AS5570 Principles of Guidance of Autonomous Vehicles Assignment 2 Part 1 Group 1

Question 7 Part 1 (PPN, Non-manoeuvring target)

Parameters

 $X_{P0} = (0, 0) \text{ m}$

 $\theta_0 = 30^{\circ}$

 $R_0 = 7000 \text{ m}$

 $V_p = 400 \text{ m/s}$

nu = 1/0.6

 $\alpha_{\rm T}$ = 60°

N = 4

Simulation settings

ODE solving method: Euler

Time step: 0.001 s

Termination criteria: R < 0.5 m or t > 60 s

Tested initial conditions

 $\alpha_{PO} = 10^{\circ}, 85^{\circ}$

Non-manoeuvring target

Observations

α _{P0} (°)	Interception occurs?	t _f (s)	Impact angle (°)
10	Yes	41.485	7.9401
85	Yes	41.731	17.6479

- Unlike the TPN and RTPN cases, the pursuer is able to intercept the target for $\alpha_{PO} = 85^{\circ}$.
- As observed from the plots of v_r and v_θ vs θ ,

 - $\circ \quad v_r(\theta_\theta) \cdot \frac{d v_\theta}{d \theta} (\theta_\theta) > 0$
- As observed from the polar plots of relative pursuer trajectory, for both cases of α_{PO} , the pursuer starts in a sector where $v_r < 0$ and $v_\theta > 0$. Hence, R decreases while θ increases until $\theta = \theta_\theta$ (where $v_\theta = 0$). The relative trajectory tends to lie along the $v_\theta = 0$ line since that line cannot be crossed.
- As observed from the rectilinear plot of the trajectories, for both cases of α_{po} , the pursuer remains in one half-plane bounded by the target trajectory.

- In both cases of α_{p0} , missile latax is initially of high magnitude and decreases to 0 as time increases. For α_{p0} = 10°, a_p initially has a high positive value. For α_{p0} = 85°, a_p initially has a high negative value. This is because α_{p0} is respectively much lower than and much higher than the LOS angle and PPN guidance suitably changes a_p to correct the pursuer heading.
- For $\alpha_{P0} = 10^{\circ}$, the (v_{θ}, v_{r}) plot lies in the 4th quadrant. The signs of v_{θ} , v_{r} in this quadrant agree with those in the sector in which the trajectory lies. v_{θ} decreases, while v_{r} first decreases then increases.
- For α_{PO} = 85°, the (v_{θ}, v_{r}) plot lies in the 3rd quadrant. The signs of v_{θ} , v_{r} in this quadrant agree with those in the sector in which the trajectory lies. v_{θ} increases, while v_{r} decreases.

Plots ($\alpha_{P0} = 10^{\circ}$)

Plots (α_{P0} = 85°)

Relative trajectory in polar plane

Question 7 Part 2 (PPN, Manoeuvring target)

Inputs

$$X_{P0} = (0, 0) \text{ m}$$

 $\theta_0 = 30^{\circ}$

$$R_0 = 7000 \text{ m}$$

$$V_p = 400 \text{ m/s}$$

$$nu = 1/0.6$$

$$\alpha_{T0} = 0^{\circ}$$

$$a_{T} = 30 \text{ m/s}^{2}$$

$$N = 4$$

Simulation settings

ODE solving method: Euler

Time step: 0.001 s

Termination criteria: R < 0.5 m or t > 60 s

Tested initial conditions

$$\alpha_{po} = 10^{\circ}, 85^{\circ}$$

Manoeuvring target: $\alpha_{TO} = 0^{\circ}$, anti-clockwise manoeuvre

Part a) Yes, interception occurs and the impact angle ranges from 156.74° to 164.29° as N is varied from 3 to 6.

Observations

α _{P0} (°)	Interception occurs?	t _f (s)
10	Yes	24.94
85	Yes	24.39

- Unlike the TPN and RTPN cases, the pursuer is able to intercept the target for $\alpha_{PO} = 85^{\circ}$.
- As observed from the plots of v_r and v_θ vs θ , for all t,
 - \circ $\;$ The roots $\,\theta_{\,{}_{\rm f}}\,$ and $\,\theta_{\,\,\theta}$ are alternating and
 - $\circ v_r(\theta_\theta) \cdot \frac{dv_\theta}{d\theta} (\theta_\theta) > 0$
- As observed from the (v_{θ}, v_r) plots and polar plots of relative pursuer trajectory, for both cases of α_{p_0} , the trajectory tends to $v_{\theta} = 0$.
- In both cases of α_{PO} , missile latax is initially of high magnitude, suddenly drops, increases until it peaks and then decreases steeply towards -infinity.
- For both values of α_{PO} , the (v_{θ}, v_{r}) plot lies in the 3rd and 4th quadrants.

