Exploration de la notion de métaapprentissage

Dans quelle mesure un système apprenant peut « prendre conscience » de ses performances et altérer son comportement ?

Cortex / Maia

Yann Boniface Alain Dutech Nicolas Rougier

Matthieu Zimmer

Abstract

À quoi sert le méta-apprentissage et les métareprésentations ?

- Évaluer les connaissances
- Améliorer l'apprentissage
- Un pas possible vers un début de conscience

« Higher-Order Thought theory », David Rosenthal

Inspiration : Conscience et métareprésentations

Consciousness and metarepresentation : A computational sketch

[Alex Cleeremans, Bert Timmermans, Antoine Pasquali]

Know thyself: Metacognitive networks and mesures of consciousness

[Antoine Pasquali, Bert Timmermans, Alex Cleeremans]

Simulation 1 : Perceptron multicouche

2 perceptrons multicouche

- Matrice 5x4 entrées représentant les 10 chiffres
- Le premier réseau discrimine les 10 chiffres
- Winner-take-all sur les sorties

- La couche caché du premier réseau est l'entrée du second
- Le second réseau apprend à redonner l'état entier du premier (entrée / couche caché / sortie)

Simulation 1 : Perceptron multicouche

[Alex Cleeremans, Bert Timmermans, Antoine Pasquali]

caché / sortie)

Résultats sur la base d'entrée de l'article

De l'article

Error proportion (RMS) of first-order and high-order networks first-order network high-order network (10 hidden units) high-order network (5 hidden units) 0.8 ERROR RMS 9.0 0.2 0.0 L 200 800 400 600 1000 **EPOCHS** $rms\ proportion_e = \frac{\sqrt{\frac{n}{i=1}}}{max(rms_e),\ \forall e \in epochs}$

 $with \begin{cases} n: number \ of \ neurons \ on \ the \ output \ layer \\ o_{i,e}: value \ obtained \ for \ the \ i^{th} \ neuron \ at \ the \ e^{th} \ epoch \\ d_i: value \ desired \ for \ the \ i^{th} \ neuron \end{cases}$

Notre touche personnelle

- Pourcentage d'erreur de classification
- Considère uniquement le réseau à 10 unités cachées
- Séparation des 3 couches à apprendre
- Entrées ont plus de poids

Approfondissement sur des chiffres manuscrits

256 entrées 64 neurones cachés (1er) 128 neurones cachés (2nd) 1600 formes 50 formes/epoch

Pourquoi ça marche?

Positions des axes variables d'une simulation à une autre mais la stabilité reste

Changement de tâche

Résultats sur la base d'entrée de l'article

Approfondissement sur des chiffres manuscrits

Feedback: second neurone le plus actif

Feedback : n-ième neurone le plus actif

Feedback : n-ième neurone le plus actif

Feedback: 3eme réseau

Feedback: 3eme réseau

Feedback : 3eme réseau (sur couche cachée)

Feedback : 3eme réseau (sur couche cachée)

Feedback: fusion

Feedback: fusion

Auto-supervisation

Vers où va t-on?

- Utiliser aussi les poids ?
- Utiliser plusieurs couches cachés ?
- Essayer d'autres modèles ?

Consciousness and metarepresentation : A computational sketch

[Alex Cleeremans, Bert Timmermans, Antoine Pasquali]

Consciousness and metarepresentation:
A computational sketch
[Alex Cleeremans, Bert Timmermans, Antoine Pasquali]

