

# The Asymmetric Rotor II. Calculation of Dipole Intensities and Line Classification

Paul C. Cross, R. M. Hainer, and Gilbert W. King

Citation: J. Chem. Phys. 12, 210 (1944); doi: 10.1063/1.1723935

View online: http://dx.doi.org/10.1063/1.1723935

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v12/i6

Published by the American Institute of Physics.

## Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about\_the\_journal Top downloads: http://jcp.aip.org/features/most\_downloaded

Information for Authors: http://jcp.aip.org/authors

# **ADVERTISEMENT**



### The Asymmetric Rotor

### II. Calculation of Dipole Intensities and Line Classification\*

PAUL C. CROSS AND R. M. HAINER, Brown University, Providence, Rhode Island,

AND

GILBERT W. KING, Arthur D. Little, Inc., Cambridge, Massachusetts (Received February 15, 1944)

A table of line strengths for rigid asymmetric rotors is given, by means of which to this approximation the relative intensities of all important rotational lines up to J < 13 for all bands of any molecule can be readily calculated, provided the asymmetry is roughly the same in the initial and final states. A classification of the irregularly spaced lines of the asymmetric rotor is made into "sub-branches" defined by the changes of the K values of the initial level in the limiting prolate and oblate symmetric rotors, and into "wings" which collect together lines of the sub-branches which have uniformly varying strength and Boltzmann factor, and fairly uniform spacing.

#### I. INTRODUCTION

N a series of papers, of which this is the second, we propose to make a systematic approach to the analysis of the rotational structure of molecular spectra. If the molecule is an asymmetric rotor, the stochastic method is the only one applicable. In the first paper a table was given from which the energy levels, and hence term values, for any molecule could be easily obtained from assumed values of interatomic angles and distances. Although line position is the primary tool used in the interpretation of spectra, it is not sufficient in complex spectra of asymmetric-rotor molecules with large moments of inertia, where the lines are neither regularly spaced nor completely resolved. In such bands intensities are equally important in analysis. In this paper we calculate the line strengths from the square of the elements of the direction-cosine matrices, covering, somewhat coarsely, the whole range of asymmetry possible for all levels up to J < 13. Relative intensities can be easily calculated from the strengths.

No tables of line strengths or intensities have appeared hitherto in the literature. It has been customary to use the limiting prolate or oblate symmetric-rotor intensities for transitions from levels of high or low  $\tau$ , respectively ( $\tau$  being an ordinal index labelling the levels having the same quantum number J). The numerical results given here show that these can be in error by large factors, even with a low degree of asymmetry. The strengths of lines from intermediate  $\tau$  levels are often of quite unexpected magnitudes.

A qualitative classification of the lines of the asymmetric rotor has been made. There are the usual P, Q, and R branches, determined by the change in total angular momentum J. As in the symmetric rotor these are divided into subbranches, determined by changes in internal angular momentum around the symmetry axes, except that in the asymmetric rotor there are two pseudo-quantum numbers  $K_{-1}$  and  $K_1$ , introduced in our classification of energy levels.<sup>1</sup> Both of these K's obey the symmetric-rotor rules as far as parity goes. The principal subbranches are those in which the magnitude of the change of both K's is the same as in the symmetric rotor  $(0, \pm 1)$ ; next in importance are those for which only one  $\Delta K$  is 0 or  $\pm 1$ , and the other  $|\Delta K|$  is greater than 1; and the least important are the "forbidden" sub-branches for which both  $|\Delta K|$ 's are greater than 1. Finally the lines of the sub-branches are classified into wings, in which one K or the other is held constant. This procedure groups together lines whose strength and Boltzmann factors vary uniformly and whose positions are as regular as can be expected.

<sup>1</sup>G. W. King, R. M. Hainer, and P. C. Cross, J.Chem. Phys. 11, 27 (1943), the first of this series, which will hereafter be referred to as I.

<sup>\*</sup> This paper is based on a portion of a thesis presented by R. M. Hainer in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Brown University.

This classification, coupled with the quantitative results which enable one to neglect various sub-branches and wings in appropriate ranges of asymmetry, clarifies the rotational structure of the bands of the asymmetric rotor.

# II. ABSORPTION INTENSITY AND PROPERTIES OF THE DIRECTION-COSINE MATRICES

The intensity of a spectral line may, in principle, be evaluated by the application of the quantum theory of Einstein transition probabilities. Thus the intensity of absorption for the transition  $n'' \rightarrow n'$  is

$$I_{n'';n'} = \frac{8\pi^3 \nu N g_{n''} (1 - e^{-h\nu/kt}) \exp(-E_{n''}/kt)}{3hc \Sigma g_n \exp(-E_n/kt)} \times |\mu_{n'';n'}|^2, \quad (1)$$

where n stands for all the quantum numbers describing the state,  $E_{n''}$  is the energy of the lower state,  $g_{n''}$  its weight factor. N is the number of molecules per cc and  $\nu$  is the frequency of the absorption line. The last factor  $|\mu_{n'';n'}|^2$ , is to be taken as  $|\int \psi_{n''}^* \mu \psi_{n'} dv|^2$ , the square of the magnitude of the n''; n' element in the matrix of the dipole vector  $\mu$ . It can be expanded as  $\Sigma_F |(\mu_F)_{n'';n'}|^2$ , where F represents X, Y, Z, the axes of the space-fixed Cartesian system in terms of which the radiation field is described. In the absence of an external field (1) can be summed over the Zeeman components.

In molecular spectra for which the separation of the wave functions into a rotational part  $\psi_R$  and a vibrational-electronic part  $\psi_{V,e}$  is a satisfactory approximation,

$$\int \psi_{n''}^* \mu_F \psi_{n'} dv = \Sigma_g \int \psi_{R''}^* \Phi_{F_g} \psi_{R'} dv$$

$$\int \psi_{V'',e''}^* \mu_g \psi_{V',e'} dv, \quad (2)$$

where the  $\mu_{g}$ 's are the components of the electric moment associated with the vibrational-electronic selection rules along the x, y, z axes of a molecule-fixed Cartesian system in terms of which the shift of electron density due to changing vibrational and electronic wave functions may be described. The  $\Phi_{Fg}$  are the direction cosines between the space-fixed F and rotating g axes. No loss of generality is incurred by iden-

tifying the x, y, z axes with the principal axes of inertia a, b, c of the molecule. Thus except for the magnitude of the permanent and induced electric moments,  $\int \psi_{V',e'}^* \mu_0 \psi_{V',e'} dv$ , the intensities of the lines in the rotational structure of a band are readily evaluated from (1) and the elements of the matrices of the direction cosines in the representations which diagonalize the energy matrices for the upper and lower states.

The direction cosines are the elements of an orthogonal transformation from molecule-fixed to space-fixed coordinates, satisfying the relations

$$\mathcal{O}_F = \Sigma_a \Phi_{Fa} P_a, \quad P_a = \Sigma_F \Phi_{Fa} \mathcal{O}_F, \tag{3}$$

where  $P_g$  and  $\mathfrak{O}_F$  are the components of angular momentum in the molecule-fixed and in the space-fixed coordinate systems, respectively. Applying the laws of non-commuting vector analysis to the basic commutation rules of Heisenberg, or by expressing the  $P_g$ ,  $\mathfrak{O}_F$ , and  $\Phi_{Fg}$ as functions of a set of Eulerian angles and obtaining the corresponding Schrödinger operators, one may derive the following commutation rules. These rules and the values of the matrix elements have been given before,2 but as it is necessary in the symmetry classification of the lines to use a representation consistent with that used for the calculation of the energies and transformations, the commutation rules and direction-cosine matrices are given here for the phase relations chosen in I, footnote 10:

$$P_x P_y - P_y P_x = -i\hbar P_z, \quad \text{etc.}, \tag{4}$$

$$\mathcal{O}_X \Phi_{Yg} - \Phi_{Yg} \mathcal{O}_X = -\mathcal{O}_Y \Phi_{Xg} + \Phi_{Xg} \mathcal{O}_Y$$

$$=i\hbar\Phi_{Z_0}$$
, etc., (6)

$$P_x \Phi_{Fy} - \Phi_{Fy} P_x = -P_y \Phi_{Fx} + \Phi_{Fx} P_y$$

$$=-i\hbar\Phi_{Fz}$$
, etc. (7)

The other equations are obtained by a cyclic permutation of the indices.

$$\mathcal{O}_F \Phi_{Fg} - \Phi_{Fg} \mathcal{O}_F = P_g \Phi_{Fg} - \Phi_{Fg} P_g = 0 \tag{8}$$

and

$$\Phi_{F_q}\Phi_{F'q'} - \Phi_{F'q'}\Phi_{F_q} = 0. \tag{9}$$

<sup>&</sup>lt;sup>2</sup> D. M. Dennison, in Rev. Mod. Phys. 3, 280 (1931) and earlier papers published the square of the elements summed over the Zeeman components. H. B. G. Casimir, Zeits. f. Physik 59, 623 (1929) gave in detail the commutation rules and matrix elements in the representation used by O. Klein, Zeits. f. Physik 58, 730 (1929).

Table I. Values of the elements of all the direction-cosine matrices, separated into the three factors of (16). Note how the factor dependent on K changes with the internal axes g=x, y, z, and the factor dependent on M changes in the same way with the external axes F=X, Y, Z.

| Matrix-element factor                                            | J+1                                       | Value of J'<br>J            | J-1                             |
|------------------------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------|
| $(\Phi_{Fg})_{J,J'}$                                             | $[4(J+1)\sqrt{(2J+1)(2J+3)}]^{-1}$        | $[4J(J+1)]^{-1}$            | $[4J\sqrt{4J^2-1}]^{-1}$        |
| $(\Phi_{F_z})_{J,K;J'K}$                                         | $2\sqrt{(J+K+1)(J-K+1)}$                  | 2K                          | $-2\sqrt{J^2-K^2}$              |
| $(\Phi_{Fy})_{J,K;J',K\pm 1} = \mp i(\Phi_{Fx})_{J,K;J',K\pm 1}$ | $\mp \sqrt{(J\pm K+1)(J\pm K+2)}$         | $\sqrt{(J\mp K)(J\pm K+1)}$ | $\mp \sqrt{(J\mp K)(J\mp K-1)}$ |
| $(\Phi_{Z_0})_{J,M;J',M}$                                        | $2\sqrt{(J+M+1)(J-M+1)}$                  | 2M                          | $-2\sqrt{J^2-M^2}$              |
| $(\Phi_{Yg})_{J,M;J',M\pm 1} = \pm i(\Phi_{Xg})_{J,M;J',M\pm 1}$ | $\mp \sqrt{(J\pm M\!+\!1)(J\pm M\!+\!2)}$ | $\sqrt{(J\mp M)(J\pm M+1)}$ | $\mp \sqrt{(J\mp M)(J\mp M-1)}$ |

Since by definition

$$P^{2} = P_{x}^{2} + P_{y}^{2} + P_{z}^{2} = \mathcal{O}_{X}^{2} + \mathcal{O}_{Y}^{2} + \mathcal{O}_{Z}^{2}, \quad (10)$$

$$P^{2}P_{g} - P_{g}P^{2} = P^{2}\mathcal{O}_{F} - \mathcal{O}_{F}P^{2} = 0.$$
 (11)

Also

$$H = \frac{1}{2} (P_x^2 / I_z + P_y^2 / I_y + P_z^2 / I_z)$$
 (12)

(since x, y, z are identified with the principal axes of inertia) and

$$HP_{g}-P_{g}H=0$$
,  $H\mathfrak{O}_{F}-\mathfrak{O}_{F}H=0$ . (13)

Choosing a representation which simultaneously diagonalizes  $P^2$ ,  $P_z$ , and  $\Theta_Z$ , one may obtain the following solution of the above equations.

$$(P_{y})_{J, K, M; J, K+1, M} = -i(P_{z})_{J, K, M; J, K+1, M}$$

$$= (\hbar/2) [J(J+1) - K(K+1)]^{\frac{1}{2}},$$

$$(P_{z})_{J, K, M; J, K, M} = \hbar K,$$
(14)

and

$$(\mathfrak{O}_{Y})_{J, K, M; J, K, M+1} = i(\mathfrak{O}_{X})_{J, K, M; J, K, M+1}$$

$$= (\hbar/2) [J(J+1) - M(M+1)]^{\frac{1}{2}},$$

$$(\mathfrak{O}_{Z})_{J, K, M; J, K, M} = \hbar M,$$
(15)

where the phase factors are such that  $P_{\nu}$  and  $\sigma_{Y}$  are real and positive (see I-5 ff.), and where  $|K| \leq J \geq |M|$ .

From the above equations and choice of phases, the elements  $(\Phi_{Fg})_{JKM;J'K'M'}$  of the direction-cosine matrices given in Table I were derived by the method outlined in Born and Jordan,<sup>3</sup> i.e., solving the above equations alge-

braically. Each element is composed of three factors: a J, J' component which is constant for a given  $\Delta J$ , i.e., for a given P, Q, or R block; a JK, J'K' component which is independent of M, M'; and a JM, J'M' component which is independent of K, K'. Thus an element has the structure

$$(\Phi_{F_{\theta}})_{J, K, M; J', K', M'} = (\Phi_{F_{\theta}})_{J; J'} \cdot (\Phi_{F_{\theta}})_{J, K; J', K'} \cdot (\Phi_{F_{\theta}})_{J, M; J', M'}.$$
(16)

# III. CALCULATION OF DIRECTION-COSINE MATRICES

# Symmetric-Rotor Direction Cosines in a Four-Group Representation

The symmetric-rotor basis functions employed in Table I belong to the group  $D_{\infty}$ , whereas the asymmetric-rotor functions belong to the Four Group V. In order to calculate the asymmetric-rotor line strengths and to correlate them properly with the components of the degenerate pairs to which they converge in the symmetric-rotor limiting cases, it is necessary to transform to a set of symmetric-rotor basis functions, the Wang functions, which also belong to the Four Group. This transformation X, defined in (I-26) and (I-29), is easily applied by inspection to the direction-cosine matrices of the symmetric rotor in the representations of  $D_{\infty}$  as given in Table I, to give

$$\Phi_{Fq}{}^S = X' \Phi_{Fq} X. \tag{17}$$

The elements of the  $\Phi_{Fq}^{\ S}$  yield the intensities of the limiting symmetric-rotor transitions in a somewhat unusual form in that the strengths of the two component transitions connecting two

<sup>&</sup>lt;sup>3</sup> M. Born and P. Jordan, *Elementare Matrixmechanik* (Julius Springer, Berlin, 1930), Chapter IV, especially pp. 143. H. Rademacher and F. Reiche, Zeits. f. Physik 41, 453 (1927), have evaluated the integrals  $\int \psi_R \Phi_{F\rho} \psi_R *^t dv$ . Their results, which are not given in a form convenient for our purpose, may, however, be shown to agree with the elements in Table I.

doubly degenerate pairs of energy levels are given in terms of a species classification of the energy levels which applies over the entire range of asymmetry, including both the prolate- and oblate-symmetric limiting cases.

### **Asymmetric-Rotor Direction Cosines**

An asymmetric-rotor wave function may be expressed as a linear combination of Wang functions of the same symmetry. Thus the direction-cosine matrices for the asymmetric rotor  $\Phi_{Fg}^{A}$  can be calculated from the  $\Phi_{Fg}$  given in Table I by

$$\Phi_{F_0}{}^A = T_1{}'\Phi_{F_0}{}^ST_2 = T_1{}'X'\Phi_{F_0}XT_2. \tag{18}$$

 $T_1$  and  $T_2$  are the transformation matrices for the lower and upper states, respectively. In this paper we shall consider only cases in which the asymmetry (defined uniquely by one parameter  $\kappa$ , I-11) is approximately the same in the two states, so that  $T_1 \sim T_2 \sim T$ .

The transformation matrix T is diagonal with respect to J. For each J it is split into four submatrices, one belonging to each of the four species of levels. The submatrices, given by (I-54), may be calculated by the procedure described in some detail in I—Section VI.

In the absence of external fields which remove the space degeneracy, X and T are both diagonal with respect to J and M, and the factors  $(\Phi_{Fg})_{J;J'}$  and  $(\Phi_{Fg})_{J,M;J',M'}$  of (16) are invariant under transformation by XT. Hence, in making our numerical computations, only the factor  $(\Phi_{Fg})_{J,K;J'K'}$  was transformed.

#### Evaluation of Line Strengths

To include all the degenerate components contributing to a given transition,  $J_{\tau} \rightarrow J'_{\tau'}$ , the direction-cosine elements  $(\Phi_{Fg}{}^A)_{J,\tau,M;J',\tau',M'}$  are squared and summed over M, M', and F. In the absence of external fields, X, Y, and Z are equivalent, and the summation of the squared elements over F may be accomplished by multiplying the squared elements for any given F by the factor three. Thus:

$$\sum_{F,M,M'} \left| \Phi_{Fg} \right|_{J,\tau,M;J',\tau',M'}^{2} = 3 \left| \Phi_{Zg} \right|_{J;J'}^{2} \cdot \left| \Phi_{Zg}^{A} \right|_{J,\tau;J',\tau'}^{2} \cdot \sum_{M,M'} \left| \Phi_{Zg} \right|_{J,M;J',M'}^{2}$$
(19)

(where Z on the right hand could be replaced by

X or Y) and is called the *line strength* of the transition with the component of the electric moment  $\mu_g$ , by analogy with the term used in atomic spectra.<sup>4</sup> The amount of calculation is minimized by transforming  $(\Phi_{Zz})_{J,K;J',K'}$  and  $(\Phi_{Z})_{J,K;J',K'}$ , from the latter of which the elements of  $(\Phi_{Zz})_{J,\tau;J',\tau'}$  and  $(\Phi_{Zy})_{J,\tau;J',\tau'}$  are obtained by inspection.

The orthogonal properties of the directioncosine matrices aid in the calculation since they result in several kinds of stability<sup>5</sup> under unitary transformations. The following laws of "spectroscopic stability" were used to detect and eliminate errors in the matrix multiplications:

$$\sum_{J'=J-1}^{J} \sum_{\tau'} \left| \Phi_{Fg}^{A} \right|_{J,\tau;J'\tau'}^{2} = \left[ 2J \right]^{2}, \qquad (20)$$

$$\sum_{J'=J}^{J+1} \sum_{\tau'} |\Phi_{F_g}^A|^2_{J,\tau;J'\tau'} = [2(J+1)]^2, \quad (21)$$

$$\sum_{F,J',\tau',M',M} |\Phi_{Fg}^{A}|_{J,\tau,M;J',\tau',M'}^{2} = 2J+1, \qquad (22)$$

$$\sum_{F, g, \tau', M', M} |\Phi_{Fg}^{A}|_{J, \tau, M; J', \tau', M'}^{2} = 2J' + 1, \qquad (23)$$

$$\sum_{F, \sigma, \tau', M', M} |\Phi_{F_0}^A|_{J, \tau, M; J', \tau', M'}^{2} = \frac{1}{3} (2J+1)(2J'+1). \quad (24)$$

The line strengths of all permitted asymmetric-rotor transitions involving levels of J < 13, except for high order "forbidden" sub-branches of line strength no greater than 0.0030, are tabulated in a condensed form in the Appendix.<sup>6</sup>

All calculations were done to six decimal places and rounded off to four. A systematic application of the sum rules is believed to have eliminated all errors except inaccuracies due to rounding off. In taking sums by rule (22) the deviation from the exact value was found to be 0.0001 in many levels of low J's rising to 0.0003 in J=6, to 0.0004 in J=11, and to 0.0005 in J=12, where the sum involves seventeen levels each of which was rounded off to the fourth decimal.

<sup>&</sup>lt;sup>4</sup>E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra* (Macmillan, Cambridge, England, 1935), p. 98.

p. 98.

<sup>6</sup> See, for atomic spectra, Condon and Shortley, reference 4, p. 71, and for Raman spectra, G. Placzek and E. Teller, Zeits. f. Physik 81, 209 (1933).

<sup>&</sup>lt;sup>6</sup> The various sum rules do not apply to the data of the Appendix because of these omissions.

TABLE II. Direction of the electric moment permitting transitions between states belonging to the representations of the Four Group.

|                |     | A  | $B_a$          | $B_b$ | $B_{c}$ |
|----------------|-----|----|----------------|-------|---------|
| R              | ep. | ee | eo             | 00    | 0e      |
| $\overline{A}$ | ee  |    | $\overline{a}$ | b     | с       |
| $B_a$          | eo  | a  | _              | с     | b       |
| $B_b$          | 00  | b  | c              | -     | a       |
| $B_{c}$        | oe  | с  | b              | a     |         |

TABLE III. Allowed changes in representation, labelled by the KK notation, for the three components of the electric moment, which show the selection rules in terms of parity changes in the K's.

|                        | Final r | epresentation for<br>parallel to | or moment  |
|------------------------|---------|----------------------------------|------------|
| Initial representation | (least) | b<br>(middle)                    | (greatest) |
| ee                     | eo      | 00                               | oe         |
| eo                     | ee      | oe .                             | 00         |
| 00                     | oe      | ee                               | eo         |
| oe                     | 00      | eo                               | ee         |
| Parity change is in    | $K_1$   | $K_{-1}K_{1}$                    | $K_{-1}$   |

#### IV. SELECTION RULES

The selection rules for the asymmetric rotor were given by Dennison<sup>7</sup> in terms of the +- notation. They can be stated quite simply in the KK notation, i.e., in terms of the symmetric-rotor selection rules, in a form which is valuable in unravelling the structure of the spectrum.

Since the transformation matrices are diagonal with respect to J, the selection rules for J in the asymmetric rotor are the same as in the symmetric rotor. Thus,  $\Delta J = 0$ ,  $\pm 1$ , corresponding to Q, R, and P branches, respectively. The rules for  $K_{-1}$  and  $K_1$  can be obtained very easily by means of group theory as follows. The components of the electric moment along the molecular a, b, c axes belong, respectively, to the representations  $B_a$ ,  $B_b$ ,  $B_c$ , of the Four Group (I— Table IV). The product of the characters of the representations of the initial and final wave functions and of the vector must be +1 for all group operators. Thus, if the representation of one is A, the other two must belong to the same representation, and if no representation is A, all must be different. Table II gives the permitted changes in representation for each component of the electric moment. These changes can now be interpreted in terms of the symmetric-rotor rules applied to each K index individually, except that the magnitude of  $\Delta K$ , instead of being restricted to 0 and  $\pm 1$  in the parallel and perpendicular directions of electric moment, respectively, is merely restricted to even and odd changes. (We shall see below, however, that the 0 and  $\pm 1$  lines are of most significance in the asymmetric case.) If o and e are operators representing odd and even changes in K, the combined operators **eo**, **oo**, **oe**, to be applied to the double suffix, belong to the representations of the Four Group, eo (or  $B_a$ ), oo (or  $B_b$ ), and oe (or  $B_c$ ), respectively, and in this way are directly related to the components of the electric moment a, b, c which also belong to these respective representations. The remaining operator **ee** belongs to representation ee (or A), but no branches of this type occur. The results for the asymmetric rotor can be summarized as follows (see also Table III).

For the electric moment parallel to the axis of least moment of inertia (a) the parity of the  $K_{-1}$  index does not change.

For the electric moment parallel to the axis of greatest moment of inertia (c) the parity of the  $K_1$  index does not change.

For the electric moment parallel to the axis of intermediate moment of inertia (b) neither of the K indices does not change, i.e., both change.

These rules are independent of J or  $\Delta J$  values. In the general case of the asymmetric rotor  ${\bf e}$  can stand for  $\Delta K=0, \pm 2, \pm 4$ , etc., and the operator  ${\bf o}$  can stand for  $\Delta K=\pm 1, \pm 3$ , etc. However, not all numerical combinations of  $\Delta K_{-1}$  and  $\Delta K_1$  are possible because the sum  $K_{-1}+K_1$  for any level is equal to J for even levels, and J+1 for odd levels. The permitted values of  $\Delta (K_{-1}+K_1)=\Delta K_{-1}+\Delta K_1=$  sum of the two operators  ${\bf e}$  and  ${\bf o}$  are given in Table IV.

Notation: In the symmetric rotor the branches of the spectrum are identified by a literal notation, i.e., for  $\Delta J = 0$ , +1 and -1 by Q, R, and P,

<sup>&</sup>lt;sup>7</sup> D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).

 $<sup>^8</sup>$  Odd and even levels are defined by the parity of  $\gamma$  in the definition of the Wang functions as positive and negative combinations of the symmetric-rotor functions (I-26). There are six different sets of  $\gamma$  (of which only two are distinct) corresponding to the six choices of symmetric-rotor functions. The  $\gamma$  used here, and in I—Table VIII, is that used with the functions which become the prolate and oblate functions in the limiting cases. The parity of  $\gamma$ , hence the level, can be readily found either from I—Table VIII or from the parity of the  $J+K_{-1}+K_1$  or of  $J+\tau$ . See also reference 9.

respectively, and for  $\Delta K = 0$ , +1 and -1 by q, r, and p, respectively, which define "subbranches." Some authors have used such a notation for the asymmetric rotor near the limiting case of symmetry. However, half the subbranches are not included in this notation, and some of them are among the strongest. It would be convenient to generalize these definitions so that the same concept of sub-branches could be used to describe the structure of the asymmetricrotor spectrum, where the  $\Delta K$ 's can change by  $\pm 2$ ,  $\pm 3$ , etc. Unfortunately, an extension of the literal notation becomes clumsy, so that we suggest a return to the numerical values of the  $\Delta K$ 's. For example, the asymmetric-rotor subbranch  $R_{qr}$ , meaning  $\Delta J = +1$ ,  $\Delta K_{-1} = 0$ , and  $\Delta K_1 = 1$ , would be written  $R_{0,1}$ . Then a subbranch such as  $P_{\overline{2},1}$  would mean  $\Delta J = -1$ ,  $\Delta K_{-1} = -2$ ,  $\Delta K_1 = 1$ . Sometimes it may be simpler to identify transitions by  $\Delta \tau = \Delta K_{-1} - \Delta K_1$ . However,  $\Delta \tau$  does not uniquely define a subbranch, although with the direction of the electric moment specified, it is sufficient.

TABLE IV. Permitted changes in  $\Delta(K_{-1}+K_1)=\Delta K_{-1}+\Delta K_1$ . This table can also be used to find the parity of the levels from which the various transitions can arise. E.g., if  $\Delta J=0$ ,  $\Delta K_{-1}=1$ , and  $\Delta K_1=-1$ , the sum  $\Delta(K_{-1}+K_1)$  is 0, and the transitions can arise from even and odd levels to give both  ${}^{b,e}Q_1,\overline{1}$  and  ${}^{b,e}Q_1,\overline{1}$  sub-branches. If  $\Delta J=-1$ ,  $\Delta K_{-1}=1$ ,  $\Delta K_1=-3$ , then the sum is -2 and such transitions arise only from odd levels to give only  ${}^{b,e}P_1,\overline{3}$ .

| Initial γ | P              | Q     | R    |
|-----------|----------------|-------|------|
| even      | -1, 0 $-1, -2$ | 0, 1  | 1, 2 |
| odd       |                | 0, -1 | 1, 0 |

In the identification of a sub-branch, the direction of the moment, as determined from the parities of the two  $\Delta K$ 's (Tables II and III), is indicated in a superscript, as is the parity of the initial level, e.g.,  ${}^{a,\bullet}R_{0,1}$ .

### Branches of the Asymmetric Rotor

The distribution of sub-branches in the matrix of the line strengths between all states is shown in (25) where the non-zero elements have been indicated by inserting the values of  $\Delta K_{-1}$  and  $\Delta K_{1}$ .

|           | $\stackrel{0_{00}}{e}$ | $e^{1_{01}}$ | $\frac{1}{o}$   | $\stackrel{1_{10}}{e}$ | $\overset{2_{02}}{e}$ | $\frac{2_{12}}{o}$ | $e^{2}$     | $\frac{2}{o}$          | $e^{2_{20}}$ | $e^{3_{03}}$ | 3 <sub>13</sub> | $e^{3_{12}}$ | $\frac{3}{0}$ | $e^{3_{21}}$ | $\frac{3_{31}}{o}$ | $\overset{3_{30}}{e}$  |      |
|-----------|------------------------|--------------|-----------------|------------------------|-----------------------|--------------------|-------------|------------------------|--------------|--------------|-----------------|--------------|---------------|--------------|--------------------|------------------------|------|
| $0_{00}e$ |                        | 01           | 11*             | 10†                    |                       |                    |             |                        |              |              |                 |              |               |              |                    |                        |      |
| $1_{01}e$ | 01                     | _            | 10†             | 11*                    | 01                    | 11*                | 10†         |                        | 21           |              |                 |              |               |              |                    |                        |      |
| 1110      | 11*                    | <u>1</u> 0†  |                 | 01                     | 11*                   | 01                 | _           | 10†                    | 11*          |              |                 |              |               |              |                    |                        |      |
| $1_{10}e$ | 10†                    | 11*          | 01              |                        | 12†                   |                    | 01          | 11*                    | 10†          |              |                 |              |               |              |                    |                        |      |
| $2_{02}e$ |                        | 01           | 11*             | 12†                    |                       | 10†                | 11*         | 21                     | -            | 01           | 11*             | 10†          | _             | 21           | 31*                | 32†                    |      |
| $2_{12}o$ |                        | 11*          | $0\overline{1}$ |                        | <u>1</u> 0†           | _                  | 01          | 11*                    | 12†          | 11*          | 01              | _            | 10†           | 11*          | 21                 |                        |      |
| $2_{11}e$ |                        | 10†          |                 | 01                     | 11*                   | 01                 | _           | 10†                    | 11*          | <b>1</b> 2†  | -               | 01           | 11*           | 10†          |                    | 21                     |      |
| 2210      |                        |              | <b>1</b> 0†     | 11*                    | <b>2</b> 1            | 11*                | <b>1</b> 0† | -                      | 01           |              | <b>1</b> 2†     | 11*          | 01            |              | 10†                | 11*                    | (25) |
| $2_{20}e$ |                        | $\bar{2}$ 1  | 11*             | 70†                    |                       | 12†                | 11*         | 01                     |              | $\bar{2}3$   | <b>1</b> 3*     | 12†          |               | 01           | 11*                | 10†                    | (23) |
| $3_{03}e$ |                        |              |                 |                        | 01                    | 11*                | 12†         | _                      | 23           |              | 10†             | 11*          | 21            |              | 32†                | 33*                    |      |
| 3130      |                        |              |                 |                        | 11*                   | $0\overline{1}$    |             | $1\overline{2}\dagger$ | 13*          | <b>1</b> 0†  |                 | 01           | 11*           | 12†          |                    | $2\overline{3}$        |      |
| $3_{12}e$ |                        |              |                 |                        | 10†                   | _                  | 01          | 11*                    | 12†          | 11*          | 01              | _            | 10†           | 11*          | 21                 |                        | 1    |
| 3220      |                        |              |                 |                        |                       | <u>1</u> 0†        | 11*         | 01                     | _            | $\bar{2}1$   | 11*             | 10†          |               | 01           | 11*                | $1\overline{2}\dagger$ |      |
| $3_{21}e$ |                        |              |                 |                        | 21                    | 11*                | 10†         | _                      | 01           |              | <b>1</b> 2†     | 11*          | 01            |              | 10†                | 11*                    |      |
| 3310      |                        |              |                 |                        | 31*                   | $\bar{2}1$         |             | <u>1</u> 0†            | 11*          | 32†          |                 | $\bar{2}1$   | 11*           | <u>1</u> 0†  |                    | 01                     |      |
| $3_{30}e$ |                        |              |                 |                        | 32†                   |                    | 21          | 11*                    | <b>1</b> 0†  | 33*          | <b>2</b> 3      | · <u>·</u>   | 12†           | 11*          | 01                 |                        |      |

Plain numerals are used for branches appearing with a component along *a*, an asterisk the com-

ponent along b, and a dagger the component along c. It is seen that the transitions of any

sub-branch appear only along diagonals of the blocks. Half the sub-branches arise from either odd or even levels. Examination of the numerical values of the others, which arise from both odd and even levels, shows that the strengths alternate in value. A smooth trend of numbers is obtained by separating the latter into "e" and "o" parts (arising from even and odd levels, respectively), each of which will henceforth be called a sub-branch,  ${}^9$  e.g.,  ${}^{b,e}Q\bar{{}}_1$ ,  ${}^1$  and  ${}^{b,o}Q\bar{{}}_1$ ,  ${}^1$ . The

Table V. Summary of arrangement of sub-branches in the Table of Line Strengths in the Appendix. The reverse, inverse, and inverse-reverse (see Section VI) of any sub-branch are to be found in the same row of the table as is the primary. Sub-branches in columns 1 and 2 and columns 3 and 4 are reverses of each other and have the same strengths. Sub-branches in columns 3 and 4 are inverses of those in columns 1 and 2 and have the same strengths for opposite signs of  $\kappa$ . Column 5 summarizes the maximum line strengths found in any group of sub-branches by giving the number of digits in the strength  $\times 10^4$ , for five values of  $\kappa$ ,  $\mp 1$ ,  $\mp 0.5$ , 0,  $\pm 0.5$ , and  $\pm 1$ , where the upper sign applies to the sub-branches in columns 1 and 2, and the lower sign to those in columns 3 and 4.

|                                                                                  |                                                                                  | etric-rotor'' sub<br>sub-branches                                                | -branches                            | Strengths |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------|
|                                                                                  | a and c                                                                          | sub-branches                                                                     |                                      | Strengths |
|                                                                                  | Prolate                                                                          | and Oblate                                                                       |                                      |           |
| c,eO1,0                                                                          | c,0Q1,0                                                                          | $^{a,e}Q_{0,1}$                                                                  | $^{a,o}Qo,\overline{1}$              | 6,6,6,6,6 |
| c, e K1,0                                                                        | $^{c,e}reve{P1}$ ,0                                                              | $^{a,e}R_{0,1}$                                                                  | $^{a,e}ar{P}_{0,\overline{1}}$       | 6,6,6,6,6 |
| $^{c,o}R$ 1,0                                                                    | $^{c,o}P$ 1,0                                                                    | $^{a,o}R0,1$                                                                     | $^{a,o}P_{0,\overline{1}}$           | 6,6,6,6,6 |
| Prola                                                                            | ate only (c)                                                                     | Oblate o                                                                         | only (a)                             |           |
| $^{c,e}O\overline{1},2$                                                          | c,0O1,2                                                                          | $^{a,e}O_{2,\overline{1}}$                                                       | $^{a,o}Q\overline{2}$ , 1            | 5,5,5,4,0 |
| c,eŘĩ,2                                                                          | $^{c,e}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $^{a,s}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $^{a,e}\!ar{P}ar{2}$ , 1             | 5,5,4,4,0 |
| ¢,ºRĩ,2                                                                          | $^{c,o}P_{1,\overline{2}}$                                                       | $^{a,o}R_{2,\overline{1}}$                                                       | $^{a,o}Par{2}$ , 1                   | 5,4,4,4,0 |
|                                                                                  | <i>b</i> sub                                                                     | -branches                                                                        | ,                                    |           |
|                                                                                  | Prolate                                                                          | and Oblate                                                                       |                                      |           |
| $^{b,e}Q\overline{1}$ , 1                                                        | b, eQ1, 1                                                                        | $^{b,e}Q_{1,\overline{1}}$ §                                                     | b,eQ1,18                             | 6,5,5,5,6 |
| b,0Q1,1                                                                          | 6,0Õ1, Ī                                                                         | b,0O1,18                                                                         | b.001.18                             | 5,5,5,5,5 |
| <sup>b, e</sup> ₹1,1                                                             | $^{b,o}ar{P}ar{1},ar{1}$                                                         | b, e R1, 1 §                                                                     | $^{b,o}P\overline{1},\overline{1}$ § | 6,6,6,6,6 |
| <sup>b,o</sup> Rī,1                                                              | $^{b,e}P$ 1, $ar{1}$                                                             | b.oR1, 1                                                                         | $^{b,e}P\overline{1}$ , 1            | 5,6,6,6,6 |
| Prolat                                                                           | e only                                                                           | Oblate                                                                           | only                                 |           |
| <sup>b,e</sup> R1.3                                                              | $^{b,o}P_{1,\overline{3}}$                                                       | <sup>b,</sup> €R3,1                                                              | $^{b,o}P\overline{3}$ , 1            | 5,4,4,4,0 |
| ]                                                                                | First-order forb                                                                 | idden sub-branc                                                                  | hes                                  |           |
|                                                                                  | a and c s                                                                        | ub-branches                                                                      |                                      |           |
| c,0Q3,2                                                                          | $^{c,e}Q$ 3, $ar{2}$                                                             | $^{a,o}Q_{2,\overline{3}}$                                                       | $^{a,e}Q\overline{2}$ ,3             | 0,4,4,4,0 |
| $^{c,s}ra{Q}ar{3},4$                                                             | $^{c,o}Q$ 3. $ar{4}$                                                             | $^{a,\epsilon}Q_{4},\overline{3}$                                                | $^{a,o}Q\overline{4},3$              | 0,3,3,2,0 |
| $^{c,s}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $^{c,e}ar{P}ar{3},2$                                                             | $a, \epsilon R \widehat{2}, 3$                                                   | a, e $ar{P}_2, ar{3}$                | 0,4,4,4,0 |
| $^{c,o}R$ 3, $ar{2}$                                                             | $^{c,o}P\overline{3},2$                                                          | $^{a,o}R\bar{2}$ ,3                                                              | $^{a,o}P_{2,\overline{3}}$           | 0,3,3,3,0 |
| $^{c,e}R\overline{3},4$                                                          | $^{c,e}P3,\overline{4}$                                                          | $a$ ,e $R_4$ , $\bar{3}$                                                         | $a, eP\overline{4}, 3$               | 0,3,3,2,0 |
| $^{c,o}R\overline{3}$ ,4                                                         | c,oP3,4                                                                          | $a, oR4, \overline{3}$                                                           | $^{a,o}P\overline{4},3$              | 0,2,2,1,0 |
|                                                                                  |                                                                                  | branches                                                                         |                                      |           |
| $^{b,e}Q\overline{3},3$                                                          | $^{b,\bullet}Q_3,\overline{3}$                                                   | 6,eQ3,38                                                                         | b.eQ3,38                             | 0,4,4,4,0 |
| $b$ , $qQ\overline{3}$ , $3$                                                     | $^{b,o}oldsymbol{	ilde{Q}}$ 3, $oldsymbol{ar{3}}$                                | <i><sup>6,0</sup></i> Q3,3§                                                      | 6,0Q3,3 §                            | 0,3,3,3,0 |
| <sup>b,</sup> ∘R̄3,3                                                             | $b \in \widetilde{P}3,\overline{3}$                                              | $^{b,o}\bar{R}3,\bar{3}$                                                         | $^{b,c}P\overline{3}$ ,3             | 0,3,3,3,0 |
| $^{b,a}R\overline{3}$ ,5                                                         | $^{b,o}P$ 3, $\overline{5}$                                                      | $^{b,e}R$ 5, $ar{3}$                                                             | b.oP5,3                              | 0,2,2,2,0 |

<sup>§</sup> Same lines as in columns 1 and 2, but sorted on  $K_1$ .

e and o parts have now the same number of lines as the other sub-branches.

The values of the line strengths decrease away from the principal diagonal as  $\Delta K_{-1}$ ,  $\Delta K_1$  (and hence  $\Delta \tau$ ) increase, i.e., as the departure from the selection rules of the symmetric rotor increases.

#### V. STRUCTURE OF THE SPECTRUM

The principal lines in the spectrum of the asymmetric rotor are those which occur in the symmetric rotor, if we first resolve the doubly degenerate levels of the latter into their Wang components, which retain their identity as the rotor becomes asymmetric. The resolution of this degeneracy, which splits the symmetric-rotor energy levels into those of the asymmetric rotor, also is responsible for a splitting of the p, q, and r sub-branches of the oblate- and prolate-rotor spectra into the sub-branches of the asymmetric-rotor spectra.

The principal sub-branches of the asymmetric rotor are those for which both K's change by 0 or  $\pm 1$ , and so become p, q, or r branches in both the prolate- and the oblate-symmetric limiting cases. These sub-branches are listed first in the Table of Line Strengths found in the Appendix (of which Table V is a summary), and are shown diagrammatically by heavy lines in Fig. 1.

The next important sub-branches are those in which  $\Delta K$  changes by  $0, \pm 1$ , i.e., which are p, q, or r sub-branches in either the prolate or oblate case, but for which the other index operator has an absolute value greater than 1, corresponding to forbidden transitions of zero intensity in the other symmetry case (oblate or prolate, respectively). These sub-branches, such as  $P_{1,\overline{3}}$ , are listed second in the tables, and are shown by light lines in Fig. 1. Note that in transitions of the symmetric rotor in the Wang resolution, changes in the K which is not the true quantum number can have an absolute value greater than unity.

weight factors may have to be applied to each, one might expect a sub-division of the sub-branches on ee, eo, oe, and oo. The sorting of sub-branches into four parts arising from each of these species of the initial levels does not give smooth sequences of strengths. The parity of  $J+\gamma$ , not  $\gamma$  alone, is characteristic of each symmetry species (I—Table VIII); or, from the opposite point of view, each sub-branch, even when divided into  $\gamma$ -even and  $\gamma$ -odd components, arises from levels of all four species.

 $<sup>^{9}</sup>$  Since the parity of the initial levels with respect to  $\gamma$  has no direct significance in spectrum analysis, and since the representation of the Four Group to which the initial level belongs is of importance because differing nuclear-spin



Fig. 1. A chart correlating the sub-branches of the asymmetric rotor with those of the symmetric-rotor limiting cases. Those permitted in both the prolate and oblate rotors, and hence of high strength throughout the whole range of asymmetry are indicated by heavy lines. Pairs of sub-branches arising from the same permitted sub-branch in one limiting case and going to the same or different sub-branches in the other case have about the same strengths. Sub-branches permitted in only one or the other limit are shown by fine lines. The strengths of the strong wings fall off very rapidly on moving away from the permitted limiting cases, and so can be neglected (as shown by dashed lines) except close to the limiting case where they are permitted.

Finally, in the last part of the tables we have listed sub-branches of the asymmetric rotor which are forbidden in both prolate and oblate limiting cases. These not only have very low intensities even for the most asymmetric rotor, but also do not occur below certain values of J. Even with a favorable Boltzmann factor these sub-branches can usually be disregarded in the structure of the rotational spectra of the asymmetric rotor. We have only tabulated the "first-order" forbidden sub-branches,  $|\Delta \tau| = 5$ , 6, 7, 8, which appear first at  $J \ge 3$ . The highest strength of any forbidden line calculated (J < 13)is 0.3100. Second-order forbidden transitions,  $|\Delta \tau| = 9$ , 10, 11, 12, which appear first at  $J \geqslant 5$ , have strengths no greater than 0.0030; higher orders,  $\Delta \tau > 12$ , which begin at  $J \geqslant 7$ , have strengths less than 0.0001.

