<u>Int</u>roducción

Gonzalo Rivero

Big Data en investigación social y opinión pública

22 a 26 de julio, 2019

¿Qué es el big data?

- Hay demasiadas definiciones.
- Intuitivamente, parece incluir formas de referirse a:
 - 1. <u>Una categoría de analisis:</u> big data por oposición a datos tradicionales de menos tamaño y más costosos.
 - Un termino de marketing: compañías que pueden extraer valor de los datos y que nos permiten ser data-driven.
 - 3. <u>Un "cambio de paradigma":</u> recolección de datos masivos y poblacionales, predicción en lugar de estimación, búsqueda de patrones en lugar de estimación.

¿Qué esperamos del big data?

- El término refleja cambios reales:
 - Multiplicación de sensores y aparatos recogiendo datos.
 - Mayor creación de datos digitales en origen.
 - Incremento de la capacidad de almacenar datos.
 - Incremento de la capacidad de procesamiento.
 - Nuevas técnicas de análisis.
- Numerosos casos de éxito populares como Google.
- Expectativa de una transformación revolucionaria en industria y academia.

Poniendo un poco de orden

- Existen dos piezas interdependientes:
 - Énfasis en *big*
 - Bases de datos masivas
 - Capacidad de capturar la población y no una muestra
 - Nuevas estructuras de datos
 - ⇒ Componente ingenieril
 - Énfasis en data
 - Nuevas tecnicas y modelos computacionales
 - Énfasis en predicción y no en estimación
 - Capacidad de gestionar tipos de datos antes imposibles
 - ⇒ Componente estadístico/analítico

La primera visión

- <u>Garner:</u> "Big data" como datos en gran volumen, velocidad y variedad que requiren nuevas estrategias para poder ser analizados.
- O'Reilly: "Big data" como datos que exceden la capacidad de procesamiento una base de datos típica. Los datos son demasiados grandes, entran demasiado rápido, no se ajustan a la estructura tradicional.
- McKinsey: "Big data" como datos que exceden la capacidad de una base tradicional para capturar, almacenar, gestionar y analizar.

Investigación tradicional

Es útil ver la investigación con big data en el contexto de la investigación tradicional

- 1. Encuestas
 - Muy costosas
 - Para el investigador
 - Para los sujetos
 - Dependen de información auto-reportada
 - Estudios de opinión pública
 - Estudios de comportamientos en salud
- 2. Experimentos
 - (Potencialmente) costosos
 - Riesgos y límites de aleatorización

Características de los datos digitales

■ Volumen

- Explosión de la cantidad de data disponible
- Más información es registrada digitalmente
- Ejemplos típicos de industrias tecnológicas
 - 300 horas de video subidas a YouTube por minuto
 - 1 millon de transacciones diarias en Walmart
 - 1GB de datos por segundo en vehículos autopilotados
- También una realidad en investigación social
 - Registros administrativos para estudiar movilidad social
 - Twitter para estudiar comunicación política
 - Metadatos telefónicos para estudiar redes sociales
- El tamaño de los datos son un fin para una causa, no un objetivo

Características de los datos digitales (y II)

■ Permanentemente conectado

- Tenemos acceso en tiempo real a fenómenos
- Nos permite estudiar fenómenos inesperados
- Posibilidad de estudiar comportamiento actitudes antes, durante y después de protestas

Pasividad

- Información es recogida sin participación del sujeto
- Facilita estudios que de otra forma alterarían el comportamiento del sujeto
- No está sujeto a deseabilidad social
 - Estudio de perspectivas sobre raza usando búsquedas en Internet
- Comportamiento más accesible que actitudes
- Sujetos y performance pública
 - Expresiones públicas en Twitter

Características de los datos digitales (y III)

Exhaustividad parcial

- Análisis tradicionales dependen de muestras debido a costes
- Tendencia a capturar todos los datos disponibles
- Abaratamiento de coste de unidad de almacenamiento
- En muchos casos es inevitable:
 - Registro de transacciones bancarias
 - Metainformación en mapas
 - Datos sobre el genoma
- Habitualmente limitados por limitaciones ajenas a la investigación
 - Tener muchas observaciones no quiere decir que tengamos todas las variables

Características de los datos digitales (y IV)

Limitaciones en el acceso

- Generalmente los datos son recopilados por agentes sin incentivos para compartir
 - Empresas tecnológicas/redes sociales
 - Datos administrativos
- Relacionado con dificultad de anonimizar datos
 - Retos de Statistical Disclosure

Selección

- Los datos no tienen por qué ser representativos de la población de interés
 - Estudio de opinión pública en Twitter
- Es un problema relativo a la pregunta de investigación

Características de los datos digitales (y V)

Deriva

- Los datos están sujetos a cambios en
 - La composición de los usuarios
 - El comportamiento de los usuarios
 - Las propiedades de la plataforma
- Estudios sobre actitudes raciales usando bots en Twitter
- Cambios en Google y predicción de gripe
 - Los datos recopilados están modificados por los incentivos de quién los recopila (comportamiento y amistad en Facebook)

Variedad

- Frecuencia de datos *desestructurados*
- Importancia del modelo de datos en las bases tradicionales
 - Información geolocalizada en Google Maps
 - Textos, imágenes y vídeos en redes sociales
 - Registros de actividad en Apple Health
- Incluye información no deseada/deseable
 - Ruido debido a la naturaleza del problema
 - Ruido debido a falta de control en la recolección
 - Posible información sensible

