

Higgs Width at HL/HE-LHC (theory part)

Zhen Liu

University of Maryland

10/22/2018

HE/HL-LHC WG2 meeting

The quest for Higgs width

Measurements must be interpreted.

Observables at the LHC is the cross section, a convolution of PDF, hard scattering, parton shower, detector response ...

For the hard scattering:

$$\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{tot}}$$

• If $\kappa_{tot} = \kappa_i^2 \kappa_i^2$, the observed rates do not change.

Higgs width measurement is to resolve such big flat direction in its property measurement (once measured, ``model/assumption-independent" extraction of Higgs properties and couplings possible*).

*true for any framework, kappa or EFT that allows BSM decays. (Higgs decay to BSM well motivated, see e.g., ZL et al, Higgs Exotic decays.)

The quest for Higgs width

	I		00	
Method	HL	HE	Theory	Syst.
	reach	reach	Predictions	limit
	(MeV)	(MeV)		ed?

 $4.2 + \sim 0.04$

 $\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$

(MeV)

(NNLO)

NLO+NLL

~NLO for H+2i

NLO(+NLL)**

 $-2^{+0.6}_{-1.0}\%$

Yes

No

Yes

No

No

Zhen Liu

*some theory assumption does not hurt the picture, e.g., Higgs being CP-even, only consider up to dim6 operators, no new production mode polluting Higgs samples, etc., all can be implemented by enlarging parameter and observable space, so I do

Higgs Width @ HE/HL

~500-

1100

??

~35

~0.4

(??)

~500-

1100

~180

~50

~0.8

(??)

**effectively/10 due to large complex phase

arises from 2-loop background virtual diagram.

 $4.2^{+1.5}_{-2.1}$?? $4.2^{+1.0}_{-0.8}$

Direct

shell

shift

change

with

measurement

Off-shell/on-

On-shell mass

On-shell rate

Higgs global fits

not comment on these here.

assumptions

TH Assumptions

(possible improvement)*

Coupling independent on energy

(be clear on the assumptions and avoid over interpretation: not measurement of width)

For more details on some of the

projections, see Meng Xiao's talk.

No new physics in between.

(EFT with width free parameter?)

Assuming $\kappa_V \leq 1$ Or no BrBSM

The arrest for Higgs width

systematic limited? All of them are eventually systematically limited.

Are they obviously/already

1116	ques	niggs width			
hod	HL	HE	Theory	Syst.	
	reach	reach	Predictions	Syst. limit	
	/B / - \ /\	100-11		- 42	

(MeV)

(MeV) ~500-~500- $4.2 + \sim 0.04$

(MeV)

ed? Yes **TH Assumptions** (possible improvement)*

Coupling independent on energy

No new physics in between.

(EFT with width free parameter?)

1100

Meth

Direct

shell

change

measurement

Off-shell/on-

 $4.2^{+1.5}_{-2.1}$?? $4.2^{+1.0}_{-0.8}$

1100

 $\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)

No

Yes

On-shell mass ~180 ?? **NLO+NLL** shift ~NLO for H+2i On-shell rate ~50 ~35

 $-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**

No

Higgs global fits ~0.8 ~0.4 No Assuming $\kappa_V \leq 1$ Or no BrBSM with (??)(??)(be clear on the assumptions and avoid over interpretation: not measurement of width) assumptions

*some theory assumption does not hurt the picture, e.g., Higgs being CP-even, only consider up to dim6 operators, no new production mode polluting Higgs samples, etc., all can be implemented by enlarging parameter and observable space, so I do not comment on these here. Higgs Width @ HE/HL Zhen Liu

**effectively/10 due to large complex phase arises from 2-loop background virtual diagram.

The quest for Higgs width

Method	reach (MeV)	reach (MeV)	Theory Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
Direct measurement	~500- 1100	~500- 1100	$4.2\pm\sim0.04$ (MeV)	Yes	
Off-shell/on- shell	$4.2^{+1.5}_{-2.1}$ $4.2^{+1.0}_{-0.8}$??	$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	
Higgs global fits with	~0.8 (??)	~0.4 (??)		No	Assuming $\kappa_V \leq 1$ Or no BrBSM (be clear on the assumptions and avoid over

assumptions

Zhen Liu progress after YR4

interpretation: not measurement of width)

