

1-48. (Canceled)

49. (Currently Amended) A method for treating or preventing a disease characterized by beta-amyloid deposits in the brain comprising administering to a patient an effective therapeutic amount of a hydroxyethylene compound of the formula

where R₁ is:

- (I) C₁-C₆ alkyl, unsubstituted or substituted with one, two or three C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -NH₂, -C≡N, -CF₃, or -N₃,
- (II) -(CH₂)₁₋₂-S-CH₃,
- (III) -CH₂-CH₂-S-CH₃,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one -F,

(V) -(CH₂)₀₋₃-(R₁-aryl) where R₁-aryl is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:

- (A) C₁-C₃ alkyl,
- (B) -CF₃,
- (C) -F, Cl, -Br and -I,

(D) C₁-C₃ alkoxy,

(E) -O-CF₃,

(F) -NH₂,

(G) -OH, or

(H) -C≡N,

(VI) -(CH₂)_{n1}-(R₁-heteroaryl) where n₁ is 0, 1, 2, or 3 and

R₁-heteroaryl is:

(A) pyridinyl,

(B) pyrimidinyl,

(C) quinolinyl,

(D) indenyl,

(E) indanyl,

(F) benzothiophenyl,

(G) indolyl,

(H) indolinyl,

(I) pyridazinyl,

(J) pyrazinyl,

(K) isoindolyl,

(L) isoquinolyl,

(M) quinazolinyl,

(N) quinoxalinyt,

(O) phthalazinyl,

(P) imidazolyl,

(Q) isoxazolyl,

(R) pyrazolyl,

(S) oxazolyl,

(T) thiazolyl,

(U) indolizinyl,

(V) indazolyl,

(W) benzothiazolyl,

(X) benzimidazolyl,

(Y) benzofuranyl,
(Z) furanyl,
(AA) thienyl,
(BB) pyrrolyl,
(CC) oxadiazolyl,
(DD) thiadiazolyl,
(EE) triazolyl,
(FF) tetrazolyl,
(GG) 1, 4-benzodioxan
(HH) purinyl,
(II) oxazolopyridinyl,
(JJ) imidazopyridinyl,
(KK) isothiazolyl,
(LL) naphthyridinyl,
(MM) cinnolinyl,
(NN) carbazolyl,
(OO) β -carbolinyl,
(PP) isochromanyl,
(QQ) chromanyl,
(RR) furazanyl,
(SS) tetrahydroisoquinoline,
(TT) isoindolinyl,
(UU) isobenzotetrahydrofuranyl,
(VV) isobenzotetrahydrothienyl,
(WW) isobenzothiophenyl,
(XX) benzoxazolyl, or
(YY) pyridopyridinyl,

where the R₁-heteroaryl group is bonded to -(CH₂)₀₋₃- by any ring atom of the parent R_N-heteroaryl group substituted by hydrogen such that the new bond to the R₁-heteroaryl group replaces the hydrogen atom

and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C₁-C₃ alkyl,
- (2) -CF₃,
- (3) -F, Cl, -Br, or -I,
- (4) C₁-C₃ alkoxy,
- (5) -O-CF₃,
- (6) -NH₂,
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n₁ is zero R₁-heteroaryl is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n₁ is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyrananyl,
- (J) piperidinyl,
- (K) tetrahydrofurananyl, or
- (L) tetrahydrothiophenyl,

where the R₁-heterocycle group is bonded by any atom of the parent R₁-heterocycle group substituted by hydrogen such that the new bond to the R₁-heteroaryl group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or

two:

- (1) =O,
- (2) C₁-C₃ alkyl,
- (3) -CF₃,
- (4) -F, Cl, -Br and -I,
- (5) C₁-C₃ alkoxy,
- (6) -O-CF₃,
- (7) -NH₂,
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n₁ is zero R₁-heterocycle is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C₁-C₆ alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R₁-aryl or R₁-heteroaryl where R₁-aryl and R₁-heteroaryl are as defined above,

where R_N is:

- (I) R_{N-1}-X_N- where X_N is:
 - (A) -CO-,
 - (B) -SO₂-,
 - (C) -(CR'R'')₁₋₆ where R' and R'' are the same or different and are -H or C₁-C₄ alkyl,
 - (D) -CO-(CR'R'')₁₋₆-X_{N-1} where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_N-aryl where R_N-aryl is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with

one, two, three or four of the following substituents which can be the same or different and are:

- (1) C_1-C_6 alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) -OH,
- (4) $-NO_2$,
- (5) $-CO-OH$,
- (6) $-C\equiv N$,
- (7) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are:

- (a) -H,
- (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
- (c) $-C_1-C_6$ alkyl unsubstituted or substituted with one to three -F, -Cl, -Br, or -I,
- (d) $-C_3-C_7$ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) $-C_1-C_6$ alkenyl with one or two

double bonds,

- (h) $-C_1-C_6$ alkynyl with one or two triple bonds,
 - (i) $-C_1-C_6$ alkyl chain with one double bond and one triple bond,
 - (j) $-R_{1-\text{aryl}}$ where $R_{1-\text{aryl}}$ is as defined above, or

(k) -R₁-heteroaryl where R₁-heteroaryl is as defined above,

- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R₁-heteroaryl where R₁-heteroaryl is as defined above,

(11) -CO-R₁-heterocycle where R₁-heterocycle is as defined above,

- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,

(13) -CO-O-R_{N-5} where R_{N-5} is:

- (a) C₁-C₆ alkyl, or
- (b) -(CH₂)₀₋₂-(R₁-aryl) where R₁-aryl is as defined above,

(14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,

(15) -SO-(C₁-C₈ alkyl),

(16) -SO₂-(C₃-C₁₂ alkyl),

(17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

(18) -NH-CO-N(C₁-C₃ alkyl)₂,

(19) -N-CS-N(C₁-C₃ alkyl)₂,

(20) -N(C₁-C₃ alkyl)-CO-R_{N-5} where R_{N-5} is as defined above,

(21) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(22) -R_{N-4} where R_{N-4} is as defined above,

- (23) -O-CO-(C₁-C₆ alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O-(C₁-C₆ alkyl),
- (27) -O-(C₂-C₅ alkyl)-COOH,
- (28) -S-(C₁-C₆ alkyl),
- (29) C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F,
- (30) -O-(C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- (31) -O-Φ,

