Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome

Dongxiao Li, Jinqing Song, Xiyuan Li, Yi Liu, Hui Dong, Lulu Kang, Yupeng Liu, Yao Zhang, Ying Jin, Hanzhou Guan, Chongchen Zhou, Yanling Yang

CHOTAL COUNTY OF MEDICAL GENETICS

PII: \$1769-7212(20)30091-4

DOI: https://doi.org/10.1016/j.ejmg.2020.104003

Reference: EJMG 104003

To appear in: European Journal of Medical Genetics

Received Date: 31 January 2020

Revised Date: 2 July 2020 Accepted Date: 7 July 2020

Please cite this article as: D. Li, J. Song, X. Li, Y. Liu, H. Dong, L. Kang, Y. Liu, Y. Zhang, Y. Jin, H. Guan, C. Zhou, Y. Yang, Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome, *European Journal of Medical Genetics* (2020), doi: https://doi.org/10.1016/j.ejmg.2020.104003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Masson SAS.

Conflict of interest

All authors declare none conflict of interest.

Acknowledgments

We thank the patients and their families who participated in this study. We also thank the physicians and scientists at Peking University First Hospital for their cooperation. This work was supported by National Natural Science Foundation of China (81471097).

Eleven novel mutations and clinical characteristics in seven Chinese patients with 1 2 thiamine metabolism dysfunction syndrome Dongxiao Li^{1*}, Jinqing Song^{2*}, Xiyuan Li², Yi Liu², Hui Dong², Lulu Kang², Yupeng Liu², 3 Yao Zhang², Ying Jin², Hanzhou Guan³, Chongchen Zhou¹, Yanling Yang² 4 5 ¹Henan provincial key laboratory of children's genetics and metabolic diseases, Children's 6 Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 7 Children's Hospital, Zhengzhou, 450018, China; ²Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; ³Department of Pediatrics, Children's 8 9 Hospital of Shanxi Province, Taiyuan, China 10 Correspondence: Dr. Yanling Yang, Department of Pediatrics, Peking University First 11 Hospital, Beijing 100034, China 12 E-mail: yanlingy@bjmu.edu.cn 13 *These authors contributed equally to this work. 14 15 Running title: Eleven novel mutations on thiamine metabolism dysfunction syndrome 16

Abstract

Thiamine metabolism dysfunction syndrome (THMD) comprises a group of clinically and
genetically heterogeneous encephalopathies with autosomal recessive inheritance. Four genes,
SLC19A3, SLC25A19, SLC19A2, and TPK1, are associated with this disorder. This study
aimed to explore the clinical, biochemical and molecular characteristics of seven Chinese
patients with THMD. Targeted next-generation sequencing of mitochondrial DNA and nuclear
DNA was used to identify the causative mutations. The patients presented with subacute
encephalopathy between the ages of 1 to 27 months. Brain magnetic resonance imaging
(MRI) revealed abnormalities in the basal ganglia, indicating Leigh syndrome. Urine
α -ketoglutarate in five patients was elevated. In four patients, five novel mutations
(c.1276_1278delTAC, c.265A>C, c.197T>C, c.850T>C, whole gene deletion) were found in
SLC19A3, which is associated with THMD2. In two patients, four novel mutations
(c.194C>T, c.454C>A, c.481G>A, and c.550G>C) were identified in <i>SLC25A19</i> , supporting a
diagnosis of THMD4. In one patient, two novel mutations (c.395T>C and c.614-1G>A) were
detected in TPK1, which is indicative of THMD5. The patients received thiamine, biotin, and
symptomatic therapy, upon which six patients demonstrated clinical improvement. Our
findings expanded the phenotypic and genotypic spectrum of THMD, with eleven novel
mutations identified in seven Chinese patients. Early diagnosis and treatment have a
significant impact on prognosis.
Key words: Thiamine metabolism dysfunction syndrome (THMD), Leigh syndrome,

SLC19A3, SLC25A19, TPK1, Clinical exome sequencing

1. Introduction

41	Thiamine metabolism dysfunction syndrome (THMD), which results from a deficiency of
42	thiamine metabolism, comprises a group of rare, clinically and genetically heterogeneous
43	encephalopathies with autosomal recessive inheritance (Banka et al., 2014). Four genes,
44	SLC19A3, SLC25A19, SLC19A2, and TPK1, are linked to this disorder. Based on the
45	defective genes and phenotypic traits, THMD is classified into five types: THMD1 [Online
46	Mendelian Inheritance in Man (OMIM) #249270], caused by mutations in <i>SLC19A2</i> ; THMD2
47	(OMIM #607483), caused by mutations in <i>SLC19A3</i> ; THMD3 (OMIM #607196,
48	microcephaly, Amish-type) and THMD4 (OMIM #613710, progressive polyneuropathy type),
49	caused by the mutations in SLC25A19; and THMD5 (OMIM #614458, episodic
50	encephalopathy type), caused by mutations in TPK1 (Brown, 2014). The clinical course of
51	patients with THMD is usually progressive, leading to severe disability and even death if left
52	untreated.
53	To date, 38 mutations in SLC19A3, 8 in SLC25A19, and 13 in TPK1 have been reported
54	(Human Gene Mutation Database, HGMD) globally, however only two reports on SLC19A3
55	(Klein et al., 2004; Wen et al., 2019) and two on <i>TPK1</i> (Fraser et al., 2014; Zhu et al., 2019)
56	have been published on the Chinese population. In contrast, there have been just four studies
57	on SLC25A19 mutations associated with THMD4 (Spiegel et al., 2009; Ortigoza-Escobar et
58	al., 2017; Bottega et al., 2019; Gowda et al., 2019) worldwide, with none documenting the
59	Chinese population. Leigh syndrome and Leigh-like syndrome are mitochondrial disorders
60	with considerable clinical and genetic heterogeneity caused by either the mitochondrial or
61	nuclear genome. Here, we present seven Chinese cases of Leigh syndrome due to THMD,

62	expanding the clinical and molecular spectrum of the disease.
63	
64	2. Materials and Methods
65	2.1 Patients
66	Seven unrelated patients (one boy and six girls) from different Chinese families were enrolled
67	in this study. They were admitted to our hospital aged from 1 month to 4 years and 3 months
68	between June 2008 and June 2019 with the suspected diagnosis of Leigh syndrome. They
69	presented with subacute encephalopathy from the ages of 1 month to 27 months with clinical
70	manifestations including seizures, hypotonia, dyskinesia, and developmental regression. All
71	of the parents were non-consanguineous and without positive family history. The clinical data
72	of the patients were collected.
73	This study was approved by ethics committee at Peking University First Hospital. The
74	informed consents were obtained from all the patients' legal guardians.
75	
76	2.2 Routine laboratory, metabolic, and auxiliary examinations
77	Routine blood and urinary tests were conducted. Serum lactate, pyruvic acid, ammonia,

Routine blood and urmary tests were conducted. Serum lactate, pyruvic acid, ammonia, glucose, creatine kinase, vitamin D, liver and renal function were evaluated. Colorimetric analysis was used to determine blood biotin and biotinidase activities. Tandem mass spectrometry was applied to determine serum amino acids and acylcarnitine. The results were analyzed using ChemoView software. Gas chromatography-mass spectrometry and the Inborn Errors of Metabolism Screening System were used to analyze urine organic acids. Cranial MRI was performed on each patient.

