SEQUENCE LISTING

```
<110> Schwabe, Nikolai F
      Tan, Linda C
      Catherine, Napper E
      Fry, Jeremy W
      Pang, Susan
<120> CHIMERIC MHC PROTEIN AND OLIGOMER THEREOF
<130> S-844-US
<140> US 10/769,831
<141> 2004-02-02
<150> PCT/EP03/09056
<151> 2003-08-14
<160> 24
<170> PatentIn version 3.4
<210> 1
<211> 9
<212> PRT
<213> Epstein-Barr virus
<400> 1
Gly Leu Cys Thr Leu Val Ala Met Leu
               5
1
<210> 2
<211> 38
```

```
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 2
gcatcaccat atgatccage gtactccaaa gattcagg
<210> 3
<211> 36
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 3
ctacaaggat cccatgtctc gatcccactt aactat
36
<210> 4
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 4
taatacgact cactataggg
20
```

```
<210> 5
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 5
gctagttatt gctcagcgg
19
<210> 6
<211> 15
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 6
Ser Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu
               5
1
                                  10
                                                     15
<210> 7
<211> 15
<212> PRT
<213> Artificial
```

<220>

```
<223> Synthetic Construct
<400> 7
Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu Thr
1
               5
                                   10
                                                       15
<210> 8
<211> 80
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 8
taaaqcttca qqqccaqaqc ccqttqqqct caqacctqqq cccqcaqatq cttcqqqaac
tgcaggaaac caacgcggcg
80
<210> 9
<211> 81
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 9
gaacgtgatc tccctgacct gctgccgcag cagctcccgc acgtcctgca gcgccgcgtt
60
```

```
ggtttcctgc agttcccgaa g
81
<210> 10
<211> 81
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 10
ctgcaggacg tccgggagct gctgcggcag caggtcaggg agatcacgtt cctgaaaaac
60
acggtgatgg agtgtgacgc g
81
<210> 11
<211> 80
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 11
taeggeegea egetgggtag geeggtgegt aetgaetget geateeegea egegteaeae
60
tccatcaccg tgtttttcag
80
```

```
<210> 12
<211> 108
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 12
tgcgggatgc agcagtcagt acgcaccggc ctacccagcg tacggccgcc gcagccgcag
60
ccgaaaccgc agccgaaacc ggaaccggaa actagtttga acgacatc
108
<210> 13
<211> 96
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 13
tactcgagtt cgtgccattc gattttctga gcctcgaaga tgtcgttcaa actagtttcc
60
ggtteeggtt teggetgegg ttteggetge ggetge
96
```

<210> 14

```
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 14
gatccggtgg tggtggttct ggtggtggtg gttctggtgg tggtggttct ggtggtggtg
gttctggtgg ta
72
<210> 15
<211> 72
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 15
agottaccac cagaaccacc accaccagaa ccaccaccac cagaaccacc accaccagaa
60
ccaccaccac cg
72
<210> 16
<211> 25
<212> PRT
<213> Artificial
```

<211> 72

```
<220>
<223> Synthetic Construct
<400> 16
Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
               5
                                 10
                                                     15
Ser Gly Gly Gly Gly Ser Gly Gly Lys
           20
                              25
<210> 17
<211> 24
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 17
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser
1
               5
                                 10
                                                     15
Gly Gly Gly Ser Gly Gly Lys
           20
<210> 18
<211> 22
<212> DNA
```

```
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 18
gagacatggg aggtggtggt gg
22
<210> 19
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 19
ccaccaccac ctcccatgtc tc
22
<210> 20
<211> 35
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 20
gcatcaccat gggttctcac tctatgaggt atttc
3.5
```

```
<210> 21
<211> 37
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 21
gcatacggat ccttacggct cccatctcag ggtgagg
37
<210> 22
<211> 64
<212> PRT
<213> Rat.
<400> 22
Gln Gly Gln Ile Pro Leu Gly Gly Asp Leu Ala Pro Gln Met Leu Arg
1
                5
                                    10
                                                        15
Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Glu Leu Leu
            20
                               25
                                                   30
Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys Asn Thr Val Met Glu
        35
                                                45
                            40
Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr Pro Gly Leu Ser Val
```

