My Final College Paper

A Thesis
Presented to
Department of Statistical Science
Duke University

Huijia Yu

May 2018

Approved for the Bachelor of Science in Statistical Science

Merlise Clyde

Committeemember O. Name

Committeemember T. Name

 Mine Cetinkaya-Rundel, DUS

Acknowledgements

I want to thank a few people.

Preface

This is an example of a thesis setup to use the reed thesis document class (for LaTeX) and the R bookdown package, in general.

Table of Contents

Chapter 1: thesisdowndss::thesis_word: default	1
Chapter 2: Abstract	3
Chapter 3: Introduction	5
Chapter 4: Literature Review	7
Chapter 5: Simulation Study	9
5.1 Normal Example	9
5.1.1 Data Generation	9
5.1.2 Conditional Likelihood	9
5.1.3 Posterior Distribution	9
5.1.4 Results	
Chapter 6: Hierarchical Model Simulation	11
Chapter 7: Application	13
7.1 Genome Study	14
7.1.1 EDA	19
7.1.2 $model(s)$	22
Defenences	วา

List of Tables

List of Figures

Abstract

The preface pretty much says it all. Second paragraph of abstract starts here.

Dedication

You can have a dedication here if you wish.

Chapter 1

 $the sisdowndss:: the sis_word:\\$

default

Chapter 2 Abstract

Chapter 3 Introduction

Chapter 4 Literature Review

Chapter 5

Simulation Study

- 5.1 Normal Example
- 5.1.1 Data Generation
- 5.1.2 Conditional Likelihood
- 5.1.3 Posterior Distribution
- 5.1.4 Results

Estimators

Credible and Confidence Intervals

Coverage

Hypothesis Rejection(??)

Chapter 6 Hierarchical Model Simulation

Chapter 7

Application

```
knitr::opts_chunk$set(echo = TRUE)
 knitr::opts_chunk$set(cache = TRUE)
 library(rmeta)
Loading required package: grid
 library(lme4)
Loading required package: Matrix
 library("R2jags")
Loading required package: rjags
Loading required package: coda
Linked to JAGS 4.2.0
Loaded modules: basemod, bugs
Attaching package: 'R2jags'
The following object is masked from 'package:coda':
    traceplot
```

```
library(xtable)
```