2.3 DNA preparation and targeted next-generation sequencing

Genomic DNA was extracted from the peripheral blood leukocytes of all patients and their parents. Genes targeted to the mitochondrial DNA (mtDNA; the 16569-base pair mitochondrial genome) were firstly sequenced. Based on a literature search of online databases, we used a custom-designed gene panel containing 246 nuclear genes of interest associated with mitochondrial diseases, which included *SLC19A3* and *TPK1*, but not *SLC25A19* or genes related to biotin deficiency-related disorders. A clinical exome panel, including 4813 genes associated with known phenotypes, was also designed with reference to the literature (Jamal et al., 2013).

Next-generation sequencing (NGS) was performed as described in our previous study (Xu et al., 2017). We implemented the following strategy: mtDNA was initially captured, then the mitochondrial disease-related nuclear gene panel, clinical or whole exome sequencing was eventually performed if nothing was found.

2.4 Confirming of the related mutations

The mutations detected from the seven patients were confirmed by Sanger sequencing. Then, parental origin was performed. The large fragment deletion was confirmed by SNP-array. The results were compared with the *SLC19A3* (NM_025243.3), *SLC25A19* (NM_021734.4), and *TPK1* (NM_022445.3) sequences in GenBank (https://www.ncbi.nlm.nih.gov/genbank/). Regarding the novel mutations, the corresponding amplicons were amplified from 200 normal control samples.

106	2.5 Prediction of the effect and conservation analysis of the novel mutations
107	Multiple sequence alignment studies were performed to verify the degree of conservation
108	using the UCSC Genome Bioinformatics Database. Mutation taster, PolyPhen-2, and SIFT
109	programs were used to predict the impact of missense mutations on protein function.
110	
111	2.6 Follow-up study
112	All seven patients were enrolled into a simple follow-up study by telephone survey or an
113	outpatient visit. Information on seizures, convulsions, inductive factors, times of attacks,
114	motor and cognitive development, and other neurological symptoms were collected. General
115	laboratory tests, metabolic studies and brain MRI were performed.
116	
117	3. Results
118	3.1 Clinical features, laboratory examinations, brain MRI findings, and follow-up
119	
	observations (Table 1)
120	observations (Table 1) Seven patients were born at term after normal pregnancy and delivery. They presented from
120 121	
	Seven patients were born at term after normal pregnancy and delivery. They presented from
121	Seven patients were born at term after normal pregnancy and delivery. They presented from the age of 1 month to 2 years and 5 months with recurrent episodes of encephalopathy,
121 122	Seven patients were born at term after normal pregnancy and delivery. They presented from the age of 1 month to 2 years and 5 months with recurrent episodes of encephalopathy, frequently triggered by febrile disease. Disease onset in 4 of the patients was during the infant
121 122 123	Seven patients were born at term after normal pregnancy and delivery. They presented from the age of 1 month to 2 years and 5 months with recurrent episodes of encephalopathy, frequently triggered by febrile disease. Disease onset in 4 of the patients was during the infant period, while the disease developed in the other three after one year of age. Trigger factors
121 122 123 124	Seven patients were born at term after normal pregnancy and delivery. They presented from the age of 1 month to 2 years and 5 months with recurrent episodes of encephalopathy, frequently triggered by febrile disease. Disease onset in 4 of the patients was during the infant period, while the disease developed in the other three after one year of age. Trigger factors before attacks such as fever, trauma and vaccination were observed. All patients reached

mmol/L. Levels of urinary organic acids of five patients were examined, and their urine α -ketoglutarate was found to be elevated. Thiamine, biotin, L-carnitine, coenzyme Q_{10} supplements and symptomatic treatment were administrated after diagnosis. Thiamine was given at a dose of 100 mg/d before genetic diagnosis. Once we got the genetic result, thiamine was increased to at least 10 mg/kg/d. One case (P2) got nearly complete recovery, one died and five cases (P1, P3, P4, P5, and P6) improved. We had submitted all the new or exceptional DNA variants or CNVs mentioned in this article to ClinVar, and the accession numbers could be found in table 2.

3.2 Patient 1

P1 is female and had normal development until the age of 4 months. From the age of 4 months, she developed subacute encephalopathy which manifested as focal seizures, infantile spasms, lethargy, feeding difficulty and neurodevelopmental regression. The seizures occurred daily. Thiamine or biotin was not given in local hospital. When she visited us at 1-year old, severe psychomotor retardation and microcephaly (42 cm, < -2SD) were observed. She could not raise her head or kick or recognize her family members. She presented dystonia, especially when crying. Serum lactate was 2.2 mmol/L. Hypsarrhythmia was observed on electroencephalography. Brain MRI revealed abnormal signals in the caudate nucleus, putamen, globus pallidus, thalamus, midbrain, and cerebellar hemisphere with a thin corpus callosum and progressive cerebral atrophy, indicating the diagnosis of Leigh syndrome (Figure 1). Thiamine and biotin were given at dose of 100 mg/d and 5 mg/kg/d, respectively.

