UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Aula 6: Aprendizado supervisionado para textos

Prof. Dennis Giovani Balreira

Conteúdo

- Aprendizado supervisionado para textos:
 - Classificação de texto com algoritmos clássicos
 - Visão Geral
 - Naive Bayes
 - Avaliação de desempenho para texto:
 - Divisão dos dados
 - Generalização
 - Matriz de confusão
 - Acurácia
 - Precisão (precision)
 - Revocação (recall)
 - F-score (micro/macro)
 - Ensemble learning
 - Hiperparâmetros

Onde estamos em PLN?

- Algoritmos tradicionais
 - Predominantes entre o final dos anos 1990 até ~2016
 - BoW features + Aprendizado de Máquina
- Embeddings fixas + Deep Learning
 - Predominates de ~2014 até ~2019
 - Word2vec, Glove, FastText + LSTM
- Embeddings contextuais + Large Language Models
 - Estado da arte em diversas tarefas
 - o BERT, GPT, etc.

Aprendizado supervisionado

O que é "Aprendizado de Máquina Supervisionado"?

Aprendizado supervisionado

- O que é "Aprendizado de Máquina Supervisionado"?
 - É uma área da Inteligência Artificial (IA)
 - Mas antes disso... o que é IA?

Inteligência Artificial

- Mas antes disso... o que é IA?
 - "Inteligência Artificial é uma disciplina científica e de engenharia cujo objetivo é criar máquinas inteligentes"

OU

 "O esforço para automatizar tarefas (intelectuais) normalmente realizadas por humanos"

Inteligência Artificial

IA é dividida em IA clássica (simbólica) e IA moderna

Aprendizado de máquina

Sistemas que são treinados para realizar uma tarefa, ao invés de serem explicitamente programados para tal

Queremos encontrar automaticamente a "melhor função" f a partir dos dados

Espera-se que f consiga prever um novo dado

Com programação, o programador define como fazer

Em aprendizado de máquina a solução vem "automaticamente" de f

Rules

Answers

Pipeline

• Tipos

 Visa aprender uma função que mapeia dados de entrada a respostas/decisões de saída a partir de um conjunto de dados rotulados

- Precisamos de dados estruturados (ou semi-estruturados)
 - Busca aprender uma função f capaz de prever o valor do atributo alvo de uma instância x a partir dos atributos preditivos de x

Atributos preditores		Atributo alvo (a					
Radius	Texture	Perimeter	Diagnosis	ser predito)			
14	23	94	M	Instâncias			
15	28	97	M	/ amostras			
15	20	95	M	X	⟨ →	f –	→ f(x
11	19	72	В				•
9	17	59	В				
13	16	81	В				

Atributos

- Tarefa varia conforme o tipo de dado a ser encontrado (atributo alvo):
 - Classificação: atributo alvo é um valor discreto (categórico)
 - o Regressão: atributo alvo é um valor numérico real

Radius	Texture	Perimeter	Diagnosis
14	23	94	M
15	28	97	M
15	20	95	M
11	19	72	В
9	17	59	В
13	16	81	В
	•••		***

X	У	
1	5	
2	8	
8	26	
10	32	

• Exemplo:

Qual a função f mapeia valores de x no valor de y adequado?

X	У	
1	5	
2	8	
8	26	
10	32	

Exemplo:

Qual a função f mapeia valores de x no valor de y adequado?

X	У		
1	5		
2	8		
8	26		
10	32		

Precisamos aprender automaticamente (a partir do conjunto de dados) a função adequada

- E para textos?
 - Textos podem ser descritos por vetores numéricos!
 - Bag of Words
 - TF-IDF

- E para textos?
 - Textos podem ser descritos por vetores numéricos!
 - Bag of Words
 - TF-IDF

- Vamos supor que vamos trabalhar com análise de sentimentos
 - Analisar textos para compreender as opiniões das pessoas
 - Reviews de produtos
 - Tweets
 - Posts

Muito bom!

- E para textos?
 - Textos podem ser descritos por vetores numéricos!
 - Bag of Words
 - TF-IDF

- Vamos supor que vamos trabalhar com análise de sentimentos
 - Analisar textos para compreender as opiniões das pessoas
 - Reviews de produtos
 - Tweets
 - Posts

Muito bom!

