A Preconditioned Forward-Backward Approach with Application to Large-Scale Nonconvex Spectral Unmixing Problems

Audrey Repetti, Emilie Chouzenoux, and Jean-Christophe Pesquet

Laboratoire d'Informatique Gaspard Monge - UMR CNRS 8049, Université Paris-Est, France.

ICASSP 2014 - Firenze - 7 May 2014

Motivation

INVERSE PROBLEM: Estimation of an object of interest $\overline{x} \in \mathbb{R}^N$ obtained by minimizing an objective function

$$G = F + R$$

where

- ► F is a data-fidelity term related to the observation model
- ► *R* is a regularization term related to some a priori assumptions on the target solution
 - → e.g. an a priori on the smoothness of an image,
 - → e.g. a support constraint.

Motivation

Inverse Problem: Estimation of an object of interest $\overline{x} \in \mathbb{R}^N$ obtained by minimizing an objective function

$$G = F + R$$

where

- ► F is a data-fidelity term related to the observation model
- ► *R* is a regularization term related to some a priori assumptions on the target solution

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement?

- ⇒ Block alternating minimization.
- ⇒ Introduction of a variable metric.

Minimization problem

Problen

Find
$$\hat{x} \in Argmin\{G = F + R\},\$$

where:

- $F: \mathbb{R}^N \to \mathbb{R}$ is differentiable, and has an L-Lipschitz gradient on dom R, i.e. $(\forall (x,y) \in (\text{dom } R)^2) \quad \|\nabla F(x) \nabla F(y)\| \leq L \|x-y\|,$
- $R: \mathbb{R}^N \to]-\infty, +\infty]$ is proper, lower semicontinuous.
- G is coercive, i.e. $\lim_{\|x\|\to +\infty} G(x) = +\infty$, and is non necessarily convex .

Forward-Backward algorithm

FB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\lfloor x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R} (x_{\ell} - \gamma_{\ell} \nabla F(x_{\ell})), \quad \gamma_{\ell} \in]0, +\infty[.$

Let $x \in \mathbb{R}^N$. The proximity operator is defined by

$$\operatorname{prox}_{\gamma_{\ell} R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2\gamma_{\ell}} ||y - x||^{2}.$$

- \rightsquigarrow When R is nonconvex:
 - Non necessarily uniquely defined.
 - Existence guaranteed if *R* is bounded from below by an affine function.

Forward-Backward algorithm

FB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\lfloor x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R} (x_{\ell} - \gamma_{\ell} \nabla F(x_{\ell})), \quad \gamma_{\ell} \in]0, +\infty[.$

Let $x \in \mathbb{R}^N$. The proximity operator is defined by

$$\operatorname{prox}_{\gamma_{\ell} R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2\gamma_{\ell}} \|y - x\|^{2}.$$

- \rightsquigarrow When R is nonconvex:
 - Non necessarily uniquely defined.
 - Existence guaranteed if R is bounded from below by an affine function.
- Slow convergence.

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$

$$\begin{vmatrix} x_{\ell+1} \in \operatorname{prox}_{\gamma_\ell^{-1} | A_\ell(x_\ell)}, R & (x_\ell - \gamma_\ell | A_\ell(x_\ell))^{-1} \nabla F(x_\ell) \end{pmatrix},$$
with $\gamma_\ell \in]0, +\infty[$, and $A_\ell(x_\ell)$ a SPD matrix.

Let $x \in \mathbb{R}^N$. The proximity operator relative to the metric induced by $A_\ell(x_\ell)$ is defined by

$$\operatorname{prox}_{\gamma_{\ell}^{-1}A_{\ell}(x_{\ell}),\,R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2\gamma_{\ell}} \|y - x\|_{A_{\ell}(x_{\ell})}^{2}.$$

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$

$$\begin{bmatrix} x_{\ell+1} \in \operatorname{prox}_{\gamma_\ell^{-1} \mid A_\ell(x_\ell)}, R & \left(x_\ell - \gamma_\ell \mid A_\ell(x_\ell)\right)^{-1} \nabla F(x_\ell) \\ \text{with } \gamma_\ell \in]0, +\infty[, \text{ and } A_\ell(x_\ell)] \text{ a SPD matrix.} \end{bmatrix}$$