7.1 Genome Study

• description from previous papers

```
load("tp53.Rdata")
getdata<- function(snp.name, iter=5000, drop= NULL){</pre>
#more iterations, coda traceplots, maybe look at the prior still- cauchy prior? ideal
if(!is.null(drop)) {
 use = !(tp53epi.wsi$site %in% drop)
 } else {
   use = rep(TRUE, nrow(tp53epi.wsi))
 }
 p53.snp = tp53geno.wsi[use, snp.name]
 tp53epi.wsi = tp53epi.wsi[use,]
 missing.geno = is.na(p53.snp)
 site.names = levels(factor(tp53epi.wsi[!missing.geno, "site"]))
 p53.data = list(CaseCon=tp53epi.wsi$casecon[!missing.geno], site=as.numeric(factor(tp
 p53.df = data.frame(p53.data)
 J = length(p53.data$CaseCon)
 n.sites = length(unique(p53.data$site))
 p53.data J = J
 p53.data$n.sites = n.sites
 #this is a new indicator
 p53.data$discovery.sites <- which(levels(factor(tp53epi.wsi$site))%in% drop)
 p53.data$missing.geno<-missing.geno
 return(p53.data)
}
snp.name="rs12951053n"
```

```
discovery.sitenames= c("POL", "MAY", "NCO")
#regular data
p53.data<- getdata(snp.name)
#validation data
p53.dataval<- getdata(snp.name, drop=discovery.sitenames)</pre>
```

```
Modes <- function(x, min.size) {</pre>
  ### Initial Checks
  if(missing(x)) stop("The x argument is required.")
  x <- as.vector(as.numeric(as.character(x)))</pre>
  x \leftarrow x[is.finite(x)]
  ### Amodal
  if(sd(x)==0)
    return(list(modes=NA, mode.dens=NA, size=1))
  ### Differentiate kernel density by x
  length(density(x)$y)
  dens.y.diff <- density(x) $y[-1] - density(x) $y[-length(density(x) $y)]
  incr <- dens.y.diff
  incr[which(dens.y.diff > 0)] <- 1
  incr[which(dens.y.diff <= 0)] <- 0</pre>
  ### Kernel density by increasing/decreasing density regions
  begin <- 1; count <- 1
  for (i in 2:length(incr)) {
    if(incr[i] != incr[i-1]) {
      count <- count + 1</pre>
      begin <- c(begin, i)}</pre>
  }
  begin <- c(begin, length(incr))</pre>
  size <- modes <- mode.dens <- rep(0, count/2)
  init <- 1
  dens <- density(x); sumdens <- sum(dens$y)</pre>
  if(incr[1] == 0) {
    size[1] <- sum(dens$y[1:begin[2]]) / sumdens
    init \langle -2 \rangle
  j <- init
  for (i in init:length(size)) {
    size[i] <- sum(dens$y[begin[j]:begin[j+2]]) / sumdens</pre>
    kde <- dens
    kde$x <- kde$x[begin[j]:begin[j+2]]</pre>
    kde$y <- kde$y[begin[j]:begin[j+2]]</pre>
    modes[i] \leftarrow kde$x[kde$y == max(kde$y)]
    mode.dens[i] \leftarrow kde\$y[kde\$y == max(kde\$y)]
    j <- j + 2
```

```
### Order everything by density
  size <- size[order(mode.dens, decreasing=TRUE)]</pre>
  modes <- modes[order(mode.dens, decreasing=TRUE)]</pre>
  mode.dens <- mode.dens[order(mode.dens, decreasing=TRUE)]</pre>
  ### Remove modes with size < 10%
  if(any(size < min.size)) {</pre>
    modes <- modes[-which(size < min.size)]</pre>
    mode.dens <- mode.dens[-which(size < min.size)]</pre>
    size <- size[-which(size < min.size)]</pre>
  }
  if(sum(size) > 1) size <- size / sum(size)</pre>
  #Output
  return(list(modes=modes, mode.dens=mode.dens, size=size))
}
is.multimodal <- function(x, min.size=0.01)</pre>
  if(length(Modes(x, min.size)[[1]]) > 1) return(TRUE)
  else return(FALSE)
}
HPDM <- function(obj, e = 0, prob=0.95, min.size=.01, plot=TRUE){
  vals <- apply(obj, 2, sort)</pre>
  if(!is.matrix(vals)) stop("obj must have nsamp > 1.")
  nsamp <- nrow(vals)</pre>
  npar <- ncol(vals)</pre>
  gap <- max(1, min(nsamp - 1, round(nsamp * prob)))</pre>
  init <- 1:(nsamp - gap)
  inds <- apply(vals[init + gap, , drop=FALSE] -</pre>
                   vals[init, , drop=FALSE], 2, which.min)
  ansmm <- cbind(vals[cbind(inds, 1:npar)],</pre>
                vals[cbind(inds + gap, 1:npar)])
