$\begin{array}{c} {\rm R\acute{e}seaux\ de\ neurones} \\ {\rm IFT\ 780} \end{array}$

Réseaux récurrents

Par Pierre-Marc Jodoin, Antoine Théberge

1

Δ

5

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet jouet :[a,e,m,s]

Représentation « one hot » jouet:

'a' = [1, 0, 0, 0]'e' = [0, 1, 0, 0]'m' = [0, 0, 1, 0]

'm' = [0, 0, 1, 0]'s' = [0, 0, 0, 1]

But : Entraîner un modèle à prédire les lettres du mot « masse ».

26

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet : [a,e,m,s]

Entraîner un modèle à prédire les lettres du mot « masse ». $\vec{x_1} = \mathbf{m}$

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet :[a,e,m,s]
Entraîner un modèle à prédire les lettres du mot « masse ». $\vec{x_1} = \mathbf{m}$ \vec{b} \vec{w}^{is} $\vec{x_i} = \mathbf{m}$ $\vec{b_i} = \tanh(W^{xh}\vec{x_i} + W^{hh}\vec{h_{i-1}})$ $\vec{y}(\vec{x_i}) = \operatorname{softmax}(W^{hy}\vec{h_i})$

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet: [a,e,m,s]

En test: prédire les lettres les unes après les autres $\vec{x_1} = \mathbf{m}$ $\vec{x_1} = \mathbf{m}$ $\vec{x_2} = \mathbf{m}$ Étape 3: Sélectionner le caractère le plus probable

38

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet: [a.e.m.s]

En test: prédire les lettres les unes après les autres $\vec{x_1} = m$ $y_1 = a$ Étape 4: Injecter le caractère prédit au début du réseau

Autre exemple: prédiction de caract Code python: "mini-char-RNN" de A. Karpathy https://gist.github.com/karpathy/d4dee566867f829 Un RNN en 112 lignes!	y
When of action has the series provided for Article Measures from the A	$ \begin{array}{l} 'a' = [1,0,0,,0] \\ 'b' = [0,1,0,,0] \\ 'c' = [0,0,1,,0] \end{array} $
We have the PL (D) CD (D) (D) We have the property of	

Autre exemple: prédiction de caractères (modèle de langue)
Code python: "mini-char-RNN" de A. Karpathy https://gist.github.com/karpathy/d4dee566867f8291f086
THE SONNETS
by William Shakespeare
From fairer community we find in Visions. This there be bears's now engale area dis. In a new part of the part of the district
When four winters half beings the low. And the day to present the risk present half. And the day to present the risk present half. And the low a control count of count of the low. The low a count of the risk present half. When all the reserved of the low directs when all the reserved of the low directs When and and which the low of the low directs When and and which the low of the low directs When and which the low of the low directs of the count of the low directs of the count of the low directs of the count of the low directs of the low counts of the low directs

	yntd-iafhatawiaoihrdemot lytdws e "tfti, astai f ogoh eoase rrranbyne 'nhthnee e Dia tklrgd t o idoe ns,smtt - h ne etie h,hregtrs nigtike,aoaenns lng
	train more
	"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, annerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coanlogennc Phe lism thond hon at. MeiDimorotion in ther thize."
	train more
	Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfor how, and Gogition is so overelical and ofter.
	train more
p	Why do what that day," replied Natasha, and wishing to himself the fact the rincess, Princess Mary was easier, fed in had oftened him. lierre aking his soul came to the packs and drove up his father-in-law women.

Autre exemple: traduction

Sankerer, I. Vinyahi, O., & Le. Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.

Traduire 'assez' -> 'enough'
Alphabet fr: [<BoS>,a,e,s,z,<EoS>]
Alphabet en: [<BoS>,e,g,h,n,o,u,<EoS>]

Ras le même nombre d'entrées que de sorties!

(BoS: Begining of Sentence, EoS:End of Sentence).