### VI. TABLES OF LINE STRENGTHS

Certain symmetrical relations in the matrices, based on the KK notation just discussed, enable us to condense the tabulation of the numerical material to one-quarter of the total number of transitions. Let us consider a transition from a level with J=j,  $K_{-1}=k$ ,  $K_1=l$ ,  $\tau=t$ , or  $j_{kl,t}$ , to another level  $h_{mn,s}$ ; let this be called a "primary" transition. Related to this transition is the "reverse" transition  $h_{mn,s} \rightarrow j_{kl,t}$ . The term "reverse" is chosen because the spectral lines of the pure rotational emission spectra will suffer "line reversal" by the reverse transition, a well-known phenomenon in atomic spectra. <sup>10</sup> The strength for the reverse transition appears on the opposite

<sup>&</sup>lt;sup>10</sup> In the pure rotational emission spectrum (1) would be replaced by an equation involving both Einstein coefficients.

side of the main diagonal of (25) from that on which the primary transition is located. When the asymmetry parameter is the same in the two states (the only case considered in this work), these two elements are numerically equal. In the Appendix a transition beginning on  $j_{kl,t}$  is listed in column 1, the final level being read in column 2. The line strengths given in the next columns, 3–7 (with the upper sign of  $\kappa$ ) are the same for another line, the reverse of the above, whose *initial* level is given in column 2 and *final* level in column 1. The columns in the Appendix are headed by the name of the sub-branch whose initial levels are given in that column, the final levels being found in the adjacent column.

The asymmetry parameter  $\kappa$  used in Part I simplified the study of the energy levels because the patterns for positive values of  $\kappa$  were inverted for negative  $\kappa$ , i.e.,

$$E(\kappa)j_{kl,\,t} = -E(-\kappa)j_{lk,\,-t}.\tag{26}$$

Therefore, the transformation matrices and hence (25) for negative values of  $\kappa$  will be numerically the same as for the positive values, but will have the row and column labelling inverted. Thus for a primary transition at  $\kappa$  there is an "inverse" transition  $j_{lk,-t} \rightarrow h_{nm,-s}$  at  $-\kappa$ which has the same strength as the primary. Finally, for a primary transition there is an inverse-reverse  $h_{nm,-s} \rightarrow j_{lk,-t}$ . The reverse and the inverse-reverse strengths are the same at opposite signs of  $\kappa$ . The lines which are inverses and inverse-reverses of the ones we chose as primary (column 1) in the Appendix are to be found by reading their initial levels in columns 8 and 9, respectively. The lower sign of  $\kappa$  in columns 3-7 is to be used for these lines.

As one would expect, the sub-branches appearing when the electric moment is parallel to the least axis are inverses of those appearing when the moment is parallel to the greatest, and vice versa. Inverses of b sub-branches are b sub-branches, and in some cases a b sub-branch is its own inverse, so that the same sub-branch reappears in columns 8 and 9 (see also Table V).

The sub-branches appearing in the four columns of the Appendix, or in the same row of Table V, form a group. The reverse, inverse, and inverse-reverse of any one of the group is also a member of the group (a consequence of the Four-

Group symmetry). All members of the group have the same value of  $|\Delta J|$  and  $|\Delta \tau|$ . In the following we shall identify a group by the subbranch appearing in the first column. The discussion of the variation of line strength with J or  $\kappa$  is the same for all members of the group.

# Arrangement of Lines Within Sub-Branches: Wings

As in the symmetric-rotor spectrum, a subbranch of the asymmetric-rotor spectrum is composed of lines which can be classified either by J or a K. In order to list the lines in a way so that there is a continuous trend in the line strengths, one can hold K fixed and list by increasing J, or hold J fixed and list by K. The former is probably the most natural in spectrum analysis as it enables one to group together the dominant lines of a sub-branch, then the next most important, and so on. In the tables, then, we have sorted the lines of the sub-branches into "wings" of which there are two types: those in which  $K_{-1}$  is held constant, J varies (labelled wing  $-K_{-1}$ ; and those in which  $K_1$  is held constant (labelled wing  $+K_1$ ). For any given subbranch sorting on one of the two K's picks out the strongest lines starting from any J level and collects them into the first wing, then collects the second strongest into the second wing, etc. In the tables all sub-branches are sorted this way. Sorting on the other K usually picks out the weakest lines into the first wings, etc., an arrangement which is valuable for extrapolation to high J's, but not used here except by accident (see b branches). Wings also have the valuable properties that the Boltzmann factors and line positions vary uniformly for the lines standing in a wing. Lines in the same wing have like variation in strength with degree of asymmetry.

The strongest lines in the spectrum will be those which have a high transition probability and a favorable Boltzmann factor (low  $K_{-1}$  or  $\tau$ ). A sorting on  $K_{-1}$  would pick out lines with the most favorable Boltzmann factor. Unfortunately, for half the lines this is not compatible with high strength, and in most spectra the latter outweighs the Boltzmann factor at low J's. Thus, in the Appendix the sub-branches have been sorted for high strength on whichever K is necessary.

It is not always feasible to do this for all values of  $\kappa$  simultaneously.

For the sub-branches appearing with the moment parallel to c it is possible to sort the lines (on  $K_{-1}$ ) whereby the first wing contains the strongest lines both on account of high transition probability and favorable Boltzmann factor, with two exceptions,  ${}^cR_{1,0}$  and  ${}^cP_{1,0}$ , where it is impossible to sort for both simultaneously. In the table these sub-branches have been sorted (on  $K_1$ ) for high strength. In a band associated with a moment parallel to c these two sub-branches will be much weaker than  ${}^cQ_{1,0}$  and  ${}^cQ_{1,0}$ .

Except for  ${}^{a}R_{0,1}$  and  ${}^{a}P_{0,\bar{1}}$  (the inverses of the two exceptions just mentioned in c bands), the sub-branches appearing with moment parallel to a cannot be sorted for both influences favorable and are sorted (on  $K_{-1}$ ) for high strength only. For many molecules, e.g.,  $H_2S$ , this is more satisfactory than sorting for Boltzmann factor, and not for strength, because the latter usually outweighs the former. However, there may be some examples where the  $K_{-1}$  wings for the sub-branches listed on the right-hand side of the table are preferable. It is not at all difficult to pick them out from the tables. Since the two exceptions  ${}^{a}R_{0,1}$  and  ${}^{a}P_{0,\bar{1}}$  also have favorable Boltzmann factors, they will be the outstanding sub-branches of bands associated with a moment parallel to a, as is indeed the case in the 10,100A band of H<sub>2</sub>S.<sup>11</sup>

The  ${}^bQ$  branches can be sorted for both influences favorable only in one range of  $\kappa$ , namely, on  $K_{-1}$  for negative  $\kappa$ , and on  $K_1$  for positive  $\kappa$ . Since these branches are their own inverses, the same numbers appear in both halves of the range of  $\kappa$ , so that  $K_{-1}$  wings can be found by reading from left to right and  $K_1$  wings by reading from right to left. A similar situation exists with  ${}^b, {}^cR_{1,1}$  and  ${}^b, {}^oP_{1,1}$ .

The sub-branches  ${}^bR\overline{1}$ ,1 and  ${}^bP_{1}$ , $\overline{1}$  can be sorted on  $K_{-1}$  for both high strength and favorable Boltzmann factor simultaneously whereas their inverses can be sorted only for one or the other, and the arrangement of the table has compelled their sorting to be on  $K_1$ , for high strength only.

The sorting of the prolate-or-oblate sub-

branches is such that it favors high strength near  $\kappa = -1$  (the commonest range of asymmetry), simultaneously favoring the Boltzmann factor for c branches and two b branches.

# Variation of Line Strengths with Asymmetry

The double suffix notation for the lines and sub-branches shows qualitatively the way the asymmetric-rotor sub-branches resolve, in the limiting cases, into p, q, r, or forbidden symmetric-rotor sub-branches. (See Fig. 1.) Quantitatively this classification offers further simplifications because in some of the sub-branches the resolved pairs either have the same or very closely the same strengths, while other pairs diverge and the strength of one member dies out very rapidly with increasing asymmetry.

The best example is the  ${}^{\circ}Q_{\bar{1},0}$  group. Here the prolate  ${}^{a}Q_{q}$  sub-branch splits into  ${}^{a,o}Q_{0,\bar{1}}$  and <sup>a,e</sup>Q<sub>0,1</sub> which are their own reverses, and so are numerically the same. In the oblate limit, however, they show entirely different characteristics. Here they become one component of  ${}^{a}Q_{p}$  and of  ${}^{a}Q_{r}$ , respectively. The other component of  ${}^{a}Q_{p}$  is  ${}^{a},{}^{e}Q_{2},\overline{1}$ , i.e., oblate  ${}^{a}Q_{p}$  splits into the prolate-and-oblate a,oQo,ī and the oblate-only a,eQ2, ī. Numerically, these two sub-branches arising from  ${}^{a}O_{n}$  have nothing in common except the limiting oblate strength. The same applies to their reverses, which coalesce into  ${}^{a}Q_{r}$  oblate. A similar situation applies, of course, to the other sub-branches of this group which appear with the c moment.

The prolate-and-oblate  ${}^bQ_{1,1}$  group of subbranches split from  ${}^bQ_p$  or  ${}^bQ_r$  into odd and even sub-branches with slightly different strength in the asymmetric region. Similarly, the prolate  ${}^aR_q$  sub-branch splits into  ${}^{a,e}R_{0,1}$  and  ${}^{a,o}R_{0,1}$ , which have very closely the same strengths over most of the range of  $\kappa$ .

The prolate-and-oblate  ${}^bR_{1,1}$  group and the  ${}^bR_{1,\bar{1}}$  group with which it coalesces in one or other of the limiting cases similarly differ only slightly in strength. But the  ${}^bR_{1,\bar{1}}$  group in the other limiting case pairs up with the prolate-or-oblate decadent  ${}^bR_{3,\bar{1}}$  group, with which it has nothing in common except the limiting value.

All the lines in  ${}^{b}R_{1,1}$  (and  ${}^{b}P_{\bar{1},\bar{1}}$ ) remain at

 $<sup>^{11}\,</sup>P.$  C. Cross, Phys. Rev. 47, 7 (1935) and J. Chem. Phys. 5, 370 (1937).

practically the same strength for all values of  $\kappa$ , as one would expect from the unique symmetry of these sub-branches (degenerating to the  ${}^{b}R_{r}$ and  ${}^{b}P_{p}$  in both limits). The other prolate-andoblate sub-branches contain several types of wings. Some have about the same strength at all values of κ. Others remain fairly constant throughout most of the range, then decrease very rapidly to a half or a tenth of their strength; e.g., in  ${}^{a,o}Q_{0,\bar{1}}$  the transition  $12_{12,1} \rightarrow 12_{12,0}$  stays at a value of 23 from  $\kappa = -1$  to  $\pm 0.5$ , then drops to 12.5 at  $\kappa = +1.0$ . The  ${}^{b}R\bar{\imath}_{.1}$  group of subbranches contain certain wings which are as decadent as the prolate-or-oblate sub-branches; e.g., in  $^{b,o}R_{1,\bar{1}}$  the transition  $11_{1,11} \rightarrow 12_{2,10}$  changes from 3.7917 for the prolate rotor to 0.0967 at  $\kappa = -0.5$ , i.e., by a factor of 40 in the range where most triatomic molecules lie. Lines with similar decay characteristics are sometimes better grouped together by sorting on the K other than the one used in the tables.

All the wings of the prolate-or-oblate subbranches decrease abruptly in strength at one end of the range of  $\kappa$ . The stronger wings drop in strength by a factor of 10 to 40 in the quarter next to their permitted symmetric rotor, while the weaker wings stay at a fairly constant strength over three-quarters of the range, then abruptly drop to zero strength in the quarter just before the forbidden limit.

The strengths of all the "forbidden" subbranches have a characteristic similar to that of the prolate-or-oblate sub-branches. In one quarter of the range of  $\kappa$  the strengths rise abruptly from zero to the maximum value, then decrease more uniformly over the remaining three-quarters of the range.

It is evident that the rapid changes in strength with  $\kappa$  that occur in many strong lines can be very confusing in spectrum analysis, and can account for "missing" lines so often reported.

In any particular case the number of important sub-branches is considerably reduced from the number tabulated here in detail for all values of  $\kappa$ . Some of the prolate-or-oblate subbranches and many wings of the others have negligible intensities for  $-0.5 < \kappa < +0.5$ . Further, if one neglects the splitting of the prolate-and-oblate branches, the principal structure of the

bands of the asymmetric rotor is made up of sub-branches characteristic of the prolate- or oblate-symmetric rotor, although the actual strengths of the lines will have changed, in most cases, by a large factor.

### Interpolation for Intermediate Values of k

The strengths of the transitions of the symmetric rotor from which those for the asymmetric rotor were calculated give us the values at the two ends of the range of  $\kappa$ . Naturally, the first calculations were done for the most asymmetric rotor with  $\kappa = 0$ . The rapid changes in strength with asymmetry described above made it necessary to take an intermediate point, which we chose as  $\kappa = -0.5$  (from which  $\kappa = +0.5$  follows by symmetry). With five points we originally hoped to be able to use the recently published Tables of the 5-Point Lagrangean Interpolation.<sup>12</sup> Unfortunately, five-point Lagrangian interpolation gives a quite erroneous value when applied to the abruptly changing prolate-andoblate lines, or to any prolate-or-oblate or forbidden lines, because the Lagrangian polynomial becomes oscillatory to accommodate the rapid changes in the functions, which characteristically take place over small ranges of  $\kappa$ . In extreme cases even negative strengths result. In general, three-point interpolation is preferable, or better, the average of two overlapping three-point interpolations.

For many strong lines, and in three-quarters of the range for all the others, linear interpolation is accurate enough to compare with most experimental data.

#### Variation of Line Strength with J and K

The arrangement of lines into wings allows a fairly straightforward extrapolation to higher J's when the strengths are increasing. Decreasing strengths, however, should be extrapolated with care. We hope at some later date to investigate high J transitions by means of the Correspondence Principle. It should be noted in extra-

<sup>12</sup> Table of 5-Point Lagrangean Interpolation Coefficients (From 0 to 2, Argument 0.001, 7-Place). Mathematical Tables Project, Works Projects Administration for the City of New York sponsored by National Bureau of Standards.

polating that the two methods of sorting into wings complement each other. In this connection an irregularity of the wings +0 and -0 should be mentioned. These wings in the positive and negative range of  $\kappa$ , respectively, have about twice the strength of the others because they connect levels which are not degenerate  $(K_{\pm 1}=0)$  in the symmetric rotor. These lines take all the transition probability which is normally divided between two degenerate levels.

#### VII. CONCLUSION

The table of line strengths, when combined with Boltzmann and nuclear spin weight factors, gives a numerical value for the relative intensity of a line in the spectrum of the asymmetric rotor, and thus eliminates the troublesome uncertainty as to the strength with which a line is to be expected. This is particularly valuable for those lines whose intensities change rapidly with asymmetry.

With the energy level table of Part I and the strengths of this paper, one is in a position to draw up spectra of any molecule, given its dimensions of the upper and lower states, with one limitation. That is, if the asymmetries of the two states are appreciably different, the tables of line strengths may not be adequate, for in this case the direction-cosine matrices are no longer symmetrical, so that the reverse and primary sub-bands do not have identical strengths. Calculations for extreme changes in  $\kappa$  show there is a considerable redistribution of line strength among the transitions from a given level.

The results of the calculations reported in Parts I and II of this series have been applied to the calculation of pure rotation and vibration-rotation spectra of simple molecules, employing punched-card-machine methods. The ease with which representative spectra can be prepared in this manner makes the method of successive approximations more attractive in the analysis of rotational structure. When our present calculations have been extended by means of the Correspondence Principle to the energies and intensities for J>12, considerable information may be obtainable from unresolved band envelopes.

#### ACKNOWLEDGMENTS

In conclusion the authors express their appreciation of their many valuable discussions with Mr. Raymond R. Halverson; of the extensive and painstaking numerical work done by Messrs. Theodore P. Cotter, Norman R. Larson, Robert P. Larsen, Glenn H. Miller, Andrew D. Whitehead, and David G. Hedberg; and of the skill with which punched-card-machine methods were adapted to certain phases of this work by Dr. G. B. Thomas of the Center of Analysis, Massachusetts Institute of Technology.

#### APPENDIX. TABLE OF LINE STRENGTHS

The line strengths listed here (see Tables VI and VII) are the squares of the elements of the direction-cosine matrices in the representation which diagonalizes the energy matrix of the asymmetric rotor, summed over the Zeeman components and multiplied by 3 to account for the three equivalent space-fixed directions, i.e., line strength for the component of the electric moment  $\mu_{\theta}$ , parallel to the molecule-fixed axes g=a, b, c is

$$\sum_{F=X,Y,Z} \sum_{M^{\prime\prime}} \sum_{M^{\prime}} \left| \left( \Phi_{Fg}{}^{A} \right)_{J^{\prime\prime},\tau^{\prime\prime},M^{\prime\prime}}; _{J^{\prime},\tau^{\prime},M^{\prime}} \right|^{2}$$

$$=3\sum_{M^{\prime\prime}}\sum_{M^{\prime}}\left|\int\psi_{J^{\prime\prime},\tau^{\prime\prime},M^{\prime\prime}}^{*}\Phi_{F_{g}}^{A}\psi_{J^{\prime},\tau^{\prime},M^{\prime}}dv\right|^{2}$$

[where J,  $\tau$ , M stand for R in (2)] and thus is the corresponding prefactor on the right-hand side of (2) summed over X, Y, Z, M', and M''. Actual intensities can then be obtained by substituting (2) in (1) provided the values of the integrals  $\int \psi_{Y'',e''}^* \mu_v \psi_{Y',e'} dv$  are known. Relative intensities are obtained by putting such of these integrals that are non-vanishing equal to unity.

The entries have also been multiplied by 10<sup>4</sup> to eliminate decimal points. The parameter of asymmetry

$$\kappa = (2b - a - c)/(a - c)$$

where a, b, c equal  $\hbar^2/2I_a$ ,  $\hbar^2/2I_b$ ,  $\hbar^2/2I_c$ , respectively, and where the condition  $I_a \leq I_b \leq I_c$  is applied in assigning the moments of inertia.

Transitions are classified by sub-branches which head the column in which the initial level can be found (identified by  $JK_{-1},K_{1;\tau}$ ) and whose final level is in the adjacent column on the same row.

The lines in each sub-branch are listed in wings which can be identified by  $K_{-1}$  or  $K_1$ , whichever is held constant, as can be determined by the subscripts of the initial levels.

Sub-branches in adjacent columns have identical strengths. Those in columns 1 and 2 apply to the upper sign of  $\kappa$ ; those in columns 8 and 9 apply to the lower sign.

The strengths found in columns 3 and 7 are those occurring in the prolate- and oblate-symmetric rotor. When no entry is given, the transition is forbidden. "High order forbidden" branches for which  $|\Delta \tau| \ge 9$  have been omitted. When the entry is 0, the strength is less than 0.0001.

Table VI. Symmetric-rotor sub-branches. A. a and c prolate-and-oblate sub-branches.

| Sub-b                                        |                            |                |           | ĸ      |           |        |                                            | branch                              |
|----------------------------------------------|----------------------------|----------------|-----------|--------|-----------|--------|--------------------------------------------|-------------------------------------|
| $^{c,e}Q$ 1,0                                | c,oQ1,0                    | 干1             | $\mp 0.5$ | 0      | $\pm 0.5$ | ±1     | $^{a,e}Q0,1$                               | $^{a,o}Q_{0,\overline{1}}$          |
| $\frac{1}{2}0,1;-1$                          | 1,1;0                      | 15000          | 15000     | 15000  | 15000     | 15000  | 1,0;1                                      | 11,1;0                              |
| 20,1;-1 $20,2;-2$                            | $2^{1,1;0}_{1,2;-1}$       | 25000          | 28223     | 31100  | 32845     | 33333  | 22,0,2                                     | $\frac{2}{2}^{1,1;0}_{2,1;1}$       |
| $\frac{-0.2, -2}{30.3; -3}$                  | $3_{1,3;-2}$               | 35000          | 45104     | 50431  | 52155     | 52500  | $2^{1,0,1}_{2,0;2}$ $3^{3,0;3}$            | $\frac{3}{3}^{2,1,1}_{3,1;2}$       |
| $\frac{4}{5}0.4; -4$                         | $4^{1,3,-2}_{1,4;-3}$      | 45000          | 64494     | 70244  | 71708     | 72000  | 44.0;4                                     | 44,1;3                              |
| 50,5;-5                                      | $5_{1,5;-4}^{1,4;}$        | 55000          | 84696     | 90073  | 91399     | 91667  | 55,0;5                                     | 55,1;4                              |
| 60,6;-6                                      | 01.6:-5                    | 65000          | 104928    | 109923 | 111174    | 111429 | υ <sub>6.0.6</sub>                         | 06.1:5                              |
| $^{\prime}$ 0.7: $-$ 7                       | $7_{1.7:-6}$               | 75000          | 125065    | 129799 | 131004    | 131250 | 7.0.7                                      | 77.1:6                              |
| o₀.8: −8                                     | °1.8: ~7                   | 85000          | 145135    | 149698 | 150871    | 151111 | 08.0:8                                     | 08.1:7                              |
| 90.9: -9                                     | 9 <sub>1.9:</sub> -8       | 95000          | 165170    | 169614 | 170764    | 171000 | 99.0:9                                     | 99.1:8                              |
| $^{10}$ 0.10: $-10$                          | $^{10}_{1.10:-9}$          | 105000         | 185187    | 189544 | 190677    | 190909 | $10_{10}  \text{n} \cdot 10$               | 1U <sub>10.1:9</sub>                |
| $^{11}0.11:-11$                              | $^{11}_{1.11:-10}$         | 115000         | 205194    | 209484 | 210603    | 210834 | 111.0:11                                   | 1111.1:10                           |
| $12_{0,12;-12}$                              | $12_{1,12;-11}$            | 125000         | 225195    | 229434 | 230542    | 230769 | 1212,0;12                                  | 1212,1;11                           |
| $\frac{2}{2}$ 1,1;0                          | 22,1;1                     | 8333           | 8333      | 8333   | 8333      | 8333   | $\frac{2}{3}$ 1,1;0                        | $\frac{2}{3}$ 1,2;-1                |
| 31.2; -1                                     | 32.2:0                     | 14583          | 16278     | 18811  | 21875     | 23333  | $\frac{3}{4}^{2,1;1}$                      | 32.2:0                              |
| $^{4}_{1.3:-2}$                              | $\frac{4}{5}^{2,3};-1$     | 20250          | 26168     | 34242  | 39363     | 40500  | T3 1.2                                     | 43.2:1                              |
| $\frac{5}{6}$ 1,4; $-3$                      | $5_{2,4};-2$               | 25667          | 39338     | 52949  | 57742     | 58667  | <sup>3</sup> 4.1:3                         | 54,2;2                              |
| $0_{1.5:-4}$                                 | $0_{2.5:-3}$               | 30952          | 56179     | 72319  | 76548     | 77381  | 95.1:4                                     | . 0523                              |
| 71.6 - 5                                     | 2.6: -4                    | 36161          | 75597     | 91744  | 95646     | 96429  | 161.5                                      | 6 2.4                               |
| $o_{1.7:-6}$                                 | 02.7: -5                   | 41319          | 95950     | 111231 | 114943    | 115694 | O7 1·6                                     | 07 2:5                              |
| 91.8:-7                                      | $9_{2.8:-6}$               | 46444          | 116333    | 130792 | 134381    | 135111 | 28.1:7                                     | 98.2:6                              |
| 101.9: -8                                    | 102.9:7                    | 51545          | 136551    | 150418 | 153921    | 154636 | 100 1.8                                    | 100 2.7                             |
| $\frac{11}{12}$ 1,10; -9                     | $11_{2,10}^{1,3}, -8$      | 56629          | 156642    | 170100 | 173540    | 174242 | $^{11}10.19$                               | 11102.8                             |
| $12_{1,11;-10}^{1,13;-10}$                   | $12_{2,11}^{2,10}, -9$     | 61699          | 176660    | 189825 | 193216    | 193910 | 1211,1;10                                  | 1211,2;9                            |
| $\frac{3}{4}$ 2,1;1                          | 3,1;2                      | 8750           | 7403      | 6406   | 5944      | 5833   | $\frac{3}{4}$ 1,2;-1                       | $\frac{3}{4}$ 1,3; -2               |
| *2 2.0                                       | 43.2:1                     | 15750          | 13221     | 13196  | 15598     | 18000  | ±2 2·∩                                     | $\frac{4}{5}^{1,0}$ , $\frac{2}{5}$ |
| 32.3:-1                                      | 33.3:0                     | 22000          | 19105     | 23397  | 30662     | 33000  | $5_{3,2;1}^{2,2,3}$<br>$6_{4,2;2}^{4,2;2}$ | J 3 3·N                             |
| $^{\circ}2.4:-2$                             | 03.4:-1                    | 27857          | 26374     | 38620  | 47709     | 49524  | $6_{4,2;2}$                                | 04.3:1                              |
| 1253                                         | 13.5: -2                   | 33482          | 36237     | 57062  | 65399     | 66964  | 152.3                                      | 15.3:2                              |
| 02.6:-4                                      | 83.63                      | 38958          | 49682     | 76155  | 83565     | 85000  | 06.2.4                                     | 06 3:3                              |
| <sup>9</sup> 2 7・ 5                          | 93.7:4                     | 44333          | 66864     | 95251  | 102089    | 103444 | 27 2 5                                     | 97 3.4                              |
| 10286                                        | 103.8: ~5                  | 49636          | 86630     | 114393 | 120880    | 122183 | 108.2:6                                    | 108 3.5                             |
| 112,9;-7                                     | $11_{3,9}^{11_{3,9}}$ , -6 | 54886          | 107332    | 133621 | 139873    | 141136 | 110 2.7                                    | 1103.6                              |
| $12_{2,10;-8}^{2,3}$                         | $12_{3,10;-7}^{3,10;-7}$   | 60096          | 128002    | 152940 | 159022    | 160256 | 12,10,2;8                                  | $12_{10,3;7}^{7,0,0}$               |
| $\frac{4}{5}$ 3.1;2                          | 44,1;3                     | 9000           | 7587      | 6026   | 4847      | 4500   | $\frac{4}{5}$ 1,3;-2                       | $\frac{4}{5}$ 1,4; -3               |
| 33.2:1                                       | 34.2:2                     | 16500          | 13464     | 11058  | 11750     | 14667  | 32.3:-1                                    | $5^{2,4}; -2$                       |
| 03 3.0                                       | 04.3:1                     | 23214          | 18339     | 17488  | 23981     | 27857  | V2 3·0                                     | 03.4:-1                             |
| 13.4:-1                                      | 44.0                       | 29464          | 22914     | 27745  | 39794     | 42857  | /A 3·1                                     | / 4.4:n                             |
| O3 5:-2                                      | 04.5.—1                    | 35417          | 28185     | 43063  | 56506     | 59028  | 05 3.7                                     | 85 4.1                              |
| 93 6· — 3                                    | 94.6: 2                    | 41167          | 35293     | 61523  | 73754     | 76000  | 963.3                                      | 96.4:2                              |
| $10^{3,7}; -4$                               | $^{10}4.7:-3$              | 46773          | 45350     | 80547  | 91464     | 93546  | 107.3:4                                    | 107.4:3                             |
| 113,8;-5                                     | $\frac{11}{12}$ 4,8; -4    | 52273<br>57602 | 59213     | 99473  | 109542    | 111515 | 112 3.5                                    | 118,4;4                             |
| $12_{3,9;-6}^{3,6;5}$                        | $12_{4,9;-5}^{1,0,1}$      | 57692          | 76888     | 118383 | 127913    | 129808 | 129,3;6                                    | 129,4;5                             |
| $\frac{5}{6}4,1;3$                           | 55,1;4                     | 9167           | 7777      | 6127   | 4374      | 3667   | $\frac{5}{6}$ 1,4; -3                      | $\frac{5}{6}$ 1,5;-4                |
| U4 3.3                                       | 05.2:3                     | 17024          | 14084     | 10758  | 9464      | 12381  | Ua 4. a                                    | Un 5. 2                             |
| 74,3;1                                       | 1 5 2.2                    | 24107          | 19340     | 15156  | 18769     | 24107  | $7_{3,4:-1}$                               | $7^{-15}_{3.5:-2}$                  |
| 74,2;2<br>74,3;1<br>84,4;0                   | O5.4:1                     | 30694          | 23768     | 21441  | 33034     | 37778  | 73,4; -1<br>84,4;0                         | 73.5; -2 $84.5; -1$                 |
| 94.51                                        | 95.5:0                     | 36944          | 27638     | 31860  | 49002     | 52778  | 9 <sup>4,4,0</sup> 10 <sub>6,4;2</sub>     |                                     |
| 104 6 2                                      | 105.6:~1                   | 42955          | 31542     | 47402  | 65474     | 68727  | 106,4;2                                    | 106.5:1                             |
| 11473                                        | $^{11}5.7:-2$              | 48788          | 36457     | 66028  | 82425     | 85379  | 1174.3                                     | 1175.7                              |
| $12_{4,8;-4}^{1,7,5}$                        | $12^{5,8}_{5,8;-3}$        | 54487          | 43527     | 85120  | 99805     | 102564 | 128,4;4                                    | 128,5;3                             |
| $\frac{6}{7}$ 5,1;4                          | 66,1;5                     | 9286           | 7913      | 6271   | 4244      | 3095   | $\frac{6}{2}$ 1,5;-4                       | $\frac{6}{7}$ 1,6;-5                |
| 1 = 2.2                                      | 6.2:4                      | 17411          | 14552     | 11116  | 8220      | 10714  | 1253                                       | 1264                                |
| 85.3;2<br>95,4;1                             | 06 3.3                     | 24792          | 20246     | 14956  | 14996     | 21250  | °3.5; −2                                   | ∪3.6: <b>–</b> 3                    |
| 105,4;1                                      | 96.4.2                     | 31667          | 25157     | 18940  | 27035     | 33778  | 94.5:-1                                    | 94.6:-2                             |
| $10_{5,5;0}^{6,4;1}$ $11_{5,6;-1}^{13,6;-1}$ | 106.5:1                    | 38182          | 29364     | 25162  | 42308     | 47727  | $10_{5.5:0}$                               | 105.61                              |
| <b>1 1 5 ,6</b> ; <b>−1</b>                  | 116,6;0                    | 44432          | 32945     | 35783  | 58220     | 62727  | 116,5;1                                    | 116,6;0                             |
| $12_{5,7;-2}^{5,5;-1}$                       | $12_{6,7;-1}^{6,6;6}$      | 50481          | 36135     | 51610  | 74526     | 78526  | 127,5;2                                    | 127,6;1                             |

TABLE VI.—Continued.

| Sub-br $^{c,e}Q_{1,0}$       | $^{c,o}Q\overline{1},0$ | <b>∓1</b> | ∓0.5   | к<br>0 | $\pm 0.5$ | ±1             | Sub-bi                         | anch $^{a,o}Q_{0,\overline{1}}$ |
|------------------------------|-------------------------|-----------|--------|--------|-----------|----------------|--------------------------------|---------------------------------|
|                              |                         | + 1       | +0.3   |        | ±0.3      | <del></del>    |                                | -,°Q0,1                         |
| 7<br>6,1;5                   | 77,1;6                  | 9375      | 8011   | 6383   | 4273      | 2679           | $\frac{7}{6}$ 1,6;-5           | $\frac{7}{9}$ 1,7;-6            |
| 86,2;4                       | 87,1,0                  | 17708     | 14899  | 11514  | 7682      | 9444           | 82,6; -4                       | $8_{2,7,-5}$                    |
| 0,2;4                        | 87,2;5                  | 25333     | 20931  | 15562  | 12549     | 19000          | 02,6; -4                       | $0^{2,7}, -3$                   |
| 6,3;3                        | 97,3;4                  | 20000     |        | 10002  |           |                | 93,6;-3                        | 93,7;~4                         |
| 6.4:2                        | 107 4.3                 | 32455     | 26254  | 18837  | 21925     | 30545          | 104 6: -2                      | 104.7: 3                        |
| 6.5:1                        | 117 5.2                 | 39205     | 30943  | 22510  | 36052     | 43561          | 115 6: -1                      | 115.7:-2                        |
| 26,6;0                       | 127,6;1                 | 45673     | 35027  | 28709  | 51607     | 57692          | 126,6;0                        | $12_{6,7;-1}$                   |
|                              |                         |           |        |        |           |                |                                |                                 |
| 87,1;6                       | 88,1;7                  | . 9444    | 8087   | 6468   | 4346      | 2361           | $\frac{8}{0}$ 1,7;-6           | $\frac{8}{0}$ 1,8;-7            |
| 77 2.5                       | 98,2;6                  | 17944     | 15167  | 11832  | 7594      | 8444           | 927:-5                         | $9^{2,8};-6$                    |
| 7,3;4                        | 108,3;5                 | 25773     | 21462  | 16215  | 11172     | 17182          | $10^{2,7}_{3,7;-4}$            | $10_{3,8;-5}^{2,3;}$            |
| 7,3;4                        | 118,3;5                 | 33106     | 27105  | 19675  | 18011     | 27879          | 113,7;-4                       | 113,8;~3                        |
| 7,4;3                        | 118,4;4                 |           |        |        |           |                | $11_{4,7;-3}$                  | $11_{4,8;-4}$                   |
| 7,5;2                        | 128,5;3                 | 40064     | 32174  | 22501  | 30163     | 40064          | $12^{177}_{5,7;-2}$            | $12_{5,8}^{7}$ ; $-3$           |
| `                            | 0                       | 0500      | 0146   | 6525   | 4440      | 0111           | 0                              | 0                               |
| 8,1;7                        | 99,1;8                  | 9500      | 8146   | 6535   | 4418      | 2111           | $\frac{9}{10}$ 1,8;-7          | $9_{1,9;-8}$                    |
| 08,2;6                       | 109.2:7                 | 18136     | 15380  | 12081  | 7731      | 7636           | 102.8: -6                      | 102.9: -2                       |
| 9 3 . 5                      | 119,3;6                 | 26136     | 21887  | 16748  | 10598     | 15682          | $\frac{11}{3},8;-5$            | $11_{3,9}, -6$                  |
| 8,4;4                        | 129,4;5                 | 33654     | 27788  | 20570  | 15383     | 25641          | $12_{4,8,-4}^{3,3,-3}$         | $12_{4,9;-5}$                   |
| -1-1-                        | .,-,-                   |           |        |        |           |                | -,-,                           | . ,                             |
| 9,1;8                        | $10_{10,1;9}$           | 9545      | 8194   | 6588   | 4479      | 1909           | $10_{1,9;-8}$                  | 101,10;                         |
| 0 2.7                        | 1110,2;8                | 18295     | 15554  | 12280  | 7933      | 6970           | $11_{2,9}^{1,2,3}, -7$         | 11210-                          |
| 9,3;6                        | 1210,3;7                | 26442     | 22237  | 17176  | 10563     | 14423          | 122,9, -7                      | 123,10;                         |
| 9,3;6                        | 1210,3;7                | 20112     | 44401  | 17170  | 10303     | 11120          | $12_{3,9;-6}$                  | 123,10; -                       |
| ١                            | 11                      | 9583      | 8234   | 6631   | 4530      | 1742           | 11                             | 11                              |
| 10,1;9                       | $\frac{11}{12}$ 11,1;10 |           |        |        |           |                | $\frac{11}{12}$ 1,10;-9        | $\frac{11}{12}$ 1,11; -         |
| 210,2;8                      | 1211,2;9                | 18429     | 15699  | 12443  | 8126      | 6410           | $12_{2,10;-8}$                 | 122,11;-                        |
| 211,1;10                     | 1212,1;11               | 9615      | 8268   | 6667   | 4571      | 1603           | 121,11;-10                     | 121,12;-                        |
| c,eR1,0                      | c,eP1,0                 | <b>∓1</b> | ∓0.5   | 0      | ±0.5      | ±1             | a,eR0,1                        | a,eP0,                          |
|                              |                         |           |        |        |           |                | <del></del>                    |                                 |
| 00,0;0                       | $\frac{1}{2}$ 1,0;1     | 10000     | 10000  | 10000  | 10000     | 10000          | $0_{0,0;0}$                    | $\frac{1}{2}0,1;-1$             |
| 1 1 O·1                      | 22.0:2                  | 15000     | 16934  | 18660  | 19707     | 20000          | $\frac{1}{2}0,1;-1$            | $\frac{2}{2}0,2;-2$             |
| 42.0.2                       | 33,0;3                  | 25000     | 25893  | 27201  | 29029     | 30000          | $\frac{2}{2}0,2;-2$            | $\frac{3}{2}$ 0,3; –3           |
| 3,0;3<br>4,0;4               | 44,0;4                  | 35000     | 35773  | 36728  | 38312     | 40000          | $\frac{3}{0}, \frac{3}{3}; -3$ | 40,4;                           |
| 1,0,3                        | 55,0;5                  | 45000     | 45745  | 46619  | 47897     | 50000          | 40,3, -3                       | $5_{0,5}$ ; –                   |
| 4,0;4                        | 65,0;5                  | 55000     | 55730  | 56582  | 57727     | 60000          | $\frac{4}{5}0.4;-4$            | 6                               |
| 55,0;5                       | 66,0;6                  |           |        |        |           |                | $\frac{5}{6}0,5;-5$            | 60,6; -                         |
| 56,0;6                       | 77,0;7                  | 65000     | 65721  | 66562  | 67660     | 70000          | $\frac{6}{7}$ 0,6; $-6$        | 70.7; -                         |
| 7 0.7                        | O8.0.8                  | 75000     | 75714  | 76549  | 77628     | 80000          | 0.7:-7                         | $^{8}_{0,8}$ , $^{-}$           |
| <sup>3</sup> 8 ∩ ⋅8          | 99.0:9                  | 85000     | 85708  | 86539  | 87610     | 90000          | 80.8: -8                       | 90.9: -                         |
| 9,0;9                        | 10,0;10                 | 95000     | 95704  | 96531  | 97597     | 100000         | 90,9; -9                       | 100,10;                         |
| 010,0;10                     | 1111,0;11               | 105000    | 105701 | 106525 | 107588    | 110000         | 100,10; -10                    | 110,11; -                       |
| 11,0;11                      | 12,0,11                 | 115000    | 115698 | 116519 | 117580    | 120000         | $11_{0,11;-11}$                | 120,11;                         |
| 11,0;11                      | 12,0;12                 | 115000    | 110070 | 110317 | 117500    | 120000         | **0,11; -11                    | 120,12;                         |
| 1                            | 2                       | 15000     | 15000  | 15000  | 15000     | 15000          | 1                              | 2                               |
| $\frac{1}{2}$ 0,1; $-1$      | $\frac{2}{3}$ 1,1;0     |           | 22500  |        | 26509     | 26667          | $\frac{1}{2}$ 1,0;1            | $\frac{2}{3}$ 1,1;0             |
| 21,1;0                       | 32,1;1                  | 16667     |        | 25581  |           |                | 21,1;0                         | $\frac{3}{4}$ 1,2; -            |
| <sup>7</sup> 2.1:1           | ¥3.1:2                  | 26250     | 29261  | 33801  | 36902     | 37500          | $\frac{3}{4}$ 1,2;-1           | <b>*1,3;</b> —                  |
| x 2 1 · ?                    | 54.1:3                  | 36000     | 38400  | 41758  | 46530     | 48000          | $\frac{4}{5}$ 1,3;-2           | $\frac{5}{1},4;-$               |
| 54,1;3                       | 65,1;4<br>76,1;5        | 45833     | 48106  | 50867  | 55604     | 58333          | $\frac{5}{6}$ 1,4; $-3$        | $6_{1,5}$ , –                   |
| 5= 1.4                       | 7,1,5                   | 55714     | 57930  | 60533  | 64605     | 68571<br>78750 | 6                              | $\frac{7}{8}$ 1.6; $-$          |
| 65,1;4<br>7 <sub>6,1;5</sub> | 8-113                   | 65625     | 67805  | 70356  | 73938     | 78750          | $\frac{61,5}{7},-4$            | 81,0, -                         |
| 6,1;5                        | 87,1;6                  |           |        |        |           | 00000          | 11.6:~5                        | 81.7;-                          |
| 87,1;6                       | 78 1.7                  | 75556     | 77710  | 80235  | 83593     | 88889          | °1.7:~6                        | <sup>7</sup> 1.8: –             |
| <sup>9</sup> 8.1:7           | 109.1:8                 | 85500     | 87636  | 90142  | 93412     | 99000          | 9 <sub>1.8</sub> : -7          | 101.9: -                        |
| 9.1:8                        | 1110.1:9                | 95455     | 97576  | 100068 | 103301    | 109091         | $10_{1,9}, -8$                 | 111.10:                         |
| 110,1;9                      | 1211,1;10               | 105416    | 107526 | 110008 | 113219    | 119166         | $11_{1,10;-9}$                 | 121,11;                         |
|                              |                         |           |        |        |           |                |                                |                                 |
| $\frac{2}{2}$ 0,2;-2         | $\frac{3}{4}$ 1,2;-1    | 20000     | 18636  | 17345  | 16724     | 16667          | 22,0;2                         | $\frac{3}{4}$ 2,1;1             |
| <sup>3</sup> 1.2:1           | <b>42.2.0</b>           | 18750     | 29055  | 30992  | 30230     | 30000          | 32,1;1                         | 42.2:0                          |
| 42,2;0                       | 53,2;1                  | 28000     | 34387  | 41441  | 42462     | 42000          | 42,2;0                         | 52,3;-                          |
| 52,2,0                       | 6.2,1                   | 37500     | 41961  | 49227  | 53738     | 53333          | 50.2                           | $6_{2,4;-}^{2,3,-}$             |
| 5 <sub>3,2;1</sub>           | $6_{4,2,2}$             |           |        |        |           | 64286          | $\frac{5}{6}$ 2,3;-1           | 72,4;                           |
| 64,2;2                       | 5,2;3                   | 47143     | 51182  | 56697  | 64087     | 64286          | $\frac{6}{7}^{2,4};-2$         | 72,5;~                          |
| 5.2:3                        | 75,2;3<br>86,2;4        | 56875     | 60756  | 65450  | 73564     | 75000          | $7_{2.5:-3}$                   | 02.6: -                         |
| O6.2:4                       | 77.2.5                  | 66667     | 70451  | 74899  | 82413     | 85556          | 02.6: -4                       | 92.7:-                          |
| 97,2;5                       | 108.2,6                 | 76500     | 80218  | 84567  | 91174     | 96000          | $9^{2,0,-1}_{2,7;-5}$          | $10_{2,8}$ ; –                  |
| ۸,,,,                        | 119,2;7                 | 86364     | 90031  | 94328  | 100297    | 106364         | $10_{2,8;-6}^{2,7;-3}$         | 112,9; -                        |
| Ua a.z                       | * * Q. 2 · 7            | 00004     | 70031  | ノゼリムリ  |           |                | $-v_{Z,8};-0$                  | - : 2,9; -                      |
| 08,2;6<br>1 <sub>9,2;7</sub> | 12,0,2;8                | 96250     | 99880  | 104134 | 109796    | 116666         | $11_{2,9;-7}$                  | $12_{2,10}$ ;                   |

