Сильные разрывы в сплошной среде

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

27 ноября 2019 г.

Аннотация

Обобщённые движения сплошной среды. Соотношения на сильном скачке. Классификация сильных разрывов. Соотношение для ударных волн.

Законы сохранения в дивергентной форме

$$\begin{split} \frac{\partial \rho}{\partial t} + \mathrm{div}(\rho \vec{v}) &= 0, \\ \frac{\partial \rho \vec{v}}{\partial t} + \mathrm{div}(\rho \vec{v} \otimes \vec{v} - \sigma) &= 0, \\ \frac{\partial}{\partial t} \left(\rho \left(\varepsilon + \frac{\vec{v}^2}{2} \right) \right) + \mathrm{div} \left(\rho \left(\varepsilon + \frac{\vec{v}^2}{2} \right) \vec{v} - \sigma \cdot \vec{v} + \vec{q} \right) &= 0. \end{split}$$

Обобщенная форма записи

Каждый из этих законов можно записать в следующем виде, который представляет собой дивергенцию вектора в 4-х мерном пространстве относительно (t, \vec{x}) :

$$\frac{\partial f}{\partial t} + \operatorname{div}(f\vec{v} + \vec{\varphi}) = 0.$$

Обобщённые движения

Интеграл в четырёхмерном пространстве Рассмотрим $\Omega\subset R^4$ — ограниченная область с кусочно-гладкой границей Γ и сечениями $\omega_\Omega(t)$ гиперплоскостями при t=const. Интегралы по Ω от законов сохранения в дивергентной форме имеют вид

$$\int_{t_1}^{t_2} \int_{\omega_{\Omega}(t)} (f_t + \operatorname{div}(f\vec{v} + \vec{\varphi})) d\omega dt = 0.$$

Обобщённые движения

Слабая форма записи

Согласно теореме Гаусса-Остроградского для вектора $\vec{g}=(f,fv_1+\varphi_1,fv_2+\varphi_2,fv_3+\varphi_3)$ имеет место

$$\int\limits_{\Gamma} ec{g} \cdot ec{
u} d\Gamma = 0,$$

где $\vec{v} = \vec{l}\cos(\vec{v},t) + \vec{n}\sin(\vec{v},t)$ – нормаль к Γ в четырёхмерном пространстве; \vec{l} – орт оси t, \vec{n} – орт внешней нормали к сечению Γ гиперплоскостью t=const.

Обобщенные движения

Интегральная форма записи Т.к.

$$\vec{g} \cdot \vec{\nu} = f\cos(\vec{\nu}, t) + (f\vec{\nu} + \vec{\varphi}) \cdot \vec{n}\sin(\vec{\nu}, t),$$

то

$$\int_{\Gamma} (f\cos(\vec{\nu},t) + (f\vec{\nu} + \vec{\varphi}) \cdot \vec{n}\sin(\vec{\nu},t)) d\Gamma = 0.$$

Обобщённое движение сплошной среды

Определение

Набор функций $\rho, \vec{v}, \sigma, \varepsilon$, определённых в $R^4(t, \vec{x})$ называется обобщённым движением сплошной среды, если для любой замкнутой кусочно-гладкой поверхности $\Gamma \subset R^4(t, \vec{x})$ эти функции удовлетворяют соотношениям

$$\begin{split} \int\limits_{\Gamma} \left(\rho \cos(\vec{v},t) + \rho \vec{v} \cdot \vec{n} \sin(\vec{v},t)\right) d\Gamma &= 0, \\ \int\limits_{\Gamma} \left(\rho \vec{v} \cos(\vec{v},t) + \left(\rho \vec{v} \otimes \vec{v} - \sigma\right) \cdot \vec{n} \sin(\vec{v},t)\right) d\Gamma &= 0, \\ \int\limits_{\Gamma} \left(\rho \left(\varepsilon + \frac{\vec{v}^2}{2}\right) \cos(\vec{v},t) + \left(\rho \left(\varepsilon + \frac{\vec{v}^2}{2}\right) \vec{v} - \sigma \cdot \vec{v} + \vec{q}\right) \cdot \vec{n} \sin(\vec{v},t)\right) d\Gamma &= \\ &= 0. \end{split}$$

Движение с сильным разрывом

Определение

Если в области определения обобщённого движения существует гиперповерхность $\Sigma \subset R^4$, на которой величины ρ , \vec{v} , σ , ε имеют разрыв первого рода и вне которой это движение гладкое, то такое движение называется движением с сильным разрывом, а сечение B(t) гиперповерхности Σ гиперплоскостями t=const называется поверхностью сильного разрыва.

Сильные разрывы

Величины разрывов (скачков) не могут быть произвольными, а должны удовлетворять уравнениям сильного разрыва, которые следуют из уравнений обобщённого движения.

Рассмотрим временной интервал $[t_1, t_2]$, на котором существует разрыв функции Σ . Для каждого t рассмотрим небольшую окрестность разрыва в R^3 высоты 2h. Тогда для этой области можно записать закон сохранения в общем виде

$$\int_{\Gamma} (f\cos(\vec{\nu},t) + (f\vec{\nu}_n + \vec{\varphi}_n)\sin(\vec{\nu},t)) d\Gamma = 0.$$

Интеграл по Γ разбивается на 3 интеграла по поверхностям S_1 , S_2 , параллельным гиперповерхности разрыва Σ и боковой поверхности S_3 .