3 T	1m 11	1	TTT	11
Neural	lalk	and	Wal	IK.

kwwsv=22ylo hrlfrp 24797<5334

67

67

Analyse de texte

Souvent les modèles de langue utilisent l'encodage « one hot »

Pour des caractères...

$$\begin{array}{l}
 'a' = [1,0,0,...,0] \\
 'b' = [0,1,0,...,0] \\
 'c' = [0,0,1,...,0]
 \end{array}
 \right] \in R^2$$

68

68

Analyse de texte

Souvent les modèles de langue utilisent l'encodage « one hot »

Pour des mots...

$$\begin{array}{l} ... \\ 'grand' = [...,1,0,0,...,0] \\ 'grandement' = [...,0,1,0,...,0] \\ 'grandeur' = [...,0,0,1,...,0] \\ \end{array} \right] - \in R^{10,000}$$

•••

$\begin{array}{c} \text{Pr\'ediction sur des lettres vs. mots} \\ & \begin{array}{c} {}^{\prime}a' = [1,0,0,...,0] \\ {}^{\prime}b' = [0,1,0,...,0] \\ {}^{\prime}c' = [0,0,1,...,0] \\ \\ & ... \\ \\ & ... \\ \\ & \begin{array}{c} {}^{\prime}grand' = [...,1,0,0,...,0] \\ {}^{\prime}grandement' = [...,0,1,0,...,0] \\ {}^{\prime}grandeur' = [...,0,0,1,...,0] \\ \\ & ... \\ \end{array} \right\} \in R^{10,000} \quad \text{Pr\'ediction sur des mots}$

70

71

Limites des Jetons « one-hot » Bien que simple, cet encodage a plusieurs inconvénients 1- Peu efficace en mémoire lorsque non compressés ex.: 10,000 bits pour encoder le mot « je » dans une langue à 10,000 mots! 2- Pas de distance sémantique entre les Jetons: Ex. distance[one-hot('bon'), one-hot('bien')]= distance[one-hot('bon'), one-hot('trottoir')] Or, on souhaiterait un code tel que distance[code('bon'), code('trottoir')] distance[code('Jean'), code('Chantal')] << distance[code('bon'), code('trottoir')] distance[code('Inde'), code('Liban')] << distance[code('bon'), code('trottoir')]

Word2Vec s'appuie sur 2 idées fondamentales

Idée 1: Dictionnaire = matrice d'encodage

Première couche d'un réseau de neurones =

matrice d'encodage

$$jeton_{\vec{x}} = W^0 \ \vec{x}$$

78

Word2Vec s'appuie sur 2 idées fondamentales

Idée 1: Dictionnaire = matrice d'encodage

On pourra donc utiliser un réseau de neurones pour calculer le contenu du dictionnaire

79

Word2Vec s'appuie sur 2 idées fondamentales

Idée 2: 2 mots proches dans un texte = 2 mots proches sémantiquement

Basé sur un corpus de texte, on va créer des millions de paires de mots

$Word2Vec_{\ [Mikolov\ et\ al.\ '13]}$

Cet algorithme vient avec d'autres détails

- Réduire l'occurrence des mots fréquents et sémantiquement faibles (the, of, for, this, or, and,...)
- Combiner des mots qui forment une entité (ex: nations unies)
- Divers trucs pour simplifier/accélérer l'entraînement

85

Distance sémantique entre deux mots = distance entre leur jeton

Word	First similar word	Second similar word	Third similar word
colosseum	rome (0.994)	roma (0.994)	coliseum (0.994)
colosseo	anfiteatro (0.995)	travel (0.994)	italia (0.994)
scala	aux (0.993)	camelias (0.992)	milano (0.992)
pompei	retweeted (0.988)	nuovi (0.979)	settembre (0.978)
roma	rome (0.995)	metro (0.994)	colosseum (0.994)
italia	anfiteatro (0.995)	rome (0.995)	colosseo (0.994)
italy	travel (0.998)	davanti (0.997)	photography (0.997)

word	Similar words	Similarity	word	Similar words	Similarity
	windows	0.85	Twitter	facebook	0.90
	redhat	0.83		instagram	0.86
	unix	0.83		netflix	0.84
	mac os	0.82		snapchat	0.82
Linux	citrix	0.81		google	0.81
Linux	serveurs	0.80		tweets	0.80
	microsoft	0.79		youtube	0.80
	ibm	0.79		linkedin	0.77
	windows server	0.79		maddyness	0.77
	env windows	0.79		tweet	0.77

Ahmia, Oussama & Béchet, Nicolas & Marteau, Pierre-Francois. Two Multilingual Corpora Extracted from the Tenders Electronic Daily for Machine Learning and Machine Translation Applications in LREC 2018

Comment entraîner un RNN?