(B) -R_N-heteroaryl where R_N-heteroaryl is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,

(T) thiazolyl,
(U) indolizinyl,
(V) indazolyl,
(W) benzothiazolyl,
(X) benzimidazolyl,
(Y) benzofuranyl,
(Z) furanyl,
(AA) thietyl,
(BB) pyrrolyl,
(CC) oxadiazolyl,
(DD) thiadiazolyl,
(EE) triazolyl,
(FF) tetrazolyl,
(GG) 1, 4-benzodioxan
(HH) purinyl,
(II) oxazolopyridinyl,
(JJ) imidazopyridinyl,
(KK) isothiazolyl,
(LL) naphthyridinyl,
(MM) cinnolinyl,
(NN) carbazolyl,
(OO) β -carbolinyl,
(PP) isochromanyl,
(QQ) chromanyl,
(RR) furazanyl,
(SS) tetrahydroisoquinoline,
(TT) isoindolinyl,
(UU) isobenzotetrahydrofuranyl,
(VV) isobenzotetrahydrothienyl,
(WW) isobenzothiophenyl,
(XX) benzoxazolyl, or

(YY) pyridopyridinyl,

where the R_N-heteroaryl group is bonded by any atom of the parent R_N-heteroaryl group substituted by hydrogen such that the new bond to the R_N-heteroaryl group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C₁-C₆ alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) -OH,
- (4) -NO₂,
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:

- (a) -H,
- (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
- (c) -C₁-C₆ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl),
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,

- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) -R₁-aryl where R₁-aryl is as defined above, or
- (k) -R₁-heteroaryl where R₁-heteroaryl is as defined above,

(8) -CO-(C₃-C₁₂ alkyl),

(9) -CO-(C₃-C₆ cycloalkyl),

(10) -CO-R₁-heteroaryl where R₁-heteroaryl is as defined above,

(11) -CO-R₁-heterocycle where R₁-heterocycle is as defined above,

(12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,

(13) -CO-O-R_{N-5} where R_{N-5} is:

- (a) C₁-C₆ alkyl, or
- (b) -(CH₂)₀₋₂₋(R₁-aryl) where R₁-aryl is as defined above,

(14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,

(15) -SO-(C₁-C₈ alkyl),

(16) -SO₂-(C₃-C₁₂ alkyl),

(17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

(18) -NH-CO-N(C₁-C₃ alkyl)₂,

(19) -N-CS-N(C₁-C₃ alkyl)₂,

(20) $-N(C_1-C_3\text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,

(21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(22) $-R_{N-4}$ where R_{N-4} is as defined above,

(23) $-O-CO-(C_1-C_6\text{ alkyl}),$

(24) $-O-CO-N(C_1-C_3\text{ alkyl})_2,$

(25) $-O-CS-N(C_1-C_3\text{ alkyl})_2,$

(26) $-O-(C_1-C_6\text{ alkyl}),$

(27) $-O-(C_2-C_5\text{ alkyl})-COOH,$ or

(28) $-S-(C_1-C_6\text{ alkyl}),$

(C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,

(D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,

(E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,

(F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,

(G) $-R_{N-aryl}-O-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,

(H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,

(I) $-R_{N-heteroaryl}-O-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,

(J) $-R_{N-heteroaryl}-S-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,

(K) $-R_{N-aryl}-CO-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,

(L) $-R_N\text{-aryl}-CO-R_N\text{-heteroaryl}$ where $R_N\text{-aryl}$ and $R_N\text{-heteroaryl}$ are as defined above,

(M) $-R_N\text{-aryl}-SO_2-R_N\text{-aryl}$ where $R_N\text{-aryl}$ is as defined above,

(N) $-R_N\text{-heteroaryl}-CO-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(O) $-R_N\text{-heteroaryl}-SO_2-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(P) $-R_N\text{-aryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-aryl}$ is as defined above,

(Q) $-R_N\text{-aryl}-S-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-aryl}$ is as defined above,

(R) $-R_N\text{-heteroaryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-heteroaryl}$ is as defined above, or

(S) $-R_N\text{-heteroaryl}-S-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-heteroaryl}$ is as defined above,

(II) $A-X_N-$ where X_N is $-CO-$,

wherein A is

(A) $-T-E-(Q)_m$,

(1) where -T is

where

(a) $x = 1$ when $y = 1$ and $x = 2$ when $y = 0$,

(b) m is $0, 1, 2$ or 3 ,

- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C₁-C₂) alkyl, phenyl, or phenyl(C₁-C₃)alkyl;

(2) -E is

(a) C₁-C₅ alkyl, but only if m' does not equal 0,

- (b) methylthioxy(C₂-C₄)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,

(d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,

(e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,

(f) biphenyl,

(g) diphenyl ether,

(h) diphenylketone,

(i) phenyl(C₁-C₈)alkyloxyphenyl, or

(j) C₁-C₆ alkoxy;

(3) -Q is

- (a) C₁-C₃ alkyl,
- (b) C₁-C₃ alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,

(f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
(g) C₁-C₆ alkylamino
(h) phenylamino,
(i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
(j) carboxyl (including C₁-C₆ alkyl and phenyl esters),
(k) carboxy(C₂-C₅)alkoxy,
(l) carboxy(C₂-C₅)alkylthioxy,
(m) heterocyclacyl,
(n) heteroarylacyl, or
(o) hydroxyl;
(4) m' is 0, 1, 2 or 3;

(B) -E(Q)_{m''} wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
(C) -T-E wherein -E and -Q are as defined as above; or
(D) -E wherein -E is as defined as above;

(III) -CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
(A) -OH,
(B) -C₁-C₆ alkoxy,
(C) -C₁-C₆ thioalkoxy,
(D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or -Φ,
(E) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
(F) -CO-R_{N-4} where R_{N-4} is as defined above,
(G) -SO₂-(C₁-C₈ alkyl),

(H) $-\text{SO}_2-\text{NR}_{\text{N}-2}\text{R}_{\text{N}-3}$ where $\text{R}_{\text{N}-2}$ and $\text{R}_{\text{N}-3}$ are the same or different and are as defined above,

(I) $-\text{NH}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$

(J) $-\text{NH}-\text{CO}-\text{O}-\text{R}_{\text{N}-8}$ where $\text{R}_{\text{N}-8}$ is as defined above,