TABLE VI.—Continued.

| Sub-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oranch                         |                  |                  | к                |                  |                  | Sub-l                           | oranch                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|------------------|------------------|------------------|------------------|---------------------------------|--------------------------------|
| c,eR1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c,eP1,0                        | 干1               | ∓0.5             | õ                | $\pm 0.5$        | ±1               | a,eR0,1                         | a,eP0,                         |
| 30,3;-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41,3;-2                        | 25000            | 20331            | 18001            | 17567            | 17500            | 33,0;3                          | 43,1;2                         |
| 41,3;-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5^{1,0}_{2,3;-1}$             | 21000            | 34848            | 33475            | 32109            | 32000            | 43,1;2                          | 53,2;1                         |
| $5^{1,3}, -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6^{2,3,-1}_{3,3;0}$           | 30000            | 41218            | 47032            | 45219            | 45000            | 53,2;1                          | $6^{3,2,1}_{3,3;0}$            |
| 63,3;0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7. 2.                          | 39286            | 46575            | 57381            | 57683            | 57143            | 62.2.2                          | 73,3;0                         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74,3;1                         | 48750            | 54876            | 64788            | 69691            | 68750            | 63,3,0                          | $\frac{7}{8}$ 3,4; -           |
| 74,3;1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85,3;2                         | 58333            | 64092            | 71834            | 80981            | 80000            | $\frac{7}{9}$ 3,4;-1            | 83,5; -                        |
| 5.3:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.3:3                         |                  |                  |                  |                  |                  | 03.5: 2                         | 93,6;-                         |
| 76 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107 3.4                        | 68000            | 73557            | 80274            | 91312            | 91000            | 93.6 3                          | 103.71.                        |
| 07,3;4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1123.5                         | 77727            | 83147            | 89526            | 100665           | 101818           | 103.7: -4                       | 113.8: ~                       |
| 18,3;5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129,3;6                        | 87500            | 92819            | 90948            | 109320           | 112500           | $11_{3,8;-5}$                   | $12_{3,9;-}^{3,6;}$            |
| <del>1</del> 0,4;-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{5}{6}$ 1,4; $-3$        | 30000            | 20650            | 18478            | 18082            | 18000            | 44,0;4                          | 54,1;3                         |
| 21,4; -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6^{1,4}_{2,4;-2}$             | 23333            | 38686            | 34370            | 33475            | 33333            | 54,1;3                          | $6^{4,1,3}_{4,2;2}$            |
| 1,4; -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.4; -2                       | 32143            | 48639            | 49439            | 47326            | 47143            | 6                               | 74,2,2                         |
| 2,4;~2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73,4;-1                        | 41250            | 52676            | 63082            | 60238            | 60000            | $^{6}_{4,2;2}$                  | 74,3,1                         |
| 3,4; -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84,4;0                         | 50556            | 59229            | 73357            | 72645            | 72222            | 74,3;1                          | 84,4;0                         |
| 4,4;0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95,4;1                         |                  |                  |                  |                  |                  | 84,4;0                          | <sup>2</sup> 4.5:              |
| ' S 1 · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106,4;2                        | 60000            | 67888            | 80428            | 84877            | 84000            | 94 5 - 1                        | 1046                           |
| 76 4·7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11743                          | 69546            | 77064            | 87093            | 96881            | 95455            | 104.6: -2                       | 1147                           |
| 7,4;3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128,4;4                        | 79167            | 86444            | 95254            | 108226           | 106666           | $11_{4,7;-3}$                   | $12_{4,8;-}^{4,8;-}$           |
| 0,5;-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{6}{7}$ 1,5;-4           | 35000            | 20660            | 18847            | 18422            | 18333            | 55,0;5                          | 65,1;4                         |
| 1,5; -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $7^{1,3,-4}_{2,5;-3}$          | 25714            | 40254            | 35224            | 34447            | 34286            | 65,1;4                          | 152.2                          |
| $\{2,5,-4,2,5,-3,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,-4,2,5,2,5,2,5,2,5,2,5,2,5,2,5,2,5,2,5,2,$ | 83,5;-2                        | 34375            | 54914            | 50352            | 48971            | 48750            | 75,1;4                          | 85,2;3<br>05,3;2               |
| 2,3;-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\tilde{9}^{3,3;-2}$           | 43333            | 60334            | 65354            | 62490            | 62222            | 75,2;3<br>85,2;3                | 05,3;2                         |
| 3,5;-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94,5;-1                        |                  | 64543            | 79136            | 75309            | 75000            | O5.3:2                          | 75.4:1                         |
| 4,5;-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 5.0                        | 52500            |                  |                  |                  |                  | 75 4.1                          | 105 5.0                        |
| ' 5 5·A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116,5;1                        | 61818            | 72156            | 89354            | 87664            | 87273            | 105,5;0                         | 115.6: -                       |
| 6,5;1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $12_{7,5;2}^{6,3,1}$           | 71250            | 80944            | 96120            | 99820            | 99167            | $11_{5,6;-1}$                   | 125,7;                         |
| 0,6;-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{7}{8}$ 1,6;-5           | 40000            | 20793            | 19108            | 18664            | 18571            | 66,0;6                          | 76,1;5                         |
| 1,6; -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $8^{1,0,-3}_{2,6;-4}$          | 28125            | 40367            | 35988            | 35171            | 35000            | 76,1;5                          | 86,2;4                         |
| 1,0, -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92,6; -4                       | 36667            | 58807            | 51410            | 50241            | 50000            | 86.0.4                          | 9,2,4                          |
| 2,6; -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.6; -3                       | 45500            | 68406            | 66193            | 64301            | 64000            | 86,2;4                          | 96,3;3                         |
| 3,6; -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $10^{4,6}; -2$                 |                  |                  | 00193            | 77627            |                  | 96,3;3                          | $10_{6,4;2}^{6,5;5}$           |
| 04,6; -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{11}{12}5,6;-1$          | 54546            | 71334            | 81252            | 77627            | 77273            | 106.4.2                         | 116,5;1                        |
| $1_{5,6;-1}^{1,6;-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126,6;0                        | 63750            | 77023            | 95192            | 90399            | 90000            | 116,5;1                         | 126,6;0                        |
| $\frac{7}{9}$ 0,7; $-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{8}{9}$ 1,7;-6           | 45000            | 20990            | 19300            | 18844            | 18750            | 7,0,7                           | 87,1;6                         |
| 7176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.7:-5 ·                      | 30556            | 40255            | 36587            | 35733            | 35556            | 97 1.6                          | 77 2.5                         |
| 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $10^{3,7},-4$                  | 39000            | 60147            | 52457            | 51252            | 51000            | 97,2;5                          | 107,3;4                        |
| 2,7;-5<br>3,7;-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{11}{12}$ 4.7; -3        | 47727            | 75043            | 67350            | 65775            | 65455            | 107,3;4                         | 117,4;3                        |
| 4,7; -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $12^{4,7}_{5,7;-2}$            | 56667            | 79651            | 81971            | 79549            | 79167            | 117,4;3                         | 127,5;2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 50000            | 21170            | 19449            | 18985            | 18889            |                                 |                                |
| 0,8; -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{9}{10}$ 1,8;-7          | 50000            |                  |                  |                  |                  | 88,0,8                          | 98,1;7                         |
| 1 8 - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102.8: -6                      | 33000            | 40430            | 37059            | 36182            | 36000            | 78 1 • 7                        | 108.2:6                        |
| 2.8:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11385                          | 41364            | 59963            | 53330            | 52078            | 51818            | 108.2:6                         | 118.3:5                        |
| 3,8;-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $12_{4,8;-4}^{3,6;-3}$         | 50000            | 78946            | 68596            | 66999            | 66667            | 118,3;5                         | 128,4;4                        |
| 0,9; -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $10_{1,9;-8}$                  | 55000            | 21315            | 19566            | 19097            | 19000            | 99,0;9                          | 109,1;8                        |
| )<br>1,9; -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $11_{2,9;-7}^{1,9;-8}$         | 35454            | 40779            | 37443            | 36548            | 36364            | 109,1;8                         | 119,2;7                        |
| 2,9; -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $12_{3,9;-6}^{2,9;-7}$         | 43750            | 59640            | 54051            | 52766            | 52500            | 119,1;8                         | 129,3;6                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 60000            | 21432            | 19662            | 19189            | 19091            |                                 |                                |
| $0_{0,10;-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $11_{1,10;-9} \\ 12_{2,10;-8}$ | 37917            | 41138            | 37761            | 36854            | 36667            | $10_{10,0;10} \\ 11_{10,1;9}$   | $^{11}_{10,1;9}_{12_{10,2;8}}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 65000            |                  |                  |                  | 4046             |                                 |                                |
| 0,11;-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 <sub>1,11;-10</sub>         | 65000            | 21527            | 19742            | 19265            | 19167            | 11,10,11                        | 1211,1;1                       |
| <sup>c,o</sup> R1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °,°Pī,0                        | <b>∓1</b>        | ∓0.5             | 0                | ±0.5             | ±1               | a,oR0,1                         | a,oP0,                         |
| 1,1;0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22,1;1                         | 15000            | 15000            | 15000            | 15000            | 15000            | 1,1;0                           | 21,2;-                         |
| 2 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.1:2                         | 25000            | 25710            | 26243            | 26564            | 26667            | $\frac{2}{1.2}$ : -1            | 3 <sub>1,3</sub> ; -           |
| 3.1:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.1:3                         | 35000            | 35758            | 36540            | 37210            | 37500            | $3_{1,3};-2$                    | $\frac{4}{5}$ 1.4; –           |
| 4,1;3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.1:4                         | 45000            | 45743            | 46583            | 47478            | 48000            | 41.4: -3                        | 51,5; -                        |
| 5.1:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.1.5                         | 55000            | 55730            | 56576            | 57578            | 58333            | 51,5;-4                         | $6_{1,6}^{1,5,-}$              |
| 6,1;5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.1;5<br>77,1;6               | 65000            | 65721            | 66561            | 67607            | 68571            | $6_{1,6;-5}^{1,3;-4}$           | 71,7; -                        |
| 7,1;6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80 1.7                         | 75000            | 75714            | 76550            | 77609            | 78750            | $\frac{7}{7},0;-5$              | 81.7; -                        |
| 7,1;0<br>8,1;7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88,1;7                         | 85000            | 85708            | 86539            | 87603            | 88889            | $\frac{7}{8}$ 1,7;-6            | 81,8;-                         |
| 0,1;/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99,1;8                         | 05000            | 95704            | 06539            | 07003            | 99000            | $8_{1,8;-7}$                    | 91,9;-                         |
| 9,1;8<br>10,1;9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1010,1,9                       | 95000            | 937U4            | 96531            | 97595            | 33000<br>100001  | 91.91 - 8                       | 101.10:-                       |
| 111 1 • 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1111,1;10                      | 105000<br>115000 | 105701<br>115698 | 106525<br>116519 | 107587<br>117580 | 109091<br>119166 | $10_{1,10;-9} \\ 11_{1,11;-10}$ | $11_{1,11}; -12_{1,12}; -1$    |
| 11,1;10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1212,1;11                      |                  |                  |                  |                  |                  |                                 |                                |

TABLE VI.—Continued.

| _ Sub-br                                       | anch                            | _         |        | κ           |           |        |                              | -branch                                   |
|------------------------------------------------|---------------------------------|-----------|--------|-------------|-----------|--------|------------------------------|-------------------------------------------|
| <sup>c</sup> ,oR1,0                            | °,°P1,0                         | <b>=1</b> | ∓0.5   | 0           | $\pm 0.5$ | ±1     | a,0R0,1                      | a,oP0,                                    |
|                                                | 32,2;0                          | 16667     | 16667  | 16667       | 16667     | 16667  | 2                            | 32,2;0                                    |
| 1,2;-1                                         | 42,2;0                          | 26250     | 28258  | 29391       | 29882     | 30000  | $\frac{2}{3}$ 2,1;1          | 42,2;0                                    |
| 32,2;0                                         | 43,2;1                          | 36000     | 38290  | 40354       | 41637     | 42000  | 32,2;0                       | $\frac{4}{5}$ 2,3; $-$                    |
| 3,2;1                                          | 54,2;2                          | 45833     | 48094  | 50537       | 52600     |        | $\frac{4}{5}$ 2,3; -1        | $\frac{5}{6}$ 2,4; -                      |
| 4.2:2                                          | U5 2.3                          |           |        |             |           | 53333  | 32.4:-2                      | $^{6}_{2,5}$ ; $-$                        |
| 15 2.2                                         | 76,2;4                          | 55714     | 57929  | 60461       | 63088     | 64286  | 02 5 3                       | 72,6;-                                    |
| 6 2 - 4                                        | 07 2.5                          | 65625     | 67805  | 70340       | 73291     | 75000  | 12.6: -4                     | 02.7: ~                                   |
| 77 9.5                                         | 98.2:6                          | 75556     | 77710  | 80231       | 83338     | 85556  | 02 7 5                       | 92.8:                                     |
| 8 2.6                                          | 109,2;7                         | 85500     | 87636  | 90142       | 93314     | 96000  | $9^{2,8}_{10}, -6$           | 102,9; -                                  |
| 9,2,7                                          | 1110,2;8                        | 95455     | 97576  | 100068      | 103262    | 106364 | $10^{2,9}_{2,9;-7}$          | 112,10;                                   |
| 10,2;8                                         | 1211,2;9                        | 105416    | 107526 | 110008      | 113205    | 116666 | 112,10; -8                   | $12_{2,11}^{2,10}$                        |
| 10,2;8                                         | 1211,2;9                        | 100110    | 10,020 | 110000      | 110200    | 110000 | 112,10; -8                   | 122,11;                                   |
| 1,3; -2                                        | $\frac{4}{5}$ 2,3;-1            | 18750     | 18207  | 17796       | 17564     | 17500  | 33,1;2                       | 43,2;1                                    |
| 2,3;-1                                         | 53,3;0                          | 28000     | 31148  | . 32063     | 32074     | 32000  | 43,2;1                       | 53,3;0                                    |
| 3,3;0                                          | 64,3;1                          | 37500     | 41486  | 44187       | 45001     | 45000  | 53,3;0                       | 63,4;~                                    |
| 4,3;1                                          | 75,3;2                          | 47143     | 51127  | 54949       | 56948     | 57143  | 63,4;-1                      | 73,5;~                                    |
| 4,3;1                                          | 8:3;2                           | 56875     | 60749  | 64999       | 68208     | 68750  | 73,4; -1                     | 83,3;~                                    |
| 5,3;2                                          | 86,3;3                          | 66667     | 70450  | 74791       | 78959     | 80000  | $7_{3,5;-2}^{5,1;}$          | 83,6;-                                    |
| <b>Λ3·3</b>                                    | 97.3:4                          |           |        |             |           |        | 03.6: -3                     | 93,7;~                                    |
| 7 3 - 4                                        | 108 3 5                         | 76500     | 80217  | 84543       | 89339     | 91000  | 93 7· A                      | 1038.~                                    |
| 8 3.5                                          | 110 3.6                         | 86364     | 90031  | 94320       | 99469     | 101818 | 103.8: -5                    | 1130                                      |
| 9,3;6                                          | $12_{10,3;7}^{7,0,0}$           | 96250     | 99880  | 104133      | 109453    | 112500 | $11_{3,9;-6}^{13,9;-6}$      | 123,10;                                   |
|                                                | 5                               | 21000     | 19363  | 18449       | 18082     | 18000  | 4                            | 5                                         |
| 1,4;-3                                         | $\frac{5}{6}$ 2,4; -2           |           |        |             |           |        | 44,1;3                       | 54,2;2                                    |
| 2.4:-2                                         | 03.41                           | 30000     | 33887  | 33934       | 33473     | 33333  | 34.2:2                       | 04.3:1                                    |
| 3.4:-1                                         | 74,4;0                          | 39286     | 45000  | 47370       | 47311     | 47143  | 04.3:1                       | 4.4:0                                     |
| 4 4 • 0                                        | Ö5 4-1                          | 48750     | 54655  | 59178       | 60145     | 60000  | /4 4.0                       | 04 5                                      |
| 5 4 - 1                                        | 96 4.2                          | 58333     | 64063  | 69788       | 72255     | 72222  | O4 5· + 1                    | 94.6:~                                    |
| 6,4;2                                          | 107,4;3                         | 68000     | 73554  | 79716       | 83787     | 84000  | 74.62                        | 104,7; -                                  |
| 7,4;3                                          | 118,4;4                         | 77727     | 83147  | 89384       | 94830     | 95455  | $10^{4,7}_{4,7;-3}$          | 114,8; -                                  |
| 7,4;3                                          | 12                              | 87500     | 92819  | 99012       | 105459    | 106666 | 11                           | 124,8,~                                   |
| 8,4;4                                          | 129,4;5                         |           | 72017  | ))012       | 100107    | 100000 | $11_{4,8;-4}$                | 124,9;_                                   |
| 1,5;-4                                         | $\frac{6}{5}$ 2,5; $-3$         | 23333     | 20137  | 18843       | 18422     | 18333  | 55,1;4                       | 65,2;3                                    |
| 2,5; -3                                        | 73,5; -2                        | 32143     | 36189  | 35151       | 34447     | 34286  | 65,2;3                       | 75,3;2                                    |
| 2,3;-3                                         | 83,3; -2                        | 41250     | 48511  | 49684       | 48970     | 48750  | 75,3;2                       | 85,4;1                                    |
| 3,5;-2                                         | 84,5; -1                        | 50556     | 58512  | 62686       | 62483     | 62222  | 8-3,3;2                      | 0,4,1                                     |
| 4,5; -1                                        | 95,5;0                          | 60000     | 67785  | 74286       | 75273     | 75000  | 85,4;1                       | 95,5;0                                    |
| ' 5 <b>5</b> • 0                               | 106,5;1                         |           |        | 04774       | 07504     |        | 95,5;0                       | 105,6;-                                   |
| 6,5;1                                          | 117,5;2                         | 69546     | 77050  | 84774       | 87504     | 87273  | 105 6: 1                     | 115,7;                                    |
| 7,5;2                                          | 128,5;3                         | 79167     | 86442  | 94594       | 99259     | 99167  | $11_{5,7;-2}^{6,6,}$         | 125,8; -                                  |
|                                                | 7                               | 25714     | 20629  | 19107       | 18664     | 18571  | 6                            | 76,2;4                                    |
| 1,6;-5                                         | $\frac{7}{9}$ 2,6; $-4$         |           |        | 35978       | 35171     | 35000  | 6 <sub>6,1;5</sub>           | 0,2;4                                     |
| 2,6;-4                                         | $8_{3,6;-3}$                    | 34375     | 37948  |             |           |        | 76,2;4                       | 86,3;3                                    |
| 3.63                                           | 94 62                           | 43333     | 51721  | 51284       | 50241     | 50000  | 06 3.3                       | 96,4;2                                    |
| 4.6: -2                                        | 105.6:1                         | 52500     | 62496  | 65297       | 64301     | 64000  | 96.4.2                       | 106 5.1                                   |
| 5,6; -1                                        | 116,6;0                         | 61818     | 71831  | 78026       | 77624     | 77273  | 106.5:1                      | 116.6:0                                   |
| 6,6;0                                          | 127.6;1                         | 71250     | 80896  | 89476       | 90385     | 90000  | 116,6;0                      | 126,7; -                                  |
|                                                |                                 | 20125     | 20044  | 10200       | 10044     | 10750  |                              |                                           |
| 1,7;-6                                         | $\frac{8}{2}$ ,7;-5             | 28125     | 20944  | 19300       | 18844     | 18750  | 77,1;6                       | 87,2;5                                    |
| 2.7: -5                                        | 93.7:-4                         | 36667     | 39200  | 36585       | 35733     | 35556  | 07 2.5                       | 77 3.4                                    |
| 3.7: -4                                        | $10_{4.7:-3}$                   | 45500     | 54420  | 52436       | 51252     | 51000  | 97 3.4                       | 107.4.3                                   |
| 4,7;-3                                         | 115.7; -2                       | 54546     | 66365  | 67167       | 65775     | 65455  | 107.4:3                      | 117 5.0                                   |
| 5,7;-2                                         | $12_{6,7;-1}^{3,7,-2}$          | 63750     | 76087  | 80851       | 79549     | 79167  | 117,5;2                      | 127,6;1                                   |
|                                                |                                 | 20554     | 21155  | 10440       | 10005     | 10000  |                              |                                           |
| 1,8; -7                                        | $\frac{9}{10}$ 2,8;-6           | 30556     | 21157  | 19449       | 18985     | 18889  | 88,1;7                       | 9 <sub>8,2;6</sub><br>10 <sub>8,3;5</sub> |
| 2.8 -6                                         | 103.8: -5                       | 39000     | 40063  | 37061       | 36182     | 36000  | 98.2:6                       | 108,3;5                                   |
| 3.8: -5                                        | 114.8: -4                       | 47727     | 56523  | 53327       | 52078     | 51818  | 108,3;5                      | **X 4'4                                   |
| 3,8; -5<br>4,8; -4                             | $11_{4,8;-4} \\ 12_{5,8;-3}$    | 56667     | 69870  | 68563       | 66999     | 66667  | 118,4;4                      | 128,5;3                                   |
|                                                | 10                              | 22000     | 21214  | 10566       | 10007     | 10000  | 0                            | 10                                        |
| 1,9; -8                                        | $10_{2,9;-7}$                   | 33000     | 21311  | 19566       | 19097     | 19000  | 99,1;8                       | 109,2;7                                   |
| 2,9; -7                                        | 113.9:-6                        | 41364     | 40664  | 37443       | 36548     | 36364  | 109,2;7                      | 110 3.8                                   |
| 3,9; -6                                        | $12_{4,9;-5}^{13,1}$            | 50000     | 58070  | 54050       | 52766     | 52500  | 119,3;6                      | 129,4;5                                   |
| <b>)</b>                                       | 11                              | 35454     | 21431  | 19662       | 19189     | 19091  | 10                           | 1110,2;                                   |
| ) <sub>1,10;</sub> –9<br>l <sub>2,10; –8</sub> | $11_{2,10}; -8$ $12_{3,10}; -7$ | 43750     | 41102  | 37761       | 36854     | 36667  | $10_{10,1;9} \\ 11_{10,2;8}$ | 12,10,2;                                  |
| -2,10; -8                                      | 3,10;-/                         | 10.00     |        | - · · · · · |           |        | 10,2,0                       |                                           |
| l <sub>1,11;-10</sub>                          | $12_{2,11;-9}$                  | 37917     | 21526  | 19742       | 19265     | 19167  | 11,1,1,10                    | 1211,2;                                   |

Table VI.—Continued.

B. a and c prolate-or-oblate sub-branches

| Sub-h                                    | oranch                                    |                |                | κ              |              |    | Sub-b                                                   | oranch                                 |
|------------------------------------------|-------------------------------------------|----------------|----------------|----------------|--------------|----|---------------------------------------------------------|----------------------------------------|
| c,eQ1,2                                  | c,0Q1,2                                   | <b> 1</b>      | ∓0.5           | 0              | ±0.5         | ±1 | a,eQ2,1                                                 | $^{a,o}Q\bar{2}$ ,1                    |
| 22,0;2                                   | $\frac{2}{2}$ 1,2;-1                      | 8333           | 5110           | 2233           | 488          |    | $\frac{2}{3}$ 0,2;-2                                    | 22,1;1                                 |
| 32 1.1                                   | $\frac{3}{1}, \frac{1}{3}, -2$            | 14583          | 5722           | 1328           | 165          |    | 31.2:-1                                                 | 33.1:2                                 |
| 42,2;0                                   | $\frac{4}{1},4;-3$                        | 20250          | 4363           | 650            | 78           |    | 42,2;0                                                  | 44,1;3                                 |
| $5^{2,2,0}_{2,3;-1}$                     | 51,5;-4                                   | 25667          | 2859           | 374            | 54           |    | $5^{2,2,0}_{3,2;1}$                                     | 55,1;4                                 |
| $6^{2,3,-1}_{2,4;-2}$                    | $6_{1,6;-5}^{1,3;-4}$                     | 30952          | 1843           | 266            | 43           |    | 64.2.2                                                  | 66 1.5                                 |
| 72,4; -2                                 | 71,6; -5                                  | 36161          | 1262           | 218            | 35           |    | $\frac{6}{7}$ ,2;2                                      | $\frac{6}{6,1}$ ,5                     |
| $7_{2,5}^{2,1}; -3$                      | $\frac{7}{8}1,7;-6$                       | 41319          | 945            | 183            | 30           |    | 75,2;3                                                  | 77,1;6                                 |
| $\frac{8}{0}^{2},6;-4$                   | $\frac{8}{0}$ 1,8; -7                     | 46444          | 770            |                | 26           |    | 86,2;4                                                  | 88,1;7                                 |
| $9^{2,7}_{10}, -5$                       | $\frac{9}{10}$ 1,9; -8                    |                |                | 160            | 20           |    | 97,2;5                                                  | 99,1;8                                 |
| 1U2.8: -6                                | $10_{1,10}, -9$                           | 51545          | 664            | 141            | 23           |    | 108 2.6                                                 | 1U <sub>10.1:9</sub>                   |
| $\frac{11}{12}$ ,9; $-7$                 | $\frac{11}{12}$ 1,11; -10                 | 56629          | 590            | 125            | 21           |    | 119.2:7                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
| $12_{2,10;-8}^{2,5,7}$                   | $12_{1,12},-11$                           | 61699          | 533            | 115            | 19           |    | 1210,2;8                                                | 12 <sub>12,1;11</sub>                  |
| $\frac{3}{4}$ 3,0;3                      | 32,2;0                                    | 8750           | 7055           | 4522           | 1458         |    | $\frac{3}{4}$ 0,3; -3                                   | $\frac{3}{4}$ 2,2;0                    |
| T 3 1 · 2                                | $\frac{4}{5}$ 2,3;-1                      | 15750          | 11214          | 4568           | 638          |    | $\frac{4}{5}$ 1,3; -2                                   | 43,2;1                                 |
| 53,2;1                                   | $5^{2,3}, -1$<br>$5^{2,4}, -2$            | 22000          | 12576          | 2754           | 274          |    | $5^{1,3,-2}_{2,3;-1}$                                   | 54,2;2                                 |
| 63,3;0                                   | 62,4; -2                                  | 22000<br>27857 | 11283          | 1492           | 171          |    | 62,3; -1                                                | 65.0.2                                 |
| 73,3;0                                   | $\frac{6}{7}$ 2,5; $-3$                   | 33482          | 8559           | 925            | 132          |    | $^{6}_{7}$ 3,3;0                                        | $\frac{6}{7}$ 5,2;3                    |
| $7_{3,4;-1}^{3,3,4}$                     | $7_{2,6;-4}$                              |                | 5033           |                |              |    | 74,3;1                                                  | 76,2;4                                 |
| <sup>O</sup> 3.5: -2                     | $\frac{8}{2},7,-5$                        | 38958          | 5932           | 685            | 108          |    | 05 3.2                                                  | 87,2;5                                 |
| 93.63                                    | 92.8:-6                                   | 44333          | 4077           | 567            | 92           |    | 96.3.3                                                  | 98.2:6                                 |
| 10374                                    | 102.9:-7                                  | 49636          | 2945           | 490            | 80           |    | 107.3:4                                                 | 109.2.7                                |
| 1385                                     | 112 10 -8                                 | 54886          | 2294           | 433            | 71           |    | 1183.5                                                  | 1110.2:8                               |
| $12_{3,9;-6}^{3,0;-6}$                   | $12^{2,10}_{2,11;-9}$                     | 60096          | 1917           | 387            | 64           |    | 129,3;6                                                 | 1211,2;9                               |
| 44,0;4                                   | 43,2;1                                    | 9000           | 7558           | 5617           | 2547         |    |                                                         |                                        |
| 54,0;4                                   | 53,2;1                                    | 16500          | 13242          | 7983           | 1599         |    | $\frac{4}{5}$ 0,4; -4                                   | $\frac{4}{5}$ 2,3; -1                  |
| 54,1;3                                   | 53,3;0                                    | 23214          | 17320          | 6820           | 681          |    | $\frac{5}{6}$ 1,4;-3                                    | 53,3;0                                 |
| 74,2;2                                   | $\frac{6}{7}3,4,-1$                       |                |                |                |              |    | 02.4:-2                                                 | $6_{4,3;1}$                            |
| 6 <sub>4,2;2</sub><br>7 <sub>4,3;1</sub> | $7_{3,5;-2}$                              | 29464          | 19464          | 4223           | 374          |    | $\frac{1}{3} \cdot 4 \cdot -1$                          | $7_{5,3;2}$                            |
| 84 4.0                                   | °3.6: −3                                  | 35417          | 19178          | 2433           | 273          |    | 04 4.0                                                  | 86.3.3                                 |
| 94.51                                    | $^{3}$ 3.7: $-4$                          | 41167          | 16526          | 1579           | 222          |    | 95.4:1                                                  | 97,3;4                                 |
| 04,6; -2                                 | $10^{3,8}, -5$                            | 46773          | 12665          | 1205           | 188          |    | 106,4;2                                                 | 108,3;5                                |
| 114,7;-3                                 | 113.9; -6                                 | 52273          | 9080           | 1014           | 163          |    | 117,4;3                                                 | 119,3;6                                |
| 124,8;-4                                 | $12_{3,10;-7}^{3,9;-6}$                   | 57692          | 6485           | 888            | 144          |    | 128,4;4                                                 | 12,3;6                                 |
|                                          |                                           | 0167           | 7775           | 6052           | 2260         |    |                                                         |                                        |
| $\frac{5}{6}$ 5,0;5                      | 54,2;2                                    | 9167           | 7775           | 6052           | 3368         |    | $5_{0,5;-5}$                                            | $\frac{5}{6}$ 2,4;-2                   |
| US 1 · A                                 | <sup>0</sup> 4.3:1                        | 17024          | 14062          | 9982           | 3054         |    | $6_{1,5;-4}$                                            | U3.4: -1                               |
| 15 2.3                                   | 4.4:0                                     | 24107          | 19225          | 11103          | 1459         |    | $7_{2,5;-3}$                                            | 74,4;0                                 |
|                                          | O4 5· —1                                  | 30694          | 23287          | 9000           | 720          |    | $8_{3,5;-2}$                                            | 85,4;1                                 |
| 95 4.1                                   | $9^{4,6}, -2$                             | 36944          | 26001          | 5708           | 481          |    | $9^{5,5}_{4,5;-1}$                                      | 96,4;2                                 |
| 95,4;1<br>105,5;0                        | $10^{+,0}_{4,7;-3}$                       | 42955          | 26852          | 3433           | 382          |    | 105,5;0                                                 | $10^{0,4,2}_{7,4,3}$                   |
| 15,6; -1                                 | 114,7;3                                   | 48788          | 25327          | 2306           | 321          |    | 113,5;0                                                 | 117,4;3                                |
| 25,6; -1                                 | $11_{4,8;-4}^{11,7,5}$                    | 54487          | 21546          | 1796           | 277          |    | 116,5;1                                                 | 118,4;4                                |
| $2^{5,0}_{5,7;-2}$                       | $12_{4,9;-5}^{1,0;-5}$                    | 34401          | 21340          | 1790           | 211          |    | 127,5;2                                                 | 129,4;5                                |
| 66,0;6                                   | $\frac{6}{7}$ 5,2;3                       | 9286           | 7912           | 6257           | 3863         |    | $6_{0,6;-6}$                                            | $\frac{6}{7}^{2,5};-3$                 |
|                                          | 75.3:2                                    | 17411          | 14550          | 10952          | 4657         |    | $\frac{7}{9}$ 1,6;-5                                    | $7_{3,5;-2}$                           |
| 06 2.4                                   | 05.4-1                                    | 24792          | 20233          | 13841          | 2772         |    | $8_{2,6;-4}$                                            | $\frac{84}{5}$ ,5;-1                   |
|                                          | 95,5;0                                    | 31667          | 25098          | 14023          | 1322         |    | 93,6;-3                                                 | 95,5;0                                 |
|                                          | $10^{5,6}_{5,6}$ ; -1                     | 38182          | 29140          | 11121          | 785          |    | $10_{4,6,-2}^{3,6,-3}$                                  | 106.5;1                                |
|                                          | $11_{5,7;-2}^{5,6;-1}$                    | 44432          | 32202          | 7197           | 595          |    | 114,6; -2                                               | 11                                     |
| 26,6;0                                   | $12^{3,7;-2}_{5,8;-3}$                    | 50481          | 33921          | 4472           | 494          |    | $11_{5,6;-1}$ $12_{6,6;0}$                              | $11_{7,5;2}^{11_{7,5;2}}$ $12_{8,5;3}$ |
|                                          |                                           |                |                |                |              |    |                                                         |                                        |
| 77,0;7                                   | 7 <sub>6,2;4</sub>                        | 9375           | 8011           | 6381           | 4141         |    | $\frac{7}{9}0.7; -7$                                    | $\frac{7}{8}$ 2,6;-4                   |
|                                          | 86,3;3                                    | 17708          | 14899          | 11480          | 5982         |    | $8_{1,7:-6}$                                            |                                        |
|                                          | 86,3;3<br>96,4;2                          | 25333          | 20930          | 15306          | 4603         |    | 81,7;-6 $92,7;-5$                                       |                                        |
|                                          | 106 5.1                                   | 32455          | 26247          | 17406          | 2348         |    | $10^{2}, 7, -4$                                         | $10^{4,0,-2}_{5,6;-1}$                 |
| 17 1.2                                   | 116,6;0                                   | 39205          | 30913          | 16805          | 1258         |    | $10_{3,7;-4}^{10_{3,7;-4}}$ $11_{4,7;-3}^{11_{4,7;-3}}$ | 116.6;0                                |
| 27,5;2                                   | $12_{6,7;-1}^{6,6;0}$                     | 45673          | 34922          | 13192          | 878          |    | $12^{4,7}_{5,7;-2}$                                     | 127,6;1                                |
|                                          |                                           |                | 000#           | 6460           |              |    |                                                         |                                        |
| 88,0;8                                   | 87,2;5                                    | 9444           | 8087           | 6468           | 4302         |    | $\frac{8}{0}$ ,8;-8                                     | $\frac{8}{9}$ 2.7; -5                  |
| 98,1;7<br>08,2;6                         | 27 3.4                                    | 17944          | 15167          | 11825          | 6888<br>6602 |    | 91.8:-7                                                 | <sup>3</sup> 3.7: −4                   |
| <sup>∨</sup> 8,2;6                       | 107 4.3                                   | 25773          | 21462          | 16158          | 0002         |    | 1U2.8: -6                                               | 104.7: -3                              |
| 18,3;5                                   | 117 5.9                                   | 33106          | 27105          | 19325          | 3955         |    | 1 1 3 .8: -5                                            | 115.7:-2                               |
| 18.3;5<br>28,4;4                         | 127,6;1                                   | 40064          | 32170          | 20771          | 2027         |    | $12_{4,8;-4}^{3,6,-3}$                                  | $12_{6,7;-1}^{3,7;-2}$                 |
| 99,0;9                                   | 98,2;6                                    | 9500           | 8146           | 6535           | 4403         |    |                                                         |                                        |
| 09,1;8                                   | 100,250                                   | 18136          | 15380          | 12079          | 7464         |    | $9_{0,9;-9}$                                            | $9_{2,8;-6}$                           |
| 1 <sub>9,2;7</sub>                       |                                           |                | 21887          | 16726          | 9210         |    | <sup>10</sup> 1.9: -8                                   | 103.8: -5                              |
| $2^{9,2;7}_{9,3;6}$                      | $11_{8,4;4}^{8,3,3}$ $12_{8,5;3}^{8,5,3}$ | 26136<br>33654 | 21887<br>27788 | 16736<br>20487 | 8319<br>6108 |    | $11_{2,9}^{2,9},-7$ $12_{3,9}^{2,-6}$                   | $11_{4,8}, -4$ $12_{5,8}, -3$          |
|                                          |                                           |                |                |                |              |    |                                                         |                                        |

TABLE VI.—Continued.