88

Histoire de gradients RN de classification avec entropie croisée

$$\vec{y}(\vec{x}) = S_M \left(W^1 \tanh \left(W^0 \vec{x} \right) \right)$$

$$L = L_{EC} \left(\vec{y}, \vec{t} \right)$$

Histoire de gradients

Simple RN de classification avec entropie croisée

$$\vec{h} = \tanh \left(W^0 \vec{x} \right)$$
 $\vec{o} = W^1 \vec{h}$
 $\vec{y} = S_M \left(\vec{o} \right)$
 $L = L_{CE} \left(\vec{y}, \vec{t} \right)$

Propagation avant

90

Histoire de gradients

Simple RN de classification avec entropie croisée

$$\vec{h} = \tanh \left(W^0 \vec{x} \right)$$
 $\vec{o} = W^1 \vec{h}$
 $\vec{y} = S_M (\vec{o})$
 $L = L_{CE} (\vec{y}, \vec{t})$

Pour entraîner le réseau il faut calculer

$$\nabla_{_{W^{o}}}L \ \ {\rm et} \ \ \nabla_{_{W^{1}}}L$$

91

Histoire de gradients

Simple RN de classification avec entropie croisée

$$\vec{h} = \tanh \left(W^0 \vec{x} \right)$$

$$\vec{o} = W^1 \vec{h}$$

$$\vec{y} = S_M \left(\vec{o} \right)$$

$$L = L_{CE} \left(\vec{y}, \vec{t} \right)$$

Dérivée en chaîne

$$\begin{split} \nabla_{w^1} L &= \nabla_{\vec{y}} L \nabla_{\vec{o}} \vec{y} \nabla_{w^1} \vec{o} \\ \nabla_{w^o} L &= \nabla_{\vec{y}} L \nabla_{\vec{o}} \vec{y} \nabla_{\vec{h}} \vec{o} \nabla_{w^0} \vec{h} \end{split}$$

125

Les réseaux récurrents ont un inconvénient majeur:

difficile à établir des relations à longue distance

126

126

Exemples: analyse grammaticale Entraîner un réseau à détecter des erreurs grammaticales « La » OK « présidente » OK « fut » OK « réélu » ERREUR (réélug) Exemple d'une relation à courte distance (1 mot sépare « présidente » de « réélu »)

Problème connexe

Gestion de la mémoire

Solution pour la gestion de la mémoire Fenêtres coulissantes

Solution à la d	sparition	du gr	adient:
-----------------	-----------	-------	---------

Gated Recurrent Unit : GRU Long-Short Term Memory : LSTM

140

140

Illustration + formulation d'un RNN

141

141

Autre illustration du même RNN

Modèles d'attention

L'auto-attention
(self attention)

Revenons à la base : multiplication matricielle

Considérons les 4 matrices suivantes

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{pmatrix} \in R^{3x4}$$

$$W^{q} = \begin{pmatrix} W^{q}_{11} & W^{q}_{12} & W^{q}_{13} \\ W^{q}_{21} & W^{q}_{22} & W^{q}_{33} \\ W^{q}_{31} & W^{q}_{32} & W^{q}_{33} \end{pmatrix} \in R^{3x3}$$

$$W^{k} = \begin{pmatrix} W^{k}_{11} & W^{k}_{12} & W^{k}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{32} & W^{k}_{33} \end{pmatrix} \in R^{3x3}$$

$$W^{F} = \begin{pmatrix} W^{F}_{11} & W^{F}_{12} & W^{F}_{13} \\ W^{F}_{21} & W^{F}_{22} & W^{F}_{23} \end{pmatrix} \in R^{2x3}$$

