Lezioni di Ricerca Operativa

Corso di Laurea in Informatica ed Informatica Applicata
Università di Salerno

Lezione n° 5: Esercitazione

- Vettori linearmente dipendenti e indipendenti
- Combinazioni lineari, coniche e convesse
- Formulazioni

R. Cerulli – F. Carrabs

Verificare se i seguenti vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 2), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

I vettori
$$\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$$
 sono LINEARMENTE INDIPENDENTI se $\lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + \dots + \lambda_n \underline{x}_n = \underline{0}$ implica che $\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_n = 0$

$$\lambda_{1} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 7 \\ 3 \\ 1 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad \qquad \begin{cases} 4\lambda_{1} + 7\lambda_{2} + 3\lambda_{3} = 0 \\ \lambda_{1} + 3\lambda_{2} + 2\lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} = 0 \end{cases}$$

Verificare se i seguenti vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 2), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

$$\begin{cases} 4\lambda_{1} + 7\lambda_{2} + 3\lambda_{3} = 0 \\ \lambda_{1} + 3\lambda_{2} + 2\lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} = 0 \end{cases} \Longrightarrow \begin{cases} 4\lambda_{1} + 7\lambda_{2} + 3\lambda_{3} = 0 \\ \lambda_{1} + 3\lambda_{2} + 2\lambda_{3} = 0 \\ \lambda_{2} = -2\lambda_{1} \end{cases}$$

$$\begin{cases} 4\lambda_{1} - 14\lambda_{1} + 3\lambda_{3} = 0 \\ \lambda_{1} - 6\lambda_{1} + 2\lambda_{3} = 0 \\ \lambda_{2} = -2\lambda_{1} \end{cases} \Longrightarrow \begin{cases} -10\lambda_{1} + 3\lambda_{3} = 0 \\ -5\lambda_{1} + 2\lambda_{3} = 0 \\ \lambda_{2} = -2\lambda_{1} \end{cases}$$

Verificare se i seguenti vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 2), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

$$\begin{cases} -10\lambda_1 + 3\lambda_3 = 0 \\ \lambda_1 = 2/5 \lambda_3 \\ \lambda_2 = -2\lambda_1 \end{cases} \qquad \Longrightarrow \begin{cases} -10(2/5 \lambda_3) + 3\lambda_3 = 0 \\ \lambda_1 = 2/5 \lambda_3 \\ \lambda_2 = -2\lambda_1 \end{cases}$$

$$\begin{cases} -4\lambda_3 + 3\lambda_3 = 0 \\ \lambda_1 = 2/5 \lambda_3 \\ \lambda_2 = -2\lambda_1 \end{cases} \implies \begin{cases} -\lambda_3 = 0 \\ \lambda_1 = 2/5 \lambda_3 \\ \lambda_2 = -2\lambda_1 \end{cases} \implies \begin{cases} \lambda_3 = 0 & \text{Sono} \\ \lambda_1 = 0 & \text{linearmente} \\ \lambda_2 = 0 & \text{indipendenti} \end{cases}$$

Verificare se i seguenti vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 2), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

sono linearmente indipendenti o dipendenti. Metodo alternativo

Costruiamo la matrice $A=(\underline{x}_1, \underline{x}_2, \underline{x}_3)$

$$A = \begin{bmatrix} 4 & 7 & 3 \\ 1 & 3 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

1. A è invertibile sse le sue righe (le sue colonne) sono linearmente indipendenti 2. A è invertibile sse il suo determinante è diverso da zero.

Se det(A)≠0 le righe (le colonne) di A sono linearmente indipendenti.