  dimnames(ansmm) <- list(colnames(obj), c("Lower", "Upper"))</pre>
  mm <- apply(obj, 2, is.multimodal, min.size)
  if(any(mm)) {
    cat("\n\nPotentially multimodal column vectors:\n",
        which (mm), "\n")
    vals <- apply(obj, 2, sort)</pre>
    if(!is.matrix(vals)) stop("obj must have nsamp > 1.")
    for (m in which(mm)) {
      X<- vals[,m]</pre>
```

```
n<- length(X)
zeroes<- which(abs(X)<=e)
if(length(zeroes)==0){
  d < -X
  epsilon= 1e10
}
else{
  d<-X[-zeroes]
  epsilon<- min(abs(X[max(zeroes)+1]),abs(X[min(zeroes)-1]))/20
  }
pi <- length(d)/n
kde <- density(d)
dens <- rbind(data.frame(approx(kde$x, kde$y, d)),</pre>
               data.frame(x = rep(0, (n-length(d))), y = rep(0, (n-length(d)))))
dens<-dens[order(dens$x),]
#mix of normals
dens$mix<- pi*dens$y+(1-pi)*dnorm(dens$x, 0, epsilon)/dnorm(0, 0, epsilon)
dens.ind <- dens$mix >= as.vector(quantile(dens$mix,
                                          probs=1-prob)) * 1
ints <- ""
count <- 1
for (i in 1:nrow(vals)) {
  if((i == 1) & (dens.ind[i] == 1)) {
    ints <- paste("(",round(vals[i,m],3),",",sep="")
    if(count > ncol(ansmm)) ansmm <- cbind(ansmm, NA)</pre>
    ansmm[m,count] <- vals[i,m]</pre>
    count <- count + 1
  }
  if(i > 1) {
    if((dens.ind[i] == 0) & (dens.ind[i-1] == 1)) {
      ints <- paste(ints,round(vals[i-1,m],3),")",sep="")</pre>
      if(count > ncol(ansmm)) ansmm <- cbind(ansmm, NA)</pre>
      ansmm[m,count] <- vals[i-1,m]</pre>
      count <- count + 1
    if((dens.ind[i] == 1) & (dens.ind[i-1] == 0)) {
      ints <- paste(ints," (",round(vals[i,m],3),",",sep="")</pre>
      if(count > ncol(ansmm)) ansmm <- cbind(ansmm, NA)</pre>
      ansmm[m,count] <- vals[i,m]</pre>
      count <- count + 1</pre>
    }
  }
```

```
if((dens.ind[i] == 1) & (dens.ind[i-1] == 1)) {
        ints <- paste(ints,round(vals[i,m],3),")",sep="")</pre>
        if(count > ncol(ansmm)) ansmm <- cbind(ansmm, NA)</pre>
        ansmm[m,count] <- vals[i,m]</pre>
        count <- count + 1</pre>
      }
      cat("\nColumn", m, "multimodal intervals:", ints, "\n")
      if(plot){
        #plot(dens$x, dens$mix, type = "l")
        plotvar(X,e)
        points(ansmm, dens$mix[sapply(ansmm, function(a) which(dens$x==a)[1])], col="re
      }
      return(ansmm)
    }
  }
  else{
    return(ansmm)
  }
}
plotvar = function(x, e = 1e-04, nsteps = 500, newplot=TRUE) {
  zeroes = which(abs(x)<e)
  prob0=length(zeroes)/length(x)
  xne0=x
  if(prob0>0){
    xne0=x[-zeroes]
  }
  if(prob0==1){
    xlower = -0
   xupper = 0
    xmax = 1
  }
  m=mean(xne0)
  s = sd(xne0)
  #qmin = min(qnorm(e/2, m, s))
  #qmax = max(qnorm(1 - e/2, m, s))
  \#xlower = min(qmin, 0)
  #xupper = max(0, qmax)
  xlower=min(max(qnorm(e/2, m, s), min(x)), 0)
  xupper=max(min(max(x),qnorm(1-e/2, m, s)),0)
  xx = seq(xlower, xupper, length.out = nsteps)
```

```
yy = rep(0, times = length(xx))
 maxyy = 1
  if (prob0 < 1 ) {</pre>
    # kdeneg<- density(xne0[xne0<0])</pre>
    # kdepos<-density(xne0[xne0>0])
    \# yyneg \leftarrow approx(kdeneg x, kdeneg y, xx) y*length(xne0[xne0<0])/length(xne0)
    # yyneg[is.na(yyneg)]<-0</pre>
    \# yypos \leftarrow approx(kdepos x, kdepos y, xx) y*length(xne0[xne0>0])/length(xne0)
    # yypos[is.na(yypos)]<-0</pre>
    # yy = yyneg+yypos
    kde<- density(xne0)
    yy= approx(kde$x, kde$y, xx)$y
    #yy = dt(x=(x-m)/s, df=)/s
    maxyy = max(yy)
  }
 ymax = max(prob0, 1 - prob0)
  if(newplot){
 plot(c(xlower, xupper), c(0, ymax), type = "n",
       xlab = "", ylab = "")
  }
  lines(c(0, 0), c(0, prob0), lty = 1, lwd = 3,col=as.numeric(newplot)+1)
  lines(xx, (1 - prob0) * yy/maxyy, lty = 1, lwd = 1,col=as.numeric(newplot)+1)
  #invisible()
}
```