150	Currently, she is 2 years and 6 months old. She is still unable to raise her head or sit. In
151	addition, she exhibits horizontal nystagmus, decayed teeth, dysphagia, moderate hypotonia,
152	and microcephaly.
153	

154

155

156

157

158

159

160

161

162

163

164

165

166

167

3.3 Patient 2

P2 is female and developed general muscle weakness on the second day of fever when she was 2 years and 5 months old, approximately half a month after measles vaccination. Then, inability to walk, week cry, dysarthria, dystonia, ptosis, and positive bilateral Babinski signs were observed. She was admitted as suspected encephalitis to a local hospital and treated as such. She recovered gradually and had fully recovered within 2 weeks. The second attack occurred at the age of 4 years and 2 months. Most of the manifestations resembled those at the first attack, but no fever occurred as a trigger. She exhibited near complete recovery a week later. When she visited us at the age of 4 years and 3 months, she presented with a recurrent feeling of numbness in her hands and feet. Cranial MRI showed abnormal signals in the bilateral caudate nucleus, putamen, and cortex. Leigh syndrome was suspected, and thiamine (100 mg/d) and biotin (5 mg/kg/d) was given. Significant improvement was observed after treatment. The feeling of numbness gradually

168

169

170

171

3.4 Patient 3

P3 is female with progressive recurrent encephalopathy. She presented dyskinesia and developmental regression triggered for the first time by fever at the age of 8.5 months. Her

disappeared. Currently, she is a junior school student with excellent academic results.

brain MRI showed symmetrical T2WI and FLAIR hyperintensity in the globus pallidus and
putamen. No special treatment was given in local hospital. She exhibited developmental delay,
paroxysmal opisthotonos, encephalopathy, hypotonia, and a brisk tendon reflex when she
visited us at 9 months. Thiamine was given at a dose of 100 mg/d. She recovered
incompletely within a month, exhibiting slightly delayed motor development in left leg. Her
motor skills recovered gradually, and she could walk a short distance without support at 15
months. At 4 years of age, dyskinesia occurred again without any trigger. She could not sit,
and presented hypotonia. The motor symptoms improved within 3 weeks. She underwent
another two encephalopathy episodes brought on by fever at 7 and 9 years of age, respectively.
During these two attacks, the course was similar to that of the second episode. Dystonia was
also observed. Meanwhile, the genetic result showed SLC19A3 deficiency, so biotin was
administered at a dose of 10 mg/kg/d. Her urine glutaric acid (37.6 mmol/mol Cr vs. the
normal range of 1.9–4 mmol/mol Cr) and $\alpha\text{-ketoglutarate}$ (139 mmol/mol Cr vs. the normal
range of 26.1-102.9 mmol/mol Cr) levels were slightly elevated. Brain MRI showed
abnormal signals in the globus pallidus, putamen, caudate nucleus, and cerebellum.
Currently, she is 11 years old, bedridden and unable to walk without support, with hypertonia,
torsion spasm, equinus. She can speak a few word, but not a sentence.

3.5 Patient 4

P4 is female with normal developmental milestones until she suffered severe acute encephalopathy at the age of 1 month. She presented drug-resistant partial seizures with or without fever, poor intake, and hypotonia. She was admitted to the neonatal intensive care

194	unit and started on phenobarbital and antibiotics. Then, her condition deteriorated quickly on
195	the second day as she required mechanical ventilation. Thiamine and biotin was given
196	immediately after diagnosis was confirmed by MRI.
197	Her serum lactate was 3.8-12.7 mmol/L (normal range, 0-2 mmol/L). Mildly elevated urine
198	α -ketoglutarate (229 mmol/mol Cr vs. the normal range of 26.1–102.9 mmol/mol Cr) were
199	found. Video-electroencephalography (V-EEG) showed mild abnormal neonatal EEG with
200	multifocal spikes and low-frequency waves. Brain MRI revealed abnormal signals in the
201	globus pallidus, putamen, and caudate nucleus. Leigh syndrome was diagnosed. She got
202	intractable epilepsy even given thiamine and biotin treatment.
203	She died from cardiopulmonary respiratory failure at 2 months and a half.
204	
205	3.6 Patient 5
205 206	3.6 Patient 5 P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he
206	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he
206 207	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his
206207208	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his head, roll over or sit. Two similar attacks occurred at the age of 13 months and 14 months.
206207208209	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his head, roll over or sit. Two similar attacks occurred at the age of 13 months and 14 months. When he visited us at his age of 18 months, he had severe developmental delay.
206207208209210	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his head, roll over or sit. Two similar attacks occurred at the age of 13 months and 14 months. When he visited us at his age of 18 months, he had severe developmental delay. His serum lactate was elevated to 3.51 mmol/L (normal range, 0–2 mmol/L). His blood biotin
206 207 208 209 210 211	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his head, roll over or sit. Two similar attacks occurred at the age of 13 months and 14 months. When he visited us at his age of 18 months, he had severe developmental delay. His serum lactate was elevated to 3.51 mmol/L (normal range, 0–2 mmol/L). His blood biotin level was significantly reduced (70 pg/mL vs. the normal range of >200 pg/mL). The blood
206 207 208 209 210 211 212	P5 is male and suffered recurrent encephalopathy after the age of 8 months, when he presented febrile seizure concomitant with developmental regression. He could not raise his head, roll over or sit. Two similar attacks occurred at the age of 13 months and 14 months. When he visited us at his age of 18 months, he had severe developmental delay. His serum lactate was elevated to 3.51 mmol/L (normal range, 0–2 mmol/L). His blood biotin level was significantly reduced (70 pg/mL vs. the normal range of >200 pg/mL). The blood biotinidase activity was normal. Markedly elevated urine α -ketoglutarate (789.1 mmol/mol Cr

216	age of 2 years and 10 months after treatment.
217	Currently, he is 3 years old with normal intelligence and slight motor developmental delay.
218	
219	3.7 Patient 6
220	P6 is female and presented recurrent encephalopathy since the age of 14 months, when she
221	suffered tremor and developmental regression. She showed gradual improvement 2 weeks
222	later. When she was admitted at the age of 19 months, she could not walk and presented with
223	developmental delay. Urinary α -ketoglutarate was elevated (968.4 mmol/mol Cr vs. the
224	normal range of 26.1-102.9 mmol/mol Cr). Brain MRI revealed symmetrical abnormal
225	signals in the caudate nucleus and putamen. Six months later after treatment, her brain MRI
226	showed nearly complete recovery (Figure 2). No further attacks occurred.
227	Currently, she is 2 years and 3 months old with normal intelligence and slight motor
228	developmental delay.
229	
230	3.8 Patient 7
231	P7 is female and presented with recurrent encephalopathy since the age of 8 months at which
232	time she suffered slow progressive motor developmental delay. At the age of 16 months, she
233	developed tremor in her legs. She could walk at the age of 18 months. However, 1 months
234	later, she became unable to walk after a tumble until the age of 2 years. When she visited us at
235	the age of 2 years and 1 month, she presented with moderate intellectual and motor
236	disabilities. Urinary α -ketoglutarate was elevated to 390.3 mmol/mol Cr (normal range, 26.1–
237	102.9 mmol/mol Cr). Cranial MRI showed bilateral abnormal signals mainly in the caudate

nucleus, putamen, thalamus, and cerebellar hemispheres, with mild progressive atrophy of the cerebellum (Figure 3). Rapid improvement was observed 5 days after 10 mg/kg/d thiamine supplementation. However, after a trauma at the age of 4 years and 5 months, she lost the ability to walk again. At the age of 5 years, she was hospitalized for dysarthria, lethargy, and paroxysmal muscular weakness after a febrile illness. Her symptoms significantly improved 10 days after the thiamine supplement (15 mg/kg/d).