^{*}some theory assumption does not hurt the picture, e.g., Higgs being CP-even, only consider up to dim6 operators, no new production mode polluting Higgs samples, etc., all can be implemented by enlarging parameter and observable space, so I do not comment on these here. I will focus on theory

^{**}effectively/10 due to large complex phase arises from 2-loop background virtual diagram.

Refs:

F. Caola and K. Melnikov arXiv:1307.4935

N. Kauer and G.Passarino arxiv:1206.4803

On-shell/off-shell

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	_	TH Assumptions (possible improvement)*
Off-shell/on- shell	$4.2^{+1.5}_{-2.1}$ $4.2^{+1.0}_{-0.8}$		$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)

Also possible, WW and VBF:

- J. Campbell, K. Ellis, C. Williams, 1312.1628
- J. Campbell, K. Ellis **1502.02990**

Refs:

- F. Caola and K. Melnikov arXiv:1307.4935
- N. Kauer and G.Passarino arxiv:1206.4803

On-shell/off-shell

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
Off-shell/on- shell	$4.2_{-2.1}^{+1.5} \\ 4.2_{-0.8}^{+1.0}$		$\delta rac{\sigma_{off}}{\sigma_{on}}\cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)

- 1) On-shell rate uncertainty
- Loop-running⇔interplay of (at least) undetermined Top Yukawa
- 3) Many possible NP input at higher inv. masses.
- 4) Higher order corrections.

See discussions in e.g., <u>arXiv:1405.0285</u>, <u>arXiv:1410.5440</u>, <u>arXiv:1412.7577</u>, <u>arXiv:1502.04678</u>, ...

On-shell/off-shell

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	_	and the contract of the contra
Off-shell/on- shell	$4.2_{-2.1}^{+1.5} \\ 4.2_{-0.8}^{+1.0}$		$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)

- 1) On-shell rate uncertainty
- 2) Loop-running⇔interplay of (at least) undetermined Top Yukawa
- 3) Many possible NP input at higher inv. masses.

Solution: performing a global EFT fit

NNLO Ref:

J. Campbell, J. Ellis, M. Czakon, S. Kirchner 1605.01380

On-shell/off-shell

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
Off-shell/on- shell	$4.2_{-2.1}^{+1.5} 4.2_{-0.8}^{+1.0}$		$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)

4) Higher order corrections.

An nearly flat direction around SM width between the squared term and interference term.

$$\frac{\sigma_{4\ell}^{NLO}(m_{4\ell} > 300 \text{ GeV})}{\sigma_{4\ell}^{NLO}(m_{4\ell} < 130 \text{ GeV})} = \left(0.094^{+0.000}_{-0.002}\right) \times \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - \left(0.135^{+0.000}_{-0.008}\right) \times \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$

NNLO Ref:

J. Campbell, J. Ellis, M. Czakon, S. Kirchner **1605.01380**

On-shell/off-shell

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
Off-shell/on- shell	4.2 ^{+1.5} _{-2.1} 4.2 ^{+1.0} _{-0.8}	??	$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)

4) Higher order corrections.

An nearly flat direction around SM width between the squared term and interference term.

