

车载TSN设计与实践

Design and Practice of TSN in Automobile

- 01 TSN概述 Overview of TSN
- **5. 车载TSN设计** Design of Automotive TSN
- **TSN仿真分析** Simulation analysis of TSN
- **04** Demo开发及演示 Development and demonstration
- 05 总结 Summary

<mark>01</mark> TSN概述

Overview of TSN

TSN概述 Overview of TSN

- AVB解决了音视频在以太网中的实时同步传输问题
- AVB的特性逐渐被工业和汽车等行业关注,对其提出更多需求
- 2012年11月,AVB任务组扩展了其工作范围,并正式更名为TSN(Time Sensitive Networking)
- TSN协议是在IEEE 802.1标准框架下,基于特定需求制定的一组"标准",旨在通过IEEE 802网络提供确定性服务,如有限延迟,低延迟变动和低包丢失率

Traditional VS TSN

Source: Bounded Low Latency in IEEE 802.1 and IETF DetNEt

■ 智能化、网联化对汽车网络的新需求

TSN概述 Overview of TSN

■ 车载领域TSN协议框架

TSN概述 Overview of TSN

车载领域TSN应用场景

Design of Automotive TSN

- 车载网络有其独特性,车载TSN的设计也需要因地制宜。
- 以自动驾驶为例,简要介绍TSN设计过程

场景及需求分析 协议选取

- 场景及需求分析
 - 分析数据流特点和需求,自动驾驶有如下交互数据,传感器、V2X、控制数据

场景及需求分析

协议选取

参数设计

■ 场景及需求分析

自动驾驶数据需求

传感器类型	采集頻率	数据帧 发送周期	传输延迟要求	丢包容忍性	带宽
毫米波雷达	10Hz~50Hz	20ms~100ms	<2ms	不可丢包	10~100 kbps
车载摄像头(raw)	24~60fps	<0.1ms	<2ms	不可丢包	>500Mbps
激光雷达	>10kHz	<2ms	<2ms	可丢包	3~15Mbps
超声波传感器	>10Hz	<100ms	<10ms	可丢包	5~20kbps
GPS/IMU	>10Hz	<100ms	<10ms	可丢包	5~20kbps
高精地图	_	TBD	<10ms	可丢包	TBD

应	用场景	通信时延/ms	数据速率/(Mbit/s)	通信距离
车	辆编队	10~500	0.012~65	80~350
先	进驾驶	3~100	10~53	360~700
传	感器扩展	3~100	10~1000	50
ìπ	程驾驶	5	上行25. 下行1	无限制

数据类型	发送周期	传输延迟要求	丢包容忍性	数据帧大小限制
Safety-relevant	≤10ms	< 1ms	不可丢包	64~128字节(100Mbps)
Control				
Safety-irrelevant	< 200ms	< 20ms	可丢包	64~256字节(100Mbps)
Control				

场景及需求分析

协议选取

参数设计

- 协议选取
 - 考虑通信数据需求、网络拓扑

主要整形协议

协议	缩写	中文名称	应用场景
802.1 Qav	FQTSS	队列、转发及流量整形协议	保证延迟低于上限值,支持对每个队列整形
802.1Qcr	ATS	异步整形协议	保证延迟低于上限值,支持对每个数据流整形
802.1 Qbv	TAS	时间感知整形协议	周期数据流,延迟要求高的应用
802.1 Qch	CQF	周期队列及转发协议	周期数据流,延迟要求较高的应用

场景及需求分析

协议选取

参数设计

■ 协议选取

考虑通信数据需求、网络拓扑

整形器类型	无人驾驶系统数据		
802.1Qbv	关键控制数据		
802.1Qav (Class A) 或802.1Qcr	车载摄像头、毫米波雷达和激光雷达		
802.1Qav (Class B) 或802.1Qcr	超声波传感器、GPS/IMU、高精地图		
Best effort (higher Priority)	超声波传感器、GPS/IMU、高精地图、一般控制数据		

协议	缩写	中文名称	作用	备注
802.1AS	gPTP	广义精确时钟同步协议	在网络内实现各节点的时钟同步	N/A
1722	AVTP	音视频传输协议	实现音视频和传统总线数据封装、 传输	N/A
802.1Qat	SRP	流预留协议	在数据流传输路径上预留带宽	采用静态配置,不使用动态预留
802.1Qav	FQTSS	队列、转发及流量整形协议	实现毫秒级传输延迟	N/A
802.1Qbv	TAS	时间感知整形协议	实现亚亳秒级传输延迟	N/A
802.1 CB	FRER	帧复制与消除协议	实现关键数据的无缝冗余	高功能安全数据 www

