گزارش پروژه درس هوش مصنوعی

ریحانه درفشی - ۴۱،۳۹۶،۹۸

صورت مسئله:

در این پروژه به پیادهسازی روشی برای قطعهبندی تصاویر سلولهای سرطانی خون میپردازیم. تفاوت این روش قطعهبندی با سایر روشها، جستجو بر روی رنگها به جای روشهای معمول «پیدا کردن مرزها» یا روشهای یادگیری ماشین است که مستقیما بر روی تصویر کار میکنند.

در این روش، هر مجموعه رنگ انتخاب شده ای دار ای مقداری بر از شی هستند که میز ان «خوب بودن» آن مجموعه رنگ را مشخص میکند.

الگوريتم:

برای رسیدن به مجموعه رنگهای مناسب برای هر تصویر، از الگوریتم ممتیک استفاده کردم. تفاوت الگوریتم ممتیک با الگوریتم ممتیک، مقدار برازش، ممتیک با الگوریتم ممتیک، مقدار برازش، بهترین جواب ممکن در همسایگی آن کروموزوم است. این کار باعث بالا رفتن سرعت پردازش میشود، به گونهای که با جمعیتی ۵۰ عضوی، تنها با پردازش ۱۰ نسل توانستم به جوابهای قابل قبولی برسم.

```
def memetic(linear_image, clusters):
    population = [
        Individual([[random.randint(0, 255) for _ in range(3)] for __ in
range(clusters)])
    for _ in range(POPULATION_SIZE)
    ]
    for individual in population:
        individual.calculate_fitness(linear_image)

for iteration in range(ITERATIONS):
```

```
print(iteration, ": ", population[0].fitness, end="\r")
new_generation = []
for i in range(POPULATION_SIZE):
    for j in range(i + 1, POPULATION_SIZE):
        if random.random() < CROSSOVER_PROBABILITY:
            first_child, second_child = crossover(population[i].best_neighbour,
population[j].best_neighbour)
            new_generation.append(Individual(first_child))
            new_generation.append(Individual(second_child))
        for individual in new_generation:
            individual.calculate_fitness(linear_image)

population.extend(new_generation)
        population.sort(key=lambda x: x.fitness)
        population = population[:POPULATION_SIZE]

return population[0].best_neighbour, population[0].fitness</pre>
```

تابع برازش:

یکی از توابع برازش قابل استفاده در این روش، مجموع فاصله اقلیدسی رنگ نقاط تصویر با رنگهای نزدیک به خود است. بدین صورت که پس از اعمال مجموعه رنگها روی تصویر (اینگونه که هر پیکسل به نزدیک ترین رنگ تخصیص داده می شود)، مجموع فواصل اقلیدسی نقاط را حساب می کنیم و هر چه این مقدار کمتر باشد، نتیجه مطلوب تر است. اما در این روش مشکلی نیز وجود دارد؛ در حالتی که از سه رنگ فقط دو رنگ مورد استفاده قرار گیرد نیز ممکن است نتیجه مطلوبی داشته باشیم، در صورتی که این نتیجه مطلوب ما نیست. پس می توان با ضرب کردن تعداد رنگهای استفاده نشده به اضافه یک، در مقدار برازش باعث زیاد شدن برازش نمونههای ناکامل شد.

(برای مثال اگر از ۵ رنگ فقط ۴ رنگ استفاده شود، مقدار برازش را ضرب در ۲ میکنیم و اگر همه رنگها استفاده شوند با ضرب کردن ۱ در جواب تغییری در مقدار برازش نخواهیم داشت)

```
def fitness(target, colors):
    res = 0
    used_colors = [0 for _ in colors]
    for pixel in target:
        color_index = np.argmin([np.linalg.norm(pixel - color) for color in colors])
        res += np.linalg.norm(pixel- colors[color_index])
        used_colors[color_index] = 1
    mult_factor = (len(colors) - sum(used_colors) + 1)
    return res * mult_factor
```

توليد مثل:

برای تولید مثل کافی است با هر کروموزوم مانند آرایهای از اشیا برخورد کنیم و دو فرزند را با جابجا کردن تعدادی از رنگهای پدر و مادر استفاده میکنیم). از رنگهای پدر و مادر استفاده میکنیم). بدین ترتیب، هم رنگها به مرور زمان در همسایگی خود تغییر میکنند، هم با ترکیب کردن رنگهایی که فاصله کمی با نقاط داشته اند مجموعه هایی با برازش کمتر تولید می شود.