(K) $-\text{NR}_{\text{N}-2}\text{R}_{\text{N}-3}$ where $\text{R}_{\text{N}-2}$ and $\text{R}_{\text{N}-3}$ are the same or different and are as defined above,

(L) $-\text{R}_{\text{N}-4}$ where $\text{R}_{\text{N}-4}$ is as defined above,

(M) $-\text{O}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$

(N) $-\text{O}-\text{CO}-\text{NR}_{\text{N}-8}\text{R}_{\text{N}-8}$ where the $\text{R}_{\text{N}-8}$ is the same or different and are as defined above, or

(O) $-\text{O}- (\text{C}_1-\text{C}_5 \text{ alkyl})-\text{COOH},$

(IV) $-\text{CO}- (\text{C}_1-\text{C}_3 \text{ alkyl})-\text{O}- (\text{C}_1-\text{C}_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two

(A) $-\text{OH},$

(B) $-\text{C}_1-\text{C}_6 \text{ alkoxy},$

(C) $-\text{C}_1-\text{C}_6 \text{ thioalkoxy},$

(D) $-\text{CO}-\text{O}-\text{R}_{\text{N}-8}$ where $\text{R}_{\text{N}-8}$ is $-\text{H}$, C_1-C_6 alkyl or $-\phi,$

(E) $-\text{CO}-\text{NR}_{\text{N}-2}\text{R}_{\text{N}-3}$ where $\text{R}_{\text{N}-2}$ and $\text{R}_{\text{N}-3}$ are the same or different and are as defined above,

(F) $-\text{CO}-\text{R}_{\text{N}-4}$ where $\text{R}_{\text{N}-4}$ is as defined above,

(G) $-\text{SO}_2- (\text{C}_1-\text{C}_8 \text{ alkyl}),$

(H) $-\text{SO}_2-\text{NR}_{\text{N}-2}\text{R}_{\text{N}-3}$ where $\text{R}_{\text{N}-2}$ and $\text{R}_{\text{N}-3}$ are the same or different and are as defined above,

(I) $-\text{NH}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$

(J) $-\text{NH}-\text{CO}-\text{O}-\text{R}_{\text{N}-8}$ where $\text{R}_{\text{N}-8}$ is as defined above,

(K) $-\text{NR}_{\text{N}-2}\text{R}_{\text{N}-3}$ where $\text{R}_{\text{N}-2}$ and $\text{R}_{\text{N}-3}$ are the same or different and are as defined above,

(L) $-\text{R}_{\text{N}-4}$ where $\text{R}_{\text{N}-4}$ is as defined above,

(M) $-\text{O}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$

(N) $-\text{O}-\text{CO}-\text{NR}_{\text{N}-8}\text{R}_{\text{N}-8}$ where the $\text{R}_{\text{N}-8}$ are the same or different and are as defined above, or

(O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,

(V) $-CO-(C_1-C_3 \text{ alkyl})-S-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two

(A) $-OH$,

(B) $-C_1-C_6 \text{ alkoxy}$,

(C) $-C_1-C_6 \text{ thioalkoxy}$,

(D) $-CO-O-R_{N-8}$ where R_{N-8} is $-H$, C_1-C_6 alkyl or $-\phi$,

(E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,

(F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,

(G) $-SO_2-(C_1-C_8 \text{ alkyl})$,

(H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,

(I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,

(J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,

(K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,

(L) $-R_{N-4}$ where R_{N-4} is as defined above,

(M) $-O-CO-(C_1-C_6 \text{ alkyl})$,

(N) $-O-CO-NR_{N-8}R_{N-8}$ where the R_{N-8} are the same or different and are as defined above, or

(O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,

(VI) $-CO-CH(-(CH_2)_{0-2}-O-R_{N-10})-(CH_2)_{0-2}-R_{N-aryl}/R_{N-heteroaryl}$ where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is:

(A) $-H$,

(B) $C_1-C_6 \text{ alkyl}$,

(C) $C_3-C_7 \text{ cycloalkyl}$,

(D) $C_2-C_6 \text{ alkenyl}$ with one double bond,

(E) $C_2-C_6 \text{ alkynyl}$ with one triple bond,

(F) $R_1\text{-aryl}$ where $R_1\text{-aryl}$ is as defined above, or

(G) R_N -heteroaryl where R_N -heteroaryl is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-;

where R_C is:

(I) (C_1-C_{10}) alkyl K_{1-3} , in which:

_____ (A) the alkyl chain is unsubstituted or substituted with one -OH,

_____ (B) the alkyl chain is unsubstituted or

substituted with one C_1-C_6 alkoxy unsubstituted or substituted with 1-5 F,

_____ (C) the alkyl chain is unsubstituted or substituted with one -O- ϕ ,

_____ (D) the alkyl chain is unsubstituted or substituted with 1-5 F,

_____ (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,

_____ (F) each K is:

_____ (1) H,

_____ (2) C_1-C_3 alkyl,

_____ (3) C_1-C_3 alkoxy,

_____ (4) C_1-C_3 alkylthioxy,

_____ (5) C_1-C_6 alkylacylamine,

_____ (6) C_1-C_6 alkylacylexy,

_____ (7) amide

_____ (8) C_1-C_6 alkylamine

_____ (9) phenylamine,

_____ (10) carbamyl

_____ (11) carboxyl

(12) carboxy (C_2-C_5) alkoxy,
(13) carboxy (C_2-C_5) alkylthioxy,
(14) heterocyclacylacyl,
(15) heteroarylacyl,
(16) amino unsubstituted or substituted
with C_1-C_6 alkyl,
(17) hydroxyl, or
(18) carboxyl methyl ester;

(II) $-(CH_2)_{0-3}-J-\{-(CH_2)_{0-3}-K\}_{1-3}$, where K is as defined
above and J is:

(A) a 5 to 7 atom monocyclic aryl group,
(B) a 8 to 12 atom multicyclic aryl group,
(C) a 5 to 7 atom heterocyclic group,
(D) a 8 to 12 atom multicyclic heterocyclic
group, or
(E) a 5 to 10 atom monocyclic or multicyclic
cycloalkyl group;

(III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can
be unsubstituted or substituted with one, two or
three

