A NOTE ON KASPAROV PRODUCT AND DUALITY

HYUN HO LEE

ABSTRACT. Using Paschke-Higson Duality [Hig][Pa], we get a natural index pairing $K_i(A) \times K_{i+1}(D_{\Phi}) \to \mathbf{Z}$ where $i=0,1 \pmod{2}$ and A is a separable C^* -algebra, Φ is a representation of A on a separable Hilbert space \mathbb{H} . We prove this is a special case of Kasparov Product [Kas].

1. Introduction

The purpose of this paper is to give a clear exposition of a connection between KK-theory [Kas] and index pairing

$$K_i(A) \times K_{i+1}(D_{\Phi}) \to \mathbb{Z}$$
 where $i = 0, 1 \pmod{2}$

which is defined in Section 2. In fact, we are going to show that each index pairing is a Kasparov product only using elementary ingredients of K-theory and KK-theory. (see proposition 3.1 below and lemma 2.9, 2.12 below.) As an application of this approach, we show an alternate proof of Bott periodicity in KK-theory [Kas]; cf. Theorem 18.10.2 in [Bl]. In this proof, we do not use geometric argument (for example, use of Clifford algebra [Kas]) but operator theory and pure algebra.

2. Paschke-Higson Duality and Index pairing

In this section, we review Paschke-Higson duality theory [Hig]. Throughout this article, \mathbb{H} is a separable infinite dimensional Hilbert space. $\mathcal{B}(\mathbb{H})$ is the set of linear bounded operators on \mathbb{H} . $\mathcal{K}(\mathbb{H})$ (shortly \mathcal{K}) is an ideal of compact operators on \mathbb{H} , and $\mathcal{Q}(\mathbb{H})$ (shortly \mathcal{Q}) is the Calkin algebra.

We use the following notation : if X and Y are operators in $\mathcal{B}(\mathbb{H})$ we shall write

$$X \sim Y$$

if X and Y differ by a compact operator.

Date: December 15, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary:46L80;Secondary:19K33,19K35. Key words and phrases. KK-theory, Kasparov Product, Paschke-Higson Duality.

Note that every *-representation $\Phi: A \to \mathcal{B}(\mathbb{H})$ determines a *-homomorphism $\dot{\Phi}$ of A into the Calkin algebra.

Definition 2.1. Let A be C^* -algebra. A *-representation $\Phi: A \to B(\mathbb{H})$ is called *admissible* if it is non-degenerate and $ker(\dot{\Phi}) = 0$.

Remark 2.2. If a *-representation is admissible, then it is necessarily faithful and its image contains no non-zero compact operator.

Definition 2.3. Let Φ be a *-representation of A on \mathbb{H} . Denote by $D_{\Phi}(A)$ the essential commutant of $\Phi(A)$ in $\mathcal{B}(\mathbb{H})$. Thus

$$D_{\Phi}(A) = \{ T \in \mathcal{B}(\mathbb{H}) \mid \forall a \in A, [\Phi(a), T] \sim 0 \}$$

Given two representations Φ_0 , Φ_1 on \mathbb{H}_0 , \mathbb{H}_1 respectively, we say they are approximately unitarily equivalent if there exists a sequence $\{U_n\}$ consisting of unitaries in $\mathcal{B}(\mathbb{H}_0, \mathbb{H}_1)$ such that

$$Ad(U_n)\Phi_0(a) \sim \Phi_1(a)$$
 for all $a \in A$
 $||Ad(U_n)\Phi_0(a) - \Phi_1(a)|| \to 0$ as $n \to \infty$

We write $\Phi_0 \sim_u \Phi_1$ in this case.

Theorem 2.4. (Voiculescu) Let A be a separable C^* -algebra and Φ_i : $A \mapsto \mathcal{B}(\mathbb{H}_i)$ i = 0, 1 be non-degenerate *-representations. Then if $Ker \ \dot{\Phi}_0 \subset Ker \ \Phi_1$, then $\Phi_0 \oplus \Phi_1 \sim_u \Phi_0$ where $\dot{\Phi}$ is the natural *-homomorphism into the Calkin algebra induced by a *-representation Φ .

Proof. See Corollary 1 in p343 of [Ar].

Corollary 2.5. Assume $\Phi_i : A \mapsto \mathcal{B}(\mathbb{H}_i)$ are admissible representations for i = 0, 1. Then $\Phi_0 \sim_u \Phi_1$.

