Preguntas para el Final de Probabilidades y Estadística (Computación) al 24 de noviembre de 2017

Pablo A. Ferrari, Matthieu Jonchkeere

El final tendrá 14 ejercicios elegidos entre los siguientes. Cada ejercicio vale 1 punto. De los 14 ejercicios propuestos habrá que elegir 10. Se aprueba con 6 de esos 10 bien hechos.

Probabilidad. Definición y enunciados

- 1. Enuncie los axiomas de probabilidad. Demuestre a partir de los axiomas que $P(A^c) = 1 P(A)$ y que si $B \subset A$ entonces $P(A \setminus B) = P(A) P(B)$.
- 2. Demuestre usando los axiomas de probabilidad que $P(A \cup B) = P(A) + P(B) P(AB)$.
- 3. Demuestre usando los axiomas de probabilidad que $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$.
- 4. Demuestre usando los axiomas de probabilidad que si $A_n \supset A_{n-1}$ y $A = \bigcup_n A_n$, entonces $P(A) = \lim_n P(A_n)$.
- 5. Demuestre usando los axiomas de probabilidad que si $A_n \subset A_{n-1}$ entonces $P(\cap_n A_n) = \lim_n P(A_n)$.

Probabilidad condicional e independencia

- 6. En una muestra de 100 personas hay 13 enfermos y no vacunados, 2 enfermos y vacunados, 75 sanos y vacunados, 10 sanos y no vacunados. Elegimos una persona al azar y vemos que está enfermo. Cual es la probabilidad que no se haya vacunado?
- 7. Una familia tiene dos hijos. Sabemos que el primer hijo es varón. Cual es la probabilidad que el segundo hijo sea también varón?
- 8. Sabemos que una familia con dos hijos tiene por lo menos un hijo varón. Cual es la probabilidad que los dos sean varones?
- 9. Visitamos una familia con dos hijos. Tocamos el timbre y un chico varón abre la puerta. Cual es la probabilidad que el otro chico sea varón?
- 10. Demueste la regla de multiplicación de las probabilidades condicionales:

$$P(A_1 ... A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1})$$

- 11. Una urna tiene 4 bolas negras y 3 rojas. Sacamos tres bolas sin reposición. Cual es la probabilidad que la primera bola salga negra y la tercera salga roja?
- 12. Enuncie y demuestre la fórmula de la probabilidad total y el Teorema de Bayes.
- 13. Hay tres puertas cerradas y un premio atras de una de las puertas. Elijo una puerta y el presentador abre una de las otras dos que no tiene premio. Me da la opcion de cambiar de puerta. Conviene cambiar? Justifique.
- 14. Defina independencia para una familia $(A_i, i \in I)$, donde A_i son eventos e I es un conjunto de índices. Dé un ejemplo de tres eventos independientes dos a dos pero no independientes.
- 15. Sea Ω un espacio de probabilidad equiprobable con n elementos, demuestre que si n es un numero primo, y dos eventos A, B son independientes, entonces al menos uno de los eventos A ó B es Ω ó \emptyset .

Variables aleatorias

- 16. Defina la función de distribución acumulada de una variable aleatoria X y enuncie y demuestre sus propiedades.
- 17. Demuestre que para una variable aleatoria X discreta, P(X = x) = F(x) F(x-).
- 18. Sea $F: \mathbb{R} \to [0,1]$ una función continua, estrictamente creciente y tal que $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$. Demuestre que hay una variable aleatoria X que tiene a F como función de distribución.
- 19. Sean F_X e F_Y las funciones de distribución acumulada de las variables discretas X e Y, respectivamente. Demuestre que P(X=x) = P(Y=x) para todo x si y solo si $F_X = F_Y$.
- 20. Demuestre que si $N(t) \sim \text{Poisson}(\lambda t)$ y $Y_n \sim \text{Gama}(n, \lambda)$. Entonces $P(N(t) \geq n) = P(Y_n \leq t)$ para todo entero no negativo n y real positivo t.
- 21. Sea $f(x) := \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$, la densidad de la Normal (μ, σ^2) . Demuestre que $\int_{-\infty}^{\infty} f(x) dx = 1$.
- 22. Demuestre que $X \sim \text{Normal}(\mu, \sigma^2)$ si y solo si $\frac{X-\mu}{\sigma} \sim \text{Normal}(0, 1)$.
- 23. Demuestre que si X es una variable exponencial, entonces X no tiene memoria.
- 24. Sea X una variable aleatoria con densidad $f_X(x)$ tal que $P(X \in (a,b)) = 1$. Sea $g:(a,b) \to \mathbb{R}$ estrictamente creciente. Sea Y = g(X). Demuestre que para y en $\{g(x) : x \in (a,b)\}$,

$$f_Y(y) = f_X(g^{-1}(y)) | (g^{-1}(y))' |$$
.

