

EMPLOYEE ATTRITION RATE ANALYSIS

DOMAIN - HR

Sowmya Siddanki

Project_0_8

Overview

THE MAIN OBJECTIVE OF THIS PROJECT IS TO IDENTIFY THE FACTORS INVOLVED IN ATTRITION OF EMPLOYEES FROM THE COMPANY>

Goals

- 1. This model and exploratory data analysis helps in identifying the factors for attrition
- 2. Help the HR team to find the reasons for attrition of employees.

Specifications

In this project instead of tableau I used a machine learning model to find the accuracy of the data.

Milestones

I. RadndomForest classifier

Random forest classifier has given us an accuracy of 90 percent.

IMPORTING THE REQUIRED MODULES

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn import preprocessing
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score, jaccard score, f1 score, log loss, confusion matrix
from sklearn.metrics import confusion matrix, classification report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, f1 score, recall score, precision score, confusion matrix, classification report
```

READING THE DATASET AND PRINTING HEAD TO STUDY THE FEATURES OR ATTRIBUTES

```
df=pd.read_csv('/content/greendestination.csv')
df.head()
```

		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
	-					Research &	-	-	-	
GETT	INC	THE	SHAPE OF	THE DATASET						
	3	33	No	Travel Frequently	1392	nesealul a	3	Δ	Life Sciences	1
df.shape										
	(14	70, 3	35)							
	5 rows x 35 columns									

THE GIVEN DATASET HAS 1470 EMPLOYEES AND 34 FEATURES WITH ONE TARGET VARIABLE "ATTRITION"

PRINTING THE INFO TO KNOW ABOUT THE INFORMATION OF THE DATASET LIKE KNOWING THE NULL COUNT AND DATATYPES OF THE ATTRIBUTES

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64

```
EnvironmentSatisfaction
                              1470 non-null
 10
                                              int64
 11 Gender
                              1470 non-null
                                              object
 12 HourlyRate
                              1470 non-null
                                              int64
 13 JobInvolvement
                              1470 non-null
                                              int64
 14 JobLevel
                              1470 non-null
                                              int64
 15 JobRole
                              1470 non-null
                                              object
 16 JobSatisfaction
                              1470 non-null
                                              int64
 17 MaritalStatus
                              1470 non-null
                                              object
                              1470 non-null
 18 MonthlyIncome
                                              int64
 19 MonthlyRate
                              1470 non-null
                                              int64
    NumCompaniesWorked
                              1470 non-null
                                              int64
 21 Over18
                              1470 non-null
                                              object
 22 OverTime
                              1470 non-null
                                              object
23 PercentSalaryHike
                              1470 non-null
                                              int64
24 PerformanceRating
                              1470 non-null
                                              int64
25 RelationshipSatisfaction 1470 non-null
                                              int64
 26 StandardHours
                              1470 non-null
                                              int64
 27 StockOptionLevel
                              1470 non-null
                                              int64
28 TotalWorkingYears
                              1470 non-null
                                              int64
29 TrainingTimesLastYear
                              1470 non-null
                                              int64
    WorkLifeBalance
                              1470 non-null
                                              int64
31 YearsAtCompany
                              1470 non-null
                                              int64
 32 YearsInCurrentRole
                              1470 non-null
                                              int64
 33 YearsSinceLastPromotion
                              1470 non-null
                                             int64
 34 YearsWithCurrManager
                              1470 non-null
                                              int64
dtypes: int64(26), object(9)
```

memory usage: 402.1+ KB

THERE ARE NO NULL VALUES IN GIVEN DATA BUT THERE ARE MANY CATEGORICAL VALUES

CONVERTING THE DATA TO SUITABLE FORM USING DISPLAY METHODS

