Circuits logiques

- 1. Opérateurs et circuits
- 2. Les circuits logiques
 - Circuits fondamentaux

Algèbre de Boole

- Toute algèbre en mathématiques est composée de 2 éléments :
 - Les variables
 - Les opérateurs
- Les variables booléennes prennent soit la valeur « vraie », soit « faux
 - « vrai » est symbolisé par 1. Donc la variable est à un niveau logique haut. Elle existe et elle est bien présente. (laisse passer le courant, contact fermé)
 - « faux » est symbolisé par 0. Donc la variable est à un niveau logique bas. Elle est absente. (Ne laisse pas passer le courant ou tension de 0V)

Circuits logiques

- Les circuits logiques constituent une des applications importantes de l'algèbre de Boole.
- Le circuit constitue une situation physique dont la structure logique est analogue à celle des propositions.
- Les opérateurs booléens de base sont les mêmes qu'en algèbre des propositions, soit : non, et, ou. Cependant, dans la description des circuits, on utilise d'autres symboles.
- À l'aide de ces opérateurs, on peut relier les variables booléennes de différentes façons; ces regroupements constituent des fonctions logiques dont le résultat est également une variable booléenne.

Variable Booléenne

- Puisqu'une variable de Boole ne peut prendre que deux valeurs, 0 ou 1, nous pouvons écrire :
 - Si A différente de 0 alors A = 1
 - ► Si A différente de 1 alors A = 0
- Une fonction logique est une combinaison de variables Booléennes reliées par des opérateurs.

Lien avec les interrupteurs

- On associe souvent la notation de variable Booléenne à un interrupteur ouvert ou fermé.
 - Supposons que la valeur 1 soit associée à l'interrupteur fermé
 - La valeur 0 est alors associé à l'interrupteur ouvert
- En admettant la présence d'une tension au point E, nous avons une tension au point S dans la mesure où A=1
- Si A = 0, il n'y a pas de tension en S.

Opérateur 1: Complémentation

- Etant donnée la dualité inhérente à toute l'algèbre de Boole, la notion de complémentation d'une variable ou d'une expression est immédiate.
- Nous appelons complément d'une variable ou d'une expression, l'opposé en algèbre de Boole de cette variable ou de cette expression.
- L'opérateur de complément est représenté dans ce tableau

А	Ā
0	1
1	0

Opérateur 1: Complémentation

- Si la variable A est associé à un interrupteur ouvert pour la valeur 0 et fermé pour la valeur 1
- Alors la variable \(\bar{A}\) est associée à un interrupteur mécaniquement lié au premier.
- Lorsque A est ouvert, Ā est fermé
- Lorsque A est fermé, Ā est ouvert

Opérateur 2: La somme logique

- La notion de somme logique (à ne pas confondre avec la somme algébrique) peut être associée à des interrupteurs en parallèle
- En associant à la présence d'une tension la valeur 1 et à son absence la valeur 0 nous obtenons :

$$S = 0$$
 $si A = 0$ **et** $B = 0$ (simultanément)

$$S = 1$$
 $si A = 1$ ou $B = 1$ (ou les deux)

- Il y a une tension en S si les interrupteurs A ou B (ou les deux) sont fermés.
- On peut obtenir une table pour l'addition logique :

+	0	1
0	0	1
1	1	1

Α	В	A + B
0	0	
0	1	
1	0	
1	1	

Opérateur 3: Le produit logique

- La notion de produit logique peut être associée à des interrupteurs placés en série
- En associant à la présence d'une tension la valeur 1 et à son absence la valeur 0 nous obtenons :

$$S = 0$$
 $si A = 0$ ou $B = 0$

$$S = 1$$
 $si A = 1$ **et** $B = 1$ (simultanément)

- Cette opération de produit logique est indiquée par le signe x. $S = A \times B \ (ou \ A \cdot B \ ou \ AB)$
- Le x logique correspond assez bien à la dénomination ET
- Il y a une tension en S si les interrupteurs A et B sont fermés.
- On peut obtenir une table pour le produit logique :

X	0	1
0	0	0
1	0	1

Α	В	AxB
0	0	
0	1	
1	0	
1	1	

Les circuits logiques

- La notion de circuits logiques a été introduite en vue de simplifier l'étude des circuits électroniques numériques.
- Grâce à la notion de circuits logiques, il est possible de travailler sur des systèmes extrêmement complexes sans pratiquement faire appel à aucune notion d'électronique.
- Les systèmes électroniques numériques les plus complexes, tels les ordinateurs, sont construits à partir de circuits logiques (ou portes logiques) fondamentaux.
- Il existe 3 portes logiques élémentaires, le circuit NON (circuit inverseur), le circuit OU et le circuit ET.