25. Sea U una variable uniforme en [0,1]. Para $u \in [0,1]$ defina $h(u) = \max\{u, 1-u\}$. Calcule la distribución acumulada de la variable X = h(U). Calcule E(X) y V(X).

Convergencia en distribución

- 26. Sea S_n una variable aleatoria Binomial $(n, \lambda/n)$. Demuestre que $\lim_n P(S_n = k) = e^{-\lambda} \lambda^k/k!$.
- 27. Sea $U_n \sim \text{Uniforme}\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$. Demuestre que U_n converge en distribución a $U \sim \text{Uniforme}[0, 1]$.
- 28. Sea Y_n una geometrica de parametro $p_n = \lambda/n$. Calcule el límite en distribución de Y_n/n , cuando $n \to \infty$.
- 29. De un ejemplo de una sucesión de variables aleatorias X_n que convergen en distribución a la constante c pero que $F_{X_n}(c)$ no converge a 1.

Vectores Aleatorios

- 30. Sean X, Y variables aleatorias discretas. Demuestre que son equivalentes: (1) X e Y son independientes. (2) existen funciones g y h tales que $p_{X,Y}(x,y) = g(x)h(y)$. (3) Existen funciones G y H tales que $F_{(X,Y)}(x,y) = G(x)H(y)$.
- 31. Suponga que las variables enteras X_1, X_2 satisfacen $P(X_1 = x_1, X_2 = x_2) = \frac{1}{Z}a^{x_1+x_2}, x_1, x_2 \ge 1$, donde a > 0 y Z es una constante de normalización. Demuestre que son independientes.

- 32. Suponga que las variables discretas no negativas X_1, X_2 satisfacen $P(X_1 \ge x_1, X_2 \ge x_2) = a^{x_1+x_2}$ para x_1, x_2 enteros no negativos. Demuestre que son independientes y calcule sus marginales.
- 33. Sean X, Y variables aleatorias continuas. Demuestre que son equivalentes: (1) X e Y son independientes. (2) existen funciones g y h tales que $f_{X,Y}(x,y) = h(x)g(y)$. (3) Existen funciones G y H tales que $F_{(X,Y)}(x,y) = H(x)G(y)$.
- 34. Sean X_1, X_2, \ldots positivas, independientes con la misma esperanza finita, N asume valores en $\{1, \ldots, k\}$ y es independiente de los X_i . Calcule $E(\prod_{i=1}^N X_i)$.
- 35. Sean X Y variables aleatorias independientes N(0,1). Sea $R=\sqrt{X^2+Y^2}$. Calcule $P(R\leq r)$ para $R\geq 0$.
- 36. Sea (X,Y) vector aleatorio con densidad $f_{X,Y}$. Calcule la distribución de X+Y.
- 37. Sean X e Y variables aleatorias continuas independientes con densidades marginales f_X y f_Y , respectivamente. Calcule la densidad de X + Y.
- 38. Sean X e Y variables aleatorias independientes y g,h funciones de \mathbb{R} en \mathbb{R} . Demuestre que g(X) y h(Y) son independientes.
- 39. Alicia y José acordaron encontrarse a las 8 de la noche para ir al cine. Como no son puntuales, se puede suponer que los tiempos X e Y en que cada uno de ellos llega son variables aleatorias con distribución uniforme entre las 8 y las 9. Además se supondrá que estos tiempos son independientes. Si ambos están dispuestos a esperar no más de 10 minutos al otro a partir del instante en que llegan, ¿cuál es la probabilidad de que se desencuentren?
- 40. Sea X una v.a. con distribución $N(\mu, \sigma^2)$ y sean $a \neq 0$ y b números reales. Pruebe que

$$aX + b \sim N(a\mu + b, a^2\sigma^2).$$

Deduzca que si $X \sim N(\mu, \sigma^2)$ entonces $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$.