Plots (α_{P0} = 10°)

v_r , v_θ vs θ plot at t = 20 seconds

v_r , v_θ vs θ plot at $t = t_f = 24.94$ seconds

Note: The sectors depicted in this polar plot have been calculated from the v_r , v_θ vs θ plot at $t = t_f$.

Plots (α_{P0} = 85°)

Note: The sectors depicted in this polar plot have been calculated from the v_r , v_θ vs θ plot at $t = t_f$.

TPN Problem(pg-174 NPTEL)

1 Parameters:

- $\bullet \ V_{P0} = 400 \, \mathrm{m/s}$
- $V_{P0} = 0.6*400 = 240 \text{ m/s}$
- $\alpha_{T0} = 60 \deg$
- $\theta_0 = 30 \deg$
- $R_0 = 7000 \text{ m}$;
- $X_{T0} = \mathsf{R0*cos}(\theta_0)$
- $Y_{T0} = R0*\sin(\theta_0)$
- $X_{P0} = 0$
- $Y_{P0} = 0$

2 Simulation settings:

- Ode Solver:ode45(RK4 with Variable time step)
- Maximum Allowed time step = 0.05Secs
- Termination condition: R<R_tolerance or time > Max_allowed_time

3 Tested Initial conditions:

Simulation was done for 4 test cases

- 1. Maneuvering Target with $\alpha_{p0}=10deg$
- 2. Maneuvering Target with $\alpha_{p0} = 85 deg$
- 3. Non-Maneuvering Target with $\alpha_{p0}=10deg$
- 4. Non-Maneuvering Target with $\alpha_{p0}=85deg$

4 Range variation with time

Figure 1: Maneuvering Target; $\alpha_{p0} = 10 deg(left); \alpha_{p0} = 85 deg(right)$

Figure 2: Non-Maneuvering Target; $\alpha_{p0}=10 deg({\rm left}); \alpha_{p0}=85 deg({\rm right})$

5 Trajectories

Figure 3: Maneuvering Target; $\alpha_{p0}=10deg({\rm left}); \alpha_{p0}=85deg({\rm right})$

Figure 4: Non-Maneuvering Target; $\alpha_{p0}=10 deg({\rm left}); \alpha_{p0}=85 deg({\rm right})$

6 Acceleration Required versus time

Figure 5: Maneuvering Target; $\alpha_{p0} = 10 deg(left); \alpha_{p0} = 85 deg(right)$

Figure 6: Non-Maneuvering Target; $\alpha_{p0}=10 deg({\rm left}); \alpha_{p0}=85 deg({\rm right})$

7 V_R vs $V_{ heta}$

Figure 7: Maneuvering Target; $\alpha_{p0}=10deg({\rm left}); \alpha_{p0}=85deg({\rm right})$

Figure 8: Non-Maneuvering Target; $\alpha_{p0}=10 deg({\rm left}); \alpha_{p0}=85 deg({\rm right})$

RTPN(Realistic True Proportional Navigation)

November 6, 2018

1 Initial Conditions

- $V_{P0} = 400m/s$
- $V_{T0} = 0.6 * 400 = 250 m/s$
- $\alpha_{T0} = 60 deg$
- $\theta_0 = 30 deg$
- $R_0 = 7000m$
- $X_{T0} = R0 * Cos(\theta_0)$
- $Y_{T0} = R0 * Sin(\theta_0)$
- $X_{P0} = 0$
- $Y_{P0} = 0$

2 Simulation Setting

- ODE solver
- \bullet Time step 0.05

3 Graphs

3.1 Range Vs Time

Figure 1: Manuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

Figure 2: NonManuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

3.2 Trajectory

Figure 3: Manuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

Figure 4: NonManuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

3.3 Latex

Figure 5: Manuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

Figure 6: NonManuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

3.4 Vr vs Vtheta

Figure 7: Manuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$

Figure 8: NonManuevering Target $\alpha_{P0}=10(left)$ and $\alpha_{P0}=85(Right)$