(A) C_1-C_3 alkyl unsubstituted or substituted with
1, 2, 3, or 4 -F,

-Cl, -Br, or -I,

(B) -CO-OH,
(C) -CO-O- (C_1-C_4 alkyl),
(D) -OH, or
(E) C_1-C_6 alkoxy,

(IV) $-(CH_2)_{2-6}-OH$,

(V) $-(CR_{C_x}R_{C_y})_{0-4}-R_{C Aryl}$ where R_{C_x} and R_{C_y} are H, C_1-C_4
alkyl and ϕ and $R_{C Aryl}$ is the same as $R_{N Aryl}$,

(VI) $(CH_2)_{0-4}-R_c$ heteraryl where R_c heteraryl is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) isoxazolyl,
- (Q) pyrazolyl,
- (R) indolizinyl,
- (S) indazolyl,
- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan

(EE) purinyl,
 (FF) oxazolopyridinyl,
 (GG) imidazopyridinyl,
 (HH) isothiazolyl,
 (II) naphthyridinyl,
 (JJ) cinnolinyl,
 (KK) carbazolyl,
 (LL) β -carbolinyl,
 (MM) iso chromanyl,
 (NN) chromanyl,
 (OO) furazanyl,
 (PP) tetrahydroisoquinoline,
 (QQ) isoindolinyl,
 (RR) iso benzotetrahydrofuranyl,
 (SS) iso benzotetrahydrothienyl,
 (TT) iso benzothiophenyl,
 (UU) benzoxazolyl, or
 (VV) pyridopyridinyl,
 (VII) $-(CH_2)_0-4-R_C-heterocycle$ where $R_C-heterocycle$ is the same as $R_1-heterocycle$,
 (VIII) $-C(R_{C-1})(R_{C-2})CO-NH-R_{C-3}$ where R_{C-1} and R_{C-2} are the same or different and are:
 (A) H,
 (B) C_1-C_6 alkyl,
 (C) $-(C_1-C_4$ alkyl) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above for
 R_1-aryl
 (D) $-(C_1-C_4$ alkyl) $-R_C-heteroaryl$ where $R_C-heteroaryl$ is as defined above,
 (E) $-(C_1-C_4$ alkyl) $-R_C-heterocycle$ where $R_C-heterocycle$ is as defined above,

(F) $-R_C-heteroaryl$ where $R_C-heteroaryl$ is as defined above,

(G) $-R_C-heterocycle$ where $R_C-heterocycle$ is as defined above,

(H) $-(CH_2)_{1-4}-OH$,

(I) $-(CH_2)_{1-4}-R_C-4-(CH_2)_{1-4}-R_C'-aryl$ where R_C-4 is O , S , NH or
 $-NHR_C-5$ where R_C-5 is C_1-C_6 alkyl, and where $R_C'-aryl$ is as defined above,

(J) $-(CH_2)_{1-4}-R_C-4-(CH_2)_{1-4}-R_C-heteroaryl$ where R_C-4 and $R_C-heteroaryl$ are as defined above, or

(K) $-R_C'-aryl$ where $R_C'-aryl$ is as defined above, and where R_C-3 is:

(A) H ,

(B) C_1-C_6 alkyl,

(C) $-R_C'-aryl$ where $R_C'-aryl$ is as defined above,

(D) $-R_C-heteroaryl$ where $R_C-heteroaryl$ is as defined above,

(E) $-R_C-heterocycle$ where $R_C-heterocycle$ is as defined above,

(F) $-(C_1-C_4\text{ alkyl})-R_C'-aryl$ where $R_C'-aryl$ is as defined above,

(G) $-(C_1-C_4\text{ alkyl})-R_C-heteroaryl$ where $R_C-heteroaryl$ is as defined above, or

(H) $-(C_1-C_4\text{ alkyl})-R_C-heterocycle$ where $R_C-heterocycle$ is as defined above,

(IX) $CH(\Phi)_{27}$

(X) cyclopentyl or cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:

(A) C_1-C_3 -alkyl,
(B) $-CF_3$,
(C) -F, Cl, Br and I,
(D) C_1-C_3 -alkoxy,
(E) $-OCF_3$,
(F) $-NH_2$,
(G) -OH, or
(H) $-C\equiv N$,
(XI) $CH_2-C\equiv CH$;
(XII) $-(CH_2)_{0-1}-CHR_{e-5}-(CH_2)_{0-1}-\phi$ where R_{e-5} is:
(A) -OH, or
(B) CH_2-OH ;
(XIII) $CH(\phi)-CO-O(C_1-C_3\text{-alkyl})$;
(XIV) $CH(CH_2-OH)-CH(OH)-\phi-NO_2$;
(XV) $(CH_2)_2-O-(CH_2)_2-OH$;
(XVI) $CH_2-NH-CH_2-CH(O-CH_2-CH_3)_2$;
(XVII) (C_2-C_8) -alkynyl; or
(XVIII) H, or a pharmaceutically acceptable salt
thereof.

50. (Original) The method of claim 49, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200 μ M.

51. (Original) The method of claim 50, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about 100 μ M.

52. (Original) The method of claim 51, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about 50 μ M.

53. (Original) The method of claim 52, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 1 μ M to about 10 μ M.

54. (Currently Amended) The method of claim 49, wherein said ~~therapeutic~~ therapeutic amount is in the range of from about 0.1 to about 1000 mg/day.

55. (Currently Amended) The method of claim 49, wherein said ~~therapeutic~~ therapeutic amount is in the range of from about 15 to about 1500 mg/day.

56. (Currently Amended) The method of claim 55, wherein said ~~therapeutic~~ therapeutic amount is in the range of from about 1 to about 100 mg/day.

57. (Currently Amended) The method of claim 56, wherein said ~~therapeutic~~ therapeutic amount is in the range of from about 5 to about 50 mg/day.

58. (Original) The method of claim 49, wherein said disease is Alzheimer's disease.

59. (Currently Amended) The method of claim 49, wherein said disease is Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemorrhage Hemorrhage with Amyloidosis of the Dutch Type.