Proof. Admissibility implies $\operatorname{Ker}\dot{\Phi}_i = 0$. From this, the result is straightforward.

Recall that an extension of a unital separable C^* -algebra A is a unital *-monomorphism τ of A into the Calkin algebra. We say τ is split if there is a non-degenerate *-representation ρ such that $\dot{\rho}=\tau$ and semi-split if there is a completely positive map ρ such that $\dot{\rho}=\tau$.

Corollary 2.6. Let A be a separable unital C^* -algebra. If τ is a unital injective extension of A and if σ is a split unital extension of A, then $\tau \oplus \sigma$ is unitarily equivalent τ .

Proof. See p352-353 in [Ar].
$$\Box$$

Now we will prove the existence of admissible representation of A.

Proposition 2.7. There is a non-degenerate *-representation Φ of for a separable C^* -algebra A such that $Ker(\dot{\Phi}) = 0$.

Proof. Let π be a faithful representation of A on \mathbb{H}_{π} . Take Φ as $\pi^{\infty} = \pi \oplus \pi \oplus \cdots$ and $\mathbb{H} = \mathbb{H}_{\pi} \oplus \mathbb{H}_{\pi} \oplus \cdots$

Definition 2.8. When Φ , Ψ are admissible representations of A on \mathbb{H} , $D_{\Phi}(A)$ is isomorphic to $D_{\Psi}(A)$ by Corollary 2.5. Therefore we define $D(A) = D_{\Phi}(A)$ as the dual algebra of A up to unitary equivalence.

If p is a projection in $D_{\Phi}(A)$, we call it *ample* and can define an extension

$$\tau = \tau_{\Phi,p} : A \xrightarrow{p\Phi(\bullet)p = \Phi_p} \mathcal{B}(p\mathbb{H}) \xrightarrow{\pi} \mathcal{Q}(p\mathbb{H})$$

In general, this extension is not injective. However, if the extension $\tau_{\Phi,p}$ is injective, we call that an abstract Toeplitz extension.

To define the map from $K_0(D(A))(=K_0(D_{\Phi}(A)))$ to $Ext^{-1}(A)$, we need the following two technical lemmas.

Lemma 2.9. Let A be a unital C^* -algebra. For any $\alpha \in K_0(D(A))$, there exists a ample projection $p \in D(A)$ such that $\alpha = [p]_0$.

Proof. Step1: By Corollary 2.6, there is a unitary $u \in \mathcal{B}(p\mathbb{H} \oplus \mathbb{H}, \mathbb{H})$ such that Ad $(u)(\Phi_p \oplus \Phi)(a) \sim \Phi(a)$ for any $a \in A$ if p is ample. Let $U = \binom{p}{0}u$. We can easily check that $U \in \mathbb{M}_2(D_{\Phi}(A))$ and $UU^* = \binom{p}{0}\binom{0}{0}$, $U^*U = \binom{p}{0}\binom{0}{0}$. Therefore we have $[p \oplus I]_0 = [p \oplus 0]_0$. This implies $[p]_0 + [I]_0 = [P]_0$. In particular, $[I]_0 = 0$. Also you can conclude every two ample projections are Murray-von Neumann equivalent. Step2: Note that $p \oplus I$ is always ample whether p is ample or not because $(\Phi \oplus \Phi)_{p \oplus I}(a)$ is never compact unless $a \in A$ is zero. Step3: Any element in $K_0(D_{\Phi}(A))$ is written by $[q]_0 - [I_n]_0$ for some $q \in \mathbb{M}_n(D_{\Phi}(A))$. As we observed in Step1, this is just $[q]_0$. By Step2,

we may assume q is ample for $\Phi \oplus \Phi \oplus \cdots \oplus \Phi$. Now if we can show $[q]_0 = [p]_0$ for some $ample\ p \in D_{\Phi}(A)$, we are done. Since $\Phi \oplus \Phi \oplus \cdots \oplus \Phi \sim_u \Phi$, there exists $v : \mathbb{H}^n \mapsto \mathbb{H}$ s.t.