- Let $x \in \mathbb{R}^N$. The proximity operator relative to the metric induced by $A_\ell(x_\ell)$ is defined by $\operatorname{prox}_{\gamma_\ell^{-1}A_\ell(x_\ell),\,R}(x) = \operatorname*{Argmin}_{y \in \mathbb{R}^N} R(y) + \frac{1}{2\gamma_\ell} \|y x\|_{A_\ell(x_\ell)}^2.$
- ▶ Convergence is established for a wide class of nonconvex functions G and $(A_{\ell}(x_{\ell}))_{\ell \in \mathbb{N}}$ are general SPD matrices in [Chouzenoux *et al.* 2013]

Block separable structure

► *R* is an additively block separable function.

Block separable structure

▶ *R* is an additively block separable function.

Block separable structure

▶ *R* is an additively block separable function.

 $(\forall j \in \{1, \dots, J\})$ $R_j : \mathbb{R}^{N_j} \to]-\infty, +\infty]$ is a lsc, proper function, continuous on its domain and bounded from below by an affine function.

BC Forward-Backward algorithm

BC-FB Algorithm [Bolte et al. - 2013]

```
 \begin{split} \text{Let} \ \ x_0 &\in \mathbb{R}^N \\ \text{For} \ \ \ell = 0, 1, \dots \\ & \text{Let} \ \ j_\ell \in \{1, \dots, J\}, \\ x_{\ell+1}^{(j_\ell)} &\in \text{prox}_{\gamma_\ell \, R_{j_\ell}} \left( x_\ell^{(j_\ell)} - \gamma_\ell \nabla_{j_\ell} F(x_\ell) \right), \quad \gamma_\ell \in ]0, +\infty[, \\ x_{\ell+1}^{(\overline{\jmath}_\ell)} &= x_\ell^{(\overline{\jmath}_\ell)}. \end{split}
```

- Advantages of a block coordinate strategy:
 - · more flexibility,
 - reduce computational cost at each iteration,
 - reduce memory requirement.

BC Variable Metric Forward-Backward algorithm

```
BC-VMFB Algorithm  \begin{array}{l} \text{Let} \ \ x_0 \in \mathbb{R}^N \\ \text{For} \ \ \ell = 0, 1, \dots \\ \\ \left| \begin{array}{l} \text{Let} \ \ j_\ell \in \{1, \dots, J\}, \\ x_{\ell+1}^{(j_\ell)} \in \text{prox}_{\gamma_\ell^{-1}} \\ x_{\ell+1}^{(\bar{\jmath}_\ell)} = x_\ell^{(\bar{\jmath}_\ell)}, \\ \text{with} \ \ \gamma_\ell \in ]0, +\infty[, \ \text{and} \ \ A_{j_\ell}(x_\ell) \ \ \text{a SPD matrix.} \end{array} \right|^{-1} \nabla_{j_\ell} F(x_\ell) \Big),
```

OUR CONTRIBUTIONS:

- How to choose the preconditioning matrices $(A_{j_{\ell}}(x_{\ell}))_{\ell \in \mathbb{N}}$? \longrightarrow Majorize-Minimize principle.
- How to define a general update rule for (j_ℓ)_{ℓ∈ℕ}?
 Quasi-cyclic rule.

Majorize-Minimize assumption

[Jacobson et al. - 2007]

MM Assumption

 $(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SPD matrix $A_{j_\ell}(x_\ell) \in \mathbb{R}^{N_{j_\ell} \times N_{j_\ell}}$ such that $(\forall y \in \mathbb{R}^{N_{j_\ell}})$

$$\begin{split} Q_{j_{\ell}}(y \mid x_{\ell}) &= F(x_{\ell}) + (y - x_{\ell}^{(j_{\ell})})^{\top} \nabla_{j_{\ell}} F(x_{\ell}) \\ &+ \frac{1}{2} \|y - x_{\ell}^{(j_{\ell})}\|_{A_{j_{\ell}}(x_{\ell})}^{2}, \end{split}$$

is a majorant function on $\mathrm{dom}\,R_{j_\ell}$ of the restriction of F to its $j_\ell\text{-th}$ block at $x_\ell^{(j_\ell)},$ i.e., $(\forall y\in\mathrm{dom}\,R_{j_\ell})$

$$F\left(x_{\ell}^{(1)}, \dots, x_{\ell}^{(j_{\ell}-1)}, y, x_{\ell}^{(j_{\ell}+1)}, \dots, x_{\ell}^{(J)}\right) \\ \leq Q_{j_{\ell}}(y \mid x_{\ell}).$$