Le circuit NON (ou inverseur)

- Le circuit NON effectue l'opération de complémentation d'une variable booléenne.
- Il comporte une entrée et une sortie
- Si dans l'entrée nous introduisons la variable A, à la sortir nous obtenons la variable complémentée \bar{A} .

Le circuit OU

$$\begin{array}{c} A \\ B \end{array} \begin{array}{c} C = A + B \end{array}$$

- Le circuit OU effectue l'opération de somme logique d'une variable booléenne.
- Il prend deux entrée et donne une sortie
- Si dans l'entrée nous introduisons la variable A et la variable B, à la sortie nous obtenons la variable

$$C = A + B$$

Le circuit ET

- Le circuit ET effectue l'opération de produit logique d'une variable booléenne.
- Il prend deux entrée et donne une sortie
- Si dans l'entrée nous introduisons la variable A et la variable B, à la sortie nous obtenons la variable

$$C = A \times B$$

Le circuit OU EXCLUSIF (XOR)

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

- La porte OU EXCLUSIF est souvent appelée la porte « un mais pas tous ».
- On constate à partir du tableau booléen qu'il est semblable à celui de la fonction OU, à cela près que, quand les 2 entrées sont à 1, la porte XOR donne un 0.
- \blacksquare $A \oplus B = \bar{A} \cdot B + A \cdot \bar{B}$

Exemples

a) Construire la table de vérité de la fonction logique suivante:

$$S = x \cdot (y + \bar{y} \cdot z)$$

b) Faire le circuit logique représentant cette fonction logique $S = x \cdot (y + \bar{y} \cdot z)$

Exercices

a) Trouver l'expression logique calculée par ce circuit

b) Construire le circuit associé à la fonction $A \cdot B + \bar{A} \cdot C$

Les propriétés des opérations logiques

Idempotence

$$x + x = x$$
$$x \cdot x = x$$

Associativité

$$(x + y) + z = x + (y + z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Commutativité

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

Distributivité

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
$$x \cdot (y + Z) = (x \cdot y) + (x \cdot z)$$

Élément absorbant

$$x + 1 = 1 \qquad \qquad x \cdot 0 = 0$$

$$x \cdot 0 = 0$$

■ Élément neutre

$$x + 0 = x$$
 $x \cdot 1 = x$

$$x \cdot 1 = x$$

Complémentarité

$$x + \bar{x} = 1$$
 $x \cdot \bar{x} = 0$

$$x \cdot \bar{x} = 0$$

Involution

$$\bar{\bar{x}} = x$$

Lois de De Morgan

$$\overline{x+y} = \bar{x} \cdot \bar{y}$$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Exemples : Simplifier les énoncés suivants et construire le circuit simplifié correspondant à chacun :

$$S = x \cdot (y + \bar{y} \cdot z)$$

$$S = \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}z$$

Exercices: Simplifier le circuit suivant

Trouver le circuit à partir d'une table

X	У	Z	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- 1. Identifier les lignes où le résultat est 1
- Transformer cette ligne en produit des variables booléennes (opération « ET ») selon :
 - lacktriangle Si la variable X est 0, la noter \bar{X}
 - \blacksquare Sinon (X = 1), la noter X
- 3. Procéder à l'addition de toutes les expressions (opération « OU »)

Exercices:

Construire un circuit permettant de calculer S comme une fonction de x, y et z définie par la table ci-dessous

У	Z	S
0	0	1
0	1	0
1	0	0
1	1	0
0	0	1
0	1	1
1	0	0
1	1	0
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

Le circuit NET (ou NAND)

$$A = \overline{A \cdot B} = \overline{A} + \overline{B}$$

Le circuit NET (contraction de
NON-ET) résulte de la mise en
série d'un circuit ET et d'un circuit
NON.