Verificare se i seguenti vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 2), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ \text{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

sono linearmente indipendenti o dipendenti. Metodo alternativo

$$A = \begin{bmatrix} 4 & 7 & 3 \\ 1 & 3 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

$$\begin{split} \det(A) &= 2 \cdot \det \begin{bmatrix} 7 & 3 \\ 3 & 2 \end{bmatrix} - 1 \cdot \det \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} 4 & 7 \\ 1 & 3 \end{bmatrix} \\ &= 2 \cdot (14 - 9) - 1 \cdot (8 - 3) + 0 \cdot (12 - 7) \\ &= 10 - 5 = 5 \neq 0 \end{split} \quad \text{Sono linearmente indipendenti}$$

Cambiare, ora, il vettore $\underline{x}_1^T = (4, 1, 2)$ con $\underline{x}_1^T = (4, 1, 1)$ e verifichiamo se:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (4, 1, 1), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (7, 3, 1) \ e \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (3, 2, 0)$$

$$\lambda_{1} \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 7 \\ 3 \\ 1 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad \begin{cases} 4\lambda_{1} + 7\lambda_{2} + 3\lambda_{3} = 0 \\ \lambda_{1} + 3\lambda_{2} + 2\lambda_{3} = 0 \\ \lambda_{1} + \lambda_{2} = 0 \end{cases}$$

$$\begin{cases} 4\lambda_1 + 7\lambda_2 + 3\lambda_3 = 0 \\ \lambda_1 + 3\lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 = -\lambda_2 \end{cases} \Longrightarrow \begin{cases} -4\lambda_2 + 7\lambda_2 + 3\lambda_3 = 0 \\ -\lambda_2 + 3\lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 = -\lambda_2 \end{cases}$$

$$\begin{cases} -4\lambda_2 + 7\lambda_2 + 3\lambda_3 = 0 \\ -\lambda_2 + 3\lambda_2 + 2\lambda_3 = 0 \end{cases} \implies \begin{cases} 3\lambda_2 + 3\lambda_3 = 0 \\ 2\lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 = -\lambda_2 \end{cases} \implies \begin{cases} 0 = 0 \\ \lambda_2 = -\lambda_3 \\ \lambda_1 = -\lambda_2 \end{cases}$$

Fissiamo λ_3 =1 ottenendo λ_2 =-1 e λ_1 = 1.

$$1 \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 7 \\ 3 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -7 \\ -3 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Poichè la combinazione lineare dei tre vettori con questi coefficienti restituisce il vettore nullo, \underline{x}_1^T , \underline{x}_2^T , \underline{x}_3^T non sono lineamente indipendenti.

Verificare che I tre vettori sono linearmente dipendenti con il metodo alternativo.

$$A = \begin{bmatrix} 4 & 7 & 3 \\ 1 & 3 & 2 \\ 1 & 1 & 0 \end{bmatrix}$$

Il determinante di A è zero?

- 1) Fornire un esempio di vettori in R³ linearmente indipendenti e linearmente dipendenti.
- 2) Verificare se i seguenti vettori:

$$\underline{x}_1^T = (4, 1, 2) \text{ e } \underline{x}_2^T = (7, 3, 1)$$
 e

$$\underline{\mathbf{x}}_{3}^{\mathsf{T}} = (4, 1), \ \underline{\mathbf{x}}_{4}^{\mathsf{T}} = (7/2, 5) \ \mathbf{e} \ \underline{\mathbf{x}}_{5}^{\mathsf{T}} = (3, 2)$$

- 3) I vettori $\underline{\mathbf{x}}_1^{\mathsf{T}}$ e $\underline{\mathbf{x}}_2^{\mathsf{T}}$ formano una base di R³?
- 4) I vettori \underline{x}_3^T , \underline{x}_4^T e \underline{x}_5^T formano una base di R²?
- 5) I vettori \underline{x}_3^T , e \underline{x}_5^T formano una base di R²?

- Un vettore \underline{y} è combinazione LINEARE dei vettori $\underline{x}_1, \underline{x}_2, ..., \underline{x}_n$ se esistono $\lambda_1, \lambda_2, ..., \lambda_n$ numeri reali tali che: $\underline{y} = \lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + ... + \lambda_n \underline{x}_n$
- Un vettore \underline{y} è combinazione CONICA dei vettori \underline{x}_1 , \underline{x}_2 , ..., \underline{x}_n se esistono λ_1 , λ_2 , ..., λ_n numeri reali tali che: λ_1 , λ_2 ,..., $\lambda_n \geq 0$ e $\underline{y} = \lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + ... + \lambda_n \underline{x}_n$
- Un vettore \underline{y} è combinazione CONVESSA dei vettori $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ se esistono $\lambda_1, \lambda_2, \dots, \lambda_n$ numeri reali tali che: $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ e $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$ e $\underline{y} = \lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + \dots + \lambda_n \underline{x}_n$

Esercizi:

Determinare **geometricamente** se:

1)il vettore $\underline{y}^T = (8/3, 1)$ è combinazione **conica** dei vettori $\underline{x}_1^T = (1, 1)$ e $\underline{x}_2^T = (2, -1)$.