(1)
$$v^*v = 1_{B(\mathbb{H}^n)}, vv^* = 1_{B(\mathbb{H})}$$

(2)
$$\operatorname{Ad}(v) \underbrace{\Phi \oplus \Phi \oplus \cdots \oplus \Phi}_{n}(a) - \Phi(a) \in \mathcal{K} \quad \forall a \in A.$$

Let
$$V = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} v \in \mathbb{M}_n(D_{\Phi}(A))$$
. Then $[q]_0 = [VqV^*]_0 = [vqv^*]_0$. It's

left to the reader to check that vqv^* is also ample.

Lemma 2.10. Let $\phi: A \to \mathcal{B}(\mathbb{H}_1 \oplus \mathbb{H}_2)$ be a *-representation. Write $\phi(a) = \begin{pmatrix} \phi_{11}(a) & \phi_{12}(a) \\ \phi_{21}(a) & \phi_{22}(a) \end{pmatrix}$. Suppose ϕ_{11} is *-homomorphism modulo $\mathcal{K}(\mathbb{H}_1)$. i.e., $\dot{\phi}_{11}$ is *-homomorphism. Then $\phi_{12}(a)$, $\phi_{21}(a)$ are compacts for any $a \in A$ and $\dot{\phi}_{22}$ is *-homomorphism.

Proof. Using $\phi(aa^*) = \phi(a)\phi(a^*)$ with decomposition of ϕ on $\mathbb{H}_1 \oplus \mathbb{H}_2$ and the fact ϕ_{11} is *-homomorphism modulo $\mathcal{K}(\mathbb{H}_1)$, we have $\phi_{12}(a)\phi_{12}(a^*)$ is compact therefore $\phi(a)$ is compact for $a \in A$. Similarly, using $\phi(a^*a) = \phi(a)^*\phi(a)$, we have $\phi_{21}(a)$ is compact for $a \in A$. It follows that ϕ_{22} is *-homomorphism modulo $\mathcal{K}(\mathbb{H}_2)$.

Proposition 2.11. $K_0(D_{\Phi}(A)) \cong Ext^{-1}(A)$ where Φ is a admissible representation of A on a separable Hilbert space \mathbb{H} .

Proof. With the Lemma 2.9 in hand, we define the map from $K_0(D_{\Phi}(A))$ to $Ext^{-1}(A)$ as follows

$$[p]_0 \mapsto [\tau_{\Phi,p}]$$

When [p] = [q], as we have seen in the proof of Lemma 2.9, p and q are Murray- von-Neumann equivalent in $D_{\Phi}(A)$ so that partial isometry implementing this equivalence induces the equivalence between $\tau_{\Phi,p}$ and $\tau_{\Phi,q}$. Conversely, unitary equivalence between $\tau_{\Phi,p}$ and $\tau_{\Phi,q}$ induces Murray- von-Neumann equivalence between p and q evidently.

From $\Phi \oplus \Phi \sim_u \Phi$, we get a unitary $u \in \mathcal{B}(\mathbb{H} \oplus \mathbb{H}, \mathbb{H})$ which induces a natural isomorphism $\mathrm{Ad}(u): \mathbb{M}_2(D_\Phi(A)) \to D_\Phi(A)$. Note $\pi \circ Ad(u) = Ad(u) \circ (\pi \otimes id_2)$. Since $[p] + [q] = [p \oplus q]$ and $p \oplus q$ is in $D_{\Phi \oplus \Phi}(A)$, [p] + [q] is mapped to $[\pi \circ Ad(u) \circ (\Phi \oplus \Phi)_{p \oplus q}] = [Ad(u) \circ ((\pi \otimes id_2) \circ (\Phi \oplus \Phi)_{p \oplus q}]$ which is indeed $[\tau_{\Phi,p}] + [\tau_{\Phi,q}]$. So far we have shown the map is a monomorphism. It is remained to show the map is onto.

Suppose ρ is semi-split extension of A with a completely positive lifting $\psi: A \to \mathcal{B}(\mathbb{H})$. By Steinspring's dilation theorem, there is a non-degenerate *-representation $\phi: A \to \mathcal{B}(\mathbb{H}_0)$ and an isometry $V: \mathbb{H} \to \mathbb{H}_0$ such that $\psi(a) = V^*\phi(a)V$ for all $a \in A$. If we set $P_1 = VV^*$ and $P_2 = 1 - P_1$, then $\mathbb{H}_0 = P_1(\mathbb{H}_0) \oplus P_2(\mathbb{H}_0) = \mathbb{H}_1 \oplus \mathbb{H}_2$. If we decompose ϕ on $\mathbb{H}_0 = \mathbb{H}_1 \oplus \mathbb{H}_2$, we have $V\psi(a)V^* = VV^*\phi(a)VV^* = P_1\phi(a)P_1 = \phi_{11}(a)$. Since $\dot{\psi} = \rho$ is (injective) *-homomorphism, we