Maybe go differential? Exploiting 180~300 GeV bin?

$$\frac{\sigma_{4\ell}^{NLO}(m_{4\ell} > 300 \text{ GeV})}{\sigma_{4\ell}^{NLO}(m_{4\ell} < 130 \text{ GeV})} = \left(0.094^{+0.000}_{-0.002}\right) \times \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - \left(0.135^{+0.000}_{-0.008}\right) \times \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	

10/22/2018 Higgs Width @ HE/HL Zhen Liu 11

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	Major advantage of free
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	from theory assumption

10/22/2018 Higgs Width @ HE/HL Zhen Liu 12

On-shell rate reference: J. Campbell, M. Carena, R. Harnik, ZL <u>1704.08259</u>
On-shell mass shift reference: L. Dixon, Y. Li <u>1305.3854</u>, + de Florian et al <u>1504.05215</u>

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	Major advantage of free
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	from theory assumption

Two sides of the coin,
Interference proportional to
the **real** part
the **imaginary** part (rare at
LO, hard to track)
of the scalar propagator

J. Campbell, M. Carena, R. Harnik, ZL <u>1704.08259</u>

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No

This rate change as a new probe of Higgs total width (all quantities normalized to the SM)

$$\sigma(gg \to h \to \gamma\gamma)$$

$$\propto \frac{g_{ggh}^2 g_{\gamma\gamma h}^2}{\Gamma_{tot}} - (\sim 2.\%) g_{ggh} g_{\gamma\gamma h}$$

- Unique piece that does not depend on total width;
- Similar to off-shell ZZ measurement;
- Negligible dependence on coupling at different scales.
- Many uncertainties can be cancelled by taking cross section ratios $(\gamma \gamma/ZZ)^{\text{Higgs Width @ HE/HL}}$

Major advantage of free from theory assumption

TH Assumptions

(possible improvement)*

On-shell rate reference: J. Campbell, M. Carena, R. Harnik, ZL <u>1704.08259</u> Kinematic feature also applicable to mass-shift

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	Major advantage of free
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	from theory assumption

Angular distribution:

- Interference effects larger in the forward direction, driven by background amplitude kinematics;
- Interference effects ~0.5% at LO
- Interference effects increases to ~2% at NLO, driven by the 2-loop MHV amplitude's large imaginary part
- B.W. cross section while the interference effect does not increase much, resulting

 Zhenim a smaller relative correction. 15

On-shell rate reference: J. Campbell, M. Carena, R. Harnik, ZL <u>1704.08259</u> **Kinematic feature also applicable to mass-shift**

On-shell mass shift and rate change

On-shell mass shift and rate change

Method	HL reach (MeV)	HE reach (MeV)	Theo Predictions	Syst. limit ed?	TH Assumptions (possible improvement)*
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	Major advantage of free
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No	from theory assumption
ONLO+ NLO+ -40 -40 -80 -100 -120 -120	40	60 $I_{\rm max}$ (GeV	$pp \rightarrow \gamma \gamma \text{ @NLO}$ $\sqrt{s} = 8 \text{ TeV}$	0 -1 -2 (%) ^{6/9} % -3 -4 -5	NLO+NLL $pp \rightarrow \gamma \gamma \text{ @NLO}$ $\sqrt{s} = 8 \text{ TeV}$ $q_{T\text{max}}^{H} \text{ (GeV)}$

10/22/2018 Higgs Width @ HE/HL Zhen Liu 17

Summary

HL

reach

(MeV)

~500-

1100

~50

HE

reach

(MeV)

~500-

1100

~35

Theory

Predictions

 $4.2 \pm \sim 0.04$

 $-2^{+0.6}_{-1.0}\%$

NLO(+NLL)**

(MeV)

Method

Direct

measurement

On-shell rate

change

Off-shell/on- shell	$4.2_{-2.1}^{+1.5} 4.2_{-0.8}^{+1.0}$??	$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No	 Coupling independent on energy No new physics in between. (EFT with width free parameter?)
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes	

Syst.

limit

ed?

Yes

TH Assumptions

(possible improvement)*

No

*some theory assumption does not hurt the picture, e.g., Higgs being CP-even, only consider up to dim6 operators, no new production mode polluting Higgs samples, etc., all can be implemented by enlarging parameter and observable space, so I do not comment on these here.

**effectively/100 due to large complex phase Higgs Width @ HE/HL Zhen Liu I8 arises from 2-loop background virtual diagram.