205

205

Revenons à la base : multiplication matricielle

Leur multiplication donne:

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{pmatrix} \in R^{3 \times 4}$$

$$W^{q} = \begin{pmatrix} W^{q}_{11} & W^{q}_{12} & W^{q}_{13} \\ W^{q}_{21} & W^{q}_{22} & W^{q}_{23} \\ W^{q}_{31} & W^{q}_{22} & W^{q}_{33} \end{pmatrix} \in R^{3 \times 3}$$

$$W^{k} = \begin{pmatrix} W^{k}_{11} & W^{k}_{12} & W^{k}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{22} & W^{k}_{23} \end{pmatrix} \in R^{3 \times 3}$$

$$W^{k} = \begin{pmatrix} W^{k}_{11} & W^{k}_{12} & W^{k}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{22} & W^{k}_{23} \end{pmatrix} \in R^{3 \times 3}$$

$$W^{r} = \begin{pmatrix} W^{r}_{11} & W^{r}_{12} & W^{r}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{r} = \begin{pmatrix} W^{r}_{11} & W^{r}_{12} & W^{r}_{13} \\ W^{r}_{21} & V^{r}_{22} & V^{r}_{23} & V^{r}_{24} \\ V^{r}_{21} & V^{r}_{22} & V^{r}_{23} & V^{r}_{24} \\ V^{r}_{22} & V^{r}_{23} & V^{r}_{24} \\ V^{r}_{21} & V^{r}_{22} & V^{r}_{23} & V^{r}_{24} \\ V^{r}_{21} & V^{r$$

206

206

Auto attention

X est une matrice de données pour laquelle chaque colonne i correspond au jeton d'une mot \vec{x}_i

Dans cet exemple, 4 mots en entrée donc 4 colonnes dans X Les jetons peuvent être obtenus par Word2Vec

Autre façon d'illustrer la couche d'auto-attention		
	$Attention(Q, K, V) = V \cdot \text{softmax}\left(\frac{K^{T}Q}{\sqrt{D_{Q}}}\right)$	
$Q \qquad K \qquad V$ $\downarrow \qquad \qquad \downarrow^{W^{c}X} \qquad \downarrow^{W^{c}X} \qquad \downarrow^{W^{c}X}$		
Λ	Vaswani, A., Shazeer, N., Parmar, N., Uszkoreti, J., Jones, L., Gomez, A. N., & Polosuthin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.	

	_
L'apothéose des réseaux de neurones	
Transformer	
(Attention is all you need)	
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems. 30.	
229	
Transformer	
Transjormer	
Implique <mark>aucune notion de récurrence</mark>	
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.	
230	
	_
Transformer (Attention is all you need)	

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hours)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13 GB	
BERT-Large	24	1024	16	340M	13 GB	
XLNet-Large	24	1024	16	~340M	126 GB	512x TPU-v3 (2.5 days)
RoBERTa	24	1024	16	355M	160 GB	1024x V100 GPU (1 day)

		1-2-3	nce:										
<bos></bos>	Les	politiciens	slègent	au	par	lement							
									_				
<bos></bos>	Les	politiciens	siègent	au	parlement		-	les					
<bos></bos>	Les	politiciens	siègent	au	parlement	les	→	jo	urs				
<bos></bos>	Les	politiciens	siègent	au	parlement	les	jours	-	d	е			
<bos></bos>	Les	politiciens	siègent	au	parlement	les	jours	de	→	semaii	ne		
<bos></bos>	Les	politiciens	siègent	au	parlement	les	jours	de	semaine	_→	<e0< td=""><td>OS></td><td></td></e0<>	OS>	
												259	