```
pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
df.describe(include='all')
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Employ
count	1,470.00	1470	1470	1,470.00	1470	1,470.00	1,470.00	1470	
unique	NaN	2	3	NaN	3	NaN	NaN	6	
top	NaN	No	Travel_Rarely	NaN	Research & Development	NaN	NaN	Life Sciences	
freq	NaN	1233	1043	NaN	961	NaN	NaN	606	
mean	36.92	NaN	NaN	802.49	NaN	9.19	2.91	NaN	
std	9.14	NaN	NaN	403.51	NaN	8.11	1.02	NaN	
min	18.00	NaN	NaN	102.00	NaN	1.00	1.00	NaN	
25%	30.00	NaN	NaN	465.00	NaN	2.00	2.00	NaN	
50%	36.00	NaN	NaN	802.00	NaN	7.00	3.00	NaN	
75%	43.00	NaN	NaN	1,157.00	NaN	14.00	4.00	NaN	
max	60.00	NaN	NaN	1,499.00	NaN	29.00	5.00	NaN	

DROPPING THE COLUMNS (EmployeeCount', 'EmployeeNumber', 'StandardHours','Over18) ##THOSE COLUMNS HAS SINGLE VALUE WHICH IS NOT USEFUL FOR OUR ANALYSIS

```
drop = ['EmployeeCount', 'EmployeeNumber', 'StandardHours','Over18']
df_drop = df.drop(drop, axis=1)
df_drop.head()
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSat:
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	

NOW SELECT THE TARGET ATTRITION AND CONVERT THE CATEGORICAL ATTRIBUTE TO NUMERICAL

- . .

df_drop['target'] = df_drop['Attrition'].replace({'Yes':1,'No':0})
df_drop = df_drop.drop('Attrition',axis=1)
df_drop.head()

Ag	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	(
0 4	I Travel_Rarely	1102	Sales	1	2	Life Sciences	2	F
1 49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	
2 3	7 Travel_Rarely	1373	Research & Development	2	2	Other	4	
3 3:	3 Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	F
4 2	7 Travel_Rarely	591	Research & Development	2	1	Medical	1	

PLOT SOME KINDS OF PLOTS TO LOOK THE VARIATIONS AND GAIN INSIGHTS FROM THE DATA

sns.countplot(x='Attrition',data=df)

```
pit.title('Distribution of our larget Variable')
plt.show()
```


DIVIDE THE COLUMNS TO NUMERICAL AND CATEGORICAL

PLOT THE HEATMAP TO SEE THE CORRELATION IN NUMERICAL ATTRIBUTES

```
plt.figure(figsize=(20,20))
sns.heatmap(df_drop[num_cols].corr(),annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe77820efd0>

*DROP THE JOBLEVEL *

df_drop = df_drop.drop('JobLevel',axis=1)

JobInvolvement - 0.03 0.046 0.0088 0.042 -0.0083 0.043 1

0.013 0.021 0.015 0.016 0.015 0.017 0.029 0.034 0.022 0.0055 0.015 0.015 0.021 0.0087 0.024 0.026 0.13

GETTING THE CORRELATION OF TARGET WITH OTHER ATTRIBUTES

df_drop.corr()['target'].sort_values()

TotalWorkingYears	-0.17
YearsInCurrentRole	-0.16
MonthlyIncome	-0.16
Age	-0.16
YearsWithCurrManager	-0.16
StockOptionLevel	-0.14
YearsAtCompany	-0.13
JobInvolvement	-0.13
JobSatisfaction	-0.10
EnvironmentSatisfaction	-0.10
WorkLifeBalance	-0.06
TrainingTimesLastYear	-0.06
DailyRate	-0.06
RelationshipSatisfaction	-0.05
YearsSinceLastPromotion	-0.03
Education	-0.03
PercentSalaryHike	-0.01
HourlyRate	-0.01
PerformanceRating	0.00
MonthlyRate	0.02

```
NumCompaniesWorked 0.04
DistanceFromHome 0.08
target 1.00
Name: target, dtype: float64
```