| Sub-bi                                         | ranch                        | <del></del> 1  | $\mp 1  \mp 0.5  \stackrel{\kappa}{0}  \pm 0.$ |       |      |    | Sub-branch $a \cdot {}^{o}Q2, \overline{1}$ $a \cdot {}^{o}Q\overline{2}, 1$ |                               |  |
|------------------------------------------------|------------------------------|----------------|------------------------------------------------|-------|------|----|------------------------------------------------------------------------------|-------------------------------|--|
| c,eQ1,2                                        | c,oQ1, <del>2</del>          |                |                                                |       |      | ±1 |                                                                              |                               |  |
| 1010,0;10                                      | 109,2;7                      | 9545           | 8194                                           | 6588  | 4474 |    | $10_{0,10;-10}$                                                              | $10_{2,9;-7}$                 |  |
| <sup>[ ]</sup> 10.1:9                          | 119.3:6                      | 18295          | 15554                                          | 12279 | 7835 |    | 11 <sub>1.10</sub> ; -9                                                      | $^{11}3.9:-6$                 |  |
| 210,2;8                                        | 129,4;5                      | 26442          | 22237                                          | 17173 | 9567 |    | $12_{2,10;-8}$                                                               | $12_{4,9;-5}$                 |  |
| 1                                              | 11                           | 9583           | 8234                                           | 6631  | 4528 |    | 11                                                                           | 11                            |  |
| $11_{11,0;11} \\ 12_{11,1;10}$                 | $11_{10,2;8} \\ 12_{10,3;7}$ | 18429          | 15699                                          | 12443 | 8090 |    | $11_{0,11;-11}$ $12_{1,11;-10}$                                              | $11_{2,10;-8}$ $12_{3,10;-8}$ |  |
|                                                |                              |                |                                                |       |      |    |                                                                              |                               |  |
| 12 <sub>12,0;12</sub>                          | 1211,2;9                     | 9615           | 8268                                           | 6667  | 4571 |    | 120,12; -12                                                                  | 122,11; -9                    |  |
| <sup>c</sup> ,eR1̄,2                           | c,eP1,2                      | <del>+</del> 1 | <b>∓</b> 0.5                                   | 0     | ±0.5 | ±1 | a,eR2,Ī                                                                      | $^{a,e}Par{2}$ ,1             |  |
| $\frac{1}{2}$ 1,0;1                            | $\frac{2}{2}$ 0,2;-2         | 5000           | 3066                                           | 1340  | 293  |    | $\frac{1}{2}$ 0,1;-1                                                         | $\frac{2}{3}$ 2,0;2           |  |
| 21,1;0                                         | $\frac{3}{4}$ 0,3; -3        | 10000          | 4167                                           | 1086  | 157  |    | $\frac{2}{2}$ 1,1;0                                                          | 3.0:3                         |  |
| $\frac{3}{1}$ ,2;-1                            | $\frac{4}{5}0,4;-4$          | 15000          | 3944                                           | 800   | 123  |    | 32,1;1                                                                       | $\frac{4}{5}4,0;4$            |  |
| $\frac{4}{5}$ 1,3;-2                           | 50,5;-5                      | 20000          | 3386                                           | 696   | 117  |    | 43.1.2                                                                       | 55,0;5                        |  |
| $\frac{5}{6}$ 1,4; -3                          | $6_{0,6;-6}$                 | 25000          | 2976                                           | 667   | 114  |    | <sup>3</sup> 4.1:3                                                           | $^{6}_{6,0;6}$                |  |
| $0_{1.5;-4}$                                   | $\frac{7}{9}$ 0,7;-7         | 30000          | 2770                                           | 656   | 112  |    | 95.1:4                                                                       | 77,0;7                        |  |
| $7_{1,6},-5$                                   | $\frac{8}{9}$ 0,8;-8         | 35000          | 2686                                           | 649   | '111 |    | 76,1;5                                                                       | 88,0;8                        |  |
| $8_{1.7;-6}$                                   | 90.9; -9                     | 40000          | 2652                                           | 644   | 110  |    | 97.1:6                                                                       | 99.0:9                        |  |
| $9_{1.8:-7}$                                   | $^{10}$ 0.10; $-10$          | 45000          | 2634                                           | 640   | 109  |    | 78 1.7                                                                       | 1U10 0·10                     |  |
| U <sub>1.9:—8</sub>                            | $\frac{11}{12}0,11;-11$      | 50000          | 2621                                           | 637   | 109  |    | 100.1:8                                                                      | 1111.0:11                     |  |
| $11_{1,10;-9}$                                 | $12_{0,12;-12}$              | 55000          | 2610                                           | 634   | 108  |    | 11,0,1;9                                                                     | 1212,0;12                     |  |
| 22,0;2                                         | $\frac{3}{4}$ 1,2;-1         | 1667           | 2062                                           | 1905  | 776. |    | $\frac{2}{3}$ 0,2;-2                                                         | $\frac{3}{4}$ 2,1;1           |  |
| $3^{-70,-1}_{2,1:1}$                           | $\frac{4}{1},3;-2$           | 3750           | 5114                                           | 2884  | 480  |    | 31 2· <u> </u>                                                               | 43.1.2                        |  |
| $3^{2,1;1}_{2,2;0}$                            | $5_{1,4;-3}$                 | 6000           | 7788                                           | 2336  | 310  |    | 42,2;0<br>53,2;1                                                             | 34 1.3                        |  |
| $5_{2,3;-1}$                                   | 61,5;-4                      | 8333           | 8748                                           | 1768  | 268  |    | $5^{-,-,*}_{3,2:1}$                                                          | 05.1:4                        |  |
| $6^{2,4}; -2$                                  | $7_{1,6;-5}$                 | 10714          | 8172                                           | 1529  | 254  |    | $6_{4,2;2}$                                                                  | (6.1:5                        |  |
| $7_{2,5;-3}$                                   | 81,7;-6                      | 13125          | 7135                                           | 1445  | 246  |    | 15 2.3                                                                       | 07 1.6                        |  |
| $8_{2,6;-4}$                                   | 91,8;-7                      | 15556          | 6332                                           | 1406  | 240  |    | O6 2·4                                                                       | 98.1:7                        |  |
| $9^{2,7}; -5$                                  | $10_{1,9;-8}$                | 18000          | 5885                                           | 1380  | 235  |    | 97 2.5                                                                       | <sup>1U</sup> 9.1:8           |  |
| 1U2.8: -6                                      | $11_{1,10;-9}$               | 20455          | 5673                                           | 1360  | 232  |    | 108 2.6                                                                      | 1110.1.g                      |  |
| $11_{2,9;-7}$                                  | $12_{1,11;-10}$              | 22917          | 5570                                           | 1344  | 229  |    | 119,2;7                                                                      | 1211,1;10                     |  |
| 33,0;3                                         | $\frac{4}{2}$ ,2;0           | 1250           | 1176                                           | 1316  | 1061 |    | $\frac{3}{4}0,3;-3$                                                          | 42,2;0                        |  |
| 43 1.2                                         | $5^{2,2,0}_{2,3;-1}$         | 3000           | 3166                                           | 3516  | 1032 |    | $\frac{4}{5}$ 1,3;-2                                                         | $\frac{5}{2}3,2;1$            |  |
| $5_{3,2;1}^{3,1;2}$                            | $6^{2,4}_{2,4}, -2$          | 5000           | 6089                                           | 4448  | 613  |    | 52.3:-1                                                                      | 04 2.2                        |  |
| 63,3;0                                         | $7_{2,5;-3}^{2,4;2}$         | 7143           | 9630                                           | 3653  | 469  |    | V3.3:0                                                                       | 152.3                         |  |
| 73,4;-1                                        | $8^{2,6}; -4$                | 9375           | 12493                                          | 2828  | 426  |    | 4 3:1                                                                        | °6.2:4                        |  |
| $8_{3,5;-2}$                                   | 92,7;-5                      | 11667          | 13383                                          | 2447  | 404  |    | 85.3:2                                                                       | 97 2:5                        |  |
| 93,6; -3                                       | $10^{2,8}, -6$               | 14000          | 12500                                          | 2301  | 389  |    | 85,3;2<br>96,3;3                                                             | 108 2.6                       |  |
| $10_{3,7;-4}$                                  | $11_{2,9;-7}^{2,6;}$         | 16364          | 11048                                          | 2226  | 378  |    | 107 3.4                                                                      | 110 2.7                       |  |
| $11_{3,8;-5}$                                  | $12_{2,10;-8}^{2,3,7}$       | 18750          | 9884                                           | 2174  | 370  |    | 118,3;5                                                                      | $12_{10,2;8}^{5,2,7}$         |  |
| 44,0;4                                         | 53,2;1                       | 1000           | 882                                            | 849   | 963  |    | 40,4;-4                                                                      | $\frac{5}{6}^{2,3};-1$        |  |
| 54,1;3                                         | 63,3;0                       | 2500           | 2272                                           | 2651  | 1677 |    | 51,4;-3                                                                      | U2 2-A                        |  |
| $6^{4,1,3}_{4,2;2}$                            | $7_{3,4;-1}^{3,3,6}$         | 4286           | 4145                                           | 5108  | 1110 |    | $6^{1,1}_{2,4}, -2$                                                          | 74,3;1                        |  |
| 74,3;1                                         | 83,5;-2                      | 6250           | 6720                                           | 6025  | 747  |    | 73,4;-1                                                                      | 05.3.2                        |  |
| 84,4;0                                         | 93,6; -3                     | 8333           | 10196                                          | 5011  | 636  |    | O4 4·0                                                                       | 96 3.3                        |  |
| $9^{4,5;-1}_{4,6;-2}$                          | $10^{3,0,-3}_{11,3,7;-4}$    | 10500          | 14160                                          | 3947  | 590  |    | 9 6 4 - 1                                                                    | 107 3.4                       |  |
| 104.5 2                                        | $11_{3,8}^{3,7,-4}$          | 12727          | 17215                                          | 3427  | 561  |    | 106.4.2                                                                      | 112 3.5                       |  |
| $11_{4,7;-3}^{4,0,-2}$                         | $12^{3,8,-3}_{3,9;-6}$       | 15000          | 18047                                          | 3214  | 540  |    | 117,4;3                                                                      | $12^{0,3,5}_{9,3;6}$          |  |
| 55,0;5                                         | $\cdot   _{74,2;2}^{6}$      | 833            | 730                                            | 638   | 723  |    | $\frac{5}{6}$ 0,5;-5                                                         | $\frac{6}{2}$ 2,4; $-2$       |  |
| 65,0;3                                         | 74,3;1                       | 2143           | 1898                                           | 1863  | 2013 |    | $6_{1,5;-4}$                                                                 | /3.4:-1                       |  |
| $\begin{array}{c} 65,1;4\\ 75,2;3 \end{array}$ | 84,4;0                       | 3750           | 3384                                           | 4016  | 1833 |    | $7_{2,5;-3}^{1,5;-4}$                                                        | °4.4:∩                        |  |
| 85,2;3<br>85,3;2                               | $9^{4,4;0}_{4,5;-1}$         | 5556           | 5182                                           | 6701  | 1165 |    | $8_{3,5;-2}$                                                                 | 95 1.1                        |  |
| 95,3;2<br>105,4;1                              | $10_{4,6;-2}^{4,5;-1}$       | 7500           | 7437                                           | 7610  | 901  |    | $9^{4,5;-1}$                                                                 | $10_{6,4;2}^{3,4;1}$          |  |
| 105,5;0                                        | 104.6; -2 $114.7; -3$        | 9545           | 10443                                          | 6398  | 809  |    | $10_{5,5;0}^{4,5,-1}$                                                        | 1174.3                        |  |
| $11_{5,6;-1}^{5,5;0}$                          | $12_{4,8;-4}^{14,7;-3}$      | 11667          | 14380                                          | 5109  | 758  |    | 116,5;1                                                                      | $12_{8,4;4}^{7,4,3}$          |  |
| 66,0;6                                         | 75,2;3                       | 714            | 625                                            | 533   | 530  |    | $6_{0,6;-6}$                                                                 | 72,5;-3                       |  |
| 76.1;5                                         | 05 3.2                       | 1875           | 1652                                           | 1470  | 1860 |    | 1.6: -5                                                                      | 03.5                          |  |
| 86,2;4                                         | 95.4:1                       | 3333           | 2968                                           | 2958  | 2593 |    | 02.6: -4                                                                     | 74.51-1                       |  |
| 96.3;3                                         | 105.5:0                      | 5000           | 4516                                           | 5406  | 1801 |    | 93.63                                                                        | 105 5.0                       |  |
| 106,4;2                                        | 115,6;-1                     | 6818           | 6288                                           | 8298  | 1256 |    | $10_{4.6:-2}$                                                                | 1165.1                        |  |
|                                                | $12^{3,0,-1}_{5,7;-2}$       | 8750           | 8348                                           | 9203  | 1069 |    | $11_{5,6;-1}$                                                                | $12_{7,5;2}^{6,6,1}$          |  |

TABLE VI.—Continued.

| Sub-t                   | oranch                    |              |           | κ    |           |         |                                  | oranch                      |
|-------------------------|---------------------------|--------------|-----------|------|-----------|---------|----------------------------------|-----------------------------|
| ·.eR1,2                 | $^{c,e}P$ 1, $\bar{2}$    | <b>∓</b> 1   | $\mp 0.5$ | 0    | $\pm 0.5$ | $\pm 1$ | $^{a,e}R_{2,\overline{1}}$       | $^{a,e}P\bar{2}$ ,1         |
| 7                       | 86,2;4                    | 625          | 546       | 463  | 411       |         | 7                                | 82,6;-4                     |
| 77,0;7                  | 06,2;4                    | 1667         | 1465      | 1267 | 1486      |         | 70.7; -7                         | 02,6; -4                    |
| 87,1;6                  | 96,3;3                    | 3000         | 2656      | 2402 | 2962      |         | $\frac{8}{0}$ 1,7;-6             | 93.6; -3                    |
| 97,2;5                  | 106.4.3                   | 3000         |           |      | 2902      |         | $9^{2,7}; -5$                    | $10^{4,6}; -2$              |
| 07,3;4                  | 116 5-1                   | 4545         | 4065      | 4106 | 2664      |         | 1U3.7: -4                        | 1 1 5.6: 1                  |
| 17,4;3                  | 126,6;0                   | 6250         | 5659      | 6816 | 1772      |         | $11_{4,7;-3}$                    | 126,6;0                     |
|                         |                           |              |           |      |           |         |                                  |                             |
| 88,0;8                  | 97,2;5                    | 556          | 485       | 411  | 341       |         | $\frac{8}{9}$ 0,8;-8             | $\frac{9}{10}$ 2.7; -5      |
| 98.1:7                  | 107 3.4                   | 1500         | 1316      | 1129 | 1154      |         | 91.8: -7                         | 103.7:-4                    |
| J8.2:6                  | 117 1.2                   | 2727         | 2407      | 2110 | 2759      |         | 102.8: -6                        | 11473                       |
| 18,3;5                  | 127,5;2                   | 4167         | 3705      | 3398 | 3519      |         | $11_{3,8;-5}^{2,3}$              | $12_{5,7;-2}^{1,7;}$        |
| 010,0                   |                           |              |           |      |           |         |                                  |                             |
| 99,0;9                  | 108,2;6                   | 500          | 436       | 369  | 298       |         | 90,9;-9                          | $10_{2,8;-6}$               |
| 9,1;8                   | 1193.5                    | 1364         | 1195      | 1021 | 932       |         | $10_{1,9;-8}$                    | 113,8;-5                    |
| 19,2;7                  | 128,4;4                   | 2500         | 2201      | 1910 | 2276      |         | $11_{2,9;-7}$                    | 124,8; -4                   |
| ,, <b>,,</b> ,,         |                           |              |           |      |           |         | ~,,,                             | 1,0,                        |
| 010,0;10                | 119,2;7                   | 455          | 397       | 335  | 268       |         | $10_{0,10}$ ; $-10$              | $\frac{11}{12}$ 2,9; $-7$   |
| 10,0,10                 | $12_{9,3;6}^{9,2,7}$      | 1250         | 1094      | 933  | 797       |         | $11_{1,10;-9}$                   | $12^{2,9}_{3,9},-6$         |
| -10,1,9                 | 9,3,0                     |              |           |      |           |         | 1,10,-9                          | 3,9,-                       |
| 111,0;11                | 12 <sub>10,2;8</sub>      | 417          | 363       | 307  | 244       |         | $11_{0,11;-11}$                  | 122,10;-                    |
|                         |                           |              |           |      |           |         |                                  |                             |
| c,0R1,2                 | $^{c,o}P_{1,ar{2}}$ .     | ∓1           | $\mp 0.5$ | 0    | $\pm 0.5$ | ±1      | $^{a,o}R2,\overline{1}$          | $^a$ ,o $Par{2}$ ,          |
|                         | 3                         | 1667         | 956       | 423  | 103       |         | 2                                | 2                           |
| 22,1;1                  | $\frac{3}{4}$ 1,3;-2      |              |           |      |           |         | $\frac{2}{3}$ 1,2;-1             | $\frac{3}{4}$ 3,1;2         |
| 2,2;0                   | $^{4}1.4:-3$              | 3750         | 1742      | 609  | 118       |         | 32.2:0                           | 44.1:3                      |
| $\frac{1}{2},3,-1$      | <sup>3</sup> 1.5; -4      | 6000         | 2228      | 657  | 116       |         | 43.2:1                           | 35.1:4                      |
| 2,4;-2                  | 01.6: ~5                  | 8333         | 2480      | 661  | 114       |         | 34.2.2                           | U6 1.5                      |
| (2,5;-3)                | $\frac{7}{9}$ 1,7;-6      | 10714        | 2590      | 655  | 112       |         | 65,2;3                           | 77,1;6                      |
| 2,6; -4                 | $8_{1,8;-7}^{1,7,-6}$     | 13125        | 2627      | 649  | 111       |         | 76,2;4                           | 88,1;7                      |
| 2,0; +4                 | 01,8; -7                  | 15556        | 2633      | 644  | 110       |         | 8-2-4                            | 08,1;7                      |
| $\frac{3}{2}$ ,7; $-5$  | $9^{1,9};-8$              | 18000        | 2627      | 640  | 109       |         | 87,2;5<br>98,2;6                 | 99,1;8                      |
| $\frac{9}{2.8}$ ; $-6$  | $10_{1,10;-9}$            |              |           |      |           |         | 108,2;6                          | 1010.1.9                    |
| $9_{2,9},-7$            | 111,11;-10                | 20455        | 2619      | 637  | 109       |         | $10_{9,2,7}$                     | 11111·1·                    |
| $\frac{1}{2}$ ,10; $-8$ | $12_{1,12;-11}$           | 22917        | 2610      | 634  | 108       |         | 11,0,2;8                         | 1212,1;1                    |
| 1                       | 4                         | 1250         | 1025      | 612  | 012       |         | 2                                |                             |
| 33,1;2                  | $\frac{4}{5}$ 2,3; -1     | 1250         | 1025      | 643  | 213       |         | $\frac{3}{4}$ 1,3; -2            | $\frac{4}{5}$ 3,2;1         |
| ±3.2:1                  | 32.4:-2                   | 3000         | 2317      | 1159 | 269       |         | 42.3:-1                          | 34.2.2                      |
| 53,3;0                  | 62,5;-3                   | 5000         | 3522      | 1389 | 265       |         | 53,3;0                           | 05 2.3                      |
| §3,4;−1                 | $7_{2,6}, -4$             | 7143         | 4450      | 1442 | 254       |         | 04 3.1                           | 162.4                       |
| $7_{3,5;-2}^{3,1;-2}$   | 82,7;-5                   | 9375         | 5049      | 1429 | 246       |         | 75,3;2                           | 87,2;5                      |
| 83,6; -3                | $9^{2,7,-3}_{2,8;-6}$     | 11667        | 5372      | 1403 | 240       |         | 86,3;3                           | 9,7,2,3                     |
| 0.5                     | 102.8; -6                 | 14000        | 5507      | 1379 | 235       |         | 0,3;3                            | 98,2;6                      |
| 3,7;-4                  | $\frac{10}{11}$ 2,9; $-7$ | 16364        | 5539      | 1360 | 232       |         | 97,3;4                           | 10g 7.7                     |
| 3,8; -5                 | $\frac{11}{12},10;-8$     |              |           |      |           |         | 108,3;5                          | 1 1 1 n 2 · 8               |
| 3,9;-6                  | $12^{2,10}_{2,11;-9}$     | 18750        | 5523      | 1344 | 229       |         | 119,3;6                          | $12_{11,2;9}^{10,2;6}$      |
| 4                       | -                         | 1000         | 0.60      |      | 200       |         |                                  | -                           |
| 4,1;3                   | 53,3;0                    | 1000         | 869       | 664  | 300       |         | $\frac{4}{5}$ 1,4;-3             | $\frac{5}{6}$ 3,3;0         |
| 34.2:2                  | 93.4:-1                   | 2500         | 2168      | 1455 | 440       |         | 32.4:-2                          | U4 3·1                      |
| 04.3:1                  | (3.5:-2                   | 4286         | 3662      | 2018 | 447       |         | 03.4:1                           | 153.9                       |
| 4.4:0                   | 83 6: -3                  | 6250         | 5157      | 2266 | 424       |         | /4.4:0                           | 06 2.2                      |
| 24.5:1                  | 93.7:-4                   | 8333         | 6471      | 2309 | 404       |         | 85,4;1                           | 97 1.1                      |
| 4,6; -2                 | $10^{3,7,-4}_{3,8;-5}$    | 10500        | 7475      | 2272 | 389       |         | 96,4;1                           | 108,3;5                     |
| 4,0;-2<br>4,7;-3        | $11_{3,9;-6}^{3,8;-3}$    | 12727        | 8130      | 2220 | 378       |         | 10,4;2                           | 11                          |
| 4,7; -3                 | 123,9; -6                 | 15000        | 8481      | 2173 | 370       |         | 107,4;3                          | 119,3;6                     |
| 4,8;-4                  | $12_{3,10;-7}^{3,9,-6}$   | 1000         | 0101      | 2110 | 010       | *       | 118,4;4                          | 1210,3;7                    |
|                         | 6                         | 833          | 729       | 601  | 346       |         | 5                                | 6.                          |
| 5,1;4                   | $\frac{6}{7}$ ,3;1        | 2143         | 1889      | 1489 | 603       |         | $\frac{5}{6}$ 1,5; -4            | $\frac{6}{7}3,4;-$          |
| 5,2;3                   | 74,4;0                    | 414J<br>2750 |           |      |           |         | 02.53                            | 144.0                       |
| 5,3;2                   | 84.5; -1                  | 3750         | 3329      | 2360 | 656       |         | (352                             | ŏ5,4;1                      |
| 35 A·1                  | 94.6: -2                  | 5556         | 4947      | 2953 | 626       |         | O4.5; -1                         | 96.4:2                      |
| <b>'</b> 5.5:0          | 1U4.7: 3                  | 7500         | 6629      | 3209 | 589       |         | <sup>9</sup> 5.5:0               | 85,4;1<br>96,4;2<br>107,4;3 |
| <sup>1</sup> 5.6; −1    | 114.8:4                   | 9545         | 8239      | 3235 | 561       |         | 106.5:1                          | 118 4.4                     |
| 5,7; -2                 | $12_{4,9;-5}$             | 11667        | 9627      | 3171 | 540       |         | 117,5;2                          | 129,4;5                     |
|                         |                           | <b>.</b>     |           |      |           |         |                                  |                             |
| 6,1;5                   | 75,3;2                    | 714          | 625       | 527  | 357       |         | $\frac{6}{7}$ 1,6;-5             | $\frac{7}{9}3,5;-2$         |
| 6.2:4                   | 05 4 - 1                  | 1875         | 1651      | 1386 | 726       |         | 1264                             | 04 5 1                      |
| <sup>9</sup> 6.3:3      | 95.50                     | 3333         | 2962      | 2400 | 873       |         | 83 6: - 3                        | 95 5·n                      |
| 6 4.9                   | $10^{5,6}_{5,6}$ ; -1     | 5000         | 4489      | 3326 | 858       |         | 83.6; -3 $94.6; -2$              | $10^{3,3;0}_{6,5;1}$        |
| 6,5;1                   | 11572                     | 6818         | 6181      | 3940 | 804       |         | $10^{4,6;-2}_{5,6;-1}$           | 117,5;2                     |
| U, J, I                 | $12^{5,7;-2}_{5,8;-3}$    | 8750         | 7975      | 4195 | 758       |         | 105,6; -1<br>11 <sub>6,6;0</sub> | $12_{8,5;3}^{7,5;2}$        |
| 6,6;0                   |                           |              |           |      |           |         |                                  |                             |

TABLE VI.—Continued.

| Ou D.D                                   | ranch                                                   |        |                | κ              |                |              |                                           | ranch                     |
|------------------------------------------|---------------------------------------------------------|--------|----------------|----------------|----------------|--------------|-------------------------------------------|---------------------------|
| c,0R1,2                                  | c,oP1,2                                                 | ∓1     | $\mp 0.5$      | 0              | $\pm 0.5$      | ±1           | $^{a,o}R_{2,\overline{1}}$                | $^{a,o}P\bar{2}$ ,1       |
| 7 <sub>7,1;6</sub>                       | 86,3;3                                                  | 625    | 546            | 462            | 341            |              | $\frac{7}{8}$ 1,7;-6                      | $\frac{8}{0}$ 3,6; -3     |
|                                          | 96.4:2                                                  | 1667   | 1465           | 1251           | 793            |              | 92.7: 5                                   | 94.6: -2                  |
| 77 3.4                                   | 106 5:1                                                 | 3000   | 2656           | 2267           | 1069           |              | 73 7: -4                                  | 1056-1                    |
| 07,4;3                                   | 116.6:0                                                 | 4545   | 4062           | 3368           | 1110           | ,            | $^{10}4.7:-3$                             | 116 6.0                   |
| $0_{7,4;3}^{7,3;2}$ $1_{7,5;2}$          | $12_{6,7;-1}^{6,7;-1}$                                  | 6250   | 5646           | 4336           | 1050           |              | $11_{5,7},-2$                             | 127,6;1                   |
| 88,1;7                                   | 97,3;4                                                  | 556    | 485            | 411            | 317            |              | $\frac{8}{0}$ 1,8; $-7$                   | $\frac{9}{10}$ 3.7; -4    |
| 78.2:6                                   | 107,4;3                                                 | 1500   | 1316           | 1126           | 808            |              | 92.8: ~6                                  | 104.7: -3                 |
| .∪8 3.5                                  | 117.5:2                                                 | 2727   | 2407           | 2082           | 1216           |              | 103.8: -5                                 | 1157 2                    |
| 18,4;4                                   | 127,6;1                                                 | 4167   | 3704           | 3209           | 1361           |              | 114,8;-4                                  | $12^{5,7}_{6,7;-1}$       |
| 99,1;8                                   | 108,3;5                                                 | 500    | 436            | 369            | 290            |              | $\frac{9}{10}$ 1,9; $-8$                  | $10_{3,8;-5}$             |
| VQ 2.7                                   | 118.4.4                                                 | 1364   | 1195           | 1021           | 786            |              | 102.9: -7                                 | 114.8: -4                 |
| 19,3;6                                   | 128,5;3                                                 | 2500   | 2201           | 1904           | 1296           |              | $11_{3,9;-6}$                             | $12^{1}_{5,8;-3}$         |
| 010,1;9                                  | 119,3;6                                                 | 455    | 397            | 335            | 265            |              | $10_{1,10;-9}$                            | $\frac{11}{12}$ 3,9;-6    |
| 1,0,2,8                                  | 129,4;5                                                 | 1250   | 1094           | 931            | 741            |              | 112,10; -8                                | $12^{3,9,-6}_{4,9;-5}$    |
| 111,1;10                                 | 12 <sub>10,3;7</sub>                                    | 417    | 363            | 307            | 243            |              | 11,11;-10                                 | 123,10;-                  |
|                                          | 10,0,1                                                  |        | prolate-a      | nd oblata      | aub branc      | hoa          |                                           |                           |
| b,eQ1,1                                  | $^{b,e}Q$ 1, $ar{1}$                                    | ∓1     | <b>∓0.5</b>    | 0              | ±0.5           |              | $^{b,e}Q_{1,\overline{1}}$                | b,eQ1,1                   |
|                                          |                                                         |        |                |                |                | ±1           |                                           |                           |
| 1,0;1                                    | $\frac{1}{2}$ 0,1;-1                                    | 15000  | 15000          | 15000          | 15000          | 15000        | $\frac{1}{2}0,1;-1$                       | $\frac{1}{2}$ 1,0;1       |
| 41.1:0                                   | $\frac{2}{3}$ 0,2;-2                                    | 25000  | 21289          | 16667          | 12044          | 8333         | 41 1.0                                    | 42 0.2                    |
| $^{3}1.2:-1$                             | $\frac{3}{4}0,3;-3$                                     | 35000  | 23196          | 14583<br>13527 | 10583<br>10617 | 8750         | 32.1:1                                    | 330.3                     |
| 41.3: -2                                 | $\frac{4}{5}0,4;-4$                                     | 45000  | 22157<br>20634 | 13327          | 10753          | 9000<br>9167 | 33 1·9                                    | *4 O·4                    |
| $\frac{5}{6}$ 1,4; -3                    | $\frac{5}{2}0,5;-5$                                     | 55000  | 20034<br>19779 | 13413          |                |              | 34.1:3                                    | 25.0:5                    |
| $\frac{6}{7}$ 1,5; $-4$                  | $\frac{6}{7}0,6;-6$                                     | 65000  | 19719          | 13484          | 10861          | 9286         | 05.1.4                                    | <sup>U</sup> 6.0:6        |
| 11.6: -5                                 | $_{0,7,-7}^{7}$                                         | 75000  | 19311          | 13559          | 10943          | 9375         | 6.1:5                                     | 170.7                     |
| $\frac{8}{0}$ 1,7;-6                     | $\frac{8}{9}$ 0,8; -8                                   | 85000  | 19487          | 13620          | 11008          | 9444         | 87,1;6                                    | O8 0-8                    |
| $9_{1.8:-7}$                             | $9_{0,9;-9}$                                            | 95000  | 19524          | 13669          | 11060          | 9500         | 98,1;7                                    | >o n⋅o                    |
| U <sub>1.9:</sub> 8                      | $^{10}0.10:-10$                                         | 105000 | 19565          | 13710          | 11103          | 9545         | 9 <sub>8,1;7</sub><br>10 <sub>9,1;8</sub> | ±V10.0:10                 |
| 11 10 - 9                                | $^{11}0.11:-11$                                         | 115000 | 19604          | 13744          | 11139          | 9583         | <sup>+</sup> + 10.1:9                     | 1 t 11 0:11               |
| $2_{1,11;-10}$                           | $12_{0,12},-12$                                         | 125000 | 19633          | 13774          | 11170          | 9615         | 1211,1;10                                 | 12,0,12                   |
| 22,0;2                                   | 21,1;0                                                  | 8333   | 12044          | 16667          | 21289          | 25000        | $\frac{2}{3}$ 0,2; -2                     | $\frac{2}{3}$ 1,1;0       |
| 32.1:1                                   | $\frac{3}{1},\frac{2}{2};-1$                            | 14583  | 24417          | 28872          | 24417          | 14583        | <sup>3</sup> 1.2: <del>-</del> 1          | 32.1:1                    |
| 42,2;0                                   | $\frac{4}{5}$ 1,3; -2                                   | 20250  | 36119          | 31154          | 20622          | 15750        | ₹2.2:0                                    | T3.1:2                    |
| $\frac{5}{6}$ 2,3;-1                     | $5_{1,4}$ ; -3                                          | 25667  | 43650          | 28164          | 20038          | 16500        | 53.2:1                                    | 34.1:3                    |
| 62,4;-2                                  | $6_{1,5}^{1,1},-4$                                      | 30952  | 45529          | 26402          | 20356          | 17024        | U4 2.7                                    | U5 1 · 4                  |
| $7^{2,3}_{2,5;-3}$                       | 71,6;-5                                                 | 36161  | 43602          | 26163          | 20670          | 17411        | 75,2,3                                    | 161.5                     |
| $8^{2,6}_{2,6;-4}$                       | $8_{1,7;-6}^{1,0;-6}$                                   | 41319  | 41002          | 26300          | 20926          | 17708        | 86,2;4                                    | 97 1.6                    |
| $9^{2,0,-4}_{2,7;-5}$                    | $9^{1,7}_{1,8},-7$                                      | 46444  | 39408          | 26465          | 21134          | 17944        | 97 2.5                                    | 78 1·7                    |
| $0^{2,7,-3}_{2,8,-6}$                    | $10_{1,9;-8}^{1,8;-7}$                                  | 51545  | 38815          | 26611          | 21307          | 18136        | $9_{7,2;5}^{9,2;4}$<br>$10_{8,2;6}$       | 109,1;8                   |
| 12.0, 7                                  | $11_{1,10;-9}^{1,9,-3}$                                 | 56629  | 38701          | 26737          | 21452          | 18295        | 119,2;7                                   | 11,10,1;9                 |
| $1_{2,9;-7}^{1_{2,9;-7}}$ $2_{2,10;-8}$  | $12_{1,11;-10}$                                         | 61699  | 38736          | 26846          | 21576          | 18429        | $12_{10,2;8}^{9,2,7}$                     | 12,1,1,10                 |
| 33,0;3                                   | $\frac{3}{4}$ 2,1;1                                     | 8750   | 10583          | 14583          | 23196          | 35000        | $\frac{3}{4}$ 0,3;-3                      | $\frac{3}{4}$ 1,2;-1      |
| 43,1;2<br>53,2;1                         | 42,2,0                                                  | 15750  | 20622          | 31154          | 36119          | 20250        | 41 3: -2                                  | 42 2.0                    |
| 52 2.1                                   | 42.2;0 $52.3;-1$                                        | 22000  | 32340          | 44017          | 32340          | 22000        | 41,3;-2 $52,3;-1$                         | 42,2;0<br>53,2;1          |
| 63,3;0                                   | $6_{2,4;-2}^{2,3,-1}$                                   | 27857  | 45986          | 45920          | 29422          | 23214        |                                           | $6^{3,2,1}_{4,2;2}$       |
| 73,3;0 $73,4;-1$                         | 72,4;-2 $72,5;-3$                                       | 33482  | 58783          | 41862          | 29481          | 24107        | 74,3;1                                    | 75,2;3                    |
| $8_{3,5;-2}$                             | 82,6; -4                                                | 38958  | 66715          | 39333          | 29932          | 24792        | 85,3;2                                    | 86,2;4                    |
| $9^{3,5;-2}_{3,6;-3}$                    | 92,0;-4<br>92,7;-5                                      | 44333  | 68174          | 38859          | 30348          | 25333        | 96,3;3<br>10-                             | 97,2;5                    |
| $0^{3,0;-3}_{3,7;-4}$                    | $10^{2,7}_{2,8;-6}$                                     | 49636  | 65282          | 38980          | 30705          | 25773        | 107,3;4                                   | 108,2;6                   |
| 13,7;-4 $13,8;-5$                        | 112,9; -7                                               | 54886  | 61636          | 39182          | 31011          | 26136        | 118,3;5                                   | 119,2;7                   |
| $2^{3,8;-3}_{3,9;-6}$                    | $12_{2,10;-8}^{2,9;-7}$                                 | 60096  | 59285          | 39377          | 31275          | 26442        | 129,3;6                                   | 12,2,8                    |
| 44,0;4                                   | 43,1;2                                                  | 9000   | 10617          | 13527          | 22157          | 45000        | $\frac{4}{5}$ 0,4;-4                      | $\frac{4}{5}$ 1,3;-2      |
| 54,0;4                                   | 53,1;2                                                  | 16500  | 20038          | 28164          | 43650          | 25667        | 51,4;-3                                   | $5^{1,3}; -1$             |
| 64,1;3                                   | $6_{3,3;0}^{3,2;1}$                                     | 23214  | 29422          | 45920          | 45986          | 27857        | $6_{2,4;-2}^{1,4;-3}$                     | 02 2.0                    |
| 6 <sub>4,2,2</sub><br>7 <sub>4,3,1</sub> | 73,3;0                                                  | 29464  | 39987          | 59402          | 39987          | 29464        | 73,4;-2                                   | 74,3;1                    |
| 84,3;1                                   | 73,4;-1<br>83,5;-3                                      | 35417  | 52950          | 60829          | 38601          | 30694        | 84,4;0                                    | 8 <sub>5,3;2</sub>        |
| 84,4;0<br>94,5;-1                        | 83,5; -2                                                | 41167  | 67954          | 55712          | 38960          | 31667        | 9 <sub>5,4;1</sub>                        | 96,3;3                    |
|                                          | 93,6;-3                                                 | 46773  | 81732          | 52398          | 39466          | 32455        | $10_{6,4;2}^{5,4;1}$                      | 10-0,3;3                  |
| 0.4,5;-1                                 | 1110 " .                                                |        |                |                |                |              |                                           |                           |
| $0^{4,6;-1}_{4,6;-2}$<br>$1^{4,7;-3}$    | $10_{3,7;-4}^{10_{3,7;-4}}$ $11_{3,8;-5}^{11_{3,8;-5}}$ | 52273  | 89952          | 51626          | 39938          | 33106        | 117,4;3                                   | $10_{7,3;4}$ $11_{8,3;5}$ |

TABLE VI.—Continued.

| Sub-b                                                                    | oranch                              |                |                | К              |                |                | Sub-bra                          | ınch                         |
|--------------------------------------------------------------------------|-------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------------------------|------------------------------|
| $^{b,e}Q\overline{1}$ ,1                                                 | $^{b,e}Q$ 1, $\overline{1}$         | <b> =</b> 1    | $\mp 0.5$      | Ö              | $\pm 0.5$      | $\pm 1$        | $^{b,e}Q_{1,\overline{1}}$       | $^{b,e}Q\overline{1}$ ,1     |
| 55,0;5                                                                   | 54,1;3                              | 9167           | 10753          | 13413          | 20634          | 55000          | 5₀,5;−5                          | 51,4;-3                      |
| 65,1;4                                                                   | $6_{4,2;2}^{4,1;3}$                 | 17024          | 20356          | 26402          | 45529          | 30952          | 61,5;-4                          | $6_{2,4;-2}$                 |
| 75,2;3                                                                   | 74,3;1                              | 24107          | 29481          | 41862          | 58783          | 33482          | 72,5;-3                          | /341                         |
| 05 3.9                                                                   | 84,4;0                              | 30694          | 38601          | 60829          | 52950          | 35417          | 02 5 2                           | 84,4;0                       |
| 95,4;1                                                                   | $9^{4,4,6}_{4,5;-1}$                | 36944          | 48332          | 74882          | 48332          | 36944          | $9^{4,5}_{4,5;-1}$               | 95 4.1                       |
| 05,5;0                                                                   | $10^{4,6}_{4,6}$ ; $-2$             | 42955          | 59745          | 75829          | 47998          | 38182          | 105 5.0                          | 106 4.2                      |
| $\frac{1}{2}$ 5,6;-1                                                     | 114,7;-3                            | 48788          | 73909          | 69690          | 48463          | 39205          | 116.5-1                          | 1174.3                       |
| $2^{3,0,-1}_{5,7;-2}$                                                    | $12_{4,8;-4}^{4,7,-3}$              | 54487          | 90148          | 65598          | 48989          | 40064          | $12_{7,5;2}^{6,5,1}$             | 128,4;4                      |
| 66,0;6                                                                   | 65,1;4                              | 9286           | 10861          | 13484          | 19779          | 65000          | $\frac{6}{7}0,6;-6$              | $\frac{6}{7}$ 1,5;-4         |
| <sup>1</sup> 6.1:5                                                       | $7_{5,2,3}$                         | 17411          | 20670          | 26163          | 43602          | 36161          | (1.6:-5                          | 125-3                        |
| O6.2:4                                                                   | 75,2;3<br>85,3;2                    | 24792          | 29932          | 39333          | 66715          | 38958          | 016.4                            | O3.5:-2                      |
| 76 3.3                                                                   | 95,4;1<br>105,5;0                   | 31667          | 38960          | 55712          | 67954          | 41167          | 93,6;-3 $104,6;-2$               | 94 5 - 1                     |
| U <sub>6.4:2</sub>                                                       | 105,5;0                             | 38182          | 47998          | 75829          | 59745          | 42955          | $\frac{10}{10}$ 4,6;-2           | 105 5.0                      |
| <sup>1</sup> 6.5:1                                                       | 115.6: -1                           | 44432          | 57343          | 90410          | 57343          | 44432          | 115.6:1                          | 116,5;1                      |
| <sup>2</sup> 6,6;0                                                       | 125,7;-2                            | 50481          | 67590          | 90893          | 57486          | 45673          | $^{12}6.6;-0$                    | 127,5;2                      |
| 77,0;7                                                                   | 76,1;5                              | 9375           | 10943          | 13559          | 19511          | 75000          | $\frac{7}{8}$ 0,7; $-7$          | $\frac{7}{8}$ 1,6;-5         |
| 87,1;6<br>97,2;5                                                         | 06.2.4                              | 17708          | 20926          | 26300          | 41002          | 41319          | 01 7 - 6                         | 02 6: -4                     |
| 97,2;5                                                                   | 76 3.3                              | 25333<br>32455 | 30348<br>39466 | 38859<br>52398 | 68174<br>81732 | 44333<br>46773 | $9^{1,7}_{2,7;-5}$               | $9^{2,6}_{3,6}; -3$          |
| 07,3;4                                                                   | 106 4:2                             | 39205          | 48463          | 69690          | 73909          | 48788          | 10374                            | $10_{4,6,-2}$                |
| 17,4;3                                                                   | <sup>1</sup> 16.5:1                 | 45673          | 57486          | 90893          | 67590          | 50481          | 114.7; -3                        | $\frac{11}{12}$ 5,6;-1       |
| 27,5;2                                                                   | 126,6;0                             | 43073          | 3/400          | 90093          | 07390          |                | $12_{5,7;-2}^{1,7,0}$            | 126,6;0                      |
| 88,0;8                                                                   | $^{87,1;6}_{0}$                     | 9444           | 11008          | 13620          | 19487          | 85000          | $\frac{8}{9}$ 0,8; -8            | $\frac{8}{0}$ 1,7;-6         |
| <sup>9</sup> 8.1:7                                                       | 27.2:5                              | 17944          | 21134          | 26465          | 39408          | 46444          | 91 07                            | 927:5                        |
| U8 2.6                                                                   | 107 3:4                             | 25773          | 30705          | 38980          | 65282          | 49636          | 102 06                           | 103 7: -4                    |
| <sup>1</sup> 8.3;5                                                       | 117.4:3                             | 33106          | 39938          | 51626          | 89952          | 52273          | 1 1 3 .8: -5                     | $^{11}4.7:-3$                |
| 28,4;4                                                                   | $12_{7,5;2}$                        | 40064          | 48989          | 65598          | 90148          | 54487          | $12_{4,8;-4}^{6,6,6}$            | $12_{5,7;-2}$                |
| 99,0;9                                                                   | 98,1;7                              | 9500           | 11060          | 13669          | 19524          | 95000          | 90,9;-9                          | $\frac{9}{10}$ 1,8;-7        |
| Uo 1-8                                                                   | 108.2:6                             | 18136          | 21307          | 26611          | 38815          | 51545          | <sup>10</sup> 1.9; -8            | 102.8: -6                    |
| 10 2.7                                                                   | 112 3.5                             | 26136          | 31011          | 39182          | 61636          | 54886          | 112.9:-7                         | 11285                        |
| 29,3;6                                                                   | 128,4;4                             | 33654          | 40360          | 51673          | 90961          | 57692          | $12_{3,9;-6}^{2,5}$              | $12_{4,8,-4}^{3,3,3}$        |
| 010,0;10                                                                 | 109,1;8                             | 9545           | 11103          | 13710          | 19565          | 105000         | $\frac{10}{11}$ 0,10;-10         | $10_{1,9;-8}$                |
| 110.1:9                                                                  | 110 2.7                             | 18295          | 21452          | 26737          | 38701          | 56629          | $^{11}_{1.10:-9}$                | $^{11}2.9:-7$                |
| 2 <sub>10,2;8</sub>                                                      | 129,3;6                             | 26442          | 31275          | 39377          | 59285          | 60096          | $12_{2,10;-8}$                   | $12_{3,9;-6}$                |
| 11,0;11                                                                  | 1110,1;9                            | 9583           | 11139          | 13744          | 19604          | 115000         | $\frac{11}{12}$ 0,11;-11         | $\frac{11}{12}$ 1,10;-9      |
| 211,1;10                                                                 | 1210,2;8                            | 18429          | 21576          | 26846          | 38736          | 61699          | $12_{1,11;-10}$                  | $12_{2,10;-8}$               |
| 212,0;12                                                                 | 1211,1;10                           | 9615           | 11170          | 13774          | 19633          | 125000         | 120,12; -12                      | 121,11;-1                    |
| <sup>b,o</sup> Q1̄,1                                                     | <sup>b,o</sup> Q1,Ī                 | <b> =</b> 1    | ∓0.5           | 0              | ±0.5           | <u>±1</u>      | b,0Q1,1                          | b,0Q1,1                      |
| $\frac{2}{3}$ 2,1;1                                                      | $\frac{2}{3}$ 1,2;-1                | 8333           | 8333           | 8333           | 8333           | 8333           | $\frac{2}{3}$ 1,2;-1             | $\frac{2}{3}$ 2,1;1          |
| 32,2;0                                                                   | $\frac{3}{3}$ 1,3;-2                | 14583          | 13160          | 11667          | 10173          | 8750           | $\frac{3}{3}^{1,2,-1}_{4,2,2;0}$ | 33.1:2                       |
| $^{4}2.3:-1$                                                             | $\frac{4}{1},4;-3$                  | 202'50         | 16126          | 12886          | 10584          | 9000           | # 3 2·1                          | 44 1.3                       |
| $5_{2,4;-2}$                                                             | 51,5;-4                             | 25667          | 17823          | 13300          | 10751          | 9167           | 54 2:2                           | 55,1;4                       |
| U2 E 2                                                                   | 0.4 2 5 . 12                        | 30952          | 18716          | 13464          | 10860          | 9286           | 65,2;3<br>76,2;4<br>87,2;5       | UK 1.5                       |
| 1264                                                                     | 71,6; -5<br>71,7; -6<br>81,8; -7    | 36161          | 19158          | 13555          | 10943          | 9375           | 76.2:4                           | 171.6                        |
| <sup>0</sup> 2 7: -5                                                     | $8_{1,8;-7}$                        | 41319          | 19374          | 13619          | 11008          | 9444           | 87.2;5                           |                              |
| <sup>9</sup> 2.8:-6                                                      | 21.9: <del>-</del> 8                | 46444          | 19487          | 13669          | 11060          | 9500           | 98.2:6                           | 79.1:8                       |
| U2.9: -7                                                                 | IV <sub>1.10:</sub> 9               | 51545          | 19553          | 13710          | 11103          | 9545           | 100 2.7                          | 1010 1:0                     |
| $\frac{1}{2}$ ,10; $-8$                                                  | $^{11}_{1.11:-10}$                  | 56629          | 19598          | 13744          | 11139          | 9583           | 1110.2:8                         | 1111110                      |
| $^{2}2,11;-9$                                                            | 121,12;-11                          | 61699          | 19632          | 13774          | 11170          | 9615           | 12,11,2;9                        | 12,1;11                      |
| $\frac{3}{4}$ 3,1;2                                                      | 32,2;0                              | 8750           | 10173          | 11667          | 13160          | 14583          | $\frac{3}{4}$ 1,3;-2             | 32.2;0                       |
| <b>#3 2.1</b>                                                            | $^{4}2.3:-1$                        | 15750          | 18280          | 19208          | 18280          | 15750          | 42 3 - 1                         | 43.2:1                       |
| 53,3;0                                                                   | 32.4:-2                             | 22000          | 24936          | 23333          | 19781          | 16500          | 33.3.0                           | 34 2:2                       |
| 03.4:-1                                                                  | $0_{2.5:-3}$                        | 27857          | 30089          | 25173          | 20331          | 17024          | 94.3:1                           | <b>υς</b> γ. χ               |
| '3.5:-2                                                                  | $\frac{7}{2},6;-4$                  | 33482          | 33722          | 25914          | 20668          | 17411          | 75.3:2                           | 162.4                        |
| $8_{3,6}; -3$                                                            | 02 7 5                              | 38958          | 36030          | 26251          | 20926          | 17708          | 06 3.3                           | 07 2.5                       |
| $9^{3,7}_{3,7;-4}_{03,8;-5}$                                             | $9^{2,7,-3}_{2,8;-6}_{10_{2,9;-7}}$ | 44333<br>49636 | 37360<br>38072 | 26455          | 21134          | 17944          | 97.3:4                           | 78 7.6                       |
| ∪3,8; −5<br>1                                                            | $\frac{102,9}{11}$                  | 54886          | 38443          | 26609<br>26737 | 21307          | 18136          | 108,3;5                          | 100 2.7                      |
| $     \begin{array}{c}       13,9;-6 \\       23,10;-7     \end{array} $ | 112,10; -8 $122,11; -9$             | 54880<br>60096 | 38646          | 26737<br>26846 | 21452<br>21576 | 18295<br>18429 | $11_{9,3;6} \\ 12_{10,3;7}$      | $11_{10,2;8} \\ 12_{11,2;9}$ |
|                                                                          |                                     |                |                |                |                |                |                                  |                              |