7.1.1 EDA

- plot of data points?
- conditional likelihood, FDR, etc as function of Y

•

```
OR.freq = function(snp.name, tp53epi.wsi,tp53geno.wsi, psdir="ps", drop=NULL,iter=
if (!is.null(drop)) {
  use = !(tp53epi.wsi$site %in% drop)}
else {
  use = rep(TRUE, nrow(tp53epi.wsi))
}
```

```
p53.snp = tp53geno.wsi[use, snp.name]
tp53epi.wsi = tp53epi.wsi[use,]
missing.geno = is.na(p53.snp)
site.names = levels(factor(tp53epi.wsi[!missing.geno,"site"]))
p53.data = list(CaseCon=tp53epi.wsi$casecon[!missing.geno], site=as.numeric(factor(tp
p53.df = data.frame(p53.data)
write.csv(p53.df, file=paste(snp.name, ".csv", sep=""))
p53.full = glm(CaseCon ~ factor(site) + factor(site)*p53 + factor(site)*Age + BC, dat
p53.pooled = glm(CaseCon ~ factor(site) + p53 + factor(site)*Age + BC, data=p53.df, far
 p53.null = glm(CaseCon ~ factor(site) + factor(site)*Age + BC, data=p53.df, family=
p53.df$Site = factor(p53.df$site)
p53.me = glmer(CaseCon \sim BC + p53 + Age + (1|site) + (0 + p53 | site) + (0 + Age | site)
test=anova(p53.full, p53.pooled, p53.null, test="Chi")
coef = summary(p53.full)$coef
ns = length(site.names)
OR = coef[c(ns+1, (ns+4):(ns+ns+2)),1]
x = p53.full$x
p = predict(p53.full, type="response")
var = solve(t(x)) % diag(p*(1-p)) % % (ns+1, (ns+4):(ns+ns+2)), c(ns+1, (ns+4):(ns+ns+2))
sqrt(diag(var))
eff = matrix(0, ns,ns)
eff[,1] = 1
for (i in 2:ns) eff[i,i] = 1
OR = eff %*% OR
OR.SE = sqrt(diag(eff %*% var %*% t(eff)))
DS = meta.summaries(OR, OR.SE, method="random", names=site.names, logscale=F)
p.value = pnorm(-(abs(DS\summary/DS\se.summary)))*2
BF0 = -exp(1)*p.value*log(p.value)
return(list(snp=snp.name, DS=DS, OR=OR, SE=OR.SE, p.value=p.value, BF.Ha = 1/BFO, test
```

validation.sitenames = c("AUS", "HAW", "MAL", "NEC", "NHS", "SEA", "STA", "UCI", "UKO", "

```
freq<-OR.freq(snp.name, tp53epi.wsi,tp53geno.wsi, psdir="ps", drop=validation.site
 freq
$snp
[1] "rs12951053n"
$DS
Random-effects meta-analysis
Call: meta.summaries(d = OR, se = OR.SE, method = "random", logscale = F,
    names = site.names)
Summary effect=0.303
                      95% CI (0.075, 0.531)
Estimated heterogeneity variance: 0 p= 0.485
$OR
          [,1]
[1,] 0.2689085
[2,] 0.4317372
[3,] 0.0911083
$SE
[1] 0.2253285 0.1673257 0.2320561
$p.value
[1] 0.009180839
$BF.Ha
[1] 8.542625
$test
Analysis of Deviance Table
Model 1: CaseCon ~ factor(site) + factor(site) * p53 + factor(site) *
    Age + BC
Model 2: CaseCon ~ factor(site) + p53 + factor(site) * Age + BC
Model 3: CaseCon ~ factor(site) + factor(site) * Age + BC
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
       2558
                2907.6
1
2
       2560
                2909.1 -2 -1.4777 0.47766
3
       2561
                2915.7 -1 -6.6070 0.01016 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$p53.me
Generalized linear mixed model fit by maximum likelihood (Laplace
```

```
Approximation) [glmerMod]
Family: binomial (logit)
Formula: CaseCon ~ BC + p53 + Age + (1 | site) + (0 + p53 | site) + (0 +
    Age | site)
  Data: p53.df
                BIC
      AIC
                       logLik deviance
                                         df.resid
 2936.888 2977.844 -1461.444 2922.888
                                             2561
Random effects:
Groups Name
                    Std.Dev.
 site
        (Intercept) 0.000e+00
                    1.311e-05
site.1 p53
 site.2 Age
                    7.216e-03
Number of obs: 2568, groups: site, 3
Fixed Effects:
(Intercept)
                      BC
                                  p53
                                               Age
   -1.73137
                 0.44222
                              0.29692
                                           0.01013
```