Currently, she is 5 years and 3 months old. She can walk a short distance unaided with a spastic gait. She can speak simple words related to the daily life.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

238

239

240

241

242

243

244

245

3.9 Molecular analysis

Twelve mutations were identified from seven patients, eleven of which were novel. There were six mutations of the SLC19A3 in total were detected in patients from 1 to 4 (Table 2), of which five were novel comprising four heterozygous mutations and one homozygous mutation, supporting the diagnosis of THMD2. The whole exome sequencing results showed had suspected 130Kb homozygous fragment (chr2q36.3:228482780-228609111) inclusive of the whole *SLC19A3*, which was then verified by SNP-array. Four novel heterozygous mutations in SLC25A19 were detected in P5 and P6 supporting the diagnosis of THMD4. Two heterozygous mutations in *TPK1* were detected in P7, supporting the diagnosis of THMD5. All eleven mutations were inherited from their unaffected parents. None of the novel mutations were found in 200 normal controls. And the 130Kb fragment deletion was neither reported nor found in Decipher, CAGdb or Pubmed database.

3.10 Prediction of effects of the eleven novel mutations

Eight novel mutations (Table 2) (c.1276_1278delTAC, c.265A>C, c.197T>C, and c.850T>C in *SLC19A3*; c.454C>A, c.481G>A, and c.550G>C in *SLC25A19*; and c.395T>C in *TPK1*) were predicted to be deleterious by at least two programs (Mutation taster, SIFT, and Polyphen 2) (Tables 3-4). The c.194C>T variation was predicted to be deleterious by Mutation taster alone and to be a polymorphism by the other two programs, but it is located in a highly conserved region.

4. Discussion

THMD, which usually manifests as acute or subacute encephalopathy, is caused by a deficiency of thiamine metabolism, with elevated excretion of lactic acid and a-ketoglutaric acid as a supportive criteria (Toyoshima et al., 2005; Ortigoza-Escobar et al., 2017). Patients with this disorder show a variable response to the administration of thiamine and/or biotin. Thiamine is recommended at a dose of 10-40 mg/kg/day for *SLC19A3* deficiency and 30 mg/kg/day for *TPK1* deficiency, whereas biotin is recommended at dose of 5-10 mg/kg/day for *SLC19A3* deficiency(Ortigoza-Escobar et al., 2016). Four *SLC25A19* related THMD4, thiamine at a dose of 400-600 mg/d were effective in five patients(Ortigoza-Escobar et al., 2017). Neurological involvement occurs predominantly because of mutations in three genes, *SLC19A3*, *SCL25A19*, and *TPK1*, resulting in the disorders of THMD2, THMD3 and THMD4, and THMD5, respectively. In many patients, the onset or recurrence of the condition is triggered by febrile disease, vaccines, and trauma (Kevelam et al., 2013).

282	Our patients manifested subacute encephalopathy of infantile onset with heterogeneous
283	clinical features and similar brain MRI findings. Clinical features mainly included dystonia,
284	hypotonia, ataxia, seizures, and developmental delay, most with trigger events and elevated
285	a-ketoglutaric acid in urine. Brain MRI lesion mainly involved in caudate, putamen, globus
286	pallidus, some in thalamus, brain stem, and cerebellum. Both of clinical features and brain
287	MRI findings met the clinical criteria of THMD (Ortigoza-Escobar et al., 2017). Leigh
288	syndrome was diagnosed and mitochondrial disorders were suspected at first. Patients from 2
289	to 7 experienced triggers before attacks. According to the results of genetic studies, they were
290	diagnosed with different types of THMD.
291	THMD2, also termed biotin-thiamine-responsive basal ganglia disease, manifests as
292	encephalopathy with dysphagia, dysarthria, external ophthalmoplegia, even coma and death
293	(Debs et al., 2010). Biotin-thiamine-responsive basal ganglia disease was first described by
294	Ozand et al. in 1998 (Ozand et al., 1998). SLC19A3 was mapped to 2q36.3. SLC19A3
295	mutations were found to be the cause of the biotin-thiamine-responsive basal ganglia disease
296	by Zeng et al. in 2005 (Zeng et al., 2005). Meanwhile, mutations in the SLC19A3 also
297	underlie phenotypes such as neonatal lactic acidosis, Wernicke's-like encephalopathy, early
298	childhood fatal Leigh syndrome, and early infantile lethal encephalopathy (Toyoshima et al.,
299	2005; Yamada et al., 2010; Gerards et al., 2013; Kevelam et al., 2013).
300	Patients from 1 to 4 had SLC19A3 defects with varied clinical features and nonspecific
301	biochemical findings, except slightly elevated urine α -ketoglutarate levels in P3 and P4. P1
302	developed infantile epileptic encephalopathy similar to that described by Yamada et al.
303	(Yamada et al., 2010). She displayed remarkable dystonia. Thiamine and biotin administration

had a partial effect even though the treatment was delayed. P2 exhibited late-onset acute
episodic encephalopathy and dystonia. She underwent complete spontaneous recovery in 1-2
weeks, and the lesions on brain MRI showed a remarkable improvement after thiamine and
biotin administration. The course of the disease was mild. This finding suggested that a later
onset may indicate a better prognosis and a better response to treatment. The trigger factors
for P3 were febrile illness and vaccination. She presented a chronic, progressive disease
course with each attack despite thiamine and biotin therapy from the age of 2 years and 1
month. Whether she was responsive to thiamine and biotin remains uncertain because
thiamine administration was delayed. P4 also had a febrile trigger factor, she manifested an
acute course in accordance with the phenotype of early infantile lethal encephalopathy as
reported (Alfadhel, 2017).
For SLC25A19 associated disorders, there are two phenotypic entities. One is THMD3, also
called microcephaly, Amish-type, which is characterized by severe lethal congenital
microcephaly with severe elevated lactic acid and α -ketoglutaric acid levels, and the patient
died in the first year of life (Siu et al., 2010). The other, also known as progressive
polyneuropathy type, is THMD4 which is characterized by severe congenital microcephaly,
death within the first year, and severe 2-ketoglutaric aciduria. Only eight consanguineous
patients with neuropathy and bilateral striatal necrosis from four consanguineous families
have been reported (Spiegel et al., 2009; Ortigoza-Escobar et al., 2017; Bottega et al., 2019;
Gowda et al., 2019). In this study, P5 and P6 presented with acute encephalopathy and
bilateral striatal lesions triggered by febrile illness with normal early developmental