- Tarefas comuns:
 - Polaridade: positivo, negativo etc.
 - Emoção: alegria, tristeza, raiva, medo, nojo etc.

- Quais abordagens para resolver problemas de Análise de Sentimentos?
 - 1. Usar um léxico pré-construído composto por palavras e suas polaridades
 - 2. Aprender um modelo de classificação a partir de exemplos rotulados

Categorical		Numerical		
word	sentiment	word	sentiment	
nice	pos	nice	2	
beautiful	pos	beautiful	3	
amazing	pos	amazing	4	
ugly	neg	ugly	-3	
stupid	neg	stupid	-2	

https://mboyanov.medium.com/embeddings-transformations-for-sentiment-lexicon-enrichment-768c5eb06e55

- Quais abordagens para resolver problemas de Análise de Sentimentos?
 - 1. Usar um léxico pré-construído composto por palavras e suas polaridades
 - 2. Aprender um modelo de classificação a partir de exemplos rotulados

Resultados mais interessantes! Foco desta e das próximas aulas!

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "O notebook é muito rápido." positivo
- 2. "Excelente duração da bateria." positivo
- 3. "Carregamento do Windows muito rápido." positivo
- 4. "Muito ruim, vou devolver." negativo
- 5. "O notebook é bem fininho." positivo
- 6. "O teclado numérico é muito pequeno." negativo

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "O notebook é muito rápido." positivo
- "Excelente duração da bateria." positivo
- 3. "Carregamento do Windows muito rápido." positivo
- 4. "Muito ruim, vou devolver." negativo
- 5. "O notebook é bem fininho." positivo
- 6. "O teclado numérico é muito pequeno." negativo

Tokenização + pontuação

- 1. "O notebook é muito rápido" positivo
- "Excelente duração da bateria" positivo
- 3. "Carregamento do Windows muito rápido" positivo
- 4. "Muito ruim vou devolver" negativo
- 5. "O notebook é bem fininho" positivo
- 6. "O teclado numérico é muito pequeno" negativo

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "O notebook é muito rápido" positivo
- 2. "Excelente duração da bateria" positivo
- 3. "Carregamento do Windows muito rápido" positivo
- 4. "Muito ruim vou devolver" negativo
- 5. "O notebook é bem fininho" positivo
- 6. "O teclado numérico é muito pequeno" negativo

Case folding

- L. "o notebook é muito rápido" positivo
- 2. "excelente duração da bateria" positivo
- "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "o notebook é bem fininho" positivo
- 6. "o teclado numérico é muito pequeno" negativo

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "o notebook é muito rápido" positivo
- "excelente duração da bateria" positivo
- 3. "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "o notebook é bem fininho" positivo
- 6. "o teclado numérico é muito pequeno" negativo

Remoção de Stopwords

- 1. "e notebook é muito rápido" positivo
- 2. "excelente duração da bateria" positivo
- 3. "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "o notebook é bem fininho" positivo
- 6. "o teclado numérico é muito pequeno" negativo

• Exemplo de dataset de análise de sentimentos (polaridade - positivo e negativo)

- 1. "e notebook é muito rápido" positivo
- "excelente duração da bateria" positivo
- "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "e notebook é bem fininho" positivo
- 6. "o teclado numérico é muito pequeno" negativo

Representação com técnicas tradicionais

Vocabulário: [bateria, bem, carregamento, devolver, duração, excelente, fininho, muito, notebook, numérico, pequeno, ruim, rápido, teclado, windows]

Atributos

Geração dos vetores (um para cada documento) depende da técnica usada!

Instâncias

- Bag of Words
- Term Frequency Inverse Document Frequency

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "e notebook é muito rápido" positivo
- "excelente duração da bateria" positivo
- 3. "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "e notebook é bem fininho" positivo
- 6. "e teclado numérico é muito pequeno" negativo

Representação com BoW

Vocabulário: [bateria, bem, carregamento, devolver, duração, excelente, fininho, muito, notebook, numérico, pequeno, ruim, rápido, teclado, windows]

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, positivo
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

- Exemplo de dataset de análise de sentimentos (polaridade positivo e negativo)
- 1. "e notebook é muito rápido" positivo
- "excelente duração da bateria" positivo
- "carregamento do windows muito rápido" positivo
- 4. "muito ruim vou devolver" negativo
- 5. "e notebook é bem fininho" positivo
- 6. "o teclado numérico é muito pequeno" negativo