- put this into a table
- p values,fdr, BF interpretations

$7.1.2 \mod el(s)$

- rationale for priors
- plot for mixture
- plots of cond likelihood of mu

```
p53.data.aug<-p53.data
p53.data.aug$zeroes<- rep(0,p53.data$n.sites)
p53.data.aug$zero<- 0

p53.data.normal<-p53.dataval
p53.data.normal$n.discovery<- length(p53.data.normal$discovery.sites)
p53.data.normal$zeroes<- rep(0,p53.data.normal$n.discovery)
p53.data.normal$MLE<- freq$OR[,1]
p53.data.normal$SE<- freq$SE
p = 0.00325
p53.data.normal$q<-qnorm(1-p/2)</pre>
bfdata <- p53.dataval
bfdata$p <- freq$p.value</pre>
```

```
p53.model = function() {
  for (j in 1:J) {
    CaseCon[j] ~ dbern(theta[j])
```

```
logit(theta[j]) <- beta.site[site[j]] + beta.p53[site[j]]*p53[j] +</pre>
      beta.Age[site[j]]*Age[j] + beta.BC*BC[j]
  }
  for (k in 1:n.sites) {
    beta.site[k] ~ dnorm(mu.site, phi.site)
    beta.p53[k] ~ dnorm(mu.p53, phi.p53)
    beta.Age[k] ~ dnorm(mu.Age, phi.Age)
  }
  beta.BC ~ dnorm(0, 3)
 mu.site ~ dnorm(0, .1)
 phi.site <- pow(sigma.site, -2)
  sigma.site \sim dunif(0,5)
 mu.p53 \sim dnorm(0, .1)
  phi.p53 <- pow(sigma.p53, -2)
  sigma.p53 \sim dunif(0, 5)
 mu.Age ~ dnorm(0, .1)
 phi.Age <- pow(sigma.Age, -2)</pre>
  sigma.Age ~ dunif(0, 5)
}
```

```
#mixture with association variable
p53.newmodel3 = function() {
  for (j in 1:J) {
    CaseCon[j] ~ dbern(theta[j])
    logit(theta[j]) <- beta.site[site[j]] + beta.p53[site[j]]*p53[j] +
    beta.Age[site[j]]*Age[j] + beta.BC*BC[j] }

for (l in 1:n.sites) {
  beta.site[l] ~ dnorm(mu.site, phi.site)
  beta.p53.1[l] ~ dnorm(mu.p53, phi.p53)
  beta.p53[l] <- beta.p53.1[l]*assoc
  beta.Age[l] ~ dnorm(mu.Age, phi.Age)
}
beta.BC ~ dnorm(0, .1)

mu.site ~ dnorm(0, .1)

phi.site ~ dgamma(1,.05)
  sigma.site <- pow(phi.site, -.5)</pre>
```

```
#E[prec] 20
#(based on range .5 to 2 for OR => range = 1.4 = 6 sigma sigma = 1.4/6 ~= .2
mu.p53.1 ~ dnorm(0,.1)
mu.p53<-mu.p53.1*assoc
phi.p53 ~ dgamma(1, .05)
# phi.p53 ~ dgamma(2, .02)
sigma.p53 <- pow(phi.p53, -.5)

mu.Age ~ dnorm(0, .1)
phi.Age ~ dgamma(1, .05)
sigma.Age <- pow(phi.Age, -.5)

assoc ~ dbern(pind)
pind ~ dbeta(2,6)
}</pre>
```

```
#mixture using zeroes trick (without assoc latent var)
p53.newmodel4 = function() {
  for (j in 1:J) {
    CaseCon[j] ~ dbern(theta[j])
    logit(theta[j]) <- beta.site[site[j]] + beta.p53[site[j]]*p53[j] +</pre>
      beta.Age[site[j]]*Age[j] + beta.BC*BC[j]
  for (l in 1:n.sites) {
    beta.site[l] ~ dnorm(mu.site, phi.site)
    beta.Age[1] ~ dnorm(mu.Age, phi.Age)
    beta.p53.1[1] ~ dnorm(mu.p53, phi.p53)
    beta.p53[1] <- beta.p53.1[1]*(1-mu.p53.iszero)
  }
  beta.BC ~ dnorm(0, .1)
  mu.site \sim dnorm(0, .1)
  phi.site ~ dgamma(1,.05)
  sigma.site <- pow(phi.site, -.5)
  #zeroes trick