55

60

50

<210> 23 <211> 757 <212> PRT <213> Homo sapiens <300> <308> Genbank/1705995 <309> 1996-10-01 <313> (1)..(757) <400> 23 Met Val Pro Asp Thr Ala Cys Val Leu Leu Leu Thr Leu Ala Ala Leu 1 5 10 15 Gly Ala Ser Gly Gln Gly Gln Ser Pro Leu Gly Ser Asp Leu Gly Pro 20 25 30 Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val 35 40 45 Arg Asp Trp Leu Arg Gln Gln Val Arg Glu Ile Thr Phe Leu Lys Asn 50 55 60 Thr Val Met Glu Cys Asp Ala Cys Gly Met Gln Gln Ser Val Arg Thr 65 70 75 80

Gly Leu Pro Ser Val Arg Pro Leu Leu His Cys Ala Pro Gly Phe Cys

85 90 95

Phe Pro Gly Val Ala Cys Ile Gln Thr Glu Ser Gly Gly Arg Cys Gly
100 105 110

Pro Cys Pro Ala Gly Phe Thr Gly Asn Gly Ser His Cys Thr Asp Val 115 120 125

Asn Glu Cys Asn Ala His Pro Cys Phe Pro Arg Val Arg Cys Ile Asn 130 135 140

Thr Ser Pro Gly Phe Arg Cys Glu Ala Cys Pro Pro Gly Tyr Ser Gly 145 150 155 160

Pro Thr His Gln Gly Val Gly Leu Ala Phe Ala Lys Ala Asn Lys Gln 165 170 175

Val Cys Thr Asp Ile Asn Glu Cys Glu Thr Gly Gln His Asn Cys Val 180 185 190

Pro Asn Ser Val Cys Ile Asn Thr Arg Gly Ser Phe Gln Cys Gly Pro

Cys Gln Pro Gly Phe Val Gly Asp Gln Ala Ser Gly Cys Gln Arg Gly
210 215 220

Ala 225	Gln	Arg	Phe	Cys	Pro 230	Asp	Gly	Ser	Pro	Ser 235	Glu	Cys	His	Glu	His 240
Ala	Asp	Cys	Val	Leu 245	Glu	Arg	Asp	Gly	Ser 250	Arg	Ser	Cys	Val	Cys 255	Arg
Val	Gly	Trp	Ala 260	Gly	Asn	Gly	Ile	Leu 265	Cys	Gly	Arg	Asp	Thr 270	Asp	Leu
Asp	Gly	Phe 275	Pro	Asp	Glu	Lys	Leu 280	Arg	Cys	Pro	Glu	Pro 285	Gln	Cys	Arg
Lys	Asp 290	Asn	Cys	Val	Thr	Val 295	Pro	Asn	Ser	Gly	Gln 300	Glu	Asp	Val	Asp
Arg 305	Asp	Gly	Ile	Gly	Asp 310	Ala	Cys	Asp	Pro	Asp 315	Ala	Asp	Gly	Asp	Gly 320
Val	Pro	Asn	Glu	Lys 325	Asp	Asn	Cys	Pro	Leu 330	Val	Arg	Asn	Pro	Asp 335	Gln
Arg	Asn	Thr	Asp 340	Glu	Asp	Lys	Trp	Gly 345	Asp	Ala	Cys	Asp	Asn 350	Cys	Arg
Ser	Gln	Lys 355	Asn	Asp	Asp	Gln	Lys 360	Asp	Thr	Asp	Gln	Asp 365	Gly	Arg	Gly