Qué nos ha traído aquí

- Incremento en la capacidad de procesamiento en computadores
 - Un smartphone de baja gama es "ten times more powerful than the Cray-1 supercomputer installed at Los Alamos in 1976" usando una fracción de la energía.
- Desarrollo de las redes informáticas
- Digitalización y sensorización
 - Sensores en electrodomésticos
 - Asistentes personales como Siri
 - Tecnologías en tratamientos médicos como fMRI
 - Cámaras públicas
- Desarrollo de identificadores únicos
 - Códigos de barras e RFID
 - Información biométrica
- Caída del coste del almacenamiento
 - \$437.000 en $1980 \Rightarrow \$0.019$ en 2016

La segunda visión

- Sinan Aral (2010): "Revolutions in science have often been preceded by revolutions in measurement"
- Evolución de la ciencia en Jim Gray

1	Experimental	Empiricismo	Pre-Renacimiento
2	Teórica	Modelización y generalización	Pre-informática
3	Computacional	Simulación de fenémonos complejos	Pre-big data
4	Explorativa	Intensiva en datos	Ahora

Tabla: Cuatro paradigmas de ciencia

¿Qué ha cambiado?

- Retorno del empiricismo
 - Llamadas a terminar con el desarrollo de teorías
 - Minería de datos para descubrir relaciones
 - Transversalidad de las tareas de predicción
 - Algoritmo de recomendación de Amazon no sabe nada sobre gustos o convenciones sociales
 - Objetivo de descubrir relaciones sin desarrollar preguntas
- Problemas
 - Captura de datos es orientada y limitada, no omnisciente
 - Agenda y pregunta de investigación guían desarrollo empírico
 - Los datos contienen sesgos en su captura y análisis
 - Los datos no son elementos naturales
 - Decisión de qué constituye un dato es social
 - Riesgo de confundir correlación con causación
 - Evaluación en función de objetivos y no DGP observado

El nuevo papel de los datos

- Aproximación empírica
- Generar hipótesis provenientes de los datos y no de la teoría
- Objetivo no es solo identificar relaciones sino dirigir proceso de descubrimiento
- Complemento de la teoría y basado en teoría
 - Datos no sujetos a todos los marcos ontológicos concebibles
- Lo que tenemos son: Herramientas para explorar, extraer valor e interpretar bases de datos desestructuradas, conectadas y de gran tamaño.

¿Dónde nos deja esto? Retos

- 1. Complicaciones tecnicas
 - Herramientas tradicionales de análisis no sirven
 - Explosión de nuevas tecnologías
 - Nuevo problema: difícil de navegar el panorama de herramientas
- Los modelos estadísticos anteriores no sirven
 - Necesidad de trabajar con datos no estructurados
 - Captura de datos vs diseño de recogida
 - El problema fundamental de la inferencia causal

¿Dónde nos deja esto? Oportunidades

- 1. Datos generados orgánicamente por los usuarios
 - Permite acceso a nuevas dimensiones de comportamiento
 - Recolección observacional de datos poco agresiva y poco costosa
 - Para el investigador
 - Para el investigado
- Fuentes alternativas de datos
 - Capacidad de responder a nuevas preguntas de investigación

Preocupaciones éticas

- El modo en el que recogemos los datos y el tipo de trabajo que hacemos tiene implicaciones éticas
- Captura de datos es inevitable a nivel individual sin noción de consentimiento explícito
- Incluso aunque los datos estén anonimizados es posible reconstruir individuos
 - Ciudadano medio holandés está entre 250 y 1000 bases de datos dependiendo de su actividad online
 - Cesiones parciales y desinformadas de privacidad

Preocupaciones éticas

- Esencia de los modelos predictivos (segunda mitad del curso) es adelantarse al comportamiento individual
- Modelos corren el riesgo de replicar comportamientos discriminatorios
 - Concesión de créditos mediate algoritmos y pertenencia a minorías
- Problema no son los algorimos sino el proceso de generación de datos y tener herramientas para identificar sesgos
- Analista debe ser consciente de esos riesgos

Data scientist: el nuevo estadístico

- Los cambios anteriores producen la aparición de un nuevo profesional que es mejor estadístico que un desarrollador y mejor desarrollador que un estadístico
- En el mercado se refiere a tres figuras:
 - 1. Data engineer
 - Especialización del backend developer y el database administrator
 - Crear y mantener la estructura que alberga los datos
 - 2. Data analyst
 - Exploración y visualización de datos
 - Más relacionado con el estadístico
 - Data scientist.
 - Implementación de algoritmos
 - Interfaz entre backend y cliente

Data scientist: el nuevo estadístico

- Capaz de:
 - 1. Interaccionar con bases de datos mas grandes
 - 2. Integrar modelos estadísticos en sistemas automáticos
 - 3. Implementar soluciones computacionales
- Importancia de la comunicación con:
 - Especialistas de área
 - Ingenieros y desarrolladores
 - Estadísticos y analistas

Administración

- Tutorías
 - Oficina en Sala Santa María
 - Política de puerta abierta
 - Contáctenme para horas
- Materiales
 - Código posteado al final del día en griverorz.net/big-data

Plan del curso (y I)

Primera mitad: Infraestructura

- Fundamentos de programación en R
- Captura de datos de Internet
 - REST API
 - Web Scraping
 - Streaming
- Almacenamiento y procesamiento
 - Bases de datos
 - Procesamiento paralelo

Plan del curso (y II)

Segunda mitad: Análisis

- Análisis de redes sociales
 - Descriptivos de redes
 - Inferencia
- Métodos de aprendizaje no supervisado
- Análisis de textos
 - Expresiones regulares
 - Pre-trained taggers
 - Análisis de temas
- Fusión de registros
 - Fellegi-Sunter