TABLE VI.—Continued.

| Ç2                                        | o-branch                                              | κ                       |                |                |                |                | Sub-branch                                              |                                                                          |  |
|-------------------------------------------|-------------------------------------------------------|-------------------------|----------------|----------------|----------------|----------------|---------------------------------------------------------|--------------------------------------------------------------------------|--|
| b,oQ1,1                                   | b,0Q1,1                                               | <b>∓</b> 1              | <b>∓</b> 0.5   | ô              | $\pm 0.5$      | $\pm 1$        | $b, aQ1, \overline{1}$                                  | b,0Q1,1                                                                  |  |
| 44,1;3                                    | 43,2;1                                                | 9000                    | 10584          | 12886          | 16126          | 20250          | 41,4;-3                                                 | 42,3;-1                                                                  |  |
| 34.2:2                                    | 53,3;0                                                | 16500                   | 19781          | 23333          | 24936          | 22000          | $5_{2,4}^{1,1}, -2$                                     | 53,3;0                                                                   |  |
| 04.3:1                                    | 63,4;-1                                               | 23214                   | 28237          | 30910          | 28237          | 23214          | 03.4:-1                                                 | 0/ 2.1                                                                   |  |
| 74,4;0                                    | $7_{3,5;-2}^{3,4;-1}$                                 | 29464                   | 35974          | 35396          | 29347          | 24107          | 74,4;0                                                  | 15 2.2                                                                   |  |
| $8_{4,5;-1}^{4,5;-1}$                     | 83,6;-3                                               | 35417                   | 42717          | 37550          | 29917          | 24792          | 85,4;1                                                  |                                                                          |  |
| 94,6; -2                                  | 93.7; -4                                              | 41167                   | 48149          | 38467          | 30347          | 25333          | 96,4;2                                                  | 97,3;4<br>108,3;5                                                        |  |
| $10^{4,0,-2}_{4,7,-3}$                    | $10_{3,8;-5}^{3,7,-4}$                                | 46773                   | 52121          | 38896          | 30705          | 25773          | 107,4;3                                                 | 10,3,4                                                                   |  |
| $11_{4,8;-4}$                             | $11_{3,9;-6}$                                         | 52273                   | 54738          | 39163          | 31011          | 26136          | 118,4;4                                                 | 119,3;6                                                                  |  |
| $12_{4,9;-5}^{4,8;-4}$                    | $12_{3,10;-7}^{3,9;-6}$                               | 57692                   | 56299          | 39373          | 31275          | 26442          | 129,4;5                                                 | 1210,3;6                                                                 |  |
|                                           |                                                       | 9167                    | 10751          | 13300          | 17823          | 25667          |                                                         |                                                                          |  |
| 55,1;4                                    | $\frac{5}{6}$ 4,2;2                                   | 17024                   | 20331          | 25173          | 30089          | 25667<br>27857 | $\frac{5}{6}$ 1,5;-4                                    | $\frac{5}{6}^{2,4};-2$                                                   |  |
| 65,2;3                                    | $\frac{6}{7}4,3;1$                                    | 24107                   | 29347          | 35396          | 35974          | 29464          | $\frac{6}{7}$ 2,5; $-3$                                 | $\begin{array}{c} 6_{3,4;-1} \\ 7_{4,4;0} \end{array}$                   |  |
| 75,3;2                                    | 74.4;0                                                | 30694                   | 38050          | 43064          | 38050          | 30694          | $7_{3,5;-2}^{2,5;}$                                     | 4.4;0                                                                    |  |
| 85,4;1<br>95,5;0                          | $8_{4,5;-1}$                                          | 36944                   | 46432          | 47757          | 38893          | 31667          | $^{6}4.5;-1$                                            | 05 4.1                                                                   |  |
| 05,5;0                                    | $9_{4,6;-2}$                                          | 42955                   | 54266          |                | 39458          | 32455          | 25.5:0                                                  | 96,4;2<br>107,4;3                                                        |  |
| 05,6;-1                                   | $10^{-7}_{4,7;-3}$                                    | 48788                   |                | 50083          |                | 22106          | 106.5;1                                                 | 107,4;3                                                                  |  |
| $\frac{1}{2}$ 5,7; $-2$                   | 114,8;-4                                              | 54487                   | 61181          | 51087          | 39937          | 33106          | 117,5;2                                                 | 118,4;4                                                                  |  |
| $2_{5,8;-3}$                              | $12_{4,9;-5}$                                         | 34461                   | 66823          | 51551          | 40360          | 33654          | 128,5;3                                                 | $12_{9,4;5}^{3,4,4}$                                                     |  |
| $\frac{6}{7}6,1;5$                        | 65,2;3                                                | 9286                    | 10860          | 13464          | 18716          | 30952          | $\frac{6}{7}$ 1.6; -5                                   | $\frac{6}{7}$ 2,5; -3                                                    |  |
| 6.2:4                                     | 15.3:2                                                | 17411                   | 20668          | 25914          | 33722          | 33482          | 12.6:-4                                                 | 1352                                                                     |  |
| 86,3;3                                    | 05 A.1                                                | 24792                   | 29917          | 37550          | 42717          | 35417          | 83.63                                                   | 04 5 - 1                                                                 |  |
| 86,3;3<br>96,4;2                          | 95.5;0                                                | 31667                   | 38893          | 47757          | 46432          | 36944          | 94.6:-2                                                 | 25 5.0                                                                   |  |
| U6 5:1                                    | 105.6: -1                                             | 38182                   | 47745          | 55515          | 47745          | 38182          | 105.6: -1                                               | $10^{3,3,0}_{6,5;1}$                                                     |  |
| 16.6.0                                    | $11_{572}$                                            | 44432                   | 56495          | 60341          | 48430          | 39205          | 116.60                                                  | 1175.2                                                                   |  |
| $2_{6,7;-1}^{0,0,0}$                      | $12^{\circ,7}_{5,8;-3}$                               | 50481                   | 65013          | 62764          | 48985          | 40064          | $12^{0,0,0}_{7,6;1}$                                    | 128,5;3                                                                  |  |
| 77,1;6                                    | 76,2;4                                                | 9375                    | 10943          | 13555          | 19158          | 36161          | $\frac{7}{8}$ 1,7;-6                                    | $\frac{7}{9}^{2,6};-4$                                                   |  |
| 07 2.5                                    | 86,3;3                                                | 17708                   | 20926          | 26251          | 36030          | 38958          | 02 75                                                   | $8^{2,0;-4}_{3,6;-3}$                                                    |  |
| 97 3.4                                    | 96,4;2                                                | 25333                   | 30347          | 38467          | 48149          | 41167          | 92.7. 4                                                 | 94.6; -2                                                                 |  |
| 9 <sub>7,3;4</sub><br>0 <sub>7,4;3</sub>  | 106,5;1                                               | 17708<br>25333<br>32455 | 39458          | 50083          | 54266          | 42955          | 93,7;-4 $104,7;-3$                                      | $10^{4.6;-2}_{5.6;-1}$                                                   |  |
| 17,4;3                                    | 116,6;0                                               | 39205                   | 48430          | 60341          | 56495          | 44432          | 115,7;-2                                                | 11,6,6;0                                                                 |  |
| $2_{7,6;1}^{7,3;2}$                       | $12_{6,7;-1}^{6,6;0}$                                 | 45673                   | 57370          | 68182          | 57370          | 45673          | $12_{6,7;-1}^{3,7;-2}$                                  | $12^{6,6;0}_{7,6;1}$                                                     |  |
|                                           |                                                       | 9444                    | 11008          | 13619          | 19374          | 41319          |                                                         |                                                                          |  |
| 88,1;7                                    | 87,2;5                                                | 17944                   | 21134          | 26455          | 37360          | 44333          | $8_{1,8;-7}$                                            | $\frac{8}{9}$ 2.7; -5                                                    |  |
| 9 <sub>8,2;6</sub><br>10 <sub>8,3;5</sub> | $9_{7,3;4}^{97,3;4}$<br>$10_{7,4;3}$                  | 25773                   | 30705          | 38896          | 52121          | 46773          | 102,8; -6                                               | $9^{217}_{3,7;-4}$                                                       |  |
| 8,3;5                                     | 107,4;3                                               | 33106                   | 39937          | 51087          | 61181          | 48788          | 92.8; -6 $103.8; -5$                                    | 104,7;-3                                                                 |  |
| 18,4;4<br>12 <sub>8,5;3</sub>             | 117,5;2<br>127,6;1                                    | 40064                   | 48985          | 62764          | 65013          | 50481          | $11_{4.8; -4} \\ 12_{5,8; -3}$                          | $11_{5,7;-2}^{17,7;-2}$ $12_{6,7;-1}^{17,7;-2}$                          |  |
|                                           |                                                       |                         |                |                |                |                |                                                         |                                                                          |  |
| 99,1;8                                    | 98,2;6                                                | 9500                    | 11060          | 13669          | 19487          | 46444          | $\frac{9}{10}$ 1,9;-8                                   | $\frac{9}{10}$ 2,8;-6                                                    |  |
| UQ 2:7                                    | 108 3:5                                               | 18136                   | 21307          | 26609          | 38072          | 49636          | 102.97                                                  | 103.8: -5                                                                |  |
| 19,3;6                                    | 118.4:4                                               | 26136                   | 31011          | 39163          | 54738          | 52273          | 113.9:-6                                                | 114.8 - 4                                                                |  |
| 129,4;5                                   | $12_{8,5;3}^{6,7,7}$                                  | 33654                   | 40360          | 51551          | 66823          | 54487          | $12_{4,9;-5}$                                           | $12_{5,8;-3}^{1,6;}$                                                     |  |
| 1010,1;9                                  | 109,2;7                                               | 9545                    | 11103          | 13710          | 19553          | 51545          | $\frac{10}{11}$ 1,10; $-9$                              | $10_{2,9;-7}$                                                            |  |
| 10.2.8                                    | 119.3:6                                               | 18295                   | 21452          | 26737          | 38443          | 54886          | $^{11}2.10:-8$                                          | 113.9:-6                                                                 |  |
| 210,3;7                                   | 129,4;5                                               | 26442                   | 31275          | 39373          | 56299          | 57692          | $12_{3,10;-7}$                                          | $12_{4,9;-5}$                                                            |  |
| 111,1;10                                  | 1110,2;8                                              | 9583                    | 11139          | 13744          | 19598          | 56629          | $\frac{11}{12}$ 1,11;-10                                | $\frac{11}{12}$ 2,10; -8                                                 |  |
| 211,1,10                                  | 1210,2,8                                              | 18429                   | 21576          | 26846          | 38646          | 60096          | $12_{2,11;-9}$                                          | $12^{2,10;-8}_{3,10;-7}$                                                 |  |
| 1212,1;11                                 | 1211,2;9                                              | 9615                    | 11170          | 13774          | 19632          | 61699          | 121,12;-11                                              | $12_{2,11;-9}$                                                           |  |
| b,eR1,1                                   | $^{b,o}P\overline{1},\overline{1}$                    | <b>∓1</b>               | ∓0.5           | 0              | ±0.5           | ±1             | b,eR1,1                                                 | $b, oP\overline{1}, \overline{1}$                                        |  |
|                                           |                                                       |                         |                |                |                |                |                                                         |                                                                          |  |
| $0_{0,0;0}$ $1_{1,0;1}$                   | $\frac{1}{2}$ 1,1;0                                   | 10000<br>15000          | 10000<br>15000 | 10000<br>15000 | 10000<br>15000 | 10000<br>15000 | $0_{0.0;0}$ $1_{0.1;-1}$                                | $     \begin{array}{c}       1,1;0 \\       2,1,2;-1   \end{array} $     |  |
| 22,0;2                                    | $2^{2,1;1}_{2,1;1}$<br>$3^{3,1;2}$                    | 25000                   | 24086          | 22847          | 21383          | 20000          | $\begin{array}{c} 10.1; -1 \\ 20.2; -2 \end{array}$     | $\frac{3}{3}$ 1,3; -2                                                    |  |
| 33,0;3                                    | 44 1.2                                                | 35000                   | 34083          | 32533          | 29584          | 25000          | $3_{0,3;-3}$                                            | $\frac{4}{2}$ 1,4; -3                                                    |  |
| 4,0,4                                     | 44,1;3<br>55,14                                       | 45000                   | 44117          | 42585          | 39100          | 30000          | $\frac{4}{2}0,4;-4$                                     | $5^{1,4}; -3$<br>$5^{1,5}; -4$                                           |  |
| 4 <sub>4,0;4</sub><br>5 <sub>5,0;5</sub>  | $\begin{array}{c} 5_{5,1;4} \\ 6_{6,1;5} \end{array}$ | 55000                   | 54140          | 52653          | 49126          | 35000          | 50,4; -4                                                | $6^{1,5;-4}_{1,6;-5}$                                                    |  |
| 6,0,6                                     | 70,1;5                                                | 65000                   | 64155          | 62702          | 59250          | 40000          | $\begin{array}{c} 5_{0,5}, -5 \\ 6_{0,5}, \end{array}$  | 71.0; -5                                                                 |  |
| 6 <sub>6,0;6</sub>                        | 7,1;6<br>8,1;7                                        | 75000                   | 74165          | 72737          | 69364          | 45000          | $\begin{array}{c} 6_{0,6;-6} \\ 7_{0,7;-7} \end{array}$ | $\begin{cases} 1.7; -6 \\ 8.9; 7 \end{cases}$                            |  |
| 7 <sub>7,0;7</sub><br>80,00               | 98,1;7<br>99,1;8                                      | 85000                   | 84173          | 82763          | 79453          | 50000          | 80.7; -7                                                | $   \begin{array}{c}     8_{1,8;-7} \\     9_{1,9;-8} \\   \end{array} $ |  |
| 8 <sub>8,0;8</sub>                        | 10.0.0                                                | 95000                   | 94179          | 92782          | 89522          | 55000          | $\frac{8}{9}$ 0,8;-8                                    | $10^{1,9;-8}_{1,10;-9}$                                                  |  |
| 99.0;9                                    | $10_{10,1;9}$                                         | 105000                  | 104184         | 102798         | 99576          | 60000          | 90,9; -9<br>100,40,-40                                  | 11,10; -9                                                                |  |
| $0_{10.0;10} \\ 1_{11,0;11}$              | $11_{11,1;10}^{11},1_{12}^{11}$ $12_{12,1;11}^{12}$   | 115000                  | 114188         | 112810         | 109620         | 65000          | $10_{0,10;-10} \\ 11_{0,11;-11}$                        | $11_{1,11;-1}^{11_{1,11;-1}}$ $12_{1,12;-1}^{11_{1,12;-1}}$              |  |
|                                           | 1417 111                                              | 113000                  | 114100         | 112010         | 10/040         | 00000          | * *O 11: 11                                             | 1~1 121                                                                  |  |

TABLE VI.—Continued.

| Sub-b                            | ranch                    |              |           | κ     |                |         |                         | branch                              |
|----------------------------------|--------------------------|--------------|-----------|-------|----------------|---------|-------------------------|-------------------------------------|
| b,eR1,1                          | $^{b,o}P\bar{1},\bar{1}$ | 干1           | $\mp 0.5$ | 0     | $\pm 0.5$      | $\pm 1$ | $^{b,e}R_{1,1}$         | $^{b,o}P\overline{1},\overline{1}$  |
| 10,1;-1                          | 21,2;-1                  | 15000        | 15000     | 15000 | 15000          | 15000   | 1,0;1                   | 22,1;1                              |
| 41 1.0                           | $3^{1,2,-1}_{2,2;0}$     | 16667        | 16667     | 16667 | 16667          | 16667   | $\frac{2}{3}$ 1,1;0     | 32,2;0                              |
| 32,1;1                           | 43,2;1                   | 26250        | 23549     | 21079 | 19563          | 18750   | $\frac{3}{4}$ 1,2;-1    | $\frac{4}{5}^{2,2,0}$               |
| T2 1.7                           | 54,2;2                   | 36000        | 33165     | 28748 | 23919          | 21000   | $\frac{4}{5}$ 1,3;-2    | $5^{2,4};-2$                        |
| 54,1;3                           | $6^{4,2,2}_{5,2;3}$      | 45833        | 43122     | 38409 | 30161          | 23333   | $5_{1,4}, -3$           | $6^{2,5}; -3$                       |
| 65,1;4                           | 76,2;4                   | 55714        | 53091     | 48508 | 38383          | 25714   | 61,5,-4                 | $7^{2,5}_{2,6}$ ; $-4$              |
| 76,1;5                           | 87,2;5                   | 65625        | 63059     | 58609 | 48001          | 28125   | 71,6;-5                 | 0275                                |
| 87 116                           | 98,2;6                   | 75556        | 73030     | 68678 | 58192          | 30556   | $\frac{81.7}{0}$ , -6   | $9^{2,7,-3}_{2,8;-6}_{10_{2,9;-7}}$ |
| 87,1;6<br>98,1;7                 | 109,2;7                  | 85500        | 83002     | 78720 | 68479          | 33000   | 91.8; -7                | $10^{2,0,-3}_{2,0,-7}$              |
| 09,1;8                           | 1110,2;8                 | 95455        | 92979     | 88749 | 78723          | 35454   | $10^{1,8,-7}_{1,9;-8}$  | 112,10;                             |
| 1,0,1;9                          | 12,1,2,9                 | 105416       | 102958    | 98767 | 88911          | 37917   | $11_{1,10;-9}^{1,9,-8}$ | $12^{2,10,-1}_{2,11;-1}$            |
| $\frac{2}{3}$ 0,2;-2             | $\frac{3}{4}$ 1,3; -2    | 20000        | 21383     | 22847 | 24086          | 25000   | 22,0;2                  | 33,1;2                              |
| $^{3}1.2:-1$                     | ±2.3: -1                 | 18750        | 19563     | 21079 | 23549          | 26250   | J2 1·1                  | <b>≭</b> ₹ 2 • 1                    |
| *2.2:0                           | 33.3:0                   | 28000        | 23609     | 22028 | 23609          | 28000   | *2.2:0                  | 33,3:0                              |
| 33.2:1                           | 04.3.1                   | 37500        | 32338     | 26305 | 24633          | 30000   | <sup>3</sup> 2.3: -1    | $\frac{6}{7}3,4;-1$                 |
| UA 2.2                           | 15 3.2                   | 47143        | 42259     | 34093 | 27060          | 32143   | U2 A2                   | /3.5: →2                            |
| 157.2                            | 06 3.3                   | 56875        | 52226     | 43935 | 31293          | 34375   | 12.5:-3                 | Ď2 6+ 2                             |
| 86,2;4<br>97,2;5<br>08,2;6       | 97.3:4                   | 66667        | 62172     | 54199 | 37664          | 36667   | <sup>0</sup> 2.6: -4    | $9_{3.7:-4}$                        |
| 97.2;5                           | 102 3.5                  | 76500        | 72110     | 64411 | 46127          | 39000   | 72 7 5                  | 93,7;-4 $103,8;-5$                  |
| 08.2:6                           | 110 3.6                  | 86364        | 82050     | 74550 | 56030          | 41364   | 102.8: -6               | **3.9:6                             |
| 19,2;7                           | $12_{10,3;7}^{10,0}$     | 96250        | 91993     | 84638 | 66512          | 43750   | $11_{2,9;-7}$           | 123,10;                             |
| $\frac{3}{4}$ 0,3;-3             | $\frac{4}{5}$ 1,4; -3    | 25000        | 29584     | 32533 | 34083          | 35000   | 33,0;3                  | $\frac{4}{5}4,1;3$                  |
| 4 <sub>1,3</sub> ; -2            | 52,4;-2                  | 21000        | 23919     | 28748 | 33165          | 36000   | 43,1;2                  | 54,2;2                              |
| $5^{1,3}, -2$ $5^{2,3}, -1$      | $6_{3,4;-1}^{2,4;-2}$    | 30000        | 24633     | 26305 | 32338          | 37500   | 53,1;2<br>53,2;1        | 64,2;2                              |
| 63,3;0                           | 74,4;0                   | 39286        | 31500     | 26801 | 31500          | 39286   | 63,3;0                  | 74,4;0                              |
| 7 <sub>4,3;1</sub>               | 85,4;1                   | 48750        | 41277     | 31054 | 31018          | 41250   | 73,4;-1                 | 84,5;-1                             |
| 85,3;2                           | 96,4;2                   | 58333        | 51336     | 39046 | 31553<br>33704 | 43333   | 83,5;-2                 | 94,6; -2                            |
| 96,3;3                           | 107,4;3                  | 68000        | 61325     | 49147 | 33704          | 45500   | 93,6; -3                | $10^{4,0}_{4,7;-3}$                 |
| 07,3;4                           | 118,4;4                  | 77727        | 71271     | 59638 | 37919          | 47727   | $10^{3,0;-3}_{1,1}$     | 114,8;-4                            |
| 18,3;5                           | 129,4;5                  | 87500        | 81200     | 70013 | 44472          | 50000   | 113,8;-5                | $12_{4,9;-5}^{4,8;-4}$              |
| 40,4;-4                          | $\frac{5}{6}$ 1,5;-4     | 30000        | 39100     | 42585 | 44117          | 45000   | 44,0;4                  | 55,1;4                              |
| $5_{1,4}^{1,1}, -3$              | 62,5;-3                  | 23333        | 30161     | 38409 | 43122          | 45833   | 54,1;3                  | 65,2;3                              |
| 62,4;-2                          | 1352                     | 32143        | 27060     | 34093 | 42259          | 47143   | U4 2.2                  | 75,3;2                              |
| $7_{0,4;-1}^{2,4;-1}$            | 84,5; -1                 | 41250        | 31018     | 31054 | 41277          | 48750   | 74,3;1                  | 85,4;1                              |
| 84,4;0                           | 95,5;0                   | 50556        | 40057     | 31211 | 40057          | 50556   | 84,4;0                  | 95,5;0                              |
| 95 1.1                           | 106 5-1                  | 60000        | 50269     | 35484 | 38709          | 52500   | 945 - 1                 | $10^{5,6}_{5,6}$ ; -1               |
| 06,4;2                           | 117 5.2                  | 69546        | 60393     | 43709 | 37729          | 54546   | $10^{4,6}_{4,6},-2$     | $\frac{11}{12}5,7;-2$               |
| 17,4;3                           | 128,5;3                  | 79167        | 70407     | 54102 | 37878          | 56667   | $11_{4,7;-3}^{4,0;-2}$  | $12^{5,7}_{5,8;-3}$                 |
| 5 <sub>0,5;-5</sub>              | $\frac{6}{7}$ 1,6;-5     | 35000        | 49126     | 52653 | 54140          | 55000   | 55.0:5                  | 66.1:5                              |
| $6_{1,5}$ ; -4                   | $7_{2,6;-4}^{7,6;-4}$    | 25714        | 38383     | 48508 | 53091          | 55714   | 65,1;4                  | 76,2;4                              |
| $7_{2,5}, -3$                    | 83 6 - 3                 | 34375        | 31293     | 43935 | 52226          | 56875   | 75,2;3                  | 06 3.3                              |
| $8_{3,5;-2}$                     | $9^{3,6}_{4,6;-2}$       | 43333        | 31553     | 39046 | 51336          | 58333   | 05 2.2                  | 96,4;2                              |
| 94.5·—.1                         | 105.6:-1                 | 52500        | 38709     | 35484 | 50269          | 60000   | 95 4.1                  | 106 5.1                             |
| U ち ち・ハ                          | 11 K K·U                 | 61818        | 48913     | 35365 | 48913          | 61818   | 105,5;0                 | 116.6;0                             |
| 16,5;1                           | 127,6;1                  | 71250        | 59273     | 39679 | 47228          | 63750   | $11_{5,6;-1}^{5,5;0}$   | $12_{6,7;-1}^{0,0,0}$               |
| 60,6;-6                          | $\frac{7}{8}$ 1,7;-6     | 40000        | 59250     | 62702 | 64155          | 65000   | 6, 0,4                  | 77 1.6                              |
| 11.6:-5                          | O2 7·5                   | 28125        | 48001     | 58609 | 63059          | 65625   | 76,1;5<br>86,2;4        | 87,2;5<br>97,3;4                    |
| <sup>0</sup> 2.6: -4             | 23.7: <b>-4</b>          | <b>36667</b> | 37664     | 54199 | 62172          | 66667   | 86.2:4                  | 97 3.4                              |
| <sup>9</sup> 3.6: -3             | 104 7: - 3               | 45500        | 33704     | 49147 | 61325          | 68000   | 76.3·3                  | 107 4.3                             |
| J4.6: ~2                         | 115.7:-2                 | 54546        | 37729     | 43709 | 60393          | 69546   | 106 4.2                 | 1175.7                              |
| 15,6;-1                          | $12_{6,7;-1}^{6,7;-1}$   | 63750        | 47228     | 39679 | 59273          | 71250   | $11_{6,5;1}^{0,4,2}$    | $12_{7,6;1}^{7,5,2}$                |
| 70.7;-7                          | $^{8}_{01,8;-7}$         | 45000        | 69364     | 72737 | 74165          | 75000   | 77.0:7                  | 88 1.7                              |
| °1.7: <del>-</del> 6             | 92.8: -6                 | 30556        | 58192     | 68678 | 73030          | 75556   | 87.1.6                  | 78.2:6                              |
| $0^{2,7;-5}_{2,7;-4}$            | 103.8:-5                 | 39000        | 46127     | 64411 | 72110          | 76500   | 97.2:5                  | 108 3.5                             |
| $0_{3,7;-4}$                     | 114.84                   | 47727        | 37919     | 59638 | 71271          | 77727   | 107.3:4                 | 1101.1                              |
| $1_{4,7;-3}$                     | $12_{5,8;-3}^{1,0,1}$    | 56667        | 37878     | 54102 | 70407          | 79167   | 117,4;3                 | 128,5;3                             |
| 80,8;-8                          | $9_{1,9;-8}$             | 50000        | 79453     | 82763 | 84173          | 85000   | 88,0;8                  | 9 <sub>9,1;8</sub>                  |
| 71 R· 7                          | 102 07                   | 33000        | 68479     | 78720 | 83002          | 85500   | <sup>9</sup> 8.1:7      | 100 2.7                             |
| $0_{2,8;-6}^{1,3,}$ $1_{3,8;-5}$ | 11306                    | 41364        | 56030     | 74550 | 82050          | 86364   | 108.2:6                 | 119.3.6                             |
|                                  | $12_{4,9;-5}^{6,5,6}$    | 50000        | 44472     | 70013 | 81200          | 87500   | 118,3;5                 | 129,4;5                             |

TABLE VI.—Continued.

| Sub-b                                     | oranch                                        |               |                | κ              |                |                | Sub-l                                                              | branch                             |
|-------------------------------------------|-----------------------------------------------|---------------|----------------|----------------|----------------|----------------|--------------------------------------------------------------------|------------------------------------|
| <sup>b,e</sup> R1,1                       | $^{b,o}P\overline{1}$ , $\overline{1}$        | <b>∓</b> 1    | $\mp 0.5$      | 0              | $\pm 0.5$      | ±1             | b,eR1,1                                                            | $^{b,o}P\overline{1}.\overline{1}$ |
| 90,9;-9                                   | 101,10;-9                                     | 55000         | 89522          | 92782          | 94179          | 95000          | 99,0;9                                                             | 1010,1;9                           |
| $10_{1,9;-8}^{0,3,-9}$                    | $11_{2,10;-8}^{1,10;}$                        | 35454         | 78723          | 88749          | 92979          | 95455          | 109,1;8                                                            | 1110,2;8                           |
| $11_{2,9;-7}^{1,9;-7}$                    | $12_{3,10;-7}^{2,10;}$                        | 43750         | 66512          | 84638          | 91993          | 96250          | 119,2;7                                                            | 1210,3;7                           |
|                                           |                                               |               |                |                |                |                |                                                                    |                                    |
| $10_{0,10;-10}$                           | $\frac{11}{12}$ 1,11;-10                      | 60000         | 99576          | 102798         | 104184         | 105000         | $10_{10,0;10}$                                                     | $\frac{11}{12}$ 11,1;10            |
| $11_{1,10;-9}$                            | $12_{2,11;-9}$                                | 37917         | 88911          | 98767          | 102958         | 105416         | 11 <sub>10,1;9</sub>                                               | 1211,2;9                           |
| 110,11; -11                               | 121,12;-11                                    | 65000         | 109620         | 112810         | 114188         | 115000         | 11 <sub>11,0;11</sub>                                              | 1212,1;11                          |
| b,oR1,1                                   | $b,eP1,\overline{1}$                          |               | ∓0.5           | 0              | ±0.5           |                | b,oR1,1                                                            | b,eP1,1                            |
|                                           |                                               |               |                |                |                | ±1             |                                                                    |                                    |
| 11,1;0                                    | $\frac{2}{3}$ 0,2;-2                          | 5000<br>10000 | 7226<br>16667  | 10000<br>21498 | 12774<br>23874 | 15000<br>25000 | $\frac{1}{2}$ 1,1;0                                                | $\frac{2}{3}$ 2,0;2                |
| $\frac{2}{3}$ 1,2;-1                      | $\frac{3}{4}0,3;-3$                           | 15000         | 27406          | 32266          | 34065          | 35000          | $\begin{array}{c} 2^{1,1,0} \\ 2^{2,1;1} \\ 3^{3,1;2} \end{array}$ | 33,0;3                             |
| $\frac{3}{4}$ 1,3;-2                      | $\frac{4}{5}0.4;-4$                           | 20000         | 38266          | 42535          | 44115          | 45000          | 3,1;2                                                              | 44,0;4                             |
| $\frac{4}{5}$ 1,4;-3                      | $\frac{5}{6}$ 0,5; -5                         | 20000         | 48829          | 52 <b>6</b> 43 | 54140          | 55000          | 44,1;3                                                             | <sup>3</sup> 5.0:5                 |
| $\frac{5}{6}$ 1,5;-4                      | $\frac{0}{7}0,6;-6$                           | 25000         | 40049<br>50146 |                |                |                | JE 1.4                                                             | 66,0;6                             |
| $6_{1,6;-5}$                              | $\frac{7}{9}0.7; -7$                          | 30000         | 59146          | 62700          | 64155          | 65000          | 66,1;5                                                             | /7 n·7                             |
| $^{\prime}$ 1.7:-6                        | $^{8}_{0,8;-8}$                               | 35000         | 69327          | 72736          | 74165          | 75000          | / 7 1·6                                                            | ወደ ብ:ጽ                             |
| O1 8 · 7                                  | 90.9: -9                                      | 40000         | 79440          | 82762          | 84173          | 85000          | 00 1.7                                                             | 99.0:9                             |
| 9 <sub>1.9:-8</sub>                       | $10_{0.10:-10}$                               | 45000         | 89517          | 92782          | 94179          | 95000          | <sup>9</sup> 9.1:8                                                 | IU10.0:10                          |
| <sup>LU</sup> 1.10: -9                    | 110.11;11                                     | 50000         | 99574          | 102798         | 104184         | 105000         | IU10.1:9                                                           | 1111.0:11                          |
| $11_{1,11;-10}$                           | $12_{0,12},-12$                               | 55000         | 109619         | 112810         | 114188         | 115000         | 11,1,1,10                                                          | 1212,0;12                          |
| 2                                         | 3. 2. 4                                       | 1667          | 2792           | 5168           | 10000          | 16667          | 24.0.                                                              | 30 4.4                             |
| $\frac{2}{3}$ 2,1;1                       | $\frac{3}{4}$ ,2;-1                           | 3750          | 7602           | 15000          | 22398          | 26250          | $\frac{2}{3}$ 1,2;-1                                               | $\frac{3}{4}$ 2,1;1                |
| 32,2;0                                    | $\frac{4}{5}$ 1,3;-2                          | 6000          | 14796          | 26797          | 33039          | 36000          | 32,2;0                                                             | $\frac{4}{5}3,1;2$                 |
| $\frac{4}{5}$ 2,3;-1                      | $5_{1,4;-3}$                                  | 8333          | 24389          | 37946          | 43109          | 45833          | 43,2;1                                                             | 5 <sub>4,1;3</sub>                 |
| $^{3}2,4;-2$                              | $\frac{6}{7}$ 1,5;-4                          | 10714         | 25112          | 40405          |                |                | 54,2;2                                                             | 65,1;4                             |
| 02.5 3                                    | $\frac{7}{9}$ 1,6; -5                         | 10714         | 35443          | 48405          | 53090          | 55714          | 65,2;3                                                             | 76,1;5                             |
| 12.6:-4                                   | $8_{1,7,-6}^{7,0}$                            | 13125         | 46736          | 58587          | 63059          | 65625          | 6 2.4                                                              | 071.6                              |
| 02.7:-5                                   | $9_{1.8:-7}$                                  | 15556         | 57689          | 68672          | 73029          | 75556          | 87,2;5<br>98,2;6                                                   | 98.1:7                             |
| 92 816                                    | <sup>10</sup> 1.9: -8                         | 18000         | 68283          | 78719          | 83002          | 85500          | 98,2;6                                                             | 100.1:8                            |
| 1U2.9: -7                                 | $^{11}_{1.10:-9}$                             | 20455         | 78648          | 88749          | 92979          | 95455          | 1U <sub>0-2:7</sub>                                                | 11 <sub>10.1:9</sub>               |
| $11_{2,10;-8}$                            | $12_{1,11;-10}$                               | 22917         | 88882          | 98767          | 102958         | 105416         | $11_{10,2;8}^{5,5,7}$                                              | 1211,1;10                          |
| 33,1;2                                    | 42,2;0                                        | 1250          | 1537           | 2692           | 6941           | 18750          | $\frac{3}{4}$ 1,3;-2                                               | 42,2;0                             |
| 3,1;2                                     | 52,2;0                                        | 3000          | 4022           | 8877           | 19900          | 28000          | $\frac{1}{4}, \frac{3}{5}, \frac{-2}{-2}$                          | 53,2;1                             |
| 43,2;1                                    | $\frac{5}{6}$ 2,3;-1                          | 5000          | 7698           | 19335          | 31792          | 37500          | $\frac{-2}{5}$ , $\frac{-1}{5}$                                    | 6, 2, 2                            |
| 53,3;0                                    | $\frac{6}{7}^{2,4};-2$                        | 7143          | 13138          | 19335<br>31685 | 42193          | 47143          | 53,3;0                                                             | $\frac{6}{7}$                      |
| $6_{3,4;-1}$                              | $7_{2,5;-3}$                                  | 9375          | 20912          | 43306          | 52219          | 56875          | 64,3;1<br>75,3;2                                                   | 75,2;3                             |
| $7_{3,5;-2}$                              | $\frac{8}{2.6}$ ; -4                          | 11667         | 31041          | 54046          | 62172          | 66667          | \$5,3;2                                                            | 86.2;4                             |
| $\frac{8}{9}3,6;-3$                       | $9^{2,7};-5$                                  |               | 42620          | 64375          | 72111          | 76500          | 86,3;3                                                             | 97,2;5                             |
| 93,7;-4                                   | $10^{2,7}_{2,8;-6}$                           | 14000         | 42020<br>54424 | 74543          | 92050          | 06264          | 27.3:4                                                             | 108,2;6                            |
| 1U3.8:5                                   | $^{11}_{2.9:-7}$                              | 16364         | 54434<br>65840 | 74542          | 82050          | 86364          | 108 3.5                                                            | 119,2,7                            |
| $11_{3,9;-6}$                             | $12_{2,10;-8}$                                | 18750         | 05840          | 84638          | 91993          | 96250          | 119,3;6                                                            | $12_{10,2;8}^{7,2,1}$              |
| 44,1;3                                    | 53,2;1                                        | 1000          | 1162           | 1666           | 4522           | 21000          | $\frac{4}{5}$ 1,4;-3                                               | $\frac{5}{6}$ 2,3;-1               |
| 54,2;2                                    | 63,3;0                                        | 2500          | 2920           | 5238           | 16127          | 30000          | $5^{2,4};-2$                                                       | 63,3;0                             |
| 64,3;1                                    | 73.3.0 $73.4;-1$                              | 4286          | 5148           | 12183          | 29700          | 39286          | $6^{2,4}_{3,4;-1}$                                                 | 74,3;1                             |
| 74,4;0                                    | $8_{3,5;-2}^{3,4,-1}$                         | 6250          | 8062           | 23299<br>36249 | 41022          | 48750          | 74,4;0                                                             | 85,3;2                             |
| 8                                         | 93,5; -2                                      | 8333          | 12161          | 36249          | 51302          | 58333          | 85,4;1<br>0                                                        | 96,3;3                             |
| $\frac{8}{0}$ 4,5;-1                      | 93,6;-3                                       | 10500         | 18094          | 48371          | 61321          | 68000          | 96,4;2                                                             | 107,3;4                            |
| 94,6;-2                                   | $10_{3,7;-4}$                                 | 12727         | 26418          | 59438          | 71271          | 77727          | 10,4,2                                                             | 11,3,4                             |
| $10_{4,7;-3}^{4,0;2}$<br>$11_{4,8;-4}$    | $11_{3,8;-5}^{3,8;-5}$ $12_{3,9;-6}^{3,9;-6}$ | 15000         | 37104          | 69962          | 81200          | 87500          | $10^{0,4,2}_{7,4;3}$ $11_{8,4;4}$                                  | $11_{8,3;5}$ $12_{9,3;6}$          |
|                                           |                                               |               |                |                |                |                |                                                                    |                                    |
| 55,1;4                                    | $\frac{6}{7}$ 4,2;2                           | 833           | 966            | 1253           | 2984           | 23333          | $\frac{5}{6}$ 1,5;-4                                               | $\frac{6}{7}$ 2,4;-2               |
| 25,2;3                                    | 4.3:1                                         | 2143          | 2475           | 3549           | 11918          | 32143          | U2.5: -3                                                           | $\frac{7}{9}3,4;-1$                |
| 5.3:2                                     | 04.4:0                                        | 3750          | 4309           | 7685           | 26263          | 41250          | 73.5; -2                                                           | 84.4:0                             |
| 85.4:1                                    | 94.5:-1                                       | 5556          | 6389           | 15266<br>27015 | 39231          | 50556          | 84.5:-1                                                            | 95.4:1                             |
| 95.5:0                                    | $^{10}4.6:-2$                                 | 7500          | 8819           | 27015          | 50150          | 60000          | 25.5.0                                                             | 106.4:2                            |
| ¹ <sup>10</sup> 5.6; −1                   | $\frac{11}{124},7;-3$                         | 9545          | 11954          | 40562          | 60377          | 69546          | 106.5:1                                                            | 1174.3                             |
| $11_{5,7;-2}^{5,5;-1}$                    | $12_{4,8;-4}$                                 | 11667         | 16365          | 53190          | 70405          | 79167          | $11_{7,5;2}^{6,5,2}$                                               | 128,4;4                            |
| 6, 4, 5                                   | 75,2;3                                        | 714           | 829            | 1052           | 2102           | 25714          | $\frac{6}{7}$ 1,6;-5                                               | $7_{2,5}; -3$                      |
| 6 <sub>6,1;5</sub>                        | 85,3;2<br>85,3;2                              | 1875          | 2170           | 2825           | 8386           | 34375          | 12 6: -4                                                           | 035-2                              |
| 76,2;4                                    | 95,3;2                                        | 3333          | 3839           | 5485           | 21522          | 43333          | 82,6,-4                                                            | 94,5;-1                            |
| 86,3;3                                    | 95,4;1<br>10                                  | 5000          | 5717           | 10057          | 36378          | 52500          | $8_{3,6;-3}^{2,6;-3}$ $9_{4,6;-2}^{4,6;-2}$                        | 105,5;0                            |
| 9 <sub>6,4;2</sub><br>10 <sub>6,5;1</sub> | 105.5:0                                       | 6818          | 7736           | 18198          | 48537          | 61818          | $10^{4,6;-2}_{5,6;-1}$                                             | 116,5;1                            |
| 106 5.1                                   | $\frac{11}{12}$ 5,6; -1                       |               | 9912           | 30549          | 59217          | 71250          | $11_{6,6;0}^{105,6;-1}$                                            | $12_{7,5;2}^{16,5;1}$              |
| 116,6;0                                   | $12_{5,7;-2}$                                 | 8750          | UUTT           |                |                |                |                                                                    |                                    |

TABLE VI.—Continued.