NOW LETS VIEW SOME DISTRIBUTIONS WITH SOME FEATURES TO OUR CORRELATION OF TARGET VARIABLE

```
def plot_dist(col,data=df):
    plt.figure(figsize=(10,15))
    plt.subplot(2,1,1)
    sns.histplot(data=data[data['Attrition'] == 'No'],x=col, bins=10)
    plt.title(f'Distribution of {col} Stayed')
    plt.subplot(2,1,2)
    sns.histplot(data=data[data['Attrition'] == 'Yes'],x=col, bins=10)
    plt.title(f'Distribution of {col} Attrited')
    plt.plot()
plot_dist('TotalWorkingYears')
```


plot_dist('YearsInCurrentRole')

plot_dist('MonthlyIncome')

plot_count('Gender')

plot_count('Department')

plot_count('EducationField')

df_enc = pd.get_dummies(df_drop, columns=obj_cols,drop_first=True)
df_enc.head()

	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	JobInvolvement	JobSatisfaction	M
0	41	1102	1	2	2	94	3	4	
1	49	279	8	1	3	61	2	2	
2	37	1373	2	2	4	92	2	3	
3	33	1392	3	4	4	56	3	3	
4	27	591	2	1	1	40	3	2	

```
y = df_enc['target']
X = df_enc.drop('target',axis=1)
```

y.value_counts()

0 12331 237

Name: target, dtype: int64

```
from imblearn.over_sampling import SMOTE
smote = SMOTE()
X_resampled, y_resampled = smote.fit_resample(X, y)
y_resampled.value_counts()

1     1233
0     1233
Name: target, dtype: int64

X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, shuffle=True, test_size=0.3)
```

Support Vector Classifier

SUPPORT VECTOR CLASSIFIER HAS THE ACCURACY OF 60 PERCENT

Decision Tree Classifier

```
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)
tree_pred = tree.predict(X_test)
tree_acc = accuracy_score(y_test, tree_pred)
```

DECISION TREE CLASSIFIER HAS THE ACCURACY OF 80% SO LETS TRY OTHER CLASSIFIERS ALSO TO SEE IMPROVED ACCURACY

Random Forest Classifier

Random Forest Classifier IS GIVING US 90% OF ACCURACY .SO FROM THE ALL CLASSIFIERS RANDOM FOREST CLASSIFIER IS GIVING US THE BEST ACCURATE RESULTS

LET US SEE THE HYPERPARAMETER TUNING AND OBTAIN THE BEST SCORE FROM THE MODEL

```
from sklearn.model selection import GridSearchCV
# define parameter grid
parameter_grid = {'n_estimators':[150,200,250],
             'max depth': np.arange(10,20),
             'bootstrap': [True, False]}
# Create an instance of GridSearchCV
grid search = GridSearchCV(rfc,parameter grid,cv=5,scoring=('accuracy','recall','precision'),verbose=1,refit='accuracy')
grid search.fit(X train, y train)
    Fitting 5 folds for each of 60 candidates, totalling 300 fits
    GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                  param_grid={'bootstrap': [True, False],
                              'max_depth': array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
                              'n estimators': [150, 200, 250]},
                  refit='accuracy', scoring=('accuracy', 'recall', 'precision'),
                  verbose=1)
print(f"Best score: {grid search.best score }\nBest Params: {grid search.best params }")
     Best score: 0.9281628549886907
     Best Params: {'bootstrap': False, 'max depth': 15, 'n estimators': 200}
model = RandomForestClassifier(bootstrap=False, max depth=13, n estimators=150)
# train our model
model.fit(X train, y train)
     RandomForestClassifier(bootstrap=False, max depth=13, n estimators=150)
prediction = model.predict(X test)
print(classification report(y test, prediction))
                   precision
                                recall f1-score
                                                  support
                                  0.95
                                            0.91
                        0.88
                                                       364
                1
                                  0.88
                        0.94
                                            0.91
                                                       376
```

accuracy			0.91	740
macro avg	0.91	0.91	0.91	740
weighted avg	0.91	0.91	0.91	740

So from the given data of green destinations I conclude that the random forest classifier is giving us the accurate results and from the exploratory data analysis I observed that employees with less salary less working years are opting for the attrition.

×