Shantanu Pande -181060057

Data Science Lab Assignment-2

Problem Statement: We have studied the change of basis problem using Eigen analysis. Write a sample script (preferably user interactive) for N-dimensional (unique) data to implement the same.Perform a comparative analysis for complete and partial reconstruction(s) in terms of error. Comment on the result.Repeat the algorithm for a visual data, its perfect reconstruction and a few samples of partial reconstructions. The submission will contain a single pdf file (neither zipped/linked to drive nor colab) containing the data, script, observation, comparison and results.

Part-1: Eigen analysis using 1D data

Code:

```
import cv2
import numpy as np
from numpy import linalg as la
#To accept image in normalized form
img=cv2.imread('/home/hp/Downloads/ds image.jpeg')
gray image = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
#X = gray image
X = [[6,5,3,4,4,4,5,5],[5,6,4,3,4,5,5,4]]
N = gray image.shape[0]
n = gray image.shape[1]
#print("Covarience is : ")
C = np.cov(X,ddof=0)
print(C)
#Eigen values and vectors
w, v = la.eig(C)
v = v.T
#print("Eigen values")
#print(w)
```

```
#print("Eigen Vectors")
#print(v)
z = [x \text{ for } ,x \text{ in sorted}(zip(w,v),reverse=True)]
z = np.array(z)
#print("Index of Eigen value to be discarded: ")
X = np.array(X)
k = int(input("Number of eigen values to be discarded: "))
\#k = int((k*X.shape[0])/100)
for i in range (k):
  z = np.delete(z,(z.shape[0]-1),axis=0)
x_{-} = np.zeros((X.shape[0], X.shape[1]), dtype = int)
y = np.dot(z,X)
y = np.array(y)
x = np.dot(z.T,y)
x_ = np.around(x_).astype(np.uint8)
#while True:
# cv2.imshow("Orig",X)
# cv2.imshow("Trans",x_)
# if cv2.waitKey(0):
#
      break
#cv2.destroyAllWindows()
E = (X-x_{-})^{**}2
E = np.sum(E,axis=1)/X.shape[1]
E = np.sum(E,axis=0)
print("Error ", E)
disc eigen = 0
I = X.shape[0]
for i in range(0,k):
  disc eigen = disc eigen + w[l-1-i]
print("Sum of discarded eigen Values ", disc eigen)
```

Output:

Partial Reconstruction

```
[[0.75 0.375]
[0.375 0.75 ]]
Number of eigen values to be discarded: 1
Error 0.375
Sum of discarded eigen Values 0.374999999999999
```

Complete Reconstruction

```
[[0.75 0.375]
[0.375 0.75 ]]
Number of eigen values to be discarded: 0
Error 0.0
Sum of discarded eigen Values 0
```

Observation and Calculations:

0001	vation and Calculations.
× =	6 5 3 4 4 4 5 5 5 5 6 4 3 4 5 5 4 .
	of data points = 8 mension = 8
	F(x) = (2 151 9 cann)/8 = 4.5 (2 3 rd 9 cann)/8 = 4.5
Anal	$x_1 = \begin{bmatrix} 6 \\ 5 \end{bmatrix}, x_2 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, x_3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $= F(x) = \begin{bmatrix} 6 - 4.5 \\ 6 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \end{bmatrix}$
	[6-4.5] L1.b]
(X)	$F(x)(x-F(x))^{T} = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$ $C_1 = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$ $C_2 = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$
	0.75 0.25
	= 0.25 0.25 , C3= 2.25 0.75 0.25 2.25 0.75
	= 0.25 -0.25 , (5= 0.25 0.25 -0.75 2.25 0.25
C	= 0.25 -0.25 , 0.25, Cs = 0.25 -0.25 o

