

EXERCISE.14.5

Question-1

Show that the statement

p: "If x is a real number such that $x^3 + 4x = 0$, then x is 0" is true by

- (i) direct method
- (ii) method of contradiction
- (iii) method of contrapositive

Ans.

p: "If x is a real number such that $x^3 + 4x = 0$, then x is 0".

Let q: x is a real number such that $x^3 + 4x = 0$

r: x is 0.

(i) To show that statement p is true, we assume that q is true and then show that r is true.

Therefore, let statement q be true.

$$x^3 + 4x = 0$$

$$x\left(x^{2}+4\right) =0$$

$$\Rightarrow x = 0 \text{ or } x^2 + 4 = 0$$

However, since x is real, it is 0.

Thus, statement r is true.

Therefore, the given statement is true.

(ii) To show statement p to be true by contradiction, we assume that p is not true.

Let x be a real number such that $x^3 + 4x = 0$ and let x is not 0.

Therefore, $x^3 + 4x = 0$

$$x (x^2 + 4) = 0$$

$$x = 0$$
 or $x^2 + 4 = 0$

$$x = 0$$
 or $x^2 = -4$

However, x is real. Therefore, x = 0, which is a contradiction since we have assumed that x is not 0.

Thus, the given statement p is true.

(iii) To prove statement p to be true by contrapositive method, we assume that r is false and prove that q must be false.

Here, r is false implies that it is required to consider the negation of statement r. This obtains the following statement.

$$\sim r$$
: x is not 0.

It can be seen that $(x^2 + 4)$ will always be positive.

 $x \neq 0$ implies that the product of any positive real number with x is not zero.

Let us consider the product of x with $(x^2 + 4)$.

$$x(x^2+4) \neq 0$$

$$\Rightarrow x^3 + 4x \neq 0$$

This shows that statement q is not true.

Thus, it has been proved that

Therefore, the given statement p is true.

Question-2

Show that the statement "For any real numbers a and b, $a^2 = b^2$ implies that a = b" is not true by giving a counter-example

Ans.

The given statement can be written in the form of "if-then" as follows.

If a and b are real numbers such that $a^2 = b^2$, then a = b.

Let p: a and b are real numbers such that $a^2 = b^2$.

$$a: a = b$$

The given statement has to be proved false. For this purpose, it has to be proved that if p, then -q. To show this, two real numbers, a and b, with $a^2 = b^2$ are required such that $a \neq b$

Let
$$a = 1$$
 and $b = -1$

$$a^2 = (1)^2 = 1$$
 and $b^2 = (-1)^2 = 1$

$$\therefore a^2 = b^2$$

However, $a \neq b$

Thus, it can be concluded that the given statement is false

Ouestion-3

Show that the following statement is true by the method of contrapositive.

p: If x is an integer and x^2 is even, then x is also even.

Ans

p: If x is an integer and x^2 is even, then x is also even.

Let q: x is an integer and x^2 is even.

r: x is even.

To prove that p is true by contrapositive method, we assume that r is false, and prove that q is also false.

Let x is not even

To prove that q is false, it has to be proved that x is not an integer or x^2 is not even.

x is not even implies that x^2 is also not even.

Therefore, statement q is false

Thus, the given statement p is true

Ouestion-4

By giving a counter example, show that the following statements are not true.

(i) p: If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.

(ii) q: The equation $x^2 - 1 = 0$ does not have a root lying between 0 and 2.

Ans

(i) The given statement is of the form "if q then r".

q: All the angles of a triangle are equal.

r: The triangle is an obtuse-angled triangle.

The given statement p has to be proved false. For this purpose, it has to be proved that if q, then $\sim r$.

To show this, angles of a triangle are required such that none of them is an obtuse angle.

It is known that the sum of all angles of a triangle is 180°. Therefore, if all the three angles are equal, then each of them is of measure 60°, which is not an obtuse angle.

In an equilateral triangle, the measure of all angles is equal. However, the triangle is not an obtuse-angled triangle.

Thus, it can be concluded that the given statement p is false.

(ii) The given statement is as follows

q: The equation $x^2 - 1 = 0$ does not have a root lying between 0 and 2.

This statement has to be proved false. To show this, a counter example is required.

Consider $x^2 - 1 = 0$

 $x^2 = 1$

 $x = \pm 1$

One root of the equation $x^2 - 1 = 0$, i.e. the root x = 1, lies between 0 and 2.

Thus, the given statement is false.

Question-5

Which of the following statements are true and which are false? In each case give a valid reason for saying so.

- (i) p: Each radius of a circle is a chord of the circle.
- (ii) q: The centre of a circle bisects each chord of the circle.
- (iii) r: Circle is a particular case of an ellipse.
- (iv) s: If x and y are integers such that x > y, then -x < -y.
- (v) $t:\sqrt{11}$ is a rational number.

Ans.

(i) The given statement p is false.

According to the definition of chord, it should intersect the circle at two distinct points.

(ii) The given statement q is false.

If the chord is not the diameter of the circle, then the centre will not bisect that chord. In other words, the centre of a circle only bisects the diameter, which is the chord of the circle.

(iii) The equation of an ellipse is,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

If we put a = b = 1, then we obtain

 $x^2 + y^2 = 1$, which is an equation of a circle

Therefore, circle is a particular case of an ellipse.

Thus, statement r is true.

(iv)
$$x > y$$

 $\Rightarrow -x \le -y$ (By a rule of inequality)

Thus, the given statement s is true.

(v) 11 is a prime number and we know that the square root of any prime number is an irrational number. Therefore, $\sqrt{11}$ is an irrational number.

Thus, the given statement t is false.