326	reported (Spiegel et al., 2009; Bottega et al., 2019; Gowda et al., 2019). However, in our
327	study, these two patients came from different, non-consanguineous families. P5 was found to
328	have biotin deficiency, which may underlie responsiveness to thiamine and biotin. Hence,
329	these two cases expand the phenotypic spectrum of THMD4.
330	Notably, thiamine was given at a dose of 100 mg/d initially in some patients, less than the
331	recommended dose 10 mg/kg/d. Once we got the genetic results, the dose was added to 10
332	mg/kg/d at least .
333	The patients with mutations in TPK1 exhibited complex clinical manifestations, such as
334	feeding difficulties, encephalopathy, psychomotor regression leading to a severe
335	developmental delay, and progressive dystonia (Fraser et al., 2014). Consistently, P7
336	presented with motor developmental delay, recurrent encephalopathy, normal plasma lactic
337	acid, elevated urine α -ketoglutarate, and abnormal brain MRI signals mainly in the basal
338	ganglia. THMD was confirmed by genetic analysis. With thiamine supplementation, she
339	showed a significant improvement.
340	SLC19A3 encodes a ubiquitous 496-amino acid thiamine transporter that plays an essential
341	role in cerebral thiamine transport (Zeng et al., 2005). SLC25A19, located at chromosome
342	17q25.1, encodes a 320-aminio acid mitochondrial thiamine pyrophosphate transporter that
343	mediates thiamine pyrophosphate uptake into mitochondria (Kang and Samuels, 2008). TPK1,
344	located at chromosome 7q35, encodes the 243-amino acid thiamine pyrophosphokinase 1
345	protein (TPP), which catalyzes the conversion of thiamine to thiamine pyrophosphate. It is
346	mainly expressed in the small intestine and kidney, where it mediates thiamine absorption and
347	reabsorption (Zhao et al., 2001). THMD occurs because of the deficiencies in these genes.

In this study, we identified 11 novel mutations associated with three types of THMD using
NGS. Of the 11 novel mutations, one was a small deletion, one was large deletion, eight were
missense mutations, and one was splicing mutation. The small deletion and eight missense
mutations occurred in highly conserved regions (Tables 3-5). They were predicted to be
damaging by at least two of the programs of Mutation taster, SIFT, and Polyphen 2, except for
A65V in SLC25A19. However, A65V is not a single-nucleotide polymorphism, and it is
located in a highly conserved region, also with a rather low frequency in the 1000 Genomes
Brower Database, which indicates its pathogenicity. The c.614-1G>A mutation in TPKI
occurred at a splicing site and leads to the abnormal formation of TPP, confirming its
pathogenicity. The whole SLC19A3 deletion may lead to the loss of gene function. All the
novel mutations had serious influences on the function of their protein products, probably
leading to the disease.
leading to the disease. Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheapen
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheaper and its results are easier to interpret. It is also faster and more efficient in patients with
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheaper and its results are easier to interpret. It is also faster and more efficient in patients with uncertain diagnostic considerations, even though restricted target sequencing has higher
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheaper and its results are easier to interpret. It is also faster and more efficient in patients with uncertain diagnostic considerations, even though restricted target sequencing has higher accuracy and deeper coverage (Okazaki et al., 2016). Herein, we applied targeted general
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheaper and its results are easier to interpret. It is also faster and more efficient in patients with uncertain diagnostic considerations, even though restricted target sequencing has higher accuracy and deeper coverage (Okazaki et al., 2016). Herein, we applied targeted gene capture sequencing of a mtDNA panel and a mitochondrial diseases-related nuclear gene
Targeted NGS using gene panels has been increasingly applied for genetic diagnoses over the past few years. Compared to whole exome sequencing, clinical exome sequencing is cheaper and its results are easier to interpret. It is also faster and more efficient in patients with uncertain diagnostic considerations, even though restricted target sequencing has higher accuracy and deeper coverage (Okazaki et al., 2016). Herein, we applied targeted gene capture sequencing of a mtDNA panel and a mitochondrial diseases-related nuclear gene panel to detect the suspected genes. However, P5 and P6 were missed because <i>SLC25A19</i> was

370	comparatively complicated suspected mitochondrial diseases.
371	
372	Conflict of interest
373	All authors declare none conflict of interest.
374	
375	Acknowledgments
376	We thank the patients and their families who participated in this study. We also thank the
377	physicians and scientists at Peking University First Hospital for their cooperation. This work
378	was supported by National Key Research and Development Program of China
379	(2017YFC1001700).
380	
381	

382	References
383	Alfadhel, M., 2017. Early Infantile Leigh-like SLC19A3 Gene Defects Have a Poor Prognosis:
384	Report and Review. J Cent Nerv Syst Dis 9, 1179573517737521.
385	Banka, S., de Goede, C., Yue, W.W., Morris, A.A., von Bremen, B., Chandler, K.E.,
386	Feichtinger, R.G., Hart, C., Khan, N., Lunzer, V., Matakovic, L., Marquardt, T.,
387	Makowski, C., Prokisch, H., Debus, O., Nosaka, K., Sonwalkar, H., Zimmermann, F.A.
388	Sperl, W. and Mayr, J.A., 2014. Expanding the clinical and molecular spectrum of
389	thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by
390	TPK1 mutations. Mol Genet Metab 113, 301-6.
391	Bottega, R., Perrone, M.D., Vecchiato, K., Taddio, A., Sabui, S., Pecile, V., Said, H.M. and
392	Faletra, F., 2019. Functional analysis of the third identified SLC25A19 mutation
393	causative for the thiamine metabolism dysfunction syndrome 4. J Hum Genet 64,
394	1075-1081.
395	Brown, G., 2014. Defects of thiamine transport and metabolism. J Inherit Metab Dis 37,
396	577-85.
397	Debs, R., Depienne, C., Rastetter, A., Bellanger, A., Degos, B., Galanaud, D., Keren, B.,
398	Lyon-Caen, O., Brice, A. and Sedel, F., 2010. Biotin-responsive basal ganglia disease
399	in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol 67, 126-30.
400	Fraser, J.L., Vanderver, A., Yang, S., Chang, T., Cramp, L., Vezina, G., Lichter-Konecki, U.,
401	Cusmano-Ozog, K.P., Smpokou, P., Chapman, K.A. and Zand, D.J., 2014. Thiamine
402	pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair
403	identification through whole exome sequencing and management strategies. Mol