can conclude ϕ_{11} is (injective)*-homomorphism modulo compact. By the Lemma 2.10, $\phi_{12}(a)$, $\phi_{21}(a)$ are compacts for $a \in A$ and ϕ_{22} is *-homomorphism modulo compact. This implies that $[P_1, \phi] \in \mathcal{K}$. Thus ϕ_{11} is an abstract Toeplitz extension. Viewing $V : \mathbb{H} \to \mathbb{H}_1$ as an unitary, we can also see that ρ is unitarily equivalent to ϕ_{11} . Hence we finish the proof.

Similarly, we are going to define the map from $K_1(D(A))$ to $KK(A, \mathbb{C})$. We begin with the following lemma which is expected as we have Lemma 2.9.

Lemma 2.12. Let A be as above. For any $\alpha \in K_1(D(A))$, there exists an unitary $u \in D(A)$ such that $\alpha = [u]_1$.

Proof. Assume $T \in \mathbb{M}_n(D_{\Phi}(A)) \approx D_{\underbrace{\Phi \oplus \Phi \oplus \cdots \oplus \Phi}_n}(A)$ is a unitary which represents $\alpha \in K_1(D_{\Phi}(A))$. Let V be as above and $S = \begin{pmatrix} V & 1 - VV^* \\ 0 & V^* \end{pmatrix} \in \mathbb{M}_{2n}(D_{\Phi}(A))$. It is easy to check that $VTV^* + 1 - VV^* = \begin{pmatrix} vTv^* & 0 \\ 0 & 1 \end{pmatrix}$ and $S \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} S^* = \begin{pmatrix} vTv^* + 1 - VV^* & 0 \\ 0 & 1 \end{pmatrix}$. Therefore $[T]_1 = [vTv^*]_1$. It is left to the reader to check that $vTv^* \in D(A)$ is also unitary. \square

Proposition 2.13. $KK(A, \mathbb{C}) \cong K_1(D_{\Phi})$ where Φ is an admissible representation of unital separable C^* -algebra A on a separable Hilbert space \mathbb{H} .

Proof. With the Lemma 2.12, we define the map from $K_1(D_{\Phi})$ to $KK(A, \mathbb{C})$ as follows.

$$[u]_1 \mapsto \left[\begin{pmatrix} \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix} \right) \right]$$

where $\hat{\mathbb{H}}$ is a graded Hilbert \mathbb{C} -module $\mathbb{H} \oplus \mathbb{H}$ with the standard even grading. (See Chapter14.2 in [Bl]). Indeed, this construction gives rise to well-defined group homomorphism. If [u] = [v], then $u \oplus 1$ is homotopic to $v \oplus 1$ up to unitary.

Therefore
$$\begin{pmatrix} \hat{\mathbb{H}} \oplus \hat{\mathbb{H}}, \begin{pmatrix} \Phi \oplus \Phi & 0 \\ 0 & \Phi \oplus \Phi \end{pmatrix}, \begin{pmatrix} 0 & u^* \oplus 1 \\ u \oplus 1 & 0 \end{pmatrix} \end{pmatrix}$$

= $\begin{pmatrix} \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix} \end{pmatrix} \oplus \begin{pmatrix} \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$ is operator homotopic to $\begin{pmatrix} \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & v^* \\ v & 0 \end{pmatrix} \end{pmatrix} \oplus \begin{pmatrix} \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$

 $= \left(\hat{\mathbb{H}} \oplus \hat{\mathbb{H}}, \begin{pmatrix} \Phi \oplus \Phi & 0 \\ 0 & \Phi \oplus \Phi \end{pmatrix}, \begin{pmatrix} 0 & v^* \oplus 1 \\ v \oplus 1 & 0 \end{pmatrix}\right). \text{ Similarly, it can be shown the map is group homomorphism. If we show it is surjection, we are done. We will use Higson's idea in p354 [Hig]. Let <math>\alpha \in KK(A, \mathbb{C})$ be represented by $\left(H_0 \oplus H_1, \begin{pmatrix} \phi_0 & 0 \\ 0 & \phi_1 \end{pmatrix}, \begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix}\right)$ where u is a unitary in $\mathcal{B}(H_0, H_1)$. Let $\Psi = \cdots \phi_0 \oplus \phi_0 \oplus \phi_1 \oplus \phi_1 \cdots$ and $\mathbf{H} = \cdots H_0 \oplus H_0 \oplus H_1 \oplus H_1 \cdots$. We consider a degenerate cycle

$$\left(\mathbf{H} \oplus \mathbf{H}, \begin{pmatrix} \Psi & 0 \\ 0 & \Psi \end{pmatrix}, \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}\right)$$

