Informal Seminar on Stanley-Reisner Theory, UMN, Fall 2002 5 December 2002

Local cohomology Speaker: Anton Leykin

Scribe notes by Jeremy Martin

We work with the following objects throughout. Let \mathbf{k} be a field and R a finitely generated, \mathbb{N}^n -graded \mathbf{k} -algebra, i.e., $R = \bigoplus_{\alpha \in \mathbb{N}^n} R_{\alpha}$ with $R_{\alpha}R_{\beta} \subset R_{\alpha+\beta}$. The motivating example is $R = \mathbf{k}[\Delta]$, the Stanley-Reisner ring of a simplicial complex Δ . Define

$$R_+ := \bigoplus_{\alpha \neq 0} R_\alpha$$

the so-called **irrelevant ideal**. Finally, M will be a \mathbb{Z}^n -graded R-module, i.e., $M = \bigoplus_{\alpha \in \mathbb{Z}^n} M_\alpha$ with $R_\alpha M_\beta \subset M_{\alpha+\beta}$.

1. Depth and Cohen-Macaulayness

Definition 1. An element $a \in R$ is called a **nonzerodivisor** (or NZD) on M if $m \in M$, am = 0 implies m = 0. Equivalently, the map

$$M \xrightarrow{\cdot a} M$$

given by multiplication by r is one-to-one.

Definition 2. A sequence of homogeneous elements $\theta_1, \ldots, \theta_s$ is a regular M-sequence, or M-sequence for short, if θ_{i+1} is a NZD on $M/(\theta_1, \ldots, \theta_i)M$ for $i = 0, \ldots, s-1$.

Definition 3. The **dimension** of M, denoted $\dim_R M$ or $\dim M$, is the Krull dimension of $R/\operatorname{Ann}_R M$. The **depth** of M, denoted $\operatorname{depth}_R M$ or $\operatorname{depth} M$, is the length of a maximal M-sequence. It can be shown that every maximal M-sequence has the same length.

In general depth_R $M \leq \dim_R M$ (since any M-sequence of length s generates a height-s ideal of $R/\operatorname{Ann} M$). Equality is an important "niceness" condition which gets its own name:

Definition 4. M is Cohen-Macaulay if $\operatorname{depth}_R M = \dim_R M$.

2. Local Cohomology

Define the **torsion functor** Γ by

$$\Gamma(M) := \left\{ u \in M \mid R_{+}^{n} u = 0 \text{ for } n \gg 0 \right\}.$$

It is routine to check that Γ is a covariant, left-exact functor. That is, a map $f: M \to N$ of graded R-modules induces a map $\Gamma(f): \Gamma(M) \to \Gamma(N)$, and if f is injective then $\Gamma(f)$ is injective.

The ith local cohomology functor H^i (more precisely, $H^i_{R_+}$) can now be defined as the ith right derived functor of Γ :

$$H^i(M) = R^i\Gamma(M).$$

That is, one may calculate $H^i(M)$ by taking an injective resolution

$$I^{\bullet}: 0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \dots,$$

applying Γ , and defining $H^i(M) := H^i(\Gamma I^{\bullet})$. (See a textbook on homological algebra for more details.) **Lemma 5.** For all i, the modules $H^i(M)$ are R_+ -torsion, i.e., they are killed by some power of R_+ .

Proof. By definition of Γ , every module of the form $\Gamma(N)$ is R_+ -torsion. In particular, if I^{\bullet} is an injective resolution, then every $\Gamma(I^i)$ is R_+ -torsion, so the same is true of the cohomology modules of $\Gamma(I^{\bullet})$.

The local cohomology functors are useful because they detect depth and dimension. Specifically, we have the following fact.

Theorem 6. Let $e = \operatorname{depth}_R M$ and $d = \dim_R M$. Then:

- (1) $H^i(M) = 0 \text{ unless } e \leq i \leq d.$
- (2) $H^{e}(M) \neq 0 \text{ and } H^{d}(M) \neq 0.$

Proof. We'll prove only (1), which is the case we really need. We proceed by induction on e.

If $H^0(M) \neq 0$, then every element of R_+ is a zerodivisor on M, which is exactly the statement that e = 0.

If e = 0, then

$$R_+ \subset \bigcup_{P \in \operatorname{Ass} M} P,$$

so R_+ is itself an associated prime. It is immediate that $\Gamma(M)=H^0(M)\neq 0$ as desired.

For the inductive step, assume that (1) is true for all R-modules N with depth N < e. Let $a \in R_+$ be a homogeneous NZD on M and let N = M/aM. Then depth_R N = e - 1, so by induction $H^i(N) = 0$ for i < e - 1 and $H^{e-1}(N) \neq 0$.