Majorize-Minimize assumption

[Jacobson et al. - 2007]

MM Assumption

 $(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SPD matrix $A_{j_\ell}(x_\ell) \in \mathbb{R}^{N_{j_\ell} \times N_{j_\ell}}$ such that $(\forall y \in \mathbb{R}^{N_{j_\ell}})$

$$\begin{split} Q_{j_{\ell}}(y \mid x_{\ell}) &= F(x_{\ell}) + (y - x_{\ell}^{(j_{\ell})})^{\top} \nabla_{j_{\ell}} F(x_{\ell}) \\ &+ \frac{1}{2} \|y - x_{\ell}^{(j_{\ell})}\|_{A_{j_{\ell}}(x_{\ell})}^{2}, \end{split}$$

is a majorant function on $\operatorname{dom} R_{j_\ell}$ of the restriction of F to its j_ℓ -th block at $x_\ell^{(j_\ell)}$, i.e., $(\forall y \in \operatorname{dom} R_{j_\ell})$

$$F\left(x_{\ell}^{(1)}, \dots, x_{\ell}^{(j_{\ell}-1)}, y, x_{\ell}^{(j_{\ell}+1)}, \dots, x_{\ell}^{(J)}\right) \\ \leq Q_{j_{\ell}}(y \mid x_{\ell}).$$

dom *R* is convex and *F* is *L*-Lipschitz differentiable

The above assumption holds if $(\forall \ell \in \mathbb{N}) \ A_{j_{\ell}}(x_{\ell}) \equiv L \ I_{N_{j_{\ell}}}$

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0,1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

$$(\forall r \in \partial R(x))$$
 $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
- ...

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0,1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

$$(\forall r \in \partial R(x))$$
 $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
- .
- → Almost every function you can imagine!

Additional assumptions

► *G* satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.* - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0,1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

$$(\forall r \in \partial R(x))$$
 $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

▶ Blocks $(j_{\ell})_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_{\ell}, \ldots, j_{\ell+K-1}\}$.

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0,1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

$$(\forall r \in \partial R(x))$$
 $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- ▶ Blocks $(j_{\ell})_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_{\ell}, \ldots, j_{\ell+K-1}\}$.
- ► The step-size is chosen such that:
 - $\exists (\gamma, \overline{\gamma}) \in (0, +\infty)^2$ such that $(\forall \ell \in \mathbb{N}) \ \gamma \leq \gamma_\ell \leq 1 \overline{\gamma}$.
 - For every $j \in \{1, ..., J\}$, R_j is a convex function and $\exists (\underline{\gamma}, \overline{\gamma}) \in (0, +\infty)^2$ such that $(\forall \ell \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_\ell \leq 2 \overline{\gamma}$.

Convergence theorem

Let $(x_{\ell})_{\ell \in \mathbb{N}}$ be a sequence generated by the BC-VMFB algorithm.

- Global convergence:
 - \rightsquigarrow $(x_{\ell})_{\ell \in \mathbb{N}}$ converges to a critical point \widehat{x} of G.
 - \hookrightarrow $(G(x_{\ell}))_{\ell \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{x})$.
- ▶ Local convergence: If $(\exists v > 0)$ such that $G(x_0) \leq \inf_{x \in \mathbb{R}^N} G(x) + v$, then $(x_\ell)_{\ell \in \mathbb{N}}$ converges to a solution \widehat{x} to the minimization problem.

Spectral unmixing problem

$$\mathsf{Y} = \overline{\mathsf{U}}\,\overline{\mathsf{V}} + \mathsf{E}$$

Proposed criterion

Observation model: $Y = \overline{U}\overline{V} + E \longrightarrow Y = \Omega \overline{T}\overline{V} + E$,

with $ullet \Omega \in \mathbb{R}^{S \times Q}$ a known spectra library of size $Q \gg P$,

ullet $\overline{T} \in \mathbb{R}^{Q \times P}$ an unknown matrix assumed to be sparse.