Representação com TF-IDF

Vocabulário: [bateria, bem, carregamento, devolver, duração, excelente, fininho, muito, notebook, numérico, pequeno, ruim, rápido, teclado, windows]

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 0.18, 0.48, 0, 0, 0, 0.48, 0, 0 positivo]
- 2. "Excelente duração da bateria" positivo = [0, 0, 0, 0.78, 0.78, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0.78, 0, 0, 0, 0, 0.18, 0, 0, 0, 0, 0.48, 0, 0.78, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0.78, 0, 0, 0, 0.18, 0, 0, 0, 0.78, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0.78, 0, 0, 0, 0, 0.78, 0, 0.48, 0, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 0.18, 0, 0.78, 0.78, 0, 0, 0.78, 0, negativo]

• Exemplo de dataset de análise de sentimentos (polaridade - positivo e negativo)

Vocabulário: [bateria, bem, carregamento, devolver, duração, excelente, fininho, muito, notebook, numérico, pequeno, ruim, rápido, teclado, windows]

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 0.18, 0.48, 0, 0, 0, 0.48, 0, 0 positivo]
- 2. "Excelente duração da bateria" positivo = [0, 0, 0, 0.78, 0.78, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0.78, 0, 0, 0, 0, 0.18, 0, 0, 0, 0, 0.48, 0, 0.78, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0.78, 0, 0, 0, 0.18, 0, 0, 0, 0.78, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0.78, 0, 0, 0, 0, 0.78, 0, 0.48, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 0, 0.18, 0, 0.78, 0.78, 0, 0.78, 0, negativo]

Dados para o processo de aprendizado de máquina

- Exemplos de algoritmos de classificação tradicionais:
 - K-Nearest Neighbors
 - Árvores de Decisão
 - Naive Bayes
 - Regressão Linear
 - Regressão Logística
 - Redes Neurais

- Exemplos de algoritmos de classificação tradicionais:
 - K-Nearest Neighbors
 - Árvores de Decisão
 - Naive Bayes
 - Regressão Linear
 - Regressão Logística
 - Redes Neurais

- Algoritmo probabilístico baseado no Teorema de Bayes
 - Calcula a probabilidade posterior de um evento com base em evidências observadas
- O Naive Bayes usa o teorema para calcular a probabilidade de uma amostra pertencer a uma classe dado o vetor de frequências das palavras

Thomas Bayes (1701~1761)

Qual é a probabilidade da amostra pertencer à classe C (positivo ou negativo), dado o vetor X

Qual é a chance de ver as palavras nas frequências observadas, assumindo que a classe é C

$$P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}$$

Qual é a probabilidade de a classe ser C antes de observar as características da amostra?

Qual é a chance de observar essas frequências das palavras, independentemente da classe?

- Algoritmo probabilístico baseado no Teorema de Bayes
 - Calcula a probabilidade posterior de um evento com base em evidências observadas
- O Naive Bayes usa o teorema para calcular a probabilidade de uma amostra pertencer a uma classe dado o vetor de frequências das palavras

Thomas Bayes (1701~1761)

Qual é a probabilidade da amostra pertencer à classe C (positivo ou negativo), dado o vetor X

Qual é a chance de ver as palavras nas frequências observadas, assumindo que a classe é C

$$P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}$$

Qual é a probabilidade de a classe ser C antes de observar as características da amostra?

A ideia é apenas "comparar", não calcular o valor exato!

Qual é a chance de observar essas frequências das palavras, independentemente da classe?

- Algoritmo probabilístico baseado no Teorema de Bayes
 - Calcula a probabilidade posterior de um evento com base em evidências observadas
- O Naive Bayes usa o teorema para calcular a probabilidade de uma amostra pertencer a uma classe dado o vetor de frequências das palavras

Thomas Bayes (1701~1761)

Qual é a probabilidade da amostra pertencer à classe C (positivo ou negativo), dado o vetor X

Qual é a chance de ver as palavras nas frequências observadas, assumindo que a classe é C

$$P(C|X) \propto P(X|C) \cdot P(C)$$

Qual é a probabilidade de a classe ser C antes de observar as características da amostra?