By general homological nonsense, the short exact sequence of R-modules

$$0 \to M \xrightarrow{\cdot a} M \to N \to 0$$

induces a long exact sequence on cohomology

$$(2) \qquad \dots \to H^{i-1}(M) \to H^{i-1}(N) \to H^{i}(M) \xrightarrow{\cdot a} H^{i}(M) \to \dots$$

If i < e, then $H^{i-1}(N) = 0$, so a is a NZD on $H^i(M)$. But $H^i(M)$ is R_+ -torsion and so has depth 0. It follows that $H^i(M) = 0$.

On the other hand, if i = e then the first three terms displayed in (2) are

$$0 \rightarrow H^{e-1}(N) \rightarrow H^e(M)$$
.

and $H^e(M) \neq 0$ since $H^{e-1}(N) \neq 0$.

The local cohomology functors can be computed using the **Čech complex** $\check{C}^{\bullet}(x_1,\ldots,x_n;\ M)$, which is defined as

(3)
$$\check{C}^{\bullet}(x_1,\ldots,x_n;\ M) := \bigotimes_{i=1}^n \left((0 \to R \to R_{x_i} \to 0) \otimes M \right).$$

where $R_+ = \sqrt{(x_1, \ldots, x_n)}$ and $R_{x_i} = R[x_i^{-1}]$. The *i*th Čech module $\check{C}^i(x_1, \ldots, x_n; M)$ may be described explicitly as follows. For $F \subset [n]$, define

$$x_F = \prod_{i \in F} x_i$$

and let

$$R_F = R[x_F^{-1}].$$

Then

(4)
$$\check{C}_{i}^{\bullet}(x_{1},\ldots,x_{n}; M) = \bigoplus_{\substack{F \subset [n]\\|F|=i}} M_{F}$$

where $M_F = M \otimes R_F$ and the maps between adjacent terms in the Čech complex are given by the usual Koszul maps (just like simplicial cohomology.)

3. Hochster's Theorem

Let Δ be a simplicial complex on vertices x_1, \ldots, x_n , and $R = \mathbf{k}[\Delta] = \mathbf{k}[x_1, \ldots, x_n]/I_{\Delta}$ its Stanley-Reisner ring. With respect to the obvious \mathbb{N}^n -grading, we have $R_+ = (x_1, \ldots, x_n)$.

Definition 7. Let $F \in \Delta$. The star of F with respect to Δ is

$$\operatorname{st}_{\Delta} F := \{ G \in \Delta \mid G \cup F \in \Delta \}$$

and the link of F with respect to Δ is

$$\mathrm{lk}_{\Delta}\,F:=\{G\in\Delta\ |\ G\cup F\in\Delta,\ G\cap F=\emptyset\}.$$

We suppress the subscript when possible.

Note that both st F and lk F are simplicial complexes, and that st $F = \langle F \rangle * \text{lk } F$. For instance, if $\Delta = \langle 123, 14, 24 \rangle$ and F = 12, then lk $F = \langle 3 \rangle$ and st $F = \langle 123 \rangle$.

Let q_1, \ldots, q_n be indeterminates. Denote by Hilb(M; q) the finely graded Hilbert series of M, i.e.,

$$\mathrm{Hilb}(M;\ q) := \sum_{\alpha \in \mathbb{Z}^n} q^{\alpha} \dim_{\mathbf{k}} M_{\alpha},$$

where $q^{\alpha} = q_1^{\alpha_1} \dots q_n^{\alpha_n}$. Also, let $\tilde{H}_i(\Delta; \mathbf{k})$ denote the *i*th reduced simplicial homology of a simplicial complex Δ with coefficients in \mathbf{k} .

For $\alpha \in \mathbb{Z}^n$, define

$$F(\alpha) = \{x_i \mid \alpha_i < 0\},$$

$$G(\alpha) = \{x_i \mid \alpha_i > 0\},$$

$$\operatorname{supp}(\alpha) = F(\alpha) \cup G(\alpha) = \{x_i \mid \alpha_i \neq 0\}.$$

Theorem 8 (Hochster). We have

$$\mathrm{Hilb}(H^{i}(\mathbf{k}[\Delta]); \ q) \ = \ \sum_{F \in \Delta} \dim_{\mathbf{k}} \tilde{H}_{i-|F|-1}(\mathrm{lk}_{\Delta} \ F; \ \mathbf{k}) \prod_{x : i \in F} \frac{q_{i}^{-1}}{1 - q_{i}^{-1}}.$$