Higgs global fits ~0.8 ~0.4 No Assuming $\kappa_V \leq 1$ Or no BrBSM with (??) (??) (be clear on the assumptions and avoid over assumptions interpretation: not measurement of width)

*some theory assumption does not hurt the picture, e.g., Higgs being CP-even, only consider up to dim6 operators, no new production mode polluting Higgs samples, etc., all can be implemented by enlarging parameter and observable space, so I do

Summary

Method	HL reach (MeV)	HE reach (MeV)	Theory Predictions	Syst. limit ed?
Direct measurement	~500- 1100	~500- 1100	4.2±∼0.04 (MeV)	Yes
Off-shell/on- shell	$4.2_{-2.1}^{+1.5} \\ 4.2_{-0.8}^{+1.0}$??	$\delta \frac{\sigma_{off}}{\sigma_{on}} \cong 6\%$ (NNLO)	No
On-shell mass shift	~180	??	NLO+NLL ~NLO for H+2j	Yes
On-shell rate change	~50	~35	$-2^{+0.6}_{-1.0}\%$ NLO(+NLL)**	No
Higgs global fits with	~0.8 (??)	~0.4 (??)		No

^{*}some theory assumption does not hurt the picture, e.g., Higgs being production mode polluting Higgs samples, etc., all can be implemente not comment on these here.

- Higgs width determination brings in new information about the SM
- The task is unique and challenging at hadron colliders
- Progress made in theory for both higher order corrections, and new effect (on-shell interference)
- HL/HE will improve, provided great experimental efforts in bring down systematics or implementing new searches

assumptions

^{**}effectively/100 due to large complex phase arises from 2-loop background virtual diagram.

Thank you!

Summary

In some sense like the top quark mass determination. All methods have their own merits.

- Higgs width determination brings in new information about the SM
- The task is unique and challenging at hadron colliders
- Progress made in theory for both higher order corrections, and new effect (on-shell interference)
- HL/HE will improve, provided great experimental efforts in bring down systematics or implementing new searches

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s} \text{)} \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

$$Re[P(\hat{s})] = \frac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
$$Im[P(\hat{s})] = \frac{-i \, \hat{s} \, \Gamma m}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s}) \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

B.W.

Re. Int

Background real

Re. Int. – Interference from the real part of the propagator

- normal interference, parton level no contribution to the rate, shift the mass peak
- When convoluting with PDF, may generate residual contribution to signal rate;
- conventional wisdom, interference only important when width is large)

$$Re[P(\hat{s})] = \frac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
$$Im[P(\hat{s})] = \frac{-i \, \hat{s} \, \Gamma m}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$

Interesting example of learning J/Psi spin

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s}) \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

Im. Int.— Interference from the imaginary part of propagator

- rare case (at LO);
- changes signal rate;
- cannot be dropped even if the width is narrow*

$$Re[P(\hat{s})] = \frac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
$$Im[P(\hat{s})] = \frac{-i \, \hat{s} \, \Gamma m}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$

*the measure of interference/resonance do not decrease, as the size of signal amplitude decrease as well

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s} \text{)} \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

$$= B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$$

B.W. Re. Int.

$$Im[c_{sig}c_{bkg}^*]$$

$$= i|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$$

When phase $\delta_{sig} - \delta_{bkg}$ is none-zero, this new interference effect exists and cannot be neglected however narrow the resonance is!

A strong phase in the gluon-gluon fusion production at hadron colliders (imaginary part)

Phase in gluon-gluon

Phase in gluon-gluon-fusion **0**. **042**

All quark contributions normalized the same way, the plot represents the relative contributions

Numerically:

- t-loop + 1.034
- b-loop -0.035 + 0.039i
- c-loop -0.004 + 0.002i

Phase from interfering background

Interfering background are from SM box diagram of $gg \rightarrow \gamma \gamma$ There is also a strong phase in the background:

Angular dependence a smaller but negative phase w.r.t to the signal At I-loop, the imaginary part is mainly from $A_{++++} =$ A_{---} with bottom and charm contributions Imaginary part dominated by the 2-loop MHV amplitude.