"Naive" (ingênuo) porque é assumido que as features são independentes entre si (cada palavra tem sua probabilidade calculada independentemente das demais)

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \cdots \cdot P(x_n|C)$$

$$P(C|X) \propto P(X|C) \cdot P(C)$$

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \cdots \cdot P(x_n|C)$$

Para o nosso exemplo (assumindo BoW):

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

Para ser usado como conjunto de teste (falaremos em breve)

$$P(C|X) \propto P(X|C) \cdot P(C)$$

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \dots \cdot P(x_n|C)$$

Para o nosso exemplo (assumindo BoW):

$$P(X_i|C) = \frac{\text{soma das frequências da palavra} + 1}{\text{número total de amostras na classe} + \text{tamanho do vocabulário}}$$

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

Suavização de Laplace (evita probabilidade 0)

$$P(C|X) \propto P(X|C) \cdot P(C)$$

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \cdots \cdot P(x_n|C)$$

• Para o nosso exemplo (assumindo BoW):

$$P(X_i|C) = \frac{\text{soma das frequências da palavra} + 1}{\text{número total de amostras na classe} + \text{tamanho do vocabulário}}$$

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows muito rápido" positivo = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

Suavização de Laplace (evita probabilidade 0)

$$P(ext{positivo}) = rac{4}{5} = 0.8$$

$$P(ext{negativo}) = rac{1}{5} = 0.2$$

$$P(C|X) \propto P(X|C) \cdot P(C)$$

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \cdots \cdot P(x_n|C)$$

• Para o nosso exemplo (assumindo BoW):

$$P(X_i|C) = rac{ ext{soma das frequências da palavra} + 1}{ ext{número total de amostras na classe} + ext{tamanho do vocabulário}}$$

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows (muito) rápido" positivo = [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, negativo
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

Suavização de Laplace (evita probabilidade 0)

$$P(\text{positivo}) = \frac{4}{5} = 0.8$$

$$P(ext{negativo}) = rac{1}{5} = 0.2$$

$$P(X_i|C)$$
 $P(ext{muito}| ext{positivo}) = \underbrace{\frac{2+1}{4+15}}_{=} = \frac{3}{19} pprox 0.1579$

$$P(\text{num\'erico}|\text{positivo}) = \frac{0+1}{19} = 0.0526$$

$$P(\text{pequeno}|\text{positivo}) = \frac{0+1}{19} = 0.0526$$

$$P(ext{teclado}| ext{positivo}) = \frac{0+1}{19} = 0.0526$$

$$P(\text{muito}|\text{negativo}) = \underbrace{\frac{1}{1+15}}_{1+15} = \frac{2}{16} = 0.125$$

$$P(\text{num\'erico}|\text{negativo}) = \frac{0+1}{16} = 0.0625$$

$$P(\text{pequeno}|\text{negativo}) = \frac{0+1}{16} = 0.0625$$

$$P(ext{teclado}| ext{negativo}) = rac{0+1}{16} = 0.0625$$

$$P(C|X) \propto P(X|C) \cdot P(C)$$

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \cdots \cdot P(x_n|C)$$

Para o nosso exemplo (assumindo BoW):

$$P(X_i|C) = \frac{\text{soma das frequências da palavra} + 1}{\text{número total de amostras na classe} + \text{tamanho do vocabulário}}$$

- 1. "O notebook é muito rápido" positivo = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, positivo]
- 2. "Excelente duração da bateria" positivo = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, positivo]
- 3. "Carregamento do Windows (muito) rápido" positivo = [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, positivo]
- 4. "Muito ruim vou devolver" negativo = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, negativo]
- 5. "O notebook é bem fininho" positivo = [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, positivo]
- 6. "O teclado numérico é muito pequeno" negativo = [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, negativo]

