

EEE 51: Second Semester 2017 - 2018 Lecture 15

Frequency Response

Frequency Characteristics of Transistor Circuits

- Due to frequency-dependent impedances
 - Capacitors, inductors
- BJT Parasitic Capacitances
 - Junction capacitances
 - Nonlinear (voltage dependent)

- Base-Charging capacitance (C_b)
- Base-Emitter junction capacitance (C_{ie})
- Base-Collector junction capacitance (C_{μ})

BJT Capacitances

[http://commons.wikimedia.org/wiki/File:Npn_bjt_cross_section.svg]

BJT Base-Charging Capacitance

- Capacitance due to the change in majority carrier charge inside the base of the BJT
 - Cancels out the change in minority carriers in the base due to v_{BE}

$$C_b = \tau_F g_m = \tau_F \frac{I_{c,\alpha}}{V_T}$$

- τ_F forward base transit time
 - Represents the average time (per carrier) spent crossing the base

BJT Base-Emitter Junction Capacitance

- PN junction capacitance ~ 10's of fF
- In a BJT in the forward active region, BE junction is forward-biased

$$C_{je} = \frac{C_{je0}}{\sqrt{1 - V_{BE}}}$$

$$C_{je} \approx 2C_{je0}$$

BJT Base-Collector Junction Capacitance

- PN junction capacitance 5 to 10 fF
- Reversed-biased in forward active BJTs

$$C_{\mu} = \frac{C_{\mu 0}}{\sqrt{1 + \frac{V_{CB}}{V_{j,CB}}}} \qquad \text{(out)}$$

Can be amplified by the Miller effect

BJT Small Signal Model (with Capacitances)

$$C_{\pi} = \underbrace{C_b + C_{je}}_{C_b}$$

$$C_b = \tau_F g_m$$

$$C_{je} = \frac{C_{je0}}{\sqrt{1 - \frac{V_{BE}}{V_{j,BE}}}}$$

$$C_{\mu} = \frac{C_{\mu 0}}{\sqrt{1 + \frac{V_{CB}}{V_{j,CB}}}}$$

BJT Transition Frequency (f_T)

 Frequency at which the short-circuit common emitter current gain falls to unity

$BJT f_T$

 $0: i_0 = g_m v_x + (-v_x \cdot j_w C_n)$ $0: i_1 = v_x \cdot j_w C_T + \frac{v_x}{r_T} + v_x \cdot j_w C_n$ Small signal model I_{π}

$$\frac{\int_{0}^{2} = \frac{g_{m} - j_{w} C_{m}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{\Pi}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m} r_{\Pi}}{\int_{0}^{2} + j_{w} (C_{m} + (\pi))} \cdot r_{\Pi}}$$

$$\frac{\int_{0}^{2} = \frac{g_{m}$$

MOS Capacitances

- MOS parasitic capacitances
 - Nonlinear

- Gate oxide capacitance ("parallel plate")
- Gate overlap capacitance (fringe)
- Drain/Source-Bulk junction capacitance (PN junction)

MOS Capacitances

MOS Capacitances

- Gate Capacitance
 - Dependent on the thickness of the gate oxide and area of the gate
 - Nonlinear
 - Dependent on the gate and source/drain voltages
- Gate Overlap Capacitance
 - "parallel-plate" and fringing fields

MOS Gate-Source Capacitance

- Components:
 - gate "parallel plate" capacitance
 - Gate-source overlap capacitance

MOS Gate-Drain Capacitance

Composed of the overlap capacitance between the gate and drain

MOS Source/Drain Junction Capacitance

- Formed by the drain/source PN junction (to the substrate)
- Normally reversed biased

MOSFET small signal (w/ caps)

in saturation: Cgs > Cgd > Csb/Cdb

Capacitance Effects

A Simple RC Circuit

$$S = O + j\omega$$

applying voltage division:

$$v_o = \frac{\frac{1}{sC}}{\frac{1}{sC} + R} v_i = \frac{1}{1 + sRC} v_i$$

$$A_{v}(\omega) = \frac{v_{o}}{v_{i}} = \frac{1}{1 + sRC} \Big|_{s=j\omega}$$

Frequency Response

Frequency Response

$$|A_{v}(\omega)| = \frac{1}{\sqrt{1 + \omega^{2} R^{2} C^{2}}}$$

$$= \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_{0}}\right)^{2}}}$$

Decibels (dB)

Voltage gain:

$$|A_{v,dB}(\omega)| = 20 \log \left(\frac{|v_o|}{|v_i|} \right)$$

$$= 20 \log \left(\frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}} \right)$$

Frequency Response: Magnitude

Phase Response

Phase Response

$$\angle A_{\nu}(\omega) = \tan^{-1}\left(\frac{\operatorname{Im}[A(\omega)]}{\operatorname{Re}[A(\omega)]}\right)$$

$$= \tan^{-1}\left(\frac{0}{1}\right) - \tan^{-1}\left(\frac{\omega RC}{1}\right)$$

$$= -\tan^{-1}\left(\omega RC\right) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

Phase Log-Log Plot

Frequency [rad/s]