404	Genet Metab Rep 1, 66-70.
405	Gerards, M., Kamps, R., van Oevelen, J., Boesten, I., Jongen, E., de Koning, B., Scholte, H.R.
406	de Angst, I., Schoonderwoerd, K., Sefiani, A., Ratbi, I., Coppieters, W., Karim, L., de
407	Coo, R., van den Bosch, B. and Smeets, H., 2013. Exome sequencing reveals a novel
408	Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh
409	syndrome. Brain 136, 882-90.
410	Gowda, V.K., Srinivasan, V.M., Jehta, K. and Bhat, M.D., 2019. Bilateral Striatal Necrosis with
411	Polyneuropathy with a Novel SLC25A19 (Mitochondrial Thiamine Pyrophosphate
412	Carrier OMIMI*606521) Mutation: Treatable Thiamine Metabolic Disorder-A Report of
413	Two Indian Cases. Neuropediatrics 50, 313-317.
414	Jamal, S.M., Yu, J.H., Chong, J.X., Dent, K.M., Conta, J.H., Tabor, H.K. and Bamshad, M.J.,
415	2013. Practices and policies of clinical exome sequencing providers: analysis and
416	implications. Am J Med Genet A 161A, 935-50.
417	Kang, J. and Samuels, D.C., 2008. The evidence that the DNC (SLC25A19) is not the
418	mitochondrial deoxyribonucleotide carrier. Mitochondrion 8, 103-8.
419	Kevelam, S.H., Bugiani, M., Salomons, G.S., Feigenbaum, A., Blaser, S., Prasad, C., Haberle,
420	J., Baric, I., Bakker, I.M., Postma, N.L., Kanhai, W.A., Wolf, N.I., Abbink, T.E., Waisfisz
421	Q., Heutink, P. and van der Knaap, M.S., 2013. Exome sequencing reveals mutated
422	SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 136,
423	1534-43.
424	Klein, M., Weksler, N. and Gurman, G.M., 2004. Fatal metabolic acidosis caused by thiamine
425	deficiency. J Emerg Med 26, 301-3.

426 Okazaki, T., Murata, M., Kai, M., Adachi, K., Nakagawa, N., Kasagi, N., Matsumura, W., 427 Maegaki, Y. and Nanba, E., 2016. Clinical Diagnosis of Mendelian Disorders Using a 428 Comprehensive Gene-Targeted Panel Test for Next-Generation Sequencing. Yonago Acta Med 59, 118-25. 429 430 Ortigoza-Escobar, J.D., Alfadhel, M., Molero-Luis, M., Darin, N., Spiegel, R., de Coo, I.F., Gerards, M., Taylor, R.W., Artuch, R., Nashabat, M., Rodriguez-Pombo, P., Tabarki, 431 432 B., Perez-Duenas, B. and Thiamine Deficiency Study, G., 2017. Thiamine deficiency 433 in childhood with attention to genetic causes: Survival and outcome predictors. Ann 434 Neurol 82, 317-330. Ortigoza-Escobar, J.D., Molero-Luis, M., Arias, A., Marti-Sanchez, L., Rodriguez-Pombo, P., 435 436 Artuch, R. and Perez-Duenas, B., 2016. Treatment of genetic defects of thiamine 437 transport and metabolism. Expert Rev Neurother 16, 755-63. 438 Ozand, P.T., Gascon, G.G., Al Essa, M., Joshi, S., Al Jishi, E., Bakheet, S., Al Watban, J., 439 Al-Kawi, M.Z. and Dabbagh, O., 1998. Biotin-responsive basal ganglia disease: a 440 novel entity. Brain 121 (Pt 7), 1267-79. 441 Siu, V.M., Ratko, S., Prasad, A.N., Prasad, C. and Rupar, C.A., 2010. Amish microcephaly: 442 Long-term survival and biochemical characterization. Am J Med Genet A 152A, 443 1747-51. 444 Spiegel, R., Shaag, A., Edvardson, S., Mandel, H., Stepensky, P., Shalev, S.A., Horovitz, Y., 445 Pines, O. and Elpeleg, O., 2009. SLC25A19 mutation as a cause of neuropathy and 446 bilateral striatal necrosis. Ann Neurol 66, 419-24. 447 Toyoshima, M., Oka, A., Egi, Y., Yamamoto, T., Onozuka, M., Nosaka, K., Naito, E. and

448	Yamada, K., 2005. Thiamine-responsive congenital lactic acidosis: clinical and
449	biochemical studies. Pediatr Neurol 33, 98-104.
450	Wen, Y.X., Wang, J.P., Chen, Y. and Bao, X.H., 2019. Paroxysmal crying and motor
451	regression for more than two months in an infant. Zhongguo Dang Dai Er Ke Za Zhi 21,
452	399-404.
453	Xu, B., Li, X., Du, M., Zhou, C., Fang, H., Lyu, J. and Yang, Y., 2017. Novel mutation of ND4
454	gene identified by targeted next-generation sequencing in patient with Leigh syndrome.
455	J Hum Genet 62, 291-297.
456	Yamada, K., Miura, K., Hara, K., Suzuki, M., Nakanishi, K., Kumagai, T., Ishihara, N., Yamada,
457	Y., Kuwano, R., Tsuji, S. and Wakamatsu, N., 2010. A wide spectrum of clinical and
458	brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet 11, 171.
459	Zeng, W.Q., Al-Yamani, E., Acierno, J.S., Jr., Slaugenhaupt, S., Gillis, T., MacDonald, M.E.,
460	Ozand, P.T. and Gusella, J.F., 2005. Biotin-responsive basal ganglia disease maps to
461	2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 77, 16-26.
462	Zhao, R., Gao, F. and Goldman, I.D., 2001. Molecular cloning of human thiamin
463	pyrophosphokinase. Biochim Biophys Acta 1517, 320-2.
464	Zhu, L., Wu, R., Ye, Z., Gu, R., Wang, Y., Hou, Y., Feng, Z. and Ma, X., 2019. Identification of
465	two novel TPK1 gene mutations in a Chinese patient with thiamine
466	pyrophosphokinase deficiency undergoing whole exome sequencing. J Pediatr
467	Endocrinol Metab 32, 295-300.
468	