А	В	NET
0	0	1
0	1	1
1	0	1
1	1	0

Opérateur complet

- Le circuit NET peut, par de judicieuses combinaisons, servir à réaliser les 3 portes logiques de base.
- Il est donc un opérateur complet

Le circuit NI (ou NOR)

- \blacksquare $A \downarrow B$
- Le circuit NI résulte de la mise en série d'un circuit OU et d'un circuit NON.
- C'est un opérateur complet

Α	В	NI
0	0	1
0	1	0
1	0	0
1	1	0

Le circuit OU EXCLUSIF (XOR)

A	В	A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

- En fait, la porte XOR n'est validée (donne une sortie 1) que si ses entrées comporte un nombre impair de 1.
- La porte XOR peut donc être considérée comme un circuit de contrôle des bits impairs.

Figure 3-8. (a) The truth table for the XOR function. (b)-(d) Three circuits for computing it.

Circuit comparateur ou égalité

$$A \circ B = \overline{A \oplus B} = \overline{\overline{A} \cdot B + A \cdot \overline{B}}$$

Α	В	Α°Β
0	0	1
0	1	0
1	0	0
1	1	1

- Il est l'inverse du circuit XOR.
- Il donne 1 lorsque les 2 variables sont identiques
- Il donne 0 lorsque les 2 variables sont différentes

Exercice

Vous devez automatiser le résultat R du vote de trois personnes (A,B,C) afin qu'une lumière s'allume lorsque la proposition est adoptée à la majorité (au moins deux personnes ont voté pour). a) Faire la table de vérité de cette situation

b) Construire le circuit associé à cette situation

Les circuits d'intérêts particuliers

- Nous allons voir, dans cette section que des circuits logiques combinatoires (combinaison de circuits logiques) relativement simple (connexion de quelques portes) peuvent effectuer des additions.
- Si nous pouvons faire des additions, alors on a la possibilité de réaliser également des soustractions, des multiplications et des divisions.

Comme nous l'avons vu avec les nombres binaires!

Additionneur simple (Demi-additionneurs (DA))

Ent	rées	Sort	ies	
A	В	Somme	Retenue	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	
A+	В	S	Co	

- L'addition de nombres binaires est une opération simple que l'on représente par une table de vérité à 2 variables.
- Les entrées à additionner sont A et B, la sortie somme est désignée par S et la colonne de retenue par Co (de l'anglais Carry output)
- On trouve que

$$S = \bar{A} \cdot B + A \cdot \bar{B}$$
$$Co = A \cdot B$$

Schématisation du circuit demiadditionneur (DA)

- Comprend 2 sorties
 - Une pour \$
 - Une pour Co

$$S = \bar{A} \cdot B + A \cdot \bar{B} = A \oplus B$$
$$Co = A \cdot B$$

Simplification du circuit DA

- Si on additionne 2 nombres binaires qui contiennent plus d'un chiffre binaire, le DA ne nous permet pas de tenir compte des retenues produites.
- En effet, si la première colonne de chiffre est 1+1, il nous faut transmettre la retenue au DA de la deuxième colonne pour qu'il puisse en tenir compte.

Additionneur complet (AC) ou additionneur élémentaire

- Il nous faut donc une troisième entrée à notre circuit additionneur, afin de permettre l'addition d'une retenue générée par les chiffres de la colonne précédente.
- La troisième entrée est identifiée
 Ci (de l'anglais Carry input).
- Ce circuit porte le nom d'additionneur complet (AC)

Le circuit additionneur complet peut être conçu avec 2 demiadditionneurs et une porte OU

Somme

Circuit comparateur à 4 bits

Figure 3-14. A simple 4-bit comparator.

- Ce circuit sert à vérifier si deux nombres de 4 bits sont identiques.
- Pour ce faire, il faut comparer bit à bit chacun des nombres.
- Est-ce que A = B ?

Exercices

Construire un circuit comparateur à deux bits permettant de détecter si $A = (A_1, A_2)$ est égale à $B = (B_1, B_2)$.

Construire un circuit comparateur à deux bits permettant de détecter si $A = (A_1, A_2)$ est plus grand que $B = (B_1, B_2)$

Devoir

Faire les exercices du fichier (sur Omnivox):

Exercices circuits logiques

- Si nécessaire, écouter les capsules vidéo suivantes (sur prodafor.com)
- Circuits03
- Circuits04
- **■** Circuits05
- **■** Circuits07
- **■** Circuits08
- Circuits09