|                                          |                                                 |                | TABLE        |              | iinaeu.    |       |                                          |                                                   |
|------------------------------------------|-------------------------------------------------|----------------|--------------|--------------|------------|-------|------------------------------------------|---------------------------------------------------|
| Sub-bi                                   | ranch ${}^{b,e}P_1$ , $\overline{1}$            | <b>∓</b> 1     | ∓0.5         | κ<br>0       | ±0.5       | ±1    | Sub-t<br>6,0 <b>R</b> 1, <del>1</del>    | $\begin{array}{c} {}^{b,e}P\bar{1},1 \end{array}$ |
| 77,1;6                                   | 86,2;4                                          | 625            | 726          | 918          | 1615       | 28125 | 7,7;-6                                   | $\frac{8}{0}$ 2,6;-4                              |
| 67.2:5                                   | 96 3.3                                          | 1667           | 1932         | 2461         | 5953       | 36667 | 02 7 - 5                                 | $93,6;-3\\104,6;-2$                               |
| 97.3.4                                   | 106.4:2                                         | 3000           | 3467         | 4517         | 16387      | 45500 | 93.7:-4                                  | $10_{4,6;-2}$                                     |
| 107,4;3                                  | J-16.5:1                                        | 4545           | 5226         | 7432         | 32088      | 54546 | $^{104.7:-3}$                            | 11561                                             |
| $11_{7,5;2}$                             | 126,6;0                                         | 6250           | 7134         | 12369        | 46152      | 63750 | $11_{5,7;-2}$                            | 126,6;0                                           |
| 88,1;7                                   | 97,2;5                                          | 556            | 645          | 816          | 1342       | 30556 | $\frac{8}{9}$ 1.8; $-7$                  | $\frac{9}{10}^{2,7};-5$                           |
| 98.2.6                                   | 107.3:4                                         | 1500           | 1741         | 2210         | 4454       | 39000 | 72 R·                                    | 1027/                                             |
| 108.3:5                                  | 117.4:3                                         | 2727           | 3158         | 4030         | 12003      | 47727 | 103.8 - 5                                | $^{11}4.7:-3$                                     |
| 118,4;4                                  | $12_{7,5;2}^{7,1,5}$                            | 4167           | 4808         | 6264         | 26503      | 56667 | $11_{4,8;-4}^{6,6}$                      | $12_{5,7;-2}^{1,1,0}$                             |
| 99,1;8                                   | 108,2;6                                         | 500            | 581          | 734          | 1176       | 33000 | $9_{1,9;-8}$                             | $\frac{10}{11}$ 2,8;-6                            |
| 109.2:7                                  | 118,3;5                                         | 1364           | 1583         | 2009         | 3581       | 41364 | 102.9: -7                                | 11385                                             |
| 119,3;6                                  | 128,4;4                                         | 2500           | 2898         | 3688         | 8874       | 50000 | $11_{3,9;-6}$                            | $12_{4,8;-4}^{5,5}$                               |
| 1010,1;9                                 | 119,2;7                                         | 455            | 528          | 667          | 1059       | 35454 | $10_{1,10;-9}$                           | $\frac{11}{12}$ 2,9; $-7$                         |
| 11,0,2,8                                 | $12_{9,3;6}^{9,2,7}$                            | 1250           | 1452         | 1841         | 3076       | 43750 | $11_{2,10;-8}^{1,10,-9}$                 | $12_{3,9;-6}^{2,9,-7}$                            |
| 11 <sub>11,1;10</sub>                    | 12 <sub>10,2;8</sub>                            | 417            | 484          | 611          | 967        | 37917 | 11,11;-10                                | 122,10;-8                                         |
|                                          |                                                 | D. b           | prolate-c    | r-oblate s   | ub-branch  | ies.  |                                          |                                                   |
| <sup>b,e</sup> Rī,3                      | b,oP1,3                                         | ∓1             | ∓0.5         | 0            | ±0.5       | ±1    | <sup>b,e</sup> R3,ī                      | b,oP3,1                                           |
| 22,0;2                                   | 31,3;-2                                         | 1667           | 1097         | 486          | 101        |       | $\frac{2}{3}0,2;-2$                      | 3                                                 |
| $\frac{3}{3}^{2,0;2}$                    | $\frac{1}{4}, \frac{3}{4}, \frac{-2}{-3}$       | 3750           | 1452         | 297          | 32         |       | $\frac{20,2;-2}{31,2;-1}$                | $\frac{3}{4}$ 3,1;2                               |
| 42,2;0                                   | $5_{1,5;-4}^{1,4,-3}$                           | 6000           | 1159         | 140          | 14         |       | $\frac{3}{4}, \frac{1}{2}, \frac{2}{1}$  | 44,1;3<br>55,1;4                                  |
| $5^{2,2,0}_{2,3;-1}$                     | 61,6;-5                                         | 8333           | 758          | 77           | 9<br>7     |       | 4 <sub>2,2;0</sub> 5 <sub>3,2;1</sub>    | 66,1;5                                            |
| 02.4:-2                                  | $7_{1,7;-6}$                                    | 10714          | 481          | 54           | 7          |       | 04 2.2                                   | 77.1;6                                            |
| 1253                                     | 81 8: -7                                        | 13125          | 323          | 42           | 6          |       | 7 <sub>5,2;3</sub><br>8 <sub>6,2;4</sub> | 88.1:7                                            |
| °2.6:-4                                  | 9 <sub>1.9:-8</sub>                             | 15556          | 238          | 35           | 5          |       | 86,2;4                                   | 88,1;7<br>99,1;8                                  |
| 92.7:-5                                  | <sup>1U</sup> 1.10: −9                          | 18000          | 191          | 30           | 4          |       | 97 2.5                                   | 1010 1.0                                          |
| 1U2 8: -6                                | $\frac{11}{12}$ 1,11;-10                        | 20455          | 163          | 27           | 4          |       | 108 2.6                                  | 1111.1:10                                         |
| $^{11}2,9;-7$                            | $12_{1,12;-11}$                                 | 22917          | 144          | 24           | 3          |       | $11_{9,2;7}^{6,2,6}$                     | 1212,1;11                                         |
| $\frac{3}{4}$ 3,0;3                      | $\frac{4}{5}$ 2,3; -1                           | 1250           | 1323         | 1091         | 416        |       | $\frac{3}{4}0,3;-3$                      | $\frac{4}{5}3,2;1$                                |
| <b>*3.1:2</b>                            | 32,4:-2                                         | 3000           | 2753         | 1252         | 163        |       | ±1.3:-2                                  | 4.2:2                                             |
| 33.2:1                                   | $0_{2.5:-3}$                                    | 5000           | 3538         | 737          | 62         |       | <sup>3</sup> 2.3: -1                     | 05.2:3                                            |
| 0.4.3.0                                  | 12.6:-4                                         | 7143           | 3362         | 375          | 35         |       | $6_{3,3;0}$                              | 162.4                                             |
| $7_{3,4;-1}^{3,3;0}$                     | o <sub>2.7</sub> ; −5                           | 9375           | 2573         | 219          | 26         |       | 63,3;0<br>74,3;1                         | 87 2.5                                            |
| °3.5: −2                                 | $9_{2.8:-6}$                                    | 11667          | 1754         | 155          | 20         |       | 05 2.2                                   | 78.2.6                                            |
| 93,6;-3                                  | $10^{-7}_{2,9}$ ; $-7$                          | 14000          | 1174         | 124          | 17         |       | 96.3-3                                   | 100 2.7                                           |
| $10_{3,7;-4}$                            | $\frac{11}{12}, \frac{10}{10}, -8$              | 16364          | 826          | 104          | 14         |       | 107 3.4                                  | 1110 2.8                                          |
| $11_{3,8;-5}^{6,7,1}$                    | $12_{2,11;-9}$                                  | 18750          | 628          | 90           | 12         |       | 11,3,4                                   | 1211,2;9                                          |
| 44,0;4                                   | 53,3;0                                          | 1000           | 1144         | 1259         | 855        |       | $\frac{4}{5}$ 0.4; -4                    | 53,3;0                                            |
| <sup>3</sup> 4.1:3                       | 03,4;-1                                         | 2500           | 2771         | 2305         | 514        |       | $^{3}1.4:-3$                             | V4 3·1                                            |
| $6_{4,2;2}$ $7_{4,3;1}$                  | $^{1}3.5:-2$                                    | 4286           | 4433         | 2107         | 189        |       | U2 4· - 2                                | 5.3:2                                             |
| 64,3;1                                   | $8_{3,6}$ ; $-3$                                | 6250           | 5663         | 1258         | 92         |       | 73,4;-1                                  | °6.3:3                                            |
| 84,4;0                                   | 93,7;-4                                         | 8333           | 6007         | 676          | 62         |       |                                          | 97 2.4                                            |
| $9^{4,4,0}_{4,5;-1}$<br>$10_{4,6;-2}$    | $\frac{10}{11}, 8; -5$                          | 10500          | 5335         | 411          | 47         |       | 95,4;1<br>10 <sub>6,4;2</sub><br>117,4;3 | 100 2.5                                           |
| $\frac{104,6}{11}$                       | $11_{3,9;-6}$                                   | 12727<br>15000 | 4082         | 298          | 38         |       | 106,4;2                                  | 119.3.6                                           |
| 114,7; -3                                | 123,10; -7                                      |                | 2866         | 241          | 32         |       | 7,4;3                                    | 1210.3;7                                          |
| 55,0;5                                   | $\frac{6}{7}$ 4,3;1                             | 833            | 965          | 1174         | 1186       |       | $\frac{5}{6}0.5; -5$                     | $\frac{6}{7}$ 3,4;-1                              |
| 65,1;4<br>7                              | 74,4;0                                          | 2143           | 2461         | 2707         | 1158       |       | U1 51                                    | ' 4 4 • 0                                         |
| 7 <sub>5,2;3</sub><br>8 <sub>5,2;3</sub> | 84.5; -1                                        | 3750<br>5556   | 4229<br>6040 | 3560<br>3008 | 488<br>209 |       | 1752                                     |                                                   |
| 85,3;2<br>95,4;1                         | $9_{4,6;-2}^{10_{4,6;-2}}$ $10_{4,7;-3}$        | 7500           | 7603         | 1831         | 209<br>125 |       | 03 52                                    | 26.4.2                                            |
| $10^{5,4;1}_{5,5;0}$                     | 104,7; -3 $114,8; -4$                           | 9545           | 8531         | 1026         | 92         |       | 94 5 - 1                                 | 107 4.3                                           |
| $11_{5,6;-1}^{3,5;0}$                    | $12_{4,9;-5}^{4,8;-4}$                          | 11667          | 8452         | 644          | 73         |       | $10_{5,5;0}^{1,5,}$ $11_{6,5;1}^{1,5,}$  | 11 <sub>8,4;4</sub><br>12 <sub>9,4;5</sub>        |
| 66 0.6                                   | 75,3;2                                          | 714            | 829          | 1039         | 1321       |       | 60,6;-6                                  |                                                   |
| 76 1.5                                   | °5.4:1                                          | 1875           | 2169         | 2640         | 1942       |       | 70,6;-6 $71,6;-5$                        | $ 7_{3,5;-2} 8_{4,5;-1} $                         |
| 86,2;4                                   | 95.5:0                                          | 3333           | 3830         | 4213         | 1086       |       | 0261-1                                   |                                                   |
| _ U, 4, <del>1</del>                     | $10^{5,6};-1$                                   | 5000           | 5676         | 4833         | 447        |       | 93,6; -3                                 | 106,5;1                                           |
| 96,3;3                                   | 105,0;-1                                        |                |              |              |            |       |                                          |                                                   |
| 96,3;3<br>106,4;2<br>11 <sub>6,5;1</sub> | $11_{5,7;-2}^{13,6;-1}$ $12_{5,8;-3}^{13,7;-2}$ | 6818<br>8750   | 7575<br>9349 | 3937<br>2441 | 234<br>161 |       | $10^{3,6}, -2$ $11^{5,6}, -1$            | $11_{7,5;2}^{6,3;1}$ $12_{8,5;3}^{6,3;1}$         |

TABLE VI.—Continued.

| Sub-t                                    | oranch                 |      |           | κ      |           |    | Sub-b                      | ranch                  |
|------------------------------------------|------------------------|------|-----------|--------|-----------|----|----------------------------|------------------------|
| b,eR1,3                                  | $^{b,o}P$ 1, $\bar{3}$ | 平1   | $\mp 0.5$ | к<br>0 | $\pm 0.5$ | ±1 | $^{h,e}R3.\overline{1}$    | b,0P3,1                |
| 77,0;7                                   | 86,3;3                 | 625  | 726       | 916    | 1313      |    | 70,7;-7                    | 83,6; -3               |
| 87 1.6                                   | 96,4;2                 | 1667 | 1932      | 2426   | 2561      |    | 8 <sub>1.7</sub> 6         | 94.62                  |
| 77 2.5                                   | $10_{6,5;1}^{6,1,2}$   | 3000 | 3466      | 4214   | 2032      |    | $9^{1,7}_{2,7;-5}$         | $10_{5,6}$ ; $-1$      |
| 07,3;4                                   | 116,6;0                | 4545 | 5221      | 5738   | 917       |    | $10^{2,7}_{3,7;-4}$        | 116,6;0                |
| 17,4;3                                   | 126,0,0                | 6250 | 7114      | 6113   | 427       |    | $11_{4,7;-3}^{3,7;-4}$     | $12_{7,6;1}$           |
| 11,4;3                                   | $12_{6,7;-1}^{6,7;-1}$ | 0200 |           | 0110   | 12.       |    | 114,7;-3                   | 127,0;1                |
| 8 <sub>8,0;8</sub><br>9 <sub>8,1;7</sub> | $9_{7,3;4}$            | 556  | 645       | 816    | 1238      |    | $\frac{8}{9}$ 0,8;-8       | $\frac{9}{10}$ 3,7;-4  |
| 98 1:7                                   | 107,4;3                | 1500 | 1741      | 2204   | 2870      |    | $9^{1,8}; -7$              | $10_{4,7}$ ; $-3$      |
| 08,2;6                                   | 117,5;2                | 2727 | 3158      | 3967   | 3126      |    | $10^{1,8,-7}_{2,8,-6}$     | $11_{5,7}, -2$         |
| 18,3;5                                   | 127,6;1                | 4167 | 4807      | 5836   | 1752      |    | $11_{3,8;-5}^{2,3,-6}$     | $12_{6,7;-1}^{3,7;-2}$ |
| 18,3;5                                   | 1~7,6;1                | 1101 | 100.      | 0000   | 1102      |    | 113,8; -5                  | 120,7;-1               |
| 99,0;9                                   | $10_{8,3,5}$           | 500  | 581       | 734    | 1143      |    | $9_{0,9;-9}$               | $10_{3,8}, -5$         |
| 09,1;8                                   | 118,4;4                | 1364 | 1583      | 2008   | 2924      |    | $10^{3,3,-9}_{1,9;-8}$     | 114,8;-4               |
| 19,2;7                                   | 128,5;3                | 2500 | 2898      | 3676   | 4014      |    | $11_{2,9;-7}^{1,9;-8}$     | 1250                   |
| 19,2;7                                   | 128,5;3                | 2000 | 2070      | 00.0   | 1011      |    | 112.9; -7                  | $12_{5,8;-3}^{1,6}$    |
| 010,0;10                                 | 119,3;6                | 455  | 528       | 667    | 1049      |    | 100,10;-10                 | $\frac{11}{12}3,9;-6$  |
| 110,0,10                                 | 129,4;5                | 1250 | 1452      | 1841   | 2831      |    | $11_{1.10;-9}^{10,10,-10}$ | $12_{4,9;-5}^{3,9;-6}$ |
| -10,1;9                                  | 9,4;5                  | 1200 |           | 2011   | 2001      |    | 1,10; -9                   | 1-4,9; -3              |
| 11,0;11                                  | 1210,3;7               | 417  | 484       | 611    | 964       |    | $11_{0,11;-11}$            | 123,10; -              |
| - 11,0,11                                | 10,3;1                 |      |           |        |           |    | 0,11;-11                   | 3,10; -                |

TABLE VII. Forbidden sub-branches. A. a and c sub-branches.

| Sub                   | -branch                 |             |      | κ    |      |    | Sub-                 | branch                        |
|-----------------------|-------------------------|-------------|------|------|------|----|----------------------|-------------------------------|
| c,oQ3,2               | c,eQ3,2                 | <b> = 1</b> | ∓0.5 | 0    | ±0.5 | ±1 | a ∘Q2,3̄             | $^{a}$ , $^{e}Q\bar{2}$ , $3$ |
| 33,1;2                | $\frac{3}{4}0,3;-3$     |             | 104  | 169  | 69   |    | $\frac{3}{4}$ 1,3;-2 | 33.0;3                        |
| <b>≖3.2:1</b>         | $\frac{4}{2}0,4;-4$     |             | 356  | 283  | 68   |    | $\frac{4}{5}$ 2,3;-1 | 44.0:4                        |
| 53,3;0                | 50,5,-5                 |             | 621  | 286  | 53   |    | 53,3;0               | 55,0;5                        |
| U3.4:-1               | 00.6:-6                 |             | 773  | 250  | 43   |    | 04 3.1               | <sup>0</sup> 6 0⋅6            |
| (3.5:-2)              | $\frac{7}{9}0,7,-7$     |             | 809  | 213  | 35   |    | 15.3:2               | 7.0:7                         |
| 0363                  | °0.8: –8                |             | 774  | 183  | 30   |    | 063.3                | O8 N·8                        |
| 937:-4                | $9_{0,9;-9}$            |             | 712  | 160  | 26   |    | 97 3.4               | 99.0:9                        |
| 10385                 | $10_{0,10;-10}$         |             | 645  | 141  | 23   |    | 108 3.5              | 1010 0.10                     |
| $^{11}3.9:-6$         | $\frac{11}{12}0,11;-11$ |             | 584  | 127  | 21   |    | 119 3:6              | 1 1 1 n·11                    |
| $12_{3,10;-7}$        | $12_{0,12;-12}$         |             | 531  | 115  | 19   |    | $12_{10,3;7}$        | $12_{12,0;12}^{11,0;11}$      |
| 44,1;3                | $\frac{4}{5}$ 1,3; $-2$ |             | 31   | 164  | 153  |    | $\frac{4}{5}$ 1,4;-3 | 43,1;2                        |
| 34.2:2                | 51.4:-3                 |             | 174  | 504  | 193  |    | 32.4:-2              | 34.1:3                        |
| 04.3:1                | $0_{1,5;-4}$            |             | 527  | 708  | 163  |    | 0341                 | 05.1:4                        |
| 4.4:0                 | $^{\prime}$ 1.6: $-5$   |             | 1057 | 716  | 131  |    | / A A · O            | 6.1:5                         |
| 04.5:-1               | $8_{1.7:-6}$            |             | 1557 | 642  | 108  |    | 05 4.1               | 97 1.6                        |
| $^{9}4.6:-2$          | $9_{1.8:-7}$            |             | 1855 | 559  | 92   |    | 76.4.9               | 98 1.7                        |
| 104 7 - 3             | <sup>10</sup> 1.9: ~8   |             | 1940 | 489  | 80   |    | 107 4:3              | 100 1.8                       |
| 1148:-4               | $^{11}_{110:-9}$        |             | 1888 | 432  | 71   |    | 118 4:4              | 1110 1:9                      |
| $12_{4,9;-5}$         | $12_{1,11;-10}^{1,13;}$ |             | 1770 | 387  | 64   |    | 129,4;5              | 1211,1;10                     |
| 55,1;4                | $\frac{5}{6}$ 2,3;-1    |             | 9    | 79   | 191  |    | $\frac{5}{6}$ 1,5;-4 | 53,2;1                        |
| U5 2:3                | 02.4:-2                 |             | 52   | 413  | 342  |    | 07 5 - 3             | 04.2.2                        |
| 15 3.2                | $^{1}2.5:-3$            |             | 187  | 919  | 325  |    | 1251-2               | 152.3                         |
| 05 4.1                | °2.6: −4                |             | 515  | 1216 | 268  |    | 94 5 - 1             | 06.2.4                        |
| 75 5·0                | 92.7:-5                 |             | 1123 | 1236 | 222  |    | 25 5·A               | 77 2.5                        |
| ¥U5 6· —1             | 102.8:-6                |             | 1924 | 1128 | 188  |    | 106 5.1              | 108 2.6                       |
| 11572                 | 11207                   |             | 2650 | 999  | 163  |    | 117 5.0              | 110 2.7                       |
| $12_{5,8,-3}^{6,7,2}$ | $12_{2,10;-8}^{2,5,7}$  |             | 3098 | 885  | 144  |    | 128,5,3              | 12,12,7                       |
| 66,1;5                | 63,3;0                  |             | 4    | 33   | 168  |    | $\frac{6}{7}$ 1,6;-5 | 63,3;0                        |
| 6.2:4                 | (3.4:-1                 |             | 22   | 212  | 457  |    | 1264                 | 4.3:1                         |
| 06 3.3                | 03.52                   |             | 68   | 714  | 524  |    | 93 6· <del>-</del> 3 | 05 3.9                        |
| 76 4.2                | 93.6: -3                |             | 184  | 1385 | 456  |    | 7162                 | 963.3                         |
| 106 5:1               | 103.7:-4                |             | 445  | 1777 | 379  |    | 1U5 6:1              | 107 3.4                       |
| 116 6.0               | 11382                   |             | 971  | 1816 | 320  |    | 116 6.0              | 118 3.5                       |
| $12_{6,7;-1}^{6,6}$   | $12_{3,9;-6}^{3,6,3}$   |             | 1829 | 1681 | 277  |    | 127,6;1              | 129,3;6                       |

TABLE VII.—Continued.

| Sub-t                                | oranch                             |            |                 | κ          |                    | Sub-branch |                                                         |                                           |
|--------------------------------------|------------------------------------|------------|-----------------|------------|--------------------|------------|---------------------------------------------------------|-------------------------------------------|
| $^{c,o}Q\overline{3},2$              | c,eQ3,2                            | 平1         | ∓0.5            | 0          | $\pm 0.5$          | $\pm 1$    | $^{a,o}Q_{2,\overline{3}}$                              | $^{a,e}Q\overline{2},3$                   |
| 7 <sub>7,1;6</sub>                   | 74,3;1                             |            | 3               | 17         | 114                |            | 71,7;-6                                                 | 73,4;-1                                   |
| 8 <sub>7,2;5</sub>                   | 84,4;0                             |            | 13              | 98         | 480                |            | 82.7; -5                                                | 84,4;0                                    |
| 9,7,2,3                              | 94,4,0                             |            | 36              | 385        | 714                |            | $0^{2,7,-3}$                                            | 9,4,4,0                                   |
| 97,3;4                               | $9^{4,5;-1}_{10}$                  |            | 84              | 1053       | 686                |            | 93,7;-4                                                 | 95,4;1                                    |
| $0_{7,4;3}^{17,5;2}$                 | $10_{4,6;-2}$                      |            | 183             | 1885       | 584                |            | $10^{4,7}_{11}$                                         | 106.4;2                                   |
| 7,5;2                                | $\frac{11}{12}4,7;-3$              |            |                 | 1003       | 30 <del>4</del>    |            | 11572                                                   | 1174.3                                    |
| 27,6;1                               | $^{12}4,8;-4$                      |            | 384             | 2375       | 493                |            | $12_{6,7;-1}^{3,7;-1}$                                  | 128,4;4                                   |
| 88,1;7                               | 85,3;2                             |            | 2               | 10         | 69                 |            | $\frac{8}{9}$ 1,8;-7                                    | $\frac{8}{0}$ 3,5;-2                      |
| 28 2·6                               | <sup>9</sup> 5 4:1                 |            | 8               | 52         | 403                |            | 27.8:-6                                                 | 74 5 - 1                                  |
| 108 3.5                              | 105,5;0                            |            | 23              | 190        | 830                |            | 10385                                                   | 105 5.0                                   |
| 18,4;4                               | 115,6;-1                           |            | 52              | 588        | 931                |            | $10^{2,8}_{3,8}, -5$ $11^{4,8}_{3,8}, -4$               | 116,5;1                                   |
| 28,5;3                               | $12^{-3}_{5,7},-2$                 |            | 102             | 1419       | 832                |            | $12_{5,8;-3}^{4,8,-4}$                                  | $12^{0,3,1}_{7,5;2}$                      |
|                                      |                                    |            | 1               | 7          | 41                 |            |                                                         |                                           |
| 99,1;8                               | 96,3;3                             |            | 6               | 34         | 282                |            | $9_{1,9;-8}$                                            | $\frac{9}{10}$ 3,6; -3                    |
| 09,2;7                               | 106.4;2                            |            | 17              | 106        | 817                |            | $10^{19}_{2,9;-7}$                                      | $10_{4,6;-2}$                             |
| 19,3;6                               | 116,5;1                            |            | 36              | 204        | 017                |            | 113.9; -6                                               | $\frac{11}{12}5,6;-1$                     |
| 29,4;5                               | 126,6;0                            |            | 30              | 304        | 1141               |            | $12_{4,9;-5}^{3,5}$                                     | 126,6;0                                   |
| 010,1;9                              | 107,3;4                            |            | 1 .             | 5          | 25                 |            | $\frac{10}{11}$ 1,10; -9                                | $\frac{10}{11}3,7;-4$                     |
| 1 1 1 0 2 · 8                        | 117 / 12                           |            | 5               | 24         | 180                |            | ±±2.10· →8                                              | 11473                                     |
| $2_{10,3;7}^{10,2,3}$                | 127,5;2                            |            | 12              | 70         | 677                |            | $12_{3,10;-7}^{2,10;}$                                  | $12^{\frac{1}{5},7}_{5,7;-2}$             |
| 111,1;10                             | 118,3;5                            |            | 1               | 4          | 17                 |            | $\frac{11}{12}$ 1,11;-10                                | $\frac{11}{12}3,8;-5$                     |
| 211,1;10                             | 128,4;4                            |            | 4               | 19         | 112                |            | $12_{2,11;-9}^{1,11;-10}$                               | $12^{3,8}_{4,8;-4}$                       |
| 212,1;11                             | 129,3;6                            |            | 0               | 3          | 13                 |            | 121,12;-11                                              | 123,9;-6                                  |
| c,eQ3,4                              | c,oQ3,4                            | <b>∓</b> 1 | ∓0.5            | 0          | ±0.5               | ± <u>i</u> | a,eQ4,3                                                 | a,oQ4,3                                   |
|                                      |                                    |            |                 |            |                    |            |                                                         |                                           |
| 44,0;4                               | $\frac{4}{5}$ 1,4;-3               |            | 8               | 10         | 2                  |            | $\frac{4}{5}0,4;-4$                                     | 44,1;3                                    |
| <sup>3</sup> 4 1:3                   | 31,5;-4                            |            | 24              | 14         | 1                  |            | J <sub>1.4</sub> : -3                                   | 35 1:4                                    |
| 04,2;2                               | U <sub>1.6:</sub> →5               |            | 42              | 9          | 0                  |            | 0242                                                    | 06,1;5                                    |
| 64,2;2<br>74,3;1                     | 1.7:-6                             |            | 51              | 2          | 0                  |            | /3 4 1                                                  | 66,1;5<br>77,1;6                          |
| 84 4·n                               | $\frac{8}{2}$ 1,8;-7               |            | 48              | 1          | 0                  |            | O4 4·0                                                  | ŌR 1 ⋅ 7                                  |
| $9^{1,1,0}_{4,5;-1}$                 | 91,9;-8                            |            | 35              | 1          | 0                  |            | 95,4;1                                                  | 99,1;8                                    |
| 04,6; -2                             | $10_{1,10;-9}^{1,1,10;-9}$         |            | 22              | 0          | 0,                 |            | 106,4;2                                                 | 10,1,3                                    |
| $\frac{1}{4}, 7; -3$                 | 111,11;-10                         |            | 12              | 0          | Õ                  |            | 117,4;3                                                 | 1111,1;10                                 |
| $2^{4,7;-3}_{4,8;-4}$                | $12_{1,12;-11}^{11;11;-10}$        |            | <sup>1</sup> 7  | ŏ          | ŏ                  |            | 128,4;4                                                 | 12,1,1,10                                 |
|                                      |                                    |            | 7               | 17         | 7                  |            |                                                         |                                           |
| 5 <sub>5,0;5</sub>                   | $\frac{5}{6}$ 2,4;-2               |            | 27              | 20         |                    |            | $\frac{5}{6}$ 0,5;-5                                    | 54,2;2                                    |
| V5.1:4                               | $^{\circ}2.5:-3$                   |            | 27              | 39         | 4                  |            | V1.5: -4                                                | 05 7.3                                    |
| 15.2:3                               | 1264                               |            | 62              | 44         | 1                  |            | 1253                                                    | 6.2:4                                     |
| 05 2.9                               | 02.7:-5                            |            | 106             | 28         | 0                  |            | υς ς. <u>_</u> γ                                        | 07 7.5                                    |
| 95.4:1                               | 92 8· <del>-</del> 6               |            | 142             | 13         | 0                  |            | 74 5· — 1                                               | 78 2.6                                    |
| U5 5:0                               | 1U2.9:-7                           |            | 154             | 5<br>3     | 0                  |            | 105 5.0                                                 | 100 2.7                                   |
| 1561                                 | $\frac{11}{12}, \frac{10}{10}, -8$ |            | 137             | 3          | 0                  |            | 116 5.1                                                 | 1110 2.6                                  |
| $2^{5,7}_{5,7;-2}$                   | $12_{2,11;-9}^{2,10,-3}$           |            | 102             | 1          | 0                  |            | 127,5;2                                                 | 12,10,2,3                                 |
|                                      |                                    |            | 4               | 16         | 14                 |            |                                                         |                                           |
| 66,0;6                               | $\frac{6}{7}$ 3,4;-1               |            | 19              | 16<br>53   | 15                 |            | $_{70;6;-6}^{60;6;-6}$                                  | $\frac{6}{7}$ ,3;1                        |
| (6.1:5                               | $\frac{7}{8}3,5;-2$                |            | 50              | 88         | 15                 |            | '1.6: <del></del> 5                                     | 15.3.2                                    |
| 06 2.4                               | $\frac{8}{0}$ 3,6; -3              |            | 100             | 00         | 14<br>15<br>5<br>2 |            | 02 6. 4                                                 | 06 2.2                                    |
| 96.3;3                               | $\frac{9}{10}3.7;-4$               |            | 102             | 88         | 2                  |            | $\frac{9}{10}$ 3,6; $-3$                                | 197,3;4                                   |
| 96,3;3<br>06,4;2                     | 93,7; -4<br>103,8; -5              |            | 170             | 56         | 1                  |            | $9_{3,6;-3}^{2,6;-3}$<br>$10_{4,6;-2}^{11_{2,6;-2}}$    | 9 <sub>7,3;4</sub><br>10 <sub>8,3;5</sub> |
| 16 5-1                               | * + 3 . 9 : 6                      |            | 240             | 27         | 0                  |            | *** 0; -1                                               | 1103.4                                    |
| 26,6;0                               | $12_{3,10;-7}^{3,10;-7}$           |            | 289             | 12         | 0                  |            | 126,6;0                                                 | $12_{10,3;7}^{7,0,0}$                     |
| 77,0;7                               | 74.4;0                             |            | 3               | 13         | 19                 |            | $\frac{7}{8}0.7;-7$                                     | 74.4:0                                    |
| 97 1 • 6                             | 04 5 1                             |            | 12              | 51         | 30                 |            | 81,7;-6                                                 |                                           |
| 97,2;5                               | 94,6;-2                            |            | $\overline{34}$ | 108        | 17                 |            | 92.7. 5                                                 | 96,4;2                                    |
| 07,3;4                               | $10^{4,6;-2}_{4,7;-3}$             |            | 74              | 152        | 5                  |            | 92.7; -5<br>102.7:                                      | 10-4:2                                    |
| 1,3;4                                | $\tilde{1}$ 14,7; $-3$             |            | 137             | 144        | 2                  |            | $103,7;-4 \\ 114,7;-3$                                  | 107 4.3                                   |
| 17,4;3<br>2 <sub>7,5;2</sub>         | $11_{4,8}, -4$ $12_{4,9}, -5$      |            | 223             | 93         | 1                  |            | $12^{14,7}_{5,7;-2}$                                    | $11_{8,4;4} \\ 12_{9,4;5}$                |
| 88,0;8                               | ,                                  |            | 2               | 10         | 20                 |            |                                                         |                                           |
| ~8,U;8                               | 85,4;1<br>95,5;0                   |            | 8               | 41         | 46                 |            | $\begin{array}{c} 8_{0,8;-8} \\ 9_{1,8;-7} \end{array}$ | 84.5; -1<br>95.5;0                        |
| 28.1:7                               |                                    |            | 0.0             |            | 39                 |            | 101,0,-1                                                | 4,00,0,0                                  |
| 0 <sub>8.2.6</sub>                   | $10_{5.61}$                        |            | 23              | 102        | 39                 |            | 100 0                                                   | 106 5.1                                   |
| 98,1;7<br>08,2;6<br>18,3;5<br>28,4;4 | $10_{5,6;-1}$ $11_{5,7;-2}$        |            | 23<br>51        | 102<br>179 | 15                 |            | $10_{2.8;-6}$ $11_{3.8;-5}$                             | $10_{6,5;1}$ $11_{7,5;2}$                 |

TABLE VII.—Continued.

| Sub-br $^{\sigma,\sigma}Q\bar{3}$ ,4 | ench $^{e,o}Q3, \overline{4}$              | <b> =</b> 1 | ∓0.5      | к<br>0     | LAS             | . 1 | Sub-1 $^{a,\varepsilon}Q4.\overline{3}$                               | branch $^{a,o}Qar{4},3$                                 |
|--------------------------------------|--------------------------------------------|-------------|-----------|------------|-----------------|-----|-----------------------------------------------------------------------|---------------------------------------------------------|
|                                      |                                            | +1          | +0.3      |            | ±0.5            | ±1  |                                                                       | <del> </del>                                            |
| 99,0;9                               | 96,4;2                                     |             | 1         | 7          | 19              |     | . 100,9;-9                                                            | $\frac{9}{10}$ 4,6; -2                                  |
| Un 1.9                               | $10_{6,5;1}^{6,5;1}$ $11_{6,6;0}^{1}$      |             | 6         | 32         | 56              |     | 101.9:-8                                                              | 105 6 1                                                 |
| 10 2-7                               | 116.6:0                                    |             | 17        | 84         | 67              |     | 1120:-7                                                               | 1166.0                                                  |
| 29,3;6                               | $12_{6,7;-1}^{0,0,0}$                      |             | 36        | 169        | 37              |     | $12_{3,9;-6}^{2,5}$                                                   | 127,6;1                                                 |
|                                      |                                            |             | 1         | 5          | 17              |     | 10                                                                    | 10                                                      |
| $0_{10,0;10}$                        | 107,4;3                                    |             | 5         | 24         | 59              |     | $\frac{10}{11}$ 0,10; -10                                             | $10_{4,7;-3}$                                           |
| 110,1;9                              | 117,5;2                                    |             | 12        | 66         | 93              |     | $\frac{11}{12}$ 1,10;-9                                               | $\frac{11}{12}5,7;-2$                                   |
| 210,2;8                              | 127,6;1                                    |             | 12        | 00         | 93              |     | $12_{2,10;-8}$                                                        | $12_{6,7;-1}$                                           |
| 111,0;11                             | 118,4;4                                    |             | 1         | 4          | 14              |     | $\frac{11}{12}$ 0,11;-11                                              | $\frac{11}{12}4.8; -4$                                  |
| 211,1;10                             | 128,5;3                                    |             | 4         | 19         | 57              |     | $12_{1,11;-10}$                                                       | $12_{5,8;-3}$                                           |
| 212,0;12                             | 129,4;5                                    |             | 0         | 3          | 12              |     | $12_{0,12;-12}$                                                       | 124,9;-5                                                |
|                                      |                                            | <b>一一</b>   | ∓0.5      | 0          | ±0.5            |     | a,eR2,3                                                               | a,eP2,3                                                 |
| ¢,¢R3,2                              | c,eP3,2                                    | ∓1          |           |            |                 | ±1  |                                                                       |                                                         |
| $\frac{2}{3}$ 0,2;-2                 | $\frac{3}{4}$ 3,0;3                        |             | 75<br>294 | 215<br>313 | 138<br>51<br>17 |     | $\frac{2}{3}$ 2,0;2                                                   | $\frac{3}{4}0,3,-3$                                     |
| $^{3}0.3:-3$                         | 43,1;2                                     |             |           | 174        | J1<br>17        |     | 33,0;3                                                                | 41.3:-2                                                 |
| $\frac{4}{5}$ 0,4; -4                | 53.2:1                                     |             | 528       | 176        | 1/              |     | 44 0.4                                                                | 52.3: −1                                                |
| O <sub>0.5</sub> , -5                | $6_{3,3;0}$                                |             | 558       | 79         | 9               |     | 35.0:5                                                                | 03.3.0                                                  |
| 0.6:6                                | $^{7}3.4:-1$                               |             | 418       | 41         | 5<br>4          |     | 06.0.6                                                                | / 4 3 - 1                                               |
| $^{\prime}0.7:-7$                    | 03.5; -2                                   |             | 263       | 26         | 4               |     | 7.0.7                                                                 | 05.3.7                                                  |
| 0.8:-8                               | $9_{3.6:-3}$                               |             | 159       | 19         | 3               |     | OS 0:8                                                                | 96,3;3                                                  |
| 0.9: -9                              | 103.7:-4                                   |             | 102       | 14         | 2               |     | 99.0:9                                                                | $9_{6,3;3}^{6,3;3}$<br>$10_{7,3;4}^{6,3;4}$             |
| 0.10: -10                            | 11385                                      |             | 70        | 11         | 2               |     | 1010 0-10                                                             | 112 3.5                                                 |
| 0,11;-11                             | $12_{3,9;-6}^{3,3;-6}$                     |             | 53        | 9          | 1               |     | 11,0,11                                                               | $12^{3,3,3}_{9,3;6}$                                    |
|                                      |                                            |             | 24        | 146        | 272             |     |                                                                       |                                                         |
| 31,2;-1                              | $\frac{4}{5}4.0:4$                         |             | 122       | 538        | 212             |     | $\frac{3}{4}$ 2,1;1                                                   | $\frac{4}{5}0.4;-4$                                     |
| 1.3; -2                              | 54,1;3                                     |             | 377       |            | 76              |     | 43.1;2<br>54.1;3                                                      | $\frac{5}{6}$ 1,4; -3                                   |
| 1,4; -3                              | $6_{4,2;2}$                                |             |           | 665        | 24              |     | 24,1;3                                                                | $\frac{6}{7}^{2,4};-2$                                  |
| (21,5;-4)                            | 74,3;1                                     |             | 803       | 409        | 34              |     | $6^{4,1,3}_{5,1;4}$                                                   | $7_{3,4;-1}$                                            |
| 1.6: -5                              | 04.4:0                                     |             | 1171      | 206        | 21              |     | 161.5                                                                 | 04.4;0                                                  |
| 31 7 6                               | $^{9}4.5:-1$                               |             | 1200      | 115        | 15              |     | 97.1.6                                                                | 84.4;0<br>95,4;1                                        |
| 1.8: -7                              | $^{10}4.6:-2$                              |             | 938       | 76         | 11              |     | 78 1.7                                                                | 106 4-2                                                 |
| 1.9: 8                               | 114.7:-3                                   |             | 631       | 57         | 9<br>7          |     | 100 1.8                                                               | 117,4;3                                                 |
| 1,10;-9                              | $12_{4,8;-4}^{1,7;0}$                      |             | 409       | 45         | 7               |     | 11,0,1;9                                                              | 128,4;4                                                 |
| 1                                    | 5                                          |             | 11        | 70         | 262             |     | 4                                                                     | 50,5;-5                                                 |
| 42,2;0                               | 55.0;5                                     |             | 46        | 359        | 464             |     | 42,2;0                                                                | 6                                                       |
| $\frac{5}{2}$ ,3; -1                 | $\frac{6}{7}$ 5,1;4                        |             | 142       | 894        | 220             |     | 53,2;1                                                                | 61.5; -4                                                |
| $\frac{5}{2},4;-2$                   | 75,2;3                                     |             |           |            | 92              |     | $6^{3,2,1}_{4,2;2}$                                                   | $\frac{7}{8}^{2,5}; -3$                                 |
| 72,5;-3                              | 85,3;2                                     |             | 364       | 1038       |                 |     | 75,2;3                                                                | 83,5;-2                                                 |
| 32,6;-4                              | 105,4;1                                    |             | 793       | 675        | 52              |     | 06 3.4                                                                | $9^{3,3,-2}_{4,5;-1}$                                   |
| 2.7: -5                              | $9^{5,4;1}_{5,5;0}$                        |             | 1395      | 365        | 36              |     | 27 215                                                                | 105 5.0                                                 |
| 2.8:-6                               | $^{11}5.61$                                |             | 1869      | 215        | 27              |     | 100 2.6                                                               | 1165.1                                                  |
| 2,9;-7                               | $12_{5,7;-2}^{(6)}$                        |             | 1887      | 148        | 21              |     | 119,2;7                                                               | $12_{7,5;2}^{0,3,1}$                                    |
| 3,2;1                                | 66.0;6                                     |             | 7         | 39         | 184             |     | $\frac{5}{6}$ 2,3;-1                                                  | $\frac{6}{7}0,6;-6$                                     |
| 53,2;1                               | 76.1;5                                     |             | 27        | 187        | 624             |     | 03 3.0                                                                | $\frac{7}{6}$ 1,6;-5                                    |
| 3,4; -1                              | 86,2;4                                     |             | 69        | 610        | 487             |     | 73,3;0                                                                | 82,6; -4                                                |
| 3,4; - 1<br>32 E. 2                  | 9, 2, 3                                    |             | 157       | 1272       | 210             |     | 8 = 2.2                                                               | 726. 2                                                  |
| 3,5;-2<br>3,6;-3                     | 96,3;3<br>106,4;2                          |             | 336       | 1426       | 108             |     | 85.3;2<br>96,3;3                                                      | $10^{3.6; -3}_{4.6; -2}$                                |
| 3,0;-3                               | 110,4;2                                    |             | 684       | 963        | 71              |     | 10,3,3                                                                | 117                                                     |
| (3,7;-4)                             | 4 4 6 5 1                                  |             | 1276      | 548        | 53              |     | 107,3;4                                                               | $11_{5,6;-1}$ $12_{6,6;0}$                              |
| 3,8;-5                               | 126,6;0                                    |             | 1210      | J-10       | 33              |     | 118,3;5                                                               |                                                         |
| 4,2;2                                | 77,0;7                                     |             | . 5       | 27         | 119             |     | $\frac{6}{7}$ 2,4; -2                                                 | $\frac{7}{8}0.7; -7$                                    |
| 1 3 - 1                              | 87.1:6                                     |             | 19        | 110        | 574             |     | 13 1 - 1                                                              | O1.7: -0                                                |
| 4 4.0                                | 97.2:5                                     |             | 46        | 338        | 816             |     | 04.4.0                                                                | 927                                                     |
| 4,5;-1                               | 107,3;4                                    |             | . 94      | 887        | 435             |     | $ \begin{array}{c} 9^{4,4;0} \\ 9^{5,4;1} \\ 10^{6,4;2} \end{array} $ | 1037                                                    |
| 4,6;-1                               | 117,4;3                                    |             | 176       | 1662       | 205             |     | 106.4.2                                                               | 1147·_3                                                 |
| 4,0;-2<br>4,7;-3                     | 127,5;2                                    |             | 321       | 1825       | 126             |     | 117,4;3                                                               | $12_{5,7;-2}^{4,7;-2}$                                  |
|                                      |                                            |             | 4         | 21         | 81              |     |                                                                       |                                                         |
| 5,2;3                                | $\frac{8_{8,0;8}}{9_{8,1;7}}$              |             | 15        | 78         | 424             |     | $7_{2.5;-3} \\ 8_{3.5;-2}$                                            | $\begin{array}{c} 8_{0,8;-8} \\ 9_{1,8;-3} \end{array}$ |
| 5,3;2                                | 100,5                                      |             | 36        | 206        | 995             |     | 94 5                                                                  | $10^{1.8}_{2.8}$ , $-6$                                 |
| 5,4;1                                | 108,2;6                                    |             | 69        | 514        | 790             |     | 94.5; -1<br>105 5 0                                                   | 112,8;-0                                                |
| 5,5;0<br>5,6;-1                      | 11 <sub>8,3;5</sub><br>12 <sub>8,4;4</sub> |             | 121       | 1183       | 381             |     | $10_{5,5;0}^{11}$ $11_{6,5;1}^{11}$                                   | 113.8; -5 $124.8; -4$                                   |
|                                      | 16044                                      |             | 1 / 1     | 110.3      | . 75 1 1        |     | 116 5.1                                                               |                                                         |

TABLE VII.—Continued.