Suavização de Laplace (evita probabilidade 0)

$$P(ext{positivo}) = rac{4}{5} = 0.8$$

$$P(ext{negativo}) = rac{1}{5} = 0.2$$

$$P(X_i|C)$$
 $P(ext{muito}| ext{positivo}) = \underbrace{\frac{2+1}{4+15}}_{4+15} = \frac{3}{19} pprox 0.1579$

$$P(\text{num\'erico}|\text{positivo}) = \frac{0+1}{19} = 0.0526$$

$$P(\text{pequeno}|\text{positivo}) = \frac{0+1}{19} = 0.0526$$

$$P(ext{teclado}| ext{positivo}) = rac{0+1}{19} = 0.0526$$

$$P(\text{positivo}|X) \propto 0.8 \times 0.1579 \times 0.0526 \times 0.0526 \times 0.0526$$

$$P ext{ positivo}(X) \approx 0.8 \times 0.0000228 \approx 0.0000182$$

$$P(\text{muito}|\text{negativo}) = \underbrace{1+1}_{1+15} = \frac{2}{16} = 0.125$$

$$P(\text{num\'erico}|\text{negativo}) = \frac{0+1}{16} = 0.0625$$

$$P(\text{pequeno}|\text{negativo}) = \frac{0+1}{16} = 0.0625$$

$$P(\text{teclado}|\text{negativo}) = \frac{0+1}{16} = 0.0625$$

$$P(\text{negativo}|X) \propto 0.2 \times 0.125 \times 0.0625 \times 0.0625 \times 0.0625$$

$$P(\text{negativo}|X) \approx 0.2 \times 0.000122 \approx 0.0000244$$

Tarefas de aprendizado

• Algoritmos de aprendizado de máquina podem ser aplicados a diferentes problemas

Classificação:

Diagnóstico Médico:

Determinar se o paciente tem ou não uma doença a partir de resultados de exames médicos

Classificação binária

Classificação multiclasse

Reconhecimento de Dígitos Manuscritos: Dada uma imagem de um dígito, determinar qual é o dígito representado na imagem

Classificação multi-label Etiquetagem de Imagens:

Dada uma imagem, identificar os objetos presentes na imagem

Regressão:

Regressão simples

Previsão de consumo de

energia: Dado o consumo de energia dos últimos N dias, prever o consumo do dia seguinte

Regressão múltipla

Previsão do clima: Dados os valores históricos de diferentes dados do clima (pressão, temperatura, umidade) dos últimos dias, prever esses dados para o dia seguinte

Avaliação de modelos supervisionados para texto

 Como garantir que o modelo é bom o suficiente para auxiliar na tomada de decisão?

- Como garantir que o modelo é bom o suficiente para auxiliar na tomada de decisão?
 - Modelo precisar generalizar o aprendizado!
- É suficiente avaliar a performance do modelo apenas no conjunto de dados de treinamento?

- Como garantir que o modelo é bom o suficiente para auxiliar na tomada de decisão?
 - Modelo precisar generalizar o aprendizado!
- É suficiente avaliar a performance do modelo apenas no conjunto de dados de treinamento?
 - Não!
 - Uma performance boa no conjunto de treinamento não é evidência da performance para dados "novos" (que não foram usados durante o treinamento)
 - É fundamental separar "dados de teste" (não são usados durante o treinamento) para avaliar o modelo

Avaliação: Divisão dos dados

- Com holdout:
 - O conjunto original deve ser separado aleatoriamente em dois subconjuntos:
 - Treino: Dados utilizados para ajustar os parâmetros (70~80% dos dados)
 - Teste: Dados utilizados para testar o modelo (30~20% dos dados)
 - Utilize sempre que possível divisão estratificada (representação proporcional dos estratos de todo o dataset em cada conjunto)

Avaliação: Divisão dos dados

- Com K-fold cross validation:
 - O conjunto original de dados é separado em k subconjuntos (folds):
 - São realizadas k iterações, onde em cada iteração i:
 - O i-ésimo fold é usado como teste
 - A união dos demais folds é utilizada como dados de treinamento
 - Treina-se um modelo por iteração, avaliando-o no conjunto de teste
 - A performance final do modelo é uma agregação (média, por exemplo) da performance considerando a performance em todos os testes

Avaliação: Divisão dos dados

- Utilizando conjunto de validação (dev):
 - Treino: Ajusta os parâmetros do modelo
 - Teste: Mede a performance final
 - Validação (development test):
 - Permite parar prematuramente durante o treinamento caso a performance piore ou trave (early stopping)
 - Permite selecionar hiperparâmetros (arquitetura, taxa de aprendizado etc.) que geram a melhor performance no conjunto de validação