	Naw construer matrix C = 201/2 201/2 C = 201/2 402/2 225+0.25+0.25+0.25+0.25+0.25+0.25+0.25+0
	= 0.75 0.375
	= 0.75 0.75
	0.375 0.75
7 (Nou, to find eigen values,
	19-1.5.1 + 0.4718 P.5 = 0.
	54
	1= 1-125, 12=0.375
Fai	eigen vectores and,
	0,=[1] 8 e2=[1]
	Normalizing,
	e, = 1 8 e = 1 1
	$A = \begin{bmatrix} -e^{T} - \\ -e^{T} - \end{bmatrix}$
Jan con	idinate system
with	A = 1 + 1 De comprede se la una
Basis	1, 80 - 1 -1 202: Consupords to land ty

y: A I waginal data
7 1
Frankformed Frankformetiers
cata or sel et uning
Consider a point from a gala,
W. Xx = [3]
4
for .
Y = 1 1 3 1 7 7
W=1 1 1 3 1 7 -1
New for successbrustion,
x1 = x1. y
= 1 1 7
10 1 -1 -1
ix = 3 so most metico
4: 5-40551416 8 7 2 00016

	i tomation.
-	Partial sucaretecuction.
	A = 1 [1 -1]
	d = [B] a riginal data
	L 4 Jax I
	Jet Arous = 1 [1 1]
	Amu Te
	yrom =
14	V V2 V4
	ynus = 1 [9] 1X 1 in nus lasse
	Now.
	Now, I = Anou y new.
	= , [,] , [, 7
	= 1 1 1 [9] Ve 1 Ve
	= 1 [4]
1	= 1 4]
	2 = [4.5] portial regard with
	L 4-5 2X) coming back to cry
→	Doing this for all points in x
	α , = 6 β , β , = 5.5
	5 7 5 5 5
	Doing this for all points in x . $ x = 6 $ $ 5.5 $ $ x = 5.5 $

Part 2: Visual Data

Code:

```
import cv2
import numpy as np
from numpy import linalg as la
#To accept image in normalized form
img=cv2.imread('/home/hp/Downloads/ds image.ipeg')
gray image = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
X = gray image
N = gray image.shape[0]
n = gray image.shape[1]
#print("Covarience is : ")
C = np.cov(X,ddof=0)
print(C)
#Eigen values and vectors
w, v = la.eig(C)
v = v.T
print("Eigen values")
#print(w)
print("Eigen Vectors")
#print(v)
z = [x \text{ for } ,x \text{ in sorted}(zip(w,v),reverse=True)]
z = np.array(z)
#print("Index of Eigen value to be discarded: ")
X = np.array(X)
k = int(input("Percent for reconstruction: "))
k = int((k*X.shape[0])/100)
for i in range (k):
  z = \text{np.delete}(z,(z.\text{shape}[0]-1),axis=0)
x = np.zeros((X.shape[0],X.shape[1]), dtype = int)
y = np.dot(z,X)
```

```
y = np.array(y)
x_ = np.dot(z.T,y)
x_{-} = np.around(x_{-}).astype(np.uint8)
while True:
  cv2.imshow("Orig",X)
  cv2.imshow("Trans",x_)
  if cv2.waitKey(0):
     break
cv2.destroyAllWindows()
E = (X-x_{-})^{**}2
E = np.sum(E,axis=1)/X.shape[0]
E = np.sum(E,axis=0)
print("Error", E)
disc_eigen = 0
I = X.shape[0]
for i in range(0,k):
  disc_eigen = disc_eigen + w[l-1-i]
print("Sum of discarded eigen Values ", disc eigen)
```

Output:

Complete Reconstruction

Error 0.0 Sum of discarded eigen Values 0

Partial Reconstruction (1% discarded)

Partial Reconstruction (10% discarded)

Error 1553.8500000000001 Sum of discarded eigen Values 0.0575068785782504

Partial Reconstruction (50% discarded)

Observation:

From the above experiment we see that the error is not equal to the sum of discarded eigen values as at every point of processing the image right from converting it to grayscale, we are approximating the intensity values and rounding the decimal outputs to uint8 as used by opency here, which adds to the error at each step.

Also, discarding eigenvalues of about percentage upto 1% of the total does not lead to significant loss of information in the image, so we can reduce the dimensions of the original image by the value of eigenvectors' percentage discarded from it.