60-98. (Canceled)

99. (New) A method according to claim 49, wherein the compound is

N-[(1*S*, 2*S*, 4*R*)-1-(3,5-Difluorobenzyl)-4-(*syn*, *syn*)-(3,5-dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-*N,N*-dipropylisophthalamide;

N-[4-(*R*)-(Cyclohexylmethyl-carbamoyl)-1-(*S*)-(3,5-difluorobenzyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide;

4-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-4-(*S*)-hydroxy-2-(*R*)-methyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-4-(*S*)-hydroxy-2-(*R*)-propyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-4-(*S*)-hydroxyl-2-(*R*)-isobutyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([2-(*R*)-Benzyl-6-(3,5-difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid;

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester;

4-(*anti*)-{[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-methyl}cyclohexanecarboxylic acid;

N-[*(1S, 2S, 4R)*-1-(3,5-Difluorobenzyl)-4-(*syn, syn*)-(3,5-dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-*N,N*-dipropylisophthalamide; or

N-[4-(*R*)-(Adamantan-2-ylcarbamoyl)-1-(*S*)-(3,5-difluorobenzyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide.

100. (New) A method for treating Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch Type comprising administering an effective amount of the formula

where R₁ is:

- (I) C₁-C₆ alkyl, unsubstituted or substituted with one, two or three C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -NH₂, -C≡N, -CF₃, or -N₃,
- (II) -(CH₂)₁₋₂-S-CH₃,

(III) $-\text{CH}_2\text{-CH}_2\text{-S-CH}_3$,

(IV) $-\text{CH}_2\text{-}(\text{C}_2\text{-C}_6 \text{ alkenyl})$ unsubstituted or substituted by one $-\text{F}$,

(V) $-(\text{CH}_2)_{0-3}\text{-}(\text{R}_1\text{-aryl})$ where $\text{R}_1\text{-aryl}$ is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:

- (A) $\text{C}_1\text{-C}_3$ alkyl,
- (B) $-\text{CF}_3$,
- (C) $-\text{F}$, Cl , $-\text{Br}$ and $-\text{I}$,
- (D) $\text{C}_1\text{-C}_3$ alkoxy,
- (E) $-\text{O-CF}_3$,
- (F) $-\text{NH}_2$,
- (G) $-\text{OH}$, or
- (H) $-\text{C}\equiv\text{N}$,

(VI) $-(\text{CH}_2)_{n_1}\text{-}(\text{R}_1\text{-heteroaryl})$ where n_1 is 0, 1, 2, or 3 and $\text{R}_1\text{-heteroaryl}$ is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,

- (M) quinazolinyl,
- (N) quinoxalinyt,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thietyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,

- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the R₁-heteroaryl group is bonded to -(CH₂)₀₋₃- by any ring atom of the parent R_N-heteroaryl group substituted by hydrogen such that the new bond to the R₁-heteroaryl group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C₁-C₃ alkyl,
- (2) -CF₃,
- (3) -F, Cl, -Br, or -I,
- (4) C₁-C₃ alkoxy,
- (5) -O-CF₃,
- (6) -NH₂,
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n₁ is zero R₁-heteroaryl is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n₁ is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the R₁-heterocycle group is bonded by any atom of the parent R₁-heterocycle group substituted by hydrogen such that the new bond to the R₁-heteroaryl group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) =O,
- (2) C₁-C₃ alkyl,
- (3) -CF₃,
- (4) -F, Cl, -Br and -I,
- (5) C₁-C₃ alkoxy,
- (6) -O-CF₃,
- (7) -NH₂,
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n₁ is zero R₁-heterocycle is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C₁-C₆ alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R₁-aryl or R₁-heteroaryl where R₁-aryl and R₁-heteroaryl are as defined above,

where R_N is:

- (I) R_{N-1}-X_N- where X_N is:

- (A) -CO-,
- (B) -SO₂-,
- (C) -(CR'R'')₁₋₆ where R' and R'' are the same or different and are -H or C₁-C₄ alkyl,
- (D) -CO-(CR'R'')₁₋₆-X_{N-1} where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
- (E) a single bond;

where R_{N-1} is:

- (A) R_N-aryl where R_N-aryl is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C₁-C₆ alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) -OH,
 - (4) -NO₂,
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three -F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,

(e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl}),$
(f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl}),$
(g) $-C_1-C_6 \text{ alkenyl with one or two}$
double bonds,
(h) $-C_1-C_6 \text{ alkynyl with one or two}$
triple bonds,
(i) $-C_1-C_6 \text{ alkyl chain with one double}$
bond and one triple bond,
(j) $-R_1\text{-aryl where } R_1\text{-aryl is as defined}$
above, or
(k) $-R_1\text{-heteroaryl where } R_1\text{-heteroaryl is as}$
defined above,
(8) $-CO-(C_3-C_{12} \text{ alkyl}),$
(9) $-CO-(C_3-C_6 \text{ cycloalkyl}),$
(10) $-CO-R_1\text{-heteroaryl where } R_1\text{-heteroaryl is as}$
defined above,
(11) $-CO-R_1\text{-heterocycle where } R_1\text{-heterocycle is as}$
defined above,
(12) $-CO-R_{N-4} \text{ where } R_{N-4} \text{ is morpholinyl,}$
thiomorpholinyl, piperazinyl, piperidinyl
or pyrrolidinyl where each group is
unsubstituted or substituted with one or
two $C_1-C_3 \text{ alkyl},$
(13) $-CO-O-R_{N-5} \text{ where } R_{N-5} \text{ is:}$
(a) $C_1-C_6 \text{ alkyl, or}$
(b) $-(CH_2)_{0-2}-(R_1\text{-aryl}) \text{ where } R_1\text{-aryl is as}$
defined above,
(14) $-SO_2-NR_{N-2}R_{N-3} \text{ where } R_{N-2} \text{ and } R_{N-3} \text{ are as}$
defined above,
(15) $-SO-(C_1-C_8 \text{ alkyl}),$
(16) $-SO_2-(C_3-C_{12} \text{ alkyl}),$

(17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

(18) -NH-CO-N(C₁-C₃ alkyl)₂,

(19) -N-CS-N(C₁-C₃ alkyl)₂,

(20) -N(C₁-C₃ alkyl)-CO-R_{N-5} where R_{N-5} is as defined above,

(21) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(22) -R_{N-4} where R_{N-4} is as defined above,

(23) -O-CO-(C₁-C₆ alkyl),

(24) -O-CO-N(C₁-C₃ alkyl)₂,

(25) -O-CS-N(C₁-C₃ alkyl)₂,

(26) -O-(C₁-C₆ alkyl),

(27) -O-(C₂-C₅ alkyl)-COOH,

(28) -S-(C₁-C₆ alkyl),

(29) C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F,

(30) -O-(C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or

(31) -O-Φ,

(B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,

- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyln,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,