Then

$$\left(H_0 \oplus H_1, \begin{pmatrix} \phi_0 & 0 \\ 0 & \phi_1 \end{pmatrix}, \begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix}\right) \oplus \left(\mathbf{H} \oplus \mathbf{H}, \begin{pmatrix} \Psi & 0 \\ 0 & \Psi \end{pmatrix}, \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}\right)$$

is unitarily equivalent to $\left(\mathbf{H} \oplus \mathbf{H}, \begin{pmatrix} \Psi & 0 \\ 0 & \Psi \end{pmatrix}, \begin{pmatrix} 0 & F^* \\ F & 0 \end{pmatrix}\right)$ where F =

$$\begin{pmatrix} I & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & I \end{pmatrix} \circ \text{ shifting to the right i.e. } F \text{ sends } (\cdots, \eta_1, \eta_0, \xi_0, \xi_1, \cdots)$$
to $(\cdots, \eta_2, \eta_1, u\eta_0, \xi_0, \cdots)$.

Again by adding a degenerate cycle $(\hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix})$, we get

$$\alpha = \left[\left(\mathbf{H} \oplus \mathbb{H}, \begin{pmatrix} \Psi \oplus \Phi & 0 \\ 0 & \Psi \oplus \Phi \end{pmatrix}, \begin{pmatrix} 0 & F^* \oplus I \\ F \oplus I & 0 \end{pmatrix} \right) \right]$$

Since Φ is *admissible*, we obtain a unitary $U \in \mathcal{B}(\mathbf{H} \oplus \mathbb{H}, \mathbb{H})$ such that $Ad(U) \circ \Psi \oplus \Phi \sim \Phi$.

$$= \left[\left(\hat{\mathbb{H}}, (Ad(U) \circ \Psi \oplus \Phi) \oplus (Ad(U) \circ \Psi \oplus \Phi), \left(\begin{smallmatrix} 0 & Ad(U)(F^* \oplus I) \\ Ad(U)(F \oplus I) & 0 \end{smallmatrix} \right) \right) \right]$$

By the lemma 4.1.10. in [JenThom]

$$= \left[\left(\hat{\mathbb{H}}, \Phi \oplus \Phi, \left(\begin{smallmatrix} 0 & Ad(U)(F^* \oplus I) \\ Ad(U)(F \oplus I) & 0 \end{smallmatrix} \right) \right) \right]$$

It is not hard to check that $Ad(U)(F \oplus I) \in D_{\Phi}(A)$ and α is the image of it. So we finish the proof.

Remark 2.14. A unital C^* -algebra A is said to have K_1 -surjectivity if the natural map from $U(A)/U_0(A)$ to $K_1(A)$ is surjective and is said to have $(\text{strong})K_0$ -surjectivity if the group $K_0(A)$ is generated by $\{[p] \mid p \text{ is a projection in } A\}$. Therefore Lemma 2.9 and Lemma 2.12 show $D_{\Phi}(A)$ has $(\text{strong})K_0$ -surjectivity and K_1 -surjectivity.

Now we are ready to define the index pairing between $K_i(A)$ and $K_{i+1}(D_{\Phi}(A))$ for all i = 0, 1. For the following two definitions, we mean Index as the classical *Fredholm index*.

Given a projection $p \in \mathbb{M}_k(A)$ and $u \in K_1(D_{\Phi}(A))$, when Φ_k is k-th amplification of Φ , the operator

$$\Phi_k(p)u^{(k)}\Phi_k(p):\Phi_k(p)(\mathbb{H}^k)\to\Phi_k(p)(\mathbb{H}^k)$$

is essentially unitary, and therefore Fredholm.