Proof. We compute $H^i(R)$ explicitly as the *i*th cohomology of the Čech complex $\check{C}^{\bullet} = \check{C}^{\bullet}(x_1, \ldots, x_n; M)$. If $F \notin \Delta$, then the ring R_F is zero, because $x_F = 0$ in R. On the other hand, if $F \in \Delta$, then the variables in F become units in R_F , and those not in $\operatorname{st}_{\Delta} F$ get killed (since they annihilate the unit x_F). That is,

$$R_F \ = \ \mathbf{k} \left[\left\{ x_i, x_i^{-1} \ : \ i \in F \right\} \ \cup \ \left\{ x_j \ : \ x_j \in \operatorname{lk} F \right\} \right] \otimes R.$$

Let $\alpha \in \mathbb{Z}^n$. We will compute the α th graded piece $\check{C}^{\bullet}_{\alpha}$ of the Čech complex. If $\operatorname{supp}(\alpha) \notin \Delta$, then $\check{C}^{\bullet}_{\alpha} = 0$, because $R_{\alpha} = 0$ and adjoining inverses doesn't change this. So $\operatorname{suppose}$ that $\operatorname{supp}(\alpha) \in \Delta$. Let $F = F(\alpha)$, j = |F|, and $G = G(\alpha)$. A priori, we have

(5)
$$\check{C}^r_{\alpha} = \left[\bigoplus_{|F'|=r} R_{F'}\right]_{\alpha} = \bigoplus_{|F'|=r} [R_{F'}]_{\alpha}.$$

A whole bunch of these summands are zero. Specifically, for $R_{F'}$ to be nonzero, we must have $F' \in \Delta$ (as previously noted), $F' \supset F$ (since the variables in F must be units in the α th graded piece of the Čech complex), and $F' \cup G \in \Delta$ (so that x^{α} itself is nonzero). This is all equivalent to the condition that $F'' = F' \setminus F$ belong to $lk_{st} \subseteq F$, so we may write

(6)
$$\check{C}_{\alpha}^{r} = \left[\bigoplus_{\substack{F'' \in \operatorname{lk}_{\operatorname{st} G} F \\ |F''| = r - j}} R_{F \cup F''} \right]_{\alpha}.$$

The maps in \check{C}^r_{α} correspond to the usual coboundary maps of the simplicial cochain complex of $\operatorname{lk}_{\operatorname{st} G} F$, shifted by j+1. That is,

$$\left[H^{i}(R)\right]_{\alpha} = \tilde{H}^{i-j-1}(\operatorname{lk}_{\operatorname{st} G} F; \mathbf{k})$$

(8)
$$\cong \tilde{H}_{i-j-1}(\operatorname{lk}_{\operatorname{st} G} F; \mathbf{k})$$

since this is a finite-dimensional **k**-vector space, hence isomorphic to its dual. (The isomorphism is not canonical, but we don't care because we're really only interested in its dimension.)

If $G \neq \emptyset$, then $\operatorname{lk}_{\operatorname{st} G} F$ is a cone over G. In particular it is contractible, so $\tilde{H}_{\bullet}(\operatorname{lk}_{\operatorname{st} G} F; \mathbf{k}) = 0$. Therefore we only have nonzero terms when $G = \emptyset$, so $\operatorname{lk}_{\operatorname{st} G} F = \operatorname{lk}_{\Delta} F$ and the last equation becomes

(9)
$$[H^i(R)]_{\alpha} \cong \tilde{H}_{i-j-1}(\operatorname{lk} F; \mathbf{k}).$$

Therefore

(13)

(10)
$$\operatorname{Hilb}(H^{i}(\mathbf{k}[\Delta]); q) = \sum_{F \in \Delta} \sum_{\substack{\alpha: \\ \operatorname{supp}(\alpha) = F}} \dim_{\mathbf{k}} \tilde{H}_{i-|F|-1}(\operatorname{lk} F; \mathbf{k}) q^{\alpha}$$

$$= \sum_{F \in \Delta} \dim_{\mathbf{k}} \tilde{H}_{i-|F|-1}(\operatorname{lk} F; \mathbf{k}) \sum_{\substack{\alpha: \\ \sup p(\alpha) = F}} q^{\alpha}$$