- (OO) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the R_N -heteroaryl group is bonded by any atom of the parent R_N -heteroaryl group substituted by hydrogen such that the new bond to the R_N -heteroaryl group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1-C_6 alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) -OH,
- (4) -NO₂,
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) - C_1-C_6 alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,

(c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
(d) $-C_3-C_7$ cycloalkyl,
(e) $-(C_1-C_2$ alkyl) $-(C_3-C_7$
cycloalkyl),
(f) $-(C_1-C_6$ alkyl)-O- $(C_1-C_3$ alkyl),
(g) $-C_1-C_6$ alkenyl with one or two double bonds,
(h) $-C_1-C_6$ alkynyl with one or two triple bonds,
(i) $-C_1-C_6$ alkyl chain with one double bond and one triple bond,
(j) $-R_1\text{-aryl}$ where $R_1\text{-aryl}$ is as defined above, or
(k) $-R_1\text{-heteroaryl}$ where $R_1\text{-heteroaryl}$ is as defined above,
(8) $-CO-(C_3-C_{12}$ alkyl),
(9) $-CO-(C_3-C_6$ cycloalkyl),
(10) $-CO-R_1\text{-heteroaryl}$ where $R_1\text{-heteroaryl}$ is as defined above,
(11) $-CO-R_1\text{-heterocycle}$ where $R_1\text{-heterocycle}$ is as defined above,
(12) $-CO-R_{N-4}$ where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1-C_3 alkyl,
(13) $-CO-O-R_{N-5}$ where R_{N-5} is:
(a) C_1-C_6 alkyl, or

(b) $-(CH_2)_{0-2}-$ (R_{1-aryl}) where R_{1-aryl} is as defined above,

(14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,

(15) -SO-(C_{1-C₈} alkyl),

(16) -SO₂-(C_{3-C₁₂} alkyl),

(17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

(18) -NH-CO-N(C_{1-C₃} alkyl)₂,

(19) -N-CS-N(C_{1-C₃} alkyl)₂,

(20) -N(C_{1-C₃} alkyl)-CO-R_{N-5} where R_{N-5} is as defined above,

(21) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(22) -R_{N-4} where R_{N-4} is as defined above,

(23) -O-CO-(C_{1-C₆} alkyl),

(24) -O-CO-N(C_{1-C₃} alkyl)₂,

(25) -O-CS-N(C_{1-C₃} alkyl)₂,

(26) -O-(C_{1-C₆} alkyl),

(27) -O-(C_{2-C₅} alkyl)-COOH, or

(28) -S-(C_{1-C₆} alkyl),

(C) -R_{N-aryl}-R_{N-aryl} where -R_{N-aryl} is as defined above,

(D) -R_{N-aryl}-R_{N-heteroaryl} where -R_{N-aryl} and -R_{N-heteroaryl} are as defined above,

(E) -R_{N-heteroaryl}-R_{N-aryl} where -R_{N-aryl} and -R_{N-heteroaryl} are as defined above,

(F) -R_{N-heteroaryl}-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,

(G) $-R_N\text{-aryl}-O-R_N\text{-aryl}$ where $-R_N\text{-aryl}$ is as defined above,

(H) $-R_N\text{-aryl}-S-R_N\text{-aryl}$ where $-R_N\text{-aryl}$ is as defined above,

(I) $-R_N\text{-heteroaryl}-O-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(J) $-R_N\text{-heteroaryl}-S-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(K) $-R_N\text{-aryl}-CO-R_N\text{-aryl}$ where $-R_N\text{-aryl}$ is as defined above,

(L) $-R_N\text{-aryl}-CO-R_N\text{-heteroaryl}$ where $-R_N\text{-aryl}$ and $R_N\text{-heteroaryl}$ are as defined above,

(M) $-R_N\text{-aryl}-SO_2-R_N\text{-aryl}$ where $-R_N\text{-aryl}$ is as defined above,

(N) $-R_N\text{-heteroaryl}-CO-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(O) $-R_N\text{-heteroaryl}-SO_2-R_N\text{-heteroaryl}$ where $R_N\text{-heteroaryl}$ is as defined above,

(P) $-R_N\text{-aryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-aryl}$ is as defined above,

(Q) $-R_N\text{-aryl}-S-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-aryl}$ is as defined above,

(R) $-R_N\text{-heteroaryl}-O-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-heteroaryl}$ is as defined above, or

(S) $-R_N\text{-heteroaryl}-S-(C_1-C_8 \text{ alkyl})-\phi$ where $R_N\text{-heteroaryl}$ is as defined above,

(II) $A-X_N-$ where X_N is $-CO-$,

wherein A is

(A) $-T-E-(Q)_m-$,
(1) where $-T$ is

where

- (a) $x = 1$ when $y = 1$ and $x = 2$ when $y = 0$,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl(C_1-C_3)alkyl;

(2) -E is

- (a) C_1-C_5 alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C_2-C_4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C_1-C_8)alkyloxyphenyl, or

(j) C₁-C₆ alkoxy;

(3) -Q is

(a) C₁-C₃ alkyl,

(b) C₁-C₃ alkoxy,

(c) C₁-C₃ alkylthioxy,

(d) C₁-C₆ alkylacylamino,

(e) C₁-C₆ alkylacyloxy,

(f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),

(g) C₁-C₆ alkylamino

(h) phenylamino,

(i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),

(j) carboxyl (including C₁-C₆ alkyl and phenyl esters),

(k) carboxy(C₂-C₅) alkoxy,

(l) carboxy(C₂-C₅) alkylthioxy,

(m) heterocyclacyl,

(n) heteroarylacyl, or

(o) hydroxyl;

(4) m' is 0, 1, 2 or 3;

(B) -E(Q)_{m''}, wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;

(C) -T-E wherein -E and -Q are as defined as above; or

(D) -E wherein -E is as defined as above;

(III) -CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:

(A) -OH,

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is $-H$, C_1-C_6 alkyl or $-\phi$,
- (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
- (G) $-SO_2-(C_1-C_8$ alkyl),
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) $-NH-CO-(C_1-C_6$ alkyl),
- (J) $-NH-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
- (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) $-O-CO-(C_1-C_6$ alkyl),
- (N) $-O-CO-NR_{N-8}R_{N-8}$ where the R_{N-8} is the same or different and are as defined above, or
- (O) $-O-(C_1-C_5$ alkyl)-COOH,

(IV) $-CO-(C_1-C_3$ alkyl)-O-(C_1-C_3 alkyl) where alkyl is unsubstituted or substituted with one or two

- (A) $-OH$,
- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is $-H$, C_1-C_6 alkyl or $-\phi$,
- (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (F) $-CO-R_{N-4}$ where R_{N-4} is as defined above,
- (G) $-SO_2-(C_1-C_8$ alkyl),
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) $-NH-CO-(C_1-C_6$ alkyl),

- (J) $-\text{NH}-\text{CO}-\text{O}-\text{R}_{N-8}$ where R_{N-8} is as defined above,
- (K) $-\text{NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-\text{R}_{N-4}$ where R_{N-4} is as defined above,
- (M) $-\text{O}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$
- (N) $-\text{O}-\text{CO}-\text{NR}_{N-8}\text{R}_{N-8}$ where the R_{N-8} are the same or different and are as defined above, or
- (O) $-\text{O}- (\text{C}_1-\text{C}_5 \text{ alkyl})-\text{COOH},$
- (V) $-\text{CO}- (\text{C}_1-\text{C}_3 \text{ alkyl})-\text{S}- (\text{C}_1-\text{C}_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) $-\text{OH},$
 - (B) $-\text{C}_1-\text{C}_6 \text{ alkoxy},$
 - (C) $-\text{C}_1-\text{C}_6 \text{ thioalkoxy},$
 - (D) $-\text{CO}-\text{O}-\text{R}_{N-8}$ where R_{N-8} is $-\text{H}$, C_1-C_6 alkyl or $-\phi,$
 - (E) $-\text{CO}-\text{NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) $-\text{CO}-\text{R}_{N-4}$ where R_{N-4} is as defined above,
 - (G) $-\text{SO}_2- (\text{C}_1-\text{C}_8 \text{ alkyl}),$
 - (H) $-\text{SO}_2-\text{NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-\text{NH}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$
 - (J) $-\text{NH}-\text{CO}-\text{O}-\text{R}_{N-8}$ where R_{N-8} is as defined above,
 - (K) $-\text{NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-\text{R}_{N-4}$ where R_{N-4} is as defined above,
 - (M) $-\text{O}-\text{CO}- (\text{C}_1-\text{C}_6 \text{ alkyl}),$
 - (N) $-\text{O}-\text{CO}-\text{NR}_{N-8}\text{R}_{N-8}$ where the R_{N-8} are the same or different and are as defined above, or
 - (O) $-\text{O}- (\text{C}_1-\text{C}_5 \text{ alkyl})-\text{COOH},$

(VI) $-\text{CO}-\text{CH}(-(\text{CH}_2)_{0-2}-\text{O}-\text{R}_{\text{N}-10})-(\text{CH}_2)_{0-2}-\text{R}_{\text{N}-\text{aryl}}/\text{R}_{\text{N}-\text{heteroaryl}}$

where $\text{R}_{\text{N}-\text{aryl}}$ and $\text{R}_{\text{N}-\text{heteroaryl}}$ are as defined above,

where $\text{R}_{\text{N}-10}$ is:

- (A) -H,
- (B) $\text{C}_1\text{-C}_6$ alkyl,
- (C) $\text{C}_3\text{-C}_7$ cycloalkyl,
- (D) $\text{C}_2\text{-C}_6$ alkenyl with one double bond,
- (E) $\text{C}_2\text{-C}_6$ alkynyl with one triple bond,
- (F) $\text{R}_{\text{l}-\text{aryl}}$ where $\text{R}_{\text{l}-\text{aryl}}$ is as defined above, or
- (G) $\text{R}_{\text{N}-\text{heteroaryl}}$ where $\text{R}_{\text{N}-\text{heteroaryl}}$ is as defined

above;

where B is -O-, -NH-, or $-\text{N}(\text{C}_1\text{-C}_6\text{ alkyl})-$;

where R_{c} is:

(I) $-(\text{C}_1\text{-C}_{10})\text{alkyl-K}_{1-3}$ in which:

- (A) the alkyl chain is unsubstituted or substituted with one -OH,
- (B) the alkyl chain is unsubstituted or substituted with one $\text{C}_1\text{-C}_6$ alkoxy unsubstituted or substituted with 1-5 -F,
- (C) the alkyl chain is unsubstituted or substituted with one $-\text{O}-\phi$,
- (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,
- (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
- (F) each K is:
 - (1) H,
 - (2) $\text{C}_1\text{-C}_3$ alkyl,
 - (3) $\text{C}_1\text{-C}_3$ alkoxy,

- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) carboxy(C₂-C₅) alkoxy,
- (13) carboxy(C₂-C₅) alkylthioxy,
- (14) heterocyclacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C₁-C₆ alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;

(II) - (CH₂)₀₋₃-J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is as defined above and J is:

- (A) a 5 to 7 atom monocyclic aryl group,
- (B) a 8 to 12 atom multicyclic aryl group,
- (C) a 5 to 7 atom heterocyclic group,
- (D) a 8 to 12 atom multicyclic heterocyclic group, or
- (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;

(III) - (CH₂)₀₋₃- (C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three

- (A) C₁-C₃ alkyl unsubstituted or substituted with 1, 2, 3, or 4 -F,

-Cl, -Br, or -I,
(B) -CO-OH,
(C) -CO-O- (C₁-C₄ alkyl),
(D) -OH, or
(E) C₁-C₆ alkoxy,
(IV) -(CH₂)₂₋₆-OH,
(V) -(CR_{C-x}R_{C-y})₀₋₄-R_C-aryl where R_{C-x} and R_{C-y} are -H, C₁-C₄ alkyl and φ- and R_C-aryl is the same as R_N-aryl,
(VI) -(CH₂)₀₋₄-R_C-heteroaryl where R_C-heteroaryl is:
(A) pyridinyl,
(B) pyrimidinyl,
(C) quinolinyl,
(D) indenyl,
(E) indanyl,
(F) benzothiophenyl,
(G) indolyl,
(H) indolinyl,
(I) pyridazinyl,
(J) pyrazinyl,
(K) isoindolyl,
(L) isoquinolyl,
(M) quinazolinyl,
(N) quinoxalinyl,
(O) phthalazinyl,
(P) isoxazolyl,
(Q) pyrazolyl,
(R) indolizinyl,
(S) indazolyl,
(T) benzothiazolyl,
(U) benzimidazolyl,
(V) benzofuranyl,