场景及需求分析

协议选取

参数设计

- 参数设计
 - 依据标准、需求规范、场景分析的成果,结合网络拓扑,设计各TSN协议配置参数

场景及需求分析 协议选取 参数设计

- 参数设计
 - 整形参数计算
 - Qav、Qcr参数计算参考P802.1Qdq中burst流计算方法

$$\begin{aligned} \text{MaxFrameSize} &= \min \left(\text{floor} \left(\frac{\text{dataSize}}{\text{targetLatency}} \times \text{classMeasurementInterval} \right), \text{Maximum SDU Size} \right) \\ &= \text{MaxIntervalFrames} &= \text{ceil} \left(\frac{1}{\text{MaxFrameSize}} \times \frac{\text{dataSize}}{\text{targetLatency}} \times \text{classMeasurementInterval} \right) \end{aligned}$$

$$\begin{aligned} \text{CommittedInformationRate} &= \frac{\text{dataSize}}{\text{targetLatency}} \end{aligned}$$

■ Qbv参数主要涉及CycleTime及GCL参数,将其转化为NP问题,利用SMT求解器求解

TSN仿真分析 Simulation analysis of TSN

- TSN设计参数繁多,车内网络行为受到拓扑、数据流特性和流量调度等影响,需要借助仿真工具,对网络设计进行定量评估。
- TSN仿真平台协议支持情况

协议	OMNeT++ 模型			其他模型			
W) IX	INET	NeSTiNg	CoRE4INET	TSimNet	OPNET Model	TCN	RTaW-Pegase
Credit-Based Shaper (Qav)	√	√	√			√	√
Scheduled Traffic (Qbv)	√	√_	√		$\sqrt{}$	√	√
Asynchronous Traffic Shaping (Qcr)	√						√
Clock Sync. (gPTP)	√				$\sqrt{}$	√	√
Frame Preemption(Qbu)	√	√		√			√
Per-stream Filtering and Policing(Qci)	√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		√
Frame Replication and Elimination(CB)	√			√	√	√	√
Configuration Protocols(Qcc)	√		\checkmark		$\sqrt{}$		

TSN仿真分析 Simulation analysis of TSN

■ 开源软件平台(Omnet++&INET框架&TSN模块)

```
network Zonalárchitecture extends TsnNetworkRase
       @display("bgb=1773.408,962.752");
       InnalECU1: cdefault("TsnSwitch")> like IfthernetNetworkNode {
           #display("p=774.592,254.016");
           @display("isdevice/device");
       ZonalECu2: (default("TsnSwitch")> like IEthernetNetworkNode (
           #display("p=774.592.453.152");
           @display("i=device/device");
        switch1: <default("TsnSwitch")> like IEthernetNetworkNode {
           @display("p=1077.2161,351.232");
        ZonalECU3: <default("TsnSwitch")> like IEthernetNetworkNode {
           #display("p=1375.136,254.016");
           @display("i=device/device");
        ZonalECU4: <default("TsnSwitch")> like IEthernetNetworkNode (
           @display("o+1375.136.453.152");
           #display("i-device/device");
       CentralComputer: <default("TsnClock")> like IEthernetNetworkNode <
           #display("c=1077.2161.453.152"):
           #display("i=device/cpu");
       RadarECU: <default("TsnDevice")> like IEthernetNetworkNode (
           @display("p=774.592,128.576");
       RogueECU: <default("TanDevice")> like IEthernetNetworkNode (
           Adisplay("c=774.592.603.68"):
        SpeedFCU: cdefault("TsnDevice")> like IfthernetNetworkNode (
           #display("p=1375.136,134.848");
       FuelControlECU: (default("TinDevice")> like IEthernetNetworkNode (
           @display("p=1375.136,603.68");
       CameraECU: <default("TsnDevice")> like IEthernetNetworkNode {
           @display("p=1238.72,134.848");
           @display("indevice/camera");
       scenarioManager: ScenarioManager (
           @display("p=100,800;is=s");
   connections
       RadarECU.ethg++ <--> Eth100M <--> ZonalECU1.ethg++:
       ZonalECU1.ethg++ <--> Eth16 <--> switch1.ethg++;
        ZonalECU1.ethg++ <--> Eth16 <--> ZonalECU2.ethg++:
```

```
网络建模
```

```
[General]
network "ZonalArchitecture
**.displaydateichedules = true
  .gateScheduleVisualizer(0).height = 16
"".gateScheduleVisualizer[0].placementHint = "right"
".visualizer.typename = "IntegratedMultiCanvasVisualizer"
*.visualizer.infoVisualizer.displayInfos * true
# enoble egress traffic shaping
*.ZonalECU4.hasEgressTrafficShaping = true
".switchi.hasEgressTrafficShaping = true
# enable time synchronization in all network nodes
*.CentralComputer.hasTimeSynchronization * true
* BadacfCU hasTimeSunchronization = frue
*.CameraECU.hasTimeSynchronization = true
# CentralComputer applications
*.CentralComputer.numions = 4
".CentralComputer.app[0..2].typename = "UdpSinkApp"
*.CentralComputer.app[0].ip.localPort = 1000
".CentralComputer.app[1].io.localPort = 1001
*.CentralComputer.app[2].ip.localPort = 1802
*.CentralComputer.app[3].typename = "UdoSourceApp"
*.CentralComputer.app[3].display-name = "Control Data"
".CentralComputer.app[3].io.destAddress = "FuelControlECU"
".CentralComputer.app[3].So.destPort = 1003
".CentralComputer.app[3].source.packetLength = 1288 - 548 # 428 = 88 (LGP) + 208
*.CentralComputer.app[3].source.productionInterval * exponential(ims) # ~198ps
# time-avery treffic shaping
".ZonalECU4.eth(").macLayer.queue.numTrafficClasses = 2
".ZonalECU4.eth["].macLayer.queue."[0].display-name = "best effort"
".ZonalECU4.eth["].macLayer.queue."[1].display-name = "Control"
".ZonalECU4.eth["].macLayer.queue.transmissionGate[0].offset = 1ms
".ZonalECU4.eth("].macLayer.queue.transmissiondate(0].durations = [200us, 1800us]
".ZonalECU4.eth["].macLayer.queue.transmissionGate[0].initiallyOpen wfalse
".ZonalECU4.eth["].macLayer.queue.transmissionGate[1].offset = 1ms
".ZonalECU4.eth["].macLayer.queue.transmissiondate[1].durations = [200us, 1800us]
".scenarioManager.script = xml("<scenario>
                                   cdisconnect sec-modules's1' dest-modules's2a'/
                                  (at to'0.2') \
                                   (disconnect src-module='s2b' dest-module='s3b'
                                  </at> \
```