Transformers	
Les transformers sont vraiment bons pour générer du	texte
Recycling is good for the world.	SYSTEM PROMPT (HUMAN-WRITTEN)
NO! YOU COULD NOT BE MORE WRONG!!	
Recycling is NOT good for the world. It is but for the environment. It is destructive to the can on health. It contributes to obesity and diseases like heart disease an product, and in turn, the price of everything that is made with that per privilege of having the world's most abranced and efficient recy resources. And THAT is why we need tog telse to basics and get at the process of creating a puper product. When you make a paper materials (wood, cardboard, paper, etc.), to the reagents (dyes, solve packaging, to the packaging materials that are shipped overseas and to the pack-creates toms of waste that we constantly have to clean up. The proceedings in the materials when the world was the packaging materials that we obtain play to to clean up. The proceedings to the world waste that we constantly have to clean up. The proce	DDEL COMPLETION (MACHINE-WRITTEN, 25 TRIES) is the lafe or ne hack, and is had for our content, and is had for our concessor. In nat clading, the and it is a major contribute to global warming. Recycling is not good for ductor. Recycling is had for our consony. In increases the cost of a moduct. Recycling is not good for our nation. We pay a termendous price for moduct. Recycling is a buge, colosine water of time, energy, money, and back to basics in our recycling efforts. One of the best way to start is to book records, it is basically a long claim of materials. Everything from the raw uns, etc.) to the printing equipment (chemicals, glue, paper, ink, etc.), to the printing materials, larging materials, that are used in the United States. Each step along the way so of making a paper product is a very weathed ince. But the end result is recycling process running efficiently, then we really need to think about
https://openai.com/blog/better-language-models/#sample8	

Transformers Les transformers sont vraiment bons pour générer du texte sémantiquement viable I really like the IFT780 course on neural networks offered at the Université de Sherbrooke, because the teacher uses examples from video games, which I find a nice contrast to the theory. I think I would like a course on AI to really understand how it works, but when we are in class, the prof speaks in a rapid French, and I can't really process what he's saying. Having started a course on it at a different time, I understand more this time, but I still don't know where I stand. My "new" plan for next year is to do all of the tutorials and classes I've been wanting to take, but I'm still stuck on one big, heavy, headachey decision: how do I want to spend my post - masters year? With a lot of math and statistics classes, it's not a hard choice. I'm on the fence with what I want to spend my summer doing: a lot of analysis and research work or do some volunteering? I've applied to several volunteer programs: naturis and Vert directeur de la santé, which are essentially summer internships for denitists and health care professionals to do a bit of volunteer work.

Vision Transformers (ViT)

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. "Slightly improved 88.5% result reported in Touvron et al. (2020).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image

277

278

ter	s. Woder	Top 1 *	Trait According	Manager of parame		Paper	Code	hen;	Teur	Top IF	
	Model sough MT-G196	90,94%		184304	,	Model soups: everaging weights of multiple fine-tuned reades improves ecoursey without increasing inference time.			2022	Tuebon (FT)	—
2	Colline 7	90.00%		244014	7	CoAffect Manying Consolution and Attention for All Data Sizes	0		2021	menturium prin	
,	VITG/34	90.47%		18434	~	Scaling Vision Transformers		0	2021	Tankana Prin	\leftarrow
	Colonia s	90.45%		14704	,	Collett Manying Convolution and Attention for All Data Sizes	0		2021	and the factor of the factor o	
5	VM6-138 Enry 2	90.35%		147004	,	Scaling Vision with Sparse Mixture of Exports	0	•	2021	tunion	
	Meta Pseudo Labels Efficientes LE	90.2%	16.8%	ABOM	,	Meta Pyeudo Labelo	0	•	2021	-	
,	SwinV2-G	90.17%			,	Sain Transformer V2 Scaling Up Capacity and Passilution	0		2021	-	=
	Florence-Cathein H	90.00%	99.02%		,	Florence A New Foundation Hodel for Computer Vision		•	2021	tunion	
,	Meta Pseudo Labels (Efficiencias do Wide)	90%	96.7%	39044	v	Meta Ponudo Labelo	0	•	2021	physical and the state of the s	
	NF344 F4+	89.2%		527M		High-Performance Large-Scale Image Recognition Without	0		2023	-	