41. Probar de dos maneras distintas que si X e Y son independientes entonces

$$X \sim \text{Poisson}(\lambda_1), Y \sim \text{Poisson}(\lambda_2) \Rightarrow X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2).$$

42. Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f_{XY}(x,y) = k(x^2 + y^2) \mathbb{1}_{\{20 \le x \le 30, 20 \le y \le 30\}}$$

¿Cuál es la probabilidad de que tanto X como Y sean menores que 26? ¿Cuál es la probabilidad de que $\max(X,Y) \leq 26$?

Esperanza

- 43. Para un vector aleatorio discreto X y una función g demuestre que $Eg(X) = \sum_{x} g(x)P(X=x)$.
- 44. Demuestre que si $X \ge 0$, entonces $EX = \int_0^\infty (1 F_X(x)) dx$ para los casos continuo y discreto.
- 45. Demuestre que si $X \ge 0$ y EX = 0, entonces P(X = 0) = 1.

- 46. Demuestre que $EX = \arg\min_c E(X-c)^2$.
- 47. Calcule la esperanza de una variable de Poisson de parámetro λ .
- 48. Calcule la esperanza de una variable Binomial de parámetros n y p.
- 49. Demuestre que (1) $VX \ge 0$; (2) $VX = 0 \Leftrightarrow X = EX$; (3) V(X + b) = VX; (4) $V(aX) = a^2VX$.
- 50. Demuestre que $|cov(X,Y)|^2 \le VXVY$ (Cauchy-Schwarz).
- 51. Demuestre que (1) cov(X,Y) = E(XY) EXEY; (2) cov(X,X) = VX; (3) $|cov(X,Y)| \le VX + VY$; (4) cov(X,Y) = cov(Y,X); (5) cov(aX + bY, Z) = a cov(X, Z) + b cov(Y, Z).
- 52. Demuestre (a) V(X + Y) = VX + VY + 2cov(X, Y) y (b) X, Y independientes implica cov(X, Y) = 0.
- 53. De un ejemplo de variables continuas no independientes con covarianza 0.
- 54. De un ejemplo de variables discretas no independientes con covarianza 0.
- 55. Demuestre que si a, b, c y d son números reales, $a \neq 0$, $c \neq 0$ y X e Y variables aleatorias con varianza positiva, entonces $\rho(aX + b, cY + d) = \operatorname{sg}(ac) \rho(X, Y)$, donde sg denota la función signo.
- 56. Pruebe que el coeficiente de correlación $\rho(X,Y)$ tiene módulo menor o igual a 1. Cual es la relación entre X e Y cuando $\rho(X,Y)=1$?
- 57. Sean X_i variables aleatorias discretas con esperanza finita. Demuestre que

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E X_i$$

58. Sean X_i variables aleatorias continuas con esperanza finita. Demuestre que

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E X_i$$

- 59. Demuestre que si $P(X \ge Y) = 1$ entonces $EX \ge EY$.
- 60. Demuestre que si X es constante, es decir P(X=c)=1 para algún c, entonces EX=c.

Esperanza condicional

- 61. Se lanzan tres monedas honestas y se definen X = número de caras, Y = número máximo de monedas iguales. Calcule la función de probabilidad conjunta de X e Y. Las variables X e Y son independientes? Calcule E(X | Y = 2), la esperanza condicional de X dado Y = 2.
- 62. Sea X resultado de un dado, $Y := \mathbf{1}\{\text{dado par}\}$. Calcule E(X|Y=1) y $E(Y|X\leq 4)$.
- 63. Sea $N \sim \text{Poisson}(\lambda)$ y $X_i \sim \text{Bernoulli}(p)$ variables aleatorias independientes. Calcule $E(\sum_{i=1}^N X_i)$.

- 64. Sea (X,Y) un vector continuo en \mathbb{R}^2 con densidad $f(x,y) = \lambda^2 e^{-\lambda y} \mathbf{1}\{0 < x < y\}$. Demuestre que X e Y-X son variables aleatorias independientes Exponencial (λ) .
- 65. Demuestre la identidad de Wald: Sean X_i identicamente distribuídas y N variable aleatoria entera, no negativa, independiente de los X_i . Si $EN < \infty$ y $E|X_i| < \infty$, entonces $E\left(\sum_{i=1}^N X_i\right) = EN EX_1$.
- 66. Un minero está en el fondo de una mina y ve tres túneles: 1, 2 y 3. El tunel 1 lleva a la salida en una hora. El tunel 2 vuelve a la misma encrucijada en 2 horas y el tunel 3 vuelve a la encrucijada en 3 horas. Cada vez que el minero está en la encrucijada, elige uno de los túneles con probabilidad 1/3, independientemente de lo que eligió antes. Sea T el tiempo que tarda en salir de la mina. Calcule ET.