Objective: Find estimates of \overline{T} and \overline{V} .

Proposed criterion

Observation model: $Y = \Omega \overline{T} \overline{V} + E$,

$$\underset{T \in \mathbb{R}^{Q \times P}, V \in \mathbb{R}^{P \times M}}{\operatorname{minimize}} \quad \left(G(T, V) = F(T, V) + R_1(T) + R_2(V) \right),$$

- $F(T, V) = \frac{1}{2} ||Y \Omega TV||_F^2$
- $R_1(T) = \sum_{q=1}^Q \sum_{p=1}^P \left(\iota_{[T_{\min},T_{\max}]}(T^{(q,p)}) + \eta \varphi_{\beta}(T^{(q,p)})\right)$, with φ_{β} a nonconvex penalization promoting the sparsity, defined in [Chartrand, 2012] for $\beta \in]0,1]$, and $(\eta,T_{\min},T_{\max}) \in]0,+\infty[^3]$.
- $$\begin{split} \bullet \ R_2(V) &= \iota_{\mathcal{V}}(V), \\ \text{with } \mathcal{V} &= \{V \in \mathbb{R}^{P \times M} \,|\, (\forall m \in \{1, \dots, M\}) \, \textstyle\sum_{p=1}^P V^{(p,m)} = 1, \\ &\qquad (\forall p \in \{1, \dots, P\}) (\forall m \in \{1, \dots, M\}) \, V^{(p,m)} \geq V_{\min} \}, \\ \text{where } V_{\min} &> 0. \end{split}$$

Construction of the preconditioning matrices

Let $(T', V') \in \operatorname{dom} R_1 \times \operatorname{dom} R_2$.

$$T\mapsto F(T,V')=rac{1}{2}\|Y-\Omega TV\|_F^2$$
 is majorized on $\mathrm{dom}\,R_1$ by $Q_1(T\,|\,T',V')=F(T',V')+\mathrm{tr}\,ig((T-T')
abla_1F(T',V')^{ op}ig) \ +rac{1}{2}\mathrm{tr}\,ig(((T-T')\odot A_1(T',V'))\,(T-T')^{ op}ig),$ where $A_1(T',V')=((\Omega^{ op}\Omega)\,T'(V'V'^{ op}))\oslash T'.$

$$\begin{split} V \mapsto F\big(T',V\big) &= \tfrac{1}{2} \|Y - \Omega T V\|_F^2 \text{ is majorized on dom } R_2 \text{ by} \\ Q_2(V \mid T',V') &= F(T',V') + \operatorname{tr} \left((V-V') \nabla_2 F(T',V')^\top \right) \\ &\qquad \qquad + \tfrac{1}{2} \operatorname{tr} \left(\left((V-V') \odot A_2(T',V') \right) (V-V')^\top \right), \end{split}$$
 where $A_2(T',V') = \left((\Omega T')^\top \Omega T' V' \right) \oslash V'.$

Numerical results

- Continuous lines: Exact endmembers \overline{U} ,
- Dashed lines:
 Estimated endmembers \(\widehat{U} \).

- Dashed line: BC-VMFB algorithm [Chouzenoux et al. - 2013],
- Continuous line: PALM algorithm [Bolte et al. - 2013].

Conclusion

- Proposition of a new BC-VMFB algorithm for minimizing the sum of
 - a nonconvex smooth function F.
 - a nonconvex non necessarily smooth function R.
- Convergence results both on the iterates and the function values.
- → Blocks updated according to a flexible quasi-cyclic rule.
- Acceleration of the convergence thanks to the choice of matrices $(A_{j_\ell}(x_\ell))_{\ell \in \mathbb{N}}$ based on MM principle.

Combining variable metric strategy with a block alternating scheme leads to a significant acceleration in terms of decay of the error on the iterates.

Thank you! Questions?

E. Chouzenoux, J.-C. Pesquet and A. Repetti.

Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function.

To appear in J. Optim. Theory Appl, 2013.

 $\hbox{E. Chouzenoux, J.-C. Pesquet and A. Repetti.}\\$

A Block Coordinate Variable Metric Forward-Backward algorithm.

Tech. Rep., 2013. Available on

 $http://www.optimization-online.org/DB_HTML/2013/12/4178.html.$