Determinare che tipo di combinazione (lineare, conica o convessa) è il vettore $\underline{y}^T = (5/3, 2/3, 4)$ rispetto ai vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (2, 1, 8), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (1, 0, 3) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (2, 1, 1)$$

$$\lambda_{1} \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5/3 \\ 2/3 \\ 4 \end{pmatrix} \qquad \qquad \qquad \begin{cases} 2\lambda_{1} + \lambda_{2} + 2\lambda_{3} = 5/3 \\ \lambda_{1} + \lambda_{3} = 2/3 \\ 8\lambda_{1} + 3\lambda_{2} + \lambda_{3} = 4 \end{cases}$$

$$\begin{cases} 2\lambda_1 + \lambda_2 + 2\lambda_3 = 5/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ 8\lambda_1 + 3\lambda_2 + \lambda_3 = 4 \end{cases} \Longrightarrow \begin{cases} 2(2/3 - \lambda_3) + \lambda_2 + 2\lambda_3 = 5/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ 8(2/3 - \lambda_3) + 3\lambda_2 + \lambda_3 = 4 \end{cases}$$

Determinare che tipo di combinazione (lineare, conica o convessa) è il vettore $\underline{y}^T = (5/3, 2/3, 4)$ rispetto ai vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (2, 1, 8), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (1, 0, 3) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (2, 1, 1)$$

$$\begin{cases} 2(2/3 - \lambda_3) + \lambda_2 + 2\lambda_3 = 5/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ 8(2/3 - \lambda_3) + 3\lambda_2 + \lambda_3 = 4 \end{cases} \Longrightarrow \begin{cases} 4/3 - 2\lambda_3 + \lambda_2 + 2\lambda_3 = 5/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ 16/3 - 8\lambda_3 + 3\lambda_2 + \lambda_3 = 4 \end{cases}$$

$$\begin{cases} \lambda_2 = 5/3 - 4/3 = 1/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ -7\lambda_3 + 3\lambda_2 = 4 - 16/3 = -4/3 \end{cases} \Longrightarrow \begin{cases} \lambda_2 = 1/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ -7\lambda_3 + 1 = -4/3 \end{cases}$$

Determinare che tipo di combinazione (lineare, conica o convessa) è il vettore $\underline{y}^T = (5/3, 2/3, 4)$ rispetto ai vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (2, 1, 8), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (1, 0, 3) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (2, 1, 1)$$

$$\begin{cases} \lambda_2 = 1/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ -7\lambda_3 + 1 = -4/3 \end{cases} \implies \begin{cases} \lambda_2 = 1/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ -7\lambda_3 = -1 - 4/3 = -7/3 \end{cases}$$

$$\begin{cases} \lambda_2 = 1/3 \\ \lambda_1 = 2/3 - \lambda_3 \\ \lambda_3 = 1/3 \end{cases} \qquad \Longrightarrow \begin{cases} \lambda_2 = 1/3 \\ \lambda_1 = 1/3 \\ \lambda_3 = 1/3 \end{cases}$$

Determinare che tipo di combinazione (lineare, conica o convessa) è il vettore $y^T = (5/3, 2/3, 4)$ rispetto ai vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (2, 1, 8), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (1, 0, 3) \ \mathbf{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (2, 1, 1)$$

$$\frac{1}{3} \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5/3 \\ 2/3 \\ 4 \end{pmatrix}$$
 Combinazione convessa