469	Figure	legends
		10501100

- 470 **Figure 1** Cranial MRI of P1 with *SLC19A3* deficiency at the age of 5 months.
- 471 (a, b, c): Axial section of T1-weighted images (T1WI) of the brain. The images showed
- bilateral symmetrical hypointensity signals in cerebellar hemisphere, midbrain, basal ganglia
- 473 area (caudate nucleus, putamen, and globus pallidus), and thalamus, with thin corpus
- 474 callosum.
- 475 (d, e, f): Axial section of T2-weighted images (T2WI) of the brain. The images showed
- bilateral symmetrical hyperintensity signals in cerebellar hemisphere, midbrain, basal ganglia
- 477 area (caudate nucleus, putamen, and globus pallidus), and thalamus, with thin corpus
- 478 callosum.
- 479 (g, h, i): Axial section of fluid-attenuated inversion recovery (FLAIR) of the brain. The
- 480 images showed bilateral symmetrical hyperintensity signals in midbrain, while hypointensity
- 481 signals in cerebellar hemisphere, basal ganglia area (globus pallidus and putamen), and
- 482 thalamus, with thin corpus callosum. Low signals in globus pallidus and putamen were
- 483 surrounded by high signals.
- **Figure 2** Cranial MRI of P6 with *SLC25A19* deficiency.
- 485 (a, b): FLAIR and T2WI of the brain on the seventh day of the attack, when she was 15
- 486 months old. The images showed bilateral symmetrical hyperintensity signals in the head of
- the caudate nucleus and putamen.
- 488 (c): Axial section of T2WI of the brain at the age of 18 months, 2 months after the attack and
- without thiamine supplementation. The abnormal signals had reduced somewhat.
- 490 (d, e): Axial section of FLAIR and T2WI of the brain on the seventh day of the attack, when

491 she was 2 years and 3 months old, 6 months after thiamine supplementation. The images 492 showed near-complete recovery of the lesions after thiamine treatment. 493 Figure 3 Cranial MRI of axial section of P7 with TPK1 deficiency at age of 2 years and 1 494 month 495 (a, b, c): The images showed bilateral symmetrical signals in the cerebellar hemispheres, with 496 hypointensity in T1WI phase, while hyperintensity in T2WI and FLAIR phase. (d, e, f): The images showed bilateral symmetrical patchy signals in the caudate nucleus, 497 putamen, and pulvinar thalamus, with hypointensity in T1WI phase, while hyperintensity in 498 T2WI and FLAIR phase. 499

Table 1 Clinical features of seven Chinese patients with thiamine metabolism dysfunction syndrome.

Patient	1	2	3	4	5	6	7
Age of onset	4 m	2 y 5 m	8.5 m	1m	8 m	1 y 3 m	1 y
Age at first visit	1 y	4 y 3 m	9 m	1m	1 y 6m	1 y 7 m	2 y 1 m
Treatment onset interval	6 m	1 y 10 m	15 d	2 d	8 m	4 m	1 y 1 m
Current age	2 y 6 m	6 y 3 m	11 y	died	2 y 11 m	2 y 3 m	5 y 2 m
Sex	F	F	F	F	M	F	F
Symptoms at onset	Seizures, developmental	General weakness	Dyskinesia, low response	e Febrile convulsion	Febrile convulsion	Febrile convulsion	Motor development
	regression						delay
Clinical features	Recurrent epileptic seizures,	Episodes of weakness,	Dyskinesia,	poor intake, poor spirits,	Febrile convulsion,	Slightly delayed motor	Developmental
	strabismus, developmental	dysarthria, hypotonia,	opisthotonos,	hypotonia	confusion, somnipathy,	functions, limb shaking	retrogression,
	regression, choking sucking,	inability to walk, ptosis,	developmental		coma, hypertonia of lower		tremble, hypotonia,
	nystagmus, microcephaly,	positive Babinski signs	regression, dystonia		limbs, delayed motor		gait ataxia,
	dystonia, dental decay	bilaterally, sense of	evolving into hypertonia	,			paroxysmal muscular
		numbness	low response, equinus				weakness
Inducing factor	N	Fever	Fever, vaccination	Fever	Fever	Fever	Tumble / Trauma
Lactate (0–2 mmol/L)	2.2	1.4	1.1	3.8-12.7	3.5	1.9	2
Plasma C ₅ OH (0.2–0.5	NA	NA	0.32	0.15	0.59	NA	0.22
μmol/L)							
Plasma biotin (>200	NA	NA	NA	NA	70.09	NA	NA
pg/mL)							
Urine α-ketoglutarate	NA/NA	NA/NA	139 / 130.2	229	789.1 / 420.3	968.4 / 347.9	390.3 / 2.23
before /after treatment							
(26.1-102.9 mmol/mol							
Cr)							
Brain MRI abnormality	+	+	+	+	+	+	+
Diagnosis	Leigh syndrome	Leigh syndrome	Leigh syndrome	Leigh syndrome	Leigh syndrome	Leigh syndrome	Leigh syndrome
Main treatment	Biotin 5-10 mg/kg/d,	Biotin 5-10 mg/kg/d,	Biotin5-10 mg/kg/d,	Biotin 5-10 mg/kg/d,	VitB1 9-21 mg/kg/d	VitB1 10-21 mg/d	VitB1 7-16 mg/kg/d
	VitB1 10-23 mg/kg/d,	VitB1 8-18 mg/kg/d	VitB1 10-11 mg/kg/d	VitB1 20 mg/kg/d,			
	topiramate			levetiracetam			
Attack frequency	Every day	Twice	Four times	Every day	Three times	Once	Four times
Follow-up study	less attacks, still unable to	Normal milestones except	Moderate psychomotor	Died at 2 month and a	Normal intelligence and	Normal intelligence and	Moderate
	raise his head	occasional sense of	developmental delay	half	slight motor developmental	slight motor	psychomotor
		numbness in hands and feet			delay	developmental delay	developmental delay
Phenotype	THMD2	THMD2	THMD2	THMD2	THMD4	THMD4	THMD5
Gene affected	SLC19A3	SLC19A3	SLC19A3	SLC19A3	SLC25A19	SLC25A19	TPK1

Abbreviations: Pt = patient; y = year; m = month; d = day; F = female; M = male; N = none; "+" = positive; "-" = negative; NA = none available; Treatment onset interval = the time from the onset of symptoms to the biotin and thiamine treatment initiation; HI = hearing impairment; $C_5OH = hydroxy$ -isovaleryl carnitine; THMD = thiamine metabolism dysfunction syndrome

Table 2 Gene mutations detected in seven Chinese patients with thiamine metabolism dysfunction syndrome.