参数配置及数据流建模

■ 开源软件平台(Omnet++&INET框架&TSN模块)

仿真

结果分析(延迟、流量、缓存…)

TSN仿真分析 Simulation analysis of TSN

TSN设计流程

- Demo硬件组成
 - 中央计算单元:

■ 计算模块: intel NUC PC + I210

■ 交换机5: SJA1110

- Zonal ECU 1&2:
 - S32G-VNP-RDB (S32G+SJA1110)
- Radar ECU、Rogue ECU
 - S32G-VNP-RDB (S32G+SJA1110)
- Zonal ECU 3&4:
 - LS1028ARDB (处理器: LS1028A)
- Speed ECU、Fuel Control ECU、Camera ECU
 - Nitrogen i.MX 8M (CPU: i.MX 8MQuad)

- 传感器融合场景
 - 中央计算单元融合摄像头和雷达ECU数据
 - 802.1Qav协议对雷达数据进行整形
 - Rogue ECU发送干扰流
 - Switch2支持802.1Qci
 - 雷达数据通过802.1CB协议冗余传输(TBD)
 - 网络通过802.1AS协议实现时钟同步冗余(TBD)

- 传感器融合场景
 - 中央计算单元融合摄像头和雷达ECU数据
 - 802.1Qav协议对雷达数据进行整形
 - Rogue ECU发送干扰流
 - Switch2支持802.1Qci
 - 雷达数据通过802.1CB协议冗余传输(TBD)
 - 网络通过802.1AS协议实现时钟同步冗余(TBD)

- 关键控制场景
 - 中央计算单元发送控制数据至Fuel ECU
 - 802.1Qbv协议对控制数据整形
 - 网络通过802.1AS协议实现时钟同步
 - Camera ECU发送干扰流

传输延迟

05 总结

Summary

总结 Summary

- TSN系列标准庞大但灵活,由设计者根据自己的需要,结合各协议特点,自由组合
- 汽车领域将逐步应用TSN技术,综合考虑成本、性能和易用性
- TSN配置参数多、网络设计复杂,有必要对车载网络行为进行仿真分析

怪星科技提供全套车载TSN解决方案 EPT's TSN Solution

TSN设计

TSN协议规范

TSN配置规范

TSN应用场景分析

整形参数计算脚本

TSN仿真分析

基于Omnet++的GUI建模插件 基于Python的定制化分析插件

TSN开发

Demo开发 TSN协议栈

TSN配置工具

TSN测试

测试设备

测试规范

协议测试

系统测试

让每一台智能汽车都有我们的贡献

- 网站:www.e-planet.cn
- ⊕ 电话: +86 21-53393860
- 邮箱: biz@e-planet.cn
- 技术咨询: support@e-planet.cn
- ② 总部地址:上海市徐汇区田林路487号宝石园20号楼25层

密料下载