- Un vettore \underline{y} è combinazione LINEARE dei vettori \underline{x}_1 , \underline{x}_2 , ..., \underline{x}_n se esistono λ_1 , λ_2 , ..., λ_n numeri reali tali che: $\underline{y} = \lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + ... + \lambda_n \underline{x}_n$
- Un vettore \underline{y} è combinazione CONICA dei vettori $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ se esistono $\lambda_1, \lambda_2, \dots, \lambda_n$ numeri reali tali che: $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ e $\underline{y} = \lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + \dots + \lambda_n \underline{x}_n$
- Un vettore \underline{y} è combinazione CONVESSA dei vettori $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ se esistono $\lambda_1, \lambda_2, \dots, \lambda_n$ numeri reali tali che: $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ e $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$ e $\underline{y} = 0$ $\lambda_1 X_1 + \lambda_2 X_2 + ... + \lambda_n X_n$

determini un vettore che sia combinazione conica dei seguenti tre vettori:

$$\underline{\mathbf{x}}_{1}^{\mathsf{T}} = (3, 0, 1), \ \underline{\mathbf{x}}_{2}^{\mathsf{T}} = (5, 4, 1) \ \text{e} \ \underline{\mathbf{x}}_{3}^{\mathsf{T}} = (1, 3, 8)$$

$$\lambda_{1} \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}$$
 Combinazione conica implica che
$$\lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \geq 0$$

$$\frac{1}{3} \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \implies \begin{cases} 1+5 = y_1 \\ 4 = y_2 \\ 1/3 + 1 = y_3 \end{cases} \implies \begin{cases} 6 = y_1 \\ 4 = y_2 \\ 4/3 = y_3 \end{cases}$$

Esercizio

Scrivere la forma canonica e la forma standard per il seguente problema di programmazione lineare.

Esempio: Pianificazione della produzione (formulazione)

Un'industria fabbrica 4 tipi di prodotti, **P1**, **P2**, **P3**, **P4**, la cui lavorazione è affidata a due reparti dell'industria: il reparto produzione e il reparto confezionamento. Per ottenere i prodotti pronti per la vendita è necessaria naturalmente la lavorazione in entrambi i reparti. La tabella che segue riporta, per ciascun tipo di prodotto i tempi (in ore) necessari di lavorazione in ciascuno dei reparti per avere una tonnellata di prodotto pronto per la vendita.

	P1	P2	P3	P4
Reparto produzione	2	1.5	0.5	2.5
Reparto confezionamento	0.5	0.25	0.25	1

ciascuna tonnellata di prodotto dà i seguenti profitti (prezzi espressi in Euro per

tonnellata)

	P1	P2	P3	P4
Profitto	250	230	110	350

Determinare le quantità che si devono produrre settimanalmente di ciascun tipo di prodotto in modo da massimizzare il profitto complessivo, sapendo che ogni settimana, il reparto produzione e il reparto confezionamento hanno una capacità lavorativa massima rispettivamente di 100 e 50 ore.

Variabili di decisione.

E' naturale introdurre le variabili reali x_1 , x_2 , x_3 e x_4 rappresentanti rispettivamente le quantità di prodotto P1, P2, P3, P4 da fabbricare in una settimana.

Funzione Obiettivo.

Ciascuna tonnellata di prodotto contribuisce al profitto totale secondo la tabella data. Quindi il profitto totale sarà:

Max
$$250x_1 + 230x_2 + 110x_3 + 350x_4$$

Vincoli.

Ovviamente la capacità produttiva della fabbrica (risorsa «scarsa») limita i valori che possono assumere le variabili; infatti si ha una capacità massima lavorativa in ore settimanali di ciascun reparto. In particolare per il reparto produzione si hanno a disposizione al più 100 ore settimanali e poiché ogni tonnellata di prodotto **P1** utilizza il reparto produzione per 2 ore, ogni tonnellata di prodotto **P2** utilizza il reparto produzione per 1.5 ore e così via per gli altri tipi di prodotti si dovrà avere:

$$2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100$$

Ragionando in modo analogo per il reparto confezionamento si ottiene:

$$0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50$$

Vincolo di non negatività delle variabili:

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

La formulazione finale quindi può essere scritta in questa forma:

max
$$250x_1 + 230x_2 + 110x_3 + 350x_4$$

 $2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100$ (utilizzo reparto produzione)
 $0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50$ (utilizzo reparto confezion.)
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

Consideriamo ulteriori richieste (vincoli):