(12)
$$= \sum_{F \in \Delta} \dim_{\mathbf{k}} \tilde{H}_{i-|F|-1}(\operatorname{lk} F; \mathbf{k}) \prod_{x_i \in F} \frac{q_i^{-1}}{1 - q_i^{-1}}$$

as desired. \Box

Here's an example (from Stanley) of computing a Čech complex. Let Δ be the complex $\langle 12, 13, 23, 4 \rangle =$

and $R = \mathbf{k}[\Delta] = \mathbf{k}[x_1, x_2, x_3, x_4]/(x_1x_4, x_2x_4, x_3x_4, x_1x_2x_3)$. Then the Čech complex is

$$0 \to \underbrace{R}_{\check{C}^0} \to \underbrace{R_1 \oplus R_2 \oplus R_2 \oplus R_3 \oplus R_4}_{\check{C}^1} \to \underbrace{R_{12} \oplus R_{13} \oplus R_{23}}_{\check{C}^2} \to 0,$$

where $R_1 = R[x_1^{-1}], R_{12} = R[x_1^{-1}, x_2^{-1}], \text{ etc.}$

• For $\alpha = (0, 0, 0, 0)$, so $F(\alpha) = G(\alpha) = \emptyset$, we have

$$\operatorname{lk}_{\operatorname{st} G} F = \operatorname{lk}_{\Delta} \emptyset = \Delta,$$

so
$$[H^i(R)]_{\alpha} = \tilde{H}_{i-1}(\Delta; \mathbf{k}).$$

• For $\alpha = (-2, 3, 0, 0)$, we have

$$F = \{x_1\}, \qquad G = \{x_2\}, \qquad \operatorname{lk}_{\operatorname{st} G} F = \langle x_2 \rangle \text{ (i.e., a point)}$$

so
$$[H^i(R)]_{\alpha} = \tilde{H}_{i-2}(\text{point}) = 0.$$

4. Reisner's Theorem

Let Δ be a simplicial complex and $R = -\mathbf{k}[Delta]$. Let $d = \dim R = 1 + \dim \Delta$. We will say that Δ satisfies **Reisner's criterion** if for all $F \in \Delta$, and $i < \dim(\operatorname{lk} F)$. we have

$$\tilde{H}_i(\operatorname{lk} F; \mathbf{k}) = 0.$$

Theorem 9. Δ is Cohen-Macaulay if and only if it satisfies Reisner's criterion.

Remark: Δ is **Gorenstein** (a stronger condition than Cohen-Macaulayness) if in addition $\tilde{H}_i(\operatorname{lk} F; \mathbf{k}) \cong \mathbf{k}$ for $i = \dim(\operatorname{lk} F)$.

Proof. First, we show that a Cohen-Macaulay complex is pure (i.e., all maximal faces have the same dimension). Indeed, if Δ is Cohen-Macaulay of dimension d-1 and dim F < d-1, then $\tilde{H}_{-1}(\operatorname{lk} F) = 0$ by Hochster's theorem, so $\operatorname{lk} F \neq 0$ and F is not maximal. (This can also be shown without Hochster's theorem; see Bruns and Herzog, p. 210.)

Next, we show that a complex Δ satisfying Reisner's criterion is pure. If dim F = 0 then there is nothing to show. Otherwise, we induct on dimension. Reisner's criterion gives $\tilde{H}_0(\Delta) = \tilde{H}_0(\operatorname{lk} \emptyset) = 0$, so Δ is connected. Moreover, for every vertex v, the subcomplex $\operatorname{lk}\{v\}$ of Δ satisfies Reisner's criterion and has dimension less than that of Δ , so it is pure by induction. Now, for any maximal face F, let $v, w \in F$; we have

$$\dim \operatorname{lk}\{v\} = |F - v| - 1 = |F - w| - 1 = \dim \operatorname{lk}\{w\};$$

by connectedness all links of vertices must have the same dimension, and the same equation implies that Δ is pure.

By these two observations together, we may assume that Δ is pure, so |F| = d for all maximal faces and $\dim(\operatorname{lk} F) = d - |F| - 1$ for all faces. So Cohen-Macaulayness

$$F$$
 is Cohen-Macaulay
$$\iff \quad \mathbf{k}[\Delta] \text{ is Cohen-Macaulay} \\ \iff \quad \tilde{H}_{j-|F|-1}(\operatorname{lk} F; \ \mathbf{k}) = 0 \text{ for } j < d, \ F \in \Delta$$

which is exactly Reisner's criterion (set j = i + |F| + 1).

By the way, a pure connected simplicial complex Δ certainly need not be Cohen-Macaulay (unless dim $\Delta \leq 1$). The "minimal" example is the complex $\langle 123, 345 \rangle =$

which is not Cohen-Macaulay because $lk(3) = \langle 12, 45 \rangle$ is disconnected, so has $\tilde{H}_0 \neq 0$. (Also, the *h*-vector of this complex can be computed as (1, 2, -1). In a Cohen-Macaulay complex, every entry of the *h*-vector is nonnegative.)