nop	370	Cys	лэр	лэр	nap	375	nap	GIY	лэр	Arg	380	ALY	ASII	Gill	лта
Asp 385	Asn	Cys	Pro	Arg	Val 390	Pro	Asn	Ser	Asp	Gln 395	Lys	Asp	Ser	Asp	Gly 400
Asp	Gly	Ile	Gly	Asp 405	Ala	Суз	Asp	Asn	Cys 410	Pro	Gln	Lys	Ser	Asn 415	Pro
Asp	Gln	Ala	Asp 420	Val	Asp	His	Asp	Phe 425	Val	Gly	Asp	Ala	Cys 430	Asp	Ser
Asp	Gln	Asp 435	Gln	Asp	Gly	Asp	Gly 440	His	Gln	Asp	Ser	Arg 445	Asp	Asn	Cys
Pro	Thr 450	Val	Pro	Asn	Ser	Ala 455	Gln	Glu	Asp	Ser	Asp 460	His	Asp	Gly	Gln
Gly 465	Asp	Ala	Cys	Asp	Asp 470	Asp	Asp	Asp	Asn	Asp 475	Gly	Val	Pro	Asp	Ser 480
Arg	Asp	Asn	Cys	Arg 485	Leu	Val	Pro	Asn	Pro 490	Gly	Gln	Glu	Asp	Ala 495	Asp
Arg	Asp	Gly	Val	Gly	Asp	Val	Cys	Gln 505	Asp	Asp	Phe	Asp	Ala 510	Asp	Lys

Val	Val	Asp 515	Lys	Ile	Asp	Val	Cys 520	Pro	Glu	Asn	Ala	Glu 525	Val	Thr	Leu
Thr	Asp 530	Phe	Arg	Ala	Phe	Gln 535	Thr	Val	Val	Leu	Asp 540	Pro	Glu	Gly	Asp
Ala 545	Gln	Ile	Asp	Pro	Asn 550	Trp	Val	Val	Leu	Asn 555	Gln	Gly	Arg	Glu	Ile 560
Val	Gln	Thr	Met	Asn 565	Ser	Asp	Pro	Gly	Leu 570	Ala	Val	Gly	Tyr	Thr 575	Ala
Phe	Asn	Gly	Val 580	Asp	Phe	Glu	Gly	Thr 585	Phe	His	Val	Asn	Thr 590	Val	Thr
Asp	Asp	Asp 595	Tyr	Ala	Gly	Phe	Ile 600	Phe	Gly	Tyr	Gln	Asp 605	Ser	Ser	Ser
Phe	Tyr 610	Val	Val	Met	Trp	Lys 615	Gln	Met	Glu	Gln	Thr 620	Tyr	Trp	Gln	Ala
Asn	Pro	Phe	Arg	Ala	Val	Ala	Glu	Pro	Gly	Ile	Gln	Leu	Lys	Ala	Val

Lys Ser Ser Thr Gly Pro Gly Glu Gln Leu Arg Asn Ala Leu Trp His

645 650 655

Thr Gly Asp Thr Glu Ser Gln Val Arg Leu Leu Trp Lys Asp Pro Arg $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Asn Val Gly Trp Lys Asp Lys Lys Ser Tyr Arg Trp Phe Leu Gln His \$675\$

Arg Pro Gln Val Gly Tyr Ile Arg Val Arg Phe Tyr Glu Gly Pro Glu $690 \hspace{1cm} 695 \hspace{1cm} 700 \hspace{1cm}$

Leu Val Ala Asp Ser Asn Val Val Leu Asp Thr Thr Met Arg Gly Gly 705 710 715 720

Arg Leu Gly Val Phe Cys Phe Ser Gln Glu λ sn Ile Ile Trp Ala λ sn 725 730 735

Leu Arg Tyr Arg Cys Asn Asp Thr Ile Pro Glu Asp Tyr Glu Thr His \$740\$ \$750\$

Gln Leu Arg Gln Ala 755

<210> 24

<211> 67

<212> PRT

<213> Homo sapiens

Gln Gly Gln Ser Pro Leu Gly Ser Asp Leu Gly Pro Gln Met Leu Arg 1 5 10 15

Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Asp Trp Leu $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Arg Gln Gln Val Arg Glu Ile Thr Phe Leu Lys Asn Thr Val Met Glu \$35\$ \$40\$ \$45\$

Cys Asp Ala Cys Gly Met Gln Gln Ser Val Arg Thr Gly Leu Pro Ser $50 \ \ 55 \ \ 60$

Val Arg Pro

65