Generación de variables aleatorias

- 67. Sea F una función de distribución acumulada. Defina la función inversa generalizada F^{-1} y demuestre que si $U \sim \text{Uniforme}[0,1]$, entonces $Y := F^{-1}(U)$ tiene distribución F.
- 68. Sean $p_1 < p_2$. Construya un vector (X_1, X_2) tal que $X_i \sim \text{Bernoulli}(p_i)$ y $P(X_1 \leq X_2) = 1$.
- 69. Encuentre un vector (X_1, \ldots, X_n) de variables aleatorias con marginales $X_i \sim \text{Uniforme}(0, i)$ y tal que $P(X_1 \leq \cdots \leq X_n) = 1$.
- 70. Encuentre un vector (X_1, \ldots, X_n) de variables aleatorias con marginales $X_k \sim \text{Exponencial}(1/k)$ y tal que $P(X_1 \leq \cdots \leq X_n) = 1$.
- 71. Sea $U \sim \text{Uniforme}[0,1]$. Demuestre que $\frac{-\log(1-U)}{\lambda} \sim \text{Exponencial}(\lambda)$.
- 72. Suponga que f y g son densidades y c es una constante positiva tales que $f(x) \leq cg(x)$ para todo x. Sean $(Y_1, U_1), (Y_2, U_2), \ldots$ una sucesion de vectores independientes con coordenadas independientes. $Y_i \sim g$, $U_i \sim \text{Uniforme}[0, 1]$, $A := \left\{(x, u) : u \leq \frac{f(x)}{cg(x)}\right\}$, $T := \min\{n : (Y_n, U_n) \in A\}$. Demuestre que $X := Y_T$. tiene distribución f.

Convergencia de variables aleatorias

- 73. Demuestre la desigualdad de Markov: si $X \geq 0$ entonces $P(X \geq \varepsilon) \leq \frac{EX}{\varepsilon}$. Deduzca la desigualdad de Chevichev.
- 74. Enuncie y demuestre la ley débil de grandes números para variables aleatorias con segundo momento finito.
- 75. Sea X_n una variable Poisson (λn) . Demuestre que X_n/n converge en probabilidad a λ .
- 76. Sea X_n una variable Gama (n,λ) . Demuestre que X_n/n converge en probabilidad a $1/\lambda$.
- 77. Sean X_1, \ldots, X_n variables aleatorias i.i.d. $X_n \sim \mathcal{U}[0, 1]$. Sean

$$Y_n = \min(X_1, \dots, X_n)$$
 $Z_n = \max(X_1, \dots, X_n)$
 $U_n = nY_n$ $V_n = n(1 - Z_n).$

Probar que: $U_n \stackrel{\mathcal{D}}{\to} W$, $V_n \stackrel{\mathcal{D}}{\to} W$ donde W es una variable exponencial de parámetro 1.

Funciones generadora de momentos FGM

- 78. Demuestre que si X_1, \ldots, X_n son independientes, entonces la FGM de la suma es el producto de las FGM de las variables, es decir $M_{X_1+\cdots+X_n}(t) = M_{X_1}(t) \ldots M_{X_n}(t)$.
- 79. Demuestre que $M_{aX+b}(t) = M_X(at)e^{tb}$, donde está bien definida.
- 80. Calcule Ee^{sZ} para $Z \sim \text{Normal}(0,1)$.
- 81. Defina función generadora de momentos y calcule la función FGM de la variable $Poisson(\lambda)$. Use ese cálculo para probar que suma finita de variables aleatorias Poisson independientes es Poisson. Justifique sus pasos.