Definition 2.15. The (even)index pairing $K_0(A) \times K_1(D_{\Phi}(A)) \to \mathbb{Z}$ is defined as follows.

$$([p], [u]) \longrightarrow \operatorname{Index} (\Phi_k(p)u^{(k)}\Phi_k(p))$$

where $p \in \mathbb{M}_k(A)$ and Φ_k is k-th amplification of Φ .

Similarly, given $v \in \mathbb{M}_k(A)$ and $p \in K_0(D_{\Phi}(A))$, the operator

$$p^{(k)}\Phi_k(v)p^{(k)} - (1-p^{(k)}): \mathbb{H}^k \to \mathbb{H}^k$$

is essentially unitary, and therefore *Fredholm*.

Definition 2.16. The (odd)index pairing $K_1(A) \times K_0(D_{\Phi}(A)) \to \mathbb{Z}$ is defined as follows.

$$([v], [p]) \longrightarrow \text{Index} (p^{(k)} \Phi_k(v) p^{(k)} - (1 - p^{(k)}))$$

if $v \in \mathbb{M}_k(A)$ and Φ_k is k-th amplification of Φ .

3. Kasparov Product and Duality

In this section, we prove main results: Each index pairing is a special case of Kasparov product. Before doing this, we need some elementary computations of Kasparov groups.

Proposition 3.1. $KK(S, B) = K_1(B)$ where S is $\{f \in C(\mathbb{T}) \mid f(1) = 0\}$ and B is a C^* -algebra.

Proof. Most of proof can be found in [Lee]. We just note that any unitary in $K_1(B)$ can be liftable to $\phi \in KK(S,B)$ here $\phi : S \mapsto B$ which is determined by sending z-1 to u-1.

Theorem 3.2. (Even case)the mapping $K_0(A) \times K_1(D_{\Phi}) \to \mathbb{Z}$ is the Kasparov product $KK(S, SA) \times KK(SA, S) \to \mathbb{Z}$.

Proof. Without loss of generality, we may assume p is the element of A.(If necessary, consider $\mathbb{C}^k \otimes A$) Using the K-theory Bott map, p is mapped to $f_p(z) \in K_1(SA)$. Then as we have noted in Proposition 3.1, $f_p(z)$ is lifted to Ψ as the element of KK(S,SA) where Ψ is the

*-homomorphism from S to SA which is determined by sending z-1 to (z-1)p.

On the other hand, $[u] \in K_1(D_{\Phi}(A))$ is mapped to $[\mathcal{E}]$ in $KK(A, \mathbb{C})$ where $\mathcal{E} = (\hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix}, \begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix})$ is a Kasparov A- \mathbb{C} module by Proposition 2.13.

Using natural isomorphism $\tau_S : KK(A, \mathbb{C}) \mapsto KK(SA, S)$, we can think of a Kasparov product Ψ by $[\tau_S(\mathcal{E})]$.

Using elementary functorial properties, we can check $\Psi \cdot [\tau_S(\mathcal{E})]$ is equal to $\left[(\hat{\mathbb{H}} \otimes S, (\Phi \oplus \Phi) \otimes id \circ \Psi, G \otimes id) \right]$ denoting $\begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix}$ by G.

Since $\tau_S : KK(\mathbb{C}, \mathbb{C}) \mapsto KK(S, S)$ is isomorphism, there is a map $\rho : \mathbb{C} \mapsto \mathcal{B}(\mathbb{H})$ s.t. $\tau_S((\hat{\mathbb{H}}, \rho \oplus \rho, G)) = (\hat{\mathbb{H}} \otimes S, (\Phi \oplus \Phi) \otimes id \circ \Psi, G \otimes id)$. Note that

$$\rho \otimes id(z-1) = (z-1)\rho(I)$$

On the other hand, from the equality above

$$= \Phi \otimes id(\Psi(z-1))$$

= $\Phi \otimes id((z-1)p)$
= $(z-1)\Phi(p)$

Consequently, $\rho(I) = \Phi(p)$.

Then $(\hat{\mathbb{H}}, \rho \oplus \rho, G)$ is mapped to $\operatorname{Ind}(\Phi(p)u\Phi(p))$ by the map Index : $KK(\mathbb{C}, \mathbb{C}) \to \mathbb{Z}$. (If you want more details, see Example 17.3.4 in [Bl] or Exercise 2.1.2 in [JenThom].)