  C<-1000
  epsilon < -0.001
  tau<- pow(epsilon,-2)
  #if mu geq 0 and mu leq 0, prior is from point mass
  #mu in (-epsilon, epsilon)
  mu.p53.iszero<- step(epsilon-abs(mu.p53))</pre>
  L<- (mu.p53.iszero*(1-pind)) + #(dnorm(mu.p53,0,tau)*(1-pind)) +
    (dnorm(mu.p53,0,1)*pind)
```

```
#need pind for mixing

phi<- -log(L)+C
zero~dpois(phi)
mu.p53 ~ dunif(-2,2) #not sure how big this interval should be, just picked one
phi.p53 ~ dgamma(1, .05)
# phi.p53 ~ dgamma(2, .02)
sigma.p53 <- pow(phi.p53, -.5)

mu.Age ~ dnorm(0, .1)
phi.Age ~ dgamma(1, .05)
sigma.Age <- pow(phi.Age, -.5)
#assoc~dbern(pind)
pind ~ dbeta(2,10)
}</pre>
```

```
#conditional likelihood prior (normal approx, using zeroes trick)
p53.normal = function() {
  for (j in 1:J) {
    CaseCon[j] ~ dbern(theta[j])
    logit(theta[j]) <- beta.site[site[j]] + mu.p53*p53[j] +</pre>
      beta.Age[site[j]]*Age[j] + beta.BC*BC[j]
  for (l in 1:n.sites) {
    beta.site[1] ~ dnorm(mu.site, phi.site)
    #beta.p53[1] ~ dnorm(mu.p53, phi.p53)
    beta.Age[1] ~ dnorm(mu.Age, phi.Age)
  }
  C<-1000
  for (k in 1:n.discovery){
    #zeroes trick for MLE~cond prob
    tau[k] \leftarrow pow(SE[k], -2)
    L[k] \leftarrow dnorm(MLE[k], mu.p53, tau[k])/(pnorm(-q*SE, mu.p53, tau[k]) +
                                           1-pnorm(q*SE, mu.p53, tau[k]))
    phi[k] \leftarrow -log(L[k]) + C
    zeroes[k]~dpois(phi[k])
  }
  beta.BC ~ dnorm(0, .1)
 mu.site \sim dnorm(0, .1)
```

```
phi.site ~ dgamma(1,.05)
  sigma.site <- pow(phi.site, -.5)
  #E[prec] 20
  #(based on range .5 to 2 for OR \Rightarrow range = 1.4 = 6 sigma sigma = 1.4/6 \sim= .2
  mu.p53 \sim dnorm(0,.1)
  phi.p53 ~ dgamma(1, .05)
       phi.p53 ~ dgamma(2, .02)
  sigma.p53 <- pow(phi.p53, -.5)
  mu.Age \sim dnorm(0, .1)
  phi.Age ~ dgamma(1, .05)
  sigma.Age <- pow(phi.Age, -.5)
  #assoc~dbern(pind) *assoc
  pind ~ dbeta(2,6)
}
#eplogp approximation of BF for posterior prob of association
p53.bf.approx = function() {
  for (j in 1:J) {
    CaseCon[j] ~ dbern(theta[j])
    logit(theta[j]) <- beta.site[site[j]] + mu.p53*p53[j] +</pre>
      beta.Age[site[j]]*Age[j] + beta.BC*BC[j]
  for (l in 1:n.sites) {
    beta.site[1] ~ dnorm(mu.site, phi.site)
    beta.p53.1[1] ~ dnorm(mu.p53, phi.p53)
    \#beta.p53[l] \leftarrow beta.p53.1[l]*(assoc)
    beta.Age[1] ~ dnorm(mu.Age, phi.Age)
  }
  beta.BC \sim dnorm(0, .1)
  mu.site \sim dnorm(0, .1)
  phi.site ~ dgamma(1,.05)
  sigma.site <- pow(phi.site, -.5)</pre>
  #E[prec] 20
  #(based on range .5 to 2 for OR \Rightarrow range = 1.4 = 6 sigma sigma = 1.4/6 \sim .2
  mu.p53.1 \sim dnorm(0,.1)
  mu.p53<-mu.p53.1*assoc
  phi.p53 ~ dgamma(1, .05)
      phi.p53 ~ dgamma(2, .02)
  sigma.p53 <- pow(phi.p53, -.5)
  mu.Age \sim dnorm(0, .1)
```

