Q1:

CFG1

```
expr \rightarrow expr OR term | term term \rightarrow term item | item item \rightarrow expr STAR | expr PLUS | LTR | EPS | LPAR expr RPAR
```

The CFG is ambiguous, for example $a|b^*$ have two different parse trees.

CFG2

```
expr → LPAR expr RPAR | term

term → term OR factor | factor

factor → factor item | item

item → item STAR | item PLUS | LTR | EPS
```

case a:(a|b)abc(a*|b+) is a legal regular expression, but is not in the language of the CFG.

CFG3

```
expr \rightarrow expr OR term | term term \rightarrow term item | \epsilon item \rightarrow item STAR | item PLUS | LTR | EPS | LPAR expr RPAR
```

case b: a| is not a legal regular expression, but is in the language of the CFG.

CFG4

```
expr → expr OR term | term

term → term item | LPAR expr RPAR | item

item → item STAR | item PLUS | LTR | EPS
```

case $a:(a|b)^*$ is a legal regular expression, but is not in the language of the CFG.

CFG5

```
expr → LTR | EPS | term

term → term OR factor | factor

factor → factor item | item

item → item STAR | item PLUS | LPAR item RPAR | expr
```

The CFG is ambiguous, for example a single LTR(a) can have two different parse trees. Because expr have a loop $expr \rightarrow term \rightarrow factor \rightarrow item \rightarrow expr$, however it just can be itself expr, which is ambiguous.

Q2:

Q3 $x+(y^*|a+d)f+|\varepsilon$