Similarly, we have

Theorem 3.3. (Odd case) The mapping $K_1(B) \times K_0(D_{\Phi}) \to \mathbb{Z}$ is the Kasparov product $KK(S, B) \times KK^1(B, \mathbb{C}) \to \mathbb{Z}$.

Proof. Again, [u] is mapped to $\psi \in KK(S, B)$ here $\psi : S \mapsto B$ which is determined by sending z-1 to u-1. On the other hand, [p] is mapped to $[\tau_{\Phi,p}]$ by Proposition 2.11. Using the isomorphism $Ext^{-1}(B) \to KK^1(B,\mathbb{C})$ (See Propsition 3.3.11 in [JenThom]), image of $\tau_{\Phi,p}$ is a cycle $\mathcal{F} = (\mathbb{H} \oplus \mathbb{H}, \Phi \oplus \Phi, T \oplus -T)$ where T = 2p-1. Then Kasparov product ψ by $[\mathcal{F}]$ is $\psi \cdot [\mathcal{F}] = [(\mathbb{H} \oplus \mathbb{H}, \Phi \circ \psi \oplus \Phi \circ \psi, T \oplus -T)]$. Note that $\Phi \circ \psi(z-1) = \Phi((u-1)) = \Phi(u) - 1$. Using the identification $KK^1(S,\mathbb{C}) \to K_1(\mathcal{Q}(\mathbb{H}))$, it is mapped to $p\Phi(u)p - (1-p)$. (See Proposition 17.5.7 in [Bl].) Finally, the Fredholm index of $p\Phi(u)p - (1-p)$ is what we want.

Corollary 3.4. Let $\mathbf{x} \in KK(\mathbb{C}_1, S) \cong Ext(\mathbb{C}, S)$ be represented by the extension $0 \to S \to C \to \mathbb{C} \to 0$ and $\mathbf{y} \in KK(S, \mathbb{C}_1) \cong Ext(S, \mathbb{C})$ be

represented by the extension $0 \to \mathcal{K} \to C^*(v-1) \to S \to 0$ where v is a coisometry of Fredholm index 1 (e.g. the adjoint of the unilateral shift). Then $\mathbf{x} \cdot \mathbf{y} = 1_{\mathbb{C}_1}$

Proof. Note that \boldsymbol{x} corresponds to the unitary $t \mapsto e^{2\pi i t}$ in $K_1(S)$ by the Brown's Universal Coefficient Theorem [Br]. Also, the Busby invariant of $0 \to \mathcal{K} \to C^*(v-1) \to S \to 0$ is the homomorphism $\tau: S \to \mathcal{Q}$ sends $e^{2\pi i t} - 1$ to $\pi(v) - 1$. Since $KK(\mathbb{C}_1, \mathbb{C}_1) \cong \mathbb{Z}$, using Theorem3.3, we can conclude $\boldsymbol{x} \cdot \boldsymbol{y} = 1_{\mathbb{C}_1}$.

4. Acknowledgements

I was greatly benefited from professor Dadarlat's lecture on K-theory in 2004. I also would like to thank my advisor Larry Brown for helping me to learn KK-theory.

References

- [Ar] William Arveson Notes on extensions of C^* -algebras Duke Math. Journal Vol44 no2 329-355 (1977)
- [Br] L.G.Brown The universal coefficient theorem for Ext and quasidiagonality pp60-64 in Operator algebras and group representations, I. Monographs of Stud. Math. 17, Pitman, Boston, Mass. 1984
- [Bl] Bruce Blackadar K-theory for Operator Algebras MSRI Publications Vol.5 Second Edition Cambridge University Press 1998
- [Hig] Nigel Higson C^* -Algebra Extension Theory and Duality J. Functional Analysis 129, 349-363(1995).
- [JenThom] K.N.Jensen, K.Thomsen *Elements of KK- theory* Birkhäuser, Boston, 1991 MR94b:19008
- [Kas] G.G. Kasparov The Operator K functor and extensions of C^* -algebras Mathe. USSR-Izv 16(1981) 513-572[English Tanslation]
- [Lee] Hyun Ho Lee Completely positive map and extremal K-set 2006 Preprint
- [Pa] William Pascheke K-theory for commutants in the Calkin algebra Pacific J. Math. 95 (1981) 427-437

Department of Mathematics Purdue University West Lafayette, Indiana 47907

E-mail address: ylee@math.purdue.edu