При $h \to 0$ интеграл по поверхности S_3 будет стремиться к 0, а интегралы по S_1 и S_2 — к интегралам от параметров среды справа и слева от гиперповерхности разрыва, при этом $\vec{\nu}_1 = -\vec{\nu}_2$.

В силу произвольности выбранных S_1 и S_2 и непрерывности подынтегральных выражений слева и справа от разрыва получится выражение

$$[f\cos(\vec{\nu},t) + (f\vec{\nu}_n + \vec{\varphi}_n)\sin(\vec{\nu},t)] = 0,$$

где $[a] = a_2 - a_1$ – скачок величины a на разрыве.

Определение

Скоростью перемещения поверхности разрыва B(t) в точке M называется предел

$$D_n(M) = \lim_{t \to 0} \frac{H(M, t, \delta t)}{\delta t},$$

где $H(M,t,\delta t)$ — расстояние, на которое переместилась поверхность вдоль нормали \vec{n} , выпущенной из заданной точки поверхности разрыва M в момент времени t. D_n принимает отрицательные значения, если движение направлено в противоположную сторону \vec{n} .

Свойство Вектор

$$D_n\vec{n}+\vec{l}$$

является касательным вектором к гиперповерхности Σ , потому что точка M за время δt переместится на вектор $H(M, t, \delta t)\delta t\,\vec{n} + \delta t\,\vec{l}$.

Связь вектора \vec{v} и скорости D_n Вектор $D_n \vec{n} + \vec{l}$ ортогонален вектору $\vec{v} = \vec{l} \cos(\vec{v}, t) + \vec{n} \sin(\vec{v}, t)$, нормали к гиперповерхности Σ , таким образом

$$(\cos(\vec{\nu},t)\vec{l} + \sin(\vec{\nu},t)\vec{n}) \cdot (D_n\vec{n} + \vec{l}) = D_n\sin(\vec{\nu},t) + \cos(\vec{\nu},t) = 0$$

И

$$D_n = -\cos(\vec{\nu}, t) / \sin(\vec{\nu}, t).$$

B общем виде C учётом связи
$$D_n = -\cos(\vec{v},t)/\sin(\vec{v},t)$$

$$[f(v_n-D_n)+\varphi_n] = 0.$$

Уравнения Гюгонио в газовой динамике

Положив в исходных уравнениях $\sigma = -pI$, $\vec{q} = \vec{0}$, получим в результате подстановки выражений для f и φ из законов сохранения соотношения

$$\begin{aligned} \left[\rho(v_n - D_n)\right] &= 0, \\ \left[\rho \vec{v}(v_n - D_n) + p\vec{n}\right] &= 0, \\ \left[\rho\left(\varepsilon + \frac{\vec{v}^2}{2}\right)(v_n - D_n) + pv_n\right] &= 0. \end{aligned}$$

Классификация сильных разрывов

Определения

Обозначим $m=\rho(u_n-D_n)$ – масса вещества, проходящее через поверхность разрыва. Обозначим v_{τ} – составляющая скорости, лежащая в касательной плоскости к поверхности разрыва.

Классификация сильных разрывов

Определения

Обозначим $m=\rho(u_n-D_n)$ – масса вещества, проходящее через поверхность разрыва. Обозначим v_{τ} – составляющая скорости, лежащая в касательной плоскости к поверхности разрыва.

Контактный разрыв
$$(m=0)$$
 $[p]=0$ и $[u_n]=0$, $[\rho]\neq 0, [\varepsilon]\neq 0, v_{\tau}\neq 0$.

Классификация сильных разрывов

Определения

Обозначим $m=\rho(u_n-D_n)$ – масса вещества, проходящее через поверхность разрыва. Обозначим ν_{τ} – составляющая скорости, лежащая в касательной плоскости к поверхности разрыва.

Контактный разрыв
$$(m=0)$$
 $[p]=0$ и $[u_n]=0$, $[\rho]\neq 0, [\varepsilon]\neq 0, v_{ au}\neq 0.$

Ударная волна
$$(m \neq 0)$$

 $[u_{\tau}] = 0,$
 $[p] \neq 0, [\rho] \neq 0, [\varepsilon] \neq 0, v_n \neq 0.$

Соглашение для ударных волн

Определение

Поверхность ударной волны называют фронтом ударной волны.

Определение

Та сторона ударной волны, с которой газ натекает на неё, называется передней стороной (или стороной перед фронтом) ударной волны. Противоположная сторона фронта называется задней стороной (или стороной за фронтом) ударной волны.

Соглашение

Нормаль \vec{n} к фронту ударной волны направлена в переднюю сторону ударной волны (в область перед фронтом). Индекс «1» отмечает значения газодинамических параметров на передней стороне, а индекс «2» — на задней стороне ударной волны.

Альтернативная форма записи соотношений на разрыве для ударных волн

Введем скорость течения газа относительно фронта УВ в направлении нормали \vec{n} :

$$u=v_n-D_n$$
.

В этих обозначениях соотношения на разрыве имеют вид

$$\begin{aligned} \rho_2 u_2 &= \rho_1 u_1, \\ p_2 + \rho_2 u_2^2 &= p_1 + \rho_1 u_1^2, \\ \varepsilon_2 + p_2 V_2 + \frac{u_2^2}{2} &= \varepsilon_1 + p_1 V_1 + \frac{u_1^2}{2}, \end{aligned}$$

Литература

• Овсянников Л. В. Лекции по основам газовой динамики. Москва-Ижевск: Институт компьютерных исследований, 2003.