همسایگی کروموزومها:

یکی از تصمیمهای اصلی چگونگی انتخاب همسایگی کروموزومها بود. برای مثال اگر مجموعهای با سه رنگ داشته باشیم، عملا در فضایی 9 بعدی در بازه 0 تا 0 قرار داریم. حال اگر همسایگی هر بعد را بازه به شعاع یک آن نیز میدییم، هر کروموزوم به طور میانگین 0 به توان 0 همسایه داشت که عددی بسیار بزرگ و عملا غیر قابل محاسبه

برای برازش است. پس به جای گرفتن همه همسایهها، اقدام به انتخاب ۱۰ همسایه تصادفی در بازهای به شعاع مشخص دور کروموزوم کردم و نتیجه مطلوبی هم از نظر سرعت و هم از نظر دقت گرفتم.

def get_neighbour_color(color, range):

blue = max(0, min(255, color[0] + random.randint(-range, range)))
green = max(0, min(255, color[1] + random.randint(-range, range)))
red = max(0, min(255, color[2] + random.randint(-range, range)))
return np.array([blue, green, red], dtype=np.uint8)

def get_neighbour(colors, range=10):

return np.array(list(map(**lambda** x: get_neighbour_color(x, range), colors)))

Photo	original	Segmented	Segmented	Segmented
numbe		with 3 colors	with 4 colors	with 5
r				
1				

نتايج:

الگوریتم پیادهسازی شده را برای ۲۰ تصویر اجرا کردم و برای ۵ تصویر خروجی تصویرهای تولید شده در جدول بالا قابل مشاهده است. همچنین کل نتیجه، اعم از مقدار تابع برازش و مقدار PSNR در جداول زیر آمدهاند.

PSNR	3	4	5
Im001_1	15.54140594	15.7640645	14.94164327
Im002_1	14.35728901	14.21911197	15.5018028
Im003_1	14.95128637	15.6267213	17.78460728
Im004_1	13.5380716	17.38259943	13.41301753
lm005_1	14.11128483	14.98609102	15.9553282
Im006_1	14.83384497	14.26964998	15.70497979
lm007_1	14.21607897	13.94263191	13.60728109
Im008_1	13.40559972	13.92848738	15.41662646
lm009_1	14.30571264	14.4716288	14.90465056
lm010_1	14.2336613	15.13118648	15.50421284
lm011_1	13.78005379	15.16367854	15.82942604
lm012_1	13.62865708	16.17811872	17.27741264
lm013_1	13.73046618	14.42753057	14.14628729
lm014_1	14.0859432	14.39353808	16.62273549
lm015_1	15.0636308	14.49708348	13.48433702
lm016_1	15.34247703	15.14955605	15.66427666
lm017_1	14.26206749	16.07681534	17.78766325
lm018_1	14.97514227	14.81246656	15.104062
Im019_1	14.22765067	15.64951005	18.59975571
lm020_1	14.84025134	14.61880391	16.12794443
Average	14.37152876	15.0344637	15.66890252

Fitness	3	4	5
lm001_1	4523736.749	4220825.916	4884060.786
lm002_1	6039769.681	6899875.798	4546603.705
lm003_1	5623537.518	4334518.995	3048561.682
lm004_1	5730002.894	5949896.915	5667668.885
lm005_1	5326286.434	4857714.567	4449977.093
lm006_1	6930846.991	5778658.315	3826175.525
lm007_1	6420013.984	6998965.647	8519535.458
lm008_1	6670249.056	8596551.057	5579161.972
lm009_1	5754364.681	6584463.133	4471123.103
lm010_1	5418432.756	6796828.79	4473512.358
lm011_1	5514175.058	8052108.964	6425470.475
lm012_1	6663937.686	5651018.193	4895122.088

Im013_1	6483250.25	6019765.971	5325430.195
lm014_1	7287932.081	5209025.419	4784757.306
lm015_1	4856579.825	4931277.709	5504187.702
lm016_1	4483849.876	4892267.878	4205956.52
lm017_1	5620413.614	5556044.363	3813099.822
Im018_1	6594267.519	5117359.594	5992058.846
lm019_1	6244270.283	7241090.853	4931183.204
lm020_1	5992811.136	7700402.467	6755566.678
Average	5908936.404	6069433.027	5104960.67

3, 4 and 5

colors	3	4	5
Im001_1	125 124 136	128 120 134	119 22 64
	113 20 68	147 158 156	164 160 165
	158 166 162	161 166 160	157 160 153
		114 24 72	121 125 143
			143 121 155
Im002_1	165 167 166	147 138 153	84 46 83
	136 131 149	164 166 168	164 166 167
	118 38 74	128 18 81	123 17 77
		129 125 148	127 119 140
			141 120 143
Im003_1	110 34 54	163 162 163	103 0 54
	124 104 134	114 109 134	117 92 124
	160 161 162	103 17 67	123 122 143
		131 119 142	169 90 158
			161 158 161
Im004_1	86 16 73	137 131 145	148 178 171
	127 122 139	125 114 135	114 9 62
	158 159 157	125 4 47	165 157 159
		159 157 157	139 134 146
			129 119 132
Im005_1	125 119 139	109 11 62	118 116 138
	150 154 154	132 115 141	104 27 83

107 20 61	146 151 159	113 13 64
	116 119 139	156 155 159
		127 126 147

رنگهای تولید شده برای عکسهای موجود در جدول اول به فرمت BGR

References

- Das, Swagatam, and Amit Konar. "Automatic image pixel clustering with an improved differential evolution." *Applied Soft Computing*, vol. 9, no. 1, January 2009, pp. 226-236.
- Falco, De, et al. "Facing classification problems with Particle Swarm Optimization." *Applied Soft Computing*, vol. 7, no. 3, June 2007, pp. 652-658.
- Krishna Gopal Dhal, et al. "Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search." 13 January 2020.

.