(W) furanyl,
(X) thienyl,
(Y) pyrrolyl,
(Z) oxadiazolyl,
(AA) thiadiazolyl,
(BB) triazolyl,
(CC) tetrazolyl,
(DD) 1, 4-benzodioxan
(EE) purinyl,
(FF) oxazolopyridinyl,
(GG) imidazopyridinyl,
(HH) isothiazolyl,
(II) naphthyridinyl,
(JJ) cinnolinyl,
(KK) carbazolyl,
(LL) β -carbolinyl,
(MM) isochromanyl,
(NN) chromanyl,
(OO) furazanyl,
(PP) tetrahydroisoquinoline,
(QQ) isoindolinyl,
(RR) isobenzotetrahydrofuranyl,
(SS) isobenzotetrahydrothienyl,
(TT) isobenzothiophenyl,
(UU) benzoxazolyl, or
(VV) pyridopyridinyl,

(VII) $-(CH_2)_{0-4}-R_c$ -heterocycle where R_c -heterocycle is the same as R_1 -heterocycle,

(VIII) $-C(R_{c-1})(R_{c-2})-CO-NH-R_{c-3}$ where R_{c-1} and R_{c-2} are the same or different and are:

(A) -H,

(B) -C₁-C₆ alkyl,

(C) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above for

R_{1-aryl},

(D) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,

(E) -(C₁-C₄ alkyl)-R_{C-heterocycle} where R_{C-heterocycle} is as defined above,

(F) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,

(G) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,

(H) -(CH₂)₁₋₄-OH,

(I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or

-NHR_{C-5-} where R_{C-5} is C₁-C₆ alkyl, and where R_{C'-aryl} is as defined above,

(J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or

(K) -R_{C'-aryl} where R_{C'-aryl} is as defined above,
and where R_{C-3} is:

(A) -H,

(B) -C₁-C₆ alkyl,

(C) -R_{C'-aryl} where R_{C'-aryl} is as defined above,

(D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,

(E) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,

(F) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above,

(G) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above, or

(H) -(C₁-C₄ alkyl)-R_{C-heterocycle} where R_{C-heterocycle} is as defined above,

(IX) -CH(Φ)₂,

(X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:

- (A) C₁-C₃ alkyl,
- (B) -CF₃,
- (C) -F, Cl, -Br and -I,
- (D) C₁-C₃ alkoxy,
- (E) -OCF₃,
- (F) -NH₂,
- (G) -OH, or
- (H) -C≡N,

(XI) -CH₂-C≡CH;

(XII) -(CH₂)₀₋₁-CHR_{C-5}-(CH₂)₀₋₁-Φ where R_{C-5} is:

- (A) -OH, or
- (B) -CH₂-OH;

(XIII) -CH(-Φ)-CO-O(C₁-C₃ alkyl);

(XIV) -CH(-CH₂-OH)-CH(-OH)-Φ-NO₂;

(XV) -(CH₂)₂-O-(CH₂)₂-OH;

(XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;

(XVII) -(C₂-C₈) alkynyl; or

(XVIII) -H; or a pharmaceutically acceptable salt thereof.

101. (New) The method of claim 100, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200 μ M.

102. (New) The method of claim 101, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about 100 μ M.

103. (New) The method of claim 101, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about 50 μ M.

104. (New) The method of claim 103, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 1 μ M to about 10 μ M.

105. (New) The method of claim 100, wherein said therapeutic amount is in the range of from about 0.1 to about 1000 mg/day.

106. (New) The method of claim 100, wherein said therapeutic amount is in the range of from about 15 to about 1500 mg/day.

107. (New) The method of claim 106, wherein said therapeutic amount is in the range of from about 1 to about 100 mg/day.

108. (New) The method of claim 107, wherein said therapeutic amount is in the range of from about 5 to about 50 mg/day.

109. (New) The method according to claim 100, wherein the compound is

N-[*(1S, 2S, 4R)*-1-(3,5-Difluorobenzyl)-4-(*syn, syn*)-(3,5-dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-*N,N*-dipropylisophthalamide,

6-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-hexanoic acid,

5-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-pentanoic acid,

4-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-butyric acid,

3-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-propionic acid,

8-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-octanoic acid,

8-[6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-octanoic acid methyl ester,

N-[4-(*R*)-Butylcarbamoyl-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-isobutylcarbamoyl-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-Benzylcarbamoyl-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-(Cyclohexylmethyl-carbamoyl)-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-(piperidine-1-carbonyl)-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-4-(*R*)-(2-dimethylaminoethylcarbamoyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-(Butyl-methyl-carbamoyl)-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-(3-hydroxy-propylcarbamoyl)-hexyl]-*N,N*-dipropyl-isophthalamide,

4-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-4-(*R*)-(3-dimethylamino-propylcarbamoyl)-2-(*S*)-hydroxy-hexyl]-*N,N*-dipropyl-isophthalamide,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxy-2-(*R*)-methyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxy-2-(*R*)-propyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxyl-2-(*R*)-isobutyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([2-(*R*)-Benzyl-6-(3,5-difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(*anti*)-([6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-(2-morpholin-4-yl-ethylcarbamoyl)-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-isobutylcarbamoyl-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-(2-Diethylamino-ethylcarbamoyl)-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-[(tetrahydro-furan-2-ylmethyl)-carbamoyl]-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-(Adamantan-2-ylcarbamoyl)-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-methyl-5-morpholin-4-yl-5-oxo-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[4-(*R*)-Benzylcarbamoyl-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-4-(*R*)-(4-fluoro-benzylcarbamoyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-phenethylcarbamoyl-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-4-(*R*)-[(furan-2-ylmethyl)-carbamoyl]-2-(*S*)-hydroxy-pentyl]-5-methyl-*N,N*-dipropyl-isophthalamide, or

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-(prop-2-ynylcarbamoyl)-pentyl]-5-methy-*N,N*-dipropyl-isophthalamide.