TEXNet Project

Alex and Blake

The im2latex problem

Math Image to Math Code

Figure 1: Attention Model: Prediction over time-steps. Credit: Bender

Synthesized Dataset from Scratch

- Synthesized Dataset from Scratch
- 500,000 text examples!

- Synthesized Dataset from Scratch
- 500,000 text examples!
- 170,000 original example images

- Synthesized Dataset from Scratch
- 500,000 text examples!
- 170,000 original example images
 - Deng used 100k and Singh 140k

- Synthesized Dataset from Scratch
- 500,000 text examples!
- 170,000 original example images
 - Deng used 100k and Singh 140k
- 2 Models Trained and Ready for Inference!

State of the art in im2latex

Researchers	BLEU Score (%)	Training Time
Deng et al 2017	87.73	20 hours
Genthial 2017	88.00	-
Wang, Sun & Wang 2018	88.25	-
Singh 2018	89.00	60 hours
Taradachuk & Vente	88.48	75 hours
Wang & Liu 2019	90.28	75 hours

Our Data Processing Pipeline

Figure 2: Preprocessing Steps

Interpreting BLEU Score

• Let p_i be geometric mean of n-gram precisions

Brevity Pentalty

$$\mathsf{BP} = \begin{cases} 1 & \text{if } c > r \\ e^{1-r/c} & \text{otherwise} \end{cases} . \tag{1}$$

Calculation

BLEU = BP exp
$$\left(\sum_{i=1}^{n} w_i \log p_i\right)$$
 (2)

1

¹The following are simplified contrived examples, using 4-gram BLEU score. For a more complete picture see Papineni, Roukos, Ward, et al.

Example 1

```
reference = [
  ['the', 'quick', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
candidate =
  ['the', 'quick', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
print(sentence_bleu(reference, candidate))
 1.0
```

Example 2

```
reference = [
  ['the', 'quick', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
]
candidate =
  ['the', 'FAST', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
print(sentence_bleu(reference, candidate))
```

1 wrong token at length 9

Example 2

```
reference = [
  ['the', 'quick', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
candidate =
  ['the', 'FAST', 'brown', 'fox',
  'jumped', 'over', 'the', 'lazy', 'dog']
print(sentence_bleu(reference, candidate))
 1 wrong token at length 9
 0.7506...
```

Notes and Take-Aways

real data will account for synonyms

Notes and Take-Aways

- real data will account for synonyms
- steep penalty for any bad tokens on short sequences

Notes and Take-Aways

- real data will account for synonyms
- steep penalty for any bad tokens on short sequences
- to (really) simplify missing words and extra words "count as incorrect"

Distribution of Input Length

Demo Time

Sample Images from the class!

Special Thanks

Brian Newbold (archivist)

Special Thanks

- Brian Newbold (archivist)
- Sumeet S. Singh (works at Turnitin (Gradescope) now)

used command line for processing

- used command line for processing
 - allowed rapid iteration, but

- used command line for processing
 - allowed rapid iteration, but
 - should've been python scripts

- used command line for processing
 - allowed rapid iteration, but
 - should've been python scripts
- Tensorflow 2.0 differences made translation prohibitive

- used command line for processing
 - allowed rapid iteration, but
 - should've been python scripts
- Tensorflow 2.0 differences made translation prohibitive
 - ullet Kept to the last stable release on the 1.0 branch

Ask Us about...

- Ask Us about...
 - ANN structure,

- Ask Us about...
 - ANN structure,
 - Virtual Machine; or

- Ask Us about...
 - ANN structure,
 - Virtual Machine; or
 - The models better than ours.