Ley de grandes números y Teorema Central del Límite

- 82. Enuncie y demuestre el Teorema Central del Límite.
- 83. Demuestre la desigualdad de Markov. Demuestre la ley de grandes números para variables aleatorias con segundo momento finito.
- 84. Sea (X_i) una secuencia i.i.d de variables aleatorias con distribución exponencial de parametro μ y N una variable aleatoria geométrica independiente de los (X_i) . Sea $Z = \sum_{i=1}^{N} X_i$. Calcular la función generadora de momentos de Z. Deducir de la distribución de Z.
- 85. Sean $Y_n \sim \text{Poisson}(\lambda n)$. Demuestre que

$$\frac{Y_n - n\lambda}{\sqrt{n\lambda}} \stackrel{D}{\to} Z \sim N(0, 1).$$

86. Demuestre que si $Y_n \sim \text{Gama}(n,\lambda)$ iid con n entero, entonces

$$\frac{Y_n - n/\lambda}{\sqrt{n}/\lambda} \xrightarrow{D} Z \sim N(0, 1).$$

87. Demuestre que si $Y_n \sim \text{Binomial}(n, p)$ iid con n entero y $p \in (0, 1)$, entonces

$$\frac{Y_n - np}{\sqrt{n}p(1-p)} \stackrel{D}{\to} Z \sim N(0,1).$$

88. Pruebe que si Z_1, Z_2, \ldots son independientes y $Z_i \sim N(0,1)$, entonces

$$\frac{Z_1 + \dots + Z_n}{\sqrt{n}}$$

tiene la misma distribución que Z_1 .

Procesos de Poisson

- 89. Sean τ_1, τ_2, \ldots iid Exponencial(λ). Sea $Y_0 = 0$ y $Y_n := \tau_1 + \cdots + \tau_n$. Defina $N(s) := \max\{n : Y_n \leq s\}$. Demuestre que $N(s) \sim \text{Poisson}(\lambda s)$ (como variable aleatoria).
- 90. Sean τ_1, τ_2, \ldots iid Exponencial(λ). Sea $Y_0 = 0$ y $Y_n := \tau_1 + \cdots + \tau_n$. Defina $N(s) := \max\{n : Y_n \leq s\}$, $s \geq 0$. Fije un tiempo s y demuestre que $(N(t+s) N(s), t \geq 0)$ tiene la misma distribución que $(N(t), t \geq 0)$.
- 91. Demuestre que la distribución de la n-ésima llegada de un proceso de Poisson tiene distribución $Gama(n, \lambda)$.
- 92. Los clientes llegan a un banco de acuerdo a un proceso de Poisson de parámetro 3, cual es la probabilidad que los tres primeros clientes lleguen antes de los 3 primeros minutos?
- 93. Defina las propiedades que caracterizan un proceso de Poisson de parámetro λ (incrementos estacionarios e independientes, etc). Calcule la probabilidad que ocurran simultaneamente los eventos $A = \{\text{hay 3 llegadas en el intervalo } [0,3] \}$ y $B = \{\text{hay 4 llegadas en el intervalo } (3,4] \}$.

Cadenas de Markov

- 94. Defina proceso de Markov con matriz de transición Q. Demuestre que $P(X_k = y | X_0 = x) = Q^k(x, y)$.
- 95. Demuestre las ecuaciones de Chapman-Kolmogorov.
- 96. Defina la medida invariante para una cadena de Markov con matriz Q y calcule la medida invariante de la urna de Ehrenfest con N=4.
- 97. Calcular la distribución estacionaria de una caminata aleatoria en un grafo finito, conexo, no dirigido. En este grafo la probabilidad de ir de x a y es igual a 1 sobre el número de aristas que salen de x.
- 98. Describa la urna de Ehrenfest con n bolillas, establezca las ecuaciones de balance para la medida invariante y verifique que la distribución Binomial $(n, \frac{1}{2})$ las satisface.
- 99. Si hoy llueve, la probabilidad que llueva mañana es 0.8 y si hoy no llueve, esta probabilidad es 0.1. El espacio de estados es $S = \{0, 1\}$, interpretando 1 cuando llueve y 0 cuando no llueve. Sabiendo que hoy llovió, cual es la probabilidad que llueva pasado mañana? Describa las ecuaciones de balance.
- 100. Calcule la medida invariante para la cadena de Markov con espacio de estados {0,1} y matriz de transición

$$Q = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} \tag{1}$$

Estimadores

- 101. Defina los estimadores de momentos y calcule el estimador de momentos de la media de la distribución Exponencial(λ) y de la Uniforme[0, θ].
- 102. Defina los estimadores de momentos y calcule el estimador de momentos de θ para la distribución Uniforme $[-\theta, \theta]$.