Patien	t Gene	Region	Nucleotide change	Amino-acid change	Mutation type	Parental derivation	Mutationtaster prediction	PolyPhen-2.0 prediction (score)	SIFT prediction (score)	Conservation		· Accession number
1	SLC19A3	Exon 5	1276_1278delTAC	V426del	Heterozygous	Maternal	Disease causing	-	Deleterious (-10.75)	Yes	Novel	SCV000599769
		Exon 3	265A>C	S89R	Heterozygous	Paternal	Polymorphism	Probably damaging (0.961)	Damaging (0.05)	Yes	Novel	SCV000599770
2	SLC19A3	Exon 3	197T>C	L66P	Heterozygous	Maternal	Disease causing	Probably damaging (0.994)	Damaging (0.04)	Yes	Novel	SCV000599771
		Exon 3	962C>T	A321V	Heterozygous	Paternal	Disease causing	Probably damaging (1.000)	Damaging (0)	Yes	Reported	1 -
3	SLC19A3	Exon 3	265A>C	S89R	Heterozygous	Paternal	Polymorphism	Probably damaging (0.961)	Damaging (0.05)	Yes	Novel	SCV000599770
		Exon 3	850T>C	W284R	Heterozygous	Maternal	Disease causing	Probably damaging (1)	Damaging (0)	Yes	Novel	SCV000599773
4	SLC19A3	The who	le gene deletion		Homozygous	Parental	- (8)	-	-		Novel	SCV001142664
5	SLC25A19	Exon 4	194C>T	A65V	Heterozygous	Maternal	Disease causing	Benign (0.299)	Tolerated (0.09)	Yes	Novel	SCV000599774
		Exon 5	454C>A	P152T	Heterozygous	Paternal	Disease causing	Probably damaging (1)	Tolerated (0.58)	Yes	Novel	SCV000599775
6	SLC25A19	Exon 6	481G>A	A161T	Heterozygous	Paternal	Disease causing	Probably damaging (0.998)	Tolerated (0.16)	Yes	Novel	SCV000599776
		Exon 6	550G>C	A184P	Heterozygous	Maternal	Disease causing	Probably damaging (0.999)	Damaging (0.03)	Yes	Novel	SCV000599777
7	TPK1	Exon 7	395T>C	F132S	Heterozygous	Paternal	Disease causing	Probably damaging (1)	Damaging (0)	Yes	Novel	SCV000599778
		Intron 7	c.614-1G>A	-	Splicing	Maternal	-	-	-	Yes	Novel	SCV000599779

Note: "-" = None

Table 3 Amino acids conserved in *SLC19A3* corresponding to codons 66, 89, 284, and 426 (shown in **bold** type).

Organism	Sequence							
	66	89	284	426				
Human	TLVFVPLL L VLYSYTWV	LLLWTIIF s IGQLIIVP	GATAFAW W LSWYFLRK	PLNLGRQD V VIVTMITQ				
Rhesus	TLVFVPLL L VLYSYTWV	LLLWTIIF s IGQLIIVP	GATAFAW W LSWYFLRK	PLNLGRQD $oldsymbol{v}$ VIVTIITQ				
Mouse	TLVFVPPL T ALYSYTWV	LFLYSTAF A VVHLMIVP	GATAFAW W LSWYVLHK	PLQLGRQD $oldsymbol{v}$ VIMTMITQ				
Dog	TLIFVPLL L VLYSYTWV	LLLWTIIF s IGQLIIVP	GATSFAW W LSWYFLRK	PLNLGKQD $oldsymbol{v}$ VIVTMITQ				
Elephant	TLVFVPFL L VLYSYTWV	LLLWTIIF s IGQLIIVP	GATSLAW W LSWYFLHK	PLNLGRPD $oldsymbol{v}$ VIVTMITQ				
Chicken	TLLFVPVL L ALYSYTWV	LLLWTVIF s IGQILLIP	GATALAW W LSWYLLKR	DLGLGKSD $oldsymbol{v}$ AVVTLITQ				
Zebrafish	TLLFVPVL v ALYSYTWV	LLVYHLIP N FVPTVVVP	GCTALAW W ASW-LLTR	DVGLGRSD v VVSTIITQ				

Note: bold = the mutant aminio acid

Table 4 Amino acids conserved in *SLC25A19* (corresponding to codons 65, 152, 161 and 184) and in *TPK1* (corresponding to codon 132)

Organism		Sequence of TPK1			
	65	152	161	184	132
Human	EEQLIQRS A QLIGHYKA	CACTCACK P EGQAAFR	ESRYMTGV A HRLTNYV	QLGAYPFI A ILTPALG	VSAMIQD F RGALGGLTV
Rhesus	EEQLIQRS A QFIGHYKA	CACTCACK P EGQAAFR	ESRYMTGV A HRLTNYV	QLGAYPFI A ILTPALG	VSAMIQD F RGALGGLTV
Mouse	EEQLIQKA A QFIGHYKA	TGCTCACK P EGQAALR	ETKYMTRI A ERLNNYI	QLGAYPFI A IVTPTLG	VSAMIQD F RGGLGGLTV
Dog	EEQLIQRG A QLIGHYKA	TACTCACK P EGQAAFR	ETRYMTVV A ERLTKYV	QFGAYPFI A ILTPNLG	VSAMIQD F RGALGGLTV
Elephant	EEQLIQRG A QLIGHYKA	CACTCACK P EGQAAFR	ETRYMTVV A DRLTKYI	QFGAYPFI A ILTPNLG	VSAMTQD F RGALGGLTV
Chicken	=======================================	=======================================		QFGAYPFV A IVTPTLG	VSAMIQD F RGGLGGLTV
Zebrafish	EETLICRT A QWLGWYKG	CCTACK P EGQAAFR	ESRLMTGI A HRLNRYI	QLGAYPFV A VLTPTLG	VTAMTQD F RGGLGGLTV

Note: bold = the mutant aminio acid

Journal Pre-loro