- **1.P1** non può utilizzare per più di 20 ore settimanali il reparto di produzione.
- 2.La produzione di **P2** non può superare quella di **P3**.
- **3.P4** può utilizzare complessivamente 30 ore settimanali di lavorazione (tra il reparto di produzione e quello di confezionamento).
- 4.La produzione di P1 non può superare il doppio della produzione di P2 e P3.
- 1. **P1** non può utilizzare per più di 20 ore settimanali il reparto di produzione:

$$2x_1 \le 20 \iff x_1 \le 10$$

2. La produzione di **P2** non può superare quella di **P3**:

$$x_2 \le x_3$$

3. **P4** può utilizzare complessivamente 30 ore settimanali di lavorazione:

$$2.5x_4 + x_4 \le 30 \iff 3.5x_4 \le 30$$

4. La produzione di P1 non può superare il doppio della produzione di P2 e P3:

$$x_1 \le 2 * (x_2 + x_3)$$

Supponiamo che ci siano tre lavori da svolgere: **stuccare**, **imbiancare e levigare**. Abbiamo a disposizione tre persone **Mario**, **Luca ed Andrea** che sanno svolgere questi tre lavori ma con differenti tempistiche come indicato nella seguente tabella (i valori rappresentano le ore necessarie ad ogni persona per portare a termine il rispettivo lavoro).

	STUCCA	IMBIANCA	LEVIGA
MARIO	3	1	2
LUCA	2	1.5	1.5
ANDREA	3	1.5	3

Il nostro obiettivo è quello di assegnare ad ogni persona un lavoro e ad ogni lavoro una persona al fine di minimizzare le ore totali necessarie per svolgere i tre lavori.

$$x_{ij} = \begin{cases} 1 & \text{se assegnamo alla persona } i \text{ il lavoro } j \\ 0 & \text{altrimenti} \end{cases}$$

Min
$$3X_{11}+1X_{12}+2X_{13}+3X_{21}+1.5X_{22}+1.5X_{23}+3X_{31}+1.5X_{32}+3X_{33}$$

$$X_{11}$$
+ X_{12} + X_{13} = 1

$$X_{21}$$
+ X_{22} + X_{23} = 1

$$X_{31}$$
+ X_{32} + X_{33} = 1

$$X_{11}$$
+ X_{21} + X_{31} = 1

$$X_{12}$$
+ X_{22} + X_{32} = 1

$$X_{13}$$
+ X_{23} + X_{33} = 1

(Mario)

(Luca)

(Andrea)

(Levigare)

(Stuccare)

(Imbiancare)

Min $3X_{11}+1X_{12}+2X_{13}+3X_{21}+1.5X_{22}+1.5X_{23}+3X_{31}+1.5X_{32}+3X_{33}$

$$X_{11}$$
+ X_{12} + X_{13} = 1

$$X_{21}$$
+ X_{22} + X_{23} = 1

$$X_{31}$$
+ X_{32} + X_{33} = 1

$$X_{11}^{+}$$
 X_{12}^{+} $X_{13}^{-}=1$ X_{21}^{+} X_{22}^{+} $X_{23}^{-}=1$ $X_{23}^{-}=1$ X_{31}^{+} X_{32}^{+} $X_{33}^{-}=1$ $X_{33}^{-}=1$ per ogni $i=1,2,3$

$$X_{11}$$
+ X_{21} + X_{31} = 1

$$X_{12}$$
+ X_{22} + X_{32} = 1

$$X_{13}$$
+ X_{23} + X_{33} = 1

$$X_{11}^{+}$$
 X_{21}^{+} $X_{31}^{=}$ 1
 X_{12}^{+} X_{22}^{+} $X_{32}^{=}$ 1
 X_{13}^{+} X_{23}^{+} $X_{33}^{=}$ 1
 $\sum_{i=1}^{3} x_{ij} = 1$ per ogni $j = 1,2,3$

$$\min \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij} x_{ij}$$

$$\sum_{j=1}^{3} x_{ij} = 1 \quad \text{per ogni } i = 1,2,3$$

$$\sum_{j=1}^{3} x_{ij} = 1 \quad \text{per ogni } j = 1,2,3$$

Generalizzando...

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1$$
 per ogni $i = 1, 2, ... n$

$$\sum_{i=1}^{n} x_{ij} = 1$$
 per ogni $j = 1,2,...n$