Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt
Luminositeten øker med en faktor 4.70e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes karbon i et skall rundt kjernen

STJERNE B) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE C) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE D) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

STJERNE E) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.515e+06 kg/m3̂ og temperatur 23 millioner K.

Kjernen i stjerne B har massetet
thet 2.611e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne C har massetet
thet 6.290e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 3.155e+06 kg/m3̂ og temperatur 27 millioner K.

Kjernen i stjerne E har massetet
thet 6.365e+06 kg/m3̂ og temperatur 31 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: denne stjerna er nærmest oss

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 4: denne stjerna er lengst vekk

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 10.15

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 7.460e+04 kg/m3̂ og temperatur 27.90 millioner K.

Kjernen i stjerne B har massetet
thet $4.672\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.59 millioner K.

Kjernen i stjerne C har massetet
thet $1.840\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 23.68

millioner K.

Kjernen i stjerne D har massetet
thet 2.408e+05 kg/m3̂ og temperatur 19.85 millioner K.

Kjernen i stjerne E har massetet
thet 1.092e+05 kg/m3̂ og temperatur 17.36 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B_Figur_2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.41 buesekunder i løpet av et millisekund.

49.58

44.07

38.56

33.06

27.55

11.02

5.51

0.00

0.00

5.51

11.02

16.53

22.04

27.55

33.06

38.56

44.07

49.58

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Trondheim som ligger i en avstand av 600 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.07680 km/t.

Filen 3E.txt

Tog1 veier 83200.00000 kg og tog2 veier 34900.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 512 km/s.

Filen 4E.txt

Massen til gassklumpene er 8100000.00 kg.

Hastigheten til G1 i x-retning er 22200.00 km/s.

Hastigheten til G2 i x-retning er 30300.00 km/s.

Filen 4G.txt

Massen til stjerna er 27.10 solmasser og radien er 1.13 solradier.