Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_1, X_2, \ldots X_p$ is linear.
- True regression functions are never linear!

• although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Linear regression for the advertising data

Consider the advertising data shown on the next slide.

Questions we might ask:

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Advertising data

Simple linear regression using a single predictor X.

We assume a model.

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

where β_0 and β_1 are two unknown constants that represent the *intercept* and *slope*, also known as *coefficients* or parameters, and ϵ is the error term.

• Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future sales using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

where \hat{y} indicates a prediction of Y on the basis of X = x. The *hat* symbol denotes an estimated value.

Estimation of the parameters by least squares

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the *i*th value of X. Then $e_i = y_i \hat{y}_i$ represents the *i*th residual
- We define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.

• The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$ are the sample means.

Example: advertising data

The least squares fit for the regression of sales onto TV. In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Assessing the Accuracy of the Coefficient Estimates

• The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right],$$

where $\sigma^2 = \operatorname{Var}(\epsilon)$

• These standard errors can be used to compute *confidence* intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1).$$

Confidence intervals — continued

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β_1 is [0.042, 0.053]

Hypothesis testing

• Standard errors can also be used to perform *hypothesis* tests on the coefficients. The most common hypothesis test involves testing the *null hypothesis* of

 H_0 : There is no relationship between X and Y versus the alternative hypothesis

 H_A : There is some relationship between X and Y.

• Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0$$
,

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

Hypothesis testing — continued

• To test the null hypothesis, we compute a *t-statistic*, given by

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)},$$

- This will have a t-distribution with n-2 degrees of freedom, assuming $\beta_1 = 0$.
- Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

Results for the advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Assessing the Overall Accuracy of the Model

• We compute the Residual Standard Error

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

where the residual sum-of-squares is $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

• R-squared or fraction of variance explained is

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where TSS = $\sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

• It can be shown that in this simple linear regression setting that $R^2 = r^2$, where r is the correlation between X and Y:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$

Advertising data results

Quantity	Value
Residual Standard Error	3.26
R^2	0.612
F-statistic	312.1

Multiple Linear Regression

• Here our model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

• We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed. In the advertising example, the model becomes

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$
.

Interpreting regression coefficients

- The ideal scenario is when the predictors are uncorrelated

 a balanced design:
 - Each coefficient can be estimated and tested separately.
 - Interpretations such as "a unit change in X_j is associated with a β_j change in Y, while all the other variables stay fixed", are possible.
- Correlations amongst predictors cause problems:
 - The variance of all coefficients tends to increase, sometimes dramatically
 - Interpretations become hazardous when X_j changes, everything else changes.
- Claims of causality should be avoided for observational data.

The woes of (interpreting) regression coefficients

"Data Analysis and Regression" Mosteller and Tukey 1977

- a regression coefficient β_j estimates the expected change in Y per unit change in X_j , with all other predictors held fixed. But predictors usually change together!
- Example: Y total amount of change in your pocket; $X_1 = \#$ of coins; $X_2 = \#$ of pennies, nickels and dimes. By itself, regression coefficient of Y on X_2 will be > 0. But how about with X_1 in model?
- Y= number of tackles by a football player in a season; W and H are his weight and height. Fitted regression model is $\hat{Y} = b_0 + .50W .10H$. How do we interpret $\hat{\beta}_2 < 0$?

Two quotes by famous Statisticians

"Essentially, all models are wrong, but some are useful"

George Box

"The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively"

Fred Mosteller and John Tukey, paraphrasing George Box

Estimation and Prediction for Multiple Regression

• Given estimates $\hat{\beta}_0, \hat{\beta}_1, \dots \hat{\beta}_p$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p.$$

• We estimate $\beta_0, \beta_1, \dots, \beta_p$ as the values that minimize the sum of squared residuals

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$.

This is done using standard statistical software. The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates.

Results for advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Some important questions

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Is at least one predictor useful?

For the first question, we can use the F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

Qualitative predictors with more than two levels — continued.

• Then both of these variables can be used in the regression equation, in order to obtain the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is AA.} \end{cases}$$

 There will always be one fewer dummy variable than the number of levels. The level with no dummy variable — African American in this example — is known as the baseline.

Results for ethnicity

	Coefficient	Std. Error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

Extensions of the Linear Model

Removing the additive assumption: interactions and nonlinearity

Interactions:

- In our previous analysis of the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.
- For example, the linear model

$$\widehat{\mathtt{sales}} = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{radio} + \beta_3 \times \mathtt{newspaper}$$

states that the average effect on sales of a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.

Interactions — continued

- But suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
- In this situation, given a fixed budget of \$100,000, spending half on radio and half on TV may increase sales more than allocating the entire amount to either TV or to radio.
- In marketing, this is known as a *synergy* effect, and in statistics it is referred to as an *interaction* effect.

Interaction in the Advertising data?

When levels of either TV or radio are low, then the true sales are lower than predicted by the linear model.

But when advertising is split between the two media, then the model tends to underestimate sales.

Modelling interactions — Advertising data

Model takes the form

Results:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TV×radio	0.0011	0.000	20.73	< 0.0001

Interpretation

- The results in this table suggests that interactions are important.
- The p-value for the interaction term $TV \times radio$ is extremely low, indicating that there is strong evidence for $H_A: \beta_3 \neq 0$.
- The R^2 for the interaction model is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term.

Interpretation — continued

- This means that (96.8 89.7)/(100 89.7) = 69% of the variability in sales that remains after fitting the additive model has been explained by the interaction term.
- The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of $(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$ units.
- An increase in radio advertising of \$1,000 will be associated with an increase in sales of $(\hat{\beta}_2 + \hat{\beta}_3 \times TV) \times 1000 = 29 + 1.1 \times TV$ units.

Hierarchy

- Sometimes it is the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not.
- The hierarchy principle:

If we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.

Hierarchy — continued

- The rationale for this principle is that interactions are hard to interpret in a model without main effects their meaning is changed.
- Specifically, the interaction terms also contain main effects, if the model has no main effect terms.

Interactions between qualitative and quantitative variables

Consider the Credit data set, and suppose that we wish to predict balance using income (quantitative) and student (qualitative).

Without an interaction term, the model takes the form

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 & \text{if ith person is a student} \\ 0 & \text{if ith person is not a student} \end{cases}$$

$$= & \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if ith person is a student} \\ \beta_0 & \text{if ith person is not a student.} \end{cases}$$

With interactions, it takes the form

$$\begin{aligned} \mathbf{balance}_i &\approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ &= & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{aligned}$$

Credit data; Left: no interaction between income and student. Right: with an interaction term between income and student.

Non-linear effects of predictors

polynomial regression on Auto data

The figure suggests that

$${\tt mpg} = \beta_0 + \beta_1 \times {\tt horsepower} + \beta_2 \times {\tt horsepower}^2 + \epsilon$$
 may provide a better fit.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${ t horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

What we did not cover

Outliers Non-constant variance of error terms High leverage points Collinearity

See text Section 3.33

Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of linear models and how they are fit:

- Classification problems: logistic regression, support vector machines
- *Non-linearity:* kernel smoothing, splines and generalized additive models; nearest neighbor methods.
- Interactions: Tree-based methods, bagging, random forests and boosting (these also capture non-linearities)
- Regularized fitting: Ridge regression and lasso