Avaliação: Problemas na generalização

- Underfitting (subajuste):
 - Ocorre quando o modelo não é capaz de se ajustar corretamente aos dados de treinamento
 - Modelo muito simples para o problema
- Overfitting (sobreajuste):
 - Ocorre quando o modelo se ajusta demais aos dados de treinamento, impactando negativamente a sua generalização
 - Modelo muito complexo para o problema

MACHINE LEARNING GENERALIZATION
FINDING THE PERFECT FIT

GOLDILOCKS ZONE

UNDERFIT

OVERFIT

Avaliação: Problemas na generalização

Época:

- Ciclo completo de passagem pelos dados de treino durante o processo de aprendizado de um modelo
- Cada época ocorre quando o modelo vê todos os exemplos do treinamento uma vez

Muitas épocas?

- Muitas vezes o modelo precisa repetir o processo para ajustar seus pesos para minimizar o erro
- Curvas de aprendizado auxiliam na visualização

Viés vs. Variância (Taxa de erro)

- Erros cometidos por algoritmos supervisionados podem ser decompostos em viés e variância
- Viés (bias): erro que deriva de suposições (errôneas) assumidas pelo algoritmo na construção do modelo
 - Alto viés: adota suposições fortes, dificuldade em capturar relações importantes entre atributos e saídas
- Variância: reflete a sensibilidade do modelo a variações nos dados de treinamento, isto é, o quanto seu desempenho pode flutuar com estas variações
 - Alta variância: pequenas mudanças no dado podem gerar perturbações significativas no modelo

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - o Regressão:
 - Erro absoluto médio (MAE): média da diferença absoluta entre o valor previsto e o valor real
 - Erro quadrático médio (MSE): média da diferença entre o valor previsto e o valor real ao quadrado

$$MAE(f) = \frac{1}{n} \sum_{i=1}^{n} |y_i - f(\mathbf{x}_i)|$$

$$MSE(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão: ferramenta visual que mostra a distribuição de previsões corretas e incorretas para cada classe

<u>Verdadeiros Positivos</u> (VP): instâncias positivas corretamente classificadas como positivas

<u>Verdadeiros Negativos</u> (VN): instâncias negativas corretamente classificadas como negativas

<u>Falsos Positivos</u> (FP): instâncias negativas incorretamente classificadas como positivas

<u>Falsos Negativos</u> (FN): instâncias positivas incorretamente classificadas como negativas

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (multiclasse)
 - Classificação:
 - Matriz de confusão (multiclasse)

Real \ Predito	Maçã	🍌 Banana	Laranja
Maçã	10	2	1
🏂 Banana	1	15	0
Laranja	0	3	8

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão
 - Acurácia (taxa de acerto): proporção de exemplos classificados corretamente
 - Problemas com dados desbalanceados (medida que "engana")

$$Acurácia = \frac{Número de Previsões Corretas}{Número Total de Previsões}$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão
 - Acurácia (taxa de acerto)
 - Precisão (precision): proporção de previsões positivas corretas

$$prec(f) = \frac{VP}{VP + FP}$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão
 - Acurácia (taxa de acerto)
 - Precisão (*precision*)
 - Recall (revocação): proporção de verdadeiros positivos identificados corretamente

Classe predita

$$rev(f) = \frac{VP}{VP + FN}$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão
 - Acurácia (taxa de acerto)
 - Precisão (*precision*)
 - Recall (revocação)

Tradeoff entre Precisão e Recall!

Precisão: exatidão do modelo Recall: completude do modelo

Dependendo do domínio, há interesse em dar ênfase à minimização de um tipo de erro específico:

Modelo orientado à <u>precisão</u> : visa minimizar <u>FP</u> Ex: Sistemas de busca; classificação de documentos

Modelo orientado ao <u>recall</u> : visa minimizar <u>FN</u> Ex: Domínios médicos (ex: detecção de tumores)

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão (binários)
 - Classificação:
 - Matriz de confusão
 - Acurácia (taxa de acerto)
 - Precisão (*precision*)
 - Recall (revocação)

Tradeoff entre Precisão e Recall!