| Sub-branch $^{c,e}R3,\overline{2}$ $^{c,e}P\overline{3},2$ |                                               | <del>_</del> 1 | 0 F                                    | κ<br>0     |                             | 1 1 |                                                        | branch                                     |
|------------------------------------------------------------|-----------------------------------------------|----------------|----------------------------------------|------------|-----------------------------|-----|--------------------------------------------------------|--------------------------------------------|
|                                                            |                                               | <b> 1</b>      | ∓0.5                                   | 0          | ±0.5                        | ±1  | a.eR2,3                                                | a,eP2,3                                    |
| 86,2;4                                                     | 99,0;9                                        |                | 4                                      | 18         | 60                          |     | $\frac{8}{0}$ 2,6; -4                                  | 90,9;-9                                    |
| 76.3:3                                                     | 109,1;8                                       |                | 13                                     | 62         | 292                         |     | 93.6: -3                                               | <sup>10</sup> 1.9: -8                      |
| U6 4:2                                                     | 119,2;7                                       |                | 29<br>55                               | 149<br>324 | 910<br>1182                 |     | 104.6: -2                                              | $\frac{11}{12}$ ,9; -7                     |
| 16,5;1                                                     | $12_{9,3;6}^{3,2,7}$                          |                | 33                                     | 324        | 1104                        |     | $11_{5,6;-1}^{1,6;}$                                   | $12_{3,9;-6}$                              |
| 9 <sub>7,2;5</sub><br>0 <sub>7,3;4</sub>                   | $10_{10,0;10}$                                |                | 3                                      | 15         | 48                          |     | $\frac{9}{10}$ 2.7; -5                                 | $\frac{10}{11}$ 0,10;-1                    |
| $0_{7,3;4}$                                                | 1110.1:Q                                      |                | 11                                     | 52         | 207                         |     | 103.7: -4                                              | 11.10: -9                                  |
| 17,4;3                                                     | 1210,2;8                                      |                | 24                                     | 121        | 694                         |     | $11_{4,7;-3}$                                          | $12_{2,10;-8}$                             |
| 08,2;6                                                     | 1111,0;11                                     |                | 3                                      | 13         | 41                          |     | $10_{2.8;-6}$                                          | $\frac{11}{12}0,11;-1$                     |
| 18,3;5                                                     | 1211,1;10                                     |                | 9                                      | 45         | 158                         |     | $11_{3,8;-5}$                                          | $12_{1,11}$ ; $-1$                         |
| 19,2;7                                                     | 12,12,0;12                                    |                | 2                                      | 12         | 36                          |     | $11_{2,9;-7}$                                          | $12_{0,12;-1}$                             |
| c,oR3,2                                                    | c,oP3,2                                       | ∓1             | ∓0.5                                   | 0          | ±0.5                        | ±1  | a,0R2,3                                                | a,oP2,3                                    |
| $\frac{3}{4}$ 1,3;-2                                       | 44,1;3                                        |                | 10                                     | 21         | 13                          |     | 33,1;2                                                 | 41,4;-3                                    |
| <sup>4</sup> 1.4: →3                                       | 34 2.2                                        |                | 31                                     | 38         | 12<br>8<br>5<br>4<br>3<br>2 |     | T4 1:3                                                 | 32.4:-2                                    |
| 51.5; -4                                                   | 04.3:1                                        |                | 56                                     | 39         | 8                           |     | 35.1:4                                                 | 0341                                       |
| O <sub>1.6</sub> ; -5                                      | 4.4:0                                         |                | 73                                     | 32         | 5                           |     | 66,1;5<br>77,1;6                                       | / // // 0                                  |
| /1.7:~6                                                    | O4 5· — 1                                     |                | 80                                     | 24         | 4                           |     | 77,1;6                                                 | 05 4.1                                     |
| <sup>0</sup> 1.8:7                                         | 94.6:-2                                       |                | 77                                     | 18         | 3                           |     | ÖR 1.7                                                 | 96.4.2                                     |
| 91.9:8                                                     | 104.7:-3                                      |                | 68                                     | 14         | 2                           |     | 90.1.8                                                 | 107 4.3                                    |
| <sup>)</sup> 1.10: <del>-</del> 9                          | 114.8; -4                                     |                | 58<br>49                               | 11<br>9    | 2<br>1                      |     | 10to.1.9                                               | 1121.4                                     |
| 1,11; -10                                                  | $^{12}4.9;-5$                                 |                |                                        | 9          |                             |     | 111,1;10                                               | 129,4;5                                    |
| <sup>4</sup> 2,3;−1                                        | $\frac{5}{6}$ 5,1;4                           |                | 9                                      | 31         | 32                          |     | 43,2;1                                                 | $\frac{5}{6}$ 1,5; -4                      |
| J2.4:-2                                                    | U5.2:3                                        |                | 33                                     | 79         | 39                          |     | 34.2:2                                                 | V2.5: -3                                   |
| $^{3}2.5:-3$                                               | / 5.3.2                                       |                | 73                                     | 108        | 30                          |     | 05.2:3                                                 | 13.5:-2                                    |
| 2.6: -4                                                    | 85 4.1                                        |                | 124                                    | 108        | 21                          |     | 6.2:4                                                  | O4 5· — 1                                  |
| 02.7:-5                                                    | 95.5.0                                        |                | 172                                    | 91         | 15                          |     | 07 2.5                                                 | 95.5.0                                     |
| $9^{2,7}_{2,8;-6}$                                         | 105.6: -1                                     |                | 205                                    | 72         | 11                          |     | 98,2;6                                                 | 106 5.1                                    |
| $0_{2,9;-7}^{0_{2,9;-7}}$<br>$1_{2,10;-8}$                 | $11_{5,7;-2}^{5,7;-2}$ $12_{5,8;-3}^{5,7;-2}$ |                | 216<br>209                             | 56<br>45   | 9<br>7                      |     | $10_{9,2;7}^{0,2;6}$ $11_{10,2;8}$                     | $11_{7,5;2}^{7,5;2}$ $12_{8,5;3}^{10,5,1}$ |
|                                                            |                                               |                |                                        |            |                             |     |                                                        |                                            |
| 5 <sub>3,3;0</sub>                                         | $\frac{6}{7}$ 6,1;5                           |                | $\begin{array}{c} 7 \\ 25 \end{array}$ | 30<br>92   | 46<br>76                    |     | 53,3;0                                                 | $\frac{6}{7}$ 1,6;-5                       |
| $\frac{6}{7}$ 3,4;-1                                       | 76,2;4                                        |                | 60                                     | 162        | 67                          |     | $6_{4,3;1}^{4,3;1}$ $7_{5,3;2}$                        | 1264                                       |
| $7_{3,5;-2}$                                               | 86,3;3                                        |                | 115                                    | 163<br>202 | 50                          |     | 5,3;2                                                  | 03.63                                      |
| $8_{3,6;-3}$                                               | 96,4;2                                        |                | 187                                    | 199        | 36                          |     | 86,3;3                                                 | 94,6; -2                                   |
| $9_{3,7;-4}^{9_{3,7;-4}}$ $0_{3,8;-5}^{9_{3,7;-4}}$        | $10_{6,5;1}^{6,6;5}$ $11_{6,6;0}^{10,6;0}$    |                | 267                                    | 171        | 27                          |     | 97,3;4<br>108,3;5                                      | 105,6; -1<br>116,6;0                       |
| $1_{3,9;-6}^{3.8;-5}$                                      | $12_{6,7;-1}^{16,6;0}$                        |                | 337                                    | 139        | 21                          |     | 119,3;6                                                | 127,6;1                                    |
|                                                            |                                               |                | 5                                      | 25         | 53                          |     |                                                        |                                            |
| 6 <sub>4,3;1</sub><br>7 <sub>4,4;0</sub>                   | $7_{7,1;6}$ $8_{7,2;5}$                       |                | 19                                     | 86         | 110                         |     | $\begin{array}{c} 6_{3,4;-1} \\ 7_{4,4;0} \end{array}$ | $ 7_{1,7;-6} $ $ 8_{2,7;-5} $              |
| 34.5-1                                                     | 77 2.1                                        |                | 46                                     | 177        | 118                         |     | 8 4,4;0                                                | $9^{2,7;-5}_{93,7;-4}$                     |
| 4 6 2                                                      | 107,4;3                                       |                | 89                                     | 268        | 94                          |     | 85,4;1<br>96,4;2                                       | 104 7 3                                    |
| 47:-3                                                      | 117 5.2                                       |                | 154                                    | 316        | 70                          |     | 107 4.3                                                | 11577                                      |
| 14,8;-4                                                    | 127,6;1                                       |                | 241                                    | 309        | 53                          |     | 118,4;4                                                | $12_{6,7;-1}^{3,7;-2}$                     |
| 75,3;2<br>5,4;1<br>5,5;0                                   | 80 1.7                                        |                | 4                                      | 21         | 53                          |     | 73 52                                                  | 81 87                                      |
| 35.4:1                                                     | 98,2;6<br>108,3;5                             |                | 15                                     | 73         | 134                         |     |                                                        | 27 8 - 6                                   |
| 95.5:0                                                     | 108.3.5                                       |                | 35                                     | 163        | 173                         |     | 95,5;0                                                 | 1038                                       |
| <sup>7</sup> 5.6:1                                         | 118.4:4                                       |                | 69                                     | 281        | 155                         |     | $10_{6.5:1}^{5.5}$                                     | 1 I A R · - 4                              |
| $1_{5,7;-2}^{5,5;-2}$                                      | 11 <sub>8,4;4</sub><br>12 <sub>8,5;3</sub>    |                | 119                                    | 390        | 120                         |     | $10_{6,5;1}^{3,5,6}$ $11_{7,5;2}$                      | $12^{+,8}_{5,8;-3}$                        |
| 86,3;3                                                     | 90 1.8                                        |                | 4                                      | 18         | 49                          |     | 83 6: -3                                               | 91 9: -8                                   |
| プド ル・ク                                                     | 100 2.7                                       |                | 13                                     | 61         | 143                         |     | 94,6;-2                                                |                                            |
| J6 5·1                                                     | 110 2.4                                       |                | 29                                     | 140        | 219                         |     | 105.6: -1                                              | 11106                                      |
| 16,6;0                                                     | 129,4;5                                       |                | 54                                     | 258        | 224                         |     | 116,6;0                                                | $12_{4,9;-5}^{3,9;-6}$                     |
| 97 3.4                                                     | 1010 1:9                                      |                | 3                                      | 15         | 44                          |     | 937-4                                                  | 10, 10:-                                   |
| O7 4:3                                                     | 1110,2;8                                      |                | 11                                     | 52         | 140                         |     | 104 7: -2                                              | 112,10; –                                  |
| 7,5;2                                                      | $12_{10,3;7}^{10,2,8}$                        |                | $\hat{24}$                             | 119        | 249                         |     | $10^{4,7}_{4,7;-3}$ $11^{5,7;-2}$                      | 123,10;                                    |
| ) <sub>8,3;5</sub>                                         | 1111,1;10                                     |                | 3                                      | 13         | 40                          |     | 103,8;-5                                               | 111,11;                                    |
| 8,3;5<br>8,4;4                                             | 1211,1;10                                     |                | ğ                                      | 45         | 131                         |     | 114,8;-4                                               | $12_{2,11;-}^{1,11;-}$                     |
| 19,3;6                                                     | 1212,1;11                                     |                |                                        |            |                             |     | 113,9;-6                                               | 121,12;-                                   |

TABLE VII.—Continued.

| Sub-                               | branch                          |    |           | κ                      |                |           | Sub-b                                        | ranch _                                   |
|------------------------------------|---------------------------------|----|-----------|------------------------|----------------|-----------|----------------------------------------------|-------------------------------------------|
| <sup>c,e</sup> R3,4                | c,eP3,4                         | Ŧ1 | ∓0.5      | 0                      | ±0.5           | <u>±1</u> | a,eR4,3                                      | $^{a,e}P\bar{4}$ ,3                       |
| 33,0;3                             | 40,4;-4                         |    | 28        | 18                     | 2              |           | $\frac{3}{4}0,3;-3$                          | 44,0;4                                    |
| 43,1;2                             | 50,5;-5                         |    | 78<br>107 | 17<br>8<br>3<br>2<br>1 | 0              |           | $\frac{4}{5}1,3;-2$                          | 55,0;5                                    |
| 3,2;1                              | 60.6; -6                        |    | 107       | 8                      | 0              |           | $5^{2,3};-1$                                 | 66,0;6                                    |
| 53,2;1                             | 70.0; -6                        |    | 96        | 3                      | ŏ              |           | 62,3;-1                                      | 75,0;6                                    |
| 63,3;0                             | $\frac{7}{9}0.7; -7$            |    | 65        | 2                      | ŏ              |           | 63.3;0<br>74,3;1                             | 77.0;7                                    |
| $7_{3,4;-1}^{3,3,6}$               | $\frac{8}{9}0.8; -8$            |    | 39        | 1                      | ő              |           | 6 <sup>4</sup> ,3;1                          | 88,0;8                                    |
| <sup>0</sup> 3.5: -2               | 90,9;-9                         |    | 39        | 1                      |                |           | o5.3:2                                       | 99.0:9                                    |
| 93.6: ~3                           | $^{10}0.10:-10$                 |    | 23        | 1                      | 0              |           | 763.3                                        | IV10.0:10                                 |
| U3.7:-4                            | $^{11}0.11 11$                  |    | 14        | 1                      | 0              |           | 107.3:4                                      | 1111.0:11                                 |
| $1_{3,8;-5}$                       | $12_{0,12,-12}$                 |    | 9         | 0                      | 0              |           | 118,3;5                                      | $12_{12,0;12}^{13,0;12}$                  |
| 4                                  | 5                               |    | 11        | 31                     | 7              |           | 4                                            | 5                                         |
| 44,0;4                             | $\frac{5}{6}$ 1,4; -3           |    | 58        | 62                     | 7<br>3         |           | $\frac{4}{5}$ 0,4; $-4$                      | $\frac{5}{6}$ ,1;3                        |
| 54,1;3                             | $\frac{6}{7}$ 1,5;-4            |    | 152       | 51                     | 1              |           | 51,4; -3                                     | 65,1;4                                    |
| 64,2;2                             | $7_{1,6}, -5$                   |    | 252       | 31                     | 1              |           | $\frac{6}{7}$ 2,4;-2                         | 76,1;5                                    |
| 4 4 3 1                            | $\frac{8}{0}$ 1,7;-6            |    | 252       | 25                     | 0<br>0         |           | $\frac{7}{2}$ 3,4;-1                         | 87,1;6                                    |
| OA A+N                             | 91.8:-7                         |    | 290       | 11                     | Ū.             |           | 04 4.0                                       | 9 <sub>8,1;7</sub><br>10 <sub>9,1;8</sub> |
| 9 <sub>4.5</sub> 1                 | <sup>10</sup> 1.9:8             |    | 250       | 6                      | 0              |           | 75 4.1                                       | $10_{9,1;8}$                              |
| $0_{4,6;-2}^{1,6;-2}$              | $\frac{11}{12}$ 1,10;-9         |    | 175       | 4                      | 0              |           | 106.4:2                                      | 1110.1:9                                  |
| $1_{4,7;-3}^{1,0;2}$               | $12_{1,11;-10}^{1,10;}$         |    | 109       | 3                      | 0              |           | 117,4;3                                      | 1211,1;10                                 |
| _                                  | 4                               |    | 2         | 21                     | 15             |           | <b>c</b>                                     | 6                                         |
| 5 <sub>5,0;5</sub>                 | $\frac{6}{7}^{2,4};-2$          |    | 3         | 21<br>83               | 15             |           | $\frac{5}{6}0;5;-5$                          | $_{7}^{6}_{4,2;2}$                        |
| U 5 1 • A                          | $^{1}2.5:-3$                    |    | 17        | 83                     | 12             |           | 01.5; -4                                     | 15.2.3                                    |
| 75.2:3                             | 02.6: -4                        |    | 65        | 124                    | 4              |           | 1253                                         | 86.2;4                                    |
| 75,2;3<br>85,3;2                   | 9275                            |    | 173       | 96                     | 1              |           | 0352                                         | 86,2;4<br>97,2;5                          |
| 95,4;1<br>05,5;0                   | $10^{2,8}, -6$                  |    | 335       | 50                     | 1              |           | $9_{4,5;-1}^{5,5;0}$<br>$10_{5,5;0}^{5,5;0}$ | 108 2.6                                   |
| 05,5,0                             | $11^{2,9}, -7$                  |    | 477       | 23                     | 0              |           | 105 5:0                                      | 110 2.7                                   |
| 1                                  | 12,9;-7                         |    | 517       | 13                     | ŏ              |           | 11 <sub>6,5;1</sub>                          | 12,10,2;8                                 |
| $1_{5,6;-1}$                       | $12_{2,10;-8}^{-1,1}$           |    | 517       | 10                     | V              |           | 110,5;1                                      | 1210,2;8                                  |
| 6 <sub>6,0;6</sub>                 | $\frac{7}{9}3.4;-1$             |    | 1         | 9                      | 21             |           | $\frac{6}{7}$ 0,6;-6                         | 74,3;1                                    |
| 76,1;5                             | 83,5;-2                         |    | 5         | 59                     | 28             |           | 1165                                         | 05 2.7                                    |
| 86.24                              | 93,3,-2                         |    | 20        | 151                    | 12             |           | 82.61.4                                      | 96,3;3                                    |
| 86,2;4                             | $9_{3,6;-3}$                    |    | 60        | 198                    | 4              |           | $9^{2,0,-4}_{2,6,-2}$                        | $10_{7,3;4}^{0,3,3}$                      |
| 96,3;3<br>06,4;2                   | $10_{3,7;-4}^{103,7;-4}$        |    | 155       | 151                    | $\frac{4}{2}$  |           | 10                                           | 11,3,4                                    |
| 06,4;2                             | $\frac{11}{3},8;-5$             |    | 220       | 81                     | 1              |           | 82,6; -4<br>93,6; -3<br>104,6; -2            | 118,3;5                                   |
| 16,5;1                             | $12_{3,9;-6}^{3,6;-6}$          |    | 329       | 01                     | 1              |           | $11_{5,6;-1}^{1,6;-1}$                       | $12^{0,3,5}_{9,3;6}$                      |
| 7,0,7                              | 84,4;0                          |    | . 0       | 4                      | 20             |           | $\frac{7}{9}$ 0,7; $-7$                      | 84,4;0                                    |
| 8,0,7                              | 04,4;0                          |    | 2         | 26                     | 46             |           | 81.7.                                        | 95,4;1                                    |
| 87,1;6                             | $9^{1,1,0}_{4,5;-1}$            |    | 8         | 107                    | 31             |           | $\frac{8}{9}$ ,7;-6                          | $10_{6,4;2}^{3,4,1}$                      |
| 97,2;5<br>07,3;4                   | $10_{4,6;-2}^{104,6;-2}$        |    | าว        | 220                    | 11             |           | $9^{2,7};-5$                                 | 1100,4;2                                  |
| 07,3;4                             | 11473                           |    | 22        | 230                    |                |           | $10^{277}_{3,7;-4}$                          | 117,4;3                                   |
| 17,4;3                             | $12_{4,8;-4}^{1,7,5}$           |    | 55        | 282                    | 4              |           | $11_{4,7;-3}^{6,7,-2}$                       | 128,4;4                                   |
| 8                                  | Q                               |    | 0         | 2                      | 15             |           | $\frac{8}{0}$ 0,8;-8                         | $9_{4,5;-1}$                              |
| 8,0,8                              | 95,4;1                          |    | 1         | 12                     | 15<br>56<br>59 |           | 0,8;-8                                       | 105,5;0                                   |
| 98,1;7<br>08,2;6                   | 105 5.0                         |    | 4         | 54                     | 50             |           | $\frac{10^{1.8};-7}{10^{1.8}}$               | 113,3;0                                   |
| U8,2;6                             | $11_{5,6;-1}^{11_{5,6;-1}}$     |    |           | 165                    | 39             |           | 91,8;-7 $102,8;-6$                           | 116,5;1                                   |
| 18,3;5                             | $12_{5,7;-2}^{7,7,7}$           |    | 11        | 165                    | 27             |           | $11_{3,8;-5}$                                | $12_{7,5;2}^{5,5;2}$                      |
| 99,0;9                             | 106,4;2                         |    | 0         | 1                      | 10             |           | 90,9;-9                                      | $10_{4,6;-2}$                             |
| 09,0;9                             | 116.7                           |    | ĩ         | 6                      | 53             |           | $10^{0.9}_{1.9}, -8$                         | 115,6;-1                                  |
| 9,1;8                              | 116,5;1                         |    | 3         | 25                     | 87             |           | 11,9; -8                                     | 12:50                                     |
| 19,2;7                             | 126,6;0                         |    | 3         | 23                     | 01             |           | $11_{2,9}, -7$                               | 126,6;0                                   |
| 010,0;10                           | 117,4;3                         |    | 0         | 1                      | 5              |           | $10_{0,10;-10}$                              | $11_{4,7}; -3$                            |
| 1 <sub>10,1;9</sub>                | $12^{7,4;3}_{7,5;2}$            |    | 0<br>1    | 4                      | 5<br>41        |           | $11_{1,10;-9}^{0,10,-10}$                    | $12_{5,7;-2}$                             |
|                                    |                                 |    | Λ         | Λ                      | 2              |           | 11                                           | 12                                        |
| 1 <sub>11,0;11</sub>               | 128,4;4                         |    | 0         | 0                      | 3              |           | 11 <sub>0,11</sub> ;-11                      | 124,8;-4                                  |
| c,0R3,4                            | c,oP3,4                         | ∓1 | ∓0.5      | 0                      | ±0.5           | ±1        | a,oR4,3                                      | a,0P4,3                                   |
| 44,1;3                             | $\frac{5}{2}$ 1,5; -4           |    | 2         | 1                      | 0              |           | $\frac{4}{5}$ 1,4;-3                         | 55,1;4                                    |
| 34.2:2                             | O <sub>1.6</sub> : -5           |    | 5<br>8    | 2<br>2                 | 0              |           | 32.4:2                                       | 06.1:5                                    |
| D4 3.1                             | 117:6                           |    | 8         | 2                      | 0              |           | $0_{3.4:-1}$                                 | 77.1:6                                    |
| 74,3;1<br>74,4;0                   | $\frac{8}{9}$ 1,8;-7            |    | 11        | 1                      | 0              |           | 4.4:0                                        | 08.1:7                                    |
| 84,410                             | 91,05-7                         |    | 12        | 1                      | Ō              |           | O 5 4 · 1                                    | 99.1:8                                    |
| $\frac{8}{9}$ 4.5; -1              | 91,9;-8                         |    | 11        | î                      | ŏ              |           | 96,4;2                                       | 1010,1;9                                  |
| <sup>7</sup> 4.6: -2               | <sup>10</sup> 1.10: -9          |    | 9         | 1                      | 0              |           | 100,4;2                                      | 11,1,1,1                                  |
| $0_{4,7;-3}^{113;-3}$ $1_{4,8;-4}$ | $11_{1,11},-10$ $12_{1,12},-11$ |    | 8 .       | . 0                    | 0              |           | $10_{7,4;3}^{6,7,4;3}$ $11_{8,4;4}$          | 12,1;1                                    |
|                                    |                                 |    |           |                        |                |           |                                              |                                           |

TABLE VII.—Continued.

|                                                                                                                                                                                                                                  | branch                                                                                                                                                                                                                                             |            |                                                                                                                                                                       | κ                                                                                                                                                          |                                                                                                                                                                                                                                        |    | Sub-b                                                                                                                                                                                                                                                                      | ranch                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c,oR3,4                                                                                                                                                                                                                          | c,oP3,4                                                                                                                                                                                                                                            | 干1         | ∓0.5                                                                                                                                                                  | 0                                                                                                                                                          | ±0.5                                                                                                                                                                                                                                   | ±1 | a,0R4,3                                                                                                                                                                                                                                                                    | a,oP4,3                                                                                                                                                                                                                                                      |
| 5 <sub>5,1;4</sub>                                                                                                                                                                                                               | $\frac{6}{7}$ 2,5; $-3$                                                                                                                                                                                                                            |            | 1                                                                                                                                                                     | 2                                                                                                                                                          | 0                                                                                                                                                                                                                                      |    | $\frac{5}{6}$ 1,5;-4                                                                                                                                                                                                                                                       | 65,2;3                                                                                                                                                                                                                                                       |
| 65,2;3<br>75,3;2<br>85,4;1                                                                                                                                                                                                       | $7^{2,6}_{2,6}, -4$                                                                                                                                                                                                                                |            | 6                                                                                                                                                                     | 2<br>5<br>6                                                                                                                                                | 0                                                                                                                                                                                                                                      |    | $0_{2.5:-3}$                                                                                                                                                                                                                                                               | 6.2:4                                                                                                                                                                                                                                                        |
| 75.2.3                                                                                                                                                                                                                           | 82,7;-5                                                                                                                                                                                                                                            |            | 14                                                                                                                                                                    | 6                                                                                                                                                          | 0                                                                                                                                                                                                                                      |    | $7_{03,5;-2}^{2,5;-3}$                                                                                                                                                                                                                                                     | 87,2;5                                                                                                                                                                                                                                                       |
| 85 4.1                                                                                                                                                                                                                           | 92,8,-6                                                                                                                                                                                                                                            |            | 23                                                                                                                                                                    | 6                                                                                                                                                          | 0                                                                                                                                                                                                                                      |    | 04 5 - 1                                                                                                                                                                                                                                                                   | 98.2.6                                                                                                                                                                                                                                                       |
| Q., 5,0                                                                                                                                                                                                                          | $10^{2,8,-6}_{2,9,-7}$                                                                                                                                                                                                                             |            | 32                                                                                                                                                                    | 4                                                                                                                                                          | 0 .                                                                                                                                                                                                                                    |    | 95,5;0                                                                                                                                                                                                                                                                     | $10^{3,2,0}_{9,2,7}$                                                                                                                                                                                                                                         |
| 95,5;0                                                                                                                                                                                                                           | 112.40                                                                                                                                                                                                                                             |            | 36                                                                                                                                                                    | 3                                                                                                                                                          | ŏ                                                                                                                                                                                                                                      |    | 106.5;1                                                                                                                                                                                                                                                                    | 11,10,2;8                                                                                                                                                                                                                                                    |
| 05,6;-1                                                                                                                                                                                                                          | $\frac{11}{12}$ ,10; -8                                                                                                                                                                                                                            |            | 37                                                                                                                                                                    | 3<br>3                                                                                                                                                     | ŏ                                                                                                                                                                                                                                      |    | 117,5;2                                                                                                                                                                                                                                                                    | 12,10,2;8                                                                                                                                                                                                                                                    |
| $1_{5,7;-2}^{5,5;-2}$                                                                                                                                                                                                            | $12_{2,11;-9}^{2,10;-9}$                                                                                                                                                                                                                           |            | 37                                                                                                                                                                    |                                                                                                                                                            | U                                                                                                                                                                                                                                      |    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| 6 <sub>6,1;5</sub>                                                                                                                                                                                                               | $\frac{7}{9}3,5;-2$                                                                                                                                                                                                                                |            | 1                                                                                                                                                                     | 2<br>8                                                                                                                                                     | 1                                                                                                                                                                                                                                      |    | $\frac{6}{7}$ 1,6; -5                                                                                                                                                                                                                                                      | $\frac{7}{8}$ 5,3;2                                                                                                                                                                                                                                          |
| 162.4                                                                                                                                                                                                                            | o <sub>3.6</sub> : −3                                                                                                                                                                                                                              |            | 4                                                                                                                                                                     | 8                                                                                                                                                          | 1                                                                                                                                                                                                                                      |    | 126-4                                                                                                                                                                                                                                                                      | °6.3:3                                                                                                                                                                                                                                                       |
| 86.3:3                                                                                                                                                                                                                           | 93.7:-4                                                                                                                                                                                                                                            |            | 11                                                                                                                                                                    | 13                                                                                                                                                         | 1                                                                                                                                                                                                                                      |    | 03 6 3                                                                                                                                                                                                                                                                     | 97 3.4                                                                                                                                                                                                                                                       |
| 86,3;3<br>96,4;2                                                                                                                                                                                                                 | 103.8 5                                                                                                                                                                                                                                            |            | 23                                                                                                                                                                    | 14                                                                                                                                                         | 1                                                                                                                                                                                                                                      |    | 94.62                                                                                                                                                                                                                                                                      | 102 3.5                                                                                                                                                                                                                                                      |
| 06,5;1                                                                                                                                                                                                                           | $11_{3,9;-6}$                                                                                                                                                                                                                                      |            | 39                                                                                                                                                                    | 13                                                                                                                                                         | 0                                                                                                                                                                                                                                      |    | 105 6: -1                                                                                                                                                                                                                                                                  | 119,3;6                                                                                                                                                                                                                                                      |
| 16,6;0                                                                                                                                                                                                                           | $12_{3,10;-7}^{3,5,-6}$                                                                                                                                                                                                                            |            | 56                                                                                                                                                                    | 10                                                                                                                                                         | 0                                                                                                                                                                                                                                      |    | 116,6;0                                                                                                                                                                                                                                                                    | 1210,3;7                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |            | 0                                                                                                                                                                     | 2                                                                                                                                                          | 2                                                                                                                                                                                                                                      |    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| $\frac{7}{8}$ 7.1;6                                                                                                                                                                                                              | $\frac{8}{9}4,5;-1$                                                                                                                                                                                                                                |            | 2                                                                                                                                                                     | 8                                                                                                                                                          | 2<br>3<br>2<br>1                                                                                                                                                                                                                       |    | $\frac{7}{8}$ 1,7;-6                                                                                                                                                                                                                                                       | 85,4;1                                                                                                                                                                                                                                                       |
| 07,2;5                                                                                                                                                                                                                           | $^{9}4.6:-2$                                                                                                                                                                                                                                       |            | 2<br>7                                                                                                                                                                | 17                                                                                                                                                         | 3                                                                                                                                                                                                                                      |    | $\begin{array}{c} 8^{1,7}; \\ 8^{2,7}; -5 \\ 9^{3,7}; -4 \end{array}$                                                                                                                                                                                                      | 26.4.7                                                                                                                                                                                                                                                       |
| 97,3;4                                                                                                                                                                                                                           | 104.7:-3                                                                                                                                                                                                                                           |            | 1,1                                                                                                                                                                   | 17                                                                                                                                                         | 2                                                                                                                                                                                                                                      |    | $\frac{9}{10}3,7;-4$                                                                                                                                                                                                                                                       | 107 4.3                                                                                                                                                                                                                                                      |
| 87,2;5<br>97,3;4<br>07,4;3                                                                                                                                                                                                       | 1148.4                                                                                                                                                                                                                                             |            | 16                                                                                                                                                                    | 24                                                                                                                                                         |                                                                                                                                                                                                                                        |    | 104 7 - 3                                                                                                                                                                                                                                                                  | 1184.4                                                                                                                                                                                                                                                       |
| $1_{7,5;2}^{7,7,5}$                                                                                                                                                                                                              | $12_{4,9;-5}^{1,0;-4}$                                                                                                                                                                                                                             |            | 32                                                                                                                                                                    | 25                                                                                                                                                         | 1                                                                                                                                                                                                                                      |    | $11_{5,7;-2}^{1,7;-3}$                                                                                                                                                                                                                                                     | $12^{0,4,4}_{9,4;5}$                                                                                                                                                                                                                                         |
| 88,1;7                                                                                                                                                                                                                           | 95,5;0                                                                                                                                                                                                                                             |            | 0                                                                                                                                                                     | 1                                                                                                                                                          | 2                                                                                                                                                                                                                                      |    | $\frac{8}{0}$ 1,8; -7                                                                                                                                                                                                                                                      | 95 5:0                                                                                                                                                                                                                                                       |
| 90,1;/                                                                                                                                                                                                                           | 105.5                                                                                                                                                                                                                                              |            | í                                                                                                                                                                     | 6                                                                                                                                                          | $\frac{2}{4}$                                                                                                                                                                                                                          |    | 92.84                                                                                                                                                                                                                                                                      | $10^{5,5;0}_{6,5;1}$                                                                                                                                                                                                                                         |
| 78 7·6                                                                                                                                                                                                                           | $10_{5,6;-1}$                                                                                                                                                                                                                                      |            | 4                                                                                                                                                                     | 17                                                                                                                                                         | 4                                                                                                                                                                                                                                      |    | $9^{1,6}_{2,8}, -6$                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                           |
| UQ 3.5                                                                                                                                                                                                                           | $\frac{11}{12}$ 5,7; -2                                                                                                                                                                                                                            |            | 10                                                                                                                                                                    | 29                                                                                                                                                         | 3                                                                                                                                                                                                                                      |    | 103 8 5                                                                                                                                                                                                                                                                    | $11_{7,5;2}$                                                                                                                                                                                                                                                 |
| 18,4;4                                                                                                                                                                                                                           | $12_{5,8;-3}^{3,1,2}$                                                                                                                                                                                                                              |            | 10                                                                                                                                                                    | 29                                                                                                                                                         | ð                                                                                                                                                                                                                                      |    | $11_{4,8;-4}^{3,6,3}$                                                                                                                                                                                                                                                      | $12_{8,5;3}^{7,5,2}$                                                                                                                                                                                                                                         |
| 9,1;8                                                                                                                                                                                                                            | $10_{6.5;1}$                                                                                                                                                                                                                                       |            | 0                                                                                                                                                                     | 1                                                                                                                                                          | 2<br>5<br>7                                                                                                                                                                                                                            |    | $9_{1,9;-8}$                                                                                                                                                                                                                                                               | $\frac{10}{11}$ 5,6; -                                                                                                                                                                                                                                       |
| 09,2;7                                                                                                                                                                                                                           | 116.6;0                                                                                                                                                                                                                                            |            | 1                                                                                                                                                                     | 5                                                                                                                                                          | 5                                                                                                                                                                                                                                      |    | $10^{1,9}_{2,9;-7}$                                                                                                                                                                                                                                                        | 116,6;0                                                                                                                                                                                                                                                      |
| 19,3;6                                                                                                                                                                                                                           | $12_{6,7;-1}^{6,6;0}$                                                                                                                                                                                                                              |            | 3                                                                                                                                                                     | 14                                                                                                                                                         | 7                                                                                                                                                                                                                                      |    | $11_{3,9;-6}^{2,9;-7}$                                                                                                                                                                                                                                                     | 127,6;1                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |            | _                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                                                                                        |    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| 010,1;9                                                                                                                                                                                                                          | $\frac{11}{12}$ 7,5;2                                                                                                                                                                                                                              |            | 0                                                                                                                                                                     | $\frac{1}{3}$                                                                                                                                              | 6                                                                                                                                                                                                                                      |    | $\frac{10}{11}$ 1,10; -9                                                                                                                                                                                                                                                   | $\frac{11}{12}$ 5,7; -:                                                                                                                                                                                                                                      |
| 1,0,2;8                                                                                                                                                                                                                          | $12_{7,6;1}^{7,6;2}$                                                                                                                                                                                                                               |            | 1                                                                                                                                                                     | 3                                                                                                                                                          | 6                                                                                                                                                                                                                                      |    | $11_{2,10;-8}$                                                                                                                                                                                                                                                             | $12_{6,7;-}$                                                                                                                                                                                                                                                 |
| 111,1;10                                                                                                                                                                                                                         | 128,5;3                                                                                                                                                                                                                                            |            | 0                                                                                                                                                                     | 0                                                                                                                                                          | 2                                                                                                                                                                                                                                      |    | $11_{1,11;-10}$                                                                                                                                                                                                                                                            | $12_{5,8;-}$                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |            | B. b s                                                                                                                                                                | ub-branch                                                                                                                                                  | ies.                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| ,eQ3,3                                                                                                                                                                                                                           | $^{b,e}Q3,\overline{3}$                                                                                                                                                                                                                            | <b>∓</b> 1 | ∓0.5                                                                                                                                                                  | 0                                                                                                                                                          | ±0.5                                                                                                                                                                                                                                   | ±1 | b.eQ3,3                                                                                                                                                                                                                                                                    | b,eQ3,3                                                                                                                                                                                                                                                      |
| E - 1 -                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |            |                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                                                                                        |    | 2                                                                                                                                                                                                                                                                          | 33,0;3                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |            | 1.38                                                                                                                                                                  | 297                                                                                                                                                        | 1.38                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| 3.0:3                                                                                                                                                                                                                            | 30.3;-3                                                                                                                                                                                                                                            |            | 138                                                                                                                                                                   | 297                                                                                                                                                        | 138                                                                                                                                                                                                                                    |    | $\frac{3}{4}$ 0,3; -3                                                                                                                                                                                                                                                      | 43,0,3                                                                                                                                                                                                                                                       |
| 3,0;3                                                                                                                                                                                                                            | $3_{0,3;-3}$ $4_{0,4;-4}$                                                                                                                                                                                                                          |            | 445                                                                                                                                                                   | 319                                                                                                                                                        | 41                                                                                                                                                                                                                                     |    | $^{4}1.3:-2$                                                                                                                                                                                                                                                               | 44.0:4                                                                                                                                                                                                                                                       |
| 3,0;3<br>3,1;2<br>3,2:1                                                                                                                                                                                                          | $3_{0,3;-3}$ $4_{0,4;-4}$ $5_{0,5;-5}$                                                                                                                                                                                                             |            | 445<br>674                                                                                                                                                            | 319<br>158                                                                                                                                                 | 41<br>13                                                                                                                                                                                                                               |    | $\frac{4}{5}$ 1,3; -2                                                                                                                                                                                                                                                      | $5^{44,0;4}_{5,0;5}$                                                                                                                                                                                                                                         |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3:0                                                                                                                                                                                                 | $3_{0,3}$ ; $-3_{4_{0,4}}$ ; $-4_{5_{0,5}}$ ; $-5_{6_{0,6}}$ ; $-6_{0,6}$                                                                                                                                                                          |            | 445<br>674<br>640                                                                                                                                                     | 319<br>158<br>67                                                                                                                                           | 41<br>13<br>6                                                                                                                                                                                                                          |    | $\frac{4}{5}$ 1,3; -2                                                                                                                                                                                                                                                      | 5 <sub>5,0;5</sub><br>6 <sub>6,0:6</sub>                                                                                                                                                                                                                     |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1                                                                                                                                                                                       | 30.3; -3<br>40.4; -4<br>50.5; -5<br>60.6; -6<br>70.7; -7                                                                                                                                                                                           |            | 445<br>674<br>640<br>450                                                                                                                                              | 319<br>158<br>67<br>33                                                                                                                                     | 41<br>13<br>6<br>4                                                                                                                                                                                                                     |    | $\begin{array}{c} 41,3;-2\\ 52,3;-1\\ 63,3;0\\ 74,3:1 \end{array}$                                                                                                                                                                                                         | 55,0;5<br>66,0;6<br>77,0;7                                                                                                                                                                                                                                   |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2                                                                                                                                                                             | 30,3;-3<br>40,4;-4<br>50,5;-5<br>60,6;-6<br>70,7;-7<br>80,8:-8                                                                                                                                                                                     |            | 445<br>674<br>640                                                                                                                                                     | 319<br>158<br>67<br>33<br>21                                                                                                                               | 41<br>13<br>6<br>4                                                                                                                                                                                                                     |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>84,3;1                                                                                                                                                                                                                         | 55,0;5<br>66,0;6<br>77,0;7<br>88,0;8                                                                                                                                                                                                                         |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2                                                                                                                                                                             | 30,3;-3<br>40,4;-4<br>50,5;-5<br>60,6;-6<br>70,7;-7<br>80,8:-8                                                                                                                                                                                     |            | 445<br>674<br>640<br>450                                                                                                                                              | 319<br>158<br>67<br>33                                                                                                                                     | 41<br>13<br>6<br>4                                                                                                                                                                                                                     |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>84,3;1                                                                                                                                                                                                                         | 55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>90,0:0                                                                                                                                                                                                               |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3                                                                                                                                                                   | 30,3; -3<br>40,4; -4<br>50,5; -5<br>60,6; -6<br>70,7; -7<br>80,8; -8<br>90,9; -9                                                                                                                                                                   |            | 445<br>674<br>640<br>450<br>273<br>162                                                                                                                                | 319<br>158<br>67<br>33<br>21<br>15                                                                                                                         | 41<br>13<br>6<br>4<br>3<br>2                                                                                                                                                                                                           |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>84,3;1                                                                                                                                                                                                                         | 55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>90,0:0                                                                                                                                                                                                               |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4; -1<br>3,5; -2<br>3,6; -3<br>3,7; -4                                                                                                                                                     | 30,3; -3<br>40,4; -4<br>50,5; -5<br>60,6; -6<br>70,7; -7<br>80,8; -8<br>90,9; -9<br>100,10: -10                                                                                                                                                    |            | 445<br>674<br>640<br>450<br>273<br>162<br>101                                                                                                                         | 319<br>158<br>67<br>33<br>21<br>15                                                                                                                         | 41<br>13<br>6<br>4<br>3<br>2                                                                                                                                                                                                           |    | \$1,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4                                                                                                                                                                                                   | 55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0:1                                                                                                                                                                                                   |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5                                                                                                                                               | 30,3; -3<br>40,4; -4<br>50,5; -5<br>60,6; -6<br>70,7; -7<br>80,8; -8<br>90,9; -9<br>100,10; -10<br>110,11: -11                                                                                                                                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69                                                                                                                   | 319<br>158<br>67<br>33<br>21<br>15                                                                                                                         | 41<br>13<br>6<br>4<br>3<br>2<br>1                                                                                                                                                                                                      |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>11e,2;5                                                                                                                                                                                         | 54,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0:1                                                                                                                                                                             |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4; -1<br>3,5; -2<br>3,6; -3<br>3,7; -4<br>3,8; -5<br>3,9; -6                                                                                                                               | 30.3; -3 $40.4; -4$ $50.5; -5$ $60.6; -6$ $70.7; -7$ $80.8; -8$ $90.9; -9$ $100.10; -10$ $110.11; -11$ $120.12; -12$                                                                                                                               |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52                                                                                                             | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9                                                                                                              | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1                                                                                                                                                                                                 |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6                                                                                                                                                                              | 55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0:1                                                                                                                                                                                       |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6                                                                                                                                     | 30.3; -3 $40.4; -4$ $50.5; -5$ $60.6; -6$ $70.7; -7$ $80.8; -8$ $90.9; -9$ $100.10; -10$ $110.11; -11$ $120.12; -12$                                                                                                                               |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52                                                                                                             | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7                                                                                                         | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1                                                                                                                                                                                            |    | \$1,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6                                                                                                                                                                             | \$4,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>1212,0;1                                                                                                                                                                |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6                                                                                                                                     | 30,3;-3 $40,4;-4$ $50,5;-5$ $60,6;-6$ $70,7;-7$ $80,8;-8$ $90,9;-9$ $100,10;-10$ $110,11;-11$ $120,12;-12$ $41,3;-2$ $51,4;-3$                                                                                                                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41                                                                                                       | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7                                                                                                         | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230                                                                                                                                                                         |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3                                                                                                                                                      | 54,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3                                                                                                                                             |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2                                                                                                          | 30,3;-3 $40,4;-4$ $50,5;-5$ $60,6;-6$ $70,7;-7$ $80,8;-8$ $90,9;-9$ $100,10;-10$ $110,11;-11$ $120,12;-12$ $41,3;-2$ $51,4;-3$ $61,5;-4$                                                                                                           |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684                                                                                         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793                                                                                    | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70                                                                                                                                                                   |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2                                                                                                                                          | 54,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>111,0;1<br>12,0;1<br>43,1;2<br>54,1;3<br>65,1;4                                                                                                                                      |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2                                                                                                          | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12 41,3; -2 51,4; -3 61,5; -4 71,6; -5                                                                                                             |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287                                                                                 | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422                                                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29                                                                                                                                                             |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2                                                                                                                                          | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76                                                                                                                              |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4,10                                                                                       | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12 41,3; -2 51,4; -3 61,5; -4 71,6; -5                                                                                                             |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640                                                                         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793                                                                                    | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29                                                                                                                                                             |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4; 0                                                                                                                   | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6                                                                                                               |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4,10                                                                                       | 30.3; -3 40.4; -4 50.5; -5 60.6; -6 70.7; -7 80.8; -8 90.9; -9 100.10; -10 110.11; -11 120.12; -12  41.3; -2 51.4; -3 61.5; -4 71.6; -5 81.7; -6                                                                                                   |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640                                                                         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197                                                                      | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29                                                                                                                                                             |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4; 0                                                                                                                   | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6                                                                                                               |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1                                                                              | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12 41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7                                                                                           |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513                                                                 | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105                                                               | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17                                                                                                                                                       |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95                                                                                                              | 54,0;4 55,0;5 66,0;6 77,0;7 88,0;8 99,0;9 1010,0;1 1111,0;1 1212,0;1 43,1;2 54,1;3 65,1;4 76,1;5 87,1;6 98,1;7                                                                                                                                               |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2                                                                    | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 10,9; -8                                                                                 |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105                                                         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67                                                         | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8                                                                                                                                            |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2                                                                                               | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>12 <sub>12</sub> ,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8                                                                             |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3                                                          | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12 41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9                                                                       |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713                                                  | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49                                                   | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6                                                                                                                                       |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3                                                                                    | \$4,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>111,0;1<br>12;2,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>1110,1,9                                                                              |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,4;0<br>4,6;-2<br>4,7;-3<br>4,8;-4                                       | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10                                                          |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105                                                         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5                                                                                                                                  |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2                                                                                               | 44,0;4 55,0;5 66,0;6 77,0;7 88,0;8 99,0;9 1010,0;1 1111,0;1 1212,0;1  43,1;2 54,1;3 65,1;4 76,1;5 87,1;6 98,1;7 109,1;8 1110,1;9 1211,1;10                                                                                                                   |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4                                                | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10 52,3; -1                                                 |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449                                           | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5                                                                                                                                  |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>50,5; -5                                                             | \$4,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1<br>1111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>1110,1;9<br>1211,1;10                                                                |
| 3,0;3<br>3,1;2<br>3,2;1<br>2,3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,4;0<br>2,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>5,0;5                                              | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,110; -9 121,11; -10  52,3; -1 62,4; -2                                      |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449                                           | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5                                                                                                                                  |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4                                                                         | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1:<br>1111,0;1<br>1212,0;1:<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>1110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2                                           |
| 3,0;3<br>3,1;2<br>3,2;1<br>2,3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,4;0<br>2,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>5,0;5                                              | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 111,10; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3                             |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449                                           | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5                                                                                                                                  |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4                                                                         | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1;<br>111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2<br>75,2;2                                    |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>24,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>(5,0;5<br>15,1;4<br>5,2;3<br>5,2;3         | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3 82,6; -1                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449                                           | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5                                                                                                                                  |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>50,5; -5<br>61,5; -4<br>72,5; -3                                     | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1;<br>111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2<br>75,2;2                                    |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>24,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>(5,0;5<br>15,1;4<br>5,2;3<br>5,2;3         | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3 82,6; -1                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449                                           | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38                                             | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5<br>6<br>6<br>4<br>4<br>29<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                    |    | \$1,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>\$40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>\$50,5; -5<br>61,5; -4<br>72,5; -3<br>83,5; -2                    | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1;<br>111,0;1<br>1212,0;1<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2<br>75,2;2                                    |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>24,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>5,0;5<br>25,1;4<br>5,2;3<br>5,3;2<br>5,4;1 | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3 82,6; -1                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449<br>13<br>70<br>248<br>681<br>1444         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38<br>158<br>793<br>1513<br>1360<br>763        | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5<br>6<br>6<br>74<br>6<br>84<br>248<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>50,5; -5<br>61,5; -4<br>72,5; -3<br>83,5; -2<br>94,5; -1             | 44,0;4 55,0;5 66,0;6 77,0;7 88,0;8 99,0;9 1010,0;1: 111,0;1 1212,0;1: 43,1;2 54,1;3 65,1;4 76,1;5 87,1;6 98,1;7 109,1;8 1110,1;9 1211,1;10 53,2;1 64,2;2 75,2;3 86,2;4 97,2;5                                                                                |
| 3,0;3 3,1;2 3,2;1 3,3;0 3,4;-1 3,5;-2 3,6;-3 3,7;-4 3,8;-5 3,9;-6 4,0;4 4,1;3 4,2;2 4,3;1 4,4;0 4,5;-1 4,6;-2 4,7;-3 4,8;-4 (5,0;5 5,1;4 5,2;3 5,3;2 5,4;1 5,5;0                                                                 | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,110; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3 82,6; -4 92,7; -5 102,8; -6 |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449<br>13<br>70<br>248<br>681<br>1444<br>2306 | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38<br>158<br>793<br>1513<br>1360<br>763<br>380 | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5<br>6<br>6<br>4<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1          |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>50,5; -5<br>61,5; -4<br>72,5; -3<br>83,5; -2<br>94,5; -1<br>105,5; 0 | \$4,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1:<br>1111,0;1<br>1212,0;1:<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>1110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2<br>75,2;3<br>86,2;4<br>97,2;5<br>108,2;6 |
| 3,0;3<br>3,1;2<br>3,2;1<br>3,3;0<br>3,4;-1<br>3,5;-2<br>3,6;-3<br>3,7;-4<br>3,8;-5<br>3,9;-6<br>4,0;4<br>4,1;3<br>4,2;2<br>4,3;1<br>4,4;0<br>4,5;-1<br>4,6;-2<br>4,7;-3<br>4,8;-4<br>5,0;5<br>15,1;4<br>5,2;3<br>15,3;2<br>5,4;1 | 30,3; -3 40,4; -4 50,5; -5 60,6; -6 70,7; -7 80,8; -8 90,9; -9 100,10; -10 110,11; -11 120,12; -12  41,3; -2 51,4; -3 61,5; -4 71,6; -5 81,7; -6 91,8; -7 101,9; -8 11,10; -9 121,11; -10  52,3; -1 62,4; -2 72,5; -3 82,6; -1                     |            | 445<br>674<br>640<br>450<br>273<br>162<br>101<br>69<br>52<br>41<br>230<br>684<br>1287<br>1640<br>1513<br>1105<br>713<br>449<br>13<br>70<br>248<br>681<br>1444         | 319<br>158<br>67<br>33<br>21<br>15<br>11<br>9<br>7<br>319<br>846<br>793<br>422<br>197<br>105<br>67<br>49<br>38<br>158<br>793<br>1513<br>1360<br>763        | 41<br>13<br>6<br>4<br>3<br>2<br>1<br>1<br>1<br>1<br>445<br>230<br>70<br>29<br>17<br>11<br>8<br>6<br>5<br>6<br>6<br>74<br>6<br>84<br>248<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |    | 41,3; -2<br>52,3; -1<br>63,3;0<br>74,3;1<br>85,3;2<br>96,3;3<br>107,3;4<br>118,3;5<br>129,3;6<br>40,4; -4<br>51,4; -3<br>62,4; -2<br>73,4; -1<br>84,4;0<br>95,4;1<br>106,4;2<br>117,4;3<br>128,4;4<br>50,5; -5<br>61,5; -4<br>72,5; -3<br>83,5; -2<br>94,5; -1             | 44,0;4<br>55,0;5<br>66,0;6<br>77,0;7<br>88,0;8<br>99,0;9<br>1010,0;1:<br>111,0;1:<br>12,0;1:<br>43,1;2<br>54,1;3<br>65,1;4<br>76,1;5<br>87,1;6<br>98,1;7<br>109,1;8<br>1110,1;9<br>1211,1;10<br>53,2;1<br>64,2;2<br>75,2;3<br>86,2;4<br>97,2;5               |