Magnitude and Phase

Another RC Example

$$v_o = \frac{R}{\frac{1}{sC} + R} v_i = \frac{sRC}{1 + sRC} v_i$$

$$A_{v}(\omega) = \frac{v_{o}}{v_{i}} = \frac{sRC}{1 + sRC}\Big|_{s=j\omega}$$

Frequency Response: Magnitude Response

$$|A_{v}(\omega)| = \frac{\omega RC}{\sqrt{1 + \omega^{2} R^{2} C^{2}}}$$

$$= \frac{\frac{\omega}{\omega_{0}}}{\sqrt{1 + \left(\frac{\omega}{\omega_{0}}\right)^{2}}}$$

Phase Response

$$\angle A_{\nu}(\omega) = \tan^{-1}\left(\frac{\operatorname{Im}[A(\omega)]}{\operatorname{Re}[A(\omega)]}\right)$$
$$= \tan^{-1}\left(\frac{\operatorname{AC}}{0}\right) - \tan^{-1}\left(\frac{\omega RC}{1}\right)$$

Phase Log Plot

Frequency [rad/s]

$$=90^{\circ}-\tan^{-1}(\omega RC)=90^{\circ}-\tan^{-1}\left(\frac{\omega}{\omega_{0}}\right)\quad \omega < \omega_{o}: \ \angle Av(\omega) \rightarrow 90^{\circ}$$

$$\omega < \omega_{o}: \ \angle Av(\omega) \rightarrow 90^{\circ}$$

$$\omega < \omega_{o}: \ \angle Av(\omega) \rightarrow 90^{\circ}$$

A General Zero Term

$$20\log[|A(\omega)|] = 20\log\left[\sqrt{1+\left(\frac{\omega}{\omega_0}\right)^2}\right]$$

$$A(\omega) = 1 + j \frac{\omega}{\omega_0}$$

$$B(\omega) = 1 - j \frac{\omega}{\omega_0}$$

$$\angle B(\omega) = \tan^{-1}\left(\frac{\omega}{\omega_0}\right) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

$$\angle A(\omega) = \tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

Generalized Transfer Function

 Factor the numerator and denominator to get the poles and zeros of the system

$$A(s) = A_0 \frac{\left(1 + \frac{s}{z_1}\right)\left(1 + \frac{s}{z_2}\right)\cdots\left(1 + \frac{s}{z_N}\right)}{\left(1 + \frac{s}{p_1}\right)\left(1 + \frac{s}{p_2}\right)\cdots\left(1 + \frac{s}{p_D}\right)}$$

$$A(\omega) = A_0 \frac{\left(1 + j\frac{\omega}{\omega_{z_1}}\right) \left(1 + j\frac{\omega}{\omega_{z_2}}\right) \cdots \left(1 + j\frac{\omega}{\omega_{z_N}}\right)}{\left(1 + j\frac{\omega}{\omega_{p_1}}\right) \left(1 + j\frac{\omega}{\omega_{p_2}}\right) \cdots \left(1 + j\frac{\omega}{\omega_{p_D}}\right)}$$

Magnitude Response Using the dB Scale

$$\begin{aligned} |A_{dB}(\omega)| &= 20 \log \left[\left| A_0 \frac{\left(1 + j \frac{\omega}{\omega_{z_1}} \right) \left(1 + j \frac{\omega}{\omega_{z_2}} \right) \cdots \left(1 + j \frac{\omega}{\omega_{z_N}} \right) \right] \\ &= 20 \log \left[|A_0| \right] + \sum_{N} 20 \log \left[\left| 1 + j \frac{\omega}{\omega_{z_i}} \right| \right] + \sum_{D} 20 \log \left[\left| \frac{1}{1 + j \frac{\omega}{\omega_{p_i}}} \right| \right] \\ &- \sum_{Q} 20 \log \left[\left| 1 + j \frac{\omega}{\omega_{p_i}} \right| \right] \end{aligned}$$

Phase Response

$$A(\omega) = A_0 \frac{\left(1 + j\frac{\omega}{\omega_{z_1}}\right) \left(1 + j\frac{\omega}{\omega_{z_2}}\right) \cdots \left(1 + j\frac{\omega}{\omega_{z_N}}\right)}{\left(1 + j\frac{\omega}{\omega_{p_1}}\right) \left(1 + j\frac{\omega}{\omega_{p_2}}\right) \cdots \left(1 + j\frac{\omega}{\omega_{p_D}}\right)}$$

$$\angle A(\omega) = \sum_{N} \angle \left(1 + j\frac{\omega}{\omega_{z_i}}\right) + \sum_{D} \angle \left(\frac{1}{1 + j\frac{\omega}{\omega_{p_i}}}\right)$$

$$\angle A(\omega) = \sum_{N} \angle \left(1 + j\frac{\omega}{\omega_{z_i}}\right) + \sum_{D} \angle \left(\frac{1}{1 + j\frac{\omega}{\omega_{p_i}}}\right)$$

$$\angle A(\omega) = \sum_{N} \angle \left(1 + j\frac{\omega}{\omega_{z_i}}\right) + \sum_{D} \angle \left(\frac{1}{1 + j\frac{\omega}{\omega_{p_i}}}\right)$$

Next Meeting

Frequency Response of Amplifiers