Precisão: exatidão do modelo Recall: completude do modelo

Dependendo do domínio, há interesse em dar ênfase à minimização de um tipo de erro específico:

Modelo orientado à <u>precisão</u> : visa minimizar <u>FP</u> Ex: Sistemas de busca; classificação de documentos

Modelo orientado ao <u>recall</u> : visa minimizar <u>FN</u> Ex: Domínios médicos (ex: detecção de tumores)

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - Classificação:
 - F1-Score: média harmônica entre precisão e revocação (muito usado!)
 - Binário: quando há apenas duas classes

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - Classificação:
 - F1-Score: média harmônica entre precisão e revocação (muito usado!)
 - Binário: quando há apenas duas classes
 - Multiclasse:
 - F1-Score Micro: calcula as métricas globalmente, somando todos os TPs, FPs e FNs das classes. Indicado para classes desbalanceadas, mas deseja-se dar o mesmo peso para cada instância (independente da sua classe)

$$F1_{
m micro} = 2 imes rac{Precision_{
m micro} imes Recall_{
m micro}}{Precision_{
m micro} + Recall_{
m micro}}$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - Classificação:
 - F1-Score: média harmônica entre precisão e revocação (muito usado!)
 - Binário: quando há apenas duas classes
 - Multiclasse:

$$F1_{ ext{macro}} = rac{F1_{ ext{Classe 1}} + F1_{ ext{Classe 2}} + \cdots + F1_{ ext{Classe N}}}{N}$$

 F1-Score Macro: calcula o F1 para cada classe separadamente e tira a média aritmética. Indicado para classes balanceadas, onde todas são igualmente importantes e minoritárias não são ignoradas

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - Classificação:
 - F1-Score: média harmônica entre precisão e revocação (muito usado!)
 - Binário: quando há apenas duas classes
 - Multiclasse:
 - F1-Score Weighted: calcula o F1 para cada classe separadamente e tira a média ponderada pelo número de instâncias da classe. Indicado para classes desbalanceadas, onde classes maiores têm mais importância

$$F1_{ ext{weighted}} = \sum_{i=1}^{N} (F1_{ ext{Classe } i} imes w_i)$$

- Desempenho é avaliado comparando-se o valor predito com o valor real do atributo alvo
 - Existem diversas métricas!
- Diferem para problemas de classificação e de regressão
 - Classificação:
 - F1-Score

Métrica	Cálculo		
Macro	Média dos F1s por classe		
Weighted	F1s ponderados pelo tamanho		
Micro	Soma global de TP/FP/FN		

Ensemble Learning

- Combina múltiplos modelos (base learners) para melhorar o desempenho e a robustez das previsões
 - Ideia: a diversidade entre os modelos pode reduzir erros e aumentar a precisão

Exemplos:

- Bagging (Bootstrap Aggregating): treina vários modelos em diferentes subconjuntos do mesmo conjunto de dados Exemplo: Random Forest (múltiplas árvores de decisão)
- Boosting: treina sequencialmente, dando mais peso aos exemplos que foram mal classificados em etapas anteriores Exemplos: AdaBoost, Gradient Boosting, XGBoost
- Voting: combina as previsões de vários modelos usando votação (maioria) ou média das previsões

Hiperparâmetros

- Parâmetros configurados manualmente antes do treinamento e que influenciam diretamente o desempenho e a eficiência do modelo
 - São diferentes dos parâmetros, que são ajustados automaticamente durante o treino
- Controlam o comportamento do treinamento e a estrutura da rede
 - Possuem grande impacto direto no desempenho da rede
- Exemplos:
 - Número de camadas e neurônios por camada
 - Taxa de aprendizado inicial
 - Decaimento da taxa de aprendizado
 - Tipo de otimizador
 - Função de ativação, função de perda, batch size

Hyperparamete tuning

Próximas aulas

- Aula prática (Laboratório 3)
- Aula teórica:
 - Representação de textos com word embeddings fixas

Material complementar

- Para mais detalhes:
 - Slides do Prof. Anderson Tavares (Moodle) sobre Avaliação de Modelos

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Obrigado pela atenção! Dúvidas?

Prof. Dennis Giovani Balreira (Material adaptado dos Profs. Joel Carbonera, Anderson Tavares, Viviane Moreira e Dan Jurafsky)

INF01221 - Tópicos Especiais em Computação XXXVI: Processamento de Linguagem Natural