TABLE VII.—Continued.

| Sub-b                                                                              | ranch                                                                                                  |                | K                      |                          |                      |    | Sub-branch                                                                                                             |                                 |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|------------------------|--------------------------|----------------------|----|------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| <sup>9,e</sup> Q3,3                                                                | $^{b,e}Q$ 3, $\bar{3}$                                                                                 | <del>∓</del> 1 | ∓0.5                   | 0                        | ±0.5                 | ±1 | b,eQ3,3                                                                                                                | <sup>b,e</sup> Q3,3             |  |
| 66,0;6                                                                             | 63,3;0                                                                                                 |                | 6                      | 67                       | 640                  |    | 60,6;-6                                                                                                                | 63,3;0                          |  |
| 46.1:5                                                                             | $\frac{1}{3},4;-1$                                                                                     |                | 29                     | 422                      | 1287                 |    | 1.6:-5                                                                                                                 | 1 4 3 1                         |  |
| 6 2.4                                                                              | 83.5: -2                                                                                               |                | 91                     | 1360                     | 681                  |    | 0264                                                                                                                   | Ŏ = 4.3                         |  |
| 6 3.3                                                                              | $9_{3.6:-3}$                                                                                           |                | 245                    | 2252                     | 245                  |    | 93.63                                                                                                                  | 96.3:3                          |  |
| 76.4:2                                                                             | $^{10}3.7:-4$                                                                                          |                | 592                    | 1993                     | 112                  |    | 104 6: 2                                                                                                               | 96.3;3<br>10 <sub>7,3;4</sub>   |  |
| L 6 5·1                                                                            | 11385                                                                                                  |                | 1278                   | 1165                     | 69                   |    | 115.6:-1                                                                                                               | 110 2.5                         |  |
| 26,6;0                                                                             | $12_{3,9;-6}$                                                                                          |                | 2337                   | 609                      | 48                   |    | 126,6;0                                                                                                                | $12^{6,3,3}_{9,3;6}$            |  |
| 77,0;7                                                                             | 74,3;1                                                                                                 |                | 4                      | 33                       | 450                  |    | $\frac{7}{8}$ 0,7; $-7$                                                                                                | $\frac{7}{8}3,4;-1$             |  |
| 7,0,7<br>67,1;6<br>97,2;5<br>07,3;4                                                | 04.4:0                                                                                                 |                | 17                     | 197                      | 1640                 |    | 01 7 - 6                                                                                                               | 04 4:0                          |  |
| 7,2;5                                                                              | 94.5:-11                                                                                               |                | 48                     | 763                      | 1444                 |    | 92.7:-5                                                                                                                | 95 A-1                          |  |
| 7,3;4                                                                              | $^{10}4.6:-2$                                                                                          |                | 112                    | 1993                     | 592                  |    | 103 7: -4                                                                                                              | 1064.2                          |  |
| 7 4.3                                                                              | 1147:-3                                                                                                |                | 244                    | 3040                     | 244                  |    | 11473                                                                                                                  | 117 4.2                         |  |
| 7,5;2                                                                              | $12_{4,8;-4}^{1,7,5}$                                                                                  |                | 512                    | 2675                     | 136                  |    | $12_{5,7;-2}^{1,7,3}$                                                                                                  | $12_{8,4;4}^{7,4,3}$            |  |
| 8,0;8                                                                              | 85,3;2                                                                                                 |                | . 3                    | 21                       | 273                  |    | $\frac{8}{9}$ 0,8;-8                                                                                                   | 83,5;-2                         |  |
| 8 1 - 7                                                                            | $9^{3,3,2}_{5,4:1}$                                                                                    |                | 11                     | 105                      | 1513                 |    | $9^{1,8;-7}$                                                                                                           | 94,5;                           |  |
| 8,0;8<br>8,1;7<br>8,2;6                                                            | 95,4;1<br>105,5;0                                                                                      |                | 31                     | 380                      | 2306                 |    | $10^{1,8}, -7$ $10^{2,8}, -6$                                                                                          | 105 5.0                         |  |
| · R 3 · 5                                                                          | $\frac{11}{12}$ 5,6;-1                                                                                 |                | 69                     | 1165                     | 1278                 |    | $11_{3.8;-5}^{2,8;-6}$                                                                                                 | 1165.1                          |  |
| 8,4;4                                                                              | $12^{3,3,-1}_{5,7;-2}$                                                                                 |                | 136                    | 2675                     | 512                  |    | $12_{4,8;-4}^{3,8;-3}$                                                                                                 | $12^{0,5;1}_{7,5;2}$            |  |
|                                                                                    |                                                                                                        |                | _                      |                          |                      |    |                                                                                                                        |                                 |  |
| 9,0;9                                                                              | $9_{6,3;3}$                                                                                            |                | 2                      | 15                       | 162                  |    | $9_{0,9;-9}$                                                                                                           | $\frac{9}{10}$ 3,6; -           |  |
| /o 1·8                                                                             | $10_{6,4,2}$                                                                                           |                | 8                      | 67                       | 1105                 |    | $10_{1,9;-8}$                                                                                                          | 10/16-                          |  |
| 0.2.7                                                                              | 10 <sub>6,4;2</sub><br>11 <sub>6,5;1</sub>                                                             |                | 22                     | 212                      | 2749                 |    | $10_{1,9;-8}^{0,9,-9}$ $11_{2,9;-7}^{1}$                                                                               | 1156:-                          |  |
| 9,3;6                                                                              | $12_{6,6;0}^{0,0,1}$                                                                                   |                | 48                     | 609                      | 2337                 |    | $12_{3,9;-6}$                                                                                                          | 126,6;                          |  |
| 010,0;10                                                                           | $\frac{10}{11}$ 7,3;4                                                                                  |                | 1                      | 11                       | 101                  |    | $\frac{10}{11}$ 0,10;-10                                                                                               | 103,7;-                         |  |
| 10 1.0                                                                             | 117 4.3                                                                                                |                | 6                      | 49                       | 713                  |    | 111 10: -9                                                                                                             | 1147.                           |  |
| 10,2;8                                                                             | $12_{7,5;2}^{7,3,5}$                                                                                   |                | 16                     | 141                      | 2519                 |    | $12_{2,10;-8}$                                                                                                         | 125,7;                          |  |
| 11,0;11<br>211,1;10                                                                | $\frac{11}{12}_{8,3;5}$                                                                                |                | 1<br>5                 | 9<br>38                  | 69<br>449            |    | $11_{0,11}; -11$ $12_{1,11}; -10$                                                                                      | $11_{3,8}$ ; -1 $12_{4,8}$ ; -1 |  |
|                                                                                    |                                                                                                        |                | 1                      | 7                        | 52                   |    |                                                                                                                        |                                 |  |
| 212,0;12                                                                           | 129,3;6                                                                                                |                |                        |                          |                      |    | 12 <sub>0,12</sub> ; -12                                                                                               | 123,9;-6                        |  |
| b,oQ3,3                                                                            | b,oQ3.3                                                                                                | ∓1<br>————     | ∓0.5                   | 0                        | ±0.5                 | ±1 | b,oQ3,3                                                                                                                | b,oQ3,3                         |  |
| 4,1;3                                                                              | $\frac{4}{5}$ 1,4; -3                                                                                  |                | 10                     | 20                       | 10                   |    | $\frac{4}{5}$ 1,4; -3                                                                                                  | $\frac{4}{5}4,1;3$              |  |
| 34.2:2                                                                             | $^{3}1.5;-4$                                                                                           |                | 34                     | 33                       | 9                    |    | 324:-2                                                                                                                 | <sup>3</sup> 5 1:4              |  |
| 0.1 2 - 1                                                                          | $\frac{6}{7}$ 1,6; -5                                                                                  |                | 58                     | 33                       | 6                    |    | U 3 4·-1                                                                                                               | 66,1;5<br>77,1;6                |  |
| 4.4:0                                                                              | $\frac{7}{6}$ 1,7;-6                                                                                   |                | 76<br>82               | 26<br>19                 | $\frac{4}{3}$        |    | 4 4 4:0                                                                                                                | 7,1;6                           |  |
| 94.5:—1                                                                            | $\frac{8}{0}$ 1,8;-7                                                                                   |                | 77                     | 14                       |                      |    |                                                                                                                        | 88,1;7                          |  |
| 4,6;-2                                                                             | 91,9;-8                                                                                                |                | 68                     | 11                       | 2<br>1               |    | 96,4;2<br>107,4;3                                                                                                      | 70 1 · R                        |  |
| 4.7: -3                                                                            | $\frac{10}{11}, 10; -9$                                                                                |                | 58                     | 11                       | 1                    |    | 107,4;3                                                                                                                | 2010 130                        |  |
| 4,8;-4                                                                             | $\frac{11}{12}$ 1,11; -10                                                                              |                | 48                     | 9<br>7                   | 1                    |    | 1 1 8 4 14                                                                                                             | 1111,1;1                        |  |
| 4,9;-5                                                                             | $12_{1,12;-11}$                                                                                        |                | 40                     | ,                        | 1                    |    | $12_{9,4;5}^{6,4,7}$                                                                                                   | 12,1;1                          |  |
| 5,1;4                                                                              | $\frac{5}{6}$ 2,4;-2                                                                                   |                | 9                      | 33                       | 34                   |    | $\frac{5}{6}$ 1,5;-4                                                                                                   | $\frac{5_{4,2;2}}{6_{5,2;2}}$   |  |
| 75 713                                                                             | V2.5:3                                                                                                 |                | 36                     | 83                       | 36                   |    | 92.5:-3                                                                                                                |                                 |  |
| 5.3:2                                                                              | 12.6:-4                                                                                                |                | 84                     | 108                      | 25                   |    | 1352                                                                                                                   | 162.4                           |  |
| 95.4:1                                                                             | 0275                                                                                                   |                | 144                    | 102                      | 16                   |    | 04 5:-1                                                                                                                |                                 |  |
| 1                                                                                  | $9_{2.8:-6}$                                                                                           |                | 199                    | 83                       | 11                   |    | 25 5.0                                                                                                                 | 78 2.6                          |  |
| (5,5;0                                                                             | $10_{2.9:-7}$                                                                                          |                | 233                    | 63                       | 8                    |    | 106 5:1                                                                                                                | 100 2.7                         |  |
| <sup>1</sup> 5.6: -1                                                               | $11_{2.10:-8}$                                                                                         |                | 241                    | 48                       | 6                    |    | 117 5:2                                                                                                                | 1 I 10 2:8                      |  |
| 5,6; -1<br>5,7; -2                                                                 |                                                                                                        |                | 228                    | 38                       | 5                    |    | 128.5;3                                                                                                                | 1211,2;9                        |  |
| 05,6;-1 $15,7:-2$                                                                  | $12_{2,11;-9}$                                                                                         |                |                        |                          | 58                   |    | 6                                                                                                                      | 6                               |  |
| 95,5;0<br>05,6;-1<br>15,7;-2<br>25,8;-3                                            | $6_{3,4:-1}$                                                                                           |                | 6                      | 33                       | 30                   |    | 01.6:-5                                                                                                                | 4.3:1                           |  |
| 0.05, 6; -1 $0.05, 7; -2$ $0.05, 8; -3$ $0.05, 8; -3$                              | $\begin{array}{c} 6_{3,4;-1} \\ 7_{3,5;-2} \end{array}$                                                |                | 25                     | 108                      | 84                   |    | $\begin{array}{c} 6_{1,6;-5} \\ 7_{2,6;-4} \end{array}$                                                                | $\frac{6_{4,3;1}}{7_{5,3;2}}$   |  |
| 75,6; -1<br>15,7; -2<br>25,8; -3<br>66,1;5<br>76,2;4                               | $\begin{array}{c} 6_{3,4}; -1 \\ 7_{3,5}; -2 \\ 8_{3,6}; -3 \end{array}$                               |                | 25<br>67               | 108<br>187               | 84<br>67             |    | $8_{3.6}^{12,6}$ ; $-4$                                                                                                | 86 3.3                          |  |
| 75,6; -1<br>15,7; -2<br>25,8; -3<br>66,1;5<br>76,2;4<br>86,3;3<br>96,4:2           | $\begin{matrix} 6_{3,4}; -1 \\ 7_{3,5}; -2 \\ 8_{3,6}; -3 \\ 9_{3,7}; -4 \end{matrix}$                 |                | 25<br>67<br>136        | 108<br>187<br>221        | 84<br>67<br>45       |    | $     \begin{array}{c}         4,6;-4 \\         8,6;-3 \\         9,6;-2     \end{array} $                            | 86,3;3<br>97 3:4                |  |
| 25,6; -1<br>25,7; -2<br>25,8; -3<br>66,1;5<br>76,2;4<br>86,3;3<br>96,4;2<br>96,5;1 | $\begin{matrix} 6_{3,4}, -1 \\ 7_{3,5}, -2 \\ 8_{3,6}, -3 \\ 9_{3,7}, -4 \\ 10_{3,8}, -5 \end{matrix}$ |                | 25<br>67<br>136<br>228 | 108<br>187<br>221<br>206 | 84<br>67<br>45<br>31 |    | $     \begin{array}{c}         42.6; -4 \\         83.6; -3 \\         94.6; -2 \\         105.6; -1     \end{array} $ | 86,3;3<br>97,3;4<br>108,3:5     |  |
| 75,6; -1<br>15,7; -2<br>25,8; -3<br>66,1;5<br>76,2;4<br>86,3;3                     | $\begin{array}{c} 6_{3,4}; -1 \\ 7_{3,5}; -2 \\ 8_{3,6}; -3 \end{array}$                               |                | 25<br>67<br>136        | 108<br>187<br>221        | 84<br>67<br>45       |    | $8_{3.6}^{12,6}$ ; $-4$                                                                                                | 86 3.3                          |  |

TABLE VII.—Continued.

| Sub-b                         | oranch                                            | <del></del> 1  | -0.5         | κ<br>0     |             |           | Sub-branch $b, oQ\overline{3}, \overline{3}$ Sub-branch |                                           |
|-------------------------------|---------------------------------------------------|----------------|--------------|------------|-------------|-----------|---------------------------------------------------------|-------------------------------------------|
| b,0Q3,3                       | b,0Q3,3                                           | <del>+</del> 1 | ∓0.5         |            | ±0.5        | <u>±1</u> | b,aQ3,3                                                 |                                           |
| 7 <sub>7,1;6</sub>            | 74,4;0                                            |                | 4            | 26         | 76          |           | $\frac{7}{9}$ 1,7;-6                                    | 74,4;0                                    |
|                               | 84.5: 1                                           |                | 16           | 102        | 144         |           | 0275                                                    | 05 4.1                                    |
| 97,3;4                        | $9^{1,6}_{4,6}$ ; -2                              |                | 45           | 221<br>327 | 136         |           | 93,7;-4                                                 | 96 4.2                                    |
| 97,3;4<br>10 <sub>7,4;3</sub> | 104.7: -3                                         |                | 98           | 341<br>267 | 98          |           | 104 7 3                                                 |                                           |
|                               | $11_{4,8}, -4$                                    |                | 183<br>299   | 367<br>340 | 68<br>48    |           | 115 7 2                                                 | 112 1.1                                   |
| 127,6;1                       | $12_{4,9;-5}^{1,6,-1}$                            |                | 299          | 340        | 48          |           | $^{12}6,7;-1$                                           | 129,4;5                                   |
| $^{8}_{8,1;7}$                | 85,4;1                                            |                | 3<br>11      | 19<br>83   | 82<br>199   |           | $\frac{8}{9}$ 1,8; -7                                   | $\frac{8}{9}$ 4,5;-1                      |
| 8,2;6                         | 95,5;0                                            |                | 31           | 206        | 228         |           | $9^{1,6}_{2,8},-6$                                      | 25.5.0                                    |
| 98,2;6<br>08,3;5              | $10^{5,6};-1$                                     |                | 68           | 367        | 183         |           | $10^{2,8}_{3,8}, -5$                                    | $10_{6,5;1}^{6,5;1}$                      |
| 18,4;4<br>2 <sub>8,5;3</sub>  | $11_{5,7;-2}^{11_{5,7;-2}}$<br>$12_{5,8;-3}^{13}$ |                | 129          | 498        | 129         |           | $11_{4,8;-4}^{11_{4,8;-4}}$ $12_{5,8;-3}^{13}$          | $11_{7,5;2}^{1,5;2}$ $12_{8,5;3}^{1,5;2}$ |
| 99,1;8                        | 96,4;2                                            | •              | 2            | 14         | 77          |           | $9_{1,9;-8}$                                            | 94,6;-2                                   |
| 09,2;7                        | 106,5;1                                           |                | 8            | 63         | 233         |           | $10^{1,9}_{2,9},-7$                                     | $10^{4,6}_{5,6;-1}$                       |
| 19,3;6                        | 116,6;0                                           |                | 22           | 169        | 328         |           | 113,9;-6                                                | 116,6;0                                   |
| 29,4;5                        | $12_{6,7;-1}^{0,0,0}$                             |                | 48           | 340        | 299         |           | $12_{4,9;-5}^{3,9,-6}$                                  | $12_{7,6;1}^{0,0,0}$                      |
| 010.1;9                       | 107,4;3                                           |                | 1            | 11         | 68          |           | $10_{1,10}; -9$                                         | $10_{4,7;-3}$                             |
| L L 1 10 2 · 8                | 117 5.2                                           |                | 6            | 48         | 241         |           | 112 10· R                                               | 11572                                     |
| 210,3;7                       | $12_{7,6;1}^{7,3,2}$                              |                | 16           | 132        | 410         |           | $12_{3,10;-7}^{2,10,-8}$                                | $12_{6,7;-1}^{3,7;-2}$                    |
| 111 1:10                      | 118 4.4                                           |                | 1            | 9          | 58          |           | 11, 11:-10                                              | 114 84                                    |
| 211,2;9                       | 128,5;3                                           |                | 5            | 38         | 228         |           | $12_{2,11;-9}^{1,11;10}$                                | $12^{*,0}_{5,8;-3}$                       |
| 2 <sub>12,1;11</sub>          | 129,4;5                                           |                | 1            | 7          | 48          |           | $12_{1,12;-11}$                                         | $12_{4,9;-5}$                             |
| b,0R3,3                       | b,eP3,3                                           | ∓1             | ∓0.5         | 0          | ±0.5        | ±1        | <sup>b</sup> ,oR3, <del>3</del>                         | b,eP3,3                                   |
| 33,1;2                        | 40,4;-4                                           |                | 38           | 41         | 13<br>12    |           | $\frac{3}{4}$ 1,3;-2                                    | 44,0;4                                    |
| 43 2.1                        | $^{5}0.5; -5$                                     |                | 111          | 62         | 12          |           | T) 3·1                                                  | 25.0.5                                    |
| 33.3:0                        | 00,6;-6                                           |                | 175          | 59<br>50   | 9<br>7      |           | <sup>3</sup> 3.3:0                                      | 06.0:6                                    |
| 03.4:-1                       | 0.7:-7                                            |                | 206          | 50         | 7           |           | 04.3:1                                                  | 7.0:7                                     |
| 13.5:-2                       | 80.8: -8                                          |                | 209          | 42         | 6<br>5<br>4 |           | 15 3.7                                                  | <b>ბ</b> გ ი∙გ                            |
| 03.6: -3                      | 9 <sub>0.9:-9</sub>                               |                | 195          | 35<br>30   | 5           |           | 063.3                                                   | 99.0.9                                    |
| 93.7:-4                       | $^{10}0.10:-10$                                   |                | 177          | 30         | 4           |           | 77 3·Δ                                                  | 1010.0:10                                 |
| U3.8 5                        | $^{11}0.11:-11$                                   |                | 158          | 27         | 4<br>3      |           | 102 3.5                                                 | 11110-1-                                  |
| $1_{3,9;-6}$                  | $12_{0,12;-12}$                                   |                | 142          | 24         | 3           |           | 119,3;6                                                 | 12,0,12                                   |
| 4 <sub>5</sub> 4,1;3          | $\frac{5}{6}$ 1,4;-3                              |                | 14           | 63         | 41          |           | $\frac{4}{5}$ 1,4;-3                                    | 54,1;3                                    |
| J4.2:2                        | U <sub>1.5</sub> ; -4                             |                | 77           | 149        | 44          |           | 32.4:-2                                                 | 95.1:4                                    |
| 04 3.1                        | $^{1}$ 1.6: $-5$                                  |                | 209          | 182        | 34          |           | U 3 A · _ 1                                             | 6 1:5                                     |
| 4.4.0                         | 8176                                              |                | 370          | 170        | 26          |           | / A A · O                                               | 07 1 16                                   |
| °4.5: −1                      | $9_{1.8:-7}$                                      |                | 493          | 146        | 20          |           | 05 4:1                                                  | 78 1.7                                    |
| <sup>7</sup> 4.6· -2          | 101.9: -8                                         |                | 549          | 122        | 17          |           | 76 A·2                                                  | 100 1.8                                   |
| 04.7:-3                       | $\frac{11}{1.10}$ : $-9$                          |                | 550          | 104        | 14          |           | 107.4:3                                                 | 1110 1.0                                  |
| $1_{4,8;-4}$                  | $12_{1,11;-10}$                                   |                | 519          | 90         | 12          |           | 118,4;4                                                 | 1211,1;10                                 |
| 5 <sub>5,1;4</sub>            | $\frac{6}{7}$ 2,4,-2                              |                | 3            | 43         | 71          |           | $\frac{5}{6}$ 1,5;-4                                    | $\frac{6}{7}$ 4,2;2                       |
| U5 2.3                        | 1253                                              |                | 23<br>87     | 175        | 97          |           |                                                         | 152.2                                     |
| 15 3.7                        | O2 6: 4                                           |                | 3/           | 305        | 80          |           | $\frac{1}{9}3,5;-2$                                     |                                           |
| 85,4;1<br>95,5;0              |                                                   |                | 234          | 347        | 61          |           | $^{\delta}_{0}4,5;-1$                                   | 107,2;5                                   |
| 25,5;0                        | 107 8: -6                                         |                | 466<br>715   | 324<br>279 | 47          |           | 73,5; -2<br>84,5; -1<br>95,5;0                          | 97,2;5<br>108,2;6                         |
| U5.6:-1                       | $^{1}$ $^{1}$ $^{2}$ $^{2}$ $^{2}$ $^{-7}$        |                | 715<br>896   | 279        | 38<br>32    |           | $10_{6,5;1}^{3,5,6}$ $11_{7,5;2}$                       | 110 9.7                                   |
| 15,7;-2                       | $12_{2,10;-8}^{-3}$                               |                |              |            |             |           |                                                         | 1210,2;8                                  |
| 6 <sub>6,1;5</sub>            | $\frac{7}{8}$ 3,4; $-1$                           |                | 1<br>7       | 19<br>118  | 87<br>162   |           | $\frac{6}{7}$ 1,6;-5                                    | 7 <sub>4,3;1</sub><br>8 <sub>5,3:2</sub>  |
| 7 <sub>6,2;4</sub>            | $\frac{83.5}{93.6}$ ; -2                          |                | 26           | 321        | 153         |           | $\frac{7}{8}$ 2,6;-4                                    | 85,3;2<br>96,3;3                          |
| 86,3,3                        | 93,6;-3                                           |                | 80           | 495        | 119         |           | 83,6; -3                                                | 10-                                       |
| 96,4;2<br>06,5;1              | $10_{3,7;-4}$ $11_{3,8;-5}$                       |                | 208          | 547        | 91          |           | $9_{4,6;-2}^{3,6;-2}$<br>$10_{5,6;-1}^{11}$             | 107,3;4                                   |
| 1 <sub>6,6;0</sub>            | $12_{3,9;-6}^{13,8;-5}$                           |                | 446          | 511        | 73          |           | $105,6;-1$ $11_{6,6;0}$                                 | $11_{8,3;5}$ $12_{9,3;6}$                 |
| 77 1.6                        | 84.4:0                                            |                | 1            | 7          | 82          |           | $\frac{7}{9}$ 1,7;-6                                    | 84 4:0                                    |
| U7 7.5                        | $9_{4.5:-1}$                                      |                | 3            | 55         | 218         |           | 0275                                                    | 25 1.1                                    |
| 7.3.4                         | 104.6:-2                                          |                | 11           | 218        | 247         |           | $9^{2,7}_{3,7;-4}$ $10^{4,7}_{11,7;-3}$                 | 106 1.7                                   |
|                               | 11                                                |                | 29           | 492        | 205         |           | 10, 7, 1                                                | 117,4;3                                   |
| 07,4;3<br>1 <sub>7,5;2</sub>  | 114,7;-3 $124,8;-4$                               |                | $\tilde{73}$ | 711        | 158         |           | $11_{5,7;-2}^{4,7;-3}$                                  | $12_{8,4;4}^{7,4;3}$                      |

TABLE VII.—Continued.

| Sub-b<br>b,0R3,3                     | ranch $^{b,e}P_{3,\overline{3}}$                     | 平1             | ∓0.5   | κ<br>0        | ±0.5            | ±1 | Sub-broken $^{b,o}R3,\overline{3}$ | anch $^{b,e}P\bar{3}$ ,3                     |
|--------------------------------------|------------------------------------------------------|----------------|--------|---------------|-----------------|----|------------------------------------|----------------------------------------------|
| 88,1;7                               | 95,4;1                                               |                | 0      | 4             | 62<br>241       |    | 81,8;-7                            | 94,5;-                                       |
| 98,2;6                               | 105,5;0                                              |                | 2      | 24            | 241             |    | $9^{1,0}_{2,8;-6}$                 | $10_{5,5;0}$                                 |
| 08,3;5                               | 115,6;-1                                             |                | 6      | 108           | 346             |    | $10^{2,8}_{3,8},-5$                | 116,5;1                                      |
| 118,4;4                              | $12^{5,0;-1}_{5,7;-2}$                               |                | 14     | 336           | 319             |    | 114,8;-4                           | $12_{7,5;2}^{0,3;1}$                         |
|                                      |                                                      |                |        |               |                 |    |                                    |                                              |
| 99,1;8                               | $10_{6,4;2}$                                         |                | 0<br>1 | 2             | 38              |    | $\frac{9}{10}$ 1,9; $-8$           | $10_{4,6}$ ; $-2$                            |
| 109,2;7                              | 116.5-1                                              |                |        | 12<br>50      | 219             |    | 102 9: -7                          | 115.6-                                       |
| 119,3;6                              | 126,6;0                                              |                | 4      | 30            | 420             |    | $11_{3,9;-6}^{2,3}$                | 126,6;0                                      |
| 1010,1;9                             | $\frac{11}{12}$ 7,4;3                                |                | 0      | 1             | 22              |    | $\frac{10}{11}$ 1,10; -9           | $\frac{11}{12}4.7; -3$                       |
| 11,0,2;8                             | 127,5;2                                              |                | 1      | 7             | 165             |    | $11_{2,10;-8}^{1,10;}$             | $12_{5,7;-1}$                                |
| 11 <sub>11,1;10</sub>                | 128,4;4                                              |                | 0      | 1             | 12              |    | 11,11;-10                          | 124,8;-                                      |
| <sup>b,e</sup> R3,5                  | b,oP3,5                                              | <del>=</del> 1 | ∓0.5   | 0             | ±0.5            | ±1 | b,eR5,3                            | b,0P₹,3                                      |
|                                      |                                                      | +1             |        |               |                 |    |                                    |                                              |
| 44,0;4                               | $\frac{5}{6}$ 1,5;-4                                 |                | 2      | 2             | 0               |    | $\frac{4}{5}$ 0,4; -4              | $\frac{5}{6}$ 5,1;4                          |
| V4.1:3                               | 01 61 - 5                                            |                | 6      | $\frac{1}{3}$ | 0               |    | $^{3}1.4:-3$                       | 06 1.5                                       |
| 04 2:2                               | $7_{1,7;-6}$ $8_{1,8;-7}$                            |                | 11     | 2             | 0               |    | $0_{2.4:-2}$                       | 171.6                                        |
| 4 3:1                                | $8_{1,8;-7}$                                         |                | 13     | 1             | 0               |    | (3.4:-1)                           | 00 1.7                                       |
| O4 4.0                               | 71.9: -8                                             |                | 12     | 0             | 0               |    | °4.4:0                             | 90 1.8                                       |
| 74.51                                | <sup>10</sup> 1.10: -9                               |                | 9<br>5 | 0             | 0               |    | 95 4.1                             | IU10.1:9                                     |
| 4 6 - 7                              | 11111:-10                                            |                | 5      | 0             | 0               |    | 106 4.2                            | 1 1 1 1 · 1                                  |
| $1_{4,7}^{1,0}, -3$                  | $12_{1,12;-11}^{1,11}$                               |                | 3      | 0             | 0               |    | 117,4;3                            | 12,1,1                                       |
|                                      |                                                      |                | 2      | 4             | 2               |    |                                    |                                              |
| 5 <sub>5,0;5</sub>                   | $\frac{6}{7}$ 2,5; -3                                |                | 8      | 9             | 2<br>1          |    | $\frac{5}{6}0,5;-5$                | $\frac{6}{7}$ 5,2;3                          |
| 65,1;4                               | 72.6; -4                                             |                | 18     | 10            | Ô               |    | $\frac{6}{7}$ 1,5; -4              | 76,2;4                                       |
| 75,2;3                               | $8^{2,7}_{2,7;-5}$                                   |                | 30     | 6             | 0               |    | $7_{2,5;-3}$                       | 87,2;5                                       |
| 85,3;2<br>95,4;1                     | $9^{2,8}; -6$                                        |                | 40     | 3             | ő               |    | $\frac{8}{0}3,5;-2$                | 98,2;6                                       |
| 5,4;1                                | $10^{2,9}; -7$                                       |                | 43     | 1             | 0               |    | $9_{4,5;-1}^{4,5;-1}$              | 100 2.7                                      |
| $10^{3,4,1}_{5,5;0}$<br>$1^{3,6;-1}$ | $11_{2,10;-8}^{12,10;-8}$ $12_{2,11;-9}^{112,10;-8}$ |                | 37     | 1             | 0               |    | $10_{5,5;0}^{1,5,7}$ $11_{6,5;1}$  | 11 <sub>10,2;8</sub><br>12 <sub>11,2;9</sub> |
|                                      |                                                      |                | 0.     | •             | v               |    |                                    |                                              |
| $_{7}^{6,0;6}$                       | $\frac{7}{9}3.5;-2$                                  |                | 1      | . 5           | 4               |    | $\frac{6}{7}0.6;-6$                | $\frac{7}{8}$ 5,3;2                          |
| 76,1;5                               | 03.63                                                |                | . 5    | 15            | 4               |    | (1.6: -5                           | 06 2.2                                       |
| 86,2;4                               | 93.7:-4                                              |                | 15     | 24            | 1               |    | 82.64                              | 27 3 1                                       |
| 76,1;5<br>86,2;4<br>96,3;3           | 1U3.8:-5                                             |                | 31     | 23            | 0               |    | 93.6:-3                            | 108 3.5                                      |
| U6 1.3                               | 1130-6                                               |                | 52     | 14            | 0               |    | 104 62                             | 110 3.6                                      |
| 16,5;1                               | $12_{3,10;-7}^{3,7}$                                 |                | 73     | 6             | 0               |    | $11_{5,6;-1}^{4,6;-2}$             | 12,3,3,7                                     |
|                                      |                                                      |                | 1      | 4             | 6               |    |                                    |                                              |
| 77,0;7                               | $\frac{8}{9}$ 4,5;-1                                 |                | 3      | 16            | ğ               |    | $\frac{7}{8}$ 0,7; $-7$            | 85,4;1                                       |
| 87,1;6                               | $9^{1,6}, -2$                                        |                | 9      | 33            | 4               |    | $8_{1,7;-6}$                       | 96,4;2                                       |
| 97,2;5                               | 104,7;-3                                             |                | 22     | 44            | 1               |    | $9^{2,7}; -5$                      | $10^{0,4,2}_{7,4;3}$                         |
| 07,3;4                               | $11_{4,8;-4}$                                        |                | 42     | 39            | 0               |    | $10_{3,7;-4}^{2,7,}$               | 118,4;4                                      |
| 17,4;3                               | $12_{4,9;-5}^{4,6,-4}$                               |                | 42     | 39            | U               |    | $11_{4,7;-3}^{3,7,-4}$             | $12^{3,4,4}_{9,4;5}$                         |
| 8,0;8                                | 95,5;0                                               |                | 0      | 3             | 7               |    | $\frac{8}{9}$ 0,8;-8               | 95,5;0                                       |
| 98 1.7                               | 105.6: - t                                           |                | 2      | 13            | 15              |    | 91.8: <del></del> 7                | 106 5.1                                      |
| 100 2.6                              | 1157 2                                               |                | 6      | 33            | 11              |    | 10286                              | 117 5.7                                      |
| 18,3;5                               | $12_{5,8;-3}^{6,7,2}$                                |                | 14     | 57            | 4               |    | $11_{3,8;-5}^{2,6}$                | $12_{8,5;3}^{7,3,2}$                         |
|                                      |                                                      |                | 0      | 2             | 8               |    |                                    |                                              |
| 99,0;9                               | $10_{6,5;1}$                                         |                | 1      | 9             | 21              |    | $9_{0,9;-9}$                       | 105,6;                                       |
| 09,1;8                               | 116,6;0                                              |                | 4      | 28            | $\frac{21}{22}$ |    | $10_{1,9;-8}$                      | 11660                                        |
| 19,2;7                               | $12_{6,7;-1}^{6,7;-1}$                               |                |        | 20            |                 |    | $11_{2,9}, -7$                     | 127,6;1                                      |
| $0_{10,0;10}$                        | 117,5;2                                              |                | 0      | 1<br>7        | 7               |    | $\frac{10}{110}$ 0,10;-10          | $\frac{11}{12}$ 5,7;-                        |
| 110,1;9                              | 127,6;1                                              |                | 1      | 7             | 24              |    | $11_{1,10;-9}^{0,10;10}$           | $12_{6,7}^{3,7}$                             |
| 111,0;11                             |                                                      |                | 0      | 1             | 6               |    |                                    |                                              |
| 111 0-11                             | $12_{8,5;3}$                                         |                | U      | 1             | 6               |    | $11_{0,11;-11}$                    | 125,8;-                                      |