Class 10: Structural Bioinformatics Pt.1

Justin Lu (A16318305)

What is in the PDB database

The main repository of biomolecular strucutre info is the PDB <www.rcsb.org>.

Let's see what this database contains:

```
stats <- read.csv("pdb_stats.csv", row.names =1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	163,468	13,582	12,390	204	74	32
Protein/Oligosaccharide	9,437	2,287	34	8	2	0
Protein/NA	8,482	4,181	286	7	0	0
Nucleic acid (only)	2,800	132	1,488	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	189,750					
Protein/Oligosaccharide	11,768					
Protein/NA	12,956					
Nucleic acid (only)	4,438					
Other	206					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
#sum(stats$X.ray)
```

Values are characters instead of integers/numbers

```
as.numeric(c(10,"1,000"))
```

```
Warning: NAs introduced by coercion
```

[1] 10 NA

We got to get rid of the commass. Can you find a function to get rid of commas?

```
x <- stats$X.ray
sum(as.numeric(gsub(",","",x)))</pre>
```

[1] 184362

I am going to turn this into a function then use apply() to work on the entire table of data

```
sumcomma <- function(x){
   sum(as.numeric(gsub(",","",x)))
}
sumcomma(stats$X.ray)</pre>
```

[1] 184362

```
n.total <-sumcomma(stats$Total)
n.total</pre>
```

[1] 219140

```
sumcomma(stats$EM)
```

[1] 20191

```
apply(stats,2,sumcomma)/ sumcomma(stats$Total)
```

X.ray	EM	NMR	Multiple.methods
0.8412978005	0.0921374464	0.0649676006	0.0010678105
Neutron	Other	Total	
0.0003605001	0.0001688418	1.0000000000	

84.1~% are solved by X-ray and 9.2% are solved by EM.

Q2: What proportion of structures in the PDB are protein?

```
189750/n.total
[1] 0.8658848
```

86.6% of the structures in the PDB are proteins

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

```
186898 / 248805733 * 100
```

[1] 0.07511804

Visualizing the HIV-1 protease structure

Mol* ("mol-star") viewer is now everywhere. The homepage is here: https://molstar.org/viewer/ I want to insert my image from Mol* here.

Working with the bio3d package

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)</pre>
```


Figure 1: My first molecular image

Figure 2: My second molecular image with Aspartic Acid and Water highlighted

```
Non-protein/nucleic Atoms#: 172 (residues: 128)
Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
```

Protein sequence:

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP VNIIGRNLLTQIGCTLNF

```
+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call
```

head(pdb\$atom)

	type	eleno	elety	alt	resid	chain	resno	insert	x	У	Z	0	b
1	${\tt ATOM}$	1	N	<na></na>	PRO	Α	1	<na></na>	29.361	39.686	5.862	1	38.10
2	${\tt ATOM}$	2	CA	<na></na>	PRO	Α	1	<na></na>	30.307	38.663	5.319	1	40.62
3	${\tt ATOM}$	3	C	<na></na>	PRO	Α	1	<na></na>	29.760	38.071	4.022	1	42.64
4	${\tt ATOM}$	4	0	<na></na>	PRO	Α	1	<na></na>	28.600	38.302	3.676	1	43.40
5	ATOM	5	CB	<na></na>	PRO	Α	1	<na></na>	30.508	37.541	6.342	1	37.87
6	MOTA	6	CG	<na></na>	PRO	Α	1	<na></na>	29.296	37.591	7.162	1	38.40

```
segid elesy charge
  <NA>
               <NA>
1
           N
2
  <NA>
           C
               <NA>
3 <NA>
           С
               <NA>
4 <NA>
           O <NA>
5 <NA>
           С
               <NA>
 <NA>
           C
               <NA>
  pdbseq(pdb)[25]
25
"D"
```

Predicting functional motions of a single structure

We can do a bioinformatic prediction of functional motions (i.e. flexibility/dynamics)

```
pdb <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

pdb

Call: read.pdb(file = "6s36")

Total Models#: 1
   Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

   Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

   Non-protein/nucleic Atoms#: 244 (residues: 244)
   Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]

Protein sequence:
   MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT</pre>
```

DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(pdb)

Building Hessian... Done in 0.021 seconds. Diagonalizing Hessian... Done in 0.453 seconds.

plot(m)

mktrj(m, file= "adk_m7.pdb")