, y_2), ..., (x_0 + nh, y_n)$$

$$y(x_0 + nh) \approx y_n$$

近似值(approximate value): y_n

准确值 (true value): $y(x_0 + nh)$

- Lipschitz 条件和解的存在性与唯一性
- Euler's Method

教材上的例子 Example6.2、6.4

Exercise 7

微分方程按 Euler 方法离散化

M 等分区间[a,b], 然后计算出 y_M ,就得到 y(b)的近似值。

• Exercise 8 不满足 Lipschitz 条件,解不唯一! y=0 和 $y = t^{3/2}$ 是两个不同的解。

在一个固定点 t_0 ,解方程组,得到数学上的 The true value is $t_0^{3/2}$ n 等分区间 $[0,t_0]$, $h=\frac{t_0}{n}$,按照 Euler 方法计算出近似值 y_n 最后取极限,证明极限不等于 The true value $t_0^{3/2}$!

局部离散化误差 local discretization error $O(h^2)$

全局离散化误差 global discretization error O(h)

Heun's Method

理解如何将微分方程离散化 能够得到高一阶的精度

局部离散化误差 local **discretization** error $O(h^3)$

全局离散化误差 global discretization erre $O(h^2)$