Variable assoc not found

```
phi.Age ~ dgamma(1, .05)
    sigma.Age <- pow(phi.Age, -.5)
    assoc~dbern(post.ind)
   prior.odds<- (1-pind)/pind</pre>
   BF \leftarrow -\exp(1) *p*log(p)
   post.ind<-prior.odds*BF/(1+prior.odds*BF)</pre>
   pind ~ dbeta(2,6)
  }
  parameters = c("mu1.site", "mu1.p53", "beta.BC", "beta.Age", "mu.site", "mu.p53",
  parameters4 = c("beta.BC", "beta.Age", "mu.site", "mu.p53", "mu.Age", "sigma.site",
 parameters.normal <- c("beta.BC", "beta.Age", "mu.site", "mu.p53", "mu.Age", "sigma.
 p53.sim = jags(data=p53.data, inits=NULL, parameters.to.save =parameters, model =
module glm loaded
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "discovery.sites" in data
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "missing.geno" in data
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 11182
   Unobserved stochastic nodes: 46
   Total graph size: 59386
Initializing model
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable mu1.site not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable mu1.p53 not found
```

Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile

Variable pind not found

Variable phil.site not found

Variable phi1.p53 not found

```
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable pind not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable phil.site not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable phi1.p53 not found
 p53.simval = jags(data=p53.dataval, inits=NULL, parameters.to.save =parameters, model =
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "discovery.sites" in data
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "missing.geno" in data
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 8614
   Unobserved stochastic nodes: 37
   Total graph size: 45664
Initializing model
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable mu1.site not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable mu1.p53 not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s
Variable assoc not found
```

Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s

Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s

Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s

```
p53.simnew4 = jags(data=p53.data.aug, inits=NULL, parameters.to.save =parameters4,
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "discovery.sites" in data
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "missing.geno" in data
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "zeroes" in data
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 11183
   Unobserved stochastic nodes: 47
   Total graph size: 59459
Initializing model
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable assoc not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable beta.p53.iszero not found
 p53.simnormal = jags(data=p53.data.normal, inits=NULL, parameters.to.save =paramet
module glm loaded
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "discovery.sites" in data
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "missing.geno" in data
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 8614
   Unobserved stochastic nodes: 28
   Total graph size: 45642
Initializing model
```

Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable beta.p53 not found Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable assoc not found p53.bfsim = jags(data=bfdata, inits=NULL, parameters.to.save =parameters, model = p53.bf Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused variable "discovery.sites" in data Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused variable "missing.geno" in data Compiling model graph Resolving undeclared variables Allocating nodes Graph information: Observed stochastic nodes: 8614 Unobserved stochastic nodes: 39 Total graph size: 45659 Initializing model Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable mul.site not found Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable mu1.p53 not found Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable phil.site not found Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable phi1.p53 not found Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Failed to s Variable beta.p53 not found p53.simnew3 = jags(data=p53.data, inits=NULL, parameters.to.save =parameters, model = p5 module glm loaded

Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused variable "discovery.sites" in data

```
Warning in jags.model(model.file, data = data, inits = init.values,
n.chains = n.chains, : Unused variable "missing.geno" in data
Compiling model graph
  Resolving undeclared variables
  Allocating nodes
Graph information:
  Observed stochastic nodes: 11182
  Unobserved stochastic nodes: 48
  Total graph size: 59407
Initializing model
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable mu1.site not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable mu1.p53 not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable phil.site not found
Warning in jags.samples(model, variable.names, n.iter, thin, type = "trace", : Faile
Variable phi1.p53 not found
 library(dplyr)
 getOR<-function(sim){</pre>
 OR = as.data.frame(sim$BUGSoutput$sims.matrix)%>%select( starts_with("beta.p53"),
 exp(OR)
 \#colnames(OR) = c(site.names, "Overall")
 sum.OR = t(apply(exp(OR), 2, function(x) {PI = HPDinterval(as.mcmc(x))
  return(c(median(x), PI[1], PI[2]))}
 ))
  return(sum.OR)
 }
 OR1<-getOR(p53.sim) #regular
 OR3<-getOR(p53.simnew3) #w assoc
 OR4<-getOR(p53.simnew4) #w point mass ind
 ORn<-getOR(p53.simnormal) #MLEs for prior
 ORbf<-getOR(p53.bfsim) #MLEs for prior
```

	original	latentvar	zerotrick	cond	bfapprox
Median	1.183197	1.000000	1.1849025	1.159779	1.000000
2.5%	1.042845	1.000000	0.9963451	1.011020	1.000000
97.5%	1.355430	1.246941	1.3741023	1.324258	1.154497

- discussion of OR
- at least one example of a posterior?
- plot CI comparisons
- plot something like the shrinkage
- plot CI length comparison
- some notes on disjoint CI's, log vs not logged HPD

References