PGRE: Studying for Death?

Gray Ezequiel G.B. $Perez^1$ and $Schlack-Dog^1$ $^1Reed\ College,\ 3203\ SE\ Woodstock\ Blvd,\ Portland,\ OR\ 97202,\ USA$

1

1

1

1

1

1

1

1

1

2

Attempting to avoid death by making a big study guide!

CONTENTS

I. Variable definitions II. Classical mechanics (20%) III. Electromagnetism (18%) IV. Quantum Mechanics (12%) V. Thermodynamics and Statistical Mechanics (10%) VI. Atomic Physics (10%) VII. Optics and Wave Phenomena (9%) VIII. Specialized Topics (9%) IX. Special Relativity (6%) X. Laboratory Methods (6%)

I. VARIABLE DEFINITIONS

 $a \to \text{acceleration}$ $c \to \text{speed of light:}$

standard $\approx 3 * 10^8 \frac{m}{s}$

II. CLASSICAL MECHANICS (20%)

Such as kinematics, Newton's laws, work and energy, oscillatory motion, rotational motion about a fixed axis, dynamics of systems of particles, central forces and celestial mechanics, three-dimensional particle dynamics, Lagrangian and Hamiltonian formalism, noninertial reference frames, elementary topics in fluid dynamics.

III. ELECTROMAGNETISM (18%)

Such as electrostatics, currents and DC circuits, magnetic fields in free space, Lorentz force, induction, Maxwell's equations and their applications, electromagnetic waves, AC circuits, magnetic and electric fields in matter.

IV. QUANTUM MECHANICS (12%)

Such as fundamental concepts, solutions of the Schrdinger equation (including square wells, harmonic oscillators, and hydrogenic atoms), spin, angular momentum, wave function symmetry, elementary perturbation theory.

V. THERMODYNAMICS AND STATISTICAL MECHANICS (10%)

Such as the laws of thermodynamics, thermodynamic processes, equations of state, ideal gases, kinetic theory, ensembles, statistical concepts and calculation of thermodynamic quantities, thermal expansion and heat transfer.

VI. ATOMIC PHYSICS (10%)

Such as properties of electrons, Bohr model, energy quantization, atomic structure, atomic spectra, selection rules, black-body radiation, x-rays, atoms in electric and magnetic fields.

VII. OPTICS AND WAVE PHENOMENA (9%)

Such as wave properties, superposition, interference, diffraction, geometrical optics, polarization, Doppler effect.

VIII. SPECIALIZED TOPICS (9%)

Nuclear and Particle physics (e.g., nuclear properties, radioactive decay, fission and fusion, reactions, fundamental properties of elementary particles), Condensed Matter (e.g., crystal structure, x-ray diffraction, thermal properties, electron theory of metals, semiconductors, superconductors), Miscellaneous (e.g., astrophysics, mathematical methods, computer applications)

IX. SPECIAL RELATIVITY (6%)

Such as introductory concepts, time dilation, length contraction, simultaneity, energy and momentum, four-vectors and Lorentz transformation, velocity addition.

X. LABORATORY METHODS (6%)

Such as data and error analysis, electronics, instrumentation, radiation detection, counting statistics, inter-

action of charged particles with matter, lasers and optical interferometers, dimensional analysis, fundamental applications of probability and statistics.