- 103. Sea $X \sim \text{Gama}(\alpha, \lambda)$. Plantee las ecuaciones para los estimadores de momentos de α y λ .
- 104. Defina el estimador de máxima verosimilitud y calcule el estimador de máxima verosimilitud de p para la variable $X \sim \text{Bernoulli}(p)$.
- 105. Defina el estimador de máxima verosimilitud y calcule el estimador de máxima verosimilitud de λ para la variable $X \sim \text{Exponencial}(\lambda)$.
- 106. Defina el estimador de máxima verosimilitud y calcule el estimador de máxima verosimilitud de θ para la variable $X \sim \text{Uniforme}[\theta, 0]$.
- 107. Defina sesgo de un estimador, estimador insesgado y estimador asintoticamente insesgado. Clasifique los siguientes estimadores de acuerdo a su sesgo y/o sesgo asintótico. (1) Proporción muestral \hat{p}_n para p de la Bernoulli; (b) media muestral \bar{X} para la media μ de una variable aleatoria; (c) $\hat{\sigma}^2 = \frac{1}{n} \sum_i (X_i \bar{X})^2$ para la varianza σ^2 .
- 108. Sean $\{X_n\}_{n\in\mathbb{N}}$ i.i.d de una distribución $\mathcal{N}(\mu, \sigma^2)$. Hallar el EMV de μ cuando σ^2 es conocido. ¿Es razonable que no dependa de σ^2 ? Hallar el EMV de σ^2 cuando μ es conocido. ¿Es razonable que dependa de μ ?
- 109. Sean X_1, X_2, \dots, X_n , variables aleatorias i.i.d. con esperanza y varianza finitas que llamaremos μ y σ^2 . Considere

$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{n} \tag{2}$$

como estimador de σ^2 . Diga si es insesgado, y si no lo es encuentre su sesgo.

- 110. Defina error cuadratico medio (ECM) de un estimador y demuestre que el ECM es la suma de la varianza mas el cuadrado del sesgo.
- 111. Se considera la función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = ax^{-(a+1)}\mathbf{1}\{x \ge 1\}$$

donde $a \in \mathbb{R}$ es tal que a > 2. Probar que la variable $T = \log(X)$ tiene distribución exponencial de parámetro a. Sea X_1, X_2, \ldots, X_n una muestra independiente e idénticamente distribuida de variables aleatorias con la densidad definida antes. Construir dos estimadores de a.

- 112. Sean $\{X_n\}_{n\in\mathbb{N}}$ i.i.d de una distribución $\mathcal{N}(\mu, \sigma^2)$. Se desea estimar μ^2 y para ello se propone el estimador \bar{X}^2 . Es insesgado? Consistente?
- 113. Sean $X_1, X_2, ..., X_n$ una muestra aleatoria con densidad

$$f(x) = 2\theta \ x \ e^{-\theta x^2} \ I_{[0,+\infty)}(x) \tag{3}$$

Hallar el estimador de θ por el método de máxima verosimilitud.

114. Decida si los estimadores de momentos y de máxima verosimilitud de θ para $X \sim \text{Uniforme}[0, \theta]$ son insesgados y/o asintoticamente insesgados.

Intervalos de confianza

- 115. Enuncie el Teorema Central de Límite y justifique la aproximación de la distribución Binomial por la distribución normal. Sean $X_1, ..., X_n$ v.a. i.i.d. con distribución Bernoulli de parámetro p. Halle un intervalo de confianza de nivel aproximado 1α para p.
- 116. Construya un intervalo de confianza para el parámetro p de la distribución Bernoulli, cuando el tamaño de la muestra n es grande, usando la aproximación normal. Describa la relación entre el coeficiente de confianza, el tamaño de la muestra y el radio del intervalo. Interprete con sus propias palabras.
- 117. Sean $X_1, ..., X_n$ v.a. i.i.d. con distribución Exponencial de parámetro λ . Halle un intervalo de confianza de nivel 1α para el parámetro λ .
- 118. Construya un intervalo de confianza para la media de una distribución normal con varianza conocida. Describa la relación entre el coeficiente de confianza, el tamaño de la muestra y el radio del intervalo. Interprete con sus propias palabras.
- 119. Describa el método del pivote para obtener un intervalo de confianza. Ilustre con un ejemplo.

Test de hipótesis

- 120. Sea $X \sim \text{Normal}(\mu, \sigma^2)$ con $\sigma^2 = 9$ conocida. Se obtiene una muestra de tamaño 16 para testear la hipótesis $H_0: \mu = 30$ contra $H_1: \mu > 30$, defina la región crítica para $\alpha = 0,01$. Si el valor observado \bar{x} es 31, calcule el P-valor y decida si se rechaza el test a nivel 0,05, baseado en ese valor. Interprete el error de tipo 1.
- 121. Sea $X \sim \text{Normal}(\mu, \sigma^2)$ con $\sigma^2 = 9$ conocida. Se obtiene una muestra de tamaño 16 para testear la hipótesis $H_0: \mu = 30$ contra $H_1: \mu > 30$, defina la región crítica para $\alpha = 0,01$. Calcule el error de tipo 2 para esa región crítica cuando el valor alternativo $\mu_1 = 32$.
- 122. Sea $X \sim \text{Normal}(\mu, \sigma^2)$. Tomamos una muestra de tamaño 16 y para testear H_0 : $\sigma^2 = \sigma_0^2$, H_1 : $\sigma^2 < \sigma_0^2$. Defina el estadístico T que realizará el test, indique la distribución de T y calcule la región crítica a nivel 0,05. Interprete el error de tipo 1.
- 123. Se toman 25 determinaciones de la temperatura en cierto sector de un reactor, obteniéndose $\bar{x} = 249^{\circ}C$ y $s = 2.8^{\circ}C$. Decida si a nivel $\alpha = 0.05$ (a) la temperatura media en ese sector del reactor es menor que $250^{\circ}C$ y (b) la varianza de la temperatura en ese sector del reactor es mayor que $(2^{\circ}C)^2$.
- 124. Queremos testear si la media μ de una variable aleatoria X es mayor que un cierto valor μ_0 . Asuma que la varianza $VX = \sigma^2$ es finita pero desconocida. Defina el estadístico (asintótico) utilizado y calcule la región crítica a nivel 0,05.
- 125. Para controlar la precisión de un sistema de medición se mide 20 veces una magnitud obteniéndose $\bar{x} = 5,80$ y s = 0,52. Las normas vigentes exigen que el sistema tenga una precisión $\varepsilon < 0,6$. Si se quiere que la probabilidad de afirmar que el sistema cumple con las normas cuando no las cumple sea menor a 0,10, hallar un test para determinar si se acepta o no el sistema (suponga normalidad). Qué decisión se toma?

126. Considere las hipótesis

$$H_0: \sigma^2 = \sigma_0^2 \qquad H_1: \sigma^2 < \sigma_0^2$$
 (4)

Proponga un test con nivel α para para este problema. Halle una expresión de la función de potencia, en función de alguna función de distribución conocida.

Tests no paramétricos

- 127. Para una muestra de tamaño 16 queremos testear si las observaciones $O_0 = 3$, $O_1 = 4$, $O_2 = 4$, $O_3 = 5$ provienen de una distribución Binomial(3, 1/2). Plantee el test, el estadístico utilizado y decida si la hipótesis H_0 es rechazada a nivel $\alpha = 0.05$.
- 128. Para verificar si el apoyo a cierta ley depende del sexo de la persona se realiza una encuesta con 100 personas y se obtiene la siguiente tabla. Las respuestas son 0 = en contra, 1 = a favor, 2 = indiferente.

$X \setminus Y$	0	1	2	Total
Hombre	100	250	50	400
Mujer	350	200	50	600
Total	450	450	100	1000

Use el test chi-cuadrado para testear la hipótesis de independencia. Describa el error de tipo 1.

Regresión

- 129. Describa el problema de regresión lineal y las ecuaciones para encontrar la recta de mínimos cuadrados.
- 130. Cinco niños de 2, 3, 5, 7 y 8 años de edad pesan, respectivamente, 14, 20, 32, 42 y 44 kilos. Hallar la ecuación de la recta de regresión de la edad sobre el peso. ¿Cuál sería el peso aproximado de un niño de seis años?

Coupon collector

131. Consideremos el problema del "coupon collector" con n objetos. Aquí consideramos una sucesión de objetos sorteados uniformemente con reposición del conjunto $\{1, \ldots, n\}$. Sean las variables aleatorias T, el tiempo para recolectar los n objetos y T_i , el número de objetos explorados entre el (i-1)-ésimo y el i-ésimo nuevos objetos de tal manera que $T = T_1 + \cdots + T_n$. Calcular el promedio y acotar la varianza de T. Interpretar el resultado.